Property Demonstration on the Simple Nearest Neighbor Greedy Algorithm regarding TSP Problem with Various Examples

陈子蔚 Chen Ziwei

Department of Computer Science and Engineering

Recent Research Topic: Generative Model

Supervisor: 郑锋

Task 1-1

Optimal solutions would be obtained by simple nearest neighbor greedy algorithm when the graph is quite simple or highly symmetric.

Task 1-2

Note that 'E' is not a real node(city) in this graph, which is for explanation indeed.

With SNNG algorithm, if A is the start point, path ABCDA would be obtained and if B is the start point, path BACDB would be obtained.

$$len(BACDB) - len(ABCDA) = AC + DB - BC - AD$$

$$= AE + EC + BE + DE - BC - AD$$

$$= AE + DE - AD + EC + BE - BC > 0$$
, which means $BACDB$ is sub-optimal.

$$b < d < a < b + d < c < a + d < e$$

With SNNG algorithm, if A is the start point, path ACDBA would be obtained and if B is the start point, path BCADB would be obtained.

len(BCADB) - len(ACDBA) = a + b - c > 0, which means BCADB is sub-optimal.

Task 1-3

$$AB = 202, BC = 201, CD = 300$$

 $AD = 201, AC = 200, BD = 400$

Start Point	Path	Length
\boldsymbol{A}	ACBDA	1002
B	BCADB	1002
С	CADBC	1002
D	DACBD	1002
NA	ABCDA	904

, which means all solutions by SNNG are not optimal.

a < b < d	< e < k	b+d
-----------	---------	-----

Start Poir	nt Path	Length
A	ACBDA	$a+b+b+d+e\ (a+b>c)$
В	BCADB	$a+b+b+d+e\ (a+b>c)$
С	CBADC	$a+b+c+d+d\ (a+d>e)$
D	DCBAD	$a+b+c+d+d\ (a+d>e)$
NA	ACDBA	c+b+d+e

, which means all solutions by SNNG are not optimal.

Task 1-4

$$AB = 202, BC = 201, CD = 300$$

 $AD = 201, AC = 201, BD = 400$

Start Point	Path	Length
С	CADBC	1003
С	CBADC	904

, which means CADBC is sub-optimal.

$$a = b < c < d < e < b + d$$

Start Point	Path	Length
С	CBADC	a + b + c + d + d (a + d > e)
С	CABDC	b+c+d+e
1 • 1		1 , 1

___, which means *CBADC* is sub-optimal.