TP558 - Tópicos avançados em Machine Learning: Deep Q-Learning

Bianca Sabrina de C. da Silva bianca.sabrina@dtel.inatel.br

Introdução

• O objetivo é treinar agentes para aprender a tomar decisões.

• Uma das grandes limitações do Q-Learning era lidar com ambientes de alta complexidade.

 Os pesquisadores aplicaram o Deep Q-Learning em um conjunto de 49 jogos do Atari 2600.

Fundamentação teórica

Arquitetura e funcionamento

Treinamento e otimização

Vantagens e desvantagens

Vantagens:

- Aprende direto de pixels, sem features manuais.
- Funciona em jogos variados com mesma arquitetura.
- Supera métodos anteriores, desempenho próximo ao humano.

Desvantagens:

- Alto custo computacional e muitas interações.
- Treinamento instável, sujeito a divergências.
- Difícil em tarefas que exigem planejamento de longo prazo.

Exemplo(s) de aplicação

Exemplo(s) de aplicação

Comparação com outros algoritmos

Aspecto	Antes do DQN	Com o DQN	Diferença Principal
Métodos	SARSA, Q-Learning tabular	Deep Q-Network (DQN)	Capacidade de generalização
Entrada	Features manuais	Aprende direto de pixels	Reduz necessidade de engenharia manual
Desempenho	Limitado a cenários simples	Supera algoritmos existentes em 43/49 jogos	Próximo ao desempenho humano
Aplicação	Cada jogo precisava de ajustes	Mesma rede e parâmetros para jogos diferentes	Flexibilidade e escalabilidade

Perguntas?

Referências

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). **Human-level control through deep reinforcement learning.** *Nature*, 518(7540), 529–533.

Farama Foundation. (2025). **Environments — Arcade Learning Environment (ALE). Disponível em:** https://ale.farama.org/environments/

Farama Foundation. (2025).

Cart Pole Environment — Gymnasium Classic Control.

Disponível em: https://gymnasium.farama.org/environments/classic_control/cart_pole/

Chapman, J., & Lechner, M. (2020). **Deep Q-Learning for Atari Breakout. Disponível em:** https://keras.io/examples/rl/deep_q_network_breakout/

Obrigada!

Link para o Quiz