An overview of Hladký et al's (2021) work on inhomogeneous W-random graphs

Ernest Ng Mentor: Anirban Chaterjee University of Pennsylvania ngernest@seas.upenn.edu

Undergraduate Research in Probability & Statistics Program 17 February 2022

Overview

- Introduction to Graphons
- Construction of Inhomogeneous Random Graphs
- Graph Homomorphisms for Graphs and Graphons
- Homomorphism Density
- Conditional density for r-cliques
- K_r -regularity
- Dependency graphs and proof idea for Theorem 1.2b
- Hypergraphs, clique graphs and cycle densities

Graphons

Definition

A graphon is a bounded, symmetric and measurable function

$$W: [0,1]^2 \to [0,1]$$
 where $W(x,y) = W(y,x) \ \forall \ x,y \in [0,1].$

Let \mathcal{W}_0 denote the space of all graphons.

- Intuitively, we may think of graphons as weighted symmetric graphs with uncountably many vertices, where the vertex set is [0,1] and the weights are the values W(x,y) = W(y,x).
- Graphons may also be thought of as the limit of graph sequences.
- If G is an unweighted graph, then fix $w_e = 1$ for each edge e.
- Given a graph *G* with *n* nodes, we may construct an empirical graphon.

Empirical Graphons

Definition

Let G = (V, E) be a finite simple graph on n vertices, where for each edge $e \in E$, w_e denotes the weight of e.

For each $j \in \{1, ..., n\}$, define the interval I_j as $I_j := \left[\frac{j-1}{n}, \frac{j}{n}\right]$. Then, the **empirical graphon of** G is defined as:

$$W^G(x,y) := \begin{cases} w_e & \text{if } e = (i,j) \in E, \quad (x,y) \in I_i \times I_j \\ 0 & \text{otherwise} \end{cases}$$

• For any graph G = (V, E), the associated empirical graphon $W^G \in \mathcal{W}_0$ if $w_e \in [0, 1]$ for all $e \in E$

Empirical Graphons (cont.)

Figure: Example of an empirical graphon (Braunsteins et al. 2021)

Inhomogeneous Random Graphs

- Given a graphon W, we generate the random graph $\mathbb{G}(n,W)$ as follows:
 - Sample independently n numbers $U_1, \ldots, U_n \sim \text{Unif}(0,1)$. Call these numbers **types** (continuous analog of node colorings).
 - ldentify each uniform random variable U_j with a node $j \in [1..n]$, i.e. assign each node a type.
 - Any two nodes i, j in $\mathbb{G}(n, W)$ are connected by an edge (i, j) with probability $W(U_i, U_j)$
- If the graphon W is constant, i.e. $W(x,y) \equiv p \in [0,1]$, then $\mathbb{G}(n,W)$ is identical to the ErdHos–Rényi random graph $\mathbb{G}(n,p)$.

Graph Homomorphisms

Definition

Let F = (V', E') and G = (V, E) be graphs.

A graph homomorphism from F to G is a map

$$\beta: V' \to V$$
 such that if $(i,j) \in E'$, then $(\beta(i), \beta(j)) \in E$.

Write $F \rightarrow G$ if there exists a homomorphism from F to G.

- Intuition: the images of adjacent vertices remain adjacent
- Note that given any F and G, there may exist many possible homomorphisms $F \to G$
- A homomorphism $K_n o G$ indicates that G contains an n-clique

Graph Homomorphisms (cont.)

Figure: Example of multiple homomorphisms F o G (Ribeiro 2021)

• Let hom(F,G) denote the no. of homomorphisms $F \to G$

Homomorphism Density for Weighted Graphs

Definition

For a *weighted* graph G = (V, E) on n nodes with adjacency matrix A, and a graph F = (V', E') on k nodes, the **homomorphism density** of F in G is defined as:

$$t(F,G) = \frac{1}{n^k} \sum_{\substack{\beta: V' \to V \\ \text{graph hom.}}} \left(\prod_{(i,j) \in E'} [A]_{\beta(i),\beta(j)} \right)$$

where $[A]_{\beta(i),\beta(j)}$ denotes the $(\beta(i),\beta(j))$ -th entry of A.

- Intuition: weight each homomorphism $\beta:V'\to V$ by the product of edge weights in the image of β
- For an unweighted graph, set all edge weights equal to 1

Homomorphism Densities for Graphons

Definition

For a graphon $W \in \mathcal{W}_0$ and a multigraph H = (V, E) on n nodes, the **homomorphism density** of H in W is:

$$t(H, W) = \int_{[0,1]^n} \prod_{(i,j) \in E} W(x_i, x_j) \prod_{i \in V} dx_i$$

If H is a clique, then the homomorphism density can be defined as:

$$t(H, W) = \mathbb{E} \prod_{(i,j) \in V} W(U_i, U_j)$$

(Equation 6, Hladký et al. 2021)

• Similar to the definition for weighted graphs, where $W(x_i, x_j)$ is the weight of the edge (i, j)

Conditional Homomorphism Density

Definition (Equation 7, Hladký et al. 2021)

For an integer $l \le k$, let J be an l-element subset of $[k] = \{1, 2, \dots, k\}$.

Let H be a graph with vertex set [k] where nodes in J are considered to be marked.

Then, given a vector of values $\mathbf{x} = (x_j)_{j \in J} \in [0,1]^I$, define the conditional density as follows:

$$t_{\mathsf{x}}(H,W) = \mathbb{E}\left[\prod_{\{i,j\}\in E(H)} W(U_i,U_j) \mid U_j = x_j : j\in J\right]$$

Relationship between $t_x(H, W)$ and marked nodes J

- If $H = K_r$ is an r-clique, $t_x(H, W)$ depends only on the cardinality of J and not on the elements of J (marked nodes)
- Consider the following example for an arbitrary non-clique graph H:

H
$$J = \{1, 2, 3\}$$

$$\downarrow 0$$

$$\begin{split} t_{\frac{1}{2}}(H,W) &= \mathbb{E}\Big[\frac{\Pi}{\{i,i\}} \underbrace{e\,E(H)}_{\{U_{i},U_{2}\}} W(U_{i},U_{3}) \quad \middle| \ U_{j} = x_{j} : \ j \in J\Big] \\ &= \mathbb{E}\Big[W(V_{i},V_{2}) \, W(\,U_{2},U_{3}) \, W(\!(V_{3},U_{4}) \, W(\!(V_{3},U_{6}) \, \middle| \ U_{i} = x_{i}, \ U_{2} = x_{2}, \ U_{3} = x_{3}\Big] \\ &= \mathbb{E}\Big[W(x_{i},V_{2}) \, W(x_{2},V_{3}) \, W(x_{3},U_{4}) \, W(x_{3},U_{6})\Big] \end{split}$$

Relationship between $t_x(H, W)$ and marked nodes J

• Now consider the following example for the 3-clique K_3 :

$$\begin{array}{lll} & & & & \\ & & & \\ & &$$

K_r -free and K_r -regular graphons

• Let K_r^{\bullet} and $K_r^{\bullet\bullet}$ denote K_r with one and two marked nodes respectively, with corresponding conditional homomorphism densities $t_x(K_r^{\bullet}, W)$ and $t_{x,y}(K_r^{\bullet\bullet}, W)$.

Definition

A graphon W is K_r -free if $t(K_r, W) = 0$ and complete if $t(K_r, W) = 1$ almost everywhere.

Definition (Equation 8, Hladký et al. 2021)

A graphon W is K_r -regular if for almost every $x \in [0,1]$, we have:

$$t_{\mathsf{x}}(\mathsf{K}_{\mathsf{r}}^{\bullet},\mathsf{W})=t(\mathsf{K}_{\mathsf{r}},\mathsf{W})$$

 We may view this notion as a generalization of regularity for graphs.

Degree Function of a Graphon

Definition

For a graphon W, the **degree function** $\deg_W : [0,1] \to [0,1]$ is defined as:

$$\deg_W(x) = \int_0^1 W(x, y) \, dy$$

- The degree function allows us to examine how the degree of a node varies as its type changes.
- In an Erdos–Rényi random graph $\mathbb{G}(n,p)$, a node has expected degree $(n-1)\cdot p$
- In $\mathbb{G}(n, W)$, if a node has type $x \in [0, 1]$, then its expected degree is $(n-1) \cdot \deg_W(x)$

Definition

Say that a graphon W is **regular** if $\deg_W(x) \equiv d$ for some constant $d \in [0,1]$.

The Graphon $V_W^{(r)}$

• For any graphon W and $r \ge 2$, define the graphon $V_W^{(r)}$ as:

$$V_W^{(r)}(x,y)=t_{x,y}(K_r^{\bullet\bullet},W)$$

• View $V_W^{(r)}(x,y)$ as the conditional density of r-cliques containing nodes with types x,y

Equivalence of K_r -regularity and regularity of $V_W^{(r)}$

• W is K_r -regular $\iff V_W^{(r)}$ is regular

$$\deg_{V_W^{(r)}}(x) = \int_0^1 V_W^{(r)}(x, y) \, dy$$

$$= \int_0^1 t_{x,y}(K_r^{\bullet \bullet}, W) \, dy$$

$$= t_x(K_r^{\bullet}, W)$$

$$= t(K_r, W) \quad \text{(by } K_r\text{-regularity)}$$

$$= t_r$$

The Parameter $\sigma_{r,W}^2$

- Let $K_r \oplus_2 K_r$ denote the simple graph consisting of two r-cliques sharing 2 nodes (total of 2r-2 nodes)
- Let $K_r \ominus_2 K_r$ denote the multigraph obtained from $K_r \oplus_2 K_r$ where we duplicate the shared edge.

(Equation 9, Hladký et al. 2021) We have that:

$$t_{x,y}(K_r \oplus_2 K_r, W) = W(x,y)t_{x,y}(K_r \oplus_2 K_r, W)$$
$$= (t_{x,y}(K_r^{\bullet \bullet}, W))^2$$
$$= (V_W^{(r)}(x,y))^2$$

Then define:

$$\sigma_{r,W}^2 := \frac{1}{2((r-2)!)^2} (t(K_r \ominus_2 K_r, W) - t(K_r \ominus_2 K_r, W))$$

Statement of Theorem 1.2a-b

- Let W be a graphon. Fix $r \ge 2$ and let $t_r = t(K_r, W)$.
- Let $X_{n,r}$ denote the no. of r-cliques in $\mathbb{G}(n, W)$.

Theorem (Theorem 1.2 (abridged), Hladký et al. 2021)

- (a) If W is K_r -free or complete, then almost surely $X_{n,r} = 0$ or $X_{n,r} = \binom{n}{r}$ respectively.
- (b) If W is not K_r -regular, then:

$$\frac{X_{n,r} - \binom{n}{r} t_r}{n^{r-1/2}} \xrightarrow{d} \hat{\sigma}_{r,W} \cdot Z$$

where
$$Z\sim N(0,1)$$
 and $\hat{\sigma}_{r,W}=rac{1}{(r-1)!}\left(t(K_r\ominus K_r,W)-t_r^2
ight)^{1/2}>0$

Dependency Graphs

- The proof of Theorem 1.2b uses a construction called dependency graphs.
- index set I, create a **dependency graph** $\mathcal G$ with vertex set I

• Given a collection of random variables $(Y_i : i \in I)$ for some

- For each vertex $i \in I$, let N_i denote the neighborhood of $i \in \mathcal{G}$
- Construct G such that:

 $\forall \ i \in I, \ \text{the random variable} \ Y_i \ \text{is independent of} \ \{Y_j\}_{j \notin N_i}$

• The dependency graph need not be unique for given $(Y_i)_{i \in I}$

Dependency Graphs (cont.)

- Consider the following example: let $I = \{1, ..., 5\}$, and for each $i \in I$, let Y_i be standard normal random variables.
- Suppose $\{Y_1, Y_2, Y_3\}$ are independent of Y_4 and Y_5 respectively, where $Y_4 \perp \!\!\! \perp Y_5$. Then $\mathcal G$ is given by:

Figure: Example of a dependency graph for $I = \{1, \dots, 5\}$

Dependency Graphs and the Wasserstein Distance

- Consider $d_{Wass}(X, Y)$, the Wasserstein distance between two random variables X, Y
- For $Z \sim N(0,1)$ and a sequence X_n of random variables:

$$d_{Wass}(X_n, Z) \rightarrow 0 \Longrightarrow X_n \stackrel{d}{\rightarrow} Z$$

Theorem (Theorem 2.2, Hladký et al. 2021)

Let $(Y_i: i \in I)$ be a finite collection of random variables where $\forall i \in I, \mathbb{E}[Y_i] = 0$ and $\mathbb{E}[Y_i^4] < \infty$. Let $\sigma^2 = \text{Var}\left[\sum_{i \in I} Y_i\right]$ and $Q = \sum_{i \in I} \frac{Y_i}{\sigma}$. Let \mathcal{G} be a dependency graph for $(Y_i: i \in I)$, and let $D = \max_{i \in I} |N_i|$. Then, we have that:

$$d_{Wass}(Q, Z) \leq \frac{D^2}{\sigma^3} \sum_i \mathbb{E}[|Y_i|^3] + \frac{\sqrt{28}D^{3/2}}{\sqrt{\pi}\sigma^2} \sqrt{\sum_i \mathbb{E}[Y_i^4]}$$

Proof Idea for Theorem 1.2b

- Let $\binom{[n]}{r}$ denote the set of all size-r subsets of [n].
- Consider the collection of random variables $(Y_R : R \in {[n] \choose r})$. Let $Y_r = I_r - \mathbb{E}[I_R] = I_r - t_r$, where I_r is the indicator random variable for the event where R induces a clique in $\mathbb{G}(n, W)$.
- Note that $E[Y_R] = 0$ for each R.
- Construct the dependency graph \mathcal{G} , where edges correspond to non-disjoint R_i, R_j , i.e. $R_i \cap R_j \neq \emptyset$.
- In \mathcal{G} , each neighbourhood N_R has the same size $D = \sum_{l=1}^{r} \binom{r}{l} \binom{n-r}{r-l} = O(n^{r-1})$
- Let $\sigma_n^2 = \operatorname{Var}\left[\sum_R Y_R\right] = \sum_{R_1,R_2} \mathbb{E}[Y_{R_1} Y_{R_2}]$
- For each $l \in \{1, \ldots, r\}$, the no. of ordered pairs R_1, R_2 s.t. $|R_1 \cap R_2| = l$ is $\binom{n}{l} \binom{n-l}{r-l} \binom{n-r}{r-l} = O(n^{2r-l})$
- One can show that $\sigma_n^2 \sim \hat{\sigma}_{r,W}^2 n^{2r-1}$.

Theorem 1.2b proof idea (cont.)

- Let $Q_n = \sum_{R \in {[n] \choose r}} \frac{Y_R}{\sigma_n}$.
- Applying Theorem 2.2 where we bound $\binom{n}{r} \leq n^r$ and examine powers of n, one can show that $d_{Wass}(Q_n, Z) = O(n^{-1/2}) \to 0$, i.e. $Q_n \stackrel{d}{\to} Z$.
- Applying Slutsky's Theorem, we have that:

$$\frac{\sum_{R \in \binom{[n]}{r}} Y_R}{n^{r-1/2}} = \frac{\sigma_n}{n^{r-1/2}} \cdot Q_n \xrightarrow{d} \hat{\sigma}_{r,W} Z$$

• Since $\sum_{R \in \binom{[n]}{r}} = X_{n,r} - \binom{n}{r} t_r$, this completes the proof.

Statement of Theorem 1.1(c)

- Suppose W is a K_r -regular graphon that is neither K_r -free nor complete. Then we have $t(x) = t_x(K_r, W) = t(K_r, W)$ for almost every $x \in [0, 1]$.
- Recall that X_n denotes the no. of r-cliques in $\mathbb{G}(n, W)$. Then the following holds:

Theorem (Theorem 1.1c (abridged), Hladký et al. 2021)

If t(x) is constant and $t(x) \notin \{0,1\}$, then there exist $c_0, c_1, \ldots \in \mathbb{R}$ such that $\sum_i c_i^2 \in (0, \infty)$ and:

$$\frac{X_n - \mathbb{E}[X_n]}{n^{r-1}} \stackrel{d}{\to} c_o Z_0 + \sum_{i>1} c_i (Z_i^2 - 1)$$

where Z_0, Z_1, \ldots are independent standard normal.

r-Uniform Hypergraphs, Clique Graphs

Definition

For $r \ge 2$, a r-uniform hypergraph \mathcal{H} on a vertex set V is a collection of r-element subsets (hyperedges) of V.

Definition

Given a hypergraph \mathcal{H} , the **graph associated with** \mathcal{H} (**clique graph** of \mathcal{H}) is a graph on the same vertex set, where each hyperedge S of \mathcal{H} is replaced by a clique on S, with multiple edges replaced by single edges.

Loose Cycles (Hypergraph version of cycles)

- For I ≥ 2, let C_I^(r) be a r-uniform hypergraph with I hyperedges.
- To construct $C_l^{(r)}$, take the cycle graph C_l , and for each edge, insert an additional r-2 nodes, where all l(r-2) new nodes are distinct.
- Then let $G_{l,r}$ be the graph associated with $C_l^{(r)}$.

Figure: Examples of hypergraphs $C_l^{(r)}$ and their associated graphs $G_{l,r}$ (Hladký et al. 2021)

Cycle densities in $V_W^{(r)}$

- Assume that the nodes shared by consecutive r-cliques in $G_{l,r}$ have labels $1, \ldots, l$.
- For $l \ge 3$ and $r \ge 2$, one can show using Fubini's Theorem that:

$$t(C_{I}, V_{W}^{(r)}) = t(G_{I,r}, W)$$

• For l = 2, since C_2 is a multigraph consisting of two nodes linked by a double edge, we have:

$$t(C_2, V_W^{(r)}) = t(K_r \oplus_2 K_r, W)$$

Future directions

 Understand the proof of Theorem 1.2c (in particular the constructions involving hypergraphs and moment generating functions)

References

Braunsteins, Peter, et al. "Example of an Empirical Graphon." University of Amsterdam, 27 Sept. 2020, https://arxiv.org/abs/2009.12848. Accessed 14 Feb. 2022

Hladký, Jan, et al. "A Limit Theorem for Small Cliques in Inhomogeneous Random Graphs." Journal of Graph Theory, vol. 97, no. 4, 2021, pp. 578–599, https://doi.org/10.1002/jgt.22673

Riebeiro, Alejandro. "Graphon Signal Processing." Graph Neural Networks, Electrical & Systems Engineering Department, University of Pennsylvania, 25 Oct. 2021, https://gnn.seas.upenn.edu/wp-content/uploads/2020/11/lecture_9_handout.pdf