Parseo y Generación de Código – 2^{do} cuatrimestre 2023 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

NOTA: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. Considerar la expresión regular $R = (ab)^*a^*a$ sobre el alfabeto $\Sigma = \{a, b\}$. Dar una gramática LL(1) que genere el lenguaje $\mathcal{L}(R)$. Exhibir la tabla LL(1) resultante.

Ejercicio 2. Demostrar que la siguiente gramática $G = (\{S, E\}, \{\text{num}, \text{id}, :=, (,)\}, \mathcal{P}, S)$ es ambigua. El conjunto de producciones \mathcal{P} se indica abajo. El símbolo no terminal S especifica la sintaxis de los programas y E especifica la sintaxis de las expresiones.

Ejercicio 3. La gramática $G = (\{S\}, \{[,]\}, \mathcal{P}, S)$ genera todas las cadenas de corchetes balanceados, por ejemplo, [[[]]][[]][[]][].

$$S \rightarrow [S]S \mid \epsilon$$

- a) Armar la tabla LR(0) y determinar si hay conflictos. En caso de haberlos, indicar cuáles son.
- b) Armar la tabla SLR y determinar si hay conflictos. En caso de haberlos, indicar cuáles son.

Ejercicio 4. Sobre el alfabeto $\Sigma = \{a, b\}$ considerar los lenguajes $L_1 = \mathcal{L}((b|\epsilon)(ab)^*(a|\epsilon))$ y $L_2 = \mathcal{L}(a(a|b)^*a \mid b(a|b)^*b)$. Dar una expresión regular R tal que $\mathcal{L}(R) = L_1 \cap L_2$.

Justificar todas las respuestas.