HelmholtzZentrum münchen

German Research Center for Environmental Health

Lecture 2

Current tools and best practices for performing genome-wide scans

The GWAS analysis pipeline

The (imputed) GWAS analysis pipeline

Genotyping data calling

Did you say intensities?

Nature Reviews | Genetics

Intensities: the good and the bad

Genotyping data storage

Which data types do we need?

Which data types do we need?

phenotype ~

Which data types do we need?

phenotype ~ genotype

Which data types do we need?

phenotype ~ genotype + covariates

Which data types do we need?

 $phenotype \sim genotype + covariates + structure$

Which data types do we need?

 $phenotype \sim genotype + covariates + structure + \epsilon$

Which data types do we need?

phenotype $\sim \beta \times genotype + covariates + structure + \epsilon$

Which data types do we need?

$$phenotype \sim \beta \times genotype + covariates + structure + \epsilon$$

$$\begin{bmatrix} pheno_0 \\ \vdots \\ pheno_n \end{bmatrix} \qquad \begin{bmatrix} A/T \\ \vdots \\ T/T \end{bmatrix} \qquad \begin{bmatrix} male \\ \vdots \\ female \end{bmatrix} \begin{bmatrix} 22 \ years \\ \vdots \\ 65 \ years \end{bmatrix} \begin{bmatrix} r_{00} & \dots & r_{0n} \\ \vdots & r_{ij} & \vdots \\ r_{n0} & \dots & r_{nn} \end{bmatrix}$$

Which data types do we need?

phenotype ~
$$\beta \times genotype + covariates + structure + \epsilon$$

As we go from variant to variant...

$$\begin{bmatrix} pheno_0 \\ \vdots \\ pheno_n \end{bmatrix} \qquad \begin{bmatrix} A/T \\ \vdots \\ T/T \end{bmatrix} \qquad \begin{bmatrix} male \\ \vdots \\ female \end{bmatrix} \begin{bmatrix} 22 \ years \\ \vdots \\ 65 \ years \end{bmatrix} \begin{bmatrix} r_{00} & \dots & r_{0n} \\ \vdots & r_{ij} & \vdots \\ r_{n0} & \dots & r_{nn} \end{bmatrix}$$

Which data types do we need?

phenotype ~
$$\beta \times genotype + covariates + structure + \epsilon$$

As we go from variant to variant...

These stay constant (they describe the samples)

Which data types do we need?

$phenotype \sim \beta \times genotype + covariates + structure + \epsilon$

As we go from variant to variant...

Our first format: TPED

Our first format: TPED

FAM/TFAM file

FAMILY1 SAMPLE1 0 0 1 22 1.5 FAMILY2 SAMPLE2 0 0 2 65 2.1

$$all$$
 $variants$
 $\begin{bmatrix} A/T \cdots G/C \\ \vdots & \vdots & \vdots \\ T/T \cdots G/G \end{bmatrix}$
 all
 $individuals$

TPED file

One of PLINK's traditional formats

- Not used in practice
- Convenient for looping over SNPs
- Input --tfile
- Output --recode transpose

```
1 rs15933 0 752721 A G G G
1 1:846808 0 846808 C C T C
```


Another format: PED/MAP

- One of PLINK's traditional formats
 - Not used in practice
 - Convenient for looping over samples
 - Input --file
 - Output --recode

```
1 rs15933 0 752721
1 1:846808 0 846808
MAP file
```

Exercise 1: Format conversion

- In /Workshop_data/Lecture2/Exercise1
 - Convert cohort1.tped/tfam to cohort1.ped/map
 - Use the transpose.sh script provided or try to d.i.y

```
FAMILY1 SAMPLE1 0 0 1 1.5 A G C C FAMILY2 SAMPLE2 0 0 2 2.1 G G T C
```

- Convert the file to PED using PLINK
- Compare both files using diff

Exercise 1 : Solution

- cut -d' '-f1-4 cohort1.tped | tr ' ' '\t'> cohort1.map
- paste -d' 'cohort1.tfam <(./transpose.sh <(cut -d' '-f5- cohort1.tped)) > cohort1.ped
- plink --tfile cohort1 --recode --out fortest
- diff cohort1.ped fortest.ped

Exercise 2 : Storage

- Consider 3 different genotyping chips
 - 500,000 SNPs (Illumina OmniExpress)
 - 1,000,000 SNPs (ExomeChip)
 - 2,500,000 SNPs (Illumina Onmi 2.5)
 - How large is a PED file containing genetic information for 10,000 samples on each of these chips?

Exercise 2 : Storage

- Consider 3 different genotyping chips
 - 500,000 SNPs (Illumina OmniExpress)
 - 1,000,000 SNPs (ExomeChip)
 - 2,500,000 SNPs (Illumina Onmi 2.5)
 - 1 character = 1 byte
 - Each genotype = 2 alleles + 2 spaces = 4 characters

$$n_{SNPS} \times 4 \times n_{individuals} = 19 \ Gb$$
, 38Gb, 95Gb

Binary formats

- 1 character = 1 byte
- Each genotype = 2 alleles + 2 spaces = 4 characters
- Can we make this better?

Binary formats

- 1 character = 1 byte
- Each genotype = 2 alleles + 2 spaces = 4 characters
- Can we make this better?
- 2 solutions
 - Compress using ZIP/GZIP
 - Use binary formats

Binary formats

- 1 character = 1 byte
- Each genotype = 2 alleles + 2 spaces = 4 characters
- Can we make this better?
- 2 solutions
 - Compress using ZIP/GZIP
 - Use binary formats

Question: how smaller is the size now?

Binary formats

- 1 character = 1 byte
- Each genotype = 2 alleles + 2 spaces = 4 characters
- Can we make this better?
- 2 solutions
 - Compress using ZIP/GZIP
 - Use binary formats

Question: how smaller is the size now?

$$\frac{n_{SNPS} \times n_{individuals}}{4} = 1.1Gb$$

One (binary) format to rule them all: BED/BIM/FAM

```
FAMILY1 SAMPLE1 0 0 1 22 1.5 FAMILY2 SAMPLE2 0 0 2 65 2.1
```

```
1 rs15933 0 564862 C T
1 1:752566 0 752566 G A
```

FAM/TFAM file

BIM file

```
      10101111
      10101111
      10100010
      10111011
      10101000
      10000000

      00101011
      00100000
      10101000
      10001011
      00000011
      11111111

      11111111
      11111111
      111111110
      111111110
      111111111
```

BED file

- Input: --bfile
- Output: --make-bed
- Do not open a BED file with less, cat, head, or tail!
- If you absolutely want to look, xxd -b or od -c

Genotyping data: common operations

Common operations

Sample management

keep [file]	Keep samples in file
remove [file]	Remove samples in file

SNP management

extract [file]	Keep SNPs in file
exclude [file]	Remove SNPs in file

Extracting regions

chr [name]	Extract data on specified chromosome
from-bp [pos]	From specified position
to-bp [pos]	To specified position

Common operations

Variant QC

maf [threshold]	Keep variants with MAF>threshold
hwe midp [threshold]	Keep variants with HWE p>threshold

Sample QC

missing	Compute per-sample and per-variant missingness
check-sex	Check sexes by looking at chrX
genome	Compute relatedness, check for duplicates

Linkage disequilibrium

Linkage Disequilibrium

The strange beautiful world of linkage disequilibrium

The strange beautiful world of linkage disequilibrium

The strange beautiful world of linkage disequilibrium

LD between 2 or more SNPs

```
plink --r2 --ld-snps rs1234,rs4567
plink --r2 --ld-snp-list [file]
```

Pairwise LD in a region

```
plink --r2 --ld-window 10 --ld-window-kb 1000 -
-ld-window-r2 0.2
```

LD-pruning (only independent SNPs)

```
plink --indep 50 5 2

plink --indep-pairwise 50 5 0.2

Plink --indep-pairphase 50 5 0.2
```


Exercise 3: Stretching the PLINK muscle

- In /Workshop_data/Lecture2/Exercise3
 - How many common (MAF>5%) variants are there on chromosome 11 in the `cohort1` dataset?
 - How many variants are in LD (r2>0.4) with 21:28759840 on chromosome 21 in a 1Mbp window?

Exercise 3: Stretching the PLINK muscle

```
plink --bfile cohort1 --maf 0.05 --chr 11 --out chr11 --make-bed
```

wc -l chr11.bim

```
plink --bed cohort1.bed --bim cohort1.bim --fam cohort1.fam --r2 --ld-snp 21:28759840 --ld-window-kb 1000000 --ld-window 1000000 -ld-window-r2 0.4
```

wc -l plink.ld

QC steps

Variant QC: which variants do we want

to remove?

Variant QC: which variants do we want to remove?

 Calling is not perfect: some genotypes are missing

Variant QC: which variants do we want to remove?

 Calling is not perfect: some genotypes are missing

If we see that 40% of all alleles are a, what is the proportion of aa, Aa, AA?

Variant QC: which variants do we want to remove?

- Calling is not perfect: some genotypes are missing
- Variants violating Hardy-Weinberg equilibrium are improbable

Variant QC: which variants do we want

to remove?

- Calling is not perfect: some genotypes are missing
- Variants violating Hardy-Weinberg equilibrium are improbable

Variant allele count

Number of variant genotype calls

Variant QC: which variants do we want to remove?

- Calling is not perfect: some genotypes are missing
- Variants violating Hardy-Weinberg equilibrium are improbable
- Rare variants are difficult to call

Sample QC: which individuals do we want to remove?

All the different ways in which our samples could be the wrong ones

What are some defining sample characteristics?

Sample QC: which individuals do we want to remove?

All the different ways in which our samples could be the wrong ones

What are some defining sample characteristics?

Sample QC: which individuals do we want to remove?

All the different ways in which our samples could be the wrong ones

What are some defining sample characteristics?

Sample QC: which individuals do we want to remove?

All the different ways in which our samples could be the wrong ones

Sex checks

Sample QC: which individuals do we want to remove?

• Ethnicity checks

Sample QC: which individuals do we want to remove?

Sample QC: which individuals do we want to remove?

Sample QC: which individuals do we want to remove?

