INFORMATION

"Information is that which allows you to make a correct prediction with accuracy better than chance."

Adami, Christoph. "What Is Information?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2063, Mar. 2016, p. 20150230, https://doi.org/10.1098/rsta.2015.0230.

"Information is that which allows you to make a correct <u>prediction</u> with accuracy better than <u>chance</u>."

Adami, Christoph. "What Is Information?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2063, Mar. 2016, p. 20150230, https://doi.org/10.1098/rsta.2015.0230.

defining and measuring information

guess the number am I thinking of!

what is the most efficient approach?

is it > 8?

is it > 8? ×

is it > 8? × is it > 4?

is it > 8? × is it > 4? ✓

is it > 8? × is it > 4? ✓ is it > 6? ✓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

is it > 8?
$$\times$$
is it > 4? \checkmark
is it > 6? \checkmark
is it > 7?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- is it > 8? × is it > 4? ✓ is it > 6? ✓ is it > 7? ×
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

with 4 questions from 16 to 1

with 4 questions from 16 to 1

$$N = 16$$

$$\frac{N = 16}{N = 8}$$

$$\frac{N = 16}{N = 8}$$
$$N = 4$$

information = reduced uncertainty uncertainty is measured with the logarithm of N

$$H=log_2(N)$$

or: how often can we cut the remaining possibilities in half?

$$H = log_2(N)$$

$$H_0 = log_2(16) = 4$$

$$H_1 = log_2(8) = 3$$

$$I=H_0-H_1$$

$$I=log_2(16)-log_2(8)$$

$$I=4-3=1$$

uncertainty and information are

measured in **bits**

how many yes/no questions to reduce

 $H=0=log_2(1)$

how many yes/no questions to reduce uncertainty to zero?

$$H=0=log_2(1)$$

 $H=log_2(N)$

poker

which card am I holding?

52 card poker deck

7 🔷 **A** 3 🔷 5 🔷 6 4 🔷 8 K 🔷 9 🔷 Q 🔷 10

is it hearts?

is it hearts?

is it hearts?

is it 8 or above?

is it hearts?

is it 8 or above?
yes

is it hearts?

is it 8 or above?
yes

is it jack or above?

is it hearts?

is it 8 or above?
yes

is it jack or above?

yes

is it hearts?

yes

is it 8 or above?

is it jack or above?

yes

is it queen or above?

is the card black? no is it hearts? yes is it 8 or above? yes is it jack or above? yes Q 10 is it queen or above? yes 3 5

is the card black? no Q is it hearts? yes is it 8 or above? 10 yes is it jack or above? yes Q 10 is it queen or above? yes 3 5 is it king? Q

uncertainty with N = 52 possibilities?

$$H=log_2(52)pprox 5.7$$

uncertainty with N = 52 possibilities?

one bit of information with each answer...

$$log_2(52) - log_2(26) = 1$$

one bit of information with each answer...

$$log_2(52) - log_2(26) = 1$$

...that cuts the remaining options in half

is it a spades card? Q 6 is it a spades card?

is it a spades card?

how much information?

is it a spades card? no

how much information?

$$H_0 = log_2(52) pprox 5.7$$

$$H_1 = log_2(39) pprox 5.29$$

Q

is it a spades card? no

how much information?

$$H_0 = log_2(52) pprox 5.7$$

$$H_1 = log_2(39) pprox 5.29$$

$$H_0-H_1pprox 0.41$$

Q

next_move()

→ E2 → E4

how much information is one move?

$c2 \rightarrow c4$

how many possibilities?

64 fields x 64 fields

how many possibilities?

$64 \times 64 = 4096$

possible moves*

$64 \times 64 = 4096$

$$H = log_2(4096) = 12$$

$64 \times 64 = 4096$

$$H = log_2(4096) = 12$$

one chess move is 12 bits of information

an alternative way to calculate # bits

<u>c</u> <u>2</u> <u>c</u> <u>4</u>

4 digits

<u>c</u> 2 <u>c</u> 4

4 digits 8 possible symbols per digit

c 2 c 4

4 digits
8 possible symbols per digit
how many bits per digit?

<u>c</u> 2 <u>c</u> 4

4 digits
8 possible symbols per digit
how many bits per digit?

$$H_{digit} = log_2(8) = 3$$

<u>c</u> <u>2</u> <u>c</u> <u>4</u>

4 digits
8 possible symbols per digit
how many bits per digit?

$$H_{digit} = log_2(8) = 3$$
 $H_{move} = log_2(8) imes 4 = 12$

$H_{avg} = log_2(S) imes n$

S: number of possible symbols n: number of digits in our message

$H_{max} = \lceil log_2(S) \rceil imes n$

when calculating bits for storage, we must always consider the worst case

drawing balls from an urn

$$p() = 2/3$$

Example adapted from:

Pinkard, Henry, and Laura Waller. A Visual Introduction to Information Theory. arXiv:2206.07867, arXiv, 16 June 2022, https://doi.org/10.48550/arXiv.2206.07867.

Pinkard, Henry, and Laura Waller. A Visual Introduction to Information Theory. arXiv:2206.07867, arXiv, 16 June 2022, https://doi.org/10.48550/arXiv.2206.07867.

Pinkard, Henry, and Laura Waller. A Visual Introduction to Information Theory. arXiv:2206.07867, arXiv, 16 June 2022, https://doi.org/10.48550/arXiv.2206.07867.

digits and # symbols

{A}

{A}

AA

AA, AB, BA, BB

{A, B, C}

{A, B, C}

AA, AB, BA, BB, AC, BC, CA, CB, CC

{A, B, C, D}

{A, B, C, D}

AA, AB, BA, BB, AC, BC, CA, CB, CC, AD, DA, BD, DB, CD, DC, DD

{A, B, C, D, E}

{A, B, C, D, E}

AA, AB, BA, BB, AC, BC, CA, CB, CC, AD, DA, BD, DB, CD, DC, DD, AE, EA, BE, EB, CE, EC, DE, ED, EE

with # digits n = 2

# symbols	# messages
1	1
2	4
3	9
4	16
5	25

with length n = 2

and more digits?

AAA, AAB, ABA, ABB, BBB, BBA, BAA, BAB

AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA, ABBB, BAAA, BAAB, BABA, BABB, BBAA, BBAB, BBBA, BBB

with # symbols S = 2

# digits	# messages
1	2
2	4
3	8
4	16
5	32

with # symbols S = 2

with # symbols S = 2

possible messages with *n* digits and S symbols

$$N = S^n$$

mastermind

eight colors

five slots

A B C D E

possible permutations

 $N=5^8=390625$

maximum entropy in bits

 $H_{max}=log_2\ 5^8=18.575$

hints reduce uncertainty (entropy)

first guess

opponent's hints

opponent's hints first guess correct A B

opponent's hints first guess wrong position correct B

how much information did we get?

B C D E

new possible permutations?

$$N=4^8=65536$$

reduced entropy in bits?

$$H=log_2\ 4^8=16$$