Définition 5.1 - vecteur élémentaire

Soit $n \in \mathbb{N}$. On appelle vecteur élémentaire d'indice $i \in [1, n]$ le vecteur :

$$E_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \stackrel{\text{indice } i}{\longleftarrow}$$

La famille $(E_i)_{i\in \llbracket i,\, n\rrbracket}$ est alors la base canonique de \mathbb{R}^n . Puis, en remarquant que :

$$\forall (i,j) \in [1, n]^2, E_i \times E_j^\top = E_{i,j},$$

On retrouve la base canonique de $\mathcal{M}_n(\mathbb{R})$.

Proposition 5.2 - produit de matrices élémentaires

Soit $(i, j, k, l) \in [1, n]^4$. On a:

$$E_{i,j} \times E_{k,l} = \delta_{j,k} E_{i,l}$$

Définition 5.3 - somme directe d'espaces vectoriels

Soit E un \mathbb{K} -espace vectoriel et (F_1, \dots, F_p) une famille d'au moins deux sous-espaces vectoriels de E. La $somme \sum_{i=1}^p F_i$ est directe lorsque la décomposition d'un élément de cette somme en somme d'élements de chaque sous-espace vectoriel existe et est unique :

$$\bigoplus_{i=1}^{p} F_i = \{ x \in E, \exists ! (x_1, \dots, x_p), x = x_1 + \dots + x_p \}$$

Proposition 5.4 - caractérisation du caractère direct par la décomposition du neutre additif

Soit E un \mathbb{K} -espace vectoriel et (F_1, \dots, F_p) une famille d'au moins deux sous-espaces vectoriels de E. La somme $\sum_{i=1}^p F_i$ est directe si et seulement si 0_E se décompose de manière unique en la somme des neutres additifs des sous-espaces vectoriels (qui sont tous 0_E):

$$\forall (x_1, \ldots, x_p) \in F_1 \times \cdots \times F_p, \ \sum_{i=1}^p x_i = 0_E \implies x_1 = \cdots = x_p = 0_E$$

Proposition 5.5 - caractérisation du caractère direct

Soit E un \mathbb{K} -espace vectoriel et (F_1, \dots, F_p) une famille d'au moins deux sous-espaces vectoriels de E. La somme $\sum_{i=1}^p F_i$ est directe si et seulement si :

$$\left(\bigoplus_{i=1}^{p-1} F_i\right) \cap F_p = \{0_E\}.$$

Proposition 5.9 - dimension d'une somme d'espaces vectoriels de dimiension finie

Soit E un \mathbb{K} -espace vectoriel et (F_1, \dots, F_p) une famille d'au moins deux sous-espaces vectoriels de dimension finie de E. Alors :

$$\dim\left(\sum_{i=1}^{p} F_i\right) \le \sum_{i=1}^{p} \dim(F_i)$$

De plus l'égalité est vérifiée si et seulement si la somme est directe.

Proposition 5.38 - stabilité des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$ par prise d'inverse

Soit \mathcal{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$. Toute matrice M inversible de \mathcal{A} a pour inverse un élément de \mathcal{A} .

Définition 5.41 - sous-algèbre engendrée par un endomorphisme

Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$. L'image du morphisme d'algèbres $P \mapsto P(u)$ est appelée sous-algèbre engendrée par u et notée $\mathbb{K}[u]$.

Définition 5.42 - polynôme caractéristique d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. On appelle polynôme caractéristique de u le polynôme :

$$\chi_u = \det(X \mathrm{id}_E - u)$$

On dispose d'une définition tout à fait analogue pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$:

$$\chi_u = \det(XI_n - A)$$

Proposition 5.44 - expression du polynôme caractéristique d'un endomorphisme

Soit E un K-espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. On a :

$$\chi_u = X^n - \text{tr}(u)X^{n-1} + \dots + (-1)^n \det(u)$$

Théorème 5.47 - de décomposition des noyaux

Soit E un K-espace vectoriel, $u \in \mathcal{L}(E)$ et $(P,Q) \in \mathbb{K}[X]^2$ tel que $P \wedge Q = 1$. On a :

$$\ker (A(u)) \oplus \ker (B(u)) = \ker (AB(u))$$

Définition 5.49 - sous-espace propre associé à une valeur propre

Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et λ une valeur propre de u. On appelle sous-espace propre associé à λ l'espace $\ker(u - \lambda \mathrm{id}_E)$, supposément non réduit à $\{0_E\}$, sans quoi λ ne serait valeur propre.

Théorème 5.52 - lien entre valeurs propres et racines du polynôme caractéristique

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Les valeurs propres de u sont exactement les racines de χ_u :

$$\operatorname{Sp}(u) = Z(\chi_u)$$

Définition 5.53 - multiplicité d'une valeur propre

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. La multiplicité m_{λ} d'une valeur propre λ de u est sa multiplicité en tant que racine de χ_u .

Théorème 5.63 - spectres de u et P(u)

Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. pour toute valeur propre λ de u, $P(\lambda)$ est valeur propre de P(u):

$$P(\operatorname{Sp}(u)) \subset \operatorname{Sp}(P(u))$$

Proposition 5.64 - lien entre valeurs propres et racines d'un polynôme annulateur

Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ annulateur de u. Les valeurs propres de u sont à rechecher parmi les racines de P:

$$\operatorname{Sp}(u) \subset Z(P)$$

Ce résultat ne tient pas compte de la multiplicité.

Proposition 5.64 - lien entre valeurs propres et racines du polynôme minimal

Soit E un K-espace vectoriel et $u \in \mathcal{L}(E)$. Les valeurs propres de u sont exactement les racines de μ_u :

$$\operatorname{Sp}(u) = Z(\mu_u)$$

Ce résultat ne tient pas compte de la multiplicité.

Théorème 5.70 - de Cayley-Hamilton

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. χ_u est annulateur de u.