

Control System Virtualization for the LHCb Online System

ICALEPCS – San Francisco

Enrico Bonaccorsi, (CERN) enrico.bonaccorsi@cern.ch Luis Granado Cardoso, Niko Neufeld (CERN, Geneva) Francesco Sborzacchi (INFN/LNF, Frascati (Roma))

LHCb & Virtualization

- Completely isolated network
 - Data Acquisition System
 - Experiment Control System
- Why do we virtualize
 - Improve manageability
 - High Availability
 - Hardware usability
 - Better usage of hardware resources
 - Move away from the model "one server = one application"

What we are virtualizing

- Around 200 control PCs running WinCC OA
 - o 150 linux
 - Red Hat / CentOS / Scientific Linux 6
 - o 50 windows
 - Windows 2008 R2

- Web Servers
- Gateways
 - Linux SSH and NX
 - Windows terminal services
- Common infrastructure servers
 - o DHCP, DNS, Domain Controllers, ...

Current virtualization infrastructure

- 20 blade servers distributed in two chassis in different racks
- 4 x 10 Gb/s Ethernet switches
- 4 x 8 Gb/s Fiber channel (FC) switches
- 2 x NetApp 3270 accessible via FC and iSCSI
 - Hybrid storage pool: SSD + SATA
- 2 independent clusters
 - General Purpose Cluster (DNS, DHCP, Web services, ..)
 - Control Cluster (Dedicated to the control system)

Shared Storage

- Crucial component of the virtualization infrastructure
- Required for high availability
- Performance is a key point
- We want to guarantee a minimum of 40 random IOPS per VM
 - o The equivalent experience of using a laptop with a 5400 RPM HDD

Storage area network

Ethernet network

CÉRN

Resources optimization

High performance hardware is expensive

- Storage deduplication
 - o Eliminates duplicates of repeated data
 - Currently saving 67% of used storage space
 - Provides improvements in terms of IOPS (less data to cache!)
- Kernel Shared Memory
 - Maximize the usage of memory
 - Merge the same memory pages allowing overcommitting of memory without swapping

Benchmarks

□ Blade Poweredge M610

- ★ 2 x E5530 @ 2.4GHz (8 real cores + Hyper Threading)
- ★ $3 \times 8 \text{ GB} = 24 \text{GB RAM}$
- ★ 2 x 10Gb network interfaces
- ★ 2 X 1Gb network interfaces

2 X 8Gb fiber channel interfaces

Storage

- ★ 4 X 8Gb Fiber channel switches
- ★ SSD pool + SATA
- ★ Deduplication ON

Network

- ★ 4 X 10Gb Ethernet switches
- ★ 4 X 1Gb Ethernet switches

Limits:

Average of 15 VM per Server

Netapp 3270, random Reading 4k + random Writing 4k, 215VMs, 200MB/VM Comparison during normal operation and during deduplication and takeover

Storage (random)

IOPS=45K

Throughput=153MB/s writing, 300MB/s reading Latency=~10ms

Network

Throughput = 5.37 Gb/s Latency = 0.15 ms for 1400B

Testing the infrastructure: Ressimistic SCADA workloads

- 150 WinCC OA Projects (WINCC001 .. WINCC150)
 - o 1 project per VM
 - o Each project is connected to other 5 projects
 - The two previous and after projects (according to the numbering
 - The master project
 - o Each project has 1000 datapoints created for writing
 - Each project performs dpSets locally and on the connected projects
 - o Number of DPs to be set and rate are settable
 - Each period the dps are selected randomly from the 1000 dps pool and set

Testing the infrastructure: Pessimistic SCADA workloads (2)

- 1 Master Project (WINCC001)
 - This project connects to all other projects
 - o Has System Overview installed for easier control of the whole system
 - FW version for PVSS 3.8 produces a couple of errors but the PMON communication with the other projects works just fine

Results Summary

- At the end of each "run" period, logs are collected and analysed for problems
 - PVSS_II.log, WCCOActrlNN.log are "grepped" for possible issues ("disconnect", "connect", "queue", "pending", "lost", ...)
- Plots are also produced by calculating the rate from the dpSets timestamp (only local dpSets)

Date	Local Rate*	Remote Rate*	Total*	CPU (%)	Comment
18.12.2012	1200	100	1700	85	All OK
20.12.2012	1200	0	1200	35	All OK
09.01.2013	1200	1000	5210	85	All OK
14.01.2013	1600	1400	7250	93+	Problems with 1 project (multiple disconnections/connections)**
17.01.2013	1600	50	1850	50-60	Decreased for live migration tests
*dpSets per Second					

^{**} WINCC006, after some period, started disconnecting/connecting to WINCC005 and WINCC007 indefinitely. Problem was fixed by restarting the projects WINCC004 and WINCC008 which also connect to WINCC006.

- Unattended long term test:
 - all VMs and projects performed stably
 - One instance had to be live migrated to solve some issues related to the real server
- We run the same tests that have been done for real machines by the CERN industrial control group (EN/ICE) and we obtained very similar results

Summary and outlook

- Virtualization of LHCb ECS
 - Reduce hardware
 - o Achieving High Availability
- Storage the key component of the infrastructure
- Realistic SCADA workload emulator
 - o Indispensable in the evaluation of many commercial storage systems
- Resources optimizations
- Performance results
- -----
- Migration of all Control PCs to VMs should be completed by Q4 2013

Backup slides

Hypervisors

- Essentially 3 choices:
 - Kernel based Virtual Machine (KVM)
 - Currently used in LHCb
 - Open source
 - o VMWare:
 - Most advanced even if closed source
 - Too expensive for us
 - Hyper-V Core R2 and System Center Virtual Machine Manager (SCVMM)
 - Almost for free (license needed for SCVMM)

Capacity planning