PCS 3225 Sistemas Digitais II

<u>Módulo 03 – ASM – Algorithm State</u> <u>Machine</u>

Andrade, Marco Túlio Carvalho de

Professor Responsável

versão: Agosto de 2.017

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

Conteúdo

- 1. Máquinas de Estado Introdução
- 2. Máquinas de Estado Equivalências
- 3. Diagrama ASM Algorithmic State Machine
 - Introdução
 - ASM Mapeamento em Portas e Biestáveis
 - 3.1. Diagrama ASM Exemplos
 - 3.2. ASM e Máquinas de Estado
 - 3.3. ASM Mais exemplos de aplicações

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- Como se pode representar o comportamento no tempo?
- Num sistema digital, como se pode representar uma função?
- Resposta:»Função doTempo f(t)
- Resposta:»tabela ou seqüência de estados

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

Observações – Estado: É a memória de suficiente história do passado que permite determinar o comportamento futuro, isto é, conhecidas as entradas e o estado atual, permite determinar:

- Valores de Saída;
- Próximo Estado.
- Estado: Implementação com Flip-Flops (registradores de Estados) Cada Flip-Flop do Estado corresponde a uma variável de Estado.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

0

1. Máquinas de Estado – Introdução

Observações

- Cada variável de Estado tem um Próximo Estado (p.estado) determinado.
- Ao término da permanência temporal em cada Estado, o Próximo Estado passa a ser o Estado Atual.
- A função Próximo Estado depende do Estado Atual e das entradas.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

■ Máquina de Estados:

Modelo geral que pode representar qualquer módulo de um sistema lógico no qual leva-se em conta uma evolução com o tempo.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

11

1. Máquinas de Estado – Introdução

- Linguagem de Representação bem simples:
 - Representação de um Estado: Nó (circunferência com o nome do Estado);
 - Representação de uma Transição: Aresta orientada (arco) Vai do estado atual σ_0 e uma entrada b, o próximo estado é σ_1 e a saída é 1.

Exemplo:

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- Por que Máquina de Estados, "Finita"?
 - Resposta: Porque o número de
 Estados, do sistema representado, é
 finito.
- ■Alguns autores usam a denominação "Máquina de Estados Finitos" com a expressão "Estados Finitos" sendo entendida como um **número finito de Estados.**

12

- 1. Máquinas de Estado Introdução
- *Definição*: Máquinas de Estados Finitos (Finite State Machines FSMs):

$$M = (I, O, S, f, g, \sigma)$$

- Consiste de:
 - Um conjunto finito *I* de símbolos de entrada;
 - Um conjunto finito O de símbolos de saída;
 - − Um conjunto finito *S* de estados;
 - Uma função próximo estado $f: S \times I \rightarrow S$;
 - Uma função de saída $g: S \times I \rightarrow O$;
 - Um estado inicial $\sigma \in S$.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- *Exemplo* Seja I={a,b}, O={0,1}, S={ σ_0 , σ_I } e $\sigma = \sigma_0$. As funções f e g são definidas pelas regras dadas na **Tabela de Transição de Estados** (ou **Tabela de Estados**):

	f	•	g		$f(\sigma_0, a) = \sigma_0$	$g(\sigma, a) = 0$
SI	a	b	a	b	$f(\sigma_0, \mathbf{b}) = \sigma_1$ $f(\sigma_1, \mathbf{a}) = \sigma_1$	- 0
$egin{array}{c} \sigma_0 \ \sigma_1 \end{array}$	$\sigma_0 \\ \sigma_1$	$\sigma_1 \\ \sigma_1$	0	1 0	$f(\sigma_I, \mathbf{a}) = \sigma_I$ $f(\sigma_I, \mathbf{b}) = \sigma_I$	

1. Máquinas de Estado – Introdução

■ *Definição*: Seja M = (*I*, *O*, *S*, *f*, *g*, *σ*) uma Máquina de Estados Finitos. O **Diagrama de Transição de**Estados (ou **Diagrama de Estados** ou **Diagrama de**Transições) de M é um digrafo G cujos vértices são membros de *S*.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- Se M é uma Máquina de Estado Finitos em seu Diagrama de Transição de Estados:
 - Uma seta indica o estado inicial σ ,
 - Uma aresta orientada (σ_1 , σ_2) existe em G se existir uma entrada $i \operatorname{com} f(\sigma_1, i) = \sigma_2$;
 - Neste caso, se $g(\sigma_I, i) = o$, a aresta (σ_I, σ_2) é rotulada com i/o.
- Da **Tabela de Transição de Estados** de um circuito sequencial pode-se extrair seu **Diagrama de Transição de Estados**, e a recíproca é verdadeira!

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

17

1. Máquinas de Estado – Introdução

■ *Definição*: Seja M = (I, O, S, f, g, σ) uma Máquina de Estados Finitos. Uma cadeia de entrada para M é uma cadeia sobre I. A cadeia y_1 y_n é a cadeia de saída de M correspondendo à cadeia de entrada x_1 ... x_n , caso existam os estados σ_0 , σ_1 ..., $\sigma_n \in S$ com:

$$|\sigma_0 = \sigma, \ \sigma_i = f(\sigma_{i-1}, x_i), \ y_i = g(\sigma_{i-1}, x_i) \ \text{para i=1,...,n};$$

■ Pode-se pensar em M = (I, O, S, f, g, σ) como um computador simples (igual a uma Máquina de Turing): começa no estado σ, consome uma cadeia de caracteres sobre I e produz uma cadeia de saída.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

■ *Exemplo*: Encontre a cadeia de saída correspondente à cadeia de entrada *aababba* para a Máquina de Estados Finitos abaixo:

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

1. Máquinas de Estado – Introdução

■ Tabela de Transição de Estados – Representação mais adequada para visualização e entendimento do problema que se quer resolver – o "QUE" o Circuito Sequencial deve fazer!

	f	g
S	a b	a b
σ_0 σ_1	$egin{array}{ccc} \sigma_0 & \sigma_1 \ \sigma_1 & \sigma_1 \end{array}$	0 1
σ_1	$\sigma_1 \sigma_1$	1 0

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- Diagrama de Transição de Estados Representação algorítmica do comportamento da evolução de estados da máquina (seu fluxo temporal). Mais aderente à implementação do "circuito-solução" para o problema que se quer resolver Em outras palavras "COMO" o Circuito Sequencial materializa a solução!

- 1. Máquinas de Estado Introdução
- Tabela de Transição de Estados (ou, mais simplesmente, Tabela de Estados) de um circuito sequencial do tipo *Mealy*.

	$S_{t+1} = f(S_t \times I)$		O = g(S)	$S_t x I$
SI	a	b	a	b
σ_0	σ_0	σ_1	0	1
σ_1	σ_1	σ_1	1	0

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- Tabela de Transição de Estados (ou, mais simplesmente, Tabela de Estados) de um circuito sequencial do tipo *Mealy* Representação alternativa:

	$S_{t+I}/O = f(S_t x I)/g(S_t x I)$		
SI	a	b	
σ_0	$\sigma_0/0$	$\sigma_1/1$	
σ_1	$\sigma_0/0$ $\sigma_1/1$	$\sigma_1/0$	

22

1. Máquinas de Estado – Introdução

■ Diagrama de Transição de Estados, (ou, mais simplesmente, Diagrama de Estados), de um circuito sequencial do tipo *Mealy*.

Input/Output=I/O

 $S_{t+1}/O = f(S_t x I)/g(S_t x I)$

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- Tabela de Transição de Estados (ou, mais simplesmente, Tabela de Estados) de um circuito sequencial do tipo *Moore*.

	S_{t+1} =	$=f(S_t \times I)$	
S	a	b	$O = g(S_t)$
σ	σ	A	0
A	Α	В	1
В	В	A	0

25

1. Máquinas de Estado – Introdução

■ Diagrama de Transição de Estados, (ou, mais simplesmente, Diagrama de Estados), de um circuito sequencial do tipo *Moore*.

$$S_{t+1}/O = f(S_t \times I)/g(S_t)$$
 Input=I EstadoAtual/Output S_t/O

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 1. Máquinas de Estado Introdução
- Exercício:
 - -Projetar uma Máquina de EstadosFinitos que forneça:
 - »1 como saída, caso um número par de 1's seja fornecido numa cadeia de bits de entrada;
 - »0, em caso contrário.

27

- 1. Máquinas de Estado Introdução
- Exercício:
 - -Projetar uma Máquina de Estados Finitos que faça uma soma bit a bit e gerando o vai 1.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

■ Exercício:

 Projetar um flip-flop RS como máquina de estados finitos.

S	R	Q
1	1	Not allowed
1	0	1
0	1	0
0	0	1 if S was last 1
		0 if R was last 1

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

29

2. Máquinas de Estado – Equivalências

- Técnicas de verificação de **Equivalências** no âmbito de **Circuitos Combinatórios**:
 - -Tabelas da Verdade;
 - -Equações Algébricas;
 - -Mapas de Karnaugh.
- **Equivalências** para Circuitos Seqüenciais:
 - -Máquinas de Estados.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

2. Máquinas de Estado – Equivalências

Equivalências para circuitos seqüenciais

■ Pode-se utilizar **Máquinas de Estado** para manipular circuitos combinatórios? Resposta: **Sim**.

»Que tal utilizar as **Máquinas de Estado** para abordar ambos os problemas (**combinatório & sequencial**)?

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

31

3. Diagrama ASM – Algorithmic State Machine

- Representação gráfica do algoritmo que descreve o comportamento do sistema digital, ou seja, uma ferramenta para descrever a Máquina de Estados.
- É uma maneira diagramática de representar a Função de Saída e a Função de Próximo Estado, relacionando-as ao Estado da máquina.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

3. Diagrama ASM – Algorithmic State Machine

- À luz do fato de que os **Diagramas ASM** representam algoritmos, seria possível escrever o algoritmo que implementa um circuito qualquer, como se fosse um programa?
- Resposta: Sim, por meio de uma Linguagem de Descrição de *Hardware* (por exemplo, Verilog, AHDL, VHDL).

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

33

- 3. Diagrama ASM Algorithmic State Machine
- Dispõe-se de quatro **Elementos Primitivos**:
 - -Bloco de Estado;
 - -Bloco de Decisão;
 - -Bloco de Junção;
 - -Bloco de Saída Condicional.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 3. Diagrama ASM Algorithmic State Machine
- A cada um destes Elementos Primitivos associa-se um símbolo gráfico (para elaborar o Diagrama ASM).
- Estes últimos, por sua vez, são associados a Elementos Primitivos de *Hardware* (para elaborar o Diagrama Lógico correspondente).

5

- 3. Diagrama ASM Algorithmic State Machine
- Bloco de Estado:
 - -Lista das saídas de Estado;
 - -Nome do Estado (código);
- Lista das saídas:
 - -Define um conjunto de operações;
 - −As operações podem ser:
 - » Imediatas ("=");
 - » Com atraso ("or").

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 3. Diagrama ASM Algorithmic State Machine
- Bloco de Decisão Descreve as entradas (externas) para a máquina de estados e possui 2 caminhos de saída:
 - -Condição verdadeira ("x = 1") Entrada externa x = 1;
 - -Condição falsa ("x = 0") Entrada externa x = 0.
- Representa o efeito das entradas na sequência de controle.

- 3. Diagrama ASM Algorithmic State Machine
- Bloco de Junção Este elemento descreve e trata, um conjunto de uma ou mais entradas, que provocam a mesma saída:
 - Exemplo: Duas saídas de Blocos, que juntas compõe as entradas que vão definir o próximo Estado da Máquina ASM.

3. Diagrama ASM – Algorithmic State Machine

■ Bloco de Saída Condicional:

- Característica específica de Diagramas ASM (não existe nos fluxogramas convencionais);
- A entrada deste bloco deve sempre se originar de uma das saídas de um Bloco de Decisão;
- Exemplo: A variável lógica *Habilita*, dependente de uma entrada *Condição* (ativo alto), terá valor lógico 1 apenas se o ASM estiver no Estado S_i e *Condição* for igual a 1.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

- 3. Diagrama ASM Algorithmic State Machine
- Bloco ASM Estrutura que consiste de um Bloco de Estado e uma rede de Blocos de Decisão, Blocos de Saída Condicional e Blocos de Junção:
 - -Descreve a operação da Máquina de Estados durante um estado de tempo;
 - Representa o estado atual, as saídas do estado, as saídas condicionais e o próximo estado.

- 3. Diagrama ASM Algorithmic State Machine
- **Diagrama ASM** Consiste em um ou mais **blocos ASM** interconectados, através de ligações:
 - Descreve a operação da Máquina de Estados durante todos os estados de tempo discreto;
 - Representa o estado atual, as saídas do estado, as saídas condicionais e o próximo estado para todos os estados da máquina ASM.

3. Diagrama ASM – Algorithmic State Machine

- Cada símbolo é mapeado em *hardware*:
 - -Bloco de Estado: Flip-Flop
 - -Bloco de Decisão: AND e NOT
 - -Bloco de Junção: *OR*
 - -Bloco de Saída Condicional: *AND* (obs: quando são vários Blocos de Saída Condicional que influenciam o valor da mesma variável, estes devem ser "somados" com uma porta *OR*).

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

3. Diagrama ASM − Algorithmic State Machine

Cada símbolo é mapeado em *hardware*:

−Bloco de Estado: *Flip-Flop*Entrada

So

Começa

Saída

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II 48

- 3. Diagrama ASM Algorithmic State Machine
- Cada símbolo é mapeado em *hardware*:
 - -Bloco de Saída Condicional:
 - -Quando são vários Blocos de Saída
 Condicional que influenciam o valor da mesma variável, estes devem ser "somados" com uma porta *OR* (aplicação de um Bloco de Junção).

3. Diagrama ASM – Algorithmic State Machine $\begin{array}{c|c}
Entrada_i & X_i \\
\hline
y = 1 & X_K \\
\hline
y = 1 & X_K
\end{array}$ Entrada_K $\begin{array}{c|c}
x_i & Y_k \\
\hline
y = 1 & X_K
\end{array}$ Entrada_K $\begin{array}{c|c}
x_k & Y_k \\
\hline
y = 1 & X_K
\end{array}$

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

- 3. Diagrama ASM Algorithmic State Machine
- Restrições dos diagramas ASM:
 - Não pode haver dois "Próximo
 Estado" possíveis para um único
 Estado do qual se parte, isto é, uma
 máquina de estados não pode estar em dois estados simultaneamente;
 - -Blocos de Condição devem apontar para estados.

3.1. Diagrama ASM – Exemplos:

- Voltando a um Exercício proposto:
 - -Projetar uma máquina de estado finito que forneça:
 - »1 como saída, caso um número par de 1's seja fornecido numa cadeia de bits de entrada.
 - »0, no caso contrário.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

3.1. Diagrama ASM – Exemplos:

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

3.1. Diagrama ASM – Exemplos:

- Voltando a outro Exercício proposto:
 - -Projetar uma máquina de estado finito que faça uma soma bit a bit e gerando o vai 1.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

59

3.1. Diagrama ASM – Exemplos:

Legenda: CARRY = Houve Carry;

NoC = Não houve Carry.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

- 3.3. ASM Mais exemplos de aplicação
- Outros exemplos de aplicações dos diagramas ASM:
 - -Unidade de controle de um processador;
 - -Multiplicador binário;
 - -Contador de 1's.

Livro Texto

■ Wakerly, J.F.; *Digital Design* – *Principles & Practices*; 4th Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II

Lição de Casa

- Leitura Obrigatória:
 - -Página 664 do Livro Texto e demais referências a ASM.
- Exercícios Obrigatórios:
 - -Lista de Exercícios do tema.

© Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach.> PCS 3225 Sistemas Digitais II

60

Bibliografia Adicional Deste Assunto

■ Clare, Christopher R.; *Designing Logic Systems using State Machines*; McGraw-Hill, 1973.

@ Andrade, Midorikawa, Bruno, Simplício, Spina 2.017 < ASM-Alg. State Mach. > PCS 3225 Sistemas Digitais II