Data 151 Project: Video Game Sales

•••

Cheyann Odle, Ricky Gajeski

Original Intentions of the Project

- Originally had a different topic for the project
 - Data set was not useful
- Found new data set that piqued our interest, that being video game sales
- After discussing, decided that new data set had an applicable use for the real world

General View

R	ank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

Cleaning Up/Altering the Code

- Our dataset had a few issues
 - Had null values that needed to be removed
 - Had to drop the multiple sales column, leaving just global sales
 - Had to encode and add dummy columns
 - Had to add a High/Low column to better identify good selling video games

After Cleaning

	Rank	Name	Platform	Year	Genre	Publisher	Global_Sales	High/Low
0	1	Wii Sports	26	2006.0	10	359	82.74	High
1	2	Super Mario Bros.	11	1985.0	4	359	40.24	High
2	3	Mario Kart Wii	26	2008.0	6	359	35.82	High
3	4	Wii Sports Resort	26	2009.0	10	359	33.00	High
4	5	Pokemon Red/Pokemon Blue	5	1996.0	7	359	31.37	High

Splitting the Data and Creating Models

- We decided to split our data 33% test and 66% training
 - More data in training the better
- Created four Classification Models overall
 - Naive Bayes
 - o Decision Tree
 - Random Forest
 - o AdaBoost

Confusion Matrix and Scores for Bayes Model

	precision	recall	f1-score	support
High	0.58	0.38	0.46	2674
Low	0.54	0.73	0.62	2703
accuracy			0.56	5377
macro avg	0.56	0.55	0.54	5377
weighted avg	0.56	0.56	0.54	5377

```
#prediction Bayes
predBAYES = Bayes.predict(X_test)
print(predBAYES)

['Low' 'Low' 'Low' ... 'Low' 'Low' 'Low']
```

Confusion Matrix and Scores for Decision Tree Model

	precision	recall	f1-score	support
High Low	0.65 0.69	0.71 0.62	0.68 0.65	2674 2703
accuracy macro avg weighted avg	0.67 0.67	0.67 0.67	0.67 0.66 0.66	5377 5377 5377

```
#Predictions for Decision Tree

predTREE = tree.predict(X_test)
print(predTREE)

['Low' 'High' 'Low' ... 'Low' 'High' 'High']
```


Confusion Matrix and Scores for Random Forest Model

	precision	recall	f1-score	support
High	0.67	0.70	0.69	2674
Low	0.69	0.67	0.68	2703
accuracy macro avg weighted avg	0.68 0.68	0.68 0.68	0.68 0.68 0.68	5377 5377 5377

```
#Predictions for Random Forest Classifier
predRANDOM = modelRANDOM.predict(X_test)

predRANDOM # printing predRANDOM
array(['Low', 'High', 'Low', ..., 'Low', 'Low', 'High'],
```


AdaBoost

predADA
array(['Low', 'Low', 'Low', 'Low', 'Low'], d

	precisi	on reca	ll f1-sco	ore supp	ort
Há	igh 0.	63 0.	22 0	.33 2	674
ι	_ow 0.	53 0.	87 0	.66 2	703
accura	асу		0	.55 5	377
macro a	avg 0.	58 0.	55 0	.49 5	377
weighted a	avg 0.	58 0.	55 0	.50 5	377

#Score for Importance ada boosted with importances
scoretestADA= classification_report(y_test,predsTESTADA)
print(scoretestADA)

	precision	recall	f1-score	support	
High	0.55	0.78	0.65	2674	
Low	0.63	0.37	0.46	2703	
			0.57	F277	
accuracy			0.57	5377	
macro avg	0.59	0.57	0.55	5377	
weighted avg	0.59	0.57	0.55	5377	

Feature Importances

- For the Random Forest Model
 - Had Publishers as the highest importance
- Adaboost
 - Had year as the highest importance

AdaBoost Feature Importance

Conclusion

 Through our modeling, we found the Random Forest had the highest F1 score with 0.68

•

```
#Predictions for Random Forest Classifier
predRANDOM = modelRANDOM.predict(X_test)

predRANDOM # printing predRANDOM
array(['Low', 'High', 'Low', ..., 'Low', 'Low', 'High'],
```

Improvements

- Possibly hot-coding year
- Double Checking Dummies
- Further Extending Dataset
 - Adding Game Developers
 - Advertising budgets
 - o etc.

Questions