Logistic Regression

Students' Acceptance at a University

Students' Acceptance at a University

Logistic Regression

Logistic Regression

Machine Learning Approach

Logistic regression

• Logistic regression is one of the most popular machine learning algorithms for binary classification.

• It is a simple algorithm that performs very well on a wide range of problems.

Linear Regression:

- Simple:

$$y = b_0 + b_1 x$$

- Multiple:

$$y = b_0 + b_1 x_1 + ... + b_n x_n$$

We know this:

Sigmoid Function

$$\ln\left(\frac{P}{1-P}\right) = b_0 + b_1 x$$

y (Actual DV)

y (Actual DV)

Dataset

- Dataset has two input variables (X1 and X2) and one output variable (Y).
- The input variables are real-valued random numbers drawn from a Gaussian distribution.
- The output variable has two values, making the problem a binary classification problem.

Input	Input	Actual
		Output
X1	X2	Υ
2.7810836	2.550537003	0
1.465489372	2.362125076	0
3.396561688	4.400293529	0
1.38807019	1.850220317	0
3.06407232	3.005305973	0
7.627531214	2.759262235	1
5.332441248	2.088626775	1
6.922596716	1.77106367	1
8.675418651	-0.2420686549	1
7.673756466	3.508563011	1

Plot of the Dataset

• we can easily draw a line to separate the classes. we are going to do with the logistic regression model.

Input	Input	Actual Output
X1	X2	Y
2.7810836	2.550537003	0
1.465489372	2.362125076	0
3.396561688	4.400293529	0
1.38807019	1.850220317	0
3.06407232	3.005305973	0
7.627531214	2.759262235	1
5.332441248	2.088626775	1
6.922596716	1.77106367	1
8.675418651	-0.2420686549	1
7.673756466	3.508563011	1

Logistic Function

- The logistic function is the heart of the logistic regression technique.
- The logistic function is defined as:

transformed =
$$1/(1 + e^{-x})$$

Where e is the numerical constant Euler's number and x is a input we plug into the function.

Logistic Function

- Let's plug in a series of numbers from -5 to +5 and see how the logistic function transforms them.
- You can see that all of the inputs have been transformed into the range [0, 1]
- The smallest negative numbers resulted in values close to zero
- The larger positive numbers resulted in values close to one.
- See that 0 transformed to 0.5 or the midpoint of the new range.

Χ	Transformed
-5	0.006692850924
-4	0.01798620996
-3	0.04742587318
-2	0.119202922
-1	0.2689414214
0	0.5
1	0.7310585786
2	0.880797078
3	0.9525741268
4	0.98201379
5	0.9933071491

transformed = $1/(1 + e^-x)$

Logistic Regression Model

The logistic regression model takes real-valued inputs and makes a prediction

Prediction

```
If transformed ≥ 0.5
y_pred = class 1
otherwise
y_pred = class 0
```


Logistic Regression Model

• For this dataset, the logistic regression has three coefficients:

$$x = b0 + b1*x_1 + b2*x_2$$

- The job of the learning algorithm will be to discover the best values for the coefficients (b0, b1 and b2) based on the training data.
- The output is transformed into a probability using the logistic function:

Input	Input	A_Output
X_1	X_2	Υ
2.7810836	2.550537003	0
1.465489372	2.362125076	0
3.396561688	4.400293529	0
1.38807019	1.850220317	0
3.06407232	3.005305973	0
7.627531214	2.759262235	1
5.332441248	2.088626775	1
6.922596716	1.77106367	1
8.675418651	-0.2420686549	1
7.673756466	3.508563011	1

Calculate Prediction

Let's start off by assigning 0.0 to each coefficient and calculating the probability of the first training instance that belongs to class 0.

```
b0 = 0.0; b1 = 0.0; b2 = 0.0
The first training instance is: \mathbf{x_1}=2.7810836, \mathbf{x_2}=2.550537003, \mathbf{x}=0
transformed = 1 / (1 + e^(-x))
```

Using the above equation - calculate a prediction

```
transformed = 1/(1 + e^{(-(b0 + b1*x_1 + b2*x_2)))}
= 1/(1 + e^{(-(0.0 + 0.0*2.7810836 + 0.0*2.550537003)))}
transformed = 0.5
```

Calculate the new coefficient values using a simple update equation

$$b(new) = b(old) + alpha * (x - transformed) * transformed * (1 - transformed) * x_i$$

Let's update the coefficients using the prediction (0.5) and coefficient values (0.0) from the previous section.

$$b0 = 0 + 0.3 * (0 - 0.5) * 0.5 * (1 - 0.5) * 1.0 = -0.0375$$

 $b1 = 0 + 0.3 * (0 - 0.5) * 0.5 * (1 - 0.5) * 2.7810836 = -0.104290635$
 $b2 = 0 + 0.3 * (0 - 0.5) * 0.5 * (1 - 0.5) * 2.550537003 = -0.09564513761$

Calculate output using new b0, b1 and b2

```
x = b0 + b1*x_1 + b2*x_2
= -0.0375 - 0.104290635 * 2.7810836 - 0.09564513761 * 2.550537003
= - 0.5565
transformed = 1 / (1 + e<sup>-x</sup>)
= 1/ (1+ e<sup>-(-0.5565)</sup>)
= 0.364
```

```
If transformed ≥ 0.5

y_pred = class-1

otherwise

y_pred = class-0
```

Repeat the Process

- We can repeat this process and update the model for each training instance in the dataset.
- A single iteration through the training dataset is called an epoch. It is common to repeat the stochastic gradient descent procedure for a fixed number of epochs.
- At the end of epoch you can calculate error values for the model. Because this is a classification problem, it would be nice to get an idea of how accurate the model is at each iteration.
- The graph below show a plot of accuracy of the model over 10 epochs.

Input	Input	Actual Output	transformed =	P_output =
X1	X2	Υ	1 / (1 + e ^{-output})	if p(class) < 0.5) then 0 else 1
2.7810836	2.550537003	0	0.2987569857	0
1.465489372	2.362125076	0	0.145951056	0
3.396561688	4.400293529	0	0.08533326531	0
1.38807019	1.850220317	0	0.2197373144	0
3.06407232	3.005305973	0	0.2470590002	0
7.627531214	2.759262235	1	0.9547021348	1
5.332441248	2.088626775	1	0.8620341908	1
6.922596716	1.77106367	1_	0.9717729051	1
8.675418651	-0.2420686549	1	0.9992954521	1
7.673756466	3.508563011	1	0.905489323	1
			***	***

Compare actual & prediction

output = b0 + b1*x1 + b2*x2

 You can see that the model very quickly achieves 100% accuracy on the training dataset.

 The coefficients calculated after 10 epochs of stochastic gradient descent are:

b0 = -0.4066054641

b1 = 0.8525733164

b2 = -1.104746259

Calculate Accuracy

 Finally, we can calculate the accuracy for the model on the training dataset:

```
accuracy = (correct predictions / num predictions made) * 100
accuracy = (10 /10) * 100
accuracy = 100%
```

Thank you