Power MOSFET

Complementary, 30 V, +2.9/-2.2 A, TSOP-6 Dual

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size (3 x 3 mm) Dual TSOP-6 Package
- Leading Edge Trench Technology for Low On Resistance
- Reduced Gate Charge to Improve Switching Response
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb-Free Device

Applications

- DC-DC Conversion Circuits
- Load/Power Switching with Level Shift

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

D	arameter	Cymbol	Value	Unit		
P-	Symbol	value	Unit			
Drain-to-Source V	V_{DSS}	30	V			
Gate-to-Source V	oltage (N-C	Ch & P-Ch)	V_{GS}	±12	>	
N-Channel Continuous Drain Current (Note 1)	Steady State	$T_A = 25$ °C $T_A = 85$ °C	I _D	2.6 1.9	Α	
Current (Note 1)	t≤5s	T _A = 25°C		2.9		
P-Channel Continuous Drain Current (Note 1)	Steady State	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	-1.9 -1.4	Α	
Current (Note 1)	t≤5s	T _A = 25°C		-2.2		
Power Dissipation	Steady State	T _A = 25°C	P_{D}	0.9	W	
(Note 1)	t≤5s			1.1		
Pulsed Drain	N-Ch	t _p = 10 μs	I _{DM}	8.6	Α	
Current	P-Ch			-6.3		
Operating Junction	T _J , T _{STG}	–55 to 150	°C			
Source Current (Bo	I _S	±0.9	Α			
Lead Temperature (1/8" from case for	TL	260	°C			

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	140	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	110	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
N-Ch	90 mΩ @ 4.5 V	2.6 A
30 V	125 mΩ @ 2.5 V	2.2 A
P-Ch	170 mΩ @ –4.5 V	-1.9 A
−30 V	300 mΩ @ –2.5 V	-1.0 A

N-CHANNEL MOSFET

P-CHANNEL MOSFET

TSOP-6 CASE 318G STYLE 13

MARKING

TA = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS								1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N		I _D = 250 μA	30			V
	, ,	Р	$V_{GS} = 0 V$	I _D = -250 μA	-30			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	N				21.4		mV/°C
Temperature Coefficient	,	Р				22.2		
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 24 V				1.0	μΑ
•		Р	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 25 °C			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 24 V				10	
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -24 \text{ V}$	T _J = 85 °C			-10	
Gate-to-Source Leakage Current	I _{GSS}	N	V _{DS} = 0 V, V _{GS} =	±12 V			±100	nA
		Р	V _{DS} = 0 V, V _{GS} =				±100	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 250 μA	0.5	0.9	1.5	V
	, ,	Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.5	-1.1	-1.5	
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V , I _D =	2.6 A		52	90	
	, ,		V _{GS} = 2.5 V , I _D =	= 2.2 A		67	125	1 _
		Р	V _{GS} = -4.5 V , I _D =	-1.9 A		130	170	mΩ
			V _{GS} = -2.5 V, I _D =	-1.0 A		202	300	
Forward Transconductance	9FS	N	$V_{DS} = 15 \text{ V}, I_D = 2.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -1.9 \text{ A}$			2.6		S
		Р				2.6		
CHARGES AND CAPACITANCES		•						•
Input Capacitance	C _{ISS}					295		
Output Capacitance	C _{OSS}	N		V _{DS} = 15 V		48		pF
Reverse Transfer Capacitance	C _{RSS}		(4 MIL)/ 0 //			27		
Input Capacitance	C _{ISS}		f = 1 MHz, V _{GS} = 0 V	V _{DS} = -15 V		419		
Output Capacitance	C _{OSS}	Р				51		
Reverse Transfer Capacitance	C _{RSS}					26		
Total Gate Charge	Q _{G(TOT)}			•		3.7	5.5	
Threshold Gate Charge	Q _{G(TH)}	١	V 45VV 45			0.6		
Gate-to-Source Gate Charge	Q_{GS}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}$	v, I _D = 2.0 A		0.9		
Gate-to-Drain "Miller" Charge	Q_{GD}	1				8.0		0
Total Gate Charge	Q _{G(TOT)}					3.9	6.0	nC
Threshold Gate Charge	Q _{G(TH)}	_	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V}, I_D = -2.0 \text{ A}$			0.6		
Gate-to-Source Gate Charge	Q_{GS}	P				1.0		
Gate-to-Drain "Miller" Charge	Q_{GD}					1.0		
SWITCHING CHARACTERISTICS (N	ote 3)							
Turn-On Delay Time	t _{d(ON)}					7.0		ns
Rise Time	t _r	N	V_{GS} = 4.5 V, V_{DD} = 15 V, I_{D} = 1.0 A, R_{G} = 6.0 Ω			4.0		
Turn-Off Delay Time	t _{d(OFF)}					14		
Fall Time	t _f					2.0		
Turn-On Delay Time	t _{d(ON)}					8.0		
Rise Time	t _r] _	V _{GS} = -4.5 V, V _{DD}	= -15 V,		8.0		
Turn-Off Delay Time	t _{d(OFF)}	P	$V_{GS} = -4.5 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$			22		
Fall Time	t _f	1				8.0		

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

3. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS									
Forward Diode Voltage	V_{SD}	N	I _S = 0.9 A			0.7	1.2	V	
		Р	V_{GS} = 0 V, T_J = 25 °C	I _S = -0.9 A		-0.8	-1.2		
Reverse Recovery Time	t _{RR}		$V_{GS} = 0 \text{ V},$ $dI_{S} / dt = 100 \text{ A}/\mu\text{s}, I_{S} = 0.9 \text{ A}$			8.0		ns	
Charge Time	ta] _N				5.0			
Discharge Time	t _b] IN				3.0			
Reverse Recovery Charge	Q_{RR}	1				3.0		nC	
Reverse Recovery Time	t _{RR}		V_{GS} = 0 V, dI_S / dt = 100 A/ μ s, I_S = -0.9 A			12		ns	
Charge Time	ta	P				10			
Discharge Time	t _b] [2.0			
Reverse Recovery Charge	Q_{RR}	1				7.0		nC	

N-CHANNEL TYPICAL CHARACTERISTICS

Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

Figure 9. Threshold Voltage

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. FET Thermal Response

P-CHANNEL TYPICAL CHARACTERISTICS

Figure 17. On-Resistance Variation with Temperature

Figure 18. Capacitance Variation

Figure 19. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 20. Diode Forward Voltage versus

Current

Figure 21. Threshold Voltage

Figure 22. Single Pulse Maximum Power Dissipation

Figure 23. Maximum Rated Forward Biased Safe Operating Area

Figure 24. FET Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTGD4167CT1G	TSOP6 (Pb-Free)	3000 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE T**

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.90	1.00	1.10	0.035	0.039	0.043	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.25	0.38	0.50	0.010	0.014	0.020	
С	0.10	0.18	0.26	0.004	0.007	0.010	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	1.30	1.50	1.70	0.051	0.059	0.067	
е	0.85	0.95	1.05	0.034	0.037	0.041	
L	0.20	0.40	0.60	0.008	0.016	0.024	
HE	2.50	2.75	3.00	0.099	0.108	0.118	
θ	0°	-	10°	0°	-	10°	

STYLE 13:

- PIN 1. GATE 1
 - 2. SOURCE 2 3. GATE 2
 - 4. DRAIN 2

 - SOURCE 1
 - 6. DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTGD4167CT1G