Adopted Levels, Gammas 1991Aj01

	History			
Type	Author	Citation	Literature Cutoff Date	
Update	F. Ajzenberg-selove, J. H. Kelley and C. D. Nesaraja	NP A523,1 (1991)	1-Jul-1990	

 $Q(\beta^-)=156.476\ 4$; S(n)=8176; $S(p)=20831.2\ 11$; $Q(\alpha)=-12012.5\ 1$ 2012Wa38 Note: Current evaluation has used the following Q record 156.475 4 8176.4425 20831.3 11–12011.6 4 1997Au04. Additional information 1.

¹⁴C Levels

Cross Reference (XREF) Flags

Α	$^{14}\mathrm{B}~\beta^-$ decay	K	$^{13}\text{C}(p,\pi^+)$	U	¹⁴ C(¹⁴ C, ¹⁴ C')
В	13 C(n, γ) E=thermal	L	¹³ C(d,p)	V	$^{14}\mathrm{N}(\gamma,\pi^+)$
C	13 C(n, γ) res	M	$^{13}C(t,d)$	W	$^{14}N(\pi^{-},\gamma)$
D	⁹ Be(⁶ Li,p)	N	$^{13}\text{C}(^{7}\text{Li},^{6}\text{Li})$	X	$^{14}N(n,p)$
E	⁹ Be(⁷ Li,d)	0	$^{14}C(\gamma,n)$ res	Y	$^{14}N(d,2p)$
F	11 B(α ,p)	P	14 C(e,e')	Z	$^{14}N(t,^{3}He)$
G	11 B(6 Li, 3 He), 11 B(7 Li, α)	Q	$^{14}C(\pi,\pi')$	Other	rs:
Н	12 C(t,p)	R	14 C(p,p')	AA	$^{15}N(\gamma,p)$
I	$^{12}\mathrm{C}(\alpha,2\mathrm{p})$	S	$^{14}C(d,d')$	AB	$^{15}N(d,^{3}He)$
J	13 C(n,n') res	T	$^{14}\mathrm{C}(\alpha,\alpha')$	AC	$^{16}O(^{6}Li,^{8}B)$

Comments

XREF: Others: AA, AB, AC $\%\beta^-$ =100

T=1

 $T_{1/2}$: From the weighted average of the values 5780 y 65 [Watt et al. Intern. J. Appl. Radiat. Isot. 11 (1961) 68], 5680 y 40 (1962Ol04), 5745 y 50 (1964Hu09), 5660 y 30 (1968Be47), and 5736 y 56 (1968ReZZ and 1972Em01). The reduced- χ^2 for this average is 1.06. These values were obtained from specific activity measurements. Values that have not been included in the average, all earlier, are 4700 y 400 (1946Re10), 5100 y 200 (1948No02), 7200 y (1948Ya02), 6360 y 200 (1949Ha52), 5589 y 75 (1949Jo07), 5580 y 90 [Engelkemeir & Libby, Rev. Sci. Instr. 21 (1950) 550], 6360 y 190 and 5513 y 165 [Miller et al., Phys. Rev. 77 (1950) 714], 5370 y 200 [Manov & Curtiss, J. Research Nat. Bur. Std. 46 (1951) 328], 6100 y 85 (1952Je11), 5900 y 250 [Caswell et al., J. Research Nat. Bur. Std. 53 (1954) 27]. These values were omitted because of their large uncertainties and the later improvements in the measurement methods. From a similar evaluation, 1990Ho28 gives a result of 5715 y 30 from an unweighted average of eight values. Evaluated by V. Chechev in 1998 in conjunction with the Decay Data Evaluation Project (1999BeZS,1999BeZQ).

6589.4 2	1 ⁻ 0 ⁺ 3 ⁻	<7 fs 3.0 ps 4 66 ps 8	AB	DEFGH DEF H DEFGHI	LM	
6902.6 <i>2</i> 7012 <i>4</i> 7341 <i>3</i>	0 ⁻ 2 ⁺ 2 ⁻	25 fs <i>3</i> 9.0 fs <i>14</i> 111 fs <i>42</i>		DE GH DEFGH DE GH		PQRS

XREF: Others: AB μ=0.816 21 (1989Ra17)

XREF: Others: AB

XREF: Others: AB, AC XREF: Others: AB

Adopted Levels, Gammas 1991Aj01 (continued)

¹⁴C Levels (continued)

E(level)	$_\mathtt{J}^{\pi}$	T _{1/2}	XREF Co	omments
8317.9 8	2+	3.4 keV 7	B DEFGHIJKLM PQ T W YZ XREF: Others: AC %IT=?; %n=?	
9746 [†] 7	0+		XREF: Others: AB	
9801 6	3-	45 keV <i>12</i>	D FGH JKLM P T XREF: Others: AB %IT=?; %n=?	
10425 5	2+		D F H JKLM P T XREF: Others: AB %n=100	
10449 7	≥1		D FGH JK XREF: Others: AB %n=100	
10498 <i>4</i>	(3-)	26 keV 8	D GH JKLM XREF: Others: AB %n=100	
10736 [†] 5	4+	20 keV 7	D FGHI KLM T W	
11306 15	1+	46 keV <i>12</i>	D F J OP XREF: Others: AB	
11205 0	1-	22.1.17.7	%IT=0.015 5; %n=99	.985 5
11395 <i>8</i> 11500?	1 ⁻ 1 ⁻ ,2 ⁻	22 keV 7	D FGH LM T %n=100 J %n=100	
11300:	1 ,2		$T_{1/2}$: Γ =broad.	
11666 <i>10</i>	4-	20 keV 7	D FGHI KLM PQRST XREF: Others: AB	
11730 [†] 9	(5^{-})		D FGHI K	
$119 \times 10^2 \ 3$	(1^{-})	950 keV 300	J LM %n=100	
12583 10	$(2^-,3^-)$	95 keV <i>15</i>	D GH J LM Q T XREF: Others: AB %n=100	
12863 8		30 keV 10	D GH J LM P %n=100	
12963 9	(3^{-})	30 keV 10	D GH J LM T %n=100	
135×10^{2} ? [†] <i>1</i>		<200 keV	K	
13700	2-	≈1800 keV	J %n=100	
140.5×10^2 ? † 10		<200 keV	K	
14667 20	(4^{+})	57 keV <i>15</i>	D FG J %n=100	
14868 7 20	$(6^+,5^-)$		D FGHI K XREF: Others: AB	
15200 † 23	4-		D FG K PQ	
15370? [†] <i>30</i>			D	
15440 40	(3^{-})		D J %n=100	
16020? <i>50</i> 16430 [†] <i>16</i>	(4^{+})		D J %n=100	
16430 † 16 16570? † 40			D FGH	
16570?† 40 16715 <i>30</i>	(1^+)	≈200 keV	D B D F %IT=?; %n=?	
17300 <i>30</i>	4-	~200 KC V	D FG PQRS	
17500?	(1^+)	≈200 keV	B %IT=?; %n=?	
17950 [†] <i>40</i>			D	
18100 [†] <i>40</i>			D	
18500 [†]			K $T_{1/2}$: Γ =broad.	
20400 [†]			\mathbf{X} $\mathbf{T}_{1/2}$: Γ =wide.	
21400? [†]			F	
$221 \times 10^2 I$	(2^{-})		P T=2	
+			T: tentative.	
23288 [†] 15	4-	≈50 keV	F K	
$244 \times 10^2 I$	4-	<300 keV	PQ T=2 T: tentative.	
24500 [†]			K Q $T_{1/2}$: Γ =wide.	
			-1/2:	

 $^{^{\}dagger}$ Decay mode not specified.

Adopted Levels, Gammas 1991Aj01 (continued)

γ (14C)

$E_i(level)$	J_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	$I_{(\gamma+ce)}$	Comments
6093.8	1-	6092.4 2	100	$0.0 0^{+}$	[E1]		B(E1)(W.u.)>7.3×10 ⁻⁴
6589.4	0_{+}	495.35 10	100.0 <i>I</i>	6093.8 1-	[E1]		B(E1)(W.u.)=0.0032 4
		6587.7 2		0.0 0+	[E0]	1.1 <i>I</i>	$I_{(\gamma+ce)}$: this decay mode is due entirely to internal pairs.
6728.2	3-	634.4 13	3.7 13	6093.8 1	[E2]		B(E2)(W.u.)=1.5 6
		6726.5 <i>13</i>	100.1 <i>13</i>	$0.0 0^{+}$	[E3]		B(E3)(W.u.)=2.4 3
6902.6	0_{-}	808.8 <i>3</i>	100	6093.8 1	[M1]		B(M1)(W.u.)=1.6 2
7012	2+	918 <i>4</i>	1.4 7	6093.8 1	[E1]		B(E1)(W.u.)=0.0023 12
		7010 4	100.0 7	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=1.8 3
7341	2-	613 <i>3</i>	70 <i>7</i>	6728.2 3-	[M1]		B(M1)(W.u.)=0.29 10
							δ : δ (E2/M1)=-0.07 30.
		1248 <i>3</i>	100 7	6093.8 1	[M1]		B(M1)(W.u.)=0.049 20
							δ : δ (E2/M1)=0.04 9.
		7339 <i>3</i>	34 7	$0.0 \ 0^{+}$	[M2]		B(M2)(W.u.)=0.38 15
11306	1+	11301 <i>15</i>	100	$0.0 \ 0^{+}$	[M1]		B(M1)(W.u.)=0.225

Adopted Levels, Gammas 1991Aj01

Level Scheme

Intensities: Relative photon branching from each level

