Indian Institute of Technology, Kharagpur Computer Science and Engineering Department

B.Tech. End-Semester Examination, Autumn 2018-19 ALGORITHMS II (CS31005)

Full marks: 100

Time: 3 hours

Answer Questions 1 and 2, and any two from the rest.

1. Write only the answer/answers $(a/b/c/d)$ in the 1st page of your	answer-scrip	t in a tabular form
as follows.	,	$(2\times 10=20)$

Question	i	ii	iii	iv	v	vi	vii	viii	ix	х
Answer										

- i) For an input of size n, the time complexity of an algorithm is given by T(1) = 1, T(n) = 3T(n-1) + 1 for $n \ge 2$. Then T(n) solves to (a) $\Theta(n)$. (b) $\Theta(n^2)$. (c) $\Theta(n^3)$. (d) $\Theta(3^n)$.
- ii) Time complexity of Edmonds-Karp algorithm for max-flow computation is (a) O(VE). (b) $O(V^2E)$. (c) $O(VE^2)$. (d) $O(V^2E^2)$.
- iii) Space complexity of doubly connected edge list in Voronoi diagram algorithm with n sites as input, is
 - (a) O(n). (b) $O(n \log n)$. (c) $O(n^2)$. (d) $O(n^{3/2})$.
- iv) G(V, E) is a flow network with s and t as the source and the sink, f is a flow in G, and (S, T) is a cut on V. Then f(S, T) = |f| is true for
 - (a) exactly one cut (S,T) with $s \in S, t \in T$. (b) possibly for more than one cut (S,T) with $s \in S, t \in T$. (c) for any cut (S,T) with $s \in S, t \in T$. (d) cannot be said.
- v) Time complexity to compute all intersection points among n line segments by the plane-sweep algorithm, when each line segment intersects at most k line segments, is (a) $O(kn^2)$. (b) $O(kn \log n)$. (c) $O((k+n) \log n)$. (d) $O(k \log n)$.
- vi) An unfair dice has probability 1/12 of showing any of its even faces and 1/4 of showing any of its odd faces. The expected value on throwing this dice is
 (a) 3.20. (b) 3.25. (c) 3.50. (d) 3.75.
- vii) Time complexity for nondeterministic sorting algorithm is (a) $O(n \log n)$. (b) $O(n^{4/3})$. (c) $O(n^{3/2})$. (d) none of these.
- viii) There are n input boolean variables and g gates in an instance of SAT (circuit satisfiability problem). Its equivalent 3-SAT instance can be constructed in time: (a) O(n). (b) O(g). (c) O(n+g). (d) O(ng).
- ix) Number of clauses in the 3-CNF of $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$ is
 - (a) 2. (b) 3. (c) 4. (d) none of these.
- x) Which of the following is/are not an NP-complete problem?
 (a) Max cut.
 (b) Min cut.
 (c) Max flow.
 (d) Minimum set cover.