Quiz 3

Prepare your response as a python notebook. The quiz is due Thursday evening before midnight.

- 1) Print your name, email address, and github id on the first line of your code
- 2) If you want to submit a handwritten image, include that in the notebook. Do not send separate files or links.
- 3) Include the code you wrote. No credit will be given to showing only the final results.
 - Load the challenger o-ring data from here https://github.com/bcaffo/ds4bme_intro/blob/master/data/orings.csv
 - a. Plot whether there was any o-ring failure (total > 0) versus temperature.
 - b. Fit a logistic regression curve of o-ring failure (outcome) versus temperature.
 - c. Plot the estimated sigmoid curve from the logistic regression fit on your plot from a.
 - d. A new oring has a temperature of 74 degrees. What is the estimated probability of failure from your model?
 - 2. Consider a logistic regression model

$$P(Y_i = 1 \mid X_i) = \frac{exp\{\beta_0(1 - X_i) + \beta_1 X_i\}}{1 + exp\{\beta_0(1 - X_i) + \beta_1 X_i\}}$$

where X_i is either 0 or 1 depending on subject i's group. We observe data pairs (Y_i, X_i) where each Y_i is either 0 or 1 and each X_i is either 0 or 1.

- a. Write out the log likelihood that we would maximize to obtain estimates of the parameters.
- b. Split the log likelihood into two parts, one where $X_i = 0$ and one where $X_i = 1$.
- c. Argue that the estimates are

$$\hat{\beta_0} = \log(\frac{\bar{Y_0}}{1 - \bar{Y_0}}) \quad \hat{\beta_1} = \log(\frac{\bar{Y_1}}{1 - \bar{Y_1}})$$

where $\bar{Y_0}$ is the proportion of 1's where $X_i=0$ and $\bar{Y_1}$ is the proportion of 1's where $X_i=1$.

3. The project will be to create an colab notebook report of a multivariate regression or logistic regression analysis. Pick out a dataset for analysis and print out the first 10 rows as a dataframe.

Hints:

1 Recall that the likelihood (unlogged) for a logistic regression model is

$$\prod_{i=1}^{n} P(Y_i = 1 \mid X_i)^{y_i} P(Y_i = 0 \mid X_i)^{1-y_i}$$

where y_i are the actual values of the response and $P(Y_i = 1 | X_i)$ is the model for the probability of a 1 given that particular value of X.