

TensorFlow基礎使用

Estimated time: 45 min.

學習目標

● 3-1: TensorFlow介紹

3-2: TensorFlow基本運算

• 3-3: TensorFlow常見函數

3-1: TensorFlow介紹

- 不同深度學習框架
- TensorFlow介紹

不同深度學習框架

- 現在要時做深度學習,市面上的框架非常多
 - 目前最熱門的幾個為TensorFlow、Keras、Pytorch
 - 其中比較特別的是,Keras底層其實是TensorFlow,只是它把TensorFlow 包得更高層,更容易使用,但其缺點是很難去修改函數內的行為

TensorFlow介紹

- TensorFlow為著名的深度學習開源軟體
 - 由Google Brain團隊於2015年11月釋出
 - https://github.com/tensorflow/tensorflow/
- 支援許多好用工具
 - 可視化工作Tensorboard
 - 加速讀寫的檔案格式tfrecord
- 支援多GPU以及分散式運算環境

TensorFlow熱門程度

- TensorFlow其實自從一推出後,就有非常多的討論度
 - 我們也可以從中推得有不少開發者、社群再討論它,因此本門課程實作會以TensorFlow為主

https://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

什麼是"Tensor"

- Tensor代表的是一個高維度的陣列
 - 1D代表是向量、2D則是矩陣,這樣的概念可以拓展到更高維度,這也是 Tensor存在的意義

什麼是"Flow"

- 在TensorFlow裡面,做運算的時候,TensorFlow都會維繫一張名 為計算圖的有向圖
 - 在此圖當中,每個節點代表一個運算元
 - 在此圖當中,每個邊代表一個張量結果
- Flow的意思是資料輸入到計算圖中,資料好像在途中流動
 - 因此才會用Flow這個字

TensorFlow特性總攬

- 以下是TensorFlow的總特性,幾個很重要的性質如下
 - 支援Python及C++介面(不建議使用,太少人用了)
 - 有CPU版本以及GPU版本
 - 支援分散是運算
 - 自動微分

Programming Model	Dataflow-like model
Language	• Python • C++
Deployment	Code once, Run everywhere
Computing Resource	• CPU • GPU
Distribution Process	Local Implementation Distributed Implementation
Math Expressions	Math Graph Expression Auto Differentiation
Optimization	Auto Elimination Kernel Optimization Communication Optimization Support model, data parallelism

3-2: TensorFlow基本運算

- 加減乘除基本運算
- 張量型態
- Constant \ Variable \ Placeholder
- 常見函數使用

designed by ' freepik

加減乘除基本運算

- TensorFlow基礎加減乘除語法如下:
 - 可以使用如tf.add這種英文式的寫法或是符號式的寫法都行
 - 英文式的寫法會比較推薦,對於大的專案來說後許比較好維護程式碼

加減乘除語法	符號式加減乘除語法	描述
tf.add(x, y)	+	32 bits floating point
tf.subtract(x, y)	-	64 bits floating point
tf.multiply(x, y)	*	8 bits signed integer
tf_div(x,y)	/	16 bits signed integer
tf.mod(x,y)	%	32 bits signed integer
tf.negative(x)	_	64 bits signed integer

張量型態

· TensorFlow跟許多程式語言一樣,支援非常多不同的型別

型別	描述
tf.float32	32 bits floating point
tf.float64	64 bits floating point
tf.int8	8 bits signed integer
tf.int16	16 bits signed integer
tf.int32	32 bits signed integer
tf.int64	64 bits signed integer
tf.uint8	8 bits unsigned integer
tf.uint16	16 bits unsigned integer
tf.string	Variable length byte arrays. Each element of a Tensor is a byte array
tf.bool	Boolean

Constant · Variable · Placeholder

- TensorFlow內建三種常見的變數方法
- Constant
 - 當被指定為constant的時候,未來無法更改數值
- Variable
 - 當被指定為variable的時候,需要給予一個初始值,此數值未來可以被更改
- Placeholder
 - 跟TensorFlow說未來資料會從這裡輸入,先預留一個空間

常見函數使用

- Random Generate Function是TensorFlow裡常被用來產生隨機 變數的函數
 - 其支援不同種類的機率分布來產生隨機變數

函數名稱	機率分布	主要函數參數
tf.random_normal	normal distribution	mean, std, data type
tf.truncated_normal	normal distribution within two std	mean, std, data type
tf.random_uniform	uniform distribution	min value, max value, data type
tf.random_gamma	gamma distribution	alpha, beta, data type

常見函數使用

 Constant Generate Function是TensorFlow裡常被用來產生 constant的方法

函數名稱	功能	範例
tf.zeros	produce all zeros	tf.zeros([2,1], int32)
tf.ones	produce all ones	tf.ones([2,3], int32)
tf.fill	produce specific number	tf.fill([2,1], 9)
tf.constant	prodcuce a given constant	tf.constant([2.0,1.0])

Demo_3-2

- 開啟Demo_3-2.ipynb
- TensorFlow基礎操作
- Constant, Variable, Placeholder使用

designed by **'©' freepik**

3-3: TensorFlow常見函數

- 優化器使用
- 模型儲存與部屬

designed by **'©' freepik**

優化器使用

- 優化器在TensorFlow裡非常常被拿來使用
 - 其概念是給定一個函數以及一個起始值,讓TensorFlow自動去幫忙找區域 最佳值
 - 優化器的原理後面會跟各位同學做介紹

優化器使用

- TensorFlow支援非常多不同種類之優化器
 - 目前還沒有任何理論可以說哪一個優化器最好,只能說不同情況會有最適 合的優化器

優化器	描述
tf.train.GradientDescentOptimizer	Gradient Descent
tf.train.AdamOptimizer	Adam
tf.train.RMSPropOptimizer	RMSProp

模型儲存與部屬

- 在TensorFlow當中,可以使用saver物件來儲存/恢復模型資料
- · Saver物件儲存模型成功後,會產生下列三個檔案
 - model.ckpt.meta(保存計算圖)
 - model.ckpt(保存計算圖上的參數)
 - checkpoint(紀錄不同時期存入的模型編號)

模型儲存與部屬

- TensorFlow saver語法如下
 - 可以使用這些方法來儲存或是恢復模型
 - 在實務上是非常重要的技巧

Saver物件操作	描述
saver = tf.train.Saver()	創建saver物件
saver.save(sess, "Saved_model/model.ckpt")	儲存計算圖上的參數
saver.restore(sess, "Saved_model/model.ckpt")	恢復計算圖上的參數

Demo 3-3

- 開啟Demo_3-3.ipynb
- TensorFlow優化器使用
- TensorFlow模型儲存

designed by ঁ freepik

線上Corelab

▸ 題目1:請使用tf.session的方式計算A與B四則運算(基礎)

• 題目2:請使用tf.session的方式計算A與B四則運算(進階)

• 題目3:請使用tf.subtract、tf.divide等方式計算 (10/2)-1的答案

本章重點精華回顧

- 不同深度學習框架
- TensorFlow介紹
- TensorFlow基本語法使用
- TensorFlow常見函數使用

Lab: TensorFlow基礎使用

Lab01: TensorFlow基礎使用

Lab02: TensorFlow優化器使用

Lab03: TensorFlow模型儲存

Estimated time: 20 minutes

