1.1 a.

The vertebral column data was first read from the ARFF file, then split into classes for processing.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")
vert_split <- split(vert, vert[,"class"])
sapply(vert_split$Abnormal[0:6], mean)
sapply(vert_split$Abnormal[0:6], median)
sapply(vert_split$Abnormal[0:6], sd)
sapply(vert_split$Normal[0:6], mean)
sapply(vert_split$Normal[0:6], median)
sapply(vert_split$Normal[0:6], sd)</pre>
```

1.1.1 Abnormal Data

		mean
lumbar_lordosis_angle	pelvic_tilt	pelvic_incidence
55.92537	19.79111	64.69256
degree_spondylolisthesis	pelvic_radius	$sacral_slope$
37.77771	115.07771	44.90145
		standard deviation
lumbar_lordosis_angle	pelvic_tilt	pelvic_incidence
56.15000	18.79890	65.27489
degree_spondylolisthesis	pelvic_radius	$sacral_slope$
31.94652	115.65032	44.63960
		median
lumbar_lordosis_angle	pelvic_tilt	pelvic_incidence
19.66947	10.51587	17.66213
degree_spondylolisthesis	pelvic_radius	sacral_slope
40.69674	14.09060	$14.515\overline{56}$

1.1.2 Normal Data

mean		
pelvic_incidence	$pelvic_tilt$	lumbar_lordosis_angle
51.685244	12.821414	43.542605
$sacral_slope$	pelvic_radius	$degree_spondylolisthesis$
38.863830	123.890834	2.186572
standard deviation		
$pelvic_incidence$	$pelvic_tilt$	lumbar_lordosis_angle
50.12312	13.48243	42.63892
$sacral_slope$	pelvic_radius	degree_spondylolisthesis
37.05969	123.87433	1.15271
median		
$pelvic_incidence$	pelvic_tilt	lumbar_lordosis_angle
12.368161	6.778503	12.361388
sacral_slope	pelvic_radius	degree_spondylolisthesis
9.624004	9.014246	6.307483

1.2 b.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")
pairs(vert[0:6], pch = 21, bg = c(''green'', ''blue'')[unclass(vert$class)])</pre>
```


Figure 1.1: Feature Scatter Plot

1.3 c.

Given the values from section a and the scatter plot from section b we can see that the two classes are seperatated well by there values. For example if we pick two classes, pelvic_radius and degree_spondylolisthesis, we can compare the values and see how well they are seperated. If we also take into account the scatter plot from Figure 1.1 we can see that abnormal classes have a larger value with respect of degree_spondylolisthesis then the normal class.

2.1 a.

Generating 100 3-dimensional vectors from a normal disribution with a mean vector as $[1\ 2\ 1]$ and a 3x3 covariance matrix as $[4\ 0.8\ -0.3;\ 0.8\ 2\ 0.6;\ -0.3\ 0.6\ 5]$

```
mean <- c(1,2,1)
cov <- matrix(c(4, 0.8, -0.3, 0.8, 2, 0.6, -0.3, 0.6, 5), 3,3)
mvnd <- MASS\dotsmvrnorm(n = 100, mean, cov)</pre>
```

$$cov = \begin{bmatrix} 4 & 0.8 & -0.3 \\ 0.8 & 2 & 0.6 \\ -0.3 & 0.6 & 5 \end{bmatrix}$$

- 2.2 b.
- 2.3 c.