

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 8

Непрерывность бизнеса, резервное копирование и восстановление

Содержание лекции

- необходимость
- метрики непрерывности
- методы борьбы с SPOF
- топологии резервного копирования
- дедупликация
- резервное копирование в виртуальной среде

Доступность информации

Информация может быть недоступна из-за

- наводнений, пожаров, землетрясений
- сетевых атак
- ошибок персонала
- сбоев оборудования
- обновления ПО и оборудования
- архивирования и восстановления

Организации теряют большие деньги

Непрерывность бизнеса

- Business Continuity (BC)
 - процесс, охватывающий все предприятие
 - действия для уменьшения влияния простоев
 - обеспечение безопасности
 - профилактика
 - оценка рисков
 - защита данных

Доступность информации

- Возможность инфраструктуры функционировать
 - в течение ожидаемого времени
 - в соответствии с требованиями
- Определяется
 - надежностью
 - возможностью доступа
 - своевременностью

Причины недоступности

Измерение доступности

- Среднее время между отказами (MTBF)
 - Компонент работает без сбоев
- Среднее время восстановления (MTTR) МТТR = время на обнаружение

+

время на диагностику

+

время на восстановление

+

время на тестирование

Расчет доступности

```
• Доступность =

uptime / (uptime + downtime)

или

MTBF / (MTBF + MTTR)
```

• Описывается девятками (99.9%, 99.999%)

Процент доступности

Доступность %	Время простоя в год	Время простоя в месяц	Время простоя в неделю
90% ("одна девятка")	36.5 дней	72 часов	16.8 часов
95%	18.25 дней	36 часов	8.4 часов
98%	7.30 дней	14.4 часов	3.36 часов
99% ("две девятки")	3.65 дней	7.20 часов	1.68 часов
99.9% ("три девятки")	8.76 часов	43.2 минут	10.1 минут
99.99% ("четыре девятки")	52.56 минут	4.32 минут	1.01 минут
99.999% ("пять девяток")	5.26 минут	25.9 секунд	6.05 секунд
99.9999% ("шесть девяток")	31.5 секунд	2.59 секунд	0.605 секунд

Еще немного терминов

- Disaster Recovery (DR) процесс аварийного восстановления систем и данных (замена компонентов, копирование из архивов и т.п.)
- Disaster Restart (DR) процесс перезапуска бизнеса с зеркальных копий данных и приложений

Точки и время восстановления

- Recovery Point Objective (RPO) период времени, за который «не жалко» потерять изменение данных
- Recovery Time Objective (RTO) период времени, за который система должна быть восстановлена

Стратегии достижения RPO

Архивация на ленты

Периодическое копирование

Асинхронное копирование

Синхронное копирование

Стратегии достижения RTO

Восстановление с лент

Восстановление с дисков

Ручной перенос

Глобальный кластер

Способы увеличения доступности

- Интеллектуальные СХД
- «Горячий» офис
- «Холодный» офис
- Кластер

Планирование непрерывности

ВС: Постановка Задачи

- Определение требований
- Оценка возможностей и бюджета
- Набрать команду экспертов
- Создать правила и политики

ВС: Анализ

- Собрать информацию о
 - данных
 - процессах
 - зависимостях
 - инфраструктуре
- Установить приоритеты
- Проанализировать риски
- Создать стратегию смягчения рисков
- Проанализировать стоимость решения

ВС: Проектирование и разработка

- Сформировать команды, распределить роли
- Разработать сценарии действий
- Проработать процедуры восстановления и перезапуска

ВС: Внедрение

- Обеспечить архивирование, копирование данных, управление ресурсами
- Подготовить запасные места
- Проанализировать и исключить единые точки отказа

ВС: Обучение, тест, поддержка

- Обучить персонал
- Обучить команду восстановления
- Протестировать план
- Провести оценку
- Вернуться на шаг 1 😊

Единая точка отказа

- Single Point of Failure (SPOF)
- Компонент, отказ которого приведет к отказу всей системы

Отказоустойчивость

EMC PowerPath - multipathing

active-active

Резервное копирование

- Цели
 - восстановление после отказа
 - операционное копирование
 - архивирование

Принципы резервного копирования

- RTO & RPO
- Период хранения копий
- Вид носителя
- Гранулярность
- Сжатие и дедупликация
- Местоположение, размер и количество файлов
- Время создания копий

Гранулярность копирования

Инкрементальные копии - восстановление

Дифференциальные копии - восстановление

Синтетические полные копии

- Освобождение ресурсов
 - сеть
 - сервер

Способы резервного копирования

- Горячие копии
 - необходимы агенты запущенных приложений
- Холодные копии
 - полный останов программ, проще, надежнее
- Резервирование файлов
 - система копирования ждет, пока файлы «освободятся». Можно не дождаться ☺
- Point in Time (PIT) мгновенные снимки системы
 - инкремент хранится в другом месте (файл, LUN)

Процесс резервного копирования

Процесс резервного копирования (2)

- 1. Начало процесса по графику
- 2. Чтение каталога
- 3. Загрузка носителей, начало передачи данных
- 4. Передача данных
- 5. Запись данных
- 6. Передача метаданных
- 7. Обновление каталога

Процесс восстановления

Процесс восстановления (2)

- 1. Чтение метаданных файлов из каталога
- 2. Загрузка носителя данных
- 3. Передача файлов клиенту
- 4. Передача метаданных в каталог
- 5. Обновление каталога

Топологии - прямое подключение

Топологии – локальная сеть

Топологии – LAN free (SAN based)

Дедупликация

- Хранение одинаковых объектов в одном экземпляре
 - файловая
 - блоковая
- Файловая дедупликация
 - полные файлы
 - фрагменты (фиксированный размер или плавающий)
- Хэш-функции для обнаружения

Дедупликация на клиенте

Дедупликация в СХД

• Мгновенная **De-duplication** at Target • Отложенная Data set Storage Network **Backup Client Backup Device**

Преимущества дедупликации в резервном копировании

- Уменьшение стоимости хранения
- Увеличение периода хранения
- Быстрее
- Меньше нагрузка на сеть (при дедупликации на клиенте)

Резервное копирование виртуальных

машин

• Агент в ВМ

• Агент в гипервизоре

- NAS based
- SAN based

Спасибо!

EMAIN OF THE PROPERTY OF THE P