

FEATURE SCALING

FEATURE AND PARAMETER VALUES

$$W_{1} \times_{1} + W_{2} \times_{2} + b$$
 $X_{1} = 2$; $X_{2} = 35 \text{ and}$; $Y = 50$
 $V_{1} = 100$, $V_{2} = 100$
 $Y_{1} = 100$, $V_{2} = 0.000$
 $Y_{2} = 35 \text{ and } 200$
 $Y_{3} = 35 \text{ and } 200$

FEATURE SIZE AND PARAMETER SIZE

FEATURE SIZE AND GRADIENT DESCENT

FEATURE SCALING

• Feature range is either very large or very small

FEATURE SCALING

- Division by Max number in the feature
- Mean Normalization
- Z-Score Normalization

DATASET

Performance Score (Target Variable): Represents an employee's expected performance on a scale of 0 to 100, based on past data.

Experience (Years)	Salary (\$)	Performance Score (Target)
2	35,000	50
5	50,000	55
7	80,000	70
3	45,000	52
10	120,000	85
15	200,000	95
20	150,000	92
12	90,000	80
6	60,000	65
18	170,000	90

DIVISION BY MAX NUMBER IN THE FEATURE (MIN-MAX SCALING)

$$x_{2} = 45 \text{ or } = 0.225$$
 $x_{2,3} = \frac{45 \text{ or } = 0.225}{2000}$

$$0.175 \leq x_{2,s} \leq 1$$

$$x_1 = 3$$
 $x_{1,s} = \frac{3}{100} = 0.15$

MEAN NORMALIZATION

$$M_1 = 9.8$$

$$x_1 = 3$$

$$M_1 = M_1$$

$$M_1 = M_2$$

$$M_1 = M_2$$

$$x_{1,5} = -0.37$$
 $-0.43 \le x_{1,5} \le 0.56$

$$M_2 = 1,00,000$$
 $X_2 = 45,000$
 $X_2 = 45,000$
 $X_{2,5} = \frac{2(2 - M_2)}{Max - Min}$
 $X_{2,5} = -0.33$
 $X_{2,5} = 0.60$

Z-SCORE NORMALIZATION

$$\sigma_1 = ?$$
 Std. Deviation
 (x_1)
 $\sigma_2 = ?$ St.d Deviation
 (x_2)

$$M_1 = Av_{\mathcal{F}}(x_1)$$

$$M_2 = Av_{\mathcal{F}}(x_2)$$

$$x_{1,S} = \frac{x_1 - \mu_1}{1} \quad ; \quad x_{2,S} = \frac{x_2 - \mu_2}{2}$$