Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007

6^a Aula Prática

Soluções e algumas resoluções abreviadas

1. a) Como e^x é crescente, com contradomínio $]0, +\infty[$, o contradomínio de f é $]e^{-2}, +\infty[$. Para x > 0 e $y \in]e^{-2}, +\infty[$, temos

$$f(x) = y \Leftrightarrow e^{x^2 - 2} = y \Leftrightarrow x^2 - 2 = \log y \Leftrightarrow x = \sqrt{2 + \log y}$$

Logo, a inversa de f é

$$f^{-1}:]e^{-2}, +\infty[\to \mathbb{R}^+, \quad f^{-1}(y) = \sqrt{2 + \log y}.$$

b) O contradomínio de sen x restrito a $]-\frac{\pi}{2},\frac{\pi}{2}[$ é sen $]-\frac{\pi}{2},\frac{\pi}{2}[=]-1,1[$, logo o contradomínio de f é]-2,2[. Para $x\in]-\frac{\pi}{2},\frac{\pi}{2}[$, $y\in]-2,2[$, temos

$$f(x) = y \Leftrightarrow 2 \operatorname{sen} x = y \Leftrightarrow x = \operatorname{arcsen} \frac{y}{2}$$

(note-se que $\frac{y}{2} \in]-1,1[,$ que é o domínio de arcsenx). Logo a inversa de f é

$$f^{-1}:]-2,2[\to]-\frac{\pi}{2},\frac{\pi}{2}[, f^{-1}(y) = \arcsin \frac{y}{2}.$$

- c) $f^{-1}:]-1,1[\to]0,\frac{\pi}{2}[, f^{-1}(y) = \frac{\arccos y}{2}]$.
- d) $f^{-1}: \mathbb{R} \to]1 \frac{\pi}{2}, 1 + \frac{\pi}{2}[, f^{-1}(y) = 1 + \operatorname{arctg} y.$
- 2. Por definição, $\arcsin[-1,1] = \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, $\arcsin[-1,1] = \left[0,\pi\right]$. Temse $\arccos 0 = \frac{\pi}{2}$, $\arccos 1 = 0$, $\arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$, $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$, $\arcsin\frac{\sqrt{3}}{2} = \frac{\pi}{3}$, $\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$, $\arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4}$, $\arctan 1 = \frac{\pi}{4}$, $\arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$.
- 3. $\operatorname{sen} x = a \Leftrightarrow x = \operatorname{arcsen} a + 2k\pi, \ k \in \mathbb{Z}, \ \operatorname{tg} x = a \Leftrightarrow x = \operatorname{arctg} a + k\pi, \ k \in \mathbb{Z}.$
- 4. a) Directamente da definição de arcos.
 - b) Directamente da definição de arcsen.
 - c) Se $\alpha = \arcsin x$, então sen $\alpha = x$ e $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Queremos calcular $\cos \alpha$. De $\cos^2 \alpha + \sin^2 \alpha = 1$, temos $\cos \alpha = \pm \sqrt{1 \sin^2 \alpha}$. Como $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\cos \alpha \geq 0$, vem

$$\cos(\operatorname{arcsen} x) = \cos \alpha = \sqrt{1 - \operatorname{sen}^2 \alpha} = \sqrt{1 - x^2}.$$

- d) Idêntico a c).
- e) Se $\alpha = \arcsin x, \, x \neq \pm 1$, então sen $\alpha = x$ e $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Queremos calcular tg α . De $1 + \operatorname{tg}^2 \alpha = \frac{1}{\cos^2 \alpha} = \frac{1}{1 \sin^2 \alpha}$ temos

$$\operatorname{tg}^2\alpha = \frac{1}{1-\operatorname{sen}^2\alpha} - 1 = \frac{\operatorname{sen}^2\alpha}{1-\operatorname{sen}^2\alpha} \Leftrightarrow \operatorname{tg}\alpha = \pm \sqrt{\frac{\operatorname{sen}^2\alpha}{1-\operatorname{sen}^2\alpha}} = \frac{|\operatorname{sen}\alpha|}{\pm\sqrt{1-\operatorname{sen}^2\alpha}}.$$

Logo,

$$\operatorname{tg}(\operatorname{arcsen} x) = \frac{|x|}{\pm \sqrt{1 - x^2}}.$$

Se $\alpha \in \left] - \frac{\pi}{2}, 0 \right]$, então sen $\alpha \geq 0 \Leftrightarrow |x| = x$. Como t
g $\alpha \geq 0$, temos

$$\operatorname{tg}(\operatorname{arcsen} x) = \frac{x}{\sqrt{1 - x^2}}.$$

Se $\alpha \in \left[0, -\frac{\pi}{2}\right[, \, \operatorname{sen} \alpha \leq 0 \Leftrightarrow |x| = -x. \, \operatorname{Como} \, \operatorname{tg} \alpha \leq 0, \, \operatorname{temos} \right]$

$$tg(arcsen x) = \frac{-x}{-\sqrt{1-x^2}} = \frac{x}{\sqrt{1-x^2}}.$$

- f) Idêntico a e).
- 5. $f: D \to \mathbb{R}$ função injectiva e $g: f(D) \to D$ a sua inversa.
 - a) Seja f crescente. Como f é injectiva, f é estritamente crescente. Logo, para $x,x'\in D,\ x>x'\Leftrightarrow f(x)>f(x').$ Então, para $y,y'\in f(D),\ y=f(x),\ {\rm com}\ y'=f(x')$ (ou seja, $g(y)=x,\ g(y')=x'$) temos

$$y > y' \Leftrightarrow f(x) > f(x') \Leftrightarrow x > x' \Leftrightarrow q(y) > q(y').$$

Logo g é (estritamente) crescente.

- b) Para $y \in f(D)$, seja $x \in D$, com y = f(x), ou seja, tal que g(y) = x. Então -y = -f(x) = f(-x), porque f é impar, logo g(-y) = -x, e assim g(-y) = -x = -g(y), e g é impar.
- c) Directamente de a), b) e das propriedades de sen x, $\cos x$, $\tan x$.
- 6. a)] -2,2[; b) $\mathbb{R} \setminus \{k\frac{\pi}{2} : k \in \mathbb{Z}\};$ c) $\mathbb{R} \setminus \{k\frac{\pi}{2} : k \in \mathbb{Z}\};$ d)]1, $+\infty[$; e) [0,1[; f) $\mathbb{R} \setminus \{-1,1\};$ g)] $-\infty,-1$] \cup [1, $+\infty[$; h)] $-\infty,0$]; i) [-1, sen 1[.
- 7. Como arctg é uma função limitada, $arctg(u_n)$ é uma sucessão limitada.

Por outro lado, como arctg é uma função crescente, se (u_n) é uma successão monótona crescente (para decrescente é idúntico), (arctg u_n) será também crescente:

$$u_{n+1} \ge u_n \Rightarrow \arctan(u_{n+1}) \ge \arctan(u_n).$$

Sendo monótona e limitada, (arctg u_n) é convergente.

8. f é contínua em $a \in \mathbb{R}$ sse dado $\delta > 0$, existe $\epsilon > 0$ tal que

$$|x - a| < \epsilon \Rightarrow |f(x) - f(a)| < \delta.$$

Para $f(x) = x^2 + 1$: dados $a \in \mathbb{R}$ e $\delta > 0$, temos

$$|f(x)-f(a)| = |x^2+1-a^2-1| = |x^2-a^2| = |x+a||x-a| \le (|x|+|a|)|x-a|.$$

Se $x \in V_{\epsilon}(a)$ temos $|x-a| < \epsilon$ e também $|x| = |(x-a) + a| \le |x-a| + |a| < \epsilon + |a|$. Logo, para $x \in V_{\epsilon}(a)$ tem-se

$$|f(x) - f(a)| < (\epsilon + |a| + |a|)|x - a| < (2|a| + \epsilon)\epsilon.$$

Agora para que $|f(x) - f(a)| < \delta$ é suficiente escolher $\epsilon > 0$ tal que

$$(2|a| + \epsilon)\epsilon < \delta \Leftrightarrow \epsilon^2 + 2|a|\epsilon - \delta < 0.$$

Como $\epsilon^2 + 2|a|\epsilon - \delta = 0 \Leftrightarrow \epsilon = \frac{-2|a|\pm\sqrt{4|a|^2+4\delta}}{2} = -|a|\pm\sqrt{|a|^2+\delta}$, temos então que é suficiente tomar ϵ tal que

$$0 < \epsilon < -|a| + \sqrt{|a|^2 + \delta},$$

para obter que $|x - a| < \epsilon \Rightarrow |f(x) - f(a)| < \delta$.

9. Seja $\phi : [a, b] \to \mathbb{R}$ uma função contínua (com $a, b \in \mathbb{R}$ e a < b), e (x_n) de termos em [a, b] tal que $\lim \phi(x_n) = 0$.

Como (x_n) tem os termos em [a,b], (x_n) é limitada e, do Teorema de Bolzano-Weierstrass, tem uma subsucessão convergente que designamos por (x_{p_n}) . Como $\lim \phi(x_n) = 0$, e $(\phi(x_{p_n}))$ é uma subsucessão de $(\phi(x_n))$, temos $\lim \phi(x_{p_n}) = 0$.

Por outro lado, como ϕ é contínua em [a, b], $\lim \phi(x_{p_n}) = \phi(\lim x_{p_n})$. Logo, se $l = \lim x_{p_n}$, temos $\phi(l) = 0$.

- 10. Seja $g:[0,1] \to \mathbb{R}$ uma função contínua em [0,1].
 - a) Se existisse uma sucessão (x_n) de termos em [0,1] tal que $g(x_n) = n$ para todo n, então $\lim g(x_n) = +\infty$. Tomando uma subsucessão (x_{p_n}) convergente de (x_n) , que existe pelo Teorema de Bolzano-Weierstrass, teríamos:

$$\lim g(x_n) = +\infty \text{ e } \lim g(x_{p_n}) = g(\lim x_{p_n}),$$

porque g é contínua. Logo $g(\lim x_{p_n}) = +\infty$, o que é absurdo. (Alternativamente, g não seria limitada em [0,1], o que é impossível, do Teorema de Weierstrass, uma vez que g é contínua em [0,1].)

- b) Se (x_n) de termos em [0,1] é tal que $g(x_n) = \frac{1}{n}$ para todo n, então $\lim g(x_n) = 0$. Além disso, sendo (x_n) limitada, possui uma subsucessão convergente em \mathbb{R} como na alínea anterior. Designemos essa subsucessão por (x_{p_n}) e $\lim x_{p_n} = c$. Como $(x_{p_n}) \subset [0,1]$ e este intervalo é fechado $c \in [0,1]$. Como $(g(x_{p_n}))$ é uma subsucessão de $(g(x_n))$ temos também $\lim g(x_{p_n}) = 0$. Pelo critério de continuidade de Heine $\lim g(x_{p_n}) = g(c)$ e portanto g(c) = 0.
- 11. a) $\frac{x+1}{x^3+x}$ é dada pelo quociente de duas funções polinomiais, logo é contínua no seu domínio $D = \{x \in \mathbb{R} : x^3 + x \neq 0\} = \mathbb{R} \setminus \{0\};$
 - b) Como a): é contínua em $\mathbb{R} \setminus \{-2, -1, 0\}$;
 - c) \sqrt{x} é contínua em $[0, +\infty[$, $\frac{1}{x^2+x}$ é contínua no seu domínio (como em a)), ou seja em $\mathbb{R}\setminus\{-1,0\}$. Logo $\sqrt{x}-\frac{1}{x^2+x}$ é contínua em $[0, +\infty[\cap\mathbb{R}\setminus\{-1,0\}=]0, +\infty[$;
 - d) sen $(\cos \sqrt{1-x^2})$ é dada pela composição de funções contínuas nos seus domínios, logo é contínua no seu domínio $D = \{x \in \mathbb{R} : 1-x^2 \geq 0\} = [-1,1];$
 - e) Como d): é contínua no seu domínio, $D = \{x \in \mathbb{R} : 1 x^2 > 0\} =]-1,1[$;
 - f) $\sqrt[3]{\lg 2x \cot g 2x}$ é dada pela composição de funções contínuas nos seus dominíos logo é contínua no seu domínio, ou seja em $D = \{x \in \mathbb{R} : 2x \neq \frac{\pi}{2} + k\pi \land 2x \neq k\pi : k \in \mathbb{Z}\} = \mathbb{R} \setminus \{k\frac{\pi}{4} : k \in \mathbb{Z}\};$
 - g) $\frac{1}{\sqrt{x^2+1}}$ é dada pelo quociente de duas funções contínuas nos seus domínios, logo é contínua no seu domínio, \mathbb{R} . $\frac{1}{\sqrt[3]{x^3-1}}$ é também dada pelo quociente de duas funções contínuas nos seus domínios, logo é contínua no seu domínio que é $\mathbb{R} \setminus \{1\}$. Logo, $\frac{1}{\sqrt{x^2+1}} + \frac{1}{\sqrt[3]{x^3-1}}$ é contínua em $\mathbb{R} \setminus \{1\}$.
 - h) $\frac{|x^2-1|}{x^2-1}$ é dada pelo quociente de duas funções contínuas nos seus domínios, logo será contínua no seu domínio que é $\mathbb{R}\{-1,1\}$. (Nota: $\frac{|x^2-1|}{x^2-1}=1$, se $x<-1\lor x>1$, e $\frac{|x^2-1|}{x^2-1}=-1$, se -1< x<1.)
 - i) $\sqrt{-\sin^2 x}$ é dada pela composição de funções contínuas nos seus domínios, logo é contínua no seu domínio, que é $D=\{x\in\mathbb{R}: -\sin^2 x\geq 0\}=\{x\in\mathbb{R}: \sin^2 x=0\}=\{k\pi\in\mathbb{R}: k\in\mathbb{Z}\}.$
- 12. Sendo f e h duas funções e $a \in \mathbb{R}$, tais que h é contínua em a e f é contínua em h(a), então necessariamente $g = f \circ h$ é contínua em a. Se $f: \mathbb{R} \to \mathbb{R}$ é contínua no ponto 1, e $g(x) = f(\operatorname{sen} x)$, então, como $\operatorname{sen} x$ é uma função contínua em qualquer $a \in \mathbb{R}$, g será contínua em $a \in \mathbb{R}$ tal que $\operatorname{sen}(a) = 1 \Leftrightarrow a = \frac{\pi}{2} + 2k\pi$, com $k \in \mathbb{Z}$.

13. Como tg e cotg são contínuas, respectivamente em $a \neq \frac{\pi}{2} + k\pi$, e $a \neq k\pi$, $k \in \mathbb{Z}$, temos que tg $x - \cot g x$ é uma função contínua em $D = \mathbb{R} \setminus \{k\frac{\pi}{2} : k \in \mathbb{Z}\}$. Sendo f uma função contínua em 0, temos então que $g(x) = f(\operatorname{tg} x - \cot g x)$ é contínua em cada $a \in D$ satisfazendo tg $a - \cot g a = 0$. Como,

$$\operatorname{tg} a - \operatorname{cotg} a = \operatorname{tg} a - \frac{1}{\operatorname{tg} a} = \frac{\operatorname{tg}^2 a - 1}{\operatorname{tg} a},$$

e, portanto, tg $a-\cot g a=0$ equivale a tg $a=\pm 1$, ou seja $a=\pm \frac{\pi}{4}+k\pi$, com $k\in\mathbb{Z}$, concluimos que a função dada é necessariamente contínua nestes pontos.

14. Temos

$$f(x) = xd(x) = \begin{cases} 0, & \text{se } x \in \mathbb{Q}, \\ x, & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Para $a \neq 0$: se $a \in \mathbb{Q}$, podemos definir $x_n = a + \frac{1}{n}$, $y_n = a + \frac{\sqrt{2}}{n}$ e temos

$$-x_n \to a, y_n \to a,$$

$$-x_n \in \mathbb{Q} \Rightarrow f(x_n) = 0 = f(a), \ y_n \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow f(y_n) = y_n = a + \frac{\sqrt{2}}{n} \to a \neq 0.$$

Logo f não é contínua em a (usando a definição no sentido de Heine). Para $a \notin \mathbb{Q}$, a demonstração é semelhante.

(Alternativamente, usando a definição no sentido de Cauchy, existe $\delta > 0$, por exemplo, $\delta = |a|$, tal que em qualquer vizinhança de a existem pontos x tais que $|f(x) - f(a)| > \delta$: se $a \in \mathbb{Q}$, toma-se $x \in \mathbb{R} \setminus \mathbb{Q}$, se $a \in \mathbb{R} \setminus \mathbb{Q}$, toma-se $x \in \mathbb{Q}$.)

Para a=0: se (x_n) é uma sucessão arbitrária tal que $x_n \to 0$, então $f(x_n)=x_nd(x_n)$. Como d é limitada, $d(x_n)$ é uma sucessão limitada. Logo, como $x_n \to 0$, temos $f(x_n)=d(x_n)x_n \to 0=f(0)$. Logo f é contínua em 0.

(Alternativamente, usando a definição no sentido de Cauchy,

$$|f(x) - f(0)| = |f(x)| \le |x|.$$

Logo, dado $\delta > 0$, existe $\epsilon > 0$, por exemplo, $\epsilon = \delta$ tal que

$$|x - 0| < \epsilon \Rightarrow |f(x) - f(0)| < \delta.$$

Logo f é contínua em 0.

15. a) $\lim_{x\to 0}\frac{1}{x^2}=+\infty$: temos de mostrar que dado $\delta>0$ arbitrário, existe $\epsilon>0$ tal que

$$|x-0| < \epsilon \Rightarrow \frac{1}{x^2} > \frac{1}{\delta}.$$

Então, dado $\delta > 0$, temos

$$\frac{1}{x^2} > \frac{1}{\delta} \Leftrightarrow x^2 < \delta \Leftrightarrow |x| < \sqrt{\delta}.$$

Tomando, por exemplo, $\epsilon = \sqrt{\delta}$, mostramos que $\lim_{x\to 0} \frac{1}{x^2} = +\infty$.

c) $\lim_{x\to+\infty}\sqrt{x}=+\infty$: temos de mostrar que dado $\delta>0$ arbitrário, existe $\epsilon > 0$ tal que

$$x > \frac{1}{\epsilon} \Rightarrow \sqrt{x} > \frac{1}{\delta}$$
.

Dado $\delta > 0$, temos

$$\sqrt{x} > \frac{1}{\delta} \Leftrightarrow x > \frac{1}{\delta^2}.$$

Tomando, por exemplo, $\epsilon = \delta^2$, mostramos que $\lim_{x \to +\infty} \sqrt{x} = +\infty$.

16. a) $\lim_{x\to 0} \frac{x^3-x^2+x-1}{x^2-1}=1$;

b)
$$\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 1} = \lim_{x\to 1} \frac{x^2(x-1) + x - 1}{(x-1)(x+1)} = \lim_{x\to 1} \frac{x^2 + 1}{x+1} = 1;$$

c)
$$\lim_{x\to 0} \frac{e^{x^2}-1}{x} = \lim_{x\to 0} x \frac{e^{x^2}-1}{x^2} = 0 \cdot 1 = 0$$
, dado que $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.

d)
$$\lim_{x\to 0} \left[x^2 (1 - \cos \frac{1}{x}) \right] = 0$$
 (como g)).

e)
$$\lim_{x\to 0} \sin\frac{1}{x}$$
 não existe: se $x_n = \frac{1}{n\pi}$, e $y_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ temos que

$$x_n \to 0$$
, $y_n \to 0$, $\sin \frac{1}{x_n} = \sin(n\pi) = 0$, $\exp \frac{1}{y_n} = \sin(\frac{\pi}{2} + 2n\pi) = 1$.

Como $\limsup \frac{1}{x_n} \neq \limsup \frac{1}{y_n} e(x_n), (y_n)$ são sucessões convergente para 0, temos que $\lim_{x\to 0} \operatorname{sen} \frac{1}{x}$ não existe.

f)
$$\lim_{x\to+\infty} \operatorname{sen} \frac{1}{x} = \operatorname{sen}(0) = 0;$$

g) $\lim_{x\to 0} x \operatorname{sen} \frac{1}{x} = 0$: dada uma sucessão arbitrária (x_n) tal que $x_n \to 0 \ (e \ x_n \neq 0), \text{ temos}$

$$\lim x_n \sin \frac{1}{x_n} = 0$$

uma vez que (x_n) é um infinitésimo e $(\operatorname{sen} \frac{1}{x_n})$ é uma sucessão limitada.

17. a)
$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{x(x - 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{x}{(x - 2)} = -1$$
,

a)
$$\lim_{x \to 1} \frac{x - x}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{x(x - 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{x}{(x - 2)} = -1,$$

b) $\lim_{x \to 0} \frac{\operatorname{tg} 5x}{x \operatorname{arcos} x} = \lim_{x \to 0} \frac{\operatorname{sen} 5x}{5x} \frac{5}{\cos x \operatorname{arcos} x} = 1 \cdot \frac{5}{\frac{\pi}{2}} = \frac{10}{\pi}, \text{ uma vez que } \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1.$