Kris Korrel Diede Rusticus

> Master Artificial Intelligence University of Amsterdam

Computer Vision 2, 2017

Outline

- Introduction
 - Authors
 - Previous work
- 2 Method
 - Architecture
 - Training
 - Inference
- Experiments
 - Data: PASCAL VOC
 - Data: MC COCO
- 4 Limitations
- Conclusion
- 6 Future work

Authors

Introduction

Microsoft Researchers - Paper: June 2016

(a) Jian Sun

(c) Kaiming He

(b) Jifeng Dai

(d) Yi Li

Authors

Introduction

R-FCN

Introducing R-FCN:

Region-based Fully Convolutional Network

- Shared, fully convolutional (like FCN)
- Translation variance incorporated

Previous work

Previous work

AlexNet (2012), VGGNet (2015), ResNet (2016), etc.

- Designed for image classification
- Convolutional and pooling layers, followed by fully connected layers
- Used convolutional layers for translation invariance

Previous work

Introduction 00000

R-CNN (2014)

- Designed for object detection
- Rols proposed by region proposal algorithm (like Selective) Search)
- Similar design, but Rol-wise

Previous work

Introduction

00000

Fast R-CNN (2015)

- Extends on R-CNN
- One forward pass through convolutional layers followed by Rol-wise fully connected layers
- Introduces Rol pooling layer
- 0.3s test time excluding generation of region proposals

Introduction 00000

Faster R-CNN (2015)

- Extends on Fast R-CNN
- Introduces Region Proposal Network
- Trained alternatively with object detection network

0000● Previous work

Introduction

Subdivided networks

Method

- Translation invariance needed for image classification
- Translation variance needed for object detection
- Fast and Faster R-CNN solve this by Rol pooling
- No shared computation in second subnetwork
- Can not take advantage of properties of FCNs like ResNet and GoogLeNet

Method

Overview:

- All learnable weights are fully convolutional
- Last layer produces a bank of position-sensitive score maps
- Ends with position-sensitive Rol pooling and voting, which is not learned
- Negligible Rol-wise computation
- RPN from Faster R-CNN is used for proposing Rols

Method 000000

Network design

Method ○○○●○○

- ResNet-101 as backbone architecture
- Dimensionality reduction from 2048-d to 1024-d
- Last layer produces bank of $k^2(C+1)$ position-sensitive score maps

Position-sensitive pooling

For each Rol:

- Position-sensitive Rol pooling $K^2(C+1)$ score maps $\to K^2(C+1)$ scores
- Voting $K^2(C+1)$ scores $\rightarrow C+1$ scores
- Softmax responses

Bounding boxes

Method 00000

- Bounding boxes are proposed by RPN as introduced by Faster R-CNN
- R-FCN and RPN are trained alternatively
- Bounding box regression is done similarly to object detection
- bank of $4k^2$ score maps that predict (t_x, t_y, t_w, t_h)

Training

Training

The loss function defined on each Rol is the summation of the cross-entropy loss and the box regression loss:

$$L(s,t_{x,y,w,h}) = \underbrace{Lcls(s_{c^*})}_{\text{classif. loss}} + \lambda \underbrace{\begin{bmatrix} c^* \\ c^* \end{bmatrix}}_{\text{indicator (t/f)}} \underbrace{L_{reg}(t,\underbrace{t^*})}_{\text{bounding box regr. loss}}$$

Positive example = IoU > 0.5

Method

Online hard example mining

Method

OHEM is easy to adopt:

- The Rols are sorted by their losses, X Rols with the **highest** loss are used for backpropagation
- Per-Rol computation is negligible so forward time is not affected by N
- In Fast R-CNN this doubles training time!

Training

Default Settings

Method

```
weight decay = 0.0005
```

momentum = 0.9

single-scale training = images are resized: shorter side is 600 px.

OHEM = 128 Rols for backprop.

 $\mathsf{GPU} = 1 \; \mathsf{Rol} \; \mathsf{per} \; \mathsf{GPU} - 8 \; \mathsf{GPU's} \; \mathsf{used}$

fine-tune learning rate = 0.001 / 0.0001

Inference

Inference

- Feature maps are computed
- RPN proposes Rols
- R-FCN evaluates category scores and regresses bounding boxes
- To compare with Faster R-CNN; also 300 Rols are evaluated
- Non-maximum suppression as post-processing

Inference

Visualisation

Person category: $(k \times k = 3 \times 3)$

000

position-sensitive score maps

Visualisation

Person category: $(k \times k = 3 \times 3)$

000

position-sensitive score maps

Dataset

PASCAL VOC

- 20 object categories
- trained on VOC 2007 + 2012 trainval set, evaluated on VOC 2007 test set
- Performance measure: mAP

Results 1/4

Comparison: other Fully Convolutional Strategies

method Rol	output size ($k \times k$	e) mAP on VOC 07 (%)
naïve Faster R-CNN	1 × 1 7 × 7	61.7 68.9
class-specific RPN	-	67.6
R-FCN (w/o position-sensitivity)	1 × 1	fail
R-FCN	3 × 3 7 × 7	75.5 76.6

Results 2/4

Comparison: Faster R-CNN using ResNet-101

		depth of per-RoI subnetwork		training w/ OHEM?	train time (sec/img)		test time (sec/img)	mAP (%) on VOC07
Faster R-CNN R-FCN		10 0			1.2 0.45		0.42 0.17	76.4 76.6
Faster R-CNN R-FCN		10 0		√ (300 RoIs) √ (300 RoIs)	1.5 0.45	Ī	0.42 0.17	79.3 79.5
Faster R-CNN R-FCN	Ī	10 0	ĺ	√ (2000 RoIs) √ (2000 RoIs)	2.9 0.46	Ī	0.42 0.17	<i>N/A</i> 79.3

Results 3/4

Comparison: Faster R-CNN using ResNet-101 Trained on MS COCO and finetuned with PASCAL VOC

	training data	mAP (%)	Ī	test time (sec/img)
Faster R-CNN [9] Faster R-CNN +++ [9]	07+12 07+12+COCO	76.4 85.6		0.42 3.36
R-FCN R-FCN multi-sc train R-FCN multi-sc train	07+12 07+12 07+12+COCO	79.5 80.5 83.6		0.17 0.17 0.17

Results 4/4

Comparison: Faster R-CNN using ResNet-101 Trained on MS COCO and finetuned with PASCAL VOC

		training data	mAP (%)	test time (sec/img)
Faster R-CNN [9] Faster R-CNN +++ [9]		07++12 07++12+COCO	73.8 83.8	0.42 3.36
R-FCN multi-sc train R-FCN multi-sc train		07++12 07++12+COCO	77.6 [†] 82.0 [‡]	0.17 0.17

Further results

Impact of depth

- Increased accuracy from depth 50 to 101
- Saturated accuracy at a depth of 152

Impact of region proposals

Method

 Good generality of the method because competitive performances with other region proposal methods

	training data	test data	RPN [18]	SS [27]	EB [28]
R-FCN	07+12	07	79.5	77.2	77.8

Data: MC COCO

Dataset / Settings

MC COCO

- 80 object categories
- 80 k train set, 40k val set, 20k test-dev set
- Some different training settings

Results

Comparison: Faster R-CNN using ResNet-101 using the MC COCO dataset $\,$

	training data	test data	AP@0.5	AP	AP small	AP medium		test time (sec/img)
Faster R-CNN [9] R-FCN R-FCN multi-sc train	train train train	val val val	48.4 48.9 49.1	27.2 27.6 27.8	6.6 8.9 8.8	28.6 30.5 30.8	45.0 42.0 42.2	0.42 0.17 0.17
Faster R-CNN +++ [9] R-FCN R-FCN multi-se train R-FCN multi-se train, test	trainval trainval trainval trainval	test-dev test-dev	55.7 51.5 51.9 53.2	34.9 29.2 29.9 31.5	15.6 10.3 10.8 14.3	38.7 32.4 32.8 35.5	50.9 43.3 45.0 44.2	3.36 0.17 0.17 1.00

- Benefit of dimensionality reduction not further explained
- Not explained why they use single scale training by default.
- Not clear what $k \times k$ means for Faster R-CNN.
- Missing analysis on hyperparameter k

- Presented Region-based Fully Convolutional Networks (R-FCN)
- 2 Simple, accurate and efficient object detector
- Adopts state-of-the-art image classification backbones (ResNet)
- Comparable accuracy to Faster R-CNN, but much faster

Future Work

Body-parts based scoring maps

 Bulat, A., & Tzimiropoulos, G. (2016, October). Human pose estimation via convolutional part heatmap regression. In European Conference on Computer Vision (pp. 717-732).
 Springer International Publishing. ISO 690

• Shrivastava, A., Gupta, A., & Girshick, R. (2016). Training region-based object detectors with online hard example

mining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 761-769). ISO 690

- Li, Y., He, K., & Sun, J. (2016). R-fcn: Object detection via region-based fully convolutional networks. In Advances in Neural Information Processing Systems (pp. 379-387). ISO 690
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

