Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval

Oriol Vinyals¹ Zhisheng Zhong²

¹Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

 2 Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

Unsupervised Cross-Modal Retrieval

Cross-Modal Retrieval

Binary representation learning Unsupervised Cross-Modal Retrieval

DJSRH

Contributions

- Put forward affinity matrix.
- Reconstruct above jointsemantics, friendly for batch-wise training.
- Reach good result.

DJSRH

图: The pipeline of DJSRH

Defination

- m: Batch size;
- \mathcal{O} : $\{o_k = \lceil \mathsf{I}_k, \mathsf{T}_k \rfloor\}_{k=1}^m$, include each image-text pair. Feature matrix of image and text are defined as $\mathsf{F}_\mathsf{I} \in \mathbb{R}^{m \times p_I}$ and $\mathsf{F}_\mathsf{T} \in \mathbb{R}^{m \times p_T}$;
- $\mathsf{B}_\mathsf{I} \in \{\pm 1\}^{m \times d}$ and $\mathsf{B}_\mathsf{T} \in \{\pm 1\}^{m \times d}$: Binary repesentation given out by ImgNet and TxtNet from the input I_k and T_k ;
- \hat{F}_I and \hat{F}_T : The normalized F_I and F_T , the cosine similarity matrices

$$\begin{aligned} S_I &= \hat{\mathsf{F}}_I \hat{\mathsf{F}}_I^\top \in [-1,+1]^{m \times m} \\ S_\mathsf{T} &= \hat{\mathsf{F}}_\mathsf{T} \hat{\mathsf{F}}_\mathsf{T}^\top \in [-1,+1]^{m \times m} \end{aligned}$$

Constructing Joint-Semantics Matrix

Laplacian constrains

$$\min_{\mathsf{B}} \beta \mathsf{Tr}(\mathsf{B}^{\top}\mathsf{L}_{\mathsf{I}}\mathsf{B}) + (1-\beta)\mathsf{Tr}(\mathsf{B}^{\top}\mathsf{L}_{\mathsf{T}}\mathsf{B}) \quad \text{s.t. } \mathsf{B} \in \{\pm 1\}^{m \times d}$$

where

$$\mathsf{L}_\mathsf{I} = \mathsf{diag}(\mathsf{S}_1 1) - \mathsf{S}_\mathsf{I}$$

$$L_T = \mathsf{diag}(S_T 1) - S_T$$

are Laplacian matrices.

Constructing Joint-Semantics Matrix

Joint-semantics Affinity Matrix Define \mathcal{C} as combination function, then

$$S = \mathcal{C}(S_{\mathsf{I}}, S_{\mathsf{T}}) \in [-1, +1]^{m \times m}$$

Merge Img and Txt as

$$\tilde{\mathsf{S}} = \beta \mathsf{S}_{\mathsf{I}} + (1 - \beta) \mathsf{S}_{\mathsf{T}}$$

Then

$$\begin{split} \mathbf{S} &= \mathcal{C}(\mathbf{S}_{\mathsf{I}}, \mathbf{S}_{\mathsf{T}}) \\ &= (1 - \eta)\tilde{\mathbf{S}} + \eta \frac{\tilde{\mathbf{S}}\tilde{\mathbf{S}}^{\top}}{m} \\ &= (1 - \eta)[\beta \mathbf{S}_{\mathsf{I}} + (1 - \beta)\mathbf{S}_{\mathsf{T}}] + \frac{\eta}{m}[\beta^2 \mathbf{S}_{\mathsf{I}}\mathbf{S}_{\mathsf{I}}^{\top} + \beta(1 - \beta)(\mathbf{S}_{\mathsf{I}}\mathbf{S}_{\mathsf{T}}^{\top} + \mathbf{S}_{\mathsf{T}}\mathbf{S}_{\mathsf{I}}^{\top}) \end{split}$$

 S_{ij} indicates the latent semantic similarity between o_i 和 o_j .

Reconstructing with Binary Codes

Object

$$\min_{\mathsf{B_I},\mathsf{B_T}} ||\mu\mathsf{S} - \mathsf{cos}(\mathsf{B_I},\mathsf{B_T})||_{\mathsf{F}}^2, \quad \text{s.t. } \mathsf{S} = \mathcal{C}(\mathsf{S_I},\mathsf{S_T}) \in [-1,+1]^{m \times m}$$

Laplacian constrains

$$\mathsf{Tr}(\mathsf{B}^{\top}\mathsf{LB}) = \sum_{i,j} \mathsf{S}_{ij} ||\mathsf{B}_i - \mathsf{B}_j||^2$$

Object with intra-modal influence

$$\begin{split} \min_{\mathsf{B_I},\mathsf{B_T}} ||\mu \mathsf{S} - \cos(\mathsf{B_I},\mathsf{B_T})||_{\mathsf{F}}^2 + \lambda_1 ||\mu \mathsf{S} - \cos(\mathsf{B_I},\mathsf{B_I})||_{\mathsf{F}}^2 \\ + \lambda_2 ||\mu \mathsf{S} - \cos(\mathsf{B_T},\mathsf{B_T})||_{\mathsf{F}}^2, \\ \text{s.t. } \mathsf{S} = \mathcal{C}(\mathsf{S_I},\mathsf{S_T}) \in [-1,+1]^{m \times m}, \ \mathsf{B_I},\mathsf{B_T} \in \{-1,+1\}^{m \times d} \end{split}$$

Optimization

Set $\mathbf{H} \in \mathbb{R}^{m \times d}$ as the last layer of ImgNet and TxtNet without activate function, then

$$\mathsf{B} = \mathsf{sgn}(\mathsf{H}) \in \{-1, +1\}^{m \times d}$$

Use the following instead,

$$\mathsf{B} = \tanh(\alpha \mathsf{H}) \in \{-1, +1\}^{m \times d}, \ \alpha \in \mathbb{R}^+$$

Algorithm

Algorithm 1 Deep Joint-Semantics Reconstructing Hashing Input:

Training set $\{o_k = [\mathbf{I}_k, \mathbf{T}_k]\}_{k=1}^n$ and their corresponding original features \mathbf{F}_1 and \mathbf{F}_T ; ImgNet \mathcal{G}_{θ_1} and \mathbf{T}_T , with θ_1 and θ_T denoting the deep network parameters; batch size m;

Output:

Hashing coding function $\varphi_{\rm I}(x)={\rm sgn}(\mathcal{G}_{\theta_{\rm I}}(x))$ for image input and $\varphi_{\rm T}(x)={\rm sgn}(\mathcal{G}_{\theta_{\rm T}}(x))$ for text input;

- 1: Initialize epoch t = 0;
- 2: repeat
- 3: t = t + 1; $\alpha = \sqrt{t}$;
- 4: **for** $\lfloor \frac{n}{m} \rfloor$ iterations **do**
- 5: Randomly sample a batch of instances from training set $\{o_k = [\mathbf{I}_k, \mathbf{T}_k]\}_{k=1}^m$;
- 6: Calculate the normalized $\hat{\mathbf{F}}_{I}$, $\hat{\mathbf{F}}_{T}$ and integrate the cosine matrices $\mathbf{S}_{I} = \hat{\mathbf{F}}_{I}\hat{\mathbf{F}}_{I}^{\top}$, $\mathbf{S}_{T} = \hat{\mathbf{F}}_{T}\hat{\mathbf{F}}_{T}^{\top}$ to the joint-semantics affinity \mathbf{S} with Equation (3);
- 7: Forward propagate $\mathbf{H}_{I} = \mathcal{G}_{\theta_{I}}(\mathbf{I}), \mathbf{H}_{T} = \mathcal{G}_{\theta_{T}}(\mathbf{T});$
- 8: Hash coding with activation function (7) $\mathbf{B}_{\mathrm{I}} = \tanh(\alpha \mathbf{H}_{\mathrm{I}}), \mathbf{B}_{\mathrm{T}} = \tanh(\alpha \mathbf{H}_{\mathrm{T}});$
- Calculate the objective function (5), back propagate the gradients with the chain rule and update the whole parameters;
- 0: end for
- 11: until convergence

Algorithm

```
F I = F.normalize(F I)
SI = FI.mm(FI.t())
S_I = S_I * 2 - 1
F_T = F.normalize(F_T)
S_T = F_T.mm(F_T.t())
ST = ST * 2 - 1
B I = F.normalize(code I)
B T = F.normalize(code T)
BI BI = B I.mm(B I.t())
BT_BT = B_T.mm(B_T.t())
BI BT = B I.mm(B T.t())
S tilde = settings.BETA * S I + (1 - settings.BETA) * S T
S = (1 - settings.ETA) * S tilde + settings.ETA * S tilde.mm(S tilde) / settings.BATCH SIZE
S = S * settings.MU
loss1 = F.mse loss(BI BI, S)
loss2 = F.mse loss(BI BT, S)
loss3 = F.mse_loss(BT_BT, S)
loss = settings.LAMBDA1 * loss1 + 1 * loss2 + settings.LAMBDA2 * loss3
```

Experiment

Task	Method	Wiki				MIRFlickr				NUS-WIDE			
		16bits	32bits	64bits	128bits	16bits	32bits	64bits	128bits	16bits	32bits	64bits	128bits
$I \to T$	CVH	0.179	0.162	0.153	0.149	0.606	0.599	0.596	0.598	0.372	0.362	0.406	0.390
	IMH	0.201	0.203	0.204	0.195	0.612	0.601	0.592	0.579	0.470	0.473	0.476	0.459
	CMFH	0.251	0.253	0.259	0.263	0.621	0.624	0.625	0.627	0.455	0.459	0.465	0.467
	LSSH	0.197	0.208	0.199	0.195	0.584	0.599	0.602	0.614	0.481	0.489	0.507	0.507
	DBRC	0.253	0.265	0.269	0.288	0.617	0.619	0.620	0.621	0.424	0.459	0.447	0.447
	UDCMH	0.309	0.318	0.329	0.346	0.689	0.698	0.714	<u>0.717</u>	<u>0.511</u>	0.519	0.524	<u>0.558</u>
	DJSRH	0.388	0.403	0.412	0.421	0.810	0.843	0.862	0.876	0.724	0.773	0.798	0.817
T o I	CVH	0.252	0.235	0.171	0.154	0.591	0.583	0.576	0.576	0.401	0.384	0.442	0.432
	IMH	0.467	0.478	0.453	0.456	0.603	0.595	0.589	0.580	0.478	0.483	0.472	0.462
	CMFH	0.595	0.601	0.616	0.622	0.642	0.662	0.676	0.685	0.529	0.577	0.614	0.645
	LSSH	0.569	0.593	0.593	0.595	0.637	0.659	0.659	0.672	0.577	0.617	0.642	0.663
	DBRC	0.574	0.588	0.598	0.599	0.618	0.626	0.626	0.628	0.455	0.459	0.468	0.473
	UDCMH	0.622	0.633	<u>0.645</u>	0.658	0.692	<u>0.704</u>	0.718	<u>0.733</u>	0.637	0.653	<u>0.695</u>	<u>0.716</u>
	DJSRH	<u>0.611</u>	0.635	0.646	0.658	0.786	0.822	0.835	0.847	0.712	0.744	0.771	0.789

图: mAP@50

Experiment

MIRFlickr, CODELEN = 64

• mAP of Image to Text: 0.865

• mAP of Text to Image: 0.853