

Лекция 8

Инвариантные подпространства

Содержание лекции:

В настоящей лекции мы начнем исследовать структуру инвариантных подпространств линейного оператора. Будут сформулированы основные понятия, связанные с задачей разложения на инвариантные подпространства, а также приведена общая формулировка спектральной теоремы.

Ключевые слова:

Инвариантное подпространство, ультраинвариантное подпространство, компонента оператора, ультрапроектор, прямая сумма компонент, спектральная компонента, нильпотентный оператор, спектральная теорема, спектр.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

8.1 Ультраинвариантность

Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - эндоморфизм линейного пространства $X(\Bbbk)$.

Подпространство $L(\mathbb{k}) \leq X(\mathbb{k})$ линейного пространства $X(\mathbb{k})$ называется **инвариантным подпространством** линейного оператора φ , если

$$\forall x \in L \quad \varphi x \in L \quad \Leftrightarrow \quad \varphi(L) \subset L. \tag{8.1}$$

Пример 8.1.

- 1. $\{0\}$ и X инвариантные подпространства;
- 2. $\mathcal{I}: \quad \mathcal{I}x = x, \quad \forall x \in X$ любое подпространство является инвариантным;
- 3. θ : $\theta x = 0$, $\forall x \in X$ любое подпространство является инвариантным;
- 4. Пусть $X = L_1 \oplus L_2$, тогда L_1 и L_2 инвариантные подпространства для соответствующих проекторов \mathcal{P}_1 и \mathcal{P}_2 .

Инвариантное подпространство L линейного оператора φ называется **ультраин-вариантным** подпространством, если существует его дополнение L', которое тоже является инвариантным подпространством.

Nota bene В силу симметричности определения, дополнение ультраинвариантного подпространства является также ультраинвариантным подпространством.

Оператор φ_L называется компонентой оператора φ в ультраинвариантном подпространстве L, если $\varphi_L \in \operatorname{End}_{\Bbbk}(L)$ и

$$\varphi_L(x) = \varphi(x) \quad \forall x \in L.$$

Ультрапроектор - это проектор на ультраинвариантное подпространство.

Лемма 8.1. Пусть $X = L_1 \oplus L_2$ - прямая сумма ультраинвариантных подпространств оператора φ , тогда

$$\varphi = \varphi \mathcal{P}_1 + \varphi \mathcal{P}_2 \triangleq \varphi_1 \oplus \varphi_2, \quad \varphi_i \in \operatorname{End}_{\mathbb{k}}(L_i).$$

Прямой проверкой убеждаемся:

$$\forall x \in X \quad \varphi(x) = \varphi(x_1) + \varphi(x_2) = \varphi \mathcal{P}_1(x) + \varphi \mathcal{P}_2(x) = (\varphi \mathcal{P}_1 + \varphi \mathcal{P}_2)(x).$$

В условиях предыдущей леммы говорят, что оператор φ представим в виде прямой суммы своих компонент:

$$\varphi(x) = (\varphi_1 \oplus \varphi_2)(x_1 + x_2) = \varphi_1(x_1) + \varphi_2(x_2).$$

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

8.2 Спектральная теорема

Лемма 8.2. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, так что

$$X = L_1 \oplus L_2$$
, $L_i = \ker p_i(\varphi)$, $i = 1, 2$.

Тогда L_1 и L_2 - нетривиальные инвариантные подпространства оператора φ .

Пусть $x \in L_1$, тогда $p_1(\varphi)x = 0$, откуда сразу получаем

$$p_1(\varphi)(\varphi x) = \varphi(p_1(\varphi)x) = 0 \quad \Rightarrow \quad \varphi(x) \in \ker p_1 \varphi.$$

Для $\ker p_2(\varphi)$ аналогично. Пусть теперь $\ker p_1(\varphi) = X$, тогда

$$\ker p_1(\varphi) = X \quad \Rightarrow \quad \forall x \in X \quad p_1(\varphi) = 0 \quad \Rightarrow \quad p_1(\varphi) = \theta,$$

и значит $p_1(\varphi)$ - аннулирующий полином, но $\deg p_1 < \deg p_{\varphi}$, противоречие. И, наконец, пусть $\ker p_1(\varphi) = \{0\}$, тогда

$$\dim_{\mathbb{k}} \ker p_2(\varphi) = \dim_k X - \dim_k \ker p_1(\varphi) = \dim_{\mathbb{k}} X \implies \ker p_2(\varphi) \simeq X,$$

и приходим к уже рассмотренному случаю.

4

Лемма 8.3. Подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ - ультраинвариантные.

▶

Оба подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ являются инвариантными.

4

Лемма 8.4. Пусть $p_{\varphi}(t) = p_1(t)p_2(t)$ разложение минимального аннулирующего полинома оператора φ на взаимно простые множители и пусть φ_i - компонента φ в соответствующием подпространстве L_i , тогда $p_i(t)$ - минимальный аннулирующий полином для φ_i .

▶

Действительно

$$\forall x \in L_i \quad p_i(\varphi_i)x = 0 \quad \Rightarrow \quad p_i(\varphi) = \theta,$$

и таким образом $p_i(t)$ - аннулирующий полином для φ_i . Докажем его минимальность. Пусть \tilde{p}_i - минимальный аннулирующий полином для φ_i , тогда

$$p_i : \tilde{p}_i \Leftrightarrow \exists q : p_i(t) = q(t)\tilde{p}_i(t),$$

но тогда $\tilde{p}_1(t)\cdot \tilde{p}_2(t)$ - аннулирующий полином оператора φ , степень которого меньше степени $p_{\varphi}(t)$. Противоречие.

4

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

Теорема 8.1. (спектральная теорема) Пусть $p_{\varphi}(t) = p_1(t)p_2(t) \dots p_m(t)$ - минимальный полином оператора φ , разложенный на взаимно простые сомножтели. Тогда

- $\bigoplus_{i=1}^m L_i$, $L_i = \ker p_i(\varphi)$;
- $\varphi = \sum_{i=1}^{m} \varphi_i \mathcal{P}_i$,

где φ_i - компонента оператора φ в ультраинвариантном подпространстве L_i и \mathcal{P}_i - проектор подпространство L_i .

Nota bene Пусть $p_{\varphi}(t)$ представим в следущем виде:

$$p_{\varphi}(t) = \prod_{i=1}^{m} p_i(t), \quad p_i(t) = (t - t_i)^{r_i},$$

тогда сразу получаем:

$$L_i = \ker p_i(\varphi) = \ker(\varphi_i - t_i \mathcal{I}_i)^{r_i}$$

Подпространства L_i указанного вида называются **корневыми** подпространствами X относительно оператора φ . При этом L_i называется подпространством, *отвечающим корню* t_i .

 ${\it Nota \ bene}$ Напомним, что оператор au называется **нильпотентным** порядка r, если

$$\tau^r = \theta, \quad \tau^{r-1} \neq \theta.$$

Лемма 8.5. Определяемый следующим образом оператор $\tau_i: L_i \to L_i$, является нильпотентным:

$$\tau_i = \varphi_i - t_i \mathcal{I}_i$$

•

Прямой проверкой убеждаемся, что

$$\forall x \in L_i \quad (\varphi_i - t_i \mathcal{I}_i)^{r_i} x = \tau_i^{r_i} x = 0.$$

_

Nota bene Имея определение для оператора τ_i , спектральную теорему можно переписать следующим образом:

$$\varphi = \sum_{i=1}^{m} (t_i \mathcal{I}_i + \tau_i) \mathcal{P}_i, \quad \tau_i^{r_i} = \theta.$$

В приведенной выше формулировке спектральной теоремы...

 t_i называется элементарной порцией спектра;

 \mathcal{P}_i называется **спектральным ультрапроектором**;

 L_i называется спектральным ультраинвариантным подпространством;

 φ_i называется **спектральной компонентой** линейного оператора φ .