Week One - EET3300

Number Systems Conversions

1. Convert 413.1₅ to unsigned binary

```
converting from base 5 to decimal
```

```
413 in binary is:
```

 $(413)_5 = (4 \times 52) + (1 \times 51) + (3 \times 50) = (108)_{10}$

 $\frac{108}{2} = 54r0 \leftarrow LSB$

 $\frac{54}{2} = 27r0$

 $\frac{27}{2} = 13r1$

 $\frac{13}{2} = 6r1$

 $\frac{6}{2} = 3r0$

 $\frac{3}{2} = 1r1$

 $\frac{1}{2} = 0r1$

Therefore, $413_5 = 1101100$ 0.1_5 in decimal is:

 $(0.1)_5 = (1 \times 5^{(-1)}) = (0.2)_{10}$ 0.2_{10} to binary is

 $\frac{12}{2} = 6r0 \leftarrow LSB$

 $\frac{6}{2} = 3r0$

 $\frac{3}{2} = 1r1$

 $\frac{1}{2} = 0r1$

answer: 1101100.0011

2. Express -120_{10} as an 8 bit 2's complement number $120 \rightarrow 64 + 32 + 16 + 8 = 01111000$

therefore, $0.1_5 = 0011$ recurring

to make negative, flip all bits, then add one

 $01111000 \rightarrow 10000111 + 1 \rightarrow answer 10001000$

component to fit into three spaces

In [3]: #From decimal to any base via division remainder method

digits.append(str(n % b))

converting 11349116 to base 4 = 223102301330

4. Convert $AF013C_{16}$ to a base 4 number

3. Convert 27.77 to unisgned binary number, rounging the non integer

```
AF013C_{16} \rightarrow (10 \times 16^5) + (15 \times 16^4) + (0 \times 16^3) + (1 \times 16^2) + (3 \times 16^1) + (12 \times 16^0) = (11469116)_10
For fun and to save time, I solved the conversion from base 10 to base 4 below in python, using the division remainder method that I
```

wrote out in full on question 1.

digits = [] while n:

n //= b

def change_of_base(n, b): **if** n == 0: return [0]

return int("".join(digits[::-1])) print(f"converting 11349116 to base 4 = {change_of_base(11349116,4)}")

First convert from base 2 to base 10 $00101101 \rightarrow 2^5 + 2^3 + 2^2 + 2^0 = 45$ $0.11 = (1 \times 2^{-1}) + (1 \times 2^{-2}) = (0.75)_{10}$

5. Convert 101101.11_2 to a base 7 number

print(f"converting 45 to base 7 = {change_of_base(45,7)}") \rightarrow 63₇ 0.075 in base 7 by multiplication remainder method:

 $0.75 \times 7 = \mathbf{5} + 0.25 \leftarrow LSB \ 0.25 \times 7 = \mathbf{1} + 0.75$

 $0.75 \times 7 = 5 + 0.25$ $0.25 \times 7 = \mathbf{1} + 0.75$

Then convert to base 7 via the division remainder method:

 $0.75 \times 7 = 5 + 0.25$ $0.25 \times 7 = \mathbf{1} + 0.75$

1.In a 5 bit system, add 15_{10} and -4_{10}

start by converting to 4 bit, twos complement numbers

 $0.75 \times 7 = \mathbf{5} + 0.25$ $0.25 \times 7 = \mathbf{1} + 0.75$

 $0.75 \times 7 = 5 + 0.25$

 $0.25 \times 7 = \mathbf{1} + 0.75$

Answer: 63.515

Binary Addition

 $15 \rightarrow 01111$ $-4 \rightarrow 11100$

performing binary addition\ **Answer is 01011**

 $5 \rightarrow 00101$ performing binary addition **Answer is 11000 = -8 = -13 + 5**

2.In a 5 bit system, add -13_{10} and 5_{10}

start by converting to 4 bit, twos complement numbers

3.In a 5 bit system, add – $\mathbf{6}_{10}$ and $\mathbf{8}_{10}$

start by converting to 4 bit, twos complement numbers

 $-6 \rightarrow 11010$ $8 \rightarrow 01000$ performing binary addition Answer is 00010 = 2 = -6 + 8

 $-13 \rightarrow 10011$

 $12 \rightarrow 01100$ $10 \rightarrow 01010$

OVERFLOW, because the max number a 5 bit twos complement integer can hold is +/-2^4-1 or +/-15. 12 + 10 is 22

4.In a 5 bit system, add 12_{10} and 10_{10}

start by converting to 4 bit, twos complement numbers

5.In a 5 bit system, add -14_{10} and 7_{10} start by converting to 4 bit, twos complement numbers

 $-14 \ \rightarrow \ 10010$

 $10 \rightarrow 01010$ $-8 \rightarrow 11000$

 $7 \rightarrow 00111$ Answer is 11001 \rightarrow -00111 = -7 = -14+7

Binary Subtraction

Answer is 10110 = -6 != 12+10 = 22

**Answer is 10010, OVERFLOW because 18 > +/- 2^4 -1 = +/-15

performing binary subtraction

start by converting to 4 bit, twos complement numbers $-1 \rightarrow 1111$ $0 \rightarrow 0000$

performing binary subtraction **Answer is 1111= -1 = -1 - 0**

3.In a 6 bit system, subtract -7_{10} and -24_{10}

2.In a 4 bit system, subtract -1_{10} and 0_{10}

1.In a 5 bit system, subtract 10_{10} and -8_{10}

start by converting to 5 bit, twos complement numbers

start by converting to 6 bit, twos complement numbers

 $-7 \rightarrow 111001$ $-24 \rightarrow 101000$ performing binary subtraction Answer is 010001= 17 = -7 - (-24)

4.In a 4 bit system, subtract -5_{10} and 2_{10} start by converting to 4 bit, twos complement numbers

 $-5 \rightarrow 1011$ $2 \rightarrow 0010$

5.In a 6 bit system, subtract -7_{10} and 5_{10}

Binary Multiplication

1. 5 bit system : $10_{10} \times -3_{10} \rightarrow 00010$

OVERFLOW, because -30 does not fit into +/-(2^4-1) or +/-15 2. 4 bit system : $2_{10} \times -4_{10} \rightarrow 1000$ 3. 5 bit system : $9_{10} \times -1_{10} \rightarrow 10111$ 4. 5 bit system : $-8_{10} \times 3_{10} \rightarrow 11000$ OVERFLOW, because -24 does not fit into +/-(2^4 -1) = +/-15 5. 6 bit system : $-6_{10} \times 3_{10} \rightarrow 101110$

2. ASCII q = 111 0001

1. Express 352_10 as an 8-4-2-1 BCD Number : **001101010010**

In []:

performing binary subtraction **Answer is 1001 = -7 = -5 -2

start by converting to 6 bit, twos complement numbers $-7 \rightarrow 11001$

 $5 \rightarrow 00101$ performing binary subtraction **Answer is 10100** \rightarrow **-01010 = -12 = -7 - 5**

Binary Codes