電腦閱卷選擇題答案

系所組名稱:資訊科學系、資訊安全碩士學位學程

科目名稱:計算機數學

題號	答案	題號	答案
			2 //
1	D		
2	С		
3	D		
4	В		
5	С		
6	В		
7	В		
8	A		
9	D		
10	С		
11	D		
12	D		
13	D		
14	В		
15	С		
16	В		
17	A		
18	D		
19	В		
20	В		
21	С		
22	D		
23	A		
24	D		
25	В		

第1頁,共5頁

考 試 科 目計算機數學

系 所 別 資訊科學系 資訊安全碩士學位學程

考試時間

2月3 日(五)第二節

本次考試共25題單選題,每題4分。

選擇題請在答案卡上作答,否則不予計分。

1. If
$$\begin{bmatrix} 11 & 5 \\ 35 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$$
 and $a, b, c \in R$, then $a + b + c = ?$

(A) 7 (B) 8 (C) 9 (D) 10

- 2. How many of the following statements are true?
- If E is an elementary matrix, then $det(E) = \pm 1$.
- For any $A, B \in M^{n \times n}(F)$, $\det(AB) = \det(A) \cdot \det(B)$.
- A matrix $A \in M^{n \times n}(F)$ has rank n if and only if $\det(A) \neq 0$.
- For any $A \in M^{n \times n}(F)$, $\det(A^t) = -\det(A)$.

(A)0 (B)1 (C)2 (D)3 (E)4

- 3. Let A be an $m \times n$ matrix whose null space has dimension k. Which conclusion is correct?
 - (A) The dimension of $NULL(A^T)$ is k.
 - (B) The dimension of row space of A is m-k.
 - (C) The dimension of column space of A is m-k.
 - (D) The dimension of row space of A is n-k.
- 4. How many of the following vector functions are linear transformations?

$$\bullet \quad T_1\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \begin{bmatrix} x^2 \\ x+y \\ y^2 \end{bmatrix}$$

$$\bullet \quad T_2\left(\left[\begin{array}{c} x \\ y \\ z \end{array} \right] \right) = \left[\begin{array}{c} x+y \\ x+y+z \\ 0 \end{array} \right]$$

$$\bullet \quad T_3\left(\left[\begin{array}{c} x\\y\\z\end{array}\right]\right) = \left[\begin{array}{c} e^{x+y}\\\sqrt{y}\end{array}\right]$$

•
$$T_4\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ 10 \end{bmatrix}$$

(A)0 (B)1 (C)2 (D)3 (E)4

第2頁,共【頁

考試科目計算機數學 系所別資訊科學系資訊安全碩士學位學程 考試時間 2月3日(五)第二節

- 5. How many of the following statements are true?
- The Gram-Schmidt orthogonalization process allows us to construct an orthonormal set from an arbitrary set of vectors.
- An orthonormal basis must be an ordered basis.
- Every orthogonal set is linearly independent.
- Every orthonormal set is linearly independent
- (A)0 (B)1 (C)2 (D)3 (E)4

6. Let $A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$, please find A^{100}

$$\text{(A)} \ \begin{bmatrix} -4^{100} & 1 - 4^{100} \\ 0 & 1 \end{bmatrix} \ \text{(B)} \ \begin{bmatrix} 4^{100} & 1 - 4^{100} \\ 0 & 1 \end{bmatrix} \ \text{(C)} \ \begin{bmatrix} 4^{100} & 1 - 4^{100} \\ 0 & -1 \end{bmatrix} \ \text{(D)} \ \begin{bmatrix} 4^{100} & 1 + 4^{100} \\ 0 & 1 \end{bmatrix}$$

7. How many of the following statements are true?

- Every linear operator on an n-dimensional vector space has n distinct eigenvalues.
- Any two eigenvectors are linearly independent.
- Similar matrices always have the same eigenvalues.
- Similar matrices always have the same eigenvectors.

$$(A)0$$
 $(B)1$ $(C)2$ $(D)3$ $(E)4$

For problems 8-10, please find a singular value decomposition for the following matrix.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} = U\Sigma V$$

8.
$$U = ?$$

$$\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$(A) \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$(B) \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$(C) \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

第3頁,共5頁

考 試 科 目計算機數學	系 所 別 資訊科學系 資訊安全碩士學位學程	考試時間 2月3	日(五)第二節
--------------	------------------------	----------	---------

9.
$$\Sigma = ?$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix} \xrightarrow{\text{(B)}} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix} \xrightarrow{\text{(C)}} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix} \xrightarrow{\text{(D)}} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

10.
$$V = ?$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{\sqrt{2}} & \frac{3}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \xrightarrow{(B)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \xrightarrow{(C)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \xrightarrow{(D)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-3}{\sqrt{2}} \end{bmatrix}$$

- 11. Determine whether each of these compound propositions is satisfiable.
- (1) $(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$.
- $(2) \ (p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q).$
- (3) $(p \lor q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$.
- (A)(1) (B)(1), (2) (C)(2), (3) (D)(1), (3)

12. Let $S = \{a, \{a\}, \phi, \{\phi\}\}\$, and P(S) denote the power set of S. How many of the following statements are true?

- \bullet $a \in S$
- $\{a\} \subseteq S$
- $\{\{a\}\}\subseteq S$
- $\phi \in S$
- \bullet $\phi \subseteq S$
- $\phi \in P(S)$
- $\{\phi\} \in P(S)$
- $\{\phi\} \subseteq P(S)$

第4頁,共5頁

考試科目計算機數學 系所別資訊科學系資訊安全碩士學位學程 考試時間 2月3日(五)第二節

13. Let set $A = \{1,2,3,4\}$. Define a relation of R of A as R =

 $\{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$. Which of the following properties does this relation have?

- (1) symmetric
- (2) asymmetric
- (3) antisymmetric
- (4) reflexive
- (5) irreflexive
- (6) transitive

(A)(1), (4), (6) (B)(2), (5), (6) (C)(3), (5) (D)(5)

14. Consider a graph

How many of the following statements are true?

- It is bipartite.
- It has the longest simple path of length 8.
- It has an Euler circuit.
- It doesn't have an Euler circuit.

(A)0 (B)1 (C)2 (D)3

15. How many of the following statements are true?

- A graph G has a spanning tree if G is connected.
- A graph G = (V, E) with |E| = m satisfying $2m = \sum_{v \in V} \deg(v)$.
- A graph $G = (V_1, V_2, E)$ is bipartite, when G has a Hamilton cycle, $|V_1| = |V_2|$.
- A graph $G = (V_1, V_2, E)$ is bipartite, when G has a Hamilton cycle, $|V_1| |V_2| \le 1$.

(A)1 (B)2 (C)3 (D)4

For problems 16-18, please solve the linear recurrence relation $a_n + 6a_{n-1} + 9a_{n-2} = (-3)^n$ with $a_0 = 2$ and $a_1 = 3$, and let $a_n = (i + jn + kn^2) \cdot (-3)^n$. 16. i = ? (A)1 (B)2 (C)-2 (D)3

第5頁,共(頁

考試科目計算機數學系系所別資訊安全碩士學位學程 考試時間 2月3日(五)第二節

17. $j = ?(A) - \frac{7}{2}$ (B) $\frac{7}{2}$ (C) $-\frac{5}{2}$ (D) $\frac{5}{2}$

18. k = ? (A) $\frac{3}{2}$ (B) $-\frac{3}{2}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$

For problems 19-20, please find $X = 101^{-1}$ modulo 4620.

Let $X = 100 \cdot a + b$.

19. a = ? (A)15 (B)16 (C)17 (D)18

20. b = ? (A)0 (B)1 (C)2 (D)3

For problems 21-22, suppose E and F are events in a sample space with $p(E) = \frac{1}{3}$, $p(F) = \frac{1}{2}$,

and $p(E|F) = \frac{2}{5}$. Find $p(F|E) = \frac{a}{b}$.

21. a = ? (A)1 (B)2 (C)3 (D)4

22. b = ? (A)2 (B)3 (C)4 (D)5

23. Which the following statement is false?

(A) If NFA with k states accepts any character at all, then it cannot accept a string of length < k

(B) The set for all the string that does not belong to a particular regular language L, is also a regular language

(C) The result of subset operation of a regular language set can still be regular

(D) Any kind of NFA can always convert to a DFA

24. Let N be an NFA with n states, let k be the number of states of a minimal DFA which is equivalent to N. Which one of the following is necessarily true?

(A) $k \ge n^2$

(B) $k \ge 2^n$

(C) $k \le n^2$

(D) $k \le 2^n$

25. Which of the following is not context-free language?

(A) $L1: \{ 0^p 1^q 0^r | p = q \text{ and } pqr \ge 0 \}$

(B) $L2: \{ 0^p 1^q 0^r | p = q = r \text{ and } pqr \ge 0 \}$

(C) $L1: \{ 0^p 1^q 0^r | p = q \text{ or } q = r \text{ and } pqr \ge 0 \}$

(D) all of above are context-free language

· 一、作答於試題上者,不予計分。

二、試題請隨卷繳交。