Brandenburg University of Technology

IT Security
Computerscience and Media
Prof. Dr. Oleg Lobachev
Florian Eich

Embedding Generative Pretrained Transformers into PostgreSQL Bachelor Thesis

Summer semester 2025 March 22, 2025

 $Mara\ Schulke-Matr-Nr.\ 20215853$

Abstract

This thesis explores the integration of Generative Pretrained Transformers (GPT) into PostgreSQL database systems. The research focuses on implementation strategies, performance optimization, and practical applications of this integration.

Contents

1	Intr	roduction	3
	1.1	Problem Statement and Motivation	3
	1.2	Objectives of the Thesis	3
	1.3	Research Questions	3
	1.4	Methodological Approach	3
	1.5	Structure of the Thesis	3
_			
2			4
	2.1	()	4
		Ÿ	4
			4
		11	4
	2.2	ů ·	4
			4
		±	4
			4
	2.3		4
		2.3.1 Current Approaches and Solutions	4
		2.3.2 Technical Challenges	4
		2.3.3 Benefits of Integration	4
3	Cor	aceptual Design of GPT Embedding in PostgreSQL	5
0	3.1		5
	3.1	ı v	5
		.	5
	2.0	1	
	3.2	8	5
			5
			5
	0.0		5
	3.3	1	5
			5
			5
		, ,	5
		3.3.4 Comparison of Approaches	5
4	Imr	olementation	6
-	4.1		6
	4.2		6
	1.4		6
		4 Z I Model Selection and Oblimization	
	4.3	4.2.2 API Connection or Local Embedding	6

		4.3.1 SQL	Functions for	GPT Intera	actions											6
		4.3.2 Data	a Type Convers	ion and Pr	ocessing	g										6
			r Handling and													6
	4.4		n													6
			ormance Tunin													6
		4.4.2 Men	nory Usage													6
		4.4.3 Para	allelization													6
5	Eva	luation														7
	5.1	Test Enviro	nment and Met	thodology												7
	5.2	Performanc	e Tests													7
		5.2.1 Late	ency													7
		5.2.2 Three	oughput													7
		5.2.3 Scala	ability													7
	5.3	Use Cases														7
		5.3.1 Natu	ıral Language (Queries												7
			Generation W													7
		5.3.3 Sem	antic Search an	d Text Cla	ssificati	on .										7
	5.4	Comparison	with Alternati	ive Approa	ches .								•			7
6	Disc	cussion														8
	6.1	Interpretati	on of Results .													8
	6.2	Limitations	of the Implement	entation .												8
	6.3	Ethical and	Data Privacy	Considerati	ions											8
	6.4	Potential Fu	uture Developm	ients									•			8
7	Sun	nmary and	Outlook													9
	7.1	1 Summary of Results										9				
	7.2	Addressing	the Research C	uestions .												9
	7.3	Outlook for	Future Resear	ch and Dev	velopme	nt .										9

List of Figures

List of Abbreviations

	GPT	Generative	Pretrained	Transformer
--	-----	------------	------------	-------------

SQL Structured Query Language

API Application Programming Interface

1 Introduction

- 1.1 Problem Statement and Motivation
- 1.2 Objectives of the Thesis
- 1.3 Research Questions
- 1.4 Methodological Approach
- 1.5 Structure of the Thesis

2 Theoretical Foundations

- 2.1 Generative Pretrained Transformers (GPT)
- 2.1.1 Architecture and Functionality
- 2.1.2 Training and Fine-tuning
- 2.1.3 Application Areas
- 2.2 PostgreSQL as a Database System
- 2.2.1 Architecture of PostgreSQL
- 2.2.2 Extension Capabilities
- 2.2.3 PostGIS and Other Extensions as Examples
- 2.3 Embedding AI Models in Database Systems
- 2.3.1 Current Approaches and Solutions
- 2.3.2 Technical Challenges
- 2.3.3 Benefits of Integration

3 Conceptual Design of GPT Embedding in PostgreSQL

- 3.1 Requirements Analysis
- 3.1.1 Functional Requirements
- 3.1.2 Non-functional Requirements
- 3.2 Architecture Design
- 3.2.1 Interface Design
- 3.2.2 Data Model
- 3.2.3 Integration into PostgreSQL
- 3.3 Technical Implementation Strategies
- 3.3.1 Foreign Data Wrapper
- 3.3.2 Extension Using C/C++
- ${\bf 3.3.3}\quad {\bf PL/Python~or~Other~Procedural~Languages}$
- 3.3.4 Comparison of Approaches

4 Implementation

- 4.1 Development Environment and Tools
- 4.2 Integration of the GPT Model
- 4.2.1 Model Selection and Optimization
- 4.2.2 API Connection or Local Embedding
- 4.3 Development of the PostgreSQL Extension
- 4.3.1 SQL Functions for GPT Interactions
- 4.3.2 Data Type Conversion and Processing
- 4.3.3 Error Handling and Logging
- 4.4 Optimization
- 4.4.1 Performance Tuning
- 4.4.2 Memory Usage
- 4.4.3 Parallelization

5 Evaluation

- 5.1 Test Environment and Methodology
- 5.2 Performance Tests
- 5.2.1 Latency
- 5.2.2 Throughput
- 5.2.3 Scalability
- 5.3 Use Cases
- 5.3.1 Natural Language Queries
- 5.3.2 Text Generation Within the Database
- 5.3.3 Semantic Search and Text Classification
- 5.4 Comparison with Alternative Approaches

- 6 Discussion
- 6.1 Interpretation of Results
- 6.2 Limitations of the Implementation
- 6.3 Ethical and Data Privacy Considerations
- 6.4 Potential Future Developments

7 Summary and Outlook

- 7.1 Summary of Results
- 7.2 Addressing the Research Questions
- 7.3 Outlook for Future Research and Development

References

[1] Author, A. (Year). Title of the reference. Journal/Publisher, Volume(Issue), Pages.

Appendix

Installation Guide

API Documentation

Code Examples

Test Data and Results