

Doc. version :	0.1a
Total pages :	28
Date :	2006.03.06

Product Specification 2.36" COLOR TFT-LCD MODULE

MODEL NAME: <u>A024CN02 V7</u> (Green Product, RoHS compliance)

< > Final Specification

Note: The content of this specification is subject to change.

© 2005 AU Optronics All Rights Reserved, Do Not Copy.

Page : 1/28

Record of Revision

Version	Revise Date	Page	Content
0.0	Oct./31/2005		First draft
0.1	Nov./28/2005	6	Update LED voltage
0.1a	Mar/06/2006	9	Register setting

Page : 2/28

Contents:

A. P	hysical specification	Р3
B. E	lectrical specifications	P4
c. o	ptical specifications	P14
D. R	eliability test items	P16
E. Pa	acking format/outline drawing	P17
F. Ti	ming format	P19

Page : 3/28

A. Physical specifications

NO.	Item	Item Specification						
1	Display resolution (dot)	480(W)×234(H)						
2	Active area (mm)	48.0 (W) × 35.685 (H)						
3	Screen size (inch)	2.36 (Diagonal)						
4	Dot pitch (mm)	0.10 (W) × 0.1525 (H)						
5	Color configuration	R. G. B. delta						
6	Overall dimension (mm)	55.2 (W) × 47.55 (H) × 2.9 (D)	Note 1					
7	Weight (g)	твр						
8	Panel surface treatment	AG, Hard coating						

Note 1: Refer to Page 18 Fig. 1

Page : 4/28

B. Electrical specifications

1.Pin assignment

Pin no	Symbol	I/O	Description	Remark
1	VCOM	I	Common electrode driving voltage	
2	Vgoff_H	РО	Negative high power supply for gate driver output: -12.5V+VCAC	
3	Vgoff_L	PO	Negative low power supply for gate driver output: -12.5V	
4	C4P	С	Pins to connect capacitance for power circuitry	
5	C4M	С	Pins to connect capacitance for power circuitry	
6	VGH	РО	Positive power supply for gate driver output: +12.5V	
7	FRP	О	Frame polarity output for VCOM	
8	VCAC	С	Define the amplitude of the VCOM swing	
9	Vint3	P	Intermediate voltage for charge Pump	
10	C3P	С	Pins to connect capacitance for power circuitry	
11	C3M	С	Pins to connect capacitance for power circuitry	
12	Vint2	P	Intermediate voltage for charge Pump	
13	C2P	С	Pins to connect capacitance for power circuitry	
14	C2M	С	Pins to connect capacitance for power circuitry	
15	Vint1	P	Intermediate volta for charge Pump	
16	C1P	С	Pins to connect capacitance for power circuitry	
17	C1M	С	Pins to connect capacitance for power circuitry	
18	PGND	P	Charge Pump Power GND	
19	PVDD	P	Charge Pump Power VDD	
20	DRV	РО	Gate signal for the power transistor of the boost converter	
21	LED Anode	I	For Led Anode voltage	
22	GND	P	Digital GND	
23	FB	P	Main boost regulator feedback input	
24	AVDD	P	Analog power supply	
25	GND	P	Digital GND	
26	VCC	P	Digital power supply	
27	CS	I	Serial communication chip select	
28	SDA	I	Serial communication data input	
29	SCL	I	Serial communication clock input	
30	HSYNC	I	Horizontal sync input	
31	VSYNC	I	Vertical sync input	
32	DCLK	I	Clock Input:	

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 5/28

33	D7	I	Data Input: MSB	
34	D6	I	Data Input:	
35	D5	I	Data Input:	
36	D4	I	Data Input:	
37	D3	I	Data Input:	
38	D2	I	Data Input:	
39	D1	I	Data Input:	
40	D0	I	Data Input: LSB	

I: Input; O: Output. VI: voltage input VO: voltage output P:Power.

C: capacitor pin. PO: power out.

Note 1: Definition of scanning direction. Refer to figure as below

2. Absolute maximum ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	V_{CC}	GND=0	-0.5	7.0	V	
Power voltage	AV_DD	AV _{SS} =0	-0.5	7.0	V	
3.	PV_{DD}	PV _{SS} =0	-0.5	7.0	V	
Input signal voltage	Data	-	-0.3	3.6	V	
Operating temperature	Тора	-	-25	70	$^{\circ}\!\mathbb{C}$	Ambient temperature

Page : 6/28

Storage temperature	Tstg	-	0	60	$^{\circ}\!\mathbb{C}$	Ambient temperature
---------------------	------	---	---	----	------------------------	---------------------

3. Electrical characteristics

a. Typical operating conditions (GND=AVss=0V)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Power		V _{CC}	2.7	3.0	3.6	V	
Volta	age	PV_{DD} , AV_{DD} ,	3.0	3.3	3.6	V	
		VCDC	0.25	0.45	0.65	V	
Output	H Level	V _{OH}	Vcc-0.4	-	VCC	V	
Signal voltage	L Level	V _{OL}	GND	-	GND+0.4	V	
Input	H Level	V _{IH}	0.7xV _{CC}	-	V _{CC}	٧	
Signal voltage	L Level	V_{IL}	GND	1	0.3V _{CC}	>	
Output	H Level	IOH	1	400	-	uA	
current	L Level	IOL	-	-400	-	uA	
•	stand by rent	Ist	-	-	200	uA	DCLK is stopped

b. Current consumption (GND=AVss=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
-	I _{VCC} (Pin 26)	V _{CC} =3.3V	-	2	2.5	MΑ	-
-	I _{AVDD} (Pin 24)	AV _{DD} =3.3V	1	1.5	2.0	mA	-
-	I _{PVDD} (Pin 19)	PV _{DD} =3.3V	8.5	9	9.5	mA	

c. LED driving conditions

•						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current			20	30	mA	
LED voltage	V _L	6.6	7.8	8.6	V	Note1
LED Life Time	L _L	10000			Hr	Note 2,3

Note 1: Max.voltage:1pcs/4V, FB=0.6V, VL=LED anode(PIN 21)

Note 2 : Ta. = 25° C, I_L = 20mA

Note 3: Brightness to be decreased to 50% of the initial value

4. AC Timing

a. Timing conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit.
Delay between Hsync and DCLK	Thc	ı	-	1	DCLK
Hysnc width	Twh	1.0	-	-	DCLK
Hsync period	Th	60	63.56	67	us
Vsync setup time	Tvst	12	-	-	ns

Page : 7/28

Vsync hold time	Tvhd	12	-	-	ns
Hsync setup time	Thst	12	-	-	ns
Hsync hold time	Thhd	12	-	-	ns
Data set-up time	Tdsu	12	-	-	ns
Data hold time	Tdhd	12	-	-	Ns
Vsync to 1'th gate Output (No CCIR mode)	Tstv	6	13	21	Th
First active video line to 1'th Gate Output for NTSC (CCIR Mode)	Tstv	11	18	26	Th
First active video line to 1'th Gate Output for NTSC (CCIR Mode)	Tstv	17	24	32	Th
SD output stable time	Tst	-	-	30	us
GD output stable time	Tgst	-	500	1000	ns
Serial communication	1	1		1	•
Serial clock period	Tsck	320	-	-	ns
Serial clock duty cycle	Tscw	40	50	60	%
Serial clock width	Tssw	120	-	-	ns
Serial data setup time	Tist	120	-	-	ns
Serial data hold time	Tihd	120	-	-	ns
CSB setup time	Tcst	120			ns
CSB data hold time	Tchd	120	-	-	ns
Chip select distinguish	Tcd	1	-	-	us
Delay between CSB and Vsync	Tcv	1	-	-	us

b. Select data input format

SEL2	SEL1	SEL0	Data input format	Operating frequency
0	0	0	UPS051 path, special data format: DDX	9.7 MHz
0	0	1	UPS052 data format	24.54 MHz
0	1	0	UPS052 data format	27 MHz
0	1	1	YUV mode A data format	24.54 MHz
1	0	0	YUV mode A data format	27 MHz
1	0	1	YUV mode B data format	24.54 MHz
1	1	0	YUV mode B data format	27 MHz
1	1	1	CCIR 656 path, normal data format: DIN	27 MHz

c. Operating mode dependent AC characteristic

UPS051 Mode, SEL [2...0]=[000]

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 8/28

Parameter	Symbol	Min.	Тур.	Max.	Unit.
DCLK frequency	Fclk	-	9.7	ı	Mhz
DCLK period	Tcph	-	103	ı	ns
DCLK duty cycle	Tcw	40	50	60	%Tcph
Delay from Hsync to Source output	Thso	-	56	-	DCLK
Delay from Hsync to Gate output	Thgo	-	45	1	DCLK
Delay from Hsync to Gate output off	Thgz	-	19	-	DCLK
Delay from Hsync to Q1H	Thq	-	39	-	DCLK
Delay from Hsync to FRP	Thf	-	56	-	DCLK
Delay from Hsync to 1'st data input	Ths	84	100	115	DCLK
DC converter osc. Frequency	Fosc	-	303.1	ı	khz

d. Operating mode dependent AC characteristic

UPS052 or YUV Mode, SEL [2...0]=[001~110]

Parameter	Symbol	Min.	Тур.	Max.	Unit.
DCLK frequency	Fclk	1	24.54/27	-	Mhz
DCLK period	Tcph	-	40	-	ns
DCLK duty cycle	Tcw	40	50	60	%Tcph
Delay from Hsync to Source output	Thso	1	143	-	DCLK
Delay from Hsync to Gate output	Thgo	-	113	-	DCLK
Delay from Hsync to Gate output off	Thgz	1	48	-	DCLK
Delay from Hsync to Q1H	Thq	1	100	-	DCLK
Delay from Hsync to FRP	Thf	1	143	-	DCLK
Delay from Hsync to 1'st data input	Ths	233	249	264	DCLK
DC converter osc. Frequency	Fosc	-	383.4/ 421.9	-	khz

e. Operating mode dependent AC characteristic

CCIR Mode, SEL [2...0]=[111]

Parameter	Symbol	Min.	Тур.	Max.	Unit.
DCLK frequency	Fclk	-	27	ı	Mhz
DCLK period	Tcph	ı	40	-	ns
DCLK duty cycle	Tcw	40	50	60	%Tcph
Delay from Hsync to Source output	Thso	ı	143	ı	DCLK
Delay from Hsync to Gate output	Thgo	ı	113	ı	DCLK
Delay from Hsync to Gate output off	Thgz	1	48	ı	DCLK
Delay from Hsync to Q1H	Thq	-	100	ı	DCLK
Delay from Hsync to FRP	Thf	1	143	-	DCLK
Delay from Hsync to 1'st data input	Ths	257	273	288	DCLK
DC converter osc. Frequency	Fosc	-	421.9	-	khz

Page : 9/28

f. The configuration of serial data at SDA terminal is at below

MSB	LSB
-----	-----

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Regis	ster ad	dress	Χ		•	•	•)ATA		•		•	•	

Register parameters

		Α	ddre	ss	Content					
No.	Description	D15	D14	D13	D5	D4	D3	D2	D1	D0
R0	System setting	0	0	0	-	-	GRB	STB	SHDB	SHCB
R2	Driver Setting	0	1	0	-	-	FPOL	VSET	U/D	SHL
R3	Timing setting	0	1	1	-	PALM	PAL	SEL2	SEL1	SEL0
R6	VCAC level setting	1	1	0	-	-	-	VSCL2	VSCL1	VSCL0
R7	Internal setting	1	1	1	-	Т	EST MODI	Ē	AVGY	DMDA

Default register settings (UPS052, 24.54 MHz)

		Α	ddre	ss	Test	MSB										L	SB
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	System setting	0	0	0	0	0	Х	Х	Х	Х	Х	Χ	Х	1	1	1	1
R2	Driver Setting	0	1	0	0	Х	Х	Х	Х	Х	Х	Χ	Х	0	0	1	1
R3	Timing setting	0	1	1	0	Х	Х	Х	Х	Х	Х	Χ	0	0	0	0	1
R6	VCAC level setting	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0
R7	Internal Register	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	0	0	0	1	1

[&]quot;X" => Don't care.

Default register settings (UPS051. 9.7 MHz)

		Α	ddre	ss	Test	MSE	MSB									l	LSB
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	System setting	0	0	0	0	0	Х	Χ	Х	Х	Х	Χ	Х	1	1	1	1
R2	Driver Setting	0	1	0	0	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	1	1
R3	Timing setting	0	1	1	0	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	0	0	0
R6	VCAC level setting	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0

[&]quot;X" => Don't care.

Default register settings (CCIR601 27MHz)

		3° ('				-,											
		Α	ddre	ss	Test	MSB	3									L	SB
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	System setting	0	0	0	0	0	Х	Х	Χ	Х	Х	Χ	Х	1	1	1	1
R2	Driver Setting	0	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1
R3	Timing setting	0	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0

Page : 10/28

R6	VCAC level setting	1	1	0	0	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	1	1	0
R7	Internal Register	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	0	0	0	1	1

"X" => Don't care.

Default register settings (CCIR656 27MHz)

Boldan register continge (Control of mine)																	
		Α	ddre	ss	Test	MSE	3									Ĺ	_SB
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	System setting	0	0	0	0	0	Х	Х	Χ	Х	Х	Х	Х	1	1	1	1
R2	Driver Setting	0	1	0	0	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	1	1
R3	Timing setting	0	1	1	0	Х	Х	Х	Χ	Х	Х	Х	Х	Х	1	1	1
R6	VCAC level setting	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0
R7	Internal Register	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	0	0	0	1	1

[&]quot;X" => Don't care.

Detail register function:

_	<u> </u>		
R0	GRB	I	Global reset pin (active low). GRB="L": The controller is resets, the charge pump and DCDC is off. GRB="H": Normal operation. Default setting.
R0	STB	I	Stand by mode (active low). STB="L": T_CON, source driver and DC-DC converter are off. All outputs are High-Z. STB="H": Normal operation. Default setting.
R0	SHDB	I	DC-DC converter shutdown signal (active low) SHDB="L": DC-DC converter is off. Default setting. SHDB="H": DC-DC converter is on.
R0	SHCB	I	Charge pump shutdown signal (active low). SHDB="L": Charge pump is off. SHDB="H": Charge pump is on. Default setting.
R2	U/D	I	Up/down scan control of gate driver. U/D="L": Scan up: First line=G240 → G239 → → G2 → Last line=G1. U/D="H": Scan down: First line=G1 → G2 → → G239 → Last line=G240. Default setting.
R2	SHL	I	Select left or right shift. SHL="L": Shift left: First data=S480→S479→→S2→Last data=S1. SHL="H": Shift right: First data=S1→S2→→S479→Last data=S480. Default setting.

Page : 11/28

			,					
		I	NTSC/PAL selection signal					
R3	PAL		PAL="L": Input data format is NTSC (240 active line). Default setting.					
			AL="H": Input data format is PAL.					
		I	PAL selection signal					
R3	PALM		PALM="L": Input data format is PAL 1/6,8(280 active line). Default setting.					
			PALM="H": Input data format is PAL 1/6(288 active line).					
			Only available when PAL=H.					
R3	SEL [20]	I	Select input data format.					
		I	VCAC voltage selection					
R6	VSCL [20]							
			VCSL VCAC[V]					
			010 5 5 011 5.2					
			011 5.2 100 5.4					
			101 5.6					
			110 5.8					
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
			001 6.4					
		I	Luminance data averaging					
R7	AVGY		AVGY="L": Only odd Y sample used for YUV conversion					
	11, 01		AVGY="H": Use odd and even Y sample for YUV conversion. Default setting.					
		I	Delta mode data alignment					
R7	DMDA		DMDA="L": Data alignment does not take care of Delta pixels arrangement.					
			DMDA="H": Data arrangement takes of the Delta pixels arrangement. Default setting .					

Charge pump Application circuit

Page : 12/28

5. Reference Circuit

(Note. both of HS and VS should be connected to GND $\,$ VCC or system board but not floating only when using CCIR656 interface)

Page : 13/28

14/28 Page

C. Optical specification (Note 1.Note 2. Note 3)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
	Rise	Tr	0 0 °	-	20	30	ms	Note 4 0	
Response time	Fall	Tf	<i>θ</i> =0°	-	30	40	ms	Note 4, 6	
Contrast ratio		CR	At optimized viewing angle	150	300	-		Note 5, 6	
	Тор		CR≧10	10	15	-	deg.		
Viewing angle	Bottom			30	35	-		Note 6, 7	
viewing angle	Left			40	45	-		11010 0, 7	
	Right			40	45	1			
Brightness			<i>θ</i> =0°	180	230	-	nits		
White chromaticity shift		Х	<i>⊕</i> =0°	(0.26)	(0.31)	(0.36)			
		у	₽=0	(0.28)	(0.33)	(0.38)			

Note 1. Ambient temperature =25 $^{\circ}$ C.

Note 2. To be measured in the dark room.

Note 3.To be measured on the center area of panel with a field angle of 1°by Topcon luminance meter BM-7, after 10 minutes operation.

Note 4. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 5. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Photo detector output when LCD is at "White" state Contrast ratio (CR)= -Photo detector output when LCD is at "Black" state

Note 6. White $Vi=V_{i50} \mp 1.5V$

Black Vi= $V_{i50} \pm 2.0V$

"±" Means that the analog input signal swings in phase with COM signal.

15/28 Page

" $_$ " Means that the analog input signal swings out of phase with COM signal. V_{150}^+ : The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7. Definition of viewing angle: Refer to figure as below.

Note 8. 479 dots at the odd scan lines: Refer to figure as below.

Page : 16/28

D. Reliability test items:

No.	Test items	Condi	Remark		
1	High temperature storage	Ta= 70°C	240Hrs		
2	Low temperature storage	Ta= -25°C	240Hrs		
3	High temperature operation	Ta= 60°C	240Hrs		
4	Low temperature operation	Ta= 0°C	240Hrs		
5	High temperature and high humidity	Ta= 60°C . 90% RH	240Hrs	Operation	
6	Heat shock	-25°C~80°C/50 cycle 2	Non-operation		
7	Electrostatic discharge	\pm 200V,200pF(0 Ω), on	Non-operation		
8	Vibration (with carton)		Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		
9	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 s			

Note: Ta: Ambient temperature.

Page : 17/ 28

Page : 18/28

Fig. 1 Outline dimension of TFT-LCD module

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 19/28

F. Timing format Serial communication timing

Figure 1: Serial communication diagram

Figure 2: Serial communication timing

Page : 20/28

Figure 3: Drivers timing

Page : 21/28

Stand-by timing

Figure 4: Stand-by timing diagram

During No CLK, Hsync and Vsync can be stopped. But in all other cases Hsync and Vsync must be active.

Power sequence

Figure 4-1: Data sampling timing

Page : 22/28

Figure 4-2 Suggested VCC slew rate

Power off sequence

Figure 4-3 Power off sequence

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 23/28

Figure 5-1: Data sampling timing

Figure 5-2: RGB format

The timing reference should be made sure that R1G2 B3 represent the same pixel; R4G5B6 represent the same pixel, and so on.

UPS052 timing

Figure 6: Data sampling

Page : 24/28

Figure 7: Data pre-filtering

Page : 25/ 28

Figure 9: Data alignment D/S=0

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

DDX

R1 B1

G1

R3 B3

G3

Version: 0.1a

Page : 26/28

Figure 10: Data alignment

R6 B6

G6

R8 B8

G8

R10 B10

G10

R12 B12 odd line

Figure 11: Data skip

Page : 27/28

YUV timing

Figure 12: YUV mode A 24.54MHz Data input format

Figure 13: YUV mode A 27MHz Data input format

Figure 14: YUV mode B 24.54MHz Data input format

Figure 15: YUV mode B 27MHz Data input format

Page : 28/28

Figure 12: CCIR Data input format

In CCIR mode, data sampling start after SAV timing codes.

YUV to RGB conversion

Conversion between YUV and RGB follow ITU-R BT 601-5 recommendation This conversion is used for SEL [2...0] ="011" to "111".

$$\begin{split} R_n &= 1.164(Y_{2n-1}-16) + 1.596(C_{Rn}-128) \\ G_n &= 1.164(Y_{2n-1}-16) - 0.813(C_{Rn}-128) - 0.392(C_{Bn}-128) \\ B_n &= 1.164(Y_{2n-1}-16) + 2.017(C_{Bn}) \end{split}$$

Equation 1: YUV to RGB conversion formula (PFON=0)

$$\begin{split} R_n &= 1.164((Y_{2n-1} + Y_{2n})/2 - 16) + 1.596(C_{Rn} - 128) \\ G_n &= 1.164((Y_{2n-1} + Y_{2n})/2 - 16) - 0.813(C_{Rn} - 128) - 0.392(C_{Bn} - 128) \\ B_n &= 1.164((Y_{2n-1} + Y_{2n})/2 - 16) + 2.017(C_{Bn}) \end{split}$$

Equation2: YUV to RGB conversion formula (PFON=1)

N=1...320 for 24.54 MHz, n=1...360 for 27MHz

Figure 13: CCIR decoding path