Event-B Course

3. File Transfer Protocol

Jean-Raymond Abrial

September-October-November 2011

- To introduce another example: the file transfer protocol
- To present a number of additional mathematical conventions
- To slighly enlarge the usage of the Proof Obligation Rules
- Example studied in many places, in particular in the following book
- L. Lamport *Specifying Systems: The TLA+ Language and Tools* for *Hardware and Software Engineers* Addison-Wesley 1999

- A file is to be transferred from a Sender to a Receiver

- On the Sender's side the file is called f

- On the Receiver's side the file is called *g*

- At the beginning of the protocol, g is supposed to be empty

- At the end of the protocol, g should be equal to f

The protocol ensures the copy of a file from one site to another one

FUN-1

The file is supposed to be made of a sequence of items

FUN-2

The file is sent piece by piece between the two sites

FUN-3

- Our approach at modeling is one of an external observer
- The observer "sees" the state space first from very far away
- He then approaches the future system and sees more details
- As he approaches he also sees more things happening

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation

INITIAL SITUATION

SENDER

RECEIVER

FINAL SITUATION

SENDER

RECEIVER

sets: D

constants: n

 ${m f}$

 $axm0_{-}1: 0 < n$

axm0_2: $f \in 1...n \rightarrow D$

- The carrier set **D** makes this development generic

variables: g

inv0_1: $g \in 1 ... n \rightarrow D$

inv0_2: $b = \text{FALSE} \Rightarrow g = \emptyset$

inv0_3: $b = \text{TRUE} \Rightarrow g = f$

b = TRUE means protocol is finished

$x \in S$	set membership operator
N	set of natural numbers: $\{0,1,2,3,\ldots\}$
$a \dots b$	interval from a to b : $\{a, a+1, \ldots, b\}$ (empty when $b < a$)
$a\mapsto b$	pair constructing operator
S imes T	Cartesian product operator
$S\subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	set of binary relations from $oldsymbol{S}$ to $oldsymbol{T}$
S o T	set of total functions from $oldsymbol{S}$ to $oldsymbol{T}$
S o T	set of partial functions from $oldsymbol{S}$ to $oldsymbol{T}$
$\mathrm{dom}(r)$	domain of a relation $m{r}$
$\operatorname{ran}(r)$	range of a relation $oldsymbol{r}$

$$F = \{a1 \mapsto b2, \ a3 \mapsto b4, \ a5 \mapsto b2, \ a7 \mapsto b6\}$$

 $dom(F) = \{a1, \ a3, \ a5, \ a7\}$
 $ran(F) = \{b2, \ b4, \ b6\}$

$$dom(F) = A$$

```
egin{aligned} & \mathbf{g} := arnothing \ & \mathbf{b} := \mathbf{FALSE} \end{aligned}
```

```
final when b = \text{FALSE} then g := f b := \text{TRUE} end
```

sets: D

constants: n

f

 $axm0_{-}1: 0 < n$

 $axm0_2: f \in 1..n \rightarrow D$

variables:

6

inv0_1: $g \in 1 ... n \rightarrow D$

inv0_2: $b = \text{FALSE} \Rightarrow g = \emptyset$

inv0_3: $b = \text{TRUE} \Rightarrow g = f$

init $g := \varnothing$

b := FALSE

 $\begin{array}{c} \text{final} \\ \textbf{when} \\ b = \text{FALSE} \\ \textbf{then} \\ g := f \\ b := \text{TRUE} \\ \textbf{end} \end{array}$

- Event init establishes invariants inv0_1 to inv0_3 (Rule INV)
- Event final preserves invariants inv0_1 to inv0_3 (Rule INV)

```
inv0_1: g \in 1 ... n \rightarrow D
```

inv0_2:
$$b = \text{FALSE} \Rightarrow g = \emptyset$$

inv0_3:
$$b = \text{TRUE} \Rightarrow g = f$$

```
egin{aligned} & 	ext{init} \ g &:= arnothing \ b &:= 	ext{FALSE} \end{aligned}
```

```
\begin{array}{c} \text{final} \\ \text{when} \\ b = \text{FALSE} \\ \text{then} \\ g := f \\ b := \text{TRUE} \\ \text{end} \end{array}
```

- For the init event in the initial model

- Applying Rule INV to invariant inv0_1

init $g := \emptyset$ b := FALSE

inv0_1: $g \in 1 ... n \rightarrow D$

axm0_1
axm0_2

modified inv0_1

$$egin{array}{l} 0 < n \ f \in 1 \ldots n
ightarrow D \ dash \ arphi \ \in \ 1 \ldots n
ightarrow D \end{array}$$

inv0_1 / INV

- Applying Rule INV to invariant inv0_2

$$\begin{array}{c} \text{init} \\ g := \varnothing \\ b := \text{FALSE} \end{array}$$

inv0_2:
$$b = FALSE \Rightarrow g = \emptyset$$

```
axm0_1
axm0_2
⊢
modified inv0_2
```

```
\begin{array}{l} 0 < n \\ f \in 1 \dots n \to D \\ \vdash \\ \textbf{FALSE} = \textbf{FALSE} \ \Rightarrow \ \varnothing = \varnothing \end{array}
```

inv0_2 / INV

- Applying Rule INV to invariant inv0_3

```
egin{aligned} & \mathbf{g} := \varnothing \ & \mathbf{b} := \mathbf{FALSE} \end{aligned}
```

inv0_3:
$$b = \text{TRUE} \implies g = f$$

```
axm0_1
axm0_2
|-
| modified inv0_3
```

```
\begin{array}{l} 0 < n \\ f \in 1 \dots n \to D \\ \vdash \\ \textbf{FALSE} = \texttt{TRUE} \ \Rightarrow \ \varnothing = f \end{array}
```

inv0_3 / INV

- For other events in the initial model

Properties
Invariants
Guards of the event

Modified Invariant

- Applying Rule INV

```
axm0_1
axm0_2
inv0_1
...
grd

modified inv0_1
```

final / inv0_1 / INV

- Applying Rule INV

```
\begin{array}{c} \text{final} \\ \textbf{when} \\ b = \text{FALSE} \\ \textbf{then} \\ g := f \\ b := \text{TRUE} \\ \textbf{end} \end{array}
```

```
axm0_1
axm0_2
inv0_2
...
grd
⊢
modified inv0_2
```

```
egin{aligned} 0 &< n \ f &\in 1 \dots n 
ightarrow D \ b &= 	ext{FALSE} \ \Rightarrow \ g = \varnothing \end{aligned}
\vdots
b &= 	ext{FALSE}
\vdash
	ext{TRUE} = 	ext{FALSE} \ \Rightarrow \ f = \varnothing
```

final / inv0_2 / INV

- Applying Rule INV

```
\begin{array}{c} \text{final} \\ \textbf{when} \\ b = \text{FALSE} \\ \textbf{then} \\ g := f \\ b := \text{TRUE} \\ \textbf{end} \end{array}
```

```
axm0_1
axm0_2
inv0_3
...
grd

modified inv0_3
```

```
egin{aligned} 0 &< n \ f &\in 1 \dots n 
ightarrow D \ b &= \mathrm{TRUE} \ \Rightarrow \ g = f \ & \dots \ b &= \mathrm{FALSE} \ dash \ & \end{array}
```

final / inv0_3 / INV

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation

- The observer comes closer to the future system

- So far he was just seeing the beginning and the end

- Now the observer will see some intermediate moves

- He sees the file being gradually transfered from Sender to Receiver

- But he still has a partial view

A new event is introduced: receive

- The new variable r lies within the interval $1 \dots n + 1$
- The new variable h is equal to f restricted to its r-1 first values

- Introducing additional variables $m{h}$ and $m{r}$

Variable g disappears

variables: b

 \boldsymbol{h}

T

inv1_1: $r \in 1...n+1$

inv1_2: $h = (1 ... r - 1) \triangleleft f$

inv1_3: $b = \text{TRUE} \implies r = n + 1$

- h is defined to be the domain restriction of f to $1 \dots r-1$

$s \lhd r$	domain restriction operator
$s \lessdot r$	domain subtraction operator
r riangleright t	range restriction operator
r ightarrow t	range subtraction operator

$$\{a3,\ a7\} \lhd F$$

$$\{a3, a7\} \lhd F$$

$$F \rhd \{b2,b4\}$$

$$F
ho \{b2\}$$

```
egin{aligned} h &:= arnothing \ r &:= 1 \ b &:= \mathrm{FALSE} \end{aligned}
```

```
receive r \leq n then h := h \cup \{r \mapsto f(r)\} r := r+1 end
```

```
egin{array}{l} 	ext{when} \ r = n+1 \ b = 	ext{FALSE} \ 	ext{then} \ b := 	ext{TRUE} \ 	ext{end} \end{array}
```

- Event init refines its abstraction

- Event final refines its abstraction

- Event receive refines skip

- Event receive does not diverge

- Relative deadlock freeness

- No divergence of new event receive (rules NAT and VAR)

variant1: n+1-r

- This variant must be decreased by the new event:

```
receive r \leq n r \leq n then h := h \cup \{r \mapsto f(r)\} r := r + 1 end
```

- For new events only

Properties of the constants Abstract invariants Concrete invariants Concrete guards of a new event NAT \vdash Variant $\in \mathbb{N}$

- Applying rule **NAT**

```
inv1_1
...
⊢
variant belongs to ℕ
```

```
r \in 1 \dots n+1 \dots \vdash n+1-r \in \mathbb{N}
```

- For new events only

Properties of the constants
Abstract invariants
Concrete invariants
Concrete guards of a new event

Modified variant < Variant

- Applying rule VAR

```
receive f when f \leq n then f = f when f = f when f = f then f = f when f = f when
```

···

⊢

variant is decreased

```
n+1-(r+1) < n+1-r
```


- Global proof rule

Properties of the constants
Abstract invariants
Concrete invariants
Disjunction of abstract guards
DLF
Disjunction of concrete guards

- Abstract Events

```
\begin{array}{c} \text{final} \\ \textbf{when} \\ \textbf{b} = \textbf{FALSE} \\ \textbf{then} \\ \textbf{g} := f \\ \textbf{b} := \textbf{TRUE} \\ \textbf{end} \end{array}
```

- Concrete Events

```
receive when r \leq n then h := h \cup \{r \mapsto f(r)\} r := r+1 end
```

```
egin{all} 	ext{when} \ b = 	ext{FALSE} \ r = n+1 \ 	ext{then} \ b := 	ext{TRUE} \ 	ext{end} \ \end{array}
```

- Applying rule **DLF**

```
inv1_1
disj. of abs. guards
disj. of conc. guards
```

```
r \in 1 ... n + 1
b = \text{FALSE}
\vdash
r \leq n \quad \lor \quad (b = \text{FALSE} \ \land \ r = n + 1)
```

variables: b

ľ

r

inv1_1: $r \in 1..n+1$

inv1_2: $h = (1 ... r - 1) \triangleleft f$

inv1_3: $b = \text{TRUE} \implies r = n + 1$

variant1: n+1-r

```
\begin{array}{l} \text{init} \\ b := \text{FALSE} \\ h := \varnothing \\ r := 1 \end{array}
```

```
receive when r \leq n then h := h \cup \{r \mapsto f(r)\} r := r+1 end
```

 $egin{all} ext{when} \ b = ext{FALSE} \ r = n+1 \ ext{then} \ b := ext{TRUE} \ ext{end} \ \end{array}$

- This model is not satisfactory: event receive accesses file f

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation

RECEIVER

_

f

s a b c

d

h r

f a a S b b S n \mathbf{c} n \mathbf{c} d d a h h r r

-

f f f a S a a b b b S S n \mathbf{c} n \mathbf{c} n \mathbf{c} d d d a a h h h a r r r

f f f f a a S a a b b b b S S n s n \mathbf{c} n \mathbf{c} n \mathbf{c} \mathbf{c} d d d d b a a h h h h a a r r r r

-

f a a b b n s n s \mathbf{c} \mathbf{c} d d b b h h a a r b r

_						
	f		f		\mathbf{f}	
	a		a		a	
	b		b		b	
n s	c	n s	c	n	c	
L				S		
	d		d		d	
	b		b		c	
L		J I		1		
	h		h		h	
	a		a		a	
r			b		b	
		r	r		r	

f f f f a a a a b b b b n s \mathbf{c} n s \mathbf{c} n \mathbf{c} n \mathbf{c} S S d d d d b b \mathbf{c} \mathbf{c} h h h h a a a a r b b b r r \mathbf{c} r

- We introduce an additional variable s, and a data item d

variables: b

h

r

s

 \boldsymbol{d}

inv2_1: $s \le n+1$

inv2_2: $s \in r ... r + 1$

inv2_3: $s=r+1 \Rightarrow d=f(r)$

```
\begin{array}{l} \text{init} \\ b := \text{FALSE} \\ h := \varnothing \\ r := 1 \\ s := 1 \\ d :\in D \end{array}
```

```
send when s=r s \neq n+1 then d:=f(s) s:=s+1 end
```

```
receive s=r+1 then h:=h\cup\{r\mapsto d\} r:=r+1 end
```

```
egin{array}{l} 	ext{when} \ b = 	ext{FALSE} \ r = n+1 \ 	ext{then} \ b := 	ext{TRUE} \ 	ext{end} \end{array}
```

- Event init refines its abstraction

- Event final refines its abstraction

- Event receive refines its abstraction

- Event send refines skip

- Event send does not diverge

- Relative deadlock freeness

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation

```
send when s=r s 
eq n+1 then d := f(s) s := s+1 end
```

```
receive s=r+1 then h:=h\ \cup\ \{r\mapsto d\} r:=r+1 end
```

inv2_2:
$$s \in r \dots r + 1$$

```
send when s=r s 
eq n+1 then d := f(s) s := s+1 end
```

```
receive s=r+1 then h:=h\ \cup\ \{r\mapsto d\} r:=r+1 end
```

inv2_2:
$$s \in r \dots r + 1$$

- In order to compare r and s, it is sufficient to compare their parities

RECEIVER


```
axm3_1: parity \in \mathbb{N} \rightarrow \{0,1\}
axm3_2: parity(0) = 0
axm3_3: \forall x \cdot x \in \mathbb{N} \Rightarrow parity(x+1) = 1 - parity(x)
thm3_1: \forall x,y\cdot x\in\mathbb{N}
                       y \in \mathbb{N}
                       x \in y \dots y + 1
                       parity(x) = parity(y)
                       x = y
```

variables: b

h

r

 \boldsymbol{s}

d

 \boldsymbol{q}

inv3_1: p = parity(s)

inv3_2: q = parity(r)

```
\begin{array}{l} \text{init} \\ b \coloneqq \text{FALSE} \\ h \coloneqq \varnothing \\ r \coloneqq 1 \\ s \coloneqq 1 \\ d \coloneqq D \\ p \coloneqq 1 \\ q \coloneqq 1 \end{array}
```

```
egin{array}{l} 	ext{when} \ b = 	ext{FALSE} \ r = n+1 \ 	ext{then} \ b := 	ext{TRUE} \ 	ext{end} \end{array}
```

```
send when p=q s 
eq n+1 then d:=f(s) s:=s+1 p:=1-p end
```

```
receive when p 
eq q then h := h \cup \{r \mapsto d\} r := r+1 q := 1-q end
```

- The proofs are left as exercises

	Total	Interactive
Initial Model	6	0
1st Refinement	13	0
2nd Refinement	15	0
3rd Refinement	8	5
Total	42	5

- More mathematical conventions

How to write a model

- What kind of things we have to prove

- How the proof can help finding invariants

- Many things can be done by tools

- A small theory of parities

$x \in S$	Set membership operator
N	set of Natural Numbers: $\{0,1,2,3,\ldots\}$
$a \dots b$	Interval from a to b : $\{a, a+1, \ldots, b\}$ (empty when $b < a$)
$a\mapsto b$	pair constructing operator
S imes T	Cartesian product operator
$S\subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	Set of binary relations from $oldsymbol{S}$ to $oldsymbol{T}$
S o T	Set of total functions from S to T
S o T	Set of partial functions from $oldsymbol{S}$ to $oldsymbol{T}$
$\mathrm{dom}(r)$	Domain of a relation $m{r}$
$\operatorname{ran}(r)$	Range of a relation $oldsymbol{r}$

$s \lhd r$	domain restriction operator
$s \lessdot r$	domain subtraction operator
r riangleright t	range restriction operator
r ightarrow t	range subtraction operator

$$F = \{a1 \mapsto b2, \ a3 \mapsto b4, \ a5 \mapsto b2, \ a7 \mapsto b6\}$$

 $dom(F) = \{a1, \ a3, \ a5, \ a7\}$
 $ran(F) = \{b2, \ b4, \ b6\}$

$$dom(F) = A$$

$$\{a3,\ a7\} \lhd F$$

$$\{a3, a7\} \lhd F$$

$$F \rhd \{b2,b4\}$$

$$F
ho \{b2\}$$

- List of Sets (identifiers)

- List of Constants (identifiers)

- List of Axioms (predicates built on sets and constants)

- List of Variables (identifiers)

- List of Invariants (predicates built on sets, constants, and variables)

- List of **Events**

sets: D

constants: n

f

 $axm0_{-}1: 0 < n$

 $axm0_2: f \in 1..n \rightarrow D$

variables: g

b

inv0_1: $g \in 1 ... n \rightarrow D$

inv0_2: $b = \text{FALSE} \Rightarrow g = \emptyset$

inv0_3: $b = \text{TRUE} \Rightarrow g = f$

 $egin{aligned} & ext{init} \ & g := arnothing \ & b := ext{FALSE} \end{aligned}$

 $\begin{array}{c} \text{final} \\ \textbf{when} \\ b = \text{FALSE} \\ \textbf{then} \\ g := f \\ b := \text{TRUE} \\ \textbf{end} \end{array}$

variables: b h

r

```
inv1_1: r \in 1...n+1
```

inv1_2:
$$h = (1 ... r - 1) \triangleleft f$$

inv1_3:
$$b = \text{TRUE} \Rightarrow r = n + 1$$

thm1_1:
$$b = \text{TRUE} \Rightarrow h = g$$

variant1: n+1-r

```
egin{aligned} & 	ext{init} \ & m{b} := 	ext{FALSE} \ & m{h} := arnothing \ & r := 1 \end{aligned}
```

```
receive r \leq n then h := h \cup \{r \mapsto f(r)\} r := r + 1 end
```

```
egin{all} 	ext{when} \ b = 	ext{FALSE} \ r = n+1 \ 	ext{then} \ b := 	ext{TRUE} \ 	ext{end} \ \end{array}
```

Variable g has disappeared: it is not satisfactory

- We want to keep the variable g in the first refinement

- That seems impossible since event receive has to refine skip

- For this, we introduce the notion of anticipated event

- Such an event will be later proved to be conveergent

sets: D

constants: n

f

 $axm0_{-}1: 0 < n$

axm0_2: $f \in 1...n \rightarrow D$

variables:

 \boldsymbol{g}

inv0_1: $g \in 1 ... n \rightarrow D$

 $g := \varnothing$

receive status anticipated when $g \neq f$ then $g:\in 1...n o D$ end

 $\begin{array}{c} \text{final} \\ \textbf{when} \\ g = f \\ \textbf{then} \\ \text{skip} \\ \textbf{end} \end{array}$

- Event receive is highly non-deterministic.
- Notice the event final
- Variable b is not useful anymore

variables:

r

inv1_1: $r \in 1...n+1$

inv1_2: $g = (1 ... r - 1) \triangleleft f$

variant1: n+1-r

 $\begin{array}{c} \mathsf{init} \\ g := \varnothing \\ r := 1 \end{array}$

```
receive status convergent when r \neq n+1 then g(r) := f(r) r := r+1 end
```

 $\begin{array}{c} \textbf{final} \\ \textbf{when} \\ r=n+1 \\ \textbf{then} \\ \textbf{skip} \\ \textbf{end} \end{array}$

Note: the event receive works now with variable g