Neural Population Geometry

ME 225NN, Winter 2025

Santiago Acosta & Jonathan Skaza

Dynamical Neuroscience Graduate Program University of California, Santa Barbara

Outline

Introduction

Preliminaries

Neural Population Geometry

Simulation Study

Conclusion

Introduction

Problem Description & Motivation

- Advances in recording techniques: thousands to millions of neurons simultaneously
- Challenges in studying large neural populations:
 - Neurons respond to multiple variables simultaneously
 - Traditional tuning-based analyses have limitations for complex tasks
- Shift from single-neuron tuning to geometric approaches
- Neural computations emerge from structured, high-dimensional activity patterns
- Neural manifolds: low-dimensional geometric structures in high-dimensional neural state space

Neural Manifolds

- Key properties of neural manifolds:
 - Dimensionality: intrinsic dimensions of the representation
 - Curvature: how the manifold deviates from flat space
 - Separability: distinguishability between different manifolds
 - Capacity: number of distinct manifolds a system can support
- Examples of manifold structures in the brain:
 - Ring-shaped manifolds in hippocampus (head direction)
 - Ring-shaped manifolds in visual cortex (orientation)
- Direct mappings between manifold geometry and task variables provide mechanistic insights

Bridging Biological and Artificial Neural Networks

- Neural population geometry provides a unified framework for understanding:
 - Biological neural circuits
 - Artificial neural networks (ANNs)
- Neural computation as geometric transformations
- Population-level representations enable:
 - Robust information processing
 - Efficient encoding
 - Scalable computation
- Reveals fundamental principles that transcend specific implementations

Paper Summary

- We demonstrate neural population geometry as a unified framework for understanding information encoding
- Focus on representation of circular variables—a fundamental computational challenge
- Parallel analyses of:
 - Orientation encoding in mouse visual cortex
 - Trained convolutional neural network (CNN)
- Show how similar ring-shaped manifolds emerge in both systems
- Circular manifolds arise from computational demands rather than architectural constraints
- Comparative approach reveals common principles across biological and artificial systems

Preliminaries

Neural State Space & Population Activity

- Neural state space: each axis represents a single neuron
- Population activity: $\mathbf{r} = (r_1, r_2, \dots, r_n) \in \mathbb{R}^n$
- Repeated stimulus presentations create point clouds
- Neural variability induces fluctuations
- Manifolds emerge from stimulus responses

Mathematical Foundations of Neural Manifolds

- Manifold: Topological space that locally resembles Euclidean space
- Neural manifold: Population activity constrained to lower-dimensional subspace
- ullet Formal definition: For stimulus condition s, the neural manifold \mathcal{M}_s is:

$$\mathcal{M}_s = \{ \mathbf{r}(t) \in \mathbb{R}^n : \text{condition } s \text{ is presented at time } t \}$$
 (1)

- Real neural data extends beyond strict mathematical definition:
 - Neural variability creates point clouds rather than isolated points
 - Experimental limitations lead to sparse sampling of the manifold

Types of Neural Manifolds

• Object/perceptual manifolds: Arise from identity-preserving variations

$$\mathcal{M}_{\text{obj}} = \{ f(T_{\theta}(\mathbf{x})) : \theta \in \Theta \}$$
 (2)

where f is neural encoding function, T_{θ} is transformation with parameter θ

• Point-cloud manifolds: Empirical manifestation in experimental data

$$\hat{\mathcal{M}} = \{ \mathbf{r}_i : i = 1, 2, \dots, k \} \tag{3}$$

for stimuli $\{s_1, s_2, \dots, s_k\}$ and responses $\{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_k\}$

Manifold Estimation Techniques

- Linear dimensionality reduction:
 - Principal Component Analysis (PCA)
 - Efficient but misses nonlinear structure
- Nonlinear dimensionality reduction:
 - Isomap, t-SNE, MDS, UMAP, etc.
 - Preserve geometric relationships
 - May fail with complex topological structures
- Topologically-motivated methods:
 - SPUD (Spline Parameterization for Unsupervised Decoding)
 - Persistent homology
 - Essential for circular or toroidal structures

Neural Population Geometry

Key Concepts in Neural Population Geometry

- **Dimensionality**: Intrinsic dimensionality d of manifold \mathcal{M}
 - Estimated using PCA or nonlinear methods
- Curvature: How manifold deviates from flat space
 - ullet High curvature: small stimulus changes o large neural response changes
- **Separability**: Distinguishability between manifolds

$$d(\mathcal{M}_i, \mathcal{M}_j) = \min_{\mathbf{r}_i \in \mathcal{M}_i, \mathbf{r}_i \in \mathcal{M}_i} \|\mathbf{r}_i - \mathbf{r}_j\|$$
(4)

• Capacity: Number of distinct manifolds a neural system can support

Simulation Study

Circular Variables Experiment

- Demonstration of geometric structures in neural representations
- Simulation experiment: encoding circular variables
- Illustrates how topological structures naturally emerge
- CNN trained to predict orientation of visual grating stimuli
- Analogous to orientation selectivity in visual cortex

Figure 1: Sample grating stimuli at different orientations

CNN Architecture

- Convolutional layers followed by fully connected layers
- 32-dimensional latent space analyzed for geometric properties
- Network trained to predict sine and cosine components of orientation angle
- Sine-cosine encoding naturally handles circular topology
 - For small ϵ , angles ϵ and $2\pi \epsilon$ are similar orientations
 - But numerically distant in raw angle representation
 - With sine-cosine: $(\cos(\epsilon),\sin(\epsilon))\approx(\cos(2\pi-\epsilon),\sin(2\pi-\epsilon))\approx(1,0)$

Results: Circular Manifold

Figure 2: Dimensionality reduction of the CNN's latent space reveals a circular manifold. Each point represents a grating stimulus, colored by orientation angle. PCA, Isomap, and MDS all recover the circular topology.

UC **SANTA BARBARA**

• Similar orientations positioned close together

Key Principles Demonstrated

- Manifold structure: Low-dimensional manifold (circle) embedded in high-dimensional space
- Topological correspondence: Manifold topology matches task space topology
- Continuous representation: Similar stimuli mapped to nearby points
- **Dimensionality reduction**: High-dimensional input compressed to essential variables

Insight

Circular topology emerged naturally through backpropagation—the network discovered that a circular representation is the most efficient way to encode a periodic variable

UC SANTA BARBARA

Biological Neural Networks

- Application of geometric principles to biological neural data
- Mouse visual cortex encodes orientation information
- Populations of neurons collectively form a ring-shaped manifold
- Manifold geometry reflects circular topology of orientation space
- Comparison with artificial neural network findings reveals common principles

Conclusion

Conclusion

- Neural population geometry provides a unified framework for understanding neural computation
- Circular manifolds arise naturally from computational demands of the task
- Similar geometric structures emerge in both biological and artificial systems
- Comparative approach reveals common principles:
 - Dimensionality
 - Curvature
 - Topological structure
- Insights into fundamental computational strategies that transcend specific neural implementations

References

- Demas, J. et al. (2021). High-speed, cortex-wide volumetric recording of neuroactivity.
- Yuste, R. (2015). From the neuron doctrine to neural networks.
- Saxena, S. & Cunningham, J. P. (2019). Towards the neural population doctrine.
- Chung, S. & Abbott, L. F. (2021). Neural population geometry: An approach for understanding biological and artificial neural networks.
- Chaudhuri, R. et al. (2019). Intrinsic dimension of data representations in deep neural networks.
- Beshkov, Y. et al. (2024). Topological analysis of neural representations.
- Perich, M. G. et al. (2024). Neural manifolds and population dynamics.

UC SANTA BARBARA