The group G is isomorphic to the group labelled by [36, 5] in the Small Groups library. Ordinary character table of $G \cong C18 \times C2$:

	1a 9a	96	3a	9c	9d	3b	9e	9 <i>f</i>	2a	18a	18b	6a	18c	18 <i>d</i>	6b	18e	18 <i>f</i>	2b 1	18 <i>g</i>	18h	6c	18i	18j	6d	18k	18 <i>l</i>	2c	18m	18n	6e	180	18p	6f	$\overline{18q}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
χ_1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1 1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_3	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_4	1 1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1
χ_5	1 E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1 E	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_6	1 E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	1 E	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$
χ_7	1 E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1 -1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$
χ_8	1 E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1 -1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_9	1 $E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1 E	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_{10}	$1 E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	-1	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	-E(3)	1 E	$E(3)^{2}$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	-1 -	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	$-\dot{E(3)}$	-1	$-E(3)^{2}$	-E(3)
χ_{11}	1 $E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1 $-E$	$-E(3)^2$	$-\dot{E(3)}$	-1	$-E(3)^{2}$	$-\dot{E(3)}$	-1	$-E(3)^{2}$	$-\dot{E(3)}$	-1 -	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	-E(3)
χ_{12}	1 $E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	-1	$-E(3)^{2}$	$-\dot{E(3)}$	-1	$-E(3)^{2}$	$-\dot{E}(3)$	-1	$-E(3)^{2}$	-E(3)	-1 $-E$	$-E(3)^2$	-E(3)	-1	$-E(3)^{2}$	-E(3)	-1	$-E(3)^{2}$	-E(3)	1	$E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_{13}	$1 - E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^7$	$-E(9)^{2} - E$	$(9)^5 1 -$	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	1 $-E(9)^4$	$)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	1 - E(9)	$9)^{4} - E(9)^{7}$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^7$	$-E(9)^2 - E(9)^5$
χ_{14}	$1 - E(9)^4 - E(9)^7$	$E(9)^2$	E(3)	$E(9)^4$	$E(9)^5$	$E(3)^2$	$E(9)^7$	$-E(9)^{2}-E$		$E(9)^4 + E(9)^7$	$-E(9)^{2}$	-E(3)	$-E(9)^4$	$-E(9)^{5}$	$-E(3)^{2}$	$-E(9)^{7}$	$E(9)^{2} + E(9)^{5}$	$1 - E(9)^4$	$)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^2$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	(/ /	$-E(9)^{2}$	$-\stackrel{\circ}{E}\stackrel{\circ}{(3)}$	$-\dot{E}(9)^{4}$	$-E(9)^{5}$	$-E(3)^{2}$	$-\dot{E}(9)^{7}$	$E(9)^{2} + E(9)^{5}$
γ ₁₅	$1 - E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E$	\ /	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^2$	$E(9)^{7}$	() . ()	$-1 E(9)^4$	$^{4} + E(9)^{7}$	$-E(9)^{2}$	-E(3)	$-E(9)^{4}$	$-E(9)^{5}$	$-E(3)^{2}$	$-E(9)^{7}$	$E(9)^{2} + E(9)^{5}$	()	/ ' (/	$-E(9)^{2}$	-E(3)	$-E(9)^4$	$-E(9)^{5}$	$-E(3)^{2}$	$-E(9)^{7}$	$E(9)^2 + E(9)^5$
V ₁₆	$1 - E(9)^4 - E(9)^7$	$E(9)^2$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^2$	$E(9)^{7}$	$-E(9)^2 - E$	\ /	$E(9)^4 + E(9)^7$	$-E(9)^2$	-E(3)	$-E(9)^4$	$-E(9)^{5}$	$-E(3)^2$	$-E(9)^{7}$		$-1 E(9)^4$. ()	$-E(9)^2$	-E(3)	$-E(9)^4$	$-E(9)^{5}$	$-E(3)^2$	$-E(9)^{7}$	$E(9)^2 + E(9)^5$	\ /	/ / /	$E(9)^2$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^2$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$
$\begin{array}{c} \chi_{10} \\ \chi_{17} \end{array}$	$\begin{array}{ c c c c } \hline 1 & E(0) & E(0) \\ \hline 1 & E(0)^4 \\ \hline \end{array}$	$-E(9)^2 - E(9)$	$\frac{E(3)}{E(3)}$	$E(9)^{7}$	$E(9)^2$	()	$E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^2 - E(9)$	_ \ /	$E(9)^{7}$	$E(9)^2$	$E(3)^2$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1 E(0)	$E(9)^4$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^2$	$E(3)^2$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$ -	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^2$	$E(3)^2 -$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$
$\begin{array}{c} \lambda_{11} \\ \gamma_{10} \end{array}$	$\frac{1}{1}$ $\frac{E(0)^4}{E(0)^4}$	$-E(9)^2 - E(9)$	_ ()	$E(9)^{7}$	$E(9)^2$	()	$E(9)^4 - E(9)^7$	$E(9)^{5}$	_1	$-E(9)^4$	$E(9)^2 + E(9)^5$	— ()	()	$-E(9)^2$	2 (3)	— (°)	$-E(9)^{5}$	1 E	$E(9)^4$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^2$	2(3)	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	_1 _	$-E(9)^4$	$E(9)^2 + E(9)^5$	-E(3)	$-E(9)^{7}$	$-E(9)^2$	(-)	$E(9)^4 + E(9)^7$	$-E(9)^{5}$
\(\chi_{18}\)	$\begin{array}{ c c c c c } \hline 1 & E(0)^4 \\ \hline \end{array}$	$-E(9)^2 - E(9)$	— ()	$E(9)^{7}$	$E(9)^2$	2(3)	$E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^2 - E(9)$	()	$E(9)^{7}$	$E(9)^2$	$E(3)^2$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	_1 _F	$E(9)^4$	$E(9)^2 + E(9)^5$	-E(3)	$-E(9)^{7}$	$-E(9)^2$	2 (3)	$E(9)^4 + E(9)^7$	$-E(9)^{5}$	_1 _	$-E(9)^4$	$E(9)^2 + E(9)^5$	-E(3)	$-E(9)^{7}$	$-E(9)^2$	()	$E(9)^4 + E(9)^7$	$-E(9)^{5}$
\(\chi_{\chi_{\text{20}}}\)	$\begin{array}{ c c c c c } \hline 1 & E(0)^4 \\ \hline \end{array}$	$-E(9)^2 - E(9)$	\ /	$E(9)^{7}$	$E(9)^2$	2(3)	$E(9)^4 - E(9)^7$	$E(9)^{5}$	_1	$-E(9)^4$	$E(9)^2 + E(9)^5$	()	()	$-E(9)^2$	2 (3)	(-)	$-E(9)^{5}$	_1 _F	$E(9)^4$	$E(9)^2 + E(9)^5$	-E(3)	$-E(9)^{7}$	$-E(9)^2$	()	$E(9)^4 + E(9)^7$	$-E(9)^{5}$	1	$E(9)^4$ -	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(0)^2$	$E(3)^2$ -	$-E(9)^4 - E(9)^7$	$E(0)^5$
X20	$\begin{bmatrix} 1 & E(0) \\ 1 & E(0)^7 \end{bmatrix}$	$E(9)^{5}$	\ /	- (0)	$-E(9)^2 - E(9)^5$	— (°)	$E(0)^4$	$E(9)^2$	1	$E(0)^{7}$	$E(0)^{5}$	E(3)	- (*)	(-)	- ()	$E(9)^4$	$E(0)^2$	1 E	$E(0)^{7}$	$E(9)^{5}$	\ /	(-)	$-E(9)^2 - E(9)^5$	(-)	$E(0)^4$	$E(0)^2$	1	$E(9)^7$	$E(0)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^2$	$E(0)^4$	$\frac{E(0)}{E(0)^2}$
χ_{21}	$\begin{bmatrix} 1 & E(3) \\ 1 & E(9)^7 \end{bmatrix}$	$E(9)^{5}$			$-E(9)^2 - E(9)^5$		$E(0)^4$	$E(9)^2$	_1 _1	$-E(9)^{7}$	$-E(9)^{5}$	-E(3)	()	$E(9)^2 + E(9)^5$	\ /	$-E(9)^4$	$-E(9)^2$	1 E	$E(9)^7$	$E(9)^{5}$			$-E(9)^2 - E(9)^5$		$E(9)^4$	$E(9)^2$	_1 _	$-E(9)^{7}$	$-E(9)^{5}$	(-)	$E(9)^4 + E(9)^7$	$E(9)^2 + E(9)^5$	- ()	$-E(9)^4$	$-E(9)^2$
χ_{22}	$\begin{bmatrix} 1 & E(3) \\ 1 & E(9)^7 \end{bmatrix}$	$E(9)^{5}$			$-E(9)^2 - E(9)^5$		$E(0)^4$	$E(9)^2$	1	$E(9)^7$	$E(9)^{5}$	()	() . ()	() . ()	()	$E(9)^4$	$E(0)^2$	_1 _1	$E(9)^7$	\ /	\ /	()	()	()	$-E(9)^4$	$-E(9)^2$		$-E(9)^{7}$	$-E(9)^5$	(-)	$E(9)^4 + E(9)^7$	$E(9)^2 + E(9)^5$	(-)	$-E(9)^4$	$-E(9)^2$
χ_{23}	$\begin{bmatrix} 1 & E(3) \\ 1 & E(9)^7 \end{bmatrix}$	$E(9)^{5}$			$-E(9)^2 - E(9)^5$		$E(9)^4$	$E(9)^2$	_1	E(9)	$-E(9)^5$	-E(3)	()	$E(9)^2 + E(9)^5$	()	$-E(0)^4$	E(3) - $E(9)^2$	_1 _1	$E(9)^7$	\ /	()	() . ()	() . ()	\ /	$-E(9)^4$	$-E(9)^2$	1	$E(9)^7$	$E(9)^5$	— ()	$-E(9)^4 - E(9)^7$	() . ()	()	$E(0)^4$	E(9)
X24	$\begin{bmatrix} 1 & E(3) \\ 1 & F(0)^2 \end{bmatrix}$	$E(9)^4$	\ /	()	$-E(9)^4 - E(9)^7$	\ /	$E(0)^{5}$	$E(9)^{7}$	1	$E(9)^2$	$E(9)^4$	\ /	(-)	(-) (-)	E(3)	$E(0)^5$	$E(0)^{7}$	1 F	$E(9)^2$	$E(9)^4$			$-E(9)^4 - E(9)^7$		$E(9)^5$	$E(0)^7$	1	$E(9)^2$	$E(9)^4$	= (3)	$-E(9)^2 - E(9)^5$	() . () .	_	$E(0)^5$	$\frac{E(3)}{F(0)^7}$
χ_{25}	$\begin{bmatrix} 1 & E(3) \\ 1 & F(0)^2 \end{bmatrix}$	$E(9)^4$	\ /	()	$-E(9)^4 - E(9)^7$	()	$E(0)^{5}$	$E(9)^{7}$	_1	$-E(9)^2$	$-E(9)^4$	$-E(3)^2$	()	$E(9)^4 + E(9)^7$	-F(3)	$-F(0)^{5}$	E(3) $-E(0)^{7}$		$E(9)^2$	$E(9)^4$			` ' ' ` ' _		$E(9)^5$	$\frac{L(3)}{F(0)^7}$	-	$-E(9)^2$	$-E(9)^4$	_(")	$E(9)^2 + E(9)^5$	$E(9)^4 + E(9)^7$	- (-)	$-F(0)^{5}$	$-F(0)^{7}$
X26	$\begin{bmatrix} 1 & E(\theta) \\ 1 & F(0)^2 \end{bmatrix}$	$E(9)^4$	\ /	()	$-E(9)^{4} - E(9)^{7}$	()	$E(\theta)$ $E(0)^5$	E(9)	- ₁	$E(9)^2$	$E(0)^4$	()	() . ()	(-) (-)	E(3)	-E(9)	$\frac{-E(9)}{E(0)^7}$	1 E	$F(0)^2$	2 (0)	\ /	()	$E(9)^4 + E(9)^7$	-E(3)	$-E(9)^5$	$-E(9)^{7}$		$-E(9)^2$	$-E(9)^4$	(-)	- (*) - (*)	(-) (-)	-E(3)	$\frac{-E(\theta)}{F(0)^5}$	$\frac{-E(9)}{E(0)^7}$
χ_{27}	$\begin{bmatrix} 1 & E(\theta) \\ 1 & F(0)^2 \end{bmatrix}$	$E(9)^4$		$-E(9)^2 - E(9)^5$			$E(\theta)$ $E(0)^5$	E(9)	1	E(9) $E(0)^2$	$-E(9)^4$	$-E(3)^2$	()	$E(9)^4 + E(9)^7$	\ /	$E(\theta)$	$\frac{E(9)}{F(0)^7}$	-1 -L	$E(9)^2$	E(9)	\ /	() _ () _	E(9) + E(9) $E(9)^4 + E(9)^7$	-E(3)	$-E(9)^{5}$	$\frac{-E(9)}{E(0)^7}$	- ₁ -	$E(0)^2$	$E(9)^4$	\ /	-E(9) + E(9) $-E(9)^2 - E(9)^5$	() . ' () .	-E(3)	$-E(9)$ $E(0)^5$	$\frac{-E(9)}{E(0)7}$
χ_{28}	$\begin{array}{ccc} 1 & E(9) \\ 1 & F(0)5 \end{array}$	$-E(9)^4 - E(9)$	_ \ / _	-E(9) - E(9)	-E(9) - E(9)	()	E(9) $E(9)^2 - E(9)^5$	E(9)	-1 1	$E(9)^{5}$	$-E(9)^4 - E(9)$	= (-)	$E(\theta) + E(\theta)$	E(9) + E(9)	E(3)	$-E(9)^{2} - E(9)^{5}$	$E(9)^4$	-1 - <i>I</i>	E(0)5	-E(9) $E(0)^4$ $E(0)^7$	-E(3)	$E(\theta) + E(\theta)$	E(9) + E(9) $E(0)^7$	-E(3)	-E(9) $E(0)^2$ $E(0)^5$	-E(9)	1	E(9) E(0)5	$-E(9)^4 - E(9)^7$	$E(3) = F(2)^2$	-E(9) - E(9)	-E(9) - E(9)	— ()	$-E(9)^2 - E(9)^5$	$\frac{E(9)}{F(0)^4}$
X29	$\begin{bmatrix} 1 & E(9) \\ 1 & E(0)5 \end{bmatrix}$	-E(9) - E(9) $-E(9)^4 - E(9)$	$\frac{E(3)}{7}$	$E(9)$ $E(0)^2$	E(9)	D (0)	E(9) - E(9)	$E(9)^4$	1	$-E(9)^{5}$	$E(9)^4 + E(9)^7$	— ()	E(9)	E(9)	(-)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E(9)	1 E	ピ(9) に (0)5	-E(9) - E(9)	E(3)	E(9)	E(9)	E(3)	-E(9) - E(9) $-E(9)^2 - E(9)^5$	E(9)	1	E(9) -	$E(9)^4 + E(9)^7$	E(3)	$-E(9)^2$	E(9)	()	$E(9)^2 + E(9)^5$	$\frac{E(9)}{E(0)4}$
χ_{30}	$\begin{bmatrix} 1 & E(9) \\ 1 & F(0)5 \end{bmatrix}$	E (0) E (0)	$E(3)^{2}$ $E(3)^{2}$	$E(9)^{2}$ $E(9)^{2}$	E(9)	E(3) - E(3)	$E(9) - E(9)^{\circ}$ $E(0)^{\circ}$	$E(9)^{4}$	-1 1	$E(9)^{5}$	$E(9)^{3} + E(9)^{4}$ $-E(9)^{4} - E(9)^{4}$	`	$E(9)^{2}$	-E(9)	()	$E(9)^{2} + E(9)^{3}$ $-E(9)^{2} - E(9)^{5}$	$\frac{-E(9)^{4}}{E(9)^{4}}$	-1 $-F$	E(9)	-E(9) - E(9)	E(3)	$E(9)^{-}$ - $E(9)^{2}$	$-E(9)^7$	2(3)	$E(9)^{2} - E(9)^{3}$ $E(9)^{2} + E(9)^{5}$	$E(9)^{4}$	-1 -	$-E(9)^{5}$	___\	-E(3)	$-E(9)^{2}$ $-E(9)^{2}$	$-E(9)^{7}$		$E(9)^{2} + E(9)^{5}$ $E(9)^{2} + E(9)^{5}$	$\frac{-L(9)}{F(0)4}$
X31	$\begin{bmatrix} 1 & E(9)^3 \\ 1 & E(0)5 \end{bmatrix}$	_(°), _(°)	_ ()	$E(9)^{2}$ $E(9)^{2}$	E(9)	E(3) - E(3) - E(3)	()	$E(9)^{4}$	1	$E(9)^{5}$ $-E(9)^{5}$	$E(9)^4 - E(9)^7$ $E(9)^4 + E(9)^7$	(-)	(-)	E(9).	()	()	$E(9)^{4}$	-1 $-L$	$E(9)^{\circ}$	$E(9)^{4} + E(9)^{7}$ $E(9)^{4} + E(9)^{7}$	$-E(3)^{-1}$	$-E(9)^{-}$	$-E(9)^{7}$	()	$E(9)^{2} + E(9)^{9}$ $E(9)^{2} + E(9)^{5}$	$-E(9)^{4}$	-1 -	$-E(9)^{\circ}$	$E(9)^4 + E(9)^7$ $-E(9)^4 - E(9)^7$	$E(3)^{2}$	$-E(9)^{-}$	-E(9)	\ /	$E(9)^{2} + E(9)^{3}$ $-E(9)^{2} - E(9)^{5}$	$\frac{-E(9)^4}{E(9)^4}$
χ_{32}	$\begin{bmatrix} 1 & E(9)^{\circ} \\ 1 & E(0)^{2} & E(0)^{5} \end{bmatrix}$	$-E(9)^4 - E(9)^7$	$E(3)^2$	$\frac{E(9)^2}{E(9)^5}$	$E(9)^{4}$	` /	()	$-E(9)^{4} - E$	-1 (0)7 1	$-E(9)^{\circ}$ $-E(9)^{2} - E(9)^{5}$	$E(9)^{2} + E(9)^{3}$	$-E(3)^{2}$	(-)	$-E(9)^{7}$	()	$E(9)^2 + E(9)^5$	2(0)	$1 - E(9)^2$	· L (9) ~ \2	— (°) — (°)	$-E(3)^{2}$	$-E(9)^{2}$	$-E(9)^4$	2(3)	2(0) 12(0)	$-E(9)^{4}$ $-E(9)^{4} - E(9)^{7}$	1 1 -E(9)	$E(9)^{\circ}$ -	$-E(9)^{2}-E(9)^{3}$	$E(3)^2$	E(9) ⁵	E(9).	E(3) -	(-)	2(0)
χ_{33}	$1 - E(9)^2 - E(9)^6$	E(9)	$E(3)^{2}$	$E(9)^5$	$E(9)^{*}$	E(3)	$E(9)^2$	E(0) E	\ /	()	E(9)'	$E(3)^2$	$E(9)^{5}$	$E(9)^4$	E(3)	E(9)2	$-E(9)^4 - E(9)^7$	(-)	/ (-/	$E(9)^7$	$E(3)^2$	$E(9)^{\circ}$	2(0)	E(3)	$E(9)^2$	E(v) = E(v)	(/ /	E(9)'	$E(3)^2$	$E(9)^{\circ}$	$E(9)^{\frac{1}{4}}$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)^7$
χ_{34}	$1 - E(9)^2 - E(9)^3$	E(9)'	$E(3)^2$	$E(9)^{\circ}$	$E(9)^{\pm}$	E(3)	$E(9)^2$	$-E(9)^4 - E$	\ /	$E(9)^2 + E(9)^5$	$-E(9)^{7}$	$-E(3)^2$	$-E(9)^{5}$	$-E(9)^4$	-E(3)	$-E(9)^{2}$	$E(9)^4 + E(9)^7$	$1 - E(9)^2$		$E(9)^{7}$	$E(3)^{2}$	$E(9)^{\circ}$	$E(9)^4$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)^7$	(-)	/ ' (/	$-E(9)^{7}$	$-E(3)^{2}$	$-E(9)^{5}$	$-E(9)^4$	-E(3)	$-E(9)^2$	$E(9)^4 + E(9)^7$
χ_{35}	$1 - E(9)^2 - E(9)^3$	E(9)'	$E(3)^2$	$E(9)^{\circ}$	$E(9)^{\pm}$	E(3)	$E(9)^2$	$-E(9)^4 - E$	\ /	$-E(9)^2 - E(9)^5$	E(9)'	$E(3)^2$	$E(9)^{\circ}$	$E(9)^{\star}$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)^7$	\ /	\ /	$-E(9)^{7}$	$-E(3)^{2}$	$-E(9)^{\circ}$	$-E(9)^4$	-E(3)	$-E(9)^2$	$E(9)^4 + E(9)^7$	- ()	/ /	$-E(9)^{7}$	$-E(3)^{2}$	$-E(9)^{5}$	$-E(9)^4$	-E(3)	$-E(9)^{2}$	$E(9)^4 + E(9)^7$
χ_{36}	$1 - E(9)^2 - E(9)^3$	E(9)'	$E(3)^{2}$	$E(9)^{\circ}$	$E(9)^{4}$	E(3)	E(9)2	$-E(9)^4 - E$	(9)' -1 I	$E(9)^2 + E(9)^5$	-E(9)'	$-E(3)^{2}$	$-E(9)^{3}$	$-E(9)^4$	-E(3)	$-E(9)^{2}$	$E(9)^4 + E(9)^7$	$-1 E(9)^2$	$^{2} + E(9)^{3}$	-E(9)'	$-E(3)^{2}$	$-E(9)^{3}$	$-E(9)^4$	-E(3)	$-E(9)^2$	$E(9)^4 + E(9)^7$	1 - E(9)	$9)^2 - E(9)^3$	$E(9)^{7}$	$E(3)^2$	$E(9)^{\circ}$	$E(9)^4$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)^7$

Trivial source character table of $G \cong C18 \times C2$ at n = 3.

Trivial source character table of $G \cong C18 \times C2$ at $p = 3$:			
Normalisers N_i	N_1	N_2	N_3
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3
Representatives $n_j \in N_i$	1a $2a$ $2b$ $2c$	1a $2a$ $2b$	2c $1a$ $2a$ $2b$ $2c$
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{31} + 0 $	9 9 9 9	0 0 0	0 0 0 0
	9 -9 9 -9	0 0 0	0 0 0 0 0
	9 9 -9 -9	0 0 0	0 0 0 0 0
	9 -9 -9 9	0 0 0	0 0 0 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot $		3 3 3	3 0 0 0 0
	$\begin{vmatrix} 3 & -3 & 3 & -3 \end{vmatrix}$	3 -3 3	$-3 \mid 0 0 0 0 \mid$
	3 -3 -3 3	3 -3 -3	3 0 0 0 0
	3 3 -3 -3	3 3 -3	$-3 \mid 0 0 0 0$
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 $	1 1 1 1	1 1 1	1 1 1 1 1
$ \left[0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + $	1 -1 1 -1	1 -1 1	$-1 \mid 1 -1 1 -1 \mid$
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + $	1 1 -1 -1	1 1 -1	$-1 \mid 1 1 -1 -1 \mid$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 $	1 -1 -1 1	1 -1 -1	1 1 -1 -1 1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(5, 8, 11)(6, 9, 12)(7, 10, 13)]) \cong C3$ $P_3 = Group([(5, 8, 11)(6, 9, 12)(7, 10, 13), (5, 6, 7, 8, 9, 10, 11, 12, 13)]) \cong C9$

 $\begin{aligned} N_1 &= Group([(1,2),(3,4),(5,6,7,8,9,10,11,12,13)]) \cong \text{C18} \times \text{C2} \\ N_2 &= Group([(1,2),(3,4),(5,6,7,8,9,10,11,12,13)]) \cong \text{C18} \times \text{C2} \\ N_3 &= Group([(1,2),(3,4),(5,6,7,8,9,10,11,12,13)]) \cong \text{C18} \times \text{C2} \end{aligned}$