Name: Mofazzal Hossain

Student Number: R00225120

Class Group: <u>COMP1DX</u>

Lab 7 – Decoders and Multiplexers

1. Complete the following truth table for a binary decoder:

Truth Table:

A_1	A_0	D_0	D_1	D_2	D_3	Product of Terms
0	0	1	0	0	0	$D_0 = A_1 ' A_0 '$
0	1	0	1	0	0	$D_1 = A_1 'A_0$
1	0	0	0	1	0	$D_2 = A_1 A_0 '$
1	1	0	0	0	1	$D_3 = A_1 A_0$

2. Design a circuit which implements the binary decoder outlined in the truth table above. Verify its operation using the simulator and paste a snapshot of your circuit below.

Circuit:

3. Draw the black box representation and complete the truth table for a 3-to-8 binary decoder:

AO	A1	A2	DO	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

4. Design a circuit which implements the 3-to-8 binary decoder outlined in the truth table from Q.3. Verify its operation using the simulator and paste a snapshot of your circuit below.

Circuit:

5. Complete the following truth table for a multiplexer.

Truth Table:

S_1	S_0	I_0	I_1	I_2	I ₃	Output	Product of Terms
0	0	0	X	X	X	M0	
0	1	X	0	X	X	M1	
1	0	X	X	0	X	M2	
1	1	X	X	X	0	M3	
0	0	1	X	X	X	M4	S1'S2' I0
0	1	X	1	X	X	M5	S1'S2 I0
1	0	X	X	1	X	M6	S1S2' I0
1	1	X	X	X	1	M7	S1S2 I0

6. Design a circuit which implements the multiplexer outlined in the truth table above. Verify its operation using the simulator and paste a snapshot of your circuit below.

Circuit:

