

مرور جلسه قبل

حل روابط بازگشت با جایگذاری و استقراء

Example:

$$T(n) = 2T(n/2) + cn$$

Guess:

$$T(n) = O(n \lg n)$$

Prove by induction: $T(n) \le dn \lg n$ for suitable d > 0.

روش تقسیم و حل

The divide-and-conquer approach:

Divide the problem into a number of subproblems

Conquer the subproblems by solving them recursively

Combine subproblems and solve the original problem

مسئله زير آرايه بهينه

- Input: A sequence $A[1], A[2], \ldots, A[n]$ of integers.
- Output: Two indicex i and j with $1 \le i \le j \le n$ that maximize

$$A[i] + A[i+1] + \cdots + A[j].$$

$0(n^2)$ و $0(n^3)$ روش تهاجمی

R[n] is the sum over A[1...n]

فصل چهارم: تقسیم و حل | Divide and Conquer

- مسئلہ زیر آر ایہ بیشینہ یا Maximum Subarray
 - انواع روشهای حل معادله بازگشتی
 - جایگذاری و استقرای ریاضی
 - درخت بازگشت
 - قضيه اصلی
 - · الگوريتم استراسن برای ضرب ماتريسی

4 Divide-and-Conquer 65

- 4.1 The maximum-subarray problem 68
- 4.2 Strassen's algorithm for matrix multiplication 75
- 4.3 The substitution method for solving recurrences 83
- 4.4 The recursion-tree method for solving recurrences 88
- 4.5 The master method for solving recurrences 93
- 4.6 Proof of the master theorem 97

روشهای حل روابط بازگشتی: جایگذاری

فصل ۳.۳ کتاب

چگونه حدس خوبی بزنیم؟

- دانشگاه صنعتی امبر کبیر دانشگاه صنعتی امبر کبیر (طب تکنیک تب (۱)
- روش عمومی برای یک حدس خوب وجود ندارد!
- تجربه! خلاقیت! شهود! و شاید هم درخت بازگشتی!
- اگر مشابه رابطه بازگشت را قبلا دیده اید، راه حل مشابه میتواند منطقی باشد!

$$T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$$

برای n های بزرگ $\lfloor n/2 \rfloor + 17$ و $\lfloor n/2 \rfloor + 17$ تفاوت چندانی نخواهد داشت!

• در برخی موارد مرتبه را صحیح حدس میزنیم ولی استقراء بنوعی درست کار نمیکند!!

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$T(n) = O(n) \longrightarrow T(n) \le cn$$

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

= $cn + 1$, \times

تصحیح حدس زده شده

• در برخی موارد مرتبه را صحیح حدس میزنیم ولی استقراء بنوعی درست کار نمیکند!!

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

فرض
$$T(n) = O(n) \longrightarrow T(n) \le cn \times T(n) \le cn$$
 فرض $T(n) \le cn + d$, where $d \ge 0$ is a constant.

$$T(n) \leq (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$

$$= cn - 2d + 1$$

$$\leq cn - d, \qquad d \geq 1$$

۱. درجه جمله اضافه کمتر از حکم باشد: به حکم یک جمله از درجه کمتر اضافه میکنیم

۲. درجه جمله اضافه با حکم برابر باشد: یک فاکتور لگاریتم در حکم کمتر حدس زدیم

۳. درجه جمله اضافه بیشتر از حکم باشد: باید حکم از درجه بالاتری باشد

تصحیح حدس زده شده

۱. درجه جمله اضافه کمتر از حکم باشد: به حکم یک جمله از درجه کمتر اضافه میکنیم

۲. درجه جمله اضافه با حکم برابر باشد: یک فاکتور لگاریتم در حکم کمتر حدس زدیم

۳. درجه جمله اضافه بیشتر از حکم باشد: باید حکم از درجه بالاتری باشد

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$$

فرض
$$T(n) = O(n) \longrightarrow T(n) \le cn$$

$$T(n) \leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + n$$

= $cn + n$,

حالت دوم، درجه جمله اضافی برابر حکم است. پس یک لگاریتم کم حدس زده ایم!

خطاهای احتمالی در استقراء

دانشگاه صنعتی امیر کبیر (بل تکنیک ته از)

• خطا کردن در استقراء خیلی هم سخت نیست!

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\mid U(n) = O(n) \longrightarrow T(n) \leq cn \times$$
فرض

$$T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

 $\le cn + n$
 $= O(n), \iff wrong!!$

تغییر متغیر برای حل استقراء

• در برخی موارد یک تغییر متغیر ساده شما را به یک رابطه بازگشتی آشنا میرساند

$$T(n) = 2T \left(\sqrt{n} \right) + \lg n$$

$$m = \lg n$$

$$T(2^{m}) = 2T(2^{m/2}) + m$$

$$S(m) = T(2^{m})$$

$$S(m) = 2S(m/2) + m$$

$$S(m) = O(m \lg m)$$

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$$

روشهای حل رابطه بازگشتی: درخت بازگشت

فصل ۴.۴ کتاب

- ,
- روش جایگذاری و استقراء مناسب برای حل روابط بازگشتی
- اما پیدا کردن حدس مناسب همیشه راحت نیست! ── درخت بازگشتی
 - در محاسبات درخت بازگشت میتوان از برخی جزییات پرهیز کرد
- درآن صورت اثبات حدس به دست آمده از طریق استقراء ضرورت خواهد داشت

نمونه پرهیز از جزییات: محاسبه حد بالا با حذف کف

محاسبه مجموع هم سطحها

محاسبه تعداد سطوح $n/4^i = 1$

محاسبه مجموع هم سطحها

عحاسبه تعداد سطوح

محاسبه مجموع هم سطحها

حاسبه تعداد سطوح

محاسبه مجموع هم سطحها

محاسبه تعداد سطوح

 $(2/3)^k n = 1$ when $k = \log_{3/2} n$

محاسبه مجموع هم سطحها

آیا درخت کامل است؟

آیا مجموع سطوح همیشه cn است؟

همه اینها را میتوان دقیق محاسبه کرد اما...

نمونههایی از پرهیز در محاسبه جزییات

 $d \ge c/(\lg 3 - (2/3))$

$$T(n) = T(n/3) + T(2n/3) + O(n)$$

Total: $O(n \lg n)$

$$T(n) \le dn \lg n$$

$$T(n) \leq T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$$

$$= (d(n/3) \lg n - d(n/3) \lg 3) + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$$

$$= dn \lg n - dn (\lg 3 - 2/3) + cn$$

$$\leq dn \lg n,$$

اثبات حالتهای پایه: چه بازه ای برای d درنظر گرفته شود

فصل ۴.۵ کتاب

قضیہ اصلی Mater Theorem

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

رابطه بازگشت T(n) مسئله را به a زیرمسئله مساوی به اندازه n/b تقسیم میکند و هزینه تقسیم و ترکیب زیرمسئلهها برابر

n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for \sqrt{some} some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 9T(n/3) + n$$

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

$$f(n) = \Theta(n^{\log_b a}) = \Theta(1)$$

$$T(n) = \Theta(\lg n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 3T(n/4) + n \lg n$$

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$$

 $f(n) = \Omega(n^{\log_4 3 + \epsilon}), \text{ where } \epsilon \approx 0.2$
 $af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n = cf(n) \text{ for } c = 3/4$
 $T(n) = \Theta(n \lg n)$

$$T(n) = 2T(n/2) + n \lg n$$

$$n^{\log_b a} = n \qquad \qquad f(n) = n \lg n$$

is not *polynomially* larger

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

The ratio $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ

the recurrence falls into the gap between case 2 and case 3

Show that if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, where $k \ge 0$, then the master recurrence has solution $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. For simplicity, confine your analysis to exact powers of b.

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 2T(n/2) + \Theta(n)$$

مرتبه زمانی الگوریتمهای تقسیم و حل مرتبسازی ترکیبی و زیر آر ایه بیشینه

$$n^{\log_b a} = n^{\log_2 2} = n$$

$$f(n) = \Theta(n)$$

$$T(n) = \Theta(n \lg n)$$

$$T(n) = 2T(n/4) + \sqrt{n}$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

استفاده از تغییر متغیر

$$T(n) = T(\sqrt{n}) + 1$$

$$T(n) = aT(n/b) + f(n) \qquad a \ge 1 \text{ and } b > 1$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$m = \lg n$$

 $S(m) = T(2^m)$
 $T(2^m) = T(2^{m/2}) + 1$
 $S(m) = S(m/2) + 1$

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1$$
 $f(n) = 1$
 $1 = \Theta(1)$
case 2 applies and $S(m) = \Theta(\lg m)$