Contents

1	Probability (Recap)	1
	.1 Random variables	1

1 Probability (Recap)

Suggested textbooks

- S.N. Wood. Core Statistics. Cambridge University Press, 2015.
- B. Efron, T. Hastie. Computer Age Statistical Inference Algorithms, Evidence, and Data Science. Cambridge University Press, 201.

1.1 Random variables

Statistics is about the extraction of information from data that contain an unpredictable component.

Random variables (r.v.) are the mathematical device employed to build models of this variability.

A r.v. takes a different value at random each time is observed.

Distribution of a r.v.

The main tools used to describe the **distribution** of values taken by a r.v. are:

- 1. Probability functions
- 2. Cumulative distribution functions
- 3. Quantile functions

1.1.1 Discrete distributions

Discrete r.v. take values in a discrete set.

The **probability (mass) function** (p.m.f.) of a discrete r.v. X is the function f(x) such that

$$f(x) = Pr(X = x)$$

with
$$0 \le f(x) \le 1$$
 and $\sum_i f(x_i) = 1$.

The probability function defines the distribution of X.

1.1.1.1 Mean and variance of a discrete r.v.

For many purposes, the first two moments of a distribution provide a useful summary.

The **mean** (**expected value**) of a discrete r.v. X is

$$E(X) = \sum_{i} x_i f(x_i)$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \sum_{i} g(x_i) f(x_i).$$

The special case $g(X) = (X\mu)^2$, with $\mu = E(X)$, is the **variance** of X

$$var(X) = E\{(X\mu)^2\} = E(X^2)\mu^2.$$

The **standard deviation** is just given by $\sqrt{var(X)}$.

1.1.1.2 Notable discrete random variables

Discrete r.v. often used in applications:

- Binomial distribution
- Poisson distribution
- Negative binomial distribution
- Geometric distribution
- Hypergeometric distribution

The fist two deserve some further attention.

1.1.1.3 The binomial distribution

Consider n independent binary trials each with success probability p, 0 . The r.v. X that counts the number of successes has**binomial distribution**with probability function

$$Pr(X = x) = \binom{n}{x} p^x (1p)^{nx}, \quad x = 0, \dots, n.$$

The notation is $X \sim \text{Bin}(n, p)$, and E(X) = np, var(X) = np(1p).

The case when n = 1 is known as **Bernoulli distribution**.

R lab: the binomial distribution

```
par(mfrow=c(1,2), pty="s", pch = 20)
plot(0:20, dbinom(0:20, 20, 0.2), xlab = "x", ylab = "f(x)")
plot(0:50, dbinom(0:50, 50, 0.5), xlab = "x", ylab = "f(x)")
```


1.1.1.4 The Poisson distribution

The special case of the binomial distribution with $n \to \infty$ and $p \to 0$, while their product is held constant at $\lambda = np$, yields the **Poisson distribution**.

The probability function is

$$Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, ...$$

with $\lambda > 0$.

The notation is $X \sim \text{Poi}(\lambda)$, and $E(X) = var(X) = \lambda$.

R lab: the Poisson distribution

```
par(mfrow=c(1,2), pty="s", pch = 20)
plot(0:20, dpois(0:20, 5), xlab = "x", ylab = "f(x)")
plot(0:50, dpois(0:50, 10), xlab = "x", ylab = "f(x)")
```


1.1.2 Continuous distributions

Continuous r.v. take values from intervals on the real line.

The (**probability**) density function (p.d.f.) of a continuous r.v. X is the function f(x) such that, for any constants $a \leq b$

$$Pr(a \le X \le b) = \int_a^b f(x)dx.$$

Note that $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x)dx = 1$.

The probability density function defines the distribution of X.

1.1.2.1 Mean and variance of a continuous r.v.

The definitions given in the discrete case are readily extended.

The mean (expected value) of a continuous r.v. X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

This includes the variance as a special case.

Two results, quite useful for continuous r.v., apply to a linear transformation a + bX, with a, b constants:

$$E(a+bX) = a + bE(X)$$

$$var(a+bX) = b^2 var(X).$$

1.1.2.2 Notable continuous random variables

Important continuous distributions include:

- Normal distribution
- χ^2 distribution
- F distribution
- t and Cauchy distributions
- Gamma, Weibull and exponential distributions

The normal distribution has a major role in statistics. The χ^2 , t and F distributions are relative of the normal distribution.

1.1.2.3 The normal distribution

A r.v. X has a **normal** (or **Gaussian**) distribution if it has p.d.f.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \quad -\infty < x < \infty$$

The notation is $X \sim N(\mu, \sigma^2)$, and $E(X) = \mu$ and $var(X) = \sigma^2$, $\sigma^2 > 0$, $\mu \in \Re$.

An important property is that for any constants a, b

$$a + bX \sim N(a + b\mu, b^2\sigma^2),$$

so that $Z = (X\mu)/\sigma \sim N(0,1)$, the **standard normal** distribution.

Finally, $Y = e^X$ has a **lognormal** distribution, useful for asymmetric variables with occasional right-tail outliers.

R lab: the normal distribution

```
xx <- seq(-10, 10, l=1000)
plot(xx, dnorm(xx, 0, 0.5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dnorm(xx, 5, 1), col = 2)
lines(xx, dnorm(xx, 0, 1), col = 3)
lines(xx, dnorm(xx, 0, 2), col = 4)</pre>
```


1.1.3 C.d.f. and quantile functions

1.1.3.1 Cumulative distribution functions

The cumulative distribution function (c.d.f.) of a r.v. X is the function F(x) such that

$$F(x) = Pr(X \le x),$$

and it can be obtained from the probability function or the density function: the c.d.f. identifies the distribution.

From the definition of F it follows that $F(\infty) = 0$, F(1) = 1, F(x) is monotonic.

A useful property is that if F is a continuous function then U = F(X) has a uniform distribution.

R lab: uniform transformation

```
x <- rnorm(10^5) ### simulate values from N(0,1)
xx <- seq(min(x), max(x), 1 = 1000)
hist.scott(x, main = "") ### from MASS package
lines(xx, dnorm(xx), col = "red", lwd = 2)</pre>
```


R lab: uniform transformation (cont'd)

```
u <- pnorm(x) ### that's the cdf
hist.scott(u, main="")
segments(0, 1, 1, 1, col = 2, lwd = 2)</pre>
```


1.1.3.2 The quantile function

The inverse of the c.d.f. is defined as

$$F^{1}(p) = min(x|F(x) \ge p), \quad 0 \le p \le 1.$$

This is the usual inverse function of F when F is continuous.

Another useful property is that if $U \sim U(0,1)$, namely it has a uniform distribution in [0,1], then the r.v. $X = F^1(U)$ has c.d.f. F.

This provides a simple method to generate random numbers from a distribution with known quantile function: it is the **inversion sampling** method, that only requires the ability to simulate from a uniform distribution.

Example: normal cdf and quantile functions

Let us consider the case of $X \sim N(5, 2^2)$, with c.d.f. and quantile functions given by pnorm and qnorm. Make by exercise!

R lab: inversion sampling

```
u <- runif(10^4); y <- qnorm(u, m = 5, s = 2)
par(mfrow=c(1,2), pty = "s", pch=20)
qqnorm(y, main = "")
qqline(y)
## Now, trace the density function of y to check ...</pre>
```


Side note: quantile-quantile plot

The previous slide demonstrated the usage of the quantile function to build a tool for model **goodness-of-fit**.

The quantile-quantile plot visualizes the plausibility of a theoretical distribution for a set of observations $y = (y_1, \ldots, y_n)$.

This is done by comparing the quantile function of the assumed model with the sample quantiles, which are the points that lie on the inverse of the **empirical distribution function**

$$\hat{F}_n(t) = \frac{\text{number of elements of } y \le t}{n}.$$

If the agreement between the data and the theoretical distribution is good, the points on the plot would approximately lie on a line.