Sample Contest

Fractals

November 30, 2021

- 1. Define The operation a@b to be 3+ab+a+2b. There exists a number x such that x@b=1 for all b. Find x.
- 2. Let $y = x^2 + bx + c$ be a quadratic function. it has only one real root. if b is postive, find $\frac{b+2}{\sqrt{c}+1}$.
- 3. A circle of nonzero radius r has a circumference numerically equal to $\frac{1}{3}$ of its area. What is its area?
- 4. Let set \mathcal{A} be a 90-element subset of $\{1, 2, 3, \dots, 100\}$, and let S be the sum of the elements of \mathcal{A} . Find the number of possible values of S.
- 5. A gorgeous sequence is a sequence of 1's and 0's such that there are no consecutive 1's. For instance, the set of all gorgeous sequences of length 3 is [1, 0, 0], [1, 0, 1], [0, 1, 0], [0, 0, 1], [0, 0, 0]. Determine the number of gorgeous sequences of length 7.
- 6. A 8×8 chessboard with the northeast and southwest corner unit squares removed is given. Is it possible to partition such a a board into thirty-one unit dominoes (where a domino is a 1×2 rectangle)? Show your work.
- 7. The function f satisfies

$$f(x) + f(2x + y) + 5xy = f(3x - y) + 2x^{2} + 1$$

for all real numbers x, y. Determine the value of f(10)

8. Let

$$a = \underbrace{19191919191...1919}_{\text{19 is repeted 3838 times}}$$

What is the reminder of a when divided by 13?