V701

Reichweite von Alphastrahlung

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 18. April 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2	
2	Theorie	2	
3	Vorbereitungsaufgabe	3	
4	Durchführung	3	
5	Auswertung	4	
6	Diskussion	10	
Lit	teratur	10	
Ar	Anhang		

1 Zielsetzung

Ziel des Versuches ist es, experimentell die Reichweite von α -Strahlung in Luft zu bestimmen.

2 Theorie

Durch das Messen der Reichweite von α -Teilchen kann die Energie dieser bestimmt werden. Die α -Teilchen geben durch elastische Stöße mit dem Material Energie ab, dies spielt bei dem Energieverlust schlussendlich nur eine untergeordnete Rolle. Die Teilchen können dur h Anregung oder Dissoziation von Molkülen verlieren. Der Energieverlust $\frac{dE_{\alpha}}{dx}$ hängt von der Energie der α -Teilchen und der Dichte des zu durchlaufenden Materials ab. Dabei ist zu beachten, dass bei kleineren Geschwindigkeit die Wahrscheinlichkeit der Wechselwirkungen zunimmt. Für hinreichend große Energien lässt sich der Energieverlust der α -Teilchen über die Bethe-Bolch-Gleichung beschreiben

$$-\frac{dE_{\alpha}}{dx} = \frac{z^2 e^4}{4\pi\epsilon_0 m_e} \frac{nZ}{v^2} \ln\left(\frac{2m_e v^2}{I}\right),\tag{1}$$

wobei z die Ladung der α -Teilchen ist und v die Geschwindigekit dieser. Z ist die Ordnungszahl, n die Teilchendichte und I die Ioniesierungsenergie des Targetgases. Die Gleichung 1 verliert an Gültigkeit, wenn das α -Teilchen sehr kleine Energien hat. Die Reichweite der α -Teilchen, also die Strecke bis zur vollkommenen Ausbremsung, lässt sich über den Zusammenhang

$$R = \int_0^{E_\alpha} \frac{dE_\alpha}{-dE_\alpha/dx} \tag{2}$$

bestimmen. Da bei niedrig werdener Energie die Gleichung 1 nicht mehr gilt, wird zur Bestimmung der mittleren Reichweite empirisch gewonnene Kurven verwendet. Für die mittlere Reichweite von α -Strahlung in Luft mit der Energie $E_{\alpha} \leq 2,5\,\mathrm{MeV}$ kann die Bezeichnung $R_m = 3,1\,\mathrm{E}^{3/2}$ verwendet werden. Bei einer konstanten Temperatur und konstantem Volumen ist die Reichwite von α -Teilchen in Gasen proportiona zum Druck ρ . Dementsprechend kann eine Absorptionsmessung, bei der der Druck variiert wird, durchgeführt werden. Für einen festen Abstand x_0 zwischen Detektor und α -Strahler gilt für die ëffektive Länge"x

$$x = x_0 \frac{\rho}{\rho_0},\tag{3}$$

wobei für der Normaldruck mit $\rho_0=1013\,\mathrm{mbar}$ eingesetzt werden muss.

3 Vorbereitungsaufgabe

4 Durchführung

In der Abbildung ist der verwendete Aufbau für den Versuch zur Bestimmung der Reichweite von α -Teilchen zu sehen.

Abbildung 1: Der Versuchsaufbau zur Bestimmung der Reichweite von α -Teilchen.

In einem evakuierten Glaszylinder befindet sich das α -Präparat un dein Detektor. Mittels einer Vakuumpumpe wird der Glaszylinder evakuiert, sodass zum Start der ersten Messung ein Druck von 0 mbar herrscht. Als Strahlungsquelle wird ein Am-Präparat verwendet. Dieses zerfällt mit einer Halbwertszeit von $T_{1/2}=459a$ in

$$^{241}_{95}$$
Am $\longrightarrow ^{237}_{93}$ N $+ ^{4}_{2}$ He⁺⁺.

Das Präparat befindet sich an einem verschiebbaren Regler, sodass es möglich ist einen Abstand x zum Detektor einzustellen. Als Detektor wird ein Hableiter-sperrschichtzähler verwendet.

Bevor der Versuch durchgeführt werden kann, muss der Aufbau und dessen Verkabelung überprüft werden

5 Auswertung

Die Ergebnisse der ersten Messreihe, für die das verwendete Präparat in einem Abstand von 6 cm zum Halbleiter-Sperrschichtzähler befestigt wird, lassen sich anhand Tabelle 1 nachvollziehen. Ein entsprechendes Ventil an der Vakuumpumpe dient zur Variation des Zylinderdrucks p, der mithilfe des integrierten Manometers eingestellt wird. Daraus ergibt sich nach Formel (3) die effektive Distanz x. Mit $N_{\rm tot}$ ist die Anzahl aller aufgezeichneten Strompulse innerhalb eines Intervalls von 120 s bezeichnet. Für eine gegebene Einstellung zählt $N_{\rm max}$ über denselben Zeitraum die maximale Anzahl der Impulse innerhalb eines Kanals. Dieser die meisten Signale erhaltende Kanal wird unter CH aufgeführt. Im Vielkanalanalysator kann davon ausgangen werden, dass ein linearer Zusammenhang zwischen Kanalnummer und entsprechender Energie des Alphateilchens existiert. So wird dann der Modus E der Energieverteilung ermittelt, da $E=4\,{\rm MeV}$ für p=0 oder äquivalent für x=0 bekannt ist. Der statistische Modus, auch Modalwert gennant, gibt den Wert an, der am häufigsten in einer Stichprobe vorkommt.

Tabelle 1: Messdaten bei festem Abstand $x_0 = 6 \,\mathrm{cm}$ zwischen Probe und Detektor.

p / mbar	x / cm	$N_{ m tot}$	$N_{ m max}$	СН	E / MeV
0	0,00	16178	71	803	4,00
50	0,30	16170	74	779	3,88
100	$0,\!59$	16153	78	716	$3,\!57$
150	0,89	15246	82	656	$3,\!27$
200	1,18	15085	99	595	2,96
250	1,48	14200	111	524	2,61
300	1,78	13984	97	472	$2,\!35$
350	2,07	12137	95	408	2,03
400	2,37	3599	72	310	$1,\!54$
450	2,67	458	12	316	$1,\!57$
500	2,96	0	0	0	0,00

Zur weiteren Auswertung des Verlaufs der Zählrate N_{tot} in Abhängigkeit zur effektiven Länge x bietet sich die Verwendung einer Sigmoidfunktion

$$\operatorname{sig}(t) = \frac{a}{1 + \exp(b(t - c))} + d \tag{4}$$

an, welche hier mit vier Freiheitsgraden formuliert ist. Ihr einziger Wendepunkt liegt bei t=c, dort nimmt sie den Funktionswert $\operatorname{sig}(c)=\frac{1}{2}a+d$ an. Dieser liegt genau mittig zwischen den Asymptoten d und a+d.

Aus dieser Tatsache folgt speziell für das Modell der Zählrate, dass bei einer effektiven Länge x=c noch genau die Hälfte der maximalen Pulszahl den Detektor erreicht, womit R=c ein Maß für die mittlere Reichweite von Alphastrahlung in Luft ist.

Alternativ lässt sich R über die tatsächlich gemessene maximale Zählrate \hat{N}_{tot} bestimmen, indem $t = \frac{1}{2}\hat{N}_{\text{tot}}$ in die Inverse von (4) eingesetzt wird. Diese ist mit

$$\operatorname{sig}^{-1}(t) = \frac{\ln\left(\frac{a}{t-d} - 1\right)}{b} + c \tag{5}$$

gegeben. In Abbildung 2 werden die zuvor aufgetragenen Messwerte mit der beschriebenen Ausgleichskurve durch die Bibliothek Matplotlib [1] unter Python [3] dargestellt.

Abbildung 2: Gesamtzählrate $N_{\rm tot}$ der über einen Zeitraum von 120 s gemessenen Impulse in Abhängigkeit zur effektiven Länge x bei $x_0=6\,{\rm cm}$.

Die optimalen Parameter liefert die numerische Methode scipy.optimize.curve_fit [4], wobei die angegebenen Abweichungen der Wurzel der Elemente auf der Hauptdiagonalen der Kovarianzmatrix entsprechen. So ergeben sich

$$a = -15520 \pm 752$$
 $b = (-7,63 \pm 1,38) \,\mathrm{cm}^{-1}$ $c = (2,227 \pm 0,031) \,\mathrm{cm}$ $d = 15406 \pm 310$

zur Minimierung der Fehlerquadrate. $R=(2,227\pm0,031)\,\mathrm{cm}$ beschreibt die mittlere Reichweite über den Wendepunkt c mit $E=(3,723\pm0,035)\,\mathrm{MeV}$ als die dazugehörige Energie. Um letztere zu berechnen, wird $R=3,1E^{3/2}$ zur Näherung mit Gültigkeit für $E\leq 2,5\,\mathrm{MeV}$ ausgenutzt, wobei R in mm anzugeben ist. Mit Uncertainties [2] erfolgt dazu eine automatisierte Fehlerfortpflanzung.

Die Hälfte der maximalen Zählrate innerhalb von 120 s lautet $\frac{1}{2}\hat{N}_{\text{tot}} = 8089$ und liefert über die Umkehrfunktion (5) den Wert $R = (2.212 \pm 0.035)$ cm für die mittlere Reichweite bei einer Energie von $E = (3.707 \pm 0.039)\,\text{MeV}$.

Zur Regression entlang der Modalwerte E bei Länge x wird ein linearer Zusammenhang

$$E(x) = w - vx \tag{6}$$

herangezogen. Daran lässt sich direkt der Term $-\frac{\mathrm{d}E}{\mathrm{d}x}=v$ für den Energieverlust ablesen.

Abbildung 3: Modus E der Energieverteilung zum effektiven Abstand x bei $x_0=6\,\mathrm{cm}.$

In Abbildung 3 werden Messpunkte und lineare Ausgleichsrechnung angezeigt. Die Funktion numpy.polyfit produziert

$$v = (1,178 \pm 0,106) \,\mathrm{MeV} \,\mathrm{cm}^{-1}$$
 $w = (4,271 \pm 0,186) \,\mathrm{MeV}$

als Koeffizienten der optimalen Näherung. Mit $-\frac{\mathrm{d}E}{\mathrm{d}x}=(1,178\pm0,106)\,\mathrm{MeV\,cm^{-1}}$ folgt daraus die pro Streckeneinheit abgegebene Energie.

Tabelle 2: Messdaten bei festem Abstand $x_0=4\,\mathrm{cm}$ zwischen Probe und Detektor.

p / mbar	x / cm	$N_{ m tot}$	$N_{ m max}$	СН	E / MeV
0	0,00	35970	137	832	4,00
50	0,20	35467	156	783	3,76
100	$0,\!39$	34994	156	735	$3,\!53$
150	$0,\!59$	34253	150	719	3,46
200	0,79	34239	168	658	3,16
250	0,99	34219	174	640	3,08
300	1,18	33165	188	584	2,81
350	1,38	31181	185	559	2,69
400	1,58	30254	181	505	$2,\!43$
450	1,78	28910	195	463	$2,\!23$
500	1,97	25276	194	384	1,85
550	$2,\!17$	18557	204	340	1,63
600	$2,\!37$	6020	122	312	1,50
650	$2,\!57$	753	17	308	1,48
700	2,76	117	2	441	$2,\!12$
750	2,96	1	1	126	0,61

Abbildung 4: Gesamtzählrate $N_{\rm tot}$ der über einen Zeitraum von 120 s gemessenen Impulse in Abhängigkeit zur effektiven Länge x bei $x_0=4\,{\rm cm}.$

$$a = -35\,927 \pm 1706 \qquad \qquad b = (-5,17 \pm 0,73)\,\mathrm{cm}^{-1}$$

$$c = (2,175 \pm 0,032)\,\mathrm{cm} \qquad \qquad d = 34\,053 \pm 585$$

$$R = (2{,}175 \pm 0{,}032)\,\mathrm{cm}$$

$$E = (3,665 \pm 0,036) \,\mathrm{MeV}$$

$$\frac{1}{2}\hat{N}_{\mathrm{tot}} = 17\,985$$

$$R = (2,134 \pm 0,039) \, \mathrm{cm}$$

$$E = (3,618 \pm 0,044) \,\mathrm{MeV}$$

Abbildung 5: Modus E der Energieverteilung zum effektiven Abstand x bei $x_0=4\,\mathrm{cm}.$

$$v = (0.978 \pm 0.076) \, \mathrm{MeV \, cm^{-1}} \qquad \qquad w = (3.969 \pm 0.132) \, \mathrm{MeV}$$

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = (0.978 \pm 0.076) \, \mathrm{MeV \, cm^{-1}}$$

Tabelle 3: Totale Impulszählrate $N_{\rm tot}$ über einen Zeitraum von 10 s bei Parametern $x_0=4\,{\rm cm}$ und $p=300\,{\rm mbar}$, also einem effektiven Abstand $x=1,18\,{\rm cm}$. $n_{\rm tot}=100\,{\rm Messungen}$, zur Nachvollziehbarkeit aufsteigend sortiert.

2339	2420	2455	2478	2504	2532	2570	2608	2642	2669
2340	2420	2457	2487	2509	2534	2571	2609	2642	2672
2355	2421	2460	2489	2514	2539	2574	2611	2642	2678
2375	2423	2467	2492	2518	2540	2576	2618	2646	2682
2375	2429	2468	2492	2521	2542	2576	2624	2651	2682
2387	2430	2473	2493	2523	2543	2582	2628	2654	2685
2395	2444	2475	2497	2523	2549	2590	2628	2655	2708
2405	2445	2475	2498	2527	2550	2597	2632	2660	2710
2406	2451	2477	2503	2527	2556	2605	2636	2663	2742
2411	2453	2478	2503	2529	2562	2607	2636	2665	2769

Abbildung 6: Histogramm der gemessenen relativen Zählratenverteilung ($n_{\rm tot}=100$) mit überlagerter Gauß- und Poisson-Verteilung (je $n_{\rm tot}=500$).

$$\begin{split} P_{\mu\,\sigma}(x) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ P_{\lambda}(k) &= \frac{\lambda^k}{k!} \exp\left(-k\right) \end{split}$$

$$\begin{split} \overline{N}_{\mathrm{tot}} &= 2539{,}78 \\ \sigma^2 &= 9439{,}41 \\ \sigma &= 97{,}16 \end{split}$$

6 Diskussion

Literatur

- [1] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. DOI: 10.1109/MCSE.2007. 55. URL: http://matplotlib.org/. Current version 3.6.2, DOI: 10.5281/zenodo.7275322.
- [2] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [3] Python. Version 3.11.0. 24. Okt. 2022. URL: https://www.python.org.
- [4] Pauli Virtanen u. a. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". Version 1.9.3. In: *Nature Methods* 17 (2020), S. 261–272. DOI: 10.1038/s41592-019-0686-2.

Anhang

channel	2 anirate	Maxzahl
803 779 716 656 535 524 472 408 316	16133 16133 15246 15085 14200 13384 12137 12337 1589 458	71 74 78 82 99 111 97 97 12 0
	803 779 746 656 585 524 472 406 340	803 16178 779 16170 716 16153 656 15246 585 15085 524 14200 472 13384

Druck moar	Max Zanirate	Enannel	1 Zahirate
-0-	438	#32 832 783 735 719 600	34846
000	137 137 156 156 150 168 174 188 185 185 135 135 139 129 1204 122	832	359 70 359 67 359 67 34253 34253 34239 34279 33165
50	156	783	35467
150	156	719	34252
700	168	6.55	34239
750	MY	640	34219
200 750 300 350 400 450	188	500 500 500 505 505 5063 5063 5063 5063	33165
350	185	259	31181
400	181	505	28310
450	135	463	28910
500	184	384	25276
550	204	340	1 XOUT
600	122	3/12	18047
600 30 30 600	FN	308	753
0.00	2 1	Lucia	117
CON	0 A	176 X	
400	39	44 N 126 8 693	111/180
Xo= ucm			111111111111111111111111111111111111111

	ucm	Druck = 30	amo
1	2423 2642 2478 2708 2570 2570 2575 2655 2653 2653 2653 2653 2653 2564 2564 2567 2467 2567 2467 2567 2567 2567 2567 2567 2567 2567 25	39 2527	71 2521
1	2608	40 2457	78 2611
3	2642	41 2529	78 2611 79 2420 80 2682 81 2527
4	SEPE	42 2532	80 2682
5	27550	43 2642	80 2682 81 2527
7	2571	44 2355	82 2682
8	2475	40 2457 41 2529 42 2532 43 2642 44 2355 45 2534 46 2406 47 2672 48 2669 49 2503 50 2543 51 2497 52 2642 53 2468 54 2487	82 2682 83 2429 84 2685
5	2445	46 2406	84 2685
0 10	2339	47 2672	85 2590 86 2411
11	7605	48 2669	86 2411 87 2421
n	2 453	50 2543	00 2626
MAN AN AN	2574	51 2497	87 2421 89 2636 89 2660 90 2492 91 2576 92 2477
M	2556	97 2642	90 24.02
10	25 62	C3 2448	90 2492 91 2576 92 2477
16	2493	54 7407	02 24.72
18	2455	52 2642 53 2468 54 2487 55 2509 56 2498 57 2478 58 2489 59 2375 60 2576 61 2395 62 2550 63 2451 64 2542 65 2492 66 2475 67 2539 68 2628 69 2523 70 2582	93 2514
18	2387	56 2498	94 2460
19	7.564	57 2479	94 2460 95 2742 96 2473 97 2430
20	2445	57 2478 58 2489	96 2473
21	24 67	59 2375	97 2430
22	7340	10 2076	98 2518
23	7375	61 2205	99 2549
24	7678	60 2576 61 2395 62 2550	100 2655
25	7527	12 24.64	100 2655
23 25 25 25	2646	63 2451 64 2542 65 2492	
77	3609	04 25 42	
22	26511	65 2492	NU.
23	5824	66 2475 67 2539 68 2628 69 2523 70 2582	1 BM
30	2633	67 2539	
3 4	26.54	68 2628	
31	2410	69 2523	
34	2607	70 2582	
33	1662	71 2618	
7 X X	2405	71 2618 72 2624	
35	7.097	73 2444	
36	27 (9	71 2618 72 2624 73 2444 74 2628 75 2651	
20	2167	77 2028	
31	2420	75 2651	-
37	2405 2597 2769 2420 2540	76 2503	