	plt.figure(figsize=(15, 10)) plt.plot(x,y,'ob', markersize = 10, markerfacecolor = 'b') plt.xlabel('Dani u nedelji') plt.ylabel('Broj zarazenih') Interpolacija Recimo da imamo podatke o 5 dana u nedelji o broju zaraženih virusom COVID-19 u Srbiji. Podaci su dati u obliku dva vektora
	Vektor x sadrži dane u nedelje označene rednim brojevima, dok vektor y sadrži podtaka ob broju zaraženih. $x=range (1,6)$ $y=[579,1053,1328,1384,1545]$ Narctaćemo podatke kao tačke na 2d grafiku. $plot_points (x,y)$
	1200 - Harris 1000 - 800 - 600 -
	Recimo sada da iz nekog razloga izgubimo podatak o broju zaraženih u danu 3. Da li možemo da ga nadoknadimo, ondnosno procenimo pomoću numeričkih algoritama? Koristimo interpolaciju. Interpolacija je tehnika koja nam omogućava da pronađemo "skrivenu" funkciju koja najbolje opsiuje (najbolje se uklapa) naše podatke. Konkretnije, interpolacija funkcioniše tako što pronalazi polinom koji mora da prođe kroz sve tačke (podatke) koje imamo. Taj polinom se posle može koristiti da procenimo vrednosti koje nam nedostaju u opsegu promenljive x (interpolacija) ili da predvidimo vrednosti van opsega promenljive x (ekstrapolacija). Oba slučaja ćemo prikazati na predavanju.
	<pre>x1=list(range(1,6)) x1.remove(3) #brisemo bas broj 3 iz liste y1=y #brisemo broj sa trece pozicije iz liste y1.pop(2) print(x1) print(y1) [1, 2, 4, 5] [579, 1053, 1384, 1545]</pre> plot_points(x1,y1) p=np.polyfit(x1, y1, 3)
	<pre>xp=np.linspace(1,np.max(x1),100) plt.plot(xp,np.polyval(p,xp)) print(p) #ovo je polinom koji odgovara vektoru koeficijenata p: #25.333*x^3 - 280.17*x^2 + 1137.2*x^1 - 303.33 [25.33333333 -280.16666667 1137.16666667 -303.33333333]</pre>
	1200 - Sarageniji
	Interpolacija - prvi način Interpolacioni polinom trećeg stepena formiramo rešavanjem sistema linearnih jedančina.
	Šta mislite zašto formiramo polinom baš trećeg stepena? (Mala pomoć: imamo 4 tačke. Ako imamo dve tačke kog stepena je polinom koji prolazi kroz njih?) Opšti oblik polinoma trećeg stepena:
	Sistem linearih jednačina pomoću koga dobijemo polinom formiramo tako što koristimo uslove koje polinom mora da zadovolji. Konkretno, polinom mora da prođe kroz sve tačke koje imamo. To znači da za svako x iz podataka $p(x)$ mora da bude jednko odgovarajućem y . Za naš primer uslovi su sledećeg oblika: $x = (1,2,4,5) \\ y = (579,1053,1384,1545) \\ p(1) = 579, p(2) = 1053, p(4) = 1384, p(5) = 1545$ $a_1 \cdot 1^3 + a_2 \cdot 1^2 + a_3 \cdot 1 + a_4 = 579 \\ a_1 \cdot 2^3 + a_2 \cdot 2^2 + a_3 \cdot 2 + a_4 = 1053 \\ a_1 \cdot 4^3 + a_2 \cdot 4^2 + a_3 \cdot 4 + a_4 = 1384 \\ a_1 \cdot 5^3 + a_2 \cdot 5^2 + a_3 \cdot 5 + a_4 = 1545$ Dobili smo sistem od 4 jednačine sa 4 nepoznate, gde su nam koeficijenti polinoma nepoznate. Rešavanjem sistema dobijamo polinom. Matrica sistema ima sledeći oblik:
[6]:	\$\$A=\begin{bmatrix} 1^3 & 1^2 & 1 & 1\ 2^3 & 2^2 & 2 & 1\ 4^3 & 4^2 & 4 & 1\ 5^3 & 5^2 & 5 & 1\ \end{bmatrix}\$\$ Ovakve matrice imaju i opšti oblik i nazivaju se Vandermondove matrice: \$\$A=\begin{bmatrix} x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1\ x_2^{n-1} & x_2^{n-2} & \dots & x_2 & 1\ \dots & \dot
[7]:	[[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.] Nakon toga dodajemo redom kolone tako što podižemo ceo vektor x1 na odgovarajući stepen, redom od 3 pa do 1. for i in range (len (x1) -2, -1, -1):
	$ [125. \ 25. \ 5. \ 1.]] $ $ print (la.cond (A)) $ $ 1228.8350337366235 $ $ Vidimo da je kondicioni broj veliki. $ $ Formiramo vektor b pomoću vektora y1 i nakon toga rešavamo sistem. $ $ b=y1 $ $ p=la.solve (A,b) $
	$ [25.33333333 - 280.16666667 \ 1137.16666667 - 303.33333333] $
	1270.66666666667 $tacna_vrednost = y[2]$ $print(tacna_vrednost)$ 1384 $Vidimo da je naša procena (1270) relativno blizu tačnoj vrednosti od 1328 zaraženih.$ $Prikazujemo sada interpolacioni polinom, kao i predikciju i tačnu vrednost za x=3.$
14]:	<pre>plot_points(x1,y1) xp=np.linspace(1,np.max(x1),100); plt.plot(xp,np.polyval(p,xp)) plt.plot(3,np.polyval(p,3),'ob',markersize=15,markerfacecolor='r') plt.plot(3,y1[2],'ob',markersize=15,markerfacecolor='g') [<matplotlib.lines.line2d 0x22841ab94a8="" at="">]</matplotlib.lines.line2d></pre>
	1200 - 1200 - 1000 - 800 - 600 -
	Lagranžov interpolacioni polinom Lagranžov interpolacioni polinom ima oblik: $p(x)=y_1(x)\cdot L_1(x)+y_2(x)\cdot L_2(x)+\cdots+y_n(x)\cdot L_n(x)$, gde su $L_1(x),L_2(x),\ldots,L_n(x)$ polinomi čiji ćemo oblik objasniti.
	U suštini mi imamo "naređane" sve vrednosti za y u zbiru gore, i sad treba da obezbedimo da $p(x)$ zadovoljavao uslove interpolacionog polinoma. Konkretnije, treba da polinome L_i formiramo tako da važi $p(x_i)=y_i$ za $i=1,\dots,n$. Dakle, hoćemo da kada na primer ubacimo x_1 u polinom p da svi polinomi L_i $i=2,\dots,n$ budu jednaki nuli osim baš L_1 koji treba da bude jednak jedan. Formalnije, treba da važi: $L_i(x_j)=\left\{ \begin{array}{ll} 1 & i=j\\ 0 & i\neq j \end{array} \right.$
15]:	Sada ćemo na primeru tri tačke i interpolacionog polinoma drugog stepena pokazati kako je Lagranž kreirao polinome L_i . Za date tri tačke $(x_1,y_1),(x_2,y_2)$ i (x_3,y_3) Lagranžov interpolacioni polinom je oblika: $p(x) = y_1 \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} + y_2 \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} + y_3 \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$ Proverićemo sada da li Lagranžov polinom zadovoljava uslove interpolacije:
	proizvod = np.convolve(pol1,pol2) print(proizvod) [3. 10. 13. 10.] #pol1=1*x^1 + 2 #pol2=3*x^2 + 4*x^1 + 5 #proizvod=3*x^3 + 10*x^2 + 13*x^1 + 10 #pov je kratko objašnjenje konvolucije koja vam može biti zanimljivo ako vas interesuje veštačka in gencija, ali nije deo gradiva: #okrećemo drugi vektor i pomeramo ga tako da se poslednji element prvog i prvi element drugog porav #jer hoćemo da dva vektora "prođu jedan pored drugog kao da idu jedan drugom u susret". #dok prolaze računa se skalarni proizvod. To je po definiciji konvolucija, kao da vučemo ld filter unkciji. #Konvolucija je iz oblasti procesiranja signala. Ako signal posmatramo kao talas onda zelimo da se tak prvog i drugog talasa poravnaju. #Ako ne radimo obratanje onda je to unarksna korelacija (cross corellation). #Na predavanju prikazujemo sliku kao ilustaciju obe operacije. Na prvoj slici poravnavaju se poceta i pocetak g, dok na drugoj (auto corellation) pocetak f i kraj g. # [1 2] #[5 4 3] #
18]:	[3, 10, 13, 10] [3. 10. 13. 10.] Implementiramo sada Lagranžov polinom. Krenućemo od dve tačke i interpolacionog polinoma koji ih povezuje, a to je prava: $p(x) = y_1 \frac{(x-x_2)}{(x_1-x_2)} + y_2 \frac{(x-x_1)}{(x_2-x_1)}$ $x=[1.,\ 2.,\ 4.,\ 5.]$ $y=[579.,\ 1053.,\ 1384.,\ 1545.]$ $print (x)$ $print (y)$
	<pre>[1.0, 2.0, 4.0, 5.0] [579.0, 1053.0, 1384.0, 1545.0] x = x[1:3] y = y[1:3] print(x) print(y) [2.0, 4.0] [1053.0, 1384.0] Formiramo prvi sabirak polinoma p: p1 = y[0]*np.array([1, -x[1]])/(x[0]-x[1])</pre>
21]: 21]:	$ \begin{array}{c} \texttt{print}(\texttt{p1}) \\ \texttt{[-526.5\ 2106.\]} \\ \\ \textbf{Vektor}[1,-x[1]] \texttt{je} \texttt{polinom}(x-x_2). \\ \\ \textbf{Proveravamo} \texttt{da} \texttt{li} \texttt{p1} \texttt{zadovoljava} \texttt{uslove} \texttt{iterpolacije}. \\ \\ \texttt{np.polyval}(\texttt{p1},\texttt{x[0]}) \\ \\ \texttt{1053.0} \\ \\ \\ \texttt{np.polyval}(\texttt{p1},\texttt{x[1]}) \\ \\ \end{array} $
24]:	<pre>Na sličan način formiramo i drugi sabirak p2 = y[1]*np.array([1, -x[0]])/(x[1]-x[0]) print(p2) [6921384.] np.polyval(p2,x[1]) 1384.0</pre>
25]: 26]:	Pomoću sabiraka formiramo interpolacioni polinom i onda ga crtamo. p = p1 + p2 print(p) [165.5 722.] plot_points(x,y)
27]:	<pre>xp=np.linspace(1,max(x)+1,100) plt.plot(xp,np.polyval(p,xp)) [<matplotlib.lines.line2d 0x22841dcb048="" at="">]</matplotlib.lines.line2d></pre> 1500- 1400-
	1100 - 10
77]:	$p(x) = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$ $\begin{bmatrix} x = [1., 2., 4., 5.] \\ y = [579., 1053., 1384., 1545.] \\ x = x[0:3] \\ y = y[0:3] \\ print(x) \\ print(y) \end{bmatrix}$
79]: 30]:	<pre>[1.0, 2.0, 4.0] [579.0, 1053.0, 1384.0] p1 = y[0]*np.convolve(np.array([1, -x[1]])/(x[0]-x[1]),np.array([1, -x[2]])/(x[0]-x[2])) print(p1) [1931158. 1544.] print(np.polyval(p1,x[0])) print(np.polyval(p1,x[1])) print(np.polyval(p1,x[2])) 579.0 0.0 0.0 p2 = y[1]*np.convolve(np.array([1, -x[0]])/(x[1]-x[0]),np.array([1, -x[2]])/(x[1]-x[2])) print(p2)</pre>
84]:	<pre>[-526.5 2632.5 -2106.] print(np.polyval(p2,x[0])) print(np.polyval(p2,x[1])) print(np.polyval(p2,x[2])) 0.0 1053.0 0.0 p3 = y[2]*np.convolve(np.array([1, -x[0]])/(x[2]-x[0]),np.array([1, -x[1]])/(x[2]-x[1])) print(np.polyval(p3,x[0])) print(np.polyval(p3,x[1])) print(np.polyval(p3,x[2])) -5.684341886080802e-14</pre>
	$-5.684341886080802e-14\\ 1383.99999999998$ Hajde na kratko da polgedamo zašto na primer rezultat $p_3(x_1)$ nije jednak tačno nuli. $ print (p3) $ [$230.66666667 - 692.$ $461.33333333] $ $ print (np.array([1, -x[0]])) $
	3.0 [0.33333333 -0.33333333] print(np.array([1, -x[1]])) print(x[2]-x[1]) print(np.array([1, -x[1]])/(x[2]-x[1])) [12.] 2.0 [0.5 -1.] #p3=230.666666667*x^2 - 692*x + 461.33333333 #p3(x1)=p3(1)=230.666666667 - 692 + 461.33333333 tmp1=230.66666667-692. #x1=1 napomena
	tmp2=461.333333333 print (tmp1) print (tmp2) tmp1+tmp2 -461.333333332999996 461.3333333333 5.684341886080802e-14 Obasnićemo sada zašto nismo dobili tačno nula. Prilikom formiranja p. 3 imamo deljenje sa 3 u delu (x[2]-x[0]). Tako dobijamo situaciju gde moramo da na računar smestimo beskonačan niz trojki iza decimalne tačke. Tom prilikom gubimo na tačnosti. Razloge za gubitak ilustrovaćemo prikazom kovo broja 0.33 u binaran. Kao što ćete videti u nastavku, broj 0.33 ne može nikada tačno da se konvertuje u binaran broj, odnosno algoritam za konverz se nikada ne zavaršava pa mora da se prekine kada se napuni kapacitet računara. Iz tog razloga 0.33 nije na računaru nikad 0. Pogledajmo sledeći kod za konverziju: a = 0.33
	m = 75; d2b = d2b = np.fix(np.remainder(a*np.power(2.,np.arange(-(n-1),m)),2)) print(d2b) [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
41]:	for i in range(10): tmp_p=tmp_p+0.33 tmp_p tmp_p==3.3 print(tmp_p) 3.30000000000000000003 Vidimo da 3.3 nije isto što i kada 10 puta na računaru saberemo 0.3. Postoji puno ovkavih slučajeva, npr. 0.1, i toga moramo da budemo svesni dok radimo na računaru.
91]:	Daćemo sada primer broja 0.1875 koji je moguće tačno konvertovati u binaran. Nemamo periodu već samo nule nakon što se konverzija završi. Sam algoritam konverzije obrađujemo na posebnom predavanju. m = 25 a = 0.1875 d2b = np.fix(np.remainder(a*np.power(2.,np.arange(-(n-1),m)),2)) print(d2b) [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
	<pre>m = 10 print(np.arange(-(n-1),m)) print(np.power(2.,np.arange(-(n-1),m))) print(a*np.power(2.,np.arange(-(n-1),m))) print(np.remainder(a*np.power(2.,np.arange(-(n-1),m)),2)) print(np.fix(np.remainder(a*np.power(2.,np.arange(-(n-1),m)),2))) print(2.**-3+2.**-4) [-2 -1</pre>
	$[1.\ 0.\ 1.\ 0.\ 0.\ 1.\ 1.\ 0.\ 0.\ 0.\ 0.\ 0.]$ $[0.1875]$ Dakle, naš polinom p_3 nije pogrešan već je posledica ograničenog kapaciteta računara za smeštanje brojeva. Iz tog razloga nastavljamo sa formiranjem Lagranžovog polinoma.
447	
44]: 45]:	$p(x) = y_1 rac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} + y_2 rac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} + y_3 rac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$

