E.T.S D'ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA Senyals i Sistemes I (G30), Novembre, 2008

- 1. Sea un sistema lineal e invariante cuya respuesta impulsional $h_1(t) = T[\delta(t)] = e^{-\alpha t}u(t-t_0)$.
 - (a) Enuncie la propiedad de estabilidad de los sistemas. Demuestre qué ha de cumplir la respuesta impulsional de un sistema lineal e invariante para que sea estable. Compruebe si el sistema $h_1(t)$ es o no estable.
 - (b) Encuentre la salida de este sistema, y(t), si la entrada es $x(t) = e^{\beta t}u(-t)$. Represente gráficamente y(t).
 - (c) A partir de cada una de las señales, x(t), $h_1(t)$ e y(t), y partiendo de la definición de la transformada de Fourier, encuentre sus transformadas de Fourier. Demuestre las propiedades de la transformada de Fourier que utilice. Dado que $y(t) = x(t) * h_1(t)$ enuncie la propiedad de la convolución y compruebela en este caso particular.
- 2. Un sistema de comunicaciones vía radio produce distorsión multicamino debido a distintos caminos de propagación entre el emisor y el receptor. Un modelo simplificado permite expresar la señal a la salida del canal de comunicaciones como $y(t) = Ax(t-t_1) + Bx(t-t_2)$ donde $t_2 > t_1$ y $\frac{A}{B} \gg 1$.

En recepción, se desea ecualizar la señal, es decir, obtener la señal original aceptando cierto retardo, $x(t-t_1)$.

- (a) Calcular la respuesta frecuencial del modelo que simula el canal multicamino.
- (b) Calcular la respuesta frecuencial del sistema ecualizador que permite recuperar $x(t-t_1)$.

La figura muestra una aproximación para el sistema de ecualización.

- (c) Hallar los coeficientes a_i y el valor del retardo T del sistema de la figura para aproximar el ecualizador diseñado en el apartado anterior.
- (d) ¿Qué error se comete con esta aproximación?

3. La multiplexación en tiempo permite transmitir varias señales simultaneamente por el mismo canal, asignando ciertos intérvalos temporales a cada señal.

Sea una señal x(t) que se representa tomando τ segundos cada T. Llamamos $x_c(t)$ a la señal discontinua generada a partir de x(t), según muestra la figura.

Como se aprecia en la figura, utilizando el tiempo no ocupado se podrían enviar otras señales, transmitiendo por el mismo canal $\frac{T}{\tau}$ señales.

Por el teorema del muestreo sabemos que si las señales son de un ancho de banda limitado B_x , podemos recuperar la señal a partir de las muestras; con más razón, podremos recuperar x(t) a partir de segmentos de la señal.

(a) Demuestre que $x_c(t)$ puede expresarse mediante la expresión

$$x_c(t) = \sum_{k=-\infty}^{\infty} x(t)p(t - nT)$$

indicando el valor de p(t).

(b) Demuestre el siguiente par transformado, indicando el valor de a_k :

$$\sum_{k=-\infty}^{\infty} x(t)p(t-kT) \longleftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} a_k \cdot X\left(f - \frac{k}{T}\right)$$

- (c) Calcule y represente la transformada de Fourier de $x_c(t)$ en función de X(f), utilizando la señal p(t) del apartado (a)
- (d) Diseñe un sistema para obtener x(t) a partir de $x_c(t)$. Especifique la condición que han de cumplir T y τ en función del ancho de banda de la señal B_x . ¿Cuál es el ancho de banda de la señal $x_c(t)$?
- (e) Todos los canales de transmisión tienen un ancho de banda finito B_h . Suponga que al transmitir la señal $x_c(t)$, queda limitada a un ancho de banda, B_h , por lo que se recibe $X_c(f) \cdot \Pi(f/2B_h)$, con $B_h \gg B_x$. Discuta como influye τ en la distorsión de la señal recibida.