COMP6771 Week 1.1 Course Outline

What is C++

- C++ is a more complex language than C
- C++ code is much simpler than C code
- C++ is a powerful, low level language, that allows you to write code that is fast, concise, and easy to understand
- There is nothing between C++ and the hardware
 - Unlike Java, Python, Javascript which contain an abstraction layer
- C++ has zero over-head abstractions abstractions are a big part
 - STL library has abstract containers, algorithms, and iterators
- C++ has a principle of don't pay for what you don't use
 - You can use OOP, but you're not obliged to pay the extra runtime cost for polymorphism
 - Things automatically get freed up, but you don't pay for garbage collection
- In this course we will focus on C++17

What is C++ used for

- Operating systems
 - Despite myths, C++ is as fast as C, but far more concise and easier to write correct code
- Low latency software (eg. high frequency trading)
 - C++ can have direct control over the hardware
- Games
- Just about anything you can think of

C++ IS NOT C

- C++ is backwards compatible with C, so it's easy to think that you can build your C++ understanding directly on top of your C understanding
- However, while valid C code is often valid C++, good C is is almost never good C++ code
 - Over the years C++ continues to diverge from C
- For example, when we teach you best practice, we will not be using:
 - malloc
 - free
 - C-style arrays
 - C-style strings
- And will be sometimes discouraging use of:
 - raw pointers (char *, int *)

What will be taught in this course

- You will be taught how to understand what C++ can do, how C++ works, and modern best practices around writing code. We will cover:
 - STL containers, iterators, algorithms
 - Object Oriented Programming
 - Operator Overloading
 - Iterators
 - Templates

What will be taught in this course

- In 2019 we will also emphasise preparing students for writing C++ in industry.
- We will be teaching:
 - A test framework this year (Catch2)
 - A build system (bazel)
 - Developer tooling (how to use a debugger)

Staff

- Lecturer in charge:
 - Hayden Smith
- Lecturers:
 - Hayden Smith
 - Matthew Stark
 - (Guest) Christopher Di Bella
- Tutors:
 - Adam Tizzone, Gaganjot Singh, Gary Bai, Ivor Metcalf, Hayden Smith, Matthew Phillips, Nathaniel Shead, Nicholas Malecki, Nicholas Mulianto, Simon Haddad

Where to get help

Your question-answer hierarchy

- 1. Webcms3 forum (on every page)
- 2. Your tutor (Emails on your tutorial page)
- 3. Lecturer(s) cs6771@cse.unsw.edu.au
- 4. Hayden hsmith@cse.unsw.edu.au (for personal)

Questions that are non-personal will only be answered on the forum.

Where to get resources

Books

- Programming: Principles and Practice Using C++ (Bjarne Stroustrup, 2nd Edition May 25, 2014) (updated for C++11/C++14) An introduction to programming using C++ by the creator of the language. A good read, that assumes no previous programming experience, but is not only for beginners.
- Here is a list, but use with caution: https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

• Websites:

- We recommend: cppreference.com
- Do not use: cplusplus.com
 - It frequently is first in search results.
 - Frequently inaccurate and outdated

Course Repository

- The course repository is at https://github.com/cs6771/comp6771
 - Contains the lecture and tutorial code
 - Will get updated as the course progresses

Schedule & Structure

- Please see course outline for full course schedule
- Teaching provided includes:
 - 3 hours of physically delivered lectures (recorded)
 - 1 optional hour of online delivered lectures (catch up, guest lecturing)
 - 1 hour of tutorial with your tutor

Assessment

Assessment	Weighting	Date of completion
Assignment 1	15%	Week 3
Assignment 2	15%	Week 6
Assignment 3	20%	Week 9
Exam	50%	Exam Period

Assessment

- Final marks *may* be scaled
- Final exam:
 - Hurdle exam
 - Done on CSE lab machines prac and theory components
- Assignments:
 - Will have an emphasis on testing
 - Plagiarism will not be tolerated. Immediate 0 for assignment.
 - Version control knowledge is assumed and recommended
 - Late penalties are 2% every hour off the maximum mark after due date

Feedback

In your first tutorial your class will choose a class rep to represent your class to simplify feedback processes.

Zoox

Top 10 performing students, pending an interview with Hayden, will be referred to a personal contact at Zoox for employment opportunities.

https://zoox.com/