

Università degli Studi di Genova

Fondamenti di Computazione Quantistica

Lorenzo Vaccarecci

Indice

T	Fisi	ca dell	la computazione	2						
	1.1	Porte logiche universali								
	1.2	Opera	zioni Bit-a-Bit	2						
		1.2.1	Prodotto interno bit-per-bit							
		1.2.2	Somma bit-per-bit: bitwise XOR	3						
2	App	parato	matematico	4						
	2.1	2.1 Prerequisiti matematici								
		2.1.1	Numeri complessi	4						
		2.1.2	Spazi vettoriali in 2D	4						
		2.1.3	Prodotto scalare e componenti	5						
		2.1.4	Vettori ket e bra	5						
		2.1.5	Prodotto tensore	6						
		2.1.6	Operatori lineari	6						
		2.1.7	Autovalori e Autovettori	7						
3	Intr	oduzio	one ai fenomeni quantistici	8						
	3.1									
	3.2		globale e relativa							
		3.2.1								
	3.3	Stati a	a molti qubit							
		3.3.1	Stati a due qubit separabili	Ö						
		3 3 9	Stati a due qubit entangled	C						

Capitolo 1

Fisica della computazione

1.1 Porte logiche universali

- NOT(A) $\equiv \bar{A}$
- AND(A,B) $\equiv A \cdot B$ oppure $A \wedge B$
- OR(A,B) $\equiv A + B$ oppure $A \vee B$
- XOR(A,B) $\equiv A \oplus B = (A+B) \mod 2$
- NAND(A,B) $\equiv A \cdot B$ oppure $A \vee B$
- NOR(A,B) $\equiv A + B$ oppure $A \wedge B$

L'insieme di AND e NOT oppure di OR e NOT sono insiemi universali. Questo significa che, ad esempio, usando solo combinazioni di porte AND e NOT è possibile implementare una qualsiasi funzione booleana. Pur formando set universali, le porte AND, OR, NAND e NOR sono però **irreversibili**. A livello concettuale è interessante introdurre delle porte logiche che siano **reversibili**. Questo vuol dire che se combiniamo in sequenza una porta logica reversibile con la sua inversa, riotteniamo l'informazione originale. La porta di Fredkin può essere interpretata come uno *switch* controllato di bit. Il bit di controllo è A; se questo è acceso i bit B e C vengono scambiati, altrimenti vengono lasciati identici.

A	В	С	Out1	Out2	Out3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1

1.2 Operazioni Bit-a-Bit

A una stringa di n bit possiamo associare un intero compreso fra 0 e N-1 con $N=2^n$. All'intero x associamo la stringa di bit $x_0x_1x_2...x_n$ con $x_i=0,1$ e i=0,1,...,n tale che $x=\sum_{i=0}^n x_i 2^{n-i}$. Possiamo codificare $N=2^n$ interi ma questi saranno compresi fra 0 e $N-1=2^n-1$.

1.2.1 Prodotto interno bit-per-bit

$$x \cdot z \equiv (x_1 z_1 + x_2 z_2 + \dots + x_n z_n) \mod 2$$

E' anche chiamato prodotto AND bitwise perchè si ottiene prendendo le operazioni AND fra i singoli bit.

1.2.2 Somma bit-per-bit: bitwise XOR

Indichiamo con $x \oplus z$ la somma bit-per bit, modulo 2. Il risultato questa volta è una stringa il cui *i*-esimo bit ha il valore $x_i + z_i \mod 2 = x_i$ XOR z_i .

Capitolo 2

Apparato matematico

2.1 Prerequisiti matematici

2.1.1 Numeri complessi

Ogni numero complesso $z \in \mathbb{C}$ può essere scritto come z = a + ib, con $a \in \mathbb{R}$ parte reale e $b \in \mathbb{R}$ parte immaginaria. Se z = a + ib e w = c + id, abbiamo

$$z + w = (a+c) + i(b+d)$$

$$z \cdot w = (ac - bd) + i(ad + bc)$$

Per ogni $z \in \mathbb{C}$, $z \cdot z^* = a^2 + b^2$ è reale e non negativo dove z^* è il **complesso coniugato** di z (la parte complessa è negata). Inoltre, $\sqrt{a^2 + b^2} = |z|$ è detto **modulo** di z.

$$|z|^2 = z \cdot z^*$$

Possiamo rappresentare un numero complesso z=a+ib come una coppia (a,b) sul piano complesso. L'asse delle ascisse è utilizzato per la parte reale e l'asse delle ordinate per la parte immaginaria. Si ha $a=|z|\cos\theta$ e $b=|z|\sin\theta$ dove θ è la **fase**. Se z=0 allora θ non è definita. Per $|z|=1, z=\cos\theta+i\sin\theta$. Più in generale possiamo scrivere $z=pe^{i\theta}$ con p=|z| e $e^{i\theta}=\cos\theta+i\sin\theta$.

2.1.2 Spazi vettoriali in 2D

- Direzione: rappresentata dalla retta su cui giace il vettore
- Verso: specifica in che direzione punta il vettore

Se abbiamo due vettori u e v possiamo definire la somma che sarà un vettore w = u + v ottenuto mediante la **regola del parallelogramma**.

Dato un numero $\alpha \in \mathbb{R}$, per ogni vettore v, possiamo definire il vettore αv è la freccia ottenuta moltiplicando v per α in modulo e lasciando invariata la direzione se $\alpha > 0$ e invertendo il verso se $\alpha < 0$. Questa operazione è detta **moltiplicazione per scalare**. Se $\alpha = -1$, otteniamo il vettore -v che ha stesso modulo, stessa direzione ma verso opposto a v.

L'insieme di tutti i vettori del piano è allora uno spazio vettoriale reale V chiuso rispetto all'operazione di combinazione lineare:

$$u = \alpha v + \beta w$$

Per ogni vettore $u \in V \in V$ e per ogni $\alpha, \beta \in \mathbb{R}$.

2.1.3 Prodotto scalare e componenti

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$$

Che soddisfa le seguenti proprietà:

1. $\forall u \in V, \langle u, u \rangle$ è un numero reale non negativo, con $\langle u, u \rangle = 0 \iff u = 0$

2.
$$\forall u, v \in V, \langle u, v \rangle = \langle v, u \rangle^*$$

3.
$$\forall u, v, w \in V, \forall \alpha, \beta \in \mathbb{C}, \langle w, \alpha u + \beta v \rangle = \alpha \langle w, u \rangle + \beta \langle w, v \rangle$$

Due vettori per i quali il prodotto scalare è nullo sono *ortogonali*, sono base ortogonali se sono ortogonali e a norma unitaria ($\|<\cdot,\cdot>\|_2=1$). Inoltre riscrivendo $u=u_0v_0+u_1v_1$ si ha:

$$\langle u, u \rangle = \langle u_0 v_0 + u_1 v_1, u_0 v_0 + u_1 v_1 \rangle = u_0^2 + u_1^2$$

Dove $u_0 = \langle u, v_0 \rangle$ e $u_1 = \langle u, v_1 \rangle$

2.1.4 Vettori ket e bra

• **Ket**: vettore $u \to |u\rangle$

• Bra: vettore $u \to \langle u |$

Usando questa notazione il prodotto scalare si forma con braket:

$$\langle u, v \rangle = \langle u | v \rangle$$

Usando la scomposizione di v in componenti:

•
$$|v\rangle = u_0|v_0\rangle + u_1|v_1\rangle$$

•
$$\langle v | = u_0^* \langle v_0 | + u_1^* \langle v_1 |$$

Delta di Kronecker

$$\langle v_i, v_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

Usando queste notazioni possiamo scrivere il prodotto scalare come:

$$\langle v|v\rangle = (u_0^* \langle v_0| + u_1^* \langle v_1|) \cdot (u_0|v_0\rangle + u_1|v_1\rangle)$$

$$= |u_0|^2 \langle v_0|v_0\rangle + u_0^* u_1 \langle v_0|v_1\rangle + u_1^* u_0 \langle v_1|v_0\rangle + |u_1|^2 \langle v_1|v_1\rangle$$

$$= |u_0|^2 \cdot 1 + u_0^* u_1 \cdot 0 + u_1^* u_0 \cdot 0 + |u_1|^2 \cdot 1$$

$$= |u_0|^2 + |u_1|^2$$

$$= ||v\rangle|^2$$

2.1.5 Prodotto tensore

Consideriamo ora due spazi vettoriali V e W con basi, rispettivamente, $A = \{|\alpha_1\rangle_V, \ldots, |\alpha_n\rangle_V\}$ e $B = \{|\beta_1\rangle_W, \ldots, |\beta_m\rangle_W\}$. Da questa scrittura deduciamo che V è uno spazio vettoriale di dimensione n e W di dimensione m.

Il prodotto tendore di V e W viene indicato con $V \otimes W$ ha dimensione dim $(V \otimes W) = n m$ con la base costituita da n m elementi della forma $|\alpha_i\rangle_V \otimes |\beta_i\rangle_W$.

La notazione $|\alpha_i\rangle_V\otimes|\beta_j\rangle_W$ può essere scritta come $|\alpha_i\beta_j\rangle$. Proprietà:

1.
$$\forall |v\rangle, |v'\rangle \in V, |w\rangle \in W \quad (|v\rangle + |v'\rangle) \otimes |w\rangle = |v\rangle \otimes |w\rangle + |v'\rangle \otimes |w\rangle$$

2.
$$\forall |v\rangle \in V, |w\rangle, |w'\rangle \in W \quad |v\rangle \otimes (|w\rangle + |w'\rangle) = |v\rangle \otimes |w\rangle + |v\rangle \otimes |w'\rangle$$

3.
$$\forall |v\rangle \in V, |w\rangle \in W, \alpha \in \mathbb{C} \quad (\alpha |v\rangle) \otimes |w\rangle = |v\rangle \otimes (\alpha |w\rangle) = \alpha (|v\rangle \otimes |w\rangle)$$

Se V e W ammettono prodotto scalare, allora $V\otimes W$ ammette un prodotto scalare definito come:

$$\langle u|u'\rangle = (\langle v|\otimes\langle w|)\cdot(|v'\rangle\otimes|w'\rangle) = \langle v|v'\rangle\cdot\langle w|w'\rangle\in\mathbb{C}$$

Alcune "proprietà":

1.
$$(\langle \alpha_1 | \otimes \langle \beta_2 |) \cdot (|\alpha_1 \rangle \otimes |\beta_2 \rangle) = \langle \alpha_1 | \alpha_1 \rangle \cdot \langle \beta_2 | \beta_2 \rangle = 1$$

2.
$$\{|\alpha_i\rangle\otimes|\beta_i\rangle\}$$
 è una base ortonormale $V\otimes W$

• Se
$$\langle \alpha_i | \alpha_k \rangle \cdot \langle \beta_i | \beta_l \rangle = 1 \rightarrow \text{normalizzati}$$

• Se
$$\langle \alpha_i | \alpha_k \rangle \cdot \langle \beta_i | \beta_l \rangle = 0 \rightarrow \text{ortogonali}$$

Esempio

$$|v\rangle = a|\alpha_1\rangle_V + b|a_2\rangle_V \in V$$

$$|w\rangle = c|\beta_1\rangle_W + d|\beta_2\rangle_W \in W$$

$$|v\rangle \otimes |w\rangle = (a|\alpha_1\rangle_V + b|\alpha_2\rangle_V) \otimes (c|\beta_1\rangle_W + d|\beta_2\rangle_W)$$

$$= ac(|\alpha_1\rangle_V \otimes |\beta_1\rangle_W) + ad(|\alpha_1\rangle_V \otimes |\beta_2\rangle_W) + bc(|\alpha_2\rangle_V \otimes |\beta_1\rangle_W) + bd(|\alpha_2\rangle_V \otimes |\beta_2\rangle_W)$$

$$\langle v| \otimes \langle w| = (a\langle\alpha_1|_V + b\langle\alpha_2|_V) \otimes (c\langle\beta_1|_W + d\langle\beta_2|_W)$$

$$= ac(\langle\alpha_1|_V \otimes \langle\beta_1|_W) + ad(\langle\alpha_1|_V \otimes \langle\beta_2|_W) + bc(\langle\alpha_2|_V \otimes \langle\beta_1|_W) + bd(\langle\alpha_2|_V \otimes \langle\beta_2|_W)$$

$$(\langle v|\otimes \langle w|)\cdot (|v\rangle\otimes |w\rangle) = [(a\langle \alpha_1|_V + b\langle \alpha_2|_V)\otimes (c\langle \beta_1|_W + d\langle \beta_2|_W)]\cdot [(a|\alpha_1\rangle_V + b|\alpha_2\rangle_V)\otimes (c|\beta_1\rangle_W + d|\beta_2\rangle_W)]$$

$$=$$

$$= (|a|^2 + |b|^2)\cdot (|c|^2 + |d|^2)$$

2.1.6 Operatori lineari

Gli operatori lineari in generale sono tali che agendo su un vettore dello spazio lineare danno un altro vettore dello stesso spazio: $O: V \to V$. Usando la notazione braket possiamo scrivere

$$O|v\rangle = |w\rangle$$

Scegliamo una base (ortonormale) dello spazio vettoriale $\{|\alpha_1\rangle, \ldots, |\alpha_n\rangle\}$, l'elemento della matrice O in posizione (i, j) sarà $O_{ij} = \langle \alpha_i | \cdot (O|\alpha_j \rangle)$

Esempio

Voglio calcolare O_{12} :

$$O_{12} = \langle \alpha_1 | \left(\sum_{ij}^n O_{ij} | \alpha_i \rangle \langle \alpha_j | \right) | \alpha_2 \rangle$$
$$= \sum_{ij}^n O_{ij} \langle \alpha_1 | \alpha_i \rangle \langle \alpha_j | \alpha_2 \rangle$$
$$= O_{12}$$

Grazie al delta di Kronecker.

2.1.7 Autovalori e Autovettori

Diremo che se $O|v\rangle = \lambda |v\rangle$ per un vettore non nullo $|v\rangle$, diremo che v è un **autovettore** di O e λ è l'**autovalore** corrispondente.

Capitolo 3

Introduzione ai fenomeni quantistici

Un osservabile fisico può essere associato ad un operatore Hermittiano ϕ da cui possiamo ottenere i loro autovalori e autovettori. Il punto fondamentale di questa discussione è che la base, gli autovalori e il risultato dipende dall'osservabile che vogliamo misurare.

3.1 Regole dal postulato della misura

- 1. Se vogliamo misurare un osservabile ϕ , dobbiamo conoscere i suoi autovalori $\{\phi_i\}$ e autovettori $\{|\phi_i\rangle\}$; cioè gli stati tali che $\phi|\phi_i\rangle = \phi_i|\phi_i\rangle$. Gli autovettori saranno la base su cui decomporre lo stato del nostro sistema. Ovvero dobbiamo scrivere $|a\rangle = \sum_i a_i |\phi_i\rangle$ con $a_i = \langle \phi_i | a \rangle$.
- 2. La misura avrà come risultato l'autovalore ϕ_i con probabilità $|a_i|^2$.
- 3. Dopo la misura, il sistema si troverà nello stato $|\phi_i\rangle$ associato all'autovalore misurato.

Stati quantistici sono normalizzati:

$$\sum_{i=1}^{N} |a_i|^2 = 1$$

3.2 Fase globale e relativa

3.2.1 Fase globale

Consideriamo i vettori $|u\rangle$ e $e^{i\phi}|u\rangle$ che hanno lo stesso modulo ma differiscono per una fase globale ϕ . Il calcolo delle probabilità dei risultati di una qualunque misura fornisce sempre gli stessi valori.

Sia $|u\rangle \sum_i \alpha_i |\phi_i\rangle$ dove $\{|\phi_i\rangle\}$ formano una base ortonormale dello spazio vettoriale. Lo stato con una fase globale si scriverà $e^{i\phi}|u\rangle = \sum_i e^{i\phi}\alpha_i |\phi_i\rangle$

Esempio di fase globale/relativa Fase relativa
$$e^{i\phi}\frac{(|0\rangle+e^{i(\gamma-\phi)}|1\rangle)}{\sqrt{2}}$$
 Fase globale

3.3 Stati a molti qubit

• Base del qubit: $\{|0\rangle, |1\rangle\}$

• Stato: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Consideriamo:

A:
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

B: $|\phi\rangle = \gamma|0\rangle + \delta|1\rangle$ (3.1)

La base B la otteniamo con:

$$|\psi\rangle \oplus |\phi\rangle = (\alpha|0\rangle + \beta|1\rangle) \oplus (\gamma|0\rangle + \delta|1\rangle)$$
$$= \alpha\gamma|00\rangle + \alpha\delta|01\rangle + \beta\gamma|10\rangle + \beta\delta|11\rangle$$

Per ricavare la base ci fermiamo al secondo passaggio, quindi avremo $B: \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.

3.3.1 Stati a due qubit separabili

Usando $|\psi\rangle$ e $|\phi\rangle$ (3.1), a volte conviene scrivere lo stato come:

$$|\psi\rangle \oplus |\phi\rangle = \alpha|0\rangle \oplus (\gamma|0\rangle + \delta|1\rangle) + \beta|1\rangle \oplus (\gamma|0\rangle + \delta|1\rangle)$$

Perchè in questo modo si possono determinare le probabilità di collasso in modo più semplice:

$$\begin{cases} \text{Se collassa } \alpha \colon |\alpha|^2, \phi_0 \to |0\rangle \oplus (\gamma|0\rangle + \delta|1\rangle) = \begin{cases} \text{Se collassa } \gamma \colon |\gamma|^2, \phi_0 \to |00\rangle \\ \text{Se collassa } \delta \colon |\delta|^2, \phi_1 \to |01\rangle \end{cases} \\ \text{Se collassa } \beta \colon |\beta|^2, \phi_1 \to |1\rangle \oplus (\gamma|0\rangle + \delta|1\rangle) = \begin{cases} \text{Se collassa } \gamma \colon |\gamma|^2, \phi_0 \to |01\rangle \\ \text{Se collassa } \delta \colon |\beta|^2, \phi_1 \to |11\rangle \end{cases} \end{cases}$$

Esempio

$$|\varepsilon\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)? = |\psi\rangle \oplus |\phi\rangle$$

$$= \frac{1}{\sqrt{2}} (|01\rangle) + \frac{1}{\sqrt{2}} (|10\rangle) = \begin{cases} \text{Se collassa } |01\rangle: \frac{1}{2}, \phi_0 \to |01\rangle \to 1, \phi_0 \to |01\rangle \\ \text{Se collassa } |10\rangle: \frac{1}{2}, \phi_1 \to |10\rangle \to 1, \phi_1 \to |10\rangle \end{cases}$$

Possiamo dedurre che se A misura 0, B misura 1 e viceversa.

3.3.2 Stati a due qubit entangled

Gli elementi dello spazio vettoriale $A \oplus B$ non sono tutti ottenibili come prodotto tensoriale di due elementi di $A \in B$.

Un esempio di stati entangled sono gli stati di Bell:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}} (|0\rangle_{A} \oplus |0\rangle_{B} + |1\rangle_{A} \oplus |1\rangle_{B})$$

$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}} (|0\rangle_{A} \oplus |0\rangle_{B} - |1\rangle_{A} \oplus |1\rangle_{B})$$

$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}} (|0\rangle_{A} \oplus |1\rangle_{B} + |1\rangle_{A} \oplus |0\rangle_{B})$$

$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}} (|0\rangle_{A} \oplus |1\rangle_{B} - |1\rangle_{A} \oplus |0\rangle_{B})$$

Per descrivere lo stato di un sistema a due qubit possiamo alternativamente usare la base canonica $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ o la base di Bell $\{|\phi^+\rangle, |\phi^-\rangle, |\psi^+\rangle, |\psi^-\rangle\}$.

$$O = \lambda_0 |\phi^+\rangle \langle \phi^+| + \lambda_1 |\phi^-\rangle \langle \phi^-| + \lambda_2 |\psi^+\rangle \langle \psi^+| + \lambda_3 |\psi^-\rangle \langle \psi^-|$$

Quindi se il sistema si trova in uno stato di Bell, una misura dell'operatore O darà con certezza l'autovalore corrispondente.