EECS 376: Foundations of Computer Science

Lecture 06 - Dynamic Programming 3

Agenda

- Shortest paths: Dynamic Programming on Graphs
 - Single-source Shortest Paths (SSSP)
 The Bellman-Ford Algorithm

 - The Path-Doubling Al
 - All-Pairs Shortest Paths (APSP)
 The Floyd-Warshall algorithm

Directed and undirected graphs

Distance from s to t, denoted dist(s,t): minimum, over all paths P from s to t, of the sum of edge weights in P.

Notation: V = vertex set, E = edge set, n = |V|, m = |E|.

The shortest-path problems we'll consider

Input: Weighted directed graph. Weights can be negative, but assume no negative-weight cycles (why?). 基态到其他的信息

Single-Source Shortest Paths (SSSP). Given a "source" vertex s, find a shortest path from s to every vertex t.

所有点之面 All-Pairs Shortest Paths (APSP): For every pair s,t of vertices,

Shortest Paths

- Input:
 - a directed graph G = (V, E)
 - Tength function $\ell: E \to \mathbb{R}$
- Notations:
 - For a path π , its length $\ell(\pi)$ is the sum of edge lengths along the path.
 - Distance from s to t, $dist_G(s,t)$, is the shortest length of any path from s to t

Is dist(s, t) well-defined?

• Two reasons there could be no shortest path...

Two Key Observations 如果sh(s, t) 经过以 那的 sh(s, b)= sh(s, v) + sh(Vil Principle of

- 1. If a shortest path from s to t goes through vertex v, then it must be a shortest path from s to v, then a shortest path from v to t.
- 2. Since there is no negative-weight cycle in the graph, there is a $% \left\{ 1,2,\ldots ,n\right\}$ shortest path from s to t with no cycle in it.

The DP Recipe

you are here

- 1. Derive a recurrence for the 'value version' of the problem
- 2. Size of table: How many dimensions? Range of each dimension?
- 3. What are the base case(s)?
- 4. To fill in a cell, which other cells need to be filled already? In which order do I fill the table?
- 5. Which cell(s) contain the final answer?
- 6. Running time = (size of table) (time to fill each entry)
- 7. To reconstruct a solution (instead of just its value) follow "breadcrumbs" from final answer to base case

10

Bellman-Ford for single source shortest paths

5/15/24 11

Bellman-Ford algorithm

- The Bellman-Ford algorithm is an algorithm that computes the shortest paths from a single source vertex to each of the other vertices in a weighted digraph.
- It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it can handle graphs in which some of the edge weights are negative numbers.

5/15/24

Bellman-Ford algorithm

- Input graph G = (V, E) and source node s
 n nodes, m edges
 - Assume: no negative-weight cycles (will remove this soon),
 - Algorithm will have O(mn) runtime
- Key Idea: Dynamic Programming

5/15/24

• $dist^{(i)}(s,t) \neq (i$ -hop distance from s to t'' shortest length of an $s \to t$ path using exactly i edges, or ∞ if there's no such path $dist^{(si)}(s,t) = (i$ -at-most-i-hop distance from s to t'' shortest length of an $s \to t$ path using at most i edges

Examples

So... we only need to compute $dist^{(\le n-1)}(s,t)$. Can we do this recursively?

Recursive Formulation

- · Pause and think:
- How do you compute $dist^{(i)}(s, v)$ from $dist^{(i-1)}(s, \cdot)$?

- Bellman-Ford(G,s) assume no neg-weight cycles in G
 - Initialize array dist, indexed by (i, t) index entries by $dist^{(i)}(s, t)$
 - All entries initially ∞

dist is like table in previous lectures

 $-\operatorname{dist}^{(0)}(s,s) \leftarrow 0 \quad \left(\operatorname{dist}^{(0)}(s,rs) = \infty\right)$

- For i = 1, ..., n 1: O(n) loops
 - For each vertex v, $\sum_{v} \deg(v) = O(m)$ time/loop $dist^{(i)}(s,v) \leftarrow \min_{(u,v) \in E} dist^{(i-1)}(s,u) + \ell(u,v)$
- Return $dist^{(\le n-1)}(s,\cdot) = \min_{i\le n-1} dist^{(i)}(s,\cdot)$ return subarray

5/15/24 18

Detecting Neg-Length Cycles

- Slightly harder problem:
 - Input graph **G**, source node **s**
 - If **G** has no negative-length cycles. output all distances dist(s,t)
 - If G has a negative-length cycle, output "oh no a negative length cycle"

· Observe:

 If v is in a negative-length cycle, then $dist^{(\leq n)}(s,v) < dist^{(\leq n-1)}(s,v)$

– Bellman-ford correctly computes $dist^{(i)}(s, v)$ for any i

- Bellman-Ford(G,S)
 - Initialize array dist, indexed by i, t index entries by $dist^{(i)}(s, t)$
 - All entries initially ∞

$$-dist^{(0)}(s,s) \leftarrow 0$$
 base case

- For i = 1, ..., n: O(n) loops

• For each vertex v, $_{
m O(m)\,time/loop}$ $-\operatorname{dist}^{(i)}(s,v) \leftarrow \min_{(u,v) \in E} \operatorname{dist}^{(i-1)}(s,u) + \ell(u,v)$

- If $dist^{(s)}(s,v) < dist^{(s)}(s,v)$ for any v

• Output "on no a negative length cycle"

- Else return $dist^{(\leq n-1)}(s,\cdot)$ 5/15/24

我们已证明了:

O shortest path - LAFE

@ Finegative cycles =) the shirtest can be be found

within dentes v) cycles

Now we claim:

Easy fix!

nepotive cycle iff

min (dit (i) (S,V) / c min (dist (i) (S,V))

i spn-) i spn-)

(再循环一轮,一定放松比 negative cycle)

3,

Path-Doubling:

Bellman-Ford for all-pairs shortest paths

5/15/24

22

All-pairs shortest paths

- New game: compute all pairs distances.
- One option: run Bellman-Ford from every source node.

 $O(mn) \times n = O(mn^2)$

· Can we do better?

path - doubling 最知的gn更大 定即n²m 通常>n³logn (Pn logn CM)

BálEl-級>>1V1

Better Idea?

· Bellman-Ford's recursive strategy:

compute $dist^{(i)}(s, v)$ using $dist^{(i-1)}(s, \cdot)$

New idea:

5/15/24

Can you compute $dist^{(\leq i)}(s,v)$ using array $dist^{(\leq i/2)}(\cdot,\cdot)$?

5/15/24

Path-doubling for APSP

Key idea: "each path must have a middle node"

Think: write a recurrence for $dist^{(\leq i)}(s, v)$ in term of $dist^{(\leq i/2)}(\cdot, \cdot)$

$$dist^{(\leq i)}(s,t) = \min_{\mathbf{x}} dist^{(\leq i/2)}(s,\mathbf{x}) + dist^{(\leq i/2)}(\mathbf{x},t)$$

Question: why couldn't we use this idea for single-source shortest path?

5/15/24

用为只在APSP 控號電算这个 をか是一个要数什算(不満 time 6 而か time)

- All-Pairs Bellman-Ford(G) assume no neg-length cycs
 - Initialize array dist indexed by i, s, t index entries by $dist^{(\le 2^i)}(s, t)$

$$-\operatorname{dist}^{(\leq 1)}(s,t) \leftarrow \begin{cases} 0 & \text{if } s = t \\ \ell(s,t) & \text{if } (s,t) \in E \text{ for all s,t} \\ \infty & \text{if } (s,t) \notin E \end{cases}$$

— For $i=1,\ldots,\lceil\log n\rceil$: Total time: $\mathcal{O}(n^3\log n)$ operations

• For all nodes s, t:

New part $-dist^{(\leq 2^{i})}(s,t) = \min_{x} \left(dist^{(\leq 2^{i-1})}(s,x) + dist^{(\leq 2^{i-1})}(x,t) \right)$

- Return $dist^{(≤n)}$

Faster Algorithms for SSSP

Bernstein, Nanongkai, Wulff-Nilsen, 2022: O(m • log⁸n) ← integer weights

Wein's postdoc Saranurak's PhD advisor advisor

- Fineman, 2023 O(mn^{7/8}) ← any weights
- If no negative weights and (bijkstra's algorithm): O((m + n) log n) using binary heap and O(m + n log n) using Fibonacci heap

Initial idea for solving APSP: Run SSSP from every vertex!

That works, but the algorithm you're about to see is faster for dense graphs: $O(n^3)$ instead of $O(mn^2)$ (better when m >> n).

30

Floyd-Warshall for all-pairs shortest paths

5/15/24 31

APSP options

• Bellman-Ford (naïve method):

 $-O(mn^2)$ time $\left| E \left| \left| V \right|^2 \right|$

Bellman-Ford (with path-doubling):

 $-O(n^3 \log n)$ time

(V | 3 | log V |

· Floyd-Warshall (next):

 $-O(n^3)$ time

1/13

5/15/24 32

Floyd-Warshall algorithm

 The Floyd–Warshall algorithm, using dynamic programming, is an algorithm for finding all-pairs shortest paths in a directed weighted graph with positive or negative edge weights (but with no negative cycles).

5/15/24

Floyd-Warshall APSP

- **Ordered** vertex set $V = \{v_1, v_2, ..., v_n\}$.
- For a path $\pi=(s,u_1,u_2,\dots,u_{k-1},t)$ from s to t, say that $\{u_1,u_2,\dots,u_{k-1}\}$ are its *intermediate vertices*.

Definition

 $dist^{[i]}(s,t)$ is the "middle-restricted distance:" Shortest length of an $s \to t$ path that only uses $\{v_1, ..., v_t\}$ as intermediate vertices (but s, t can be anything)

35

33

Floyd-Warshall APSP

- **Ordered** vertex set $V = \{v_1, v_2, ..., v_n\}$.
- For a path $\pi=(s,u_1,u_2,\dots,u_{k-1},t)$ from s to t, say that $\{u_1,u_2,\dots,u_{k-1}\}$ are its *intermediate vertices*.

Definition

 $dist^{[i]}(s,t)$ is the "middle-restricted distance:" Shortest length of an $s \to t$ path that only uses $\{v_1, \dots, v_t\}$ as intermediate vertices (but s, t can be anything)

- Final Goal: for all $s, t, dist^{[n]}(s, t)$ (same as dist(s, t), why?)
- Strategy: compute $dist^{[k]}(s,t)$ from $dist^{[k-1]}(\cdot,\cdot)$.

Recursive Strategy

Key idea:

"Shortest k-middle-restricted path either go through v_k or not"

write a recurrence for $dist^{[k]}(s,t)$ in term of $dist^{[k-1]}(\cdot,\cdot)$

$$dist^{[k]}(s,t) = \min \begin{cases} dist^{[k-1]}(s,t) \\ dist^{[k-1]}(s,v_k) + dist^{[k-1]}(v_k,t) \end{cases}$$

Floyd-Warshall APSP

• (Base Case) $\operatorname{dist}^{[0]}(s,t) := \begin{cases} 0 & \text{if } s = t \\ \ell(s,t) & \text{if } (s,t) \in E \\ \infty & \text{otherwise} \end{cases}$

• For all k = 1, ..., n:

- For all vertices s, t:

$$- \ dist^{[k]}(s,t) = \min \begin{cases} dist^{[k-1]}(s,t) \\ dist^{[k-1]}(s,v_k) + dist^{[k-1]}(v_k,t) \end{cases}$$

• Return $dist^{[n]}$

Total time: $O(n^3)$ operations

5/15/24

38

Pseudocode for Floyd-Warshall

Algorithm APSP(G)

table := 3D-array (1..n, 1..n, 0..n)

// first two dimensions represent vertices v1,...,vn,

third dimension represents restricting to the first i internal vertices

for s = 1 to n:

for t = 1 to n:

table(s, t, 0) = w(s,t) // base case

for s = 1 to n:

for t = 1 to n:

for i = 1 to n:

 $\textbf{table}(s,t,i) = \min\{\textbf{table}(s,t,i-1),\,\textbf{table}(s,i,i-1) + \textbf{table}(i,t,i-1)\}$

Return table(s, t, n) for all s,t

39

Progress on APSP since Floyd-Warshall

Author	Runtime	Year	
Fredman	n ³ log log ^{1/3} n / log ^{1/3} n	1976	
Takaoka	n ³ log log ^{1/2} n / log ^{1/2} n	1992	
Dobosiewicz	n³ / log¹/2 n	1992	
Han	n ³ log log ^{5/7} n / log ^{5/7} n	2004	
Takaoka	n³ log log² n / log n	2004	
Zwick	n³ log log¹/² n / log n	2004 -	
Chan	n³ / log n	2005	Get a load of all those logs!!
Han	n ³ log log ^{5/4} n / log ^{5/4} n	2006	
Chan	n³ log log³ n / log² n	2007	Sich
Han, Takaoka	n³ log log n / log² n	2012	85 VY
Williams	n³ / exp(√ log n)	2014	/ ~11

Conclusion: Maybe O(n²-999) is impossible?

.

Maybe O(n^{2.999}) is impossible?

Either ALL of the following have O(n^{c3}) time algorithms or NONE of them do: (Virginia Vassilevska Williams, Ryan Williams, 2010)

- 1. APSP
- 2. Minimum Weight Triangle
- 3. Metricity
- 4. Minimum Cycle
- 5. Distance Product
- Second Shortest Path
- 7. Replacement Paths
- 8. Negative Triangle Listing

...

State of the art

No $O(n^{2.99})$ algorithm for APSP is known.

One of the three biggest open problems in algorithms!

• Plays a role like SAT/NP-Hardness: lots of problems are "APSP-Hard" under the conjecture that no $O(n^{2.99})$ algorithm exists.

5/15/24 44

Quick reflection

All shortest paths algorithms so far are just dynamic programming on graphs.

5/15/24 45