Sheet (4)

Convolution

Q1)

2.2. Show that

(a)
$$x(t) * \delta(t) = x(t)$$
 (2.58)

(b)
$$x(t) * \delta(t - t_0) = x(t - t_0)$$
 (2.59)

(c)
$$x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 (2.60)

(d)
$$x(t) * u(t - t_0) = \int_{-\infty}^{t - t_0} x(\tau) d\tau$$
 (2.61)

(a) By definition (2.6) and Eq. (1.22) we have

$$x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t-\tau) \, d\tau = x(\tau)|_{\tau=t} = x(t)$$

(b) By Eqs. (2.7) and (1.22) we have

$$x(t) * \delta(t - t_0) = \delta(t - t_0) * x(t) = \int_{-\infty}^{\infty} \delta(\tau - t_0) x(t - \tau) d\tau$$

= $x(t - \tau)|_{\tau = t_0} = x(t - t_0)$

(c) By Eqs. (2.6) and (1.19) we have

$$x(t) * u(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau) d\tau = \int_{-\infty}^{t} x(\tau) d\tau$$
since $u(t-\tau) = \begin{cases} 1 & \tau < t \\ 0 & \tau > t \end{cases}$.

(d) In a similar manner, we have

$$x(t) * u(t - t_0) = \int_{-\infty}^{\infty} x(\tau)u(t - \tau - t_0) d\tau = \int_{-\infty}^{t - t_0} x(\tau) d\tau$$
since $u(t - \tau - t_0) = \begin{cases} 1 & \tau < t - t_0 \\ 0 & \tau > t - t_0 \end{cases}$.

2.6. Evaluate y(t) = x(t) * h(t), where x(t) and h(t) are shown in Fig. 2-6, (a) by an analytical technique, and (b) by a graphical method.

Fig. 2-6

(a) We first express x(t) and h(t) in functional form:

$$x(t) = u(t) - u(t-3)$$
 $h(t) = u(t) - u(t-2)$

Then, by Eq. (2.6) we have

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} [u(\tau) - u(\tau - 3)] [u(t-\tau) - u(t-\tau - 2)] d\tau$$

$$= \int_{-\infty}^{\infty} u(\tau)u(t-\tau) d\tau - \int_{-\infty}^{\infty} u(\tau)u(t-2-\tau) d\tau$$

$$- \int_{-\infty}^{\infty} u(\tau - 3)u(t-\tau) d\tau + \int_{-\infty}^{\infty} u(\tau - 3)u(t-2-\tau) d\tau$$
Since
$$u(\tau)u(t-\tau) = \begin{cases} 1 & 0 < \tau < t, t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau)u(t-2-\tau) = \begin{cases} 1 & 0 < \tau < t, t > 2 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau - 3)u(t-\tau) = \begin{cases} 1 & 3 < \tau < t, t > 3 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau - 3)u(t-2-\tau) = \begin{cases} 1 & 3 < \tau < t, t > 3 \\ 0 & \text{otherwise} \end{cases}$$

we can express y(t) as

$$y(t) = \left(\int_0^t d\tau\right) u(t) - \left(\int_0^{t-2} d\tau\right) u(t-2)$$

$$-\left(\int_3^t d\tau\right) u(t-3) + \left(\int_3^{t-2} d\tau\right) u(t-5)$$

$$= tu(t) - (t-2)u(t-2) - (t-3)u(t-3) + (t-5)u(t-5)$$

which is plotted in Fig. 2-7.

Fig. 2-7

(b) Functions $h(\tau)$, $x(\tau)$ and $h(t-\tau)$, $x(\tau)h(t-\tau)$ for different values of t are sketched in Fig. 2-8. From Fig. 2-8 we see that $x(\tau)$ and $h(t-\tau)$ do not overlap for t < 0 and t > 5, and hence y(t) = 0 for t < 0 and t > 5. For the other intervals, $x(\tau)$ and $h(t-\tau)$ overlap. Thus, computing the area under the rectangular pulses for these intervals, we obtain

$$y(t) = \begin{cases} 0 & t < 0 \\ t & 0 < t \le 2 \\ 2 & 2 < t \le 3 \\ 5 - t & 3 < t \le 5 \\ 0 & 5 < t \end{cases}$$

which is plotted in Fig. 2-9.

Fig. 2-8

2.30. Evaluate y[n] = x[n] * h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an analytical technique, and (b) by a graphical method.

Fig. 2-23

(a) Note that x[n] and h[n] can be expressed as

$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

Now, using Eqs. (2.38), (2.130), and (2.131), we have

$$x[n]*h[n] = x[n]*\{\delta[n] + \delta[n-1] + \delta[n-2]\}$$

$$= x[n]*\delta[n] + x[n]*\delta[n-1] + x[n]*\delta[n-2]\}$$

$$= x[n] + x[n-1] + x[n-2]$$
Thus,
$$y[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

$$+ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$$

$$+ \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]$$
or
$$y[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 3\delta[n-3] + 2\delta[n-4] + \delta[n-5]$$
or
$$y[n] = \{1, 2, 3, 3, 2, 1\}$$

Fig. 2-24