

Refine Search

Search Results -

Terms	Documents
L53 and (event with detection or event near detection)	13

Database:

US Pre-Grant Publication Full-Text Database
 US Patents Full-Text Database
 US OCR Full-Text Database
 EPO Abstracts Database
 JPO Abstracts Database
 Derwent World Patents Index
 IBM Technical Disclosure Bulletins

Search:

Refine Search

Search History

DATE: Saturday, December 18, 2004 [Printable Copy](#) [Create Case](#)

Set Name Query
 side by side

Hit Count **Set Name**
 result set

<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</i>		
<u>L56</u> L53 and (event with detection or event near detection)	13	<u>L56</u>
<u>L55</u> L54 and detection	28	<u>L55</u>
<u>L54</u> l53 and event	53	<u>L54</u>
<u>L53</u> L52 and identif\$4	134	<u>L53</u>
<u>L52</u> L51 and transmission near media	236	<u>L52</u>
<u>L51</u> information near process\$ near device	11082	<u>L51</u>
<u>L50</u> 348/14.02	340	<u>L50</u>
<u>L49</u> 348.clas.	65091	<u>L49</u>
<u>L48</u> 709/319	159	<u>L48</u>
<u>L47</u> 709/318	610	<u>L47</u>
<u>L46</u> 709.clas.	32888	<u>L46</u>
<u>L45</u> 370/371	200	<u>L45</u>
<u>L44</u> 370/300	137	<u>L44</u>
<u>L43</u> 370/299	163	<u>L43</u>

<u>L42</u>	370/282	858	<u>L42</u>
<u>L41</u>	370/277	510	<u>L41</u>
<u>L40</u>	370/230	3504	<u>L40</u>
<u>L39</u>	370/110	207	<u>L39</u>
<u>L38</u>	370/216	1724	<u>L38</u>
<u>L37</u>	370/215	252	<u>L37</u>
<u>L36</u>	370/213	300	<u>L36</u>
<u>L35</u>	370/113	106	<u>L35</u>
<u>L34</u>	370/207	308	<u>L34</u>
<u>L33</u>	370/201	626	<u>L33</u>
<u>L32</u>	370/111	493	<u>L32</u>
<u>L31</u>	370/15	750	<u>L31</u>
<u>L30</u>	370/13	2365	<u>L30</u>
<u>L29</u>	370/10	121	<u>L29</u>
<u>L28</u>	370.clas.	80254	<u>L28</u>
<u>L27</u>	709/217	6124	<u>L27</u>
<u>L26</u>	709/300	781	<u>L26</u>
<u>L25</u>	709/314	212	<u>L25</u>
<u>L24</u>	709/101	759	<u>L24</u>
<u>L23</u>	709.clas.	32888	<u>L23</u>
<u>L22</u>	358/442	1731	<u>L22</u>
<u>L21</u>	358/441	190	<u>L21</u>
<u>L20</u>	358/400	3134	<u>L20</u>
<u>L19</u>	358/525	533	<u>L19</u>
<u>L18</u>	358.clas.	44612	<u>L18</u>
<u>L17</u>	340/522	1144	<u>L17</u>
<u>L16</u>	340.clas.	150484	<u>L16</u>
<u>L15</u>	713/200	4656	<u>L15</u>
<u>L14</u>	713.clas.	22652	<u>L14</u>
<u>L13</u>	382/209	1828	<u>L13</u>
<u>L12</u>	382.clas.	44553	<u>L12</u>
<u>L11</u>	375/347	2032	<u>L11</u>
<u>L10</u>	375.clas.	56697	<u>L10</u>
<u>L9</u>	348/12	2372	<u>L9</u>
<u>L8</u>	348.clas.	65091	<u>L8</u>
<u>L7</u>	707.clas.	24011	<u>L7</u>
<u>L6</u>	707/206	1043	<u>L6</u>
<u>L5</u>	707/200	3668	<u>L5</u>
<u>L4</u>	707/104.1	4976	<u>L4</u>
<u>L3</u>	707/100	5531	<u>L3</u>
<u>L2</u>	707/10	9618	<u>L2</u>

L1 707/1

7261 L1

END OF SEARCH HISTORY

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)[Search Forms](#) [Generate Collection](#) [Print](#)[Search Results](#)[Help](#)[User Searches](#)

155: Entry 23 of 28

File: USPT

Dec 28, 1999

[Preferences](#)[Logout](#) NO: 6009284

DOCUMENT-IDENTIFIER: US 6009284 A

TITLE: System and method for controlling image processing devices from a remote location

DATE-ISSUED: December 28, 1999

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Weinberger; Joseph	East Brunswick	NJ		
Bricault; Gary	Rochester	NY		
Laird; James	Rochester	NY		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE	CODE
The Weinberger Group, L.L.C.	East Brunswick	NJ				02

APPL-NO: 08/ 724640 [PALM]

DATE FILED: October 1, 1996

PARENT-CASE:

REFERENCE TO RELATED APPLICATIONS This application is a continuation of application Ser. No. 08/487,357, filed Jun. 7, 1995, now U.S. Pat. No. 5,603,060, which was a continuation of application Ser. No. 08/247,591, filed May 23, 1994, now abandoned, which was a continuation of application Ser. No. 07/978,278, filed Nov. 18, 1992, now U.S. Pat. No. 5,333,286, which was a division of application Ser. No. 07/567,388, filed Aug. 14, 1990, now U.S. Pat. No. 5,214,772, which was a continuation-in-part of application Ser. No. 07/450,605, filed Dec. 13, 1989, now U.S. Pat. No. 5,084,875.

INT-CL: [06] G06 F 3/00, G06 F 11/00

US-CL-ISSUED: 399/8, 399/77, 345/354, 710/67

US-CL-CURRENT: 399/8, 399/77, 710/67, 715/700

FIELD-OF-SEARCH: 399/8, 399/75, 399/81, 399/77, 395/184.01, 345/354, 709/223, 710/67, 714/46, 714/47

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

[Search Selected](#)[Search ALL](#)[Clear](#)

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>3400378</u>	September 1968	Smith et al.	340/870.11
<input type="checkbox"/> <u>3623013</u>	November 1971	Perkins et al.	395/829
<input type="checkbox"/> <u>3744043</u>	July 1973	Walden et al.	340/870.07
<input type="checkbox"/> <u>3916177</u>	October 1975	Greenwald	395/183.22
<input type="checkbox"/> <u>4144550</u>	March 1979	Donohue et al.	399/77
<input type="checkbox"/> <u>4162488</u>	July 1979	Silverman et al.	340/505
<input type="checkbox"/> <u>4167322</u>	September 1979	Yano et al.	364/140.02
<input type="checkbox"/> <u>4183089</u>	January 1980	Daughton et al.	395/841
<input type="checkbox"/> <u>4213694</u>	July 1980	Kuseski	355/26
<input type="checkbox"/> <u>4311986</u>	January 1982	Yee	340/825.63
<input type="checkbox"/> <u>4330847</u>	May 1982	Kuseski	395/200.76
<input type="checkbox"/> <u>4412292</u>	October 1983	Sedam et al.	364/479.11
<input type="checkbox"/> <u>4463418</u>	July 1984	O'Quin, II et al.	395/181
<input type="checkbox"/> <u>4497037</u>	January 1985	Kato et al.	399/80
<input type="checkbox"/> <u>4545013</u>	October 1985	Lyon et al.	371/20.1
<input type="checkbox"/> <u>4583834</u>	April 1986	Seko et al.	399/8
<input type="checkbox"/> <u>4623244</u>	November 1986	Andrews et al.	355/24
<input type="checkbox"/> <u>4633412</u>	December 1986	Ebert, Jr. et al.	364/528.21
<input type="checkbox"/> <u>4652698</u>	March 1987	Hale et al.	380/24
<input type="checkbox"/> <u>4695946</u>	September 1987	Andreasen et al.	395/183.07
<input type="checkbox"/> <u>4712213</u>	December 1987	Warwick et al.	395/183.2
<input type="checkbox"/> <u>4745602</u>	May 1988	Morrell	395/181
<input type="checkbox"/> <u>4870644</u>	September 1989	Sherry et al.	395/184.01
<input type="checkbox"/> <u>4947397</u>	August 1990	Sobel et al.	395/183.21
<input type="checkbox"/> <u>4962368</u>	October 1990	Dobrzanski et al.	340/514
<input type="checkbox"/> <u>4964065</u>	October 1990	Hicks et al.	395/200.56
<input type="checkbox"/> <u>5016059</u>	May 1991	Smeiman	399/80
<input type="checkbox"/> <u>5038319</u>	August 1991	Carter et al.	395/181
<input type="checkbox"/> <u>5057866</u>	October 1991	Hill, Jr. et al.	399/8
<input type="checkbox"/> <u>5077582</u>	December 1991	Kravette et al.	399/8
<input type="checkbox"/> <u>5084875</u>	January 1992	Weinberger et al.	395/183.22
<input type="checkbox"/> <u>5214772</u>	May 1993	Weinberger et al.	395/184.01
<input type="checkbox"/> <u>5333286</u>	July 1994	Weinberger et al.	395/184.01
<input type="checkbox"/> <u>5603060</u>	February 1997	Weinberger et al.	399/8

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO
5981656

PUBN-DATE
May 1985

COUNTRY
JP

US-CL

OTHER PUBLICATIONS

XEROX 1090 Copier Electronic Data Interface Operator Guide and Installation Instructions, Nov. 1988.

Rochester Democrat and Chronicle, by David Lindley, Mar. 28, 1990.

Kodak Teleassistance Network, Copyright, Eastman Kodak Company, 1986.

B. D. Hyde and T. T. Underhill, "Copier Power Control System", IBM Technical Disclosure Bulletin, vol. 25, No. 2, Jul. 1982, New York, USA, pp. 521-522.

ART-UNIT: 277

PRIMARY-EXAMINER: Kulik; Paul V.

ATTY-AGENT-FIRM: Hedman, Gibson & Costigan, P.C.

ABSTRACT:

A system and method for controlling image processing devices from a remote location, including means for selectively monitoring the operational status of a device on a real time basis and means for generating control commands from the remote location to perform operational commands at the image processing device.

20 Claims, 43 Drawing figures

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)[Search Forms](#) [Generate Collection](#) [Print](#)[Search Results](#)[Help](#)[User Searches](#)

155: Entry 23 of 28

File: USPT

Dec 28, 1999

[Preferences](#)[Logout](#)

DOCUMENT-IDENTIFIER: US 6009284 A

TITLE: System and method for controlling image processing devices from a remote location

Detailed Description Text (17):

The NVRAM 27 is read as with a conventional RAM but it retains the stored data if power is removed. This device is also known as an Electrically Erasable Programmable Read Only Memory (EEPROM) and/or a Battery Backed RAM (BBRAM) which contains its own on-board battery and change-over circuitry. Special information patterns, such as identifying signatures are loaded into the NVRAM 27. This can be done at manufacturing time or remotely through the data collection computer 16. This information can then be used to remotely identify the copier within the network, e.g. as a header attached to the data returned to the central data collection point 4.

Detailed Description Text (18):

This enables a network with many copiers to have fewer problems relating a specific copier to its database records. For, example, if a copier is moved from one location to another in the network, the signature identification would travel with it. As a result the copier still could be recognized by the data collection computer 16 database manager even though the copier is now at a different location in the network. A less obvious advantage to the identifying signature is the ability to identify a copier that has been stolen, stripped of all of its serial labels and then sold. Because this component is a seemingly permanent internal component there is a high probability that it would remain intact internal to the copier and would provide a means of identification.

Detailed Description Text (32):

The CPU 22 may also receive an interrupt request signal from the UART 38. The UART 38 enables the CPU 22 to communicate with the scanner/multiplexer 14. The UART 38 performs the task of converting the serial data that is transmitted from the scanner 14 into 8-bit bytes that the CPU 22 can process. It also converts the 8-bit bytes of data from the CPU 22 into a serial stream to be sent back to the scanner 14 along line 52. Furthermore, the transmit (TX) and receive (RX) signal lines are converted to/from standard RS-422 line drivers/receivers 50 for transmission of data over long distances with high immunity from external noise sources. Various transmission media, such as fiber optics, telephone lines, etc., are also possible.

Detailed Description Text (67):

Possibilities for the polling of the translators 6 include separate communication lines 52 for each translator 6, having the scanner 14 send a request to each unit in sequential round-robin fashion (shown in FIG. 1) or to daisy-chain the translators 6 together on a common line in a connected or unconnected ring wherein the scanner 14 would put the translator identifier of the unit being polled on the line 52.

Detailed Description Text (69):

Real-time monitoring is accomplished in a special operating mode that causes the data collection computer 16 to focus in on a particular copier 2 and only poll the

other copiers 2 as a background task and at a significantly lower rate. This allows the data collection computer 16 to sample the status of that particular copier 2 at a rate that will not appear to have any delay between the time an event occurs at the copier 2 and the time at which it is reported.

Detailed Description Text (70):

The data collection computer 16 can be an IBM compatible personal computer consisting of a monitor, keyboard, CPU, floppy drive, hard disk drive, and 640K of Random Access Memory running DOS 3.3. The data collection computer 16 assembles the status information into various display formats. Some of the user features are displayed in the Menu Selection Tree (FIGS. 20a-20f). These features enable a database of information on copiers by manufacturer, model, options, location, facilities, etc. to be built. The database would then be merged with the status information to present a current representation of status of all copiers 2 on the monitoring network. Copiers 2 with operational problems are easily identified and service requests made and tracked in like manner.

Detailed Description Text (71):

All of the stored information can also be utilized for a wide variety of report generation. It can also be used to predict potential or future machine failures. A rise in a certain type of fault could be detected and flagged as an upcoming failure. This type of window detection is similar to what the RIC system Xerox uses. However, the said system is a continuously on-line, real-time monitoring system. The present system could also alert a dispatch office automatically of pending or existing copier problems.

Detailed Description Text (73):

FIG. 21 is an actual screen dump of the monitoring mode for a Xerox 1025 copier. By having a copy of the control panel information, such a screen can be created and maintained for virtually any copier, whether or not the panel consists of a simple indicators (the static panel) or textual display characters (the dynamic panel). It then becomes a matter of processing the data against a map of the display layout of a given copier 2 to arrive at the end result. The screen of FIG. 22 shows the current state of the ten major status indicators as well as the copier setup parameters, copy count and error codes, in the event of a copier fault.

CLAIMS:

10. A system for automatically monitoring the operational status of and initiating control commands on one or more image processing devices from a remote location, each image processing device having a control computer for monitoring device status information and controlling operation of the device, comprising a device interface associated with each device for accessing status information from the device control computer for transmission to the remote location and passing control commands from the remote location to the device control computer for execution by the device control computer, communication means between the device interface and the remote location, a central computer for remotely monitoring the status information processed by the device control computer at the remote location on a real-time basis and generating control commands from the remote location for execution by the device control computer thereby remotely activating control commands on the device comprising a user interface to remotely input a control command at the remote location for transmission to the device control computer of a specific device in the system.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)