$11a_{229} (K11a_{229})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{35} - u^{34} + \dots - u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{35} - u^{34} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{1} - 2u^{9} + 4u^{7} - 4u^{5} + 3u^{3} \\ u^{11} - u^{9} + 2u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{18} - 3u^{16} + 8u^{14} - 13u^{12} + 17u^{10} - 15u^{8} + 10u^{6} - 2u^{4} - u^{2} + 1 \\ u^{18} - 2u^{16} + 5u^{14} - 6u^{12} + 5u^{10} - 2u^{8} - 2u^{6} + 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{34} + 5u^{32} + \dots - u^{2} + 1 \\ -u^{34} + 4u^{32} + \dots + 4u^{6} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{19} - 2u^{17} + 6u^{15} - 8u^{13} + 11u^{11} - 10u^{9} + 8u^{7} - 4u^{5} + 3u^{3} \\ -u^{21} + 3u^{19} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{19} - 2u^{17} + 6u^{15} - 8u^{13} + 11u^{11} - 10u^{9} + 8u^{7} - 4u^{5} + 3u^{3} \\ -u^{21} + 3u^{19} + \dots - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=4u^{33}-4u^{32}-16u^{31}+20u^{30}+64u^{29}-76u^{28}-160u^{27}+204u^{26}+356u^{25}-440u^{24}-624u^{23}+772u^{22}+948u^{21}-1120u^{20}-1204u^{19}+1336u^{18}+1308u^{17}-1304u^{16}-1180u^{15}+984u^{14}+888u^{13}-528u^{12}-512u^{11}+128u^{10}+216u^{9}+80u^{8}-40u^{7}-96u^{6}-16u^{5}+32u^{4}+16u^{3}+4u-10u^{16}+34u^{16}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{35} - u^{34} + \dots - u^2 + 1$
c_2, c_5, c_7	$u^{35} + 9u^{34} + \dots + 2u + 1$
c_3, c_4, c_9 c_{10}	$u^{35} - u^{34} + \dots + 2u + 1$
c_8, c_{11}	$u^{35} + 7u^{34} + \dots + 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{35} - 9y^{34} + \dots + 2y - 1$
c_2, c_5, c_7	$y^{35} + 35y^{34} + \dots + 18y - 1$
c_3, c_4, c_9 c_{10}	$y^{35} + 39y^{34} + \dots + 2y - 1$
c_8, c_{11}	$y^{35} + 15y^{34} + \dots - 14y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.962624 + 0.303218I	-3.18298 - 4.64820I	-10.32267 + 8.03074I
u = 0.962624 - 0.303218I	-3.18298 + 4.64820I	-10.32267 - 8.03074I
u = 0.966916 + 0.178086I	2.77604 + 1.42603I	-8.39342 + 0.40844I
u = 0.966916 - 0.178086I	2.77604 - 1.42603I	-8.39342 - 0.40844I
u = -0.949626 + 0.247846I	-3.51316 + 0.86929I	-12.03394 - 0.57851I
u = -0.949626 - 0.247846I	-3.51316 - 0.86929I	-12.03394 + 0.57851I
u = -0.982664 + 0.344890I	3.73413 + 7.15489I	-6.21404 - 6.89294I
u = -0.982664 - 0.344890I	3.73413 - 7.15489I	-6.21404 + 6.89294I
u = -0.625205 + 0.585600I	8.06862 + 2.14485I	0.03823 - 3.39579I
u = -0.625205 - 0.585600I	8.06862 - 2.14485I	0.03823 + 3.39579I
u = 0.826215 + 0.817094I	3.13686 - 1.06908I	-6.00348 + 2.72542I
u = 0.826215 - 0.817094I	3.13686 + 1.06908I	-6.00348 - 2.72542I
u = -0.899785 + 0.739431I	7.92591 + 2.80573I	-2.67118 - 2.92017I
u = -0.899785 - 0.739431I	7.92591 - 2.80573I	-2.67118 + 2.92017I
u = -0.815673 + 0.849045I	4.17141 - 2.71608I	-3.22921 + 3.46654I
u = -0.815673 - 0.849045I	4.17141 + 2.71608I	-3.22921 - 3.46654I
u = 0.815012 + 0.872021I	11.60150 + 5.24626I	-0.28520 - 2.12331I
u = 0.815012 - 0.872021I	11.60150 - 5.24626I	-0.28520 + 2.12331I
u = -0.895926 + 0.820169I	7.25366 + 3.06074I	0.53879 - 2.89823I
u = -0.895926 - 0.820169I	7.25366 - 3.06074I	0.53879 + 2.89823I
u = 0.950191 + 0.783875I	2.75474 - 4.93362I	-6.65730 + 2.46852I
u = 0.950191 - 0.783875I	2.75474 + 4.93362I	-6.65730 - 2.46852I
u = 0.909352 + 0.854322I	15.6759 - 3.1687I	1.84371 + 2.55774I
u = 0.909352 - 0.854322I	15.6759 + 3.1687I	1.84371 - 2.55774I
u = -0.968524 + 0.797329I	3.69689 + 8.85353I	-4.28524 - 8.34437I
u = -0.968524 - 0.797329I	3.69689 - 8.85353I	-4.28524 + 8.34437I
u = 0.979984 + 0.808991I	11.0850 - 11.4893I	-1.26828 + 6.96489I
u = 0.979984 - 0.808991I	11.0850 + 11.4893I	-1.26828 - 6.96489I
u = 0.616861 + 0.373834I	0.93698 - 1.48910I	-0.78415 + 6.55847I
u = 0.616861 - 0.373834I	0.93698 + 1.48910I	-0.78415 - 6.55847I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.163878 + 0.627930I	6.28325 - 3.67948I	-0.34607 + 2.46375I
u = -0.163878 - 0.627930I	6.28325 + 3.67948I	-0.34607 - 2.46375I
u = -0.621610	-0.791732	-13.6740
u = 0.084932 + 0.544457I	-0.58473 + 1.62274I	-4.08967 - 4.27499I
u = 0.084932 - 0.544457I	-0.58473 - 1.62274I	-4.08967 + 4.27499I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{35} - u^{34} + \dots - u^2 + 1$
c_2, c_5, c_7	$u^{35} + 9u^{34} + \dots + 2u + 1$
c_3, c_4, c_9 c_{10}	$u^{35} - u^{34} + \dots + 2u + 1$
c_8, c_{11}	$u^{35} + 7u^{34} + \dots + 8u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{35} - 9y^{34} + \dots + 2y - 1$
c_2, c_5, c_7	$y^{35} + 35y^{34} + \dots + 18y - 1$
c_3, c_4, c_9 c_{10}	$y^{35} + 39y^{34} + \dots + 2y - 1$
c_8, c_{11}	$y^{35} + 15y^{34} + \dots - 14y - 1$