

Image Analysis

Tim B. Dyrby
Rasmus R. Paulsen
DTU Compute

tbdy@dtu.dk

http://www.compute.dtu.dk/courses/02502

Lecture 5 - Pixel Classification and advanced segmentation

What can you do after today?

- Describe the concept of pixel classification
- Compute the pixel value ranges in a minimum distance classifier
- Implement and use a minimum distance classifier
- Approximate a pixel value histogram using a Gaussian distribution
- Implement and use a parametric classifier
- Decide if a minimum distance or a parametric classifier is appropriate based on the training data
- Explain the concept of Bayesian classification
- Understand the use of 1D vs 2D feature space
- Implement and use the linear discriminant analysis (LDA) classifier
- Understand the use of linear vs non-line hyper-plans for segmentation

Go to www.menti.com and use the code 5648 1375

Quiz 0: What is advanced segmentation?

0	0	0	0	
То	Use	It just some	To draw	
separate	methods	vectors	linear and	
colours?	that mimics	pointing in	non-linear	
	the human	a space?	hyper plans	
	brain?		in space	

Classification

Take a measurement and put it into a class

Measurement Classes Bike Truck Classifier Car Motorbike • Train • Bus Wheels: 2 HP: 50 Weight: 200

2021

General Classification

- Multi-dimensional measurement
- Pre-defined classes
 - Can also be found automatically can be very difficult!

2021

Pixel Classification

CT scan of human head

Pixel wise segmentation

Four Class labels
Background
Soft-Tissue
Trabecular Bone
Hard Bone

- Classify each pixel
 - Independent of neighbours
- Also called labelling
 - Put a label on each pixel
- We look at the pixel value and assign them a label
- Labels already defined

Quiz 1: Two class pixel classification?

Background and object

- A) Median filter
- (B) Threshold
 - C) Brightness
- D) Morphological Erosion
- E) BLOB analysis

Image Analysis

Pixel Classification – formal definition

Pixel value (the measurement) $v \in R$

k classes

$$C = c_1, \ldots, c_k$$

Classification rule

$$c: R \longrightarrow \{c_1, \dots, c_k\}$$

Image Analysis

Pixel Classification – example

Pixel value

$$v \in [0,255]$$

Set of 4 classes

C={background, soft-tissue, trabeculae, bone}

Classification rule $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

How do we construct a classification rule?

2021

Pixel classification rule

 $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

background trabeculae

soft-tissue bone

How do we do this?

Pixel classification rule - manual inspection

 $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

Pixel classification rule - manual inspection

 $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

Pixel classification rule - manual inspection

 $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

Pixel classification rule Minimum Distance Classification

Pixel classification rule

Minimum Distance Classification

200

250

Pixel classification rule

For all pixel in the image do

$$c(v) = \begin{cases} \text{background, if } v \le (4+67)/2\\ \text{soft - tissue, if } \frac{(4+67)}{2} < v \le \frac{67+95}{2}\\ \text{trabeculae, if } \frac{67+95}{2} < v \le \frac{95+150}{2}\\ \text{bone, if } v > \frac{95+150}{2} \end{cases}$$

Pixel Classification example

CT scan of human head

Soft-Tissue
Trabecular Bone
Hard Bone

Better range selection

- Guessing range values is not a good idea
- Better to use "training data"
- Start by selecting representative regions from an image
- Annotation
 - To mark points, regions, lines or other significant structures

Classifier training - annotation

- An "expert" is asked how many different tissue types that are possible
- Then the expert is asked to mark representative regions of the selected tissue types

Background

Soft-Tissue

Trabecular Bone

Hard Bone

Classifier training – region selection

- Many tools exist
- Matlab tool roipoly
 - Select closed regions using a piecewise polygon

Training is only done once!

Optimally, the training can be used on many pictures that contains the same tissue types

Initial analysis - histograms

Gaussian

Initial analysis - histograms

Class separation

Simple pixel statistics

Calculate the mean and the standard deviation of each class

Minimum distance classification

Any objections?

The pixel value ranges are not always in good correspondence with the histograms?

DTU Compute

Quiz 2: Minimum distance classification

- A) Background
- B) Soft tissue
- C) Fat
- D) Bone
- E) None of the above

Solution:

Green: (6+4+9+5)/4=6

Blue: (132+130+134+133)/4= 132,25

Yellow: (178+175+176+174)/4=175,75

Purple: (222+220+219+221)/4=220

Blue: 158 is closes to 175,75 (yellow) = fat

To make a pixel classification an expert has selected representative regions in the image. They contain background (green), soft tissue (blue), fat (yellow), and bone (purple). The goal is to classify the pixel marked with a light blue circle. Using a minimum distance classifier it is classified as?

Trabecular bone

- Describe the histogram using a few parameters
- Assume a "model" describing the signal values
- Model: Gaussian/Normal distribution
 - The mean μ
 - Standard deviation σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Only two values needed

Trabecular bone

Training pixel values v (Belonging to one class)

$$v_1, v_2, \ldots, v_n$$
,

Estimated mean

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} v_i$$

Estimated standard deviation

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (v_i - \hat{\mu})$$

The "signal model" is a Gaussian distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Fit a Gaussian to the training pixels for all classes

What do we see here?

What is the difference between the two classes?

Trabeculae has much higher variation in the pixel values

Image Analysis

Quiz 3: Two tissue types – minimum distance

v = 78

Which tissue class?

- A) Trabeculae
- B)Soft-tissue

Solution: Minimum distance classifier

$$v = 78$$

First we find the threshold, T:

B: mean(Soft Tissue)=68 and A: mean(Trabeculae)= 95

$$T = (95+68)/2 = 81,5$$

Then we classify/segment v=78: A if v>81,5 or B if v<81,5

- New pixel with value78
 - Is it soft-tissue or trabecular bone?
- Minimum distance classifier?
 - Soft-tissue
- Is that fair?
 - Soft-tissue Gaussian says "Extremely low probability that this pixel is soft-tissue"

Quiz 4: Two tissue types – parametric classification

Which tissue class?

- Trabeculae
- B) Soft-tissue

Solution:

The A distribution (red) is higher than B (blue) at v=78

Parametric classification – repeat the question

- New pixel with value 78
 - Is it soft-tissue or trabecular bone?
 - Most probably trabecular bone
- Where should we set the limit?
 - Where the two Gaussians cross!

Parametric classification – ranges

- The pixel value ranges depends on
 - The mean
 - The standard deviation
- Compared to the minimum distance classifier
 - Only the average

Parametric classification - how to

- Select training pixels for each class
- Fit Gaussians $(\mathcal{N}(\mu_i, \sigma_i))$ to each class
- Use Gaussians to determine pixel value ranges

Parametric classifier - ranges

We want to compute where they cross

$$f_1(x) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right)$$

$$f_2(x) = \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)$$

Create a lookup table:

- Run through all 256 possible pixel values
- Check which Gaussian is the highest
- Store the [value, class] in the table

Alternatively – analytic solution

The two Gaussians

$$\frac{1}{\sigma_1\sqrt{2\pi}}\exp\left(-\frac{(v-\mu_1)^2}{2\sigma_1^2}\right) = \frac{1}{\sigma_2\sqrt{2\pi}}\exp\left(-\frac{(v-\mu_2)^2}{2\sigma_2^2}\right)$$

Intercept at

$$v = \frac{{{\sigma _1}^2}{{\mu _2} - {\sigma _2}^2}{\mu _1} \pm \sqrt { - {\sigma _1}^2}{\sigma _2}^2\left({2\,{\mu _2}\,{\mu _1} - {\mu _2}^2 - 2\,{\sigma _2}^2\ln \left({\frac{{{\sigma _2}}}{{{\sigma _1}}}} \right) - {\mu _1}^2 + 2\,{\sigma _1}^2\ln \left({\frac{{{\sigma _2}}}{{{\sigma _1}}}} \right) \right)}{{ - {\sigma _2}^2 + {\sigma _1}^2}}$$

DTU Compute

Quiz 5: Class ranges

- A) [0,45],]45, 75],]75,255]
- [40,60],]60,100],]100,140]
- (C) [0, 60],]60,80],]80,255]
- D) [0,60],]60,100],]100,255]
- E) [0,75],[75,100],]100,255]

An expert have chosen representative regions in an image that contains soft tissue, liver and spleen. The image pixel minimum and maximum values are 0 and 255. To make a parametric classification, the histograms are parameterized using Gaussian distributions as seen in the image. What are the class ranges?

Solution:

Thomas Bayes

Wikipedia

- **1702-1761**
- English mathematician and Presbyterian minister
- Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayesian Classification

Pure parametric classifier assumes equal amount of different tissue types

2021

Bayesian Classification

But much more softtissue than trabecular bone

Bayesian Classification

- An expert tells us that a CT scan of a head contains
 - 20% Trabecular bone
 - 50% Soft-tissue
- Picking a random pixel in the image
 - 20% Chance that it is trabecular bone
 - 50% Chance that it is softtissue
- How to use that?

Bayesian Classification - histogram scaling

Parametric classifier

Bayesian classifier

Little change in class border (sometimes significant changes)

- Given a pixel value v
- lacksquare What is the probability that the pixel belongs to class \mathcal{C}_i

Example: If the pixel value is 78, what is the probability that the pixel is bone

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

Constant – ignored from now on

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

The a priori probability (what is known from before)

Example: From general biology it is known that 20% of a brain CT scan is trabecular bone. Therefore P(trabecular) = 0.20

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

- The class conditional probability
- lacksquare Given a class, what is the probability of a pixel with value ${\sf v}$

Example: If we consider class = soft-tissue. What is the probability that the pixel value is 78?

Very low

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

Formal definition – sum up

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

 c_i = trabeculae

Bayesian classification - how to

- Select training pixels for each class
- Fit Gaussians to each class
- Ask an expert for the prior probabilities (how much there normally is in total of each type)
- For each pixel in the image
 - Compute $P(c_i|v)$ for each class (the *a posterior probability*)
 - Select the class with the highest $P(c_i|v)$

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

When to use Bayesian classification

- The <u>parametric classifier</u> is good when there are approximately the same amount of all type of tissues
- Use <u>Bayesian classification</u> if there are very little or very much of some types
- A more general formulation for segmentation
- When going to higher dimensional feature space

2021

- Combine different features input to **improve** segmentation
 - Different image modalities e.g. CT vs MRI
 - Subject groups
 - Healthy vs disease
 - Different angles of object e.g. cars

- Feature space:
 - 1D is a histogram
 - 2D is a scatterplot i.e. 2D histogram
 - >2D is bit more complicated to show
- Here we stay in 2D feature space for optimal visualisation

Decision boundary

- 2D feature space
 - Better class separation vs 1D?
- Model assumption
 - Type of distribution?
- Intensity histograms per class looks Gaussian like?
 - We assume Gaussian distributions: $\mathcal{N}(\mu_i, \Sigma_i)$
- Optimal decision boundary using Bayes theorem:
 - Likelihood ratio for belonging

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Decision boundary

We wish to find T using Bayes:

$$\frac{P(C2|x)}{P(C1|x)} > T$$

Decision boundary, T?

$$- P(Ci|x) = P(x|\mu_i, \Sigma_i) P_{Ci}$$

The class specific Gaussian model $P(x|\mu_i, \Sigma_i) = K_i \exp((x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i))$

- Data points:

•
$$x_i = [x1, x2]^T$$

- Training set:

•
$$t_{x \in C1} = 0$$
 and $t_{x \in C2} = 1$

The class mean of training

- The covariance matrix of training

Class 1

$$\mathcal{N}(\mu_1, \Sigma_1)$$

Gaussian in 2D: The covariance matrix

Rotational invariant

$$\Sigma = \begin{bmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{yy} \end{bmatrix}$$

$$\sigma_{xx} = \sigma_{yy}$$

Aligned with coordinate system

$$\Sigma = \begin{bmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{yy} \end{bmatrix}$$

$$\sigma_{xx} \neq \sigma_{yy}$$

QUICK REFRESH:

The covariance matrix:

$$\Sigma_i = (x - \mu_i)^T (x - \mu_i)$$

 Expresses the orientation of anisotropic variance in relation to coordinate system

Not aligned with coordinate system

$$\Sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$$

Back to the Decision boundary

Classifier: If x belongs to C₂ or not:

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Taking the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > T$$

$$\mathcal{N}_1(\mu_1, \Sigma_1)$$
 $\mathcal{N}_2(\mu_2, \Sigma_2)$

Back to the Decision boundary

Classifier: If x belongs to C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Taking the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > T$$

Where the log posterior probability:

$$\ln(P(\mathbf{C}i|\mathbf{x})) = \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln(K_i) + \ln(Pi)$$

P_i is the prior probability for class C_i

Back to the Decision boundary

Classifier: If \mathbf{x} belongs to C_2 or not:

$$\frac{P(C2|x)}{P(C1|x)} > T$$

Taking the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > T$$

Where the log posterior distribution:

$$\ln(P(\mathbf{C}i|\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln(K_i) + \ln(Pi)$$

- P_i is the prior probability for class C_i
- Inserting and assuming homoscedasticity ($\Sigma_1 = \Sigma_2 = \Sigma_0$) we have a Linear discrimenant Analysis (LDA) classifier model (reorganise the expression)

$$\ln \frac{P2}{P1} + \frac{1}{2} (\boldsymbol{\mu}_2 + \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_0^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) - \boldsymbol{x}^T \boldsymbol{\Sigma}_0^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) > \boldsymbol{T}$$

We train the classifier to find T with examples obtained from the two distributions N1 and N2

Quiz 6 - LDA - Optional Decision boundary

Define T for x belonging to C₂:

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Using Linear Discriminat Analysis (LDA):

$$ln\frac{P2}{P1} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > T$$

$$\Sigma_1 = \Sigma_2 = \Sigma_0 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 Prior probabilities: P1=P2=0,5

At which x value is the optimal decision boundary, T

found i.e. using $\ln(\frac{P(C2|x)}{P(C1|x)})$?

Solution – we see that x for optimal T is a threshold only along X1 i.e. a solution in 1D:

$$ln\frac{P2}{P1} + \frac{1}{2}(\mu_2 + \mu_1)\frac{(\mu_2 - \mu_1)}{\sigma_0} = x1\frac{(\mu_2 - \mu_1)}{\sigma_0}$$

$$\ln \frac{0.5}{0.5} + \frac{1}{2}(3+1)\frac{(3-1)}{2} = x\frac{(3-1)}{2}$$

$$x1 = 2$$

- w projects in the class mean direction i.e. the weight vector
- w is normal to the hyper plan yi(x)=0
- x^Tw is a dot product i.e. x and c are projected onto $W(a^Tb = ||a|||b||\cos(\theta))$

We wish to predict the C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

The LDA function for C₂

$$ln\frac{P_1}{P_2} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > T$$

The linear discriminat function

$$y_{C \in 2}(x) = x^T w + w_0$$
-where negtive Wo is the threshold

- x is assigned to C2 if $y_{C \in 2}(x) > 0$
- $y_i(x) = 0$ defines a hyper plan for the dicision boundary

2021

 \blacksquare We wish to predict the C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

The LDA function for C₂

$$ln\frac{P1}{P2} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > T$$

W₀

The linear discriminat function

$$y_{C \in 2}(x) = x^T w + w_0$$
-where negtive Wo is the threshold

- \blacksquare x is assigned to C2 if $y_{C \in 2}(x) > 0$
- $y_i(x) = 0$ defines a hyper plan for the dicision boundary

- w projects in the class mean direction i.e. the weight vector
- w is normal to the hyper plan yi(x)=0
- $x^T w$ is a dot product i.e. x and c are projected onto w ($a^T b = ||a|| ||b|| \cos(\theta)$)

- If convariance is anisotropic ie not identity matrix.
 - Not optimal placement of hyper plan based on mean seperation
 - Not optimal segmentation results
 - Hyper plan does not ensure optimal seperation!
- To improve the seperation
 - We need to adjust the weigth vector

2021

Optimal class separation:

The weight vector w now account for both for class means and variances

- Fisher's linear discrimiment:
 - Uses: between-class (means) covariance:

$$S_B = (\mu_2 - \mu_1)^T (\mu_2 - \mu_1)$$

 and: optimise (total) withinclass covariance

$$S_W = \Sigma_1 + \Sigma_2$$

- Find projection w using a cost function:
 - $J(w) = \frac{w^T S_B w}{w^T S_W w}$ and differentiate: $\frac{\partial J(w)}{\partial w} = 0$
 - which gives (simple solution):

$$w \propto S_W^{-1}(\mu_2 - \mu_1)$$

Segmentation of brain data using LDA

- Fisher's linear discriminent
- Use Matlab function:
 - LDA.m

Found Hyper plan

Segmentation result. Fisher's LDA

Limitations of LDA

- Linear discriminant analysis (LDA)
 - Only linear hyper plans
- Non-linear hyper plans?
- Example:
 - I wish to make a classifier
 - Features (2D):
 - Age vs. Tissue degeneration
- Classes
 - Healthy controls vs
 Patient

Limitations of LDA

- One class can be separated
 - A non-linear problem

Non-linear Hyper plans

- Class 1: $\mathcal{N}(\mu, \Sigma)_{C_{1,1}} + \mathcal{N}(\mu, \Sigma)_{C_{1,2}}$
- Class 2: $\mathcal{N}(\mu, \Sigma)_{C_{2,1}}$

Non-linear hyper plan

Non-linear classifier (Machine learning):

Example:

- Gaussian Mixture Model
 - Each class is modelled using a number of Gauss distributions e.g. class 1
- Again use Bayes theorem also for Gaussian Mixture Model
- Optimisation:
 - We derive $\frac{\partial J(w)}{\partial w}$ =0 for a Gaussian mixture model
 - Iterative optimisation algorithm is used to find w

Segmentation - Non-linear Hyper plans

Convolutional neural network and classification

Weights are non-linear sigmoid functions: $y_k = \phi(x, w, w0)$

What did you learn today?

- Describe the concept of pixel classification
- Compute the pixel value ranges in a minimum distance classifier
- Implement and use a minimum distance classifier
- Approximate a pixel value histogram using a Gaussian distribution
- Implement and use a parametric classifier
- Decide if a minimum distance or a parametric classifier is appropriate based on the training data
- Explain the concept of Bayesian classification
- Understand the use of 1D vs 2D feature space
- Implement and use the linear discriminant analysis (LDA) classifier
- Understand the use of linear vs non-line hyper-plans for segmentation

Lecture 6 - BLOB analysis and feature based classification

2021

Teaching – the speed of the lecture

- A) Come ooooon! I am so bored
- B) I can easily follow and knit my sweater
- C) The speed is fine
- D) I need to concentrate a lot to follow
- E) Hey! Wait! You are too fast

