《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵

2018年2月19日

目录

第一部	分 上册	3
第一章	拓扑空间简简介	4
第二章	流形和张量场	8
第三章	黎曼(内禀)曲率张量	26

第一部分

第一章 拓扑空间简简介

习题

- 1. 试证 $A-B=A\cap (X-B)$, $\forall A,B\subset X$ 。 证明 $x\in A-B\iff x\in A\wedge x\notin B\iff x\in A\cap (X-B)$ 。
- 2. 试证 $X-(B-A)=(X-B)\cup A$, $\forall A,B\subset X$ 。 证明 $x\in X-(B-A)\iff x\notin B-A\iff x\notin B\vee x\in A\iff x\in (X-B)\cup A$ 。
- 3. 用"对"或"错"在下表中填空:

$f \colon \mathbb{R} \to \mathbb{R}$	是一一的	是到上的
$f(x) = x^3$		
$f(x) = x^2$		
$f(x) = e^x$		
$f(x) = \cos x$		
$f(x) = 5, \forall x \in \mathbb{R}$		

解 如下表:

$f\colon \mathbb{R} o \mathbb{R}$	是一一的	是到上的
$f(x) = x^3$	对	对
$f(x) = x^2$	错	错
$f(x) = e^x$	对	错
$f(x) = \cos x$	错	错
$f(x) = 5, \forall x \in \mathbb{R}$	错	错

4. 判断下列说法的是非并简述理由:

- (a) 正切函数是由 ℝ 到 ℝ 的映射;
- (b) 对数函数是由 ℝ 到 ℝ 的映射;
- (c) $(a,b] \subset \mathbb{R}$ 用 \mathcal{T}_u 衡量是开集;
- (d) $[a,b] \subset \mathbb{R}$ 用 \mathcal{T}_u 衡量是闭集。
- 解 (a) 错,定义域不是 \mathbb{R} ;
 - (b) 错, 定义域不是 ℝ;
 - (c) 错, 任意包含于 (a,b] 的开区间都不会含有 b, 故 (a,b] 不能写为开区间之并;
 - (d) 对, 其补集 $(-\infty, a) \cup (b, \infty)$ 是开集。
- **5.** 举一反例证明命题"(\mathbb{R} , \mathcal{I}_u) 的无限个开子集之交为开"不真。

证明 记
$$O_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
,则 $\bigcap_{n=1}^{\infty} O_n = \{0\}$ 为闭集。

6. 试证 §1.2 例 5 中定义的诱导拓扑满足定义 1 的 3 个条件。

证明 拓扑空间 (X,\mathcal{T}) 的子集 A 上的诱导拓扑按照定义为

$$\mathscr{S} := \{ V \subset A \mid \exists O \in \mathscr{T}, \text{ s.t. } V = A \cap O \},$$

- (a) $A, \emptyset \in \mathcal{S}$: 取 O = X 即知 $A \in \mathcal{S}$, 取 $O = \emptyset$ 即知 $A \in \mathcal{S}$;
- (b) 有限交: 设 $V_i = A \cap O_i \in \mathcal{S}$, 其中 $O_i \in \mathcal{T}$, $i = 1, 2, \dots, n$ 。则

$$\bigcap_{i=1}^{n} V_i = A \cap \left(\bigcap_{i=1}^{n} O_i\right) \in \mathscr{S};$$

(c) 无限并:设 $V_{\alpha} = A \cap O_{\alpha} \in \mathcal{S}$,其中 $O_{\alpha} \in \mathcal{T}$, $\alpha \in$ 某个指标集I。则

$$\bigcup_{\alpha \in I} V_{\alpha} = A \cap \left(\bigcup_{\alpha \in I} O_{\alpha} \right) \in \mathscr{S}.$$

- 7. 举例说明 $(\mathbb{R}^3, \mathcal{I}_u)$ 中存在不开不闭的子集。
 - 解 令 $A = (0,1]^3$,任何包含于 A 的开球 $B_r(x_0,y_0,z_0)$ 的 z 坐标的范围为开区间 $(z_0-r,z_0+r)\in(0,1]$,故 (x,y,1) 不能属于此开球,于是 A 不能由一族开球之并得到,故 A 不是开集。其补集中 (x,y,0) 不能属于开球,故补集不是开集,故 A 不是闭集。
- 8. 常值映射 $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ 是否连续? 为什么?
- 9. 设 \mathcal{I} 为集 X 上的离散拓扑, \mathcal{I} 为集 Y 上的凝聚拓扑,

- (a) 找出从 (X, \mathcal{I}) 到 (Y, \mathcal{I}) 的全部连续映射;
- (b) 找出从 (Y, \mathcal{S}) 到 (X, \mathcal{T}) 的全部连续映射。
- 解 (a) 设 $f: X \to Y$, 则由于 $\mathscr{S} = \{Y, \varnothing\}$, f 连续当且仅当 $f^{-1}[Y] = X \in \mathscr{T} \land f^{-1}[\varnothing] = \varnothing \in \mathscr{T}$, 可是这是必然满足的,于是所有映射 $f: (X, \mathscr{T}) \to (Y, \mathscr{S})$ 均连续。
 - (b) 设 $g: Y \to X$,则由于 $\mathscr{T} = 2^X$, g 连续当且仅当 $\forall O \subset X$, $g^{-1}[O] = X \lor g^{-1}[O] = \varnothing$ 。 假设存在 $x, y \in g[Y]$, $x \neq y$, 则取 O = x, 有 $g^{-1}[O] = g^{[} 1](x) \notin \mathscr{S}$, 故 g 不 是连续的。于是连续映射 g 的像只能有一个,即为常值映射。又 8 中已证明常值映射为连续,故 $g: (Y, \mathscr{S}) \to (X, \mathscr{T})$ 连续当且仅当其为常值映射。
- **10.** 试证明定义 3a 与 3b 的等价性。
 - 证明 (1) 3a 推导 3b。设 $f:(X,\mathcal{T})\to (Y,\mathcal{S})$ 连续,按照定义 3a 即满足 $\forall O\in\mathcal{S}, f^{-1}[O]\in\mathcal{T}$ 。则 $\forall x\in X$,任取 $G'\in\mathcal{S}$ 使得 $f(x)\in G'$,则只需取 $G=f^{-1}[G']$,即有 $G\in\mathcal{T}$ 并且 $f[G]=G'\subset G'$,于是按照定义 3b,f 也连续。
 - (2) 3b 推导 3a。设 $f:(X,\mathcal{T})\to (Y,\mathcal{S})$ 连续,按照定义 3b 即满足 $\forall x\in X$, $\forall G'\in \mathcal{S}$ 且 $f(x)\in G'$, $\exists G\in \mathcal{T}$ 使得 $f[G]\subset G'$ 。于是任取 $O\in \mathcal{S}$,令 x 跑遍 $f^{-1}[O]$,对每一个 x 存在 $G_x\in \mathcal{T}$ 使得 $f[G_x]\subset O$,考虑 $G=\bigcup_{x\in f^{-1}[O]}G_x$,显然 $G\in \mathcal{T}$ 。由于 $x\in f^{-1}[O]$, $x\in G_x$ 因而 $x\in G$,于是 $f^{-1}[O]\subset G$;而 $\forall x\in G$,不妨设 $x\in G_{x_0}$,则由于 $f[G_{x_0}]\subset O$,知 $x\in f^{-1}[O]$,故又有 $G\subset f^{-1}[O]$,于是 G 正是 $f^{-1}[O]$,也就是 $f^{-1}[O]=G\in \mathcal{T}$,按照定义 3a,f 也是连续的。
- 11. 试证任一开区间 $(a,b) \subset \mathbb{R}$ 与 \mathbb{R} 同胚。

证明 只需找到一个同胚映射。函数 $f\colon (a,b)\to \mathbb{R}$ 定义为 $f(x)=\tan\left(\pi\frac{x-a}{b-a}-\frac{\pi}{2}\right)$ 即满足要求。

- **12.** 设 X_1 和 X_2 是 \mathbb{R} 的子集, $X_1 \equiv (1,2) \cup (2,3)$, $X_2 \equiv (1,2) \cup [2,3)$ 。以 \mathcal{I}_1 和 \mathcal{I}_2 分别代表 由 \mathbb{R} 的通常拓扑在 X_1 和 X_2 上的诱导拓扑。拓扑空间 (X_1,\mathcal{I}_1) 和 (X_2,\mathcal{I}_2) 是否连通?
 - 解 (1) (X_1,\mathcal{I}_1) 不连通。考虑 $O=(1,2)\subset X_1$, $O=X_1\cap (1,2)\in \mathcal{I}_1$,故 O 为开集;而 X-O=(2,3) 同样为开集,于是 O 即开叉闭,故 (X_1,\mathcal{I}_1) 不连通。
 - (2) (X_2, \mathscr{T}_2) 连通。假设 $\exists O \neq X_2, O \neq \emptyset, \ O \in \mathscr{T}$ 且 $X O \in \mathscr{T}_2$,任取 $a \in O$, $b \in X O$,不妨设 a < b,于是 $[a,b] \subset X_2$,记 $A = [a,b] \cap O$, $B = [a,b] \cap (X O)$, $c = \sup A$,我们来证明 O 和 X O 都是开集将导致 $c \notin A$ 并且 $c \notin (X O)$,从而矛盾。
 - (a) 若 $c \in B$, 由于 X O 是开集,且由于 $X_2 = (1,3) \in \mathcal{T}_u \implies \mathcal{T}_2 = \mathcal{T}_u \cap 2^{X_2}$, X O 可以写作一系列开区间之并,于是 $B = (X O) \cap [a,b]$ 是一系列形如 [a,y),(x,y) 或 (x,b] 的区间之并,现在 $c \neq a$,故包含 c 的区间属后两种,则一定存在 $d \in B$,使 $(d,c] \subset B$,

- i. 若 c = b, 则 $(d, b] \subset B$;
- ii. 若 a < c < b,则 $(d,b] = (d,c] \cup (c,b] \subset B$,

于是d是A的上界,然而却小于上确界c,矛盾。

(b) 若 $c \in A$,同(a)有 O 是开集将导致 $\exists e \in A$,使得 $[c,e) \subset A$,与 c 是 A 的上确界矛盾。

至此 $c \in A$ 与 $c \in B$ 均导致矛盾, 然而 $c \notin A \land c \notin B$ 又与 A 和 B 的定义矛盾, 故 O 与 X - O 均为非空开集是不可能的。故 X_2 , \mathscr{T}_2 连通。

13. 任意集合 X 配以离散拓扑 \mathcal{I} 所得的拓扑空间是否连通?

解 不连通。 $\forall O \in X, O \in \mathcal{T} \land X - O \in \mathcal{T} \Longrightarrow X$ 不连通。

- **14.** 设 $A \subset B$,试证
 - (a) $\bar{A} \subset \bar{B}$; 提示: $A \subset B$ 表明 \bar{B} 是含 A 的闭集。
 - (b) $i(A) \subset i(B)$.
 - 证明 (a) $A \subset B \subset \overline{B}$, 根据闭包定义有 $\overline{A} \subset \overline{B}$;
 - (b) $i(A) \subset A \subset B$,根据内部定义有 $i(A) \subset i(B)$ 。
- **15.** 试证 $x \in \bar{A} \iff x$ 的任一邻域与 A 之交非空。对 \implies 证明的提示: 设 $O \in \mathcal{T}$ 且 $O \cap A = \emptyset$,先证 $A \subset X O$,再证(利用闭包定义) $\bar{A} \subset X O$ 。
 - 证明 (1) \implies : 不妨设 $O \not\in x$ 的开邻域。假设 $O \cap A = \emptyset$, 于是 $\forall a \in A, a \neq A$, 于是 $a \in X O$, $A \subset X O$, 而 X O 为闭集, 于是 $\bar{A} \subset X O$, 故知 $x \notin \bar{A}$, 矛盾;
 - (2) \iff : 设 $\forall O \in \mathcal{T}$ 使得 $x \in O$,都有 $O \cap A \neq \emptyset$ 。假设 $x \notin \overline{A}$,根据定义, $\exists B$ 为 闭集, $A \subset B$ 且 $x \notin B$ 。于是 $x \in X B \in \mathcal{T}$,于是 X B 是 x 的一个与 A 无 交的开邻域,矛盾。
- **16.** 试证 ℝ 不是紧致的。
 - 证明 记 $O_i = (i-1,i+1)$,显然 $\{O_i\}_{i \in \mathbb{Z}}$ 是 \mathbb{R} 的开覆盖。现挑出其中任意 $n \wedge O_{i_k}$, $k = 1,2,\cdots,n$,则 $\max_{k=1,2,\cdots,n} i_k + 1$ 即为 $\bigcup_{k=1,2,\cdots,n} O_{i_k}$ 的一个上界,故有限个元素不能覆盖 \mathbb{R} ,于是 \mathbb{R} 不是紧致的。

第二章 流形和张量场

习题

1. 试证 §2.1 例 2 定义的拓扑同胚映射 ψ_i^\pm 在 O_i^\pm 的所有交叠区域上满足相容性条件,从而证实 S^1 确是 1 维流形。

证明 首先,易知 $O_i^+ \cap O_i^- = \emptyset$,故只需考虑 $O_1^+ \cap O_2^+$ 及 $O_i^+ \cap O_i^-$ 。以

$$O_1^+ \cap O_2^+ = \{(x^1, x^2) \in S^1 \mid x^1 > 0, x^2 > 0\}$$

为例,根据定义,

$$\psi_2^+ \circ (\psi_1^+)^{-1}(t) = \psi_2^+((\sqrt{1-t^2},t)) = \sqrt{1-t^2},$$

这的确是 C^{∞} 的函数。

2. 说明 n 维矢量空间可看作 n 维平庸流形。

证明 为 n 维矢量空间 V 任取拓扑,再取定一组基 $\mathcal{B}=\{e_i\}_{i=1}^n$,则在基 \mathcal{B} 下, $\forall v\in V$,v 可展开为

$$v = \sum_{i=1}^{n} v^{i} e_{i},$$

令映射 $\psi: V \to \mathbb{R}^n$ 定义为:

$$\psi \colon v \mapsto (v^1, v^2, \cdots, v^n),$$

则取图册 $\{(V,\psi)\}$, 即可令 V 成为 n 维平庸流形。

3. 设 X 和 Y 是拓扑空间, $f\colon X\to Y$ 是同胚。若 X 还是个流形,试给 Y 定义一个微分结构 使 $f\colon X\to Y$ 升格为微分同胚。

证明 记 X 的图册为 $\{(O_{\alpha}, \psi_{\alpha})\}$, 对每个 α , 由于 f 是拓扑同胚,

$$O'_{\alpha} := f(O_{\alpha}) \in \mathscr{T}_{Y},$$

在 O'_{α} 上定义映射

$$\psi_{\alpha}' := \psi_{\alpha} \circ f^{-1},$$

则

$$\psi_{\alpha}' \circ f \circ \psi_{\alpha}^{-1} = \psi_{\alpha} \circ f^{-1} \circ f \circ \psi_{\alpha}^{-1}$$
$$= \operatorname{Id}_{V_{\alpha}} \in C^{\infty}(V_{\alpha}),$$

于是在给 Y 定义图册 $\{(O'_{\alpha}, \psi'_{\alpha})\}$ 后, f 成为一个微分同胚。

4. 设 (x,y) 是 \mathbb{R}^2 的自然坐标,C(t) 是曲线,参数表达式为 $x=\cos t$, $y=\sin t$, $t\in(0,\pi)$ 。 若 $p=C(\pi/3)$,写出曲线在 p 的切矢在自然坐标基的分量,并画图表示出该曲线及该切矢。

解 记p点切矢为T,则

$$T_x = \frac{\mathrm{d}}{\mathrm{d}t} (x \circ C(t)) \bigg|_{t = \frac{\pi}{3}} = -\frac{\sqrt{3}}{2}$$

$$T_y = \frac{\mathrm{d}}{\mathrm{d}t} (y \circ C(t)) \bigg|_{t = \frac{\pi}{2}} = \frac{1}{2}$$

如下图:

图 2.1: 曲线 C(t) 及其在 p 点的切矢

5. 设曲线 C(t) 和 $C'(t) \equiv C(2t_0 - t)$ 在 $C(t_0) = C'(t_0)$ 点的切矢分别为 v 和 v', 试证 v + v' = 0。

证明 记 $t' = 2t_0 - t$, 依定义, $\forall f \in \mathcal{F}_M$,

$$\begin{split} v(f) &= \left. \frac{\mathrm{d}(f \circ C(t))}{\mathrm{d}t} \right|_{t=t_0}, \\ v'(f) &= \left. \frac{\mathrm{d}(f \circ C'(t))}{\mathrm{d}t} \right|_{t=t_0} \\ &= \left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t} \right|_{t=t_0} \\ &= \left. \frac{\mathrm{d}t'}{\mathrm{d}t} \right|_{t=t_0} \times \left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t'} \right|_{t=t_0, \sharp pt' = 2t_0 - t = t_0} \\ &= -\left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t'} \right|_{t'=t_0} \\ &= -v(f) \end{split}$$

$$\therefore v' = -v, \quad v + v' = 0$$

6. 设 *O* 为坐标系 $\{x^{\mu}\}$ 的坐标域, $p \in O$, $v \in V_p$, v^{μ} 是 v 的坐标分量,把坐标 x^{μ} 看作 O 上 的 C^{∞} 函数,试证 $v^{\mu} = v(x^{\mu})$ 。提示:用 $v = v^{\nu}X_{\nu}$ 两边作用于函数 x^{μ} 。

证明 由 $v = v^{\nu} X_{\nu}$,

$$v(x^{\mu}) = v^{\nu} X_{\nu}(x^{\mu}) = v^{\nu} \left. \frac{\partial x^{\mu}}{\partial x^{\nu}} \right|_{n} = v^{\nu} \delta^{\mu}_{\ \nu} = v^{\mu}.$$

7. 设 M 是二维流形, (O, ψ) 和 (O', ψ') 是 M 上的两个坐标系,坐标分别为 $\{x,y\}$ 和 $\{x',y'\}$,在 $O\cap O'$ 上的坐标变换为 x'=x, $y'=y-\Omega x(\Omega=常数)$,试分别写出坐标基矢 $\partial/\partial x$, $\partial/\partial y$ 用坐标基矢 $\partial/\partial x'$, $\partial/\partial y'$ 的展开式。

解 坐标基矢逐点的变换关系为
$$X_{\mu} = \frac{\partial x'^{\nu}}{\partial x^{\mu}} \Big|_{p} X_{\nu}$$
, 故
$$\frac{\partial}{\partial x} = \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial x} \frac{\partial}{\partial y'}$$

$$= \frac{\partial}{\partial x'} - \Omega \frac{\partial}{\partial y'};$$

$$\frac{\partial}{\partial y} = \frac{\partial x'}{\partial y} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial y} \frac{\partial}{\partial y'}$$

$$= \frac{\partial}{\partial x'}.$$

- 8. (a) 试证式 (2-2-9) 的 [u,v] 在每点满足矢量定义(§2.2 定义 2)的两个条件,从而的确是 矢量场。
 - (b) 设 u, v, w 为流形 M 上的光滑矢量场, 试证

$$[[u, v], w] + [[w, u], v] + [[v, w], u] = 0$$

(此式称为雅可比恒等式)。

证明 (a) (i) 线性性: 显然;

(ii) 莱布尼兹律:显然。证毕1。

(b) 由定义, 逐次展开有:

$$\begin{split} & [[u,v],w] + [[w,u],v] + [[v,w],u] \\ & = [u,v] \circ w - w \circ [u,v] + [w,u] \circ v \\ & - v \circ [w,u] + [v,w] \circ u - u \circ [v,w] \\ & = u \circ v \circ w - v \circ u \circ w - w \circ u \circ v + w \circ v \circ u \\ & + w \circ u \circ v - u \circ w \circ v - v \circ w \circ u + v \circ u \circ w \\ & + v \circ w \circ u - w \circ v \circ u - u \circ v \circ w + u \circ w \circ v \\ & = 0. \end{split}$$

- 9. 设 $\{r,\phi\}$ 为 \mathbb{R}^n 中某开集(坐标域)上的极坐标, $\{x,y\}$ 为自然坐标,
 - (a) 写出极坐标系的坐标基矢 $\partial/\partial r$ 和 $\partial/\partial\phi$ (作为坐标域上的矢量场) 用 $\partial/\partial x$, $\partial/\partial y$ 展开的表达式。
 - (b) 求矢量场 $[\partial/\partial r, \partial/\partial x]$ 用 $\partial/\partial x, \partial/\partial y$ 展开的表达式。
 - (c) 令 $\hat{e}_r \equiv \partial/\partial r$, $\hat{e}_\phi = r^{-1} \partial/\partial \phi$, 求 $[\hat{e}_r, \hat{e}_\phi]$ 用 $\partial/\partial x$, $\partial/\partial y$ 展开的表达式。

解 (a) 坐标变换为

$$\begin{cases} x = r\cos\phi, \\ y = r\sin\phi. \end{cases}$$

于是

$$\begin{split} \frac{\partial}{\partial r} &= \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\ &= \cos \phi \frac{\partial}{\partial x} + \sin \phi \frac{\partial}{\partial y} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \\ \frac{\partial}{\partial \phi} &= \frac{\partial x}{\partial \phi} \frac{\partial}{\partial \phi} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial \phi} \\ &= -r \sin \phi \frac{\partial}{\partial x} + r \cos \phi \frac{\partial}{\partial y} \\ &= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}. \end{split}$$

(b) $\forall f \in \mathscr{F}_M$,

$$\begin{split} \left[\frac{\partial}{\partial r}, \frac{\partial}{\partial x}\right](f) &= \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \frac{\partial}{\partial x}(f) \\ &- \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right)(f) \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial^2 F}{\partial x^2} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial^2 F}{\partial y \partial x} \\ &- \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x}\right) - \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y}\right) \\ &= -\frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}}\right) \frac{\partial F}{\partial x} - \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}}\right) \frac{\partial F}{\partial y} \\ &= -\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial F}{\partial x} + \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial F}{\partial y} \\ &= \left(-\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial}{\partial x} + \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial}{\partial y}\right)(f), \end{split}$$

:. 在基 $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ 下,

$$\left[\frac{\partial}{\partial r},\frac{\partial}{\partial x}\right] = -\frac{y^2}{(x^2+y^2)^{\frac{3}{2}}}\frac{\partial}{\partial x} + \frac{xy}{(x^2+y^2)^{\frac{3}{2}}}\frac{\partial}{\partial y}.$$

(c) 由 (a),

$$\begin{split} \hat{e}_r &= \frac{\partial}{\partial r} = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \\ \hat{e}_\phi &= \frac{1}{r} \frac{\partial}{\partial \phi} = -\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \end{split}$$

于是有 $\forall f \in \mathscr{F}_M$,

$$\begin{aligned} & [\hat{e}_r, \hat{e}_{\phi}](f) \\ & = \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) (f) \\ & - \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) (f) \end{aligned}$$

$$= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) - \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$= -\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial x^2}$$

$$+ \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{y^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y^2}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} + \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial x^2}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{y^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^$$

$$\frac{y}{x^2 + y^2} \frac{\partial F}{\partial x} - \frac{x}{x^2 + y^2} \frac{\partial F}{\partial y}$$

于是得到

$$[\hat{e}_r, \hat{e}_\phi] = \frac{y}{x^2 + y^2} \frac{\partial}{\partial x} - \frac{x}{x^2 + y^2} \frac{\partial}{\partial y}$$

10. 设 u, v 为 M 上的矢量场, 试证 [u,v] 在任何坐标基底的分量满足

$$[u,v]^{\mu} = v^{\nu} \partial v^{\mu}/\partial x^{\nu} - v^{\nu} \partial u^{\mu}/\partial x^{\nu}$$
. 提示: 用式 (2-2-3') 和 (2-2-3)

证明 $\forall f \in \mathscr{F}_M$,

$$\begin{split} [u,v](f) &= \left[u^{\mu} \frac{\partial}{\partial x^{\mu}}, v^{\nu} \frac{\partial}{\partial x^{\nu}} \right] (f) \\ &= u^{\mu} \frac{\partial}{\partial x^{\mu}} \left(v^{\nu} \frac{\partial F}{\partial x^{\nu}} \right) - v^{\nu} \frac{\partial}{\partial x^{\nu}} \left(u^{\mu} \frac{\partial F}{\partial x^{\nu}} \right) \\ &= u^{\mu} \frac{\partial v^{\nu}}{\partial x^{\mu}} \frac{\partial F}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \frac{\partial F}{\partial x^{\mu}} \\ &= \left(u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \right) \frac{\partial F}{\partial x^{\mu}} \end{split}$$

故

$$[u,v] = \left(u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}}\right) \frac{\partial}{\partial x^{\mu}},$$
$$[u,v]^{\mu} = \left(u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}}\right).$$

11. 设 $\{e_{\mu}\}$ 为 V 的基底, $\{e^{\mu *}\}$ 为其对偶基底, $v \in V$, $\omega \in V^*$,试证

$$\omega = \omega(e_{\mu})e^{\mu*}, \quad v = e^{\mu*}(v)e_{\mu}.$$

证明 设 $\omega = \omega_{\mu} e^{\mu *}$,则

$$\omega(e_{\nu}) = \omega_{\mu} e^{\mu *}(e_{\nu})$$
$$= \omega_{\mu} \delta^{\mu}_{\ \nu}$$
$$= \omega_{\nu},$$

 $\therefore \omega = \omega(e_m u)e^{\mu *}$. 同理设 $v = v^{\mu}e_{\mu}$,

$$e^{\nu*}(v) = v^{\mu}e^{\nu*}(e_{\mu})$$
$$= v^{\mu}\delta^{\nu}_{\mu}$$
$$= v^{\nu},$$

$$\therefore v = e^{\mu *} e_{\mu}.$$

12. 试证 $\omega'_{\mu}=rac{\partial x^{\mu}}{\partial x'^{
u}}\omega_{\mu}$ (定理 2-3-4)。

证明 由上题,

$$\omega'_{\nu} = \omega \left(\frac{\partial}{\partial x'^{\nu}} \right)$$
$$= \omega \left(\frac{\partial x^{\mu}}{\partial x'^{\nu}} \frac{\partial}{\partial x^{\mu}} \right)$$

$$= \frac{\partial x^{\mu}}{\partial x^{\nu}} \omega \left(\frac{\partial}{\partial x^{\mu}} \right)$$
$$= \frac{\partial x^{\mu}}{\partial x^{\nu}} \omega_{\mu}.$$

13. 试证由式 (2-3-5) 定义的映射 $v \mapsto v^{**}$ 是同构映射。提示:可利用线性代数的结论,即同维 矢量空间之间的一一线性映射必到上。

证明 留作习题答案略, 读者自证不难 (逃 $-=\equiv\Sigma(((つ \cdot \omega \cdot)))$)

14. 设 C_1^1T 和 $(C_1^1T)'$ 分别是 (2,1) 型张量 T 借两个基底 $\{e_{\mu}\}$ 和 $\{e'_{\mu}\}$ 定义的缩并,试证 $(C_1^1T)' = C_1^1T$ 。

证明 记基 $\{e'_{\mu}\}$ 在基 $\{e_{\mu}\}$ 下的展开式为 $e'_{\mu} = A^{\nu}_{\mu}e_{\nu}$, 则

$$e'^{\mu*} = \left(\tilde{A}^{-1}\right)^{\mu}_{\mu} e^{\nu*},$$

于是 $\forall \omega \in V^*$,

$$\begin{split} \left(C_1^1 T\right)'(\omega) &= T(e'^{\mu*}, \omega; e'_{\mu}) \\ &= T\left(\left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} e^{\nu*}, \omega; A^{\sigma}_{\ \mu} e_{\sigma}\right) \\ &= \left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} A^{\sigma}_{\ \mu} T\left(e^{\nu*}, \omega; e_{\sigma}\right) \\ &= \left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} \left(\tilde{A}\right)_{\mu}^{\ \sigma} T(e^{\nu*}, \omega; e_{\sigma}) \\ &= \delta_{\nu}^{\ \sigma} T(e^{\nu*}, \omega; e_{\sigma}) \\ &= T(e^{\nu*}, \omega; e_{\nu}) \\ &= C_1^1 T(\omega). \end{split}$$

15. 设 g 为 V 的度规, 试证 $g: V \to V^*$ 是同构映射 (可参见第 13 题的提示)。

证明 线性空间的同构映射指的是可逆线性映射。这里证一个更普遍的结论,首先我们定义 一个线性映射 $T\colon V\to W$ 的 kernel 为

$$\ker T := \{ v \in V \mid T(v) = 0 \},\$$

我们有如下 claim:

claim T 是单射当且仅当 $\ker T = \{0\}$ 。

proof 若 T 是单射,由于 $\forall v \in V$, $T(0 \cdot v) = 0$ T(v) = 0, ∴ $\ker T = \{0\}$;若 $\ker T = \{0\}$,假设存在 $u, v \in V$,使得 T(u) = T(v),则由于 T 是线性映射,T(u-v) = T(u) - T(v) = 0,于是 $u-v \in \ker T$,即 u=v,于是 T 是单射。

易证任取一组基 $e_i \in V$, $T(e_i) \in W$ 线性无关当且仅当 $\ker T = \{0\}$,若 $\dim V = \dim W$,则这告诉我们 $T(e_i)$ 构成 W 的基,于是 $T(v^ie_i) = v^iT(e_i)$ 将取遍整个 W。于是我们证明了,若 $\dim V = \dim W$,则线性映射 $T: V \to W$ 为一一到上的(等价于可逆)当且仅当 $\ker T = \{0\}$ 。

对于度规 g, 由于非退化性, 知 $\ker g = \{0\}$, 故 g 为线性同构。

16. 试证线长与曲线的参数化无关。

证明 设有重参数化 C'(t') = C(t), 线长为

$$l' = \int_{\alpha'}^{\beta'} \sqrt{g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t'}} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t'} \, \mathrm{d}t'$$

$$= \int_{\alpha}^{\beta} \sqrt{g_{\mu\nu} \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t}\right)} \left|\frac{\mathrm{d}t'}{\mathrm{d}t}\right| \, \mathrm{d}t$$

$$= \int_{\alpha}^{\beta} \sqrt{g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t}} \, \, \mathrm{d}t$$

$$= l.$$

17. 设 (x,y) 是二维欧氏空间的笛卡尔坐标系, 试证由式 (2-5-14) 定义的 $\{x',y'\}$ 也是笛卡尔系。

证明 式 (2-5-14) 为

$$\begin{cases} x' = x \cos \alpha + y \sin \alpha, \\ y' = -x \sin \alpha + y \cos \alpha. \end{cases}$$

其逆为:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha, \\ y = x' \sin \alpha + y' \cos \alpha. \end{cases}$$

于是坐标基矢的变换为:

$$\begin{split} \frac{\partial}{\partial x'} &= \frac{\partial x}{\partial x'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial x'} \frac{\partial}{\partial y} \\ &= \cos \alpha \frac{\partial}{\partial x} + \sin \alpha \frac{\partial}{\partial y}, \\ \frac{\partial}{\partial y'} &= \frac{\partial x}{\partial y'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial y'} \frac{\partial}{\partial y} \\ &= -\sin \alpha \frac{\partial}{\partial x} + \cos \alpha \frac{\partial}{\partial y}. \end{split}$$

故

$$\delta\left(\frac{\partial}{\partial x'}, \frac{\partial}{\partial x'}\right) = \cos^2\alpha \ \delta\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) + 2\cos\alpha\sin\alpha \ \delta\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

$$+ \sin^{2} \alpha \, \delta \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 1;$$

$$\delta \left(\frac{\partial}{\partial y'}, \frac{\partial}{\partial y'} \right) = \sin^{2} \alpha \, \delta \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) - 2 \cos \alpha \sin \alpha \, \delta \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)$$

$$+ \cos^{2} \alpha \, \delta \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 1;$$

$$\delta \left(\frac{\partial}{\partial x'}, \frac{\partial}{\partial y'} \right) = \delta \left(\frac{\partial}{\partial y'}, \frac{\partial}{\partial x'} \right)$$

$$= -\cos \alpha \sin \alpha \, \delta \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) + \cos 2\alpha \, \delta \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)$$

$$+ \cos \alpha \sin \alpha \, \delta \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 0$$

 $\therefore \{x', y'\}$ 是笛卡尔系。

18. 设 $\{t, x\}$ 是二维闵氏空间的洛伦兹坐标系, 试证由式 (2-5-20) 定义的 $\{t', x'\}$ 也是洛伦兹系。

证明 式 (2-5-20) 为

$$\begin{cases} t' = t \cosh \lambda + x \sinh \lambda, \\ x' = t \sinh \lambda + x \cosh \lambda. \end{cases}$$

其逆为:

$$\begin{cases} t = t' \cosh \lambda - x' \sinh \lambda, \\ x = -t' \sinh \lambda + x' \cosh \lambda. \end{cases}$$

于是坐标基矢的变换为:

$$\begin{split} \frac{\partial}{\partial t'} &= \frac{\partial t}{\partial t'} \frac{\partial}{\partial t} + \frac{\partial x}{\partial t'} \frac{\partial}{\partial x} \\ &= \cosh \lambda \frac{\partial}{\partial t} - \sinh \lambda \frac{\partial}{\partial x}, \\ \frac{\partial}{\partial x'} &= \frac{\partial t}{\partial x'} \frac{\partial}{\partial t} + \frac{\partial x}{\partial x'} \frac{\partial}{\partial x} \\ &= - \sinh \lambda \frac{\partial}{\partial t} + \cosh \lambda \frac{\partial}{\partial x}. \end{split}$$

故

$$\begin{split} \eta\left(\frac{\partial}{\partial t'},\frac{\partial}{\partial t'}\right) &= \cosh^2\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) - 2\cosh\lambda\sinh\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &+ \sinh^2\lambda\;\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= -1; \\ \eta\left(\frac{\partial}{\partial x'},\frac{\partial}{\partial x'}\right) &= \sinh^2\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) - 2\cosh\lambda\sinh\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &+ \cosh^2\lambda\;\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= 1; \\ \eta\left(\frac{\partial}{\partial t'},\frac{\partial}{\partial x'}\right) &= \eta\left(\frac{\partial}{\partial x'},\frac{\partial}{\partial t'}\right) \\ &= -\cosh\lambda\sinh\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) + \cosh2\lambda\;\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &- \cosh\lambda\sinh\lambda\;\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= 0. \end{split}$$

 $\therefore \{t', x'\}$ 是洛伦兹系。

- 19. (a) 用张量变换律求出 3 维欧氏度规在球坐标系中的全部分量 $g'_{\mu\nu}$ 。
 - (b) 已知 4 维闵氏度规 g 在洛伦兹系中的线元表达式为 ${\rm d}s^2 = -{\rm d}t^2 + {\rm d}x^2 + {\rm d}y^2 + {\rm d}z^2$,求 g 及其逆 g^{-1} 在新坐标系 $\{t',x',y',z'\}$ 的全部分量 $g'_{\mu\nu}$ 以及 $g'^{\mu\nu}$,该新坐标系定义如下:

$$t' = t$$
, $z' = z$, $x' = (x^2 + y^2)^{1/2} \cos(\phi - \omega t)$, $y' = (x^2 + y^2)^{1/2} \sin(\phi - \omega t)$, $\omega =$ $\sharp \mathfrak{Y}$,

其中 ϕ 满足 $\cos \phi = y(x^2+y^2)^{1/2}$, $\sin \phi = x(x^2+y^2)^{1/2}$ 。提示: 先求 ${g'}_{\mu\nu}$ 再求 ${g'}^{\mu\nu}$ 。

解 (a) 球坐标与笛卡尔系的变换关系为:

$$\begin{cases} x = r \sin \theta \cos \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \theta. \end{cases}$$

则

$$g'_{rr} = \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial r} g_{\mu\nu}$$
$$= (\sin \theta \cos \phi)^{2} + (\sin \theta \sin \phi)^{2} + \cos^{2} \theta$$
$$= 1;$$

$$\begin{split} g'_{r\theta} &= \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial \theta} g_{\mu\nu} \\ &= \sin \theta \cos \phi \cdot r \cos \theta \cos \phi + \sin \theta \sin \phi \cdot r \cos \theta \sin \phi - \cos \theta \cdot r \sin \theta \\ &= 0; \\ g'_{r\phi} &= \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= -\sin \theta \cos \phi \cdot r \sin \theta \sin \phi + \sin \theta \sin \phi \cdot r \sin \theta \cos \phi + 0 \\ &= 0; \\ g'_{\theta\theta} &= \frac{\partial x^{\mu}}{\partial \theta} \frac{\partial x^{\nu}}{\partial \theta} g_{\mu\nu} \\ &= (r \cos \theta \cos \phi)^2 + (r \cos \theta \sin \phi)^2 + (-r \sin \theta)^2 \\ &= r^2; \\ g'_{\theta\phi} &= \frac{\partial x^{\mu}}{\partial \theta} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= -r \cos \theta \cos \phi \cdot r \sin \theta \sin \phi + r \cos \theta \sin \phi \cdot r \sin \theta \cos \phi + 0 \\ &= 0; \\ g'_{\phi\phi} &= \frac{\partial x^{\mu}}{\partial \phi} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= (-r \sin \theta \sin \phi)^2 + (r \sin \theta \cos \phi)^2 + 0 \\ &= r^2 \sin^2 \theta. \end{split}$$

(b) 先求偏导数:

$$\sin \phi = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\implies \cos \phi \, d\phi = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \, dx - \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \, dy$$

$$\implies \frac{y}{\sqrt{x^2 + y^2}} \, d\phi = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \, dx - \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \, dy$$

$$\implies \frac{\partial \phi}{\partial x} = \frac{y}{x^2 + y^2}, \quad \frac{\partial \phi}{\partial y} = -\frac{x}{x^2 + y^2}.$$

进而有:

$$\frac{\partial x'}{\partial t} = \omega \sqrt{x^2 + y^2} \sin(\phi - \omega t)$$

$$\begin{split} \frac{\partial x'}{\partial x} &= \frac{x}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \sqrt{x^2 + y^2} \sin(\phi - \omega t) \frac{\partial \phi}{\partial x} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{x}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) - \frac{y}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) \\ &= \sin \omega t \\ \frac{\partial x'}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \sqrt{x^2 + y^2} \sin(\phi - \omega t) \frac{\partial \phi}{\partial y} \\ &= \frac{y}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) + \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{y}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) + \frac{x}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) \\ &= \cos \omega t \\ \frac{\partial y'}{\partial t} &= -\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ &= \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \sqrt{x^2 + y^2} \cos(\phi - \omega t) \frac{\partial \phi}{\partial x} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \frac{y}{\sqrt{x^2 + y^2}} (y \cos \omega t + x \sin \omega t) \\ &= \cos \omega t \\ \frac{\partial y'}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \sqrt{x^2 + y^2} \cos(\phi - \omega t) \frac{\partial \phi}{\partial y} \\ &= \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) - \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{y}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) - \frac{x}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) \end{split}$$

于是由张量变换律,

$$g'^{00} = \frac{\partial t'}{\partial x^{\mu}} \frac{\partial t'}{\partial x^{\nu}} g^{\mu\nu}$$

$$= -1^{2} + 0^{2} + 0^{2} + 0^{2}$$

$$= -1$$

$$g'^{01} = \frac{\partial t'}{\partial x^{\mu}} \frac{\partial x'}{\partial x^{\nu}} g^{\mu\nu}$$

$$= -1 \cdot \omega \sqrt{x^{2} + y^{2}} \sin(\phi - \omega t) + 0 + 0 + 0$$

$$= -\omega \sqrt{x^{2} + y^{2}} \sin(\phi - \omega t)$$

$$\begin{split} g'^{02} &= \frac{\partial t'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -1 \cdot \left(-\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \right) + 0 + 0 + 0 \\ &= \omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ g'^{03} &= \frac{\partial t'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{11} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial x'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -\left(\omega \sqrt{x^2 + y^2} \sin(\phi - \omega t) \right)^2 + (\sin \omega t)^2 + (\cos \omega t)^2 + 0^2 \\ &= 1 - (x^2 + y^2) \omega^2 \sin^2(\phi - \omega t) \\ g'^{12} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -\left(\omega \sqrt{x^2 + y^2} \sin(\phi - \omega t) \right) \cdot \left(-\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \right) \\ &+ \sin \omega t \cdot \cos \omega t + \cos \omega t \cdot (-\sin \omega t) + 0 \\ &= (x^2 + y^2) \omega^2 \sin(\phi - \omega t) \cos(\phi - \omega t) \\ g'^{13} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{22} &= \frac{\partial y'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= 1 - (x^2 + y^2) \omega^2 \cos^2(\phi - \omega t) \\ g'^{23} &= \frac{\partial y'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{33} &= \frac{\partial z'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{33} &= \frac{\partial z'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0^2 + 0^2 + 0^2 + 1^2 \\ &= 1. \end{split}$$

于是 g^{-1} 在带撇坐标系下的分量矩阵为:

$$[g']^{-1} = \begin{pmatrix} -1 & -r\omega\sin\psi & r\omega\cos\psi & 0\\ -r\omega\sin\psi & 1 - r^2\omega^2\sin^2\psi & r^2\omega^2\sin\psi\cos\psi & 0\\ -r\omega\sin\psi & r^2\omega^2\cos\psi\sin\psi & 1 - r^2\omega^2\cos^2\psi & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

其中 $r = \sqrt{x^2 + y^2}$, $\psi = \phi - \omega t$ 。其逆矩阵为

$$[g'] = \begin{pmatrix} r^2 \omega^2 - 1 & -r\omega \sin \psi & r\omega \cos \psi & 0 \\ -r\omega \sin \psi & 1 & 0 & 0 \\ r\omega \cos \psi & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

此即 g 在带撇坐标系下的分量 $g'_{\mu\nu}$ 排成的矩阵。

20. 试证 3 维欧氏空间中球坐标基矢 $\partial/\partial r$, $\partial/\partial \theta$, $\partial/\partial \phi$ 的长度依次为 $1, r, r \sin \theta$ 。 证明 由 19(a) 知,

$$\begin{split} \left\| \frac{\partial}{\partial r} \right\| &= \sqrt{|g'_{rr}|} = 1, \\ \left\| \frac{\partial}{\partial \theta} \right\| &= \sqrt{|g'_{\theta\theta}|} = r, \\ \left\| \frac{\partial}{\partial \phi} \right\| &= \sqrt{|g'_{\phi\phi}|} = r \sin \theta. \end{split}$$

21. 用抽象指标记号证明 $T'^{\mu}_{\ \nu}=rac{\partial x'^{\mu}}{\partial x^{
ho}}rac{\partial x^{\sigma}}{\partial x'^{
u}}T^{
ho}_{\ \sigma}$ 。 证明

$$\begin{split} {T'}^{\mu}_{\ \nu} &= T^a_{\ b} \left(\mathrm{d} x'^{\mu} \right)_a \left(\frac{\partial}{\partial x'^{\nu}} \right)^b \\ &= T^a_{\ b} \frac{\partial x'^{\mu}}{\partial x^{\rho}} \left(\mathrm{d} x'^{\rho} \right)_a \frac{\partial x^{\sigma}}{\partial x'^{\nu}} \left(\frac{\partial}{\partial x'^{\sigma}} \right)^b \\ &= \frac{\partial x'^{\mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} T^{\rho}_{\ \sigma} \,. \end{split}$$

22. 以 g 和 g' 分别代表度规 g_{ab} 在坐标系 $\{x^{\mu}\}$ 和 $\{x'^{\mu}\}$ 的分量 $g_{\mu\nu}$ 和 $g'_{\mu\nu}$ 组成的两个 $n\times n$ 矩阵的行列式,试证 $g'=|\partial x^{\rho}/\partial x'^{\sigma}|^2g$,其中 $|\partial x^{\rho}/\partial x'^{\sigma}|$ 是坐标变换 $\{x^{\mu}\}\mapsto \{x'^{\mu}\}$ 的雅可比行列式,即由 $\partial x^{\rho}/\partial x'^{\sigma}$ 组成的 $n\times n$ 行列式。注:本题表明度规的行列式在坐标变换下不是不变量。提示:取等式 $g'_{\rho\sigma}=(\partial x^{\mu}/\partial x'^{\rho})(\partial x^{\nu}/\partial x'^{\sigma})g_{\mu\nu}$ 的行列式。

证明 ······梁爷爷你提示都把题写完了我还写啥 (ˇ•ω•ˇ)

- **23.** 设 $\{x^{\mu}\}$ 是流形上的任一局域坐标系,试判断下列等式的是非:
 - (1) $(\partial/\partial x^{\mu})^{a}(\partial/\partial x^{\nu})_{a}=g_{\mu\nu}$, $\sharp \div (\partial/\partial x^{\mu})_{a}\equiv g_{ab}(\partial/\partial x^{\nu})^{a}$;
 - (2) $(dx^{\mu})^{a} (dx^{\nu})_{a} = g^{\mu\nu}$, 其中 $(dx^{\mu})^{a} \equiv g^{ab} (dx^{\mu})_{b}$;
 - (3) $(\partial/\partial x^{\mu})_a = (\mathrm{d}x^{\mu})_a$;
 - (4) $(\mathrm{d}x^{\mu})^a = (\partial/\partial x^{\mu})^a$;
 - (5) $v^{\mu}\omega_{\mu} = v_{\mu}\omega^{\mu}$;
 - (6) $g_{\mu\nu}T^{\nu\rho}S_{\rho}^{\ \sigma}=T_{\mu\rho}S^{\rho\sigma};$
 - (7) $v^a u^b = v^b u^a$;
 - (8) $v^a u^b = u^b v^a$.
 - 解(1)正确。这是标量等式。根据(0,2)型张量分量的定义即知正确。
 - (2) 正确。这是标量等式。根据 (2,0) 型张量分量的定义即知正确。
 - (3) 不正确。这是对偶矢量等式。对其验证只需作用在坐标基矢上:

$$\left(\frac{\partial}{\partial x^{\mu}} \right)_{a} \left(\frac{\partial}{\partial x^{\nu}} \right)^{a} = g_{\mu\nu};$$

$$(\mathrm{d}x^{\mu})_{a} \left(\frac{\partial}{\partial x^{\nu}} \right)^{a} = \delta_{\mu\nu},$$

故 metric dual of basis 等于 dual basis 的条件为该坐标系是局域的笛卡尔系。

(4) 不正确。这是矢量等式。对其验证只需用对偶坐标基矢作用:

$$\left(\mathrm{d} x^{\mu} \right)^a \left(\mathrm{d} x^{\nu} \right)_a = g^{\mu \nu};$$

$$\left(\frac{\partial}{\partial x^{\mu}} \right)^a \left(\mathrm{d} x^{\nu} \right)_a = \delta^{\mu \nu}.$$

故此式成立的条件为该坐标系为局域的笛卡尔系。或者可以这样得到:此式与(3)中的表达式互为 metric dual,故它们是等价的。

(5) 正确。这是数量等式。

$$v_{\mu}\omega^{\mu} = g_{\rho\mu}v^{\rho}g^{\sigma\mu}\omega_{\mu}$$
$$= v^{\rho}\omega_{\rho}.$$

(6) 正确。这是数量等式。

$$\begin{split} g_{\mu\nu} T^{\nu\rho} S_{\rho}^{\sigma} &= g_{\mu\nu} g^{\nu\alpha} g^{\rho\beta} T_{\alpha\beta} g_{\rho\gamma} S^{\gamma\sigma} \\ &= \delta_{\mu}^{\alpha} \delta_{\gamma}^{\beta} T_{\alpha\beta} S^{\gamma\sigma} \\ &= T_{\mu\beta} S^{\beta\sigma}. \end{split}$$

(7) 不正确。这是 (2,0) 型张量等式。对其验证只需作用在对偶坐标基矢上:

$$v^{a}u^{b} (dx^{\mu})_{a} (dx^{\nu})_{b} = v^{\mu}u^{\nu};$$

$$v^{b}u^{a} (dx^{\mu})_{a} (dx^{\nu})_{b} = v^{\nu}u^{\mu}.$$

 \therefore 该式成立的条件是 $v^{\mu}u^{\nu}=u^{\mu}v^{\nu}$, $\forall \mu, \nu$, 这是不一定能满足的。

(8) 正确。这是 (2.0) 型张量等式, 对其验证只需作用在对偶坐标基底上:

$$\begin{split} &v^a u^b \left(\mathrm{d} x^\mu\right)_a \left(\mathrm{d} x^\nu\right)_b = v^\mu u^\nu; \\ &u^b v^a \left(\mathrm{d} x^\mu\right)_a \left(\mathrm{d} x^\nu\right)_b = v^\mu u^\nu. \end{split}$$

::该式恒成立。

24. 设 T_{ab} 是矢量空间 V 上的 (0,2) 型张量,试证 $T_{ab}\,v^av^b=0$, $\forall v^a\in V \implies T_{ab}=T_{[ab]}$ 。 提示: 把 v^a 表为任意两个矢量 u^a 和 w^a 之和。

证明 做任意拆分 $v^a = u^a + w^a$, 注意到 $T_{ab} u^a u^b = 0$ 以及 $T_{ab} w^a w^b = 0$, 有:

$$\begin{split} T_{ab} \, v^a v^b &= T_{ab} \, u^a u^b + T_{ab} \, w^a w^b + T_{ab} \, u^a w^b + T_{ab} \, w^a u^b \\ &= T_{ab} \, u^a w^b + T_{ab} \, w^a u^b \\ &= \left(T_{(ab)} \, u^a w^b + T_{(ab)} \, u^b w^a \right) + \left(T_{[ab]} \, u^a w^b + T_{[ab]} \, u^b w^a \right) \\ &= T_{(ab)} \, u^a w^b + T_{(ab)} \, u^b w^a \\ &= 0 \end{split}$$

于是

$$T_{(ab)} = 0, \quad T_{ab} = T_{[ab]}.$$

25. 试证 $T_{abcd} = T_{a[bc]d} = T_{ab[cd]} \implies T_{abcd} = T_{a[bcd]}$ 。

注(1)推广至一般的结论是

$$T_{\cdots a\cdots b\cdots c\cdots} = T_{\cdots [a\cdots b]\cdots c\cdots} = T_{\cdots a\cdots [b\cdots c]\cdots} \implies T_{\cdots a\cdots b\cdots c\cdots} = T_{\cdots [a\cdots b\cdots c]\cdots}.$$

上式的前提中只有两个等号,关键是 $T_{\cdots [a\cdots b]\cdots c\cdots}$ 和 $T_{\cdots a\cdots [b\cdots c]\cdots}$ 中的指标 b 都在方括号内。

(2) 把前提和结论中的方括号改为圆括号,则推广前后的命题仍成立。

证明 此命题等价于 $T_{a(bc)d}=T_{ab(cd)}=0 \implies T_{a(bcd)}=0$ 。反正只有四阶,不妨暴力展开 \bigcirc

$$\begin{split} 6T_{a(bcd)} &= T_{abcd} + T_{abdc} + T_{acbd} + T_{acdb} + T_{adbc} + T_{adcb} \\ &= T_{abcd} + T_{abdc} - T_{abcd} + T_{acdb} - T_{abdc} - T_{acdb} \\ &= T_{abcd} - T_{abcd} - T_{abcd} - T_{acbd} + T_{abcd} + T_{acbd} \\ &= T_{abcd} - T_{abcd} - T_{abcd} + T_{abcd} + T_{abcd} - T_{abcd} \\ &= 0. \end{split}$$

其中 = 表示根据 $T_{a(bc)d}=0$ 交换指标次序, = 表示根据 $T_{ab(cd)}=0$ 交换指标次序。

第三章 黎曼(内禀)曲率张量

习题

- 1. 放弃 ∇_a 定义中的无挠性条件 (e),
 - (1) 试证存在张量 T_{ab}^c (叫挠率张量) 使

$$\nabla_a \nabla_b f - \nabla_b \nabla_a f = -T^c_{\ ab} \, \nabla_c f, \quad \forall f \in \mathscr{F}.$$

提示: 令 $\tilde{\nabla}_a$ 为无挠算符,模仿定理 3-1-4 证明中的推导。

(2)
$$\exists \exists \overrightarrow{u} T^c_{ab} u^a v^b = u^a \nabla_a v^c - v^a \nabla_a u^c - [u, v]^c \quad \forall u^a, v^a \in \mathscr{F}(1, 0).$$

证明(1)去掉无挠性条件仍有 $\nabla_a\omega_b=\tilde{\nabla}_a\omega_b-C^c{}_{ab}\omega_c$ 成立,于是令 $\omega_a=(\mathrm{d}f)_a=\nabla_af=\tilde{\nabla}_af$,得

$$\nabla_a \nabla_b f = \tilde{\nabla}_a \tilde{\nabla}_b f - C^c_{\ ab} \nabla_c f$$

交换指标 a,b 得

$$\nabla_b \nabla_a f = \tilde{\nabla}_b \tilde{\nabla}_a f - C^c_{ba} \nabla_c f$$

两式相减得

$$\nabla_a \nabla_b f - \nabla_b \nabla_a f = (C^c_{ba} - C^c_{ab}) \nabla_c f$$

于是得挠率张量 $T_{ab}^c = C_{ab}^c - C_{ba}^c$ 。

(2)

$$\begin{split} [u,v](f) &= u(v(f)) - v(u(f)) \\ &= u^b \nabla_b \left(v^a \nabla_a f \right) - v^a \nabla_a \left(u^b \nabla_b f \right) \\ &= u^b \left(\nabla_b v^a \right) \nabla_a f + u^b v^a \nabla_b \nabla_a f - v^a \left(\nabla_a u^b \right) \nabla_b f - v^a u^b \nabla_a \nabla_b f \\ &= \left(u^b \nabla_b v^a - v^b \nabla_b u^a \right) \nabla_a f - u^b v^a T^c_{\ ba} \nabla_c f \\ &= \left(u^a \nabla_a v^c - v^a \nabla_a u^c - T^c_{\ ab} u^a v^b \right) \nabla_c f \end{split}$$

故
$$T^c_{ab}u^av^b=u^a\nabla_av^c-v^a\nabla_au^c-\left[u,v\right]^c$$
。

2. 设 v^a 为矢量场, v^{μ} 和 v'^{μ} 为 v^a 在坐标系 $\{x^{\nu}\}$ 和 $\{x'^{\nu}\}$ 的分量, $A^{\nu}_{\mu} \equiv \partial v^{\nu}/\partial x^{\mu}$, $A'^{\nu}_{\mu} \equiv \partial v'^{\nu}/\partial x'^{\mu}$,试证 A^{ν}_{μ} 和 A'^{ν}_{μ} 的关系一般而言不满足张量分量变换律。提示:利用 v^{ν} 与 v'^{ν} 之间的变换规律。

证明

$$\begin{split} {A'}^{\nu}_{\ \mu} &= \frac{\partial {v'}^{\nu}}{\partial {x'}^{\mu}} \\ &= \frac{\partial x^{\sigma}}{\partial {x'}^{\mu}} \frac{\partial}{\partial x^{\sigma}} \left(\frac{\partial {x'}^{\nu}}{\partial x^{\rho}} v^{\rho} \right) \\ &= \frac{\partial x^{\sigma}}{\partial {x'}^{\mu}} \frac{\partial^{2} {x'}^{\nu}}{\partial x^{\sigma} \partial x^{\rho}} v^{\rho} + \frac{\partial x^{\sigma}}{\partial {x'}^{\mu}} \frac{\partial {x'}^{\nu}}{\partial x^{\rho}} \frac{\partial v^{\rho}}{\partial x^{\sigma}} \\ &= \frac{\partial x^{\sigma}}{\partial {x'}^{\mu}} \frac{\partial^{2} {x'}^{\nu}}{\partial x^{\sigma} \partial x^{\rho}} v^{\rho} + \frac{\partial x^{\sigma}}{\partial {x'}^{\mu}} \frac{\partial {x'}^{\nu}}{\partial x^{\rho}} A^{\rho}{}_{\sigma}, \end{split}$$

可以看到相比于张量分量变换律多出了第一项。

3. 试证定理 3-1-7。

证明

$$\begin{split} \boldsymbol{v}^{\nu}_{\;\;;\mu} &= \nabla_{a} \boldsymbol{v}^{b} \left(\mathrm{d} \boldsymbol{x}^{\nu} \right)_{b} \left(\frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \\ &= \left(\partial_{a} \boldsymbol{v}^{b} + \Gamma^{b}_{\;\;ac} \boldsymbol{v}^{c} \right) \left(\mathrm{d} \boldsymbol{x}^{\nu} \right)_{b} \left(\frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \\ &= \boldsymbol{v}^{\nu}_{\;\;,\mu} + \Gamma^{\nu}_{\;\;\mu\sigma} \boldsymbol{v}^{\sigma}, \\ \boldsymbol{\omega}_{\nu;\mu} &= \nabla_{a} \boldsymbol{\omega}_{b} \left(\frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \left(\frac{\partial}{\partial \boldsymbol{x}^{\nu}} \right)^{b} \\ &= \left(\partial_{a} \boldsymbol{\omega}_{b} - \Gamma^{c}_{\;\;ab} \boldsymbol{\omega}_{c} \right) \left(\frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \left(\frac{\partial}{\partial \boldsymbol{x}^{\nu}} \right)^{b} \\ &= \boldsymbol{\omega}_{\nu,\mu} - \Gamma^{\sigma}_{\;\;\mu\nu} \boldsymbol{\omega}_{\sigma}. \end{split}$$

- 4. 用下式定义 $\Gamma^{\sigma}_{\mu\nu}$: $\left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}_{\mu\nu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$, 试证
 - (a) $\Gamma^{\sigma}_{\ \mu\nu} = \Gamma^{\sigma}_{\ \nu\mu}$ (提示: 利用 ∇_a 的无挠性和坐标基矢间的对易性。);
 - (b) $v^{\nu}_{;\mu} = v^{\nu}_{,\mu} + \Gamma^{\nu}_{\mu\beta} v^{\beta}$ (注: 这其实是克氏符的等价定义。)。

证明 (a) 交换指标 μ, ν 得

$$\left(\frac{\partial}{\partial x^{\mu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\nu}}\right)^{a} = \Gamma^{\sigma}_{\nu\mu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$$

两式相减得:

$$\begin{split} \left(\Gamma^{\sigma}_{\ \mu\nu} - \Gamma^{\sigma}_{\ \nu\mu}\right) \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a} &= \left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} - \left(\frac{\partial}{\partial x^{\mu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\nu}}\right)^{a} \\ &= \left[\frac{\partial}{\partial x^{\nu}}, \frac{\partial}{\partial x^{\mu}}\right]^{a} \\ &= 0, \end{split}$$

故
$$\Gamma^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu}$$
。

(b) 由

$$\left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}{}_{\mu\nu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$$
$$\nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}{}_{\mu\nu} \left(\mathrm{d}x^{\nu}\right)_{b} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a},$$

于是

知

$$\begin{split} \nabla_a v^b &= \nabla_a \left[v^\mu \left(\frac{\partial}{\partial x^\mu} \right)^b \right] \\ &= (\mathrm{d} v^\mu)_a \left(\frac{\partial}{\partial x^\mu} \right)^b + v^\mu \nabla_a \left(\frac{\partial}{\partial x^\mu} \right)^b \\ &= \frac{\partial v^\mu}{\partial x^\nu} \left(\mathrm{d} x^\nu \right)_a \left(\frac{\partial}{\partial x^\mu} \right)^b + v^\mu \Gamma^\sigma_{\ \mu\nu} \left(\mathrm{d} x^\nu \right)_a \left(\frac{\partial}{\partial x^\sigma} \right)^b \\ &= \left(\frac{\partial v^\mu}{\partial x^\nu} + \Gamma^\mu_{\ \sigma\nu} v^\sigma \right) \left(\mathrm{d} x^\nu \right)_a \left(\frac{\partial}{\partial x^\mu} \right)^b \end{split}$$

于是 $\nabla_a v^b$ 的分量 $v^{
u}_{\;\;;\mu} = v^{
u}_{\;\;,\mu} + \Gamma^{
u}_{\;\;\mu\sigma} v^\sigma$ 。

5. 判断是非:

(1)
$$\nabla_a (\mathrm{d} x^\mu)_b = 0$$
;

$$(2) \ v^{\nu}_{\; ;\mu} = \left(\nabla_a v^b\right) \left(\,\partial/\partial x^\mu\,\right)^a \left(\mathrm{d} x^\nu\right)_b;$$

$$(3)\ v^{\nu}_{\ ,\mu}=\left(\partial_{a}v^{b}\right)\left(\left.\partial/\partial x^{\mu}\right.\right)^{a}\left(\mathrm{d}x^{\nu}\right)_{b};$$

(4)
$$v^{\nu}_{:\mu} = (\partial/\partial x^{\mu})^a \nabla_a v^{\nu};$$

$$(5) \ v^{\nu}_{\ ,\mu} = \left(\, \partial / \partial x^{\mu} \, \right)^a \nabla_a v^{\nu} \, .$$

解(1)错。

$$\begin{split} \nabla_a \left(\mathrm{d} x^\mu \right)_b &= \partial_a \left(\mathrm{d} x^\mu \right)_b - \Gamma^c{}_{ab} \left(\mathrm{d} x^\mu \right)_c \\ &= 0 - \Gamma^\mu{}_{\nu\rho} \left(\mathrm{d} x^\nu \right)_a \left(\mathrm{d} x^\rho \right)_b \end{split}$$

不一定为零。

- (2) 根据定义知正确。
- (3) 根据定义知正确。
- (4) 不正确。(右边和 ∇_a 的选择无关可直接判断)

$$\begin{split} \boldsymbol{v}^{\nu}_{\;\;;\mu} &= \left(\nabla_{a}\boldsymbol{v}^{b}\right)\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} \\ &= \left[\nabla_{a}\boldsymbol{v}^{\rho}\left(\frac{\partial}{\partial x^{\rho}}\right)^{b}\right]\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} \\ &= \left(\nabla_{a}\boldsymbol{v}^{\rho}\right)\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} + \boldsymbol{v}^{\rho}\left[\nabla_{a}\left(\frac{\partial}{\partial x^{\rho}}\right)^{b}\right]\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b}, \end{split}$$

多出来的后一项类似 (1), 一般不为零。

(5) 正确,

$$\begin{split} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \nabla_{a} v^{\nu} &= \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} (\mathrm{d}v^{\nu})_{a} \\ &= \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \frac{\partial v^{\nu}}{\partial x^{\rho}} (\mathrm{d}x^{\rho})_{a} \\ &= \frac{\partial v^{\nu}}{\partial x^{\mu}} \\ &= v^{\nu}_{,\mu}. \end{split}$$

6. 设 C(t) 是 $\{x^{\mu}\}$ 的坐标域内的曲线, $x^{\mu}(t)$ 是 C(t) 在该系的参数表达式, v^a 是 C(t) 上的 矢量场,令 $\mathrm{D}v^{\mu}/\mathrm{d}t \equiv (\mathrm{d}x^{\mu})_a \left(\partial/\partial t\right)^b \nabla_b v^a$,试证

$$\mathrm{D} v^\mu/\,\mathrm{d} t \equiv \,\mathrm{d} v^\mu/\mathrm{d} t + \Gamma^\mu_{\ \nu\sigma} v^\sigma \,\,\mathrm{d} x^\nu(t)/\mathrm{d} t \;.$$

证明 由定理 3-2-1,
$$\left(\frac{\partial}{\partial t}\right)^b \nabla_b v^a = \left(\frac{\partial}{\partial x^\mu}\right)^a \left(\frac{\mathrm{d} v^\mu}{\mathrm{d} t} + \Gamma^\mu_{\ \nu\sigma} \frac{\mathrm{d} x^\mu(t)}{\mathrm{d} t} v^\sigma\right), \ \ \text{f} \ \mathcal{E}$$

$$\frac{\mathrm{D} v^\mu}{\mathrm{d} t} \equiv \left(\mathrm{d} x^\mu\right)_a \left(\frac{\partial}{\partial t}\right)^b \nabla_b v^a$$

$$= \left(\mathrm{d} x^\mu\right)_a \left(\frac{\partial}{\partial x^\rho}\right)^a \left(\frac{\mathrm{d} v^\rho}{\mathrm{d} t} + \Gamma^\rho_{\ \nu\sigma} \frac{\mathrm{d} x^\rho(t)}{\mathrm{d} t} v^\sigma\right)$$

$$= \frac{\mathrm{d} v^\mu}{\mathrm{d} t} + \Gamma^\mu_{\ \nu\sigma} v^\sigma \frac{\mathrm{d} x^\mu(t)}{\mathrm{d} t}.$$

7. 求出 3 维欧氏空间中球坐标系的全部非零 $\Gamma^{\sigma}_{\mu\nu}$ 。

解 由第二章 19(a)知,球坐标系下欧氏度规分量 $g_{\mu\nu}$ 排成的矩阵为:

$$[g] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

取逆矩阵得 $g^{\mu\nu}$ 排成的矩阵为:

$$[g] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta} \end{pmatrix}$$

根据非对角元全为零, 观察克氏符分量表达式

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} \left(g_{\rho\mu,\nu} + g_{\nu\rho,\mu} - g_{\mu\nu,\rho} \right)$$

展开式中求和只有 $\rho = \sigma$ 项才可能非零,于是

$$\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2} g^{\sigma\sigma} \left(g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma} \right)$$

 $(\sigma$ 是给定某个具体指标,不求和,也不需要指标平衡) 若 $\sigma\mu\nu$ 全不等,则括号内为零。于是那些可能非零的分量指标至少有两个相等:

$$\begin{split} \Gamma^{r}{}_{rr} &= \frac{1}{2}g^{rr} \left(g_{rr,r} + g_{rr,r} - g_{rr,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}{}_{r\theta} &= \frac{1}{2}g^{rr} \left(g_{rr,\theta} + g_{\theta r,r} - g_{r\theta,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}{}_{r\phi} &= \frac{1}{2}g^{rr} \left(g_{rr,\phi} + g_{\phi r,r} - g_{r\phi,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}{}_{\theta\theta} &= \frac{1}{2}g^{rr} \left(g_{r\theta,\theta} + g_{\theta r,\theta} - g_{\theta\theta,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 2r) \\ &= -r \end{split}$$

$$\begin{split} \Gamma^r{}_{\phi\phi} &= \frac{1}{2}g^{rr} \left(g_{r\phi,\phi} + g_{\phi r,\phi} - g_{\phi\phi,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot \left(0 + 0 - 2r \sin^2\theta\right) \\ &= -r \sin^2\theta \\ \Gamma^\theta{}_{rr} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta r,r} + g_{r\theta,r} - g_{rr,\theta}\right) \\ &= 0 \\ \Gamma^\theta{}_{r\theta} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta r,\theta} + g_{\theta\theta,r} - g_{r\theta,\theta}\right) \\ &= \frac{1}{2} \cdot \frac{1}{r^2} \cdot \left(0 + 2r - 0\right) \\ &= \frac{1}{r} \\ \Gamma^\theta{}_{\theta\theta} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta\theta,\theta} + g_{\theta\theta,\theta} - g_{\theta\theta,\theta}\right) \\ &= 0 \\ \Gamma^\theta{}_{\theta\phi} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta\theta,\phi} + g_{\phi\theta,\theta} - g_{\phi\phi,\theta}\right) \\ &= 1 \\ 2 \cdot \frac{1}{r^2} \left(0 + 0 - 2r^2 \cos\theta \sin\theta\right) \\ &= -\cos\theta \sin\theta \\ \Gamma^\phi{}_{rr} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi r,r} + g_{r\phi,r} - g_{rr,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{r\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi r,\phi} + g_{\phi\phi,r} - g_{r\phi,\phi}\right) \\ &= \frac{1}{r^2} \cdot \frac{1}{r^2 \sin^2\theta} \cdot \left(0 + 2r \sin^2\theta - 0\right) \\ &= \frac{1}{r} \\ \Gamma^\phi{}_{\theta\theta} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\theta} + g_{\phi\phi,\theta} - g_{\theta\theta,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\theta} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 1 \\ 2 \cdot \frac{1}{r^2 \sin^2\theta} \cdot \left(0 + 2r^2 \cos\theta \sin\theta - 0\right) \\ &= \cot\theta \\ \end{split}$$

$$\Gamma^{\phi}_{\phi\phi} = \frac{1}{2} g^{\phi\phi} \left(g_{\phi\phi,\phi} + g_{\phi\phi,\phi} - g_{\phi\phi,\phi} \right)$$
$$= 0$$

故所有非零分量为 $\Gamma^r_{\theta\theta} = -r$, $\Gamma^r_{\phi\phi} = -r\sin^2\theta$, $\Gamma^\theta_{r\theta} = \Gamma^\theta_{\theta r} = \frac{1}{r}$, $\Gamma^\theta_{\phi\phi} = -\cos\theta\sin\theta$, $\Gamma^\phi_{r\phi} = \Gamma^\phi_{\phi r} = \frac{1}{r}$, $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$.

8. 设 $I \in \mathbb{R}$ 的一个区间, $C: I \to M \in (M, \nabla_a)$ 中的曲线,试证 $\forall s, t \in I$,平移映射 $\psi: V_{C(s)} \to V_{C(t)}$ (见图 3-2) 是同构映射。

证明 对每个 $v \in V_{C(s)}$, 有唯一一个 C(t) 上的平移矢量场 $\bar{v}(t)$ 满足 $\bar{v}(s) = v$, $\psi(v) = v(t)$ 。 首先易验证 ψ 为线性映射,下面论证 $\ker \psi = \{0\}$ 。设 $\psi(v) = \bar{v}(t) = 0$,于是由正文 (3-2-5) 式:

$$\frac{\mathrm{d}\bar{v}^{\mu}}{\mathrm{d}t} + \Gamma^{\mu}_{\ \nu\sigma} T^{\nu} \bar{v}^{\sigma} = 0, \quad \mu = 1, \cdots, n$$

在 (s,t) 上此微分方程组的解被边界条件 $\bar{v}^{\mu}(t)=0$ 唯一确定,而 $\bar{v}^{\mu}(t)\equiv 0$ 是解,于是 知 $v=\bar{v}(s)=0$,于是 $\ker\psi=\{0\}$,又 $\dim V_{C(s)}=\dim V_{C(t)}=n$,故线性映射 ψ 是同构映射。

9. 试证定理 3-3-2、3-3-3 和 3-3-5。

证明 (1) 定理 3-3-2 如下:

定理 设曲线 $\gamma(t)$ 的切矢 T^a 满足 $T^b\nabla_bT^a=\alpha T^a[\alpha\ 为\ \gamma(t)\ 上的函数],$ 则存在 t'=t'(t) 使得 $\gamma'(t')[=\gamma(t)]$ 为测地线。

证明如下: 写出分量形式为

$$\begin{split} T^b \nabla_b T^a &= \left(\frac{\mathrm{d} T^\mu}{\mathrm{d} t} + \Gamma^\mu_{\nu\sigma} T^\nu T^\sigma\right) \left(\frac{\partial}{\partial x^\mu}\right)^a \\ &= \left(\frac{\mathrm{d}^2 x^\mu}{\mathrm{d} t^2} + \Gamma^\mu_{\nu\sigma} \frac{\mathrm{d} x^\nu}{\mathrm{d} t} \frac{\mathrm{d} x^\sigma}{\mathrm{d} t}\right) \left(\frac{\partial}{\partial x^\mu}\right)^a \\ \alpha T^a &= T^\mu \left(\frac{\partial}{\partial x^\mu}\right)^a \\ &= \alpha \frac{\mathrm{d} x^\mu}{\mathrm{d} t} \left(\frac{\partial}{\partial x^\mu}\right)^a \\ \Longrightarrow \alpha \frac{\mathrm{d} x^\mu}{\mathrm{d} t} &= \frac{\mathrm{d}^2 x^\mu}{\mathrm{d} t^2} + \Gamma^\mu_{\nu\sigma} \frac{\mathrm{d} x^\nu}{\mathrm{d} t} \frac{\mathrm{d} x^\sigma}{\mathrm{d} t} \end{split}$$

设有重参数化 t'=t'(t) 使得 $\gamma'(t')$ 为测地线,则

$$\begin{split} \frac{\mathrm{d}^2 x^\mu}{\mathrm{d}t'^2} + \Gamma^\mu_{\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t'} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t'} &= \frac{\mathrm{d}}{\mathrm{d}t'} \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\mu}{\mathrm{d}t} \right) + \Gamma^\mu_{\nu\sigma} \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \right) \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} \right) \\ &= \frac{\mathrm{d}^2t}{\mathrm{d}t'^2} \frac{\mathrm{d}x^\mu}{\mathrm{d}t} + \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \right)^2 \frac{\mathrm{d}^2x^\mu}{\mathrm{d}t^2} + \left(\frac{\mathrm{d}t}{\mathrm{d}t'} \right)^2 \Gamma^\mu_{\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} \end{split}$$

$$= \left[\frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} + \alpha \left(\frac{\mathrm{d}t}{\mathrm{d}t'}\right)^2\right] \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}$$
$$= 0$$

只要解微分方程
$$\frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} + \alpha \left(\frac{\mathrm{d}t}{\mathrm{d}t'}\right)^2 = 0$$
, 令 $\eta(t) = \frac{\mathrm{d}t'}{\mathrm{d}t}$, 则
$$\frac{1}{\eta} \frac{\mathrm{d}\eta}{\mathrm{d}t} + \alpha(t)\eta^2 = 0$$

解出来 $\eta(t)$ 积分即得重参数化 t'(t)。

(2) 定理 3-3-3 如下:

定理 若 t 是某测地线的仿射参数,则该曲线的任一参数 t' 是仿射参数的充要条件为 t' = at + b (其中 a,b 为常数且 $a \neq 0$)。

证明如下:完全类似 (1), 只是 $\alpha(t)=0$, 于是微分方程为

$$\frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} = 0,$$

解得 t' = at + b。

(3) 定理 3-3-5 如下:

定理 测地线的弧长参数必为仿射参数。

证明如下:设 t 为仿射参数,则 $T^b\nabla_bT^a=0$,于是

$$T^{a}\nabla_{a}\left(g_{bc}T^{b}T^{c}\right) = g_{bc}T^{a}T^{b}\nabla_{a}T^{c} + g_{bc}T^{a}T^{c}\nabla_{a}T^{b}$$
$$= 0$$

于是 $g_{ab}T^aT^b$ 沿线为常数 T, 弧长按定义与 t 的关系为 $\mathrm{d}l=\sqrt{|g_{ab}T^aT^b|}\,\mathrm{d}t=T\,\mathrm{d}t$, 由定理 3-3-3 知 l 为仿射参数。

- **10.** (a) 写出球面度规 $ds^2 = R^2 (d\theta^2 + \sin^2 \theta d\phi^2)$ (*R* 为常数)的测地线方程;
 - (b) 验证任一大圆弧(配以适当参数)满足测地线方程。提示: 选球面坐标系 $\{\theta,\phi\}$ 使所 给大圆弧为赤道的一部分,并以 ϕ 为仿射参数。
 - \mathbf{m} (a) 首先求克氏符,度规分量 $g_{\mu\nu}$ 排成的矩阵为

$$[g] = \left(\begin{array}{cc} R^2 & 0\\ 0 & R^2 \sin^2 \theta \end{array}\right)$$

逆矩阵

$$[g]^{-1} = \begin{pmatrix} \frac{1}{R^2} & 0\\ 0 & \frac{1}{R^2 \sin^2 \theta} \end{pmatrix}$$

完全类似第7题,根据非对角元全为零,观察克氏符分量表达式

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} \left(g_{\rho\mu,\nu} + g_{\nu\rho,\mu} - g_{\mu\nu,\rho} \right)$$

展开式中求和只有 $\rho = \sigma$ 项才可能非零,于是

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\sigma} \left(g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma} \right)$$

(σ 是给定某个具体指标, 不求和, 也不需要指标平衡)

$$\begin{split} \Gamma^{\theta}{}_{\theta\theta} &= \frac{1}{2} g^{\theta\theta} \left(g_{\theta\theta,\theta} + g_{\theta\theta,\theta} - g_{\theta\theta,\theta} \right) \\ &= 0 \\ \Gamma^{\theta}{}_{\theta\phi} &= \frac{1}{2} g^{\theta\theta} \left(g_{\theta\theta,\phi} + g_{\phi\theta,\theta} - g_{\theta\phi,\theta} \right) \\ &= 0 \\ \Gamma^{\theta}{}_{\phi\phi} &= \frac{1}{2} g^{\theta\theta} \left(g_{\theta\phi,\phi} + g_{\phi\theta,\phi} - g_{\phi\phi,\theta} \right) \\ &= \frac{1}{2} \cdot \frac{1}{R^2} \cdot \left(0 + 0 - 2R^2 \sin\theta \cos\theta \right) \\ &= -\sin\theta \cos\theta \\ \Gamma^{\phi}{}_{\theta\theta} &= \frac{1}{2} g^{\phi\phi} \left(g_{\phi\theta,\theta} + g_{\theta\phi,\theta} - g_{\theta\theta,\phi} \right) \\ &= 0 \\ \Gamma^{\phi}{}_{\theta\phi} &= \frac{1}{2} g^{\phi\phi} \left(g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi} \right) \\ &= \cot\theta \\ \Gamma^{\phi}{}_{\phi\phi} &= \frac{1}{2} g^{\phi\phi} \left(g_{\phi\phi,\phi} + g_{\phi\phi,\phi} - g_{\phi\phi,\phi} \right) \end{split}$$

代入测地线方程
$$\begin{split} \frac{\mathrm{d}^2 x^\mu}{\mathrm{d}t^2} + \Gamma^\mu_{\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} &= 0, \\ \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} - \sin\theta\cos\theta \left(\frac{\mathrm{d}\phi}{\mathrm{d}t}\right)^2 &= 0 \\ \frac{\mathrm{d}^2 \phi}{\mathrm{d}t^2} + \cot\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} &= 0 \end{split}$$

- (b) 由于测地线方程具有坐标系无关的形式 $T^b \nabla_b T^a = 0$,可选择球坐标系使得大圆弧落在赤道 $\theta = \frac{\pi}{2}$ 上,于是 $\cos \theta = 0$,满足测地线方程。
- 11. 试证定理 3-4-2.

证明 在某坐标系下展开即得

$$\begin{split} \left[\left(\nabla_a \nabla_b - \nabla_b \nabla_a \right) \omega_c \right] \big|_p &= \left[\left(\nabla_a \nabla_b - \nabla_b \nabla_a \right) \omega_\mu \left(\mathrm{d} x^\mu \right)_c \right] \big|_p \\ &= \left[\omega_\mu \left(\nabla_a \nabla_b - \nabla_b \nabla_a \right) \left(\mathrm{d} x^\mu \right)_c \right] \big|_p \quad (由定理 3-4-1) \\ &= \omega_\mu \big|_p \left[\left(\nabla_a \nabla_b - \nabla_b \nabla_a \right) \left(\mathrm{d} x^\mu \right)_c \right] \big|_p \end{split}$$

可见只与 ω 在p点的值有关,证毕。

12. 试证式 (3-4-10)。

证明 首先,
$$T_{[abc]d}=g_{de}T_{[abc]}{}^e=0$$
,而
$$T_{[abc]d}=\frac{1}{6}\left(T_{abcd}+T_{cabd}+T_{bcad}-T_{acbd}-T_{bacd}-T_{cbad}\right)$$

$$=\frac{1}{3}\left(T_{abcd}+T_{cabd}+T_{bcad}\right)$$

于是

$$\begin{split} T_{[abc]d} + T_{[dab]c} + T_{[cda]b} + T_{[bcd]a} \\ &= \frac{1}{3} \left(T_{abcd} + T_{cabd} + T_{bcad} \right) + \frac{1}{3} \left(T_{dabc} + T_{bdac} + T_{abdc} \right) \\ &+ \frac{1}{3} \left(T_{cdab} + T_{acdb} + T_{dacb} \right) + \frac{1}{3} \left(T_{bcda} + T_{dbca} + T_{cdba} \right) \\ &= \frac{1}{3} \left(T_{abcd} - T_{acbd} + T_{bcad} - T_{dacb} + T_{bdac} - T_{abcd} \right. \\ &+ T_{cdab} - T_{acbd} + T_{dacb} - T_{bcad} + T_{bdac} - T_{cdab} \right) \\ &= \frac{2}{3} \left(T_{bdac} - T_{acbd} \right) \\ &= 0 \end{split}$$

于是 $T_{bdac} - T_{acbd} = 0$ 。

- **13.** 求出球面度规(见题 10)的黎曼张量在坐标系 (θ, ϕ) 的全部分量。
 - 解 由 10 得, 克氏符的全部非零分量为 $\Gamma^{\theta}_{\phi\phi} = -\sin\theta\cos\theta, \Gamma^{\phi}_{\phi\theta} = \Gamma^{\phi}_{\theta\phi} = \cot\theta$, 由 $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{\rho}_{\mu\sigma,\nu} \Gamma^{\rho}_{\nu\sigma,\mu} + \Gamma^{\lambda}_{\sigma\mu}\Gamma^{\rho}_{\nu\lambda} \Gamma^{\lambda}_{\sigma\nu}\Gamma^{\rho}_{\mu\lambda}$ 得, 非零分量或者满足 $\rho = \theta$ 且 $\mu\nu\sigma$ 中有两个为 ϕ , 或者满足 $\rho = \phi$ 且 $\mu\nu\sigma$ 中至少有一个为 θ , 且前两个指标反称, 前两个指标相同的分量为零, 并且前三个指标只需考虑偶排列, 奇排列只需对调前两个指标。

$$\begin{split} R_{\theta\phi\phi}^{\theta} &= \Gamma^{\theta}_{\theta,\phi} - \Gamma^{\theta}_{\phi\theta,\theta} + \Gamma^{\theta}_{\phi\theta} \Gamma^{\theta}_{\phi\theta} - \Gamma^{\theta}_{\phi\phi} \Gamma^{\theta}_{\theta} + \Gamma^{\phi}_{\phi\theta} \Gamma^{\theta}_{\phi\phi} - \Gamma^{\phi}_{\phi\phi} \Gamma^{\theta}_{\theta\phi} \\ &= 0 + \left(\cos^2\theta - \sin^2\theta\right) + 0 - 0 - \cos^2\theta - 0 \\ &= -\sin^2\theta \end{split}$$

$$\begin{split} R_{\theta\phi\phi}^{\phi} &= \Gamma^{\phi}_{\theta,\phi} - \Gamma^{\phi}_{\phi,\theta} + \Gamma^{\theta}_{\phi\theta} \Gamma^{\phi}_{\phi\theta} - \Gamma^{\theta}_{\phi\phi} \Gamma^{\phi}_{\theta\theta} + \Gamma^{\phi}_{\phi\theta} \Gamma^{\phi}_{\phi\phi} - \Gamma^{\phi}_{\phi\phi} \Gamma^{\phi}_{\theta\phi} \\ &= 0 \\ R_{\phi\theta\theta}^{\phi} &= \Gamma^{\phi}_{\phi,\theta} - \Gamma^{\phi}_{\theta\theta,\phi} + \Gamma^{\theta}_{\theta} \Gamma^{\phi}_{\theta\theta} - \Gamma^{\theta}_{\theta} \Gamma^{\phi}_{\phi\theta} + \Gamma^{\phi}_{\theta\phi} \Gamma^{\phi}_{\theta\phi} - \Gamma^{\phi}_{\theta\theta} \Gamma^{\phi}_{\phi\phi} \\ &= -\frac{1}{\sin^2\theta} - 0 + 0 - 0 + \cot^2\theta - 0 \\ &= -1 \end{split}$$

于是非零分量仅有 $R_{\theta\phi\phi}{}^{\theta} = -R_{\phi\theta\phi}{}^{\theta} = -\sin\theta, R_{\phi\theta\theta}{}^{\phi} = -R_{\theta\phi\theta}{}^{\phi} = -1.$ 与愚蠢的人类相比,麦酱可以更快地计算(并且不会抄错分量)。将以下函数定义写入一个 Mathematica 程序包文件 (.m) 或者放在笔记本文件的开头:

```
christoffelsymbol[g ,x ,i ,j ,k ]:=
  1/2
    Plus@@
      ((Inverse[g][[i,#]](D[g[[#,j]],x[[k]]]+D[g[[k,#]],x[[j]]]-
           D[g[[j,k]],x[[#]]]))&)/@Range[Length[x]];
ChristoffelSymbol[g_,x_]:=
  Table[christoffelsymbol[g,x,i,j,k],{i,1,Length[x]},
     \{j,1,Length[x]\},\{k,1,Length[x]\}\};
riemanntensor[q,x,i,j,k,l]:=
  D[christoffelsymbol[g,x,l,i,k],x[[j]]]
   D[christoffelsymbol[g,x,l,j,k],x[[i]]]+
   Plus@@
     ((christoffelsymbol[q,x,\#,k,i] christoffelsymbol[q,x,l,j,\#]-
        christoffelsymbol[q,x,\#,k,j]
         christoffelsymbol[g,x,l,i,#])&)/@Range[Length[x]];
RiemannTensor[g_,x_]:=Table[riemanntensor[g,x,i,j,k,1],
   \{i,1,Length[x]\},\{j,1,Length[x]\},\{k,1,Length[x]\},\{1,1,Length[x]\}\};
```

运行如图 3.1。

14. 求度规 $ds^2 = \Omega(t,x) \left(-dt^2 + dx^2 \right)$ 的黎曼张量在 $\{t,x\}$ 系的全部分量(在结果中以 $\dot{\Omega}$ 和 Ω' 分别代表函数 Ω 对 t 和 x 的偏导数)。

```
\begin{split} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

图 3.1: 将第 13 题扔给麦酱计算

解 先求克氏符。

$$\begin{split} \Gamma^t_{\ tt} &= \frac{1}{2} g^{tt} \left(g_{tt,t} + g_{tt,t} - g_{tt,t} \right) \\ &= -\frac{\dot{\Omega}}{2\Omega} \\ \Gamma^t_{\ tx} &= \frac{1}{2} g^{tt} \left(g_{tt,x} + g_{xt,t} - g_{tx,t} \right) \\ &= \frac{\Omega'}{2\Omega} \\ \Gamma^t_{\ xx} &= \frac{1}{2} g^{tt} \left(g_{tx,x} + g_{xt,x} - g_{xx,t} \right) \\ &= \frac{\dot{\Omega}}{2\Omega} \\ \Gamma^x_{\ tx} &= \frac{1}{2} g^{xx} \left(g_{xt,t} + g_{tx,t} - g_{tt,x} \right) \\ &= \frac{\Omega'}{2\Omega} \\ \Gamma^x_{\ tx} &= \frac{1}{2} g^{xx} \left(g_{xt,x} + g_{xx,t} - g_{tx,x} \right) \\ &= \frac{\dot{\Omega}}{2\Omega} \\ \Gamma^x_{\ xx} &= \frac{1}{2} g^{xx} \left(g_{xx,x} + g_{xx,x} - g_{xx,x} \right) \\ &= \frac{\Omega'}{2\Omega} \end{split}$$

则

$$\begin{split} R_{txt}^{t} &= \Gamma^t_{tt,x} - \Gamma^t_{xt,t} + \Gamma^t_{tt} \Gamma^t_{xt} - \Gamma^t_{tx} \Gamma^t_{tt} + \Gamma^x_{tt} \Gamma^t_{xx} - \Gamma^x_{tx} \Gamma^t_{tx} \\ &= \frac{\Omega \dot{\Omega}' - \dot{\Omega} \Omega'}{2\Omega^2} - \frac{\Omega \dot{\Omega}' - \dot{\Omega} \Omega'}{2\Omega^2} - \frac{\dot{\Omega} \Omega'}{4\Omega^2} + \frac{\dot{\Omega} \Omega'}{4\Omega^2} + \frac{\dot{\Omega} \Omega'}{4\Omega^2} - \frac{\dot{\Omega} \Omega'}{4\Omega^2} \\ &= 0 \\ R_{txx}^{t} &= \Gamma^t_{tx,x} - \Gamma^t_{xx,t} + \Gamma^t_{xt} \Gamma^t_{xt} - \Gamma^t_{xx} \Gamma^t_{tt} + \Gamma^x_{xt} \Gamma^t_{xx} - \Gamma^x_{xx} \Gamma^t_{tx} \\ &= \frac{\Omega \Omega'' - \Omega'^2}{2\Omega^2} - \frac{\Omega \ddot{\Omega} - \dot{\Omega}^2}{2\Omega^2} + \frac{\Omega'^2}{4\Omega^2} - \frac{\dot{\Omega}^2}{4\Omega^2} + \frac{\dot{\Omega}^2}{4\Omega^2} - \frac{\Omega'^2}{4\Omega^2} \\ &= \frac{\Omega \left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{2\Omega^2} \\ R_{txt}^{x} &= \Gamma^x_{tt,x} - \Gamma^x_{xt,t} + \Gamma^t_{tt} \Gamma^x_{xt} - \Gamma^t_{tx} \Gamma^x_{tt} + \Gamma^x_{tt} \Gamma^x_{xx} - \Gamma^x_{tx} \Gamma^x_{tx} \\ &= \frac{\Omega \Omega'' - \Omega'^2}{2\Omega^2} - \frac{\Omega \ddot{\Omega} - \dot{\Omega}^2}{2\Omega^2} - \frac{\dot{\Omega}^2}{4\Omega^2} - \frac{\Omega'^2}{4\Omega^2} + \frac{\Omega'^2}{4\Omega^2} - \frac{\dot{\Omega}^2}{4\Omega^2} \\ &= \frac{\Omega \left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{2\Omega^2} \\ R_{txx}^{x} &= \Gamma^x_{tx,x} - \Gamma^x_{xx,t} + \Gamma^t_{xt} \Gamma^x_{xt} - \Gamma^t_{xx} \Gamma^x_{tt} + \Gamma^x_{xt} \Gamma^x_{xx} - \Gamma^x_{xx} \Gamma^x_{tx} \\ &= \frac{\Omega \dot{\Omega}' - \dot{\Omega} \Omega'}{2\Omega^2} - \frac{\dot{\Omega} \dot{\Omega}' - \dot{\Omega} \Omega'}{2\Omega^2} + \frac{\Omega' \dot{\Omega}}{4\Omega^2} + \frac{\Omega' \dot{\Omega}}{4\Omega^2} + \frac{\Omega' \dot{\Omega}}{4\Omega^2} - \frac{\Omega' \dot{\Omega}}{4\Omega^2} \\ &= 0 \end{split}$$

故所有非零分量为 $R_{txx}^{t}=-R_{xtx}^{t}=R_{txt}^{x}=-R_{xtt}^{x}=rac{\Omega\left(\Omega^{\prime\prime}-\ddot{\Omega}
ight)+\dot{\Omega}^2-\Omega^{\prime^2}}{2\Omega^2}$ 。 本题用上述 Mathematica 代码解决如图 3.2:

```
 \begin{aligned} &\inf\{i\} = << \text{RY.m} \\ & \inf\{i\} = g[t_-, x_-] = \Omega[t, x] \begin{pmatrix} -1 & \theta \\ 0 & 1 \end{pmatrix} \\ & \text{Outple} & \{(-\Omega[t, x], \theta), (\theta, \Omega[t, x])\} \\ & \inf\{i\} = T = \text{ChristoffelSymbol}[g[t, x], \{t, x]] \\ & \text{Outple} & \{\{\frac{\Omega^{(1,0)}[t, x]}{2\Omega[t, x]}, \frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]}\}, \left\{\frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]}, \frac{\Omega^{(1,0)}[t, x]}{2\Omega[t, x]}, \left\{\frac{\Omega^{(1,0)}[t, x]}{2\Omega[t, x]}, \frac{\Omega^{(1,0)}[t, x]}{2\Omega[t, x]}\right\}, \left\{\frac{\Omega^{(1,0)}[t, x]}{2\Omega[t, x]}, \frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]}\right\} \\ & \inf\{i\} & \text{Outple} & \{\theta.0159317, \left\{\{((\theta, \theta), (\theta, \theta)), \left\{\theta, \frac{-\Omega^{(0,1)}[t, x]^2 + \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{\Omega^{(0,2)}[t, x] - \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \\ & \left\{\frac{-\Omega^{(0,1)}[t, x]^2 + \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,2)}[t, x] - \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}, \theta\right\} \right\}, \\ & \left\{\left\{\left\{\theta, \frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,2)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \\ & \left\{\left\{\left\{\theta, \frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,2)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \right\} \\ & \left\{\left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,2)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \right\} \\ & \left\{\left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,2)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \right\} \\ & \left\{\left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}, \frac{(\Omega^{(0,1)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \right\} \\ & \left\{\left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}\right\}, \frac{(\Omega^{(0,1)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \right\} \right\} \\ & \left\{\left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]^2 + \Omega[t, x]}{2\Omega[t, x]^2}\right\}, \frac{(\Omega^{(0,1)}[t, x] + \Omega^{(2,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \frac{(\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]}{2\Omega[t, x]^2}\right\} \right\} \right\} \\ & \left\{\left\{\frac{\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]}{2\Omega[t, x]^2}\right\}, \frac{(\Omega^{(0,1)}[t, x]^2 - \Omega^{(1,0)}[t, x]}{2\Omega[t, x]^2}\right\} \right\} \\ & \left\{\frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]^2}\right\} \right\} \\ & \left\{\frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]^2}\right\} \\ & \left\{\frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]^2}\right\} \\ & \left\{\frac{\Omega^{(0,1)}[t, x]}{2\Omega[t, x]}\right\} \right\} \\ & \left\{\frac{\Omega^{(0,1)}[t, x]}
```

图 3.2: 将第 14 题扔给麦酱

15. 求度规 $ds^2 = z^{-1/2} \left(-dt^2 + dz^2 \right) + z \left(dx^2 + dy^2 \right)$ 的黎曼张量在 $\{t, x, y, z\}$ 系的全部分量。

解 先求克氏符分量。由度规分量的非对角元均为零,克氏符分量 $\Gamma^{\sigma}_{\mu\nu}=\frac{1}{2}g^{\sigma\sigma}\left(g_{\sigma\mu,\nu}+g_{\nu\sigma,\mu}-g_{\mu\nu,\sigma}\right)$ 。 非零分量至少应该满足: $\sigma\mu\nu$ 至少有两个相等; $\sigma\mu\nu$ 中至少有一个为 z (否则导数项全为零)。进一步地,若两个相等,则第三个必为 z (否则导数项为零);若三个相等,则为 zzz。即,非零分量满足三个指标中一个为 z 其余两个相同。

$$\begin{split} \Gamma^{t}{}_{tz} &= \frac{1}{2}g^{tt} \left(g_{tt,z} + g_{zt,t} - g_{tz,t} \right) \\ &= -\frac{1}{4z} \\ \Gamma^{x}{}_{xz} &= \frac{1}{2}g^{xx} \left(g_{xx,z} + g_{zx,x} - g_{xz,x} \right) \\ &= \frac{1}{z} \\ \Gamma^{y}{}_{yz} &= \frac{1}{2}g^{yy} \left(g_{yy,z} + g_{zy,y} - g_{yz,y} \right) \\ &= \frac{1}{z} \\ \Gamma^{z}{}_{tt} &= \frac{1}{2}g^{zz} \left(g_{zt,t} + g_{tz,t} - g_{tt,z} \right) \\ &= -\frac{1}{4z} \\ \Gamma^{z}{}_{xx} &= \frac{1}{2}g^{zz} \left(g_{zx,x} + g_{xz,x} - g_{xx,z} \right) \\ &= -\frac{\sqrt{z}}{2} \\ \Gamma^{z}{}_{yy} &= \frac{1}{2}g^{zz} \left(g_{zy,y} + g_{yz,y} - g_{yy,z} \right) \\ &= -\frac{\sqrt{z}}{2} \\ \Gamma^{z}{}_{zz} &= \frac{1}{2}g^{zz} \left(g_{zz,z} + g_{zz,z} - g_{zz,z} \right) \\ &= -\frac{1}{4z} \end{split}$$

于是所有非零克氏符分量为 $\Gamma^t_{\ tz}=\Gamma^t_{\ zt}=-\frac{1}{4z}$, $\Gamma^x_{\ xz}=\Gamma^x_{\ zx}=\Gamma^y_{\ yz}=\Gamma^y_{\ zy}=\frac{1}{z}$, $\Gamma^z_{\ tt}=-\frac{1}{4z}$, $\Gamma^z_{\ xx}=\Gamma^z_{\ yy}=-\frac{\sqrt{z}}{2}$, $\Gamma^z_{\ zz}=-\frac{1}{4z}$ 。

由黎曼曲率张量分量表达式 $R_{\mu\nu\sigma}^{\rho} = \Gamma^{\rho}_{\sigma\mu,\nu}^{\rho} - \Gamma^{\rho}_{\nu\sigma,\mu} + \Gamma^{\lambda}_{\sigma\mu}\Gamma^{\rho}_{\nu\lambda} - \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\rho}_{\mu\lambda}$, 注意到上述克氏符非零项的规律,黎曼张量的非零分量至少应该满足 $\mu \neq \nu$ 并且:

- 1. ρ 不为 z 时,导数项非零的条件是 $\mu\nu$ 中有一个为 z 另一个和 ρ 相同且 σ = z; 下 面分类讨论后两项。
 - (a) $\mu\nu$ 中有一个为 z 时,设 $\nu=z$, $R_{\mu z\sigma}{}^{\rho}=\Gamma^{\rho}{}_{\sigma\mu,z}-\Gamma^{\rho}{}_{z\sigma,\mu}+\Gamma^{\lambda}{}_{\sigma\mu}\Gamma^{\rho}{}_{z\lambda}-\Gamma^{\lambda}{}_{z\sigma}\Gamma^{\rho}{}_{\mu\lambda}$, 倒数第二项中 $\rho z\lambda$ 的组合为满足克氏符非零项"一个为 z 其余两个相同"的特征,要求 $\lambda=\rho$;最后一项中 $\lambda z\sigma$ 的组合要求 $\lambda=\sigma$,于是 $R_{\mu z\sigma}{}^{\rho}=\Gamma^{\rho}{}_{\sigma\mu,z}+$

 $\Gamma^{\rho}_{\sigma\mu}\Gamma^{\rho}_{z\rho} - \Gamma^{\sigma}_{z\sigma}\Gamma^{\rho}_{\mu\sigma}$,第一项非零要求 $\mu = \rho$ 且 $\sigma = z$,第二项非零要求 $\mu = \rho$ 且 $\sigma = z$;最后一项非零要求 $\mu = \rho$ 且 $\sigma = z$,于是非零项为 $R_{\rho zz}^{\rho} = \Gamma^{\rho}_{z\rho,z} + \Gamma^{\rho}_{z\rho}\Gamma^{\rho}_{z\rho} - \Gamma^{z}_{zz}\Gamma^{\rho}_{\rho z}$ 。

- (b) $\mu\nu$ 均不为 z 时, 求导项为零, $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{\lambda}{}_{\sigma\mu}\Gamma^{\rho}{}_{\nu\lambda} \Gamma^{\lambda}{}_{\nu\sigma}\Gamma^{\rho}{}_{\mu\lambda}$,第一项中 $\rho\nu\lambda$ 的组合要求 $\lambda = z$ 且 $\nu = \rho$,第二项中 $\rho\mu\lambda$ 的组合要求 $\lambda = z$ 且 $\mu = \rho$,于 是 $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{z}{}_{\sigma\mu}\Gamma^{\rho}{}_{\nu z} \Gamma^{z}{}_{\nu\sigma}\Gamma^{\rho}{}_{\mu z}$, $\mu\nu$ 中至少一个与 ρ 相同。不妨设 $\mu = \rho$,则 $R_{\rho\nu\sigma}{}^{\rho} = -\Gamma^{z}{}_{\nu\sigma}\Gamma^{\rho}{}_{\rho z}$,非零项为 $R_{\rho\nu\nu}{}^{\rho} = -\Gamma^{z}{}_{\nu\nu}\Gamma^{\rho}{}_{\rho z}$ 。
- 2. ρ 为 z 时,则后两项中 λ 应分别取 ν 和 μ ,即 $R_{\mu\nu\sigma}{}^z = \Gamma^z{}_{\sigma\mu,\nu} \Gamma^z{}_{\nu\sigma,\mu} + \Gamma^\nu{}_{\sigma\mu}\Gamma^z{}_{\nu\nu} \Gamma^\mu{}_{\nu\sigma}\Gamma^z{}_{\mu\mu}$,若 $\mu\nu$ 均不为 z,则导数项为零,而后两项中 $\Gamma^\nu{}_{\sigma\mu}$ 和 $\Gamma^\mu{}_{\nu\sigma}$ 无论 σ 如何取都不能满足克氏符非零项 "一个为 z 其余两个相同"的特征,故 $\mu\nu$ 中有一个为 z,考虑到指标 $\mu\nu$ 反称只需计算偶排列,于是我们有 $\nu=z$,非零项为 $R_{\mu z\sigma}{}^z = \Gamma^z{}_{\sigma\mu,z} + \Gamma^z{}_{\sigma\mu}\Gamma^z{}_{zz} \Gamma^\mu{}_{z\sigma}\Gamma^z{}_{\mu\mu}$,又看出必须有 $\mu=\sigma$,于是非零项为 $R_{\mu z\mu}{}^z = \Gamma^z{}_{\mu\mu,z} + \Gamma^z{}_{\mu\mu}\Gamma^z{}_{zz} \Gamma^\mu{}_{z\mu}\Gamma^z{}_{\mu\mu}$ 。

综上, 可能非零项为

$$\begin{split} R_{\rho zz}^{\rho} &= \Gamma^{\rho}_{z,z} + \Gamma^{\rho}_{z\rho} \Gamma^{\rho}_{z\rho} - \Gamma^{z}_{zz} \Gamma^{\rho}_{\rho z}, & \rho = t, x, y \\ R_{\rho\nu\nu}^{\rho} &= -\Gamma^{z}_{\nu\nu} \Gamma^{\rho}_{\rho z}, & \rho, \nu = t, x, y \\ R_{\mu z\mu}^{z} &= \Gamma^{z}_{\mu\mu,z} + \Gamma^{z}_{\mu\mu} \Gamma^{z}_{zz} - \Gamma^{\mu}_{z\mu} \Gamma^{z}_{\mu\mu}, & \mu = t, x, y. \end{split}$$

又注意到x与y的对称性,只需计算x而不用计算y、只需计算xyyx不用计算yxxy。下面按以上规则计算可能的非零分量。

$$\begin{split} R_{txx}{}^t &= -\Gamma^z{}_{xx}\Gamma^t{}_{tz} \\ &= -\frac{1}{8\sqrt{z}} \\ R_{tzz}{}^t &= \Gamma^t{}_{zt,z} + \Gamma^t{}_{zt}\Gamma^t{}_{zt} - \Gamma^z{}_{zz}\Gamma^t{}_{tz} \\ &= \frac{1}{4z^2} + \frac{1}{16z^2} - \frac{1}{16z^2} \\ &= \frac{1}{4z^2} \\ R_{xyy}{}^x &= -\Gamma^z{}_{yy}\Gamma^x{}_{xz} \\ &= \frac{1}{4\sqrt{z}} \\ R_{xzz}{}^x &= \Gamma^x{}_{zx,z} + \Gamma^x{}_{zx}\Gamma^x{}_{zx} - \Gamma^z{}_{zz}\Gamma^x{}_{xz} \\ &= -\frac{1}{2z^2} + \frac{1}{4z^2} + \frac{1}{8z^2} \\ &= -\frac{1}{8z^2} \end{split}$$

$$\begin{split} R_{tzt}{}^z &= \Gamma^z{}_{tt,z} + \Gamma^z{}_{tt} \Gamma^z{}_{zz} - \Gamma^t{}_{zt} \Gamma^z{}_{tt} \\ &= \frac{1}{4z^2} + \frac{1}{16z^2} - \frac{1}{16z^2} \\ &= \frac{1}{4z^2} \\ R_{xzx}{}^z &= \Gamma^z{}_{xx,z} + \Gamma^z{}_{xx} \Gamma^z{}_{zz} - \Gamma^x{}_{zx} \Gamma^z{}_{xx} \\ &= -\frac{1}{4\sqrt{z}} + \frac{1}{8\sqrt{z}} + \frac{1}{4\sqrt{z}} \\ &= \frac{1}{8\sqrt{z}} \end{split}$$

于是所有非零分量为

$$\begin{split} R_{txx}{}^t &= -R_{xtx}{}^t = R_{tyy}{}^t = -R_{yty}{}^t = -\frac{1}{8\sqrt{z}} \\ R_{tzz}{}^t &= -R_{ztz}{}^t = \frac{1}{4z^2} \\ R_{xyy}{}^x &= R_{yxx}{}^y = \frac{1}{4\sqrt{z}} \\ R_{xzz}{}^x &= -R_{zxz}{}^x = R_{yzz}{}^y = -R_{zyz}{}^y = -\frac{1}{8z^2} \\ R_{tzt}{}^z &= -R_{ztt}{}^z = \frac{1}{4z^2} \\ R_{xzx}{}^z &= -R_{zxx}{}^z = \frac{1}{8\sqrt{z}} \end{split}$$

我第一遍手算的算了几个小时(论经常抄错指标的悲惨……)所以还是分析一番,分类讨论分量非零条件顺便化简的好……当然最省事的还是交给麦酱,秒出结果……

16. 设 $\alpha(z)$, $\beta(z)$, $\gamma(z)$ 为任意函数, $h = t + \alpha(z)x + \beta(z)y + \gamma(z)$, 求度规

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + h^{2} dz^{2}$$

的黎曼张量在 $\{t, x, y, z\}$ 系的全部分量。

解 首先求克氏符分量,由于度规分量矩阵的非对角元全为零, $\Gamma^{\sigma}_{\mu\nu}=\frac{1}{2}g^{\sigma\sigma}\left(g_{\sigma\mu,\nu}+g_{\nu\sigma,\mu}-g_{\mu\nu,\sigma}\right)$,导数项非零要求 $\sigma\mu\nu$ 中有两个取 z。

$$\Gamma^{t}_{zz} = \frac{1}{2}g^{tt} \left(g_{tz,z} + g_{zt,z} - g_{zz,t} \right)$$

$$= h$$

$$\Gamma^{x}_{zz} = \frac{1}{2}g^{xx} \left(g_{xz,z} + g_{zx,z} - g_{zz,x} \right)$$

$$= -h\alpha$$

$$\Gamma^{y}_{zz} = \frac{1}{2}g^{yy} \left(g_{yz,z} + g_{zy,z} - g_{zz,y} \right)$$

$$= -h\beta$$

$$\begin{split} \Gamma^{z}_{zt} &= \frac{1}{2} g^{zz} \left(g_{zz,t} + g_{tz,z} - g_{zt,z} \right) \\ &= \frac{1}{h} \\ \Gamma^{z}_{zx} &= \frac{1}{2} g^{zz} \left(g_{zz,x} + g_{xz,z} - g_{zx,z} \right) \\ &= \frac{\alpha}{h} \\ \Gamma^{z}_{zy} &= \frac{1}{2} g^{zz} \left(g_{zz,y} + g_{yz,z} - g_{zy,z} \right) \\ &= \frac{\beta}{h} \\ \Gamma^{z}_{zz} &= \frac{1}{2} g^{zz} \left(g_{zz,z} + g_{zz,z} - g_{zz,z} \right) \\ &= \frac{x\alpha' + y\beta' + \gamma'}{h} \end{split}$$

黎曼张量分量表达式为 $R_{\mu\nu\sigma}{}^{\rho}=\Gamma^{\rho}{}_{\sigma\mu,\nu}-\Gamma^{\rho}{}_{\nu\sigma,\mu}+\Gamma^{\lambda}{}_{\sigma\mu}\Gamma^{\rho}{}_{\nu\lambda}-\Gamma^{\lambda}{}_{\nu\sigma}\Gamma^{\rho}{}_{\mu\lambda}$,下面讨论分量非零条件。

- 1. ρ 不取 z。后两项求和中 $\lambda=z$,且 $\mu\nu$ 必有一取 z。由于前两个指标反称,设 ν 取 z,则 $R_{\mu z \sigma}{}^{\rho} = \Gamma^{\rho}{}_{\sigma\mu,z} \Gamma^{\rho}{}_{z\sigma,\mu} + \Gamma^{z}{}_{\sigma\mu}\Gamma^{\rho}{}_{zz} \Gamma^{z}{}_{z\sigma}\Gamma^{\rho}{}_{\mu z}$,又可看出 $\sigma=z$,于是非零分量为 $R_{\mu z z}{}^{\rho} = -\Gamma^{\rho}{}_{zz,\mu} + \Gamma^{z}{}_{z\mu}\Gamma^{\rho}{}_{zz}$ 。
- 2. ρ取 z。
 - (a) ν 取 z。则 $R_{\mu z \sigma}{}^z = \Gamma^z{}_{\sigma \mu, z} \Gamma^z{}_{z \sigma, \mu} + \Gamma^\lambda{}_{\sigma \mu} \Gamma^z{}_{z \lambda} \Gamma^\lambda{}_{z \sigma} \Gamma^z{}_{\mu \lambda}$,倒数第二项中 $\lambda \sigma \mu$ 的组合要求 $\lambda = z$,最后一项中 $z \mu \lambda$ 的组合要求 $\lambda = z$ 。

i.
$$\sigma=z$$
, \mathbb{M} $R_{\mu zz}{}^z=\Gamma^z_{\ z\mu,z}-\Gamma^z_{\ zz,\mu}+\Gamma^z_{\ z\mu}\Gamma^z_{\ zz}-\Gamma^z_{\ zz}\Gamma^z_{\ \mu z};$
ii. $\sigma\neq z$, \mathbb{M} $R_{\mu z\sigma}{}^z=\Gamma^z_{\ \sigma\mu,z}-\Gamma^z_{\ z\sigma,\mu}+\Gamma^z_{\ \sigma\mu}\Gamma^z_{\ zz}-\Gamma^z_{\ z\sigma}\Gamma^z_{\ \mu z}.$

(b) $\mu\nu$ 均不取 z。则 $R_{\mu\nu\sigma}{}^z = \Gamma^z_{\ \sigma\mu,\nu} - \Gamma^z_{\ \nu\sigma,\mu} + \Gamma^\lambda_{\ \sigma\mu} \Gamma^z_{\ \nu\lambda} - \Gamma^\lambda_{\ \nu\sigma} \Gamma^z_{\ \mu\lambda}$,后两项中 λ 均取 z,且 $\sigma = z$ 。则 $R_{\mu\nu z}{}^z = \Gamma^z_{\ z\mu,\nu} - \Gamma^z_{\ \nu z,\mu} + \Gamma^z_{\ z\mu} \Gamma^z_{\ \nu z} - \Gamma^z_{\ \nu z} \Gamma^z_{\ \mu z}$ 。

综上, 可能的非零分量有

$$\begin{split} R_{\mu zz}{}^{\rho} &= -\Gamma^{\rho}{}_{zz,\mu} + \Gamma^{z}{}_{z\mu}\Gamma^{\rho}{}_{zz}, & \mu, \rho = t, x, y \\ R_{\mu zz}{}^{z} &= \Gamma^{z}{}_{z\mu,z} - \Gamma^{z}{}_{zz,\mu}, & \mu = t, x, y \\ R_{\mu z\sigma}{}^{z} &= -\Gamma^{z}{}_{z\sigma,\mu} - \Gamma^{z}{}_{z\sigma}\Gamma^{z}{}_{\mu z}, & \mu, \sigma = t, x, y \\ R_{\mu \nu z}{}^{z} &= \Gamma^{z}{}_{z\mu,\nu} - \Gamma^{z}{}_{\nu z,\mu}, & \mu, \nu = t, x, y \end{split}$$

但是

$$\Gamma^{z}_{\ z\mu} = \frac{\frac{\partial h}{\partial x^{\mu}}}{h},$$

于是

$$\Gamma^z_{\ z\mu,\nu} = -\frac{\frac{\partial h}{\partial x^\mu}\frac{\partial h}{\partial x^\nu}}{h^2} = \Gamma^z_{\ z\nu,\mu} = \Gamma^z_{\ z\mu}\Gamma^z_{\ z\nu},$$

故第二三四项为零, 还剩下

$$R_{\mu zz}^{\ \rho} = -\Gamma^{\rho}_{zz,\mu} + \Gamma^{z}_{z\mu}\Gamma^{\rho}_{zz}, \qquad \rho = t, x, y$$

而

$$\Gamma^{\rho}_{\ zz} = -g^{\rho\rho}h\frac{\partial h}{\partial x^{\rho}}$$

可以观察发现

$$\begin{split} \Gamma^{\rho}_{\ zz,\mu} &= -g^{\rho\rho} \frac{\partial h}{\partial x^{\rho}} \frac{\partial h}{\partial x^{\mu}} \\ &= \left(-g^{\rho\rho} h \frac{\partial h}{\partial x^{\mu}} \right) \left(\frac{\frac{\partial h}{\partial x^{\mu}}}{h} \right) \\ &= \Gamma^{z}_{\ z\mu} \Gamma^{\rho}_{\ zz} \end{split}$$

于是黎曼张量分量全为零。扔给麦酱验证如图 3.3

图 3.3: Mathematica 验证第 16 题

17. 试证 2 维广义黎曼空间的爱因斯坦张量为零。提示: 2 维广义黎曼空间的黎曼张量只有一个独立分量。

证明 记 $r \equiv R_{1212}$,则

$$R_{2112} = -r$$

$$R_{1221} = -r$$

$$R_{2121} = r$$

于是里奇张量 $R_{ac} := g^{bd} R_{abcd}$ 的分量为

$$R_{11} = g^{22} R_{12 2}^{1}$$
$$= rg^{22}$$

$$\begin{split} R_{12} &= g^{21} R_{1221} \\ &= -r g^{21} \\ R_{22} &= g^{11} R_{2121} \\ &= r g^{11} \end{split}$$

标量曲率

$$\begin{split} R &= g^{ac} R_{ac} \\ &= 2rg^{11}g^{22} - 2rg^{12}g^{21} \\ &= 2rg \end{split}$$

其中 $g = \det[g]$ 为度规分量矩阵的行列式。于是

$$\begin{split} G_{11} &= R_{11} - \frac{1}{2} R g_{11} \\ &= r g^{22} - r g g_{11} \\ &= 0, \\ G_{12} &= R_{12} - \frac{1}{2} R g_{12} \\ &= -r g^{21} - r g g_{12} \\ &= 0, \\ G_{22} &= R_{22} - \frac{1}{2} R g_{22} \\ &= r g^{11} - r g g_{22} \\ &= 0. \end{split}$$