with each block  $A_j$  a  $d_j \times d_j$ -matrix with  $d_j = \dim(U_j)$  and all other entries equal to 0. If  $d_j = 1$  for  $j = 1, \ldots, p$ , the matrix A is a diagonal matrix.

There are natural injections from each  $U_i$  to E denoted by  $\text{in}_i : U_i \to E$ .

Now, if p=2, it is easy to determine the kernel of the map  $a: U_1 \times U_2 \to E$ . We have

$$a(u_1, u_2) = u_1 + u_2 = 0$$
 iff  $u_1 = -u_2, u_1 \in U_1, u_2 \in U_2,$ 

which implies that

$$Ker a = \{(u, -u) \mid u \in U_1 \cap U_2\}.$$

Now,  $U_1 \cap U_2$  is a subspace of E and the linear map  $u \mapsto (u, -u)$  is clearly an isomorphism between  $U_1 \cap U_2$  and Ker a, so Ker a is isomorphic to  $U_1 \cap U_2$ . As a consequence, we get the following result:

**Proposition 6.5.** Given any vector space E and any two subspaces  $U_1$  and  $U_2$ , the sum  $U_1 + U_2$  is a direct sum iff  $U_1 \cap U_2 = (0)$ .

An interesting illustration of the notion of direct sum is the decomposition of a square matrix into its symmetric part and its skew-symmetric part. Recall that an  $n \times n$  matrix  $A \in \mathcal{M}_n$  is symmetric if  $A^{\top} = A$ , skew-symmetric if  $A^{\top} = -A$ . It is clear that s

$$\mathbf{S}(n) = \{ A \in \mathbf{M}_n \mid A^{\top} = A \} \text{ and } \mathbf{Skew}(n) = \{ A \in \mathbf{M}_n \mid A^{\top} = -A \}$$

are subspaces of  $M_n$ , and that  $\mathbf{S}(n) \cap \mathbf{Skew}(n) = (0)$ . Observe that for any matrix  $A \in M_n$ , the matrix  $H(A) = (A + A^{\top})/2$  is symmetric and the matrix  $S(A) = (A - A^{\top})/2$  is skew-symmetric. Since

$$A = H(A) + S(A) = \frac{A + A^{\top}}{2} + \frac{A - A^{\top}}{2},$$

we see that  $M_n = \mathbf{S}(n) + \mathbf{Skew}(n)$ , and since  $\mathbf{S}(n) \cap \mathbf{Skew}(n) = (0)$ , we have the direct sum

$$M_n = S(n) \oplus Skew(n).$$

**Remark:** The vector space  $\mathbf{Skew}(n)$  of skew-symmetric matrices is also denoted by  $\mathfrak{so}(n)$ . It is the *Lie algebra* of the group  $\mathbf{SO}(n)$ .

Proposition 6.5 can be generalized to any  $p \ge 2$  subspaces at the expense of notation. The proof of the following proposition is left as an exercise.

**Proposition 6.6.** Given any vector space E and any  $p \geq 2$  subspaces  $U_1, \ldots, U_p$ , the following properties are equivalent:

(1) The sum  $U_1 + \cdots + U_p$  is a direct sum.