Architetture dei Sistemi di Elaborazione

Delivery date: November 5th 2021

Laboratory

Expected delivery of lab_04.zip must include:

4

- this document compiled possibly in pdf format.

1) Introducing gem5

gem5 is freely available at: http://gem5.org/

the laboratory version uses the ALPHA CPU model previously compiled and placed at:

```
/opt/gem5/
```

the ALPHA compilation chain is available at:

```
/opt/alphaev67-unknown-linux-gnu/bin/
```

a. Write a hello world C program (hello.c). Then compile the program, using the ALPHA compiler, by running this command:

```
\label{linux-gnu} $$ \sim \infty - \frac{1}{2} - \frac{1}{2}
```

b. Simulate the program

```
~/my_gem5Dir$ /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py -c hello
```

In this simulation, gem5 uses *AtomicSimpleCPU* by default.

c. Check the results

your simulation output should be similar than the one provided in the following:

```
~/my gem5Dir$ /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py -c hello
gem5 Simulator System. http://gem5.org
gem5 is copyrighted software; use the --copyright option for details.
gem5 compiled Sep 20 2017 12:34:54
gem5 started Jan 19 2018 10:57:58
gem5 executing on this pc, pid 5477
command line: /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py -c hello
Global frequency set at 100000000000 ticks per second
warn: DRAM device capacity (8192 Mbytes) does not match the address range assigned
(512 Mbytes)
0: system.remote gdb.listener: listening for remote gdb #0 on port 7000
warn: ClockedObject: More than one power state change request encountered within the
same simulation tick
**** REAL SIMULATION ****
info: Entering event queue @ 0. Starting simulation...
info: Increasing stack size by one page.
hola mundo!
Exiting @ tick 2623000 because target called exit()
```

•Check the output folder

in your working directory, gem5 creates an output folder (m5out), and saves there 3 files: config.ini, config.json, and stats.txt. In the following, some extracts of the produced files are reported.

•Statistics (stats.txt)

```
------ Begin Simulation Statistics -------
sim_seconds 0.000003 # Number of seconds simulated
sim_ticks 2623000 # Number of ticks simulated
final_tick 2623000 # Number of ticks from beginning of simulation
```

•Configuration file (config.ini)

```
[system.cpu]
type=AtomicSimpleCPU
children=dtb interrupts isa itb tracer workload
branchPred=Null
checker=Null
clk domain=system.cpu clk domain
cpu_id=0
default_p_state=UNDEFINED
do checkpoint insts=true
do quiesce=true
do_statistics_insts=true
dtb=system.cpu.dtb
eventq index=0
fastmem=false
function trace=false
```

2) Simulate the same program using different CPU models.

Help command:

```
~/my gem5Dir$ /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py -h
```

List the CPU available models:

```
~/my_gem5Dir$ /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py --list-cpu-types
```

a. TimingSimpleCPU simple CPU that includes an initial memory model interaction

```
$\sim \mbox{my\_gem5Dir$} /\mbox{opt/gem5/build/ALPHA/gem5.opt} /\mbox{opt/gem5/configs/example/se.py} --\mbox{cpu-type=TimingSimpleCPU} -c hello
```

b. *MinorCPU* the CPU is based on an in order pipeline including caches

```
~/my_gem5Dir$ /opt/gem5/build/ALPHA/gem5.opt /opt/gem5/configs/example/se.py --cpu-type=MinorCPU --caches -c hello
```

c. *DerivO3CPU* is a superscalar processor

```
\label{lem:configs} $$ \sim \proon_{gem5} \pr
```

Create a table gathering for every simulated CPU the following information:

- Ticks
- Number of instructions simulated
- Number of CPU Clock Cycles
 - Number of CPU clock cycles = Number of ticks / CPU Clock period in ticks (usually 500)
- Clock Cycles per Instruction (CPI)

- CPI = CPU Clock Cycles / instructions simulated
- Number of instructions committed
- Host time in seconds
- Number of instructions Fetch Unit has encountered (this should be gathered for the out-of-order processor only).

TABLE1: Hello program behavior on different CPU models

CDLI	T			
CPU				
Parameters	AtomicSimpleCPU	TimingSimpleCPU	MinorCPU	DeriveO3CPU
Ticks	2791000	402673000	34601500	19787000
CPU clock				
domain	500	500	500	500
Clock Cycles	5582	805346	69203	39575
Instructions				
simulated	5549	5549	5562	5350
CPI	1.00594701748	145.133537574	12.4421071557	7.39719626168
Committed				
instructions	5549	5549	5562	5548
Host seconds	0.00	0.02	0.02	0.03
Instructions				
encountered by				
Fetch Unit	х	x	x	11183

- 3) Download the test programs related to the **automotive** sector available in MiBench: basicmath, bitcount, qsort, and susan. These programs are freely available at http://vhosts.eecs.umich.edu/mibench/
 - a) compile the program basicmath using the provided *Makefile* using the ALPHA compiler *hint*:

```
add a variable to the Makefile in order to use the ALPHA compiler:

CROSS_COMPILE = /opt/alphaev67-unknown-linux-gnu/bin/alphaev67-unknown-linux-gnu
CC=$ (CROSS_COMPILE) -gcc

and substitute all the gcc occurrences with the new variable as follows:

gcc → $ (CC)
```

b) Simulate the program basicmath using the *large* set of inputs and the default processor (*AtomicSimpleCPU*), saving the output results. In the case the simulation time is higher than a couple of minutes, modify the program in order to reduce the simulation time; for example, in the case of basicmath, it is necessary to reduce the number of iterations the program executes in order to reduce the computational time.

<u>TODO</u>: To reduce the simulation time of *basicmath_large.c*, modify the number of iterations of the <u>for loops</u> as follows:

- c) Simulate the resulting program using the gem5 different CPU models and collect the following information:
 - a) Number of instructions simulated
 - b) Number of CPU Clock Cycles

- c) Clock Cycles per Instruction (CPI)
- d) Number of instructions committed
- e) Host time in seconds
- f) Prediction ratio for Conditional Branches (Number of Incorrect Predicted Conditional Branches / Number of Predicted Conditional Branches)
- g) BTB hits
- h) Number of instructions Fetch Unit has encountered.

Parameters f, g and h should be gathered exclusively for the out-of-order processor.

TABLE2: basicmath large program behavior on different CPU models

CPUs				
Parameters	AtomicSimpleCPU	TimingSimpleCPU	MinorCPU	DerivO3CPU
Ticks	222416559500	31158520203000	364964286500	144932423500
CPU clock domain	500	500	500	500
Clock Cycles	444833120	62317040406	729928573	289864849
Instructions				
simulated	444833057	444833057	444833083	436251113
CPI	1.00000014163	140.090848523	1.64090442212	0.66444495008
Committed				
instructions	444833057	444833057	444833083	444833056
Host seconds	136.28	1301.84	711.32	736.18
Prediction ratio	х	x	0.03183793747	0.02837555197
BTB hits	х	х	43954068	46229129
Instructions				
encountered by				
Fetch Unit	x	x	х	485507542