

რადიოანძები

 \mathbf{x} აკარტაში N რაოდენობის რადიოანძაა. ანძები სწორ ხაზზეა განლაგებული და გადანომრილია მარცხნიდან მარ \mathbf{x} ვნივ 0-დან (N-1)-მდე. ყოველი i-სათვის, სადაც $0 \leq i \leq N-1$, i-ური ანძის სიმაღლე H[i] მეტრია. ყველა ანძის სიმაღლე **ურთიერთგანსხვავებულია**.

ინტერფერენციის (კავშირის ხარვეზის) რაიმე დადებითი δ მნიშვნელობისათვის i-ური და j-ური ანძების წყვილს ($0 \le i < j \le N-1$) ერთმანეთთან დაკავშირება შეუძლია მაშინ და მხოლოდ მაშინ, თუ არსებობს შუალედური k-ური ანძა ისეთი,რომ:

- i-ური ანძა მდებარეობს k-ური ანძის მარცხნივ და j-ური ანძა მდებარეობს k-ური ანძის მარ \S ვნივ. ანუ, i < k < j, და
- ullet i-ური ანძის და j-ური ანძის სიმაღლეებიდან არცერთი არ აღემატება $H[k]-\delta$ მეტრს.

პაკ დენგკლეკს თავისი ახალი რადიოქსელისათვის რამდენიმე რადიოანძის ქირაობა სურს. თქვენი ამოცანაა უპასუხოთ პაკ დენგკლეკის Q რაოდენობის შემდეგი სახის კითხვას: მოცემულია L,R და D ($0 \le L \le R \le N-1$ და D>0) პარამეტრები. რისი ტოლია იმ რადიოანძების მაქსიმალური რაოდენობა, რომელთა ქირაობაც პაკ დენგკლეკს შეუძლია, თუ ვივარაუდებთ, რომ:

- პეკ დენგკლეკს შეუძლია მხოლოდ იმ ანძების ქირაობა, რომელთა ინდექსებიც მოთავსებულია L-სა და R-ს შორის (მათი ჩათვლით), და
- ინტერფერენციის δ მნიშვნელობა D-ს ტოლია, და
- პაკ დენგკლეკის მიერ ნაქირავები ანძების ნებისმიერ წყვილს უნდა შეეძლოს ერთმანეთთან დაკავშირება.

ყურადღება მიაქციეთ იმას, რომ ნაქირავები ანძების წყვილი ერთმანეთს შეიძლება დაუკავშირდეს შუალედური k-ური ანძის საშუალებით იმის მიუხედავად, k-ური ანძა ნაქირავებია თუ არა.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი პროცედურის იმპლემენტაცია::

void init(int N, int[] H)

- N: რადიოანძების რაოდენობა.
- H:N სიგრძის მასივი, რომელშიც რადიოანძების სიმაღლეებია მოცემული.
- ეს პროცედურა მხოლოდ ერთხელ უნდა იქნას გამოძახებული max_towers პროცედურის ყოველი გამოძახების წინ.

int max_towers(int L, int R, int D)

- L, R: ანძების დიაპაზონის საზღვრები.
- D: δ -ს მნიშვნელობა.
- პროცედურამ უნდა დააბრუნოს იმ რადიოანძების მაქსიმალური მნიშვნელობა, რომელთა ქირაობაც შეუძლია პაკ დენგკლეკს თავის ახალი რადიოქსელისათვის, თუ მას უფლება აქვს მხოლოდ ის რადიოანძები იქირაოს, რომელთა ინდექსებიც მოთავსებულია L-სა და R-ს შორის (მათი ჩათვლით) და δ -ს მნიშვნელობა D-ს ტოლია.
- ეს პროცედურა ზუსტად Q-ჯერ უნდა იქნას გამოძახებული.

მაგალითი

განვიხილოთ გამოძახებათა შემდეგი მიმდევრობა:

```
max_towers(1, 5, 10)
```

პაკ დენგკლეკს შეუძლია იქირაოს 1-ლი, მე-3 და მე-5 რადიოანძები. მაგალითი ილუსტრირებულია ქვემოთ მოცემულ ნახაზზე, სადაც დაშტრიხული ტრაპეციებით ნაქირავები ანძებია ნაჩვენები.

მე-3 და მე-5 ანძები ერთმანეთს მე-4 შუალედური ანძის საშუალებით შეუძლიათ დაუკავშირდნენ, რადგანაც $40 \le 50-10$ და $30 \le 50-10$. 1-ლი და მე-3 ანძები შეიძლება დაკავშირდნენ მე-2

შუალედური ანძის საშუალებით. 1-ლი და მე-5 ანძები შეიძლება დაკავშირდნენ მე-3 შუალედური ანძის საშუალებით. საბოლოოდ, ამ შემთხვევაში 3 ანძაზე მეტის დაქირავება შეუძლებელია. ასე, რომ პროცედურამ უნდა დააბრუნოს რიცხვი 3.

```
max_towers(2, 2, 100)
```

ამ შემთხვევაში, მოცემულ დიაპაზონში მხოლოდ 1 ანძაა. ასე, რომ პაკ დენგკლეკს მხოლოდ 1 ანძის დაქირავება შეუძლია. შესაბამისად, პროცედურამ უნდა დააბრუნოს რიცხვი 1.

```
max_towers(0, 6, 17)
```

პაკ დენგკლეკს შეუძლია იქირაოს 1-ლი და მე-3 რადიოანძები. ისინი ერთმანეთს მე-2 შუალედური ანძით შეუძლიათ დაუკავშირდნენ, რადგანაც $20 \le 60-17$ და $40 \le 60-17$. საბოლოოდ, ამ შემთხვევაში 2-ზე მეტი ანძის დაქირავება შეუძლებელია. ასე, რომ პროცედურამ უნდა დააბრუნოს რიცხვი 2.

შეზღუდვები

- $1 \le N \le 100\ 000$
- $1 \le Q \le 100\ 000$
- ullet $1 \leq H[i] \leq 10^9$ (თითოეული i-სათვის, სადაც $0 \leq i \leq N-1$)
- H[i]
 eq H[j] (თითოეული i-სათვის და j-სათვის, სადაც $0 \leq i < j \leq N-1$)
- $0 \le L \le R \le N 1$
- $1 \le D \le 10^9$

ქვეამოცანები

- 1. (4 ქულა) აქ არსებობს k-ური ანძა ($0 \leq k \leq N-1$) ისეთი, რომ
 - \circ თითოეული i-სათვის, სადაც $0 \leq i \leq k-1$): H[i] < H[i+1], და
 - \circ (თითოეული i-სათვის, სადაც $k \leq i \leq N-2$: H[i] > H[i+1].
- 2. (11 ქულა) Q=1, $N\leq 2000$
- 3. (12 ქულა) Q=1
- 4. (14 ქულა) D=1
- 5. (17 ქულა) L=0, R=N-1
- 6. (19 ქულა) D-ს მნიშვნელობა ერთი და იგივეა \max_{t} towers-ის ყოველი გამოძახებისათვის.
- 7. (23 ქულა) დამატებითი შეზღუდვების გარეშე.

სანიმუშო გრადერი

სანიმუშო გრადერი შემოსატან მონაცემებს კითხულობს შემდეგი ფორმატით:

ullet სტრიქონი $1{:}\,N\,Q$

- ullet სტრიქონი $2{:}\;H[0]\;H[1]\;\dots\;H[N-1]$
- ullet სტრიქონი 3+j ($0\leq j\leq Q-1$): $L\mathrel{R} D$ (j-ური კითხვისათვის)

სანიმუშო გრადერი ბეჭდავს თქვენს პასუხებს შემდეგი ფორმატით:

ullet სტრიქონი 1+j ($0\leq j\leq Q-1$): max_towers პროცედურის მიერ დასაბრუნებელი მნიშვნელობა j-ური კითხვისათვის.