

Matemática A

10.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** MARÇO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Observe a figura, onde se encontra representada em referencial xOy parte do gráfico de uma função g de domínio $\mathbb R$.

A parte do gráfico representada é formada pelo segmento de reta [AB] e pela semirreta $\dot{B}C$, sendo $A, B \in C$ os pontos de coordenadas (0,-2), (3,2) e (6,-1), respetivamente.

- 1.1. Complete o gráfico da função, sabendo que se trata de uma função par.
- **1.2.** Determine os zeros de g.
- **1.3.** Indique os valores de x para os quais g(x) < 0.
- **1.4.** Indique os intervalos onde a função g é positiva e decrescente.
- **1.5.** Indique uma restrição de *g* que seja injetiva.
- 2. Seja f uma função impar de domínio [-5, 5]. Então, f(-3) + f(0) + f(3) tem o valor:
 - **(A)** 0
- $(\mathbf{B}) \quad -3$
- **(C)** 3
- **(D)** 2f(3)

3. Considere, num referencial ortonormado *Oxyz*, a esfera tangente a todas as faces do cubo [ABODEFGH] e definida por:

$$x^{2} + y^{2} + z^{2} - 2x + 2y - 2z + 2 \le 0$$

Os vértices B e G do cubo pertencem aos semieixos positivos Ox e Oz, respetivamente, e o vértice D pertence ao semieixo negativo Oy.

- **3.1.** Escreva uma condição que represente:
 - a) a reta paralela a AE que passa pelo ponto (2,1,3);
 - **b)** o plano paralelo a *xOz* que passa no centro da esfera.
- **3.2.** Determine, com aproximação às centésimas, o volume da parte do cubo que não é ocupado pela esfera.
- **3.3.** Determine o comprimento do segmento de reta [PH], em que P é o centro da face [BOGF].
- **3.4.** Suponha que o cubo sofre uma rotação de 180° em torno do eixo *Oz*. Indique as coordenadas dos transformados dos vértices *A*, *E* e *H*, nessa rotação.
- **4.** No referencial xOy da figura estão representadas as retas r,s e t. Sabe-se que:

- a reta s passa em O e em C;
- a reta r é paralela à reta s e tem ordenada na origem igual a 2;
- a reta t passa no ponto C e tem ordenada na origem igual a 5.

A área do quadrilátero [ABCO] é:

- **(A)** 1,3
- **(B)** 1,8
- **(C)** 3,2
- **(D)** 5,0

5. De uma função f sabe-se que tem domínio [-2, 6] e contradomínio [-4, 1].Indique o domínio e contradomínio das seguintes funções:

5.1.
$$g(x) = 5f(2x)$$

5.2.
$$h(x) = 3 - f(x+1)$$

- 6. Ao lado está uma representação gráfica da função f de domínio [-2, 4] e contradomínio [0, 4].
 - **6.1.** Estabeleça uma correspondência entre os gráficos I, II e III e as expressões analíticas:

$$h(x) = -f(x); g(x) = f(-x) e m(x) = -f(-x).$$

6.2. Indique os extremos, os maximizantes e os minimizantes de f.

FIM

Cotações:

٠,	, o-c																
		Item															
	Cotação (em pontos)																
	1.1.	1.2.	1.3.	1.4.	1.5.	2.	3.1.a)	3.1.b)	3.2.	3.3.	3.4.	4.	5.1.	5.2.	6.1.	6.2.	Total
	10	12	10	12	12	10	12	12	18	15	15	10	12	12	12	16	200

Proposta de resolução

1.

1.1. Uma vez que a função g é par, objetos simétricos têm a mesma imagem. Então para obter o restante gráfico basta fazer uma reflexão de eixo Oy obtendo:

1.2. Zeros de g em \mathbb{R}_0^+

$$A(0,-2), B(3,2), C(6,-1)$$

Reta AB: y = mx + b

$$m_{AB} = \frac{-2-2}{0-3} \Leftrightarrow m_{AB} = \frac{4}{3} \text{ e } b = -2$$

$$y = \frac{4}{3}x - 2$$

$$g(x) = 0 \land x \in [0,3] \Leftrightarrow \frac{4}{3}x - 2 = 0 \Leftrightarrow 4x = 6 \Leftrightarrow$$

$$\Leftrightarrow x = \frac{6}{4} \Leftrightarrow x = \frac{3}{2}$$

Reta BC: y = mx + b

$$m_{BC} = \frac{-1-2}{6-3} \Leftrightarrow m_{BC} = -1$$

$$y-2=-1(x-3) \Leftrightarrow y=-x+5$$

$$g(x) = 0 \land x > 3 \Leftrightarrow -x + 5 = 0 \Leftrightarrow x = 5$$

Os zeros de g em \mathbb{R}_0^+ são $\frac{3}{2}$ e 5. Logo, dado que g é uma função par, podemos concluir

que os zeros de
$$g$$
 são: -5 , $-\frac{3}{2}$, $\frac{3}{2}$ e 5

1.3.
$$g(x) < 0 \Leftrightarrow x \in]-\infty, -5[\cup] -\frac{3}{2}, \frac{3}{2}[\cup]5, +\infty[$$

- **1.4.** g é positiva e decrescente em $\left[-3, -\frac{3}{2} \right]$ e em $\left[3, 5 \right]$.
- **1.5.** Por exemplo, a restrição $g|_{[3,+\infty[}$ é injetiva.
- 2. Se f é impar e 0 é um elemento do domínio então, f(0) = 0 e, como objetos simétricos têm imagens simétricas, f(-3) = -f(3).

Então,
$$f(-3)+f(0)+f(3)=-f(3)+f(0)+f(3)=0$$
.

Resposta: (A)

- 3. 3.1.
 - a) A reta AE é paralela ao eixo Oz então a reta que pretendemos definir também o é: $(x,y,z)=(2,1,3)+k(0,0,1), k \in \mathbb{R}$

b)
$$x^2 + y^2 + z^2 - 2x + 2y - 2z + 2 \le 0 \Leftrightarrow$$

 $\Leftrightarrow (x^2 - 2x) + (y^2 + 2y) + (z^2 - 2z) + 2 \le 0 \Leftrightarrow$
 $\Leftrightarrow (x^2 - 2x + 1) + (y^2 + 2y + 1) + (z^2 - 2z + 1) \le 3 - 2 \Leftrightarrow$
 $\Leftrightarrow (x - 1)^2 + (y + 1)^2 + (z - 1)^2 \le 1$

Centro da esfera: C(1, -1, 1)

Se o plano é paralelo a xOz e passa em C então é definido pela equação y = -1.

3.2. Se a esfera tem raio 1, então o cubo tem duas unidades de aresta.

Volume do cubo:
$$2^3 = 8$$

Volume da esfera:
$$\frac{4}{3}\pi \times 1^3 = \frac{4}{3}\pi$$

Volume da parte do cubo não ocupada pela esfera: $8 - \frac{4}{3}\pi \approx 3,81$

3.3. Centro da face [BCGF]: P(1, 0, 1)

Ponto
$$H(0,-2,2)$$

$$\overrightarrow{PH} = (0, -2, 2) - (1, 0, 1) \Leftrightarrow \overrightarrow{PH} = (-1, -2, 1)$$

$$\overline{PH} = \|\overline{PH}\| = \sqrt{(-1)^2 + (-2)^2 + 1^2} = \sqrt{6}$$

3.4.
$$A(2,-2,0) \rightarrow A'(-2,2,0)$$

$$E(2,-2,2) \rightarrow E'(-2,2,2)$$

$$H(0,-2,2) \to H'(0,2,2)$$

4.

4.1. Para calcular a área do quadrilátero [ABCO], à área definida pelos semieixos positivos do referencial e pela reta t vamos retirar as áreas dos triângulos não sombreados do interior desse triângulo.

Reta t:

Passa pelos pontos de coordenadas (2,1) e (0,5)

$$m_t = \frac{1-5}{2-0} = -2$$

$$t: y = -2x + 5$$

Interseção com $Ox: 0 = -2x + 5 \Leftrightarrow x = \frac{5}{2}$

Área do triângulo definido pela reta t e os semieixos

$$m_s = \frac{1}{2}$$

$$s: y = \frac{1}{2}x$$

Área do triângulo definido pelo semieixo positivos Ox e pelas retas s e t: $\frac{\frac{5}{2} \times 1}{2} = \frac{5}{4}$

Reta r: r//s

$$r: y = \frac{1}{2}x + 2$$

Ponto B (interseção das retas $r \in t$)

$$\begin{cases} y = \frac{1}{2}x + 2 \\ y = -2x + 5 \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{2}x + 2 \\ \frac{1}{2}x + 2 = -2x + 5 \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{2}x + 2 \\ x + 4 = -4x + 10 \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{2}x + 2 \\ 5x = 6 \end{cases} \Leftrightarrow \begin{cases} y = \frac{13}{5} \\ x = \frac{6}{5} \end{cases}$$

Altura do triângulo definido pelas retas r e t e pelo semieixo positivo Oy é a abcissa de B.

Área deste triângulo:
$$\frac{3 \times \frac{6}{5}}{2} = \frac{9}{5}$$

Área do quadrilátero [ABCO]:

$$A = \frac{25}{4} - \frac{5}{4} - \frac{9}{5} = 3,2$$

Resposta: (C)

- **5.** $D_f = [-2, 6]; D'_f = [-4, 1].$
 - **5.1.** O gráfico da função g obtém-se do gráfico da função f por uma contração horizontal de coeficiente $\frac{1}{2}$ que transforma $D_f = \begin{bmatrix} -2 & 6 \end{bmatrix}$ em $D_g = \begin{bmatrix} -1 & 3 \end{bmatrix}$ seguida de uma dilatação vertical de coeficiente 5 que transforma $D_f' = \begin{bmatrix} -4 & 1 \end{bmatrix}$ em $D_g' = \begin{bmatrix} -20 & 5 \end{bmatrix}$.
 - **5.2.** O gráfico da função g obtém-se do gráfico da função f por uma translação horizontal associada ao vetor (-1,0) que transforma $D_f = [-2,6]$ em $D_g = [-3,5]$ seguida de uma reflexão de eixo Ox e de uma translação vertical associada ao vetor (0,3) que transforma sucessivamente $D_f' = [-4,1]$ em [-1,4] e em $D_g' = [2,7]$.

6.

6.1. Gráfico I
$$\rightarrow g(x)$$

Gráfico II $\rightarrow h(x)$
Gráfico III $\rightarrow m(x)$

6.2.

Máximos relativos: 4 com maximizante 0

2 com maximizantes [2,4]

Mínimos relativos: 0 com minimizante −2

2 com minimizantes [2,4]

0 é mínimo absoluto e 4 é máximo absoluto.