Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if,

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$,

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U), p = \sigma(x_0, y_0)$,

```
Definition. f: S \to \mathbb{R} is called a smooth map at p if, given a (regular) surface patch \sigma: U \to S, so that p \in \sigma(U), p = \sigma(x_0, y_0), f \circ \sigma
```

```
Definition. f: S \to \mathbb{R} is called a smooth map at p if, given a (regular) surface patch \sigma: U \to S, so that p \in \sigma(U), p = \sigma(x_0, y_0), f \circ \sigma
```

```
Definition. f: S \to \mathbb{R} is called a smooth map at p if, given a (regular) surface patch \sigma: U \to S, so that p \in \sigma(U), p = \sigma(x_0, y_0), f \circ \sigma is smooth at (x_0, y_0).
```

```
Definition. f: S \to \mathbb{R} is called a smooth map at p if, given a (regular) surface patch \sigma: U \to S, so that p \in \sigma(U), p = \sigma(x_0, y_0), f \circ \sigma is smooth at (x_0, y_0).
```

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that,

Of course, we need to check that it does not depend on the chosen patch

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth,

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth,

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore,

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth

Definition.

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function**

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

We now similarly study functions between surfaces via their surface patches

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

We now similarly study functions between surfaces via their surface patches

Definition. $f: S_1 \to S_2$ is said to be a **smooth** function at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

This time there is a surface patch not just for the domain

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, so that $p \in \sigma(U), p = \sigma(x_0, y_0),$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth** function at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$)

This time there is a surface patch not just for the domain

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$,

but also for the co-domain

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U)$, $p = \sigma(x_0, y_0)$, $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$,

This time we also compose by σ_2^{-1} so that the input and output are from U_1 and U_2 , respectively

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

This time we also compose by σ_2^{-1} so that the input and output are from U_1 and U_2 , respectively

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition.

This exercise tells us why the definition does not depend on the choice of patches

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$

f naturally defines a map on the tangent spaces as we shall now see

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$ so that f(p) = q for some $p \in S_1$ and $q \in S_2$.

f naturally defines a map on the tangent spaces as we shall now see

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$ so that f(p) = q for some $p \in S_1$ and $q \in S_2$. Let $\mathbf{v} \in T_p(S_1)$ denote a tangent vector at p.

f naturally defines a map on the tangent spaces as we shall now see

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi
f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$ so that f(p) = q for some $p \in S_1$ and $q \in S_2$. Let $\mathbf{v} \in T_p(S_1)$ denote a tangent vector at p. i.e. $\mathbf{v} = \dot{\gamma}(t_0)$ for some $\gamma: (\alpha, \beta) \to S_1$ and $t_0 \in (\alpha, \beta)$.

As usual, the tangent vector is a velocity vector of some curve on the surface

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, (so that $p \in$ given a (regular) surface patch $\sigma: U \to S$, and $\sigma_2: U \to S$ so that $p \in \sigma(U), p = \sigma(x_0, y_0), \sigma_2^{-1} \circ f \circ \sigma_1$ $f \circ \sigma$ is smooth at (x_0, y_0) .

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\implies f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$ so that f(p) = q for some $p \in S_1$ and $q \in S_2$. Let $\mathbf{v} \in T_p(S_1)$ denote a tangent vector at p. i.e. $\mathbf{v} = \dot{\gamma}(t_0)$ for some $\gamma: (\alpha, \beta) \to S_1$ and $t_0 \in (\alpha, \beta)$. Define $d_p f: T_p(S_1) \to T_p(S_2)$ (where $T_p(S)$ denotes the tangent space of S at p)

by $d_p f(\mathbf{v}) = \frac{d}{dt} f(\gamma(t)) \in T_p(S_2)$

We simply consider the velocity vector of the image of that curve

Definition. $f: S \to \mathbb{R}$ is called a **smooth map** at p $\sigma_1: U \to S_1$ if, $f: S \to \mathbb{R}$ is called a **smooth map** at $f: S \to S_1$ if, $f: S \to \mathbb{R}$ is called a **smooth map** at $f: S \to S_1$ if, $f: S \to \mathbb{R}$ is called a **smooth map** at $f: S \to S_1$ if, $f: S \to \mathbb{R}$ is called a **smooth map** at $f: S \to S_1$ if, $f: S \to \mathbb{R}$ is called a **smooth map** at $f: S \to S_1$ if, $f: S \to S_1$ if $f: S \to S_1$ is smooth at $f: S \to S_1$ if $f: S \to S_1$

If $\tilde{\sigma}: \tilde{U} \to S$ is another surface patch so that, $\tilde{\sigma} = \sigma \circ \Phi$, where $\Phi: \tilde{U} \to U$ is smooth, invertible, and the inverse is smooth, Since,

$$\tilde{\sigma} = \sigma \circ \Phi$$

$$f \circ \tilde{\sigma} = f \circ \sigma \circ \Phi$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_1 \to S_2$ is said to be a **smooth function** at $p \in S_1$ if, given (regular) surface patches $\sigma_1: U \to S_1$ (so that $p \in \sigma(U), p = \sigma(x_0, y_0)$) and $\sigma_2: U \to S_2$, $\sigma_2^{-1} \circ f \circ \sigma_1$ is smooth.

Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_1 \to S_2$ so that f(p) = q for some $p \in S_1$ and $q \in S_2$. Let $\mathbf{v} \in T_p(S_1)$ denote a tangent vector at p. i.e. $\mathbf{v} = \dot{\gamma}(t_0)$ for some $\gamma: (\alpha, \beta) \to S_1$ and $t_0 \in (\alpha, \beta)$. Define $d_p f: T_p(S_1) \to T_p(S_2)$ (where $T_p(S)$ denotes the tangent space of S at p)

by $d_p f(\mathbf{v}) = \frac{d}{dt} f(\gamma(t)) \in T_p(S_2)$

and define that to be the image of \mathbf{v} under $\mathrm{d}_p f$

 $f:S_1\to S_2,$

We now try to describe $d_p f$ in terms of the surface patch

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t), y(t))) = \sigma_2(g_1(x(t), y(t)), g_2(x(t), y(t)))$$

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t), y(t))) = \sigma_2(g_1(x(t), y(t)), g_2(x(t), y(t)))$$

$$\frac{\mathrm{d}}{\mathrm{d}t} f(\sigma_1(x(t), y(t))) = g_1'(x(t), y(t))\sigma_{2x} + g_2'(x(t), y(t))\sigma_{2y}$$

Written in a form that will allow us to write it in terms of σ_{2x} and σ_{2y}

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t), y(t))) = \sigma_2(g_1(x(t), y(t)), g_2(x(t), y(t)))$$

$$\frac{\mathrm{d}}{\mathrm{d}t} f(\sigma_1(x(t), y(t))) = g_1'(x(t), y(t))\sigma_{2x} + g_2'(x(t), y(t))\sigma_{2y}$$

$$= (x'(t)g_{1x}(x(t), y(t)) + y'(t)g_{1y}(x(t), y(t))\sigma_x(x(t), y(t))$$

$$+ (x'(t)g_{2x}(x(t), y(t)) + y'(t)g_{2y}(x(t), y(t))\sigma_y(x(t), y(t))$$

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t), y(t))) = \sigma_2(g_1(x(t), y(t)), g_2(x(t), y(t)))$$

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\sigma_1(x(t), y(t))) = g_1'(x(t), y(t))\sigma_{2x} + g_2'(x(t), y(t))\sigma_{2y}$$

$$= (x'(t)g_{1x}(x(t), y(t)) + y'(t)g_{1y}(x(t), y(t))\sigma_x(x(t), y(t))$$

$$+ (x'(t)g_{2x}(x(t), y(t)) + y'(t)g_{2y}(x(t), y(t))\sigma_y(x(t), y(t))$$

In terms of coordinates,

$$= \begin{pmatrix} g_{1x}(t) & g_{1y}(t) \\ g_{2x}(t) & g_{2y}(t) \end{pmatrix}$$

And write it in terms of coordinates

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t),y(t))) = \sigma_2(g_1(x(t),y(t)), g_2(x(t),y(t)))$$

$$\frac{d}{dt}f(\sigma_1(x(t),y(t))) = g'_1(x(t),y(t))\sigma_{2x} + g'_2(x(t),y(t))\sigma_{2y}$$

$$= (x'(t)g_{1x}(x(t),y(t)) + y'(t)g_{1y}(x(t),y(t))\sigma_x(x(t),y(t))$$

$$+ (x'(t)g_{2x}(x(t),y(t)) + y'(t)g_{2y}(x(t),y(t))\sigma_y(x(t),y(t))$$

In terms of coordinates,

$$= \begin{pmatrix} g_{1x}(t) & g_{1y}(t) \\ g_{2x}(t) & g_{2y}(t) \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$

And write it in terms of coordinates

$$f: S_1 \to S_2,$$

$$\sigma_2^{-1}(f(\sigma_1(x,y))) = (g_1(x,y), g_2(x,y))$$

$$f(\sigma_1(x(t), y(t))) = \sigma_2(g_1(x(t), y(t)), g_2(x(t), y(t)))$$

$$\frac{\mathrm{d}}{\mathrm{d}t} f(\sigma_1(x(t), y(t))) = g'_1(x(t), y(t))\sigma_{2x} + g'_2(x(t), y(t))\sigma_{2y}$$

$$= (x'(t)g_{1x}(x(t), y(t)) + y'(t)g_{1y}(x(t), y(t))\sigma_x(x(t), y(t))$$

$$+ (x'(t)g_{2x}(x(t), y(t)) + y'(t)g_{2y}(x(t), y(t))\sigma_y(x(t), y(t))$$

In terms of coordinates,

$$= \begin{pmatrix} g_{1x}(t) & g_{1y}(t) \\ g_{2x}(t) & g_{2y}(t) \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$
$$= J(\sigma_2^{-1} \circ f \circ \sigma_1) \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$

Notice that the familiar Jacobian matrix shows up again

For $\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$,

The inner product of two tangent vectors is simply the dot product

For $\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

The inner product of two tangent vectors is simply the dot product

For $\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

The angular bracket notation only emphasizes that \mathbf{v}_1 and \mathbf{v}_2 must be tangent vectors

For $\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

We will try to express this in terms of the surface patch

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_1 = \dot{\gamma}_1(t_0)$$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_1 = \dot{\gamma}_1(t_0)$$

 $\mathbf{v}_2 = \dot{\gamma}_2(t_0)$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_1 = \dot{\gamma}_1(t_0) = \frac{\mathrm{d}}{\mathrm{d}t} \sigma(x_1(t_0), y_1(t_0))$$
$$\mathbf{v}_2 = \dot{\gamma}_2(t_0)$$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_1 = \dot{\gamma}_1(t_0) = \frac{\mathrm{d}}{\mathrm{d}t} \sigma(x_1(t_0), y_1(t_0))$$
$$\mathbf{v}_2 = \dot{\gamma}_2(t_0) = \frac{\mathrm{d}}{\mathrm{d}t} \sigma(x_2(t_0), y_2(t_0))$$

And now we use chain rule to express them in terms of σ_x and σ_y

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0}))$$

And now we use chain rule to express them in terms of σ_x and σ_y

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

And now we use chain rule to express them in terms of σ_x and σ_y

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1.\mathbf{v}_2$$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1 \cdot \mathbf{v}_2$$

$$= (x_1'(t_0)\sigma_x(x_1(t_0), y_1(t_0)) + y_1'(t_0)\sigma_y(x_1(t_0), y_1(t_0)) \cdot (x_2'(t_0)\sigma_x(x_2(t_0), y_2(t_0)) + y_2'(t_0)\sigma_y(x_2(t_0), y_2(t_0))$$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \mathbf{v}_{1}.\mathbf{v}_{2}$$

$$= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})).(x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0}))$$

$$+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0}))$$

Distributing and recognizing the appearance of E, F, and G

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \mathbf{v}_{1}.\mathbf{v}_{2}$$

$$= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})).(x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0}))$$

$$+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0}))$$

Observe that since \mathbf{v}_1 and \mathbf{v}_2 are based on the same point, $\gamma_1(t_0) = \gamma_2(t_0)$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \mathbf{v}_{1}.\mathbf{v}_{2}$$

$$= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})).(x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0}))$$

$$+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0}))$$

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \mathbf{v}_{1}.\mathbf{v}_{2}$$

$$= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})).(x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0}))$$

$$+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0}))$$

$$= (x'_{1}(t_{0}) \ y'_{1}(t_{0}))$$

But now observe that this can be expressed in matrix form

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\begin{aligned} \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle &= \mathbf{v}_{1}.\mathbf{v}_{2} \\ &= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})) . (x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0})) \\ &= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0})) \\ &+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0})) \\ &= \left(x'_{1}(t_{0}) \ y'_{1}(t_{0})\right) \begin{pmatrix} E(x(t_{0}), y(t_{0})) \ F(x(t_{0}), y(t_{0})) \\ F(x(t_{0}), y(t_{0})) \ G(x(t_{0}), y(t_{0})) \end{pmatrix} \end{aligned}$$

But now observe that this can be expressed in matrix form

For
$$\mathbf{v}_1, \mathbf{v}_2 \in T_p(S)$$
, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle := \mathbf{v}_1.\mathbf{v}_2$

$$\mathbf{v}_{1} = \dot{\gamma}_{1}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{1}(t_{0}), y_{1}(t_{0})) = x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0}))$$

$$\mathbf{v}_{2} = \dot{\gamma}_{2}(t_{0}) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma(x_{2}(t_{0}), y_{2}(t_{0})) = x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0}))$$

$$\begin{split} \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle &= \mathbf{v}_{1}.\mathbf{v}_{2} \\ &= (x'_{1}(t_{0})\sigma_{x}(x_{1}(t_{0}), y_{1}(t_{0})) + y'_{1}(t_{0})\sigma_{y}(x_{1}(t_{0}), y_{1}(t_{0})).(x'_{2}(t_{0})\sigma_{x}(x_{2}(t_{0}), y_{2}(t_{0})) + y'_{2}(t_{0})\sigma_{y}(x_{2}(t_{0}), y_{2}(t_{0})) \\ &= x'_{1}(t_{0})x'_{2}(t_{0})E(x(t_{0}), y(t_{0})) + x'_{1}(t_{0})y'_{2}(t_{0})F(x(t_{0}), y(t_{0})) \\ &+ y'_{1}(t_{0})x'_{2}(t_{0})F(x(t_{0}), y(t_{0})) + y'_{1}(t_{0})y'_{2}(t_{0})G(x(t_{0}), y(t_{0})) \\ &= \left(x'_{1}(t_{0}) \ y'_{1}(t_{0})\right) \begin{pmatrix} E(x(t_{0}), y(t_{0})) \ F(x(t_{0}), y(t_{0})) \end{pmatrix} \begin{pmatrix} x'_{2}(t_{0}) \\ y'_{2}(t_{0}) \end{pmatrix} \end{split}$$

But now observe that this can be expressed in matrix form

Surface	Surface patch
$p \in S$	

A surface patch gives two coordinates to every point on part of a surface

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$

A surface patch gives two coordinates to every point on part of a surface

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{m{\gamma}}(t_0)$	

It provides a basis σ_x and σ_y , and tangent vectors are written in terms of them

Surface	Surface patch
	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$

It provides a basis σ_x and σ_y , and tangent vectors are written in terms of them

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	

To a function with domain S_1 , it associates a function with domain U

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$

To a function with domain S_1 , it associates a function with domain U

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	

To a function with surfaces as both domains and ranges, it associates a function between the domains of their pat

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$

To a function with surfaces as both domains and ranges, it associates a function between the domains of their pat

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	

To the inner product, it associates the matrix of "first fundamental form"

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}, \text{ where } \mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$

To the inner product, it associates the matrix of "first fundamental form"

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}, \text{ where } \mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$

To the inner product, it associates the matrix of "first fundamental form"

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} (x_1' \ y_1') \begin{pmatrix} E \ F \\ F \ G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}, \text{ where } \mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	

To a derivative of a function between two surfaces, it associates the "Jacobian" matrix

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
${f v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$, where $\mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}, \text{ where } (g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$

To a derivative of a function between two surfaces, it associates the "Jacobian" matrix

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1 \to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} (x_1' \ y_1') \begin{pmatrix} E \ F \ G \end{pmatrix} \begin{pmatrix} x_2' \ y_2' \end{pmatrix}$, where $\mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}$, where $(g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$
$\ \sigma_x \times \sigma_y\ $	

To the infinitesimal area, it associates the determinant of the first fundamental form matrix

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}, \text{ where } \mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}, \text{ where } (g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$
$\ \sigma_x \times \sigma_y\ $	$ EG - F^2 = \det \begin{pmatrix} E & F \\ F & G \end{pmatrix}$

To the infinitesimal area, it associates the determinant of the first fundamental form matrix

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} (x_1' \ y_1') \begin{pmatrix} E \ F \ G \end{pmatrix} \begin{pmatrix} x_2' \ y_2' \end{pmatrix}$, where $\mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}, \text{ where } (g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$
$\ \sigma_x \times \sigma_y\ $	$ EG - F^2 = \det \begin{pmatrix} E & F \\ F & G \end{pmatrix}$
Area = $\int_{\sigma(U)} \ \sigma_x \times \sigma_y\ $	

And to the area, the integral of the above determinant.

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$, where $\mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}, \text{ where } (g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$
$\ \sigma_x \times \sigma_y\ $	$ EG - F^2 = \det \begin{pmatrix} E & F \\ F & G \end{pmatrix}$
Area = $\int_{\sigma(U)} \ \sigma_x \times \sigma_y\ $	$\int_{U} EG - F^2 $

And to the area, the integral of the above determinant.

Surface	Surface patch
$p \in S$	$(x,y) \in U$, where $\sigma(x,y) = p$
$A \subset S$	$B \subset U$, where $\sigma(B) = A$
$\gamma:(\alpha,\beta)\to S$	$\delta: (\alpha, \beta) \to U$, where $\gamma = \sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}(t_0)$	$\mathbf{v} = x'\sigma_x + y'\sigma_y$, where $\gamma(t) = \sigma(x(t), y(t))$
$f:S_1\to\mathbb{R}$	$g: U \to \mathbb{R}$, where $g = f \circ \sigma$
$f:S_1\to S_2$	$g: U_1 \to U_2$, where $g = \sigma_2^{-1} \circ f \circ \sigma_1$
$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$	$\begin{pmatrix} x_1' & y_1' \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$, where $\mathbf{v}_i = x_i' \sigma_x + y_i' \sigma_y$
$d_p(f): T_p(S_1) \to T_{f(p)}(S_2)$	$\begin{pmatrix} g_{1x} & g_{1y} \\ g_{2x} & g_{2y} \end{pmatrix}, \text{ where } (g_1, g_2) = \sigma_2^{-1} \circ f \circ \sigma_1$
$\ \sigma_x \times \sigma_y\ $	$ EG - F^2 = \det \begin{pmatrix} E & F \\ F & G \end{pmatrix}$
Area = $\int_{\sigma(U)} \ \sigma_x \times \sigma_y\ $	$\int_{U} EG - F^2 $

And to the area, the integral of the above determinant.