DAILY ASSESSMENT FORMAT

Date:	08-07-2020	Name:	Abhishek
Course:	MATLAB Onramp	USN:	4al17ec001
Topic:	Calling Functions	Semester & Section:	6 & 'A'
	Obtaining Help		
	Plotting data		
Github Repository:	Abhishek-online-courses		

FORENOON SESSION DETAILS				
Image of session				

Report -

MATLAB Plot:

- To plot the graph of a function, we need to take the following steps -
 - ✓ Define x, by specifying the range of values for the variable x, for which the function is to be plotted
 - ✓ Define the function, y = f(x)
 - \checkmark Call the plot command, as plot(x, y)

- MATLAB allows us to add title, labels along the x-axis and y-axis, grid lines and also to adjust the axes to spruce up the graph.
 - ✓ The xlabel and ylabel commands generate labels along x-axis and y-axis.
 - ✓ The title command allows us to put a title on the graph.
 - ✓ The grid on command allows us to put the grid lines on the graph.
 - ✓ The axis equal command allows generating the plot with the same scale factors and the spaces on both axes.
 - ✓ The axis square command generates a square plot.
- Setting Colors on Graph,

Code	Color
w	White
k	Black
b	Blue
r	Red
С	Cyan
g	Green
m	Magenta
у	Yellow

08-07-2020	Name:	Abhishek
Introduction to IOT	USN:	4al17ec001
Chapter 4	Semester	6 & 'A'
	& Section:	
	Introduction to IOT	Introduction to IOT USN: Chapter 4 Semester

AFTERNOON SESSION DETAILS				
Image of session				

Report -

Automation

- Automation is any process that is self-driven and reduces, then eventually eliminates, the need for human intervention.
- Automation was once confined to the manufacturing industry.
- Highly repetitive tasks such as automobile assembly were turned over to machines and the modern assembly line was born.
- Many devices now incorporate smart technology to alter their behavior under certain circumstances.
- This can be as simple as a smart appliance lowering its power consumption during periods of peak demand or as complicated as a self-driving car.

Artificial Intelligence and Machine Learning

- Artificial Intelligence (AI) is the intelligence demonstrated by machines.
- This is in contrast to natural intelligence which is the intelligence displayed by living organisms.
- All uses intelligent agents that can perceive their environment and make decisions that maximize the probability of obtaining a specific goal or objective.
- Al refers to systems that mimic cognitive functions normally associated with human minds such as learning and problem solving.
- **ML** is a subset of AI that uses statistical techniques to give computers the ability to "learn" from their environment.
- This enables computers to improve on a particular task without being specifically programmed for that task

Intent-Based Networking

- Intent-based networking (IBN) is a form of network administration that incorporates artificial intelligence (AI), network orchestration and machine learning (ML) to automate administrative tasks across a network.
- The goal of IBN is to reduce the complexity of creating, managing and enforcing network policies and reduce the manual labor associated with traditional configuration management.
- The IBN management application will then determine which devices and routes match the business intention and make the appropriate configuration changes automatically.
- Intent-based networking and software-defined networking (SDN) are similar in many aspects.
- Both approaches rely on a centralized controller to manage distributed devices on the network instead of individually managing each device from its own management console.