

DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

Analise Matemática B

Ficha 5B MIECOM

1. Estude a continuidade das seguintes funções:

a)
$$f(x,y) = \begin{cases} \frac{7x^2y}{x^2+y^2} & se \quad (x,y) \neq (0,0) \\ 0 & se \quad (x,y) = (0,0) \end{cases}$$

b)
$$f(x,y) = \begin{cases} x^2 + y^2 & se \quad x^2 + y^2 \le 1\\ 0 & se \quad x^2 + y^2 > 1 \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{sen(7x^2 + 7y^2)}{x^2 + y^2} & se \quad x^2 + y^2 \neq 0\\ 7 & se \quad x^2 + y^2 = 0 \end{cases}$$

2. Utilize a definição de derivada parcial para calcular $\frac{\partial f}{\partial x}(0,y)$, $\frac{\partial f}{\partial u}(x,0)$, para

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

3. Determine as derivadas parciais de primeira e segunda ordem das seguintes funções:

a)
$$f(x,y) = \frac{3x^4 + 5xy^3}{3x - y}$$

a)
$$f(x,y) = \frac{3x^4 + 5xy^3}{3x - y}$$
 b) $g(x,y) = e^x f(x+y) + e^{-x} g(x-y)$, f, g deriváveis

c)
$$h(x,y) = e^x \ln(y^2 + 3x)$$

c)
$$h(x,y) = e^x \ln(y^2 + 3x)$$
 d) $f(x,y,z) = \ln(1 + x + y^2 + z^3)$

e)
$$n(x,y) = arctg\left(\frac{y}{x}\right)$$

e)
$$n(x,y) = arctg\left(\frac{y}{x}\right)$$
 f) $p(x,y,z) = \int_0^{y\sin z} x \cdot 4^{2t} dt$

4. A equação diferencial $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$, onde z = f(x, y), denomina-se por equação de Laplace.

Uma função definida em \mathbb{R}^2 que possua derivadas parciais de segunda ordem contínuas numa região do plano e que aí satisfaça a equação de Laplace, diz-se uma função harmónica. Mostre que as seguintes funções são harmónicas:

a)
$$z = e^{kx} \cos(ky)$$
 b) $z = 3x^2y - y^3$

5. Determine para que valores da constante real λ a função $f(x,y) = x^2 + \lambda y^2$ é harmónica em \mathbf{R}^2 .

6. Mostre que a função $u\left(x,t\right)=t^{-\frac{1}{2}}e^{-\frac{x^2}{4t}}$ satisfaz a equação diferencial $\frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2}$. A equação denomina-se por equação do calor e traduz o comportamento da difusão do calor numa barra isolada (onde u(x,t) representa a temperatura na posição x no instante t) e outros fenómenos semelhantes.