

Università degli Studi di Verona, Dipartimento di Informatica

Reti di Calcolatori, Prof. D. Carra, A.A. 2013/2014 Appello d'esame del 25 Febbraio 2014

- Scrivere **nome**, **cognome** e **numero di matricola** su ciascun foglio che si intende consegnare (non e' obbligatorio consegnare la brutta copia)
- I risultati verranno pubblicati sugli avvisi della pagina del corso Giovedì 27 Febbraio dopo le 12
- · La correzione dei temi d'esame può essere visionata durante la registrazione
- Orali (facoltativi) e registrazioni si terranno Giovedì 27 Febbraio alle 14.30 in aula L.

Domande sulla teoria (4 punti ciascuna)

Lo studente risponda in maniera concisa, ma precisa, alle seguenti domande riguardanti la parte teorica. E' necessario che lo studente ottenga almeno 7 punti (su un totale di 12 punti a disposizione). In caso contrario, gli esercizi non verranno considerati e il voto finale sarà insufficiente.

- 1. Per consentire il risparmio di energia nelle Wireless LAN (WLAN), le stazioni utilizzano il cosiddetto "Network Allocation Vector" (NAV): si spieghi che cos'è il NAV e come viene utilizzato.
- 2. In riferimento al livello di rete, si spieghi, anche attraverso un esempio, che cos'è il Network Address Translation (NAT), specificando per quale motivo tale funzionalità è stata introdotta.
- 3. In riferimento al livello di trasporto, si spieghi che cosa sono le "porte note" (Well Known Ports) e il motivo per cui sono state introdotte.

Esercizio 1 (7 punti)

Un Bridge è attestato contemporaneamente su due segmenti distinti di rete; sul segmento 1 c'è una stazione, A, e sul segmento 2 c'è una stazione, B (si veda la figura a fianco). Il Bridge è un particolare tipo di stazione che memorizza ciascuna trama che arriva da un segmento di rete e, una volta ricevuta completamente, la ritrasmette sull'altro segmento di rete (tale comportamento è valido, in modo indipendente l'uno dall'altro, in entrambi i sensi); le trame restano in memoria del Bridge fino a quando la trasmissione sull'altro segmento non è andata a buon fine.

Le stazioni e il Bridge utilizzano un protocollo **ALOHA**. Le caratteristiche del sistema sono:

- velocità del segmento 1: 1.2 Mbit/s;
- velocità del segmento 2: 800 kbit/s;
- lunghezza delle trame generate dalle stazioni: 1200 byte;
- ritardo di propagazione trascurabile su entrambi i segmenti;

Le stazioni generano le seguenti trame:

- stazione A: una trama (A1) all'istante tA1=415 msec, e una trama (A2) all'istante tA2=435 msec, entrambe dirette a B;
- stazione B: una trama (B1) all'istante tB1=415 msec, e una trama (B2) all'istante tB2=430 msec, entrambe dirette ad A.

In caso di collisione, si supponga che le stazioni decidono di ritrasmettere Z millisecondi dopo la fine della trasmissione della trama corrotta; il numero Z viene deciso secondo il seguente metodo:

- si attende un tempo pari a Z = Sc * N + T, dove
 - Sc = somma delle cifre che compongono l'istante di inizio trasmissione
 - N = numero di collisioni subite da quella trama
 - o T tempo di trama

ad esempio, se l'istante di inizio trasmissione è 418 msec, Z = (4+1+8)*N + T Determinare:

- 1. graficamente le trasmissioni delle diverse trame, indicando se avviene collisione, in quali istanti essa viene eventualmente avvertita e da quali apparati;
- 2. il periodo di vulnerabilità del sistema preso in considerazione.

Università degli Studi di Verona, Dipartimento di Informatica

Reti di Calcolatori, Prof. D. Carra, A.A. 2013/2014 Appello d'esame del 25 Febbraio 2014

Esercizio 2 (7 punti)

Si consideri la rete rappresentata in Figura, collegata ad Internet attraverso il router C (router di default per la rete). Si hanno i seguenti vincoli:

- la LAN 1 contiene un host con indirizzo 76.104.213.12;
- Le LAN 1, 2, e 3 devono poter contenere rispettivamente almeno 300, 1200, e 520 host.

- 1. Si specifichi il blocco CIDR più piccolo da assegnare alla rete;
- 2. Si assegnino gli indirizzi di rete e di broadcast alle LAN 1, 2, e 3, utilizzando il blocco CIDR individuato nel punto precedente.
- 3. Si scriva la tabella di routing del router A, considerando come metrica il numero di hop e assumendo che il router Kabbia annunciato di poter raggiungere qualsiasi host su Internet in 4 hop.

Un'applicazione A deve trasferire 83200 byte all'applicazione B utilizzando il protocollo TCP. Si supponga che la connessione tra A e B sia già stata instaurata. La trasmissione dei segmenti inizia al tempo t=0. Sono noti i seguenti parametri:

- MSS concordata pari a 1300 byte;
- RCVWND annunciata da B ad A pari a 20800 byte; a partire dal tempo $t_a > 11.0$ la destinazione annuncia una RCVWND pari a 15600 byte;
- SSTHRESH iniziale = RCVWND;
- CWND= 1 segmento a t=0;
- RTT pari a 1.0 secondo, costante per tutto il tempo di trasferimento;
- RTO base = 2*RTT; nel caso di perdite consecutive dello stesso segmento, i timeout seguenti raddoppiano fino ad un massimo di 4 volte il RTO base (incluso), dopodiché la connessione viene abbattuta:
- il tempo di trasmissione dei segmenti è trascurabile rispetto RTT;
- il ricevitore riscontra immediatamente i segmenti.

Inoltre si supponga che la rete vada fuori servizio nei seguenti intervalli di tempo:

- da t₁=4.0s a t₂=5.0s;
- da t₃=11.5s a t₄=13.0s;

ATTENZIONE: si assuma inoltre che l'algoritmo Congestion Avoidance sia stato modificato nel seguente modo:

• Per ogni ack ricevuto la CWND aumenta di un valore pari a 2*(#ack ricevuti)/CWND_{old}. L'algoritmo Slow Start, invece, rimane invariato.

Lo studente può ignorare tale modifica e svolgere l'esercizio come di consueto: in tal caso il massimo dei punti ottenibile da questo esercizio scende a 5.

Si tracci l'andamento della CWND nel tempo e si determini in particolare:

- 1. il valore finale di CWND (sia graficamente, sia esplicitandolo);
- 2. i valori assunti dalla SSTHRESH durante il trasferimento (graficamente);
- 3. il tempo necessario per il trasferimento dei dati (sia graficamente, sia esplicitandolo);
- 4. il numero di segmenti trasmessi ad ogni intervallo, specificando se ne vengono ricevuti i riscontri o meno (sia graficamente, sia esplicitando i valori).