Notas de Topología Algebraica

Prof. Luis Jorge Sánchez Saldaña

Notas por Dani

July 1, 2023

Índice

I	Gr	upo fundamental	3
II	Es	pacios cubrientes	4
II	I H	Iomología	5
1	Álgo	ebra Homológica	6
	1.1	Conceptos básicos	6
	1.2	Sucesiones exactas	7
	1.3	Homotopía	8
	1.4	El lema de la serpiente	9
	1.5	Teorema fundamental del álgebra homológica	10
	1.6	Natrualidad del homomorfismo de conexión	11
	1.7	Lema de los cinco	11
2	Hon	nología singular	12
	2.1	Simplejos	12
	2.2	El complejo de cadenas singulares	13
	2.3	Primeras propiedades de la homología	14
			14
		2.3.2 El 0-ésimo grupo de homología	14
		2.3.3 La homología de un punto	15
	2.4	Homología reducida	15
	2.5		15
	2.6	Invarianza homotópica	15
	27	Homología rolativa	16

Parte I Grupo fundamental

Parte II Espacios cubrientes

Parte III

Homología

1. Álgebra Homológica

1.1 Conceptos básicos

En este capítulo R denotará un anillo asociativo con unidad (no necesariamente conmutativo). Normalmente pensaremos que es alguno de los siguientes: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

Recordemos que un R-módulo es básicamente un espacio vectorial pero los escalares están R.

Definición. Un *R***-complejo de cadenas** es una sucesión de *R*-módulos y homomorfismos

$$(C_{\bullet}, \partial) := \cdots \longrightarrow C_{p} \xrightarrow{\partial_{p}} C_{p-1} \xrightarrow{\partial_{p-1}} C_{p-2} \longrightarrow \cdots$$

tal que $\partial_{p-1}\partial_p=0$ para toda $p\in\mathbb{Z}$, que es equivalente a que img $\partial_p\subseteq\ker\partial_{p-1}$.

Definición. Un morfismo de R-complejos de cadenas es $(C_{\bullet}, \partial) \to (D_{\bullet}, \delta)$ es una sucesión de R-homomorfismos $C_p \xrightarrow{f_p} D_p$ tal que el siguiente diagrama conmuta:

$$\cdots \longrightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \longrightarrow \cdots$$

$$\downarrow^{f_{p+1}} \qquad \downarrow^{f_p} \qquad \downarrow^{f_{p-1}}$$

$$\cdots \longrightarrow D_{p+1} \xrightarrow{\delta_p} D_p \xrightarrow{\delta_p} D_{p-1} \longrightarrow \cdots$$

es decir $f_{p-1}\partial_p=\delta_p f_p$ para toda $p\in\mathbb{Z}$.

Definición. Decimos que (D_{\bullet}, δ) es un subcomplejo de cadenas de (C_{\bullet}, ∂) si $D_p \leq C_p$ para toda $p \in \mathbb{Z}$ y $\partial|_{D_p} = \delta_p$. El cociente $(C_{\bullet}/D_{\bullet}, \partial)$ es el complejo de cadenas dado por

$$\cdots \longrightarrow C_{p+1}/D_{p+1} \xrightarrow{\partial_{p+1}} C_p/D_p \xrightarrow{\partial_p} C_{p-1}/D_{p-1} \longrightarrow \cdots$$

donde los mapeos frontera son de la forma $\partial_p/\delta_p([c]) = [\partial_p(c)].$

Definición.

7

- Los elementos en C_p se llaman cadenas de dimensión p.
- Los elementos en $\ker \partial_p := Z_p$ se llaman ciclos de dimensión p.
- Los elementos en img $\partial_{p+1} := F_p := B_p$ se llaman fronteras de dimensión p.

Definición. El p-ésimo grupo de homogía de (C_{\bullet}, d) es

$$H_p(C) := Z_p/B_p = \ker \partial_p/\mathrm{img} \ \partial_{p+1}$$

Y decimos que dos ciclos c y c' son **homólogos** si $[c] = [c'] \in H_p(C_{\bullet})$.

Veamos una figura de dos ciclos homólogos:

Ejercicio (Función inducida). Si $(C_{\bullet}, \partial) \xrightarrow{f} (C'_{\bullet}, \partial')$ es un homeomorfismo, entonces $f(Z_p) \subseteq Z'_p$ y $f(B_p) \subseteq B'_p$ así que la función inducida

$$\bar{f}_p: H_p(C_{\bullet}) \to H_p(C_{\bullet})$$

 $a + B_p \mapsto f_p(a) + B'_p$

está bien definida. Si además tenemos un segundo homomorfismo $(C'_{\bullet}, \partial') \xrightarrow{g} (C''_{\bullet}, \partial'')$, entonces $\overline{g \circ f} = \overline{g} \circ \overline{f}$. Y por último, $\overline{Id}_{C_p} = Id_{H_p(C)}$.

Con este ejercicio comenzamos a ver las propiedades funtoriales de la homología, aunque por ahora no profundizaremos en este lenguaje.

1.2 Sucesiones exactas

Definición. Decimos que la sucesión

$$\cdots \longrightarrow C_p \xrightarrow{f_p} C_{p-1} \xrightarrow{f_{p-1}} C_{p-2} \longrightarrow \cdots$$

es **exacta** en C_p si img $f_p = \ker f_{p-1}$. Y la sucesión es **exacta** si es exacta en todos los C_p . Esto sucede si y sólo si $H_p(C_{\bullet}) = 0$ para todo $p \in \mathbb{Z}$.

Observación.

- El grupo de homología mide qué tan lejos está la sucesión de ser exacta.
- La sucesión puede ser "finita", o sea pueden haber muchos módulos que son cero.

Definición. Una sucesión exacta de la forma

$$0 \to P \to Q \to R \to 0$$

se llama **sucesión exacta corta**. Las sucesiones exactas infinitas en ambas direcciones se llaman **sucesiones exactas largas**.

Proposición.

- 1. $0 \to A \xrightarrow{\alpha} B$ es exacta si y sólo si $\ker \alpha = 0$, es decir α es inyectiva.
- 2. $A \xrightarrow{\alpha} B \to 0$ es exacta si y sólo si img $\alpha = B$, es decir α es suprayectiva.
- 3. $0 \to A \xrightarrow{\alpha} B \to 0$ es exacta si y sólo si α es un isomorfismo por los dos incisos anteriores.
- 4. $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ es exacta si y sólo si α es inyectiva, β es suprayectiva y $\ker \beta = \operatorname{img} \alpha$, de manera que β induce un isomorfismo $C \cong B/\operatorname{img} \alpha$.

Si pensamos que α es la inclusión de A como subgrupo de B, podemos escribir $C\cong B/A$.

Observación (Primer teorema de isomorfismo). Si $M' \subseteq M$, entonces

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M/M' \longrightarrow 0$$

es una sucesión exacta.

1.3 Homotopía

Definición. Dos homomorfismos

$$f,g:(C_{\bullet},\partial)\to(C'_{\bullet},\partial')$$

son **homotópicos** si existen homomorfismos $H_p:C_p \to C'_{p+1}$ para toda $p \in \mathbb{Z}$ tales que

$$f_p - g_p = \partial'_{p+1} H_p + H_{p-1} \partial_p$$

Estas flechas se pueden visualizar aquí:

Así que la suma de las flechas azules es igual a la flecha roja. (No estamos diciendo que el diagrama sea conmutativo).

Lema. Con la notación de arriba, $\bar{f}_p = \bar{g}_p : H_p(C_{\bullet}) \to H_(C'_{\bullet})$. Es decir, funciones homotópicas inducen funciones iguales en homología.

1.4 El lema de la serpiente

Lema (de la serpiente). Consideremos el diagrama conmutativo de *R*-módulos y supongamos que sus filas son exactas:

$$Z_1' \xrightarrow{\phi'} Z_2' \xrightarrow{\psi'} Z_3' \longrightarrow 0$$

$$\downarrow \partial_1 \qquad \downarrow \partial_2 \qquad \downarrow \partial_3$$

$$0 \longrightarrow Z_1 \xrightarrow{\phi} Z_2 \xrightarrow{\psi} Z_3$$

Entonces existe un homomorfismo $\delta_*:\ker\partial_3\to Z_1/\operatorname{img}\partial_1$ tal que

$$\ker \partial_1 \xrightarrow{\phi^{\prime\prime}} \ker \partial_2 \xrightarrow{\phi^{\prime\prime}} \ker \partial_3 \xrightarrow{\delta_*} Z_1/\operatorname{img} \partial_1 \xrightarrow{\bar{\phi}} Z_2/\operatorname{img} \partial_2 \xrightarrow{\bar{\psi}} Z_3/\operatorname{img} \partial_3$$

es exacta, donde ϕ'' y ψ'' son las restricciones de ϕ' y ψ' , y $\bar{\phi}$ y $\bar{\psi}$ son homomorfismos inducidos por ϕ y ψ . ¿Dónde está la serpiente?

donde coker $\partial_i = Z_i/\partial_i$. (Este diagrama fue tomado de **internet**).

Observación. Intuitivamente, el coker nos da información de qué tan lejos está un homomorfismo de ser suprayectivo.

1.5 Teorema fundamental del álgebra homológica

Primero introduciremos algo de notación

Definición. Diremos que una sucesión de complejos de cadena

$$\cdots \longrightarrow C_{\bullet} \stackrel{f}{\longrightarrow} D_{\bullet} \stackrel{g}{\longrightarrow} E_{\bullet} \longrightarrow \cdots$$

es exacta en *D*∙ si

$$\cdots \longrightarrow C_p \xrightarrow{f_p} D_p \xrightarrow{g_p} E_p \longrightarrow \cdots$$

es exacta para todo $p \in \mathbb{Z}$

Teorema (fundamental del álgebra homológica). Si

$$\cdots \longrightarrow A_{\bullet} \xrightarrow{\phi} B_{\bullet} \xrightarrow{\psi} C_{\bullet} \longrightarrow \cdots$$

es una sucesión exacta de complejos de cadena, entonces existen homomorfismos

$$\partial_{*p}: H_p(C.) \to H_{p-1}(A.)$$

tales que la sucesión

$$\cdots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\bar{\phi}_p} H_p(B_{\bullet}) \xrightarrow{\bar{\psi}_p} H_p(C_{\bullet}) \xrightarrow{\delta_{*p}} H_{p-1}(A_{\bullet}) \xrightarrow{\bar{\phi}_{p-1}} H_{p-1}(B_{\bullet}) \longrightarrow \cdots$$

es exacta.

En el siguiente diagrama conmutativo se ve claramente qué está pasando:

$$0 \qquad 0 \qquad 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\cdots \longrightarrow A_{p+1} \xrightarrow{\partial_{p+1}} A_p \xrightarrow{\partial_p} A_{p-1} \longrightarrow \cdots$$

$$\downarrow^{i_{p+1}} \qquad \downarrow^{i_p} \qquad \downarrow^{i_{p-1}}$$

$$\cdots \longrightarrow B_{p+1} \xrightarrow{\partial_{p+1}} B_p \xrightarrow{\partial_p} B_{p-1} \longrightarrow \cdots$$

$$\downarrow^{j_{p+1}} \qquad \downarrow^{j_p} \qquad \downarrow^{j_{p-1}}$$

$$\cdots \longrightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \longrightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

1.6 Natrualidad del homomorfismo de conexión

Teorema (Naturalidad del homomorfismo de conexión).

$$0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow A'_{\bullet} \longrightarrow B'_{\bullet} \longrightarrow C'_{\bullet} \longrightarrow 0$$

donde las filas son exactas.

Entonces, el siguiente diagrama conmuta

$$\cdots \longrightarrow H_p(A) \longrightarrow H_p(B) \longrightarrow H_p(C) \xrightarrow{\delta_*} H_{p-1}(A) \longrightarrow H_{p-1}(B) \longrightarrow H_{p-1}(C) \longrightarrow \cdots$$

$$\downarrow_{\bar{f}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{h}}$$

$$\cdots \longrightarrow H_p(A') \longrightarrow H_p(B') \longrightarrow H_p(C') \longrightarrow H_{p-1}(A') \longrightarrow H_{p-1}(B') \longrightarrow H_{p-1}(C') \longrightarrow \cdots$$

Parece que ésta es una propiedad relacionada con la estructura de funtor de la homología.

1.7 Lema de los cinco

Lema (de los cinco). Consideremos el diagrama conmutativo con filas exactas

$$M_5 \xrightarrow{f_5} M_4 \xrightarrow{f_4} M_3 \xrightarrow{f_3} M_2 \xrightarrow{f_2} M_1$$

$$\downarrow h_5 \qquad \downarrow h_4 \qquad \downarrow h_3 \qquad \downarrow h_2 \qquad \downarrow h_1$$

$$N_5 \xrightarrow{g_5} N_4 \xrightarrow{g_4} N_3 \xrightarrow{g_3} N_2 \xrightarrow{g_2} N_1$$

Si h_5, h_4, h_2 y h_1 son isomorfismos, entonces h_3 también.

¿En dónde se usará esto?

2. Homología singular

2.1 Simplejos

Comenzaremos definiendo varios conceptos nuevos. Fijemos un entero $n \geq 0$. Un n-simplejo es el convexo más pequeño en \mathbb{R}^m (m>n) que contiene n+1 puntos $v_0,...,v_n$ que no viven en un hiperplano de dimensión menor que n.

Lo denotaremos por $[v_0,\ldots,v_n]$ y diremos que v_0,\ldots,v_n son sus **vértices**. Y podemos escribirlo así: $[v_0,\ldots,v_n]=\{t_0v_0+\ldots+t_nv_n|t_i\geq 0,t_0+\ldots+t_n=1\}.$

El *n*-simplejo estándar es $\Delta^n := [e_1, \dots, e_n]$ donde e_1, \dots, e_n es la base canónica de \mathbb{R}^{n+1} .

Y observemos que $\Delta^n = \{(t_0, \dots, t_n) \in \mathbb{R}^{n+1} | t_0 + \dots + t_n = 1\}$ Para nosotros el orden de los vértices en $[v_0, \dots, v_n]$ es importante y siempre hay que tenerlo en mente.

Dado un *n*-simplejo siempre tenemos la función:

$$(v_0, \dots, v_n) : \Delta^n \to [v_0, \dots, v_n]$$
$$(t_0 + \dots + t_n) \mapsto t_0 v_0 + \dots + t_n v_n$$

Y diremos que $(t_0, \dots + t_n \text{ son las coordenadas baricéntricas del punto } t_0v_0 + \dots + t_nv_n \in [v_0, \dots, v_n].$

Una **cara** de $[v_0, \ldots, v_n]$ es el subsimplejo de generado por cualquier subconjunto no vacío de v_0, \ldots, v_n . Cualquier cara 1-dimensional $[v_i, v_j]$ con i < j vamos a considerarla orientada en orden ascendente:

¿Cómo quedan orientadas las caras de dimensión 2?

2.2 El complejo de cadenas singulares

Tomemos un espacio topológico X y un anillo asociativo con unidad R. Un n-simplejo singular es una función $\sigma: \Delta^n \to X$.

El término "singular" proviene de que no se le imponen condiciones a la función σ salvo continuidad. Esto quiere decir que un simplejo singular puede verse bastante diferente de como lo imaginamos inicialmente.

Definamos el siguiente conjunto

$$C_n(X) := \left\{ \sum_{i=1}^m r_i \sigma_i | m \in \mathbb{Z}, r_i \in \mathbb{R}, \sigma_i \text{ es un simplejo singular} \right\}$$

Que es el R-módulo libre generado por el conjunto de n-simplejos singulares. Los elementos de C_n se llaman n-cadenas singulares. Queremos construir la siguiente sucesión:

$$\cdots \longrightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0(X)$$
 (2.1)

Para lo cual basta definir $\partial_n : C_n(X) \to C_{n-1}(X)$ como sigue: para un n-simplejo singular $\sigma : \Delta^n = [v_0, \dots, v_n] \to X$,

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \sigma | [v_0, \dots, \hat{v}_i, \dots, v_n]$$

Donde $\sigma|[v_0,\dots,\hat{v}_i,\dots,v_n]$ es el siguiente n-1-simplejo singular: primero tomemos la n-1-cara de Δ^n que se obtiene al quitar el vértice v_i , es decir, $[v_0,\dots,v_{i-1},v_{i+1},\dots,v_n]$. Y luego simplemente componemos: $\partial_n:C_n(X)\to C_{n-1}(X)$ como sigue: para un n-simplejo singular $\partial_n:C_n(X)\to C_{n-1}(X)$ como sigue: para un n-simplejo singular $\sigma:\Delta^n=[v_0,\dots,v_n]\to X$,

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \sigma | [v_0, \dots, \hat{v}_i, \dots, v_n]$$

Donde $\sigma[[v_0,\ldots,\hat{v}_i,\ldots,v_n]$ es el siguiente n-1-simplejo singular: primero tomemos la n-1-cara de Δ^n que se obtiene al quitar el vértice v_i , es decir, $[v_0,\ldots,\hat{v}_i,\ldots,v_n]:=[v_0,\ldots,v_{i-1},v_{i+1},\ldots,v_n]$. Y luego simplemente componemos:

Donde la flecha de abajo es la función obvia: manda los vértices en orden y se brinca el *i*-ésimo. Y bueno, así queda definida la función ∂_n en la base de C_n , y simplemente extendemos por linealidad a todo C_n . Ahora veamos una proposición:

Proposición. $\partial_{n-1} \circ \partial_n = 0$

Con lo que la sucesión (2.1) es un complejo de cadenas que podemos llamar el **complejo** de cadenas singulares de X, que denotaremos por $C_{\bullet}(X)$. Y ahora podemos considerar sus grupos de homología y definir

$$H_n(X;R) := H_n(C_{\bullet}(X))$$

como el n-ésimo grupo de homología singular de X con coeficientes en R.

2.3 Primeras propiedades de la homología

2.3.1 La homología y las componentes arco-conexas

Proposición. Sea $X = \bigsqcup X_i$ la descomposición en componentes arco-conexas del espacio topológico X, entonces

$$H_n(\bigsqcup X_i, R) \cong \bigoplus H_n(X_i, R)$$

2.3.2 El 0-ésimo grupo de homología

Proposición. Para cualquier espacio X, $H_0(X;R)$ es un suma directa de copias de R, una por cada componente arcoconexa.

15

2.3.3 La homología de un punto

Proposición. Si *X* consiste de un sólo punto, entonces

$$H_n(X;R) = \begin{cases} R & \text{si } n = 0\\ 0 & \text{si } n \neq 0 \end{cases}$$

2.4 Homología reducida

Considera

$$\ldots \to C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} C_{p-2} \to \ldots \to C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} R \xrightarrow{\varepsilon} 0$$

donde $\varepsilon(\sum n_i \sigma_i) = \sum n_i$ es el mapeo de aumentación.

Va a resultar que $\tilde{H}_n(X;R) = H_n(X;R)$ para toda $n \ge 1$.

Sobre la homología reducida del espacio que es un sólo punto

Sabemos por la proposición de la homología de un punto que si $X=\{x\}$, entonces $H_0(X)=R$, es decir, $\ker\partial_0/\mathrm{img}\,\partial_1=R$. Esto implica que la sucesión corta $0\to \mathrm{img}\,\partial_1\xrightarrow{\partial_1}\ker\partial_0\xrightarrow{\partial_0}R\xrightarrow{\varepsilon}0$ es exacta.

¿Cómo deducimos de aquí que $\tilde{H}_0(X;R)=0$? Bueno resulta que como el espacio es un punto, $\partial_1=0$, así que de entrada img $\partial_1=0$. Luego, en realidad tenemos la sucesión exacta corta $0\to\ker\partial_0\xrightarrow{\partial_0}R\xrightarrow{\varepsilon}0$ que hace a ∂_0 un isomorfismo que en particular es inyectivo.

Como $\tilde{H}_0 = \ker \partial_0 / \text{img } \partial_1$, entonces $\tilde{H}_0(X; R) = 0$.

Y en general $H_0(X;R) = \tilde{H}_0(X;R) \oplus R$

2.5 Funtorialidad

2.6 Invarianza homotópica

Teorema. Si dos funciones $f,g:X\to Y$ son homotópicas, entonces inducen el mismo homomorfismo $f_*=g_*:H_n(X)\to H_n(Y)$.

Corolario 1. Si dos funciones $f,g:X\to Y$ son homotópicas, entonces inducen el mismo homomorfismo $f_*=g_*:H_n(X)\to H_n(Y)$.

2.7 Homología relativa

Sean $A \subseteq X$ espacios topológicos. Diremos que (X, A) es una buena pareja. Notemos que $(C_{\bullet}(A))$ es un subcomplejo de $C_{\bullet}(X)$, así que podemos definir el complejo relativo

$$C_{\bullet}(X, A) = C_{\bullet}(X)/C_{\bullet}(A)$$

Y esto simplemente quiere decir que para toda n,

$$C_n(X,A) = C_n(X)/C_n(A)$$

de forma que las cadenas en A se vuelven triviales.

Es claro que el n-ésimo operador frontera restringido a $C_n(A)$ se mapea a $C_{n-1}(A)$, (pues la frontera de una cadena en A no podría salirse de A). Esto quiere decir que el mapeo frontera está bien definido en el cociente.

$$\dots \to C_{n+1}(X,A) \xrightarrow{\partial_{n+1}} C_n(X,A) \xrightarrow{\partial_n} C_{n-1}(X,A) \to \dots$$

Esto induce la homología dada por

$$H_n(X,A) = \ker \partial_n / \operatorname{img} \partial_{n-1}$$

Ejercicio.
$$H_n(X, \{x_0\}) = H_n(X)$$
.

Ahora lo primero que pasa es que tenemos una sucesión exacta corta a la que aplicaremos el teorema fundamental del álgebra homológica: Así que obtenemos la **sucesión** exacta larga de la pareja

$$\dots \to H_n(A) \xrightarrow{i_{*n}} H_n(X) \xrightarrow{j_{*n}} H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{i_{*n-1}} H_{n-1}(X) \xrightarrow{i_{*p-1}} \dots$$

Como primera observación notemos que si los grupos de homología de la pareja $C_p(X,A)$ fueran triviales, autimáticamente tedríamos que el mapeo inducido por la inclusión sería un isomorfismo. De hecho, esto es un si y sólo si. Así, los grupos de homología miden qué tan diferentes son los grupos de homología de A y los de X.

Finalmente agregamos el comentario de que aunque el mapeo ∂ que usamos para completar la sucesión exacta larga de la pareja viene del teorema fundamental del álgebra homológica, y al recordar la demostración del teorema nos damos cuenta de que este mapeo actúa exactamente como el operador frontera original de X.