Ordinamento per distribuzione

L'algoritmo di ordinamento per distribuzione (quicksort) opera nel modo seguente.

DECOMPOSIZIONE: se la sequenza ha almeno due elementi, scegli un elemento **pivot** e dividi la sequenza in due sotto-sequenze in modo tale che la prima contenga elementi minori o uguali al pivot e la seconda gli elementi maggiori o uguali del pivot.

RICORSIONE: ordina ricorsivamente le due sotto-sequenze.

RICOMBINAZIONE: non occorre fare alcun lavoro.

```
1 QuickSort( a, sinistra, destra ):
2
3     IF (sinistra < destra) {
4         scegli pivot nell'intervallo [sinistra...destra];
5         indiceFinalePivot = Distribuzione(a, sinistra, pivot, destra);
6         QuickSort( a, sinistra, indiceFinalePivot-1 );
7         QuickSort( a, indiceFinalePivot+1, destra );
8     }</pre>
```

DISTRIBUZIONE

- Data la posizione px del pivot in un segmento a[sx, dx]:
 - scambia gli elementi a[px] e a[dx], se $px \neq dx$
 - usa due indici i e j per scandire il segmento: i parte da sx e va verso destra e j parte da dx-1 e va verso sinistra fino a quando $i \leq j$
 - ogni volta che si ha a[i] > pivot e a[j] < pivot, scambia a[i] con a[j] e poi riprende la scansione
 - alla fine della scansione posiziona il pivot nella sua posizione corretta

Ordinamento per distribuzione

```
1 Distribuzione(a, sx, px, dx):
    IF (px != dx) Scambia( px, dx );
     i = sx;
     j = dx-1;
5 WHILE (i <= j) {
        WHILE ((i <= j) && (A[i] <= A[dx]))
         i = i+1:
        WHILE ((i <= j) && (A[j] \Rightarrow A[dx]))
9
         j = j-1;
10
        IF (i < j) Scambia( i, j ); i=i+1,j=j-1;</pre>
     IF (i != dx) Scambia( i, dx );
     RETURN i;
1 Scambia( i, j ):
                                                    \langle pre: sx < i, j < dx \rangle
2 temp = a[j]; a[j] = a[i]; a[i] = temp;
```

Analisi di Distribuzione

- per stimare il tempo richiesto dal while esterno dobbiamo stimare il numero di iterazioni eseguite complessivamente dei due while interni.
- ② numero totale di iterazioni del primo while interno = numero confronti tra un elemento a[i] con il pivot
- ① numero totale di iterazioni del secondo while interno = numero confronti tra un elemento a[i] con il pivot
- dopo ogni confronto di a[i] con il pivot o viene incrementato i (nel while stesso o nell'if) o il while esterno termina dopo al più un'iterazione
- (3) dopo ogni confronto di a[j] con il pivot o viene decrementato j (nel while stesso o nell'if) o il while esterno termina dopo al più un'iterazione
- @ per i due punti precedenti si ha che ad ogni iterazione di ciascuno dei while interni, fatta al più eccezione per l'ultima, viene confrontato un nuovo elemento con il pivot. Inoltre, siccome $i \leq j$, vi è un unico elemento che può essere confrontato in entrambi i while interni (se nell'ultima iterazione i = j e a[i] > a[dx]).
- $\ \odot$ il numero totale di confronti con il pivot è quindi al più n+1 e quindi il numero totale di iterazioni dei due while interni è complessivamente al più n+1
- \otimes tempo O(n)

Analisi di QuickSort mediante relazione di ricorrenza

Relazione di ricorrenza per il tempo T(n) di esecuzione dell'algoritmo.

- Caso base: $T(n) \le c_0$ per $n \le 1$.
- Passo ricorsivo: sia r il rango dell'elemento pivot. Ci sono r-1 elementi a sinistra del pivot e n-r elementi a destra, per cui $T(n) \leq T(r-1) + T(n-r) + cn$.

Analisi di QuickSort mediante relazione di ricorrenza

CASO PESSIMO

- Il pivot è tutto a sinistra (r=1) oppure tutto a destra (r=n). In entrambi i casi, la relazione diventa $T(n) \leq T(n-1) + T(0) + cn \leq T(n-1) + c'n$ per un'opportuna costante c'
- Applichiamo iterativamente la relazione di ricorrenza:

$$T(n) \leq T(n-1) + c'n \leq T(n-2) + c'(n-1) + c'n \leq \ldots \leq T(n-i) + \sum_{j=0}^{i-1} c'(n-j).$$

• Sostitutendo i = n - 1 nell'espressione più a destra, otteniamo

$$T(n) \leq T(1) + \sum_{j=0}^{n-2} c'(n-j) \leq c_0 + \sum_{j=2}^n c'j \leq c_0 + c'(n+1)n/2 - c' = O(n^2),$$

Analisi di QuickSort mediante relazione di ricorrenza caso ottimo

- La distribuzione è bilanciata (r = n/2)), la ricorsione avviene su ciascuna metà
- In questa situazione, il costo è simile a quella dell'ordinamento per fusione.
- Possiamo dimostrare che il costo è di $O(n \log n)$ tempo

EFFICIENZA DEL QUICKSORT RANDOMIZZATO: INTUIZIONE

- Affinché QuickSort abbia tempo di esecuzione $O(n \log n)$ non è necessario che ogni volta il pivot sia l'elemento centrale ma è sufficiente che una frazione costante degli elementi risulti minore o uguale del pivot.
- Sia m la dimensione del segmento di array da ordinare in una certa chiamata ricorsiva. Supponiamo che il segmento venga suddiviso in due segmenti (escluso il pivot) di dimensione rispettivamente pari circa a $(m-1)(\frac{1}{d})$ e $(m-1)(1-\frac{1}{d})$, con d>1 costante. Diciamo "circa" perché in realtà per un segmento occorre prendere la parte intera superiore e per l'altra quella inferiore.
- Ovviamente quanto più sono diverse le lunghezze dei due segmenti (d molto piccolo o molto grande) tanto peggiore è il comportamento dell'algoritmo.
- Supponiamo che la chiamata ricorsiva in cui la suddivisione risulta più sbilanciata, suddivida il segmento da ordinare (privato del pivot) in due parti di dimensione pari rispettivamente a circa $\frac{1}{\beta}$ e $1-\frac{1}{\beta}$ della dimensione del segmento, dove β è una costante positiva.
- Il tempo richiesto è sicuramente non più grande di quello che sarebbe richiesto se una tale suddivisione si verificasse per ogni chiamata ricorsiva su input maggiori di β . Per input di dimensione minore o uguale di β ci mettiamo nel caso peggiore, cioè quello in cui un segmento è vuoto e l'altro contiene tutti gli elementi diversi dal pivot. Il tempo sarà comunque limitato da una costante che indichiamo con c_1 .

EFFICIENZA DEL QUICKSORT RANDOMIZZATO: INTUIZIONE

- Omettiamo le parti intere inferiori e superiori. Si può dimostrare che ciò non influisce sul comportamento asintotico della ricorrenza.
- Consideriamo quindi la relazione di ricorrenza

$$T(n) \leq \left\{egin{array}{ll} T((n-1)/eta) + T((n-1)(1-1/eta)) + cn & ext{se } n > eta \ c_1 & ext{per } n \leq eta \end{array}
ight.$$

Vogliamo dimostrare che questa relazione di ricorrenza ha soluzione $O(n \log n)$ per qualsiasi costante $\beta > 1$.

- Possiamo assumere che $\beta \neq 2$ in quanto abbiamo già visto che in quel caso $T(n) = O(n \log n)$. Possiamo inoltre assumere senza perdere di generalità che $\beta > 2$, cioè che il primo segmento sia più piccolo del secondo.
- Dimostriamo con il metodo della sostituzione che $T(n) = O(n \log n)$. Per far ciò dimostreremo per induzione che esiste una costante c' > 0 per cui $T(n) \le c' n \log n$ per ogni $n \ge \beta$.
- Base induzione: per $n=\beta$, si ha $T(\beta) \le c_1$. Perché sia $T(\beta) \le c'(\beta \log \beta)$ basta quindi scegliere c' tale che $c' \ge c_1/(\beta \log \beta)$.

EFFICIENZA DEL QUICKSORT RANDOMIZZATO: INTUIZIONE

• Passo induttivo. Supponiamo vera la disuguaglianza per $2, \ldots, n-1$. Si ha

$$\begin{split} T(n) &\leq T((n-1)/\beta) + T((n-1)(1-1/\beta)) + cn \\ &\leq c'((n-1)/\beta) \log((n-1)/\beta) + c'((n-1)(1-1/\beta) \log((n-1)(1-1/\beta)) + cn \\ &\leq c'(n/\beta) \log(n/\beta) + c'n(1-1/\beta) \log(n(1-1/\beta)) + cn \\ &= c'(n/\beta) (\log(n/\beta) - \log(n(1-1/\beta))) + c'n \log(n(1-1/\beta)) + cn \\ &= -c'(n/\beta) \log(\beta-1) + c'n \log(n(1-1/\beta)) + cn \\ &\leq -c'(n/\beta) \log(\beta-1) + c'n \log(n-1) + cn. \end{split}$$

- Perché risulti $T(n) \le c' n \log n$ basta imporre $-(c'/\beta) \log(\beta-1) + c \le 0$ che è soddisfatta per $c' \ge c\beta/(\log(\beta-1))$
- Quindi dobbiamo scegliere

$$c' = \max\{c_1/(\beta \log \beta), c\beta/(\log(\beta-1))\}.$$

EFFICIENZA DEL QUICKSORT RANDOMIZZATO: INTUIZIONE

- Ci sono quindi molte possibili scelte del pivot che fanno in modo che l'algoritmo si comporti bene.
- Questo ci suggerisce che scegliere il pivot in modo random (con distribuzione di probabilità uniforme) porta con buona probabilità a scegliere un pivot "ben posizionato" e cioè un pivot che suddivide il segmento da ordinare nel modo descritto in precedenza e ad avere un tempo di esecuzione $O(n \log n)$.
- Si può dimostrare formalmente che il QuickSort randomizzato ha tempo di esecuzione medio $O(n \log n)$.

Selezione per distribuzione

Problema: selezione dell'elemento con rango r in un array a di n elementi distinti.

- Si vuole evitare di ordinare a
- NB: Il problema diventa quello di trovare il minimo quando r=1 e il massimo quando r=n.

Osservazione: la funzione Distribuzione permette di trovare il rango del pivot, posizionando tutti gli elementi di rango inferiore alla sua sinistra e tutti quelli di rango superiore alla sua destra.

Possiamo modificare il codice del quicksort procedendo ricorsivamente nel *solo* segmento dell'array contenente l'elemento da selezionare.

La ricorsione ha termine quando il segmento è composto da un solo elemento.

```
1 QuickSelect( a, sinistra, r, destra ):
2    IF (sinistra == destra) {
3        RETURN a[sinistra];
4    } ELSE {
5        scegli pivot nell'intervallo [sinistra...destra];
6        indiceFinalePivot = Distribuzione(a, sinistra, pivot, destra);
7    IF (r-1 == indiceFinalePivot) {
8        RETURN a[indiceFinalePivot];
9    } ELSE IF (r-1 < indiceFinalePivot) {
10        RETURN QuickSelect( a, sinistra, r, indiceFinalePivot-1 );
11    } ELSE {
12        RETURN QuickSelect( a, indiceFinalePivot+1, r, destra );
13    }
14 }</pre>
```

Analisi di QuickSelect mediante relazione di ricorrenza

Caso base:

Se il segmento sul quale opera l'algoritmo contiene un solo elemento allora l'algoritmo esegue un numero costante di operazioni per cui il costo è $\leq c$ per una certa costante c positiva.

Se l'indice restituito da Distribuzione(a, sinistra, pivot, destra) è uguale a r-1, l'algoritmo termina. Il costo in questo caso è dato dal costo lineare di Distribuzione più il costo costante delle altre istruzioni per cui il costo totale è $\leq c_1 n$, dove $c_1 > 0$ è una certa costante.

Passo ricorsivo: Il costo in questo caso è dato dal costo lineare di Distribuzione più il costo costante delle altre istruzioni e il costo della chiamata ricorsiva sul segmento degli elementi minori del pivot oppure in quello degli elementi maggiori del pivot. Il costo in questo caso è quindi al più pari a cn (per una certa costante c > 0) più il costo della chiamata ricorsiva. Relazione di ricorrenza per il tempo T(n) di esecuzione dell'algoritmo. Indichiamo con r_n il rango del pivot

Caso base:

$$T(n) \le c_0 \text{ per } n = e$$

 $T(n) \le c_1 n \text{ se } r_p = r.$

• Passo ricorsivo: Ci sono $r_p - 1$ elementi a sinistra del pivot e $n - r_p$ elementi a destra, per cui $T(n) \le \max\{T(r_p - 1), T(n - r_p)\} + cn$.

$$T(n) \leq \left\{ egin{array}{ll} c_0 & ext{se } n=1 \\ c_1 n & ext{se } n>1 ext{ e } r_p=r-1 \\ ext{max}\{T(r_p-1),T(n-r_p)\}+cn & ext{altrimenti} \end{array}
ight.$$

Analisi di QuickSelect mediante relazione di ricorrenza caso pessimo

- Il pivot è tutto a sinistra $(r_p = 1)$ e $r > r_p$ oppure tutto a destra $(r_p = n)$ e $r < r_p$. In entrambi i casi, la relazione diventa $T(n) \le T(n-1) + cn$.
- Applichiamo iterativamente la relazione di ricorrenza:

$$T(n) \le T(n-1) + cn \le T(n-2) + c(n-1) + cn \le \ldots \le T(n-i) + \sum_{j=n-i+1}^{n} c_j$$

• Sostitutendo i = n - 1 nell'ultima disegnazione, otteniamo

$$T(n) \leq T(1) + \sum_{j=2}^{n} c j \leq c_0 + \sum_{j=2}^{n} c j = c_0 + c n(n+1)/2 - c = O(n^2).$$

Analisi di QuickSelect mediante relazione di ricorrenza caso ottimo

- L'elemento di rango r è proprio il pivot $(r_p = r)$, per cui si esce dalla procedura senza effettuare la ricorsione e si ha che T(n) = O(n).
- Il caso ottimo si verifica anche quando ad ogni chiamata ricorsiva viene dimezzata la lunghezza del segmento in cui effettuare la selezione.

$$T(n) \leq T(n/2) + cn \leq T(n/4) + c(n/2) + cn \leq \ldots \leq T(\frac{n}{2^i}) + \sum_{j=0}^{i-1} c \frac{n}{2^j}.$$

Dopo $\log n$ applicazioni della relazione di ricorrenza otteniamo

$$T(n) \leq T\left(\frac{n}{2^{\log n}}\right) + \sum_{j=0}^{\log n-1} c \frac{n}{2^j} = T(1) + cn \sum_{j=0}^{\log n-1} \frac{1}{2^j}$$

$$\leq c_0 + cn \left(\frac{1 - 1/2^{\log n}}{1/2}\right) = c_0 + 2cn(1 - 1/n) = O(n)$$

EFFICIENZA DEL QUICKSELECT RANDOMIZZATO: INTUIZIONE

- Per il QuickSelect, vale un discorso analogo a quello fatto per il QuickSort
- Ci sono molte possibili scelte del pivot che fanno in modo che l'algoritmo si comporti bene.
- Scegliendo il pivot in modo random (con distribuzione di probabilità uniforme) è probabile che si scelga un pivot "ben posizionato" e cioè un pivot tale che esiste una costante a>1 per cui una frazione 1/a degli elementi sono minori o uguali del pivot e una frazione 1-1/a degli elementi sono maggiori o uguali del pivot.
- Si può dimostrare formalmente che il QuickSelect randomizzato ha tempo di esecuzione medio O(n).