Optimización en problemas continuos: Explorando óptimos locales en subespacios de búsqueda

Introducción

La optimización en problemas continuos es un campo fundamental en la resolución de una amplia variedad de desafíos en ciencias de datos, economía, robótica y muchas otras disciplinas. El objetivo es encontrar la mejor solución posible, generalmente definida como aquella que maximiza o minimiza una función objetivo.

Branch & Bound

Es una técnica basada en la subdivisión de un espacio de busqueda, partiendo con un nodo principal y seleccionando de manera heuristica nodos para la división trabajando con distintos métodos para obtener soluciones factíbles y límites superiores.

Soluciones factibles

Hay diversas estrategias:

- Métodos de aproximación
- Algoritmos metaheuristicos
 - Trayectoria
 - Población

Metodos de aproximación

Estos metodos de forma resumida cuando la función es muy compleja se puede acotar a una mas simple con un método matematico, ajustando en un nuevo rango de valores factibles en el espacio pero mas reducido.

Metaheuristicas

Estos son algoritmos que si bien no garantizan llegar a un óptimo global, llegan a soluciones óptimas locales muchas veces con el fin de tener un mejor tiempo de resolución y costo computacional menor, estos algoritmos tienen un criterio de como actuan ante los problemas con 2 conceptos claves, Exploración y explotación. Por otro lado tambien se dividen en distintos grupos, de trayectoria y de poblacion.

Metaheuristicas II

Los algoritmos de trayectoria se basan en mejorar una solucion inicial de forma iterativa de forma de llegar a un óptimo local como solución.

Los algoritmos de población se basan en comportamientos de seres vivos y su evolución para llegar a un óptimo de forma eficiente.

Gracias