Cvičení 8: MOSFET v logických IO

C8.1: Invertor NMOS

Princip činnosti, převodní charakteristika, hradla NAND a NOR Simulace převodní charakteristiky (vliv parametrů tranzistoru a zátěže)

- **M8.1** Měření převodní charakteristiky
- **S8.1** Simulace převodní charakteristiky invertoru NMOS Nevýhody Invertoru NMOS

C8.2: Invertor CMOS

Princip činnosti, převodní a odběrová charakteristika, dynamické chování, Příklad CP8.1

S8.2 Simulace invertoru CMOS v LTSpice (sestavení schématu, DC a tranzientní analýza)

Realizace logické funkce inverze elektronickými obvody

A	Y
0	1
1	0

1. Přiřazení elektrického signálu logickým hodnotám, typicky:

$$log.1 = V_{DD} = Power = PWR = High = 5 V, 3.3 V, 1.5 V apod.$$

Α	Y	
V_{SS}	V_{DD}	
V_{DD}	V_{SS}	

$$log.0 = V_{SS} = Ground = GND = Low = 0 V$$

2. Využití spínače (či spínačů) řízeného vstupem A, který přepne požadovanou hodnotu na výstup Y.

Ideální invertor

Reálný invertor

V_{II}: min. vst. napětí reprezentující log. 1

Realizace hradel AND a OR v NMOS logice:

Odpor R_D lze nahradit tranzistorem NMOS (hradlo připojeno k V_{DD}, D, či S).

Excel – list InvertorSimulace

Tabulkový procesor umožňuje vypočítat převodní charakteristiku invertoru $U_{DS}=f(U_{GS})$ na základě zadaných parametrů tranzistoru (t_{ox}, W, L, U_T) a vnějšího obvodu (U_{DD},R_D) .

M8.1: Měření převodní charakteristiky invertoru NMOS

Změřte převodní charakteristiky invertoru s tranzistorem MOSFET BS170F pro různé hodnoty zatěžovacího odporu R_D.

Doporučené hodnoty: U_{DD}=15V, R_D= 1k, 3.3k a 10k

Vykreslete grafy charakteristik v Excelu (list InvertorMěření) a porovnejte je se simulací (list InvertorSimulace)

Určete parametry U_T, R_{on}, A_u.

Katalogový list tranzistoru BS170F

PARAMETRY@podmínky					
U _{DS}		Drain-Source Voltage	60	V	
I _D	T _{amb} = 25°C	Continuous Drain Current	0.15	Α	
I _{DM}		Pulsed Drain Current	3	Α	
U _{GS}		Gate Source Voltage	±20	V	
P _{tot}	T _{amb} = 25°C	Power Dissipation	330	mW	
BU _{DSS}	I _D =100μΑ, U _{GS} =0V	Drain-Source Breakdown Voltage	60- 90	V	
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS}	Gate-Source Threshold Voltage	0.8 - 3	V	
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA	
R _{DS(on)}	U _{GS} =10V, I _D =200mA	Static Drain-Source On-State Resistance	5	Ω	
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS	
С	U _{DS} =10V, U _{DS} =0V, =1MHz	Input Capacitance	60	pF	
t _{d(on)}	U _{DD} =15V, I _D =600mA	Turn-On Delay Time	10	ns	
t _{d(off)}	U _{DD} =15V, I _D =600mA	Turn-Off Delay Time	10	ns	

Přípravek pro měření převodní charakteristiky invertoru NMOS

Zpracování výsledků – list Invertor Měření

S8.1: Simulace převodní charakteristiky invertoru NMOS

$$U_{DS}=f(U_{GS})$$

NMOS_prevod.asc

Odečet napěťového zisku pomocí kurzorů

 $U_{DS}=f(U_{GS})$

1) Zapnutí kurzorů – RMB na V(drain)

Expression Editor - F(V(drain),...)

Default Color:

Enter an algebraic expression to plot:

V(drain)

Delete this Trace

2) Přesouvání kurzorů po křivce (LMB)

Přeskakování kurzoru na jiný průběh pomocí šipek ↑↓ na klávesnici

3) Odečet hodnot

Nevýhody

zakázaná oblast činnosti

- nesymetrická charakteristika
- široká zakázaná oblast
- nenulová hodnota V_{OL}
- nenulová spotřeba v log.0 na výstupu
- velký výstupní odpor v log.1 na výstupu
- špatné dynamické vlastnosti

C_L .. vstupní kapacita následujících hradel (tranzistorů)

- □ Princip využívá dvojici v protifázi pracujících spínačů, které připínají buď log0 (GND), anebo log1 (V_{DD}) na výstup. Proud napříč spínači je v klidu nulový.
- Realizace využívá dvojici antisériově zapojených komplementárních MOSFETů (mají shodné absolutní hodnoty prahového napětí, shodné β-faktory).
- □ V log0 na vstupu je NMOS(Q_N) nevodivý a PMOS(Q_P) sepnut ($V_{GSP} = -V_{DD}$), log1 na vstupu je tomu naopak.

Převodní charakteristika

Ideální invertor

- 1 Q_N rozepnut Q_P v odporové oblasti
- 2 Q_N v saturaci Q_P v odporové oblasti
- $3 Q_N v$ saturaci $Q_P v$ saturaci
- $4 \ Q_N \ v \ odporové \ oblasti \ Q_P \ v \ saturaci$
- 5 Q_N v odporové oblasti Q_P rozepnut

Invertor CMOS (komplemnární tranzistory)

Statická spotřeba závisí na vstupním napětí, pro povolené hodnoty log0 a log1 je nulová (alespoň jeden tranzistor nevede). V zakázané oblasti (hodnota na výstupu se mění) může být značná (oba tranzistory jsou vodivé).

Vliv parametrů tranzistorů na převodní charakteristiku

Ideální charakteristika (zlom nastává při $V_{in}=V_{DD}/2$) vyžaduje plně komplementární tranzistory: $IV_{thN}I=IV_{thP}I$, $\beta_N=\beta_p$, tj. $k_R=\beta_N/\beta_p=1$.

Podmínka $\beta_N = \beta_p$ ($k_R = 1$) vyžaduje přizpůsobit šířky kanálů tranzistoru nesymetrii hodnot pohyblivostí elektronů a děr

$$\beta_N = \beta_P$$

$$\mu_N C_{ox} \frac{W_N}{L_N} = \mu_P C_{ox} \frac{W_P}{L_P}$$

pro L_N = L_P získáme

$$\frac{W_P}{W_N} = \frac{\mu_N}{\mu_P}$$

Realizace hradel AND a OR v komplementární CMOS logice:

$$Y = \overline{A \cdot B}$$

spodní část (pod uzlem výstup)

$$Y = \overline{A + B}$$

horní část (nad uzlem výstup)

NAND : tranzistory NMOS sériově

NOR: tranzistory NMOS paralelně

tranzistory PMOS paralelně

tranzistory PMOS sériově

Dynamické parametry a dynamická spotřeba

Dynamická změna výstupního napětí je dána nabíjením/vybíjením kapacitní zátěže přes spínaný PMOS/NMOS.

$$\tau_{hl} = C_L R_{onN}$$

Průběh vstupního (nahoře) a výstupního (dole) napětí.

Dynamické parametry a dynamická spotřeba

ZPOMALENÍ PRŮBĚHU ZPŮSOBENÉ KONEČNÝM NABÍJENÍM A VYBÍJENÍM VÝSTUPNÍ KAPACITY

PROUDOVÉ ŠPIČKY NA NAPÁJECÍ LINCE ZPŮSOBENÉ NABÍJENÍM A VYBÍJENÍM VÝSTUPNÍ KAPACITY

Dynamická spotřeba invertoru CMOS

- způsobena periodickým nabíjením a vybíjením zatěžovací kapacity C_L.
- při každé změně stavu je spotřebována energie W = ½ C_IV_{DD}²
- počítáme dvě změny stavu (např. 0-1-0) s frekvencí f je dynamický ztrátový výkon invertoru

$$V_{DD}$$
 $V_{out} 0 \rightarrow 1$
 $V_{out} 1 \rightarrow 0$

Příklad CP8.1

Odhadněte maximální dynamickou spotřebu CMOS čipu (0.25 μ m technologie), který obsahuje 10⁶ (N) ekvivalentních hradel NAND s vstupní kapacitou C = 3.9 aF. Předpokládejte pracovní frekvenci f = 500 MHz a napájecí napětí V_{DD} = 2.5V.

Řešení
$$P = N C V_{DD}^2 f = 10^6 \cdot 3.9 \times 10^{-15} \cdot 2.5^2 \cdot 5 \times 10^8 = 12.2 [W] !!!$$

S8.2: Simulace převodní charakteristiky invertoru CMOS

 $U_{OUT}=f(U_{IN})$

CMOS_prevod.asc

CMOS_prevod.asc

OK = PRŮBĚH JE SYMETRICKÝ

ROZDÍLNÁ POHYBLIVOST NOSIČŮ NÁBOJE $\mu_N \neq \mu_P$ $\mu_N \approx 2.5 \mu_P$

