

MT7620 DATASHEET

Integrated 802.11n MAC/BBP and 2.4 GHz RF/FEM Router-on-a-Chip

Overview

The MT7620 router-on-a-chip includes an 802.11n MAC and baseband, a 2.4 GHz radio and FEM, a 580 MHz MIPS® 24K™ CPU core, a 5-port 10/100 switch and two RGMII. The MT7620 includes everything needed to build an AP router from a single chip. The embedded high performance CPU can process advanced applications effortlessly, such as routing, security and VoIP. The MT7620 also includes a selection of interfaces to support a variety of applications, such as a USB port for accessing external storage.

Applications:

- Routers
- NAS devices
- iNICs
- Dual band concurrent routers

Features

- Embedded MIPS24KEc (580 MHz) with 64 KB I-Cache and 32 KB D-Cache
- 2T2R 2.4 GHz with 300 Mbps PHY data rate
- Legacy 802.11b/g and HT 802.11n modes
- 20/40 MHz channel bandwidth
- Legacy 802.11b/g and HT 802.11n modes
- Reverse Data Grant (RDG)
- Maximal Ratio Combining (MRC)
- Space Time Block Coding (STBC)
- 16-bit SDRAM up to 64 Mbytes
- 16-bit DDR1/2 up to 128/256 Mbytes (MT7620A)
- SPI, NAND Flash/SD-XC
- 1x USB 2.0, 1x PCIe host/device
- 5-port 10/100 SW and two RGMII

- An optimized PMU
- Green AP
 - Intelligent Clock Scaling (exclusive)
 - DDRII: ODT off, Self-refresh mode
 - SDRAM: Pre-charge power down
- I2C, I2S, SPI, PCM, UART, JTAG, MDC, MDIO, GPIO
- Hardware NAT with IPv6 and 2 Gbps wired speed
- 16 Multiple BSSID
- WEP64/128, TKIP, AES, WPA, WPA2, WAPI
- QoS: WMM, WMM-PS
- WPS: PBC, PIN
- Voice Enterprise: 802.11k+r
- AP Firmware: Linux 2.6 SDK, eCOS with IPv6
- RGMII iNIC Driver: Linux 2.4/2.6

Functional Block Diagram

Ordering Information

Ralink Technology Corp. (USA) Suite 200 20833 Stevens Creek Blvd. Cupertino CA95014, U.S.A

Tel: 408-725-8070 Fax: 408-725-8069 Ralink Technology Corp. (Taiwan) 5F, 5 Taiyuan 1st St Jhubei City, Hsinchu Taiwan, R.O.C Tel: 886-3-560-0868 Fax: 886-3-560

Part	Package
Number	(Green/RoHS Compliant)
MT7620A	TFBGA 265 ball
	(11 mm x 11 mm)
MT7620N	DR-QFN 148 pin
	(12 mm x 12 mm)

www.ralinktech.com

Table of Contents

1. MAIN FEATURES	6
2. PINS	7
2.1 TFBGA (11 MM x 11 MM) 265 BALL PACKAGE DIAGRAM	7
2.1.1 DDR2 BALL MAP	7
2.2 DR-QFN (12 MM x 12 MM) 148-PIN PACKAGE DIAGRAM	8
2.2.1 LEFT SIDE VIEW	8
2.2.2 RIGHT SIDE VIEW	9
2.3 PIN DESCRIPTIONS (TFBGA)	11
2.4 PIN DESCRIPTIONS (DRQFN)	17
2.5 PIN SHARING SCHEMES	23
2.5.1 GPIO PIN SHARE SCHEME	23
2.5.2 UARTF PIN SHARE SCHEME	25
2.5.3 RGMII PIN SHARE SCHEMES	26
2.5.4 WDT_RST_MODE PIN SHARE SCHEME	26
2.5.5 PERST_N PIN SHARE SCHEME	26
2.5.6 MDC/MDIO PIN SHARE SCHEME:	26
2.5.7 EPHY_LED PIN SHARE SCHEME	27
2.5.8 SPI PIN SHARE SCHEME	27
2.5.9 ND/SD PIN SHARE SCHEME	28
2.5.10 xMII PHY/MAC PIN MAPPING	30
2.6 BOOTSTRAPPING PINS DESCRIPTION	31
3. MAXIMUM RATINGS AND OPERATING CONDITIONS	32
3.3 ABSOLUTE MAXIMUM RATINGS	32
3.4 MAXIMUM TEMPERATURES	32
3.5 Operating Conditions	32
3.6 Thermal Characteristics	32
3.7 Storage Conditions	33
3.8 EXTERNAL XTAL SPECFICATION	33
3.9 DC ELECTRICAL CHARACTERISTICS	33
3.10 AC ELECTRICAL CHARACTERISTICS	35
3.10.1 SDRAM INTERFACE	35
3.10.2 DDR2 SDRAM INTERFACE	36
3.10.3 RGMII INTERFACE	38
3.10.4 MII INTERFACE (25 MHz)	39
3.10.5 RVMII INTERFACE (PHY MODE MII TIMING) (25 MHZ)	40
3.10.6 SPI Interface 3.10.7 I ² S Interface	41
3.10.7 F S INTERFACE 3.10.8 PCM INTERFACE	42
3.10.9 POWER ON SEQUENCE	43 44
3.11 PACKAGE PHYSICAL DIMENSIONS	45
3.11.1 TFBGA (11 MM x 11 MM) 265 BALLS	45
3.11.2 DR-QFN (12 MM x 12 MM) 148LD	47 50
3.11.3 MT7620 N/A MARKING	50
3.11.4 REFLOW PROFILE GUIDELINE	51
4. ABBREVIATIONS	52
5. REVISION HISTORY	55

Table of Figures

FIGURE Z-1 DR-QFN PIN DIAGRAM (LEFT VIEW)	
Figure 2-2 DR-QFN Pin Diagram (right side view)	
Figure 2-3 MII → MII PHY	
Figure 2-4 RvMII → MII MAC	
Figure 2-5 RGMII → RGMII PHY	
Figure 2-6 RGMII→ RGMII MAC	
FIGURE 3-1 SDRAM INTERFACE	
Figure 3-2 DDR2 SDRAM Command	
Figure 3-3 DDR2 SDRAM Write data	
Figure 3-4 DDR2 SDRAM Read data	
Figure 3-5 RGMII Interface	
Figure 3-6 MII Interface	
Figure 3-7 RvMII Interface	
Figure 3-8 SPI Interface	
Figure 3-9 I2S Interface	42
Figure 3-10 PCM Interface	43
Figure 3-11 Power ON Sequence	
FIGURE 3-12 TFBGA TOP VIEW	
FIGURE 3-13 TFBGA SIDE VIEW	
FIGURE 3-14 TFBGA "A" EXPANDED	45
FIGURE 3-15 TFBGA BOTTOM VIEW	
FIGURE 3-16 TFBGA "B" EXPANDED	
FIGURE 3-17 DR-QFN TOP VIEW	
FIGURE 3-18 DR-QFN SIDE VIEW	
FIGURE 3-19 DR-QFN "B" EXPANDED	
FIGURE 3-20 DR-QFN BOTTOM VIEW	
FIGURE 3-21 DR-QFN "A" EXPANDED	48
FIGURE 3-22 MT7620N TOP MARKING	
FIGURE 3-23 MT7620A TOP MARKING	50
Figure 3-24 Reflow profile for MT7620	51
List of Tables	
TABLE 1-1 MAIN FEATURES	
TABLE 2-1 DDR2 BALL MAP	8
Table 3-1 Absolute Maximum Ratings	32
TABLE 3-2 MAXIMUM TEMPERATURES	32
Table 3-3 Operating Conditions	32
Table 3-4 Thermal Characteristics	32
Table 3-5 External Xtal Specifications	33
Table 3-6 DC Electrical Characteristics	33
Table 3-7 Vdd 2.5V Electrical Characteristics	34
Table 3-8 Vdd 3.3V Electrical Characteristics	34
Table 3-9 SDRAM Interface Diagram Key	
TABLE 3-10 DDR2 SDRAM INTERFACE DIAGRAM KEY	37
TABLE 3-11 RGMII INTERFACE DIAGRAM KEY	38
Table 3-12 MII Interface Diagram Key	39
Table 3-13 RvMII Interface Diagram Key	40

Table 3-14 SPI Interface Diagram Key	 	41
Table 3-15 I2S Interface Diagram Key		42
Table 3-16 PCM Interface Diagram Key		43
Table 3-17 Power ON Sequence Diagram Key		44

1. Main Features

The following table covers the main features offered by the MT7620N and MT7620A. Overall, the MT7620N supports the requirements of an entry-level AP/router, while the more advanced MT7620A supports a number of interfaces together with a large maximum RAM capacity.

Features	MT7620N	MT7620A
СРИ	MIPS24KEc (600/580 MHz)	MIPS24KEc (580 MHz)
Total DMIPs	580 x 1.6 DMIPs	580 x 1.6 DMIPs
I-Cache, D-Cache	64 KB, 32 KB	64 KB, 32 KB
L2 Cache	n/a	n/a
HNAT/HQoS	HNAT	HNAT 2 Gbps forwarding
Memory		4
DRAM Controller	16 b	16 b
SDRAM	512 Mb, 120 MHz	n/a
DDR1	512 Mb, 193 MHz	n/a
DDR2	512 Mb, 193 MHz	2 Gb, 193 MHz
NAND	n/a	Small page 512Byte (max 512M bit) Large page 2Kbyte (max 8G bit)
SPI Flash	3B addr mode (max 128Mbit) 4B addr mode (max 512Mbit)	3B addr mode (max 128Mbit) 4B addr mode (max 512Mbit)
SD	n/a	SD-XC (class 10)
RF	2T2R 802.11n 2.4 GHz	2T2R 802.11n 2.4 GHz
PCle	n/a	1
USB 2.0	1	1
Switch	5p FE SW	5p FE SW + RGMII(1) 4p FE SW + RGMII(2)
125	n/a	1
PCM	n/a	1
I2C	1	1
UART	1 (Lite)	2 (Lite/Full)
JTAG	1	1
Package	DRQFN148- 12 mm x 12 mm	TFBGA265- 11 mm x 11 mm

Table 1-1 Main Features

2. Pins

2.1 TFBGA (11 mm x 11 mm) 265 Ball Package Diagram

2.1.1 DDR2 Ball Map

26 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
A	RF0 _OUT P	RF0 _PA2 _V33N	RFO_I N	BG_ EXTR	XTAL_ XI	XTAL _XO	BBPLL _V12A	SPI _MOSI	PCIE _RXP	PCIE _TXN	APCK _RFCK OP		FB	DCDC _V33 D	UGAT E	VFB _DDR	VFB _DIG	Α
В	RF0 _PA1 _V33 _A	RF0 _OUT N	RFO_V X _LDO	PLL _VC _CAP	XTAL _V12A		SPI_W P	SP I _HOLD	PCIE _RXN	PCIE _TXP	APCK _RFCK ON		5	LGAT E	NC X	DCDC _V33 A	EXT _LDO _DIG	В
С	RF1_I N	GND		GND	ADC_ VX_LD O	PORS T_N	SPI_CS 0	SPI _MISO	SPI _CS1	PCIE _REXT	PCIE _RFCKP	UPH Y0 _V12 D		СОМР	UPHY 0 _VRES	UPHY 0 _PAD M	UPHY 0 _PAD P	С
D	RF1 _OUT P	GND	RF1_V X _LDO	BG_ V33A	AN T_TRN	WDT _RST_ N	GPIO0	SPI_CLK	SOC_I O _V33D _0	PERST _N	PCIE _RFCK N	APCK _V12 A		GE2 _RXCL K	GE2 _RXD V	GE1 _RXD V	GE1 _RXCL K	D
E	RF1 _OUT N	RF1 _PA2 _V33N	RF1 _PA1 _V33A	ANT_ TRNB	PA_PE _G0	PA_P E_G1	0	SOC_CO _V12D_ 0	APCK _V12A	PCIE _V33A			UPHY0 _V33A	GE2 _RXD 3	GE2 _RXD _1	GE1 _RXD 1	GE1 _RXD 0	E
F		GND				GND	GND	GND	GND	GND	GND	GND	GE_IO _V33D	GE2 _RXD 2	GE2 _RXD 0	GE1 _RXD 3	GE1 _RXD 2	F
G				WLED _N	SOC_I O _V33D _1	GND	GND	GND	GND	GND	GND	GND	GE_IO _V33D	GE2 _TXE N	GE2 _TXCL K	GE1 _TXE N	GE1 _TXCL K	G
н	EPHY _LED 3 _N _JTCL K	EPHY _LED2 _N _JTMS	EPHY _LED1 _N_JT DI	EPHY _LED0 _N _JTDO	DDR_I O _V18D	GND	GND	GND	GND	GND	GND	GND		GE2 _TXD 2	GE2 _TXD3	GE1 _TXD1	GE1 _TXD 0	н
J	MD14	MD9	MODT	EPHY _LED4 _N _JTRST _N	DDR_I O _V18D	GND	GND	GND	GND	GND	GND	GND		GE2 _TXD 1	GE2 _TXD0	GE1 _TXD3	GE1 _TXD 2	J
к	MD12	MD11	MCS_ N	GND	DDR_I O _V18D	GND	GND	GND	GND	GND	GND	GND	SOC_C O _V12D _3	MDC	MDIO			к
L	MD10	MD13	MRAS _N	MA0	DDR_I O _VREF	GND	GND	GND	GND	GND	GND	GND	SOC_C O _V12D _3	EPHY _V12 A	EPHY _V12 A			L
М	MD8	MD15	MCAS _N	MA2	DDR _IOC _V12D	GND	GND	GND	SOC_C O _V12D _2	SOC _IO _V33D _2	GND	GND	EPHY _PLL _V12A	MDI _RN_ P3	MDI_ RP _P3	MDI _TP_P 4	MDI _TN_ P4	М

26 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
N	MDQ S1	MDQ M1	MA4	DDR _IOC _V12D	MA13	DDR_I O _V18 D			SOC_C O _V12D _2	SOC _IO _V33D _2	GND	EPHY _V33 A	FDHV	MDI _TN_ P3	MDI _TP_P _3	MDI_ RP _P4	MDI _RN_ P4	N
Р	MCK_ P	MCK_ N	MA6	MA8	MA12	MA7	DDR _IO _V18D	ND_CS_ N	ND_CL E/ SD _CARD _DETE _CT	_	DSR_N	RXD	TXD2	MDI_ TP _P2	MDI _TN_ P2	MDI_ RP _P2	MDI _RN_ P2	P
R	MD5	MD2	MA11	MA9	MA5	MA3	MBA2	ND_RB_ N/ SD_CLK	ND_RE _N	ND_AL E/ SD_CM D	ND _WE _N	TXD	RTS_N	RXD2	EPHY _RES _VBG	MDI_ RP _P1	MDI _RN_ P1	R
т	MD0	MD6	MD4	MDQS0	MA1	MBA1	MWE _N	ND_D6/ BT _WACT	DT CT		_00/	DCD _N	RIN	I2C_S D	MDI _RN_ P0	MDI_ TP _P1	MDI _TN_ P1	т
U	MD7	MD1	MD3	MDQM 0	MA10	MBA0	MCKE	ND_D7/ BT_ANT		/ /	ND _D1/ SD_D1	DTR _N	CTS_N	I2C _SCLK	MDI_ RP _P0	MDI _TP_P 0	MDI _TN_ P0	U
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	

Table 2-1 DDR2 Ball Map

2.2 DR-QFN (12 mm x 12 mm) 148-Pin Package Diagram

2.2.1 Left side view

Figure 2-1 DR-QFN Pin Diagram (left view)

2.2.2 Right side view

Figure 2-2 DR-QFN Pin Diagram (right side view)

Note: DR-QFN support SDR/DDR1 and DDR2 pin shuffle depend on the bootstrap. For DDR2 pin assignment, please refer to left column and bottom row using DDR_ format.

2.3 Pin Descriptions (TFBGA)

Pin	Name	Туре	Driv.	Description
WLAN LED				
G4	WLED_N	O, IPU	4 mA	WLAN Activity LED
UART Lite		C, C		
R14	RXD2	I, IPU	4 mA	UART Lite RXD
P13	TXD2	O, IPU	4 mA	UART Lite TXD
UART Full *		-, -		
P12	RXD	I, IPD	4 mA	UART RXD.
T13	RIN	I, IPD	4 mA	UART RIN.
U13	CTS_N	I, IPD	4 mA	UART CTS_N.
P11	DSR_N	I, IPD	4 mA	UART DSR N.
T12	DCD_N	I, IPD	4 mA	UART DCD_N.
R12	TXD	O, IPD	4 mA	UART TXD.
U12	DTR_N	O, IPD	4 mA	UART DTR.
R13	RTS_N	O, IPD	4 mA	UART RTS.
SPI				
C8	SPI_MISO	I/O, IPD	4 mA	Master input/Slave output
A8	SPI_MOSI	I/O, IPD	4 mA	Master output/Slave input
В7	SPI_WP	O, IPD	4 mA	GOP function
B8	SPI_HOLD	O, IPD	4 mA	GOP function
D8	SPI_CLK	O, IPD	4 mA	SPI clock
C7	SPI_CS0	O, IPU	4 mA	SPI chip select0
C9	SPI_CS1	O, IPU	4 mA	SPI chip select1
I2C	G		6	
U14	I2C_SCLK	I/O, IPU	4 mA	I ² C Clock
T14	I2C_SD	O, IPU	4 mA	1 ² C Data
RGMII/MII (3.	3 V)*			
D17	GE1_RXCLK	1/0	8 mA	RGMII1 /GMII Rx Clock
D16	GE1_RXDV		8 mA	RGMII1 /GMII Rx Data Valid
E17	GE1_RXD0		8 mA	RGMII1 Rx Data bit #0/GMII Rx Data bit #0
E16	GE1_RXD1	Ä	8 mA	RGMII1 Rx Data bit #1/GMII Rx Data bit #1
F17	GE1_RXD2	1	8 mA	RGMII1 Rx Data bit #2/GMII Rx Data bit #2
F16	GE1_RXD3	1	8 mA	RGMII1 Rx Data bit #3/GMII Rx Data bit #3
G17	GE1_TXCLK	I/O	8 mA	RGMII1 /GMII Tx Clock
G16	GE1_TXEN	0	8 mA	RGMII1 /GMII Tx Data Valid
H17	GE1_TXD0	0	8 mA	RGMII1 Tx Data bit #0/GMII Tx Data bit #0
H16	GE1_TXD1	0	8 mA	RGMII1 Tx Data bit #1/GMII Tx Data bit #1
J17	GE1_TXD2	0	8 mA	RGMII1 Tx Data bit #2/GMII Tx Data bit #2
J16	GE1_TXD3	0	8 mA	RGMII1 Tx Data bit #3/GMII Tx Data bit #3
D14	GE2_RXCLK	I/O	8 mA	RGMII2 /GMII Rx Clock
D15	GE2_RXDV	1	8 mA	RGMII2 /GMII Rx Data Valid

Pin	Name	Туре	Driv.	Description
F15	GE2 RXD0	1	8 mA	RGMII2 Rx Data bit #0/GMII Rx Data bit #0
E15	GE2_RXD1	1	8 mA	RGMII2 Rx Data bit #1/GMII Rx Data bit #1
F14	GE2 RXD2	1	8 mA	RGMII2 Rx Data bit #2/GMII Rx Data bit #2
E14	GE2_RXD3	ı	8 mA	RGMII2 Rx Data bit #3/GMII Rx Data bit #3
G15	GE2 TXCLK	I/O	8 mA	RGMII2 /GMII Tx Clock
G14	GE2 TXEN	0	8 mA	RGMII2 /GMII Tx Data Valid
J15	GE2 TXD0	0	8 mA	RGMII2 Tx Data bit #0/GMII Tx Data bit #0
J14	GE2_TXD1	0	8 mA	RGMII2 Tx Data bit #1/GMII Tx Data bit #1
H14	GE2_TXD2	0	8 mA	RGMII2 Tx Data bit #2/GMII Tx Data bit #2
H15	GE2_TXD3	0	8 mA	RGMII2 Tx Data bit #3/GMII Tx Data bit #3
PHY Managem	nent (3.3 V)			
K14	MDC	0	8 mA	PHY Management Clock. Shared with GPIO23
K15	MDIO	I/O	8 mA	PHY Management Data. Shared with GPIO22
GPIO				
D7	GPIO0	O, IPD	8 mA	GPO0 (output only)
5-Port PHY				
H4	EPHY_LED0 _N_JTDO	O, IPD	4 mA	10/100 PHY Port #0 activity LED, JTAG_TDO
Н3	EPHY_LED1 _N_JTDI	I/O, IPD	4 mA	10/100 PHY Port #1 activity LED, JTAG_TDI
H2	EPHY_LED2 _N_JTMS	I/O, IPD	4 mA	10/100 PHY Port #2 activity LED, JTAG_TMS
H1	EPHY_LED3 _N_JTCLK	I/O, IPD	4 mA	10/100 PHY Port #3 activity LED, JTAG_CLK
J4	EPHY_LED4 _N_JTRST_N	I/O, IPU	4 mA	10/100 PHY Port #4 activity LED, JTAG_TRST_N
R15	EPHY_RES_VBG	A		Connect to an external resistor to provide accurate bias current
T15	MDI_RN_P0	1	()	10/100 PHY Port #0 RXN
U15	MDI_RP_P0			10/100 PHY Port #0 RXP
U17	MDI_TN_P0	0		10/100 PHY Port #0 TXN
U16	MDI_TP_P0	0		10/100 PHY Port #0 TXP
R17	MDI_RN_P1			10/100 PHY Port #1 RXN
R16	MDI_RP_P1	I		10/100 PHY Port #1 RXP
T17	MDI_TN_P1	0		10/100 PHY Port #1 TXN
T16	MDI_TP_P1	0		10/100 PHY Port #1 TXP
P17	MDI_RN_P2	1		10/100 PHY Port #2 RXN
P16	MDI_RP_P2	I		10/100 PHY Port #2 RXP
P15	MDI_TN_P2	0		10/100 PHY Port #2 TXN
P14	MDI_TP_P2	0		10/100 PHY Port #2 TXP
M14	MDI_RN_P3	1		10/100 PHY Port #3 RXN
M15	MDI_RP_P3	I		10/100 PHY Port #3 RXP
N14	MDI_TN_P3	0		10/100 PHY Port #3 TXN

Pin	Name	Туре	Driv.	Description
N15	MDI_TP_P3	0		10/100 PHY Port #3 TXP
N17	MDI_RN_P4	1		10/100 PHY Port #4 RXN
N16	MDI_RP_P4	I		10/100 PHY Port #4 RXP
M17	MDI_TN_P4	0		10/100 PHY Port #4 TXN
M16	MDI_TP_P4	0		10/100 PHY Port #4 TXP
NAND Flas	h*			
P8	ND_CS_N	O, IPD	4 mA	NAND Flash Chip Select
R9	ND_RE_N	O, IPD	4 mA	NAND Flash Read Enable
R11	ND_WE_N	O, IPD	4 mA	NAND Flash Write Enable
P10	ND_WP	O, IPD	4 mA	NAND Flash Write Protect
P9	ND_CLE	O, IPD	4 mA	NAND Flash Command Latch Enable
R10	ND_ALE	O, IPD	4 mA	NAND Flash ALE Latch Enable
T11	ND_D0	I/O, IPD	4 mA	NAND Flash Data0
U11	ND_D1	I/O, IPD	4 mA	NAND Flash Data1
T10	ND_D2	I/O, IPD	4 mA	NAND Flash Data2
U10	ND_D3	I/O, IPD	4 mA	NAND Flash Data3
T9	ND_D4	I/O, IPD	4 mA	NAND Flash Data4
U9	ND_D5	I/O, IPD	4 mA	NAND Flash Data5
T8	ND_D6	I/O, IPD	4 mA	NAND Flash Data6
U8	ND_D7	I/O, IPD	4 mA	NAND Flash Data7
R8	ND_RB_N	I, IPD	4 mA	NAND Flash Ready/Busy
Misc.				•
C6	PORST_N	I, IPU	4 mA	Power on reset
E5	PA_PE_G0	O, I PD	16 mA	0 V to 3.3 V control for external PA0
E6	PA_PE_G1	O, IPD	16 mA	0 V to 3.3 V control for external PA1
D5	ANT_TRN	O, IPD	8 mA	Positive signal for antenna T/R switch
E4	ANT_TRNB	O, IPD	8 mA	Negative signal for antenna T/R switch
D6	WDT_RST_N	O, IPU	4 mA	Watchdog Reset
USB PHY				
E13	UPHY0_V33A	Р		3.3 V USB PHY analog power supply
C12	UPHY0_V12D	P		1.2 V USB PHY digital power supply
C15	UPHY0_VRES	1/0		Connect to an external 8.2 $k\Omega$ resistor for band-gap reference circuit
C16	UPHY0_PADM	1/0		USB PortO data pin Data-
C17	UPHY0_PADP	1/0		USB Port0 data pin Data+
DDR2	9			
M2	MD15	1/0	8 mA	DDR2 Data bit #15
J1	MD14	I/O	8 mA	DDR2 Data bit #14
L2	MD13	1/0	8 mA	DDR2 Data bit #13
K1	MD12	1/0	8 mA	DDR2 Data bit #12
K2	MD11	1/0	8 mA	DDR2 Data bit #11

Pin	Name	Туре	Driv.	Description
L1	MD10	1/0	8 mA	DDR2 Data bit #10
J2	MD9	1/0	8 mA	DDR2 Data bit #9
M1	MD8	1/0	8 mA	DDR2 Data bit #8
U1	MD7	1/0	8 mA	DDR2 Data bit #7
T2	MD6	1/0	8 mA	DDR2 Data bit #6
R1	MD5	1/0	8 mA	DDR2 Data bit #5
Т3	MD4	1/0	8 mA	DDR2 Data bit #4
U3	MD3	1/0	8 mA	DDR2 Data bit #3
R2	MD2	I/O	8 mA	DDR2 Data bit #2
U2	MD1	1/0	8 mA	DDR2 Data bit #1
T1	MD0	I/O	8 mA	DDR2 Data bit #0
N5	MA13	0	8 mA	DDR2 Address bit #13
P5	MA12	0	8 mA	DDR2 Address bit #12
R3	MA11	0	8 mA	DDR2 Address bit #11
U5	MA10	0	8 mA	DDR2 Address bit #10
R4	MA9	0	8 mA	DDR2 Address bit #9
P4	MA8	0	8 mA	DDR2 Address bit #8
P6	MA7	0	8 mA	DDR2 Address bit #7
Р3	MA6	0	8 mA	DDR2 Address bit #6
R5	MA5	0	8 mA	DDR2 Address bit #5
N3	MA4	0	8 mA	DDR2 Address bit #4
R6	MA3	0	8 mA	DDR2 Address bit #3
M4	MA2	0	8 mA	DDR2 Address bit #2
T5	MA1	0	8 mA	DDR2 Address bit #1
L4	MA0	0	8 mA	DDR2 Address bit #0
R7	MBA2	0	8 mA	DDR2 MBA #2
T6	MBA1	0	8 mA	DDR2 MBA #1
U6	MBA0	0	8 mA	DDR2 MBA #0
L3	MRAS_N	0	8 mA	DDR2 MRAS_N
M3	MCAS_N	0	8 mA	DDR2 MCAS_N
T7	MWE_N	0	8 mA	DDR2 MWE_N
P1	MCK_P	0	8 mA	DDR2 MCK_P
P2	MCK_N	0	8 mA	DDR2 MCK_N
N2	MDQM1	0	8 mA	DDR2 MDM#1
U4	MDQM0	0	8 mA	DDR2 MCS N
K3	MCS_N	0	8 mA	DDR2 MCS_N
N1 T4	MDQS1 MDQS0	I/O I/O	8 mA 8 mA	DDR2 MDQS#1 DDR2 MDQS#0
U7	MCKE	O, IPD	8 mA	DDR2 MCKE
J3	ODT	0, 120	8 mA	DDR2 ODT
J5	GDT	J	o IIIA	DDINZ OD I

Pin	Name	Туре	Driv.	Description
A13	FB	A		This pin is part of the error amplifier and provides the reference voltage which the sampled output voltage is compared to. A difference between these two voltages indicates an error in the output voltage.
C14	СОМР	Α		This pin provides the error amplifier output which compensates for errors in the output voltage identified using the FB pin.
A15	UGATE	Α		Gate drive for external upper MOSFET (Ipeak<200 mA; lavg<20 mA)
B14	LGATE	Α		Gate drive for external lower MOSFET (Ipeak<200 mA; lavg<20 mA)
A14	DCDC_V33D	Р		3.3 V power supply only for gate driver of SW (Ipeak<200 mA; lavg<20 mA)
B16	DCDC_V33A	Р		3.3 V analog power (Ipeak<200 mA; lavg<10 mA)
B17	EXT_LDO_DIG	Α		Connect to Base terminal of external BJT (lavg<20 mA)
A17	VFB_DIG	Α		1.2 V output feedback
B15	NCEXT_LDO_DD	Α	2	NC connect to a se terminal of external BJT (lavg<20 mA)
A16	VFB_DDR	Α		DDR output feedback
PCle*				
D10	PERST_N	I/O, IPU	4 mA	PICe reset.
A10	PCIE_TXN	Α)	PCIe0 differential transmit TX -
B10	PCIE_TXP	Α		PCIe0 differential transmit TX+
В9	PCIE_RXN	Α		PCIe0 differential receive RX -
A9	PCIE_RXP	A	5	PCIe0 differential receive RX +
C10	PCIE_REXT	A	5	PCIe0 Reference resistor connection (12K Ohm +/- 1 %)
PCIe Referenc	e Clock Generator			
A11	APCK_RFCKOP	Α		External reference clock output (positive)
B11	APCK_RFCKON	Α		External reference clock output (negative)
E10	PCIE_V33A	P		PCIe 3.3 V analog power
C11	PCIE_RFCKP	A		Device reference clock input (positive)
D11	PCIE_RFCKN	A		Device reference clock input (negative)
PLL		·		
E9, D12	APCK_V12A	Р		1.2 V analog power supply for CPLL/PPLL
A7	BBPLL_V12A	Р		1.2 V analog power supply to BB PLL
В6				NC
Power				
D9, G5, M10, N10	SOC_IO_V33D	Р		3.3 V digital I/O power supply
E7, E8, L13, M9, N9, K13	SOC_CO_V12D	Р		1.2 V digital core power supply

Pin	Name	Туре	Driv.	Description
L5	DDR_IO_VREF	Р		0.9 V/1.25 V/GND reference voltage power supply for DDR2/DDR1/SDR
H5, N6, J5, K5, P7	DDR_IO_V18D/ DDR_IO_V25D	Р		1.8 V/2.5 V/3.3 V level shifter power supply for DDR2/DDR1/SDR
M5, N4	DDR_IOC_V12D	Р		1.2 V I/O core power supply for DDR and SDR
N12, N13	EPHY_V33A	Р		3.3 V power supply for EPHY
L14, L15	EPHY_V12A	Р		1.2 V power supply for EPHY
F13, G13	GE_IO_V33D	Р		3.3 V power supply for RGMII
M13	EPHY_PLL_V12A	Р		1.2 V power supply for EPHY PLL
RF				
A1	RFO_OUTP	1/0		2.4 GHz TX0 PA output (positive)2.4 GHz RX0 LNA input (positive)
В2	RF0_OUTN	1/0		2.4 GHz TX0 PA output (negative)2.4 GHz RX0 LNA input (negative)
B1	RFO_PA1_V33A	Р		3.3 V Supply for RF channel0
A2	RF0_PA2 _V33N	Р	λ	3.3 V Supply for RF channel0
A3	RFO_IN	1		2.4 GHz RX0 input (aux LNA0 input)
В3	RF0_VX_LDO	Р		1.2 V to 3.3 V supply for RFO
D1	RF1_OUTP	1/0		2.4 GHz TX1 PA output (positive)2.4 GHz RX1 LNA input (positive)
E1	RF1_OUTN	1/0)	2.4 GHz TX1 PA output (negative) 2.4 GHz RX1 LNA input (negative)
E3	RF1_PA1_V33A	Р	0	3.3 V Supply for RF channel1
E2	RF1_PA2 _V33N	Р		3.3 V Supply for RF channel1
C1	RF1_IN		50	2.4 GHz RX1 input (aux LNA1 input)
D3	RF1_VX_LDO	Р	5	1.2 V to 3.3 V supply for RF1
D4	BG_V33A	Р	7	3.3 V supply for band gap reference
A4	BG_EXTR	1/0))	External reference resistor (24 kΩ)
B4	PLL_VC_CAP	1/0	1)	PLL external loop filter
C4	GND	G		Ground ball
C5	ADC_VX_LDO	Р		1.3 V to 3.3 V Supply for ADC
A5	XTAL_XI			Crystal oscillator input
A6	XTAL_XO	0		Crystal oscillator output
B5	XTAL_V12A	0		Crystal LDO output
A1, B2, D1, E1	will be output only	when exter	nal PA/LN	NA.

Ground

Pin	Name	Туре	Driv.	Description	
C2, D2, F2, K4,	GND	G		Ground ball	
F6 to F12,					
G6 to G12,					
H6 to H12,					
J6 to J12,					
K6 to K12,					
L6 to L12,					
M6 to M8,					
M11, M12, N1	1				

Total: 265 balls

NOTE:

- 1. Pin types marked with an * indicate that they are available only in the TFBGA package.
- 2. Ball mapping for these pins is shown in the DDR2 Ball Map table in section 2.3.1. For information on DDR1 ball mapping, see section 2.3.2.
- 3. Ball mapping for these pins is shown in the DDR2 Ball Map table in section 2.3.1. For information on DDR1 ball mapping, see section 2.3.2.

2.4 Pin Descriptions (DRQFN)

Pins	Name	Туре	Driv.	Description
		туре	DIIV.	Description
WLAN L				
81	WLED_N	O, IPU	4 mA	WLAN Activity LED
UART Lit	te			
37	RXD2	I, IPU	4 mA	UART Lite RXD
113	TXD2	O, IPU	4 mA	UART Lite TXD
SPI			7 (
137	SPI_MISO	1/0, IPD	4 mA	Master input/Slave output
63	SPI_MOSI	1/0, IPD	4 mA	Master output/Slave input
65	SPI_WP	O, IPD	4 mA	GPO function
138	SPI_HOLD	O, IPD	4 mA	GPO function
136	SPI_CLK	O, IPD	4 mA	SPI clock
64	SPI_CS0	O, IPU	4 mA	SPI chip select0
62	SPI_CS1	O, IPU	4 mA	SPI chip select1
I2C				
111	I2C_SCLK	I/O, IPU	4 mA	I2C Clock
36	I2C_SD	O, IPU	4 mA	I2C Data
GPIO		1		
139	GPIO0	O, IPD	8 mA	GPO0 (output only)
5-Port P	НҮ			
82	EPHY_LED0 _N_JTDO	O, IPD	4 mA	10/100 PHY Port #0 activity LED, JTAG_TDO
8	EPHY_LED1 _N_JTDI	I/O, IPD	4 mA	10/100 PHY Port #1 activity LED, JTAG_TDI

Pins	Name	Туре	Driv.	Description
83	EPHY_LED2 _N_JTMS	I/O, IPD	4 mA	10/100 PHY Port #2 activity LED, JTAG_TMS
7	EPHY_LED3 _N_JTCLK	I/O, IPD	4 mA	10/100 PHY Port #3 activity LED, JTAG_CLK
9	EPHY_LED4 _N_JTRST_N	I/O, IPU	4 mA	10/100 PHY Port #4 activity LED, JTAG_TRST_N
43	EPHY_RES_VBG	Α		Connect to an external resistor to provide accurate bias current
115	MDI_RN_P0	1		10/100 PHY Port #0 RXN
38	MDI_RP_P0	1		10/100 PHY Port #0 RXP
116	MDI_TN_P0	0		10/100 PHY Port #0 TXN
39	MDI_TP_P0	0		10/100 PHY Port #0 TXP
42	MDI_RN_P1	1		10/100 PHY Port #1 RXN
118	MDI_RP_P1	1		10/100 PHY Port #1 RXP
41	MDI_TN_P1	0		10/100 PHY Port #1 TXN
40	MDI_TP_P1	0	4	10/100 PHY Port #1 TXP
121	MDI_RN_P2	1		10/100 PHY Port #2 RXN
44	MDI_RP_P2	I		10/100 PHY Port #2 RXP
46	MDI_TN_P2	0	1	10/100 PHY Port #2 TXN
45	MDI_TP_P2	0		10/100 PHY Port #2 TXP
125	MDI_RN_P3	1 /		10/100 PHY Port #3 RXN
48	MDI_RP_P3	1 /		10/100 PHY Port #3 RXP
124	MDI_TN_P3	0	7	10/100 PHY Port #3 TXN
47	MDI_TP_P3	0	G	10/100 PHY Port #3 TXP
126	MDI_RN_P4	1		10/100 PHY Port #4 RXN
49	MDI_RP_P4	I,	1(6	10/100 PHY Port #4 RXP
127	MDI_TN_P4	0	5	10/100 PHY Port #4 TXN
50	MDI_TP_P4	0		10/100 PHY Port #4 TXP
Misc.				
66	PORST_N	I, IPU	4 mA	Power on reset
141	PA_PE_G0	O, IPD	16 mA	0 V to 3.3 V control for external PA0
68	PA_PE_G1	O, IPD	16 mA	0 V to 3.3 V control for external PA1
142	ANT_TRN	O, IPD	8 mA	Positive signal for antenna T/R switch
69	ANT_TRNB	O, IPD	8 mA	Negative signal for antenna T/R switch
67	WDT_RST_N	O, IPU	4 mA	Watchdog Reset
USB PHY				
129	UPHY0_V33A	Р		3.3 V USB PHY analog power supply
128	UPHY0_V12D	Р		1.2 V USB PHY digital power supply
130	UPHY0 _VRES	1/0		Connect to an external 8.2 $k\Omega$ resistor for band-gap reference circuit

Pins	Name	Туре	Driv.	Description
53	UPHYO PADM	I/O	DIIV.	USB Port0 data pin Data-
52	UPHYO PADP	1/0		USB Port0 data pin Data+
DDR1/S	_	1/0		OSB FOR CO data pin Bata F
85	MD15	I/O	8 mA	SDRAM/DDR Data bit #15
11	MD14	1/0	8 mA	SDRAM/DDR Data bit #14
86	MD13	1/0	8 mA	SDRAM/DDR Data bit #13
12	MD12	1/0	8 mA	SDRAM/DDR Data bit #12
87	MD11	1/0	8 mA	SDRAM/DDR Data bit #11
13	MD10	1/0	8 mA	SDRAM/DDR Data bit #10
88	MD9	1/0	8 mA	SDRAM/DDR Data bit #9
14	MD8	1/0	8 mA	SDRAM/DDR Data bit #8
27	MD7	1/0	8 mA	SDRAM/DDR Data bit #7
102	MD6	1/0	8 mA	SDRAM/DDR Data bit #6
26	MD5	1/0	8 mA	SDRAM/DDR Data bit #5
101	MD4	1/0	8 mA	SDRAM/DDR Data bit #4
100	MD3	1/0	8 mA	SDRAM/DDR Data bit #3
24	MD2	1/0	8 mA	SDRAM/DDR Data bit #2
99	MD1	, I/O	8 mA	SDRAM/DDR Data bit #1
23	MD0	I/O	8 mA	SDRAM/DDR Data bit #0
97	MA12	0	8 mA	SDRAM/DDR Address bit #12
21	MA11	0	8 mA	SDRAM/DDR Address bit #11
31	MA10	0	8 mA	SDRAM/DDR Address bit #10
96	MA9	0	8 mA	SDRAM/DDR Address bit #9
20	MA8	0	8 mA	SDRAM/DDR Address bit #8
19	MA7	0	8 mA	SDRAM/DDR Address bit #7
94	MA6	0	8 mA	SDRAM/DDR Address bit #6
92	MA5	0	8 mA	SDRAM/DDR Address bit #5
17	MA4	0	8 mA	SDRAM/DDR Address bit #4
104	MA3	0	8 mA	SDRAM/DDR Address bit #3
105	MA2	0	8 mA	SDRAM/DDR Address bit #2
30	MA1	0	8 mA	SDRAM/DDR Address bit #1
106	MA0	0	8 mA	SDRAM/DDR Address bit #0
107	MBA1	0	8 mA	SDRAM/DDR MBA #1
32	MBA0	0	8 mA	SDRAM/DDR MBA #0
33	MRAS_N	0	8 mA	SDRAM/DDR MRAS_N
109	MCAS_N	0	8 mA	SDRAM/DDR MCAS_N
34	MWE_N	0	8 mA	SDRAM/DDR MWE_N
16	MCK_P	0	8 mA	SDRAM MCK/DDR MCK_P
90	MCK_N	0	8 mA	DDR MCK_N

Pins	Name	Туре	Driv.	Description
15	MDQM1	0	8 mA	SDRAM MDQM#1/DDR MDM#1
28	MDQM0	0	8 mA	SDRAM MDQM#0/DDR MDM#0
108	MCS_N	0	8 mA	SDRAM/DDR MCS_N
89	MDQS1	I/O	8 mA	DDR MDQS#1
103	MDQS0	I/O	8 mA	DDR MDQS#0
22	MCKE	O, IPD	8 mA	DDR MCKE
98	ODT	0	8 mA	DDR2 ODT
PMU				
58	FB	A		This pin is part of the error amplifier and provides the reference voltage which the sampled output voltage is compared to. A difference between these two voltages indicates an error in the output voltage.
132	COMP	Α		This pin provides the error amplifier output which compensates for errors in the output voltage identified using the FB pin.
59	UGATE	Α	4	Gate drive for external upper MOSFET (Ipeak<200 mA; lavg<20 mA)
133	LGATE	Α		Gate drive for external lower MOSFET (Ipeak<200mA; lavg<20mA)
60	DCDC _V33D	Р		3.3 V power supply only for gate driver of SW (Ipeak<200 mA; lavg<20 mA)
56	DCDC _V33A	P		3.3 V analog power (Ipeak<200 mA; lavg<10 mA)
54	EXT_LDO _DIG	A	7	Connects to the base terminal of external BJT (lavg<20 mA)
55	VFB_DIG	A	G	1.2 V output feedback
131	NCEXT_LDODDR	A		NC Connect to Base terminal of external BJT (lavg<20 mA)
57	VFB_DDR	A		DDR output feedback
PLL				
61	APCK_V33A	Р		3.3 V analog power supply for CPLL/PPLL
135	APCK_V12A	Р		1.2 V analog power supply for CPLL/PPLL
143	BBPLL_V12A	Р		1.2 V analog power supply to BB PLL
70				NC
Power				
134, 6, 112	SOC_IO _V33D	Р		3.3 V digital I/O power supply
84, 35, 140, 51	SOC_CO _V12D	Р		1.2 V digital core power supply
91, 110	DDR_VREF	Р		0.9 V/1.25 V/GND reference voltage power supply for DDR2/DDR1/SDR
10, 93, 95, 29	VDD18/ VDD25	Р		1.8 V/2.5 V/3.3 V level shifter power supply for DDR2/DDR1/SDR

Pins	Name	Туре	Driv.	Description
18, 25	DDR_IOC _V12D	Р		1.2 V I/O core power supply for DDR and SDR
122, 119, 117	EPHY_V33A	P		3.3 V power supply for EPHY
123, 114	EPHY_V12A	Р		1.2 V power supply for EPHY
RF				
75	RF0_OUTP	1/0		2.4 GHz TX0 PA output (positive)2.4 GHz RX0 LNA input (positive)
76	RF0_OUTN	I/O		2.4 GHz TX0 PA output (negavive)2.4 GHz RX0 LNA input (negative)
2	RFO_PA1 _V33A	Р		3.3 V Supply for RF channel0
1	RF0_PA2 _V33N	Р		3.3 V Supply for RF channel0
148	RF0_VX_LDO	Р		1.2 V to 3.3 V Supply for RFO
4	RF1_OUTP	I/O	4	2.4 GHz TX1 PA output (positive) 2.4 GHz RX1 LNA input (positive)
5	RF1_OUTN	I/O		2.4 GHz TX1 PA output (negative) 2.4 GHz RX1 LNA input (negative)
80	RF1_PA1 _V33A	Р		3.3 V Supply for RF channel1
79	RF1_PA2 _V33N	Р		3.3 V Supply for RF channel1
3	RF1_VX_LDO	P		1.2 V to 3.3 V Supply for RF1
147	BG_V33A	P		3.3 V supply for band gap reference
74	BG_EXTR	1/0	7	External reference resistor (24 $k\Omega$)
73	PLL_VC_CAP	1/0		PLL external loop filter
146	PLL_VX_LDO	P		3.3 V Supply for PLL (Xtal)
144	ADC_VX_LDO	P (1.3 V to 3.3 V Supply for ADC
145	XTAL_XI	1		Crystal oscillator input
71	XTAL_XO	0		Crystal oscillator output
72	XTAL_V12A	0		Crystal LDO output
77, 78	NC			NC
Ground				
EPAD	GND	G		Ground pin

Total: 148 pins

NOTE:

IPD: Internal pull-down IPU: Internal pull-up I: Input

O : Output
IO : Bi-directional
P : Power

G : Ground NC : Not connected

2.5 Pin Sharing Schemes

Some pins are shared with GPIO to provide maximum flexibility for system designers. The MT7620 provides up to 73 GPIO pins. Users can configure SYSCFG and GPIOMODE registers in the System Control block to specify the pin function, or they can use the registers specified below. For more information, see the Programmer's Guide. Unless specified explicitly, all the GPIO pins are in input mode after reset.

2.5.1 GPIO pin share scheme

I/O Pad Group	Normal Mode	GPIO Mode
WLED_N	WLAN_LED_N	GPO#72
RGMII2	GE2_RXCLK	GPIO#71
	GE2_RXDV	GPIO#70
	GE2_RXD3	GPIO#69
	GE2_RXD2	GPIO#68
	GE2_RXD1	GPIO#67
	GE2_RXD0	GPIO#66
	GE2_TXCLK	GPIO#65
	GE2_TXEN	GPIO#64
	GE2_TXD3	GPIO#63
	GE2_TXD2	GPIO#62
	GE2_TXD1	GPIO#61
	GE2_TXD0	GPIO#60
NAND	ND_D7	GPIO#59
	ND_D6	GPIO#58
	ND_D5	GPIO#57
	ND_D4	GPIO#56
	ND_D3	GPIO#55
	ND_D2	GPIO#54
	ND_D1	GPIO#53
	ND_D0	GPIO#52
	ND_ALE	GPIO#51
	ND_CLE	GPIO#50
	ND_RB_N	GPIO#49
	ND_WP	GPIO#48
	ND_RE_N	GPIO#47
	ND_WE_N	GPIO#46
	ND_CS_N	GPIO#45
SW_PHY_LED/JTAG	EPHY_LED4_N_JTRST_N	GPIO#44
	EPHY_LED3_N_JTCLK	GPIO#43
	EPHY_LED2_N_JTMS	GPIO#42
	EPHY_LED1_N_JTDI	GPIO#41

I/O Pad Group	Normal Mode	GPIO Mode
	EPHY_LEDO_N_JTDO	GPIO#40
SPI	SPI_WP	GPO#39
	SPI_HOLD	GPO#38
	SPI_CS1	GPIO#37
PERST_N	PERST_N	GPIO#36
RGMII1	GE1_RXCLK	GPIO#35
	GE1_RXDV	GPIO#34
	GE1_RXD3	GPIO#33
	GE1_RXD2	GPIO#32
	GE1_RXD1	GPIO#31
	GE1_RXD0	GPIO#30
	GE1_TXCLK	GPIO#29
	GE1_TXEN	GPIO#28
	GE1_TXD3	GPIO#27
	GE1_TXD2	GPIO#26
	GE1_TXD1	GPIO#25
	GE1_TXD0	GPIO#24
MDIO	MDC	GPIO#23
	MDIO	GPIO#22
PA_PE	PA_PE_G1	GPIO#21
, ^	PA_PE_G0	GPIO#20
	ANT_TRN	GPO#19
	ANT_TRNB	GPO#18
WDT_RST	WDT_RST_N	GPIO#17
UARTL	RXD2	GPIO#16
	TXD2	GPO#15
UARTF	RIN	GPIO#14
	DSR_N	GPIO#13
	DCD_N	GPIO#12
	DTR_N	GPIO#11
	RXD	GPIO#10
	CTS_N	GPIO#9
	TXD	GPIO#8
	RTS_N	GPIO#7
SPI	SPI_MISO	GPIO#6
	SPI_MOSI	GPO#5
	SPI_CLK	GPO#4
	SPI_CS0	GPIO#3
I2C/SUTIF	I2C_SCLK	GPIO#2
	-	

I/O Pad Group	Normal Mode	GPIO Mode
	I2C_SD	GPIO#1
GPIO	GPO0	GPO#0

2.5.2 UARTF pin share scheme

Controlled by the UARTF_SHARE_MODE register.

Pin Name	3'b000 UARTF	3'b001 PCM, UARTF	3'b010 PCM, I2S	3'b011 I2S UARTF	3'b100 PCM, GPIO	3'b101 GPIO, UARTF	3'b110 GPIO I2S	3'b111 GPIO
RIN	RIN	PCMDTX	PCMDTX	RXD	PCMDTX	GPIO#14	GPIO#14	GPIO#14
DSR_N	DSR_N	PCMDRX	PCMDRX	CTS_N	PCMDRX	GPIO#13	GPIO#13	GPIO#13
DCD_N	DCD_N	PCMCLK	PCMCLK	TXD	PCMCLK	GPIO#12	GPIO#12	GPIO#12
DTR_N	DTR_N	PCMFS	PCMFS	RTS_N	PCMFS	GPIO#11	GPIO#11	GPIO#11
RXD	RXD	RXD	12SSDI	I2SSDI	GPIO#10	RXD	12SSDI	GPIO#10
CTS_N	CTS_N	CTS_N	12SSDO	I2SSDO	GPIO#9	CTS_N	12SSDO	GPIO#9
TXD	TXD	TXD	I2SWS	12SWS	GPIO#8	TXD	I2SWS	GPIO#8
RTS_N	RTS_N	RTS_N	I2SCLK	12SCLK	GPIO#7	RTS_N	12SCLK	GPIO#7

NOTE: This scheme applies only to the TFBGA package.

2.5.3 RGMII pin share schemes

Controlled by the RGMII1_GPIO_MODE register.

Pin Name	1'b0 RGMII1	1'b1 GPIO
GE1_RXCLK	GE1_RXCLK	GPIO#35
GE1_RXDV	GE1_RXDV	GPIO#34
GE1_RXD 0 to 3	GE1_RXD 0 to 3	GPIO#33 to 30
GE1_TXCLK	GE1_TXCLK	GPIO#29
GE1_TXDV	GE1_TXDV	GPIO#28
GE1_TXD0 to 3	GE1_TXD0 to 3	GPIO#27 to 24

Controlled by the RGMII2 GPIO MODE register.

NOTE: This scheme applies only to the TFBGA package.

Pin Name	1'b0 RGMII2	1'b1 GPIO		
GE2_RXCLK	GE2_RXCLK	GPIO#71		
GE2_RXDV	GE2_RXDV	GPIO#70		
GE2_RXD0 to 3	GE2_RXD0 to 3	GPIO#69 to 66		
GE2_TXCLK	GE2_TXCLK	GPIO#65		
GE2_TXDV	GE2_TXDV	GPIO#64		
GE2_TXD0 to 3	GF2_TXD0 to 3	GPIO#63 to 60		

NOTE: This scheme applies only to the TFBGA package.

2.5.4 WDT_RST_MODE pin share scheme

Controlled by the WDT_RST _MODE register.

Pin Name	2'b00	2'b01	2'b1x
WDT_RST_N	WDT_RST_N	REFCLKO_OUT	GPIO#17

2.5.5 PERST_N pin share scheme

Controlled by the PERST_GPIO_MODE register.

Pin Name	2'b00	2'b01	2'b1x
PERST_N	PERST_N	REFCLKO_OUT	GPIO#36

NOTE: This scheme applies only to the TFBGA package.

2.5.6 MDC/MDIO pin share scheme:

Controlled by the the MDIO_GPIO_MODE register.

Pin Name	2'b00	2'b01	2'b1x
MDC	MDC	REFCLKO_OUT	GPIO #23
MDIO	MDIO	REFCLK1_OUT	GPIO #24

2.5.7 EPHY_LED pin share scheme

Controlled by the EPHY BT GPIO MODE register.

Pin Name	EPHY_LED_GPIO_MODE =1'b0		EPHY_LED_GPIO_MODE=1'b1
	EPHY_LED BS (dbg_jtag_mode=0)	JTAG BS (dbg_jtag_mode=1)	
EPHY_LED4_N_JTRST_N	EPHY_LED4_N	JTAG_RST_N	GPIO#44
EPHY_LED3_N_JTCLK	EPHY_LED3_N	JTAG_CLK	GPIO#43
EPHY_LED2_N_JTMS	EPHY_LED2_N	JTAG_TMS	GPIO#42
EPHY_LED1_N_JTDI	EPHY_LED1_N	JTAG_TDI	GPIO#41
EPHY_LEDO_N_JTDO	EPHY_LEDO_N	JTAG_TDO	GPIO#40

2.5.8 SPI pin share scheme

Controlled by SPI GPIO MODE & SPI REFCLK MODE registers.

Pin Name SPI_GPIO_MODE=0		S Y A S Y	SPI_GPIO_MODE=1
	SPI_REFCLK_MODE=0	SPI_REFCLK_MODE=1	
SPI_WP	GPO#39	GPO#39	GPO#39
SPI_HOLD	GPO#38	GPO#38	GPO#38
SPI_CS1	SPI_CS1	REFCLKO_OUT	GPIO#37
SPI_MISO	SPI_MISO	SPI_MISO	GPIO#6
SPI_MOSI	SPI_MOSI	SPI_MOSI	GPO#5
SPI_CLK	SPI_CLK	SPI_CLK	GPO#4
SPI_CS0	SPI_CS0	SPI_CS0	GPIO#3

2.5.9 ND/SD pin share scheme

Controlled by the ND_SD_GPIO_MODE register.

2'b00 NAND	2'b01 SD + BT + GPIO	2'b1x GPIO*15
ND_D7	BT_ANT	GPIO#59
ND_D6	BT_WACT	GPIO#58
ND_D5	BT_AUX	GPIO#57
ND_D4	BT_STAT	GPIO#56
ND_D3	SD_D3	GPIO#55
ND_D2	SD_D2	GPIO#54
ND_D1	SD_D1	GPIO#53
ND_D0	SD_D0	GPIO#52
ND_ALE	SD_CMD	GPIO#51
ND_CLE	SD_CARD_DETECT	GPIO#50
ND_RB_N	SD_CLK	GPIO#49
ND_WP	SD_WP	GPIO#48
ND_RE_N	BT_ACT	GPIO#47
ND_WE_N	NA	GPIO#46
ND_CS_N	NA	GPIO#45
	2'b00 NAND ND_D7 ND_D6 ND_D5 ND_D4 ND_D3 ND_D2 ND_D1 ND_D0 ND_ALE ND_CLE ND_RB_N ND_WP ND_RE_N ND_WE_N	2'b00 NAND 2'b01 SD + BT + GPIO ND_D7 BT_ANT ND_D6 BT_WACT ND_D5 BT_AUX ND_D4 BT_STAT ND_D3 SD_D3 ND_D2 SD_D2 ND_D1 SD_D1 ND_D0 SD_D0 ND_D0 SD_CMD ND_ALE SD_CMD ND_CLE SD_CARD_DETECT ND_RB_N SD_CLK ND_WP SD_WP ND_RE_N BT_ACT ND_WE_N NA

NOTE:

^{1.} All given GPIO are 4 mA drive capable.

2.5.9.1 Pin share function description

Pin Share Name	I/O	Pin Share Function description
PCMDTX	0	PCM Data Transmit DATA signal sent from the PCM host to the external codec.
PCMDRX	I	PCM Data Receive DATA signal sent from the external codec to the PCM host.
PCMCLK	I/O	PCM Clock The clock signal can be generated by the PCM host (Output direction), or provided by an external clock (input direction). The clock frequency should match the slot configuration of the PCM host. e.g. 4 slots, PCM clock out/in should be 256 kHz. 8 slots, PCM clock out/in should be 512 kHz. 16 slots, PCM clock out/in should be 1.024 MHz. 32 slots, PCM clock out/in should be 2.048 MHz. 64 slots, PCM clock out/in should be 4.096 MHz. 128 slots, PCM clock out/in should be 8.192 MHz.
PCMFS	I/O	PCM SYNC signal. In our design, the direction of this signal is independent of the direction of PCMCLK. Its direction and mode is configurable.
I2SSDI	1	I ² S Data input
I2SSDO	О	I ² S Data output
I2SWS	I/O	I ² S Channel Selection (or Word selection) In master mode the pin data direction is set to output, in slave mode it is set to input.
12SCLK	I/O	I ² S clock In master mode the pin data direction is set to output, in slave mode it is set to input.
WDT_RST_N	1/0	Watchdog timeout reset
ND_D7	1/0	Nand flash control data bit7
ND_D6	1/0	Nand flash control data bit6
ND_D5	1/0	Nand flash control data bit5
ND_D4	1/0	Nand flash control data bit4
ND_ALE	I/O	Nand flash Address Latch Enable
ND_CLE	1/0	Nand flash Command Latch Enable

2.5.10 xMII PHY/MAC Pin Mapping

Figure 2-3 MII → MII PHY

Figure 2-4 RvMII → MII MAC

Figure 2-5 RGMII → RGMII PHY

Figure 2-6 RGMII → RGMII MAC

2.6 Bootstrapping Pins Description

Pin Name	Boot Strapping Signal	Description
	Name	
WLED_N	DRAM_FROM _EE	For non-scan mode: (Validate at iNIC mode (chip mode 2 to 9) and NAND flash (chip mode 1 and 12) 0: DRAM/PLL configuration from EEPROM 1: DRAM configuration from Auto Detect
ANT_TRN	DBG_JTAG_MODE	0: EPHY_LED 1: JTAG MODE
ANT_TRNB	XTAL_FREQ_SEL	0: 20 MHz 1: 40 MHz
{SPI_WP, SPI_HOLD}	DRAM_TYPE	1: DDR1 (CPU/3) TSOP Package 2: DDR2 (CPU/3) FBGA Package 3: SDRAM (CPU/5) (LVTTL 3.3 V) TSOP Package
{SPI_MOSI SPI_CLK, TXD2 GPIO0}	CHIP_MODE[3:0]	A vector to set chip function/test/debug modes. In non-test/debug operation, 1: Normal mode (boot from ROM+NAND flash 4 cycle address/2 KB page size) 2: Normal mode (boot from SPI 3-Byte Addr) 3: Normal mode (boot from SPI 4-Byte Addr) 4: iNIC RGMII (port 5) mode(boot from ROM) 5: iNIC MII (port 5) mode(boot from ROM) 6: iNIC RVMII (port 5) mode(boot from ROM) 7: iNIC PHY (port 0) mode(boot from ROM) 8: iNIC USB mode(boot from ROM) 9: iNIC PCIe mode(boot from ROM) 10: Normal mode (boot from ROM+NAND flash 4 cycle address/512 B page size) 11: Normal mode (boot from ROM+NAND flash 5 cycle address/2 KB page size) 12: Normal mode (boot from ROM+NAND flash 3 cycle address/512 B page size) 13: Debug mode 14: Scan mode 15: Test mode(CPU will be halted in this mode)

NOTE: SDR/DDR1/DDR2 DRAM cell used is defined by register.

3. Maximum Ratings and Operating Conditions

3.3 Absolute Maximum Ratings

I/O Supply Voltage	3.6 V
Input, Output, or I/O Voltage	GND -0.3 V to Vcc +0.3 V

Table 3-1 Absolute Maximum Ratings

3.4 Maximum Temperatures

Maximum Junction Temperature (Plastic Package)	125 °C
Maximum Lead Temperature (Soldering 10 s)	260 °C

Table 3-2 Maximum Temperatures

3.5 Operating Conditions

Core Supply Voltage	1.27 V +/- 5%
Ambient Temperature Range	-20 to 55 °C
I/O Supply Voltage	3.3 V +/- 10%

Table 3-3 Operating Conditions

3.6 Thermal Characteristics

Thermal characteristics without an external heat sink in still air conditions.

MT7620N:

Thermal Resistance θ_{JA} (°C /W) for JEDEC 2L system PCB	20.14 °C/W
Thermal Resistance θ_{JA} (°C /W) for JEDEC 4L system PCB	17.19 °C/W
Thermal Resistance θ_{JC} (°C /W) for JEDEC 2L system PCB	7.29 °C/W
Thermal Resistance θ_{JC} (°C /W) for JEDEC 4L system PCB	6.14 °C/W
Thermal Resistance ψ_{Jt} (°C /W) for JEDEC 2L system PCB	2.02°C/W
Thermal Resistance ψ_{Jt} (°C/W) for JEDEC 4L system PCB	1.84°C/W
MT7620A: Thermal Peristance 0. (°C (M) for IEDEC 21 system BCB.	26 67 °C /M

Thermal Resistance θ_{JA} (°C /W) for JEDEC 2L system PCB	26.67 °C/W
Thermal Resistance θ_{JA} (°C /W) for JEDEC 4L system PCB	24.9 °C/W
Thermal Resistance θ_{JC} (°C /W) for JEDEC 2L system PCB	9.89 °C/W
Thermal Resistance θ_{JC} (°C/W) for JEDEC 4L system PCB	9.75 °C/W
Thermal Resistance ψ_{Jt} (°C /W) for JEDEC 2L system PCB	4.31°C/W
Thermal Resistance ψ _{Jt} (°C /W) for JEDEC 4L system PCB	4.19°C/W

Table 3-4 Thermal Characteristics

3.7 Storage Conditions

The calculated shelf life in a sealed bag is 12 months if stored between 0 °C and 40 °C at less than 90% relative humidity (RH). After the bag is opened, devices that are subjected to solder reflow or other high temperature processes must be handled in the following manner:

- Mounted within 168 hours of factory conditions, i.e. < 30 °C at 60% RH.
- Storage humidity needs to maintained at < 10% RH.
- Baking is necessary if the customer exposes the component to air for over 168 hrs, baking conditions: 125
 °C for 8 hrs.

3.8 External Xtal Specfication

Frequency	20 MHz/ 40 Mhz
Frequency offset	+/-20 ppm
VIH/VIL	Vcc-0.3 V/0.3 V
Duty cycle	45% to 55%

Table 3-5 External Xtal Specifications

3.9 DC Electrical Characteristics

Parameters	Sym	Conditions	Min	Тур	Max	Unit
3.3 V Supply Voltage	Vcc33		3.0	3.3	3.6	V
_VX supply Voltage	Vcc15	C	1.3	1.5	3.3	V
RGMII IO Supply Voltage	Vdd25		2.25	2.5	2.7	V
	Vdd33		3.0	3.3	3.6	V
1.27 V Supply Voltage	Vcc12		1.20	1.27	1.33	V
3.3 V Current Consumption	Icc33			218	436	mA
1.5 V Current Consumption	Icc15			147	173	mA
1.27 V Current Consumption	lcc12			380	540	mA
DDR2 Current	lcc18			95	253	mA

Table 3-6 DC Electrical Characteristics

Vdd=2.5V	Min	Тур	Max	
Vdd	2.25V	2.5V	2.75V	
VIH	1.7V			
VIL			0.7V	
VOH	1.7V			
VOL			0.7V	
IOL (4mA)	5.5	9.0	12.9	
(8mA)	11.1	18.1	26.2	
(12mA)	16.7	27.3	39.4	
(12mA)	16.7	27.3	39.4	

(16mA)	22.3	36.5	52.7
IOH (4mA)	4.7	9.4	16.5
(8mA)	9.5	18.8	33.0
(12mA)	14.2	28.2	49.4
(16mA)	18.9	37.6	65.9

Table 3-7 Vdd 2.5V Electrical Characteristics

Vdd=3.3V	Min	Тур	Max
Vdd	3.0V	3.3V	3.6V
VIH	2.0V		
VIL			0.8V
VOH	2.4V	/ 4	
VOL	6	40	0.4V
IOL (4mA)	4.8	7.1	9.4
(8mA)	9.8	14.4	19.1
(12mA)	14.8	21.8	28.8
(16mA)	19.7	29.1	38.5
IOH (4mA)	7.0	13.4	22.7
(8mA)	13.9	26.8	45.2
(12mA)	20.8	40.1	67.8
(16mA)	27.8	53.5	90.3

Table 3-8 Vdd 3.3V Electrical Characteristics

Figure 3-1 SDRAM Interface

Symbol	Description	Min	Max	Unit	Remark
t_IN_SU	Setup time for Input signals (e.g. MD*)	1.5	-	ns	
t_IN_HD	Hold time for input signals	1.7	-	ns	
t_OUT_VLD	SDRAM_CLK to output signals (MA*, MD*, SDRAM_RAS_N,) valid	0.8	5	ns	output load: 8 pF

Table 3-9 SDRAM Interface Diagram Key

3.10.2 DDR2 SDRAM Interface

The DDR2 SDRAM interface complies with 200 MHz timing requirements for standard DDR2 SDRAM. The interface drivers are SSTL_18 drivers matching the EIA/JEDEC standard JESD8-15A.

Figure 3-2 DDR2 SDRAM Command

Figure 3-3 DDR2 SDRAM Write data

Figure 3-4 DDR2 SDRAM Read data

tCK(avg) Clock cycle time tAC DQ output access time from SDRAM CLK -0.6 0.6 ns tDQSCK DQS output access time from SDRAM CLK -0.5 0.5 ns tCH SDRAM CLK high pulse width 0.48 0.52 tCK(avg) tCL SDRAM CLK low pulse width 0.48 0.52 tCK(avg) tHP SDRAM CLK half period Min(tCH,tCL) ns tIS Address and control input setup time 0.75 - ns tHH Address and control input hold time 0.75 - ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge 0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSS DQS falling edge hold time from SDRAM CLK tWPRE DQS write preamble 0.4 0.6 tCK tWPRE DQS write preamble 0.35 - tCK tWPRE DQS write preamble 0.4 0.6 tCK tWPST DQS write postamble 0.4 0.6 tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 0.6 tCK	Symbol	Description	Min	Max	Unit	Remark
tDQSCK DQS output access time from SDRAM CLK -0.5 0.5 ns tCH SDRAM CLK high pulse width 0.48 0.52 tCK(avg) tCL SDRAM CLK low pulse width 0.48 0.52 tCK(avg) tHP SDRAM CLK half period Min(tCH,tCL) ns tIS Address and control input setup time 0.75 - ns tIH Address and control input hold time 0.75 - ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK tWPRE DQS write preamble 0.4 0.6 tCK tWPRE DQS write postamble 0.4 0.6 tCK tDSS DQS write postamble 0.4 0.6 tCK	tCK(avg)	Clock cycle time	5	-	ns	
tCH SDRAM CLK high pulse width 0.48 0.52 tCK(avg) tCL SDRAM CLK low pulse width 0.48 0.52 tCK(avg) tHP SDRAM CLK half period Min(tCH,tCL) ns tIS Address and control input setup time 0.75 - ns tIH Address and control input hold time 0.75 - ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.4 0.6 tCK tWPRE DQS write postamble 0.4 0.6 tCK tDSS DQS write preamble 0.4 0.6 tCK	tAC	DQ output access time from SDRAM CLK	-0.6	0.6	ns	
tCL SDRAM CLK low pulse width 0.48 0.52 tCK(avg) tHP SDRAM CLK half period Min(tCH,tCL) ns tlS Address and control input setup time 0.75 - ns tlH Address and control input hold time 0.75 ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDQSCK	DQS output access time from SDRAM CLK	-0.5	0.5	ns	/
tHP SDRAM CLK half period Min(tCH,tCL) ns tlS Address and control input setup time 0.75 - ns tlH Address and control input hold time 0.75 - ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tCH	SDRAM CLK high pulse width	0.48	0.52	tCK(avg)	
tIS Address and control input setup time tIH Address and control input hold time tDQSQ Data skew of DQS and associated DQ tQH DQ/DQS output hold time from DQS tRPRE DQS read preamble tRPST DQS read postamble tDQSS DQS rising edge to CK rising edge tDQSH DQS input-high pulse width tDQSL DQS input-low pulse width tDSS DQS falling edge to SDRAM CLK setup time DQS falling edge hold time from SDRAM CLK tWPRE DQS write preamble 0.4 0.6 tCK tCK tCK tDSS DQS falling edge to SDRAM CLK tDSS DQS falling edge hold time from SDRAM CLK tDSS DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tCL	SDRAM CLK low pulse width	0.48	0.52	tCK(avg)	
tIH Address and control input hold time 0.75 ns tDQSQ Data skew of DQS and associated DQ - 0.4 ns tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK tDSH DQS write preamble 0.35 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 ns	tHP	SDRAM CLK half period	Min(tCH,tCL)	5	ns	
tDQSQ Data skew of DQS and associated DQ	tIS	Address and control input setup time	0.75		ns	
tQH DQ/DQS output hold time from DQS tHP-0.5 - ns tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tIH	Address and control input hold time	0.75		ns	
tRPRE DQS read preamble 0.9 1.1 tCK tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDQSQ	Data skew of DQS and associated DQ		0.4	ns	
tRPST DQS read postamble 0.4 0.6 tCK tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tQH	DQ/DQS output hold time from DQS	tHP-0.5)-	ns	
tDQSS DQS rising edge to CK rising edge -0.25 0.25 tCK tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tRPRE	DQS read preamble	0.9	1.1	tCK	
tDQSH DQS input-high pulse width 0.35 - tCK tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tRPST	DQS read postamble	0.4	0.6	tCK	
tDQSL DQS input-low pulse width 0.35 - tCK tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDQSS	DQS rising edge to CK rising edge	-0.25	0.25	tCK	
tDSS DQS falling edge to SDRAM CLK setup time 0.2 - tCK tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDQSH	DQS input-high pulse width	0.35	-	tCK	
tDSH DQS falling edge hold time from SDRAM CLK 0.2 - tCK tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDQSL	DQS input-low pulse width	0.35	-	tCK	
tWPRE DQS write preamble 0.35 - tCK tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDSS	DQS falling edge to SDRAM CLK setup time	0.2	-	tCK	
tWPST DQS write postamble 0.4 0.6 tCK tDS DQ and DQM input setup time *0.4 - ns	tDSH	DQS falling edge hold time from SDRAM CLK	0.2	-	tCK	
tDS DQ and DQM input setup time *0.4 - ns	tWPRE	DQS write preamble	0.35	-	tCK	
	tWPST	DQS write postamble	0.4	0.6	tCK	
tDH DQ and DQM input hold time *0.4 - ns	tDS	DQ and DQM input setup time	*0.4	-	ns	
	tDH	DQ and DQM input hold time	*0.4	-	ns	

Table 3-10 DDR2 SDRAM Interface Diagram Key

NOTE: Depends on slew rate of DQS and DQ/DQM for single ended DQS.

Figure 3-5 RGMII Interface

Symbol	Description	Min	Max	Unit	Remark
t_TX_SU	Setup time for output signals (e.g. GEO_TXD*, GEO_TXEN)	1.2	-	ns	output load: 5 pF
t_TX_HD	Hold time for output signals	1.2	-	ns	output load: 5 pF
t_RX_SU	Setup time for input signals (e.g. GEO_RXD*, GEO_RXDV)	1.0	-	ns	
t_RX_HD	Hold time for input signals	1.0	-	ns	

Table 3-11 RGMII Interface Diagram Key

3.10.4 MII Interface (25 Mhz)

Figure 3-6 MII Interface

(For 25 Mhz TXCLK & RXCLK)

Symbol	Description	Min	Max	Unit	Remark
t_TX_delay	Delay to output signals (e.g. GEO_TXD*, GEO_TXEN)	6	22	ns	output load: 5 pF
t_RX_SU	Setup time for input signals (e.g. GEO_RXD*, GEO_RXDV)	10	-	ns	
t_RX_HD	Hold time for input signals	5	-	ns	

Table 3-12 MII Interface Diagram Key

3.10.5 RvMII Interface (PHY Mode MII Timing) (25 Mhz)

Figure 3-7 RvMII Interface

(For 25 Mhz TXCLK & RXCLK)

Symbol	Description	Min	Max	Unit	Remark
t_RX_delay	Delays to output signals (e.g. GEO_TXD*, GEO_TXEN)	5	25	ns	output load: 5 pF
t_TX_SU	Setup time for input signals (e.g. GEO_RXD*, GEO_RXDV)	15	-	ns	
t_TX_HD	Hold time for input signals	6	-	ns	

Table 3-13 RvMII Interface Diagram Key

3.10.6 SPI Interface

t_SPI_OVLD (max)

T_SPI_OVLD (min)

NOTE: 1) SPI_CLK is a gated clock.
2) SPI_CS is controlled by software

Figure 3-8 SPI Interface

Symbol	Description	Min	Max	Unit	Remark
t_SPI_IS	Setup time for SPI input	6.0	-	ns	
t_SPI_IH	Hold time for SPI input	-1.0	-	ns	
t_SPI_OVLD	SPI_CLK to SPI output valid	-2.0	3.0	ns	output load: 5 pF

Table 3-14 SPI Interface Diagram Key

Figure 3-9 I2S Interface

Symbol	Description	Min	Max	Unit	Remark
t_I2S_IS	Setup time for I2S input (data & WS)	3.5	-	ns	
t_I2S_IH	Hold time for I2S input (data & WS)	0.5	-	ns	
t_I2S_OVLD	I2S_CLK to I2S output (data & WS) valid	2.5	10.0	ns	output load: 5 pF

Table 3-15 I2S Interface Diagram Key

3.10.8 PCM Interface

Figure 3-10 PCM Interface

Symbol	Description	Min	Max	Unit	Remark
t_PCM_IS	Setup time for PCM input to PCM_CLK fall	3.0	-	ns	
t_PCM_IH	Hold time for PCM input to PCM_CLK fall	1.0	-	ns	
t_PCM_OVLD	PCM_CLK rise to PCM output valid	10.0	35.0	ns	output load: 5 pF

Table 3-16 PCM Interface Diagram Key

Figure 3-11 Power ON Sequence

Symbol	Description	Min*(1)	Max*(2)	Unit	Remark
T1	POR delay	800	>0	us	
T2	Soft start	850	>0	us	
T3	Soft start done	1.4	>0	ms	
T4	LDO_DIG soft start	650	>0	us	
t_PORST_N	Time between I/O power on to PORST_N de-assertion	50	50	ms	

Min(*1): Internal PMU sequence, Min(*2): External power providing sequence

Table 3-17 Power ON Sequence Diagram Key

3.11 Package Physical Dimensions

3.11.1 TFBGA (11 mm x 11 mm) 265 balls

3.11.1.1 TFBGA Top View

Figure 3-12 TFBGA Top View

3.11.1.2 TFBGA Side View

Figure 3-13 TFBGA Side View

Figure 3-14 TFBGA "A" Expanded

3.11.1.3 TFBGA "A" Expanded

3.11.1.4 TFBGA Bottom View

Figure 3-15 TFBGA Bottom View

3.11.1.5 TFBGA "B" Expanded

Figure 3-16 TFBGA "B" Expanded

3.11.1.6 Package Diagram Key

3.11.1.0	1 ackas	C Diagri	util itcy			
Sym-	Di	mensio (mm)	ns	Dimen	sions (i	nches)
bol	Min.	Nom.	Мах.	Min.	Nom.	Мах.
Α			1.20			0.047
A1	0.16	0.21	0.26	0.006	0.008	0.010
A2	0.86	0.91	0.96	0.034	0.036	0.038
С	0.22	0.26	0.30	0.009	0.010	0.012
D	10.90	11.00	11.10	0.429	0.433	0.437
E	10.90	11.00	11.10	0.429	0.433	0.437
D1	/ /	10.40)		0.409	
E1	,	10.40			0.409	
е	4	0.65			0.026	
b	0.25	0.30	0.35	0.010	0.012	0.014
aaa		0.15			0.006	
bbb	•	0.10			0.004	
ddd		0.08			0.003	
eee		0.15			0.006	
fff		0.08			0.003	
MD/ME		17/17			17/17	

NOTE:

- 1. Controlling dimensions are in millimeters.
- Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- Dimension b is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Special characteristics C class: bbb, ddd.
- The pattern of pin 1 fiducial is for reference only.

3.11.2 DR-QFN (12 mm x 12 mm) 148LD

3.11.2.1 DR-QFN Top View

Figure 3-17 DR-QFN Top View

3.11.2.2 DR-QFN Side View

Figure 3-18 DR-QFN Side View

3.11.2.3 DR-QFN "B" Expanded

Figure 3-19 DR-QFN "B" Expanded

3.11.2.4 DR-QFN Bottom View

Figure 3-20 DR-QFN Bottom View

Figure 3-21 DR-QFN "A" Expanded

3.11.2.6 Package Diagram Key

Sym-	Dimensi	ions (m		Dimer	Dimensions (inches)			
bol	Min.	Nom.	Мах.	Min.	Nom.	Мах.		
Α	0.80	0.85	0.90	0.031	0.033	0.035		
A1	0.00	0.02	0.05	0.000	0.0008	0.002		
A2	0.65	0.70	0.75	0.026	0.028	0.030		
A3	0.1	L5 REF		C	0.006 RE	F		
b	0.18	0.22	0.30	0.007	0.009	0.012		
D/E	11.90	12.00	12.10	0.469	0.472	0.476		
D1/E1	11.	75 BSC		C).463 BS	С		
D3/E3	5.1	L5 BSC		C).203 BS	С		
eT	0.5	0 BSC		C	0.020 BS	C		
eR	0.6	55 BSC		C	0.026 BS	C		
L	0.30	0.40	0.50	0.012	0.016	0.020		
θ	5°		15°	5°		15°		
K	0.20			0.008				
R	0.09			0.004		y		
aaa	(0.10			0.004			
bbb	(0.10			0.004			
CCC	(0.10			0.004			
ddd	(0.05			0.002	0		
eee	(80.0			0.003			
fff	(0.10	A	7	0.004			
ggg	(0.20			0.008			

NOTE:

- 1. Controlling dimensions are in millimeters.
- 2. Reference document: JEDEC MO-267

Exposed Pad Size							
	D2	2/E2 (m	m)	D2,	/E2 (inch	ies)	
L/F	Min.	Nom.	Мах.	Min.	Nom.	Max.	
	5.65	5.80	5.95	0.222	0.228	0.234	

Internal Pad Size							
	7.	(mm)			(inches)		
L/F	Min.	Nom.	Max.	Min.	Nom.	Мах.	
	5.85	6.00	6.15	0.230	0.236	0.242	

3.11.3 MT7620 N/A marking

MEDIATEK MT7620N YYWW-XXXX LLLLLLLLL

YYWW: Date code LLLLLLLL: Lot number ".": Pin #1 dot

Figure 3-22 MT7620N top marking

MEDIATEK MT7620A YYWW-XXXX LLLLLLLL

YYWW: Date code LLLLLLLLL: Lot number ".": Pin #1 dot

Figure 3-23 MT7620A top marking

3.11.4 Reflow profile guideline

Figure 3-24 Reflow profile for MT7620

Notes:

- 1. Reflow profile guideline is designed for SnAgCulead-free solder paste.
- 2. Reflow temperature is defined at the solder ball of package/or the lead of package.
- 3. MTK would recommend customer following the solder paste vendor's guideline to design a profile appropriate your line and products.
- 4. Appropriate N2 atmosphere is recommended since it would widen the process window and mitigate the risk for having solder open issues.

4. Abbreviations

Abbrev.	Description	
AC	Access Category	
ACK	Acknowledge/ Acknowledgement	
ACPR	Adjacent Channel Power Ratio	
AD/DA	Analog to Digital/Digital to Analog converter	
ADC	Analog-to-Digital Converter	
AES	Advanced Encryption Standard	
AGC	Auto Gain Control	
AIFS	Arbitration Inter-Frame Space	
AIFSN	Arbitration Inter-Frame Spacing Number	
ALC	Asynchronous Layered Coding	
A-MPDU	Aggregate MAC Protocol Data Unit	
A-MSDU	Aggregation of MAC Service Data Units	
AP	Access Point	
ASIC	Application-Specific Integrated Circuit	
ASME	American Society of Mechanical Engineers	
ASYNC	Asynchronous	
ВА	Block Acknowledgement	
BAC	Block Acknowledgement Control	
BAR	Base Address Register	
BBP	Baseband Processor	
BGSEL	Band Gap Select	
BIST	Built-In Self-Test	
BSC	Basic Spacing between Centers	
BJT	~ ~ ~ ~	
BSSID	Basic Service Set Identifier	
BW	Bandwidth	
CCA	Clear Channel Assessment	
ССК	Complementary Code Keying	
CCMP	Counter Mode with Cipher Block Chaining Message Authentication Code Protocol	
CCX	Cisco Compatible Extensions	
CF-END	Control Frame End	
CF-ACK	Control Frame Acknowledgement	

Abbrev.	Description	
CLK	Clock	
CPU	Central Processing Unit	
CRC	Cyclic Redundancy Check	
CSR	Control Status Register	
CTS	Clear to Send	
CW	Contention Window	
CWmax	Maximum Contention Window	
CWmin	Minimum Contention Window	
DAC	Digital-To-Analog Converter	
DCF	Distributed Coordination Function	
DDONE	DMA Done	
DDR	Double Data Rate	
DFT	Discrete Fourier Transform	
DIFS	DCF Inter-Frame Space	
DMA	Direct Memory Access	
DSP	Digital Signal Processor	
DW	DWORD	
EAP	Expert Antenna Processor	
EDCA	Enhanced Distributed Channel Access	
EECS	EEPROM chip select	
EEDI	EEPROM data input	
EEDO	EEPROM data output	
EEPROM	Electrically Erasable Programmable Read-Only Memory	
eFUSE	electrical Fuse	
EESK	EEPROM source clock	
EIFS	Extended Inter-Frame Space	
EIV	Extend Initialization Vector	
EVM	Error Vector Magnitude	
FDS	Frequency Domain Spreading	
FEM	Front-End Module	
FEQ	Frequency Equalization	
FIFO	First In First Out	
FSM	Finite-State Machine	
GF	Green Field	
GND	Ground	
GP	General Purpose	

GPO General Purpose Output GPIO General Purpose Input/Output HCCA HCF Controlled Channel Access HCF Hybrid Coordination Function HT High Throughput HTC High Throughput Control ICV Integrity Check Value IFS Inter-Frame Space INIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier MM Mixed Mode	Abbrev.	Description	
HCCA HCF Controlled Channel Access HCF Hybrid Coordination Function HT High Throughput HTC High Throughput Control ICV Integrity Check Value IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	GPO		
HCF Hybrid Coordination Function HT High Throughput HTC High Throughput Control ICV Integrity Check Value IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	GPIO		
HTC High Throughput Control ICV Integrity Check Value IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	HCCA		
HTC High Throughput Control ICV Integrity Check Value IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	HCF	Hybrid Coordination Function	
ICV Integrity Check Value IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	HT	•	
IFS Inter-Frame Space iNIC Intelligent Network Interface Card IV Initialization Vector I ² C Inter-Integrated Circuit I ² S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	HTC		
iNIC Intelligent Network Interface Card IV Initialization Vector I²C Inter-Integrated Circuit I²S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	ICV		
IV Initialization Vector I ² C Inter-Integrated Circuit I ² S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	IFS		
I ² C Inter-Integrated Circuit I ² S Integrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	iNIC	Intelligent Network Interface Card	
Itegrated Inter-Chip Sound I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group Kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MENA Monolithic Low Noise Amplifier	IV	Initialization Vector	
I/O Input/Output IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	I^2C	Inter-Integrated Circuit	
IPI Idle Power Indicator IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	I ² S	Integrated Inter-Chip Sound	
IQ In phase/Quadrature phase JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	I/O	Input/Output	
JEDEC Joint Electron Devices Engineering Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	IPI	Idle Power Indicator	
Council JTAG Joint Test Action Group kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	IQ	In phase/Quadrature phase	
kbps kilo (1000) bits per second KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	JEDEC		
KB Kilo (1024) Bytes LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	JTAG	Joint Test Action Group	
LDO Low-Dropout Regulator LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	kbps	kilo (1000) bits per second	
LDODIG LDO for DIGital part output voltage LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	KB	Kilo (1024) Bytes	
LED Light-Emitting Diode LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	LDO	Low-Dropout Regulator	
LNA Low Noise Amplifier LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	LDODIG	LDO for DIGital part output voltage	
LO Local Oscillator L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	LED	Light-Emitting Diode	
L-SIG Legacy Signal Field MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	LNA	Low Noise Amplifier	
MAC Medium Access Control MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	LO	Local Oscillator	
MCU Microcontroller Unit MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	L-SIG	Legacy Signal Field	
MCS Modulation and Coding Scheme MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MAC	Medium Access Control	
MDC Management Data Clock MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MCU	Microcontroller Unit	
MDIO Management Data Input/Output MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MCS	Modulation and Coding Scheme	
MEM Memory MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MDC	Management Data Clock	
MFB MCS Feedback MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MDIO	Management Data Input/Output	
MFS MFB Sequence MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MEM	Memory	
MIC Message Integrity Code MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MFB	MCS Feedback	
MIMO Multiple-Input Multiple-Output MLNA Monolithic Low Noise Amplifier	MFS	MFB Sequence	
MLNA Monolithic Low Noise Amplifier	MIC	Message Integrity Code	
	MIMO	Multiple-Input Multiple-Output	
MM Mixed Mode	MLNA	Monolithic Low Noise Amplifier	
	MM	Mixed Mode	

Abbrev.	Description	
MOSFET	Metal Oxide Semiconductor Field	
	Effect Transistor	
MPDU	MAC Protocol Data Units	
MSB	Most Significant Bit	
NAV	Network Allocation Vector	
NAS	Network-Attached Server	
NAT	Network Address Translation	
NDP	Null Data Packet	
NVM	Non-Volatile Memory	
ODT	On-die Termination	
Oen	Output Enable	
OFDM	Orthogonal Frequency-Division	
7	Multiplexing	
OSC	Open Sound Control	
PA	Power Amplifier	
PAPE	Provider Authentication Policy	
DDC	Extension	
PBC	Push Button Configuration	
PBF	Packet Buffer	
PCB	Printed Circuit Board	
PCF	Point Coordination Function	
PCM	Pulse-Code Modulation	
PHY	Physical Layer	
PIFS	PCF Interframe Space	
PLCP	Physical Layer Convergence Protocol	
PLL	Phase-Locked Loop	
PME	Physical Medium Entities	
PMU	Power Management Unit	
PN	Packet Number	
PROM	Programmable Read-Only Memory	
PSDU	Physical layer Service Data Unit	
PSI	Power Save Made	
PSM	Power Save Mode	
PTN	Packet Transport Network	
QoS	Quality of Service	
RDG	Reverse Direction Grant	
RAM	Random Access Memory	
RF	Radio Frequency	
RGMII	Reduced Gigabit Media Independent Interface	

Abbrev.	Description	
RH	Relative Humidity	
RoHS	Restriction on Hazardous Substances	
ROM	Read-Only Memory	
RSSI	Received Signal Strength Indication (Indicator)	
RTS	Request to Send	
RvMII	Reverse Media Independent Interface	
Rx	Receive	
RXD	Received Data	
RXINFO	Receive Information	
RXWI	Receive Wireless Information	
S	Stream	
SDXC	Secure Digital eXtended Capacity	
SDIO	Secure Digital Input Output	
SDRAM	Synchronous Dynamic Random Access Memory	
SEC	Security	
SGI	Short Guard Interval	
SIFS	Short Inter-Frame Space	
SoC	System-on-a-Chip	
SPI	Serial Peripheral Interface	
SRAM	Static Random Access Memory	
SSCG	Spread Spectrum Clock Generator	
STBC	Space–Time Block Code	
SW	Switch Regulator	
TA	Transmitter Address	
TBTT	Target Beacon Transmission Time	
TDLS	Tunnel Direct Link Setup	

	, , , , , , , , , , , , , , , , , , , ,		
Abbrev.	Description		
TKIP	Temporal Key Integrity Protocol		
TRSW	Tx/Rx Switch		
TSF	Timing Synchronization Function		
TSSI	Transmit Signal Strength Indication		
Tx	Transmit		
TxBF	Transmit Beamforming		
TXD	Transmitted Data		
TXDAC	Transmit Digital-Analog Converter		
TXINFO	Transmit Information		
TXOP	Opportunity to Transmit		
TXWI	Tx Wireless Information		
UART	Universal Asynchronous Rx/Tx		
USB	Universal Serial Bus		
UTIF	Universal Test Interface		
VGA	Variable Gain Amplifier		
VCO	Voltage Controlled Amplifier		
VIH	High Level Input Voltage		
VIL	Low Level Input Voltage		
VoIP	Voice over IP		
WCID	Wireless Client Identification		
WEP	Wired Equivalent		
WI	Wireless Information		
WIV	Wireless Information Valid		
WMM	Wi-Fi Multimedia		
WPA	Wi-Fi Protected Access		
WPDMA	Wireless Polarization Division Multiple Access		
WS Word Select			

5. Revision History

Rev	Date	Description
1.0	2012/07/09	Initial Release
1.1	2012/07/18	Update SPI_WP/SPI_HOLD GPO table
1.2	2012/08/20	Fix DRQFN internal pad size typo
1.3	2012/09/12	Add IR reflow guideline

This product is not designed for use in medical and/or life support applications. Do not use this product in these types of equipment or applications. This document is subject to change without notice and Ralink assumes no responsibility for any inaccuracies that may be contained in this document. Ralink reserves the right to make

changes in its products to improve function, performance, reliability, and to attempt to supply the best product possible.