安徽大学 2012—2013 学年第二学期

《 数值分析 》考试试卷 (A 卷)

(闭卷 时间 120 分钟)

院/系		§	年级				_姓名		_学号	
	题	号	_	二	三	四	五.	六	七	总分
	得	分								
	一、填空题(每小题 5 分, 共 20 分)									
1.	. 求解方程 $f(x) = x^3 - x - 3 = 0$ 的牛顿-拉夫森迭代公式为									
2. 若 $f(x) = x^4 + 1$,则差商 $f[-2, 0, 1, 2] =$										
3. 若 $f \in C^2$ [a,b],则步长为 h 的辛普森公式的误差为										
4.	4. 若拟合曲线为 $y = xe^{-x}$,则在使用线性化拟合方法时应作变换: $X = x$, $Y =$									
二、计算题(每小题 12 分, 共 72 分)										
	5. 设有方程 $e^x + 10x - 2 = 0$, $x \in [0, 0.5]$ (1) 建立一个合适的不动点迭代,并证明此迭代法收敛.									

- (2) 若初始值 $x_0 = 0$,利用上述迭代法求近似根 x_1 , x_2 , x_3 .

6. 设有线性方程组
$$\begin{cases} 4x_1 + 2x_2 + x_3 = 11 \\ x_1 + 4x_2 + 2x_3 = 18 \\ 2x_1 + x_2 + 5x_3 = 22 \end{cases}$$

- (1) 建立高斯-塞德尔迭代求方程组的近似解 P_1 , P_2 , P_3 , 初始值为 $P_0 = (0,0,0)^T$.
- (2) 判断此高斯-塞德尔迭代法是否收敛.

7. 试由 $f(x) = 2^x$ 的函数表

x_i	-1	0	1
$y_i = f(x_i)$	0.5	1	2

建立二次拉格朗日插值多项式求20.3 的近似值,并估计误差.

8. 已知一组实验数据如下:

x_i	1	2	3	4	5
y_i	4	4.5	6	8	8.5

试用最小二乘法求线性拟合曲线.

9. 利用组合梯形公式计算积分 $I = \int_{1}^{2} \frac{1}{2x} dx$, 要求误差不超过 10^{-3} .

10. 设有初值问题
$$\begin{cases} y' = -y + x + 1 \\ y(0) = 1 \end{cases}$$
, $x \in [0, 0.5]$ 取步长为 $h = 0.1$,利用 $Euler$ 方法求此问题的数值解.

三、证明题(每小题8分,共8分)

11. 证明: 非线性方程求根的二分法是线性收敛的.

得 分