Граница T для букета циклов

Никита Шапошник, Б05-025 научный руководитель: А. Э. Гутерман

1 Аннотация

В настоящей статье обсуждается частный случай границы T, определённой в [4], для ориентированных невзвешенных графов и для примитивных графов. Получен алгоритм вычисления этой границы для букета из ориентированных циклов (для циклов, пересекающихся в одной вершине).

В разделе 2 определяются основные понятия. В разделе 3 вводятся матрицы C, S, R и определяется граница T. В разделе 4 рассматривается случай с примитивным невзвешенным ориентированным графом. В разделе 5 определяется букет из циклов и доказывается формула для границы T такого графа через вспомогательную функцию P. В разделе 6 описывается алгоритм, считающий функцию P.

2 Определения

Определение 2.1. Тропическая алгебра — это множество $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = \max(a, b)$$
$$a \odot b = a + b$$

или множество $\mathbb{R}_{min}=\mathbb{R}\cup\{\infty\}$ с другой операцией сложения и идентичным умножением:

$$a \oplus b = min(a, b)$$

 $a \odot b = a + b.$

В обоих случаях 0 является нейтральным элементом по умножению, а бесконечные элементы — нейтральными элементами по сложению.

В дальнейшем мы в основном будем работать с \mathbb{R}_{\max} .

Тропическая алгебра является полукольцом.

Множество матриц размера $n \times m$ над \mathbb{R}_{\max} будем обозначать через $\mathbb{R}_{\max}^{n \times m}$. Для тропической матрицы A будем писать $A > -\infty$, если в ней нет элементов, равных $-\infty$.

Рассмотрим тропическую матрицу $A \in \mathbb{R}_{\max}^{n \times n}$. По ней можно построить ориентированный взвешенный граф $\mathcal{G}(A) = (V, E)$, где $V = \{1, 2, \dots, n\}$, а $E \subseteq V \times V$, где $(i, j) \in E$ тогда и только тогда, когда $a_{ij} \neq -\infty$. Веса рёбер определяются функцией $w : E \to \mathbb{R}$, $(i, j) \mapsto a_{ij}$. Говорят, что A является матрицей смежности графа $\mathcal{G}(A)$.

 $^{{\}it Knючевые\ c.noвa:}\$ тропическая алгебра, ориентированные графы, степени матриц, периодичность, граница T.

Наоборот, по взвешенному ориентированному графу аналогично можно построить матрицу смежности. Для этого нужно пронумеровать вершины и поставить в соответствующие ячейки матрицы веса рёбер.

Кодирование графа тропической матрицей очень удобно. Например, по определению умножения матриц, легко доказать следующее утверждение. Зафиксируем квадратную тропическую матрицу A.

Утверждение 2.2. В ячейке матрицы A^t с индексами u, v лежит минимальный вес пути в графе $\mathcal{G}(A)$ от u до v длины ровно t.

Заметим, что $A^0=I$ — единичная тропическая матрица, на главной диагонали которой стоят 0, а на всех остальных местах — $-\infty$. Это согласуется с утверждением: за 0 шагов можно дойти только до стартовой вершины.

Рассмотрим квадратную тропическую матрицу A.

Определение 2.3. Если существует целое неотрицательное n такое, что $A^n > -\infty$, то матрица A называется примитивной. B этом случае минимальное такое n называется экспонентой матрицы A и обозначается через exp(A).

Определение 2.4. Ориентированный граф \mathcal{G} называется примитивным, если существует целое неотрицательное n такое, что для любых двух вершин u, v графа \mathcal{G} существует путь от u до v длины ровно n. B этом случае минимальное такое n называется экспонентой графа \mathcal{G} u обозначается через $\exp(\mathcal{G})$.

Заметим, что, по утверждению 2.2, примитивность матрицы A эквивалентна примитивности графа $\mathcal{G}(A)$. Более того, $exp(A) = exp(\mathcal{G}(A))$.

Теперь можно легко доказать следующий факт: если $A^p > -\infty$ для некоего p, то $A^t > -\infty$ для любого $t \geq p$. Действительно, если в графе $\mathcal{G}(A)$ между произвольными двумя вершинами u,v есть путь длины p из u в v, то есть и путь длины t — достаточно взять вершину w, расстояние от которой до вершины v равно t-p. Тогда существует путь длины p от u до w, и путь длины t-p от w до v. Взяв конкатенацию этих путей, получим искомый путь нужной длины.

Определение 2.5. Индекс цикличности (см. [5]) (или просто цикличность) ориентированного графа \mathcal{G} обозначается через $\sigma_{\mathcal{G}}$ и определяется следующим образом:

- 1. Если $\mathcal G$ сильно связен, и содержит хотя бы две вершины, то цикличность равна наибольшему общему делителю всех длин ориентированных циклов в $\mathcal G$.
- 2. Если в G есть только одна вершина (с петлей или без), то $\sigma_G = 1$.
- 3. Если \mathcal{G} не сильно связен, то его цикличность равна наименьшему общему кратному цикличностей всех максимальных его сильно связных подграфов.

С помощью индекса цикличности можно сформулировать критерий примитивности ориентированного графа:

Теорема 2.6 ([6], теорема 3.4.4). Ориентированный граф \mathcal{G} примитивен тогда и только тогда, когда \mathcal{G} сильно связен и его индекс цикличности равен 1.

Заметим, что в сильно связном графе \mathcal{G} с цикличностью σ любые два пути, соединяющие две фиксированные вершины, имеют одинаковые длины по модулю σ . Из этого следует, что на множестве вершин рассматриваемого графа можно ввести отношение эквивалентности: две вершины лежат в одном классе эквивалентности тогда и только тогда, когда длина

пути от одной к другой кратна σ . Эти классы эквивалентности называются циклическими классами.

Пусть $\mathcal{G} = (V, E)$ — взвешенный ориентированный граф с матрицей смежности $A = (a_{ij}) \in \mathbb{R}_{\max}^{n \times n}$. Пусть C — это ориентированный цикл в \mathcal{G} с весами ребер $a_{i_1}, a_{i_2}, \ldots, a_{i_l}$. Средний вес ребра в C — это тропическое среднее геометрическое весов ребер в C:

$$w_a(C) = \sqrt[Q_{i_1} \odot a_{i_2} \odot \cdots \odot a_{i_l} = \frac{1}{l} (a_{i_1} + a_{i_2} + \cdots + a_{i_l})$$

Определение 2.7. Ориентированный цикл называется критическим, если у него максимальный средний вес. Критический подграф \mathcal{G}^c графа \mathcal{G} — это объединение всех критических циклов в \mathcal{G} .

Обозначим максимальный средний вес цикла в $\mathcal{G}(A)$ через $\lambda(A)$, т.е.

$$\lambda(A) = \bigoplus_{k=1}^{d} \bigoplus_{i_1, \dots, i_k} (a_{i_1 i_2} \odot \dots \odot a_{i_{k-1} i_k})^{\odot 1/k} =$$

$$= \max_{k=1}^{d} \max_{i_1, \dots, i_k} \frac{(a_{i_1 i_2} + \dots + a_{i_{k-1} i_k})}{k}$$

Назовем тропическую матрицу A (или соответствующий ей граф) неразложимой, если граф $\mathcal{G}(A)$ сильно связен, иначе — разложимой.

Назовем тропическую матрицу A (или соответствующий ей граф) полностью разложимой, если в графе $\mathcal{G}(A)$ нет ребер между различными компонентами сильной связности.

Рассмотрим тропическую матрицу $A \in \mathbb{R}_{\max}^{n \times n}$. Тогда звездой Клини матрицы A называется следующая матрица:

$$A^* = \bigoplus_{i=0}^{\infty} A^i = \bigoplus_{i=0}^{n-1} A^i$$

В матрице A^* в ячейке под номером i и j лежит длина оптимального пути от вершины i к вершине j в графе $\mathcal{G}(A)$ без ограничения на длину пути (см. [2], стр. 167). Условие $\lambda(A) \leq 0$ необходимо, так как иначе этот ряд расходится: можно идти по циклу с положительным средним весом и улучшать ответ. Так как дважды проходить через одну и ту же вершину не имеет смысла, можно ограничиться первыми n матрицами.

Обхватом графа \mathcal{G} называется наименьшая длина цикла в \mathcal{G} и обозначается как $g(\mathcal{G})$.

Окружностью графа \mathcal{G} называется наибольшая длина цикла в \mathcal{G} и обозначается как $cr(\mathcal{G})$ (от английского circumference).

Диаметром графа $\mathcal G$ назовём максимальную длину простого пути в графе и обозначим её через $d(\mathcal G)$.

3 CSR-разложение

Рассмотрим неразложимую $A \in \mathbb{R}_{\max}^{n \times n}$. Введем обозначения: $\sigma = \sigma(\mathcal{G}^c(A))$ – индекс цикличности критического подграфа, $M = ((\lambda(A)^- \odot A^\sigma)^*$. Здесь и далее для $a \in \mathbb{R}_{\max}$, $a \neq -\infty$ через a^- будем обозначать обратное по умножению к a, т.е. $a^- = -a$.

Обозначим для произвольного графа \mathcal{G} множество его вершин через $V(\mathcal{G})$, а множество его рёбер — через $E(\mathcal{G})$.

Определим матрицы $C, S, R \in \mathbb{R}_{\max}^{n \times n}$ следующим образом:

$$c_{ij} = \begin{cases} m_{ij}, \text{ если } j \in V(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}, \end{cases}$$

$$r_{ij} = \begin{cases} m_{ij}, \text{ если } i \in V(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}, \end{cases}$$

$$s_{ij} = \begin{cases} \lambda(A)^- \odot a_{ij}, \text{ если } (i,j) \in E(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}. \end{cases}$$

Если матрицы C, S, R определены по матрице A, будем писать $CS^tR[A]$ для произвольного t.

Теорема 3.1 ([1], [2]). Пусть $A \in \mathbb{R}_{\max}^{n \times n}$ неразложима. Тогда существует неотрицательное целое T(A) такое, что для любого $t \geq T(A)$:

$$A^{t} = \lambda(A)^{\odot t} \odot CS^{t}R[A]. \tag{1}$$

Заметим, что если $\lambda(A) = 0$, то (1) записывается в виде:

$$A^t = CS^t R[A].$$

Утверждение 3.2 ([3], утверждение 3.2). Для любого $t \geq 0$ верно, что $CS^{t+\sigma}R[A] = CS^tR[A]$, где σ — это цикличность $\mathcal{G}^c(A)$. Иначе говоря, последовательность матриц $\{CS^tR[A]\}_{t>0}$ периодична с периодом σ .

Значит, в силу равенства $A^t = CS^tR$ при $t \ge T(A)$, последовательность матриц A^t при $t \ge T(A)$ является периодической с периодом σ .

Через $\mathcal{W}^{t,l}(i \xrightarrow{\mathcal{G}'} j)$ обозначим множество путей от вершины i к вершине j, имеющих длину t по модулю l, и проходящих хотя бы через одну вершину графа \mathcal{G}' . Для множества \mathcal{W} через $p(\mathcal{W})$ обозначим максимальный вес пути из множества \mathcal{W} .

Утверждение 3.3 ([2]). Если $\lambda(A) = 0$, то верно следующее равенство:

$$(CS^{t}R[A])_{ij} = p(\mathcal{W}^{t,\sigma}(i \xrightarrow{\mathcal{G}^{c}(A)} j)), \tag{2}$$

где σ обозначает цикличность $\mathcal{G}^c(A)$.

Введём ещё одну функцию — $T_{1,N}(A)$. Для этого определим матрицу $B \in \mathbb{R}_{\max}^{n \times n}$:

$$b_{ij} = \begin{cases} -\infty, \text{ если } i \in V(\mathcal{G}^c) \text{ или } j \in V(\mathcal{G}^c), \\ a_{ij}, \text{ иначе.} \end{cases}$$

Теорема 3.4 ([1], [2]). Пусть $A \in \mathbb{R}_{\max}^{n \times n}$ неразложима. Тогда существует неотрицательное целое $T_1(A,B)$ такое, что для любого $t \geq T_1(A,B)$:

$$A^{t} = (\lambda(A)^{\odot t} \odot CS^{t}R[A]) \oplus B^{t}. \tag{3}$$

Заметим, что если $\lambda(A)=0$, то (3) записывается в виде $A^t=CS^tR[A]\oplus B^t$, и если $B=-\infty$, то $T(A)=T_1(A,B)$.

Замечание 3.5 (Инвариантность относительно умножения на скаляр, [1], стр. 287). Если $A' = A \odot \mu$, $\varepsilon \partial e \ \mu \neq -\infty$, то

•
$$\lambda(A') = \lambda(A) \odot \mu$$
, $B_N[A'] = B_N[A]$

• CSR[A'] = CSR[A]

Значит, T(A) и $T_1(A, B)$ инвариантны относительно умножения матрицы на конечный скаляр, что позволяет нам без ограничения общности говорить, что $\lambda(A) = 0$.

Есть множество способов определить матрицу B, здесь мы рассматриваем лишь частный случай. Обозначим T(A,B) для описанной матрицы B через $T_{1,N}(A)$.

Существуют несколько оценок для $T_{1,N}(A)$. В дальнейшем мы будем рассматривать только графы, в которых все рёбра имеют нулевой вес, поэтому B=0. Следовательно, $T(A)=T_{1,N}(A)$, и оценки для $T_{1,N}(A)$ верны и для T(A).

Теорема 3.6 (Верхние оценки $T_{1,N}(A)$, [2], теорема 4.1). Для любой $A \in \mathbb{R}_{\max}^{n \times n}$ имеем:

- 1. $T_{1,N}(A) \leq Wi(n)$;
- 2. $T_{1,N}(A) \le g(n-2) + n;$
- 3. $T_{1,N}(A) \leq (g-1)(cr-1) + (g+1)d$,

$$r \partial e Wi(n) = n^2 - 2n + 2 - \phi y$$
нкция Вилан $\partial ma, g = g(\mathcal{G}^c(A)), cr = cr(\mathcal{G}(A)), a d = d(\mathcal{G}(A)).$

Следствие 3.7 (Верхние оценки T(A), [2], теорема 4.1). Для любой неразложимой $A \in \mathbb{R}_{\max}^{n \times n}$ имеем:

- 1. $T(A) \leq Wi(n)$;
- 2. $T(A) \leq g(n-2) + n$;
- 3. $T(A) \le (g-1)(cr-1) + (g+1)d$,

где
$$Wi(n)=n^2-2n+2$$
 — функция Виландта, $g=g(\mathcal{G}^c(A)),\ cr=cr(\mathcal{G}(A)),\ a\ d=d(\mathcal{G}(A)).$

Цель данной работы — поиск границы T для графов, все рёбра которых имеют нулевой вес. В них $T = T_{1,N}$, и для вычисления удобно использовать следующее утверждение.

Утверждение 3.8 ([1], лемма 2.3). Пусть $\lambda(A) = 0$. Тогда $A^t \ge CS^tR[A]$ тогда и только тогда, когда $t \ge T_{1,N}(A)$.

Это утверждение позволяет искать границу T: достаточно найти наименьшее t, для которого верно $A^t > CS^tR[A]$. Тогда T = t.

Рассмотрим несколько примеров. Во всех них считаем, что все рёбра имеют нулевой вес. Значит, $\lambda(A) = 0$, критический подграф совпадает со всем графом, и $T(A) = T_{1,N}(A)$.

Пример 3.9 (Полный граф). Рассмотрим матрицу $A \in \mathbb{R}_{\max}^{n \times n}$, где $a_{ij} = 0$ для любых индексов i, j. Граф $\mathcal{G}(A)$ является полным, то есть между любыми двумя вершинами проведено ребро. Критический подграф \mathcal{G}^c совпадает со всем графом \mathcal{G} , так как веса всех ребер в нём равны 0.

Найдем матрицы C, S, R. Индекс цикличности полного графа $\sigma = 1$ (т.к. в нём есть циклы длины 1), следовательно $C = R = M = A^*, S = A$.

Так как для любого положительного t верно, что $A^t = A$, то $A^* = A$ и равенство $A^*A^tA^* = A^t$ выполняется тогда и только тогда, когда t > 0.

Следовательно, T=1.

Пример 3.10 (Односторонний цикл). Рассмотрим матрицу смежности $A \in \mathbb{R}_{\max}^{n \times n}$ одностороннего цикла на n вершинах. Его индекс цикличности $\sigma = n$.

$$M = (A^n)^* = I^* = I = \begin{pmatrix} 0 & -\infty & \dots & -\infty \\ -\infty & 0 & \dots & -\infty \\ \dots & \dots & \dots & \dots \\ -\infty & -\infty & \dots & 0 \end{pmatrix}$$

Значит, C = R = I, S = A, и для любого неотрицательного t верно $CS^tR[A] = A^t$. Следовательно, T = 0.

(3) (4) (5)

Рис. 1: односторонний цикл

Рис. 2: двусторонний цикл

Пример 3.11 (Двусторонний цикл). Рассмотрим матрицу смежности $A \in \mathbb{R}_{\max}^{n \times n}$ двустороннего цикла на n вершинах. Пронумеруем вершины так, чтобы первый цикл состоял из вершин $1, 2, \ldots n$ (в порядке обхода), а второй — из $n, n-1, \ldots, 1$ (в порядке обхода). Чтобы избежать кратных рёбер, будем работать с $n \geq 3$.

Необходимо рассмотреть два случая: когда n нечётно и когда n чётно.

n нечетно. В этом случае цикличность критического графа $\sigma=1$, т.е. граф примитивен. Значит, T(A)=exp(A).

Утверждение 3.12. Экспонента данного графа равна n-1.

Доказательство. Заметим, что в A^{n-2} на главной диагонали стоят $-\infty$: n-2 нечётно, поэтому, чтобы вернуться в исходную вершину за n-2 шага, надо сменить чётность — пройти весь круг, так как остальные циклы имеют чётную длину. Но цикл имеет длину n, поэтому его пройти не получится. Значит, $exp(\mathcal{G}) \geq n-1$.

Покажем, что $A^{n-1} > -\infty$.

Зафиксируем произвольную вершину v графа. Назовем вершину v если до нее можно дойти из v за чётное число шагов. Заметим, что тогда все вершины графа четные, так как n нечетно и идти можно как по, так и против часовой стрелки. Наибольшая длина такого пути равна n-1. Значит, $A^{n-1}>-\infty$.

п четно. В этом случае $\sigma=2$ и граф не примитивен. $C=R=M=(A^2)^*, S=A$. Так как последовательность матриц CS^tR периодична с периодом $\sigma=2$ (по утверждению 3.2), то при $t\geq T(A)$

$$A^t = CS^tR = egin{cases} (A^2)^*, \text{ если } t \text{ четно.} \ A\odot (A^2)^*, \text{ если } t \text{ нечетно.} \end{cases}$$

В матрице $(A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на четном расстоянии друг от друга. Наибольшее расстояние между вершинами с одинаковой четностью равно $\frac{n}{2}$. Значит, условие при четном t выполняется при $t \geq \frac{n}{2}$, а при прочих t не выполняется.

В матрице $A \odot (A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на нечетном расстоянии друг от друга. Наибольшее расстояние между вершинами с разной четностью равно $\frac{n}{2}-1$. Значит, условие при четном t выполняется при $t \geq \frac{n}{2}-1$, а при прочих t— не выполняется.

Следовательно, $T(A) = \frac{n}{2}$.

4 Примитивные графы с нулевыми рёбрами

Функция Т является обобщением экспоненты на непримитивные графы.

Рассмотрим примитивный граф с матрицей смежности A, в котором вес каждого ребра равен 0. Тогда критический подграф совпадает со всем графом, и индекс цикличности примитивного графа $\sigma=1$.

По утверждению 3.2 последовательность матриц $CS^tR[A]$ периодична с периодом $\sigma = 1$, то есть в этой последовательности все члены равны. Из утверждения 3.3 и примитивности A следует, что матрица $CS^tR[A]$ целиком состоит из 0 при любом t.

Заметим, что в любой степени матрицы A её элементы будут принимать только два значения: $-\infty$ и 0. Из определения T(A) следует, что $A^t = CS^tR[A]$ тогда и только тогда, когда $t \geq T(A)$. Значит, матрица A^t не содержит $-\infty$ тогда и только тогда, когда $t \geq T(A)$. Значит, T(A) = exp(A), если A примитивна.

Это приводит нас к более общему утверждению.

Утверждение 4.1. Рассмотрим примитивную матрицу A, у которой $\mathcal{G}(A)$ совпадает со своим критическим подграфом, $\lambda(A) = 0$. Если для двух произвольных фиксированных вершин u u v верно, что все пути из u в v имеют одинаковый вес, то $T(A) = \exp(A)$.

Доказательство. В силу условия на одинаковый вес между любыми двумя вершинами матрицы вида $CS^tR[A]$ принимают только одно значение (по утверждению 3.3), а значение конкретной ячейки матрицы A^t либо равно $-\infty$, либо совпадает с соответстующей ячейкой $CS^tR[A]$. Значит, условие $A^t = CS^tR[A]$ равносильно условию $A^t > -\infty$. Следовательно, T(A) = exp(A).

Заметим, что обратное утверждение неверно. Рассмотрим графы, имеющие следующие матрицы смежности:

$$A = \begin{pmatrix} -1 & -1 \\ -1 & -\infty \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\infty & 1 \\ 0 & -\infty & -\infty \end{pmatrix}$$

И в $\mathcal{G}(A)$, и в $\mathcal{G}(B)$ экспонента совпадает с T (в обоих графах экспонента равна 2), но в графе $\mathcal{G}(A)$ максимальный средний вес цикла равен -1, а в графе $\mathcal{G}(B)$ критический подграф не совпадает со всем графом.

5 Граница Т для букетов циклов

Определение 5.1. Назовем букетом циклов граф, состоящий из нескольких пересекающихся по одной вершине ориентированных циклов.

Здесь и далее будем рассматривать букеты циклов длины, кратной σ , все рёбра в которых имеют вес 0.

Определение 5.2. Букет циклов длины $a_1\sigma, a_2\sigma, \dots, a_n\sigma$, где числа a_1, \dots, a_n взаимно просты в совокупности, $a_1 \le a_2 \le \dots \le a_n$ назовем $(a_1, \dots, a_n; \sigma)$ -букетом.

Границу T, определенную для такого графа, будем обозначать через $T(a_1, \ldots, a_n; \sigma)$.

Заметим, что индекс цикличности такого букета равен σ и всего в нём $N=\sum_{i=1}^n a_i\sigma-n+1$ вершин. Пусть вершина, в которой пересекаются все циклы, имеет номер 1. Пронумеруем вершины в порядке следующего обхода: начнем в вершине 1, далее пройдём по первому циклу, затем — по второму, и так далее до цикла с номером n (не изменяя номер у вершины 1).

Во всех примерах матрицу смежности рассматриваемого графа будем обозначать через $A \in \mathbb{R}_{\max}^{n \times n}$, а через C, S, R будем обозначать матрицы C, S, R, построенные по матрице A.

Теорема 5.3.
$$T(a_1,\ldots,a_n;\sigma)=(T(a_1,\ldots,a_n;1)+1)\sigma-1.$$

Доказательство. Обозначим граф, соответствующий $(a_1,\ldots,a_n;1)$ -букету через \mathcal{G} , а граф, соответствующий $(a_1,\ldots,a_n;\sigma)$ -букету — через \mathcal{G}_{σ} . Граф \mathcal{G}_{σ} получается из графа \mathcal{G} разделением каждого ребра на σ более мелких рёбер. Вершины \mathcal{G}_{σ} , лежащие в одном циклическом классе с вершиной 1, будем называть начальными. Для краткости будем обозначать $T(a_1,\ldots,a_n;1)$ через T^1 , а $T(a_1,\ldots,a_n;\sigma)$ — через T^{σ} .

Покажем, что $T^{\sigma} > (T^1+1)\sigma - 2$. В $\mathcal G$ есть 2 вершины, между которыми нет пути длины T^1-1 . Значит, в $\mathcal G_{\sigma}$ между соответствующими начальными вершинами нет пути длины $(T^1-1)\sigma$. Обозначим эти вершины через u и v. Но тогда между вершинами $\hat u$ и $\hat v$ не будет пути длины $(T^1-1)\sigma + 2(\sigma-1) = (T^1+1)\sigma - 2$, где $\hat u$ получается, если отойти от u на $\sigma-1$ шаг вперёд, а $\hat v$ — от вершины v на $\sigma-1$ шаг назад (обе новые вершины существуют, так как любая вершина в $\mathcal G$ лежит в цикле). Значит, $T^{\sigma} \geq (T^1+1)\sigma-1$.

Покажем, что $T^{\sigma} \leq (T^1+1)\sigma-1$. Для этого нужно доказать, что между любыми двумя вершинами u и v графа \mathcal{G}_{σ} есть путь длины $(T^1+1)\sigma-1$ от u до v. Путь длины $(T^1+1)\sigma-1$ от u до v состоит из трех частей: путь от u до ближайшей начальной вершины, путь между начальными вершинами, и путь от ближайшей начальной вершины до v. Суммарная длина первой и третьей частей не превосходит $2\sigma-2$, значит, длина второй части не меньше $(T^1-1)\sigma+1$. Но длина пути между двумя начальными вершинами должна быть кратна σ , поэтому длина второй части не меньше $T^1 \cdot \sigma$. Но, по определению T^1 , между любыми начальными вершинами есть путь длины $T^1 \cdot \sigma$. Значит, $T^{\sigma} \geq (T^1+1)\sigma-1$, и утверждение доказано.

Таким образом, при расчёте границы T для произвольного графа-букета достаточно посчитать искомую границу при $\sigma=1,$ а затем получить ответ по формуле из утверждения 5.3.

Замечание 5.4. При $\sigma = 1$ $(a_1, \ldots, a_n; 1)$ -букет примитивен, все рёбра в ней имеют нулевой вес. Значит, граница T данного графа совпадает c его экспонентой.

Введём вспомогательную функцию P:

Определение 5.5. Для взаимно простых в совокупности натуральных чисел $a_1 \leq \cdots \leq a_n$ обозначим через $P(a_1, \ldots, a_n)$ минимальное целое неотрицательное число, удовлетворяющее следующему свойству: любое $p \geq P(a_1, \ldots, a_n)$ выражается в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами $\lambda_1, \ldots, \lambda_n$, то есть

$$p = a_1 \lambda_1 + \dots a_n \lambda_n. \tag{4}$$

Число, выражающееся в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами, назовём выразимым.

Здесь и далее под линейной комбинацией будем понимать линейную комбинацию с целыми неотрицательными коэффициентами.

Утверждение 5.6 (Свойства функции P).

- 1. Echu $a_1 = 1$, mo $P(1, \ldots, a_n) = 0$.
- 2. $P(a_1, ..., a_n) \leq P(a_{i_1}, a_{i_2}, ..., a_{i_k})$, где $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ возрастающая последовательность индексов.
- 3. $P(a_1, \ldots, a_n) = P(b_1, \ldots, b_m)$, где набор b_1, \ldots, b_m получается из набора a_1, \ldots, a_n удалением повторяющихся элементов.
- 4. Если a_i делится на a_i , то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$.
- 5. Если a_j представляется в виде линейной комбинации меньших элементов, то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n).$

Доказательство. 1) Действительно, если $a_1 = 1$, то любое неотрицательное число k выражается как $1 \cdot k$. Следовательно, P = 0.

- 2) Свойство следует из следующего факта: сумма $a_{i_1}\lambda_{i_1}+\cdots+a_{i_k}\lambda_{i_k}$ является частным случаем суммы $a_1\lambda_1+\cdots+a_n\lambda_n$.
- 3) При приведении подобных членов в сумме $a_1\lambda_1 + \cdots + a_n\lambda_n$ получается корректная сумма $b_1\mu_1 + \ldots b_m\mu_m$. С другой стороны, сумма $b_1\mu_1 + \ldots b_m\mu_m$ является корректной суммой вида $a_1\lambda_1 + \cdots + a_n\lambda_n$.
- 4) Очевидно, что любая сумма $a_1\lambda_1 + \cdots + a_{j-1}\lambda_{j-1} + a_{j+1}\lambda_{j+1} + \cdots + a_n\lambda_n$ является суммой вида $a_1\lambda_1 + \cdots + a_n\lambda_n$, где $\lambda_j = 0$. С другой стороны, заменив a_j на $a_i \cdot \frac{a_j}{a_i}$, можно избавиться от слагаемого $a_j\lambda_j$ в сумме $a_1\lambda_1 + \cdots + a_n\lambda_n$, что доказывает утверждение.
 - 5) Доказетельство этого свойства аналогично предыдущему.

Теорема 5.7. $T(a_1,\ldots,a_n;1)=P(a_1,\ldots,a_n)+2a_n-2.$

Доказательство. Разберём случай $a_n=1$. Тогда $P(a_1,\ldots,a_n)+2a_n-2=0$, что совпадает с экспонентой $(a_1,\ldots,a_n;1)$ -букета.

Далее считаем, что $a_n > 1$.

Покажем, что при $t = P(a_1, \ldots, a_n) + 2a_n - 3$ существуют две вершины, между которыми нет пути длины t. Пусть u — следующая за вершиной 1 в цикле длины a_n вершина, а v — идущая перед вершиной 1 в том же цикле.

Заметим, что путь длины t из u_0 в v_0 проходит через вершину 1. так как простой путь из u_0 в v_0 имеет длину $a_n-2 < t$, так как $a_n > 1$. Значит, путь из u_0 в v_0 длины t состоит из трёх частей: первая — от u_0 до 1, вторая — конкатенация циклов, третья — от 1 до v_0 . Длина первой и третьей частей равна a_n-1 , а длина второй части — выразима.

Значит, длина второй части равна $t-2a_n+2=P(a_1,\ldots,a_n)-1$ — невыразима по определению P. Следовательно, пути длины t от u_0 до v_0 не существует, и $T(a_1,\ldots,a_n;1)\geq P(a_1,\ldots,a_n)+2a_n-2$.

Покажем, что экспонента рассматриваемого графа равна $t = P(a_1, \ldots, a_n) + 2a_n - 2$. Зафиксируем произвольные вершины u, v. Обозначим через \hat{u} расстояние от u до вершины 1, а через \hat{v} — расстояние от вершины 1 до v. Тогда для существования пути длины t из u в v необходима и достаточна выразимость $t - \hat{u} - \hat{v}$. Заметим, что максимальное значение $\hat{u} + \hat{v}$ равно $2a_n - 2$ и достигается на описанных выше вершинах u_0, v_0 . Тогда $t - \hat{u} - \hat{v} \ge P(a_1, \ldots, a_n)$, и, следовательно, $t - \hat{u} - \hat{v}$ всегда выразимо. Значит, между произвольными вершинами графа существует путь длины $P(a_1, \ldots, a_n) + 2a_n - 2$.

Следовательно,
$$T(a_1, \ldots, a_n; 1) = P(a_1, \ldots, a_n) + 2a_n - 2.$$

Следствие 5.8 (Корректность функции P). Функция P определена корректно: её значение существует для любых подходящих аргументов.

Доказательство. Рассмотрим $(a_1, \ldots, a_n; 1)$ -букет. По замечанию 5.4 этот граф примитивен и, следовательно, имеет экспоненту, которая, в свою очередь, совпадает с границей T для данного графа-букета. По формуле из теоремы 5.7 имеем $P(a_1, \ldots, a_n) = T(a_1, \ldots, a_n; 1) - 2a_n + 2$.

Оценим значение функции P с помощью верхних оценок, полученных для графабукета.

Утверждение 5.9. Функция $P(a_1, ..., a_n)$ оценивается сверху следующими функциями:

- 1. $Wi(N) 2a_n + 2$,
- 2. $(a_1+1)N-2a_1-2a_n+2$,
- 3. $(a_1-1)(a_n-1)+a_1(2a_n-2)$,

где
$$N = \sum_{i=1}^{n} a_i - n + 1 - количество вершин в $(a_1, \dots, a_n; 1)$ -букете.$$

Доказательство. Обхват (a_1, \ldots, a_n) -букета равен a_1 , его окружность равна a_n , а её диаметр не превосходит $2a_n - 2$.

Далее достаточно оценить границу T рассматриваемого графа по теореме 3.7 и применить теорему 5.7. \square

Рассмотрим несколько частных случаев аргументов функции P и найдём для них точную формулу для P.

Утверждение **5.10.** P(a,b) = (a-1)(b-1).

Доказательство. Покажем, что $p = ab - a - b \neq ma + nb$ для любых целых неотрицательных m, n.

Предположим противное. Тогда:

$$ab - a - b = am + bn$$
 \iff $ab = (m+1)a + (n+1)b$

В силу взаимной простоты a и b получим, что $n+1 \stackrel{.}{:} a$, и $m+1 \stackrel{.}{:} b$. Тогда, в силу того, что $m,n \geq 0$, имеем 2 случая:

$$\begin{cases} n+1 = a \\ m+1 = 0 \end{cases} \begin{cases} n+1 = 0 \\ m+1 = b. \end{cases}$$

В обоих случаях получаем противоречие. Следовательно, $P(a,b) \ge (a-1)(b-1)$.

Теперь покажем, что $P(a,b) \le ab+b-a-1$. Для любого $p \ge ab-b-a+1$ решим уравнение:

$$am + bn = p$$

Так как a и b взаимно просты, числа из набора $0, b, 2b, \ldots, (a-1)b$ дают все a остатков по модулю a. Значит, существует единственное $0 \le n \le a-1$, что $bn \equiv p \pmod a$, причём $p-bn \ge 0$, так как $p-bn \stackrel{.}{:} a$ и

$$p - bn \ge ab - b - a + 1 - (a - 1)b = -a + 1 > -a \Longrightarrow p - bn \ge 0.$$

Значит, $m = \frac{p - bn}{a} \ge 0$.

Таким образом, нами были найдены целые $m \geq 0, \ n \geq 0$. Следовательно, P(a,b) = (a-1)(b-1).

Утверждение 5.11.
$$P(2,a,b)=egin{cases} P(2,b)=b-1, & \textit{если a чётно}, \\ P(2,a)=a-1, & \textit{иначе}. \end{cases}$$

Доказательство. Первый случай следует из свойства 4 утверждения 5.6.

Разберём второй случай: a нечётно. Неравенство $P(2,a,b) \leq P(2,a)$ следует из свойства 2 утверждения 5.6. Докажем обратное неравенство: необходимо показать, что с помощью слагаемых 2,a,b невозможно получить сумму a-2. Действительно, из трёх слагаемых можно использовать только одно: 2. Но a-2 нечётно — противоречие. Следовательно, P(2,a,b) = P(2,a).

Чтобы легче вычислять функцию P, определим вспомогательную функцию M, сопоствяляющую каждому целому числу от 0 до a_1-1 целое неотрицательное число: M[i] — это минимальное выразимое число, сравнимое с i по модулю a_1 . Впоследствии, при описании алгоритма, вычисляющего P, удобно будет представлять M в качестве массива, поэтому значение функции M на элементе i будем обозначать с помощью квадратных скобок — через M[i].

Заметим, что M[0] = 0 и что $M[i] \equiv i \pmod{a_1}$.

Утверждение 5.12.
$$P(a_1,\ldots,a_n) = \max_{i=0}^{a_0-1} M[i] - a_1 + 1.$$

Доказательство. Пусть $\max_{i=0}^{a_0-1} M[i] = M[k]$.

Выразимость $M[k]-a_1$ вела бы к противоречию с определением массива M, так как $M[k]-a_1\equiv M[k]\pmod{a_1}$. Значит, $P(a_1,\ldots,a_n)\geq \max_{i=0}^{a_0-1}M[i]-a_1+1$.

Заметим, что если произвольное x выразимо, то и число $x+a_1$ выразимо. Из этого следует, что любое число, сравнимое с i по модулю a_1 и не меньшее M[i], выразимо. Значит, все числа, начиная с $M[k]-a_1+1$ выразимы — иначе M[k] было бы не максимальным числом в массиве M.

Следовательно,
$$P(a_1, \ldots, a_n) = \max_{i=0}^{a_0-1} M[i] - a_1 + 1.$$

Используя массив M, можно легко посчитать P(4, a, b) и P(3, a, b). Здесь и далее через $x \ rem \ y$ будем обозначать остаток при делении x на y.

Утверждение 5.13 (Формула для P(3, a, b)).

- 1. Ecau a : 3, mo P(3, a, b) = P(3, b) = 2b 2.
- 2. Если $a \not : 3$ и $a + b \not : 3$, то P(3, a, b) = P(3, a) = 2a 2.
- 3. Ecau $a \not \ 3$ $u \ a + b \ \vdots \ 3$, mo $P(3, a, b) = \min(2a, b) 2$.

Доказательство. Первый случай следует из свойства 4 утверждения 5.6.

В остальных случаях $M[a\ rem\ 3]=a$, и весь ответ зависит от величины $M[3-a\ rem\ 3]$. Если $b\not\equiv 2a\ (\text{mod}\ 3)$, то $M[3-a\ rem\ 3]=2a$, и P(3,a,b)=2a-2.

Если
$$b \equiv 2a \pmod{3}$$
, то $M[3-a \ rem \ 3] = \min(2a,b)$, и $P(3,a,b) = \min(2a,b) - 2$.

Утверждение 5.14 (Формула для P(4, a, b)).

- 1. Ecsu $a : 4, b \not / 2$, mo P(4, a, b) = P(4, b).
- 2. $Ecnu\ a \not = 2, b : 4, unu\ 0 \not \equiv a \equiv b \pmod{4}, unu\ a \not = 2, b \ge P(4, a), mo\ P(4, a, b) = P(4, a).$
- 3. Ecau $a \equiv 2 \pmod{4}, b \not = 2, mo P(4, a, b) = a + b 3.$

- 4. *Ecnu* $a \not = 2, b \equiv 2 \pmod{4}$, mo $P(4, a, b) = a + \min(2a, b) 3$.
- 5. Ecnu $a, b \not\geq 2, a + b : 4, b < P(4, a), mo P(4, a, b) = \max(2a, b) 3.$

Доказательство. Из свойства 4 утверждения 5.6 можно вывести случай $a \stackrel{.}{:} 4, b \not / 2$ и случай $a \not / 2, b \stackrel{.}{:} 4$, а из свойства 5 того же утверждения — случай $0 \not \equiv a \equiv b \pmod 4$.

Во всех остальных случаях посчитаем массив M, и по утверждению 5.12 найдём ответ.

Докажем случай $a \not/ 2, b \ge P(4, a)$. Тогда $M[a \ rem \ 4] = a, M[2] = 2a,$ и $M[4 - a \ rem \ 4] = 3a$ — число b слишком большое, чтобы повлиять на этот массив. Таким образом, максимум этого массива равен 3a, и ответом будет число 3a - 3 = P(4, a).

Разберём случай $a \equiv 2 \pmod{4}, b \not = 2$. Заметим, что $M[2] = a, M[b \ rem \ 4] = b, M[4 - b \ rem \ 4] = a + b$. Максимум этого массива -a + b, поэтому ответ равен a + b - 3.

Разберём случай $a \not = 2, b \equiv 2 \pmod 4$. Тогда $M[a\ rem\ 4] = a$. На место M[2] есть два кандидата: 2a и b. Если b < 2a, то M[2] = b, и иначе -2a. Далее, для $M[4-a\ rem\ 4]$ имеем два варианта: 3a и a+b, и если b < 2a, то $M[4-a\ rem\ 4] = a+b$, и иначе -3a. Таким образом, если b < 2a, то ответ равен a+b-3, а иначе -3a-3=P(4,a).

Разберём последний случай: $a,b \not \mid 2, a+b \not \in 4, b < 3a-3$. Тогда $M[a\ rem\ 4]=a,$ $M[b\ rem\ 4]=b$ и M[2]=2a. В зависимости от относительного расположения 2a и b имеем 2 различных возможных максимума массива M, откуда, по утверждению 6.2 находим ответ.

6 Алгоритм вычисления функции P

Приведём алгоритм, вычисляющий функцию P. На вход ему подаётся число n числа a_1, \ldots, a_n .

Алгоритм вычисляет массив M, а затем, по формуле из леммы 5.12, вычисляет ответ на поставленную задачу. Массив M вычисляется постепенно: изначально в каждой ячейке M[i] значения ∞ из \mathbb{R}_{\min} — это значит, что пока не было найдено ни одного выразимого числа, сравнимого с i по модулю a_1 . Если при последующем переборе было найдено некоторое p, сравнимое с i по модулю a_1 и меньшее M[i], то необходимо перезаписать в ячейку M[i] значение p.

Перебор начинается с рассмотрения всех линейных комбинаций с одним слагаемым (здесь и далее через количество слагаемых будем обозначать количество ненулевых коэффициентов λ_i в линейной комбинации вида 4). Затем будем перебирать линейные комбинации, на каждом шаге увеличивая максимальное количество слагаемых вдвое. Таким образом, необходимо сделать $\lceil log_2 n \rceil$ итераций, где $\lceil x \rceil$ — это округление числа x вверх.

Алгоритм 6.1.

- 1. Создадим массив M длины a_1 , содержащий числа из \mathbb{R}_{\min} . Запишем во все ячейки значения ∞ .
- 2. На нулевой итерации переберём все линейные комбинации с одним слагаемым. Для этого для каждого a_i и для каждого множителя $0 \le k < a_1$ проверим, можем ли мы улучшить ответ: сравним $a_i^{\odot k} = a_i \cdot k$ с $M[a_i \cdot k \ rem \ a_1]$, и, если в массиве записано большее число, улучшим ответ: запишем в ячейку $a_i \cdot k \ rem \ a_1$ значение $a_i^{\odot k} = a_i \cdot k$.

- 3. На каждой следующей итерации будем перебирать все пары ячеек M[i] и M[j] и пытаться улучшить ответ: сравним $M[(i+j) \ rem \ a_1] \ c \ M[i] \odot M[j]$ (т.е. M[i] + M[j], если оба эти числа меньше ∞ , и ∞ иначе), и, если в массиве записано большее число, улучшим ответ: запишем в ячейку $(i+j) \ rem \ a_1$ значение $M[i] \odot M[j]$.
- 4. Всего необходимо сделать $\lceil log_2(n) \rceil + 1$ итераций. После этого ответом будет $\bigoplus_{i=0}^{a_0-1} M[i] a_1 + 1 = \max_{i=0}^{a_0-1} M[i] a_1 + 1.$

Для доказательства корректности докажем следующее утверждение.

Лемма 6.2. После итерации с номером d в ячейке M[i] лежит минимальное число, сравнимое c i по модулю a_1 , которое может быть представлено в виде линейной комбинации c не более чем 2^d слагаемыми, или ∞ , если такого числа не существует.

Доказательство. Докажем утверждение по индукции.

База: d=0. В шаге 1 перебираются все линейные комбинации вида $a_j \cdot k$, где $0 \le k < a_1$. Рассмотрим линейную комбинацию, которую мы не перебрали: $a_i \cdot m$. Так как мы не перебрали эту комбинацию, то $m \ge a_1$. Но тогда $a_i \cdot m \equiv a_i \cdot (m-a_1) \pmod{a_1}$ и $a_i \cdot m > a_i \cdot (m-a_1) \ge 0$ — эта линейная комбинация не может улучшить ответ. Значит, база верна.

Докажем переход. Предположим, утверждение доказано для d-1, докажем его для d. Обозначим массив M в состоянии до итерации с номером d через M'.

Рассмотрим произвольную ячейку M[i], в которой записано число, меньшее ∞ . Тогда существуют два индекса j и k такие, что i=(j+k) rem a_1 и M[i]=M'[j]+M'[k]. По предположению индукции в каждой ячейке массива M' лежит число, которое может быть представлено в виде линейной комбинации с не более чем 2^{d-1} слагаемыми. Значит, в M[i] лежит число, представимое в виде линейной комбинации с не более чем 2^d слагаемыми. По предположению индукции $M[i]=M'[j]+M'[k]\equiv j+k\equiv i\pmod{a_1}$.

Осталось доказать минимальность M[i]. Предположим противное: пусть существует число x < M[i], сравнимое с i по модулю a_1 и представимое в виде линейной комбинации с не более чем 2^d слагаемыми. Тогда эту комбинацию можно разбить на две меньших, в каждой из которых будет не более 2^{d-1} слагаемых. Обозначим суммы этих линейных комбинаций через S_1 и S_2 . Пусть $S_1 \equiv j \pmod{a_1}$, а $S_2 \equiv k \pmod{a_1}$.

Тогда $S_1 + S_2 = x < M[i] \le M'[j] + M'[k]$ и или $S_1 < M'[j]$, или $S_2 < M'[k]$. В обоих случаях имеем противоречие с предположением индукции. Значит, предположение индукции верно и для d, что и требовалось доказать.

Утверждение 6.3. Алгоритм 6.1 корректен. Время его работы $-O(n \cdot a_1 + a_1^2 \cdot \log n)$. Объем затраченной памяти $-O(a_1)$.

Доказательство. Докажем асимптотики. Первый шаг работает за $O(a_1)$, второй — за $O(a_1 \cdot n)$ (надо перебрать все $1 \le j \le n$ и все $0 \le k < a_1$). Третий работает за $O(a_1^2 \cdot log \ n)$, так как всего $O(log \ n)$ итераций, в каждой из которых надо перебрать пары (i,j), где $0 \le i,j \le a_1$. Четвертый — за $O(a_1)$. Итоговая сложность алгоритма: $O(n \cdot a_1 + a_1^2 \cdot log \ n)$.

Память тратится только на массив M длины a_1 . Значит, алгоритм требует $O(a_1)$ памяти.

Докажем корректность. По лемме 6.2 после итерации с номером d в ячейках массива M лежит информация об оптимальных линейных комбинациях с не более чем 2^d слагаемыми. Следовательно, после итерации с номером $\lceil log_2(n) \rceil$ в массиве M лежит информация об оптимальных линейных комбинациях из n слагаемых, то есть массив M будет наконец посчитан.

Во время работы алгоритма каждая ячейка массива M изменит своё значение хотя бы раз: это следует из корректности функции P. Значит, после последней итерации в массиве M не останется ∞ .

Далее ответ может быть получен по лемме 5.12.

На моём компьютере при $n=100, a_1=100$ алгоритм ни разу не показывал время, большее 0.2 с. При $n=1000, a_1=1000$ алгоритм работал не дольше 0.3 с. При $n=10000, a_1=10000$ алгоритм работает существенно медленнее: в районе 40 с.

Список литературы

- [1] A. Kennedy-Cochran-Patrick, G. Merlet, T. Nowak, S. Sergeev, New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank. Linear Algebra and its Applications. **611** (2021), 279-309.
- [2] G. Merlet, T. Nowak, S. Sergeev, Weak CSR expansions and transience bounds in max-plus algebra. Linear Algebra and its Applications. 461 (2014). 163–199
- [3] S. Sergeev, H. Schneider, *CSR expansions of matrix powers in max algebra*. Transactions of the American Mathematical Society. December 2009.
- [4] S. Sergeev, Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes. Linear Algebra and its Applications. 431 (2009), 1325–1339
- [5] A. Guterman, E. Kreines, C. Thomassen, Linear transformations of tropical matrices preserving the cyclicity index. Special Matrices. 9 (2021), 112-118.
- [6] R. Brualdi, H. Ryser, Combinatorial matrix theory. Cambridge: Cambridge University Press; 1991.
 - N. Shaposhnik. Transient for wedge sum of cycles.

In this paper we discuss a particular case of transient defined by Sergeev in [4] for unweighted digraphs and for primitive digraphs. An algorithm for calculating this transient for wedge sum of directed cycles (for cycles intersecting at one vertex) is established.

Keywords: max-plus, digraphs, matrix powers, periodicity, transient.