C14

#### NASA TECHNICAL MEMORANDUM



NASA TM X-2719

(14)

N73-33461

N73-33474

THRU

Unclas

18656

BERNALL STORY OF THE STORY OF T

#### SYMPOSIUM ON REUSABLE SURFACE INSULATION FOR SPACE SHUTTLE

Volume I - RSI Fabrication, Improvement,

Morphology and Properties

(NASA-TM-X-2719) SYMPOSIUM ON REUSABLE SURFACE INSULATION FOR SPACE SHUTTLE. VOLUME 1: RSI FABRICATION, IMPROVEMENT, MORPHOLOGY AND PROPERTIES (NASA)37/378- p HC \$8.00 CSCL

Ames Research Center

Moffett Field, Calif.

Held at

November 1-3, 1972

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . SEPTEMBER 1973

| . 1                                                                                                                  |                          |                             |                        |                   |
|----------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|------------------------|-------------------|
| . Report No.<br>NASA TM X-2719                                                                                       | 2. Government Acces      | sion No.                    | 3. Recipient's Catalog | No.               |
| 4. Title and Subtitle                                                                                                |                          |                             | 5. Report Date         |                   |
| 4. Title and Subtitle                                                                                                |                          |                             | •                      | 70                |
| Symposium on Reusable Surface Inc                                                                                    | ulation for Space Sh     | uttle.                      | September 19           |                   |
| Volume I - RSI Fabrication, Impro-                                                                                   |                          |                             | 6. Performing Organia  | zation Code       |
| 7. Author(s)                                                                                                         |                          |                             | 8. Performing Organiz  | ation Report No.  |
| ×                                                                                                                    |                          |                             | A-4725                 |                   |
|                                                                                                                      |                          | -                           |                        |                   |
|                                                                                                                      |                          |                             | 10. Work Unit No.      |                   |
| 9. Performing Organization Name and Address                                                                          |                          |                             | 502-37-02              |                   |
| NASA Ames Research Center                                                                                            |                          |                             | 11. Contract or Grant  | No.               |
| Moffett Field, Calif. 94035                                                                                          |                          |                             |                        |                   |
|                                                                                                                      |                          |                             | 13. Type of Report ar  | nd Period Covered |
| 12. Sponsoring Agency Name and Address                                                                               |                          |                             | Technical Memo         |                   |
| National Aeronautics and Space Admin                                                                                 | nistration               | H                           | 14. Sponsoring Agency  |                   |
| Washington, D. C. 20546                                                                                              | iionation                |                             | 14. Sponsoring Agency  | COGE              |
| 15. Supplementary Notes                                                                                              |                          |                             |                        |                   |
| Held at NASA Ames Research Center,                                                                                   | November 1_3 1072        |                             |                        |                   |
| field at NASA Affics Research Center,                                                                                | 1-3, 19/2.               |                             |                        |                   |
| 10. 1                                                                                                                |                          |                             |                        |                   |
| 16. Abstract                                                                                                         |                          |                             |                        |                   |
| The conference encompasses three tecl                                                                                | nology efforts, each pr  | iblished as a separate volu | ime.                   |                   |
| -                                                                                                                    |                          | •                           |                        |                   |
| Volume I - RSI Fabrication, Improve<br>Volume II - Environmental Testing (N<br>Volume III - Thermal Protection Syste | ASA TM X-2720)           | -                           |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             | 1.1-7/4:0              |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      | •                        |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          |                             |                        |                   |
|                                                                                                                      |                          | 3                           |                        |                   |
| 17. Key Words (Suggested by Author(s))                                                                               |                          | 18. Distribution Statement  |                        | -                 |
|                                                                                                                      |                          |                             |                        |                   |
| Thermal Protection System                                                                                            |                          | Unclassified - Unlin        | nited                  |                   |
| Reusable Surface Insulation                                                                                          |                          |                             |                        |                   |
| Space Shuttle                                                                                                        |                          |                             |                        |                   |
| * <u>.</u>                                                                                                           |                          |                             |                        |                   |
| 19. Security Classif. (of this report)                                                                               | 20. Security Classif. (c | of this page)               | 21. No. of Pages       | 22. Price*        |
| Unclassified                                                                                                         | Unclassified             |                             | 378                    | \$6.00            |
|                                                                                                                      |                          |                             |                        |                   |

<sup>\*</sup> For sale by the National Technical Information Service, Springfield, Virginia 22151

#### Page Intentionally Left Blank

#### PRECEDING PAGE BLANK NOT FILMED

**FOREWORD** 

#### Howard K. Larson

One of the critical technology needs of the Space Shuttle is development of a reusable thermal protection system (TPS). The baseline material for a large part of the shuttle TPS is now reusable surface insulation (RSI). Because of the rapid progress which has occurred in this development effort during FY'72-'73, it was deemed appropriate to review the state of RSI technology at this time. Therefore, Ames Research Center, under the auspices of the Shuttle Thermal Protection Systems and Materials Technology Working Group, hosted a three-day symposium on Reusable Surface Insulation for Thermal Protection of the Space Shuttle on November 1-3, 1972.

The objective of this symposium was to define the state-of-the-art for RSI materials. The meeting was divided into five sequential half-day sessions; each session addressing a specific technology area.

The first session "RSI Fabrication and Improvement" was chaired by Howard E. Goldstein of NASA-Ames, and included papers discussing the development of silica, mullite and alumino-silicate RSI materials. Rigid and flexible RSI materials were described. The results reported showed that mullite, silica and alumino-silicate rigid fibrous RSI materials could be fabricated reproducibly. One paper described a somewhat different RSI concept, a rigid closed pore alumino-silicate insulation having good physical stability. Also described was a silica non-rigid insulation which offers the possibility of minimizing strain compatibility problems with the structure. While substantial improvements have been made in the past two years, it was pointed out by many of the papers that much effort is still required to optimize the RSI materials. Substantial improvement in physical properties and thermal stability should be expected with continued research.

The second session "RSI Morphology and Properties" was chaired by Salvatore J. Grisaffe, NASA-Lewis, and included papers describing the detailed mechanical and thermophysical properties of the rigid fibrous RSI materials and their coatings. The mechanical properties as a function of temperature for REI mullite and LI-1500 were presented. One paper described a comparison of the mechanical and thermophysical properties of HCF, REI mullite, and LI-1500. Radiant energy transmission through mullite RSI was discussed in one paper and the high temperature surface optical properties of all the RSIs were discussed in another paper. The final paper described the microstructure of mullite fibers. This session demonstrated that the mechanical properties of the RSI materials are reasonably well understood, though the precision of the reported values is still in doubt. Thermal conductivity, particularly radiant heat transfer effects, are not well defined for the fibrous mullite materials. Emittances of the surface coatings of all the RSI materials are still questionable and require further study.

The third session "Environmental Testing I" was chaired by David H. Greenshields, NASA-MSC, and described the results of arc-plasma testing of the RSI materials. Most of these papers were concerned with both techniques for proper convective heating environment simulation and the response of the materials to the environment. Two papers described thermal response in gaps due to laminar and turbulent heating, respectively. In both studies, large panels simulating shuttle heat shield configurations were used. Other papers described the internal thermal response, catalytic wall effects and material response to cyclic heating. These studies were carried out on small models in uniform stagnation region heating regimes. Significantly higher thermal efficiency was reported for silica RSI compared with mullite RSI. Silica RSI coatings were also shown to be more chemically stable and less subject to cracking due to thermal shock.

The fourth session "Environmental Testing II" was chaired by John D. Buckley, NASA-Langley, and included papers that discussed the results of several diverse environmental testing programs. There were papers on the response of the RSI coatings in both convective and radiative heating environments. In these papers, emphasis was placed on the chemical and morphological changes that occur due to each heating environment. Significant differences were shown between the effects of radiant and convective heating. Convective heating was shown to have more severe effects. Other papers in the session described the effects of combined salt spray and cyclic radiant heating. It was shown that salt spray is more deleterious for silica than for mullite. Cold soak, acoustical rain erosion, and meteoroid impact tests were also described. The results of large panel tests in radiant heating and acoustic environments showed the silica RSI to be more stable. Mullite materials experienced thermostructural failures in these tests.

The fifth session "Thermal Protection System Design and Optimization" was chaired by George Strouhal, NASA-MSC, and included papers describing a number of specific design problems. Among these problems were the adhesive cold soak, the effect of optical properties on thermal design and techniques for mechanical attachment of RSI to the structure. The design concept of a non-rigid silica heat shield was described. Papers on mullite and silica RSI, respectively, contrasted the design philosophies and development maturities of the respective systems. Finally, a paper on thermostructural analysis of RSI application showed that mullite was much more subject to thermal stress failure than silica.

In conclusion, it is felt that the Symposium fulfilled its intended purpose in providing an "open forum" for Industry and Government to present, receive, and discuss the most recent results of a young, intensive technology program. NASA needed the results of this RSI technology program in order to make important decisions as to which of the RSI materials to choose for the shuttle heat shield. Early in 1973, NASA made the announcement that silica was chosen for the base material and that a coating with a ratio of solar absorbtance to room temperature emittance of 1.0 would be baselined.

#### CONTENTS

|    | SYMPOSIUM CO-CHAIRMEN:                                                                                                          | Howard K. Larson,<br>Ames Research Center<br>David H. Greenshields<br>Manned Spacecraft Cen |           |      |     |   |
|----|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------|-----|---|
|    | VOLUME I RSI FABRICATION, IMPRO                                                                                                 | VEMENT, MORPHOLOGY, AN                                                                      | ID PROPER | TIES |     |   |
|    | Session I - RSI Fabric<br>Chairman:                                                                                             | ation and Improvement<br>Howard E. Goldstein<br>Ames Research Center                        |           |      |     |   |
| 1. | FABRICATION AND IMPROVEMENT OF LMS R. M. Beasley, Y. D. Izu, H. N. A. Pechman Lockheed Missiles & Space Compan                  | Nakano, A. A. Ozolin,                                                                       | and       | •    | 1   |   |
| 2. | PROCESSING OF RIGIDIZED REI-MULLIT<br>J. J. Gebhardt, P. D. Gorsuch, a<br>General Electric Company                              |                                                                                             | S         |      | 17  |   |
| 3. | DEVELOPMENT AND CHARACTERIZATION O<br>A. Tobin, C. Feldman, J. Reichma<br>Grumman Aerospace Corporation                         |                                                                                             |           |      | 61  | / |
| 4. | FUSED SILICA SURFACE COATING FOR A INSULATION SYSTEM W. H. Rhodes AVCO Systems Division                                         | FLEXIBLE SILICA MAT                                                                         |           | •    | 87  |   |
| 5. | MAR-SI, MARTIN SURFACE INSULATION P. Paul Plank, Arthur Feldman, W John F. Creedon, and Joseph M. T Martin Marietta Corporation |                                                                                             |           |      | 107 |   |
|    | Session II - RSI Morp<br>Chairman                                                                                               | hology and Properties<br>: Salvatore J. Grisaf<br>Lewis Research Cent                       |           |      |     |   |
| 6. | SILICA REUSABLE SURFACE INSULATION<br>H. E. Goldstein, M. Smith, D. Le<br>Ames Research Center                                  |                                                                                             |           | rt   | 155 |   |
| 7. | RADIANT HEAT TRANSFER IN REUSABLE T. A. Hughes, R. M. F. Linford, H. E. Christensen McDonnell Douglas Astronautics C            | R. J. Schmitt, and                                                                          |           |      | 197 |   |

| 8.  | OPTIMIZATION OF REI-MULLITE PHYSICAL PROPERTIES                                                                                 | 227 |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|
| 9.  | SILICA RSI MORPHOLOGY AND PROPERTIES                                                                                            | 261 |
| 10. | EVALUATIONS OF RSI MATERIALS                                                                                                    | 275 |
| 11. | PORE STRUCTURE ANALYSIS OF RSI TILE                                                                                             | 311 |
| 12. | SPECTRAL AND TOTAL NORMAL EMITTANCE OF REUSABLE SURFACE INSULATION MATERIALS                                                    | 327 |
| 13. | AN EXPLORATORY STUDY OF THE MICROSTRUCTURE OF MULLITE FIBERS G. Santoro, H. B. Probst and B. Buzek Lewis Research Center        | 349 |
|     | VOLUME II ENVIRONMENTAL TESTING                                                                                                 |     |
|     | Session III - Environmental Testing I<br>Chairman: David H. Greenshields<br>Manned Spacecraft Center                            |     |
| 14. | AERODYNAMIC SIMULATION TESTS OF RSI PANELS                                                                                      | 371 |
| 15. | CONVECTIVE HEATING TESTS OF REUSABLE SURFACE INSULATION JOINTS AND GAPS                                                         | 425 |
| 16. | ENTRY ENVIRONMENTAL SIMULATION TESTING OF REI-MULLITE TPS D. E. Florence, R. A. Brewer, and T. E. Hess General Electric Company | 485 |
| 17. | PLASMA ARC TESTING TECHNIQUES FOR SPACE SHUTTLE REUSABLE SURFACE INSULATION (RSI)                                               | 525 |

| 18. | CYCLIC ARC PLASMA TESTS OF RSI MATERIALS USING A PREHEATER D. A. Stewart Ames Research Center                                                                                                        | 559 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 19. | ARC JET TESTS OF RSI MATERIALS - SCREENING AND COMPARATIVE EVALUATION                                                                                                                                | 591 |
| 20. | SILICA RSI ENTRY SIMULATION TESTS                                                                                                                                                                    | 623 |
|     | Session IV - Environmental Testing II Chairman: John D. Buckley Langley Research Center                                                                                                              |     |
| 21. | ENVIRONMENTAL TESTING OF REI-MULLITE THERMAL PROTECTION SYSTEM FOR THE SPACE SHUTTLE ORBITER                                                                                                         | 667 |
| 22. | ENVIRONMENTAL COMPATIBILITY OF THE ALL-SILICA RIGID SURFACE INSULATION                                                                                                                               | 709 |
| 23. | SIMULATED METEOROID PENETRATION OF REUSABLE SURFACE INSULATION J. K. Lehman and H. E. Christensen McDonnell Douglas Astronautics Company-East                                                        | 731 |
| 24. | EFFECTS OF SEA SALTS ON THE PHYSICAL CHARACTERISTICS OF REUSABLE SURFACE INSULATION                                                                                                                  | 765 |
| 25. | CHARACTERIZATION OF RSI COATINGS                                                                                                                                                                     | 793 |
| 26. | CHEMICAL AND MORPHOLOGICAL CHANGES OF REUSABLE SURFACE INSULATION COATINGS AS A FUNCTION OF CONVECTIVELY HEATED CYCLIC TESTING D. B. Leiser, D. A. Stewart, and H. E. Goldstein Ames Research Center | 851 |
| 27. | REUSABLE SURFACE INSULATION THERMAL PROTECTION SYSTEMS TEST EVALUATION STATUS                                                                                                                        | 895 |

|     | VOLUME III THERMAL PROTECTION SYSTEM DESIGN AND OPTIMIZATI                                                                                  | ON |   |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|----|---|------|
|     | Session V - Thermal Protection System Design and Optimization<br>Chairman: George Strouhal<br>Manned Spacecraft Center                      | n  |   |      |
| 28. | CHARACTERIZATION OF ADHESIVES FOR ATTACHING REUSABLE SURFACE INSULATION ON SPACE SHUTTLE VEHICLES                                           |    |   | 935  |
| 29. | EFFECT OF OPTICAL PROPERTIES ON THERMAL DESIGN                                                                                              | •  |   | 965  |
| 30. | CLOSED-PORE INSULATION THERMAL PROTECTION SYSTEM DESIGN CONCEPT DEVELOPMENT                                                                 |    |   | 981  |
| 31. | MECHANICAL ATTACHMENT OF REUSABLE SURFACE INSULATION TO SPACE SHUTTLE PRIMARY STRUCTURE                                                     |    |   | 1029 |
| 32. | OPTIMUM TPS DESIGN WITH REI-MULLITE                                                                                                         |    |   | 1063 |
| 33. | SILICA RSI FOR APPLICATION TO THE SHUTTLE ORBITER K. J. Forsberg, J. Jue, M. H. Kural, and F. A. Velligan Lockheed Missiles & Space Company |    |   | 1121 |
| 34. | A NON-RIGID REUSABLE SURFACE INSULATION CONCEPT FOR THE SPACE SHUTTLE THERMAL PROTECTION SYSTEM                                             |    |   | 1185 |
| 35. | RESULTS OF RSI THERMAL-STRUCTURE ANALYSIS                                                                                                   | •  | • | 1227 |
|     | The following papers were not presented at the Symposium but are included as part of these proceedings:                                     |    |   |      |
| 36. | INTERFERENCE HEATING TO CAVITIES BETWEEN SIMULATED RSI TILES Charles B. Johnson Langley Research Center                                     |    |   | 1269 |

| 3/. | EFFECT OF CRISTOBALITE ON THE MECHANICAL PROPERTIES OF |
|-----|--------------------------------------------------------|
|     | SILICA RSI MATERIALS                                   |
|     | Pramod K. Khandelwal and William D. Scott              |
|     | University of Washington                               |
|     | ,                                                      |
| 38. | EMITTANCE OF RSI COATINGS DETERMINED FROM RADIATION    |
| -   | MEASUREMENTS IN ARC JET TESTS                          |
|     | R. M. Wakefield and D. A. Stewart                      |
|     | Ames Research Center                                   |
|     | Alles Research Center                                  |

#### FABRICATION AND IMPROVEMENT

LMSC's ALL-SILICA RSI

R. M. Beasley, Y. D. Izu, H. N. Nakano, A. A. Ozolin, A. Pechman LOCKHEED MISSILES & SPACE COMPANY. INC.

## LI-1500 MATERIAL MANUFACTURING PROCESS AND CONTROLS

#### (Figure 1)

bonded tiles, 140 control points are applied. Every production panel currently fabricated process, and product control evaluations and inspection points performed during manuachieved. The LI-1500 material has displayed superior reliability in evaluations conmanufacturing operation. Improvements in both quality and reproducibility have been facture. During the process span of raw fibers and materials to finished coated and attributed to the adherence to the stringent requirements of the numerous material, The LI-1500 and LI-900 RSI materials have made the transition from laboratory to is subjected to these controls and analysis prior to acceptance and release for RSI ducted at various facilities. The dependable performance of the material may be utilization.

1

### LI-1500 MATERIAL MANUFACTURING PROCESS AND CONTROLS

L

L

L

L

U



1 å

L

L

L

L

\* A TOTAL OF 140 INDIVIDUAL CONTROL POINTS APPLIED.

Figure 1

À

L

I.

K

K

Ц

## LI-1500 RSI MATERIAL PRODUCTION ANALYSIS

#### (Figure 2)

U

U

U

at 1533°K (2300°F). Test specimens prepared from the LI-1500 material exhibited reproducibility within each individual panel. Typical specimen density variation within a panel is exemplified and NAS 9-12137 verified the reproducibility of the production process in that 82 panels, any of the production material, even after additional isothermal exposures of four hours by: 65 speciments  $224 \pm 9.6 \text{ kg/m}^3 (14.0 \pm 0.6 \text{ pcf})$ ; 45 speciments  $221 \pm 6.4 \text{ kg/m}^3$ Monitoring and analysis of the LI-1500 material produced for Contracts NAS 9-12083 fabricated from 7 separate process lots, showed reproducibility within each lot and diffraction showed all to be noncrystalline and that no phase change would occur for between the separate lots. Sampling evaluations of each production panel by X-ray (13.8  $\pm$  0.4 pcf); 42 specimens  $\rightarrow$  228  $\pm$  9.6 kg/m<sup>3</sup> (14.2  $\pm$  0.6 pcf).

1

L

H

H

L

# LI-1500 RSI MATERIAL PRODUCTION ANALYSIS

CONTRACTS NAS 9-12083 AND NAS 9-12137

| PROCESS LOT NO.                 | 2085         | 2087         | 2088         | 2091                  | 2091 2096 | 2097              | 2098      | AVERAGE |
|---------------------------------|--------------|--------------|--------------|-----------------------|-----------|-------------------|-----------|---------|
| FIBER ANALYSIS                  |              |              |              |                       |           |                   |           |         |
| PERCENT SIO2                    | 99.54        | 99.62        | 99.54        | 99.50                 | 99.33     | 99.55             | 99.49     | 15.99   |
| PERCENT ASH                     | 0.46         | 0.38         | 0.46         | 0.50                  | 0.67      | 0.45              | 0.51      | 0.49    |
| HOT STAGE X-RAY DIFFRACTION     |              |              | -8-<br> <br> | CONDUCTED ON ALL LOTS | ON ALL    | LOTS              |           |         |
| LI-1500 PANEL                   | i,           |              |              |                       |           |                   |           |         |
| DENSITY, kg/m <sup>3</sup>      | 228<br>+19.2 | 224<br>+ 8.0 | 208          | 223<br>+ 8.0          | 236 + 4.8 | 232 + 6.4         | 236 + 9.6 | 226     |
| AVERAGE DENSITY<br>OF 82 PANELS | ,            | 1            |              | ~                     |           | FT <sup>3</sup> ) | 1         |         |
| CRYSTALLINITY (A)               |              |              |              |                       |           |                   |           |         |

(A) X-RAY DIFFRACTION ANALYSIS AFTER 4 HR AT 1533°K (2300°F) EXPOSURE

Figure 2

5

#### LI-1500 DEVELOPMENT

#### (Figure 3)

since that time and evaluated for NASA and by Battelle exhibits consistent property trends. the manufacturing process. LMSC participated with NASA/LaRC in the Pacemaker flight demonstrated by the establishment of a major pilot plant during 1970. Material produced since 1962. Historical test data have been accumulated and demonstrate the stability of The LMSC silica RSI materials have resulted from development activities continuous test in 1968. LMSC's confidence in the superiority of its silica RSI and process was

facturing facility. A major production facility expansion has been initiated to meet the An initial expansion of the pilot plant was implemented in 1971 to attain a true manu-RSI material needs for the Shuttle TPS in 1973.

L

## LI-1500 DEVELOPMENT



Figure 3

I. L

## COMPARISON OF LI-1500 THERMAL CONDUCTIVITY DATA

#### (Figure 4)

U

L

L

L

L

and stability of the LI-1500 process is further substantiated by the extensive conductivity factor for Shuttle TPS is reliable thermal conductivity characteristics. Reproducibility consistent as is shown with the two design sizing curves plotted in figure 4. The use of In addition to the dependable mechanical characteristics just shown, a major design evaluations of the silica RSI made over the last three years. These data have been LMSC's sizing conductivity curves has resulted in good correlation or slight overprediction of bondline temperatures.

agree closely, except for the low temperature region where the variation was attributed test values and the design curves. The latest data available (reported by Battelle) also Of particular initerest, data from tests performed in 1964 agree closely with current to suspect equipment/methods.

8

I

L

Ц

H

H

H

Ľ

Ц

L

H

## RSI MATERIAL IMPROVEMENT

Ľ

U

| - CONTROL POLYMORPHIC CHARACTERISTICS TO INSURE RETENTION OF NONCRYSTALLINE STATE | <ul> <li>VARYING DENSITY 96.2-1920 Kg/m<sup>3</sup> (6-120 PCF), MECHANICAL<br/>AND THERMOPHYSICAL PROPERTIES FOR CRITICAL AREAS</li> </ul> | <ul> <li>RETAINED ATTRIBUTES OF LI-1500 WITH A REDUCTION</li> <li>OF BOTH DENSITY (30 PERCENT) AND MECHANICAL</li> <li>PROPERTY ANISOTROPY</li> </ul> | - INCORPORATE RESILIENT FIBROUS MATERIAL WITH FUSED HIGH EMITTANCE BOROSILICATE SURFACE COATING FOR TOLERANCE TAKEUP TO SIMPLIFY TPS ASSEMBLY | <ul> <li>HIGH EMITTANCE, IMPERVIQUS COATING WITH<br/>DEMONSTRATED USE TO 1644°K (2500°F)</li> </ul> |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| SILICA MATERIAL SYSTEMS                                                           | MATERIAL SYSTEMS                                                                                                                            | 006-I7<br>11                                                                                                                                          | FI-600                                                                                                                                        | LI-0042                                                                                             |

L

U

Ľ

L

Ľ

1

Ľ

H

Ц

H

Ц

Ľ

Ľ

Ц

### LI-900 CONDUCTIVITY DATA

U

(Figure 6)

Thermal conductivity data measured to date show a retention of the superior character-Additional conductivity data for the LI-900 material are currently being generated as istics established for LI-1500 and routinely used in successful TPS hardware design. part of the NAS 9-12856 contractual effort.

ś

Ľ

L

Ľ

П

L

K

ļ



### COATING DEVELOPMENT

#### (Figure 7)

U

L

L

formulation with silicon carbide as the emissivity agent. A major criterion in the development cycling at 1644°K (2500°F) temperature regime. The LI-0042 is of a refractory borosilicate which provides environmental and handling, protection, high emittance (~0.9) at elevated of this coating formulation was to match the extremely low thermal expansion of the silica temperatures 1644 K (2500 F), and capability to perform through repeated thermal at Coating development resulted in a RSI surface coating system (identified as LI-0042), RSI material systems. The data presented in the figure indicate the close match in expansion of the LI-1500, LI-900, and the coating material.

The LI-0042 coating system has performed successfully and reliably in various simulated Shuttle environmental exposures of both LI-1500 and LI-900 RSI materials.

á

L

H

П

L

Ц

Ц

K

П

L

U

## COATING DEVELOPMENT

### SILICA RSI THERMAL EXPANSION

U

U.U.U

| OF<br>K | TEMPERATURE<br>(°K) (°F) | Δ L/L CM/CM (IN./IN.) × 10 <sup>-5</sup><br>LI-1500 LI-900 | 1./IN.) × 10 <sup>-5</sup><br>LI-900 |
|---------|--------------------------|------------------------------------------------------------|--------------------------------------|
| 477     | 400                      | 10.3 TO 13.6                                               | 10.0 TO 11.2                         |
| 828     | 029                      | 17.3 TO 19.6                                               | 19.6 TO 21.3                         |
| 755     | 006                      | 22.3 TO 25.9                                               | 28.7 10 30.7                         |
| 926     | 1300                     | 37.7 TO 42.3                                               | 44.3 TO 46.0                         |
| 1170    | 1650                     | 50.4 TO 56.0                                               | 53.0 TO 55.2                         |
|         | 0042 COATING TH          | 0042 COATING THERMAL EXPANSION                             |                                      |
| (A)     | TEMPERATURE              | ٥١                                                         | A L'IL CMICM (IN./IIN.)              |
| 477     | 400                      |                                                            | 15.2 TO 18.1                         |
| 200     | 800                      |                                                            | 36.6 TO 39.4                         |
| 921     | 1200                     |                                                            | 57.7 TO 60.4                         |

Figure 7

1143 1600

L

61.9 TO 65.6

L L

H.

Н И

11

H

#### PRECEDING PAGE BLANK NOT FILM

## PROCESSING OF RIGIDIZED REI-MULLITE INSULATIVE COMPOSITES

ВУ

J.J. GEBHARDT, P.D. GORSUCH, M.A. BRAUN

GENERAL ELECTRIC COMPANY
RE-ENTRY & ENVIRONMENTAL SYSTEMS DIVISION
PHILADELPHIA, PENNSYLVANIA

#### INTRODUCTION

developing and evaluating a series of high insulative efficiency, rigidized fibrous insulation materials as might occur during a mission abort. The GE-RESD designation for this class of materials is Reusable margin than other candidate thermal protection systems during high surface temperature excursions such materials are lightweight and offer the potential for increasing the orbiter payload weight fractions. both (1) multimission capability without property or performance degradation, and (2) greater reserve In addition, their refractory nature and high melting point temperatures suggest that they will have The General Electric Company's Re-Entry and Environmental Systems Division (GE-RESD) has been for potential application to shuttle orbiter thermal protection systems (TPS). TPS based on these External Insulations (REI)

L

u

L

U

L

L

requirements of the adhesives and insulations. An additional advantage of the low operational backface The development and effective application of this lightweight, high performance surface insulative plicity since the insulation thicknesses can be sized to achieve sufficiently low operational backface and translated into material property and behavioral requirements and subsequently into specific test and evaluation criteria. With respect to design, REI materials offer both great flexibility and simthickness flexible adhesives to reduce both the stress concentrations and the shear and normal stress temperatures to permit the use of organic adhesive bonds for attaching the panels to the primary temperatures is that they permit the use of state-of-the-art airframe structures fabricated from TPS has required an iterative procedure in which design, system, and mission requirements were  $6.9 \times 10^5$  -  $10.3 \times 10^5$  N/m<sup>2</sup> (100-150 psi) in tension and compression, mandate the use of finite support structures. However, the limited strength levels of the REI materials, i.e., about aluminum and titanium alloys, rather than the more costly superalloy and refractory metals

L

L

L

1

L

H.

Ц

H

П

material was the best compromise among TPS weight, insulation effectiveness, mechanical strength and structural integrity, system (REI-Mullite), and an all-zirconia based system (REI-Zirconia). Evaluation results indicated that the REI-Mullite The development programs at GE-RESD have included evaluation of an all silica system (REI-Silica), an all mullite and thermal and structural stability for a 100-mission life with the shuttle orbiter maximum surface temperature requirement of 1644°K (2500°F)

Studies concerned with the application of REI materials to the shuttle orbiter have been conducted under subcontract from the North American Rockwell Corporation (NR/SD) as part of their Space Shuttle Phase B contract. Other contract activities include (1) design application programs on rigidized reusable surface insulation TPS with the NASA Manned Spacecraft Center This paper summarizes the development and evaluation activities at GE-RESD on the REI-Mullite class of insulative materials. Much of the work described was supported through the use of General Electric Company discretionary funds. (NAS 9-12084 and NAS 9-12855), and (2) the development of insulation materials for the NASA Langley Research Center (NAS 1-10533). Data obtained in these contract activities are included wherever appropriate for completeness.

1

L

U

L

u

L

L

L

L

L

Ц

H

H

П

H

L

L

## MOD IB REI-MULLITE INSULATIVE COMPOSITES

L

L

L

U

(Figure 1

The material development program from which the Mod IB REI-Mullite evolved was guided by the principle that the fibermizing the concentration of binder at fiber intersections was expected to minimize composite density for a given strength level and to maximize strength and strain-to-failure properties and insulation effectiveness at all density levels. This hypothesis binder interaction was extremely important in controlling the material properties and characteristics. In particular, maxihas been verified both experimentally and analytically.

silicone resin/organometallic system (Mod IREI-Mullite), and an aluminum-boria-silica glass (Mod IA and IB REI-Mullites). However, Mod IA REI-Mullite and Mod IB REI-Mullite are similar except for a change in firing schedule, which has yielded a more effective distribution of binder with resulting superior mechanical properties and possibly insulative effectiveness. Much of the data presented here are on Mod IA REI-Mullite because it has undergone the most extensive characterization. Three types of binder systems have been defined, developed, and evaluated in the study of the REI-Mullite class of materials. These are a mullite base binder system similar in composition to the mullite fibers (Mod O REI-Mullite), a

the rigidized composites can be made over a range of densities, the density level of about 192 Kg/m<sup>3</sup> (12 lbs/ft<sup>3</sup>), selected to with a refractory ceramic glass cement. The mullite fibers are alumina-rich near stoichiometric ( $^3$  Al $_2^{
m O_3}$  -  $^2$  Si $_2^{
m O_2}$ ) mate-Mod IB REI-Mullite consists of about 10 percent by volume of mullite fibers rigidized by bonding their points of contact be near optimum for this material, reflects a compromise between mechanical properties including strength and strain-torials supplied by the Babcock and Wilcox Company. Fiber diameters are typically in the 4 to 8  $\mu$ m range. Although failure and insulative efficiency.

I

L

U

L

Ц

Š

L

L

L

II.

L

П

H



# MULLITE FIBER CHARACTERISTICS (AFTER FETTEROLF<sup>(1)</sup>)

L

U

L

U

(Figure 2)

tured, consist of a glassy mixture of oxides with a slight excess of 7- Al<sub>2</sub>O<sub>3</sub>. This oxide mixture, when fired to temperatures  $(9A_1^{\ O_3} \cdot 2\ B_2O_3)$  are also present. These results are consistent with an initial nominal fiber composition of about 77 percent The mullite fibers are made by Babcock and Wilcox Company (B&W) by a salt decomposition process and, as manufacof at least 1450°K (2150°F), yields pure mullite  $(3Al_2^{O_3} \cdot 2SiO_2)$ . In some fibers, small amounts of aluminum borate  ${\rm Al}_2{\rm O}_3$ , 17 percent  ${\rm SiO}_2$ , 4.5 percent  ${\rm B}_2{\rm O}_3$  and 1.5 percent  ${\rm P}_2{\rm O}_5$ .

range and the subsequent growth of the mullite grains, particularly for extended periods of exposure at temperatures of 1644°K and grain formation, and (3) subsequent growth of the mullite grains in the fibers. X-ray diffraction studies at GE-RESD have results from a combination of factors including (1) vaporization of constituents such as  $B_2O_3$  and  $P_2O_5$ , (2) mullite crystallite Fetterolf<sup>(1)</sup> shown in the figure. The degradation in strength properties at temperatures above 1422°K (2100°F) apparently confirmed the transformation of the initial oxide mixture into mullite in the 1553° to 1644°K (2300° to 2500°F) temperature The properties of the B & W mullite fibers are markedly dependent on firing temperature as indicated by the data of (2500°F) or higher. The latter phenomenon has only been shown in a qualitative manner.

the firing schedule for coated Mod IB REL-Mullite composites has been adjusted to minimize time of exposure above 1533 K Because of this tendency for the oxide mixture in the fibers to crystallize to mullite and degrade the fiber properties, (2300°F). Also, the binder composition has been tailored to provide protection to the fibers and retard degradation. With these factors taken into consideration, the multimission use capability of the REI-Mullite thermal protection systems is maximized, and no significant performance degradation is observed for the temperature-time combinations to which the shuttle orbiter TPS is exposed,

1

L

H.

11

K

H

L

L

L

L

L

L

L

## MULLITE FIBER CHARACTERISTICS (AFTER FETTEROLF)



### AS RECEIVED MULLITE FIBERS

L

(Figure 3)

being roughly parallel to the direction of the blanket. In certain batches, large quantities of powdered, unfiberized material are evident, while in other batches the fibers appear to contain significant quantities of thick, stiff material. Efforts were the large diameter size (see Figure 4d). Consequently, fiber classification was dropped as a routine process step, and the The mullite fibers as received from B&W consist of long stable fibers in the form of batting or mats, the fiber axes was also lost since the fiber diameter histogram for classified fibers indicated a larger average diameter, skewed toward (~10 percent) was thus screened out, but it was also evident that a portion of the finer and presumably stronger material made to classify the raw material prior to use by cutting and water separation. Considerable dust and heavy material fibers were used as received, with out-of-specification material eliminated by examination.

U

U

L

The degree of entanglement of the fibers made it necessary, however, to introduce a fiber cutting or separation step in the manufacture of the composites to achieve uniform and reproducible properties. This step is currently carried out in connection with the fiber-binder slurry preparation stage, and results in fiber lengths in the 200 to 400  $\mu m$  range.

13

L

L

II.

H

K

Ц

K

Ī

L

L

Ц





25

# FIBER DIAMETER HISTOGRAMS OF B&W MULLITE FIBERS

(Figure 4)

L

U

L

Typical fiber diameter histograms are shown in Figure 4 for the 4, 4.7, and 6  $\mu$  m classes of B & W mullite fibers. It is to be noted that the fiber diameter varies significantly within each class of material.

use larger diameter fibers (nominal 6  $\mu$  m) for all of the Mod 0 and part of the Mod I REI-Mullite development and evaluation The mullite fibers used in Mod IA and IB REI-Mullite have a nominal 4.7  $\mu$  m diameter. However, it was necessary to studies because of lack of availability of the smaller diameter fibers. Statistically, the smaller diameter fibers appear to produce insulative composites with higher strength and strain-to-failure capabilities. (See Figure 6.)

1 %

L

H

H

Ц

H

#### FIBER DIAMETER HISTOGRAM OF B&W MULLITE FIBERS





 $D_{av} = 5.7 \mu m$ 

0

PERCENT OF POPULATION

2

= 100 MEMBERS



2

FIBER DIAMETER, µm

(b) DISTRIBUTION OF 4.7 m FIBER DIAMETERS

### X-RAY DIFFRACTION PATTERNS

L

(Figure 5)

The as received mullite fibers typically consist of a low temperature  $\gamma$ -Al $_20_3$  phase [strongest nonstoichometric mullite phase. Upon heat treatment, the Al203 phase combines to form a stable reflections at 1.40 and 1.98  $\times$  10<sup>-10</sup>m (1.40 and 1.98 A°) wavelengths], an amorphous phase and a mullite phase with some residual amorphous material.

U

Š

I

И

H

11

L

U

Ľ

Ī

### X-RAY DIFFRACTION PATTERNS

B&W MULLITE FIBER AS RECEIVED

B&W MULLITE FIBER HEATED 4 HRS 1644°K (2500°F)



Figure 5

# STRENGTH-FIBER SIZE DISTRIBUTION RELATIONSHIPS FOR MOD I AND IA REI-MULLITE

L

L

U

(Figure 6)

The strength of the REI-Mullite composites was expected to vary with the diameter of the fibers used in the fabrication areas and lesser degree of surface imperfections, and there are more fibers per unit weight incorporated into the composite of the composites. The smallest diameter fibers normally have intrinsically higher strength because of their lower surface compared with materials made with larger diameter fibers (potentially stronger and more flexible truss network)

(actual average 7.5) diameter fibers. The strength of the composite made with the finer fibers is about twice that for the composite made with the coarse fibers. Thus the emphasis in the REI-Mullite development program has been to use the smallest The figure shows some experimental results for composites made with nominal 4  $\mu$ m (actual average 3.2) and 6  $\mu$ m diameter mullite fibers available.

á

L

L

H

11

li

II

L

K

L

## STRENGTH-FIBER SIZE DISTRIBUTION RELATIONSHIPS FOR MOD I AND IA REI-MULLITES

(A) SI UNITS

|                           |              | MOD I A         |                       |                                                  |                           |              | MOD I           |                                  |                                                  |
|---------------------------|--------------|-----------------|-----------------------|--------------------------------------------------|---------------------------|--------------|-----------------|----------------------------------|--------------------------------------------------|
| G                         | TEST         | TEST POINTS     | TEN:<br>STRE<br>(N/m² | TENSILE<br>STRENGTH<br>(N/m <sup>2</sup> X 10-3) |                           | TEST !       | TEST POINTS     | TEN<br>STRE<br>(N/m <sup>2</sup> | TENSILE<br>STRENGTH<br>(N/m <sup>2</sup> X 10-3) |
| riber<br>DIAMETER<br>(μm) | IN-<br>PLANE | ACROSS<br>PLANE | IN-<br>PLANE          | ACROSS<br>PLANE                                  | FIBER<br>DIAMETER<br>(µm) | IN-<br>PLANE | ACROSS<br>PLANE | IN-<br>PLANE                     | ACROSS<br>PLANE                                  |
| 4                         | 9            | 9               | 558.5                 | 200.0                                            | 4                         | 2            | 4               | 379.2                            | 213.0                                            |
| 9                         | 2            | 6               | 7.172                 | 124.1                                            | 9                         | 2            | ဗ               | 326.8                            | 157.2                                            |

(B) ENGLISH UNITS

|                           |              | MOD I A         |                      |                                              |                           |              | MOD I           |                     |                                              |
|---------------------------|--------------|-----------------|----------------------|----------------------------------------------|---------------------------|--------------|-----------------|---------------------|----------------------------------------------|
|                           |              | TEST POINTS     | TEN:<br>STRE<br>(LB/ | TENSILE<br>STRENGTH<br>(LB/IN <sup>2</sup> ) |                           | TEST         | TEST POINTS     | TEN<br>STRE<br>(LB/ | TENSILE<br>STRENGTH<br>(LB/in <sup>2</sup> ) |
| riber<br>DIAMETER<br>(μm) | IN-<br>PLANE | ACROSS<br>PLANE | IN-<br>PLANE         | ACROSS<br>PLANE                              | FIBER<br>DIAMETER<br>(µm) | IN-<br>PLANE | ACROSS<br>PLANE | IN-<br>PLANE        | ACROSS<br>PLANE                              |
|                           | 9            | 9               | 81.0                 | 29.0                                         | 4                         | 2            | 4               | 55.0                | 30.9                                         |
|                           | 2            | 6               | 39.4                 | 18.0                                         | 9                         | 2            | 8               | 47.4                | 22.8                                         |

Figure 6

# COMPARISON OF MOD 0, MOD 1, MOD IA AND MOD IB REI-MULLITES

L

L

L

U

(Figure 7)

Three types of binder systems were evaluated in the fabrication studies on the REI-Mullite class of materials. They were compared as to cost effectiveness, reproducibility of manufacture, and level and uniformity of properties. attached to fiber/fiber intersection points. Thus primary emphasis in the program was shifted to Mod I, IA, and IB ments because the binder phase was in the form of mud-like clumps adhering to the fibers and was not selectively exhibited good stability during high temperature exposure, its properties were inadequate to meet design require-Included were a mullite base binder system similar in composition to the mullite fibers (Mod 0), a silicone resin/ organometallic system (Mod I), and an alumina-boria-silica glass (Mod IA and IB). Although Mod 0 REI-Mullite

U

1

relatively low strain level is believed to be primarily the result of fiber changes brought on by the high firing temperature The Mod I REI-Mullite system consists of mullite fibers bonded together with a binder system formed in a two-step 1644° K, (2500° F)] required in order to stabilize the composite panel against dimensional changes at maximum operating system has sufficiently high cross-plane and in-plane strength, as well as insulation capability and strength retention, to alumina-silica-boria component obtained by hydrolysis and pyrolysis of specific organometallic precursors. The Mod I process: rigidization by pyrolysis of a silicone resin followed by modification of the silica layer through addition of an temperatures. The Mod I process, although controllable on a laboratory-scale basis, was not easily applied in a pilot meet the TPS limit-load requirements (with zero factor of safety). The strain-to-failure level of the Mod I system, however, was found to be deficient with regards to the NASA established 1.5 factor-of-safety at ultimate load. The plant type operation because of the process complexity.

The simultaneous development of a wholly inorganic binder system (designated Mod IA REI-Mullite) consisting of and improved insulation efficiency of the Mod IA system coupled with its simpler, easily controlled, and less expensive 1533° K (2300° F) and still exhibit dimensional stability at 1644° K (2500° F). The higher tensile strain-to-failure levels 1971. Mod IB REI-Mullite is similar to Mod IA except for firing procedure. The modified firing procedure results in an alumina-modified borosilicate glass mixture provided a binder that could be fired at a somewhat lower temperature process cycle (compared to the Mod I process), led to its incorporation into the GE-RESD REI pilot plant in November a greater degree of optimization of binder distribution with resulting enhanced mechanical properties.

1

L

L

H

H

Ľ

L

K

L

П

### COMPARISON OF MOD 0, MOD 1, MOD IA, AND MOD IB REI-MULLITES

|                                  |                                                                    | The second secon |                                                                |                                                                |
|----------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
|                                  | MOD 0                                                              | MOD I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOD IA                                                         | MOD 18                                                         |
| FIBER                            | B&W 6 µm FIBER                                                     | B&W 6 µm FIBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B&W 4.7 µm FIBER                                               | B&W 4.7 µm FIBER                                               |
| BINDER                           | MULLITE SYNTHESIS<br>BASED UPON USE OF FIBER<br>COMPOSITION BINDER | 2 STEP PROCESS-SILICONE PYROLYSIS FOLLOWED BY MULLITE SYNTHESIS USING ORGANOMETALLIC A1203-Si02-B203 PRECURSORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 STEP PROCESS TERNARY<br>A1203-Si02-B203<br>GLASS COMPOSITION | 1 STEP PROCESS TERNARY<br>A1203-Si02-B203<br>GLASS COMPOSITION |
| FORMING                          | PRESSED                                                            | GRAVITY DRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GRAVITY-DRAIN                                                  | GRAVITY-DRAIN                                                  |
| MAXIMUM<br>FIRING<br>TEMPERATURE | 1644° K<br>(2500° F)                                               | 1644°K<br>(2500°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1533°K<br>(2300°F)<br>1644°K<br>(2500°F WITH COATING<br>CYCLE) | 1533°K<br>(2300°F)<br>1644°K<br>(2500°F WITH<br>COATING CYCLE) |

Figure 7

L

L

H.

K

П

U L

## MOD 1, IA, AND IB REI-MULLITE PROCESS DESCRIPTIONS (Figure 8)

high speed shear impeller, which chops them into desired lengths and disperses the fibers uniformly throughout the bindpassage of the excess binder solution. Rapid binder removal and fiber settling are necessary to maintain proper fiber matically shown in the figure. In panel fabrication, mullite fibers are blended into an aqueous binder solution using a The process flow diagrams for composite fabrication for each of the family of REI-Mullite materials are scheorientation. The fibers are then compressed to the necessary height to produce the required panel density. After er. The agitated fibrous slurry is transferred into a mold having a porous base that retains the fibers but allows a short residence time in the mold, the panel is removed from the mold and dried in an air-circulating oven. ing cycle removes binder water and rigidizes the mullite cake to permit subsequent handling and firing,

U

U

L

u

L

L

binder. Density is controlled by pouring the slurry into a closed mold and pressing the panels to preselected thicknesses. slurry. In this way, uniform mullite fiber lengths are obtained in the composites and the fibers are uniformly coated with An important feature of the Mod IA and IB REI-Mullite process is the shear blade cutting of the fibers in the binder This approach overcame difficulties encountered in early processing studies; that is, nonoptimum fiber lengths, distributions, and orientations led to the fabrication of panels containing fiber clumps, laminations, and voids. Thus effective utilization of the potential strengthening effects of the fibers in the composites was enhanced.

Į

L

L

H

K

å

Į.

L

L

L

H

H

H

#### REI-MULLITE PROCESS DESCRIPTIONS MOD I, IA, AND IB

U

L

1

L

U

L

L

L

Į,

Ľ

Ц

H

H

Ц

I.

K



L

ľ.

### MOD IB REI-MULLITE PROTOTYPE HARDWARE

L

L

U

(Figure 9)

The cast panels are fired in a high temperature kiln to rigidize the composites. The firing schedule is programfiring, the panels are machined into individual tiles or specimens as required. Uncoated material can be machined med to optimize binder flow to fiber intersections and its subsequent conversion to a refractory glass binder. After readily with conventional tooling.

I,

K

I

K

### MOD IB REI-MULLITE PROTOTYPE HARDWARE



Figure 9

ı

# MICROSTRUCTURAL CHARACTERISTICS OF REI-MULLITES

(Figure 10)

binder systems is illustrated through the use of scanning electron micrographs (SEM) in this figure. The binder phase in Mod 0 was in the form of mud-like clumps adhering to the fibers and was not selectively attached to the fiber/fiber The general improvement in binder distribution achieved with each step in progressing from Mod 0 to Mod IB This resulted in inadequate properties although the material exhibited good thermal stability, intersections.

U

L

L

U

L

L

L

ent added after rigidization does not soften and fuse at 1644° K (2500° F), it was essential that the fillets be formed prior to this step. With the advent of the simpler and more reproducible Mod IA system, further efforts to achieve maximum possibly because of the steeper silica gradient existing across the thickness. Inasmuch as the organometallic componbinder indicating that in the scaled-up process a considerable degree of the desired binding mechanism was being lost, enhancement of binder location at fiber intersections. Thick Mod I panels displayed increasing amounts of particulate occurs at fiber-binder intersections during processing. In the case of Mod I material, filet formation occurred prior fibers in web-like structures. In both instances the optimum structure occurs with low binder contents and resulting to the final silica rigidization step, whereas the Mod IA binder softens during the final firing and adheres to adjacent Scanning electron miscroscope examination of Mod I, IA, and IB REI-Mullite panels shows that fillet formation filleting in the Mod I system were dropped.

Correlation of the specimens displaying good mechanical strength with scanning electron microscope evidence showed that high tensile strengths were being achieved through the filleting action of the binder, and that highly refractory adobe-like binder systems did not contribute to strength in proportion to the amount of binder present.

Ī

K

L

L

13

L

1

11

H

1

L

### MICROSTRUCTURAL CHARACTERISTICS

...

OF REI-MULLITES



MOD I B REI-MULLITE

MOD

REI-MULLITE

REI-MULLITE

MOD 0

**MOD I A REI-MULLITE** 

100 µm

— INCREASING STRAIN CAPABILITY — INCREASING STRENGTH -

PROCESS SIMPLIFICATION DENSITY REDUCTION -

Figure 10

10 µm H

# SBA BINDER SYSTEM FOR MOD IA AND IB REI-MULLITES

(Figure 11)

silica glasses. In these studies, increasing quantities of alumina were added to a nonalumina containing borosilicate failure characteristics of these composites were improved without degrading the insulation effectiveness of the matemixture until the desired high temperature flow characteristics were achieved. In particular, the formulation was selected from these studies was resistant to α-cristobalite formation for times up to six hours at 1644°K (2500°F). The SBA-10 binder system was evolved through a study of the softening points of a number of alumina-boriaselected which would wet the fibers as well as concentrate at the fiber intersections. The strength and strain-torial. It was further found that the SBA-10 binder (74.8 percent  ${
m SiO}_2$ , 18.7 percent  ${
m B}_2{
m O}_3$ , and 6.5 percent  ${
m Al}_2{
m O}_3$ )

(2300° F). Reaction of the SBA-10 binder with the mullite-base fibers during exposure of the rigidized composites to Figure 11 shows a plot of the composite of the SBA-10 on the  ${
m Al}_2{
m O}_3$  -  ${
m B}_2{
m O}_3$  - SiO $_2$  phase diagram proposed by Gielisse and Foster (2). The estimated liquidus temperature for this composition from these data is about 1533°K temperatures of 1533°K (2300°F) or higher increases the binder liquidus temperature. The direction in which the binder composition is expected to change due to the high temperature exposure is indicated.

K

L

H

L

U

L

H

Ц

K

H

L

1

L

Ц

#### SBA BINDER SYSTEM USED IN MOD IA AND IB REI-MULLITES



Figure 11

# BINDER INFLUENCE OF MOD IA REI- MULLITE CHARACTERISTICS

(Figure 12

temperatures of about 1200 to 1255 K (1700 to 1800° F) suggest that the glass binder is undergoing some crystallization. rigidized Mod IA REI-Mullite composites. The general shape of the curves indicates that the composite properties are strongly influenced by the refractory glass binder system. The small rise in moduli up to about 1089 K (1500°F) and the sharp drop above 1366 K (2000 F) are typical of the behavior of refractory glasses. The peaks in the curves at Figure 12 illustrates a series of modulus of elasticity versus test temperature curves for 192 Kg/m<sup>3</sup> (12 pcf) However, any crystallites that form are apparently redissolved at higher temperatures.

Ī



IN-PLANE TENSILE MODULUS VS TEMPERATURE FOR THREE PANELS OF MOD IA REI-MULLITE

TEMPERATURE, °F

#### **SBA-10 BINDER STABILITY**

L

(Figure 13)

to determine whether the silica would tend to form cristobalite as a result of exposure to elevated temperatures during coating firing as well as during simulated entry heating. The binder was found to be resistant toward cristobalite formation except The Mod IA and Mod IB REI-Mullite binder (SBA-10) is a silica-boria-alumina mixture; therefore, it was evaluated when the alumina content was low. Figure 13 illustrates that the SBA-10 binder is basically amorphous after 8 hours of heating to 1478° K (2200° F) with only a minimal tendency toward formation of mullite.

U

L

44

13

L

H

H

H

L

K



X-RAY DIFFRACTION PATTERN OF SBA-10 BINDER FUSED 2 HOURS AT 1561°K (2350°F) AND SUBSEQUENTLY HEAT TREATED FOR 8 HOURS AT 1478°K (2200°F). SOURCE RADIATION: NI FILTERED  $GuK_{\alpha}$ .



Figure 13

# IN-PLANE DIMENSIONAL STABILITY OF MOD IA REI-MULLITE

(Figure 14)

U

U

U

L

Mullite is much more shape stable in the 1533 to 1644° K (2300 to 2500° F) range than any of the other candidate RSI's. (4) Mullite. These results, which are based on data obtained by the Battelle Memorial Institute, show that Mod IA REIbeen shown to be an effective method for summarizing the kinetics of shrinkage of rigidized insulative composites (3) The Larson-Miller parameter, which reduces the time and temperature of exposure to a single variable, has This figure compares the in-plane shrinkage characteristics of several classes of RSI materials with Mod IA REI-Similar characteristics are expected for Mod IB REI-Mullite.

1

L

K

Ц

H

L

U

L

68,000

000'99

64,000

62,000

000'09

58,000

56,000

54,000

52,000

50,000

LARSON-MILLER PARAMETER, R

Figure 14

4 HBS AT 1644 K (2500 F)

4 HBS. AT 1533°K (2300°F)

4 HBS. AT 1422°K (2100°F)

= T(C+LOG t)

= MINUTES

(~100 MISSIONS, (92 A3RA

L

å

MOD IA REI. Mullite

HCF-MULLITE

LI 1500

N

IN-PLANE DIMENSIONAL STABILITY OF MOD IA REI-MULLITE

ACHANGE IN IN-PLANE DIMENSION, PERCENT

47

K K L

# FIRING PROCESS CHANGE DOUBLES REI-MULLITE STRENGTH

(Figure 15)

the binder phase on the mullite fibers. As a result, the binder preferentially flows to the fiber intersections. Hence, Mod IB REI-Mullite is essentially identical in composition to Mod IA REI-Mullite except for firing procedure. In particular, the Mod IB REI-Mullite material is fired in an atmosphere that modifies the interfacial tension of more efficient use is made of the available binder and strength and strain-to-failure levels are increased.

U

Ž

I

Ц

K

H

Į.

L

Ī

#### FIRING PROCESS CHANGE DOUBLES REI-MULLITE STRENGTH

PROPERTY DATA

| PROPERTY                                                | LABORATORY<br>RESULTS FOR<br>REI-MULLITE<br>WITH MODIFIED<br>FIRING PROCEDURES | MOD 1A<br>REI-MULITE, |
|---------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|
| STRENGTH X-Y, N/m <sup>2</sup> X 10 <sup>-3</sup> (PSI) | 1241 (180)                                                                     | (96) 799              |
| STRAIN X-Y (%)                                          | 0.35                                                                           | 0.23                  |
| STRENGTH Z, N/m <sup>2</sup> X 10 <sup>-3</sup> (PSI)   | 276 (40)                                                                       | 186 (27)              |
| STRAIN Z (%)                                            | 6.0                                                                            | 0.4                   |



Figure 15

10,000 X

# PROPERTY COMPARISONS FOR GE-RESD PILOT PLANT PRODUCED TILES

(Figure 16)

panels were fabricated. Mechanical property data obtained for pilot plant produced panels show a marked improvement in properties similar to that obtained on a laboratory basis. Sufficient data were also generated to establish property The technology for producing Mod IB REI-Mullite was transferred to the GE-RESD pilot plant and a number of minimums for the material; these are indicated in the figure.

U

Á

L

I

1

K

H

Ц

### COMPARISON OF TYPICAL PROPERTIES FOR GE-RESD PILOT PLANT PRODUCED TILES

|                                          | MOD IA REI-MULLITE | MOD IB REI-MULLITE |
|------------------------------------------|--------------------|--------------------|
| DENSITY, Kg/m³ (LBS/FT3)                 | 187 (11.7)         | 202 (12.6)         |
| STRENGTH X-Y, N/m2 X 10-3 (PSI)          | (96) 799           | 931 (135)          |
| STRAIN X-Y, %                            | 0.23               | 0.30               |
| STRENGTH Z, N/m2 X 10-3 (PSI)            | 186 (27)           | 276 (40)           |
| MODULUS X-Y, N/m2 X 10-6 (PSI)           | 296 (43,000)       | 331 (48,000)       |
| MODULUS Z, N/m <sup>2</sup> X 10-6 (PSI) | 63 (9,100)         | 48 (7,000)         |

| PROPERTY SPECIFICATION FOR MOD IB REI-MULLITE<br>TO BE USED IN DELIVERABLES TO NASA-MSC | FOR MOD IB REI-MULLITE<br>3LES TO NASA-MSC       |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|
| • DENSITY RANGE                                                                         | $192 \pm 16 \text{ Kg/m}^3$ (12.0 ± 1.0 LBS/FT3) |
| <ul><li>STRAIN X-Y, % MIN</li><li>STRAIN Z, % MIN</li></ul>                             | 0.25                                             |
|                                                                                         |                                                  |

Figure 16

# IN-PLANE MECHANICAL PROPERTIES OF MOD IA REI-MULLITE

L

L

U

U

(Figure 17

Figure 17 presents some typical mechanical properties for Mod IA REI-Mullite, Mod IB REI-Mullite panels are now undergoing a similar type of extensive characterization,

of the fibers are parallel to the plane of the panel or tile. This results, as indicated in Figure 15, in a lower through-Although not shown here, the properties of both Mod IA and IB REI-Mullite are somewhat anisotropic. Application of pressure on the fiber/liquid slurry tends to force the fibers from random orientation to one in which a majority the-thickness strength. The level of properties is still adequate, however, to meet shuttle orbiter TPS design requirements.

1

I

U

H

H

K

L

1

L

L

K

### IN-PLANE MECHANICAL PROPERTIES OF MOD IA REI-MULLITE



Figure 17

# THERMOPHYSICAL PROPERTIES OF MOD IA REI-MULLITE

L

(Figure 18)

IA REI-Mullite are shown in this figure. Mod IB REI-Mullite has the same coefficient of thermal expansion as Mod IA, Typical thermophysical properties including coefficient of thermal expansion and thermal conductivity for Mod and is expected to have as much as a 20 percent lower thermal conductivity because of its smaller effective fiber diameter.

U

U

l i

L

H

L

U

### THERMOPHYSICAL PROPERTIES OF MOD IA REI-MULLITE



## **MECHANICAL PROPERTIES OF MOD IB REI-MULLITE**

(Figure 19)

Figure 19 presents data obtained on experimental panels of Mod IB REI-Mullite produced in the GE-RESD pilot adequate for indicating the magnitude of the property improvement achieved through modification of the firing cycle, plant. As indicated in Figure 16, this material is now undergoing extensive characterization, but these data are

#### MECHANICAL PROPERTIES OF MOD IB REI-MULLITE





#### SUMMARY

(Figure 20)

The GE-RESD accomplishments in the systematic development and evaluation of REI-Mullite are summarized in Specifically this figure.

- Major reductions in TPS weight have been achieved by reducing the density and thermal conductivity of the insulation by 20 and 25 percent, respectively.
- Already adequate structural margins-of-safety have been greatly enhanced by increasing the tensile strength and strain-to-failure capabilities of the insulation by factors of 3 and 2, respectively. 2
- Cost effectiveness has been increased through the achievement of a high degree of uniformity and reproducibility of properties and through process simplification and binder modifications. 3
- Maximization of multimission capability at surface temperatures of 1644°K (2500°F) has been achieved through firing cycle adjustments and the development of a material with high dimensional stability. 4

į

L

H

II

L

Ц

Ľ

L

### REI-MULLITE ACCOMPLISHMENTS SUMMARY

#### PROPERTIES

U

|                                                           | 0 QOW         | MOD I          | MOD IA         | MOD IB           |
|-----------------------------------------------------------|---------------|----------------|----------------|------------------|
| DESIGN TEMPERATURE, °K (°F)                               | 1644 (2500)   | 1644 (2500)    | 1644 (2500)    | 1644 (2500)      |
| DENSITY, Kg/m <sup>3</sup> (LB/FT <sup>3</sup> )          | 192 (12)      | 240 (15)       | 192 (12)       | 192 (12)         |
| WEIGHT EFFICIENCY (K/Cp)%p7/8                             | 5.8 X 10-2    | 6.86 X 10-2    | 5.65 X 10-2    | 5.1 X 10-2 (EST) |
| IN-PLANE STRENGTH/STRAIN, N/m <sup>2</sup> X 10-3 (PSI)/% | 138 (20)/0.4% | 269 (39)/0.17% | 662 (96)/0.23% | 827 (120)/0.25%  |
| THRU-THE THICKNESS STRENGTH/STRAIN,                       | 34 (5) PSI/%  | 138 (20)/0.20% | 186 (27)/0.3%  | 172 (25)/0.5%    |
| 0//(01) -111/11                                           |               |                |                |                  |

#### PROCESSING PROCEDURES

- HIGH DEGREE OF UNIFORMITY AND REPRODUCIBILITY OF PROPERTIES.
- SIGNIFICANT COST REDUCTIONS THROUGH PROCESS SIMPLIFICATION AND BINDER MODIFICATION.
- FIRING CYCLE ADJUSTMENT TO MAXIMIZE MULTIMISSION LIFE.

#### MATERIAL CHARACTERISTICS

HIGH DIMENSIONAL STABILITY TO SURFACE TEMPERATURES OF 1644°K (2500°F).

H

K

Figure 20

Ľ

1

L

å

#### REFERENCES

- 1. R.M. Fetterolf, "Development of High Strength, High Modulus Fibers," AFML TR 70-197, p. 41, August 1970.
- 2. P.J. Gielisse and W.R. Foster, "Quarterly Progress Report 931-8", The Ohio State University Research Foundation, p. 6, October 1961.
- 3. "Final Report for Reusable Surface Insulation Thermal Protection Systems Development Program" GE-RESD Final Report to NASA-MSC on Contract NAS 9-12084 dated May 1972.
- 4. Battelle Memorial Institute, "Volume IV and V Evaluation of Non Metallic Thermal Protection Materials for the Manned Space Shuttle", July 1, 1971 and June 1, 1972.

K

K

H

11

ļ

Ì

### DEVELOPMENT AND CHARACTERIZATION OF CPI SURFACE INSULATION

A. Tobin, C. Feldman, J. Reichman, M. Russak, and A. Varisco

Grumman Aerospace Corporation Bethpage, New York

#### SUMMARY

This paper presents the results of IRAD and NASA sponsored programs designed to develop and characterize a new type of reusable surface material that could find application as a component the Thermal Protection System of the Space Shuttle Orbiter. These materials consist of 20-30% dense closed cell high emittance glass ceramic foams formulated by sintering an intimate mixture of fly ash cenospheres with 4-12 wt % cobalt oxide.

These unique ceramic foams exhibit: (1) high mechanical strengths compared to rigidized fibrous insulations; (2) no need for waterproof coating due to the non-interconnecting cell network; (3) high environments with no loss of reuse capability; and (5) a machinable ceramic with capability of mainemissivities built into basic foam formulation; (4) ability to withstand Space Shuttle thermal taining the close tolerances required of an integrated heat shield system.

three major design constraints with RSI (1) elastomeric adhesives and all their associated problems; Finally, the unique characteristics of the material allow design approaches which eliminate (2) complex brittle coatings; and (3) low strength rigidized fibrous insulations.

#### CPI PROCESS DEVELOPMENT

#### (Figure 1

meter) with dense shell walls of 3 to 5 micrometers thickness. The spheres contain entrapped carbon is dried and fired to 1620-1680°K in a gas-fired or electric kiln in air. Standard ceramic fabricahigh emittance additive (i.e., cobalt oxide) and pressed into a tile (23 cm x 23 cm x 2.5 cm) that developed in which the spheres are placed on a low density fluid such as heptane and the "floating The as-received spheres are "decrepitated" highest quality (i.e., free of cloudy and carbonaceous material) spheres, a separation process was fraction" recovered. The lightweight cenospheres are mixed with a temporary organic binder and a 755°K (900°F) to remove residual water dissolved in the glass. To extract the lowest density and (20¢/1b) fly ash cenospheres as the starting raw material. Cenospheres are a by-product of coalburning power plants and consist of hollow alumino-silicate microspheres (50-150 micrometers diation procedures have been adopted at all times to reduce costs and to simplify scale-up problems. The class of closed pore insulation material being developed by Grumman uses low cost 9¢/kg dioxide and nitrogen gas at subatmospheric pressures.

It is estimated that CPI tiles could be produced for \$1.80 to \$2.70/kg (\$4.00 to \$6.00/lb) if full scale production procedures were adopted. Current production is 12 tiles/week.

1

L

L.

H

K

H

K

K

Ľ

L



Figure

## PHYSICAL PROPERTIES OF CPI

(Figure 2)

tooling is the preferred drilling and cutting medium. CPI plates have good handleability; however, CPI materials are the brittle nature of the material requires some care, as with any glass body. The materials can nonfriable and can be easily machined into any size and shape with conventional carbide tooling; CPI materials are a class of rigid glass-ceramic cellular foams with a non-interconnecting network of cells rendering them impermeable to water. They are 20 to 30 percent dense, and are however, the abrasive nature of the material reduces tool lifetime and tolerances and diamond homogeneous and isotropic in physical properties. The cell size of the foam can be varied by be scaled up into larger and more complex components with minimum tooling problems. changing the composition (cobalt oxide) or heat treatment in forming the foam.

## PHYSICAL PROPERTIES OF CPI

U

Ľ.

H E

| PROPERTY                     | 4% CoO                  | 8% CoO                                       | 12% CoO     |
|------------------------------|-------------------------|----------------------------------------------|-------------|
| MICROSTRUCTURE               | NETWORK OF CLOSED CELLS | LOSED CELLS                                  | v           |
| COLOR                        | BROWN-BLUE              | DARK BLUE NAVY BLUE                          | NAVY BLUE   |
| DENSITY (kg/m <sup>3</sup> ) | 630-770                 | 930-670                                      | 530-670     |
| WT% WATER ABSORPTION         | 0.5-4                   | 0.5-4                                        | 0.5-4       |
| AVERAGE PORE SIZE            | 80 m m                  | 170 µ m                                      | 300 № m     |
| AVAILABLE SIZES              | 23 cm x 23 cm           | 23 cm x 23 cm 23cm x 23cm                    | 23cm x 23cm |
|                              | x 3 cm                  | x 3 cm                                       | x 3 cm      |
| AVAILABLE SHAPES             | FLAT TILE               | FLAT TILE                                    | FLAT TILE   |
| MACHINABILITY                | MACHINABLE C            | MACHINABLE CERAMIC WITHIN 0.005 cm TOLERANCE | N 0.005     |
|                              |                         |                                              |             |

Figure 2

U

R R R R R

K

 $\Gamma$ 

II.

# THERMAL AND CHEMICAL PROPERTIES OF CPI

(Figure 3)

The lowering of the softening cells is effective in scattering and absorbing radiation and reduces the heat transfer at the elevated point with increasing cobalt content is due to the well-known "fluxing" action of cobalt in the glassy mullite, that mullite and cristobalite are the only phases that are stable, no cristobalite formation has ever thermal conductivity by increasing the absorption coefficient for radiative heat transfer. Although been observed during any heat treatment, a fact that accounts for the thermal stability of CPI with CPI materials contain about 55-60 wt % Si0<sub>2</sub>, 25-30 wt % Al<sub>2</sub>0<sub>3</sub>, 2-5 wt % Fe<sub>2</sub>0<sub>3</sub>, 4-12 wt % Co0, The high emittance of the foam is due to the cobalt in the cell solid conduction comprises a significant component of the total heat transfer, the fine network of increasing solubility of CoO in the glass phase at the "formation" temperature of the foam and the cobalt aluminate upon heat treatment in the 1200-1500°K range. This phenomenon is related to the Although the equilibrium diagram predicts walls, which is effective as a radiation absorber. The cobalt is also effective in reducing the temperatures. As-fired tiles of CPI-4% CoO have been observed to show further crystallization and small amounts of TiO2, Na20, and K20. The materials composing the cell walls of nucleation and growth of the "glass-ceramic" at the lower temperatures. cobalt aluminate, and a cobalt alumino-silicate glass. regard to crystalline inversions.

L

H

u

K

II

K

L

K

L

U

L

L

L

THERMAL AND CHEMICAL PROPERTIES OF CPI

| PROPERTY                                       | 4% CoO                                                                                                                           | 8% CoO                    | 12% CoO                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|
| THERMAL<br>EXPANSION<br>(RT-1370K)             | 5.2 x 10 <sup>-</sup> 9°K                                                                                                        | 5.4 x 10 <sup>-</sup> 9°K | 5.8 × 10 <sup>-6</sup> /K |
| HEAT CAPACITY<br>RT-725K<br>(JOULE/kg-K)       | 6-8                                                                                                                              | 7.1-8.4                   | 6.3-7.6                   |
| CRYSTALLOGRAPHY                                | MULLITE<br>COBALT ALUMINATE<br>GLASS                                                                                             |                           |                           |
| DILATOMETRIC<br>SOFTENING POINT                | 1300° K                                                                                                                          | 1250° K                   | 1180° K                   |
| TOTAL NORMAL<br>EMISSIVITY RT-1500K            | 0.63-0.65                                                                                                                        | 0.75-0.78                 | 0.80-0.85                 |
| TOTAL NORMAL<br>EMISSIVITY OF<br>COATED SAMPLE | 0.82-0.88                                                                                                                        |                           |                           |
| THERMAL STABILITY<br>(DTA)                     | FURTHER<br>CRYSTALLIZATION<br>OF COBALT<br>ALUMINATE<br>AT 1300°-1500°K                                                          | NO CHANGES                | NO CHANGES                |
| CHEMISTRY                                      | Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub><br>Fe <sub>2</sub> O <sub>3</sub> , CoO,<br>TiO <sub>2</sub> Na <sub>2</sub> O |                           |                           |
| CHEMICAL<br>RESISTANCE                         | NOT ATTACKED BY MOST ACIDS, ALKALIS OR ORGANIC MATERIALS                                                                         | OST ACIDS, ALI            | (ALIS OR                  |

Figure 3

ļ

## SUMMARY OF THERMAL CYCLING RESULTS

### (Figure 4)

environments have been simulated by using a "programmed" arc jet (7.6 cm x 0.96 cm diameter) in which CPI-8, and CPI-4 are capable of surviving with little change in Areas 1, 2, and 2P, respectively, of cantly improved thermal shock characteristics. CPI specimens have withstood up to 40 reentry cycles of Areas 2 and 2P with little or no change in appearance or properties. It is believed that CPI-12, Initial failures were traced to poor processing procedures and lack of uniformity in heat treatment. capability during multiple exposure to reentry heating. We have undertaken an extensive program to Significant improvements in both areas has led to a newer generation of CPI materials with signifistudy the thermal shock characteristics of CPI, using both radiant heat lamps and plasma arc jets. A major problem with ceramic foam materials has been the thermal shock resistance and reuse the Space Shuttle reentry heating in plate sizes of 23 cm x 23 cm x 1.25 cm. Convective heating the specimen is moved toward the jet (air exhaust) to simulate reentry heating. Specimens have survived 25 cycles with little change in appearance or evidence of failure.

bonded fibers. These approaches have required that a good bond be established between two separate Design integration schemes have focused on two approaches: (1) mechanical fasteners; and (2) pieces of CPI with a metallic fastener retained and direct bonding of CPI to rigidized fibrous insulation, i.e., mullite or Kaowool. Successful CPI/CPI bonds have been achieved with inorganic cements such as ground-up CPI powders pressing technique in which the mating surfaces of CPI and mullite are heated to 1600°K for one hour mixed with colloidal silica and Kaowool cement. These bonds have survived reentry cycling with no degradation of properties. CPI/mullite fiber bonds have been successfully achieved through a hot at  $1500 \, \mathrm{N/m^2}$  (0.2 psi) pressure. Successful CPI/Kaowool regidized fiber bonds have been achieved These bonds have using commercially available Kaowool cement and bonding at 1300°K for one hour. survived multiple reentry cycles with no evidence of failure.

L

1

K

L

II

13

L

| SPECIMEN                    | NO FAILURE<br>SLIGHT BOW   | NO FAILURE<br>SLIGHT BOW   | NO FAILURE<br>SLIGHT BOW  | NO FAILURE<br>BOWED UP     | NO CHANGE                  | NO CHANGE                  | NO FAILURE<br>SLIGHT BOW   | NO CHANGE                                             | NO CHANGE             | UNCHANGED                        | UNCHANGED                        |
|-----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------------------------|-----------------------|----------------------------------|----------------------------------|
| NO. OF<br>CYCLES            | 22                         | 22                         | 25                        | 40                         | 22                         | 22                         | 22                         | 22                                                    | 20                    | 25                               | 22                               |
| HEATING                     | AREA 2                     | AREA 2                     | AREA 2                    | AREA 2P                    | AREA 2                     | AREA 2P                    | AREA 2P                    | AREA 1                                                | AREA 2                | AREA 1<br>(ARC JET)              | AREA 2P<br>(ARC JET)             |
| S PEC I MEN<br>D I MENSIONS | 17 cm x 17 cm<br>x 0.32 cm | 17 cm x 17 cm<br>x 0.37 cm | 17 cm x 17 cm<br>x 0.8 cm | 17 cm x 17 cm<br>x 0.32 cm | 19 cm x 19 cm<br>x 0.95 cm | 17 cm x 17 cm<br>x 0.95 cm | 17 cm x 17 cm<br>x 0.80 cm | BONDED<br>CPI/KAOWOOL<br>CEMENT/<br>KAOWOOL<br>FIBERS | BONDED<br>CP1/MULLITE | 7.62 cm<br>DIAMETER<br>x 1.25 cm | 7.62 cm<br>DIAMETER<br>x 0.85 cm |
| %C00                        | 8                          | 8                          | 8                         | 8                          | 8                          | 4                          | 4                          | 4                                                     | <b>«</b>              | 4                                | 4                                |
| SPECIMEN NO.                | 1                          | 2                          | 3                         | 4                          | 5                          | 9                          | 7                          | · &                                                   | 6                     | 10                               | ıı                               |

Figure 4

conclusions with regard to design applications of CPI materials: (1) CPI must be used in conjunction fibrous blanket, in order to be "thermally competitive"; (2) the higher density of CPI requires that independently supported surface tile in order to be weight competitive with other candidate TPS. In it must be used as a thin plate, i.e., either as a coating on rigidized fibrous insulations or as an component of the composite TPS design that offers unique design advantages not available with other both cases, weight competitive TPS designs are feasible; and (3) CPI must be considered an integral with other low-density thermally efficient insulators, i.e., Kaowool or mullite or some flexible A comparison of thermal conductivities for the various TPS candidates reveals the following materials.

<sup>\*</sup> Data obtained from Battelle Contract NAS 9-10853.

1

li

H

Ц



## (Figure 6)

An important feature of any design-integration activity is the knowledge of "design-allowables" a uniform material, scatter of breaking strengths of CPI has been reduced to about 15 to 20 percent. are homogeneous and isotropic in nature, and since processing improvements have been made to assure the primary structure and that must survive a variety of loading conditions. Since CPI materials These become critical to a design that permits mechanical attachments to of any material in which the mechanical properties of the heat shield material are known This is a narrow range for a ceramic. within a certain range.

In all cases, the clear superiority of mechanical properties of CPI-4 over CPI-8 and CPI-12 has These factors could account been observed. It is believed that the finer pore structure associated with the lower cobalt level reduces the critical flaw size required to initiate fracture. Also, stress concentration factors may be smaller in CPI due to the more "spherical" nature of the pores. for the observed higher strengths of CPI-4.

1



1

Ľ

## TENSILE STRENGTH OF CPI MATERIALS

(Figure 7)

tensile strength. These conditions are met with CPI. The same testing procedures used in the free standing compression test were used here (see figure 8). In all cases CPI-4 showed a significantly cm thick) is compression loaded along its diameter and a tensile force develops normal to the load In this test, a cylinderical specimen (3.2 cm diameter x 1.25  $2P/\pi Dt$ , where P = applied load, D = diameter, and t = thickness. Tensile fractures are observed axis causing a tensile fracture along the diameter, the fracture strength being computed from  $\sigma$ provided: (1) the specimen is uniform and isotropic; and (2) has a higher shear strength than Tensile properties of CPI materials have been measured at room and elevated temperatures, higher strength than CPI-8 or CPI-12 over the range investigated. using a diametral compression test.

softening point of the glassy matrix is approached. Again, no brittle failures were observed above Finally, no tensile property degradation was found in CPI tiles that underwent 25 reentry cycles of Results showed a general fall-off in strength above 1000°K with a more rapid fall-off as the the softening points, and a large decrease in modulus and increase in failure strain occurred. Area 1 (CPI-12) or Area 2 (CPI-4 and CPI-8) of the Shuttle reentry profile.

Ž

L

11

H

H

K

I

I,

L



# COMPRESSIVE STRENGTH OF CPI MATERIALS

Ľ

### (Figure 8)

U

L

L

As with other the measured softening points of the CPI glassy matrix. Room temperature failure strains varied from Compressive properties of CPI materials have been measured at room and elevated temperatures in elevated temperatures, an alumina specimen support and alumina load rod were used. A platinum-wound elevated temperature measurements, the failure of the material becomes strain rate sensitive at the large strain rates were applied (i.e., 5.5 cm/min). These temperatures correspond approximately to 0.002-0.003. In all cases, CPI-4 showed a significantly higher compressive strength than CPI-8 or tube furnace (at a pre-selected temperature) enclosed the specimen and fixtures and was raised or temperatures indicated and no brittle failures were observed above these temperatures unless very Specimens consisted of rectangular parallelepipeds of dimension 0.96 This technique permitted A universal test machine was used and strain rates were 0.3 cm/min. rapid specimen changes and minimized heat up and cool down operations with the furnace. lowered onto the specimen using the loading train of the test machine. CPI-12 over the temperature range studied. free-standing compression. x 0.96 cm x 2.54 cm.

Finally no compressive property degradation was found in CPI tiles that underwent 25 reentry cycles in Area 1 (CPI-12) and Area 2 (CPI-4 and CPI-8) of the Shuttle reentry profile.

ź

L

H

H

L

K





# MODULUS OF RUPTURE (FLEXURE) VERSUS TEMPERATURE FOR CPI MATERIALS (Figure 9)

As with the tension and compression data, the failures became strain rate sensitive at the temperatures indicated and no brittle failures were observed from room temperature to 1100°K and then a three-point flexure test. In the test, a flexural bar 7.6 cm a 1.25 cm x 0.63 cm is loaded at its Flexural properties of CPI materials have been measured at room and elevated temperatures using cases, CPI-4 showed significantly superior flexural strength than CPI-8 or CPI-12 over the tempera-The specimen was sus-In all A platinum-wound furnace (10-cm diameter) was raised or lowered over the specimen as described in pended on an alumina fixture consisting of a plate with an alumina "Dee" cemented at each end. a fall-off in strength occurred as the softening point of the glassy matrix was approached. midpoint with an alumina rod having a V-shape at the load application point. ture range. figure 8.

Finally, no significant flexural property degradation was found in CPI tiles that underwent 25 reentry cycles of Area 1 (CPI-12) or Area 2 (CPI-4 and CPI-8) of the Shuttle reentry profile.

Į

1



1

L

H

II

# ELASTIC MODULUS VERSUS TEMPERATURE FOR CPI MATERIALS (Figure 10)

L

L

U

U

U

modulus below 950°K, but the differences in the moduli of the three materials became small as the significant changes in modulus or failure strains were observed after 25 reentry cycles in Area 1 above 950°K until no failure could be induced. These data suggest that complex shapes of CPI can softening points were approached. Also, corresponding increases in failure strain were observed fall-off in moduli for the three materials studied was found above 950°K. CPI-4 showed a higher Elastic modulus data were computed from the slope of the stress-strain curve. Significant be fabricated by a "hot-forming" process above their respective softening points. Finally, no (CPI-12) and Area 2 (CPI-4 and CPI-8) of the Shuttle reentry profile.

Ž

L

Li

H

K

11

L

K

13



# FLEXURAL CREEP PROPERTIES OF CPI MATERIALS

H

L

L

(Figure 11)

Specimens resistance as would be expected from the softening point data. It was observed that a 110°K increase were supported on a mullite shelf, and alumina weights corresponding to 700 N/m² "hot loading" were placed on the specimens. Specimen deflections were recorded in situ photographically as a function in creep properties occurred for a 4 percent decrease in cobalt level and that no significant creep of time and temperature. In general, it was noted that increasing cobalt levels reduced the creep occurred in the 0.85-cm-thick CPI-4 samples below 1440°K. This behavior is typical of a glassy To assess the upper use temperature of CPI materials for use as an unsupported tile in the dimensions were chosen: (1) 15.2 cm x 1.26 cm x 0.63 cm and; (2) 15.2 cm x 1.26 cm x 0.85 cm. Two different specimen mechanically fastened concept, flexural creep studies were undertaken. matrix containing increasing amounts of fluxing constituents.

The uniform loading of 700 N/m over the flexural bar of 0.63 cm depth corresponded to a 3 imes 10 $^5$ bar was measured. By increasing the "depth" of the bar to 0.85 cm (thus reducing the maximum stress  $\rm N/m^2$  (43 psi) stress at the midpoint of the bar and the maximum deflection at the midpoint of the to 1.4 x  $10^5$  N/m<sup>2</sup>), it was observed that this lower stress level effectively raised the creepdeflection curve by an additional 110°K.

Ī

L

K

H

H

H

K

L

13

L

U

U

L

L





K

Ľ

## NDE INSPECTION OF CPI MATERIALS (Figure 12)

The figure shows typical (a) "good quality material," and (b) "flawed material" containing a crack of voids, visible and non-visible cracks on the surface, internal cracks, density variations, and technique for inspection of CPI materials. This technique has successfully detected the presence NDE of candidate materials for heat shield applications becomes a major requirement where cobalt-rich inclusions due to improper mixing procedures. Although no standards have yet been material that shows gross inhomogeneities due to poor mixing, and any voids or visible cracks. and agglomerations. Off-center flexure failures and anomalously low strength values have been established as to what constitutes a "critical flaw," we have used the technique to reject any reliability and reusability are essential. We have found that X-ray radiography is a useful related to poor quality materials.



Figure 12

## SILICA MAT INSULATION SYSTEM

FUSED SILICA SURFACE COATING FOR A FLEXIBLE

## W.H. Rhodes

AVCO Systems Division Lowell, Massachusetts

## INTRODUCTION

Impervious fused silica insulation coatings have been developed for application to a flexible of high emittance and minimum change in thermal expansion. A second major coating classification A coating was minimum thermal expansion coefficient. Based on an examination of the crystalline phase nucleasilica glass systems based on the criteria of maximum thermal-chemical stability, together with developed that incorporated the high emissivity phase NiCr $_2^{}$ 0 $_4$  as a two-phase coating with goals has a plasma-sprayed emittance coating over a sealed pure amorphous  $\mathrm{Si0}_2$  layer. The processing mat insulation system designated 3DSX. The coating composition was selected from among the of both coatings is quite different from usual concepts in insulation coating because of tion and growth kinetics, a 99+% SiO<sub>2</sub> glass was selected as the base composition. 1720° C (3128° F) fusion temperature for pure SiO,.

A third area of development centered on extremely thin amorphous  ${
m SiO}_2$  coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

This work was conducted under Contract NAS9-12490 from the NASA Manned Spacecraft Center.

ļ

### 

## SCHEMATIC OF 3DSX WOVEN MAT

### (Figure 1)

laced perpendicular to the felt layers. An outer layer of silica fabric is used to sandwich the Silica felt mats are compressed to the desired density and held under compression by silica yarn sealer coat to the mat system. The mat system could be produced in a variety of densities, but nominal 96.1 kg/m $^3$ (6 1b/ft $^3$ ) and 160 kg/m $^3$  (10 1b/ft $^3$ ) systems have been fabricated and tested. through the felt. Usually one outer layer of felt was provided to improve the bonding of the felt and provide a strong surface that prevents the vertical reinforcement yarn from tearing The basic configuration of the 3DSX woven mat insulation is schematically illustrated.

ź

L

L

H

H

II

L

H

I.

# SCHEMATIC OF 3DSX WOVEN MAT



Figure

L

L

favorably in the reverse situation also, in that coating thermal expansion or contraction strains are effectively restricted to the coating. The probability of failures in the coating is thereby reduced The matrix shear modulus of approximately 6.55x10<sup>5</sup> N/m<sup>2</sup> (95 psi) gives the system the desirable feature of strain isolation. Strains transmitted into the matrix by the substructure are reduced by as only thermal gradients in the coating thickness or thermal strains resulting from end restraints at least a factor of ten in terms of strain transmitted to the coating. Strain isolation operates cause this type of failure.

U

ductivity values gives the designer another variable to work with in designing the required insulation The ability to readily fabricate the matrix in different densities having different thermal conthickness for the various thermal environments over the vehicle.

same phase, thermal expansion mismatch is never a problem. Some loss of adherence has been experienced between the NiCr204 emittance coat and the sealed SiO2 coating. Increased thermal capability could be added by substituting mullite or zirconia surface felts with appropriate tie-down yarns and coatings. silica coating. A conservative estimate of the maximum use temperature is 1260° C (2300° F) without significant microstructural problems from devitrification. Since the coating and matrix are of the The insulation system is based on an amorphous silica fiber insulation and a dense amorphous

sible to grind away the crack and repair the coating with the same constituent as the original coating. Cracks in coatings have never been found to propagate deeply into the matrix due to crack blunting by the matrix. Because of the fact that cracks are restricted to the surface coating, it is pos-

ź

I

L

L

U

H

H

11

L

K

## FEATURES OF 3DSX

L

L

L

U

U

L

LOW SHEAR MODULUS OF WOVEN CERAMIC INSULATION PROVIDES EFFECTIVE STRAIN ISOLATION BETWEEN SURFACE COATING AND SUBSTRUCTURE.

LOW SHEAR MODULUS ALSO ISOLATES INSULATION FROM COATING THERMAL STRAINS.

INSULATIVE MATRIX CAN READILY BE FABRICATED IN VARIABLE DENSITIES AND AS LOW AS 96.1 Kg/m3 (6 lb/ft3)

DEMONSTRATED PURE AMORPHOUS SILICA SYSTEM WITH 1260°C (2300°F) CAPABILITY.

MATCHING THERMAL EXPANSION OF COATING AND SUBSTRUCTURE.

SYSTEM CAN INCORPORATE MORE REFRACTORY MATERIAL THAN SILICA.

SURFACE CRACKS CANNOT PROPAGATE THROUGH THE INSULATIVE MATRIX. CRACKING DOES NOT CAUSE CATASTROPHIC STRUCTURAL FAILURE.

MINOR SURFACE DAMAGE CAN BE READILY REPAIRED.

Figure 2

91

Í

Ľ

Ц

И

H H E

H L

L

ì

# CRYSTAL GROWTH RATE AS A FUNCTION OF TEMPERATURE

L

Ľ

## (Figure 3)

tion event and thermal cycle, all of the above glasses will crystallize into devitrite or cristobalite. of the amorphous phase increases going from soda lime glass (72  $\sin_2$ , 12 CaO, 16  $\sin_2$ 0) to borosilicate most useful while in the amorphous structural state; however, the amorphous phase is metastable at all SiO, containing glasses would be most applicable. It is well known that the thermochemical stability glass (80.5  $\mathrm{SiO_2}$  . 12.4  $\mathrm{B_2O_3}$  . 4.6  $\mathrm{Na_2^0}$  . 2.7  $\mathrm{Al_2O_3}$ ) to fused silica (99.9  $\mathrm{SiO_2}$ ). <sup>1</sup> These glasses are peak temperatures contemplated for Space Shuttle application. Given the proper heterogeneous nucleathermochemical stability. It was further decided that glass or glaze processing techniques based on A small percentage of crystalline phase probably would not compromise the coating performance, but Coating composition selection was based on achieving an impervious coating with the highest high levels would crack the coating

ions. Once the crystalline phase nucleates, the growth rate is, of course, important in governing the The nucleation event in crystallization starts the process and is sensitive to surface contamina-The soda lime glass has the lowest liquidus of the three major glass compositions at 970°C (1778°F) (1652° F).4 The borosilicate glass has a 1060° C (1940° F) liquidus and will devitrify between this pure SiO, is very stable below 1400° C (2552° F), but that as little as 0.69% Na,0 will break up the remaining useful life of the coating prior to cracking. The growth rate curves shown indicate that tion, 2 as well as impurities in the glass. 3 These impurities can include OH ions as well as metal temperature and 700°C (1292°F).5 The scant data available indicate the kinetics are quite slow. network structure such that very large growth rates for  $\mathrm{SiO}_2$  will be observed to as low as 900° C and forms devitrite at an intermediate rate down to about 750°C (1382°F).

L

L

93



# EXPANSION COEFFICIENT AS A FUNCTION OF PERCENT Nicr $_2$ 0 $_4$

L

L

L

U

U

### (Figure 4)

coefficient nearly equivalent to Corning's 7740 borosilicate glass. From recent work, as little equivalent to Corning's 7900 high silica glass. The mixed phase coating may be more susceptible The solid line shows the calculation of the expected effect on the thermal as 2.5 weight percent NiCroOL gives a high emittance as well as a thermal expansion coefficient The thermal shock resistance of a ceramic is known to be inversely proportional to the thermal and tile size will to devitrification than pure S102. Both mixed and pure S102 coatings have been developed and This figure shows the thermal expansion coefficient of amorphous pure SiO2 to be the lowest of the compositions considered. Several coatings were developed with physical mixtures of up to 30 weight percent NiCr $_{
m 20}{
m L}$  to A second major criteria for coating selection was the coefficient of thermal expansion. The 30 weight percent NiCr204 concentration results in an expansion expansion coefficient. 6 Also, in a tile configuration with a heated surface constrained by  $\Delta T$ cooler side coatings, the thermally induced coating strain for a given be directly proportional to the thermal expansion coefficient. expansion coefficient. give high emittance. tested

K

L

L

L

L

L

H

L

H

H

L

Ц



Figure 4

# COATING DEVELOPMENT - PLASMA SPRAYING

### (Figure 5)

Another boundary condition for the coating development was the desirability of not sintering the matrix during coating application as the shear modulus of the matrix rose with the development fiber to fiber bonds

achieved with either a plasma torch, radiant lamp, or oxyacetylene torch. The surface coating shown vertical yarns resulting in good adherence to the matrix. The  ${
m NiCr}_2{}^0{}_4$  emittance coating was applied particles of NiCr $_2^{0}$ 4 were uniformly mixed in the seal coat. Coatings sealed by the other techniques also appeared structurally similar except the overall coating density decreased in the order plasma, The The overall coating was judged to be 85 percent dense with the uppermost zone achieving the closed porosity impervious condition. The coating is sintered to the by plasma spraying. The microstructures of the mixed coatings were quite similar except discrete surface was then subjected to a steep thermal gradient densification process. The heat flux was One basic approach was to cold spray a water base slip of the desired oxide composition. was densified with a plasma torch. lamp, and oxyacetylene sealed.

ļ

17

L

L

L

u

H

U

L

L

H

L

H

H

L

H

Ц

# COATING DEVELOPMENT - PLASMA SPRAYING



Figure !

### (Figure 6)

A pure amorphous SiO<sub>2</sub> coating was deposited isothermally at about 700° C (1292° F) from an ethylsilicate Another major approach to coating application was based on the chemical vapor deposition process.\* coating has not yet been tested extensively; a problem remains in the prevention of deposition within source. The resulting coating is extremely dense and is fully impervious. The coating was extremely Progress has been made in solving this problem by application of this spray coating to thin, which is desirable from the standpoint of weight and allowable substructure deflection. nucleate the CVD deposit. the matrix.

L

L

K

11

H

H

П

1

I

L

L

L

U

U

U

U

U

<sup>\*</sup>A subcontract with Raytheon Co.

# COATING DEVELOPMENT - CHEMICAL VAPOR DEPOSITION



Figure 6

## MECHANICAL PROPERTIES OF COATINGS

Ľ

#### (Figure 7)

through the thickness; therefore, the mechanical properties were not expected to be uniform through the strengths, which were calculated based on a homogeneous material and the standard elastic beam formula. Since ceramics normally fail in tension, it was decided to test four point bend specimens to the lower modulus of the higher porosity zone. In this case, the dense zone would be carrying the results, which may have been due to a shifting of the neutral axis part way into the denser zone due SiO, - oxyacetylene sealed coating were judged marginal. The mixed coatings did exhibit significant gains in strength. The elastic modulus was also increased leaving a net lower strain to failure for The double cold spray - double seal coating was The gains over a cold sprayed  $\sin 2$ very much a design question whether or not the mixed coatings represent a desirable improvement in Metallographic sections demonstrated that the coating did not have a uniform microstructure Surprisingly, the tests showed equivalent Therefore, it is emphasized that the values reported are apparent mechanical properties and are It was judged that the high allowable strain of the pure  $\sin_2$  coating was the more main load and the actual strength of the coating would be considerably higher than the reported this coating compared to, for example, the cold sprayed - oxyacetylene sealed  $\mathrm{SiO}_2$ . fabricated with a goal of achieving a higher strength coating. with the sealed side both in tension and compression. useful mainly in comparing one coating to another. desirable feature. properties. thickness.

L

П

H

# MECHANICAL PROPERTIES OF COATINGS

|    | COATING                                     | APPARENT 4 Pt.<br>BEND STRENGTH,<br>10 <sup>5</sup> N/m <sup>2</sup> (psi) | APPARENT<br>ELASTIC MODULUS,<br>108 N/m <sup>2</sup> (10 <sup>6</sup> psi) | PERCENT STRAIN<br>TO FAILURE |
|----|---------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|
| ~  | . ${ m SiO}_2-{ m OXYACETYLENE}$ SEAL       | 104 (1500)                                                                 | 101 (1.47)                                                                 | 0.130                        |
| 7  | SiO <sub>2</sub> - DOUBLE OXYACETYLENE SEAL | 130 (1880)                                                                 | 105 (1.52)                                                                 | 0.127                        |
| က် | MIXED SIO2 WITH NICY204 - PLASMA            | 333 (4825)                                                                 | 369 (5.35)                                                                 | 0.091                        |

L

Ľ

Ц

L

#### ARC TEST RESULTS

#### (Figure 8)

From one to five simulated cycles were conducted on each sample at approximately the same surface temperature. Peak surface temperatures were from 982° C (1800° F) to 1293° C (2360° F). Total normal emittance was measured before and Ten samples were subjected to simulated re-entry cycles in the Avco ROVERS arc facility to after arc testing with a Barnes Radiometer. A summary of the major tests is given evaluate sealer coating and emittance coating performance.

The coatings based on a pure SiO2 sealer coat survived the arc exposures with little degradahigh post test emittance and no loss of adherence. Cracks in the coating appeared on two of the change in the oxidation states of the transition metal ions. The loss of adherence was undoubt-Some loss in both emittance and adherence of the plasma sprayed  ${\tt NiCr}_2{\tt Ol}_4$  or  ${\tt CoO}$  emittance cracking was probably due to the higher thermal expansion coefficient of nominal  $10\%~{
m NiGr}_{
m 2}0_{
m L}$  in edly due to the differential thermal expansion of the two phases. The mixed coating had a very  $\mathrm{SiO}_2$ . Coatings have been fabricated with  $2\frac{1}{2}\%$  NiCr $_2\mathrm{O}_4$  in  $\mathrm{SiO}_2$ , but these have not yet been arc mixed coating specimens tested, while one survived without cracking. The higher incidence of coating was noted. The lowering of emittance value, while not judged serious, was due to tested

### ARC TEST RESULTS

|              |                                                                                 |           | PEAK        | NUMBER    | CRACK     | POST TEST |
|--------------|---------------------------------------------------------------------------------|-----------|-------------|-----------|-----------|-----------|
|              | COATING                                                                         | EMITIANCE | IEMP. C (F) | OF CYCLES | FORMATION | EMITTANCE |
| <del>-</del> | 1. SEPARATE Si0 <sub>2</sub> – PLASMA SEALED – NiCr <sub>2</sub> 0 <sub>4</sub> | 0.88      | 1271 (2320) | 2         | oN        | 0.82      |
| 2            | 2. SEPARATE Si02 - PLASMA SEALED - NiCr204                                      | I         | 1249 (2280) | 2         | °N        | I         |
| က်           | SEPARATE SiO <sub>2</sub> - OXYACETYLENE SEALED - Co0                           | 0.87      | 1077 (1970) | e         | °Z        | 0.83      |
| 4            | 4. MIXED ${ m SiO}_2$ WITH NICr $_2{ m O}_4$ — LAMP SEALED                      | I         | 1227 (2240) | D.        | o<br>N    | 0.86      |
| ທີ           | 5. MIXED $\sin_2 \text{WITH NICr}_2 0_4 - \text{PLASMA SEALED}$                 | l         | 1293 (2360) | -         | Yes       | ſ         |

Figure 8

EE

Ц

u u u

U

L

U

L

L

including a low coefficient of thermal expansion. A partial loss of adherence of the emittance satisfies the main function of coating the insulation and has a number of attractive features The coating An impervious amorphous silica coating for a flexible silica mat insulation system has coating upon cyclic thermal exposure is the most serious problem remaining to be solved High emittance is provided by plasma spraying a NiCr20L layer. been developed.

U

I

A second coating, which has reached the advanced development state, incorporates from 2 to 10 tested cycling with no loss of adherence. The slightly higher thermal expansion coefficient appears This coating survives thermal This coating is not as fully developed or weight percent NiCr $_{2}$ O $_{\rm L}$  intimately mixed in amorphous  ${
m SiO}_{2}$ . to result in a higher incidence of cracking. as the first coating.

develop-A third basic coating approach is based on the deposition of a thin amorphous  $\mathrm{SiO}_{>}$  layer two ment, but offers the potential for higher strength and much lower weight than the first The coating is in a relatively early stage of by chemical vapor deposition techniques. coatings,

These coating techniques are for the most part applicable to other insulation systems.

L

L

K

H

104

17

Ľ

L

L

H

H

II

#### REFERENCES

- H. Rawson, Inorganic Glass-Forming Systems, Academic Press, New York, p. 45, 1967. ٦,
- N. G. Ainslie, C. R. Morelock, and D. Turnbull, in "Symposium on Nucleation and Crystallization in Glasses and Melts," M. K. Reser, G. Smith, and H. Insley, eds., American Ceramic Society, Columbus, Ohio, p. 97, 1962. å
- F.E. Wagstaff, S.D. Brown, and I.B. Cutter, "The Influence of  $\rm H_2O$  and  $\rm O_2$  Atmospheres on the Crystallization of Vitreous Silica," Phys. and Chem. Glass,  $\rm 5$ , 76, 1964.
- 4. A. Dietzel and H. Wickert, Glastech. Ber., 29, 1, 1956.
- 5. S.M. Cox and P.L. Kirby, Nature, 159, 162, 1947.
- W.D. Kingery, INTRODUCTION TO CERAMICS, John Wiley & Sons, New York, p. 630, 1960. 9

MAR-SI, MARTIN SURFACE INSULATION

#### PRECEDING PAGE BLANK NOT FILMED

Authors:

P. Paul Plank Arthur Feldman William C. Miiller John F. Creedon Joseph M. Toth, Jr. MARTIN MARIETTA CORPORATION DENVER DIVISION Denver, Colorado 80201 (Figure 1)

The Space Shuttle reusable surface insulation (RSI), thermal protection system, must protect the basic structure (with low weight), provide 100 mission life (reuse, thermal material and coating development, physical properties determination, environmental testing, stability, ability to withstand thermal shock), and be cost-effective for refurbishment and maintenance. Martin Marietta has developed a material, MAR-SI (Martin Surface Insulation) that satisfies these requirements. This paper describes the progress of the MAR-SI basic design and analysis, and projected costs.

Ì

H

Basic Material Development

Coating Development

Thermophysical and Mechanical Properties

**Environmental Testing** 

**Design and Analysis** 

Projected Costs

I

K

L

Figure 1

17

## MAR-S1 OBJECTIVE AND SUMMARY

#### (Figure 2)

to produce 5000 kg (11,000 lb) per year of completed tile. This production capacity compared with the test results. A pilot plant has been completed with a capability requirements. To satisfy these requirements, alumina silicate has been selected The objective for developing MAR-SI was to provide a second generation RSI with the characteras the basic component of the material and coating. Property and environmental stability, low thermal conductivity, and the ability to satisfy thermal shock istics shown in figure 2. The most important characteristics are high thermal tests are being continually conducted, and analysis has been performed and has been used to project the cost of coated tiles.

# MAR-SI OBJECTIVE AND SUMMARY

#### **Objective**

Produce a Second Generation RS1 to Provide: 240 kg/m<sup>3</sup> (15 lb/ft<sup>3</sup>) Density or Less

High Thermal Stability of 1371 to 1427°C (2500 to 2600°F)

Low Thermal Conductivity

Satisfy Thermal Shock Requirements

Low Cost

111

Maximum Reuse with Waterproof - High **Emissivity Coating** 

Construct Pilot Plant to Define Production Requirements

K

Ц

L

U

L

## Summary of Progress:

Selected Alumina Silicate

Thermal Property Tests (SRI)

Mechanical Property Tests

**Developed Coating** 

**Environmental Tests with Salt** and Acoustics (Quartz Lamp and Plasma Arc)

Analysis and Design - Total TPS System

**Bonding Effort** 

for Larger Billets (Projected Costs) Pilot Plant, 0.406  $\times$  0.406 m (16  $\times$  16 in.) Billets, Capability

## BASIC MATERIAL DEVELOPMENT

(Figure 3)

Considering the candidate fibrous materials available, alumina silicate was selected because of its low fiber diameter (potentially low thermal conductivity), high thermal stability, and potential for success. Process variables were evaluated, the most important of which are the The criteria for establishing the final process were an optimum combination of strength, ease of fabrication, lack of cracking, uniformity, firing temperature higher than use temperature, low material cost. The felting process was selected because of prior experience and greater binder/fiber ratio (0.7 by weight) and the firing schedule of 1427°C (2600°F) for 0.5 hour. and low-cost raw materials.

ı

# BASIC MATERIAL DEVELOPMENT

U

Ľ

L. L. E

1

E

H

I

Ľ

| Candidates and Variations Selections | icate Fiber Diameter, 2.0-3.0 μm (low K) High Thermal Stability Low Material Cost | Foaming Felting     |                   | y Weight 0.7 | p |         | )3 Not Used           | 127°C 1427°C | 2600°F) (2600°F) | 0 hr) (0.5 hr)  | sity and                            | ion 4% (Variation) |
|--------------------------------------|-----------------------------------------------------------------------------------|---------------------|-------------------|--------------|---|---------|-----------------------|--------------|------------------|-----------------|-------------------------------------|--------------------|
| Candidates a                         | Alumina Silicate<br>Mullite<br>Silica                                             | Felting and Foaming | Process Variables | Ratio        |   |         | Additives CoO or Cr2C | 13           |                  | (0.5 to 3.0 hr) | Density Profile Felting Density and | Impregnation       |
|                                      | Material                                                                          | P rocess            | Process           | Binder       |   | Fillers | Additiv               | Firing       |                  |                 | Densit                              |                    |

Figure 3

## PILOT PRODUCTION FLOW

L

U

(Figure 4)

Manufacturing procedures were established as shown, using the pilot plant facility. Of these procedures, it was found that the impregnation process has the greatest impact on the mechanical properties, and that thermal properties are primarily dependent on fiber composition, but are independent of process parameters and density. It was also found that mechanical properties are dependent on both material composition and process parameters.

I

L

Ц

11

H

П

H

L

Figure 4

L

Ľ

1

H

L

K

## SCANNING ELECTRON MICROGRAPHS

(Figure 5)

between the fibers. Also, the 5000X micrograph shows that the fiber diameter is approximately (2600°F) for 0.5 hour. The micrographs indicate that good fusion and bonding are occurring Scanning electron micrographs of MAR-SI material are shown after being sintered at 1427°C 2.0 µm.

Ī



Figure 5

## COATING DEVELOPMENT

#### (Figure 6)

lected. This type of coating is relatively easy to apply, provides a uniform thickness, and coating formulations satisfy the requirement for being waterproof and having a high emissivity binder/filler ratio (0.7 by weight) and the firing schedule [1371°C (2500°F) for 1 hr]. The does not involve problems of compatibility between coating layers. Alumina silicate was selected as the filler material, and spodumene (series 50) and eucryptite (series 60) were selected as binders (glazes). It was found that the most important process variables are the  $[\varepsilon = 0.75 \text{ to } 0.82 \text{ at } 1204^{\circ}\text{C } (2200^{\circ}\text{F})]$ . Elevated temperature test results of these coatings After examining the many candidate processes, a sprayed single application coating was seare presented in Figures 11 and 12.

Ž

L

L

H.

K

H

K

Ц

U

U

# MAR-SI COATING DEVELOPMENT

| <u>Selections</u><br>ication Single Application Spray<br>rush,                            |          | e Alumina Silicate        | Spodumene (Series 50) | Eucryptite (Series 60) |                    | 7.0                 | 1371°C         | (2500°F)                                  | (1.0 hr)        | Alumina 2.5%        | n Ferro #3794          | (Fmissivity Control) |
|-------------------------------------------------------------------------------------------|----------|---------------------------|-----------------------|------------------------|--------------------|---------------------|----------------|-------------------------------------------|-----------------|---------------------|------------------------|----------------------|
| Candidates and Variations Single and Multiple Application Spray, Plasma Spray, Brush, Dip |          | Alumina Silicate, Mullite | Spodumene, Synthetic  | Petalite, Eucryptite   |                    | 0.4 to 1.2          | 1316 to 1427°C | $(2400 \text{ to } 2600^{\circ}\text{F})$ | (0.5 to 1.0 hr) | Alumina 1.0 to 5.0% | Cerium Oxide, Samarium | Oxide, Ferro #3794   |
| Process                                                                                   | Material | Filler<br>Binder (Glaze)  |                       |                        | Process Variations | Binder/Filler Ratio | Firing Studies |                                           |                 | Additives           |                        |                      |

119

Ľ

u. u. u

U

II. I

H.

K

H

Figure 6

## COATING COMPATIBILITY EVALUATION

(Figure 7)

compatible with the basic material in terms of lpha E (coefficient of thermal expansion and mod-In addition to being waterproof and satisfying emissivity requirements, the coating must be ulus) to minimize cracking. To provide this aE and, therefore, good thermal shock capability, various candidate coatings were examined. The figure presents a coating compatibility Thermal stress cracks did not appear on the sides of the tiles near the top surface as they bility with the basic material occurs using the series 60 coating. The test results shown evaluation for the series 50 and series 60 coatings, and shows that the better  $\alpha E$  compatilater also indicate that the series 60 coating is more compatible with the basic material. had with other coatings.

L

# COATING COMPATIBILITY EVALUATION

αE (Coefficient of Thermal Expansion and Modulus)

| Product of Coefficient of Thermal Expansion and Elastic Modulus, $\alpha$ E 10 <sup>2</sup> N/m <sup>2</sup> - $^{\circ}$ C (Ib/in, 2- $^{\circ}$ F) | 1450<br>(11.7)       | 133 (1.09)           | 12 (0.096)        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------|
| Coefficient of Thermal Expansion, 10-6 m/m/°C (10-6 in./in./°F)                                                                                      | 3.24<br>(1.8)        | 0.57 (0.32)          | 5.04<br>(2.8)     |
| Tensile<br>Strain<br>to<br>Failure,                                                                                                                  | 0.0092               | 0.0162               | 0.13              |
| Tensile<br>Strength,<br>10 <sup>5</sup> N/m <sup>2</sup><br>(psi)                                                                                    | 41.3 (600)           | 37.9<br>(550)        | 3. 1<br>(45)      |
| Elastic<br>Modulus,<br>108 N/m <sup>2</sup><br>(10 <sup>6</sup> psi)                                                                                 | 448 (6.5)            | 234<br>(3.4)         | 2.37 (0.0343)     |
| Material                                                                                                                                             | Series 50<br>Coating | Series 60<br>Coating | Basic<br>Material |

Figure 7

thermal conductivity and thermal expansion values shown, enthalpy and heat capacity were also Thermonhysical properties were measured by Southern Research Institute. In addition to the determined. Two densities, 184.3 kg/m³ (11.5 pcf) and 240.5 kg/m³ (15 pcf), and two developmental process combinations were sent to Southern Research Institute for evaluation. The data indicate that Successful thermal conductivity measurements at 1454°C (2650°F) demonstrated the high thermal stability of the material. Also, the thermal stability was further established when thermal the variation in densities and process parameters did not affect the thermal conductivity. cycling to obtain thermal expansion data indicated only very small dimensional changes in the material, as shown in the figure.

Thermal Conductivity - Z Direction



Figure 8

Temperature, °C(°F)

## MECHANICAL PROPERTIES

(Figure 9)

compatible with the basic material. Therefore, the series 60 is the leading candidate coat-The resulting elastic modulus for the basic material is  $2.37 \times 10^8 \ \text{N/m}^2$  (34,300 psi). As Mechanical properties were determined for the basic material as well as for the coatings. discussed earlier, the series 60 coating provides the lowest coating modulus and is more ing svstem.

coated four-point-loading flexure specimens; 0.00953 m deep x 0.01907 m wide x 0.1143 m long Tensile strength, tensile strain, and elastic modulus of the basic material were measured on 0.0508x0.0508x0.0762 m (2x2x3 in.) specimens. Shear modulus was determined by flexure testing deep beams of varying length/depth ratios. Coating properties were measured on (3/8x3/4x4½ in.).

ì

## MECHANICAL PROPERTIES

## BASIC MATERIAL

| $3.1 \times 10^5 \text{ N/m}^2$ (45 psi) | $2.37 \times 10^{8} \text{ N/m}^2 (34,300 \text{ psi})$ | \$C. 0      |
|------------------------------------------|---------------------------------------------------------|-------------|
| Tensile Strength (X-Y)                   | Elastic Modulus (X-Y)                                   | #CL 0 // // |

Tensile Strain to Failure (X-Y) 0.13% Shear Modulus (X-Z) 0.689 x 
$$10^7$$
 N/m<sup>2</sup> (1000 psi)

| 2    | 2 |  |
|------|---|--|
| FYCO | A |  |
| Č    | 3 |  |
|      |   |  |

|            | $41.3 \times 10^5 \text{ N/m}^2 (600 \text{ psi})$ | AND 108 MILLS 1/2 E. 106                |
|------------|----------------------------------------------------|-----------------------------------------|
| Series 50: | <b>Tensile Strength</b>                            | 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |

Elastic Modulus 
$$448 \times 10^8 \text{ N/m}^2$$
 (6.5  $\times$   $10^6 \text{ psi}$ )

Tensile Strain to Failure  $0.0092\%$ 

Series  $60$ :

Tensile Strength 
$$37.9 \times 10^5 \text{ N/m}^2$$
 (550 psi) Elastic Modulus  $234 \times 10^8 \text{ N/m}^2$  (3.4 x 106 psi)

K

Ц

K

Ľ

K

L

0.0162%

Tensile Strain to Failure

1

## HEATING TEST PROFILE

(Figure 10)

The Space Shuttle area 2P heating profile provided by NASA-MSC, has been used for both plasma heating profile; however, as shown for the plasma arc testing, the profile must be modified. arc and quartz lamp testing, as shown. The quartz lamp testing procedure can simulate the Quartz lamps are used for preheating to  $56.7~{\rm kw/m^2}$  ( $5~{\rm Btu/ft^2-sec}$ ) during the plasma arc testing.

L

H

K

Ц



Figure 10

2800

1600 Time, sec

# COATING SCREENING TESTS AND SELECTION (Radiant Heating Specimens)

#### Figure (11)

Using the previous heating profile, coating screening tests were conducted on 0.1524x0.0254x (3000 sec) to 1260°C (2300°F) and 1371°C (2500°F) were accomplished on the series 50 coating compatibility with the substrate material. Thermal cycling of both series of coatings with specimens and they were still waterproof, the series 60 coating specimens have shown more 0.0381 m (6x1x1.5 in.) and 0.1016x0.0508x0.0508 m (4x2x2 in.) coupons. While 104 cycles exposure to salt has shown no reaction.

I

# COATING SCREENING TESTS AND SELECTION (Radiant Heating Specimens)



Numerous Tests of 15.25 x 2.54 x 3.81 cm and 10.16 x 5.08 x 5.08 cm (6 x 1 x 1 in. and 4 x 2 x 2 in.) Coupons

### Summary of Tests

Series 40 and 50 Specimens
Maximum of 104 Cycles, 1260
and 1371°C (2300 and 2500°F).
Still Waterproof. Thermal Cycling
with Exposure to Salt - No Reaction.

Series 60 Specimens - Still Testing Maximum of Five Cycles, 1260 and 1371°C (2300 and 2500°F). Thermal Cycling with Exposure to Salt - No Reaction.

## Remarks and Selection

 ∝E of Coating and Basic Material Compatible; Series 60 Coating Selected.

Figure 1

I

L

L

U

L

coated with the series 50 coating was cycled 20 times to 1413°C (2575°F) and was still waterproof. However, it had a crack on one side. The series 60 coating specimen, 0.1524x0.1524x 0.0508 m (6x6x2 in.), shown in the figure, is in the process of being cycled thermally and Panels have been tested with quartz lamps, as shown. The 0.1524x0.1524 m (6x6 in.) panel will be tested in an acoustic facility to 162 dB.

L

ļ

K

II

K

Series 50 Coating

Cycled to 1260°C (2300°F)

Acoustic Test to 162 dB (Still Testing)

[0, 1524 m x 0, 1524 m (6 in, x 6 in,) Panels (Coated on 5 Sides)]

Figure 12

# PLASMA ARC TEST SPECIMEN BEFORE TEST

(Figure 13)

U

L

U

As shown, a 0.1016 m (4 in.) diameter, 0.0508 m (2 in.) thick specimen is used for plasma specimen during test, provide a more uniform temperature across the face of the specimen, arc testing. A shield of the same MAR-SI material is used to protect the sides of the and minimize heat flow through the sides of the specimen.

K

H

Figure 13

# PLASMA ARC SPECIMEN DURING TESTING

(Figure 14)

This figure shows the shield and test specimen being preheated using a quartz lamp array and in the plasma stream. This testing was accomplished in our Plasma Arc Facility.



In Plasma Arc



Preheating Using Quartz Lamps

Figure 14

(Figure 15)

215 to 306 kw/m² (19 to 27 Btu/ft<sup>2</sup>sec). For an emissivity value of 0.8, a peak results are summarized in figure 15. The peak hot wall heat rates ranged from tested for three different thermal cycles (Fig. 10). The test parameters and temperature of 1316°C (2400°F) was reached for the highest hot wall heating Using the type of plasma arc specimen shown previously, six specimens were rate condition. These results indicate that the coating is noncatalytic.

## SUMMARY OF MAR-SI PLASMA ARC TESTS

| 1641 | COAT-<br>ING | CYCLE NO. 1   | 0. 1                  |                |                  |                                      | CYCLE NO. 2       | 0. 2              |                |                   |                | CYCLE NO. 3       | 0. 3              |                |                   |                      |
|------|--------------|---------------|-----------------------|----------------|------------------|--------------------------------------|-------------------|-------------------|----------------|-------------------|----------------|-------------------|-------------------|----------------|-------------------|----------------------|
| NO.  | IES          | ¢ ™ *         | $^{\mathrm{H}^{\pm}}$ | TPYR0          | ¢HM <sup>§</sup> | T <sub>SURF</sub> ** q <sub>cw</sub> | ₫ <sup>cw</sup> * | $^{\rm H}_{ m T}$ | TPYR0          | ¢ <sub>HM</sub> § | TSURF** 4cw    | ¢ <sub>cw</sub> * | $^{\rm H}_{ m T}$ | TPYRO 4HW      | ¢ <sub>HM</sub> § | T <sub>SURF</sub> ** |
| 1    | 48-2         | 175<br>(15.4) | 6.80 (2925)           | 1300 (1880)    | 145<br>(12.8)    | 1314 (1910)                          | 278<br>(24.5)     | 9.01 (3875)       | 1476<br>(2200) | 252<br>(22.2)     | 1511 (2260)    | (33.0)            | 12.69 (5450)      | 1526<br>(2290) | 279 (24.6)        | 1549 (2330)          |
| 2    | 59-1         | 286 (25.2)    | 9.19 (3950)           | 1433<br>(2120) | 217<br>(19.1)    | 1455<br>(216                         | (25.2) (0         | 9.19 (3950)       | 1458<br>(2165) | 231 (20.3)        | 1478 (2200)    | 286<br>0) (25.2)  | 9.19 (3950)       | 1444 (2140)    | 224 (19.7)        | 1466 (2180)          |
| 8    | 54-1         | 290<br>(25.5) | 8.72 (3750)           | 1401 (2060)    | 196 ' (17.3)     | 1422<br>(2100)                       | 290<br>(25.5)     | 8.72 (3750)       | 1444<br>(2140) | 224<br>(19.7)     | 1466<br>(2180) | 471<br>(41.5)     | 14.96<br>(6425)   | 1504 (2250)    | 262 (23.1)        | 1524<br>(2290)       |
| 4    | 54-3         | 290 (25.5)    | 8.72 (3750)           | 1398 (2055)    | 196 (17.3)       | 1422 (2100)                          | 290<br>(25.5)     | 8.72 (3750)       | 1403 (2065)    | 201 (17.7)        | 1425 (2110)    | 471 (41.5)        | 14.96<br>(6425)   | 1523 (2280)    | 274 (24.1)        | 1544 (2320)          |
| 2    | 60-2         | 290<br>(25.5) | 8.72 (3750)           | 1384 (2030)    | 190<br>(16.7)    | 1403 (2070)                          | 290 (25.5)        | 8.72 (3750)       | 1414 (2090)    | 208 (18.3)        | 1437 (2130)    | 591<br>(52.0)     | 17.92 (7700)      | 1567 (2360)    | 308 (27.1)        | 1588<br>(2400)       |
| 9    | 54-1         | 290 (25.5)    | 8.72 (3750)           | 1421 (2095)    | 208              | 1437 (2130)                          | 290 (25.5)        | 8.72 (3750)       | 1401 (2060)    | 196 (17.3)        | 1422 (2100)    | 591<br>(52.0)     | 17.92 (7700)      | 1567 (2360)    | 308 (27.1)        | 1588<br>(2400)       |
|      |              |               |                       |                |                  |                                      |                   |                   |                |                   | 1              |                   |                   |                |                   |                      |

\*MAXIMUM LEVEL IN CYCLE. COLD WALL HEATING RATE, 12.7 cm DIAMETER COPPER CALORIMETER, kw/m² (Btu/ft²sec)

\*CORRESPONDING STREAM ENTHALPY LEVEL, 106J/kg (Btu/lb)

\*OPTICAL PYROMETER READING AT SPECIMEN 🗲 (AT MAXIMUM LEVEL), °K (°F)

§ APPARENT NONCATALYTIC SURFACE HOT WALL HEATING RATE, kw/m² (Btu/ft²sec)

\*\*CORRESPONDING TRUE MAXIMUM SURFACE TEMPERATURE (E), °K (°F)

# EFFECT OF SURFACE CATALYTIC ACTIVITY ON SURFACE TEMPERATURE OF MAR-SI

(Figure 16)

temperature is plotted against the hot wall heating rate for the cases of the wall that are catalytic The data obtained at our Plasma Arc Facility are superimposed on the theory curves. This figure illustrates the noncatalytic characteristics of the MAR-SI coatings. The theoretical E. Goldstein, to the recombination of atoms of nitrogen and oxygen, and the cases that are noncatalytic to the NASA Space Shuttle Technology Conference April 12-14, 1972, NASA TM X-2570. The surface These data show that the coatings tend to be somewhat noncatalytic, which may be significant in Therefore, curves are taken from "Reusable Surface Insulation Materials and Development" by H. the design of the Space Shuttle TPS, because of the lower surface temperature. development of the most noncatalytic coating is a desirable goal. recombination. et al.

á

L

L

U

L

L

U

L

L

1

K

П

L

K

K



Figure 16

## PLASMA ARC TESTING - HIGH TEMPERATURE DYNAMIC SEALS

(Figure 17)

MAR-SI will be 0.1778 m (7 in.) wide. While the objective is to determine the adequacy of the Additional plasma arc testing is planned in the near future for the dynamic seal program shown in the figure. Coated MAR-SI will be bonded to the hinge and control surface as shown. The seal for a defined gap width, the coated MAR-SI material will be evaluated during this test.

### PLASMA ARC TESTING - HIGH TEMPERATURE DYNAMIC SEALS FOR AERODYNAMIC CONTROL SURFACES ON THE SPACE SHUTTLE (NAS9-12883 (MSC)



Internal Profile View of Aluminum Structure and Seal

> Aluminum Structure (Plasma Arc Model)

Figure 17

(Figure 18)

Using results of the previous material tests, a design and analysis effort has been conducted. As shown in the figure, a coating, basic material strain isolator, and aluminum substrate operating at a peak temperature of 149°C (300°F) were analyzed.



element models have been constructed and used for analysis. As shown, the models include the coating, basic material, strain isolator, and the aluminum substructure. The characteristics Using the typical TPS configuration (Fig. 18), two-dimensional and three-dimensional finite of the current two-dimensional model are:

514 Node points

68 Axial and bending bars

899 Axial bars

52 Axial and shear plates

15 Shear plates

The three-dimensional model is constructed as follows:

| Structural Element    | Computer Finite Element | Number of Finite Elements |
|-----------------------|-------------------------|---------------------------|
| Coating               | Isotropic plate         | 128                       |
| MAR-SI                | Anisotropic tetrahedron | 1280                      |
| Isolator              | Anisotropic tetrahedron | 320                       |
| Aluminum Skin         | Isotropic plate         | 192                       |
| Aluminum Corrugations | Bending bars            | 72                        |

2-D Finite Element Computer Model



3-D Anisotropic Computer Model



Figure 19

(Figure 20)

for a tile 0.1695x0.1695x0.0508 m (6-2/3x6-2/3x2 in.). As shown in the figure, for a strain Using the two-dimensional model, this figure is a plot of tensile strain vs isolator thickness isolator thickness of 0.003175 m (1/8 in.), the strain in the tile is 0.11%.



Figure 20

The results of the analysis for the series 50 and 60 coatings indicate that the maximum stresses on the side of the MAR-SI tile are approximately equal for both coatings. As shown, a large amount of bending (and therefore a stress gradient) occurs in the series 50 coating (tension stress gradient in the series 60 coating at the location of maximum stress (tension in both in one coating surface and compression in the other). There is essentially no bending or coating surfaces).

material; therefore, the tendency to crack due to thermal stresses on the side of the panels will As shown earlier, the  $\alpha E$  of the series 60 coating is more compatible with the  $\alpha E$  of the basic be minimized. Also, test results presented earlier indicate that tiles with the series 60 coating do not have thermal stress cracks on the sides.

L

L

H

# STRESSES ON SIDE OF 0.1524x0.1524x0.0508 m (6x6x2 in.) PANEL

|                                        |                                                                                                                                                | T                                                                                                                                                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remarks                                | Bending                                                                                                                                        | No<br>Bending                                                                                                                                                     |
| Maximum<br>Stress on<br>Panel Side     | $-34.5 \times 10^5 \text{ N/m}^2$ (-500 psi) Inside Surface Coating 31. 0 × 10 <sup>5</sup> N/m <sup>2</sup> (450 psi) Outside Surface Coating | 31.0 $\times$ 10 <sup>5</sup> N/m <sup>2</sup> (450 psi) Inside Surface Coating) 31.0 $\times$ 10 <sup>5</sup> N/m <sup>2</sup> (450 psi) Outside Surface Coating |
| Coefficient<br>of Thermal<br>Expansion | N/m <sup>2</sup> 3.24 x 10 <sup>-6</sup> m/m/°C (1.8 x 10 <sup>-6</sup> in./in./°F)                                                            | N/m <sup>2</sup> 0.57 x 10 <sup>-6</sup> m/m/°C (0.32 x 10 <sup>-6</sup> in./in./°F)                                                                              |
| E<br>Modulus                           | 448 x 10 <sup>8</sup> N/m <sup>2</sup> (6.5 x 10 <sup>6</sup> psi)                                                                             | 234 x 10 <sup>8</sup> N/m <sup>2</sup> (3.4 x 10 <sup>6</sup> psi)                                                                                                |
| Coating                                | Series 50                                                                                                                                      | Series 60                                                                                                                                                         |

Thermal Loading - Top Surface 1259°C (2300°F) - Bottom Surface 149°C (300°F)

Figure 21

## PROJECTED COST AND QUANTITY OF COATED MAR-SI TILES

(Figure 22)

U

U

U

14,000 completed tiles can be produced in 1 year for a cost of approximately  $\$3230/m^2$  ( $\$300/ft^2$ ). Using the previously discussed material and coating developmental data for the production rates vs acceptance rates for uncoated and coated tiles. As shown, for a 90% acceptance rate, over of the present pilot plant, projected costs are defined. Cost and tile quantity are plotted analysis permits using varying acceptance rates at each stage of production; such rates will The same acceptance rate was applied to bare tiles before coating and to completed tiles. be used as additional production data become available.

14

L

U

I

H

U

L



Figure 22

Acceptance Rate for Uncoated Tiles and Coated Tiles,

06

8

K

I

Ľ

L

1

(Figure 23)

MAR-SI material and coating (series 60). The figure also shows the tests to be conducted at thermal conductivity have been obtained, while providing a thermal shock stability with the In conclusion, the MAR-SI technology status is presented. High thermal stability and low the various NASA centers.

### MAR-SI TECHNOLOGY STATUS

High Thermal Stability - Measured Values of Thermal Conductivity to 1454°C (2650°F)

- Cyclic Tests to 1413°C (2575°F)

Low Thermal Conductivity

L

Thermal Shock Ability - with Series 60 Coating

Demonstrated Reuse - Waterproof and High Emissivity Coating - 104 cycles

Low Cost - Material ≈ \$9.03/kg (\$4.10/lb)

Pilot Plant Operation

Additional Test Evaluations

Dynamic Seal - Plasma Arc (MSC)

Salt Spray (LRC, KSC)

Plasma Arc Specimens - 10.16 cm (4 in.) Diameter (MSC, ARC)

Panels - Radiant and Acoustic (MSC)

I

I

L

K

Figure 23

1

L

#### PRECEDING PAGE BLANK NOT FILMED

SILICA REUSABLE SURFACE INSULATION IMPROVEMENT RESEARCH

by

H.E. Goldstein, M. Smith, D. Leiser, V. Katvala, and D. Stewart

Ames Research Center Moffett Field, California Eighteen months ago, Ames Research Center began a research program to study means for improvement of Reusable Surface Insulation (RSI) materials under the auspices of the NASA Space Shuttle Materials Working Group. At the same time a fiber improvement program at Lewis Research Center and general RSI Ames Research Center objectives were clearly defined at that time and they have not changed since. research programs at Langley Research Center and Marshall Space Flight Center were initiated. They are as follows:

- · Gain an understanding of RSI fabrication to be better able to evaluate the manufacturer's RSI materials proposed for Space Shuttle.
- · Develop RSI improvements that can be utilized by the manufacturers.
- Study the effects of process and composition variables on the response of RSI to convective heating environments.

Both mullite and silica materials have been investigated, but most of the effort has been concentrated on silica. This paper presents the results of the silica work conducted to date. Figure 1 outlines the subject areas that will be discussed.

L

L

# SILICA REUSABLE SURFACE INSULATION IMPROVEMENT RESEARCH

- FIBER CHARACTERIZATION
- FABRICATION PROCESS
- PHYSICAL PROPERTIES
- THERMAL RESPONSE

Figure 1

#### (Figure 2)

Initially, several silica fibers including Astroquartz (J.P. Stevens), AVCERAM CS (American ever, could be utilized as shown by LMSC (reference 1) and GE (reference 2), although the results were variable Zaplatinsky (reference 3) and Mueller et al. (references 4-7) found that different lots of devitrified below 1364°K (2000°F) and had relatively large diameters (5 μm). As a result of these factors, RSI tiles that were fabricated with these fibers were not acceptable. The Microquartz, how-Early in this research program, it was determined that the critical RSI component raw material The first two fibers Microquartz fibers have distinctly different shrinkage and devitrification behavior. Microquartz fibers were stable up to 24 hours at 1533°K (2300°F) (references 3-5). Viscose), and Microquartz 108 (Johns Manville) were considered for use. was the fiber.

the tile fabrication process. Chemical composition is the most critical property because the concentration levels on the surface which affect the devitrification and shrinkage rates. Other surface properties below 1478°K (2200°F) make tiles of poor quality. Shrinkage alone is not necessarily bad in terms of rates. The results have shown that fibers that exhibit significant devitrification at temperatures optimum tile properties. The major problem is that the amount of shrinkage may differ for each lot are those listed in this figure. They are listed in their order of significance relative to making of acceptable fiber and, therefore, require variations in the process in order to obtain consistent The amount of fiber chopping required and the mixing time are, of course, related to initial such as surface area and surface free energy may also be important. The wetting properties of the fiber affect slurry viscosity, pH, and other processing parameters important in fabrication of RSI of impurities in the fiber is the primary determinent of both fiber shrinkage and devitrification Attempts to determine how the fiber characteristics relate to the final tile properties have acceptable tile by the Ames Process. The relative importance of these properties is dependent on been considered in the Ames program. The studies have shown that the important fiber properties tile properties. Surface chemical properties that appear to be important are the trace impurity

L

L

Ц

## SIGNIFICANT FIBER PROPERTIES

- CHEMICAL COMPOSITION
- DEVITRIFICATION RATE
- SHRINKAGE
- SURFACE CHEMISTRY
- WETTING PROPERTIES
- FIBER LENGTH

Figure 2

#### SILICA FIBER CHARACTERIZATION

#### (Figure 3)

area measurement by nitrogen absorption (BET Method), devitrification studies, shrinkage studies, etc. In order to characterize Microquartz 108, a number of methods were utilized including detailed chemical analysis, differential thermal analysis (DTA), thermal gravimetric analysis (TGA), surface table shows the results of some of these tests on a number of fiber lots.

low in alkali and alkaline earth impurities. As subsequent data will show, this is the most important The eight fiber lots listed are some of those with which Ames has had experience and are grouped since May 1971. It was supplied to Ames by Mr. Robert Beasley of LMSC. Each of these better lots is into three different classifications. Other lots of fiber, not included, could be classified in the of alkaline earth impurities. The best fibers include Lots 2148, 2155, and 2083. Lot 2083 was used under contract to LeRC (reference 8), have little alkali, but still have over a quarter of a percent difference between fiber lots. However, there are a number of other lot-to-lot variations that are alkali and a half percent of alkaline earth impurities. The Type C and Lot 2102 fibers, developed as a standard and is one of those used by Lockheed Missiles and Space Company to fabricate LI-1500 same manner. The old-type fibers, Lots 1437, 1466, and 1986, have on the order of a half percent also shown to be important.

appear to have a significant effect on devitrification and shrinkage, and will be discussed subsequently. with the tile quality. Very slight variations in surface chemistry, below the analysis detection limits, An assessment of the overall quality of the RSI tiles that were fabricated from each fiber lot is Shrinkage is also related to impurity level with the bulk chemical composition of the fiber. Alkali or alkaline earth concentrations above 0.05 and shrinkage and the physical properties of the tile. The quality of the tile generally correlates listed in the last column in this figure. This assessment is based on stability to devitrification and will be discussed in subsequent figures. DTA, TGA, and fiber surface area show no correlation percent increase the devitrification rate significantly.

H

K

H

K

### SILICA FIBER CHARACTERIZATION

|                    | PERCE               | PERCENTAGE OF OXIDE                   | (IDE                |                                                 |                                       | TIME TO 5%                             |                 |
|--------------------|---------------------|---------------------------------------|---------------------|-------------------------------------------------|---------------------------------------|----------------------------------------|-----------------|
| FIBER LOT          | ALKALI<br>NG20, K20 | ALKALINE<br>EARTH<br>COO, Mgo,<br>Sro | TOTAL<br>IMPURITIES | WEIGHI LOSS<br>BY TGA AT<br>1273 °K<br>(1768°F) | SUKTAGE<br>AREA<br>M <sup>2</sup> / g | CKTSTALLINITY AT 1533°K (2300°F) HOURS | FABRICATED TILE |
| 1437, 1466, [1986] | 0.4-0.9             | 0.2-0.80                              | 9.1-9.0             | [5.0]                                           | [3.0]                                 | [<0.25]                                | [P00R]          |
| TYPE C, (2102)     | 0.01-0.05           | 0.25-0.5                              | 0.35-0.70           | (9.0)                                           | (2.4)                                 | (1.0)                                  | FAIR            |
| 2083               | 0-0.03              | 0.03                                  | 91.0                | 8.5                                             | 3.6                                   | 91 >                                   | STANDARD*       |
| 2148               | 0.04                | 0.04                                  | 0.30                | 0.9                                             | 32.1                                  | 91                                     | COMPARABLE      |
| 2155               | 90.0                | 0.02                                  | 0.30                | 7.0                                             | 5.5                                   | 6.0, I6**                              | COMPARABLE      |

\*LMSC LI 1500
\*\*CLEANED FIBER
ND NOT DETECTED

Figure 3

# CRYSTALLIZATION AND SHRINKAGE OF AS RECEIVED SILICA FIBER AT 1533°K (2300°F)

(Figure 4)

age and crystallinity versus time at 1533°K (2300°F) are plotted for a relatively pure fiber, Lot 2148, tile shrinkage rate could be correlated with a simple equation showing that the change in fiber length results and the stability of silica RSI tile is shown in this figure and subsequent data. The shrinkessentially the same results. Sample size was found to have no effect on either shrinkage or devitrishowed that for LI-1500, the further flow occurs and, therefore, shrinkage essentially stops. The relationship between the above showed that once silica fiber devitrifies, no Mueller et al. (reference 5). Other quantitive XRD techniques were tried (reference 5) and yielded block and fired for from one to four hours. After firing, shrinkage was determined from dimensional a less pure fiber, Lot 2102, and a very impure fiber, Lot 1986. Each fiber was water cast using delonized water, into a 15 x 15 x 7.5 cm (6 x 6 x 3 inch) block and then dried. Initial density of As previously stated, shrinkage and devitrification of Microquartz 108 fiber are both directly change and crystallinity was determined by X-ray diffraction (XRD) using the technique described by al. (reference 7) showed that the apparent flow and devitrification rate of fibers increases with Cubes 3.8 cm (1.5 inch) on a side were cut from each is proportional to the ratio of surface tension to viscosity for a silica glass fiber. related to impurity level of the fiber. Ormiston et al. (reference 9) increasing impurity level. Zaplatinsky (reference 3) the dried compact was  $192 \text{ kg/m}^3$  (12 lb/ft ).

two hours. From these results, it is apparent that the purer fibers are most stable to devitrification 2102 also shrinks rapidly at first and then very slowly when significant crystallinity is obtained at of Lot 1986 virtually stops after two hours, while Lot 2148 shrinkage continues up to 40 hours. Lot The expected relationship between devitrification and impurity level is observed for the fibers fibers shrink much more rapidly due to lower viscosity, but stop shrinking when significant devitritested. Lot 1986 devitrified most rapidly and Lot 2148 the least rapidly. Note that the shrinkage factor in the binding obtained during fabrication of RSI tile utilizing good fiber. The least pure but will continue to shrink due to viscous flow. This slow viscous flow is probably a significant fication has occurred.

These results coupled with the chemical analysis of figure 3 indicate that only fibers such as Lot 2148 with less than 0.06 percent alkali or alkaline earth impurity are stable enough to resist devitrification for times of the order of ten hours at 1533°K.

K



(Figure 5)

percentages of devitrification and shrinkage at three different temperatures. This type of data The devitrification rate of fiber is generally about the same as the devitrification rate of the tile. If a fiber is not stable to measurable devitrification for at least eight hours at 1533°K is required to determine the exact molding procedure and firing cycle for each lot of fiber. At tile has been bonded and fired, the shrinkage rate is much lower, as will be shown subsequently. 1412°K (2100°F), little shrinkage or devitrification is measured after 200 hours at temperature. This figure shows (2300°F), it will probably not be stable in the tile with respect to the MSC Area 2P reentry The shrinkage measured in this manner is not representative of the final tile stability. Both devitrification and shrinkage rates are functions of temperature. environments for 100 flights.



Figure 5

# EFFECT OF WASHING ON CRYSTALLIZATION OF SILICA FIBERS AT 1533°K (2300°F)

#### (Figure 6)

The effects on fiber crystallization are It consists of alternucleation sites on the surface. Therefore, surface contamination can play an important role in the The major cause of both high shrinkage and the high crystallization rate of fiber is the gross surface contamination of the fiber. Crystallization of amorphous materials generally starts from tendency toward devitrification. A series of experiments was performed in which acids and bases were used to wash the fiber and then the crystallization and shrinkage were measured as before. impurity level. A second somewhat lesser but still important effect on stability is the level on these tests, a hydrochloric acid wash procedure for the fibers was adopted. nate washes with HCl (pH = 3) and deionized water (pH = 6). shown in this figure.

is obtained with Lot 2155. The improvement is small for Lot 2148. Chemical analysis before and after nucleation sites for initiation of devitrification. Another possibility is that washing alters the The crystallization rate of even an impure fiber (Lot 2102) is decreased. Greater improvement indicate that even small amounts of impurities (not detectable by the analyses used) may provide washing showed no apparent change in fiber bulk composition for fiber Lots 2102 and 2155. surface chemistry or character of the fibers in such a way as to retard devitrification.

I

II

U

L

L

L



H

# COMPARISON OF SILICA RSI TILES MADE WITH WASHED AND UNWASHED FIBER

(Figure 7)

The may also be significant, though bulk viscosity is probably more important. The results presented in The result was the same for Lot 2102. A possible explanation for this behavior is that removal of surface tension, thus decreasing the driving force to shrinkage. An increase in surface viscosity alkali and alkaline earth impurities from the surface causes a significant lowering of the fiber shrinkage of tile made with unwashed fiber was nearly twice that of tile made with washed fiber. This figure graphically illustrates the effect of washing on shrinkage for Lot 2155 fiber. figures 6 and 7 show that each lot of fiber responds differently to washing.



Figure 7

### AMES SILICA RSI FABRICATION PROCESS

(Figure 8)

the rate of 12°K (20°F) per hour to a maximum temperature of 457°K (300°F) and held for the remainder percent reagent grade starch and ammonia, is dispersed in a high speed mixer, then blended with the drained fibers and water in a V-blender where the pH is adjusted to 9.0 with ammonia. An intensipressed into shape. The tile is then dried in an oven for 18 hours. The temperature is raised at of the cycle. The tile is taken directly from the drying oven and placed in a firing furnace and fier bar in the V-blender is used to break up fiber clumps. The slurry is poured into a mold for during the process. All utensils and mixing vessels are polyethylene or stainless steel and only fired using the cycle shown in figure 9. After firing, the tile is machined to final dimensions. defonized water is used in any step of the process. The fibers are first washed in hydrochloric acid and then rinsed using pure nitrogen as the agitating agent. This may be done several times The either single direction or multi-direction pressing (to be discussed subsequently) and rapidly depending upon the fiber lot. The binder, which is usually 3 to 5 percent Cab-o-sil and 2 to Great care must be taken to avoid contamination of the raw materials process is inherently simple, and requires three days to fabricate a finished 15 x 15 x 7.5 This figure is a schematic representation of the Ames silica RSI fabrication process. tile ready for coating.

parameters such as acid type and concentration, and washing temperature; variations in the fabrication The process described in this figure is not fixed and is varied for different fibers as necessary. Among the possible process improvements being studied are variations in the fiber washing steps such as drying cycle and time, binder additives, opacifiers, fiber pretreatments, slurry viscosity, etc. Firing cycle variations are discussed with the next figure.

L

H

I

L



BINDER MIXING



FIRING

Figure 8

DRYING

MOLDING

long term stability of the tile. It appears from recent data that a substantial increase in tile devitrification of the tile. The starch burns out at a temperature of about 800°K, leaving a pure silica unbonded structure. At about 1533°K (2300°F), fiber-to-fiber sintering occurs at a fairly are much more rapid with binder than without, allowing shorter firing times and thus, increasing example, fiber Lot 2155 is fired for 2-1/2 hours at 1533°K (2300°F), and fiber Lot 2102 is fired for 1/2 hour at 1500°K (2250°F). The firing cycle for each fiber must allow sufficient time for This figure illustrates the range of firing cycles currently being used to cure silica RSI sintering and stabilization relative to shrinkage while not allowing excessive shrinkage or any rapid rate. It appears that the final tile properties are related to fiber-fiber sintering at Shrinkage and sintering during firing tiles. A temperature rise rate of 167°K (300°F)/hr or less is required to avoid cracking and at-temperature and the exact maximum firing temperature are dependent on the fiber used. warping the 15  $\times$  15  $\times$  7.5 cm tiles. For larger tiles, slower heating may be required. strength can be obtained by optimization of the firing cycle. least as much as they are to fiber-to-binder sintering.



igure 9

## SILICA RSI TILE AT DIFFERENT STAGES OF FABRICATION (Figure 10)

cant problem because the tile has essentially no strength at the firing temperature. Temperature refired with only a few percent of additional shrinkage. Warpage during firing can be a signififiring is 25-45 percent by volume. Approximately 0.5 cm of material is machined off the tile to This figure shows a tile after drying, firing, and machining. In general, shrinkage during gradients in the tile are likely to cause warping. Warping can also occur due to sagging of an obtain the finished size. The tile can be reimpregnated with binder to increase strength and unsupported tile during firing.



# SILICA RSI TILES REIMPREGNATED WITH COLLOIDAL SILICA BINDERS AND FIRED

(Figure 11)

result, is shown in this figure. Cab-o-sil tends to harden the tile and increase strength slightly. pure colloidal silicas. Further studies are being carried out to determine the effect of reimpreg-In order to increase tile strength, experiments have been performed using colloidal silica at varying percentages as a reimpregnant for the tile. A significant, but currently not understood Both materials are extremely Ludox AS causes severe shrinkage and devitrification of the tile. nation with binder on strength and thermal stability of tile.

Figure 11

### CRYSTALLIZATION AND SHRINKAGE OF SILICA RSI TILE AT 1533°K (2300°F) (Figure 12)

This figure shows the volume percent shrinkage and percent crystallinity as a function of time for 2148 and 2155, and the resulting materials are comparable to LI-1542. The Ames RSI shows somewhat less LI-1542 and Ames fabricated silica RSI at 1533°K (2300°F). The Ames tiles were made with fiber Lots shrinkage, whereas the LI-1542 is more resistant to devitrification.

above 1413°K (2100°F) for 0.25 cm (.1 inch) into the tile. Therefore, only 0.017 cm (.007 inch) dimenthe colder tile beneath the hot outer region and dense coating will not allow lateral shrinkage except An arrow is shown at nine hours, which corresponds to the time in 100 flights that the surface of at the corners, the observable tile shrinkage will be normal to the surface. The temperature is only Using these data, the maximum amount of crystallinity and shrinkage that can occur on the shuttle in sional change can be expected to occur. This amount of shrinkage is difficult to observe since the the shuttle heat shield will be above 1500°K (2250°F) in the NASA-MSC defined Area 2P trajectory the area just below the coating can be estimated. No crystallinity is observed until 16 hours. nine hours the linear shrinkage (volume shrinkage divided by three) is between 5 and 7 percent. coating surface roughness is of this order. However, rounding of the corners is great enough observed. At higher temperatures, above 1561°K (2350°F) the effects of shrinkage may significant.

In a few thermal cycles, the samples simply crumbled due to the alpha-beta cristobalite transformation. This result emphasizes the fact that stability relative to crystallization is the critical requirement A set of experiments performed on early tiles fabricated with fiber Lot 2102 showed that in two hours at 1533°K (2300°F), no significant shrinkage occurred but the tile was 60 percent crystalline. for silica RSI. The exact amount of crystallinity that can be tolerated in processing and in the shuttle environment is not known, however, and must be determined.

L

K

13

L

L

H

11

H

H

L

## CRYSTALLIZATION AND SHRINKAGE OF SILICA RSI TILE AT 1533°K (2300°F)



#### (Figure 13)

varies for each fiber lot. Fiber Lot 2148 requires chopping because the initially longer fiber causes 2102 is a less stable fiber and is fired for a shorter time and at a lower temperature than the other This figure shows the variations in the process that are required for three lots of fiber. Lot Shrinkage of the fibers differs during processing and requires different initial as-cast densities in order to obtain the same final tile density. The washing requirement stratification during molding and cracking of the tile during the firing cycle. two, as previously noted.

procedure, resulting in increased cost. Johns-Manville is improving their process and expects to begin must be varied for each fiber lot, then an added degree of complexity is added to the manufacturing problem in silica RSI fabrication is lot-to-lot variation in fiber properties. If the RSI process result, fiber uniformity should be improved. At the present time, however, Ames is receiving small Both Lots 2148 and 2155 make satisfactory stable RSI. However, only 50-60 kg of each lot is available because this is the normal lot size made by Johns-Manville. Therefore, a significant manufacturing fiber by a continuous process rather than a batch process in the next few months. fiber lots that have significant differences between them.

## PROCESS VARIATIONS DUE TO FIBER LOT

|           |         | ,              | SHR  | PERCENT<br>Shrinkage                     |                             |                                                                        | TENSILE                                                |
|-----------|---------|----------------|------|------------------------------------------|-----------------------------|------------------------------------------------------------------------|--------------------------------------------------------|
| FIBER LOT | WASHING | CHOPPING       | IN   | IN IN 4 HOURS PROCESS AT 1533°K (2300°F) | TOTAL FIRING<br>TIME, HOURS | TOTAL FIRING FIRING TEMPERATURE, STRENGTH  TIME, HOURS  "K ("F)  (psi) | STRENGTH<br>N/M <sup>2</sup> ×10 <sup>5</sup><br>(psi) |
| 2102      | YES     | O <b>N</b>     | 31   | 40                                       | 0.5                         | 1500 (2250)                                                            | 4.5 (65)                                               |
| 2148      | 0       | YES            | 43   | 6                                        | 2.5                         | 1533 (2300)                                                            | 5.9 (85)                                               |
| 2155      | YES     | O <sub>N</sub> | . 47 | 27                                       | 2.5                         | 1533 (2300)                                                            | 5.5 (80)                                               |
|           |         |                |      |                                          |                             |                                                                        |                                                        |

Figure 13

direction molding process is used to make the anisotropic tile. The slurry solids content, viscosity, A conventional one-All of the RSI materials currently being manufactured are quite anisotropic. From a structural standpoint it is desirable that these materials be isotropic if the strength is comparable to the directional mold, shown schematically in this figure, was developed. The slurry is placed in the strong direction strength of the anisotropic material. In order to make isotropic tiles, a twomold, the top locked on, and the slurry rapidly pressed into shape using hydraulic pistons. The and the molding pressure and rate were all found to be significant in determining the degree of anisotropy in terms of physical properties and density obtained with both processes. mold has screening on, and drainage from, all surfaces in contact with the tile.



igure 14

appears to result from the small percentage (less than five percent by weight) of binder in the tile. both the molding technique and the blending method. The relatively small amount of apparent bonding binder. The two-direction press material shows no fiber orientation but otherwise appears the same silica RSI. LI-1542 shows a highly layered structure. The Ames one-direction press material shows The figure shows the microstructure of LI-1542 and one-direction and two-direction press Ames as the one-direction press material. The uniformity of the Ames fabricated material results from layering, but is more uniform than the LI-1542 and apparently has a higher fiber density and less The strength of the materials is discussed in a subsequent figure.



Figure 15

40 data points is shown for each property. For the two-direction press material, an average of six

points is shown. These data have been quite reproducible as shown by the 95 percent confidence

directional and two-directional pressed RSI tile. For the one-direction press RSI, an average of

This figure shows the room temperature tensile, compressive and shear strengths of the one-

PHYSICAL PROPERTIES OF AMES FABRICATED SILICA RSI (Figure 16) limit. Using identical techniques, data in agreement with manufacturers measurements were obtained

on LI-1500, REI, and HCF. The one-directional press properties are comparable to LI-1500 in the

strong direction and superior in the weak direction. The two-directional press properties are

nearly isotropic, and slightly lower than the one-direction press strong-direction properties.

186

like a fiber mat than a solid ceramic. As further improvement in strength is obtained, a decrease

in the strain-to-failure and an increase in modulus is likely. It should also be noted that

failure. The high shear strength measured probably results from high fiber density and random compressive strain was obtained using crosshead motion, which gives a high value for strain to

relatively small amount of fiber bonding that was previously noted. The material is acting more

Strain-to-failure is quite high in both tensile and compression. This probably results from the

orientation.

I

H

L

K

- L

Ľ

13

Ľ

Ц

11

Ľ

H

K

Ľ

L

| VIGIGAG                                                                         | ONE DIRECTI                | ONE DIRECTIONAL PRESS*  | TWO DIRECTIONAL PRESS** | NAL PRESS** |
|---------------------------------------------------------------------------------|----------------------------|-------------------------|-------------------------|-------------|
| FRISIVAL FRUFERIT                                                               | LONGITUDINAL               | LONGITUDINAL TRANSVERSE | LONGITUDINAL            | TRANSVERSE  |
| DENSITY, KG/M <sup>3</sup> (lb/ft <sup>3</sup> )                                | 247 (15.4 ± 0.6)           | 1 ± 0.6)                | 247 (                   | 247 (15.4)  |
| TENSILE STRENGTH, N/M <sup>2</sup> 10 <sup>5</sup> (psi)                        | 5.7 (83±10) 2.2 (32±3)     | 2.2 (32±3)              | 4.2 (61)                | 4.1 (59)    |
| TENSILE MODULUS, N/M <sup>2</sup> 10 <sup>7</sup> (psi 10 <sup>3</sup> )        | 32 (46±8) 6.8 (10±2)       | 6.8 (10±2)              | 12.3 (18)               | 27 (39)     |
| STRAIN TO FAILURE, percent                                                      | $0.19 \pm 0.03$            | 0.32 ± 0.05             | 0.34                    | 0.15        |
| COMPRESSIVE STRENGTH, N/M² 10 <sup>5</sup> (psi)                                | 11 (166 ±25) 7.9 (115 ±20) | 7.9 (115±20)            | 8.9 (130)               | 9.7 (139)   |
| COMPRESSIVE MODULUS, N/M <sup>2</sup> 10 <sup>7</sup> (psi 10 <sup>3</sup> )*** | 12 (16±2)                  | 4.8 (7±2)               | 9.8 (13)                | 12.8 (17)   |
| STRAIN TO FAILURE, percent ***                                                  | 1.00 ± 0.25                | 1.5 ± 0.3               | 1.00                    | 8.0         |
| SHEAR STRENGTH, N/M2 105 (psi)                                                  | 4.8 (72)**                 |                         | 4.1 (60)                |             |

\*AVERAGE OF FORTY DATA POINTS FOR EACH VALUE ±95% CONFIDENCE LIMIT \*\*AVERAGE OF SIX DATA POINTS FOR EACH VALUE \*\*\*DETERMINED FROM CROSSHEAD MOTION

Figure 16

#### (Figure 17)

One of the critical aspects of RSI development is coating optimization. At Ames, the interaction ties that have been identified are: surface catalytic efficiency for recombination of atomic boundary Leiser, et al. and Stewart in Volume II of these Proceedings. Among the significant coating properof coatings with the convective heating environment are being studied as described in the papers by layer species, spectral and total emittance, and solar absorptance (reference 10).

The organic fluid is used because it has the proper combination of volatility and viscosity for successful spraying and the boric acid is insoluble in it. The coating is dried at 343°K (158°F) for at least The changes in chemical composition of coatings that occur due to convective heating affects these silica RSI. Shown on this figure are cross sections of two recently prepared coatings. These coatings were made by blending pure boric acid with Corning 7900 glass (Vycor). The Vycor was chosen because of An emittance pigment (3-10 percent solid weight) such as silicon carbide, chromium oxide, cobalt oxide, the RSI tile. The coating thickness is controlled by the number of passes taken with the spray gun; if etc., is added when desired. The emittance pigment strongly affects the final coating physical properproperties. In order to study these coating changes, coating systems are being developed for the Ames its low thermal expansion coefficient, which is very nearly the same as silica. The boron oxide serves a two-layer coating is being applied, the second layer is sprayed while the first layer is still wet. After ball milling for one hour, a 30 percent solids suspension in nitropropane is sprayed on to lower the viscosity of the Vycor allowing softening of the glass to occur at a lower temperature.

fully fused coating without significant shrinkage of the tile. In order to obtain a fully fused coating fired at various temperatures. The primary problem in firing the coatings has been to obtain a uniform, A number of firing techniques have been used. The coating cross sections shown in the figure were fired using an oxyacetylene torch. A one layer coating, having chromium oxide as the emittance pigment requires firing above 1590°K (2400°F) for five minutes or more depending on the exact glass composition Tiles made with fiber Lot 2102 are so unstable that firing a coating on them at temperatures of 1533°K and pretreatment. If the firing time is too long, significant tile shrinkage will occur. A sintered fiber Lot 1986 cannot be coated at all since they will crack after heating to 1366°K (2000°F). Tiles (2300°F) or above causes rapid devitrification and results in severe tile cracking. Tiles made with coating can be obtained by firing for an hour at 1366°K (2000°F) with no measurable tile shrinkage. illustrates, these coatings are very uniform. Coatings have also been furnace fired and radiantly allowable coating temperature and time-at-temperature are dependent on the fiber used in the tile. made with fiber Lots 2148 and 2155 can be successfully coated if they are not heated above 1653°K and a two-layered coating containing silicon carbide in the bottom layer are shown. (2500°F) for more than five minutes, after which significant shrinkage occurs.

I



Figure 17

## MICROSTRUCTURE OF SILICA RSI COATING SURFACE

(Figure 18)

oxide has been fused with the Vycor glass. Elemental analysis after firing shows a slightly lower boron content in the coating than before firing. The coating was raised from room temperature to 1643°K (2500°F) in less than one minute and held there for several minutes. Apparently the rate The rod-like features in the coating of solution of the boron oxide with the Vycor glass was rapid enough so that little boron oxide before firing are boric acid crystals. After firing a glassy surface is obtained. The boron This figure shows the outer surface of the two-layer coating containing silicon carbide was vaporized during firing. The two layer coatings have not been arc plasma tested. described in the previous figure, before and after firing.

with silicon carbide as the emittance agent was used. One such coating has been tested for ten For the arc plasma tests described in figure 19, a one layer, 0.5 mm (.020 inch) coating arc plasma cycles with no apparent deterioration. Additional tests are in progress.

H

I

H

L

L

# MICROSTRUCTURE OF SILICA RSI COATING SURFACE



Figure 1

(-d)

 $\binom{n_0}{n_0}$ 

L

L

## TEMPERATURE HISTORY DURING ARC PLASMA TEST OF AMES SILICA RSI

19) (Figure

The criteria for thermal stability were that The models tested were 10 cm heating environments representative of the Area 2 shuttle environment. The experimental technique In order to determine both the thermal stability and temperature response of the silica RSI, (4 inch) diameter disks, approximately 4 cm (1.5 inches) thick. They were exposed to convective the model showed no dimensional changes or visual cracks after test. described in the paper by Stewart (Volume II of these Proceedings) samples were tested in the Ames arc plasma facilities.

does LI-1542. Therefore, no weight penalty for the shuttle TPS is associated with the increased weak would result in a weight penalty, however. Further work is continuing in this area to determine the the thermal conductivity is higher when the fibers are randomly oriented to give isotropic strength Apparently, No sample degradation was noted. These samples will be further tested to determine their effect of both isotropy and fiber size on thermal conductivity. The one-directional press sample This figure compares the internal was exposed to ten arc-plasma test cycles and the two-directional press sample was run for three direction strength obtained in the Ames, one-direction press silica RSI. The isotropic material comparison indicates that the one-direction press material gives the same temperature response properties than when they are less randomly oriented and give anisotropic strength properties. direction press material shows a significantly lower temperature response internally. temperature response of the two materials. Front surface temperatures were the same. Both one- and two-direction press materials were tested. long term stability in a convective heating environment. cycles.





Figure 19

194

The process requires three days.

Fiber cleaning

can substantially improve resistance to devitrification and shrinkage though it does not measurably change bulk chemical composition. Large lot-to-lot variations in fiber chemistry and physical pro-

level but is still increased by the presence of alkali and alkaline earth impurities.

perties exist and currently pose a significant problem in processing silica RSI that is thermally

as 0.1 percent alkali or alkaline earth impurities increase the devitrification rate substantially and result in the fibers being only marginally usable. Shrinkage is not as sensitive to impurity

fiber and the finished tile correlate with the level and type of impurities in the fiber.

This study has shown that the devitrification and shrinkage of both the raw Microquartz 108

CONCLUS IONS (Figure 20) As little

H

H

H

weak direction. The isotropic tiles are slightly weaker in both directions than the anisotropic

cal properties than LI-1500 in the strong direction and are stronger by over a factor of two in the

Both isotropic and anisotropic tile have been made. The anisotropic tile have slightly better physi-

Resulting tiles have been demonstrated to be stable to both devitrification and shrinkage at 1533°K

A simple process has been developed for fabricating silica RSI.

(2300°F) for a minimum of ten hours, which is equivalent to over 100 shuttle Area 2P trajectories.

H.

tiles are in the strong direction.

coated tiles has demonstrated tile stability for ten shuttle Area 2 cycles in the convective heating. A coating process has been developed and coated tiles prepared. Cyclic arc plasma testing of

shows that the isotropic tile has a substantially higher thermal conductivity

A comparison of isotropic and anisotropic tile temperature response to simulated entry environments

L

H

L

L

### CONCLUSIONS

- CRITERIA FOR FIBER SELECTION ON THE BASIS OF CHEMICAL COMPOSITION, SHRINKAGE AND DEVITRIFICATION HAVE BEEN DEFINED
- A SIMPLE PROCESS FOR FABRICATING SILICA RSI HAS BEEN DEVELOPED
- 5% LINEAR SHRINKAGE AND NO DEVITRIFICATION OF TILES ARE SHOWN AT 1533°K (2300°F) IN TEN HOURS
- ANISOTROPIC TILE WITH IMPROVED WEAK DIRECTION STRENGTH HAVE BEEN FABRICATED USING CONVENTIONAL MOLDING **TECHNIQUES**
- NEARLY ISOTROPIC TILE HAVE BEEN FABRICATED USING UNCONVENTIONAL MOLDING TECHNIQUES
- Z ■ ISOTROPIC TILE SHOW INCREASED THERMAL CONDUCTIVITY ARC PLASMA TESTS

Figure 20

#### REFERENCES

- Final Report "Space Shuttle Thermal Protection System Development," NASA Contract NAS9-12083, LMSC-D1527738, SS-1187, Lockheed Missiles and Space Company, Sunnyvale, California, January 17, 1972. 1
- "The Utilization of Silica Based Surface Insulation for the Thuss, R.C., Thibault, H.G., Hiltz, A.: "The Utilization of Silica Based Surface Insulation for t Space Shuttle Thermal Protection System," presented at the National SAMPE Technical Conference on Space Shuttle Materials, Huntsville, Alabama, October 5-7, 1971. 2.
- Zaplatinsky, Isidor: "Devitrification and Shrinkage Behavior of Silica Fibers," NASA TN D-6891, Lewis Research Center, 1972. 3
- First Quarterly Report for the period June 30 to September 30, 1971, College of Engineering, Ceramic Mueller, J.I.: "Fundamental Research on the Nature and Properties of Ceramic Fiber Insulation, Engineering Department, University of Washington, Seattle, Washington, January 27, 1972. 4.
- A.D., Garofalini, S.H.: "Fundamental Research on the Nature and Properties of Ceramic Fiber Insulation," Mueller, J.I., Leiser, D.B., Ormiston, T.J., Khandelwal, P., Whittemore, O.J., Scott, W.D., Miller, Second Quarterly Report for the period October 1 to December 31, 1971, February 28, 1972. 5
- Mueller, J.I., Smiser, L.W., Ormiston, T.J., Khandelwal, P., Whittemore, O.J., Scott, W.D., Miller, Garofalini, S.H.: "Fundamental Research on the Nature and Properties of Ceramic Fiber Insulation, Third Quarterly Report for the period January 1 to March 31, 1972, April 28, 1972. 9
- Mueller, J.I., Smiser, L.W., Ormiston, T.J., Khandelwal, P., Whittemore, O.J., Scott, W.D., Miller, Garofalini, S.H.: "Fundamental Research on the Nature and Properties of Ceramic Fiber Insulation," Fourth Quarterly Report for the period April 1 to June 30, 1972, July 30, 1972.
- Hurley, E.B., Smith, E.G.: Final Report: "Improved Silica Fibers," NASA Contract NAS3-15566, NASA CR-120987, Johns-Manville Products Corporation, Waterville, Ohio, March 30, 1972. œ
- Ormiston, T.J., Whittemore, O.J.: "Sintering of Silica Fiber Compacts," presented at the Pacific Coast Regional Meeting of the American Ceramics Society in Portland, Oregon, October 25-27, 1972. 6
- Goldstein, H.E., Buckley, J.D., King, H.M., Probst, H.B., Spiker, I.K.: "Reusable Surface Insulation (RSI) Materials Research and Development," presented at NASA Space Shuttle Technology Conference, April 12-13, 1972, NASA TM X-2570. 10.

L

RADIANT HEAT TRANSFER IN

REUSABLE SURFACE INSULATION

by: T. A. HUGHES
R.M.F. LINFORD
R. J. SCHMITT
H. E. CHRISTENSEN

McDonnell Douglas Astronautics Company - East

St. Louis, Missouri

temperatures. Such coefficients have previously been shown to be directly relatable to infrared shinethrough. absorbed and scattered within the materials. Excellent correlation was obtained between theory and experibetween effective conductivity and guarded hot plate values suggested that radiant transfer through the HCF was occurring. To study the radiant transport, measurements were made of the infrared transmission through The specimens were modeled obtained which minimized the differences between measured and predicted thermal response. The differences and predicted temperatures, HCF specimens were instrumented in depth, laterally shielded, and subjected to various insulating materials and fibers of interest to the shuttle program, using black-body sources over During radiant testing of HCF-TPS panels, temperatures in the insulation and support structure To investigate the discrepancy between measured Similar results the range of 780 to 2000°K. Experimental data was analyzed using a "two-flux" model for the radiation ment, and scattering coefficients were derived for a variety of materials, fiber diameters, and source on the MDAC-E General Heat Transfer computer program, and curves of the effective thermal conductivity exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. several time-temperature profiles in air at pressures corresponding to flight. were obtained during arc tunnel tests of HCF specimens.

#### INTRODUCTION\*

specimen was significantly different from that predicted using guarded hot plate thermal conductivity data. Because the thermal response of the insulation has a critical influence on the structural integrity of the During the development program on HCF-RSI\*\*, MDAC-E conducted the usual guarded hot plate tests Under shuttle orbiter during entry, and requires accurate design data to avoid severe weight penalties, it is to measure the thermal conductivity of HCF as a function of pressure. In addition, to validate TPS designs, we conducted simulated mission tests under the expected shuttle orbiter entry conditions. the simulated mission tests, it was noted that the temperature response on the cool side of the HCF imperative that accurate and reliable heat transfer data be available.

scattered back to the originating surface. To resolve this problem, two approaches were used. One was the the effect of radiation transmittance or shinethrough, which is defined here as radiant energy, originating The guarded hot plate thermal conductivity data was inadequate due, not to inaccuracies, but to measurement of the effective conductivity under transient conditions, and the other was a basic study at the hot surface, transmitted through the insulation to the cool face, and which is not absorbed or radiation heat transfer through thermal insulations.

<sup>\*</sup>This paper describes work performed under Contract NAS8-26115, NASA-Marshall Space Flight Center, Alabama (reference 6)

<sup>\*\*</sup>Hardened and Compacted Fibers - Reusable Surface Insulation, an insulation made by MDAC-E using mullite fibers

### DYNAMIC EFFECTIVE THERMAL CONDUCTIVITY

(Figure 1)

(2300°F), in about 300 seconds, and holding that temperature for an additional 500 seconds. The response effective thermal conductivity as a function of mean temperature, which minimized the difference between for a general heat transfer thermal properties analyzer computer program. This program determined the The technique for measurement of effective conductivity under transient conditions employed of the thermocouples, precisely located within the test specimens, was recorded and used as the input thermal pulse was provided by rapidly heating a coated columbium radiant panel to bring the adjacent highly instrumented test specimens subjected to a thermal pulse with a constant temperature source. surface of the HCF (which had an opaque, high emittance coating) to the desired temperature, 1533°K measured and computed response of all thermocouples,

be conducted at a variety of subatmospheric pressures. The radiant panel and the space simulation chamber rack was installed directly over the coated columbium radiant panel of our graphite heater and the whole assembly mounted within a 1.68 m (5.5 ft) diameter space simulation chamber. This allowed the test to The figure shows a group of seven test specimens ready for simultaneous testing. are described in references 1 and 2.

# DYNAMIC EFFECTIVE THERMAL CONDUCTIVITY

THERMAL PERFORMANCE TEST SPECIMENS MOUNTED IN SPECIMEN HOLDER



### MEASURED VERSUS PREDICTED THERMAL RESPONSE

(Figure 2)

interface for strain isolation. The critical elements in this structure are the temperatures at the shuttle subscale panels .305 x .635 m (12 x 25 inch) using effective thermal conductivities obtained Figure 2 shows the improvement in predicting the temperature response of the more complex by the method described. This is an Area 2P structure incorporating an aluminum skin with a sponge guarded hot plate conductivity. It can be seen that the effective conductivity technique predicted at 1533°K (2300°F)]with those predicted from both effective thermal conductivity results, and from comparison between measured thermal response at 10 torr [using the 2P thermal profile, which peaks the measured response much more accurately than did the guarded hot plate conductivity values, the HCF/sponge interface (channel 18), and at the aluminum skin (channel 44). The figure shows the latter underestimating the temperature rise.

# MEASURED VERSUS PREDICTED THERMAL RESPONSE

### HALF-SIZE ALUMINUM AREA 2P PANEL, CYCLE 4 TEST PRESSURE = 10 TORR



Figure 2

### THERMAL CONDUCTIVITY COMPARISON

(Figure 3)

face (Area 1), and guarded hot plate results, all measured at 10 torr pressure. The effective conductivity The change in effective conductivity also explains the lessened correlation of subscale panel results shown corresponds to expected increases in intensity of radiation transmittance with higher surface temperatures. (at about 700 seconds) at 1533°K (2300°F) after which the surface temperature decays to about 466°K (380°F) A potential shortcoming of the effective conductivity measurement technique is that a different determined with the surface temperature at 1533°K (2300°F) is about 0.8 MJ/m sec°K (0.45 Btu-in/hr-ft<sup>2°F</sup>) higher than the guarded hot plate conductivity determined in accordance with ASTM-C-177. The guarded hot plate conductivity corresponds most closely to the effective conductivity measured with a 1033°K (1400°F) in figure 2, after times in excess of about 3000 seconds. The Area 2P thermal profile has an early peak surface temperature. The disparity in effective conductivity results at different surface temperatures effective conductivities of HCF determined for a 1533°K (2300°F) (Area 2P) and a 1033°K (1400°F), hot conductivity curve is produced at different surface temperatures. This figure shows a comparison of 3000 seconds.

## THERMAL CONDUCTIVITY COMPARISON 240 kg/m<sup>3</sup> (15 pcf) HCF

TEST PRESSURE = 10 TORR



Figure 3

### INFRARED TRANSMISSION MEASUREMENT

#### (Figure 4)

effective conductivity measurements and on mission performance, an extensive study was made of the infrared With considerable evidence indicating that radiation shinethrough had an appreciable effect on transmission characteristics of HCF and a number of other insulations and fibers,

The radiation from the Inconel slug was chopped at 13 Hz and focused on the entrance The transmittance measuring equipment is shown opposite. Black-body radiation was generated by a good gray body, and the spectral distribution of the emitted radiation was essentially identical to that of aperture of the integrating sphere. To provide a highly reflective, diffuse surface on the interior of the followed by a vacuum deposition of gold. The radiation entering the sphere was measured by a thermistor sphere, the inner wall was sprayed with a suspension of 180-grit silicon carbide powder in epoxy resin, of oxidized Inconel is about 0.9 and is relatively independent of wavelength; the slug was, therefore, A chromel-alumel thermocouple was spot welded to the slug for cylindrical slug of oxidized Inconel, which was inductively heated by a 450 kHz RF generator. detector connected to a lock-in amplifier tuned to the 13 Hz modulation frequency. a black body at the same temperature. temperature measurement.

gloves were installed in the wall of the enclosure for sample handling. All optical components in the system, moisture and carbon dioxide. To preserve the integrity of the purge during frequent sample changes, plastic nitrogen-filled plastic tent to reduce absorption of the radiation at selected wavelengths by atmospheric With the exception of the heated Inconel slug, all of the optical equipment was enclosed in a including the silver chloride window, the mirrors, and the thermistor detector, were chosen for their uniform properties over the wavelength range of the experiment.



### SPECTRAL TRANSMITTANCE OF DYNAQUARTZ

(Figure 5)

It is apparent from these curves that radiation in the 2 to 6 micron wavelength band is scattered extensively as it is transmitted through Dynaquartz, and is only detected by wide acceptance angle detectors. In contrast, the narrow angle detector measured The present study recognized that radiant energy transmitted by the materials would emerge from The errors that can the back surface scattered hemispherically. Measurements made with detection systems that accept radiaspectrometer was less than 0.01 m steradians, while the detector in the ellipsoidal-mirror reflectometer The collection angle of the prism transmission curves obtained with a 1.27 mm (.05 inch) thickness of Dynaquartz. The solid curve was be introduced by improper collection optics are illustrated in this figure, which shows the spectral obtained with a Perkin-Elmer Model 137 prism spectrometer with a narrow field of view detector, the tion only from a narrow angle will generate transmittance data of doubtful accuracy. dashed curve was generated from an ellipsoidal-mirror reflectometer. collected radiation over a solid angle of about m steradians. only the radiation in a narrow band centered about 7 microns.

The high transmittance peak at about 7.25 microns is typical of silica materials and is one According to theory, at the Christiansen wavelength, there no scattering due to lack of a discontinuity in index of refraction between particle and surrounding the Christiansen wavelengths for silica. mediums.



#### BLACK-BODY ENERGY DISTRIBUTION (Figure 6)

The importance of measurements in the 2-6 micron wavelength range is illustrated by this immediately concerned with. To assure maximum detection in this range, the measurements made in figure, which shows the spectral distribution of black-body energy for the temperatures we are this program employed an integrating sphere with an acceptance angle of  $2~\mbox{m}$  steradians.



$$= \frac{V_{S} - V_{BG}}{V_{100} - V_{BG}}$$

T = fraction transmitted where

VS = signal voltage with the specimen covering the aperture

 $\overline{\rm VBG}$  = signal voltage from background noise, obtained by blocking the source input to the  $V_{100}$  = signal voltage with the sphere entrance aperture uncovered

optical transfer system

n = sphere efficiency factor

rior of the sphere. This was not recognized until late in this program, after most of the data had been accumulated, and the data have not been corrected for it. The transmission correction specimen covers the aperture, and the reflectance of the surface of the sample facing the intefactor for our test equipment was found to be 0.88, which means that the reported interception If the detector in the sphere is not shielded from the aperture, a correction factor (n) is necessary to account for the change in reflective area of the integrating sphere when the (M) and backscattering (N) cross sections are slightly low. rior of the sphere.

The two-flux model formulated by Hamaker (Reference 3) and utilized by Larkin and Churchill (Reference 4), assumes that the interception and backscattering coefficients are independent of radiant energy spectral distribution (i.e., source temperature) and that radiant transport can be described by the two differential equations:

$$\frac{dI_1(x)}{dx} = -MI_1(x) + MI_2(x) + PoT_x^4$$

(1)

(2)

$$-\frac{dI_2(x)}{dx} = -MI_2(x) + NI_1(x) + P\sigma T_x^4$$

I<sub>1</sub> = flux in the direction of increasing distance (x), hot to cold surface I<sub>2</sub> = flux in the opposite direction
M = interception cross section, unit area/unit volume
N = backscattering cross section, unit area/unit volume
P = absorption cross section, unit area/unit volume where

The first equation states that in traversing a slice of material (dx), the intensity of the tion  $(1_2)$  and by reradiation. The second equation is the analogous balance for the flux in the cepted, and increased both by the amount of backscattering of the flux from the reverse direcradiant flux in the forward direction  $(I_1)$  is decreased by the amount of forward flux interreverse direction. These equations were solved for the case where absorption is negligible.

$$P = M - N = 0$$

M = M

with appropriate boundary conditions, and an expression was derived for the energy transmitted through the slab for radiation under a linear temperature gradient:

$$q_{r} = \frac{\sigma [T_{o}^{4} - T_{L}^{4}]}{\frac{1}{\varepsilon_{o}} + \frac{1}{\varepsilon_{L}} - 1 + NL}$$
(3)

where  $\epsilon_{_{0}}$  and  $\epsilon_{_{
m L}}$  are the emittances of the hot and cold faces of the slab and L the thickness.

room temperature, the PoT 4 terms in the differential equations may be neglected, as the detector circuit responded only to radiation signals modulated at 13 Hz, and the solution of In experimentally measuring the transmission of infrared radiation through a specimen at equations (1) and (2) is then:

$$\frac{1}{1}(L) = \frac{2\sqrt{M^2 - N^2}}{M + \sqrt{M^2 - N^2}} e^{-L\sqrt{M^2 - N^2}} \left[ \sum_{n=0}^{n=\infty} (-1)^n \left( \frac{M - \sqrt{M^2 - N^2}}{M + \sqrt{M^2 - N^2}} \right)^n e^{-2nL\sqrt{M^2 - N^2}} \right]$$
(4)

where  $\frac{1}{1(0)}$  = relative intensity of forward scattered radiation at thickness (L)

temperature we are concerned with, this is generally true for sample thicknesses greater than 1.27 cm (0.5 in). It is noteworthy that for those cases [thickness greater than 1.27 cm (0.5 in)] When L  $\sqrt{M^2-N^2}>2$ , the series within the bracket approaches unity. For the materials and the Larkin and Churchill equation

$$I_{1(L)} = \frac{2 M^2 - N^2}{M + M^2 - N^2} e^{-L} \sqrt{M^2 - N^2}$$

takes the form of Lambert's Law:

$$I_{1(L)} = Ae^{-kL}$$

The Lambert absorption coefficient in terms of Larkin and Churchill constants is k =

$$= \frac{2 \sqrt{M^2 - N^2}}{M + \sqrt{M^2 - N^2}}$$

A plot of the Larkin and Churchill equation should, therefore, be asymptotic to Lambert's Law for thicknesses greater than 0.762 cm (0.3 in) [ $^{-}$  1.95 kg/m $^{2}$  at 240 kg/m $^{3}$  ( $^{-}$  0.4 lb/ft $^{2}$  at 15 pcf)].

unit is reciprocal length. The data can be readily converted to reciprocal length by multiplying reciprocal reported on the basis of mass per unit area as this method provided automatic compensation for variations measuring the thickness of soft, low-density felted products. For many applications where it is desired The units for M, N, and P are shown above as reciprocal length. For most of the experimental work, we used an equivalent term -- the reciprocal of surface density. Measurements were made and are to compare materials on a thickness basis, or for use in the equations presented here, the preferred in density of individual specimens of the same composition, and eliminated the problem of accurately surface density by the density of the insulation.

The transmittance of an IR source by various thicknesses of HCF MOD III is shown in this figure. This illustrates the correlation of experimental data with the Larkin and Churchill equation (Equation 4) and with Lambert's Law. The experimental data are seen to correlate well with the Larkin and Churchill equation, which indeed becomes asymptotic to a simple exponential function as postulated.



Figure 7

## BACKSCATTERING CROSS SECTIONS OF SEVERAL CERAMIC FIBROUS INSULATIONS

#### (Figure 8)

fibers were determined as a function of source temperature, and are shown in this figure. It can be seen from these data that the backscattering of fibers (mullite, Microquartz, Refrasil A-100, and Astroquartz) is influ-Using the technique described, the backscattering coefficients for a number of insulations and raw enced mainly by fiber diameter, and to a lesser extent, by composition. The spectral distribution of the radiant energy (source temperature) also has a strong influence for mullite and aluminosilicate fibers/ materials but much less influence for silica materials. The nominal diameters of these fibers are:

| NOMINAL AVERAGE DIAMETER (MICRONS) | 1.3         | 1.3         | 9               | 7             | 2.5                |
|------------------------------------|-------------|-------------|-----------------|---------------|--------------------|
| COMPOSITION                        | Silica      | Silica      | Mullite         | Mullite       | Mullite            |
| FIBER                              | Microquartz | Astroguartz | Mullite, Coarse | Mullite, Fine | Mullite, Superfine |

Both are silica fibers of the same average diameter and about the same purity, though their manu-The reason for the disparity in backscattering results between Microquartz and Refrasil A-100 is and 10,000% do not reveal any visually apparent differences in surface texture or flaws. Two factors that might account for the difference, but have not been measured, are the distribution of the fiber diameters, facturing techniques are radically different. Scanning electron micrographs of these two fibers at 3000X which make up the average diameter, and the average diameter of the specific materials tested. unknown.

the Mod V composition essentially doubled the backscattering. The ultimate refinement may come from an HCF made with the superfine mullite fibers (2.5 micron diameter). While this block has not yet been made, results RSI blocks made from these fibers, whether silica or mullite, all showed decreases in backscattering contributed to the improvement). Also, the use of a blend of Microquartz with mullite fiber (4.7 micron) in increased the backscattering (this particular block also contained potassium titanate, which might also have compared to the original fibers. This would be expected as much of the weight of these blocks is made up of binder, and in some cases, low-density coarse fillers, which would be expected to be relatively inefficient In the case of HCF, the substitution of 1.6 micron diameter SKX fiber (Al203. Si02) significantly Comparison of the data on the fibers indicates how the transmission characteristics could be with the fiber indicate that the backscattering would be comparable to Microquartz-based insulations. could also have the advantage of the temperature resistance of mullite. scatters.

L



### INFRARED SCATTERING CHARACTERISTICS OF VARIOUS INSULATIONS (Figure 9)

certain where the optimum lies, but we believe it to be somewhere in the range of 1.0 to 1.5µ diameter. temperatures [366-700°K (200-800°F)] there is an optimum fiber diameter for maximum backscattering for Larkin and Churchill's data (reference 4) indicated that with glass fibers at lower source transmission (lower backscattering). For the temperatures and materials of concern here, we are not Glass fibers, smaller or larger than the optimum, resulted in greater IR each source temperature.

in most cases was considerably less. The absorption cross section (P) is related to but not equal to  $lpha_*$  $(P \approx 0)$ . It can be seen from figure 9 that this assumption is generally a reasonable one. Only in the case of Astroquartz did the absorption cross section exceed 4% of the interception cross section, and While the basic differential equations describing radiant heat transmission in insulations are relatively simple, their solution, except for steady-state conditions, are extremely complex. common assumption made to simplify the solutions is that the absorption coefficient is negligible the absorption coefficient (reference 5).

# INFRARED SCATTERING CHARACTERISTICS OF VARIOUS INSULATIONS

|                                                                                             |       |                          | CROSS S                          | CROSS SECTIONS (kg/m²)-1         | kg/m²)-1                         |                        |                                    |       |                        | CROSS SE               | CROSS SECTIONS (kg/m²);    | cg/m² );¹                |                        |
|---------------------------------------------------------------------------------------------|-------|--------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------|------------------------------------|-------|------------------------|------------------------|----------------------------|--------------------------|------------------------|
| MATERIAL                                                                                    |       |                          | SOURC                            | SOURCE TEMPERATURE<br>°K (°F)    | ATURE                            |                        | MATERIAL                           |       |                        | SOURCE                 | SOURCE TEMPERATURE °K (°F) | ATURE                    |                        |
|                                                                                             |       | 783<br>(950)             | 922 (1200)                       | 1089                             | 1256 (1800)                      | 1478<br>(2200)         |                                    |       | 783 (950)              | 922 (1200)             | 1089 (1500)                | 1256 (1800)              | 1478 (2200)            |
| HCF MOD III                                                                                 | ≥ z d | 23.43<br>23.35<br>0.08   | 19.74<br>19.66<br>0.08<br>978°K  | 16.41<br>16.32<br>0.08           | 13.97<br>13.91<br>0.08           | 12.70<br>12.64<br>0.06 | MICROQUARTZ FELT                   | Σzd   | 84.32<br>81.39<br>2.93 | 96.76<br>94.87<br>1.88 | 94.17<br>92.54<br>1.64     | 103.60<br>102.53<br>1.07 | 92.13<br>90.98<br>1.15 |
| HCF MOD III A                                                                               | Z Z d | 29.72<br>29.64<br>0.08   | (1300)<br>25.81<br>25.79<br>0.02 | 21.40<br>21.38<br>0.02           | 18.08<br>18.04<br>0.04           | 15.68<br>15.66<br>0.02 | DYNAQUARTZ                         | 224   | 55.18<br>54.77<br>0.41 | 55.81<br>55.53<br>0.29 | 55.18<br>54.93<br>0.25     | 53.05<br>52.82<br>0.23   | 54.79<br>54.62<br>0.16 |
| HCF MOD V<br>EXPERIMENTAL – BLEND OF<br>4.7 µ MULLITE FIBERS AND<br>MICROQUARTZ – NO FILLER | Z Z d | 46.80<br>46.74<br>0.06   | 46.78<br>46.76<br>0.02           | 41.91<br>41.88<br>0.03           | 34.31<br>34.29<br>0.02           | 28.94<br>28.92<br>0.02 | REFRASIL A-100                     | ZZQ.  | 53.60<br>52.06<br>1.54 | 53.05<br>51.61<br>1.43 | 55.30<br>54.21<br>1.09     | 64.58<br>63.88<br>0.70   | 60.48<br>59.85<br>0.63 |
| SKX – HCF<br>EXPERIMENTAL – SKX FIBERS<br>20% PKT                                           | ≥za.  | 57.37<br>57.27<br>0.10   | 59.34<br>59.27<br>0.06<br>867°K  | 50.94<br>50.90<br>0.04<br>978°K  | 41.82<br>41.78<br>0.04<br>1200°K | 41.62<br>41.58<br>0.04 | ASTROQUARTZ                        | ΣZd   | 31.54<br>29.08<br>2.46 | 26.81<br>23.02<br>3.79 | 24.95<br>21.14<br>3.81     | 25.34<br>21.55<br>3.79   | 23.90<br>19.91<br>3.99 |
| SILICA BONDED MICROQUARTZ "A"<br>261 kg/m³                                                  | Σz۵   | 51.27<br>51.10<br>. 0.16 | (1100)<br>54.44<br>54.34<br>0.10 | (1300)<br>52.66<br>52.56<br>0.10 | (1700)<br>49.46<br>49.40<br>0.06 | 45.74<br>45.67<br>0.06 | COARSE MULLITE FIBERS — 6 μ        | Z Z d | 25.91<br>25.81<br>0.10 | 22.63<br>22.55<br>0.08 | 20.71<br>20.65<br>0.06     | 16.82<br>16.73<br>0.08   | 13.35<br>13.27<br>0.08 |
| SILICA BONDED MICROQUARTZ "8"<br>141 kg/m³                                                  | ∑ Z d | 76.17<br>76.03<br>0.14   | 67.73<br>67.59<br>0.14           | 71.69<br>71.58<br>0.10           | 71.56<br>71.48<br>0.08           | 71.00<br>70.95<br>0.06 | FINE MULLITE FIBERS – 4μ           | Z Z L | 32.89<br>32.85<br>0.04 | 28.74<br>28.69<br>0.04 | 22.43<br>22.39<br>0.04     | 18.35<br>18.31<br>0.04   | 14.97<br>14.93<br>0.04 |
|                                                                                             |       |                          |                                  |                                  |                                  |                        | SUPERFINE MULLITE FIBERS $-2.5\mu$ | Z Z Q |                        | 83.63<br>83.61<br>0.02 | 69.13<br>69.10<br>0.02     | 59.17<br>59.15<br>0.02   | 48.86<br>48.84<br>0.02 |

Figure 9

M = INTERCEPTION CROSS SECTION
N = BACKSCATTERING CROSS SECTION
P = ABSORPTION CROSS SECTION

### TRANSMITTANCE AS A FUNCTION OF SPECIMEN TEMPERATURE

(Figure 10)

when the specimen cooled to room temperature, and showed essentially no change from the elevated temperature two materials (HCF and a silica-bonded Microquartz) as a function of specimen temperature is shown in this altered the scattering properties slightly, with the moisture being driven out as the specimen was heated. radiation transmitted through the sample from the heated Inconel slug was measured. The transmittance of about 1144°K (1600°F). In the case of the silica-bonded Microquartz, the transmission was again measured figure. A constant source temperature of 1255°K (1800°F) was used in this test. The figure shows a very As the detector output was fed through a lock-in amplifier tuned to the beam chopper frequency, only the slight increase in transmission for both materials as the specimens were heated from room temperature to The possibility that the backscattering characteristics might change with a change in specimen This assumption is based on the scattering occurring partly as a result of change in index of refraction refraction, could be expected to be responsible for this difference. We have concluded, therefore, that between particles and the surrounding medium. The presence of a water film, with a different index of values. It is believed that, initially, the presence of absorbed atmospheric moisture in the specimen enclosing the specimen in a small furnace and rotating the specimen in and out of the radiation beam. The transmission equipment previously described was modified the specimen temperature has no significant effect on the backscattering coefficients. temperature was also investigated.

H

L



Figure 10

#### SUMMARY AND CONCLUSIONS

(Figure 11)

was found to have little effect on infrared transmission, and the small change that did occur was likely ductivity values, measured under transient thermal conditions, have provided more accurate predictions, measurements have confirmed the existence of radiant transmission, and have allowed calculation of the backscattering, and absorption coefficients as a function of source temperature for silica and mullite temperature than did the silica fibers. In limited testing, the temperature of the insulation itself fibers of various diameters, and of insulation compositions containing those fibers. Generally, the interception and backscattering cross-sections of mullite fibers varied more as a function of source backscattering coefficients for the infrared energy. Data have been presented for the interception, The use of the normal guarded hot plate conductivity data provided inaccurate predictions Independent optical Effective condue to the presence of a thin film of moisture in the initial low temperature tests. of thermal response of mullite fiber based RSI panels in mission simulation tests. and the data indicated that significant radiation shinethrough was occurring.

### SUMMARY AND CONCLUSIONS

- NOT BEEN ADEQUATE TO DESCRIBE THE THERMAL RESPONSE OF CURRENT MULLITE CLASSICAL GUARDED HOT PLATE THERMAL CONDUCTIVITY MEASUREMENTS HAVE FIBER BASED INSULATIONS IN THE SHUTTLE THERMAL ENVIRONMENT
- FIBER BASED INSULATIONS HAS BEEN POSITIVELY IDENTIFIED BY OPTICAL METHODS. THE PRESENCE OF RADIANT TRANSMISSION THROUGH BOTH SILICA AND MULLITE
- BACKSCATTERING AND ABSORPTION CROSS-SECTIONS OF INSULATIONS TO INFRARED THE OPTICAL TECHNIQUE HAS PROVIDED A TOOL TO MEASURE THE INTERCEPTION,
- . BACKSCATTERING COEFFICIENTS OF MULLITE FIBERS WERE FOUND TO VARY WITH SOURCE TEMPERATURE SILICA FIBERS WERE FOUND TO BE LESS SENSITIVE. TO SOURCE TEMPERATURE.
- BACKSCATTERING COEFFICIENTS WERE RELATIVELY INDEPENDENT OF INSULATION
- WITHIN THE RANGE OF FIBER DIAMETERS TESTED (1.3–7  $\mu$ ), THE RADIANT TRANSMISSION WAS MARKEDLY REDUCED BY THE FINER DIAMETER FIBERS

Figure 11

L

225

#### REFERENCES

- Cox, B.G., "Thermal Testing Techniques for Space Shuttle Thermal Protection System Panels," presented at IES/AIAA/ASTM Sixth Space Simulation Conference, New York, N.Y., 1-3 May 1972. NASA SP-298, pp. 881-897. 1
- Hughes, T.A., "High Temperature Insulation Materials for a Reradiative Thermal Protection System," Year-End Summary Report, MDAC-E Report MDC E0-449, 10 August 1971, Contract NAS 8-26115 2.
- Hamaker, H.C., Phillips Research Reports 2, 55, 103, 112, 420, (1947). 3
- Larkin, B.K. and Churchill, S.W., "Heat Transfer by Radiation Through Porous Insulations," AIChE - Journal, 5 (4), 467 (1959). 4.
- Folweiler, R.C., "Thermal Radiation Characteristics of Transparent, Semitransparent and Translucent Materials Under Nonisothermal Conditions, "ASD-TDR-62-719, April 1964 5
- Hughes, T.A., "High Temperature Insulation Materials for Reradiative Thermal Protection Systems," Final Report, MDAC-E Report MDC E0-666, 19 July 1972, Contract NAS 8-26115. 9

### OPTIMIZATION OF REI-MULLITE PHYSICAL PROPERTIES

U

L

L

U

B₹

R. A. TANZILLI, S. MUSIKANT, P. N. BOLINGER, J. P. BRAZEL

GENERAL ELECTRIC COMPANY RE-ENTRY AND ENVIRONMENTAL SYSTEMS DIVISION PHILADELPHIA, PENNSYLVANIA

#### INTRODUCTION

duction may be achieved by the use of small diameter mullite fibers (1-2 microns). The original Babcock and Wilcox cal and thermal behavior of low-density, rigidized, fibrous insulation. These models have aided in the development peratures of 1644°K (2500°F) and above have clearly established this RSI candidate as the best material system for meeting the total Orbiter TPS requirements. Micromechanical modeling predictions, for example, indicate that at Also, experimental thermal conductivity data have confirmed thermal modeling predictions that a factor of two remullite fiber was supplied in 6-8  $\mu$ m nominal diameter. Current production comprises 4.7  $\mu$  m nominal diameter, Such improvement was effected in the Mod-1B REI-Mullite by an increase in the population of fiber junction bonds. of the present Mod-1B system. The intrinsic phase and dimensional stability of the all-mullite insulation at tem-In order to provide quantitative approaches to REI-Mullite material improvements, micromechanical and thermal least a factor two increase in critical mechanical properties (e.g., in-plane tensile strain) should be achievable. modeling studies of the basic insulation have been performed that provide considerable insight into the mechaniand further developments to finer fibers are now taking place.

tem modification has been achieved through the use of a high purity hafnia pigment. Improved surface-coating phase the orbital and entry thermal radiative requirements without recourse to refurbishment between flights. This sys-Another problem area recently addressed has been the development of a reusable surface coating that meets both and dimensional stability have been achieved through this surface coating change while still retaining its original noncatalytic behavior in a hypersonic flow environment.

L

H

H

II

L

K

L

# PHASE DIAGRAM FOR THE MOD-1B REI-MULLITE SYSTEM

(Figure 1)

example, the presence of boric oxide and phosphorous pentoxide have been shown to result in improved fiber properties variations in fiber properties may be achieved by adjustment of the relative proportions of the four oxide phases. For The Babcock and Wilcox Company (B&W) fiber is a quaternary oxide system whose mean composition lies within the phase equilibria tetrahedron as shown in Figure 1. As pointed out by Fetterolf in Reference 1, considerable (strength, strain capability) as a result of grain growth inhibition.

This particular quaternary system has been studied by General Electric Company for solid ceramic applications and regions of phase stability have been identified. Also shown in Figure 1 is the SBA-10 binder system whose mean composition lies on the ternary silica-alumina-boria triangle (cross-hatched). The binder composition has resulted in near optimum fillet formation (Figure 4), and the studies on regions of phase stability were considered in the selection of the SBA-10 composition.

#### PHASE DIAGRAM FOR THE MOD-1B REI-MULLITE SYSTEM



Figure 1

### PHASE STABILITY OF MOD-1B REI-MULLITE

(Figure 2)

U

U

U

L

U

L

L

melting point [2089 K (3300 F)]. Figure 2 shows x-ray diffraction patterns of a panel (a) as fabricated and (b) after an One of the major attributes of the REI-Mullite system is its phase stability at temperatures of 1644°K (2500°F) and above. The basic insulation has a relatively low and well-behaved thermal expansion and is refractory up to its aluminum borate and an amorphous glassy phase. It should be noted that the amorphous content of the composite is extended heat treatment at 1644 K (2500°F). In both instances, the major phase is mullite. Minor phases include reduced slightly after the extended heat treatment,

crystallographic thermal stability when exposed to peak temperature of 1644°K (2500°F) for times equivalent to 100 All the REI-Mullites studied to date (Mod-0, 1, 1A, and 1B) have had the common feature of dimensional and mission exposure.

3

H

L

11

u

H

II

H

U



Figure 2

system. The major parameter controlling shrinkage appears to be the mullite/silica ratio of the fiber. For example, tinuity. Hence, even a relatively small fraction of free silica in the fiber can cause substantial disruption of the fiber tensile residual strains which severely limit system capability. In the worst instance, complete loss of the TPS due structure. As shown in Figure 3, an order of magnitude reduction in shrinkage is achieved when the stoichiometric Figure 3 shows the volume shrinkage for three rigidized composites using the SBA-10 binder. Each composite was Dimensional stability (which is closely related to phase stability) is an important attribute of the REI-Mullite mullite ratio is exceeded. Needless to say, the lack of dimensional stability manifests itself in the development of  $(2500^{\circ} \mathrm{F})$ , the  $\mathrm{Al}_2\mathrm{O}_3/\mathrm{SiO}_2$  ratio should exceed the stoichiometric mullite ratio of 2.7 (based upon weight percent). Free silica rapidly transforms to cristobolite under this environmental exposure with severe dimensional disconisothermally heat-treated at 1644° K (2500°F) for five hours. In order to ensure dimensional stability at 164° K to severe distortion could occur if an over-temperature situation arises.

K

U

U

U

L

u

L

L

U

U

Ш

Ц

K

H

K

Ц

L

## DIMENSIONAL STABILITY AFTER 5 HR EXPOSURE AT 1644°K AS A FUNCTION OF FIBER COMPOSITION

|                                    |                   |           |                      |                        |          | ١        |
|------------------------------------|-------------------|-----------|----------------------|------------------------|----------|----------|
|                                    | PANEL<br>DENSITY  | EL<br>ITY | FIBER COMPOSITION(1) | DSITION <sup>(1)</sup> | ,        |          |
| FIBER                              | Kg/m <sup>3</sup> | pcf       | W/O MULLITE          | W/O SILICA             | VOL. (%) |          |
| BABCOCK & WILCOX<br>4.7 µm MULLITE | 192               | 12.0      | ~ 100%               | 5                      | 0.5      | <u> </u> |
| CARBORUNDUM FIBERFRAX H            | 192               | 12.0      | % <b>28</b> ~        | ~ 13%                  | 4.5      |          |
| J.M. MICROQUARTZ<br>(HIGH PURITY)  | 272               | 17.0      |                      | ~ 100%                 | 5.8      |          |

## (1) ESTIMATED FROM PHASE EQUILIBRIUM DIAGRAM.

Figure 3

# THREE-DIMENSIONAL ALTERNATE CUBE SPACE FRAME MODEL

(Figure 4)

Cl, El, normal to truss-section A2, C2, E2, and also to subsequent truss sections, forms an alternating-Thus, small  $\theta$  angles yield results representative of across-plane (or Z direction) proper-Fitting the truss-sections Al, The cube face diagonals form the plane Figure illustrates the alternate-cube space frame array utilized in the modeling In an attempt to establish strength and strain goals for the fibrous composites with low fiber volume fractions, a mathematical model has been developed that idealizes REI in terms of a threeties while large  $\theta$  angles yield results representative of in-plane (or XY direction) properties The sectional views are in the directions of the positive axes. cube arrangement of truss elements in three dimensional space. dimensional truss. of isotropy. study.

isotropy). Typical joint spacings (2) vary from 50 to 100 microns while total fiber lengths average in The photomicrograph shown in Figure 4 illustrates a typical XY plane (assumed to be the plane of Fibers have been studied in the laboratory with diameters ranging from the 200 to 400 micron range. to 8 µm.

The implications of this model suggested modifications in the fabrication procedures leading to significantly enhanced mechanical properties in the Mod 1B REI-Mullite.

L

K

L

### THREE-DIMENSIONAL ALTERNATE CUBE SPACE FRAME MODEL



Figure 4

100 mm

# STRESS COMPONENTS ASSUMED IN MATHEMATICAL MODEL

(Figure 5)

The stresses in the space frame may be viewed as resulting from three principal effects, as described in Figure 5. First, there are direct axial stresses in the members, which are the type of stresses that would result from a given geometry with all joints pin-ended (i.e., no restraint against rotation). Second, there are the bending stresses resulting from joint fixity. (Note typical fixed joint in accompanying photomicrograph.) Finally, there are the bending stresses resulting from the fact that the frame members were not initially straight.

Additional model assumptions used in the derivation of the governing equations for the evaluation of these stresses include the following:

- 1. Fiber diameter (d) is the same for all the truss members.
- 2. The inclined diagonals are all of the same length (joint spacing,  $\lambda$ ).
- The modulus of elasticity (E) and the initial out-of-straightness (a) are the same for all members.
- Fiber eccentricity (e) is defined as the ratio of out-of-straightness (a) to fiber diameter (d),

H

K

### STRESS COMPONENTS ASSUMED IN MATHEMATICAL MODEL



Figure 5

10 µm

237

# TYPICAL MECHANICAL BEHAVIOR PREDICTIONS OF THE MICROMECHANICAL MODEL

(Figure 6)

Fiber strength values modulus of elasticity as functions of fiber eccentricity, e, the truss angle,  $\theta$ , the ratio of joint of 344.8  $MN/m^2$  (50 ksi) and 689.5  $MN/m^2$  (100 ksi) were used along with a Young's modulus of 137.9 Numberical results have been obtained showing the variation of ultimate strength, strain and spacing to fiber diameter,  $\ell/d$ , and the allowable failure stress in the fiber.  $GN/m^2$  (20 × 10<sup>6</sup> psi).

fied experimentally, the highest strain levels are associated with the low  $\theta$  (Z direction) orientation. Figure 6 shows the effect of truss variables on the ultimate tensile strain capability. As veritions. Measured in-plane tensile strain capability of Mod-1B REI-Mullite matches the value predicted by the model for the parameters indicated, although the predicted strain in the Z direction is higher joint spacing, the larger the ultimate strain capability, especially for low  $\theta$  (Z direction) orienta-Higher strain levels are associated with the highest degrees of eccentricity. Also, the larger the

this material to increase the population and quality of the fiber-to-fiber joints (Mod 1B REI-Mullite). The developmental fabrication procedures being evaluated for REI-Mullite are designed to decrease θ and enhance the strain in the XY plane. In addition, heat treating techniques have been devised for

An extensive discussion of the micromechanical modeling research is described in the communication noted below and in Reference 2.

U

II

K

Private communication to B. W. Rosen and D. K. Bagchi, "Materials Sciences Corp.," Blue Bell, Pa. R. A. Tanzilli.

### TYPICAL MECHANICAL BEHAVIOR PREDICTIONS **OF THE MICROMECHANICAL MODEL**

VARIATION OF ULTIMATE STRAIN WITH ANGLE, heta(VOL. FRACTION = 0.05)







-8. |-

9.

1.0 25



FOR  $\ell/d\sim 25$ ,  $\ell=0.5$ ,  $\theta\sim 60^\circ$  (TYPICAL X-Y PARAMETERS DEDUCED BY SEM) **ULTIMATE STRAIN PREDICTION** 

$$egin{array}{c} \mathsf{X}\mathsf{Y} &\sim egin{array}{c} \mathbf{0}.\overline{\mathbf{35}} & \\ \mathsf{Z} &\sim \mathbf{1}.\overline{\mathbf{7}} & \\ \mathbf{Z} &\sim \mathbf{1}.\overline{\mathbf{1}} & \\ \end{bmatrix}$$



Figure 6

L

239

# **EFFECT OF FIBER DIAMETER VARIATIONS ON THERMAL CONDUCTIVITY**

U

Figure 7)

In For fibrous insulations, the principal mode of heat transfer at elevated temperatures is by thermal radiation. general the radiative contribution can be estimated from an empirical fit of the data with an equation of the form:

$$k_{\mu} = CT^{m}$$

where

C and m = Empirical constants determined by experiment

and thus provide the basis for a systematic experimental evaluation. For example, Larkin and Churchill (Reference 3) affect radiative transfer. Several theoretical models have been proposed which interpret these variables theoretically In order to proceed with a systematic optimization program, it is necessary to define the material variables that developed the following expression:

$$k_{\mathbf{r}} = \frac{8\sigma \ \mathrm{T}^3}{\mathrm{A} + 2\mathrm{S}}$$

where:

240

A = Absorption cross-section of the fibrous insulation

S = Back scattering cross-section of the fibrous insulation.

The coefficients A and S are readily determined experimentally from spectral transmission measurements. Their study identified fiber diameter as a major variable effecting the backscattering cross-section and fiber: void volume opacity as the variable effecting the absorption cross-section.

dramatic reduction in thermal conductivity is achieved through the use of small diameter mullite fibers. Figure 7 com-Recent experimental evaluations of fiber diameter effects on thermal conductivity have demonstrated that a rather pares the total thermal conductivity function of the current Mod IB REI-Mullite with a similar density panel fabricated using a 1, 7  $\mu$  in alumina-silica fiber and the SBA-10 binder. A thermal conductivity reduction greater than a factor below 2 um under NASA-Lewis sponsorship (Contract No. NAS 3-16764). At the conclusion of the contract activities, Babcock and Wilcox Company is producing, on an experimental basis, mullite fibers with the majority of the fibers of two has been measured over typical orbiter re-entry pressure and temperature regimes. It should be noted that B&W will make a decision regarding higher production quantities.

It should be noted that, on the basis of a recently developed TPS weight correlation parameter, W  $\sim$  (k/C<sub>D</sub>)<sup>1/2</sup> ( $\rho$ ) <sup>7/8</sup>, the project flight insulation weight (using 1.7 µm diameter mullite fibers) will be 30% less than the current Mod IB REI-Mullite insulation weight.



Figure 7

# EFFECT OF Cr203 FIBER: VOID OPACIFICATION ON THERMAL CONDUCTIVITY

(Figure 8

Additional reductions in thermal conductivity can be achieved through the utilization of opacification techniques to attenuate thermal radiation transfer through fibrous insulations. The development of a novel technique for applying near-continuous fiber coating of chromia platelets on mullite fibers (Figure 8 (a)) has enabled a direct quantitative assessment of this heat transfer attenuation mechanism to be made.

(approaching a factor of 2) at 1644 K (2500 °F). Another advantage of the fiber coating is that it acts as a direct thermal Figure 8(b) compares the thermal conductivity function for chromia opacificied REI-Mullite with that of unopacified REI-Mullite. Above temperatures of 1100°K, a significant reduction in thermal conductivity has been achieved radiation barrier to any transmitted component as illustrated by the comparative transmission measurements in

Although void opacification has not been incorporated into the current production of REI-Mullite, such implementation will yield a substantial TPS weight reduction. The combined effect of small diameter fibers and fiber: void opacification when implemented into the REI-Mullite system should lead to TPS weight reductions approaching a factor of two.

H

H

H

11

L

L

L

K

K

K

U

L

L

U

L

U

L

U

## EFFECT OF C<sub>r2</sub>0<sub>3</sub> FIBER: VOID OPACIFICATION ON THERMAL CONDUCTIVITY



TRANSMITTANCE OF OPACIFIED MOD 1-B FOR 1644°K (2500°F) SOURCE TEMPERATURE



**EXTRAPOLATED** 

 $P = 10^3 \text{ N/m}^2 (10^{-2} \text{ ATM})$ 

4.0

TEMPERATURE, °K

9

Ц

L

500

Figure 8

0.8

0.7

6.0

9.0

KOPACIFIED : KUNOPACIFIED

K

II

L

2000

1500

000

500

0

0

TEMPERATURE, °F

### **GUARDED HOT PLATE METHOD FOR HIGH TEMPERATURE** THERMAL CONDUCTIVITY MEASUREMENTS

(Figure 9)

Thermal conductivity measurements illustrated in Figures 7 and 8 were made utilizing a guarded hot plate thermal conductivity apparatus. This instrument is capable of making high accuracy thermal conductivity measurements from the main heater is guarded by a sensitive electronic proportional controller through sensing action of an eight junction vision 1). The principles of operation are illustrated in Figure 9. In order to ensure one-dimensional heat transfer cryogenic temperatures to 1273°K and is designed to be operated in accordance with ASTM specification C-177 (Re-

is sensitive to guarding errors, one must be especially concerned about errors introduced in far less conservative heat may be introduced if the guarding criteria, |TM-TG/AT|≤0.1 is exceeded. Because this conservative measurement transfer tests (e.g., comparator techniques, entry simulation testing) where provisions for appropriate geometry and guarding to insure one dimensional heat transfer may be compromised in terms of expediency or facility limitations. Also shown in Figure 9 is an error analysis for this conservative measurement technique. Substantial errors

1

L

14

K

11

Ц

K

L

L

I

U

U

L

u

U

### GUARDED HOT PLATE METHOD FOR THERMAL CONDUCTIVITY

L

 $\bullet$  APPLICABLE TO INSULATIVE MATERIALS WITH k < 17.3  $\frac{W}{m} \, {}^\circ\!K$  (10  $\frac{BTU}{ft \cdot hr} \, - {}^\circ\! \, F^)$ 

ELECTRICAL HEAT IN CENTRAL HEATER (D.C.) GUARDED BY ANNULAR GUARD RING HEATER TO ELIMINATE RADIAL TEMPERATURE GRADIENT PRINCIPLE:

U



K

Ľ

1

Ц

H

H

K

15

I.

Figure 9

#### (Figure 10)

The SR-2 type filled glaze surface coating is a multicomponent material with each component selected for a primary function as listed in the figure. The coating is chemically compatible with the REI-Mullite insulation substrate at the temperatures and mission environments encountered by the shuttle TPS.

L

L

U

U

U

The pigment component for the Mod-1B REI-Mullite has been designed to meet both the orbital and re-entry optical requirements.

å

L

U

H

1

K

II

K

K

I.

## MOD 1B REI-MULLITE SURFACE COATING DESIGN

| COMPONENT | COMPOSITION                                                            | PRIMARY FUNCTION                                      |
|-----------|------------------------------------------------------------------------|-------------------------------------------------------|
| KYANITE   | 3Al203 · 3Si02                                                         | STABLE FILLER                                         |
| PETALITE  | Li <sub>2</sub> 0 · Al <sub>2</sub> 0 <sub>3</sub> · 8Si0 <sub>2</sub> | THERMAL EXPANSION CONTROL                             |
| GLASS     | SiO <sub>2</sub> - Al <sub>2</sub> O <sub>3</sub> - MgO - CaO          | STRENGTH, H <sub>2</sub> O REPELLENCY, NON CATALYCITY |
| PIGMENT   | H <sub>f</sub> 0 <sub>2</sub>                                          | THERMAL RADIATIVE<br>PROPERTY CONTROL                 |

Figure 10

# ORIGIN OF ORBITAL AND ENTRY THERMAL RADIATIVE REQUIREMENTS

L

(Figure 11)

The forcing functions for both the orbital and entry thermal radiative requirements are graphically illustrated in this goal is illustrated from one point of view in Figure 11(b) where normalized basic insulation thickness is plotted as a function of initial entry temperature (or  $\alpha_{\rm S}/\epsilon_{\rm H}$  ratio). The thickness relationship holds true for the entire TPS surlished an  $\alpha_{\rm S}/\epsilon_{\rm H}$  ratio of 0.40-0.50 as an optimum goal for orbital temperature control. The criticality of achieving Figure 11(a) and (b). During orbit, the REI equilibrium temperatures are proportional to the fourth root of the solar absorptance/emittance ratio  $(\alpha_{
m s}/\epsilon_{
m H})$ , as plotted in Figure 11(a). Current NR/SD\* design requirements have estabface area and, therefore, has significant systems weight impact,

illustrated by the surface boundary condition in Figure 11(b). The systems weight impact of high temperature emissivity, although significant, is less than that of  $\alpha/\epsilon$  control, primarily because its effect decreases with peak surface tempera-Also of equal importance is the simultaneous achievement of a high temperature emittance during re-entry as

248

emittance, which includes the beneficial effects of the noncatalytic nature of the SR-series coatings, is a more realistic It should be noted that recent plasma arc experiments conducted by NASA-Ames have indicated that an effective parameter for expressing this boundary condition.

L

K

li

H

<sup>\*</sup>North American Rockwell Corporation, Space Division (NR/SD)

## ORIGIN OF ORBITAL AND ENTRY THERMAL RADIATIVE REQUIREMENTS

ORBITAL PHASE

RE-ENTRY PHASE

• NON CATALYTICITY EFFECTS

 $(\epsilon_H)_{EFF} = \frac{\epsilon_H}{\overline{q}}$  where q = q (actual)/q (fully catalytic)



Figure 11

#### п п п п п

# SELECTION OF AN OPTIMIZED THERMAL RADIATIVE COATING SYSTEM

(Figure 12)

coating systems. Figure 12 (a) and (b) shows the nature of this "ideal" coating in terms of its spectral reflectance dispoint of reference, the peaks of the respective black-body energy distributions are listed. Thus, in order to meet the to achieve high temperature emittance property requires low spectral reflectance down to 1,5 microns, at which point The experimental approach taken focused initially upon meeting the orbital requirement. A hypothetical "ideal" an abrupt rise in reflectance is required to maintain the spectral reflectance required for optimum solar absorptance, high temperature emittance. Figure 12(c) lists the equations used for evaluating these functions numerically. As a requirement is achieved with a coating which has a low reflectance in the 2 to 25 micron region. The more difficult coating was defined that exceeded the NR/SD on orbit requirements. This served as a basis for screening candidate tribution over the range of pertinent wavelengths, which are used for estimating solar absorptance and both low and solar absorptance goal, a high reflectance is required between 0.4 and 1 micron. The low temperature emittance

respective solar absorptance and emittance. The hafnia pigmented SR-2 coating is seen to most closely approach the A comparison of spectral reflectance functions for several candidates, SR-2 (NiO pigment), SR-2 (without pigideal function and meets the current NR/SD orbital requirement for a solar absorptance/emittance ratio of 0.4-0.5. ment), and the SR-2 HF1 (HfO2 pigment) are shown in Figure 12(a) and (b), together with integrated values of their

13

H

L

L

L

H

Ц

K

II

L

Ľ

## SELECTION OF AN OPTIMIZED THERMAL RADIATIVE COATING SYSTEM



igure 12

## SUMMARY OF THERMAL RADIATIVE PROPERTY DATA

(Figure 13)

A summary of the current status of the thermal radiative temperature control developments is given in Figure 13. It should be noted that the good agreement in the computed and measured high temperature emittance data indicates that entry emittance requirement of 0,80 at 1644 °K (2500°F) as a result of its fully noncatalytic surface characteristics. The SR-2 HF-1 coating system meets the NR/SD orbital  $\alpha_{\rm S}/\epsilon_{\rm H}$  requirement of 0.4-0.5, and also exceeds the only a slight shift in the composite coating absorption edge occurs as a function of temperature for the candidates screened.

U

U

L

U

U

L

L

1

H

H

Ľ

Ц

I

L

II

13

Ľ

#### SUMMARY

## OF THERMAL RADIATIVE PROPERTY DATA

|                      |      |            |                | COMPUTED (1) | ED (1)     | Нэ                                       | е <b>н</b> (Т > 1366°К)                                                                                    |
|----------------------|------|------------|----------------|--------------|------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|
| MAJOR<br>PIGMENT     | αS   | ен (311°K) | α\$/єң (311°К) | €H (1644°K)  | €H(1366°K) | LAB MEAS. (2)<br><sup>¢</sup> H (1366°K) | AIR ARC MEAS. (3) $\epsilon_{\text{EFF}} = \epsilon_{\text{H}}/\bar{q} \text{ (T} > 1366^{\circ}\text{K)}$ |
| NR/SD<br>Requirement | NA   | NA         | 0.50<br>0.50   |              | NA         | NA                                       | NA                                                                                                         |
| Hf02 (SR-2 HF1)      | 0.38 | 0.79       | 0.48           | 0.52         | 09.0       | 0.56                                     | > 1.00                                                                                                     |
| NONE                 | 0.48 | 0.61       | 0.79           | 0.53         | 0.58       | 0.65                                     | TBM                                                                                                        |
| NiO (SR-2)           | 0.72 | 0.67       | 1.10           | 99.0         | 0.67       | 0.70                                     | > 1.00                                                                                                     |

(1) COMPUTED FROM ROOM TEMPERATURE SPECTRAL DATA

DEDUCED FROM DIRECT TOTAL NORMAL EMITTANCE MEASUREMENTS (2)

(3) DEDUCED FROM NASA-AMES ARC TESTS

COATINGS ARE FULLY NON CATALYTIC, I.E.,  $\epsilon_{\text{EFF}}$  =  $\frac{\epsilon_{\text{H}}}{\overline{q}}$  > 1.00 NOTE:

WHERE Q = q (ACTUAL)/q (FULLY CATALYTIC)

# MICROSTRUCTURE OF SR-2 TYPE FILLED GLAZE SURFACE COATINGS

(Figure 14)

Figure 14(a). In addition to providing both the orbital and re-entry thermal radiative property requirements in a single fully reusable coating, the hafnia pigment has imparted a virtually pore-free structure when compared with the earlier Typical microstructure for the SR-2 HF1 coating (HfO2 pigment) used on the Mod-1B REI-Mullite is shown on version of the SR-2 coating shown in Figure 14(b). The hafnia modification has also imparted improved mechanical strength to the coating.

SR-2 COATING (NiO PIGMENT)



MICROSTRUCTURE OF SR-2 TYPE

RIGIDIZED MULLITE FIBER INSULATION



Figure 14

9



100 µm

SR-2 HFI COATING (HfO<sub>2</sub> PIGMENT)

SURFACE COATING

**2**55

## X-RAY DIFFRACTION PATTERNS OF THE SR-2 HF1 COATING

L

L

L

U

U

L

(Figure 15)

system retains its phase stability after extended high-temperature exposures, which is a requirement for system effec-Figure 15 illustrates a typical x-ray diffraction pattern for the current hafnia modified (SR-2 HF-1) coating system. The major phases include mullite, hafnium silicate, hafnium oxide, and an amorphous glass phase. The current tiveness.

17

U

H

K

K

U

### X-RAY DIFFRACTION PATTERN OF THE SR-2 HF1 COATING



Figure 15

#### SUMMARY

(Figure 16)

reuse at 1644° K (2500°F). In addition, projected reductions in basic insulation weight by a factor of two can be achieved The current Mod 1-B REI-Mullite system, using the B&W mullite fiber and the SBA-10 binder, has been found to be the only fiber-binder combination that satisfies the phase and dimensional stability requirements for continuous through the use of small diameter fibers (1-2  $\mu$ m) and fiber/void volume opacification.

thermal radiative property requirements for orbit and re-entry to be satisfied with a single reusable coating system. Continued refinements in the mechanical and thermal properties of the SR-2 HF-1 coating are foreseen for this highly Recent improvements in the SR-2 series coating by the incorporation of a hafnia pigment has enabled the total tailorable coating system.

#### SUMMARY

REI-MULLITE IS THE ONLY SYSTEM CAPABLE OF SHUTTLE TPS REUSE TO 1644°K (2500°F).

 HAFNIA PIGMENTED SR-2 SURFACE COATING MEETS BOTH ORBITAL AND RE-ENTRY THERMAL RADIATIVE REQUIREMENTS FOR REUSE WITHOUT REFURBISHMENT.

• 259

THERMAL AND MECHANICAL MODELS HAVE BEEN DEVELOPED WHICH SHOW FURTHER GROWTH POTENTIAL ASSOCIATED WITH THE REI-MULLITE SYSTEM:

FACTOR OF 2 IMPROVEMENT IN MECHANICAL PROPERTIES

I

FACTOR OF 2-3 REDUCTION IN THERMAL CONDUCTIVITY

Figure 16

K

K

Ľ

#### REFERENCES

- R. N. Fetterolf, "Development of High Strength, High Modulus Fibers," AFML TR-70-197, August 1970.
- R. A. Tanzilli (Editor), "Development of an External Ceramic Insulation for the Space Shuttle Orbiter," NASA CR-112038, April 1972. 5.
- B. K. Larkin and S. W. Churchill, A.I. Ch. E. Journal, Vol. 5, p. 467, 1959. 3.

9

#### SILICA RSI MORPHOLOGY AND PROPERTIES

R. M. Beasley and J. C. Robinson LOCKHEED MISSILES & SPACE COMPANY. INC.

#### SILICA RSI SELECTION (Figure 1)

density variations noted in the figure, any polymorphic transformations would be accom-In considering materials for Shuttle TPS it was noted that most inorganics, particularly disruptive change-in-state, described as "grain growth," would probably occur within those available for fibrous RSI, exhibit many possible polymorphs. As indicated by the the Shuttle environmental envelope, primarily as a function of time, temperature, and panied by volumetric changes. Also, in the case of the crystalline phases, a further minor mineralizing constituents.

property characteristics of the polymorphs as related to the specific material dispositions These factors were considered along with possible mechanisms for their control, and the formation to crystalline silica generally involved heterogeneous surface nucleation and required and influenced by the predicted Shuttle TPS envelope. It was found that transthus could be influenced by materials and processes. Further, this analysis readily identified that silica - in particular, amorphous silica, unquestionably offered the superior characteristics basic to the Shuttle TPS application, including

- Lowest theoretical density
- Lowest thermal expansion
- Lowest thermal conductivity

L

Highest thermal shock resistance

### SILICA RSI SELECTION

|                              |                                                   | NO OFFECTION                   | 2                                          |                                                              |
|------------------------------|---------------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------------|
|                              | COMPOSITION                                       | NAME                           | DENSITY (gm/cc)                            | FORM                                                         |
| SILICA                       | SiO <sub>2</sub>                                  | QUARTZ                         | 2.65                                       | HEXAGONAL                                                    |
|                              | SiO2                                              | CRISTOBALITE                   | 2.32                                       | TETRAGONAL                                                   |
|                              | SiO <sub>2</sub>                                  | TRIDYMITE                      | 2.26                                       | RHOMBIC                                                      |
|                              |                                                   | GLASS                          | 2.20                                       | <b>AMORPHOUS</b>                                             |
| <b>ALUMINUM SILICATE</b>     | •                                                 | KYANITE                        | 3.6                                        | TRICLINIC                                                    |
|                              | •                                                 | SILLIMANITE                    | 3.25                                       | RHOMBIC                                                      |
|                              | Al <sub>2</sub> O <sub>3</sub> · SiO <sub>2</sub> | ANDALUSITE                     | 3.20                                       | RHOMBIC                                                      |
|                              | က                                                 | MULLITE                        | 3.16                                       | RHOMBIC                                                      |
|                              |                                                   | GLASS                          | 2.54                                       | <b>AMORPHOUS</b>                                             |
| MULLITE                      | 1                                                 | KYANITE                        | 3.6                                        | TRICLINIC                                                    |
| (AI203-5102-P205-P203) AI203 | •                                                 | SILLIMANITE                    | 3.25                                       | RHOMBIC                                                      |
|                              | •                                                 | ANDALUSITE                     | 3.20                                       | RHOMBIC                                                      |
|                              | 3 Al203 · 25102                                   | MULLITE                        | 3.16                                       | RHOMBIC                                                      |
|                              | 3 Al203 . B203                                    | ALUMINUM BORATE                | 3.0                                        | RHOMBIC                                                      |
|                              | B203 P205                                         | BORON PHOSPHATE                | 2.80                                       | TETRAGONAL                                                   |
|                              | •                                                 | ALUMINUM PHOSPHATES            |                                            | ISOMORPHOUS WITH FORMS<br>OF SIO <sub>2</sub> AND 17 SPECIES |
|                              | SiO <sub>2</sub>                                  | GLASS AND<br>CRYSTALLINE FORMS | '                                          |                                                              |
|                              | 8203 · SiO2                                       | BOROSILICATE<br>GLASSES        |                                            | AMORPHOUS                                                    |
|                              | Al203 . B203 . S102                               |                                |                                            |                                                              |
| 2                            |                                                   | ALUMINUM<br>BOROSILICATE       | VARIOUS GLASSES AND<br>CRYSTALLINE SPECIES | ASSES AND<br>E SPECIES                                       |
|                              |                                                   |                                |                                            |                                                              |

SOURCE: BULLETIN OF NATIONAL RESEARCH COUNCIL NO. 118, NATIONAL ACADEMY OF SCIENCES

## HOT STAGE X-RAY DIFFRACTION EVALUATION PROCEDURES (Figure 2)

beginning of development of LMSC's reusable insulation systems. An analytical method for The potential variability of the morphology of inorganic materials was recognized from the assessing and characterizing this phenomena in relation to expected Shuttle heating was needed to guide material selection and RSI development activities - particularly those addressed to attaining phase stability.

attain plotable curves indicating change-of-state against temperature. The main elements resulting data were considered to be roughly semiquantitative. No attempt was made to specimen were considered to be insignificant in the observation of devitrification, since specimen densities and thicknesses were uncontrollable. Temperature gradients in the the specimen thickness was such that greater than 99 percent of the diffracted intensity Techniques were developed for X-ray diffraction evaluations under transient heating to arrive at quantitative cristobalite values from this type of data, since variations in established for hot stage X-ray diffraction are indicated in the figure. At best, the could be detected.

While the data were semiquantitative, this analytical tool was of great value in indicating initiation of devitrification and variation in morphology characteristics.

L

## HOT STAGE X-RAY DIFFRACTION EVALUATION PROCEDURES

### SAMPLE PREPARATION

MATERIAL SAMPLE GROUND

L

L

u

L

U

- FORMED INTO .254 mm (10 mil) THICK SPECIMEN BETWEEN STAINLESS STEEL DIE FACES
- MOISTENED WITH DISTILLED WATER TO FORM ONTO HEATING ELEMENT

#### X-RAY EQUIPMENT

L

U

- NORELCO WIDE ANGLE X-RAY DIFFRACTOMETER
- NI FILTERED Cu K

  RADIATION AT 40 KV AND 20 MA
- HOT STAGE, MATERIALS RESEARCH CORPORATION MODEL X-86-N-11
- HEATING ELEMENT, 40 PERCENT Rh-Pt RIBBON WITH 13 PERCENT Rh-Pt THERMOCOUPLE

### X-RAY MEASUREMENT

H

Ľ

1

265

L

SCAN FROM 36 DEG  $2_{ heta}$  TO 15 DEG  $2_{ heta}$  AT ROOM AND ELEVATED TEMPERATURES UNTIL CRISTOBALITE 101 DIFFRACTION LINE STOPS INCREASING IN INTENSITY OR TO 589°K (2400°F)

#### DATA

H

П

- AREAS UNDER CRISTOBALITE 101 AND QUARTZ 1011 LINES ARE PRODUCTS OF PEAK INTENSITY MINUS BACKGROUND AND WIDTH AT HALF MAXIMUM
- PLOT PRODUCTS AGAINST TEMPERATURE TO PRODUCE SEMI-QUANTITATIVE MATERIAL DEVITRIFICATION CURVE

K

H

I.

L

igure 2

## HOT STAGE X-RAY DIFFRACTION EVALUATION AND SELECTION — PHASE I MATERIALS (Figure 3)

upon identifying materials that resided along the right side of the curves. Only materials that indicated initiation of crystallation above 1338 K (1950 F) were considered for use. Hot stage X-ray diffraction analysis was used in the evaluation and selection of fibrous selection process are presented in the figure. The final selection criterion was based materials for Phase I NASA Contract. The extremes of data encountered during the



## HOT STAGE X-RAY DIFFRACTION EVALUATION AND SELECTION – PHASE II MATERIALS

(Figure 4)

can present for materials exhibiting high orders of phase stability. Quantitative analysis stage X-ray diffraction was dropped in favor of the newly developed quantitative analysis The curve family represents the hot stage X-ray diffraction data recorded for Phase II materials. These data display the misleading information that this analytical method showed all Phase II materials to be noncrystalline. Because of this limitation, hot methods for establishing material morphological characteristics.

269

## HOT STAGE X-RAY DIFFRACTION EVALUATION AND SELECTION



## QUANTITATIVE X-RAY DIFFRACTION PROCEDURES (Figure 5)

The main elements involved in performing quantitative evaluations of the morphology of cristobalite and quartz have been prepared for the reduction and reporting of data. silica materials are summarized in the figure. Standards taken to be 100 percent

are heat treated under the desired conditions in closed amorphous silica crucibles prior For evaluations of the influence of thermal treatements upon silica materials, samples to X-ray diffraction analysis. The use of crucibles during treatments aids in obtaining high reproducibility of data, even for slight phase transformations.

# QUANTITATIVE X-RAY DIFFRACTION PROCEDURES

### SAMPLE PREPARATION

- MATERIAL SAMPLE GROUND IN SHAPPHIRE MORTAR
- POWDERED MATERIAL PRESSED INTO SAMPLE HOLDER WITH MICROSCOPE SLIDE TO PROVIDE SMOOTH FACE

#### X-RAY EQUIPMENT

GENERAL ELECTRIC XRD-5, OR NORELCO WIDE RANGE DIFFRACTOMETER WITH V-FILTERED Cr Ka RADIATION

### X-RAY MEASUREMENT

- **PER MINUTE** SCAN FROM 42 DEG  $2\theta$  TO BELOW 32 DEG  $2\theta$  AT 0.2 DEG  $2\theta$ AND CHART SPEEDS OF 31cm (12 in.) PER HOUR
- INTEGRATE INTENSITIES DIRECTLY FROM CHART BY MEASURING PEAK INTENSITY ABOVE BACKGROUND AND MULTIPLYING BY WIDTH AT ONE-HALF MAXIMUM

#### DATA

COMPARE INTEGRATED INTENSITIES TO THOSE OF STANDARD MATERIAL MEASURED UNDER SAME CONDITIONS

Figure 5

271

### QUANTITATIVE X-RAY DIFFRACTION EVALUATION OF LI-1500 MATERIAL (Figure 6)

change might result after heating for two days at that temperature. It is interesting to processed). Phase II materials were noncrystalline and displayed an extreme resist-X-ray diffraction results might indicate significant crystallization at temperatures as low as 1533°K (2300°F), quantitative results established that a maximum of 2 percent ance to the development of crystalline phases. It should be noted that while hot stage through LMSC in-house studies of the influence of material and process parameters upon transformation characteristics. The Phase I materials displayed rather rapid increases in crystallinity with heating (starting from typical 20 percent content as contemplate the duration of heating that would be required just to reach the content The data show the significant change in the silica morphological stability obtained displayed by "as processed" Phase I materials that performed well in extensive thermal tests at NASA facility.

# QUANTITATIVE X-RAY DIFFRACTION EVALUATION OF LI-1500 MATERIAL



Figure 6

### LMSC SILICA RSI MORPHOLOGY

The morphology of all LMSC silica materials produced during the past 18 months has been noncrystalline and resistant to any phase transformations upon subsequent thermal testing representative of the Shuttle environment envelope.

development of an extremely dependable RSI material family offering the inherently LMSC's ability to control material state as well as processes has resulted in the superior characteristics of amorphous silica for Shuttle. EVALUATIONS OF RSI MATERIALS

by

C. W. Kistler, D. E. Niesz, and E. L. Foster

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

McDonnell-Douglas under Contracts NAS9-12084, 12083, and 12082, respectively. The materials obtained from an evaluation of RSI materials obtained from General Electric, Lockheed, and general, each task generated screening data and characterization information on materials evaluated were believed to represent the state of development as of about January, 1972. Battelle's Columbus Laboratories has evaluated nonmetallic materials for the manned space shuttle through a contract with NASA-MSC for approximately two years. In obtained by NASA from development contracts. The current paper presents the results

conducted on the coated materials are discussed in another paper presented at this Symposium. property data on RSI insulation materials and on their respective coatings. To aid in the interpretation of data and identify features unique to each material, a limited amount of The objective of this program was to obtain valid mechanical and thermophysical mechanical and thermophysical testing techniques developed at Battelle specifically for evaluating separate properties of the insulations and coatings. Plasma-arc evaluations physical characterization was conducted. However, the present paper emphasizes unique

#### MATERIAL CHARACTERIZATIONS ROUTINE METHODS EXPERIMENTAL TECHNIQUES

RESPONSE TO ENVIRONMENTS FURNACE TESTS ARC TESTS MECHANICAL PROPERTIES TENSILE (TO 1370°K) COMPRESSIVE (TO 1370°K) SHEAR (ROOM TEMPERATURE)

THERMOPHYSICAL PROPERTIES
EXPANSION
CONDUCTIVITY
EMITTANCE
SPECIFIC HEAT

Figure

#### MATERIAL CHARACTERIZATIONS (Figure 2)

cutting, the bulk densities of uncoated bars were determined, and the density gradient through each panel was checked by slicing up a small sample. The GE mullite evaluated in this report had an uncoated bulk density between 183 and  $202 \text{ kg/m}^3$  (11.4 to 12.6 lb/ft<sup>3</sup>), the Lockheed silica panel ranged from 232 to 271 kg/m<sup>3</sup> (14.5 to 16.9 lb/ft<sup>3</sup>), while the MDAC mullite ranged from 234 to 295 kg/m<sup>3</sup> (14.6 to 18.4 lb/ft<sup>3</sup>). This figure summarizes conventional and experimental characterization performed on each material. Radiographic examination was conducted prior to cutting each panel. After

X-ray diffraction examination revealed that the as-received GE insulation was predominately mullite materials both as-received and after furnace cycling to 1532°K (2300°F). Thermal gravimetric analyses indicated the LMSC and MDAC coatings contained volatile matter believed to be waterwith some cristobalite (peak ratios about six), the Lockheed material was amorphous, and the After furnace cycling to 1644°K (2500°F) for a total of 2-1/2 hours at this temperature, the insulation now contained more mullite than cristobalite (peak ratios about eight). Moisture Scanning electron microscopy was used to evaluate coating damage done by various MDAC insulation was predominately cristobalite with some mullite (peak ratios about one). coating appeared to be more affected by exposure than either of the other two coatings. irregularities inherent in the coatings. Coatings were also examined by this technique determine microstructural changes accompanying thermal exposure in a furnace. The MDAC GE material was unchanged, the LMSC material contained some cristobalite, and the MDAC adsorption at room temperature and 95 percent relative humidity was negligible for all cutting and grinding techniques and revealed that edge damage was minor compared to repellent additives.

range. A cursory examination of the coatings revealed no apparent microstructural or thickness differences which could account for the observed difference. Neither of the other NDT methods Three experimental evaluation techniques were briefly evaluated as possible methods of detecting irregularities. The infrared inspection technique indicated differences in the radiation characteristics of two coatings from one material measured in the 1 to 4 micron appeared promising.























H

L П

H

## MATERIAL CHARACTERIZATIONS

### CONVENTIONAL

- **PHOTOGRAPHY**
- RADIOGRAPHY BULK DENSITY
- SCANNING ELECTRON
  - MICROSCOPY
- X-RAY DIFFRACTION
- MOISTURE ADSORPTION THERMAL GRAVIMETRIC
- ANALYSIS

### **EXPERIMENTAL**

- HOLOGRAPHY
- INFRARED INSPECTION
  MICROWAVE TRANSMISSION

Figure 2

### TOP VIEW OF TYPICAL CUTTING FORMAT SHOWING SAMPLE UTILIZATION PLAN (Figure 3)

evaluation of the effects of thermal exposure on tensile and compressive properties, 12 bars to provide, for example, thermal conductivity samples. Because the test plan called for an damaged in handling. Some minor exceptions to the general utilization plan were also made from each panel were furnace cycled before machining to the final specimen configuration. provided for each material. No attempt was made to be selective in material utilization unless radiographic examination revealed areas of gross irregularities or specimens were In order to assess the panel-to-panel uniformity of each type of material and ensure that all the mechanical property data generated were representative, a cutting plan was designed to provide one sample for each test condition from each of

cut bars, those to be used for shear, compressive or cross-plane tensile tests were ground so that the loaded faces were flat and parallel. In-plane compressive specimens were taken from Because two coatings were required to fabricate a coating tensile sample, two bars had to be allocated for each test condition even though the insulation beneath the second bar was not sample. A 100-grit frit-bonded grinding wheel was found suitable for grinding the coatings All cutting was done dry with a metal-bonded diamond wheel. After numbering the insulation with a diamond wheel after a reduced gage section had been ground in the coated required for testing purposes. Coatings were removed from the as-received or heat-treated without chipping the edges. After the coatings were removed, they were positioned upside the lower half of each numbered bar, while the upper half was used for tensile specimens, of the glassy zone down on a magnetic table, shimmed at each edge with steel shim stock, and the residual insulation ground off to within 0.25 to 0.50 mm (0.01 to 0.02 inch)

Ľ



Figure 3

### SHEAR TEST TECHNIQUE (Figure 4)

The shear fixture shown in this figure was used to determine the cross-plane shear of the frame for alignment purposes. Strain was monitored from the extensometer attached to samples were epoxied to flat regions of the solid steel bar passing freely through each end the specimens relative to the shear planes is also shown. The 2.3 x 2.5 x 4.8-cm  $(0.9 \times 1 \times 1.9 \text{ inch})$ The epoxy bond and any coating For clarity, the orientation of the movable and stationary portions of the frame. were ignored in calculating the shear moduli. properties of both coated and uncoated RSI.

Average shear properties, determined from four samples of each material, are compiled below, where English units are given in parentheses

| tric Lockheed McDonnell-Douglas | 23 (33) 29 (42)<br>3) 7.6 (11) 6.2 (9)<br>0.44 0.55                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| General Electric                | 18 (26)<br>5.0 (7.3)<br>0.45                                                                                                     |
|                                 | Strength, $10^4 \text{ N/m}^2 \text{ (psi)}$ Modulus, $10^7 \text{ N/m}^2 \text{ (}10^3 \text{ psi)}$ Strain to Failure, percent |

Consequently, designers may want to consider these new data in sizing of panels materials means that stresses in a TPS panel could be higher than those predicted on the basis portions of the RSI panels were weak, however, was not confirmed in cross-plane tensile tests. The "increased" stiffness of the corresponded to the center part of the original panel. The implication that the center Stress-strain curves began deviating from linearity at about one-third the fracture stress at Future plans call for both in-plane and cross-plane shear properties to be determined up to 1144°K (1600°F) on more recent lots of material. While there seems to be no difference in properties between coated and uncoated samples, many of the samples failed near the face The strengths appear to be in line with the data available from the respective material suppliers, but the moduli are from two to ten times higher. an elastic strain limit of between 0.10 and 0.20 percent. of other data.

U

L



### DUAL-COATING TENSILE SPECIMEN (Figure 5)

the two coatings. The actual thickness of each coating was about twice the thickness of the coatings up to 1367°K (2000°F), and to determine the "softening point" of the coatings under coatings were held in the proper position in the molds by foam rubber pads slipped between glassy layer on which the property data were calculated. Bending stresses were minimized through the use of knife-edge alumina links which pivoted on alumina pins slipped through The refractory cement caps consisted of 80 percent minus-48-mesh fused silica This figure illustrates the method used to determine the tensile properties of load. Two coatings were cast in refractory cement caps to form a single specimen. mullite aggregate bonded with 20 percent calcium aluminate cement. each cap.

U

L

L

(0.5 inch) square in the reduced gage section and 1.25 cm (0.5 inch) by 2.5 cm (1.0 inch) in size but were epoxied to aluminum blocks for convenience. A lever-arm extensometer was used to measure strain in the gage section of both the coating and in-plane insulation samples. the caps, being reduced in only one direction. Room-temperature specimens were also this In-plane insulation specimens were tested at elevated temperature by capping solid insulation sample instead of the coatings. The insulation samples were 1.25 cm

Because the gage sections were not reduced, strain was monitored with an extensometer clipped Cross-plane insulation samples were only tested at room temperature and consisted to the loading blocks. Techniques for measuring the cross-plane tensile properties at of 2.5-cm (1-inch)-square, 4.8-cm (1.9-inch)-long samples epoxied to aluminum blocks. elevated temperatures are currently being developed.

L

L

II

K

17

L

L

11

H

U





#### (Figure 6)

at elevated temperature. It was also used to obtain comparative data on compressive samples This figure is a schematic diagram of one of two extensometers designed and built to obtain valid strain data from opposite sides of in-plane tensile specimens, particularly at room temperature and to measure the thermal-expansion characteristics of dual coating specimens under a tensile load of 5 to 8 x  $10^5$  N/m<sup>2</sup> (80 to 120 psi) to determine their softening points.

slippage of the rods on coating samples had a negligible effect on the insulation samples, The arms of the extensometer pivot at mid-length on leaf springs attached to an specimen with an axial thrust of 12 grams maintained through a counter weight. The rods Invar bar to minimize thermal effects. Pointed alumina rods are positioned against the exert no upward or downward thrust on the sample. The 12-gram thrust needed to prevent temperature. The entire assembly is balanced so that the lever arms remain horizontal generally leaving no visible marks unless the sample falls against the rod on failure. pass through holes in a split silicon carbide resistance furnace, which is moved into position after the extensometers have been suitably positioned on the sample at room

on each specimen by positioning the aluminum frame on a thin ledge attached to a gage-setting A novel feature of the extensometers is that the gage length is set automatically extensometers provides a stop to prevent damage to the specimen. The extensometer has a sensitivity better than  $\pm$  50 x 10° cm ( $\pm$  20 x 10° inches) corresponding to  $\pm$  0.001 percent post, then pushing the entire assembly against the specimen until the assembly swings the ledge and free of the post. A bar fastened in position on the table holding the strain in a 5-cm (2-inch) gage length.



Figure 6

section. Method A was also used to obtain elevated temperature data since the loading fixtures were alumina. Method B was also used to obtain room-temperature cross-plane compressive data and cross-This figure illustrates three methods used to determine in-plane compressive property data at room temperature. All samples were nominally 2.5 cm square (1 inch square) with no reduced gage plane tensile data by replacing the steel balls with universal joints. The extensometer used to eliminate "end effects" in Method C is described in figure 6.

at elevated temperatures, modifications are being considered so as to obtain both strength and strain "good" strength and "good" modulus values. At this time, it is not known whether the high strengths none of the techniques described is entirely suitable for obtaining valid strength and modulus data obtained with Method B are due to a constraint effect or from improved loading uniformity. Because Results shown in figure 8 varied significantly with technique, with only Method B giving both data from each specimen tested in the future.

1

U

K

K

H

H

Ľ

increases the measured strength by about 30 percent for all materials, possibly by eliminating from loading plate travel can be an order of magnitude below the "true" property value unless premature failure at the ends or by constraint of the specimen. Data obtained with Method B were considered more indicative of "true" properties and were therefore used in a subsequent room temperature are shown in this figure. The results indicate that modulus data obtained the samples are rigidly bonded to the plate (Method B). Bonding the samples to the plates Compressive properties of three RSI materials determined by three techniques at compilation of average properties.

specimens tested at each condition. While the strength data agree with that obtained by other plane data obtained by Method B. The MDAC material appears to be the most isotrophic material Material anisotrophy is evident by the difference between the in-plane and crosswhile the LMSC material shows strong anisotrophy. The range of data shown are from three investigators for material of comparable density, the moduli may be higher.

The GE data was obtained from material with an uncoated bulk density of 192 kg per  $m^3$  (12 lb per ft<sup>3</sup>) while the other materials had densities of 240 kg per  $m^3$  (15 lb

















H

K

П

L

17

L



Figure 8

## AVERAGE ROOM-TEMPERATURE PROPERTIES OF INSULATORS (Figure 9)

L

U

loading blocks. Considering that the data are an average of three specimens per condition, This figure is a compilation of tensile and compressive property data obtained on orientations, a correlation often lacking in other data sources. The compressive stresscross-plane compressive data are "good" data obtained from specimens bonded to aluminum 0.10 and 0.25 percent. Thus, the estimated elastic strain limit in compression closely as-received insulation tested at room temperature. In-plane tensile and in-plane and strain curves were linear up to about half the ultimate strengths at strains between there is good agreement between the compressive and tensile elastic moduli for both approximates the failure strains measured in tension. In addition to relatively low elastic strain limits in both tension and compression, temperature cross-plane shear data given earlier are also of interest. All tests were conducted in an Instron at a cross head speed of 0.13 mm per minute (0.005 inch per minute). the materials have elastic moduli more than double the values commonly reported to date. Both factors are of particular concern as they affect TPS panel design criteria. Room-

Ц

L

Ц

H

H

L

K

|   |   | _ |
|---|---|---|
|   | _ | 4 |
|   | _ |   |
| ( |   |   |
| ł | - |   |
| • | < | ĺ |
|   | _ | ١ |
| : |   | כ |
| Č | 7 | מ |
| : | 7 | Ž |
| • | _ | _ |
| ( | ı |   |
| 7 | _ | 5 |
|   | - | • |
|   | J | ) |
| L | 1 | J |
| : | - | - |
| ŗ | _ | _ |
| Ļ |   | - |
| Ļ | Ţ | J |
| 5 | 1 | : |
| ( |   | ַ |
|   | 1 | _ |
| ( | 1 | - |
| L | ı | ı |
|   | Y |   |
|   |   | 7 |
| 1 | - | J |
| ľ |   | 7 |
|   |   | Ļ |
|   | ľ | _ |
| L | 1 | J |
| 2 | 7 | = |
| 2 | 2 | Ξ |
| L | 1 | J |
| ŀ | _ | - |
|   |   | _ |
| 2 | 2 | 2 |
|   |   | ) |
| ( |   | ) |
| ì | Y | - |
|   |   | _ |
| L | 1 | J |
| ( | _ | ) |
|   | 0 | 1 |
| • | Y | 2 |
| ì | į |   |
| ; |   |   |
| - |   | - |
| • | • | • |
|   |   |   |

Figure

KE

not reported in the referenced work. The low failure strain of the coatings compared to the our results. This discrepancy may be due to differences in testing techniques, which were 0.12 percent failure strains they reported for a silica coating are about twice as high as Room-temperature properties of coatings provided in this figure are based on an those presented by Goldstein, et al. 1, from material contractor sources, except that the average of three to five measurements for each material. These data are consistent with insulations places a restriction on design of a TPS panel.

Failure of the GE coatings appeared to be related to erratic thermal expansion characteristics data obtained for the MDAC coatings between 867°K (1100°F) and 1089°K (1500°F) indicated they (500°F) on heat-up restricted elevated temperature measurements on these materials. Limited 1420 x 10<sup>4</sup> N/m<sup>2</sup> and failure strain of 0.15 percent were obtained. Viscous flow observed at were sensitive to creep failure at stresses less than half their room-temperature strength. coating near 1089°K (1800°F) and consistent brittle fracture of the GE coatings near 520°K Some property data were obtained on these coatings at elevated temperature, but only the LMSC coating "survived" testing at 1367°K (2000°F), where an average strength of this temperature resulted in a "modulus" of about  $1 \times 10^{10} \,\mathrm{N/m}^2$ . Softening of the MDAC of the coatings

## ROOM TEMPERATURE TENSILE PROPERTIES OF COATINGS

| LMSC MDAC | 1520 1450<br>3.5 8.3<br>0.047 0.018<br>0042 M5 <sub>23</sub> A7P <sub>700</sub>                                                            | 0.38 0.25     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           |                                                                                                                                            | 3*)           |
| GE        | 1690<br>7.6<br>0.023<br>SR2                                                                                                                | 0.25 (0.33*   |
|           | STRENGTH, 10 <sup>4</sup> N/M <sup>2</sup><br>MODULUS, 10 <sup>10</sup> N/M <sup>2</sup><br>FAILURE STRAIN, PERCENT<br>COATING DESIGNATION | THICKNESS, MM |

\*One panel had a thicker coating designated SR2 - XSR2 which had properties similar to the SR2 coating.

Figure 1

L

295

Significant creep observed at this compressive strengths only about half their corresponding room-temperature values, while the Average in-plane tensile and compressive properties of the insulators measured at However, because creep was observed in all the materials at this temperature, the "elastic" between the tensile and compressive moduli is due to the compressive moduli being obtained  $0.5 \times 10^5 \, \mathrm{N/m}^2$  (7.5 ps1) due to linkage in the load train. Because the compressive moduli temperature resulted in the nonlinear stress-strain curves, high failure strains, and low The apparent discrepancy The GE and MDAC insulations have tensile and were based on loading plate movement, they may be somewhat lower than the "true" value. from a zero load; whereas, the tensile moduli were calculated at a stress of about data shown are of questionable value regardless of measurement technique elastic moduli compared to corresponding room-temperature data. LMSC insulation strength is increased by about 50 percent. 1367°K (2000°F) are given in this figure.

# IN-PLANE PROPERTIES OF INSULATORS AT 1367°K (2000°F)

Ľ

L

Ľ

|                                                                                                                                  | GE               | LMSC              | MDAC             |
|----------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|
| TENSION<br>STRENGTH, 10 <sup>4</sup> N/M <sup>2</sup><br>MODULUS, 10 <sup>7</sup> N/M <sup>2</sup><br>STRAIN TO FAILURE, PERCENT | 14<br>>5<br>0.37 | 115<br>71<br>0.55 | 17<br>7.0<br>1.0 |
| COMPRESSION (METHOD A) STRENGTH, 10 <sup>4</sup> N/M <sup>2</sup> MODULUS, 10 <sup>7</sup> N/M <sup>2</sup>                      | 4 4              | 238               | 43<br>5.5        |

1 å

I3

12

K. H. H.

I

K

K

Figure 1

### TYPICAL CREEP BEHAVIOR OF INSULATORS AT 1370°K (Figure 12)

u

materials had stress exponents approaching four in the vicinity of 1370°K, while that of the creep rate of both mullite insulators showed a strong stress dependence, becoming quite high stress dependence of the mullite insulators may indicate that creep is controlled by grain boundary sliding at fiber-to-fiber contact points, since high stress exponents observed in This figure illustrates typical creep behavior observed at 1370°K (2000°F) when However, the creep of dense ceramic materials normally is attributed to grain boundary sliding and/or when the load was doubled. When the data were plotted on a log-log plot, both mullite strain was plotted versus time. The creep behavior of the LMSC insulation was quite LMSC insulation was very close to one, which is typical of viscous flow behavior. predictable, doubling when the load was doubled up to a high stress level. diffusion controlled behavior. While the stress dependence of creep is of interest from an academic viewpoint, the temperature dependence of creep is of more importance with regard to the shuttle application, stains at elevated temperatures but can result in stress reversal when mechanical stresses or thermal gradients disappear. Consequently, creep characteristics may have to be considered since any creep that occurs to relieve stress can affect results predicted from an elastic stress analysis. Creep may be beneficial in relieving stress due to thermal or mechanical in design of thermal protection systems,



Ľ

H

H

L

K

Ľ

Figure 12

(Figure 13)

between tensile and compressive data obtained by two entirely different measuring techniques. differences evident in the data, and these differences are generally larger than differences This figure illustrates the in-plane tensile and compressive creep of three insulators at a stress of  $10^5~{\rm N/m}^2$  (15 psi) versus the reciprocal of absolute temperature. mullite insulators at this stress, but the fused silica material does not begin creeping until about 1250°K (1800°F). These temperatures give some indication of the temperature Creep rates become significant (0.001 percent per minute) above 1090°K (1500°F) for the This stress is from one-fourth to one-eighth of the ultimate room-temperature tensile strength of these materials. As would be expected, there are specimen-to-specimen limits over which elastic stress analyses are appropriate.

joules/mole (170 Kcal/mole) value typical of refractory bricks with a mullite matrix, perhaps estimated from the slope of the creep curves. The activation energy measured for the LMSC insulation approaches 419 x  $10^3$  joules/mole (100 Kcal/mole) above  $1367^{\circ}$ K ( $2000^{\circ}$ F), which is somewhat below a typical value of  $590 \times 10^3$  joules/mole (140 Kcal/mole) reported for viscous resistant at higher temperatures. However, creep below this temperature is of more concern, flow of fused silica. The activation energy for creep of the GE and MDAC insulators is in the vicinity of 210 x  $10^3$  joules/mole (50 Kcal/mole), considerably below the 712 x  $10^3$ indicating the presence of impurities that may be concentrated at fiber-to-fiber contact perhaps being due to the lower tensile strength of these materials compared to the fused silica material below 1367 % (2000°F), there is some indication that they are more creep Because the figure is an Arrhenius plot, activation energies for creep can be points. Although the mullite materials show creep rates higher than those of the fused silica insulation.



## EFFECT OF FURNACE CYCLING ON MECHANICAL PROPERTIES

(Figure 14)

30-minute soak periods at the test temperature. The muffle was used to protect uncontaminated used to transfer specimens to and from the furnace so that all samples were subjected to five cycled measured insulation materials. The heat treatments were conducted by placing samples water-contaminated specimens were run at the conclusion of these tests. Although sea water through the walls of a furnace preheated to the test temperature. A fused silica fork was was sprayed on only the coated surface of those specimens used for tensile tests, uncoated This figure summarizes room-temperature properties of as-received and thermally specimens from impurities in the furnace and then protect the furnace from salt when sea on fused silica shelves in a 23-cm (9-inch)-diameter fused silica muffle tube extending compressive specimens were saturated and dried to evaluate gross effects.

MDAC material cycled to 1530°K, but no cracks were visible in the GE insulation after similar samples were broken when grinding reduced gage sections in the bars. These results indicate which were very weak in tension after cycling. Transverse cracks were noted in some of the that thermal stress microcracking may occur in the mullite materials which can reduce their This trend tensile strength. However, this would only be expected to occur near the coated surface of is confirmed by the tensile data for the LMSC material, but not for the mullite insulators, cycling. No data were obtained on the GE insulation cycled to 1420°K (2100°F) because the By itself, the compressive data would seem to indicate that thermal cycling does not degrade any of the materials and, in fact, strengthens the LMSC insulation. the insulation in a TPS panel.

# EFFECT OF FURNACE CYCLING ON MECHANICAL PROPERTIES

L

U

U. U. E

Ľ

1

L

| MDAC                             | 68                                  | 101                                      | 91           | 29                              | <b>က က</b><br>~                          |                                                    |
|----------------------------------|-------------------------------------|------------------------------------------|--------------|---------------------------------|------------------------------------------|----------------------------------------------------|
| LMSC                             | 136                                 | 207                                      | CRACKED      | 79                              | 105<br>143                               |                                                    |
| GE                               | 65                                  | 73<br>55                                 | 94           | 40                              | ر<br>ا ت                                 |                                                    |
| STRENGTH, 104 N/M <sup>2</sup> * | IN-PLANE COMPRESSIVE<br>AS RECEIVED | 5 CYCLES TO 1420°K<br>5 CYCLES TO 1530°K | CONTAMINATED | IN-PLANE TENSILE<br>AS RECEIVED | 5 CYCLES TO 1420°K<br>5 CYCLES TO 1530°K | $*69 \times 10^4 \text{ N/M}^2 = 100 \text{ psi.}$ |

H. H. H

II

Figure 14

U

H

Ľ

### expansion holes 10 specimen were the samples 1.27 cm plotted 111 % (2 did not diametra

THERMAL EXPANSION MEASUREMENT TECHNIQUES (Figure 15)

were then counterbalanced so that a 3-gram tensile load was imposed on the sample. Insulation specimen so that it slipped over the ends of the alumina rods. The arms of the extensometer This figure is a schematic diagram of a lever-arm extensometer used to measure the expansion characteristics of surface insulators and their coatings. Two 0.32-cm (1/8-inch) samples were 0.6 by 1.27 cm (1/4 by 1/2 inch) across, while single coating specimens were holes 10 cm (4 inches) apart on center were drilled through each 12.7-cm (5-inch)-long 1.27 cm (1/2 inch) wide and 0.7 to 1.0 mm (0.03 to 0.04 inch) thick.

111 % (200 %) per hour in a silicon carbide resistance heated furnace. Because the specimens for the mullite-based insulators or their coatings, and about 50 percent for the fused silica materials. Because of the large corrections required for the latter materials, a calibration diametral expansion of the rods, which amounted to about 5 percent of the recorded expansion The output of linearly variable differential transformer (LVDT) was continuously plotted with an X-Y recorder while the specimen was heated and cooled at a linear rate of did not fit tightly on the alumina rods, the measured expansion had to be corrected for curve was obtained by running a fused silica block in the apparatus.

materials. Insulation samples of each material were also run in an optical dilatometer under Two other methods were used to characterize the expansion characteristics of these respective curves obtained from the lever-arm dilatometer, but the optical data from the a helium atmosphere. Optical data obtained for the two mullite materials fell on the fused silica sample did not.

of the extensometer rods because pointed rods positioned on the surface of the coatings were specimen were minimized. In addition, no corrections were necessary for diametral expansion Thermal expansion characteristics of coatings were also determined from dual-coating tensile specimens subjected to  $\sim 5$  to 8 x  $10^5~\rm N/m^2$  (80 to 120 psi) tensile load. Because the two coatings were capped at either end, bowing effects noted with a single self-centering throughout the run.

L

U

K

Ц



Figure 15

However, the LMSC and MDAC coatings had expansion coefficients close to those of the Because bowing was not eliminated with either technique used respective insulation samples, while the GE coating had expansion characteristics somewhat coatings are difficult to characterize because warping characteristics affect the measure-The data shown in this figure were compiled from expansion curves obtained with "loaded" expansion data are considered more indicative of the "true" expansion behavior, the MDAC coating was quite linear and parallel to the heating curve, while those of the GE coatings exhibited irregular behavior, with a GE coating exhibiting a sharp attributed to residual insulation supporting the unloaded coating up to  $1530^{\circ}K$  ( $2300^{\circ}F$ ) even though the glassy layer had become soft about  $1260^{\circ}K$  ( $1810^{\circ}F$ ). The cooling curve especially for characterizing a "softening point" above which elastic analyses are not Expansion coefficients of with the coatings, the coating data may not represent "true" bulk expansion behavior. lever-arm dilatometers on as-received material. Expansion coefficients shown for the appropriate. The large difference between the softening points of the MDAC coating is insulations are typical of mullite or fused silica bodies. lower than the GE insulation. inversion near 450°K (350°F). LMSC and

1530°K (2300°F), resulting in a residual growth rather than shrinkage on cooling to room cycle to 1530°K (2300°F). However, the LMSC and MDAC insulations began shrinking above None of the insulation materials exhibited any inversions on cooling from one peak temperatures indicated in the figure, while the GE insulation began to creep above temperature. The LMSC insulation shrunk 2.6 percent in one cycle to 1530°K.

4.6 x  $10^{-6}$ /°K measured for both the GE and MDAC heat-treated samples is slightly different than that of the as-received materials. However, an expansion coefficient of 1.1 x  $10^{-6}$ /°K been given five half-hour furnace cycles to 1530°K (2300°F). An expansion coefficient of Expansion behavior of the insulation was also determined for samples that had only 0.01 percent length change occurred at an inversion near 500°K (450°F) on cooling. Although the coefficient was increased, the expansion curve was linear on heating, and for the heat-treated LMSC insulation is about double that of as-received material.

L

L

U

## THERMAL EXPANSION CHARACTERISTICS OF REI MATERIALS

| MDAC | 6.6<br>8.4<br>3.9                                                   | 1600 (2420°F)<br>+0.79                                                                  | Nil                                            | 1260 (1810°F)<br>1530 (2300°F)                 |
|------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| LMSC | 0.44<br>0.28<br>nil                                                 | 1350 (1960°F)<br>0.05                                                                   | -2.6<br>None                                   | 1480 (2200°F)<br>1530 (2300°F)                 |
| GE   | 5.2<br>4.4<br>2.7                                                   | None                                                                                    | Nil<br>None                                    | >1440 (>2140°F)<br>1530 (2300°F)               |
|      | COEFFICIENT, 10-0%-1<br>INSULATION<br>COATING<br>COATING UNDER LOAD | INSULATION  PEAK TEMPERATURE, °K(F)  PEAK EXPANSION, PERCENT  DIMENSIONAL CHANGE IN ONE | CYCLE TO 1530°K, PERCENT INVERSIONS ON COOLING | COATING SOFTENING POINT, *K(F) LOADED UNLOADED |

Figure 16













H

П

































### CONCLUDING REMARKS

available, especially those for the insulators at elevated temperatures and coatings separated Novel attachment and strain-measuring techniques were developed to obtain valid material manufacturers, additional data have been generated that had not previously been insulators and their coatings. While much of the data verify properties reported by the mechanical and thermophysical property data to above 1530°K (2300°F) in air on the RSI from them.

of each material in both in-plane and cross-plane tests substantiate the validity of the data. Comparative tests have demonstrated that "end effects" can lead to erroneous strain and modulus data in compression tests. Attempts have been made to minimize these effects as Good agreement observed between the tensile and "good" compressive moduli much as possible by cementing specimens to loading blocks or monitoring strain directly in Generally, the data obtained on each material agree with those obtained by the material contractors, except that the Battelle moduli may be higher and failure strains lower. the gage length.

electrical or manual corrections for temperature and thus can be used for measuring thermal Consequently, thermal expansion measurements could be made on The lever-arm extensometer developed for measuring strain does not require any characteristics of the insulators were monitored at elevated temperatures and found to coating specimens subjected to a tensile load to define their softening points. become significant above 1090 % (1500 °F). and/or mechanical strain.

measure strain on shear specimens as well as tensile and compressive specimens. Currently, techniques are being developed to obtain shear strength and strain data and cross-plane Because the strain measurement equipment is versatile, it can be modified to tensile strength and strain data at elevated temperatures. These data are needed for three-dimensional stress analyses in TPS panels.









































H

L

L

L

K

П H

Insulation Materials Research and Development", paper presented at NASA Space Shuttle Technology Goldstein, H.E., Buckley, J.D., King, H.M., Probst, H.B., and Spiker, I.K.: "Reusable Surface Conference held in San Antonio, Texas, April 12-14, 1972. Proceedings published in NASA TM X-2570, July 1972.

i,

#### PRECEDING PAGE BLANK NOT FILMED

PORE STRUCTURE ANALYSIS OF RSI TILE

Ву

0. J. Whittemore, Jr. and L. W. Smiser

312

#### The Method

distributions of open-pored solids. Mercury is an unusual liquid in that it does not wet most solids and pressure must be applied to force it into pores. Washburn¹ first suggested using mercury intrusion and Mercury porosimetry is the most generally used method of quantitatively measuring pore size -2 γ cos θ = d proposed the relationship:

2

mercury, and  $\theta$  is the contact or wetting angle of mercury with the solid. Since  $\gamma$  and  $\theta$  can be considered where r is the radius of the pore being intruded by mercury under pressure P,  $_{\gamma}$  is the surface tension of constants, only pressure need be measured to determine pore size. Ritter and Drake $^2 \cdot ^3$  first developed the method and published experimental data on several materials. sizes was demonstrated by Joyner et al.4 In the past two decades, the method has been applied to studies of many materials and several designs of equipment have evolved, differing mainly in technique of measuring the Excellent agreement between mercury porosimetry and isothermal nitrogen desorption in determining fine pore intruded volume

Many of the applications have been devoted to ceramics. Watson et al.<sup>5</sup> demonstrated the relation metry that the porosity and pore size of plasma-sprayed alumina increased because of crystal inversion when studied the pore structure of several steel plant refractories. Thompson et al. 7 found by mercury porosiof pore dimensions to properties of structural products such as brick and building stone. Ulmer et al.<sup>6</sup> the material was reheated.

The factors contributing to errors in mercury porosimetry are discussed by Rootare et al.<sup>8</sup> of these are:

- Reported to be from 473 to 485 dynes/cm., it also can vary (1) The surface tension of mercury. slightly with temperature.
- 0 either 130° Most workers assume (2) The contact or wetting angle for mercury with the solid.  $140^{\circ}$ , but it may vary from  $120^{\circ}$  to  $160^{\circ}$ .
- This cause of error is accentuated by high pressure and by ratio of the volume of mercury used in the test to the volume of the sample. (3) Compressibility of mercury.
- This method determines (4) The "ink-bottle" pore with an opening smaller than the pore itself. the size of the opening.
- (5) Thermal expansion. Mercury has a higher coefficient of thermal expansion than a borosilicate glass sample holder so errors may occur if the equipment heats during the test.

Surface areas can also be calculated from mercury intrusion data by integrating the intrusion curve. Usually a cylindrical pore shape is assumed, but Rootare et al.<sup>9</sup> have shown that a model of pore shape unnecessary if the curves are integrated with regard to work.

### Mercury Porosimetry as Applied to RSI

pores are larger than 12 µm in diameter so that atmospheric pressure is sufficient for their characterization, thus simplifying the experimental apparatus. Little error is caused by compressibility at these low pressures Since no additional pressurization is needed, no heating would occur so errors due to thermal expansion would A study of the structure of RSI is an excellent application of mercury porosimetry. The factors "ink bottle" pores since any pore has several openings, the largest of which would allow intrusion. Most leading to error are all minimized. Because of the high porosity (~90%), no error can be expected due to be absent

Ormiston et al. $^{10}$  studied the sintering of silica RSI by mercury porosimetry. Surface areas were calculated at 12.64 m²/g, agreeing within 2% of areas determined by nitrogen adsorption, 12.85 m²/g.

K

L

П

L

and was found to be 1.44 µm as compared with an average diameter of 1.56 µm measured on SEM photomicrographs.

average fiber diameter was calculated by finding the diameter of a single fiber of the same surface area

They estimated that not over 4% of the total surface area of RSI would be in the intersections of fibers.

Therefore, a sintering model should consider a cylindrical rod rather than the conventional intersection of

two spheres.

agreed well with published values for fused silica. It should be noted that this analysis can be used only for

glass fibers; crystalline fibers do not sinter by viscous flow.

made according to the following formulas:

Computations of physical properties of the RSI for which the pore volume has been measured may be

the fiber growth at four temperatures and, assuming a value for surface tension, calculated viscosities that

fiber radius equals the surface tension of the fiber divided by three times the viscosity. They measured

In their study, Ormiston et al. derived the interesting relationship that the rate of change of

Surface Area:

Bulk Density:

(3)

(2)

 $P = \frac{V_p \, \rho t}{V_p \rho t + 1}$ 

(4)

H H L

Mean Fiber Diameter:

(9)

Mean Pore Diameter:

K

L

(2)

314

Porosity:

= porosity

 $V_{\rm p}$  = volume of pores per unit weight of RSI

t = true density of fibers in RSI

= bulk density of RSI

A<sub>S</sub> = specific surface area of RSI

= surface tension of mercury

= wetting angle of mercury on fibers

change in mercury penetration volume at i'th pressure step mean pressure of i'th pressure interval  $\Delta V_{i}$ 

 $\overline{\mathbb{D}}_{\mathsf{f}}$  = mean fiber diameter

 $\overline{\mathsf{D}}_{\mathsf{p}}$  = mean pore diameter

 $\overline{D}_i$  = mean pore diameter at i'th pressure step

## PORE SIZE OF SOME RSI TILES BY MERCURY POROSIMETRY (Figure 1)

of 16 microns and a geometric standard deviation of 1.8. McDonnell-Douglas tiles have a complex distribution shows a normal distribution of pore sizes with a mean of 91 microns and a standard deviation of 23 microns. bulk densitites from direct measurements are given in figure 1. The pore size distributions vary with the tile manufacturer. The Lockheed tile appears to have a log-normal distribution and shows a mean diameter of pore sizes that deviates somewhat from a normal distribution at both ends. The General Electric tile examined by mercury porosimetry. The pore volume  $V_{\mathbf{p}}$ , porosity P, and the calculated bulk density  $ho_{\mathbf{b}}$  and One silica tile LI-1542 and three mullite tiles MDAC MOD I, MDAC MOD III, and GE MOD 1A were

ment figure. This is likely a result of the conformity of mercury to the surface roughness of the tile giving last two columns compare the bulk densities calculated from equation (3) and by the direct method of specimen large part of this surface volume when the sample is only immersed. Better agreement is expected with larger an effectively smaller bulk volume than does external dimensions. Because of the small specimen size (about 0.04 g), a surface layer 90 microns thick (or about the mean pore diameter of three of the test tiles) would measurement. With the exception of LMSC LI-1542, the porosimetry figure is higher than the direct measurecontain about 10% of the specimen volume. The porosity is about 90%. Mercury could be expected to fill a The total pore volume  $V_p$  is shown in column 3. This is a directly measured quantity and is the volume of open pores. Porosity is determined by equation (2) assuming that there are no closed pores. samples in the order of one gram weight, and suitable equipment is being designed.

MDAC MOD I tile contains a considerable concentration of hollow glass spheres, which contribute a closed porosity accounting for the apparently too high bulk density. An addition of 0.71 imes 10 $^{-3}$  m $^3$ /kg of closed pore volume would be necessary to yield a bulk density of 277 (kg/m³) for this tile. The closed porosity then accounts for about 11% of the total porosity.

H

II

L

L

U

Ľ

 $^{
ho}_{\mathbf{b}}^{\mathbf{b}}$ 

<sup>P</sup>b POROSIMETRY (kg/m³)

۵ (%)

(16.2)

(15.9)

255.2

89.1

 $3.5 \times 10^{-3}$ 

259.5

(17.3)

277.1

342.8 (21.4)

(18.6)

(18.8)

301.1

297.9

| Comp | ے<br>0 |
|------|--------|
|      |        |
| 1DAC | MOD I  |

$$2.6 \times 10^{-3}$$

89.1

$$3.0 \times 10^{-3}$$

D<sub>p</sub> = 65 μm

MOD III

MDAC

Complex

90.4

$$4.3 \times 10^{-3}$$

 $\delta_{p} = 91 \mu m$   $\sigma_{g} = 23 \mu m$ 

MOD IA

ЭE

Normal

(12.5)

200.2

$$\rho_{\rm b}$$
 values in parentheses are in 1b/ft $^3$ 

og remains nearly constant at 1.8. The mullite tiles, on the other hand, show an increase in mean pore size. with heat treatment. In the case of the Lockheed LI-1542, the mean pore size decreased while the dispersion increase after 64 hours. The pore volume, however, does not appear to increase. On the other hand, the GE silica tile was heat treated at 1260°C (2300°F) for 2 and 16 hours and the mullite tiles were heat treated at 1427°C (2600°F) for 16 and 64 hours. The pore size distributions do not appear to change character The McDonnell-Douglas tiles first show an increase in mean pore size at 16 hours followed by a smaller tile after 16 hours shows an increase in bulk volume of about 8% with the increase in mean pore size. This figure shows the effects of heat treatment on the pore structures of these tiles. ity and bulk densities reflect these changes in the pore structure.

Shrinkages with respect to the as-received bulk volume are given in the last two columns, and are examples of the use of mercury porosimetry data as a means of calculating such quantities

### EFFECTS OF HEAT TREATMENT ON RSI

|         | HEAT                           | PORE SIZE                             |                        |      |            | Volume           | Linear           |
|---------|--------------------------------|---------------------------------------|------------------------|------|------------|------------------|------------------|
| TILE    | TREATMENT                      | DISTRIBUTION                          | (m <sup>3</sup> /kg)   | (%)  | $(kg/m^3)$ | Shrinkage<br>(%) | Shrinkage<br>(%) |
| LMSC    | 1260 <sup>0</sup> C<br>2 hrs.  | Log-Normal<br>D̄ <sub>p</sub> - 13 μm | 2.2 × 10 <sup>-3</sup> | 83.7 | 382.7      | 33.1             | 12.5             |
| LI-1542 | 1260 <sup>0</sup> C<br>16 hrs. | Log-Normal<br>D <sub>p</sub> - 10 µm  | 0.8 × 10 <sup>-3</sup> | 65.1 | 816.9      | 68.7             | 32.1             |
| MDAC    | 1427°C<br>16 hrs.              | Сотр1ех<br>D <sub>р</sub> - 100 µm    | 2.4 × 10 <sup>-3</sup> | 88.3 | 369.8      | 6.9              | 2.4              |
| MOD I   | 1427 <sup>0</sup> C<br>64 hrs. | Complex<br>D <sub>p</sub> - 98 µm     | 1.5 × 10 <sup>-3</sup> | 82.5 | 553.1      | 37.7             | 14.6             |
| MDAC    | 1427 <sup>0</sup> C<br>16 hrs. | Сотр1ех<br>D <sub>p</sub> - 77 µm     | 2.8 × 10 <sup>-3</sup> | 89.8 | 321.6      | 6.0              | 2.0              |
| MOD III | 1427 <sup>0</sup> C<br>64 hrs. | Complex<br>D̄ <sub>p</sub> - 67 µm    | 2.9 × 10 <sup>-3</sup> | 90.1 | 311.9      | 3.0              | 1.0              |
| GE      | 1427 <sup>0</sup> C<br>16 hrs. | Normal<br>D <sub>p</sub> - 105 µm     | $4.7 \times 10^{-3}$   | 93.6 | 199.4      | -8.7             | -3.0             |
| MOD I-A | 1427 <sup>0</sup> C<br>64 hrs. | Normal<br>D <sub>p</sub> - 105 µm     | 3.7 × 10 <sup>-3</sup> | 92.1 | 249.2      | 13.0             | 4.5              |
|         |                                |                                       |                        |      |            |                  |                  |

Figure 2

## BULK DENSITY MAP OF GE MOD 1A TILE AT MID-LEVEL (Figure 3)

at 1427°C (2600°F) for 16 hours. Thus it is conceivable that the firing of the tile produced this gradient center. This may be the result of firing behavior since the same tile indicated an expansion upon firing due to more severe heating conditions at the edges than near the center. These contours could then be a Density variations within a  $30.5 \times 30.5 \times 53.4$  cm ( $12 \times 12 \times 21$  inch) GE REI mullite tile were point to make the bulk density map shown in figure 3. The map indicates a density gradient toward the measured by mercury porosimetry. Samples were taken 2.54 cm (one inch) below the coated surface at 5.08 cm (two inch) or 10.2 cm (four inch) intervals. The average of three samples was used at each reflection of the thermal coutours during firing.

Bulk Density Map of GE MOD IA Tile at Mid-Level



Figure 3

Several specimens were checked by measuring their dimensions and weighing to determine their bulk densities. Figure 4 shows the results for six specimens. The differences are fairly constant at about 48 kg/m³ (3 lb/ft³). The regression equation shows that there is a good correlation between the two methods. The values reported on the density map in figure 3 are mercury porosimetry bulk densities adjusted according to the regression equation.

L

Ц

II

H

L

K

ľ.

### A COMPARISON OF BULK DENSITIES FROM POROSIMETRY AND DIRECT MEASUREMENTS ON AN RSI TILE

| SECTION  | P1 (kg/m <sup>3</sup> ) | 0      |           |                  |
|----------|-------------------------|--------|-----------|------------------|
| NUMBER   | POROSIMETRY             | DIRECT | (p1 - p2) | , p <sub>2</sub> |
| -        | 226.82                  | 176.04 | 50.77     | 181.39           |
| 2        | 252.93                  | 198.47 | 54.46     | 199.95           |
| 16       | 249.41                  | 196.39 | 53.02     | 197.45           |
| 6        | 241.40                  | 195.43 | 45.97     | 191.75           |
| 19       | 219.62                  | 176.37 | 43.25     | 176.27           |
| 4        | 229.39                  | 187.42 | 41.97     | 183.22           |
| AVERAGES | 236.60                  | 188.38 | 48.22     | 188.34           |
|          |                         |        |           |                  |

 $\hat{\rho}_2 = 0.711_{\rho_1} + 20.119$ REGRESSION EQUATION:

R = 0.937

CORRELATION COEFFICIENT:

(6) (188.38) (100%) = 1.4%2 p - 2 s

MEAN DEVIATION:

Figure 4

#### CONCLUSIONS

fiber diameter. It also allows the determination of the effects of heat treatment on these parameters. porosity, pore size distribution, bulk density, specific surface area, mean pore diameter, and mean Mercury porosimetry gives a means of characterizing RSI tile pore structure in terms of It is limited in application to open-pored structures, however, since any closed pore volume is ignored.

Porosimetry devices are inherently simple, and when pores are all larger than about 12 microns, atmospheric pressure is adequate for determination of pore size distributions.

- Washburn, E.W.: "Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material," Proc. Nat. Acad. Sci. 7: 115-116, 1921.
- Ritter, H.L. and Drake, L.C.: "Pore-Size Distribution in Porous Materials; Pressure Porosimeter and Determinations of Complete Macropore-Size Distribution," Ind. Eng. Chem. Anal. Ed., 17: 782-6, December 1945. 2
- Drake, L.C. and Ritter, H.L.: "Macropore-Size Distribution in Some Typical Porous Substances," Ind. Eng. Chem. Anal. Ed., 17: 787-91, December 1945. 3
- Joyner, L.G., Barrett, E.P. and Skold, R.: "The Determination of Pore Volume and Area Distributions in Porous Substances. II. Comparison between Nitrogen Isotherm and Mercury Porosimeter Methods," J.Am. Chem. Soc. 73: 3155-8, July 1951. 4
- Watson, S., May, J.O. and Butterworth, B.: "Studies of Pore Size Distribution," Trans. Brit. Ceramic Soc. 56: 5, 37-52, 1957. 2
- Ulmer, G.C. and Smothers, W.J.: "Application of Mercury Porosimetry to Refractory Materials,' Am. Cer. Soc. Bul. 46: 7, 649-52, 1967. 9
- Thompson, V.S. and Whittemore, O.J., Jr.: "Structural Changes on Reheating Plasma-Sprayed Alumina," Am. Cer. Soc. Bul. 47: 7, 637-41, 1968. 7
- Rootare, H.M. and Nyce, A.C.: "The Use of Porosimetry in the Measurement of Pore Size Distribution in Porous Materials," Inst. Jour. Powder Met., 7: 1,3-11, 1971. ω,
- Rootare, H.M. and Prenzlow, C.F.: "Surface Areas from Mercury Porosimeter Measurements," J. Phys. Chem., 71: 2734-36, July 1967. 6
- Ormiston, T.J. and Whittemore, O.J., Jr.: "Sintering of Silica Fiber Compacts," accepted for publication in the Amer. Cer. Soc. Bulletin. 10.

#### PRECEDING PAGE BLANK NOT FILMED

#### SPECTRAL AND TOTAL NORMAL EMITTANCE OF REUSABLE SURFACE INSULATION MATERIALS Dicus S. Franklin Edwards, and Dennis L. Andronicos G. Kantsios,

#### SUMMARY

Considerable variation in measured emittance was found in the spectral range 1 to 15 µm at temperatures of 800°K and 1100°K and 1300°K using a radio-Emittances were measured The three candidate materials exhibited The types measured were in measur ments taken on several virgin samples of each material indicating a possible non-Results indicate that the total normal emittance of metric measurement technique. Values were determined by a comparison method to a National Measurements of spectral and total normal emittance have been made on three types of these materials is less than 0.8 between 800°K and 1300°K. The total normal emittance manufactured by General Electric, McDonnell Douglas, and Lockheed. reusable external insulation materials proposed for space shuttle. uniformity in the coating thickness or composition. a similar spectral emittance distribution. decreases with increasing temperature. Bureau of Standards inconel specimen.

12

emittance should be optimized at the operating temperature anticipated for the materials. Since the low density One of the most important thermal properties of the materials proposed as reusable surface insulation ceramic heat-shield materials have low emittance and may be partially transparent, high emittance coatings must (RSI) is the emittance. Since reradiation is the principle heat rejection mode for surface insulation, the provide heat rejection capacity while ensuring opacity. The three main techniques used for measuring emittance are calorimetric, reflectance, and radiometric,

whose working equations are:

Calorimetric:

Reflectance:

Radiometric: 
$$\varepsilon_{\lambda} = \frac{W_{\lambda} (T)}{W_{b\lambda} (T)}$$
 where  $W_{b\lambda} (T) = \frac{C_1}{\lambda^5 (e^{C_2/\lambda T}_{-1})}$ 

and wavelength. The emittance values reported in this paper were obtained from measurements using a radiometric technique compares energy radiated by a material to the energy radiated by a black body at the same temperature technique. The spectral and total normal emittances of RSI materials heated in air from 800 to 1300°K over the Kirchoff's laws hold, the spectral emittance can be calculated from the reflectance. Finally, the radiometric conduction and convection losses are minimized by design. This technique gives total hemispherical emittance, For the reflectance technique, energy of a specified wavelength band at a specified angle is impressed on the The calorimetric technique equates input power into a material to radiative heat loss by the material, since test material's surface and the amount reflected is measured. Assuming that the material is opaque and that wavelength range from 1 to 15 µm are reported.

K

C<sub>1</sub> - radiation constant

2 - radiation constant

- power input

- temperature

V - thermopile output voltage

W - Planck distribution function

emittance

wavelength

reflectance

- Stefan-Boltzmann constant

Subscripts

b - black body

- normal

- surrounding environment

Ref - NBS reference specimen

- sample

- total

- spectral

#### L 13 L L L

Ц K L U П L L

## HIGH TEMPERATURE EMITTANCE APPARATUS

(Figure 1)

A schematic representation of the radiometric technique used to make emittance measurements emittance The test specimen is backed by platinum foil to avoid transmission of energy from rotating holder mounted within a high temperature furnace (ref. 3). A typical specimen is 3 by The test specimen and reference specimen are suspended side by side the rear of the furnace. The reference specimen is a 2.5-cm diameter oxidized inconel cured from the National Bureau of Standards (NBS) (ref. 4). Values of normal spectral of the reference specimen are given by NBS for 155 discrete wavelengths over the range um for temperatures of 800, 1100, and 1300°K. is shown in figure 1. CIII.

NaCl prism spectrometer and measured by a thermopile detector. The detector output is recorded on a strip chart potentiometer. After each measurement (at each wavelength) the specimens are held in the upper part of the furnace for at least 60 seconds. Temperatures of the specimens are assumed to be that of the furnace. Platinum-platinum-13% rhodium thermocouples are used The holder is rotated from the position in the upper part of the furnace, past a waterfurnace in 12 seconds. Energy from the specimens as they pass the aperture is dispersed by cooled aperture located in the lower part of the furnace, and then back to the top of the to measure and control the furnace temperature.

L

L

U

# HIGH TEMPERATURE EMITTANCE APPARATUS



Figure 1

spectral emittance is calculated. For temperatures between 800 and 1300°K at least 95% of the energy radiated by the test specimen is located in the 1 to 15 µm band. Therefore, a reasonably Substitutaccurate value of total normal emittance can be calculated using equation (2). The indicated thermopile output voltage generated by the reference specimen is directly proportional to the integration was performed numerically, using the trapezoidal rule, as shown in equation (3). The ratio of the thermopile output voltage generated by the test specimen to the Values of emittance are determined at discrete wavelengths by equations described in ing the two measured voltages and the known emittance in equation (1) the test specimen ratio of the test specimen spectral emittance to the reference spectral emittance. figure 2.

K

L

U

U

U

u

L

U

L

H

Ľ

Ц

.

K

H

L

Ц

K

## EQUATIONS GOVERNING CALCULATIONS

$$\epsilon_{\rm n} (\lambda, T) = \frac{V_{\rm S}(\lambda, T)}{V_{\rm Ref}(\lambda, T)} \epsilon_{\rm Ref} (\lambda, T)$$
 (1)

$$\epsilon_{tn}(T) = \frac{\int_{1}^{15} \epsilon_{s}(\lambda, T) \ W_{b}(\lambda, T) \ d\lambda}{\int_{1}^{15} W_{b}(\lambda, T) \ d\lambda}$$
(2)

$$\epsilon_{tn}(T) = \frac{15}{15!} \left\{ \frac{\epsilon_{S} (i+1,T) W_{b}(i+1,T) + \epsilon(i,T) W_{b}(i,T)}{2} \right\} \left\{ \lambda(i+1) - \lambda(i) \right\}$$
(3)

Figure 2

L

#### RSI MATERIALS

(Figure 3)

emittance and make it waterproof. The General Electric coating is a multiphase glass containtaken from the same tile. In later figures the materials are referenced by company name only. McDonnell Douglas (MDAC) material is multi-layered. The outer layer enhances the emittance. It is a black ceramic oxide stain containing a mixture of iron, chromium, and cobalt oxides. The coating on the figure 3. Each consists of a low density ceramic insulator that is coated to increase its The insulation is composed of mullite fibers with silica microspheres and a silica binder. The commercial designation for the RSI materials examined in this study are shown in ing kyanite, petalite, and a nickel oxide emittance agent. The insulator is composed of mullite fibers with an Al203-SiO2-B203 glass binder. The coating on the Lockheed (IMSC) The materials were supplied in large tiles. All the test samples for each material were material is a borosilicate glass containing silicon carbide as an emittance agent. insulation is composed of silica fibers with a colloidal silica binder.

### RSI MATERIALS

| COMPANY | COATING TYPE | INSULATION TYPE    |
|---------|--------------|--------------------|
| G.E.    | SR-2         | REI-MULLITE MOD IA |
| LMSC    | LI-0042      | LI-1500            |
| MDAC    | M23A7P700    | MULLITE-HCF MODIII |

Figure 3

L

## SPECTRAL NORMAL EMITTANCE OF RSI MATERIALS AT 800°K

(Figure 4)

The next three figures show normal emittance of the three candidate materials as a function of wavelength for three temperatures. The values shown represent the average of runs on three virgin specimens of the G.E. and MDAC material and five virgin specimens of the LMSC material. 1 to 3 µm region was examined more closely in anticipation of more rapid emittance changes in Data were taken at 0.5 µm intervals from 1 to 3 µm and at 1 µm intervals from 3 to 15 µm. this region.

1 to 2.5  $\mu m$ , increased from 2.5 to 8  $\mu m$ , and remained relatively constant out to  $1^4$   $\mu m$  where it G.E. material had the highest emittance over most of the region with the significant difference At 800°K (figure 4) for these materials as a group, the emittance tended to decrease from G.E. material except in the 5 to 8  $\mu m$  region. The MDAC material had the lowest emittance of occurring in the 5 to 8 µm region. The LMSC material's emittance very closely followed the the three throughout most of the region, although the difference was slight beyond 9 µm. decreased again. Values of emittance ranged from 0.85 to 0.53 over the spectral range.



Figure 4

## SPECTRAL NORMAL EMITTANCE OF RSI MATERIALS AT 1100°K

(Figure 5)

values were lower between 1 and 2.5 µm. The emittance of the G.E. material was higher beyond The emittance relative magnitudes were similar to those at 800°K. Values of emittance ranged from 0.86 to Figure 5 shows the spectral emittance of the three materials at 1100°K. Trends in the 0.49 over the spectral range. Comparing this data to the 800°K values, the G.E. and LMSC of the MDAC material remained essentially the same up to 2  $\mu$ m and beyond 5  $\mu$ m with some 2.5 µm, while the emittance of the LMSC material remained essentially the same. increase in emittance in the 2.5 to 5 µm region.



Figure 5

#### (Figure 6)

of the MDAC material was somewhat higher. Beyond 3 µm, the emittance of the G.E. material was slightly The emittance of the LMSC material was emittance ranged from 0.82 to 0.48 over the spectral range. Trends in the relative magnitudes were the values at 1100°K from 1 to 3 µm, the emittance of the G.E. material was slightly lower and that The spectral emittance of the three materials at 1300°K is shown in figure 6. Values of similar to those at the two lower temperatures except in the 1 to 3 µm region where the emittance of the MDAC material was slightly higher than that of the LMSC material. Comparing these data to lower between 1 and 2 µm and was virtually unchanged beyond 2 µm. higher while the MDAC material exhibited very little change.



# TOTAL NORMAL EMITTANCE OF RSI MATERIALS AS A FUNCTION OF TEMPERATURE

#### (Figure 7)

L

H

U

L

The MDAC material showed a much more gradual The total normal emittance of the three materials as a function of temperature is shown exhibited the highest total normal emittance at each temperature. The LMSC material had the the MDAC material at 1300°K. The emittance of the G.E. and LMSC materials decreased rapidly next highest emittance at 800 and 1100°K, but it exhibited a slightly lower emittance than The G.E. material The data were calculated from the average spectral emittance values. temperatures, total normal emittance values ranged from 0.74 to 0.63. nonlinear decrease in emittance with increasing temperature. and nearly linearly with increasing temperature. in figure 7.

K

L

U

H

H

L

K

K

II

# TOTAL NORMAL EMITTANCE OF RSI MATERIALS AS A FUNCTION OF TEMPERATURE



Figure

K

H

1

## VARIATION IN TOTAL NORMAL EMITTANCE OF VIRGIN RSI MATERIALS

H

U

U

U

(Figure 8)

Measurements were made on several virgin samples of each material to assess their consist the IMSC data covered measurements on five specimens while G.E. and MDAC data covers measure-At 1300°K the scatter was comparable for all three materials. It should be noted again that MDAC materials exhibited considerably less scatter than the LMSC material at 800 and 1100°K. It is difficult to make a conclusive statement about the ments on three specimens each. The samples for each of these sets of materials were taken The spread in the total normal emittance from all runs on each material is shown in The G.E. and The scatter in the data may indicate a variation in either coating The average values shown in the previous figure are superimposed. scatter with the limited number of tests completed to date. thickness or coating composition. from a single tile. figure 8.

U

L

13

L

H

11

K

II

K

# VARIATION IN TOTAL NORMAL EMITTANCE



Figure 8

Ľ

L

1

## BETWEEN TEMPERATURES OF 800K AND 1300K CONCLUDING REMARKS

## TOTAL NORMAL EMITTANCE

- LESS THAN 0.8
- DECREASED WITH INCREASING TEMPERATURE
- CONSIDERABLE VARIATION IN MEASUREMENTS OF SEVERAL VIRGIN SAMPLES OF EACH MATERIAL
- EMITTANCE OF THREE MATERIALS CONVERGED TO NEARLY SAME VALUE AT 1300°K

### SPECTRAL EMITTANCE

- SIMILAR DISTRIBUTION
- LOWEST EMITTANCE BETWEEN I AND 4 µm
- GREATEST DIFFERENCE BETWEEN 5 AND 8 µm
- 8 m RELATIVELY WAVELENGTH INDEPENDENT BEYOND

#### REFERENCES

- Wiebelt, J.A.: Engineering Radiation Heat Transfer, Holt, Rinehart, and Winston, 1966.
- Harrison, T.R.: Radiation Pyrometry and its Underlying Principles of Radiant Heat Transfer, John Wiley and Sons, 1960. 2
- Slemp, W.S. and Wade, W.R.: A Method for Measuring the Spectral Normal Emittance in Measurement of Thermal Radiation Properties of Solids, NASA SP-31, pp. 433-439, 1963. Air of a Variety of Materials Having Stable Emittance Characteristics. 3
- Standards. Measurement of Thermal Radiation Properties of Solids, NASA SP-31, pp. Richmond, J.C. Harrison, W.N. and Shorten F.J.: An Approach to Thermal Emittance 403-423, 1963. 4.

## AN EXPLORATORY STUDY OF THE MICROSTRUCTURE OF MULLITE FIBERS

G. Santoro, H. B. Probst and B. Buzek

NASA-Lewis Research Center

#### INTRODUCTION

that could more fully reveal the microstructure of mullite fibers. The methods found effective during this study will be used in an investigation relating microstructural features to mechanical behavior. would certainly control the properties of the fibers, which in turn should to some degree affect the properties of the finished tiles. Thus, it was the purpose of this investigation to examine methods rigidized tiles, little work has been directed toward the characterization of the microstructure of mullite fibers either alone or in the rigidized tiles. It would seem that microstructural features Although considerable effort has been directed to the consolidation of mullite fibers into The ultimate goal is to define means of improving the mechanical behavior of mullite fibers.

fibers and their precursor solution in the as-prepared condition and after subjecting them to a range of thermal exposures, primarily near the maximum end of their useful temperature range. The idea was to ascertain how well various transmission electron microscopy (TEM) techniques could identify microexaminations of microtomed sections of mounted fibers and of replicas of polished, chemically etched differences in material preparation. The experimental techniques used for this purpose included TEM The approach taken in this phase of the effort was to examine a number of mullite-composition and cathodically etched fibers. In addition to the electron microscopy effort, X-ray diffraction structural features associated with compositional differences, variations in heat treatments and analyses were used to identify crystalline phases and to determine crystallite size.

13

350

#### MATERIAL PROPERTIES

(Figure 1)

monofilaments were supplied by the manufacturer producing the mullite fibers which are currently being Of the three spun The handmade fibers were produced by evenly distributing a few drops of the precursor solution between two glass slides and The cast material was The handmade fibers and the cast solution were prepared at Lewis The materials studied in this investigation are given in Figure 1. Both the spun fibers and prepared by spreading the precursor solution into a thin film, drying and heating at 1065°C for The heat treatment was to convert the hydrous ingredients into the oxides. Research Center from the manufacturer's precursor solution (standard composition). then pulling the slides apart in rapid motions in front of an electric fan. fibers the standard fiber is being used for making RSI tiles of mullite. used in the preparation of RSI. 10 minutes.

The only crystalline phase detected in the as-received standard spun fiber and in the Al<sub>2</sub>0<sub>3</sub>-rich The mean diameter values The data were fitted on probability paper and the log-normal distribution was found to give the best fit in each were determined from measurements on 100 fibers from each of the three compositions. In the other materials only mullite was detected. spun fiber was y-Al<sub>2</sub>03. case.

### MATERIAL PROPERTIES

| MATERIALS                                          | СОМ           | COMPOSITION, MOL % (WT %)                           | 10L % (WT                     | (%)               | 岁                                | WE/                        |
|----------------------------------------------------|---------------|-----------------------------------------------------|-------------------------------|-------------------|----------------------------------|----------------------------|
|                                                    | A1203         | SiO <sub>2</sub>                                    | B <sub>2</sub> 0 <sub>3</sub> | P <sub>2</sub> 05 | LINASES                          | LOG-NORMAL<br>DISTRIBUTION |
| STANDARD<br>SPUN FIBER                             | 67.7 (77.0)   | 67.7 (77.0) 25.5 (17.0) 5.8 (4.5) 1.0 (1.6)         | 5.8 (4.5)                     | 1.0 (1.6)         | Y-AI <sub>2</sub> 03             | 6.8±4.0 µm                 |
| Al <sub>2</sub> O <sub>3</sub> -RICH<br>SPUN FIBER | 77. 4 (84. 0) | 77. 4 (84. 0) 15. 8 (10. 1) 5. 8 (4. 3) 1. 0 (1. 5) | 5.8 (4.3)                     | 1.0 (1.5)         | Y-Al <sub>2</sub> 0 <sub>3</sub> | 9.5±2.1 µm                 |
| SiO <sub>2</sub> -RICH<br>SPUN FIBER               | 53.2 (64.8)   | 53. 2 (64. 8) 40. 0 (28. 7) 5. 8 (4. 9) 1. 0 (1. 7) | 5.8 (4.9)                     | 1.0(1.7)          | MULLITE                          | 8. 0±2. 5 μm               |
| MONOFILAMENT                                       | /IS           | STANDARD COMPOSITION                                | MPOSITION                     | 7                 | MULLITE                          | 6.8*                       |
| HAND-MADE<br>FIBER                                 | /1S           | STANDARD COMPOSITION                                | MPOSITION                     | 7                 | MULLITE                          |                            |
| CAST<br>PRECURSOR<br>SOLUTION                      | /IS           | STANDARD COMPOSITION                                | MPOSITION                     | 7                 | MULLITE                          |                            |

\*MANUFACTURER'S DATA - NORMAL AVG OF 10 MEASUREMENTS

### CRYSTALLITE SIZE

(Figure 2)

The materials studied in this investigation were subjected to various isothermal exposures at 1205°C and at 1426°C. The specimens were heated on platinum foil in a platinum wound furnace and then cooled in air. The times at temperature for the various samples are listed in Figure 2.

microtome size of 1022 Å and an XRD size of 1350 Å. This apparent discrepancy will be discussed later. determined from diffraction line broadening using a quartz sample to correct for instrumental broadenphotographs were required to provide enough sufficiently clear images. The crystallite widths were along with the (100) quartz reflection. This procedure yielded the average crystallite width. The TEM and XRD size data are in good agreement, except for the TEM replica value of 2300 Å compared to 100 images of the crystallites appearing in the transmission photos. In many cases ten to twelve The TEM crystallite size value was determined by measuring and averaging the widths of about reflection of Y-Al<sub>2</sub>0<sub>3</sub> along with the (201) quartz reflection and the (110) reflection of mullite ing introduced by the diffractometer (ref. 1). The diffraction profiles measured are the (400) measured so as to be able to compare this data with sizes calculated from XRD. The latter was

constant at the one hour - 1205°C and the one hour - 1426°C exposures and then it increased again. The Both sets of size values (TEM and XRD) show that with the standard spun fibers and the  $\mathrm{Al}_2\mathrm{O}_3\mathrm{-rich}$ spun fibers the average size increased until the 16 hour - 1426°C exposure where the average size then decreased. For the SiO2-rich spun fiber the size at first increased and then remained more or less nature of these observed discontinuities in the growth of the crystallites is described later along with experimental verification.

L

### CRYSTALLITE SIZE

| MATERIALS                            | THERMAL                        | •         | TEM                |            | XRD     |
|--------------------------------------|--------------------------------|-----------|--------------------|------------|---------|
|                                      | IREATMENT                      | TECHNIQUE | SIZE (WIDTH),<br>A | SIZE,<br>A | PHASE,  |
| STANDARD                             | AS-RECEIVED                    | MICROTOME | ABOUT 100-200      | 61         | Y-A1203 |
| STUN FIDER                           | 1 HR AT 1426 <sup>0</sup> C    | MICROTOME |                    | 423        | MULLITE |
|                                      | 16 HR AT 1426 <sup>0</sup> C   | MICROTOME | 480                | 378        | MULITE  |
|                                      | 116 HR AT 1426° C*             | MICROTOME | 1022               | 1350       | MULLITE |
|                                      | 116 HR AT 1426 <sup>0</sup> C* | REPLICA   | 2300               | 1350       | MULLITE |
| Al <sub>2</sub> 0 <sub>3</sub> -RICH | AS-RECEIVED                    | MICROTOME | ABOUT 100-200      | 73         | Y-A1203 |
| SPUN FIBER                           | 1 HR AT 1205 <sup>0</sup> C    |           |                    | 345        | MULTITE |
|                                      | 1 HR AT 1426°C                 | MICROTOME | 950                | 1000       | MULITE  |
|                                      | 16 HR AT 1426 <sup>0</sup> C   | MICROTOME | 520                | 838        | MULLITE |
| SiO <sub>2</sub> -RICH               | AS-RECEIVED                    | MICROTOME | ABOUT 100-200      | 213        | MULLITE |
| SPUN FIBER                           | 1 HR AT 1205° C                |           |                    | 408        | MULLITE |
|                                      | 1 HR AT 1426°C                 | MICROTOME | 350                | 325        | MULLITE |
|                                      | 16 HR AT 1426° C               | MICROTOME | 519                | 623        | MULLITE |
| CAST                                 | AS-PREPARED                    |           |                    | 440        | MULLITE |
| SOLUTION                             | 16 HR AT 1426° C               |           |                    | 1380       | MULLITE |

 $^*$ 16 HR AT 14260 C, COOLED TO ROOM TEMP  $_{\&}$  100 HR AT 14260 C.

Figure 2

# MICROTOMED SECTIONS OF STANDARD SPUN FIBERS

u

#### (Figure 3)

their small size the  $\gamma$ -Al $_2$ O $_3$  crystallites in the as-received standard and in the as-received Al $_2$ O $_3$ -rich Microtomed sections were prepared of the three spun fibers Fibers which had been vacuum encapsulated in epoxy resin were sectioned with an ultramicrotome. fibers could not be distinguished from the mullite crystallites in the as-received SiO2-rich fibers. Because of The small dark shapes with sharp edges are only. All three of the as-received fibers were found to consist of extremely small crystallites The structure shown in the crystallites and the formless grey area surrounding them is the amorphous material. (about 100 to 200 Å) dispersed in a large amount of an amorphous phase. Figure 3 is representative of all three compositions. The cut sections were 0.3 to 1.5 µm thick.

to the dimension of the fiber diameter as has been proposed in the case of  $Y_20_3$ -stabilized  $Zr0_2$  fibers being exposed to temperatures of 1350°C and above (ref. 2) is not the result of crystallites growing The situation between the two extremes shown here is discussed next using the  $\mathrm{Si0}_2\mathrm{-rich}$ In the most extreme case studied (116 hours at 1146°C) the crystals appear contiguous. Thus, the degradation of mechanical properties observed in these fibers after The average crystal size was 1022 Å (TEM) and 1350 Å (XRD), i.e., much less than the mean fiber During thermal exposure the crystallites grew larger and the amount of amorphous material fibers as representative of the microstructure of all three compositions. diameter of 6.8 µm. decreased.

L

# MICROTOMED SECTIONS OF STANDARD SPUN FIBERS



AS-RECEIVED

AFTER 116 HOURS AT 14260 C

Figure 3

# MICROTOMED SECTIONS OF SiO<sub>2</sub>-RICH SPUN FIBERS

#### (Figure 4)

phase. Mullite was the only crystalline phase detected by X-ray diffraction in all three compositions. Thus the crystallites shown are assumed to be all mullite. These crystallites are elongated polyhedra, After heating the fibers at 1426°C for one and for 16 hours the crystallites grew and the amount tially from sintering the component oxides. The more common acicular morphology is present only when the mullite is formed in the presence of a liquid phase such as in the solidification from the melt square appearance. A prismatic crystalline habit is expected since this mullite was produced essensome of which are orientated such that their short axes are in the plane of the photo giving them a of amorphous phase decreased. The grey area between the crystallites in Figure 4 is the amorphous

The observed discontinuity in growth of the crystallites can be explained by assuming that during of the original crystallites. The temperature at which this concurrent nucleation and growth process caused a discontinuity in the average growth rate was found to be higher for the standard and for the Al203-rich fiber than for the SiO2-rich fibers. This temperature relationship is probably due to the fact that the homologous temperature of the standard and the  $Al_2O_3$ -rich fibers is higher than that of the series of thermal exposures new crystallites were nucleated from the amorphous phase while those became sufficient in number so as to bias the average to a lower value despite the increase in size already present continued to grow. The smaller, more recently nucleated crystallite, eventually the SiO2-rich fibers. The concurrent nucleation and growth process should result in a rather large range of crystallite sizes in the thermally exposed samples. Such a size range was evident in measurements from the TEM photos. For example, after one hour at 1426°C the SiO<sub>2</sub>-rich fibers with an average size of 350 Å had size range from about 200 to 800 Å.

was the only phase detected in this specimen and the average crystallite size was beyond the limits of dard spun fibers were heated to 1426°C for one hour, then leached in hydrofluoric acid for about 10 minutes. The purpose of the acid treatment was to preferentially dissolve the amorphous phase and 1426°C for an additional 15 hours and then subjected to X-ray diffraction analysis. Again mullite thereby decrease the amount of nucleation possible thereafter. The fibers were then reheated at Further experimental proof of the concurrent nucleation and growth phenomenon was sought. detection by the X-ray line broadening technique, i.e., > 2000 Å.

H

H

K

L

U



Figure 4

## REPLICA OF UNETCHED STANDARD SPUN FIBER

#### (Figure 5)

A limited number of replicas of unetched fibers were examined. The replicas were made by a one-The coated sample was covered with a thin layer of paraffin to protect the brittle carbon film during the chemical dissolution of the fibers about 60°C. at step carbon replication process whereby unmounted fibers were shadowed with platinum-carbon The paraffin was then removed by heating in distilled water at The last traces of the paraffin were removed by a toluene wash. 23° and reinforced with a carbon layer of about 200 Å. 30% hydrofluoric acid.

1426°C and then heated an additional 100 hours at the same temperature. Its surface microstructure as The average surface grain width as measured from the electron photomicrographs is 2300 Å compared to an X-ray value of 1350 Å and to 1022 Å from Thus after an exposure of at least 116 hours at 1426°C it is concluded that the outer crystallites are larger than the internal crystallites. The nature of this development and its effect upon the mechanical The crystallites are The X-ray diffraction pattern contains The replica shows essentially the surface One of the specimens examined was the standard spun fiber, which was exposed for 16 hours structure while the microtomed section is more representative of the internal structure. properties of the fibers are subjects under consideration in our current program. seen in Figure 5 contains large crystallites with facets clearly resolved. essentially contiguous with no apparent amorphous phase. mullite lines as expected and a few unidentified lines. measurements from the photos of microtomed sections.

L

Ĭ.



EXPOSED FOR 16 HOURS AT 1426° C. COOLED TO ROOM TEMPERATURE AND HEATED AN ADDITIONAL 100HOURS AT 1426° C.

Figure 5

#### (Figure 6)

The amount of internal porosity is an important factor in the fiber's strength. For this reason fibers. For this purpose as-received, and thermally exposed fibers were mounted, polished, and in a it was important to see if the amount of internal porosity could be observed in these small diameter few cases chemically etched. The mounting, polishing, and etching procedures were as follows.

mounted fibers were ground and polished by using wet abrasive papers and 3 µm and 0.5 µm diamond polishfibers. The dye was used to facilitate detection of the colorless fibers. The resin cured into a flat A bundle of fibers (spun or monofilament) was lined up in more or less one direction and placed on The imbedded fibers were The etchant consisted of 90 A mixture of epoxy resin and a small amount of red dye was poured over the again mounted such that the cross-section of the fibers were exposed for polishing and etching. button shape which was then cut in half, perpendicular to the fibers' axes. parts lactic acid, 10 parts nitric acid, and 5 parts of hydrofluoric acid. ing compounds. Some of the polished fibers were then chemically etched. a flat metallic surface.

percent porosity was reported. The technique used in reference 5 was the replication of fractured fiber The lack of porosity seen here was also observed in the as-received monofilament as-received standard spun fiber. There is no indication of porosity although there is a faint indication of some structure. The middle photo shows the monofilament (standard composition) after a moder-(not shown). These observations are in direct contrast to those in reference 5 where 10 to 20 volume would appear that the examination of a replica of a polished surface is more informative for porosity Representative cross-sections of these fibers are shown in Figure 6. The first photo shows the surfaces. Beyond showing features related to fracture, such replicas are difficult to interpret. ate thermal exposure. determinations.

An important observation here is that it was possible to obtain polished surfaces of good quality even though the size of the abrasive used (0.5 µm diamond) was large compared to the diameter of the fiber (6.8 µm).

exposed fibers since the feasibility of obtaining information by chemically etching mullite fibers when they contain sufficiently large crystallites (about 1000 Å and larger) has already been demonstrafrom the direction of the shadowing.) These etched out areas roughly range in size from 400 to 2000 Å. Although their appearance is similar to etch pits they are not believed to be etch pits since they are metallographic information. The only features seen are the many small areas that have been preferentially attacked by the etchant. (In negative replicas the depressions appear as mounds when viewed much larger than the crystallites (100 to 200 Å). No attempt was made to chemically etch thermally Chemical etching of the cross-section of the polished, as-received fibers revealed no useful ted in reference 5.

MONOFILAMENTS AFTER 1/2 HOUR AT 1205<sup>0</sup> C POLISHED, UNETCHED



AS-RECEIVED STANDARD SPUN FIBER - CHEMICALLY ETCHED

Figure 6

361

2 pm

## REPLICAS OF CATHODICALLY ETCHED FIBERS

(Figure 7)

the potential was reapplied. This cycle was repeated six times for a total etching time of 30 minutes. cathodic etcher served as the anode. The chamber was evacuated to less than 0.66 N/m² (5 × 10-3 torr) carbon replication process previously described in connection with the examination of unetched fibers. aluminum backing. The replication of the cathodically etched fibers was accomplished by the one-step applied and held for five minutes. The sample was then allowed to cool for five minutes after which exposed) were cathodically etched and replicated. The etching procedure consisted of individually and flushed twice with argon. Then the argon flow and pumping speed were regulated until a steady This sequence achieved the required sample etch without excessive heating of the fibers or of the separating and placing the fibers on aluminum foil which covered an aluminum block in a cathodic etching apparatus. The aluminum block (and the foil) served as the cathode and the walls of the pressure of 19.95 N/m² (0.15 torr) was obtained. A potential of 2000 volts (5 milliamperes) was Samples from all the materials studied during this investigation (as-prepared and thermally

cells and striations sometimes appearing together and with cell size varying along the fiber. Curiously consisted of cellular structures and striations. Within any fiber the structure was inhomogeneous with The major findings from the examination of replicas of the cathodically etched spun fibers are as distinguished from the heat treated fiber. Further, the dimensions of the structural features of the cathodically etched fibers cannot be correlated with the crystal size calculated from XRD or measured follows. The standard composition fibers and the Al<sub>2</sub>O<sub>3</sub>-rich fibers displayed similar features which (crystalline or noncrystalline). Thus, as seen in Figure 7 the as-received fiber cannot be readily the features revealed by cathodic etching seems unaffected by thermal exposure or phases present from TEM photos of microtomed sections.

L

L



Figure

## CATHODICALLY ETCHED Si02-RICH FIBERS

#### (Figure 8)

fibers in two other respects. One is the frequent appearance of a tiered structure as seen in Figure 8. The Si02-rich fibers differed from the standard and the Al203-rich The other is the occasional appearance of a structure in the thermally exposed fibers that looks as if After cathodic etching the SiO2-rich fibers were also observed to contain the cellular structure, but striations were never observed. it had been molten at temperature.

that must be present when the precursor solution is forced through the spinnerette orifice and rapidly example, the observed striations in the standard and Al<sub>2</sub>0<sub>3</sub>-rich fibers may be related to the shearing Such striations were also observed in monofilaments and the handmade fibers, again suggesting The distinctive features revealed by cathodic etching appear real but they cannot be related for Of course, this raises the intriguing question of the most part to composition or exposure. It is possible then that this technique is not revealing structure on the scale of the crystallite size, but it may be revealing features of a larger scale. why striations were not observed in the SiO2-rich fibers, for which there is no obvious answer. These larger features may be caused by fiber processing and thus reflect processing history. the action of shearing forces during processing. dried.

L

K

## CATHODICALLY ETCHED SiO<sub>2</sub>-RICH FIBERS



I pml

SiO<sub>2</sub>-RICH SPUN FIBER AFTER ONE HOUR AT 1426°C

AS-RECEIVED SIO<sub>2</sub>-RICH SPUN FIBER WITH TIERED STRUCTURE

Figure 8

366

## CATHODICALLY ETCHED PRECURSOR SOLUTION

#### (Figure 9)

An effort was made to see if the microstructural features resulting from cathodic etching could be For this purpose the three spun fibers, the monofilament, the handmade fibers, and the cast precursor solution were tested. The preparation of these materials differed with respect to many of the important processing parameters such as the basic forming mode or cast), humidity, drying method, collection mode and firing schedule, etc. related to processing differences.

The cathodically etched monofilament and the handmade fibers could not be distinguished from the spun fibers either in The as-prepared cast precursor solution (fired for ten minutes at 1065°C during its preparation) However, after a thermal exposure at 1426°C the cast material developed cellular structures similar to those of the spun fibers. did indeed have a unique structure as seen in Figure 9. as-prepared condition or after thermal exposure. Thus this cursory examination did not demonstrate the ability of cathodic etching to differentiate of processing parameter differences among the fibers. Nevertheless, the very distinctive features Perhaps a more systematic study with well-controlled processing parameters may reveal indeed it does then cathodic etching would prove to be a useful tool for studying the effects revealed by this etching method must be associated with some aspect of the microstructure of relationship between the features exposed by cathodic etching and the processing parameters. processing variables upon fiber properties. fibers.

L



CAST SOLUTION OF STANDARD COMPOSITION AFTER 16 HOURS AT 1426° C



AS-PREPARED CAST SOLUTION OF STANDARD COMPOSITION

Figure 9

### SUMMARY OF RESULTS

In this investigation the microstructures of mullite-composition fibers were examined by a number The major findings are as follows: of TEM techniques and by XRD.

tiguous. At this juncture the average crystallite size was less than 0.2 µm, relatively small compared to the mean fiber diameter of 6.8 µm. In addition, the surface crystallites of these fibers were found thermally exposed, these crystallites grew and simultaneously new crystallites were nucleated from the half hour at 1205°C. Prior to the thermal exposures the crystallites in all three of the spun fibers bination of a number of TEM techniques a valuable description of the microstructure of mullite fibers to be more than twice as large as the interior crystallites. It is concluded that by the proper comamorphous phase. After 116 hours at 1426°C the crystallites of the standard spun fibers became con-The as-received fibers of standard compositions, both the spun and the monofilament, contained can be obtained. The potential for such a microstructural description is, of course, to ultimately little if any porosity. Nor did the degree of porosity change after heating the monofilament for were very small (about 100 to 200 Å) and were dispersed in a large amount of an amorphous phase. relate fiber microstructure to mechanical behavior.

K

I

H

U

L

REFERENCES

P. Klug and E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous

Materials, John Wiley and Sons, 1954.

1:

- R.N. Fetterolf, NASA CR-120929, 1971. 5
- R.A. Tanzilli, Ed. NASA CR-112038, 1972. 3.
- R.F. Davis and J.A. Pask, Mullite Ch.3. of High Temperature Oxides Part IV Refractory Glasses, Glass-Ceramics, and Ceramics, A.M. Alper, Ed., Academic Press, 1971.
- R.N. Fetterolf, AFML-TR-70-197, 1970. 2