Tessellating the Plane: from periodic tilings to Hat and Spectre

Rory Yarr

May 13, 2025

Abstract

From periodic frieze groups, lattices and wallpaper groups to the aperiodic Hat and Spectre!

Rory Yarr Filling the Claus May 13, 2025

Tessellations

A tessellation (or tiling) of the plane is a cover of shapes (tiles) that fill the plane with no gaps or overlaps.

Rory Yarr Billing the Plans May 13, 2025

Group Operations of Tilings

Types of Symmetries We can think of any symmetry group as a pair (\mathbf{v}, M) for $\mathbf{v} \in \mathbb{R}^2$ and M a linear transformation. Allowing a symmetry group operations to be defined as:

$$(\mathbf{w}, N)(\mathbf{v}, M) = (\mathbf{w} + N\mathbf{v}, NM)$$

- Translations
- Reflections
- Glide Reflections
- Rotations.

Rory Yarr Tilling the Plane May 13, 2025

3/57

Translations

Translations are repetitions of a pattern structure.

$$T_a(\vec{x}) = \vec{x} + a$$
[Zhoa(2023)]

Pattern — Pattern

Figure 1: Translations

Rory Yarr Tilling the Flanc May 13, 2025

Reflections and Glide Reflections

Reflections on some line \vec{l} can be defined as follows

$$R_I(\vec{x}) = \frac{I \cdot \vec{x}}{I \cdot I} - \vec{x}$$

Glide: A glide is a reflection followed by a translation.

$$G_{I,a}(\vec{x}) = R_I(\vec{x}) + a$$
[Zhoa(2023)]

Figure 2: Reflective Symmetries

Rory Yarr Tilling the Plane May 13, 2025

5 / 57

Rotations

A rotation is a change of angle around a centre point.

$$R_{\theta}(\vec{x}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \vec{x}$$

where $\theta \in [0, 2\pi)$ [Zhoa(2023)]

Figure 3: Rotations

Rory Yarr Tilling the Plans May 13, 2025

Frieze Groups

Figure 4: Frieze groups by [Tomruen(2015)]

Rory Yarr Tilling the Plans May 13, 2025 7/57

Lattices

A lattice is the group $(\mathbb{Z}[\vec{a},\vec{b}],+)$. i.e., a grid of points where any point $p=n\vec{a}+m\vec{b}$

Figure 5: Lattice

Rory Yarr Tilling the Plane May 13, 2025 8/

Bravais lattices

- (a) Square: $||\vec{a}|| = ||\vec{b}|| < ||\vec{a} \vec{b}|| = ||\vec{a} + \vec{b}||$
- (b) Hexagon: $||\vec{a}|| = ||\vec{b}|| = ||\vec{a} \vec{b}|| < ||\vec{a} + \vec{b}||$
- (c) Rectangle: $||\vec{a}|| < ||\vec{b}|| < ||\vec{a} \vec{b}|| = ||\vec{a} + \vec{b}||$
- (d) Rhombic: $||\vec{a}|| < ||\vec{b}|| = ||\vec{a} \vec{b}|| < ||\vec{a} + \vec{b}||$
- (e) Oblique: $||\vec{a}|| < ||\vec{b}|| < ||\vec{a} \vec{b}|| < ||\vec{a} + \vec{b}||$

Rory Yarr Tilling the Plane May 13, 2025

9/57

Bravais Lattices

Figure 6: All five two-dimensional Bravais lattice cells.

Rory Yarr Tilling the Plane May 13, 2025

Wallpaper groups

Figure 7: The 17 wallpaper groups, diagrams inspired by [Tomruen(2011)].

Rory Yarr Billing this Plans May 13, 2025

Classification of wallpaper groups

- p and c refer to primitive centred cells, respectively.
- The first number refers to the rotational order of the cell.
- m and g refer to mirror(reflections) and glide(reflections), respectively.

Rory Yarr Tilling the Plane May 13, 2025 12 / 57

Oblique Cells

Figure 8: lattice diagrams for oblique cells

Rory Yarr Tilling the Plane May 13, 2025

Square Cells

Figure 9: Lattice diagrams for square cells.

Rory Yarr Tilling the Plane May 13, 2025 1

Rectangle Cells

Figure 10: Lattice diagrams for rectangle cells.

Rory Yarr Tilling the Blane May 13, 2025

Rhombic Cells

Figure 11: Lattice diagrams for rhombic cells.

Rory Yarr Tilling the Plane May 13, 2025

Hexagon Cells

Figure 12: Lattice diagrams for hexagon cells.

Rory Yarr Filling the Plane May 13, 2025

Subgroups of Wallpaper Groups

G	Н	G	Н
p1	trivial	p4	\mathbb{Z}_4
p2	\mathbb{Z}_2	p4m	D_4
pm	\mathbb{Z}_2	p4g	D_4
pg	\mathbb{Z}_2	р3	\mathbb{Z}_3
pmm	$\mathbb{Z}_2 imes \mathbb{Z}_2$	p3m1	D_3
pmg	$\mathbb{Z}_2 imes \mathbb{Z}_2$	p31m	D_3
pgg	$\mathbb{Z}_2 \times \mathbb{Z}_2$	р6	\mathbb{Z}_6
cm	\mathbb{Z}_2	p6m	D_6
cmm	$\mathbb{Z}_2 \times \mathbb{Z}_2$		

Table 1: Wallpaper groups G and their corresponding symmetry subgroups H.

[Sasse(2020)]

Rory Yarr Willing the Plane May 13, 2025 18 / 57

Are all tilings periodic?

- In 1902 David Hilbert posed 23 open problems for mathematicians of his time to solve.
- His 18th problem assumed that it was not possible to have a non-periodic. [Hilbert(1902)]
- Hilbert was wrong as I will show you now!

Rory Yarr May 13, 2025 19 / 57

Wang Tiles

- In the 1962 Hao Wang created a way to construct sets of tiles that only tiled the plane aperiodically.
- In 1966 Robert Berger proved that a set of 20426 Wang tiles was aperiodic. [Berger(1966)]
- Which was reduced down to the set of 11 Wang tiles below by[Jeandel and Rao(2021)].

Figure 13: Wang tiles[Taxel(2016)]

Rory Yarr Tilling the Plane May 13, 2025 20 / 57

Robinson Tiles

In 1971 Raphael Robinson from Berkeley show the following 6 tiles only aperiodically tile the plane.[Robinson(1971)]

Figure 14: Robinson tiles[Archibald(2005)]

Rory Yarr Willing Size Plane May 13, 2025 21 / 57

Penrose Tilling P1

Figure 15: P1 Penrose tilling [Inductiveload(2009a)]

Rory Yarr Willing the Plane May 13, 2025 22 / 57

Penrose Tilling P2

Figure 16: Quit of P2 penrose tilling by Matt Zucker.[Zucker(2022)]

Rory Yarr William Use Plane May 13, 2025 23 / 57

Penrose Tilling P3

Figure 17: Rhombic Penrose tilling (p1)[Inductiveload(2009b)]

Rory Yarr Tilling the Plane May 13, 2025

The Einstein("One Tile") Problem

 Is it possible to tile a plane using a single tile that only tiles aperiodically.

Rory Yarr May 13, 2025 25 / 57

The Hat

- In 2022 the hobbyist David Smith discovered the "Hat" monotile.
- He then reached out to Craig Kaplan and other mathematicians to prove that it tiles the plane only aperiodically[Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss].

Figure 18: Hat tilling. [Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr Tilling the Plane May 13, 2025 26 / 57

Proof Sketch of the Hat Monotile

Figure 19: Proof sketches of the aperiodicity Hat Monotile.[Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr Tilling the Plane May 13, 2025 27 / 57

Super Tiles and Metatiles

Figure 20: A metatile of the hat. [Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr Tilling the Plane May 13, 2025

28 / 57

Super Tiles

Figure 21: Hexagonal super clusters[Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr Tilling the Plane May 13, 2025

A Family of Polykites

Figure 22: Family of polykites. [Smith et al.(2024a)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr Tilling the Plane May 13, 2025

30 / 57

The Spectre

Shortly after their groundbreaking paper they were able to add a chirality to the tile and aperiodically tile the plane without mirrors.

[Smith et al.(2024b)Smith, Myers, Kaplan, and Goodman-Strauss]

Figure 23: From the hurtle to the spectre. [Smith et al.(2024b)Smith, Myers, Kaplan, and Goodman-Strauss]

Rory Yarr May 13, 2025 31 / 57

From the Polykites to the Spectre.

Figure 24: Family of poly-kites and the spectre. [Steckles(2023)]

Rory Yarr Tilling the Plane May 13, 2025 32 / 57

Figure 25: QR code for these slides on my GitHub

Rory Yarr Tilling the Plans May 13, 2025

Other Resources I

- Numberphile interview with Graig Kaplan.
- Poster from a University of Melbourne student(Jamie Vu).
- App David Smith used to discover the hat monotile.
- Matt Zuckers quilt development webpage.
- Roger Penroses patent for his aperiodic tiling
- Hat webpage.
- Spectre webpage.
- eschermath.org

Rory Yarr Tilling the Plane May 13, 2025 34 / 57

Bibliography I

Archibald.

Robinson tiles.

Own work. Wikimedia Commons., May 2005.

URL https://commons.wikimedia.org/wiki/File:Robinson_tiles.svg.

Released into the public domain; accessed 2025-05-12.

R. Berger.

Undecidability of the Domino Problem.

Memoirs Series. American Mathematical Society, 1966.

ISBN 9780821812662.

URL https://books.google.com.au/books?id=GxDxwAEACAAJ.

David Hilbert.

Mathematical Problems.

Bulletin of the American Mathematical Society, 8(10):437–479, 1902.

doi: 10.1090/S0002-9904-1902-00923-3.

URL https://doi.org/10.1090/S0002-9904-1902-00923-3.

Rory Yarr Tilling the Plane May 13, 2025

35 / 57

Bibliography II

Inductiveload.

Penrose Tiling (P1).

Own work. Wikimedia Commons. Public domain (PD-self)., February 2009a.

URL https://commons.wikimedia.org/wiki/File:Penrose_Tiling_(P1).svg.

Accessed: 2025-05-12.

Inductiveload.

Penrose tiling (rhombi), 2009b.

 ${\tt URL\ https://en.wikipedia.org/wiki/File:Penrose_Tiling_(Rhombi).svg}.$

Public domain image of a Penrose tiling (P3) using thick and thin rhombi, exhibiting fivefold symmetry.

Emmanuel Jeandel and Michael Rao.

An aperiodic set of 11 Wang tiles.

Advances in Combinatorics, jan 6 2021.

doi: 10.19086/aic.18614.

Rory Yarr Tilling the Plane May 13, 2025 36 / 57

Bibliography III

M. Robinson, R.

Undecidability and nonperiodicity for tilings of the plane.

Inventiones Mathematicae, 12:177-209, 1971.

doi: 10.1007/BF01418780.

Vivek Sasse.

Classification of the 17 Wallpaper Groups.

Universiy of Chicago, 2020.

URL https://math.uchicago.edu/~may/REU2020/REUPapers/Sasse.pdf.

David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss

An aperiodic monotile.

Combinatorial Theory, 4(1), July 2024a.

ISSN 2766-1334.

doi: 10.5070/c64163843.

URL http://dx.doi.org/10.5070/C64163843.

Rory Yarr Tilling the Plane May 13, 2025

37 / 57

Bibliography IV

David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss.

A chiral aperiodic monotile.

Combinatorial Theory, 4(2), September 2024b.

ISSN 2766-1334.

doi: 10.5070/c64264241.

URL http://dx.doi.org/10.5070/C64264241.

Katie Steckles.

Now that's what I call an aperiodic monotile!

The Aperiodical (News), May 2023.

URL https://aperiodical.com/2023/05/

now-thats-what-i-call-an-aperiodic-monotile/.

Accessed: 2025-05-12.

Rory Yarr Tilling the Plane May 13, 2025

38 / 57

Bibliography V

Parcly Taxel.

Wang 11 tiles.

Own work. Wikimedia Commons., June 2016.

URL https://commons.wikimedia.org/wiki/File:Wang_11_tiles.svg.

Released under the Free Art License; accessed 2025-05-12.

Tomruen.

Wallpaper group diagram.

Own work. Wikimedia Commons, June 2011.

URL

 $\verb|https://commons.wikimedia.org/wiki/File:Wallpaper_group_diagram.svg|.$

Derived from unrotated version; accessed 2025-05-12.

Tomruen.

Frieze group example with feet under john conway's nicknames, 2015.

URL https://commons.wikimedia.org/wiki/File:Frieze_step.png.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

Rory Yarr May 13, 2025

39 / 57

Bibliography VI

Angela Zhoa.

A brief survey on wallpaper groups.

2023.

URL https://math.mit.edu/research/highschool/primes/circle/documents/2023/Angela_Zhao.pdf.

Matt Zucker.

Penrose tiling quilt.

Needlessly Complex blog, November 2022.

 ${\tt URL\ https://mzucker.github.io/2022/11/13/penrose-tiling-quilt.html}.$

Accessed: 2025-05-12.

Rory Yarr Tilling the Plane May 13, 2025 40 / 57

P1 Wallpaper Group

P2 Wallpaper Group

Figure 27: p2

P4 Wallpaper Group

Figure 28: p4

P4M Wallpaper Group

Figure 29: p4m

Rory Yarr Tilling the Plane May 13, 2025 44/

P4G Wallpaper Group

Figure 30: p4g

CM Wallpaper Group

Figure 31: cm

CMM Wallpaper Group

Figure 32: cmm

PG Wallpaper Group

Figure 33: pg

PGG Wallpaper Group

Figure 34: pgg

PMG Wallpaper Group

Figure 35: pmg

PM Wallpaper Group

Figure 36: pm

PMM Wallpaper Group

Figure 37: pmm

Rory Yarr Willing the Plane May 13, 2025 52 / 9

P3 Wallpaper Group

Figure 38: p3

Rory Yarr Tilling the Plane May 13, 2025 53 / 5

P3M1 Wallpaper Group

Figure 39: p3m1

P31M Wallpaper Group

Figure 40: p31m

P6 Wallpaper Group

Figure 41: p6

P6M Wallpaper Group

Figure 42: p6m