Solutions 3BA1 2005 summer

c not(c)
p 0.1 0.08
Np 0.25 0.06 L

p 0.32 0.07 not L 1 NP 0.08 0.04

P(p) 0.57

P(P|C) = 0.56 P(C|P) 0.736842

Not independent as P(P) <> P(P|C)

P(C|LandP) 0.55555556

Know=(Land shape and a Person) prob that its P(colour)

P(LuCbar|P) 0.438596

P(P and Cbar)=0.15 0.15

P(at least 1) =1- P(none) =1-C 1-(1-0.15)^3 0.385875

P(L) 0.49 P(Lbar) 0.51

р

0.5002

Qyestion 2

(a) P(S|G)=0.02, P((S|Gbar)=0.9

(b) Binomial model

 $P(X \le 2) = BINOMIST(2,10,0.4,1)$

P(Gbar|S)=(p(S|Gbar)*P(Gbar))/P(S) P(S)=P(S|G)P(G)+P(S|gbar)P(gbar)

(3)-F(3|G)F(G)+F(3|gbai)F(gbai)

P(S)= 0.02*0.6+0.9*0.4 0.372

0.967742

Two Gs reported S bar 0.9604
Gbar reported as S bar 0.1

0.09604

P(Gbar|S)=0.02

0.936524

(a)

life 0.3

P(T>3) 0.40657 exp(-0.9)

ii It means that they don't age

P(last another T|age A) is independent of A

iii Thus exp(-0.3) 0.740818

(b) i	Gaps in PP are exponentially distribtuted. Time to kth event = sum of k indep. Exponentials Assumption - image sizes are independent.							
ii	mean here is		6.666667					
	So	Poisson(4,6	3.6667,1)					
		1-poisson(9	9,6.6667,1)					
iii	Solve	R= F(X)						
	R 0.753 0.147	X=4* (In(1-F W 7.82172 0.101119	1+W 8.82172					
(a)	The standard error = 11.25							
(a)	The standard en	tstat	0.888889					
	As <1 not signific							
(b)	As <1 not significant no need to look up The test in (a) tests only that the average RRM of maters is 7000.							
(6)	The test in (a) tests only that the average RPM of motors is 7000 Even if true this gives no guarantee of usability. eg. Half the motors could have rpm=6000 and half 8000.							
(c)	phat	0.8						
	se phat	0.023094						
	So CI	0.753812	0.846188					
(d)	phat2	0.888889						
	Diff p	0.088889						
	pooled P	0.833333						
	se(diff)	0.086066		avelve.				
	Zratio	1.032796	Not sig	pvalue 0.15085				
Q5								
(a)	To analyze these data require that the quality measurments be independent.							
(b)	quality	0.234 +0.00	009111*n	n=generations				
	at n=2000 2.0559 which is nonsense Quality cannot be greater than 1							

2000 is an extrapolation beyond the range of the data the LINEAR not hold that far out.

The scatter plot shows and the residual plot strangly confrims CURVATURE.

(c) R-squared is superior

The plot look more like they should The scatter plot look like a straight line.

0.007828 0.000484

CI 0.0068604 0.008796

at n=1000 logit

-2.15844 0.007828 5.66956

ssx 941000

((x-xbar)² 324900 1/n 0.1

s mult s.E.

0.4693 1.730975 0.812347

Low Logit Hi logit 4.044866505 7.294253

Low qual Hi qual qual=1/(1+exp(-logit))

0.982789351 0.999321

Quality = $1/(1+\exp(L(x)))$

Q6 coeficients= estimates of constant and slope

(a) SD(estimates)

T-value - t-stat for testing coeficient =0

Constant not significant

Size is significant.

p-value convertions of t-stats into a probability.

Sig if p<0.05

prediction

869.8405 secs

ssx 10200 (Xbar-60)^2 100

SE 58.49755

752.8454054 986.8356

(b) (i)

Ouput 4 shows that neither the SITE or slope variable are significant

However Output 3 shows that the sitslope vartiable is significant if site is omitted

In output 2 The site variable is nearlyy significant

SIZE is significant in all outputs.

It therefore looks like output 3 give the correct picture
No differences in the constant from site to site but the slope = secs/MB is different

the equation looks like

		 + 12.8 secs/MB + 8.8 secs/MB		if site 1 if site 2	
(ii)	F-test	SSE(4) SSE(1)	1.13 1.4246	df	21 23
		Numerator Denom	0.1473 0.05381		
		Fstat	2.737434		
Critical valu	ie	F(2,21) 3.4668	Not signif		

F test is used to ascertain whether several coeficients can be simulatniuosly regarded as 0.