1º Doble grado de Matemáticas-Informática

Segundo Parcial

Una manera de resolverlo

Separa con claridad un problema de otro. Recuadra los resultados de cada problema.

Problema 1 (2 puntos) Sean S y T subespacios de V, y sean S^0 y T^0 los respectivos subespacios anuladores en V^* . Indica qué condición deben verificar los subespacios S y T de V para que la suma S^0+T^0 sea directa en V^* .

- La suma $S^0 + T^0$ es directa siempre que la intersección $S^0 \cap T^0 = \{ \mathbf{0} : V \longrightarrow \mathbb{K}, \mathbf{0}(v) = 0 \ \forall v \in V \}.$
- Sabemos que $(S^0 \cap T^0)^0 = S + T$ y $\{0\}^0 = V$

Así es condición necesaria y suficiente que S + T = V.

Obsérvese que no es necesario que $V=S\oplus T$. En efecto, supongamos, por ejemplo, que $B=\{u_1,u_2,\ldots,u_n\}$ es una base de V, $B^*=\{u_1^*,u_2^*,\ldots,u_n^*\}$ su dual, y tomemos

$$S^0 = \langle u_1^*, u_2^*, \dots, u_j^* \rangle$$
 $T^0 = \langle u_{j+1}^*, \dots, u_k^* \rangle$ $(j < k \le n)$

de manera que S^0+T^0 es suma directa en $V^{st}.$ Es claro que

$$S = < u_{j+1}, \dots, u_n > \quad T = < u_1, \dots, u_j, u_{k+1}, \dots, u_n > \quad \text{(si } k=n \text{ la lista en } T \text{ acaba en } u_j \text{)}$$

de manera que S+T=V pero no es necesario que sea directa (lo es si k=n).

Problema 2 (2 puntos) Sea \mathbb{K} un cuerpo y $V:=\mathbb{K}[X]_{\leq 2}$ el espacio vectorial de los polinomios de grados ≤ 2 junto con el polinomio nulo. Para cada $\lambda \in \mathbb{K}$ definimos $\omega_{\lambda}: V \to \mathbb{K}$, $\omega_{\lambda}(f(X)) = f(\lambda)$.

(a) Demuestra que V tiene dimensión tres.

Basta mostrar un conjunto de tres generadores linealmente independientes de $V = \mathbb{K}[X]_{\leq 2}$. El conjunto $\{1, X, X^2\}$ verifica estas condiciones, pues

- Cualquier polinomio se puede escribir en la forma $a+bX+cX^2=a\cdot 1+b\cdot X+c\cdot X^2$ con $a,b,c\in\mathbb{K}$;
- Los coeficientes a,b,c son únicos para cada polinomio, pues si $f(X)=a+bX+cX^2=g(X)$ entonces f(X)-g(X) es el polinomio idénticamente 0.
- (b) Demuestra que para todo $\lambda \in \mathbb{K}$, $\omega_{\lambda} \in V^*$.

Hemos de comprobar que para cualesquiera $f_1(X), f_2(X) \in V$ y cualesquiera $\mu_1, \mu_2 \in \mathbb{K}$, se verifica

$$\omega_{\lambda}(\mu_1 f_1(X) + \mu_2 f_2(X)) = \mu_1 \omega_{\lambda}(f_1(X)) + \mu_2 \omega_{\lambda}(f_2(X)).$$

En el miembro izquierdo de la expresión, $\mu_1 f_1(X) + \mu_2 f_2(X)$ es un nuevo polinomio, digamos h(X), y, por definición, $h(\lambda) = \mu_1 f_1(\lambda) + \mu_2 f_2(\lambda)$, $\forall \lambda \in \mathbb{K}$. Así, la igualdad se verifica:

$$\omega_{\lambda}(\mu_1 f_1(X) + \mu_2 f_2(X)) = \mu_1 f_1(\lambda) + \mu_2 f_2(\lambda) = \mu_1 \omega_{\lambda}(f_1(X)) + \mu_2 \omega_{\lambda}(f_2(X)).$$

(c) Demuestra que $B' = \{\omega_1, \omega_0, \omega_{-1}\}$ es una base de V^* .

Expresemos cada una de las formas lineales dadas en la base C^* dual de la canónica $\{1, x, x^2\}$:

$$\begin{array}{llll} \omega_1: & \omega_1(1)=1, \ \omega_1(x)=1, \ \omega_1(x^2)=1 & \mapsto \omega_1=(1,1,1)_{\mathcal{C}^*} \\ \omega_0: & \omega_0(1)=1, \ \omega_0(x)=0, \ \omega_0(x^2)=0 & \mapsto \omega_0=(1,0,0)_{\mathcal{C}^*} \\ \omega_{-1}: & \omega_{-1}(1)=1, \ \omega_{-1}(x)=-1, \ \omega_{-1}(x^2)=1 \mapsto \omega_{-1}=(1,-1,1)_{\mathcal{C}^*} \end{array}$$

Con estos tres vectores de coordenadas bastaría ver si el rango de la matriz que los tiene como filas, o columnas, es 3. Ahora bien:

$$\operatorname{rango}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \stackrel{F_2-F_1}{=} \operatorname{rango}\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix} \stackrel{F_3-F_1}{=} \operatorname{rango}\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & -2 & 0 \end{pmatrix} \stackrel{F_3-2F_2}{=} \operatorname{rango}\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{pmatrix} = 3 \ .$$

(d) Halla una base $B = \{f_1(X), f_2(X), f_3(X)\}$ en V de modo B' sea su base dual.

Si
$$f_j(X) = a_{1j} \cdot 1 + a_{2j} \cdot x + a_{3j} \cdot x^2$$
, $j = 1, 2, 3$, puesto que

es sencillo verificar que $\left[\left\{f_1(X) = \frac{X+X^2}{2}, \, f_2(X) = 1-X^2, \, f_3(X) = \frac{-X+X^2}{2}\right\}\right] \text{ es la base buscada}.$

En efecto:

$$\begin{array}{lll} \omega_1(f_1(X)) = \frac{1+1}{2} = 1 & \omega_0(f_1(X)) = \frac{0+0}{2} = 0 & \omega_{-1}(f_1(X)) = \frac{-1+1}{2} = 0 \\ \omega_1(f_2(X)) = 1 - 1^2 = 0 & \omega_0(f_2(X)) = 1 - 0^2 = 1 & \omega_{-1}(f_2(X)) = 1 - (-1)^2 = 0 \\ \omega_1(f_3(X)) = \frac{-1+1}{2} = 0 & \omega_0(f_3(X)) = \frac{0+0}{2} = 0 & \omega_{-1}(f_3(X)) = \frac{1+1}{2} = 1 \,. \end{array}$$

(e) Halla el vector de coordenadas de ω_2 en la base B' (sugerencia: usa el apartado anterior).

Puesto que tenemos una base de la que B' es dual, se tiene que $\omega_2 = a\omega_1 + b\omega_0 + c\omega_{-1}$ con

$$a = \omega_2(f_1(X)) = f_1(2) = \frac{2+4}{2} = 3$$

$$b = \omega_2(f_2(X)) = f_2(2) = 1 - 2^2 = -3$$

$$a = \omega_2(f_1(X)) = f_1(2) = \frac{-2+4}{2} = 1$$

es decir
$$\omega_2 = 3\omega_1 - 3\omega_0 + \omega_{-1}$$
 .

Problema 3 (2 puntos)

Consideremos $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ una forma bilineal.

(a) Enuncia qué condición debe verificar ϕ para ser alternada.

Para cualesquiera $v_1, v_2 \in \mathbb{R}^3$, $\phi(v_1, v_2) = -\phi(v_2, v_1)$. Equivalentemente, para cualquier $v \in \mathbb{R}^3$, $\phi(v, v) = 0$.

(b) Demuestra que $\phi((1,2,1),(1,1,1)) = \phi((1,2,1),(2,3,2))$. Justifica cada paso.

$$\begin{split} \phi((1,2,1),\,(2,3,2)) - \phi((1,2,1),\,(1,1,1)) &= \phi((1,2,1),\,(2,3,2) - (1,1,1)) \\ \text{(linealidad en el segundo argumento)} \\ &= \phi((1,2,1),\,(1,2,1)) = 0 \quad \text{(alternada)}. \end{split}$$

Problema 4 (2 puntos) Halla $A \in M_{3\times 3}(\mathbb{R})$ que verifique simultáneamente las siguientes condiciones

(a)
$$A^2 = A$$
.

(b)
$$\operatorname{Img}(f_A) = S$$
, $\operatorname{Nuc}(f_A) = T$ donde $f_A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $S = \{x_1 + x_2 + x_3 = 0\}$ y $T = \langle (1, 1, 1) \rangle$.

De las ecuaciones de S se tiene que S = <(1, -1, 0), (1, 0, -1) >. El vector (1, 1, 1), generador de T, no está en el plano S, pues $1 + 1 + 1 = 3 \neq 0$. Así, el conjunto $\{v_1 = (1, -1, 0), v_2 = (1, 0, -1), v - 3 = (1, 1, 1)\}$ es una base de \mathbb{R}^3 .

Tomemos la aplicación f_A determinada por las imágenes

$$f_A(v_1) = v_1, \quad f_A(v_2) = v_2, \quad f_A(v_3) = (0, 0, 0).$$

Es evidente que $f_A^2 = f_A$, $\operatorname{Img}(f_A) = S$ y $\operatorname{Nuc}(f_A) = T$. Así basta mostrar la matriz del endomorfismo en la base canónica, la base en que están descritos los subespacios S y T.

Puesto que

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

se tiene que

$$A = \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Obsérvese que, en efecto

$$A \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad A^2 = \frac{1}{9} \begin{pmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{pmatrix} = A \,.$$

Problema 5 (2 puntos) Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$ la transformación lineal con matriz en bases canónicas $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix}$.

Halla la matriz (en bases canónicas) de alguna transformación $g:\mathbb{R}^3 \to \mathbb{R}^2$ que verifique

$$g \cdot f = \mathrm{Id}_{\mathbb{R}^2}$$
.

Planteamos la búsqueda de una matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ tal que

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow B^t A^t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Así basta resolver, simultáneamente, dos sistemas de ecuaciones lineales con la misma matriz de coeficientes, B^t , y columnas de independientes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Aplicando el algoritmo de Gauss:

$$\begin{pmatrix} 1 & 1 & 1 \mid 1 & 0 \\ 1 & 2 & 1 \mid 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \mid 1 & 0 \\ 0 & 1 & 0 \mid -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \mid 2 & -1 \\ 0 & 1 & 0 \mid -1 & 1 \end{pmatrix}$$

obtenemos todas las soluciones:

$$A = \begin{pmatrix} 2 - \lambda & -1 & \lambda \\ -1 - \mu & 1 & \mu \end{pmatrix} \quad \lambda, \ \mu \in \mathbb{R}.$$

Obsérvese que, para cualesquiera $\lambda,\,\mu\in\mathbb{R}$, se verifica

$$\begin{pmatrix} 2-\lambda & -1 & \lambda \\ -1-\mu & 1 & \mu \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$