1. Use the definition of continuity to directly prove that $f: \mathbb{R} \to \mathbb{R}; x \mapsto x^2$ is continuous.

Let $\epsilon > 0$, $c \in \mathbb{R}$ be given.

Let $\delta > 0$ such that $\delta < \sqrt{\epsilon + c^2} - c$.

It follows, $\delta - \sqrt{\epsilon + c^2} + c < 0$

$$\Leftrightarrow (\delta + c - \sqrt{\epsilon + c^2})(\delta + c + \sqrt{\epsilon + c^2}) < 0$$
 since both δ and $c + \sqrt{\epsilon + c^2}$

are positive

$$\Leftrightarrow (\delta + c)^2 - (\epsilon + c^2) < 0$$

$$\Leftrightarrow \delta^2 + 2c\delta - \epsilon < 0$$

$$\Leftrightarrow \delta(\delta + 2c) < \epsilon$$

Note that, with $|x-c|<\delta$, we have $|x+c|<\delta+2c$, so $|x^2-c^2|=|x-c||x+c|<\delta(\delta+2c)<\epsilon$.

Thus, $f: \mathbb{R} \to \mathbb{R}; x \mapsto x^2$ is continuous.

2. Define

$$f: \mathbb{R} \to \mathbb{R}; x \mapsto \begin{cases} x & x \in \mathbb{Q} \\ & x^2 & else \end{cases}$$

Prove that f is continuous at 1 and discontinuous at 2.

(1) Let $\{x_n\}$ be any convergent sequence of rational number such that $\{x_n\} \to 1$

Since $\lim_{n\to\infty} f(\{x_n\}) = 1$ and f(1) = 1, f is continuous at 1.

(2) Let $\{x_n\}$ be any convergent sequence of irrational number such that $\{x_n\} \to 2$

Since $\lim_{n\to\infty} f(\lbrace x_n\rbrace) = 4$, but f(2) = 2, f is not continuous at $2.\square$

3. Give examples of functions $f,g:\mathbb{R}\to\mathbb{R}$ so that $h(x)\coloneqq f(x)+g(x)$ is

continuous but f and g are not continuous.

Let $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{x}$ and $h: \mathbb{R} \to \mathbb{R}; x \mapsto 1 - \frac{1}{x}$. Then h(x) will be $h: \mathbb{R} \to \mathbb{R}; x \mapsto 1$.

Note that, f, g are not continuous at x = 0, and h is continuous in \mathbb{R} . \square

4. Suppose $f: S \to \mathbb{R}$ is continuous. Let A be any nonempty subset of S. Prove that $f|_A$ is also continuous.

Let $a \in A \subset S$. Since f is continuous in S, f is continuous at x = a. Thus, $f|_A$ is continuous. \square

5. Suppose $g: \mathbb{R} \to \mathbb{R}$ is a continuous function such that g(0) = 0 and suppose $f: \mathbb{R} \to \mathbb{R}$ is such that $|f(x) - f(y)| \leq g(x - y)$ for all x and y. Show that f is continuous.

Let $\epsilon > 0$ and $c \in \mathbb{R}$ be given.

Since g is continuous at x=0, $\exists \delta>0$ such that $|(x-c)-0|<\delta,$ $|g(x-c)-g(0)|=|g(x-c)|<\epsilon.$

Since $|f(x) - f(y)| \le g(x - y)$ for all x and y, it is also true with y = c, which is $|f(x) - f(c)| \le g(x - c)$.

Finally, with $|x-c|<\delta$, we have $|f(x)-f(c)|\leq g(x-c)\leq |g(x-c)|<\epsilon$. Thus f is continuous. \square