Технология получения растворимой дрожжевой инвертазы включает в себя следующие позиции: 1-резурвуар для среды (мощность 25 кВт), 2-насос, 3-ротаметр, 4-ферментёр (мощность 25 кВт), 5-сепаратор, 6-реактор для высаливания (мощность 25 кВт), 7-ультрафильтрация, 8-сушка (мощность 50 кВт).

Культивирование дрожжей в периодическом режиме проводили при 26°C в течение 11 суток. После перехода дрожжей на стационарную фазу роста, процесс проводят в лимитирующих условиях (6°C) при подключении питательной среды со скоростью разведение 0,02 ч⁻¹. После окончания брожения полученная культуральная жидкость отправляется на сепаратор (5) с помощью насоса (2), где культуральная жидкость отделяется от биомассы дрожжей. Полученная биомасса отправляется в реактор для замораживания и оттаивания (6), затем экстрагируется 100 л 0,1 М буфером (80 000 сум) и экстракт (супернатант) отделяется от биомассы в сепараторе (5). В технологическом процессе получено 100 л экстракта, из которого фермент выделяли высаливанием сульфатом аммония в количестве 37 кг, 150 000 сум/кг (7), ультрафильтрации (8) водой в количестве 300 л и сушки. В конце технологического процесса получили 22 кг продукта.

Использовали питательную среду следующего состава (кг/т):

	Реактивы	кг/т	Цена 1 кг, сум	Цена, сум
1.	сусло виноградное	100	10 000	
2.	дрожжевая разводка	10	1000	
3.	Глюкоза	10	15 000	
4.	NaCl	0,1	6 000	
5.	KH ₂ PO ₄	1	25000	
6.	K ₂ HPO ₄	1	26 000	
7.	MgSO₄ ·7 H₂O	0,5	30000	
8.	CuCO ₃	0,1	20 000	
9.	H ₃ BO ₃	0, 00125	15 000	
10.	KJ	0,00025	200 000	
11.	MnSO ₄	0,001	30 000	
12.	FeCl ₃	0,0005	10 000	
13.	(NH ₄) ₆ Mo ₇ O ₂₄	0,0005	280 000	
14.	ZnSO ₄	0,001	20 000	
15.	Вода	1000	11.195	
16.	Электроэнергия 1кВт	100	450	
	Итого			

Задание:

- 1. Определите цену 1 т питательнй среды?
- 2. Из каких звеньев состоит технологическая схема?
- 3. Какова цена 1 кг фермента?
- 4. Какая позиция отсутствует в представленной технологической линии?