Random Signals & Noise

September 24, 2020

1 Important Facts

1.1 Probability Measure

If X and Y are statistically-independent random variables, then

$$P(X = x, Y = y) = P(X = x)P(Y = x)$$

Or more generally, if A and B are independent events then

$$P(A \cap B) = P(A)P(B)$$

1.2 CDF

The cumulative distribution function (CDF), F_X for a random variable X is defined as

$$F_X(x) = P(X \le x)$$

Several corollaries of this definition and the definition of a probability measure are

- 1. $(\forall x) \ 0 \le F_X(x) \le 1$
- 2. $\lim_{x\to\infty} F_X(x) = 1$
- 3. $\lim_{x \to -\infty} F_X(x) = 0$
- 4. $F_X(x)$ is non-strictly monotonically increasing in x.
- 5. $P(x_1 < X \le x_2) = F_X(x_2) F_X(x_1)$

1.2.1 Joint CDF

The joint CDF is defined as

$$P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n) = F_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n)$$

The joint PDF is defined as

$$f_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) = \frac{\partial^n F_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n)}{\partial x_1 \partial x_2 \dots \partial x_n}$$

1.3 PDF

The probability density function (PDF), f_X for a random variable X is defined as

$$f_X(x) := \frac{dF_X(x)}{dx}$$

Some corollaries to this are

- 1. $f_X(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 3. $F_X(x) = \int_{-\infty}^x f_X(t) dt$
- 4. $\int_{x_1}^{x_2} f_X(t) dt = P(x_1 < X \le x_2)$

1.3.1 Marginal PDFS

For two R.V.s X and Y and joint PDF $f_{XY}(x,y)$

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy \tag{*}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \tag{*}$$

These are called the marginal PDFs of X and Y. They are often denoted f(x) and f(y), respectively. In general cannot determine the joint PDF from the marginal PDFs. Statistically independent R.V.s are an exception.

1.3.2 Independence

Two random variables are statistically independent iff

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

1.4 Moments

The nth moment of a random variable X is defined as

$$E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) \, dx \tag{*}$$

Suppose also that we've defined a transformation between random variables X and Y as

$$Y = g(X)$$

then the nth moment of Y is

$$E[Y^n] = \int_{-\infty}^{\infty} y^n f_Y(y) \, dy = \int_{-\infty}^{\infty} \left[g(x) \right]^n f_X(x) \, dx \tag{*}$$

1.5 Transformations

Define a mapping g as

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto g(x)$

Then Y = g(X) defines a new random variable, Y. We can determine Y from X using a few methods.

The first relies on the set I_y define as

$$I_y := \{ x \mid g(x) \le y \}$$

The definition imples

$$F_Y(y) = P(Y \le y) = P(X \in I_y) \tag{*}$$

The second assumes that the function g is invertible. Then we can determine f_Y directly as

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{g'(g^{-1}(y))} = \frac{f_X(x)}{|g'(x)|}\Big|_{x=g^{-1}(y)}$$

1.5.1 Transformations of Multiple Random Variables

Let Z = g(X, Y) Then

$$E[Z] = E_{XY}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \, dx dy$$

More specifically, we can find the expectation of the sum of the R.V.s as

$$E[Z] = E[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) f_{XY}(x,y) \, dx dy$$

which by properties of integration reduces to

$$E[X+Y] = E[X] + E[Y] \tag{*}$$

1.5.2 Correlation

First define the correlation as

$$E[XY] = \int_{-\infty}^{\infty} (xy) f_{XY}(x,y) \, dxdy$$

and we say

$$X$$
 and Y are uncorrelated $\iff E[XY] = E[X]E[Y]$ (\star)

note that

$$X$$
 and Y are statistically independent $\implies X$ and Y are uncorrelated (\star)

1.5.3 Covariance

Let X and Y be two R.V.s Then the variance of the sum is

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot cov(X, Y)$$

Where the covariance is defined as

$$cov(X, Y) = E[(X - \mu_x)(Y - \mu_v)] = E[XY] - E[X]E[Y] \tag{*}$$

Note, that if X and Y are uncorrelated then

$$cov(X, Y) = 0 \tag{*}$$

An important corollary of this is

$$X$$
 and Y are uncorrelated $\implies \sigma_Z^2 = \sigma_X^2 + \sigma_Y^2$

Note that if X and Y are statistically independent then E[XY] = E[X]E[Y] this can be shown by splitting the joint PDF and integrating each part separately. This implies the important concept

$$X$$
 and Y independent $\implies X$ and Y uncorrelated (\star)

1.6 Characteristic Function

Consider the transformation $Y = g(X) = e^{j\omega X}$. Then

$$\Phi_X(\omega) := E[e^{j\omega X}] = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) \, dx \tag{*}$$

we can think of this as the Fourier transform of the PDF

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_x(\omega) e^{-j\omega x} d\omega \tag{*}$$

Consider X and Y R.V.s. Then we can determine the distribution of their sum via the convolution. To see this consider Z = X + Y. Consider the CDF of Z

$$P(Z \le z) = P(X + Y \le z)$$

so we want to consider all $y \leq z - x$, can find all such (x, y) pairs by integrating the joint PDF

$$\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{XY}(x,y) \, dx dy$$

by change of variables

$$\int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{XY}(x, v - x) \, dx dv$$

Fubini's theorem

$$\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{XY}(x, v - x) \, dv dx$$

and by differentiating with respect to z

$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z - x) dx \tag{*}$$

if the variables are independent then

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = (f_X * f_Y)(z)$$
 (*)

A corollary of this (from induction), for $Z = X_1 + X_2 + \cdots + X_n$ all X_i independent of each other.

$$\Phi_Z = \Phi_{X_1} \Phi_{X_2} \dots \Phi_{X_n} \tag{*}$$

Remember that the FT of a Gaussian is a Gaussian. As a corollary to the previous we immediately have that, for Z = X + Y, X, Y are Gaussians that Z is a Gaussian (with mean E[X] = E[Y] and variance Var(X) + Var(Y))

1.6.1 Obtaining Raw Moments

consider

$$\Phi_X(\omega) = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) \, dx$$

notice that when you take the nth derivate of Φ_X

$$\frac{\partial^n \Phi_X(\omega)}{\partial \omega^n} = \int_{-\infty}^{\infty} \frac{\partial^n e^{j\omega x}}{\partial \omega^n} f_X(x) \ dx = j^n \int_{-\infty}^{\infty} x^n e^{j\omega x} f_X(x) \ dx$$

If we evaluate this at $\omega = 0$

$$\frac{\partial^n \Phi_X(0)}{\partial \omega^n} = j^n E[x^n] \iff j^{-n} \frac{\partial^n \Phi_X(0)}{\partial \omega^n} = E[x^n]$$

1.7 Conditional PDFs and CDFs

Remember that

$$P(A \mid M) = \frac{P(A \cap M)}{P(M)} \quad P(M) > 0$$

We define the conditional CDF this way

$$F_X(x \mid M) = P(X \le x \mid M) = \frac{P(X \le x, M)}{P(M)} \tag{*}$$

Interesting, conditional CDF is a valid CDF. We can differentiate to obtain the conditional PDF

$$f_X(x \mid M) = \frac{dF_X(x \mid M)}{dx} \tag{*}$$

We'll note that the conditional PDF is also a valid PDF.

1.7.1 Relationship between joint and the conditional PDFs

This is analogous to Bayes' rule, except for PDFs

$$f_Y(y \mid X = x) = \frac{f_{XY}(x, y)}{f_X(x)} \tag{*}$$

This notation is bad but is used in engineering, more precisely

$$f_Y(y \mid X = k) = \frac{f_{XY}(x, y)}{f_X(x)}\Big|_{x=k}$$

Notice above, that the denominator is a single value, the value of the marginal at x = k and the numerator is a function of y. This can be expressed more concisely as

$$f(y \mid x) = \frac{f(x,y)}{f(x)}$$

If we are dealing with a mixed random variable, that is entirely discrete (composed of solely deltas) We can state the former as

$$f(y \mid x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

Rather

$$f(y \mid X = k) = \frac{P(X = k, Y = y)}{P(X = k)}$$

For some $k \in \mathbb{R}$.

1.7.2 Conditional Expectation

consider X = g(Y). Then

$$E[g(Y) \mid M] = \int_{-\infty}^{\infty} g(y) f_Y(y \mid M) \, dy$$

We might regard $E[y \mid x]$ as a function of x in the sense

$$E[y \mid x] = \int_{-\infty}^{\infty} y f_Y(y \mid x) dx$$

1.8 Specific Continuous Distributions

X is

Uniform

$$\cdot \ E[X] = \frac{a+b}{2}$$

$$\cdot \ Var(X) = \frac{(b-a)^2}{12}$$

Gaussian

$$- f_X(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left(\frac{-(x-\mu_x)^2}{2\sigma_x^2}\right)$$

$$-E[x] = \mu_x$$

$$-Var(x) = \sigma_x^2$$

Exponential

$$- f_X(x) = U(x) \cdot [ae^{-a}]$$

$$- E[x] = 1/a$$
$$- Var(x) = 1/a^2$$

Rayleigh

$$-\alpha > 0, \quad f_X(x) = U(x) \left[\frac{x}{\alpha^2} e^{\frac{-x^2}{2\alpha^2}} \right]$$

$$- E[x] = \alpha \sqrt{\frac{\pi}{2}}$$

$$- Var(x) = \left(2 - \frac{\pi}{2}\right)\alpha^2$$