Опр: 1. Последовательность $\{a_n\}$ фундаментальна или удовлетворяет условию Коши, если

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n, m > N, |a_n - a_m| < \varepsilon$$

Можно доказать, что из критерия Коши следует принцип вложенных отрезков. Из принципа вложенных отрезков и аксиомы Архимеда следует аксиома полноты (без доказательства).

Свойство фундаментальности эквивалентно сходимости последовательности. Можно придумать пример, где критерий Коши будет выполнятся, но без аксиомы Архимеда это множество не будет похоже на множество вещественных чисел.

Утв. 1. Если последовательность a_n сходится, то a_n - фундаментальна.

 \square Пусть $\lim_{n\to\infty} a_n = a$ по определению: $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n > N, |a_n - a| < \varepsilon$.

Пусть m > N и n > N тогда по неравенству треугольника $|a_m - a_n| \le |a_m - a| + |a_n - a| < 2\varepsilon \Rightarrow$ выполняется условие Коши, так как константа не важна.

Утв. 2. Если последовательность a_n фундаментальна, то она ограничена.

Доказательство будет аналогично тому, что было для ограниченных последовательностей: в интервале вокруг предела - бесконечно много точек последовательности, возьмем больший интервал покрывающий оставшиеся члены последовательности.

Рис. 1: Идея доказательства

 \square Возьмем $\varepsilon = 1$, тогда $\exists N : \forall n, m > N, |a_n - a_m| < 1$. $S = \min\{a_1, \dots, a_N\}, L = \max\{a_1, \dots, a_N\},$ как взять отрезок, который их будет содержать?

Рис. 2: Отрезок покрывающий последовательность

Возьмем отрезок $[\min\{S, a_{N+1}-1\}, \max\{L, a_{N+1}+1\}]$. В этом отрезке лежат все a_n .

Утв. 3. Если последовательность a_n фундаментальна и существует подпоследовательность, такая что $a_{n_k} : a_{n_k} \to a$, то $a_n \to a$.

 \square $\forall \varepsilon > 0, \exists N : \forall n, m > N, |a_n - a_m| < \varepsilon$, пусть $k > N \Rightarrow n_k > N \Rightarrow m = n_k, |a_n - a_{n_k}| < \varepsilon, \forall k, n > N$. Фиксируем n, а $k \to \infty \Rightarrow -\varepsilon < a_n - a_{n_k} < \varepsilon \xrightarrow[k \to \infty]{} -\varepsilon \le a_n - a \le \varepsilon$ по правилу перехода к пределу в неравенствах $\Rightarrow \forall n > N, |a_n - a| \le \varepsilon \Rightarrow a_n \to a$.

Утв. 4. Критерий Коши: Последовательность a_n сходится $\Leftrightarrow a_n$ - фундаментальна.

 (\Rightarrow) смотри утверждение 1.

 (\Leftarrow) смотри утверждения 2 и 3: так как a_n - фундаментальна \Rightarrow по утверждению 2, a_n - ограничена \Rightarrow по теореме Больцано $\exists a_{n_k} \to a \Rightarrow$ по утверждению 3, так как a_n фундаментальна и существует сходящаяся подпоследовательность, то $a_n \to a$.

Rm: 1. Сходится = сходится к конечному пределу.

Пример: $a_n = (-1)^n \Rightarrow |a_{n+1} - a_n| = 2$ - не меняется с ростом $n \Rightarrow$ последовательность не фундаментальна \Rightarrow не сходится.

Опр: 2. $\lim_{n\to\infty} a_n = +\infty$, если $\forall A > 0$, $\exists N : \forall n > N$, $a_n > A$.

Пример: $a_n = n$ (для таких критерий Коши не выполняется).

Опр: 3. $\lim_{n\to\infty} a_n = -\infty$, если $\forall A < 0, \exists N : \forall n > N, a_n < A$.

Также это определение можно записать в следующем виде: $\lim_{n\to\infty} a_n = -\infty$, если $(-a_n) \to +\infty$.

Опр: 4. $\lim_{n\to\infty} a_n = \infty$, если $|a_n| \to +\infty$.

Пример: $a_n = (-1)^n n, a_n: -1, 2, -3, 4, -5, 6, \dots$

 \mathbf{Rm} : 2. Если разрешить в качестве частичных пределов $+\infty$ и $-\infty$, то у всякой последовательности есть частичный предел.

Если последовательность не ограничена сверху, то $\overline{\lim} \sup_{n\to\infty} a_k = +\infty$.

Если последовательность не ограничена снизу, то $\lim_{n\to\infty} \inf_{k>n} a_k = -\infty$.

Ряды

Опр: 5. Пусть задана числовая последовательность $\{a_n\}$, выражение $a_1+a_2+a_3+\ldots+a_n+\ldots=\sum_{n=1}^\infty a_n$ называется рядом, где a_n - член ряда или слагаемое ряда.

Например, $1+2+3+4+\ldots = \sum_{n=1}^{\infty} n$.

Опр: 6. $S_n = a_1 + \ldots + a_n = \sum_{k=1}^n a_k$ - <u>частичная сумма ряд</u>а.

Опр: 7. Число A называется суммой ряда $\sum_{n=1}^{\infty} a_n$, если $\lim_{n\to\infty} S_n = A$. Пишут $A = \sum_{n=1}^{\infty} a_n$.

Опр: 8. Если предел $\lim_{n\to\infty} S_n$ конечен, то говорят, что ряд сходится.

Опр: 9. Если предел $\lim_{n\to\infty} S_n$ бесконечен или не существует, то говорят, что ряд расходится.

Пример: Сумма бесконечной геометрической прогрессии $1+q+q^2+\ldots+q^n+\ldots=\sum_{n=1}^\infty q^{n-1}$. Выпишем частичную сумму $S_n=1+q+q^2+\ldots+q^{n-1}\Rightarrow S_n-qS_n=1-q^n\Rightarrow S_n(1-q)=1-q^n\Rightarrow$ возможно два случая $S_n=\begin{cases} n, & q=1\\ \frac{1-q^n}{1-q}, & q\neq 1 \end{cases}$, рассмотрим поведение $\lim_{n\to\infty}S_n$:

- (1) $q=1, \lim_{n\to\infty} S_n=+\infty \Rightarrow$ ряд расходится;
- $(2) \ |q| < 1 \Rightarrow |q|^n \to 0 \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1-q} \Rightarrow$ ряд сходится;
- $(3) \ q>1\Rightarrow \sum_{n=1}^{\infty}q^{n-1}=+\infty,\ q<-1\Rightarrow \sum_{n=1}^{\infty}q^{n-1}=\infty\Rightarrow \text{ряд расходится},\ q=-1\Rightarrow \text{предела нет}\Rightarrow \text{ряд расходится};$

Теорема 1. (**Необх. усл. сходимости ряда**): Если ряд сходится, то его слагаемые стремятся к 0.

 \square По условию $\exists \lim_{n \to \infty} S_n = A$ - конечный предел. $a_n = S_n - S_{n-1} \xrightarrow[n \to \infty]{} A - A = 0.$

Rm: 3. Обратное не верно: если слагаемые стремятся к $0 \Rightarrow$ ряд сходится.

Пример: (Гармонический ряд) $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$, при этом $\frac{1}{n} \to 0$.

Заметим, что $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge n \frac{1}{2n} = \frac{1}{2}$. Рассмотрим сумму

$$S_{2^m} = \underbrace{\frac{1}{1} + \frac{1}{2}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2}} + \dots + \underbrace{\frac{1}{2^{m-1}} + \dots + \frac{1}{2^m}}_{\geq \frac{1}{2}}$$

Таких наборов ровно m штук $\Rightarrow S_{2^m} \ge \frac{m}{2}, S_n$ - возрастают $\Rightarrow S_n \xrightarrow[n \to \infty]{} +\infty.$

Теорема 2. Если $a_n \ge 0$, то $\sum_{n=1}^{\infty} a_n$ сходится \Leftrightarrow последовательность S_n - ограничена.

- □ Очевидно:
- (\Rightarrow) Ряд сходится \Rightarrow последовательность частичных сумм сходится к конечному числу \Rightarrow она ограничена.
- (\Leftarrow) Последовательность не убывает (так как слагаемые неотрицательные) \Rightarrow последовательность не убывает и ограничена \Rightarrow по теореме Вейрштрасса у нее есть предел \Rightarrow ряд сходится.

Следствие 1. Пусть $0 \le a_n \le b_n$, тогда:

1)
$$\sum_{n=1}^{\infty} b_n$$
 - сходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ - сходится;

2)
$$\sum_{n=1}^{\infty} a_n$$
 - расходится $\Rightarrow \sum_{n=1}^{\infty} b_n$ - расходится;

 \square $S_n^a = a_1 + \ldots + a_n \leq b_1 + \ldots + b_n = S_n^b$. Если S_n^b - ограничены $\Rightarrow S_n^a$ - ограничены. Если S_n^a - не ограничены $\Rightarrow S_n^b$ - не ограничены. Далее используем предыдущую теорему.

Примеры: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ знаем, что $\frac{1}{\sqrt{n}} \ge \frac{1}{n}$ \Rightarrow ряд расходится. Знаем, что $0 \le a_n \le cq^n$, $0 < q < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ - сходится.

Теорема 3. (**Телескопический критерий сходимости**): Пусть $a_n \ge 0$ и a_n - не возрастает, тогда ряд $\sum_{n=1}^{\infty} a_n$ - сходится $\Leftrightarrow \sum_{n=1}^{\infty} 2^n a_{2^n}$ - сходится.

 \square Слагаемые каждого ряда - неотрицательные. Пусть $2^m \le n < 2^{m+1}$, $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \ldots + a_n$, a_n - не возрастают, поэтому:

$$(\Leftarrow) \qquad a_1 + \overbrace{a_2 + a_3} + \overbrace{a_4 + a_5 + a_6 + a_7 + a_8} + \dots + a_n \le a_1 + 2a_2 + 4a_4 + 8a_8 + \dots + 2^m a_{2^m}$$

 \Rightarrow если сходится ряд $\sum_{n=1}^{\infty} 2^n a_{2^n}$, то сходится и $\sum_{n=1}^{\infty} a_n$.

$$(\Rightarrow) \qquad a_2 + 2a_4 + 4a_8 + \ldots + 2^{m-1}a_{2^m} \le a_1 + a_2 + \underbrace{a_3 + a_4}_{} + \underbrace{a_5 + a_6 + a_7 + a_8}_{} + \ldots + a_n$$

 $\Rightarrow \frac{1}{2}(2a_2+4a_4+8a_8+\ldots+2^ma_{2^m})$ - ограничен, если ограничен ряд $\sum_{n=1}^{\infty}a_n$ и тогда можно воспользоваться предыдущей теоремой.

Таким образом, частичные суммы этих рядов одновременно ограниченны или неограниченны.

 $\mathbf{\Pi}\mathbf{ример} \colon \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ - сходится} \Leftrightarrow \sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n \text{ - геом. прогрессия} \Rightarrow \mathbf{cxодится} \Leftrightarrow p > 1.$