# Introduction to Electrodynamics

Fourth Edition

David J. Griffiths

Solucionario

Angel Fernando García Núñez

**Problem 1.1** Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross product are distributive,

- a) when the three vectors are coplanar;
- b) in the general case.

Vectores coplanares



Como podemos ver en el diagrama, cuando los vectores  $\vec{A}$ ,  $\vec{B}$  y  $\vec{C}$  son coplanares se mantienen las siguientes relaciones:

$$|\vec{B}|\cos\theta_1 + |\vec{C}|\cos\theta_2 = |\vec{B} + \vec{C}|\cos\theta_3$$
$$|\vec{B}|\sin\theta_1 + |\vec{C}|\sin\theta_2 = |\vec{B} + \vec{C}|\sin\theta_3$$

## Ecuación 1.1

$$\mathbf{A} \cdot \mathbf{B} \equiv AB \cos \theta$$

## Ecuación 1.4

$$\mathbf{A} \times \mathbf{B} \equiv AB \sin \theta \hat{\mathbf{n}}$$

Propiedad distributiva en el producto escalar

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} \quad ?$$

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} \quad \to \quad |\vec{A}| |\vec{B} + \vec{C}| \cos \theta_3 = |\vec{A}| |\vec{B}| \cos \theta_1 + |\vec{A}| |\vec{C}| \cos \theta_2$$

$$A = |\vec{A}|$$

$$A|\vec{B} + \vec{C}|\cos\theta_3 = A|\vec{B}|\cos\theta_1 + A|\vec{C}|\cos\theta_2 = A\left(|\vec{B}|\cos\theta_1 + |\vec{C}|\cos\theta_2\right)$$
$$A|\vec{B} + \vec{C}|\cos\theta_3 = A|\vec{B} + \vec{C}|\cos\theta_3$$

1.1 a) 
$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

Propiedad distributiva en el producto vectorial

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$
 ?

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C} \quad \to \quad |\vec{A}| |\vec{B} + \vec{C}| \cos \theta_3 \hat{n} = |\vec{A}| |\vec{B}| \cos \theta_1 \hat{n} + |\vec{A}| |\vec{C}| \sin \theta_2 \hat{n}$$

$$A = |\vec{A}|$$

$$A|\vec{B} + \vec{C}|\sin\theta_3\hat{n} = A|\vec{B}|\sin\theta_1\hat{n} + A|\vec{C}|\sin\theta_2\hat{n} = A\left(|\vec{B}|\sin\theta_1 + |\vec{C}|\sin\theta_2\right)\hat{n}$$
$$A|\vec{B} + \vec{C}|\sin\theta_3\hat{n} = A|\vec{B} + \vec{C}|\sin\theta_3\hat{n}$$

1.1 a) 
$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

# Caso general

$$\vec{A} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$
 ,  $\vec{B} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$  ,  $\vec{C} = c_x \hat{\imath} + c_y \hat{\jmath} + c_z \hat{k}$  
$$\vec{B} + \vec{C} = (b_x + c_x) \hat{\imath} + (b_y + c_y) \hat{\jmath} + (b_z + c_z) \hat{k}$$

Propiedad distributiva en el producto escalar

$$\vec{A} \cdot (\vec{B} + \vec{C}) = a_x(b_x + c_x) + a_y(b_y + c_y) + a_z(b_z + c_z)$$

$$\vec{A} \cdot \vec{B} = a_x b_x + a_y b_y + a_z b_z \quad , \quad \vec{A} \cdot \vec{C} = a_x c_x + a_y c_y + a_z c_z$$

$$\vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} = a_x(b_x + c_x) + a_y(b_y + c_y) + a_z(b_z + c_z)$$

1.1 b) 
$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

Propiedad distributiva en el producto vectorial

$$\vec{A} \times (\vec{B} + \vec{C}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ (b_x + c_x) & (b_y + c_y) & (b_z + c_z) \end{vmatrix}$$

$$\vec{A} \times (\vec{B} + \vec{C}) = [a_y(b_z + c_z) - a_z(b_y + c_y)]\hat{i} + [a_z(b_x + c_x) - a_x(b_z + c_z)]\hat{j} + [a_x(b_y + c_y) - a_y(b_x + c_x)]\hat{k}$$

.

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \hat{i}(a_y b_z - a_z b_y) - \hat{j}(a_x b_z - a_z b_x) + \hat{k}(a_x b_y - a_y b_x)$$
$$\vec{A} \times \vec{B} = (a_y b_z - a_z b_y)\hat{i} + (a_z b_x - a_x b_z)\hat{j} + (a_x b_y - a_y b_x)\hat{k}$$

$$\vec{A} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ c_x & c_y & c_z \end{vmatrix} = \hat{i}(a_yc_z - a_zc_y) - \hat{j}(a_xc_z - a_zc_x) + \hat{k}(a_xc_y - a_yc_x)$$
$$\vec{A} \times \vec{C} = (a_yc_z - a_zc_y)\hat{i} + (a_zc_x - a_xc_z)\hat{j} + (a_xc_y - a_yc_x)\hat{k}$$

$$\vec{A} \times \vec{B} + \vec{A} \times \vec{C} = [a_y(b_z + c_z) - a_z(b_y + c_y)]\hat{\imath} + [a_z(b_x + c_x) - a_x(b_z + c_z)]\hat{\jmath} + [a_x(b_y + c_y) - a_y(b_x + c_x)]\hat{k}$$

.

1.1 b) 
$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

**Problem 1.2** Is the cross product associative?

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \stackrel{?}{=} \mathbf{A} \times (\mathbf{B} \times \mathbf{C}).$$

If so, prove it; if not, provide a counterexample (the simpler the better).

$$(\vec{A} \times \vec{B}) \times \vec{C} = \vec{A} \times (\vec{B} \times \vec{C})$$
 ?

$$\vec{A} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$
 ,  $\vec{B} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$  ,  $\vec{C} = c_x \hat{\imath} + c_y \hat{\jmath} + c_z \hat{k}$ 

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \hat{\imath}(a_y b_z - a_z b_y) - \hat{\jmath}(a_x b_z - a_z b_x) + \hat{k}(a_x b_y - a_y b_x)$$

$$|\vec{A} \times \vec{B}| = (a_y b_z - a_z b_y)\hat{i} + (a_z b_x - a_x b_z)\hat{j} + (a_x b_y - a_y b_x)\hat{k}$$

$$(\vec{A} \times \vec{B}) \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (a_y b_z - a_z b_y) & (a_z b_x - a_x b_z) & (a_x b_y - a_y b_x) \\ c_x & c_y & c_z \end{vmatrix}$$

$$(\vec{A} \times \vec{B}) \times \vec{C} =$$

$$\hat{i}[(a_z b_x - a_x b_z) c_z - (a_x b_y - a_y b_x) c_y]$$

$$-\hat{j}[(a_y b_z - a_z b_y) c_z - (a_x b_y - a_y b_x) c_x]$$

$$+\hat{k}[(a_y b_z - a_z b_y) c_y - (a_z b_x - a_x b_z) c_x]$$

$$(\vec{A} \times \vec{B}) \times \vec{C} = \\ [(a_z b_x - a_x b_z) c_z - (a_x b_y - a_y b_x) c_y] \hat{\imath} \\ + [(a_x b_y - a_y b_x) c_x - (a_y b_z - a_z b_y) c_z] \hat{\jmath} \\ + [(a_y b_z - a_z b_y) c_y - (a_z b_x - a_x b_z) c_x] \hat{k}$$

$$\vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \hat{i}(b_y c_z - b_z c_y) - \hat{j}(b_x c_z - b_z c_x) + \hat{k}(b_x c_y - b_y c_x)$$

$$\vec{B} \times \vec{C} = (b_y c_z - b_z c_y)\hat{\imath} + (b_z c_x - b_x c_z)\hat{\jmath} + (b_x c_y - b_y c_x)\hat{k}$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ (b_y c_z - b_z c_y) & (b_z c_x - b_x c_z) & (b_x c_y - b_y c_x) \end{vmatrix}$$

$$\vec{A} \times (\vec{B} \times \vec{C}) =$$

$$\hat{i}[(b_x c_y - b_y c_x) a_y - (b_z c_x - b_x c_z) a_z]$$

$$-\hat{j}[(b_x c_y - b_y c_x) a_x - (b_y c_z - b_z c_y) a_z]$$

$$+\hat{k}[(b_z c_x - b_x c_z) a_x - (b_y c_z - b_z c_y) a_y]$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \\ [(b_x c_y - b_y c_x) a_y - (b_z c_x - b_x c_z) a_z] \hat{\imath} \\ + [(b_y c_z - b_z c_y) a_z - (b_x c_y - b_y c_x) a_x] \hat{\jmath} \\ + [(b_z c_x - b_x c_z) a_x - (b_y c_z - b_z c_y) a_y] \hat{k}$$

$$(a_z b_x - a_x b_z) c_z - (a_x b_y - a_y b_x) c_y \neq (b_x c_y - b_y c_x) a_y - (b_z c_x - b_x c_z) a_z$$

$$(a_x b_y - a_y b_x) c_x - (a_y b_z - a_z b_y) c_z \neq (b_y c_z - b_z c_y) a_z - (b_x c_y - b_y c_x) a_x$$

$$(a_y b_z - a_z b_y) c_y - (a_z b_x - a_x b_z) c_x \neq (b_z c_x - b_x c_z) a_x - (b_y c_z - b_z c_y) a_y$$

$$\vec{A} \times \vec{B} \times \vec{C} \neq \vec{A} \times (\vec{B} \times \vec{C})$$

1.2 
$$(\vec{A} \times \vec{B}) \times \vec{C} \neq \vec{A} \times (\vec{B} \times \vec{C}) \quad \blacksquare$$

El producto vectorial es no asociativo.

**Problem 1.3** Find the angle between the body diagonals of a cube.

Supondremos un cubo con arista de longitud a, con vertices en (0,0,0), (a,0,0), (0,a,0), (0,0,a), (a,a,0), (0,a,a), (a,0,a), (a,0,a), (a,a,a), siendo las diagonales aquellos vectores  $\vec{A}$  de (0,0,0) a (a,a,a), y  $\vec{B}$  de (0,0,a) a (a,a,0).

Vectores posicionados en el origen

$$\vec{A} = a\hat{\imath} + a\hat{\jmath} + a\hat{k}$$
 ,  $\vec{B} = a\hat{\imath} + a\hat{\jmath} - a\hat{k}$ 

Magnitudes

$$A = |\vec{A}| = \sqrt{a^2 + a^2 + a^2} = \sqrt{3}a$$

$$B = |\vec{B}| = \sqrt{a^2 + a^2 + (-a)^2} = \sqrt{3}a$$

Producto escalar

$$\vec{A} \cdot \vec{B} = a^2 + a^2 - a^2 = a^2$$

$$\vec{A} \cdot \vec{B} = AB \cos \theta \quad \rightarrow \quad \theta = a\cos \left(\frac{\vec{A} \cdot \vec{B}}{AB}\right)$$

$$\theta = a\cos\left(\frac{a^2}{(\sqrt{3}a)(\sqrt{3}a)}\right) = a\cos\left(\frac{1}{2}\right)$$

1.3 
$$\theta \approx 1.231 \text{rad}$$

**Problem 1.4** Use the cross product to find the components of the unit vector  $\hat{\bf n}$  perpendicular to the shaded plane in Fig 1.11.

En el plano de la figura 1.11 están ubicados los vertices (1,0,0), (0,2,0), y (0,0,3), por lo que tomaremos los vectores  $\vec{A}$  de (1,0,0) a (0,2,0), y  $\vec{B}$  de (1,0,0) a (0,0,3).

Vectores posicionados en el origen

$$\vec{A} = -1\hat{\imath} + 2\hat{\jmath} + 0\hat{k}$$
 ,  $\vec{B} = -1\hat{\imath} + 0\hat{\jmath} + 3\hat{k}$ 

Producto vectorial - vector normal

$$\vec{n} = \vec{A} \times \vec{B}$$

$$\vec{n} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = [2(3) - 0]\hat{\imath} - [-1(3) - 0]\hat{\jmath} + [0 - 2(-1)]\hat{k}$$
$$\vec{n} = 6\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$$

$$n = |\vec{n}| = \sqrt{6^2 + 3^2 + 2^2} = 7$$

Vector normal unitario

$$\hat{n} = \frac{\vec{n}}{n} = \frac{1}{7}(6\hat{\imath} + 3\hat{\jmath} + 2\hat{k})$$

$$1.4 \quad \hat{n} = \frac{6}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{2}{7}\hat{k}$$

**Problem 1.5** Prove the **BAC-CAB** rule by writing out both sides in component form.

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$
 ?

$$\vec{A} \times (\vec{B} \times \vec{C}) = \\ [(b_x c_y - b_y c_x) a_y - (b_z c_x - b_x c_z) a_z] \hat{\imath} \\ + [(b_y c_z - b_z c_y) a_z - (b_x c_y - b_y c_x) a_x] \hat{\jmath} \\ + [(b_z c_x - b_x c_z) a_x - (b_y c_z - b_z c_y) a_y] \hat{k}$$

$$\vec{B}(\vec{A} \cdot \vec{C}) = (a_x c_x + a_y c_y + a_z c_z)(b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k})$$

$$\vec{C}(\vec{A} \cdot \vec{B}) = (a_x b_x + a_y b_y + a_z b_z)(c_x \hat{\imath} + c_y \hat{\jmath} + c_z \hat{k})$$

$$\vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) = \\ [(a_y c_y + a_z c_z) b_x - (a_y b_y + a_z b_z) c_x] \hat{\imath} \\ + [(a_x c_x + a_z c_z) b_y - (a_x b_x + a_z b_z) c_y] \hat{\jmath} \\ + [(a_x c_x + a_y c_y) b_z - (a_x b_x + a_y b_y) c_z] \hat{k} = \\ (a_x c_x + a_y c_y) \hat{\jmath} + (a_x c_x +$$

$$(a_y c_y b_x + a_z c_z b_x - a_y b_y c_x - a_z b_z c_x)\hat{i}$$

$$+ (a_x c_x b_y + a_z c_z b_y - a_x b_x c_y - a_z b_z c_y)\hat{j}$$

$$+ (a_x c_x b_z + a_y c_y b_z - a_x b_x c_z - a_y b_y c_z)\hat{k}$$

$$\vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) = \\ [(b_x c_y - b_y c_x) a_y - (b_z c_x - b_x c_z) a_z] \hat{\imath} \\ + [(b_y c_z - b_z c_y) a_z - (b_x c_y - b_y c_x) a_x] \hat{\jmath} \\ + [(b_z c_x - b_x c_z) a_x - (b_y c_z - b_z c_y) a_y] \hat{k}$$

$$1.5 \quad \vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) \quad \blacksquare$$

# **Problem 1.6** Prove that

$$[\mathbf{A}\times(\mathbf{B}\times\mathbf{C})]+[\mathbf{B}\times(\mathbf{C}\times\mathbf{A})]+[\mathbf{C}\times(\mathbf{A}\times\mathbf{B})]=\mathbf{0}$$

Under what conditions does  $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$ ?

$$[\vec{A}\times(\vec{B}\times\vec{C})] + [\vec{B}\times(\vec{C}\times\vec{A})] + [\vec{C}\times(\vec{A}\times\vec{B})] = 0 \quad ?$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$

$$\vec{B} \times (\vec{C} \times \vec{A}) = \vec{C}(\vec{B} \cdot \vec{A}) - \vec{A}(\vec{B} \cdot \vec{C})$$

$$\vec{C} \times (\vec{A} \times \vec{B}) = \vec{A}(\vec{C} \cdot \vec{B}) - \vec{B}(\vec{C} \cdot \vec{A})$$

$$\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = \\ \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) + \vec{C}(\vec{B} \cdot \vec{A}) - \vec{A}(\vec{B} \cdot \vec{C}) + \vec{A}(\vec{C} \cdot \vec{B}) - \vec{B}(\vec{C} \cdot \vec{A}) = \\ \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) + \vec{C}(\vec{A} \cdot \vec{B}) - \vec{A}(\vec{B} \cdot \vec{C}) + \vec{A}(\vec{B} \cdot \vec{C}) - \vec{B}(\vec{A} \cdot \vec{C})$$

$$1.6 \quad [\vec{A} \times (\vec{B} \times \vec{C})] + [\vec{B} \times (\vec{C} \times \vec{A})] + [\vec{C} \times (\vec{A} \times \vec{B})] = 0 \quad \blacksquare$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \times \vec{C}$$
 ?

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$
$$(\vec{A} \times \vec{B}) \times \vec{C} = -\vec{C} \times (\vec{A} \times \vec{B}) = \vec{B}(\vec{C} \cdot \vec{A}) - \vec{A}(\vec{C} \cdot \vec{B})$$

$$\vec{A} \cdot \vec{B} \neq \vec{C} \cdot \vec{B} \neq 0$$

$$\vec{C}(\vec{A} \cdot \vec{B}) = \vec{A}(\vec{C} \cdot \vec{B}) \quad \rightarrow \quad \vec{A} \parallel \vec{C} \quad \rightarrow \quad \vec{A} \cdot \vec{C} = |\vec{A}||\vec{C}|$$

1.6

$$(\vec{A}\times\vec{B})\times\vec{C}=\vec{A}\times(\vec{B}\times\vec{C}) \quad : \quad \vec{A}\cdot\vec{B}=\vec{C}\cdot\vec{B}=0 \quad \cup \quad \vec{A}\cdot\vec{C}=\pm|\vec{A}||\vec{C}|$$

La propiedad se cumple si  $\vec{B}$  es perpendicular con  $\vec{A}$  y  $\vec{C}$ , o que  $\vec{A}$  y  $\vec{C}$  sean paralelos.

**Problem 1.7** Find the separation vector  $\boldsymbol{\lambda}$  from the source point (2,8,7) to the field point (4,6,8). Determine its magnitude ( $\boldsymbol{\lambda}$ ), and construct the unit vector  $\hat{\boldsymbol{\lambda}}$ .

# Vector de separación

$$\vec{n} = \vec{r} - \vec{r}'$$

$$\vec{r} = (4,6,8)$$
 ,  $\vec{r}' = (2,8,7)$   $\rightarrow$   $\vec{n} = (2,-2,1)$  
$$\vec{n} = |\vec{n}| \rightarrow \vec{n} = \sqrt{2^2 + (-2)^2 + 1^2} = 3$$
 
$$\hat{n} = \frac{\vec{n}}{n} = \frac{1}{3}(2,-2,1)$$

$$\boxed{1.7 \quad \hat{\boldsymbol{\lambda}} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)}$$

# Problem 1.8

- (a) Prove that the two-dimensional rotation matrix (Eq. 1.29) preserves dot products. (That is, show that  $\overline{A}_y \overline{B}_y + \overline{A}_z \overline{B}_z = A_y B_y + A_z B_z$ .)
- (b) What constraints must the element  $(R_{ij})$  of the three-dimensional rotation matrix (Eq. 1.30) satisfy, in order to preserve the length of **A** (for all vectors **A**)?

#### Ecuación 1.29

$$\begin{pmatrix} \overline{A}_x \\ \overline{A}_z \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} A_x \\ A_z \end{pmatrix}$$

$$P_{\phi} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}$$

$$\vec{A} \cdot \vec{B} = \left(P_{\phi}\vec{A}\right) \cdot \left(P_{\phi}\vec{B}\right)$$
 ?

$$ar{A}_x = A_x \cos \phi + A_z \sin \phi$$
 ,  $ar{A}_z = -A_x \sin \phi + A_z \cos \phi$   
 $ar{B}_x = B_x \cos \phi + B_z \sin \phi$  ,  $ar{B}_z = -B_x \sin \phi + B_z \cos \phi$ 

$$(P_{\phi}\vec{A}) \cdot (P_{\phi}\vec{B}) = \bar{A}_x \bar{B}_x + \bar{A}_z \bar{B}_z =$$

$$(A_x \cos \phi + A_z \sin \phi)(B_x \cos \phi + B_z \sin \phi) + (-A_x \sin \phi + A_z \cos \phi)(-B_x \sin \phi + B_z \cos \phi)$$

$$\left(P_{\phi}\vec{A}\right)\cdot\left(P_{\phi}\vec{B}\right)=$$

 $A_x B_x \cos^2 \phi + A_x B_z \cos \phi \sin \phi + A_z B_x \cos \phi \sin \phi + A_z B_z \sin^2 \phi$  $A_x B_x \sin^2 \phi - A_x B_z \cos \phi \sin \phi - A_z B_x \cos \phi \sin \phi + A_z B_z \cos^2 \phi$ 

$$(P_{\phi}\vec{A}) \cdot (P_{\phi}\vec{B}) = (A_x B_x + A_z B_z)(\cos^2 \phi + \sin^2 \phi) = A_x B_x + A_z B_z$$

1.8 (a) 
$$\vec{A} \cdot \vec{B} = (P_{\phi}\vec{A}) \cdot (P_{\phi}\vec{B})$$

#### Ecuación 1.30

$$\begin{pmatrix} \overline{A}_x \\ \overline{A}_y \\ \overline{A}_z \end{pmatrix} = \begin{pmatrix} R_{xx} & R_{xy} & R_{xz} \\ R_{yx} & R_{yy} & R_{yz} \\ R_{zx} & R_{zy} & R_{zz} \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

$$\bar{A}_i = \sum_j R_{ij} A_j$$

$$|\vec{A}|^2 = \vec{A} \cdot \vec{A} = A_x^2 + A_y^2 + A_z^2 = \bar{A}_x^2 + \bar{A}_y^2 + \bar{A}_z^2$$

$$\sum_{i} A_{i}^{2} = \left(\sum_{j} R_{xj} A_{j}\right)^{2} + \left(\sum_{j} R_{yj} A_{j}\right)^{2} + \left(\sum_{j} R_{zj} A_{j}\right)^{2}$$

$$\sum_{i} A_i^2 = \sum_{i} \left( \sum_{j} R_{ij} A_j \right)^2 = \sum_{i} \left( \sum_{j} R_{ij} A_j \right) \left( \sum_{k} R_{ik} A_k \right)$$

$$\sum_{i} A_{i}^{2} = \sum_{i} \sum_{j,k} R_{ij} R_{ik} A_{j} A_{k} = \sum_{j,k} A_{j} A_{k} \sum_{i} R_{ij} R_{ik}$$

$$\left[ \sum_{i} R_{ij} R_{ik} = \delta_{jk} \right]$$

$$\sum_{i} A_{i}^{2} = \sum_{i} A_{j} A_{k} \delta_{jk} = \sum_{i} A_{i} A_{i} = \sum_{i} A_{i}^{2}$$

1.8 (b) Restricción: 
$$\sum_{i} R_{ij} R_{ik} = \delta_{jk} = \begin{cases} 0 : j \neq k \\ 1 : j = k \end{cases}$$

**Problem 1.9** Find the transformation matrix R that describes a rotation by  $120^{\circ}$  about an axis from the origin through the point (1,1,1). The rotation is clockwise as you look down the axis toward the origin.

# Transformación de la matriz R



$$\left[ \therefore \quad \bar{A}_x = A_z \quad , \quad \bar{A}_z = A_y \quad , \quad \bar{A}_y = A_x \right]$$

$$\bar{A}_i = \sum_j R_{ij} A_j$$

$$\bar{A}_x = R_{xx}A_x + R_{xy}A_y + R_{xz}A_z = A_z \quad \rightarrow \qquad R_{xx} = R_{xy} = 0 \quad , \quad R_{xz} = 1$$

$$\bar{A}_y = R_{yx}A_x + R_{yy}A_y + R_{yz}A_z = A_x \quad \rightarrow \quad R_{yy} = R_{yz} = 0 \quad , \quad R_{yx} = 1$$

$$\bar{A}_z = R_{zx}A_x + R_{zy}A_y + R_{zz}A_z = A_y \quad \rightarrow \quad R_{zx} = R_{zz} = 0 \quad , \quad R_{zy} = 1$$

#### Problem 1.10

- (a) How do the components of a vector<sup>5</sup> transform under a **translation** of coordinates ( $\overline{x} = x, \overline{y} = y a, \overline{z} = z$ , Fig. 1.16a)?
- (b) How do the components of a vector transform under an **inversion** of coordinates  $(\overline{x} = -x, \overline{y} = -y, \overline{z} = -z, \text{ Fig. } 1.16\text{b})$ ?
- (c) How do the components of a cross product (Eq. 1.13) transform under inversion? [The cross-product of two vectors is properly called a **pseudovector** because of this "anomalous" behavoir.] Is the cross product of two pseudovectors a vector, or a pseudovector? Name two pseudovector quantities in classical mechanics.
- (d) How does the scalar triple product of three vectors transform under inversions? (Such an object is called a **pseudoscalar**.)



**FIGURE 1.16** 

<sup>5</sup>Beware: The vector  $\mathbf{r}$  (Eq. 1.19) goes from a specific point in space (the origin,  $\mathcal{O}$ ) to the point P = (x, y, z). Under translations the new origin  $(\bar{\mathcal{O}})$  is at a different location, and the arrow from  $\bar{\mathcal{O}}$  to P is a completely different vector. The original vector  $\mathbf{r}$  still goes from  $\mathcal{O}$  to P, regardless of the coordinates used to label these points.

1.10 (a)

Si ocurre una traslación del vector  $\vec{A}$  a otro origen, las componentes en la nueva base no cambian:

$$\vec{A}' \to \vec{A}$$
 
$$\bar{A}_x = A_x \quad , \quad \bar{A}_y = A_y \quad , \quad \bar{A}_z = A_z$$

1.10 (b)

En el caso de una inversión, el sentido del vector se invierte al opuesto del original, lo que equivale a multiplicarlo por (-1):

$$\vec{A}' \to -\vec{A}$$
 
$$\bar{A}_x = -A_x \quad , \quad \bar{A}_y = -A_y \quad , \quad \bar{A}_z = -A_z$$

Ecuación 1.13

$$\mathbf{A} \times \mathbf{B} = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}) \times (B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}})$$
$$= (A_y B_z - A_z B_y) \hat{\mathbf{x}} + (A_z B_x - A_x B_z) \hat{\mathbf{y}} + (A_x B_y - A_y B_x) \hat{\mathbf{z}}$$

Inversión

$$\vec{A}' o - \vec{A} \quad , \quad \vec{B}' o - \vec{B}$$
 
$$\vec{C} = \vec{A} \times \vec{B}$$
 
$$\vec{C}' = \vec{A}' \times \vec{B}' = (-\vec{A}) \times (-\vec{B}) = \vec{A} \times \vec{B}$$
 
$$\therefore \quad \vec{C}' \to \vec{C}$$

1.10 (c)

En el caso de una transformación por inversión, tenemos que para el vector resultante del producto vectorial de dos vectores  $(\vec{C} = \vec{A} \times \vec{B})$  no ocurre inversión, sus componentes permanecen iguales, por ello se considera un pseudovector.

Tomamos a  $\vec{A}$  y  $\vec{B}$  como pseudovectores

$$\vec{A}' \to \vec{A} \quad , \quad \vec{B}' \to \vec{B}$$
 
$$\vec{C} = \vec{A} \times \vec{B}$$
 
$$\vec{C}' = \vec{A}' \times \vec{B}' = (\vec{A}) \times (\vec{B}) = \vec{A} \times \vec{B}$$
 
$$\therefore \quad \vec{C}' \to \vec{C}$$

# 1.10 (c)

En el caso de una transformación por inversión, tenemos que para el vector resultante del producto vectorial de dos pseudovectores  $(\vec{C} = \vec{A} \times \vec{B})$  no ocurre inversión, sus componentes permanecen iguales, por ello se considera un pseudovector.

•

Tomamos a  $\vec{A}$  como pseudovector

$$\vec{A}' \to \vec{A} \quad , \quad \vec{B}' \to -\vec{B}$$
 
$$\vec{C} = \vec{A} \times \vec{B}$$
 
$$\vec{C}' = \vec{A}' \times \vec{B}' = (\vec{A}) \times (-\vec{B}) = -\vec{A} \times \vec{B}$$
 
$$\therefore \quad \vec{C}' \to -\vec{C}$$

# 1.10 (c)

En el caso de una transformación por inversión, tenemos que para el vector resultante del producto vectorial de un vector y un pseudovector  $(\vec{C} = \vec{A} \times \vec{B})$  ocurre inversión, por ello se considera un vector "ordinario".

1.10 (c)

Ejemplos de pseudovectores en la mecánica clásica:

Momento angular:  $\vec{L} = \vec{r} \times \vec{p}$ 

Momento de torsión:  $\vec{M} = \vec{r} \times \vec{F}$ 

.

Triple producto escalar

$$c = \vec{A} \cdot (\vec{B} \times \vec{C})$$

$$c' = \vec{A}' \cdot (\vec{B}' \times \vec{C}') = (-\vec{A}) \cdot [(-\vec{B}) \times (-\vec{C})] = -\vec{A} \cdot (\vec{B} \times \vec{C}) = c$$

$$c' \rightarrow -c$$

1.10 (d)

En el caso de una transformación por inversión, el pseudoescalar resultante del producto triple producto escalar de tres vectores  $(c = \vec{A} \cdot (\vec{B} \times \vec{C}))$  invierte su signo.

**Problem 1.11** Find the gradients of the following functions:

(a) 
$$f(x, y, z) = x^2 + y^3 + z^4$$
.

(b) 
$$f(x, y, z) = x^2 y^3 z^4$$
.

(c) 
$$f(x, y, z) = e^x \sin(y) \ln(z)$$
.

Gradiente de una función

$$\nabla f(x,y,z) = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath} + \frac{\partial f}{\partial z}\hat{k}$$

$$f(x,y,z) = x^2 + y^3 + z^4 \quad \rightarrow \quad \frac{\partial f}{\partial x} = 2x \quad , \quad \frac{\partial f}{\partial y} = 3y^2 \quad , \quad \frac{\partial f}{\partial z} = 4z^3$$

1.11 (a) 
$$\nabla f = 2x\hat{\imath} + 3y^2\hat{\jmath} + 4z^3\hat{k}$$

$$f(x,y,z) = x^2 y^3 z^4 \quad \rightarrow \quad \frac{\partial f}{\partial x} = 2xy^3 z^4 \quad , \quad \frac{\partial f}{\partial y} = 3x^2 y^2 z^4 \quad , \quad \frac{\partial f}{\partial z} = 4x^2 y^3 z^3$$

1.11 (b) 
$$\nabla f = 2xy^3z^4\hat{\imath} + 3x^2y^2z^4\hat{\jmath} + 4x^2y^3z^3\hat{k}$$

$$f(x, y, z) = e^x \sin y \ln z$$

$$\frac{\partial f}{\partial x} = e^x \sin y \ln z$$
 ,  $\frac{\partial f}{\partial y} = -e^x \cos y \ln z$  ,  $\frac{\partial f}{\partial z} = \frac{1}{z} e^x \sin y$ 

1.11 (c) 
$$\nabla f = e^x \sin y \ln z \hat{\imath} - e^x \cos y \ln z \hat{\jmath} + \frac{1}{z} e^x \sin y \hat{k}$$

**Problem 1.12** The height of a certain hill (in feet) is given by

$$h(x,y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12),$$

where y is the distance (in miles) north, x the distance east of South Hadley.

- (a) Where is the top of the hill located?
- (b) How high is the hill?
- (c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South Hadley? In what direction is the slope steepest, at that point?

## Punto critico

$$\nabla f = \vec{0} \quad \rightarrow |\nabla f| = 0$$

$$h(x,y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12)$$

$$\frac{\partial h}{\partial x} = 10(2y - 6x - 18) \quad , \quad \frac{\partial h}{\partial y} = 10(2x - 8y + 28)$$

$$\therefore \quad \nabla h(x,y) = 10(2y - 6x - 18)\hat{\imath} + 10(2x - 8y + 28)\hat{\jmath}$$

$$\nabla h = \vec{0} = 0\hat{\imath} + 0\hat{\jmath}$$

$$10(2y - 6x - 18) = 0 \quad , \quad 10(2x - 8y + 28) = 0$$

$$y - 3x = 9$$
 ,  $x - 4y = -14$ 

$$y = 3x + 9 \rightarrow x - 4(3x + 9) = -14 \rightarrow -11x = 22 \rightarrow x = -2$$

$$y = 3(-2) + 9 = 3$$

$$x = -2$$
 ,  $y = 3$ 

La cima se encuentra 3 millas al norte y 2 al oeste de South Hadley.

$$h(-2,3) = 10[2(-2)(3) - 3(-2)^2 - 4(3)^2 - 18(-2) + 28(3) + 12] = 720$$

1.12 (b) 
$$h(-2,3) = 720 \quad \rightarrow \quad h = 720 \text{ft}$$
 La altura en la cima es de 720 pies.

.

$$\nabla h(1,1) = 10[2(1) - 6(1) - 18]\hat{\imath} + 10[2(1) - 8(1) + 28]\hat{\jmath} = 10[2 - 6 - 18]\hat{\imath} + 10[2 - 8 + 28]\hat{\jmath}$$
$$\boxed{\nabla h(1,1) = -220\hat{\imath} + 220\hat{\jmath}}$$

$$|\nabla h(1,1)| = \sqrt{(-220)^2 + (220)^2} = \sqrt{2(220)^2}$$

$$|\nabla h(1,1)| = 220\sqrt{2} \approx 311.127$$

1.12 (c) La pendiente a una milla al norte y una al este de South Hadley es de aproximadamente  $311.127\frac{\rm ft}{\rm milla}$  (pies por milla), en dirección noroeste.