Claims

5

10

25

30

1. A compound of formula (I)

$$R^{2} \xrightarrow{I} Z^{1} Alk \xrightarrow{A} R^{5}$$
 (I),

a stereochemically isomeric form thereof, an *N*-oxide form thereof, a pharmaceutically acceptable acid addition salt thereof, or a quaternary ammonium salt thereof, wherein

Alk is C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonylC₁₋₄alkyl, carbonyl, carbonylC₁₋₄alkyl, or C₁₋₆alkanediyl optionally substituted with hydroxy, halo, amino, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

-Z¹-Z²- is a bivalent radical of formula

-O-CH(R4)-CH2-15 (a-1), $-O-CH(R^4)-CH_2-O-$ (a-2), $-O-CH(R^4)-CH_2-S-$ (a-3), $-O-CH(R^4)-CH_2-CH_2-$ (a-4), $-O-CH(R^4)-CH_2-CH_2-CH_2-$ (a-5),20 $-O-C(R^4)=CH-$ (a-6), $-O-C(R^4)=CH-CH_2-$ (a-7), $-O-C(R^4)=CH-CH_2-CH_2-$ (a-8), or -O-CH(R4)-CH=CH-(a-9),

> wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy;

R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₃₋₆alkenyl, C₁₋₆alkyloxy, trihalomethyl, trihalomethoxy, halo, hydroxy, cyano, nitro, amino, C₁₋₆alkylcarbonylamino, C₁₋₆alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, aminocarbonyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkyloxycarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxy-carbonyloxy; or

when R^1 and R^2 are on adjacent carbon atoms, R^1 and R^2 taken together may form a bivalent radical of formula

$$-CH_2-CH_2-CH_2-$$
 (b-1), $-O-CH_2-CH_2-$ (b-6),

5

10

15

20

- 25

-CH ₂ -CH ₂ -CH ₂ -	(b-2),	-O-CH ₂ -CH ₂ -O-	(b-7),
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(b-3),	-O-CH ₂ -CH ₂ -CH ₂ -	(b-8),
-CH=CH-CH=CH-	(b-4),	-O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(b-9),
-O-CH ₂ -O-	(b-5),		

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy, C₁₋₄alkyl or CH₂OH;

R⁴ is hydrogen, C₁₋₆alkyl, phenylmethyl, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyloxyC₁₋₄alkyloxycarbonyl, C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy, or a direct bond when the bivalent radical -Z¹-Z²- is of formula (a-6), (a-7) or (a-8);

A is a bivalent radical of formula

wherein m is 0 or 1;

 $R^6 \quad \text{is C_{1-4}alkyl, halo, hydroxy, hydroxyC_{1-4}alkyl, C_{1-4}alkyloxy, aminoC_{1-4}alkyl,C_{1-4}alkyloxycarbonyl,}$

C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyl, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

R¹¹ is hydrogen, C_{1-4} alkyl, halo, hydroxy, hydroxy C_{1-4} alkyl, C_{1-4} alkyloxy, amino C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy C_{1-4} alkyloxycarbonyl, or C_{3-6} cycloalkylcarbonyloxy C_{1-4} alkyloxycarbonyloxy;

15

20

25

R⁵ is a radical of formula

wherein n is 1 or 2;

5 p^1 is 0, and p^2 is 1 or 2; p^1 is 1 or 2, and p^2 is 0;

X is oxygen, sulfur, NR⁹ or CHNO₂;

Y is oxygen or sulfur;

R⁷ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁸ is C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

10 R^9 is cyano, C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-6} alkyloxycarbonyl or aminocarbonyl; R^{10} is hydrogen or C_{1-6} alkyl;

or R⁹ and R¹⁰ taken together with the nitrogen atom to which they are attached may form a pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, or morpholinyl group, optionally substituted with C₁₋₄alkyl or C₁₋₄alkyloxy; and

O is a bivalent radical of formula

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by $C_{1\text{--}4}$ alkyl, hydroxy or phenyl, or

Q is a bivalent radical of formula

 CH_2 , or CH_2

2. A compound as claimed in claim 1 wherein R⁵ is a radical of formula (d-1) wherein X is oxygen, and Q is a radical of formula (e-1) or (e-2).

- 3. A compound as claimed in claim 1 R⁴ is hydrogen; -Z¹-Z²- is of formula -CH₂-CH₂- (a-4), Alk is -CH₂-; the bivalent radical is of formula (c-1) wherein R¹¹ is hydroxy or methoxy and m = 0; and R⁵ is a radical of formula (d-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (e-2).
- 4. A compound according to claim 1 wherein R⁴ is hydrogen; -Z¹-Z²- is of formula -CH₂-CH₂- (a-4), Alk is -CH₂-; the bivalent radical is of formula (c-2) and m = 0; and R⁵ is a radical of formula (d-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (e-2).
- 5. A compound according to claim 1 wherein R⁴ is hydrogen; -Z¹-Z²- is of formula -CH₂-CH₂- (a-4), Alk is -CH(OH)-CH₂-; the bivalent radical -(A) is of formula (c-1), m = 0, R⁶ is hydroxy or hydroxymethyl; and R⁵ is a radical of formula (d-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (e-2).
- 6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in any of claims 1 to 5.
- 7. A process for preparing a pharmaceutical composition as claimed in claim 6 wherein a therapeutically active amount of a compound as claimed in any of claims 1 to 5 is intimately mixed with a pharmaceutically acceptable carrier.

A compound as claimed in any of claims 1 to 5 for use as a medicine.

25 9. A process for preparing a compound of formula (I) wherein

5

10

15

20

30

a) an intermediate of formula (II) is alkylated with an intermediate of formula (III) in a reaction-inert solvent and, optionally in the presence of a suitable base,

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk - W + H \xrightarrow{\text{A}} R^{5} \longrightarrow (I)$$

$$R^{3} \qquad (III)$$

b) an intermediate of formula (IV), wherein Alk¹ represents a direct bond or C₁₋₅alkanediyl, is reductively alkylated with an intermediate of formula (III);

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk^{1} \text{ CHO} + H \longrightarrow A \longrightarrow R^{5} \longrightarrow (I)$$

$$(IV) \qquad (III)$$

wherein in the above reaction schemes the radicals $-Z^1-Z^2-$, R^1 , R^2 , R^3 , R^4 , R^5 , Alk and the bivalent radical A are as defined in claim 1 and W is an appropriate leaving group;

c) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

10

5.