

TESTING

CERT #803.01, 803.02, 803.05, 803.06

CELLYNX GROUP, INC. TEST REPORT FOR THE

MOBILE CELLULAR BOOSTER, MD015A

FCC PART 15 SUBPART B SECTIONS 15.107 AND 15.109 CLASS B TESTING

DATE OF ISSUE: JULY 13, 2009

PREPARED FOR:

PREPARED BY:

Cellynx Group, Inc. 5047 Robert J. Matthews El Dorado Hills, CA 95762 Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

W.O. No.: 89227 Date of test: July 8, 2009

Report No.: FC09-114

This report contains a total of 20 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 20 Report No.: FC09-114

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Site File Registration Numbers	
Summary of Results	
Conditions During Testing	
Equipment Under Test (EUT) Description	
Equipment Under Test	5
Peripheral Devices	5
Measurement Uncertainties	6
Report of Emissions Measurements	6
Testing Parameters	6
Conducted Emissions	8
Radiated Emissions	16

Page 2 of 20 Report No.: FC09-114

ADMINISTRATIVE INFORMATION

DATE OF TEST: July 8, 2009 **DATE OF RECEIPT:** July 8, 2009

REPRESENTATIVE: Michael Cecil

MANUFACTURER:TEST LOCATION:Cellynx Group, Inc.CKC Laboratories, Inc.5047 Robert J. Matthews5046 Sierra Pines DriveEl Dorado Hills, CA 95762Mariposa, CA 95338

TEST METHOD: ANSI C63.4 (2003)

PURPOSE OF TEST: To perform testing of the Mobile Cellular Booster, MD015A with the requirements for FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B devices.

APPROVALS

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services Randy Clark, EMC Engineer

SITE FILE REGISTRATION NUMBERS

Location	Japan	Canada	FCC						
Mariposa A	R-563, C-578 & T-1492	3082A-2	90477						

Page 3 of 20 Report No.: FC09-114

SUMMARY OF RESULTS

Test	Specification	Results
Conducted Emissions	FCC Part 15 Subpart B Section 15.107 Class B	Pass
Radiated Emissions	FCC Part 15 Subpart B Section 15.109 Class B	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 20 Report No.: FC09-114

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Mobile Cellular Booster Phone Dock External Antenna

 Manuf:
 Cellynx
 Manuf:
 Cellynx

 Model:
 MD015A
 Model:
 MC016A

 Serial:
 09262100003
 Serial:
 09262100003

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply Cell Phone

Manuf: Sceptre Power Manuf: T-Mobile

Model: S012BU1200100 Model: Black Berry 7100t Serial: NA Serial: 354529001844620

Signal Generator DC Power Supply

Manuf:AgilentManuf:ZurichModel:E4437BModel:DS-304M

Serial: US39260159 Serial: NA

Page 5 of 20 Report No.: FC09-114

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 6 of 20 Report No.: FC09-114

	SAMPLE CALCULATIONS								
	Meter reading	$(dB\mu V)$							
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	$(dB\mu V/m)$							

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 7 of 20 Report No.: FC09-114

CONDUCTED EMISSIONS

Test Setup Photos

Page 8 of 20 Report No.: FC09-114

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group

Specification: FCC 15.107(a) Class B - AVE

Work Order #: 89227 Date: 7/8/2009
Test Type: Conducted Emissions Time: 14:14:11
Equipment: Mobile Cellular Booster Sequence#: 23

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Site A conducted	na	05/10/2009	05/10/2011	MACOND
cable set				
LISN Model 8028-50-	901235 & 903750	04/22/2009	04/22/2011	AN00374
TS-24-BNC				
TTE High Pass Filter	G7753	01/22/2008	01/22/2010	AN02609
10 dB Attn	N/A	01/22/2009	01/22/2011	ANP05624
Attenuator	CKC02229	05/20/2009	05/20/2011	P02229

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003
Phone Dock External	Cellynx	MC016A	09262100003
Antenna			

Support Devices:

Function	Manufacturer	Model #	S/N
Cell Phone	T-Mobile	Black Berry 7100t	354529001844620
DC Power Supply	Zurich	DS-304M	NA
Signal Generator	Agilent	E4437B	US39260159

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source to the external antenna port. The signal generator is set to provide a CW signal at -20dBm output at 1960MHz. The signal generator is located below the floor. The equipment is powered via AC/DC power supply. The phone dock external antenna is connected to the phone dock port. DC power is delivered from the main enclosure to the phone dock. The cell phone is to provide a load for the USB charging port on the external phone dock. All user accessible ports are filled. The service port is not loaded because this is for maintenance only, not accessible to the end user in production units.

Bandwidths used: CISPR

Frequency Range Investigated: 150kHz to 30MHz

Temperature: 25°C Rel Humidity: 40%

Page 9 of 20 Report No.: FC09-114

T1=MACOND T2=CDN AN00274 042200 DV								2229-0520			
	T3=CDN-AN00374-042209-BK Measurement Data: Reading listed by margin.						er 150KH	Iz HP ANO			
#			T1	T2	T3	T4	Dist	Test Lead Corr		Margin	Polar
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Table		Spec	dB	Ant
1	713.595k	17.3	+0.3	+9.9	+0.0	+0.3	+0.0	dBμV 27.8	dBμV 46.0	-18.2	Line
	713.393K Ave	17.3	+0.3	+9.9	+0.0	+0.3	+0.0	21.0	40.0	-10.2	Lille
^	713.600k	39.2	+0.3	+9.9	+0.0	+0.3	+0.0	49.7	46.0	+3.7	Line
	/13.000K	37.2	+0.3	⊤ ⊅.⊅	+0.0	+0.5	+0.0	47.7	40.0	+3.7	Line
3	3.215M	16.5	+0.5	+9.9	+0.1	+0.1	+0.0	27.1	46.0	-18.9	Line
	Ave	10.0	. 0.0		. 0.1		. 0.0			10.5	2
٨	3.215M	39.7	+0.5	+9.9	+0.1	+0.1	+0.0	50.3	46.0	+4.3	Line
5	2.204M	16.3	+0.4	+9.9	+0.1	+0.2	+0.0	26.9	46.0	-19.1	Line
	Ave										
^	2.204M	40.4	+0.4	+9.9	+0.1	+0.2	+0.0	51.0	46.0	+5.0	Line
7	4.868M	15.3	+0.6	+9.9	+0.1	+0.1	+0.0	26.0	46.0	-20.0	Line
	Ave										
^	4.868M	40.7	+0.6	+9.9	+0.1	+0.1	+0.0	51.4	46.0	+5.4	Line
9	4.499M	15.2	+0.6	+9.9	+0.1	+0.1	+0.0	25.9	46.0	-20.1	Line
	Ave										
^	4.499M	42.5	+0.6	+9.9	+0.1	+0.1	+0.0	53.2	46.0	+7.2	Line
11	5 60 2 001	15.6	0.2	0.0	0.0	0.0	0.0	25.0	460	20.1	T ·
11	560.280k	15.6	+0.2	+9.8	+0.0	+0.3	+0.0	25.9	46.0	-20.1	Line
^	Ave	27.6	.0.2	.0.0	. 0. 0	.0.2	. 0. 0	47.0	46.0	. 1.0	т
	560.300k	37.6	+0.2	+9.8	+0.0	+0.3	+0.0	47.9	46.0	+1.9	Line
13	847.070k	15.2	+0.3	+9.9	+0.1	+0.3	+0.0	25.8	46.0	-20.2	Line
	Ave	13.2	+0.3	+9.9	+0.1	+0.3	+0.0	23.6	40.0	-20.2	Line
^	847.070k	41.0	+0.3	+9.9	+0.1	+0.3	+0.0	51.6	46.0	+5.6	Line
	047.070K	41.0	+0.5	⊤ 2.2	+0.1	+0.5	+0.0	31.0	40.0	+3.0	Line
15	3.071M	15.1	+0.5	+9.9	+0.1	+0.1	+0.0	25.7	46.0	-20.3	Line
	Ave	13.1	10.5	1 2.2	10.1	10.1	10.0	23.1	10.0	20.5	Line
^	3.071M	43.4	+0.5	+9.9	+0.1	+0.1	+0.0	54.0	46.0	+8.0	Line
	/		. 0.0							. 0.0	
17	2.366M	14.5	+0.5	+9.9	+0.1	+0.2	+0.0	25.2	46.0	-20.8	Line
	Ave										
^	2.366M	41.9	+0.5	+9.9	+0.1	+0.2	+0.0	52.6	46.0	+6.6	Line
19	3.926M	14.2	+0.6	+9.9	+0.2	+0.1	+0.0	25.0	46.0	-21.0	Line
	Ave										
^	3.926M	42.7	+0.6	+9.9	+0.2	+0.1	+0.0	53.5	46.0	+7.5	Line
21	2.627M	14.3	+0.5	+9.9	+0.1	+0.1	+0.0	24.9	46.0	-21.1	Line
	Ave										
^	2.627M	40.0	+0.5	+9.9	+0.1	+0.1	+0.0	50.6	46.0	+4.6	Line

Page 10 of 20 Report No.: FC09-114

23	951.264k	14.3	+0.3	+9.9	+0.0	+0.2	+0.0	24.7	46.0	-21.3	Line
	Ave										
٨	951.260k	38.0	+0.3	+9.9	+0.0	+0.2	+0.0	48.4	46.0	+2.4	Line
25	784.072k	13.6	+0.3	+9.9	+0.1	+0.3	+0.0	24.2	46.0	-21.8	Line
	Ave										
٨	784.070k	39.1	+0.3	+9.9	+0.1	+0.3	+0.0	49.7	46.0	+3.7	Line
27	3.470M	13.4	+0.5	+9.9	+0.2	+0.1	+0.0	24.1	46.0	-21.9	Line
	Ave										
٨	3.470M	39.4	+0.5	+9.9	+0.2	+0.1	+0.0	50.1	46.0	+4.1	Line
29	887.111k	12.8	+0.3	+9.9	+0.1	+0.2	+0.0	23.3	46.0	-22.7	Line
	Ave										
^	887.110k	38.8	+0.3	+9.9	+0.1	+0.2	+0.0	49.3	46.0	+3.3	Line
31	643.382k	11.1	+0.2	+9.8	+0.0	+0.3	+0.0	21.4	46.0	-24.6	Line
	Ave										
٨	643.400k	38.3	+0.2	+9.8	+0.0	+0.3	+0.0	48.6	46.0	+2.6	Line
33	1.082M	10.4	+0.3	+9.9	+0.0	+0.2	+0.0	20.8	46.0	-25.2	Line
	Ave										
٨	1.082M	38.3	+0.3	+9.9	+0.0	+0.2	+0.0	48.7	46.0	+2.7	Line

CKC Laboratories, Inc. Date: 7/8/2009 Time: 14:14:11 Cellynx Group WO#: 89227 FCC 15.107(a) Class B - AVE Test Lead: Line 120V 60Hz Sequence#: 23 Ext ATTN: 0 dB Cellynx Model: MD015A

Page 11 of 20 Report No.: FC09-114

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group

Specification: FCC 15.107(a) Class B - AVE

Work Order #: 89227 Date: 7/8/2009
Test Type: Conducted Emissions Time: 14:44:31
Equipment: Mobile Cellular Booster Sequence#: 24

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

1 1				
Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Site A conducted	na	05/10/2009	05/10/2011	MACOND
cable set				
LISN Model 8028-50-	901235 & 903750	04/22/2009	04/22/2011	AN00374
TS-24-BNC				
TTE High Pass Filter	G7753	01/22/2008	01/22/2010	AN02609
10 dB Attn	N/A	01/22/2009	01/22/2011	ANP05624

Equipment Under Test (* = EUT):

-4F	— /-		
Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003
Phone Dock External	Cellynx	MC016A	09262100003
Antenna			

Support Devices:

~ F F			
Function	Manufacturer	Model #	S/N
Cell Phone	T-Mobile	Black Berry 7100t	354529001844620
DC Power Supply	Zurich	DS-304M	NA
Signal Generator	Agilent	E4437B	US39260159

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source to the external antenna port. The signal generator is set to provide a CW signal at -20dBm output at 1960MHz. The signal generator is located below the floor. The equipment is powered via AC/DC power supply. The phone dock external antenna is connected to the phone dock port. DC power is delivered from the main enclosure to the phone dock. The cell phone is to provide a load for the USB charging port on the external phone dock. All user accessible ports are filled. The service port is not loaded because this is for maintenance only, not accessible to the end user in production units.

Bandwidths used: CISPR

Frequency Range Investigated: 150kHz to 30MHz

Temperature: 25°C Rel Humidity: 40%

Page 12 of 20 Report No.: FC09-114

T1=MACOND	T2=ATT-ANP02229-052009-10dB
T3=CDN-AN00374-042209-WT	T4=Filter 150kHz HP AN02609

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	713.700k Ave	24.0	+0.3	+9.9	+0.5	+0.3	+0.0	35.0	46.0	-11.0	Neutr
٨	713.700k	39.3	+0.3	+9.9	+0.5	+0.3	+0.0	50.3	46.0	+4.3	Neutr
3	4.784M Ave	22.1	+0.6	+9.9	+0.7	+0.1	+0.0	33.4	46.0	-12.6	Neutr
٨		41.4	+0.6	+9.9	+0.7	+0.1	+0.0	52.7	46.0	+6.7	Neutr
5	4.464M Ave	21.4	+0.6	+9.9	+0.6	+0.1	+0.0	32.6	46.0	-13.4	Neutr
٨		41.2	+0.6	+9.9	+0.6	+0.1	+0.0	52.4	46.0	+6.4	Neutr
7	4.120M Ave	21.2	+0.6	+9.9	+0.6	+0.1	+0.0	32.4	46.0	-13.6	Neutr
٨		41.6	+0.6	+9.9	+0.6	+0.1	+0.0	52.8	46.0	+6.8	Neutr
9	2.568M Ave	20.5	+0.5	+9.9	+0.6	+0.1	+0.0	31.6	46.0	-14.4	Neutr
٨	2.568M	41.3	+0.5	+9.9	+0.6	+0.1	+0.0	52.4	46.0	+6.4	Neutr
11	3.144M Ave	20.5	+0.5	+9.9	+0.6	+0.1	+0.0	31.6	46.0	-14.4	Neutr
٨	3.144M	43.4	+0.5	+9.9	+0.6	+0.1	+0.0	54.5	46.0	+8.5	Neutr
13	779.400k Ave	20.3	+0.3	+9.9	+0.6	+0.3	+0.0	31.4	46.0	-14.6	Neutr
٨	779.400k	40.8	+0.3	+9.9	+0.6	+0.3	+0.0	51.9	46.0	+5.9	Neutr
15	852.800k Ave	19.9	+0.3	+9.9	+0.5	+0.3	+0.0	30.9	46.0	-15.1	Neutr
٨		40.8	+0.3	+9.9	+0.5	+0.3	+0.0	51.8	46.0	+5.8	Neutr
17	3.640M Ave	19.2	+0.5	+9.9	+0.6	+0.1	+0.0	30.3	46.0	-15.7	Neutr
٨		41.1	+0.5	+9.9	+0.6	+0.1	+0.0	52.2	46.0	+6.2	Neutr
19	1.066M Ave	19.0	+0.3	+9.9	+0.5	+0.2	+0.0	29.9	46.0	-16.1	Neutr
٨		41.1	+0.3	+9.9	+0.5	+0.2	+0.0	52.0	46.0	+6.0	Neutr
21	2.460M Ave	18.7	+0.5	+9.9	+0.6	+0.1	+0.0	29.8	46.0	-16.2	Neutr
٨		41.5	+0.5	+9.9	+0.6	+0.1	+0.0	52.6	46.0	+6.6	Neutr

Page 13 of 20 Report No.: FC09-114

23	641.800k	18.3	+0.2	+9.8	+0.5	+0.3	+0.0	29.1	46.0	-16.9	Neutr
	Ave										
٨	641.800k	38.3	+0.2	+9.8	+0.5	+0.3	+0.0	49.1	46.0	+3.1	Neutr
	011.000K	30.3	10.2	17.0	10.5	10.5	10.0	15.1	10.0	13.1	110411
2.5	006 2001	10.1	0.2	0.0	0.5	0.0	0.0	20.0	160	17.0	NT .
25	906.300k	18.1	+0.3	+9.9	+0.5	+0.2	+0.0	29.0	46.0	-17.0	Neutr
1	Ave										
^	906.300k	37.6	+0.3	+9.9	+0.5	+0.2	+0.0	48.5	46.0	+2.5	Neutr
27	5.140M	21.3	+0.6	+9.9	+0.7	+0.1	+0.0	32.6	50.0	-17.4	Neutr
		21.3	10.0	17.7	10.7	10.1	10.0	32.0	30.0	17.1	11000
	Ave	44.5			0.5	0.1	0.0	72 0	7 0.0	2.0	
^	5.140M	41.6	+0.6	+9.9	+0.7	+0.1	+0.0	52.9	50.0	+2.9	Neutr
29	570.800k	17.3	+0.2	+9.8	+0.5	+0.3	+0.0	28.1	46.0	-17.9	Neutr
	Ave										
٨	570.800k	37.8	+0.2	+9.8	+0.5	+0.3	+0.0	48.6	46.0	+2.6	Neutr
	370.000K	37.0	+0.2	⊤ 2.0	+0.5	+0.5	+0.0	40.0	40.0	+2.0	rvcuu
31	999.200k	17.2	+0.3	+9.9	+0.5	+0.2	+0.0	28.1	46.0	-17.9	Neutr
1	Ave										
٨	999.200k	41.3	+0.3	+9.9	+0.5	+0.2	+0.0	52.2	46.0	+6.2	Neutr
33	5.568M	19.5	+0.7	+9.9	+0.6	+0.1	+0.0	30.8	50.0	-19.2	Neutr
		19.5	+0.7	⊤ フ.フ	+0.0	+0.1	+0.0	30.6	30.0	-19.2	Neuu
	Ave										
٨	5.568M	39.9	+0.7	+9.9	+0.6	+0.1	+0.0	51.2	50.0	+1.2	Neutr
35	1.149M	15.1	+0.3	+9.9	+0.5	+0.2	+0.0	26.0	46.0	-20.0	Neutr
	Ave										
^		39.0	+0.3	+9.9	10.5	10.2	+0.0	49.9	46.0	+3.9	Neutr
``	1.149M	39.0	+0.5	+9.9	+0.5	+0.2	+0.0	49.9	40.0	+3.9	meuu.
37	5.880M	18.4	+0.7	+9.9	+0.6	+0.1	+0.0	29.7	50.0	-20.3	Neutr
1	Ave										
٨	5.880M	36.1	+0.7	+9.9	+0.6	+0.1	+0.0	47.4	50.0	-2.6	Neutr
	2.0001/1	50.1	10.7	1 7 . 7	. 0.0		10.0	.,	20.0	2.0	11000
1											

Page 14 of 20 Report No.: FC09-114

CKC Laboratories, Inc. Date: 7/8/2009 Time: 14:44:31 Cellynx Group WO#: 89227 FCC 15.107(a) Class B - AVE Test Lead: Neutral 120V 60Hz Sequence#: 24 Ext ATTN: 0 dB Cellynx Model: MD015A

Page 15 of 20 Report No.: FC09-114

RADIATED EMISSIONS

Test Setup Photos

Page 16 of 20 Report No.: FC09-114

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: 15.109(b) CLASS B

Work Order #: 89227 Date: 7/8/2009
Test Type: Maximized Emissions Time: 10:45:43
Equipment: Mobile Cellular Booster Sequence#: 21

Manufacturer: Cellynx Tested By: Randal Clark

Model: MD015A S/N: 09262100003

Test Equipment:

z est z quipitetti				
Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Site A 10 meter cable	e	05/10/2009	05/10/2011	MA10M
set				
6dB Attenuator	none	05/20/2009	05/20/2011	ANP05656
HP-8447D Preamp	2727A05444	06/20/2008	06/20/2010	AN00062
Antenna, Bilog	2455	12/22/2008	12/22/2010	AN01992

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003
Phone Dock External	Cellynx	MC016A	09262100003
Antenna			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Cell Phone	T-Mobile	Black Berry 7100t	354529001844620
Signal Generator	Agilent	E4437B	US39260159

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source to the external antenna port. The signal generator is set to provide a CW signal at -20dBm output at 1960MHz. The signal generator is located below the floor. The equipment is powered via AC/DC power supply. The phone dock external antenna is connected to the phone dock port. DC power is delivered from the main enclosure to the phone dock. The cell phone is to provide a load for the USB charging port on the external phone dock. All user accessible ports are filled. The service port is not loaded because this is for maintenance only, not accessible to the end user in production units.

Bandwidths used: CISPR

Frequency Range Investigated: 30MHz to 1GHz

Temperature: 25°C Rel Humidity: 40%

Emissions reported are ambient noise floor readings. No EUT emissions detected above the noise floor.

Page 17 of 20 Report No.: FC09-114

T1=AMP-AN00062-062008	T2=ATT-ANP05656-052009-6dB
T3=MA10M	T4=ANT AN01992 25-1000MHz

Measui	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 10 Metei	rs	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	504.000M	26.7	-30.5	+5.9	+5.7	+18.7	+10.0	36.5	46.0	-9.5	Vert
2	504.000M	26.3	-30.5	+5.9	+5.7	+18.7	+10.0	36.1	46.0	-9.9	Horiz
3	48.000M	32.7	-30.7	+5.8	+1.6	+10.3	+10.0	29.7	40.0	-10.3	Vert
4	48.000M	29.1	-30.7	+5.8	+1.6	+10.3	+10.0	26.1	40.0	-13.9	Horiz
5	112.000M	28.3	-30.6	+5.8	+2.5	+10.7	+10.0	26.7	43.5	-16.8	Horiz
6	112.000M	26.8	-30.6	+5.8	+2.5	+10.7	+10.0	25.2	43.5	-18.3	Vert

Page 18 of 20 Report No.: FC09-114

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: 15.109(b) CLASS B

Work Order #: 89227 Date: 7/8/2009
Test Type: Maximized Emissions Time: 11:20:50
Equipment: Mobile Cellular Booster Sequence#: 22

Manufacturer: Cellynx Tested By: Randal Clark

Model: MD015A S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Site A 10 meter cable	;	05/10/2009	05/10/2011	MA10M
set				
6dB Attenuator	none	05/20/2009	05/20/2011	ANP05656
HP-8447D Preamp	2727A05444	06/20/2008	06/20/2010	AN00062
Antenna, Bilog	2455	12/22/2008	12/22/2010	AN01992

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003
Phone Dock External	Cellynx	MC016A	09262100003
Antenna			

Support Devices:

Function	Manufacturer	Model #	S/N
Cell Phone	T-Mobile	Black Berry 7100t	354529001844620
DC Power Supply	Zurich	DS-304M	NA
Signal Generator	Agilent	E4437B	US39260159

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source to the external antenna port. The signal generator is set to provide a CW signal at -20dBm output at 1960MHz. The signal generator is located below the floor. The equipment is powered via DC power supply. The phone dock external antenna is connected to the phone dock port. DC power is delivered from the phone dock to the main enclosure. The cell phone is to provide a load for the USB charging port on the external phone dock. All user accessible ports are filled. The service port is not loaded because this is for maintenance only, not accessible to the end user in production units. The DC power input port on the EUT is not used in this configuration - the AC and DC powered options are mutually exclusive.

Bandwidths used: CISPR

Frequency Range Investigated: 30MHz to 1GHz

Temperature: 25°C Rel Humidity: 40%

Emissions reported are ambient noise floor readings. No EUT emissions detected above the noise floor.

Page 19 of 20 Report No.: FC09-114

T1=AMP-AN00062-062008	T2=ATT-ANP05656-052009-6dB
T3=MA10M	T4=ANT AN01992 25-1000MHz

Measui	rement Data:	Re	eading lis	ted by ma	ırgin.		Тє	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	48.000M	33.0	-30.7	+5.8	+1.6	+10.3	+10.0	30.0	40.0	-10.0	Vert
2	504.000M	26.1	-30.5	+5.9	+5.7	+18.7	+10.0	35.9	46.0	-10.1	Horiz
3	504.000M	25.9	-30.5	+5.9	+5.7	+18.7	+10.0	35.7	46.0	-10.3	Vert
4	48.000M	28.4	-30.7	+5.8	+1.6	+10.3	+10.0	25.4	40.0	-14.6	Horiz
5	112.000M	27.2	-30.6	+5.8	+2.5	+10.7	+10.0	25.6	43.5	-17.9	Vert
6	112.000M	26.4	-30.6	+5.8	+2.5	+10.7	+10.0	24.8	43.5	-18.7	Horiz

Page 20 of 20 Report No.: FC09-114