#### **Econometrics on Networks**

Special Quarter: Data Science & Online Markets

June 14, 2018

Northwestern University

Introduction

#### Ising Model

Given a graph G=(V,E) whose nodes are associated with external field  $(\theta_u)_{u\in V}$  and edges with parameters  $(\theta_{u,v})_{(u,v)\in E}$ , the Ising model defines a probability distribution over  $x\in \{\pm 1\}^n$ 

#### PDF of Ising model

$$p(x) = \frac{1}{Z(\theta)} \cdot \exp\left(\sum_{i} \theta_{i} x_{i} + \sum_{(i,j)} x_{i} x_{j} \theta_{i,j}\right)$$

 $\theta_i$  on each vertex is also known as external fields.

1

Problem 1 : Approximating

Ising Distribution

#### Problem setup

- Unknown Graph
- Polynomial samples from the stationary distribution
- No external fields
- $\theta_{ij}^* > 0 \quad \forall i, j$
- Goal: Recover an Ising model whose distribution is close in TV distance (or SKL) to the Ising distribution sampled from.

#### Motivation: Lower bounds to recover the graph

• Given i.i.d samples  $x_1,...,x_N$ , ideally, we would like to recover the graph structure and the associated edge weights.

#### Motivation: Lower bounds to recover the graph

- Given i.i.d samples  $x_1, ..., x_N$ , ideally, we would like to recover the graph structure and the associated edge weights.
- However, there is a information-theoretic lower bound we need at least  $O(\exp(d))$  samples, where d is the maximum degree. See [Santhanam and Wainwright, 2012]

#### Problem Objective

This calls for a relaxation of our original goal. Can we instead just find an approximation of the original Ising distribution  $p^*(x)$ , i.e find another Ising model whose distribution p(x) satisfies  $SKL(p||p^*) \le \epsilon$ , where SKL refers to symmetric KL divergence. Such a goal comes under *proper learning*.

#### Symmetric KL Divergence

$$SKL(p||p^*) = \sum_{i \in V} (\theta_i - \theta_i^*) \left( \mathbb{E}_p[x_i] - \mathbb{E}_{p^*}[x_i] \right)$$
$$+ \sum_{(i,j)} (\theta_{ij} - \theta_{ij}^*) \left( \mathbb{E}_p[x_i x_j] - \mathbb{E}_{p^*}[x_i x_j] \right) \le \epsilon$$

#### Sufficient condition

#### Sufficient condition:

Ignoring external fields, the following simple condition that

$$\forall ij \in E, \left| heta_{ij} - heta_{ij}^* 
ight| \leq rac{\epsilon}{n^2}$$
 guarantees that  $\mathit{SKL}(p||p^*) \leq \epsilon$ 

#### Prior work

A recent paper by [Klivans and Meka, 2017] addresses this problem.

**Approach:** They pose the problem as learning a generalized linear model (GLM): Given Ising samples with conditional mean functions of the form  $P(x_{\nu}|x_{-\nu}) = \sigma(\vec{\theta^*}_{\nu}.x_{-\nu})$ , we want to recover  $\vec{\theta^*}_{\nu}$  for all  $\nu$ .

**Algorithm:** Their algorithm termed *Sparsitron* is based on multiplicative updates method but uses a novel loss function. This method is used to achieve small squared loss and a further assumption that the given Ising model is  $\delta$ -unbiased makes strong recovery (parameters) possible.

6

#### Continuing..

**Results:** To achieve  $||\theta - \theta^*||_{\infty} \leq \frac{\epsilon}{n^2}$ , they require:

Sample-complexity:  $N = O(n^8 \lambda^2 exp(\lambda)/\epsilon^4).(\log(n^3/\rho\epsilon))$ , where  $\lambda$  upper bounds  $||\theta_v^*||_1$  for all v and  $\rho$  is the probability of failure.

In the high-temperature regime, under the assumption that  $||\theta^*_{\nu}||_1=1$  for all  $\nu$ , this effectively gives  $\tilde{O}\left(\frac{n^8}{\epsilon^4}\right)$ 

However, information-theoretically, finding a SKL approximation only requires  $O(n^2/\epsilon^2)$  samples in the high-temperature regime

Can we do better?

#### Our approach: Logistic Regression

For a given vertex v, the marginal distribution given all the other labels  $x_{-v}$  is

$$p(x_{v}|\vec{\theta_{v}}, x_{-v}) = \frac{\exp(\sum_{u, u \neq v} \theta_{v, u} \cdot x_{u} \cdot x_{v})}{\exp(\sum_{u, u \neq v} \theta_{v, u} \cdot x_{u} \cdot x_{v}) + \exp(-\sum_{u, u \neq v} \theta_{v, u} \cdot x_{u} \cdot x_{v})}$$

Hence if we have N iid samples, and if  $\vec{x_v} \in \{\pm 1\}^N$  is the labels for v, and  $X_{-v} \in \{\pm 1\}^{n-1 \times N}$ 

#### Likelihood

$$L_{v}(\vec{\theta_{v}}) = p(\vec{x_{v}}|\vec{\theta_{v}}, X_{-v}) = \prod_{i=1}^{N} \frac{\exp(2\sum_{u,u\neq v} \theta_{v,u} \cdot x_{u}^{(i)} \cdot x_{v}^{(i)})}{1 + \exp(2\sum_{u,u\neq v} \theta_{v,u} \cdot x_{u}^{(i)} \cdot x_{v}^{(i)})}$$

Which would serve as the likelihood function for logistic regression.

#### Negative log-likelihood minimization

Just like in logistic regression, we perform negative log likelihood (NLL) minimization

#### Negative log likelihood

$$\textit{NLL}_{v}(\vec{\theta_{v}}) = -2\sum_{i=1}^{N} x_{v}^{(i)} \vec{\theta_{v}}^{T} X_{-v}^{(i)} + \sum_{i=1}^{N} \log \left(1 + \exp(2x_{v}^{(i)} \vec{\theta_{v}}^{T} X_{-v}^{(i)})\right)$$

#### Gradient

$$\nabla NLL = -2X_{-\nu}(I-D)x_{\nu}$$

where D is a diagonal matrix with  $D_{i,i} = \frac{\exp(2x_v^{(i)}\vec{\theta_v}^{T}X_{-v}^{(i)})}{1+\exp(2x_v^{(i)}\vec{\theta_v}^{T}X_{-v}^{(i)})}$ 

#### Hessian

#### Hessian

$$\nabla^2 NLL = X_{-\nu} D' X_{-\nu}^T$$

where D' is a diagonal matrix with  $D'_{i,i} = \frac{4e^{2x_i^{(i)}}\vec{\theta}_v^T X_{-v}^{(i)}}{\left(1+e^{2x_i^{(i)}}\vec{\theta}_v^T X_{-v}^{(i)}\right)^2}$ 

Notice that this is a PSD matrix and thus, the objective is convex. This allows us to exploit convex optimization tools (aka Gradient Descent).

#### **Technical Questions**

- Understanding spectral properties of the Hessian so as to check for strong convexity and smoothness. This might be of independent interest.
- Under what conditions is the NLL objective function Lipschitz?
- Study how minimizing the NLL objective might give us strong recovery guarantees in the parameter space.
- What set of assumptions about the temperature and the underlying graph are needed for the above?
- How does regularization help?

## form one sample

Problem 2: Learning the sign

#### Problem setup

- Unknown Graph
- One sample
- No external fields
- $\theta_{ij} = \theta \quad \forall i, j \text{ i.e. edge parameter is the same for all edges.}$
- $\bullet$  Goal: Recover the sign of  $\theta$

#### Hurdles

#### Can't do it for general Graphs (even with constant probability)

For example:

- Star Graph K(1, n)
- Complete Bipartite Graph where one side is constant sized : K(c, n)
- Path on cliques

We can learn on K(n, n) graphs!

#### Approaches and Experiments

Given these results: Try to solve the problems on restricted graph classes.

Idea 1 : G(n, p) graphs.

Idea 2: Graphs that are 'well connected'.

Motivation : If there are a lot of pieces of the graph that don't interact much with each other, then  $|\sum_{i=1}^{n} X_i|$  is close to zero in both cases  $\theta > 0$  and  $\theta < 0$ . For example a path of cliques.

#### **Preliminary Experiments**

In random G(n,p) graphs, for  $\theta < 0$ ,  $\sum X_i$  is close to zero and for  $\theta > 2/np$ ,  $|\sum X_i|$  is close to n.

As a possible explanation,  $\theta \leq 1/np$  is the 'high temperature' regime or Dobrushin's condition is satisfied. There might be a transition behaviour at this point.

#### Random Cluster(FK) model

- Introduced by Fortuin and Kastelyn, for  $\theta > 0$ , this is another way of sampling from the Ising model.
- Sample a subset  $S \subseteq E$  of edges of the input graph G with probability proportional to

$$p^{|S|}(1-p)^{|E|-|S|}q^{k(S)}$$

where k(S) is the number of connected components in (V, S).

- Assign each connected component a label uniformly at random from 1...q.
- They prove, this distribution is exactly same as the Potts model for q states. Specifically for q=2 this is exactly the Ising distribution.

#### Using the FK model: Further Approaches

For the restricted classes of graphs mentioned above :

- Prove a lower bound on the size of the largest component.
- Prove that the other components are somewhat small.
- Conclude that in expectation,  $|\sum X_i|$  size of largest component.
- Conclude separately that for  $\theta < 0$ ,  $|\sum X_i|$  is close to zero. (Some preliminary experimental and theoretical evidence suggesting this.)
- Deduce sign of  $\theta$  depending on whether  $\sum X_i$  is small or large.

# on Networks

Problem 3: Logistic Regression

#### Ising model and features

• Graph G(V, E) with  $n \times n$  adjacency matrix A (Known).

#### Ising model and features

- Graph G(V, E) with  $n \times n$  adjacency matrix A (Known).
- Features  $\vec{y}_v \in \mathbb{R}^m$  (Known, m is constant).

#### Ising model and features

- Graph G(V, E) with  $n \times n$  adjacency matrix A (Known).
- Features  $\vec{y}_v \in \mathbb{R}^m$  (Known, m is constant).
- Parameters  $\beta \in \mathbb{R}_+$  and  $\vec{\theta} \in \mathbb{R}^m$  (Unknown).

#### Ising model and features

- Graph G(V, E) with  $n \times n$  adjacency matrix A (Known).
- Features  $\vec{y}_v \in \mathbb{R}^m$  (Known, m is constant).
- Parameters  $\beta \in \mathbb{R}_+$  and  $\vec{\theta} \in \mathbb{R}^m$  (Unknown).

Given an assignment  $\vec{\sigma}: V \to \{-1, +1\}$ , we define the following probability distribution (on the  $2^n$  configurations):

$$\Pr[\{]\tau = \sigma\} = \frac{\exp\left(\sum_{v \in V} (\vec{\theta}^{\top} \cdot \vec{y}_v) \sigma_v + \beta \vec{\sigma}^{\top} A \vec{\sigma}\right)}{Z(G)}$$
(1)

where Z(G) is the partition function of the system (i.e., the renormalization factor).

#### Ising model and features

- Graph G(V, E) with  $n \times n$  adjacency matrix A (Known).
- Features  $\vec{y}_v \in \mathbb{R}^m$  (Known, m is constant).
- Parameters  $\beta \in \mathbb{R}_+$  and  $\vec{\theta} \in \mathbb{R}^m$  (Unknown).

Given an assignment  $\vec{\sigma}: V \to \{-1, +1\}$ , we define the following probability distribution (on the  $2^n$  configurations):

$$\Pr[\{]\tau = \sigma\} = \frac{\exp\left(\sum_{v \in V} (\vec{\theta}^{\top} \cdot \vec{y}_v) \sigma_v + \beta \vec{\sigma}^{\top} A \vec{\sigma}\right)}{Z(G)}$$
(1)

where Z(G) is the partition function of the system (i.e., the renormalization factor).

Problem: We would like to infer  $\vec{\theta}, \beta$ 

• Find an independent set I of size at least  $\frac{n}{\Delta}$ .

- Find an independent set I of size at least  $\frac{n}{\Delta}$ .
- Each  $v \in I$ , conditioned on its neighbors has the following marginal:

$$\Pr[\{]\tau_v = 1 | \sum_{u \in N(v)} \sigma_u = c\} = \frac{1}{1 + e^{-2(\vec{\theta}, \beta)^\top (\vec{y_v}, c)}}.$$
 (2)

- Find an independent set I of size at least  $\frac{n}{\Delta}$ .
- Each  $v \in I$ , conditioned on its neighbors has the following marginal:

$$\Pr[\{]\tau_v = 1 | \sum_{u \in N(v)} \sigma_u = c\} = \frac{1}{1 + e^{-2(\vec{\theta}, \beta)^{\top}(\vec{y_v}, c)}}.$$
 (2)

• To infer  $\beta$ ,  $\theta$ , we reduce the problem to classic logistic regression (independent "samples").  $\vec{\theta}$  can be inferred but the signal for  $\beta$  might be lost.

#### Main challenges!

• Go beyond bounded degree graphs (dense).

- Find an independent set I of size at least  $\frac{n}{\Delta}$ .
- Each  $v \in I$ , conditioned on its neighbors has the following marginal:

$$\Pr[\{]\tau_v = 1 | \sum_{u \in N(v)} \sigma_u = c\} = \frac{1}{1 + e^{-2(\vec{\theta}, \beta)^{\top}(\vec{y_v}, c)}}.$$
 (2)

• To infer  $\beta$ ,  $\theta$ , we reduce the problem to classic logistic regression (independent "samples").  $\vec{\theta}$  can be inferred but the signal for  $\beta$  might be lost.

#### Main challenges!

- Go beyond bounded degree graphs (dense).
- Use the information from all the vertices.

- Find an independent set I of size at least  $\frac{n}{\Delta}$ .
- Each  $v \in I$ , conditioned on its neighbors has the following marginal:

$$\Pr[\{]\tau_v = 1 | \sum_{u \in N(v)} \sigma_u = c\} = \frac{1}{1 + e^{-2(\vec{\theta}, \beta)^{\top}(\vec{y_v}, c)}}.$$
 (2)

• To infer  $\beta, \theta$ , we reduce the problem to classic logistic regression (independent "samples").  $\vec{\theta}$  can be inferred but the signal for  $\beta$  might be lost.

#### Main challenges!

- Go beyond bounded degree graphs (dense).
- Use the information from all the vertices.
- Beat the  $\sqrt{\frac{\Delta}{n}}$  consistency that will occur.

Questions?

Thank You!

#### References i



Santhanam, N. P. and Wainwright, M. J. (2012).
Information-theoretic limits of selecting binary graphical models in high dimensions.

IEEE Transactions on Information Theory, 58(7):4117-4134.