Análisis no lineal de Neuroimagen de la enfermedad Temblor Esencial

Preprocesado y análisis de neuroimagen funcional en estado de reposo

Jose Ignacio Sánchez Méndez

Trabajo Fin de Máster

Departamento de Ciencias de la Computación e

Inteligencia Artificial

Escuela de Másteres y Doctorados de la UPV/EHU

Directora: Miren Karmele López de Ipiña

Análisis no lineal de Neuroimagen de la enfermedad Temblor Esencial

Preprocesado y análisis de neuroimagen fmri en estado de reposo

Preprocesado y análisis de neuroimagen fmri en estado de reposo

Abstract

Resumen del TFM

Índice general

1.	\mathbf{Intr}	oducción	2
	1.1.	Motivación	2
	1.2.	Objetivos de este Trabajo	2
	1.3.	Estructura	2
2.	Esta	ado del arte	3
	2.1.	Estandar imágen médica: DICOM	3
	2.2.	Neuroimagen de temblor esencial	3
	2.3.	Preprocesado de neuroimágen	3
		2.3.1. Neuroimagen funcional fmri	3
		2.3.2. Neuroimagen anatómica MPRAGE	3
	2.4.	Extracción del mapa cerebral funcional	3
	2.5.	Análisis no lineal	3
		2.5.1. Teoría de la información	3
3.	Met	odología	4
	3.1.	Visualización y selección de imágenes	4
	3.2.		4
			4
			4
	3.3.		5
	3.4.		5
	3.5.		5
		3.5.1. Entropía Espectral de Shannon	5
		3.5.2. Entropía de permutación	5
4.	Mat	reriales	6
		Consideraciones éticas	6

	4.2.	Objetivos de este Trabajo	6
	4.3.	Pacientes para el experimento	6
		4.3.1. Datos demográficos	6
		4.3.2. Fuentes de origen	6
	4.4.	Herramientas open source para el preprocesado de neuroimágen	7
		4.4.1. Introducción a python	7
		4.4.2. Motor de flujos y preprocesado nipype	7
		4.4.3. Procesado de neuroimagen FSL	7
		4.4.4. Normalizado de imágen ANTs	7
		4.4.5. Machine Learning para neuroimagen Nilearn	7
		4.4.6. Preprocesado de series temporales fmri Nitime	7
5.	Des	arrollo	8
	5.1.	Estructura del experimento	9
		5.1.1. Estructura de directorios	9
		5.1.2. Configuración del experimento	9
	5.2.	Módulo preprocesado	9
		5.2.1. Parametrización	9
		5.2.2. Salidas	9
	5.3.	Módulo extracción de mapa cerebral	9
		5.3.1. Parametrización	9
		5.3.2. Salidas	9
	5.4.	Módulo extracción de regiones	9
		5.4.1. Parametrización	9
		5.4.2. Salidas	9
	5.5.	Módulo para el cálculo de entropía	9
		5.5.1. Parametrización	9
		5.5.2. Salidas	9
	5.6.	Persistencia e informe de los resultados	9
		5.6.1. Parametrización	9
		5.6.2. Salidas	9
6.	Esti	udio de resultados 1	0
	6.1.		0
	6.2.		.0
	6.3.		0
			0

Introducción

1.1. Motivación

1.2. Objetivos de este Trabajo

El objetivo de este trabajo tratará de alcanzar

- Estado del arte de fMRi para Temblor esencial
- Mapas cerebrales
- Análisis de la evolución de la intensidad en los mapas del fMRi
- Evolución de la Entropía de Shannon en el fMRi
- Evolución de la Entropía de Permutación en el fMRi
- Evolución de la correlación
- Construción de una herramienta opensource modular, reutilizable y escalable para el análisis de neuroimagen

1.3. Estructura

[1]

Estado del arte

- 2.1. Estandar imágen médica: DICOM
- 2.2. Neuroimagen de temblor esencial
- 2.3. Preprocesado de neuroimágen
- 2.3.1. Neuroimagen funcional fmri
- 2.3.2. Neuroimagen anatómica MPRAGE
- 2.4. Extracción del mapa cerebral funcional
- 2.5. Análisis no lineal
- 2.5.1. Teoría de la información

Entropía espectral de Shannon

Entropía de permutación

Metodología

- 3.1. Visualización y selección de imágenes
- 3.2. Preprocesado
- 3.2.1. Transformación de formato
- 3.2.2. Pipeline de preprocesado

Neuroimágen anatómica MPRAGE

- 1. Extracción del cerebro
- 2. Segmentación de imágen
- 3. Coregistro

Neuroimágen funcional fmri

- 1. Selección de volumenes para el procesado
- 2. Slice Timer
- 3. Corrección del movimiento
- 4. Co-registro en dos fases
- 5. Eliminación de artefactos

- 6. Band pass filter
- 7. Suavizado Del inglés smooth
- 3.3. Coonstrucción del mapa funcional
- 3.4. Extracción de las regiones y estudio de la correlación
- 3.5. Extracción de parámetros
- 3.5.1. Entropía Espectral de Shannon Espectro de potencia
- 3.5.2. Entropía de permutación

Materiales

4.1. Consideraciones éticas

Protección de datos, anonimización.

- 4.2. Objetivos de este Trabajo
- 4.3. Pacientes para el experimento
- 4.3.1. Datos demográficos
- 4.3.2. Fuentes de origen
 - 1. Neuroimágen funcional: fmri
 - 2. Neuroimágen anatómica: MPRAGE

4.4. Herramientas open source para el preprocesado de neuroimágen

4.4.1. Introducción a python

Numpy

Scipy

Matplotlib

- 4.4.2. Motor de flujos y preprocesado nipype
- 4.4.3. Procesado de neuroimagen FSL
- 4.4.4. Normalizado de imágen ANTs
- 4.4.5. Machine Learning para neuroimagen Nilearn

Introducción a sklearn

Extracción del mapa cerebral funcional

FastICA

CanICA

DictLearning

4.4.6. Preprocesado de series temporales fmri Nitime

Desarrollo

oir Estractara acremperament	5.1.	Estructura	del	experiment
------------------------------	------	------------	-----	------------

- 5.1.1. Estructura de directorios
- 5.1.2. Configuración del experimento
- 5.2. Módulo preprocesado
- 5.2.1. Parametrización
- 5.2.2. Salidas
- 5.3. Módulo extracción de mapa cerebral
- 5.3.1. Parametrización
- 5.3.2. Salidas
- 5.4. Módulo extracción de regiones
- 5.4.1. Parametrización
- 5.4.2. Salidas
- 5.5. Módulo para el cálculo de entropía
- 5.5.1. Parametrización g
- 5.5.2. Salidas
- 5.6. Persistencia e informe de los resultados
- 5.6.1. Parametrización

Estudio de resultados

- 6.1. Resultados
- 6.2. Discusión
- 6.3. Conclusiones
- 6.4. Líneas futuras

Bibliografía

[1] Y. Yao y col. «The Increase of the Functional Entropy of the Human Brain with Age». En: *Scientific Reports* 3 (oct. de 2013). Article, 2853 EP -. URL: http://dx.doi.org/10.1038/srep02853.