Mathematical Foundations of Computer Science

Project 10

Log Creative
Student ID:

June 25, 2021

Warmups

8 The residue number system $(x \mod 3, x \mod 5)$ considered in the text has the curious property that 13 corresponds to (1, 3), which looks almost the same. Explain how to find all instances of such a coincidence, without calculating all fifteen pairs of residues. In other words, find all solutions to the congruences

$$10x + y \equiv x \pmod{3}$$
, $10x + y \equiv y \pmod{5}$.

Hint: Use the facts that $10u + 6v \equiv u \pmod{3}$ and $10u + 6v \equiv v \pmod{5}$

Solution. 10u + 6v is a number that satisfies the congruences within the range of 0 to 15:

$$10u + 6v \equiv u \pmod{3}$$
, $10u + 6v \equiv 6v \equiv v \pmod{5}$

Then, it suffies to find the solution to

$$10x + 6y \equiv 10x + y \pmod{15}$$

In other word,

$$5y \equiv 0 \pmod{15}$$

Thus,

$$y \equiv 0 \pmod{3}$$
 and $y \leq 3$

All pairs satisfies

$$\begin{cases} x = 0 \text{ or } 1\\ y = 0 \text{ or } 3 \end{cases}$$

The full list of them: 0, 3, 10, 13.

9 Show that $(3^{77} - 1)/2$ is odd and composite. Hint: What is $3^{77} \mod 4$?

Proof.

$$3^{77} - 1 \equiv (-1)^{77} - 1 \pmod{4}$$

 $\equiv -1 - 1 \pmod{4}$
 $\equiv 2 \pmod{4}$

Thus $3^{77}-1$ could be interpreted as $4k+2(k\in\mathbb{Z})$. And $\frac{3^{77}-1}{2}=2k+1(k\in\mathbb{Z})$, which is an odd number.

Because
$$3^{77} - 1 = (3^7)^{11} - 1 = (3^7 - 1) \left(\sum_{i=0}^{10} (3^7)^i \right),$$

$$3^7 - 1 | 3^{77} - 1$$

$$\frac{3^7 - 1}{2} \left| \frac{3^{77} - 1}{2} \right|$$

Then, $(3^{77} - 1)/2$ is composite.

10 Compute $\varphi(999)$.

Solution.

$$999 = 3^3 \times 37$$

According to Euler's theorem,

$$\varphi(999) = 999 \times \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{37}\right) = 648$$

11 Find a function $\sigma(n)$ with the property that

$$g(n) = \sum_{0 \le k \le n} f(k) \Leftrightarrow f(n) = \sum_{0 \le k \le n} \sigma(k)g(n-k).$$

(This is analogous to the Möbius function; see (4.56).)

Solution. $\sigma(n)$ is defined by the formula:

$$\sigma(n) = \begin{cases} 1, & n = 0 \\ -1, & n = 1 \\ 0, & n > 1 \end{cases}$$

 \Rightarrow : If $g(n) = \sum_{0 \le k \le n} f(k)$,

$$\begin{split} \sum_{0 \leq k \leq n} \sigma(k) g(n-k) &= \sum_{0 \leq k \leq n} \sigma(k) \sum_{0 \leq j \leq n-k} f(j) \\ &= \sum_{0 \leq k \leq n} \sigma(k) \sum_{k \leq j \leq n} f(n-j) \\ &= \sum_{0 \leq j \leq n} f(n-j) - \sum_{1 \leq j \leq n} f(n-j) \\ &= f(n) \end{split}$$

$$\text{ \Leftarrow: If } f(n) = \sum_{0 \le k \le n} \sigma(k) g(n-k) = g(n) - g(n-1),$$

$$\sum_{0 \le k \le n} f(k) = g(n) - g(0) + f(0) = g(n)$$

where the last equation is followed by

$$f(0) = \sigma(0)q(0) = q(0)$$

12 Simplify the formula $\sum_{d|m} \sum_{k|d} \mu(k) g(d/k)$.

Solution.

$$\sum_{d|m} \sum_{k|d} \mu(k) g\left(\frac{d}{k}\right) = \sum_{d|m} \left(\sum_{k|d} \mu\left(\frac{d}{k}\right) g(k)\right) \qquad \text{(Inversion)}$$

$$= \sum_{k|m} \sum_{l|(m/k)} \mu\left(\frac{kl}{k}\right) g(k) \qquad \text{(Interchange)}$$

$$= \sum_{k|m} \left(\sum_{l|(m/k)} \mu(l) g(k)\right) \qquad \text{(associative)}$$

$$= \sum_{k|m} g(k) \sum_{l|(m/k)} \mu(l) \qquad \text{(distributive)}$$

$$= \sum_{k|m} g(k) \left[\frac{m}{k} = 1\right] \qquad \text{(defination)}$$

$$= g(m) \qquad \text{(only } m = k)$$

- A positive integer n is called *squarefree* if it is not divisible by m^2 for any m > 1. Find a necessary and sufficient condition that n is squarefree,
 - **a** in terms of the prime-exponent representation (4.11) of n;

Solution. For the prime-exponent representation of n:

$$n = \prod_{i=1}^k p_i^{n_i}$$

to be squarefree, due to every prime could only be divided by 1 and itself,

$$0 \le n_i < 2, \quad \forall i = 1, \cdots, k$$

b in terms of $\mu(n)$.

Solution.

$$m$$
 is squarefree $\Leftrightarrow \mu(m) = 0$

which is followed by

$$\mu(m) = \begin{cases} (-1)^k, & \text{if } m = p_1 p_2 \cdots p_k \text{distinct primes,} \\ 0, & \text{if } p^2 | m \text{ for some prime } p \end{cases}$$

Basics

16 What is the sum of the reciprocals of the first n Euclid numbers?

Solution. By calculating some first terms,

The following hypothesis could be formed:

$$\sum_{i=1}^{n} \frac{1}{e_i} = 1 - \frac{1}{e_{n+1} - 1} \tag{1}$$

Prove by mathematical induction. The basic steps have be validated by the previous context. And assuming Equation (1) is true, then

$$\sum_{i=1}^{n+1} \frac{1}{e_i} = \sum_{i=1}^{n} \frac{1}{e_i} + \frac{1}{e_{n+1}} = 1 - \frac{1}{e_{n+1} - 1} + \frac{1}{e_{n+1}} = 1 - \frac{1}{(e_{n+1} - 1)e_{n+1}}$$

Due to

$$e_{n+2} = (e_{n+1} - 1)e_{n+1} + 1$$

Thus,

$$\sum_{i=1}^{n+1} \frac{1}{e_i} = 1 - \frac{1}{e_{n+2} - 1}$$

As a result, Equation (1) is true for $\forall n \in \mathbb{N}_+$.

17 Let f_n be the "Fermat number" $2^{2^n} + 1$. Prove that $f_m \perp f_n$ if m < n.

Proof. Consider

$$f_n = 2^{2^n} + 1 = 2^{2^m \times 2^{n-m}} + 1 = (2^{2^m})^{2^{n-m}} + 1 \equiv (-1)^{2^{n-m}} + 1 \pmod{f_m}$$

$$\equiv 1 + 1 = 2 \pmod{f_m}$$

Then, by Euclid's algorithm,

$$\gcd(f_n, f_m) = \gcd(f_m, 2) = 1$$

The last equation holds for f_m is an odd number. And this follows:

$$f_m \perp f_n$$
, if $m < n$

18 Show that if $2^n + 1$ is prime then n is a power of 2.

Proof. Prove by contradiction. If n is not a power of 2, then assuming that

$$n = qm$$

where q > 1 is an odd number. Then,

$$2^{n} + 1 = 2^{qm} + 1 = (2^{m})^{q} + 1 = (2^{m} + 1) \left(2^{(q-1)m} - 2^{(q-2)m} + \dots - 2^{m} + 1 \right)$$

Thus, $2^m + 1|2^n + 1$ and $2^m + 1 < 2^n + 1$ followed by q > 1, indicates that $2^n + 1$ is not prime. A contradiction follows that n is a power of 2.