MLFN Lab1 Report

309552012 洪立宇

Data Preprocessing

• Dataset: kddcup.data_10_percent

• <u>Data feature</u>: kddcup.names

• Data target: attack types (0-4)

0	normal
1	probe
2	denial of service (DOS)
3	user-to-root (U2R)
4	remote-to-local (R2L)

1. Read data and get features into the dataframe

讀取資料發現有一行的資料過長,將那行skip掉,並且把所有的features對 到對應的資料

2. Attack type mapping

依照助教給的的指示將所有的attack的種類對應到其攻擊項目(normal, probe,etc.)並轉成0~4的數值

● 注意到有一data的 attack type 是0.00,先將此data drop掉

3. Preparing the input

- 用drop_duplicate() 將重複的data 刪掉, 瞬間從49萬比資料變成 14 萬比資料
- 並將資料打散隨機洗牌

Data Visualization

● 用histogram 觀察所有的資料

此為service的資料 因為分佈太分散,在處理時直接把這個col 去掉了

觀察後發現很多numerical 的feature,最大最小差很多,且時常集中在某個數值可以推測若feature值集中在某個直上代表他對target影響比較少

• 用correlation matrix 觀察數值資料之間的關聯性

顏色越黑代表correlation越低,反之則高

• 用PCA視覺化所有features 降成2維時, target type的分佈

Feature Transformation

 Onehot encoding: 對 categorical 的feature 做one hot encoding, 使 feature 上升到53個

```
df.drop('service',axis = 1,inplace= True)
   ### OneHotencoding
df_oh = pd.get_dummies(df)
display(df_oh)
111883
                                     0
454629
451952
                          0
                                     0
                                                                                                                           0
 35304
355215
452458
                                                                                                                          0 ...
                        740
                                     0
                                           0
                        316
                                          0
                                                                                                                          0 ...
484497
                                   943
139189
               0
                        317
                                   593
                                           0
                                                                    0
                                                                                                                          0 ...
453957
                                          0
            2625
                                   105
145584 rows × 53 columns
```

使用minmax scalar 來 rescale data

```
sc = MinMaxScaler()
X = sc.fit_transform(X)
```

Feature Selection

● 使用REF來做feature selection

使用 Decision Tree的model 來套進去feature, 數字是1的是selector認為比較好的 feature, 其他數字的feature則為selector認定較差的,在手動將這些欄位的 featrue 移除掉

Feature Engineering

除了處理原本資料重複並且將錯誤的值去掉以外,也有確定每個欄位是否有空值,dataset 裡面有原有的categorical feature 先做 onehot encoring numerical的 feature則做minmax數值標準化。

因為對資料的domain knowlege 不夠,很難去找到一個方式來,現有的feature合併並創造一個新的feature,從視覺劃上也只能做出初步的判斷可能哪些和target較沒有關係,或許還是可能要套用sklearn的feature selection工具,如VarianceThreshold、SelectPercentile或是SelectFromModel去選擇feature或REF,來判斷哪種效果最好。

Training Model and Experiment

- 先將data分成training (80%)和testing(20%) set
- K-ford validation(k=5)
 從原本的training data 去做5-fold cross validation, 並分出training 還有 validation 來進行交叉驗證, 在此使用GridSearchCV 來對每個model做 超過100次的iteration 來找出最好的model參數, 最後在以那個參數去做 訓練
- 總共使用了四個model來做測試, 分別為Decision Tree, Random Forest, SVM, KNN

以下為做grid search後找到最好的參數結果,並使用這些參數來跑最後的預測,計算出accuracy, percision, recall, F1-score,對於不同model在使用了不同的parameters來組合(如下圖)來找出最好的對應參數。

Decision Tree

```
parameters = {
    'max_depth' :[5, 10, 15, 20, 30, 50, 80, 100, 120, 150],
    'criterion' :['gini', 'entropy'],
}

D_clf = GridSearchCV(DecisionTreeClassifier(random_state=rs), parameters, cv=5,verbose=2, n_jobs=-1)
Clf.fit(X_train, Y_train)
print(D_clf.score(X_train, Y_train))
print(D_clf.best_params_)|
```

Fitting 5 folds for each of 20 candidates, totalling 100 fits 0.999845449784059 {'criterion': 'entropy', 'max_depth': 15}

Random Forest

Fitting 5 folds for each of 20 candidates, totalling 100 fits 0.9999077311079444 {'criterion': 'entropy', 'max depth': 20}

KNN

```
parameters = {
    'weights' : ['uniform', 'distance'],
    'algorithm' : ['auto', 'ball_tree', 'kd_tree'],
    'leaf_size' : list(range(1,4)),
}
KNN_clf = GridSearchCV(KNeighborsClassifier(), parameters, cv=5,verbose=2, n_jobs=-1)
KNN_clf.fit(X_train, Y_train)
print(KNN_clf.score(X_train, Y_train))
print(KNN_clf.best_params_)
```

Fitting 5 folds for each of 24 candidates, totalling 120 fits 0.9999914138768922 {'algorithm': 'ball_tree', 'leaf_size': 1, 'weights': 'distance'}

SVM

```
parameters = {
    'kernel':['poly', 'rbf', 'sigmoid'],
    'C': [0.1,1, 10, 100],
    'gamma': [1,0.1],
}

SVC_clf = GridSearchCV(SVC(random_state=rs), parameters, cv=5, n_jobs=-1)

SVC_clf.fit(X_train, Y_train)
print(SVC_clf.score(X_train, Y_train))
print(SVC_clf.best_params_)

0 9985918758103154
```

{'C': 100, 'gamma': 1, 'kernel': 'rbf'}

Result

• Target{'normal': 0, 'probe':1, 'dos':2, 'u2r':3, 'r2l':4}

Accuracy, Recall, f1-score

使用metrics.classification_report(ypred, y_test), 可以直接用來算percision, recall, F1-score,support數值

	Decision Tree							
•	Decision Tree Decision Tree:							
	Decision free	precision	recall	f1-score	support			
	normal	1.00	1.00	1.00	29036			
	Probing	0.97	0.96	0.97	710			
	DOS U2R	1.00	1.00	1.00	17971			
	R2L	0.79 0.98	0.65 0.96	0.71 0.97	17 309			
	accuracy			1.00	48043			
	macro avg	0.95	0.91	0.93	48043			
	weighted avg	1.00	1.00	1.00	48043			
•	Random Forest							
	Random Forest			_				
		precision	recall	f1-score	support			
	normal	1.00	1.00	1.00	29036			
	Probing	0.99	0.97	0.98	710			
	DOS U2R	1.00 0.80	1.00 0.47	1.00 0.59	17971 17			
	R2L	0.99	0.47	0.98	309			
	1122	0.55	0.57	0.50	505			
	accuracy			1.00	48043			
	macro avg	0.96	0.88	0.91	48043			
	weighted avg	1.00	1.00	1.00	48043			
•	KNN							
	KNN:							
		precision	recall	f1-score	support			
	normal	1.00	1.00	1.00	29036			
	Probing	0.99	0.98	0.98	710			
	DOS	1.00	1.00	1.00	17971			
	U2R R2L	0.64 0.93	0.53 0.96	0.58 0.95	17 309			
	NZL	0.93	0.90	0.95	209			
	accuracy			1.00	48043			
	macro avg weighted avg	0.91 1.00	0.89	0.90 1.00	48043 48043			
		1.00	1.00	1.00	40043			
•	SVM							
	SVD:	precision	recall	f1-score	support			
		precision	recatt	11-30016	Support			
	normal	1.00	1.00	1.00	29036			
	Probing	0.98	0.97	0.98	710			
	DOS U2R	1.00 0.82	1.00 0.53	1.00 0.64	17971 17			
	R2L	0.82	0.53	0.04	309			
	neL	0.51	3134	0.52	303			
	accuracy		_	1.00	48043			
	macro avg	0.94	0.89	0.91	48043			
	weighted avg	1.00	1.00	1.00	48043			
	A 11.077 +							

● Acurracy 比照表

Accuracy:

Random Forest : 99.893845 % Decision Tree : 99.820994 % SVD : 99.781446 % KNN : 99.802260 %

Confusion Matrix

Decision Tree

Random Forest

```
Random Forest Confusion Matrix:
[[29026 5 2 1 2]
      692 0
                   01
   18
   5 0 17966 0
Γ
                   01
Γ
       0 0
              8
                   01
  8
              1
           0
[
      0
                  300]]
```

KNN

```
KNN Confusion Matrix:

[[28993 6 11 4 22]

[ 17 693 0 0 0]

[ 14 1 17956 0 0]

[ 8 0 0 9 0]

[ 11 0 0 1 297]]
```

SVM

Discussions and Conclusion

- 從結果來看U2R 的攻擊在dataset中較少, 所以能被訓練到的次數也不多, 從結果中的accuracy 和confusion matrix 都可以發現錯誤率較高
- 可能因為使用的dataset資料比數較少, 感覺這些model表現都還不 錯, 有和其他同學的Naive Bayes的mode比較發現, Naive Bayes可 能就表現就不會這麼好
- 感覺在資料Transformation上,還有機會多花點功夫,像是把極端值 去掉等或者是用PCA的方式把資料降為