

Лекция 13

Гипербола

Содержание лекции:

В этой лекции мы рассмотрим неограниченную кривыю второго порядка - гиперболу. Мы применим алгоритм аналитического исследования, обсуждаемый в предыдущей лекции и опишем свойства данной кривой.

Ключевые слова:

Каноническое уравнение гиперболы, рациональные уравнения гиперболы, полярные уравнения гиперболы, касательная к гиперболе, ассимптоты гиперболы, директриса гиперболы, директориальное свойство гиперболы.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

13.1 Определения

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек плоскости есть величина постоянная.

Nota bene Обозначим соответствующие точки через F_1 и F_2 , тогда условие, сформулированное в определении для произвольной точки M эллипса можно записать следующим образом:

$$||F_1M| - |F_2M|| = const.$$

Вводя краткие обозначения

$$|F_1M| = r_1, \quad |F_2M| = r_2, \quad |F_1F_2| = 2c, \quad const = 2a, \quad a > 0.$$

получаем

$$|r_1 - r_2| = 2a, \quad c > a,$$

что приводит к двум уравнениям:

$$r_1 - r_2 = 2a, \quad r_1 > r_2,$$

 $r_2 - r_1 = 2a, \quad r_2 > r_1.$

Канонической системой координат для гиперболы называется декартова прямоугольная система координат, центр которой является серединой отрезка, заключеного между точками F_1 и F_2 , которые лежат на оси Ox.

Лемма 13.1. Уравнение гиперболы в канонической системе координат имеет вид:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (13.1)$$

и называется каноническим уравнением гиперболы.

▶

Подставим в определение гиперболы выражения для r_1 и r_2 :

$$r_1 = \sqrt{(x+c)^2 + y^2}, \quad r_2 = \sqrt{(c-x)^2 + y^2}.$$

Для случая $r_1 > r_2$ будем иметь:

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(c-x)^2 + y^2} = 2a$$

$$(x+c)^2 + y^2 = 4a^2 + 4a\sqrt{(c-x)^2 + y^2} + (c-x)^2 + y^2$$

$$4xc = 4a^2 + 4a\sqrt{(c-x)^2 + y^2}$$

$$xc - a^2 = a\sqrt{(c-x)^2 + y^2}$$

$$x^2(c^2 - a^2) - a^2y^2 = a^2(c^2 - a^2)$$

$$\frac{x^2}{a^2} - \frac{y^2}{(c^2 - a^2)} = 1$$

Заметим, что $b^2=c^2-a^2>0$, откуда получаем искомое уравнение. Случай $r_2>r_1$ рассматривается аналогично.

Лемма 13.2. Всякое уравнение вида (13.1) определяет гиперболу.

Покажем, что из канонического уравнения гиперболы следуют геометрические соотношения, лежащие в основе ее определения. Имеем

$$y^{2} = b^{2} \left(\frac{x^{2}}{a^{2}} - 1 \right),$$

$$r_{1,2} = \sqrt{(x \pm c)^{2} + \frac{b^{2}}{a^{2}}x^{2} - b^{2}} = \sqrt{\left(1 + \frac{b^{2}}{a^{2}}\right)x^{2} \pm 2xc + a^{2}} =$$

$$= \sqrt{\left(\frac{c}{a}x \pm a\right)^{2}} = \left|\frac{c}{a}x \pm a\right|,$$

откуда получаем:

$$r_1 = \varepsilon x + a$$
, $r_2 = \varepsilon x - a$, $r_1 > r_2$,
 $r_1 = -\varepsilon x + a$, $r_2 = -\varepsilon x - a$, $r_1 < r_2$.

Рациональными уравнениями гиперболы называются уравнения вида:

$$r_1 = \varepsilon x + a, \quad r_2 = \varepsilon x - a,$$

 $r_1 = -\varepsilon x + a, \quad r_2 = -\varepsilon x - a.$

где величина $\varepsilon = c/a$ называется эксцентриситетом гиперболы.

Nota bene Гипербола - неограниченная кривая:

$$\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2} \quad \Rightarrow \quad \left| \frac{x}{a} \right| \ge 1 \quad \Rightarrow \quad |x| \ge a, \quad x = \pm a \quad y = 0,$$

$$\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 \quad \Rightarrow \quad \left| \frac{y}{b} \right| \ge 1 \quad \Rightarrow \quad |y| \ge 0, \quad y = \pm ib \quad x = 0,$$

Nota bene Осевая и центральная симметрии

$$M(x,y) \in H \quad \Rightarrow \quad M_1(x,-y) \in H, \quad M_2(-x,y) \in H, \quad M_3(-x,-y) \in H.$$

Nota bene Точки пересечения с осями координат и вспомогательные точки:

$$A_1(-a,0), A_2(a,0), B_1(0,-b), B_2(0,b).$$

Введем ряд определений:

- ullet точки F_1 и F_2 называются фокусами гиперболы;
- расстояние $c = |F_1 F_2|/2$ называется фокусным расстоянием;
- точки A_1, A_2 называются **вершинами** гиперболы;
- отрезок A_1A_2 (B_1B_2) называется **вещественной (мнимой) осью** гиперболы;
- величина 2a (2b) называется **длиной вещественной (мнимой)** оси;
- величина $\varepsilon = c/a$ называется **эксцентриситетом** гиперболы;

Nota bene Эксцентриситет ε :

$$a < c \implies \varepsilon = c/a \implies \varepsilon \in [1, +\infty).$$

Частные случаи:

- $1. \ \varepsilon = 1 \quad \Rightarrow \quad b = 0$ лучи из фокусов.
- 2. $\varepsilon = +\infty$ \Rightarrow a = 0 ось Oy.

Полярными уравнениями гиперболы называются уравнения вида

$$\rho = \frac{p}{1 - \varepsilon \cos \varphi}, \quad p = a - \varepsilon c, \quad r_1 > r_2,$$

$$\rho = -\frac{p}{1 - \varepsilon \cos \varphi}, \quad p = a - \varepsilon c, \quad r_1 < r_2$$

где (ρ, φ) - полярные координаты на плоскости, F_1 - полюс и Ox - полярная ось.

Лемма 13.3. Полярное уравнение гиперболы задает гиперболу.

▶

Из определения следует, что $r_1 = \rho$. Пусть $r_1 > r_2$, тогда:

$$r_2^2 = (r_1 - 2a)^2 = r_1^2 - 4ar_1 + 4a^2,$$

 $r_2^2 = r_1^2 + 4c^2 - 4r_1c\cos\varphi,$

откуда после исключения r_2 находим:

$$r_1 = \frac{a^2 - c^2}{a - c\cos\varphi} \quad \Rightarrow \quad \rho = \frac{a - \varepsilon c}{1 - \varepsilon\cos\varphi}.$$

Случай $r_2 > r_1$ рассматривается аналогично. \blacktriangleleft

Параметрическими уравнениями гиперболы называются уравнения вида

$$x(t) = a \cdot \cosh t, \quad y(t) = b \cdot \sinh t$$

ГИПЕРБОЛА

Лемма 13.4. Параметрические уравнения гиперболы задают гиперболу.

Имеет место следующее тождество:

$$\frac{x(t)^2}{a^2} - \frac{y(t)^2}{b^2} = \cosh^2 t - \sinh^2 t = 1.$$

13.2 Специальные прямые

Касательной к гиперболе называется прямая, имеющая с ней одну общую точку.

Лемма 13.5. Уравнение касательной к эллипсу в точке $M(x_0, y_0)$ имеет вид

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1,$$

Будем искать уравнение касательной в параметрической форме:

$$\begin{cases} x = x_0 + \alpha t, \\ y = y_0 + \beta t. \end{cases}$$

Подставляя в уравнение эллипса будем иметь:

$$\frac{(x_0 + \alpha t)^2}{a^2} - \frac{(y_0 + \beta t)^2}{b^2} = 1.$$

Точка $M(x_0, y_0)$ является общей точкой искомой прямой и эллипса, поэтому:

$$\frac{2x_0\alpha t + \alpha^2 t^2}{a^2} - \frac{2y_0\beta t + \beta^2 t^2}{b^2} = 0, \quad \frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = 1.$$

Далее будем иметь

$$t\left(\frac{2x_0\alpha + \alpha^2t}{a^2} - \frac{2y_0\beta + \beta^2t}{b^2}\right) = 0.$$

При t=0 получаем точку $M(x_0,y_0)$, рассмотрим выражение, стоящее в скобках:

$$2x_0\alpha b^2 + \alpha^2 b^2 t - 2y_0\beta a^2 - \beta^2 a^2 t = 0,$$

$$t = -2\frac{x_0\alpha b^2 - y_0\beta a^2}{\alpha^2 b^2 - \beta^2 a^2}.$$

Так как общая точка у эллипса и искомой прямой единственная, то t из последнего выражения также должен быть равен нулю:

$$\frac{x_0 \alpha b^2 - y_0 \beta a^2}{\alpha^2 b^2 - \beta^2 a^2} = 0,$$

$$x_0 \alpha b^2 - y_0 \beta a^2 = 0 \quad \Rightarrow \quad \frac{\beta}{\alpha} = \frac{x_0 b^2}{y_0 a^2}.$$

Переписывая уравнение касательной в общем вид будем иметь

$$y - y_0 = \frac{\beta}{\alpha}(x - x_0) = \frac{x_0 b^2}{y_0 a^2}(x - x_0),$$

$$y_0 a^2(y - y_0) = x_0 b^2(x - x_0), \quad \frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = 1,$$

$$\frac{x x_0}{a^2} - \frac{y y_0}{b^2} = 1.$$

Асимптотой неограниченной кривой называется такая прямая, такая что расстояние от точки кривой до асимптоты стремится к нулю, когда точка кривой уходит на бесконечность.

Теорема 13.1. B канонической системе координат асимптотами гиперболы служат прямые:

$$y = \pm \frac{b}{a}x.$$

Пользуясь симметричностью гиперболы, доказательство можно ограничить только случаем первой четверти: $x \ge 0, y \ge 0$. Найдем расстояние от произвольной точки, лежащей на гиперболе до прямой bx - ay = 0:

$$d = \left| \frac{bx - a \cdot b/a\sqrt{x^2 - a^2}}{\sqrt{a^2 + b^2}} \right| = \frac{b \cdot |x^2 - (x^2 - a^2)|}{\sqrt{a^2 + b^2}|x + \sqrt{x^2 - a^2}|} = \frac{ba^2}{\sqrt{a^2 + b^2}|x + \sqrt{x^2 - a^2}|}.$$

Очевидно, что $d \to 0$ при $x \to \infty$ и значит прямая из формулировки теоремы является асимптотой.

Директрисами гиперболы называются прямые, параллельные ее мнимой оси и находящиеся на расстоянии a/ε :

$$x = \pm \frac{a}{\varepsilon}, \quad \varepsilon > 1.$$

Лемма 13.6. Директориальное свойство: отношение расстояний от каждой точки гиперболы до фокуса и до соответствующей директрисы постоянно и не зависит от выбора точки:

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon. \tag{13.2}$$

Для правой ветки имеем:

$$r_1 = a + \varepsilon x, \quad d_1 = a/\varepsilon + x \quad \Rightarrow \quad r_1/d_1 = \varepsilon,$$

 $r_2 = \varepsilon x - a, \quad d_2 = x - a/\varepsilon \quad \Rightarrow \quad r_2/d_2 = \varepsilon.$

Для левой ветки имеем:

$$r_1 = -a - \varepsilon x, \quad d_1 = -a/\varepsilon - x \quad \Rightarrow \quad r_1/d_1 = \varepsilon,$$

 $r_2 = a - \varepsilon x, \quad d_2 = -x + a/\varepsilon \quad \Rightarrow \quad r_2/d_2 = \varepsilon.$

4

Лемма 13.7. Всякое геометрическое место точек, удовлетворяющее условию (13.2) есть гипербола.

Из равенств для правой ветки имеем:

$$r_{1,2} = \sqrt{(x \pm c)^2 + y^2} = \varepsilon \left| x \pm \frac{a}{\varepsilon} \right|,$$

откуда следует, что

$$(x \pm c)^2 + y^2 = (\varepsilon x \pm a)^2,$$

и поэтому

$$(\varepsilon^2 - 1)x^2 - y^2 = c^2 - a^2 \quad \Leftrightarrow \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

4