CS 3317: Artificial Intelligence

Bayes Nets: Sampling

Instructor: Panpan Cai

Bayes Nets: Graphical Model

- A directed acyclic graph (DAG) consisting of random variables
 - A graphical model built from experience/data

• Examples:

Bayes Nets: Local CPTs

A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

• Examples:

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-e	0.998

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

\bigcirc B	E
	M

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Bayes Nets: Probabilities and Independences

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

 The following conditional independence assumptions are made immediately, when given a BN graph:

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

 X_i is independent of all non-parent variables coming before it, given its parents

"Read" All Independences

 Given a Bayes net structure, can run dseparation algorithm to read a complete list of conditional independences of the form:

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that a BN graph can represent

D-Separation: Canonical Cases

D-Separation: Algorithm

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- lacktriangle Check all *undirected* paths between X_i and X_j
 - If one or more path active, independence broken

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive), independence guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Topology Limits Distributions

- Given some graph topology
 G, only a subset of joint distributions can be expressed
- Adding arcs increases the set of distributions, but at a cost of increased complexity
- Full conditioning can encode any distribution

Bayes Nets

- Representation
- **✓** Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
- ✓ Conditional Independences
- Sampling
- Learning from data

Exact Inference: Inference by Enumeration

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- Join all factors to get a complete joint

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Sum out all hidden variables

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

Normalize

Exact Inference: Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$i \times \mathbf{r} = \mathbf{r} \times \frac{1}{Z}$$

Worst-Case Complexity: NP Hard!

CSP: assign variables so that the sentence is true

Clause need be true

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6) \lor (x_4 \lor x_6) \lor (x_4 \lor x_6)$$

- If we can answer whether P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution (which is NP hard!)
- Hence probabilistic inference in Bayes nets is NP-hard.
 - No known efficient (exact) solution in general.

Approximate Inference: Sampling

Sampling

- Sampling is just repeated random simulation
 - X is a random variable with an underlying distribution P(X)
 - Treat the model P(X) as a simulator, where each simulation generates a sample x_i
 - In the limit, the *frequency* of seeing a particular value x converges to the *probability* of x
- The simulator can also host:
 - Joint distributions
 - Conditional distributions
 - Bayes Nets (with evidences or not)
 - Or any black-box random process...

Sampling

- Why sample?
 - Learning: estimate a distribution that you don't know
 - Model-based RL: sample transitions, learn models
 - Q-learning: sample transitions, learn Q-functions

- Speedup inference: estimating using samples is faster than computing the exact answer (e.g. with variable elimination)
 - This lecture!

How to Sample?

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert u into an outcome
 - Associate each outcome with a sub-interval of [0,1) with size equal to probability of the outcome

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$\begin{aligned} 0 &\leq u < 0.6, \rightarrow C = red \\ 0.6 &\leq u < 0.7, \rightarrow C = green \\ 0.7 &\leq u < 1, \rightarrow C = blue \end{aligned}$$

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling

Prior Sampling

- For i = 1, 2, ..., n in topological order
 - Sample x_i from P(X_i | Parents(X_i))
- Return $(x_1, x_2, ..., x_n)$

Example: Prior Sampling

Prior Sampling

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$
Probability of independent events happening together Product of probability of each event

- Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$
- Then $\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$ = $S_{PS}(x_1,\ldots,x_n)$ = $P(x_1\ldots x_n)$
- I.e., the sampling procedure is consistent

Example: Prior Sampling

We'll get a bunch of samples from the BN:

```
+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r, -w
+c, -s, +r, +w
-c, -s, -r, +w
```


- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
- Can estimate anything else, too
 - P(C | +w)? P(C | +r, +w)?
 - What about P(C | -r, -w)?
- Can also use this to estimate expected value of a function E[f(X)] Monte Carlo Estimation

Connect: Inference by Enumeration

• Query:
$$P(Q|E_1 = e_1, ... E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- Join all factors to get a complete joint

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Sum out all hidden variables

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

Normalize

2. Select only relevant samples

1. Sample complete values

3. Counting (sum up weights of samples)

4. Normalize

Problem of Prior Sampling

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
- Can estimate anything else, too
 - P(C | +w)? P(C | +r, +w)?
 - What about P(C | -r, -w)?
- Many samples are not consistent with evidence
- What we need are just numbers, e.g., $N_{PS}(+c \mid +r, +w)$

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
 - Nothing to reject, just track counts of c as we go (no need to store samples)
- Let's say we want P(C | +s)
 - Count c, but reject samples which don't have S=+s
 - This is called rejection sampling
 - Benefit: we can filter out samples early!
 - Property: also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence instantiation
- For i = 1, 2, ..., n in topological order
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Return (reject: no sample is generated in this cycle)
- Return (x₁, x₂, ..., x_n)

Problem of Rejection Sampling

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Consider P(Shape | blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents

- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n in topological order
 - if X_i is an evidence variable
 - X_i = observation x_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Counting

Summing up weights

Sampling distribution if z sampled and evidence e fixed

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, correct with weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Combining together, weighted sampling distribution becomes consistent

$$\begin{split} S_{\text{WS}}(z, e) \cdot w(z, e) &= \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i)) \\ &= P(\mathbf{z}, \mathbf{e}) \end{split}$$

- Likelihood weighting is helpful
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will be picked based on fixed evidence values of S, R
 - More of our samples reflect the state of the world suggested by the evidence

- Likelihood weighting doesn't solve all our problems
 - Fixation of evidence influences the choice of downstream variables, but not upstream ones
 - W is more likely to match the evidence c
 - C isn't more likely to match the evidence w
- We would like to consider the influence of fixed evidence when sampling all variables (Gibbs sampling!)

Problem of Likelihood Weighting

Gibbs Sampling

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - R = +r

- Step 2: Initialize other variables
 - Randomly

- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)*

Sample from P(S|+c,-w,+r)

Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

Gibbs Sampling

- **Procedure**: keep track of a full instantiation $x_1, x_2, ..., x_n$.
 - Start with an arbitrary instantiation consistent with the evidence
 - Resample one (non-evidence) variable at a time, conditioned on all the rest
 - Keep repeating this for a long time
- **Property**: in the limit (repeated unlimited times), the resulting set of samples reflect the correct distribution (i.e. P(Q|e)).

Resampling of One Variable

Sample from P(S | +c, +r, -w)

$$P(S|+c,+r,-w) = \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)}$$

$$= \frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)}$$

$$= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_{s} P(+c)P(s|+c)P(+r|+c)P(-w|s,+r)}$$

$$= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_{s} P(s|+c)P(-w|s,+r)}$$

$$= \frac{P(S|+c)P(-w|S,+r)}{\sum_{s} P(s|+c)P(-w|s,+r)}$$

- Many things cancel out only CPTs with S remain!
- More generally: only CPTs with the resampled variable need to be considered
 - Join them together and normalize

Gibbs Sampling

- Rationale: pick both upstream and downstream variables condition on evidence
 - All samples match the evidence, and are equally "effective" (with same weights)
 - Avoided small weights in likelihood weighting!

Bayes Net Sampling Summary

Prior Sampling P(Q)

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

Gibbs Sampling P(Q | e)

