Elementos Activos

Teoría de Circuitos II

Oscar Perpiñán Lamigueiro

- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

Clasificación

- ► Tensión o Corriente
- ► Ideal o Real
- ▶ Dependiente o Independiente

Generador Ideal

Un **generador de tensión ideal** impone la tensión a la salida (*la corriente depende del circuito*). Se caracteriza por su **fuerza electromotriz** (voltios [V]).

Un **generador de corriente ideal** impone la corriente a la salida (*la tensión depende del circuito*). Se caracteriza por su corriente de generador.

Generador Real CC

Los generadores reales tienen pérdidas que se modelan con una resistencia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)

Generador Real AC

Los generadores reales tienen pérdidas que se modelan con una impedancia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)

$$\bar{I} = \bar{I}_g - \frac{\overline{U}_A}{\overline{Z}_{I_g}}$$

Generadores Dependientes

Generadores de Tensión

Generadores Dependientes

Generadores de Corriente

... de Tensión

... de Corriente

- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

Ecuación del generador CC

$$U_{AB} = \epsilon_g - R_{\epsilon_g} \cdot I$$

$$I = I_g - \frac{U_{AB}}{R_{I_g}}$$

Ecuación del generador AC

$$\overline{U}_{AB} = \overline{\epsilon}_g - \overline{Z}_{\epsilon_g} \cdot \overline{I}$$

Diagramas Tensión - Corriente

Fuente de tensión

$$u(t) = \epsilon_g - R_{\epsilon_g} \cdot i(t)$$

$$i(t) = 1/R_{\epsilon_g} \cdot (\epsilon_g - u(t))$$

Fuente de corriente

$$i(t) = I_g - u(t)/R_{Ig}$$

$$u(t) = R_{Ig} \cdot (I_g - i(t))$$

Potencia y rendimiento de una fuente

Potencia y rendimiento de una fuente

Suponiendo R_g constante, la potencia entregada por la fuente es máxima cuando $R_L = R_g$.

$$P_L = rac{\epsilon_{th}^2}{4R_o}$$

► El rendimiento es una función creciente $(\eta \to 1 \text{ para } R_L \gg R_g)$.

Potencia y rendimiento de una fuente

- ▶ En la zona a la derecha del punto de máxima potencia ($R_L > R_g$), la función de potencia tiene una variación suave: los cambios en R_L tienen un impacto pequeño en P_L .
- ► Por ejemplo:
 - Para $R_L = R_g$ se obtiene $\eta = 0'5$
 - Para $R_L = 2 \cdot R_g$, se obtiene $P_L = 0'89 \cdot P_{max}$ y $\eta = 0'67$.
 - Para $R_L = 3 \cdot R_g$, se obtiene $P_L = 0'75 \cdot P_{max}$ y $\eta = 0'75$.

Potencia de una fuente AC

Calculamos la potencia activa en la impedancia de carga Z_L :

Máxima potencia de una fuente AC

Suponiendo \overline{Z}_g constante, las condiciones de máximo son:

$$\frac{\partial P_L}{\partial X_L} = 0 \quad \frac{\partial P_L}{\partial R_L} = 0$$

Los resultados son:

$$\frac{\partial P_L}{\partial X_L} = 0 \Rightarrow \boxed{X_L = -X_g}$$

$$\frac{\partial P_L}{\partial R_L} = 0 \Rightarrow \boxed{R_L = R_g}$$

Máxima potencia de una fuente AC

En estas condiciones, la máxima potencia disponible en la carga es:

$$\left. \begin{array}{l} \overline{Z}_L = \overline{Z}_g^* \\ P_L = \frac{\epsilon_g^2}{|\overline{Z}_g + \overline{Z}_L|^2} \cdot R_L \end{array} \right\} \rightarrow \boxed{P_L = \frac{\epsilon_g^2}{4R_g}}$$

Máxima potencia de una fuente AC

Si la impedancia de carga es resistiva pura, únicamente se puede cumplir la segunda condición del máximo, $\frac{\partial P_L}{\partial R_I} = 0$.

En este caso, el resultado es:

$$R_L = |\overline{Z}_g| = \sqrt{R_g^2 + X_g^2}$$

$$P_L = \frac{\epsilon_g^2}{2(R_L + R_g)}$$

- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

Equivalencia de fuentes

Sólo es posible establecer equivalencia entre fuentes reales.

$$\overline{U}_{AB} = \overline{\epsilon}_{g} - \overline{Z}_{\epsilon_{g}} \cdot \overline{I}$$

$$\bar{I} = \bar{I}_g - \frac{\overline{U}_{AB}}{\overline{Z}_{I_0}}$$

Conexión en serie de generadores

Generadores de Tensión

Pueden conectarse en serie sin restricción.

$$\epsilon_t = \sum_{i=1}^{N} \epsilon_i$$
 $R_{gt} = \sum_{i=1}^{N} R_{gi}$

$$\overline{\epsilon}_t = \sum_{i=1}^N \overline{\epsilon}_i$$

$$\overline{Z}_{gt} = \sum_{i=1}^{N} \overline{Z}_{gi}$$

Generadores de Corriente

- ▶ Ideal: todas las fuentes deben ser idénticas (valor y sentido).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

Conexión en paralelo de generadores

Generadores de Tensión

- ▶ Ideal: todas las fuentes deben ser idénticas (valor y polaridad).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

Generadores de Corriente

Pueden conectarse en paralelo sin restricción.

$$I_{gT} = \sum_{i=1}^{N} I_{gi}$$
 $\bar{I}_{gt} = \sum_{i=1}^{N} \bar{I}_{gi}$ $G_{gT} = \sum_{i=1}^{N} G_{gi}$ $\bar{Y}_{gt} = \sum_{i=1}^{N} \bar{Y}_{gi}$

Fuentes dominantes

Una fuente de tensión es dominante sobre las ramas conectadas en paralelo.

Fuentes dominantes

Una fuente de corriente es dominante sobre los elementos conectados en serie.

Modificación de la geometría de un circuito

Modificación de la geometría de un circuito

Modificación de la geometría de un circuito

