

CRAb

Métodos Numéricos 1 (MN1)

Unidade 2: Raízes de Equações Parte 4: Método do Ponto Fixo

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

Descrição

- Esse método é um tipo de método aberto
 - utiliza uma fórmula para estimar a raiz
- Seja uma função f(x) contínua no intervalo [a,b], contendo uma raiz da equação f(x) = 0
 - Transformação desta equação em uma equação equivalente

$$x = \varphi(x)$$

 - A partir de x₀ gerar sequência {x_k} de aproximações para ξ, até convergir à raiz

$$x_{k+1} = \varphi(x_k)$$

A função φ(x) é definida da seguinte forma:

$$\varphi(x): f(\xi) = 0 \Longleftrightarrow \varphi(\xi) = \xi$$

- Ao invés de tentar encontrar um zero de f(x), procura-se um ponto fixo de φ(x), onde φ(x) é conhecida como a função de iteração utilizada
- Importância do método está mais nos conceitos teóricos do que na sua eficiência computacional
 - Base para métodos muito eficientes como o de Newton-Raphson

- Reorganiza-se a equação f(x) = 0, tal que x esteja no lado esquerdo da equação usando manipulação algébrica ou simplesmente somando-se x aos dois lados da equação
 - $-x = \phi(x)$
 - Exemplo: equação x² + x 6 = 0 $\varphi_1(x) = 6 x^2 \qquad \qquad \varphi_3(x) = \frac{6}{x} 1 \\ \varphi_2(x) = \pm \sqrt{6 x} \qquad \qquad \varphi_4(x) = \frac{6}{x + 1}$
 - Podem existir infinitas funções de iteração para uma dada equação (deve-se escolher qual a adequada)

Funções de iteração

Forma geral:

- $\varphi(x) = x + A(x) f(x)$ (forma geral das funções de iteração)
- com a condição que em ξ , ponto fixo de $\phi(x)$, $A(\xi) \neq 0$

•
$$f(\xi) = 0 \Leftrightarrow \varphi(\xi) = \xi$$

- Prova:

ida:
$$f(\xi) = 0 \Rightarrow \varphi(\xi) = \xi$$

• seja ξ tal que f(ξ) = 0. Então $\varphi(\xi) = \xi + A(\xi)f(\xi) \Rightarrow \varphi(\xi) = \xi$

volta:
$$\varphi(\xi) = \xi \Rightarrow f(\xi) = 0$$

• se $\varphi(\xi) = \xi \Rightarrow \xi + A(\xi) f(\xi) = \xi \Rightarrow A(\xi) f(\xi) = 0 \Rightarrow f(\xi) = 0 (A(\xi) \neq 0)$.

Graficamente, uma raiz
ξ da equação x = φ(x) é
a abscissa do ponto de
interseção da reta y = x
e da curva y = φ(x)

Graficamente, uma raiz
ξ da equação x = φ(x) é
a abscissa do ponto de
interseção da reta y = x
e da curva y = φ(x)

- Graficamente, uma raiz
 ξ da equação x = φ(x) é
 a abscissa do ponto de
 interseção da reta y = x
 e da curva y = φ(x)
- Nem sempre uma dada sequência converge para a raiz desejada

- Graficamente, uma raiz
 ξ da equação x = φ(x) é
 a abscissa do ponto de
 interseção da reta y = x
 e da curva y = φ(x)
- Nem sempre uma dada sequência converge para a raiz desejada

Algoritmo

```
Algoritmo: MPF Entrada: x_0, \epsilon_1, \epsilon_2, iterMax Saída: raiz

se abs(f(x_0)) < \epsilon_1 então raiz \leftarrow x_0; Fim. k \leftarrow 1
repita
x_1 \leftarrow \phi(x_0)
escreva k, x_1, x_0, x_1-x_0, f(x_1)
se abs(f(x_1)) < \epsilon_1 ou abs(x_1-x_0) < \epsilon_2 ou k \ge iterMax então raiz \leftarrow x_1; Fim. fim se
x_0 \leftarrow x_1
k \leftarrow k+1
fim repita
fim algoritmo
```

Exercício

k	x1	x0	x1-x0	f(x1)
1	3.472222e-01	5.000000e-01	-1.527778e-01	-8.313775e-02
2	3.379847e-01	3.472222e-01	-9.237528e-03	-3.253021e-03
3	3.376232e-01	3.379847e-01	-3.614467e-04	-1.237357e-04

raiz = 3.376232e-01

Estudo da Convergência

Vimos que

- Para uma dada equação f(x) = 0, existe mais de uma função φ(x), tal que f(x) = 0 ⇔ x = φ(x)
- Não é qualquer escolha de $\varphi(x)$ que o processo recursivo $x_{k+1} = \varphi(x_k)$ irá convergir para a raiz

• $x^2 + x - 6 = 0$, onde $\xi_1 = -3$ e $\xi_2 = 2$

- Sejam $\varphi_1(x) = 6 - x^2 e x_0 = 1.5$, $\varphi(x) = \varphi_1(x)$

$$x_1 = \varphi(x_0) = 6 - 1.5^2 = 3.75$$

$$x_2 = \varphi(x_1) = 6 - (3.75)^2 = -8.0625$$

$$x_3 = \varphi(x_2) = 6 - (-8.0625)^2 = -59.003906$$

•

Podemos ver que $\{x_k\}$ não converge para $\xi_2 = 2$

•
$$x^2 + x - 6 = 0$$
, onde $\xi_1 = -3$ e $\xi_2 = 2$

- Sejam
$$\varphi_2(x) = \sqrt{6-x}$$
 e $x_0 = 1.5$, $\varphi(x) = \varphi_2(x)$

$$x_1 = \varphi(x_0) = \sqrt{6 - 1.5} = 2.12132$$

 $x_2 = \varphi(x_1) = \sqrt{6 - 2.12132} = 1.96944$
 $x_3 = \varphi(x_2) = \sqrt{6 - 1.96944} = 2.007623$
 $x_4 = \varphi(x_3) = \sqrt{6 - 2.007623} = 1.99809$

Podemos ver que $\{x_k\}$ converge para $\xi_2 = 2$

Teorema para convergência

- Seja ξ uma raiz da equação f(x) = 0, isolada num intervalo I centrado em ξ considerado
- Seja φ(x) uma função de iteração para a equação f(x) = 0. Então nesse caso se:
 - i) φ(x) e φ' (x) são contínuas em I
 - $-ii) |\phi'(x)| \le M < 1, \forall x \in I e$
 - $-iii) x_0 \in I$
- Então a sequência considerada $\{x_k\}$ que é gerada por $x_{k+1} = \phi(x_k)$ converge para ξ

Teorema para convergência

- Demonstração em 2 partes:
 - 1) Prova-se que se $x_0 \in I$, então $x_k \in I$, $\forall k$
 - Parte-se $\text{de}f(\xi) = 0 \Leftrightarrow \varphi(\xi) = \xi$ e como $\varphi(x)$ é contínua e diferenciável em I, também usa-se o Teorema do Valor Médio para mostrar que a distância de x_{k+1} para ξ é sempre menor que a distância de x_k para ξ
 - Como I está centrado em ξ , se $x_k \in I$, $x_{k+1} \in I$
 - 2) Prova-se que $\lim_{k\to\infty} x_k = \xi$

Obs: Detalhes em [Ruggiero & Lopes, 2000]

- $x^2 + x 6 = 0$, onde $\xi_1 = -3$ e $\xi_2 = 2$:
 - Sejam $\varphi_1(x) = 6 x^2 e \varphi_1'(x) = -2x$
 - φ₁(x) e φ₁' (x) são contínuas em R

$$|\varphi'(x)| < 1 \Leftrightarrow |2x| < 1 \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2} - \frac{\mathbf{x_2}}{2}$$

Então não existe intervalo I centrado em ξ₂ = 2, tal que |φ'(x)| < 1, ∀x ∈ I

- Portanto condição ii) não satisfeita

- $x^2 + x 6 = 0$, onde $\xi_1 = -3$ e $\xi_2 = 2$: -1
 - Sejam $\varphi_2(x) = \sqrt{6-x}$ e $\varphi_2'(x) = 2\sqrt{6-x}$
 - φ₂(x) é contínua em S = {x∈ℝ | x≤6}
 - φ₂ '(x) é contínua em S' = {x∈ℝ | x<6}
 - $|\varphi_2'(x)| < 1 \Leftrightarrow |\frac{1}{2\sqrt{6-x}}| < 1 \Leftrightarrow x < 5.75$
 - Então existe um intervalo I centrado em $\xi_2 = 2$, tal que $|\phi'(x)| < 1$, $\forall x \in I$
 - Portanto condição ii) é satisfeita

 $\Phi(x)$

V=X

XOX2 EX1

- $x^2 + x 6 = 0$, onde $\xi_1 = -3$ e $\xi_2 = 2$:
 - Sejam $\varphi_3(x) = \frac{6}{x} 1$ e $\varphi_3'(x) = \frac{-6}{x^2}$
 - φ₃(x) é contínua em S = {x∈ℝ | x<0}
 - ϕ_3 '(x) é contínua em S' = {x $\in \mathbb{R} \mid x < 0$ }
- $|\varphi'(x)| < 1 \Leftrightarrow |\frac{-6}{x^2}| < 1 \Leftrightarrow x^2 > 6$

$$\Leftrightarrow x < -\sqrt{6} \ ou \ x > \sqrt{6}$$

Então existe intervalo I centrado em 5
 ξ₁ = -3, tal que |φ₃² (x)| < 1, ∀x ∈ I e
 portanto condição ii) também é satisfeita

X1X3 5 X2 X0

Critérios de Parada

 Escolhe-se x_k como raiz aproximada de ξ caso

$$|x_k-x_{k-1}|=|\varphi(x_{k-1})-x_{k-1}|<\varepsilon$$
 ou

$$|f(x_k)| < \varepsilon$$

Critérios de Parada

No entanto se φ' (x) < 0 em
 I, a sequência {x_k} será
 oscilante em torno de ξ e:

$$|x_k - x_{k-1}| < \varepsilon \Rightarrow |x_k - \xi| < \varepsilon$$

• Pois $|x_k - \xi| < |x_k - x_{k-1}|$

- A ordem de convergência de método iterativo informa a rapidez de convergência do processo
- Seja $\{x_k\}$ uma sequência que converge para um número ξ e seja $e_k = x_k$ ξ o erro na iteração k
 - Se existir um número p > 1 e uma constante C > 0, tais que

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$$

- Então p é chamada de **ordem de convergência** da sequência {x_k} e C é a **constante assintótica de erro**

Ordem de Convergência

Convergência linear:

Convergência de método iterativo:

$$|e_{k+1}| \approx C|e_k|^p \operatorname{para} k \to \infty$$

- Se $\{x_k\}$ converge, e_k →0 quando k→∞
- ↑p ⇒ C |e_k|^p será mais próximo de 0
 - (independente do valor de C)
 - ↑p ⇒ convergência mais rápida

Ordem de Convergência

O MPF em geral tem convergência linear

$$e_{k+1} = \varphi'(\xi)e_k$$

- Para grandes valores de k o erro em qualquer iteração é proporcional ao erro na iteração anterior por um fator de φ' (ξ)
- A convergência do método do ponto fixo será mais rápida quanto menor for |φ' (ξ)|

Obs: Detalhes em [Ruggiero & Lopes, 2000]

Observações sobre Erros

Se φ' (ξ) for positiva,
 os erros terão sempre
 o mesmo sinal de x₀-ξ

Observações sobre Erros

 Se φ' (ξ) for negativa, os erros mudarão de sinal em cada iteração

Observações finais

- Vantagens: ©
 - O método é bastante simples
 - É muito fácil de implementar

- Converge mais rápido que bisseção

Observações finais

- Desvantagens: ☺
 - A convergência não é mais assegurada
 - Pode ser difícil se achar função de iteração
 - A convergência do método é somente linear
- O método da ponto fixo funciona bem e converge rapidamente para equações onde se encontra de maneira fácil e eficiente boas funções de iteração