16 dic 2024.

Tiempo: 60 minutos.

Se considera un pórtico plano con las dimensiones en metros indicadas en la figura adjunta, Fig. 1. El material de este pórtico es elástico lineal, con propiedades mecánicas $E=2,1\cdot 10^{11}$ Pa, $\nu=0,3$ y $\rho=2500$ kg/m³. Además del peso propio del pórtico, se considerarán 4 cargas adicionales tal y como se indica en la figura; dos cargas puntuales de valor 500 N aplicadas en los centros de las vigas de la primera planta, otra carga uniformemente distribuida de valor 10000 N/m en el lateral izquierdo de la primera planta y por último, una carga distribuida triangular de ecuación y=0,1x y valor máximo -20·10³ N/m en el tejado de la estructura. Los apoyos de las columnas del pórtico en el terreno se muestran de igual manera en la primera figura.

Las columnas tienen una sección cuadrada de 60×60 cm y las vigas horizontales tienen una sección de tipo IPN ("|" en Abaqus) con las dimensiones mostradas en la figura 2.

El modelo se realizará con elementos tipo viga lineales de Timoshenko (B21) y se discretizará con un tamaño aproximado de elemento de 0.3 metros. Se desarrollará un modelo de Elementos Finitos en 2 dimensiones de la estructura bajo las acciones de las cargas descritas en el enunciado y se responderá a las siguientes.

Figura 1: Croquis del pórtico

Figura 2: Perfil viga IPN