BC = 138 BM = 8 sin 60 Sin 60 =

X= distance of the (2) Neaver line from The center of the circle (where you drop no pen) X = uniformly distributed.

[0,8] 05 215 8 $\int_{\mathcal{S}} (x) = \int_{\mathcal{S}} \frac{1}{\sqrt{2\pi}}$ otherwise B(> \sqrt{3}8 からならって $S = \frac{\pi}{2}$ $S = \frac{\pi}{2}$

Unifor nædle 06 26180 180

60 to 0 6 f(x) dx = 12e

Cardinality Set aleph O aleph 1 aleph 2 Noomal Distribution eg. height, weight, 12 in come, marks

X is normally distributed with parameters (u) and (=2) if density of x - (x-m) 2002 (urve

When u =0 5=1, its called Standard Normal distribution $N(0,1) \rightarrow \frac{e^{-1/2}}{\sqrt{2\pi}}$ N(0,5)Show that it a probability densito function. f >0 (nonregative) $\int_{-\infty}^{9} \int_{0}^{(x)} dx = 1$ $\int_{-\infty}^{2} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} dx = 1$ If X is normally distributed, then so is rax +b E[X] = M ? Proofgiven Var[X] = 52 Jbook) E[ax+b] = au+b Var [axtb] = 2202 Cumulative distribution for $\frac{1}{\sqrt{2}} \int_{-1}^{2} \frac{1}{\sqrt{2}} dx$ $\frac{1}{\sqrt{2}} \int_{-1}^{2} \frac{1}{\sqrt{2}} dx$ N(0,1)

(0,1) P(X ≤ a) J (*) Ø (0)