#### UNIVERSIDAD DE GRANADA.

# ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.



Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

PRÁCTICA 4.
FUNCIONAMIENTO DE
CODIFICADORES/DECODIFICADORES Y
MULTIPLEXORES/DEMULTIPLEXORES.

11 GRADO EN INGENIERÍA INFORMÁTICA.

#### PRÁCTICA 4.

## FUNCIONAMIENTO DE CODIFICADORES/DECODIFICADORES Y MULTIPLEXORES/DEMULTIPLEXORES.

#### Objetivos:

- Realizar codificadores y decodificadores sencillos.
- Realizar multiplexores y demultiplexores sencillos.
- Aprender a utilizar multiplexores como generadores de funciones de conmutación.
- Comprender la correspondencia entre demultiplexores y decodificadores con señal de habilitación.

#### 4.1. Decodificadores y codificadores sencillos.

Realice y simule en Logic Works los siguientes circuitos:

- a) Un decodificador binario de 3 entradas y 8 salidas con entrada de habilitación CE.
- b) Un codificador binario con prioridad de 4 entradas y 2 salidas.

#### 4.2. Conversor a siete segmentos.

Un conversor de códigos es un circuito combinacional con *n* entradas y *m* salidas tales que para cada combinación de entradas se genera una y sólo una combinación de salida. En esta práctica se va a realizar un conversor de código para asignar a dígitos decimales del 0 al 7 un código que permita encender o apagar los led's de un visualizador de 7 segmentos. Realice, utilizando Logic Works un conversor de código para un visualizador de 7 segmentos. Para su realización hay que saber:

- a) Los ocho dígitos se codifican en binario con los valores 000 para el 0 hasta el 111 para el 7 utilizando los conmutadores binarios de Logic Works (Binary Switch).
- b) Un visualizador de 7 segmentos tiene 7 led's que se encienden o se apagan dependiendo de si hay un 1 (encendido) o un 0 (apagado) en su entrada. Para simularlo, se utiliza el visualizador de 7 segmentos disponible en la biblioteca "SIMULATION IO" de Logic Works.
- c) Teniendo en cuenta que dichos led's en el display de 7 segmentos reciben un nombre (a, b, c, d, e, f y g, ver figura 4.1), se tendrán que realizar 7 funciones de 3 variables

para conseguir la codificación adecuada. Complete para su realización la tabla de verdad de las 7 funciones (Tabla 4.1) y minimice dichas funciones. Implemente la expresión mínima de dichas funciones.

| CÓDIGO<br>ABC | N° | a | b | c | d | e | f | g |
|---------------|----|---|---|---|---|---|---|---|
| 000           | 0  |   |   |   |   |   |   |   |
| 001           | 1  |   |   |   |   |   |   |   |
| 010           | 2  |   |   |   |   |   |   |   |
| 011           | 3  |   |   |   |   |   |   |   |
| 100           | 4  |   |   |   |   |   |   |   |
| 101           | 5  |   |   |   |   |   |   |   |
| 110           | 6  |   | _ |   | _ |   |   |   |
| 111           | 7  |   |   |   |   |   |   |   |



Tabla 4.1

Figura 4.1

#### 4.3. Síntesis de funciones lógicas con multiplexores.

Implemente la función de tres variables f(A, B, C) cuya tabla de verdad se presenta en la Tabla 4.3, utilizando multiplexores de 2 a 1. Debe realizar cada multiplexor a partir de las puertas lógicas de que dispone en el simulador lógico.

| <i>A B C</i> | f |
|--------------|---|
| 0 0 0        | 0 |
| 0 0 1        | 1 |
| 010          | 1 |
| 0 1 1        | 1 |
| 100          | 1 |
| 101          | 0 |
| 110          | 0 |
| 111          | 0 |

Tabla 4.3

### 4.4. Realización de demultiplexores.

Realice un demultiplexor de 1 a 8. Compare este circuito con el decodificador binario de 3 entradas y 8 salidas con entrada de habilitación de chip (CE) implementado en el apartado 4.1.a de esta práctica. ¿Mantienen alguna similitud dichos circuitos?.