NATIONAL UNIVERSITY OF SINGAPORE

MA2101 - Linear Algebra II

April 2015

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your matriculation number only. Do not write your name.
- 2. This examination paper contains **SEVEN** questions and comprises **FIVE** printed pages.
- 3. Students are required to answer **ALL** questions.
- 4. Please start each question on a **NEW** page.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations.

... - 2 -

PAGE 2 MA2101

Question 1 [14 marks]

Let $A \in M_3(\mathbf{R})$ be the following real matrix

$$A = \begin{pmatrix} 2 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- (i) Find the characteristic polynomial $p_A(x)$ of A.
- (ii) Determine the minimal polynomial $m_A(x)$ of A. Justify your answer.
- (iii) Is A diagonalizable over \mathbb{R} ? Justify your answer.
- (iv) Let W be the subspace of $M_3(\mathbf{R})$ spanned by $\{I_3, A, A^2, A^3, A^4, A^5, A^6, A^7, A^8, A^9\}$. Find a basis of W. Justify your answer.

Question 2 [14 marks]

Let $A = (a_{ij}) \in M_3(\mathbf{R})$ be a real matrix and let

$$P := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

such that

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Let $y_i = y_i(x)$ $(1 \le i \le 3)$ be differentiable functions in x. Solve the following system of differential equations:

$$Y' = \begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = AY = A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Note. For the differential equation z'(x) + p(x)z = q(x) you may assume, without proof, that its general solution is given as $z(x) = \frac{1}{\mu} (\int \mu \, q(x) \, dx + C)$ with $\mu := e^{\int p(x) \, dx}$.

... - 3 -

PAGE 3 MA2101

Question 3 [14 marks]

Let $T:V\to W$ be a linear transformation between two vector spaces over a field F.

(a) Show that there is a vector subspace V_1 of V such that the restriction map

$$T_1 = T_{|V_1} : V_1 \to W$$

 $\mathbf{v}_1 \mapsto T(\mathbf{v}_1)$

satisfies (ai) and (aii) below.

- (ai) T_1 is an injective linear transformation.
- (aii) $\operatorname{Im}(T_1) = \operatorname{Im}(T)$.

For the $T_1: V_1 \to W$ constructed in (a) above, prove the following:

- (b) The intersection $V_1 \cap \text{Ker}(T) = \{0\}.$
- (c) V is the direct sum of V_1 and Ker(T):

$$V = V_1 \oplus \operatorname{Ker}(T)$$
.

Note. You **cannot** assume that V or W is finite-dimensional. You may assume that every vector space has a basis.

Question 4 [14 marks]

Let V be a vector space over a field F and let $T_i: V \to V$ (i = 1, 2) be two linear operators such that

$$T_1 \circ T_2 = T_2 \circ T_1$$
.

Suppose that $\lambda_1 \in F$ is an eigenvalue of T_1 such that the eigenspace $V_{\lambda_1}(T_1) = \text{Ker}(T_1 - \lambda_1 I_V)$ is 1-dimensional and is spanned by a vector \mathbf{v}_1 .

- (a) Show that \mathbf{v}_1 is also an eigenvector of T_2 so that $T_2(\mathbf{v}_1) = \lambda_2 \mathbf{v}_1$ for some $\lambda_2 \in F$.
- (b) Let

$$S_1 := I_V + T_1 + 2T_1^2 + 3T_1^3 + 4T_1^4 + 5T_1^5, \quad S_2 := I_V + T_2 + 2T_2^2 + 3T_2^3 + 4T_2^4 + 5T_2^5.$$

Show that there is a common eigenvector $\mathbf{v}_2 \in V$ of S_1 and S_2 such that

$$S_1(\mathbf{v}_2) = \mu_1 \mathbf{v}_2, \quad S_2(\mathbf{v}_2) = \mu_2 \mathbf{v}_2$$

for some $\mu_1, \mu_2 \in F$.

(c) Determine μ_1 and μ_2 as functions of λ_1 , λ_2 .

Note. $T^n = T \circ \cdots \circ T$ denotes the composition of n copies of the same T.

 $\dots -4$ –

PAGE 4 MA2101

Question 5 [14 marks]

Let (V, \langle, \rangle) be a **complex** inner product space.

- (a) Show that if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.
- (b) When $\mathbf{v} \neq \mathbf{0}$, find a scalar α such that $\mathbf{z} := \mathbf{u} \alpha \mathbf{v}$ satisfies $\langle \mathbf{z}, \mathbf{v} \rangle = 0$.
- (c) Prove the Cauchy-Schwarz inequality (the **complex** vector space version):

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||.$$

for all \mathbf{u} and \mathbf{v} in V.

(Warning: V is a complex vector space and may not be defined over \mathbf{R} .)

- (d) Show that if **u** is a scalar multiple of **v** or **v** is a scalar multiple of **u**, then $|\langle \mathbf{u}, \mathbf{v} \rangle| = \|\mathbf{u}\| \|\mathbf{v}\|$.
- (e) Show that if $|\langle \mathbf{u}, \mathbf{v} \rangle| = ||\mathbf{u}|| \, ||\mathbf{v}||$, then either \mathbf{u} is a scalar multiple of \mathbf{v} or \mathbf{v} is a scalar multiple of \mathbf{u} .

Question 6 [14 marks]

Label the following statements as true (T) or false (F). No proof is required.

- (i) A linear transformation $T: V \to W$ is an isomorphism if the representation matrix $A = [T]_{B_V, B_W}$ relative to bases B_V of V and B_W of W satisfies AB = I (the identity matrix) for some matrix B.
- (ii) If the characteristic polynomial $p_A(x)$ of a real matrix $A \in M_3(\mathbf{R})$ has only one real zero α and α is a simple zero of $p_A(x)$, then A is diagonalizable over the complex field \mathbf{C} .
- (iii) If $T: V \to V$ is an orthogonal linear operator and B is a canonical basis for T, then the representation matrix $[T]_B$ relative to B is an orthogonal matrix.
- (iv) If a real matrix $A \in M_2(\mathbf{R})$ satisfies $A^3 A = 0$ then A is diagonalizable over \mathbf{R} .
- (v) If \mathbf{v} is an eigenvector of a complex matrix $A \in M_2(\mathbf{C})$, then the conjugate $\overline{\mathbf{v}}$ is an eigenvector of the adjoint matrix A^* .
- (vi) If A is a complex matrix with A^* its adjoint, then every eigenvalue of AA^* is a real number.
- (vii) If a symmetric complex matrix $A \in M_2(\mathbf{C})$ has 2 distinct positive eigenvalues, then A is a positive definite matrix.

... - 5 -

PAGE 5 MA2101

Question 7 [16 marks]

Let V be an n-dimensional complex vector space and let $T: V \to V$ a linear operator. Let λ_i $(1 \le i \le k)$ exhaust all distinct eigenvalues of T and let

$$p(x) = p_T(x) = \prod_{i=1}^k (x - \lambda_i)^{n_i}, \quad m(x) = m_T(x) = \prod_{i=1}^k (x - \lambda_i)^{m_i}$$

be the characteristic polynomial and minimal polynomial of T. Set

$$V_i := \operatorname{Ker}(T - \lambda_i I_V)^{n_i}$$

which is known to be a vector subspace of V.

- (a) Show that the vector subspace V_i of V is T-invariant.
- (b) Show that $Ker(T \lambda_i I_V)^{m_i} = V_i$ for all i.
- (c) Show that the sum $\sum_{i=1}^{k} V_i$ which is known to be a vector subspace of V, is the direct sum of V_i :

$$\sum_{i=1}^{k} V_i = \bigoplus_{i=1}^{k} V_i.$$

(d) Let $q_i(x) = m_T(x)/(x-\lambda_i)^{m_i} = \prod_{j\neq i} (x-\lambda_j)^{m_j}$ and consider the linear transformation:

$$q_i(T): V \to V$$

 $\mathbf{v} \mapsto q_i(T)(\mathbf{v}).$

Show that $\operatorname{Im} q_i(T) \subseteq V_i$.

(e) Show that V is the direct sum of V_i :

$$V = \bigoplus_{i=1}^k V_i.$$

(f) Show that the characteristic polynomial and minimal polynomial of the restriction map

$$T_i = T_{|V_i} : V_i \to V_i$$

 $\mathbf{v} \mapsto T(\mathbf{v})$

are given as follows:

$$p_{T_i}(x) = (x - \lambda_i)^{n_i}, \quad m_{T_i}(x) = (x - \lambda_i)^{m_i}.$$

Note. Given s complex polynomials $f_i(x)$ $(1 \le i \le s)$ with no common zero, you may assume, without proof, that $\sum_{i=1}^{s} f_i(x)u_i(x) = 1$ for some polynomials $u_i(x)$.

END OF PAPER