Binary Trees

In computer science, a binary tree is a tree data structure, in which each node has at most two children.

Binary Trees

The number of leaves in a binary tree of height **h** is at most **2**^h.

Τ

Proof (by induction on h). (I - num. of leaves)
Let T be a tree of height h.

Base Case: h = 0, tree has 1 leaf, and $1 \le 2^0 = 1$ Ind. assumption: for any $h \le k$: $1 \le 2^k$

Prove that if h = k + 1, $l \le 2^{k+1}$.

The number of leaves in T is equal to the sum of the number of leaves in blue and red subtrees:

$$I = I_b + I_r$$

Each of the subtrees has the height h = k, and by assumption

$$\begin{split} &I_b \leq 2^k \text{ and } I_r \leq 2^k \\ \text{Then} &I \leq 2^k + 2^k = \ 2^*2^k = 2^{k+1}, \\ &I \leq 2^{k+1} \end{split}$$

Binary Trees

A binary tree of height **h** has at most **2**^{h+1} – 1 nodes

T

Proof (by induction on h).

Let T be a tree of height h.

Base Case: h = 0, tree has 1 node, and $n = 2^{0+1} - 1 = 1$

Ind. assumption: for any $h \le k$: $n \le 2^{k+1}$ -1

Prove that if h = k + 1, $n \le 2^{k+2} - 1$.

The number of nodes in T is equal to the sum of all the leaf nodes and all the non-leaf nodes:

$$n = l + n'$$

By removing all leaf nodes, we get a tree of height

h = k with $n' \le 2^{k+1}$ -1 nodes (by assumption).

From the prev. theorem, the number of leaves in T

$$1 \le 2^{k+1}$$

Then
$$n \le 2^{k+1} + 2^{k+1} - 1 = 2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1$$

$$n \leq 2^{k+2} -1$$

Decision Trees

Decision tree for 3-element insertion sort

Decision Trees

Figure 2 CART (classification and regression tree) decision tree model for the hepatic class of adverse drug reactions for 109 active and 177 inactive compounds (n = 286), with a corrected classification rate of 90.22%.

Graph Representation

Adjacency list

Adjacency matrix

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0

Adjacency matrix

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Adjacency matrix

• If you multiply an adjacency matrix A by itself, you get $A \times A$ or A^2 .

• A given entry a_{ij} from the matrix A^2 gives the number of simple paths of length 2 from node i to node j.

• More generally, an entry a_{ij} of A^k gives the number of simple paths of length exactly k from node i to node j.

Adjacency matrix

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$M^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\mathsf{M}^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M^3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathsf{M}^3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$