THE PATH TO DEEP LEARNING

Ştefan Máthé

Outline

- Math Refresher: Probability Theory
- The Challenge
- Machine Learning
- The Path to Deep Learning

MATH REFRESHER: PROBABILITY THEORY

Quick Math Refresher Uncertainty

- ► Sources of uncertainty
 - ▶ Stochastic universe
 - ► Incomplete observations
 - ► Incomplete modelling
- ► Approaches to measure uncertainty:
 - ► **Frequentist**: repeatable event outcomes
 - ► Bayesian: degree of believe
- ► Random Variables

Quick Math Refresher Uncertainty

- ► Sources of uncertainty
 - Stochastic universe
 - ► Incomplete observations
 - ► Incomplete modelling
- ► Approaches to measure uncertainty:
 - ► **Frequentist**: repeatable event outcomes
 - ► Bayesian: degree of believe

Governed by the same set of axioms

▶ Random Variables

Quick Math Refresher Probabilities

- ► Probability Distributions
 - ▶ Probability Mass Function (PMF) ⇔ discrete variables
 - ► Probability Distribution Function (PDF) ⇔ continuous variables
- ▶ Joint Probability Distribution: p(x, y)
- ▶ Prior Probability Distribution: p(x)
- ► Conditional Probability Distribution: $p(y|x) = \frac{p(x,y)}{p(x)}$

Quick Math Refresher Common Probability Distributions

► Binary Variables:

- ▶ Bernoulli
- Multinoulli
- Multinomial

► Continuous Variables:

- ▶ Gaussian
- Dirac
- ► Exponential
- ► Laplace

$$P(X = 1) = \theta$$

 $P(X = 0) = 1 - \theta$
Bernoulli

$$P(X = i) = \theta_i, \forall i, 1 \le i \le k - 1$$

$$P(X = 0) = 1 - \sum_{i=1}^{k-1} \theta_i$$
Multinoulli

$$p(X = x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian (1-dimensional)

$$p(X = x) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{\frac{(x-\mu)^T \Sigma (x-\mu)}{2\sigma^2}}$$

Gaussian (n-dimensional)

$$p(X = x) = \delta(x - \mu)$$

$$\int_{a}^{b} \delta(x) = \begin{cases} 1 & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Dirac (1-dimensional)

Quick Math Refresher Expectation and KL Divergence

- ightharpoonup Expectation: "average" value of a function f(x) when x is drawn from p(x)
 - ► For PDFs: $\mathbb{E}_{x \sim p(x)}[f(x)] = \int_{x}^{x} f(x)p(x)dx$
 - ► For PMFs: $\mathbb{E}_{x \sim P(x)}[f(x)] = \sum_{x} f(x)P(x)dx$
- ► KL Divergence: "distance" between two probability distributions

$$D_{KL}[P||Q] = \mathbb{E}_{x \sim P(x)} \left[\log \frac{P(x)}{Q(x)} \right]$$

► Not a true distance (non-negative, but asymmetric and does not obey the triangle inequality)

THE CHALLENGE

The Challenge Object Class Recognition: Easy or Hard?

Is this an image of a cat?

Object Class Recognition: Easy or Hard?

Is this an image of a cat?

Object Class Recognition: Easy or Hard?

Object Class Recognition: Easy or Hard?

Object Class Recognition: Easy or Hard?

Problems with Inconspicuous Solutions

handwritten digit recognition

instance level segmentation

object detection

Humans vs. Thinking Machines

World of Thinking Machines

easy hard

easy

(not interesting)

• speech recognition
• face recognition
• car driving

• chess
• go
• question-answering (Quora)

• speech recognition
• face recognition
• car driving
• chess
• plant identification
• cancer diagnosis

Humans vs. Thinking Machines

World of Thinking Machines

easy hard **World of Humans** speech recognition easy (not interesting) face recognition car driving plant identification chess hard • cancer diagnosis question-answering (Quora)

- formal problem environments
- rule-based inference

The Challenge Humans vs. Thinking Machines

World of Thinking Machines

easy hard **World of Humans** speech recognition easy (not interesting) face recognition car driving plant identification chess hard • cancer diagnosis question-answering (Quora) real-world environments formal problem environments require informal knowledge rule-based inference

MACHINE LEARNING

Machine Learning What do we want?

- A computer program
 - Input: a feature vector *x* obtained from the input image
 - Output: the probability $p_{\text{model}}(y|x)$ for each object class y

Machine Learning What do we want?

- A computer program
 - Input: a feature vector x obtained from the input image
 - Output: the probability $p_{\text{model}}(y|x)$ for each object class y

Machine Learning What do we want?

- A computer program
 - Input: a feature vector x obtained from the input image
 - Output: the probability $p_{\text{model}}(y|x)$ for each object class y

Machine Learning What is a good solution?

- Let $p_{data}(x,y)$ be the **true distribution** over features and labels
- Program output has a high expected likelihood on the true distribution:

$$\mathbb{E}_{x,y \sim p_{\text{data}}}[\log p_{\text{model}}(y|x)]$$

Machine Learning Parametric Hypothesis Space

- Consider a whole set H of possible programs H, called hypothesis space
- Assume each hypothesis is uniquely characterized by a parameter vector θ
- The parameter vector changes the behavior of our program

Machine Learning Parametric Hypothesis Space

- Consider a whole set H of possible programs H, called hypothesis space
- Assume each hypothesis is uniquely characterized by a parameter vector θ
- The parameter vector changes the behavior of our program

- Choose the hypothesis θ^* that works best in the real world
- Formally: maximize the expected log likelihood on the true distribution

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

- Choose the hypothesis θ^* that works best in the real world
- Formally: maximize the expected log likelihood on the true distribution

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

- Choose the hypothesis θ^* that works best in the real world
- Formally: maximize the expected log likelihood on the true distribution

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

- Choose the hypothesis θ^* that works best in the real world
- Formally: maximize the expected log likelihood on the true distribution

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

- Choose the hypothesis θ^* that works best in the real world
- Formally: maximize the expected log likelihood on the true distribution

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

Machine Learning Why Maximize the Log Likelihood?

- Numerical reasons
- Same as minimizing the divergence between the predicted and ground truth posteriors:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\operatorname{data}}(x,y)} [\log p_{\operatorname{model}}(y|\boldsymbol{x};\boldsymbol{\theta})]$$

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{x \sim p_{\operatorname{data}}(x)} [D_{\operatorname{KL}}(p_{\operatorname{data}}(y|\boldsymbol{x}; \boldsymbol{\theta}) || p_{\operatorname{model}}(y|\boldsymbol{x}; \boldsymbol{\theta}))]$$

Machine Learning Expectation Meets Reality

- But we do not have the true distribution!
- We only have a small training set drawn from the true distribution

$$x_i, y_i \sim p_{\text{data}}(x, y), i = \overline{1, n}$$

The training set can be used to define the empirical data distribution:

Machine Learning Expectation Meets Reality

- But we do not have the true distribution!
- We only have a small training set drawn from the true distribution

$$x_i, y_i \sim p_{\text{data}}(x, y), i = \overline{1, n}$$

The training set can be used to define the empirical data distribution:

$$\hat{p}_{\text{data}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} [\mathbf{x} = \mathbf{x}_i]$$

Machine Learning Expectation Meets Reality

- But we do not have the true distribution!
- We only have a small training set drawn from the true distribution

$$x_i, y_i \sim p_{\text{data}}(x, y), i = \overline{1, n}$$

The training set can be used to define the empirical data distribution:

$$\hat{p}_{\text{data}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} [\mathbf{x} = \mathbf{x}_i]$$

Machine Learning The Compromise

- Solution: maximize the likelihood of the empirical data distribution
- Why would this work?

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|\boldsymbol{x}; \boldsymbol{\theta})]$$

$$p_{\text{data}}(x,y)$$

Machine Learning The Compromise

- Solution: maximize the likelihood of the empirical data distribution
- Why would this work?

 $\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|x; \boldsymbol{\theta})]$

 $\hat{p}_{\text{data}}(x,y)$

Machine Learning The Compromise

- Solution: maximize the likelihood of the empirical data distribution
- Why would this work?

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{x,y \sim p_{\text{data}}} [\log p_{\text{model}}(y|x; \boldsymbol{\theta})]$$

$$\boldsymbol{\theta}^{\text{ML}} = \operatorname{argmax}_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \log p_{\text{model}}(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

Machine Learning Justification: The IID Assumptions

Look at the way we built our empirical distribution:

$$x_i, y_i \sim p_{\text{data}}(x, y), i = \overline{1, n}$$

- Assumption 1:
 - Data samples are drawn independently of each other
 - Why? Hypothesis always processes inputs from scratch.
- Assumption 2:
 - Training samples were identically distributed, i.e. drawn from the true distribution
 - Why? No learning unless training set is representative of the true world
- Are these assumptions enough?

Machine Learning

Justification: Maximum Likelihood Consistency

- An estimator is consistent if it converges given enough training data
 (n → ∞)
- ML is **consistent** if:
 - 1. The hypothesis set contains the true model. For classifiers:

$$\exists \theta, \forall x, \forall y, p_{\text{data}}(y|x) = \log p_{\text{model}}(y|x; \theta)$$

- 2. Each hypothesis is uniquely identified by θ
- In practice we never have enough data!

Machine Learning

The Loss Function

Can also see ML as minimizing the negative log likelihood (NLL):

$$\boldsymbol{\theta}^{\mathrm{ML}} = \operatorname{argmin}_{\boldsymbol{\theta}} - \frac{1}{m} \sum_{i=1}^{n} \log p_{\mathrm{model}} (y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

• In general, we seek to minimize a loss function over the training set:

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

NLL is a special case of loss function:

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{n} \log p_{\text{model}}(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

The training loss is also called the empirical risk

Machine Learning The Dangers of Failed Assumptions: Underfitting and Overfitting

- Underfitting: cannot find a model that fits the training data
 \thigh loss on training data
- Overfitting: cannot find a model that generalizes on test (unseen) data
 low training loss, high test loss

Machine Learning Model Capacity

- (Effective) capacity = ability of the model to fit a wide variety of functions
- Representational capacity = ability of the hypothesis set to fit a wide variety of functions
- Due to imperfect optimizers:

effective capacity ≤ representational capacity

- Underfitting ⇔effective capacity too low
- Overfitting ⇔effective capacity too high
- Formal definitions of capacity exist: Vapnik-Chervonenkis Dimension, Rademacher Complexity

Machine Learning Capacity-Loss Relationship Curve

Machine Learning Regularization (Capacity Control)

- Need to control model capacity:
 - via the optimization process (do not look for the optimal solution)
 - optimize a different objective that also looks at the parameters
 - restrict hypothesis set
- All of these methods introduce a bias:
 - Favor some hypotheses over others
 - Ockham's Razor principle: prefer simple explanations of the data
- There is no universally applicable bias:

The "no free lunch" theorem: Averaged over all data distributions, any two machine learning algorithms have the same accuracy (Wolpert, 1996)

Machine Learning Definition

Machine learning can do much more than classification!

"A computer program is said to learn from <u>experience</u> E with respect to some class of <u>tasks</u> T and <u>performance</u> <u>measure</u> P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell, 1997)

Machine Learning The Task (T)

Task	Input	Output	Example Problem
classification	feature vector	discrete category	object recognition
regression	feature vector	real-valued quantity	image quality assessment
transcription	feature vector	sequence of symbols	transcribe text from image
translation	sequence of symbols	sequence of symbols	translate from English to German
synthesis	sequence of symbols feature vector	real-valued signal	speech synthesis style transfer
denoising	real-valued signal	real-valued signal	image restoration

The list above is far from exhaustive!

Machine Learning The Experience (E)

supervised learning

unsupervised learning

semi supervised learning (some labels may be missing)

Machine Learning The Performance Measure (P)

- Very much task dependent
- For non-interactive methods: loss measured over the test set
 - Negative log likelihood (cross entropy)
 - 0-1 loss
 - Euclidean Loss
 - Hinge Loss
 - etc.
- For reinforcement learning: expected reward
- Many losses correspond to probabilistic interpretations of model outputs (e.g. Euclidean Loss ⇔ Gaussian Output Distributions)

Machine Learning Model Examples

Shallow models

- Non-parametric:
 - k-Nearest Neighbor (kNN) (Fixed & Hodges, 1951)
 - Kernel Density Estimation (Parzen, 1956; Rosenblatt, 1962)
- Parametric:
 - Linear Regression (Legendre, 1805)
 - Logistic Regression (David Cox, 1958)
 - ADALINE (Widrow & Hoff, 1960)
 - Support Vector Machines (SVM) (Vapnik & Chervonenkis, 1963)
 - Decision Trees (Morgan & Sonquist, 1963)

Deep Models

- Multilayer Perceptron (MLP) (Ivaknenko & Lapa, 1965)
- Neocognitron (Fukushima, 1980)
- Lenet-5 (Lecun et al., 1998)
- AlexNet (Krizhevsky et al., 2012)
- ResNet (He et al., 2015)

kNN decision surface

SVM decision surface

Machine Learning Recap

- Reformulated the inference problem as a machine learning problem
- Select the best hypothesis such that:
 - Fits the training data (seen)
 - Generalizes to the real world data (unseen)
- These are conflicting goals!
- The true challenges:
 - Controlling model capacity (underfitting, overfitting)
 - Introducing the right bias
 - Finding the hypothesis that fits the data (optimization problem)

THE PATH TO DEEP LEARNING

The Path to Deep Learning Approaches to Al

- Rule Based Approaches
 - Hard-code informal knowledge in a formal language
 - Not very successful ⁽²⁾
- Machine Learning Approaches
 - Acquire knowledge automatically from real-world data
 - Most promising to date @
 - But wait! What kind of knowledge? Can we learn a mapping from input to output?
 - We need to cover a large abstraction gap!

The Path to Deep Learning Approaches to Al

- Rule Based Approaches
 - Hard-code informal knowledge in a formal language
 - Not very successful 8
- Machine Learning Approaches
 - Acquire knowledge automatically from real-world data
 - Most promising to date @
 - But wait! What kind of knowledge? Can we learn a mapping from input to output?
 - We need to cover a large abstraction gap!

The Path To Deep Learning Closing the Abstraction Gap is Difficult!

- Images are the complex result of multiple interacting factors of variation
- Need to separate what is relevant from what is not!

illumination deformation occlusion

Images taken from Fei-Fei, Karpathy & Johnson, Lecture Notes, 2016

The Path to Deep Learning The Representation Problem

- We need features: relevant information extracted from the input
- How do we come up with good features?

The Path to Deep Learning

First Generation: Hand-Designed Representations

Write a program to extract features!

Examples:

- Edges (Canny)
- Histograms of Gradients (HoGs)
- Haar-like features
- Aggregated Channel Features (ACF)

Pros:

- better than rule-based systems
- can inject human bias

Cons:

- still worse than human performance
- large feature-output abstraction gap
- hard to design good features
- does not scale

The Path to Deep Learning

First Generation: Hand-Designed Representations

Write a program to extract features!

- Examples:
 - Edges (Canny)
 - Histograms of Gradients (HoGs)
 - Haar-like features
 - Aggregated Channel Features (ACF)
- Pros:
 - better than rule-based systems
 - can inject human bias
- Cons:
 - still worse than human performance
 - large feature-output abstraction gap
 - hard to design good features
 - does not scale

output

The Path to Deep Learning Second Generation: Shallow Models

- Learn the representation too!
 - Separately: e.g. auto-encoders
 - Jointly with the mapping: end-to-end learning
- Better, but we still need to cover a large abstraction gap

The Path to Deep Learning Second Generation: Shallow Models

- Learn the representation too!
 - Separately: e.g. auto-encoders
 - Jointly with the mapping: end-to-end learning
- Better, but we still need to cover a large abstraction gap

The Path to Deep Learning Second Generation: Shallow Models

- Learn the representation too!
 - Separately: e.g. auto-encoders
 - Jointly with the mapping: end-to-end learning
- Better, but we still need to cover a large abstraction gap

output

The Path to Deep Learning Third Generation: Deep Learning

- Why not learn a <u>hierarchy</u> of features?
- This is deep learning
- Examples:
 - deep auto-encoders
 - multi-layer-perceptron (MLP)
 - convolutional neural networks (CNNs)

The Path to Deep Learning Third Generation: Deep Learning

Pros:

- Near human performance on many hard problems
- Fully scalable to any problem domain
- Cons:
 - Need large amounts of data
 - Expensive to train and run

The Path To Deep Learning

A Dual View of Deep Learning

- Representational: function composition
 - layer: a simple function (multidimensional)
 - layer output: a new representation of the input
- Computational: computer program
 - layer: set of parallel instructions
 - layer output: state of computer memory (may not be entirely input-related!)

The Path To Deep Learning Deep or not deep?

- No single definition of depth:
 - Maximum number of instructions to evaluate the entire output?
 - Maximum number of concepts to arrive at the output representation?
- No clear definition of deep:
 - Having at least 4 layers? (some authors)
 - In any case:

A deep model is a model with more learned instructions/concepts than a traditional machine learning model.

The Path to Deep Learning Distributed Representations

- We need to dis-entangle factors of variation
- Example: recognize cars/trucks/birds of three colors (red, green, blue)
- **Encodings:**
 - Option 1: all combinations => 9 features
 - Option 2: **distributed representation** => 6 features (3 for object type, 3 for color)
- Deep models can learn distributed representations!

kNN in image space needs one example in each cell!

The Path To Deep Learning Recap

- We need to address the abstraction gap
- Extremely Difficult:
 - Representations are not conspicuous!
 - Hard to dis-entangle factors of variation
- Hand designed features
 - Time consuming to design
 - Do not generalize across problems
 - Brittle to variations (illuminations, pose changes)
- Learned feature hierarchies (end-to-end learning)
 - Trade training data for design time
 - Generalize across problems
 - Increased variance
 - Distributed representations of the world
- Deep learning is just end-to-end learning with a lot of feature levels

REFERENCES

Deep Learning for Computer Vision References

- [1] Goodfellow, I. and Bengio, Y. and Courville, A., "Deep Learning", MIT Press, 2016, http://www.deeplearningbook.org/
- [2] Bishop, C. M. "Pattern Recognition and Machine Learning", Springer, 2006
- [3] Murphy, K.P. "Machine Learning: a Probabilistic Perspective", MIT Press, 2012
- [4] Fei-Fei, Karpathy and Johnson, *Lecture Notes*, 2016, http://cs231n.stanford.edu/slides/2017/
- [5] Zhang, A. and Lipton, Z.C. and Li, M. and Smola, J.A., "Dive into Deep Learning", 2017, https://d2l.ai/

