McGill University Department of Mathematics and Statistics MATH 254 Analysis 1, Fall 2015

Practice Assignment

1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function which satisfies the functional equation

$$f(x+y) = f(x) + f(y) \qquad \forall x, y \in \mathbb{R}$$

Assume furthermore that f is continuous at 0 and that f(1) = 1. Prove that f(x) = x for all $x \in \mathbb{R}$.

Hint: Show first that f is continuous at any point $c \in \mathbb{R}$. Prove then that for any rational number r, f(r) = r, and deduce the statement using the continuity of f.

- 2. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and let c be a cluster point of A. Prove that the following statements are equivalent:
 - (a) The function f does **not** have a limit at c.
 - (b) There exists a sequence (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ such that the sequence (x_n) converges to c but the sequence $f(x_n)$ does **not** converge in \mathbb{R} .

Remark. It is important that you write a detailed proof and understand every step of the argument.

3. Using the ε - δ definition of the limit of a function, prove that

- (a) $\lim_{x\to a} \frac{x}{1+x} = \frac{a}{1+a}$ for all $a \in \mathbb{R}, a \neq -1$.
- (b) $\lim_{x\to -1} \frac{x}{1+x}$ does not exist.

4. Use the ε - δ definition of the limit of a function to prove that

$$\lim_{x \to a} x^n = a^n$$

for all $n \in \mathbb{N}$ and all $a \in \mathbb{R}$.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

- (a) Prove that $\lim_{x\to 0} f(x) = 0$.
- (b) Prove that if $a \neq 0$ then $\lim_{x \to a} f(x)$ does not exist.

- 6. Let $A \subseteq \mathbb{R}$, let a be a cluster point of A and let $f: A \to \mathbb{R}$ be a function.
 - (a) Prove that $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a} |f(x) L| = 0$.
 - (b) Prove that $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to 0} f(x+a) = L$.
- 7. Let $A \subseteq \mathbb{R}$, let a be a cluster point of A and let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ be functions which satisfy the following conditions:
 - f is bounded on a neighborhood of a i.e. there exists a $\tau > 0$ and an $M \ge 0$ such that $|f(x)| \le M$ for all $x \in A \cap V_{\tau}(a)$.
 - $\bullet \ \lim_{x \to a} g(x) = 0.$

Prove that then $\lim_{x\to a} (f(x)g(x)) = 0$.

8. Prove that

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$