Методи оптимізації. Лекція 02.04.2022

Метод Фібоначчі

Подібно до методу золотого перетину метод Фібоначчі потребує двох обчислень цільової функції на першій ітерації, а на кожній наступній ітерації тільки по одному обчисленню значення цільової функції. Нагадаємо, що в методі ділення відрізка навпіл на кожній ітерації проводиться по два обчислення значень цільової функції. Але, на відміну від методів ділення відрізка навпіл та методу золотого перетину, метод Фібоначчі потребує *попереднього завдання* числа n обчислень значень цільової функції.

Метод Фібоначчі пов'язаний з числами Фібоначчі. Відомо, що числа Фібоначчі визначаються рекурентними співвідношеннями

$$F_{n+2} = F_{n+1} + F_n, \ n = 1, 2, 3, \dots; \ F_1 = F_2 = 1.$$
 (9)

За допомогою індукції легко показати, що n-е число Фібоначчі представимо у вигляді:

$$F_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right). \tag{10}$$

Формулу (10) називають формулою Біне. Числа Фібоначчі тісно пов'язані з золотим перетином $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.61803$. Формула Біне виражає за допомогою φ значення F_n в явному вигляді як функцію від n. З формули (10) витікає, що для великих n

$$F_n \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.$$

Виберемо на проміжку $[a_1,b_1] = [a,b]$ дві точки

$$\lambda_1 = a + \frac{F_n}{F_{n+2}}(b-a), \ \mu_1 = a + \frac{F_{n+1}}{F_{n+2}}(b-a),$$

симетричних одна одній відносно середини відрізка [a,b].

Якщо $f\left(\lambda_1\right) \leq f\left(\mu_1\right)$, то покладаємо $a_2=a$, $b_2=\mu_1$, $\overline{x}_2=\lambda_1$.

Якщо ж $f(\lambda_1) > f(\mu_1)$, то покладаємо $a_2 = \lambda_1$, $b_2 = b$, $\overline{x}_2 = \mu_1$.

У результаті отримаємо відрізок $[a_2,b_2]$, який містить точку мінімуму функції f(x) на [a,b] і має довжину

$$b_2 - a_2 = b - \lambda_1 = \mu_1 - a = \frac{F_{n+1}}{F_{n+2}} (b - a).$$

Точка \overline{x}_2 ϵ наближеним значенням точки мінімуму x_* .

Нехай знайдено відрізок $[a_k, b_k]$ довжини

$$b_k - a_k = \frac{F_{n-k+3}}{F_{n+2}} (b - a), \tag{11}$$

який містить точку мінімуму функції f(x) на [a,b] і точку \overline{x}_k , яка є наближеною точкою мінімуму.

Дві симетричні відносно середини проміжку точки обчислюються так:

$$\lambda_k = a_k + \frac{F_{n-k+1}}{F_{n+2}} (b - a), \ \mu_k = a_k + \frac{F_{n-k+2}}{F_{n+2}} (b - a). \tag{12}$$

Якщо $f(\lambda_k) \le f(\mu_k)$, то $a_{k+1} = a_k$, $b_{k+1} = \mu_k$, $\mu_{k+1} = \lambda_k$,

$$\lambda_{k+1} = a_{k+1} + \frac{F_{n-k}}{F_{n+2}} (b-a).$$

Якщо $f(\lambda_k) > f(\mu_k)$, то $a_{k+1} = \lambda_k$, $b_{k+1} = b_k$, $\lambda_{k+1} = \mu_k$,

$$\mu_{k+1} = a_{k+1} + \frac{F_{n-k+1}}{F_{n+2}} (b-a).$$

Довжина отриманого відрізка $[a_{k+1},b_{k+1}]$ дорівнює

$$b_{k+1} - a_{k+1} = \frac{F_{n-k+2}}{F_{n+2}} (b-a).$$

Зауважимо, що точки λ_k та μ_k можна обчислювати з використанням довжини проміжку $[a_k,b_k]$, а не початкового проміжку [a,b]

$$\lambda_k = a_k + \frac{F_{n-k+1}}{F_{n-k+3}} (b_k - a_k), \ \mu_k = a_k + \frac{F_{n-k+2}}{F_{n-k+3}} (b_k - a_k).$$
 (13)

Ітераційний процес продовжується доки не буде вичерпано задану кількість ітерацій n.

Нехай k = n. Тоді процес закінчуємо і отримуємо

$$\lambda_n = a_n + \frac{b-a}{F_{n+2}}, \ \mu_n = a_n + \frac{b-a}{F_{n+2}}.$$

Отже, на відрізку $[a_n,b_n]$ точка \overline{x}_n співпадає з $\lambda_n=\mu_n$ і

$$b_n - a_n = \frac{2(b - a)}{F_{n+2}}. (14)$$

Похибка методу Фібоначчі:

$$\left| x_* - \overline{x}_n \right| \le \frac{b - a}{F_{n+2}},\tag{15}$$

Рекомендації до чисельної реалізації методу Фібоначчі

Найчастіше відомі довжина відрізка, на якому розшукується точка мінімуму і точність обчислення $\varepsilon > 0$. Метод Фібоначчі потребує попереднього завдання числа n обчислень значень цільової функції.

Кількість ітерацій, необхідних для досягнення заданої точності, дорівнює найменшому з чисел n, яке задовольняє нерівності

$$\frac{b-a}{F_{n+2}} < \varepsilon \le \frac{b-a}{F_{n+1}},$$

або

$$F_{n+1} \le \frac{b-a}{\varepsilon} < F_{n+2}.$$

Відзначимо, що довжина відрізка [a,b], на якому можна знайти точку x_* з заданою точністю $\varepsilon > 0$, виконавши при цьому n обчислень значень цільової функції f(x), не перевищує величини $\varepsilon \cdot F_{n+2}$.

Порівняння методів лінійного пошуку за числом обчислень значень цільової функції

Нехай довжина вихідного відрізка дорівнює (b_1-a_1) . При заданій величині останнього відрізка (b_n-a_n) , яка задовольняє потрібній точності $\varepsilon>0$, необхідне число обчислень цільової функції n може бути визначено як найменше додатне ціле, яке задовольняє таким співвідношенням:

1. метод ділення відрізку навпіл

$$\left(\frac{1}{2}\right)^{\frac{n}{2}} \leq \frac{b_n - a_n}{b_1 - a_1},$$

2. метод золотого перетину

$$\left(\frac{\sqrt{5}-1}{2}\right)^{n-1} \le \frac{b_n - a_n}{b_1 - a_1},$$

3. метод Фібоначчі

$$F_n \ge \frac{b_1 - a_1}{b_n - a_n}.$$

Для фіксованого значення відношення $\frac{b_1 - a_1}{b_n - a_n}$ найменше число обчислень цільової функції відповідає найбільш ефективному алгоритму.

обчислень цільової функції відповідає найбільш ефективному алгоритму. Тому, з цієї точки зору, найбільш ефективним алгоритмом є метод Фібоначчі, далі — метод золотого перетину, потім — метод ділення відрізка навпіл.

Зауважимо, що для достатньо великих n значення $\frac{1}{F_n} \rightarrow \left(\frac{\sqrt{5}-1}{2}\right)^{n-1}$, так що методи Фібоначчі та золотого перетину є майже рівноцінними.

Приклад. Знайти мінімум функції $f(x) = x^4 - 2x^2 - 3x + 6$ на відрізку [-2;3] з точністю $\varepsilon = 10^{-2}$ методами: ділення навпіл (дихотомії), золотого перетину, Фібоначчі.

Відзначимо, що цільова функція $f(x) = x^4 - 2x^2 - 3x + 6$ є строго квазіопуклою на заданому проміжку [-2;3], а точка мінімуму дорівнює $x_* = 1.26255$, $f(x_*) = 1.565225$.

Графік функції $f(x) = x^4 - 2x^2 - 3x + 6$ на [-2; 3] має вигляд (рис. 1).

1. Метод ділення навпіл (дихотомії)

Нехай ε = 0.01, δ = 0.001. Визначимо перші дві точки:

$$\lambda_1 = \frac{-2 + 3 - 0.001}{2} = 0.4995, \ \mu_1 = \frac{-2 + 3 + 0.001}{2} = 0.5005,$$

$$f(\lambda_1) = 4.06475, \ f(\mu_1) = 4.06025.$$

Так як $f(\lambda_1) > f(\mu_1)$, то новий інтервал $[a_2, b_2] = [0.4995, 3]$.

Далі

$$\lambda_{2} = \frac{0.4995 + 3 - 0.001}{2} = 1.74925, \ \mu_{2} = \frac{0.4995 + 3 + 0.001}{2} = 1.75025,$$
$$f(\lambda_{2}) = 3.99534, \ f(\mu_{2}) = 4.00677.$$

Так як $f(\lambda_2) \le f(\mu_2)$, то новий інтервал $[a_3, b_3] = [0.4995, 1.75025]$.

Цей процес повторюється згідно сформульованому алгоритму та результати обчислень наведені в таблиці 1.

Номер	λ_k	μ_{k}	a_{k+1}	b_{k+1}	$\overline{\mathcal{X}}_n$
ітерації <i>k</i>	$f\left(\lambda_{_{k}} ight)$	$f\left(\mu_{_{\!k}} ight)$		$f(b_{k+1})$	$f(\overline{x}_n)$
1	0.4995	0.5005	0.4995	3	0.5005
	4.06475	4.06025	4.06475	60.0	4.06025
2	1.74925	1.75025	0.4995	1.75025	1.74925
		4.00677			
3		1,12537			
		1,69488			
4	1,43681	1,43781	1,12438	1,43781	1,43681
	1,82257	1,8257	1,69669	1,8257	1,82257
5		1,28159			
	1,56772	1,568	1,69669	1,568	1,56772
6		1,20348			
		1,59059			
7		1,24254			
	1,56852	1,56821	1,56852	1,568	1,56821
8		1,26207			
		1,56523			
9		1,27183			
	1,56575	1,56588	1,56524	1,56588	1,56575
10		1,26695			
	1,56531	1,56537	1,56524	1,56537	1,56531

Наближеним значенням мінімуму функції $f(x) = x^4 - 2x^2 - 3x + 6$ на проміжку [-2;3] з точністю $\varepsilon = 10^{-2}$ за методом ділення навпіл (дихотомії) є точка $\overline{x}_n = 1.26595$, $f(\overline{x}_n) = 1.56531$ при 20 обчисленнях значень цільової функції.

За наближене значення мінімуму також можна взяти точку $\overline{y}_n = \left(a_{k+1} + b_{k+1}\right)/2 = \left(1,26107 + 1,26695\right)/2 = 1,26401.$

2. Метод золотого перетину

Нехай ε = 0.01. Визначимо перші дві точки:

$$\lambda_1 = -2 + \frac{3 - \sqrt{5}}{2} (3 + 2) = -0.09017, \ \mu_1 = -2 + \frac{\sqrt{5} - 1}{2} \cdot 5 = 1.09017,$$

$$f(\lambda_1) = 6.25431, \ f(\mu_1) = 1.76501.$$

Так як $f(\lambda_1) > f(\mu_1)$, то новий інтервал $[a_2, b_2] = [-0.09017, 3]$. Далі, за властивістю золотого перетину $\lambda_2 = \mu_1$, $f(\lambda_2) = f(\mu_1)$ і

$$\mu_2 = -0.09017 + \frac{\sqrt{5} - 1}{2} (3 + 0.09017) = 1.81966, \ f(\mu_2) = 4.88249.$$

Так як $f(\lambda_2) \le f(\mu_2)$, то новий інтервал $[a_3, b_3] = [-0.09017, 1.81966]$.

Цей процес повторюється згідно сформульованому алгоритму та результати обчислень наведені в таблиці 2.

Таблиця 2

Номер	λ_k	μ_{k}	a_{k+1}	b_{k+1}	\overline{X}_n
ітерації <i>k</i>	$f(\lambda_k)$	$f\left(\mu_{k} ight)$	$f\left(a_{k+1}\right)$	$f\left(b_{k+1}\right)$	$f\left(\overline{x}_{n}\right)$
1	-0,09017	1,09017	-0,09017	3	1,09017
	6,25431	1,76501	6,25431		
2	1,09017	1,81966	-0,09017		1,09017
	1,76501	4,88449	6,25431	4,88449	1,76501
3			0,63932	1,81966	1,09017
	3,43164	1,76501	3,43164	4,88449	1,76501
4		1,36881	1,09017		1,36881
	1,76501	1,65682	1,76501	4,88449	1,65682
5			1,09017		1,36881
	1,65682		1,76501		
6	1,26238	1,36881	1,09017	1,36881	1,26238
	1,56522	1,65682	1,76501	1,65682	1,56522
7	1,1966	1,26238	1,1966	1,36881	1,26238
	1,59669	1,56522	1,59669	1,65682	1,56522
8	1,26238	1,30303	1,1966	1,30303	1,26238
	1,56522	1,57796	1,59669	1,57796	1,56522
9			1,23725		1,26238
	1,56998	1,56522	1,56998	1,57796	1,56522
10			1,23725		
	1,56522	1,56703	1,56998	1,56703	1,56522
11			1,25278		1,26238
	1,56594	1,56522	1,56594	1,56703	1,56522
12			1,25278		
	1,56522	1,56548	1,56594	1,56548	1,56522
13	1,25871	1,26238	1,25871 1,56534	1,26831	1,26238
	1,56534	1,56522	1,56534	1,56548	1,56522

Наближеним значенням мінімуму функції $f(x) = x^4 - 2x^2 - 3x + 6$ на проміжку [-2;3] з точністю $\varepsilon = 10^{-2}$ за методом золотого перетину ε точка $\overline{x}_n = 1,26238$, $f(\overline{x}_n) = 1,56522$. Було виконано 14 обчислень значень цільової функції.

 $\overline{y}_n = \frac{a_{k+1} + b_{k+1}}{2} = \frac{1,25871 + 1,26831}{2} = 1,26351.$

3. Метод Фібоначчі

Знайдемо наближене значення точки мінімуму функції $f(x) = x^4 - 2x^2 - 3x + 6$ з точністю $\varepsilon = 10^{-2}$ методом Фібоначчі. В цьому методі заздалегідь потрібно задати кількість ітерацій n.

Числа Фібоначчі обчислюються за рекурентною формулою:

$$F_{n+2} = F_n + F_{n+1}, F_1 = 1, F_2 = 1, n = 1, 2, \dots$$

Наведемо перші 20 чисел Фібоначчі:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765.

Знайдемо число n, яке задовольняє умову

$$F_{n+1} < \frac{b-a}{\varepsilon} \le F_{n+2}.$$

Для цього прикладу $\frac{b-a}{\varepsilon} = 500$ і $F_{14} < 500 \le F_{15}$. Отже, n = 13.

Визначимо перші дві точки:

$$\lambda_1 = -2 + \frac{233}{610} \cdot 5 = -0.09016, \ \mu_1 = -2 + \frac{377}{610} \cdot 5 = 1.09016,$$

 $f(\lambda_1) = 6.2543, \ f(\mu_1) = 1.76502.$

Так як $f(\lambda_1) > f(\mu_1)$, то новий інтервал $[a_2, b_2] = [-0.09016, 3]$. Далі, за властивістю методу Фібоначчі $\lambda_2 = \mu_1$, $f(\lambda_2) = f(\mu_1)$ і

$$\mu_2 = -0.09016 + \frac{144}{610} \cdot 5 = 1.81967, \ f(\mu_2) = 4.88266.$$

Так як $f(\lambda_2) \le f(\mu_2)$, то новий інтервал $[a_3, b_3] = [-0.09017, 1.81967]$. Для заданої функції результати обчислень наведені в таблиці 3.

Таблиця 3

Номер	λ_k	$\mu_{\scriptscriptstyle k}$	a_{k+1}	b_{k+1}	$\overline{\mathcal{X}}_n$
ітерації к	$f(\lambda_{k})$	$f(\mu_{\scriptscriptstyle k})$	$f(a_{k+1})$	$f(b_{k+1})$	$f(\overline{x}_n)$
1	-0,09016	<mark>1,09016</mark>	-0,09016	3 60.0	1,09016
2				1,81967	
				4,88266	
3				1,81967	
	3,43153	1,76502	3,43153	4,88266	1,76502
4				1,81967	
				4,88266	
5				1,54098	
	1,65689	2,26666	1,76502	2,26666	1,65689
6				1,36885	
	1,56523	1,65689	1,76502	1,65689	1,56523
7				1,36885	
				1,65689	
8				1,30328	
	1,56523	1,57812	1,59658	1,57812	1,56523
9				1,30328	
	1,56982	1,56523	1,56982	1,57812	1,56523
10				1,2787	
	1,56523	1,56722	1,56982	1,56722	1,56523

Номер	λ_k	μ_k	a_{k+1}	b_{k+1}	\overline{X}_n
ітерації k	$f(\lambda_{_{\!k}})$	$f(\mu_{_{\! k}})$	$f(a_{k+1})$	$f(b_{k+1})$	$f(\overline{x}_n)$
11	1,2541	1,2623	1,2541	1,2787	1,2623
	1,56576	1,56523	1,56576	1,56722	1,56523
12	1,2623	1,27049	1,2541	1,27049	1,2623
	1,56523	1,5657	1,56576	1,5657	1,56523
13	1,2623	1,2623	1,2541	1,2623	1,2623
	1,56523	1,56523	1,56576	1,56523	1,56523

За обчисленнями наближеним значенням мінімуму функції $f(x) = x^4 - 2x^2 - 3x + 6$ на проміжку [-2;3] з точністю $\varepsilon = 10^{-2}$ за методом Фібоначчі є точка $\overline{x}_n = 1,2623$, $f(\overline{x}_n) = 1,56523$. Було виконано 14 обчислень значень цільової функції.

Мінімізація функцій багатьох змінних

Нехай функція f(x) визначена на множині $X \subset E^n$. Умовимося записувати задачу на мінімум у вигляді

$$f(x) \rightarrow min, x \in X.$$
 (1)

Точка x_* називається:

1) точкою *глобального мінімуму* функції f(x) на множині X або глобальним розв'язком задачі (1), якщо

$$f(x_*) \le f(x)$$
 для усіх $x \in X$. (2)

2) точкою *локального мінімуму* функції f(x) на множині X або локальним розв'язком задачі (1), якщо існує число $\varepsilon > 0$ таке, що

$$f(x_*) \le f(x)$$
 при усіх $x \in X \cap U_{\varepsilon}(x_*)$, (3)

де $U_{\varepsilon}(x_*) = \{ x \in E^n : ||x - x_*|| \le \varepsilon \}$ – куля радіуса $\varepsilon > 0$ з центром у точці x_* .

Якщо нерівності (2) або (3) виконуються як строгі при $x \neq x_*$, то кажуть, що x_* – **точка строгого мінімуму** в глобальному або локальному сенсі.

Ясно, що глобальний розв'язок ϵ і локальним; зворотне твердження ϵ хибним.

Значення функції $f(x_*)$ називається *найменшим* значенням та позначається як

$$f(x_*) = \min_{x \in X} f(x).$$

Позначимо через $X_* = \{ x \in X : f(x) = f(x_*) \}$ — множину всіх точок мінімуму функції f(x) на X. Залежно від властивостей множини X та

функції f(x), множина X_* може складатися з однієї, кількох або безлічі точок, а також можливо, що X_* є порожньою множиною.

Приклад. Для функції f(x) = |x| + |x-1| - 1 (рис. 1) маємо:

- 1) $X = \{x : 1 \le x \le 2\}$, множина точок мінімуму $X_* = \{1\}$,
- 2) $X = \{x : 0 \le x \le 2\}$, множина точок мінімуму $X_* = \{x : 0 \le x \le 1\}$,
- 3) $X = \{x : 1 < x \le 2\}$, множина точок мінімуму $X_* = \emptyset$.

Аналогічно з (1) будемо записувати задачу максимізації функції f(x) на множині X у вигляді

$$f(x) \rightarrow max, x \in X.$$
 (4)

Розв'язки задач (1) та (4), тобто точки мінімуму та максимуму функції f(x) на X, називають **точками екстремуму**, а самі задачі (1), (4) – **екстремальними задачами**.

Ясно, що задача (4) еквівалентна задачі

$$-f(x) \rightarrow min, x \in X$$

в тому сенсі, що відповідні множини глобальних та локальних розв'язків цих задач співпадають. Це дозволяє переносити результати, які отримані для задачі мінімізації до задач максимізації та навпаки. У подальшому, ми будемо розглядати задачу мінімізації.

Приклад.

Нехай $f(x) = x^2 + 1$, $x \in [-4,4]$. Такі задачі будуть еквівалентними (рис. 2):

Задача *I*:

$$f(x) \rightarrow min, x \in [-4,4].$$

Задача ІІ:

$$\left\{-f(x)\right\} \rightarrow max, x \in [-4,4].$$

При цьому
$$\min_{x \in [-4,4]} f(x) = -\max_{x \in [-4,4]} f(x) = 1.$$

При дослідженні задач оптимізації, у першу чергу, виникає питання про існування розв'язку задачі. Наведемо, в зв'язку з цим, важливу теорему з математичного аналізу.

Теорема Вейеритраса. Нехай X – замкнена, обмежена множина в E^n , f(x) – неперервна функція на множині X. Тоді існує точка глобального мінімуму функції f(x) на множині X.

При розв'язанні задач оптимізації часто застосовують їхню геометричну інтерпретацію, яка основана на понятті *ліній (поверхонь) рівня* функції f(x), тобто множин вигляду

$$\Gamma_{\alpha} = \{ x \in E^n : f(x) = \alpha \}, \alpha \in E^1,$$

де $E^1 = R_1 = \{ x : -\infty < x < +\infty \}$ – числова вісь.

На рис. 3 показано ліній рівня функції $f(x) = 100(x_2 - x_1^3)^2 + (1 - x_1)^2$

Рис. 3

Функція $f\left(x\right)$ називається **необмеженою знизу** на множині X , якщо існує така послідовність $\left\{x^{(k)}\right\}_0^\infty \in X$, що

$$\lim_{k\to\infty} f\left(x^{(k)}\right) = -\infty.$$

Функція f(x) називається *обмеженою знизу* на множині X , якщо існує таке число M , що

$$f(x) \ge M$$
, $\forall x \in X$.

Число f_* називається **нижньою межею** функції $f\left(x\right)$ на множині X , якшо

- 1) $f_* \le f(x), \forall x \in X$,
- 2) $\forall \varepsilon > 0$ (як завгодно малого) існує точка $x_{\varepsilon} \in X$ така, що

$$f(x_{\varepsilon}) < f_* + \varepsilon$$
.

Будемо позначати;

$$f_* = \inf_{x \in X} f(x).$$

Для функції, яка необмежена знизу, за нижню межу функції f(x) на множині X приймається $f_* = -\infty$.

Зауважимо, що нижня межа у функції *існує завжди* (скінченна або яка дорівнює нескінченності), а найменше значення функції на множині X може не існувати.

Тому

задача знаходження нижньої межі $f(x) \rightarrow inf$, $x \in X$ завжди розв'язна.

задача знаходження мінімуму $f(x) \to min, x \in X$ не завжди має розв'язки.

Послідовність $\left\{x^{(k)}\right\}_0^\infty$ називається **мінімізуючою послідовністю** функції $f\left(x\right)$, якщо

$$\lim_{k \to \infty} f\left(x^{(k)}\right) = \inf_{x \in X} f\left(x\right) = f_*,\tag{5}$$

де f_* – точна нижня межа.

Послідовність $\left\{x^{(k)}\right\}$ збігається до непорожньої множини X , якщо

$$\lim_{k\to\infty}\rho(x^{(k)},X)=0,$$

де $\rho(x^{(k)}, X) = \inf_{x \in X} |x^{(k)} - x|$ — відстань від точки $x^{(k)}$ до множини X .

Мінімізуюча послідовність *існує завжди*, але вона *не завжди* збігається до множини точок мінімуму.

Приклад. Нехай
$$f(x) = \frac{x^2}{1+x^4}$$
, $x \ge 0$ (рис. 4).

Точна нижня межа для цієї функції $f_*=0$, множина точок мінімуму складається з однієї точки $x_*=0$, тобто $X_*=\left\{0\right\}$.

Візьмемо послідовність $\left\{x^{(k)}\right\} = k$, $k = 1, 2, \dots$ Маємо, що

$$\lim_{k \to \infty} f(x^{(k)}) = \lim_{k \to \infty} \frac{k^2}{1 + k^4} = 0.$$

Отже, послідовність $\left\{x^{(k)}\right\}=k$, $k=1,2,\ldots$ є мінімізуючою послідовністю, але вона не збігається до $X_*=\left\{0\right\}$, так як $\lim_{k\to\infty}\rho\left(x^{(k)},0\right)=k$ і не прямує до нуля.

Елементи опуклого аналізу

Опуклий аналіз – розділ математики, де вивчаються опуклі множини та опуклі функції. Поняття та твердження опуклого аналізу грають фундаментальну роль у теорії і чисельних методах оптимізації.

Непорожня множина $X \subset E^n$ називається **опуклою**, якщо $\forall y, z \in X$ точки $x_{\lambda} = \lambda y + (1 - \lambda) z \in X$ для всіх λ , $0 \le \lambda \le 1$,

тобто X разом з будь-якими своїми точками y, z містить відрізок, який їх з'єднує.

Прикладами опуклих множин є:

1. $X = \{x \in E^n : (c, x) = \alpha\}$ – гіперплощина в E^n , α –скаляр, $c \in E^n$ – нормаль до гіперплощини;

 $x_1 + 2x_2 = 4 -$ пряма в просторі E^2

$$x_1 + 2x_2 + x_3 = 1$$
 — площина в просторі E^3

2.
$$X = \{ x \in E^n : (c, x) \le \alpha \}$$
 – півпростір в E^n ;

півпростір $x_3 \le x_1 + 2x_2$ в просторі E^3

півплощина в просторі E^2

3. $X = \{ x \in E^n : Ax \le b \}$ — багатогранна множина, A — матриця розміру $n \times n$, b - n-вимірний вектор;

багатогранник в просторі E^2

4. $X = \{ x \in E^n : ||x - x_0|| \le R \}$ – куля з центром у точці x_0 радіуса R.

 $x_1^2 + x_2^2 + x_3^2 \le 3$ – куля з центром у точці $x_0 = (0,0,0)$ радіуса $R = \sqrt{3}$.

 $x_1^2 + x_2^2 \le 1$ — коло з центром у точці (0,0) радіуса R = 1.

Наведемо приклади неопуклих множин:

Властивості опуклих множин

- 1. Перетин будь-якого числа опуклих множин ϵ множина опукла.
- 2. Об'єднання опуклих множин не завжди опукла множина.
- 3. Нехай точки $x_i \in X$ (опуклій множині), i = 1, l. Тоді точки вигляду

$$x = \sum_{i=1}^{l} \lambda_i x_i, \ \lambda_i \ge 0, \ i = \overline{1,l}, \ \sum_{i=1}^{l} \lambda_i = 1$$

також належать множині X і називаються *опуклою лінійною комбінацією* точок x_i .

Приклади.

- 1) будь-яка точка круга ϵ опуклою комбінаці ϵ ю кінців хорди, яка проходить через цю точку,
- 2) будь-яка внутрішня точка трикутника ϵ опуклою комбінаці ϵ ю його вершин.

Для неопуклих множин будується опукла оболонка.

Опукла оболонка — сукупність усіх опуклих комбінацій точок множини X . Опукла оболонка будь-якої множини — опукла множина. Опукла оболонка ε найменша опукла множина, яка містить дану множину.