

What do I mean by Aerial Image Labeling?

• Task: divide a given input image into a set of semantic coherent regions: road networks and buildings.

Semantic Segmented Image

nput Image

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 2

ETH zürich

Why is it Important?

Earth Observation & Environmental Modeling

Virtual Representations / 3D city models

Location-Aware Applications / Navigation Maps

Javier Montova | 19.5.2016 | 3

ETH zürich

Which are the existing techniques?

Deterministic Representations: detected pieces of objects are stitched together using low-level image processing, e.g. Miao et.al. (GRSL'13), Poullis et.al. (JPRS'10).

- ✓ Successful when objects appear more clearly (no occlusions, etc).
- * Many parameters must be tuned empirically.
- Errors from each step are propagated.

Local Statistical Approaches: set of features are locally extracted to train class-specific models, e.g. Dollar et.al. (CVPR'06), Mnih et.al. (ECCV'10).

- ✓ Robust models can be obtained.
- * Availability of training datasets, hand-labeling process.
- × Predictions are focused on local information only.

Probabilistic Representations of Image Context: high-level semantic knowledge is incorporated, e.g. Lacoste (PAMI'05), Türetken et.al. (CVPR'13).

- ✓ Encode rich semantic level information.
- Smooth and precise segmentations.
- Inference can be time consuming, e.g. Markov Point Processes.

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montova | 19.5.2016 | 4

ling Local and Global Context Information for Aerial Image Labeling

What are the Challenges? Definition Clutter Similarity

... unsolved problem since almost 40 years! Bajcsy et al. (TSMC'76)

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 5

What are the Challenges? New York Paris Rome + Complex Structural Prior Modeling Local and Global Context Information for Aerial Image Labeling

Image Tiles GTS ODSMs ODSMs

- (i) Urban region, two classes (road vs. background), 67 tiles of 1000x1000 pixels, manual annotations.
- (ii) Road networks: major avenues + secondary streets, change slow in width/curvature.
- (iii) Presence of occlusions, e.g. trees and cars.

Vaihingen Road Dataset

Image
Tiles

GTs

nDSMs

(i) Countryside region, two classes (road vs. background), 16 tiles of 1000x1000 pixels,

(ii) Road networks: very irregular, mainly narrow, partially occluded trees, shadows.

manual annotations.

Vaihingen Multi-class Dataset

- (i) Six classes: natural ground, background, roads, trees, grass, and buildings.
- (ii) Buildings: vary strongly in shape and are often densely clustered.

Javier Montoya | 19.5.2016 | 9

ETH zürich

How are the results measured?

Pixel-wise classification accuracy:

· F1-score, Precision, Recall.

Road Network Topology:

 What fraction of connecting paths between road seeds have the correct length within 5% tolerance, are respectively:

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 10

ETH zürich

How are the results measured?

Pixel-wise classification accuracy:

· F1-score, Precision, Recall.

Road Network Topology:

 What fraction of connecting paths between road seeds have the correct length within 5% tolerance, are respectively:

Too Long (2long)

ETH zürich

How are the results measured?

Pixel-wise classification accuracy:

· F1-score, Precision, Recall.

Road Network Topology:

 What fraction of connecting paths between road seeds have the correct length within 5% tolerance, are respectively:

Too Long (2long)

Too Short (2short)

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 11

Modeling Local and Global Context Information for Aerial Image Labeling

How are the results measured?

Pixel-wise classification accuracy:

F1-score, Precision, Recall.

Road Network Topology:

· What fraction of connecting paths between road seeds have the correct length within 5% tolerance, are respectively:

Too Long (2long)

Too Short (2short)

No Connectivity (NoConn)

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 13

ETH zürich

How are the results measured?

Pixel-wise classification accuracy:

· F1-score, Precision, Recall.

Road Network Topology:

What fraction of connecting paths between road seeds have the correct length within 5% tolerance, are respectively:

TopoCorrectness =

100% - 2Short - 2Long - noConn

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 14

ETH zürich

Class-Specific higher-order cliques

Approach Overview:

Representation

generation

Inference

Javier Montova | 19.5.2016 | 15

Model:

- (i) Multilabel pixelwise classification using powerful neighbor features.
- (ii) Overcomplete representation of building and road candidates.
- (iii) Candidates are prunned to optimal subset through CRF.

ETH zürich

Class-Specific higher-order cliques

(I) Context-aware road scores

- · Multi-label pixelwise classification.
- Self context/Local layout, appearance information is encoded over large spatial neighborhoods.

Modeling Local and Global Context Information for Aerial Image Labeling

Ladický et. al. (ICCV'09)

Class-Specific higher-order cliques

(II) Hyphoteses Generation: Roads

ETH zürich

Class-Specific higher-order cliques

(II) Hyphoteses Generation: Buildings

- · Building candidates based on classifier scores.
- Connected components with high building likelihood.
- Building segments are approximated through alphashapes.

ETH zürich

Class-Specific higher-order cliques

(III) Hypotheses Selection: Inference

Candidate selection (high precision)

Modeling Local and Global Context Information for Aerial Image Labeling

CRF-Model for road superpixel segmentation

Baselines:

$$E = \sum_{pixels} E_{u}(x_{pix}) + \sum_{pix} \sum_{neigh} E_{p}(x_{pix}, x_{neigh}) + \sum_{roads} E_{R}(Q_{m})$$

Winn

Context

Multi-feature Textonboost

Sampled Road Candidates

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 21

True Positives

ETH zürich

Class-Specific higher-order cliques

Modeling Local and Global Context Information for Aerial Image Labeling

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Javier Montoya | 19.5.2016 | 22

ETH zürich

Class-Specific higher-order cliques

Visual Results on Road Network Extraction:

Road network on GRAZ, img6

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 23

ETH zürich

Class-Specific higher-order cliques

Experimental Results on Joint Road Networks + Buildings:

$$E = \sum_{pixels} E_u(x_{pix}) + \sum_{pix} \sum_{nelgh} E_p(x_{pix}, x_{nelgh}) + \sum_{roads} E_R(Q_m) + \sum_{puild} E_B(Q_n)$$

F1-Score Buildings

F1-Score Roads

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Labeling Performance on the **Vaihingen Multi-class Dataset** (all numbers percentages).

Modeling Local and Global Context Information for Aerial Image Labeling

Class-Specific higher-order cliques Visual Results on Joint Road Networks + Buildings:

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 25

ETH zürich

Conclusions

Class-specific Priors:

- Higher-level representations for buildings and roads are useful multi-class segmentation.
- Buildings are represented as a set of compact-like polygons.
- Roads are modeled as a collection of long, narrow segments.

ETH zürich

Class-Specific higher-order cliques

Visual Results on Joint Roads + Buildings:

Modeling Local and Global Context Information for Aerial Image Labeling

Javier Montoya | 19.5.2016 | 26

ETH zürich

Outlook & Future Work

Generation of object candidates:

- · Probabilistic Sampling Scheme?
- · Hypotheses parameters as regression task?

Training Dataset:

- Manual labeling of roads is time-consuming and costly
 - => use publicly available data as ground truth, e.g. Open Street Map.
 - => deep learning.

Applicability in other domains:

• Generic model potentially applicable to other networks such as neurons and vessel in medical imaging.

Modeling Local and Global Context Information for Aerial Image Labeling