B Solutions to Problems

Solution to Problem 1. We can model this problem as a dynamic program with the following <u>shortest</u> path representation:

- Stage t represents deciding the speed for phase t (t = 1, ..., 4), or the end of the decision-making process (t = 5).
- Node t_n represents having n million dollars left at stage t (n = 0, 1, ..., 10).

Solution to Problem 2. We can model this problem as a dynamic program with the following <u>shortest</u> path representation:

- Stage t represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
- Node t_n represents having n hundred laptops in inventory at stage t (n = 0, 1, 2, 3, 4).

Month	Production amount	Edge		Edge length
1	0	$(1_n, 2_{n-2})$	for $n = 2, 3, 4$	15(100)(n-2)
1	100	$(1_n, 2_{n-1})$	for $n = 1, 2, 3, 4$	2500 + 100(100) + 15(100)(n-1)
1	200	$(1_n, 2_n)$	for $n = 0, 1, 2, 3, 4$	2500 + 100(200) + 15(100)n
1	300	$\left(1_{n},2_{n+1}\right)$	for $n = 0, 1, 2, 3$	2500 + 100(300) + 15(100)(n+1)
2	0	$(2_n,3_{n-3})$	for $n = 3, 4$	15(100)(n-3)
2	100	$(2_n,3_{n-2})$	for $n = 2, 3, 4$	2500 + 100(100) + 15(100)(n-2)
2	200	$(2_n,3_{n-1})$	for $n = 1, 2, 3, 4$	2500 + 100(200) + 15(100)(n-1)
2	300	$(2_n,3_n)$	for $n = 0, 1, 2, 3, 4$	2500 + 100(300) + 15(100)n
3	0	$(3_n, 4_{n-2})$	for $n = 2, 3, 4$	15(100)(n-2)
3	100	$(3_n, 4_{n-1})$	for $n = 1, 2, 3, 4$	2500 + 120(100) + 15(100)(n-1)
3	200	$(3_n,4_n)$	for $n = 0, 1, 2, 3, 4$	2500 + 120(200) + 15(100)n
3	300	$\left(3_n,4_{n+1}\right)$	for $n = 0, 1, 2, 3$	2500 + 120(300) + 15(100)(n+1)