Unidade IV:

Ordenação Interna – Counting Sort

Exercício Resolvido (1):

Arranje o array abaixo com Counting Sort:

Resposta:

	0	1	2	3	4	5	6	7
Entrada	2	5	3	0	2	3	0	3
Contagem	2	0	2	3	0	1		

	0	1	2	3	4	5	6	7
Entrada	2	5	3	0	2	3	0	3
Contagem	2	2	4	7	7	8		

Exercício Resolvido (2):

Seja o array de entrada abaixo, quais serão os valores contidos no array de contagem antes e depois de copiarmos os elementos da entrada para a saída?

Resposta:

Array de contagem (linha 3) antes (passo 1):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Array de contagem (linha 3) antes (passo 2):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Array de contagem (linha 3) depois:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Exercício Resolvido (3):

O Counting Sort pode ser aplicado adequadamente na ordenação de strings e números reais?

Resposta:

Não, este tipo de ordenação só pode ser feita com números inteiros, pois com eles não teremos problemas de identificar a posição dos valores do array de entrada.

Exercício Resolvido (4):

Nosso dinheiro é um número real. Conseguimos utilizar adequadamente o Counting Sort para ordenar valores financeiros? Resposta:

Sim, multiplicando os valores reais por 100, assim transformando em números inteiros, ordenando-os e logo depois dividindo os valores ordenados por 100, assim voltando com os valores para real.

Exercício (1):

Input

count

Output

10 11 12

13 14

Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

12	4	8	2	1	4 1	.7	6	18	10	16	15	5	13	9	1	1 1	1	7	3
	Res	spos	sta:																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Input	12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3	
count	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Input	12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3	
count	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
,																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Unidade IV:

Ordenação Interna - Shellsort

Exercício (1):

Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

	12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3
- 1		- 7	-	- 		- T T T T T T T T	100				N7770		STORE STORE					10000

Resposta:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3
9	1	8	2	3	17	6	18	10	16	15	5	13	12	4	11	7	14
9	1	8	2	3	17	6	18	10	16	15	5	13	12	4	11	7	14
3	1	4	2	7	12	6	5	9	14	8	11	10	16	15	18	13	17
3	1	4	2	7	12	6	5	9	14	8	11	10	16	15	18	13	17
3	1	4	2	6	5	7	11	8	12	9	14	10	16	13	17	15	18
3	1	4	2	6	5	7	11	8	12	9	14	10	16	13	17	15	18
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18