

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Adress: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/542,980	03/09/2006	Jani Vare	006136.00007	2022
22907	7590	12/08/2009	EXAMINER	
BANNER & WITCOFF, LTD. 1100 13th STREET, N.W. SUITE 1200 WASHINGTON, DC 20005-4051			ZEWARI, SAYED T	
ART UNIT	PAPER NUMBER			
		2617		
MAIL DATE	DELIVERY MODE			
12/08/2009	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/542,980	Applicant(s) VARE ET AL.
	Examiner SAYED T. ZEWARI	Art Unit 2617

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 04 August 2009.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 10-30,32-56 and 58-61 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 10-30,32-56 and 58-61 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/06)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

Response to Amendment

1. Applicant's arguments filed on 8/4/2009 have been fully considered but they are not persuasive.
2. Applicant argues that

Fischer does not disclose or suggest "providing a descriptor arranged to identify at least one of said bursts and further arranged to identify additional information" as now recited in amended claim 1. Fischer instead discloses "control information" only for the purpose of identifying the frames so that power can be switched on/off at the receiver according to the control information.

This argument is not persuasive. The "control information" disclosed by Fischer performs the same function as that of applicant's "descriptor".

3. Applicant argues that

Further Fischer is directed to a frame-based technology while the present invention is burst-based technology.

This argument is not persuasive. A frame is composed of packets and when these frames are transmitted over a short period of time, it is called a burst.

Art Unit: 2617

4. Claim 38 is rejected under 35 U.S.C. 101 as not falling within one of the four statutory categories of invention. Supreme Court precedent¹ and recent Federal Circuit decisions² indicate that a statutory "process" under 35 U.S.C. 101 must (1) be tied to another statutory category (such as a particular apparatus), or (2) transform underlying subject matter (such as an article or material) to a different state or thing. While the instant claim(s) recite a series of steps or acts to be performed, the claim(s) neither transform underlying subject matter nor positively tie to another statutory category that accomplishes the claimed method steps, and therefore do not qualify as a statutory process. For example the claim 38 discloses a computer program but it is not tied to an actual device such as storage medium and does not disclose what apparatus using/running this program. There is no device or apparatus are tied to this program.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

¹ *Diamond v. Diehr*, 450 U.S. 175, 184 (1981); *Parker v. Flook*, 437 U.S. 584, 588 n.9 (1978); *Gottschalk v. Benson*, 409 U.S. 63, 70 (1972); *Cochrane v. Deener*, 94 U.S. 780, 787-88 (1876).

² *In re Bilski*, 88 USPQ2d 1385 (Fed. Cir. 2008).

6. Claims 1-8, 10-12, 17-18, 28, 30, 32, 35-51, and 54-56, 58-61 are rejected under 35 U.S.C. 102(b) as being anticipated by Fischer (US 5,371,734).

With respect to claim 1, Fischer discloses a method comprising:
receiving a digital broadband transmission, wherein said transmission is arranged to send information in bursts utilizing at least a part of the transmission channel bandwidth (**See Fischer's col.5 lines 9-25**), providing a descriptor arranged to identify at least one of said bursts and further arranged to identify additional information (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**), detecting said at least one burst based on said descriptor (**See Fischer's col.5 lines 47-66**), and switching at least part of a receiver on/off in accordance with said at least one burst for saving power based on said descriptor (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 30, Fischer discloses a method comprising transmitting a digital broadband transmission, wherein said transmission is arranged to send information in bursts utilizing at least a part of the transmission channel bandwidth (**See Fischer's col.5 lines 9-25**), providing a descriptor arranged to identify at least one of said bursts and further arranged to identify additional information, wherein the descriptor is arranged to categorize said bursts for an identification in a receiver (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**), and categorizing said at least one burst based on said descriptor for switching at least part of the receiver on/off in accordance with said descriptor (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 42, Fischer discloses a system comprising:

a circuitry configured to provide a digital broadband transmission, wherein said transmission is arranged to send information in bursts utilizing at least a part of the transmission channel bandwidth (**See Fischer's col.5 lines 9-25**),

a circuitry configured to provide a descriptor arranged to identify at least one of said burst and further arranged to identify additional information (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**), a circuitry configured to detect said at least one burst based on said descriptor (**See Fischer's col.5 lines 47-66**),

a circuitry configured to switch at least part of a receiver on/off in accordance with said at least one burst for saving power based on said descriptor (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 48, Fischer discloses a receiver comprising: a circuitry configured to receive a digital broadband transmission, wherein said transmission is arranged to send information in bursts utilizing at least a part of the transmission channel bandwidth (**See Fischer's col.5 lines 9-25, 34-39**) a circuitry configured to provide a descriptor arranged to identify at least one of said bursts and further arranged to identify additional information (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**), a circuitry configured to detect said parts at least one burst based on said descriptor (**See Fischer's col.5 lines 47-66**), a circuitry configured to switch at least part of a receiver on/off in accordance with said at least one burst for saving power based on said descriptor (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 56, Fischer discloses a transmitter comprising:

a circuitry configured to transmit a digital broadband transmission, wherein said transmission is arranged to send information in bursts utilizing at least a part of the transmission channel bandwidth (**See Fischer's col.5 lines 9-25, 34-39**), comprising: a circuitry configured to provide a descriptor arranged to identify at least one of said bursts and further arranged to identify additional information (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**), and
a circuitry configured to categorize said bursts based on said descriptor for switching at least part of a receiver on/off in accordance with said at least one burst for saving power in the receiver (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 2, Fischer discloses a method wherein the step of detecting further comprises separating said digital broadband transmission based on said provided information to said parts fitting for saving the power in the receiver and parts not fitting for saving the power in the receiver (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 3, Fischer discloses a method wherein at least one of said bursts comprises a time sliced elementary stream, and said method further comprises identifying at least one time sliced elementary stream carried over a broadband network (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 4, Fischer discloses a method wherein said descriptor includes information on a size of a service session contained in said at least one burst of the digital broadband transmission, and said method further comprises step of: comparing available memory in the receiver to said size, and switching at least part of

the receiver on/off based on a result obtained in said comparison (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 5, Fischer discloses a method wherein the step of switching comprises switching the receiver functionally on during relevant bursts of the digital broadband transmission relating to a uniform data concept, and switching the receiver at least partly off otherwise (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 6, Fischer discloses a method wherein the digital broadband transmission is at least partly adapted to fit a principle wherein the receiver is functionally on during cyclical relevant bursts of the digital broadband transmission relating to a same service and at least partly off otherwise (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 7, Fischer discloses a method wherein said bursts comprise at least one of elementary streams of the digital broadband transmission and transport streams referred to in a network information table (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 8, Fischer discloses a method wherein said digital broadband transmission at least partly comprises a time slice data broadband transmission (**See Fischer's col.5 lines 9-25**).

With respect to claim 10, Fischer discloses a method wherein the descriptor is adapted to specify maximum number of bits per a service session that the digital broadband transmission is providing within a burst of the digital broadband transmission (**See Fischer's col.5 47-66, lines 9-25**).

With respect to claim 11, Fischer discloses a method wherein IP data streams contained in at least one elementary stream are transmitted in accordance with time slicing broadband transmission (**See Fischer's col.5 lines 9-25**).

With respect to claim 12, Fischer discloses a method wherein the receiver is adapted to fit a memory usage of the receiver in accordance with the service session (**See Fischer's figure 4, col.14 46-48**).

With respect to claim 17, Fischer discloses a method wherein the descriptor is arranged to indicate that an elementary stream contained within transport stream is not transmitted in accordance with time slice data broadband transmission of the digital broadband transmission (**See Fischer's col.5 lines 9-25**).

With respect to claim 18, Fischer discloses a method wherein a broadband network of the digital broadband transmission is adapted to operate at multi protocol encapsulation level and transmission stream level simultaneously with the different versions (**See Fischer's col.5 lines 9-25**).

With respect to claim 28, Fischer discloses a method wherein the digital broadband transmission comprises a wireless digital broadband transmission (**See Fischer's col.5 lines 9-25**).

With respect to claim 32, Fischer discloses a method wherein at least one of said bursts comprises a time sliced elementary stream, and said method further comprises identifying at least one time sliced elementary stream carried over a broadband network (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 35, Fischer discloses a method wherein said bursts comprise at least one of elementary streams of the digital broadband transmission and transport streams referred to in a network information table (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 36, Fischer discloses a method wherein said transmission at least partly comprises time slice data broadcast transmission (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 37, Fischer discloses a data processing system comprising a circuitry configured to carry out the steps of the method according to claims 1 or 30 (**See Fischer's figure 4 (90), col.14 lines 46-48**).

With respect to claim 38, Fischer discloses a data processing system wherein a computer program comprising computer program code means adapted to perform the steps of the method of claims 1 or 30 when said program is run on a computer 30 (**See Fischer's figure 4 (90), col.14 lines 46-48**).

With respect to claim 39, Fischer discloses a data processing system wherein a computer program as claimed in claim 38 embodied on a computer readable medium (**See Fischer's figure 4 (90), col.14 lines 46-48**).

With respect to claim 40, Fischer discloses a computer readable medium comprising program code adapted to carry out the method of claims 1 or 30 when run on a computer (**See Fischer's figure 4 (90), col.14 lines 46-48**).

With respect to claim 41, Fischer discloses a carrier medium carrying the computer executable program of claims 38 (**See Fischer's figure 4 (90), col.14 lines 46-48**).

With respect to claim 43, Fischer discloses a system, wherein the circuitry configured to detect further comprises a circuitry configured to separate said digital broadband transmission based on descriptor to parts fitting for saving the power in the receiver and parts not fitting for saving the power in the receiver (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 44, Fischer discloses a system wherein the burst comprise at least one of elementary streams of the digital broadband transmission and transport streams referred to in a network information table (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 45, Fischer discloses a system wherein the digital broadband transmission at least partly comprises a time slice data broadband transmission (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 46, Fischer discloses a system wherein at least one of said bursts comprises a time sliced elementary stream, and said system further comprises a circuitry configured to identify at least one time sliced elementary stream carried over a broadband network (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 47, Fischer discloses a system wherein said descriptor includes information on a size of a service session contained in said at least one burst of the digital broadband transmission, and said system further comprises: a circuitry

configured to compare available memory in the receiver to said size, and a circuitry configured to switch at least part of the receiver on/off based on a result obtained in said comparison (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28**).

With respect to claim 49, Fischer discloses a receiver wherein the circuitry configured to detect further comprises a circuitry configured to separate said digital broadband transmission based on said provided information to said bursts fitting for saving the power in the receiver and parts not fitting for saving the power in the receiver (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 50, Fischer discloses a receiver wherein the said bursts comprise elementary streams of the digital broadband transmission, or transport streams referred to in a network information table (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 51, Fischer discloses a receiver wherein the digital broadband transmission at least partly comprises time slice data broadcast transmission (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 54, Fischer discloses a receiver wherein said atleast one burst comprise a time sliced elementary stream, and said receiver further comprises a circuitry configured to identify at least one time sliced elementary stream carried over a broadband network (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 55, Fischer discloses a receiver wherein said descriptor includes information on a size of a service session contained in said at least one burst of the digital broadband transmission, and said receiver further comprises: a circuitry

configured to compare available memory in the receiver to said size, and circuitry configured to switch at least part of the receiver on/off based on a result obtained in said comparison (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28.**)

With respect to claim 58, Fischer discloses a transmitter wherein said bursts comprise one of elementary streams of the digital broadband transmission and transport streams referred to in a network information table (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22.**)

With respect to claim 59, Fischer discloses a transmitter wherein the digital broadband transmission at least partly comprises time slice data broadcast transmission (**See Fischer's col.5 lines 9-25, 47-66.**)

With respect to claim 60, Fischer discloses a transmitter wherein at least one of said bursts comprises a time sliced elementary stream, and said transmitter further comprises a circuitry configured to categorize at least one time sliced elementary stream carried over a broadband network (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22.**)

With respect to claim 61, Fischer discloses a transmitter wherein said descriptor includes information on a size of a service session contained in a burst of the digital broadband transmission, and said transmitter further comprises: a circuitry configured to adapt the receiver to compare available memory in the receiver to said size, and to switch at least part of the receiver on/off based on a result obtained in said comparison (**See Fischer's col.5 lines 47-66, 25-33, col.1 lines 22-28.**)

Claim Rejections - 35 USC § 103

7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

8. Claims 13-16, 19-27, 29, 33-34, and 52-53 are rejected under 35 U.S.C. 103(a) as being unpatentable over Fischer (US 5,371,734) in view of well-known prior art (MPEP 2144.03).

With respect to claim 13, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information includes steps of limiting a size of a burst of the transmission.

However, an official notice is taken that the concept and use of limiting the size of a burst of transmission are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to include information regarding the size transmission burst and thus provide a method of controlling the size of transmission burst.

With respect to claim 14 and 15, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information includes steps of indicating maximum burst duration of a transmission. However, an official notice is taken that the concept and use of indicating the maximum burst duration of transmission are well known and expected in the art. Therefore, it

would be obvious to one of ordinary skill in the art to include information regarding the maximum duration of a burst in a transmission burst and thus provide a method of controlling the duration of transmission burst.

With respect to claim 16, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information includes steps of indicating a version of data in the transmission. However, an official notice is taken that the concept and use of indicating the version of data in transmission are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to include information regarding the version of data in a transmission burst and thus provide a method of identifying transmission burst.

With respect to claim 19, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information includes steps of indicating a tolerance for a time for a reception of transmission. However, an official notice is taken that the concept and use of indicating the tolerance for a time for a reception are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to include information regarding the tolerance for a time of reception in a transmission burst and thus provide a method of synchronization.

With respect to claim 20, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information includes SI/PSI tables of the digital broadband transmission. However, an official notice is taken that the concept and use of SI/PSI tables in transport streams are well known

and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to include information regarding SI/PSI in a transmission stream in order to identify various services.

With respect to claim 21, Fischer discloses a method wherein said information is provided in a network information table for providing information per each transport stream of the digital broadband transmission (**See Fischer's col.5 lines 25-33, 34-39, 47-66, col.6 lines 19-22**).

With respect to claim 22, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information is provided in a program map table for providing information per each elementary stream. However, an official notice is taken that the concept and use of Program Map Table (PMT) are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to include PMT table in a transmission stream in order to identify various services.

With respect to claim 23 and 24, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information is provided in a INT for providing information per each elementary stream carrying at least one IP/MAC notification stream of the digital broadband transmission. However, an official notice is taken that the concept and use of IP and MAC are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to use IP and MAC in a transmission stream in order to identify various services.

With respect to claim 26, 27, 29 and 52, Fischer discloses a method wherein specific information is provided to a device via transmission. Fischer does not specifically disclose that this data transmission is DVB transmission. However, an official notice is taken that the concept and use of digital video broadcast (DVB) are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to use in their transmission of DVB in order to provide video services.

With respect to claim 53, Fischer discloses a receiver wherein the receiver further comprises a mobile station for interaction with the digital broadcast transmission (**See Fischer's col.5 lines 9-25, 47-66**).

With respect to claim 33 and 34, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information is transmitted as bursts consecutive bursts relating to a different service. However, an official notice is taken that the concept and use of transmission in the form of burst or consecutive bursts are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to use burst of transmission either consecutive or otherwise to transmit data.

With respect to claim 25, Fischer discloses a method wherein specific information is provided to a device. Fischer does not specifically disclose that this information is multi-carrier signal transmission. However, an official notice is taken that the concept and use of multi carrier signal such as MC-CDMA are well known and expected in the art. Therefore, it would be obvious to one of ordinary skill in the art to use a multi carrier signal transmission in order to increase the efficiency of transmission

Conclusion

9. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).
10. A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.
11. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sayed T. Zewari whose telephone number is 571-272-6851. The examiner can normally be reached on 8:30-4:30.
12. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Lester G. Kincaid can be reached on 571-272-7922. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2617

13. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Sayed T Zewari/
Examiner, Art Unit 2617

/LESTER KINCAID/
Supervisory Patent Examiner, Art Unit 2617