Everything You Need for Experimental Quantum Hardware Engineering

University of Minnesota

Onri Jay Benally

July 2023

Creative Commons License

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

1	Open Access Quantum Device Tools	3
2	Training Videos	4
3	Books & References	6
4	Quantum Hardware Lab Galleries	8
5	Quantum-Applicable Degrees: BS to PhD	9
6	Quantum Science Curriculum Example	10
7	Quantum Career Opportunities	12

Open Access Quantum Device Tools

Free tools for designing, simulating, & analyzing quantum/ nano devices:

- Browser-based, no installation required: https://nanohub.org/groups/semiconductoreducation
- Browser-based, no installation required: https://nanohub.org/groups/education#LearnAbout
- COMSOL superconducting simulation tool, browser-based: https://aurora.epfl.ch/app-lib
- Multiphysics simulation tool, direct-download: https://www.csc.fi/web/elmer/binaries
- Qubit design/simulation/analysis, Python-based: https://docs.nanoacademic.com/qtcad/introduction
- Qubit design/ analysis, Python-based: https://github.com/qiskit-community/qiskit-metal#qiskit-metal
- Quantum optics, Python-based: https://github.com/fancompute/qpga#quantum-programmable-gate-arrays
- Quantum optics, Python-based: https://github.com/SiEPIC/SiEPIC-Tools#siepic-tools
- Qubit design & fabrication example, applies codes to run lithography machines in the lab after pattern generation with Qiskit: https://github.com/OJB-Quantum/Qiskit-Metal-to-Litho#qiskit-metal-to-litho
- GitHub usage tutorial: https://github.com/OJB-Quantum/How-to-GitHub#how-to-use-github
- Superconducting qubit simulation tool, Python-based: https://scqubits.readthedocs.io/en/v3.2/index.html

Training Videos

Related Open Access Lectures & Tutorials (Up to Graduate-Level):

- Pulse Sequence Shaping (Thomas Alexander, IBM): https://www.youtube.com/watch?v=sMUPL8SR2oE&t=665s
- Qiskit Metal Overview, Gmsh & ElmerFEM [Open-Source] (Diego Emilio Serrano & Abeer Vaishnav): https://youtu.be/84j31_9fHko
- Quantum Transport (Prof. Sergey Frolov): https://youtube.com/playlist?list=PLtTPtV8SRcxjedflXwNPSI_fxvxwUCjsd
- Quantum Many-Body Physics (Prof. Luis Gregório Dias): https://youtube.com/playlist?list=PL6FyrZIBwD8LMWizZW1FUN2dS_144yuiy
- Quantum Matter (Prof. Steven Simon): https://youtube.com/playlist?list=PLrNpJOaBSWSCrLUO_tuKa515YJ10JNr1z
- Quantum Computing Hardware & Architecture (Prof. Hiu Yung Wong): https://youtube.com/playlist?list=PLnK6MrIqGXsL1KShnocSdwNSiKnBodpie
- Quantum Hardware Series (Onri Jay Benally, QuantumGrad & UMN): https://youtube.com/playlist?list=PLD9iE8dbH_2WOww1HL1gSskSYPcSlf6cd
- Circuit Quantum Electrodynamics & Qubit Hamiltonian (Prof. Gerhard Kirchmair): https://youtu.be/BAt2PFVQE3w
- Josephson Junctions & SQUIDs (Prof. Kevin F. Kelly): https://youtu.be/sNOpmTWlMwk
- Virtual Hands-On Nanofabrication (Dr. Jorg Scholvin): https://youtu.be/01J8qKjcp0M
- Micro & Nanofabrication (Prof. Chris Mack): https://youtube.com/playlist?list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo

- Nanotechnology [Tools] (Duke University): https://youtube.com/playlist?list=PLQcKpS4i0cAHES0sjJTXDZnWa3wtuixQl
- Physical Sciences & Engineering (Dr. Jordan Edmunds): https://www.youtube.com/@JordanEdmundsEECS/playlists
- Animated Physics Lectures (ZAP Physics): https://www.youtube.com/@zapphysics/playlists
- More Animated Physics Lectures (Alexander Fufaev): https://www.youtube.com/@universaldenker/playlists
- Even More Animated Physics Lectures (Dr. Elliot Schneider): https://www.youtube.com/@PhysicswithElliot/playlists
- Electronic Circuits (Julio Gonzalez): https://youtube.com/playlist?list=PLOo_zxa4K1BV9E-N8tSExU1djL6slnjbL

Books & References

Free or Open Access Literature & More (Up to Graduate-Level):

• Olivier Ezratty's "Understanding Quantum Technologies" (research, manufacturing, & more):

https://arxiv.org/abs/2111.15352

• Olivier Ezratty's "Where are we heading with NISQ?":

https://arxiv.org/abs/2305.09518

• Computer-Inspired Quantum Experiments:

https://arxiv.org/abs/2002.09970

• The Transmon Qubit for Electromagnetics Engineers:

https://ieeexplore.ieee.org/document/9789946

• Thomas Wong's "Introduction to Classical & Quantum Computing": https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf

 \bullet Probing quantum devices with radio-frequency reflectometry:

https://arxiv.org/abs/2202.10516

 \bullet [Quantum] Transport in Semiconductor Mesoscopic Devices:

https://iopscience.iop.org/book/mono/978-0-7503-1103-8/chapter/bk978-0-7503-1103-8ch8

• Quantum Materials Roadmap:

https://iopscience.iop.org/article/10.1088/2515-7639/abb74e

• Quantum Nanostructures:

https://www.sciencedirect.com/science/article/pii/B9780081019757000038

• From Nanoelectronics to Future Technologies:

https://link.springer.com/chapter/10.1007/978-3-030-44398-6_6#Sec5

• A Practical Guide for Building Superconducting Quantum Devices:

https://arxiv.org/pdf/2106.06173.pdf

• Handbook of Vacuum Science & Technology:

https://www.sciencedirect.com/book/9780123520654/handbook-of-vacuum-science-and-technology

• Practical Cryogenics:

http://research.physics.illinois.edu/bezryadin/links/practical%20Cryogenics.pdf

• Coplanar Waveguide Resonators:

https://link.springer.com/article/10.1007/s10948-018-4959-2

• When to Use Coplanar Waveguide Routing:

 $\verb|https://blog.upverter.com/2019/10/15/when-to-use-coplanar-waveguide-routing-for-hf-boards| | the board of the complex of t$

• Control & Readout of a Superconducting Qubit Using a Photonic Link:

https://rdcu.be/dhLr3

• Cryo-CMOS Qubit Control:

https://ieeexplore.ieee.org/document/9895434

• The Electronic Interface for Quantum Processors:

https://arxiv.org/pdf/1811.01693.pdf

• Cryo-CMOS Interfaces for Large-Scale Quantum Computers:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9372075

• A Cryogenic Interface for Controlling Many Qubits:

https://arxiv.org/abs/1912.01299

• Cryogenic Memory Technologies:

https://arxiv.org/abs/2111.09436

• NASA Wire Bonding Standards:

https://nepp.nasa.gov/index.cfm/20911

• NASA Soldering & Workmanship Standards:

 $\label{lem:https://nepp.nasa.gov/docuploads/06AA01BA-FC7E-4094-AE829CE371A7B05D/NASA-STD-8739. \\ 3.pdf$

 $\label{lem:nasa.gov/sites/default/files/standards/NASA/A/4/nasa-std-87394a_w_change_4_0.pdf$

https://workmanship.nasa.gov/lib/insp/2%20books/frameset.html

• Semiconductor Process & Device Simulation (SILVACO, browser-based):

https://nanohub.org/resources/silvacotcad

• Quantum Mechanics Visualization (browser-based):

https://www.st-andrews.ac.uk/physics/quvis

• Classical Physics Simulation (browser-based):

https://phet.colorado.edu/en/simulations/browse

• Classical 2D Optics Simulation (browser-based):

https://phydemo.app/ray-optics

Quantum Hardware Lab Galleries

T	\mathbf{P}	/	\mathbf{p}	ese	9	ch
	\frown \cap	∕ ■	П	$\mu \sim \mu$	ч	. (. 1 1

https://www.flickr.com/
photos/ibm_research_
zurich/albums

ETH Zurich

https://qudev.phys.
ethz.ch/responsive/?q=
gallery

Quantum-Applicable Degrees: BS to PhD

Non-Exhaustive List:					
Physics (Experimental or Applied)	Computer Engineering				
Quantum Science & Engineering	Chemistry				
Quantum Technology	Chemical Engineering				
Engineering Physics	Physical Chemistry				
Electrical Engineering	Systems Engineering				
Electrical & Computer Engineering	Mechanical Engineering				
Materials Science	Nanoscience				
Materials Science & Engineering					

Quantum Science Curriculum Example

Courses:						
AEP	1200	Introduction to Nanoscience & Nanoengineering				
AEP	2550	Engineering Quantum Information Hardware				
AEP	3100	Introductory Quantum Computing				
AEP	3610	Introductory Quantum Mechanics				
AEP	3620	Intermediate Quantum Mechanics				
AEP	4400	Nonlinear & Quantum Optics				
AEP	4500 / PHYS 4454	Introductory Solid State Physics				
CHEM	7930	Quantum Mechanics I				
CHEM	7870	Mathematical Methods of Physical Chemistry				
CHEM	7910	Advanced Spectroscopy				
CHEM	7930	Quantum Mechanics I				
CHEME	6860 / SYSEN 5860	Quantum Computing & Artificial Intelligence				
CS	4812 / PHYS 4481	Quantum Information Processing				
ECE	4060	Quantum Physics & Engineering				
ECE	4070	Physics of Semiconductors & Nanostructures				
ECE	5310	Quantum Optics for Photonics & Optoelectronics				
ECE	5330	Semiconductor Optoelectronics				
MSE	5720	Computational Materials Science				
MSE	6050	Physics of Semiconductors & Nanostructures				
PHYS	2214	Physics III: Oscillations, Waves, & Quantum Physics				
PHYS	3316	Basics of Quantum Mechanics				
PHYS	3317	Applications of Quantum Mechanics				
PHYS	4443	Intermediate Quantum Mechanics				
PHYS	4444	Introduction to Particle Physics				
PHYS	4410 / PHYS 6510	Advanced Experimental Physics				
PHYS	6572	Quantum Mechanics I				
PHYS	6574	Applications of Quantum Mechanics II				
PHYS	7636	Solid-State Physics II				
PHYS	7645	An Introduction to the Standard Model of Particle Physics				
PHYS	7651	Relativistic Quantum Field Theory I				
PHYS	7652	Relativistic Quantum Field Theory II				
PHYS	7654	Basic Training in Condensed Matter Physics				
	Adapted From: https://quantum.cornell.edu/education					

 Π

Quantum Career Opportunities

Related Lectures and Tutorials (Up to Graduate-Level):

- Pulse Sequence Shaping (Thomas Alexander, IBM): https://www.youtube.com/watch?v=sMUPL8SR2oE&t=665s
- Qiskit Metal Overview, Gmsh and ElmerFEM [Open-Source] (Diego Emilio Serrano and Abeer Vaishnav): https://youtu.be/84j31_9fHko
- Quantum Transport (Prof. Sergey Frolov): https://youtube.com/playlist?list=PLtTPtV8SRcxjedflXwNPSI_fxvxwUCjsd
- Quantum Many-Body Physics (Prof. Luis Gregório Dias): https://youtube.com/playlist?list=PL6FyrZIBwD8LMWizZW1FUN2dS_144yuiy
- Quantum Matter (Prof. Steven Simon): https://youtube.com/playlist?list=PLrNpJOaBSWSCrLUO_tuKa515YJ10JNr1z
- Quantum Computing Hardware and Architecture (Prof. Hiu Yung Wong): https://youtube.com/playlist?list=PLnK6MrIqGXsL1KShnocSdwNSiKnBodpie
- Quantum Hardware Series (Onri Jay Benally, QuantumGrad and UMN): https://youtube.com/playlist?list=PLD9iE8dbH_2WOww1HL1gSskSYPcSlf6cd
- Circuit Quantum Electrodynamics and Qubit Hamiltonian (Prof. Gerhard Kirchmair):
 https://youtu.be/BAt2PFVQE3w
- Josephson Junctions and SQUIDs (Prof. Kevin F. Kelly): https://youtu.be/sNOpmTWlMwk
- Virtual Hands-On Nanofabrication (Dr. Jorg Scholvin): https://youtu.be/01J8qKjcp0M
- Micro and Nanofabrication (Prof. Chris Mack): https://youtube.com/playlist?list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo

- Nanotechnology [Tools] (Duke University): https://youtube.com/playlist?list=PLQcKpS4i0cAHES0sjJTXDZnWa3wtuixQl
- Physical Sciences and Engineering (Dr. Jordan Edmunds): https://www.youtube.com/@JordanEdmundsEECS/playlists
- Animated Physics Lectures (ZAP Physics): https://www.youtube.com/@zapphysics/playlists
- More Animated Physics Lectures (Alexander Fufaev): https://www.youtube.com/@universaldenker/playlists
- Even More Animated Physics Lectures (Dr. Elliot Schneider): https://www.youtube.com/@PhysicswithElliot/playlists
- Electronic Circuits (Julio Gonzalez): https://youtube.com/playlist?list=PLOo_zxa4K1BV9E-N8tSExU1djL6slnjbL