MATH H113: Honors Introduction to Abstract Algebra

2016-02-22

• Cyclic groups

We are proving:

Proposition: Any subgroup of \mathbb{Z} is cyclic, and if it's nontrivial ($\neq \{0\}$), then it has a smallest positive element, which generates the subgroup.

Proof: Let $H \leq G$. If $H = \{0\}$, then it's cyclic (generated by 0).

Suppose $H \neq \{0\}$. Then it contains a nonzero element, say $n \in H, n \neq 0$. If n < 0 then $-n \in H$, so H contains positive elements. Therefore $H \cap \mathbb{Z}_{>0} \neq \emptyset$, so that set contains a smallest element. Call it m.

I claim that $H = \langle m \rangle$. Clearly $\langle m \rangle \subseteq H$.

To show that $H \subseteq \langle m \rangle$, let $x \in H$.

Write x = qm + r with $q, r \in \mathbb{Z}$ and $0 \le r < m$. Then r = x - qm; since $x \in H$ and $qm \in H$, we have $r \in H$. Then r has to be zero, because if r > 0, then $r \in H \cap \mathbb{Z}_{>0}$ and r < m, contradicting the fact that m was the smallest element of the set. So r = 0, $\therefore x = qm$, so $x \in \langle m \rangle$, $\therefore H = \langle m \rangle$.

Corollary: The set of subgroups of \mathbb{Z} is in 1-1 corresponence (bijection) with the elements of \mathbb{N} , given by $m \in \mathbb{N} \mapsto \langle m \rangle = H$.

By the above, this map is onto.

It's 1-1 because if $0 \le a < b$, if a = 0 then $\langle a \rangle = \{0\}$ but $\langle b \rangle \ne \{0\} \implies \langle a \rangle \ne \langle b \rangle$.

If $a \neq 0$ then $a \in \langle a \rangle$ but $a \notin \langle b \rangle$ because if it was we'd have a is a multiple of b, so $\frac{a}{b} \in \mathbb{Z}$, but $0 < \frac{a}{b} < 1$, and there are no integer in that range.

Subgroups of $\mathbb{Z}/m\mathbb{Z}$ $(m \in \mathbb{Z}_{>0})$

Lemma: Let $a, b \in \mathbb{Z}$, not both zero.

Then gcd(a, b) is the smallest positive integer that can be written in the form xa + yb with $x, y \in \mathbb{Z}$.

Proof: Let $d = \gcd(a, b)$. Then d > 0 and d can be written in this form. On the other hand, suppose d' > 0 and d' = xa + yb for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$, $d \mid (xa + yb)$, so $d \mid d'$. Then we can't have d' > 0 and d' < d, because then $\frac{d'}{d}$ would be an integer in the range $0 < \frac{d'}{d} < 1$.

(*Note*: $\{xa + yb : x, y \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} .)

Proposition: Let $m \in \mathbb{Z}_{>0}$, and let H be a subgroup of $\mathbb{Z}/m\mathbb{Z}$. Let d be the smallest element of $\{n \in \mathbb{Z}_{>0} : \bar{n} \in H\}$. (This is $\neq \emptyset$, because it contains m, since $\bar{m} \neq \bar{0}$ and $\bar{0} \in H$.) Then:

a. $H = \langle \bar{d} \rangle$ (so H is cyclic);

b. $d \mid m$; and

c. $|H| = \frac{m}{d}$

Proof:

a. We have a homomorphism $\pi: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, given by $n \mapsto \bar{n}$, and $\pi^{-1}(H)$ is a subgroup of \mathbb{Z} (because π is a homomorphism and H is a subgroup of $\mathbb{Z}/m\mathbb{Z}$). Then (from the def.) d is the smallest positive element of $\pi^{-1}(H)$, and $\pi^{-1}(H) = \langle d \rangle$.

Then $d \in \pi^{-1}(H) \implies \bar{d} \in H \implies \langle \bar{d} \rangle \subseteq H$. Conversely, if $\bar{x} \in H$, then $x \in \pi^{-1}(H)$, so x = qd for some $q \in \mathbb{Z}$. Then $\bar{x} = \overline{qd} = q\bar{d}$ (proof of this is left to you as an exercise), so $\bar{x} \in \langle \bar{d} \rangle$, $H \subseteq \langle \bar{d} \rangle$. So $H = \langle \bar{d} \rangle$.

- b. As noted already, $m \in \pi^{-1}(H)$, so $m \in \langle d \rangle$, $\therefore m = qd$ for some $q \in \mathbb{Z}$, \therefore $d \mid m$.
- c. Let $a = \frac{m}{d}$.

I claim that $H = {\overline{0}, \overline{d}, \overline{2d}, \dots, \overline{(a-1)d}}$

These are all in H and $0 < d < 2d < \ldots < (a-1)d < ad = m$ so they're all different.

On the other hand, any element of H can be written \bar{x} with $0 \le x < m$ $x \in \pi^{-1}(H)$, so $d \mid x, : x \in \{0, d, 2d, ..., (a-1)d\}$.

 $H = \{\overline{0}, \overline{d}, \overline{2d}, \dots, \overline{(a-1)d}\}, \therefore |H| = a$, because the set has a elements.

Suppose we took any element $\bar{b} \in \mathbb{Z}/m\mathbb{Z}$ (could have b < 0 or $b \nmid m$), and let $H = \langle \bar{b} \rangle$. Then what is d? We'd have $\langle \bar{b} \rangle = \langle \bar{d} \rangle$ with d > 0 and $d \mid m$. How are b and d related?

Then $\pi^{-1}(H) = \{ n \in \mathbb{Z} : \bar{n} = y\bar{b} \text{ for some } y \in \mathbb{Z} \}$

- $= \{ n \in \mathbb{Z} : n \equiv yb \pmod{m} \text{ for some } y \in \mathbb{Z} \}$
- $= \{ n \in \mathbb{Z} : n yb = xm \text{ for some } x, y \in \mathbb{Z} \}$
- $= \{xm + yb : x, y \in \mathbb{Z}\}$

Since d is the smallest positive element of this set, $d = \gcd(b, m)$.

Proposition: Let $\bar{b} \in \mathbb{Z}/m\mathbb{Z}$. Then $\langle \bar{b} \rangle$ (in $\mathbb{Z}/m\mathbb{Z}$) generated by \bar{d} , where $d = \gcd(b, m)$ and $|\langle \bar{b} \rangle| = \frac{m}{\gcd(a, b)}$. We also proved: if $m, b \in \mathbb{Z}$ and m > 0, then $\{xm + yb : x, y \in \mathbb{Z}\}$ is a subgroup

of \mathbb{Z} , because it's $\pi^{-1}(\langle b \rangle)$ (this is true for any $b, m \in \mathbb{Z}$, can be proved directly).

Theorem (subgroups of $\mathbb{Z}/m\mathbb{Z}$): Let $m \in \mathbb{Z}_{>0}$. Then, for every positive divisor a of m, there is exactly one subgroup H of $\mathbb{Z}/m\mathbb{Z}$ of order a. It is equal to $\langle d \rangle$, where $d = \frac{m}{a}$. Also, there are no subgroups of $\mathbb{Z}/m\mathbb{Z}$ of order not dividing

Proof: The last sentence follows from the earlier proposition.

Given $a \in \mathbb{Z}_{>0}$ with $a \mid m$, let $d = \frac{m}{a}$. Then $|\langle \overline{d} \rangle| = \frac{m}{\gcd(d,m)} = \frac{m}{d} = a$. For any other subgroup H of $\mathbb{Z}/m\mathbb{Z}$, write $H = \langle \bar{d}' \rangle$ with d' > 0 and $d' \mid m$. (Let $d' = \text{smallest positive element of } \pi^{-1}(H).$

Since (by assumption) $H \neq \langle d \rangle$, we must have $d' \neq d$, so $|H| = \frac{m}{d'} \neq a$.

 $\therefore \langle d \rangle$ is the only subgroup of order a.

Therefore, the set of subgroups of $\mathbb{Z}/m\mathbb{Z}$ is in 1-1 correspondence with the set of positive divisors of m.

Next: Subgroups generated by subsets of a group.