Basi di dati — 19 novembre 2014 — Prova parziale — Compito A

Possibili soluzioni

Tempo a disposizione: un'ora e quindici minuti. Libri chiusi.

______ Nome: ______ Matricola: _____

Indica	anda 1 (15%) re (scrivendo "V" o "F" nelle caselle) quali delle seguenti affermazioni sono vere e quali false relativamente ste come definite in SQL con le istruzioni CREATE VIEW:
F	le viste introducono ridondanze nei dati memorizzati
F	ogni vista usata in una interrogazione viene calcolata completamente prima di eseguire l'interrogazione
V	le viste possono essere utili per semplificare la scrittura delle interrogazioni
F	le viste possono essere utili per rendere più efficienti le interrogazioni

Domanda 2 (15%)

Si supponga di voler rappresentare in una base di dati relazionale le informazioni sulle cime di un gruppo montuoso e i relativi sentieri, che vengono pubblicate in prospetti come il seguente

Cima	Altezza	Itinerario	Tempo	Difficoltà
Vetta centrale	3101	nessuno		
Vetta Ovest	3007	Via normale	3 ore	Facile
		Via diretta	2 ore	Difficile
Vetta Est	3007	Canale nord	2 ore	Difficile
		Via normale	4 ore	Facile
Vetta Sud	2999	Via normale	3 ore	Poco difficile

Mostrare gli schemi delle relazioni da utilizzare (con attributi e vincoli di chiave e di integrità referenziale) e l'istanza corrispondente ai dati sopra mostrati.

Сіме	
Cima	Altezza
Vetta centrale	3101
Vetta Ovest	3007
Vetta Est	3007
Vetta Sud	2999

ITINERARI

$\underline{\text{Cima}}$	$\underline{\text{Itinerario}}$	Tempo	Difficoltà
Vetta Ovest	Via normale	3 ore	Facile
Vetta Ovest	Via diretta	2 ore	Difficile
Vetta Est	Canale nord	2 ore	Difficile
Vetta Est	Via normale	4 ore	Facile
Vetta Sud	Via normale	3 ore	Poco difficile

Basi di dati I — 19 novembre 2014 — Compito A

Domanda 3 (20%) Considerare la base di dati relazionale definita per mezzo delle seguenti istruzioni:

```
create table Citta (
    ID numeric not null primary key,
    NomeCitta character(20) not null,
    Popolazione numeric
    );
create table Acquedotti (
    Codice numeric not null primary key,
    NomeAcq character(20) not null
    );
create table Forniture (
    Citta numeric not null references Citta(ID),
    Acquedotto numeric not null references Acquedotti(Codice),
    Portata integer check (Portata >= 0),
    primary key (Citta,Acquedotto)
    );
```

Supponendo che le relative relazioni abbiano rispettivamente le cardinalità $C_1 = 100$ (città), $C_2 = 200$ (acquedotti) e $C_3 = 600$ (fornitura), indicare le cardinalità minime e massime (in simboli e numeri) dei risultati delle seguenti interrogazioni:

	Min (simboli)	Max (simboli)	Min (valore)	Max (valore)
select * from Acquedotti, Forniture	$C_2 \times C_3$	$C_2 \times C_3$	120.000	120.000
<pre>select * from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice where Portata > 20</pre>	0	C_3	0	600
<pre>select Codice, NomeAcq, count(*) from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice group by Codice, NomeAcq</pre>	C_2	C_2	200	200

Il valore minimo per l'ultima riga è indicato pari al massimo, supponendo che ogni acquedotto serva almeno una città e viceversa, il che in effetti non è stato specificato. Sono state quindi considerate corrette anche altre soluzioni.

Domanda 4 (20%)

Con riferimento alla base di dati usata nella domanda precedente formulare le seguenti interrogazioni in algebra relazionale:

1. trovare codici e nomi degli acquedotti che riforniscono la città di Roma

```
\pi_{\mathsf{Codice},\mathsf{NomeAcq}}((\sigma_{\mathsf{NomeCitta}='\mathsf{Roma'}}(\mathsf{CITT\grave{A}}) \bowtie_{\mathsf{ID}=\mathsf{Citta}} \mathsf{FORNITURE}) \bowtie_{\mathsf{Acquedotto}=\mathsf{Codice}} \mathsf{Acquedotto})
```

2. trovare ID delle città rifornite da almeno due acquedotti

```
\pi_{Citta}(\sigma_{Acquedotto \neq Acquedotto'}(\text{Forniture} \bowtie_{\text{Citta}=\text{Citta}'} \rho_{X' \leftarrow X}(\text{Forniture})))
```

Basi di dati I — 19 novembre 2014 — Compito A

Domanda 5 (30%)

Con riferimento alla base di dati usata nelle domande precedenti formulare le seguenti interrogazioni in SQL:

1. trovare ID e nomi delle città rifornite dall'acquedotto Claudio

```
select distinct ID, NomeCitta
from Citta join Forniture on ID = Citta
    join Acquedotti on Acquedotto = Codice
where NomeAcq = 'Claudio'
```

2. trovare i codici degli acquedotti che riforniscono almeno due città

```
select distinct F1.Acquedotto AS Codice
from Forniture F1 join Forniture F2
  on F1.Acquedotto = F2.Acquedotto
where F1.Citta <> F2.Citta

oppure
select Acquedotto AS Codice
from Forniture
group by Acquedotto
having count(*) >= 2
```

3. per ogni acquedotto, trovare la portata totale (intesa come la somma delle portate delle forniture dell'acquedotto)

```
select Acquedotto, sum (Portata) as PortataTotale
from Forniture
group by acquedotto
```

4. mostrare codice e nome dell'acquedotto con la portata totale massima

Definiamo una vista PortateTotali o DisponibilitaTotali (a seconda dei compiti) con la select della risposta precedente e poi select Codice, NomeAcq from Acquedotti join PortateTotali on Codice = Acquedotto where PortataTotale >= ALL (select PortataTotale from PortateTotali)

Basi di dati — 19 novembre 2014 — Prova parziale — Compito B

Possibili soluzioni

Tempo a disposizione: un'ora e quindici minuti. Libri chiusi.

Cogno	nome: Nor	ne:	Matricola:
Indicar	anda 1 (15%) are (scrivendo "V" o "F" nelle caselle) qual iste come definite in SQL con le istruzioni	<u> </u>	oni sono vere e quali false relativamente
F	le viste introducono ridondanze nei da	ti memorizzati	
F	le viste possono essere utili per render	e più efficienti le interroga	azioni
F	ogni vista usata in una interrogazione	viene calcolata completam	nente prima di eseguire l'interrogazione
V	le viste possono essere utili per sempli	ficare la scrittura delle int	terrogazioni

Domanda 2 (15%)

Si supponga di voler rappresentare in una base di dati relazionale le informazioni sulle cime di un gruppo montuoso e i relativi sentieri, che vengono pubblicate in prospetti come il seguente

Cima	Altezza	Itinerario	Tempo	Difficoltà
Vetta centrale	3101	nessuno		
Vetta Ovest	3007	Via normale	3 ore	Facile
		Via diretta	2 ore	Difficile
Vetta Est	3007	Canale nord	2 ore	Difficile
		Via normale	4 ore	Facile
Vetta Sud	2999	Via normale	3 ore	Poco difficile

Mostrare gli schemi delle relazioni da utilizzare (con attributi e vincoli di chiave e di integrità referenziale) e l'istanza corrispondente ai dati sopra mostrati.

Cime	
Cima	Altezza
Vetta centrale	3101
Vetta Ovest	3007
Vetta Est	3007
Vetta Sud	2999

Itinerari

$\underline{\text{Cima}}$	$\underline{\text{Itinerario}}$	Tempo	Difficoltà
Vetta Ovest	Via normale	3 ore	Facile
Vetta Ovest	Via diretta	2 ore	Difficile
Vetta Est	Canale nord	2 ore	Difficile
Vetta Est	Via normale	4 ore	Facile
Vetta Sud	Via normale	3 ore	Poco difficile

Basi di dati I — 19 novembre 2014 — Compito B

Domanda 3 (20%) Considerare la base di dati relazionale definita per mezzo delle seguenti istruzioni:

```
create table Citta (
    ID numeric not null primary key,
    NomeCitta character(20) not null,
    Popolazione numeric
    );
create table Acquedotti (
    Codice numeric not null primary key,
    NomeAcq character(20) not null
    );
create table Forniture (
    Citta numeric not null references Citta(ID),
    Acquedotto numeric not null references Acquedotti(Codice),
    Portata integer check (Portata >= 0),
    primary key (Citta,Acquedotto)
    );
```

Supponendo che le relative relazioni abbiano rispettivamente le cardinalità $L_1 = 100$ (città), $L_2 = 200$ (acquedotti) e $L_3 = 600$ (fornitura), indicare le cardinalità minime e massime (in simboli e numeri) dei risultati delle seguenti interrogazioni:

	Min (simboli)	Max (simboli)	Min (valore)	Max (valore)
select * from Citta, Forniture	$L_1 \times L_3$	$L_1 \times L_3$	60.000	60.000
<pre>select * from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice where Portata > 20</pre>	0	L_3	0	600
<pre>select ID, NomeCitta, count(*) from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice group by ID, NomeCitta</pre>	L_1	L_1	100	100

Il valore minimo per l'ultima riga è indicato pari al massimo, supponendo che ogni acquedotto serva almeno una città e viceversa, il che in effetti non è stato specificato. Sono state quindi considerate corrette anche altre soluzioni.

Domanda 4 (20%)

Con riferimento alla base di dati usata nella domanda precedente formulare le seguenti interrogazioni in algebra relazionale:

1. trovare ID e nomi delle città rifornite dall'acquedotto Claudio

```
\pi_{\mathsf{ID},\mathsf{NomeCitta}}((\mathsf{CITT\grave{A}}owtie_{\mathsf{ID}=\mathsf{Citta}}\mathsf{FORNITURE})owtie_{\mathsf{Acquedotto}=\mathsf{Codice}}(\sigma_{\mathsf{NomeAcq}='\mathsf{Claudio}'}(\mathsf{Acquedotti})))
```

2. trovare i codici degli acquedotti che riforniscono almeno due città

```
\pi_{Acquedotto}(\sigma_{Citta \neq Citta'}(\text{Forniture} \bowtie_{\text{Acquedotto} = \text{Acquedotto}} \rho_{X' \leftarrow X}(\text{Forniture})))
```

Basi di dati I — 19 novembre 2014 — Compito B

Domanda 5 (30%)

Con riferimento alla base di dati usata nelle domande precedenti formulare le seguenti interrogazioni in SQL:

1. trovare codici e nomi degli acquedotti che riforniscono la città di Roma

```
select distinct Codice, NomeAcq
from Citta join Forniture on ID = Citta
    join Acquedotti on Acquedotto = Codice
where NomeCitta = 'Roma'
```

2. trovare ID delle città rifornite da almeno due acquedotti

```
select distinct F1.Citta AS ID
from Forniture F1 join Forniture F2
  on F1.Citta = F2.Citta
where F1.Acquedotto <> F2.Acquedotto

oppure
select Citta AS ID
from Forniture
group by Citta
having count(*) >= 2
```

3. per ogni città, trovare la disponibilià totale di acqua (intesa come la somma delle portate delle forniture della città)

```
select Citta, sum (Portata) as DisponibilitaTotale
from Forniture
group by Citta
```

4. mostrare ID e nome della città con la massima disponibilità totale di acqua

Definiamo una vista PortateTotali o DisponibilitaTotali (a seconda dei compiti) con la select della risposta precedente e poi select ID, NomeCitta from Citta join DisponibilitaTotali on ID = Citta where DisponibilitaTotale >= ALL (select DisponibilitaTotale from DisponibilitaTotali)

Basi di dati — 19 novembre 2014 — Prova parziale — Compito C

Possibili soluzioni

Tempo a disposizione: un'ora e quindici minuti. Libri chiusi.

C	ognor	ne: Nome: Matricola:
Iı	ndicare	da 1 (15%) (scrivendo "V" o "F" nelle caselle) quali delle seguenti affermazioni sono vere e quali false relativamente e come definite in SQL con le istruzioni CREATE VIEW:
	F	ogni vista usata in una interrogazione viene calcolata completamente prima di eseguire l'interrogazione
	F	le viste introducono ridondanze nei dati memorizzati
	V	le viste possono essere utili per semplificare la scrittura delle interrogazioni
	F	le viste possono essere utili per rendere più efficienti le interrogazioni

Domanda 2 (15%)

Si supponga di voler rappresentare in una base di dati relazionale le informazioni sulle cime di un gruppo montuoso e i relativi sentieri, che vengono pubblicate in prospetti come il seguente

Cima	Altezza	Itinerario	Tempo	Difficoltà
Vetta centrale	3101	nessuno		
Vetta Ovest	3007	Via normale	3 ore	Facile
		Via diretta	2 ore	Difficile
Vetta Est	3007	Canale nord	2 ore	Difficile
		Via normale	4 ore	Facile
Vetta Sud	2999	Via normale	3 ore	Poco difficile

Mostrare gli schemi delle relazioni da utilizzare (con attributi e vincoli di chiave e di integrità referenziale) e l'istanza corrispondente ai dati sopra mostrati.

Cime	
$\underline{\text{Cima}}$	Altezza
Vetta centrale	3101
Vetta Ovest	3007
Vetta Est	3007
Vetta Sud	2999

ITINERARI

$\underline{\text{Cima}}$	$\underline{\text{Itinerario}}$	Tempo	Difficoltà
Vetta Ovest	Via normale	3 ore	Facile
Vetta Ovest	Via diretta	2 ore	Difficile
Vetta Est	Canale nord	2 ore	Difficile
Vetta Est	Via normale	4 ore	Facile
Vetta Sud	Via normale	3 ore	Poco difficile

Basi di dati I — 19 novembre 2014 — Compito C

Domanda 3 (20%) Considerare la base di dati relazionale definita per mezzo delle seguenti istruzioni:

```
create table Citta (
    ID numeric not null primary key,
    NomeCitta character(20) not null,
    Popolazione numeric
    );
create table Acquedotti (
    Codice numeric not null primary key,
    NomeAcq character(20) not null
    );
create table Forniture (
    Citta numeric not null references Citta(ID),
    Acquedotto numeric not null references Acquedotti(Codice),
    Portata integer check (Portata >= 0),
    primary key (Citta,Acquedotto)
    );
```

Supponendo che le relative relazioni abbiano rispettivamente le cardinalità $M_1 = 100$ (città), $M_2 = 200$ (acquedotti) e $M_3 = 600$ (fornitura), indicare le cardinalità minime e massime (in simboli e numeri) dei risultati delle seguenti interrogazioni:

	Min (simboli)	Max (simboli)	Min (valore)	Max (valore)
select * from Acquedotti, Forniture	$M_2 \times M_3$	$M_2 \times M_3$	120.000	120.000
<pre>select * from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice where Portata > 20</pre>	0	M_3	0	600
<pre>select ID, NomeCitta, count(*) from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice group by ID, NomeCitta</pre>	M_1	M_1	100	100

Il valore minimo per l'ultima riga è indicato pari al massimo, supponendo che ogni acquedotto serva almeno una città e viceversa, il che in effetti non è stato specificato. Sono state quindi considerate corrette anche altre soluzioni.

Domanda 4 (20%)

Con riferimento alla base di dati usata nella domanda precedente formulare le seguenti interrogazioni in algebra relazionale:

1. trovare codici e nomi degli acquedotti che riforniscono la città di Roma

```
\pi_{\mathsf{Codice},\mathsf{NomeAcq}}((\sigma_{\mathsf{NomeCitta}='\mathsf{Roma'}}(\mathsf{CITT}\grave{\mathsf{A}}) \bowtie_{\mathsf{ID}=\mathsf{Citta}} \mathsf{FORNITURE}) \bowtie_{\mathsf{Acquedotto}=\mathsf{Codice}} \mathsf{Acquedotto})
```

2. trovare ID delle città rifornite da almeno due acquedotti

```
\pi_{Citta}(\sigma_{Acquedotto \neq Acquedotto'}(\text{Forniture} \bowtie_{\text{Citta}=\text{Citta}'} \rho_{X' \leftarrow X}(\text{Forniture})))
```

Basi di dati I — 19 novembre 2014 — Compito C

Domanda 5 (30%)

Con riferimento alla base di dati usata nelle domande precedenti formulare le seguenti interrogazioni in SQL:

1. trovare ID e nomi delle città rifornite dall'acquedotto Claudio

```
select distinct ID, NomeCitta
from Citta join Forniture on ID = Citta
    join Acquedotti on Acquedotto = Codice
where NomeAcq = 'Claudio'
```

2. trovare i codici degli acquedotti che riforniscono almeno due città

```
select distinct F1.Acquedotto AS Codice
from Forniture F1 join Forniture F2
  on F1.Acquedotto = F2.Acquedotto
where F1.Citta <> F2.Citta

  oppure

select Acquedotto AS Codice
from Forniture
group by Acquedotto
having count(*) >= 2
```

3. per ogni acquedotto, trovare la portata totale (intesa come la somma delle portate delle forniture dell'acquedotto)

```
select Acquedotto, sum (Portata) as PortataTotale
from Forniture
group by acquedotto
```

4. mostrare codice e nome dell'acquedotto con la portata totale massima

Basi di dati — 19 novembre 2014 — Prova parziale — Compito D

Possibili soluzioni

Tempo a disposizione: un'ora e quindici minuti. Libri chiusi.

______ Nome: ______ Matricola: _____

Iı	ndicare	ada 1 (15%) e (scrivendo "V" o "F" nelle caselle) quali delle seguenti affermazioni sono vere e quali false relativamente e come definite in SQL con le istruzioni CREATE VIEW:
	V	le viste possono essere utili per semplificare la scrittura delle interrogazioni
	F	le viste introducono ridondanze nei dati memorizzati
	F	le viste possono essere utili per rendere più efficienti le interrogazioni
	F	ogni vista usata in una interrogazione viene calcolata completamente prima di eseguire l'interrogazione

Domanda 2 (15%)

Si supponga di voler rappresentare in una base di dati relazionale le informazioni sulle cime di un gruppo montuoso e i relativi sentieri, che vengono pubblicate in prospetti come il seguente

Cima	Altezza	Itinerario	Tempo	Difficoltà
Vetta centrale	3101	nessuno		
Vetta Ovest	3007	Via normale	3 ore	Facile
		Via diretta	2 ore	Difficile
Vetta Est	3007	Canale nord	2 ore	Difficile
		Via normale	4 ore	Facile
Vetta Sud	2999	Via normale	3 ore	Poco difficile

Mostrare gli schemi delle relazioni da utilizzare (con attributi e vincoli di chiave e di integrità referenziale) e l'istanza corrispondente ai dati sopra mostrati.

Сіме	
Cima	Altezza
Vetta centrale	3101
Vetta Ovest	3007
Vetta Est	3007
Vetta Sud	2999

Itinerari

<u>Cima</u>	$\underline{\text{Itinerario}}$	Tempo	Difficoltà
Vetta Ovest	Via normale	3 ore	Facile
Vetta Ovest	Via diretta	2 ore	Difficile
Vetta Est	Canale nord	2 ore	Difficile
Vetta Est	Via normale	4 ore	Facile
Vetta Sud	Via normale	3 ore	Poco difficile

Basi di dati I — 19 novembre 2014 — Compito D

Domanda 3 (20%) Considerare la base di dati relazionale definita per mezzo delle seguenti istruzioni:

```
create table Citta (
    ID numeric not null primary key,
    NomeCitta character(20) not null,
    Popolazione numeric
    );
create table Acquedotti (
    Codice numeric not null primary key,
    NomeAcq character(20) not null
    );
create table Forniture (
    Citta numeric not null references Citta(ID),
    Acquedotto numeric not null references Acquedotti(Codice),
    Portata integer check (Portata >= 0),
    primary key (Citta,Acquedotto)
    );
```

Supponendo che le relative relazioni abbiano rispettivamente le cardinalità $N_1 = 100$ (città), $N_2 = 200$ (acquedotti) e $N_3 = 600$ (fornitura), indicare le cardinalità minime e massime (in simboli e numeri) dei risultati delle seguenti interrogazioni:

	Min (simboli)	Max (simboli)	Min (valore)	Max (valore)
select * from Citta, Forniture	$N_1 \times N_3$	$N_1 \times N_3$	60.000	60.000
<pre>select * from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice where Portata > 20</pre>	0	N_3	0	600
<pre>select Codice, NomeAcq, count(*) from Citta join Forniture on ID = Citta join Acquedotti on Acquedotto = Codice group by Codice, NomeAcq</pre>	N_2	N_2	200	200

Il valore minimo per l'ultima riga è indicato pari al massimo, supponendo che ogni acquedotto serva almeno una città e viceversa, il che in effetti non è stato specificato. Sono state quindi considerate corrette anche altre soluzioni.

Domanda 4 (20%)

Con riferimento alla base di dati usata nella domanda precedente formulare le seguenti interrogazioni in algebra relazionale:

1. trovare ID e nomi delle città rifornite dall'acquedotto Claudio

```
\pi_{\mathsf{ID},\mathsf{NomeCitta}}((\mathsf{CITT\grave{A}}owtie_{\mathsf{ID}=\mathsf{Citta}}\mathsf{FORNITURE})owtie_{\mathsf{Acquedotto}=\mathsf{Codice}}(\sigma_{\mathsf{NomeAcq}='\mathsf{Claudio}'}(\mathsf{Acquedotti})))
```

2. trovare i codici degli acquedotti che riforniscono almeno due città

```
\pi_{Acquedotto}(\sigma_{Citta \neq Citta'}(\text{FORNITURE} \bowtie_{\text{Acquedotto} = \text{Acquedotto}'} \rho_{X' \leftarrow X}(\text{FORNITURE})))
```

Basi di dati I — 19 novembre 2014 — Compito D

Domanda 5 (30%)

Con riferimento alla base di dati usata nelle domande precedenti formulare le seguenti interrogazioni in SQL:

1. trovare codici e nomi degli acquedotti che riforniscono la città di Roma

```
select distinct Codice, NomeAcq
from Citta join Forniture on ID = Citta
    join Acquedotti on Acquedotto = Codice
where NomeCitta = 'Roma'
```

2. trovare ID delle città rifornite da almeno due acquedotti

```
select distinct F1.Citta AS ID
from Forniture F1 join Forniture F2
  on F1.Citta = F2.Citta
where F1.Acquedotto <> F2.Acquedotto

oppure
select Citta AS ID
from Forniture
group by Citta
having count(*) >= 2
```

3. per ogni città, trovare la disponibilià totale di acqua (intesa come la somma delle portate delle forniture della città)

```
select Citta, sum (Portata) as DisponibilitaTotale
from Forniture
group by Citta
```

4. mostrare ID e nome della città con la massima disponibilità totale di acqua

Definiamo una vista PortateTotali o DisponibilitaTotali (a seconda dei compiti) con la select della risposta precedente e poi select ID, NomeCitta from Citta join DisponibilitaTotali on ID = Citta where DisponibilitaTotale >= ALL (select DisponibilitaTotale from DisponibilitaTotali)