

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Programação III AP1 2° semestre de 2009.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1) (2.5 pontos)

Implemente um programa que receba, como parâmetro de entrada, um número \mathbf{n} e retorne, num vetor, os \mathbf{n} primeiros números primos existentes depois de \mathbf{n} . Por exemplo, se $\mathbf{n} = \mathbf{2}$, o vetor será composto pelos dois números primos $\{3,5\}$. É necessário salientar que \mathbf{n} não precisa ser primo.

RESPOSTA:

```
public class calcPrimo{
  public static void main(String[] args){
    int n = Integer.parseInt(args[0]);
    int vet[] = new int[n];

  int cont = 0;
  int j = n + 1;
    while(cont < n){
       while(!ePrimo(j)) j++;
       vet[cont++] = j++;
    }

  for(int i = 0; i < n; i++)
      System.out.println(vet[i]);
}</pre>
```

```
static boolean ePrimo(int n) {
  for(int i = 2; i <= Math.sqrt(n); i++)
    if((n % i) == 0) return false;

return true;
}</pre>
```

Questão 2) (2.5 pontos)

Implemente um programa que derive polinômios. Cada polinômio é definido por um vetor que contém seus coeficientes. Por exemplo, o polinômio de grau dois $3x^2 + 2x + 12$ terá um vetor de coeficientes $\mathbf{v} = \{12, 2, 3\}$. Sua derivada será $\{2, 6\}$, equivalente ao polinômio 6x + 2. O programa deve receber o valor do maior grau \mathbf{g} do polinômio, seguido de \mathbf{g} coeficientes. O programa calcula qual é o polinômio derivado e o imprime na tela.

RESPOSTA:

```
class derivaPol{
  public static void main (String[] args){
    int g = Integer.parseInt(args[0]);
    float vet[] = new float[g + 1];
    int i;

  for (i = 1; i <= (g + 1); i++)
    vet[i - 1] = Float.parseFloat(args[i]);

  float der[] = new float[g];

  for(i = 1; i < vet.length; i++)
    der[i - 1] = vet[i] * i;

  for(i = 0; i < der.length; i++)
    System.out.println(der[i]);
  }
}</pre>
```

Questão 3) (2.5 pontos)

Considere as classes abaixo, as quais modelam figuras geométricas.

```
class Quadrilatero {
    double lado1, lado2, lado3, lado4;
    public Quadrilatero(double l1, double l2, double l3, double l4) {
        lado1 = l1; lado2 = l2; lado3 = l3; lado4 = l4;
    }
}
class Retangulo extends Quadrilatero {
    public Retangulo(double b, double h) {
        super(b, h, b, h);
    }
    public void exibe() {
        System.out.println("Retangulo com lados " + lado1 + " e " +
```

```
lado2);
}

class Circulo {
    double raio;
    public Circulo(double r) {
        raio = r;
    }
    public void exibe() {
            System.out.println("Circulo com raio " + raio);
    }
}
```

- a) Crie uma classe para modelar um quadrado
- b) Modifique as classes acima de forma que possamos, para cada objeto de uma classe criado, calcular seu perímetro (recorde que o perímetro de um quadrilátero, quadrado, retângulo, etc., é dado pela soma de seus lados, enquanto que o perímetro de um círculo é o dobro do seu raio multiplicado por PI aproximadamente 3,14)
- c) Forneça uma maneira de obrigarmos que novas classes a serem inseridas na hierarquia (novos objetos geométricos) sejam obrigadas a definir uma forma de calcular o perímetro de seus objetos.

Obs: Sempre que possível, utilize os conceitos de orientação a objetos vistos.

RESPOSTA: O código apresentado contém comentários para cada item pedido na questão

```
// Interface criada como resposta ao item c). Uma outra possibilidade
seria através da criação de uma classe genérica
interface ObjetoManipulavel {
     double perimetro();
// As classes de objetos precisam implementar a interface definida
class Quadrilatero implements ObjetoManipulavel {
     double lado1, lado2, lado3, lado4;
     public Quadrilatero(double 11, double 12, double 13, double 14) {
            lado1 = 11; lado2 = 12; lado3 = 13; lado4 = 14;
     // Método implementado em resposta ao item b). Observe que, como
Retângulo e Quadrado possuem a mesma forma de cálculo do perímetro,
estas não deveriam redefinir este método
     public double perimetro () {
           return lado1 + lado2 + lado3 + lado4;
class Retangulo extends Quadrilatero {
     public Retangulo(double b, double h) {
           super(b, h, b, h);
```

```
public void exibe() {
            System.out.println("Retangulo com lados " + lado1 + " e " +
lado2);
// Classe solicitada no item a) desta questão
class Circulo implements ObjetoManipulavel {
     double raio;
     public Circulo(double r) {
           raio = r;
     public void exibe() {
            System.out.println("Circulo com raio " + raio);
     // Método implementado em resposta ao item b).
     public double perimetro () {
           return 2 * 3.14 * raio;
class Quadrado extends Retangulo {
     public Quadrado(double 1) {
           super(1, 1);
```

Questão 4) (2.5 pontos)

Construa uma classe Ponto3D capaz de representar um ponto qualquer em um espaço tridimensional XYZ. Considere que os valores de x, y e z são reais. Além disso, implemente:

- a) Dado um outro ponto como argumento (um outro objeto Ponto3D ou as coordenadas x, y e z deste outro ponto), retorne o objeto Ponto3D referente à diferença entre as coordenadas.
- b) Supondo que as coordenadas têm uma imprecisão (erro) de 3 unidades (para mais e para menos), forneça uma operação que indica se este ponto se intercepta a outro ponto dado.

RESPOSTA:

```
class Ponto3D {
    // Estes campos são declarados como privados de forma a encapsular
recursos da classe. Ou seja, apenas a classe Ponto3D conhece detalhes
de seu funcionamento interno. Classes externas obtém os valores de um
objeto através de métodos get/set (isso não era solicitado na questão)
    private double x, y, z;
    public Ponto3D(double x, double y, double z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }
}
```

```
public double getX() {
            return x;
      public void setX(double x) {
            this.x = x;
      public double getY() {
            return y;
      public void setY(double y) {
            this.y = y;
      public double getZ() {
            return z;
      public void setZ(double z) {
            this.z = z;
      // Métodos referentes ao item a) da questão
      public Ponto3D diferenca (Ponto3D ponto) {
            return new Ponto3D(this.getX() - ponto.getX(),
                                        this.getY() - ponto.getY(),
                                        this.getZ() - ponto.getZ());
      public Ponto3D diferenca (double x, double y, double z) {
            return this.diferenca(new Ponto3D(x, y, z));
      // Métodos referentes ao item b) da questão
      public boolean intercepta (Ponto3D ponto) {
            if ((this.getX() >= ponto.getX()-3 && this.getX() <=</pre>
ponto.getX()+3) &&
                   (this.getY() >= ponto.getY()-3 && this.getY() <=</pre>
ponto.getY()+3) \&\&
                  (this.getZ() >= ponto.getZ()-3 && this.getZ() <=</pre>
ponto.getZ()+3))
                  return true;
            return false;
      public boolean intercepta (double x, double y, double z) {
            return this.intercepta(new Ponto3D(x, y, z));
```