응원봉 센서 데이터 EDA 분석

팀 123

202215084 박지현

202110834 김정우

202115064 김동주

202410773 손주희

202410948 구채린

데이터 출처

csv 파일로 저장

데이터 출처

좌우로 흔들기 shaking_lr

앞뒤로 흔들기 shaking_fb

시계방향으로 돌리기 rotate_cw

반시계 방향으로 돌리기 rotate_ccw

점프 jumping

데이터 출처

	Α	В	С	D	E	F	G
1	SamplingTime	AccelerationX	AccelerationY	AccelerationZ	GyroX	GyroY	GyroZ
2	1733469942	0.554557	-12.349442	-2.350059	-0.1491	0.392214	-0.47238
3	1733469942	1.289128	-12.496536	-2.169745	-0.10758	0.324546	-0.54511
4	1733469942	1.954267	-12.594698	-2.248904	0.01221	0.194641	-0.57276
5	1733469942	2.25444	-13.143718	-2.817227	0.25541	-0.05867	-0.55939
6	1733469942	2.094926	-13.35755	-3.113809	0.489295	-0.25822	-0.56065
7	1733469942	0.943615	-13.753342	-2.82441	0.697881	-0.52266	-0.67257
8	1733469942	0.369306	-14.308198	-2.530821	0.789302	-0.77861	-0.83765
9	1733469942	-0.024989	-14.136414	-2.398092	0.800005	-0.91444	-1.00888
10	1733469942	-0.306907	-14.15063	-2.571672	0.759906	-0.96066	-1.19076
11	1733469942	-0.861763	-13.998747	-2.971803	0.693831	-0.86453	-1.38632
12	1733469942	-1.404499	-13.734637	-3.972878	0.670484	-0.61332	-1.59596
13	1733469942	-1.757943	-13.32448	-5.080047	0.758419	-0.30005	-1.7921
14	1733469942	-2.002151	-13.034782	-5.697901	0.938567	-0.03326	-2.01755
15	1733469942	-1.959804	-12.584971	-5.664382	1.171339	0.089768	-2.2547
16	1733469942	-1.695544	-11.741913	-5.190629	1.446607	0.042056	-2.47881
17	1733469942	-1.355268	-10.978163	-4.439448	1.70935	-0.14588	-2.71296
18	1733469942	-0.902764	-10.153959	-3.64607	1.921022	-0.39167	-2.92244
19	1733469942	-0.456993	-9.056517	-3.096601	2.097569	-0.65388	-3.09465
20	1733469942	-0.32217	-8.244583	-2.605191	2.242822	-0.9407	-3.26551
21	1733469942	-0.105495	-7.47784	-2.268057	2.347796	-1.18663	-3.42287

이 데이터를 전처리 시 **윈도우 처리**를 해야 한다. 윈도우 처리는 연속적인 센서 데이터를 일정 구간으로 나누어 **시간적 특징 유지**, **노이즈 감소**, **행동 패턴 추출** 등 다양한 이점을 제공한다. 이를 통해 머신러닝 모델이 센서 데이터를 효과적으로 학습하고, 특정 행동을 정확히 구분 하는 데 도움이 된다.

추출된 csv 파일 예시

raw 데이터 전처리

```
l import pandas as pd
2 import numby as no
3 from scipy.stats import skew, kurtosis
5 def sma(window, columns): # Signal Magnitude Area(주로 움직임의 크기를 나타냄)
     return np.sum(np.abs(window[columns]), axis=1).mean()
8 def energy(window, column): # 에너지 계산(신호의 강도를 나타냄)
     return np.sum(window[column]**2) / len(window[column])
11 def igr(window, column): # 데이터의 75%와 25% 사이의 범위를 계산하여 데이터의 분산 정도를 나타냄
     return np.percentile(window[column], 75) - np.percentile(window[column], 25)
14 def mad(window, column): # Median Absolute Deviation(데이터 값이 중앙값에서 얼매나 벗어나는지 나타냄)
     return np.median(np.abs(window[column] - np.median(window[column])))
 7 def meanFreq(window, column): #푸리에 변환 계산 후 주파수 가중평균 반환(주파쉬 도메인에서 데이터의 주요 변화를 나타냄)
     _# 주어진 데이터에 푸리에 변환을 적용한 뒤. 주파수와 진폭의 가중평균을 계산
    fft_vals = np.fft.fft(window[column])
    freqs = np.fft.fftfreq(len(fft_vals))
     mag = np.abs(fft_vals)
     return np.sum(freqs * mag) / np.sum(mag)
24 def bandsEnergy(window, column, num_bins=64): # 주파수 대역 에너지 계산(푸리에 변환 후, 상위 num_bins 내의 에너지를 계산
     fft_vals = np.fft.fft(window[column])
     mag = np.abs(fft_vals)[:num_bins]
     return np.sum(mag**2) / num_bins
29 def angle(vec1, vec2): # 두 벡터 사이의 각도 계산
     dot_product = np.dot(vec1, vec2)
     magnitude = np.linalg.norm(vec1) * np.linalg.norm(vec2)
     return np.arccos(dot_product / magnitude) if magnitude != 0 else 0
```

raw 데이터 전처리

```
34 def process_motion(file_path, window_size=100, stride=50): # 윈도우 크기: 100, 웬도우 이동 간격: 50
      data = pd.read_csv(file_path)
      data.columns = data.columns.str.strip() # 열 이름의 공백 제거
     windows = []
      for i in range(D. len(data) - window_size, stride): # stride만큼 건너뛰면서 원도우를 만듬
         window = data.iloc[i:i + window_size] # 데미터에서 window_size 만큼의 데미터를 슬라미딩 방식으로 잘라 윈도우 생성.
         features = {}
         for sensor in ['Acceleration', 'Gyro']:
             for axis in ['X', 'Y', 'Z']: # 가속도(Acceleration)와 자미로(Gyro)의 X, Y, Z 축 데미터를 기준으로 다양한 특징(mean, std 등) 계산
                 col = f"{sensor}{axis}'
                 features[fimean_{sensor.lower()}_{axis.lower()}i] = window[col].mean()
                 features[f'std_{sensor.lower()}_{axis.lower()}'] = window[col].std()
                 features[f'mad_{sensor.lower()}_{axis.lower()}'] = mad(window, cbl)
                 features[f'max_{sensor.lower()}_{axis.lower()}'] = window[col].max()
                 features[f'min_{sensor.lower()}_{axis.lower()}'] = window[col].min()
                 features[fienergy_{sensor.lower()}_{axis.lower()}i] = energy(window, col)
                 features[f'bandsEnergy_{sensor.lower()}_{axis.lower()}'] = bandsEnergy(window, col)
                 features[f'igr_{sensor.lower()}_{axis.lower()}'] = igr(window, col)
                 features[f'meanFreq_{sensor,lower()}_{axis,lower()}'] = meanFreq(window, col)
                 features[f'skewness_{sensor,lower()}_{axis,lower()}'] = skew(window[col])
                 features[f'kurtosis_{sensor.lower()}_{axis.lower()}'] = kurtosis(window[col])
         features['sma_acc'] = sma(window, ['AccelerationX', 'AccelerationY', 'AccelerationZ']) # 현재 구간(window) 동안의 전체 가속도 크기
         features['sma_gyro'] = sma(window, ['GyroX', 'GyroY', 'GyroZ']) # 현재 구간(window) 동안의 전체 회전 운동 크기
         acc_vector = [window['AccelerationX'].mean(), window['AccelerationY'].mean(), window['AccelerationZ'].mean()] # 가속도 데이터의 평균으로 구성된 벡터
         gyro_vector = [window['GyroX'].mean(), window['GyroY'].mean(), window['GyroZ'].mean()] # 자이로스코프 데이터의 평균으로 구성된 벡터
         features['angle_acc_gyro'] = angle(acc_vector, gyro_vector) # 가속도와 자미로스코프 벡터 간의 각도
         features['label'] = 'shaking_lr' # 각 데이터셋에 해당하는 label 입력
         windows.append(features)
      return pd.DataFrame(windows)
```

raw 데이터 전처리

```
72#6개의 dataset을 사용. 아래의 6개의 data는 모두 같은 행동의 data
73 # 각각의 dataset은 15초 동안 특정 행동을 수행하여 추출한 data.
74 file_paths = [
      'sensordata1.csv'.
     'sensordata2.csv',
     'sensordata3.csv',
    'sensordata4.csv',
    'sensordata5.csv',
     'sensordata6.csv'
81 ]
83 window_size = 100 # 윈도우 크기: 100
84 stride = 50 # 윈도우 이동 간격: 50
86 all_motion_features = []
88 for file_path in file_paths:
     _motion_features = process_motion(file_path, window_size, stride)
     all_motion_features.append(motion_features)
92 motion_features_df = pd.concat(all_motion_features, ignore_index=True) # 각 파일별로 처리한 결과를 하나의 데이터프레임으로 결합.
94 output_file_path = "shaking_lr_dataset.csv"
95 motion_features_df.to_csv(output_file_path, index=False)
97 output_file_path
'shaking_Ir_dataset.csv'
```

전처리한 데이터 결합

```
1 import pandas as pd
2 import numpy as np
 4 file_paths = {
     "jumping": "jumping_dataset.csv", # 점프
 6 "shaking_Ir": "shaking_Ir_dataset.csv", # 좌우로 흔들기
     "shaking_fb": "shaking_fb_dataset.csv", # 앞뒤로 흔들기
   -- "rotate_cw": "rotate_cw_dataset.csv", # 시계 방향으로 돌리기
      "rotate_ccw": "rotate_ccw_dataset.csv", # 반시계 방향으로 돌리기
10 }
12 dataframes = {key: pd.read_csv(path) for key, path in file_paths.items()}
13
14 combined_df = pd.concat(dataframes.values(), ignore_index=True)
15 combined_df.head()
16
17 combined_df.to_csv('sensor_data.csv', index=False)
-1 data = pd.read_csv('sensor_data.csv')
```

- 전체 데이터의 행과 열 개수

> 944개의 행과 70개의 열로 구성된 데이터 프레임이다.

- 전체 데이터 상위 5개 행(행의 개수가 많아서 간략히 상위 5개 행만 살펴보았다.)

[5]	1#전체 데이터의 상위 5개 행 확인 2 data.head()								
₹	mean_a	cceleration_x	std_acceleration_x	mad_acceleration_x	max_acceleration_x	min_acceleration_x	energy_acceleration_x		
	0	5.116406	17.380434	10.424653	46.241012	-34.851047	325.236293		
	1	6.348106	23.097543	16.827497	46.241012	-34.851047	568.459991		
	2	6.933795	21.229315	18.827329	44.736705	-27.075578	494.254495		
	3	4.681370	19.115007	14.301913	39.048531	-32.370804	383.644882		
	4	4.166894	16.854734	8.024915	39.048531	-32.370804	298.604246		
	5 rows × 70	columns							

- 전체 데이터의 모든 변수(컬럼)

```
[7] 1#전체 데이터의 모든 변수 확인
      2 data.columns
From Index(['mean_acceleration_x', 'std_acceleration_x', 'mad_acceleration_x',
            'max_acceleration_x', 'min_acceleration_x', 'energy_acceleration_x',
            'bandsEnergy_acceleration_x', 'igr_acceleration_x',
            'meanFreq_acceleration_x', 'skewness_acceleration_x',
            'kurtosis_acceleration_x', 'mean_acceleration_y', 'std_acceleration_y',
            'mad_acceleration_y', 'max_acceleration_y', 'min_acceleration_y',
            'energy_acceleration_y', 'bandsEnergy_acceleration_y',
            'igr_acceleration_y', 'meanFreq_acceleration_y',
            'skewness_acceleration_y', 'kurtosis_acceleration_y',
            'max_acceleration_z', 'min_acceleration_z', 'energy_acceleration_z',
            'bandsEnergy_acceleration_z', 'igr_acceleration_z',
            'meanFreq_acceleration_z', 'skewness_acceleration_z',
            'kurtosis_acceleration_z', 'mean_gyro_x', 'std_gyro_x', 'mad_gyro_x',
            'max_gyro_x', 'min_gyro_x', 'energy_gyro_x', 'bandsEnergy_gyro_x',
            'iqr_gyro_x', 'meanFreq_gyro_x', 'skewness_gyro_x', 'kurtosis_gyro_x',
            'mean_gyro_y', 'std_gyro_y', 'mad_gyro_y', 'max_gyro_y', 'min_gyro_y',
            'energy_gyro_y', 'bandsEnergy_gyro_y', 'iqr_gyro_y', 'meanFreq_gyro_y',
            'skewness_gyro_y', 'kurtosis_gyro_y', 'mean_gyro_z', 'std_gyro_z',
            'mad_gyro_z', 'max_gyro_z', 'min_gyro_z', 'energy_gyro_z',
            'bandsEnergy_gyro_z', 'iqr_gyro_z', 'meanFreq_gyro_z',
            'skewness_gyro_z', 'kurtosis_gyro_z', 'sma_acc', 'sma_gyro',
            'angle_acc_gyro', 'label'],
           dtype='object')
```


총 70개의 컬럼이 있으며, 그중 'label'을 제외한 나머지 컬럼들은 모두 feature에 속한다.

즉, 69개의 feature와 1개의 label로 구성되어 있다.

- 전체 데이터의 수치형 변수 분포

[8]		1 #전체 데이터의 수치형 변수 분포 확인 2 data.describe()									
		mean_acceleration_x	std_acceleration_x	mad_acceleration_x	max_acceleration_x	min_acceleration_x	energy_acceleration				
	count	944.000000	944.000000	944.000000	944.000000	944.000000	944.0000				
	mean	-3.025421	12.541333	9.249932	17.031736	-26.287119	220.7617				
	std	6.478564	3.758346	3.615499	12.641306	9.214438	120.5936				
	min	-15.986049	1.540763	0.488118	-1.028609	-50.330758	6.2824				
	25%	-8.748598	10.390350	6.712986	5.854796	-32.926558	142.8879				
	50%	-1.660457	12.462589	9.188348	16.983793	-27.887511	210.9821				
	75%	2.420686	14.594264	11.829844	24.428451	-19.759720	276.2532				
	max	10.940450	30.042704	26.520722	76.318320	0.863858	1009.7794				
	8 rows >	× 69 columns									

- 데이터의 단변량 분석(전체 변수 중 25개의 변수만을 이용하여 kdeplot으로 표현)

```
1 # kde로 feature 분포 확인
2 fig, axes = plt.subplots(5, 5, figsize=(15,10))
3 idx = 0
4 for i in range(5):
5    for j in range(5):
6         sns.kdeplot(data[data.columns[idx]], ax=axes[i,j])
7         idx += 1
8 plt.tight_layout()
9 plt.show()
```


- 데이터의 단변량 분석(전체 변수 중 25개의 변수만을 이용하여 boxplot으로 표현)

```
● 1 # boxplot()으로 feature 분포 확인
2 fig, axes = plt.subplots(5, 5, figsize=(15,10))
3 idx = 0
4 for i in range(5):
5    for j in range(5):
6        axes[i,j].boxplot(data[data.columns[idx]])
7        axes[i,j].set_xlabel(data.columns[idx])
8        idx += 1
9 plt.tight_layout()
10 plt.show()
```


- 데이터의 이변량 분석(상관관계(corr)로 분석을 진행)

[11]	1# 전체 데이터의 2 data.iloc[:,:-	이변량 분석 (corr) -1].corr()							
		mean_acceleration_x	std_acceleration_x	mad_acceleration_x	max_acceleration_x	min_acceleration_x	energy_acceleration_x	bandsEnergy_acceleration_x	igr_acceleration
	mean_acceleration_x	1.000000	0.125866	-0.085787	0.803550	0.538748	-0.208910	-0.457397	-0.1442
	std_acceleration_x	0.125866	1.000000	0.841800	0.613859	-0.626146	0.856133	0.661303	0.8853
	mad_acceleration_x	-0.085787	0.841800	1.000000	0.388145	-0.542380	0.829674	0.725255	0.9411
	max_acceleration_x	0.803550	0.613859	0.388145	1.000000	0.141299	0.328894	0.053847	0.3334
	min_acceleration_x	0.538748	-0.626146	-0.542380	0.141299	1.000000	-0.675124	-0.679046	-0.6296
	skewness_gyro_z	0.127570	0.312263	0.178055	0.272484	-0.214724	0.224858	0.159039	0.1964
	kurtosis_gyro_z	0.358974	-0.041160	-0.210958	0.278992	0.210772	-0.078004	-0.128866	-0.1959
	sma_acc	-0.637670	0.414230	0.500060	-0.244386	-0.665263	0.710737	0.835107	0.5761
	sma_gyro	-0.774708	0.279696	0.340400	-0.488513	-0.786666	0.481163	0.610718	0.4359
	angle_acc_gyro	0.014438	0.035701	0.027854	0.015454	-0.011633	-0.019344	-0.044234	0.0616
	69 rows × 69 columns								

- 데이터의 이변량 분석(변수의 개수가 매우 많으므로 변수10개만 선택하여 히트맵으로 표현)

변수들 사이의 상관관계가 큰 변수들이 있는 것을 파악할 수 있다.

상관관계가 큰 변수들을 이용해 모델을 학습하면, 모델이 불필요한 중복 정보를 학습하게 되어 <mark>과적합 될 가능성</mark>이 있다.

만약 랜덤 포레스트 모델을 사용한다면 변수의 개수가 많아도 각 트리에서 랜덤으로 일부 변수만 선택하여 분류하기 때문에, 높은 차원의데이터에서도 비교적 강력한 성능을 보인다. 하지만, 상관관계가 큰 변수가 많을 경우 랜덤 포레스트도 중요하지 않은 정보를 선택할 가능성이 있으므로, 데이터 전처리 과정에서 변수 선택이나 차원 축소를 고려하는 것이 유용할 수 있다.

```
● 1#이변량 시각화(변수 10개만 선택하여 표현).
2 correlation_matrix = data.iloc[:,:10].corr()
3
4 plt.figure(figsize=(12, 10))
5 sns.heatmap(correlation_matrix, annot=True, cmap='Blues', fmt=".2f")
6 plt.title("Correlation Matrix")
7 plt.show()
```

- 데이터의 범주 종류 및 범주별 빈도(막대 그래프로 표현)

jumping -> 점프 shaking_fb -> 앞뒤로 흔들기 shaking_lr -> 좌우로 흔들기 rotate_cw -> 시계방향으로 돌리기 rotate_ccw -> 반시계방향으로 돌리기

```
1 fig, ax = plt.subplots(figsize=(10, 8))
2 ax.bar(target.value_counts().index, target.value_counts(), width=0.3, color='c')
3 ax.set_title('Activity count', fontsize=15, fontweight='bold')
4 ax.set_xlabel('Activity', fontweight='bold')
5 plt.xticks(rotation=45)
6 plt.tight_layout()
7 plt.show()
```


- 데이터의 범주별 비율(파이 그래프로 표현)

Activity proportion

랜덤 포레스트 모델 훈련

- 데이터 전처리 및 모델링(EDA분석에서 사용된 모든 모델은 분석의 일관성을 위해 random_state=42로 설정하였다)

```
    Splitting the dataset into the Training set and Test set
    1 # 데이터 문항을 위한 전처리
2
3 target = 'label'
4
5 x = data.drop(target, axis = 1)
6 y = data.loc[:, target]
7
8 x_train, x_val, y_train, y_val = train_test_split(x, y, test_size = 0.2, random_state=42)
    Feature Scaling
    [60] 1 from sklearn.preprocessing import StandardScaler
2 sc = StandardScaler()
3 x_train_scaled = sc.fit_transform(x_train)
4 x_val_scaled = sc.fit_transform(x_val)
    [61] 1 # 남파이 배열을 다시 데이터프레임으로 변환
2 x_train = pd.DataFrame(x_train_scaled, columns=x_train.columns, index=x_train.index)
3 x_val = pd.DataFrame(x_val_scaled, columns=x_val.columns, index=x_val.index)
```


랜덤 포레스트 모델 훈련

- 모델의 정확도 평가

<pre> accuracy : 0. </pre>	984126984126	69841			====
[[31 0 0 0 [0 37 0 0 [0 0 36 0 [0 0 0 40 [0 0 0 0	1] 1]				
	precision	recall	f1-score	support	
jumping rotate_ccw	1.00 1.00	1.00 0.97	1.00 0.99	31 38	
rotate_cw shaking_fb	1.00 1.00	0.97 0.98	0.99 0.99	37 41	
shaking_Ir accuracy	0.93	1.00	0.97 0.98	42 189	
macro avg weighted avg	0.99 0.99	0.98 0.98	0.99 0.98	189 189	

-> 랜덤 포레스트 모델 훈련 결과: <mark>정확도 약</mark> 98.4%

변수 중요도

- 변수 중요도 추출

- 변수 중요도를 그래프로 표현

변수 중요도

- 중요도 기반 feature 분석

```
1 # 중요도 상위 5개 정보에 대한 분석
2 fig, ax = plt.subplots(5, figsize=(15,20))
3 for i in range(5):
4 var = r.iloc[i, 0]
5 sns.kdeplot(x=var, data=data, hue=target, common_norm=False, ax=ax[i])
6 ax[i].set_title(f'{var}', fontweight='bold')
7 plt.tight_layout()
8 plt.show()
```

각 행동들을 구분하기 위한 변수 중요도(<mark>상위 top5</mark>)

그래프를 보면 max_acceleration_y로 shaking_lr(좌우 흔들기)를 다른 행동들과 구분할 수 있을 것으로 보인다. 다른 feature들도 그래프를 볼 때 눈에 보일 정도로 밀집된 부분이 서로 다른 부분이 있으므로 특정 행동들을 구분할 수 있을 것으로 보인다. 다만, 밀집된 부분이 비슷할 경우, feature를 단독으로 사용하기 보다는 여러 feature들을 결합하여 행동을 구분한다면 더 잘 구분할 수 있을 것이다.

변수 중요도

```
- 중요도 기반 feature 분석
```

각 행동들을 구분하기 위한 변수 중요도(하위 top5)

```
2 fig, ax = plt.subplots(5, figsize=(15,20))
      sns.kdeplot(x=var, data=data, hue=target, common_norm=False, ax=ax[i-1]
8 plt.tight_layout()
```

1# 중요도 하위 top5 2 r.tail(5) **₹** feature_name feature_importance 64 meanFreq_acceleration_y 0.000580 65 meanFreq_gyro_z 0.000563 66 meanFreq_gyro_x 0.000347 67 meanFreq_acceleration_x 0.000331 0.000243 68 meanFreq_gyro_y

변수 중요도 하위 top5를 보면 대체로 모든 타깃들에 대한 분포도가 매우 비슷하다. 따라서 타깃들을 서로 잘 구분하지 못할 가능성이 크다.

중요도 변수 top 10으로 모델 훈련

- 중요도 변수 top 10으로 모델 훈련을 다시 시도
- 데이터 전처리 및 모델링

```
1# 중요도 상위 변수 몇개만 가지고 다시 모델링
3 # 데이터 분할을 위한 전처리
 4 target = 'label'
6 \times = data.drop(target, axis = 1)
8 y = data.loc[:, target]
10 x_train, x_val, y_train, y_val = train_test_split(x, y, test_size = 0.2, random_state=42)
12 #생성
13 model = RandomForestClassifier(random state=42)
15 #학습
16 model.fit(x_train, y_train)
17 pred = model.predict(x_val)
19 #평가
20 print('accuracy:',accuracy_score(y_val, pred))
21 print('='*60)
22 print(confusion_matrix(y_val, pred))
23 print('='*60)
24 print(classification_report(v_val, pred))
```

기존 모델 훈련 결과: 정확도 약 98.4% 10개의 feature로 모델 훈련 결과: 정확도 약 95.2%

10개의 feature만으로도 정확도가 높은 것을 알 수 있다.