AVALIAÇÃO DO COMPORTAMENTO DE ACIDULANTES EM DIFERENTES TECIDOS VEGETAIS

Mariany Cruz Alves da SILVA (1); Luciana Cavalcanti de AZEVEDO (2); Andressa dos Anjos MARTINS (3); Dayana Gomes de SOUZA (4); João Castro LUBARINO (5)

- (1) IF SERTÃO-PE, Coordenação de Tecnologia em Alimentos, Campus Petrolina, BR 407, Km 08, Jardim São Paulo, s/n, CEP 56.414-520, (87) 3863-2330, Petrolina-PE, e-mail: mariany_lb@hotmail.com
 - (2) IF SERTÃO-PE, lucianac.azevedo@hotmail.com
 - (3) IF SERTÃO-PE, andressam.13@hotmail.com
 - (4) IF SERTÃO-PE, dayafof@hotmail.com

RESUMO

Os acidulantes são aditivos alimentares utilizados principalmente com a finalidade de controlar o pH do alimento e diminuir a resistência dos microorganismos ao calor, especialmente quando o pH do alimento é ajustado para valores inferiores ao pH de segurança (4,5). A escolha do ácido apropriado para qualquer aplicação específica em alimentos depende de fatores como: custo, interferência no *flavor*, poder acidulante e propriedades físicas e químicas que lhe são peculiares, podendo haver escolhas equivocadas pela indústria, que irão influenciar de forma negativa na qualidade ou no do custo final do produto. O presente trabalho é um estudo experimental, que objetivou a avaliação do comportamento dos ácidos cítrico (C₆H₈O₇), acético (C₂H₄O₂), fosfórico (H₃PO₄), e tartárico (C₄H₆O₆), em relação ao poder de acidificação nos vegetais: cenoura, chuchu, abóbora, quiabo, beterraba, pepino, tomate, batata, maxixe e berinjela. Todos os vegetais estudados foram triturados e submetidos à titulação com soluções ácidas a 5% de concentração. O ácido cítrico apresentou melhor poder acidulante em 50% das amostras (maxixe, pepino, tomate, batata e beterraba), seguido pelo fosfórico, que foi o melhor acidulante em 40% das amostras (berinjela, quiabo, abóbora e cenoura). Estes dois ácidos já são bastante utilizados pela indústria de alimentos, por serem de baixo custo e fácil aplicabilidade.

Palavras-chave: curva de acidez; ácidos

1 INTRODUÇÃO

Os acidulantes são aditivos frequentemente requeridos em formulações alimentares com o intuito de ajustar o pH do produto, de forma a favorecer a sua conservação.

O poder de influenciar no pH do alimento é um fator importante a ser considerado na hora de se escolher o acidulante com aplicações específicas. Este poder está relacionado com o grau de dissociação sofrido pelo grupo funcional ácido, em sistemas aquosos (DAMODARAN et al, 2010). Além disso, a capacidade de ionização de algumas moléculas presentes no tecido dos vegetais tem consequências de grande relevância fisiológica. Em muitos casos, o estado de protonação de uma molécula afeta a sua atividade biológica, pois diversas reações bioquímicas dependem da transferência de H⁺ entre moléculas e enzimas (COULTATE, 2004).

Portanto, a escolha do melhor acidulante dependerá não somente das características químicas do ácido, mas também dos componentes químicos presentes no alimento e suas interações. Com base nisso, o presente estudo propôs a avaliação da interação entre quatro acidulantes, utilizados

com frequência pela indústria alimentícia, sobre o tecido vegetal de dez diferentes hortaliças (cenoura, chuchu, abóbora, quiabo, beterraba, pepino, tomate, batata, maxixe e berinjela).

2 FUNDAMENTAÇÃO TEÓRICA

Os acidulantes são adicionados aos alimentos processados com diferentes propósitos, sendo os principais deles a sua participação em sistemas de tamponamento e a sua capacidade de produzir sabores azedos e acres (DAMODARAN et al, 2010).

Quimicamente, o poder acidulante desses ácidos dependerá de sua maior ou menor capacidade de dissociação nas misturas e interação com os componentes do alimento. De acordo com a teoria de Bronsted-Lowry, um ácido é um doador de prótons e uma base é um receptor de prótons (RUSSEL, 1994). As duas reações abaixo, representam a transferência de um próton para a água, de um ácido forte (1) e a transferência para a água de um próton, de um ácido fraco (2). Neste caso, a água atua como uma base:

$$HNO_3 + H_2O \leftrightarrow H_3O^+ + NO_3^-$$
 (1)
 $HC_2H_3O_2 + H_2 \leftrightarrow H_3O^+ + C_2H_3O_2^-$ (2)

Os ácidos fracos são caracterizados por não estarem totalmente dissociados e possuem pequenas constantes de ionização (*K*), enquanto os ácidos considerados "fortes" possuem maiores valores de constate de ionização, como pode ser visto na tabela abaixo.

	ização de alguns ácidos importantes p	
Tabala 1 Constanta da in	ização do alcuma ácidos immentantes r	nama usa am alimantas (25°C)
L'abela L. Constante de loi	izacao de aiguiis acidos illibortailles i	Data uso em aninemos (20 C)

Nome do ácido	Fórmula		K
Ácido cítrico	HOOCCH ₂ C(OH)(COOH)CH ₂ COOH	K_1	7,4 x 10 ⁻⁴
		K_2	1,8 x 10 ⁻⁵
		K_3	4,0 x 10 ⁻⁷
Ácido fosfórico	H_3PO_4	K_1	7,6 x 10 ⁻³
		K_2	6,3 x 10 ⁻⁸
		K_3	4,4 x 10 ⁻¹³
Ácido acético	CH₃COOH		1,74 x 10 ⁻⁵
Ácido tartárico	HOOCCH(OH)CH(OH)COOH	\mathbf{K}_1	9,1 x 10 ⁻⁴
		K ₂	4,3 x 10 ⁻⁵

O ácido cítrico é o principal acidulante utilizado pelas indústrias de alimentos devido ao fato de ser inócuo, do ponto de vista de saúde, e apresentar baixa corrosividade para as instalações (FERREIRA, 1987; IN: BERBARI, 2003). É um ácido orgânico tricarboxílico presente na maioria das frutas, sobretudo em cítricos como o limão e a laranja. Na temperatura ambiente, o ácido cítrico é um pó cristalino branco, que pode ser facilmente dissolvido em água. A acidez do ácido cítrico é devida aos três grupos carboxílicos (-COOH), que podem perder um elétron em soluções. Como conseqüência, forma-se um íon citrato, sendo este um bom controlador de pH de soluções ácidas, podendo também formar sais com muitos íons metálicos. Outro ácido orgânico importante é o acético, que se caracteriza como um ácido monocarboxílico alifático, facilmente solúvel em água, incolor e considerado um "ácido fraco", mas com forte odor picante (OHISHI et. al, 2003).

O ácido tartárico é considerado um "ácido orgânico fraco", bastante utilizado em vinhos, sucos, massas e sobremesas. A sua fórmula estrutural possui função mista na molécula, que contém carboxilas e hidroxilas. Pode ser usado com limites de ingestão diária tolerada entre 0 - 30 mg/kg de peso (RESENDE et. al, 2004).

O principal ácido inorgânico utilizado em alimentos industrializados é o ácido fosfórico, ácido trivalente, com três hidrogênios ácidos que podem ser convertidos por substituição gradual a fosfatos primários, secundários e terciários. Portanto, é um ácido que varia de fraco a medianamente forte. Seus sais são chamados de fosfatos. É o derivado do fósforo mais importante comercialmente, respondendo por mais de 90% da rocha fosfática que é extraída. Possui o sabor intermediário entre a acidez pronunciada do ácido cítrico e a suavidade do ácido láctico.

3 DESCRIÇÃO DA PROPOSTA

O presente estudo tem como proposta principal a avaliação do comportamento dos ácidos cítrico, acético, fosfórico e tartárico em dez diferentes vegetais e definir, entre eles, qual apresenta maior poder acidulante.

4 METODOLOGIA, RESULTADOS, ANÁLISE E INTERPRETAÇÃO DOS DADOS

4.1 Preparo de amostra

Inicialmente foram selecionados os vegetais a serem utilizados, os quais foram lavados em água corrente, sendo eles: cenoura, chuchu, abóbora, quiabo, beterraba, pepino, tomate, batata, maxixe e berinjela, todos adquiridos em mercado na cidade de Petrolina/PE. Em seguida, os vegetais foram cortados em pequenos cubos sendo que a abóbora foi antes descascada. Pesou-se 400g de cada vegetal, que foram triturados com 800mL de água destilada até obtenção de uma pasta homogênea. Em seguida, foram separadas quatro porções, de 100g cada, desta mistura.

4.2 Titulação e construção das curvas de acidez

Antes que começassem as titulações, mediu-se o pH da mistura de cada vegetal. As quatro porções de cada vegetal foram tituladas com soluções dos ácidos cítrico, acético, fosfórico e tartárico, ambas nas concentrações de 5% (m/v).

Simultaneamente à titulação, foi acompanhado o valor de pH da porção do vegetal com auxílio de pHmetro digital. A cada 0,5 mL de ácido adicionado, era feita a medição e registro do pH do vegetal, até que o mesmo fosse inferior ao pH de segurança (4,5), momento no qual a titulação era interrompida.

Em cada medição de pH os valores de volume de ácido consumido e de pH eram registrados para posteriores cálculos de concentração e montagem de curvas de titulação.

4.4 Resultados

O comportamento dos quatro ácidos estudados nos dez diferentes vegetais está mostrado na Figura 1. Para fins deste estudo, considera-se como melhor acidulante aquele que, quando adicionado em menores concentrações, provoca a maior diminuição do pH do vegetal, fazendo com este atinja o valor de pH de segurança definido para alimentos industrializados.

Observa-se que, na maioria dos gráficos, o comportamento dos ácidos cítricos e fosfórico se assemelha, havendo significativa diminuição do pH das amostras, quando a concentração destes ácidos era igual ou inferior a 0,225g/mL. A única exceção a este comportamento foi observada na curva obtida para o quiabo, pois para este vegetal, foi necessária uma grande concentração de ácido cítrico (> 0,225g/ml) para que o pH fosse reduzido de forma adequada, sendo este o ácido que apresentou menor poder acidulante para este vegetal.

Figura 1. Curvas de titulação de acidez de: 1a) chuchu; 1b) tomate; 1c) abóbora; 1d) quiabo; 1e) maxixe; 1f) pepino; 1g) berinjela; 1h) cenoura; 1i) beterraba; 1j) batata

Depois dos ácidos cítrico e fosfórico, o ácido que apresentou melhor poder acidulante foi o acético, cujo pH de segurança, na maioria das amostras, foi atingido quando sua concentração era de aproximadamente 0,525g/mL. No entanto, deve-se levar em conta que este ácido interfere nas características sensoriais do vegetal, só devendo ser utilizado quando o processamento envolve a condimentação do produto, como ocorre na elaboração de picles.

A menor ação como agente acidulante foi atribuída, portanto, ao ácido tartárico, que apresentou dificuldade para redução do pH das misturas estudadas, sendo necessárias concentrações acima de 1,5g/mL do ácido para que fosse possível alcançar o pH de segurança nas amostras estudadas.

Através dos gráficos é possível perceber também que a variação na composição química dos tecidos dos vegetais influencia na protonação dos íons H⁺ da mistura. Vegetais como tomate, quiabo, maxixe, pepino e chuchu são facilmente acidulados, requerendo menores concentrações de ácidos. Em vegetais como a abóbora, batata, cenoura e beterraba, no entanto, a maior rigidez no tecido do vegetal dificulta a acidificação do tecido, fazendo com que maiores concentrações de ácido sejam requeridas para que haja redução do pH.

5 DISCUSSÃO E CONSIDERAÇÕES FINAIS

Entre os quatro ácidos estudados, o ácido cítrico apresentou melhor poder acidulante, uma vez que conseguiu reduzir o pH das amostras de forma mais eficiente em 50% das amostras (maxixe, pepino, tomate, batata e beterraba), seguido pelo fosfórico, que foi o melhor acidulante em 40% das amostras (berinjela, quiabo, abóbora e cenoura). Estes dois ácidos já são bastante utilizados pela indústria de alimentos, por serem de baixo custo e fácil aplicabilidade. O ácido menos indicado é o tartárico, pois a redução do pH com este ácido requer quantidades muito maiores, em relação aos demais ácidos estudados.

6 AGRADECIMENTOS

Os autores agradecem ao IF SERTÃO-PE pela disponibilização do espaço físico dos laboratórios para realização deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

COULTATE, T.P. Alimentos: a química dos seus componentes. Artmed, 3. ed ., Porto Alegre, 2004. 368p.

DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. **Química de Alimentos de Fennema**. 4. ed., Artmed, Porto Alegre, 2010. 900p.

FERREIRA, A. F.S. Acidulantes na indústria de alimentos. I Simpósio sobre aditivos para alimentos. Campinas: ITAL, SP, 9-11 de set., 1987. In: BERBARI, S. A. G.; SILVEIRA, N. F. A.; OLIVEIRA, L. A. T. Avaliação do comportamento de pasta de alho durante o armazenamento (*Allium sativum* L.). **Ciência e Tecnolologia de Alimentos**, v. 23, n⁰.3 Campinas, 2003.

OHISHI, K., KASAI, M.; SHIMADA, A.; HATAE, K. Effect of Acetic Acid Added to Cooking Water on the Dissolution of Proteins and Activation of Protease in Rice. **Agriculture Food Chemistry**, 51, 2003, p.4054-4059

RUSSEL, J. B. Química Geral. Makron Books, 2. ed., São Paulo, 1994.

RESENDE, J. M.; FIORI, J. E.; SAGGIN JUNIOR, O. J.; RIBEIRO DA SILVA, E. M. Processamento do Palmito de Pupunheira em Agroindústria Artesanal - Uma atividade rentável e ecológica. **Embrapa Agrobiologia.** Sistemas de Produção, 01, ISSN 1806-2830 Versão Eletrônica, Jan./2004.