WEEKLY SUBMISSION - TASK 08

POTHUGANTI CHAITHANYA - Personal Code: 10711998

Politecnico di Milano - M.Arch Sustainable Architecture & Landscape Design

DATE: 26 NOV 2019

1) Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickens to be 13 mm)?

Soln: Benchmark:

With Double pane glazing (ε =0.84) & gap thickness 13mm

U- Value of a double pane glazing window if the gap is filled with air is $2.8 \frac{w}{m^2 k}$

arepsilon value	0	.84		0.10			0.84			0.1	
No. of	2	2	2	2	2	3	3	3	3	3	3
panes											
Gas	Argon	Krypton	Air	Argon	Krypton	Air	Argon	Krypton	Air	Argon	krypton
U	2.65	2.6	1.8	1.5	1.4	1.8	1.7	1.6	1	0.8	0.7
value											
% of	5.4	7.2	35.7	46.4	50	35.7	39.2	42.8	64.3	71.4	75
change											

2) Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

Sol:

PIACENZA, Italy	WMO#:	160840

Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999
nnual H	eating and H	umidificat	ion Design C	onditions											
Coldest	Marie	. 00	05	Hum	dification DF	MCDB and	HR		T	Coldest mon	th WS/MCD	8	MCWS	PCWD	1
	Heating	g DB	8.	99.6%		1	99%	101	0.	4%	1	%	to 99.6	8% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(0)	(b)	(0)	(d)	(0)	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nual C	ooling, Dehu	midification	on, and Enth	alpy Design	Conditions										
lottest	Hottest		9000	Cooling (B/MCWB	1000		2		Evaporation	WB/MCDE	3	02 6	MCWS	
Month	Month	0	4%	1	%	29	6	. 0	4%	1	%	- 2	2%	to 0.4	% DB
MILLIENT	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(6)	(c)	(0)	(0)	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)
	44.0	22.4	22.7	24.0	22.4	20.2	24.0	240	20.0	22.7	20.2	22.0	20.2		00

Latitude ≈ 45

T _{cooling} = 24°c								Operable		Fr	ame		Fixed		
T _{heating} = 20°c	Glazing Type	Glazing Lavers	IDb	Property ^{c,d}	Center of Glazing	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
$\Delta T_{cooling} = 31.9$ °c - 24°c = 7.9 °c	Clear	1 2	1a 5a	U SHGC U SHGC	5.91 0.86 2.73 0.76	7.24 0.75 4.62 0.67	6.12 0.75 3.42 0.67	5.14 0.64 3.00 0.57	5.05 0.64 2.87 0.57	4.61 0.64 5.83 0.57	6.42 0.78 3.61 0.69	6.07 0.78 3.22	5.55 0.75 2.86 0.67	5.55 0.75 2.84 0.67	5.35 0.75 2.72 0.67
$\Delta T_{heating} = 20$ °c – (-4.8)°c = 24.8 °c	Low-e, low-solar	3	29a 25a	U SHGC U	1.76 0.68 1.70	3.80 0.60 3.83	2.60 0.60 2.68	2.25 0.51 2.33	0.57 2.19 0.51 2.21	0.57 1.91 0.51 1.89	2.76 0.62 2.75	2.39 0.62 2.36	2.05 0.60 2.03	2.01 0.60 2.01	1.93 0.60 1.90
From the table DR = $11.9 ^{\circ} \text{c}$	Low-e, high-solar	3	40c	SHGC U SHGC	0.41 1.02 0.27 1.99	0.37 3.22 0.25 4.05	0.37 2.07 0.25 2.89	0.31 1.76 0.21 2.52	0.31 1.71 0.21 2.39	0.31 1.45 0.21 2.07	0.38 2.13 0.25 2.99	0.38 1.76 0.25 2.60	0.36 1.44 0.24 2.26	0.36 1.40 0.24 2.24	0.36 1.33 0.24 2.13
FIXED WINDOW ON WEST SIDE		3	32c	SHGC U SHGC	0.70 1.42 0.62	0.62 3.54 0.55	0.62 2.36 0.55	0.52 2.02 0.46	0.52 1.97 0.46	0.52 1.70 0.46	0.64 2.47 0.56	0.64 2.10 0.56	0.61 1.77 0.54	0.61 1.73 0.54	0.61 1.66 0.54
Area = 14.4 m^2	Heat-absorbing	2	1c 5c 29c	SHGC U SHGC U SHGC	5.91 0.73 2.73 0.62 1.76 0.34	7.24 0.64 4.62 0.55 3.80 0.31	6.12 0.64 3.42 0.55 2.60 0.31	5.14 0.54 3.00 0.46 2.25 0.26	5.05 0.54 2.87 0.46 2.19 0.26	4.61 0.54 2.53 0.46 1.91 0.26	6.42 0.66 3.61 0.56 2.76	6.07 0.66 3.22 0.56 2.39	5.55 0.64 2.86 0.54 2.05 0.30	5.55 0.64 2.84 0.54 2.01 0.30	5.35 0.64 2.72 0.54 1.93 0.30
COOLING LOAD	Reflective	1 2	11 5p	U SHGC U SHGC	5.91 0.31 2.73 0.29	7.24 0.28 4.62 0.27	0.31 6.12 0.28 3.42 0.27	5.14 0.24 3.00 0.22	5.05 0.24 2.87 0.22	4.61 0.24 2.53 0.22	0.31 6.42 0.29 3.61 0.27	0.31 6.07 0.29 3.22 0.27	5.55 0.27 2.86 0.26	5.55 0.27 2.84 0.26	5.35 0.27 2.72 0.26
$q_{west\ window} = A\ x\ CF_{west\ window}$		3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01	1.93 0.30

$q_{west window} = A x CF_{west window}$

$$CF_{west\ window(heat\ transfer)} = U_{west\ window} \, (\Delta T_{cooling} \,$$
 - 0.46 DR)

$$U_{west\ window} = 2.84 \frac{w}{m^2 k}$$

$$CF_{west\ window(heat\ transfer)} = 2.84 \frac{w}{m^2 k} (7.9 \text{ k} - 0.46 (11.9 \text{ k}))$$

$$\approx 6.89 \frac{w}{m^2}$$

Irradiation

$$E_D = 559$$

$$E_d = 188$$

$$PXI_{west window} = E_D + E_d$$

Since no internal shading, so IAC = 1

$$FF_s = 0.56$$

Tab	ole 1	10 F	'eak	Irra	diano	e, W	//m²			
					L	atitud	le			
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°
North	E_D	125	106	92	84	81	85	96	112	136
	E_d	128	115	103	93	84	76	69	62	55
	E_t	253	221	195	177	166	162	164	174	191
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361
	E_d	177	169	162	156	151	147	143	140	137
	E_t	637	618	599	581	563	546	529	513	498
East/West	E_D	530	543	552	558	560	559	555	547	537
	E_d	200	196	193	190	189	188	187	187	187
	E_t	730	739	745	748	749	747	742	734	724
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517
	E_d	204	203	203	204	205	207	210	212	215
	E_t	485	531	572	609	641	670	695	715	732
South	E_D	0	60	139	214	283	348	408	464	515
	E_d	166	193	196	200	204	209	214	219	225
	E_t	166	253	335	414	487	557	622	683	740
Horizontal	E_D	845	840	827	806	776	738	691	637	574
	E_d	170	170	170	170	170	170	170	170	170

Table 13	Fenestration Solar Load Factors FF _s									
Exposure	Single Family Detached	Multifamily								
North	0.44	0.27								
Northeast	0.21	0.43								
East	0.31	0.56								
Southeast	0.37	0.54								
South	0.47	0.53								
Southwest	0.58	0.61								
West	0.56	0.65								
Northwest	0.46	0.57								
TT-slovest-1	0.50	0.72								

$$CF_{west\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s$$

= 747 x 0.54 x 1 x 0.56 = 225.89

$$q_{west\ window} = A\ x\ CF_{west\ window} = A\ x\ (CF_{west\ window(heat\ transfer)} + (CF_{west\ window(irradiation)})$$
$$= 14.4\ \text{m}^2\ x\ (6.89\ +225.89)\ \frac{w}{m^2} = 3352.07\ \text{W}$$

HEATING LOAD

$$q_{west window} = A x HF_{west window} = A x U_{west window} x \Delta T_{heating}$$
$$= 14.4 \text{ m}^2 \text{ x } 2.84 \frac{w}{m^2 k} \text{ x } 24.8 \text{ k} = 1014.22 \text{ W}$$

If the frame is aluminium

$$U'_{west \, window} = 3.61 \frac{w}{m^2 k}$$

SHGC' = 0.56

Cooling load

$$CF'_{west\ window(heat\ transfer)} = U'_{west\ window} \left(\Delta T_{cooling} - 0.46\ \mathrm{DR}\right)$$
$$= 3.61 \frac{w}{m^2 k} \left(7.9K - 0.46\ x\ 11.9\ k\right) = 8.76 \frac{w}{m^2}$$

$$CF'_{west\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_s$$

= 747 x 0.56 x 1 x 0.56 = 234.26

$$q'_{west\ window} = A\ x\ (CF'_{west\ window(heat\ transfer)} + (CF'_{west\ window(irradiation)})$$
$$= 14.4\ \text{m}^2\ x\ (8.76\ + 234.26)\ \frac{w}{m^2} = 3499.48W$$

Heating load

$$q'_{west window} = A x H F'_{west window} = A x U'_{west window} x \Delta T_{heating}$$

= 14.4 m² x 3.61 $\frac{w}{m^2 k}$ x 24.8 k = 1289.20 W

FIXED WINDOW ON SOUTH SIDE

Area = 3.6 m^2

COOLING LOAD

 $q_{south\,window} = A \, x \, CF_{south\,window}$

$$CF_{south\,window(heat\,transfer)} = U_{south\,window} (\Delta T_{cooling} - 0.46 \, \mathrm{DR})$$

$$U_{south\ window} = 2.84 \frac{w}{m^2 k}$$

$$CF_{south \, window(heat \, transfer)} = 2.84 \frac{w}{m^2 k} (7.9 \, \text{k} - 0.46 \, (11.9 \, \text{k})) \approx 6.89 \, \frac{w}{m^2}$$

Irradiation

$$E_D = 348$$

$$E_d = 209$$

$$PXI_{west window} = E_D + E_d = 348 + 209 = 557$$

Since no internal shading, so IAC = 1

SHGC = 0.54

$$FF_{\rm s} = 0.47$$

$$CF_{south\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s = 557\ x\ 0.54\ x\ 1\ x\ 0.47\ =\ 141.36$$

$$q_{south\,window} = AxCF_{south\,window} = Ax(CF_{south\,window(heat\,transfer)} + (CF_{south\,window(irradiation)})$$
$$= 3.6 \text{ m}^2 \text{ x } (6.89 + 141.36) \frac{w}{m^2} = 533.72 \text{ W}$$

HEATING LOAD

$$q_{south \ window} = A \ x \ HF_{south \ window} = A \ x \ U_{south \ window} \ x \ \Delta T_{heating}$$

= 3.6 m² x 2.84 $\frac{w}{m^2 k}$ x 24.8 k = 253.56 W

If the frame is aluminum

$$U'_{south\,window} = 3.61 \frac{w}{m^2 k}$$

SHGC' = 0.56

Cooling load

$$CF'_{south window(heat transfer)} = U'_{south window} (\Delta T_{cooling} - 0.46 DR)$$

=
$$3.61 \frac{w}{m^2 k}$$
 (7.9K - 0.46 x 11.9 k) = $8.76 \frac{w}{m^2}$

$$CF'_{south\,window(irradiation)} = PXI \times SHGC' \times IAC \times FF_S = 557 \times 0.56 \times 1 \times 0.47 = 146.6$$

$$q'_{south\,window} = A\,x\,(CF'_{south\,window(heat\,transfer)} + (CF'_{south\,window(irradiation)})$$
$$= 3.6\,\text{m}^2\,\text{x}\,(8.76\,+146.60)\,\frac{w}{m^2} = 559.30\text{W}$$

Heating load

$$q'_{south window} = A x HF'_{south window} = A x U'_{south window} x \Delta T_{heating}$$

= 3.6 m² x 3.61 $\frac{w}{m^2 k}$ x 24.8 k = 322.30 W

OPERABLE WINDOW ON SOUTH SIDE

Area = 3.6 m^2

COOLING LOAD

 $q_{south window} = A \times CF_{south window}$

 $CF_{south\ window(heat\ transfer)} = U_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$

$$U_{south\,window} = 2.87 \frac{w}{m^2 k}$$

$$CF_{south\,window(heat\,transfer)} = 2.87 \frac{w}{m^2 k} (7.9 \text{ k} - 0.46 (11.9 \text{ k})) \approx 6.96 \frac{w}{m^2}$$

Irradiation

 $E_D = 348$

$$E_d = 209$$

PXI south window =
$$E_D + E_d = 348 + 209 = 557$$

Since no internal shading, so IAC = 1

SHGC = 0.46

$$FF_{S} = 0.47$$

$$CF_{south\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s = 557\ x\ 0.46\ x\ 1\ x\ 0.47\ =\ 120.42$$

$$q_{south\ window} = AxCF_{south\ window} = A(CF_{south\ window(heat\ transfer)} + (CF_{south\ window(irradiation)})$$
$$= 3.6\ \text{m}^2\ \text{x}\ (6.96\ +120.42)\frac{w}{m^2} = 458.58\ \text{W}$$

HEATING LOAD

$$q_{south \ window} = A \ x \ HF_{south \ window} = A \ x \ U_{south \ window} \ x \ \Delta T_{heating}$$

= 3.6 m² x 2.87 $\frac{w}{m^2 k}$ x 24.8 k = 256.23 W

If the frame is aluminium

$$U'_{south\,window} = 4.62 \frac{w}{m^2 k}$$

SHGC' = 0.55

Cooling load

$$CF'_{south\ window(heat\ transfer)} = U'_{south\ window} \left(\Delta T_{cooling} - 0.46\ \mathrm{DR}\right)$$
$$= 4.62 \frac{w}{m^2 k} \left(7.9K - 0.46\ x\ 11.9\ k\ \right) = 11.21 \frac{w}{m^2}$$

$$CF'_{west\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_s = 557\ x\ 0.55\ x\ 1\ x\ 0.47 = 143.98$$

$$q'_{west window} = A x (CF'_{west window(heat transfer)} + (CF'_{west window(irradiation)})$$
$$= 3.6 \text{ m}^2 \text{ x } (11.21 + 143.98) \frac{w}{m^2} = 558.70 \text{ W}$$

Heating load

$$q'_{south window} = A x H F'_{south window} = A x U'_{south window} x \Delta T_{heating}$$

= 3.6 m² x 4.62 $\frac{w}{m^2 k}$ x 24.8 k = 412.47 W