MATH 362—Work Sheet 10

Dr. Justin M. Curry

Due on Monday, March 15th, 2021

	Name:
1.	(3 points) Consider the following game. You toss a fair coin 3 times. Every time the coin lands heads, you win \$3, every time it lands tails, you win nothing. You have to pay \$5 to play. Let X denote the number of heads out of 3 tosses of the coin. Let W denote the winnings from playing this game, accounting for the cost to play.
	(a) (1 point) Write W as a function of the random variable X .
	(b) (1 point) What's the expectation of W ? Should you play this game?
	(c) (1 point) Find the distribution of $Y = X - 1 $.
2.	(6 points) Let X and Y denote the numbers obtained from two draws from a hat, which contains four tickets $1, 2, 3$ and 4 , written on them.
	(a) (2 points) Write down the joint distribution table for X and Y , assuming the draws are made without replacement. Calculate the probability $P(X \leq Y)$.
	(b) (1 point) Assuming the draws are made without replacement, what is the probability $P(X = Y)$?

(c)	(2 points)	Write	down	the joint	distribution	table for	X	and	Y,	assuming	the	draws	are
	made with replacement. Calculate the probability $P(X \leq Y)$.												

(d) (1 point) Compute the expectation of E(X + Y) for both part (a) and part (c). How do they compare?

- 3. (6 points) Let X_1 and X_2 be the numbers associated to two rolls of a fair 6-sided die. Let $Y_1 = \max\{X_1, X_2\}$ denote the maximum value and let $Y_2 = \min\{X_1, X_2\}$ denote the minimum value of these two rolls.
 - (a) (2 points) Write down the joint distribution table for Y_1 and Y_2 .

(b) (2 points) Write down the PMF of $Z = X_1 \cdot X_2$ the multiplication of the values of the two rolls.

(c) (2 points) Compute the expectation E(Z) and the expectation $E(Y_1 + Y_2)$.

4.	(3 points)	4 fair	coin	is	tossed 3	$8 ext{ time}$	es.]	Let 2	X	be the	number	of	heads	${\rm in}$	the	first	two	tosses
	Let Y be the	ie nur	nber	of l	heads in	the	last	two	to	sses.								

(a) (1 point) Write down the joint distribution table for X and Y.

- (b) (1 point) Are X and Y independent?
- (c) (1 point) Find the distribution of X + Y.

5. (2 points) A box contains 8 tickets. Two are marked 1, two are marked 2, two are marked 3, and two are marked 4. Tickets are drawn uniformly at random from the box without replacement until a number appears that has appeared before. Let X be the number of draws that are made. Make a table to display the probability distribution of X.