UBA CBC		F	ISICA	03	EXAMEN FINAL 10					10	de marzo de 2023 T			TEMA	1	
APELLIDO:						NOMBRES:						DNI		DNI		
	1		F	Reserva	ado p	ara co	orreco	ión	_		ı	Respuest	_		NOTA	
1	2	3	4	5	6	7	8	9	10	11	12	Correcta	as			
Por favor lea atentamente todo antes de comenzar. El examen consta de 12 ejercicios de opción múltiple, con una sola respuesta correcta. La misma debe indicarse colocando una cruz en el cuadro que figura a la izquierda de la opción correspondiente. No se aceptan respuestas en lápiz. Si tiene dudas sobre la interpretación de cualquiera de los ejercicios, le agradeceremos que lo indique por escrito y explique su interpretación en una hoja aparte. Para aprobar el examen se requieren al menos 6 respuestas correctas. Puede usar una hoja personal con anotaciones y calculadora. Dispone de 2 horas 30 minutos. Adopte: $ g = 10 \text{ m/s}^2$. Patm =101,3 kPa; $\delta_{H2O} = 10^3 \text{Kg/m}^3$																
1- La posición de un móvil que viaja en línea recta viene dada por la expresión: $x(t) = -2 \ m - 3 \ \frac{m}{s} \ t + \frac{1}{3} \frac{m}{s^3} \ t^3$																
Calcular la velocidad media, \mathbf{v}_{m} , y la aceleración media, \mathbf{a}_{m} , en el intervalo [0,3s] expresados como [\mathbf{v}_{m} ; \mathbf{a}_{m}]:																
$ \square [4,5 \text{ m/s}; 3 \text{ m/s}^2] \qquad \square [6 \text{ m/s}; 6 \text{ m/s}^2] \square [0 \text{ m/s}; 3 \text{ m/s}^2] \qquad \square [6 \text{ m/s}; 3 \text{ m/s}^2] $							□ [0 □ [6	m/s; 6 m/s ² m/s; 2 m/s ²	[] []							
2- Un avión vuela horizontalmente con velocidad de módulo $v_A = 720$ km/h a una altura de 2000 m del piso. En cierto instante, deja caer un proyectil que impacta en un barco que se mueve en la misma dirección y sentido que el avión con una velocidad constante de módulo $v_B = 54$ km/h. Se desprecia el rozamiento del proyectil con el aire. ¿Cuál será la distancia horizontal, en km , entre el avión y el barco en el instante de lanzamiento del proyectil?																
)		□ 0,3	3		3,7			4,7		□ 5		⊃ 5,3	}		
 3- Un objeto se mueve con un movimiento circular uniformemente variado (MCUV). Diga cuáles de las siguientes afirmaciones son correctas: a) El módulo de la velocidad es directamente proporcional al módulo de la velocidad angular. b) La aceleración tangencial siempre es tangente a la trayectoria. c) La aceleración centrípeta siempre es proporcional a la aceleración tangencial. d) No se puede definir un período para dicho movimiento. e) Durante el movimiento, el módulo de la aceleración es constante. f) Durante el movimiento, el vector velocidad cambia su dirección pero no su módulo. 																
□ a	, b, d		□ a,	d, e		□ b, c	, d		b, c, f		□ c, c	d, f	⊃ d,	e, f		
4- Hallar la velocidad angular en $t = 0$ (en 1/s) de un móvil que describe un MCUV, si su aceleración angular es $\pi/9$ 1/s ² y recorre un cuarto de vuelta entre $t = 4$ s y $t = 5$ s, acelerando.																
)		\Box π /-	4		Ο π/3			$\pi/2$		□ 3/4	1 π C	□ π		a	g
5- Usando una faja (soga) de masa despreciable se ha logrado equilibrar un tronco cilíndrico de radio R apoyándolo sobre una pared vertical sin rozamiento (ver figura). Si $\alpha = 37^{\circ}$ y el módulo de la fuerza que ejerce la pared sobre el tronco es de 800 N, determine el peso del tronco.																
□ 4	00 N		□ 50	0 N		300	N		1000	N	□ 13	00 N	⊃ 16	00 N		
	6- Una persona camina bajo la lluvia, no hay viento. Si el módulo de su velocidad con respecto al suelo es de 5 km/h, debe orientar el paraguas con una inclinación $\beta = 40^{\circ}$ respecto al suelo para evitar mojarse. Si la persona duplica su rapidez, ¿cuál es el valor aproximado del ángulo que deberá formar el paraguas con el suelo?															
				□ 74	ļ°	(□ 67°	0		50°		□ 41°		□ 31°	□ 23	3°

 7- ¿Cuáles de las siguientes afirmaciones son verdaderas? A. En un cubo lleno de líquido en reposo, la presión hidrostática es la misma en todos sus puntos. B. Cuando un auto se mueve con movimiento rectilíneo uniforme por una carretera con rozamiento, la resultante de todas las fuerzas que actúan sobre él tiene la misma dirección y sentido que la velocidad. C. Cuando se martilla un clavo, la fuerza que realiza el martillo sobre el clavo es mayor que la que realiza el clavo sobre el martillo. D. El módulo aproximado de la resultante de 2 fuerzas perpendiculares entre sí, de módulo 10 N cada una, es 14,14 N. E. Si un resorte ideal se encuentra estirado 1 cm, el módulo de la fuerza elástica es el mismo que si se encontrara comprimido 1 cm. F. Si la fuerza resultante sobre un cuerpo de masa 1 kg es 1 kgf, la aceleración es 1 m/s². 										
□ A y B	□ D y E	□ B y F	□ A, B y D	□ C, D y F	□ A, C y F					
8- El bloque m de la figura está unido al bloque M por una soga inextensible y de masa despreciable que pasa por una polea de masa despreciable. Hay rozamiento entre el bloque m y el plano inclinado. El resorte está estirado 20 cm y se deja al sistema en libertad desde el reposo . ¿Cuáles son, en un instante inmediatamente posterior, los módulos aproximados de la fuerza de rozamiento y de la aceleración del bloque M , <u>en ese orden</u> ? Datos: $\mu_e = 0.81$ y $\mu_d = 0.4$; $l_0 = 0.3$ m; $k = 100$ N/m;										
□ [55 N; 0 m. □ [17,3 N; 6,5]	$/s^{2}$] 3 m/s ²]	□ [35,1 N; 0 □ [17,3 N; 5	m/s ²] 5,4 m/s ²]	□ [15 N; 0 m □ [15 N; 5,4	n/s ²] m/s ²]	М				
9- Un juego mecánico de un parque de diversiones consta de un cilindro giratorio de 2 m de radio que se pone en rotación hasta llegar a una velocidad angular ω_e que luego se mantiene constante (ver figura). Una vez alcanzada dicha velocidad, el cilindro da varias vueltas y luego el piso cae y las personas quedan suspendidas contra la pared en una posición vertical. Si $\omega_e = 5 \text{ s}^{-1}$ ¿cuál es el mínimo valor del coeficiente de rozamiento estático necesario para evitar que la persona resbale?										
10- Un bloque cilíndrico de plomo, de 1 m² se sección y 1 m de altura, está apoyado sobre un resorte que se encuentra sujeto a la base de un recipiente con agua (ver figura). El bloque está vinculado por un cable de acero (de masa despreciable) a un bloque de madera (de iguales dimensiones) que tiene sumergido el 75 % de su volumen. ¿Cuál es la intensidad de la fuerza elástica en el equilibrio, en kN , que ejerce el resorte sobre el bloque de plomo? Datos: $\delta_{Plomo} = 11300 \text{ kg/m}^3$; $\delta_{agua} = 1000 \text{ kg/m}^3$; $\delta_{madera} = 500 \text{ kg/m}^3$.										
□ 80	□ 90	□ 100,5	□ 111,5	□ 113	□ 118,5					
11- Una barra homogénea AB de peso P y longitud L se apoya en su extremo A sobre un suelo horizontal rugoso, cuyo coeficiente de rozamiento estático es μ_E . El extremo B de la barra está unido a un cable ideal, que pasa por una polea ideal fija al techo. El cable ejerce una fuerza F que mantiene a la barra en equilibrio en la posición indicada en la figura. Determinar, aproximadamente, el módulo de la fuerza de rozamiento (en N) que ejerce el suelo sobra la barra. Datos: $P = 500 \text{ N}$; $\alpha = 37^\circ$; $\theta = 30^\circ$, $L = 3 \text{ m}$; $\mu_e = 0.95$.										
□ 60	□ 75,2	□ 83,9	□ 140,6	□ 190,3	□ 160,4					
12- ¿A qué velocidad aproximada, en m/s, se desplazaría un satélite si estuviera moviéndose en torno a Mercurio describiendo un movimiento circular uniforme a una distancia de 760 km sobre la superficie de dicho planeta? <u>Datos</u> : $G = 6,67 \ 10^{-11} \ N \cdot m^2/kg^2$; R_M (radio de Mercurio) = 2340 km; M_M (masa de Mercurio) = 0,33 10^{24} kg;										

 \square 760 \square 1182 \square 2664 \square 5272 \square 6828 \square 13520

TEMA 1