UNIVERSIDADE EVANGÉLICA DE GOIÁS

ESCALONAMENTO DE PROCESSOS

Sistemas Operacionais Engenharia de Software Prof. Jeferson Silva

PORQUE É NECESSÁRIO ESCALONAR?

Processos precisam ser executados!

Escalonador:

Componente (implementação) do sistema operacional

Determina a ordem de execução dos processos baseado num algoritmo de escalonamento

Lê a fila que contém os processos no estado "pronto" e os ordena para execução

O QUE PROVOCA O ESCALONAMENTO?

TIPOS DE ALGORITMO DE ESCALONAMENTO

Preemptivo:

Execução de um processo dura um tempo pré-determinado Quando o tempo acaba, o processo é interrompido.

Não-preemptivo:

Processo fica em execução até que:

Termine

Libere a CPU VOLUNTARIAMENTE

Seja bloqueado por falta de recurso

O QUE AFETA O DESEMPENHO DE UM ALGORITMO DE ESCALONAMENTO?

Cada processo possui informações que permitem definir precisamente seu estado.

Tais informações definem o *contexto* do processo

Troca de Contexto

Mecanismo que permite ao escalonador interromper uma tarefa, e executá-la posteriormente, sem corromper seu estado.

Separação do escalonamento

Escalonamento = Política + Mecanismo

ILUSTRAÇÃO DA TROCA DE CONTEXTO

QUAL O OBJETIVO DO ESCALONAMENTO?

DEPENDE do tipo de sistema operacional

Lote:

Não possui usuários aguardando → pode ser preemptivo ou não Não possui muita troca de contexto

OBJETIVOS:

melhorar o <u>throughput</u> (vazão) melhorar o <u>turnaround</u> (tempo entre submissão e finalização) manter a CPU ocupada

QUAL O OBJETIVO DO ESCALONAMENTO?

Propósito Geral:

Possuem usuários interagindo

Precisam ser preemptivos

OBJETIVOS

melhorar o tempo <u>médio</u> de resposta atender as expectativas dos usuários

Tempo real:

Em geral são preemptivos

OBJETIVO:

cumprir requisitos lógicos cumprir requisitos temporais

QUAL O OBJETIVO DO ESCALONAMENTO?

Independente do <u>tipo</u> de sistema operacional, TODOS os algoritmos de escalonamento precisam atender a alguns critérios:

Justiça (fairness)

Aplicação da política de escalonamento

Equilíbrio (balance) entre as partes do sistema

ESCALONAMENTO PARA SISTEMAS EM LOTE

FCFS (ou FIFO)

Primeiro processo da fila de pronto é o escolhido para executar.

Não-preemptivo

Fácil de entender

Fácil de programar

"Justo"

Processos de baixo custo de execução podem esperar muito tempo para ser executado

FCFS

Processo	Custo de execução	Instante de chegada
Α	12	t = 0
В	8	t = 3
С	15	t = 5
D	5	t = 10

12

ESCALONAMENTO PARA SISTEMAS EM LOTE

Menor Job Primeiro

O job de menor custo de execução executa primeiro.

Não-preemptivo

Fácil de entender

Fácil de programar

"Justo"

Para ser adequado, requer que todos os jobs estejam disponíveis simultaneamente

SJF - SHORTEST JOB FIRST

ESCALONAMENTO EM SISTEMAS DE PROPÓSITO GERAL

Alternância circular (Round-Robin)

Processos executam dentro de uma fatia de tempo predefinida (*quantum*)

Preemptivo

Simples

Justo

Amplamente utilizado

Tamanho do quantum pode ser um problema

ESCALONAMENTO EM SISTEMAS DE PROPÓSITO GERAL

Prioridade

Processos tem diferentes prioridade de execução

Preemptivo

Baseado nos ciclos da CPU ou quantum

Prioridade pode ser atribuída <u>estaticamente</u> ou <u>dinamicamente</u>

Pode ser implementado considerando filas de prioridades

A implementação de filas pode representar um problema!

ESCALONAMENTO EM SISTEMAS DE PROPÓSITO GERAL

Filas Múltiplas

Processos executam dentro de uma fatia de tempo predefinida (quantum)

Preemptivo

Justo

Tamanho do *quantum* variável → trocas de contexto.

Adaptável para diferentes tamanhos de processo

Os processos são promovidos a medida que o tempo passa