Correction TD3

L1 S2, Analyse 2, 2020-2021

Exercice 1.

Enoncé.

Déterminer la nature et la limite éventuelle des suites de termes généraux :

1)
$$u_n = \frac{n!}{n^n}$$
;

2)
$$u_n = 2 + \cos\left(\frac{(-1)^n}{n}\right) + \frac{1}{n^2}\tan\left(\sin(n^2 - n + 1)\right)$$
;

Solution.

1) Pour $n \ge 1$,

$$0 < u_n = \frac{n!}{n^n} = \underbrace{\frac{n(n-1)}{n} \dots \frac{(2)}{n}}_{\leq 1} \frac{1}{n} \leq \frac{1}{n}.$$

D'après le théorème des gendarmes $\lim_{n\to+\infty} u_n = 0$.

2) Ecrivons
$$u_n = 2 + v_n + w_n$$
 ou $v_n = \cos\left(\frac{(-1)^n}{n}\right)$ et $w_n = \frac{1}{n^2}\tan\left(\sin\left(n^2 - n + 1\right)\right)$.

Etudions la convergence des suites (v_n) et (w_n) .

Convergence de (v_n) : il est clair que $\lim_{n\to+\infty}\frac{(-1)^n}{n}=0$

 $(\operatorname{car}(-1)^n \text{ est bornée et } \lim_{n \to +\infty} \frac{1}{n} = 0).$

Vu que

$$\lim_{h\to 0}\cos\left(h\right)=\cos\left(0\right)$$

(car cos(.) est continue en 0) alors

$$\lim_{n\to+\infty}v_n=\cos\left(0\right)=1.$$

Convergence de (w_n) : sin(.) étant bornée par -1 et 1 on a

$$-1 \le \sin(n^2 - n + 1) \le 1, \ \forall n \in \mathbb{N}.$$

D'autre part, tan (.) est croissante sur] $-\pi/2, \pi/2$ [donc

$$tan(-1) \le tan(y) \le tan(1), \ \forall y \in [-1, 1]$$

et donc

$$\tan{(-1)} \leq \tan{(\sin{(n^2-n+1)})} \leq \tan{(1)}, \ \forall n \in \mathbb{N}.$$

On en déduit que $\lim_{n\to+\infty} w_n = 0$ comme produit d'une suite bornée et d'une suite convergeant vers 0.

En conclusion, la suite (u_n) converge car (v_n) et (w_n) convergent et

$$\lim_{n\to+\infty}u_n=2+\lim_{n\to+\infty}v_n+\lim_{n\to+\infty}w_n=2+1+0=3.$$

Exercice 2.

Enoncé.

Déterminer la nature et la limite éventuelle des suites de termes généraux :

1)
$$u_n = -2n^2 + n^2\cos(3n)$$
;

2)
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
.

Solution.

1) Etant donné que $\cos{(3n)} \le 1$ pour tout $n \in \mathbb{N}$ alors

$$u_n = -2n^2 + n^2 \cos 3n \le -n^2$$
.

La suite (u_n) est majorée par une suite qui tend vers $-\infty$.

2) Si
$$1 \le k \le n$$
 alors $n^2 \le n^2 + 1 \le n^2 + k \le n^2 + n$ et donc

$$\frac{n}{n^2+n}\leq \frac{n}{n^2+k}\leq \frac{n}{n^2}.$$

En sommant ces encadrements pour k variant de 1 à n, on en déduit

$$\sum_{k=1}^{n} \frac{n}{n^2 + n} \le \sum_{k=1}^{n} \frac{n}{n^2 + k} \le \sum_{k=1}^{n} \frac{n}{n^2}.$$

Comme
$$\sum_{k=1}^{n} \frac{n}{n^2 + n} = \frac{n^2}{n^2 + n} = \frac{1}{1 + 1/n}$$
 et $\sum_{k=1}^{n} \frac{n}{n^2} = \frac{n^2}{n^2} = 1$ alors

$$\frac{1}{1+1/n}\leq u_n\leq 1.$$

D'après le théorème des gendarmes $\lim_{n \to +\infty} u_n = 1$.

Exercice 3.

Enoncé.

Soit la suite de premier terme u_0 définie par la relation de récurrence

$$u_{n+1} = u_n - u_n^2$$
.

- 1) Montrer qu'elle est décroissante.
- 2) Tracer la courbe représentative de la fonction $f: x \mapsto x x^2$. En déduire la nature (convergence ou divergence) de cette suite selon le choix du premier terme.
- 3) Quelles sont les limites possibles?

Solution.

1) Etant donné que $u_{n+1} - u_n = -u_n^2 \le 0$, la suite est décroissante. Cette dernière admet donc une limite I qui est finie ou égale à $-\infty$ ($I \in \mathbb{R}$ ssi (u_n) est minorée).

Une étude des variations de f est utile pour la suite.

 $f(x) = x - x^2 \Rightarrow f'(x) = 1 - 2x$ ce qui conduit le tableau de variation suivant :

X	$-\infty$ $\frac{1}{2}$ +	$-\infty$
f'(x)	+ 0 -	
f(x)	$-\infty$ $\frac{1}{4}$ $-$	- ∞

2) En testant quelques valeurs de u_0 (cf. fig. 1, 2 et 3), on constate que trois cas sont à distinguer :

Cas 1. $\underline{u_0 < 0}$: la suite (u_n) étant décroissante alors $u_n \leq u_0, \ \forall n \in \mathbb{N}$ et donc

$$I=\lim_{n\to+\infty}u_n\leq u_0<0.$$

On conclura quant à la nature de la suite plus loin.

Cas 2. $u_0 > 1$: dans ce cas

$$u_1 = f(u_0) < f(1) = 0$$

(f est strictement décroissante sur $]1/2,+\infty[$). On se retrouve dans la même situation que dans le cas précédent à savoir

$$I=\lim_{n\to+\infty}u_n<0.$$

Cas 3. $u_0 \in [0,1]$: du tableau de variation de f on déduit que

$$f([0,1]) = f([0,1/2] \cup [1/2,1]) = f([0,1/2]) \cup f([1/2,1]) =$$

 $[f(0), f(1/2)] \cup [f(1), f(1/2)] = [0,1/4] \subset [0,1].$

On vérifie alors par une simple récurrence que si $u_0 \in [0,1]$ alors $u_n \in [0,1], \ \forall n \in \mathbb{N}$:

- $u_0 \in [0,1]$ (vrai)
- supposons que $u_n \in [0,1]$:

$$u_{n+1} = f(u_n) \in f([0,1]) \subset [0,1].$$

D'où $u_{n+1} \in [0, 1]$.

La suite (u_n) est décroissante (d'après 1.) et majorée (par 1) elle est donc convergente.

3) Supposons $I:=\lim_{n\to+\infty}u_n$ existe et est finie. La suite (u_n) vérifie l'égalité

$$u_{n+1}=u_n-u_n^2.$$

En passant à la limite, on obtient

$$I = I - I^2$$

c'est-à-dire l=0. Donc si $\lim_{n\to +\infty}u_n\in\mathbb{R}$ alors $\lim_{n\to +\infty}u_n=0$. Ce n'est pas le cas lorsque $u_0<0$ (cas 1) et $u_0>1$ (cas 2) car on a vu

que dans les deux cas $\lim_{n\to+\infty} u_n < 0$. Donc

si $\underline{u_0} < \underline{0}$ ou $\underline{u_0} > \underline{1}$ alors (u_n) diverge et $\lim_{n \to +\infty} u_n = -\infty$.

si $\underline{u_0 \in [0,1]}$, la suite (u_n) converge et $\lim_{n \to +\infty} u_n = 0$.

Exercice 4.

Enoncé.

Etudier la suite définie par $u_0 \in \mathbb{R}^+$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + \frac{2}{3}u_n$.

Solution.

Posons $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x^2 + \frac{2}{3}x$. La suite $(u_n)_{n \in \mathbb{N}}$ vérifie donc la relation de récurrence $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

Observons que

$$f'(x)=2x+\frac{2}{3}>0, \qquad \forall x\geq 0,$$

donc f est une fonction strictement croissante sur l'intervalle $[0, +\infty[$.

Posons donc

$$g(x) = f(x) - x = x^2 - \frac{x}{3} = x(x - \frac{1}{3}).$$

On sait que g(x) > 0 si et seulement si $x > \frac{1}{3}$ ou bien x < 0, mais puisqu'on se place sur l'intervalle $[0, +\infty[$ on a donc que

$$g(x) > 0 \Leftrightarrow x > \frac{1}{3},$$

 $g(x) < 0 \Leftrightarrow 0 < x < \frac{1}{3},$
 $g(x) = 0 \Leftrightarrow x = 0,$ ou bien $x = \frac{1}{3}.$

On distingue donc quatre cas pour étudier la nature de $(u_n)_{n\in\mathbb{N}}$.

• Si $u_0 > \frac{1}{3}$ on a que $u_1 - u_0 = g(u_0) > 0$. Posons la propriété :

$$\mathcal{P}(n): \qquad \frac{1}{3} < u_n < u_{n+1}.$$

<u>Initialisation</u>: si $u_0 > \frac{1}{3}$, alors clairement $\frac{1}{3} < u_0 < u_1$, donc $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: supposons $\mathcal{P}(n)$ satisfaite pour un certain $n \in \mathbb{N}$, donc $\frac{1}{3} < u_n < u_{n+1}$. Puisque f est strictement croissante sur $[0, +\infty[$ et $f(\frac{1}{3}) = \frac{1}{3}$ on aura que

$$f(\frac{1}{3}) = \frac{1}{3} < u_{n+1} = f(u_n) < u_{n+2} = f(u_{n+1}),$$

donc $\mathcal{P}(n+1)$ est également vérifiée.

Grâce au Théorème de la recurrence on peut donc affirmer que $\mathcal{P}(n)$ est vérfiée pour tout $n \in \mathbb{N}$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante et minorée par $\frac{1}{3}$.

Le Théorème de la limite monotone nous permet d'affirmer que la suite $(u_n)_{n\in\mathbb{N}}$ a toujours une limite. Il reste à determiner si cette limite est finie ou si c'est $+\infty$. Notons $I=\lim_{n\to+\infty}u_n$.

Si $I < +\infty$ alors puisque $(u_n)_{n \in \mathbb{N}}$ est strictement croissante, forcement $I > \frac{1}{3}$, et puisque $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, en passant à la limite pour $n \to +\infty$ on obtient

$$I = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(I),$$

mais f(I) = I si et seulement si g(I) = 0, ce qui est vrai si et seulement si I = 0 ou bien $I = \frac{1}{3}$, et on sait que $I > \frac{1}{3}$, donc on arrive à une contradiction. La limite I ne peut donc pas être finie, donc si $u_0 > \frac{1}{3}$ on a que

$$\lim_{n\to+\infty}u_n=+\infty,$$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est divergente.

• Si $0 < u_0 < \frac{1}{3}$ on a que $u_1 - u_0 = g(u_0) < 0$.

Posons la propriété :

$$\mathcal{P}(n): \qquad 0 < u_{n+1} < u_n < \frac{1}{3}.$$

Initialisation: puisque $0 < u_0 < \frac{1}{3}$, on a vu que $u_1 - u_0 < 0$, donc $u_1 < u_0 < \frac{1}{3}$, mais par ailleurs $u_1 = f(u_0)$ et la fonction f est strictement croissante, donc

$$0 = f(0) < f(u_0) = u_1,$$

d'où on peut en déduire que $0 < u_1 < u_0 < \frac{1}{3}$, alors clairement $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: supposons $\mathcal{P}(n)$ satisfaite pour un certain $n \in \mathbb{N}$, donc $0 < u_{n+1} < u_n < \frac{1}{3}$. Puisque f est strictement croissante sur $[0, +\infty[$ et f(0) = 0 ainsi que $f(\frac{1}{3}) = \frac{1}{3}$ on aura que

$$0 = f(0) < f(u_{n+1}) = u_{n+2} < f(u_n) = u_{n+1} < f(\frac{1}{3}) = \frac{1}{3},$$

donc $\mathcal{P}(n+1)$ est également vérifiée.

Grâce au Théorème de la recurrence on peut affirmer que $\mathcal{P}(n)$ est vérfiée pour tout $n \in \mathbb{N}$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est strictement decroissante, minorée par 0 et majorée par $\frac{1}{3}$.

Le Théorème de la limite monotone nous permet d'affirmer que la suite $(u_n)_{n\in\mathbb{N}}$ a toujours une limite, notée I. Puisque $(u_n)_{n\in\mathbb{N}}$ est décroissante et $u_n\in]0,1/3[$ pour tout n, on sait que $0\leq I<\frac{1}{3}$. En passant à la limite pour $n\to+\infty$ on obtient

$$I = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(I),$$

mais on sait que f(I) = I si et seulement si I = 0 ou bien $I = \frac{1}{3}$, et puisque $0 \le I < \frac{1}{3}$ on en déduit que I = 0, donc la suite $(u_n)_{n \in \mathbb{N}}$ converge et sa limite est égale à 0.

- Si $u_0 = 0$ alors on a vu que $u_1 u_0 = g(0) = 0$, donc on montre immediatement que la suite $(u_n)_{n \in \mathbb{N}}$ est constante égale à 0, par conséquent elle converge est sa limite est 0.
- Si $u_0 = \frac{1}{3}$ alors on a vu que $u_1 u_0 = g(\frac{1}{3}) = 0$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est constante égale à $\frac{1}{3}$, donc elle converge et sa limite est $\frac{1}{3}$.

Exercice 5.

Enoncé.

Soit la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}$ $u_{n+1}=\sqrt{6-u_n}$.

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, (u_n) est bien définie.
- 2) La suite (u_n) est-elle monotone?
- 3) Montrer que si (u_n) converge, alors sa limite est égale à 2.
- 4) Montrer que $\forall n \in \mathbb{N}$, $|u_{n+1}-2| \leq \frac{1}{2}|u_n-2|$. Conclusion?

Solution.

- 1) Vérifions par récurrence que $u_n \in [0,6] \ \forall n \in \mathbb{N}$:
- $-u_0=0\in[0,6].$
- Supposons que $u_n \in [0,6]$. Vérifions que $u_{n+1} \in [0,6]$: $u_{n+1} = \sqrt{6 u_n}$ est bien défini car $u_n \le 6$.

De plus,

$$0 \le u_{n+1} = \sqrt{6 - u_n} \le \sqrt{6} \le 6$$
 car $u_n \ge 0$.

Donc $u_n \leq 6$, $\forall n \in \mathbb{N}$ ce qui implique que la suite (u_n) est bien définie.

2) Calculons les premiers termes de la suite (u_n) :

$$u_0 = 0, \ u_1 = \sqrt{6}, \ u_2 = \sqrt{6 - \sqrt{6}}, \ u_3 = \sqrt{6 - \sqrt{6 - \sqrt{6}}}.$$

On constate que

$$u_0 < u_1 > u_2 < u_3$$
.

La suite (u_n) n'est donc pas monotone.

3) Supposons que (u_n) converge et notons $I = \lim_{n \to +\infty} u_n$. En passant à la limite dans l'égalité

$$u_{n+1}=\sqrt{6-u_n},$$

on obtient l'égalité

$$I = \sqrt{6 - I}$$
.

En élevant au carré, cette équation s'écrit :

$$I^2 + I - 6 = 0, I \in [0, 6].$$

L'équation $l^2 + l - 6 = 0$ admet deux solutions : -3 et 2 dont une seule appartient à [0,6].

Donc I = 2.

4) Ecrivons

$$u_{n+1}-2=\frac{(\sqrt{6-u_n}-2)(\sqrt{6-u_n}+2)}{\sqrt{6-u_n}+2}=\frac{2-u_n}{\sqrt{6-u_n}+2}.$$

D'où

$$|u_{n+1}-2|=\frac{|u_n-2|}{|\sqrt{6-u_n}+2|}\leq \frac{1}{2}|u_n-2|.$$

Par conséquent,

$$0 \le |u_n - 2| \le \frac{1}{2}|u_{n-1} - 2| \le \frac{1}{2^2}|u_{n-2} - 2| \le \dots \le \frac{1}{2^n}|u_0 - 2|$$

Comme $\lim_{n\to+\infty}\frac{1}{2^n}=0$ alors d'après le théorème des gendarmes

$$\lim_{n\to+\infty}|u_n-2|=0$$

ce qui équivaut (cf. exercice 1) à $\lim_{n\to+\infty} u_n = 2$.

Exercice 6.

Enoncé.

Soit la suite définie par $u_0 \in [0,2]$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2-u_n}$.

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \in [0,2]$.
- 2) Représenter graphiquement les premières termes de $(u_n)_{n\in\mathbb{N}}$. Que pouvez-vous dire quant au sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$?
- 3) Montrer que $\forall n \in \mathbb{N}^*$, $|u_n 1| \le a^{n-1}|a_1 1|$ où $a = \frac{1}{\sqrt{2-\sqrt{2}}+1}$. Conclusion?

Solution.

1) Posons la propriété

$$\mathcal{P}(n)$$
: u_n est bien défini et $u_n \in [0,2]$.

Initialisation: si n = 0 alors par définition u_0 est bien défini et appartient à l'intervalle [0, 2], donc $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: supposons $\mathcal{P}(n)$ satisfaite pour un certain naturel n, donc u_n est bien défini et appartient à l'intervalle [0,2]. Alors $0 \le 2 - u_n \le 2$, donc $u_{n+1} = \sqrt{2 - u_n}$ est bien défini. La fonction $x \mapsto \sqrt{2 - x}$ étant décroissante, on a

$$0 \le u_{n+1} = \sqrt{2 - u_n} \le \sqrt{2}$$

donc $u_{n+1} \in [0,2]$. La propriété $\mathcal{P}(n+1)$ est donc satisfaite.

Grâce au Théorème de la récurrence on peut affirmer que $\mathcal{P}(n)$ est satisfaite pour tout $n \in \mathbb{N}$, d'où la conclusion.

2) On sait que $u_0 \in [0,2]$, et $u_{n+1} = \sqrt{2-u_n}$, pour tout $n \in \mathbb{N}$. Afin d'étudier l'ordre des u_n pour les premiers termes, posons $g(x) = \sqrt{2-x} - x$, pour $x \in [0,2]$, ainsi $u_{n+1} - u_n = g(u_n)$. Puisque

$$g'(x) = -\frac{1}{2\sqrt{2-x}} - 1 < 0,$$

la fonction g est strictement décroissante, de plus $g(1) = \sqrt{2-1} - 1 = 0$, donc g(x) > 0 (respectivement g(x) < 0) si $x \in [0, 1[$ (respectivement si $x \in [1, 2]$), et g(1) = 0. Par conséquent :

- si $u_n \in [0,1[$ alors $u_{n+1}>u_n.$ De plus, puisque $f(1)=\sqrt{2-1}=1$ et f est décroissante, on a $u_{n+1}=f(u_n)>f(1)=1$, donc $u_n<1< u_{n+1}.$
- si $u_n \in]1,2]$ alors $u_{n+1} < u_n$. De plus, puisque f(1) = 1 et f est décroissante, on a $u_{n+1} = f(u_n) < f(1) = 1$, donc $u_{n+1} < 1 < u_n$.
- si $u_n = 1$ alors $u_{n+1} = f(u_n) = f(1) = 1 = u_n$.

On peut donc affirmer que :

• si $u_0 \in [0,1[$ alors $u_1 > 1$ et $u_2 < 1$. La suite $(u_n)_{n \in \mathbb{N}}$ n'est pas monotone. Voici la représentation graphique des termes u_0 , u_1 et u_2 quand $u_0 \in [0,1[$.

• si $u_0 \in]1,2]$ alors $u_1 < 1$ et $u_2 > 1$. La suite $(u_n)_{n \in \mathbb{N}}$ n'est toujours pas monotone. La représentation graphique est la suivante :

• si $u_0 = 1$ alors $u_1 = u_2 = u_0 = 1$. On montre aisément que $(u_n)_{n \in \mathbb{N}}$ est constante égale à 1. Voici la représentation graphique.

3) Il s'agit de montrer que pour tout $n \in \mathbb{N}^*$ on a $|u_n - 1| \le a^{n-1}|u_1 - 1|$, où $a = \frac{1}{\sqrt{2-\sqrt{2}}+1}$.

On envisage une preuve par récurrence.

<u>Initialisation</u>: si n = 1 alors $a^{n-1} = a^0 = 1$ et donc les deux membres de l'inegalité sont égaux à $|u_1 - 1|$, donc l'inegalité est satisfaite si n = 1.

<u>Hérédité</u> : supposons l'inegalité vraie pour un certain $n \in \mathbb{N}^*$. Puisque $u_{n+1} = \sqrt{2 - u_n}$ alors :

$$u_{n+1} - 1 = \sqrt{2 - u_n} - 1 = (\sqrt{2 - u_n} - 1) \times \frac{\sqrt{2 - u_n + 1}}{\sqrt{2 - u_n + 1}}$$

= $\frac{2 - u_n - 1}{\sqrt{2 - u_n + 1}} = \frac{1 - u_n}{\sqrt{2 - u_n + 1}}$,

donc

$$|u_{n+1} - 1| = \frac{|u_n - 1|}{\sqrt{2 - u_n} + 1}. (1)$$

Mais on a déjà vu que $u_k \in [0,2]$ pour tout $k \in \mathbb{N}$, donc en particulier $u_{n-1} \in [0,2]$. La fonction $x \mapsto f(x) = \sqrt{2-x}$ étant décroissante on a

$$0 = f(2) \le u_n = f(u_{n-1}) \le f(0) = \sqrt{2},$$

donc

$$\sqrt{2-u_n}+1\geq\sqrt{2-\sqrt{2}}+1,$$

et par conséquent

$$0<\frac{1}{\sqrt{2-u_n}+1}\leq \frac{1}{\sqrt{2-\sqrt{2}}+1}=a.$$

En remplaçant dans (1) et en utilisant l'hypothèse de récurrence on obtient

$$|u_{n+1}-1| \le a|u_n-1| \le a \times a^{n-1}|u_1-1| = a^n|u_1-1|,$$

donc l'inegalité est encore vrai quand on remplaçe n par n+1. En utilisant le Théorème de la récurrence on peut affirmer que l'inegalité $|u_n-1| \leq a^{n-1}|u_1-1|$ est vraie pour tout $n \in \mathbb{N}^*$.

Puisque a < 1 on a donc que $\lim_{n \to +\infty} a^{n-1} = 0$, donc

$$\lim_{n \to +\infty} a^{n-1} |u_1 - 1| = 0.$$

Grâce au Théorème des gendarmes on peut affirmer que $\lim_{n \to +\infty} |u_n - 1| = 0$, donc

$$\lim_{n\to+\infty}u_n=1.$$

Exercice 7.

Enoncé.

Etudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$.

Indications.

- Etudier les variations de $f(x) = \frac{4x+5}{x+3}$ sur $\mathbb{R} \setminus \{-3\}$;
- Vérifier par récurrence que $0 \le u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$;
- Si $\lim_{n\to+\infty}u_n=I\in\mathbb{R}$ quelles sont les valeurs possibles pour I?
- Conclure.

Solution.

Déterminons la monotonie de f. Si $x \neq -3$ on a :

$$f'(x) = \frac{4(x+3) - (4x+5)}{(x+3)^2} = \frac{7}{(x+3)^2} > 0$$

ce qui conduit au tableau de variation :

X	$-\infty$	-3 $+\infty$
f'(x)	+	+
f(x)	+\infty 4	$-\infty$ 4

Vérifions par récurrence

$$\mathcal{P}(n): 0 \leq u_{n+1} \leq u_n \quad \forall n \in \mathbb{N}.$$

<u>Initialisation</u>: On a $0 \le u_1 = 3 \le u_0 = 4$ ($\mathcal{P}(0)$ est vraie).

<u>Hérédité</u> : Supposons que pour un certain $n \in \mathbb{N}$

$$\mathcal{P}(n): 0 \leq u_{n+1} \leq u_n.$$

La fonction f est croissante sur $[0, +\infty[$, on en déduit que

$$0 < 5/3 = f(0) \le f(u_{n+1}) \le f(u_n),$$

soit

$$0 \le u_{n+2} \le u_{n+1}$$

donc $\mathcal{P}(n+1)$ est aussi satisfaite.

 $\mathcal{P}(n)$ est donc vraie pour tout $n \in \mathbb{N}$

La suite (u_n) est convergente car décroissante et minorée par 0. Notons I sa limite. Comme

$$u_{n+1}=\frac{4u_n+5}{u_n+3}\quad \forall n\in\mathbb{N},$$

En passant en la limite, on obtient

$$I = \frac{4I + 5}{I + 3}$$

Comme

$$\frac{4l+5}{l+3} = l \Leftrightarrow l^2 - l - 5 = 0, l \neq -3.$$

on en déduit que

$$I = \frac{1 - \sqrt{21}}{2}$$
 ou $I = \frac{1 + \sqrt{21}}{2}$

Comme
$$u_n \ge 0$$
 alors $l \ge 0$. Or $\frac{1-\sqrt{21}}{2} < 0$ donc $\lim_{n \to +\infty} u_n = \frac{1+\sqrt{21}}{2}$.

Exercice 8.

Enoncé.

Etudier la suite définie par $u_0 = -1$ et $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$

Indications.

- Etudier les variations de $f(x) = \frac{3+2x}{2+x}$ sur $\mathbb{R} \setminus \{-2\}$;
- Vérifier par récurrence que $-1 \le u_n \le u_{n+1} \le 2$ pour tout $n \in \mathbb{N}$;
- Si $\lim_{n\to+\infty}u_n=I\in\mathbb{R}$ quelles sont les valeurs possibles pour I?
- Conclure.

Solution.

Etudions les variations de f sur $\mathbb{R} \setminus \{-2\}$. Si $x \neq -2$ on a :

$$f'(x) = \frac{2(2+x)-(3+2x)}{(2+x)^2} = \frac{1}{(2+x)^2} > 0$$

ce qui conduit au tableau de variation :

X	$-\infty$	-2 +∞
f'(x)	+	+
f(x)	$+\infty$	$-\infty$ 2

Vérifions par récurrence

$$\mathcal{P}(n): -1 \leq u_n \leq u_{n+1} \leq 2 \quad \forall n \in \mathbb{N}.$$

Initialisation: On a $-1 \le u_0 = -1 \le u_1 = 1 \le 2$ ($\mathcal{P}(0)$ est vraie).

<u>Hérédité</u> : Supposons que pour un certain $n \in \mathbb{N}$

$$\mathcal{P}(n): \quad -1 \leq u_n \leq u_{n+1} \leq 2.$$

La fonction f est croissante sur $]-2,+\infty[$, on en déduit que

$$-1 \le 1 = f(-1) \le f(u_n) \le f(u_{n+1}) \le f(2) = \frac{7}{4} \le 2,$$

soit

$$-1 \le u_{n+1} \le u_{n+2} \le 2$$
,

donc $\mathcal{P}(n+1)$ est aussi satisfaite.

 $\mathcal{P}(n)$ est donc vraie pour tout $n \in \mathbb{N}$

La suite (u_n) est convergente car croissante et majorée par 2. Notons I sa limite. Comme

$$u_{n+1}=\frac{3+2u_n}{2+u_n}\quad\forall n\in\mathbb{N},$$

En passant en la limite, on obtient

$$I = \frac{3+2I}{2+I}$$

Comme

$$\frac{3+2l}{2+l} = l \Leftrightarrow l^2 - 3 = 0, l \neq -2.$$

on en déduit que

$$I = \sqrt{3}$$
 ou $I = -\sqrt{3}$

Comme $u_n \ge -1$ pour tout $n \in \mathbb{N}$ alors $l \ge -1$. Or $-\sqrt{3} < -1$ donc $\lim_{n \to +\infty} u_n = \sqrt{3}$.

Exercice 9.

Enoncé.

Montrer que les suites de termes $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{2}{n+1}$, sont adjacentes.

Solution.

La suite (u_n) est clairement croissante car $u_{n+1} - u_n = \frac{1}{(n+1)^2} > 0$ pour tout $n \in \mathbb{N}$.

Étudions maintenant la suite (v_n) . Nous avons

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{2}{n+2} - \frac{2}{n+1} = \frac{1}{(n+1)^2} + \frac{2}{n+2} - \frac{2}{n+1} \\
 = \frac{n+2+2(n+1)^2 - 2(n+1)(n+2)}{(n+2)(n+1)^2} \\
 = -\frac{n}{(n+2)(n+1)^2} \le 0,$$

pour tout $n \in \mathbb{N}$, donc la suite (v_n) est décroissante. De plus

$$\lim_{n\to+\infty}(v_n-u_n)=\lim_{n\to+\infty}\frac{2}{n+1}=0,$$

donc les suites (u_n) et (v_n) sont bien adjacentes.

Exercice 10.

Enoncé.

On considère les deux suites définies par, $n \in \mathbb{N}$, $u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ et $v_n = u_n + \frac{1}{n!}$. Montrer que les suites $(u_n)_n$ et $(v_n)_n$ convergent vers la même limite. Montrer que cette limite est un élément de $\mathbb{R} \setminus \mathbb{Q}$.