SCHEDULING DELLA CPU

TASK

Si considerino 4 processi, rispettivamente P1, P2, P3 e P4 con i tempi di attesa input/output dettati in tabella. I processi arrivano alla CPU in quest'ordine P1, P2, P3 e P4 individuare il modo più efficace per la gestione e l'esecuzione dei processi.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondi	-	<u> </u>
P4	4 secondi	1 secondo	2 secondi

ANALISI E VALUTAZIONI

Sulla base della Task dobbiamo andare ad analizzare i 3 processi per la loro schedulazione, rispettivamente MONO-TASKING, MULTI-TASKING, TIME-SHARING.

MONO-TASKING:

MULTI-TASKING:

• TIME-SHARING:

LEGENDA:

Tempo d'esecuzione:

Tempo d'attesa:

CONCLUSIONI:

Possiamo infine concludere che la miglior schedulazione per i 4 processi è sia il Multi-Tasking che il Time-Sharing in quanto entrambi forniscono tempo finale pari a 13 secondi, a differenza del Mono-Tasking che ha bisogno di 17 secondi.