Multinomial logit

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Multinomial Logit Model

For all $i \in \mathcal{C}_n$,

$$U_{in} = V_{in} + \varepsilon_{in}$$

- What is C_n ?
- What is V_{in} ?
- What is ε_{in} ?

Universal choice set

- All potential alternatives for the population
- Restricted to relevant alternatives

Mode choice:

driving alone	sharing a ride	taxi
motorcycle	bicycle	walking
transit bus	rail rapid transit	horse

Individual's choice set

- No driver license
- No auto available
- Awareness of transit services
- Transit services unreachable
- Walking not an option for long distance

Individual's choice set Choice set generation is tricky

- How to model "awareness"?
- What does "long distance" exactly mean?
- What does "unreachable" exactly mean?

We assume here deterministic rules

Systematic part of the utility function

$$V_{in} = V(z_{in}, S_n)$$

where

- z_{in} is a vector of attributes of alternative i for individual n
- S_n is a vector of socio-economic characteristics of n

Questions:

- What's the functional form?
- What is exactly contained in z_{in} and S_n ?

Functional form

Notation:

$$x_{in} = (z_{in}, S_n)$$

In general, linear-in-parameters utility functions are used

$$V_{in} = V(z_{in}, S_n) = V(x_{in}) = \sum_{p} \beta_p(x_{in})_p$$

Not as restrictive as it may seem

Examples:

- Auto in-vehicle time (in min.)
- Transit in-vehicle time (in min.)
- Auto out-of-pocket cost (in cents)
- Transit fare (in cents)
- Walking time to the bus stop

Straightforward modeling

Examples:

- Level of comfort for the train
- Reliability of the bus

Other examples (marketing):

- Color
- Shape
- etc...

How to model non quantitative attributes?

- Identify all possible levels of the attribute: Very comfortable,
 Comfortable, Rather comfortable, Not comfortable.
- Select a base case: very comfortable
- Define numerical attributes
- Adopt a coding convention

Numerical attributes Introduce a 0/1 attribute for all levels except the base case

- z_a for comfortable
- z_b for rather comfortable
- z_c for not comfortable

Coding convention

	z_a	z_b	z_c
very comfortable	0	0	0
comfortable	1	0	0
rather comfortable	0	1	0
not comfortable	0	0	1

If a qualitative attribute has n levels, we introduce n-1 variables (0/1) in the model

Comparing two ways of coding:

$$V_{in} = \cdots + \beta_a z_{ia} + \beta_b z_{ib} + \beta_c z_{ic} + \beta_d z_{id} \quad \beta_a = 0$$

$$V'_{in} = \cdots + \beta'_a z_{ia} + \beta'_b z_{ib} + \beta'_c z_{ic} + \beta'_d z_{id} \quad \beta'_b = 0$$

Let's add a constant to all β 's

$$V_{in} = \cdots + \beta_a z_{ia} + \beta_b z_{ib} + \beta_c z_{ic} + \beta_d z_{id} \quad \beta_a = 0$$

$$V'_{in} = \cdots + \beta'_a z_{ia} + \beta'_b z_{ib} + \beta'_c z_{ic} + \beta'_d z_{id} \quad \beta'_b = 0$$

$$V_{in} = \cdots + (\beta_a + K)z_{ia} + (\beta_b + K)z_{ib} + (\beta_c + K)z_{ic} + (\beta_d + K)z_{id}$$

$$= \cdots + \beta_a z_{ia} + \beta_b z_{ib} + \beta_c z_{ic} + \beta_d z_{id} + K(z_{ia} + z_{ib} + z_{ic} + z_{id})$$

$$= \cdots + \beta_a z_{ia} + \beta_b z_{ib} + \beta_c z_{ic} + \beta_d z_{id} + K$$

- $K = -\beta_a$: very comfortable as the base case
- $K = -\beta_b$: comfortable as the base case
- $K = -\beta_c$: rather comfortable as the base case
- $K = -\beta_d$: not comfortable as the base case

Example of estimation with Biogeme:

	Model 1	Model 2
ASC	0.574	0.574
BETA_VC	0.000	0.918
BETA_C	-0.919	0.000
BETA_RC	-1.015	-0.096
BETA_NC	-2.128	-1.210

Socio-economic characteristics

Examples:

- Income
- Age
- Sex
- Car ownership
- Residence
- etc.

Both qualitative and quantitative characteristics

Socio-economic characteristics

They cannot appear in the same way in all utility functions

In general: alternative specific characteristics

Socio-economic characteristics

Question: does it make sense to use a term such as β_i age?

- Complex transformations can be applied without violating the linear-in-parameters formulation
- Socio-economic characteristics and alternatives attributes can be combined
- Raw data must usually be pre-processed to obtain the attributes

Complex transformations

- Compare a trip of 5 min with a trip of 10 min
- Compare a trip of 120 min with a trip of 125 min

Instead of

$$V_i = \beta_1 \mathsf{time}_i$$

one can use

$$V_i = \beta_1 \ln(\mathsf{time}_i)$$

It is still a linear-in-parameters form

Example: disposable income

 $\max(\mathsf{household} \ \mathsf{income}(\$/\mathsf{year}) - s \times \mathsf{nbr} \ \mathsf{of} \ \mathsf{persons}, 0)$

where s is the subsistence budget per person

Generic and alternative specific parameters

$$U_{\text{auto}} = \beta_1 \text{TT}_{\text{auto}}$$

 $U_{\text{bus}} = \beta_1 \text{TT}_{\text{bus}}$

or

$$U_{\text{auto}} = \beta_1 \text{TT}_{\text{auto}}$$

 $U_{\text{bus}} = \beta_2 \text{TT}_{\text{bus}}$

Modeling assumption: a minute has/has not the same marginal utility whether it is incurred on the auto or bus mode

Interactions

- All individuals in a population are not alike
- Socio-economic characteristics define segments in the population
- How to capture heterogeneity?
 - Discrete segmentation
 - Continuous segmentation

Interactions: discrete segmentation

- The population is divided into a finite number of segments
- Each individual belongs to exactly one segment
- Example: gender (M,F) and house location (metro, suburb, perimeter areas)
- 6 segments

$$\beta_{M,m}TT_{M,m} + \beta_{M,s}TT_{M,s} + \beta_{M,p}TT_{M,p} + \beta_{F,m}TT_{F,m} + \beta_{F,s}TT_{F,s} + \beta_{F,p}TT_{F,p} +$$

• $TT_i = TT$ if indiv. belongs to segment i, and 0 otherwise

Interactions: continuous segmentation

- The population is characterized by a continuous variable
- Example: the cost parameter varies with income

$$eta_{
m cost} = \hat{eta}_{
m cost} \left(rac{
m inc}{
m inc}_{
m ref}
ight)^{\lambda} \ \, {
m with} \ \, \lambda = rac{\partial eta_{
m cost}}{\partial {
m inc}} rac{
m inc}{eta_{
m cost}}$$

• Warning: λ must be estimated and utility is not linear-in-parameters anymore

Interaction of alternative attributes

Combination of attributes:

- cost / income
- fare / disposable income
- out-of-vehicle time / distance

WARNING: correlation of attributes may produce degeneracy in the model

Example: speed and travel time if distance is constant

Heterogeneity

- MNL are homoscedastic
- Assume there are two different groups such that

$$U_{in_1} = V_{in_1} + \varepsilon_{in_1}$$

$$U_{in_2} = V_{in_2} + \varepsilon_{in_2}$$

and
$$Var(\varepsilon_{in_2}) = \alpha^2 Var(\varepsilon_{in_1})$$

Then we prefer the model

$$\alpha U_{in_1} = \alpha V_{in_1} + \alpha \varepsilon_{in_1}$$

$$U_{in_2} = V_{in_2} + \varepsilon_{in_2}$$

Heterogeneity

• If V_{in_1} is linear-in-parameters, that is

$$V_{in_1} = \sum_{j} \beta_j x_{jin_1}$$

then

$$\alpha V_{in_1} = \sum_{j} \alpha \beta_j x_{jin_1}$$

is nonlinear.

Nonlinear utility functions

Other types of nonlinearities

Box-Cox — Box-Tukey transforms

$$\beta \frac{(x+\alpha)^{\lambda} - 1}{\lambda},$$

where β , α and λ must be estimated

 Continuous market segmentation. Example: the cost parameter varies with income

$$eta_{
m cost} = \hat{eta}_{
m cost} \left(rac{
m inc}{
m inc}_{
m ref}
ight)^{\lambda} \ \, {
m with} \, \, \lambda = rac{\partial eta_{
m cost}}{\partial {
m inc}} rac{
m inc}{eta_{
m cost}}$$

Reminder: binary case

- $C_n = \{i, j\}$
- $U_{in} = V_{in} + \varepsilon_{in}$
- $\varepsilon_{in} \sim \mathsf{EV}(0,\mu)$
- Probability

$$P(i|\mathcal{C}_n = \{i, j\}) = \frac{e^{\mu V_{in}}}{e^{\mu V_{in}} + e^{\mu V_{jn}}}$$

$$\bullet \ \mathcal{C}_n = \{1, \dots, J_n\}$$

•
$$U_{in} = V_{in} + \varepsilon_{in}$$

- $\varepsilon_{in} \sim \mathsf{EV}(0,\mu)$
- ε_{in} i.i.d.
- Probability

$$P(i|\mathcal{C}_n) = P(V_{in} + \varepsilon_{in} \ge \max_{j=1,...,J_n} V_{jn} + \varepsilon_{jn})$$

• Assume without loss of generality (wlog) that i = 1

$$P(1|\mathcal{C}_n) = P(V_{1n} + \varepsilon_{1n} \ge \max_{j=2,\dots,J_n} V_{jn} + \varepsilon_{jn})$$

- Define a composite alternative: "anything but one"
- Associated utility:

$$U^* = \max_{j=2,\dots,J_n} (V_{jn} + \varepsilon_{jn})$$

From a property of the EV distribution

$$U^* \sim \mathsf{EV}\left(\frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}, \mu\right)$$

From another property of the EV distribution

$$U^* = V^* + \varepsilon^*$$

where

$$V^* = \frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

and

$$\varepsilon^* \sim \mathsf{EV}(0,\mu)$$

Therefore

$$P(1|\mathcal{C}_n) = P(V_{1n} + \varepsilon_{1n} \ge \max_{j=2,...,J_n} V_{jn} + \varepsilon_{jn})$$

= $P(V_{1n} + \varepsilon_{1n} \ge V^* + \varepsilon^*)$

This is a binary choice model

$$P(1|\mathcal{C}_n) = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V^*}}$$

where

$$V^* = \frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

• We have
$$e^{\mu V^*} = e^{\ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}} = \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

and

$$P(1|C_n) = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V^*}}$$

$$= \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + \sum_{j=2}^{J_n} e^{\mu V_{jn}}}$$

$$= \frac{e^{\mu V_{1n}}}{\sum_{j=1}^{J_n} e^{\mu V_{jn}}}$$

- The scale parameter μ is not identifiable: $\mu = 1$.
- Warning: not identifiable ≠ not existing
- $\mu \rightarrow 0$, that is variance goes to infinity

$$\lim_{\mu \to 0} P(i|C_n) = \frac{1}{J_n} \quad \forall i \in \mathcal{C}_n$$

• $\mu \to +\infty$, that is variance goes to zero

$$\lim_{\mu \to \infty} P(i|C_n) = \lim_{\mu \to \infty} \frac{1}{1 + \sum_{j \neq i} e^{\mu(V_{jn} - V_{in})}}$$

$$= \begin{cases} 1 & \text{if } V_{in} > \max_{j \neq i} V_{jn} \\ 0 & \text{if } V_{in} < \max_{j \neq i} V_{jn} \end{cases}$$

- $\mu \to +\infty$, that is variance goes to zero (ctd.)
- What if there are ties?
- $V_{in} = \max_{j \in \mathcal{C}_n} V_{jn}, i = 1, \dots, J_n^*$
- Then

$$P(i|\mathcal{C}_n) = \frac{1}{J_n^*} \quad i = 1, \dots, J_n^*$$

and

$$P(i|\mathcal{C}_n) = 0 \quad i = J_n^* + 1, \dots, J_n$$

- Choice of residential telephone services
- Household survey conducted in Pennsylvania, USA, 1984
- Revealed preferences
- 434 observations

Telephone services and availability

	& some	other	
	perimeter	perimeter	non-metro
	areas	areas	areas
Budget Measured	yes	yes	yes
Standard Measured	yes	yes	yes
Local Flat	yes	yes	yes
Extended Area Flat	no	yes	no
Metro Area Flat	yes	yes	no

Universal choice set

$$C = \{\mathsf{BM}, \mathsf{SM}, \mathsf{LF}, \mathsf{EF}, \mathsf{MF}\}$$

Specific choice sets

- Metro, suburban & some perimeter areas: {BM,SM,LF,MF}
- Other perimeter areas: C
- Non-metro areas: {BM,SM,LF}

Specification table

	β_1	eta_2	β_3	β_4	eta_5
BM	0	0	0	0	ln(cost(BM))
SM	1	0	0	0	$\ln(\cos t(SM))$
LF	0	1	0	0	$\ln(\text{cost}(LF))$
EF	0	0	1	0	$\ln(cost(EF))$
MF	0	0	0	1	$\ln(\text{cost}(MF))$

$$V_{ extsf{BM}} = eta_5 \ln(extsf{cost}_{ extsf{BM}})$$
 $V_{ extsf{SM}} = eta_1 + eta_5 \ln(extsf{cost}_{ extsf{SM}})$
 $V_{ extsf{LF}} = eta_2 + eta_5 \ln(extsf{cost}_{ extsf{LF}})$
 $V_{ extsf{EF}} = eta_3 + eta_5 \ln(extsf{cost}_{ extsf{EF}})$
 $V_{ extsf{MF}} = eta_4 + eta_5 \ln(extsf{cost}_{ extsf{MF}})$

Specification table II

	β_1	eta_2	β_3	eta_4	eta_5	eta_6	eta_7
BM	0	0	0	0	$\ln(\text{cost}(BM))$	users	0
SM	1	0	0	0	$\ln(\cos t(SM))$	users	0
LF	0	1	0	0	$\ln(\text{cost}(LF))$	0	1 if metro/suburb
EF	0	0	1	0	$\ln(\text{cost}(EF))$	0	0
MF	0	0	0	1	$\ln(\text{cost}(MF))$	0	0

$$V_{
m BM} = eta_5 \ln({
m cost}_{
m BM}) + eta_6 {
m users}$$
 $V_{
m SM} = eta_1 + eta_5 \ln({
m cost}_{
m SM}) + eta_6 {
m users}$
 $V_{
m LF} = eta_2 + eta_5 \ln({
m cost}_{
m LF}) + eta_7 {
m MS}$
 $V_{
m EF} = eta_3 + eta_5 \ln({
m cost}_{
m EF})$
 $V_{
m MF} = eta_4 + eta_5 \ln({
m cost}_{
m MF})$

Multinomial Logit Model:

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Log-likelihood of a sample:

$$\mathcal{L}(\beta_1, \dots, \beta_K) = \sum_{n=1}^N \left(\sum_{j=1}^J y_{jn} \ln P_n(j|\mathcal{C}_n) \right)$$

where $y_{jn} = 1$ if ind. n has chosen alt. j, 0 otherwise

$$\ln P_n(i|\mathcal{C}_n) = \ln \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$
$$= V_{in} - \ln(\sum_{j \in \mathcal{C}_n} e^{V_{jn}})$$

Log-likelihood of a sample:

$$\mathcal{L}(\beta_1, \dots, \beta_K) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \left(V_{in} - \ln \sum_{j \in \mathcal{C}_n} e^{V_{jn}} \right)$$

The maximum likelihood estimation problem:

$$\max_{\beta \in \mathbb{R}^K} \mathcal{L}(\beta)$$

Maximization of a concave function with ${\cal K}$ variables Nonlinear programming

Numerical issue:

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Largest value that can be stored in a computer $\approx 10^{308}$, that is

$$e^{709.783}$$

If $\bar{V}_n = \max_i V_{in}$, compute

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in} - \bar{V}_n}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} - \bar{V}_n}}$$

Null model

$$U_i = \varepsilon_i \quad \forall i$$

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}} = \frac{e^0}{\sum_{j \in \mathcal{C}_n} e^0} = \frac{1}{\#\mathcal{C}_n}$$

$$\mathcal{L} = \sum_{n} \ln \frac{1}{\#\mathcal{C}_n} = -\sum_{n} \ln(\#\mathcal{C}_n)$$

Constants only [Assume $C_n = C$, $\forall n$]

$$U_i = c_i + \varepsilon_i \quad \forall i$$

In the sample of size n, there are n_i persons choosing alt. i.

$$\ln P(i) = c_i - \ln(\sum_j e^{c_j})$$

If C_n is the same for all people choosing i, the log-likelihood for this part of the sample is

$$\mathcal{L}_i = n_i c_i - n_i \ln(\sum_j e^{c_j})$$

Constants only
The total log-likelihood is

$$\mathcal{L} = \sum_{j} n_{j} c_{j} - n \ln(\sum_{j} e^{c_{j}})$$

At the maximum, the derivatives must be zero

$$\frac{\partial \mathcal{L}}{\partial c_1} = n_1 - n \frac{e^{c_1}}{\sum_j e^{c_j}} = n_1 - nP(1)$$

Constants only Therefore,

$$P(1) = \frac{n_1}{n}$$

If all alternatives are always available, a model with only Alternative Specific Constants reproduces exactly the market shares in the sample

Back to the case study

Alt.	n_i	n_i/n	c_i	e^{c_i}	P(i)
BM	73	0.168	0.247	1.281	0.168
SM	123	0.283	0.769	2.158	0.283
LF	178	0.410	1.139	3.123	0.410
EF	3	0.007	-2.944	0.053	0.007
MF	57	0.131	0.000	1.000	0.131
	434	1.000			

Null-model: $\mathcal{L} = -434 \ln(5) = -698.496$

Warning: these results have been obtained assuming that all alternatives are always available

