CS 377: Database Systems

Homework #3 Solutions

1. Functional Dependencies (10 + 4 points):

Consider the following relation:

Tuple #	A	В	С
1	10	b1	c1
2	10	b2	c2
3	11	b4	c1
4	12	b3	c4
5	13	b1	c1
6	14	b3	c4

- (a) Given the above database content, which of the following functional dependencies **may hold** in the above relation. If the functional dependency is invalid, explain why by specifying the tuples that cause the violation.
 - i. $A \rightarrow B$
 - ii. $B \to C$
 - iii. $C \rightarrow B$
 - iv. $B \to A$
 - v. $C \rightarrow A$
- (b) Does the above relation have a potential candidate key that does not include all attributes in the relation? If it does, what is it? If it does not, why not?

(ANSWER)

- (a) i. CANNOT HOLD. Tuples 1 and 2 have the same value for attribute A but different values for B.
 - ii. MAY HOLD. For the tuples that have the same value for attribute B (1 and 5, 4 and 6), the same values are present for C.
 - iii. CANNOT HOLD. Tuples 1,3, and 5 have the same value for attribute C (c1), but different values for B (b1 and b4).
 - iv. CANNOT HOLD. Tuples 1 and 6 have the same value for attribute B (b1), but different values of A (10, 13).
 - v. CANNOT HOLD. Tuples 1 and 5 have the same value for attribute C (c1), but different values of A (10, 13).
- (b) Potential keys are (A, B) and (A, C). (B,C) is not a potential key because of the tuples: (10, b1, c1) and (13, b1, c1).

2. Closures & Keys (10 + 3 points): Consider a relation:

with the following dependencies:

- $A \rightarrow B, C$
- C, D \rightarrow E
- \bullet B \to D
- $E \rightarrow A$
- (a) Compute the closures of all the functional dependencies
- (b) List all the candidate keys for R

(ANSWER)

- (a) $\bullet \{A\}^+ = \{A, B, C, D, E\}$
 - $\{C, D\}^+ = \{A, B, C, D, E\}$
 - $\{B\}^+ = \{D, B\}$
 - $\{E\}^+ = \{A, B, C, D, E\}$
- (b) From the previous part, we've identified at least three superkeys. Since A and E only have a single attribute, they must be keys. Next we look at $\{C, D\}^+$. We find the closures of both $\{C\}^+$ and $\{D\}^+$, and note that they do not contain all the attributes. Thus (C, D) must also be key. The remaining one is $\{B\}^+$, which is missing A, C, E. Since A and E are keys, we try C. Since $\{B, C\}^+ = \{A, B, C, D, E\}$, we have found another key. Thus the candidate keys are (A), (B, C), (C, D), and (E).
- 3. Dynamite Database BCNF Normalization (5 + 5 + 15): Youre designing a database for an online gaming service named Dynamite. The database should hold customer information, game information and sales. Consider the game sales relation with a schema and functional dependencies as follows:

R(saleID, saleTime, gameTitle, gamePublisher, publisherCutPercent, quantity, price, customerID, address, creditCardNo)

- gameTitle \rightarrow price
- gameTitle \rightarrow gamePublisher
- gamePublisher \rightarrow publisherCutPercent
- customerID \rightarrow address
- $customerID \rightarrow creditCardNo$
- saleID → saleTime, gameTitle, quantity, price, customerID
- (a) What are the key(s) of the relation?
- (b) Which of these functional dependencies violate BCNF?

(c) Decompose the relation to obtain a lossless decomposition of R that are in BCNF. Make sure it is clear what the keys are for each relation.

(ANSWER)

- (a) Compute the base set which is saleID. Note that saleID is a key, so we are done.
- (b) Check all the functional dependencies.
 - gameTitle \rightarrow price is a violation as gameTitle is not a key.
 - gameTitle \rightarrow gamePublisher is a violation as gameTitle is not a key.
 - gamePublisher → publisherCutPercent is a violation as gamePublisher is not a key.
 - customerID \rightarrow address is a violation as customerID is not a key.
 - customerID \rightarrow creditCardNo is a violation as customerID is not a key.
 - ullet saleID \to saleTime, gameTitle, quantity, price, customerID is okay as saleID is a key.
- (c) We will use the previous part to decompose our relation.
 - gameTitle → price is a violation and {gameTitle}⁺ = gameTitle, price, gamePublisher, publisherCutPercent. We create a new relation R1(gameTitle, price, gamePublisher, publisherCutPercent) and R2(saleID, gameTitle, saleTime, quantity, customerID, address, creditCardNo).
 - Check functional dependencies against R1. Note that gamePublisher → publisher-CutPercent is a violation as both are non-key attributes. Thus we want to break it up again by finding {gamePublisher} + gamePublisher, publisherCutPercent. This yields R11(gamePublisher, publisherCutPercent) and R12(gameTitle, price, gamePublisher).
 - Check R11 and R12 for BCNF. It seems okay with the other functional dependencies.
 - Check R2. customerID → address is a violation and {customerID}⁺ = customerID, address, creditCardNo. We create a new relation R21(<u>customerID</u>, address, creditCardNo) and R22(<u>saleID</u>, gameTitle, customerID, saleTime, quantity).
 - We check the FDs against R21 and R22 for BCNF violation. None, so we are done.

Thus the resulting decomposition and relations are

- R11(gamePublisher, publisherCutPercent)
- R12(gameTitle, price, gamePublisher)
- R21(customerID, address, creditCardNo)
- R22(saleID, gameTitle, customerID, saleTime, quantity)
- 4. **3NF & BCNF** (10 + 8 + 10 + 15 + 5 points):

Consider the following relation:

and the following dependencies:

- $B \rightarrow C, D$
- B, $F \rightarrow H$

- $C \rightarrow A, G$
- C, E, H \rightarrow F
- C, H \rightarrow B
- (a) What are the key(s) of the relation?
- (b) Which of these functional dependencies violate 3NF? What about BCNF?
- (c) Decompose the relation to obtain a lossless decomposition of R that are in 3NF. Make sure it is clear what the keys are for each relation.
- (d) Decompose the relation to obtain a lossless decomposition of R that are in BCNF. Make sure it is clear what the keys are for each relation.
- (e) Is the resulting decomposition functional dependency-preserving? Explain why it does or does not.

(ANSWER)

- (a) We will illustrate the first heuristic to figure out the keys. Find the closure of each of the FDs.
 - $\{B\}^+ = B, C, D, A, G$
 - $\{B, F\}^+ = B, C, D, A, G, H, F$
 - $\{C\}^+ = C, A, G$
 - $\{C, E, H\}^+ = C, E, H, F, A, G, B, D$
 - $\{C, H\}^+ = C, H, B, A, G, D$

Second step is to add / subtract based on the closure of each set. So for the first one $\{B\}^+$, we are missing E, F, and H.

- Add E: $\{B, E\}^+ = B, C, D, A, G, E$
- Add F: $\{B, F\}^+ = B, C, D, A, G, H, F$
- Add H: $\{B, H\}^+ = B, C, D, A, G, H$
- Add E, F: $\{B, E, F\}^+ = B, C, D, A, G, H, F, E$ which is a key!
- Add E, H: $\{B, E, H\}^+ = B, C, D, A, G, E, H, F$ which is also a key!

We can skip the second closure set (covered by the previous one) and move onto the third one $\{C\}^+$, which is missing B, D, E, F, H.

- Add B: $\{C, B\}^+ = C, A, G, B, D$
- Add D: $\{C, D\}^+ = C, A, G, D$
- Add E: $\{C, E\}^+ = C, A, G, E$
- Add F: $\{C, F\}^+ = C, A, G, F$
- Add H: $\{C, H\}^+ = C, H, B, A, G, D$
- Add B, E: $\{C, B, E\}^+ = C, A, G, B, D, E$
- Add B, F: $\{C, B, F\}^+ = C, A, G, B, D, F, H$
- Add D, E: $\{C, D, E\}^+ = C, A, G, D, E$
- Add D, F: $\{C, D, F\}^+ = C, A, G, D, F, B, H$
- Add D, H: $\{C, D, H\}^+ = C, A, G, D, H, B$

- Add E, F: $\{C, E, F\}^+ = C, A, G, E, F$
- Add E, H: $\{C, E, H\}^+ = C, E, H, F, A, G, B, H$ which means this is a key!
- Add F, H: $\{C, F, H\}^+ = C, H, B, A, G, D, F$
- Add B, E, F: {C, B, E, F}⁺ which would be a superkey from (B,E,F), so we ignore this one.
- Add D, E, F: $\{C, D, E, F\}^+ = C, A, G, D, E, F$
- Add D, E, H: {C, D, E, H}⁺ which would be a superkey from (C, E, H) so skip.

Since the fourth one was proved to be a key, we can skip this and goto the last one. Note that since we enumerated C, H and the various ones, we can also skip this as well. Thus we found 3 keys, (B, E, F), (B, E, H), and (C, E, H).

- (b) BCNF requires that we check all the functional dependencies.
 - D is not a prime attribute and B is a part of a key so it violates 3NF and BCNF.
 - B, F is a part of a key, but not a key itself, so it violates BCNF. Note this one does not violate 3NF as H is a prime attribute.
 - A and G are not prime attributes and C is a part of a key. Thus it violates both 3NF and BCNF.
 - (C, E, H) is okay since it is a key.
 - C, H, is also part of a key while B is a prime attribute and thus violates BCNF but not 3NF.
- (c) We will use the previous part (b) to decompose our relation.
 - B \rightarrow C, D is a violation and {B}⁺ = B, C, D, A, G so we obtain two relations R1(A, B, C, D, G) and R2(B, E, F, H)
 - Check the FDs against R1. $C \to A$, G is a violation of BCNF form. Thus we split R1 into two further relations: R11(\underline{C} , A, G) and R12 (\underline{B} , C, D).
 - Check R11 against the FDs, note that they are okay, so R11 is BCNF.
 - Check R12 against the FDs, and since they are also okay, R12 is also BCNF.
 - Check R2 against the FDs and no FDs are bad. So done!

Thus, the resulting decomposition is: $R11(\underline{C}, A, G)$, $R12(\underline{B}, C, D)$, R2(B, E, F, H) with keys (B, E, F) and (B, E, H).

- (d) We will use the previous part (b) to decompose our relation.
 - B \rightarrow C, D is a violation and {B}⁺ = B, C, D, A, G so we obtain two relations R1(A, B, C, D, G) and R2(B, E, F, H)
 - Check the FDs against R1. $C \to A$, G is a violation of BCNF form. Thus we split R1 into two further relations: R11(\underline{C} , A, G) and R12 (\underline{B} , C, D).
 - Check R11 against the FDs, note that they are okay, so R11 is BCNF.
 - Check R12 against the FDs, and since they are also okay, R12 is also BCNF.
 - Check R2 against the FDs and note that B, F \rightarrow H is a violation of BCNF. Decompose R2 into two further relations, R21(\underline{B} , \underline{F} , H) and R22(\underline{B} , \underline{E} , \underline{F}).
 - Check R21 against the FDs, note that they are okay, so R21 is BCNF.
 - Check R22 against the FDs, note that they are okay, so R22 is BCNF.

- Thus, the resulting decomposition is: $R11(\underline{C}, A, G)$, $R12(\underline{B}, C, D)$, $R21(\underline{B}, \underline{F}, H)$ and $R22(\underline{B}, \underline{E}, \underline{F})$.
- (e) Note that our BCNF decomposition from above does not preserve all the functional dependencies. For the first three functional dependencies, there is a relation that includes all of the functional dependencies attributes, ensuring that the functional dependency is preserved. However, at least one functional dependency is not preserved: C, E, $H \rightarrow F$. Note that we can construct a valid instance of the relations that when joined does not preserve the functional dependency. For example:

The natural join of the four tables yields the following:

Note that in the resulting table, the relation violates the functional dependency C, E, H \to F and C, H \to B.