Contexte

Les autorités de santé rappellent qu'il est primordial de se laver régulièrement les mains avec de l'eau et du savon. Toutefois, en l'absence de point d'eau, il est possible d'opter pour des gels ou solutions désinfectantes à la norme NF EN 14476.

On s'intéresse dans cet exercice à un désinfectant pour les mains ayant pour principe actif l'acide lactique en solution aqueuse.

Données

- 100 g de solution désinfectante contient 1,75 g d'acide lactique
- Masse molaire de l'acide lactique : 90,1 g·mol⁻¹
- masse volumique de la solution désinfectante : $\rho = 1,00 \text{ g} \cdot \text{mL}^{-1}$
- pH de la solution désinfectante : 2,3
- l'acide lactique est considéré comme la seule espèce acide présente dans la solution désinfectante

Extrait d'une table de spectroscopie IR :

Extract a and tuble as specification.		
Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H alcool lié	3200 - 3400	forte, large
O-H acide carboxylique	2500 - 3200	forte à moyenne, large
N-H amine	3100 - 3500	moyenne
N-H amide	3100 - 3500	forte
N-H amine ou amide	1560 - 1640	forte ou moyenne
C _{tri} – H	3000 - 3100	moyenne
C _{tet} - H	2800 - 3000	forte
C=O ester	1700 - 1740	forte
C=O amide	1650 - 1740	forte
C=O aldéhyde et cétone	1650 - 1730	forte
C=O acide	1680 - 1740	forte

L'autre nom de l'acide lactique est l'acide 2-hydroxypropanoïque. Sa formule développée est la suivante :

$$\begin{array}{c|c} H & H \\ | & | \\ -C - C - C \\ | & | \\ H & O \end{array} O - H$$

- 1. Établir le schéma de Lewis de la molécule d'acide lactique. Entourer et nommer ses groupes caractéristiques.
- 2. Le spectre IR de l'acide lactique est reproduit ci-dessous. Identifier deux bandes d'absorption caractéristiques et repérer les liaisons correspondantes sur le schéma de Lewis de la molécule d'acide lactique.

3. Vérifier que la valeur de la concentration en acide lactique apporté dans la solution désinfectante est voisine de $C = 0.20 \, \text{mol} \cdot \text{L}^{-1}$.

- 4. Rappeler la définition d'un acide de Brönsted.
- 5. Écrire la réaction acide-base entre l'acide lactique et l'eau.
- 6. Quel devrait être le pH de la solution si la réaction était totale.