UNCLASSIFIED

AD 431735

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

64-10

431735

CATALOGED BY UUC 431735 AS AD NO.

MAR + 6 1964

JUSIA D

THE RESEARCH TRIANGLE INSTITUTE Operations Research Division

OCD Review Notice

This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

RESEARCH TRIANGLE INSTITUTE
Durham, North Carolina
FINAL REPORT: PART II
R-OU-81

Analysis of Survey Data

E. L. Hill, W. K. Grogan, R. O. Lyday and H. G. Norment

15 February 1964

Prepared for Office of Civil Defense United States Department of Defense

under

Office of Civil Defense Contract No. OCD-OS-62-144 Sub-task 1115A

FINAL REPORT: PART II
R-OU-81

Analysis of Survey Data

Prepared for

Office of Civil Defense
United States Department of Defense
Office of Civil Defense Contract OCD-OS-62-144

OCD Sub-task 1115A RTI Project OU-81

bу

E. L. Hill, W. K. Grogan, R. O. Lyday and H. G. Norment

THE RESEARCH TRIANGLE INSTITUTE
Operations Research Division
Post Office Box 490
Durham, North Carolina

Approved by:

Edgar A. Parsons

Director

Robert S. Titchen Deputy Director

15 February 1964

ABSTRACT FOR PART II

This part contains sixteen appendices (A-P) to the chapters of Part I of the final report for OCD Sub-task 1115A, Analysis of Survey Data. These appendices contain details of computer programs used in categorization of structures with respect to technical shielding characteristics and resultant tabulations (A-E); details of the RTI 33 NFSS Phase 1 building sample selection method (F); an illustration of procedures used in identifying building elements critical to PF computations (G); RTI computational method and forms used in making Engineering Manual PF calculations for the 33 sample buildings (H); descriptions of the 33 buildings, the five PF results (AE Phases 1 and 2, RTI FOSDIC with and without partitions, and Engineering Manual), and analyses of individual building input and procedural differences judged to have affected the PF differences (I); construction details of four buildings used in comparing experimental and calculated PF's (J); trapped potable water field data gathered in the 33 building survey (K); detailed analyses of Technical Operations Research reports that affect the procedures used to calculate PF's (L-N); a summary of conclusions and recommendations made by Technical Operations Research and concurred with by RTI (0); and detailed recommended modifications to the NBS-NFSS Computer Program (P).

PART II CONTENTS

Appendix A: Appendix B:	Program Operating Instructions for Categorization Building Sample Selection I. Introduction
Appendix B:	Building Sample Selection
	II. Program BSSM2. III. Program BSSM1. IV. Program BSPO. V. Program SHSTAT
•	I. Introduction
Annondia Co	II. Program Descriptions,
Annondie C.	
Appendix C:	Source Program Listings for Statistical Analysis
	I. Introduction
Appendix D:	Source Program Listings for the Subroutines
	I. Introduction
Appendix E:	Shelter and Building Tabulations by Structural Characterist
	I. Shelter Statistics for PF Class 1 Buildings II. Shelter Statistics for PF Class 2 Buildings III. Shelter Statistics for PF Class 3 Buildings IV. Shelter Statistics for PF Class 4 Buildings V. Shelter Statistics for PF Class 5 Buildings VI. Shelter Statistics for PF Class 6 Buildings VII. Shelter Statistics for PF Class 7 Buildings VIII. Shelter Statistics for PF Class 8 Buildings VIII. Shelter Statistics for PF Class 8 Buildings X. Building Statistics
Appendix F:	Application of Statistical Sampling Procedures to Estimat Probable Error of NFSS Findings

PART II CONTENTS (continued)

Appendix G: Sensitivity Analysis of Building Protection Factors								
	I. Introduction							
Appendix H:	Engineering Manual Ground Contribution Computational Details							
	I. Introduction							
Appendix I:	Analysis of 33 Building Sample							
	I. Input Data and Results							
Appendix J:	Construction Details of Buildings Used in Comparison of Experimental and Calculated PF's							
	I. Introduction							
Appendix K:	Potable Water Survey - Field Data							
	I. Introduction							
Appendix L:	Evaluation of Technical Operations, Inc., Experiments on a Multistory Windowless Building							
	Abstract							
Appendix M:	Discussion of "Technical Operations Research Model Experiment Final Report TO-B 62-58"							
	Abstract							

٧

PART II CONTENTS (continued)

Appendix N:	<u>Discussion of "Technical Operations Research Model Experiment on Interior Partitions TO-B 63-6"</u>						
	Abstract						
Appendix O:	Conclusions and Recommendations of "Technical Operations Research"						
Appendix P:	Recommended NRS-NFSS Computer Program Modifications						
	I. Introduction						
	Phase 2 DCF's Necessary to Make EM Calculations						
	(6400 Sq. ftNo Partitions) P-109 TAB 6. Roof Contribution Calculations						
	(10,000 Sq. ft No Partitions) P-110 TAB 7. Roof Contribution Calculations (5 story, 6400 Sq. ft. Building with						
	Partitions) P-111 TAB 8. Ground Contribution Calculations						
	(Building with 30% Apertures) P-112 TAB 9. Areaway Contribution to Unexposed Basement Shelter P-113						
	TAB 10. Tables Representing Data in Engineering Manual Charts P-115						

Analysis of Survey Data: Part II - Appendices

INTRODUCTION

This part contains appendices which provide supplemental detailed information regarding subjects discussed in Part I of the final report for Office of Civil Defense Sub-task 1115A, Analysis of Survey Data. They are reported to substantiate conclusions and recommendations made in Part I and because of their potential value to other research projects.

4

Sub-task 1115A involved four major areas of study: (1) analysis of the NFSS findings to determine probable error; (2) categorization of surveyed structures with respect to technical shielding characteristics; (3) evaluation of new information on shielding; and (4) recommendations for changes to the NBS-NFSS Computer Program.

Brief summaries of the appendices are contained in the following paragraphs:

Appendices A-D

Details of computer programs used in the selection of a sample of 1541

NFSS Phase 1 buildings for categorization (see Part I, Chapter 3) and for the compilation of shelter and building statistics are contained in these appendices.

These programs are in FORTRAN for use on the National Bureau of Standards IBM 7090 Computer. Source program listings are included for each of the computer programs. The detailed structural input data and PF output data for the sample are available on magnetic tape for any additional categorization which may become desirable.

Appendix E

Tabulations are presented for NFSS Phase 1 buildings and shelter areas categorized by story number, percent apertures, contaminated plane width, floor area, interior partitions, wall mass thickness, dose source, percent basement

exposure, and physical vulnerability. These statistics are presented for buildings and shelter areas by building PF class. A PF Class 3 building is defined as having its highest rated shelter in PF Category 3.

Summaries of the tabulations are: (1) 39 percent of the shelter areas are in the basement, (2) the mean story number varies from three to four for all PF categories except Category 8, where it jumps to six, (3) the average percent of apertures for all buildings ranges from fifteen to nineteen percent and for shelter areas never exceed:25 percent, (4) the vast majority of the shelter areas, 78 percent, have an area in the range of 1,000 - 10,000 square feet, (5) only seventeen percent of the total shelter areas have interior partitions reported, (6) the modal value of the exterior wall mass thickness falls in the range of 100 - 150 psf, and (7) eighty percent of the sample buildings have only one part reported, 12 percent have two parts and four percent have three parts.

A thorough discussion of categorization of technical shielding characteristics of NFSS structures is presented in Part I, Chapter 3.

Appendix F

Details of the selection of 33 sample buildings surveyed by RTI (see
Part I, Chapter 4) to estimate the probable error of the NFSS findings are
presented in this appendix. Included are descriptions of the universe of
buildings sampled, the development of sampling units, procedures used in determining
the specific buildings, and an estimate of the statistical confidence of observed
average differences. Comparisons are made in Appendix I.

Appendix G

A sensitivity analysis used to identify building structural elements which are most important in radiation shielding is discussed. Studies of this type

helped to identify structural data requiring more precision in evaluation in the RTI survey described in Part I, Chapter 4, and Appendix I.

Appendix H

This appendix describes the standardized computational procedures developed and used by RTI to calculate protection factors by the Engineering Manual (EM) method for the sample of 33 buildings analyzed in Part I, Chapter 4. and Appendix I.

Included are functional equations used in the computations; samples of forms used to determine contributions from the adjacent wall, through the ceiling, and through the floor; a sample of the form used for basement shelters; and detailed instructions for using the forms. These procedures should be of use to those required to carry out EM computations routinely.

Appendix I

Presented are detailed descriptions of the 33 sample buildings surveyed by RTI and reported in Part I, Chapter 4. AE Phase 1 and RTI FOSDIC input data are compared for each building. Also reported are: (1) plan view building outlines, (2) photographs of each building, (3) results of PF computations, (4) an analysis of the input and procedural differences judged to have influenced the difference in AE Phase 1 and RTI calculated PF's, and (5) a description of the formulas used in the statistical analyses.

Appendix J

Construction details necessary to calculate Engineering Manual PF's for four buildings are presented in Appendix J. These buildings were previously experimentally evaluated by Edgerton, Germeshausen, and Grier, Inc., (EG&G). Experimental PF's and EM computations are compared for these four buildings in Part I, Chapter 5. The results are close enough in most cases that modest mass thicknesses assigned to interior contents would make them agree.

Appendix K

Sources and amounts of potable water available in each of the buildings in the RTI 33 building sample are contained herein. A summary of the potable water survey results is contained in Part I, Chapter 8. An average of 2.96 gallons per PF Category 4-8 shelter space was found in the 33 building sample.

Appendices L, M, and N

Appendices L, M, and N contain RTI's detailed analyses of Technical Operations Research (Tech Ops) Reports TO-B 62-26, TO-B 62-58, and TO-B 63-6, respectively. The first two report experimental measurements of the effect of limited strips of contamination on a model building and the third report is concerned with model experiments on interior partitions. The effect of these reported results and others on the calculation of building protection factors is summarized in Part I, Chapter 6.

Appendix O

This is a consolidation of conclusions and recommendations made by Tech Ops in reports reviewed by RTI and concurred with by RTI. A review of all shielding research reports evaluated by RTI is presented in Part I, Chapter 6.

Appendix P

Details of recommendations made by RTI in Part I, Chapter 7, for changes in the NBS-NFSS Computer Program are presented in this appendix. The recommendations for changes bring the computer method of calculating PF's closer to the Engineering Manual method while using only NFSS Phases 1 and 2 data. Recommendations for changes in the method of calculating contributions are made for exposed basements, roofs, stories above grade, and areaways. Revised area factors and a method for considering the effect of interior partitions are also included.

Appendix A

Program Coerating Instructions for Categorization Building Sample Selection

INTRODUCTION

Appendices A, B, C, and D give the listings and describe the computer programs that select a stratified sample of NFSS buildings and categorizes them by structural characteristics. The results of the statistical analysis of the structural characteristics of the 1541 building sample are presented in tabular form in Appendix E. Chapter 3 summarizes these results and describes the use of the computer programs. The data in Appendices A-E and Chapter 3 were originally submitted to OCD as Research Memorandum RM 81-9 (Reference 1).

Altogether, there are four separate IBM 7090 FORTRAN programs which are used for the selection and analysis of the buildings. Appendix A contains the operating instructions for each program and presents some additional descriptive material for the various calculations. Appendices B and C, respectively, contain the Primary Source Program listings that are used for the sample selection and statistical study programs. Formulas used at several stages of the calculations were developed as subroutines. Appendix D lists and describes these subroutine source programs.

The sample selection calculations are done in two steps using programs BSSM2 and BSSM1 involving independent computer runs. Program BSSM2 selects the sample from the M2 (shelter) file, and program BSSM1 merges with this the corresponding M1 (FOSDIC) file data and prepares a binary sample tape which contains all of the M2 and M1 file data for each building in the sample.

Program BSPO, which also involves an independent computer run, prepares BCD tapes for off-line printing which contain the M2 and M1 data for the complete sample.

Program SHSTAT segregates the sample data according to building PF class (see Part I, Chapter 3, Section IV. A. 1) and prepares numerical tabulations relating PF with structural characteristics for each building class and for the total sample population. Optionally, the complete M2 and M1 data, segregated in building PF classes, may be output. Program SHSTAT, with or without the optional output, involves one computer run.

Operating instructions and additional descriptive material are presented in the following sections for each calculation. Complete source program listings are given in Appendices B, C, and D for all programs used. The programs were written for use on the IBM 7090 computer under control of the Bell SYS 3 operating system.

II. PROCRAM BSSM2

A. Card Input

- Selection interval and number of M2 file tapes to be read are inputs.
 FORMAT (2110).
- One card is used for each M2 file tape, in the order that the tapes are read. Each card contains the number of shelter files on a tape. FORMAT (I10).

B. Tape Input

Tapes B5, B6, B7, and B8 are used for the four M2 file tapes, in order of reading. If the tapes are mounted out of proper sequence, the program will write a comment to this effect on the system output tape; it will examine the remaining tapes to ascertain their sequence, write this on the system output tape, and then terminate the job.

[&]quot;NBS tapes 1055, 1085, 1527, and 1349 were used for this study.

C. Binary Tape Output

Shelter file entries for the sample buildings are written on tape A5. This tape is used for input to Program BSSM1.

D. BCD Output

During the course of the calculations, various tests are made on the consistency and accuracy of the data, and tests also are made for tape checks and end-of-files. When these tests are failed, appropriate comments are made on the system output tape and the job is terminated.

A subtotal of the number of shelter file records read is printed after reading completely each M2 file tape. The number of buildings rejected on each tape also is printed. Upon successful completion of the job, the random number used to start the building selection and the number of buildings selected for the sample are printed. In addition, the numbers of buildings and shelters scanned are printed in octal form.

E. Running time was 33 minutes for the 1541 building sample.

III. PROGRAM BSSM1

A. Card Input

Number of buildings in sample, and number of M1 file tapes to be read are inputs. FORMAT (2110).

B. Tape Input

The intermediate sample tape generated by program RSSM2 is mounted on A5.

The M1 file consists of nine reels of tape. The first three, in order of reading, are mounted on B5, B6, and B7. When B5 has been completely read, it is rewound and the program automatically begins reading B6. The tape on B5 should be replaced with the fourth M1 file reel, etc. After B7 is completely read, the program stops. When the start button is pushed, the reading cycle automatically begins again at B5. This process continues until FOSDIC schedules have been found for all building parts in the sample.

C. Binary Tape Output

The program merges the M2 and M1 file data for the sample buildings and writes these data in binary form on tape A6. This tape, designated as the sample tape, provides input for subsequent stages of the study.

D. BCD Output

Information sufficient to identify completely each FOSDIC schedule for the sample buildings is written on the system output tape. One line of information, as described in Chapter 3, Section III. B. Step 2, is printed for each FOSDIC schedule.

The tapes used for this study were NBS tapes 1043, 1045, 1047, 1049, 1525, 1024, 1539, 1540, and 1541.

When the job is successfully completed, the total number of FOSDIC schedules selected is written in octal form on the system output tape. Also, the total numbers of sample shelters in each of the nine PF categories from 0 through 8 are listed on the system output tape.

E. Running time was 65 minutes for the sample of 1541 buildings.

IV. PROGRAM BSPO

A. Card Input

Number of buildings in the sample is input. FORMAT (I10)

B. Tape Input

The binary sample tape generated by program BSSM1 is mounted on A6.

C. BCD Output

Tape B5 is used for BCD output of the FOSDIC schedule data for the number of buildings specified by the card input. This output is illustrated in Figure 3 of Chapter 3. For the 1541 building sample, 33 reels of tape were written.

Tape B6 is used for BCD output of the PF calculation results for the shelters of as many buildings as are specified by the card input **. This output is illustrated in Figure 4*. Approximately 2/3 reel of tape was written for the 1541 building sample.

D. Running time was approximately 22 minutes for the 1541 building sample.

V. PROGRAM SHSTAT

A. Card Input

The number of buildings in the sample and a quantity KPTO are input on cards. FORMAT (2110). See Section C below for a description of KPTO.

All referenced figures are in Chapter 3.

^{**}A check of the printouts for a subsample against the printouts for the same shelter spaces on file in the Pentagon, showed frequent errors in the shelter volume as given in the subsample printout. At the time of this writing, no errors to account for this have been found in the programs presented in this report. Accordingly, it is assumed that either some adulteration of the story height values on the M2 file tapes has occurred, or that the disposition of the story height data in the shelter file entries has been incorrectly reported in Reference 2.

B. Tape Input

The binary sample tape generated by Program BSSM1 is mounted on A5. It must be file protected. Tapes A6, B5, and B6 are used for intermediate storage. After the sample tape, on A5, has been read and rewound, replace it with a pool tape for intermediate storage use.

C. BCD Output

- If KPTO = 0, complete FOSDIC and shelter PF data are written on the system
 output tape for each building PF class. See Figures 3 and 4 for illustrations
 of this output. If KPTO ≠ 0, this output is deleted.
- 2. Statistical tabulations for each shelter characteristic listed in Chapter 3, Section IV. A. 2, with the exception of percent basement exposure, are output for each building PF class.
- Statistical tabulations consisting of accumulated shelter statistics for all building PF classes are output for each characteristic listed in Chapter 3, Section IV. A. 2.
- 4. Statistical tabulations are output for each building characteristic listed in Chapter 3, Section IV. B. 2.
- D. Running time was approximately 10 minutes for the 1541 building sample for the case with FOSDIC and shelter PF output deleted. When the complete output was obtained, the running time was approximately 31 minutes.

REFERENCES

- H. G. Norment. <u>A Statistical Analysis of the Influence of Building Characteristics on Fallout Radiation Shielding</u>. Research Memorandum RM 81-9. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 6 September 1963.

Appendix B

Source Program Listings for Sample Selection

INTRODUCTION

This appendix gives a brief description of computer programs used only for selecting the 1541 sample buildings used in categorization (see Chapter 3). Source program listings are included. Subroutines used in the sample selection calculation but not listed herein are discussed in Appendix D.

II. PROGRAM DESCRIPTIONS

A. BSSM2

See Part I, Chapter 3, Section III. B. Step 1 and Appendix A, Section II.

B. BSSM1

See Part 1, Chapter 3, Section III. B. Step 2 and Appendix A, Section III.

C. BSPO

See Part I, Chapter 3, Section III. B. Step 3 and Appendix A, Section IV.

D. RNDM

See Part I, Chapter 3, Section III. B. Step la.

E. FTPRD

This program reads the eight word BCD prefix record of each M2 file tape.

F. FTSR (NT, W, NW, NFG)

A record of NW binary words from tape NT is read into core storage starting with location W. If a tape check is encountered five successive times, NFG = 1.

If an end-of-file is encountered, NFG = 2. Otherwise NFG = 0. NFG is a FORTRAN integer.

G. <u>FPTNO (W1, W2, N)</u>

This program extracts the building part number from words W1 and W2 and stores it in the decrement of N.

H. FSKPD

This program skips over the twelve word BCD record prefix to the M1 file tapes.

I. F2FLD (NT, NFD, NFG)

This program reads the final record on each Ml file tape (NT). This record contains the number of FOSDIC schedules on the tape. This is stored in the decrement of NFD. See description of NFG under FTSR above.

III. SOURCE PROGRAM LISTINGS

```
C
      BUILDING SAMPLE SELECTOR FROM NUS MASTER 2 TAPES (SHELTER FILE)
                                                                                855M2
                          RESEARCH TRIANGLE INSTITUTE
                                                                                BSSM2
                                                                                855M2
      DIMENSION PW(8) + NRF(20) + WU(2401) + W1(3) + W2(3) + W3(3) + W4(1000 + 8)
                                                                                BSSM2
      1.00124011
      NADW= D
                                                                                US5M2
      NT=14
                                                                                822MS
      NR=0
                                                                                B$SM2
      NS=0
                                                                                855M2
      NBLD=0
                                                                                 BSSM2
      DO 10 KK=1+3
                                                                                BSSMZ
    10 W1(KK)=0.
                                                                                 BSSMZ
      LT=5
                                                                                 855M2
       11:0
                                                                                 hSSM2
       NTR=0
                                                                                 BSSM2
       NZBLD+0
                                                                                 855M2
       LR-1
                                                                                 055M2
       LL=0
NP2-18
                                                                                 BSSMZ
                                                                                 055M2
       NW=2401
                                                                                 BSSMZ
       NSAM D
                                                                                 053/12
       READ 5010+13+14
                                                                                 855.42
       CO 50 JJ-1-N4
                                                                                 0.55M2
    SC READ SO40+NRF(JJ)
                                                                                 BSSMZ
       2-N3
                                                                                 BSSMZ
       YORNOMF (Z)
                                                                                 HSSM2
       N2=Y
                                                                                 SMESE
       Zenz
                                                                                 BSSM2
        IF1Y-2190.90.60
                                                                                 855112
    60 N2=N2+1
                                                                                 dááM2
    90 CALL FSHFT (NR. 2NZ. LR. NP2)
                                                                                 855M
       DU 270 JJJ+1+N4
                                                                                 35 Z
        JJJeJJJ
                                                                                 65542
        NT=NT+1
                                                                                 BSSM.
   100 REWIND NT.
                                                                                 BSSM2
   110 CALL FTPRD(NI.NTR.PW(8).NEG)
                                                                                 BSSM2
        IF(NFG-1)113+111+112
                                                                                 65542
   111 PRINT 5060.NT
                                                                                 BSSM2
   GO TO 120
112 PRINT 5080+NT
                                                                                 HSSM2
                                                                                 B5542
        GO TO 120
                                                                                 855MZ
    113 IFINTR-JJJ1120+140+120
                                                                                  85542
    120 REWIND NT
                                                                                  BSSMZ
        PRINT SOUD-NT . MTR
                                                                                  B$5M2
        KK=N4+14-NT
                                                                                 BSSM2
        DO 130 JJ:1.KK
                                                                                  055M2
                                                                                 BSSMZ
        STORT+1
        REWIND NT CALL FTPRD(NT. STR.PW(8) .NEG)
                                                                                  85542
                                                                                  855M2
        REWIND NT
                                                                                  BSSM2
        IF (NFG-11123-121-122
                                                                                  BSSM2
    121 FRINT 5060 NT
                                                                                  BSSM2
        GO TO 130
                                                                                  655%2
    122 PRINT 5080+"IT
                                                                                  BSSMZ
        GC TO 130
                                                                                  BSS∺2
```

```
85.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.55.832

86.
                  0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.75
0.55.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  555%2
855#2
855#2
123 PRINT 5000+NT+11R
130 CONTINUE
CALL ENDJOB
140 IT=NRF(1JJJ)
DO 250 KKK=101I
CALL FTSRINT-ND0120011-1W-1FG'
LKJ=2402-JKL
1140 UG(JKL)=NG(LKJ)
NR=NR+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL ENDJOB
143 DO 220 LLL2024G108
1LLALLL
LLALL FUCRRISOLR)
DO 150 [x13]
SMMTLL01-1
150 %2(1) x42(1) x42(1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           160 CONTINUE

GO TG 205

170 IF (MRDM) 175+350

175 D0 180 Jale3

180 W1(J)=W2(J)

XX1=LL-6

CALL FSHFT(XOT/M) 1,PF *LL*/P2 )

[F(PF) 190 *215*20

190 PAINT 5720*NT*/NY |

GO TO 220

200 CALL FYER (*TBLD*P)

205 CALL FCOMP(Zh2* KLED*NCSVP)

1F(NCOMP) 210*206-226

210 PRINT 5030 NT**R**LL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRINT 5100#SAM#NBLD+NS+N2
CALL EMC JOB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IFINEG-11143-141-142
141 PRINT SC70-NT-NR
REWIND NT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL ENDJOB
142 PRINT 5090.NR.NT
REWIND RT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               300 NRDN=1
```

- B-4 -

```
BSSM2
BSSM2
BSSM2
BSSM2
                                                                                                                                                                                                                                                                                                                                                                                        BSSM2
                                                                                                                                                                                                                                 BSS1:2
                                                                                                                                                                                                                                                   BSSW2
                                                                                                                                                                                                                                                                                                                                                                      B55%2
                                                                                                                                                                                                                                                                                                                                                                                                          BSSM2
BSSM2
BSSM2
                                                                        BSSMZ
                                                                                                              BSSM2
                                                                                                                                   355.42
                                                                                                                                                    655%2
                                                                                                                                                                       ASSM2
                                                                                                                                                                                                             585M2
                                                                                                                                                                                                                                                                                                                                BSSW2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     55342
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BSSMZ
                                                      BSS#2
                                                                                               BSSM2
                                                                                                                                                                                              BSSM2
                                                                                                                                                                                                                                                                                                                                                     HSSM2
                                                                                                                                                                                                                                                                                                                                                                                                                                 BSSM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                    BSSM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          BSSM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BSSMZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BSSM2
                                                                                                                                                                                                                                                                                                                                                                      SOSO FORMATCION.31970TAL NO. RECORDS THROUGH TAPE 12.3H ISIIO.1H..5X.15
1.34H BUILDINGS WERE REUECTED INIS TAPE///)
5.000 FORMATCION.5HTAPE 12.775945 FAILED ON 5 SUCCESSIVE TAPE CHECK TEST
15 WHILL READING FIRST REGURD////
                                                                                                                                                                                                                                                                                                                                                                                                                                                   5070 FORMATCIOX, SHTAPE 12,590 DAS FALLED ON 2 SUCCESSIVE TAPE CHECK TES
110 WHILE READING 110,98TH RECURDAZZO
5080 FORMATCIOX, STHAN IOF HAS DEEN FOUND WHILE READING FIRST RECORD OF
                                                                                                                                                                                                                                                                                          5020 FORHATTICX, 35HA NEGATIVE PF HAS CELN FCUND, TAPE 12,9H, RECGRD 14,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IRECURD FROW TAPE 12///)
SIGO FORMATILIX*57HTHE 10/10/ NUMBER OF BUILDINGS STLUCTED FOR THE SAMPL
IN INCLICX*16HFROM A TUTAL OF 012*15H BUILDINGS AND 012*9H SHELT
PETS INCLICX*30HTME RANDOM NUMBER GENERATED ISI10///)
                                                                                                                                                                                                                                                    5000 FORMATILOX.15HTAPE DRIVE NG. 12.3X.23HCONTAINS FILE REEL NG. 1277)
                                                                                                                                                                                                                                                                                                                                5030 FORMATCIOX.22HNES ACOMP FOUND. TAPE 12.9H. RECORD 14.7H. WORD 14.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5090 FORMATITIDX*42HAM EDF HAS BEEN ENCOUNTERED WHILE READING 110*20HTH
                                                                              60 T0 220
WRITE TAPS LT+11
50 360 13=1+11
WRITE TAPE LT+(W4(13+J2)+J2=1+8)
                                                                                                                                                                                                    CALL FINCRIZ'12 N3)
                                                             W4 (11+12 )=WC(K11)
                                                                                                                                                                                                                                                                                                                        17H. WORD 14///1
            5010 FORMAT(2110)
                                                                                                                                                                                                                                                                                                                                                                 SO4G FORMATIILED
                                                                                                                                                                                                                         NSAM=NSAM+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11APE 12///1
                                                                                                                                                                                                                                              GC TO 175
                                                                                                                                                                O=MOBIL
                                                                                                         00'5
                                                                                                                                                 363
```

- B-6 -

USSM BUSMA BUSMA BUSMA BUSMA	BSSMI BSSMI BSSMI	6.5541 6.5541 8.5541 8.5541 8.5541 8.5541	6.55.54 6.55.74 6.55.74 6.55.74 6.55.74 6.55.74 6.55.74 6.55.74	0.65571 0.65571 0.65571 0.65571 0.65571 0.65571 0.65571 0.65571 0.65571	65571 65571 95571 95571 85571 85571 85571 85571	188581 85581 185881 185881 185881 185881 185881 185881 185881
60 10 476 202 PRINT 5300°NT 50 TO 470 311 FERBITT SOFTER I MENES	1 FINEG-11215-205-270 235 PRINT 540C+NR+NT GO TO 470 215 NR+NR+ DO 211 JKL:1+27GG	211 4014L1=5014KJ) 211 4014L1=5014KJ) 00 26c 11=1+270C+45 11**11 00 22c J=1+3 22c W2[J]=W0[J]) CALL FRSK(MW2[3])	CALL FCOMPINITUI - WZ1J10.C.P.P. IF (NCOMPISSO-230-250 230 CONTINUE CALL FINCE NPTFO-APTFC+I NPTFO-APTFC+I NPTFO-APTFC+I 16-II-1-1 16-II-1-1	240 #FINPTF0:1) ##801161 60 TO 260 250 TFICEL1930-266-930 250 CONTINUE CALL FINCRINFOTP-1NCR1 GO TO 230 270 CALL FFLORMS-NF01 270 CALL FFLORMS-NF01 271 PRINI SCCONT	50 TO 4.0 272 PRIMI 5700-NT 60 TO 470 278 CALL FGC*PINEOTP-NFD*NCOP71 1FINCOF71287-230 *280 250 PRIMI 5 TIPMI**FD*NFUTP 290 REMIND NT PROTENCE CALTON 21570**10	011440+440+215 011440+440+215 0256-200+290

```
BSSM1
BSSM1
BSSM1
                                                                        BSSMi
                                                                                                            BSSM1
                                                                                                                                                                                                             B55#1
                                                                                                                                                                                                                                                   BSS#1
                                                                                                                                                                                                                                                                                          BSSM1
                                                                                                                                                                                                                                                                                                                 3SSM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         BSS%1
                                                       BSSM1
                                                                                             BSSW1
                                                                                                                               BSSW1
                                                                                                                                                                       BSSW1
                                                                                                                                                                                                                                  B55/41
                                                                                                                                                                                                                                                                          BSSM1
                                                                                                                                                                                                                                                                                                                                  BSS#1
                                                                                                                                                                                                                                                                                                                                                      BSSM1
                                                                                                                                                                                                                                                                                                                                                                                            BSSM1
                                                                                                                                                                                                                                                                                                                                                                                                                                  BSSM1
BSSM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BSSM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                BSSK1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    BSSMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BSSM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               355%1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1554
                                    BSSMI
                                                                                                                                                                                              BSSM1
                                                                                                                                                                                                                                                                                                                                                                           BSSM1
                                                                                                                                                                                                                                                                                                                                                                                                                 BSSMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    855,41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       BSSF:1
                                                                                                                                                                        5020 FORMATITHINGXNAGHTHE PROGRAM IS READY TO READ TAPE US AGAINN//10XN 127HHAS THIS TAPE UEEN CHANGETO//10XN30FIF SUN FURH START TO CONTIN
                                                                                                                                                                                                                                                                                                                                                                                                             SIGN FORMATTIMINGX, SBHNUMBEN OF PURTS FROM SMELTER AND FUSDIC TAPES DO INDIT AGREE FOR TAPE 12.8H BECCH! 110.5H MOR! 110.77)
SIIN FORMATTIMINGX, SCHIOTAL NUMBER OF FUSDIC ENTRIES SELECTED 012.77)
SZOC FORMATTIMINGX, SBHTAPE CHUCK ENCONTERED WHILE READING FIRST RECORD
                                                                                                              5010 FURMATCIHI-9X-37HFUSDIC COUNT LOES NOT CHECK FUR TAPE 12//10X-18HT 1010 TION-29HPUS THE TAPE COUNT IS U12//IDX-22HPUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5400 FORMAITTHI,9X,44HTAPE CHECK ENCUONIERED WHILE READING RECORD 12,9H
                                                                                                                                                                                                                                       3EV 10.20X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5300 FURMATCIHI,9X,51HEGF ENCOUNTEREU WHILE READING FIRST RECORD ON TAP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5700 FORMATITHI39X,50HEUF ENCOUNTERED WHILE READING SECOND FILE ON TAPE
                                                                                                                                                                                                                                                                                                               SOGO FURMATKITHITOX.75HTHE END OF THE LAST TAPE HAS BEEN REACHED. THIS IS AN ARMORMAL TERMINATION.//)
5070 FORMATKITHO*A*IIAPE CATEGORY*ICX*I5HNO* OF SHELTERS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5600 FORMATITHE 9X.57HTAPE CHECK ENCOUNTEMED WHILE REALING SECOND FILE
                                                                                                                                                                                                                                                                             504D FURMATIIDX*A4*1H=*2A2*3X*A2*3X*AL*4X*A5*4X*2A1*BX*A1*6X*A2*3A61
                                                                                                                                                                                                                                          PT NO
                                                                                                                                                                                                                                         FAC 10
                                                                                                                                                                                                                                            ر،
                                                                                                                                                                                                                                             )
•
                                                                                                                                                               ZH START TO CONTINUE . //////)
                                                                                                                                                                                                                                             SOUR FORMATIIHO, 9X, 45HSTAND LOC
                                                                                                                                                                                                                                                                                                                                                                                5086 FORMAT11H0+14X+11+17X+1101
                                                                                                                                                                                                                                                                                                                                                                                                       $ 090 FORMAT(1HI+100X+4HPAGE+14)
                                                                                                                                                                                                                                                                                                         5050 FORMAT142X 2 2 1 . 8 X . A 1 1
                                                                                                                                                                                                                                                                   1.13HFACILITY NAME//)
                                                                 460 PRINT 5080. IP.NPFILL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1 GN TAPE 12///
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1 ON TAPE 12//1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                10N TAPE 12//)
                                50 465 1=1.9
                                                                                     470 CALL ENCJOB
5000 FORMAT(2110)
                                                                                                                                                                                                                                 2UE . / / / / / / /
             PRINT 5070
                                                  I - I = d I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 12//1
```

```
BSPC
BSPO
BSPO
                                                                                                                                                                                                                                                4890
4890
8890
                                                                                                                                                                                                                             DIMENSION TLE1271-WF145 1 -WSt 200-61-MPT1100 1-N17171-
1 N18141-N191191-N201241-N20141-N20A1161-N20B1121-N20G1121-N20D1161
                                                                                                                                                                                                                                                                                                                                                    BUILDING SAMPLE PRINTONT PROGRAM NUMBER ONE
H.G. NORMENT: RESEARCH IRLANGLE
                                                                                                                                    READ TAPE NTOINFULDIOLEIGAS)
READ TAPE NTOITHESCUCKICKOLOGICUTION
CALL FOITJOINFULE)
                                                                                                            LINE=51
READ TAPE MI-MP-(MPI(()+)=1+1+7
                                                                                                                                                      CALL FOITWE NITT
NITTE
                                                                                                     DO 190 1J=1.NBLD
                                                             NCI-15
NC2=16
NC2=16
REWIND NOI
REWIND NOI
REWIND NOS
READ 4000+4=LD
                                                                                                                        DO 180 1=1,NP
                                    2.NSH(13).X(6)
                                                                                                                             LEVPILLI
                                                 NPG2=C
```

BSPO 3SPO BSPC **BSPU BSPO** dsbo BSPO **BSP0 DASA** BSPO BSPO BSPD BSPO **BSP**0 BSPO ыsРO **BSPO** BSPG 2.3112/39X*14HWIDTH OF PLANE19.3112/28X*27HPLANE 2 EFFECTIVE HEI 3GHTI7.3112/39X*14HWIDTH OF PLANE19.3112/28X*27HPLANE 3 EFFECTIV 4E HEIGHTI7.3112/39X*14HWIDTH OF PLANE19.31121 6040 FORMATITHC*26X*23H(21) SURVEY METHOD GODE16//21X*77H(22) FLOOR AND I ROOF DESCRIPTION MASEMENT IST FLOOP UPPER FLOORS ROOF/50 EFFECTIVE HEIGHTI7 6050 FORMAT(IHC.20X.21H(23) STRUCTURE DETAIL/56X.42HSIDE A SIDE D SIDE D SIDE C SIDE D/28X.24HBASEMENT EXTERICR WALLSIJO.3I12/38 2X*15HHGI ABOVE GRADEI9.3I12/38X*14HAPERTURES IIO.3I12/38X*14HI EXTERIOR WALLSIIO.3I12/38X.14HAPERTURE 6060 FORMATCHR0*27X*24H1ST STURY EXTERIOR WALLSIIO*3112/38X*14HAPERTURE 1S 110*3112/36X*14H1MTEPJOR WALLSIIO*31121 110.3112/38X.14HINTERICR WALLS110.3112) SIDE D/28X.27HPLAKE 1 6070 FORMATELLOSZZZZZHUPPER SNIERIOR WALLSIIC+31121 SIDE C 3115,3112) 2X,41121

```
STORE INTERVAL WIDTH

TEST TO SEE IF X-ZERO IS ZERO
NO COMPUTE PSEUDO-RANDOM. NUMBER
YES COMPUTE NEW X-ZERO BY LOGICALLY
SUMMING STORAGE FROM LUCATION OF TSX RNDM.4
                                                                                                                                                                               MAP X 18TO THE REGUIRED INTERVAL.
1.65. (0.10 K)
RETURN
                                                                                            BY LAMEDA
GET 4 ZEPO BITS IN LEFT OF
MO AND AC
                                                                   SHIFT CFF LOW GROER 31TS STORE IN X-ZERO MULTIPLY X-ZERO
                                                                                                                                   ADD MG TO AC
STOPE NEW X-ZERO
SHIFT GFF LOW ORDER BITS
                                                                                                                                                                                                                  MULTIFL TER
                                                                                                                                                                                                                                         GET SEED
STORE IT
                                                                                                                                                                   FLOAT X
                                                                                                                                                                                                                                                        RETURN
RNDM
RSEED
                                       A-2
A-2
                                                                                                                                                                                                    7.0
                                                                                              A-1
                                                                                                                                                                                                                 991
ENTRY
ENTRY
STO
CLA
TNZ
SXD
                                                                                                                                                                                                                                          CL &*
                                                                                                       LLES
LRS
LRS
STO
ADD
STO
STO
GRA
FAD
                                                                                                                                                                                                          H
H
T
R
                                                                                                                                                                                                                          H 178
                                                ACL
TIX
LXD
ARS
STO
                                                                                      150
                                                                                                                                                                                                                                                  510
                                                                                                                                                                                                                                                          TRA
                                                                                                                                                                                    515
785
786
                                                                                               ¥ d∙i
                                                                                                                                                                                                                                          RSEED
                                                                                        œ
                 RNOW
```

```
READ RECCYD OF8
BCD WOPDS FROM TAPE
NT OF CHANNEL B.
STORE PW(1-R).
EXTRACT DEC PW(1).
AND STORE IN DEC
GF NTR. IF TAPE
CHECK (5X).NFG=1.
IF END FILE.NFG=2.
IF NEITHER.NFG=0.
            NT.NTR.PW.NFG
                                                                                                                                        000001000000
00000200000
                                                                               4.4
FTPRD-1.1
FTPRD-2.2
5.4
                                       0•2
1142•2
DCCOM
                                                                                                          1142,2
                         5.1
1.4
                                                                       2.4
BLANK
                                                                                                                   E.1.1
                  #-3,2
3,4
                                                                                                                                I ND+1
FIPRD
                                                                                                 9.0
                                                         CHK
                                                                  304
DCCOM
BLANK
CHK
                                                                                                                                          Gadis
                                                                                                                                 EFL
```

```
READ ONF RIN RECORD OF NW MARDS FROW 9. CHANNEL TAPE NT AND STOPE STARTING AT MO.
                                      IF TAPE CHECKIZY).
NFG=1
IF EOF-NFG=2.
IF NEITHER+NFG=0.
                                                                                                                                                                           EXTRACT PART
           NT .WO.NY .NFG
                                                                                                                                                                #1 sa2 si.
                                                                                                                      000001600000
                                                                                                                                                                                                          10000000017
000000012
                                                                      4.4
FTSR-1.1
FTSR-2.2
5.4
                                                                                            9elel
clankel
                                                                                                           PLANK+2
            9-1-1
2-4-2-2-4
2-4-2-4
DCow
DCow
DCow
DCow
11-4-1
11-8-2-1
DCow
                                                                                                                                                            EPT1.3
1.64
8.55
3.5
8.45
8.45
2.64
2.64
                                                                                        1158.2
                                                                                                                                                                                           "Z.SK+2
                                                              EFL
BLANK
0N.E 35
                                                                                                                                                                                                          30 to
```

```
        ENTRY
        F2FLD

        HTR
        **-1*1
        NT**NFD**NFG

        HTR
        **-1*1
        NT**NFD**NFG

        SXD
        **-3*2
        NT**NFD**NFG

        AXT
        5*1
        **-1*6

        CLA*
        1**4
        **-1*8

        PDC
        0**2
        **-1*8

        RCHB
        DCOM
        **-1*8

        TRAB
        EFL
        CLA

        DCOM
        10CD
        **-1*8

        LXD
        F2FLD**-2*2
        **-1*8

        LXD
        F2FLD**-2*2
        **-1*8

        LXD
        F2FLD**-2*2
        **-1*8

        TRA
        4**-4
        **-1*8

        LXD
        F2FLD**-2*2
        **-1*8

        TRA
        4**-4
        *-1*8

        LXD
        **-1*8
        **-1*8

        TTA
        4**-4
        *-1*8

        TTA
        *-1*8
        *-1*8

        TTA
        *-1*8
        *-1*8

        TTA
        *-1*8
        *-1*8

        TRA
        *-1*8
        *-1*8

        TRA
        *-1*8
        *-1*8

        TRA
```

Appendix C

Source Program Listings for Statistical Analysis

I. INTRODUCTION

This appendix gives a brief description of the computer programs used exclusively for the statistical study of the sample building structural characteristics and the relations of these characteristics to shielding effectiveness (see Chapter 3).

Source program listings are included. Subroutines used in the calculations but not listed herein are discussed in Appendix D.

II. PROGRAM DESCRIPTIONS

- A. SHSTAT is the executive program. It reads the sample tape and accumulates the the statistics.
- B. STAPUT outputs shelter statistics.
- C. FINPUT outputs totaled shelter statistics (by calling STAPUT) and building statistics.
- D. FOSPUT outputs the M1 file data for each building part (see Figure 3 of Chapter 3).
- E. FOSCAL called instead of FOSPUT if the M1 and M2 file data output is not wanted.
- F. <u>SETUP</u> calculates totals, mean PF, and standard deviations for each shelter or building characteristic.
- G. GOOL calculates and accumulates data from which means and standard deviations of building and shelter characteristics with discrete distributions are to be calculated.
- H. <u>COOL</u> calculates and accumulates data from which means and standard deviations of building and shelter characteristics with continuous distribution are to be calculated.

 TOOL calculates means and standard deviations of building characteristics for each PF category.

III. SOURCE PROGRAM LISTINGS

```
FALLOUT SHELTER CATEGORIZATION STATISTICAL STUDY
                                                                                                   SHSTAT
                                                                                                   SHSTAT
  OIMENSION MHT(
14).MPL(4).WF1(20,45).WS1(20,45,6).IMPT(20.8). [82(10,8]
                                                                                                   S''STAT
                                                                                                   SHSTAT
    LL=0
                                                                                                   SHSTAT
    LR-1
                                                                                                   SHSTAT
     L18-18
    L12-12
                                                                                                   SHSTAT
     #P=C
     NT1-15
                                                                                                   SHSTAT
                                                                                                   SHSTAT
     KT2=16
     L8-5
     L24-24
                                                                                                   SHSTAT
                                                                                                    SHSTAT
     L30+30
                                                                                                    SHSTAT
     L6=6
     NTS-5
                                                                                                   SHSTAT
     ATT-6
                                                                                                   SHSTAT
     PSUB=0
     READ 1000.NBLD.KPTO
DD 90 1-1.70
DD 90 J+1.8
                                                                                                   SHSTAT
                                                                                                    SHSTAT
                                                                                                    SHSTAT
 1PS(1,J)=0

JPS(1,J)=0

JPSP(1,J)=0

90 1NPT(1,J)=C

00 100 1=1,45

0C 100 J=1=8
                                                                                                    SHSTAT
                                                                                                    SHSTAT
                                                                                                    SHSTAT
                                                                                                    SHSTAT
                                                                                                    SHSTAT
1FL(1,J)=0
100 JFLP(1,J)=0
                                                                                                    TATZHZ
                                                                                                    SHSTAT
     0C 101 I=1.10
00 101 J=1.8
182(1.J)=C
                                                                                                    SHSTAT
182(1, J)=C

1AP(1, J)=C

1O1 JAPP(1, J)=C

CC 102 1=1,8

J1P(1)=C

102 11PT(1)=C

DO 103 1=1,100

DC 103 J=1,8

103 1PL(1, J)=C

DC 104 J=1,8

1AR(1, J)=C
                                                                                                    SHSTAT
                                                                                                    SHSTAT
                                                                                                    SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
|AM(1,J)=0
|C2(1,J)=0
|C2(1,J)=0
|C0 |C3 |C1,91
|CC |C3 |J=1,8
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
                                                                                                     SHSTAT
 1C5 JPV(1,J)=0
                                                                                                     SHSTAT
 110 REWIND ATS
                                                                                                     SHSTAT
      REWIND NTL
                                                                                                     SHSTAT
      REWIND NT2
                                                                                                     SHSTAT
      HEWIND NTT
                                                                                                     SHSTAT
      WOLDI-D
      DC 120 1-1-2
                                                                                                     SHSTAT
```

```
$45184
$45184
$45184
$45184
$45184
$45184
$45184
                                                                                                                                                                     885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
885184
                                                                                                                                                                                                                                                                                                                                                            SHSTAT
                                                                                                                 SHSTAT
SHSTAT
SHSTAT
SHSTAT
SHSTAT
                                                                                                                                                                                                                                                                                                                                                                                                                                               SHSTAT
SHSTAT
SHSTAT
                               MRITE TAPE MPF.(UFILISA), Jeloše)
MRITE TAPE MPF.(ILSI(I.J.K),Ki.Kel.63,Jelot.)
CCNTRUE
                                                                                                                                                                                                                                    MR(2)=MR(7)+1
MRITE TAPE NP-NP-(MPT(1)+1=1-P)
CG 22C 1=1-NP
LHMPT(1)
             DU 23C 1J=1,NBLD
REAG TAPE ATS,NP.(PPTII), I=1,VF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1FIKPTE11156,1155,1156
                                                                                                                                              CALL PECATIONS NOF I
REFENDED SO 23C+181
IFFE PET 1190-201-2CC
O NOF NIT
                                                                                                                                                                                                                                                                                                                                                         16 (MR) 350, 350, 1150
fit 155 Jalos
fot 150 Jalos
                                                                                                                                                                                                                                                                                             REBING NTT

FERING NTT

FERING NTT

REBING NTT

REBING NTT

NT-NT-1-1

FG 300 14-1-2

NT-NT-1-1

ND-NC-1-1-1
                                                                                                                                                                                          NBLD1=NRLf1+1
GC Tn 2C5
NR[1]=MR[1]+1
                                                                                                                                                                                                                                  201 NPF-NT2
      120 NRT11=C
                                                                                                                                                                                                                                                                                                                                                                    150
                                                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                                  151
                                                                                                                                                                                                                                                                                                                                                                                                                                                     525
                                                                                                                                                                                                                                                205
                                                                                                                                                                                                                                                                               220
                                                                                                                                                                                                                                                                                                                                                                                                                                         133
                                                                                                                                                                                                           200
                                                                                                                                                                                                                                                                                                                                                                                                                 152
```

MATERIA MAT	MUCH 330 12 12 12 12 12 12 12 12 12 12 12 12 12	1155		SHSTAT SHSTAT
00 350 11.000 01 350 11.000 02 350 11.000 03 150 150	00 350 11.000 WSTR-0 WSTR-		MPC1=0	SHSTAT
######################################	######################################	•	330	SHSTAT
MASTER	MARPOO MARPOO MARPOO MARPOO MARPOO MARPOO MARCON			SMSTAT
######################################	######################################			
MESSINGO MESSIN	MESSINGO MESSIN			SMSTAT
######################################	######################################			SKSTAT
MANDO MARDO MARDO MARDO MARDO MEDO TADE LEMETIA MEDO TADE MEDO TO TADE MEDO TADE MEDO TADE MEDO TO TADE MEDO TADE MED TADE M	MARPHO MARPHO MARPHO MARPHO MARPHO MARPHO MARPHO MARPHO MEANTHIRD MEANTH MARPHO MARPHO MEANTH MARPHO		MISHIFF CALL SELVE SELVE AND A SELVE	SHSTAT
######################################	######################################		0147	SMSTAT
DG 320 J=1.NP LempT 43) READ TARE N. (WFK).NE.1.45) READ TARE N. (WFK).NE.1.46) READ TARE N. (WFK).NE.1.46) READ TARE N. (WFK).NE.1.46) READ TARE N. (WFK).NE.1.46) READ TO READ TO READ TARE N. (WFK).NE.1.46) READ T	DG 320 J=1.NP READ TAPE NI (MFK).M=145) CALL FGG.ALI		01742	SWSTAT
LempTill			EPS-0	TATA
LempTiJ	LEMENTIA MED TATE NO. NEW PROSECULATION OF THE MED TATE NO. NEW PROPERTY OF THE MED TO 180 TH		320	
#### #################################	######################################		1-101-1	
FERRO TACK	READ TANE No.		194 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	SKSTAT
NEW TOOL NEW TEEN NEW TEEN NEW TEEN NEW TOOL NEW TEEN NEW TOOL NEW TEEN NEW TOOL NEW TEEN	FERENTON 196-157-156		MERC LANG MIDIEST AND MANUAL AND	SHSTAT
IFENTON 156.155.150 CALL FOSCALI WF.TLE.NNT.NNO.NNO.NNO.NNO.NNO.NNO.NNO.NNO.NNO	If		MEND THE BUT TO SELECT STATE SOUTH STATE S	
CALL FOSCAL!	CALL FOSCAL!		1F(KPT0)156,157,156	SWSTAT
M2E,N2DD CAL FOSTUTINPEL,WF.TLE,N17,N10,N19, M2O,N21,N22,N23A,N23B, M2C,N2DD CAL FMSHIRFS,MR2.66.L24.L6.LR] CAL FMSHIRFS,MR2.66.L24.L6.LR] MR-MR12O,MR20 MR-MR12O,MR20 MR-MR12O,MR20 MR-MR12DO,MR20 MR-MR12DO,MR20 MR-MR12DO,MR20 MR-MR12DO,MR20 MR-MR12DO,MR20 MR-MR20MR1 MR-MR20MR1 MR-MR20MR1 GO TO 28 GO TO 28 GO TO 28 GO TO 28 GO TO 28 GO TO 28 FRIMT 5000,MR20 MR-MR20MR1 MR-MR20MR20 M	### ### ##############################	3		
### ##################################	### COLD 156 [CALL FORSWINDEL, WF. TLE, NIT, NIP, NIP, NIP, NIP, NIP, NIP, NIP, NIP	! -	-	
CALL FGSFUTTIMPEL, WF. TLE.N.17.N.19.N.19. N.20.N.21.N.22.N.238.N.238.N.238.N.228.20. CALL FARSHURF 51.PR.2.66.L.24.L6.LR] CALL FARSHURF 51.PR.2.66.L.24.L6.LR] REPRESSOR 10.PR.20. FFFSTR. M. 12.21.2.22.23 RSTEWN. FFFSTR. M. 12.21.2.22.23 RSTEWN. FFFSTR. M. 12.21.2.2.2.23 RSTEWN. FFFSTR. M. 12.21.2.2.2.2.2 RSTEWN. FFFSTR. M. 12.21.2.2.2.2.2 RSTEWN. FFFSTR. M. 12.21.2.2.2.2.2 REFERENCE 10.PR.20.2.2.2.2 REFERENCE 10.PR.20.2.2.2.2 RR. M. M. 17.1) AR. M. 17.1) AR. M. 17.1 FFRAR. 5020. M. E. L. M. 17.1 FRAR. 5030. M. M.	CALL FGSFUTIMPGL, WF. TLE.N.17.N.19.N.19. N.20.N.21.N.22.N.23A.N.23B. CALL FARSHURF 51, FM 1.Lo. 130.L.12.LR 1 CALL FARSHURF 51, FM 2.Lo. L.24.Lb.LR 1 CALL FARSHURF 51, FM 2.Lo. L.24.Lb.LR 1 FRISTM-MAIN 200-MR2 21 FF FRY MAY 123 3.23 2.23 NSTR-MM 123 1.23 2.23 NSTR-MM 123 1.23 2.23 NSTR-MM 123 1.23 2.23 2.34 NPU-NP 10 100 MPV 2 AR 2.N.17 11 1 AR 2.N.17 11 1 AR 2.N.17 12 1 AR 3.N. MY 200			
TARE TO SOLUTION T	CALE FASSHIEFS; MAILEGL 30, LIZ-LR] CALE FASSHIEFS; MAILEGL 30, LIZ-LR] CALE FASSHIEFS; MRZ-LG-LZ-LG-LR] FRIPMEND 10-000020-1 FRIPMEND 10-000020-1 FREED 10-000020-1 FREED 10-000020-1 FREED 10-000020-1 FREED 10-00000000000000000000000000000000000		00 10 10 10 10 10 10 10 10 10 10 10 10 1	SMSTAT
CALL FRASKIMF(5), MR2.L6.130.L12.LR] CALL FRASKIMF(5), MR2.L6.L24.L6.LR] FRISTREME, 10.08R2.1 RETEMENTALIZED CONTROL RETEMENT CONTROL R	TAIL FRASHINFEST MRI-LO. 130. LIZ-LR J CALL FRASHINFEST MRI-LO. 130. LIZ-LR J CALL FRASHINFEST MRI-LO. 120. LR J CALL FRASHINFEST MRI-LO. 130. LIZ-LR J FFIRSTR-MRI-200 MR2 J CALL FRASHINFEST MRI-LO. 130. LIZ-LR J CALL FRASHINFEST MRI-LO. 130. LIZ-LR J CALL FRASHINFEST MRI-LO. 130. LIZ-LR J CALL FRASHINFEST MRI-LO. 130. LR J MRI-MRI-LO. 130. LR J MRI-MRI-MRI-MRI-MRI-MRI-MRI-MRI-MRI-MRI-	``		SHSTAT
CALL FRASKIEFS 59, FRZ - LG-LZ4-LG-LR) RRI-BRI-010-RR2-1 RRI-BRI-010-RR2-1 CALL FRASKIEFS 59, FRZ - LG-LZ4-LG-LR) RST-BRI-010-RR2-1 CALL FRASKIEFS 59, FRZ - LG-LZ4-LG-LR) CALL FRASKIEFS 59, FRZ - LG-LZ4-LG-LR) CALL FRASKIEFS 59, FRZ - LG-LZ4-LG-LR) CALL FRASKIEFS 59, FRZ - LG-LZ4-LR) RPW-BRY 1 20-RPW 1 2 34, 234, 234 RRI-BRI-BRI 2 31, 234, 234, 234 RRI-BRI 2 31, 234, 235, 236 RRI-BRI 2 31, 234, 235, 236 RRI-BRI 2 30, 236 RRI-BRI 2 30, 236 RRI 3 30, 236 RRI 3 30, 236 RRI 5 30, 7 LE [23, 7 LE [23, 7 LE [13),	CALL FRASK(WFF); MP4.Lo.L24.Lb.LR) RRI-MR10100-MR201 CALL FRASK(WFF); MP4.Lo.L24.Lb.LR) RRI-MR10100-MR201 CALL FRASK(WFF6); MP4.Lc.L30.L12.LR) CALL FRASK(WFF6); MP4.Lc.L30.L12.LR) CALL FRASK(WFF6); MP4.Lc.L30.L12.LR) CALL FRASK(WFF6); MP4.Lc.L30.L12.LR) RPW-MP4 1233,234.234 RPW-MP4 1233,234.234 RPW-MP4 1233,234.234 RRI-MR1711 RR		_	SHSTAT
Call Fragius[5], FRZ-L6-L7-L6-LR] FINSTR-ME. 123-23-23-23-23-24-23-24-23-24-24-12-LR] FINSTR-ME. 123-23-23-23-23-23-24-23-24-12-LR] Call Fraskius[6], FRVIL6-L30-LL2-LR] Call Fraskius[6], FRVIL6-L30-LL2-LR] Call Fraskius[6], FRVIL8-L3-23-23-23-23-23-23-23-23-23-23-23-23-23	RELENSE OF THE STATE OF THE STA	2		SMSTAT
### ### ##############################	######################################		CALL FRASH(KF15), MR2, L6, L24, L6, LR)	SMSTAT
	Firstr-mail231,232,232 Firstr-mail231,232,232 Call FraskirFiel, MPV1, L6, L20, L12, LR] Call FraskirFiel, MPV2, L6, L24, L6, LR] Call FraskirFiel, MPV2, L6, L24, L6, LR] Firstr-mry 233, 234, 234 MPV-MPV 233, 234, 234 MPV-MPV 233, 234, 234 MPV-MPV 234 MPV-MPV 234 MPV-MPV 235, 235, 236 MRC-MI 236 Firstr-mry 236 MRC-MI 236, 236 Firstr-mry 236		MRI-MRI-10+MR2+1	1
#STE-MI CALL FMASKUF(6), MPV2-L6, L24-L60-LR) CALL FMASKUF(6), MPV2-L6, L24-L60-LR) #PV1=MPV1=10-MPV1=10-MPV2-L6, L24-L60-LR) ##PV=MPV1=10-MPV1=10-MPV2-L6, L24-L60-LR) ##PV=MPV1=10-MPV1=10-MPV2-L6, L24-L60-LR) ##PV=MPV1=10-MPV1=10-MPV2-L6, L24-LE(13), TLE(13), TLE(14), TLE(15) ##PV=MPV1=10-MPV1=10-MPV2-L6, LE(12), TLE(13), TLE(13), TLE(16), TLE(1	#STE-MI CALL FMASHIWFIGD, MPV2.LG, L24.LG, L30.L12,LR) CALL FMASHIWFIGD, MPV2.LG, L24.LG, LR) #PUBPV1 EASHIWFIGD, MPV2.LG, L24.LG, LR) ##EMPV EASHIWFIGD, L33.234.234 ##EMPV EASHIWFIGD, L33.234.234 ##EMPV EASHIWFIGD, L33.LG, L33.LE EASHIWFIGD, L23.LG EASHIWFIGD, LG EASHIWFIGD, L33.LG EASHIWFIGD, L33.LG EASHIWFIGD, LG EA		1c.mc70_mm11231_212.232	200
Call Fraskirfeld, MPV1.66.130.112.1R) Call Fraskirfeld, MPV2.66.124.16.1R) Call Fraskirfeld, MPV2.66.124.16.1R) Call Fraskirfeld, MPV2.66.124.16.1R) IF(INV-MPV11233.234.234 MPV-MPV1 ARI-ANT 1.10 ARI-ANT 50.00 ARI-A	Call Fmaskiwfiel, mPV1.cle.130.t12.LR) Call Fmaskiwfiel, mPV2.cle.124.t6.LR) Call Fmaskiwfiel, mPV2.cle.124.t6.LR) Call Fmaskiwfiel, mPV2.cle.124.t6.LR) IFIRPL=IDV.1233.234.234 MPV=MPV 12 234.234 MPV=MPV 12 234.234 MPV=MPV 12 234.234.234 MPV=MPV 12 234.234.234 MPV=MPV 12 234.234.234 MPV=MPV 12 234.234.234 MPV=MPV 12 234	1		SHSTAT
CALL FRASKLEGO, MPV2-LO-LZ4-LZ4 CALL FRASKLEGO, MPV2-LO-LZ4-LZ4-LD-LR) MPV=MPV1230-Z34-Z34 MPV=MPV1230-Z34-Z34 MRPV=MPV1230-Z34-Z34 MRPV=MPV1230-Z44-Z44-Z44-Z44-Z46-Z44 MRPV=MPV1230-Z44-Z44-Z44-Z44-Z44 MRPV=MPV1230-Z44-Z44 MRPV=MPV130-Z44-Z44-Z44 MRPV=MPV130-Z44-Z44 MRPV=MPV130-Z4	Call FrashirFiels, MPV1-Le, L30-112-L7 Call FrashirFiels, MPV2-L6, L24-16-L8) MPV=MPV1230-234-234 MPV=MPV1230-234-234 MRP=MPV1230-234-234 MRP=MPV1201 MRS=MR104100- MRS=MR104100- MRS=MR104100- MRS=MR104100- MRS=MR104100- MRS=MR104100- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MR10410- MRS=MRS=MRS=MRS=MRS=MRS=MRS=MRS=MRS=MRS=	=	II ST	SMS TAT
Call Frashirstelland Publication Programmers IF (FIRTY-PUT) 1233-234-234 REPLEMENT 1233-234-234 REPLEMENT 1233-234-234 REPLEMENT 1233-234-234 REPLEMENT 1233-234-234 REPLEMENT 1233-235-236 REPLEMENT 233-235-236 REPLEMENT 234-235-236 REPLEMENT 234-236-236 REPLEMENT 2	Call FmsHibstoney2 IFIRPY=MPV12234.234 IFIRPY=MPV12234.234 MPV=MPV12234.234.234 MPV=MPV12234.234.234 MPV=MPV12234.234.234 MPV=MPV1234.234.234 MPV=MPV1234.234.234 MPV=MPV1234.234.234.234 MPV=MPV1334.234.234.234 MPV=MPV1334.234.234.234 MPV=MPV1234 MPV=MPV1334.234.234.234 MPV=MPV1234 MPV=MPV1234 MPV=MPV1334 MPV=MPV134 MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV134 MPV=MPV144 MPV144 MPV144 MPV144 MPV144 MPVV144 MPVV144 MPVV144 MPVV144 MPVV144 MPVV144 MPVV1	2	CALL	747747
######################################	MPV=MPV1=10+MPV2 MPV=MPV1=10+MPV2 MPV=MPV1=10+MPV2 MR_MIT	!	7	
				SHSTA
######################################	######################################		TAMENDAL PROPERTY OF THE PARTY	SHSTAT
MRYMPW1 ARIANI7[1] ARIANI7[1] ARIANI7[2] ARIANI7[2] ARIANI7[2] ARIANI7[2] ARIANI7[2] ARIANI2[2] ARI	MRYMPW1 ARIANT711 ARIANT722 ARIAN1722 GG 10 236 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,1262 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,230 IFIRAR-51236,236,236 IFIRAR-51262,236,236 IFIRAR-5130,236,236 IFIRAR-5130,236 IFIRAR-5130			SMSTAT
ARI-ARI/210. ARZ-ARI/210. ARZ-ARI/210. ARZ-ARI/212 ARZ-ARI/212 ARZ-ARI/212 ARZ-ARI/212 ARZ-ARI/212 ARZ-ARI/212 FINAN-229, 235, 230 MAR-1 FINAN-229, 235, 230 MAR-1 FINAN-229, 235, 230 MAR-1 FINAN-229, 239, 200 MAR-2 FINAN-2000-REE11, TLE(12), TLE(13), TLE(14), TLE(15) PRINT 5000-REE11, TLE(22), TLE(23), TLE(12), TLE(12), TLE(13), TLE(1	ARI-ANI/(1) ARI-ANI/(1) ARI-ANI/(2) ARI-AN	2		CACTAT
## ## ## ## ## ## ## ## ## ## ## ## ##	ARI-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. ARZ-MRI/100. GG 10 236 GG 10 236 GG 10 236 GG 10 236 IFINAN 1239-236.239.240 IFINAN 1250-239-240 IFINAN 5010-11E(1).TLE(1).TLE(13).TLE(13).TLE(14).TLE(15).TLE(15).TLE(13).TLE(13).TLE(15).TLE(12).TLE(13	1		2000
######################################	######################################		200	
AREANISARY AREANISARY AREANISARY AREANISARY ARELOGIOFIAR 101. IFIRARI2295,235,236 HARL 15 (HAR-51230,235,236 HARL 16 (10 230 HARL 16 (10 230,250,230,260 HARL 17 (10 200,161),166(1),166	AREANISARY AREANISARY AREANISARY AREANISARY 1FIAMA 2295,235,236 MARILGGIOFAR 101. 1FIAMA 2205,239,200 MARILGGIOFAR 101. 1FIAMA 50205 TE F130, TE F130, TE F130, TE F140, TE F14			SHSTAT
ARABIGAR ART-ARTO-AR ART-ARTO-ARTO-ARTO-ARTO-ARTO-ARTO-ARTO-A	ARARIGAR ARTARTOAR MATARTOAR 1FIRAN 239, 235-236 1FIRAN 239, 235-236 GG TO 238 IF (MAR—5) 239, 260 NPGI=NPGI=1 PRINT 5000 PRE II INFO 3010 FEE II TLE (13), TLE (13), TLE (15) PRINT 5010 PRE II TE (14), TLE (15), TLE (15), TLE (15) PRINT 5010 FEE II TLE (23), TLE (15), TLE (1		27714EZXE	SMSTAT
ARELOGOGICAR 101. FINAR 1235,235,236 FINAR 1235,236,236 FINAR 1235,236,236 FINAR 1235,236,237 FINAR 1235,236,237 FINAR 1235,236,237 FINAR 1235,236,237 FINAR 1235,236,237 FINAR 1235,236,237 FINAR 1235,236,236,237 FINAR 1235,236,236,236,236,236,236,236,236,236,236	ART=ART=ART=ART ART=ART=ART ART=ART=ART=ART ART=LOGOF(ART 10-1) IFINAN 1230-235-235-336 ART=1 G TO 236 G TO 236 G TO 236 FINAN 10-300-NPG1 PRINT 5020-REG19-TLE(13)-TLE(13)-TLE(15)-PRINT 5020-REG18 PRINT 5020-REG19-TLE(2)-TLE(2)-REG19-TLE(20)-TLE(40)-(TLE(4R)-REG19-1)-REG19-RE		AR-481 0482	CASTAT
MAR-LOGIOFIAR 191. IFINAN 229, 235, 236 GO TO 236 GO TO 236 FIRE STAND 220, 237 FIRE STAND 220, 239, 240 FIRE STAND 220, 239, 240 FIRE STAND 200, 239, 240 FIRE STAND 200, 239, 240 FIRE STAND 200, 230, 240 FIRE STAND 200, 230, 240 FIRE STAND 200, 240, 240 FIRE STAND 200, 240 FIRE STAND 200 FIRE STAND 200, 240 FIRE STAND 200 FIRE STAND 2	MAR-LOGIOFIAR 10-1. FIRE PART		ART - ART + AR	CUCTAT
			MAR-LOGIOF(AR)+1.	
MAR.1 GO TO 238 GO TO 238 GO TO 238 GO TO 238 FIRM-51238,239,237 FIRM-51238,239,237 FIRM-51238,239,230 FIRM-51238,230,260 FRINT 5000,NG1 PRINT 5000,NG1 PRINT 5000,NG1 PRINT 5000,NG1 PRINT 5000,NG1 PRINT 5000,NG1 PRINT 5000,NG1 FRINT 5000 310 KE231, TE [23), TE [22), TE [20), TE [4), (TE [18), (TE [MARNI GO TO 238 GO TO 238 FIRM \$5128.239.230 IFIRM \$5120.200.239.200 IFIRM \$500.239.200 MARNI \$500.200.000 MARNI \$500.000.000 MARNI \$500.000 MARNI \$500.0000 MARNI \$500.000 MARNI \$500.0000 MARNI \$500.000 MARNI \$500.000 MARNI		15: man 1214, 224, 23A	200
######################################	######################################	1		SESTAT
FG TO 238 FG TO 238 FG FART 238 238 237 FG FART 238 238 237 FG FG 238 238 238 238 FG FG 238 238 238 238 238 238 238 FG FG 238 23	IF (AAR-5/238-236-237) FIRATO-5/238-236-237 FRATO-5/238-236-237 FRATO-5/238-236-237 FRATO-5/238-236-200 FRATO-5/200-5/200-6/200 FRATO-5/200-5/200-6/200 FRATO-5/200-5/200-6/200 FRATO-5/200-5/200-6/200 FRATO-5/200-5/200-6/200 FRATO-5/200-6/200 FRATO-5/200 FRATO-5/200-6/200 FRATO-5/200-	2		SHSTAT
			CO 10 238	SMSTAT
man-9 IF (APPO) 200, 239, 260 IF (APPO) 200, 239, 260 IF (APPO) 200, 239, 260 IF (APPO) 200, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41	main-5 PRINT 5000-NPG PR	9		141343
FirPT0)260,239,260 FIRPT0)260,239,260 PRINT 5000,NE1 PRINT 5000,NE	FirPTO)260,239,260 FIRPTO)260,239,260 PRINT 5000,000 PRINT 5000 PRINT 5000,000 PRINT 5000 PRI	:		
PRINT 5000,NPG1 PRINT 5000,NPG1 PRINT 5010,TLE(13,TLE(13),TLE(13),TLE(14),TLE(15), PRINT 5010,TLE(14),TLE(17),TLE(19),TLE(10),TLE(1	MGGINGGIO MGGI			
PRINT 5000-NG61 PRINT 5000-NG61 PRINT 5000-NG61 PRINT 5000-NG61 PRINT 5000-NG61 PRINT 5000-TLE(18), TLE(18), TL	PRINT 5000-NG61 PRINT 5030 DO 310 R20-L CAL SMELTUSCI.RZ).NSM1 IFIRATION 100-NG62 IFIRATION 100-NG62 PRINT 50-NG NG61 IFIRATION 100-NG62 NSMING NG61 IFIRATION 100-NG62 NSMING NG62	:	_	
PRINT SOUGHELI PRINT SOLO-TEELI PRINT SOLO-TEELI IN-5-12), TLE (12), TLE (13), TLE (13), TLE (14), TLE (4), (TLE (R), IN-5-12), TLE (23), TLE (24), TLE (22), TLE (23), TLE (20), TLE (40), TLE	PRINT SOUGHELISTEELS), TLE(13), TLE(13), TLE(14), TLE(15), PRINT SOUGHELIST, TLE(13), TLE(15), TLE(15), TLE(16), TLE(16)	2		SHSTAT
PRINT 5010-16 E113-16 E 123-16	PRINT 5010-TEE110-TEE110-TEE120-TEE120-TEE11		PRINT SOUGHWELL	SMSTAT
			PRIMT SOLOPILECES FLECTS FLECTS FLECTS F	SHSTAT
			PRINT 5020, TLE (16), TLE (17), TLE (19), "LE (1	244
PRINT 5030 CALL SMEITUSIL-RZ), WSM3 K4-MSM18) IF (RFV 01 1262-1246.1 A26.2 A26.1 A26.2 A26.1 A26.2 A26.1 A26.2 A26.1 A26.2 A26.1 A26.2 A26.1 A26.2 A26.2 A26.1 A26.2	PRINT 5030 DD 310 R21st CAL SMETTURS: NS.** K4-MSHT8) IF(R4)310,310,1262 IF(R7011,1262,1262,1262 PRINT 5040, (MSHT8); M3-1,13) IF(MSH1,84)=IF(PRSH1,84)*1 IF(MSH1,84)=IF(PRSH1,84)*1 IF(MSH1,84)=IF(PRSH1,84)*1		1K=5,12), TLE(23), TLE(24), TLE(22), TLE(21),	
DG 310 K2-1, L CALL SMELTMS(1, RZ), WSM) MAMESHIB IF(RA)310, 310, 310, 310, 1262 IF(RA)310, 310, 3262, 262 PRINT 5040, (MSH(R3), R3-1, 13) MSH 2 MSH (110-1) 100, 262 262 IF(PNSH (110-1) 262266, 269 IF(NSH (110-1) 2635, 266, 269	DO 310 K2 1 L CALL SMELT [WS(1) RZ) RSM) K4 MSM(8) IF (RA) 310 2 12 6 L L L L L L L L L L L L L L L L L L		CACA TATA	SMALE
### ##################################	D 310 KELTUS 1, WSM) KQ-MSM(8) KQ-MSM(8) IF(KM) 310, 310, 120, 2 FRINT \$500, (WS(M3) M3-1, 13) IF(NSM(1) 10, 202, 202, 202, 300, 300, 300, 300, 30	1		SHSTAT
K4=MSH(B) K4=MSH(B) IF(KA) 310, 310, 1262, 1261, 1262 IF(KPTO) 1262, 1261, 1262 IF(KPTO) 1262, 1261, 1262 IF(KPTO) 130, 262, 262 MSHIMSH(1) 93 IF(KSH(1) - 1) 263, 266, 269	K4-MAHIB) K4-MAHIB) IFIRAD 310-310-12-05 IFIRAD 112-05-12-06-12-05 IFIRAD 113-05-05-05-05 NSMI-MSHID 30 30-2-05-05 NSMI-MSHID 30 30-2-05 NS	3	_	SMSTAT
			CALL SPECTORS LONG TOWARD	SMSTAT
	IF(RA)310,310,1260 F(RF01)1262,1261,1262 PRINT 5040, (WS(R3) + R3-1,13) IF(NSM1)1310,262,262 NSM1,RA)=IF(PNSM1,R4)*1 IF(NSM1,R4)=IF(PNSM1,R4)*1 HSM(1)-13263,266,249			SHSTAT
	[F(RFT0)1262,1261,1262 IF(RFT0)1260-(MSHR3),R3=1,13) IF(RSH11) 310,262-262 NSH1NSH(1) 01 IF(RSH110) IF(RSH110) IF(RSH110-1)263,266,249 HB-N18(2)		IFIK41310,310,1260	
PRINT 5040 (NSMR3) R3=1,13) RMHRNST 130 1262,262 NSMLWSH [10-1] FLP PRSML R4) 0.1 FLP PRSMLR4 1 1 1 1 1 2 6 5 2 2 6 6 2 6 9	PRINT 5040-(MSMIR3) R3=1-13) 1F(MSMI1) 310,202-202 NSMINSHIN 1101 1F(MSMI1) 120-202-202 1F(MSMI1) 120-3-206-209 HB-MIR(1)-13203-206-209 HB-MIR(2)-13203-206-209	Ş		
		3		SHSTAT
	15HNSH1D703Uo.fe2.co4 18HNSH1D91 1FLP(NSHL)K4)=IFLP(NSHL)K4)•1 1F(NSH(1)-1)263,264.249 HE-N18(2)	=	MINI SOCOLUBRICADIO	SHSTAT
NSM1=MSK(1)+1 FLP(NSM1,K4)= FLP(NSM1,K4)+1 F(NSM(1)-1)263,266+249	NSM1=NSM(1)+01 [FPF(NSM1,K4)=IFLP(NSM1,K4)+1 IF(NSM(1)-1)263,266,249 HB-N18(2)	2		SMSTAT
	F P(NSM 1 + 1) 263, 264, 249 F(NSM 1 + 1) 263, 264, 249 MB=N 8(2)	2	_	
IFINSH(11-1)263,266,249	F(NSH(1)-1)263,266,269 Man18122	•		SMO
to the contract of the contrac	INTERNATION OF THE PROPERTY OF		10 10 10 10 10 10 10 10 10 10 10 10 10 1	SESTAT
	MENUL B (.2.)	•		SHSTAT

155	PRINT 1100, RPF	SMSTAT	
	HPC1	TAT SIGN	
28	_	TATAN	
		TATSAS	
		SHSTAT	
	SELECTION NO. TROUGHT. TRU . (MEILER)	SHSTAT	
		SHSTAT	
	0124	TAT SMS	
	DESEND.	1415C	
	DO 320 J=1,NP	TANSAS	
	(7)2457	SHSTAT	
	NI. (KF (K).K=1.45)	1715165	
		TEL SES	
	1F(KPT0)156,157,156	TATIONS - RECH - ACCUS COM SECOND COM	
156	CALL FOSCAL! WF, TLE, MIT, MID, MLY,		
_	1M23C, N23D)		
	GO TO 156	M20.M21.M22.M23A.N23B. SMSTAT	
<u>`</u>	CALL FOUND CARGINAL CACCALINATION CONTRACTOR		
•		SNSTAT	
		SHSTAT	
	RR1=FR1010+FR2+1	SKSTAT	
	18 (MSTR-MC1)231,232,232	SMS(AT	
231			
232		1 SHS IN	
	CALL	SHSTAT	
	MPK1=MPK1=10+MPK2	SHSTAT	
	[F(MPV-HPV11233,234,234	PATSAR	
233	124-24	TATANA PARINA	
2	AR1-N17(1)	PATORS.	
	AR1-AR1/100.	TATATA	
	AR2=N17(2)	140000 140000	
	AR-AR1 • AR2	141413	
		THE	
	MAR-LOGIOFIAR 1+1.	TATSAS	
	1F(MBR1235-235-230	SHSTAT	
232		SHSTAT	
	60 t0 c30	SHSTAT	
		SHSTAT	
738	151KPT01260.239.260		
239	MPG1=MPG1+1		
	PRINT 5000, NP61	I VI SHOT	
	PRINT 5010, TLE()), TLE(2), TLE(3), TLE(13), TLE(1		
	PRINT 5020,718(104),718(17),718(19),718(18),118(20),118(20),118(17),118(18),	THE CANAL CA	
_			
,	PRINT 3030	SHSTAT	
2	CALL SMELTINSCLERZIONSAN	SMSTAT	
	X+==SN:0)	SHSTAT	
	JF(K4)310,310,1260	SNSTAT	
260	JFIRPTO11262,1261,1262	CHCTAT	
192	FRINT 5040 NOME 30 NATIONAL 101	SPSTAT	
200		SMSTAT	
ě	INTEREST AND INTEREST OF THE	SHSTAT	
	IF (NSH(11-1)263,266,269	TASIA.	
263	M8=N18(2)	111010	

HHG=423+151+42341£1+4234171+42241	TAT SASTAT
PTP=(NEC/TF)+2-5+8-0	
TARGET STATE TO THE PROPERTY OF THE PROPERTY O	SMSTA
PARTICIPATE 1 1 4 MC 3 M C 1 4 MC 3 M C 1 4 M C 1 4 M C 1 4 M C 1 4 M C 1 4 M C 1 4 M C 1	SMSTAT
	SHSTAT
	SNSTAT
	SMSTAT
264 PSEINGSBILD	SHSTAT
TECHNICA TO THE TECHNICA TO TH	SHSTAT
	SHSTAT
-	SMSTAT
265 CCMTIACE	SHSTAT
AVERZOR STORES SELECTED STORES SELECTED STORES	SHSTAT
	SHSTAT
0.0 Mary 200 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SHSTA
# DATE AND SELECTION OF SELECTI	SHSTA
10 COG (4-711C)	SHSTAT
	ATSHS
101 PSKI #42011.01	SHSTA
	ATSHS
	SHSTAT
317436AU 646	VI SHS
APPLE 2 2 PE 5 2 PE 6 2	SHSTAT
G. 10 275	VISIN TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO
	NI SES
	MICHO
3.0042	A1676
CC 274 LJ*1°4	41010
JFIN2381LJ11270.270.1270	181020
	41010
270 APS###PS#+#23C(LJ)	ALCHO ALCHO
	THETTE
1FIN23C(LJ+81)274, <74, 271	2131
271 MPSX=NPSX+L23C(LJ+2)	
1=6614	
1-6614	SHSTAT
CC 1ft 274	ATSHS
272 MPSK=PPSK+N23E(LJ+4)	SHSTAT
NAPP-KAPP-12 30 (1.3+8)	SHSTAT
	SHSTAT
273 NPSX=NPSX+A23E(LJ+L2)	SPSTAT
	TATAN
_	SHSTAT
274 CGM11KUL	SPSTAT
	SMSTAT
	ATSTA SHSTA
3 2	SHSTA
683 U. C.O. LJ-104	SHSTA
	SHSTAT
	#ISKS
MMTCL J Pen 23A	TAR STATE
	IN SEC
	WICKS
	141 CRC
DC 290 LK=1,3	THE CASE
K7-1[Jene 4[K-1]]	
	TATAN

- C-6 -

SMSTAT SMSTAT SMSTAT	SHSTAT	SHESTAT	SMSTAT	SHSTAT		SHSTAT	SHSTAT	41545			SMSTAT	SHSTAT	SHSTAT	SHSTAT	SMSTAT	SMSTAT	SMSTAT	SMSTAT	SMSTAT	SMSTAT	CHATAT	SMSTAT	SMSTAT	SMSTAT	SHSTAT		SHSTAT	SHSTAT	SHSTAT	SUSTAT	SMSTAT	SHSTAT	SMSTAT	SHSTAT	SHSTAT	SMSTAT	TAT SAN	SASTAT	SASTAT	SHSTAT	SMSTAT	SHSTAT	SMSTAT	SMSTAT
	HPLT.K43+1			RAPP.K+1+1	58 2	MPSX,X41+1	AR,K41+1							582				194		KD,K41+1	:	=			34(1,1+12)		•		N238(LJ)	•	2		711,	319,318	36(1.3+8)			(230(13+12)				(LAP. 18PF 1+1
hpl=kpl=n201k7+4} hplT=kplT+kpl plkT=kplT	HPLT=(PLHT/12 .)+1. IPLP(HPLT,K4)=IPLP(HPLT,K4)+1	284,284,283 [[P(R4]+]	MAPP-(APP/40.1+1.	IAPPINAPP, K4) - LAPPINAPP, K43+1	IF (MPSK-20)286,286,285 NPSK#20	IPSP(HPSX,K4)=IPSP(HPSX,K4)+1	i arpinar, k4) = 1 arpinar, k4) + 1		K9=2.4	KSH(KS)		2020	1/10t	1ft.4-CONT)268,288,289	_		101	161-4-CONT 290-290-291		102P(MMO,K4)=102P(MMO,K4)+1		F(M18(Z))31393139311	4-1-1	MAP=KAP+N23A(LJ+8)	MPS-MPS-N23A(LJ)+N23A(LJ+12)	MSTROMSTR+40(PR]-1]	36 U	MAP-HAP-N23B(LJ+4)	PPS-MPS-N23B(LJ+8)+N23B(LJ)	1-	JF (MFL 1-1) 3600 3600 310 DOI 120 L (= 2, MFL)	1-1.4	1F(W23E(LJ)1310,310,317	IF(M230(LJ)-LIJ319.	MENTER SON 200 (L. J. 1.) - M. 2 3C (L. J. + B.		MAP=FAP+N230(LJ+8)	HPS=HPS+M230(LJ+4)+M230(LJ+12)					(STEELS-10-3)	JAPPI RAP, MPF 1 = JAPPI RAP, MPF 1+1
				IAPPINAP	_				00 1288	_		CONTERMINES	CONT-CONT/TOT			_					_		MAINERSTREE	MAP-KAP+		_	_			MFL1=RR1-1						G0 T01320	_				APIN-RAP	PSM=MPS	/HAR) = 48H	JAPPI RAP,
280		282 283	787		285	28	287			1288					788	2			240	291	310	;	311		312	313	114	•	315		711	;		317	• • • • • • • • • • • • • • • • • • • •		319		0261					

SHSTAT

SHSTAT SHSTAT

SHSTAT SHSTAT SHSTAT

SMSTAT SHSTAT

360

SHSTAT

SHSTAT SHSTAT

SHSTAT

- C-8 -

351

340

No.

SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT

324

326 327 330

321

SMSTAT

SHSTAT HSTAT

SHSTAT

SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT SHSTAT

```
STAPUT
STAPIIT
STAPIIT
                                                                                                                                                                            STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                           STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                 STAPUT
                                                                                                                                                                                                                                      STAPUT
                                                                                                                                                                                                                                                 STAPUT
                                                                                                                                                                                                                                                                 STAPUT
                                                                                                                                                                                                                                                                           STAPUT
                                                                                                                                                                                                                                 STABUT
                                                                                                                                                                                                                                                           STAPUT
                                                                                                                                                                                                                                                                                      STAPUT
                                                                                                                                                                                                                                                                                                 CTAPUT
                                                                                                                                                                                                                                                                                                      CTAPIIT
                                                                                                                                                                                                                                                                                                           STAPUT
                                                                                                          J701(1)=0

PO 1154 J=1=46

LOTO 1114 J=101(1)+11

FO 1145 J=1=100

PO 1111 JOOG

PRINT JOOG
                                                                                                                                                                                                                 IF (MAR-MDZ)1150+1151+1150
                                                                                                                                                                     FFINFL-MAD1146-1470146
PRINT 25300JONFLOWAD
                                                                                                                                                                                     FF [ MAP - MAR ] 148 . 149 . 140
                                                                                                                                                                                          148 PRINT 2500.J. WAP . WAR
                                                                                                                                                                                                                                          No 1144 1=104
                                                                                                                                                                                                                                                                                                   CRINT 1400
                                                                                                                                                                                                                                                                                        PRINT 1500
                                                                                     7A4011=0.
PP4111=0.
907111=0.
                                                                                                                                                                                                                                               J10111=0
                                                                                                                                                                                                                                     SHT7=NPI
                                                                                                                      ç
                                                                                                                                                                                                               11:11
                                                                                                                                                                                                                                                                          11:
                                                                                                                                                                                                69
                                                                                                                                                                                                                                                                7 20
```

```
STAPUT
                                                                                                     STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STAPUT
LALL GOOL(1.45.0K.)FLP.NFL(1).*RFL.1FL)

150 PRINT 3100.4.JT0113.1=3.83

(ALL TOCLIJO.*FL.8FL.1FL)

PRINT 2000

PRINT 2600

PRINT 1500

PR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CALL COOLII-10-K-IAPP-NAP(I)-PAP-TAP-10)
PRINT 14-00
PRINT 13-00-K-(IAPP(I-J)-J=1-R)-NAP(I)-AAP(I)-SAP(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TOTT9)=TOTT9)/C4471
PRINT 740n
$ PRINT 740n
$ PRINT 700n
PRINT 1100
PRINT 1100
PRINT 4700
PRINT 4700
PRINT 4700
PRINT 1400
DG 170 1=1,400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL TOOL (JTO-WFL-RAP-TAP)
POPINT 2600
POPINT 1600
POPINT 1600
POPINT 1400
DO 165 121-10
                                                                                                                                                                                                                                                                                                                                                                                                                            PRINT 2700+K+(10T(J)+J=1+9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   K=[1-1]e40+[[-1]e150U
                                                                                                                                                                                                                                                                                                                                                                               TOT(9)=NFL(1)
TOT(9)=TOT(9)/SH11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TOT ( J) = TOT ( J) / SHT]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              K#!1-11#10
NO 164 J#1+8
TOT(J)#[APP[1+J]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRINT 1600
PRINT 4700
PRINT 1400
DO 160 I=1010
K=[1-1]010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      101(9)=NAP(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1100
1600
4700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PRINT 1400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                164
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   165
```

```
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STABUT
                                   STAPUT
                                                                                                                                                                                                                                                                            STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STAPUT
          DO 184 JE1-8
101(J)=1ARP(1-J)
14 TOT(J)=1ARP(1-J)
101(9)=NAR(1)
101(9)=NAR(1)
101(9)=NAR(1)
101(9)=NAR(1)
101(1)=NAR(1)
101(1)=N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 184
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             134
```

```
STAPUT
ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STAPUT
STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL COOL(1,20.K.)PSP.NPC([],aDC,TPC,25)
PRINT 1409
PRINT 1400
PRINT 1400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL GOOL(1.5-5-1-1DZP-NDZ(1)-PF7-7DZ)
PRINT 1400
PRINT 1300-1-(1DZP(1-J)-J=1-R)-NDZ(1)-ADZ(1)-SDZ(1)
PRINT 1400
    PRINT 2400+(IIP(I)+|=|+6|+NIP-AID+SIP

NO 186 |=|+6

TOT(I)+||P(I)

TOT(I)+||P(I)

TOT(9)+||P

TOT(9)+||P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5 PRINT 2700-K-(TOT(J)+J=1-9)
PRINT 2300
PRINT 1100
PRINT 1200
PRINT 7200
PRINT 4700
                                                                                                                                                                                                  ARINT 1600
PRINT 1600
PRINT 1200
PRINT 1600
PRINT 2600-(TOT(11-1-1-9)
PRINT 2700
PRINT 2100
PRINT 2100
PRINT 2100
PRINT 2100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL TOOLIJIO, MFL. BPS. TPS)
PRINT 2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CALL TCOL(JTO.MFL.8DZ.TDZ)
PRINT 3000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00 194 J=1.6

TOTLJ:=IPSP[[aJ]

TOTLJ:=TOTLJ:SHT]

TOTL9:=NDSS[I]

PRINT 14:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRINT 2600
PRINT 2100
PRINT 1200
PRINT 1400
NO 195 1=1+20
K#ff=11#25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nn 190 1=1=20
K=!1-11025
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PRINT 2200
PRINT 1200
PRINT 1400
DO 210 I=1*5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  70 200 I=1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PRINT 1400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PPINT 2600
                                                                                                                                                                185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               76[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        195
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00
```

```
STAPUT
STAPUT
                   STAPUT
                                   STAPUT
                                                     STAPUT
                                                                      STAPUT
                                                                                        STAPUT
                                                                                                          STAPUT
                                                                                                                            STAPUT
                                                                                                                                               STAPUT
                                                                                                                                                                 STAPUT
                                                                                                                                                                                STAPUT
                                                                                                                                                                                                                                      STAPUT
                                                                                                                                                                                                                                                         STAPUT
                                                                                                                                                                                                                                                                       STAPUT
                                                                                                                                                                                                                                                                                           STAPUT
                                                                                                                                                                                                                                                                                                                            STAPUT
                                                                                                                                                                                                                                                                                                                                                STAPUT
                                                                                                                                                                                                                                                                                                                                                                 STAPUT
                                                                                                                                                                                                                                                                                                                                                                                   STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                    STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                      STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                        STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                           STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STAPUT
                                                                                                                                                              200 FORMAT(23X,1H1,6X,1H2,6X,1H3,6X,1H4,6X,1H5,6X,1H6,6X,1H7,6X,1H8,8H
                                                                                                                                                                                                                                                                                                                                                                                                 140 PERCENT OR GREATER/25x,47HI=2 ONE WALL CONTRIBUTES 40 PERCENT 20R GREATFR/25x,47HI=3 TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER/325x,46HI=4 CEILING CONTRIBUTES 40 PERCENT OR GREATER/25x,58HI=5 4CEILING AND ONF WALL CONTRIBUTE 40 PERCENT OR GREATER/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(23X*1H1.6X*1H2.6X*1H3.6X*1H4.6X*1H5.6X*1H6.6X*1H7.6X*1H8.8H
                                                                                                                                                                                                                                                                                                                                                                                  2300 FORMATITHT. 19X . ITHDOSF SOURCE//25X . 49HT=1 NO SINGLE CONTRIBUTION
                                                                                                                                                                                                                                                                                                            FORMATILIHI.29X.33HSHELTERS WITH INTERIOR PARTITIONS////)
                                                                                                                                                (31X+34HNUMBER OF SHELTERS PER PF CATEGORY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMATIJH1,9X,31HSHELTER COUNTS DO NOT CHECK FOR31101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FORMATI 29X . 16HFRACTION OF SHELTERS PER PF CATEGORY!
                                                                                                                                                                                                                                                                          FORMAT (10x+7HCONTAM+/10x+5HPLANE/10X+5HWIDTH)
                                                                                                                                                                                                                                                                                            FORMATII2X,4H LOS/12X,5HFLOOR/12X,4HAREA
                                                                                                                                                                                                                                                           FORMATIIOX, THPFRCENT/10X, SHAPERTURE)
                                                                                                                                                                                                                                          FORMATI 11X SHSTORY / 11X SHNUMBER )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORMAT(10X SHIDIAL S3X SRF7 S4)
                                                                                                                                                                                                       1300 FORMAT(111X+14+3X+917+2F7+2)
                                                                                                                   PRINT 2700.1.(TOT(J).J=1.9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMAT(10X. SHTOTAL . 3X.R[7]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMATITIX.14.3X.9F7.41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2400 FORMAT(18X+917+2F7+2)
                                           101(J)=101(J)/SHT]
                                                                               TOT (9)=TOT (9)/SHT]
                                                                                                                                                                                                                                                                                                                                                         FORMAT (12X . 3HPSF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(18X.9F7.4)
                          101(J)=1DZP(I,J)
                                                                                                                                                                                                                                                                                                                                                                         FCRMAT(14Xe1HI)
                                                            TOT (9) = ND2 (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TOTAL . 14H
        DO 205 J=1.8
                                                                                                                                                                                                                             FORMATCIH 3
                                                                                                                                                                                                                                                                                                                                        FORM&T(1H1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMATC1H71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORMATITHE
                                                                                                  PRINT 1400
                                                                                                                                                                                       TOTAL 1
                                                                                                                                   RETURN
                                                                                                                                                        FORMA 7
                                                                                                                                                                                                                                                                                                                                                   2100
                                                                                                                                                                                                                                                                                                900
                                                                                                                                                                                                                                                                                                                                                                         2200
                                                                                                                    210
                                                                                                                                                        100
                                                                                                                                                                                                                                                                                 700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3200
                                              205
                                                                                                                                                                                                                            007
                                                                                                                                                                                                                                             500
                                                                                                                                                                                                                                                                900
                                                                                                                                                                                                                                                                                                                     006
                                                                                                                                                                                                                                                                                                                                        2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4100
```

FIMPUT

1107.110

```
FIMPUT
FIMPUT
FIMPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FINPUT
FINPUT
FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FINPUT
FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F INPUT
F INPUT
           1.4PU1
                                IAPLIDOR FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FINPUT
                                         2
labelines.
Intelestes
                                  JFL(45.8).JFLP(45.8).JFL7(45).
                                                                                                                                                                                                                                                                                                                                             CALL SFIIP (19.MPV.JRYI-JAPP.AF.G.TA)

CALL SFIIP (19.MPV.JRYI-JAPP.AF.G.TA)

CALL SFIIP (10.MPZ.MZ.JRI-JAPP.AF.G.V)

CALL SFIIP (10.MPZ.MZ.JRI-JAPP.AF.G.Z)

CALL SFIIP (10.MPZ.MZ.JP-AIP-SIP-Z)

CALL SFIIP (10.MPZ.MZ.JP-AIP-SIP-Z)

O 120 J=185

O 120 J=187
              ۰,۲۹
                                                                                                                                                                                                                                                                                                                            CALL SETUPILSONELD JELTO JELD SET (SSEL)
  CHRROITINE EIMPOFFMSIEM. IFL. JFLP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00 630 J=1.20
630 NNPT([]=NMPT([]+[NPT(J+])
              ! AD . JARP .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               no 130 J#1610
1821(1)=1871(1)+182'Jel)
No 630 [#168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IFINAP-NAB1270-280-270
PRINT 3600-JehapenaR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1FINFL-NAP1240.260.25C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1FIMAR-MPV1290.100.290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      JAN PRINT 1600.JONFLONAP
                          INPT
                                                                                                                                                                                                                                                                                                                                                                                                                                                        00 130 f=1.8
                                                                                                                                         00 50 1=1.00
                101
                                   DIMENSION
                                                                                                                                                                TFL (11=0.
PAP(1)=0.
TAP(1)=0.
eap(1)=0.
                                                                                                                                                                                                                        PPS([])=0.
TPS([])=0.
RPV([])=0.
TPV([])=0.
                                                                                                                                                                                                                                                                                TB7 ( | 1 = 0.
ANP ( | 1 = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1871(1)±0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NNPT(1)=0
                                                                                                                                                     AFL111=0.
                                                                                                                                                                                                              TAP( | ) = O.
                                                                                                                                                                                                                                                                     AP2(1)=0.
                                                                                                                                                                                                                                                                                                      TNP (11=0.
                           2.1AZ.
                                                                                                                                                                                                                                                                                                                    U=Vda
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    240
                                                                                                                                                                                                                                                                                                          ç
```

```
FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                   FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                     FINPUT
FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                                              F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                           THOUSE TO THE PROPERTY OF T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FINPLIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FINDUT
FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                   KEI-1
(ALL GOOM (1945 & W. 2) LD = STLT(1) = S
46.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4 A S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9
```

```
FINDULT FINDUL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FINDUIT FINDUIT
FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F TNPUT
F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F INPUT
F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALL COOLIS 20.K.JPSP.JPSTIII.RPS.TPS.25)
PRINT 1400
930 PRINT 1300.K. (JPSPII.J).J.1.81.JPSTII).APSIII.SPSII)
ppint 1400
        440 PRINT 2700.K.(TOT(J).J=1.91
PRINT 1900
PRINT 1400
PRINT 1900
PRINT 2900
PRINT 1200
PRINT 1200
PRINT 1200
PRINT 1200
PRINT 1200
PRINT 1300
PRINT 1400
                                                                                                                                                                                                                                                                                                                                                                                                                                  1 1200
1 1200
1 1400
1 2000
1 2000
1 3100
1 1800
1 1400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINT 9100
PRINT 2100
PRINT 4700
PRINT 1400
DO 530 1=1820
K*(1=1)*25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PRINT 1400
DO 510 1=1=5
K=f+1
```

```
FINDUT
FINDUT
FINDUT
FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Part of the part o
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FINPUT
FINPUT
FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FINADCI ENTROCE ENTROC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RETURNITI)
(ALL GOOLK & 91 & JDV & JDUTIK) & RDV & TPV)
(ALL 1300 & K & JDV & JDUTIK) & ALUKE & SPV(K)
(ALL 100 LINNPT & MED & PUT & SPV & SPV(K)
PRINT 2000
PRINT 4000
PRINT 4000
PRINT 1200
PRINT 12
CALL TOOL(MMPT. WHP. RPC. TPC.)
PRINT ZOON
PRINT 14000
PRINT 12000
PRINT 14000
DR. Sec [=1,0.20
K=(1-1)*25
DO 535 J=1.8
1GT(J)=JPSP(11,J)
1GT(J)=JPSP(J)
1GT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5.RO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ,
8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   535
```

```
FINPUT
                                                                                                                                                                                                                              1000 FÜRMATTIHI+30X+37HTUTAL SHELTFK AND BUILDING STATISTICS//31X+17HTO FINPUT
1TAL FUILDINGS =15+19H- TOTAL SHELTERS =15+1H+)
1200 FORMATT23X+1H1+6X+1H2+0X+1H3+0X+1H5+6X+1H5+5X+1H7+6X+1H8+BH STAPUT
                                                                    FINPUT
                                                                                   FINDUT
                                                                                                  FINPUT
                                                                                                                   FINDUT
                                                                                                                                  FINDUT
                                                                                                                                                   FINPUT
                                                                                                                                                                  FINPUT
                                                                                                                                                                                   FINPUT
                                                                                                                                                                                                    FINPUT
                                                                                                                                                                                                                  FINPUT
                                                                                                                                                                                                                                                                                                                  FINDUL
                                                                                                                                                                                                                                                                                                                                                STAPUT
                                                                                                                                                                                                                                                                                                                                                                                              FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                               CIAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                              FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FINDUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F I NPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FINDUL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FINDUL
                                    FINPUT
                                                   FINPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FINPUL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FINDUL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STAPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4500 FORMATITY.AHFUILDING/IDX.CHPERT?)
4700 FORMATIC?3XelH1.6XxelH2.6XvelH2.6XxelH2.6XxelH5.6XxelH6.6XxelH7.6XvelH2.5X
1 Totalelah av PF S of
                                                                                                                                                                                                                                                                                                                                               FORMATITIOX,74PFRCFNI/JOX,8HADFRFTRE)
FORMATITIOX,64H LOG/12N,FHFLUOF/12X,6HARFA!
FORMATITH1,29X,74HHUILDINGS AITH INTERIOR PARTITIONS////)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMATITHINGS THAN MAKER OF BUILDINGS PER PER CATEGORY)
FORMATITHINGS, PARMILDING COUNTS DO NOT CHECK FORFITH)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMATIZOX, 37HFRACTION OF BUILDINGS PER PE CATEGORY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMATISIX. 35-NUMBER OF BASEMENTS PER PE CATESORY) FORMATISIX. 37-HERACTION OF BASEMENTS PER PE CATEGORY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GROOF SORMATTING FORM FINE NOTE OF COMMISSION FORMATTERS (C. 5)
                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMATIBASSITESESS CHARITERS DER FE CATESONY) FORMATISTASSES FATESONY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORMATI 10X+711PERCENT / 10X+944 XP.1541RL1
                                                                                                                                                                                                                                                                                                                                     FORMAT(11X+544CTORY/11X+6HNUMRFF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT(10x+5+f01AL+3x+857+4)
                                                                                                                          PRINT 2700.f.(1911J).J=1.9)
                                                                                                                                                                                                                                                                                                        FORMAT(111X=14=3X=017+2F7+21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4400 FORMATITICK SHTOTAL . 37.8817)
                                                                                                                                                                                                            PRINT 4500. (TOT(1).1=1.9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMATITIX.14.50X.F7.41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMATIIIX.14.540X+171
                                                                                                                                                                                                                                                                                                                                                                                                                      FORMATII2X. THPSF1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMATIIRX OF 7 . 41
                                                             TOT (U) = TOT (U) / BLT
                                                                                             101191=10119179LT
                                                                                                                                                                           TOT([]=TOT(])/9LT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT [ ] 3 % 5 HPV ]
                                            1C11J1=INPT(1.J)
                                                                            (1) TIO) = INPITII)
Point 1400
Fo 650 1=1.20
Fo 645 J=1.8
                                                                                                                                                             [[]] TOWN=[]]
                                                                                                                                                                                                                                                                                                                         FORMATITH 3
                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT(141)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT(1H7)
                                                                                                                                                                                           PPINT 1400
                                                                                                               PRINT 1400
                                                                                                                                                                                                                                                                                                                                        ر
لا لا ل
                                                                                                                             650
                                                                                                                                                                                                                                                                                                            300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4100
                                                                                                                                                                                                                                                                                                                            Ç.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0027
                                                                5 4 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0007
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4200
```

```
RSPO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    6050 FÖRMÄTITH9.2CX-21M123) CTRUCTURF RETAIL/S6X%-42P4INF A SIDE B BSP0
1 SIDE C SIDE D/28X%-14-PACKAN -XIFRICK AALLAID-3112/38 BSP0
2X*15HHGT ABOVE GRAD*10*4112/30X*14-PRF: RET 110*112/33X*1441 BSP0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6040 FORWATTH7-20X-734(2)) GURVEY VETHON CODETA/221X-774(22) FLOOR AND I ROOF DESCRIPTION BASENEYT IST FLOOR UPPER FLOOKS ROOF/50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          6020 FOREATTH9.20x.,774119) ROOF AND SETGACK HEIGHT SIDE A SIDE C SIDE D.228x.44KOUR.15x.34x*4112728x.1345FT 28ACK NO. 119.4112/28X.1345FTECK NO. 219.41127.8X.1345F15ACK NO. 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3GHII7-3112/39X-14HXIDTH OF PLANFIG-3112/28X-27HPLANE 3 FFFECTIVE HE HEIGHTI7-3112/39X-14HXIDTH OF PLANFIG-3112/28X-27HPLANE 3 FFFECTIVE PORMATITH OF PLANFIG-3112/
                                                                                                                                                                                                                                                                                                                                                                     5990.*UF(27).*(TLF(3).*J=4.12).*(TLE(3).*J=1.3).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EFFECTIVE HEIGHTIT
SUBROUTINE FOXPUTINPS1+WF+11:4-617+WT+AND400FFUF+W2A+W23P+
                                         | DIWENSION WEIGS107LF127)+N1717)+N1814)+N19119)+N20124)+N2214)+
| N23A116)+N23Bf121+N23(1721+N23Df16)
                                                                                                                                                                                                                                                                                                                                                                                                                               6010+N17P11+N17(21+N18(11+N17(31+N17(4)+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SIDE A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6040*N2! +12271J1+J=1+41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S101 0/25x,27*PLANF 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      6050.00744(3).0771.161
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          6069+(N23R(J)+J=1+12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6070 # (N27 ( ( ) ) + J= 1 + 121
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    6080+(KZ30(J)+J=1+161
                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 N18(2) • N17(5) • N17(5) • N18(3) • N17(7) • N18(4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F030.1829(J).J=1.54)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6030 FORMATITHO.20X.77H120) CONTARINATED PLANES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4020. (N19 ( J) -J=1-191
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SOCO FORMATITHI . 109X . SHPAGE 151
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3NTERIOR XALLS110+3112)
                                                                                         CALL FOITIGIMF.TLE
                                                                                                                                                                                                                                CALL F022(WF.N22)
CALL F023A(WF.N23A)
CALL F023B(WF.N23A)
                                                                                                                                                                                                                                                                                                CALL FOZ3C(WF.NZ3C)
                                                                                                                                         FO18(WF +N18)
                                                                                                                                                           CALL FOISTWF.N19)
                                                                                                                                                                                  F0201WF . N203
                                                                                                                                                                                                           CALL FOZI(WF+N21)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SIDE C
                                                                                                                                                                                                                                                                                                                                                                                                                   | {TLF(J) + J= 13+26)
                           I N23C N23D1
                                                                                                                                                                                                                                                                                                                                              NFG1=NPG1+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     31904112
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RFTURN
                                                                                                                                                                                                                                                                                                                                                                                                                                       PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          POINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PRINT
                                                                                                                                                                                                                                                                                                                                                                       PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINT
```

1 N23C,N23D)
0 1 MENSIGN WE (45), TLE(27), N17(7), P18(4), N19(19), N20(24), N22(4),
0 1 MENSIGN WE (45), TLE(27), N17(7), P18(4), N19(19), N20(24), N22(4),
1 N23A(16), N23B(12), N23C(12), N25D(16)
CALL FOITINF, N17)
CALL FOITINF, N19)
CALL FO2(NF, N2)
CALL FO2(NF, N2)
CALL FO2(NF, N2)
CALL FO2(NF, N2)
CALL FO23A(WF, N2)
CALL FO23A(WF, N23A)
CALL FO23A(WF, N23A)
CALL FO23A(WF, N23A)
CALL FO23A(WF, N23A) SLBROUTINE FOSCALINF, TLE.NI7.NIB.H19.NZO.NZI.NZZ.NZ3A.NZ3B.

A(100) +R(100) (12-((:]##2)/I=)1/(I=-1-0) SUBROUTINE GOOL (11) 12 0K - 4.5 M. A.B.) DIMENSION V(800) 0A(91.67(9) DIMENSION NUIDO :- LEGOUS -Aff1=T1/T3 |FfNff1=1180+80+90 IF (N(1))59,60,70 K]=K]+L(K)#J KZ=KZ+L(K)#J#J M=P+L(K) 50 N(1)=N(1)+L(K) 11-11-1001 00 J=124(1-11+[] X1=5(J) sr K=11+(J-1)+1 no 100 1=1 .A 100 P(1)=B(1)+X2 A(1)=A(1)+X] X2=M#K#K A(0)=A(0)+X] P[C]=R[0]+X7 no 50 J=1.8 X2=N(J)*K*K 60 A(1)=0. A(1)=0. Gn Tn 130 GO TO 193 80 B(I)=0. 13=N1) X := X +K N(1)=0 Mdi.Lab RETURN 70 T1=K1 12=K7 K1=0 K2=0 0=1 END 9) (1

SUBROUTINE SETUP(11) MONOLOGED

- C-23 -

```
GHROUTINF COOL (11-17-44-44-8-17)

11 IS THE LOOP INDEX VALUE AND 12 IS ITS RANGE DIMENSION NIRON-84(9)-84(9)
                                                                                                                                                                                                                                                                                                                                                             (A([])-((A([])**))/X]]/(X-]**)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4-101-([4(c)++7)/x:1/(x-1+0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RETURN
4900 FODMATTIIZX+3HAVF+3X+5F7+27
4910 FORMATTIZX+3H5 S+3+5F7+27
                                                                                                                                                                                                                                                                  A(1)=A(1)/X
| F(N(1)=1)120+120+110
| 120 R(1)=C+
                                                                                                                                                                                                                                                                                                                                                                                                                                       1FIM-1)150+150+160
                                                                                                                                                                                                                                                                                                                                                                    JF (M) 179+170+140
                                                       x=x+Y/2.0
DO 100 1=1.8
J=12*[1-11+1]
                                                                                                                                                                        A(9)=A(9)+X]
R(9)=B(9)+XZ
RETURN
                                                                                                                     A([]=A[[]+X]
                                                                                                                                                                                                                                                                                                                                                                                                                              A141=A141/X
                                                                                                                                                                                                                                                                                                                                                     CO TO 130
                                                                                                                                                                                                                                                                                                                                                                                                                                                             60 10 170
                                                                                                                                                                                                                                                                                                                                                                                                                                                   150 B(91=0.
                                                                                                 x]=X] •X
                                                                                                           X2=X1+X
                                                                                                                                                     X - LX - LX
                                                                                                                                                              X9=X1eX
                                                                                      KI=N()
                                                                                                                                                                                                                                                                                                              100 X=F(1)
                                    Y= [ 3
                                                                                                                                          3 = ( X
                                                                                                                                                                                                                                                                                                                                                                                                                     140 X=w
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ועי ע≖
                                                                                                                                                                                                                                                                                                                                                                 11ي ر≖
```

Appendix D

Source Program Listings for the Subroutines

I. INTRODUCTION

This appendix briefly describes subroutines used by more than one stage of the categorization calculations reported in Appendices A, B, and C (see Chapter 3). Source program listings are included. In planning the study, an attempt was made to sub-program the calculations so that, in proceeding through the various calculational stages, a minimum of repetition of programming would be required. Accordingly, generalized subroutines were written for unpacking the M1 and M2 file data, word masking and shifting, etc.

II. PROGRAM DESCRIPTION

A. SHELT (W, N)

W represents the six word packed M2 file entry (the first two words of the original entry have been deleted) and N represents the thirteen shelter digits expressed as FORTRAN integers, as illustrated in the shelter output, Figure 4 of Chapter 3.

B. FOIT16 (W,TLE)

W is a 45 word M1 file entry and TLE is the sixteen FOSDIC entries 1-16, subdivided into 27 port ons, in BCD form.

C. F017(W,N17), F018(W,N18), F019(W,N19), F020(W,N20), F021(W,N21), F022(W,N22)

Each of these programs unpacks and expresses as FORTRAN integers the entries of the corresponding FOSDIC items. W is a 45 word M1 file entry. For example: N17 is the seven FOSDIC item seventeen entries, in order of presentation on the form from left to right and top to bottom.

D. F023A(W,NA), F023B(W,NB), F023C(W,NC), F023D(W,ND)

FOSDIC item 23 was subdivided into four parts; A, B, C, and D as follows:

<u>Part</u>	<u>Entries</u>
A	23a-23p
В	23q-23b
C	23c-23n
D	23ō-23d

Each entry is expressed as a FORTRAN integer.

E. PFCAT (WN,N)

W is a floating point protection factor and N is the corresponding PF category expressed as a FORTRAN integer.

F. RND(W,N)

W is, in general, a non-integral floating point number and N is the corresponding rounded integer in FORTRAN form.

G. FINCR(W)

The 36 bit integer W is incremented by one.

H. FMASK(W)

The last six bits of word W are set to zero.

I. FCOMP (W1, W2, N)

W1 and W2 are 36 bit integers. N is a FORTRAN integer which has the values zero or one according to whether or not W1 = W2.

J. FSHFT (W1, W2, L, M)

Logical word W1 is shifted left or right M bits according to whether or not L=0. The result is stored in W2.

K. FTSH(W1,W2,L,M)

Same as FSHFT except that algebraic Wl is used.

L. FMASH(W1,W2,K,L,M,N)

This subroutine selects a word mask by specifying the integer K, shifts it L bits left, masks W1, shifts the result M bits left or right, depending on whether or not N is zero, and stores the results in W2.

Each mask consists of J non-zero consecutive bits completely right justified in the mask word. J and K are related as follows:

<u>K</u>	<u>1</u>
0	36
1	18
2	12
3	9
4	8
5	7
6	6
7	4
8	3

III. SOURCE PROGRAM LISTINGS

```
SUBROUTINE SHELT (WON)
                                                                          SHELT
    DIMENSION W(61+N(13)
                                                                          SHELT
    LL=0
                                                                          SHELT
    LR=1
                                                                          SHELT
    L3=3
                                                                          SHELT
    L10=10
    L15=15
                                                                          SHELT
    L18=18
                                                                          SHELT
    L21=21
                                                                          SHELT
    L28*28
    101=0.0
                                                                          SHELT
    CALL FSHFT(W(21+N(1)+LL+L28)
                                                                          SHELT
    CALL FISHING 11 .N(1) .LR.L10)
    CALL FMASH(W(3) .WI.LR.L18.LL.LL)
                                                                          SHELT
                                                                          SHELT
    W1=W1+1600.
                                                                          SHELT
    TOT TOT+W1
                                                                          SHELT
    CALL RND(W1.N(21)
                                                                          SHELT
    CALL FMASH(W(3)+W1+LR+LL+L18+LL)
                                                                          SHELT
    #1=W1#1000.
                                                                          SHELT
    TOT=TOT+W1
                                                                          SHELT
    CALL RND(W1.N(31)
                                                                          SHELT
    CALL FMASH(W(4)+WI+LR+L18+LL+LL)
                                                                          SHELT
    W1=W1 *1000.
                                                                          SHELT
    TOT=TOT+W1
                                                                          SHELT
    CALL RND(W1.N(41)
                                                                          SHELT
    CALL FMASH(W(4)+W1+LR+LL+L18+LL)
                                                                          SHELT
    W1=W1+1000.
                                                                          SHELT
    TCT=TOT+W1
                                                                          SHELT
    CALL RND(W1+N(5))
                                                                          SHELT
    CALL FMASH(W(S) . WI.LR.L18.LL.LL)
                                                                          SHELT
    W1=W1+1000.
                                                                           SHELT
    TOT - TOT+W1
                                                                          SHELT
    CALL RND(W1.N(6))
                                                                          SHELT
    CALL RND(TOT+N(7))
                                                                           SHELT
    CALL FMASH(WIS) -WI-LP -LL -L18 -LL)
                                                                           SHELT
    CALL PECAT(W1.N(8))
                                                                           SHELT
    CALL FSHFT(W(6)+N(9)+LL+L21)
                                                                           SHELT
    CALL FSHFT(N(9)+N(9)+LR+L3)
                                                                           SHELT
    N(91=N(91+10
                                                                          SHELT
    1F(4-N(8))220,100,400
                                                                           SHELT
100 W1=N(9)
                                                                           SHELT
    W1=W1+0.3
                                                                           SHELT
    GO TO 500
                                                                           SHELT
200 1F(5-N(8)1350+300+300
                                                                           SHELT
300 #1*N(9)
                                                                           SHELT
    W1=W1+0.7
                                                                           SHELT
    GC TO 500
                                                                           SHELT
350 N(10)=N(9)
                                                                           SHELT
    GO TO 600
                                                                           SHELT
400 W1=N(9)
                                                                           SHELT
    W1=W1+0.5
                                                                           SHELT
500 CALL RND(W1.N(10))
                                                                           SHELT
600 CALL FMASH(W(6) .N(11) .LR.L18.LL.LL)
                                                                           SHELT
    CALL FMASH(W(2),M,L3,L15,L3,LL)
                                                                           SHELT
    IF(N(1)-2)601+602+670
```

601 IF(N(1))610,610,602
602 IF(N(1))610,610,603
603 IF(N(1))610,620,629
610 PMFN(10)
620 TO 640
620 MNM=N(1)
640 N(12)=MNM*M
IF(N(1))641,641,660
641 W8=W8/500,
CALL RND(W8,N(13))
60 TO 680
660 W8=MNM
W8=W8/10,
CALL RND(W8,N(13))
60 TO 680
660 W8=N(10)

SHELT SHELT

SHEL T SHEL T SHEL T SHEL T

- D-5 -

FC1716 FC1716 FO1716 FO1716 FO1716 FO1716 FO1716 FO1716 #011166 #0111166 #0111166 #0111166 #0111166 #0111166 CALL FSHFT(W(2), TLE(13), LL, L12) CALL FSHFT(W(2), TLE(14), LL, L14) CALL FSHFITW(4).TLETIB).LL.;Le) CALL FSHFITM(6) «TLE(23) «LL=L12)
CALL FSHFITM(6) «TLE(24) «LL=L24)
CALL FSHFITM(6) «TLE(25) «LL=L20) CALL FSHFI(#(3).TLE(16).LL.LSC) TLE(17)=W(4) CALL FSHFICK(5), TLE(21; , LL, L12) TLE(26)=W(7) CALL FSHFT(W(8),TLE(27),LL,L)12) RETURN CALL FSHFT(W(B)+TLE(4)+LL+L24) CALL FSHFI(W(1)+TLE(2)+LL+L24) SUBROUTINE FOITIGIM+TLE) DIMENSION WILESTA TLE!!+4)=4(!+8) TLE(15)=W(3) TLE(20)=W(5) DO 100 1=1.8 TLE(22)=W(6) TLE(3)=4(2) TLE (1)=W(1) L12=12 L24=24 130=30 ון=0 76=6

- D-6 -

100

- D-7 -

LL=0 LP=1 L2=2 LS=12 L18=18 L24=24 CALL FMASH(M(20)*N(1)*L2*L24*L6*LR) CALL FMASH(M(20)*N(3)*L2*L12*16*LL) CALL FMASH(W(21)*N(4)*12*L2*L4*L8*LL) RETURN SUBROUTINE FOIR(W.N.)
DIMENSION W(45)+N(4)

SUBSIGNITIES FOLKTHENS DIRENSION W(45) *N(19)	FOI
11=0	FOL
LR=1	FOI
H	101
m	
7=7	101
7-9-9	104 104
_ '	FO.1
<u>.</u>	109
-	101
1.14.1.7 1.4.1.7.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	FOI
	F01
. (F01
25-51	F01
2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	F01
CALL FURSINGM(27) aN(1) aLF aL20 aL10 aLR)	F01
FMACH (W(27) = N(2)	FOI
FMASH (W127) +N(3) +L5+114+14	FCI
FMASH(M(27)	FOI
FMASH [W(21) + N(5) + L2+L 12+L6	F01
CALL FMASH(M127)+N(6)+L5+L1+L3+L1	104 1004
FMASH(W(28)+11 / 1 - 15+120+1	
FMASH (W12	101
FMASH(W(28) + N(S) + LS+ L14+ L4	F01
FMASH(M(21)+N(10)+L2+L1+L19	IOH
CALL FMASHIM126) # (11) # (13) # (17) 11 12 12 13 12 13 14 15 15 15 15 15 15 15	FOI
CALL FMASH(W(28) out12) ol5 oll ol15 oll)	FOI
FMASH (20) 11 (13) 11	FOI
FMASH(E(29)=2(14)=15=121=12=	FCI
FMASH13(22) +1115) +12 +124+1	F01
PASH (2/12/07) 2/1/26/16/18 1/1/2/1	101 101
FMASH (W12	FOI
FMASH(W(29)+N(18)+L5+L14L18+	FOI
MASHEW (30)	FOI
RETURN	0

END

SUBROUTINE FOZI(W.N.) DIMENSION W145) LR=1 L7=7 L14=14 L32=32 CALL FMASH(W(42).N.L7.132.L14.LR) RETURN	F021 F021 F021 F021 F021 F021 F021
SUBROUTINE FOZZ(W*N) DIMENSION W(45)*N(4) LL=0 LR=1 L3=3 L5=5 L7=7 L10=10 L11=11 L18=16 L21=21 L28=28 CALL FMASH(W(32)*N(1)*L5*L7*L13*L1) CALL FMASH(W(32)*N(2)*L5*L2*L18*L1) CALL FMASH(W(33)*N(4)*L5*L2*L18*L1) CALL FMASH(W(33)*N(4)*L5*L2*L18*L1) CALL FMASH(W(33)*N(4)*L5*L2*L18*L1) RETURN	F022 F022 F022 F022 F022 F022 F022 F022

DIMENSION WIRST WILE)		F023A
L2828 LL=0 LR=1 L2=2 L2=2 L2=2 L2=3 L4=4 L2=3 L4=4 L2=12 L3=3 L4=4 L3=3 L3=3	SUBSCIONE FIRE AND	F023A
L28228 L2823 L2824 L2824 L2824 L2824 L2824 L2825 L2825 L2826 L1001C L11111 L1212 L12620 L21212 L2424 CALL FMSH(M193)*Mf1)*L5*L14*L4*LL) CALL FMSH(M193)*Mf1)*L5*L14*L4*LL) CALL FMSH(M193)*Mf1)*L5*L14*L4*LL) CALL FMSH(M42)*Mf0)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf0)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf0)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf0)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf0)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L10*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L2*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L2*L2*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L2*L2*LZ) CALL FMSH(M42)*Mf1)*L5*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*	CIMENSICA MIASSACIAS	F023A
LL=0 LL=1 L2=3 L4=4 L6=6 L6=6 L1=1 L1=11 L12=12 L14=14 L16=16 L16=1	L.28=28	F023A
LR=1 L2=2 L6=6 L6=6 L6=6 L10=10 L10=11 L10=14	רר-0	F023A
L2=2 L3=3 L4=4 L6=5 L6=6 L10=10 L11=11 L12=12 L14=24 CALL FWASH(W(32) *M(2) *L5*L1*LL) CALL FWASH(W(42) *M(2) *L5*L1*LL) CALL FWASH(W(42) *M(2) *L5*L2*L*L) CALL FWASH(W(42) *M(2) *L5*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L1*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*L2*L2*LL) CALL FWASH(W(42) *M(2) *L5*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*	LR=1	AECCH.
L3=3 L4=4 L5=5 L6=6 L10=1C L11=11 L12=12 L14=14 L16=16	L2=2	4600 H
L4=4 L4=4 L6=5 L1=1 L1=11 L12=12 L14=14 L16=16	- 3=3	FUC3A
L5=5 L5=5 L1=11 L13=12 L14=14 L16=16 L16	7 H 7 -	F023A
London L		F023A
Lose	[5=5]	F023A
L7=7 L7=7 L1=11 L12=12 L14=14 L16=16 L16=16 L16=16 L16=19 L26=20 L21=21 L24=24 CALL FWASHIW(32)*N(2)*L5*L11*LL) CALL FWASHIW(32)*N(3)*L5*L11*LL) CALL FWASHIW(32)*N(3)*L5*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(4)*L3*L2*LL) CALL FWASHIW(42)*N(1)*L7*L2*LL) CALL FWASHIW(42)*N(1)*L7*L2*LL) CALL FWASHIW(42)*N(1)*L7*L2*LL) CALL FWASHIW(42)*N(1)*L7*L2*LL) CALL FWASHIW(42)*N(1)*L7*L1*L1*LL) CALL FWASHIW(34)*N(1)*L7*L1*L1*LL) CALL FWASHIW(34)*N(1)*L7*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*	L6=6	F023A
U = 8	L7=7	FD23A
LID=1C LID=11 LID=12 LIM=14 LID=12 LIM=14 LID=16 LIM=14 LID=16 LIM=18 LID=20 LID=21 CALL FMASH(M(33)*M(1)*L5*L10*LL) CALL FMASH(M(33)*N(2)*L5*LL*L10*LL) CALL FMASH(M(42)*N(4)*L5*LL*L10*LL) CALL FMASH(M(42)*N(4)*L5*LL*L10*LL) CALL FMASH(M(42)*N(4)*L7*LL*L10*LL) CALL FMASH(M(42)*N(4)*L7*LL*L10*LL) CALL FMASH(M(42)*N(1)*L7*LL*L10*LL) CALL FMASH(M(42)*N(1)*L7*L10*LL) CALL FMASH(M(42)*N(1)*L7*L10*LL) CALL FMASH(M(42)*N(1)*L10*LL*L10*LL) CALL FMASH(M(42)*N(1)*L10*LL*L10*L10	L8=8	E0236
L11=11 L22=12 L14=14 L16=16 L16=16 L16=16 L20=20 L21=21 L24=24 CALL FWASH(W133)*M(2)*L5*L14*L4*L1) CALL FWASH(W133)*M(2)*L5*L14*L1) CALL FWASH(W133)*M(4)*L5*L14*L1) CALL FWASH(W12)*M(4)*L5*L2*L10*L1) CALL FWASH(W12)*M(4)*L7*L2*L2*L10*L1) CALL FWASH(W142)*M(4)*L7*L2*L2*L10*L1) CALL FWASH(W142)*M(4)*L7*L2*L2*L10*L1) CALL FWASH(W142)*M(4)*L7*L2*L2*L10*L1) CALL FWASH(W142)*M(1)*L7*L2*L4*L1*L1) CALL FWASH(W142)*M(1)*L7*L2*L4*L1*L1) CALL FWASH(W142)*M(1)*L7*L1*L1*L1) CALL FWASH(W142)*M(1)*L7*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*	-	A501
Li2=12 Li4=14 Li6=16 Li8=18 L20=20 L21=21 L24=24 CALL FMASH(M133)=M(2)=L5=L7=L11=LL) CALL FMASH(M133)=M(2)=L5=L2=L10=L2) CALL FMASH(M133)=M(3)=L2=L2=L2] CALL FMASH(M42)=M(3)=L2=L2=L2=L2) CALL FMASH(M42)=M(3)=L2=L2=L2=L2) CALL FMASH(M42)=M(3)=L2=L2=L2=L2=L2=L2=L2=L2=L2=L2=L2=L2=L2=	L11=11	3 C C U
L14=14 L16=16 L18=18 L2C=20 L21=21 L24=24 CALL FMASH(M133)*M(1)*L5*L14*L4*L1) CALL FMASH(M133)*M(2)*L5*L14*L1)*LL) CALL FMASH(M133)*M(2)*L5*L14*L1)*LL) CALL FMASH(M142)*M(3)*L5*L2*L19*LL) CALL FMASH(M142)*M(3)*L5*L2*L2*L19*LL) CALL FMASH(M142)*M(3)*L5*L2*L2*L2*L19*LL) CALL FMASH(M142)*M(3)*L5*L2*L2*L2*LL) CALL FMASH(M142)*M(3)*L5*L2*L2*LL) CALL FMASH(M142)*M(3)*L5*L2*L2*LL) CALL FMASH(M142)*M(3)*L5*L1*L1*LL) CALL FMASH(M142)*M(15)*L5*L1*L1*LL) CALL FMASH(M142)*M(15)*L5*L1*L1*LL) CALL FMASH(M13)*M(15)*L5*L1*L1*LL) CALL FMASH(M134)*M(15)*L5*L1*L1*L1*LL) CALL FMASH(M134)*M(15)*L5*L1*L1*L1*LL) CALL FMASH(M134)*M(15)*L5*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*	L:2=12	3000 - S
L16=16 L16=16 L20=20 L21=21 L24=24 CALL FWASH(W132)*M(1)*L5*L14*LL) CALL FWASH(W132)*M(2)*L5*L14*LL) CALL FWASH(W132)*M(2)*L5*L2*L16*LL) CALL FWASH(W132)*M(2)*L5*L2*L10*LL) CALL FWASH(W132)*M(4)*L5*L2*L10*LL) CALL FWASH(W142)*M(4)*L5*L2*L10*LR) CALL FWASH(W142)*M(6)*L7*L2*L2*LR) CALL FWASH(W142)*M(6)*L7*L2*L2*LL) CALL FWASH(W142)*M(10)*L7*L2*L2*LL) CALL FWASH(W142)*M(10)*L7*L12*LL*LL) CALL FWASH(W142)*M(10)*L7*L12*LL*LL) CALL FWASH(W142)*M(10)*L7*L12*LL*LL) CALL FWASH(W142)*M(10)*L7*L13*LL) CALL FWASH(W142)*M(15)*L5*L14*LL) CALL FWASH(W134)*M(15)*L5*L14*LL) CALL FWASH(W134)*M(15)*L5*L14*LL) CALL FWASH(W134)*M(15)*L5*L1*LL) CALL FWASH(W134)*M(15)*L5*L1*L1*LL)	L 14 = 14	なられてい
L18=18 L2G=20 L2G=20 L2G=21 L2A=24 CALL FMASH(M193)=M(1)=L5-L14-L4-L1 CALL FMASH(M193)=M(2)=L5-L14-L4-L1) CALL FMASH(M193)=M(2)=L5-L29-L10-L3) CALL FMASH(M(42)=M(5)=L7-L29-L10-L3) CALL FMASH(M(42)=M(5)=L7-L29-L10-L3) CALL FMASH(M(42)=M(5)=L7-L29-L10-L3) CALL FMASH(M(42)=M(5)=L7-L20-L2-L1) CALL FMASH(M(42)=M(1))=L7-L20-L2-L1) CALL FMASH(M(42)=M(1))=L7-L20-L2-L1) CALL FMASH(M(42)=M(12)-L7-L20-L2-L1) CALL FMASH(M(42)=M(12)-L7-L10-L2-L1) CALL FMASH(M(42)=M(12)-L7-L10-L2-L1) CALL FMASH(M(42)=M(12)-L7-L10-L10-L1) CALL FMASH(M(34)=M(12)-L7-L10-L10-L1) CALL FMASH(M(34)=M(13)-L5-L10-L10-L1) CALL FMASH(M(34)=M(13)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L10-L1) CALL FMASH(M(34)=M(15)-L5-L10-L10-L10-L10-L10-L10-L10-L10-L10-L10	L16=16	4070 L
126=20 L24=24 CALL FWASH(W193)*M(1)*L5*L14*L4*LL) CALL FMASH(W193)*N(2)*L5*L14*LL) CALL FMASH(W193)*N(2)*L5*L2*LL) CALL FMASH(W192)*N(3)*L5*L2*L10*L1) CALL FMASH(W192)*N(3)*L7*L2*L10*L1) CALL FMASH(W192)*N(3)*L7*L2*L10*L1) CALL FMASH(W192)*N(3)*L7*L2*L4*L1) CALL FMASH(W192)*N(1)*L7*L2*L4*L1) CALL FMASH(W192)*N(1)*L7*L10*L1) CALL FMASH(W192)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L7*L10*L1) CALL FMASH(W194)*N(1)*L1*L1*L1) CALL FMASH(W194)*N(1)*L1*L1*L1*L1) CALL FMASH(W194)*N(1)*L1*L1*L1*L1) CALL FMASH(W194)*N(1)*L1*L1*L1*L1*L1) CALL FMASH(W194)*N(1)*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*	31 10 1	10234
L21=21 L24=24 CALL FMASH(M133)=M(1)=L5+L14*L4*L4*L1 CALL FMASH(M133)=M(2)=L5+L28*L10*L2) CALL FMASH(M(42)=M(4)=L5*L28*L10*L2) CALL FMASH(M(42)=M(5)=L2*L10*L2) CALL FMASH(M(42)=M(5)=L2*L2*L10*L2) CALL FMASH(M(42)=M(5)=L2*L2*L2*L2*L10*L2) CALL FMASH(M(42)=M(5)=L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L2*L		FOZ3A
L24=24 L24=24 CALL FWASH(W133)=M11)=L5=L14=L4=L4=L4 CALL FWASH(W132)=N12]=N12]=L13=L1 CALL FWASH(W132)=N12]=L28=L10=L2] CALL FWASH(W142)=N13)=L28=L10=L2] CALL FWASH(W142)=N13)=L7=L28=L10=L2] CALL FWASH(W142)=N13)=L7=L28=L2=L4=L1 CALL FWASH(W142)=N13)=L7=L12=L4=L1 CALL FWASH(W142)=N13)=L7=L13=L2=L4=L1 CALL FWASH(W142)=N13)=L7=L13=L2=L4=L1 CALL FWASH(W142)=N13)=L7=L13=L2=L3=L3 CALL FWASH(W134)=N13)=L7=L13=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3		FC23A
L24=24 CALL FMSSH(M133)=M(1)=L5-L14-LL) CALL FMSSH(M133)=N(2)=L5-L18-LL) CALL FMSSH(M133)=N(3)=L5-L18-LL) CALL FMSSH(M132)=N(3)=L5-L28-LL) CALL FMSSH(M142)=N(4)=L5-L28-LL) CALL FMSSH(M142)=N(5)=L2-L2-LR) CALL FMSSH(M142)=N(7)=L7-L2-LC-LR) CALL FMSSH(M142)=N(7)=L7-L2-LC-LL) CALL FMSSH(M142)=N(1)=L7-L2-LC-LL) CALL FMSSH(M142)=N(1)=L7-L13-LC-LC-LC-LC-LC-LC-LC-LC-LC-LC-LC-LC-LC-	17=171	F023A
CALL FMASH(W(32) = N(2) = L5 = L7 = L1	4 7	F023A
CALL FMASH(W133) = N(2) = L25 L** L** L** L** L** L** L** L** L** L*	THE CHARLES TO SELECT THE CONTROL OF	F023A
CALL FMASH [W132] *N(31)		F023A
CALL FMASH (4/2)*N(4)*L2*L10*L7) CALL FMASH (4/2)*N(5)*L2*L10*L7) CALL FMASH (4/2)*N(5)*L7*L2*L6*L7) CALL FMASH (4/2)*N(5)*L7*L2*L4*L1) CALL FMASH (4/2)*N(3)*L7*L2*L4*L1) CALL FMASH (4/2)*N(3)*L7*L12*L4*L1) CALL FMASH (4/2)*N(3)*L7*L12*L4*L1) CALL FMASH (4/2)*N(3)*L7*L12*L4*L1) CALL FMASH (4/2)*N(3)*L7*L12*L4*L1) CALL FMASH (4/2)*N(3)*L7*L1*L1*L1) CALL FMASH (4/2)*N(3)*L5*L2*L4*L1) CALL FMASH (4/2)*N(3)*L5*L2*L4*L1) CALL FMASH (4/2)*N(3)*L5*L1*L1*L1) CALL FMASH (4/2)*N(3)*L5*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*L1*		F023A
CALL FMASH(M(42)*N(7)*L'0*LZ*L'S*LT") CALL FMASH(M(42)*N(7)*L'2*L'S*LT") CALL FMASH(M(42)*N(7)*L'2*L'S*LT") CALL FMASH(M(42)*N(7)*L'3*L'L") CALL FMASH(M(42)*N(10)*L'3*L'L") CALL FMASH(M(42)*N(11)*L'3*L'L") CALL FMASH(M(42)*N(12)*L'1*L'L") CALL FMASH(M(34)*N(13)*L'5*L'L") CALL FMASH(M(34)*N(15)*L'5*L'L") CALL FMASH(M(34)*N(15)*L'S*L'L") CALL FMASH(M(34)*N(15)*L'S*L'N(15)*L'S*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15)*L'N(15		KENCE
CALL FMASH(W(42)*N(5)*L'*LZ4*LE*LE*LE*) CALL FMASH(W(42)*N(7)*L'20*L2*LR) CALL FMASH(W(42)*N(7)*L'20*LL) CALL FMASH(W(42)*N(9)*L'3*LL) CALL FMASH(W(42)*N(11)*L'3*LL*LL*LL*LL*LL*LL*LL*LL*LL*LL*LL*LL*LL	FMASH(#142) oN(5) oL 7 oL 28	AE COR
CALL FWASH(W(42) = N(7) = L20 = L20 = LR) CALL FWASH(W(42) = N(6) = L70 = L20 = LL) CALL FWASH(W(42) = N(9) = L70 = L10 = LL) CALL FWASH(W(42) = N(9) = L70 = L10 = LL) CALL FWASH(W(42) = N(11) = L70 = L10 = LL) CALL FWASH(W(34) = N(12) = L70 = L10 = LL) CALL FWASH(W(34) = N(12) = L70 = L10 = LL) CALL FWASH(W(34) = N(11) = L70 = L10 = LL) CALL FWASH(W(34) = N(110) = L70 = L10 = LL) CALL FWASH(W(34) = N(110) = L70 = L10 = LN) CALL FWASH(W(34) = N(110) = L70 = LN) ETURN FNO	FMASHIW (42	e e c c c c
CALL FWASHIM(42) **(6) **15**L2**LE) CALL FWASHIM(42) **(9) **12**LE**LE**LE**LE**LE**LE**LE**LE**LE**L		46.20L
CALL FMSH(W(42)=M(9)=L2=LC=LL) CALL FMSH(W(42)=N(30)=L3=L(3=L) CALL FMSH(W(42)=N(3))=E7=L4=L1) CALL FMSH(W(42)=N(3))=E7=L4=L1) CALL FMSH(W(42)=N(3)=L5=L3=L2) CALL FMSH(W(34)=M(3)=L5=L3=L2) CALL FMSH(W(34)=M(3)=L5=L3=L2) CALL FMSH(W(34)=M(3)=L5=L3=L2) CALL FMSH(W(34)=M(3)=L5=L3=L3=L3=L3) CALL FMSH(W(34)=M(3)=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=L3=	F1454[16[42]	
CALL FRESH(#(42)=N(30)=L7=L8=L10=L1) CALL FRASH(#(42)=N(31)=E7=L4=L1) CALL FRASH(#(42)=N(31)=E7=L4=L1) CALL FRASH(#(34)=N(32)=L5=L2]=L3=L7 CALL FRASH(#(34)=N(35)=L5=L14=L4=L1) CALL FRASH(#(34)=N(35)=L5=L14=L1) CALL FRASH(#(34)=N(35)=L5=L1=L13=L1) CALL FRASH(#(34)=N(35)=L5=L1=L13=L1) CALL FRASH(#(34)=N(35)=L5=L1=L13=L1) FRIURN FRIURN	FYCSHIMIGS) PRINTED	まついつ に
CALL FMASH(#(42)*W(11)*E7*L4*L14*LL) CALL FMASH(#(42)*W(12)*L7*LL*!19*LL) CALL FMASH(#(42)*W(13)*L5*L2!*L3*L7) CALL FMASH(#(34)*M(14)*L5*L14*LL) CALL FMASH(#(34)*M(15)*L5*L1*LL) CALL FMASH(#(34)*M(15)*L5*LL*L1) CO 100 1=9*12 CO 1(1)*W(1*10) FNO	FEEESTAIA1421 +N(30)+L	4000 L
CALL FMASH(W(42) *W(12) *LT*LL*!!!?*LL) CALL FMASH(W(42) *W(12) *L5*L2)*L3*L?) CALL FMASH(W(34) *W(13) *L5*L2*L?) CALL FMASH(W(34) *W(15) *L5*L2*L?) CALL FMASH(W(34) *W(15) *L5*L2*L?) DO 10° 1=9*12 RETURN FNO		A2704
CALL FMASH(M(34)*M(12)*L5*L2)*L7; CALL FMASH(M(34)*M(14)*L5*L7*L1); CALL FMASH(M(34)*M(15)*L5*L7*L1); CALL FMASH(M(34)*M(15)*L5*L1*L1); CALL FMASH(M(34)*M(15)*L5*L1*L1); CO 1.(1)*N(1)*10; RETURN		F023A
CALL FWSHW(34)************************************		F023A
CALL FWGSH(W134) = COLL FWGSH(W134) = COLL FWGSH(W134) = COLL FWGSH(W134) = COLL = COL	TIME TO THE TOTAL	F023A
CALL FMASH(W(34)*N(15)*LOSTL*CL)	110/10/37 We (36) AN (36) AN (36)	FC23A
CALL FMASH(W(34)+N(15)+L7+L+(15+L+) DO 100 [=9+12 CO 1.(1)=W(1)+10 RETURN FROM	サール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	F0234
CO 100 1=9914 CO 1(1)=8(1)#10 RETURN FND	FRESH (MC M4) - MI TO 1 - CO - CL - CL AC	
CO TITES TO THE SECOND	146=1 001 00	
u.	7.613.800	F323A
	RHI-CXX	FC23A
	END	

```
F0238
F0238
F0238
F0238
F0238
                                                                    F00238
                                                                                                                                                                                                                                                                                                                                                                   F0238
F0238
                                                                                                                                                                                                                                                                                                                                                                                                                    F0238
F0238
                                                                                                                                                                                                                                                                                                           CALL FWASH(W(35)*N(9)*L5*L24*L6*LR)
CALL FWASH(W(36)*N(9)*L5*L26*L10*L)
CALL FWASH(W(36)*N(11)*L5*L26*L10*R)
CALL FMASH(W(36)*N(12)*L5*L14*L4*L1)
no 100 1=5*8
No N(1)=N(1)*10
RETURN
                                                                                                                          LIG=10

L1=11

L14=14

L18=18

L20=20

L21=21

L24=24

L28=28

L28=28

L24=24

L28=28

L24=24

L28=28

L24=24

L28=28

CALL FMASH(W(35)+N(1)+L5+L28+L10+L1)

CALL FMASH(W(35)+N(2)+L5+L21+L1)+L1)

CALL FMASH(W(43)+N(2)+L5+L2+L1)+L1)

CALL FMASH(W(43)+N(5)+L7+L3+L1)+L1)

CALL FMASH(W(43)+N(5)+L7+L2+L2)+L1)

CALL FMASH(W(43)+N(5)+L7+L2+L2+L1)

CALL FMASH(W(43)+N(5)+L7+L2+L2+L1)

CALL FMASH(W(43)+N(5)+L7+L2+L1)+L1)

CALL FMASH(W(35)+N(1))+L5+L2+L10+L1)

CALL FMASH(W(35)+N(1))+L5+L2+L10+L1)

CALL FMASH(W(35)+N(1))+L5+L2+L2+L1)
SUBROUTINE FOZ3B(W+N)
             DIMENSION WIGS SAITS
                           LL=C
LR=1
L3=3
L4=4
L6=6
L6=6
                                                                                                                                                                                                                                                                                                                                                                                                               100
```

	SUBSOUTINE FORSC(%+R)	F3230
	DIMENSION W(45) +N(12)	F0230
	0=11	F0230
		F0230
	L2=2	10230
		F0230
	7=7	F3230
		F2230
	9=51	F023K
		F0236
		F0230
		F0230
		F 0230
	17:17	F023C
		F0236
	4 F	F0230
		F 0230
		F0230
		F0234
	CALL FMBSHCW(36 FeW(1) of not 7 of 11 of 1)	F0230
	FM4SH(W(36) 22(2) 2	F0230
	FMASH (M(M)) SR (M) SH FP L L	F0230
	76 (%	F0230
	FMASH(%(43) .N(5) .L7.L	F0230
	FVASH(W(43)+4(6)+L7+112+L	F023C
	FMASH(#(43)+R(7)+L7+L	L023C
	FVASH(K)	50203
	FEBST (X (WY) = N (Y) = (IN - I) -	:0230
		F0230
	FMASH(W(37) - M()]) - L5-11-	F0230
	FM SH (88) +1(12) +15+L26	F0230
	CI	
C		, 6 ,
	RETURN	7025 7225
	ದ ಪ್ರ	-

```
F0230
F0230
                                                                                                            L2=3
L2=3
L2=3
L2=4
L2=5
L2=5
L2=6
L3=6
L3=12
L10=10
L10=10
L10=10
L2=14
L2=14
L2=14
L2=15
L2=15
L2=15
L2=15
L2=16
        SUBROUTIVE FOZ3D(W*N) DIMENSION WI451+V(16)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N(1)=0
R(1)=0
R(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   200
300
```

INCP. WI RY THE FORTRAN INTG.NI.	MASK SET LAST 6 3115 OF ASK W TO ZERO 64 W T77777700	COMP. SL.*SET INDC. W1.W2.NCOMP ACOMP. IF COMPARE WCOMP. OTHERWISE NCOMP. IS FORTRAN INTG.
FINCR 2 * C * C * C * C * C * C * C * C * C *	FMASK 104 MASK 104 77777	FCCMP COMP 2.4 %1.8 % COMP COMP MCOM MCOM MCOM MCOM MCOM MCOM
ENTRY CLA* ARS ADD* STO* TRA END	CAL* ANA SLW* TRA OCT	ENTRY CAL* 128A* CLA* STUA TRA 1RA OCT
FINCR	F. M.	FC OWP COMP ONE

```
WI.WZ.LR.NP
SHIFT LOGICAT
WORD WI RT OR LFT
NP BITS ACCORDING
TO WHETHER LR IS
I OR O.RESPECTIVELT.
STORE RESULT IN WZ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SHIFT WI RIGHT OR
LEFT NP BITS
ACCORDING TO WHETHER
LR IS 1 OR 0.
RESPECTIVELY
STORE RESULT IN WZ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WI.WZ.LR.NP
                                                      00-1
20-4
FTSH-10-1
50-4
00-1
20-5
4-5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FTSH
ENTRY
HTR
SXD
CCLA*
CCLA*
CCLA*
CCLA*
CALA*
CALA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FSHFT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FISH
```

FSHFT

```
SELECT WORD MASK (MASK)
AND SHIFT MASK LEFT NSF
BITS. MASK WORD
WI. SHIFT MASKED
WORD MSF BITS EITHER
LEFT OR RIGHT ACCORDING
                                                                                 #1.42.MASK.NSF.MSF.LR
                                                                                                                                                                                                                                                                                                                                                                   STORE RESULT IN MZ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8-4
77777777777
0000007777777
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7777000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              <del>7770000000000</del>
0000000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2,4
FMASH-1,1
FMASH-2,2
                                                                                                               4-3,2
FMASH
                                                                                     11.
                                                                                                                                             334
091
494
092
                                                                                                                                                                                                                                                          914
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7.5
5.5
13
                                                                                                                                                                                                                                                                                                                  5,4
                                                                                                                                                                                                                                                                                                                                                                        *+4
*-1
0 * 2
1 * 4
                                                                                                                                                                                                                                                                                                                                          18
                         HTR
SXD
SXD
CLA*
                                                                                                                                                                                                PDCCCAPE
CCLAPE
STANAS
                                                                                     PMASH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⋖
```

Appendix E

Shelter and Building Tabulations by Structural Characteristics

This appendix presents the tabulations made for the 1541 buildings in the statistical sample. Shelters and buildings are categorized by structural characteristics as outlined in Chapter 3 and presented in the following order:

- I. SHELTER STATISTICS FOR PF CLASS 1 BUILDINGS
- II. SHELTER STATISTICS FOR PF CLASS 2 BUILDINGS
- III. SHELTER STATISTICS FOR PF CLASS 3 BUILDINGS
- IV. SHELTER STATISTICS FOR PF CLASS 4 BUILDINGS
- V. SHELTER STATISTICS FOR PF CLASS 5 BUILDINGS
- VI. SHELTER STATISTICS FOR PF CLASS 6 BUILDINGS
- VII. SHELTER STATISTICS FOR PF CLASS 7 BUILDINGS
- VIII. SHELTER STATISTICS FOR PF CLASS & BUILDINGS
 - IX. TOTAL SHELTER STATISTICS FOR ALL PF CLASSES
 - X. BUILDING STATISTICS

The column heading numbers in each section refer to the PF class for which that column applies. For example, the section on Shelter Statistics for PF Class 3 has column headings for shelters in PF Classes 1, 2, and 3. This particular section considers only buildings whose highest rated shelter is in PF Category 3.

I. SHELTER STATISTICS FOR PF CLASS 1 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 1 but nomehigher. There are 483 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B.2. of Chapter 3.

	٠ _	•	ċ	;	;	6760	7020-0	0.0902		0-2105	0480		0.2246		0.0803	0,00	60000	40.0.0		C.0279		C110*0			0.0115		0.0115		0-0-33	0.0033		0.0016		66000	0.0082								
	PSF		c	,	52	;	Š	75		8		2	150		175		200	300	(7)	250	1	275	6	2	325		350		373	404	3	455	•	420	474	;							
SHIZ.TERS		•	-	C-3C10	5.2449	0-1020	0.0663	2460	0.0153	0.0153	0.0357				C-0051			561353	: 6		:	٠	C*0105	•	0.0102				•	• •				.	; ,								_
FRACTION OF	CONTAN.	HICTH		o	8	3	8 5	9	2 2	210	240	200	300	360	390	450	450	9	275	570	9	630	999	9 5	05/	780	018	840	670		960	066	1020	1050		0511	1170	1200					
				787	0.0803	0.0295	0.0131	20000	0.0033	9100.0	•	•	• 6	::		ះ	٠	٠,	ئ ئ						ے ئ	: :			<u>.</u>	÷ •	ئ د	:	ځ	.	:			•	•	.		200	_
	STCRY	MOPSER	(o =	. ~	M	v P v	n •	~ ه	80	Φ,	2:	11	: =	1	51	91	17	8 0	200	21	77	23	*:	5 6	23		53	요 ;	31) K	1 %	35	36	- 6	\$ C	9	7	4 5	Ç :	*	1	
	•	-	•	د	ပ		92	3	c.	165		53	117	:	64		53	;	21	1.3	•	7		7.	^	-	1		7	•	•	-		7	•	^	161.24	175.86					
	PSF		(ن 	52	_	ಜ	ř	<u>-</u>	163		125	-	•	175		5 C0	;	522	250		275		303	336		350		375		ن •	475		450		47 5	AVE	200					
SHELTERS :			-	ğ	. ep	20	13	<u>.</u>	- M	•	7	* 1	n c	, c		0	0	m (0,0	.	ם י	٥	~	0	۰ ۵	70	0	0	0	φ (-	, ~	•	0	.	.	· c		196	106.99	180-40		
NUMBER OF	CCNTAM.	MICTH			3,0	9	6	071	261	210	240	270	200	36.5	390	420	450	480	216	230	900	630	999	9	720	780	810	840	910	006	5 6	066	1020	1050	0901	0111	1120	1200	TUTAL	AVE	N L		
		*	•	e 6	4	18	e	۸.	۲ ۸	. =	0	0 (5 C	-	0	0	0	ပ	0 0	- -		0	o	0	<u> </u>	9 6	. 0	0	0	0	- ·	, 0	•	0		.			0	0	0 ;	010	1.30
	STORY	KUPBEK	•	٥.	4 N	•	4 (۰,	۰ ۲	. 63	•	2	- :	7 .	1 =	51	2	11	2 2	* c	? . 7	22	23	5.4	52	27	28	53	30	31	35	. *	32	£	5 . :	10 G	; ;	7	45	6 3		10191	S

		SHELTERS WITH	INTERIOR PARTITIONS	**	109					0.1787							
LOG FLOOR AREA 1	3 540	5 7		S D 3.51				LGE FLOCK APEA	-	2 C.C639							
## E	0 296 10 167 20 82			0 0 4	2 09	0 06	AVE 14.30 S D 18.73	PERCENT APERTURE 1	6-0 -0		20 0.1344	30 0.0607	40 0.0344	50 0.0082	•0 0•	.0 0.	80 0.0033

PRACTION OF SERLIDES

NUMBER OF SECULORS

វ

9

DOSE SOURCE

	I=1 I=2 I=3 I=4 I=5	NO SINGLE CONTRIBUTION 40 PERCENT OR GREATER ONE WALL CONTRIBUTES 40 PERCENT OR GREATER THO WALLS CONTRIBUTE 40 PERCENT OR GREATER EACH CEILING CONTRIBUTES 40 PERCENT OR GREATER CEILING AND ONE WALL CONTRIBUTE 40 PERCENT OR GREATER EACH
1	1	1
1	65	1 0.1066
2	99	2 0.1623
3	7	3 0.0115
4	428	4 C.7016
5	11	5 0.0180
AVE S D	3.36 3.54	

II. SHELTER STATISTICS FOR PF CLASS 2 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 2 but none higher. There are 361 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B.2. of Chapter 3.

	MIMBER		OF SHELTERS PER	PF CATEGURY	GFRY	FRAC	TON OF	SHELTERS PER PF	PER PF CATEGO
STCRY						STCRY			
NUMBER	-	2	TCTAL	AV PF	S C		~	N	TOTAL
,	;	;	786		0.11	0	0.0627		0.5160
۰ ۵	9 6	716	162		0.50	-	0.1137		0.2070
(2 :	5 6	72	. 28	0.45	8	0.0802		0.1108
~	U 6	77	9	96	0.48	•	0.0423		0.0656
		9 *	? =	1.14	0.36	•	0.0262		0.0306
•	9 9	n -	; =	60	0.30	2	0.0146	0.0015	3910.0
Λ,	2 •	۰ ۳		1.43	0-53	•	0.0058		0.0102
• 1	• •	ח ה	· K	0.7	0.55	~	C. 0044		0.0073
- 1	٦,	٠.	١ ،	1.25	0.50	•	0.0044		0.0058
€ .	•••	٠,	,	1 1 1 1	85.0	Gr.	6200.0		0.0044
σ;	~ (- (n (1			01	0.0044		0.0044
01	٠ ١	ه د	, "			1	0.0044		0.0044
=	.	ه د	9 6	2 5	• -	12	C.0044	0	0.0044
75	m (. د	n n	1.00	8 Y	1	0.0029		0.0044
13	2	ы ,	1		00.00	5 1	C-0029	0	0.004
*	~ 1	⊣ (7 6	1.00	0 0	2	0.0044	0	0.2044
12	M)	9 (n (3	•	91	ئ	•	•
91	0	، ن	-	•	• •	17	0	•	•
11	0	9	> (• 0	• •	- 60 	ď	•	•
81	0	0	.	;	• •	2 2	9		•
61	0	0	> (، د	•	2		•	•
20	0	0	•	;	ء د	2	c c	•	•
21	0	0	5 (;	•	22		•	•
22	0	0) (، د	٠, د	22	ن :	•	0.
23	ပ (9 (ى د	.	• •	2		•0	••
54	0 (5 (.	; ;	• c	\$2	٠,	•	÷
\$2	5	> (ى د	Š		26	.	•	•
92	ه د	ى ر	ن د		6	72	ڻ	•	ė,
12	9 0	,	3 C	.		82	ڻ	•	•
82	ə (ه د	•	ن :		53	.	•	•
62)	ه د	ن د	; c		30		•	•
B :	، د	.				E	•	ċ	•
1 (.	ء د	6	6	•	32	•	•	•
7 6) (, c	0			33	ပ	•	•
7	• 0	0	ပ	3	3 •	*	•	.	•
	•	0	0	Ġ	త	£ ;	، د	.	• 6
36	O	0	9	;	• •	9 :	:	•	
37	0	ى	0	ું	.	~ C	ئ ۋ	: 6	•
38	0	ø	0 (္ပံ	• •	2 2		0	•
39	0	ပ		.	• •	5 7			•
ç	0	Ç,	9 (.	• •	17		0	ڻ .
7	e i	U (96	;	، د	· *	•	•	•
45	0 (ა დ	9 6	.	• •	43	.	•	.
Ţ:	5 5	ى د	.	.		\$	•		• •
**	241	475	,	;		TOTAL	C.3805	0.6195	
	197	, 2 ° ° °	1.35						
U C	*0**	1.60	7.79						
3	>)· - -							

,	NUMBER	0F St	MBER OF SHELTERS PER PF CATEGORY	ER PF CA	TEGORY	FRACTION OF SHELIERS PER PF CATEGORY PERCENT	DN OF SHE	LTERS P	ER PF CA	TEGORY
PERCENT APERTURE	-	~	TOTAL	AV PF	S	AP EI	APERTURE	-	~	TOTAL
Ç	65	259	292	1.89	0.32		0	0.0481 0.3776	0.3776	0.4257
) o		96	205	1.5	0.50		01	c-1676	C.1676 0.1312	0.2988
502	69	45	114	1.39	64.0		5 0	0.100	9590.0 9031.0	0.1662
30	31	19	20	1.38	6**0		30	C.C452 0.0277	0.0277	0.0729
9	•	~	•	1.33	0.50	•	40	0.0087	0.0087 0.0044	1610.0
. 05	0	_	-	2.00	•0		20	•	0.0015	0.0015
, 4	•	S.	•	1.56	0.53		9	C.0058	C.0058 0.0C73	0.0131
3 2	· m		•	1.50	0.55		20	0.0044 0.0044	0.0044	0.0087
90	•	0	ပ	•	•0		90	• •	•	•
8 %	0	0	•	ပ	• 0		96	•	•	•
AVE S D	20.90 12 24.32 17	12.18 17.19	15.50							

TOTAL	~	
-	-	1 27 9
		1 2
~ .	٠,	e :
1.24	0 -	0 -
-	-	-
6 1.33	~	~
_	_	_
4 1.25		
• ~	• ~	• ~
2 2.00		
4	-	
3 1.67	3 1.	2 3 1.
-	∴	
27-1	• •	
0		. 0
9 1.50	9	•
ပ် ပ	<u>ပ</u> ဲ	U
	-	-
- 6		- (.
•		ى د
0		0
		0
		ပ
		•
.		
•		
S		
_	_	_
		114
2°86	152.80	~ (
76.	70	266-66 <3731

ATEGORY		TOTAL	0.0962	0.8207	0.0831	•	•	
PER PF C		~	0.0233 0.0729	0.3236 0.4971	0.0496	•	•0	
SHELTERS		-	0.0233	0.3236	0.0335 0.0496	•	•	
FRACTION OF SHELTERS PER PF CATEGORY	FLOOR		~	m	•	•	•	
ATEGORY		0 8	0.43	0.49	0.49	•	•0	
0 00		AV PF	1.76	1.61	1.60	•	•	
ACCURE TERS BE DE CATERNAY		TOTAL AY PF	*	563	57	•	•	3.52
35	5	~	20	34	34	0	0	3.46
		-	16	222	23	0	•	3.53
	FLOOR		8	₩.	•	•	•	AVE

SHELTERS WITH INTERIOR PARTITIONS

	FRACTION OF SHELIERS PER PF CATEGORY	C.0423 0.0962 0.1385
FEGORY	S D	94.0
R PF CAI	2 TOTAL AV PF S D	66 95 1.69 0.46
ERS PEI	TOTAL	95
SHELT	7	99
NUMBER OF SHELTERS PER PF CATEGORY	-4	53

CATEGORY	TOTAL	• 0	•	0.0233	0.0758	0.2420	0.1487	0.2216	0.0671	0.0977	0.0452	0.0292	0.0175	0.0131	0.0073	0.0029	0.0015	••	•	•	0.0073	
4	~	•	•	0.0146	0.0262	0-1210	0.0816	0.1487	0.0423	0.0832	0.0379	0.0219	0.0160	0.0131	0.0615 0.0058	c.0015 0.0015	0.0015	•	•	•	0.0073	
SHEL TERS	-	•	•	0.0087	0.0496	0.1210	0.0671	0.0729	C-0248	0.0175	0.0073	0.0073	0.0C15	•	0.0615	0.0015	•	•	•	.	.	
FRACTION OF SHELTERS PER	PSF	0	25	20	75	100	125	150	175	500	525	250	275	300	325	350	375	400	425	450	515	
·	regory S D	•	•0	0.50	0.48	0.50	05.0	0.47	0.49	0.39	0.37	***0	0.29	•0	0.45	0.71	•0	•	•0	•0	•0	
	R PF CA	•	•	1.62	1.35	1.50	1.55	1.67	1.63	1.82	1.84	1.75	1.92	2.C0	1.80	1.50	2.00	•	6	•	2.00	
	OF SHELTERS PER PF CATEGORY 2 TOTAL AV PF S D	0	ပ	16	52	166	102	152	4	63	31	20	12	•	•	2	-	ပ	0	0	•	160-24
	R OF SH	ø	0	01	80	83	28	102	53	55	56	15	11	6	•	-	~	· Ø	v	0	•	173.09 186.18
	NUMBER 1	a		• •0	3,	83	9*	20	11	12	n.	. u n	**	0		•	• •	ø	• •	0	0	139.32 1
	PSF	c	, <u>,</u> ,	, <u>0</u>	2	201	125	150	175	9 02	225	250	275	300	325	35.0	375	004	425	4 50	475	AVE S D

DOSE SOURCE

CH Greater Each	FRACTION OF SHELTERS PER PF CATEGORY	1 2 TOTAL
NO SINGLE CONTRIBUTES 40 PERCENT OR GREATER CNE WALL CONTRIBUTES 40 PERCENT OR GREATER TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER EACH CEILING CONTRIBUTES 40 PERCENT OR GREATER CEILING AND ONE WALL CONTRIBUTE 40 PERCENT OR GREATER		o s
I=1 NO SINGLE CONTRIB I=2 CNE MALLS CONTRIB I=4 CELLING CONTRIBULE I=5 CELLING AND ONE	NUMBER OF SHELTERS PER PF CATEGORY	TOTAL AV PF S D
HHHHH	NUMBER OF	2 1

3	C.0758 0.C569 0.1327	0.1224 0.1195 0.2420	0.0102 0.0058 0.0160	0.1647 0.4213 0.5860	C.0073 0.016C 0.0233	
	10.07	0.12	10.0	0.16	00°0	
n	0.50	0.50	0.50	0.45	0.48	
A	1.43	1.49	1.36	1.72	1.69	
TOTAL AV PF	16	991	=	402	16	3.13 3.35
7	33	82	4	588	11	3.36
-	52	8	7	113	5	2.75
•	-	~	6	4	ď	AVE

III. SHELTER STATISTICS FOR PF CLASS 3 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 3 but none higher. There are 150 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

OR V	TOTAL	_							10000	•	ċ	•	6	d	; e	;	•		.	ċ	ċ	•	•	ė	•	ď	•	d	6	d	Ġ	3	ċ	.	3 &	ě	å	ċ	ě	3 6	;	;	.	.	.	•	.	å (•	~			
CATEGORY	•	0.4128					1200		;	ċ	•	ď	ď	;	;	3 (3	•	ö	ö	•	•	6	á	; d	.	:	.	3	;	;	;	; ;	.	•	•	; ;	•	.	:	•	ċ	.	0	0.4832			
RER PF	~	0.0520		_	0-0214	1700		10000	ċ	•	ċ	ć	;	;	;	;	;	•	•	ċ	ď	•	6	ė	; c	;	; ;	; .	.	.	;	.	;	;	•	•	;	;	;	•	•		.	ċ	•	•	.		ö	0			
SHELTERS	-	0.0245	0.1529	0.1101	0440	70,00	00000	•	0-0061	•	6		•		•	•	ċ	ċ	•	;	0	6	3 6		•	•	;	;	•	•	•	•	;	;		•	.	.	•	•	;	•	•	•	;	•	•	•	6	0.3731			
FRACTION OF STORY	4704	c	, ,=			٠,	\$ ('n	•	^	•	•				12	E1	14	15	91	21		9 5	2 6	2 ;	17	27	52	5 1	S :	92	12	82	59	ጽ :	16	35	10	K (35	36	37	38	%	9	14	45	: Ç	\$	TOTAL			
	8	65				0.0	0.39	0.56	•		;	•	•	•	•	•	•	•	6			.	;	.	•	•	•	•	ċ	•	ċ	ċ	ċ	ċ	•	င်	•	•	•	ċ	•	•	0	•	ó	é	8 6		; ;	;			
ATEGORY	X X	,			70.	1.37	1-17	2.33	90,1		;	•	•	ċ	•	•	•	ď	d	5	;	;	•	5	ċ	ċ	6	ċ	•	•	•	•	•		ċ	•	ó	ċ	ċ	•	6	•	•	•	6		; c	; c	;	;			
NUMBER OF SHELTERS PER PF CATEGORY	TOTAL		3 ;	<u>.</u> ;	7	2	12	m	~	• <	3 (•	0	0	٥	0	0	c	•	•	> (•	5	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	a	,	•	> <	•	>	•		
el ters	~		6		٥	-	0	-	C	•	.	0	0	0	0	a	•	· c	•	•	9 (9	0	0	0	0	0	٥	0	0	0	0	0	0	•	0	0	0	•	٥	•	0	0	c	• •	,	•	> <)	-	2		ו••
3 04 3 4	~		1	9	•	~	7	•	, <	> (0	0	0	0	٥	•	•	•	> ()	D	0	0	0	0	0	0	0	0	•	0	•	0	a	0	0	0	0	0	a	• •	> <	> C	,	> c	•	> <	> (9 (D !	-		7
NUMBE	-4	,	•	%	*	16	91	•	•	•	0	0	•	0	•	c	• <	•	3 (9	0	0	•	0	0	0	0	•	đ	0	a	· c	0	•	•	•	9	•	•	•	•	•	•	•	•	> 0	0 (D (0	0	122	•	797
STORY	MUMBER		0		~	m	•	•	٠,	•	~	-	•	. 0	=	::	::	2:	= 1	2	91	11	81	2	2	22	22	23	*	, <u>,</u>	, «		. 5	2 2	9	=	: 2	: ::	1	, ;	? :	2;	7	9 6	<u>.</u>	3	7	45	43	\$	TOTAL	•	

FRACTION OF SHELTERS PER PF CATEGORY RCENT	TOTAL	.3823	1126-	1.1713	0.0856	0.0398	•0	•	••	•	•0	
D E	w	90	9	45 0			J	Ü				
PER		0.31	0.13	0.02	0.00	00-0	•	•	•	9	•	
ELTERS	7	0.0367 0.0275 0.3180 0.3823	0.1254 0.0612 0.1346 0.3211	0.1223 0.0245 0.0245 0.1713	0.0612 0.0214 0.0031	0.0275 0.0092 0.0031	•	•	•	•	•	
E SE	-	367	254 (223 (219	275				•	_	
ō 8		0.0	0.1	0.1	0	0.0	•	•	•	•	•	
FRACTE	APERTURE	0	01	żo	30	•	20	9	70	08	8	
	9	29.0	06-0	92.0	0.55	0.65	•	•	•	•	•	
CATEGORY	AV PF	2.74	2.03	1.43	1.32	1.38	•	•	•	•	•	
PER PF	TOTAL	125	105	56	28	13	o	0	ပ	0	0	15.80
OF SHELTERS PER PF CATEGORY	m	104	\$	€	~	-	•	0	0	0	0	9.24
	~	6	20	∞	~	m	0	0	0	0	0	9.68
NUMBER				_	_	_		_	_	_	_	~ ~
DN	 	17	41	40	20	5	S	•	0	0	•	22.79
	APERTURE	0	10	20	30	40	20	09	20	90	96	AVE

OR∀	TOTAL		0.2874	0.0958	0.0539	0.0539	0.0359	0.0240	0,0000	0.0359	0.0419	.;	0710-0	•	•	•	•	0	090000	0900-0				•		,	ċ				•	•	•	•	•	•	້	•	•	•			
PF CATEGORY	m	0.0178	0.0180	0.0060	•	0.0000	•	0900-0	•	0900-0	0.0060	•	0900-0	•	ं	•	•	•	0900-0	•	•						: c		3 6	6		•	•	•	•	•	•	٥.	•		0.1377		
9 8	7	_	0.0	_	_		0.0120				-			•	•	•	•	•			•	•	• •	• •	• •	.	•	;	•		6	•	•	•	•	•	•	•	•	_	0.1796		
SHEI	-	0.1976	7	0.0719	047	0.0419	0-0240	0.0060	0.0060	0.0299	0.0120	•	0.0000	း	ن		•	•	•	0900-0		•	•			.		•				0	0		0	•	•	•	•	•	C.6826	•	
FRACTION OF CONTAM. PLANE WIDTH		0	30	3	6	120	150	180	210	240	270	300	330	360	390	450	450	480	510	540	570	909	990	099	069	720	750	200	070			930	096	066	1020	1050	1080	1110	1140	1170	TOTAL		
	S	0.83	95.0	09-0	2		25.0	0.82	0	0.82	69.0	•			•	0	•	•	•	•0	•	•	°.	•	•	•	•	•	• •		• •	• c						.0	•	°			
CATEGRRY	AV PF	1.65	200	• (1001) P	2.00	1,00	1.33	1.86	•	2.00	•		6		0	3-00	1.00	Ç.	•	•	•	•	•	់	•	• •	.	•	.		•	Ġ			6	•	ن			
PER PF CA	TOTAL	23		91	9 6	P 0	•	•	-	4 40	~	0	7	0	0	· c	0	0	-	~	Ö	0	0	0	0	0	0	0	0	5 (3 (> <	•	o c	, c	• •) C	• 6	0	O		A1. A3	
SHELTERS P	ĸ		7 "	٠ -	٠ (٠ د	→ C	> -	4 6	- د	٠.	, ₍)	-	0	c	.	0	0	, ~	Ö	0	٥	o	0	٥	0	ပ	0	0	.	•	5 (5 C	o c	•	• •	· c	> C	.	0	23	70 20	
90	2	:	11	۰ ۵	٠.	٠.	→ F	, ,	, c) (4	٥	.	ى ر) (o c	د د	, C	, 3	0	C	ပ	0	ပ	9	ပ	0	ပ	0	ບ (5	> (> 0) C) (, c	ى د	,		30	000	
NU¶8ER	~	נר	2 6		71	30 F	٠,	• -	-	- v	, ,	4 C	-	• =	י כ	,	9 0	•	, c	~	· 0	ပ	O	0	Ö	0	ပ	0	0	0	0	9 (3 (9 0	o c	> C	9 6	•	,	.	114		֡
CONTAM. PLANE		•	3	Q (9	06	021	05.		017	740		000	000	000	240	750	000	00	24.5	570	900	630	799	9	720	750	780	018	84C	910	006	930	396 396	0,00	0201	0601		0711	0211	TOTAL	•	

GORY	TOTAL	0.0489			•	•0	
PF CATE	•	0.0336	0.3180 0.1223 0.3945	C.0398 0.0214 0.0550	•	•	
ERS PEA	~	•	0.1223	0.0214	•	•	
SHELT	-	0.0153 0.	0.3180	9660*	:	•	
FRACTION OF SHELTERS PER PF CATEGORY LOG	FLOOR Area	2	m	•	5	9	
	S	16 2.37 0.96	0.92	16.0	•0	·c	
8	AV PF	2.37	2.09	2-13	•	•	
CATEGO	TOTAL AV PF	16	273	38	0	0	3.57
PER PF	m	=	129	81	0	•	3.54 3.58
NUMBER OF SHELTERS PER PF CATEGORY 3	2	0	0	-	0	0	3.65
BER OF	-	ĸ	104	13	0	O	3.57
NUM LOG FLOGR	AREA	~	m	•	1 0	•	AVE S D

SHELTERS MITH INTERIOR PARTITIONS

	IORY	3 TOTAL	0.0581 0.0398 0.0703 0.1682
	CATEG	m	0.0703
	PER PF	~	0.0398
	SHEL TERS		0.0581
	FRACTION OF SHELTERS PER PF CATEGORY		
	S D	0.88	
TEGORY	AV PF	55 2.C7 0.88	
NUMBER OF SHELTERS PER PF CATEGORY	3 TOTAL AV PF S D	98	
LTERS	•	23	
OF SE	~	13	
NUMBER	-	19	

	NUMBER OF		SHELTERS PER	PF CATEGORY	SORY		FRACTION O	OF SHELTERS	PER	PF CATEGORY	SORY
PSF	-	~	m	TOTAL	AV PF	o s	:	-	~	m	TOTAL
o	0	0	0	•	•	ė.	o	.	•	•	•
25	0	0	o	0	•	•	52	•	•	•	•
50	m	ပ	0	m	1.00	•0	20	C.0092	•	•	0.0092
25	7	₩.	m	51	1.73	0.80	75	C.0214	0.0153	0.0092	0.0459
100	55	13	7.2	96	11.11	68-0	001	0.1682	0.0398	0.0826	0.2905
125	0	•	8	33	2.27	0.88	125	0.0275	0.0183	0.0550	0.1009
150	19	7	3	70	2.36	0.89	150	C*0581	0.0214	0.1346	0.2141
175	11	4	51	36	2.13	76*0	175	0.0336	0.0122	0-0459	0.0917
200	10	7	23	Ç	2.32	0.86	200	0.0306	0.0214	0.0703	0.1223
225	8	_	ĸ	€0	2.37	0.92	225	0.0061	0.0031	0.0153	0.0245
250	e	· 🕶	•	21	2-30	0.95	250	0.0092	0.0031	0.0183	0.0306
275	-	0	-	€0	2.75	0.71	275	1600.0	•	0.0214	0.0245
300	0	0	•	•	3.00	•	300	•	•	0.0122	C*0122
325	-	7	2	•	2.20	0.84	325	C-0C31	0.0061	0.0061	0.0153
350	-	_	æ	w	2.40	0.89	350	C.0C31	0.0031	0.0092	0.0153
375	0	0	0	0	ડ	°.	375	•	•	•	•
00	0	0	0	Ü	ថ	•	400	•0	•	•	•
425	O	0	0	0	•	•	455	•	•	•	•
450	0	O	-	1	3.00	•	450	•	•	0.0031	0.0031
475	0	0	o	0	•	•	475	•	•	•	•
AVE S.D	145.49	162.50	182.75	165.94							

DOSE SOURCE

CATEGORY	TOTAL	0.1223	0.2049	0.0306	0.5841	0.0581	
ER EACH PER PF	6	0.0398	0.0673	0.0183	0.3303	0.0275	
EACH OR GREATI	~	0.0612 0.0214 0.0398	0.0856 0.0520 0.0673	C.C031 0.0092 0.0183	C.1957 0.0581 0.3303	C.C275 0.0031 0.0275	
NC SINGLE CONTRIBUTION 40 PERCENT OR GREATER ONE WALL CONTRIDUTES 40 PERCENT OR GREATER TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER EACH CEILING CONTRIBUTES 40 PERCENT OR GREATER CEILING AND CNE WALL CONTRIBUTE 40 PERCENT OR GREATER EACH ELFRS PER PF CATEGORY FRACTION OF SHELFERS PER PF CATEGORY	-	0.0612	0.0856	C-C031	C-1957	C.C275	
CENT OF CENT OR CENT O		-	2	m	4	ĸ	
NC SINGLE CONTRIBUTION 40 PERCENT OR GREATER ONE WALL CONTRIBUTES 40 PERCENT OR GREATER TWO WALLS CONTRIBUTES 40 PERCENT OR GREATER CEILING AND CNE WALL CONTRIBUTE 40 PERCENT OR GREATER CEILING AND CNE WALL CONTRIBUTE 40 PERCENT OF FRACTION OF	S	0.90	18.0	0.71	0.32	1.00	
I=1 NC SINGLE CONTRIBUTION 1=2 ONE WALL CONTRIBUTES 4 1=3 ThO WALLS CONTRIBUTE 4 1=4 CEILING CONTRIBUTES 40 1=5 CEILING AND CNE WALL C NUMBER OF SHELFRS PER PF CATEGORY	AV PF	1.82	15-1	2.50	2.23	2.00	
IGLE CONTINUE CONTINUE CONTR	TCTAL	40	19	10	161	19	3.25
NC SIN ONE MA Tho WA CEILIN CEILIN	m	13	75	•	108	•	3.49
1±1 1=2 1±3 1±4 1=4 1 × 0 × S	~	1	1.1	3	61	••	2.79
NUMBE	-	50	28	-	59	•	3.11 2.79
			7	3	•	1 00	111 E

IV. SHELTER STATISTICS FOR PF CLASS 4 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 4 but none higher. There are 142 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

	KURBER	GF SHEL	TERS PE	NUMBER OF SHELTERS PER PF CATEGORY	TEGORY				FRACTION OF SWELTERS PER PF CATEGORY	OF SWEL	TERS PE	R PF CA1	ECORY
STORY								MURBER					
MUMBER	-	~	m	•	TOTAL	A 75	0 S		-	7	m	•	TOTAL
		•	;	•	***		36.0	•	0.0168		0.0200	0.3669	0.4370
0	•	D	9	151) - -	0-1289				0.2241
	1	61	۷,	2 1	3 3		20-0	. ~	0-1232			0.0004	0-1405
~	\$	91	۸.	n (3			; (*	0.0504	_	_	0.0056	0.0756
m	=	•	٠ (•	:				0.0280		•	•	0.0308
•	01	-	•	ا د	•			•	9500.0		•	•	0.00±4
•	~		0	۰	n (10.		١.	8000			ő	0.0056
•			0	9	~	2	5	Ď 1			•	6	0.0056
~	-	-	•	0	~	3	0.7	• (0.00		000	3	0.0056
	-	0		0	~	%	1.41		0.0028			;	1
• (-	0	0	~	1.50	12.0	•	0.0028		_	;	
• :	•		-	0	~	2.00	11	0	0.0028	o.	0-00-0	;	
2 :	• (• <	-	٥	-	9.00	•	11	•	•	2700.0	•	
= :		•		ن د	-	1.00	•	77	0.0028	•	•	•	0.0028
21	→ (•	• c	0	0	6	•	ET	•	•	•	•	.
£	•	> (•	• 6	•	ć	ć	*1	•	•	•	•	•
±	0	5	> (3	•	;	5 6		å	å	•	•	ċ
15	0	0	9	>	3 (;	•	::		ć	6	0	•
91	0	0	0	U	-	.	.	9 !	;		Ġ	d	
1	0	0	0	0	u		•	7	:	•	; ;	ė	6
	c	0	0	ø	0	ċ	•	18	•	\$ 0	:	;	; .
2 9	•	c	a	ပ	0	ċ	•	61	•	•	•	:	;
2 1	•	•	¢	Ü	0	•	•	20	ċ	•	•	.	•
2 :	.	9 6	•) tj	0	6	•	21	ċ	ċ	ċ	•	;
12	۰ ح	,	•	, (0	22	•	•	ċ	•	ċ
25	0	9 (•	۲ د		6		2		•	•	.	ċ
23	0	9	-	> (•	;		25	6	•	•	•	ċ
*	0	o	9	> (•	;	;	32	6	6	6	•	ċ
52	0	0	0	.	> (;	•	36	; ;	ے ا	6	•	ċ
9 2	0	Ų	0	y ·	0	.	.	9 5					•
2.2	o	c	0	0	0	.	•	13	: ،	•	;		6
, e	0	0	•	0	0		•	8	.	;	•		d
2 0	•	٥	0	0	0	ះ	•	2	٠	.	;	;	
.	• 6	0	٥	9	0	ċ	ċ	8	<u>.</u>	.	.	;	;
2 2	•	¢	0	0	0	ċ	å			;	;	;	
	0	٥	0	ပ	•	ö	ċ	35	;	:	;	;	
36	a	0	٥	Ų	0	ċ	ċ	33	•	;	;	;	;
` *	c	0	0	0	0	•	•	*	;	;	;	•	
ξ #	-	U	0	0	0	ó	•	S ·		5 (•	•	; ;
£ 2	•	c	٥	0	0	•	ċ	36	•	•	.	.	;
2 2	• c	0	0	0	0	•	ċ	37	;	•	.	.	•
		a	•	٥	0	•	•	P	•	•	.	;	; c
2	•	ن ،	0	ပ	0	•	ċ	33	•	•	•	;	ċ
6 9	•	· a	0	٥	0	•	•	9	;	.	•	•	
;	•	•	c	0	0	ċ	•	15	ċ	;	•	;	;
•	•	•	•	0	0	6	•	45	•	•	•	;	; c
; ;	•	•	q	•	0	•	ė	Ç	ė	ė.	å	.	.
.	•	c	•	· c	0	0	0	\$	ċ		•		;
\$:	2	, ₅	7	149				TOTAL	0.3697	0.1541	0.0	5 14-0	
	200	1.87	2.10	C-17	1.29								
. C	2.86	2.52	3.97	45.0	2.23								
<u>د</u>				,									

FEORY	TOTAL	0.4004	0.3025	0.1933	0.0784	0.0028	0.0168	0.0056	•		•	
FRACTION OF SHELTERS PER PF CATEGORY	•	0.2745	0.0952	0.0364	D.CC28	•	95000	0.0028	•	•		
LTERS PI	m	C.0616 D.0476 D.0168 D.2745	C.1317 0.0476 0.0280 0.0952	•	0.0476 0.0140 0.0140 0.0028	ċ	•	•	ė	•	•	
OF She	~	0.0476	0.0476	C.1120 0.0448 0.	0.0140	•	•	•	•	•	6	
RACTION	***	0.0616	C.1317	C-1120	0.0476	0.0028 0.	C.0112 0.	0.0028 0.	ដ	ះ	6	
PERCEKT	APERTURE	•	2	70	30	9	%	99	92	99	96	
	0	1.17	1.31	1.15	16*0	•	1.55	2.12	•	°.	•0	
	V 75	3.26	2.29	1.80	3:	1.00	2-00	2.50			•	
OF SHELTERS PER PF CATEGORY	TOTAL	143	108	69	58	-	٠	~	•	٥	0	15.53
PER PF (•	6	34	2	-	ຍ	~	-	0	၁	3	16.30
ELTERS	m	•	2	0	~	0	0	0	•	•	0	16.90
	7	11	17	2	•		ပ	•	0	0	•	16.64
NUMBER	-	23	4.7	9	11		•	-	9	0	0	20.76

PF CATEGORY	4 TOTAL	.C398 0.2836	_		100 0.1393		0.0498	°	6610-0 0500		•	0.0050	0.0149	0.0299	0.0100	0.0100	0.0149	•	•		ô	•	ó	0.0050	ċ	•	•	G.	0400.0	5 6		6	6	ď	ò	0.0396		
SHELTERS PER	E	0.0100 0.0	0	0.0050	0.0050						0	-0	6			6			0	0		•	0	٥.	°.	0.0	0.0	•		•		• •	; ;		•				•		0.0547		
8	7	1 0.0547	_	_	_		_					0.0050	0		_	_	, .		• •	.	.			0	ó	•	ċ	-	_	ċ	ċ	•	;	3	• •	.			.	i d			
FRACTION.		1791	C-1791	C-0597	0.0796	0-0240	0410		P. F. 149	0500			0.0	040	0520	0000			;	.	;	.	i	05000	ن	ئ	ថ		0.0050	ວ່	ខំ	6	، ن	•	.	ະ ເ	، د	• •	• •	. د	4340	0.040	
CONTAK. PLANE	HIDIM	C	Ş	\$ 9	8 6	200		2 2	201	045	200	7.	000	000	3 6	26.4				210	26.5	2 5	200	099	9	720	150	180	018	840	810	920	930	950	066	0201	000	1080	0711				
	S D			3 6		90.0		:	5	7.00		•	•	•			100	0.78	• •		.	.			ċ				•	ć	÷.	ċ	ċ	ċ	ċ		•	តំ (•	• •	•		
	AV PF	•	20-1			10-1	7.60	3	; :	1.13	1. Ju		200	3.	11-1	2	06-1	1.33	ė.	.	;	.	;	5	} • c	.	.		00			ċ	•	•	ô	_	_	0	_	ċ			
FEGRY	TOTAL	,	7	1.	<u>.</u>	200	<u>.</u>) 	.	•	7	0	-	m	•	2	~	m	•	0	۰	0	9 (• ب	- (,	•	•	-	. (2	0	0	0	0	0	•	0	0	0	0	O	:	101-01
R PF CA	•		₩.	m ·	-	~	m	ق	ပ	-	S	0	Þ	0	0	ب	O	ပ	J	ی	o	Ü	٠	: ن	, د	9	.	ه د)	,	ى د		0	•	0	0	e	ပ	a	Ö	c)	37	65.00
SHELTERS PER PF CATEGORY	m		~	m	-	-	2	8	0	0	0	0	0	0	0	0	0	•	0	•	•	o _		0													0	0	٥	•	0		85.91
6	^	,		6	~	6	•	2	•	٥		0		0	-		-		٥	c	0	0				-									_	_	0	0		•	0		3 116-09
NUMBER	-	•	36	36	12	76	•	m	0	m	_	0	0	177	•	_	-		9		J	J	5	.,				ا ن	٠.	(<i>،</i>	,		, -	. 0			J		0	J	126	103.33
CONTAM.	PLANE NIC TH		ပ	30	9	96	120	1.50	180	210	240	270	300	330	360	390	420	450	4.80	210	*	570	900	630	099	069	720	750	780	010	940	9 6		966	9 6	0201	1050	ONO	0111	1140	1170	TOTAL	AVE

ATEGORY	TOTAL	0.0028 0.0476 0.0868	0.3109 0.1485 0.0504 0.3249 0.8347	C.0224 0.0056 0.0056 0.0448 0.0784	•	•	
ER PF C	•	0.0476	0.3249	0.0448	•	•	
LTERS P	E	0.0028	0.0504	0.0056	•	•	
OF SHE	~		0.1485	9500*0	•		
FRACTION OF SHELTERS PER PF CATEGORY	-	C.0364 D.	0.3109	C.0224	់	•	
1 90 T	AREA	~	ю	•	•	٠	
	S S	1.49	1.33	1.36	•	•	
	AV PF	31 2.71 1.49	2.47	2.93	ပံ	•	
OF SHELTERS PER PF CATEGORY	TOTAL AV PF	31	298	28	O	•	3.49
PER PF	•	11	911	91	د.	ပ	3.54
HEL TERS	•	-	81	2	0	•	3.55
	2	O	53	~	ပ	U	3.54
NUMBER	-	13	111	e o	0	0	3.46
LOG	AREA	2	m	•	'n	•	AVE S D

FRACTION OF SHELTERS PER PF CATEGORY C.0420 0.0196 0.0028 0.0812 SHELTERS WITH INTERIOR PARTITIONS 1.36 2.85 TOTAL AV PF NUMBER OF SHELTERS PER PF CATEGORY 25 15

TOTAL 0.1457

	NUMBE	R 0F S	FL TERS	NUMBER OF SMELIERS PER PF CATEGORY	CATEGORY			FRACTION OF SHELTERS PER PF CATEGORY	134S 40	TERS P	ER PF CA	TEGORY	
PSF	-	~	•	•	TOTAL	AV PF	S	Š	-	~	m	.	TOTAL
О	0	•	٥	ü	0	ئ	•	٥	វ	•	៩	•	•
		ပ	0	د	•	1.00	•	52	0.0112 0.	.0	ů	ċ	0.0112
, o	N	•	0	~	•	2.50	1.73	05	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		់	9500-0	0.0112
: 2	·	2	0	O	^	1.29	65.0	27	C-014C	C.0140 0.0056 0.	.0 9	•	0.0196
001	63	62	•0	*2	811	2:	1.19	100	0-1765	90-0 9	4 0.022	0-1765 0-0644 0-0224 0-0672	0-3305
125	20	_G	m	15	•	2.28	1.31	125	0-0560	0.025	- C-008	0.0560 0.0252 0.0084 0.0420	0.1317
150	23	-	*	36	20	2.76	1.38	150	0.0644	6 0-019	110-0 9	0.0644 0.0196 0.0112 0.1008	0.1961
175	٠	•	0	11	36	2.93	1.28	175	6.0168	C.C168 0.0196 0.	.0 9	0.047	0.0840
500	٠	•	7	٦ ٢	32	3.12	1.24	200	0.016	110.0	2 0.005	C.0168 C.0112 0.0056 0.C 6C	0.0896
525	-		m	13	2	3.56	98°3	\$22	0.0028	1 0.002	8 0.008	0.0028 0.0028 0.0084 0.0364	0-0504
250	-	ပ	-	~	•	3.00	1.41	250	C.0028 0.		0-0024	0.0028 0.0056	0.0112
275	0	-	0	c	9	3.80	0.63	275	ះ	0.0028 0.	• 0 a	0.0252	0.0280
300	**	ပ	0	•	•	3.40	1.34	300	0.0028 0.	6	•	0.5112	0-0140
325	O	C	0	7	8	4.60	•	325	6	•	•	9500.0	0.0056
350	٥	٥	0	o	•	6	•	350	ċ	•	ò	•	•
375	•	0	0	0	0	6	••	375	•	•	•	•	•
004	٥	v	0	v	ú	ò	••	004	ដ	•	•	•	:
425	0	6	3	s	v	ઢ	:	425	ដ	6	•	•	•
450	0	0	0	~	2	4.00	••	450		Ġ	6	0.0056	0.0056
475	0	-	0	•	•	3.50	1.00	475	ះ	0.0028 0.	• 0 •	0.0084	0.0112
AVE S D	132.58	151.14	160.12	132.58 151.14 16C.12 192.53 139.22 164.68 171.87 2GL.2E	162.08								

DOSE SOURCE

	TOTAL	0.1008	0.3165	0.0028	0.5406	0.0392	
CATEGORY	•	5.0364 0.0368 0.0084 0.0252	C.1317 0.0532 0.0336 0.098C	•	C.1965 0.0616 C.C112 0.2773	C.C112 0.0056 0.C056 0.C168	
ER PF	m	0.0084	0.0336	÷.	C.C112	0.0056	
EACH LIERS P	~	0.0368	0.0532	0.002E J.	0.0616	0.0056	
REATER ATER ATER EACH TER CENT OR GREATER EACH FRACTION OF SHELIERS PER PF CATEGORY	-	5.0364	C-1317	• •	6.1965	C.C112	
GREATER GREATER E/ GREATER E/ REATER PERCENT OR	-4	-	~	•	•	S	
NO SINGLE CONTRIBUTION 40 PERCENT OR GREATER ONE WALL CONTRIBUTES 40 PERCENT OR GREATER EACH CEILING CONTRIBUTES 40 PERCENT OR GREATER CEILING AND ONE WALL CONTRIBUTE 40 PERCENT OR GREATER CATEGORY FRACTION OF SHELIES	S 0	1.20	1.30		1.40	1.33	
ONTRIBUTES ONTRIBUTE TRIBUTES ONE WALL	AV PF	2.22	2.31	2.00	2.69	2.71	
SINGLE C MALL CO WALLS C LING CON LING AND	TOTAL AV PF	36	113	-	193	=	3.16
1 NO NO NO	•	•	35	ပ	\$	٠	3.39
SE CELLER SE	6	m	21	0	•	2	2.52
SPELTE	~	7	13		22	~	2.73
NO SINGL =2 ONE WALL =3 TWO WALL =4 CELLING =5 CELLING SPELTERS PER PF CATEGRAY	-	13	4.7	0	•	•	3.62

AVE S D

V. SHELTER STATISTICS FOR PF CLASS 5 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 5 but none higher. There are 110 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

			-	.e.	.73 1.	.65 1.	.50 1.	43 I	8	.25 0	33 0	0	8	80	80.	8			•	•		•		•												•							°°			
	TOTAL AV		152 4		~		•	_	•	*			-	_																						_			-			_	0	_	u	1.26
	•	D	ပ	0	Ç	0	0	· c	a	ပ	υ (ပ	3	0	ပ	0	0	0	0	0	0	0	۰ ۵	ပ (-	> C	, c	0	ပ	٥.	0	> c	o C	0	0	0	ပ (.	0	0	0	0	0		္မံ
JR Y	P		0	٥	0	0	-) C	•	0	• •	• =	9 67) (2	0	0	0	0	0	0	0	0	C	0	ပ	0 0	> c) C	0	0	0	0	> 6	9 0	0	0	0	۰ د	3 C	>	, c	0	0	ပ		ċ
F CATEGORY	,	٥	0	U	0	6		• c	• •	• 6	,	• •) C	0	0	0	0	0	O	က	rs	0	0	0	e (0 (> c	,	0	•	0	0	0 0	> c) E	0	ဂ	0	0 (> c	c	ن د	ن د	0		ຢູ
S PER OF	•	^	2	9	•	-	4 6	•	-	ع د	, c) (ء د	.	ب د	0	9	ن	U	ပ	ပ	ပ	ပ	ပ	0	0 (0 0	,	ပ	ی ا	ပ	0	، ن	ې د	ن د	0	0	၁	0 6	> c	.	ے د	, _U	ت	129	2,2
SHELTERS	,	•	-	4	. 10	, 0	۰,	v c	,	י כ	3 C	٠.	ب د	2 د	• =) U	. ပ	Э	7	د	ں .	r	()	٥	د	n :	; د	. د	, a	د. د	:)	د	، ت	: د	ڊ د	د. د	ပ	ပ	ه د	3 1	-) (, ၁	ט	~	(C)
6		m	5	, r) M	٠ ٦	rc	.	v c	•	-	> (>	•	> <	• =	· c	0	0	0	0	0	0	0	0	0	0 (5 0	> C	0	0	0	0	0 0	5 0	0	0	0	0 (9 0	> c	5 C	0	0	77	17 1
NUMBER		2	•	. 1	7	9	o r	, (,	۰.	. د	- (-	٠.	-	- ه	ع د	.	ی .	0	ပ	0	()	ပ	0	0	0	-	> c	ى د	0	0	ပ	ن ن	ن د د	.	Ų	ပ	6) (U (ی د	ء د	ن ن	ပ	65	6
		-	٠	9 9		, r	67	71	~ (7) (m (7	~	5 (o c	,	> C	9 0	.) C	9 0	o G	0	0	0	0	0	-	ى د	ے د	ပ	0	0	0	0 0	n 0	0	0	0	D (9 6	> c) C	0	135	•
3	NUMBER		(٠ د	۰, ۲	, (~	.	so ·	•	~ (6 0		2 :	7.	71	13	<u> </u>	3 2	2 -	- «	2 0	20	12	77	23	54	52	92	7 00	23	30	31	32	E .	P 47	36	37	36	39	0,	,	75	44	TETAL	-

æ
6
Ö
ü
=
•
CATECOR
_
4
7
FE
ᇳ .
I
_
•
FRS
T
Ξ
_
ᇳ
FE
a
•
44
ä
-
7
=
110
3
=
~
FRAC

	TOTAL			101-0	9191-0	2	0.0434		0.0163	010.	000	ş	0.0027	8	0-0027	8	ċ	•	•	.	•	•		•	•	•	.	:	•	، في	.	.	.		ć	•	•	•	ċ	°.	ó	•		•		•		
	•																																															
		•	5 0	.	ò	ċ	ó	ó	ö	ö					•	ö		ô	ó	ö	ပံ	ċ	ċ	ċ	ċ		ď	.				5 6	j c	.	6		ċ	ö			6		ć		6		ö	
È	_																																															
CATECORY		•	;	Ġ	ċ	5	ö	ö	ċ	ċ	ö			ċ	ö	ئ	ö	ċ	ö	ö	j	ပံ	ئ	ċ	ئ	ပံ	ö	ö	ំ	ပံ	ö	3	، د	;	;	ď	5	•	6			ی ا		6	ا د	3		
CAT	•																																															
*			ပံ	_		ċ	ċ	-	0	0	ò	ċ	ö	ပံ	ö	S	ċ	ò	ö	ö	ö	ö	ئ	ċ	ċ	ပံ	ຜ່	ċ	ċ	ö	ċ	ó	ပံ (j e	ċ	6	6	ن	ć	ل ا	ć	6	;	;	3 6	: :	ن	
RS PER	•	i	0.3144	5	0	0.C027		0.0027		•	6		0	•	•	•			6	ئ :						ડ					•		، ن			ے ر									.	;	C. 24.96	
SHEL TERS	•	•	0.0352	១	1830-0	0.C054	8	•	d																				•		•	•	•	.	.	; ;		: d		;						.		
FRACTION OF	m		0.0271		1800-0	0-0104		0.0054					.	d	3					6	6	6		6	6	6	:	3		•	•	•	•	ن.	•	• ·	•	: 6	;	;	:	.	، د		.	• •	•	•
FRAC	7		0.0100	9	0	07	, ,	9		? <	9 6	}	0.0027	000	0.0027	8		;			Ġ	5 6	;			: d					•	•		ċ	.		;	; ;	•	.	.	•		•	.	.	•	0.133
	-		0.0163	108	0.1057	0.0674	20.0	4400			1000		3	;	;										; c							•		.	.	•				٠,	;	•	•	•	•	•		C . 3659
7007	KUMBER		C	_	^		٠ <	P U	n 4	0 P	٠,	• (•	2:	.	7.	1	<u>.</u>		0 <u>?</u>	\		P (?;	1 6	2,2	; <	, <u>.</u>	, ×	3 5	- C	58	30	31	35	£ ;	*	5	9 (25	200	30	9	7	42	.	ē,	OTAL

NUMBER OF SHELTERS PER PF CATEGORY

	S	1.33	1.68	1.27	1.17	1.13	•	•	•	•	•	
	AV PF	4.25	25.5	1.85	1.87	1.43	1.00	•0	•	•	•	
	TOTAL	135	80	105	30	-	•	0	•	•	0	16.82 20.31
	&	0	0	0	0	0	0	0	0	0	0	::
;	•	0	0	0	0	0	0	O	0	0	0	••
	•	o	ပ	0	٥	o	0	0	0	ပ	0	
	8	96	12	10	2	0	0	ပ	o	0	0	3.64
31.5.1.2.1.5	•	6)	31	4	-	-	ų.	٠	ပ	ပ	3	15-42 18-87
MONDER OF	m	12	2	ď	6	0	0	0	0	0	0	14.55
Ş	~	~	16	12	Φ	ပ	ပ	0	0	ပ	O	21.44
	-	17	39	65	15	•	4	0	0	0	0	23.22
PERCENT	APERTURE	0	01	20	30	7	20	09	02	80	96	AVE S D

FRACTION OF SHELTERS PER PF CATEGORY

		FRA	FRACTICE OF SPELICES FOR TO CALLOON	SHEEL IN	INS FER					
PERCENT APERTURE	-	8	m	•	v		٠	_	•	8 TOTAL
0	0.0325	0-0100	0.0325 0.0190 0.0325 0.0217 0.2602 0.	0.¢217	0.2602	ő	S	.	•	0.3659
10	C-1057	0.0434	C.1057 0.0434 0,0054 0.C271 0,C569 0.	0.0271	6952.0	•	3	•	•	0.2385
50	0.1599	0.0732	0.1599 0.0732 0.0136 0.0108 0.0271	0.0108	0.0271	ċ	J	•	•	0.2846
30	0.0407	0.0244	0.0407 0.0244 0.0081 0.0027 0.0054 0.	0.0027	0.0054	•	Ų	•	•	0.0813
9	0.0163	•		0.0027	•	6	3	•	•	0-0100
20	0.0108	•	•	•	•	•	J	.	•	0.0108
9	•	•	•	•	•	•	J	•	•	•
01	;		:	•	•	6	3	•	•	•
90	•	•	•	•	•	•	J	•	•	•
06	ះ	•	<u>.</u>	•	4	.	J	0.	•	•

ē	
	×
	1
	Ľ
1	

S		1.34	c.		1.26			Č			• •	6	•	1.50		-	•	> :	S	ئ	ငံ	0	•				•	•	•	ငံ	ċ	ô	.	ċ	.	ô	ċ	•	d	ć		• •		•	•				
AV PF		1.92	~	4	8	9	9	•	•	•	•	•	•	1.71	•	, ≺		•	•	00-1	•	1.00			•		7.00	•		ö		1.00	ö	•	.	.					;	•	;	•	•				
TOTAL		52	26	20	19	12	(f		• •	y ,	•	m	m	^	· c	, r	η.		0	-	0	-	C	•	> (5 (~	0	0	0	0	-4	0	0	0	0	0	-	• •	•	•	> ()	Þ	0		114.12	77.2	
60	•	ပ	O	0	0	c	Ċ	•) ر	3	ပ	ပ	٥	c	•	•	۰ د	ပ	ပ	ပ	ပ	U	· c	•	> (0	0	ပ	0	0	0	0	0	0	٥	•	c	9 6	•	> <	، د	3 (9	ø	0	J	ં	6	
~	•	0	0	C		0	•	•	> (0	ပ	Q	c	•	o c	> (0	0	0	0	c		•	> (9	0	0	٥	0	0	9	0	c	. C	c	o c	o c	,	> (> 6	3 (0	0	ø	0	0	•	6	
4	•	a	C	• •	•	•	> 0	> (ບ	0	0	•	· C	•	> 0	5	0	0	0	C	ت ر) (٠ د	0	0	0	ن	ø	C	0	• =	· c	, c	، د	> c	9 6	> (5 (5 (5	٥	0	0	0	Ç		် ငံ	
u	n	ď	- ۱	• -	4 (.	~ (>	9	ပ	0	· c) (. د	-	9	ပ	0	G	· C	•	•	> (•	ပ	0	0	0	•	· c	ي (,		.) د	ء د	; د	، د	9	5	0	ပ	٥	0	0	13	. 4	3	١
•	•	4	•	٠ (> (، د		-4	m	ပ	0	. د)) د	۰	0	9	u	<u>ن</u>	ي (9 () د)	0	ပ	ن	U	ن	ن (ی ر	. د	.) () (، د	: ن	، د) ون	0	ပ	0	ပ	د	ى	ပ	-	44	9 0	•
•	•	·	,	•	→ •		Ö	0		-	•	•	3 (9	0	0	_	0	· C	•	> (> (o	0	ن	0	•	· C	• c	•	•	5	> 0	-	، د	> (> (0	0	0	0	0	0	· C	• •	. :	4	م د	7.6
	7		21		N -	٥	-	m	~	_	4 6	> (.	0	-	0	0	ď) C)) د	9	0	0	0	C	c	,	,	•	-	5 (>	o (٠ ن	ပ -	0	0	ပ	0	ပ	0	O	c) C			7.48	•
,	p=4	6	52	67	91	2	6	~	•	C	> 4	•	m ·	m	Ś	0	•		• «	> 1	-	0	-	0	0	· c	•	٠ ،	> 0) (o (0	-	0	0	O	0	0	-	0	0	· •	· c	•	o c	- (12.	- ·	96.40
PLANE		•	0	9	9	8	120	150	081		017	240	270	300	330	360	000		074	420	480	210	540	570	604		000	000	069	120	150	780	910	8 40	670	0 06	930	960	066	1020	1050			0111	0411	0/11	TCTAL	AVE	N O

AACTION OF SHELTERS PER PF CATEGORY

		FRA	FRACTION OF	SHET IERS	RS PER	ŭ.	5	CATEGORY			
CONTAM.											
MIOTH	-	~	m	•	5		•	•	_	•	TOTAL
1		•			0220	c		ć	ó		0.2396
ပ	7) (0.000	1000	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜				d		0.2581
30	-13	0-0876	C-C23U	200	֓֞֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֓֓֓֓֡֓֜֓֡֓֡֓֓֓֡֓֜֓֡֓֡֓֡֓֡֡֓֡			; c	6		0.0922
9	.073	•	0.00		•	\$ (•		7287
90	C.0461	9	0.0046	•	0.0092	å e		•	•		
120	.041	٩		0.0046		;		;	•		00000
150	32	Ç	•	3	0.0092	ບໍ		ن	.		2860°0
180		9	0.0046	0.c138	•	ö		•	.		200
210	•	0.0046	0.0046	•	ပ်	ئ		ئ	ċ		2600-0
240	10		٠. د.	0.	ئ	ċ		ડં	o ·		Ď
270	٥	•	•	 	•	ပံ		ن	ċ		
300	5		•			ď		ڻ	o o		BE10-0
330	-02		•	0	9500-0	ó		;	.		250
360			•	••	٠. د	ပံ		,	ċ		9.0
390	C.CC92	_	0.0046	•	•	ċ		క	•		• U13
420	0.0046		·°	•	•	ö		ن.	•		0.00.0
450		0	3	••	•	ö		ċ	ċ		
480		0	•	•	٠.	ò		ئ	ė.		0-00-0
510			•	•	•	ö		ئ	.		
540		0	•	•	•	ċ		.	.		0.00.0
570	•	0.	•	•	•	ċ		6	.		•
909		•0	.	•	•	ċ		.	i		.
630		•	•	•	•	6		، ئ	.		•
9	0.0646	•	•	••	•	ċ		.	.		
9		•	•		.	ċ		•	.		
720		•	•	•	•	.		ن د	.		•
150	•	•	·.	•	å,	.		• •	.		
780	:	•	•	•	•	.			.		0.00
810	C.CC46	•	•	.	.	6			.		•
840	.	•	•	•	•	;			• •		
870	•	ن		•	.	.			• •		
906	ີ່	ċ	•	•	•	.		• •	•		
930	•	:	•	•	•	;			.		
096	•	•	•	.	•	j e			•		
066	0.0046	•		.	.	;			.		•
1020		•		•	•	;		.	5 <		
1050	•	•		•	.	5 0		; ,	.		
1080	•	•	•	•	•			.	.		•
1110	;	•	•	•	.			;			•
1140		•	ខំ		•
1170	•	•	•		•	\$ 0		.	; e		;
TOTAL	C.5945	0.2396	0.0553	0.050	V4CD • 0	;		•	•		

CATEGORY
PF
PER
SHELTERS
OF S
NUMBER

S 0	1.87	1.73	1.71	•	•	
AV PF	3.31	2.75	3-30	•	•	
TOTAL	42	287	4	0	O	3.53
€	0	0	0	0	•	66
~	0	ပ	0	•	0	••
٠	0	0	0	ပ	0	33
S	23	95	91	ပ	ပ	3.46
•	~	16	9	ب	ı,	3.78
m	æ	91	m	0	ပ	3.50
^		54	•	ပ	ပ	3.55
•	15	109	11	ပ	0	3.51
LOG FLOOR AREA	7	æ	4	sv.	•	AVE S C

0.1138 0.7778 0.1084 TOTAL • ċ ö ċ ċ FRACTION OF SHELTERS PER PF CATEGORY ċ 3 • ئ 0.0407 0.0027 0.0081 0.0054 0.0569 C. 0.2954 C.1463 0.0434 0.0434 0.2493 G. 0.0298 0.0103 0.0081 0.0163 0.0434 C. <u>.</u> • Ċ • <u>ن</u> LOG FLOOP AREA ~ 5

SHELTERS WITH INTERIOR PARTITIONS

NUMBER OF SHELFERS PER PF CATEGORY

S	1.65
AV PF	3.40
TOTAL	9
•	0
-	0
•	ပ
^	92
•	1
•	4
~	11

FRACTION OF SHELTERS PER PF CATEGORY

TRIAL	0.1626
8 0	•
•	ပံ
	•
r	0.0705
•	0.0190
m	0.0108
~	C.0325 0.0298 0.C108 0.C19C 0.0705
-	C.0325

	• • • • • • • • • • • • • • • • • • •			2 2 3 4 3 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				101AL 0 0 8 1117 118 31 24 24 24 0	AV PF 0 0 0 2 33 2 2 34 3 3 9 6 4 5 6 6 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	ပ	0	J	O	•	0	ပ	•	ទ	•
0	ပ	0	J	O	•	0	ပ	•	င်	6
ပ	0	ပ	•	0	ပ	0	0	Ų	ċ	•
0	د	-	ပ	7	0	0	0	m	4.33	1.1
136.02 1	971	01 071	186. 27	189.63	ď	• •	•	161.35		

		FRAC	FRACTION OF	SHEL TERS	PER	PF CAT	CATEGORY		
PSF	-	~	m	•	Ś	•	-	€	TOTAL
0	•	•	့	•	•	°	ö	•	•
25	•	•	6	•	•	:	•	•	•
20	0.0054	•	•	•	0.0027	•	3	•	0.0081
75	C.0136	•	•	•	0.0081	•	•	•	0.0217
100	C-1707	0.0786	0.0217	0.0081	C.6379	• •	.	•	0.3171
125	0.0569	0.0217	0.0108	0.0103	0.0103 0.0542	•	•	•	0.1545
150	0.0813	0.0813 C.0298	0.0136	0.0195	0.0921	.	6	•	0.2358
175	C.0190	0.0ca1	•	•	0.0217	<u>.</u>	្វ	.	0.0488
200	0.0081	0.0108	0.0054	0.0163	0.0434 C.	.	.	•	0.0840
225	0.0031	0.0081	C.0027	0.0054	10,0407	:	ئ	•	0.0650
250	.	•	•		0.0054	ٿ	•	•	0.0054
275	0-0027	.	0.0027	•	6.0136	ះ	ថ	•	0.0100
300	3	0.0027	ئ	0.0027	0.0163	•	ះ	•	0.0217
325	.	•	•	0.0027	0.0081	ះ	ះ	•	0.0108
350	•	•	•		•	••	•	<i>•</i>	•
375		•	•	•	•	3	ડ	•	•
00	•	•		•	•	•	ះ	•0	•
425	•	•		•	•	•	•	•	•
450	•	•	•		3	•	.	•	•
475	•	•	0.0027		0.0054	•	•	•	0.0081

DOSE SOURCE

				EACH	
		£		GREATER	
2		3		80	
SINGLE CONTRIBUTION 40 PERCENT OR GREATE	IE WALL CONTRIBUTES 40 PERCENT OR GREATER	ID WALLS CONTRIBUTE 40 PERCENT OR GREATER I	ILING CONTRIBUTES 40 PERCENT OR GREATER	I=5 CEILING AND DNE WALL CONTRIBUTE 40 PERCENT OR GREATER EACH	NUMBER OF SHELTERS PER PF CATEGORY
Ž	ð	=	ວ	ü	Z
	I=2	1=3	†	<u> = 5</u>	

S D	1.39	1:1	1.85	9 1-80	5 1.97	
TOTAL AV PF	20-2	2.4	3.18	3.19	3.45	
TOTAL	.	122	17	174	11	2.96
•	0	0	0	•	0	. .
~	0	•	•	0	0	••
ú	0	•	•	6	Ď	. .
~	•	31	7	18	•	3.42
*	•	17	~	m	-	2.21
m	-	•	-	11	•	3.00
7	01	22	-	92	0	2.73
-	**	•	•	53	•	2.74
	-	~	m	•	ę,	AVE S D

1 2 0.0650 0.0271 0 0.1301 0.0596 0 0.0163 0.0027 0 0.1436 0.0705 0
1 2 3 4 5 6 0.0650 0.0271 0.0027 0.0163 0.0108 0. 0. 0.1301 0.0596 0.0244 0.0325 0.0840 0. 0. 0.0163 0.0027 0.0027 0.0054 0.0190 0. 0.
1 2 3 4 0.0650 0.0271 0.0027 0.0163 0.1301 0.0596 0.0244 0.0325 0.0163 0.0027 0.0027 0.0054 0.1436 0.0705 0.0298 0.0081
1 2 3 0.0650 0.0271 0.0027 0.1301 0.0596 0.0244 0.0163 0.0027 0.0027 0.1436 0.0705 0.0298
1 2 0.0650 0.0271 0.1301 0.0596 0.0163 0.0027
0.0650 0.1301 0.0163 0.1436

VI. SHELTER STATISTICS FOR PF CLASS 6 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 6 but none higher. There are 104 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

	TOTAL		0.3573	7	1961-0	•	0.0499	•10.	•	.062	0.0028	•	•	•	•	ċ	°.	ċ	ċ	.	•	ó	6	, -	•			; c	;	•	.		; c			0	•			6				•					
	•	•																																															
			o.	ö	ċ	ó	ö	ပ်	ö	ö	•	ó	ö	ö		ċ	ö	ö	ö		ó	6	6		; c	3 0	;	;	.	;	j c			; c	d		6	ď	ó				•						
>	•	•																																															
85					ပံ	ċ	ċ	6	ď	ç	ģ	ċ	ي	÷.	ċ	ئ	ċ	ť		6	ي ا		. ز	; ;	. د	3 0	٠ د		3 0	5 ,	;	;	5,	: د			; ;		ی د	;	; .	; ,	;	; ;	. د	: .		ن :	
PF CATECORY	4	0	7	•	٩	0		•		•		•									3 6	•	•	•	.	•	•		•	•	.	.			.			•	•	•		: د	، ذ	.	• •		ے د		
RS PER	u	^	0.0277	0.0194	0.0055	0.0055	0.0028														•		•			•			•	ů									•			•		•		ံ ဇ	• •	6393	;
SPELTERS	•	•	2	80	۲						: :										•		•	•	•		•			•		ö		.					;			•	•	ن.		•		•	7
FRACTION OF	•	m	110	0-0249	5	8	•	5) }		; ¿								;	•	.		•	•	•	•	•	•	•	٥.	•			•	.	•	• •			۰ ئ		•	ં	. د	ن	ن.		7, 7, 03	•
FRAC	,	~	9	0.0748	9	9	9 9	2000	9	?	• •				.				;	•	•	ċ	•	•	•	•	•	•	•	0.	•	•	•	•	.	.	•	•	٥.	•	·.	:	.	•	ċ	•	•	.:	
		-	-	0.0970		;	; `	י	;	יי	0.000	•	.		•						•	ċ	•	•	•		.	0.	ن ن	•		•	់	•	ં	ċ		• •	វ	•	ပံ	.	င်	٥.		9.	:	•	0641.0
	STORY		c	- (• ^	٦,	٠,	•	٠,	0 1	٠,	D (•	2:	-1 (<u>~</u> ;			91			61	20	21	22	23	24	25	56	27	82	2	30	31	35	33	34	32	36	37	36	39	40	1,5	75	43	55	TUTAL

MINBER OF SHELTERS PER PF 1	CATEGORY 6 7 0 TOTAL AV PF	.
12.4	5 ER P	.12 1.53
	NUMBER OF	2

:

					4	•		•	•	
1 2 3		•		•	n	•		•		TOTAL
0 1110-0 2770 0-0111	0 1110 0 2220 0	0.1111.0		900	20	0.2798		ö		0.3573
0-0249 0-	0.0748 0.0249 0.	0-0249 0-		5900	9	8	•	ċ		
1247 0-0388 0-0194 0-	0-03EE 0-0194 0	0-01%		C055	0.0055	8	•	ċ		0.1967
0220 0.0144 0.0055 0.	0.0104 0.0055 0.	0.0055 0.	•		0.0055	200	j	ċ		
0340 0 0008 0 0008 0	0.0028 0.0028 0	0.0028 0			-002	0.0055	ċ	ö		•
0 5200 0 8000 0 6800	0 9500 0 0000	0.5500.0		CC28		0.	ċ	ပံ		-019
COURT OF COURT OF	0 0055			}	0		ċ	ċ		900
					6		ن	ċ		0.0028
0 0000	•	•			; ;		<u>.</u> ت	•		0.0028
-0028 O-	· ·	•	•	•	.		ا ر	ď		•
· ·	· ·	•		•	•		ا :	6		•
9 9 9	•	•		•	•	;	; ;			
•	•	•		•	.	:	٠,	•		
0 0	٠.	•			٠ •	•	ئ			
		. (0		6	•	:	ċ		
		,			0	6	ڙ	ö		•
					ċ	ے ا	٠			•
o • o • o	•	•			•	:		ć		
•	•	•		•	.	;		;		ر د د
0 0	•	•			•	•	;	3 (
0 0	0	0		•	•	.	ئ	.		•
0 0	0	۰		•	•	•	j			
0 0	•	•		•	•	•	ن	•		
0 0					•	•	ວ່	ö		•
0 0	0,0	0			٥.	·•	9	ċ		•
0 -0	0	•			•	.	ئ	ċ		5
					•	ď	•	ö		•
•	•	•	•		ď	0	٠,	ö		ċ
•••	:	•	, (;	d	0	ď		•
. 0	•	•	•		•		ي ا	ć		6
.0 .0	•	•	_ '	•	•	•		6		: 6
		•	_		•	•	•	,		
0 0 0	;		0		•	.	• •	\$ (
•	•	_	0		•	•	: ر	; (•
•	•	•	0	•	•	•	3	;		•
0		•	0	<u>.</u>	ះ	•	ن.	.		;
- C		_	0		វ		ů	•		•
2	2		0		.	٥.	ن	ċ		;
•	· -	, ,	0		•	ů.	.	ċ		•
•	•	•	•		ي :	0	ن:	ö		•
	• • • • • • • • • • • • • • • • • • •	•			3 6	6	3	ö		•
•	•	•	3	•	•	•	;	,		
້	•	•	0		•	ئ	;	.		•
	ي :	_	0		<u>.</u>	:	;	ċ		
•			•		Ġ	5	ئ	ċ		•
• 0	•	•	•	•			j	ď		•
ن.	ن.	•	_		.	.	; .			
ڻ	ڻ	•	_	•	•	۰				
•	ະ	•	_		•		. ز			ء د
••••••	·					•	، د	.		•
.1717 C.C693	0.1717 C.C693	. 6693	_	0241	6393-0	0.3241	ن.	ទំ		

CATEGORY
PF
PER
I ERS
SHELI
P
NUMBER

	S	1.97	1.11	1.80	1-30	1.41	•	•	•	•	•	
	AV PF	4.57	2.03	2.44	1.83	2.50	2.00	•	•	9	•	
	TOTAL	151	96	73	23	€0	•	•	0	0	•	15.06
	ω	0	Đ	0	0	0	•	0	•	0	•	
ري ت¥	-	0	0	0	•	0	0	•	0	0	0	. .
PF CATEGORY	•	33	12	12	0	0	0	O	0	0	0	8.08
PER PI	ĸ	12	2	-	7	~	•	0	0	ø	ပ	20-45
SHEL LERS PER	4	4	2		-		:5	ى	ပ	O	ပ	17-22
NUMBER OF	m	σ	7	11	7		0	0	0	0	0	18.60
NON	~	1.8	21	16	4	æ	0	0	•	o	0	17.42
	-	21	57	32	2	7	0	0	0	0	•	18.57
	PERCENT APERTURE	c	01	20	30	9	50	9	202	90	96	AVE S D

12000		FRA	FRACTION OF SHELIERS PER PF CAICOURT	F SHELT	EKS PEK		E CURT			
APERTURE	-	~	m	4	~	•	,		\$	TOTAL
o	0.0582	0.0499	0.0582 0.0499 0.0249 0.6111 0.0332 0.2576 0.	0.0111	0.0332	0.2576	•	6		0-434
10	6.1579	0.0582	G.1579 0.0582 G.0055 0.0055 C.0055 0.0332	0.0055	c.0055	0.0332	•	•		0-265
20	0.0886	0.0443	0.0886 0.0443 0.0365 0.0028 0.0028 0.0332	0.0028	0.0028	0_0332	•	ថ		0-202
30	0.0388	0.0111	0.0111 C.C055 0.0028 0.0055 C.	0.0028	0.0055	చ	:	•		0.063
9	6.0055	0.0093	0.0093 0.0028 0.0028 0.0028	0.0028	0.0028	•	:	.		0.022
56	ວ	•	•	ំ	0.0111 0.	•		•		0.011
09	ပ	:	•	ن		•	0.	•		•
7.3	•		.	.	•		:	ပ		•
30	ن		မ	.	•	•	0 •	6		•
96	•	•	ပံ	•	;	•	•	•		•

•	_
•	
	4
•	3
ĭ	ĕ
7	:
·	u
ŀ	-
-	•
ì	7
٠	
٠	٨
i	ī
•	•
•	×
ì	ī
	8
- (e
	ø
- 2	S
- (٨
- (
	٠
•	y
- 1	2
- 4	ū
	•
- 1	u
	c
	-
	_
	u
	u
	ā
	ŧ
	•
	÷
	٠

FRACTION OF SHELTERS PER PF CATEGORY

8 TOTAL	7	-	0 0		6190-0		0.1034	0-0603	0.0172	0.0216	0.0172	0.0259	0.0043	•	0.0043	0.0043	0			•		•	•	ċ	•	0.0043	0.0129	•	0.0043	ċ					, ,				.	•	ċ	•	•		
-	c	•		•	.	.	ċ	ö	ċ	•	•	ċ	•	•	ċ		ć	.	.	.	•	•	ċ	•	Ġ	•	•	ċ		0		6	Ġ	ċ		.	.	•	•	o ·	ċ	6	6	9	
•	7000	0000	6210	• 0000	0.0043 0.	•	ũ	0.0043 C.	٥	0.0	د.	•	0	0	a		•	; c	•	•	•	; •	ن ن	0	•	0.0043 0.	.0129 C	0	0043 0					•	•	200	.0043	•		°.	• •	•	•		
'n		2710°0	0.0086	•	•		0.0129	•))		, } }			•	•	•	ن	•0	•	•	•						•		•	.	•	•	•	.	•	•	•		6		
4	(0.0086	•		0.0043	100	•					0.0043				;	;	•	•	•	•	•	•	•			.			•		•	.	.	•	•	•	•	•	•	0.		6	0.350	
m		•	50	0.0043	•		0-0129	• •	400)	0.0044		}			.	. د	•	C-0043	•0	•		0							;	• •	.	.	•	•	•	•	0.	•	•			5 6		0.0963
~		0.0948	0.0362	0.0216	0-0086	0.0086	0-0302		?	0110	710	0.00		.		6400-0	.	•	•	•	•	0			; c	•	.	•	•	•	•	.	.	•	•	;	•	•	0	0	5	•	;	•	1.777-0
-		•	0.1164	0690.0	•		? ?	} <	٠	•	٠		•		?	•	0.0043		0.0086	ن		•		•	•	٠.	•	• •	•	•	•	•	•	•	•	•	•	0	6		; ;	• •	•	••	0.5388
PL ANE WIDTH		0	30	9	06	120	2 5		201	017	0.00	200	200	330	300	390	420	450	480	210	540	570	9 9	9 6	004	000	9 6	071	750	180	016	0 4 0	8 70	900	930	960	066		1010) C		0111		Ò İĪ	TOTAL

	AV PF	3.41	3.20	3.42	.	•	
	TOTAL	22	274	65	0	•	3.62
	లు	ပ	ပ	0	0	•	••
≻	-	٥	0	0	0	0	៩៩
F CATEG	•	36	98	17	0	0	3.59
S PER P	ĸ	ပ	61	•	ပ	0	3.64
NUMBER OF SHELTERS PER PF CATEGORY	•	ပ	•	6	ပ	ပ	3.83
BER OF	m	~	13	11	0	0	3.90
N D	~	-	25	σ	0	0	3.63
	-	10	86	18	ပ	•	3.56
وي	¥ U∢						

2.46 2.17 2.67 0.

	TOTAL	6090*0	0.7590	0.1801		•
	-	ó	ŏ	ö	ပ်	o
	€					
		•	6	ပ	6	6
>	~					
EGCR		•	ď	3	<u>.</u>	;;
CAT	÷	6.0277 0.	2382	0532		
P.		ؿ	ô	0	ပံ	ٺ
PER	•		0526	0083		
ERS		ئ	ů	0	ن•	Ġ
SHELII	•	•	0•0166	0.0083	•	
FRACTION OF SEELIERS PER PF CATEGORY	m	C-0028	0960-3	c.c305		ن
FRAC	~	0.0277 0.0028 C.0028 O.	C.2715 0.1440 C.0360 O.0166 C.0526 0.2382 J.	0.0499 0.0249 C.C305 0.CC83 0.0C83 0.0592 C.	•	
	-	0.0277	0.2715	0.0499	c ;	.
90		2	m	•	ω	ş

AVE S D

SHELTERS WITH INTERIOR PARTITIONS

	S	2.05
	TOTAL AV PF	3.51
	TOTAL	103
	ας	ပ
IRY	•	0
CATEGORY	9	31
PER PF	~	12
SHELTERS PER PF C	4	in
UMBER OF	m	13
NUMB	2	15
	-	27

FRACTION OF SHELTERS PER PF CATEGORY

TCTAL	C.2853
∞	
_	•
	6
•	0.0853
~	0.0332
4	0.0139
9	C.0360 0.0139 0.0332 0.0859
~	0.0416
-	6-0748

	S	•	•	1.71	1.18	1-65	1.98	2.21	2.19	2.05	5.24	16-1	1-25	•	2.17	•	6	0.11	•	•	.	
	AV PF	•	•	2.73	1.69	1.89	5.66	3.62	3.91	4.31	4.50	3.95	4-82	9. 00	3.20	9.00	9-00	5.50	••00	9.00	9.00	
	TOTAL	•	•	13	13	85	92	89	32	92	71	22	=======================================	•	ın	2	-	~	m	~	*	173.79 191.59
	•	9	0	•	•	0	0	0	0	0	0	0	0	0	•	•	•	0	•	0	0	
RY	~	0	•	0	0	0	0	0	•	0	0	•	0	•	0	0	0	•	0	0	0	 O O
CATEGORY	٠	0	0	-	0	•	21	2	±	*	€	\$	€	ĸ	-	2	-	~	m	~	4	218.06
PER PF	v	٥	0	7	-	7	2	· ~	m	-	0	7	•	0	0	•	0	-	0	0	0	203.41 21 22 227.20
SHELTERS PER PF	•	٥	0	8	0	0	0	-	-	-	0	8	0	၁	7	٥	ပ	0	0	0	0	269.72 20
NUMBER OF	m	0	0	~	-	•	•	~	~	m	•	•	-	0	0	0	0	0	0	0	0	166.50 2 182.04 2
2	8	0	0	e	m	12	13	18	•	m	2	m	-	0	0	•	0	0	0	0	•	152.42
	-	•	0	5	&	55	23	16	80	•	8	m	0	0	~	•	0	0	0	0	0	136.90
	PSF	0	\$2	8	22	100	125	150	175	200	225	250	275	300	325	350	375	00	425	450	475	AVE

	TOTAL		•	0.0416	0960-0	0.2271	0.1551	0.1884	0.0886	0.0720	0.0332	6090*0	0.0305	0.0139	0-0139	0.0055	0.0028	0.0055	0.0063	0.0055	0.0111
	€																				
		•	6	•	•	•	•	•	•	•	ö	•	ò	•	ò	•	ò	6	•	ò	•
>	~																				
GOR		3	•	3	•	6	ċ	•	•	6	•	•	•	•	•	;	•	•	ដ	•	•
PF CATEGORY	•	•	•	0.0028	•	6.0249	0-0332	0.0803	0.0388	0.0388	0.0222	0.0222	0.0083	0.0139	0.0028	0.0055	0.0028	0.0028	0.0083	0.0055	0.0111
PER	'n	•	•	0.0055	0.0028	0.0055	0-0055	0.0055	0.0083	0.0028	•	0.0055	9910.0	•	•	.	÷.	0.0028	•	•	•
SHELTERS	•	•	•	0.0055	•	•	•	0.0028	0.0028	0.0028	÷	0.0055	•	•	0.0055	•	•		•	•	•
FRACTION OF	w	•	•	0.0055	0.0028	0.0111	0.0166	0.0055	0.0055	0.0083	•	0.0111	0.0028	;	;	•	•	•	ខ	င်	•
FRAC	2	•	•	0.0083	0.0083	0.0332	0.0360	0.0499	0.0111	0.0083	0.0055	0.0083	0.0028		ė	.	•	•	•	•	•
	-	•	:	C.0139	0.0222	0.1524	0.0637	0.0443	0.0222	C.0111	0.0655	0.0083	0	:	0-0055	•		•		•	្វ
	PSF	0	52	20	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475

DOSE SOURCE

į

I=1 YO SINGLE CONTRIBUTION 40 PERCENT OR GREATER
I=2 ONE WALL CONTRIBUTES 40 PERCENT OR GREATER
I=3 TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER
I=4 CELLING CONTRIBUTES 40 PERCENT OR GREATER
I=5 CELLING AND GNE WALL CONTRIBUTE 40 PERCENT OR GREATER
NUMBER OF SHELTERS PER PF CATEGORY

ν 0	1.89	5.04	2.12	2.24	2.14	
AV PF	2.50	2.64	4.17	3.67	3.00	
TOTAL AV PF	9	125	=	163	12	2.97
•	•	•	0	•	•	
•	•	0	0	0	0	••
•	•	53	_	20	*	3.30
~	~	~	80	1	-	2.91
•	'n	•	o	ς.	0	3.11
•	m	21	0	11	-	2.88
2	11	25	7	20	•	3.00
	1.1	20	•	90	ľ	2.81
-	-	~	w	•	₩.	AVE S D

TOTAL 0.1108 C-3463 0.0499 0.4515 0.0416 ċ ċ ö 6 ċ FRACTION OF SHELTERS PER PF CATEGORY ċ C.1385 0.0693 0.0277 0.C111 0.C194 0.C803 C. 0.C139 C.0194 C. C.1385 0.0554 C.C305 0.C139 C.C194 C.1939 C. C.CG28 C.0111 C. 0.0055 0.0194 • 6 0.0471 0.0305 0.0083 0. C.0139 0.C111 C.C028 0. c.c111 0.0C55 0.

VII. SHELTER STATISTICS FOR PF CLASS 7 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 7 but none higher. There are 57 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

	s s	1.4	1.83	1.34	1.75	1.16	26.6	1.30	1.22	J. P.	96*0	1.26	0.52	27.0	9.00	0.82	0.50		•	0	ċ	•	.	•	•	•	•	• •	•	•			6	•	•	•	.	.	; c	; ;	6	į	•					
	AV PF	5.83	2.35	1.17	1.34	1.62	1.46	1.60	2-09	1.80	2.25	2.15	3°C	0°.	2.75	2°CC	1.25	2.00	2.00	2.00	2.C0	ာ	ပံ	.	، ئ	.	:	ء د	; c	; c	; e			•		ز,		ø,	.	;		ي د		3				
	TATAL	45	71	65	ž	71	13	ę,	٠	Š	•	•	•	•	•	Ţ	•		-	-	-	-	ů	0	<u>د</u> ا	9 (-	.	>	ه د) (ے د	ن .	Ų	ပ	U	S	0	5 (ء د	ے د	ے د	ي (• •	•	2.97	٠,	
	•	ပ	0	U	ပ	Ų	U	ن	Ų	Ö	0	ပ	0	0	Ç	٥	Ç	0	0	0	ပ	U	ပ	ن	0	0	ن د	U (ه د	ə 6	٠,	ب د	• • •	, U	.,	ပ	•	9	ت (φ,	> (> (,	· c	0		ີ	
A 3	~	2.5	*	-	c	n	c	L	ဂ	٥	ı	Ç	ζ.	î	0	ပ	0	•	0	0	0	0	0	•	0	0	0	0	C (، ب	ه د	ہ د	ه د	ب د	0	٥	0	ပ	۰ ۵	0 (. .	¬ () c	. (. 3		~	
JE CATEG RY	•	22	; -	^	-	U	c	c	0	ပ	(3	0	٥	0	0	0	0	n	0	0	c	0	ن	င	C	ပ	•	Ç.	۵	()	٠ ،	ta 4	ہ ر	0	1	ပ	٥	O	c:	0	5	9 (, د	ء د	· •		-1-1	
PER	ď	4	^	۔ ۔	, ~	-	ں ،	_	U		· Q	ပ	ပ	ပ	Ų	J	ပ	ပ	ر	ن .	ن .	•	0	ပ	ပ	J	ب	u	ပ	Ų	ن	، ن	، ر	ی د	ن د		د ،	u	ٺ	ی	9	، د	، ن	. و	<u>.</u>	1.17	96	
SHELTIPS	•	4		. 4	٠,	-	•	-	-	. 6	ن د	-	-	-	-	()	ပ	ر،	9	רו (. 3	ú	()	ر.	د،	9	3	0	()	5	()	٠ د	, د	.	ي د	.	•	د · ،	·	ပ	٠.	۰	٠ د	• •	ړ د	3 2		,
NUMBER OF		,	٠ ه	• •	م پ	۰,		۰ د) C	- (٠,	. ~	• ~	~	-	-	a	G	C	· "	. c	• •	0	0	0	0	0	•	n	0	0	6	= (> 6	,	· c	•	0	0	o	0	0	e ·	، ن	٠;	× • •	2.7	•
5	^	G	o ç	•	::	; `	u •		• ^	۰ د	· -	. د	-	٠ -	• •	· ^	, ~	-				ي -	9 67	ť	0	0	د	0	0	S	c	¢3	ပ	5 () e	ت د	•	, r	ပ	L	0	ပ	0	co :	5	5		
	-	•	,		? :			•	• •	,	۰-	٠.	٠	,	· C	· -	• •	٠ د	•	9 6	o u	.	• E	· c	0	0	a	0	٥	0	0	C	9	ه د	-) (ء د	, 2	0	o	ں	o	n	o	0	121	3-31	
STORY	NUP BER	•	٠.	- 1	` '	۰.	* v	٠,	o r	٠,	E C	٠ <u>د</u>	: :			7 -	- 4	1 1		- 0	D [<u>.</u> ;	3 7		, .	: <	. 2	2 9	77	52	٤	30	31	32	£ ;	ζ,	ני ל	o :-		5	40	7,	Ç	6 3	;	STAL STAL	AVE.	2

•
5
7
κ
~
=
5
3
J
7
•
PER
m
-
TERS
•
_
-4
SFEI
ᆽ
S
6
_
æ
5
\vdash
-
Ų
•
~

	TOTAL	0.2840	157				20000	Ş	5	٠	0.0154	50	0.0123	10.	0.0123	10.	-012	-012	000		3 8	֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֓֓֡֓֡֓֡֓֜֜֜֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֓֡	3	500.		.	•	•	•	°.	•				6		6	6		•		;	•	.		•	•	•	•		
	•																																																		
			5	C	•	;	•	ö	ö					ó	ó	6		ć	6	\$ 6	.	.	o d	6	6	ď	ö	ċ	ö		0	d	6	5	d	6		6	•	;	;	; •	.	6		ċ	ö	ċ	ö	ပံ	
CATEGORY	~	1750	FC10 0	100		.	ن.	;	3	5					,						، د	:	ن	•	.	វ	ö	•	•	.			3	;	.		•				.	•	.	ن	•		•	ن		0.1914	
PF CATE	•	9			20000	0.0031	ċ	:	ď	•	0	É	6) c	5	;	;	:	•	•	វ	•	.	ن	ò	•	•	6	ċ		•	•	•	; ,	•	•	•	.	•	•	•	•	•	.			; ;	C.0432	
RS PER	₩		6710-0	7000	0.00	150270	1630-0	ď		d) e	3	.	; ;		; ;	•	•	•	.	•	•	•	•	.	6.	•	6		: d	; ;			•	.	•	•		.	•	•	•	٠ <u>.</u>	•	•	•	•		:		
SHELTERS	•			•	12	5	0.0031	8	600	600				1	֓֞֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֞֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֜֓֡֓֡֓֡֓֡֡֡֓֜֜֡֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֡	•					•	•	•		•		.0		6		; _c			;		•		•	•			•		•						
FRACTION OF	m	•	270-0	7	•	9	O	9	7		1000	?	יַּ	? (Э С	•		3			•	ئ							;		•	;	•	•		•	•	ċ		•	•	•	0.	•	•		l d				•
FRAC	7		1420-0		•	0.0340		9	,	1000	? •	7000	2		0.00.0	100000	2000-0	995	- 363	0.0031	.093	0.0031	.003	0	6							•	•	•	•			•	•		•	•	6							0.1975	7
	-		29000	Ç	0.1235	5	9	,	•	0000	7000	•	160000	3	.	•	- 3	500	0.0093	:										•	; ;	•			ខំ	ن	•		င်		•) 			۔ د		
	STORY		0		~	•	•	· u	٠,	0 1	- (D	5 (2	= :	21	13	<u></u>	51	91	17	E	2	, °	2 -	22	; ;	3 2		5	97	27	82	\$	30	31	35	33	¥	35	36	37	*	5	; 4	7	- c	7 .	£ 4	•	IC AL

CATEGORY
4
PER
TERS
SHELT
H
HAMER

PF S D	2 2-25	92°1 E	72 1.08	1.28	4 1-68	•	•	0.0	•	•	
>	5.45	2.53	1.72	1.96	2-14	6	•	1.00	•	6	
TOTAL	96	18	99	*	~	0	0	-	0	Ø	19.54
60	•	0	0	٥	٥	0	٥	0	0	ပ	. .
~	55	•		~	0	0	0	0	0	0	6.94 9.36
•	11	m	0	0	0	0	٥	0	•	0	7.14 8.53
ĸ	~	•	ü	•	~	9	•	0	•	0	17.50 21.91
•	•	~	•	ĸ	-	ن	ن	ပ	3	ပ	19.78 22.70
m	•	80	₩.	13	0	0	0	0	0	0	22.31 26.0 2
~	*	19	21	e l	-	0	0	0	0	Ø	23.59
	12	31	37	36	*	0	0	-	0	9	24.50
PERCENT APERTURE	c		50	30	9	20	09	102	30	06	A JE S D

FRACTION OF SHELTERS PER PF CATEGORY

PERCENT APERTURE						,	,		•	101
	-	7	m	•	S	•	-		10	
	3370	0.0154	0.0185	0.0370 0.0154 0.0185 0.0185 0.0031 0.0340 C.1698 0.	0.0031	0.0340	C-1698	•		0.2963
ě	1560	0.0586	0.0247	C.0957 0.0586 0.0247 0.0216 0.0185 0.0093 C.0123 0.	0.0185	0.0093	c-0123	•		0.2467
ċ	1142	0.0648	C.0154	0.1142 0.0648 C.0154 0.0123 0.	•	.	0.0031 0.	•		0.2099
ď	1111	0.0556	0.0401	0.1111 0.0556 0.0401 0.0154 0.	•	•	C.0062 0.	•		0.2284
ė	0.0123	0.0031 0.	•	0.0031	0.0031 0.0031 0.	•		•		0.0216
ö		•	•		٠.	•	.	•		•
ö		•	•	•	•		•	•		•
ė	0.0031	•	•0	•	•	•	•	•		0.0031
ö	_	•	•	•	•	•	ះ	•		•
ö	_	•	•	•	•	•	•	•		•

WIDTH	•	r	~	•	r	٠	~	•	TOTAL	AV PF	S
	=	7	n	•	•	•	1	I			
	•	•	•	•	C	•	•	•	27	1.74	1.13
0	*	2		٠.	٠ د	•	• •	c	16	2.24	1.77
30	5	# 0	-			• (•	•	•	174	
9	01	m	m			Þ	5	> (1;		7
G	1	4	~					9		20.	
2,5	12	•	~				0	0		10-1	
27	•		-					0	•	2.00	- 2
200	0 4	•	• •					0	•	5. 00	2-45
	n (.	•				_	ø	21	1.89	0.90
210	10							•	26	1.85	1.29
240	13							C	0	**	0.73
270	•							•	` =	1.73	7
300	7							9 (:		
720	•				-			9		107	•
0 0								0	12	2-53	1.30
9 6	· c							0	-	•	•
)) (•							0	-	1.00	ċ
420	٠ (0	0	ċ	.
420	7							•	~	3.00	4
480	~) C	•	3.75	
210	0							•	•		
840	0							> (•		
	•							0	D (•	
2 (•							0	0	•	•
000)				-			0	0	ö	ċ
630	o '							C	0	•	•
99	ပ							•	•		•
069	0) C	G		
720	0							•	•	} c	6
750	0							> (•	•	
780	C)	•		•
								0	9	•	•
	· C							0	0	•	•
) (•							0	0		•
	•							0	0		•
	•							0	0	.	•
066	> <							0	0	•	•
066	•							0	0		•
066	> '							٥	0	ċ	ċ
1020	5 (> (•) (· C	0	0	0	ċ	ö
1050	0							0	0	•	•
1080	D							•	0	•	•
1110	0							C	a	ò	•
1140	0							· C	C		•
1170	0						- ,	,	•) •	1
TOTAL	119	26	27	11	4	•		2	** **		
AV.	166.76	172	23	281.47	202.50	127.50	129.00		10407		
	206.62	216.08	-	357.82	316.36	'n	14.501	•	2000		
) 1))		1								

Colored Colo	CONTAM. PLANE		FRAC	FRACTION OF	: SHELTERS	RS PER	PF CATE	CATEGORY			
0.001 0.0131 0.0043 0.0043 0.0043 0.0043 0.0046 0.0043 0.0		**	8	m	•	3	æ	~		€	TOTAL
1011 0.0345 0.0043 0.0216 0.0043 0.0043 0.0086 0.0043 0.00				-	400	é	•00•	•			-116
0.00			•	, ,	.G21	g	÷00°	0.0086	•		.159
0.0362 0.0172 0.0086 0. 0. 0. 0.0043 0. 0. 0.0043 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		? ?	, ,		•	0.0043	•		္ပ		670
0.05517 0.0172 0.0043 0. 0. 0.0043 0. 0. 0.0043 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		֚֚֓֞֜֜֜֜֝֜֜֝֜֜֜֓֓֓֓֓֜֜֟֜֜֜֓֓֓֓֓֓֡֜֜֜֓֓֓֡֓֜֜֡֡	, ,			•		8			0-0603
0.0529 0. 0.0043 0.CC43 0.0C43 0. 0.043 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.						•	9				9770-0
0.043 0.0172 0.0259 0.0 0.0 0.0043 0.0 0.0 0.0043 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0	0.0043	100	20.					•
0.0345 0.0172 0.0259 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		9		•				X			•
03560 C.0345 C.0172 G. 0. 0. 0. 0.0043 G. 0. 0.00243 G. 0. 0. 0.00243 G. 0. 0. 0.00243 G. 0. 0. 0.00243 G. 0. 0. 0. 0.00243 G. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			0.0172					•	å,		•
0302 0.0086 0.0043 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		•	C-0345	•				0-0043	.		1711-0
0172 0.0129 0. 0. 0. 0. 0.0043 0. 0. 0. 0.0043 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		•	0.0086	•			•				9060-0
COUTY COURS		0	0.0129	•	•		8				
0043 0.0086 0.0129 0.0216 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		9	0.0345	.004				•	.		2960-0
0.0043 0.0043 0.0172 0.0043 0.00472 0.00472 0.00416 0.0043 0.00472 0.00472 0.00416 0.0043 0.00472 0.00472 0.00416 0.0043 0.00472 0.00472 0.00472 0.00416 0.0043 0.00472 0.00472 0.00472 0.00416 0.0043 0.00472 0.00472 0.00472 0.00416 0.00473 0.00472 0.00474 0.1164 0.0773 0.00472		֚֚֚֚֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֓֡	0.0086	7	.021			;	.		•
0.0043 0.0.0072 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.00472 0.00216 0.0.0043 0.0.0072 0.00472 0.			0-0	6		•		•	.		•
0.0086 0. 0.0043 0.0172 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		900	.0	•	•			ن	.		•
0.0086 C. 0.0043 0.0172 C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.				•	•			• •	.		0.00
0. 0.00% 0.0		,		004	.017			•	•		0.0302
		•		•	400	-004		.	ċ		0.0172
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0				•		0.		6	.		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0				0				ំ	ċ		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0				i d				•	•		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		-		6				•	ö		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•					•	÷		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•	•	; ;	6		-0	•		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	•		; ;		6	0		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	• •		•		6	6		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	•		•) 	6		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•			•		3	6		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	•		.		•	; ;		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•	•		•		•	;		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	•				;	; .		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•	•				•	;		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-		•				;	; ,		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•	•		•		.	;		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•	•	•	•		.	;		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			•	-		•	•	• •	;		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•	•	•		•	•	•	;		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•	•	•	•	•	•			
C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			0	•	•		ပံ	ċ			
. 5129 0.2414 0.1164 0.0733 0.0172 0.0172 0.0216 0.			6		•		.	.			
.5129 0.2414 0.1164 0.0733 0.0172 0.0172 0.0210		•	•	•	٠	•	•	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	;		•
			~	11.	0	-017	5	0.0210	j		

	S D	2.75	2.32	2-14	•	.	
	AV PF	3.40	3.11	2.82	•	•	
	TOTAL	15	249	9	0	0	3.64
	€0	0	0	0	0	0	60
	-	ĸ	4.7	10	0	0	3.58 3.64
	•	•	2	0	0	0	3.56
,	8	0	•	7	0	0	3.75
מונר ויי	•	-	36	7	9	Ċ	3.54
NOMBER OF CREEKS TEN TO CALLEGON	m	0	12	11	•	0	3.93
	7	m	4	13	0	ပ	3.66
	~	٠	93	22	0	0	3.63
1.06	AREA	7	ĸ	4	~	٠	AVE S D

FRACTION OF SHELTERS PFR PF CATEGORY

	4	53	2	25		
	TOTAL	0.0463	0.7685	0.1852	•	•
	80					
		•	•	•	•	3
	~	0.0154 0.	0-1451	C.C309 0.	•	្ន
))	•		.0432			•
		•	Ö	ŏ	ວໍ	0
•	u	•	0.0185	0.0062	•	•
	4	0.0031 0.	0.0617	2900*0	•	•
	m		0.0648	0.0340	•) .
	8	0.0185 0.0093 0.	0.2870 0.1481 0.0648 0.0617 0.0185 0.0432 0.1451 0.	0.0679 0.0401 0.0340 0.0062 0.0062 0.	•	•0
		0.0185	0.2870	0.0679	•	•
	FLOCR	~	6	•	₩.	•

SHELTERS WITH INTERIOR PARTITIONS

	S D	2.28
	AV PF	97 3.48 2.28
	TOTAL AV PF	16
	₩	٥
JRY	-	20
CATEG	9	.
PER PF	r	2
NUMBER OF SHELTERS PER PF CATEGORY	•	12
ER OF	~	13
NUMB	7	14
		26

FRACTION OF SPELIERS PER PF CATEGORY

TOTAL	0.2994
€0	
~	0.0864 0.0432 0.0401 0.0370 0.0154 0.0154 0.0617 0.
•	0.0154
S.	0.0154
•	0.0370
m	0.0401
N	0.0432
-	0.0864

		7	NUMBER OF	SPELTERS	RS PER	4	CATEGORY				
PSF	~	7	æ	*	'n	9	-	•	TOTAL	AV PF	S
0	ပ	9	0	()	n	0	0	ပ	•	:	•
25	0	ပ	0	ပ	5	Ç	0	ن د	•	•	•
50	4	-	0	ro	ပ	~	-	٥	•	2.71	2.63
25	12	12	0	ပ	ပ	~	#4	0	27	2.04	1.63
100	55	67	12	ĸ	0	8	•	•	86	2.00	1.59
125	•	œ	2	80	ပ	•	•	•	36	3.40	2.13
150	51	₹	m	1	~	~	1.1	O	43	4.00	2.71
175	13	S.	m	~	-	0	6	•	33	3.27	2.53
200	9	s.	•	2	w	•	•	•	56	3-69	2-17
225	-	~	0	7	٥	-	•	0	•	2-00	2.35
250	•	ĸ		1	0	0	8	0	±	2.57	5.06
275	-	2	m	~	0	0	•	0	12	4.17	2.25
300	.m	0		ပ	-	m	m	•	11	4.55	2.54
325	0	0	0	0	-	0	-	0	~	9-00	1.41
350	0	ပ	0	ပ	Ö	0	0	0	0	•	•
375	0	0	0	0	0	ပ	-	0	-	7.00	•
004	0	0	٥	ပ	0	0	~	•	-	1.00	•
425	•	O	-4	ပ	•	0	0	•	~	2.00	1.41
450	0	-	0	ပ	ပ	0	0	0	-	2-00	•0
475	-	9	2	ပ	0	-	m	0	-	4.86	2.48
AVE S D	147.00	152.34	199.22 229.66	171-2C 184-31	225.00 247.46	268.93 246.56	209.68	• •	171.53		

FRACTION OF SHELTERS PER PF CATEGORY

		FRA	FRACTION OF SHELTERS PER PF CATEGORY	SHELTE	ERS PER	PF CATE	ECUR Y		
PSF	1	~	m	•	v	•	!	•	TOTAL
0	:	•	6	•	•	ે	•	•	•
52		•	÷	•	•	:	3	•	•
8	6.0123	0.0031	;	•	•	C.0031	0.0031	•	0.0216
2	0.0370	0.0370	•	•	•	C+0062	C-0031	•	0.6833
100	0.1698	0.0586	0.0370	0.0154	.	C-0062	0.0154	;	0.3025
125	0.0185	0.0247	0.0247 C.0062	0.0247	•	.	0.0185	•	0.0926
150	0.0432		0.0154 0.0093	0.0031	0.0062	C.0031	0.0525	•	0.1327
175	C.0401	0.0154	0.0093	0.0062	0.0031	•	C.0278	•	0.1019
200	0.0154	0-0154	0.0123	0.0062	0.0093	0.0093	C.0123	•	0.0802
525	0.0031	0.0031 0.	•	0.0062	•	0.0031	0.0123	•	0.0278
250	0.0154	0.0154	0.0031	0.0031	•	•	0.0062	•	0.0432
275	0.0031	0.0062	0.0093	0.0062	•	•	0.0123	•	0.0370
300	0.0093	•	0.0031	•	0.0031	0.0093	0.0093	•	0.0340
325	•	•	•	•	0.0031	;	C.0031	•	0.0062
350		•	•	•	•	•	•	•	•
375	6	•	•	•		•	C-0031	•	0.0031
400	• •	•	•	•	•	•	0.0031	•	0.0031
425	0.0031	•	0.0031	•	•	•	•	•	0.0062
450	•	0.0031	•		•	•		•	0.0031
475	C-0031	6	0.0062			0.0031	0-0093	•	0.0216

DOSE SOURCE

Î

	56 1.84	61 1.79	54 2.62			
	2.66	2.51				
	26	123	11	114	20	2.75
•	•	0	0	0	0	••
-	•	10	m	98	9	3.65
•	•	~	-	'	m	3.14 3.63
`	(1)	•	0	~	-	2.37
•	∞	13	-	-	0	1.78
•	m	20	0	•	0	2.47
1	17	56	m	11	-	2.36
•	19	64	m	45	•	2.74 3.01
	-	7	m	•	•	AVE S 0

	•
-	£600°3
•	0.0123
•	0.0062
•	0.0093 0.0247 0.0062 0.0123 C.0093
m	0.0093
~	0.0525
	•

FRACTION OF SHELTERS PER PF CATEGORY

TOTAL

VIII. SHELTER STATISTICS FOR PF CLASS 8 BUILDINGS

Shelters contributing to these tabulations are in buildings containing at least one shelter rated in PF Category 8 but none higher. There are 132 buildings in this category. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

i	۰	
1	£	į
	5	ì
1	ä	
i	Ē	
	4	į
•	L	١
	_	١
	â	١
	Q	١
	u	
	ă	į
	ü	
	۲	
	9	
	3	ľ
	ü	į
	¥	Ŀ
	¢	
	_	
	ŭ	
		į
	ź	
	Ξ	

		9	2.03	1.98	1.58	1.82	8.		1.73	1.93	2-05	2.32	2.43	2-23	1.67	2.11	2.51	2.23	2.07	2.12	2.15	20.		1001	•	• •	•			0.58		•	•	•	•	•	•	.	; c	; .	•	6	6	ė	;			
		A M	10.7	2.32	2.67	2.98	9.6	2000	2,63	2.6	3.22	3.49	3.5	3.43	•	•	8	3-90	***	4-67	11-4	3	\$1.6 6	7007	2-67				£. 33	33	4.67	2.00	5.00	S.00	2.00	8.00	10.	9.00	•	;	; é	d	5	6	;			
		TOTAL	234	2	155	123	2		5	25	9	S	35	28	2	13	2	01	•	.	5 (P (~ 1	• •	• 1		n n	ח ויי	٠,	, In	1 M	m	6	m	m	m (1 0	m (>	ه د	ه د) C	.) C	•	•	9.78	,
	•	••	175	_	~	~	~ (> <	• •	0	-	m	•	8	-	-	-	-	_		0	0	U (0 (9	•	> (> C	> <	.	•	0	0	0	ن	0	9	0	> <	•	> c	• •	•	•	200	1.10	3.63	
י דא	,	-	2	~	0	-	~ •	٠.	- ~	•	•	· m	~	~	0	0	0	0	0	-		0	0	0	0	0 (> (o c	> c	-	0	•	0	0	0	0	0	0	5 6	9 (> c	.	> c	3 C	, ,	9	_	:
FF CAIEGUR		•	=	4	•	-	72		^ <	•	M	~	_	-	~	0	~	2	7	~	m	0	0	0	ų,	0	9	5 6	، د	5 C	,	0	9	0	0	ပ	ပ	c ·	> (٠ د	ə c	.	>	.	2	5° 07	A.12	;
X.		6	•	~	91	2	Ξ,	•	• •	- •		۰~	~	*	m	*	7	-	~	0	U		-	ن	0	، ن	D (ه د	-		• ^	'n	· ~	m	m	•	2	•	ပ (0	9 () (> c	.) • -	: :		•
SHELIEKS		•	S	•	81	91	9	•	^ <		• ~	.	•	~	7	-	-	-	0	~		-	~	~	m	~	m (m r	•	7 ~	-	• 0		Ö	9	ပ	-	0	، د	۰	u (> (, د	ه د		84	3 -	•
NUMBER OF		m	•	13	23	±	~	-	•	9 ≪	•	•	•	•	8	~	0	0	7	6	0	4	~	-	0	0	0	-	5	-	> c	•	•	0	0	0	0	•	0	0	0 (> (> (-	٠,	7 6	9	6
		7	6	36	Ç	92	\$2	₹!	<u> </u>	2 2	: 1	1 2	•	~	•	~	-	~	~	-	•	m	-	•	0	S	0	0 (5 (-	> c	, c	• =	0	•	0	0	0	0	ပ	U (-	.	5 (ې د	72.3	2.60	7
		-	11	7	3	#	28	m i	9 :	2 .		۰ م	. ~	ۍ .	0	M	m	0	0	0	0	0	_	•	-	0	0	0 (D (0 0	> c	•	•	•	0	0	0	0	0	0	0 (5 (.	9	0 ;	7		Ť
1	NUMBER		c		. ~	•	•	un.	•	~ •	.	• =	2 =	: 2	1	*	2	91	1	18	19	20	12	22	23	2	\$	92	22	2 9	2 5	? #	: 2		*	35	200	37	2	3	9	7	7	*	\$	TOTAL) (ت د

STORY									
MUMBER	•	•	•	•	ď	•	7	•	TOTAL
	-	7	n	•	•	•	•	ı	
c	9	è	0.0038	0.0038	8	0.0094	0.0077	.13	0-1797
, -	9490	5	5	900	0.0054	0.003		0.00%	0.1137
٠,	? <			•	5	0.0046	ď	0.0015	0-1190
,	, (3		613	-013	C. BC61	8	0.0015	٩
η,	•	70.70	1	6	8		0.0015	0.0015	0.0737
•	Ş 6	, (• •	600		1900-0	200	•	9
٠,	,	į	•	603				•	9
0 1	•			600	0.0031		6		0.0445
٠,	5 6						8	ö	•
D (•	5 6	1900	è	, ,			0.00	٩
5 (36	00100	•	00	100	8	0.0023	ö	•
ָ בּ	200		3 6	֓֓֓֓֓֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓֓֡	, כ	•		0.003	0.0246
=	9	9	٠		•			0.0015	•
21	9400 D		38		K 700	•		8	0.0154
2		٠			•) (•
±	8		C-0013		•			0000	0.0017
12	.002	900	•		3 8			•	0.0077
91	•	.003		8020-0			•	•	•
21	•	9	•	•	0.00L7	6100-0	۶	•	•
18		0.000	0.0023	900	•		200-0	3	
61		8	•	0.000		0-0023	2000	.	•
20		0.0023	0.0031	0	۲			ġ,	•
21	0.000	8	c.c015	100.	8000°C	.			
22	200		0.0008	-062		•		.	
23	000		•	.C02		• •		.	•
24		.	.	• C02			•		
25			•	-005	.		•	.	•
56		•	•	0.0023	•			.	0.0023
2			•	*C05	٠			•	0.0023
2			•	.001	000				200
2				800	900				200
30		<u>.</u>	•	0.C008	•	•		5	60000
3		•	•	•		6	•	•	0.0023
3			•	.	•		5	;	700
		0.	•	•			•	•	700
4			•		200			•	֭֭֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֜֓֡֓֓֓֡֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡
			•	•		•	:	ė,	0.0023
, ,	5				0.0015	:	ٿ		0.0023
			0.0023		•	•	;		0.0023
- 0			,		•	•		•	•
0 6						•	•	•	
) (.		•
) : 						•	.	•	
<u>-</u> ر							.0	.	
V (;						•	•	•
η.	• •		;				•		•
÷	•	•	; ;		•		7200		
TOT								١	

NUMBER OF SHELTERS PER PF CATEGORY

PERCENT	2			•						
_	8	w	*	\$	•	1	••	TOTAL	AV PF	S
28	52	=======================================	13	26	23	11	174	305	6.13	2.55
99	80	57	1.	45	52	22	23	388	3.27	2.10
113	122	64	3	3	28	&	•	408	2.19	1.75
35	38	15	13	•	•	-	7	115	2.51	1.59
28	12	~	4	•	-	1	***	28	2.24	1.68
91	2	-	ပ	S	2	•	0	21	1-67	1.53
8	6	0	0	0	ပ	ပ	0	~	1.00	•
13	-	~	ပ	0	0	•	0	₩.	2.00	1.00
0	0	0	•	ပ	ပ	0	0	ø	6	•
٠	0	0	ပ	0	ပ	0	ပ	0	•	•
25.06	5 22.96	22.39	20.56 22.73	19.41	17.68 20.92	15.56	7.01	19.85		

FRACTION OF SHELTERS PER PF CATEGORY

TOTAL 0.0038 0.0215 0.0192 0.0084 0.C10c C.0154 C.0177 C.0084 0.1336 0.2343 0.0760 0.0614 0.0438 0.0361 0.0323 0.0192 C.0115 0.0177 0.2980 C.0868 0.0937 0.0376 0.0307 0.0338 0.0215 C.0061 0.0031 0.3134 0.0269 0.0292 0.0115 0.0100 0.0061 0.0022 0.0008 0.0015 0.0883 0.0215 0.0092 0.0054 0.0031 0.0031 0.0008 0.0008 0.0008 0.0445 0.0161 0.0015 • • ċ 6 ö 0-0015 0ċ ပံ ó ö 6 ç **;** ċ ö 0.0123 0.0015 0.0008 0. ċ 0.0015 0.0008 0.0015 0. ė • ċ 0.0015 0. 6 PERCENT APERTURE 20 20 30 9 50 9 2

2 3 28 45 45 45 36 45 36 113 36 113 36 113 36 113 37 1117 137 152 36 11 117 06 152	DATAR		É		37.5		•	; }				
26	NE T										-	
26	<u> </u>	-	7	•	•	S	•	-	60	TOTAL		^
1	•	č	90	7.7	_	23	21	80	~	155	3.72	5.06
31 36 15 1	>	9 (9 :	, ,	• ~	600	2	16	14	506	3.17	2-17
31	D	90	n e		•	•	0	C	7	106	2.56	1.64
37	9	16	8			• •	•	•	~	111	2.44	1.60
36	90	37	36	2		9 (•			6	2.21	1.31
22 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	30	36	13		V (,	•	• 6	* *	2.48	1-71
34	20	22	91	2		•	•)	,	2 6	2 63	- 72
1	6	\$ E	28	10		=======================================	*	•	> (C :	6.36	
16 13 2 3 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 5	2 0	•	60		S	0	0	0	•	10-1	
15	2 9	2	, IC.	^		50	~	0	ပ	4	2-37	6C•1
15 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		9	7	1	^	91	ຍ	٥	~	11	3.55	1.52
15	20	01	ا ۵	•	J	1	· c	0	a	22	1.32	0.48
3	ខ	15	•	> (9	•		· C	25	4.12	1.39
1	30	m	0	~		2	4 6	•	•	, ^	00-1	c
\$ 177.21 136.11 117.02 15.57 47.41 139.91 192.16	9	_	ပ	0		O	> (•	•	- 4		
3	9	~	0	0		ပ	0	-)	•		*
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, c	•	^	0		Ų	0	5	•	n I		
3 1 1	3 5	· "		C		2	0	0	0	7	2-43	1.64
177.21 136.11 117.04 152.41 139.91 192.16	ָ ק	۱ ر	•	•			0	0	7	S.	•	3.05
117.21 136.11 117.04 152.41 146.27 86.43 192.16	30	n (٠ (•		• <	C	0	0	7		6
117.21 136.11 117.06 152.41 146.27 86.43 40.86	0	~	> (•			•	0	0	O	•	°
177-21 136-11 117-04 152-41 144-27 86-43 149-91 192-16	9	5	9 (•		•	· c	C	C	0	ö	•
177-21 136-11 117-04 152-41 144-27 86-43 86-38 140-84 177-21 136-11 117-04 152-41 144-27 86-47 47-41 139-91 192-16	2	0	0)		•	•	· C	, C	0	0	•
177-21 136-11 117-04 152-41 144-27 86-43 86-38 140-84 177-21 136-11 117-04 152-41 144-27 86-43 86-38 140-84	ខ្ល	0	0	D (، د	•	·	· c	•		•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	٥	~	0) ن	•	•	.) C		•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	0	0	0		، ن	•	•	3 C	•	d	6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06	٥	0	0		3	، ب	> (> (•	, ,) c
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6	C	0		S	0	ပ	. د	•		•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 5	•		0		ပ	0	0	0	0		•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6	•	•	· C		U	0	0	c,	0	•	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	•	9 6	•		•	0	ပ	0	0	•	o ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 :	> (3 6	•		יט	Ü	0	0	0	•	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	•	0	•			C	0	0	U	•	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	-	> (•		٠ 4	6	Ö	0	U	ó	ċ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	9	9	> (•) C	c	O	U	•	•
0	ဘ္က	0	0			•	•	c	· C	0	6	•
4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56	0	ပ	.		,) () C) C	•	~	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06	•	~	O		، د	ه د	ه د	•) C		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	0	0	0		ت	•)	•	•		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (: (:	ď	0	0		O	0	•	، ن	، د	;	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6	· c	C	c		0	ပ	ပ	Ų	9		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6	•	· c	0		0	ပ	0	0	0		• •
312 271 137 112 110 71 26 29 1 4.2 1 4.2 1 17.21 136.11 117.04 152.41 144.27 86.49 47.41 139.91 192.16	2 :	•	•	•		Ų	a	0	0	U	٠	•
312 271 137 112 110 71 26 29 140-8 177-21 136-11 117-04 152-41 144-27 86-49 40-38 86-38 140-8 21 210-73 185-15 149-12 214-49 190-68 112-57 47-41 139-91 192-10	9	•	•	•		ن (0	ပ	-	4.00	•
312 2/1 134 177-21 136-11 117-04 152-41 144-27 86-49 49-38 86-38 140-8 230-73 185-15 149-12 214-49 190-68 112-57 47-41 139-91 192-10	2	ָר י	֖֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		-	-	17	26	29			
177.21 [36.11 117.04 122.41 144.21 00.47 135.0 00.47 12.10 00.48 192.10 00.48 112.57 47.41 139.91 192.10	7	312	271	٧,	1	֡֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֡֓֓֓֡֓֓	• 4	1		40-8		
10-201 10-201 14-44 100-68 112-14 11-41 11-541 12-010	Ä	177.21	136.11	;	122.	7.66	•	•		02		
	c	230.73	185.15	7	14.4	90-06	ſ	•	;	36 6 6		

FRACTION OF SPELTERS PER PF CATEGORY

		Y Y	TACITON OF	STOLLIN					
CONTAM. PLANE									
MICTH	•	8	•	•	ß	9	•	80	TCTAL
4	•	•		0.0143	0.6215	0-0197	C.0075		0.145
0	•	5 0	0.0220	0.01	20	0.0187	C-C150	o	0
2	<u>،</u> (5	֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֓֡	4440	•	0.0084	٠		C
09	0620-0	2 6	3 6	0.1.0	0.0000	0.0037	C.0019	0.0009	0.103
06	100	ָּי [ָ]	5 6	0.000		0.0019	5	6000-0	0
120	1820-0	ې ډ	•	7000	0.0078	9900-0		0	0.0543
150	ביים ביים ביים	-10		300	•	0.0037		0.0019	0.0890
180	6160-3	0	\$ 00°0	0000	•				0.0431
210	0.0262	0000	00.			5	; (0.0384
240	0.0150	0.012	8	8733.0	•	_	ن د	0.0019	0.0665
270	600	0.005	0.0151	0.0212	0.10		; d		0.0206
300	*10°	0-0055		0.0036	200	0.00		: 5	0.0234
330	0.0028	5 (6133.0	3	•			: :	9900-0
360	•	9 (: c	• •		ċ			0-0047
390	100	0.00		• •					2+00-0
450	-0C2	6100-0	• •	;	٠,		3	6	9900-0
450	. C02	0.0019	_	، د	100	;	;	0.000	0.0047
284	.002	600CC	•	.	•	، د	، د	2	9100
01,	0.0019	.	ن.	•	، ن	، د	. د	•	
7	•	•	;	•	•	، ځ	. :	•	
570	•	•	•	٠.	•	٠. د	، د	•	
900	•	់	.	•	ວ່	. ئ	•	• •	
630	υ,	0.0019	ن .	0-	<u>ن</u>	.	<u>.</u>	•	£100-0
999	· 5		0.	•	ن.	ٿ	. د	•	•
089		•		.	ن	•		•	•
220	, _U	6	•	•	ċ	.	ن	•	•
750) 		0	· 0			ن.	•	.
780	6			•	• •	ڻ:	ં	•	•
				•	ċ	:	ر.	•	•
240			•	•	•	ن	د	•	•
870	•	•	•	•	°.	•	. د	•	
006	0	•	ċ	•	ن .	د	. ن	•	• •
930	•	•	•	•	.	•	. ئ	;	•
096	ن	0.	9	•	0.00
990		0.0019	;	•	•	•	۰	•	
1620		•	ن	ن.	•	:	٠	•	•
1050			•	•	•	ن	٠.	.	•
1080	0	0	٥.	••	:		•	•	•
1110		•	•	•	ن	.	٠,	•	•
1140		•	•	•	•	.	. ز.	.	• 70
1170	•	•	့	0.0009	•	.	•	• •	6000-0
TOTAL	C.2921	C.2537	P-1283	C-1649	r-1030	0.0665	C.0243	0.0272	

>
Ħ
ဒ္ဓ
۳
3
ũ
4
۵
œ
PER
ERS
ū
_
<u>u</u>
SHE
9
_
8
5
ž

	S	3.08	2.46	2.34	4.95	•	
	AV PF	4.28	3.32	4-34	4.50	•	
	TOTAL	53	168	380	8	•	3.77
	•	æ	131	\$	~	0	3.78
	1	m	19	±	0	•	3.81 3.91
•	•	8	36	\$	0	0	10.4
	v	-	59	58	ပ	0	3.98
	4	v	69	4	J	٠,	3.96 3.96
	~	~	86	42	0	0	3.78
	2		519	58	O	0	3.70
	-	10	260	25	-	0	3.64
L06	AREA	7	æ	*	ĸ	•	AVE S D

FRACTION OF SHELIERS PER PF CATEGORY

TOTAL	0.0223	0.6843	0.2919	0.0015	•
ಖ	0.00C8 0.0C15 C.0023 0.C061 0.0223	0.1997 0.1692 0.0753 0.0530 0.0453 0.0276 0.0146 0.1006 0.6843	0.0399 C.0445 0.0323 0.0369 0.0445 C.0338 0.0108 0.0492 0.2919	C.CC08 0.0C15	•
~	C-0023	0.0146	9010*0	÷	
•	\$120*0	C.0276	C.0338	វ	•
.	0.0008	0.0453	0.0445	•	, .
•	•	0.0530	0.0369		
2 3	0.0077 0.0023 0.0015 0.	0.0753	0.0323	•	å
~	0.0023	0.1692	C.0445	•	°.
and	0.0077	0.1997	0.0399	0.0000	
LOG FLOOR AREA	~	•	•	2	•

SHELTERS WITH INTERIOR PARTITIONS

^	, _F	NUMBER OF SPECIERS	s ren er carceoni	6	7 Z	•0	TOTAL AV PF	× 7
33	, 2	. 91	, 25	, 9	. "	, K	167	4-16

FRACTION OF SHELTERS PER PF CATEGORY

TOTAL	0.1283
•	0.0261
~	C.0038
•	0.0077
~	6910.0
•	0.0123
e	0.0154
~	0.0207 0.0253 0.0154 0.0123 0.0169 0.0077 0.0038 0.0261 0.1283
-	0.0207

	S	•	•	0.49	15*1	5-04	2.22	2.58	3.09	3.00	2.18	2.47	2.95	2.28	2.85	2.68	1.79	2.36	2.51	•	2.68	
	AV PF	•	1.00	1.29	2.32	3.13	3.62	3.82	3.94	5.12	2.79	9.00	5.40	6.30	5.11	9.80	1.20	6.30	6.50	8.00	6.62	
	TOTAL	•	~	_	142	144	234	185	23	74	38	23	15	27	•	•	•	91	•	₩.	91	155.57
	60	•	0	0	-	58	20	35	15	35	m	12	~	15	m	•	•	S.	•	ıs	12	235.42 1 266.41 1
SORV	•	0	0	0	-	15	•	•	•	-		0	-	0	-	0	0	-	•	0	0	155.56 2 172.06 2
PF CATEGORY	•	•	٥	0	•	5%	98	13	~	84	0	8	ο.	•	0	0	0,	-	ပ	٥	-	153.35 1
PER	w	0	•	ပ	10	46	5 ¢	19	-	m	ď	m	-	7	~	0	ပ္	-	-	٥	ပ	163.84 1
SHELTERS	•	0	ပ	ပ	13	26	13	15	~	•	~	2	-	~	ပ	ى	~		ပ	ပ	ပ	136.35 1
NUMBER OF	m	0	0	0	16	9	33	17	m	•	•	-	8	2	0	0	0	0	0	0	٥	135.74 1
N.	8	O	0	2	*	104	53	39	٠	12	01		ဎ	ပ	~	-	ပ	O	-	0	-	136.16 1
	-	0	~	'n	53	118	43	;	21	13	*1	8	æ	8	***	0	0	-	0	0	2	139.59 1
	PSF	0	25	20	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	AVE S D

D.C.		FRA	FRACTION OF	F SHELTERS		PER PF CAI	CATEGORY		
	-	~	M	•	w	9	-	•	TOTAL
0	•	•	.	•	•	•	•	•	•
52	0.0008	•	•	•	•	•	•	•	0.000
20	0.0038	0.0015	•	•	6	•	ీ	•	0.0054
22	C-0407	0.0338	0.0123	0-0100	0.0077	0.0031	0.0008	0.0008	0.1091
100	9060*0	0.0799	0.0461	0-0430	0.0353	C.0184	C-0115	0.0184	0.3433
125	0.0330	0.0438	0.0253		0.0146 0.0184 0.0230	0.0230	0.0061	0.0154	0.1797
150	0.0338	0.0300	C.0131	0.0115	0.0146	0-0100	C.0023	0.0269	0.1421
175	0.0161	0.0046	0.0023	0.0015	0.0008	0.0008	C.0031	0.0115	0.0407
200	0.0100	0.0092	0.0031	0.0031	0.0023	0.0015	C.C008	0.0269	0.0568
522	0.0108	0.0077	0.0031	0.0003	0.038	ថ	C.0008	0.0023	0.0292
25 €	0.0015	0.0008	0.0008	0.0015	0.0023	c.0015	ప	0.0092	0.0177
275	0.0023		0.0015	0.0003	0.0008	•	0.0008	0.0054	0.0115
300	0.0015	•	0.0015	0.0015	0.0015	0.0031	:	0.0115	0.0207
325	0.0008	0.0015	•	•	0.0015	•	C_0008	0.0023	6900*0
350	•	0.0008	•	•	•	ះ	:	0.0031	0.0038
375	•	•	÷	0.000		•	ខំ	0.0031	0.0038
400	0.0008	•	ဖံ	0°cc0a	0.0008	0.0008	0.0008	0.0038	0.0077
455	•	0.0008	°.	•	6.0008	•	:	0.0031	9,00.0
450	•	•	•	•	•	•	•	0.0038	0.0038
475	0.0015	0.0008	•	•	•	0.0008	• •	0.0092	0.0123

DOSE SOURCE

NO SINGLE CONTRIBUTION 40 PERCENT OR GREATER ONE WALL CONTRIBUTES 40 PERCENT OR GREATER FACH TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER FACH CEILING CONTRIBUTES 40 PERCENT OR GREATER CEILING AND ONE WALL CONTRIBUTE 40 PERCENT OR GREATER BACH NUMBER OF SHELTERS PER PF CATEGORY

• ۍ ~

FRACTION OF SHELTERS PER PF CATEGORY

TOTAL C.1429 0.1467 C.0753 0.0637 C.C568 0.0438 C.0169 0.C092 0.5553 C.C445 0.0307 C.G131 0.C131 0.C046 0.00C8 C.0008 0.1252 0.2327 C.6476 0.0194 C.C115 O.C10C O.C150 C.0138 O.0C45 O.C223 O.1352 0.0671 0.0677 C.C131 0.0169 0.C069 0.CC31 0.C192 C.CC69 C.0031 0. ô C.0008 C.0023 <u>ئ</u> 5.0023 U.C023 U.

IX. TOTAL SHELTER STATISTICS FOR ALL PF CLASSES

These composite tabulations include all PF category shelters that are contained in the 1541 sample buildings. Definitions of category headings such as Contaminated Plane Width and Percent Aperture are found in Section IV. B. 2. of Chapter 3.

CATEGORY
Ľ
PER
SHEL TERS
6
IMBER

	S	2.36				-		- '	•		_	-		14	_	_ `						_	_	_	_				.		5 0			:	0	ö	0	0 (.	• •	Ġ	6					
	AV PF	3.39	1.82	2	2-05	41.7	2.10	2.18	7. X	2-41	2.15	3.16	3.27	3.08	3.0	2.65	2.7	3.73	4.20	4.4	3.30	2-80 8-7	3.12	2.57	3.25	8	9.0	8	8	4-33	66.	9	8 8	8	S. 8	5.00	4.67	3.00	.	.	; c	ċ	6	6			
	TOTAL	1691	765	2	*	9	133	9	2	69	25	45	7	37	28	20	17	=	9	91	2	20	_	-	•	m	m	m (•	m (m (n (1	, ,	9 (11)	m	m	•	6	0	0 (-	•) C	•	•	2.64	•
	•	175	_	~	~ 1	7	0	0	0	0	~	m	•	~		-		-	-	-	0	•	0	0	0	•	0	0	0	0	0	0 0	> <	9 6	0	0	0	0	9	0	>	•	> C) C	20,	1.10	3.63
ORY	•	19	•	-		~	-	~	7	•	•	•	~	~	0	0	0	•	0	-		0	0	0	0	0	0	0	0	0	0	0 (3 (5 6	•	0	٥	0	0	0	9 (-	> c	> c	9	•	4.87
PF CATEGORY	•	122	11	•	2	1	•	'n	•	'n	M	~	-	,	-	٥	7	N	8	~	, m	0	0	0	0	0	•	0	0	0	٥	0	5 (0 6	•	ن د	•	•	0	0	0	0 (9 (5 (֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֡֓֓֡	, ,	5.05
PER	ĸ	138	77	25	22	13	5	5	•	-	-	7) er	•	(47	•	~	-	^	ď	o U	-		. c		0	•		0		-	~	EN)	m r	۸ ۳	n (r	•	. 0	0	0	0	0	0 (o (,	3	10.09
SMEL TERS	•	1.50	36	31	22	13	•	•	, c	-	9 (5	ۍ ۱	•	•	۳ (۰ -	٠-	• ~	· c	-	•	• -	• ^		٦ ٣	1 10	•	, C	i (41	~	~	-	0	0	.	ء د	•	ن .	0	•	ø	Ç	•	U	9	200	* * *
NUMBER OF	•	140	9	3	\$2	10	2	•	•	5	2 5	?~	- 1	• «	•) r	۱ د	•	•	,	n c	•	•	٠,	- C	•	, c	0	• =	• •	0	•	0	0	5 (-	•	> (*	0	• •	٥	0	0	0	0 5	P	9
M	8	371		3.5	6	35	35	76	9 4			: =	1	2 0	•	i s	, ,	4	, r	n r	4 4	٦ ٣	۰,	٠ (.	•	, c	9 6	•	•	0	0	0	0	o (5 C	•	> c	C	•	0	0	0	•	0	-	4.63
	-4	107		1	186	1	3	3 \$	7	֭֭֭֭֚֚֓֞֞֟֟֟֝֟֓֓֓֓֟	;	3:	71	2 :	2 '	v 4	0 (•	•	•	5 (•	٠.	- (· ·	- (>	• •	o c	o c	•	0	0	0	0	0 (-	>	•	9 0	0	0	0	0	- 1	2	3.55
	STORY	•	٠.	٠,	v (*	٠ <	,	n •	o r	- (B D (• •	2	11	21	É I	: :	<u>.</u>	9 !		2 :	61	2	17	22	3 ;	5	Ç	9 !	5	9 6	28	31	32	33	%	6	9 7	- 6	9 5	3	7	45	6	\$	TOTAL	S D

CATEGORY
74
PER
IERS
SHEL 1
40
MO
ACT
~

		3	NUMBER OF	F SHELTE	RS PER	SHELTERS PER PF CATEGORY	GORY				
PERCENT APERTURE	-	~	M	•	'n	9	~	60	TOTAL	AV PF	S O
0	436	340	148	129	129	121	99	174	1549	3.45	2.41
2	296	263	123	100	11	4	119	23	1235	2.27	1-71
50	472	255	78	6 2	55	40	•	•	979	2.13	1.53
30	202	100	39	21	12	•	6	~	385	1.87	1.28
0	77	22	•	~	9	~	~	-	124	1.83	1.40
9	62	m	~	~	•	2	•	0	7	1.90	1.62
09	-	\$	0	-	0	0	0	0	13	1.62	0.87
2	•	•	2	J	0	•	0	•	15	1.67	0.78
80	2	0	0	o	0	S	0	0	~	1.00	•
8	0	O	0	Q	0	0	0	•	•	•	•
AVE	19.80	17.44	16.27	15.28	14.42	11.71	10-10	7.01	17.04		

FRACTION OF SHELTERS PER PF CATEGORY

		¥ 4 4	5 2011384						
PERCENT APERTURE	-	~	m	•	1	•	-	€0	TOTAL
o	0.1006	0.0784	0.1006 0.0784 0.0341 0.0298 0.6298 0.0293 C.0152 0.0401 0.3572	0.0298	0.6298	0.0293	C-0152	0.0401	0.3572
9	6.1375	0.0607	C.1375 0.0607 0.0284 0.0231 0.C164 0.0092 0.0044 0.0053 0.2848	0.0231	0.0164	0.0092	0.0044	0.0053	0.2848
20	0.1089	0.0588	0.1089 0.0588 0.0180 0.C143 0.C127 0.0092 0.0021 0.0009 0.2249	0.0143	0.0127	0.0092	0.0021	0.0009	0-2249
30	0.0473	0.0231	0.0473 0.0231 0.0090 0.0048 0.0028 0.0007 0.0007 0.0005 0.0888	0.0048	0.0028	0.0007	0.0007	0.0005	0.0868
\$	0.0178	0.0051	0.0178 0.0051 0.0021 0.0016 0.0014 0.0002 0.0002 0.0002 0.0286	0.0016	0.0014	0.0002	0.0002	0.0002	0.0286
20	0.0067	0.0007	0.0067 0.0007 0.0002 0.0005 0.0009 0.0005	0.0005	6000-0	0.0005	.	•	0.0095
3	0.0016	0.0016 0.0012 0.	•	0.0002	6	•	•	•	0.0030
2	0.0014	0.0009	0.0014 0.0009 0.0005	•	•	•		•	0.0028
80	0.0005	•	6	•	•	•	•	•	0.0005
06	•	•	;	•	•	•	•	•	•

CONTAM. PLANE DITH DO 30 30 90											
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
0 0 0 0		~	•	•	S	•	•	6 0	TETAL	AV PF	S
0 0 0	26.7	1 2 3		9	32	5 2	•	~	538	2.23	1.68
2 & &	306			4	27	24	18	14	576	2.31	1.88
) 0				α	, 6	1	0	-	254	1.89	1.38
25	741	0 4		ָרָ י	<u></u>	,	eri	=	229	1.97	1.42
	971	7 () ~ 4 =	2	i et	•	-	186	16-1	1.22
120	7	5		3	n (•	• 6	· C	141	2.07	1.50
150	72	34		Λ,		D (٠ د	· •	474	200	7
180	•	33		0	=	.	.	v (7.	
210	64	91		2	-	ပ	0	0		¥0.1	
017		30		M	\$	8	_	0	101	7 · 88	1.31
7 7 6	? *	? :		23	16	0	0	~	106	2.84	1.65
2/0	P (} -	-	-	C	0	20	1.56	1.03
300	25	* 1		= 0	1:	. ^	· C	C	19	2.48	1.65
330	53	13		ю.	1	•	•	• •	4	1.69	1.16
360	31	*		^		> (3 (•	2	77 -	A. C.
390	0	•		U	0	0	> (•	1		
420	16	ĸ		ပ	0	0	0	، د	77	100	
1.50	•	•		J	2	Ü	0	0	•	7.00	1.00
				•	0	0	ပ	=	77	2.18	1.76
	1 "	ی د		- ,	~	0	0	٥	6 0	29.2	1:21
010	٠.	· -		ن ا	0	0	0	S	~	1.14	0.38
	9 6	- C		, ro	G	O	0	0	7	1.00	•
0,00	V () () C	0	¢	0	0	0	•	.
200	, د	.		ى د	· c	c	e	Ç	6 0	1.62	0.52
630	n .	٠,		•) C	C	. C	O	•	1.00	0.
999	•	5 (, ر) (, -	•	9	-	6-00	0
069	0	:		، د	> (e (r) C	9 0	•	4.75	2.50
120	-	0		o '	o (n (•	•	٠,	00	0
750	~	ပ		י כי	0	۰ د	•	,	<i>,</i> –	9	0
780	0	0		ا ن	> (٠ (•) C			
016	7	ဗ	0	0	<i>،</i> د	5	9	> C	, c		9 6
840	0	c		o	۱ د	ا د	ပ (3 (5	ď
870	0	ပ		0	o '	5 (ن د	•	, c		
006	ပ	0		. د	3 () ن	> 0	•	•	•	
930	0	ပ		ပ	، ن	S (9	5 (•	•	Ċ
960	0	ပ		၁	ပ	. د	3 (> <	9 :	•	9
390	•	S		ပ	0	-	מ י	> (71	•	•
1020	0	0		ى	0	0	D	5 (3 (•	•
1050	0	0		ပ	()	0	٥	، د	9 (;	•
1080	0	0		ပ	ن د	0	0	٥	ن د	;	• •
1110	0	0		پ	0	C	ဂ	•) ن	.	• •
1140	C	O		ပ	0	ပ	0	0	0	٠	•
1170	•	Ú			u	ی	0	ن		•-00	•
	, ,	, ,	^	144	139	16	31	62			
	400 T	۰.	130.71		139.96			86.33	134.04		
- '		,	֭֓֞֜֜֝֜֝֓֓֓֓֓֓֓֓֓֓֜֝֡֓֓֓֓֡֓֜֡֓֓֡֓֡֓֓֡֡֡֝	10.0	0 7 8	32	N	9	•		
_	3.62	193.23	4		•			1			

FRACTION OF SHELTERS PER PF CATEGORY

;		FRAC	FRACTION UP	. SHELPE	HIS CHI		3		
CONTAM.									
	-	7	m	•	10	•	-	€	TOTAL
c	700	0.0503	0.0178	0.0113	0.6121	0.0091	.003	0.0026	0.2034
9 6	7	1	10	0.0151	0.0102	0.0091	0.0068	0.0053	0.2178
2	.053	0.0238	0.0076	0.0030	0.0034	C-0042	•	0.0004	0.0960
8 8	Ì	0-0234	0.0076	0.0038	0.0038	0.0019	0.0011	0.0004	0-0800
200	46.0		0.0083	0.0049	0.0011	0.0011	•	0.0004	0.0703
201	720	0.0129	0.0049	0.0019	0-0034	0.0030	.	•	0.0533
	4	0.0147	0.0049	0.0038	0.0042	6100.0	0.0004	0-0008	0.0548
201	֡֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֡֓֓֡֓֓֡֓֓֡֓֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֓֡	•	•	0-0008		•	•	•	0.0318
240	•	0.0113	0.0026	0.0011		0.0008	0.0004	•	0-0382
710	0070-0		•	0-0087		0.	•0	0.0008	20
2 6	•	6500	,	4000-0	•	0.0004	•	•	0.0189
300	1719-3	•	2000	0.000	•	0.0008	•	•	0.0253
930	•	6400	4100	9100	•	0	0.	•	0.0170
360	0.0117	70000		*	. (•	•	0.0053
340	0.0034	6100-0					6	•	0.0079
420	•	•	•	; c	200) c	56		0.0053
450	-062	200-	÷.	.;	٠	•	•	4000	F800-0
4 80	0.0045	0.0011	0.0008	<100.0			.		800
015		•	0.0011	\$200°5	-000-0	:	;		0.0026
540	0.0023	0.0004	•	•	.	; ;	;	•	6000
570	0.0008	•	•	•	•	:	•	•	
900	•	0.	•	•	.	.	.	• •	
630	.001	0.0019	0.	•	•	•	•	.	0.0030
999	0-0015	0	•	•	•	•	•	ċ	100
9 4		3 6		•	•	0.0004	ပံ	•	0.0004
9 6	4000		6	0	•	0.0011	•	•	0.0015
021				•	•	0.	•	6	0.0008
			i d	60	•		•	ċ	0.0004
	# DO C				•	•	ن	•	0-0008
	?				ن	•	.	•	•
	• •			•	•	•	• •	•	•
				•	•	•	•	•	•
0 6		•	•	•	••	•	:	•	•
040		6	•	•	•	.	•	•	•
0 0	C-0023			•	•	0.0004	•	.	0.0045
1020	1	0.0	•	•	;	.	•	6	•
				•	•	•	.	•	•
			0.	•	•0	•	•	•	•
	•			0,	•	5	0.	ċ	•
27.	• •		Ġ		•	•	•	•	•
0417	• •	• 6		0.0004		ئ	:	•	0.0004
	C 5063	0.2348	0.6873	0.0620	0-0526	0.0344	C.0117	0.0110	
LINE	7076*0			1)				

5	
ï	
ĺ	
l	
۱	

	S	1.97	1.91	2.27	3.50	•	
	AV PF	2.56	2.41	3.52	2.15	6	
	TOTAL	260	3375	169	•	0	3.63
	40	&	131	\$	~	0	3.78
SGRY	~	60	99	54	•	0	3.66
PF CATE	•	12	136	65	0	•	3.75
IS PER I	₩.	22	176	13	Ö	0	3.71
SHEL TER	•	5 C	227	15	ပ	၁	3.67
NUMBER OF SHELTERS PER PF· CATEGORY	m	18	295	81	0	0	3.67
3	2	SS SS	108	121	0	•	3.57
	-	114	1537	176	m	0	3.54
LOG	A:REA	7	m	•	ĸ	•	AVE S D

FRACTION OF SMELTERS PER PF CATEGORY

TCTAL

0.0263 0.0134 0.0042 0.0046 0.0051 0.0028 0.0018 0.0018 0.0600 0.3545 0.1861 0.0680 0.0524 0.0406 0.0314 0.0152 0.0302 0.7784 0.0406 0.0293 3.0201 0.0173 0.0182 0.0150 0.0055 0.0148 0.1607 0.0002 0.0009 6 • ċ ຜ່ • ပံ ວໍ • m ċ ~ 0.0000-0 LOG FLOCR AREA N

SHELTERS WITH INTERIOR PARTITIONS

NUMBER OF SHELTERS PER PF CATEGORY

8 0	2.09
AV PF	2.89
TOTAL	738
60	34
~	52
•	\$
~	65
•	69
ю	72
7	159
-	992

FRACTION OF SHELIERS PER PF CATEGORY

TOTAL	0.1702
•	0.0078
7	6.0058
•	901000
w	9 0.0150 0.0106 6.0058 0.0078 0.1702
4	0.0159
•	0.0171
2	0.0613 0.0367 0.0171 0.0159
-	0.0613

	7 0 0	•	•	5 1.43	4 1.32	6 1.67	1 1.95	3 2-01	5 2.15	8 2.25	6 1.89	0 2.37	0 2.15	0 2.56	8 2.28	4 2.79	3.02	3 2.67	7 2.76	5 2.79	8 2.76	
	AV PF	•	1.00	1.85	1.84	2.16	2.71	2.63	2.65	3.08	2.86	3.20	3.70	4.30	3.28	3.24	5.30	5.53	5.17	5.15	4.68	
	TOTAL	•	•	1	319	1288	612	812	162	349	191	112	82	90	39	21	20	15	12	13	\$	161.91
	€0	0	0	0	-	54	20	35	51	35	æ	12	~	15	m	*	*	S	*	S	12	235.42
CORY	•	0	0	-	7	70	*	20	13	•	10	7	S	€	2	•		7	•	0	6	189.80
SHELTERS PER PF .CATEGORY	•	0	0	~	•	35	45	43	15	19	•	9	€	12	-	7		2	m	7	•	192.55
RS PER	S	0	0		±	62	9	51	13	23	20	7	12	•	•	0	0	2	-	8	~	174.77
	•	0	ပ	•	13	88	9\$	9	22	33	18	_	12	1	ľ	ပ		-	S	7	m	171.20
NUMBER OF	•	0	•	2	20	119	8	75	23	38	13	13	*	_	8	60	9	•	-		9	166.37
2	2	0	0	16	48	293	151	189	58	90	‡	25	15	10	€0	•	**	ပ		-	~	156.68
		0	*	43	179	657	221	333	132	106	64	36	14	17	12	6	~	e	2	2	•	72
	PSF	0	25	6	13	100	125	150	175	203	225	250	275	300	328	350	375	004	425	450	415	4

CATEGORY
4
PER
rers
SHELI
9
100
FRACT

		FRA	FRACTION OF SHELTERS PER PF CATEGORY	F SHELT	FRS PER	PF CAT	EGURY		
Š	-	8	m	•	'n	٠	~	∞	TOTAL
0	•	•	ċ	.	•	•	•	ò	•
25	0.0012	•	• •	•	•	•	.	•	0.0012
50	6630*0	0.0037	5000-0	6000*0	0.0007	0.0005	0.0002	•	9910.0
22	0.0413	0.0194	0.0046	0.0030	0.0032	0.0014	5000-0	0-0002	0.0736
100	0.1515	0.0653		0.0203	6.0274 0.6203 0.6143	0.0081		0.0046 0.0055	0.2970
125	0.0510	0.0362	C-0152	0.0106	9010-0	0.0097	C-0032	0.0046	0.1411
150	0.0768	0.0436	6.0173	0.5138	0.0131	0.0099	C.0046	0.0081	0.1873
175	0.0304	0.0134	0.0053	0.0051	0.030	6.0035	C.0030	0.0035	0.0671
200	0.0244	0.0268	C. CO83		0.0076 0.0053	0.0044	C.0012	0.0081	0.0805
\$22	0.0113	0.0101	0.0030	0.0042	0.0046	0.0021	C-0012	0.0007	0.0371
250	6-0083	0.0058	0.0030	0.0016	0.0016 0.0016	0.0023	C.0005	0.0028	0.0258
275	0.0032	0.0035	0.0032	0.0028	0.cc28 0.cc28	2000-0	C-0012	0.0016	0.0189
360	0.0039	0.0023	0.0016	9100-0	G-CC16 0.0021	0.0028	C.00C7	0.0035	0.0185
325	C.0C28	0.0018	0.0005	0.0012	0.0014	C-0002	0.0005 0.0007		0.0000
350	0.0021	0.0007	0.0007	•	•	5000-0	ن	6000-0	0.0048
375	0.0005	0.0002	•	C-CC02	•	0.0002	C-0002	600000	0.0023
4 00	0.0007	•	•	0.0002	0.0005	0.0005	c-0005	0.0012	0.0035
425	6000-0	2000.0	0.0002	•	0.0002	0.0007	•	6000-0	0.0028
450	c-0005	0.0002	0.0002	0.0005	•	0.0005	ះ	0.0012	0.0030
475	0.0018	9100.0	C-C007	0.0007	0.0005	0.0014 0.0007	C-0007	0.0028	0.0101

DOSE SOURCE

I=1 NC SINGLE CONTRIBUTION 40 PERCENT OR GREATER
 I=2 ONE WALL CONTRIBUTES 40 PERCENT OR GREATER
 I=3 TWO WALLS CONTRIBUTE 40 PERCENT OR GREATER EACH
 I=4 CEILING CONTRIBUTES 40 PERCENT OR GREATER
 I=5 CEILING AND ONE LALL CONTRIBUTE 40 PFRCENT OR GREATER EACH
 NUMBER OF SHELIERS PER PF CATEGORY

S D	2-84	1.73	1.96	11.11	2.11	
AV PF	3.39	2.52	3.21	2.31	26.2	
TOTAL	676	1538	165	1841	911	2.81
€0	163	12	0	53	0	1.49
~	•	32	~	4 5	13	3.29
٠	12	18	11	2	•	2.97
v	14	116	37	102	•	2.91
•	9	147	-	121	1	2.71
m	\$	131	91	158	15	3.07
~	135	382	36	417	22	2.81 3.05
-	268	165	\$	883	43	2.91
•	-	~	€	•	~	AVE

FRACTICH OF SHELTERS PER PF CATEGORY

TOTAL
€
~
9
ŗ
4
m
~
-

C.0618 0.0311 0.0092 0.0092 0.0032 0. 028 C.0009 0.0376 0.1559

0.1363 0.0881 0.0394 0.0339 0.0268 0.0201 0.0074 0.0028 0.3547

0.0104 0.0083 0.0037 0.0016 0.0085 0.0039 0.0016 0. 0.0381

C.2036 0.0962 C.C364 0.C279 0.C235 0.02C5 C.0097 0.0067 0.4246

0.0099 0.0051 0.0035 0.0016 0.6018 0.0018 0.0030 0.

- B-86 -

X. BUILDING STATISTICS

The 1541 sample buildings are rated by PF according to their PF class.

Definitions of category headings such as Contaminated Plane Width and Log

Floor Area are found in Section IV. B. 2. of Chapter 3.

CLASS
H
ER
HUTLDINGS
9
NUMBER C

	2	SURBER OF		, s	•	~	80	TOTAL	AV PF	0 8
, .		, «		C	Ħ	-	•	11	3.0	2.69
· Ç		2	· -	2	2	m	•	188	2.61	1.81
\$		2	32	53	52	*1	20	386	2.78	2.15
Ī	•	Ņ	28	19	2	17	8	442	2.85	2.20
7	7	•	36	22	•	•	£1	215	9-13	70.2
	_	•	16	15	•0	M	77	113	3	77.7
_	_	+	2	-	=	D	10	⊋ (36	7
		2	~	*	~	-	•	₹:	10°E	70.7
	. •	~	ပ	-	7	-	•	CT '	6-15	7997
	•	_	9	0	0	0	'n.	•	1.9	9.10
	Ī	_	٥	-	-	0	•	•	7.1.7	CCOI
		_	_	0	0	0		7	9.00	50.2
		_	ں .	٥	0	o	4	∢	9	•
		_	-	-	0	0	S	_	2.6	1.73
			ب ب	-	0	0	~	6	8.5	
	•) C		·	O	~	-	00.4	•
	•		,	، د	• •	^	~	5	6.40	2.51
	•	. ,	3 C	t	• •	0	-	-	9.00	•
	•		> (,	9 6) C	• •	0	•	•
	•	٠,	> ()	o c) c	• •	0	•	•
	.		,	> (•	• =	. C	•	d	•
	9 6) (> C) C	-	0		2.00	•
.	5 ()	• 0	• •	• 6		0		•
	>		,	.) C	•	m	m	9.00	•
	> C		.	•	.	0	•	0	•	ö
	, c		.) C	0	0	0	0	ċ	ċ
		_	a	0	0	0	•	0	ċ	ċ
			ی د	0	0	0	0	0	•	ċ
			(ପ	Ü	•	0	0	0	ċ	ö
			đ	U	0	0	0	0	ċ	•
		. 6	a	0	٥	0	0	ပ		.
			ن	O	0	0	0	0	ċ	•
		0	0	ပ	0	0	•	o		; (
	_	0	0	0	0	0	0	o (•	•
		0	ن	٥	0	c	0	0		•
		0	ပ	٥	0	•	0	o (
		_	ပ	0	0	0	0	0	•	
		_	3	0	0	٥	0	0	•	
		_	U	0	0	ట	-	_		
		_	0	J	•	0	0	0		
		_	0	J	0	0	0	0		
			a	.	0	0	0	0	ċ	ċ
		•	، د	· c	c	0	0	0	•	ċ
		> (، د	•	•	· c	· C	C		
ပ		D () (>	> c	, c	•	•	d	•
ָ פ		5	•	•	-	-	C	3-35		
10	•	N I	4.0		• • • •	67	•	1 -		
.45 3.	•		3.90	7	٥	•	•			

CLASS
PER PF
BUILDINGS
Б
PRACTION

	TOTAL	0.0071	0.1222	0.2573	0.2872	0.1397	0.0734	0.0585	0.0195	A400			5000	100.0	0.002	0	0	0	0	9000				•	0.000	0.	0.0019			•	•	•			•							-00		•		•	•	: 6	;
	•	0.0026	0.0026	0.0130	0.0195	0-0084	0.0078	0.0052			0.000	0.0032	0-0026	9000	0.0026	0.0032	0.0013	9000-0	0.0013	0-0006		;	;	;	•		0.0019	•	•	•		0.					6	; .	; ;		;	9000		;	;	; c	; .	.	\$
ASS	^	0.0006		•	•	0.0032	0.0019	0.0058	90000		3	.	•	ડ	ن	ن:	•	G				•	• •	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	90000	;	ن	•	•	•			Ġ	ي ا		2		•		.		.	:	.	:	.	.	.	:
PRACTION OF BUILDINGS PER PF CLASS	•	0.0019	0.0097	ö	ö	ċ			,		61m-0	•	0.000	.	6	0.						.	•	•	ċ	å	ن	•	•	ئ	6	2	ي د	; ;	; c	, -	; ,	;	;	.	، ئ	ೆ ೧	.	.	•	.		.	;
DINGS P	S	•	0.0065	0.0188	0.0123	0.0143	C-0047	0.00	4600	0.000	0.000		0.0006	•	•	90000	9000	, ,		;	•	.	o o	ថ	ن	•	9 •	•	•			3		•	•		• •	.	• •	•	•	.	.	.	5
950 11 031	•	•	0.0091	0.0227	0.0182	0.0221	4010	2700			•	•	•	900000	0		0				•	•	•	•	•	٥.		•									•	•	•	•	•	•	•	•	•	.	.		• •
RACTION	•	•	0.0123	0.0188	0.0273	0.0188	4000		16000	6100-0	0.0013	•	•				ċ		:		•	•	•	•	•	•			6			•	•	;	•	.	:	•	•	•	់	ċ	ن	ڹ	•	.	ċ	.	• •
P4	7	0.0013	0.0403	9690-0	0.0767	0.0312	9710	20100	0.0123	0-0045	9000-0	900000	0	6			•	•	2000	9000-0	•	•	•	•	•			ے ا			•	•	•	•	;	•	•	•	•	•	•		•	•	÷	ċ		•	•
	-1	90000	0.0396		, ,	7367	•	•	100	0.0039		900000		0				•	•	•		.	ö	.							;			;	• •	•	•	ះ	•	់	•	•	•	٥.	•	•		•	
STORY		G	ب (, 17	٠ ٦	٠ -	Λ,	۰	7	&	0	10) <u>-</u>		4 :	7	•	C 7	91	17	81	61	20	21	22		1 6	,	2,5	9;	17	82	62	0 6	31	32	33	አ	35	36	37	33	38	9	7	45	43	;

NUMBER OF BUILDINGS PER PF CLASS

PERCENT		Ž) XII GWO		NUMBER OF BUILDINGS FIRST						
APERTURE		~	m	•	₩	•	•	æ	TOTAL	AV PF	S
0	76	58	23	21	18	*	•	23	260	3.35	2.34
01	213	190	11	*	9	9	8 7	25	739	3.13	2.20
20	135	89	35	37	54	22	15	35	392	3.67	2.30
30	;	15	15	*	•	4	•	01	104	2.99	2.42
9	2	ĸ	0	ν.	7	m	0	w	34	3.29	2.60
20	0	-	0	ပ	0	0		0	~	4.50	3.54
9	0	-	0	-	0	-	0	2	S	5.60	2.61
2	-	~	0	Ċ	•	ပ	0	0	m	1.67	0.58
000	o	0	0	0	ပ	0	•	0	0	•	•
06	0	ပ	0	0	0	0	ပ	0	0	.	•
AVE	19-04	17.69	17.80	18-10 20-55	17.18	15.96 19.41	19.21	19.32	18.20		

PRACTION OF BUILDINGS PER PF CLASS

PERCENT APERTURE

•	•		•	•	0.	•	•	.0	96
0.	•		÷	់	•	.	•		90
0.0019	•	•	•		•	•	0.0013 0.	9000*0	92
0.0013 0.0032	0.0013	•	0.0000.0	•	9000*0	•	0.0006 0.	•	90
0.0013	•	0.0000	•		•	•	0.0006 0.	•	8
0.0032 0.0221	0.0032		0.0019	0.0032 0.0013 0.0019 0.	0.0032	•	0.0091 0.0032 0.	0.0091	ç
0.0676	0.0065	C-0039	0.0026	0.0039	0-6026	0.0097	0.0286 0.0097 0.0097 0.0026 0.0039 0.0026 0.0039 0.0065 0.0676	0.0286	30
0.2547	0.0227	0.0097	0.0143	0.0156	0.0240	0.0227	0.0877 0.0578 0.0227 0.0240 0.0156 0.0143 0.0097 0.0227 0.2547	0.0877	02
0.4802	0.0370	0.0182	0.0260	0.0390	0.0481	0053-0	0.1384 0.1235 C.C500 0.0481 0.0390 0.0260 0.0182 0.0370 0.4802	0.1384	01
0-1689	0.0149	0.0045	0.0221	0.0117	0.0136	0.0149	0.0494 0.0377 0.0149 0.6136 0.6117 0.0221 0.0045 0.0149 0.1689	0.0494	0
TOTAL	•	~	•	ĸ.	•	m	~	~	

BUILDINGS WITH INTERIOR PARTITIONS

NUMBER OF BUILDINGS PER PP CLASS

S	2.47
AV PF	3.60
TOTAL	320
•	36
1	21
•	53
r	28
•	62
m	27
7	57

FRACTION OF BUILDINGS PER PF CLASS

TOTAL	0.2079
ಖ	0.0234
~	0.0136
•	0.0188
ĸ	0.0182
•	0.0188
m	0.0175
~	0.0370
	0.0604 0.0370 0.0175 0.0188 0.0182 0.0188

į	3
Ċ	
ľ	
Ē	2
Č	3
E	9
É	į

	S	1.76	2-11	2.54	3.56		
	AV PF	2.76	2.84	4.64	4.00	•	
	TOTAL	111	1146	272	•	0	3.61
	•	7	9	19	-	0	3.96
	7	-	33	23	0	•	3.89
S CI WSS	•	60	65	30	-	•	3.73
K. A.	•	77	11	27	0	0	3.64
ROTTOR	•	13	101	22	•	ပ	3.56 3.61
NUMBER OF BUILDINGS PER PF CLASS	•	01	113	27	•	•	3.61
_	7	39	276	•	0	•	3.52
	=	32	413	36	~	0	3.52
106	AREA	~	6	•	s	•	AVE S D

FRACTION OF BUILDINGS PER PF CLASS

TETAL	0-0160	0.7446	0.1767	0.0006 0.0026	•
€	0.0013	0.0442	0.0396	0.0006	•
-	9000*0	0-0214	C-0149	3	•
•	0.0052	C.0422	0.0175	0.0006 C.	•
v	0.0078	0.0461	0.C175	6	•
•	0.0084	0.0695	6-0143	•	•
m	0.0208 0.0253 0.0065 0.0084 0.C078 0.0052 0.0006 0.0013 0.0760	0.2684 0.1793 0.0734 0.0695 0.6461 6.0422 0.0214 0.0442 0.7446	C.0234 0.0299 0.0175 C.0143 0.C175 0.0195 C.0149 0.0396 0.1767	•	.
**	0.0253	0.1793	0.0299	•	•
-	0.0208	0.2684	C.0234	0.0013 0.	•
LOOR REA	2	8	•	•	•

	AV PF	•	2.00	2.33	2.47	2.92	3.14	3.48	3.31	3.75	3.90	••	5.09	4.50	5.33	3.86	•	2.67	3.50	5.50	4.08	
	TOTAL	0	10	64	141	401	433	199	125	67	31	\$2	11	•	6	-	0	m	8	•	13	146-14 158-74
	•	0	-	~ .	•	30	*	58	••	₩	•	•	e	-	•	-	0	~	٥	•	~	167.61
	-	0	•	-	•	91	13	2	S.	m	7		0	0	~	•	•	0	•	-	-	156.36 176.32
PF CLASS	•	0	•	•	•	15	35	*	&	•	6	m	•	-	0	-	•	•	1	8	m	1 75.96 199.20
INGS PER	I	0	0	m	1	5 2	8	51	**	~	•	~	0	0	***	~	0	0	•	0	Ö	152.73
NUMBER OF BUILDINGS PER PF	•	0	ت	-	2	38	•	12	16	•	4	m	-	0	7	0	0	0	•	0	0	148.59 156.38
NUMBER	m	0	0	8	13	88	\$	*	13	=======================================	-	-	•	•	•	•	•	0	0	=	0	143.33 150.72
	8	0	m	13	34	%	108	43	33	12	•	*	-	7	7	•	0	0	0	0	•	142.76 155.11
		0	•	**	67	142	128	15	58	14	•	•	~	0	0	m	0	-	-	0	8	133.83
		٥	52	20	15	100	125	150	175	200	225	250	275	300	325	350	375	004	425	450	475	AVE

2.70 3.00 2.50 2.85

4.04

1.73 2.75

3.54

2.52 29.2

i

2.16 1.92 2.20 2.23 2.38 2.12 2.36

1.99

FRACTION OF BUILDINGS PER PF CLASS

TOTAL		0.0065	0.0318	0.0955	0.2606	0.2814	0.1293	0.0812	0.0435	0.0201	0.0156	0.0071	0.0026	6.0058	0.9045		0.0019	C-0013	9200-0	C.0C84
_	•															•		ပ	Ö	ပံ
æ	•	0.0006	900000	0.0039	0.0195	0.0221	0.0156	0.0052	0.0052	0.0026	0.0026	6100*0	0.000	0.0019	0.0006	÷	0.0013	•	•	0.0013
^	• 0	<u>.</u>	9000*0	C*0039	C.01C4	C.0034	C.0045	0.0032	5.0019	6.0013	9000-0	د.	ડ	6.0006	3	:	:	ئ	9000-0	9000*0
•	.	•	0.0026	0-0026	0.0097	0.0227	1600*5	C.0052	0.0039	0.0019	6100*0	0.0026	9000-0	÷	9000*0	ပံ	.	9000*0	c100°0	6130*0
ĸ	•	•0	0.0019	0.0045	6910*0	C. C188	0.0097	1600*0	5\$33*3	0.0026	0.0013	•	•	9200-0	c.co13	•0	.	•0	ئ	•
•	•	•	0.0000	0.0065	0.6247	0.0260	0.0136	0.C104	0.039	c.coce 0.0026	0.0019	0.0006	<u>ن</u>	0.0013	, ;	.	្វ	3 •	· 0	•
m	•	°	0.co13	C.C084	0.0247	C.C299	0.0156	C.0034	0.0071	0.0006	0.0006	ះ	°.	0	.	٠	ċ	•0	\$000°0	
8	•	0.0019	c.0034	0.0221	0.0624	0.0702	0.0279	0.0214	6.00.78	0.0032	C.0024	900000	6100.0	0.0013	ن	ن	•	•		0.0032
-	c;	0.0039	C.C156	0.0435	0.0923	C.C832	C.C331	C.0182	1600.0	c.0052	0.0039	6.0013	•	.	6100.0	•	900000	6.000	.	C.0C13
PSF	c	\$2	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475

	S	•	0.8	9.0	0.0	1.8	1.5	5-1	1.8	5.	5.5	-		2.7	2	ċ	o	ċ	•	ċ	3.1	7.	ċ	ċ	.	5	7	2.	7	•	7	•	2	•		
	AV PF	9.00	1.67	1.29	1.50	2.56	2.02	2.42	2.73	3.47	3.70	3.15	3.50	5.14	2.90	5- 00	2-00	8.00	•	1.00	2.43	3.62	4 .00	;	6	•	4.14	4.54	4.36	0.	3.33	1.00	4.17	•		
	TCTAL	-	6	*1	•	109	47	228	621	13	2	20	*	113	10	-	~	-	0	~	23	13		0	0	0	160	54	11	0	m	-	30	0	11-13	13-24
	80	0	٥	0	U	m	-	~	20	~	~	-	O	37	5	0	O	-	0	O	0	_	0	0	0	0	39	_		0	0	ပ	S		17.11	19.02
	_	0	٥	G	0	-	c	8	12	9	-	0	0	10	0	ပ	0	0	0	ເລ	7		0	O	0	0	15	-	prel	0	-	0	-	0	15.75	17.49
CLASS	•	-	· c	ی د	•	•	۰	-	2	~	· ന	0	_	12	a	ပ	0	0	0	0	0	7	0	J	ပ	0	12	~	~	0	0	Ü	_	0	14-48	17.25
S PER P	ď	ن) C) C) C	•	•	-	9	`	. 0	5	ن د	12		. 0		ن د	· c		-	_	0	ပ	Ç	0	9	2		0	0	ပ	O	٥	11.02	15.69
NUMBER OF BUILDINGS PER PP	•	J	.) (°	, c	9 0	, 4	2	\ X	3 -	-	, ~	ں	•) U	, c	. 3	ی د	.) C	(4)	0	-	. c	0	2	14	(41	C)	0	0	U	~	0	10.86	12.85
UMBER OF	6	c) r	- د	- (1		7.1		? -	- ۱	• ^		٠.	٠ د	o c	3 C	.	o C	.	۰ ۸	· C	c	0	c	11	•	۰ د	0	0	c	-	· C	10.04	11.89
z	7		م د	· · ·	~ ~	^ c	,) (126	2 -		, L	- ۱	• 0	ء -	- د	۔ د	ન દ	,) (•	, ~) C	о с .	, es	ا د	27	4	· -	. _U		ار	· -		10.52	12.66
	1	•	. د	•	^-	٠,	7 7	?:	777	661	<u>,</u> "	ט ר	٠.	ָר ר	.	- (.	> c	o (۰ د	• 0	n 11	٠ د	0 0) () C	٠, د	3 4	•	4 0	-	4	• ~	n c	9-13	10.76
	٨	;	-	17	77	- (35	*	٠ د د	č į	- o	n .	- 5	7:	ĵ:	•	Ç:	<u>.</u>	•	ο (c	, ,	7 6	2 5	, J	P 4	, 4	2 5		C U	6	; ;		70	2 6	Y C	. C

ž		FRAC	FRACTION OF 1	BUILDINGS PER PF CLASS	PER PF	CLASS			
•	-	~	æ	•	5	•	•	€	TOTAL
11	ن.	•	•		• •	90000-0	:	•	9000*0
12	6.0032		0.0013	•	:	ن	•	•	0-0058
2	0.0071			•	•	•	•	•	1600*0
; =	0.0019		-	0	°	•	÷.	•	0.0039
	0.0266			3500-0	0.0026	0.0058	9000-3	0.0019	0.0708
, .	0.0175	0.0052	6	C100°3	0.0026	•	់	9000*0	_
35	C-0721		ပ်	0.c123	0.0071	C.0091	0.0032	0.0045	_
36	0.1254		ö	0.0442	0.0318	6910.0	0.0078	0.0130	0
37	C-0091		ö	0.0065	6.0045	0.0045	6-0039	0.0013	0-047
38	0.0019	c-0013	ċ	9000*0	•	•	9303-3	0.0013	0.0065
; ;	•	0.0032	0	0.0019	0.0332	:		9000-0	0.0130
• •		900000		·	•	90000	<u>ن</u>	•	0.0026
43	0.0130	0.0058	0.0045	6.0039	0.0078	0.0078	C-0065	0.0240	0.0734
7	9630-3	•	0.0006	•	0.0019	:	-0	0.0032	0.0065
45	0	0.0006	•	•	•	ن:	.	•	9000-0
4.		90000	•	0.	•	•	;	ċ	9000-0
27	•	•	•	•	•	•	.	9000-0	9000-0
9	•	•	•	0.	•	•	:	•	•
64	900000	•	•		•	0.	•	•	9000-0
21	0.0058	0.0052	•	0.0619	900000	•	C-0013	°.	0.0149
52	6100-0	0	0.0013	0.	9000-0	0.0013	9000-0	9003-0	0.0084
53	0	0	•	90000-0	°.	•	ن	•	9000*0
2	.	0	0.	•	•	:	ំ	•	.
55		•	•	•	.	•	វ	•	°.
26	6	ن	ڻ•	0.	•	.	វ	ċ	•
57	0.0149	0.0175	0.0071	1600.0	0.0065	0.0136	0.0097	0.0253	0-1040
28	C-0026	0.0026	0.0013	6100.0	0.0013	9000-0	9000*3	0.0045	0.0156
59	0.0013	900000	0.0013	•	9000-0	0.0019	c-0000	9000.0	0.0071
16		•	ن	.	0.	•	.	.	•
19	6.0006	900000	0.	•	•	•	9000-0	•	0-0019
62	9000-0	•	•	•	•	•	:	0.	90000
71	6100-0	0.0071	c-0000	0.0013	.	0.0045	9.000.0	0-0032	661C*0
81	.	•	.	•	•	•	. .	•	3

CLASS
PF
PER
MTS
N.
BASI
9
Ä
Z

PERCENT Exposure	-	7	m	•	IV	•	~	60	TOTAL	AV PF	8
0	147	145	19	53	25	19	37	133	700	4.06	2.62
10	72	43	28	19	11	21	=	15	226	3.21	2.26
20	12	4.7	27	35	28	*	0.4	9	239	3.05	1.96
30	79	61	21	12	13	9	9	σ.	211	2.61	1.98
40	40	23	15	22	12	0 0	-	S	130	2.94	1.91
20	55	28	•	•	11	S	-		114	3.1	1.67
09	18	Ξ	N.	∽	m	-	-	٥	\$	2.34	1.57
70	10	1	-	9	7	~	0	~	91	2-89	2.14
80	m	2	-	~	0	0	0	0	•	2.25	1.28
90	0	0	94	ပ	•	0	0	ပ		3.00	•
TOTAL	165	371	169	158	138	122	67	175			
AVE S D	26.49	23.84	22.99 29.98	22 -6 6 29 -2 7	22.90	17.79 24.74	14.55	9.91	22.09		

TOTAL NUMBER OF SUBBASEMENTS IS 34

FRACTION OF BASEMENTS PER PF CLASS

	0.1035	C-0396	1270.2	C.2904 0.2194 0.C999 0.C934 0.C816 C.0721 C.0396 0.1035	0.034	6663*0	0.2194	C-2904	TOTAL
0.000	•	ટ	ះ	•	•	0-0000	•	• •	06
0.0047	•	÷	ះ	ن	0.0012	0.0006	0.0018 0.0012 0.0006 0.0012	0.0018	80
0.000	0.0006 0.0106	.	0-0012 0-0012 C-	0.0012	•	9200*0	0.0000 0.0041 0.0006 0.	0.000	2
0.0260	•	C-0006	0.0006	0.0106 0.0065 0.0030 0.6030 0.6018 0.0006 0.0006 0.	0.633	0.0030	0.0065	9010.0	9
0.0674	0.0006	9000-3	0.0030	0.0325 0.0166 0.0053 0.0024 0.0065 0.0030 0.0006 0.0006 0.0674	0.024	0.0053	0.0166	0.0325	20
0.0769	0.0030	0.000	0.0047	C.0237 0.0160 0.0089 0.013C 0.0071 0.0C47 C.0006 0.0030 0.0769	0°4130	0.0089	0910.0	C.0237	9
0.1248	0.0053	0.0035	0.0059	0.0467 0.0361 0.0124 G.0071 0.CC77 0.0059 C.0C35 0.0C53 0.1248	1700.0	0.0124	0.0361	0.0467	30
0-1413	0-0035	6*00*9	0.0083	C.0426 0.0278 0.0160 0.C207 0.0166 0.0083 C.0059 0.0035 0.1413	0.0207	0910.0	0.0278	C.0426	50
0.1336	0-0089	0.0065	0.0124	0.0426 0.0254 0.0166 0.0112 0.0101 0.0124 0.0065 0.0089 0.1336	0.0112	0.0166	0.0254	0.0426	01
0-4140	0.0816	0.0219	0.0361	0.0869 0.0857 0.0361 0.0345 0.0308 0.0361 0.0219 0.0816 0.4146	0.0349	0.0361	0.0857	0.0869	0
TOTAL	€0	~	•		4	•	~	-	EXPOSURE
		PF CLASS	NTS PER	FRACTION OF BASEMENTS PER PF CLASS	RACTION (14.			PERCENT

s S	2.13	2-43	2-63	2.57	2.24	2.45	2-12	•	•	•	•	•	•	•	•	•	•	•	•	•		
AV PF	2.89	3.85	4.25	5.17	5.69	2.00	6.50	8.C0	2.00	7.00	8.8	•	•	8.9		•	•	•	•	•		
TOTAL	1228	193	65	23	91	~	~	-	-	-	-	0	•	-	0	· 0	•	•	•	0		1.36
•	92	23	13	-	S	-	-	-	0	•	-	•	•	0	v	O	0	•	•	0	132	1.92
~	36	2	•	~	~	~	0	0	6	-	0	0	•	•	0	•	0	0	0	0	57	1.89
•	*	91	•	~	m	0	0	0	0	ပ	0	•	•		0	•	•	0	0	0	20	1.61
•	78	12	•	•	-	-	-	0	•	•	•	0	•	•	0	•	•	•	0	0	110	1.51
•	116	7.1	•	-	~	-	0	•	ပ	0	ပ	•	•	0	0	0	•	•	0	٥	142	1.29
•	119	*	•	-	7	•	0	0	0	•	0	0	•	•	0	•	0	0	0	0	931	1.23
~	586	39	*	*	2	7	0	0	-	0	0	•	•	0	0	0	•	0	0	•	361	1.29
	430	39	12	~	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	483	1.14
BUILDING	-	~	•	•	•	•	•	•	•	10	=	12	13	*	51	91	11	81	19	92	TOTAL	AVE S D

PRACTION OF BUILDINGS PER PF CLASS

	TOTAL	0.7979	0.1254	0.0422	0.0149	0.0104	0.0045	0.0013	9000*0	9000*0	9000*0	9000*0	•	•	9000*0	•	•	•	.	•	•	
	•	0.0494	0.0175	0.0084	0-0045	0.0032	9000*0	90000-0	90000-0	•	•	900000	•	•	••	•	•	•	•	•	•	0.0858
	4	0.0234	0.0065	C-0026	C.0013	0.0013	0.0013	•	•	ំ	9000*3	•	•	•	•	ះ	•	•	•	.	ះ	0.0370
}	•	0.0481	0.0104	0.0052	0.0013	0.0019	•	•	•	•	•	.	•	3	90000	•	•	•	ဒံ	•	ં	C.0676
	N.	0.0507	0.0136	0.0026	0.0026	90000 0.0000	C-0006	0:000	•	•	•	•	•	•	•	8	•	•	•	•	•	0.0715
	•	0.0754	0.0110	0.0039	900000		9033*0	•	•	•	•		•	•		.			•	•	•	0.0923
	m	0.0773	0.0156	0.0026	9000*0	0.0013	•	•	•	•	ំ	•	•	•	•	•	•	•	့	•		0.0975
4	~	0.1943	0.0253	0.0091	0.0026	0.0013	0.0013	•	•	9000*0	•	•	•	•	•	•	•	•	•	•	•	0.2346
	-	0.2794	0.0253	0.0078	0.0013	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.	0.3138
	BUILDING	-	2	m	4	w	٠	1	€	6	91	11	12	13	51	15	91	11	18	19	20	TOTAL

Appendix F

Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings

This Appendix was originally submitted to OCD as Research Memorandum RM 81-4*, except for minor editorial changes.

^{*} W. K. Grogan, E. L. Hill, and D. T. Searls. Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings. Research Memorandum RM 81-4. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 19 November 1962.

Appendix F

Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings

This Appendix was originally submitted to OCD as Research Memorandum RM 81-4%, except for minor editorial changes.

^{*} W. K. Grogan, E. L. Hill, and D. T. Searls. <u>Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings</u>. Research Memorandum RM 81-4. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 19 November 1962.

Appendix F

Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings

I. INTRODUCTION

The Research Triangle Institute estimated the probable error of the NFSS findings by surveying a statistical sample of 33 buildings. The procedures used, findings, and an analysis of findings of the survey are reported in Part I, Chapter 4. This appendix gives the details of the selection of sample buildings surveyed by RTI.

II. DESCRIPTION OF THE SAMPLE

A. Size of Sample

The time element involved in conducting the field work and data analysis necessarily restricted the size of the sample. It was estimated that this time factor would make it possible to survey no more than 60 buildings.

An analysis was made of the significance with which the differences between the NBS-NFSS Computer Program and the Engineering Manual could be estimated. Based on the results of this analysis, as presented in Section III, a sample of 30 buildings was considered adequate for detecting differences in estimated PF ratings of 10 units.

The size of the sample was set at 33 buildings by a systematic subsample of every other building in an initial sample of 60 with a random starting point chosen in each region. Buildings from regions with only one sample building initially were included automatically in the subsample.

B. Selection of Sample Buildings

1. Development of a Sampling Unit -- the Cluster

The universe to be sampled consisted of all buildings in the largest forty cities which had one or more shelters rated in PF Categories 2, 3

or 4 in Phase 1 of the NFSS. Table F-I lists the cities comprising the universe and indicates, by county, the standard locations falling within the boundaries of each city. A complete listing of all buildings for which Phase 1 FOSDIC Forms were submitted is on magnetic tape at the National Bureau of Standards. Unfortunately, data were not available on the total number of buildings in the restricted universe having at least one shelter falling in the selected PF categories. In order to obtain a probability sample of these buildings, it was necessary to employ an indirect procedure which utilized shelter information that was available.

Summaries by standard location of the number of shelters in PF Categories 2, 3, and 4 were the data used. Each city was assigned a number of clusters of shelters by dividing the total number of shelters in Categories 2-4 by the average number of shelters per building for the county in which the city appeared. Counties were the smallest political subdivisions on which data were available in summary form on the total number of shelters in all PF categories. (Table F-II, Column 2, gives the number of clusters determined in each region.)

2. Construction of Strata

Equal sized strata in terms of numbers of clusters were then constructed within an OCD region. OCD Regions 4 and 6 were combined for simplification. The number of strata constructed in a region was approximately proportional to the number of clusters it contained. OCD Regions 3, 5, and 8 were each assigned one stratum. (Table F-II, Column 3 for the number of strata assigned to each region.)

TABLE F-I
Cities Comprising the Restricted Universe

OCD			Standard	No. of Standard
Region	City	County	Location Nos.	Locations in City
1	New York City, N. Y.	Queens	16450001-0680	2225
			16440001-0275	
1			16460001-0085	ì
		Brooklyn	16420001-0811	1
1		•	16410001-0374	
- 1	Boston, Mass.	Suffolk	13150001-0156	156
			16310001-0072	72
1	Buffalo, N. Y.		15410036-0135	100
ì	Newark, N. J.	Essex		
l	Rochester, N. Y.	Monroe	16510001-0090	90
2	Washington, D. C. $\frac{1}{}$		22110001-0125	125
- 1	Cleveland, Ohio	Cuyahoga	25410001-0205	205
	Pittsburgh, Pa.	Alleghany	26810017-0205	189
	Cincinnati, Ohio	Hamilton .	25310001-0112	112
	Columbus, Ohio	Franklin	25510001-0112	97
		· ·	23510001-0097	112
	Louisville, Ky.	Jefferson		72
	Toledo, Ohio	Lucas	25D10001-0072	
	Philadelphia, Pa.	Philadelphia	26750001-0370	370
	Baltimore, Md.1/		24130001-0168	168
3	Atlanta, Ga.	DeKa1b	33230001-0009	9
_		Fulton	33240001-0100	100
	Memphis, Tenn.	Shelby	37310001-0102	102
	Birmingham, Ala	Jefferson	31110001-0061	61
	priminguam, Ara-	Jerrerson	131110001-0001	1
4	Milwnukee, Wis.	Mi lwaukee	45510001-0186	186
	Minneapolis, Minn.	Hennepin	44330001-0127	127
	Indianapolis, Ind.	Marion	42410001-0146	146
	St. Paul, Minn.	Ramsey	44340001-0076	76
	Chicago, Ill.	Cook	41210011-0869	859
	Detroit, Mich.	Wayne	43330019-0452	434
5	llouston, Texas	Harris	55810001-0121	121
-	Dallas, Texas	Dallas	55720001-0174	174
	Ft. Worth, Texas	Tarrant	55920001-0080	80
	New Orleans, La.	Orleans	52420001-0155	155
	San Antonio, Texas	Bexar	551110001-0092	92
	Oklahoma City, Okla.	Oklahoma	54230001-0091	91
	ORTHOGRA CITY, ORTH.	OKTAHOMA	34230001-0071	1 '*
6	Kansas City, Mo.	Clay	64110001-0009	9
	1	Jackson	64120014-0124	111
	Denver, Col.	Denver	61240001-0097	97
	St. Louis, Mo. $\frac{1}{}$		64340001-0128	128
7	Phoenix, Ariz.	Maricopa	71110001-0088	88
•	Long Beach, Cal.	Los Angeles	72310079-0145	67
	Los Angeles, Cal.	Los Angeles	72310146-0777	632
		San Francisco	1	127
	San Francisco, Cal.	Alameda	1	99
	Oakland, Cal.		72710043-0141 72610001-0136	
	San Diego, Cal.	San Diego	/2010001-0130	136
8	Scattle, Wash.	King	85210701-0118	118
	Portland, Ore.	Clackames	84210001-0002	2
	1	Multnamoh	84220001-0101	101

TABLE F-II
Universe_Characteristics

	Number of	Number of	Number of Universe	Number Samp	le Clusters
Region	Universe Clusters	Universe Strata	Clusters Per Stratum	Sample of 60	Sample of 33
1	27852	33	844	33	17
2	7425	9	825	9	5
3	655	1	655	1	1
4,6	10272	12	856	12	6
5	1091	1	1091	1	1
7	2151	3	717	3	2
8	838	1	838	ı	1
TOTAL	50284	60		60	33

3. Cluster (sampling unit) Selection

One cluster (sampling unit) was selected for the sample from each stratum with equal probability of selection. This was achieved by drawing a random number between one and the total number of clusters in a stratum. For example, in Region 1 each stratum had 844 clusters (Table F-II). The chance of a cluster being selected for the sample in these strata was 1/844. By accumulating numbers of clusters by city in a region it was possible to determine the cities that contained sample clusters. Within a city, accumulations by standard location revealed the standard locations in which the sample clusters occurred. Table F-III shows the selected sampling units by standard location, city and region.

4. Determination of Sample Buildings

The next step was to determine the sample buildings in the selected standard locations. This was done by checking detailed IBM print-outs for these

TABLE F-III
Selected Sampling Units by Standard Location, City and Region

OCD Region	City	Sample Standard Location Number	Number of Sample Units Within S. L.	Sample Unit Selected	Cat.2,3, &4 Indicated Shelters in S.L.
1	Rochester Boston	16510005 13150026	85 62	58 30	226 236
	NYC Queens "	16450017 16450538	14 5	9 4	54 20
	Manhattan "	16440028 16440063	61 14	28 14	390 84
	"	16440096 16440126 16440156	133 29 105	36 17 12	852 190 667
	"	16440204 16440260	55°	15 11	353 68
	Brooklyn "	16420207 16420495	10 9	10 8	51 45
	Bronx	16410046 16410138 16410194	75 57 27	73 43 6	280 211 101
2	Newark Philadelphia	15410066 26750017	30 142	14 65	124 602
	D. C.	22110005 22110062	40 72	22 56	181 332
	Cleveland Louisville	25410058 23510029	241 20	217	911 45
3	Memphis	37310043 37310044	6	6	22
5 4,6	Houston Indianapolis	55B10026 42410013 \	56	11	350
-	Chicago	42410014 42410015 41210065)	1	1	3
	11	41210066) 41210144 41210490	1 50 325	1 8 197	3 135 889
	St. Louis	41210868 41210869 64340122	9 114	3 84	25 510
7	Los Angeles San Francisco	72310453 72740072 72740073	13 7	80	512 42
8	Seattle	85210061	187	21	737

standard locations. From the print-outs the number of shelters in PF Categories 2-4 was accumulated. With this accumulation it was possible to determine the location of the sample cluster. The building containing the sample cluster was taken as the sample building. A knowledge of the number of shelters in PF Categories 2-4 contained in the building makes it possible to determine the probability of selection of any sample building. If a cluster contained more than one building, only one was selected for the sample with probability proportional to the number of shelters it contained in Categories 2-4. All clusters were delineated in such a manner that there was always an integral number of clusters per building or an integral number of buildings per cluster.

A knowledge of the probability of selection of each sample building is essential to insure correct estimate and variance computations. Variance computations were made in all cases using a collapsed stratum technique.

C. Example of Building Selection

The sample selection procedure will be illustrated in detail using data for Region 3. Data for the universe cities in Region 3 are presented in Table F-IV.

TABLE F-IV
Region 3 Data

Cities	Number of Shelters PF Cat. 2-4	Avg. No.: all Shelters Per Building	No. Clusters Assigned (1) A (2)	Accumu- lated No. Clusters	Random Number Selected
	(1)	(2)	(3)	(4)	(5)
Atlanta	1104	4.5144	245	245	
Birmingham	539	3.0860	175	420	
Memphis	863 2506	3.6771	23 <u>5</u> 6 5 5	655	626

1. Selection of Sample Cluster Within Stratum

The 655 clusters in Region 3 composed one stratum. The random number selected between one and 655 was 626. As seen in Table F-IV, sample cluster 626 is located in Memphis. In fact, it will be number 206 of the 235 clusters in Memphis. Standard Location totals for Memphis are then accumulated as in Table F-V.

TABLE F-V
Memphis Standard Location Totals

Standard Location Number	No. Shelters Categories 2-4	Cumulative Shelters	Cumulative Clusters	Clusters Assigned
3731 0001	3	3	1	1
2	3	6	2	1
3	5	11	3	1
•	•	•	•	
•	•	•	•	•
	201	•	400	
42	364	735	200	99
43 44	22\ 0}	7 57	206	6
45	2.	131	200	0
46	14	773	210	4
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
99	4	861	234	1
100	ΟÌ			
101	1 >			
102	1	863	235	1

Notice that standard locations with zero or few indicated shelters are combined with other standard locations.

2. Delineation of Standard Location Containing Sample Cluster

It can be seen from Table F-V that the grouping of Standard Locations

3731 0043--3731 0044 contains six clusters and the sample cluster number 206
will be the sixth cluster of the six.

Detailed IBM print-outs were obtained for the two standard locations.

All buildings were listed with the number of shelters in Categories 2-4.

Even though Standard Location 3731 0044 had zero indicated shelters, the print-out was checked to see if any changes had occurred since the summaries had been tabulated. In this case, no changes had occurred.

3. Delineation of Building to Be Surveyed

The total number of Category 2-4 shelters was 22. Since there were to be six clusters in the group of standard locations this meant an average of 3.667 shelters per cluster. Table F-VI presents the standard location information. Cluster numbers can be obtained by dividing the accumulated number of shelters for each building by the factor 3.667 and determining how many clusters have occurred to that point.

As seen in Table F-VI the sample building is the sixteenth building in Standard Location Number 43. In this case, the sample cluster coincided exactly with the sample building so that the probability of selection of the sample building is the same as the probability of selection of the sample cluster, e.g. 1/655.

Table F-VII presents the sample cities with the numbers of sample buildings per city. A listing of the sample buildings selected is in Table III of Part I, Chapter 4.

111. CONFIDENCE STATEMENT

Prior to receipt of survey findings, no clearcut conclusions could be drawn concerning confidence statements for differences that would result.

However, some general guidelines were constructed based upon certain assumptions as to the variability likely to be encountered in the data.

TABLE F-VI

Number of Shelters by Building in Memphis, Tenn., Sample

Standard Locations

Standard Location Number	Building Number	No. of PF Category 2-4 Shelters	Cluster Numbers
43	1	1 \	
	2	6	
	3	1 }	1,2
	4	O)	
	5	1)	
	6	0	
	7	1)	
	8	0	
	9	1 (3
	10	1)	
	11	1)	
	12	2 }	4
	13	1)	1
	14	0	1
	15	1	5
	16	5	6
	17	0	
	18	0	
44	19	0	
	20	0	1

TABLE F-VII

Number of Sample Buildings Per Sample City

		Number of Sample	Buildings
Region	Sample Cities	Sample of 60	Sample of 33
1	Rochester	1	1
	Boston	3	1
	New York	28	14
	Queens	3	2
	Manhattan	14	7
	Brooklyn	5	2
	Bronx	6	3
	Newark	1	1
	TOTAL	<u>33</u>	<u>17</u>
2	Philadelphia	2	1
	D. C.	3	2
	Pittsburgh	1	
	Cleveland	1	1
	Toledo	1	
	Louisville	1	1
	TOTAL	9	<u>5</u>
3	Memphis	1 <u>1</u>	1 <u>1</u>
5	Houston	1 <u>1</u>	1 1
4,6	Indianapolis	1	1
	Detroit	1	
	Chicago	7	4
	Minneapolis	1	
	St. Louis	1	1
	Kansas City	1	
	TOTAL	12	<u>6</u>
7	Los Angeles	1	1
	San Francisco	2	1
	TOTAL	<u>3</u>	2
8	Seattle	1 1	1 <u>1</u>
	GRAND TOTAL	<u>60</u>	<u>33</u> ,
	TOTAL CITIES	21	16

For example:

Let $x_i = PF$ rating computed in Phase 1

Let y, = PF rating computed in RTI survey using NBS Method

then $d_i = y_i - x_i$ is the difference observed.

An assumed standard deviation of differences of 15 units would imply that a range of ninety units would include virtually all differences observed if the survey were to include all buildings in the universe rather than a sample of them. Figure F-1 presents probabilities of detecting differences up to ten units for samples of size 33. If the true standard deviation is less than 15, the curve would be to the left of the one shown and if it is greater than 15 the curve would be to the right.

The graph indicates that a true average difference of five units would have a 50 percent chance of being detected while an average difference greater than ten units would almost certainly be detected.

FIGURE F-1

Probability of Detecting True Differences of 0 to 10 for Sample Size of 33 Under the Assumption That The Standard Deviation of Differences is 15

Probability

True Average Difference

Sensitivity Analysis of
Building Protection Factors

This Appendix was originally submitted to OCD as Research Memorandum RM 81-2,* except for minor editorial changes.

^{*} Edward L. Hill and Russell O. Lyday, Jr. Sensitivity Analysis of Building Protection Factors. Research Memorandum RM 81-2. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 21 September 1962.

Appendix G

Sensitivity Analysis of Building Protection Factors

I. INTRODUCTION

One of the tasks of OCD Project 1115A was to estimate probable error, or reliability, of the National Fallout Shelter Survey findings. There were a number of potential sources of error in the NBS method of computing Protection Factors (PF's) (References 1 and 2) and insufficient contract time to study all of them. To accomplish this task, it was deemed necessary to identify those sources of error likely to cause the largest variations in the calculated Protection Factor. This appendix describes a method used by RTI to identify building parameters most sensitive to change. The findings of this analysis were used to develop the list of data required to supplement NFSS Phase 1 and Phase 2 data for the RTI sample (see Part I, Chapter 4, Section III. A.).

II. PROCEDURES AND RESULTS

Input data were varied for a typical building, one element at a time, to determine resulting changes in PF. A data sheet containing all inputs necessary for the NBS PF computation was prepared for a typical building; then, data sheets were prepared which changed values assigned to the roof, walls, and partitions. Protection Factors for these buildings were computed using a computer program (Reference 3) developed at the University of North Carolina under a previous OCD contract. Original building parameters and tabulated results are found in Table G-I.

TABLE G-I

Analysis of Hypothetical Building Protection Factors

A. Original Building Parameters

Number of Stories	4
Height of Building	48 ft.
Height of Basement	8 ft.
Length of Exterior Walls	100 ft. all sides
Basement Exposure	0 all sides
Proportion of Apertures	25% all sides-all floors
Sill Height	3 ft.
Contaminated Planes	200 ft, at 0 litall sides
Mass Thicknesses	
Roof	10#
Floors	40#
Walls (all floors)	120# all sides
Partitions (all floors)	20# all sides

B. Building Analysis

Burturia Andrysto		PROTECTION FACTOR							
	Floor No.	0	1_	2	3	4			
1. Basic Building	'	286	58	38	15	4			
2. Add 30# - Roof		408	69	59	29	9			
3. Add 10# - Partitions		328	80	50	19	5			
4. Add 20# - Partitions		382	85	56	20	5			
5. Add 20# - Walls		296	65	40	16	4			

III. CONCLUSIONS

This analysis, as well as comparison of the NBS Computer Program with more advanced methods of calculating PF's such as the Engineering Manual, indicated that the following elements of the PF calculation procedure were likely to cause the largest variations in the PF:

- A. Interior Partitions
- B. Basement Exposure
- C. Apertures
- D. Shape Factor

REFERENCES

- L. V. Spencer and C. Eisenhauer. <u>Calculation of Protection Factors for the National Fallout Shelter Survey</u>. National Bureau of Standards Report No. 7539. Washington: U. S. Department of Commerce, July 1962.
- National Bureau of Standards. <u>Description of Computer Program for National Fellout Shelter Survey</u>. National Bureau of Standards Report No. 7826. Washington: U.S. Department of Commerce, 15 March 1963.
- Operations Research Division. <u>Building Evaluation NUIT Program</u>. RTI Internal Report C-208. Durham, North Carolina: Operations Research Division, Research Triangle Institute, December 1961.

Appendix H

Engineering Manual Ground Contribution Computational Details

1. INTRODUCTION

Building structural data from building plans, or from the data collection form (TAB 1), were used as basic inputs in the Engineering Manual (Reference 1) computations for the RTI sample of 33 buildings (see Part I, Chapter 4). Computational forms outlining the details of the Engineering Manual procedure were developed so that personnel not familiar with the Engineering Manual could compute a building PF after the basic data inputs were made. This appendix contains Engineering Manual functional equations used to develop the computational forms, samples of the forms used, and detailed instructions for their use.

II. STORIES ABOVE GRADE

For stories with the detector located above all contaminated planes, the total contribution is divided into three parts. These parts are Adjacent, Through Floor, and Through Ceiling.

A. Adjacent Contribution

1. Functional Equations

The Adjacent contribution is defined as that radiation reaching the detector through the walls and apertures of the floor being calculated. This contribution is divided into four parts which have the following functional equations.

a. Direct Contribution with Sill at or Above Detector Level

$$\frac{A_{z}}{360} B_{w}(X_{e}, H_{4}) B_{w}(X_{1}, 3') G_{d}(\omega_{cd}, H_{4}) [1 \cdot S_{w}(X_{e})]$$

$$\frac{(1)}{360} (5) (6) (25) (9)$$

b. Direct Contribution Through Apertures

$$\frac{A_{\underline{z}a}^{'}}{360} B_{\underline{w}}(X_{\underline{1}}, 3') G_{\underline{d}}(\omega_{\underline{l}a}, H_{\underline{d}}) B_{\underline{w}}(X_{\underline{e}} = 0, H_{\underline{d}})$$

$$\frac{(72)}{360} (6) (71) (7)$$

$$-\frac{A_{2a}^{1}}{360}G_{d}(\omega_{2a},H_{4})B_{w}(X_{1}^{3})[1-S_{w}(X_{e})]B_{w}(X_{e},H_{4})$$

$$\frac{(72)}{360}(71)(6)(9)(5)$$

c. Scatter Contribution

$$\frac{\Lambda_{z}}{360} B_{w}(X_{e}, H_{4}) B_{w}(X_{i}, 3') \frac{B_{ws}(\omega_{s}, X_{e})}{B_{w}(X_{e}, H_{4})} [G_{s}(\omega_{s}) + G_{s}(\omega_{u})] S_{w}(X_{e}) E(e)$$

$$\frac{(1)}{360} (5) (6) (51)/(5) (39) (41) (8) (52)$$

-
$$\frac{A_{za}}{360} B_w(X_1, 3') B_{ws}(\omega_s, X_c) G_s(\omega_{as}) S_w(X_c) E(e)$$

 $\frac{(11)}{360} (6) (51) (33d) (8) (52)$

d. Skyshine Contribution

$$\frac{A_{z}}{360} \quad B_{w}(X_{c}, H_{4}) \quad B_{w}(X_{1}, 3') \quad \left[1 - S_{w}(X_{c})\right] \left[G_{a}(\omega_{u}) - P_{za}G_{a}(\omega_{a})\right]$$

$$\frac{(1)}{360} \quad (5) \quad (6) \quad (9) \quad (18) \quad (12) \quad (31)$$

+
$$\frac{A_{za}}{360} B_w(X_1,3') G_a(\omega_a) B_w(X_e=0,H_4)$$

 $\frac{(11)}{360}$ (6) (31) (7)

The numbers in parentheses refer to column numbers of the computational form (Figure H-1). The symbols in the functional equations are defined in Table 5 of the Engineering Manual, except for the following:

- (11) = A_{za} = degrees of aperture in the sector for scatter radiation
- (72) = A_{2a}^{-1} = degrees of aperture in the sector for direct radiation
- (7) = $B_w(X_p=0,H_L)$ = height correction factor for height H_L
- (12) $= P_{2A} = perimeter ratio of apertures in the wall sector$

2. Adjacent Instructions

RTI produced a special form which was used to compute the adjacent centribution in a step by step procedure which could be accomplished by personnel not familiar with Engineering Manual details once the initial entries were marked. Figure H-1 shows the Adjacent Form with its headings. A special set of instructions was needed to enter the necessary initial data and to mark out sections not used in the particular sector being computed. The detailed instructions for completion of the form are as follows, with numbers in parentheses indicating form column headings:

- a. For contaminated planes 2, 3, ... in a sector, set (54) = (60) = 0 and blank out (14), (15), (16), (17), (18), (26), (27), (28), (29), (31), and (53). This prevents skyshine from being computed more than once.
- b. When (3) = 0, set (6) = 1.
- c. If (11) = 0, set (53) = (63) = (73) = (73a) = 0 and blank out (12), (26) = (33d), (60), (61), (62), and (65) = (72).
- d. If floor slab extends to exterior wall set (34) = 3'.
 If it doesn't, calculate (34) as in Figure H-2.

(61) C83 (L) 3 ĝ FIGURE B-1
Adjucent Form
(9) (10) ε 3 9 3 ઉ ô 3

7		(3%)	3.		(47)	Les+2W_=	(45)+(46)	
_	\$ 5		, e	t 3 or£ G			Ť	_
ا د د	Chert	(36)	3	Chart 3	 (99)	U=2".	2(64)	ļ
L) CL)	Chart 3	(33b)	3		 (45)	s		
1	See (13) Chart 3	(#g	27.4	7	(77)	u 6 U'		
z=2(14)	L	 E	27 - 7 × 7	(13)	 (63)	2,		
2 42' 2-204)	p		2 62.		(42)	(39)+(41)		
UXI			C. U. OT 2 . C.	Chaffe 5	(17)	("M° 5	Chart 5	
۵.	ດກຸດນ	83	3	C Tra	(PO7)	(J.)	Chart	
4	3		7 2		(70°)	1		
വാദാഭാ		88	-22	1	 (40))			
1-5 (X	•	98	U = 1	(13)	(404)	H x L	3	
(x) si	Cherre 7	98	2,27		 (69)	2,		
(X, E,) X 313 (X -0, E,) 1-5 (X) (X -0, E) (S)	Chart 2 Chart 2 Chart 2 Chart 7	<u> </u>	Web W 6 4 4 4 2 2	Chart 6	 (39)	(*m)*3	Chart 5	
֝֞֝֝֝֝֝֝֝֝֝֝֝ ֡֡֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	Chart 2	(62)	Web W	= 1-(23) Chart 6	(38)	Ym	Chart 3	
<u>ا</u>	Chart 2	63	cos 6 =	¥ (22)	(32)	H = 3	3	
H,		(22)	1+(21)		(90)	$\left[\begin{array}{cc} \frac{1}{222} - I_{\rm u} \end{array}\right]$		
×"		(3)	(13)/(50 1+(51)	R1/21	(32)	TXA	(13)	
×°		(50)	2,42,1	! 	 (35)	I ₂		! !
Sector Strip	¥							-
ď	'						· j	.4 .

			.,
(65)	R.		
(64)	(59)+(65)		
(63)	(9) (29)		
(62)	(60)-(61)		
(19)	(5)) (3) (10) (31) (3) (3) (3) (3) (4) (6) - (6) (6) (6) (6) (6) (6)		
(60)	(2)(16)		
(59)	(01) (35)	Ì	
(S	(95)+(25)	-	
(56) (57)	(62)(51)	(5)	
<u>%</u>	(55) (9)		
(58) (58)	(6) (SS) POT	(charge)	
Ê	3	(cc)-(s1)	
(53)	ر د	(30)	
(52)	E(c)v4th P	Chart 8	
(51)	3.	Chart 9	
<u>8</u>	79/5 02	Chart 3	
(69)	n = 22/1	(47)	
(83)	(65) 1/n="0	((7)	
!	!		1

			_
	_		
	_		
	;		
	_		<u> </u>
		\Box	<u> </u>
			ļ
	_	П	
_	(79)+	3	
(36)	*	- (734)	
	Š		
3	123	9	
E	[2]	Ξŝ	
_	<u> </u>	_"	
\$	3	(22)	
(73) (73)	۳	L	
ŝ	 . 3		
	[~"		1
_	2	و ا	
5	3.	Ò	
	2	5 G	1
6		.9	ļ
C	34	3-	
_). .	ົ ໄລ່	•
ઈ	3 43	Ę	!
	, "	Ē	·
ŝ	2,		
۳	2		
_			
(9)	Ry/Z		i
	۳_	-	
66	٠٥	أيّد	j
ٽ	~	~``	! !
J	9 " 5 2	2 P.	
	١) i
	i		į
			:

- e. Calculate the wall crossing Z's for direct, skyshine, and scatter (if necessary). These Z's define the location and width of the contaminated planes in terms of where a direct line from their edges to the detector would intersect the exterior wall.
- f. Assign a code number for direct $(M_{dos}, M_{d1}, M_{d2}, M_{d3}, \text{ or } M_{d4})$, sill level $(S_a, S_{boo}, S_{b1}, S_{b2}, S_{b3}, S_{b4}, S_c, \text{ or } S_d)$, wall scatter $(M_{s1}, M_{s2}, M_{s3}, M_{s4})$, and skyshine $(M_{aoo}, M_a, M_{a1}, M_{a2}, M_{a3})$ (see TAB 2 for details).
- g. If code is S_a, S_{b1} , or S_d , blank out (65) (72) and set (73) = (73a) = 0.
- h. Enter data in: (dimensions in feet and weight in psf)
 - (1) degrees of the sector
 - (2) = exterior wall weight (X_p)
 - (3) = interior wall weight (X_i)
 - (4) = detector height above plane of contamination
 - (11) = degrees of aperture in sector
 - (13) width and length of building (exterior)

- (14) = distance to ceiling and distance up to height of mutual shielding (two entries if necessary)
- (19) = radius out to wall at midpoint of sector
- (20) = height from detector to wall crossing (direct)
- (26) = window height (heights)
- (32) = height of aperture struck by skyshine
- (34) = height of detector above floor at exterior wall
 (usually 3')
- (40) = wall height
- (43) height of midwall to plane of contamination
- (44) = width of contaminated plane
- (45) building side length adjacent to contaminated plane
- (65) = (19)
- (66) lower limits of aperture (sill below detector)
- (72) degrees of aperture "rough which direct passes

After these codes, modification, and entries are completed, the form is ready to be completed.

The entries in column (74) are the results of the various sectors and planes. The adjacent reduction factor is the sum of column (74) divided by 360 degrees.

B. Through Ceiling Contribution

1. Functional Equations

$$\frac{A_{z}}{360} B_{w}(X_{1}, 3') B_{0}'(X_{0}') \left[B_{ws}(\omega_{s}, X_{e}) \triangle G_{s}(\omega_{u}') S_{w}(X_{e}) E(e) \left[1 - A_{ps} \right] \right] \\
\frac{(1)}{360} (6) (7a) (51) (41) (8) (52) (4d) \\
+ B_{w}(X_{e}, H_{u}) \triangle G_{a}(\omega_{u}') \left[1 - S_{w}(X_{e}) \right] \left[1 - A_{pa} \right] + B_{w}(X_{e} = 0, H_{4}) A_{pa} \triangle G_{a}(\omega_{u}') \right] \\
(5) (18) (9) (4g) (7) (4f) (18)$$

where:

- (4f) = A_{pa} = fraction of aperture in skysbine contribution
- (4c) = A_{ns} = fraction of aperture in scatter contribution

2. Through Ceiling Instructions

The form for the Through Ceiling contribution is shown in Figure H-3. The 2's used in the earlier calculation for the adjacent contribution are also used for this calculation. The special instructions for completing this form are:

- a. Fill in blanks (1), (2), (3), (3a), (3b), (3f), (3h), (3i), (3k), (4), (4h), (13), (13a), (14), (39a), (40), (40a), (43), (44), and (45). [More details in m. below.]
- b. Leave three lines for each contaminated plane 1, 2, - - .
- c. For contaminated planes 2, 3, - within a sector, set (55) = (56)
 a 0 and blank out (31), (3j), (3k), (4), (4f), (4g), (7), (9),
 (13), (13a), (14), (15), (16), (17), and (18).
- d. If infinite plane (for wall scatter), blank out (43), (45), (46),
 (47), (48), (49), (50), and (50a). Set (51) = (5), and set
 (44) = ∞.
- e. When (3) = 0, set (6) = 1.0.
- f. If (3k) = 0 (No skyshine through apertures), set (55) = (4f) = 0 and blank out (3i), (3j), (4), and (7).
- g. If (3h) = 0, set (4c) = 0 and blank out (3f) and (3g).
- h. Assign code in (13a) for mutual shielding of skyshine. Put no if no mutual shielding, yes if partially shielded or comp if completely shielded.
- i. If (13a) is comp, (complete shielding of skyshine) set (55) = (56) = 0, and blank out (3i), (3j), (3k), (4f), (4g), (7), (9), (13), (14), (15), (16), (17), and (18).

(5) (6) B_u(K_eH_u)B_u(K_f3') Chart 2 Chart 2 (4) E (**(**4)-1 (4f) (24) € 🖼 Ê (31) (31) $\sum_{u,1}^{2} - Z_{u,1}$ (31) (31) FIGURE 8-3 Through Ceiling Form (31) 10, 12, 7 8 43 (3f) (3g)

2''2-Z'u2 A " "

(see (40)) (3f) (3b) (f) 3 40 ට € ×* Sector Strip ε

(2 09)	pus .		
(30%)	201	-	
(40))	-		
9	12 ×		
3	1: .P	,°	
(3%)	code for 2	catter	
(38)	C (W,)6 Code for	۵,	
273	, ead	20 C	
(91)	11		_
(3)	å	2(16)/L	
(14)	pus ".2	9 9	
(13e)	Code for Z' and	Shelding	
(33)	TEA		
(%)	(9)(1)		
8	1-(8)	 	
9	S (X)	Chart 7	
(38)	9.(X.)		
ε	٥ ٢	Oure 2	
į			
			- H-8 -
		1	

		l	H
(34)	(85) (86)		
3	+ (55)	(23)	
(23)	(52) (51)	ŷ	
(%)	(6)(81)	(३)(व्हा	
(\$\$)	(18)(7)	(F)	
(23)	Z(e)with	(20%) ••	
(31)	Bus (b. s.) Z(e) but th (18)(7) (18)(9) (52)(31) (55) + (9a)(58)	X 000	
(30e) (51)	3		
8	. U.	Cher: 3	
(69)	2(4.3)		
9	-1/1-	(49)/(47)	
(47)	8Z+S=7		
(%)	L-20		
(45)	s		
(77)	, , , , , , , , , , , , , , , , , , ,	. •	
(63)	د,		
(41)	Ç. ⊃.°	6 ∆C	
	_	-	
ļ			
:	į		

- j. Assign code in (39a) for wall scatter mutual shielding. Put no if entire upper wall is seen by direct rays from plane (no shielding). Put yes if part of upper wall is not seen by direct rays from a plane. Put comp if the wall is not struck by direct rays.
- k. If (39a) is $\underline{\text{comp}}$, set (57) = 0 and blank out (3f), (3g), (3h), (4c), (4d), (40), (40a), (40b), (40c), (40d), (41), (43), (44), (45), (46), (47), (48), (49), (50), (50a), (51), and (52).
- 1. If (4) = 3', set (7) = 1.0.
- m. Enter data in: (dimensions in feet and weight in psf)
 - (1) degrees in the sector
 - (2) = exterior wall weight (X_a)
 - (3) interior wall weight (X,)
 - (3a) = ceiling weight (X') = floor above
 - (3b) = length of wall in sector
 - (3f) vertical distance of wall seen by scatter
 - (3h) area of aperture in A (A a)
 - (31) vertical distance of wall seen by skyshine
 - (3k) area of aperture in A (A aa)
 - (4) = height of detector above plane of contamination
 - (4h) = height of midwall (upper story) to the plane of contamination
 - (13) building size W x L (exterior)
 - (13a) = code for skyshine mutual shielding

(14) =
$$Z_{ij}$$
's for skyshine

(40) =
$$Z_{11}^{1}$$
s for wall scatter

$$(40a) = (13)$$

$$(43) = (4h)$$

The sum of column (74) divided by 360 degrees is the reduction factor.

C. Through Floor Contribution

1. Functional Equations

The functional equations are:

$$\frac{A_{z}}{360} B_{w}(X_{1}, 3') B_{o}(X_{f}) \left[B_{w}(X_{e}, H_{z}) \triangle G_{d}(\omega_{zd}, H_{4}) \left[1 - S_{w}(X_{e}) \right] \left[1 - A_{pd} \right] \right] \\
\frac{(1)}{360} (6) (7a) (5) (25) (9) (4b) \\
+ B_{wg}(\omega_{g}, X_{e}) \triangle G_{g}(\omega_{z}) S_{w}(X_{e}) E(e) \left[1 - A_{pg} \right]$$

+
$$G_{d}(\omega_{d}, H_{4}) B_{w}(X_{e}=0, H_{4}) A_{pd}$$
(25) (7) (4a)

where:

(4a) = A = aperture fraction through which direct contribution passes

(4c) = A = aperture fraction through which scatter contribution would pass

2. Through Floor Instructions

The Through Floor Form is shown with its headings in Figure 11-4.

The Z's as calculated in the Adjacent computation are also used in this calculation. The special set of instructions are:

(5) (6)

B, (C₆, R, DB, (T₆, 3')

Chart 2 Chart 2 E E (3) 1-1-(4b) (4c) 1-(4a) An (3b)/(3g) (3) A (5) 3 ₽4 දි FIGURE B-4

Drough Floor Fore

4) (34) (34)

4d $\frac{1}{2}i^{2}I_{2}$ A.

(see (34))(35)(35) (%) (3c) (3d) Z₁ -Z₁ A_d (3e) (6ee (20) (3b) (3c) (gp 3 3 3 × Sector Strip ε

(33)	2(177)	\$ 22.00 0.00		
(38)	with 6 We	Chart 3 Chart		
(32)	31-			
%	7-			
(35)	1 = 3			
3	7, 2	Scatter		
(25)	h Pop	chart 6		
(36)	(£Z)-1	61.4		
ĝ	-	(22)		
(22)	1+(21)			
3	(12)+(20) 1+(21)			
(30)	727 72	(direct)		
ŝ	, r			
3	(3)(8)	(34)		
3	<u>(8</u>			
3	ر د د	Chart /		
3	· Bock			
8	B, CK =0,	H,) Chart Case		
			• •••	
ļ !	ļ		- H-11 -	
:	•		- H-11 -	

	1 !		I
	<u> </u>		
	_		
(36)	86) (79)		
3	+ (cs) +	(%)	
(63)	(25)(3)		
(57)	(3)(31)	(99)	
%	(5)(49)		
(25)	E(e)414	A Joseph Chart 8	
(51)	. D	X Joseph	
(50a)	7		
9	260,	Chart 3	
(67)	2(43)		
3	(60)		
(7)	L-S+24		
(%)	#75m		
(45)	s		
(44)	3.		
(63)	2^-(رد)		
		-	
1	-	l lj	
	1		
	í	-	

- b. If no apertures are penetrated by direct radiation in reaching the detector, set (63) = (4a) = 0, and blank out (3c), (3d), (3e), and (7).
- c. If no apertures at all, set (63) = (4a) = (4c) = 0 and blank out (3b), (3c), (3d), (3c), (3f), (3g), (3h), and (7).
- d. If (3a) = 0, set (7a) = 1.
- e. If (3) = 0, set (6) = 1.
- f. If plane of contamination is infinite, set (51) = (5) and blank out (43) = (50).
- g. For finite planes, see "Adjacent" instructions for W_g (44) and $B_{_{\rm WS}}$ (51).
- h. If the wall receives no scatter, set (51) = (52) = 0, and blank out (34) = (50a).
- i. Enter data in: (dimensions in feet and weight in psf)
 - (1) degrees in sector
 - (2) = exterior wall weight (X_p)
 - (3) = interior wall weight (X_i)
 - (3a) = weight of floor (X_f)
 - (3b) = length of wall in sector
 - (3c) height of wall through which direct passes
 - (3e) = area of aperture in direct
 - (3f) = height of wall seen by scatter

- (3h) = area of aperture in A_s (A_{as})
- (4) = height of detector above plane of contamination
- (4e) = height of midwall above plane of contamination
- (19) = radius out to wall at midpoint of sector
- (20) = 2_£ 's for direct
- (34) = Z_{ℓ} 's for scatter
- (35) = width x length
- (43) = (4e)
- (44) = plane width
- (45) = length of building on side adjacent to plane

The reduction factor from the floor below is the total of column (74) divided by 360 degrees. It should be noted that when the detector is located on a first floor and there is no exposed basement, this contribution does not exist.

III. BASEMENT CONTRIBUTION

A. Functional Equations

The basement computation is similar to the above-ground computation. If the basement has an areaway or some other plane lower than the detector, the sectors affected are calculated with the Adjacent Form; otherwise, the following special instructions are used:

If basement is not exposed, use two forms: (a) the <u>Through Ceiling</u>
 Form for radiation from 2nd story and (b) the <u>Basement Form</u> (Figure H-5) for the radiation from 1st story.

- For (a), use previous Through Ceiling Form with (4) = 3° , (3a) = sum of the first and second floor weights, and (7) = 1.0.
- 2. If basement is partially exposed, two forms are needed: (a) Through Ceiling and (b) modified Basement. For (a), use the previous Through Ceiling Form with the following interpretation: set (4) = 3' and (7) = 1.0.

For the modified <u>Basement Form</u>, use the <u>Basement Form</u> with the following changes:

Set
$$(3a) = 0$$
, $(4h) = 3$, and $(7a) = 1.0$.

Thus the only new form is the <u>Basement Form</u>. This form is similar to the others and uses the following functional equations:

$$\frac{A_{z}}{360} B_{w}(X_{1}, 3') B_{o}^{\dagger}(X_{o}^{\dagger}) \left[\left[1 - S_{w}(X_{c}) \right] B_{w}(X_{c}, H_{u}) \left[\triangle G_{n}(\omega_{u}) - P_{za} \triangle G_{n}(\omega_{n}) \right] \right] \\
\frac{(11)}{360} (6) (7a) (9) (5) (18) (12) (31) \\
+ P_{za} \triangle G_{n}(\omega_{n}) + B_{ws}(\omega_{s}, X_{c}) S_{w}(X_{c}) E(c) \left[\triangle G_{s}(\omega_{u}) - P_{za} \triangle G_{s}(\omega_{as}) \right] \right] \\
(12) (31) (51) (8) (52) (41) (12) (33d).$$

B. Basement Form Instructions

The <u>Basement Form</u> is shown in Figure H-5. The Z's are calculated as in the other forms for blocking of skyshine. The instructions and comments on filling out the form are:

- Fill in blanks (1), (2), (3), (3a), (4h), (11), (13), (14), (26),
 (32), (40), (43), (44), and (45).
- 2. Leave 3 lines for each plane 1, 2, 3, ...
- For planes 2, 3, . . . in a sector, set (53) = (56) = 0 and blank out (9), (13a), (14), (15), (16), (17), (18), (25a), (26), (26a), (27), (28), (29), (31), and (54).
- 4. When (3) = 0, set (6) = 1.0.

FIGURE 9-5 Reservent FOTE

	(13)	. 3	30	(40%)	3 × 1			3	787-(51)		
	(91)	3 - 3		(0%)	\$.2	1		(53)	(12) (31) (18)-(53)		
	(15)	1/(51)2	2(14)/1	(388)	Tog apon (n)	Shieldin		(52)	E(e)	\$ (40c)	
	(16)	g. snd	1 2	(336)	3	(A)		(51)	2	Chert 9	
	(134)	code for 3.	skysbine	(36)	1,12.			(504)	.3		
	CΩ	U×I		(339)	7			8	, ,	C State	
	(21)	Pra	m/an	(33)	7(22)	1		(69)	n=2(43)	(67)	
	(11)	A.		6	1 # 7	(13)		(99)	21-	-	1
	(89)	1 -(8) (1)(6)(7)		33	2.2	,	II	(67)	12-S-7		
티	6)	(8) - 1		(315)	Code for	8		(99)	nz-n		
Balenant Form	(8)	(s, (x,)	Chart 7	66	((1))			(45)	s		
	(72)	1, (x,)	i i	(62)		36		3	7.	10,	-
	(9)	b_(X ₁ , 3*)	Chart 2	(28)	74			(43)	2,	1	
	(3)	a (x, R,) b (x, 3') b (x,)	Chart 2 Chart 2	(2)	2,725			(42.	Code for	Strip	
	(4h)	×"		(38	3 × 12	(11)		(41)	C. C. Code for	Opera 5	_
	(30)	ĸ°		(36)	, Z	2 3		(P07)	h endh	أنسا	
	3	H.		(25a)	Code 1	96		(60c)		(See (15) Charr	
	3	×	- T	(18)	-	Soca (J.)	4	(90 9)	3	u pu	
	3	Sector Strip	, v			!	į	;	: !	;; !	
							•	н-15		:	

Ē	25, (81)							
(53)	(13)(21)							
(25)	E(e)	(P)						
(51)	Bur Caral							
(\$0\$)	[3		Į					
8	2 6							
(69)	D=2(63)	1-						
(848)	31.	1						
(67)	12-8-7	•						······································
(99)	24							
(45)	'n					-		
3	7							
(43)	2				(%)	(85)(%)		
(42s)	C. C. Code for	Strip			(58)	(85)(85) (83)+(86) (88)(88)	+(57)	
(41)		O Sare			(23)	(566)	(51)(8) +(57)	
(P09)	J. math				(56b)	(41)-(56		
(40c)	214	(See (16) Chart 3			(\$64)	(12)(334)(41)-(564)	ļ	
(40 p)	(09)Z•.u	end n			()	1	3	
	r. :	į			<u>†</u>			
		:	į					

- If (11) = 0, set (53) = (56a) = 0 and blank out (12), (25a),
 (26), (26a), (27), (28), (29), (31), (31a), (32), (33), (33a),
 (33b), (33c), and (33d).
- Comments on columns:
 - (3a) = sum of the thicknesses (ceiling) through which the radiation passes in going from lat floor level to detector
 - (4h) = height from midwall of 1st floor to average terrain level
 - (13) = outside W and L for Z_u^T and Z_u^T calculation
 - (13a) = no if no mutual shielding of skyshine through wall yes if partially shielded comp if skyshine is completely blocked
 - If (13a) is completely shielded, set (53) = (56) = 0 and blank out (9), (14), (15), (16), (17), (18), (25a), (26), (26a), (27), (28), (29), (31), and (54).
 - (14) = distance from detector to ceiling of floor above (Z'₁) and distance from detector to grade level or to wall crossing at <u>outside</u> of building (Z'₁)
 - (25a) = no if the skyshine through the apertures is not blocked

 yes if the skyshine through the apertures is partially
 blocked
 - comp if the skyshine through the apertures is completely
 blocked
 - 1f (25a) is completely shielded, set (53) = 0 and blank out
 (26), (26a), (27), (28), (29), and (31).
 - (26) = distance from detector to upper sill level of lst floor window (Z_a^{\dagger}) and distance from detector to either the lower sill level or the wall crossing (Z_a)

- (31a) = no if entire window is seen by radiation from contaminated plane (window not blocked)
 yes if the direct radiation from the plane cannot strike the entire window (partially blocked)
 comp if the direct radiation from the plane does not strike the aperture (completely blocked)
- If (31a) is <u>comp</u>, set (56a) = 0 and blank out (32), (33a), (33b), (33c), and (33d).
- (32) = distance from detector to upper sill level (Z_{as}^{i}) and distance from detector to lower sill level or to wall crossing (Z_{as}^{i})
- (39a) = no if entire first floor wall is hit by radiation from the plane

 yes if only part of the wall is hit by radiation from the plane
- $\underline{\text{comp}}$ if the wall is not hit by radiation from the plane If (39a) is $\underline{\text{comp}}$, set (57) = 0 and blank out (40), (40a), (40b),
- (40c), (40d), (41), (42a), (43), (44), (45), (46), (47), (48),
- (49), (50), (50a), (51), (52), and (56b).
- (40) = distance from detector to ceiling (Z_u) and distance from detector to <u>top</u> of 1st floor or to wall crossing (Z_u)
- (42a) Assign code for wall scatter (infinite field (M_s) , adjacent limited plane (M_{s1}) , finite detached plane (M_{s2}) , or detached infinite plane (M_{s3})).
- If (42a) is M_s , let (51) = $B_w(X_e, Z_v)$ from EM Chart 2[If $Z_w=H_u$ in
- (4h), $B_{_{\mathbf{U}}}(\mathbf{X}_{_{\mathbf{C}}},\mathbf{Z}_{_{\mathbf{U}}})$ will be same as (5) and blank out (44), (45),
- (46), (47), (48), (49), (50), and (50a).

If (42a) is M_{s1} , use W_s in (44) and B_{ws} in (51).

If (42a) is M_{s2} , use two W_{s} 's in (44) and ΔB_{ws} in (51).

If (42a) is M_{83} , use one W_8 in (44), set $W_8 = 0.9$, with

its $\mathbf{B}_{\mathbf{W}\mathbf{S}}$ in (51) equal to $\mathbf{B}_{\mathbf{W}}(\mathbf{X}_{\mathbf{C}},\mathbf{Z}_{\mathbf{W}})$ and calculate (51)

= $B_{w}(X_{c}, Z_{w}) - B_{ws}(\omega_{s}, X_{c})$.

(43) = distance from the plane to the mid-point of the region of the first floor wall that is hit by radiation. For adjacent planes, it will usually be equal to H_u in (4h). For elevated planes, it will not be.

REFERENCE

 Office of Civil Defense. <u>Design and Review of Structures for Protection</u> <u>From Fallout Gamma Radiation</u>. (Engineering Manual). Rev. ed.; Washington: Office of Civil Defense, Department of Defense, 1 October 1961.

RESEARCH TRIANGLE INSTITUTE, Durham, N. C. Fallout Shelter Data Collection Form

7.	Number of Storie	8		S	Lde	A	1	. Fac.	No.		2	. Part		of_		
8.																
٠.	- Sub-Bas	ement		1												
	- Basemer	ıt					4	. Add:	re ss .							
	- 1st Sto - Upper S)ry					814	e B	Die	t . Cen	tor	from				•
_	• •				_		310	<u>- " </u>			$\neg \neg$		_			
9, 10,		or Wall_		-+-					510	de A	 s	ide l	3	5. CT		_
10,	Sheller Size & I			+-		-+					+		-			
											1			6.SL		_
				\Box							\perp				•	•
									Si	de C	S	lde	D_			
11.		re														
12.	Areawaya - Lengt	th														
	- Widt	1			-		_					سديف				-
		erial &			3	-			,	Weig	ht !	n PS	<u>F</u>			
13.									1							
14.	r 100ru								1							
	<u> </u>													_		_
							Ste	ie A	Si	de B		Side	c	Side	D.	7
15.	Walls								1				<u> </u>			
	•										\perp]
	•								┿							4
16.	Partitions								╁┈		+					┥
10.	Partitions(roof)								1		\top					_
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															
									╄-							4
17.	Partitions								+-		╌					┥
17.	Partitions(wall)				_		_		+							-
	(_											
_					-				╄-	_	_					
	r	- 673				64.	J . P				1. 6		11	64.4	- 5	
18,	Apertures	Area	<u>е А</u>	3111	W	Area	ie B	5111	W	Area	de C	5111	W		e D	Sill
	Areaway	1												1		
			\Box		L_									1		
		 -			! —	 			₩—	┼	-	}	₩	+		
					t	+-1		 	#	+	┼	 	#-	+	-	
_									#_							
																•
		ئيا	ide	Α	#		de I			Side		∦		Side I		4
19.	. Contaminated :	1W10	lth !	Height	╢	Width	H€	ight	W1	dth	Heig	ht	Wid	th He	ight	4
19.		2			-#		+-		†	\dashv						1
		3:														1
					-11]
20.		¹·— 			-∦		+-									┨
		3.			╌╫		+		 			 				1
		~·——					-									→

Direct, Sill Level, Wall Scatter, and Skyshine Codes

This TAB describes the codes and program remarks necessary to complete the Adjacent Form.

Code	Remarks	Program Remarks
DIRECT		
^M d ∞	Infinite plane for direct	Use only Z_{ℓ} in (20) and $G_{d}(\omega_{\ell d}, H)$ in (25)
M _{d1}	No direct contribution through adjacent wall	Set (25) = 0 and blank out (19) - (24)
M _{d2}	Some direct contribution -floor shadow determines inner boundary	Calculate \mathbf{Z}_{ℓ}^{1} for (20) and therefore, (25) = $\triangle \mathbf{G}_{d}$
M _{d3}	Some direct contribution - both edges of plane determine boundary	Calculate Z_{ℓ} and Z_{d}^{+} for (20) and therefore, (25) $=$ $\triangle G_{d}$
¹⁴ d4	Some direct contribution - inner edge of plane determines boundary - other end infinite	Use only \mathbf{Z}_{ℓ} in (20) and one $\mathbf{G}_{\mathbf{d}}$ in (25)
DIRECT THROUGH AP	ERTURES	
s _d	Lower sill level at detector level	Set (73)=(73a)=0 and blank out (65) - (72)
Sa	Lower sill level above detector level	Set (73)=(73a)=0 and blank out (65) - (72)
s _{b1}	Lower sill level below detector level but with no direct through the aperture	Set (73)=(73a)=0 and blank out (65) - (72)
S _b ∞	Lower sill level below detector level and infinite plane of contamination	Use one \mathbf{Z}_{d} in (66) and one \mathbf{G}_{d} in (71)
s _{b2}	Some direct through aperture, Z's determined by outer edge of plane and edge of aperture	Use $\mathbf{Z}_{\ell_{\mathbf{d}}}$ and $\mathbf{Z}_{\ell_{\mathbf{d}}}^{\prime}$ in (66) and therefore, (71) $\simeq \triangle \mathbf{G}_{\mathbf{d}}$

TAB 2 (continued)

<u>Code</u>	<u>Remarks</u>	Program Remarks
s _{b3}	Some direct through aperture, Z's determined by edges of plane	Use Z_{a} and Z_{a} in (66) and therefore, (71) = $\triangle G_d$
s _{b4}	Some direct Z's determined by inner edge of plane while other edge is infinite	Use one $2_{\ell a}$ in (66) and one 6_d in (71)
S _c	All of window below detector	Use two Z_{aa} 's in (66) and therefore, (71) = $\triangle G_d$; also, determine Z_{aa} 's by limiting considerations of window sill or edge of plane, whichever is most restrictive. If no direct, set (73)=(73a)=0 and blank out (65) - (72)
WALL SCATTER - SOLID	WALL	
Mg	Infinite plane - complete wall scatter	Set (51) = (5) and blank out (43) - (50)
M _{s1}	Wall scatter from finite plane extending from building outward	Need $Z_w^{-}(43)$, one $W_s^{-}(44)$, and one B_{ws}^{-} (31)
M _{s2}	Finite detached plane for wall scatter	Need one $Z_w^{-}(43)$ and two I_s in (44) and therefore, (51) = I_s I_s I_s
M _{s3}	Detached infinite plane for wall scatter	Need one $Z_w^{=}(43)$ and two W_s ; and set $W_s^{=} \Leftrightarrow = (44)$ and its $B_{ws}^{=}(51)^{=}(5)$; therefore, $(51) = \triangle B_{ws}$
M _{s4}	Plane partially blocked or entire wall is not struck by direct rays	Use Z'_{ℓ} instead of Z_{ℓ} in (34) for B_{w8} ; also use same procedure as in M_{s2} (finite) or M_{s3} (infinite)

Code	Remarks	Program Remarks
WALL SCATTER - AF	ERTURES	
s _d	Lower sill level at detector height	One Z _{as} in (32) and one G _s in (33d)
Sa	Lower sill level above detector height	Need two Z_{as} 's in (32) and therefore, (33d) = ΔG_{s}
s _b	Detector height within window opening	Need two Z_{as} 's in (32) and therefore, (33d) = $\sum C_{s}$
S _c	All of aperture is below detector	Need two Z_{aB} 's In (32) and therefore, (33d) = $\triangle G_B$
SKYSHINE		
Ma∞with Sd or any Sb	No mutual shielding of skyshine	Use one Z _u (up to ceiling) in (14), one G _a in (18), one Z _a in (26), and one G _a in (31) - Z _a is from detector to actual upper edge of aperture
M _a with any S	Skyshine completely blocked by adjacent building	Set $(54)=(31)=(60)=(18)=0$ and blank out (14) , (15) , (17) , and (26) - (29)
M with any S	Skyshine partially blocked and aperture completely blocked	Set (31)=(60)=(53)=0, use two Z_u^{i} s in (14), blank out (26) - (29); therefore, (18) = $\triangle G_a$
M _{a2} with any S	Skyshine partially blocked and aperture partially blocked	Use \mathbf{Z}_a and \mathbf{Z}_a^i in (26) and therefore, (31)= $\triangle \mathbf{G}_a$; also, use \mathbf{Z}_u and \mathbf{Z}_u^i in (14) and calculate (18)= $\triangle \mathbf{G}_a$

TAB 2 (continued)

<u>Code</u>	Remarks	Program Remarks
M _{a co} with S _a	No mutual shielding of skyshine - sill level above detector	Use one Z_u in (14), one G_a in (18), two Z_a 's in (26) and calculate (31) $= \Delta G_a$
^M a 3	Skyshine partially blocked by adjacent building - aperture not blocked above detector level	Use Z_a and Z_a^{\dagger} in (26) and therefore, (31) = $\triangle G_a$; also, use Z_u and Z_u^{\dagger} in (14) and therefore, (18) = $\triangle G_a$
s _c	All of the sperture is below detector level - no contribution for skyshine	Set (53)=(60)=0, and blank out (26), (27), (28), (29), and (31)

Appendix I

Analysis of 33-Building Sample

I. INPUT DATA AND RESULTS

A. Introduction

Computations of PF's for the 33 buildings in the sample were made in Phase 1 of the NFSS by using AE prepared FOSDIC data as inputs to the NBS-NFSS Computer Program. In Phase 2 of the NFSS, the AE adjusted the PF of some buildings by making sill height corrections or correcting mistakes made in Phase 1 data collection. RTI surveyed the buildings and submitted FOSDIC forms for processing by the NBS-NFSS Computer Program. RTI also made Engineering Manual computations for each building using more detailed input data than can be submitted on the FOSDIC form. The values used in a FOSDIC are weighted averages of sometimes up to three types of construction and mass thicknesses (psf) in one exterior wall, floor, or roof.

B. Sample Data

This section contains plan views, photographs, AE and RTI FOSDIC input data, computational results, and an analysis of input data and computational results for 32 of the sample buildings. No data are included for one building which was not surveyed by RTI because access was denied. The order and building numbers are the same as listed in Table III of Chapter 4; this table also gives the Standard Location and Facility Number for each building.

A plan view of each building is presented in each Sub-section a. to show:

Number of stories - number normally appears in lower left corner ("B" indicates the building has a basement).

Building height - number is located in the center of the building
with "foot" indication. Differences in roof
elevation are shown by solid lines.

Adjoining buildings - diagonal lines indicate immediately adjoining buildings either representing barrier-shields or elevated planes of contamination.

Each Sub-section b, shows a photograph of the exterior of the building.

These photographs were originally intended for use in evaluating construction details and are also felt to be adequate to show the variations encountered in size, shape, etc.

All structural input data submitted by the AE in Phase 1 and by RTI on FOSDIC forms are contained in each Sub-section c. under each building number. The RTI-FOSDIC column represents data collected by RTI in accordance with Phase 1 instructions, except that all significant partitions are accounted for. RTI submitted FOSDIC forms listing only masonry load-bearing and fire-break partitions (Phase 1 instructions) and FOSDIC forms listing all significant partitions in order to determine the effect of omitted partitions. The data used in making Engineering Manual calculations are not reported because up to 19 azimuthal sectors were required to define the variations in construction and contaminated planes. As many as three different wall weights might be encountered on a single building side, whereas only one wall weight per side can be reported on the FOSDIC form.

Listed in each Sub-section d. are the PF's and reduction factors determined for the buildings in the RTI sample. The terms used are defined as follows:

Detector Location - floor and building part (as shown in the "RTI FOSDIC" column of building data in each Subsection c.) for which data are reported.

AE Phase 1 - results from NBS-NFSS Computer Program.

AE Phase 2 - results from NFSS Phase 2.

RTI FOSDIC (No X₁) - results from NBS-NFSS Computer Program using RTI submitted FOSDIC form without interior partitions considered.

RTI FOSDIC (X₁) - results from NBS-NFSS Computer Program using RTI submitted FOSDIC form with interior partitions.

RTI EM - results from detailed Engineering Manual calculation.

The reduction factors calculated by the NFSS Computer Program were rounded to three decimal places such as 0.017 and 0.008. Since protection factors are more commonly used, these are also presented. PF's are the reciprocals of reduction factors with rounding carried out only to the nearest whole number, i.e., 1/0.017 = 59 and 1/0.008 = 125. The reduction factors are therefore better to use in comparing AE Phase 1 and RTI FOSDIC individual building results because of the ease in determining the correct range of values (e.g., .008 = .008 ± .0005). The Engineering Manual reduction factors were calculated by RTI to three significant figures and the corresponding protection factors were rounded to whole numbers.

An analysis of the more important differences in input data submitted by the AE in Phase 1 and collected by RTI for each of the sample buildings is contained in each Sub-section e. Input differences not affecting the floor under consideration are not enumerated but can be determined by comparing tabular data in each Sub-section c. Also listed are differences between the NBS-NF5S Computer Program procedure and the Engineering Manual method judged to have been principally responsible for the difference in PF for the specific building analyzed.

1. Address: 30-32 North Bennet Street, Boston, Mass.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No. of Stories		04 в	3 в
Height-Total Building		060	62
	Λ	080	80
	<u>B</u>	060	59
	<u>^ </u>	4	3
	C	4	3 3
	D D	9	3.
PSF-Roof		80	60
Basement Floor			
First Floor		70	100
Upper Floor		70	100
Bascment X _e	Λ	220	360
	B C	220	300
	D	220	520
Walls-First X	<u> </u>	130	300
Watta-titat ve	B	130	130
	C	130	130
	1)	150	130
-Upper X _e	٨	130	130
	J)	130	130
	<u>c</u>	130	130
	<u> </u>	150	130
-Upper X (if a change)	N	4th 100 4th 100	3rd 100 3rd 100
(i) a citange)	(;	4th 100	3rd 100 3rd 100
	1)	4th 100	3rd 100
Partitions-Basement	Λ	()	()
	13	()	150
	С	·············	
	1)	<u> </u>	0
-First	A		<u> </u>
	C	0	100
	D	1 0	0
-Upper	Ā	0	0
	В	O O	100
	C	0	0
	<u>D</u>	<u> </u>	0
% Apertures-Busement	<u>A</u>	0	10
	B C	10	0
	D	10	0
-First	A .	30	20
	В	10	10
	С	10	20
	D	0	()
-Upper	A	30	20
	В	20	10
	<u>c</u>	30	10
-Upper	<u>D</u>	0	0
-Upper (if a change)	A B	4th 0 4th 0	
TIL a citation	C	4th 0	3rd 20 3rd 20
	L.	1 4 7 11	1 110 /!!

Detector Location: Floor 2, Part 1 of 1

	$\underline{\mathbf{PF}}$	Re	duction Factor	<u>8</u>
AE Phase 1. Phase 2.	67 96	Ground .014 .005425	Roof .001 .005	Total .015 .010425
RTI FOSDIC (No	X ₄) 77	.010	.003	.013
FOSDIC (X,)	83	,009	.003	.012
EM	116	.0044	.0042	.0086

- (1) Input Data The AE reported 4 stories in Phase 1 instead of the actual 3 but corrected this in Phase 2. Adjustments were also made in Phase 2 for the 6½ foot sills and for a 12 inch brick partition which brought the PF very close to the EM result. The differences in data not corrected by the AE were variations of at least 10 percent in apertures, a 20 psf higher estimate of roof weight, and 30 psf lower weight for first and upper floors than determined by RTI from building plans.
- (2) <u>Procedures</u> Primary differences were the blocking of radiation by the high silis and the floor slab. This building also had a large skylight in the roof which could not be handled accurately by the NBS computer method.

2. Address: 73-77 Seventeenth Avenue, Newark, N. J.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
No. of Stories	13 в	13 В
leight-Total Building	109	110
Length-Exterior Wall A	022	22
13	026	26
Basement Exposure A	44	4
B	3	4
(;	4	4
D	4	4
PSF-Roof	60	60
Basement Floor	60	- 60
First Floor Upper Floor	60	60
Basement X A	140	150
Basement X _e A	140	150
C	140	150
1)	140	150
Walls-First X A	80	80
]}	80	80
С	80	80
<u>D</u>	90	80
-Upper X A	80	80
<u> </u>	80	80
C	80	80
<u>D</u>	0	1 00
-Upper X A (if a change) B		
C C		
D		- 0
Partitions-Basement A	0	0
13	()	0
C	0	0
b	0	0
-First A	()	()
	0	0
C		0
-Upper A	0	0
	0	0
	0	0
1)	0	ů o
% Apertures-Basement A	10	0
B	10	10
C	10	10
D	10	10
-First A	20	0
В	20	20
С	20	20
D_	20	20
-Upper A	20	0
<u>B</u>	20	20
<u>C</u>	20 20	$\frac{20}{20}$
-Upper A	20	- 20
	-	
(if a change) B		

Detector Location: Floor 9, Part 6 of 8

		PF	Reduction Factors		
AE	Phase 1. Phase 2.	50 No Change	Ground ,020	Roof	Tota1 .020
RTI	FOSDIC (No X ₁)	3 1 69	.032 .0144	0 0	.032 .0144

- (1) Input Data Only a very minor difference of 10 psf occurred in the upper exterior wall. Extreme differences were noted in the first planes (grade level) on the C and D sides. RTI observed widths were 450 and 240 feet, whereas the AE values were only 70 and 60 feet respectively.
- (2) <u>Procedures</u> The EM PF and AE Phase 1 PF are very close due to the simple building construction involved. The increase in EM PF is due primarily to shielding of direct radiation by the floor slab.

3. Address: 650 Grand Concourse, Bronx, N.Y.C.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
o. of Stories		05	5
eight-Total_Building		068	67
ength-Exterior Wall	A	060	60
	B	083	82
asement Exposure	Α		<u> </u>
	<u>B</u>		<u> </u>
	<u>c</u>	<u> </u>	<u> </u>
	_ <u>D</u>		
SF-Roof		60	50
Basement Floor		- 	
First Floor		60	
Upper Floor	Λ	- 60	80
Basement X _e	B		
	· · · · · · · · · · · · · · · · · · ·		
	D D	-	
Walls-First X		120	130
	B	120	170
	_ C	180	160
	D	120	120
-Upper X _e	Λ	120	140
	13	120	120
	C	120	160
	<u>D</u>	120	120
-Upper X (11 a change)	Α		
	B		
····	C	-	
	<u>D</u>		
Partitions-Basement	<u>A</u>	····	
	C	·	
	D D		
-First	A		0
		0	60
	C	0	20
	D	0	30
-Upper	Α	0	0
	В	0	20
	С	0	20
	D	Q	20
% Apertures-Basement	A		
	<u>B</u>		
	<u>C</u>		
	D		
-First	<u>A</u>	<u> </u>	<u> </u>
	<u>B</u>	0	<u> </u>
	<u>c</u>	0	0
11mm	<u>D</u>	20	30
-Upper	<u>A</u>	20	10
	<u>В</u>	<u>2Q</u>	50
	D	20	50
-Upper	<u> </u>		30
- cppet			
(if a change)	В	-	-

Detector Location: Floor 1, Part 4 of 9

		PF	<u>R</u>	eduction Factor	<u>8</u>
AE	Phase 1. Phase 2.	59 300	Ground .016 .002	Roof .001 .001	Total .017 .003
RTI	FOSDIC (No X _i) FOSDIC (X _i) EM	43 91 164	.023 .011 .0061	0 0 0	.023 .011 .0061

- (1) Input Data The AE estimate was lower for the upper floors by 20 psf and for the upper floor apertures by an average of 20 percent. The PF was adjusted by the AE in Phase 2 for an 80 psf partition and for sill height. However, Phase 2 instructions indicate that when X_i is greater than 40 psf, no sill height correction should be made. This double adjustment accounts for the large increase in PF when compared to the EM result.
- (2) Procedures The difference in RTI FOSDIC PF and EM PF is attributed to the sill correction and handling of irregular planes of contamination by 20 azimuthal sectors. This building is located on top of a hill with a slope of approximately 45°, which is difficult to account for in the computer method.

4. Address: 1235 Grand Concourse, Bronx, N.Y.C.

a. Plan View

			_	-		
Addrace	1235	Grand	Concourse.	Bronx.	New	York

		AE-FOSDIC	RT1-FOSDIC
lo, of Stories		07	7
leight-Total Building		072	73
	A	055	55
	В	045	46
asement Exposure	Α	-	-
	B	-	-
	<u>c</u>	<u>-</u>	-
	D		
SF-Roof		20	10
Basement Floor			-
First Floor		20	10
Upper Floor	Λ	 	10-
	B		<u> </u>
	C		
	<u>D</u>		
	<u>,, </u>	150	240
HULLIO LALIUE NO.	B	150	240
	C	150	160
	D	150	160
	۸	120	130
	is	120	130
	C	120	130
	D	120	130
-Upper X (if a change)	٨		3rd 100
(if a change)	13		3rd 100
	C		3rd 100
	D		3rd 100
Partitions-Basement	<u>A</u>	 	
	B		<u> </u>
······································	D D		
-First	A	 	20
	B	' 0	20
	C		20
	D	0	20
-Upper	A	0	0
	В	0	0
	С	0	0
	D	0	0
% Apertures-Basement	Α	-	<u> </u>
	В	<u></u>	-
	С		<u> </u>
	D		
-First	<u>A</u>	10	20
	В	10	20
	C	20	30
llan - ·		10	10
-Upper	B	10	20
	C	20	20
	D	10	20
-Upper	A	-	
- 4111161			
(if a change)	В	-	-

Detector Location: Floor 3, Part 10 of 10

	<u>PF</u>		Reduction Factors	
AE Phase 1.	100	Ground	Roof	Total
Phase 2.	No Change	.003	.007	
RTI FOSDIC (No X ₁)	45	.005	.017	.022
	66	.0039	.0113	.0152

- (1) Input Data Λ 20 psf reduction of X_e at the third floor was not noted on the NFSS Phase 1 FOSDIC and the percent of upper floor apertures was 10 percent less on this form. The most significant difference, however, due to the major roof contribution, was the difference in upper floor and the roof weights (20 psf for AE and 10 psf for RTI).
- (2) <u>Procedures</u> A difference in roof contribution is noticeable because of the influence of the shape of the building. The small difference in ground contribution is attributed to the sill height correction.

5. Address: 81 West 182nd Street, Bronx, N.Y.C.

a. Plan View

Address 81 West 182nd Street, Bronx, New York City	Address	81	West	182nd	Street,	Bronx,	New	York	City
--	---------	----	------	-------	---------	--------	-----	------	------

	AE-FOSDIC	RTI-FOSDIC
No. of Stories	05 в	6
leight-Total Building	050	62
ength-Exterior Wall A	040	40
11	050	48
Basement Exposure A	7	-
В	7	-
C	7	-
D	7	-
SF-Roof	10	10
Basement Floor		-
First Floor	50	•
Upper Floor Basement X _e A	10	10
Basement X A	200	
BB	200	-
С	180	-
D	200	
Walls-First X _e A	160	130
	160	130
С	130	160
	160	160
-Upper X _e , A	120	100
n	120	100
C	90	70
D	120	100
-Upper X A (if a change) B		
(if a change) B		
C	-	3rd 60
D		
Partitions-Basement A	0	
В	0	
C	0	
D	0	
-First A	0	0
В	0	0
<u>C</u>	0	1.60
<u>D</u>	0	0
-Upper A		
<u>n</u>	0	0 6 0
<u>C</u>	0	0
% Apertures-Basement A	20	
	10	<u>-</u> -
<u>B</u>		
	10	
	20	30
-First A	20	10
	0	
	10	10
-Upper A	20	30
В В	20	20
	0	20
D	10	20
-Upper A		
TODOU A		
	-	•
(if a change) B		

Detector Location: Floor 1, Part 3 of 3

		PF	Reduc	tion Factors	
AE Pha	se 1. sc 2.	59 PF Cat. 4 -	Ground .013 AE did not show	Roof .004 computations	Total .017
RTI FOS FOS EM	EDIC (No X _i)	21 23 45	.040 .037 .0143	.007 .007 .0080	.047 .044 .0223

- (1) Input Data The AE counted 5 stories and RTI counted 6 because of complete exposure of the basement wall. The first floor was listed by the AE as 50 psf whereas this weight floor did not extend over the part of the building analyzed. AE estimates for the basement X_e were also from 20 70 psf higher than RTI values for the first floor (equivalent data because of the way the lowest story was handled) and the aperture percentage was 10 percent lower for one wall. Very good plans were available for this building.
- (2) <u>Procedures</u> Very narrow strips of contamination and sills at detector level resulted in shielding of most of the direct radiation.

6. Address: 5101-23 13th Avenue, Brooklyn, N.Y.C.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No. of Stories		О4_В	4 B
leight-Total Building		037	43
ength-Exterior Wall	A_	035	42
	В	040	37
Basement Exposure	A	9	4
	В	9	4
	С	9	4
	D	3	4
SF-Roof		10	10
Basement Floor			
First Floor		10	10
Upper Floor		10	10
Basement X	<u> </u>	60	50 190
	B C		·
	<u> </u>	60	190
Walls-First X		190 50	200
waits-First Ac	B	50	50
	C	50	50
		130	100
-Upper X _e	^	30	30
<u> </u>	R	30	30
	C	30	30
	1)	120	100
-Upper X	٨	-	-
-Upper X (if a change)	13		
	C;		
	<u> </u>		<u> </u>
Partitions-Basement		· · · · · · · · · · · · · · · · · · ·	
	<u>B</u>	- 0	0
	<u>c</u>	<u> </u>	0
137	<u> </u>		0
-First	<u>A</u>	}	0
	<u></u>	0	0
	<u> </u>	-	0
-Upper	Ä	0	-
3770-2	13	0	0
	C	0	0
	D	0	0
% Apertures-Basement	A	0	0
	В	0	0
•	С	0	0
	D	10	10
-First	<u>A</u>	0	0
	<u>B</u>	0	0
	<u> </u>	0	0
	<u>D</u>	20	20
-Upper	<u>A</u>	0	0
	<u> </u>	0	0
	<u>c</u>		20
He	D	20	- 20
-Upper (if a change)	<u>А</u> В		
			1

Detector Location: Floor 0, Part 5 of 6

	PF		Reduction Factors	
AE Phase 1.	48	Ground	Roof	Total
Phase 2.	No Change	.008	.013	.021
RTI FOSDIC (No X _i)	63	.005	.011	.016
	65	.0029	.0126	.0155

- (1) Input Data Basement exposure on the AE Phase 1 FOSDIC was 9 feet for 3 sides and 3 feet for the fourth. RTI had 4 feet for all 4 sides, indicating an error by the AE in transcribing data to the form. The basement X_e was also 130 psf lower than the RTI entry for 2 sides and 30 psf higher for a third side.
- (2) <u>Procedures</u> Partially exposed basements have a major contribution from direct radiation when calculated by the Computer Program.

 This contribution is eliminated by EM procedures when the detector is below grade. This inclusion of excessive direct radiation by the computer accounts for the closeness of the FOSDIC and EM PF's.

- 7. Address: 485 Bedford Avenue, Brooklyn, N.Y.C.
 - a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No, of Stories		04 В	4 B
leight-Total Building		042	40
	A	017	19
	В	048	47
Basement Exposure	Α	0	0
	В	7	0
	С	0	00
	D	7	00
SF-Roof		10	10
Basement Floor			10
First Floor		10	10
Upper Floor		10	10
Basement X _e	<u> </u>	290	60
	<u>B</u>	300 290	70
	<u>C</u>	300	60 70
ttelle Place V	A	160	120
Walls-First X	- A B	170	70
	C	160	60
	D D	170	70
-Upper X	<u> </u>	160	120
	is .	170	70
	C	160	60
	D	170	70
-Upper X	Λ	-	-
(11 a cliange)	В		•
	C		-
	D	-	-
Partitions-Basement	Α	0	0
	В	0	0
	С	0	0
	D	0	0
-First	A	0	0
	В	0	0
	<u> </u>	0	0
-Upper	D	0	0
	<u> </u>	0	
	<u>B</u>	0	0
	<u>c</u>	0	0
9/ A = A	D		
% Apertures-Basement	B		
	C		
	D	0	ŏ
-First	A	40	30
	B	20	-
	Ç	40	30
	D	0	0
-Upper		40	30
- opper	В	10	0
	c	30	30
	D	0	
-Upper	A	-	<u>-</u>
(if a change)	B		-
LAKIDIN DI AAJ			

Detector Location: Floor 0, Part 1 of 1

	PF	<u>R</u>	eduction Factors	<u>.</u>
AE Phase 1. Phase 2.	140 200	<u>Ground</u> 0 .002	Roof .007 .003	Total .007 .005
RTI FOSDIC (No X _i)	67 147	.006	.009 .0062	.015

- (1) Input Data This basement was completely unexposed but the Phase 1 FOSDIC Indicated 7 feet exposure on 2 sides. This error was offset, however, by calling the $X_{_{\rm C}}$ = 300 psf. Contaminated planes were also reported such that the basement was still calculated by the computer as being unexposed. The AE data for the first story $X_{_{\rm C}}$ were 100 psf greater on 3 sides and 40 psf greater on the fourth than RTI data.
- (2) Procedures This building helps to verify the statement in the Computer Program description that says "Present experimental evidence indicates that protection factors calculated for basements with no exposure may be somewhat optimistic." The Phase 1 result almost equals the EM PF and the Phase 2 modification makes it higher than the EM PF.

8. Address: 304 Broadway, Manhattan, N.Y.C.

a. Plan View

Address	304	Broadway,	New	York	City

		AE-FOSDIC	RTL-FOSDIC
No, of Stories		15 B	15 В
Height-Total Building		202	187
Length-Exterior Wall	Λ	047	47
	B	108	1.10
Basement Exposure	Λ	0	00
		0	0
		0	0
		0	0
PSF-Roof		40	70
Basement Floor		70	140
First Floor		70	140
Upper Floor		70	140
Basement X	<u> </u>	120	300
	C	120	300
		320 200	280 280
(* 11 1** V	- <u>1)</u>	120	
Walls-First X	B	$\frac{120}{120}$	
		320	220
		200	
-Univer X			130
,		120	150
	<u>G</u>	200	120
		160	120
-Huner X	Λ		7th 130
-Upper X (if a change)	B		766 730
and the second s		3rd 160	-
	1)		-
Part It Jons-Basement		0	
	11	()	
	C	0	
	J)	0	7
-First	Λ	()	30
	13	0	30
	C	0	()
			30
-Upper	Λ	()	30
	B		30
	<u>C</u>		
% Apertures-Basement	<u>D</u>	0	30
	В	10	
	C		
	D		
-Wiret			20
-First	A B	$\frac{10}{10}$	20
	C	0	0
	D	0	
-Upper	<u>X</u>	30	30
NIGNA	B	30	30
	C	0	0
	- <u></u>	10	0
-Upper	Λ		<u>-</u>
~ Opposit			
(if a change)	В	-	-

Detector Location: Floor 8, Part 1 of 1

	$\underline{\mathbf{PF}}$		Reduction Factors	
AE Phase 1. Phase 2.	125 No Change	Ground ,008	Roof	Total .008
RTI FOSDIC (No X ₁)	83 125	.012 .008	0	.012
FOSDIC (X ₁) 1 EM	278	.0036	0	.0036

- (1) Input Data Data on the AE Phase ! FOSDIC and RTI FOSDIC with partitions varied for almost every element, yet the errors are compensating so that the PF's are the same.
- (2) Procedures Major differences in R. / FOSDIC and EM results are due to limited planes shife(des) by the floor slab and sills in extremely heavy walls.

- 9. Address: 435 Hudson Street, Manhattan, N.Y.C.
 - a. Plan View

		AE-FOSDIC	RTI-FOSDIC
lo. of Stories		09 в	9 B
eight-Total Building		140	140
ength-Exterior Wall	A	198	200
	В	123	122
Basement Exposure	A	0	2
	В	0	3
	С	0	3
	D	0	3
SF-Roof		60	60
Basement Floor			-
First Floor		70	70
Upper Floor		70	70
Basement X _e	Α	120	510
	B	120	510
	С	120	240
	D	120	510
Walls-First_X _e		0	140
	<u>B</u>		140
	<u> </u>	0	100
	D	120	140
-Upper X _e	A .	120	140 140
	<u>"</u>	120	100
	n c	120	100
-Upper X	Λ		3rd 100
(if a change)	- 1 3		3rd 100
Carinana ii 11)	(;		
	D D		
Partitions-Basement	A	0	0
	В	0	0
	С	0	0
	D	0	0
-First	A	0	0
	J)	0	T 0
	C	0	0
	<u>D</u>	0	0
-Upper		0	0
	<u>B</u>	0	0
	<u>c</u>	0	0
	<u>.</u>	0	,0
% Apertures-Basement	_ <u>&</u>	0	10
	<u>B</u>	0	10
	<u> </u>		
. W		10 60	10
-First			40
	B C	60	50
	D	60	0 50
-Upper	A	60	50
	В	40	40
	C	10	40
		40	40
-Upper	Ā	-	
(if a change)	В	 	
	C	4th 30	4th 20
	D		

Detector Location: Floor 4, Part 1 of 1

	PF		Reduction Facto	rs
AE Phase 1. Phase 2.	42 196	<u>Ground</u> .024 .00509	<u>Roof</u> 0 0	Total .024 .00509
RTI FOSDIC (No X ₁)		.019	0	.019

e. Analysis of Differences

(1) Input Data - The difference in AE Phase 1 and RTI FOSDIC PF's is due to the height of the third plane of contamination reported for the "C" side. The RTI data places the plane above detector level for the fourth floor and the AE data indicate that it is below the detector level. This plane is quite important because the first two planes are only a total of 50 feet wide, and the computer calculates an extrapolated contribution for sources beyond the third plane when all reported planes are below detector level (EXTRAP Procedure). Other input data affecting the fourth floor were quite close except for an additional 10% apertures reported on this same side by the AE. An error not affecting the fourth floor was an indication of 0 psf first floor walls by the AE.

Application of both interior partition and sill corrections in Phase 2 led to a PF higher than the EM result.

(2) <u>Procedures</u> - Shielding of some direct radiation by floors and sills and some skyshine by adjacent buildings results in the increase in EM PF.

10. Address: 300 Park Avenue, Manhattan, N.Y.C.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
No. of Stories	25	25
leight-Total Building	278	278
ength-Exterior Wall A	200	200
В	095	95
Basement Exposure A	-	
B		-
C	•	
Ŋ		-
PSF-Roof	60	60
Basement Floor	-	-
First Floor		-
Upper Floor	60	60
Basement X _e A		-
В		-
<u>C</u>		-
D		-
Walls-First XA	80	40
В	80	40
<u>c</u>	240	40
b	80	40
-Upper X _Q A	80	40
	80	4()
С	80	
D	80	40
-Upper X, A		
(if a cliange) B		_
<u>C</u>		
Partitions-Basement A		
11		-
		
		
-First A		
		 -
	V	0
n n	0	0
-Upper A	0	0
B	0	0
C	0	0
D	0	0
% Apertures-Basement A		
В		
C	-	-
D	-	-
-First A	90	80
В	70	80
С	0	0
D	80	80
-Upper A	60	60
В	60	60
С	50	0
D	60	60
-Upper A		
(if a change) B	•	•
0	1	-
<u>C</u>		

Detector Location: Floor 4, Part 1 of 3

			<u>PF</u>	Redu	ction Factor	<u>8</u>
AE	Phase 1. Phase 2.		53 Cat. 4	<u>Ground</u> .019 No justification	Roof 0 given	<u>Total</u>
RTI	FOSDIC (I	No X ₁)	48 275	.021 .00363	0	.021 .00363

- (1) <u>Input Data</u> Phase 1 data indicate 50 percent apertures on C wall whereas Phase 1 instructions indicate X_c should be adjusted for apertures when the building is divided into parts. Upper X_c is higher on Phase 1 FOSDIC by 40 psf for 3 walls and 60 psf for fourth.
- (2) Procedures This building is very tall and surrounded by equally tall ones. From the center of the fourth floor one can see neither ground not sky without "seeing" multiple floors. This is a good example of the need to make separate calculations for direct, scattered, and skyshine radiation because different amounts of each are encountered. The NFSS Computer Program treats all three elements of radiation as a group and does not allow for reduction of any one or two without reducing them all.

11. Address: 362 W. 52nd Street, Manhattan, N.Y.C.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
No. of Stories	06 B	L6_B
Height-Total Building	062	61
Length-Exterior Wall A	020	27_
B B	090	88
Basement Exposure A	0	1
В	0	11
<u> </u>	0	1
D	0	1
PSF-Roof	10	10
Basement Floor		<u> </u>
First Floor	60	10
Upper Floor	10	10
Basement X _e A	290	130
	290	130
C	290	130
D	290	130
Walls-First X _c A	130	130
	130	130
<u>C</u>	130	130
-Upper X _C A	130	130
-Upper X _e A	100	130
<u> </u>	100	100
C	100	100
		100
-Upper X A		
(if a change) B		<u> </u>
		
77 4 14 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
b		+ <u>0</u> -
	ŏ	
	0	0
-First A	<u>ö</u>	-
n	0	0
	<u>ö</u>	-
	0	0
-Upper A	0	0
В	Ö	0
C	0	0
n n	0	0
% Apertures-Basement A	0	0
В	0	0
C	0	0
D	0	Ô
-First A	90	90
B	0	0
C	40	10
D	0	10
-Upper A	40	30
В	0	0
C	40	20
D	0	10
-Upper A		-
(if a change) B		-
C		-
D		-

Detector Location: Floor 2, Part 1 of 1

	PF		Reduction Factors	
AE Phase 1.	42	Ground	Roof	Total . 024
Phase 2.	No Change	.010	.014	
RTI FOSDIC (No X _i)	36	.010	.018	.028
	73	.0079	.0058	.01 37

- (1) Input Data Inputs were fairly close except for an additional 7 feet indicated by RTI for the building width. This extra width accounted for the larger RTI FOSDIC roof contribution.
- (2) <u>Procedures</u> Roof contribution was much smaller in the EM method because of the odd shape of the building.

12. Address: 327 W. 75th Street, Manhattan, N.Y.C.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
	17 В	17 В
		164
		35
В	040	102
٨	Ö	Ö
В	1	2
С	0	0
D	0	11
	50	70
	· · · · · · · · · · · · · · · · · · ·	
		60
		60
		20
		90
		90
		90
		90
		-\ 90
		90
		+ 50
		+ <u>6</u> 6-
		90
		90
		- 20
		<u> </u>
A	0	0
13	0	0
C	0	0
D	. 0	Ü
Λ.	()	20
33	0	20
С	0	20
	0	40
	0	20
		20
		20
		40
		0
		0
		0
		10
		30
		30
		0
		10
		30
		30
		10
С В	8th 10	6th 10
	A B C D D A B C D A B B C D A B B B C D A B B B C D A B B B C D B A B B B B B B B B B B B B B B B B B	152

Detector Location: Floor 4, Part 1 of 3

	PF	!	Reduction Factors	i <u>.</u>
AE Phase 1. Phase 2.	63 No Change	Ground .016	Roof 0	Total .016
RTI FOSDIC (No X ₁) FOSDIC (X ₄)	53 71	.019	0	.019 .014
EM (X ₁)	292	.00343	0	.00343

- (1) Input Data An entry error was made on the AE Phase 1 FOSDIC which interchanged the A and B building dimensions. This error caused the worst contamination to be located on the smaller side, thereby overestimating the PF. A number of partitions were not counted by the AE, but the exterior walls were estimated as 10 psf heavier on 3 sides and 20 psf lighter on the fourth.
- (2) Procedures Over half of the skyshine was shielded by tall buildings and a large part of the direct from narrow planes was shielded by a 60 psf floor. These facts account for the large increase of the EM PF over the RTI FOSDIC PF.

13. Address: 47-49 W. 129th Street, Manhattan, N.Y.C.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
lo, of Stories	06 в	7
leight-Total Building	063	72
ength-Exterior Wall A	025	26
В	035	37
Basement Exposure A	2	•
В	2	•
C	2	•
D	2	
SF-Roof	20	10
Basement Floor		-
First Floor	20	
Upper Floor	20	20
Basement X _e A	100	
	130	
C	60 120	<u> </u>
D	100	170
Walls-First X _e A		
	120	190
<u>C</u>	60120	170 190
	1.00	
-Upper X _e A	120	90 120
	60	90
	120	120
	-	3rd 70
(if a change) B		3rd 90
C		3rd 70
D		3rd 90
Partitions-Basement A	0	
13	0	
C	0	
D	0	
-First A	0	0
В	0	0
c	0	0
		0
-Upper A		0
<u>B</u>	<u>0</u>	0
<u>c</u>	0	0
7. Apertures-Basement A	0	0
7. Apertures-Basement A	0 10	
- C	0	
D	10	
-First A		
	30	20
	0	-1
	30	20
-Upper A	0	0
	30	20
C	0	0
D	30	20
-Upper A	<u>-</u>	
(if a change) B	-	
C	-	_

Detector Location: Floor 1, Part 2 of 3

	PF		Reduction Factors	
AE Phase 1.	250	Ground	<u>Roof</u>	Total .004
Phase 2.	No Change	.003	.001	
RTI FOSDIC (No X _i)	53	.019	0	.019
	379	.00121	.00143	.00264

- (1) Input Data This was the only building in which a Phase 1

 PF as high as 250 was evaluated. It was done in this case in order to evaluate the effect of areaways which were across the entire front and back of the building. In addition, both sides of the building had courtyards at the same level as the areaways, which were at floor level of the lowest story. This floor was reported as a basement by the AE and as the first story by RTI. Contaminated planes were reported by the AE in such a manner that the lowest floor (AE Basement) was considered as being 8 feet below grade, when in reality this floor was exactly at grade level.
- (2) <u>Procedures</u> There is a large difference noted between RTI FOSDIC and EM results essentially because of the very narrow planes (20 feet) and heavy walls up to detector level. Skyshine was also completely shielded by adjoining buildings.

14. Address: 360 Cabrini Blvd., Manhattan, N.Y.C.

a. Plan View

No. of Stories		AE-FOSDIC	RTI-FOSDIC
	No. of Stories	8	8
Length-Exterior Wall A 060 66	Height-Total Building		
Basement Exposure		060	60
Section	B	060	66
Section	Basement Exposure A	•	
PSF-Roof 20 40 40 8ascment Floor	15	<u> </u>	•
PSF-Roof 20 40 Basement Floor - - -			<u> </u>
Basement Floor			
First Floor 20 70	PSF-Roof		
Upper Floor			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basement X _C	First Fibor		
C	Pagamont Y		
C	Busement Ke R		
Walls-First X			
R		-	
R		220	130
D 220 130 -Upper X			130
D 220 130 -Upper X			
C 150 130	D		
C 150 130	-Upper X A		
D			
-Upper X			
C 3rd 110 3rd 100			
C 3rd 110 3rd 100	(15 n diame) B		
D 3rd 110 3rd 100			
Partitions-Basement A			
R			
C		-	
First A 0 130 B 0 0 C 9 0 D 0 130 -Upper A 0 130 C 0 0 130 C 0 0 0 B 0 0 0 C 0 0 0 C 0 0 0 D 0 130 Apertures-Basement A - - C 0 0 B - - C 0 0 First A 20 0 B 10 10 C 20 20 D 10 0 C 30 0 C 30 20 C 30 3rd 36 C 10 0 C 30 3rd 36 C 10 0 C 30 3rd 36 C 10 0 C 30 3rd 36 C 10 0 C 10 0			
B Q O O O O O O O O O	D		
C 9 0 B 0 130 B 0 0 - 6 C 0 0 - 6 D 0 130 - 6 B - - C - - D - - First A 20 0 B 10 10 C 20 20 D 10 0 -Upper A 30 0 B 20 10 C 30 20 D 20 0 -Upper A 30 30 C 30 20 D 20 0 -Upper A 30 3rd 36 (if a change) B 20 -	-First A		
D			
-Upper			
B			
C O O - 6 D 0 130 - 6 B - - C - - B - - - - - - - - - - - - - - C - - C 20 20 D 10 0 C 30 0 D 20 10 C 30 20 D 20 0 -Upper A 30 3rd 36 -Upper A 30 3rd 36 (if a change) B 20 -			
D O 130 - 6			
% Apertures-Basement A - - B - - - C - - - - - - - - - - - - - - - - - - B 10 0 0 C 30 0 0 D 20 0 0 -Upper A 30 3rd 36 (if a change) B 20 -			130 - 60
B	% Apertures-Basement A	-	
D - - - -			
-First A 20 0 B 10 10 C 20 20 D 10 0 -Upper A 30 0 C 30 20 D 20 D 20 -Upper A 30 30 C 30 20 D 20 D 20 -Upper A 30 30 C 30 30 -Upper A 30 30		<u></u>	
B 10 10 C 20 20 D 10 0 -Upper A 30 0 C 30 10 C 30 10 C 30 10 C 30 20 D 20 D 20 0 -Upper A 30 37d 36 (if a change) B 20 -			
C 20 20 D 10 0 -Upper A 30 0 B 20 10 C 30 20 D 20 0 -Upper A 30 3rd 36 (if a change) B 20 -			
D 10 0 -Upper A 30 0 B 20 10 C 30 20 D 20 0 -Upper A 30 3rd 36 (if a change) B 20 -			
-Upper A 30 0 B 20 10 C 30 20 D 20 0 -Upper A 30 37d 36 (if a change) B 20 -			
B 20 10 C 30 20 D 20 0 -Upper A 30 3rd 36 (if a change) B 20 -			
C 30 20 D 20 0 -Upper A 30 3rd 36 (if a change) B 20 -			
D 20 0 -Upper A 30 3rd 30 (if a change) B 20 -			
-Upper A 30 3rd 30 (if a change) B 20 -			
(if a change) B 20 -	-Upper A		
	(if a change) B		
			-
D 20 3rd 10			

^{*} Changes to 60 at 3rd floor. - I-44 -

Detector Location: Floor 1, Part 1 of 4

	<u>PF</u>		Reduction Factors		
AE	Phase 1. Phase 2.	71 No Change	Ground .012	Roof .002	Total .014
RTI	FOSDIC (No X ₁) FOSDIC (X ₄)	110 125	.009	0 0	.009
	EM	556	.0018	0	.0018

- (1) Input Data The AE Phase 1 roof contribution was caused by roof and floor weights being estimated 20 and 50 psf, respectively, loss than RTI. AE Phase 1 data indicated 20 percent apertures on the first story A side which was completely underground and 10 percent on the D side which had 0 percent. Omitted in Phase 1 were 130 psf partitions on the A and D sides, but the X_c entry for all walls was 220 psf compared to 130 for RTL. The X_c may have been meant to account for the omitted partition weight.
- (2) Procedures Direct contribution through the aperture in Phase 1 was the major contribution and was significantly reduced in the EM PF by the heavy wall under the sill level and the fact that there were no apertures as reported by the AE on the D side.

15. Address: 4107 10th Street, Queens, N.Y.C.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
o, of Stories	06 в	6 в
eight-Total Building	056	52
ength-Exterior Wall A		27
В.	030	30
asement Exposure A	4	4
B		4
C		4
D D		- 4
SF-Roof	60	60
Basement Floor First Floor	60	60
Upper Floor	60	60
Basement X _e A		150
ваземене де		80
C		150
		80
Walls-First X _e A		100
15		80
C		100
		80
-Upper X _e A		100
		80
		100
-Upper X A		
(if a change) J		
(12 a change)		
Partitions-Basement /		. 0
	0	0
	0	0
1		U U
-First		0
	3	
	0	0
	0 0	<u>Q</u>
	N0 B0	0
		0
	0 0	0
% Apertures-Basement	A 20	10
	В О	0
	C 20	10
	0	0
	A 30	30
	<u>0</u>	0
	C 30	30
	D 0 30	0
-upper	A 30 B 0	30
	c 30	30
	D 0	0
	A	

Detector Location: Floor 0, Part 1 of 3

	PF		Reduction Factors	
AE Phase 1. Phase 2.	50 No Change	Ground .020	Roof 0	<u>Total</u> .020
RTI FOSDIC (No X ₁)	91 212	.011	0	.011

- (1) Input Data The only noticeable differences were an indication by the AE of 10 percent more for the A and C basement apertures and 10 psf lighter first story walls for the A and C sides. These variations made considerable difference because the first planes of contamination on these sides were 260 feet for the A side and 160 feet for the C.
- (2) Procedures The percent of apertures difference stated above is quite significant because of the direct radiation figured in a partially exposed basement through the use of Chart 3 of the AE Guide. The contribution through the solid wall portion is also considerably overestimated through the use of this Chart. The EM method considerably reduces this contribution.

16. Address: 14415 Sanford Avenue, Queens, N.Y.C.

a. Plan View

b. Photograph

NO PHOTOGRAPH AVAILABLE

	AE-FOSDIC	RTI-FOSDIC
o. of Stories	06 В	6 в
eight-Totel Building		54
ength-Exterior Wall A	040	40_
13	120	120
asement Exposure A	6	6
R	3	44
<u>C</u>	0	2
<u>B</u>	2	3
SF-Roof Basement Floor	20	20
First Floor	70	20
Upper Floor	20	20
Basement X _e A	180	130
e B	180	130
(:	180	160
1)	180	130
Walls-First X	80	80
	80	80
<u>C</u>	80	80
	80	80
-Upper X A	80	80
II C	80	80
	80	80
-Upper X A		
(If a change) B		
G C		
1)		-
Partitions-Basement A	0	80
В	0	80
C	()	80
D .	0	80
-First A	0	60
		60
<u>C</u>	<u>v</u>	60
-Upper A	ő	40
В	0	40
C	0	40
D	.0	40
% Apertures-Basement A	10	10
B	10	10
C	0	0
<u>D</u>	10	10
-First A	20	10
B		20
<u>C</u>	20	20
-Upper A	20	10
1)	20	10 20
	20	20
D	20	10
-Upper A		
(if a change) B		

Detector Location: Floor 0, Part 2 of 2

	PF		Reduction Factors	
AE Phase 1.	125	Ground	Roof	Total
Phase 2.	No Change	.006	.002	.008
RTI FOSDIC (No X _i) FOSDIC (X _i) EM	59	.010	.007	.017
	125	.001	.007	.008
	161	.0045	.0017	.0062

- (1) Input Data The end PF result using the RTI and Phase 1 FOSDICS are the same, although the roof and ground contributions using one FOSDIC are quite different from results of the other. The AE Phase 1 FOSDIC indicated 50 psf higher values for three basement walls, 50 psf higher for the 1st floor, and did not count major partitions in the basement.
- (2) <u>Procedures</u> The EM PF was higher than the RTI FOSDIC PF primarily due to excessive direct radiation calculated by the Computer Program for partially exposed basements as stated before.

17. Address: 37-49 South Avenue, Rochester, I.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No. of Stories		4 B	4 B
leight-Total Building		048	52
ength-Exterior Wall	Α	094	94
Telligett Meet Lot Mass	B	054	54
Basement Exposure	A	0	0
	В	8	4
	С	9	9
	D	8	0
SF-Roof		20	10
Basement Floor			<u> </u>
First Floor		20	16
Upper Floor		20	10
Basement X _e		310	200
	B	310	200
	<u>C</u>	160	240
	<u>D</u>	310	200
Wolls-First X _e	A	160	130
	<u>B</u>	160	130
	<u>c</u>	160	30
	<u>D</u>	170	130
-Upper X _e		160	100
	<u>lì</u>	160	100
 	<u> </u>	160	100
-Upper X		140	100
- Upper X			
(if a change)	<u>}</u>	2.1.100	
	C	3rd 120	
Partitions-Basement	A	0	- 0
Partitions-masement	B	0	90
			20
	D	Ö	200
-First	<u>A</u>	0	0
	B	o o	90
	C	0	0
	D	0	0
-Upper	Α	0	0
	B	0	0
	С	0	0
	D	0	0
% Apertures-Basement	A	0	0
	В	10	10
	С	10	0
	D	0	0
-First	A	90	90
	В	0	10
	C	20	0
	D	0	0
-Upper	A	40	40
	<u> </u>	10	10
	c	40	30
	Ð	1 0	1 0
-Upper (if a change)	A B		

Detector Location: Floor 0, Part 1 of 2

	PF		Reduction Factors	
AE Phase 1.	77	Ground	Roof	Total
Phase 2.	No Change	.002	.011	.013
RTI FOSDIC (X ₁)	37	0	.027	.027
	47	•0024	.0190	.0214

- (1) Input Data Floor and roof weights were listed as 10 psf higher in the Phase 1 FOSDIC which is quite critical because 90 percent of the total contribution is from the roof. The difference in ground contribution between the AE Phase 1 and RTI FOSDIC was caused by the AE's estimating the C wall as 80 psf lower than RTI (160 to 240 psf).
- (2) <u>Procedures</u> Little difference in EM and Computer Program in procedures for roof contribution is the reason for close results between EM and RTI FOSDIC data. Very heavy walls and partitions make ground contribution negligible.

18. Address: 2700 Connecticut Avenue, Washington, D. C.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No, of Stories		07 в	7 в
leight-Total Building		070	70
ength-Exterior Wall	Λ	140	137
	13	042	46
asement Exposure	Λ	5	4
	В	5	5
	<u> </u>	5	3
· · · · · · · · · · · · · · · · · · ·	D	5	4
PSF-Roof		60	20
Basement Floor			·
First Floor		60	40
Upper Floor		60	40
Basement X _e		120	180
	<u>B</u>	120	180
	<u>C</u>	120	180
11-11- 32 V	1) A	120	180
Walls-First X	A	120 120	160
	C	120	160
	<u> </u>	120	160
-Upper X	<u> </u>	120	110
	B	120	110
	C	120	110
	D	120	110
-Upper X	^		
(If a change)	13	-	-
	()	-	-
	1)	-	•
Partitions-Basement	Α	0	80
		0	80
	C	0	80
	D	0	80
-First		<u> </u>	<u> </u>
· 	B	<u>0</u>	20
	C	0	20
-Upper	<u>D</u>	50	20
	B	50	20
	c	50	$\frac{20}{20}$
	D	50	20
% Apertures-Basement	A	10	30
	13	10	30
	C	10	20
	D	20	30
-First	Α	50	30
	В	50	20
	С	40	20
	D	60	20
-Upper	A	50	20
	В	50	20
	С	40	20
	D	60	20
-Upper	A		
(if a change)	В		-
	C		
	D		

Detector Location: Floor 4, Part 1 of 3

	PF	Re	duction Factors	
AE Phase 1. Phase 2.	77 120	Ground .012 .0072	.001 .001	Total .013 .0082
RTI FOSDIC (X;)	53 164	.013 .0040	.006 .0021	.019 .0061

- (1) Input Data AE Phase 1 floor and roof paf's are considerably heavier than RTI data; the upper X_e is 10 paf higher; the interior partitions are 30 paf higher; and the upper story percent apertures are 20 30 percent higher.
- (2) Procedures Major differences in procedures causing the increased EM PF are sill height correction and contribution from a peripheral roof.

19. Address: 18th and C Streets, Washington, D. C.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
o, of Stories		07 в	8 B
cight-Total Building		087	95
ength-Exterior Wall A		157	157
В		051	51
asement Exposure A		0	0
В		0	0
		0	00
D		0	0
SF-Roof		100	100
Basement Floor		110	100
First Floor		110	100
Upper Floor Basement X A		160	160
		160	160
C		160	160
D		290	290
Walls-First X A		1.50	130
В		150	180
C		150	130
		230	230
-Upper X A		150	130
<u></u>		150	180
c		150	130
D		230	230
-Upper X A			
(if a change) H			6th 140
<u></u>		- 150	(4) 150
Partitions-Basement A		6th 150	6th 150
Partitions-masement A		0	0
		- 0	0
		0	0
-First A		0	30
	В	0	30
	Ċ	0	30
	D	00	30
	٨	0	30
	<u>B</u>	<u> </u>	30
	<u>c</u>	0	30
	<u>D</u>	- 0	30
	<u> </u>	0	
	<u>B</u>		<u> </u>
	<u>C</u>		0
	D A	30	30
	<u>A</u>	30	0
	C	30	20
	D	30	20
	Ā	30	30
	<u>B</u>	30	0
	<u>c</u>	30	30
	D	30	20
	٨	-	
	В	-	•
	_		
	С		

Detector Location: Floor 3, Part 2 of 19

	<u>PF</u>			Reduction Factors	
AE	Phase 1. Phase 2.	125 No Change	Ground .008	<u>Roof</u> 0	Total .008
RTI	FOSDIC (No X _i) FOSDIC (X _i) EM	125 330 1080	.008 .003 .00092	0 0 0	.008 .003 .00092

- (1) Input Data The AE counted 1 too many stories and did not count 30 psf partitions. His estimates for percent apertures were also 10 percent higher on 1 side and 30 percent higher on another side.

 AE exterior wall weights were 20 psf heavier on 2 sides and 30 psf lighter on a third side.
- (2) Procedures Because of mutual shielding and sill heights, there is almost no direct or skyshine contribution which accounts for the very high EM PF.

20. Address: 1011 W. Market Street, Louisville, Ky.

a. Plan View

		AE-FOSDIC	RTI-FOSDI
No. of Stories		03 в	3 в
Height-Total Building		037	36
Length-Exterior Wall	A	021	23
	B	040	45
Basement Exposure	A	0	1
	B	0	1
	<u>c</u>	0	1
200 2	D		1 10
PSF-Roof		10	10
Basement Floor First Floor		10	10
First Floor Upper Floor	*****	10	10
Basement X _e		200	100
nasement A _c		200	100
	C	200	100
	1)	200	100
Walls-First X	Λ	o .	120
	В	120	100
	С	160	100
	D	120	100
-Upper X	^	120	60
· · · · · · · · · · · · · · · · · · ·		120	60-
	C	120	60
	<u>D</u>	120	60
-Upper X (II a change)	<u> </u>		-
(11 a change)) B C		
			
Partitions-Basemen			<u>-</u>
TOTAL STATE OF THE	13	0	
	C	<u> </u>	
	D	0	
First	A	0	-
	В	0	
·	<u> </u>	0	
·	D	<u> </u>	
Upper	<u>A</u>	0	
	B C	0	
	<u> </u>	0	
. % Apertures-Basement		$-\frac{0}{20}$	20
Apertines-basemen.	<u>R</u>	0	ő
•	C	10	10
	D	0	0
-First	Λ	90	80
	В	0	Ó
	С	20	20
	[)	0	0
-Upper	A	30	30
	<u>B</u>	0	0
	<u> </u>	20	20
	<u> </u>	0	0
-Upper	<u>A</u>		
. (if a change	e) B C		

Detector Location: Floor 0, Part 1 of 1

	<u>PF</u>		Reduction Factors	
AE Phase 1. Phase 2.	71 No Change	Ground .003	Roof .011	Total
RTI FOSDIC (No X ₁)	42 71	.008	.016 .013	.024 .0141

- (1) Input Data The small amount of basement exposure (1 foot) was ignored by the AE in Phase 1, yet a percent of apertures was indicated for sides A and C. Basement walls were indicated as 200 psf by the AE and 100 psf by RTI.
- (2) Procedures Differences in EM PF and RTI FOSDIC PF were due to the small difference attributed to shape factor being accounted for in roof contribution and the partially exposed basement situation mentioned above.

21. Address: 917 Euclid Avenue, Cleveland, Ohio

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
o. of Stories	22 В	22 B
eight-Total Building	275	275
ength-Exterior Wall A	095	110
B	053	57
asement Exposure A	0	0
В	0	00
C	0	0
D	0	0
SF-Roof	60	120
Basement Floor	120	
First Floor Upper Floor	120	130 100
Upper Floor	120	250
Basement X _e A	120	250
	110	250
1)	220	250
Walls-First X A	120	250
Walls-First X _c . A	120	250
C	10	250
U	140	250
-Upper X A	120	150
<u> </u>	120	150
С	20	150
D	180	150
-Upper X A (if a change) B		•
(if a change) B		
C	5th 110	
D D	5th 110	
Partitions-Basement A B	0	0
	-	
	0	
-First A	<u>0</u>	
B	0	<u>ŏ</u>
C	Ö	0
D	0	0
-Upper A	0	30
B	0	30
C	0	30
D	0	30
7. Apertures-Basement A	0	0
<u>B</u>	0	0
C	0	0
<u>D</u>	0	0
-First A	40	40
B C	40	0
	0	
		
-Upper A	40	40-
	40	0
	0	0
-Upper A		
(if a change) B		
C	5th 40	5th 20

Detector Location: Floor 5, Part 1 of 8

	PF		Reduction Facto	rs
AE Phase 1. Phase 2.	59 110	Ground .017 .009	Roof 0 0	Total .017 .009
RTI FOSDIC (No X ₁) FOSDIC (X ₁) EM	250 500 455	.004 .002 .0022	0 0 0	.004 .002 .0022

- (1) Input Data Interior partitions were not counted by the ΛΕ in Phase 1, and the RTI X_c is 30 psf higher on 2 sides and 30 psf lighter on the third side. On the fourth side, the ΛΕ Phase 1 X_c was only 20 psf and the RTI entry was 150 psf, which indicates that the 20 psf is apparently an error in transcribing data from notes to the FOSDIC. Phase 1 instructions for dividing buildings (multiple interior partitions in the adjoining building part were counted and the X_c adjusted for apertures) accounted for the very high RTI FOSDIC PF. The length of the exterior wall on the Λ side was also 15 feet longer in the RTI data.
- (2) <u>Procedures</u> This is felt to be a good example of the problems that can be encountered when it is necessary to divide a building into parts for the computer. This building also had most of its direct and skyshine partially shielded by adjacent buildings in the EM calculation.

22. Address: 257 S. 16th Street, Philadelphia, Pa.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
o. of Stories		17 В	17 В
eight-Total Building		188	182
ength-Exterior Wall	Λ	085	78
	B	035	40
asement Exposure	Α	3	4
	В	3	4
	C	0	4
	<u></u>	3	4
SF-Roof		40	10
Basement Floor		90	110
First Floor		90	110
Upper Floor		90	110
Basement X _e	Λ	160	140
	<u>B</u>	160	140
	<u>C</u>	160	120
0.11. 17	<u></u>	160	140
Walls-First X		120	120
	G B	120	120
		120	90
-Upper X _e	<u> </u>	120	120
-topper A _c	B	120	120
		120	90
	1)	120	120
-Upper X (11 a change)		10th 80	10th 80
(1) a chance)		10th 80	1011 80
(1) (1) (1) (1)		10th 80	10th 60
	1)	10th 80	10th 60
Partitions-Basement	A	()	20
	В	0	20
	C	0	20
	D	0	20
-First	Λ	0	20
	B	0	20
	C	0	20
	D	0	20
-Upper	A	0	20
	B	0	20
	<u> </u>	0	20
	<u>D</u>	0	20
% Apertures-Basement	<u>A</u>	40	40
	- <u></u> !}	50	20
	<u>C</u>	50	20
\$5.2 · · · · · b.	<u>D</u>	40	20 3C
-First	<u>A</u>		
	<u>В</u> С	50	20
	D	20	
11	A		20
-Upper	<u>Α</u>	40	40
	C	30	20
	D	30	30
-Upper	A	50	30
- Opper			
(if a change)) в	1 -	-

Detector Location: Floor 9, Part 1 of 1

	PF		Reduction Factor	<u>8</u>
AE Phase 1. Phase 2.	40 No	Ground .025 Change	Roof 0	Total .025
RTI FOSDIC (No X ₁) FOSDIC (X ₁) EM	43 56 250	.023 .018 .0040	0 0 0	.023 .018 .0040

- (1) <u>Input Data</u> The RTI data indicates 20 psf partitions on all sides;
 30 percent less apertures on the B side; and 20 percent less apertures on the D side resulting in a higher RTI FOSDIC (X₁)
 PF than the NFSS Phase 1 PF.
- (2) <u>Procedures</u> Since the detector was placed on a high floor, a large part of the direct radiation was shielded by the floor slab and sills which resulted in a much higher EM PF.

23. Address: 70 West E. H. Crump Blvd., Memphis, Tenn.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
o, of Stories		6 B	6 B -
eight-Total Building		67	64
ength-Exterior Wall	A	60	60
	В	145	145
asement Exposure	A	3	3
·	<u>B</u>	2 3	3 3
	C	3	3 3
On Dank	D	160	150
SF-Roof Basement Floor		100	1
First Floor		150	140
Upper Floor		150	140
Basement X _e	Λ	450	100
е	В	200	100
	С	200	100
	D	200	100
Walls-First X _e	Α	160	100
		130	100
	<u>C</u>	130	100
-Upper X _e	<u>D</u>	130	100
-Upper X _e	<u>A</u>	120	100
	B C	120	100
	D	120	100
-Upper X	<u>N</u>	120	100
(if a change)			
(11 % CHRINGS	C		
	D		
Partitions-Basement	Α	300	0
	В	0	0
	С	160	
	D		<u> </u>
-First	<u>^</u>	0	
	B C		<u> </u>
	D	0	0
-Upper	<u>B</u>	0	- V
- Office	В	0	0
	C	0	0
	D	0	0
% Apertures-Basement		0	20
	В	60	5 0
	С	20	40
	D	20	10
-First	A	20	20
	В	30	40
	<u> </u>	60	70
	<u>D</u>	20	20
-Upper	<u>A</u>	20	20
	C B	20 30	30 20
	D .	20	10
-Upper	Α		<u> </u>
(if a change)			
LL a change	C	3rd 0	

Detector Location: Floor 4, Part 1 of 2

		$\underline{\mathbf{PF}}$	Re	duction Factor	<u>18</u>
AE	Phase 1. Phase 2.	56 100	Ground .018 .010	Roof 0 0	Total .018 .010
R T I	FOSDIC (No X _i)	42 62	.024 .0161	0 0	.024 .0161

- (1) Input Data The only significant input difference affecting the fourth story was an indication of wall weights 20 psf higher for all sides on the AE Phase 1 than on the RTI FOSDIC.
- (2) <u>Procedures</u> The sill height correction was the only major procedural difference causing the variation in PF between the RTI FOSDIC and the EM.

24. Address: 3456 N. Damen Avenue, Chicago, Ill.

a. Plan View

No. of Stories Height-Total Building Length-Exterior Wali A B Basement Exposure A B C D PSF-Roof Basement Floor		
Height-Total Building Length-Exterior Wali A B Basement Exposure A B C D PSF-Roof Basement Floor		
Basement Exposure A B C D PSF-Roof Basement Floor		
Basement Exposure A B C D PSF-Roof Basement Floor		
B C C D PSF-Roof Basement Floor		
C D PSF-Roof Basement Floor		
PSF-Roof Basement Floor		
PSF-Roof Basement Floor		+
Basement Floor		
		+
First Floor	Apprec	DENTED
Upper Floor	- INCESS	PENTED
Basement X _c A	NO DATA	COLLACTED
	- Ing Diagram	y y many and
C		
1)		
Walls-First X A		
!		
<u>C</u>		<u> </u>
<u></u>		
-Upper X _c A		
-Upper XA		
- Upper X A (1f n elimpe) B		
()		
1)		
Partitions-Basement A		
11		
()		
1)		
-First A		
C		
<u>D</u>		
-Upper A		
		
% Apertures-Basement A		
B B		
C		
1)		
-First A		
В		
<u>C</u>		
D		
-Upper A		
В		
C		
D		
-Upper A		
(if a change) B		

25. Address: 320 N. Clark Avenue, Chicago, Ill.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No, of Stories		10	8 в
Height-Total Building		125	98
Length-Exterior Wall	Α	185	185
	В	303	225
Basement Exposure	Α		0
	В		5
	С		0
	_ <u>D</u>		33
PSF-Roof		50	100
Basement Floor			·
First Floor			150
Upper Floor		80	140
Basement X _e	B		130
	C		160
	D D		100
Walls-First X _e		150	130
	В	110	160
	C	110	140
	D	110	100
-Upper X	Λ	110	130
	В	110	160
	C	110	140
	D	110	100
-Upper X	۸	•	•
(II a change)	R		
	С		<u> </u>
	D		_
Partitions-Basement	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	B C		0
			
-First	A		0
	B	0 0	0
···	Ċ		0
	D	0	0
-Upper	A	0	0 60
	В	0	0 60
	C		0 60
	D		0 60
% Apertures-Basement	A		0
	B		20
	C	<u> </u>	
	<u>D</u>	·	0
-First	<u>A</u>	0	0
	B	40	40
	<u>C</u>	10	
Hen or	D	20	30
-Upper	<u>A</u>	40	20
	B	40	40
	D	40	40
-Upper	A	40	3rd 30
(if a change)	B		3rd 40
		·	
	C		

^{*} Change to 60 - 3rd up.

Detector Location: Floor 5, Part 1 of 1

		PF		Reduction Factors	
AE	Phase 1, Phase 2.	100 No Change	Ground .010	Roof 0	Total .010
RTI	FOSDIC (No X ₁) FOSDIC (X ₁)	110 500	.009	0 0	.009
	EM 1	770	.0013	0	.0013

e. Analysis of Differences

(1) Input Data - A large, deep river adjacent to the building was counted in Phase 1 as a plane of contamination, but should have been considered as a cleared strip. One story too many was also counted. The AE roof weight was 50 psf lighter and upper floor weights were 60 psf lighter than RTI data. AE walls were 20 psf lighter on 1 side, 50 psf lighter on another, 30 psf on another, and 10 psf greater on the fourth.

RTI had 60 psf interior partitions on all four sides, and the AE had 20 percent more apertures on 1 side.

(2) Procedures - The primary differences between the Phase 1 PF and the EM PF other than the inputs were the sill correction, treatment of the river as a cleared strip, and extremely heavy (140 psf) floors which shield a large fraction of the radiation.

26. Address: 111 W. Jackson Blvd., Chicago, 111.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
No. of Stories	ļ	27 В	27_В
Height-Total Building		333	334
	A	215	215
	B	121	134
Basement Exposure	A	0	0
	B	0	0
	C	0	0
	D	0	0
PSF-Roof		60	50
Basement Floor		<u>-</u>	
First Floor		70	80
Upper Floor		70	80
	Λ	110	120
	В	130	120
	С	350	120
	D	110	120
	Α	520	520
	13	470	450
	С	280	180
	D	470	450
-Upper X	A	520	120
	B	470	120
	С	470	120
	D	470	120
-Upper X	A	-	-
(if a change)	B		-
	<u>c</u>	-	
	D		
Partitions-Basement	Α	0	• 0
	В	0	0
	C	0	0
	D	<u> </u>	0
-First	Α		0
	В	0	0
	C	<u> </u>	0
	D	0	0
-Upper	<u> </u>		0
	В	0	0
	С		0
	D	0	
% Apertures-Basement	<u>^</u>		
	<u>B</u>	<u> </u>	0
	<u>C</u>		0
77.1	D	0	0
-First	<u>^</u>	90	90
	<u>B</u>	90	90
	С	0	0
11-	<u>D</u>	90	90_
-Upper	<u> </u>	90	70
	<u>B</u>	90	70
	<u>c</u>	90	70
11.	<u>D</u>	90	70_
-Upper	<u>_</u>		
(if a change)	<u>B</u>	<u> </u>	
	c	 	
	D	1	•

Detector Location: Floor 9, Part 1 of 1

	PF	!	Reduction Factor	<u>B</u>
AE Phase 1. Phase 2.	71 120	Ground .014 .0085	Roof 0 0	Total .014 .0085
RTI FOSDIC (No X ₁)	83 550	.012 .0018	0	.012 .0018

- (1) Input Data The average upper X_e estimated by the AE in Phase 1 was greater than 480 psf and the percent of apertures was 90 percent for all walls. The RTI data were 120 psf for X_e and 70 percent apertures. The RTI exterior wall B dimension was 13 feet longer than the AE dimension.
- (2) Procedures The major difference in PF was due to the Computer Program's determining that the first plane on one side was a neighboring roof. Since the detector was above the second plane, the computer calculated a contribution from the second plane. A correction for this was made by the AE in Phase 2. This was another building with a lot of mutual shielding.

27. Address: 10875-81 S. Racine Avenue, Chicago, Ill.

a. Plan View

		AE-FOSDIC	RTI-FOSDIC
			1
lo, of Stories Leight-Total Building		02 B 018	2. <u>B</u>
ength-Exterior Wall	Λ	128	
ength-Exterior warr	В	022	88 22
Basement Exposure	Λ	2.	2
	3	2	3
	C	2	3
	D	2	3
PSF-Roof		60	10
Basement Floor			-
First Floor		80	60
Upper Floor		80	60
Basement X	Λ	120	100
{:]}	120	100
	С	120	100
		120	100
Walls-First X	<u> </u>	80	70
		80	70
		80	$\frac{70}{20}$
-Upper X	1)	80	70
-Upper X	<u> </u>	80	70
 	C C	80	70
	<u></u>	80	70
-Upper X	Λ		
(If a clauge)	18		
	C		
	1)	-	-
Partitions-Basement	A	0	30
	В	()	30
	C	0	30
	<u>h</u>	0	31
-First	^		40
	B	0	40
	<u>C</u>	<u></u>	40
	<u>D</u>		40
-Upper	<u>A</u>	<u>0</u>	40-
	<u>r</u>	0	40
	D	0	40
% Apertures-Basement	A	10	10
A Aprel Cur es - busencere	B	0	0
	C	10	40
	D	Q	0
-First	A	50	30
	В	50	0
	C	50	30
	D	50	0
-lipper	Α	50	20
	В	50	0
	С	50	30
	D	50	0
-Upper	A		-
(if a change)	B C		
		-	-

Detector Location: Floor 0, Part 1 of 1

		PF		Reduction Facto	re
AE Phase 1. Phase 2.	71 56	Ground .013 .012	Roof .001 .006	Total .014 .018	
1	FOSDIC (No X ₁) FOSDIC (X ₁) EM	33 53 71	.022 .011 .011	.008 .008 .0031	.030 .019

- (1) Input Data A 60 psf roof and 80 psf floors were listed by the AE in Phase 1 whereas RTI data were 10 psf and 60 psf, respectively. The AE adjusted his values in Phase 2 by using the same values as RTI. The AE basement walls were also 20 psf higher than the RTI estimate. Interior partitions of 30 psf were omitted by the AE; the AE exterior wall A dimension was 40 feet too great; and the apertures were estimated as being 30 percent less than RTI on one side.
- (2) <u>Procedures</u> Basement exposure procedural difference whereby too much direct contribution is calculated by the computer occurred again.

28. Address: 604 E. 38th Street, Indianapolis, Ind.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
No, of Stories	2 В	2 в
leight-Total Building	024	31
ength-Exterior Wall A	225	175
В	135	115
Basement Exposure A	5	7
В	5	7
С	5	7
D	5	7
PSF-Roof	60	10
Basement Floor	-	-
First Floor	60	20
Upper Floor	60	20
Basement X _e A	150	160
В В	150	130
<u></u>	150	190
D	150	130
Walls-First X. A	80	140
	80	130
C	80	100
D	80	130
-Upper X _c A	80	140
	80	130
C		100
<u>D</u>	80	130
-Upper X A (if a change) B		
<u>C</u>		
Partitions-Basement A B	- 0	110
	<u></u>	110
D	- 0	
-First A		110
	60	- 110
	60	110
<u>C</u>	60	
-Upper A	60	110
B_	60	0
C	60	110
D	60	0
% Apertures-Basement A	20	30
В	20	30
c	20	10
D	20	30
-First A	40	30
ВВ	40	20
C	40	40
D_	40	20
-Upper A	40	30
В	40	20
С	40	10
D	40	20
-Upper A	•	
(if a change) B	•	•
C	_	
D	-	•

Detector Location: Floor 0, Part 1 of 1

			$\underline{ ext{PF}}$	Ro	eduction Factors	<u>1</u>
ΑE	Phase Phase		53 104	.016 .00661	Roof .003 .003	Total .019 .00961
RTI	FOSDIC EM	(X _i	and No X ₁)	Both cases had PF	less than 20 .0031	.0054

- (1) Input Data Concrete floors were only in the corridors. Therefore, the assumption by the AE that the entire floor was concrete accounted for a large difference in estimated floor psf's (10-60 psf). Substantial partitions of 110 psf were not counted in Phase 1 but an adjustment was made for them in Phase 2.
- (2) <u>Procedures</u> There was basement exposure of 7 feet but the detector was still below grade. Major contribution from direct radiation calculated in Phase 1 for an exposed basement is eliminated by the EM method.

29. Address: 619 Main Street, Houston, Texas

a. Plan View

35.

36.

37.

38. 39. 40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50

51.

52.

53.

54. 55.

56.

-Upper

-First

-Upper

-Upper (if a change)

% Apertures - Basement

В

D

B

C

D

1

B

C

D

٨

В

C

D

A

C D

	AE-FOSDIC	RT1-FOSDIC
No. of Stories	03 В	3 в
Height-Total Building	042	45
Length-Exterior Wall A	100	100
В	100	100
Basement Exposure A	0	0
В	0	0
C	0	0
1)	0	0
PSF-Roof	80	50
Basement Floor		
First Floor	90	30
Upper Floor	70	30
Basement X _C A	180	160
	340	60
C	1.80	90
))	180	160
Walls-First X A	150	190
В	300	1.00
(<u>)</u>	150	100
	150	190
-Upper X A	130	80
	300	100
	130	100
<u>D</u>	130	80
-Upper X A		3rd 60
(11 a change) B		3rd 100
<u>C</u>		3rd 100
1)		3rd 60
Partitions-Basement A	0	0
<u>N</u>		0
	0 0	0
-First A		

0

0

0

0

Ω

0

0

50

0

0

40

40

0

10

40

0

90

0_

10

90

20

Detector Location: Floor 2, Part 1 of 1

		<u>PF</u>	<u>Reduct</u>	ion Factors	
ΛE	Phase 1. Phase 2.	63 No data	$\frac{\text{Ground}}{.010}$ other than D side A	Roof ,006 from 60% to	Total .016 20%
RTI	FOSDIC (No X ₁)	20 26	.018 .0145	.032 .0235	.050 .0380

- (1) Input Data AE Phase 1 data indicated heavy floors over the entire building, whereas one-half had concrete and the other half had wooden floors. AE estimates for exterior wall weights were 50 psf higher than RTI on 2 sides, 30 psf higher on another, and 200 psf higher on the fourth.
- (2) <u>Procedures</u> Procedural differences of importance in this building were only the sill correction and usual EM use of azimuthal sectors to handle varying planes and wall weights.

30. Address: 1010 Pine Street, St. Louis, Mo.

a. Plan View

Ī

	AE-FOSDIC	RT1-FOSDIC
o, of Stories	21 B	21 B
leight-Total Building	247	248
ength-Exterior Wall A	030	32
В	070	67
Basement Exposure A	0	0
13		
(;		ļ
D	0	<u> </u>
PSF-Roof	70	120
Basement Floor	170	90
First Floor	150	90
Upper Floor	100	90
Basement X A	450	450
B	450	450
	450 450	450
Wallu-First X A	280	450 160
Walla-First X A	280	160
angangan mengangan di kacamatan salah di kecamatan di kempulan dan dan di kempulan di kempulan dan di kempulan Pa	000	160
	280	160
-llipper X A	280	160
B	280	160
()		160
		160
-Upper X, A.	A commence of the commence of	
		-
(C)		
1)		
Partitions-Basement A	0	()
1	0	0
()		
1)		
-First A		
B	0	
(1		<u> </u>
1)	<u> </u>	
-Upper A	0	
G	<u> </u>	\- <u></u> \2
D D	0	0
% Apertures-Basement A		0
A Apertures-basement h		0
C	0	0
D	0	
-First A	60	0
1)	60	60
C	30	60
D	60	0
-Upper A	50	
B	50	40
С	50	40
D	50	0
-Upper A		5th 30
(if a change) B		
C		8th 30

Detector Location: Floor 13, Part 6 of 9

		PF	Reduc	tion Factors	
AE	Phase 1. Phase 2.	50 No Change	Ground .020 - AE Denied Acces	Roof 0	<u>Total</u> .020
R T1	FOSDIC (No X ₁)	83 127	.012 .0070	0 .0009	.012 .0079

- (1) Input Data AE Phase 1 data indicated 20 percent more apertures on 2 sides, 10 percent on a third, and 40 percent on the fourth. The AE Phase 1 X_e was also 120 psf higher than the RTI value.
- (2) Procedures Sill and floor slab shielding of direct radiation plus the difference in procedures involved with dividing the building into parts were major procedural differences accounting for the increase in the EM PF over the RTI FOSDIC PF.

31. Address: 403 West 8th Street, Los Angeles, Cal.

a. Plan View

	AE-FOSDIC	RTI-FOSDIC
o, of Stories	12 B	12 B
eight-Total Building	180	156
ength-Exterior Wall A	180	160
В	060	45
asement Exposure A	0	0
B	0	0
C .	0	0
a	0	0
SF-Roof	30	50
Basement Floor		ļ .
First Floor	100	50
Upper Floor	50	50
Basement X _e A	200	150
	200	150
· <u>c</u>	200	150
1)	200	150
Walls-First X _e A	120	140
<u>B</u>	120 120	100
<u> </u>	120	140
-Upper X A	120	140
-Upper X _e A	120	100
	120	100
	120	140
-Upper X A	120	1,0
(1f a change) B		
C		
D	-	
Partitions-Basement A	0	30
В	9	30
C C	0	30
D	()	30
-First A	()	0
В	0	30
C	0	30
<u>D</u>	0	30
-Upper A	0	20
B	0	20
<u> </u>	0	20
% Apertures-Basement A	0	60
B B	0	0
C	0	0
D	0	0
-First A	80	90
В	0	$\frac{20}{0}$
	0	0
D	80	90
-Upper A	50	30
B	0	0
C	0	0
D	50	30
-Upper A	•	<u>-</u>
(if a change) B	4th 40	3rd 30
	9th 40	7th 10

Detector Location: Floor 4, Part 1 of 1

		<u>PF</u>		Reduction Factors	
			Ground	Roof	Total
AE	Phase 1.	77	.013	U	.013
	Phase 2.	170	.006	0	.006
RTI	FOSDIC (No X,)	110	.009	0	.009
	FOSDIC (X,)	200	.005	0	.005
	EM	1250	.0008	0	.0008

- Input Data Partitions of 20 to 60 psf were omitted in Phase
 (added in Phase 2) and 20 percent more apertures were counted on 2 sides by the AE.
- (2) Procedures The building had a "U" shape which, along with narrow contaminated planes, helped to shield against most of the direct radiation and a part of the scattered radiation in the EM method. The building also had heavy walls below sill level and 50 psf floors which led to a higher RTI EM PF because of the shielding of direct radiation.

- 32. Address: 650 5th Street, San Francisco, Cal.
 - a. Plan View

	AE-FOSDIC	RTI-FOSDIC
o, of Stories	05 В	5 В
eight-Total Building	066	56
ength-Exterior Wall A	130	130
В	100	100
asement Exposure A	3	3
В	3	3
<u>C</u>	3	3
D	3	3
SF-Roof	40	70
Basement Floor	100	100
First Floor	100	100
Upper Floor Rasement X A	150	150
	150	150
	150	150
<u>C</u>	150	150
Walls-First X A	100	100
Harris III	100	100
С	100	100
<u>d</u>	100	100
-Upper X _c A	80	100
	80	100
C	80	100
D	80	100
-Upper X A		
(if a change) B		
<u>_</u>		_
D		
Partitions-Basement A	0	0
	0	0
	0	0
-First A	0	
B	0	_ 0_
C	0	0
	0	0
-Upper A	0	0
В	0	0
C	0	00
D	0	<u> </u>
% Apertures-Basement A	30	10
	<u></u>	
<u>C</u>		0
<u>D</u>	30	30
-First A	40	40
	0 0	-
	40	30
-Upper A	40	30
<u>- оррег</u> — В	10	10
C	0	0
<u>D</u>	40	20
-Upper A		-
(if a change) B		•
C		-

Detector Location: Floor 2, Part 1 of 1

		<u>PF</u>		Reduction Factors	
AE	Phase 1. Phase 2.	42 No Change	Ground 024	<u>Roof</u> 0	Tota1 .024
RTI	FOSDIC (No X ₁)	50 100	.020 .010	0 0	.020 .010

- (1) Input Data A number of obvious errors were made by the AE in contaminated plane heights and widths and the X_e was 20 psi less in Phase 1 than on the RTI FOSDIC. Apertures were also estimated by the AE as 10 percent more on one side and 20 percent more on another. These errors are nearly compensating.
- (2) Procedures Sill heights and a major partition parallel to one wall and on only one story accounted for the major change in PF using the EM.

33. Address: 1215 4th Avenue, Seattle, Wash.

a. Plan View

	Address	1215 4	4th Ave	., Seattle,	Wash.
--	---------	--------	---------	-------------	-------

		AE-FOSDIC	RT1-FOSD1C
No. of Stories		08_в	8 в
Height-Total Building		080	92
Length-Exterior Wall	۸	132	133
	13	100	104
Basement Exposure	Λ	0	()
	В	0	()
	С	7	4
	D	()	()
PSF-Roof		80	50
Basement Floor			
First Floor		40	40
171		40	40
Basement X		180	140
(,	B	180	140
	C	1440	140
	1)	180	140
Walls-First X		150	140
wairs-ritse A ₀	B		100
		150	
			140
-Upper X _e		150	70
	Λ	150	140
		150	100
		150	140
11 V		150	100
-Upper X			·
(if a change)			
	<u> C</u>		·
David Advance December 1	<u>D</u>		
Part it Louis-Basement	<u> </u>		
		0	0
	<u> </u>	0	0
	<u></u>	0	0
-First	<u> </u>	0	30
	<u> </u>	0	30
	<u> </u>		30
	<u></u>	0	30
-Upper	Α	0	0 2
	<u> B</u>	0	30 2
	<u>C</u>	0	30 2
	<u></u>	0	30 2
% Apertures-Basement		0	0
	- 13	()	0
	C	20	20
	D	0	0
-First	A	0	0
	В	Ü	0
	С	20	30
	D	0	0
-Upper	٨	40	50
	В	0	0
	С	30	30
	Ð	Ů Ö	0
-Upper	A		3rd 40
(if a change)	В		710 40
Ter a citatific	C		
	D	·	

Detector Location: Floor 6, Part 2 of 3

		<u>PF</u>		Reduction Factors	
AE	Phase 1.	71	Ground	<u>Roof</u>	Total
	Phase 2.	No Change	.010	.004	.014
RTI	FOSDIC (No X _i)	71	.006	.008	.014
	FOSDIC (X _i)	83	.004	.008	.012
	EM	189	.0017	.0036	.0053

- (1) Input Data The AE Phase 1 X_Q was 10 psf higher on 2 sides and 50 psf higher on the other two in Phase 1 data compared to RTI.

 Interior partitions of 20 psf were not counted and the roof was estimated as 30 psf higher by the AE in Phase 1. These differences were compensating so that the AE Phase 1 and RTI FOSDIC (No X₁)

 PF's were the same even though the respective ground and roof reduction factors were different.
- (2) <u>Procedures</u> This building was another example of considerable shielding of direct and skyshine radiation components by the floor slab and adjacent buildings which raised the EM PF.

II. STATISTICAL FORMULAS

The input data (each Sub-section c. of I.B.) and computational results (each Sub-section d. of I.B.) were compared statistically and reported in Tables IV and V, respectively, of Chapter 4.

In comparing any two data collection or PF computational methods, the observed difference for a sample building will be designated as d_{ijk} . The subscript "i" refers to the region, "j" refers to the particular collapsed stratum within the region, and "k" to the building within the collapsed stratum. In order to provide a basis for estimating standard errors, collapsed strata were formed by combining adjacent original strata.*

The statistical formulas are simplified by setting:

$$Y_{ijk} = C_i W_{ijk} d_{ijk}$$
 and

$$x_{ijk} = c_i w_{ijk}$$

where:

Y is the weighted observed difference.

is the number of clusters that each sample cluster represents in the ith region.

is the proportionate number of buildings with shelter in at least PF Categories 2, 3, or 4 in the kth sample cluster of the jth collapsed stratum in the ith region.

 \mathbf{x}_{ijk} can be regarded as the inverse of the building selection probability.

For a general discussion of the use of collapsed strata for estimating standard errors see Reference 1.

An average difference, d is then found from:

$$d = \frac{\sum_{i} \sum_{j} \sum_{k} Y_{ijk}}{\sum_{i} \sum_{j} \sum_{k} X_{ijk}}$$

The above estimator is of the ratio type. Its variance can be approximated by making use of a Taylor series expansion and substituting sample values where needed. The square of the standard error of an average difference is thus estimated by:

$$\pi^{2}_{\bar{d}} = \frac{\sum_{i j}^{\sum} (Y_{ij1} - Y_{ij2})^{2} + \bar{d}^{2} \sum_{i j}^{\sum} (X_{ij1} - X_{ij2})^{2} - 2\bar{d} \sum_{i j}^{\sum} (Y_{ij1} - Y_{ij2})(X_{ij1} - X_{ij2})}{\left[\sum_{i j}^{\sum} \sum_{k}^{\sum} X_{ijk}\right]^{2}}$$

All summations are carried out only over collapsed strata in which k = 1, 2.

There are thirteen such strata with one degree of freedom within each stratum.

Table I-I gives the Wiik and Ci Wiik values used.

The standard error of the average difference, s_d, is an estimate of a measure of the variability expected from samples of the size and type used in the survey. The observed average difference divided by the observed standard error of the average difference provides a statistic for testing the significance of the observed average difference. In this survey, this statistic is approximately distributed as the "t" distribution with either twelve or thirteen degrees of freedom.

The term degrees of freedom is a technical expression referring to a parameter of the "t" distribution which was used to determine statistical significance. In this survey, each collapsed stratum with two observations contributed one degree of freedom to the computation of the observed "t" value. The total number of degrees of freedom is simply the sum over the set of collapsed strata.

TABLE I-I

33 Building Sample Statistical Characteristics

Region	°i	Collapsed Stratum (1)	Bldg. Within Collapsed Stratum (k)	Bldg. No.	Wijk	C _i W _{ijk}
1	1638	1	1	17	2,0000	3276.0000
			2	1	2,0000	3276.0000
		2	1	15	3,0000	4914,0000
			2	16	1,0000	1638.0000
		3	1	8	0.6250	1023.7500
			2	9	1.1429	1872.0702
		4	1	10	0,2000	327.6000
			2	11	6.0000	9828,0000
		5	1	12	0,2061	337.5918
			2 1	13	1.0000	1638.0000
		6	1	14	3.5000	5733. 0000
			2 1 2 1	6	1,0000	1638 0000
		7	1	7	5,0000	8190,0000
			2	3	0.1667	273.0546
		8		4	0.1250	204.7500
			2	5	1,0000	1638,0000
		9	1	2	0.1429	234.0702
2	1485	1	1	22	1,0000	1485.0000
			2	18	0.2778	412.5330
		2	1	19	0,0945	140.3325
			2	21	0.0588	87.3180
		3	1	20	3,0000	4455,0000
3	655	1	1	23	1.0000	655.0000
4,6	2054*	1	1	28	3. 0000	6162,0000
			2	25	.3333	684.5982
		2	1	26	.1667	342.4018
			2	27	3.0000	6162.0000
		3	1.	30	.0596	122.4184
5	1091	1	1	29	4.0000	4364,0000
7	1076	1	1	31	0.5000	538.0000
			2	32	2.0000	2152.0000
8	838	1	1	33	0.3333	279.3054

^{*} Adjusted for sample building not surveyed due to denial of access

REFERENCE

1. W. G. Cochran. Sampling Techniques. (Second Edition). New York: John Wiley and Sons, Inc., 1963. P. 141.

Appendix J

Construction Details of Buildings Used in Comparison of Experimental and Computed PF's

I. INTRODUCTION

Some construction details of the four buildings analyzed in Part I, Chapter 5 were reported by Edgerton, Germeshausen, and Grier, Inc. (EG&G) in References 1 and 2. This appendix presents additional data needed for the Engineering Manual computations of these buildings.

The longths and widths reported are outside dimensions; story heights are from the top of the floor slab to the top of the next higher floor slab (or roof slab); and material weights (mass thicknesses) were derived by using minimums given in Reference 3 if weights were not reported on the building plans. Mass thicknesses derived from Reference 3 are denoted by an asterisk in Section II.

II. CONSTRUCTION DETAILS

A. Brookhayen National Laboratory Medical Research Building

Stories: One with basement

Length: 270'

Width: 200'

Story Height: Basement = 11' - 0"

First = $12^{1} - 3^{11}$

First Story Floor Weight: 5" reinforced concrete 62.5 psf

13" cement fill and finish 12.5 psf

75.0 psf

First Story Ceiling Weight: Suspended metal lath and

plaster ceiling covered with

neoustic tile 15.0 psf*

Roof Weight: Built up roofing, 2" insulation, 24" poured

gypsum concrete fill, gypsum form board and

open web steel joist 36.0 psf*

Basement Wall Weight: 7" reinforced concrete 87.5 psf

4" brick 38.0 psf

125.5 psf

First Story Wall Weight: 3/4" plaster 5.0 psf

6" hollow concrete block 40.0 psf

4" brick <u>38.0 psf</u>

83.0 psf

100.0 psf

Basement Exposure: Varied on the two test sides from 2' to 11'

Partitions: (a) Basement: About 400 12"x12" columns from

floor to ceiling with a number of 8"x8"

cross joists

Estimated from data in Reference 3.

(b) First Floor (divided into about 150 rooms)

4" hollow concrete block 30.0 psf
or 8" hollow concrete block 55.0 psf
or 12" reinforced concrete 150.0 psf

Note: Some directions did not have any interior partitions and some had multiple partitions.

B. The Laboratory of Nuclear Medicine and Radiation Biology of the University of California in Los Angeles

Stories: Two with basement

Length: 180'

Width: 59'

Story Height: Basement 13' - 9"

First & Upper 12' - 9"

Floor and Roof Weight: 9" of reinforced concrete 112.5 psf

Busement Wall Weight: 8" of reinforced concrete 100.0 psf

First Story Wall Weight: Because the first story wall is a

masonry screen, the smoored effective

weight is 25.0 psf

Basement Exposure: Rear 3'

Front 4'

Partitions: Basement and First Floor - 2" metal frame,

metal lath with 3/4" plaster on each side

20.0 psf*

C. The Communications Center of the Los Angeles Police Department Building

Stories: One and eight

Length: 154' (for ground contribution)

Width: 154' (for ground contribution)

Estimated from data in Reference 3.

Story Height: First = 15' - 3"

Upper = 9' - 9''

Second Story Floor Weight: 6" min. reinforced concrete

75.0 psf

Roof Weight: 6" min. reinforced concrete

75.0 psf

First Story Wall Weight: 102" reinforced concrete

130.0 psf

13" tile and cement

15.0 psf

145.0 psf

Partitions: Mostly light partitions (10 psf); however,

there was a 14" concrete partition in part

of the building

D. A Typical Classroom at North Hollywood High School

Stories: Two without basement

Length: 98' - 6"

Width: 71' - 0"

Story Height: First = 14' - 0"

Second = $14^{+} - 0^{+}$

Floor Weight: 3" reinforced concrete

(4" concrete slab in corridor)

Suspended metal lath and 3/4" plaster

ceiling 15.0 psf

52.5 psf

37.5 psf

Roof Weight: 3" reinforced concrete 37.5 psf

Built up roofing 5.5 psf*

43.0 psf

Wall Weight: 12" reinforced concrete 150.0 psf

Partition Weight: Metal lath with plaster on both sides 20.0

20.0 psf

Estimated from data in Reference 3.

REFERENCES

- H. Borella, Z. Burson and J. Janovitch. <u>Evaluation of the Fallout Protection Afforded by Brookhaven National Laboratory Medical Research Center</u>. USAEC Report CEX-60.1. Santa Barbara, California: Edgerton, Germeshausen and Grier, Inc., October 1961.*
- Z. G. Burson. <u>Experimental Evaluation of the Fallout-Radiation Protection Provided by Selected Structures in the Los Angeles Area</u>. USAFC Report CEX-61.4. <u>Las Vagas</u>, Nevada: Edgerton, Germeshausen and Grier, Inc., February 1963.
- Ernest W. Cannon. <u>Building Materials as Commonly Used in Existing Urban Buildings in the United States</u>. <u>Project Civil</u>. <u>Richmond</u>, California: <u>Institute of Engineering Research</u>, <u>University of California</u>, 8 January 1958.

- J-5 -

^{*} Available from Office of Technical Services, Department of Commerce, Washington 25, D. C.

Appendix K

Potable Water Survey-Field Data

I. INTRODUCTION

This appendix presents the potable water field data obtained by RTI during the survey of the statistical sample of 33 NFSS structures. An outline of data collection procedures and an analysis of field results are presented in Part I. Chapter 8. The data presented in this appendix were previously reported to OCD as part of Research Memorandum RM 81-6 (Reference 1).

The potable water data were collected in the following categories:

- A. Fire Control Tank
- B. Sprinkler System
- C. Hot Water Heater
- D. Supply Pipe
- E. Holding Tank
- F. Water Closet Flush Tanks
- G. Air Conditioner (non-treated)
- H. Heating Tank (non-treated)
- I. Indoor Swimming Pool
- J. Miscellaneous (all containers not in A.-I. above)

It should be noted that some of the water contained in the buildings was not potable because of treatment with a rust inhibitor. Also, containers holding insignificant water, such as small pipes, were ignored.

II. DATA

1.	Boston, Mass.			
		gal,		•
		9 4 gal		
		0 147 gal		
	l Misc. @ 165 gal			<u>165</u>
			Total	6,016 gals.
2.	Newark, N. J.	73-77 17th Avenue	Rev. Wm. I	2. Hayes Apts.
	1 Not Water Heater @ 2,20	00 ga1,		2,200
	144 Water Closet Flush Tank	k @ 4 gn1	·	576
			Total	2,776 gala.
3.	Bronx, N. Y. C.	650 Grand Concourse	Card	inal Hayes H. S.
	1 Hot Water Heater @ 215 ga	11		215
	3 Mise. Not Water Tank @ 96	40 gal		2,820
			Total	3,035 gale.
4.	Bronx, N. Y. C.	1235 Grand Concourse	Apar	tments
	1 Hot Water Heater @ 2,800	gal		2,800
			Total	2,800 gals.
5.	Bronx, N. Y. C.	81 W. 182nd Street	Δpar	tments
			Total	0 gals,
6.	Brooklyn, N. Y. C.	5101-23 13th Avenue	Apts	Offices
			Total	0 g a ls.
7.	Brooklyn, N. Y. C.	485 Bedford Avenue	Λpar	tments
			Total	0 gals.
8.	Manhattan, N. Y. C.	304 Broadway	Ford	ham University
	1 Hot Water Heater @ 120 g	al		120
	1 Holding Tank @ 10,000 ga	1	Total	$\frac{10,000}{10,120}$ gals.

9.	Manhattan, N. Y. C. 1 Fire Control Tank @ 20,00	435 Hudson Street		
		@ 15,000 gal		•
		000 gal		•
10.		300 Park Avenue	Colgate Pa	lmolive-Offices
		0 gal,		•
		gal		-
	2 Misc. @ 11,500 gal	• • • • • • • • • • • • • • • • • • • •		23,000
			Total	37,000 gals.
11.	26 Water Closet Flush Tank	362 W. 52nd Street @ 9 gal		234
	a sep (account)	L,ood gur, a a a a a a a		
			rotar	2,234 gals.
12.		327 W. 75th Street		
		0 gal		
		g) @ 740 gal		
	1 Holding Tank @ 11,500 ga	1	• • • •	11,500
			Total	16,480 gals.
13.	Manhattan, N. Y. C.	47-49 W. 129th Street	Λpart	ments
			Total	0 gals.
14.	Manhattan, N. Y. C.			
	1 Misc. Pressure Tank @ 5,0	000 gal		5,0 00
			Total	5,000 gls.
15,		4107 10th Street		idge Housing-Apts.
	a march hearer & 330 8	ua,		140
			Total	140 gals.

16.	Queens, N. Y. C.		
	1 Holding Tank @ 3,500 gal.	• • • • • • • • • • • • •	Total 3,500 gals.
17.	Rochester, N. Y. 1 Sprinkler System @ 629 ga 1 Hot Water Heater @ 30 gal 6 Water Closet Flush Tank @	1	30
18.	Washington, D. C. 3 Hot Water Heater @ 80 gal 1 Misc. Hot Water Holding @	,	240
19.	Washington, D. C. 1 Fire Control Tank filled 3 Not Water Heater @ 1,040 2 Nolding Tank filled to 5' 1 Air Conditioner (treated) 1 Misc. @ 1,870 gal	gal	
20.	Louisville, Ky. 6 Water Closet Flush Tank 6		
21.	1 Hot Water Heater @ 400 go 2 Hot Water Heater @ 1,200 6 Supply Pipe for fire con 1 Misc. Pressure Tank @ 3, 2 Misc. Pressure Tank @ 5,	al,	400 2,400 384 3,000 10,000 Total 16,184 gals.
w 1	reated with Borgana-600 (not	potable) only partially	Illied in Summer.

	Philadelphia, Pa. 3" Copper Supply Pipe @ 74 1 Fire Control Tank @ 4,400 55 Water Closet Flush Tank @ 1 Misc. Pilot Tank @ 500 ga	gal	4,400 220	
23.	,,	70 West E. H. Crump Blvd.	(Manufacturing and Offices))
	1 Fire Control Tank @ 7,520			
	•	gal	·	
	1 Misc. @ 19,830 gal		<u>19,830</u>	
			Total 29,661 gals.	
24.	Chicago, Ill.	3456 N. Damen Avenue Access Denied		
25.	Chicago, Ill.	320 N. Clark Avenue	Central Office Building of Chicago	
		1		
	=	nl		
		nl		
	-	1		
	40 Water Closet Flush Tank			
			Total 35,033 gals.	
26.	Chicago Til	111 II. Jankaan Mad	Ta0 (11) (Ta) (a) (000)	
20.		111 W. Jackson Blvd.		
		al,		
) @ 187 gal		
	- Mr. Conditioner (treated) @ 10/ Rai	Total 5,200 gals.	
			J, 200 gdis.	

27.	Chicago, Ill. 4 Not Water Neater @ 30 gal	,		Courts-Apts.
	4 Water Closet Flush Tank @	4 gal	Total	16 136 gals.
28.	Indianapolis, Ind.	604 E. 38th Street	Public	School 66
	1 Hot Water Heater @ 141 ga	1		141
	3 Heating Tank (non-treated) @ 300 gal		900
			Total	1,041 gals.
29.	llouston, Texas	619 Main Street	Darling Sho	p & Others-Stores
	1 Hot Water Heater @ 648 ga	1	· · · · · · · · · · · · · · · · · · ·	648
	1 Air Conditioner (non-trea	ted) cooling tower @ 479 ga	nl	<u>479</u> *
			Total	648 gals.
*Not	covered or protected from (allout		
30.	St. Louis, Mo.	1010 Pine St.	S. W. Bell (Exchange a	Telephone Co.
	2 Fire Control Tank @ 4,660	gal		9,320
	6 Not Water Neater @ 206,2			
	1 Holding Tank @ 19,070 gal		1	9,070
	1 Holding Tank @ 10,000 gal		1	0,000
	1 Air Conditioner (treated)	@ 12,000 gal	1	.2,000*
			Total 3	19,627 gals.
*Not	potable			
31.	Los Angeles, Calif.			
		11		
				·
	1 Restaurant Holding Tank (141 gal		<u>141</u>
			Total	2,574 gals.

32.	San Francisco, Calif.	650 5th Street	Western Machiner	y CoMfg.
	10 Sprinkler System @ 2.	3 gal	. 	23
	1 Hot Water Heater @ 40	gal		40
	l Heating Tank (non-tre	eated) @ 4 gal		_4
			Total	67 gals.
33.	Scattle, Wash.	1215 4th Avenue	Stimpson BldgC	ffices
	11 Sprinkler System @ 1	2 gal		132
	1 Hot Water Heater @ 1	18 gal		118
	1 Hot Water Heater @ 2	36 gal		236
			Total	486 gals.

REFERENCE

1. R. O. Lyday, Jr. <u>Survey of Potable Water Available in a Sample of 33 Buildings.</u>
Research Memorandum RM 61-6. Durham, North Carolina: Operations Research
Division, Research Triangle Institute, 7 June 1963.

Appendix L

Evaluation of "Technical Operations, Inc.,

Model Experiment Report TO-B 62-26"

This Appendix was originally submitted to OCD as Research Memorandum RM 81-3,* except for minor editorial changes.

^{*}W. O. Doggett (Consultant, Professor of Physics, North Carolina State of the University of North Carolina at Raleigh). <u>Bvaluation of "Technical Operations, Inc., Model Experiment Report TO-B 62-26"</u>. Research Memorandum RM 81-3. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 5 November 1962.

ABSTRACT

The Technical Operations, Inc., preliminary model data for a windowless structure with 20 psf wall and floor thicknesses (Reference 1) were compared with calculations based on the Engineering Manual. (These comparisons do not include correction factors for source anisotropy and tubing attenuation which were reported by Tech Ops (Reference 2) after the RTI analyses were completed.) It is shown that the Engineering Manual calculations underestimate the dose rate or reduction factor by the same percent (15-20 percent for wide strips and 50-55 percent for narrow strips) as the National Fallout Shelter Survey Computer Program. This difference is probably due to inherent differences in the experimental and computational models. It is recommended that penetration data such as that presented in the Engineering Manual be developed for the radiations of cobalt-60 and attenuation characteristics of steel. The increasing discrepancy for close-in narrow strips from which the direct radiation must pass through a floor to reach the detector is believed to be due in part to an inaccuracy in estimating the attenuation of direct radiation. An alternative method is suggested for approximating the combined wall and floor barrier factor. It is also shown that essentially no error is incurred in scaling up the model data. No revisions to the Computer Program are recommended on the basis of this analysis.

Appendix L

Evaluation of Technical Operations, Inc., Experiments on a Multistory Windowless Building

I. INTRODUCTION

A. The Project

One of the major tasks of OCD Project 1115A was to "evaluate new information on shielding produced by other projects." This appendix presents the RTI evaluation of a research report that could affect the calculation of building protection factors. A summary of RTI's review of shielding research is contained in Part I, Chapter 6.

B. Background

Tachnical Operations, Inc. of Burlington, Mass., (Tech Ops) has conducted a series of gamma-ray experiments on model buildings under contract with the Office of Civil Defense. In these reports, a preliminary comparison of the data was made with the results predicted by the Architects and Engineers Guide (Reference 3) and the National Fallout Shelter Survey Computer Program (Reference 4). It was found by Tech Ops that the functional dependence of the finite-field correction factors on the geometric parameters which characterize limited planes of contamination is essentially correct; however, the computational procedure of the Computer Program underestimates the absolute dose rate (overestimates the protection factor) that was experimentally measured.

C. Purpose

The purpose of the RTI investigation was twofold: (a) to compare the experimental data for 20 psf wall and floor mass thicknesses with calculations made according to the more precise Engineering Manual method (Reference 5); and (b) to

recommend revised procedures wherever possible. It is assumed that the reader is familiar with the Tech Ops report (Reference 1) and the Engineering Manual (Reference 5).

D. Tech Ops Experiments

The first phase of the Tech Ops program was an investigation of the effect of limited planes of contamination on the dose rate in a multistory windowless building with 20 psf wall and floor mass thicknesses (Reference 1). A sixstory 36 x 48 x 72-foot high building was simulated by a model structure with a 1/12 scale factor and 1/2-inch thick (20 psf) steel walls and floors. Quarter symmetry planes of contamination were formed by closely spaced cobalt-60 point sources near the building and by the pumped source method in outer planes. Dose measurements were made in three horizontal planes above each floor at points in each plane near the corners and at the center of the building.

E. Summary of RTI Analysis

In the following sections, a detailed analysis of the data presented in Reference 1 is carried out. This analysis does not include correction factors for source anisotropy and tubing attenuation which were reported by Tech Ops (Reference 2) after the RTI analysis was completed. An evaluation of the errors associated with scaling up the experimental results is presented in Section II. It was estimated that the scaled-up data should be multiplied by about 1.04 to account for scaling errors for 20 psf mass thicknesses. The variation of dose rate with width of the contaminated field is discussed in Section III. It was found that calculations made using the Engineering Manual underestimated the measured dose rates by about the same amount as that noted by Tech Ops when using the Computer Program. The relative magnitude of the underestimate increased as the width of the plane became smaller. The increasing

discrepancy for close-in narrow planes from which the direct radiation must pass through a floor to reach the detector is believed to be due in part to an inaccuracy in estimating the attenuation of direct radiation. An alternative method is suggested in Section III for approximating the combined wall and floor barrier factor. Details of all calculations are presented in the TABS.

II. EVALUATION OF SCALING ERRORS

A. Introduction

Several criteria must be satisfied in order for scaled-up model data to be representative of a full-scale experiment. If these criteria are not met, a discrepancy between scaled-up data and calculations on a full-scale structure may be due both to scaling errors and to errors in the computational procedure. Therefore, before comparing the data with full-scale calculations, it was necessary to estimate scaling errors which were not evaluated quantitatively by Tech Ops.

B. Air Donsity Effects on Scaling

The scaling laws are difficult to satisfy and were not entirely obeyed in the Tech Ops experiments (see p. 57, Reference 1). The model accurately simulated the full-scale building in geometry and mass-thickness; however, it was not possible to increase the air density to achieve the same mass thickness between the source and building in the model as would exist in the full-scale case. The error due to this effect was essentially eliminated by a computational technique presented in Reference 1. An ambiguity remains in determining the proper thickness of steel to simulate the full-scale walls and floors. Steel has neither the scaled-up density nor the same scattering and absorption cross sections as that used for the attenuation curves in the A&E Guide and Engineering

Manual. In the current analysis, the model and full-scale structure were assumed to have the same mass thicknesses.

C. Comparison of Experimental Data with Computations in Model and Full-Scale Geometry

The height of the scale model (6 ft) was sufficient to allow a direct calculation of the reduction factor (RF) with the Engineering Manual using the actual dimensions of the model. It was expected that the calculated RF would not agree precisely with the observed data owing to the facts that: (a) some simplifying assumptions had to be made in developing the manual; (b) iron was used in the model, whereas, the manual is based on water; and (c) nearly monoenergetic gammas were used in the experiment rather than a fallout spectrum. The RF at a point midway between the 4th and 5th floors (31 ft above ground level) in the center of the model building was determined from the data to be 0.53 (see TAB 1). An Engineering Manual calculation using actual model dimensions gave the result 0.43 (see TAB 2). If no errors were introduced in scaling up the data to a full-size structure, the ratio of the RF obtained from the scaled-up data to that calculated with the manual for the full-scale case would be the same as the above ratio 0.53/0.43 = 1.23. The RF from the scaled-up data for the same location in the building was 0.216 (see TAB 3), whereas, the RF calculated with the manual for the full-scale building was 0.183 (see TAB 4). Comparison of this ratio (0.216/0.103 - 1.18) with 1.23 above indicates that the correction factor needed due to the scaling error is approximately 1.04. The correction associated with this factor (4 percent) is of the order of the scatter of dosimeter readings (5 percent), (p. 16, Reference 1) and probably should be neglected.

III. EVALUATION OF LIMITED FIELD DATA

A. Introduction

The finite field correction in the National Fallout Shelter Survey Computer Program is based on the parameter $W_{\rm c}/H$, where $W_{\rm c}$ is the plane width and H is the detector height. The width is measured from the edge of the building to the outer periphery of the contamination. Tech Ops found that the observed data plotted versus $W_{\rm c}/H$ fell above the values predicted by the Computer Program. Before revising the program to force agreement with experimental data, it must be ascertained whether a difference should exist due to basic differences in the experimental and computational models.

B. Computational Procedure

The more sophisticated computational procedure of the Engineering Manual is more reliable than the simplified method of the A&E Guide or the Computer Program. Consequently, comparison of the data with predictions based on the manual will give an indication of the basic error to be expected in the Computer Program. Furthermore, scaling errors can be avoided by performing calculations directly in model geometry. The computational procedure is presented in TAB 5. The results for a detector position at the center and midway between the 4th and 5th floors (position E, 3½ ft above the ground) are shown in Figures L1 and L2.) This detector location was chosen because its symmetry greatly simplified computations and its height was very nearly the standard value (3 ft). Not included in this report are analyses of the basement data and the variation in dose rate due to changes in detector height between floor levels and as the detector is moved toward the outer walls.

C. Analysis of Cumulative Data

It is seen in Figure L1 that the theoretical results lie about 15-20

percent below the experimental data for wide planes and lie considerably more below for narrow planes. Since it is believed that Engineering Manual calculations agree rather well with infinite field data for a fallout spectrum and walls with atomic characteristics of water in a simple windowless structure, the above disagreement must be attributed to use of cobalt-60 and steel in the model. It is concluded that the computer program would also underestimate the data by this amount -- a fact which was observed by Tech Ops for this detector position (see Figure 19, Reference 1). Therefore, no revision of the Computer Program is needed for this case for wide planes. It is recommended that penetration data such as that presented in the Engineering Manual be developed for the radiations of cobalt-60 and attenuation characteristics of steel. Then, comparison of calculations with model data will shed light directly on the errors associated with the simplifying assumptions made in the manual. Basic data are available for vertical wall barrier factors for cobalt-60 gammas incident on concrete (Figure B25, Reference 6) and a 1.12-hr fission spectrum incident on water (Figure 28.7, Reference 6). The barrier factors for a 20-psf effective mass thickness for these cases are 0.315 (d = 3 ft) and 0.30 (d = 3.3 ft), respectively. These data indicate that computations based on a fission spectrum will underestimate experimental results for cobalt-60 gammas. This trend was observed.

D. Analysis of Data for Individual Source Rings

A comparison of the predicted and measured dose rate from each source ring is shown in Figure L2. Generally, the calculated results fall somewhat below the experimental points. This fact is expected in view of the infinite field comparison (see TABS 1 and 2). Agreement is good for those source rings (numbers 5-11) beyond the floor shadow. On the other hand, the calculated points fall considerably below the experimental points for the close-in rings for which the direct radiation must pass through the 4th floor.

Comparison of the relative contribution of the direct and scattered radiation for the various source areas indicates that the calculated direct contribution may be underestimated. If the calculated wall-scattered contribution is assumed to be approximately correct, one can estimate what the direct contribution should be from the experimental data. As seen in Table L-I, for ring 2 this value is 0.014 to be compared with the calculated 0.005.

TABLE L-I

Reduction_Factors

Ring	Total RF (Experimental)	Scattered (Calculated)	Total Minus Scattered	Direct (Calculated)
2	0.021	0.007	0.014	0.005
3	0.027	0.015	0.012	0.007

Similarly, for ring 3 the calculated direct contribution of 0.007 is less than the 0.012 expected from the experimental data. These results suggest that the product of the barrier reduction factors

$$B_{\mathbf{y}}(\mathbf{X}_{\mathbf{c}}, \mathbf{H}_{\mathbf{b}}) B_{\mathbf{c}}(\mathbf{X}_{\mathbf{f}}) \tag{L1}$$

in equation (L21) gives a value too small. It seems reasonable to replace this expression by $B_w(X_c^i, \mathbb{N}_1)$ in which X_c^i is the horizontal projection of the combined floor and wall thickness penetrated by the direct radiation (Figure In3). For ring 3 located 8 ft away from the center of the building, we have ($\mathbb{N} = 3\frac{1}{2}$ ft),

$$X_{e}^{1} = X_{e} + \frac{8}{11} X_{f} = 66 \text{ psf}$$
 (L2)

and $B_{w}(X_{e}^{i}, H_{1}) = 0.2$. With this, the calculated direct contribution is 0.012 which is equal to the (total experimental minus wall-scattered) contribution as given in Table L-I.

FIGURE L-3

Path of Direct Radiation From Ring 3

REFERENCES

- John F. Batter and Albert Starbird. The Effect of Limited Strips of Contamination on the Dose Rate in a Multistory Windowless Building, Yolume I, 20 psf Wall and Floor Thickness. Report No. TO-B 62-26, Burlington, Massachusetts: Technical Operations, Inc., April 1962.
- John F. Batter, Albert W. Starbird and Nancy-Ruth York. <u>Final Report</u> <u>The Effect of Limited Strips of Contamination on the Dose Rate in a Multi <u>story Windowless Building</u>. Report No. TO-B 62-58. Burlington, Massachusetts:
 <u>Technical Operations</u>, Inc., August 1962.
 </u>
- Office of Civil Defense. <u>Fallout Shelter Surveys</u>; <u>Guide for Architects</u> <u>and Engineers</u>. Washington: Office of Civil Defense, Department of Defense, December 1961.
- 4. L. V. Spencer and C. Eisenhauer. <u>Calculation of Protection Factors</u>
 <u>tor the National Fallout Shelter Survey</u>. National Bureau of Standards
 Report 7539, Washington: U. S. Department of Commerce, 3 July 1962.
- Office of Civil Defense. <u>Design and Review of Structures for Protection from Fallout Gamma Radiation</u>. (Engineering Manual). Revised Edition; Washington: Office of Civil Defense, Department of Defense, 1 October 1961.
- 6. L. V. Spencer. <u>Structure Shielding Against Fallout Radiation From Nuclear Weapons</u>. National Bureau of Standards Monograph 42. Washington; U. S. Department of Commorce, 1 June 1962.
- Richard Stephenson, <u>Introduction to Nuclear Engineering</u>. 2nd ed.; New York; McGraw-Hill Book Company, Inc., (1958) 197.
- 8. R. E. Rexroad and M. A. Schmoke. <u>Scattered Radiation and Far-Field Pose Rates from Distributed Cobalt-60 and Cesium-137 Sources</u>. Report No. NDL-TR-2. Edgewood, Maryland: Nuclear Defense Laboratory, Army Chemical Center, September 1960.
- Herbert Goldstein. <u>Fundamental Aspects of Reactor Shielding</u>. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., (1959) 235.

Experimental Reduction Factor in Model

I. PROCEDURE

The reduction factor (RF) is defined as the ratio of the dose rate at a sheltered point to the dose rate outside at 3 ft above a smooth area of infinite extent uniformly contaminated with fallout. The Tech Ops data in Tables 1 through 22 of Reference 1, are normalized so that they represent dose rates in r/hr for a source strength of 1 curie/ft². In order to obtain the RF for a point located midway between the fourth and fifth floors (Table 14, Reference 1) at the center (position E), it is necessary to determine the far-field contribution to the measured dose rate from that region beyond the outermost source area 27 and to calculate the dose rate at 3 ft above an infinite field with source intensity 1 curie/ft².

II. DOSE RATE ABOVE AN INFINITE PLANE

Consider first the dose rate above an infinite plane. The dose rate at ρ ft away from a point source of strength C curies with no attenuation is (Reference 7):

$$D = 6 \text{ CE/}\rho^2 \text{ , r/hr} \tag{L3}$$

in which E is the gamma energy, Mev/disintegration. The dose rate at H

FIGURE L-4

Geometry for Infinite Plane Calculation

above the plane in Figure L-4 due to the element of source dC on the strip in the plane is

$$dD = 6E B(\mu_0 \rho) e^{-\mu_0 \rho} dC/\rho^2$$
 (L4)

in which $dC = 2\pi r dr\sigma$, where σ is the source intensity in curies/ft². The buildup factor $B(\mu_0\rho)$ and exponential factor account for multiple scattering and absorption in air. From Figure L-4 we see

$$\rho^2 = H^2 + r^2$$
 (L5)

from which

$$\rho d\rho = r dr . (L6)$$

Integrate equation (L4) to obtain the dose rate for an infinite plane

$$p = 12\pi\sigma E \int_{\mu_0}^{\infty} \frac{B(x)}{x} e^{-x} dx$$
 (L7)

in which equation (L6) was inserted and $\mu_0 \cap$ was replaced by x. The buildup factor for a point cobalt-60 source on the ground is (Reference 8)

$$B(x) = 1.11 + 0.529 x + 0.157e^{-86.1x}$$
. (L8)

Integration of equation (L7) with B(x) replaced by equation (L8) gives

$$D = 12\pi E_{\sigma} [1.11E_{1}(\mu_{o}H) + 0.529e^{-\mu_{o}H} + 0.157E_{1}(87.1\mu_{o}H)].$$
 (L9)

Values of the E₁ functions are available in Appendix C of Reference 9. For cobalt-60 we have 6E = 14, $\mu_{\rm o}/\rho_{\rm d}$ = 0.0567 cm²/gm for 1.25 mev photons (Reference 9) and $\rho_{\rm d}$ = 1.25 gm/liter for air at 50°F (assumed). The reciprocal mean free

path is $H_0 \approx 0.0567 \times 0.00125 \times 30.5 = 0.00216 \text{ ft}^{-1}$. At H = 3 ft, equation (L9) reduces to

$$D = 490\sigma \tag{L10}$$

which states that a unit source intensity $\sigma=1$ curic/ft² will produce a dose rate of 490 r/hr at 3 ft above the infinite plane source. This compares favorably with the value 497 r/hr quoted on p. 17, Reference 1, and used by Tech Ops for normalization purposes. The small difference is probably due to the use of a different air temperature and representation for the buildup factor. For subsequent calculations the 497 value will be used.

III. FAR-FIELD CONTRIBUTION

Consider next the far-field contribution. Knowledge of the ratio of the dose rate due to the source beyond $r_0 = 50.2$ ft to that due to the source in the ring between $r_1 = 47.7$ ft and $r_0 = 50.2$ ft (outermost source area 27 in Table 14, Reference 1) would permit the calculation of the far-field effect using the dose rate measured in the outermost ring. This ratio can be estimated by neglecting the presence of the building. The dose rate due to the ring is (see Figure L-4 and Equation (L7)):

$$D(r_i \to r_o) = 12\pi\sigma E \int_{u_o \rho_i}^{u_o \rho_o} \frac{B(x)}{x} e^{-x} dx$$
 (L11)

in which ρ_i and ρ_o are the slant radii given by equation (L5). For distances ρ of the order of 50 ft, the exponential term in (L8) can be dropped. Therefore, we obtain

$$\frac{D(r_0 \to \omega)}{D(r_1 \to r_0)} = \frac{1.11 E_1(u_0\rho_0) + 0.529e^{-\mu_0\rho_0}}{1.11[E_1(u_0\rho_1) - E_1(u_0\rho_0)] + 0.529(e^{-\mu_0\rho_0} - e^{-\mu_0\rho_0})}$$
(L12)

With H = $3\frac{1}{2}$ ft, $\mu_0 = 0.00216$ ft⁻¹, $\rho_1 = 47.8$ ft, and $\rho_0 = 50.3$ ft, we get

$$\frac{D(r_0 \longrightarrow \infty)}{D(r_1 \longrightarrow r_0)} = 44 . \tag{L13}$$

This ratio can be roughly checked with results from Figure 8 of the Engineering Manual (Reference 5) or p. 32 of the Spencer Monograph (Reference 6).

$$\frac{D(50.3 \text{ ft})}{D(47.8 \text{ ft}) - D(50.3 \text{ ft})} \approx \frac{0.5}{0.01} \approx 50.$$

The dose rate in the building due to area 27 is 0.84 r/hr (position E, Table 14, Reference 1). The dose rate due to the region beyond area 27 is, therefore, approximately $44 \times 0.84 = 37$ r/hr.

IV. RF AT CENTER OF FOURTH FLOOR

The dose rate due to all areas outside the building for which measurements were made is 28.9 r/hr obtained by summing all values in columns E in Table 14 of Reference 1. Hence for quarter symmetry, the infinite field dose rate is 28.9 + 37 = 66 r/hr, and for full circular symmetry it is $4 \times 66 = 264 \text{ r/hr}$. The reduction factor is the ratio of this to the dose rate at H = 3 ft in the absence of the building previously found to be 497 r/hr.

$$RF = 264/497 = 0.53$$
. (L14)

It is noted that the far-field contribution comprises 56 percent (37/66) of the total dose rate. Consequently, an error in its estimate will seriously affect the accuracy of the total dose rate. The presence of the building with attenuating walls has the effect of making the actual dose ratio $D(r_0 \longrightarrow \infty)/D(r_1 \longrightarrow r_0)$ less than that estimated with equation (L13) for no building. This is due to the fact that the lower energy multiple scattered radiation coming from the far-field

region will be attenuated more by the walls than the more direct radiation from the nearer sources. Thus, the RF in equation (L14) should be reduced somewhat.

Theoretical Reduction Factor in Model

I. MODEL DESCRIPTION

The model dimensions are great enough to permit a direct calculation of the reduction factor. The building is schematized in Figure L-5. The detector is

FIGURE L-5

Model Structure (X - X - X = 20 psf)

located approximately at the center of the volume between the 4th and 5th floors (position E, 6 in. above 4th floor) which is 42.5" = 3.54 ft above the ground.

Dimensions are obtained from Figure 3, Reference 1. A detail showing room heights and floor thicknesses in inches for solid angle fraction computations is presented in Figure L-6.

FIGURE L-6

Detail for Solid Angle Fraction Calculations

II. REDUCTION FACTOR CALCULATIONS

The reduction factor is calculated according to the procedure presented in Example No. 7 of the Engineering Manual. The requisite data are tabulated in Table L-II, and the calculations are in Table L-III. Extrapolations were made in Charts 2 and 6 of the Engineering Manual to obtain data for heights below 3 ft. The calculated reduction factor is 0.43.

TABLE L-II

Model Data from Engineering Manual

(All references are to Reference 5)

	e=₩/L	n=2Z/L	ω Chart 3	G _d (ω ₁ ,Η) (H≃3.54') <u>Chart 6</u>	Gg(w) Chart 5	G _a (ω _u) Chart 5
ω _u = ω ₁	36.5/49 =0.746	2x5.75/49 =0.224	0.77	0.58	0.236	0.060
$\omega_u^{i} = \omega_1^{i}$	0.746	2x17.75/49 =0.725	0.39	0.78	0.410	0.089
$\omega_{\mathbf{u}}^{n} = \omega_{1}^{n}$	0.746	2x29.75/49 =1.21	0.22	0.84	0.452	0.095
	H (ft) 1.54 2.54 3.54 4.54 5.54	B _w (X _e =20,H) <u>Chart 2</u> 0.65 0.62 0.59 0.57 0.55		x _f , x _o (paf) 20 40	B _o (X _g) Chart 1 Case 1 0.20 (.11	B ₀ '(X ₀ ') Chart 1 <u>Case 3</u> 0.25 0.10

 $S_{u}(X_{n} = 20) = 0.35$ (Chart 7)

E (e = 0.746) = 1.4 (Chart 8)

 $C_0(\omega_0 = \omega_u^i = 0.22, X_0 = 60) = 0.04$ (Chart 4)

Skyshine factor for decontaminated roof with $X_0 = 60$ is 0.07 (page 17).

Engineering Manual Calculations for Model (X_e = 20 psf, H = 3.54 ft)

Through 4th floor walls (adjacent)

$$\begin{bmatrix} G_{\mathbf{g}}(\omega_{\mathbf{u}}) + G_{\mathbf{g}}(\omega_{\mathbf{1}}) \end{bmatrix} S_{\mathbf{u}} E = (0.236 + 0.236) \times 0.35 \times 1.4 = 0.231$$
$$\begin{bmatrix} G_{\mathbf{g}}(\omega_{\mathbf{u}}) + G_{\mathbf{d}}(\omega_{\mathbf{1}}, H) \end{bmatrix} (1-S_{\mathbf{u}}) = (0.060 + 0.58) \times 0.65 = 0.415$$

$$C_g = G_g B_w(X_e, H) = (0.231 + 0.415) \times 0.59 = 0.38$$

Through 5th floor walls (ceiling) ($H_u = 4.54$, $X_0' = 20$)

$$G_{\mathbf{g}}(\omega_{\mathbf{u}}^{\dagger}) - G_{\mathbf{g}}(\omega_{\mathbf{u}})$$
 $S_{\mathbf{u}}^{\mathbf{E}} = (0.41 - 0.236) \times 0.35 \times 1.4 = 0.085$

$$G_{\mathbf{a}}(\omega_{\mathbf{u}}^{i}) - G_{\mathbf{a}}(\omega_{\mathbf{u}})$$
 (1-8) = (0.089 - 0.060) × 0.65 = 0.0188

$$C_g = G_g B_w(X_a, H_u) B_0^*(X_0^*) = (0.085 + 0.0188) \times 0.57 \times 0.25 = 0.015$$

Through 6th floor walls (ceiling) $H_u = 5.54'$, $X_0' = 40$)

$$G_{\bullet}(\omega_{u}^{"}) - G_{\bullet}(\omega_{u}^{"}) S_{u}^{E} = (0.452 - 0.410) \times 0.35 \times 1.4 = 0.021$$

$$G_a(\omega_u^{ij}) - G_a(\omega_u^{ij})$$
 (1-8) = (0.095 - 0.089) × 0.65 = 0.004

$$C_g = G_g B_w(X_o, H_u) B_o^*(X_o^*) = (0.021 + 0.004) \times 0.55 \times 0.1 = 0.001$$

Roof Contribution ($\omega_0 = \omega_1^n, X_0 = 60$)

(Skyshine factor) $\times C_0(\omega_0, X_0) = 0.07 \times 0.04 = 0.003$

Through 3rd floor walls (H₁ = 2.54, $X_f = 20$)

$$G_s(\omega_1^*) - G_s(\omega_1)$$
 $S_w^2 = 0.085$ (same as 5th floor)

$$G_d(\omega_1, H) - G_d(\omega_1, H)$$
 (1-S_w) = (0.78 - 0.58) x 0.65 = 0.13

$$C_g = G_g B_w(X_e, H_1) B_o(X_f) = (0.085 + 0.13) \times 0.62 \times 0.20 = 0.027$$

Through 2nd floor walls ($H_1 = 1.54$, $X_f = 40$)

$$G_{\mathbf{s}}(\omega_{1}^{i}) - G_{\mathbf{s}}(\omega_{1}^{i})$$
 $S_{\mathbf{w}}^{\mathbf{E}} = 0.021$ (same as 6th floor)

$$G_d(\omega_1^0, H) - G_d(\omega_1^1, H)$$
 (1-S_w) = (0.84 - 0.78) × 0.65 = 0.039

$$C_g = G_g B_w(X_e, H_1) B_o(X_f) = (0.021 + 0.039) \times 0.65 \times 0.11 - 0.004$$

Through lat floor walls

Negligible

Sum of Cg's = Reduction Factor

RF = 0.38 + 0.015 + 0.001 + 0.003 + 0.027 + 0.004 = 0.43

Conversion of Model Data to Full-Scale Data

I. CONVERSION METHOD

The model data were scaled up by Tech Ops and presented graphically. In order to obtain precise numerical values for the purposes of this report, the data are scaled up herein, following the method presented in Reference 1, p. 57. The basic method consists of multiplying the measured dose rate for an area by a ratio R which converts the model dose rate to the full-scale dose rate. The ratio R accounts for the difference in air attenuation in the model and that for the full-scale structure. It is estimated by evaluating the dose rate in the absence of the building for each case in a manner similar to that presented in TAB 1 for the far-field correction. For simplicity, the source areas are converted to circular strips or rings having the same area. The conversion ratio R for each of the areas is listed in Reference 1, p. 62.

11. DATA CONVERSION

The scaling computations are shown in tabular form in Table L-IV. The experimental data are taken from Table 14, position E, Reference 1, and the ratio R is that for a height of 3½ ft in the model. The full-scale data in the 5th column in Table L-IV are normalized so that they represent dose rates for full-symmetry contamination with a source intensity that will produce a dose rate of 1 r/hr at 3 ft above an infinite plane. The model data in the 4th column are based on a source density of 1 curie/ft² in quarter symmetry. Since an infinite field with this unit density will produce a dose rate of 497 r/hr, the normalizing factor is 4/497 = 0.00804 which appears in the heading of column 5. The cumulative full-scale experimental dose rate in the last column indicates that the

dose rate in an infinite field surrounding the model is 0.216 r/hr. The ratio of 0.216 r/hr to the infinite field dose rate 1 r/hr gives the reduction factor 0.216 for the full-scale building at the center of the volume between the 4th and 5th floors.

TABLE L-IV

Scaled-Up Data for Position E, 6 ft above 4th Floor
(All references are to Reference 1)

	Source	[1] FS/Model Ratio R at 3.5 ft	[2] Exp. Dose Rate	Full-Scale Dose Rate	Cumulative Full-Scale
Ring No.	Areas	(Table 27)	(Table 14)	$0.008 \times [1] \times [2]$	Exp. Dose Rate
1	A,C,G	0.97	1.652	0.0129	0.0129
2	B,D,F,E,H	0.95	2.617	0.0200	0.033
3	4,5,6	0.90	3.36	0.0242	0.057
4	7,8,9	0.85	3.89	0.0265	0.084
5	10,11,12	0.79	3.96	0.0252	0.109
6	13,14,15	0.74	3.07	0.0182	0.127
7	16,17,18	0.68	2.54	0.0138	0.141
8	19,20,21	0.63	2.09	0.0105	0.151
9	22,23,24	0.57	1.75	0.0080	0.159
10	25,26	0.62	3.14	0.0156	0.175
11	27	0.48	0.84	0.0032	0.178
12	Far-field	5.6*	•	0.0378	0.216

*Ratio of full-scale far-field dose rate to model data for area 27 (see Table 28, Reference 1).

Theoretical Reduction Factor in Full-scale Building

The computational method follows that presented in TAB 2 for the model. The full-scale structure is represented by Figure L-5 with inches replaced by feet. The walls and floors have mass thicknesses of 20 psf and are assumed to occupy negligible volume. The detector is located 6 feet above the 4th floor which is 42 feet above the contaminated plane. The contribution penetrating other than the 3rd, 4th, and 5th floor walls is neglected. The requisite data appear in Table L-V and the computations are in Table L-VI. The calculated reduction factor is 0.183.

Full-Scale Data From Engineering Manual (All references are to Reference 5)

TABLE L-V

	e = W/L	n=22/L	ω Chart 3	G _d (ω ₁ ,H) (H=42') Chart 6	G _s (ω) Chart 5	G _a (ω _υ ; Η) (H=42') Chart 5
ωı	36.5/49 -0.746	2x6/49 =0.245	0.75	0.32	0.25	0.062
ω,	0.746	2x18/49 =0.735	0.39	0.64	0.41	0.089
	0.746	2x30/49 =1.22	0.22			
•	20) = 0,35 (746) = 1.4 (H <u>(ft)</u>	Bw(Xe=20,H)
О.		(Chart 8)	iso 1)			
- 0.	746) = 1.4 ((Chart 8) Chart 1, Ca			<u>(ft)</u>	Chart 2
- 0.	746) = 1.4 (20) = 0.2 ((Chart 8) Chart 1, Ca (Chart 1, C	Case 3)	t 4)	(ft) 30	Chart 2 0.35

TABLE L-VI

Engineering Manual Calculations for Full-Scale Building (X = 20 psf, H = 42 ft)

Through 4th floor walls (adjacent)

$$\begin{bmatrix} G_g(\omega_u) + G_g(\omega_1) \end{bmatrix} S_w E = (0.25 + 0.25) \times 0.35 \times 1.4 = 0.245$$

$$\begin{bmatrix} G_g(\omega_u) + G_d(\omega_1, H) \end{bmatrix} (1 - S_w) = (0.062 + 0.32) \times 0.65 = 0.248$$

$$C_g = G_g B_w(X_e, H) = (0.245 + 0.248) \times 0.31 = 0.153$$

Through 5th floor walls (ceiling) ($H_u = 54^{\circ}$, $X_0^{\circ} = 20$)

$$\begin{bmatrix} G_{a}(\omega_{u}^{i}) - G_{a}(\omega_{u}) \end{bmatrix} S_{w} R = (0.41 - 0.25) \times 0.35 \times 1.4 = 0.078$$

$$\begin{bmatrix} G_{a}(\omega_{u}^{i}) - G_{a}(\omega_{u}) \end{bmatrix} (1 - S_{w}) = (0.089 - 0.062) \times 0.65 = 0.0175$$

$$C_{g} = G_{g} S_{w}(X_{a}, H_{u}) S_{o}^{i}(X_{o}^{i}) = (0.078 + 0.0175) \times 0.29 \times 0.25 = 0.007$$

Through 3rd Floor walls (floor) ($H_1 = 30^{\circ}$, $K_f = 20$)

$$\begin{bmatrix} G_{s}(\omega_{1}^{*}) - G_{s}(\omega_{1}) \end{bmatrix} S_{u}E = 0.078 \text{ (same as 5th floor)}$$

$$\begin{bmatrix} G_{d}(\omega_{1}^{*}, H) & G_{d}(\omega_{1}, H) \end{bmatrix} (1-S_{u}) = (0.64 - 0.32) \times 0.65 = 0.208$$

$$C_{g} = G_{g} B_{u}(X_{c}, H_{1}) B_{o}(X_{f}) = (0.078 + 0.208) \times 0.35 \times 0.2 = \underline{0.020}$$

Roof Contribution (decontaminated) ($\omega_0 = \omega_u^n$, $X_0 = 60$)

(Skyshine factor) $\times C_0(\omega_0, X_0) = 0.07 = 0.07 \times 0.04 = 0.003$

Sum of C 's = Reduction Factor

RF = 0.153 + 0.007 + 0.020 + 0.003 = 0.183

Experimental and Theoretical Dose Rates From Limited Strips in Model

I. EXPERIMENTAL CONTRIBUTION

The experimental dose rates as a function of ring number are presented in Table L-VII in the column labeled [7]. These data come directly from Table 14, Reference 1, for position E. Thus for ring number 1, which consists of source areas A, C, and G (see Figure 4, Reference 1), the experimental dose rate is 0.662 + 0.500 + 0.490 = 1.65 r/hr. The next column in Table L-VII labeled, "Experimental Contribution," is obtained by normalizing the data to account for full symmetry and a source density 1/497 curies/ft² (see TAS 3). The Cumulative Experimental Contribution is a sum of the "Experimental Contribution" column and is plotted versus the ratio of the contaminated strip width, W_C, to the detector height, N, in Figure L-1.

II. THEORETICAL CONTRIBUTION

A. Source Rings

The width, $W_{\rm C}$, of a washer-shaped strip of contamination which surrounds and extends outward from a cylindrical structure is defined as the difference of the outer radius of the strip and the building radius. The equivalent radii of the source regions are obtained by replacing the actual rectangular regions with concentric strips or rings that have the same area. For example, the total area enclosed by the outer radius of ring number 3 is 95 ft² in quarter symmetry. Hence its radius is 11.0 ft calculated from $\pi r_0^2 = 95 \times 4$ (see columns [1] and [2] in Table L-VII). The cumulative strip which includes rings 1, 2, and 3 has width $W_{\rm C} = 11.0 - 1.955 = 9.0$ ft, and ratio $W_{\rm C}/H = \tan \theta = 9.0/3.54 = 2.56$, which is also entered in Table L-VII.

TABLE L-VII

Theoretical and Experimental Dose Rate in the Model (H=3.54)

Ring Number	Source Areas	[1] Cumulative Area from Fig. 4	[2] Outer Radius $r_0 = \frac{2}{\sqrt{\pi}}$ [1]	$1 - \frac{\omega}{(H^2 + r_0^2)^{\frac{1}{2}}}$	G _d (ω,Η) (Chart 6)
	Inside Bldg. Walls	(Ref. 1)	1.941	0.123	(Ref. 5) 0.867
	Nominal Bldg.	3	1.955	0.125	0.865
	2nd F1. Shadow		2.74	0.210	0.840
1	A, C, G	14	4.225	0.358	0.791
	3rd Fl. Shadow		4.58	0.389	0.781
2	B,D,F,E,H	33	6.49	0.521	0.730
3	4, 5, 6	95	11.0	0.694	0.641
	4th Fl. Shadow		13.75	0.751	0.598
4	7, 8, 9	189	15.5	0.777	0.569
5	10, 11, 12	315	20.0	0.826	0.505
6	13, 14, 15	473	24.55	0.857	0.459
7	16, 17, 18	663	29.0	0.879	0.423
8	19, 20, 21	885	33.6	0.895	0.395
9	22, 23, 24	1139	38.1	0.907	0.367
10	25, 26	1788.2	47.7	0.926	0.323
11	27	-	50.2	0.930	0.310
12	Par-Pield	-	œ	1.00	0

TABLE L-VII (continued)

Theoretical and Experimental Bose Rate in the Hodel (H=3.54)

Ring Number	ΔG _d	tan 0 - W _c /H _ [2] - 1.955 3.54	ω _s = 1-cos θ	B _{ws} (X _w =20, w _s) (Fig. L-9)	△ B _{ws}	Scattered Contribution From Adjacent Walla = 0.245 \(\Delta \) B Ws
	-	-	•	•	•	•
	-	•	•	•	-	•
2nd F1.	0.025	•	•	•	-	•
1	0.049	0.64	0.080	0.0075	0.0075	0.0018
3rd F1.	0.010	0.74	•	**	-	••
2	0.051	1.28	0.193	0.030	0.023	0.0055
3	0.089	2,56	0.318	0.084	0.054	0.013
4th F1.	0.043	3.28	•	•	•	•
4	0.029	3.81	0.373	0.124	0.040	0.010
5	0.064	5.08	0.404	0.146	0.022	0.005
6	0.046	6.38	0.423	0.163	0.017	0.004
7	0.036	7.63	0.435	0.175	0.012	0.003
8	0.028	8.92	0.444	0.186	0.011	0.003
9	0.028	10.2	0.451	0.199	0.013	0.003
10	0.044	12.9	0.461	0.223	0.024	0.006
11	0.013	13.6	0,463	0.230	0.007	0.0017
12	-	-	•	**	-	-

TABLE L-VII (continued)
Theoretical and Experimental Dose Rate in the Model (H=3.54)

Ring Number	$\frac{\text{Wc}}{2.54}$	1-cos 9 ₁	B _{ws} (X _w =20,m _{s1}) (Fig. L-9 of this report)	∆B ¹ ₩8	tan 0 _u - W _c - 4.54	1-cos 9 _u
	•	-	•	•	•	•
	**	-	-	-	-	-
2nd ¥1.	-	-	-	-	-	
1	0.89	0.127	0.015	0.015	0.50	0.053
3rd Fl.	U	•	•	•	-	-
2	1.78	0.256	0.052	0.037	1.00	0.147
3	3.57	0.365	0.118	0.066	2.00	0.276
4th Fl.	•	-	•	-	•	•
4	5.30	0.408	0.150	0.032	2.97	0.341
5	7.08	0.430	0.170	0.020	3.97	0.378
6	8.89	0.444	0.186	0.016	4.98	0,402
7	10.6	0.751	0.199	0.013	5.95	0.417
8	12.4	0.460	0.222	0.023	6.95	0.429
9	14.2	0.465	0.239	0.017	7.95	0,438
10	18.0	0.472	0.270	0.031	10.1	0.451
11	19.0	0.474	0.280	0.010	10.6	0.453
12	œ	0.5	•	-	œ	0.5

TABLE L-VII (continued)

Theoretical and Experimental Dose Rate in the Model (H=3.54)

Ring Number	B _{ws} (X _w =20, w _{su})	∆B ^U ws	[4] Scattered Contribution From Upper & Lower Walls - 0.0196 (\(\Delta \B_{WB}^{1} + \Delta B_{WB}^{1} \)	[5] Total Scattered Contribution = [3] + [4]
	-	-	-	**
	•	•	•	rs.
2nd F1.	•	••	•	-
1	0.0037	0.0037	0.0004	0.0022
3rd F1.	•	••		••
2	0.019	0.015	0.0015	0.0065
3	0.062	0.043	0.0021	0.015
4th Fl.	•		-	•
4	0.101	0.039	0.0014	0.011
5	0.128	0.027	0.0009	0.006
G	0.144	0.016	0,0006	0.005
7	0.156	0.012	0.0003	0.003
8	0.169	0.013	0.0007	0.004
9	0.180	0.011	0.0005	0.004
10	0.200	0.020	0.0010	0.007
11	0.204	0.004	0.0003	0.002
12	•	-	-	***

TABLE L-VII (continued)

Theoretical and Experimental Dose Rate in the Model (H=3.54)

Number	[6] Contribution From Direct Radiation =0.38% \(\Delta \) G _d	[7] Experimental Dose Rate (Table 14) (Ref. 1)	Experimental Contribution = 0.008 [7]	Contribution	Cumulative Experimental Contribution	Cumulative Theoretical Cont.ibution
2nd F1.	0.0007#	•	-		-	-
1	0,0023#	1.65	0.013	0.005	0.013	0.005
3rd F1.	0.0005#	-	•	**	-	5 -1
2	0.004#	2.62	0.021	0,011	0.034	0,016
3	0.0072#	3.36	0.027	0.022	0.061	0.038
4th Fl.	0.0035#	••	•	-	=	••
4	0.011	3.89	0.031	0.026	0.093	0.064
5	0.025	3.96	0.032	0.031	0.124	0.095
6	0.018	3.07	0.025	0.023	0.149	0.118
7	0.014	2.54	0.0205	0.017	0.170	0.135
8	0.011	2.09	0.017	0.015	0.186	0.150
9	0,011	1.75	0.014	0.015	0.200	0.165
10	0.017	3.14	0.025	0.024	0.225	0.189
11	0.0050	0.84	0.0068	0.007	0.232	0.196
1?		37.*	0.30	•	0.53	0.43+

[♦] See p.23 of Ref.5 for computational method

^{*} See TAB 1

⁺ See TAB 2

B. Source Ring Contributions

The remaining columns in Table L-VII are steps in the theoretical calculation of the contribution to be expected from each source ring. Consider first those source areas from which the direct radiation penetrates the adjacent (fourth floor) walls. It is seen in Figure L-2 and Table L-VII that rings Nos. 5 - 11 fall in this category. If the building were surrounded by an infinite field of radiation, the contribution through the adjacent walls would be (see p. 22, Reference 5)

$$C_{\alpha} = B_{\alpha}(X_{\alpha}, H) G_{\alpha}$$
 (L15)

in which

$$G_{\underline{g}} = [G_{\underline{g}}(\omega_1) + G_{\underline{g}}(\omega_n)] - S_{\underline{w}}(X_{\underline{n}}) E(\underline{e})$$

$$+ [G_{\underline{d}}(\omega_1, \underline{n}) + G_{\underline{n}}(\omega_n)][1-S_{\underline{w}}(X_{\underline{e}})] .$$

The first term in G_g accounts for the wall-scattered radiation and the second term accounts for the direct and skyshine radiation.

1. Direct Contribution

a. Adjacent Walls

The directional response $C_d(\omega_1,\mathbb{N})$ for the direct radiation is that for a source area beginning at a radius determined by the fourth floor shadow and extending to infinity. The response for a finite band whose inner and outer radii subtend solid angle fractions ω_1 and ω_4 is the difference

$$\triangle G_{d} = G_{d}(\omega_{1}, H) - G_{d}(\omega_{1}, H)$$
 (L16)

and the direct contribution from equation (L15) is

$$\triangle G_{d}(1-S_{w}) B_{w}(X_{e},H) . \qquad (L17)$$

The solid angle fraction associated with the outer radius r j of the j ring is

$$\omega_{j} = 1 - \frac{H}{(H^{2} + r_{j}^{2})^{\frac{1}{2}}}$$
 (L18)

Thus, ω for ring No. 11 with outer radius 50.2 ft and H = 3.54 ft is 0.930. The detector response $G_{\rm d}(\omega$ = 0.930, H = 3.54) for the far-field source is 0.310. This value comes from Figure L-7 which is a graph of $G_{\rm d}(\omega$, H = 3.54) versus ω . The data for this graph were taken from Chart 6 in the Engineering Manual (Reference 5). Values of $G_{\rm d}$ for other rings are listed in Table L-VII, together with their differences. Additional data needed are

$$S_{\omega}(X_0 = 20) = 0.35$$
 (Chart 7, Reference 5) (L19)

$$B_{W}(X_{e} = 20, H = 3.54) = 0.59$$
 (Chart 2, Reference 5) .

With these, the direct contribution for rings Nos. 5 - 11 is

$$(\triangle G_d)$$
 (1 - 0.35) x 0.59 = 0.384 $\triangle G_d$ (L20)

which is tabulated in column [6] .

b. Adjacent and Lower Walls

The outer radius of ring 4 is 15.5 ft and its inner radius is 11.0 ft (see column [2] in Table L-VII). Because the 4th floor shadow is at 13.75 ft, part of the direct radiation from ring 4 penetrates the adjacent (4th floor) wall and the remainder penetrates the 3rd floor wall and 4th floor. The contribution from the area between the shadow and outer radius is 0.011 which was calculated using equation (L20). The contribution through the floor is

$$\triangle G_d$$
 (1-S_w) $B_w(X_e, H_1) B_o(X_f)$. (L21)
- L-35 -

DIRECTIONAL RESPONSE FOR DIRECT RADIATION (Chart 2)

From Chart 2 of the Engineering Manual, $B_w(X_e^{=20}, H_1^{=2.54})=0.62$, and from Chart 1, Case 1, $B_o(X_f^{=20})=0.2$. The differenced directional response for that part of ring 4 that penetrates the floor is $\Delta G_d = 0.043$ (see Table L-VII) and its contribution according to equation (L21) is

$$0.043 (1-0.35) \times 0.62 \times 0.2 = 0.0035$$
. (L22)

Thus, the total contribution from the direct radiation from ring 4 is 0.011 + 0.0035 (see Column [6]).

c. Lower Walls

It is noted from column [2] in Table L-VII that all of the direct radiation from ring 3 passes through the 3rd floor walls, whereas that from ring 2 passes through both the 2nd and 3rd floor walls. (See also the sketch in Figure L-2) Similarly, the direct radiation from ring 1 passes through the 1st and 2nd floor walls. Values needed for these rings are shown in Table L-VIII.

TABLE L-VIII

Data for Direct Contribution

Wall <u>Penetrated</u>	H _l (ft)	X_f $B_w(X_e=20,H_1)$ (psf) Chart 2		B _o (X _f) Chart 1 Case 1	$(1-S_w)B_wB_o$ $(S_w=0.35)$
4th	3.54	0	0.59	1.00	0.384
3rd	2.54	20	0.62	0.20	0.081
2nd	1.54	40	0.65	0.11	0.046
lst	0.54	6 0	0.70	0.06	0.027

The results shown in column [6] of Table L-VII for rings 1 - 4 were calculated with equation (L21) using the data in Table L-VIII.

2. Wall-Scattered Contribution

a. Adjacent Walls

Consider next the wall-scattered radiation. According to equation (L15) the contribution from the adjacent walls is

$$[G_{s} (\omega_{1}) + G_{s} (\omega_{u})] S_{u} E B_{u}(X_{e}, H)$$
 (L23)

for a contaminated plane extending from the walls to infinity. If the contamination extends only out to r_j , the wall barrier factor $B_w(X_e,H)$ in equation (123) must be replaced by $B_{ws}(X_w,\omega_s)$ which is graphed in Chart 9 of Reference 5.

$$[G_{\mathbf{a}} (\omega_1) + G_{\mathbf{a}} (\omega_0)] S_{\mathbf{u}} E B_{\mathbf{u}} (X_{\mathbf{u}}, \omega_0). \qquad (L24)$$

The solid angle fraction, $\omega_{\rm g}$, is defined by the area of the limited strip viewed from mid-wall height on a vertical axis on the outer surface of the wall.

In Figure L-8 is shown the portion (cross-hatched) of the limited strip of radius r_j that is seen from a point H ft up the wall of the equivalent cylinderized building. The solid angle fraction ω_g subtended by this area is approximately the same as that subtended by the semicircular area of radius W_c which is

$$\omega_{s} = \frac{1-\cos\theta}{2} \quad . \tag{L25}$$

This ω_s and the corresponding $B_{ws}(X_w^{-20}, \omega_s)$ are tabulated in Table L-VII for each source area. The values of B_{ws} were taken from the graph in Figure L-9 for $B_{ws}(X_w^{-20}, \omega_s)$ versus ω_s which was plotted from data in Chart 9, Reference 5. The contribution due to the scattered radiation from the adjacent wall for ring j

with inner radius \mathbf{r}_{i} and outer radius \mathbf{r}_{j} , calculated by differencing equation (L24), is

$$[G_s(\omega_1) + G_s(\omega_u)] S_v E \Delta B_{vs}$$
 (L26)

in which

$$\Delta B_{ws} = B_{ws}(X_w, \omega_{si}) - B_{ws}(X_w, \omega_{si}).$$

Values needed for the fourth floor walls are

$$\omega_u = \omega_1 = 0.75$$
 (Table L-VII, ω for the 4th floor shadow)
$$G_g(\omega_u) = G_g(\omega_1) = 0.25$$
 (Chart 5, Reference 5)
$$S_w = 0.35, E = 1.4$$

$$[G_8(\omega_1) + G_8(\omega_u)] S_w E \triangle B_{w8} = 0.245 \triangle B_{w8}.$$

The incremental wall barrier factors (ΔB_{ws}) and the contribution from wall-scattered radiation from adjacent walls (0.245 ΔB_{ws}) are entered in Table L-VII.

FIGURE L-8

Cylinderized Building and Source Area

tan 0 - W_/H

b. Lower and Upper Walls

The scattered contribution from the 3rd floor walls (lower) is

$$[G_s(\omega_1') - G_s(\omega_1)] - S_w EB_o'(X_f)B_{ws}(X_e, \omega_{s1})$$
 (L27)

and from the 5th floor walls (upper)

$$[G_{g}(\omega_{u}') - G_{g}(\omega_{u})] S_{w} EB_{o}'(X_{f})B_{wg}(X_{e}, \omega_{gu}).$$
 (L28)

In equation (L27), $\omega_{\rm el}$ is the solid angle fraction measured from a reference position at the mid-wall height of the 3rd floor walls. The parameters in equations (L27) and (L28) have the following values:

$$\omega_1 = \omega_u = 0.75$$
 $\omega_1' = \omega_u' = 0.39$ (Table L-VII, ω for 3rd floor shadow)
 $G_8(\omega_1) = G_8(\omega_u) = 0.25$ (Chart 5, Reference 5)
 $G_8(\omega_1') = G_8(\omega_u') = 0.41$ (Chart 5, Reference 5)
 $S_w = 0.35$, $E = 1.4$
 $B_0'(X_f = 20) = 0.25$ (Chart 1, Case 3)
 $[G_8(\omega_1') - G_8(\omega_1)]S_w EB_0(X_f) = 0.0196$

The scattered contribution from the upper and lower walls for a ring is obtained by differencing equations (L27) and (L28).

Inserting numerical values gives

0.0196 (
$$\triangle$$
 B $_{QS}$ + \triangle B $_{QS}$) (L29)

which is tabulated in column [4] of Table L-VII. The total scattered contribution from the adjacent, upper, and lower walls is shown in column [5] for each ring.

3. Total Contribution

The air-scattered contribution in equation (L15) for finite strips is assumed to be negligible. Consequently, the column, "Theoretical Contribution," consists of the sum of the wall-scattered and direct contributions for each ring. The results in this column are compared graphically with the experimental results in Figure L-2.

C. Estimate of Computational Error

It is emphasized that considerable computational accuracy is lost when the directional responses and barrior factors are differenced. For close-in rings the results probably have only one significant figure. This error was minimized by smoothing the data taken from charts as shown in Figures L-7 and L-9.

Appendix M

Discussion of "Technical Operations Research

Model Experiment Final Report TO-B 62-58"

This Appendix was originally submitted to OCD as Research Memorandum RM 81-7,* except for minor editorial changes.

^{*} W. O. Doggett (Consultant, Professor of Physics, North Carolina State of the University of North Carolina at Raleigh). Discussion of "Technical Operations Research Model Experiment Final Report TO-B 62-58". Research Memorandum RM 81-7. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 17 July 1963.

ABSTRACT

The results of Technical Operations Research model experiments with limited strips of contamination and a multi-story windowless building are discussed herein. An estimate is made of the discrepancy between theory and experiment that is attributable to spectral and medium differences. Possible explanations are offered for the dose rate variation and the large difference in the computed and measured dose rates in the basement. Recommendations are made for (a) revising the currently used computational procedures for protection factors, (b) conducting additional experiments, and (c) using the data to verify area factor assignments.

CONTENTS

	ABST	RACT							•		•	•	•	• .		•	•	•	•	•	•	. 1	м -	. 1	
Ι.	Intr	oduc	tion						•	• •						•	•	•				. 1	м -	. 3	}
	Α.	Purp	ose			• •				•	•			• •								. :	м .	- 3	3
	В.	Desc	ript	ion o	f Tec	ch O	ps E	xpe	rin	en	l 8			•		•	•	•	•	•	•	•	м .	• ;	3
11.	D1 80	cussi	on .						•			•	•				•		•	•	•	•	M ·	- 4	'
	Α.	Gene	ral						•	•	• •		•	•	•		•	•	•	•	•	•	M ·	- 1	4
	в.			of D and											•		•	•	•	•	•	•	M	-	5
		1.	Spec	tral	Diff	cren	ces		•	•	•		•	•	•		•	•	•	•	•	•	M	-	5
			۵.	Floor	Bar	rior	Fac	tor	•	•			•		•				•	•	•	•	M	-	5
			b.	Wall	Barr	ior	Fac	tor	•	•	•		•	•	•		•	•	•	•	•	•	M	-	7
		2.	Medi	um Di	lffer	ence	8 .				•			•	•				•	•	•	•	M	-	8
		3.	Comb	ined	Spec	tral	Lan	d Mc	di	um	рŧ	ffe	re	nec	8	•	• 4		•	•		•	M	-	8
	c.			n Requ						-	ut.	ati	on	al •	•	•	•	• •			•	•	M	-	8
		1.	Inf	lnite	Fiel	ld D	ata	• •		•				•	•		•	• •		•	•	•	M	-	8
			a.	Abov	e Gr	ound	Flo	ora	•	•	•				•	•		•			•	•	M	-	8
			b •	Basc	ment	Arc	a .	•		•	•	•		•	•	•	•	•			•	•	M	-	15
				(1)	Erre	or i	n Ab	801	ute	M	agr	ıi tı	udo		•	•	•	•	•		•	•	M	-	16
				(2)	Dosc	e Ra	te V	ari	a t i	on	wi	th	Do	pti	h	•	•	•	•			•	M	•	17
		2.	Lim	ited	Stri	p Da	ta .	•		•	•	•			•	•	•	•	•	• •			. M	-	17
	D.	Oth	er A	pplic	atio	n s o	f Da	ata		•	•	•	•		•	•	•	•	•	•			, M	-	19
	E.	Rec	onne	ndati	ons	for	New	Inv	e 8 1	ig	at:	i on	8		•		•	•	•	•	• •		. M	. -	20
		1.	Flo	or Ba	rrie	r Fa	ic t o	٠.	• •		•	•			•	•	•	•	•	•	•	•	. M	۱ -	20
		2.	Bas	ement	Are	a Fa	cto	83	•		•	•	•				•	•		•	•		. M	۱ -	2
		3.	Gen	eral.		• •	•	• •			•	•	•		•	•	•	•	•	•	•	•	. M	٠ -	2
	DF	EEDEX	CEC													_				_		_	. N	١.	. 2

Appendix M

Discussion of "Technical Operations Research Model Experiment Final Report TO-B 62-58"

I. INTRODUCTION

A. Purpose

One of the major tasks of OCD Project 1115A was to "evaluate new information on shielding for application to the computation of protection factors for surveyed structures." The objectives of this task are several-fold; to determine if existing methods for computing protection factors need modification to agree with new data; to suggest applications of new shielding information to problems confronting the Office of Civil Defense; and to recommend new investigations in areas where gaps exist in current shielding knowledge. The purpose of this appendix is to report the results and conclusions of RTI's study of the "Final Report on the Effect of Limited Strips of Contamination on the Dose Rate in a Multi-story Windowless Building" (Reference 1) by Technical Operatiors Research (Tech Ops) of Burlington, Messachusetts.

B. Description of Tech Ops Experiments

Tech Ops investigated the effects of limited fields of contamination on the dose rate within multi-story structures. A six-story 36 x 48 x 72 foot high building with basement was simulated by a model structure with a 1/12 scale factor and with the following steel wall-floor thicknesses (in psf): 0-0, 0-20, 20-20, 20-80, and 80-80. Quarter symmetry strips of contamination were formed by closely spaced cobalt-60 point sources near the building and by the pumped source method in outer strips. Dose measurements were made in three horizontal planes above each floor at points in each plane near the corners and at the center of the building.

II. DISCUSSION

A. General

The series of thorough and well-planned experiments reported by Tech Ops in Reference 1 has yielded a wealth of attenuation data. In addition to obtaining basic dose rate data for various experimental configurations, Tech Ops conducted several experiments for calibration and data reduction purposes. These included measurements of source anisotropy, tubing attenuation, ground penetration to the basement area, cobalt-60 buildup factors for a source on the ground, and dose rates in a phantom structure with 0 psf walls and floors. The phantom structure data, after being scaled up and corrected for tubing attenuation, source anisotropy, and improper atmospheric density, agreed well with previously published results. Tech Ops compared their limited strip results with calculations made with the Office of Civil Defense "Guide for Architects and Engineers" (Reference 2), and the National Shelter Survey Computer Program (Refs. 3 and 4). In addition, their infinite field data were compared with the predictions of the Office of Civil Defense Engineering Manual, "The Design and Review of Structures for Protection from Fallout Gamma Radiation" (Reference 5). Tech Ops' major conclusions and recommendations were:

- "The Computer Program is in error for near-field limited strips because no distinction is made between thin- and thick-floor correction factors. Experimental correction factors are presented. More work is recommended on floor-edge scattering and attenuation by floor slabs.
- Measured and computed infinite-field dose rates are in excellent agreement.
- A revised procedure for calculating the contribution from farfield limited strips is recommended.
- 4. Dose rates measured in the basement are higher than predicted. Further investigation is recommended on a full-scale basement."

B. Estimate of Discrepancy Associated with Spectral and Medium Differences

The experiments were conducted with a cobalt-60 source and a steel structure. The computational procedures of the Engineering Manual, Computer Program, and A&E Guide are based on the attenuation of a fission spectrum of gamma rays by a water medium. Barrier factor curves for cobalt-60 gamma rays incident on water and concrete are available in Dr. L. V. Spencer's Monograph (Reference 6). Tech Ops used cobalt-60 data (presumably on concrete) for barrier factors in their Engineering Manual calculations for infinite fields of contamination. It was of interest to estimate the magnitude of the difference in theory and experiment that is attributable to use of fission and water data or cobalt-60 and concrete data for calculations to compare with experiments in which cobalt-60 and steel are used. In general, comparisons of absolute values of dosc rates or reduction factors should be more dependent on these differences than ratios of doses such as the fraction of the infinite field dose that is due to various limited fields of contamination.

- 1. Spectral Differences The barrier factors associated with the floors $B_{O}(X_{O})$ and the walls $B_{O}(X_{O},H)$ are the dominant attenuation factors.
 - ing Manual is equal to L(X) in Spencer's Monograph which contains calculations for cobalt-60 gammas in water and fission gammas in water. Graphs of L(X) versus X in psf are presented in Figure M-1. These curves represent the dose rate in r/hr at various depths in an infinite medium of water due to an infinite plane isotropic source with strength such that the dose rate at 3 ft in air is 1 r/hr.

It is seen that these curves are indistinguishable for mass thicknesses (%) less than 100 psf. At greater depths the fission spec rum produces a larger dose rate owing to its higher energy components.

b. Wall Barrier Factor - The dependence of the wall factor $B_w(X_e, H)$ on the gamma energy is very similar to that for L(X). $B_w(X_e, H)$ of the Engineering Manual is derived from

the $W(X_e, H)$ curve in Spencer's Monograph, $B_w(X_e, H) \cong$ 0.5 $W(X_e, H)$. Tabulated below are values for $W(X, 3^*)$ and L(X) for cobalt-60 (~ 1.2 MeV) and cosium-137 (0.66 MeV)

gammas incldent on concrete (Reference 6).

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M(Y'2.)		r(x)		
X psf	Cs 137	Co ⁶⁰	Ratio Co	C8 ¹³⁷	Co ⁶⁰	Ratio Co
50	.11	.146	1.3	.054	.068	1.3
100	.024	.044	1.8	.0088	.0165	1.9
200	.00086	.0037	4.3	.00026	.0011	4.3
300	.000029	.00030	10.3	.0000072	.000076	10.6

11/0 211

It is seen that for a given mass thickness X, the fractional increase in  $W(X,3^{\circ})$ , and hence  $B_{W}(X_{e},H)$ , when the cesium-137 source is replaced by a cobalt-60 source is essentially the same as the fractional increase in L(X) (compare ratio columns). Consequently, the relative change in both barrier factors,  $B_{W}(X_{e},H)$  and  $B_{O}(X_{O})$ , due to simulating a fission source

with cobelt-60 is negligible for mass thicknesses less than 100 psf, is 20 per cent at 200 psf, and is 50 per cent at 300 psf.

- 2. Medium Differences The effect of substituting steel for concrete (for the Engineering Manual Spencer Monograph calculations) and steel for water (for the A&E Guide and Computer calculations) can be seen from the behavior of the L(X) barrier factor curves in Figure M-2 for a cesium-137 source. The water and concrete data were taken from Spencer's Monograph and the iron results were computed at North Carolina State College by the author. In the range 100 ∠ X ∠ 200 psf, the factors are in the ratio (water): (concrete): (iron):: 1:0.7:0.5. At X=80 psf, L(X,iron)/L(X,water) is 0.6 and L(X,iron)/L(X,concrete) = 0.75.
- 3. Combined Spectral and Medium Differences Figure M-3 shows the variation with energy and medium of the barrier factors at X=80. The point for a fallout spectrum coincides with the cobalt-60 point. Calculations made for a water medium should be reduced by 35 per cent if the medium is steel, and calculations based on concrete data should be reduced by 25 per cent. The corresponding values for X=20 psf are 20 and 15 per cent, respectively.

### C. Revision Required in Current Computational Procedures

#### 1. Infinite Field Data

a. Above Ground Floors - The Computer Program calculates the contribution from limited strips of contamination by multiplying the contribution from an infinite field by a correction factor. In order to compare experimental data for limited





FIGURE M-4

## Tech Ops' Infinite Field Data

--- Measurement

____ Engineering Manual Calculation



strips with this correction factor, it was necessary for Tech Ops to determine the dose rate from an infinite field. These data are shown in Figure M-4 along with the Engineering Manual results (dotted lines) taken from the Tech Ops' report (Table 14). The dose rate is plotted versus detector height above the floor with floor number as a parameter. (The 2.5' and 5' data on the 4th floor of the 80-80 building are apparently interchanged.) The infinite field data were obtained from the limited strip data by adding a far-field contribution which was estimated by multiplying the contribution from the outermost source area by a factor based on geometry and air attenuation considerations. This technique is precise for the phantom structure (as demonstrated by Tech Ops), approximately correct when the same mass thickness is placed between the detector and outer source ring as between the detector and far field, and can be seriously in error if different mass thicknesses are located between them as shown in Figure M-5. The radiation from the outermost source must



pass through the exterior wall and floor slab, whereas, the far-field radiation passes only through the exterior wall. In this case, the factor previously used to compute the far-field contribution from the outermost source contribution must be multiplied by  $1/B_{0}(X_{0})$  to account for the additional floor attenuation. For  $X_{0}=80$  psf steel floors,  $1/B_{0}(80)$  is approximately 30 (see Figure M-1. Most of the detector points in Tech Ops experiments were located so that this factor  $1/B_{0}(X_{0})$  is not required. Figure M-6 shows floor shadows superimposed on



the outermost source area for a central point detector located
2.5 ft above the floor. It is seen that radiation from more

than half of the source area must penetrate the floor slab before reaching a detector on the 6th floor. Consequently, the far-field contribution which does not pass predominantly through the slab will be underestimated. The data from the far-corner positions A, C, and D on upper floors are affected similarly. The effect of taking these considerations into account is to raise the experimental (solid) curves for the 5th and 6th floors at the 2.5 ft height. The relative increase in dose rate will be larger for the thicker floors. After this adjustment, it appears that all of the experimental curves will be somewhat above the Engineering Manual calculations, (mostly 10-20 per cent with a minimum and maximum of 0 and 70 per cent, respectively). The same trend is also observed when the experimental data are compared directly with Engineering Manual calculations using the actual dimensions of the scale model (Ref. 7 and App. L). This gap will widen approximately 25 per cent for 80 psf walls when steel data are substituted for concrete data in the calculations. These results indicate that calculations made with the Engineering Manual method and steel data are not conservative but predict dose rate values that are somewhat lower than experimental values. However, in practice, this difference is partially compensated for when the water-data curves in the Engineering Manual are used to predict dose rates in concrete buildings. Consequently, no change is recommended in the computational procedure of the Engineering Manual for above ground

floors and infinite fields of contamination. It is suggested that the accuracy of the procedure be re-examined when more full-scale data become available. Existing full-scale experimental data (Reference 8) for a concrete block-house agree within 115% of Spencer's theory (Reference 6).

It would be interesting to have the phantom structure data and Engineering Manual calculations for 0-0 psf walls and floors presented in Table 14 of Tech Ops' report along with the other infinite field data. This would facilitate an evaluation of the directional response function for the direct radiation  $G_d(\omega, H)$ .

b. Basement Area - The experimental dose rate values from an infinite source field at a point 6 ft below the basement ceiling are 1.5 to 4 times as large as the computed values even after correction for floor-edge scattering and ground penetration. Moreover, the dose rate first increases with depth, then decreases, whereas computations always predict a decrease in dose rate with depth. These disagreements are sufficiently large to cast doubt on the accuracy of the factors used in calculating basement dose rates. There is some evidence that full-scale basement measurements in a block-house experiment (Reference 9, page III-117) also give dose rates that are 2-3 times larger than Engineering Manual results. It is therefore recommended that the Engineering Manual factors be revised to agree with experimental results. In view of the difficulty in properly scaling up model data to fullscale, RTI supports Tech Ops recommendations that full-scale basement measurements be made for comparison purposes. Possible explanations for the breakdown in the Engineering Manual procedure are offered below.

(1) Error in Absolute Magnitude - The skyshine barrier factor  $B_0^{-1}(X_0^{-1})$  in the Engineering Manual for the basement ceiling attenuation is probably too small.  $B_0'(X_0')$  is obtained by integrating slant penetration data over the entire backward hemisphere (Reference 9, page II-76, and Reference 6, page 24). This procedure includes the grazing contribution which is greatly attenuated by the initial layers of material. It is seen in Figure M-7 below that radiation reaches the detector from a limited solid angle. An estimate can be made for the barrier factor as follows: assume that the predominant radiation is incident on the floor at an angle 8 = ton-1  $R/(H+H) = 56^{\circ}$  with an average energy equal to that of cesium-137 (0.66 Mev). The attenuation for this incident obliquity  $\cos \theta = 0.56$  and X = 80 psf is  $\cos \theta$  s(X,  $\cos \theta$ )=0.046 (Reference 6, Figure B6). This factor is approximately 3.7 times larger than  $B_0^{-1}(X_0^{-1} = 80) = 0.017$ .



then decrease in dose rate with increasing depth is a consequence of the competing effects of solid angle considerations (inverse-distance-squared attenuation) and change in slant penetration through the floor slab. Assume for simplicity that all photons emerging from the wall can be represented as a monoenergetic source at midwall height H = 6.

The dose rate at a depth D due to the uncollided gammas is proportional to \( \text{exp} - \text{i} \text{T} \text{ sec } \text{e} \) \( \text{function} \) (Figure M-B) as D varies from T (just beneath the slab) to 20 T displays the maximum observed in the experiments. The proper incident angular energy spectrum and multiple scattering in the floor and cailing must be included to obtain accurate absolute barrier factors.

#### 2. Limited Strip Data

Tech Ops found that for thick floors, separate correction factors for first- and upper-floor locations are needed in order to correct infinite field computations for limited fields of contamination; whereas, the Computer Program uses a single factor for all locations. These findings support RTI's previous recommendation (Reference 10) that the computational procedure of the Computer Program be revised for above ground floors. The procedure suggested by Tech Ops for near-field and far-field strips appears adequate to predict their experimental results and represents an improvement on the existing computer method. The Tech Ops procedure uses revised N_L tables with entries deduced from measurements. The tables are therefore applicable for

FIGURE M-8

Variation of Dose Rate with Depth in Basement



20 and 80 psf floors. In order to use these data for other thicknesses, Tech Ops suggests that all floors with mass thicknesses  $X_f \le 40$  psf be assigned an  $M_L$  value based on 20 psf floor data and all thick floors with  $X_f \ge 40$  psf be calculated with 80 psf data. For example, for a limited strip with width W twice the detector height h and 20 psf walls, the multiplicative correction factor M, for an upper floor with  $X_{\rm f}$  = 35 psf is 0.10, whereas, it jumps down to 0.028 for  $X_{\rm f}$  = 45 psf. The factor M, is also somewhat dependent on wall mass thickness. For the above mentioned strip and thick floors,  $M_{1}$  is 0.028 for 20 psf walls and 0.037 for 80 psf walls. In order to make full use of mass thickness data collected in the survey, one would need M tables which could be entered in 10 psf increments. Since interpolation and extrapolation of 20 and 80 psf data to all other thicknesses encountered in practice may be unreliable, and for other reasons cited in Reference 19,RTI recommends that the Engineering Manual method be incorporated in the next revision of the Computer Program. It is also recommended that Tech Ops limited strip data such as in their Figures 13, 15, and 17 be compared with Engineering Manual calculations. This comparison is of great importance because the chief dose rate contribution in buildings of interest is from limited strips.

#### D. Other Applications of Data

An objective of the National Fallout Survey is the determination of the number of spaces in each building. This calculation requires the use of area factors which represent the fraction of the total floor area that has an acceptable protection factor. The area factor accounts for the variation in

radiation level as one goes from the center of the shelter to the periphery.

Tech Ops measured this variation for the above ground floors and presented their results in Table 42 as ratios to the center 3 ft position. These data will enable verification of calculated dose rate variations which are used in assigning area factors.

### E. Recommendations for New Investigations

In addition to suggestions presented above, the following recommendations are made.

### 1. Floor Barrier Factor

Tech Ops noted a dip (Reference 1, page 35) in the dose-rate curves for limited strips with widths varying in the vicinity of the floor shadows. This dip decreased with increasing wall thickness and with detector height above floor level. The Computer Program does not predict such behavior, and Engineering Manual calculations are not available for comparison. This behavior may be an indication that one cannot neglect the dependence of the floor barrier factor on the wall mass thickness previously penetrated by the radiation and its angle of incidence on the floor slab. It is recommended that an attempt be made to measure floor barrier factors for comparison with theoretical predictions for various wall mass thicknesses.

### 2. Basement Area Factors

In general, the dose rate is higher in the center of a basement than at the perimeter. However, an area factor of unity is assigned to basements by the Phase 2 instructions (Reference 11, page DCFI-30). If a central region is excluded by reducing the area factor, it may be possible to elevate a basement from a lower protection factor category to a higher one. To verify whether or not this is feasible, it is recommended that dose rates be measured also at off-center locations in future basement experiments.

### 3. General

It is recommended that, wherever possible, the separate basic factors used in protection factor calculations be individually investigated experimentally. This approach is perhaps more time consuming but has the advantage of pointing out directly the concepts that need revision.

#### REFERENCES

- John F. Batter, Albert W. Starbird and Nancy-Ruth York. <u>Final Report</u>, the <u>Effect of Limited Strips of Contamination on the Dose Rate in a Multi-story Windowless Building</u>. Report No. TO-B 62-58. Burlington, Mass.: <u>Technical Operations</u>, Inc., August 1962.
- Office of Civil Defense. <u>Fallout Shelter Surveys</u>: <u>Guide for Architects and Engineers</u>. Washington: Office of Civil Defense, Department of Defense, December 1961.
- 3. L. V. Spencer and C. Eisenhauer. Calculation of Protection Factors for the National Fallout Shelter Survey. National Bureau of Standards Report No. 7539. Washington: U. S. Department of Commerce, July 1962.
- National Bureau of Standards. <u>Description of Computer Program for National Fallout Shelter Survey</u>. National Bureau of Standards Report 7826. Washington: U. S. Department of Commerce, 15 March 1963.
- 5. Office of Civil Defense. Design and Review of Structures for Protection from Fallout Gamma Radiation. (Engineering Manual). Rev. ed.; Washington: Office of Civil Defense, Department of Defense, 1 October 1961.
- L. V. Spencer. <u>Structure Shielding Against Fallout Radiation from Nuclear Weapons</u>. National Bureau of Standards Monograph 42. Washington: U. S. <u>Department of Commerce</u>, 1 June 1962.
- W. O. Doggett. <u>Evaluation of Technical Operations</u>, <u>Inc.</u>, <u>Model Experiment Roport TO-B 62-26</u>. <u>Research Memorandum RM 81-3</u>. <u>Durham</u>, <u>North Carolina</u>: Operations Research Division, <u>Research Triangle Institute</u>, 5 November 1962.
- 8. M. A. Schmoke, R. E. Rexroad and Hans J. Tiller. "Attenuation of Radiation from Distributed Gamma Sources as a Function of Wall Thickness for a Concrete Blockhouse." <u>Transactions of the American Nuclear Society</u>, Vol. 6, No. 1, (June 17-19, 1963) 186-187.
- Kansas State University, Department of Nuclear Engineering. <u>Proceedings and Final Report of the 1962 Summer Institute on Fundamental Radiation Shielding Problems</u>. Manhattan, Kansas: Kansas State University, November 1962.
- 10. E. L. Hill, R. O. Lyday, W. K. Grogan, H. G. Norment, and W. O. Doggett. Interim Recommended Modifications to NBS-NFSS Computer Program. Research Memorandum RM 81-5. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 19 April 1963.
- Office of the Chief of Engineers. <u>Fallout Shelter Survey Instructions Phase 2.</u>
   Washington: Department of the Army, Office of the Chief of Engineers,
   21 March 1962.

<u>Discussion of "Technical Operations Research Model</u>

<u>Experiment on Interior Partitions TO-B 63-6"</u>

This Appendix was originally submitted to OCD as Research Memorandum RM 81-8,* except for minor editorial changes.

^{*} W. O. Doggett (Consultant, Professor of Physics, North Carolina State of the University of North Carolina at Raleigh). <u>Discussion of "Technical Operations Research Model Experiment on Interior Partitions TO-B 63-6"</u>. Research Memorandum RM 81-8. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 30 July 1963.

### ABSTRACT

Presented herein are recommendations for some revisions in the NBS-NFSS

Computer Program and A & E Guide, and suggestions for additional model experiments resulting from a review of the Technical Operations Research model experiments on interior partitions reported in TO-B 63-6.

# CONTENTS

	ABST	TRACT	•				•		•						•	•				•		•			•		N	-	2
I.	Int	roduct	io	<u>ı</u> .					•											•							N	-	4
II.	Disc	cussio	<u>n</u>									•									•			•			N	-	4
	Α.	Gener	al			•																					N	-	4
	В.	Revis																									••		_
		Proce	:au:	re		r	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	N	-	2
		1. (	len	0 <b>.1</b> 0	1.	•	•				•				•	•	•		•		•	•	•		•	•	N	-	5
		2. /	& ۵	E	Gu i	de										•											N	•	5
		F	ig	ure	1	- 1	? <b>1</b> n	n V	<b>1</b> e	ws	Sh	ow	in	g I	ากร	ti	tic	one	з,				•		•		N	-	6
		3, 1	IBS	-	Ņaţ	:to	ia l	Ŗα	11	out	: 8	he	1 ţ	οŗ	Şu	rv	еy	C	շույ	ut	er	P	ro	gr	an	٠.	N	-	6
		1	ig	ure	2	- 1	P1a	n c	ı	Bui	<b>1</b> d	1n	g ¹	V1.1	th	7	Cr	ORE	9 I	'nT	ti	ti	on	B			N	•	7
	c.	Addit	:10	na l	Ex	(pe	rim	ent	8	Rec	2 UTT	me	nd	ed													N	-	8
		1. 1	eff	ect	of	E C	roa	8 <b>I</b>	'n.	tit	tic	n	Sp	ac:	i.ng	ι.											N	-	8
		2. [	Eff	ect	of	ı x	<b>₩</b> 0	n I	3 _w	(X,	ι,	3'	)				•		•			•					N	-	9
	D.	Use o	a f	Dat	n f	for	Es	t <b>i</b> n	nat	ing	g /	۱re	a	Fa	cto	re				٠	•	•		•			N	-	10
	REF	ERENCI	ES																		_		_				N	_	11

# Discussion of "Technical Operations Research Model Experiment on Interior Partitions TO-B 63-6"

#### I. INTRODUCTION

OCD Project 1115A called for an evaluation of new information on shielding.

Reported in this appendix are RTI's comments and recommendations on the Technical Operations Research report, "The Effect of Interior Partitions on the Dose Rate in a Multistory Windowless Building" (Reference 1). Tech Ops experimentally determined the dose rate in steel models with box, corridor, and compartment partition arrangements using cobalt-60 gamma radiation. They found excellent agreement between their measurements and calculations based on the OCD Engineering Manual (Reference 2).

### II. DISCUSSION

General. The comments in Section II. B. of Appendix M. originally submitted to OCD as RTI RM 81-7 (Reference 3), on the medium and spectral differences in the experimental and computational models are applicable to this series of experiments. Cobalt-60 almost precisely simulates a 1.12 hr. fission spectrum for mass thicknesses less than 100 psf. Barrier factors for a water medium such as presented in the Engineering Manual should be reduced by 20 percent when applied to a steel medium with 20 psf mass thickness. This value increases to approximately 35 percent for an 80 psf thickness. One should expect, therefore, that the dose rate measurements would fall below the magnitudes predicted by the Engineering Manual. However, Tech Ops' data lie within 15 percent of the calculations. These results indicate that the measured attenuation for interior partitions is somewhat less than that predicted, or the partition mass thickness used in the experiment is less than that assumed in the calculations. The 60 psf partitions were comprised of 3 thicknesses of 1/2 inch steel plate. According to Reference 4 (Equation 22.1 and Table 22.1), this corresponds to the effective mass thickness

$$X = 2 < Z/A > c Z/A$$
  
= 0.931 x 480 x 3 x (1/2) x (1/12)  
= 56 psf

which is about 7 percent less than the nominal value of 60 psf. This difference accounts for about 10 percent difference in dose rates.

# B. Revisions Recommended in Protection Factor Computational Procedure.

### 1. General

Tech Ops makes the following conclusions:

"For the interior partition geometries investigated in this study, a good estimate of the effects of interior partitions may be made by the following:

- a. <u>Box and Corridor Geometries</u>. Multiply the dose rate computed in the center of the structure without interior partitions by the barrier attenuation factor (Engineering Manual, Chart 1, Case 2) for a mass thickness equal to the interior wall thickness.
- b. <u>Compartment Geometries</u>. Multiply the dose rate computed in the center of the structure without interior partitions by the barrier factor for a mass thickness equal to the corridor walls plus one-half the compartment wall mass thickness."

The effect of interior partitions can be readily included in protection factor computations using the above prescription.

### 2. A & E Guide

It is recommended that revised editions of the Guide for Architects and Engineers (Reference 5) include the instruction: "The proper interior mass thickness  $\mathbf{X}_i$  depends on the partition configuration. For box and corridor geometries, use a mass thickness equal to the interior wall thickness. For compartment geometries with corridor mass thickness  $\mathbf{X}_c$  and cross partition

thickness  $X_p$ , use  $X_i = X_c + \frac{1}{2} X_p$ .



FIGURE N-1
Plan View Showing Partitions

No additional charts will be required, because the simplified method of the A & E Guide treats interior partitions as if they are located at the exterior wall,  $X_{ij} = X_{ij} + X_{ij}$ .

### 3. NBS - National Fallout Shelter Survey Computer Program

Tech Ops data show that the Engineering Manual method of handling interior partitions with azimuthal sectors is satisfactory. RTI has recommended revisions to the NBS-NFSS Computer Program which essentially follow the Engineering Manual method, yet require only the Phase 2 Survey data (Reference 6). Since these data are collected on a wall-by-wall basis and are not sufficiently detailed to permit the use of azimuthal sectors in calculating attenuation due to interior partitions, the azimuthal sectors that are inherent in the recommended changes are those defined by the exterior wall intersections. Consequently, the revised Computer Program will not treat interior partitions with the Engineering Manual method. It is therefore necessary to program instructions so that the Computer Program can interpret interior partition data. Corridor and cross partitions, as well as their average spacing and general pattern, are

entered in the Phase 2 collection forms (Reference 7, page DCFI-24). The influence of the spacing of cross partitions in compartment geometry on dose rates was not investigated by Tech Ops. However, an approximate prescription can be formulated as follows: The spacing used in the experiment was such that if all cross partitions on one side of the corridor were rotated 90° and placed end-to-end, they would form a corridor type partition that would extend practically the entire length of the building. In other words, the smeared mass thickness of the cross partitions is nearly equal to their actual mass thickness. Sufficient data are available for the computer to calculate smeared mass thicknesses. It is therefore recommended that:

- a. Interior partitions between a detector and wall which have bex or corridor geometries be assigned a mass thickness equal to the sum of the interior wall thicknesses.
- b. Cross interior partitions be assigned a mass thickness equal to one-half the smeared mass thickness.
- c. The total interior mass thickness be set equal to the sum of those calculated in a and b.

Consider, for example, the contribution from side C of a building of type 1 (Reference 7, page DCFI-25) shown in Figure N-2



FIGURE N-2

Plan of Building With 7 Cross Partitions  $X_{c} = 40 \text{ psf}, X_{p} = 20 \text{ psf}, L = 80', D = 20', S = 10'$ 

The smeared thickness of one cross partition is  $X_p$  D/L, and that for  $(\frac{L}{S}-1)$  partitions is:

$$x_{p}$$
) smeared =  $\begin{bmatrix} L \\ S - 1 \end{bmatrix} x_{p} = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$   
=  $\begin{bmatrix} 80 \\ 10 \end{bmatrix} = \begin{bmatrix} 20 \\ 80 \end{bmatrix}$ 

The total interior mass thickness for side C is:

$$X_i = X_c + \frac{1}{2} X_p$$
 smeared  
=  $40 + \frac{1}{2} (35)$   
=  $57.5 \text{ psf}$ 

The same value can be used for the contribution from the left and right ends of the building in Figure N-2.

#### C. Additional Experiments Recommended.

1. Effect of Gross Partition Spacing. The recommendation in II. B. 3. above is based on the assumption that the smeared mass of cross partitions is the only parameter needed to estimate their effectiveness. This means that a building with N interior partitions with mass thickness X will give the same protection as another building with 2N partitions with thickness X / 2. This concept is now employed for corridor partitions in the Engineering Manual. However, because the recommendation to use one-half the cross partition smeared mass thickness is a departure from the Engineering Manual method, it is advisable to check its validity experimentally. It is suggested that an experiment with compartmental partitions be conducted with 6 cross partitions of 20 psf thickness and 7" spacing. If the above assumption is correct, the results should be nearly the same as the experiment with 3 partitions of 40 psf thickness and 12" spacing (Reference 1, Figure 13).

2. Effect of  $X_w$  on  $B_w$  ( $X_i$ , 3'). A basic assumption in the Engineering Manual in calculating the attenuation by interior partitions is that the angular energy distribution incident on the partitions is the same as that incident on the exterior wall at ground level. Thus, the combined barrier factor for a first floor wall and partition is  $B_w(X_e,3') \times B_w(X_i,3')$ . The A & E Guide assumes that the partition is adjacent to the exterior wall and uses  $B_w(X_c + X_i, 3)$ . These two expressions can be equivalent only for an exponential variation of the barrier factor with mass thickness. Reference to Chart 1, Case 2, of the Engineering Manual for B, shows that its variation is simple exponential up to  $X_{u} = 100$  psf. If spreading of the radiation from the wall to the partition could be neglected, one might therefore expect that either expression above would give satisfactory results for  $X_i + X_c < 100$  psf. For experiments with  $X_i + X_c > 100$  psf, where curvature in the  $B_{_{\mathbf{U}}}$  curve sets in, one might suspect that the single factor  $B_{ij}$  (X_i,  $B_{ij}$ ) for partitions may begin to break down unless the effect of the exterior wall on the incoming radiation is taken into account. In the Tech Ops experiments, the exterior mass thickness was 20 psf and the interior mass thickness ranged up to 60 psf. The majority of the radiation penetrating 20 psf walls is uncollided and hence behaves very much like that incident on the walls. If the walls are increased to 80 psf, most of the radiation that passes through the walls is scattered. It is therefore recommended that the interior barrier factor be measured for box type interior partitions of thicknesses 20, 40, 60 psf in a building with 80 psf exterior walls to determine the influence of the wall on the partition barrier factor. The barrier factor can be determined by comparing the experimental results with those previously measured without partitions. Although the dose rates will be very low, good data should be obtainable on the lower floors.

# D. Use of Data for Estimating Area Factors.

The excellent agreement of Tech Ops' results with the Engineering Manual method justifies the use of the manual for calculating the variation of dose rate throughout a shelter, and, hence, for estimating area factors (defined in Reference 7, page DCFI-30).

#### REFERENCES

- Albert W. Starbird, Joseph D. Velletri, Robert L. MacNeil, and John F. Batter.
   <u>The Effect of Interior Partitions on the Dose Rate in a Multistory Windowless Building</u>. Report No. TO-B 63-6. Burlington, Massachusetts: Technical Operations Research, 31 January 1963.
- Office of Civil Defense. <u>Design and Review of Structures for Protection from Fallout Gamma Radiation</u>. (Engineering Manual). Rev. ed.; Washington: Office of Civil Defense, Department of Defense, 1 October 1961.
- W. O. Doggett. <u>Discussion of Technical Operations Research Model Experiment</u>
   <u>Final Report TO-B 62-58</u>. Research Memorandum RM-81-7. <u>Durham, North Carolina:</u>
   Operations Research Division, Research Triangle Institute, 17 July 1963.
- 4. L. V. Spencer. <u>Structure Shielding Against Fallout Radiation from Nuclear Weapons</u>. National Bureau of Standards Monograph 42. Washington: U. S. Department of Commerce, 1 June 1962.
- Office of Civil Defense. <u>Fallout Shelter Surveys: Guide for Architects and Engineers</u>. NP-10-2. Washington: Office of Civil Defense, Department of Defense, December 1961.
- E. L. Hill, R. O. Lyday, W. K. Grogan, H. G. Norment, and W. O. Doggett. <u>Interim Recommended Modifications to NBS-NFSS Computer Program</u>. Rosearch Memorandum RM-81-5. Durham, North Carolina: Operations Research Division, Research Triangle Institute, 19 April 1963.
- 7. Fallout Shelter Survey Instructions Phase 2. Washington: Department of the Army, Office of the Chief of Engineers, 21 March 1962.

# Conclusions and Recommendations of "Technical Operations Research"

The conclusions and recommendations made by Technical Operations Research in References 1, 2, 3, 4, and 5 and concurred with by RTI (see Part I, Chapter 6) are consolidated in this appendix. They all result from measurements taken at the OCD-Tech Ops modeling facility.

- The method of correction for limited fields of contamination as presently used in the National Shelter Survey Computer Program (NSSCP) can lead to considerable error in the case of thick floors. The NSSCP presents a single multiplicative correction factor for all height positions. Experimental values indicate that when the floor thickness is not great ( $\mathbf{X}_{\mathbf{f}} \leq 40~\mathrm{psf}$ ) a single correction factor is adequate for all floor locations. However, where floor thicknesses exceed 40 psf, one correction factor applies for first-floor locations and a separate factor is required for upper-floor locations.
- 2. The multiplicative correction factors as presented in Table 6 of the NSSCP show fair agreement with experimental values. Presently used and experimentally obtained values are given in Tables 40 and 41 of References 1 and 2.
- 3. The dose rate from limited strips of contamination (W_C/h ≤ 10, W_C ≤ 300 feet) at locations and heights other than that at the center of the structure at a 3-foot height may be estimated within 25 percent accuracy, as ratios of the center position dose rate. These dose ratios are given in Table 42 of References 1 and 2.
- 4. The present method used in the NSSCP to compute the effect of far-field limited strips of contamination is to compute a factor and multiply this factor times the infinite-field dosage. This factor, the ratio of the dose expected from the limited field to that expected from an infinite field, is computed from

### Appendix O

# Conclusions and Recommendations of "Technical Operations Research"

The conclusions and recommendations made by Technical Operations Research in References 1, 2, 3, 4, and 5 and concurred with by RTI (see Part 1, Chapter 6) are consolidated in this appendix. They all result from measurements taken at the OCD-Tech Ops modeling facility.

- 1. The method of correction for limited fields of contamination as presently used in the National Shelter Survey Computer Program (NSSCP) can lead to considerable error in the case of thick floors. The NSSCP presents a single multiplicative correction factor for all height positions. Experimental values indicate that when the floor thickness is not great (X_f = 40 psf) a single correction factor is adequate for all floor locations. However, where floor thicknesses exceed 40 psf, one correction factor applies for first-floor locations and a separate factor is required for upper-floor locations.
- 2. The multiplicative correction factors as presented in Table 6 of the NSSCP show fair agreement with experimental values. Presently used and experimentally obtained values are given in Tables 40 and 41 of References 1 and 2.
- The dose rate from limited strips of contamination (W_c/h ≤ 10, W_c ≤ 300 feet) at locations and heights other than that at the center of the structure at a
   3-foot height may be estimated within 25 percent accuracy, as ratios of the center position dose rate. These dose ratios are given in Table 42 of References 1 and 2.
- 4. The present method used in the NSSCP to compute the effect of far-field limited strips of contamination is to compute a factor and multiply this factor times the infinite-field dosage. This factor, the ratio of the dose expected from the limited field to that expected from an infinite field, is computed from

air-attenuation functions. The experimentally measured values in general agree within 30 percent of those computed. Better agreement between theory and experiment may be obtained, however, if the computation is performed in two steps. These are: (1) compute the effect of near-field contamination  $(W_c/h \le 10, W_c \le 300 \text{ feet})$  using the methods mentioned above and (2) add to this the effect of contamination existing beyond  $W_c/h = 10$  or  $W_c = 300$  feet, computing this effect as before, as quoted in References 1 and 2.

- 5. The agreement between experimentally measured values of Infinite-field dose rate and those computed using the methods of the "Fallout Shelter Surveys: Guide for Architects and Engineers" (Reference 6), "Design and Review of Structures for Protection from Fallout Gamma Radiation" (Reference 7), and "Description of Computer Program for National Fallout Shelter Survey" (Reference 8) is excellent.
- 6. The data obtained from measurements of the dose rate at a distance corresponding to 6 feet below ground level were in general somewhat higher than those predicted by the methods of References 6, 7, and 8. (These are the references listed in 5 above.) This discrepancy increased slightly with increasing depth.
- 7. The fraction of infinite-field dose rate in basement locations obtained from limited strips of contamination fell on a common curve for all detector depths within approximately 10 percent. The mean values as obtained experimentally in each of the four structures are presented in Table 43 of References 1 and 2.
- 8. Excellent agreement (within 5 percent) is shown between the dose rate obtained from modeling technique on a phantom structure (no building present) and those previously obtained in similar full-scale geometry by Rexroad (Reference 9).

- 9. Since floor thickness plays a critical role in the dose obtained from limited strips of contamination, the present series of experiments should be extended to cover the cases of: O psf walls and 80 psf floors and 80 psf walls and 20 psf floors
- 10. Since the agreement between infinite field values of experimental and theoretical data obtained in basement regions is poor, further experiments on both model and full-scale structures should be carried out.
- 11. The effect of floor-edge scattering (radiation scattering from the edge of a thick floor to a detector) should be thoroughly investigated and analytical methods should be developed to compute this radiation component.
- 12. The relative agreement between experimentally measured values of infinite field dose rate and those computed using the methods of the Engineering Manual entitled "Design and Review of Structures for Protection from Fallout Gamma Radiation" is excellent for the three (interior partition) configurations investigated
  - Manual) and experimental values for the center position is excellent for the O psf interior partition structure, while for the 20, 40, and 60 psf interior partition buildings, the Engineering Manual consistently underestimates the experimental results by 8, 10, and 15 percent, respectively. Agreement at the corner position is within 5 percent.
  - b. <u>Corridor partitions</u> Agreement between calculated and experimental values for the center and corner positions is within 7 percent for all corridor wall mass thicknesses investigated. Agreement between calculated and experimental values for detectors located inside the corridor at the off-center positions is within 8 percent over all stories.
  - c <u>Compartment partitions</u> Agreement between calculated and experimental values for the center and corner positions is excellent. Calculated dose rates

were between 10 and 15 percent higher than experimental dose rates for detector locations at the off-center positions inside the corridor.

- 13. For the interior partition geometries investigated in this study, a good estimate of the effects of interior partitions may be made by the following:
  - a <u>Box and corridor geometries</u>. Multiply the dose rate computed in the center of the structure without interior partitions by the barrier attenuation factor (Engineering Manual, Chart 1, Case 2) for a mass thickness equal to the interior wall thickness.
  - of the structure without interior partitions by the barrier factor for a mass thickness equal to the corridor walls plus one-half the compartment wall mass thickness.
- 14. Dose rates at corner positions for buildings with interior partitions of wall mass thicknesses less than 40 psi are about 10 percent less than those without partitions and 20 percent less for interior partitions of thicknesses greater than 40 psf
- 15. The fraction of infinite field dose obtained from limited rectangular fields of contamination in a structure with interior partitions of thickness several times greater than the exterior walls is identical to that obtained in a similar structure without interior partitions times the barrier effect introduced by the partitions.
- It is recommended that a survey of existing buildings be undertaken to determine if the mass thickness and interior partition configurations selected for this study are typical of those to be found in real structures. If interior partition configurations are significantly different from those tested, further evaluation of the Engineering Manual is required.

- 17. Ceiling-shine radiation, like skyshine radiation, represents approximately
  10 percent of the dose rate received by a detector 3 feet above an infinite
  contaminated plane if the ceiling is of infinite size and thickness, and is
  parallel to the contaminated plane above the detector.
- 18. Fair agreement exists between calculated ceiling shine based upon Monte Carlo albedo coefficients and that determined by experiment.
- Ceilings 10 psf, 20 psf, and 40 psf thick reflect approximately 75 percent,
   90 percent and 100 percent, respectively, of that which would be reflected
   by a ceiling of infinite thickness.
- 20. An adequate and simplified ceiling shine calculational method has been developed which is cast in the form of procedures presently used in the OCD Engineering Manual.
- 21. It is recommended that a method of calculation of the dose that would be received inside a structure from radiation reflected from the ceiling be inserted in the present OCD Engineering Manual.

#### REFERENCES

- John F. Batter, Albert W. Starbird, and Nancy-Ruth York. <u>Final Report</u> The Effect of Limited Strips of Contamination on the Dose Rate in a <u>Multistory Windowless Building</u>. Report No. TO-B 62-58. Burlington, <u>Massachusetts</u>: <u>Technical Operations</u>, Inc., August 1962.
- Albert W. Starbird and John F. Batter. "The Effect of Limited Strips of Contamination on the Bose Rate in a Multistory Windowless Building," Transactions of the American Nuclear Society, Volume 6, No. 1 (1963), 187.
- 3. Albert W. Starbird, Joseph D. Velletri, Robert L. MacNeil, and John F. Batter. The Effect of Interior Partitions on the Dose Rate in a Multistory Windowless Building. Report No. TO-B 63-6. Burlington, Massachusetts: Technical Operations Research, 31 January 1963.
- Joseph D. Velletri. "The Effect of Interior Partitions on Bose Rate from a Simulated Fallout Field," <u>Transactions of the American Nuclear Society</u>, Volume 6, No. 1 (1963), 188.
- 5. John F. Batter and Joseph D. Velletri. The Effect of Radiation Reflected from the Ceiling on the Dose Rate Within Structures. Report No. TO-B 63-25. Burlington, Massachusetts: Technical Operations Research, April 1963.
- Office of Civil Defense. <u>Fallout Shelter Surveys: Guide for Architects</u> and <u>Engineers</u>. <u>Washington: Office of Civil Defense, Department of Defense,</u> <u>December 1961.</u>
- Office of Civil Defense. <u>Design and Review of Structures for Protection</u>
   <u>from Fallout Gamma Radiation</u>. (Engineering Manual). Revised Edition;
   Washington: Office of Civil Defense, Department of Defense, 1 October 1961.
- V. Spencer and C. Eisenhauer. <u>Calculation of Protection Factors for the National Fallout Shelter Survey</u>. National Bureau of Standards Report No. 7539. Washington: U. S. Department of Commerce, July 1962.
- R. E. Rexroad and M. A. Schmoke. <u>Scattered Radiation and Far-Field Dose Rates from Distributed Cobalt-60 and Cs-137 Sources.</u> Report No. NDL-TR-2. Edgewood, Maryland: Nuclear Defense Laboratory, Army Chemical Center, September 1960.

# Appendix P

# Recommended NBS-NFSS Computer Program Modifications

This Appendix was originally submitted to OCD as Research Memorandum RM 81-5,* except for minor editorial changes

E. L. Hill, R. O. Lyday, W. K. Grogan, H. G. Norment and W. O. Doggett. <u>Interim</u>
<u>Recommended Modifications to NBS-NFSS Computer Program</u>. Research Memorandum RM 81-5.
<u>Durham</u>, North Carolina: Operations Research Division, Research Triangle Institute,
5 November 1962.

# TABLE OF CONTENTS

ı.	Int	reduction
II.	Rec	ommendations
	Α.	Basement Exposure
		1. Present Method
		2. Recommended Method
		3. Numerical Example
	В.	Roof Contribution
		1. Present Method
		2. Recommanded Method
		3. Numerical Example
	C.	Ground Contribution - Stories Above Grade
		1. Present Method
		2. Recommended Method
		3. Numerical Example
	D.	Areaways
		1. Present Method
		2. Recommended Method
		3. Numerical Example
	Ε.	Interior Partition Effective Mass
		1. Recommended Method
		2. Symbols Used
	F.	Total Contribution
	G.	Charts
	н.	Shelter Area Factors
		1. Background
		2. Recommended Area Factors
		3. Dependence of Area Factor on Source-Building Configuration
		4. Recommended Investigations
	RI	EFERENCES
	TA	AB 1 - Partial Basement Exposure Calculations

# TABLE OF CONTENTS (Continued)

TAB	2	-	Location of Data on Phase 1 FOSDIC's and
TAB	3	•	NFSS Phase 1 FOSDIC
TAB	4	•	NFSS Phase 2 DCF
TAB	5	-	Roof Contribution Calculations P-109 (A&E Guide and Engineering Manual) (6,400 Sq. fr-No Partitions)
TAB	6	•	Roof Contribution Calculations
TAB	7	•	Roof Contribution Calculations
TAB	8	•	Ground Contribution Calculations
TAB	9	•	Areaway Contribution to Unexposed Basement Shelter P-113
TAB	10	-	Tables Representing Data in Engineering Manual Charts F-115

### Appendix P

### Recommended NBS-NFSS Computer Program Modifications

#### I. INTRODUCTION

This appendix contains recommendations of the Research Triangle Institute for modifying the existing NBS-NFSS Computer Program (Reference 1) used to compute building protection factors (PF). These recommendations are summarized in Part I, Chapter 7.

The procedures used in the present program are based on the Guide for Architects and Engineers (Reference 2) which gives very conservative building PF's. It is generally concluded that the Engineering Manual method (Reference 3) of calculating PF's gives more accurate results; therefore, the recommended changes are those which bring the NBS-NFSS Computer Program nearer to the Engineering Manual method.

The proposed recommendations involve changes in the computational procedures for the contributions from the roof, exposed basement walls, areaways, and the ground contribution to upper stories. Included as a part of these recommendations is a procedure for considering the contribution from limited planes of contamination and for determining the effective mass thickness of partitions reported in Phase 2. Functional equations, tables representing Engineering Manual charts, the detailed steps necessary to make hand calculations compatible with machine computations, and numerical examples accompany these recommendations.

These recommendations are based on the findings of categorization (see Part I, Chapter 3), the analysis of the 33 sample buildings (see Part I, Chapter 4 and Reference 4), and the review of shielding research (see Part I, Chapter 6).

#### II. RECOMMENDATIONS

### A. Basement Exposure

### 1. Present Method

For basements with partially exposed walls the present method of calculating PF's is that found in the AE Guide (see Reference 2). Necessary inputs are mass thicknesses of the partitions, exterior walls, and first floor; width and length of the building; fraction of apertures in the basement and first story walls; and the fraction of basement wall exposed. The Reduction Factor (RF) or total contribution is found by adding the "ground contribution - below ground areas" from Table 4 (Reference 1) to the "ground contribution - above ground areas" which is found by multiplying a Table 3 (Reference 1) value by the fraction of basement wall exposed. When apertures are considered, this equation is (using present computer program tables in Reference 1 and symbols defined in Reference 3):

RF = 
$$\begin{bmatrix} Table & Value \end{bmatrix}$$
  $B_o^{\dagger} + Exposure \begin{bmatrix} Table & 3 & Value & (X_c + X_i) \end{bmatrix}$  x 
$$\begin{bmatrix} 1-A_p \end{bmatrix} + \begin{bmatrix} Table & 3 & Value & (X_i) \end{bmatrix} A_p \end{bmatrix}$$

For a finite plane of contamination, this reduction factor (RF) is reduced by multiplying it by a Table 6 (Reference 1) finite plane correction. This procedure assumes that the apertures extend from the basement floor to the ceiling.

In cases where the exposed portion of a basement wall gives the predominant contribution, the calculation corresponds to a detector location at about grade level. The use of Table 3 (Reference 1) also includes a contribution from direct radiation which should be excluded since the detector is below the contaminated planes and does not receive direct radiation.

### 2. Recommended Method

### a. Procedure

All data necessary to make Engineering Manual calculations for

exposed basements are available from present Phase 1 data with the exception of the height of apertures in the exposed wall. The Engineering Manual method is therefore recommended for this calculation which can be accomplished by assuming that the apertures extend from the sill height determined in Phase 2 to the ceiling of the basement. This method will allow calculations to be based on a 3 foot detector height and will eliminate the excessive direct radiation now included in the calculation through the use of existing Table 3. Finite planes of contamination will be handled by differencing directional responses for scattered radiation and multiplying by a barrier reduction factor for limited planes (EM Chart 9).

TAB 1 compares partial basement exposure reduction factors calculated with Engineering Manual and Guide for Architects and Engineers procedures. Note that as stated on Pago 31 of the description of the present Computer Program (see Reference 1), the PF for a basement with no exposure may be somewhat optimistic using the AE Guide.

### b. Chart Changes

Tables 3, 4, and 6 of the present Computer Program (Reference 1) will no longer be needed in basement calculations. Table 1 will remain in the program since it is the same as used in the EM method. New tables representing Engineering Manual Chart 2 for wall barrier factor, Chart 5 for G_s and G_a directional responses, Chart 7 for scatter factor, Chart 8 for shape factor, and Chart 9 for wall-scatter barrier factor should be added to the program.

### c. Functional Equations

The basic equation, using symbols contained in Table 5 of Reference 3, for each of the four sides is:

WAL1 = 
$$P_r B_o^* (X_o^*) B_w(X_i, 3^*)$$
 [ (1- $P_a$ ) ( $C_1 + C_2$ ) +  $P_a C_3$ ]

in which:

P = Fraction of wall above sill level occupied by apertures

$$C_1 = \Delta G_8(\omega) S_w(X_e) E (e) \Delta B_{w8}(\omega_s, X_e)$$

$$C_2 = \Delta G_8(\omega) [1 - S_w(X_e)] B_w(X_e, H_u)$$

$$C_3 = \Delta G_8(\omega)$$

- (1) The equation is used four times for exposed basements for each plane of contamination on a building side. (Once on each contributing story for the region of the wall below the sill with  $P_{\rm a}=0$  and once for the region above sill level.)
- (2) If the plane of contamination is an infinite field, replace  $\Delta B_{wa}(\omega_a, X_e) \text{ in } C_1 \text{ by } B_w(X_e, H_u).$
- (3) Set  $C_2 = C_3 = 0$  for the second, third, ... planes of contamination on a building side.

### d. Calculations

### (1) Comments

- (a) If basement wall is not partially exposed, calculate the in and down contribution from the first story walls, then from the second story walls using the same computational scheme.
- (b) If wall is partially exposed, calculate the contribution from the adjacent wall and first story wall only.
- (c) The above two computations include no contribution from direct radiation. Thus, if the detector is above a plane of contamination, use the procedure for an upper story detector location.
- (d) It is assumed in calculating (a) and (b) above, that the apertures have the correct lower sill level but extend all the way to the coiling (the total area of apertures is not changed).

(e) Solid angle fractions ( $\omega$ ) are to be calculated using the equation

$$\omega(N,E) = \frac{2}{\pi} \tan^{-1} \left[ \frac{E}{N\sqrt{E^2 + N^2 + 1}} \right]$$

Note: This equation is used to calculate solid angle fractions in all of the recommended procedures.

### (2) Symbols Used

D - distance from detector to exterior wall

XE = exterior mass thickness of exposed basement vall

XEP - exterior mass thickness of firs: story wall above detector

XEQ = exterior mass thickness of second story wall above detector

XPR - mass thickness of first floor

XPS - mass thickness of second floor

XI = interior wall mass thickness between detector and contributing wall

AP = fraction of area of exposed exterior basement wall which is occupied by apertures

APP = fraction of area of exterior wall of first story
above detector which is occupied by apertures

APQ - fraction of area of exterior wall of second story
above detector which is occupied by apertures

Pr = ratio of the length of this wall to the perimeter
of the building at detector height

L = length of this wall

HB = height of bascment

HF = height of first story

HS = height of second story

- HD = detector height above basement floor (3 ft)
- HSB = height from basement floor to lower sill of apertures in exposed basement
- HSF = height from first floor to lower sill of first story apertures
- HSS = height from second floor to lower sill of second story apertures
- HP = height of contaminated plane above first floor (negative values correspond to exposed basement)
- D1 distance from exterior wall to inner boundary of contaminated plane
- D2 distance from exterior wall to outer boundary of contaminated plane

(For the location of this data on the Phase 1 and 2 Data Collection Forms see TAB 2.)

## (3) Detail Calculations

(Chart references are to the Engineering Manual.)

- (a) Calculate the contribution from the adjacent wall penetrating below the aperture sill level. Set  $X_e = XE$ 
  - 1. Look up  $B_0^*$  ( $X_0^*$ ) Chart 1, Case 3 Entry  $X_0^*$  = XO = 0(This will be unity for XO = 0.)
  - 2. Look up  $B_{\omega}$  (X₁,3') Entry X₁ = XI
  - $\underline{3}$ .  $P_a = 0$
  - $\underline{4}$ . ZO = HB HD + HP (from detector to ground)
  - 5. W = 2D
  - 6. In orchange W and L if L < W

```
7. NO = 2 \times ZO/L
```

- 8. EO = W/L
- 2. Calculate  $\omega_{u}(N0,E0)$

Result: OMEG1

10. Repeat Steps 4 through 9 with new Z value
22 = HSB-HD (from detector to sill)

Result: OMEG2

- 11. Look up Gg(OMEG1), Gg(OMEG2), Gg(OMEG1),
  Gg(OMEG2) from Chart 5
- 12.  $\triangle G_8 = G_8$  (OMEG2)  $G_8$  (OMEG1)  $\triangle G_8$  and  $\triangle G_8$  should never be negative
- 14. Look up Sw(XE) Chart 7
- 15. Look up E (EO) Chart 8
- 16. HU = HP/2 (height from plane of contamination to midwall)

Set HU=3' if above value is less than 3'

- 17. Look up B (X HU) Chart 2
- 18. If infinite plane,  $\operatorname{sct} \Delta B_{w_8} = B_w(X_e, HU)$
- 19. If finite plane adjacent to building, calculate W1-2(D2)

Ll=L+Wl

N1=2 x HU/L1

El-W1/L1

Calculate ω(N1,E1)

OMEGS =  $\omega(N1, E1)/2$ 

Look up B (OMEGS, X e) - Chart 9

Set ∆B_{ws}=B_{ws}

20. If finite plane detached from building, do

19 with D2 to get  $B_{ws2}$  and with D1 to get

- P-9 -

Bwal, then form

\( \text{AB}_{wa} = \text{B}_{wal} \) (\( \text{AB}_{wa} \) should never be negative.)

[In general, only the first plane will contribute through the exposed wall. Outer planes may contribute through the first and second story walls.

Only the region of the wall above the level of contamination will contribute wall scattered radiation.

Consequently, OMEG1 in Step 12 (only) should be calculated with a 20 value from the detector to the plane if the plane lies between the floor level and ceiling for the wall whose contribution is under consideration (i.e., 20 = HB-HD+HP).

Pa must be interpreted as the fraction of wall above the plane occupied by the apertures.

Assuming that the apertures extend to the ceiling,

 $P_a$  = (aperture fraction from FOSDIC) x (wall height from floor to above floor)/ (wall height minus the distance that the plane is above the floor)

P = (aperture fraction from FOSDIC) x

when the plane is below sill level, and

(wall height from floor to above floor)/

(wall height minus sill level)

when the plane lies between the sill level and the ceiling.

Neglect mutual shielding of skyshine. If the detached plane extends to infinity, set

 $B_{ug2} = B_u(H_o, HU).$ 

21, 
$$C1 = (\triangle G_g) S_w E (\triangle B_{wg})$$

$$\underline{22}$$
,  $C2 = (\triangle G_a)(1-S_w) B_w$ 

24. WALL = 
$$P_R P_0^1(X_0) B_W(X_1, 3^1) [(1-P_0) (C1+C2) + P_0C3]$$
  
Repeat Steps 1 - 24 for each plane and sum WALL.  
If the plane is higher than the above floor, disregard it. Also, if a 2nd, 3rd, ...plane is lower than a closer-in plane, neglect the lower plane.

(b) Calculate the contribution from the adjacent wall penetrating above the sill level.

Repeat (a) with the following changes in the steps noted,

- 3. Pa = (AP)(-HP)/[(HB)-(HSB)] (scaled up aperture fraction)
- 4. ZO=HSB-HD (from detector to sill note this calculation will be available from (a) )
- 10. Z2=HB-HD (from detector to first floor)
  Obtain WAL2
- (c) Calculate the contribution from the first story wall below the sill level.

Repeat (a) with  $(X_e = XEP)$  and

- 1. XO=XPR
- 3. P.=0
- 4. ZO=HB-HD (from detector to first floor these data were calculated in (b))
- 10. Z2=HSF+HB-HD (from detector to first story sill)

- $\frac{16}{2} \cdot \text{HU} = \frac{\text{HF}}{2} \text{HP}$ Obtain WAL3
- (d) Calculate the contribution from the first story wall above the sill level.

Repeat (a) with  $(X_e - XEP)$  and

- 1. XO=XPR
- 2. P = (APP) (HF)/(HF-HSF)
- 4. 20=HSF+HB-HD [from detector to first story sill available from (c)]
- 10. Z2=HF+HB-HD (from detector to second floor)
- $\frac{16}{2} \cdot HU = \frac{HF}{2} HP$ Obtain WAL4
- (e) WALDA=WAL1+WAL2+WAL3+WAL4
- (f) Repeat (a-e) for the other three walls and sum the values for WALD to obtain the total contribution from all walls, planes, and stories.WALD = WALDA + WALDB + WALDC + WALDD
- (g) When the contribution from the second story is required (see II.A.2.d.(1)(a) and (b) above)
  - 1. Repeat (a) with (X =XEQ) and
    - 1. XO=XPR+XPS
    - 3. P =0
    - 4. ZO=HF+HB-HD [from detector to second floor available from (d)]
    - 10. Z2=HSS+HF+HB-HD (from detector to second story sill)
    - 16. HU= HS/2 +HF-HP

      Obtain WAL5 (contribution from below sill)

- $\underline{2}$ . Repeat (a) with ( $X_e$ =XEQ) and
  - 1. XO=XPR+XPS
  - $3. P_a$  (APQ)(HS)/(HS-HSS)
  - 4. 20=HSS+HF+HB-HD (available from above)
  - 10. Z2=HS+HF+HB-HD (from detector to third floor)
  - 16. HU=  $\frac{\text{HS}}{2}$  +HF-HP

    Obtain WAL6 (contribution from above sill)
- 3. The total contribution for this building side from the first and second stories is WALDA=WAL3+WAL4+WAL5+WAL6

# 3. Numerical Example

Sample calculations using the recommended procedures are given for unexposed and exposed basements. Details of the building used in these examples are contained in TABS 3 and 4.

# a. Basement, Unexposed

# (1) Contribution From A Side

# (a) Data

D = 70

XE - -

XEP = 60

**XEQ - 60** 

XPR - 80

XPS - 60

XI - 20

AP - -

APP = 0.2

APQ = 0.2

$$P_r = L_A/(L_A+L_B+L_C+L_D) = 80/2x(80+140) = 0.1817$$

L - L - 80

HB = 13

HF - 10

HS = 10

HD - 3

HSB = -

H**SF** = 5

H**SS =** 5

1:P = 0

D1 - -

D2 = -

It is determined that only an infinite plane contributes, and that the entire first and second story walls are struck by radiation from this plane, i.e.,  $HP \le 0$ .

(b) Contribution from first story wall, below sill level (Follow II. A. 2. d. (3) (c) )

X = 60

- $\frac{1}{1}$  XO = 80 B' (80) = 0.0185
- 2. XI = 20 B₀ (20,3') = 0.60
- $P_{a} = 0$
- 4. 20 = 13 3 = 10
- 5. W = 2 × 70 = 140
- 6. W = 80

L = 140

- 7. NO 2 x 10/140 0.143
- 8, EO = 80/140 = 0.57
- 9. OMEG1 = 0.82
- 10. Repeat 4 through 9 with new 2 value.

$$4.$$
  $22 = 5 + 13 - 3 = 15$ 

- 5. W = 140
- 6. W = 80

L = 140

- 7. NO = 2 x 15/140 = 0.214
- 8. EO = 80/140 = 0.57
- $9. \quad OMEG2 = 0.73$

11. 
$$G_a(OMEG1) = 0.195$$

$$G_a(OMEG2) = 0.268$$

$$G_a(OMEG1) = 0.0505$$

$$G_a(OMEG2) = 0.066$$

12. 
$$\Delta G_8 = 0.268 - 0.195 = 0.073$$

13. 
$$\bigwedge G_0 = 0.066 - 0.0505 = 0.0155$$

$$14. S_{..}(60) = 0.63$$

16. 
$$HU = (HF/2) - HP = 5$$

17. 
$$B_{1}(60,5) = 0.22$$

18. 
$$\triangle B_{ug} = 0.22$$

21. C1 = 
$$0.073 \times 0.63 \times 1.37 \times 0.22 = 0.0138$$

$$22$$
,  $C_2 = 0.0155 \times (1-0.63) \times 0.22 = 0.00126$ 

$$\mathbf{c}_3 = 0.0155$$

24. WAL3 = 0.1817 x 0.0185 x 0.60 
$$[(1-0) (0.0138 + 0.00126) + 0 x 0.0155] = 0.0000303$$

Only one plane contributes.

# (c) Contribution from first Story wall above sill level

(Follow II. A. 2. d. (3) (d))

Only the changed values are noted.

$$\underline{3}$$
.  $P_a = 0.2 \times 10 / (10-5) = 0.4$ 

10. 4. 
$$Z2 = 10 + 13 - 3 = 20$$

$$L = 140$$

$$7.$$
 NO = 2 x 20/140 = 0.286

8. EO = 
$$0.57$$

$$9. \quad \text{OMEG2} = 0.66$$

11. 
$$G_{\rm c}$$
 (OMEG1) = 0.268

$$G_{c}(OMEG2) = 0.301$$

$$G_a(OMEG1) = 0.066$$

$$G_{a}(ONEG2) = 0.0727$$

12. 
$$\triangle G_8 = 0.301 - 0.268 = 0.033$$

13. 
$$\triangle G_a = 0.0727 - 0.0660 = 0.0067$$

21. 
$$C1 = 0.033 \times 0.63 \times 1.37 \times 0.22 = 0.0063$$

22. 
$$C2 = 0.0067 (1-0.63) \times 0.22 = 0.000545$$

$$23.$$
 C3 = 0.0067

Only one plane contributes.

# (d) Contribution from second story wall below sill level

(Follow II. A. 2. d. 
$$(3)(g)$$
 1.)

Only the values which are different from the preceding calculation are noted.

$$B_0^t$$
 (140) = 0.0015

10. 4. 
$$22 = 5 + 10 + 13 - 3 = 25$$

$$7.$$
 NO = 2 x 25/140 = 0.357

9. 
$$OMEG2 = 0.60$$

11. 
$$G_s(OMEGI) = 0.301$$

$$G_{8}(OMEG2) = 0.335$$

$$G_a(OMEG1) = 0.0727$$

$$G_a(OMEG2) = 0.0785$$

12. 
$$\triangle G_s = 0.335 - 0.301 = 0.034$$

13. 
$$\Delta G_A = 0.0785 - 0.0727 \cdot 0.0058$$

17. 
$$B_{ij}(60,15^{\circ}) = 0.17$$

18. 
$$\triangle B_{ws} = 0.17$$

21. 
$$C1 = 0.034 \times 0.63 \times 1.37 \times 0.17 = 0.00499$$

22. 
$$C2 = 0.0058 \times (1-0.63) \times 0.17 = 0.000364$$

$$23.$$
 C3 = 0.0058

Only one plane contributes.

## (e) Contribution from second story wall above sill level

(Follow II. A. 2. d. (3)(g) 2.)

Only the values which are different from the preceding calculation are noted.

3. 
$$P_0 = 0.2 \times 10/(10-5) = 0.4$$

10. 4. 
$$22 = 10 + 10 + 13 - 3 = 30$$

$$7.$$
 NO = 2 x 30/140 = 0.428

11. 
$$G_g(OMEG1) = 0.335$$

$$G_{\rm g}(OMEG2) = 0.364$$

$$G_{a}(OMEG1) = 0.0785$$

$$G_{a}(OMEG2) = 0.0826$$

12. 
$$\Delta G_8 = 0.364 - 0.335 = 0.029$$

13. 
$$\Delta G_a = 0.0826 - 0.0785 = 0.0041$$

21.  $C1 = 0.0029 \times 0.63 \times 1.37 \times 0.17 = 0.00426$ 

22.  $C2 = 0.0041 \times (1-0.63) \times 0.17 = 0.000258$ 

23. C3 = 0.0041

24. WAL6 = 0.1817 x 0.0016 x 0.60 [(1-0.4) (0.00426 + 0.000258) + 0.4 x 0.0041] = 0.000000076

Only one plane contributes.

# (f) Total Contribution from A side

WALDA = 0.000030 + 0.0000137 + 0.00000093 + 0.00000076 = 0.0000454

# (2) Contribution from C side

Similarly, total contribution from side C is

WALDC = 0.0000454

## (3) Contribution from B side

# (a) Data for adjacent plane

Use the same data as for the A side with the following exceptions.

D = 40

 $P_r = L_R / \sum L = 140/440 = 0.318$ 

L = 140

D2 = 20

It is determined that radiation from this plane strikes all of the first and second story walls.

# (b) Contribution from first story wall below sill level (Adjacent plang)

Same results as in (1) (b) except for

5. W = 2 x 40 = 80

18. -

19.  $W1 = 2 \times 20 = 40$ 

$$L1 = 140 + 40 = 180$$

 $N1 = 2 \times 5/180 = 0.0556$ 

E1 = 40/180 = 0.222

 $\omega = 0.85$ 

OMEGS = 0.425

 $B_{WA}(OMEGS, X_e) = 0.060$ 

 $\Delta B_{ws} = 0.06$ 

21.  $C1 = 0.073 \times 0.63 \times 1.37 \times 0.06 = 0.00375$ 

24. WAL3 = 0.318 × 0.0185 × 0.60 [(1-0) (0.00375 + 0.00126) + 0 × 0.0155] = 0.0000177

Only one plane contributes.

(c) Contribution from first story wall above sill level

(Adjacent plane)

Same results as in (1)(c) except for

 $5. W = 2 \times 40 = 80$ 

18.

19.  $\triangle B_{\omega s} = 0.05$  (same as in preceding calculation)

21.  $c1 = 0.033 \times 0.63 \times 1.37 \times 0.06 = 0.00171$ 

24. WAL4 = 0.318 x 0.0185 x 0.60  $[(1-0.4) (0.00171 + 0.00055) + 0.4 \times 0.0067] = 0.0000143$ 

Only one plane contributes.

(d) Contribution from second story wall below sill level

(Adjacent plane)

Same results as in (1) (d) except for

 $5. W = 2 \times 40 = 80$ 

18. -

19. W1 = 2 x 20 = 40

L1 = 140 + 40 = 180

 $N1 = 2 \times 15/180 = 0.1667$ - P- 20 -

$$E1 = 40/180 = 0.222$$

 $\omega = 0.59$ 

OMEGS = 0.285

 $B_{ws}(OMEGS, X_{\varrho}) = 0.028$ 

 $\Delta B_{ws} = 0.028$ 

21.  $C1 = 0.029 \times 0.63 \times 1.37 \times 0.028 = 0.000701$ 

24. WALS =  $0.318 \times 0.0016 \times 0.60 \left[ (1-0) (0.000701 + 0.000364) + 0 \times 0.0058 \right] = 0.000000325$ 

The second plane contributes in this region since its elevation is between the second floor and the sill level.

This contribution is calculated below in (3) (g)

(e) Contribution from second story wall above sill level

(Adjacent plane)

Same results as in (1) (e) except for

18.

19.  $\Delta B_{ws} = 0.028$  (same as in preceding calculation)

21.  $C1 = 0.029 \times 0.63 \times 1.37 \times 0.028 = 0.000701$ 

24. WAL6 = 0.318 x 0.0016 x 0.60 [(1-0.4) (0.000701 + 0.000258) + 0.4 x 0.0041] = 0.00000068

The second plane also contributes. See (3)(g)

#### (f) Data for second plane

Use the same data as for the A side with the following exceptions.

D = 40

 $P_r = 140/440 = 0.318$ 

L = 140

HP = 12

## (g) Calculations for second plane

Since  $HF \lt HP \lt HF + HSS$ , the radiation does not strike all of the second story wall. Same results as in a. (1) (e) except for C2 = C3 = 0

3. 
$$P_a = APQ \times HS/(HF + HS - HP)$$
  
= 0.2 × 10/(10 + 10 - 12) = 0.25

(Note, if HF + HSS  $\leq$  HP  $\leq$  HF + HS, the value for P_a in a. (1) (e) should be used.)

7. NO = 
$$2 \times 22/140 = 0.314$$

11. 
$$G_{g}(OMEG1) = 0.32$$

12. 
$$\triangle G_8 = 0.364 - 0.318 = 0.046$$

16. HU = 
$$HS/2 + HF - HP = 10/2 + 10 - 12 = 3$$

17. 
$$B_{ij}(60,3) = 0.25$$

$$20$$
, W1 = 2 x 100 = 200

$$L1 = 140 + 200 = 340$$

$$N1 = 2 \times 3/340 = 0.01765$$

$$E1 = 200/340 = 0.589$$

OMEGS = 0.49

$$B_{ue2}(OMEGS, X_0) = 0.15$$

Repeat with D1

$$W1 = 2 \times 20 = 40$$

$$L1 = 140 + 40 = 180$$

$$N1 = 2 \times 3/180 = 0.0333$$

$$E1 = 40/180 = 0.222$$

 $\omega = 0.905$ 

OMEGS = 0.45

 $B_{\omega e_1}(OMEGS, X_e) = 0.085$ 

$$\Delta B_{\text{tig}} = 0.15 - 0.085 = 0.065$$

21. 
$$C1 = 0.046 \times 0.63 \times 1.37 \times 0.065 = 0.00258$$

- 22. C2 0
- 23. C3 0

24. WAL62 = 
$$0.318 \times 0.0016 \times 0.60 \left[ (1-0.25) \times 0.00258 \right]$$
  
=  $0.00000059$ 

#### (h) Total contribution from B side

(4) Similarly the contribution from D is

WALDD = 0.0000336

(5) The total wall contribution is

## b. Basement, Exposed

Same problem as before, except the infinite plane on the A side is located 5 feet below the first floor.

Since the basement is partially exposed, only the adjacent and first story contributions are calculated. Thus, we obtain the following contributions from the B, C, and D sides from the first story calculations for the unexposed basement.

WALDB = 0.0000177 + 0.0000143 = 0.000032

WALDC = 0.0000300 + 0.0000137 = 0.0000437

WALDD = 0.000032

# (1) Contribution from A side

(a) Data

Same as a. (1) (a), unexposed, except

XE = 60

AP = 0.2

HSB = 10

HP - -5

(b) Contribution from exposed basement wall below sill level

(Follow II. A. 2. d. (3) (a))

 $X_c = 60$ 

 $\underline{1}$ .  $X_0 = 0$ 

 $B_0^* = 1.0$ 

 $\underline{2}$ .  $X_1 = 20$ 

 $B_w(X_1,3) = 0.6$ 

 $\underline{3}$ .  $P_a = 0$ 

4. z0 = 13 - 3 - 5 = 5

 $5. W = 2 \times 70 = 140$ 

6. W = 80

L - 140

7. NO = 2 x 5/140 = 0.0714

8. E0 = 80/140 = 0.57

9. OMEG1  $\sim 0.91$ 

10. 4. 22 = 10 - 3 = 7

7. NO =  $2 \times 7/140 = 0.1$ 

9. OMEG2 = 0.87

<u>11</u>.  $G_s$  (OMEG1) = 0.104

 $G_s(OMEG2) = 0.145$ 

 $G_0$  (OMEG1) = 0.0280

 $G_{a}(OMEG2) = 0.040$ 

$$12.$$
  $\triangle G_8 = 0.145 - 0.104 = 0.041$ 

13. 
$$\triangle G_a = 0.040 - 0.028 = 0.012$$

$$14. S_w(60) = 0.63$$

$$15.$$
 E(0.57) = 1.37

16. HU = - 
$$(-5)/2 = 2.5$$
  
HU = 3

$$17.$$
 B₁(60,3) = 0.25

21. 
$$C1 = 0.041 \times 0.63 \times 1.37 \times 0.25 = 0.00884$$

22. 
$$C2 = 0.012 \times (1-0.63) \times 0.25 = 0.0011$$

# (c) Contribution from exposed basement wall above sill level

(Follow II, A. 2. d. (3) (b))

Same as preceding calculation except

3. 
$$P_B = 0.2 [-(-5)]/(13-10) = 0.333$$

$$\underline{4.}$$
 to  $\underline{9.}$  OMEG1 = 0.87 (same as OMEG2 in preceding calculation)

11. 
$$G_8(OMEG1) = 0.145$$

$$G_{e}(OMEG2) = 0.195$$

$$G_a(OMEG1) = 0.040$$

$$G_a(OM \kappa G2) = 0.0505$$

12. 
$$\Delta G_g = 0.195 - 0.145 = 0.050$$

13. 
$$\triangle G_a = 0.0105$$

21. 
$$C1 = 0.050 \times 0.63 \times 1.37 \times 0.25 = 0.0108$$

22. 
$$C2 = 0.0105 \times (1-0.63) \times 0.25 = 0.0097$$

24. WAL2 = 0.1817 x 1 x 0.6 x 
$$[(1-0.333) (0.0108 + 0.0097) + 0.333 \times 0.0105] = 0.00187$$

## (d) Contribution from first story wall below sill level

Same as a. (1) (b), unexposed, with changed HP.

$$18.$$
  $\triangle B_{WS} \approx 0.18$ 

21. 
$$C1 = 0.073 \times 0.63 \times 1.37 \times 0.18 = 0.0113$$

$$22.$$
 (2 = 0.0155 x (1=0.63) x 0.18 = 0.00103

24. WAI.3 = 0.0000303 x 
$$0.18/0.21 = 0.000026$$

# (e) Contribution from first story wall above sill level

Same as a. (1) (c), unexposed, with preceding change associated with HP.

21. 
$$C1 = 0.0063 \times 0.18/0.21 = 0.0054$$

22. 
$$C2 = 0.000545 \times 0.18/0.21 = 0.000468$$

24. WALA = 
$$0.1817 \times 0.0185 \times 0.60 \left[ (1-0.4) (0.0054 + 0.000468) + 0.4 \times 0.0067 \right] = 0.0000125$$

#### (f) Total contribution from A side

WALDA = 
$$0.00108 + 0.00187 + 0.000026 + 0.0000125 = 0.00299$$

## (2) Total Contribution for all walls

WALD = 
$$0.00299 + 0.000032 + 0.0000437 + 0.000032 = 0.0031$$

#### B. Roof Contribution

#### 1. Present Method

Roof contribution is presently calculated by the AE Guide method which uses the area of the roof and does not account for variations in contribution because of the shape. Inputs required to make this calculation are mass thicknesses of the partitions, floors and roof; width and length of the core and building; location of setbacks; and the perpendicular distance from the detector to the plane of the contributing roof.

## 2. Recommended Method

#### a. Procedure

The Engineering Manual (EM) method of calculating roof contribution requires no additional inputs of data. TABS 5 and 6 compare the contributions as calculated by the AE Guide and EM methods for roofs of various buildings which do not have interior partitions.

TAB 7 compares contributions as calculated by the same two methods for roofs of buildings which have partitions. The EM method results in a small decrease in contribution for buildings without interior partitions, whereas larger differences are noted in rectangular buildings with partitions.

The Engineering Manual method is recommended for calculating main roof and setback roof contributions for all buildings without partitions and for those with partitions reported in Phase 1.

Interior partition data from Phase 2 are not recommended for use in calculating roof contribution at this time. For buildings without uniform partitions from floor to floor there are too many required manipulations to justify machine computations. Survey experience indicates that many types of buildings such as apartments, hotels,

schools, hospitals, etc., have the same partition arrangement on most stories.

## b. Chart Changes

Table 2 of Reference 1 will no longer be needed in roof calculations.

New tables representing Engineering Manual Chart 4 for roof contribution and Shelter Design and Analysis Manual (see Reference 5).

Chart 11 for vertical barrier factors should be added to the program.

Table 7 will remain in the program for the skyshine correction to roof contribution.

## c. Functional Equations

Using symbols contained in Table 5 of Reference 3, the basic equation for:

(1) a building with interior partitions but without a setback is

RUFDOS = 
$$\begin{bmatrix} c_1 + (c_2 - c_1) & B_1^* \end{bmatrix}$$
 [Skyshine Correction]

in which:

$$C_1 = C_0 \quad (\omega_u^*, X_0)$$
 Contribution from core

$$C_2 = C_0 (\omega_u, X_0)$$
 Contribution from total roof

(2) a building with a setback (as illustrated by Figure 1 of Reference 1) is

RUFDOS = 
$$\begin{bmatrix} c_1 + \frac{1}{2} & (c_2 - c_1) + \frac{1}{2} & (c_3 - c_4) \end{bmatrix}$$
 [Skyshine Correction]

in which additional contributions are

 $C_3 = C_0(\omega_0, X_0)$  Contribution from total roof at height of setback  $C_L = C_0(\omega_0, X_0)$  Contribution from core at height of setback.

## d. Calculations

#### (1) Comments

- (a) The center of the shelter area (data available in columns 44-49 of Phase 2 DCF) need not be the center of the building and more than one setback may be on the same story as illustrated by Fig. 4 of Reference 1, since the building is divided into four fictitious buildings. The roof calculation is repeated four times using Phase 2 detector location data and Phase 1 setback data. Total roof contribution is determined by adding one-fourth of each value.
- (b) Because buildings or complicated shapes may be divided into several parts, a determination of whether the first contaminated plane is grade or a neighboring roof should be made as is done in the present program (see p. 25 of Reference 1). If the first contaminated plane is determined to be a roof, and the detector lies below it, the neighboring roof is treated as a peripheral setback with
  - $X_0$  = the total mass thickness of horizontal barriers between the detector and the contributing roof in the part of the building containing the detector.
  - X = the sum of the mass thicknesses of the interior partitions and the exterior wall between the detector and the neighboring roof.

- (c) Setbacks and neighboring roofs which lie below the detector level are treated as regular planes of contamination for ground contribution to detectors above grade.
- (d) When Phase 2 data are not available for the location of the center of the shelter area, the detector is located in the center of the building part.
- (e) Each quadrant is computed using an "average" interior partition weight which is proporcional to the weight of the partitions along the sides of the shelter and the shelter dimensions.

#### (2) Symbols Used

- A = Length of exterior wall on A side
- B = Length of exterior wall on B side
- CA = Shelter dimonsions (parallel to side A)
- CB = Shelter dimensions (parallel to side B)
- DA Distance to center of shelter from A wall
- DB Distance to center of shelter from B wall
- H = Height of building (i.e., roof height)
- HBS = Height at which setback begins
- HD Height of detector
- HP = Height of contaminated planes
- SA Distance from face of setback to side A
- SB = Distance from face of setback to side B
- SC Distance from face of setback to side C
- SD Distance from face of setback to side D
- W = Width of the contaminated plane
- $X_{\Delta} = Total$  overhead mass between detector and contamination
- XIA, XIB, XIC, XID = Interior partition weight parallel to respective sides A, B, C, & D (Phase 1 Data only)

## (3) Detailed Calculations

- (a) Set up initial inputs (first quadrant)
  - 1. Set RA = RB = RC = RD = 0

    Set DC = B DA, DD = A DB

    Find XI1 =  $\frac{XIA \cdot CA + XIB \cdot CB}{CA + CB}$   $XI2 = \frac{XIB \cdot CB + XIC \cdot CA}{CA + CB}$   $XI3 = \frac{XIC \cdot CA + XID \cdot CB}{CA + CB}$   $XI4 = \frac{XIA \cdot CA + XID \cdot CB}{CA + CB}$
- (b) Find location of setback (or roof) with respect to the detector and find the contribution, ignoring interior partitions (one quadrant).
  - 1. If there is not a setback, set R9 = R10 = R11 = 0 and go to (k) 1.
  - 2. Set Z = IBS(1) IID. If Z < 0, set R9 = 0, do step (h) 1. and go to (1) 1.
  - 3. If RA >DA or RB >DB, set R1 = RZ = 0 and go to (d)  $\underline{1}$ .
  - 4.  $L_1 = 2 \text{ (DA-RA)}, W_1 = 2 \text{ (DB-RB)}, \text{ calculate } \omega_1 \text{ (if } W > L, interchange } W & L).$
  - 5. If RC >DC, D1 = RC DC; if not, D1 = 0,  $\omega_2$  = 0,  $\omega_4$  = 0, go to (b)  $\underline{7}$ .
  - $\underline{6}$ .  $L_2 = 2D1$ ,  $W_2 = 2(DB-RB)$ , calculate  $\omega_2$
  - 7. If RD > DD, D2 = RD DD; if not, D2 = 0,  $\omega_3$  = 0,  $\omega_4$  = 0, go to (b)  $\underline{10}$ .
  - $\underline{8}$ .  $L_3 = 2(DA-RA)$ ,  $W_3 = 2D2$ , calculate  $\omega_3$ .
  - $\underline{9}$ .  $L_4 = 2D1$ ,  $R_4 = 2D2$ , calculate  $\omega_4$ .
  - 10. R1 =  $C_o(\omega_1, X_o) C_o(\omega_2, X_o) C_o(\omega_3, X_o) + C_o(\omega_4, X_o)$ ,

    Chart 4 of EM.

- (c) Find location of setback (or roof) with respect to the interior partitions and find the contribution <u>inside</u> the core area from this setback (or roof).
  - 1. If DA RA  $< \frac{1}{2}$  CB, set CB = 2 (DA-RA)
  - 2. If DB RB  $< \frac{1}{2}$  CA, set CA = 2 (DB-RB)
  - 3. If D1 > CB, set R2=0 and go to (d) 1.
  - 4. If D2  $\rightarrow$  CA, set R2=0 and go to (d) 1.
  - 5.  $L_5 = CB, W_S = CA, calculate <math>\omega_S$
  - 6.  $L_6$  = 2D1,  $W_6$  = CA, calculate  $\omega_6$
  - $\underline{\mathbf{Z}}$ ,  $\mathbf{L}_7$  = CB,  $\mathbf{W}_7$  = 2D2, calculate  $\omega_7$
  - 8. R2 =  $C_0(\omega_5) C_0(\omega_6) C_0(\omega_7) + C_0(\omega_4)$
- (d) Find the total dose from this setback or roof area (R3).
  - 1. Find (R1-R2)- $B_{\underline{i}}'(XI1) + R2$ ,  $B_{\underline{i}}'(XI)$  is Chart 11 of Reference 5.
  - 2. R3= (d) 1.
- (e) Find the total dose for the second quadrant.
  - Repeat (b) 3. through (d) 1. for quadrant 2 (see
     cyclic permutation table in section (n))
  - $2. R4 = (R1-R2) \cdot B'_{1}(XI2) + R2$
- (f) Find the total dose for the third quadrant.
  - Repeat (b) 3. through (d) 1. for quadrant 3 (see
     cyclic permutation table in section (n))
  - 2. R5 = (R1-R2)·B; (XI3) + R2
- (g) Find the total dose for the fourth quadrant and sum the four quadrants.
  - Repeat (b) 3, through (d) 1, for quadrant 4 (see cyclic permutation table in section (n))
  - 2. Cycle back to 1st quadrant (see permutation table in section (n))
  - 3.  $R6 = (R1-R2) \cdot B_{\frac{1}{2}}(XI4) + R2$ - P-3 2 -

- (h) Find the total dose at the setback level for a roof using the dimensions of the building above the setback (as opposed to the initial building dimensions).
  - 1. Set RA = SA(1), RB = SB(1), RC = SC(1), RD = SD(1)
  - 2. Repeat (b) 3. through (g) 3.
  - 3. R8 = R3+R4+R5+R6
  - 4, R9 = (R7-R8) x skyshine factor (X₂)
- (i) Compute the second setback contribution.
  - 1. If there is NOT a second setback, set R10=R11=0 and go to (k) 1.
  - 2. If [Z = HBS(2)-HD] < 0, set R10=0, do (1) 5. and go to (1) 1.
  - 3. Set X for the 2nd setback level, Set Z=HBS(2)-HD
  - 4. Repeat (b) 3. through (g) 4.
  - 5. Set RA=SA(2), RB=SB(2), RC=SC(2), PD=SD(2)
  - 6. Repeat (b) 3. through (g) 3.
  - 7. R8 = R3+R4+R5+R6
  - 8. R10 = (R7-R8) x Skyshine factor (X₀)
- (j) Compute the third setback contribution.
  - 1. If there is NOT a third setback, set R11=0 and go to (k) 1.
  - 2. If [Z=HBS(3)-HD] < 0, set R11=0, do (j) 5. and go to (k) 1.
  - 3. Set X_o for the 3rd setback level.

    Set Z=HBS(3)-HD
  - 4. Repeat (b) 3. through (g) 4.
  - 5. Set RA=SA(3), RB=SB(3), RC=SC(3), RD=SD(3)
  - 6. Repeat (b) 3. through (g) 3.

- 7. R8=R3+R4+R5+R6
- 8. R11=(R7-R8) x Skyshine Factor ( $X_0$ )
- (k) Compute the true roof contribution.
  - 1. Set Z=H-HD, Set  $X_{_{\rm O}}$  for mass between detector and roof.
  - 2. Repeat (b) 3. through (g) 4.
  - 3. R12=R7 x Skyshine Factor (X₀)
- (f) Compute the dose from the adjacent roofs.

(Use test for neighboring roof on Page 25 of Reference 1)

- 1. Set R13=R14=R15=R16=0
- 2. If there is an adjacent roof on the A side
  - (a) Repeat (a) 1.
  - (b) Set XII=XII+XE(A side) and XI4=XI4+XE(A side)
  - (e) Set Z-HP-HD and if  $Z \le 0$ , set R13-0 and go to (f) 3.
  - (d) Repeat (b)3, through (d)2, and (g)1, through (g)3.
  - (e) R17=R3+R6
  - (<u>f</u>) Set RA=-W_e(lst,A)-width of first contaminated plane on A Side
  - (g) Repeat (f)  $2 \cdot (d)$
  - (h) Set R13=R3+R6-R17
- 3. If there is an adjacent roof on the B side
  - (a) Repeat (a) 1.
  - (b) Set XI1=XI1+XE(B side) and XI2=XI2+XE(B side)
  - (c) Set Z=HP-HD and if  $Z \le 0$ , set R14=0 and go to (1)4.
  - (d) Repeat (b) 3. through (e) 2.
  - (e) R17=R3+R4
  - ( $\underline{f}$ ) Set RB=-W_c(1st,B)=width of first contaminated plane on B side
  - (g) Repeat (f) 3. (d)
  - (h) Rlu=R4+R3+R17

- 4. If there is an adjacent roof on the C side
  - (a) Repeat (a) 1.
  - (b) Set XI2-XI1+XE(C side) and XI3-XI3+XE(C side)
  - (c) Set Z=HP-HD and if  $Z \le 0$ , set R15=0 and go to (f)5.
  - (d) Repeat (e)  $\underline{1}$ , (e)  $\underline{2}$ , (f)  $\underline{1}$  and (f)  $\underline{2}$ .
  - (e) R17=R4+R5
  - ( $\underline{f}$ ) Set RC=-W_C(lst,C) = width of first contaminated plane on C side
  - (g) Repeat ( $\ell$ ) 4. (d)
  - (h) R15=R4+R5-R17
- 5. If there is an adjacent roof on the D side
  - (a) Repeat (a) 1.
  - (b) Sot XI3=XI3+XE(D side) and XI4=XI4+XE(D side)
  - (r) Set 2=11P-11D and if  $2 \le 0$ , set R16=0 and go to (m)1.
  - (d) Repeat (f)1., (f)2., (g)1., (g)2. and (g)3.
  - (c) R17=R5+R6
  - (f) Set RD=-W_c(lst,D) = width of first contaminated
    plane on D side
  - (g) Repeat ( $\ell$ ) 5. (d)
  - (h) R16=R5+R6-R17
- (m) Total Roof Contribution.

Add up the total contributions from the setbacks, true roof, and adjacent roofs.

1. RUFDOS=1 [R9+R10+R11+R12+R13+R14+R15+R16]

(n) Cyclic Permutation Table



# 3. Numerical Example

The following sample calculation is for roof contribution from a building with 2 setbacks on the same story. For the detailed description of this building see TABS 3 and 4.

- (a) Set up initial inputs.
  - 1. RA=RB=RC=RD=0 X₀=60 X11=X12=X13=X14=0
- (b) Locate and calculate without partitions.
  - 2. 2-30-23-71
  - 4, L,=2(70)=140, W₁=2(40)=80,  $\omega_1$ =.873
  - 5. W2- W4-0-W3
  - 10. R1=C₀( $\omega_1$ , X₀)=C₀(.873,60)=0.058
- (c) Locate and calculate inside partitions.
  - 5. L=70, W=40
  - 6. 4-4-4-0
  - $8. R2=C_0(\omega_5) = C_0(.75,60) = 0.058$
- (d) Find total contribution.
  - 1. R3=(R1-R2)  $B_{i}^{+}$  (20) + R2 = 0 + 0.058
  - 2. R3=0.058
- (b), (f) and (g) Find contributions and from symmetry, R4=R5=R6=R3=0.058

  - 4. R7=0.232
- (h) Find total contributions from the dimensions of the building above setback.
  - 1. RA=0, RB=0, RC=80, RD=10
  - $\underline{2.}$   $L_1 = 140$ ,  $W_1 = 80$ ,  $\omega_1 = 0.873$

$$L_{2}=20, W_{2}=40. \ \omega_{2}=.60$$

$$\omega_{3}=\omega_{4}=0$$

$$R1=C_{0}(.873,60) - C_{0}(.60,60) = 0.058 -0.051 = 0.007$$

$$L_{5}=70, W_{5}=40, \omega_{5}=.75$$

$$L_{6}=20, W_{6}=40, \omega_{6}=.57$$

$$\omega_{7}=0$$

$$R2=C_{0}(.75,60) - C_{0}(.51,60) = 0.058 -0.051 = 0.007$$

$$R3 = 0.007$$

$$R4 = R5 = 0 \text{ because SC} > 70'$$

$$Givan DA=70, DB=40, DC=70, DD=40, RA=0,$$

$$RB=10, RC=80, RD=0$$

$$L_{1}=140, W_{1}=60, \omega_{1}=.842$$

$$D1=10, D2=0$$

$$L_{2}=20, W_{2}=60, \omega_{2}=.62$$

$$D2=0, \omega_{3}=\omega_{4}=0$$

$$R1=C_{0}(.842,60) - C_{0}(.62,60) = .058 - .051 = 0.007$$

$$L_{5}=70, W_{5}=40, \omega_{5}=.75$$

$$L_{6}=20, W_{6}=40, \omega_{6}=.57$$

$$\omega_{7}=0$$

$$R2=C_{0}(.75,60) - C_{0}(.57,60) = 0.007$$

$$R6=0.007$$

$$3. R8=0.007+0+0+0+0.007=0.014$$

$$4. R9=(0.232-0.014) 1.07 = (0.218) 1.07 = 0.234$$

- (i) Compute second setback.
  - 1. No more setbacks; therefore,R10=R11=0
- (k) Compute roof contribution.

$$1. Z = 50-23=27 X_0=180$$

2. 
$$L_1=140$$
,  $W_1=60$ ,  $U_1=.48$   $C_0(.48,180)=0.0029$ 
 $L_2=20$ ,  $W_2=60$ ,  $U_2=.17$   $C_0(.17,180)=0.0016$ 
 $U_3=U_4=0$ 
 $R1=0.0029 - 0.0016 = 0.0013$ 
 $L_5=70$ ,  $W_5=40$   $U_5=.33$ 
 $L_6=20$ ,  $W_6=40$   $U_6=.14$ 
 $U_7=0$ 
 $R2=C_0(.33,180) - C_0(.14,180) = 0.0024 - 0.0016 = 0.0008$ 
 $R3=(0.0013 - 0.0008) (.48) + 0.0008 = 0.00104$ 
 $R4$  uses the values:
 $L_1=140$ ,  $W_1=80$ ,  $U_2=.59$ ,  $C_0=0.0030$  and
 $R1=0.0030 - 0.0016 = 0.0014$ 
 $R4=(0.0014 - 0.0008) (.48) + 0.0008 = 0.00109$ 
 $R5=R6=0$ 
 $R7=0.00104 + 0.00109 + 0 + 0 = 0.00213$ 
3.  $R12 = (0.00213) 1.00 = 0.00213$ 

- (1) Compute dose from adjacent roof.
  - 1 R13=R14=R15=R16=0
- (m) Find the total roof contribution.

1. RUFDOS=
$$\frac{1}{4}$$
 [0.234 + 0 + 0 + 0.00213 + 0 + 0 + 0 + 0]  
= $\frac{1}{4}$  [0.23613] = 0.0590

#### C. Ground Contribution - Stories Above Grade

#### 1. Present Method

The present method of computing ground contribution for stories above grade is essentially the AE Guide method except that no correction is made for aperture sill height. Apertures are treated by multiplying a Table 3 (Reference 1) value at X_e=0 by the percentage of apertures (therefore, apertures are considered to extend from fluor to ceiling). Table 3 includes a contribution from direct radiation which should be considerably reduced when it penetrates the solid wall below the sill level of an aperture. Contribution from finite planes of contamination is reduced by multiplying it by a Table 6 (Reference 1) value.

Inputs required in the present procedure are mass thicknesses of the partitions, exterior walls, and floors; width and length of the building; height of building, first story and upper stories; and the fraction of apertures on each floor.

#### 2. Recommended Method

#### a. Procedure

- (1) Major sources of difficulty in developing procedures for calculation of contribution to storics above grade are as follows:
  - (a) For detectors below sill level one must treat separately the directional responses below and above the detector.
  - (b) Buildings of interest to the OCD shelter program usually are found in metropolitan areas and typically would be surrounded by limited planes of contamination. For many, if not most of the potentially valuable above-grade shelter areas, the mutual shielding situation is such that very little, if

any, direct radiation is received through the adjacent wall.

Much more direct radiation is expected from the story below,

but frequently direct radiation will be absent there also. On

the other hand, there will almost always be some wall scattered

radiation. Again, separation of the direct from the scattered

components is indicated to be desirable.

- (c) Because of the importance of direct radiation in many cases and the apparent need to separate it from the scattered and skyshine components, it appears important to correct this for height as is done in EM Chart 6.
- (2) In order to properly correct for the difficulties outlined above, it is recommended that the Engineering Manual method be used in computing ground contribution to above-ground areas. Present input data plus the aperture sill height data from Phase 2 are adequate for this procedure if the apertures are assumed to extend from sill level to the ceiling. In addition to improving the aperture contribution calculation, the EM method will allow for more adequate handling of variable story heights and will take into account rectangular building shapes. Finite planes of contamination will be handled in the usual EM method by differencing directional responses. TAB 8 indicates the decrease in reduction factor by using the EM method.
- (3) A "chart procedure" using EM data but using principles of the AE Guide was considered. This procedure yields results more accurate than the present computer program but considerably less accurate than the EM results. Approximately the same amount of data and charts are required; therefore, the EM method was felt to be most desirable.

#### b. Chart Changes

For the calculation of ground contribution to areas above grade, Table 1 will remain in the program and Tables 3, 5, 6, and 8 are not needed. The EXTRAP procedure which accounts for contribution from sources beyond the reported contaminated planes is also not needed. This will be treated by considering that the third reported plane extends to infinity when the detector is above all reported planes of contamination. New tables are required to represent data in Engineering Manual Chart 1. Case 1, for the barrier factor of the floor below the detector; Chart 5 for G and G directional responses; Chart 6 for G directional response; Chart 7 for scatter factor; Chart 8 for shape factor; and Chart 9 for wall-scatter barrier factor.

## c. Functional Equations

The basic equations, using symbols contained in Table 5 of Reference 3, for each of the four sides are:

Case 1. Detector is below aperture sill level in adjacent wall

$$\begin{aligned} c_{g}^{i} &= P \left[ B_{o}^{i}(X_{o}^{i}) \left[ A_{u} C_{6}^{i} + (1-A_{u}) \left( C_{6} + \sum C_{1} \right) \right] \right. \\ &+ A_{a} C_{7}^{i} + (1-A_{a}) C_{7}^{i} + \sum \left[ (1-A_{a}) C_{2}^{i} + C_{2}^{i} + C_{3}^{i} \right] + B_{o}(X_{f}) \sum \left[ A_{1} C_{5}^{i} + (1-A_{1}) \left( C_{5} + C_{4} \right) \right] \end{aligned}$$

Case 2. Detector is above aperture sill level in adjacent wall

$$\begin{array}{l} c_{g}^{*} = P & \left[ B_{o}^{*}(X_{o}^{*}) - \left[ A_{u} c_{6}^{*} + (1 - A_{u}) + (c_{6} + \sum c_{1}) \right] \right. \\ & + A_{p} & \left( \sum c_{3}^{*} + c_{6}^{*} \right) + (1 - A_{p}) + \left[ \sum (c_{2}^{*} + c_{2}^{u} + c_{3}) + c_{6} \right] \\ & + B_{o} & \left( X_{f} \right) + \sum \left[ A_{1} c_{5}^{*} + (1 - A_{1}) + (c_{5} + c_{4}) \right] \end{array}$$

where the summations are taken over the contributing contaminated planes, and

$$\begin{bmatrix} B_{ws}(X_e, \omega_s) - B_{ws}(X_e, \omega_s') \end{bmatrix} \begin{bmatrix} G_s(\omega_u'') - G_s(\omega_u) \end{bmatrix} S_w(X_e) \to (J)$$

$$B_w(X_1, 3').$$

 $C_2^*$  = wall scatter from detector story =

Ž

$$\left[\mathbf{B}_{\mathbf{w}\mathbf{s}}(\mathbf{X}_{\mathbf{e}},\boldsymbol{\omega}_{\mathbf{s}}) - \mathbf{B}_{\mathbf{w}\mathbf{s}}(\mathbf{X}_{\mathbf{e}},\boldsymbol{\omega}_{\mathbf{s}}')\right] \left[\mathbf{G}_{\mathbf{s}}(\boldsymbol{\omega}_{\mathbf{u}}) - \mathbf{G}_{\mathbf{s}}(\boldsymbol{\omega}_{\mathbf{u}}')\right] \mathbf{S}_{\mathbf{w}}(\mathbf{X}_{\mathbf{e}}) \ \mathbf{E}(\mathbf{J}) \quad \mathbf{B}_{\mathbf{w}}(\mathbf{X}_{\mathbf{i}},\mathbf{3}').$$

 $C_2^{"}$  = wall scatter from detector story below detector level =  $\begin{bmatrix} B_{WB}(X_c, \omega_B) - B_{WB}(X_c, \omega_B^*) \end{bmatrix} G_B(\omega_1) S_W(X_c) E (J) B_W(X_1, 3).$ 

C₃ = direct through detector story wall =

$$\mathbf{B}_{\mathbf{w}}(\mathbf{X}_{\mathbf{c}},\mathbf{H}) \quad \left[ \mathbf{G}_{\mathbf{d}}(\boldsymbol{\omega}_{1},\mathbf{H}) - \mathbf{G}_{\mathbf{d}}(\boldsymbol{\omega}_{1}',\mathbf{H}) \right] \left[ \mathbf{1} - \mathbf{S}_{\mathbf{w}}(\mathbf{X}_{\mathbf{c}}) \right] \quad \mathbf{B}_{\mathbf{w}}(\mathbf{X}_{1}',3') \,.$$

 $C_3^*$  = direct through apertures in detector story wall =  $B_w(0,H) \left[ G_d(\omega_1,H) - G_d(\omega_1^*,H) \right] B_w(X_1,3^*).$ 

C4 - wall scatter from story below -

$$\left[ \mathbf{B}_{\mathsf{w}_{\mathsf{B}}}(\mathbf{X}_{\mathsf{c}}, \boldsymbol{\omega}_{\mathsf{a}}) - \mathbf{B}_{\mathsf{w}_{\mathsf{B}}}(\mathbf{X}_{\mathsf{c}}, \boldsymbol{\omega}_{\mathsf{a}}') \right] \left[ \mathbf{G}_{\mathsf{a}}(\boldsymbol{\omega}_{\mathsf{1}}'') - \mathbf{G}_{\mathsf{a}}(\boldsymbol{\omega}_{\mathsf{1}}) \right] \mathbf{S}_{\mathsf{w}}(\mathbf{X}_{\mathsf{c}}) \ \mathbf{E} \ (\mathsf{J}) \\ \mathbf{B}_{\mathsf{w}}(\mathbf{X}_{\mathsf{1}}, \mathsf{3}^{\mathsf{T}}) \, ,$$

c₅ = direct through wall of story below =

$$\mathbf{B}_{\mathsf{w}}(\mathsf{x_{\mathsf{e}}},\mathsf{H}^{\mathsf{u}}) \ \mathbf{B}_{\mathsf{w}}(\mathsf{x_{\mathsf{i}}},\mathsf{3}^{\mathsf{i}}) \left[ \mathbf{G}_{\mathsf{d}}(\boldsymbol{\omega}_{\mathsf{1}}^{\mathsf{u}},\mathsf{H}) \ - \ \mathbf{G}_{\mathsf{d}}(\boldsymbol{\omega}_{\mathsf{1}},\mathsf{H}) \right] \left[ \ 1 \text{-} \mathbf{s}_{\mathsf{w}}(\mathsf{x_{\mathsf{e}}}) \right] \ .$$

C₅ = direct through apertures in wall of story below =

$$B_{\omega}(O,H'') B_{\omega}(X_1,3') \left[G_{d}(\omega_{\chi}'',H) - G_{d}(\omega_1,H)\right].$$

C6 = skyshine through wall of story above =

$$B_{\omega}(X_{c}, \mathbb{H}^{n}) \left[ G_{a}(\omega_{U}^{n}) - G_{a}(\omega_{U}) \right] \left[ 1 \cdot S_{\omega}(X_{c}) \right] B_{\omega}(X_{1}, 3).$$

 $C_6^*$  = skyshine through apertures in story above =

$$B_{\mathbf{w}}(\mathbf{0}, \mathbf{H}^{\mathbf{H}}) \left[ G_{\mathbf{a}}(\boldsymbol{\omega}_{\mathbf{u}}^{\mathbf{H}}) - G_{\mathbf{a}}(\boldsymbol{\omega}_{\mathbf{u}}) \right] B_{\mathbf{w}}(\mathbf{X}_{\mathbf{1}}, \mathbf{H}).$$

 $\mathbf{c}_{7}$  = skyshine through wall of detector story =

$$B_{w}(X_{e}, H') \left[G_{a}(\omega_{u}) - G_{a}(\omega_{u}')\right] \left[1-S_{w}(X_{e})\right] B_{w}(X_{1}, 3').$$

 $C_7^*$  = skyshine through apertures in wall of detector story =

$$B_{\mathbf{u}}(0,\mathbf{H}^{*}) \left[ G_{\mathbf{a}}(\boldsymbol{\omega}_{\mathbf{u}}) - G_{\mathbf{a}}(\boldsymbol{\omega}_{\mathbf{u}}^{*}) \right] B_{\mathbf{w}}(\mathbf{X}_{\mathbf{i}},\mathbf{3}^{*}).$$

A. - area fraction of apertures in wall of story above.

 $A_n$  = area fraction of apertures in adjacent story wall.

 $A_a = \frac{h_a A_p}{h_a - 3}$  = area fraction of apertures above detector on adjacent story.

A, = area fraction of apertures in wall of story below.

#### d. Calculations

#### (1) Comments

- (a) Areaways reported in Phase 2 are ignored for contribution to above ground areas. Planes of contamination are used as reported in Phase 1.
- (b) Mutual shielding of skyshine is taken into account on both the adjacent story and the story above. The value of II used in the height corrected wall barrier factor is a weighted average height of those planes which preced the first shielding plane (if any). The average is weighted by plane width.
- (c) When the detector is above all planes of contamination on a side, the third plane is considered to extend to infinity to account for contribution from sources beyond the last reported plane.
- (d) A direct radiation component for each plane is calculated for only that portion of the plane actually seen at the detector position through the relevant wall. This applies to both the adjacent story and the story below. The height corrected directional response functions are used.
- (e) Wall scattered radiation components are calculated from each of the three stories; detector, above and below. When

a contaminated plane is detached from the exterior wall, the calculation is done as indicated in Figure P-la.

When a contaminated plane is partially shielded from the exterior wall by a preceding plane, the calculation is done as indicated in Figure P-1b.

When a contaminated plane is partially shielded from the exterior wall so that the midpoint of the wall does not see the plane, the calculation is done as indicated in Figure P-le.

Whereas these illustrations are for the detector story only, analogous procedures are used for the other stories.

- (f) When there is a contribution from the last plane on the FOSDIC form,  $B_{WB}(X_c, \omega_n)$  is replaced with  $B_W(X_c, W)$  (see the equations in Figure P-1).
- (g) If the detector is below sill height, the aperture is assumed to extend from the detector height (3') to the ceiling.
- (h) If the detector is above sill height, the aperture is assumed to extend from floor to ceiling.
- (i) The percentage of apertures is used for apertures in the walls of the stories above and below.
- (j) Detector location is in the center of each story since Phase 2 data are not available for all stories.
- (k) The effective mass thicknesses,  $X_e$  and  $X_i$ , are understood to be those of the walls on the story (above, detector, or below) for which a particular calculation is being done.

FIGURE P-1
Contaminated Plane Shielding Calculations

Δ.



b.



c,



### (2) Symbols Used

- A marea fraction of apertures in a story wall
- d = horizontal distance from the detector to the exterior wall at the detector story level, i.e., d = ½ L_r
- p horizontal distance from the exterior wall at the detector story level to the inner edge of a contaminated plane. For the ith plane, including k setback roofs below the detector,

$$D_1 = C_k + \sum_{j=1}^{i-1} [$$
 plane width from FOSDIC 20]

where of a Xfor the kth setback as ordered on the FOSDIC form

horizontal distance from the exterior wall at the detector story level to the outer edge of a contaminated plane. For the ith plane, including k setback roofs below the detector story

$$D_2 = C_k + \sum_{j=1}^{L} [$$
 plane width from FOSDIC 20 ],

where a sordered on the FOSDIC form

- h = height of detector story
- h = height of story above
- h₁ = height of story below
- H = height of detector above a contaminated plane
  H = 3 + ∑[story heights from FOSDIC 18] [contaminated plane height from FOSDIC 20]
- H height of a setback above the first contaminated plane

  H = [FOSDIC 19e, 19j, or 19o] [FOSDIC 20a, 20b, 20c, or 20d]
- $J = \mathcal{E} \text{ if } \mathcal{E} = 1. \text{ Otherwise } J = 1/\mathcal{E}$
- building length parallel to the exterior wall at the detector story level
- L = building length perpendicular to the exterior wall at the detector story level

P perimeter ratio (length of wall/total perimeter of building)

 $\mathbf{X_e}$  - effective mass thickness of the exterior wall

X_f = effective mass thickness of the floor

 $X_i$  = effective mass thickness of interior partition

X = effective mass thickness of the ceiling

horizontal distance from the plane of the exterior wall at grade level to the building face above a setback

€ - L_p/L_t

 $\omega$  = solid angle fraction. If  $\Omega$  is the solid angle in units of steradians, then  $\omega = \Omega/2\pi$ 

 $\lim_{\omega \to 0} \frac{1}{2\pi} \left( \frac{\mu}{\nu \sqrt{\mu^2 + \nu^2 + 1}} \right)$ 

(For the location of this data on the Phase 1 and 2 Data Collection Forms, see TAB 2.)

#### (3) Detailed Calculations

(a) Establishment of Contaminated Planes and Adjustment of Building Dimensions
When There Are Setbacks Below the Detector

For a specific detector location, the following calculations are to be done for all four walls before the ground contribution calculations are begun.

- A. Determine if there are any setbacks on this side. One of the following situations will apply.
  - 1. There are none and all sides have not been tested.
    Set IRF = 0 and proceed to test the next side.
  - 2. There are none and all sides have been tested.
    Set IRF = 0 and proceed to the ground contribution calculations for the first side.
  - 3. At least one setback is found on this side. Proceed to step B below.
- B. Let (H_B)_i be the height above the first contaminated plane (Item 20, FOSDIC form) of the ith setback on this side. Let H be the detector height above the first contaminated plane on this side.
  - 1. For each  $(H_g)_i$  determine if  $(H_g)_i < H \tag{a}$
  - 2. If a) is true for at least one setback, proceed to step C.
  - 3. If a) is false for all setbacks, proceed to step E.
- C. Perform steps 1 and 2 below:
  - 1. Order the setbacks for which a) is true in order of decreasing magnitude of H_s. The setback with largest H_s becomes the first contaminated plane. The setback with second largest H_s becomes the second contaminated plane, etc. The contaminated planes

given in Item 20 of the FOSDIC form are given successive numbers following those assigned to the setbacks.

The total possible number of contaminated planes is six.

- 2. The D₁ and D₂ values for the setback contaminated planes are determined from the information in Item 19, FOSDIC form.
- 3. Proceed to step D.
- D. Let \(\alpha\) be the distance from the plane of the exterior wall at grade to the face of the building above the highest ordered setback from the set of setbacks ordered in step C. 1. above. Let L' be the dimension of the building perpendicular to this side at grade level. Let L be the dimension of the building perpendicular to this side at this story level which has been corrected for setbacks. Perform the following steps:
  - $\underline{\mathbf{L}}_{\mathbf{t}} = \mathbf{L}_{\mathbf{t}}^{1} \mathbf{C}\mathbf{X}$
  - 2. Replace  $L_t^\dagger$  with  $L_t^\dagger$  for use in subsequent calculations at this story level.
  - 3. Proceed to stop E.
- E. If a) was found to be false in step B for any setback, proceed to do sequentially steps 1, 2, and 3 below Otherwise, set IRF=0 and proceed to step F.
  - 1. Determine if

$$(H_g)_i < H + h_g - 3$$
 b)

for each setback for which a) is false.

2. If b) is true for any setback, do not calculate the ground contribution from the story above for this side, i.e., set IRF=1.

Otherwise set IRF=0.

- 3. Proceed to step  $\underline{F}$ .
- $\underline{F}$ . If all four sides have been considered, proceed to step  $\underline{G}$ . If not, proceed to consideration of the next side and transfer back to step p-50 -

A above.

G. Determine d for each side from the equation:

Proceed to ground contribution calculations.

## (b) Ground Contribution Calculations.

Steps  $\underline{A}$  through  $\underline{J}$  are repeated for each side of the building for each detector position.

A, Define:

Tan R₁ = 
$$d/3$$

Tan 
$$R_2 = d/(h_1+3)$$

Proceed to next step.

Steps B through G are repeated for each contaminated plane or until the loop is broken by a transfer to step H.

B. Define:

$$Tan S_1 = (D_1+d)/H$$

$$Tan S_2 = (D_2+d)/H$$

Tan 
$$T_1 = D_1(H + \frac{1}{2}h_a - 3)$$

$$Tan T_2 = D_2/(H + \frac{1}{2} h_a - 3)$$

Tan 
$$U_1 = D_1/(H - \frac{1}{2} h_1 - 3)$$

Tan 
$$U_2 = D_2/(H - \frac{1}{2}h_1-3)$$

Tan 
$$V_1 = D_1 / (H + h_a + \frac{1}{2} h_u - 3)$$

$$Tan V_2 = D_2/(H + h_a + \frac{1}{2} h_u - 3)$$

$$Tan W_1 = D_1/(H + h_a - 3)$$

$$Tan W_2 = D_2/(H + h_a - 3)$$

$$Tan X_1 = D_1/(H-3)$$

$$Tan X_2 = D_2/(H-3)$$

$$Tan Y_1 = D_1/(H + h_a + h_c - 3)$$

$$Tan Y_2 = D_2/(H + h_a + h_u - 3)$$

Proceed to next step.

- C. Determine wall-scattered component from story above, C1.
  - 1. If this is the top story or IRF=1, set C1=0 and transfer to step D. Otherwise proceed to the next step.
  - 2. If  $H+h_a+h_u-3 \le 0$  set  $C_1=C_2^1=C_3^1=C_3=C_3^1=C_4=C_5=C_5^1=0 \text{ and transfer to step } \underline{H}.$  Otherwise proceed to the next step.
  - 3. If  $H^+h_a=3 = 0$  set  $C_2^+=C_2^+=C_3^+=C_4^+=C_5^+=0 \text{ and proceed to the next step.}$  Otherwise transfer to step 8 below.
  - 4. If  $1Hh_a + \frac{1}{2}h_u 3 \approx 0$  proceed to next step.

    Otherwise transfer to step 6 below.
  - 5. Calculate:

$$\omega_{s}^{1-\frac{1}{2}}\omega\left[(L_{p}^{+2D_{1}})/2D_{1},(TanY_{1})^{-1}\right]$$

or  $\omega_s^{i=0}$  if Tan  $Y_1^{i=0}$ .

$$\omega_{\rm g} = \frac{1}{2} \omega \left( (L_{\rm p} + 2D_{\rm 2})/2D_{\rm 2}, ({\rm Tan} \ {\rm Y}_{\rm 2})^{-1} \right)$$

or  $\bigcup_{\mathbf{g}=\frac{1}{2}}$  if this is the last plane from Item 20, FOSDIC form. Transfer to step  $\underline{7}$  below.

6. Calculate:

$$\omega_s^{1-\frac{1}{2}}\omega\left[(L_p+2D_1)/2D_1,(Tan V_1)^{-1}\right]$$

or  $( )_{n}^{1}=0$  if Tan  $V_{1}=0$ .

$$(\omega_{\rm s}^{-1})(\omega_{\rm p}^{\rm (L_p+2D_2)/2D_2, (Tan V_2)^{-1}}$$

or  $\bigcup_{n=1}^{\infty}$  if this is the last plane from Item 20, FOSDIC form. Proceed to next step.

7. Define:

$$\mathbf{c_{1}} = \left[\mathbf{B_{w}}(\mathbf{X_{c'}}\mathbf{H''}) - \mathbf{B_{ws}}(\mathbf{X_{c}}, \omega_{s}')\right] \left[\mathbf{G_{s}}(\boldsymbol{\omega_{u}}'') - \mathbf{G_{s}}(\boldsymbol{\omega_{u}})\right] \mathbf{S_{w}}(\mathbf{X_{c}}) \mathbf{E}(\mathbf{J}) \mathbf{B_{w}}(\mathbf{X_{1}}, \mathbf{3}),$$

if  $W_a = \frac{1}{2}$ . Where  $H'' = H + h_a + \frac{1}{2} h_u - 3$  or H'' = 3 whichever is algebraically larger.

Transfer to step H.

- 8. If Tan V2 for any preceding plane is greater than or equal to Tan V2 for this plane, proceed to the next step. Otherwise transfer to step 11 below.
- $\underline{9}_{\perp}$  If Tan  $Y_2$  for any preceding plane is greater than or equal to Tan  $Y_2$  for this plane, set  $C_1=0$  and transfer to step D. Otherwise proceed to next step.
- 10. Define:

Tan  $Y_2^*$ =Ten  $Y_2$ ,  $D_2^*$ = $D_2$ , and  $H^*$ =H for the preceding plane for which Tan V2 is greater than or equal to Tan V2 for this plane.

Calculate:

$$S = \frac{\left|H - H'\right|}{\left|D_2 - D_2'\right|} \cdot D_2 - H$$

$$\omega_{8}^{\prime} = \frac{1}{2} \omega \left[ (L_{p} + 2R)/2R, T/R \right]$$

$$\omega_{8} = \frac{1}{2} \omega \left[ (L_{p} + 2D_{2})/2D_{2}, T/D_{2} \right]$$

or Was if this is the last plane from Item 20, FOSDIC form.

Transfer to step 14 below.

- 11. If Tan  $V_2$  for any preceding plane is greater than Tan  $V_1$  for this plane, proceed to the next step. Otherwise transfer to step 13 below.
- 12. Define:

Tan  $V_2^1$ =Tan  $V_2$ ,  $D_2^1$ = $D_2$  and  $H^1$ =H for the preceding plane for which

Tan  $V_2$  is greater than Tan  $V_1$  for this plane.

Calculate:

$$S = \left(\frac{R-H^{1}}{D_{2}-D_{2}^{1}}\right) \cdot D_{2}-R$$
 or  $S = h_{a}-3$  whichever is larger.

$$\omega_{\rm g}^{1-\frac{1}{2}}\omega[(L_{\rm p}+2R)/2R,T/R]$$

$$\omega_{\mathbf{s}} = \frac{1}{2} \omega \left[ (\mathbf{L}_{\mathbf{p}} + 2\mathbf{D}_{\mathbf{p}})/2\mathbf{D}_{\mathbf{p}}, \mathbf{T}/\mathbf{D}_{\mathbf{p}} \right]$$

or

 $\bigcup_{s=\frac{1}{2}}$  if this is the last plane from Item 20, FOSDIC form.

Transfer to step 14 below.

13. Calculate:

$$\omega_{s}^{l=\frac{1}{2}} \left( \sqrt{(L_{p}+2D_{1})/2D_{1}, (Tan V_{1})^{-1}} \right)$$

or 
$$\bigcup_{s=0}^{s=0}$$
 if  $D_1=0$ .

$$\omega_{\rm g} = \frac{1}{2} \omega \left[ (L_{\rm p} + 2D_2), (Tan V_2)^{-1} \right]$$

or Walk if this is the last plane from Item 20, FOSDIC form.

$$\omega_{\mathbf{u}} = \omega[\epsilon, (h_{\mathbf{a}}-3)/d]$$
.

Proceed to next step.

#### 14. Calculate:

$$C_{1} = \left[B_{\omega \mathbf{a}}(X_{\mathbf{c}}, \omega_{\mathbf{d}}) - B_{\omega \mathbf{a}}(X_{\mathbf{c}}, \omega_{\mathbf{a}}')\right] \left[G_{\mathbf{a}}(\omega_{\mathbf{u}}'') - G_{\mathbf{a}}(\omega_{\mathbf{u}})\right] S_{\omega}(X_{\mathbf{c}}) E(\mathbf{J}) \times B_{\omega}(X_{\mathbf{c}}, \mathbf{J})$$

or  $c_{1} = \left[ B_{w}(X_{0}, H'') - B_{ws}(X_{0}, \omega_{s}') \right] \left[ G_{s}(\omega_{u}'') - G_{s}(\omega_{u}) \right] S_{w}(X_{e}) F(1) B_{w}(X_{1}, 3)$   $1f \omega_{s} = \frac{1}{3}, \text{ where } H'' = H + \frac{1}{3}h_{1} - 3 \text{ or } H'' = 3 \text{ whichever is}$ 

algebraically larger.

Proceed to step D.

- $\underline{D},$  Determine wall-scattered components through detector story wall,  $C_2^+ \text{ and } C_2^+.$ 
  - If H-3 = 0 proceed to the next step.
     Otherwise transfer to step 5 below.
  - If H+½h_a-3 ≤ 0 proceed to the next step.
     Otherwise, transfer to step 5 below.
  - 3. If H for any preceding plane is algebraically smaller than H for this plane, set  $C_2^{1}=C_2^{1}=C_3^{1}=C_4^{1}=C_5^{1}=C_5^{1}=0$  and proceed to the next plane (Step  $\underline{B}$ ). Otherwise proceed to the next step.

4. Calculate:

$$\omega_s^{i=\frac{1}{4}} \omega \left[ (L_p + 2D_1)/2D_1, (Tan W_1)^{-1} \right] \text{ or } W_s^{i} = 0 \text{ if } D_1 = 0.$$

$$\omega_s^{-\frac{1}{4}} \omega \left[ (L_p + 2D_2)/2D_2, (Tan W_2)^{-1} \right]$$
or 
$$\omega_s^{-\frac{1}{4}} \text{ if this is the last plane from Item 20, FOSDIC form.}$$

$$\omega_u^{i} = \omega (\mathcal{E}, -H/d).$$

$$\omega_s^{i=1}.$$

Transfer to step 13 below.

- $\underline{5}$ , If Tan  $T_2$  for any preceding plane is negative or is larger than or equal to Tan  $T_2$  for this plane, proceed to the next step.

  Otherwise transfer to step  $\underline{8}$  below.
- 6. If Tan  $W_2$  for any preceding plane is larger than or equal to Tan  $W_2$  for this plane, set  $C_2^*=C_2^*=C_3^*=0$  and transfer to step F. Otherwise proceed to the next step.
- 7. Define:

Tan  $W_2^*$ =Tan  $W_2$ ,  $D_2^*$ = $D_2$  & H'=H for the preceding plane for which

Tan  $T_2$  is larger than or equal to Tan  $T_2$  for this plane.

Calculate:

$$S = \left(\frac{H - H^{\dagger}}{D_2 - D_2^{\dagger}}\right) \cdot D_2 - H$$

T=H+h_-3

$$\omega_s^{1-\frac{1}{2}}\omega[(L_p+2R)/2R,T/R]$$

$$\omega_{\rm s} = \frac{1}{2} \omega \left[ (L_{\rm p} + 2D_{\rm 2})/2D_{\rm 2}, T/D_{\rm 2} \right]$$

or  $\bigcup_{s=\frac{1}{2}}$  if this is the last plane from Item 20, FOSDIC form.

$$\omega_{u}^{*}=\omega(\mathcal{E},s/d)$$

$$\omega_{\mathbf{1}}=1$$
.

Transfer to step 13 below.

- 8. If Tan  $T_2$  for any preceding plane is larger than Tan  $T_1$  for this plane, proceed to the next step. Otherwise transfer to step 11 below.
- 9. Define:

Tan  $T_2^*$ =Tan  $T_2$ ,  $D_2^*$ = $D_2$ , and  $H^*$ =H for the preceding plane for which Tan  $T_2$  is larger than Tan  $T_1$  for this plane.

Calculate:

$$S = \left( \frac{1! - 1!}{D_2 - D_2^{-1}} \right) \cdot D_2 = 1!$$

Toll+ling-3

$$\omega_{s}^{1-\frac{1}{2}}\omega\left[(L_{p}+2R)/2R,T/R\right]$$

$$\omega_{\rm s} = \frac{1}{2} \omega \left[ ({\rm L_p} + 2{\rm D_2})/2{\rm D_2}, {\rm T/D_2} \right]$$

or  $(\omega_B^{-\frac{1}{2}}]$  if this is the last plane from Item 20, FOSDIC form. Proceed to next step.

10. If  $S \approx -3$  then  $\left( \frac{1}{u} \right)^{-1}$  and  $\left( \frac{1}{u} \right)^{-1} \left( \frac{1}{u} \right)^{-1} \left( \frac{1}{u} \right)^{-1}$ .

If 
$$0 > S > -3$$
 then

$$\omega_1 = \omega(\epsilon, -s/d)$$
.

If S=0 then  $\omega_u' = \omega_1 = 1$ .

If S > 0 then

$$\omega_{1}^{\prime}=\omega(\mathcal{E},S/d)$$
 and

$$\omega_{i}=1.$$

Transfer to step 13 below.

11. Calculate:

$$(\omega_8^{1-\frac{1}{2}} \left[ (L_p + 2D_1)/2D_1, (Tan T_1)^{-1} \right]$$

or [ ] = 0 if Tan T, = 0.

$$\omega_{s}^{-\frac{1}{2}}\omega\left[(L_{p}^{+2D_{2}})/2D_{2},(Tan T_{2})^{-1}\right]$$
,

or was if this is the last plane from Item 20, FOSDIC form.

Proceed to next step.

12. If H - 0 then

$$\omega_{1}$$
-1.

If H=0 then

$$\omega_{\mathbf{u}}^{\mathbf{t}} = \omega_{\mathbf{l}}^{-1}$$
.

If 0 = 11 = 3 then

$$\omega_1$$
= $\omega(\xi, II/d)$ .

If II > 3 then

$$\omega_{\mathbf{u}}^{n-1}$$

$$\omega_1 = \omega(\epsilon, 3/d)$$
.

Proceed to the next step.

13, Calculate:

$$\omega_{\rm u}$$
= $\omega[\epsilon, (h_{\rm a}-3)/d]$ .

$$C_{2}^{\prime} = \left[B_{wg}(X_{e} \downarrow \downarrow_{g}) - B_{wg}(X_{e}, \downarrow_{g}^{\prime})\right] \left[G_{a}(\downarrow_{u}) - G_{g}(\downarrow_{u}^{\prime})\right] S_{w}(X_{e}) E(J) B_{w}(X_{f}, 3),$$

$$C_{2}^{\prime\prime} = \left[B_{wg}(X_{e} \downarrow \downarrow_{g}) - B_{wg}(X_{e}, \downarrow_{g}^{\prime})\right] G_{a}(\downarrow_{u}) - G_{g}(\downarrow_{u}^{\prime}) = S_{w}(X_{e}) E(J) B_{w}(X_{f}, 3),$$

$$C_{2}^{"}=\left[B_{ws}(X_{e}, \mathcal{L}_{s})-B_{ws}(X_{e}, \mathcal{U}_{s}^{t})\right] G_{s}(\mathcal{U}_{1}) S_{w}(X_{e})E(J)B_{w}(X_{1},3)$$

or if  $(X_e^{-\frac{1}{2}}$ , replace  $B_{ws}(X_e^{-\frac{1}{2}})$  above with  $B_w(X_e^{-\frac{1}{2}})$  or with  $B_w(X_e^{-\frac{1}{2}})$  if H < 3.

and calculate as indicated. Proceed to step  $\underline{\mathbb{E}}_{\star}$ 

- $\underline{\mathbf{E}_{\star}}$  Determine direct (unscattered) radiation through detector story wall,  $\mathbf{C}_{2}$ .
  - 1. If Tan S₂  $\approx$  0 for any preceding plane, set C₃=C'₃=0 and transfer to step F. Otherwise proceed to next step.
  - 2. If Tan R₁ > Tan S₂ set C₃=C₃=0 and transfer to step  $\underline{F}$ .

    Otherwise proceed to next step.
  - 3. If Tan  $S_2$  for any preceding plane is greater than Tan  $S_2$  for this plane, set  $C_3 = C_3^{\dagger} = 0$  and transfer to step  $F_2$ .

    Otherwise proceed to the next step.
  - $\underline{4}$ . If Ten S₂ for any preceding plane is greater than Ten S₁ for this plane, replace Ten S₁ of this plane with Ten S₂ or the preceding plane and proceed to the next step.

    Otherwise proceed directly to the next step.
  - 5. If Tan  $R_1 \Rightarrow \text{Tan } S_1$ , set  $\mathcal{N} = (\text{Tan } R_1)^{-1}$ . If Tan  $R_1 \approx \text{Tan } S_1$ , set  $\mathcal{N} = (\text{Tan } S_1)^{-1}$ . Proceed to the next step.
  - 6. Calculate:

$$\omega_1^* \omega_{\epsilon}^*$$
,  $(Tan S_2)^{-1}$ 

 $or(\square)_1^n=1$  if this is the last plane from Item 20, FOSDIC form,

$$\begin{array}{c|c} \omega_1 = \omega(\varepsilon, \tau) \\ c_3 = B_w(x_e, H) & c_d(\omega_1', H) = c_d(\omega_1', H) \\ \end{array} \Big| \left[1 - s_w(x_e)\right] B_w(x_e, 3)$$

If the detector is above window sill level, calculate:

$$G_{3}^{\prime}=B_{w}(0,H)$$
  $\left[G_{d}(\omega_{1}^{\prime},H)-G_{d}(\omega_{1}^{\prime},H)\right]B_{w}(X_{1},3)$ 

Proceed to step F.

- F. Determine the wall-scattered component from the story below, C4.
  - 1. If H-3  $\leq$  0 for this plane set  $C_4 = C_5 = C_5 = 0$  and proceed to the next plane (step B.). Otherwise proceed to the next step.
  - 2. If H-3  $\leq$  0 for any preceding plane, except for the first plane, set  $C_4 = C_5 = C_5' = 0$  and proceed to the next plane (step B.). Otherwise proceed to the next step.
  - 3. If H-3 >0 for the first plane, proceed to the next step. If H-3  $\leq$  0 for the first plane, make the following re-definitions to be used in steps  $\underline{F}$  and  $\underline{G}$  only:
    - a. dnew dold | D2 where D2 is for the first contaminated plane.
    - b. Re-number the contaminated planes after deleting the first.
    - $\underline{c}_{\ell}$  Re-calculate  $D_1$  and  $D_2$  values for the planes.
    - d. Re-evaluate  $\in$  and the quantities defined in steps  $\underline{A}$  and  $\underline{B}$ .

      Proceed to the next step.
  - 4. If  $11 5h_1 3 \le 0$  proceed to the next stop. Otherwise transfer to step 7 below.
  - 5. If II for any preceding plane is smaller than II for this plane, set C₄=0 and transfer to step G. Otherwise proceed to the next step.
  - 6. Calculate:

$$\omega_{s}^{*} = \frac{1}{2}\omega \left[ (L_{p} + 2D_{1})/2D_{1}, (Tan X_{1})^{-1} \right]$$

or  $(x)_s^* = 0$  if  $Tan X_1 = 0$ .

$$\omega_{\rm s} = \frac{1}{2}\omega \left[ (L_{\rm p} + 2D_2)/2D_2, ({\rm Tan} \ {\rm X}_2)^{-1} \right]$$

or  $\omega_a = \frac{1}{2}$  if this is the last plane from Item 20, FOSDIC form.

$$\omega_1^n = \omega(\in H/d).$$

Transfer to step 14 below.

- 7. If Tan  $\rm U_2$  for a preceding plane is negative or larger than or equal to Tan  $\rm U_2$  for this plane, proceed to the next step. Otherwise transfer to step 10 below.
- 8. If Tan  $X_2$  for any preceding plane is larger than or equal to Tan  $X_2$  for this plane, set  $C_4$ =0 and transfer to step  $\underline{G}$ .

  Otherwise proceed to the next step.
- 9. Define:

$$Tan X_{2}^{i} = Tan X_{2}, D_{2}^{i} = D_{2}, and H_{2}^{i} = H_{2}$$

for the preceding plane for which Tan  $\mathbf{X_2}$  is larger than or equal to Tan  $\mathbf{X_2}$  for this plane.

Calculato:

$$R = (H-3) Tan X_2^{\dagger}$$

$$S = H - \left(\frac{H - H^{\dagger}}{D_{1} - D_{1}^{\dagger}}\right) \cdot D_{2}$$

$$T = H - 3$$

$$\omega_{\rm B}' = \frac{1}{2}\omega \left[ (L_{\rm p} + 2R)/2R, T/R \right]$$

$$\omega_{\rm s} = \frac{1}{2} \omega \left[ (L_{\rm p} + 2D_2)/2D_2, T/D_2 \right]$$

or ( = 1 if this is the last plane from Item 20, FOSDIC form.

Transfer to step 14 below.

- 10. If Tan  $\mathbf{U}_2$  for a preceding plane is greater than Tan  $\mathbf{U}_1$  for this plane, proceed to the next step. Otherwise transfer to step 12 below.
- 11. Define:

Tan 
$$U_2^{\dagger} = \text{Tan } U_2^{\dagger}$$
,  $D_2^{\dagger} = D_2^{\dagger}$ , and  $H^{\dagger} = H$ 

for the preceding plane for which Tan  $\mathbf{U_2}$  is larger than Tan  $\mathbf{U_1}$  for this plane.

Calculate:

$$R = (H - \frac{1}{2}h_{1} - 3)Tan U_{2}^{i}.$$

$$S = H - \left(\frac{H - H^{i}}{D_{2} - D_{2}^{i}}\right) \cdot D_{2} \text{ or } S = h_{1} + 3, \text{whichever is smaller.}$$

$$\omega_s' = \frac{1}{2}\omega[(L_p+2R)/2R,T/R]$$

$$\omega_{s} = \frac{1}{2} \omega \left[ (L_{p} + 2D_{2})/2D_{2}, T/D_{2} \right]$$

or  $\bigcup_{a} = \frac{1}{2}$  if this is the last plane from Item 20, FOSDIC form.

Transfer to step 14 below.

12. Calculate:

$$(U_{8}^{'} = \frac{1}{2} \omega \left[ (L_{p} + 2D_{1})/2D_{1}, (Tan U_{1})^{-1} \right]$$
or  $(L_{8}^{'} = 0 \text{ if } Tan U_{1} = 0.$ 

$$\omega_{\rm s} = \frac{1}{2} \omega \left[ (L_{\rm p} + 2D_{\rm 2})/2D_{\rm 2}, ({\rm Tan} \ U_{\rm 2})^{-1} \right]$$

or W = 1 if this is the last plane from Item 20, FOSDIC form.

Proceed to the next step.

13. If 
$$H - h_1 - 3 < 0$$

$$W_1'' = W(\xi, H/d)$$

If 
$$H-h_1 - 3 > 0$$

$$\omega_1^n = (\epsilon, (h_1+3)/d)$$

Proceed to the next step.

14, Calculate:

$$\omega_1 = \omega(\epsilon, 3/d)$$
.

$$C_{4} = \left[B_{ws}(X_{e}, \omega_{s}) - B_{ws}(X_{e}, \omega_{s}')\right] \left[G_{s}(\omega_{1}'') - G_{s}(\omega_{1})\right] S_{w}(X_{e}) \times$$

$$E(J) B_{\omega}(X_{s}, 3)$$

or
$$C_4 = \begin{bmatrix} B_w(X_e, H'') - B_{ws}(X_e, \omega_s') \end{bmatrix} \begin{bmatrix} G_s(\omega_1'') - G_s(\omega_1) \end{bmatrix} S_w(X_e) E(J) B_w(X_1, 3)$$
if  $\omega_s = \frac{1}{2}$ , where  $H'' = H - \frac{1}{2}h_1 - 3$  or  $H'' = 3$  whichever is
algebraically larger. Proceed to step  $\underline{G}$ .

- $\underline{G}$ . Determine the direct (unscattered) component from the story below,  $\mathbf{C}_{\mathbf{5}}$ .
  - 1. If  $\xi$  and the quantities defined in steps  $\underline{A}$  and  $\underline{B}$  above have been re-evaluated in step  $\underline{F}$ ,  $\underline{J}$  above, use the re-evaluated values in the following.
  - 2. If  $\operatorname{Tan} S_2 = \operatorname{Tan} R_2$ or  $\operatorname{Tan} S_1 \ge \operatorname{Ten} R_1$ set  $C_5 = C_5' = 0$  and proceed to the next plane (step B).
    Otherwise proceed to the next step.
  - 3. If Tan  $S_2 \sim Tan R_2$  for any preceding plane, replace Tan  $S_1$  for this plane with the largest Tan  $S_2$  for the preceding planes and proceed to the next step.

    Otherwise proceed directly to the next step.
  - 4. Set  $\mathcal{N} = (\operatorname{Tan} R_1)^{-1}$  or  $\mathcal{N} = (\operatorname{Tan} S_2)^{-1}$  whichever is larger. Set  $\mathcal{N}' = (\operatorname{Tan} R_2)^{-1}$  or  $\mathcal{N}' = (\operatorname{Tan} S_1)^{-1}$  whichever is smaller. Proceed to the next step.
  - 5. Calculate:

$$\omega_{1} = \omega(\epsilon, \eta)$$

$$\omega_{1}'' = \omega(\epsilon, \eta')$$

$$c_{5} = B_{\omega}(x_{e}, H'') \left[ G_{d}(c_{1}'', H) - G_{d}(\omega_{1}, H) \right] \left[ 1 - S_{\omega}(x_{e}) \right] B_{\omega}(x_{1}, 3)$$

where  $H'' = H - \frac{1}{2} h_1 - 3$  or H'' = 3 whichever is algebraically larger.

If there are apertures in the wall of the story below, calculate:

 $C_5^{\prime}=B_w(0,H)$   $\left[G_d(\omega_1^{\prime\prime},H)-G_d(\omega_1,H)\right]$   $B_w(X_1,3)$ Proceed to next plane (step B).

- H. Determine the skyshine component from the story above,  $\mathbf{c}_6$ .
  - 1. If this is the top story or IRF = 1, set  $C_6 = C_6^* = 0$  and transfer to step 1. Otherwise proceed to next step.
  - 2. Define Tan  $S_1'$  to be the algebraically smallest Tan  $S_1$  from the subset of negative Tan  $S_1$  from the set of Tan  $S_1$  for all contaminated planes on this side of the building. If Tan  $S_1'$  does not exist there is no shielding of skyshine.
  - 3. If  $(-\text{Tan } S_1^i) < d/(h_a 3)$ , set  $\gamma = (-\text{Tan } S_1^i)^{-1}$ If  $(-\text{Tan } S_1^i) \ge d/(h_a - 3)$  or if  $\text{Tan } S_1^i$  does not exist, set  $\gamma = (h_a - 3)/d$ Proceed to next step.
  - 4. Set  $7'' = (h_a + h_u 3)/d$ Proceed to next step.
  - 5. If  $\eta \ge \eta$  " set  $C_6 = C_6' = C_7 = C_7' = 0$ and transfer to step J. Otherwise proceed to the next step.

6. Calculate the difference  $D_2 - D_1$  for each plane preceding the one for which  $\left(-\text{Tan }S_1^1\right) \approx d/(h_a-3)$ . If this relation is not satisfied by any plane, or if Tan  $S_1^1$  does not exist, calculate  $D_2 - D_1$  for all planes.

Proceed to next step.

- 7. Let  $H^1 = \left[\sum_{i=1}^{n} H(D_2 D_1)\right] / \sum_{i=1}^{n} (D_2 D_1)$  where the summations are taken over all planes for which differences were calculated in step 6 above.

  Proceed to next step.
- 8. Calculate:

$$\omega_{u}^{"} = \omega(\epsilon, \eta^{"})$$

$$\omega_0 = \omega(\varepsilon, \eta)$$

$$C_6 = B_w(X_c, H^n) \left[ G_a(\omega_u^n) - G_a(\omega_u) \right] \left[ 1 - S_w(X_c) \right] B_w(X_1, 3)$$

where  $H'' = H' + h_a + \frac{1}{2}h_u - 3$  or H'' = 3, whichever is algebraically

larger.

If there are apertures in the wall of the story above, calculate:

$$C_{6}^{1}=B_{w}(O,H^{n})\left[C_{6}(\omega_{u}^{n})-C_{6}(\omega_{u})\right]B_{w}(\lambda_{1},3)$$

where H'' = H' or H'' = 3, whichever is algebraically larger.

Proceed to step 1.

- $\underline{\mathbf{I}}_{\star}$  Determine the skyshine component from the detector story,  $\mathbf{C}_{j}$ .
  - 1. If Tan S₁ exists set  $\eta' = (-\text{Tan S}_1)^{-1}$

Proceed to next step.

If Tan  $S_1^\tau$  does not exist, set  $\omega_u^\tau = 1$  .

Transfer to step 4 below.

- 2. If  $n \ge (h_a 3)/d$  set  $C_7 = 0$  and transfer to step <u>J.</u>
  Otherwise proceed to next step.
- 3. Calculate:

$$\omega_u^* = \omega(\varepsilon, \eta)$$
.

Proceed to next step.

- 4. Calculate the difference D₂- D₁ for every plane preceding the one giving rise to Tan S₁ and proceed to the next step. If Tan S₁ does not exist, let H'=H' from step <u>H.7</u>, above and transfer to step <u>6</u> below.
- 5. Let H' =  $\left[\sum_{H(D_2-D_1)}\right]/\sum_{(D_2-D_1)}$  or H'=3, whichever is algebraically where the summations are taken over all planes for which differences were calculated in step 4 above.
- 6. Calculate:

$$C_7 = B_w(X_c, H^*) \left[ G_a(\omega_u) - G_a(\omega_u^*) \right] \left[ 1 - S_w(X_c) \right] B_w(X_1, 3).$$

If there are windows in the adjacent story wall, calculate:

$$C_7^1 = B_w(0, H^1) \left[ G_a((\bigcup_u) - G_a((\bigcup_u^1)) \right] B_w(X_1, 3).$$

Proceed to step J.

 $\underline{J}_{,}$  Determine the total ground contribution,  $C_{g}^{i}$ , from this side.

A = area fraction of apertures in wall of story above.

A = area fraction of apertures in detector story wall

 $A_a = \frac{h_a A_p}{h_a - 3}$  = area fraction of apertures above detector on detector story.

 $A_1$  = area fraction of apertures in wall of story below.

Case 1. Detector is below aperture sill level in detector story wall.

$$\begin{split} \mathbf{c}_{g}^{\prime} &= P \left[ \ \mathbf{B}_{o}^{\prime}(\mathbf{X}_{o}^{\prime}) \left[ \ \mathbf{A}_{u} \mathbf{C}_{6}^{\prime} + (1 - \mathbf{A}_{u}) \ (\mathbf{C}_{6} + \sum_{1}^{\prime} \mathbf{C}_{1}) \right] + \mathbf{A}_{a} \mathbf{C}_{7}^{\prime} + (1 - \mathbf{A}_{a}) \ \mathbf{C}_{7}^{\prime} + \\ & \sum \left[ (1 - \mathbf{A}_{a}) \ \mathbf{C}_{2}^{\prime} + \mathbf{C}_{2}^{\prime\prime} + \mathbf{C}_{3} \right] + \mathbf{B}_{o}(\mathbf{X}_{f}) \sum \left[ \mathbf{A}_{1} \mathbf{C}_{5}^{\prime\prime} + (1 - \mathbf{A}_{1}) \left( \mathbf{C}_{5} + \mathbf{C}_{4} \right) \right] \right] , \end{split}$$

where the summations are taken over the contributing contaminated planes.

Case 2. Detector is above aperture sill level in detector story wall.

$$\begin{split} c_{g}^{i} &= P \left[ B_{o}^{i}(X_{o}^{i}) \left[ A_{u} c_{6}^{i} + (1 - A_{u}) (c_{6} + \sum c_{1}) \right] + A_{p} (\sum c_{3}^{i} + c_{7}^{i}) \right. \\ &+ (1 - A_{p}) \left[ \sum (c_{2}^{i} + c_{2}^{i} + c_{3}^{i}) + c_{7} \right] + B_{o}(X_{f}) \sum \left[ A_{1} c_{5}^{i} + (1 - A_{1}) (c_{5} + c_{4}^{i}) \right] \right] , \end{split}$$

where the summations are taken over the contributing contaminated planes.

Case 3. No apertures on any or all stories.

Simply put the appropriate A values equal to zero in either of the equations above.

K. Determine the Total Ground Contribution from all Sides.  $C_{\mathbf{g}} = \sum C_{\mathbf{g}}'$ 

where the summation is taken over the four sides of the building.

## 3. Numerical Example, Ground Contributions

Sample calculations using the recommended procedures are given for the fourth floor, side D, of the building described in TABS 3 and 4.

- a. Establishment of Contaminated Planes
  - (1.) Side A

$$L_{\rm p} = 140$$

(2.) Side B

Plane 2: 
$$D_1=20$$
,  $D_2=100$ ,  $H=21$ 

(3.) Side C

(4.) Side D

Plane 1: 
$$D_1=0$$
,  $D_2=10$ ,  $H=3$ 

Plane 3: 
$$D_1=30$$
,  $D_2=110$ ,  $H=21$ 

Plane 4: 
$$D_1=110$$
,  $D_2=1100$ ,  $H=33$ 

$$L_{\rm p} = 70$$

$$L_p = 60$$

#### b. Ground Contribution Calculations

- (1.) Plane 1
  - (a) Calculate C,

$$\omega_{\rm B} = \frac{1}{2}\omega[(60+20)/20, 15/10] = .175$$

$$\omega_{\rm u} = \omega[.857, .2] = .81$$

$$\omega_{\rm u}^{"} = \omega[.857, .486] = .57$$

$$c_1 = [.0092 - 0] \times [.35 - .205] \times .63 \times 1.411 \times .60 = .00071$$

(b) Calculate C' and C'

$$\omega_{\rm g}^{\bullet}$$
 = 0

$$\omega_{\rm s} = \frac{1}{2}\omega[(60+20)/20, 5/10] = .345$$

$$(\omega_1 = (\omega(.857,.0857) = .92)$$

$$C_2' = [.028 - 0] \times [.205 - 0] \times .63 \times 1.411 \times .60 = .00306$$

$$C_2^{11}$$
 = (.028) x (.093) x (.63) x (1.411) x .60 = .001388

(c) Calculate  $C_3$  and  $C_3$ 

$$77 = 3/35 = .0857$$

$$W_1 = (.857, .0857) = .92$$

$$c_3 = .25 \times [.36 - .30] \times .37 \times .60 = .00333$$

$$C_3^t = 1 \pi [.36 - .30] \times .60 = .0360$$

$$C_{L} = C_{5} = C_{5}^{1} = 0$$

(2.) Plane 2

## (a) Calculate C, .

Tan  $\mathbf{V}_2$  for this plane equal to Tan  $\mathbf{V}_2$  for the preceding plane.

$$R = (33 + 10 + 10 - 3) \times .5 = 25$$

$$S = \left(\frac{30}{20}\right) \times 30 - 33 = 12$$

$$T = 33 + 10 + 10 - 3 = 50$$

$$(\omega_{\rm B}^{*} = \frac{1}{2}(. (60 + 50)/50, 2.0) = .11$$

$$(\omega)_8 = \frac{1}{2} \left( \omega \left[ (60 + 60)/60, 1.67 \right] = .13 \right]$$

$$\omega_0 = \omega(.857, .343) = .68$$

$$T = 17$$

$$\omega_{11}^{"} = \omega$$
 (.857, .486) = .57

$$c_1 = [.0034 - .0019] \times [.35 - .282] \times .63 \times 1.411 \times .60 = .0000544$$

# (b) Calculate $C_2^+$ and $C_2^0$

Tan  $\mathbf{T_2}$  for the preceding plane is greater than  $\mathbf{Tan}\ \mathbf{T_2}$ 

for this plane.

Tan  $\mathbf{W_2}$  for a preceding plane is greater than Tan  $\mathbf{W_2}$  for

this plane.

$$C_2^1 - C_2^{11} - C_3 - C_3^1 = 0$$

# (c) Calculate C4.

Re-evaluate the quantities defined in steps A and B.

$$(_{s} = \frac{1}{2} \omega [(60 + 40)/40, 1.25] = .19$$

$$\omega_1^n = \omega$$
 (.667, .289) = .69

$$C_4 = [.0092 - 0] \times [.290 - .082] \times .63 \times 1.391 \times .60 = .001006$$

(d) Calculate C₅ and C₅

$$C_5 - C_5^1 - 0$$
.

- (3) Plane 3.
  - (a) Calculate C1.

$$\omega_{B}' = \frac{1}{2}\omega \left[ (60 + 60)/60, 33/30 \right] = .20$$

$$\omega_{B} = \frac{1}{2}\omega \left[ (60 + 220)/220, 33/110 \right] = .38$$

$$\omega_{U} = (.857, .2) = .81$$

$$\mathbf{T} = 17$$

$$\omega_{U}'' = \omega(.857, .486) = .57$$

$$\mathbf{C}_{1} = \left[ .053 - .0092 \right] \times \left[ .350 - .205 \right] \times .63 \times 1.411 \times .60 = .00339$$

(b) Calculate  $C_2^1$  and  $C_2^{11}$ .

 $R = (21 + 5 - 3) \times 2 = 46$ 

$$S = \frac{18}{100} \times 110 - 21 = -1.2$$

$$T = 21 + 5 - 3 = 23$$

$$\omega'_{8} = \frac{1}{2}\omega \left[ (60 + 92)/92, 23/46 \right] = .325$$

$$\omega_{8} = \frac{1}{2}(\sqrt{(60 + 220)/220}, 23/110) = .415$$

$$\omega'_{1} = 1$$

$$\omega_{1} = \omega(.857, .0343) = .967$$

$$\omega_{2} = \left[ .060 - .028 \right] \times \left[ .205 - 0 \right] \times .63 \times 1.411 \times .60 = .00350$$

$$C''_{2} = \left[ .060 - .028 \right] \times .037 \times .63 \times 1.411 \times .60 = .000631$$

(c) Calculate 
$$C_3$$
 and  $C_3^*$ .

$$c_3 - c_3' - 0$$

(d) Calculate C4.

Use the re-evaluated values for the quantities defined in steps  $\underline{A}$  and  $\underline{B}$ .

$$\omega_{\rm g}^{1} = \frac{1}{2}\omega[(60 + 40)/40, 13/20] = .30$$

$$\omega_{\rm e} = \frac{1}{2}\omega[(60 + 220)/220, 13/110] = .45$$

$$\omega_1^n = \omega[.667, 13/45] = .69$$

$$\omega_1 = (.667, .0667) = .925$$

$$c_4 = [.085 - .028] \times [.290 - .082] \times .63 \times 1.391 \times .60 = .00623$$

(o) Calculate C₅ and C'₅

$$\eta = 21/(110 + 45) = .135$$

$$\eta' = 13/45 = .289$$

$$(4)_1 = (4)(.667, .135) = .85$$

$$\omega_1^n = (.667, .289) = .69$$

$$H^{**} = 13$$

$$c_5 = .175 \times [.48 - .175] \times .37 \times .50 = .01185$$

$$c_5^1 = .72 \times [.48 - .175] \times .60 = .1318$$

- (4) Plane 4
  - (a) Calculate C1.

$$R = (33 + 10 + 5 - 3) \times 110 / (21 + 10 + 5 - 3) = 150$$

$$T = 33 + 10 + 5 - 3 = 45$$

Use the re-evaluated values for the quantities defined in steps  $\underline{A}$  and  $\underline{B}$ .

$$R = (33 - 5 - 3) \times 110/(21 - 5 - 3) = 212$$

$$S = 13$$

$$T = 25$$

$$\omega_{\rm g} = \frac{1}{2}\omega[(60 + 424)/424, 25/212] = .45$$

$$\omega_1 = \omega(.667, .0667) = .925$$

$$c_4 = [.145 - .085] \times [.290 - .082] \times .63 \times 1.391 \times .60 = .00656$$

(e) Calculate  $C_5$  and  $C_5^{\dagger}$ 

$$Tan S_1 = (45 + 110)/21 = 7.38$$

$$\eta' = (\operatorname{Tan} S_1)^{-1} = .1395$$

$$C_5 = .145 \times [.124 - .09] \times .37 \times .60 = .001094$$

$$C_5^{\dagger} = .61 \times [.124 - .09] \times .60 = .01244$$

- (5) Calculate Skyshine Contribution.
  - (a) Calculate  $C_6$  and  $C_6^{\dagger}$ .

Tan S' does not exist.

$$77 = 7/35 = .2$$

7("= 17/35 = .486  
H' = 
$$(3 \times 10 + 33 \times 20 + 21 \times 80 + 33 \times 990)/(1100) = 31.9$$
  
 $\omega_{u}^{"} = \omega(.857, .486) = .57$   
 $\omega_{u} = \omega(.857, .2) = .81$   
H" =  $31.9 + 10 + 10 - 3 = 48.9$   
 $c_{6} = .105 \times [.081 - .052] \times .37 \times .60 = .000676$   
 $c_{6}^{"} = .49 \times [.081 - .052] \times .60 = .00853$   
(b) Calculate  $c_{7}$  and  $c_{7}^{"}$ .

$$\omega_{u}^{*} = 1$$

$$U_{11} = U_{1}(.857, .2) = .81$$
 $C_{7} = .13 \times [.052 - 0] \times .37 \times .60 = .00150$ 
 $C_{7}^{1} = .575 \times [.052 - 0] \times .60 = .01794$ 

(6) Calculate Total Contribution from Side D.

$$\Lambda_{0} = \frac{(.20) \times (10)}{7} = .286$$

$$(.80) \times \sum C_{1} = .00654.$$

$$\sum (.714 \times C_{2}^{1} + C_{2}^{0} + C_{3}^{0}) = .02245$$

$$\sum \left[ (.20) \times C_{5}^{1} + (.80) \times (C_{5} + C_{4}^{0}) \right] = .05023$$

$$C_{8}^{1} = (.318) \times \left[ (.043) \times (.001706 + .000541 + .00654) + .00513 + .001071 + .02245 + (.061) \times (.05023) \right]$$

$$C_{9}^{1} = .0102$$

#### D. Areaways

#### 1. Present Method

Areaways are now considered in the NFSS only if they exceed 50 percent of the length of the adjacent wall. They are then counted as the first plane of contamination on that side and must be considered as a minimum of ten feet wide. In reality, only a limited number of areaways are that long or that wide.

#### 2. Recommended Method

#### a. Procedure

An areaway in an otherwise unexposed basement will contribute a large part to the total reduction factor and therefore should be considered regardless of length. TAB 9 indicates how the reduction factor of an unexposed basement as described in Example 5.2 of Reference 5 is increased by the addition of an areaway. The reduction factor is increased approximately 6 percent by the addition of a five foot wide areaway adjacent to 50 percent of one exterior wall. This increase would be approximately 15 percent if the upper 1½ of the exterior wall adjacent to the areaway were windows. If there had been a 3'x7' door leading into this areaway, the reduction factor would have increased about 9 percent. A combination of the windows and door would increase the reduction factor by approximately 18 percent.

It is recommended that the portion of basement wall with an adjacent areaway be considered as the first story with the bottom of the areaway as the first plane of contamination and the normal grade level as the second plane. Contribution from this finite plane of contamination will be calculated by the EM method in which directional responses for direct and scattered radiation are differenced. The directional response for scattered radiation is then multiplied by a barrier reduction factor

for limited planes (EM Chart 9). The ratio of the areaway length to the wall length would be used to determine the percentage of this contribution to be used in the total wall contribution. The contribution from the upper story would be computed as recommended under Section A. Data for this calculation are available from Columns 70 - 76 of the Phase 2 DCF. Data regarding apertures in areaways are not collected in Phase 1 or 2 but, as indicated by the results in TAB 9, data should be gathered for now or modified structures.

#### b. Chart Changes

The calculation of areaway contribution is now handled by consideration as a contaminated plane; therefore, only Table 6 (Reference 1) is deleted. Tables are needed to represent Engineering Manual Chart 2 for wall barrier factor; Chart 5 for  $G_8$  and  $G_a$  directional responses; Chart 6 for  $G_d$  directional response; Chart 7 for wall-scatter factor; Chart 8 for shape factor; and Chart 9 for wall-scatter barrier factor.

#### c. Functional Equations

The basic equation for an areaway with no apertures in an otherwise unexposed basement, using symbols contained in Table 5 of Reference 3, is

ADOS = 
$$P_r = \frac{L_a}{L} - B_w(x_1, 3') = \left[ c_1 + c_2 + c_3 \right]$$

in which L = length of areaway, and

(1) when the detector is above the level of the areaway

$$c_{1} = \left[G_{s}(\omega_{1}) + G_{s}(\omega_{u})\right] S_{w}(X_{e}) \quad E \quad (e) \quad B_{ws} \quad (\omega_{s}, X_{e})$$

$$c_{2} = \Delta G_{d} \left[ -S_{w}(X_{e})\right] B_{w}(X_{e}, H)$$

$$c_{3} = \Delta G_{s}(\omega) \quad \left[ 1 - S_{w}(X_{e})\right] B_{w}(X_{e}, H)$$

(2) when the detector is below the level of the areaway

$$c_1 = \Delta c_s(\omega) c_w(x_e) c(e) c_{ws}(\omega_s, x_e)$$

$$c_3 - \Delta c_a(\omega) \left[1-s_w(x_e)\right] B_w(x_e, H)$$

#### d. Calculations

#### (1) Comments

- (a) The calculation is made for the portion of basement wall adjacent to an areaway.
- (b) The contribution from the story above the detector is calculated as recommended in Section A, Basement Exposure. In this calculation ignore the areaway.
- (c) The level of the areaway if assumed to be located at the level of the basement floor.
- (d) Areaway contribution is ignored when the basement exterior wall is exposed above grade.

## (2) Symbols Used

- D distance from detector to exterior wall
- XE exterior mass thickness of wall adjacent to areaway
- XI = interior wall mass thickness between detector and contributing wall (see Section E for determination of effective thickness)
- L = length of this side of building
- L = length of the areaway

 $P_{\mathbf{r}}$  = ratio of length of side of building to the perimeter of building

HB = height of basement

HD = detector height above basement floor (3 ft)

HP2 = height of grade level (second plane) above first floor

HP3 = height of third plane above first floor

D1 = width of areaway measured along a perpendicular to building wall

D2 = distance from exterior wall to outer boundary of second plane
(inner boundary of third plane)

D3 - distance from exterior wall to outer boundary of third plane
(For the location of these data on the Phase 1 and 2 Data Collection
Forms see TAB 2)

#### (3) Detail Calculations

- (a) Calculate the contribution from the adjacent wall.
  - $\underline{\mathbf{1}}$ . The procedure is to enter the program in Section II. C. 2. d.
    - (3) (n) for the Ground Contribution-Stories Above Grade with the following input data:

Ground Contribution Notation		Areaway Notation
d	-	D
x _e	•	XE
x _i	-	ХI
^L t	-	2D
^L p	•	L
h a	-	нв

$$\begin{cases} \text{H} & \bullet & \bullet & \text{HD} \\ \text{D}_1 & \bullet & \bullet & 0 \\ \text{D}_2 & \bullet & \text{D1} \\ \text{H} & \bullet & \bullet & \text{HD-HP2-HB} \\ \text{for second plane} & D_1 & \bullet & D1 \\ \text{D}_2 & \bullet & D2 \\ \text{H} & \bullet & \bullet & \text{HD-HP3-HR} \\ \text{for third plane} & D_1 & \bullet & D2 \\ \text{D}_2 & \bullet & D3 \\ \text{Detector story } \bullet & \text{first} \\ \text{Aperture fraction $\Lambda_D = 0$} \end{cases}$$

- 2. Perform the operations in (a), (b) A. and B. (definitions) D. (wall scatter adjacent), E (direct adjacent), I (skyshine adjacent). There will be a contribution only from the first plane. The data for the second and third planes are used to determine the amount of skyshine that is blocked.
- 3. Set  $C_1 = C_7 = C_7 = 0$ , and perform the operations in 1.

  Result:  $C_g$ This is the total contribution through the adjacent wall assuming the areaway extends the full length of the wall.

  4. WALL =  $C_g$ ' x  $L_a/L$
- (b) Compute the contribution through the first and second story walls below and above sill levels with the procedure in II. A. 2. d. (3)(c).(d) and (g). Neglect the areaway and set D1 =0 for the second plane (grade level).
- (c) The total contribution for this side is WALDA = WAL1 + WAL3 + WAL4 + WAL5 + WAL6

Result: WAL3, WAL4, WAL5, WAL6

(d) Compute the contribution from the other 3 sides following the procedure in II. A. 2. d. (3) Result: WALDA, WALDB, WALDC, WALDD

(e) The total ground contribution is

WALD = WALDA + WALDB + WALDC + WALDD

#### 3. Numerical Example

A sample calculation using the recommended procedures for areaway calculation is given for the areaway defined in TABS 3 and 4. The depth of the areaway is assumed to be at the level of the basement floor.

#### a. Data

Data
$$d = D = 70^{\circ}$$

$$X_{c} = XE = 60 \text{ psf}$$

$$X_{1} = XI = 20 \text{ psf (zero in ground contribution procedure)}$$

$$L_{1} = 140^{\circ}$$

$$L_{2} = 80^{\circ}$$

$$L_{3} = 40^{\circ}$$

$$L_{4} = 40^{\circ}$$

$$L_{5} = 0$$

$$L_{6} = 13^{\circ}$$

$$L_{7} = 0$$

$$L_{7} =$$

#### b. Calculation of Areaway Contribution

#### (1) Set up Tangent Values

A 
$$\tan R_1 = 70/3 = 23.3$$
 $\tan R_2 = 70/3 = 23.3$ 
B  $\tan S_1 = +23.3$ 
 $\cot S_2 = +25.0$ 
 $\cot T_1 = +0.77$ 
 $\cot T_2 = +0.77$ 
 $\cot V_1 = -0.385$ 
 $\cot V_1 = 0$ 
 $\cot V_2 = +0.278$ 
 $\cot V_1 = 0$ 
 $\cot V_2 = +0.278$ 
 $\cot V_1 = 0$ 
 $\cot V_2 = +0.385$ 
 $\cot V_2 = +$ 

#### (2) Find Scattered Contribution

$$\frac{11}{\omega_{8}} = \frac{1}{2} \left[ (80+10)/10, 1.3 \right] = \frac{1}{2} (0.416) = 0.208$$

$$\frac{12}{\omega_{1}} = 1.0$$

$$\omega_{1} = (80/140, 3/70) = (0.571, .0428) = .945$$

$$\frac{13}{\omega_{1}} = (0.571, 10/70) = (0.571, .143) = .822$$

$$C_{2}^{\dagger} = \left[ \text{Bws} (60\theta, 0.208) - \text{Bws} (60\theta, 0) \right] \times \left[ G_{8} (0.822) - G_{8} (1.0) \right] \text{Sw} (60\theta) \times (.571)$$

$$= (0.0092-0) (0.195-0) (0.63) (1.37)$$

$$C_2 = 0.00155$$

$$C_2^{"} = [Bws - Bws][G_g(0.945)]$$
 (0.63) (1.37)  
= (0.0092) (0.072) (0.63) (1.37)

## $C_2'' = 0.00057$

 $C_1$  = (see areaway functional equation) =  $C_2^1 + C_2^0$ 

$$C_1 = 0.00155 + 0.00057 = 0.00212$$

#### (3) Find Direct Contribution

$$E = 5$$
 n = 1/23.3 = 0.0428

$$\underline{6}$$
  $\mathbf{w}_{1}^{1}$  =  $\omega(0.571, 1/25)$  =  $\omega(0.571, 0.04)$  = 0.949

$$\omega_1 = \omega(0.571, 0.0428) = 0.945$$

$$C_q = B_w (60\%, 3^*) \left[ G_d(0.945, 3^*) - G_d(0.949, 3^*) \right] \times (1-Sw(60\%))$$

to get the  $\Delta G_d$  we use linear interpolation

$$C_3 = (0.25) \left[ \frac{0.949 - 0.945}{0.96 - 0.94} \times 0.08 \right] (1-0.63)$$
  
= 0.25 (0.004x0.08/0.02) (0.37)

$$= 0.25 (0.016) (0.37) = 0.00148$$

 $\mathbf{c_2}$  (see areaway functional equation) =  $\mathbf{c_3}$  (above)

$$c_2 = 0.00148$$

#### (4) Find Skyshine Contribution

$$\underline{H}$$
  $\underline{2}$  tan  $S_e^1 = -7.5$ 

$$\underline{\mathbf{1}} \quad \underline{\mathbf{1}} \quad \mathbf{n}^{\dagger} = -1/-7.5 = 0.1333$$

$$2 n' \ge 10/70$$

$$\frac{3}{2} \omega_{11}^{4} = (0.571, 0.1333) = 0.834$$

$$\frac{6}{G_{1}} = \frac{6}{G_{1}} (0.571, 0.143) = 0.823$$

$$G_{2} = \frac{8}{G_{1}} (60\%, 3') \left[ \frac{G_{1}}{G_{2}} (0.823) - \frac{G_{1}}{G_{2}} (0.835) \right] (1-0.63)$$

$$= 0.25 (0.0505-0.0485) (0.37)$$

$$= 0.25 (0.0020) (0.37)$$

$$G_7 = 0.000185$$

$$c_3$$
 (see areaway functional equation) =  $c_7$  (above)
$$c_3 = 0.000185$$

(5) Find the total areaway dose

ADOS = 
$$\frac{80}{440} \times \frac{40}{80} \times B_{w}(20\%, 3') \left[c_{1} + c_{2} + c_{3}\right]$$
  
=  $\frac{1}{11} (0.60) (0.00212 + 0.00148 + 0.000185)$   
=  $\frac{1}{11} (0.60) (0.003785) = \frac{1}{11} (0.002273)$ 

ADOS = 0.0002065

For comparison, the basement calculation yielded:

WALD (no exposure) = 0.000158

WALD (5' exposure) - 0.00310

#### E. Interior Partition Effective Mass

#### 1. Recommended Method

A Technical Operations Research model study (see Reference 6) of the effect of interior partitions on ground contribution verifies that the Engineering Manual method of handling interior partitions with azimuthal sectors is satisfactory. Since Phase 2 interior partition data are collected on a wall-by-wall basis and are not sufficiently detailed to permit the use of azimuthal sectors in calculating attenuation due to interior partitions, the azimuthal sectors that are inherent in the recommended changes are those defined by the exterior wall intersections. Consequently, the revised Computer Program will not treat interior partitions with the Engineering Manual method. It is therefore necessary to program instructions so that the Computer Program can interpret interior partition data. Corridor (or parallel) and cross partition mass thicknesses as well as their average spacing and general pattern are entered in the Phase 2 collection forms (Reference 7, page DCFI-24). The influence of the spacing of cross partitions in compartment geometry on dose rates was not investigated by Technical Operations Research. However, an approximate prescription can be formulated as follows: the spacing used in the experiment was such that if all cross partitions on one side of the corridor were rotated 90° and placed end-to-end, they would form a corridor type partition that would extend practically the entire length of the building. In other words, the smeared mass thickness of the cross partitions is nearly equal to their actual mass thickness. Some data are available for the computer to estimate smeared mass thicknesses. It is therefore recommended that:

- a. Interior partitions between a detector and wall which have box or corridor geometries be assigned a mass thickness equal to the sum of the interior wall thicknesses.
- b. Cross interior partitions be assigned a mass thickness equal to one-half the smeared mass thickness.
- c. The total interior mass thickness be set equal to the sum of those calculated in a and b.

Consider, for example, the contribution from side C of a building of type 1 (Reference 7, page DGFI-25) shown in Figure P-2.

FIGURE P-2

PLAN OF BUILDING WITH 7 CROSS PARTITIONS  $X_{c} = 40$  paf,  $X_{p} = 20$  paf,  $L = 80^{\circ}$ ,  $D = 20^{\circ}$ ,  $S = 10^{\circ}$ 



The smeared thickness of one cross partition is  $X_p$  D/L, and that for all cross partitions  $(\frac{L}{S}-1)$  is:  $X_p)_{smeared} = \begin{bmatrix} \frac{L}{S}-1 \end{bmatrix} - X_p \cdot \frac{D}{L}$ 

$$X_{p} = \begin{bmatrix} \frac{1}{8} - 1 \end{bmatrix} \quad X_{p} = \frac{D}{L}$$

$$= \begin{bmatrix} \frac{80}{10} - 1 \end{bmatrix} \quad (20) = \begin{bmatrix} \frac{20}{80} \end{bmatrix}$$

$$= 35 \quad psf$$

The total interior mass thickness for side C is:

$$X_1 = X_c + \frac{1}{2} X_p)_{ameared}$$
  
= 40 +  $\frac{1}{2}$  (35)  
= 57.5 paf

The same value can be used for the contribution from the left and right ends of the building in Figure P-2.

Unfortunately, it is not possible to determine from the Phase 2 data where the cross partitions are located, i.e., on sides A, B, C, and/or D. This information is needed in the calculation of  $X_p$ )smeared (through the parameters D and L) and in the determination of the sides through which the radiation must penetrate interior partitions. For example, the computer should use  $X_1=0$  rather than the above computed value for  $X_1$  for the radiation entering the side opposite Side C in Figure F-2.

An examination of the Phase 2 DCF's shows that each building type 1-4 (see column 69) with cross partitions may have non-zero entries for parallel partitions on 1-4 sides (see columns 58-65). Consequently, some scheme for interpreting the data is required in order to use the cross partition information in the calculations. The following conservative approach is recommended: the instruction a, b, c, or d to be programmed for each combination of building type and parallel partition configuration is indicated in Table P-I.

TABLE P-1	Ţ			
INTERIOR PARTITIONS - PROC	RAM INS	TRUCT <b>I</b> OI	NS	
Code Number for Bullding Type	1	2	3	4
Number of Walls with Parallel Partitions				
0	d	d	d	d
1	a	a	a	п
2	n	b	n	a
3	l n	¢	a	n
4	٨	d	a	Ŋ

- a. Assume that cross partitions are located on those sides with parallel partitions for which  $S \le L$ . Set  $X_1 = 0$  for the sides with no parallel partitions. Use  $X_1 = X_C$  for sides with parallel partitions and no cross partitions.
- b. If the walls with parallel partitions are opposite each other, assume that the cross partitions are located on these sides. Use the  $\mathbf{X}_i$  computed for these sides on all four sides.
- c. Assume that the cross partitions are located on the sides with parallel partitions opposite each other. Use  $X_i = X_c$  for the third side with a parallel partition, and use  $X_i = \frac{1}{2}X_p)_{smeared}$  for the fourth side.
- d. Assume that the cross partitions are located at the narrower ends of the building (i.e., they extend in a direction parallel with the longer sides) unless their

spacing S is greater than the length L of the shorter side. (If S > L, assume that they are on the other two sides.)

Compute  $X_p$  smeared and add  $\frac{1}{2}$  this value to  $X_c$  for each side to obtain  $X_i$  for each of the four sides. ( $X_c$  is zero if a side has no parallel partition.)

#### 2. Symbols Used

- D = distance from detector to exterior wall
- L length of this wall
- S average spacing of cross partitions
- X = total mass thickness of parallel partitions on a side
- $X_1$  total interior mass thickness for a side
- $\mathbf{x}_{\mathbf{p}}$  average mass thickness of one cross partition
- X_{p)smeared} = smeared mass thickness of cross partitions

#### F. Total Contribution

The total contribution (RF) for a building is determined by adding the contributions of Sections A through D for each story of a building.

Protection Factor =  $\frac{1}{RF}$ 

It is recommended that the computer print-out indicate separate contributions for each wall through the solid portion and through the apertures.

#### G. Charte

In order to accomplish the calculations recommended above, Tables 2, 3, 4, 5, 6, and 8 are to be deleted from the computer program. Tables 1 and 7 will remain, whereas new tables are required for Chart 1 (Case 1), Chart 2, Chart 4, Chart 5 (G₈ and G_a), Chart 6, Chart 7, Chart 8, and Chart 9 of the Engineering Manual (see Reference 3) and Chart 11 of the Shelter Design and Analysis Manual (see Reference 5). Charts are referred to as being Engineering Manual Charts in order to identify the "procedure," however the latest revision of all charts will be used whether they appear in Reference 2 or Reference 5.

Tables representing the required charts are included in TAB 10. The tabular values for height in Chart 2 and solid angle fraction in Charts 4 and 9 have logarithmic spacing (Log II goes from 0.5 to 3.0 in steps of 0.1 and Log $\omega$ ) from -3.0 to 0.0 in steps of 0.1). The computer will calculate solid angle fractions and round to the nearest Log $\omega$ .

In general, interpolation of these Charts is not required except for the directional response for direct radiation,  $G_{\rm d}$ , for <u>areaways</u>. For this case, enter Table 6 with a height of 3 ft and use linear interpolation for the  $\omega$  variable.

#### H. Shelter Area Factors

#### 1. Background

Area factors are used to represent fractions of total floor areas in determining the S-AREA offering protection greater than a predetermined value. The area factors used in the present NBS-NFSS Computer Program are based on the extent of the area in PF Category 4-8 shelters which does not drop below PF 100. Under the revised criteria for marking shelters it has become of interest to ascertain the fraction of floor area that is above PF-40. Specifically, RTI was asked by OCD to determine in a preliminary way if the area factors in Table P-II are conservative or nonconservative. The single area factor in the Phase 1 NFSS Computer Program is indicated in parentheses under each PF category.

#### 2. Recommended Area Factors

RTI has made contour plots of PF's throughout the first story of a windowless square huilding using the AE Guide procedure. Wall thicknesses were chosen to give center PF's of 55, 85, and 125 for PF Categories 2, 3, and 4, respectively. The fraction of the iloor area that had a PF greater than 40 was then graphically determined, assuming no roof contribution. The results depended on the floor area and are shown in Figure P-3 for buildings in PF Category 2 (average center PF = 55). These area factors indicate that the entry of 0.4 in Table P-II for Category 2 with a minimum PF of (PF)_C=40 and the entry of 0.7 for PF Category 3 with (PF)_C=40 are conservative, i.e., underestimates. Next the influence of apertures was investigated by RTI personnel. Generally, the

TABLE P-II

Table of Fractional Shelter Area with PF Greater than (PF)_c

### (Received from OCD for Evaluation by RTI)

Shelter Category	8	7	6	5	4	3	2	1
(NFSS Phase 1 Area Factor)				(.7)	(.3)	(.5)	(.5)	
(PF) _c								
500	1.0	.5						
250	1.0	.8	•5					
150	1.0	. 9	.8	.4				
100	1.0	1.0	. 9	.7	. 3			
70	1.0	1.0	. 9	.8	.6	.3		
40	1.0	1.0	.9	.9	.8	. 7	.4	
20	1.0	1.0	1.0	.9	.8	.8	.5	

Area Factor Dependence on Floor Area on the Fir & Floor
of a Windowless Building with No Roof Contribution

FIGURE P - 3



variation in area factor with increasing aperture percentage (up to 40 percent) was less than the variation with floor area from 2500 to 10,000 square feet. In summary, the results of RTI's preliminary investigation are reported in Table P-III. These area factors are believed to be conservative for the majority of cases.

#### 3. Dependence of Area Factor on Source-Building Configuration

#### a. Interior Partitions

It is pointed out that values in Figure P-3 may not be appropriate for the use with buildings with interior partitions when the center PF is calculated with the partition barrier factor. In this case, the PF will make a rapid drop as one leaves the core area defined by the partitions (for example, see Table 8 of Reference 6). It is expected that the area factor for a core area should be larger than the area factor for a building with no interior partitions.

#### b. Roof Vorsus Ground Contribution

Another important consideration in determining area factors is the source location. In general, the center of the floor area is the safest place to be when the predominant radiation enters through the adjacent walls (equally from all sides). In this case an area factor of 0.7 means that the 30 percent of the floor area next to the walls should not be occupied. In contrast to this situation, the safest location is next to the wall when the predominant contribution comes from the roof or through the ceiling into the basement. In this case an area factor of 0.7 would mean that the central 30

TABLE P-III

Table of Fractional Shelter Area with PF Greater than (PF)

(RTI Recommendations - Ground Contribution Only)

Shelter Category	8	7	6	5	4	3	2	1
(PF)								
100	1.0	1.0	1.0	. 9	.4			
40	1.0	1.0	1.0	1.0	1.0	1.0	.6	

percent of the floor area should be restricted. It is thus evident that the gradient of the PF contours in a building has opposite signs, depending on the source location. When both adjacent and roof contributions are present, the spatial variation of the PF is less pronounced due to the compensating effect of adding two distributions that vary in opposite senses. The computer program now assigns PF category on the basis of the protection factor calculated at the center of the shelter.

Thus, if a shelter with its predominant contribution from the roof has a center PF of 100, it would be assigned to PF Category 4 (PF range 100-149) and should have a unity area factor. If its center PF were somewhat less than 100, it should also be assigned to Category 4 with its area factor reduced accordingly. This is of course not now done in the NFSS. In order to specify area factors that are accurate to 50 percent (e.g., 0.6 versus 0.9), it appears necessary to use a two-parameter table in which look-ups depend on floor area and relative roof centribution.

#### c. Floor Thickness

The PF variation across the floor also depends in a significant way on the floor thickness when the chief contribution arises from limited planes of contamination. For example, for a plane less than 300 feet wide, Tech Ops experimentally found that the dose rate at an upper story corner position in a windowless building with light floors  $(X_f \le 40 \text{ psf})$  was 1.4 times that at the center position whereas it was 2.5 times greater than that at the center for thick floors  $(X_f \ge 40 \text{ psf})$ . (See Table 42 of Reference 8.)

#### d. Apertures

A proliminary investigation indicated that the area factor depends to some extent on the percentage and location of apertures. These investigations actually indicated an increase in the usable shelter area when apertures are added. For example, on the second floor of a 5000 square foot building with a center protection factor of 125, the fraction of the area having a protection factor greater than 100 is 0.43 with no apertures, and increases to 0.56 with 10 percent apertures (increased wall mass thickness to maintain center PF of 125).

Instead of restricting area along the exterior walls as is done in the case without apertures, the shelter area in a building with apertures is a complex function of exact aperture location as well as ground contribution (assuming no roof contribution). If roof contribution is also involved the boundaries of the shelter area are even more difficult to define.

#### 4. Recommended Investigations

In view of the importance of identifying the maximum number of shelter spaces and the fact that the dose rate spatial variation is interdependent on several factors, it may be justifiable to use the NFSS Computer Program to calculate more than one PF for each shelter - one at the center, and one or more at the periphery along each building axis. It is expected that this information can be directly correlated in an elementary way with the correct area factor. This approach offers a way in which the conservatism in Table P-II can be removed with confidence.

It is recommended that a more extensive analysis of the area factors be made; however, in many cases the AE surveying the building, because of exact location of partitions, apertures, etc., will locate and limit useful shelter area.

#### REFERENCES

- L. V. Spencer and C. Eisenhauer.
   <u>National Fallout Shelter Survey.</u>
   <u>National Bureau of Standards Report 7539, Washington: U. S. Department of Commerce, 3 July 1962.
  </u>
- 2. Office of Civil Defense. Guide for Architects and Engineers. Washington: Office of Civil Defense, December 1961.
- 3. Office of Civil Defense. Design and Review of Structures for Protection From Fallout Gamma Radiation (Engineering Manual). Rev. ed.; Washington: Office of Civil Defense, 1 October 1961.
- 4. W. K. Grogan, E. L. Hill and D. T. Scarls. <u>Application of Statistical Sampling Procedures to Estimate Probable Error of NFSS Findings</u>. Research Memorandum RM-81-4. Durham: Research Triangle Institute, Operations Research Division, 19 November 1962.
- 5. Office of Civil Defense. Shelter Design and Analysis. Rev. ed.; Washington; Office of Civil Defense, November 1962.
- 6. Albert W. Starbird, Joseph D. Vellett, Robert L. MacNeil, and John F. Batter.

  The Effect of Interior Partitions on the Bose Rate in a Multistory Windowless

  Building. Report No. TO-B 63-6. Burlington, Massachusetts: Technical

  Operations Research, 31 January 1963.
- Department of the Army. <u>Fallout Shelter Survey Instructions Phase 2.</u>
   Washington: Department of the Army, Office of the Chief of Engineers, 21 March 1962.
- 8. John F. Batter, Albert W. Starbird and Nancy-Ruth York. Final Report The Effect of Limited Strips of Contamination on the Dose Rate in a MultiStry Windowless Building. Report No. TO-B 62-58. Burlington, Massachusetts:
  Technical Operations, Inc., August, 1962.

TAB 1

Partial Bascment Exposure Calculations*
(Engineering Manual and AE Guide **)

Reduction Factor

% Exposed Area	,	20 psf walls	80 ps	80 psf walls	120 ps	120 psf walls
ft ²	ត	AE	ā	AĒ	2	AE
00% 100		.021	600	600.	<b>700</b> .	. 003
	. 045	570.	. ევი	.021	600.	600
2000		090	. 326	. 028	.012	.012
20000		.051	. 324	.021	.011	600.
001 257 81		.128	.015	.038	.007	.015
		. 128	.035	.045	.015	610.
5005		. 103	460.	.039	.015	.018
20000	350.	.077	.023	.028	010.	.012
37 5% 100		.230	.028	.065	.012	.026
		.210	.043	020.	.024	. 028
5000		.158	070.	.051	.017	.022
20000	190.	. 104	.027	.034	.011	.014
100	•	057	061.	. 120	.053	.050
	•	.375	02	120	.042	.047
2000	•	. 230	.062	.073	920.	.032
20000	109	.156	.037	870.	.015	.020

* 8 ft Basement, 10 ft first story, 0 psf lst floor slab, Detector 3 ft above basement floor.

** Using Charts 7.1 and 7.2 of Shelter Design and Aralysis.

TAB 2

# Location of Data on Phase 1 FOSDIC's and Phase 2 DCF's Necessary to Make EM Calculations

Basement Exposure		Data	Location		
	F	hase 1	F	hase 2	
<u>Code</u>	Sec.	Item	Sec.	<u>Col</u>	
D			В	44-49	
XE	23	Ext. Wall (a-d)			
XEP	23	Ext.Wall(q-t)			
XEQ	23	Ext.Wall(c-f)			
ЯPR	22	First (b)			
XPS	22	Upper (c)			
ХI	23	Int.Wall (m-p)			
AP	23	Apertures (1-1)			
APP	23	Aportures (u-x)			
APQ	23	Apertures (g-j)			
P	17	Ext. Walls (a-b)			
L	17	Ext. Walls (a-b)			
нв	18	Bamt, Ht. (b)			
HF	18	First Ht. (c)			
нѕ	18	Upper Ht. (d)			
HD (Assumed 3	')				
нѕв			В	54-57	
usf			В	54- 57	
HSS			В	54-57	
НР	20	A,B,C, or D Height			
D1	20	A,B,C, or P Width			
D2	20	A,B,C, or D Width - P-101 -		(Cont	inued.

TAB 2 (Continued)

Roof Contribution			Data Locat	<u>ion</u>
	1	hase 1		Phase 2
<u>Code</u>	Sec.	Item	Sec.	Col.
A	17	Ext, Wall (a)		
В	17	Ext, Wall (b)		
CA			В	50~51
СВ			В	52~53
DA			В	44-46
DB			В	47-49
u	18	Total Bldg. (a)		
HBS	19	Setback Ht. (e,j	,0)	
HD (Assumed 3')				
HP	20	A,B,C, or D Reight		
SA	20	Dist. to Face (	(f,k,p)	
SB	20	Dist. to Face (	(g,1,q)	
sc	20	Dist. to Face (	(h,m,r)	
SD	20	Dist. to Face (	(1,n,s)	
₩ <b>c</b>	20	A,B,C, or D Width		
x _o	22	Roof & Floors	(a-d)	
XIA	23	Int. Wall (m,y,	, <del>k</del> , a)	
XIB	23	Int. Wall (n,z,	, e, b)	
xic	23	Int. Wall (o,a,	, m, c)	
XID	23	Int. Wall $(p, \overline{b},$	$(\overline{n}, \overline{\overline{d}})$	
				(Continued.

TAB 2 (Continued)

Ground Contri	bution		Data_1	Location
	<u>P</u>	hase 1	<u>P</u> 1	hane 2
Code	Sec.	Item	Sec.	Col.
Α	23	Apertures		
d			В	44-49
$D_1$ and $D_2$	19	Dist. to Face		
	20	A,B,C, or D Width		
h _a	18	Story Ht. (b-d)		
h _u	18	Story Ht. (b-d)		
h ₁	18	Story Ht. (b-d)		
11	18	Story Ht. (b-d)		
	20	A,B,C, or D Height		
II _e	19	Setback IIt. (0,1, 0	or 0)	
	20	1st Plane Ht. (a,b,	c, or d)	
r	17	Ext. Wall (a or b)		
ı. _t	17	Ext. Wall (a or b)		
P	17	Ext. Wall (a and b)		
x _e	23	Ext. Wall		
$\mathbf{x}_{\mathbf{f}}$	22	Floor Weight (a-c)		
$\mathbf{x_i}$	23	Int. Wall		
			(	Continued

(Continued)

TAB 2 (Continued)

Ground Contribut	ion		Data	ocation
	Pho	ase 1	Ph	пве 2
Code	Sec.	Item	Sec.	Col.
x _o	22	Ceiling Weight (b-d)		
a	19	Dist. to Face		
Ательиун			Data :	Location
	$\underline{\mathbf{Ph}}\iota$	ne l	Ph	nac 2
Code	Sec.	Item	Sec.	Col.
D			В	44-49
ЖЕ	23	Ent. Wall (a-d)		
XI	23	Int. Wall (m-p)		
1.	17	Ext. Wall (a or b)		
La			В	71
$\mathbf{P}_{\mathbf{r}}$	17	Ext. Wall (a and b)		
нв	18	Bamt. Ht. (b)		
HD (Assumed 3	')			
HP1	18	Bamt. Ht. (b)		
11P2	20	Plane Ht. (a-d)		
11173	20	Plane Ht. (1-1)		
D1			В	74-75
D2	20	A,B,C, or D Widths		
D3	20	A,B,C, or D Widths		
				(Continued)

TAB 2 (Continued)

# Interior Partitions

	PI	hase 1	Pha	18C 2
Code	Sec.	<u>Item</u>	Sec.	Col.
D			В	44-49
L	17	Ext. Wall (a or b)		
S			В	66-67
x _c			В	58-65
x _p			В	68

	00000000					•••••							THE TANK OF SEP 1889 TO SEC.	••		••	11	13		13		1111		114	••
	M KINKOLFAM		<del></del>		******			<u>.</u>						• 11	A SE CALLED A CHARLE	• 11	13	43		111		11		1111	•••
NFSS Phase 1 FOSDIC NATIONAL FALLISTY SHELTER SHEREY PROSES	BOILDING MIE GURHAM MORTA KAROLINA			•				111	111	111	11			13	A REGISTANT DIVERTIME	1)	1,1	13		111	<b>P</b> 4.J	111	•	11	
NFSS IATIONA	drelorNG MIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•				F-637	111	1.11	131	••			1.1	4. 15 th Dv to Detail	1) (	4.1	43	1	131	•	111	• 1	11	-,1
	नगटान्द्रान्द्रब्वहा वि	100000		****	4 2 0 0		1.65	1 0 mm	111	131		S ATTACON CONTRACTOR	e			111	6.1.8	1 1 1 E	S. CONT (SEATED ALCRE)	-			- C		and the state of t
8 4	1-,-1	14. 2		)	•	114	1 4 <del>ද</del>		L	B -	<u></u>	J <u>∙</u>	֖֖֖֖֖֖֖֖֖֡֞֞֞֞֞֞֟֟֟ <u>֚</u>					<b>1</b> 4 4		1	*	<u>\$</u>			



- P-107 -

NATIONAL FALLOUT SHELTER SUPPEY	io my
FICTITIOUS BUILDING RIL DURHAM NORTH	1 CARBLINA 00000000
1101000	2
Sements #1 Authors with and an interest and an	Observation 17/200
Da - Orace - Cum -	
55 -	;
DOTA SUBMINISTATION AND AND AND AND AND AND AND AND AND AN	Contract of the Contract of th
	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.2 2 0 0 1 2 0 0 2 0 1 X X X X X X X X X X X X X X X X X X	5.5551212121200008305056NO
<u> </u>	e e e e e e e e e e e e e e e e e e e

Roof Contribution Calculations (A&E Guide and Engineering Manual) (6,400 Sq.ft-No Partitions)

쓁	A&E 6,400 ft		.0015 .0036 .0100 .0320	.0003 .0010 .0040 .0180	.0000 .0003 .0017 .0120
40 psf Roof	EM 40'x160'		.0012 .0035 .0092 .0300	.0002 .0009 .0038 .0180	.0000 .0003 .0016 .0110
·	E% 80'x80'		. 0014 . 0038 . 0100 . 0320 . 1000	.0003 .0010 .0042 .0180	. 0000 . 0003 . 0017 . 0110
u.i	A&E 2 6,400 ft ²	.0039 .0088 .0210 .0520	.0018 .0045 .0130 .0420	.0003 .0013 .0050 .0250	.0000 .0003 .0021 .0150
Reduction Factor 30 psf Foof	540'x160'	.0035 .0080 .0180 .0480	.0015 .0043 .0120 .0370	. 0003 . 0011 . 0049 . 0230	.0000 .0003 .0020 .0140
Reducti	EM 80' x80'	.0042 .0092 .0210 .0530	. 0018 . 0049 . 0130 . 0410	.0003 .0013 .0053 .0250	.0000 .0003 .0021 .0150
	A&E 6 400 ft	.0050 .0110 .0270 .0730	.0023 .0056 .0170 .0560	.0004 .0016 .0057 .0320	.0000 .0004 .0027 .0180
20 psf Roof	EN 20, 21, 20,	. 0044 . 0100 . 0230 . 0640	.0018 .0054 .0150 .0480	.0003 .0015 .0060 .0300	.0000 .0004 .0023 .0180
<u>Σ</u> ί	F. 80°::80°	.0053 .0140 .0280 .0700	. 0632 . 0060 . 0130 . 0520	0004 .0016 .0066 .0320	0000 .0004 .0028 .0190
	Story	<b>≈4</b> (r) ~ √ · √	C1 20 C	- or early	ଅପ୍ୟର
	Floor	<u>s</u>	97	99	80 0

(A&E Guide and Engineering Manual) (10,000 Sq.ft-No Partitions)

		ft.2							_	_	_	_				_	_	_				
	뗒	A&E 10,000 ft						. 0016	.003	.0110	.0340	. 1000	. 0003	.001	.0043	. 0200	. 1900	0000	.0003	. 0018	.0120	1000
	40 psf Roof	50'×200'						.0015	. 0038	0100	.0320	0880.	.0003	.0010	.0042	.0180	0880.	0000	.0003	.0017	.0110	0880.
		EM 100'×100'						.0016	. 0041	. 0100	. 0330	. 1050	. 0003	. 001	. 0043	.0190	. 1000	0000	.0003	8100.	.0110	. 1000
Reduction Factor	ابعا	A&E 10,000 ft ²	2,700	010	. 0230	.0590	. 1500	.0019	. 0049	.0150	0770	1500	.0003	.0014	. 0052	. 0250	.1500	0000	,000.	.0022	.0150	. 1500
	30 psf Roof	134 50°1200°	0,000	1600	. 0210	.0510	. 1500	. 3018	8 <del>7</del> 00.	. 0180	0070	.:500	.0003	. 0012	. 10052	. 0250	. 1500	0000	.0003	. 9021	. 0150	. 1500
		EM 100'×100'	3,700	0010	.0240	.0550	.1500	.0019	. 0051	.0140	.0410	.1500	. 0003	.0013	.0053	. 0250	.1500	0000	,000·	.0022	.0150	. 1500
	20 psf Roof	A&E 10,000 ft	9500	0130	. 0300	0620.	. 2000	.0024	.0062	.0180	.0590	.2000	,0004	.0017	.0065	.0340	.2000	0000	.000	.0028	.0200	. 2000
		<b>EM</b> 50'×200'		0110	.0270	0690.	. 1900	. 0023	.0059	.0180	.0510	. 1900	7000.	9100.	.0065	.0310	. 1900	0000	<b>,000</b>	. 0028	. 0190	. 1900
		EM 1001×1001	0400	. 0130	.0300	.0750	. 2000	.0024	. 0065	.0180	.0550	. 2000	.0004	. 0017	6900.	. 0330	. 2000	0000	. 0004	. 0029	0610.	. 2000
		Story No.	_	ام ،	· ~	Þ	Ŋ	1	7	٣	4	Š	1	7	٣	7	٥	-	7	<b>~</b>	4	5
		Floor Weight	3	3				07					09					80				

TAB 7

Roof Contribution Calculations
(A&E Guide and Engineering Manual)
(5 Story, 640) Sq. Ft. Building with Partitions)

	Building 8	Building 80' x 80' with 30' x 40' core Reduction Factors	x 80° with 30° Reduction Factors	x 40, col	빔	Bui 1dir	Reduc	x 160' with 10' Reduction Factors	Building 40' x 160' with 10' x 120' core Reduction Factors
		20 psf	psf	30 psf	St	20 psf	<b>.</b>	30 psf	
Floor No.	<b>6</b> 6	Partitions EM AE	ions	Partitions EM AE	ions	Partitions EN AE	AE	Partitions EM AE	ions
		.0210	.0214	.0186	.0193	.0161	. 0214	.0137	.0193
7		.0550	.0380	.0517	.0537	.0413	.0580	.0361	.0537
		.1720	.1630	. 1670	. 1600	.1470	. 1630	. 1260	. 1600
(*)	_	.0052	.0053	6700	03.00	. 0042	.0053	.0039	.0050
<b>\</b> 7	_	.0273	.0267	.0258	.0251	.0216	.0267	.0187	. 0251
S		. 1720	. 1630	.1670	. 1600	.1470	. 1630	. 1260	. 1600
		1910.	.0169	.0146	.0155	.0131	6910.	.0110	.0155
<b>₹</b> T		.0442	1:50	0070	8050.	.0341	. 0441	.0274	.0408
ī		. 1330	. 1260	. 1300	.1260	. 1030	. 1260	.0951	.1260
,	~	.0043	.0043	.0039	.0041	.0036	.0043	.0031	.0041
~7	_	9170	.0208	.0205	.0199	.0163	.0208	.0144	.0199
ľ		. 1330	. 1260	.1300	. 1260	. 1030	. 1260	1560.	. 1260

TAB 8

Ground Contribution Calculations

(A&E Guide and Engineering Manual**)

(Building with 30% Apertures)

Reduction Factor

	80 ps	80 psf valls	100 psf walls	valls	150 psf walls	f walls
	$X_{\rm f}$ =30 psf	$X_{\rm f}$ =30 psf $X_{\rm f}$ =50 psf	x _f =30 psf	X _f =30 psf X _f =50 psf	X _f =30 psf	X _f =30 psf X _f =50 psf
A&E Guide, 10,300 ft ² -above sill	080	.051	1.00.	670	790.	070.
A&E Guide, 10,300 ft ² -below sill	.051	.032	670.	.025	.040	910.
E.M100'x100' -at sill level	.039	.032	.032	.026	.024	.019
A&E Guide, 6,400 ft ² -above sill	960.	.067	980.	850.	920.	. 048
A&E Guide, 6,400 ft ² -below sill	.067	.039	950.	.029	.048	.020
E.M 80'x80' -at sill level	970.	.039	.038	.032	.028	.023
A&E Guide, 3,600 ft ² -above sill	. 120	. 085	. 108	.072	.095	.059
A&E Guide, 3,600 ft ² -below sill	.085	670.	.072	.037	.059	. 024
E.M60'x60' -at sill level	.057	650	970.	. 039	.033	. 028
A&E Guide, 1,600 ft ² -above sili	.145	. 104	. 128	.087	011.	020.
A&E Guide, 1,600 ft ² -below sill	701.	.063	.087	.047	070.	. 029
E.M 40'x40' -at sill level	.071	.063	.067	.050	.031	.035

** Calculations include contributions from lower, adjacent and upper stories. * Ground contribution to third story from infinite planes of contamination.

# Areaway Contribution to Unexposed Basement Shelter 1. TOTAL CONTRIBUTION

The total contribution to a basement shelter as described in Example 5.2 of Reference 5 is 0.0070 (Ground contribution is 0.0014).

#### II. ADDITIONAL CONTRIBUTION

#### A. Areaway - No Apertures

If an areaway 5' wide and 50% of the length of the building is added, the calculation of its effect is as follows:



These contributions must now be multiplied by the perimeter ratio for the areaway or 55/400 in this case.

ADOS = 
$$\frac{55}{400}$$
 (0.00013 + 0.00088 + 0.00192) = 0.0004

#### B. Areaway - with Windows

With the upper 13' of the areaway being windows, the additional contributions are:

Scatter = 0.00192 Skyshine = 0.00486 Direct = 0.00088 0.00766 x 55/400 = 0.0011.

#### C. Aregway - with Door

Scatter = 0.00185 Skyshine = 0.00013 Direct = 0.00252 0.00450 x 55/400 = 0.0006.

#### D. Areaway - with Door and Windows

For an areaway with both the upper  $V_2^{(4)}$  apertures and a  $3^4 \times 7^4$  door, the additional contributions are:

Skyshine = 0.00486 Direct = 0.00252 0.00923 x 55/400 = 0.0013.

#### III. SUMMARY

The reduction factor for Example 5.2 of Reference 5 was 0.0070. The areaway with no apertures increases the overall contribution by approximately 6%. This increase would be approximately 15% if the upper  $1\frac{1}{2}$  of the exterior wall adjacent to the areaway were windows. The increase in overall reduction factor would have been about 9% if there had been a 3'x7' door leading into the areaway, and the increase due to the combination of windows—and door would be approximately 18%.

Although the overall reduction factors increased only 18%, the ground contribution part of the reduction factor increased by 90% [0.0014 to 0.0027 (0.0014 + 0.0013)]

TAB 10

Tables Representing Data in Engineering Manual Charts

Table		E.M. Chart	Page
1	1, Case 3	Barrier Shielding Effects, Fallout Adjacent to Herizontal Barrier	*
2	1, Case 1	Barrier Shielding Effects, Fallout on Barrier	P - 114
3	2	Wall Barrier Shielding Effects For Various Heights	P - 115
4	4	Roof Contribution	P - 117
5	5	G and G Directional Responses	P - 119
6	6	Gd Directonal Response	P - 120
,	CF-2	Skyshine Correction	*
8	7	Fraction of Emergent Radiation Scattered in Wall Barrier	P - 121
9	В	Shape Factor for Wall-scattered Radiation	P - 121
10	9	Barrier Reduction Factor For Wall-scattered Radiation For Limited Plane of Contamination	P • 122
11	11 of Ref. 5	Roof Contribution Wall Barrier Effect	P - 124

^{*} Tables 1 and 7 of the present Computer Program are to be retained.

TABLE 2 (Chart 1, Case 1)

Barrier Shielding Effects, Fallout on Barrier

x _o	$\frac{R_{f}}{}$
0	1
10	.33
20	. 20
30	.15
40	.11
50	.082
60	,061
70	.046
80	.035
90	.0262
100	.02
110	.0152
120	.0115
130	.0087
140	.0068
150	.0052
160	. 00405
170	.0032
180	.0025
190	.002
200	,00158
210	.00125
220	.001
230	. ს0079
240	.00064
250	.00052
260	.00042
270	.00034
280	,00028
290	.000227
300	.000189

TABLE 3 (Chart 2)

					•			;							
		381	/a11 Ba	rrier	Shiteld	ing Ef	fects	fer Va	Sno LJ	Wall Barrier Shielding Effects for Various Heights	a۱				
×̈́/	0	10	20	30	U†	20	09	<u>)</u>	80	90	100	110	120	130	140
Height (feet)															
٣		92.	. 60	. 50	.38	.31	.25	. 185	.15	. 12	.054	920.	8.	-05	-04
4	.95	.72	575.	94.	.365	.30	ย.	.13	. 145	. 115	.090	.072	.057	.047	.0383
iΛ	.90	. 70	. 36	3	.35	. 29	.22	. 175	.14	. 105	.087	.070	.055	.045	.037
6.3	78.	.68	. 53	.41	.335	. 28	.20	.17	. 135	. 100	.083	.065	.053	.043	.036
80	.80	.63	.50	.39	.32	.26	. 195	.15	. 13	.098	86.	.061	.050	.0405	. 034
10	.77	09.	.475	.375	.30	24	. 18	. 15	. 12	.093	.075	.059	870.	.0385	.0325
12.6	. 72	.57	57.	.36	. 28	.22	.175	<b>₹</b>	. 105	.088	.07	.056	.045	.037	.03
15.9	.68	75.	.42	.34	.265	. 20	.17	. 13	.10	.081	790.	.052	.041	.035	. 028
20	.65	.515	.39	.32	.25	. 19	. 155	. 12	760	920.	.059	.043	.038	.032	.025
25	.61	84.	.375	.30	.22	.18	. 145	. 107	.087	.07	.055	047	.036	.030	.023
. E	. 575	5,	.35	.265	. 198	.165	EI .	.098	620.	.062	.050	.039	.034	.027	.020
07	.53	0,	.32	.255	. 185	.15	55.	<u>S</u> .	.072	.057	₹70.	.037	.03	.024	.0185
50	67.	.38	.30	. 22	.17	.14	. 105	.083	.065	.052	040.	.034	.027	.020	.017
, e	.425	35	. 265	.195	.155	.125	.697	.072	.057	.045	.037	.03	.023	.0183	.0155
08	0,	.31	. 225	. 18	. 14	.110	.083	.065	.05	<u>,0</u>	.032	.026	.0198	.016	.013
100	.35	.275	. 195	. 155	.13	960.	.072	.056	.045	.036	.028	.022	.0175	.0148	. 312
126	.32	.240	. 180	. 145	.11	8.	.68	.05	.039	.032	. 023	.0185	.0155	.0125	.010
159	.28	.200	91.	.125	8	890.	.053	.042	.034	. 026	.020	.0165	.013	.0103	.008
200	.24	. 130	.14	. 18	.075	.057	.045	.035	.028	.021	.017	.014	.011	.0086	.0055
250	.21	. 160	. 12	.081	.862	સુ	.038	.03	.0225	.018	.0145	.0117	600.	3900.	.0055
320	.165	.125	.088	990.	.05	.038	.03	.023	.018	.015	.011	.008	.0068	.0054	.0042
004	.135	760.	.070	.053	.039	.031	.023	.018	.0145	.0105	9800.	.0067	.0052	.0041	.0035
200	100	.074	550.	.039	.031	.023	0175	-014	٥.	8	.065	. 305	.0039	.0032	.0025
989	.076	.055	.0385	.03	.021	.017	.0127	€600.	.0073	.0036	77,000	.0036	.0028	.0021	.0017
800	.055	.0375	.028	.0198	.015	.011	800.	.0059	.00	.0038	.0031	.0023	.0018	.0014	.0010
1000	.037	.0260	.018	.014	.0095	.0063	.0652	9	.0033	.0025	.0019	7100	.00	8000	.0007

TABLE 3 (Chart 2) (continued)

Height (feet)   150 160 170 180 190 200 210 220 220 240 250 260 270 280 290 290 181   150 160 170 180 190 200 210 220 220 240 250 260 270 280 290 24 2015 2015 2015 2015 2015 2015 2015 2015								רחתווחתבה								
0335         0275         026         017         0107         0086         .0076         .0045         .0045         .0045         .0046         .0076         .0044         .0031         .0021         .0031         .0022         .0019         .0019         .0082         .0065         .0053         .0044         .0036         .0031         .0044         .0038         .0042         .0031         .0041         .0032         .0011         .0018         .0011         .0018         .0011         .0018         .0011         .0018         .0011         .0018         .0011         .0018         .0011         .0011         .0018         .0011         .0011         .0018         .0011         .0011         .0018         .0011         .0018         .0018         .0011         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018 </th <th>it (feet)</th> <th>150</th> <th>160</th> <th>170</th> <th>180</th> <th>196</th> <th>200</th> <th>210</th> <th>220</th> <th>230</th> <th>240</th> <th>250</th> <th>260</th> <th>270</th> <th>280</th> <th>290</th>	it (feet)	150	160	170	180	196	200	210	220	230	240	250	260	270	280	290
032         .026         .019         .016         .013         .006         .0065         .0063         .0044         .0036         .0073         .0049         .0034         .0034         .0034         .0035         .0049         .0039         .0039         .0039         .0017         .0018         .0017         .0018         .0018         .0049         .0039         .0018         .0017         .0017         .0018         .0018         .0049         .0039         .0033         .0018         .0017         .0017         .0018         .0018         .0017         .0017         .0018         .0018         .0017         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018<	Е.	.0335		.020		.0135	.0107			.0056	.0046	.00375	.0031	.0025	.0019	.00165
030         0.024         0.0183         .0155         .0125         .0036         .0037         .0036         .0031         .0042         .00183         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0017         .0018         .0014         .0024         .0024         .0044         .0024         .0044         .0027         .0024         .0017         .0018         .0045         .0044         .0044         .0044         .0044         .0024         .0044         .0044         .0024         .0044         .0044         .0024         .0044         .0044         .0024         .0024 <th< td=""><td>• • •</td><td>.032</td><td></td><td>.019</td><td></td><td>.013</td><td>010</td><td></td><td></td><td>.0053</td><td>.0044</td><td>.0036</td><td>.003</td><td>.0023</td><td>.00185</td><td>.00155</td></th<>	• • •	.032		.019		.013	010			.0053	.0044	.0036	.003	.0023	.00185	.00155
0.25         .0127         .0178         .015         .0116         .0069         .0052         .0056         .0039         .0033         .0026         .0017           .027         .021         .017         .014         .0105         .0064         .0055         .0045         .0035         .0049         .0031         .0029         .0018         .0015           .023         .0185         .0164         .0101         .0076         .0076         .0049         .0044         .0031         .0029         .0018         .00165           .023         .0185         .0164         .011         .0016         .0077         .0063         .0049         .0031         .0029         .00175         .0018         .0018         .00175         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018	5	.030		.0183		.0125	9600.			.0051	.0041	.0035	.0028	.0021	.00178	.0015
0.27         .021         .017         .014         .0105         .0084         .0058         .0045         .0037         .0031         .0024         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .00185         .0018         .0034         .0027         .0024         .0018         .00185         .0018         .00185         .0018         .0018         .00185         .0018         .0018         .0018         .00185         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018         .0018	6.3	.029		.0178		.0116	0600.			6500.	.0039	.0033	.00265	86100	.0017	.0014
0.25         .0195         .0162         .013         .010         .0078         .0063         .0042         .00425         .0022         .0018         .0015         .0094         .0073         .0049         .0044         .0073         .0015         .0015         .0094         .0073         .0059         .0044         .0034         .0002         .0015         .0015         .0094         .0073         .0059         .0044         .0034         .0002         .0019         .0016         .0017         .0062         .0052         .0044         .0035         .0034         .0022         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0011         .0019         .0015         .0019         .0019         .0011         .0019         .0019         .0019         .0011         .0019         .0011         .0019         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .0011         .	బ	.027		.017		.0105	.0084			5700.	.0037	.0031	.0024	.00185	.0016	.00135
023         0185         C155         0125         0094         .0673         .0699         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0049         .0042         .0035         .0024         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0019         .0044         .0044         .0044         .0044         .0044         .0049         .0044         .0049         .0044         .0049         .0044         .0041         .0019         .0019         .0019         .0019	01	.025		.0162		010.	.0078			.00425	.0035	.0029	.0022	8100.	.00155	.00130
. 021 . 0175 . 014 . 011 . 0082 . 0068 . 0956 . 0946 . 00375 . 0031 . 0024 . 00192 . 00165 . 0014 . 0195 . 0163 . 0115 . 011 . 010 . 0077 . 0062 . 0052 . 0042 . 0035 . 0028 . 0022 . 0018 . 00157 . 0012 . 0118 . 0118 . 009 . 0072 . 0095 . 0042 . 0035 . 0024 . 0019 . 00157 . 0012 . 0118 . 0118 . 0095 . 0074 . 0055 . 0045 . 0043 . 0029 . 0022 . 0019 . 00157 . 0013 . 0110 . 0095 . 0044 . 0055 . 0044 . 0043 . 0025 . 00415 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00115 . 00111 . 00111 . 000111 . 000111 . 000111 . 0001	12.6	.023		.0155		7600	.0073			.004	.0034	.0027	.0020	.00175	.0015	.06125
0195         0163         0113         0100         0077         0062         00422         0035         0002         0018         0017         0002         00475         000385         0033         0026         00203         00174         0015         0012         0012         0012         0012         0012         0012         0012         0012         0012         0012         0012         0012         0014         0015         0014         0015         0017         0019         0017         0019         0017         0019         0017         0019         0017         0019         0017         0019         0019         0017         0019         0019         0017         0019         0017         0019         0019         0017         0019         0011         0019         0011         0011         0019         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011         0011	15.9	.021		.014		.0082	.0063			.00375	.0031	.0024	.00192	.00165	.0014	.0011
. 018 . 015 . 0118 . 009 . 0072 . 0038 . 00475 . 00385 . 00024 . 0019 . 00174 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0015 . 0010 . 0010 . 0015 . 0010 . 0010 . 0015 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 . 0010 .	20	.0195		.013		.0077	.0062			.0035	.0028	.0022	.0018	.00157	.00127	.0010
. 0167 . 013 . 010 . 008 . 0066 . 0054 . 0044 . 00136 . 0024 . 0019 . 00157 . 0010 . 0010 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0115 . 0	25	810.		.0118		.0072	.0058			.0033	.0026	.00203	.00174	.0015	.0012	.00092
. 0155 . 012 . 0095 . 0074 . 0059 . 0046 . 0040 . 0033 . 0027 . 00215 . 00175 . 00145 . 00115 . 00092 . 0135 . 0105 . 0105 . 00092 . 0006 . 0055 . 00455 . 0038 . 0031 . 0025 . 00192 . 0016 . 00125 . 0010 . 0008 . 0115 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 . 0112 .	32	.0167		.010		.0065	.0054			.0029	7700.	.0019	.00157	.0013	.0010	.00081
. 0135 . 0105 . 0080 . 0066 . 0055 . 00455 . 00383 . 0931 . 0025 . 00192 . 0016 . 60125 . 0010 . 00084 . 0012 . 0095 . 00074 . 0012 . 0095 . 00074 . 0013 . 0012 . 0095 . 00074 . 0013 . 0012 . 0095 . 00074 . 0013 . 0012 . 0095 . 00074 . 00013 . 00062 . 00075 . 0012 . 0012 . 00097 . 00078 . 00062 . 0097 . 00079 . 00070 . 0058 . 0035 . 0022 . 0017 . 0013 . 0010 . 0008 . 00068 . 00065 . 00075 . 0005 . 00075 . 00068 . 00055 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075	07	.0155		.0095		.0059	9700			.0027	.00215	.00175	.00145	.00115	.00092	.00075
. 012 . 3095 . 0072 . 0059 . 0049 . 064 . 0034 . 00125 . 0015 . 0014 . 0011 . 00090 . 00074 . 0103 . 6079 . 0064 . 0052 . 0043 . 00365 . 003 . 0026 . 00185 . 00155 . 00125 . 00097 . 00078 . 00062 . 0099 . 0070 . 0058 . 0044 . 0035 . 0026 . 0017 . 0013 . 0010 . 0008 . 00068 . 00065 . 00045 . 0005 . 00075 . 00068 . 00054 . 0005 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00068 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 00075 . 0007	20	.0135		0800.		.0055	.00455			.0025	.00192	.0016	. 00125	.0010	.0008	.00068
. 0103 . G079 . 0064 . 0052 . 0043 . 00365 . 003 . 00024 . 00185 . 00125 . 00125 . 00097 . 00078 . 00062 . 0099 . 0070 . 0058 . C046 . 0038 . 00325 . 0027 . 0020 . 0017 . 0013 . 0010 . 0008 . 00068 . 00054 . 00054 . 0055 . 00045 . 0005 . 00045 . 0005 . 00070 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0005 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 00045 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0002 . 0003 . 0003 . 0002 . 0003 . 0003 . 0002 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 0003 . 000	63	.012		.0072		6700.	.85			.0022	.00175	.0014	.0011	06000	.00074	09000
. 009 . 0070 . 0058 . C046 . 0034 . 0035 . 0027 . 0020 . 0017 . 0013 . 0010 . 0008 . 00068 . 00054 . 0075 . 0060 . 005 . 0042 . 0034 . 0026 . 0022 . 0047 . 0014 . 00107 . 00068 . 0007 . 00056 . 00045 . 00052 . 0042 . 0035 . 0022 . 0044 . 0015 . 0009 . 00070 . 00057 . 00046 . 00036 . 00045 . 00038 . 00045 . 00038 . 00046 . 00038 . 00046 . 00038 . 00046 . 00038 . 00046 . 00038 . 00046 . 00038 . 00046 . 00038 . 00032 . 00047 . 00038 . 00046 . 00038 . 00032 . 00038 . 00032 . 00038 . 00032 . 00036 . 00038 . 00032 . 00036 . 00038 . 00032 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00003 . 00004 . 00008 . 00004 . 00008 . 00004 . 00008 . 00004 . 00008 . 00004 . 00008 . 00004 . 00008 . 00004 . 00008 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00004 . 00	80	.0103		7900.		.0043	.00365			.00185	.00155	.00125	.00097	.00078	.00062	.00051
. 0065 . 0066 . 005 . 004 . 0034 . 0026 . 0022 . 0014 . 00107 . 00088 . 0007 . 00056 . 00056 . 00045 . 0062 . 0052 . 0042 . 0035 . 00225 . 0018 . 00115 . 0009 . 00070 . 00057 . 00046 . 00038 . 00053 . 0044 . 0036 . 003 . 0023 . 0018 . 0015 . 00092 . 00073 . 00058 . 00047 . 00038 . 00032 . 00044 . 0036 . 003 . 0012 . 0013 . 0012 . 00012 . 00075 . 00068 . 00048 . 00048 . 00032 . 00032 . 00036 . 00038 . 00032 . 00036 . 00038 . 00032 . 00036 . 00038 . 00038 . 00032 . 00036 . 00038 . 00038 . 00036 . 00036 . 00038 . 00036 . 00036 . 00038 . 00038 . 00036 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00	100	600.		.0058		.0038	.00325	-		.0017	.0013	.0010	9000	89000	.00054	.00043
.0052         .0052         .0052         .0015         .00148         .00115         .0009         .00070         .00057         .00046         .00038         .00038         .00038         .00038         .00037         .00047         .00038         .00037         .00038         .00037         .00038         .00037         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038         .00038	126	.0075		.005		.003	.0028			.0014	.00100	89000	.0007	95000	.00045	.00037
. 0053 . 0044 . 0036 . 003 . 0023 . 0018 . 0015 . 00115 . 00092 . 00073 . 00058 . 00047 . 00038 . 00032 . 00034 . 00034 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00036 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00039 . 00039 . 00038 . 00038 . 00039 . 00039 . 00039 . 00039 . 00037 . 00038 . 00035 . 00035 . 00035 . 00035 . 00037 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 00038 . 0003	159	.0062		.0042		.0028	.00225			.00115	6003.	00000	.00057	95000	.00038	.00031
. 0044 . 0036 . 003 . 0023 . 0918 . 0015 . 00012 . 00092 . 00075 . 00068 . 00048 . 00038 . 00032 . 00026 . 00035 . 0028 . 00024 . 0019 . 0019 . 0019 . 0017 . 0013 . 0010 . 00082 . 00056 . 00045 . 00036 . 00036 . 00028 . 00019 . 0017 . 0013 . 0010 . 00082 . 00058 . 00054 . 00045 . 00038 . 00028 . 00012 . 00015 . 0011 . 00093 . 00052 . 0005 . 00012 . 00012 . 00017 . 00014 . 00015 . 0013 . 0010 . 00093 . 00042 . 00036 . 00035 . 00025 . 00017 . 00014 . 00010 . 00017 . 00014 . 00010 . 00084 . 00015 . 00017 . 00014 . 00010 . 00084 . 00015 . 00017 . 00014 . 00017 . 00014 . 00017 . 00014 . 00017 . 00014 . 00017 . 00015 . 00017 . 00017 . 00004 . 00007 . 00005 . 00004 . 00007 . 00066 . 00045 . 00015 . 00017 . 00014 . 00014 . 00010 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00004 . 00007 . 00005 . 00004 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 0	200	.0053		.0036		.0023	.0018	-		.00092	.00073	.00058	00047	.00038	.00032	.00026
.0035 .0028 .0022 .0018 .0014 .00105 .0008B .0007 .00056 .00045 .00036 .00030 .00024 .00019 .0027 .002 .0017 .0013 .0010 .00082 .00058 .00054 .00042 .00038 .00028 .00028 .00015 .0015 .0019 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0011 .00099 .00017 .0011 .00099 .00007 .00084 .00055 .00045 .00035 .00035 .00018 .00018 .00011 .00008 .00007 .00008 .00007 .00045 .00017 .00017 .00014 .00011 .00008 .00007 .00005 .00004 .00007 .00066 .00045 .00017 .00017 .00014 .00014 .00010 .00008 .00007 .00005 .00004 .00007 .00005 .00007 .00066 .00045 .00012 .00017 .00014 .00014 .00010 .00008 .00007 .00005 .00004 .00007 .00005 .00007 .00005 .00007 .00005 .00007 .00006	250	.0044		.003		.0918	.0015			.00075	89000	87000	.00038	.00032	.00026	.60021
. 0027 . 002 . 0017 . 0013 . 0010 . 00082 . 00054 . 00042 . 00036 . 00028 . 00018 . 00015 . 0019 . 0015 . 0015 . 0015 . 0015 . 0015 . 0015 . 0015 . 0015 . 0015 . 0015 . 00017 . 00014 . 00010 . 0019 . 0015 . 0015 . 00017 . 00014 . 00010 . 0019 . 00113 . 0010 . 00008 . 00055 . 00055 . 00055 . 00025 . 00018 . 00011 . 00008 . 00007 . 00008 . 00055 . 00015 . 00017 . 00018 . 00011 . 00008 . 00007 . 00005 . 00004 . 00007 . 00006 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00007 . 00005 . 00005 . 00007 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00	3.50	.0035		.0022		7100.	.00105	-		95000.	.00045	.00036	.00030	00054	.00019	.00016
. 0019 . 0015 . 00012 . 00093 . 00076 . 90062 . 00039 . 00032 . 00025 . 0002 . 00017 . 00014 . 00010 . 0013 . 0010 . 00013 . 00005 . 00033 . 00042 . 00036 . 00028 . 00021 . 00018 . 00015 . 00011 . 00009 . 00007 . 00084 . 00068 . 00045 . 00045 . 00035 . 00022 . 00018 . 00018 . 00011 . 00008 . 00007 . 00005 . 00004 . 00007 . 000066 . 00045 . 00032 . 00017 . 00014 . 00010 . 00008 . 00007 . 00005 . 00004 . 00003 . 00002 . 00007	007	.0027		.0017		00100	.00082			.00042	.00036	.00028	00022	.00018	.00015	.00012
. 0013 . 0010 . 0003 . 00068 . 00053 . 00042 . 00036 . 00028 . 00018 . 00015 . 00011 . 00009 . 00007 . 00084 . 00068 . 00055 . 00045 . 00035 . 00022 . 00018 . 00018 . 00011 . 00008 . 00007 . 00005 . 00004 . 00006 . 00004 . 00005 . 00005 . 00005 . 00007 . 00005 . 00005 . 00007 . 00007 . 00007 . 00005 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 . 00007 .	300	.0019		.0012		9,000.	.90062			.00032	.00025	.0002	.00017	.00014	.00010	80000
. 00084 . 00068 . 00055 . 00045 . 00035 . 00025 . 00018 . 00015 . 00011 . 00008 . 00007 . 00005 . 00005 . 00006 . 00006 . 00007 . 00008 . 00005 . 00008 . 00008 . 00007 . 00008 . 00005 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 00008 . 0000	630	.0013		.0003		.00053	.00042			.00021	.00018	.00015	.0001	60000	.0000	.00005
. 00006 . 00045 . 00035 . 00028 . 00012 . 00017 . 00014 . 00018 . 00007 . 00005 . 00006 . 00004 . 00003	800	.00084	00	.00055		.00035	.00025			.00015	.00011	80000	0000	.00005	20000	.00003
	1000	99000.	S	.00035		.00022	.00017			90000	.00007	.00005	0000	.0003	.0000	.00002

Ŧ
H
(C:13
٠,†
TABLE

	140				1000	00013	90016	00000	00027	00032	66000	0005	0000	8000	0010	00125	9100	0019	0024	0030	0037	2200	0020	0058	0651	9900	0071	,0074 2007	000
	130																											. 0091	
	120				.00011																								
101	110			.00010																									
	100		.0001	.0001	.00017	. 00028	00034	0.000	0005	19000	08000	. 0011	.001	. C017	. 0020	9700	. 0033	0000	. 0052	. <b>0</b> 065	6100.	.0095	.0120	.01.18	.0165	.0178	.0190	. 020	.022
Scof Co	06			00016																									
Reduction Factors for Combined Shielding Effects, Roof Conti.	80		.00011	.00019	.0002	00038	\$7000	.00059	.00073	00003	.03125	. 3015	.00135	5000	.0330	.0037	. 0039	.0357	27.00.	0600.	.0120	.0150	.018	.026	.025	.029	.032	.035	.037
lding E	0.2	.09011	.00012 .00017	.00021	.0003	<b>K</b> 000	.00055	07000.	30088	.00:10	7.00°	.00175	.0001	.3027	.003.	1000	.3052	.0055	.3082	.0110	0110.	.0175	.020	.026	.031	. 936	0.0	546.	970.
ed Shie	90	.00010	.00016	.00027	.00035	0.000	193092	3000.	0.00	.0013	9336.	.03195	. 6325	. 0032	éfco.	érca.	0660.	1100.	0100	.01250	.31600	00610	.02500	.03100	.038	77.0.	.051	.033	.0
Combine	20	.00012	.00013	.00031	. 00039	000.	000.	55000	. 9011	.0013	.00173	.002	.0029	. 0035	.00:2	.003.	0.00.	6900	.0115	87.0.	0810	.0225	.030	.035	S+0.	050.	0.00	.080	.031
ers for	C†	.00014 .00017																											
in Facto	30	.00015	00024	. 00039	61000	\$C000.	16000	.00123	.0015	.0018	. 9022	.0030	.003.	0043	.0058	0200.	.0088	.0115	.0118	.018	.025	030	.042	.057	070.	660.	. 120	<u>(</u> †:::	5::
Reduction	20	61000.	.00034	.00043	.00055	0000	.00100	00:35	.00.5	00193	0025	.0033	0700	.305.	.3062	8708.	Sp00	.0130	01.0.	6610.	.02.7	.033	oto.	060.	.030	01::	:7	<u>6:</u>	55.
ш.	10	.00018		.,000	85000.	7 000	0012	.0015	00175	0700.	.0028	0038	.0046	.0057	.007	.0035	0105	.014	.0180	.022	026	660.	.050	.062	0880	.116	. 1.7	.27	
	0	.00019	00030	00076	.500%	6/000.	00173	0016	8100	0023	00 30 3	700.	005	0061	.0075	2600.	0120	.0150	0610.	.0240	0310	0150.	.0325	070.	.0920	. 125	.175	. 290	1.0
×	3	.001	.001585	002512	.003162	00 \$981	006310	007953	000:0	01239	0.585	01995	0.251.2	03162	18660	05012	06310	07943	0001	1259	1585	\$661	2512	. 316.2	3931	5012	0189	. 7943	0000.1

TABLE i (Chart i) (continued)

	l	
	290	.00032 .00020 .00020 .00020 .00022 .00023 .00023
	280	00030 00031 00030 00020 00020 00030 00030
	270	00011 00015 00015 00025 00035 00035 00036 00036
	260	00011 00011 00011 00001 00001 00001 00013 00013 00013
	250	000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110 000110
	240	0001 0001 0001 00001 00001 00000 00000 00000 00000 00000 00000 0000
	230	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
(	220	10000000000000000000000000000000000000
ורטוורזוומבר	230	
	200	
	190	00000000000000000000000000000000000000
	180	00012 00015 00019 00030 00030 00030 00030 00030 00135 00135 0015 001
	170	00011 00015 00015 00015 00016 00016 00016 00016 00016 00016 00017 00017 00017 00017 00017 00017 00017 00017 00017
	160	.0001 .00018 .00018 .00028 .00028 .00034 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005
	150	.0001 .00018 .00028 .00028 .00026 .00036 .0010 .0013 .0013 .0013 .0014 .0014 .0014 .0014 .0014 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016
;	×°/ /3	.005012 .005310 .005310 .007943 .01000 .01259 .01985 .01985 .01985 .03162 .05512 .05512 .1585 .1000 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1585 .1

TABLE 5 (Chart 5)
Directional Responses, Ground Contribution

ω	G	G	ω	G _F	Ga
.000	. 500	,1000	,663	, 301	,0727
.025	.495	, 0995	.675	. 296	.0715
.050	.490	. 0990	,688	. 290	,0700
.075	.483	.0985	700	.282	.0687
100	478	0978	713	.271	. 0670
.125	.474	.0972	.725	,268	,0660
.150	.469	, 0965	. 738	. 250	.0640
.175	.463	,0955	. 750	. 250	,0620
,200	.457	.0948	. 760	.244	,0608
.225	.452	,0940	. 770	. 237	,0594
,250	. 448	, 0936	. 780	.220	.0577
.275	.439	,0932	. 790	.220	.0560
.300	.436	.0925	.800	.212	.0543
.325	429	.0915	.810	,205	.0520
350	, 4.12	.0906	.820	.195	,0505
. 375	41.4	. 0895	.840	. 186	.0485
.400	.409	0886	.840	.176	,0467
,417	. 404	.0882	.850	.166	.0440
.433	.398	.0874	.860	.157	.0420
.450	.392	0865	.870	.145	,0395
. 467	. 388	.0855	.880	.135	.0372
,483	.382	.0840	,890	.125	.0345
. 500	.377	. 0845	, 900	.114	.052
.517	. 371	0835	.910	.104	.028
, 533	.364	,0826	.020	,093	.025
.550	. 158	0817	.030	,082	.022
.567	.350	.0808	, 940	.072	.018
. 583	.343	.0797	.950	.060	.015
.600	.335	.0785	.960	.049	.012
.613	, 327	,0075	.970	.037	.009
.625	.323	.0765	. 980	.025	.006
.638	.318	0754	, 990	.012	,003
.650	.310	.0745	1.000	0	()

- P-122 -

Directional Response for various neights
0 . 2 .3 .4 .5 .6
. 53. 05.
.892 .812 .812 .81 .71 .733 .69 .63 .535 .37 .32 .26 .175 .06

ပင္ဝ	<b>0</b> 0	ဝ	0	0	0	0	O	0	0	0	0	0	0	0	0	0
01.98.50 00.50																
. 22 . 175 . 175 . 0								-			-				•	
30.26		-				-	-				-			•		
.36 .32													-	-		
37.75	.31	.25	. 22	. 20	. 175	.15	. 124	10	30.	90.	1047	20.	.035	.030	.026	. 326
.55 .535 .505	84. 17.	. 438	7.	.38	.35	.32	67.	.255	.220	195	.15	ç! ¢!	Ġ	. 082	.075	.070
.623 .63 .615	.555	.551	. 525	. 50	4	(r)		396.	.35	.325	1961	. 26	.225	.180	.155	17.0
502. 69. 57.5	. 562 . 55	Ĝ	ĵ.	٥,٠	. 555	55	.52	3		7	07	.37	.335	.30	.26	:33
5 m d	1.66	. 680	(i) Q.	, č.	. 633	5.7	535	57.	576	ξ. Ε.	( ) ()	44	517.	392	.352	.327
(1) (1 · (1) (1) (1) (1) (1)	S ::	.730	21.	<u> </u>	(J.	5.5	ćēć.	.35	.613	.594	555.	. 0 .	. 505	117	(77)	. +20
95.	(C. 17)	1	i.	,C	.335	. 123	::	569.	(F) (T)	. 658	46.	.62	.59	.56	532	510
5 6 8	<b>53</b> 0	8	÷OO.	03.	505	<u></u>	ì.	<u> </u>	735	5	;;	9.0	.9:	.65	635	615
8. 8. 8. 51. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	.36	က်	1010	 (0)	£8.	323	317	e (4°)	80	5527	750	200	207	;†  -	735	127
. 69. 598. 888.																
n t u	<b>~</b> \$ ∞	01	12.6	15.9	20	25	32	0,	20	2 G	80	100	1.26	159	200	250

TABLE 8 (Chart 7)

TABLE 9 (Chart 8)

(Chart /)	TABLE 9	(Chart o)
rgent Radiation Wall Barrier		r Wali-scattered
s _w	<u>e</u>	<u>E</u>
.0	.1	1.094
.22	. 2	1.176
<b>,3</b> 5	.3	1.246
. 46	.4	1.300
.53	.5	1.340
. 585	.6	1.369
.63	.7	1.391
. 665	.8	1.406
.695	, 9	1.411
.72	1.0	1.414
. 74		
. 755		
.775		
. 78		
. 795		
.805		
.82		
.83		
.84		
.845		
.85		
.86		
.87		
.88		
.885		
	Rent Radiation Wall Barrier  Sw  .0 .22 .35 .46 .53 .585 .63 .665 .695 .72 .74 .755 .775 .78 .795 .805 .82 .83 .84 .845 .85 .86 .87	rgent Radiation         Shape Factor for Radiation           Wall Barrier         E           .0         .1           .22         .2           .35         .3           .46         .4           .53         .5           .585         .6           .63         .7           .665         .8           .695         .9           .72         1.0           .74         .755           .775         .78           .795         .805           .82         .83           .84         .845           .85         .86           .87         .88

TABLE 10 (Chart 3)

Sarrier R			23	Factor	( ) C	311+5C3	ittered 66	eduction Factors for Wall-scattered Radiation for Limited Strip of Contamination	an for	Li 11 146	Strij	of Cont	aminati 120	0n 130	071
0 10 20 30 -0 50	وب و <b>د</b>	وب و <b>د</b>	Ç	j	;/. 	_	g G	<u>ي</u> ر	0%	ပ်ဒ.	8	n I	120	130	
	, 2000														
. 004 . 0005 . 0002		.0002													
21000, 75000, 0100, 9	2000, 78000,	. 900; 4	_												
\$1010. 1 <b>6</b> 000. 85000. 8100.	9:000. : <b>6</b> 000. 85000.	\$1000 <b>7</b> :000.	5.030	5:000											
_2000 05000 0100 I200	_2000 01000 0100		- 3000	0. 75000.	Ω,										
C-000 17000, 8100, 7800,	C-000 12000 5100	C-000 17000.	0.000	0.000	·		9201£								
:0021 01100. 0280. 1600.	16000 01100 0200 <b>.</b>	.00:10 .05057	.000.	.000.5	ŏ										
ალერი : 000 - 5100 - 5900	2001 - 0018 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00	.0013 0000	35000	.000°° 2000.	Ş.				5000						
51160 6550, 8-60, 8600,	00:00 cccc. 8-00.	50100 cccc.	00113	00. 57.00	8				.00033						
8100 5100 PT00, 0810,	8700 2100 6L00,	6700 7100	6700	30. 8200				. 9906.	.00059	0,000	.0003	.0002			
1.40. 7.60. 50.0. 61.0	1-90, 7400, 5019,	00. 7.00.	00-	00-1-90-	걸.				.00033						
0.00 00:0: 08:0: 3870;	0.00 <b>00:0</b> 0 05:00	0.00 00:0	0.00	0C. 0.00	ŏ.				02100						.00027
50:01 5:00 020 0:00	50:0. 5:0. 250	50:01 5:00	10105	C. 5610.	Õ,				0600.						.000050
57:0. 820. 750. 600.	57:0. 820. 7:0.	.02% .0:73	0:75	.0. 57:0.	Ċ				6700					.0012	.000S
20. 880. 550. 670.	200, 8 <b>60,</b> 560,	0.35 0.75	9.70	.0.26	5				.0063						.00155
(13 050 060 85)	090 020 090	(10 050	(†3)	643 .03	Ę.				.035						. 0035
200 .145 .105 .035	.145 .105 .035	.105 .035	.035	.030 .05	95				.033						.0078
Ci. Cii. (1) 85.	CI. CEI. (71)	01.001.	C!	150. CI.	.03				.0395						9600.
. 35 23 160 12	23 160 :2	160	::	001	.100				.KG.						.0125
25 185 1.5	135 145	1.135		1.5 110	110				<u>ş</u> .						.014
77			£.	. Ins 133	135				.072						.016
. 50 . 35 . 25	. 35 . 25	25	il F	21.					.085						.019
.30 .42 .30 .24	.22 .30 .22.	.30		2. 18	18				8						.025
. i.e. 35. 35	. 50 35	33	33	35 .31	.31				.130				90.		0050

TABLE 10 (Chart 9)

	290	00027 00033 00043 00064 0006 0008 00165
	280	00032 00038 00058 00058 0006 00098
	270	.00038 .0005 .00070 .0008 .00096 .0011
	260	.0002 .00048 .00054 .0001 .001 .0012 .0015
	250	.00024 .0006 .00075 .0011 .0013 .0015 .0018
	240	.00030 .00074 .00093 .0016 .0019 .0019 .0033
	230	.00019 .00038 .00039 .0017 .0019 .0019 .0025 .0026
(par	220	.00021 .00050 .00110 .00115 .0025 .0025 .0030 .0030
(continued)	210	.00029 .00051 .00150 .0018 .0018 .0035 .0035 .0036
	200	.00019 .00037 .00077 .00130 .00130 .0024 .0050 .0050 .0050
	190	.00023 .00046 .0010 .0022 .003 .0052 .005 .005 .005 .005
	130	.00031 .00061 .00125 .0030 .0038 .0055 .0065 .0065 .0069
	1.70	.0004 .00077 .00077 .0037 .003 .005 .007 .000 .010 .010
	160	.00054 .0098 .0022 .0046 .006 .0089 .0089 .0089 .0115
	150	. 00069 . 0013 . 0027 . 0059 . 008 . 0100 . 012 . 0155 . 0155
	* <b>/</b> 3	. 1995 . 2512 . 3162 . 3162 . 3981 . 4500 . 450 . 450 . 450

TABLE 11 (Chart 11)

Roof Contribution Wall Barrier Effect

<u> </u>	$\frac{R_{f}}{}$
_	<del>-</del>
0	1.000
10	. 670
20	. 480
30	. 350
40	. 264
50	. 200
60	. 153
70	.118
80	. 089
90	. 0695
100	. 0550
110	.0430
120	.0332
130	. 0262
140	.0207
150	.0162
160	.0129
170	.0101
180	. 0080
190	.0064
<b>20</b> 0	.0051
210	. 0039
220	. 0031
230	. 0025
240	. 00196
250	. 00159
250	. 00125
270	. 00101
280	. 00082
290	. 00066
300	. 00053

### DISTRIBUTION LIST

	No. of Copies	Addressee
2	60	Office of Civil Defense, DOD, I'M PRIMATION
		Washington 25, D.C.
5		ATTN: Director for Research
	3	Army Library, Civil Defense will:
;	Pentagon	
•		Washington 25, D. □.
1	Assistant Secretary of the Amily (b) 10)	
i		Washington 25, D.C.
		ATTN: Assistant for Research
1	1	Chief of Naval Remarch (Codding 12)
		Department of the Navy
;		Washington 25, D.C.
į	1	Chief of Naval Operations (Options)
	Department of the Navy	
İ		Washington 25, D.C.
•	1	Chiof, Bureau of Maval Weapon
		(Code RRRE-4)
		Department of the Navy
•		Washington 25, D.C.
	1	Chief, Bureau of Modicine and Tours
•		Department of the Navy
	Washington 25, D.C.	
1	Chief, Bureau of Supplies & Management	
		(Code 1,12)
	Department of the Navy	
		Washington 25, D.C.
1	Chief, Bureau of Fards & Dock	
	Office of Research (Code 74)	
•		Department of the Navy
	Washington 25, D.C.	
7	1	Commanding Officer and Direcs Tr
	U. S. Navel Civil Engineering Livertony	
	Port Hueneme, California 91 14	
		ATTN: Document Library

1	Advisory Committee on Civil Defense National Academy of Sciences 2101 Constitution Avenue, N.W. Washington 25, D. C. ATTN: Mr. Richard Park
20	Defense Documentation Center Cameron Station Alexandria, Virginia
1	Chief of Navai rersonnel (Code Pers M12) Department of the Navy Washington 25, D. C.
1	Coordinator, Marine Corps Landing Force Davelopment Activities Quantico, Virginia
1	Director of Research and Development Office of Emergency Planning Washington 25, D. C.
1	Chief, Bureau of Ships (Code 203) Department of the Navy Washington 25, D. C.
1	Protective Structure Development Center Fort Helvoir, Virginia ATTN: Technical Library
1	Director, Air Force Nuclear Engineering Facility Air Force Institute of Technology Wright-Patterson AFB Dayton, Ohio
2	Chief, Defense Atomic Support Agency Washington 25, D. C. ATTN: Document Library
2	Chief, Defense Atomic Support Agency Washington 25 D. C. ATTN: Major Fort A. Verser
l	Ottawa University Department of Physics Ottawa, Kansas ATTN: Dr. L. V. Spencer

	1	Principal Investigator Office of Civil Defense Contract OCD-OS-64-4 National Bureau of Standards Washington 25, D. C.
•	1	Principal Investigator Office of Civil Defense Contract UCP-Un-04-140 Atomic Energy Commission Oak Ridge, Tennessee
ā	1	University of Illinois Department of Civil Engineering Urbana, Illinois ATTN: Professor A. B. Chilton
	1	Commanding Officer and Director U. S. Naval Radiological Defense Laboratory San Francisco, California ATTN: Dr. W. E. Kreger
	1	Commanding Officer W. S. Aimy Nuclear Defense Laboratory Army Chemical Center, Edgewood, Md. ATTN: Dr. H. Dennert; Dr. H. Tiller
	1	Technical Operations Research South Avenue Burlington, Massachusetts ATTN: Dr. Eric Clarke
-	1	Director, U. S. Army Ballistic Research Laboratory Aberdeen Proving Ground, Maryland ATTN: Nr. F. Allen
-	1	Mr. Charles Eisenhauer Radiation Theory Section (4.3) National Bureau of Standards Washington 25, D. C.
	1	Kansas State University Department of Nuclear Engineering Manhattan, kansas ATTN: Dr. W. Kimel

1	Director of the Reactor Facility University of Virginia Charlottesville, Virginia ATTN: Di. T. C. Williamson
2	Chemical Laboratories Defense Research Board Ottawa, Canada ATTN: Dr. E. E. Massey; Dr. O. Clifford
1	Principal Investigator Office of Civil Defense Contract OCD-OS-63-197 Aeronautical Laboratories Experiment Station College Station, Texas
1	U. S. Naval Post Graduate School Department of Physics Monterey, California ATTN: Dr. E. Milne
1	University of Maryland Department of Chemical Engineering College Park, Maryland ATTN: Dr. J. Silveman
1	Commanding Officer and Director U. S. Naval Civil Engineering Laboratory Port Hueneme, California ATTN: Dr. C. M. Huddleston
1	Armour Research Foundation of Illinois Institute of Technology 10 West 35th Street Chicago 16, Illinois ATTN: C. Terrell
l	Conesco, Inc. 205 Sixth Street Cambridge 42, Massachusetts ATIN: Mr. John F. Batter
1	Brookhaven National Laboratory Nuclear Engineering Department Upton, Long Island, New York ATTN: Dr. L. P. Hatch

1	U. S. Public Health Service Rockville, Maryland ATTN: HadioTogical Health Division
1	Los Alamos Scientific Laboratory Los Alamos, New Mexico ATTN: Document Library
1	Edgerton, Germeshausen, & Grier, Inc. 300 West Wall Street Las Vegas, Nevada ATTN: Nv. Z. G. Burson
1	Headquarters, United States Air Force AFRDC/NU Washington 25, D. C. ATTN: Major E. Lowry
1	Chlef, Bureau of Yards and Docks Navy Department Washington 25, D. C. ATTN: C-400
1	North Carolina State University Raleigh, North Carolina ATTN: Dr. W. Doggott
1	United Nuclear Corporation 5 New Street White Plains, New York ATTN: Dr. M. Kalos
1	General Dynamics/Fort Worth Fort Worth, Texas ATTN: Dr. M. Wells
1	Technical Research Group 2 Aerial Way Syossett, New York ATTN: Dr. R. Aronson
1	Lockheed Missiles and Space Diving in Technical Information Center 3251 Hanover Street Palo Alto, California

1	Director, Civil Effects Branch Division of Biology and Medicine Atomic Energy Commission Washington 25, D. C. ATTN: Mr. L. J. Deal
1	Director, U.S.A. Materials Research Agency Watertown Arsenal Watertown 72, Massachusetts ATTN: br. Dorothy Weeks
1	Director, U.S.A. Ballistic Research Laboratory Aberdeen Proving Ground, Md. ATTN: Document Library
1	Commanding General Tank Automotive Command Detroit Arsenal Centerline, Michigan ATTN: Mr. J. Brooks
1	Commanding Officer U. S. Army Nuclear Defonse Laboratory Army Chemical Conter, Maryland
1	Commanding Officer and Director U. S. Naval Radiological Defense Laboratory San Francisco, California ATTN: Document Library
1	Principal Investigator Office of Civil Defense Contract OCD-OS-64-56 Research Triangle Institute P. O. Box 490 Durham, North Carolina
1	Principal Investigator Stanford Research Institute Office of Civil Defense Contract OCD-OS-63-149 1915 University Avenue Palo Alto, California

and Engineering Manual), and analyses of individual building input and procedural differences judged to have affected the PF differences (I); construction details of four buildings used in comparing experimental and calculated PF's (J); trapped potable water field data gathered in the 33 building survey (K); detailed analyses of "Technical Operations Research" reports that affect the procedures used to calculate PF's (L-N); a summary of conclusions and recommendations made by "Technical Operations Research and concurred with by RTI (O); and detailed recommended modifications to the NBS-NFSS Computer Program (P).

CIVIL DEFENSE, NATIONAL FALLOUT SHELTER SURVEY (ERROR ANALYSIS, SAMPLE SURVEYS), RADIATION SHIELDING LITERATURE ANALYSIS, STRUCTURAL CHARACTERISTICS, PROTECTION FACTOR COMPUTATIONS (COMPUTER AND MANUAL), TRAPPED POTABLE WATER.

and Engineering Manual), and analyses of individual building input and procedural differences judged to have affected the PF differences (I); construction details of four buildings used in comparing experimental and calculated PF's (J); trapped potable water field data gathered in the 33 building survey (K); detailed analyses of Technical Operations Research reports that affect the procedures used to calculate PF's (L-N); a summary of conclusions and recommendations made by Technical Operations Research and concurred with by RTI (O); and detailed recommended modifications to the NBS-NFSS Computer Program (P).

CIVIL DEFENSE, NATIONAL FALLOUT SHELTER SURVEY (ERROR ANALYSIS, SAMPLE SURVEYS), RADIATION SHIELDING LITERATURE ANALYSIS, STRUCTURAL CHARACTERISTICS, PROTECTION FACTOR COMPUTATIONS (COMPUTER AND MANUAL), TRAPPED POTABLE WATER.

(AE Phases I and 2, RTI FOSDIC with and without partitions, and Engineering Manual), and analyses of individual building input and procedural differences judged to have affected the procedural differences judged to have affected the procedural differences (I); construction details of four buildings used in comparing experimental and calculated PF's (J); trapped potable water field data gathered in the 33 building survey (K); detailed analyses of Technical Operations Research reports that affect the procedures used to calculate PF's (L-N); a summary of conclusions and recommendations made by Technical Operations Research, and concurred with by RTI (O); and detailed recommended modifications to the NBS-NFSS Computer Program (P).

CIVIL DEFENSE, NATIONAL FALLOUT SHELTER SURVEY (ERROR ANALYSIS, SAMPLE SURVEYS), RADIATION SHIELDING LITERATURE ANALYSIS, STRUCTURAL CHARACTERISTICS, PROTECTION FACTOR COMPUTATIONS (COMPUTER AND MANUAL); TRAPPED POTABLE WATER.

and Engineering Manuel), and analyses of individual building input and procedural differences judged to have affected the PF differences (I); construction details of four buildings used in comparing experimental and calculated PF's (J); trapped potable water field data gathered in the 33 building survey (K); detailed analyses of Technical Operations Research reports that affect the procedures used to calculate PF's (L-N); a summary of conclusic; and recommendations made by Technical Operations Research and concurred with by RTI (O); and detailed recommended modifications to the NBS-NFSS Computer Program (P).

ANALYSIS, SAMPLE SURVEYS), RADIATION SHIELDING LITERATURE ANALYSIS, STRUCTURAL CHARACTERISTICS, PROTECTION FACTOR COMPUTER AND MANUAL), TRAPPED POTABLE WATER.

THE RESEARCH TRIANGLE INSTITUTE, Durham, N. C. OCD Sub-task 1115A - Final Report R-OU-81, Part II Analysis of Survey Data. Edward L. Hill et al. 15 February 1964 (UNCLASSIFIED) 4 pp. plus 16 appendices.

This part contains sixteen appendices (A-P) to the charge ers of Part I of the final report for OCD Subtast 1115A, Analysis of Survey Data. These appendices contain details of computer programs used in categorization of structures with respect to technical shielding characteristics and resultant tabulations (A-E); details of the RTI 33 NFSS Phase I building sample selection (F); an illustration of procedures used in identifying building elements critical to PF computations (G); RTI computational method and forms used in making Engineering Manual PF calculations for the 33 sample buildings (H); descriptions of the 33 buildings, the five PF results

computational method and forms used in making Engineering of the RTI 33 NFSS Phase 1 building sample selection (F); 15 February 1964 (UNCLASSIFIED) 4 pp. plus 16 appendices. characteristics and resultant tabulations (A-E); details an illustration of procedures used in identifying buildcontain details of computer programs used in categoriza-Manual PF calculations for the 33 sample buildings (H); task 1115A, Analysis of Survey Data. These appendices tion of structures with respect to technical shielding descriptions of the 33 buildings, the five PF results chapters of Part I of the final report for OCD Sub-(over) This part contains sixteen appendices (A-P) to the OCD Sub-task 1115A - Final Report R-OU-81, Part II ing elements critical to PF computations (G); RTI Analysis of Survey Data. Edward L. Hill et al. THE RESEARCH TRIANGLE INSTITUTE, Durham, N. C.

THE RESEARCH TRIANGLE INSTITUTE, Durham, N. C. OCD Sub-task 1115A - Final Report R-OU-81, Part II Analysis of Survey Data. Edward L. Hill et al. 15 February 1964 (UNCLASSIFIED) 4 pp. plus 16 appendices.

This part contains sixteen appendices (A-P) to the chapters of Part I of the final report for OCD Subtask 1115A, Analysis of Survey Data. These appendices contain details of computer programs used in categorization of structures with respect to technical shielding characteristics and resultant tabulations (A-E); details of the RTI 33 NFSS Phase I building sample selection (F); an illustration of procedures used in identifying building elements critical to PF computations (G); RTI computational method and forms used in making Engineering Manual PF calculations for the 33 sample buildings (H); descriptions of the 33 buildings, the five PF results

THE RESEARCH TRIANGLE INSTITUTE, Durham, N. C.

OCD Sub-task 1115A - Final Report R-OU-81, Part II

Analysis of Survey Data. Edward L. Hill et a!

15 February 1964 (UNCLASSIFIED) 4 pp. plus 16 appendices.

This part contains sixteen appendices (A-P) to the chapters of Part I of the final report for OCD Subtask 1115A, Analysis of Survey Data. These appendices contain details of computer programs used in categorization of structures with respect to technical shielding characteristics and resultant tabulations (A-E); details of the RTI 33 NFSS Phase I building sample selection (F); an illustration of procedures used in identifying building elements critical to PF computations (G); RTI computational method and forms used in making Engineering Manual PF calculations for the 33 sample buildings (H); descriptions of the 33 buildings, the five PF results

(over)

(over)