Problem

Show that NP is closed under union and concatenation.

Step-by-step solution

Step 1 of 3

The class NP is closed under union and concatenation

NP - class:

NP is a class of languages that are decidable in nondeterministic polynomial time on a non – deterministic Turing machine.

Comment

Step 2 of 3

Union:

- Let A and B be languages are decided by NP-machines T_{A} and T_{B} .
- Now we want to show that, there is a non deterministic poly time decider $T_{A \cup B}$ that decides union of A and B.
- The construction of $T_{A \cup B}$ is as follows:

$$T_{A \cup B} =$$
 "On input S:

- 1. Run T_A on S. If T_A accepts S, then accept.
- 2. Else run $T_{\it B}$ on $\it S$. If $T_{\it B}$ accepts $\it S$, then accept.
- 3. Else reject"

As the new TM $T_{A\cup B}$ calls T_A and T_B each once, it runs on $O\left(T_A+T_B\right)$,

as both are NP is $T_{A \cup B}$.

Comment

Step 3 of 3

Concatenation:

- Let A and B be languages are decided by NP-machines T_{A} and T_{B} .
- Now we want to show that, there is a non deterministic poly time decider $T_{A \cup B}$ that decides concatenation of A and B.
- The construction of $T_{A \circ B}$ is as follows:

$$T_{A \circ B}$$
 = "On input S:

- 1. Split S into S_1 , S_2 such that $S = S_1 S_2$.
- 2. Run the NP machine T_A on S_I . If T_A is rejected, then reject.
- 3. Else run $T_{\scriptscriptstyle B}$ on $S_{\scriptscriptstyle 2}$. If $T_{\scriptscriptstyle B}$ is rejected, then reject.
- 4 Fise accept

The time taken by step 1 is O(n) in a two tape Turing Machine. Thus, T is a poly-time non-deterministic decider for $A \circ B$.

Comments (1)