Dynamic Macroeconomic Models

Lecture 2

Alessandro Di Nola

University of Konstanz

Notation

- State variables (backward-looking):
 - Endogenous: k_t , m_t , b_t
 - Exogenous: A_t, z_t, g_t
- Control variables (forward-looking): c_t , n_t
- Static/redundant variables: w_t , r_t , y_t

Recipe to solve DSGE models

- Solving DSGE models with *linear* approximations.
- **Step 1**: Find first-order conditions.
- **Step 2**: list all equilibrium conditions:
 - FOCs
 - Budget constraints
 - Market clearing equations.
- Step 3: Find deterministic steady-state
 - Without shocks, economy converges to a steady-state where all endogenous variables are constant:

$$\varepsilon_t = 0, \ \forall t \implies \lim_{t \to \infty} x_t = \overline{x}.$$

Recipe to solve DSGE models

- Step 4: Linear approximation around deterministic steady-state
 - Log-linearized variables $\widetilde{x}_t = \log x_t \log \overline{x} \simeq (x_t \overline{x})/\overline{x}$.
- Step 5: Solve linearized system of equations obtained in step
 - 4. Several methods in the liter., the most popular are:
 - Blanchard-Kahn based on eigenvalue-eigenvector (Jordan) decomposition. Reference: Blanchard and Kahn (1980).
 - Undetermined coefficients based on matrix quadratic equations. Reference: Uhlig (1999).
- **Step 6**: With solution at hand, compute simulated time series and impulse-responses to shocks.

Roadmap

- In Problem Set 1 you went through steps 1-4 for a protypical RBC model (Hansen 1985).
- Today's lecture: focus on Step 5, i.e. solving linearized system of stochastic difference equations, also known as linearized rational expectation models (LREM).
- Next, we will cover simulation and impulse-response analysis.

Solving LREM: General Setup

- Denote vector of control variables as u_t and the state vector as s_t .
- Partition state vector as $s_t = [s_t^1, s_t^2]$, where $1 \rightarrow$ endogenous, $2 \rightarrow$ exogenous
- Assume

$$s_{t+1}^2 = \varrho s_t^2 + \varepsilon_{t+1},$$

where ε_{t+1} is a vector of i.i.d. innovations with mean zero and var-cov matrix Σ .

• Linearized equilibrium equations can be written as

$$\underset{n\times n}{A} \cdot E_t x_{t+1} = \underset{n\times n}{B} \cdot x_t$$

where

$$\underbrace{x_t}_{n \times 1} = \begin{bmatrix} s_t \\ n_s \times 1 \\ u_t \\ n_c \times 1 \end{bmatrix}$$

and $n = n_s + n_c$.

Solving LREM: An Example

- Stochastic growth model seen in Lecture 1.
- Deterministic steady-state:

$$ar{k}=\left(rac{lphaeta}{1-eta\left(1-\delta
ight)}
ight)^{rac{1}{1-lpha}}$$
 , $ar{c}=k^lpha-\delta k$, $ar{z}=1$

Log-linearized equations:

$$\begin{split} \sigma \tilde{c}_t - \sigma E_t \tilde{c}_{t+1} + \left[1 - \beta \left(1 - \delta\right)\right] \rho \tilde{z}_t - \left(1 - \alpha\right) \left[1 - \beta \left(1 - \delta\right)\right] \tilde{k}_{t+1} &= 0 \\ \frac{\bar{c}}{\bar{k}} \tilde{c}_t + \tilde{k}_{t+1} - \frac{1}{\beta} \tilde{k}_t - \frac{1}{\alpha} \left(\frac{1}{\beta} - 1 + \delta\right) \tilde{z}_t &= 0 \\ \tilde{z}_{t+1} &= \rho \tilde{z}_t + \varepsilon_{t+1} \implies E_t \tilde{z}_{t+1} = \rho \tilde{z}_t \end{split}$$

Solving LREM: An Example

- Let $x_t = \left[\tilde{k}_t, \tilde{z}_t, \tilde{c}_t\right]'$, with $s_t = \left[\tilde{k}_t, \tilde{z}_t\right]'$ and $u_t = \tilde{c}_t$.
- Linearized equations can be written in matrix form:

$$\begin{bmatrix} \left(\frac{1}{\beta} - 1 + \delta\right)(1 - \alpha) & 0 & \frac{1}{\beta}\sigma \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{k}_{t+1} \\ E_t \tilde{z}_{t+1} \\ E_t \tilde{c}_{t+1} \end{bmatrix} = \begin{bmatrix} 0 & \left(\frac{1}{\beta} - 1 + \delta\right)\rho & \frac{1}{\beta}\sigma \\ \frac{1}{\beta} & \frac{1}{\alpha}\left(\frac{1}{\beta} - 1 + \delta\right) & -\frac{\tilde{c}}{\tilde{k}} \\ 0 & \rho & 0 \end{bmatrix} \begin{bmatrix} \tilde{k}_t \\ \tilde{z}_t \\ \tilde{c}_t \end{bmatrix}$$

• Note: $E_t s_{t+1}^1 = s_{t+1}^1$, since endogenous states are *predetermined*. So here $E_t k_{t+1} = k_{t+1}$.

We need to solve

$$\underset{n\times n}{A}\cdot E_t x_{t+1} = \underset{n\times n}{B}\cdot x_t$$

Provided that A is invertible, can write

$$E_t x_{t+1} = \underbrace{A^{-1}B}_{M} \cdot x_t \tag{1}$$

- Remark: the system above is not a solution yet!
- M only tells us how the variables x_t will evolve given initial starting point.
- We only have initial conditions for the state variables.
- Where do we "start" the control variables?

Decouple the system using the Jordan decomposition of M

$$MD = D\Lambda \rightarrow M = D\Lambda D^{-1}$$

where Λ is diagonal matrix with **eigenvalues** on the main diagonal. D is matrix with corresponding **eigenvectors**.

Math review

- Arrange eigenvalues from smallest to largest in absolute value.
- Reorder eigenvectors accordingly:
 - the *i*-th column of D corresponds with the *i*-th eigenvalue of position (i,i) in Λ .

 \bullet Λ can be written as

$$\begin{bmatrix} \Lambda_1 & 0 \\ es \times es & \\ 0 & \Lambda_2 \\ eu \times eu \end{bmatrix}$$

where es: # of stable eigenvalues (i.e. smaller than one in absolute value) and eu: # of unstable eigenvalues.

• Write (1) as

$$E_{t}x_{t+1} = D\Lambda D^{-1} \cdot x_{t}$$

$$\underbrace{D^{-1}E_{t}x_{t+1}}_{E_{t}\widehat{x}_{t+1}} = \Lambda \underbrace{D^{-1} \cdot x_{t}}_{\widehat{x}_{t}}$$

Hence

$$\begin{bmatrix} E_t \widehat{s}_{t+1} \\ E_t \widehat{u}_{t+1} \end{bmatrix} = \begin{bmatrix} \Lambda_1 & 0 \\ e^{s \times es} & 0 \\ 0 & \Lambda_2 \\ e^{u \times eu} \end{bmatrix} \begin{bmatrix} \widehat{s}_t \\ \widehat{u}_t \end{bmatrix}$$

• Further, define

$$D^{-1} = \begin{bmatrix} d_{11} & d_{11} \\ es \times ns & es \times nu \\ d_{21} & d_{22} \\ eu \times ns & eu \times nc \end{bmatrix}$$

so that the transformed variables are related to the original variables as follows:

$$\begin{bmatrix} \widehat{s}_t \\ \widehat{u}_t \end{bmatrix} = \begin{bmatrix} d_{11} & d_{11} \\ es \times ns & es \times nu \\ d_{21} & d_{22} \\ eu \times ns & eu \times nc \end{bmatrix} \begin{bmatrix} s_t \\ u_t \end{bmatrix}$$
 (2)

 After decoupling, our task is much easier! We now have an independent system of two equations:

$$E_t \widehat{s}_{t+1} = \Lambda_1 \widehat{s}_t$$

 $E_t \widehat{u}_{t+1} = \Lambda_2 \widehat{u}_t$

Iterating forward yields

$$E_t \widehat{s}_{t+T} = \Lambda_1^T \widehat{s}_t$$

$$E_t \widehat{u}_{t+T} = \Lambda_2^T \widehat{u}_t$$

- Eigenvalues in Λ_1 are all less than 1 in abs. value \Longrightarrow $E_t \widehat{s}_{t+T} \to 0$ as $T \to \infty$.
- Eigenvalues in Λ_2 are all larger than 1 in abs. value $\implies E_t \widehat{u}_{t+T} \to \pm \infty$ as $T \to \infty$, unless we impose $\widehat{u}_t = 0$.
- (In a deterministic model) This restriction basically pins down the saddle-path equations.
- Recalling (2), condition $\hat{u}_t = 0$ can be stated as

$$0 = d_{21} s_t + d_{22} u_t$$
 (3)

Solving LREM: Solution for Controls

• Provided that d₂₂ is invertible,

(3)
$$d_{21} s_t + d_{22} u_t = 0 \implies u_t = \underbrace{-d_{22}^{-1} d_{21}}_{IJ} \cdot s_t$$
 (4)

- A necessary condition for d_{22} being invertible is that eu = nc.
- This means # unstable eigenvalues = # control/forward-looking variables. (BK conditions).
- Case eu > nc: system (3) has no solution
 - Intuition: we have too many restrictions on the initial values of the control variables.
- Case eu < nc: system (3) has infinitely many solutions
 - Intuition: there are too few restrictions on the initial values of the control variables → infinitely many solutions may satisfy those restrictions.

Blanchard-Kahn Conditions: A Summary

Proposition

If the number of eigenvalues of M larger than one in absolute value is equal to the number of forward-looking variables, then there is a unique solution to the system.

Proposition

If the number of eigenvalues of M larger than one in absolute value is greater than the number of forward-looking variables, then there is no solution to the system.

Proposition

If the number of eigenvalues of M larger than one in absolute value is less than the number of forward-looking variables, then there is an infinity of solutions.¹

¹You will also find this case referred to as "indeterminate" in the literature.

Solving LREM: Solution for States

- If BK conditions are satisfied, we can uniquely determine the "policy function" for controls: equation (4), i.e. $u_t = U \cdot s_t$.
- But we also need a transition equation for the state vector s_t .
- Go back to $E_t x_{t+1} = M \cdot x_t$, with $x_t = [s_t, u_t]'$.
- Decompose *M* into blocks:

$$\begin{bmatrix} E_t s_{t+1} \\ E_t u_{t+1} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ ns \times ns & ns \times nc \\ m_{21} & m_{22} \\ nc \times ns & nc \times nc \end{bmatrix} \begin{bmatrix} s_t \\ u_t \end{bmatrix}$$

• Given partitioning, the first row of this system is

$$E_t s_{t+1} = m_{11} s_t + m_{12} u_t$$
.

Replacing (4) into the above equation yields:

$$E_t s_{t+1} = \underbrace{\left(m_{11} - m_{12} d_{22}^{-1} d_{21}\right)}_{\Pi} s_t$$

Solving LREM: Solution for States

Note:

$$s_{t+1} = \begin{bmatrix} s_{t+1}^1 \\ E_t s_{t+1}^2 + \varepsilon_{t+1} \end{bmatrix}$$

and

$$E_t s_{t+1}^2 = \varrho s_t^2.$$

• Hence:

$$s_{t+1} = \begin{bmatrix} s_{t+1}^1 \\ E_t s_{t+1}^2 + \varepsilon_{t+1} \end{bmatrix} = \prod_{ns \times ns} \begin{bmatrix} s_t^1 \\ s_t^2 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ n_{s1} \times n_{s2} \\ I \\ n_{s2} \times n_{s2} \end{bmatrix}}_{W} \varepsilon_{t+1}$$

Solving LREM: Solution

• Summing up, we can write the solution in a recursive form as:

$$s_{t+1} = \prod_{n_e \times n_e} s_t + W_{n_e \times n_{e2}} \varepsilon_{t+1}$$
 (5)

$$u_t = \underset{n_c \times n_s}{U} s_t \tag{6}$$

- Given initial conditions for the states, s_0 , compute the equilibrium sequence $\{s_{t+1}\}_{t=0}^{\infty}$ iterating on (5) for a given sequence of innovations $\{\varepsilon_{t+1}\}_{t=0}^{\infty}$.
- Finally, use (6) to determine $\{u_t\}_{t=0}^{\infty}$.
- Terminology: in the language of state-space systems, (5) is called transition or state equation, whereas (6) is called observation or measurement equation.

Solving LREM: Example

- Go back to our example with stochastic growth model.
- Recall: state variables are $s_t = \left[k_t, z_t\right]'$ and controls are $u_t = c_t$.
- Hence solution in state-space form is:

$$\begin{bmatrix} k_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} \pi_{kk} & \pi_{kz} \\ 0 & \rho_z \end{bmatrix} \begin{bmatrix} k_t \\ z_t \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \varepsilon_{t+1}$$

$$c_t = \begin{bmatrix} u_{ck} & u_{cz} \end{bmatrix} \begin{bmatrix} k_t \\ z_t \end{bmatrix}$$

- In this example, there are two state variables and one control/forward-looking variable, i.e. $n_s = 2$, $n_c = 1$,
- Among the state variables, one is endogenous (capital) and the other one (technology) is exogenous, i.e. $n_{s1} = 1$, $n_{s2} = 1$.

Blanchard-Kahn: Matlab implementation

- All you have to do is writing the system of stochastic linear difference equations in the setup A · E_tx_{t+1} = B · x_t.
- Then call matlab function
 [outputs] = fun_blanchard_kahn1(inputs).
- This function takes as inputs the matrices A and B and returns the state-space matrices Π , U and W.
- Also returns an error flag, err. err is negative if Blanchard-Kahn condition for saddle-path stability is violated.

```
[PI,U,W,err] = fun_blanchard_kahn1(A,B);
```

Blanchard-Kahn: Results

```
Steady-state values for k,c and z: 2.2931

1.1077

1

Num. of stable eig: 2
```

Num. of unstable eig: 1

System is saddle-path stable

Blanchard-Kahn: Results, cont'd

```
Matrix PI is:
0.9061 0.2078
    0
         0.9500
Matrix W is:
Matrix U is:
0.3033 0.4726
```

Simulation: Matlab implementation

- Produce simulated time series iterating on the state-space form.
- Pseudo-code to generate a simulated series of lenght T periods, given sequence of random shocks $\{\varepsilon_{t+1}\}_{t=0}^{\infty}$.

```
Define ns, ns_endo, ns_exo, nc, P, W, U
s0 = zeros(ns, 1); %initial conditions states
epsi = sigmae*randn(ns_exo,T); %random numbers
    = zeros(ns,T); s(:,1) = s0;
u = zeros(nc,T);
for t=2:T % start for-loop
s(:,t) = P*s(:,t-1) + W*epsi(t);
u(:,t) = U*s(:,t);
end % close for-loop
```

Impulse Response Functions: Matlab implementation

- Produce impulse responses iterating on the state-space form.
- Pseudo-code to generate impulse responses, of lenght T periods, to a one stdev shock to TFP, i.e. $\varepsilon_1 = \sigma_{\rm e}$ and $\varepsilon_t = 0, \forall t > 2$.

```
Define ns, ns_endo, ns_exo, nc, P, W, U
s0 = zeros(ns, 1); % initial conditions states
epsi = zeros(ns_exo,T); epsi(1,2) = sigmae;
    = zeros(ns,T); s(:,1) = s0;
u = zeros(nc,T);
for t=2:T % start for-loop
s(:,t) = P*s(:,t-1) + W*epsi(t);
u(:,t) = U*s(:,t);
end % close for-loop
```

Results I

Figure: IRF of z, c, k, y to a one st. dev. positive shock to technology.

Results II

Figure: IRF of w, r to a one st. dev. positive shock to technology.

Results III

Figure: Simulated time series, given random sequence $\{\varepsilon_{t+1}\}_{t=0}^{\infty}$.

Final remarks

- Matlab codes to replicate material on these notes can be found in ILIAS:
 - main file: main_stochastic_growth_model.m;
 - auxiliary file: fun_blanchard_kahn1.m.

Final remarks

- Matlab codes to replicate material on these notes can be found in ILIAS:
 - main file: main_stochastic_growth_model.m;
 - auxiliary file: fun_blanchard_kahn1.m.
- We solved the model for $(\tilde{k}_t, \tilde{z}_t, \tilde{c}_t)_{t=0}^{\infty}$. What if we are interested in other variables such as output, wage rate, etc.?
 - Either add them in the system $A \cdot E_t x_{t+1} = B \cdot x_t$ or compute the simulated series $(\tilde{y}_t, \tilde{w}_t, \tilde{r}_t)_{t=0}^{\infty}$ after solving the system.

Final remarks

- Matlab codes to replicate material on these notes can be found in ILIAS:
 - main file: main_stochastic_growth_model.m;
 - auxiliary file: fun_blanchard_kahn1.m.
- We solved the model for $(\tilde{k}_t, \tilde{z}_t, \tilde{c}_t)_{t=0}^{\infty}$. What if we are interested in other variables such as output, wage rate, etc.?
 - Either add them in the system $A \cdot E_t x_{t+1} = B \cdot x_t$ or compute the simulated series $(\tilde{y}_t, \tilde{w}_t, \tilde{r}_t)_{t=0}^{\infty}$ after solving the system.
- Did we obtain the "true" solution?
 - We computed a local approximation around a particular point (i.e. deterministic steady state).
 - Whether such local approximation is accurate enough depends on the model and on the research question at hand.

Linearization vs VFI

- Compare linearized solution we have seen so far with a "global" solution method such as VFI.
- VFI delivers a global solution, i.e. a policy function for consumption and next-period capital specified over the entire state space.
- Linearization, instead, provides a solution that is accurate enough only in a (small) neighborhood around the approximation point.

Accuracy I

• The fit is good, especially near the steady state.

Accuracy II

• The approximation gets worse as CRRA σ gets bigger (the policy function becomes more concave).

Appendix

Eigenvalues and Eigenvectors

Definition

Let A be a square matrix and let λ be a scalar. If $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero vector \mathbf{v} , then we say that λ is an eigenvalue of A and \mathbf{v} is the corresponding eigenvector.

Intuition: In general $A\mathbf{v}$ is not proportional to \mathbf{v} . But if it is, then the proportionality factor, λ , is called eigenvalue and \mathbf{v} is an eigenvector of A corresponding to λ .

Eigenvalues and Eigenvectors: Properties

Theorem

Let A be a square matrix and let λ be a scalar. The following statements are equivalent:

- (a) λ is an eigenvalue of A and \mathbf{v} is the corresponding eigenvector.
- (b) $A \lambda I$ is a singular matrix.
- (c) $det(A \lambda I) = 0$.

Remarks: (a) is the definition of eigenvalue. (c) implies that λ is an eigenvalue of A if it is a zero of the characteristic polynomial of A. Eigenvectors are not unique: if \mathbf{v} is an eigenvector, then also any multiple $\alpha \mathbf{v}$, with $\alpha \neq 0$, is an eigenvector. Most softwares standardize an eigenvector to have unit length, i.e. $\|\mathbf{v}\| = 1$.

Jordan decomposition

For simplicity, let's assume that the $n \times n$ matrix A has n distinct real eigenvalues. Then we can state the following theorem.

Theorem

Form the matrix D

$$D = [v_1 \ v_2 \dots v_n]$$

whose columns are the n eigenvectors corresponding to the n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $D^{-1}AD = \Lambda$ where

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Example

Let matrix A be

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

The characteristic polynomial is $\lambda^2+\lambda-6=0$ whose roots are $\lambda_1=-3$ and $\lambda_2=2$. The eigenvector(s) for $\lambda_1=-3$ solve Av=-3v hence

$$\mathbf{v}_1 = (1, -2/3)^{\top}$$

for example is an eigenvector. The eigenvector(s) for $\lambda_2=2$ solve Av=2v hence

$$\mathbf{v}_2 = (1, \ 1)^{\top}$$

is an eigenvector. Ordering eigenvalues from smallest to largest (in absolute value) we get

$$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ 1 & -2/3 \end{bmatrix}, D^{-1} = \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{3}{5} \end{bmatrix}.$$

Verify that $D^{-1}AD = \Lambda$.