

Physique Niveau moyen Épreuve 1

Vendredi 6 mai 2016 (matin)

45 minutes

Instructions destinées aux candidats

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Un exemplaire non annoté du **recueil de données de physique** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [30 points].

1. Une sphère est ajustée à l'intérieur d'un cube.

La longueur de ce cube et le diamètre de cette sphère sont 10,0±0,2 cm.

Quel est le rapport $\frac{\text{incertitude en pourcentage du volume de cette sphere}}{\text{incertitude en pourcentage du volume de ce cube}}$?

- A. $\frac{3}{4\pi}$
- B. 1
- C. 2
- D. 8
- 2. Une piscine contient 18×10^6 kg d'eau pure. La masse molaire de l'eau est $18 \,\mathrm{g}\,\mathrm{mol}^{-1}$. Quelle est l'estimation correcte du nombre de molécules d'eau dans cette piscine ?
 - A. 10⁴
 - B. 10²⁴
 - C. 10²⁵
 - D. 10³³

3. Un avion se déplace horizontalement. Une parachutiste quitte cet avion et, quelques secondes plus tard, ouvre son parachute. Quel graphique montre la variation de la vitesse verticale v en fonction du temps t pour cette parachutiste depuis le moment où elle quitte l'avion jusqu'au moment juste avant qu'elle n'atterrisse ?

4. Un objet d'une masse m repose sur un plan horizontal. L'angle θ que fait ce plan avec l'horizontale augmente lentement à partir de zéro. Quand $\theta = \theta_0$, cet objet commence à glisser. Quels sont le coefficient de frottement statique $\mu_{\rm s}$ et la force de réaction normale N de ce plan à $\theta = \theta_0$?

	μ_{s}	N
A.	$\sin heta_{\scriptscriptstyle 0}$	$\emph{mg}\cos heta_0$
B.	$ an heta_{\scriptscriptstyle 0}$	mg sin $ heta_{\scriptscriptstyle 0}$
C.	$\sin heta_{\scriptscriptstyle 0}$	\emph{mg} sin $ heta_{\scriptscriptstyle 0}$
D.	$ an heta_{\scriptscriptstyle 0}$	$mg\cos heta_0$

- 5. Une pierre tombe verticalement à une vitesse constante dans un tube rempli d'huile. Lesquels des énoncés suivants sur les changements d'énergie de cette pierre pendant son mouvement sont corrects ?
 - I. Le gain en énergie cinétique est plus petit que la perte en énergie potentielle gravitationnelle.
 - II. La somme de l'énergie cinétique et de l'énergie potentielle gravitationnelle de cette pierre est constante.
 - III. Le travail effectué par la force de gravité a la même grandeur que le travail effectué par le frottement.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- 6. Un ressort d'une masse négligeable et d'une longueur l_0 est suspendu depuis un point fixe. Lorsqu'une masse m est attachée à l'extrémité libre de ce ressort, la longueur de ce ressort augmente jusqu'à l. La tension dans ce ressort est égale à $k\Delta x$, k étant une constante et Δx étant l'allongement de ce ressort. À quoi k correspond-il ?
 - A. $\frac{mg}{l_0}$
 - B. $\frac{mg}{l}$
 - C. $\frac{mg}{l-l_0}$
 - D. $\frac{mg}{l_0 l}$

7. Une balle d'une masse m se déplace horizontalement avec une vitesse u. Cette balle heurte un mur vertical et rebondit dans le sens opposé avec une vitesse v < u. La durée de la collision est T. Quelles sont la grandeur de la force moyenne exercée par le mur sur cette balle et la perte d'énergie cinétique de cette balle ?

-5-

	Force moyenne	Perte d'énergie cinétique
A.	$\frac{m(u+v)}{T}$	$\frac{m(u^2-v^2)}{2}$
B.	$\frac{m(u+v)}{T}$	$\frac{m(u-v)^2}{2}$
C.	$\frac{m(u-v)}{T}$	$\frac{m(u^2-v^2)}{2}$
D.	<u>m(u−v)</u> T	$\frac{m(u-v)^2}{2}$

8. Un train sur une voie ferrée horizontale droite se déplace depuis l'état de repos à une accélération constante. Les forces horizontales sur ce train sont la force du moteur et une force résistive qui augmente avec la vitesse. Lequel des graphiques ci-dessous représente la variation en fonction du temps *t* de la puissance *P* développée par le moteur ?

9. Le graphique ci-dessous montre comment l'accélération a d'un objet varie en fonction de la distance parcourue x.

La masse de cet objet est 3,0 kg. Quel est le travail total effectué sur cet objet ?

- A. 300 J
- B. 400 J
- C. 1200 J
- D. 1500 J

10. Une substance est chauffée à une puissance constante. Le graphique montre comment la température *T* de cette substance varie en fonction du temps *t* tandis que cette substance passe de l'état liquide à l'état gazeux.

Que peut-on déterminer à partir de ce graphique ?

- A. La capacité calorifique massique du gaz est plus petite que la capacité calorifique massique du liquide.
- B. La capacité calorifique massique du gaz est plus grande que la capacité calorifique massique du liquide.
- C. La chaleur latente de fusion de cette substance est plus petite que la chaleur latente de vaporisation.
- D. La chaleur latente de fusion de cette substance est plus grande que sa chaleur latente de vaporisation.
- **11.** Laquelle des réponses ci-dessous n'est **pas** une supposition de modèle cinétique des gaz parfaits ?
 - A. Toutes les particules dans le gaz ont la même masse.
 - B. Toutes les particules dans le gaz ont la même vitesse.
 - C. La durée des collisions entre les particules est très courte.
 - D. Les collisions avec les parois du récipient sont élastiques.

- **12.** Dans quelles conditions de densité et de pression un gaz réel est-il le mieux décrit par l'équation d'état pour un gaz parfait ?
 - A. Faible densité et basse pression
 - B. Faible densité et haute pression
 - C. Forte densité et basse pression
 - D. Forte densité et haute pression
- **13.** Une source ponctuelle émet des ondes sonores d'une amplitude *A*. L'intensité acoustique à une distance *d* de cette source est *I*. Quelle est l'intensité acoustique à une distance 0,5*d* de cette source lorsque cette source émet des ondes d'une amplitude 2*A* ?
 - A. 16*I*
 - B. 4*I*
 - C. *I*
 - D. $\frac{1}{4}I$

14. Une vague d'eau bouge sur la surface d'un lac. P et Q sont deux points sur la surface de l'eau. Cette onde se propage vers la droite.

Le diagramme ci-dessus montre l'onde au moment t=0. Quel graphique ci-dessous montre comment les déplacements de P et de Q varient en fonction de t?

A.

В.

C.

D.

15. Une lumière polarisée horizontalement d'une intensité I_0 entre dans un polariseur P dont l'axe de polarisation fait un angle de θ degrés avec l'horizontale. La lumière venant de P est alors incidente sur un polariseur A avec un axe de polarisation vertical fixe.

On varie l'angle θ de 0 à 90 degrés. Lequel des graphiques ci-dessous représente la variation, en fonction de θ , de l'intensité I de la lumière transmise à travers A ?

16. Un tuyau d'une longueur *L* a deux extrémités ouvertes. Un autre tuyau d'une longueur *L'* a une extrémité ouverte et une extrémité fermée.

La fréquence du premier harmonique de ces deux tuyaux est la même. À quoi correspond $\frac{L'}{L}$?

- A. 2
- B. $\frac{3}{2}$
- C. 1
- D. $\frac{1}{2}$
- **17.** Un rayon de lumière passe de l'air à l'eau comme montré.

Quels sont le changement dans la longueur d'onde de l'onde lumineuse et le changement dans l'angle que fait le rayon avec la normale à la surface.

	Longueur d'onde	Angle avec la normale
A.	augmente	augmente
B.	augmente	diminue
C.	diminue	augmente
D.	diminue	diminue

18. Trois charges fixes, +Q, –Q et –2Q, sont aux sommets d'un triangle équilatéral. Quelle est la force résultante sur un électron au centre de ce triangle ?

19. Le graphique ci-dessous montre la variation du courant *I* dans un dispositif en fonction de la différence de potentiel *V* aux bornes de celui-ci.

Quelle est la résistance de ce dispositif en P?

- A. zéro
- B. $0,1\Omega$
- C. 10Ω
- D. infinie

20. Un circuit consiste en une pile d'une force électromotrice (f.é.m.) de $6,0\,V$ et d'une résistance interne négligeable connectée à deux résistances de $4,0\,\Omega$.

La résistance de l'ampèremètre est de $1,0\,\Omega$. Quelle est la valeur lue sur l'ampèremètre ?

- A. 2,0A
- B. 3,0A
- C. 4,5A
- D. 6,0A

21. Un fil portant un courant *I* est placé dans une région d'un champ magnétique uniforme *B*, comme montré sur le schéma ci-dessous.

La direction du champ *B* est sortant de la page et la longueur du fil est *L*. Laquelle des réponses ci-dessous est correcte à propos de la direction et de la grandeur de la force agissant sur ce fil ?

	Direction	Grandeur
A.		égale à <i>BIL</i>
B.		plus petite que <i>BIL</i>
C.	7	égale à <i>BIL</i>
D.	7	plus petite que <i>BIL</i>

22. Une masse attachée à une extrémité d'une tige rigide tourne à une vitesse constante dans un plan vertical autour de l'autre extrémité de cette tige.

La force exercée par la tige sur la masse est

- A. zéro partout.
- B. d'une grandeur constante.
- C. toujours dirigée vers le centre.
- D. minimale au sommet du parcours circulaire.
- **23.** La planète X a une masse *M* et un rayon *R*. La planète Y a une masse 2*M* et un rayon 3*R*. L'intensité du champ gravitationnel à la surface de la planète X est *g*. Quelle est l'intensité du champ gravitationnel à la surface de la planète Y ?
 - A. $\frac{2}{9}$ 9
 - B. $\frac{2}{3}$ 9
 - C. $\frac{3}{2}$
 - D. $\frac{9}{2}$ 9

24.		imple modèle d'un atome a cinq niveaux d'énergie. Quel est le nombre maximum de lences différentes dans le spectre d'émission de cet atome ?
	A.	4
	B.	6
	C.	10
	D.	25
25.	Laqu	uelle des réponses ci-dessous donne la définition correcte de l'énergie de liaison d'un noyau ?
	A.	Le produit de l'énergie de liaison par nucléon et du nombre de nucléons
	B.	Le travail minimum requis pour séparer complètement les nucléons les uns des autres
	C.	L'énergie qui maintient le noyau ensemble
	D.	L'énergie libérée pendant l'émission d'une particule alpha
26.	Laquelle des réponses ci-dessous énumère trois forces fondamentales par ordre croissant d'intensité ?	
	A.	électromagnétique, gravité, nucléaire forte
	A. B.	électromagnétique, gravité, nucléaire forte nucléaire faible, gravité, nucléaire forte
	В.	nucléaire faible, gravité, nucléaire forte
27.	B. C. D.	nucléaire faible, gravité, nucléaire forte gravité, nucléaire faible, électromagnétique
27.	B. C. D.	nucléaire faible, gravité, nucléaire forte gravité, nucléaire faible, électromagnétique électromagnétique, nucléaire forte, gravité
27.	B. C. D.	nucléaire faible, gravité, nucléaire forte gravité, nucléaire faible, électromagnétique électromagnétique, nucléaire forte, gravité quelle raison les quarks furent-ils introduits initialement ?
27.	B. C. D. Pour	nucléaire faible, gravité, nucléaire forte gravité, nucléaire faible, électromagnétique électromagnétique, nucléaire forte, gravité quelle raison les quarks furent-ils introduits initialement ? Pour expliquer l'existence d'isotopes
27.	B. C. D. Pour A. B.	nucléaire faible, gravité, nucléaire forte gravité, nucléaire faible, électromagnétique électromagnétique, nucléaire forte, gravité quelle raison les quarks furent-ils introduits initialement ? Pour expliquer l'existence d'isotopes Pour décrire les spectres d'émission et d'absorption nucléaires

Quel est l'ordre correct de transformations d'énergie dans une centrale thermique au charbon ?

Un corps noir d'une surface de 1,0 m² émet un rayonnement électromagnétique d'une longueur

d'onde de crête de 2,90 × 10⁻⁶ m. Lesquels des énoncés suivants sur ce corps sont corrects ?

Ce corps est un absorbeur parfait du rayonnement électromagnétique.

L'énergie rayonnée par ce corps en une seconde est 5,7 × 10⁴ J.

thermique → chimique → cinétique → électrique

chimique → thermique → cinétique → électrique

chimique → cinétique → thermique → électrique

cinétique \rightarrow chimique \rightarrow électrique \rightarrow thermique

La température de ce corps est 1000 K.

B.

C.

D.

A.

B.

C.

D.

A.

B.

C.

D.

I.

II.

III.

I et II seulement

I et III seulement

Il et III seulement

I, II et III

29.

30.

5W

50 W

500 W