TD 09 - Révisions

Rappel : Lorsqu'aucune précision n'est donnée quand au problème SAT, il s'agit de celui-ci :

SAT

entrée : une formule propositionnelle ϕ en forme normale conjonctive. question : ϕ est-elle satisfaisable ?

Exercice 1.

sur la taille des entrées et des entiers

Exercice 2. P et la complémentation

Si A est un problème de décision, on nomme *complémentaire* de A, et on note co-A, le problème de décision obtenu à partir de A en inversant instances positives et instances négatives. Autrement dit, les instances (entrées) de A et co-A sont les mêmes, mais on pose $x \in \text{co-}A$ ssi $x \notin A$ (de façon équivalente, on peut définir co- $A = {}^{c}A = \Sigma_{A}^{*} \setminus A$).

Ainsi, le complémentaire du problème SAT est le problème co-SAT défini par :

co-SAT

entrée : une formule propositionnelle ϕ . *question* : ϕ est-elle non-satisfaisable?

Montrer que la classe P est close par complémentation, c'est-à-dire que pour tout problème $A \in P$, on a co- $A \in P$.

Exercice 3. Noyau $\leq_m^p \mathsf{SAT}$

Un *noyau* d'un graphe orienté G=(V,A) est un ensemble N de sommets indépendants (aucune arrête entre deux sommets de N) et tel que tout sommet extérieur à N a un successeur dans N. Autrement dit, $N\subseteq V$ est un noyau s'il satisfait les deux contraintes :

(i)
$$\forall x, y \in N : (x, y) \notin A$$

(ii)
$$\forall x \notin N : \exists y \in N : (x,y) \in A$$

On définit alors le problème **Noyau** ci-dessous :

Noyau

entrée : un graphe orienté G = (V, A). question : G admet-il un noyau?

- **1.** Donner un exemple de graphe $G_1 \in \mathbf{Noyau}$, et un exemple de graphe $G_2 \notin \mathbf{Noyau}$.
- **2.** Montrer que Noyau \in NP.
- 3. Montrer que **Noyau** \leq_m^p **SAT**, sans utiliser la question 2.
- 4. Montrer que Noyau est NP-complet. (Indice : réduire depuis SAT.)