Wykład - Analiza matematyczna II

(nieoficjalny) Skrypt wykładu Krzysztofa Michalika

Data ostatniej aktualizacji: 2 czerwca 2023

Spis treści

	Wstęp	
1	Całki niewłaściwe I rodzaju	4
	Popularne kryteria zbieżności całek z ∞	(
	Twierdzenie(kryterium porównawcze)	7
	· · · · · · · · · · · · · · · · · · ·	8
	Wartość główna całki niewłaściwej I rodzaju	10
2	Całki niewłaściwe II rodzaju	12
	Zbieżność bezwzględna całek niewłaściwych	14
3	Szeregi liczbowe	16
	Obliczanie sum szeregów	17
	Własności szeregów zbieżnych	19
	Popularne kryteria zbieżności szeregów	20
	Twierdzenie (kryterium porównawcze)	22
	Twierdzenie (kryterium ilorazowe)	24
	Twierdzenie (kryterium Cauchy'ego)	26
	Twierdzenie (kryterium d'Alemberta)	27
	Twierdzenie (kryterium całkowe)	28
	Zbieżność bezwzględna szeregów	29
	Szeregi naprzemienne	31
	Twierdzenie (Leibnitz)	31
	1 Wierand (Leismon)	0.
4	Szeregi potęgowe	36
	Zbieżność szeregów potęgowych	36
	Wyznaczanie promienia zbieżności i przedziału zbieżności	37
	Własności szeregów potęgowych	40
5	Funkcje wielu zmiennych	49
	Powierzchnie walcowe	53
	Pochodne cząstkowe pierwszego rzędu funkcji wielu zmiennych	55
	Interpretacja geometryczna dla funkcji 2 zmiennych	55
	Pochodne drugiego rzedu	56

SPIS TREŚCI SPIS TREŚCI

	Płaszczyzna styczna do funkcji dwóch zmiennych	59
	Pochodna kierunkowa	62
	Gradient	64
	Zbieżność w \mathbb{R}^k i granice funkcji wielu zmiennych	66
	Popularne techniki liczenia granic funkcji wielu zmiennych	68
	Ciągłość funkcji wielu zmiennych	70
	Ekstrema funkcji dwóch zmiennych	72
	Ekstrema warunkowe	75
	Wartości największe i najmniejsze funkcji na zadanych zbiorach	76
	Zadania optymalizacyjne	77
6	Całki podwójne	80
	Zmiana zmiennych w całce podwójnej	87
	Współrzędne biegunowe	88
	Współrzędne biegunowe przesunięte – o środku w (x_0, y_0)	88
	Zastosowania całek podwójnych w mechanice	95
7	Transformata Laplace'a	98
	Podstawowe własności transformaty Laplace'a	100

Wstęp SPIS TREŚCI

Wstęp

Skrypt jest w większości przepisywany ze zdjęć zrobionych w wordzie z dysku ale w przypadku jakichś braków wykorzystywana jest prezentacja dr. Michalika.

W skrypcie mogą pojawić się błędy stąd najlepiej przed nauką pobrać z dysku google (Informatyka Stosowana 2020) najbardziej aktualną wersję zamieszczoną w folderze Semestr II \rightarrow Analiza Matematyczna II \rightarrow michalik wykłady \rightarrow Skrypt \rightarrow Skrypt_Wykład.pdf. Skrypt jest średnio aktualizowany co 2-3 dni – dopóki nie zostanie przepisane **wszystko**.

Wszelkie uwagi, błędy (na pewno jakieś są), zdjęcia z brakujących tematów można pisać priv na discordzie :

Tomasz Strzelba#1454

Miłej nauki!

Ostatnie zmiany:

- 30.05.2023 Dodanie transformat Laplace'a
- 02.06.2023 Skończenie transformat Laplace'a

1 Całki niewłaściwe I rodzaju

Definicja

Ustalamy liczbę $a\in\mathbb{R}$. Niech f będzie funkcją całkowalną na każdym przedziale w postaci [a,T] gdzie T>a. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[a,\infty]$ jako

$$\int_{a}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{a}^{T} f(x) dx$$
, gdy granica po prawej stronie istnieje

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie T < b. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[-\infty, b]$ jako

$$\int\limits_{-\infty}^b f(x)\,dx = \lim_{T\to -\infty} \int\limits_T^b f(x)\,dx$$
, gdy granica po prawej stronie istnieje

Terminologia dotycząca takich całek jest taka, jak dla ciągów. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy mówimy, że całka jest zbieżna.
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy mówimy, że całka jest <u>rozbieżna</u> (odpowiednio do ∞ lub $-\infty$).
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest <u>rozbieżna</u>.

Analogicznie dla $\int_{-\infty}^{b} f(x) dx$

Przykład

$$\int\limits_0^\infty \sin x \, dx = \lim\limits_{T \to \infty} \int\limits_0^T \sin x \, dx = \lim\limits_{T \to \infty} [-\cos x]_0^T = \lim\limits_{T \to \infty} (-\cos T - (-\cos 0)) = \lim\limits_{T \to \infty} (1 - \cos T)$$

Granica ta nie istnieje więc całka jest rozbieżna.

$$\int_{-\infty}^{0} 2^x \, dx = \lim_{T \to -\infty} \int_{T}^{0} 2^x \, dx = \lim_{T \to -\infty} \left[\frac{2^x}{\ln 2} \right]_{T}^{0} = \lim_{T \to -\infty} \left(\frac{1}{\ln 2} - \frac{2^T}{\ln 2} \right) = \frac{1}{\ln 2}$$

Całka jest zbieżna do $\frac{1}{\ln 2}$.

Pozostaje przypadek p = 1. Wtedy

$$\int \frac{1}{x} dx = \ln|x| + C, \quad \int_{a}^{T} \frac{1}{x} dx = [\ln|x|]_{a}^{T} = \ln|T| - \ln|a|, \quad \int_{a}^{\infty} \frac{1}{x} dx = \lim_{T \to \infty} (\ln|T| - \ln|a|) = \infty$$

Udowodniliśmy zatem ważny wynik

Twierdzenie

Gdy a>0 to całka $\int_a^\infty \frac{1}{x^p} \, dx$ jest skończona dla p>1 oraz nieskończona dla $p\leqslant 1$.

Podobnie można łatwo pokazać poniższy wynik

Twierdzenie

Gdy $a \in \mathbb{R}$ i A > 0 to całka $\int\limits_a^\infty A^x \, dx$ jest skończona dla 0 < A < 1 oraz nieskończona dla $A \geqslant 1$

Gdy
$$\int f(x) dx = F(x) + C$$
 to

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} F(T) - \lim_{S \to \infty} F(S)$$

przy czym przynajmniej jedna z granic z prawej strony nie istnieje lub zachodzi przypadek $\infty - \infty$ to $\int_{-\infty}^{\infty} f(x) dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

W przypadku kiedy całki nie da się obliczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem , że wiemy, że jest zbieżna.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy całek. Najczęściej mają postać implikacji ale NIE równoważności.

Oznacza to zwykle własności postaci warunek zachodzi ⇒ całka jest zbieżna/rozbieżna warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności całki

Popularne kryteria zbieżności całek z ∞

Warunek konieczny zbieżności całki

Twierdzenie

Jeżeli całka $\int_a^\infty f(x) dx$ jest zbieżna to $\lim_{x \to \infty} f(x)$ jest równa 0 lub nie istnieje.

Transpozycja twierdzenia daje następujący wynik:

Twierdzenie

Jeżeli $\lim_{x\to\infty} f(x)$ istnieje i jest różna od 0 to całka $\int\limits_a^\infty f(x)\,dx$ nie jest zbieżna, przy czym

• gdy
$$\lim_{x \to \infty} f(x) > 0$$
 to $\int_{a}^{\infty} f(x) dx = \infty$,

• gdy
$$\lim_{x \to \infty} f(x) < 0$$
 to $\int_{a}^{\infty} f(x) dx = -\infty$,

Uwaga. Warunek konieczny to tylko implikacja!

Jeżeli $\lim_{x\to\infty} f(x)$ jest równa 0 lub nie istnieje to jeszcze NIC NIE WIEMY o całce,

Na przykład całki $\int_a^\infty \frac{1}{x^p} dx$, a > 0, mają $\lim_{x \to \infty} \frac{1}{x^p} = 0$ dla wszystkich p > 0 ale niektóre z tych całek są zbieżne, a niektóre rozbieżne

Ważna klasa całek - całki z funkcji nieujemnych

$$\int_{a}^{\infty} f(x) \, dx, \ f \geqslant 0$$

Wtedy $\int\limits_a^T f(x)\,dx = F(T) - F(a)$ jest funkcją niemalejącą zmiennej T zatem całka $\int\limits_a^\infty f(x)\,dx = \lim_{T\to\infty}\int\limits_a^T f(x)\,dx$ zawsze istnieje. Może być to liczba lub ∞ .

Zatem brak zbieżności takich całek oznacza rozbieżność do ∞ .

Dla całek z funkcji nieujemnych mamy dwa kolejne kryteria zbieżności.

1. Kryterium porównawcze

2. Kryterium ilorazowe

Twierdzenie(kryterium porównawcze)

Dane są dwie całki $\int_{a}^{\infty} f(x) dx$ oraz $\int_{a}^{\infty} g(x) dx$. Wtedy zachodzą następujące własności

- 1. (Przypadek zbieżności). Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant f(x) \leqslant g(x)$ i $\int_a^\infty g(x) \, dx$ jest zbieżna to $\int_a^\infty f(x) \, dx$ też jest zbieżna. Ponadto $0 \leqslant \int_a^\infty f(x) \, dx \leqslant \int_a^\infty g(x) \, dx$
- 2. (Przypadek rozbieżności) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ i $\int_a^\infty g(x) \, dx$ jest rozbieżna (więc równa ∞) to $\int_a^\infty f(x) \, dx$ też jest rozbieżna (do ∞).
- 3. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le f(x) \le g(x)$ ale $\int_a^\infty g(x) \, dx$ jest rozbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.
- 4. (Przypadek wątpliwy) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ ale $\int_a^{\infty} g(x) dx$ jest zbieżna to NIC NIE WIEMY o zbieżności $\int_a^{\infty} f(x) dx$.

Uwagi:

- $\int_{a}^{\infty} f(x) dx$ jest całką z zadania, $\int_{a}^{\infty} g(x) dx$ tworzymy sami.
- Porównujemy najczęściej z całkami $\int_a^\infty A^x\,dx$ lub $\int_a^\infty \frac{1}{x^p}\,dx$. Wtedy f często ma postać ułamków i możemy spróbować wziąć g jako :
 - C iloraz najwyższych potęg z licznika i mianownika f
- ullet Trzeba uważać aby nierówność między f i g była prawdziwa i nie zapomnieć przypadku wątpliwego, bo wtedy **trzeba zaczynać od nowa**.
- \bullet Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między f i g.

Popularny błąd - odpowiedź na podstawie przypadku wątpliwego

Na przykład dla całki $\int_{1}^{\infty} \frac{1}{x + \sqrt{x}} dx:$

"Mamy $0 \le \frac{1}{x + \sqrt{x}} \le \frac{1}{x}$ i całka $\int_{1}^{\infty} \frac{1}{x} dx$ jest rozbieżna zatem całka $\int_{1}^{\infty} \frac{1}{x + \sqrt{x}} dx$ jest rozbieżna "

GAME OVER... To jest przypadek nr 3 (wątpliwy)

Przykład

$$\int_{1}^{\infty} \frac{2x-3}{x^3-1} \, dx$$

Przewidywanie zbieżności/rozbieżności Najwyższe potęgi sugerują, że mając

$$\frac{x}{x^3} = \frac{1}{x^2}$$
, a $\int_{4}^{\infty} \frac{1}{x^2} dx < \infty$, bo $2 > 1$

Dowodzimy zbieżność. Trzeba mieć

$$0 \leqslant \frac{2x-3}{x^3-1} \leqslant g(x) = C \cdot \frac{x}{x^3}$$

Jak w twierdzeniu o 3 ciągach

$$0 \leqslant \frac{2x}{x^3 - \frac{1}{2}x^3} = 4 \cdot \frac{x}{x^3} = 4 \cdot \frac{1}{x^2}$$

$$\int_{4}^{\infty} \frac{4}{x^2} dx = 4 \int_{4}^{\infty} \frac{1}{x^2} dx < \infty \quad \left(\frac{1}{2}x^3 > 1 \text{ dla } x \geqslant 4\right)$$

Twierdzenie(kryterium ilorazowe)

Dane są dwie całki $\int\limits_a^\infty f(x)\,dx$ oraz $\int\limits_a^\infty g(x)\,dx.$ Ponadto

$$\forall x \geqslant x_0 \geqslant a \quad f(x), g(x) > 0$$

Jeżeli istnieje granica $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ i jest <u>liczbą dodatnią</u> to wtedy obie całki są zbieżne albo obie rozbieżne do ∞ .

Uwagi

• Funkcję g tworzymy podobnie jak dla kryterium porównawczego

- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice
- Granica nie może być ani 0 ani ∞ : $\lim_{x \to \infty} \frac{f(x)}{g(x)} \in (0, \infty)$
- Rozwiązanie **musi zawierać wniosek** "granica ilorazu jest liczbą dodatnią więc obie całki są zbieżne lub obie rozbieżne" bez tego będzie niepełne.
- Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które "idą" z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

Np.
$$\int_{1}^{\infty} \frac{2 + \sin x}{x} \, dx$$

Poprzedni przykład raz jeszcze

$$\int_{4}^{\infty} \frac{2x - 3}{x^3 - 1} dx$$

$$f(x) = \frac{2x - 3}{x^3 - 1}, \quad x \geqslant 4$$

$$g(x) = \frac{x}{x^3} = \frac{1}{x^2} > 0$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2 (2x - 3)}{x^3 - 1} = 2$$

Obie całki zbieżne lub obie rozbieżne do ∞

Przykłady o postaci funkcji złożonej $\int\limits_a^\infty f(g(x))\,dx$ gdzie $\lim\limits_{x\to\infty}g(x)=0^+$ oraz $\lim\limits_{x\to0^+}f(x)=0^+$ Nową całką jest całka z funkcji wewnętrznej $\int\limits_a^\infty g(x)\,dx$

Liczymy granicę

$$\lim_{x \to \infty} \frac{f(g(x))}{g(x)} = \lim_{t = g(x) \to 0^+} \frac{f(t)}{t} \begin{bmatrix} 0\\0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

$$\int_{1}^{\infty} \left(2^{\frac{1}{\sqrt{x}}} - 1\right) dx$$

$$g(x) = \frac{1}{\sqrt{x}} > 0$$

$$f(x) = 2^x - 1 > 0$$

$$\lim_{x \to \infty} \frac{2^{\frac{1}{\sqrt{x}}} - 1}{\frac{1}{\sqrt{x}}} = \lim_{t \to 0^+} \frac{2^t - 1}{t} \left[\frac{0}{0} \right] = \ln 2 \in (0, \infty)$$

Obie całki zbieżne lub obie rozbieżne

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \int_{1}^{\infty} \frac{1}{x^{\frac{1}{2}}} dx = \infty \quad \text{bo} \quad \frac{1}{2} \leqslant 1$$

Wartość główna całki niewłaściwej I rodzaju

Całka $\int_{-\infty}^{\infty} x \, dx$ jest rozbieżna, gdyż jako suma całek prowadzi do symbolu $\infty - \infty$:

$$\int_{-\infty}^{\infty} x \, dx = \int_{-\infty}^{0} x \, dx + \int_{0}^{\infty} x \, dx = -\infty + \infty$$

Intuicyjnie oczekwialibyśmy jednak, że jest ona równa 0 - funkcja podcałkowa jest nieparzysta czyli mamy "tyle funkcji na + co na -", a więc wszystko powinno się wzajemnie zrównoważyć. Aby taka całka miała sens trzeba nieco zmodyfikować jej definicję i wprowadzić pojęcie wartości głównej całki niewłaściwej (obustronnej).

Definicja

Wartość główna całki $\int_{-\infty}^{\infty} f(x) dx$ to wielkość

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx$$

o ile powyższa granica istnieje.

Oznacza to, że przybliżamy całkę po \mathbb{R} całkami po przedziale symetrycznym względem 0. P.V. jest skrótem od angielskiego "Principal Value".

$$\text{P.V.} \int_{-\infty}^{\infty} x \, dx = \lim_{T \to \infty} \int_{-T}^{T} x \, dx = \lim_{T \to \infty} 0 = 0$$

Zauważmy, że gdy $\int f(x) dx = F(x) + C$ to

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T))$$

Jeżeli teraz ma sens wyrażenie $\lim_{T\to\infty}F(T)-\lim_{T\to\infty}F(-T)$ to biorąc $S=-T\to-\infty$ dostajemy

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T)) = \lim_{T \to \infty} F(T) - \lim_{T \to \infty} F(-T) =$$
$$= \lim_{T \to \infty} F(T) - \lim_{S \to -\infty} F(S) = \int_{-\infty}^{\infty} f(x) dx$$

Udowodniliśmy zatem poniższe twierdzenie.

Twierdzenie

Jeżeli całka $\int_{-\infty}^{\infty} f(x) dx$ istnieje w zwykłym sensie (jako suma odpowiednich całek jednostronnych jest liczbą lub jedną z nieskończoności) to również jej wartość główna istnieje i jest równa tej całce.

Natomiast może się zdarzyć, że wartość główna całki istnieje ale sama całka jest rozbieżna (był przykład).

W szczególności gdy funkcja jest na \mathbb{R} ciągła i nieparzysta to wartość główna całki z tej funkcji jest zawsze 0 niezależnie od zbieżności samej całki.

2 Całki niewłaściwe II rodzaju

Definicja

Ustalamy liczby $a, b \in \mathbb{R}$, a < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], gdzie a < T < b.

Definiujemy całkę niewłaściwą drugiego rodzaju z f na przedziale [a,b) jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to b^{+}} \int_{a}^{T} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Twierdzenie

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie a < T < b. to definiujemy całkę niewłaściwą pierwszego rodzaju z f na przedziale (a, b] jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to a^{+}} \int_{T}^{b} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Terminologia dotycząca takich całek jest taka, jak dla całek niewłaściwych 1 rodzaju. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy całka jest zbieżna (do tej granicy).
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy całka jest <u>rozbieżna</u> do ∞ lub $-\infty$.
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest rozbieżna.

Interpretacja geometryczna.

Podobnie jak dla zwykłej całki oznaczonej, jeżeli $f \ge 0$ na (a,b] lub [a,b) to całka niewłaściwa 2 rodzaju $\int_a^b f(x) \, dx$ daje pole obszaru ograniczonego osią X, wykresem f oraz prostymi x=a oraz x=b.

Najczęściej definiujemy tego typu całkę w przypadku gdy f ma asymptotę pionową x = a lub x = b. Wtedy ten obszar nie jest ograniczony z góry bądź z dołu.

Przykład

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{T \to 0^{+}} \int_{T}^{1} \frac{1}{\sqrt{x}} dx \lim_{T \to 0^{+}} [2\sqrt{x}]_{T}^{1} = \lim_{T \to 0^{+}} (2 - 2\sqrt{T}) = 2$$

Całka jest zbieżna do 2.

Wersja całki obustronnej

Ustalamy liczby $a,b,c \in \mathbb{R}, \ a < c < b$. Niech f będzie funkcją całkowalną na każdym przedziale postaci $[a,T],\ T < c$, oraz $[T,b],\ T > c$. Definiujemy całkę niewłaściwą 2 rodzaju z f na zbiorze $[a,c) \cup (c,b]$ jako sumę dwóch całek niewłaściwych. tzn.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

przy czym gdy przynajmniej jedna z całek z prawej strony nie istnieje lub zachodzi przypadek $\infty-\infty$ to $\int\limits_a^b f(x)\,dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

Najczęściej takie całki pojawiają się, gdy f ma asymptotę w x = c.

Twierdzenie

Istnieją podstawienia, które każdą całkę niewłaściwą 2 rodzaju sprowadzają do przypadku całki niewłaściwej 1 rodzaju.

W szczególności

• dla całki (a, b] możemy wziąć $t = \frac{1}{x - a}$ co daje $x = a + \frac{1}{t}$ oraz

$$\int_{a}^{b} f(x) dx = \int_{C}^{\infty} \frac{1}{t^{2}} f\left(a + \frac{1}{t}\right) dt \quad , \text{ gdzie} \quad C = \frac{1}{b - a}$$

 \bullet dla całki na [a,b)możemy wziąć $t=\frac{1}{b-x}$ co daje $t=b-\frac{1}{t}$ oraz

$$\int_{a}^{b} f(x) dx = \int_{C}^{\infty} \frac{1}{t^{2}} f\left(b - \frac{1}{t}\right) dt \quad , \text{ gdzie} \quad C = \frac{1}{b - a}$$

Na przykład dla p>0 biorąc $t=\frac{1}{x}$ mamy

$$\int_{0}^{b} \frac{1}{x^{p}} dx = \int_{\frac{1}{b}}^{\infty} \frac{1}{t^{2}} \cdot \frac{1}{\left(\frac{1}{t}\right)^{p}} dt = \int_{\frac{1}{b}}^{\infty} \frac{1}{t^{2-p}} dt$$

Podstawienie to oznacza też, że mamy analogiczne kryteria zbieżności dla całek 2 rodzaju - porównawcze i ilorazowe, przy czym dla kryterium ilorazowego liczymy granicę ilorazu funkcji w odpowiednim końcu zadanego przedziału.

Na koniec, wartość główna całki $\int\limits_a^b f(x)\,dx$ na $[a,c)\cup(c,b]$ to wielkość

P.V.
$$\int_{a}^{b} f(x) dx = \lim_{T \to 0^{+}} \left(\int_{a}^{c-T} f(x) dx + \int_{c+T}^{b} f(x) dx \right)$$

o ile powyższa granica istnieje.

Oznacza to, że odpowiednie końce przedziałów całkowania są w jednakowej odległości od c i zbiegają do c.

Zbieżność bezwzględna całek niewłaściwych

Definicja

Całka $\int_{a}^{\infty} f(x) dx$ jest zbieżna bezwzględnie, gdy zbieżna jest całka $\int_{a}^{\infty} |f(x)| dx$.

Analogiczne definicje mamy dla pozostałych całek 1 rodzaju oraz dla całek 2 rodzaju.

Uwagi

- Gdy f jest nieujemna to mamy $\int_{a}^{\infty} f(x) dx = \int_{a}^{\infty} |f(x)| dx$ i definicja nie wnosi nic nowego. Sytuacja się zmienia, gdy są przedziały na którym f ma różne znaki.
- Nierówność $\left|\int\limits_a^T f(x)\,dx\right| \leqslant \int\limits_a^T |f(x)|\,dx$ daje $\left|\int\limits_a^\infty f(x)\,dx\right| \leqslant \int\limits_a^\infty |f(x)|dx$ ale gdy są przedziały na którym f ma różne znaki to równość nie zachodzi. Zatem, ogólnie, $\left|\int\limits_a^\infty f(x)\,dx\right|$ i $\int\limits_a^\infty |f(x)|\,dx$ to nie to samo.

Twierdzenie

Jeżeli całka niewłaściwa jest bezwzględnie zbieżna to jest zbieżna (w zwykłym sensie). Transpozycja tego twierdzenia daje warunek równoważny :

Jeżeli całka $\int_{a}^{\infty} f(x) dx$ nie jest zbieżna to również nie jest zbieżna bezwzględnie,

co oznacza $\int_{-\infty}^{\infty} |f(x)| dx = \infty$.

Analogicznie dla pozostałych typów całek niewłaściwych.

Twierdzenie odwrotne nie jest prawdziwe. Są całki zbieżne ale nie bezwzględnie, np. $\int_{1}^{\infty} \frac{\sin x}{x} dx$

Takie całki to tzw. całki zbieżne warunkowo.

Są więc 3 możliwe sytuacje - 3 rozłączne podzbiory całek niewłaściwych:

Rozbieżne i rozbieżne bezwzględnie

Zbieżne ale nie bezwzględnie – tylko warunkowo

> Zbieżne i zbieżne bezwzględnie

Przykład

Całka $\int\limits_1^\infty \frac{\sin x}{\sqrt[3]{x^4}} \, dx$ jest zbieżna bezwzględnie, bo biorąc $\int\limits_1^\infty \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| \, dx$ i używając kryterium porównawczego mamy

$$0 \leqslant \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| = \frac{|\sin x|}{x^{\frac{4}{3}}} \leqslant \frac{1}{x^{\frac{4}{3}}}$$

a całka $\int\limits_{1}^{\infty} \frac{1}{x^{\frac{4}{3}}} \, dx$ jest zbieżna bo $\frac{4}{3} > 1$. Zatem $\int\limits_{1}^{\infty} \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| \, dx$ jest zbieżna, a stąd $\int\limits_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^4}} \, dx$ też jest zbieżna.

3 Szeregi liczbowe

Dany jest ciąg liczbowy $a_1, a_2, ..., a_n, ...$ Tworzymy jego ciąg sum częściowych:

$$S_1 = a_1, \quad S_2 = a_1 + a_2, \quad S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^{n} a_k$$

Jeżeli istnieje granica $S=\lim_{n\to\infty}S_n$ (skończona lub nieskończona) to oznaczamy ją symbolem $\sum_{k=1}^\infty a_k.$

W ogólnym przypadku możemy wziąć ciąg, który zaczyna się od dowolnej liczby całkowitej $n_0:a_{n_0},a_{n_0+1},...,a_n,...$ i jego sum częściowych

$$S_n = a_{n_0}, \quad S_{n_0+1} = a_{n_0} + a_{n_0+1}, \quad S_n = a_{n_0} + a_{n_0+1} + \dots + a_n = \sum_{k=n_0}^n a_k, \quad n \geqslant n_0$$

 $S = \lim_{n \to \infty} S_n$ jest oznaczana przez $\sum_{k=n_0}^{\infty} a_k$.

Definicja

Dla ustalonego $n_0 \in \mathbb{Z}$ obiekt $\sum_{k=n_0}^{\infty} a_k$ nazywamy szeregiem liczbowym, a wartość S (gdy

istnieje) jego <u>sumą,</u> oznaczaną także przez $\sum_{k=n_0}^{\infty} a_k$. Mamy wtedy

$$S_n = a_{n_0}, \quad S_{n_0+1} = a_{n_0} + a_{n_0+1}. \quad S_n = a_{n_0} + a_{n_0+1} + \dots + a_n + \dots = \sum_{k=n_0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=n_0}^{n} a_k = \lim_{n \to \infty} S_n$$

gdzie

- S_n to n ta suma szeregu,
- a_n to n ty wyraz szeregu.

Terminologia dotycząca sumy S jest taka, jak dla ciągów. Są 3 przypadki :

- 1. S jest liczbą. Wtedy dany szereg jest zbieżny (do S).
- 2. $S = \infty$ lub $S = -\infty$. Wtedy dany szereg jest rozbieżny (do ∞ lub $-\infty$).
- 3. $S = \lim_{n \to \infty} S_n$ nie istnieje. Wtedy dany szereg jest <u>rozbieżny</u>.

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} - \text{szereg zbieżny do } 1$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} - \text{szereg rozbieżny do } \infty$$

$$1 - 1 + 1 - 1 + 1 - 1 + \dots = \sum_{n=2}^{\infty} (-1)^n - \text{szereg rozbieżny}$$

Uwaga. Każdy szereg zaczynający się od indeksu $n_0 \in \mathbb{Z}$ można przekształcić tak, by zaczynał się od indeksu 1. Wynika to z równości

$$\sum_{n=n_0}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+n_0-1}$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} = \sum_{n=2}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

Obliczanie sum szeregów

Jest to zadanie trudne, a najczęściej niemożliwe, gdyż trudno jest znaleźć bezpośredni wzór na sumy częściowe S_n .

Niektóre przypadki szczególne.

- 1. Ciąg geometryczny i szereg geometryczny.
 - $a_n = a_1 \cdot q^{n-1}$, gdzie q jest ilorazem ciągu (czyli $a_{n+1} = a_n \cdot q, \ n \geqslant 1$). Wtedy

$$S_n = a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{1 - q^n}{1 - q}, q \neq 1 \text{ oraz } S_n = na_1, q = 1$$

To oznacza, że dla $a_1 \neq 0$,

- szereg jest zbieżny dla -1 < q < 1 i jego suma jest $S = \frac{a_1}{1-q}$,
- szereg jest rozbieżny do ∞ lub $-\infty$ dla $q \ge 1$, znak zależy od znaku a_1 ,
- szereg jest rozbieżny (suma nie istnieje) dla $q \leq -1$

Stąd np.

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$
, be tutaj $a_1 = q = \frac{1}{2}$

2. Szeregi o wyrazie ogólnym postaci

$$a_n = f(n+1) - f(n)$$
 lub $a_n = f(n) - f(n+1)$, gdzie f jest pewną funkcją.

W bardziej ogólnej postaci

$$a_n = f(n+k) - f(n)$$
 lub $a_n = f(n) - f(n+k)$, gdzie $k \in \mathbb{N}^+$ to tzw. krok.

Takie szeregi to tzw. szeregi teleskopowe (telescoping series).

Przykład

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) - \text{tutaj } f(x) = \frac{1}{x}$$

$$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right) - \text{tutaj } f(x) = \sqrt{x}$$

$$\sum_{n=1}^{\infty} \left(\operatorname{arc} \operatorname{tg}(n) - \operatorname{arc} \operatorname{tg}(n+2) \right)$$
 - tutaj $f(x) = \operatorname{arc} \operatorname{tg} x$

Dla takich szeregów łatwo wyznacza się wzór na S_n . Wyrazy wewnętrzne się upraszczają i zostaje:

suma k pierwszych wartości, f suma k ostatnich wartości f (lub na odwrót)

Przykład

Dla
$$\sum_{n=1}^{\infty} (f(n) - f(n+1))$$
 mamy

$$S_n = f(1) - \frac{f(2)}{f(2)} + \frac{f(2)}{f(2)} - \frac{f(3)}{f(3)} + \frac{f(3)}{f(4)} + \dots + \frac{f(n)}{f(n+1)} - \frac{f(n+1)}{f(n+1)} = f(1) - \frac{f(n+1)}{f(n+1)} + \frac{f(n)}{f(n+1)} - \frac{f(n)}{f(n+1)} = f(n) - \frac{f(n)}{f(n+1)} + \frac{f(n)}{f(n+1)} + \frac{f(n)}{f(n+1)} = f(n) - \frac{f(n)}{f(n+1)} + \frac{f(n)}{f(n+$$

Jeżeli istnieje granica $G = \lim_{x \to \infty} f(x)$ to mamy

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (f(1) - f(n+1)) = f(1) - G$$

Wyznaczyć sumę $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$

Wyraz ogólny nie ma postaci różnicy więc trzeba ją stworzyć.

Używając rozkładu na ułamki proste dostajemy

$$\frac{1}{n^2+n} = \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} = \dots = \frac{1}{n} - \frac{1}{n+1}$$

Zatem

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

I to daje

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{1}{1} - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Własności szeregów zbieżnych

Twierdzenie

Jeżeli szeregi $\sum_{n=n_0}^{\infty}a_n$ oraz $\sum_{n=n_0}^{\infty}b_n$ są zbieżne to zbieżne są szeregi $\sum_{n=n_0}^{\infty}(a_n+b_n)$ oraz $\sum_{n=n_0}^{\infty}(c\cdot a_n),\ c\in\mathbb{R}.$

Ponadto

•
$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n$$

$$\bullet \sum_{n=n_0}^{\infty} (c \cdot a_n) = c \sum_{n=n_0}^{\infty} a_n$$

Prawdziwe są także analogiczne twierdzenia prowadzące do arytmetyki granic nieskończonych, gdy nie pojawiają się symbole nieoznaczone.

Na przykład gdy
$$\sum_{n=n_0}^{\infty} a_n = \infty$$
 oraz $\sum_{n=n_0}^{\infty} b_n = b \in \mathbb{R}$ to
$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n = \infty$$

Natomiast gdy $\sum_{n=n_0}^{\infty}a_n=\sum_{n=n_0}^{\infty}b_n=\infty$ to $\sum_{n=n_0}^{\infty}(a_n-b_n)$ może być zarówno zbieżny jak i rozbieżny i nie ma sensu równość

$$\sum_{n=n_0}^{\infty} (a_n - b_n) = \sum_{n=n_0}^{\infty} a_n - \sum_{n=n_0}^{\infty} b_n$$

Twierdzenie

Zmiana wartości n_0 nie wpływa na zbieżność/rozbieżność szeregu $\sum_{n=n_0}^{\infty} a_n$. Może mieć wpływ na wartość jego sumy.

Stąd wynika np., że szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=100}^{\infty} a_n$ są albo oba zbieżne albo oba rozbieżne do ∞ lub $-\infty$ albo oba rozbieżne.

To też oznacza, że na podstawie kilku pierwszych wyrazów ciągu/szeregu NIC NIE MOŻNA POWIEDZIEĆ o jego zbieżności

Popularny błąd

"Liczymy wartości a_1, a_2, a_3, a_4, a_5 . Wychodzi ciąg malejący i dodatni. Zatem szereg jest zbieżny". GAME OVER...

Twierdzenie

Dla ustalonego $n_0 \in \mathbb{N}^+$ i $p \in \mathbb{R}$ szereg $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ jest zbieżny dla p > 1 i rozbieżny do ∞ dla $p \leq 1$.

W przypadku kiedy sumy szeregu nie da się wyznaczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem, że wiemy, że szereg jest zbiezny.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy szeregów. Najczęściej mają postać implikacji ale **NIE** równoważności.

Oznacza to zwykle własności postaci warunek zachodzi ⇒ szereg jest zbieżny/rozbieżny, warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności szeregu

Popularne kryteria zbieżności szeregów

0. Warunek konieczny zbieżności szeregów

Twierdzenie

Jeżeli szereg $\sum_{n=n_0}^{\infty} a_n$ jest zbieżny to $\lim_{n\to\infty} a_n = 0$.

Dowód

Dla $n \ge n_0 + 1$ mamy $S_n = a_{n_0} + a_{n_0+1} + \dots + a_{n-1} + a_n$ oraz $S_{n-1} = a_{n_0} + a_{n_0+1} + \dots + a_{n-1}$, Stad

$$S_n - S_{n-1} = a_n$$

Jeżeli szereg
$$\sum_{n=n_0}^{\infty} a_n$$
 jest zbieżny to $\lim_{n\to\infty} S_n = \lim_{n\to\infty} S_{n-1} = S \in \mathbb{R}$. To daje $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (S_n - S_{n-1}) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$

Transpozycja tego twierdzenia daje warunek równoważny do zastosowania praktycznego: Jeżeli $\lim_{n\to\infty} a_n \neq 0$ to szereg $\sum_{n=n_0}^{\infty} a_n$ nie jest zbieżny przy czym

• gdy
$$\lim_{n\to\infty} a_n > 0$$
 to $\sum_{n=n_0}^{\infty} a_n = \infty$

• gdy
$$\lim_{n\to\infty} a_n < 0$$
 to $\sum_{n=n_0}^{\infty} a_n = -\infty$

Uwaga. To jest tylko implikacja!

Jeżeli $\lim_{n\to\infty} a_n = 0$ to jeszcze **NIC NIE WIEMY** o szeregu.

Na przykład szeregi $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ mają $\lim_{n\to\infty} \frac{1}{n^p} = 0$ dla wszystkich p > 0 ale niektóre z tych szeregów są zbieżne, a niektóre rozbieżne.

Popularny błąd

" $\lim_{n\to\infty} a_n = 0$ zatem szereg jest zbieżny". GAME OVER...

Szeregi o wyrazach nieujemnych

$$\sum_{n=n}^{\infty} a_n, \ a_n \geqslant 0$$

Wtedy $S_n = a_{n_0} + a_{n_0+1} + ... + a_{n-1} + a_n$ jest ciągiem niemalejącym zatem suma szeregu $\sum_{n=n_0}^{\infty} a_n = \lim_{n \to \infty} S_n$ zawsze istnieje. Może być to liczba lub ∞ .

Podobnie dla szeregów o wyrazach niedodatnich $\sum_{n=n_0}^{\infty} a_n$, $a_n \leq 0$, suma zawsze istnieje i rozbieżność oznacza rozbieżność do $-\infty$.

Przykład

Następujące szeregi nie są zbieżne

$$\sum_{n=1}^{\infty} 1, \quad \sum_{n=1}^{\infty} (n^2 + 2n), \quad \sum_{n=1}^{\infty} \frac{n+1}{n+2}, \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n, \quad \sum_{n=1}^{\infty} (-1)^n, \quad \sum_{n=1}^{\infty} \sin n$$

Dla szeregów o wyrazach nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie (kryterium porównawcze)

Dane są dwa szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$. Wtedy zachodzą nastepujące własności.

- 1. (Przypadek zbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant a_n \leqslant b_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest zbieżny. Ponadto $0 \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant \sum_{n=n_0}^{\infty} b_n$
- 2. (Przypadek rozbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest rozbieżny. Ponadto $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} b_n = \infty$
- 3. (Przypadek wątpliwy). Gdy $\forall n \ge k \ge n_0 \quad 0 \le a_n \le b_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$
- 4. (Przypadek wątpliwy). Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$

Uwagi

• $\sum_{n=n_0}^{\infty} a_n$ jest szeregiem z zadania, $\sum_{n=n_0}^{\infty} b_n$ tworzymy sami

- Porównujemy najczęściej z szeregiem geometrycznym $\sum_{n=n_0}^{\infty}q^n$ lub z szeregami $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$. Wtedy a_n często ma postać ułamków i możemy spróbować wziąć b_n jako
 - \mathbf{C} · iloraz najwyższych poteg z licznika i mianownika a_n
- \bullet Trzeba uważać aby nierówność między a_n i b_n była prawdziwa i nie zapomnieć o dolnym ograniczeniu (0). Ma być tak jak w twierdzeniu o trzech ciągach
- Kryterium nie zawsze jest wygodne w użyciu i trzeba uważać, by nie dostać przypadku watpliwego, bo wtedy trzeba zaczynać od nowa
- Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między a_n i b_n .

Popularny błąd – odpowiedź na podstawie przypadku wątpliwego

Na przykład dla szeregu $\sum_{n=1}^{\infty}\frac{1}{n+\sqrt{n}}$: "Mamy $0\leqslant\frac{1}{n+\sqrt{n}}\leqslant\frac{1}{n}$ i szereg $\sum_{n=1}^{\infty}\frac{1}{n}$ jest rozbieżny zatem szereg $\sum_{n=1}^{\infty}\frac{1}{n+\sqrt{n}}$ jest rozbieżny".

GAME OVER... To jest przypadek nr 3 (watpliwy)

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Przewidywanie zbieżności/rozbieżności:

Iloraz najwyższych potęg licznika i mianownika to $\frac{n}{n^3} = \frac{1}{n^2}$, a szereg $\sum_{n=4}^{\infty} \frac{1}{n^2}$ jest zbieżny,

bo 2 > 1. Zatem chcemy udowodnić zbieżność (przypadek 1).

Potrzebujemy więc $\sum_{n=4}^{\infty} b_n$ i nierówności $0 \le \frac{2n-3}{n^3-1} \le b_n$.

Chcemy zwiększyć wyrażenie $\frac{2n-3}{n^3-1}$ ale tak, by **zostały najwyższe potęgi**.

Można zwiększyć <u>licznik</u> oraz zmniejszyć mianownik.

Zwiększamy licznik poprzez wyrzucenie 3.

Zmniejszamy mianownik poprzez zastąpienie 1 czymś większym : wyrażeniem z najwyższą potęgą. Nie można jednak wziąć całego n^3 , bo będzie 0 w mianowniku.

Wygrywa wzięcie $C \cdot n^3$ np. $\frac{1}{2}n^3$, bo dla $n \ge 4$ mamy $\frac{1}{2}n^3 \ge 1$.

To wszystko daje dla $n \ge 4$

$$0 \leqslant \frac{2n-3}{n^3-1} \leqslant \frac{2n}{n^3-\frac{1}{2}n^3}$$

Czyli

$$b_n = \frac{2n}{n^3 - \frac{1}{2}n^3} = 4 \cdot \frac{1}{n^2}$$

DZIURA W SKRYPCIE

Twierdzenie (kryterium ilorazowe)

Dane są dwa szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$. Ponadto $\forall n \geqslant n_0 \ a_n, b_n > 0$.

Jeżeli istnieje granica $\lim_{n\to\infty} \frac{a_n}{b_n}$ i jest **liczbą dodatnią** to wtedy oba szeregi są zbieżne albo oba rozbieżne do ∞ .

Uwagi

- \bullet Ciąg b_n tworzymy podobnie jak dla kryterium porównawczego.
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice.
- Granica nie może być ani 0 ani ∞ : $\lim_{n\to\infty} \frac{a_n}{b_n} = L \in (0,\infty)$.

Nie wystarczy warunek L>0 bo ∞ także jest >0.

• Rozwiązanie **musi zawierać wniosek** "granica ilorazu jest liczbą dodatnią więc oba **szeregi** są zbieżne lub oba rozbieżne" - bez tego będzie niepełne

• Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które pójdą z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

$$Np. \sum_{n=1}^{\infty} \frac{2 + \sin n}{n}.$$

Przykład

Poprzedni przykład raz jeszcze

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Bierzemy $b_n = \frac{n}{n^3} = \frac{1}{n^2}$

$$\frac{a_n}{b_n} = \frac{\frac{2n-3}{n^3-1}}{\frac{1}{n^2}} = \frac{2n^3-3n^2}{n^3-1} = \frac{2-\frac{3}{n}}{1-\frac{1}{n^3}}$$

Stąd $\lim_{n\to\infty}\frac{a_n}{b_n}=2$ - liczba dodatnia. Zatem oba szeregi są zbieżne lub oba są rozbieżne. Dalej już analiza $\sum_{n=4}^{\infty}\frac{1}{n^2}$ i wniosek jak w kryterium porównawczym :

$$\sum_{n=4}^{\infty} b_n = \sum_{n=4}^{\infty} \frac{1}{n^2} \text{ jest zbieżny bo } 2 > 1. \text{ Zatem } \sum_{n=4}^{\infty} \frac{2n-3}{n^3-1} \text{ też jest zbieżny.}$$

Przykłady o postaci funkcji złożonej $\sum_{n=n_0}^{\infty} f(b_n)$, gdzie $\lim_{n\to\infty} b_n = 0^+$ oraz $\lim_{x\to 0^+} f(x) = 0^+$.

gdzie
$$\lim_{n\to\infty} b_n = 0^+$$
 oraz $\lim_{x\to 0^+} f(x) = 0^+$.

Nowym szeregiem jest szereg z funkcji wewnętrznej $\sum_{n=0}^{\infty} b_n$.

Liczymy granicę

$$\lim_{n \to \infty} \frac{f(b_n)}{b_n} = \lim_{x = b \to 0^+} \frac{f(x)}{x} \left[\frac{0}{0} \right]$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)$$

Mamy

$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1) = \sum_{n=1}^{\infty} (2^{\frac{1}{n}} - 1)$$

Więc bierzemy $b_n = \frac{1}{n} > 0$. Liczymy granicę

$$\lim_{n \to \infty} \frac{2^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{x = \frac{1}{n} \to 0^{+}} \frac{2^{x} - 1}{x} = \ln 2$$

Jest to liczba dodatnia więc oba szeregi są zbieżne lub oba są rozbieżne.

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \text{ wiec } \sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right) = \infty.$$

- 3. Kryterium Cauchy'ego.
- 4. Kryterium d'Alemberta

Działają dla szeregów o dowolnych wyrazach. Teza obu kryteriów jest taka sama ale liczymy granice innych wyrażeń.

Twierdzenie (kryterium Cauchy'ego)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$ taki, że istnieje granica $q = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.

Uwagi

- Do wyznaczenia q przydają się następujące właśności granic
 - a) Gdy $\lim_{n\to\infty} a_n$ jest liczbą dodatnią to $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.
 - b) $\forall p \in \mathbb{R} \lim_{n \to \infty} \sqrt[n]{n^p} = 1.$
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .

Twierdzenie (kryterium d'Alemberta)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$, $a_n \neq 0$, taki, że istnieje granica $q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .
- \bullet W obu kryteriach szerergi $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$ pokazują, że q=1nic nie daje.

Przykład

$$\sum_{n=1}^{\infty} \frac{20^n}{n!}$$

Tutaj $a_n = \frac{20^n}{n!} > 0$ oraz $a_{n+1} = \frac{20^{n+1}}{(n+1)!}$. Zatem z kryterium d'Alemberta

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{20^{n+1}}{(n+1)!}}{\frac{20^n}{n!}}$$

Przykład

$$\sum_{n=1}^{\infty} \left(2 \arcsin \frac{1-n}{2n+1} \right)^n$$

Tutaj chcemy użyć kryterium Cauchy'ego.

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\left(2\arcsin\frac{1-n}{2n+1}\right)^n\right|} = \sqrt[n]{\left|2\arcsin\frac{1-n}{2n+1}\right|^n} = \left|2\arcsin\frac{1-n}{2n+1}\right|$$
$$= \left|2\arcsin\frac{\frac{1}{n}-1}{2+\frac{1}{n}}\right|$$

Stąd

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \left| 2\arcsin\left(-\frac{1}{2}\right) \right| = \left| 2\left(-\frac{\pi}{6}\right) \right| = \frac{\pi}{3}$$

q > 1 więc szereg jest rozbieżny.

Twierdzenie (kryterium całkowe)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$. Jeżeli na $[x_0,\infty),\ x_0\geqslant n_0$ istnieje funkcja f taka, że

- $f(n) = a_n, n \geqslant x_0,$
- f jest nieujemna na $[x_0, \infty)$,
- f jest nierosnąca na $[x_0, \infty)$,

to całka niewłaściwa $\int_{x_0}^{\infty} f(x) dx$ i szereg $\sum_{n=n_0}^{\infty} a_n$ są jednocześnie skończone lub jednocześnie rozbieżne do ∞ .

Uwagi do kryterium

- Najczęściej $x_0 = n_0$.
- Kryterium jest ważne z punktu widzenia teorii, gdyż wiele innych własności szeregów z niego wynika. Na przykład, gdy $x_0=n_0$ to

$$\int_{n_0}^{\infty} f(x) dx \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant a_{n_0} + \int_{n_0}^{\infty} f(x) dx$$

To pozwala oszacować sumę szeregu.

- Sens użycia kryterium: nie umiemy policzyć sumy szeregu ale umiemy **obliczyć** całkę $\int_{x_0}^{\infty} f(x) \, dx = \lim_{T \to \infty} \int_{x_0}^{T} f(x) \, dx.$ Stosujemy to kryterium tylko wtedy, gdy zamierzamy liczyć te całke.
- Z praktycznego punktu widzenia kryterium jest najczęściej **najmniej wygodnie** do zastosowania. Opłaca się je stosować głównie wtedy, gdy szereg zawiera wyrażenie ln n.

Przykład

Dla ustalonego $n_0 \in \mathbb{N}^+$ i p > 0 dowodzimy znany już wynik dla szeregu $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ zbieżny dla p > 1 oraz rozbieżny do ∞ dla $p \le 1$.

Tutaj bierzemy po prostu $f(x) = \frac{1}{x^p}, x \in [n_0, \infty).$

Dla p > 0 f jest malejąca i nieujemna oraz $f(n) = \frac{1}{n^p}$

Spełnione są wiec warunki użycia kryterium. Liczymy całkę $\int_{x_0}^{\infty} \frac{1}{x^p} dx$.

Było to już robione wcześniej i wiemy, że dla p > 1 jest liczbą, a dla $p \le 1$ jest równa ∞ . Stąd szereg jest zbieżny dla p > 1 oraz rozbieżny do ∞ dla $0 . Dla <math>p \le 0$ szereg jest rozbieżny, bo nie spełnia warunku koniecznego zbieżności.

Uwaga do szeregów z wyrażeniem $\ln n$.

Dla dowolnego p>0 funkcja $\frac{\ln x}{x^p},\ x\geqslant 2,$ ma zbiór wartości $\left(0,\frac{1}{p\cdot e}\right].$ Zatem

$$\frac{\ln x}{x^p} \leqslant \frac{1}{p \cdot e} \Leftrightarrow \ln x \leqslant \frac{1}{p \cdot e} x^p$$

a stąd

$$\ln n \leqslant \frac{1}{p \cdot e} n^p$$

Z oszacowaniem dolnym jest gorzej, bo nie ma pojedynczej funkcji elementarnej mniejszej od $\ln x$ i pozostaje oszacowanie przez stałą np.

$$\ln n \geqslant \frac{1}{2}, \quad n \geqslant 2$$

To daje oszacowanie dla dowolnego p > 0:

$$\frac{1}{2} \leqslant \ln n \leqslant C \cdot n^p, \quad n \geqslant 2$$

Tutaj $C = \frac{1}{p \cdot e}$, a dla $p \ge \frac{1}{e}$ wystarczy wziąć C = 1.

Często to oszacowanie pozwala uniknąć kryterium całkowego i zastąpienie go porównawczym, potrzeba tylko wziąć odpowiednio małe p.

Przykład

Dla szeregu $\sum_{n=2}^{\infty} \frac{\ln n}{n\sqrt[5]{n}}$ z kryterium porównawczego mamy

$$0 < \frac{\ln n}{n\sqrt[5]{n}} \leqslant \frac{Cn^p}{n\sqrt[5]{n}} = \frac{Cn^p}{n \cdot n^{0,2}} = \frac{C}{n^{1,2-p}}$$

Wystarczy teraz wziąć p < 0, 2 czyli np. p = 0, 1 i zbadać szereg

$$\sum_{n=2}^{\infty} \frac{C}{n^{1,2-0,1}} = C \sum_{n=2}^{\infty} \frac{C}{n^{1,1}} - \text{zbieżny, bo } 1, 1 > 1$$

Zatem wyjściowy szereg jest zbieżny

Zbieżność bezwzględna szeregów

Definicja

Szereg $\sum_{n=n_0}^{\infty} a_n$ jest <u>zbieżny bezwzględnie</u>, gdy zbieżny jest szereg $\sum_{n=n_0}^{\infty} |a_n|$.

Uwagi

- Gdy wszystkie wyrazy a_n są nieujemne to mamy $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} |a_n|$ i definicja nie wnosi nie nowego. Sytuacja się zmienia gdy szereg ma zarówno wyrazy dodatnie jak i ujemne.
- Z nierówności $|S_n| = |a_{n_0} + a_{n_0+1} + ... + a_n| \le |a_{n_0}| + |a_{n_0+1}| + ... + |a_n|$ wynika nierówność $\left| \sum_{n=n_0}^{\infty} a_n \right| \le \sum_{n=n_0}^{\infty} |a_n| \text{ ale równość nie musi zachodzić.}$

Np. dla
$$a_n = \left(-\frac{1}{2}\right)^n$$
 mamy $\left|\sum_{n=0}^{\infty} a_n\right| = \frac{2}{3}$ ale $\sum_{n=0}^{\infty} |a_n| = 2$

Zatem
$$\left|\sum_{n=n_0}^{\infty} a_n\right|$$
 i $\sum_{n=n_0}^{\infty} |a_n|$ to nie to samo.

Twierdzenie

Jeżeli szereg jest bezwzględnie zbieżny to jest zbieżny (w zwykłym sensie).

Transpozycja tego twierdzenia daje warunek równoważny:

Jeżeli szereg $\sum_{n=n_0}^{\infty} a_n$ nie jest zbieżny to również nie jest zbieżny bezwzględnie, co oznacza

$$\sum_{n=n_0}^{\infty} |a_n| = \infty.$$

Twierdzenie odwrotne nie jest prawdziwe. Są szeregi zbieżne ale nie bezwzględnie, np. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Takie szeregi to tzw. szeregi <u>zbieżne warunkowo</u>.

Szereg $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt[3]{n^4}}$ jest zbieżny bezwzględnie, bo biorąc $\sum_{n=1}^{\infty} \left| \frac{\sin n}{\sqrt[3]{n^4}} \right|$ i używając kryterium porównwawczego mamy

$$0 \leqslant \left| \frac{\sin n}{\sqrt[3]{n^4}} \right| = \frac{|\sin n|}{n^{\frac{4}{3}}} \leqslant \frac{1}{n^{\frac{4}{3}}}$$

a szereg $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{4}{3}}}$ jest zbieżny, bo $\frac{4}{3} > 1$.

Zatem $\sum_{n=1}^{\infty} \left| \frac{\sin n}{\sqrt[3]{n^4}} \right|$, a stąd $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt[3]{n^4}}$ też jest zbieżny.

Szeregi naprzemienne

Są to szeregi, w których na zmianę dodajemy i odejmujemy wyrazy dodatnie: $a_{n_0}-a_{n_0+1}+a_{n_0+2}-a_{n_0+3}+\dots \ \text{lub} \ -a_{n_0}+a_{n_0+1}-a_{n_0+2}+a_{n_0+3}+\dots \ \text{gdzie} \ a_n>0.$

Postać ogólna:

$$\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n \text{ lub } \sum_{n=n_0}^{\infty} (-1)^{n+1} \cdot a_n$$

Przykład

$$\sqrt{2} - \sqrt{3} + \sqrt{4} - \sqrt{5} + \dots = \sum_{n=2}^{\infty} (-1)^n \sqrt{n}$$
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Twierdzenie

Szereg naprzemienny $\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n$ lub $\sum_{n=n_0}^{\infty} (-1)^{n+1} \cdot a_n$ nazywany jest szeregiem Leibnitza, jeżeli a_n jest ciągiem nierosnącym i zbieżnym do 0.

Na przykład $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ jest szeregiem Leibnitza, bo tutaj $a_n = \frac{1}{n}$ jest malejący i zbieżny do 0.

Twierdzenie (Leibnitz)

Każdy szereg Leibnitza jest zbieżny.

Uwagi

- Twierdzenie to daje tylko zbieżność warunkową, nie gwarantuje bezwględnej
- Gdy ciąg a_n nie dąży do 0 to szereg naprzemienny $\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n$ jest rozbieżny, gdyż $(-1)^n a_n$ też nie dąży do 0. Wynika to z twierdzenia

$$\lim_{n \to \infty} a_n = 0 \Leftrightarrow \lim_{n \to \infty} (-1)^n a_n = 0 \Leftrightarrow \lim_{n \to \infty} |a_n| = 0$$

- Wystarczy, by ciąg a_n był nierosnący dla $\forall n \ge k \ge n_0$.
- Gdy ciąg a_n zbiega do 0 ale nie jest nierosnący to **NIC NIE WIEMY** o zbieżności szeregu.
- Do badania czy a_n jest nierosnący można próbować rozszerzyć a_n do funkcji f tak by $f(n) = a_n$. Potem pochodna itd. Gdy szereg naprzemienny jest zbieżny bezwzględnie to tw. Leibnitza nie jest potrzebne.

Ważna uwaga

Poza twierdzeniem Leibnitza wszystkie pozostałe kryteria (porównawcze, ilorazowe, Cauchy'ego, d'Alemberta, całkowe, warunek konieczny) dają albo <u>dwie zbieżności</u> (zwykłą oraz bezwzględną) albo <u>dwie rozbieżności</u> (zwykłą oraz bezwzględną).

Nie pozwolą natomiast uzyskać zbieżności warunkowej. Tylko twierdzenie Leibnitza pozwoli taką zbieżność wykryć.

W przypadku kryterium porównawczego, ilorazowego lub całkowego wynika to z faktu, że działamy na szeregach o wyrazach nieujemnych, a więc $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} |a_n|$ i zbieżność bezwzględna jest równoważna zwykłej zbieżności.

W przypadku warunku koniecznego możemy jedynie wywnioskować rozbieżność a to oznacza też rozbieżność bezwzględną.

W przypadku kryterium Cauchy'ego lub d'Alemberta wynika to z własności modułu i faktu, że w obu tych kryteriach dla szeregów $\sum_{n=n_0}^{\infty}|a_n|$ oraz $\sum_{n=n_0}^{\infty}a_n$ liczymy granicę tego samego

wyrażenia :
$$\sqrt[n]{||a_n||} = \sqrt[n]{|a_n|}$$
 i podobnie $\left|\frac{|a_{n+1}|}{|a_n|}\right| = \left|\frac{a_{n+1}}{a_n}\right|$

Dla $a_n = \frac{(-3)^n}{n^3}$ i szeregu $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$ zarówno kryterium Cauchy'ego jak i d'Alemberta daje granicę

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 3 > 1$$

Zatem ten szereg jest rozbieżny bezwzględnie i rozbieżny w zwykłym sensie.

Oznacza to także, że $\sum_{n=1}^{\infty} |a_n| = \infty$ natomiast jeśli chodzi o sumę $\sum_{n=1}^{\infty} a_n$ to nie mamy pewności czy istnieje (wtedy jest nieskończona) czy też nie istnieje.

W powyższym przykładzie $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$ nie istnieje. Wynika to z ciekawej własności szeregów naprzemiennych i własność ta pokazuje różnicę między kryterium Cauchy'ego i d'Alemberta.

Twierdzenie

Jeśli mamy szereg naprzemienny $\sum_{n=n_0}^{\infty} (-1)^n a_n$, $a_n > 0$ i kryterium d'Alemberta daje rozbieżność, tzn. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$ to suma $\sum_{n=n_0}^{\infty} (-1)^n a_n$ nie istnieje.

Dla kryterium Cauchy'ego powyższe twierdzenie nie musi zachodzić, są przykłady szeregów naprzemiennych dla których z kryterium Cauchy'ego otrzymujemy rozbieżność, a mimo to suma szeregu jest równa ∞ .

Popularny błąd – użycie kryterium Cauchy'ego / d'Alemberta i badanie obu typów zbieżności osobno

" ... z kryterium Cauchy'ego / d'Alemberta wynika więc, że $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$ jest rozbieżny bezwzględnie.

Ale może być jeszcze zbieżny normalnie. Badam zwykłą zbieżność z twierdzenia Leibnitza..."

STRATA CZASU I ENERGII. Jak już pisaliśmy, dla tych kryteriów mając rozbieżność bezwzględną mamy też zwykłą rozbieżność.

Popularny błąd – niepewne/błędne wnioski co do sumy szeregu rozbieżnego

"... z kryterium Cauchy'ego / d'Alemberta wynika więc, że $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$ jest rozbieżny do

Niepewny wniosek. Jeżeli szereg zawiera nieskończenie wiele wyrazów dodatnich i nieskończenie wiele wyrazów ujemnych to kryteria te **nie gwarantują** istnienia sumy szeregu.

A poza tym w zadaniach typu "zbadać zbieżność szeregu" mamy jedynie określić czy suma jest skończona czy nie.

Popularny błąd – opisowne "badanie" monotoniczności ciągu, bez obliczeń

Na przykład dla ciągu $a_n = \frac{n}{1000n + 1}$: "Ciąg a_n iest malejący, bo mierzy i

"Ciag a_n jest malejący, bo mianownik szybciej rośnie niż licznik."

GAME OVER... Takie "rozwiązanie" jest jak **pisanie bajek** — nie musi mieć nic wspólnego z prawdą.

Dla powyższego ciągu mianownik rzeczywiście szybciej rośnie niż licznik (i to 1000 razy!), a mimo to ciag ten jest rosnący.

Przykład

$$\sum_{n=2}^{\infty} \frac{(-1)^n \cdot \ln n}{n}$$

Tutaj $a_n = \frac{\ln n}{n}$. Rozszerzamy go do funkcji $f(x) = \frac{\ln x}{x}, \ x \geqslant 2$.

$$f'(x) = \frac{1 - \ln x}{r^2} < 0 \Leftrightarrow x > e \approx 2,72$$

Zatem f jest malejąca dla $x \in (e, \infty)$ czyli a_n jest malejący dla $n \ge 3$. Ponadto

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \left[\frac{\infty}{\infty}\right] [H] = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

Zatem $\lim_{n\to\infty} a_n = 0$.

Mamy więc szereg naprzemienny, który z tw. Leibnitza jest zbieżny.

Nie jest jednak zbieżny bezwzględnie bo dla $\sum_{n=2}^{\infty} \left| \frac{(-1)^n \cdot \ln n}{n} \right| = \sum_{n=2}^{\infty} \frac{\ln n}{n}$ mamy z kryterium porównawczego $0 < \frac{0,5}{n} < \frac{\ln n}{n}$, a szereg $\sum_{n=2}^{\infty} \frac{0,5}{n}$ jest rozbieżny.

Jest to więc szereg zbieżny warunkowo.

Podsumowanie: które kryterium zbieżności kiedy?

- P porównawcze
- \bullet I ilorazowe
- C Cauchy'ego
- A d'Alemberta
- ∫ całkowe
- ZB zbieżność bezwględna
- L twierdzenie Leibnitza

Wyrażenia występujące w a_n	Sugerowane kryterium dla $\sum_{n=n_0}^{\infty} a_n$
Tylko potęgi n lub pierwiastki z potęg n	P I ale NIGDY C A
$\underline{\text{Te same}}$ najwyższe potęgi a_n w $\underline{\text{liczniku i mianowniku}}$	P I ale NIGDY C A
Różne najwyższe potęgi a_n w liczniku i mianowniku	P I C A
funkcja złożona $f(b_n), b_n \to 0$	I P
n!	A P
n - ta sama potęga: $()^n$	С
Ciągi bez granicy, np. $\sin n$	P (+ inne, gdy trzeba)
$\ln n$	P
$(-1)^n$ i ogólne a_n , o różnych znakach	ZB (+ inne, gdy trzeba) L

Przykłady do samodzielnego policzenia :

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 3}}{n^3 + 2} \qquad \sum_{n=1}^{\infty} \frac{n^3 + 5}{n!} \qquad \sum_{n=1}^{\infty} \frac{2^n + 3^n}{n^2 \cdot 3^n + 1}$$

$$\sum_{n=1}^{\infty} \frac{2^n + 7 \cdot 3^n}{5^n - 4^n} \qquad \sum_{n=1}^{\infty} \left(\frac{2n + 3}{3n + 2}\right)^n \qquad \sum_{n=1}^{\infty} \arctan \frac{1}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{3 + \cos(n^2)}{\sqrt[3]{n}} \qquad \sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{n^2 + 2} \qquad \sum_{n=1}^{\infty} \frac{\cos(n^2)}{2^n}$$

4 Szeregi potęgowe

Definicja

Szereg potęgowy zmiennej x to szereg postaci

$$c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + \dots + c_n(x - x_0)^n + \dots$$

gdzie $x_0 \in \mathbb{R}$ to tzw. środek/centrum a $c_1, c_2, ..., c_n, ...$ to współczynniki szeregu.

Dla $x \neq x_0$ mamy zapis sumy jako $\sum_{n=0}^{\infty} c_n (x - x_0)^n$.

Dla $x=x_0$ przyjmujemy $\sum_{n=0}^{\infty} c_n(x-x_0)^n=c_0$ i wtedy wyjściowa suma jest równa

 $\sum_{n=0}^{\infty} c_n (x - x_0)^n$ dla wszystkich x

 $\overset{"}{\mathrm{Gdy}} x_0 = 0$ to szereg nazywamy szeregiem Maclaurina.

Przykład

$$1 + x + x^2 + x^3 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n$$

Jest to szereg geometryczny o ilorazie x. Tutaj $\forall n \in \mathbb{N} \quad c_n = 1 \text{ oraz } x_0 = 0$.

Przykład

$$(x-1) - \frac{(x-1)^3}{3} + \frac{(x-1)^5}{5} - \frac{(x-1)^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot (x-1)^{2n+1}$$

Tutaj $x_0 = 1$ oraz $c_{2n+1} = \frac{(-1)^n}{2n+1}$, $c_{2n} = 0$

Uwaga. Indeks współcznynnika **musi się zgadzać** (być równy) z wykładnikiem potęgi o podstawie $x-x_0$.

Zbieżność szeregów potęgowych

Szereg $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ jest zawsze zbieżny dla $x=x_0$ i wtedy jego suma to c_0 .

Dla pozostałych $x \neq x_0$ szereg może być zbieżny lub nie. Są 3 przypadki

- 1. Szereg jest zbieżny tylko dla $x=x_0$ np. $\sum_{n=0}^{\infty} n! \, x^n$ zbieżny tylko dla x=0. Jest to szereg bezużyteczny w praktyce.
- 2. Szereg jest bezwzględnie zbieżny dla wszystkich x, np. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Jest to najlepsza sytuacja.

3. Szereg jest bezwzględnie zbieżny na przedziałe otwartym postaci $(x_0 - R, x_0 + R)$ oraz – być może – zbieżny także na końcach tego przedziału. Dla pozostałych x nie jest zbieżny.

Np.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 jest zbieżny dla $x \in [-1, 1)$.

Liczbę R>0 nazywamy <u>promieniem zbieżności</u> szeregu potęgowego, a zbiór x dla których szereg jest zbieżny – przedziałem zbieżności szeregu.

R – połowa długości przedziału zbieżności.

Aby mieć promień zbieżności dla wszystkich szeregów definiujemy dodatkowo R=0 dla szeregów z przypadku 1 oraz $R=\infty$ dla szeregów z przypadku 2.

Wyznaczanie promienia zbieżności i przedziału zbieżności

Szereg jest zbieżny dla $x = x_0$ i pytanie co dla pozostałych x.

Metoda jak najbardziej ogólna, działająca dla wszystkich typów szeregów potęgowych :

dla szeregu $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ przyjmujemy $a_n=c_n (x-x_0)^n, \quad x\neq x_0$. Zmienna x staje się parametrem.

Ponieważ a_n zawiera n – tą potęgę więc korzystamy z kryterium Cauchy'ego lub d'Alemberta. Liczymy

$$q = q(x) = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 lub $q = q(x) = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

W zdecydowanej większości przypadków granica ta istnieje i prowadzi do najczęstszych sytuacji

- 1. q nie zależy od x i jest > 1. Wtedy szereg jest zbieżny tylko dla $x = x_0$.
- 2. q nie zależy od x i jest < 1. Wtedy szereg jest zbieżny dla wszystkich x.
- 3. q zależy od x. Wtedy mamy zbieżność dla q < 1 i rozbieżność dla q > 1 oraz
 - $q < 1 \Leftrightarrow |x x_0| < R \Leftrightarrow x \in (x_0 R, x_0 + R)$ "wstępny" przedział zbieżności, R – promień zbieżności
 - $q > 1 \Leftrightarrow |x x_0| > R \Leftrightarrow x \in (-\infty, x_0 R) \cup (x_0 + R, \infty)$ rozbieżność poza głównym przedziałem
 - $q = 1 \Leftrightarrow |x x_0| = R \Leftrightarrow x = x_0 \pm R$ przypadek "wątpliwy" na końcach przedziału. Dla tych x trzeba użyć **innego kryterium**

Zastosowanie metody w praktyce

 \bullet Liczymy qi rozwiązujemy nierówność q<1. Dostajemy wstępny (otwarty) przedział zbieżności.

• Zbieżność na końcach analizujemy osobno – wstawiamy każdy z końców i dostajemy szereg liczbowy, który analizujemy ale **NIGDY** z kryterium Cauchy'ego lub d'Alemberta bo **ZAWSZE wyjdzie** q=1.

Popularny błąd

" ... wstępny przedział zbieżności to (-1,1). Badam zbieżność dla x=1 z kryterium d'Alemberta"

STRATA CZASU I ENERGII. Będzie przypadek wątpliwy i q=1 a jeżeli przypadkiem wyjdzie $q \neq 1$ to na pewno **gdzieś jest błąd**.

Przykład

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Tutaj $a_n = \frac{x^n}{n!}$ oraz $x_0 = 0$. Używamy kryterium d'Alemberta $a_{n+1} = \frac{x^{n+1}}{(n+1)!}$ oraz dla $x \neq 0$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \left| \frac{x}{n+1} \right|$$

Stąd

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$

Szereg jest więc zbieżny dla wszystkich $x \in \mathbb{R}$

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$$

Tutaj $a_n = \frac{(x-1)^n}{\sqrt{n}}$ oraz $x_0 = 1$. Korzystając z kryterium Cauchy'ego mamy dla $x \neq 1$

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\frac{(x-1)^n}{\sqrt{n}}\right|} = \sqrt[n]{\frac{|(x-1)^n|}{\sqrt{n}}} = \frac{\sqrt[n]{|x-1|^n}}{\sqrt[n]{\sqrt{n}}} = \frac{|x-1|}{\sqrt[n]{n^{\frac{1}{2}}}}$$

Stąd

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|} = |x - 1|$$

Teraz

$$q < 1 \Leftrightarrow |x - 1| < 1 \Leftrightarrow x \in (0, 2)$$

Zatem wstępny przedział zbieżności to (0,2), a R=1. Badamy zbieżność na końcach tego przedziału.

$$x=2$$
 daje $\sum_{n=1}^{\infty} \frac{(2-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ – rozbieżny bo $\frac{1}{2} \leqslant 1$.
 $x=0$ daje $\sum_{n=1}^{\infty} \frac{(0-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sqrt{n}}$ – zbieżny z twierdzeniem Leibnitza, bo jest naprzemienny a ciąg $\frac{1}{\sqrt{n}}$ jest malejący i dąży do 0.

Zatem przedział zbieżności tego szeregu to [0, 2).

Twierdzenie

Gdy szereg $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ ma wszystkie współczynnki $c_n \neq 0$ i istnieje granica $q = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ lub $q = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ to promień zbieżności wynosi

- $R = \frac{1}{q}$ gdy q jest liczbą dodatnią,
- R = 0, gdy $q = \infty$,
- $R = \infty$, gdy q = 0.

Uwaga. Twierdzenie to bywa źle stosowane.

Nie można go bezpośrednio stosować do np. szeregów potęgowych gdzie występują tylko potęgi parzyste lub tylko potęgi nieparzyste, bo wtedy q nie istnieje.

Popularny błąd

"Dla szeregu
$$\sum_{n=0}^{\infty} \frac{1}{2^n} \cdot x^{2n+1} \text{ mamy } \lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{1}{2^n}\right|}$$
Stad $R = 2, x \in (-2, 2)$ "

Źle jest wyznaczony c_n . Tutaj $\frac{1}{2^n} = c_{2n+1}$ ale $c_{2n} = 0$ i $\lim_{n \to \infty} \sqrt[n]{|c_n|}$ nie istnieje.

Ten szereg jest szeregiem geometrycznym o ilorazie $\frac{x^2}{2}$ i jest zbieżny dla $x \in (-\sqrt{2}, \sqrt{2})$ czyli $R = \sqrt{2}$.

Definicja

Jeżeli szereg $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ jest zbieżny przynajmniej na $(x_0-R,x_0+R),\ R>0$ to jego sumę $f(x)=\sum_{n=0}^{\infty} c_n(x-x_0)^n$ nazywamy rzeczywistą funkcją analityczną, a szereg – szeregiem Taylora.

Własności szeregów potęgowych

1. Gdy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \ x \in (x_0 - R, x_0 + R)$$

to f ma pochodne dowolnego rzędu w x_0 oraz

$$c_0 = f(x_0), \ c_1 = \frac{f'(x_0)}{1!}, \ c_2 = \frac{f''(x_0)}{2!}, ..., c_n = \frac{f^{(n)}(x_0)}{n!}$$

Stąd wynikają rozwinięcia popularnych funkcji w szereg Maclaurina $(x_0 = 0)$.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, \ x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, \ x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, \ x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, \ x \in (-1,1]$$

$$(1+x)^p = \sum_{n=0}^{\infty} \binom{p}{n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \dots, \ x \in (-1,1)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, \ x \in [-1, 1]$$

$$\operatorname{arctg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, \ x \in [-1, 1]$$

2. Jeżeli mamy dwa szeregi o tym samym środku i przedziałach zbieżności I_1 i I_2 :

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in I_1 \text{ oraz } \sum_{n=0}^{\infty} d_n (x - x_0)^n, \ x \in I_2$$

- dla dowolnego $c \in \mathbb{R}$ zachodzi $c \cdot \sum_{n=0}^{\infty} c_n (x-x_0)^n = \sum_{n=0}^{\infty} c \cdot c_n (x-x_0)^n$
- dla $x \in I_1 \cap I_2$ mamy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n \pm \sum_{n=0}^{\infty} d_n (x - x_0)^n = \sum_{n=0}^{\infty} (c_n \pm d_n) (x - x_0)^n$$

Mamy

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

$$arc \operatorname{tg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Stad

$$x\cos x = x\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} x \cdot \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$$

oraz dla $x \in \mathbb{R} \cap [-1, 1] = [-1, 1]$

$$x\cos x + \operatorname{arc}\operatorname{tg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \left(\frac{(-1)^n}{(2n)!} + \frac{(-1)^n}{2n+1}\right) x^{2n+1}$$

3. W miejsce x w szeregu Maclaurina można podstawić wyrażenie potęgowe ax^k , $k \in \mathbb{N}^+$. Daje to nowy szereg nowej funkcji z nowym przedziałem zbieżności. Ten nowy przedział można wyznaczyć na podstawie przedziału zbieżności wyjściowego szeregu

a) Szereg Maclaurina dla funkcji $\ln(1+3x)$. Używamy rozwinięcia

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \ x \in (-1,1]$$

Aby dostać $\ln(1+3x)$ w miejsce x trzeba wstawić 3x(x:=3x). To daje

$$\ln(1+3x) = \sum_{n=0}^{\infty} \frac{(-1)^n (3x)^{n+1}}{n+1}, \ 3x \in (-1,1]$$

Po uproszczeniu

$$\ln(1+3x) = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^{n+1}}{n+1} x^{n+1}$$

$$3x \in (-1,1] \Leftrightarrow -1 < 3x \leqslant 1 \Leftrightarrow -\frac{1}{3} < x \leqslant \frac{1}{3} \Leftrightarrow x \in \left(-\frac{1}{3},\frac{1}{3}\right]$$

b) Szereg Maclaurina dla funkcji sinh $x=\frac{e^x-e^{-x}}{2}$ Używamy rozwinięcia

$$e^x = \sum_{n=0}^{\infty} = \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \ x \in \mathbb{R}$$

Wstawiając x := (-x) dostajemy

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}, \ x \in \mathbb{R}$$

To daje

$$\sinh x = \frac{e^x - e^{-x}}{2} = \frac{1}{2}e^x - \frac{1}{2}e^{-x} = \frac{1}{2}\sum_{n=0}^{\infty} \frac{x^n}{n!} - \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = \frac{(-1)^n x^n}{n!} = \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = \frac{(-1)^n x^n}{n!} = \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = \frac{(-1)^n x^n}{n!$$

$$=\sum_{n=0}^{\infty}\frac{1}{2n!}x^n-\sum_{n=0}^{\infty}\frac{(-1)^n}{2n!}x^n=\sum_{n=0}^{\infty}\left(\frac{1}{2n!}-\frac{(-1)^n}{2n!}\right)x^n=\sum_{n=0}^{\infty}\left(\frac{1-(-1)^n}{2n!}\right)x^n$$

Współczynnikiem tego szeregu jest więc

$$c_n = \frac{1 - (-1)^n}{2n!} = \begin{cases} 0, & n = 2k, & k \in \mathbb{N} \\ \frac{1}{n!} = \frac{1}{(2k+1)!}, & n = 2k+1, & k \in \mathbb{N} \end{cases}$$

Stąd

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots, \ x \in \mathbb{R}$$

c) Szereg Maclaurina dla funkcji $\frac{x}{3+x^4}$ W przypadku funkcji wymiernej ${\bf zawsze}$ korzystamy z szeregu geometrycznego

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, \ x \in (-1,1)$$

Doprowadzamy wyrażenie do postaci **stała** $\cdot \frac{1}{1 - \text{"coś"}}$ i za x wstawiamy to "coś".

$$\frac{x}{3+x^4} = \frac{x}{3} \cdot \frac{1}{1+\frac{x^4}{3}} = \frac{x}{3} \cdot \frac{1}{1-\left(-\frac{x^4}{3}\right)}$$

Czyli "coś" = $-\frac{x^4}{3}$ i to daje

$$\frac{x}{3+x^4} = \frac{x}{3} \sum_{n=0}^{\infty} \left(-\frac{x^4}{3} \right)^n = \frac{x}{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{x}{3} \cdot \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^{4n+1}$$

Przedział zbieżności wynika z warunku

$$-1 < -\frac{x^4}{3} < 1 \Leftrightarrow -3 < x^4 < 3 \Leftrightarrow -3 < x^4 \land x^4 < 3$$

Pierwsza z tych nierówności jest zawsze prawdziwa. Rozwiązanie drugiej daje $-\sqrt[4]{3} < x < \sqrt[4]{3}$. Czyli przedział zbieżności to $(-\sqrt[4]{3}, \sqrt[4]{3})$.

4. Gdy $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$, $x \in (x_0 - R, x_0 + R)$ to f ma pochodną dowolnego rzędu i

$$f'(x) = \left(\sum_{n=0}^{\infty} c_n (x - x_0)^n\right)' = \sum_{n=0}^{\infty} \left(c_n (x - x_0)^n\right)' = \sum_{n=0}^{\infty} c_n n (x - x_0)^{n-1} = \sum_{n=1}^{\infty} c_n n (x - x_0)^{n-1}$$

Jest to rozszerzenie wzoru "pochodna sumy = suma pochodnych" na nieskończoną ilość składników

Przyk ład

Znaleźć szereg Maclaurina dla funkcji $f(x) = \frac{1}{(x+1)^2}$

Używamy rozwinięcia $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1).$

Mamy

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$$
$$\left(\frac{1}{1+x}\right)' = -\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} ((-1)^n x^n)' = \sum_{n=1}^{\infty} (-1)^n n x^{n-1}$$

Stąd

$$\frac{1}{(1+x)^2} = -\sum_{n=1}^{\infty} (-1)^n nx^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} nx^{n-1} = 1 - 2x + 3x^2 - 4x^3 + \dots, \ x \in (-1,1)$$

5. Gdy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R)$$

to dla $a, b \in (x_0 - R, x_0 + R)$ mamy

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} c_n (x - x_0)^n \right) dx = \sum_{n=0}^{\infty} \int_{a}^{b} c_n (x - x_0)^n dx =$$

$$\sum_{n=0}^{\infty} c_n \left[\frac{(x-x_0)^{n+1}}{n+1} \right]_a^b = \sum_{n=0}^{\infty} c_n \frac{(b-x_0)^{n+1} - (a-x_0)^{n+1}}{n+1}$$

Jest to rozszerzenie wzoru "całka sumy = suma całek" na nieskończoną ilość składników W szczególności biorąc $a=x_0,\ b=x,\ F(x)=\int f(x)\,dx$ oraz przyjmując

$$\int (x - x_0)^n dx = \frac{(x - x_0)^{n+1}}{n+1} \quad \text{(stała całkowania} = 0)$$

Dostajemy ten wzór z całką nieoznaczoną

$$F(x) = \int f(x) dx = F(x_0) + \sum_{n=0}^{\infty} c_n \int (x - x_0)^n dx$$
, a więc

$$F(x) = F(x_0) + \sum_{n=0}^{\infty} c_n \frac{(x-x_0)^{n+1}}{n+1}, \ x \in (x_0 - R, x_0 + R)$$

Wyprowadzić wzór na szereg Maclaurina dla arc tg x na przedziale (-1,1).

Mamy $\int \frac{1}{1+x^2} dx = \arctan tg x + C$. Wystarczy zatem rozwinąć w szereg funkcję $\frac{1}{1+x^2}$, a potem obliczyć całkę.

Korzystając z rozwinięcia $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1)$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Przedział zbieżności: $x^2 \in (-1, 1) \Leftrightarrow x \in (-1, 1)$. Zatem

$$\operatorname{arc} \operatorname{tg} x = \int \frac{1}{1+x^2} \, dx = \operatorname{arc} \operatorname{tg} 0 + \sum_{n=0}^{\infty} \int (-1)^n x^{2n} \, dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$$

Twierdzenie Abela o rozszerzaniu szeregu na końce przedziału zbieżności

Niech

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R)$$

Jeżeli

- \bullet szereg jest zbieżny również dla $x=x_0+R$
- f jest ciągła dla $x=x_0+R$ to wzór zachodzi także dla $x=x_0+R$ czyli

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R]$$

Analogicznie dla $x = x_0 - R$

Przykł<u>ad</u>

Pokazaliśmy, że arc t
g $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$

Teraz

- dla x=1 mamy $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$ zbieżny bo Leibnitza
- arc tg x jest ciągła w x = 1

Analogicznie dla x = -1.

Zatem rozwinięcie jest prawdziwe również dla $x\pm 1$ czyli

$$arc tg x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Inne zastosowania szeregów potęgowych:

- przybliżanie funkcji bierzemy rozwinięcie do ustalonej potęgi,
- obliczanie całek nieelementarnych w przybliżeniu,
- wyznaczanie sum niektórych szeregów oraz wartości pochodnych wysokiego rzędu.

Przykład

Jaka jest siedemdziesiąta piąta pochodna arc $\operatorname{tg} x \le x = 0$?

Niech $f(x) = \operatorname{arc} \operatorname{tg} x$.

Bierzemy rozwinięcie f ze środkiem (koniecznie) w 0:

$$arc \operatorname{tg} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Ogólny wzór daje

$$c_n = \frac{f^{(n)}(0)}{n!}$$
 czyli $c_{75} = \frac{f^{(75)}(0)}{75!} \Leftrightarrow f^{(75)}(0) = 75! \cdot c_{75}$

Pozostaje wyznaczyć c_{75} . Jest to współczynnik przy x_{75} co oznacza, że

$$c_{75}x^{75} = (-1)^n \frac{x^{2n+1}}{2n+1}$$

Stad

$$n = 37, \ c_{75} = \frac{(-1)^{37}}{2 \cdot 37 + 1} = -\frac{1}{75}$$

Oraz

$$f^{(75)}(0) = 75! \cdot \left(-\frac{1}{75}\right) = -74!$$

Wyznaczyć sumę $\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$

Jest to szereg zbieżny na podstawie np. kryterium d'Alemberta.

Zapisujemy sumę tak, by potęga była w iloczynie:

$$\sum_{n=1}^{\infty} \frac{n}{2^{n+1}} = \sum_{n=1}^{\infty} n \cdot \left(\frac{1}{2}\right)^{n+1}$$

Biorąc $x=\frac{1}{2}$ mamy szereg potęgowy $\sum_{n=1}^{\infty}n\cdot x^{n+1}$

Dla $x \in (-1,1)$ jest on zbieżny. Wyznaczamy jego sumę przez różniczkowanie lub całkowanie.

- Pochodna $(n \cdot x^{n+1}) = n(n+1)x^n$ pogarsza się wzór.
- Całka $\int n \cdot x^{n+1} dx = \frac{n}{n+2} x^{n+2}$. Jest lepiej ale problem w tym, że n+2 nie uprościło n z licznika.

Stąd drugie pytanie:

Jaką wziąć potęgę nx^p aby po scałkowaniu uprościł się współczynnik n?

Potrzeba

$$x^{n-1}$$
, bo $\int nx^{n-1} dx = \frac{n}{n}x^n + C = x^n + C$

Zatem bierzemy

$$f(x) = \sum_{n=1}^{\infty} nx^{n-1}, \ x \in (-1,1)$$

Całkując obie strony mamy

$$F(x) = \int f(x) dx = F(0) + \sum_{n=1}^{\infty} x^n$$

Szereg $\sum_{n=1}^{\infty} x^n$ jest szeregiem geometrycznym o sumie $\frac{x}{1-x}, \ x \in (-1,1).$

Stąd aby odzyskać f liczymy pochodną obu stron:

$$F(x) = f(x) = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2}$$

Czyli

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

I na koniec

$$\sum_{n=1}^{\infty} nx^{n+1} = \sum_{n=1}^{\infty} nx^{n-1} \cdot x^2 = x^2 \sum_{n=1}^{\infty} nx^{n-1} = \frac{x^2}{(1-x)^2}$$

Dla $x = \frac{1}{2}$ to daje

$$\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n+1} = 1 = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$$

5 Funkcje wielu zmiennych

Na początek kilka definicji dotyczących zbiorów w \mathbb{R}^n .

Definicja

<u>Otoczenie</u> punktu $P=(x_1,x_2,...,x_n)\in\mathbb{R}^n$ to n – wymiarowa kula otwarta o środku w P i promieniu r>0, tzn. zbiór

$$K(P,r) = \{Q = (y_1, y_2, ..., y_n) \in \mathbb{R}^n : |PQ|^2 = (x_1 - y_1)^2 + (x_2 - y_2)^2 + ... + (x_n - y_n)^2 < r^2\}$$

Dla n=2 jest to koło o środku w P bez brzegowego okręgu.

Dla n = 3 jest to kula o środku w P bez brzegowej sfery.

Definicja

Sąsiedztwo punktu $x_0 \in \mathbb{R}^n$ to zbiór postaci $S = S(P, r) = K(P, r) \setminus P$ Zbiór $A \subset \mathbb{R}^n$ jest zbiorem otwartym, gdy każdy punkt z A posiada pewne otoczenie zawarte w A, tzn.

$$\forall P \in A \ \exists K(P,r) \quad P \in K(P,r) \subset A$$

Zbiór $A \subset \mathbb{R}^n$ jest zbiorem domkniętym, gdy jego dopełnienie $A = \mathbb{R}^n \backslash A$ jest zbiorem otwartym.

Definicja

Funkcja wielu zmiennych ma postać

$$f:D\to\mathbb{R}$$

gdzie $D \subset \mathbb{R}^n$ jest dziedziną f.

Zatem dla $(x_1, x_2, ..., x_n) \in D$ $f(x_1, x_2, ..., x_n) \in \mathbb{R}$

Gdy mamy funkcje dwóch zmiennych to zwykle piszemy z = f(x, y) a dla trzech zmiennych t = f(x, y, z).

Będziemy analizować głównie funkcje dwóch zmiennych z = f(x, y).

Dla takich funkcji można narysować wykres – gdy D jest otwarty to wykresem jest powierzchnia w 3 wymiarach dana wzorem (x, y, f(x, y)), gdzie $(x, y) \in D_f$.

Wykres funkcji $f(x,y) = x^3 + 3xy^2 - 51x - 24y$, $-5 \leqslant x \leqslant 5$, $-5 \leqslant y \leqslant 5$

Wykresy niektórych popularnych funkcji

- z = Ax + By + C płaszczyzna o wektorze normalnym $\vec{n} = [A, B, -1]$ i przechodząca przez punkt (0, 0, C).
- $z = z_0 + \sqrt{r^2 (x x_0)^2 (y y_0)^2}$ górna półsfera o środku w (x_0, y_0, z_0) i promieniu r > 0. Np. $z = 3 + \sqrt{7 x^2 (y 1)^2}$: $S(0, 1, 3), r = \sqrt{7}$ $z = z_0 \sqrt{r^2 (x x_0)^2 (y y_0)^2}$ analogiczna półsfera ale dolna. Obie pochodzą z równania całej sfery: $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$.
- $z=z_0+a\sqrt{(x-x_0)^2+(y-y_0)^2}$, $a\neq 0$ powierzchnia stożkowa o wierzchołku w $P=(x_0,y_0,z_0)$ i osi symetrii równoległej do osi Z. a>0 wierzchołek w dół, a<0 wierzchołek w górę.

Powierzchnia stożkowa i półsfera są szczególnymi przypadkami tzw. powierzchni obrotowych w \mathbb{R}^3 .

Powierzchnią obrotową w \mathbb{R}^3 wokół osi Z będziemy nazywali zbiór wszystkich możliwych punktów (x,y,z) taki, że podstawienie $r=\sqrt{x^2+y^2}$ wyznacza zbiór z jako współrzędne wszystkich par (z,r) tworzących pewną krzywą na płaszczyźnie, przy czym zbiór wszystkich $r\geqslant 0$ jest zbiorem otwartym.

Zatem jeżeli ta powierzchnia jest dana przez pewne równanie postaci

$$F(x, y, z) = 0$$

to podstawienie $r=\sqrt{x^2+y^2}$ usuwa wszystkie xi yi prowadzi do równania zależnego tylko od zorazr.

W szczególności gdy mamy z = f(x, y) i podstawienie r powoduje, że f zależy tylko od r to wykresem f jest powierzchnia obrotowa wokół osi Z.

Geometryczne własności takiej powierzchni

- \bullet Niepuste przecięcie powierzchni z dowolną płaszczy
zną prostopadłą do osi Zjest punktem, okręgiem lub sumą tych z
biorów.
- \bullet Niepuste przecięcie powierzchni z dowolną płaszczy
zną zawierającą ośZjest krzywą o tym samym kształcie.

Na przykład dla powierzchni stożkowej $z=a\sqrt{x^2+y^2},\ a>0$, przecięcie płaszczyzną prostopadłą do osi Z jest okręgiem lub wierzchołkiem, a przecięcie płaszczyzną zawierającą oś Z jest sumą dwóch półprostych wychodzących z wierzchołka.

Sposób rysowania takich powierzchni opiera się na spotstrzeżeniu, że dla x=0 i $y\geqslant 0$ mamy $r=\sqrt{y^2}=y\geqslant 0$. Zatem rysujemy w płaszczyźnie YZ wykres odpowiedniej krzywej dla $y\geqslant 0$, a następnie obracamy go wokół osi Z. Tworzy to żądaną powierzchnię obrotową.

Poprzedni przykład raz jeszcze: $z = a\sqrt{x^2 + y^2}, \ a > 0.$

Tutaj dla $r = \sqrt{x^2 + y^2} \ge 0$ mamy z = ar. Zatem biorąc $r = y \ge 0$ w płaszczyźnie YZ dostajemy wykres funkcji liniowej z = f(0, y) = ay, $y \ge 0$. Jest to półprosta

Rozszerzanie powyższego przypadku – powierzchnia obrotowa wokół osi równoległej do osi Z. Jeżeli dla pewnych $x_0, y_0 \in \mathbb{R}$ podstawienie $r = \sqrt{(x-x_0)^2 + (y-y_0)^2}$ usuwa wszystkie x i y i prowadzi do równania zależnego tylko od z oraz r to dana powierzchnia jest powierzchnią obrotową wokół prostej $L: x = x_0, \ y = y_0, \ z \in \mathbb{R}$.

Jest to zatem przypadek powierczhni opisanej poprzednio (czyli dla $x_0 = y_0 = 0$) ale przesunięty następnie o wektor $\vec{v} = [x_0, y_0, 0]$.

Powierzchnia dana równaniem $z=(x+2)^2+(y-1)^2$ Tutaj mamy $x_0=-2$ oraz $y_0=1$ i podstawienie $r=\sqrt{(x+2)^2+(y-1)^2}$ daje równanie $z=r^2,\ r\geqslant 0$. Zatem biorąc $r=y\geqslant 0$ w płaszczyźnie YZ dostajemy wykres funkcji $z=f(0,y)=y^2,\ y\geqslant 0$. Jest to prawa gałąź paraboli.

Obracając ją następnie wokół osi Z dostajemy powierzchnię zwaną paraboloidą.

Na koniec przesuwamy powyższą powierzchnię o wektor $\vec{v} = [x_0, y_0, 0] = [-2, 1, 0]$ i to daje naszą powierzchnię.

Powierzchnie walcowe

Powierzchnia jest nazywana powierzchnią walcową równoległą do osi Z jeżeli z faktu, że punkt (x_0, y_0, z_0) należy do powierzchni wynika, że dla dowolnego z każdy punkt postaci (x_0, y_0, z_0) też należy do tej powierzchni.

To oznacza, że jeżeli taka powierzchnia jest dana przez pewne wyrażenie to równanie to nie zawiera zmiennej z.

Geometrycznie – niepuste przecięcie powierzchni z dowolną płaszczyzną równoległą do osi Z daje krzywą o tym samym kształcie.

Stąd sposób tworzenia wykresów takich powierzchni – rysujemy w płaszczyźnie XY (czyli dla z=0) krzywą zadaną wyjściową relacją, a potem wykres tej krzywej przesuwamy wzdłuż osi Z i to generuje daną powierzchnię.

Dwa pozostałe przypadki są analogiczne:

- ullet gdy relacja definiująca powierzchnię nie zawiera x to rysujemy odpowiednią krzywą w płaszczyźnie YZ, a potem jej wykres przesuwamy wzdłuż osi X,
- \bullet gdy relacja definiująca powierzchnię nie zawiera y to rysujemy odpowiednią krzywą w płaszczyźnie XZ, a potem jej wykres przesuwamy wzdłuż osi Y.

Stąd prosta reguła – odpowiednią krzywą przesuwamy zawsze wzdłuż tej osi, która odpowiada zmiennej **nieobecnej** w równaniu.

Przykład

Powierzchnia o równaniu $x^2 + y^2 = 1$.

Nie występuje z, a więc jest to powierzchnia walcowa równoległa do osi Z.

Wyznaczamy krzywą daną powyższą relacją w płaszczyźnie XY – jest to okrąg o środku w układzie współrzednych i promieniu równym 1.

Po przesunięciu tego okręgu wzdłuż osi Z zostaje wygenerowana powierzchnia – jest to powierzchnia boczna walca o nieskończonej długości. Stąd bierze się nazwa tego typu krzywych.

Definicja

Poziomica funkcji z = f(x, y) na wysokości h to zbiór

$$D_h = \{(x, y) : f(x, y) = h\}$$

Jest to rzut na płaszczyznę XY zbioru – najczęściej krzywej – będącego przekrojem wykresu f płaszczyzną o równaniu z=h.

Interpretacja geograficzna

Jeśli płaszczyzna XY jest "mapą" i wyznacza "poziom morza", z – wysokością nad "poziomem morza", a wykres f jest "rzeźbą terenu" to poziomica jest krzywą na "mapie" która łączy punkty odpowiadające tej samej "wysokości" h.

Na podstawie zagęszczenia poziomic dla odpowiednio dobranych h możemy przewidzieć kształt wykresu f – czy jest stromy czy płaski.

Pochodne cząstkowe pierwszego rzędu funkcji wielu zmiennych

Są to pochodne danej funkcji liczone względem jednej zmiennej, a pozostałe zmienne są stałe i przyjmują rolę parametrów.

Oznaczenie dla f = f(x, y):

$$\frac{\partial f}{\partial x} \text{ lub } f_x - \text{pochodna po } x$$
$$\frac{\partial f}{\partial y} \text{ lub } f_y - \text{pochodna po } y$$

Formalna definicja:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Dla funkcji n zmiennych $f = f(x_1, x_2, ..., x_n)$:

$$\frac{\partial f}{\partial x_i}(x_1, x_2, ..., x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, ..., x_{i-1}, x_i + h, x_{i+1}, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{h}$$

Interpretacja geometryczna dla funkcji 2 zmiennych

Wykres każdej funkcji f dwóch zmiennych można przeciąć płaszczyzną równoległą do osi Z. Powstaje wtedy pewna krzywa, która jest częścią wspólną wykresu f oraz płaszczyzny. Jest to szczególny przypadek tzw. funkcji warunkowej o której wkrótce powiemy więcej.

Gdy taka krzywa jest regularna to możemy liczyć dla niej pochodną. Gdy płaszczyzna przekroju przechodzi przez punkt $P=(x_0,y_0,f(x_0,y_0))$ to pochodna tej krzywej jest równa

- $\frac{\partial f}{\partial x}(x_0, y_0)$, gdy płaszczyzna jest $\parallel XZ$,
- $\frac{\partial f}{\partial y}(x_0, y_0)$, gdy płaszczyzna jest $\parallel YZ$.

Sposób wyznaczania pochodnych cząstkowych w praktyce

Ponieważ tylko jedna zmienna jest w użyciu, a pozostałe stają się parametrami to korzystamy z reguł różniczkowania funkcji 1 zmiennej.

Pamiętać należy, że dla wybranej zmiennej dowolne wyrażenie z każdą inną zmienną **staje się stałą** i jej pochodna po wybranej zmiennej jest **równa 0**.

Przykład

$$\frac{\partial}{\partial y}(4x^2 + 3\sin x + 5) = 0, \quad \frac{\partial}{\partial x}(ye^{z+2y}) = 0$$
 itd.

Przykład

$$f(x,y) = x\sin(xy^3)$$

Wtedy różniczkując po x mamy pochodną iloczynu:

$$\frac{\partial f}{\partial x} = f_x = (x)_x \cdot \sin(xy^3) + x \cdot (\sin(xy^3))_x = \sin(xy^3) + x \cdot \cos(xy^3) \cdot y^3$$

Natomiast różniczkując po y mamy mnożenie $\sin(xy^3)$ przez stałą dla y (czyli x) i nie trzeba stosować pochodnej iloczynu

$$\frac{\partial f}{\partial y} = f_y = (x \cdot \sin(xy^3))_y = x \cdot (\sin(xy^3))_y = x \cdot \cos(xy^3) \cdot 3y^2 x$$

Pochodne drugiego rzędu

Mając pochodne 1 rzędu definiujemy pochodne drugiego rzędu jako pochodne pierwszego rzędu z pochodnych pierwszego rzędu. W szczególności, dla f = f(x, y) mamy 4 pochodne drugiego

rzędu.

Pochodne jednorodne po danej zmiennej:

- $\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$ dwukrotne różniczkowanie f po x,
- $\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$ dwukrotne różniczkowanie f po y,

Pochodne mieszane:

- $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ różniczkowanie wpierw po x, potem po y,
- $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ różniczkowanie wpierw po y, potem po x,

Inne oznaczenia to f_{xx} , f_{yy} , f_{xy} , f_{yx} , gdzie indeks dolny oznacza zmienne, po których kolejno różniczkujemy.

W przypadku pochodnych mieszanych f_{xy}, f_{yx} , trzeba ustalić kolejność różniczkowania.

Przyjmujemy naturalną kolejność, wtedy mamy $f_{xy} = (f_x)_y$ oraz $f_{yx} = (f_y)_x$,

co oznacza, że

$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$
 i $\frac{\partial^2 f}{\partial x \partial y} = f_{yx}$.

Dla funkcji n zmiennych $f = f(x_1, x_2, ..., x_n)$:

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = (f_{x_i})_{x_j} = f_{x_i x_j}$$

$$f(x,y) = \frac{2^y}{x+1}$$

$$\text{Tutaj} \quad f_x = -\frac{2^y}{(x+1)^2}, \quad f_y = \frac{2^y \ln 2}{x+1} \quad \text{oraz}$$

$$f_{xx} = (f_x)_x = \left(-\frac{2^y}{(x+1)^2}\right)_x = -2^y \left(\frac{1}{(x+1)^2}\right)_x = 2^y \cdot \frac{2}{(x+1)^3}$$

$$f_{yy} = (f_y)_y = \left(\frac{2^y \ln 2}{x+1}\right)_y = \frac{\ln 2}{x+1} \cdot (2^y)_y = \frac{2^y \cdot (\ln 2)^2}{x+1}$$

$$f_{xy} = (f_x)_y = \left(-\frac{2^y}{(x+1)^2}\right)_y = \left(\frac{-1}{(x+1)^2}\right) \cdot (2^y)_y = -\frac{2^y \ln 2}{(x+1)^2}$$

$$f_{yx} = (f_y)_x = \left(\frac{2^y \ln 2}{x+1}\right)_x = 2^y \ln 2 \left(\frac{1}{(x+1)^2}\right)_x = 2^y \ln 2 \left(\frac{-1}{(x+1)^2}\right) = -\frac{2^y \ln 2}{(x+1)^2}$$

Otrzymaliśmy $f_{xy} = f_{yx}$.

Jest to szczególny przypadek znanego twierdzenia.

Twierdzenie Schwarza o pochodnych mieszanych

Gdy pochodne mieszane drugiego rzędu są funkcjami ciągłymi w danym punkcie to są w tym punkcie równe.

W praktyce dla funkcji regularnych warunek ciągłości drugiego rzędu występuje zawsze na całych dziedzinach stąd prawie zawsze zobaczymy równość wzorów pochodnych mieszanych.

Definicja

Niech $k \in \mathbb{N}^+$ oraz $f = f(x_1, x_2, ..., x_n)$. Pochodna rzędu k funkcji f to funkcja

$$\frac{\partial^k f}{\partial x_{n_1}...\partial x_{n_2}\partial x_{n_k}} = \frac{\partial}{\partial x_{n_k}} = \left(...\left(\frac{\partial}{\partial x_{n_2}}\left(\frac{\partial f}{\partial x_{n_1}}\right)\right)...\right) = f_{x_{n_1},x_{n_2},...,x_{n_k}}$$

gdzie zmienne $x_{n_1}, x_{n_2}, ..., x_{n_k}$ są dowolnymi ze zmiennych $x_1, x_2, ..., x_n$.

Oznacza to różniczkowanie funkcji k razy, po kolei po zmiennych

$$x_{n_1}, x_{n_2}, ..., x_{n_k}$$

Pochodne jednorodne to te, w których różniczkujemy po tej samej zmiennej k razy, np. f_{xxx} . Pochodne mieszane to te pochodne, w których różniczkujemy przynajmniej po dwóch różnych zmiennych np. $\frac{\partial^4 f}{\partial x \partial x \partial u \partial x} = f_{xyxx}$

Twierdzenie Schwarza pozostaje prawdziwe dla pochodnych mieszanych rzędu k.

Płaszczyzna styczna do funkcji dwóch zmiennych

Definicja

Niech R = (x, y, z) oraz $P = (x_0, y_0, z_0)$. Definiujemy zbieżność

$$R \to P \iff x \to x_0 \land y \to y_0 \land z \to z_0$$

Nazywamy to zbieżnością po współrzędnych.

Definicja

Niech teraz P i R należą do wykresu funkcji f. Czyli

$$z = f(x, y), \quad z_0 = f(x_0, y_0)$$

Ponadto niech Π będzie płaszczyzną przechodzącą przez P.

 Π nazywamy płaszczyzną styczną do wykresu f w punkcie P jeżeli kąt między prostą PR oraz płaszczyzną Π dąży do 0, gdy $R \to P$.

Jest to uogólnienie prostej stycznej do wykresu funkcji jednej zmiennej.

Definicja

f = f(x, y) jest funkcją <u>różniczkowalną</u> w punkcie $(x_0, y_0) \in D_f$, gdy istnieje płaszczyzna styczna do wykresu f w punkcie $P = (x_0, y_0, f(x_0, y_0))$.

Przykład funkcji nieróżniczkowalnej w pewnym punkcie: powierzchnia stożkowa w wierzchołku (zobacz rysunek powierzchni stożkowych str. 50)

Twierdzenie

Gdy na pewnym kole bez brzegu zawierającym $(x_0, y_0) \in D_f$ f ma ciągłe pochodne czastkowe pierwszego rzedu to f jest różniczkowalna w punkcie (x_0, y_0) .

Twierdzenie – wzór na płaszczyznę styczną do f

Jeżeli f jest różniczkowalna w punkcie (x_0, y_0) to płaszczyzna styczna do wykresu f w $P = (x_0, y_0, f(x_0, y_0))$ jest dana wzorem

$$z - f(x_0, y_0) = f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0)$$

Uwagi

- Warunek ciągłości pochodnych na kole jest spełniony dla zdecydowanej większości funkcji elemetnarnych na całej dziedzinie funkcji.
- Wzór na płaszczyznę styczną jest analogiczny do wzoru na prostą styczną do funkcji jednej zmiennej.

• Płaszczyznę styczną można zapisać w postaci ogólnej

$$A(x - x_0) + B(y - y_0) - 1(z - z_0) = 0$$

gdzie

$$z_0 = f(x_0, y_0), \quad A = f_x(x_0, y_0), \quad B = f_y(x_0, y_0)$$

Stąd wektorem normalnym jest

$$\vec{n} = [A, B, -1] = [f_x(x_0, y_0), f_y(x_0, y_0), -1]$$

Przykład

Dana jest funkcja $f(x,y) = x^2 - 2y^2$

- a) Znaleźć płaszczyznę styczną do wykresu f w punkcie $P=(1,2,z_0)$.
- b) Znaleźć wszystkie punkty wykresu f w których płaszczyzna styczna jest równoległa do płaszczyzny $\Pi_1: x-2y+2z+5=0$

a)
$$\Pi_s \le P = (1, 2, z_0)$$

 $z_0 = f(1, 2) = -7$

$$f_x = 2x$$
 $A = f_x(1,2) = 2$
 $f_y = -4y$ $B = f_y(1,2) = -8$

Wzór

$$z - (-7) = 2(x - 1) - 8(x - 2)$$
 lub $2(x - 1) - 8(y - 2) - (z + 7) = 0$

b)

$$\begin{split} \Pi_s \parallel \Pi : x - 2y + 2z + 5 &= 0 \\ \vec{n} &= [1, -2, 2] \perp \Pi \\ \vec{n_s} &= [f_x, f_y, -1] \perp \Pi_s \end{split}$$

$$\Pi \parallel \Pi_s \Leftrightarrow \vec{n} \parallel \vec{n_s} \Leftrightarrow \frac{f_x}{1} = \frac{f_y}{-2} = \frac{-1}{2}$$

Trzeba zatem rozwiązać układ równań

$$\begin{cases} f_x = -\frac{1}{2} = 2x \\ f_y = 1 = -4y \end{cases}$$

Rozwiązanie to

$$x = x_0 = -\frac{1}{4}$$
$$y = y_0 = -\frac{1}{4}$$

Stad

$$z_0 = f\left(-\frac{1}{4}, -\frac{1}{4}\right) = -\frac{1}{16}$$

I punkt to jest

$$P = \left(-\frac{1}{4}, -\frac{1}{4}, -\frac{1}{16}\right)$$

Bezpośrednie zastosowanie: przybliżanie funkcji płaszczyzą styczną

Równanie płaszczyzny stycznej Π do wykresu f w $P = (x_0, y_0, f(x_0, y_0))$ można zapisać wzorem

$$z = f(x_0, y_0) + f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0)$$

Gdy teraz $R = (x, y, f(x, y)), Q = (x, y, z) \in \Pi$ i $x \approx x_0$ oraz $y \approx y_0$ to $R \approx P \approx Q$, a wiec $R \approx Q$ i $z \approx f(x, y)$.

To daje wzór na przybliżoną wartość f(x,y):

$$f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0) \cdot (x-x_0) + f_y(x_0,y_0) \cdot (y-y_0)$$

Zastosowanie:

- x_0, y_0 "ładne": łatwe do obliczenia,
- x, y to co mamy w zadaniu.

Przykład

Obliczyć w przybliżeniu i bez kalkulatora $(2,005)^5 \ln(0,98)$

Mamy $(2,005)^5 \ln(0,98) = f(2.005,0.98).$

Zatem

$$f(x,y) = x^5 \ln y, \ x = 2,005, \ y = 0.98$$

Bierzemy $x_0 = 2$ oraz $y_0 = 1$.

To daje

$$f_x = 5x^4 \ln y$$
, $f_y = \frac{x^5}{y}$, $f_x(2,1) = 0$, $f_y(2,1) = 32$ oraz $f(2,1) = 0$

Zatem

$$(2,005)^5 \ln(0,98) \approx 0 + 0 \cdot (2,005 - 2) + 32 \cdot (0,98 - 1) = -0,64$$

Dokładna wartość: -0,65461. Błąd wynosi ok. 0,015 czyli 2,34%.

Dalsze zastosowanie wzoru

Biorac
$$x - x_0 = \Delta x$$
, $y - y_0 = \Delta y$ mamy $x = \Delta x + x_0$, $y = \Delta y + y_0$.

To daje wzór

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f_x(x_0, y_0) \cdot \Delta x + f_y(x_0, y_0) \cdot \Delta y$$

Czyli

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \approx f_x(x_0, y_0) \cdot \Delta x + f_y(x_0, y_0) \cdot \Delta y$$

Oznaczając przez Δf "błąd bezwzględny funkcji" mamy

$$\Delta f = |f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)| \approx f_x(x_0, y_0) \cdot \Delta x + f_y(x_0, y_0) \cdot \Delta y$$

Gdy oba iloczyny pod modułem z prawej strony mają ten sam znak błędy kumulują się i mamy

$$\Delta f \approx |f_x(x_0, y_0)| \cdot |\Delta x| + |f_y(x_0, y_0)| \cdot |\Delta y|$$

To jest wzór na tzw. różniczkę zupełną.

Jest to uogólnienie wzoru z AM1 dla funkcji jednej zmiennej f = f(x):

$$\Delta f \approx |f'(x_0)| \cdot |\Delta x|$$

Zastosowania – przy pomiarach z błędem

Mierzymy x z dokładnościa $|\Delta x| \approx 0$.

Wówczas błąd bezwzględny pomiaru f wynosi w przybliżeniu Δf .

Przykład

W obwodzie zmierzono wartość prądu stałego I=3 $A\pm0,1$ A oraz rezystancję R=2 $\Omega\pm0,01\Omega.$

Z jaką w przybliżeniu dokładnością zmierzymy wydzieloną moc?

Mamy

$$P = P(I, R) = I^2 R$$
, $I_0 = 3$, $R_0 = 2$, $\Delta I = \pm 0, 1$, $\Delta R = \pm 0, 01$

Czyli

$$P_I = 2IR$$
, $P_R = I^2$, $P_I(3,2) = 12$, $P_R(3,2) = 9$

A więc

$$\Delta P = |12| \cdot 0, 1 + |9| \cdot 0, 01 = 1, 29[W]$$

Pochodna kierunkowa

Definicja

Dla funkcji 2 zmiennych f = f(x, y) pochodna ta mierzy zmienność f w zadanym kierunku $\vec{v} = [a, b]$.

Geometrycznie, jest to wersja pochodnej jednostronnej krzywej, która jest częścią wspólną wykresu f oraz płaszczyzny równoległej do osi Z i do wektora \vec{v} .

Oznaczenie:

$$\frac{\partial f}{\partial \vec{v}}(x,y)$$
 lub $f_{\vec{v}}(x,y)$

Uwaga! Do definicji będziemy zawsze używać wektorów jednostkowych:

$$|\vec{v}| = 1$$

Ogólna definicja dla funkcji n zmiennych

Ustalamy punkt $P \le \mathbb{R}^n$ i rozpatrujemy półprostą o początku w P i o kierunku zgodnym z \vec{v} czyli zbiór tych punktów R dla których \overrightarrow{PR} i \vec{v} mają zgodne kierunki.

Badamy proporcję różnicy wartości f w punktach R i P do odległości R od P przy przejściu granicznym $R \to P$.

Daje to definicję

$$\frac{\partial f}{\partial \overrightarrow{v}}(P) = \lim_{R \to P} \frac{f(R) - f(P)}{|\overrightarrow{PR}|}$$

$$\frac{\partial f}{\partial \vec{v}}(P) = \operatorname{tg} \alpha$$

W przypadku funkcji 2 zmiennych dla $P=(x_0,y_0)$ i $\vec{v}=[a,b]$ równanie parametryczne powyższej półprostej ma postać

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases} \quad \text{dla } t > 0$$

To oznacza, że

$$R = (x, y) = (x_0 + at, y_0 + bt)$$
 oraz $\overrightarrow{PR} = t \cdot \overrightarrow{v}$

A stad

$$|\overrightarrow{PR}| = |t \cdot \overrightarrow{v}| = |t| \cdot |\overrightarrow{v}| = t \cdot 1 = t$$

Ponieważ $R \to P \Leftrightarrow t \to 0^+$ oznacza, że

$$\lim_{R \to P} \frac{f(R) - f(P)}{|\overrightarrow{PR}|} = \lim_{t \to 0^+} \frac{f(x_0 + at, y_0 + bt) - f(x_0, y_0)}{t}$$

a to daje równoważną definicję pochodnej kierunkowej:

$$\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = \lim_{t \to 0^+} \frac{f(x_0 + at, y_0 + bt) - f(x_0, y_0)}{t}, \quad \text{gdzie } \vec{v} = [a, b], \ |\vec{v}| = 1$$

Dla
$$f(x,y) = |x| + 3|y|$$
 i $\vec{v} = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$ mamy w punkcie $(0,1)$
$$\frac{\partial f}{\partial \vec{v}}(0,1) = \lim_{t \to 0^+} \frac{f\left(0 - \frac{\sqrt{2}}{2}t, 1 + \frac{\sqrt{2}}{2}t\right) - f(0,1)}{t} = \lim_{t \to 0^+} \frac{\left| -\frac{\sqrt{2}}{2}t \right| + 3\left| 1 + \frac{\sqrt{2}}{2}t \right| - 3}{t} = \lim_{t \to 0^+} \frac{\frac{\sqrt{2}}{2}t + 3\left(1 + \frac{\sqrt{2}}{2}t\right) - 3}{t} = \lim_{t \to 0^+} \frac{4 \cdot \frac{\sqrt{2}}{2}t}{t} = 2\sqrt{2}$$

Z definicji liczymy tylko dla funkcji mało regularnych. Gdy pochodne cząstkowe f są ciągle to mamy lepszy wzór z użyciem gradientu.

Gradient

Definicja

Gradient funkcji w danym punkcie – wektor pochodnych cząstkowych pierwszego rzędu funkcji f w danym punkcie.

Oznaczenie: grad f lub ∇f .

Dla funkcji 2 zmiennych i punktu $P = (x_0, y_0)$

$$\operatorname{grad} f(x_0, y_0) = [f_x(x_0, y_0), f_y(x_0, y_0)]$$

Dla funkcji n zmiennych $f = f(x_1, x_2, ..., x_n)$ i punktu $P = (a_1, a_2, ..., a_n) \in \mathbb{R}^n$

grad
$$f(P) = [f_{x_1}(P), f_{x_2}(P), ..., f_{x_n}(P)]$$

Twierdzenie

Gdy pochodne cząstkowe f są ciągłe w (x_0, y_0) i $\vec{v} = [a, b]$ oraz $|\vec{v}| = 1$ to

$$\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = \vec{v} \circ (\operatorname{grad} f(x_0, y_0)) = a \cdot f_x(x_0, y_0) + b \cdot f_y(x_0, y_0)$$

Wzór rozszerza się do funkcji większej ilości zmiennych.

$$f(x,y) = x^2 \cdot y^3, \quad \vec{v} = \left[-\frac{1}{2}, \frac{\sqrt{3}}{2} \right]$$

Obliczyć $f_{\vec{v}}(-1,1)$.

Mamy

$$f_x = 2xy^3, \quad f_y = 3x^2y^2$$

$$f_x(-1,1) = -2, \quad f_y(-1,1) = 3, \quad \operatorname{grad} f(-1,1) = [-2,3]$$

$$f_{\vec{v}} = [-2,3] \circ \left[-\frac{1}{2}, \frac{\sqrt{3}}{2} \right] = 1 + \frac{3\sqrt{3}}{2}$$

Dalej,

$$\vec{v} \circ \operatorname{grad} f(x_0, y_0) = 1 \cdot |\operatorname{grad} f(x_0, y_0)| \cdot \cos \alpha$$

gdzie α jest kątem między tymi dwoma wektorami.

To daje następujące wnioski:

Twierdzenie

Gdy grad
$$f(x_0, y_0) = \vec{0}$$
 to $\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = 0$ dla dowolnego \vec{v} .

Twierdzenie

 $\frac{\partial f}{\partial \vec{v}}(x_0, y_0)$ ma wartość największą kiedy \vec{v} i grad $f(x_0, y_0)$ mają zgodne kierunki. Ta największa wartość to $|\operatorname{grad} f(x_0, y_0)|$.

Twierdzenie

 $\frac{\partial f}{\partial \vec{v}}(x_0,y_0) \text{ ma wartość najmniejszą kiedy } \vec{v} \text{ i grad } f(x_0,y_0) \text{ mają przeciwne kierunki.}$ Ta najmniejsza wartość to $-|\text{grad } f(x_0,y_0)|$.

Twierdzenie

$$\frac{\partial f}{\partial \vec{v}}(x_0, y_0) = 0$$
 dla $\operatorname{grad} f(x_0, y_0) \neq \vec{0}$ kiedy $\operatorname{grad} f(x_0, y_0) \perp \vec{v}$

Twierdzenie

Zbiór wartości $\frac{\partial f}{\partial \vec{v}}(x_0,y_0)\,$ w zależności od \vec{v} to przedział

$$[-|\operatorname{grad} f(x_0, y_0)|, |\operatorname{grad} f(x_0, y_0)|]$$

Skrajne wartości są osiągane dla dokładnie jednego wektora (zob. punkty 2 i 3), a pozostałe – dla dokładnie dwóch wektorów \vec{v} .

Przykład

Dana jest funkcja

$$f(x,y) = (x^2 + y^2)e^{x-y}$$

- 1. Znaleźć wszystkie wersory \vec{v} dla których $f_{\vec{v}}(-1,1)$
- a) jest największa
- b) jest najmniejsza
- 2. Wyznaczyć zbiór wszystkich punktów (x,y) dla których pochodna kierunkowa w kierunku wersora $\vec{v} = \begin{bmatrix} \frac{3}{5}, \frac{4}{5} \end{bmatrix}$ jest równa 0.

Wprowadzić wektor $\vec{v} = [a, b]$ co daje

$$f_{\vec{v}}(-1,1) = [a,b] \circ [3e^{-3}, -e^{-3}] = 3e^{-3}a - e^{-3}b$$

Następnie trzeba analizować tę funkcję nie zapominając o dodatkowym warunku

$$\vec{v} = 1 \iff a^2 + b^2 = 1$$

Prowadzi to do układu równań, jest dłuższe i bardziej skomplikowane

W części 2 potrzebna jest metoda analityczna.

Korzystając ze wzoru na gradient z części a) Mamy

$$f_{\vec{v}} = (x, y) = grad f(x, y) \circ \vec{v} = [e^{x-y}(2x + x^2 + y^2), e^{x-y}(2y - x^2 - y^2)] \circ \left[\frac{3}{5}, \frac{4}{5}\right] = 0$$

$$\frac{3}{5}e^{x-y}(2x+x^2+y^2) + \frac{4}{5}e^{x-y}(2y-x^2-y^2) = \frac{1}{5}e^{x-y}(6x+8y-x^2-y^2) = 0$$

To oznacza, że $6x + 8y - x^2 - y^2 = 0$

Jest to równanie okręgu – po sprowadzeniu do postaci kanonicznej mamy

Ciąg dalszy nastąpi po wykładzie w dniu 8.05.2023

Zbieżność w \mathbb{R}^k i granice funkcji wielu zmiennych

Rozpatrujemy ciąg wielu punktów $P_n = (x_n, y_n) \in \mathbb{R}^2$.

Równoważnie możemy myśleć o wektorach $\vec{v} \in \mathbb{R}^2$ biorąc wektory pozycyjne punktów P_n czyli $\vec{v} = \vec{OP}_n$.

Niech teraz $P_0 = (x_0, y_0) \in \mathbb{R}^2$. Mówimy, że $P_n \to P_0$, gdy odległość między P_n i P_0 zbiega 0. Formalnie

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = 0 \iff \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = 0$$

Podobnie, gdy

$$P_n = (x_n, y_n, z_n) \in \mathbb{R}^3$$
 i $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$

To definiujemy

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = 0 \iff \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2 + (z_n - z_0)^2} = 0$$

Analogicznie rozszerzamy tę definicję na przypadek k – wymiarowy.

Poniższe twierdzenie pokazuje, że zbieżność $P_n \to P_0$ może być zdefiniowana w równoważny sposób.

Twierdzenie – zbieżność po współrzędnych

Gdy

$$P_n = (x_n, y_n) \in \mathbb{R}^2$$
 i $P_0 = (x_0, y_0) \in \mathbb{R}^2$

to mamy równoważność

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} x_n = x_0 \land \lim_{n \to \infty} y_n = y_0$$

Dowód

Implikacja ← wynika bezpośrednio z arytmetyki granic :

Jeżeli $\lim_{n\to\infty} x_n = x_0 \wedge \lim_{n\to\infty} y_n = y_0$ to

$$\lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = 0$$

Zatem

$$\lim_{n\to\infty} P_n = P_0$$

Implikacja ⇒ wynika z kolei z twierdzenia o 3 funkcjach. Mamy bowiem

$$0 \le |x_n - x_0| = \sqrt{(x_n - x_0)^2} \le \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = |\overrightarrow{P_0 P_n}|$$

Teraz, gdy $\lim_{n\to\infty} P_n = P_0$ to $\lim_{n\to\infty} |\overrightarrow{P_0P_n}| = 0$ i z twierdzenia o 3 ciągach dostajemy $\lim_{n\to\infty} |x_n - x_0| = 0$ a to daje $\lim_{n\to\infty} (x_n - x_0) = 0 \Leftrightarrow \lim_{n\to\infty} x_n = x_0$ Analogicznie otrzymujemy $\lim_{n\to\infty} y_n = y_0$

Jak łatwo zauważyć, twierdzenie ma analogiczną postać w przypadku wyższych wymiarów.

Definicja – granica funkcji dwóch zmiennych w punkcie

 $\lim_{\substack{(x,y)\to(x_0,y_0)\\ n\to\infty}} f(x,y) = L \Leftrightarrow \text{dla dowolnych ciągów punktów } (x_n,y_n) \neq (x_0,y_0) \text{ i takich, że}$

Definicja jest analogiczna w przypadku funkcji większej ilości zmiennych.

Równoważny zapis tej granicy, zgodny ze znaczeniem twierdzenia o zbieżności po współrzędnych to

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = L$$

Twierdzenie o granicach znane dla funkcji jednej zmiennej (arytmetyka granic, symbole nieoznaczone itd.) pozostają prawdziwe.

Główny problem – nie da się bezpośrednio zastosować niektórych popularnych technik, np. reguły de l'Hospitala.

Popularne techniki liczenia granic funkcji wielu zmiennych

1. Twierdzenie o 3 funkcjach. Jeżeli dla wszystkich punktów $P \in \mathbb{R}^k$ z pewnego sąsiedztwa punktu $P_0 \in \mathbb{R}^k$ zachodzi nierówność

$$d(P) \leqslant f(P) \leqslant g(P)$$
 i $\lim_{P \to P_0} d(P) = \lim_{P \to P_0} g(P) = L$ to $\lim_{P \to P_0} f(P) = L$

2. Sprowadzenie granicy do przypadku jednej zmiennej.

Jeżeli istnieje nowa zmienna
$$t=t(P)$$
 takie, że $f(P)=g(t)$ oraz $\lim_{P\to P_0}t=t_0$ i $\lim_{t\to t_0}g(t)=L$ to $\lim_{P\to P_0}f(P)=L$

3. COŚ O BRAKU GRANICY XD $\lim_{P\to P_0} f(P)$ nie istnieje

Przypadek 3 jest szczególnie częsty, gdy pojawia się symbol nieoznaczony.

W przypadku funkcji dwóch zmiennych najczęściej wybiera się ciągi punktów P_n i Q_n z dwóch różnych krzywych.

P jest wtedy z wykresu jakiejś krzywej: y = g(x) lub x = g(y).

Q jest z wykresu innej krzywej: y = h(x) lub x = h(y).

Obie krzywe muszą spotykać się w punkcie granicznym P_0 .

Wtedy granice $\lim_{P\to P_0} f(P)$ i $\lim_{Q\to P_0} f(Q)$ stają się granicami funkcji jednej zmiennej.

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) \cos\left(x - 5y + \frac{2}{x}\right)$$

Wiemy, że $x^2 + 4y^2 \ge 0$ oraz $-1 \le \cos\left(x - 5y\frac{2}{x}\right) \le 1$, a stąd

$$-(x^2 + 4y^2) \leqslant (x^2 + 4y^2)\cos\left(x - 5y + \frac{2}{x}\right) \leqslant x^2 + 4y^2$$

Ponieważ

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) = 0 = \lim_{\substack{x \to 0 \\ y \to 0}} (-(x^2 + 4y^2))$$

z twiedzenia o 3 ciągach otrzymujemy

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) \cos\left(x - 5y + \frac{2}{x}\right) = 0$$

$$\lim_{\substack{x \to 1 \\ y \to 1 \\ z \to 0}} \frac{2x - y + z - 1 - \ln(2x - y + z)}{(2x - y + z - 1)^2}$$

Tutaj możemy podstawić t = 2x - y + z. Wtedy $\lim_{\substack{x \to 1 \\ y \to 1 \\ z \to 0}} t = 1$

i mamy

$$\lim_{\substack{x \to 1 \\ y \to 1 \\ z \to 0}} \frac{2x - y + z - 1 - \ln(2x - y + z)}{(2x - y + z - 1)^2} = \lim_{t \to 1} \frac{t - 1 - \ln t}{(t - 1)^2} \left[\frac{0}{0} \right] \stackrel{[H]}{=} \frac{1}{2}$$

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x - y}$$

Tutaj znów jest granica typu $\frac{0}{0}$. Po podstawieniu $t=x^2-y^2$ mamy granicę podstawową to t

$$\lim_{t \to 0} \frac{\operatorname{tg} t}{t} = 1.$$

Stąd wniosek, że trzeba nasze wyrażenie rozbić na iloczyn: $\lim_{\substack{x\to 0\\y\to 0}} \frac{\operatorname{tg}(x^2-y^2)}{x^2-y^2} \cdot \frac{x^2-y^2}{x-y}$

Mamy wtedy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x^2 - y^2} = \lim_{t \to 0} \frac{\operatorname{tg} t}{t} = 1$$

Oraz

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x - y} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{(x - y)(x + y)}{x - y} = \lim_{\substack{x \to 0 \\ y \to 0}} (x + y) = 0$$

Stad

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x - y} = 1 \cdot 0 = 0$$

Przykład

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y}$$

Tutaj wykażemy brak granicy

Rozpatrujemy 2 krzywe przechodzące przez (0,0). Na przykład y=x oraz y=2x.

Biorac y = x mamy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y} = \lim_{x \to 0} \frac{x}{x} = 1$$

Natomiast dla y = 2x mamy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y} = \lim_{x \to 0} \frac{x}{2x} = \frac{1}{2} \neq 1$$

Zatem granica nie istnieje

Ciągłość funkcji wielu zmiennych

Definicja jest analogiczna jak dla funkcji jednej zmiennej – granica funkcji jest równa wartości. Formalnie,

f jest ciągła w punkcie $P_0 \in D_f$, gdy $\lim_{P \to P_0} f(P) = f(P_0)$,

f jest ciągła na zbiorze $A \subset D_f$ jeżeli jest ciągła we wszystkich punktach z A.

Twierdzenia dotyczące arytmetyki funkcji ciągłych są analogiczne jak w przypadku jednej zmiennej.

Przykład

Wyznaczyć zbiór punktów ciągłości funkcji

$$f(x,y) = \begin{cases} 2x + y + 1, & x \ge 0 \\ 2y + x, & x < 0 \end{cases}$$

Tutaj rozpatrujemy dwa obszary – dane warunkami $x \ge 0$ oraz x < 0.

Brzegiem obu obszarów jest prosta x = 0 (oś Y).

W punktach (x,y), x>0, funkcja jest ciągła, bo jest równa elementarnej na zbiorze otwartym.

Podobnie dla x < 0..

Pozostaje zbadać ciągłość w punktach brzegowych czyli w $P_0 = (0, y_0)$.

Ze względu na warunek definiujący zbiór, dla takich punktów zbieżności trzeba rozpatrzeć 2 możliwe typy punktów

$$P = (x, y) \rightarrow P_0$$
 dla $x \ge 0$ oraz $x < 0$

Dla $x \ge 0$ mamy

$$\lim_{\substack{x \to 0 \\ y \to y_0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to y_0}} (2x + y - 1) = y_0 - 1$$

Dla x < 0 mamy

$$\lim_{\substack{x \to 0 \\ y \to y_0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to y_0}} (2y + x) = 2y_0$$

Ponadto $f(0, y_0) = y_0 - 1$

Stąd ciągłość w $P_0 = (0, y_0)$ ma miejsce, gdy $y_0 - 1 = 2y_0$, a więc dla $y_0 = -1$.

Wtedy dla dowolnego ciągu punktów $P = (x, y) \rightarrow (0, -1)$ mamy

$$\lim_{\substack{x \to 0 \\ y \to -1}} f(x, y) = f(0, -1) = -2$$

Zatem zbiorem punktów ciągłości f jest zbiór

$$D = \{(x,y) : x \neq 0\} \cup \{(0,-1)\}$$

Interpretacja geometryczna wykresu – składa się z dwóch osobnych ukośnych półpłaszczyzn, które spotykają się w punkcie (0, -1).

Ekstrema funkcji dwóch zmiennych

Definicja

f ma w $P=(x_0,y_0)\in D_f$ minimum lokalne gdy $f(x_0,y_0)$ jest najmniejszą wartością f na pewnym kole o środku w P tzn.

$$\forall (x,y) \in K \ f(x,y) > f(x_0,y_0)$$

f ma w $P = (x_0, y_0) \in D_f$ maksimum lokalne gdy $f(x_0, y_0)$ jest największą wartością f na pewnym kole o środku w P tzn.

$$\forall (x,y) \in K \ f(x,y) < f(x_0,y_0)$$

Gdy ta wartość jest najmniejsza/największa na całej dziedzinie f to mówimy o ekstremum (minimum, maksimum) globalnym.

Przykład

Funkcja $f(x,y) = x^4 + y^6$ ma w (0,0) minimum i jest ono globalne, bo

$$f(0,0) = 0$$

a dla dowolnego $(x, y) \neq (0, 0)$ mamy $f(x, y) = x^4 + y^6 > 0$.

Wyznaczenie ekstremów z definicji rzadko kiedy się udaje, najczęściej szukamy ich z użyciem pochodnych cząstkowych.

Daje się to robić dla funkcji regularnych: na badanym zbiorze **pochodne pierwszego i drugiego rzędu istnieją i są ciągłe**.

Warunek konieczny istnienia ekstremum: tzw. punkt stacjonarny czyli $P = (x_0, y_0)$ taki, że

$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

To jeszcze nie wystarcza! To tylko mówi, że płaszczyzna styczna (gdy istnieje) jest równoległa do płaszczyzny XY.

Warunek dostateczny. Liczymy w P specjalny wyznacznik – tzw. hesjan.

$$W = H(P) = H(x_0, y_0) = \begin{vmatrix} f_{xx}(x_0, y_0), & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

Interpretacja: H to "wykrywacz" ekstremum: mówi czy ekstremum jest czy nie.

Twierdzenie

Jeżeli w pewnym otoczeniu $P = (x_0, y_0)$ pochodne pierwszego i drugiego rzędu funkcji f istnieją i są ciągłe oraz $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ to zachodzą poniższe własności.

- Gdy $H(x_0, y_0) > 0$ to **jest ekstremum**. Wtedy gdy $f_{xx}(x_0, y_0) > 0$ to jest minimum, a gdy $f_{xx}(x_0, y_0) < 0$ to jest maksimum.
- Gdy $H(x_0, y_0) < 0$ to nie ma ekstremum.
- Gdy $H(x_0, y_0) = 0$ to nic nie wiemy metoda nie działa.

Uwaga

Można udowodnić, że gdy $H(x_0, y_0) > 0$ to $f_{xx}(x_0, y_0)$ oraz $f_{yy}(x_0, y_0)$ są jednocześnie obie dodatnie lub obie ujemne.

Zatem przy sprawdzaniu typu ekstremum (minimum/maksimum) możemy patrzeć na dowolną z tych pochodnych.

Przykład

$$f(x,y) = 2x^2 + 3y^2$$

Mamy $D_f = \mathbb{R}^2$ oraz

$$f_x = 4x, \quad f_y = 6y$$

Stąd

$$f_x = f_y = 0 \iff x = y = 0$$
 czyli punkt standardowy to $P = (0,0)$

Teraz

$$f_{xx} = 4$$
, $f_{yy} = 6$, $f_{xy} = f_{yx} = 0$

To daje

$$W = H(0,0) = \begin{vmatrix} 4 & 0 \\ 0 & 6 \end{vmatrix} = 24 > 0$$
 – jest ekstremum

 $f_{xx}(0,0) = 4 > 0$ więc w (0,0) jest minimum f(0,0) = 0.

$$f(x,y) = (x^2 - y^2)e^x$$

Mamy $D_f = \mathbb{R}^2$ oraz

$$f_x = 2xe^x + (x^2 - y^2)e^x = e^x(x^2 - y^2 + 2x)$$
$$f_y = -2ye^x$$

Stąd

$$f_x = f_y = 0 \Leftrightarrow \begin{cases} x^2 - y^2 + 2x = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ x^2 + 2x = 0 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ x = 0 \lor x = -2 \end{cases}$$

Czyli punkty stacjonarne to $P_1 = (0,0), P_2 = (-2,0).$

Teraz

$$f_{xx} = e^{x}(2x + 2) + e^{x}(x^{2} - y^{2} + 2x)$$
$$f_{yy} = -2e^{x}$$
$$f_{xy} = f_{yx} = -2ye^{x}$$

Dla $P_1 = (0, 0)$ mamy

$$W = H(0,0) = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4 < 0$$
 Brak ekstremum w P_1

Dla $P_2 = (-2, 0)$ mamy

$$W = H(-2,0) = \begin{vmatrix} -2e^{-2} & 0\\ 0 & -2e^{-2} \end{vmatrix} = 4e^{-2} \cdot e^{-2} > 0$$
 Jest ekstremum

 $f_{xx}(-2,0) = -2e^{-2} < 0$ czyli mamy maksimum o wartości $f(-2,0) = 4e^{-2}$.

Przykład

$$f(x,y) = 4x^2 + 7y^2 - 4x - 4\ln x + 3$$

Tutaj mamy $D_f = \{(x, y) : x > 0\}$. Jest to więc obszar na prawo od osi Y. Dalej,

$$f_x = 8x - 4 - \frac{4}{x}$$
$$f_y = 14y$$

Stad

$$f_x = f_y = 0 \iff \begin{cases} 8x - 4 - \frac{4}{x} = 0 \\ 14y = 0 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ 2x^2 - x - 1 = 0 \end{cases}$$

Pierwiastki równania $2x^2 - x - 1 = 0$ to liczby $x_1 = 1$, $x_2 = -\frac{1}{2}$.

Jedynie $x_1 > 0$ co daje jeden punkt stacjonarny funkcji f: P = (1,0).

Dalej mamy

$$f_{xx} = 8 + \frac{4}{x^2}$$
$$f_{yy} = 14$$
$$f_{xy} = f_{yx} = 0$$

To daje

$$W = H(1,0) = \begin{vmatrix} 12 & 0 \\ 0 & 14 \end{vmatrix} = 12 \cdot 14 > 0 \quad -\text{ jest ekstremum}$$

$$f_{xx}(1,0) = 12 > 0 \quad \text{wiec w } (1,0) \text{ jest minimum}$$

$$f(1,0) = 3$$

Ekstrema warunkowe

Definicja

Funkcją warunkową nazwiemy f = f(x, y) gdzie dziedziną jest zbiór, który jest krzywą na płaszczyźnie XY czyli ma postać zależności między x i y: F(x, y) = 0.

Interpretacja geometryczna: taka funkcja f to krzywa w przestrzeni \mathbb{R}^3 położona "pionowo pod/nad" krzywą na płaszczyźnie daną równaniem F(x,y)=0.

Zatem jest to zbiór punktów (x, y, f(x, y)), gdzie F(x, y) = 0.

Rzutem tej krzywej na płaszczyznę XY jest krzywa płaska o równaniu F(x,y)=0

$$f(x,y)=-xy,\ F(x,y)=2x+y=0$$
 To daje $y=-2x$ czyli
$$f(x,y)=f(x,-2x)=2x^2,\ y=-2x,\ x\in\mathbb{R}$$
 Czyli zbiór punktów

$$(x, -2x, 2x^2), x \in \mathbb{R}$$

Jest to paraboloida ustawiona "pionowo" ale nad prostą y=-2x (w płaszczyźnie równoległej do osi Z i zawierającej tą prostą).

Ekstrema warunkowe to ekstrema takich funkcji. Liczymy je metodami poznanymi z Analizy Matematycznej 1 (mamy funkcję 1 zmiennej).

W naszym przykładzie mamy do analizy funkcję $f(x) = x^2, x \in \mathbb{R}$

Nie trzeba pochodnych, ekstremum to punkt dla x = 0 – jest to minimum.

To daje $y = -2 \cdot 0 = 0$ oraz z = f(0,0) = 0 więc punkt (0,0,0).

Wartości największe i najmniejsze funkcji na zadanych zbiorach

Mamy funkcję $f(x,y), D_f = D$

Interesuje nas wartość największa i wartość najmniejsza f na D. Te wartości mogą istnieć lub nie. To zależy od funkcji i zbioru.

Twierdzenie (Wersja tw. Weiertrassa (AM1) dla funkcji dwóch zmiennych)

Gdy D jest domknięty (czyli cały brzeg D jest zawarty w D) oraz ograniczony (czyli zawiera się w pewnym kole) i f jest ciągła na D to wartość największa i wartość najmniejsza f na D są osiągane.

Gdzie te wartości mogą być osiągane dla funkcji różniczkowalnych?

- W punktach stacjonarnych $f: f_x = f_y = 0$.
- Na brzegu D: prowadzi to do funkcji warunkowych i ich wartości największych/najmniejszych – jak dla funkcji jednej zmiennej w AM1

Dla punktów z obu przypadków liczymy wartości f i z tych wartości wybieramy najwieksza i najmniejszą. To daje odpowiedź.

Uwaga: Dla punktów stacjonarnych nie trzeba sprawdzać czy jest to ekstremum.

Nie potrzeba hesjanu itd. Wystarczy policzyć wartość.

Przykład

$$f(x,y) = xy^2, \ x^2 + y^3 \le 3$$

Punkty stacjonarne

$$f_x = y^2 = 0$$

$$f_y = 2xy = 0$$

Wychodzą punkty (x,0) oraz f(x,0) = 0Brzeg: $x^2 + y^2 = 3$. Wystarczy wyliczyć $y^2 = 3 - x^2$ i to daje

$$f(x,y) = f(x) = x(3-x^2) = 3x - x^3, \ x \in \left[-\sqrt{3}, \sqrt{3}\right]$$

Zadanie staje się zadaniem z AM1: znaleźć wartość największą/najmniejszą tej funkcji. Zatem

$$f(\pm\sqrt{3}) = 0$$

$$f' = 3 - 3x^2 = 0 \iff x = \pm 1 \in \left[-\sqrt{3}, \sqrt{3}\right]$$

$$f(-1) = -2, \ f(1) = 2$$

Stąd wartość największa to 2, jest osiągana w punktach $(1,\sqrt{2})$ oraz $(1,-\sqrt{2})$. Najmniejsza wartość to -2, jest osiągana w punktach $(-1,\sqrt{2})$ oraz $(-1,-\sqrt{2})$.

Zadania optymalizacyjne

Schemat taki jak w AM1.

- 1. Ułożyć funkcję opisującą daną wielkość.
- 2. Znaleźć dziedzinę tej funkcji pasującą do zadania (niekoniecznie dziedzinę naturalną).

3. Znaleźć wartość największą lub najmniejszą tej funkcji na zadanej dziedzinie.

Przykład

Spośród wszystkich trójkątów o obwodzie równym 3 jednostki znaleźć ten trójkąt, który ma największe pole.

1. Wzór funkcji.

Jeśli boki tego trójkąta mają długości a, b, c > 0 to pole jest dane wzorem

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 gdzie $p = \frac{a+b+c}{2}$ (wzór Herona)

2. Dziedzina $f \colon a,b>0,\ c=3-a-b>0 \ \text{ oraz z warunku trójkąta}$

$$\begin{array}{lll} a+b>c & \Leftrightarrow & b>1, 5-a \\ a+c>b & \Leftrightarrow & 0< b<1, 5 \\ b+c>a & \Leftrightarrow & 0< a<1, 5 \end{array}$$

To daje trójkąt o wierzchołkach w punktach (1.5, 0), (0, 1.5) oraz (1.5, 1.5) ale bez brzegu. Aby mieć gwarancję istnienia wartości największej (twierdzenie Weiertrassa) dołączamy brzeg do trójkąta i mamy D_f :

$$0\leqslant a\leqslant 1,5$$

$$1,5-a\leqslant b\leqslant 1,5$$

- 3. Wartość największa \boldsymbol{f}
- a) Na brzegu

Brzeg składa się z trzech boków o równaniach

$$a = 1, 5:$$
 $f \equiv 0$
 $b = 1, 5:$ $f \equiv 0$
 $b = 1, 5 - a:$ $f \equiv 0$

To na pewno nie jest wartość największa

b) W punktach stacjonarnych we wnętrzu

$$f(a,b) = \sqrt{1,5(1,5-a)(1,5-b)(a+b-1,5)} \quad \text{wiec}$$

$$f_a = \frac{1}{2\sqrt{dopoprawy}} \cdot 1, 5 \cdot (1,5-b) \cdot (-(a+b-1,5)+1(1,5-a)) = 0$$

To daje układ

$$\begin{cases} (1, 5 - b) \cdot (3 - 2a - b) = 0\\ (1, 5 - a) \cdot (3 - 2b - a) = 0 \end{cases}$$

Zatem

$$\begin{cases} b = 1, 5 \text{ brzeg - odrzucamy } \lor 3 - 2a - b = 0 \\ a = 1, 5 \text{ brzeg - odrzucamy } \lor 3 - 2b - a = 0 \end{cases}$$

Dla punktów we wnętrzu trójkąta jest więc

$$\begin{cases} 3 - 2a - b = 0 \\ 3 - 2b - a = 0 \end{cases}$$

To daje a=b=1 oraz $f(1,1)=\frac{\sqrt{3}}{4}$. To jest wartość największa. Ponadto wtedy c=1. Jest to więc trójkąt równoboczny.

6 Całki podwójne

Zapis: $\iint f(x,y) \, dx dy$, gdzie zbiór D i funkcja f są odpowiednio regularne.

Definicja może być skonstruowana poprzez:

- \bullet n tą sumę całkową (sumę Riemanna) podobnie jak w AM1
- tzw. całki iterowane

Całka w sensie Riemanna

Przypadek podstawowy – D jest prostokątem

$$D = [a, b] \times [c, d] = \{(x, y) : a \leqslant x \leqslant b, \ c \leqslant y \leqslant d\}$$

Dzielimy D na n prostokątów o bokach poziomych o długości Δx_i i bokach pionowych o długości Δy_i , i=1,2,...,n. W każdym z prostokątów wybieramy dowolny punkt $P_i=(a_i,b_i)$.

Sumą Riemanna (n – tą sumę całkową) funkcji f na D jest

$$S_n = \sum_{n=1}^n \Delta x_i \cdot \Delta y_i \cdot f(a_i, b_i)$$

Jeżeli dla $n \to \infty$, $\Delta x_i \to 0$, $\Delta y_i \to 0$ granica $\lim_{n \to \infty} S_n$ istnieje i <u>nie zależy</u> od wyboru prostokątów oraz punktów P_i to nazywamy ją całką podwójną z f na prostokącie D i oznaczamy przez $\iint f(x,y) \, dx dy$.

Twierdzenie

Gdy f jest ciągła na prostokącie D to całka podwójna z f na D istnieje.

Interpretacja geometryczna dla $f \ge 0$ na D: S_n to suma objętości prostopadłościanów o krawędziach Δx_i , Δy_i oraz $f(a_i, b_i)$. Prostopadłościany te przybliżają bryłę o podstawie D, ścianach pionowych i ograniczonej z góry przez powierzchnię f.

Granica S_n daje objętość tej bryły.

Dla $D = [a, b] \times [c, d]$ są to całki postaci

$$\int_{c}^{d} dy \int_{a}^{b} f(x, y) dx = \int_{c}^{d} dy \left(\int_{a}^{b} f(x, y) dx \right)$$

$$\int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = \int_{a}^{b} dx \left(\int_{c}^{d} f(x, y) dy \right)$$

Twierdzenie

Gdy f jest ciągła na D to

$$\int_{c}^{d} dy \int_{a}^{b} f(x, y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = \iint_{D} f(x, y) dxdy$$

$$D = [0,1] \times [-1,1], \ f(x,y) = 2x + 3y^2$$

$$\int_{0}^{1} dx \int_{-1}^{1} (2x + 3y^{2}) dy = \int_{0}^{1} dx \left[2xy + y^{3} \right]_{y=-1}^{y=1} = \int_{0}^{1} dx (4x + 2) = \left[2x^{2} + 2x \right]_{0}^{1} = 4 - 0 = 4$$

W odwrotnej kolejności

$$\int_{-1}^{1} dy \int_{0}^{1} (2x+3y^{2}) dx = \int_{-1}^{1} dy \left[x^{2} + 3y^{2}x \right]_{x=0}^{x=1} = \int_{-1}^{1} dy (3y^{2} + 1) = \left[y^{3} + y \right]_{-1}^{1} = 2 - (-2) = 4$$

Przypadek ogólny – całki po tzw. <u>obszarach normalnych</u>. Są to zbiory postaci:

$$D = \{(x,y) : a \leqslant x \leqslant b, \ d(x) \leqslant y \leqslant g(x)\} \quad \text{lub} \quad D = \{(x,y) : a \leqslant y \leqslant b, \ d(y) \leqslant x \leqslant g(y)\}$$

Ponadto funkcje d i q sa ciagłe.

Definicja

Definicja całki podwójnej w sensie Riemanna jest analogiczna jak dla prostokata.

$$\int_{a}^{b} dx \int_{d(x)}^{g(x)} f(x,y) dy = \int_{a}^{b} dx \left(\int_{d(x)}^{g(x)} f(x,y) dy \right)$$

lub

$$\int_{c}^{d} dy \int_{d(x)}^{g(x)} f(x, y) dx = \int_{a}^{b} dy \left(\int_{d(x)}^{g(x)} f(x, y) dx \right)$$

Twierdzenie

Gdy f jest ciągła na obszarze normalnym to całka podwójna $\iint_D f(x,y) dxdy$ istnieje i jest równa każdej z całek iterowanych.

$$f(x,y) = xy$$

Djest ograniczony krzywymi $x=0,\ x=2, y=e^x$

Rysunek obszaru:

Mamy $D: 0 \leqslant x \leqslant 2, \ 1 \leqslant y \leqslant e^x$. Czyli całka jest równa

$$\int\limits_{0}^{2} dx \int\limits_{1}^{e^{x}} xy \, dy = \int\limits_{0}^{2} dx \left[\frac{xy^{2}}{2} \right]_{1}^{e^{x}} = \int\limits_{0}^{2} dx \left(\frac{xe^{2x}}{2} - \frac{x}{2} \right) = \frac{1}{2} \int\limits_{0}^{2} xe^{2x} \, dx - \frac{1}{2} \int\limits_{0}^{2} x \, dx$$

Ta druga całka wynosi 2.

Tą pierwszą liczymy przez części:

$$\int xe^{2x} = \frac{1}{2}xe^{2x} - \int 1 \cdot \frac{1}{2}e^{2x} dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$
$$\begin{vmatrix} f(x) = x & g'(x) = e^{2x} \\ f'(x) = 1 & g(x) = \frac{1}{2}e^{2x} \end{vmatrix}$$

Zatem

$$\int_{0}^{2} xe^{2x} dx = e^{4} - \frac{1}{4}e^{4} + \frac{1}{4} = \frac{3}{4}e^{4} + \frac{1}{4}$$

Całość:

$$\iint\limits_{D} f(x,y) \, dx dy = \frac{1}{2} \left(\frac{3}{4} e^4 + \frac{1}{4} \right) - \frac{1}{2} \cdot 2 = \frac{3}{8} e^4 - \frac{7}{8}$$

Własności całki podwójnej

- $\iint\limits_D (f(x,y) \pm g(x,y)) \ dxdy = \iint\limits_D f(x,y) \ dxdy \pm \iint\limits_D g(x,y) \ dxdy$
- $\iint\limits_{D} c \cdot f(x, y) \, dx dy = c \iint\limits_{D} f(x, y) \, dx dy$
- gdy $D = D_1 \cup D_2$ i D_1, D_2 są rozłączne to

$$\iint\limits_{D} f(x,y) \, dxdy = \iint\limits_{D_1} f(x,y) \, dxdy + \iint\limits_{D_2} f(x,y) \, dxdy$$

Zmiana kolejności całkowania

$$\iint\limits_{D} f(x,y) \, dx dy = \int\limits_{c}^{d} dy \int\limits_{d_{1}(y)}^{g_{1}(y)} f(x,y) \, dx$$

będzie dawała jeden obszar i jedną całkę.

Pytanie: jak mając obszar normalny względem x zmienić go na obszar/obszary względem y? Zmiana kolejności całkowania wymaga zmiany roli argumentu i wartości czyli np. mając funkcję brzegową y = f(x) trzeba wyliczyć ją względem y czyli x = g(y).

Związane jest to z wyznaczaniem funkcji odwrotnej.

Stąd wniosek: zmiana kolejności całkowania jest związana z **odbiciem obszaru względem prostej** y = x.

Funkcja/krzywa "prawa" staje się "górną", a "lewa" - "dolną".

Praktyczna uwaga: symetria względem prostej y=x jest równoważna obrotowi względem (0,0) w lewo o kąt 90° , a potem symetrii względem osi pionowej.

W praktyce wystarczy sam obrót by zobaczyć funkcje górne i dolne.

Przykład

Zapisać, jako całkę iterowaną, $\iint\limits_D f(x,y)\,dxdy$, gdzie D jest obszarem na rysunku poniżej.

Następnie zmienić kolejność całkowania.

Widać, że funkcją dolną jest funkcja stała y=1, a górną $y=2^x$. Zmienność x można odczytać poprzez rzut obszaru na oś X.

Zatem

$$D: 0 \leqslant x \leqslant 2, \quad 1 \leqslant y \leqslant 2^x$$

To daje całkę

$$\int\limits_{0}^{2}dx\int\limits_{1}^{2^{x}}f(x,y)\,dy$$

Ważna uwaga

Jeżeli zarówno x jak i y są ograniczone przez liczby to obszar jest prostokątem lub sumą prostokątów. Zatem każdy zbiór, który nie jest prostokątem/sumą prostokątów będzie zawierał zależność jednej zmiennej od drugiej.

Popularny błąd

Obie zmienne między liczbami dla obszarów innych niż prostkąty Na przykład dla naszego obszaru

$$D: 0 \leqslant x \leqslant 2, \quad 1 \leqslant y \leqslant 4$$

GAME OVER... To jest opis prostokata

Teraz zmiana kolejności całkowania.

Funkcją górną staje się krzywa prawa (prosta pionowa), a dolną – lewa $(y = 2^x)$. Widać to po obrocie rysunku względem (0,0) w lewo o kat 90° .

Zatem dostaniemy

$$y=2^x \iff x=\log_2 y$$
 – funkcja dolna
$$x=2-\text{funkcja górna}$$

Warunki opisujące $D:\ 1\leqslant y\leqslant 4,\quad \log_2 y\leqslant x\leqslant 2$

Całka:
$$\int_{1}^{4} dy \int_{\log_2 y}^{2} f(x, y) dx$$

Praktyczna uwaga.

Opłaca się zmieniać kolejność całkowania, gdy w podstawowym zapisie trzeba dzielić obszar na kilka fragmentów, a po zmianie dostajemy jeden obszar (między jedną funkcją górną i jedną dolną).

Na przykład poniższy w postaci $D = \{(x, y) : a \le x \le b, d(x) \le y \le g(x)\}$

trzeba rozbić na sumę 2 obszarów i będą 2 całki

Po zmianie kolejności całkowania mamy obszar w postaci

$$D = \{(x, y) : c \le y \le d, d_1(y) \le x \le g_1(y)\}$$

Będzie to całka po tylko jednym obszarze.

Zmiana zmiennych w całce podwójnej

Chodzi o metodę podstawienia

Wyprowadzamy wzory

$$x = x(s,t)$$

$$y = y(s, t)$$

Zakładamy, że są to różniczkowalne funkcje zmiennych s i t.

s, t – nowe współrzędne,

x, y – stare współrzędne.

Definiujemy wyznacznik

$$J = J(s,t) = \begin{vmatrix} \frac{dx}{ds} & \frac{dx}{dt} \\ \frac{dy}{ds} & \frac{dy}{dt} \end{vmatrix} - \underline{\text{jakobian}} \text{ przekształcenia}$$

A- obraz Dw nowych współrzędnych tzn. $(x,y)\in D \Leftrightarrow (s,t)\in A.$ Wtedy mamy wzór

$$\iint\limits_D f(x,y) \, dxdy = \iint\limits_A f(x(s,t),y(s,t)) \cdot |J| \, dsdt$$

Jest to metoda podstawienia w całce podwójnej.

Współrzędne biegunowe

Jest to szczególny przypadek podstawienia.

Współrzędne biegunowe centralne – mają środek w (0,0).

Jest to odpowiednik postaci trygonometrycznej dla liczb zespolonych:

- r odległość punktu (x, y) od środka (0,0)
- φ kat między dodatnią częścią osi X oraz półprostą łączącą środek z (x,y)

Formalne wzory

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$J = r \geqslant 0$$

$$0 \leqslant \varphi < 2\pi \quad \text{lub} \quad -\pi < \varphi \leqslant \pi$$

Obliczenie jakobianu:

$$J = J(r, \varphi) = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r \cos^2 \varphi - (-r \sin^2 \varphi) = r(\cos^2 \varphi + \sin^2 \varphi) = r \geqslant 0$$

Zatem |J| = r.

Stosujemy gdy jest dużo wyrażeń typu $x^2 + y^2 = R^2$.

Obraz zbioru D we współrzędnych biegunowych zwykle ma postać

$$A = A(r, \varphi) = \{(r, \varphi) : a \leqslant \varphi \leqslant \beta, \ d(\alpha) \leqslant r \leqslant g(\alpha)\}$$

Warunek $a \leqslant \varphi \leqslant \beta$ zwykle można wywnioskować z rysunku.

Warunek $d(\alpha) \leqslant r \leqslant g(\alpha)$ zwykle wymaga obliczeń, bo najczęściej promień zależy od kąta.

Praktyczna obserwacja: promień nie zależy od kata, gdy obszar jest

- kołem lub wycinkiem katowym o wierzchołku w (0,0)
- pierścieniem kołowym o środku w (0,0)
- sumą lub przekrojem powyższych zbiorów

Inny środek niż w (0,0) powoduje, że promień zależy od kąta

Współrzędne biegunowe przesunięte – o środku w (x_0, y_0)

- r odległość punktu (x, y) od środka (x_0, y_0) ,
- φ kąt między półprostą $y=y_0,\ x\geqslant x_0\,$ oraz półprostą łączącą środek z (x,y).

Formalne wzory

$$x = x_0 + r \cos \varphi$$

$$y = y_0 + r \sin \varphi$$

$$J = r \geqslant 0$$

$$0 \leqslant \varphi < 2\pi \quad \text{lub} \quad -\pi < \varphi \leqslant \pi$$

Stosujemy, gdy jest dużo wyrażeń typu $(x-x_0)^2 + (y-y_0)^2 = R^2$

Postać obrazu zbioru D oraz praktyczne uwagi są analogiczne do przypadku centralnego, jednak wszystko odnosimy do środka (x_0, y_0) , a nie (0,0).

Przykład

$$\iint\limits_D xy^2, \quad D: \ x^2 + y^2 \leqslant 4, \quad x \geqslant 0$$

Rysunek obszaru

- Wyznaczenie ri φ a) Z rysunku $-\frac{\pi}{2}\leqslant \varphi\leqslant \frac{\pi}{2},\ 0\leqslant r\leqslant 2$

 $r^2 \leqslant 4 \text{ oraz } r \cos \varphi \geqslant 0 \Leftrightarrow 0 \leqslant r \leqslant 2 \text{ oraz } \cos \varphi \geqslant 0.$

Dla cosinusa wygodniej brać $-\pi < \varphi \leqslant \pi$ zamiast $0 \leqslant \varphi < 2\pi$.

$$\cos \varphi \geqslant 0 \iff -\frac{\pi}{2} \leqslant \varphi \leqslant \frac{\pi}{2}$$

$$\iint_{D} xy^{2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} r \, dr \cdot r \cos \varphi \cdot (r \sin \varphi)^{2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \, \cos \varphi \sin^{2} \varphi \int_{0}^{2} r^{4} \, dr$$
$$= \frac{32}{5} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \, \cos \varphi \sin^{2} \varphi = [t = \sin \varphi] \, \frac{32}{5} \int_{-1}^{1} t^{2} \, dt = \frac{64}{15}$$

$$\iint\limits_{D} (x^2 + y^2) \, dx dy, \quad D: \ x^2 + y^2 + 2y \le 0$$

D – koło o środku w (0, -1) i promieniu 1: $x^2+(y+1)^2\leqslant 1.$ Zastosujemy 2 metody.

a) Współrzędne centralne Z rysunku widać, że $\pi \leqslant \varphi < 2\pi$:

Promień zależy od kąta bo nasze koło nie ma środka w (0,0). Po wstawieniu warunku na D:

$$r^2 + 2r\sin\varphi \leqslant 0 \; \Leftrightarrow \; r \leqslant -2\sin\varphi \quad \text{(bo } r \geqslant 0\text{) czyli } 0 \leqslant r \leqslant -2\sin\varphi$$

Jeżeli chcemy potwierdzić zasięg kąta obliczeniami to pojawia się pytanie: skąd wziąć warunek na kąt?

Zawsze jest dodatkowy (pośredni) warunek: funkcja dolna \leq funkcja górna U nas to daje

$$\begin{split} 0 \leqslant -2\sin\varphi \quad & \text{czyli} \quad \sin\varphi \leqslant 0 \quad \text{a stąd} \quad \pi \leqslant \varphi < 2\pi \\ \int\limits_{\pi}^{2\pi} d\varphi \int\limits_{0}^{-2\sin\varphi} r dr \cdot r^2 &= \int\limits_{\pi}^{2\pi} d\varphi 4 \sin^4\varphi = \dots [\text{dość długa całka}] \dots = \\ & 4 \left[\frac{3}{8}\varphi - \frac{1}{4}\sin(2\varphi) + \frac{1}{32}\sin(4\varphi) \right]_{\pi}^{2\pi} = \frac{3}{2}\pi \end{split}$$

b) Przesunięte współrzędne: środek to (0, -1). Wtedy

$$x = r \cos \varphi, \quad y = -1 + r \sin \varphi, \quad x^{2} + (y+1)^{2} = r^{2}$$

r – odległość od (0, -1), φ – kąt względem półprostej $y = -1, x \ge 0$.

To daje $0 \leqslant \varphi < 2\pi, \ 0 \leqslant r \leqslant 1.$

Dostajemy

$$\int_{0}^{2\pi} d\varphi \int_{0}^{1} r \, dr \cdot (r^{2} \cos^{2} \varphi + (-1 + r \sin \varphi)^{2}) = \int_{0}^{2\pi} d\varphi \int_{0}^{1} r \, dr \cdot (r^{2} - 2r \sin \varphi + 1)$$
$$= \int_{0}^{2\pi} d\varphi \left[\frac{1}{4} r^{2} - 2\frac{r^{3}}{3} \sin \varphi + \frac{r^{2}}{2} \right]_{0}^{1} = \int_{0}^{2\pi} d\varphi \left(\frac{3}{4} - \frac{2}{3} \sin \varphi \right) = \frac{3}{2} \pi$$

Ten sam wynik co poprzednio ale całka łatwiejsza.

Uwaga

Szczególny przypadek występuje, gdy w wewnętrznej całce (po r) ani funkcja ani granice całkowania nie zależą od kąta φ . Wtedy jest ona stała względem φ i można ją wyciągnąć na zewnątrz.

Daje to wzór typu

"długość przedziału dla kata · całka wewnętrzna"

i pozwala uprościć rachunki.

Przykład

$$\int\limits_{\frac{\pi}{3}}^{\pi}\,d\varphi\int\limits_{1}^{2}r\,dr=\frac{2}{3}\pi\int\limits_{1}^{2}r\,dr=\frac{2}{3}\pi\cdot\frac{3}{2}=\pi$$

Pole $D: |D| = \iint_{\Sigma} 1 \, dx dy$

Gdy Djest dany warunkami

$$D: a \leq x \leq b, \quad d(x) \leq y \leq q(x)$$

to dostajemy

$$\iint\limits_{D} dxdy = \int\limits_{a}^{b} dx \int\limits_{d(x)}^{g(x)} dy = \int\limits_{a}^{b} dx (g(x) - d(x)) - \text{wz\'or z AM1}$$

Zatem wzór $|D| = \iint_D 1 \, dx dy$ daje coś nowego, gdy chcemy wprowadzić nowe zmienne, np. przejść na współrzędne biegunowe.

Przykład

Wersja zadania egzaminacyjnego z 1997 roku

Na poniższym rysunku zaznaczony jest obszar pomiędzy dwoma okręgami stycznymi i linią prostą. Przy pomocy całki podwójnej obliczyć jego pole.

Okrąg zewnętrzny ma równanie $x^2 + y^2 = 4$

Okrąg wewnętrzny ma równanie $(x-1)^2+y^2=1 \iff x^2+y^2=2x$

Dowolny punkt (x, y) z danego obszaru spełnia zatem następujące warunki:

- leży po zewnętrznej stronie okręgu wewnętrznego, a stąd $x^2 + y^2 \ge 2x$
- \bullet leży po wewnętrznej stronie okręgu zewnętrznego, a stąd $~x^2+y^2\leqslant 4$
- leży pomiędzy osią X oraz prostą y=2x a stąd $0 \le y \le 2x$

We współrzędnych kartezjańskich nasz obszar jest zatem zbiorem

$$D = \{(x, y) : 2x \le x^2 + y^2 \le 4, \ 0 \le y \le 2x\}$$

Wprowadzamy współrzędne biegunowe r i φ .

Pierwszy z warunków na D prowadzi do nierówności $\,2r\cos\varphi\leqslant r^2\leqslant 4\,$

Stąd $2\cos\varphi \leqslant r \leqslant 2$

Ten warunek zachodzi dla wszystkich wartości kąta φ , bo zawsze $2\cos\varphi \leqslant 2$.

Drugi warunek oznacza, że $0 \le r \sin \varphi \le 2r \cos \varphi$.

Stąd wynika, że $\sin \varphi \geqslant 0$ oraz $\cos \varphi \geqslant 0$, a więc na pewno $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, co widać od razu z rysunku.

Ponieważ $\cos \varphi \geqslant 0$, powyższą podwójną nierówność można podzielić przez $r\cos \varphi$ tak, by sprowadzić ją do funkcji tg:

$$0 \leqslant \frac{r \sin \varphi}{r \cos \varphi} \leqslant 2 \iff 0 \leqslant \operatorname{tg} \varphi \leqslant 2$$

Ponieważ $\,\,\varphi\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right],\,$ oznacza to, że $\,\,0\leqslant\varphi\leqslantrc\operatorname{tg}2$

To jest ostateczny warunek na kat.

Można go także wywnioskować bezpośrednio z rysunku.

Zaznaczony na rysunku kąt α jest kątem nachylenia prostej y=2x do osi X zatem ma miarę arc tg 2. Jest to największa możliwa wartość φ .

Najmniejsza występuje dla punktu (2,0) i wynosi 0.

Ostatecznie, D jest obrazem zbioru

$$A = \{(r, \varphi) : 0 \leqslant \varphi \leqslant \alpha = \operatorname{arctg} 2, \ 2 \cos \varphi \leqslant r \leqslant 2\}$$

To daje

$$|D| = \iint\limits_{D} 1 \, dx dy = \int\limits_{0}^{a} d\varphi \int\limits_{2\cos\varphi}^{2} r \, dr \cdot 1 = \int\limits_{0}^{\alpha} d\varphi \left[\frac{r^{2}}{2} \right]_{2\cos\varphi}^{2} = \int\limits_{0}^{\alpha} d\varphi (2 - 2\cos^{2}\varphi) = \int\limits_{0}^{\alpha} d\varphi (2 - 2\cos\varphi) =$$

$$2\int_{0}^{\alpha} (1-\cos^{2}\varphi) \,d\varphi = 2\int_{0}^{\alpha} \sin^{2}\varphi \,d\varphi = 2\left[\frac{1}{2}\varphi - \frac{1}{4}\sin(2\varphi)\right]_{0}^{\alpha} = \alpha - \frac{1}{2}\sin(2\alpha) = \alpha$$

$$\operatorname{arc} \operatorname{tg} 2 - \frac{1}{2} \sin(2 \operatorname{arc} \operatorname{tg} 2)$$

Wynik ten można nieco uprościć wiedząc, że $\operatorname{tg}\alpha=2$ i korzystając z tożsamości $\sin(2\alpha)=\frac{2\operatorname{tg}\alpha}{1+\operatorname{tg}^2\alpha},$ co daje $\sin(2\alpha)=\frac{4}{5}.$

Ostatecznie

$$|D| = \operatorname{arctg} 2 - \frac{2}{5}$$

Zadanie dodatkowe: obliczyć to pole korzystając bezpośrednio z geometrii, analizując pola odpowiednich wycinków kołowych oraz trójkątów.

Definicja

Wartość średnia funkcji na zbiorze D:

$$f_{\text{\'{sr}}} = \frac{\iint\limits_{D} f(x, y) \, dx dy}{\text{pole } D}$$

Gdy wybierzemy n punktów $P_1, P_2, ..., P_n \in D$ to średnia arytmetyczna wartości funkcji f w tych punktach dąży do $f_{\text{śr}}$ jeżeli $n \to \infty$. Stąd dla dużych n mamy przybliżenie

$$\frac{f(P_1) + f(P_2) + \dots + f(P_n)}{n} \approx f_{\text{sr}}$$

Stosuje się to w statystyce oraz przy próbkowaniu wartości funkcji.

Definicja

Objętość bryły U danej warunkami

$$U:(x,y)\in D,\ d(x,y)\leqslant z\leqslant g(x,y)$$

Interpretacja – bryła o ścianach "pionowych" (równoległych do osi Z), o "suficie" danym przez funkcję g oraz "podłodze" danej przez funkcję d.

Zbiór D to rzut bryły na płaszczyznę XY.

Wtedy objętość U dana jest wzorem

$$|U| = \iint_D (g(x,y) - d(x,y)) dxdy$$
 – analogicznie jak dla pola w AM1

Przykład

Objętość bryły danej warunkiem

$$U = \left\{ (x, y, z) : x^2 + y^2 \le 4, \ y \ge 2x, \ 0 \le z \le \frac{1}{(5 + \sqrt{x^2 + y^2})^2} \right\}$$

Rzut bryły na XY:

Zaznaczony na rysunku kąt α ma miarę $\arctan tg \ 2.$

Współrzędne biegunowe centralne dają zatem:

$$0 \le r \le 2$$
, $\operatorname{arctg} 2 \le \varphi \le \operatorname{arctg} 2 + \pi$

Dostajemy

$$|U| = \iint_{D} \left(\frac{1}{\left(5 + \sqrt{x^2 + y^2}\right)^2} - 0 \right) dx dy = \int_{\arctan tg \, 2}^{\arctan tg \, 2 + \pi} d\varphi \int_{0}^{2} r \, dr \cdot \frac{1}{(5 + r)^2} = \pi \int_{0}^{2} \frac{r}{(5 + r)^2} \, dr = \pi \int_{0}^{2} \frac{r}{(5 + r)^2} \, dr = \pi \int_{0}^{2} \frac{1}{(5 + r)} - \frac{5}{(5 + r)^2} \, dr = \pi \left[\ln|r + 5| + \frac{5}{r + 5} \right]_{0}^{2} = \pi \left(\ln 7 + \frac{5}{7} - \ln 5 - 1 \right)$$

Definicja

Pole powierzchni płata krzywoliniowego

$$z = f(x, y), \quad (x, y) \in D$$

Wzór jest analogiczny do długości krzywej $y = f(x), a \le x \le b$ (AM1)

Pole =
$$\left|\sum\right| = \iint\limits_{D} \sqrt{1 + f_x^2 + f_y^2} \, dx dy$$

Przykład

Powierzchnia boczna stożka o promieniu podstawy r i wysokości h.

Sami ustawiamy stożek w układzie współrzędnych.

Najłatwiejsze rozwiązania wychodzą, gdy wierzchołek będzie w początku układu współrzędnych, a oś symetrii stożka pokryje się z dodatnią częścią osi Z.

Wtedy powierzchnia boczna będzie dana równaniem

$$z = f(x, y) = \frac{h}{r} \sqrt{x^2 + y^2}$$

Zatem

$$f_x = \frac{h}{r} \cdot \frac{1}{2\sqrt{x^2 + y^2}} \cdot 2x = \frac{h}{r} \cdot \frac{x}{\sqrt{x^2 + y^2}}$$
 oraz $f_y = \frac{h}{r} \cdot \frac{y}{\sqrt{x^2 + y^2}}$

To daje

$$\sqrt{1 + f_x^2 + f_y^2} = \sqrt{1 + \frac{h^2}{r^2} \cdot \frac{x^2}{x^2 + y^2} + \frac{h^2}{r^2} \cdot \frac{y^2}{x^2 + y^2}} = \sqrt{1 + \frac{h^2}{r^2}} = \frac{\sqrt{r^2 + h^2}}{r} = \frac{l}{r}, \quad \text{gdzie} \quad t = \sqrt{r^2 + h^2}$$

Rzutem tej powierzchni na płaszczyznę jest D – koło o środku w (0,0) i promieniu r. Pole tej powierzchni wynosi zatem

$$|\sum|=\iint\limits_{D}\frac{l}{r}\,dxdy=\frac{l}{r}\iint\limits_{D}1\,dxdy=\frac{l}{r}|D|=\frac{l}{r}\cdot\pi r^2=\pi rl$$

Zastosowania całek podwójnych w mechanice

Środek masy (ciężkości) obszaru jednorodnego.

Gęstość obszaru jest stała i jest to masa / pole. Ten środek to punkt $S=(x_c,y_c)$.

Wypadkowy moment statyczny względem tego środka wynosi 0.

To prowadzi do wzorów dla obszaru płaskiego D:

$$x_c = \frac{\iint\limits_{D} x \, dx dy}{\text{pole } D}, \quad y_c = \frac{\iint\limits_{D} y \, dx dy}{\text{pole } D}$$

Dodatkowo, gdy obszar ma oś symetrii to środek masy leży na tej osi.

Przykład

Środek masy jednorodnego półkoła o promienu R.

$$|D| = \frac{1}{2}\pi R^2$$
, a z symetrii mamy $x_c = 0$.

Liczymy

$$\iint_{D} y \, dx dy = \int_{-R}^{R} dx \int_{0}^{\sqrt{R^{2} - x^{2}}} y \, dy = \int_{-R}^{R} dx \left[\frac{1}{2} y^{2} \right]_{0}^{\sqrt{R^{2} - r^{2}}} = \int_{-R}^{R} dx \left(\frac{1}{2} (R^{2} - x^{2}) \right) = \left[\frac{1}{2} R^{2} x - \frac{1}{6} x^{3} \right]_{-R}^{R} = \frac{2}{3} R^{3}$$

Stad

$$y_c = \frac{\frac{2}{3}R^3}{\frac{1}{2}\pi R^2} = \frac{4}{3\pi}R = 0,4244R$$

Moment bezwładności obszarów jednorodnych o masie M.

Jest to wielkość fizyczna wiążąca prędkość kątową w ruchu obrotowym obszaru wokół osi / punktu oraz energię kinetyczną tego obszaru.

Dla masy punktowej m jest to wielkość:

$m \cdot (odległość od osi obrotu/środka obrotu)^2$

Dla obszaru płaskiego D o masie M dostajemy wzory

$$I_X = \frac{M}{\text{pole }D} \iint_D y^2 \, dx dy \quad - \text{moment względem osi} X$$

$$I_Y = \frac{M}{\text{pole }D} \iint_D x^2 \, dx dy \quad - \text{moment względem osi} Y$$

$$I_O = \frac{M}{\text{pole }D} \iint_D (x^2 + y^2) \, dx dy \quad - \text{względem środka układu}$$

Uzasadnienie wzoru na I_X .

Przybliżamy D poprzez n rozłącznych prostokątów o bokach poziomych o długości Δx_i i bokach pionowych o długościach Δy_i , i = 1, 2, ..., n. Prostokąty te przybliżają masę punktową $m = m(x_i, y_i)$ skupioną w punkcie (x_i, y_i) .

Ponieważ obszar jest jednorodny to masa jest proporcjonalna do pola prostokąta i wynosi gęstość \cdot pole prostokąta czyli

$$m(x_i, y_i) = \frac{M}{|D|} \cdot \Delta x_i \cdot \Delta y_i$$

Odległość punktu (x_i, y_i) od osi X jest równa $|y_i|$ czyli kwadrat odległości to y_i^2 . Stąd moment bezwładności tego prostokąta względem osi X to

$$I_i = \frac{M}{|D|} \cdot \Delta x_i \cdot \Delta y_i \cdot y_i^2$$

Wypadkowy moment bezwładności dla sumy prostokątów jest sumą takich iloczynów dla prostokątów przybliżających D. Wynosi zatem

$$S_n = \sum_{i=1}^n \frac{M}{|D|} \cdot \Delta x_i \cdot \Delta y_i \cdot y_i^2 = \sum_{i=1}^n \Delta x_i, \Delta y_i \cdot f(x_i, y_i) \quad \text{gdzie} \quad f(x_i, y_i) = \frac{M}{|D|} \cdot y_i^2$$

Jest to suma Riemanna dla funkcji $f(x,y) = \frac{M}{|D|} \cdot y^2$ na obszarze D.

Biorąc zatem $n\to\infty,~\Delta x_i\to 0,~\Delta y_i\to 0,~$ w granicy dostajemy moment bezwładności obszaru D i jest on równy

$$I_X = \lim_{n \to \infty} S_n = \iint_D \frac{M}{|D|} y^2 \, dx \, dy$$

Przykład

Moment bezwładności jednorodnego trójkąta o bokach 2, 3, 3, masie M, względem jego osi symetrii.

Sami umieszczamy trójkąt w układzie.

Najprostsze równania boków będą dla wierzchołka w początku układu i wysokości wzdłuż osi X.

Równania odcinków ukośnych dla brzegu:

$$y = \pm \frac{1}{2\sqrt{2}}x, \quad 0 \leqslant x \leqslant 2\sqrt{2}$$

Zatem

$$D: 0 \leqslant x \leqslant 2\sqrt{2}, \quad -\frac{1}{2\sqrt{2}} \leqslant y \leqslant \frac{1}{2\sqrt{2}}x$$

Stad

$$\iint\limits_{D} y^{2} dx dy = \int\limits_{0}^{2\sqrt{2}} dx \int\limits_{-\frac{1}{2\sqrt{2}}x}^{\frac{1}{2\sqrt{2}}x} y^{2} dy = \int\limits_{0}^{2\sqrt{2}} dx \cdot \frac{1}{3 \cdot 8\sqrt{2}} x^{3} = \frac{1}{3 \cdot 8\sqrt{2}} \cdot \frac{1}{4} \cdot 64 = \frac{2}{3\sqrt{2}}$$

Czyli

$$I_X = \frac{M}{2\sqrt{2}} \cdot \frac{2}{3\sqrt{2}} = \frac{1}{6}M$$

Zadanie dodatkowe: obliczyć moment bezwładności dla tego samego trójkąta ale tym razem względem boku o długości 2.

7 Transformata Laplace'a

Definicja

Dana jest funkcja f określona i całkowalna na półprostej $[0, \infty)$. Transformata Laplace'a funkcji f to funkcja

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt$$

a jej dziedziną jest zbiór tych s dla których powyższa całka jest zbieżna.

Przykład

Dla funkcji stałej f=1 mamy dla s>0

$$F(s) = \int_{0}^{\infty} e^{-st} \cdot 1 \, dt = \lim_{T \to \infty} \int_{0}^{T} e^{-st} \, dt = \lim_{T \to \infty} \left[\frac{e^{-st}}{-s} \right]_{0}^{T} = \lim_{T \to \infty} \left(\frac{e^{-sT}}{-s} + \frac{1}{s} \right) = \frac{1}{s}$$

Natomiast dla $s \leq 0$ ta całka jest rozbieżna. Stąd $D_F = (0, \infty)$.

Z kolei funkcja $f(t)=e^{t^2}$ nie posiada transformaty Laplace'a, gdyż "rośnie zbyt szybko" - całka

$$\int_{0}^{\infty} e^{-st} \cdot e^{t^2} dt = \int_{0}^{\infty} e^{t^2 - st} dt$$

jest rozbieżna do ∞ dla wszystkich s.

Popularnymi funkcjami dla których transformata Laplace'a istnieje są funkcje spełniające warunki poniższego twierdzenia.

Twierdzenie

Zakładamy, że funkcja f określona na półprostej $[0,\infty)$ spełnia poniższe warunki.

- 1. Na każdym przedziale postaci [0,T] jest ciągła lub ma skończoną ilośc punktów nieciągłości i nieciągłości te są pierwszego rodzaju
- 2. $\exists C, \ \alpha > 0 \ \forall t \geqslant 0 \ |f(t)| \leqslant Ce^{\alpha i}$

Wtedy dla $s > \alpha$ istnieje transformata Laplace'a funkcji f.

Funkcja spełniająca powyższe dwa warunki jest nazywana <u>oryginałem</u>, a jej transformata – <u>obrazem</u> f.

Popularne funkcje i ich transformaty Laplace'a

9	60
f	${\mathscr L}$
$C, C \in \mathbb{R}$	C
$\mathcal{O}, \mathcal{O} \subset \mathbb{R}$	$\frac{C}{s}$
	s
'w - vi	n!
$t^n, n \in \mathbb{N}$	
	$\overline{s^{n+1}}$
	1
$e^{lpha t}$	1
Ŭ	${s-\alpha}$
-: (04)	$\frac{\beta}{s^2 + \beta^2}$
$\sin(\beta t)$	9
	$s^2 + \beta^2$
())	S
$\cos(\beta t)$	
	$\overline{s^2 + \beta^2}$
$\sinh(\beta t)$	$\frac{\beta}{s^2 - \beta^2}$
$Simi(\rho t)$	${2}$ Ω^2
	$s^2 - \beta^2$
1 (01)	S
$\cosh(\beta t)$	$s^2 - \beta^2$
	$S^2-\beta^2$
,	m l
$t^n e^{\alpha t}, \ n \in \mathbb{N}$	n!
, –	$\overline{(s-\alpha)^{n+1}}$
	(v a)
$e^{\alpha t}\sin(\beta t)$	β
$e^{-\sin(\beta t)}$	$\frac{1}{(1-x^2)^2+(2x^2)^2}$
	$\overline{(s-\alpha)^2+\beta^2}$
ot (2)	$s-\alpha$
$e^{\alpha t}\cos(\beta t)$	
	$\overline{(s-\alpha)^2+\beta^2}$
	, , ,

Dziedziny tych transformat to odpowiednie półproste

Podstawowe własności transformaty Laplace'a

Własności

Zakładamy, że dla funkcji f i g istnieją ich obrazy $Lf = L\{f\} = \mathcal{L}\{f(t)\}$ oraz $Lg = L\{g\} = \mathcal{L}\{g(t)\}$.

Wtedy zachodzą własności opisane poniżej

- 1. (jednoznaczność) Gdy f i g są ciągłe i Lf = Lg to f = g.
- 2. (liniowość) $L\{f\pm g\}=Lf\pm Lg$ oraz $L\{c\cdot f\}=c\cdot Lf,\ c\in\mathbb{R}.$
- 3. (skalowanie) Jeżeli $g(t) = f(at), \ a \neq 0, \text{ to } Lg(s) = \frac{1}{a}Lf\left(\frac{s}{a}\right).$
- 4. (przesunięcie obrazu) Jeżeli $g(t) = e^{at}$ to $L\{f \cdot g\}(s) = Lf(s-a)$.
- 5. (przesunięcie oryginału) Jeżeli dla a > 0

$$g(t) = \begin{cases} f(t-a), t \geqslant a \\ 0, \ t < a \end{cases}$$

to
$$Lg(s) = e^{-as} Lf(s)$$

- 6. (pochodna obrazu) Jeżeli $g(t)=t^n\cdot f(t),\ n\in\mathbb{N}^+$ to $Lg(s)=(-1)^n(Lf)^{(n)}(s).$
- 7. (transformata całki) Jeżeli $g(t)=\int\limits_0^t f(u)\,du$ to
 $Lg(s)=\frac{1}{s}Lf(s).$
- 8. (transformata pochodnej) Opisana jest poniżej, jako osobne twierdzenie

Twierdzenie - Transformata pochodnej

Niech $n \in \mathbb{N}^+$. Zakładamy, że na $(0, \infty)$ istnieje $f^{(n)}$ i jest ciągła oraz funkcje $f, f', f'', ..., f^{(n-1)}$ są oryginałami mają skończone granice prawostronne w 0:

$$f(0^{+}) = \lim_{x \to 0^{+}} f(t)$$

$$f'(0^{+}) = \lim_{x \to 0^{+}} f'(t)$$

$$\vdots$$

$$f^{(n-1)}(0^{+}) = \lim_{x \to 0^{+}} f^{(n-1)}(t)$$

Wtedy zachodza wzory:

$$Lf''(s) = sLf(s) - f(0^{+})$$

$$Lf''(s) = s^{2}Lf(s) - sf(0^{+}) - f'(0^{+})$$

$$Lf^{(3)}(s) = s^{3}Lf(s) - s^{2}f(0^{+}) - sf'(0^{+}) - f''(0^{+})$$

$$Lf^{(n)} = s^{n}Lf(s) - s^{n-1}f(0^{+}) - s^{n-2}f'(0^{+}) - \dots - sf^{(n-2)}(0^{+}) - f^{(n-1)}(0)$$

W szczególności, gdy $f, f', f'', ..., f^{(n-1)}$ są ciągłe w 0 to ich granice prawostronne w 0 mogą być zastąpione przez wartości w 0:

$$Lf''(s) = sLf(s) - f(0)$$

$$Lf''(s) = s^{2}Lf(s) - sf(0) - f'(0)$$

$$\vdots$$

$$Lf^{(n)}(s) = s^{n}Lf(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}f(0)$$

Uwaga

Wzór wynika z całkowania przez części i jest regularny. W odejmowanych iloczynach postaci "potęga s \cdot pochodna w 0" zmniejszamy wkładnik s o 1 i jednocześnie zwiększamy rząd pochodnej o 1. Suma wykładnika dla s i rzędu pochodnej w 0 jest stała i wynosi n-1.

Bez obliczania całek znaleźć transformaty poniższych funkcji

Przykład

1.
$$f(t) = t^2 + 3t - 1$$

Tutaj

$$Lf(s) = L\{t^2\} + L\{3t\} - L\{1\} = \frac{2!}{s^3} + 3L\{t\} - \frac{1}{s} = \frac{2}{s^3} + 3 \cdot \frac{1!}{s^2} - \frac{1}{s} = \frac{2+3s-s^2}{s^3}$$

2.
$$f(t) = \sin\left(t + \frac{\pi}{4}\right)$$

Wtedy

$$Lf(s) = L\left\{\frac{\sqrt{2}}{2}(\sin t + \cos t)\right\} = \frac{\sqrt{2}}{2}(L\{\sin t\} + L\{\cos t\}) = \frac{\sqrt{2}}{2}\left(\frac{1}{s^2 + 1} + \frac{s}{s^2 + 1}\right)$$

Analogicznie postępujemy z innymi funkcjami postaci $\sin(t \pm \alpha)$ lub $\cos(t \pm \alpha)$.

Przykład

3.
$$f(t) = \cos^2 t$$

Mamy wzór $\cos^2 t = \frac{1}{2} + \frac{1}{2}\cos(2t)$

$$Lf(s) = L\frac{1}{2} + \frac{1}{2}L\{\cos(2t)\} = \frac{1}{2} \cdot \frac{1}{s} + \frac{1}{2} \cdot \frac{s}{s^2 + 2^2} = \frac{1}{2}\left(\frac{1}{s} + \frac{s}{s^2 + 4}\right)$$

Przykład

4.
$$f(t) = t^2 \sin t$$

Ponieważ $L\{\sin t\} = \frac{1}{s^2 + 1}$ to zgodnie ze wzorem na pochodną obrazu dostajemy

$$L\{t^2 \sin t\}(s) = (-1)^2 \cdot (L\{\sin t\})''(s) = \left(\frac{1}{s^2 + 1}\right)'' = \frac{2s^2 - 2}{(s^2 + 1)^3}$$

Teraz na przykład odwrotną operację – znaleźć f mając daną jej transformatę.

Przykład

1.
$$Lf(s) = \frac{s}{s^2 - 4}$$

1. $Lf(s) = \frac{s}{s^2-4}$ Wzór jest postaci $\frac{s}{s^2-\text{liczba}>0}$ więc jest związany z funkcją cosh:

$$L\{\cos(\beta t)\} = \frac{s}{s^2 - \beta^2}$$

Mamy zatem bezpośrednio $Lf(s) = \frac{s}{s^2 - 2^2}$, a stąd $f(t) = \cosh(2t)$.

2.
$$Lf(s) = \frac{1}{s^2 + 5}$$

Wzór jest postaci $\frac{\text{stała}}{s^2 + \text{liczba} > 0}$ więc powinien być związany z sinusem, bo $L\{\sin(\beta t)\} = \frac{\beta}{s^2 + \beta^2}$

$$L\{\sin(\beta t)\} = \frac{\beta}{s^2 + \beta^2}$$

Poprzez dopasowanie mamy

$$Lf(s) = \frac{1}{s^2 + 5} = \frac{1}{s^2 + (\sqrt{5})^2} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{s^2 + (\sqrt{5})^2}$$

Stad $\beta = \sqrt{5}$ oraz $f(t) = \frac{1}{\sqrt{5}}\sin(t\sqrt{5})$.

Przykład

3.
$$Lf(s) = \frac{1}{s^6}$$

Wzór jest postaci $\frac{\text{stała}}{s^k}$, $k \in \mathbb{N}$. Zatem powinien być związany z wielomianem bo

$$L\{t^n\} = \frac{n!}{s^{n+1}}$$

U nas n+1=6 i przez dopasowanie mamy

$$Lf(s) = \frac{1}{s^6} = \frac{1}{5!} \cdot \frac{5!}{s^{5+1}}$$

Stad
$$f(t) = \frac{1}{5!}t^5 = \frac{1}{120}t^5$$
.

<u>Przykła</u>d

4.
$$Lf(s) = \frac{2s-3}{s^2+6s+13}$$

Mianownik nie ma pierwiastków więc jest to ułamek prosty drugiego rodzaju z czynnikiem jednokrotnym w mianowniku. Jest on zawsze trasnformatą funkcji typu

$$f(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t)), \text{ gdzie } \alpha, \beta, A, B \in \mathbb{R}$$

Niektóre z tych stałych mogą być równe 0 i wtedy funkcja jest prostsza. Aby odtworzyć f trzeba na początek zapisać mianownik w postaci kanonicznej

$$(s-\alpha)^2 + \beta^2$$

Następnie licznik zapisujemy w postaci

$$L = A(s - \alpha) + B\beta$$

To pozwala rozbić ułamek na 2 części i wyznaczyć f:

$$\frac{L}{(s-\alpha)^2 + \beta^2} = \frac{A(s-\alpha) + B\beta}{(s-\alpha)^2 + \beta^2} = A\frac{s-\alpha}{(s-\alpha)^2 + \beta^2} + B\frac{\beta}{(s-\alpha)^2 + \beta^2}$$

co daje wspomnianą funkcję $f(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t))$. W naszym przykładzie mamy

$$s^{2} + 6s + 13 = (s+3)^{2} + 4 = (s-(-3))^{2} + 2^{2}$$

Stąd $\alpha = -3$, $\beta = 2$ Dalej,

$$2s - 3 = A(s + 3) + B \cdot 2 = As + 3A + 2B$$
 co daje $A = 2, B = -\frac{9}{2}$

Zatem

$$f(t) = e^{-3} \left(2\cos(2t) - \frac{9}{2}\sin(2t) \right)$$

Uwaga

Ułamki proste drugiego rodzaju z mianownikiem o krotności k>1 wymagają k-1 pochodnej z ułamków z czynnikiem jednokrotnym, co jest związane z pochodną transformaty i mnożeniem funkcji przez t^{k-1} .

Operacje opisane w powyższych przykładach najczęsciej pojawiają się przy jednym z najbardziej popularnych zastosowań transformaty Laplace'a – rozwiązywania pewnych typów równań różniczkowych.