Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Lea Szakszonová Naměřeno: 25.11.2022

Obor: B-FYZ ASTRO Skupina: Piatok 12:00 Testováno:

Úloha č. 6: Elektromagnetické kmity v RLC obvode

 $T=21,1~^{\circ}\mathrm{C}$ $p=987~\mathrm{hPa}$ $\varphi=43~\%$

1. Ciele

Našim cieľom bolo v prvej časti určiť impedanciu rezistoru, cievky a kondenzátoru. V druhej časti sme merali frekvenčnú charakteristiku RLC obvodu a z toho zistiť odpor, kapacitu a indukčnosť súčiastok a následne ich porovnať s hodnotami získaných z predošlej časti. V tretej časti sme merali prechodový jav pri podkritickom, kritickom a nadkritickom tlmení.

2. Pomôcky

multimeter Agilent U1733C, osciloskop, rezistory s odpormi 100 a 4,4 Ω , cievka, kondenzátor s kapacitou 88nF, funkčný generátor

3. Postup

3.1. Impedancia

Najprv sme multimetrom robili priamo meranie odporu rezistoru, kapacity kondenzátoru a indukčnosť cievky. Najprv sme zostavili obvod, ktorý znázorňuje obrázok (1). Meranie sme vykonali jednotlivo pre rezistor, kondenzátor a cievku pri frekvenciach 1 a 10 kHz. Následne sme zostavili obvod s osciloskopom, ktorý znázorňuje obrázok (2). Z merania z osciloskopu sme ako výstup dostali rozdiel napätí U_1 a U_2 , fázu a hodnotu U_2 . Najprv sme pomocou U_2 a referenčného odporu, ktorý sme si sami zvolili, sme vypočítali prúd pretekajúci obvodom pomocou Ohmovho zákona. Následne sme z toho vedeli overiť meraný odpor, ktorý sme vypočítali tiež s pomocou Ohmovho zákona, len už nie s napätím U_2 , ale s rozdielom napätí $U_1 - U_2$. S pomocou následujúceho vzťahu:

$$|Z| = R_I \frac{|U_1 - U_2|}{|U_2|} \tag{1}$$

sme vedeli vypočítať absolútnu veľkosť impedancie |Z|, kde R_I je referenčný odpor. Následne sme z absolútnej impedancie vedeli vypočítať amplitúdu vodivosti pomocou nasledujúceho vzťahu:

$$|G| = \frac{1}{|Z|} \tag{2}$$

Zo zistenej absolútnej veľkosti impedancie sme vedeli teoreticky overiť kapacitu kondenzátora pomocou nasledujúceho vzťahu:

$$C = \frac{1}{2\pi f|Z|} \tag{3}$$

Obr. 1: Obvod RLC

Obr. 2: 1. Zapojenie

kde f je frekvencia nameraná z funkčného generátoru, a indukciu cievky pomocou vzťahu:

$$L = \frac{|Z|}{2\pi f} \tag{4}$$

Zo získaných hodnôt sme vypočítali teoretickú hodnotu rezonančnej frekvencie obvodu, pre ktorý sme použili nasledujúci vzťah:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{5}$$

3.2. Frekvenčná charakteristika RLC obvodu

Pre meranie frekvenčných charakteristík sme použili predošlé zapojenie znázornený obrázkom (2). Zmerali sme tie isté veličiny ako v predchádzajúcej časti, teda frekvenciu, rozdiel napätí $U_1 - U_2$, napätie U_2 a fázu v okolí rezonančnej frekvencie, ktorú sme v prvej časti teoreticky vypočítali. Meranie sme vykonalí pre 20 frekvencií, 10 z jednej a 10 z druhej strany a vypočítali z toho absolútnu veľkosť impedancie a amplitúdu vodivosti. Následne sme vykreslili krivky závislosti amplitúdy vodivosti od frekvencie a závislosť fázy od frekvencie. Ako výstup sme dostali hodnoty R, L, C, a z nich sme dokázali vypočítať rezonančnú uhlovú frekvenciu ω_0 , konštantu tlmenia α_0 , silu oscilátora F a činiteľ jakosti Q. Pre výpočet sme použili nasledujúce vzťahy:

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{6}$$

$$F = \frac{1}{L} \tag{7}$$

$$\alpha_0 = \frac{R}{2L} \tag{8}$$

$$Q = \frac{\omega_0}{2\alpha_0} \tag{9}$$

Pre výpočet neistôt sme použili zákon šírenia neistôt, z ktorého vyšli nasledujúce vzťahy:

$$u(\omega_0) = \sqrt{\left(\frac{-C}{\sqrt{(LC)^3}}\right)^2 u^2(L) + \left(\frac{-L}{\sqrt{(LC)^3}}\right)^2 u^2(C)}$$
 (10)

$$u(F) = \sqrt{(\frac{1}{L^2})^2 u^2(L)} \tag{11}$$

$$u(\alpha_0) = \sqrt{\left(\frac{1}{2L}\right)^2 u^2(R) + \left(\frac{-R}{2L^2}\right)^2 u^2(L)}$$
(12)

$$u(Q) = \sqrt{\left(\frac{1}{2\alpha_0}\right)^2 u^2(\omega_0) + \left(\frac{-\omega_0}{2\alpha_0^2}\right)^2 u^2(\alpha_0)}$$
(13)

3.3. Prechodový jav RLC obvodu

Najprv sme zostavili obvod pomocou nasledujúcej schémy: Pre podkritické tlmenie platí, že α je

Obr. 3: 2. Zapojenie

menšía ako ω_0 . Pre tento prípad sme nechali zapojený pôvodný zistený odpor, čo bolo okolo 100 Ω . Následne sme mohli zmerať prechodový jav cez osciloskop a namerané dáta sme spracovali nasledovne. Najprv sme data podložili grafu v závislosťi U_2 od času. Následne sme z maxim určili $\ln(U_C-U_f)$ a podložili lineárnou závislosťou:

$$ln(U_C - U_f) = ln\frac{q_0}{C} - \alpha t \tag{14}$$

kde α je tlmiaca konštanta a ω_d sme určili pommocou vzťahu:

$$\omega_d = \frac{2\alpha}{R} \sqrt{\frac{L}{C}} \tag{15}$$

a pre neistotu platí:

$$u(\omega_0) = \sqrt{\left(\frac{2}{R}\right)^2 u^2(\alpha) + \left(\frac{-2\alpha}{R^2}\right)^2 u^2(R) + \left(\frac{\alpha}{RC} \frac{1}{\sqrt{\frac{L}{C}}}\right)^2 u^2(L) + \left(\frac{\alpha L}{RC^2} \sqrt{\frac{1}{\frac{L}{C}}}\right)^2 u^2(C)}$$
(16)

Následne sme pomocou nasledujúceho vzťahu určili ω_0 :

$$\omega_0 = \sqrt{\omega_d^2 + \alpha^2} \tag{17}$$

A pre neistotu platí:

$$u(\omega_0) = \sqrt{\left(\frac{\omega_d}{\sqrt{\omega_d^2 + \alpha^2}}\right)^2 u^2(\omega_d) + \left(\frac{\alpha}{\sqrt{\omega_d^2 + \alpha^2}}\right)^2 u^2(\alpha)}$$
(18)

Následne sme pomocou vzťahu (9) a (5) určili Činiteľ jakosti a rezonančnú frekvenciu obvodu. Pri kritickom tlmení platí, že α je rovná ω_0 . Do obvodu sme zapojili odporovú dekádu, s pomocou ktorej sme určili odpor pri kritickom tlmení. Následne sme namerali prechodový jav pre kritické tlmenie a namerané U_2 sme podložili závislosti s časom. Zároveň sme teoreticky overili odpor pre kritické tlmenie pomocou vzťahu:

$$R = 2\omega_0 L \tag{19}$$

kde ω_0 a L je uhlová frekvencia a indukčnosť cievky zistených z predošlej úlohy. Pre neistotu teoretickej R platí:

$$u(R) = \sqrt{(2\omega_0)^2 u^2(L) + (2L)^2 u^2(\omega_0)}$$
(20)

Pri nadkritickom tlmení platí, že α je väčšia ako ω_0 . Pri meraní sme postupovali rovnako, avšak pri spracovaní dát sme už museli postupovali inak, keďže našou úlohou bolo zistiť faktor exponenciálneho poklesu. Po vynesení závislosti U_2 od t sme závislosť podložili krivkou vyjadrenou nsledujúcim vzťahom:

$$q(t) = q_1 e^{\lambda_1 t} + q_2 e^{\lambda_2 t} \tag{21}$$

kde q_1 a q_2 sú konštanty dané počiatočnými podmienkami a lambdy sú faktory exponenciálneho poklesu. Ale ako výsledok dostaneme iba jeden z koreňov λ , a to tú s pomalejším útlmom. Pre toreticky výpočet koeficientu útlmu sme najprv použili nasledujúci vzťah:

$$\lambda^2 + v\alpha\lambda + \omega_0^2 = 0 \tag{22}$$

z ktorého sme odvodili nasledujúce korene rovnice:

$$\lambda_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2} \qquad \lambda_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$
 (23)

kde sme si vybrali výsledok s menším koeficientm útlmu, keďže druhý výsledok zodpovedá dvom exponenciálam. Pre výpočet α a ω_0 sme využili vzťahy (8) a (6) pre odpor nameraný na odporovej dekáde. Pre výpočet neistoty teoretického koeficientu útlmu sme použili zákon šírenia neistôt:

$$u(\lambda_1) = \sqrt{(-1 + \frac{\alpha}{\sqrt{\alpha^2 + \omega_0^2}})^2 u^2(\alpha) + (\frac{-\omega_0}{\sqrt{\alpha^2 + \omega_0^2}})^2 u^2(\omega_0)}$$
 (24)

4. Výsledky meraní

4.1. Impedancia

Tabuľka 1: Namerané hodnoty pre rezistor pomocou osciloskopu

f[kHz]	$ U_1 - U_2 [V]$	$ U_2 $ [V]	fáza[°]	$ Z [\Omega]$	$ G 10^{-4} [\Omega^{-1}]$	$R[\Omega]$
1,073	11,02	0,481	359,5	100,87	99,14	100,87
10,66	11,07	0,484	360,0	100,70	99,31	100,70

Tabuľka 2: Namerané hodnoty pre kondenzátor pomocou osciloskopu

	f[kHz]	$ U_1 - U_2 [V]$	$ U_2 $ [V]	fáza[°]	$ Z [\Omega]$	$ G 10^{-4} [\Omega^{-1}]$	C[nF]
	1,07	16,91	0,045	269,4	1653,42	6,05	89,96
ĺ	10,64	16,11	0,423	270,0	167,42	59,73	89,35

Tabuľka 3: Namerané hodnoty pre cievku pomocou osciloskopu

f[k]	Hz]	$ U_1 - U_2 [V]$	$ U_2 $ [V]	fáza[°]	$ Z [\Omega]$	$ G \ 10^{-4} [\Omega^{-1}]$	L[mH]
1,0	069	16,8	0,0977	88,0	756,60	13,22	112,65
10	,63	17,01	0,0083	83,2	8723,08	1,15	130,60

Tabuľka 4: Namerané hodnoty z multimetra

f[kHz]	$R[\Omega]$	$\Theta_R[^{\circ}]$	C[nF]	$\Theta_C[^{\circ}]$	$D_C \ 10^{-4}$	L[mH]	$\Theta_L[^{\circ}]$
1	99,26	0	88,47	-89,9	17,53	113,04	88,6
10	99,37	0	88,4	-89,9	17,45	130,05	84,06

Ako R_{ESR} sme mali nastavené na $(4,4)\Omega$. Rezonančná frekvencia nám vyšla pre 1kHz hodnota (1591,5) Hz a pre 10 kHz hodnota (1484,02) Hz.

4.2. Frekvenčná charakteristika RLC obvodu

Obr. 4: Závislosti G(f) a fáza(f)

 $\begin{array}{l} R \! = \! (127,\!94 \! \pm \! 0,\!17) \Omega \\ C \! = \! (88,\!3 \! \pm \! 0,\!02) \text{ nF} \\ L \! = \! (113,\!87 \! \pm \! 0,\!03) \text{ mH} \\ \omega_0 \! = \! (9972 \! \pm \! 32) \text{ rad s}^{-1} \\ \alpha_0 \! = \! (1060 \! \pm \! 2) \text{ s}^{-1} \\ F \! = \! (8,\!78 \! \pm \! 0,\!02) \text{ N} \\ Q \! = \! (4,\!70 \! \pm \! 0,\!02) \\ f_0 \! = \! (1587 \! \pm \! 5) \text{ Hz} \end{array}$

4.3. Prechodový jav RLC obvodu

Obr. 5: Podkritické tlmenie

Obr. 6: Závislosť $\ln(U_C-U_f)$ od času t

 $\alpha = (662\pm13) \text{ s}^{-1}$ $\omega_d = (11754\pm330) \text{ rad s}^{-1}$ $\omega_0 = (11774\pm329) \text{ rad s}^{-1}$ $Q = (8,88994\pm0,00007)$ $f_0 = (1874\pm52) \text{ Hz}$

Obr. 7: Kritické tlmenie

Odpor na odporovej dekáde: R=(1900) Ω Teoreticky vypočítaný odpor: R=(2271±9) Ω

Obr. 8: Nadkritické tlmenie

Odpor na odporovej dekáde: R=(3800) Ω Koeficient poklesu z fitu: τ =(2959±6) s⁻¹

Koeficient poklesu teoreticky vypočítaný: $\lambda_1 = (3308 \pm 17) \text{ s}^{-1}$

5. Záver

V prvej časti sme mali pomocou multimetra priamo zmerať hodnoty odporu rezistoru, kapacity kondenzátoru a indukčnosti cievky, pričom meranie sme vykonali pri 1-10 kHz. Výsledky sú zapísané v tabuľke (4). Tieto hodnoty sme následne overili aj pomocou merania z osciloskopu, pričom výsledné hodnoty sú znázornené v tabuľkách (1) až (3). Z porovnania vieme povedať, že naše merania z osciloskopu sa približne zhodujú z priameho merania multimetrom, aj keď hodnoty z osciloskopu pre rezistor a kondentátor sa mierne prevyšujú. Pre cievku sa hodnota indukčnosti skoro zhodujú. Zároveň sme pomocou výpočtov mali zistiť hodnotu rezonančnej frekvencie, ktorej hodnota nám vyšla (1591,5) Hz pre kHz a (1484,02) Hz pri 10 kHz.

V druhej časti sme skúmali frekvenčné charakteristiky RLC obvodu. Namerané údaje sme vložili do grafov, ktoré znázorňujú obrázok (4). Z fitov následne vyšli výsledky pre odpor $(127,94\pm0,17)\Omega$, pre kapacitu $(88,3\pm0,02)$ nF a pre indukčnosť $(113,87\pm0,03)$ mH, pričom tieto výsledky sa približne zhodujú s hodnotami získaných z predošlej úlohy. Najviac sa od predošlých hodnôt odchyľuje hodnota pre odpor, ktorá nám vyšla výrazne vyššia. Zo získaných hodnôt sme dokázali vypočítať uhlovú frekvenciu s hodnotou (9972 ± 32) rad s⁻¹, koeficient tlmenia s hodnotou (1060 ± 2) s⁻¹, silu oscilátora s hodnotou $(8,78\pm0,02)$ N a činiteľ jakosti s hodnotou $(4,70\pm0,02)$. Rezonančná frekvencia nám z tohto merania vyšla (1587 ± 5) Hz čo je hodnota podobná ku teoreticky zisteným.

V tretej časti sme skúmali prechodové javy RLC obvodu. Pri podkritickom meraní sme mali zistiť koeficient tlmenia, uhlovú frekvenciu, činiteľ jakosti a rezonančnú frekvenciu. Koeficient nám vyšiel z lineárneho fitu, kde sme dostali hodnotu (662 ± 13) s⁻¹, čo je oveľa menšia hodnota ako v predošlej úlohe. Aj z neistoty vieme povedať, že predošlé meranie bolo pravdepodobne presnejšie. Uhlová frekvencia nám vyšla (11774 ± 329) rad s⁻¹, činiteľ jakosti $(8,88994\pm0,00007)$ a rezonančná frekvencia $f_0=(1874\pm52)$ Hz. Hodnoty sú pri tomto meraní vyššie ako z predchádzajúcej časti a zároveň podľa vypočítaných neistôt vieme povedať, že boli aj menej presné. Pri kritickom meraní sme na odporovej dekáde zistili odpor pri kritickom tlmení, kde sme dostali hodnotu 1900 Ω . Teoreticky sme dostali hodnotu (2271 ± 9) Ω . Pri nadkritickom meraní sme mali zistiť faktor exponenciálneho poklesu, ktorý nám z fitu vyšiel výsledok (2959 ± 6) s⁻¹ a teoretická hodnota nám vyšla (3308 ± 17) s⁻¹.