Smart Meter Data Analytics

Xiufeng Liu xiufeng.liu@uwaterloo.ca University of Waterloo, Canada

Outline

- Benchmarking smart meter data analytic technologies
- Smart meter data analytics system (SMAS)
 - Demo

Introduction

- The widely use of smart meters makes the data analytic possible
- Smart data analytics can help energy providers and consumers understand and reduce energy usage
- Diverse analytic technologies appear
 - What technologies to be used?
 - Best practices?
- The need of data generator

The benchmark technologies

- Centralized Systems:
 - The traditional analytic tool: Matlab
 - In-database analytic tool: MADLib in PostgreSQL
 - In-memory column store: System C (KDB)
- Distributed Computing Systems:
 - Main memory based: Spark
 - Hadoop based: Hive

The benchmark algorithms

• 3-Line algorithm:

Periodic auto-regression (PAR):

The benchmark algorithms

Histogram:

Cosine similarity:

$$\frac{X \cdot Y}{||X|| * ||Y||}$$

Experiments - centralized systems

- Using real-world (Essex 10GB) and synthetic data sets
 - Data loading: partition vs. non-partition
 - Impact of partitioning on performance
 - Cold start vs. warm start

Figure 4: Data loading times, 10GB real dataset.

Figure 5: Impact of data partitioning on analytics, 3-line algorithm.

Figure 6: Cold-start vs. warm-start, 3-line algorithm, 10GB real dataset.

Experiments - centralized systems

 Execution times of using real-world data sets (10GB essex)

Figure 7: Single-threaded execution times of each algorithm using each system.

Execution times using large synthetic data sets.

Figure 11: Execution times using large synthetic data sets.

- Cluster: one master node + 16 slave nodes
- Test systems: Spark and Hive
- Use three types of data formats:
 - 1st Format: one file (that may be partitioned arbitrarily) with one smart meter reading per line
 - 2nd Format: One file with one household per line (i.e., all the readings from a single household on a single line)
 - 3rd Format: Many files, with one or more households per file (but no household scattered among many files)
- Measure the scalability and speedup

• The execution times and speedup of the 1st data format:

Figure 13: Execution times using the first data format in Spark and Hive.

Figure 14: Speedup obtained using the first data format in Spark and Hive.

• The execution times and speedups of the 2nd data format:

Figure 16: Execution times using the second data format in Spark and Hive.

Figure 17: Speedup obtained using the second data format in Spark and Hive.

 The execution times and speedups of the 3rd data format:

Figure 18: Execution times using the third data format in Spark and Hive.

Figure 19: Speedup obtained using the third data format in Spark and Hive, 100 files, 1GB per file.

Summary

- Centralized Systems:
 - System C is the best choices for smart meter data analytics
 - Matlab and MADlib are more programmer-friendly but slower
 - Matlab works better for each time-series in a separate file
- Distributed Computing Systems:
 - Suitable for the analytics of large-scale data sets
 - Spark is faster than Hive, but Hive scale slightly better, and is easier to implement
- The data format does matter with the implementation, and the performance

Smart Meter Data Analytics System (SMAS)

Xiufeng Liu xiufeng.liu@uwaterloo.ca University of Waterloo, Canada

System Architecture

Roles of the use

- 1. Utilities
- 2. Energy consultants
- 3. Energy consumers

Functionalities

- Energy consumption time series analytics
 - Time and location dimensions
 - Different granularities
- Segmentation analytics
 - Cluster customers with a similar consumption pattern
 - Show on Google map

Functionalities

- Energy demand forecasting
- Pattern discovery
 - Load profiling
 - Load distribution
 - Load disaggregation
- Consumption comparison
- Customer feedback

Demo

Open source - https://github.com/xiufengliu

Questions?