実験Bーロボットアームガイダンスー

基礎工 原田研究室 助教 小山佳祐

ロボット研究のトレンド

Demonstrations of Dynamic Reactions

Design of a Multimodal Fingertip Sensor for Dynamic Manipulation

Andrew SaLoutos, Elijah Stanger-Jones, Menglong Guo, Hongmin Kim, and Sangbae Kim

@Saloutous et al., Design of a Multimodal Fingertip Sensor for Dynamic Manipulation, ICRA 2023

ロボット研究のトレンド

Unlearned situation: Random speed

(b) Motion generation model

@Yamamoto et al., Real-time Motion Generation and Data Augmentation for Grasping Moving Objects with Dynamic Speed and Position Changes, 2023

目標

ロボット工学における基本要素の実践と、プログラミング言語の学習、デバッグ方法の習得

・機械学習などで利用するプログラミング言語, python

・研究で利用している統合開発環境, pycharm

プロの開発者向け Python IDE

ロボット工学における基本要素の学習

DH法による座標定義, 同次変換行列, 順運動学の導出, 逆運動学の導出

ロボット工学における基本要素の学習

DH法による座標定義、同次変換行列、順運動学の導出、逆運動学の導出

逆運動学 手先位置から角度を計算 (目標位置に移動する)

プログラミング言語pythonの学習

順・逆運動学の実装を通して基本計算を学ぶ(統合開発環境の使い方,ターミナルでの実行含む)

```
EIE <u>Edit View Navigate Code Refactor Run Tools VCS Wi</u>ndow <u>H</u>elp 7c77777 - FK IK.py
7c77777 > & FK_IK.py
  🐔 angle_dir_check.py × 🚜 sample.py × 🐔 gripper_test.py × 🐔 gripper+backup¥sample.py ×
         bimport time
           from math import radians, degrees, sin, cos, atan2, sqrt, pi, acos
          △import traceback
           print("mode select:")
           print("* 0 -> value check")
           print("* 1 -> simulation")
           print("* 2 -> move mode")
           move_mode = int(input())
           # ---- メイン関数(実験内容に応じてここを変更) ---- #
          ⊨def main():
                   print("start program")
                   # print("px:")
```

```
pi@raspberrypi:~/7c77777 $ python3 sample.py
mode select:
 0 -> value check
   -> simulation
   -> move mode
load mycobot library... OK
start program
input J[0]:
    45.0
    0.0
    0.0
    0.0
    0.0
angle_check...OK
move
```

デバッグ方法の習得

PC側でのシミュレーションとロボット実機の両方を行う

実験予定

全4回で実施予定(5日目は予備日)

授業回	取り組む演習・実験
1回目	問1,2,3,4 (+可能なら開発環境構築始める)
2回目	開発環境構築, プログラム1,2,3,4,5
3回目	問5,6,7
4回目	実験6,7,8,9,10

実験開始前後の注意

- 実験全日でノートPC(Windows10, 11)を持参すること
- -CLEから指導書などをダウンロード
- 開発環境構築のためのインストーラなどのダウンロードと一部インストール

↓↓↓以下は指導書記載内容

2 事前準備

一日目の実験開始前に各自のノート PC(Windows10 または 11)に各種インストーラを必ずダウンロードし、一部は自分でインストールしておくこと.詳細は「開発環境構築_実験 B _ ロボットアーム.pdf」の pp.1–7 に記載している.

実験の時期によっては各インストーラのバージョン情報(プログラム名以下の数字)は異なる可能性があるが問題ない. なお, MAC ユーザやノート PC 不所持の学生は, 実験開始前に slack の DM などで小山に事前連絡すること.