Homework 3: Induction & Recursion

- 1. $1/(1^2) + 1/(2^3) + ... + 1/(n^*(n+1))$
 - a. Find a formula for small values of n
 - i. If n = 1, value is 1/2
 - ii. If n = 2, value is 1/2 + 1/3 = 4/6 = 2/3
 - iii. If n = 3, value is 2/3 + 1/12 = 9/12 = 3/4
 - iv. If n = 4, value is 3/4 + 1/20 = 16/20 = 4/5
 - v. If n = 5, value is 4/5 + 1/30 = 25/30 = 5/6
 - vi. A formula for the expression is n/(n+1).
 - b. Prove that $1/(1^2) + 1/(2^3) + ... + 1/(n^*(n+1)) = n/(n+1)$
 - i. f(1) = 1/(1*(1+1)) = (1)/(2)
 - ii. Assume f(n) = n/(n+1)
 - iii. Show f(n+1) = (n+1)/(n+2)
 - 1. $f(n+1) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{n^*(n+1)} + \frac{1}{(n+1)^*(n+2)}$
 - 2. = f(n) + 1/((n+1)*(n+2))
 - 3. = n/(n+1) + 1/((n+1)*(n+2))
 - 4. = (n*(n+2)+1)/((n+1)*(n+2)
 - 5. = $(n^2+2n+1)/((n+1)*(n+2))$
 - 6. = $(n+1)^2/((n+1)^*(n+2))$
 - 7. = (n+1)/(n+2)
- 2. P(n): $n! < n^n$, where n is an integer > 1
 - a. P(2): $2! < 2^2$
 - b. $2*1 < 2*2 \rightarrow 2 < 4$, true
 - c. The inductive hypothesis assumes P(n) is true
 - d. In the inductive step, we must prove that if P(n) is true, then P(n+1) is true
 - e. P(n+1): (n+1)! < $(n+1)^{(n+1)}$
 - i. $(n+1)(n!) < (n+1)^n * (n+1)$
 - ii. $n! < (n+1)^n$
 - iii. If n is an integer > 1, $n^n < (n+1)^n$, so statement is true
 - f. This inequality holds true for integers > 1 because P(2), the case where n = 2, and our base case, is true, and P(n+1) is true whenever P(n).

- 3. n people in a group, each know a scandal that no one else knows. In a conversation, the two people in conversation share all scandals they know about. G(n) is the minimum calls required for all n people to learn about scandals. Prove $G(n) \le 2n 4$ for $n \ge 4$
 - a. (Not part of proof) Verify the pattern by hand
 - i. If 4 people, 4 calls are required. G(4) = 4.
 - ii. If 5 people, 6 calls are required. G(5) = 6.
 - iii. If 6 people, 8 calls are required. G(6) = 8.
 - iv. All are equal to n + (n-4) = 2n 4
 - b. Base Case: n = 4
 - i. Four people (A, B, C, D), four scandals (1, 2, 3, 4).
 - 1. A knows 1, B knows 2, C knows 3, D knows 4
 - ii. A calls B. A and B both know 1 and 2.
 - iii. C calls D. C and D both know 3 and 4.
 - iv. A calls D. A and D know all four.
 - v. B calls C. B and C know all four.
 - c. Assume that $G(n) \le 2n 4$
 - d. Prove that $G(n+1) \le 2(n+1) 4$
 - i. Let x be person n+1, and (A, B, C, ...) be all people up to n.
 - 1. A knows 1, B knows 2, ..., x knows n
 - ii. x calls A. A and x both know scandal 1 and n
 - iii. A performs routine in case G(n), spreading the scandal to every person (except x) and learning every scandal in 2n-4 steps
 - iv. x calls A again. Since A knows everything, x knows everything.
 - v. Total of 2n 4 + 2 = 2n 2 steps
 - 1. Equal to 2(n+1) 4 = 2n 2 steps