HKN ECE 342 Review Session 3

Anthony Li Rex Geng Sergio Silva

BJT's

NPN Bipolar Junction Transistor

PNP Bipolar Junction Transistor

BJT Operating Point

- Three regions of operation:
- Cutoff
- Saturation
- Forward Active
 - \circ $V_{T} = kt/q$
 - \circ $I_C = \Box I_B$

 - \circ $\square = g_m R_{\pi}$

BJT Incremental Model

Gain Calculation

 $A_v = -G_M R_{out}$

 G_{M} = Small signal transconductance, ratio of i_{out} to v_{in}

 R_{OUT} = Equivalent incremental output resistance

 R_{IN} = Equivalent incremental input resistance

Common Amplifier Topologies

- Diode-tied Transistor
 - a. What is overdrive voltage here?
 - b. Is this always in saturation?
- 2. Common Emitter/Collector/Gate
 - a. Purpose of each topology?
 - b. equations
- 3. Common Emitter with Degeneration
- 4. Common Collector with Modulation
- 5. Cascode

Terminal Impedances of BJT's

$$R_{c} = r_{o}$$

$$R_B = R_{\pi\pi}$$

$$R_E = R_{\pi}/(\Box + 1)$$

Diode-Tied = $R_{m}/(\Box + 1)$

 Diode Tied Transistor

Common Emitter/Collector/Base

 $R_{OUT} = R_c || r_o$

 $R_{IN} = R_{\pi} + R_{R}$

 $G_m = \Box/(R_{\pi} + R_{B})$

$$R_{OUT} = ((R_{\pi} + R_B)/(\square + 1))||R_E$$

 $R_{IN} = R_{R} + R_{\pi} + ((\Box + 1))R_{F}$ $R_{IN} = (R_{\pi} + R_{R})/(\Box + 1)$

$$G_{m} = - (\Box +1)/ (R_{\pi} + R_{B})$$

$$R_{OUT} = R_c || r_o$$

$$G_{m} = \Box/(R_{\pi} + R_{B})$$

Degeneration

When a resistance is "viewed" through the collector, it appears bigger by a factor related to the transconductance.

Modulation

Resistances seen through the Emitter seem smaller.

Cascode

Bode Plots

Magnitude

Pole: Roll down by 20 db/dec, 6 db/oct

Zero: Roll up by 20 db/dec, 6 db/oct

Phase: $arctan(\omega/\omega_n)$

Usually -90° for poles, +90° for zeros

 ω_{uqf} = 20log|A_n| * ω_{pn} where n is the pole located before unity gain frequency