3.5.1 Изучение плазмы газового разряда в неоне

Анна Назарчук Б02-109

1. Аннотация

В работе изучена плазма газового разряда в неоне с помощью двойного зонда. Была получена ВАХ разряда в режиме поднормального тлеющего разряда. Получены зондовые характеристики, рассчитываются параметры плазмы (например, ω_p , r_D).

2. Введение

Как известно, вещество может находиться в трёх агрегатных состояниях — твёрдом, жидком и газообразном, причём эти состояния последовательно сменяются по мере возрастания температуры. Если и дальше нагревать газ, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Такое состояние газа нельзя описывать как обычный газ с некоторыми частицами, требуются дополнительные параметры, описывающие движение такого газа (плазмы). Определение таких параметров, как тип разряда и других основных характеристик, и является целью данной работы.

3. Методика измерений

Измерения произведены с помощью двойного зонда - системы, состоящей из двух одинаковых зондов на небольшом растоянии друг от друга, между которыми создается небольшая (по сравнению с потенциалом, до которого заряжается зонд, помещенный в плазму) разность потенциалов U. Теоретически получена зависимость тока от напряжения между зондами: (она также представлена на графике 1).

$$I = I_{iH} th \frac{eU}{2k_{\rm B}T_e} \tag{1}$$

При рассмотрении этой формулы вблизи U=0:

$$k_{\rm B}T_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}|_{U=0}}$$
 (2)

Из пересечения асимптот с с осью U=0 можно найти I_{in} . Далее, вычислив наклон графика в в начале координат, можно определить температуру электронов (формула 2). По этим известным параметрам можно найти концентрацию заряженных частиц, используя полуэмперическую формулу Д. Бома:

$$I_{iH} \approx 0.4 n_i S \sqrt{\frac{2k_{\rm B}T_e}{m_i}} \tag{3}$$

Рис. 1: Вольт-амперная характеристика двойного зонда

Основными характеристиками плазмы являются плазменная частота колебаний ω_p (определяет временной масштаб движения плазмы), дебаевский радиус r_{De} (определяет пространственный масштаб явления в плазме), поляризационная длина r_D (определяет масштаб, на котором можно считать плазму квазинейтральной), среднее число ионов в дебаевской сфере N_D (при больших значениях плазма считается идеальной). Теоретические формулы для вычисление этих величин приведены в таблице 1.

Таблица 1: Теоретические выражения для основных характеристик плазмы

Величина	Теоретическое выражение		
ω_p	$\sqrt{rac{4\pi n_e e^2}{m_e}}$		
r_{De}	$\sqrt{rac{k_{ m B}T_e}{4\pi n_e e^2}}$		
r_D	$\sqrt{\frac{k_{\rm B}}{4\pi n_e e^2} \frac{T_e T_i}{T_e + T_i}}$		
N_D	$-\frac{4}{3}\pi n_i r_D^3$		

4. Установка

Схема экспериментальной установки приведена на рисунке 2. Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — вольтметром V_1 . При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Рис. 2: Схема установки

5. Измерения и обработка данных

5.1. Вольт-амперная характеристика разряда

С помощью вольтметра V_1 и амперметра A_1 измерили вольт-амперную характеристику разряда $I_p(U_p)$ (рис. 3)

Рис. 3: Вольт-амперная характеристика разряда при давлении $P\sim 2$ торр

По наклону кривой определили максимальное $R_{\rm диф}=\frac{dU}{dI}=-68000\pm11000$ Ом. Полученный участок BAX соответствует поднормальному тлеющему разряду.

5.2. Зондовые характеристики

При фиксированном токе разряда измерили вольт-амперную характеристику двойного зонда. (рис. 4). Для каждой зондовой характеристики определили ионный ток и наклон характеристики в начале координат по графику. Из полученных результатов рассчитаны T_e , n_i , ω_p , r_{De} , r_D , N_D , α - степень ионизации плазмы (по формулам из таблицы 1). Результаты приведены в таблице 2, также построены графики зависимости электронной температуры и концентрации электронов от тока разряда (рис. 5).

Рис. 4: Вольт-амперная характеристика двойного зонда при небольших токах, давлении $P\sim 2$ торр

I_p , MA	1.5	3	3.4
T_e , эВ	3.1 ± 0.2	4.2 ± 0.1	3.7 ± 0.4
$n_i, 10^{10} \ 1/\text{cm}^3$	2.1 ± 0.1	4.6 ± 0.1	4.8 ± 0.3
$\omega_p, 10^9 \; \mathrm{pag/c}$	8.2 ± 0.2	12.0 ± 0.1	12.4 ± 0.4
$r_{De}, 10^{-3} \text{ cm}$	9.0 ± 0.8	7.2 ± 0.2	6.5 ± 0.7
$r_D, 10^{-3} \text{ cm}$	0.82 ± 0.03	0.56 ± 0.01	0.54 ± 0.03
N_D	49 ± 6	34 ± 1	33 ± 6
$\alpha, 10^{-5}$	3.9 ± 0.4	11.6 ± 0.3	10.7 ± 1.2

Таблица 2: Характеристики плазмы для разных токов разряда I_p

6. Обсуждение результатов

1. При сравнении вольт-амперной характеристики разряда (рис. 3) и графика вольт-амперной характеристики газового разряда из приложения к лабораторной работе (рис.

Рис. 5: Зависимость электронной температуры и концентрации электронов от тока разряда при давлении $P\sim 2$ торр

6) видно, что рассматривался участок ГД, соответствующий поднормальному тлеющему разряду.

Рис. 6: Вольт-амперная характеристика разряда в неоне (из приложения)

2. По определению поляризационной длины r_{De} плазму можно считать квазиней
траль-

ной, так как именно электронная дебаевская длина определяет масштаб, на котором нарушается квазинейтральность из-за тепловых флуктуаций электронов относительно ионов, а $r_{De} \sim 10^{-2} {\rm cm}$, что много меньше размеров области.

- 3. Оценив число ионов в дебаевской сфере $N_D \sim 40$, видно, что число частиц много больше 1, что позволяет называть плазму идеальной.
- 4. Определить зависимость электронной температуры от тока разряда с помощью полученных данных (рис. 5) невозможно из-за малого числа точек и достаточной погрешности результатов. Однако можно качественно оценить зависимость концентрации электронов от тока разряда: график напоминает линейную или степенную зависимость, что достаточно ожидаемо, при увеличении тока разряда увеличивается и число электронов в газе.

7. Выводы

Из ВАХ разряда подтверждено, что исследуется тлеющий газовый разряд. Экспериментальная зондовая характеристика схожа с теоретической зависимостью: $I=I_{i\mathrm{H}}th\frac{eU}{2k_{\mathrm{B}}T_{e}}$, количество ионов в дебаевской сфере $N_{D}\sim40$ показывает идеальность плазмы. Остальные характеристики плазмы получились схожими по порядку с примерами в инструкции к работе, что подтверждает справедливость метода измерений. Однако не удалось оценить зависимость температуры электронов от тока разряда из-за неточных измерений и малого их числа.