

In the claims

Cancel claims 1-18.

Amend claims 19 and 24 of remaining claims 19-40.

1-18 (Canceled)

19. (Currently Amended) A method of making a magnetic layer with in-plane anisotropy and high H_K after hard axis annealing in the presence of a field perpendicular to the plane comprising the steps of:

providing a DC magnetron which has a chamber, a target and a substrate; the target being NiFeCo;

providing a first process gas in the chamber which is composed of an inert gas and a nitrogen containing gas;

sputtering the target to form said magnetic layer composed of NiFeCo-O-N or NiFeCo-N on the substrate; and

hard axis annealing the magnetic layer in the presence of a magnetic field perpendicular to a major plane of the magnetic layer until the magnetic layer has an H_K from 2.6 Oe to 6.0 Oe and in-plane in-plane anisotropy.

20. (Original) A method as described in claim 19 wherein no bias is applied to the substrate.

21. (Original) A method as described in claim 19 wherein the first process gas includes 1.6% to 3.2% N₂O and the magnetic layer includes multiple sputtered NiFeCo-O-N or NiFeCo-N films.

22. (Original) A method as described in claim 19 wherein the first process gas includes 1.6% to 3.2% N₂O and the magnetic layer is a single film 2,500 Å to 6,000 Å thick.

23. (Original) A method as described in claim 19 wherein the first process gas includes 1.0% to 2.0% N₂ and the magnetic layer is a single film 1,500 Å to 12,000 Å thick.

24. (Currently Amended) A method as described in claim 19 wherein the target is $(Ni_{0.80+x}Fe_{0.20-y})_{1-y}Co_y$, where $-0.05 \leq x \leq 0.05$ and $0.00 < y < 0.15$ (wt. fraction) (weight fraction).

1 25. (Original) A method as described in claim 19 wherein the first process gas is
2 said inert gas and N₂ and the target is sputtered to form the magnetic layer of at least a single film
3 of NiFeCo-N about 1.8 μm thick.

1 26. (Original) A method as described in claim 25 wherein the first process gas
2 includes 1.0% to 2.0% N₂.

1 27. (Previously Amended) A method as described in claim 26 wherein during
2 sputtering the first target, a pressure between 1 x 10⁻³ to 3 x 10⁻³ mbar is maintained within said
3 chamber and the magnetic layer comprises one or more films of NiFeCo-N from 4,500 Å to
4 18,000 Å thick.

1 28. (Original) A method as described in claim 19 including:
2 the first process gas being said inert gas and N₂O;
3 sputter depositing multiple interlayer films of Al₂O₃ or SiO₂; and
4 sputtering the target multiple times to deposit multiple NiFeCo-O-N magnetic films;
5 and alternating the depositions to form the magnetic layer as a lamination of magnetic and
6 interlayer films.

1 29. (Previously Amended) A method of making a magnetic layer with in-plane
2 anisotropy and high H_K after hard axis annealing in the presence of a field perpendicular to the
3 plane comprising the steps of:

4 providing a DC magnetron which has a chamber, a target and a substrate;
5 the target being NiFeCo;
6 providing a first process gas in the chamber which is composed of an inert gas and N₂O;
7 sputtering the target to form said magnetic layer composed of NiFeCo-O-N or NiFeCo-N
8 on the substrate;
9 sputter depositing multiple interlayer films of Al₂O₃ or SiO₂;
10 sputtering the target multiple times to deposit multiple NiFeCo-O-N magnetic films;
11 alternating the depositions to form the magnetic layer as a lamination of magnetic and
12 interlayer films;

13 hard axis annealing the magnetic layer at about 232° C in the presence of magnetic field
14 perpendicular to a major plane of the magnetic layer for about 400 minutes; and
15 after said hard axis annealing, the magnetic layer having an H_K from 2.6 Oe to 6.0 Oe and
16 in plane anisotropy.

1 30. (Original) A method as described in claim 28 wherein the first process gas
2 includes 1.6% to 3.2% N_2O and each of the NiFeCo-O-N films is about 4,500 Å thick.

1 31. (Original) A method as described in claim 28 wherein no bias is applied to the
2 substrate.

1 32. (Allowed) A method of making a magnetic layer with in-plane anisotropy and
2 high H_K after hard axis annealing in the presence of a field perpendicular to the plane comprising
3 the steps of:

4 providing a DC magnetron which has a chamber, a target and a substrate;
5 the target being NiFeCo;
6 providing a first process gas in the chamber which is composed of an inert gas and N_2O ;
7 sputtering the target to form said magnetic layer composed of NiFeCo-O-N or NiFeCo-N
8 on the substrate;
9 before sputtering the target, sputter depositing a seed layer of NiFeCo-O-N with a second
10 process gas that has a higher N_2O content than the first process gas;
11 sputter depositing multiple interlayer films of Al_2O_3 or SiO_2 ;
12 sputtering the target multiple times to deposit multiple NiFeCo-O-N magnetic films; and
13 alternating the depositions to form the magnetic layer as a lamination of magnetic and
14 interlayer films.

1 33. (Allowed) A method as described in claim 32 wherein the seed layer is 25 Å to
2 200 Å thick.

1 34. (Allowed) A method as described in claim 32 including:
2 before sputter depositing the seed layer, sputter depositing a bottom layer of SiO_2 so that
3 the seed layer is located between the bottom layer and the magnetic layer.

1 35. (Allowed) A method as described in claim 32 wherein the N₂O content in the
2 second process gas is from 2.4% to 4.0%.

1 36. (Allowed) A method as described in claim 35 wherein no bias is applied to the
2 substrate.

1 37. (Allowed) A method as described in claim 36 including:
2 before sputter depositing the seed layer, sputter depositing a bottom layer of SiO₂ so that
3 the seed layer is located between the bottom layer and the magnetic layer.

1 38. (Allowed) A method as described in claim 37 wherein the seed layer is 25 Å to
2 200 Å thick.

1 39. (Allowed) A method as described in claim 38 wherein the bottom layer is about
2 25 Å thick.

1 40. (Allowed) A method as described in claim 39 wherein four NiFeCo-O-N
2 magnetic films are deposited with each magnetic film being about 4500 Å thick and each
3 interlayer film being about 25 Å thick.