

SUJET D'EXAMEN IN11 – Initiation aux systèmes d'information aéronautiques Année universitaire 2018-2019

Classe :	Aéro 1
Type d'examen :	Partiel
Date :	20/11/2018
Durée :	1 heure
Code matière :	IN 11
Intitulé matière :	Initiation aux SI aéronautiques
Enseignant:	V. Quetin, F. Bonnefoi
Examen initial :	Oui
Documents autorisés :	Non
Calculatrices autorisées :	Non

<u>CADRE RÉSERVÉ A L'ETUDIANT(E)</u> :
En cas de réponse directement sur le sujet, merci de compléter ce cadre :
NOM:
Prénom :
Classe :

1 age 1 01 3		Page 1 of 5	
--------------	--	-------------	--

Numération (6pt)

1.	Sur combien de positions binaires s'écrit un nombre en hexadécimal
	☐ 2 ☐ 3 ☐ 4 ☐ 8
2.	Convertir en base 2 la valeur (AFC) ₁₆ (1pt)
	□ 101011111100 □ 101001111100 □ 101101101111 □ 101110011111
	☐ 110111000110
3.	Convertir en base 10 la valeur (11011110) ₂
	\Box 430
	☐ 422☐ 328
	420 222
	☐ 432 ☐ 174
4.	Convertir en Base 2 la valeur (307.18)10. Attention : Résultat à fournir avec 4 chiffres
	décimaux
	☐ 100110011.1010 ☐ 100110011.0100
	100110011.0100 100110101.0010
	□ 100110011.0010 □ 100101001.0010
	☐ 101001001.0010 ☐ 101001101.0100
5.	
J.	☐ 10111
	<u> </u>
	□ 01101 □ 01011
	□ 01111 □ 01111
	□ 01110
6.	Convertir en binaire signé la valeur (- 74) ₁₀
	☐ 10110111 ☐ 10110111
	□ 10110110 □ 10110101
	00110111
	☐ 11010111
	Page 2 of 5

Théorie et concepts généraux (14pt)

Ordinateur

7. Un système numérique c'est ?
 ☐ Un système électronique (1/2pt) ☐ Un système informatique (1/2pt) ☐ Les 2 (1pt) ☐ Aucun des 2
Soit l'algorithme suivant :
Pour un entier n faire:
$ 1 r \leftarrow 1$
2 x ← 1 3 pour i de 2 jusqu'à n avec un pas x faire: 4 afficher (i) 5 fin pour 6 retourner r
8. Calculer combien de fois est affiché i pour n valant 5 :
4
9. Cet algorithme a une complexité :
☐ Constante en nombre d'opérations
Variable en nombre d'opérations (1/2pt)
☐ Constante en nombre de variables☐ Variable en nombre de variables
10. Dans un processeur moderne il y a environs :
☐ 10 transistors
\square 10 ³ transistors
☐ 10 ⁶ transistors ☐ 10 ⁹ transistors
Le système d'exploitation
11. Quel est le premier composant qui est mis sous tension sur un ordinateur
□ L'"UEFI"
☐ Le processeur
Le "MBR"
□ La carte-mère □ Le "Master"

Page 3 of 5

12. Qu'	est-ce que le Master booi	t record	
	Une zone de mémoire de	e la carte-mère	
	Une zone de mémoire de		
		ontenant le système d'exploita	tion
	Démarrer la "BootTable'		
	Une zone de mémoire sit	tuée en début du disque dur b	<u>ootable</u>
13. Que	el est le rôle de l'ordonna	nceur	
	Gérer l'accès des progran	-	
	Assurer le bon démarrag		
		nnement des périphériques	• • •
	=	périphériques et le système d'	exploitation
	Assurer la gestion de la i	mémoire et du disque dur	
14. Où o	est stocké le Basic Input/	Output Système (BIOS)	
	Dans la RAM		
	Dans une ROM		
	Dans le MBR		
	Sur le disque dur		
	Dans le processeur		
Progra	mmation		
	rquoi utilise-t-on un lang mbleur ?	gage de programmation plu	tôt qu'un langage
	Pour faire des logiciels p	olus performants	
	Pour faciliter l'écriture d		
		<mark>n d'un programme sur des pro</mark>	ocesseurs différents
	Pour faire des programm	nes exécutables	
16. En p	programmation, pour ob	otenir un processus, un scri	pt doit être :
	Compilé avec un compil	ateur	
	Interprété par une machi		
	Interprété par un assemb	leur	
	Compilé en code source		
17. En p	programmation, un code	e assembleur est:	
	Spécifique au jeu d'instr	ructions d'une famille de proc	esseurs
	Peut-être compilé pour d	lifférents processeurs	
	Spécifique à un langage		
	Interprété par une machi	ne virtuelle	
		Page 4 of 5	

18. En programmation, un code source est ☐ Difficilement lisible car exprimé en binaire ☐ Accessible ☐ De virtualiser un compilateur ☐ De virtualiser un code sources	
19. L'extension d'un fichier c'est :	
 ☐ Une fonction ajoutée à un fichier ☐ Une information sur le codage utilisé pour écrire le fichier ☐ Une manière d'augmenter la taille d'un fichier ☐ Le programme permettant de modifier un fichier 	
20. On calcul la puissance d'un processeur en :	
Hz (1/2pt) Secondes Flops (1pt) Bytes	