NLP and Deep Learning MAT3399

Lecture 6:
Bi-directional LSTM &
Sequence to Sequence

Tuan Anh Nguyen @ Aimesoft ted.nguyen95@gmail.com

RNN can be used for sentence encoding

RNN can be used for sentence encoding

Bi-RNN / Bi-LSTM

Bidirectional RNNs are only applicable if you have access to the entire input sequence

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

Sequence to Sequence Model for Machine Translation

Seq2seq model involves two RNNs:

- Encoder
- Decoder

Seq2seq can be used for many other tasks (E.g: Summarization, Dialogue System,...)

Evaluate Machine Translation Model - BLEU Score

$$\text{BLEU} = \underbrace{\min \left(1, \exp \left(1 - \frac{\text{reference-length}}{\text{output-length}}\right)\right) \left(\prod_{i=1}^{4} precision_{i}\right)^{1/4}}_{\text{brevity penalty}}$$

with

$$precision_i = rac{\sum_{ ext{snt} \in ext{Cand-Corpus}} \sum_{i \in ext{snt}} \min(m_{cand}^i, m_{ref}^i)}{w_t^i = \sum_{ ext{snt}' \in ext{Cand-Corpus}} \sum_{i' \in ext{snt}'} m_{cand}^{i'}}$$

where

- ullet m^i_{cand} is the count of i-gram in candidate matching the reference translation
- $ullet m_{ref}^i$ is the count of i-gram in the reference translation
- w_t^i is the total number of i-grams in candidate translation

Calculating BLEU Score - Example

Reference: the cat is on the mat Candidate: the the the cat mat

The first step is to count the occurrences of each unigram in the reference and the candidate. Note that the BLEU metric is case-sensitive.

Unigram	m^i_{cand}	m_{ref}^i	$\min(m^i_{cand}, m^i_{ref})$	
the	3	2	2	
cat	1	1	1	
is	0	1	0	
on	0	1	0	
mat	1	1	1	

The total number of unigrams in the candidate (w_t^1) is 5, so $precision_1 = (2 + 1 + 1)/5 = 0.8$.

Coding Exercise

Train a Machine Translation Model using Seq2Seq

Download data <u>here</u>

Reference:

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html