732A90Computational Statistics

Krzysztof Bartoszek (krzysztof,bartoszek@liu.se)

30 I 2019 (P42) Department of Computer and Information Science Linköping University

Pseudorandom numbe

- A computer is a deterministic machine
- Congruential generators
- Functions of time
- \bullet Be careful with respect to application

Linear congruential generator

Define a sequence of integers according to

$$x_{k-1} = (a \cdot x_k + c) \mod m, \quad k \ge 0$$

 x_0 is **seed**, e.g. based on time

 $\mod m$: remainder after division by m

- $ullet x_k \in \{0, \dots, m-1\}$ and integer $ullet x_k/m \sim \mathrm{Unif}[0,1]$
- ullet $a,c\in [0,m)$ need to be carefully selected

First step: Generating Unif[0, 1]

Generated numbers will get into a loop with a certain \mathbf{period}

$$x_{k-1} = (a \cdot x_k + c) \mod m, \quad k \geq 0$$

 $x_0 = a = c = 7, m = 10$

- $\begin{array}{l} \bullet \quad x_1 = (7 \cdot 6 + 7) \mod 10 = 49 \mod 10 = 9 \\ \bullet \quad x_1 = (7 \cdot 9 + 7) \mod 10 = 70 \mod 10 = 0 \\ \bullet \quad x_1 = (7 \cdot 0 + 7) \mod 10 = 7 \mod 10 = 7 \\ \end{array}$
- $x_1 = (7 \cdot 7 + 7) \mod 10 = 56 \mod 10 = 6$

First step: Generating Unif[0, 1]

Last three bits change between 001 and 101 Discard less significant bits

732A90_ComputationalStatisticsVT2019_Lecture03codeSlide06.R

- Period is < m by definition
- a, c, m (large) have to be chosen carefully
 c and m have to be relatively prime (no common divisors bet 1)
 a = 1 mod p for every prime divisor p of m
 a = 1 mod 14 if divides n
 Then full period m reached (what about a = c = 1?)
- Seed defines the random sequence same seed, same sequence
 Be careful when re-opening an R workspace
- Other methods (not in this course)

 \bullet $U \sim \mathrm{Unif}[0,1]$ can be transformed into $X \sim \mathrm{Unif}[a,b]$ as

$$X = a + U \cdot (b-a)$$

• U can also be transformed into **discrete** uniform distribution on integers $\in \{1,\dots,n\}$ as $([\cdot],$ integer part)

$$X = [nU - 1]$$

Questions

- Why +1?
- How can U be transformed into Y, where Y is discrete uniform on integers (50, 55, 60)?

Second step: Generating nonuniform random numbers Inverse CDF method

- U ~ Unif(0, 1)
- Let F_U be the cumulative distribution function (CDF) of U

$$F_U(u) = P(U \le u) = \begin{cases} 0 & u \le 0 \\ u & 0 < u \le 1 \\ 1 & 1 < u \end{cases}$$

ullet The probability distribution function (PDF) of U

 $f_U(u) = \begin{cases} 1 & 0 < u < 1 \\ 0 & u \notin (0, 1) \end{cases}$

Let X be a random variable with CDF $X \sim F_X$ $(F_X \text{ strictly increasing})$

Consider $Y = F_X^{-1}(U)$, where $U \sim \text{Unif}(0, 1)$

$$F_Y(y) = P(Y \le y) = P(F_X^{-1}(U) \le y)$$

= $P(F_X(F_X^{-1}(U)) \le F_X(y))$
= $P(U \le F_X(y)) = F_U(F_X(y)) = F_X(y)$

Y has same probability distribution as X

Inverse CDF method

If we can generate $U \sim \mathrm{Unif}(0,1)$, then

we can generate $X \sim F_X$ as

$$X = F_X^{-1}(U)$$

Provided we can calculate F_X^{-1} ...

Inverse CDF method: Example

Let $X \sim \exp(\lambda)$, i.e. with pdf

$$f_X(x) = \left\{ \begin{array}{cc} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{array} \right.$$

implying (SHOW THIS)

$$F_X(x) = \int_{-\infty}^x f_X(s) ds + e^{-\lambda x}, \quad x \ge 0$$

QUESTIONS:

What is $F_X(x)$ for x < 0? What is E[X]?

Find
$$F_X^{-1}$$

$$\begin{array}{l} y = 1 - e^{-\lambda x} \\ e^{-\lambda x} & 1 - y \\ x = -\frac{1}{\lambda} \ln(1 - y) \\ F_X^{-1}(y) = -\frac{1}{\lambda} \ln(1 - y) \end{array}$$

Hence, if $U \sim U(0, 1)$, then

$$-\frac{1}{\lambda}\ln(1-U) = X \sim \exp(\lambda)$$

Inverse CDF method

- When F_X^{-1} can be derived: **EASY**
- When NOT: numerical solution

time-consuming

numerical errors?

Situation 2 is common . . . e.g. $\mathcal{N}(0,1)$

Generating discrete RVs

- Define distribution $P(X = x_i) = p_i$
- Generate U ~ Unif(0, 1)
- $\bullet \ \text{If} \ U \leq p_0, \, \text{set} \ X = x_0$
- Else if $U \leq p_0 + p_1$, set $X = x_1$

3 . . . 0 p₀ p₁ P_2 . . .

Assume

- D ∈ Unif(0, 1)

1: Generate θ , D2: Generate X_1 and X_2 as

 X_1 and X_2 are independent and normally distributed But finding such transformations is not easy

- \bullet IDEA: generate $Y \sim f_Y$ similar to some known PDF f_X
- \bullet IDEA: f_Y is easy to generate from
- \bullet REQUIREMENT: there exists a constant c

$$\forall_x cf_Y(x) \ge f_X(x)$$

- \bullet $f_Y\colon$ majorizing density, proposal density
- f_X : target density
- \bullet c: majorizing constant

- $\begin{array}{lll} \text{:} & \textbf{while } X \text{ not generated do} \\ 2 & \text{Generate } Y \sim f_Y \\ 3 & \text{Generate } U \sim \text{Unif}(0,1) \\ 4 & \text{if } U \leq f_X(Y)/(cf_Y(Y)) \text{ then} \\ 5 & X = Y \\ 6 & \text{Set } X \text{ is generated} \\ 7 & \text{cnd if} \\ 8 & \text{end while} \\ \end{array}$
- $X \sim f_Y$ CHECK THIS
- Larger c: larger rejection rates—c as small as possible number of draws ~ Geometric(1/c) mean: c
 Can work in higher dimensions—but high rejection rate

- \bullet Acceptance/rejection is difficult to apply
- Difficult to find majorizing density
 - can always take $\sup(f_X) \cdot \operatorname{Unif}(0,1)$ but what is the problem?

Generating multivariate normal

Generate $\mathcal{N}(\vec{\mu}, \Sigma) \in \mathbb{R}^n$

- 1: Generate n i.i.d. $\mathcal{N}(0,1)$ r.vs. $\vec{X}=(X_1,\dots,X_n)$ (We know how to do this, see slide 16) 2: Compute Cholesky decomposition (a.k.a. matrix square root) of Σ . i.e. find A, lower triangular s.t. $\mathbf{A}\mathbf{A}^T=\Sigma$, (in \mathbb{R} : chol.() \mathbb{C}) 3: $\vec{Y}=\mu+\mathbf{A}\vec{X}$

QUESTION: what is the expectation and variance–covariance of \vec{Y} ?

- ddistribution name(): density of distribution
- pdistribution name(): CDF of distribution
- qdistribution name(): quantiles of distribution
- ${\color{red} \bullet}$ rdistribution name(): simulate from distribution

- \bullet Computers generate pseudo–random numbers
- We draw from pseudo-uniform and transform to desired distribution
- Analytical methods for transforming exist but are distribution specific $\,$