Lycée Leconte de Lisle MPI

TD: Couverture sommets

Exercice 1

On considère le problème VERTEX-COVER (couverture sommets) :

Instance : un graphe *G* non orienté et un entier *K*

Question : existe-t-il un choix de K sommets au plus dans G tel que toutes les arêtes touchent un des sommets choisis

On appelle un tel ensemble de sommets une couverture de *G*.

1. Démontrer soigneusement que VERTEX-COVER est un problème dans NP.

2. On considère \overline{G} le graphe complémentaire de G = (S, A) défini par $\overline{G} = (S, S^2 \setminus A)$ (sans compter les boucles). Démontrer qu'il existe un algorithme de transformation en temps polynomial de G en \overline{G} .

3. On considère le problème suivant appelé CLIQUE:

Instance : un graphe *G* non orienté et un entier *K*

Question: existe-t-il une clique de taille *K* dans *G*?

Démontrer que CLIQUE est dans NP. On admettra ensuite que CLIQUE est NP-complet (vu en cours).

- 4. Tracer un graphe à 6 sommets en forme d'hexagone. Déterminer une couverture sommets de taille 3. Montrer que \overline{G} contient une clique de taille 3.
- 5. Démontrer qu'un graphe possède une couverture de taille K au plus si et seulement si \overline{G} contient une clique de taille n-K avec n le nombre de sommets de G.
- 6. Démontrer que VERTEX-COVER est un problème NP-complet.
- 7. On considère le problème suivant :

Instance : un graphe *G* non orienté

Question : Quel est le nombre minimal de sommets à considérer pour obtenir une couverture sommets de G ? Que dire de ce problème ? Est-ce un problème difficile ? Est-il NP-complet ?

8. On considère le probleme SET-COVER suivant :

Instance : Un ensemble de n éléments $\{x_1, \dots, x_n\}$ et un ensemble U de m parties de $\{x_1, \dots, x_n\}$, un entier K **Question :** existe-t-il une sous-famille de U possédant au plus K ensembles et qui contient tous les éléments $\{x_1, \dots, x_n\}$?

9. Démontrer que SET-COVER est NP-complet.

