6.15 Exam: Tangent applications

CCSS.HSG.SRT.C.8

1. Given right $\triangle ABC$ with AC = 10, $m \angle A = 40^{\circ}$. Find the value of BC = x.

2. Graph and label $\triangle ABC$ with A(0,0), B(5,3), and C(5,0). Calculate the length of each side of the triangle.

(a)
$$AC =$$

(b)
$$BC =$$

(c) Express first as a radical, then approximate with a decimal rounded to two decimal places.

(hint: use the Pythagorean theorem $a^2 + b^2 = c^2$)

$$AB =$$

(d) Find the slope of each line.

$$m_{AB} =$$

$$m_{AC} =$$

$$m_{BC} =$$

- 3. Calculate each value. Round to the nearest thousandth.
 - (a) $\tan 39^{\circ}$

- (b) $\tan 11^{\circ}$
- 4. Find θ . Round to the nearest whole degree.
 - (a) $\theta = \tan^{-1}(\frac{3}{10})$

- (b) $\tan \theta = \frac{2.6}{4.9}$
- 5. Convert radians and degrees. (nearest whole degree, nearest hundredth radian).
 - (a) $85^{\circ} =$

- (b) 1.15 radians =
- 6. Solve each equation for x, rounding to the nearest hundredth.
 - (a) $\tan 33^\circ = \frac{x}{21}$

(b) $\tan 16^{\circ} = \frac{3.7}{x}$

7. Given right $\triangle ABC$ with $\overline{AC} \perp \overline{BC}$, BC = 6, $m \angle B = 50^{\circ}$. Let x = AC.

- 8. $\triangle ABC$ is shown with $m \angle C = 90^{\circ}$ and the lengths of the triangle's sides are AC = 6, BC = 9. (not drawn to scale)
 - (a) Write down the value of $\tan A$.

(b) Find the measure of $\angle A$.

(c) Find AB.

9. From the top of a hill a dog is visible at an angle of depression of 34° . If the hill is 11 meters tall, determine the distance from the dog to the base of the hill, x, to the nearest foot.

- 10. A bear is standing 22 feet away from the base of a tree, looking up at a bat 16 feet off the ground. The bear is 5 feet tall.
 - (a) Mark the scenario.
 - (b) Find the angle from the bear's head to the bat, θ , to the nearest tenth degree.

(not drawn to scale)

11. A drone flying at an altitude of 1,800 meters is observed twice. The first time the angle of elevation is 7.2° and exactly one minute later the angle of elevation is 9.7°.

Find the distance the drone flies over the minute and its speed in kilometers per hour.

12. Challenge: A square is partitioned into two rectangles. The sum of the perimeters of the

two rectangles is 36. Find the area of the square.

٠.