

DNA EM-1 PART I

DEFENSE NUCLEAR AGENCY EFFECTS MANUAL NUMBER 1

CAPABILITIES OF NUCLEAR WEAPONS

1 JULY 1972

AD-A955 403

DEFENSE NUCLEAR AGENCY EFFECTS MANUAL NUMBER 1

CAPABILITIES OF NUCLEAR WEAPONS

PART I PHENOMENOLOGY

HEADQUARTERS
Defense Nuclear Agency
Washington, D.C. 20305

EDITOR
PHILIP J. DOLAN
SRI INTERNATIONAL

LIST OF EFFECTIVE PAGES

The following is a list of current pages for Part I. Phenomenology, of DNA Effects Manual Number 1 (DNA EM-1). Capabilities of Nuclear Weapons. When applicable, insert latest change pages: dispose of superceded pages in accordance with applicable regulations.

Total number of pages in this part of the Handbook is . consisting of the following:

i through ii	change 1
iii through xlii	original
xliii through xliv	
xlv through xlviii	original
1-1 through 1-30	-
2-1 through 2-276	original
3-1 through 3-114	
4-1 through 4-50	
5-1 through 5-144	
5-145 through 5-152	
6-1 through 6-4	_
6-5 through 6-8	
6-9 through 6-16	•
7-1 through 7-40	
8-1 through 8-94	-

DNA EM-1 PART I CHANGE 2 1 AUGUST 19

DEFENSE NUCLEAR AGENCY EFFECTS MANUAL NUMBER 1

CAPABILITIES OF NUCLEAR WEAPONS

PART I PHENOMENOLOGY

HEADQUARTERS
Defense Nuclear Agency
Washington, D.C. 20305

EDITOR
PHILIP J. DOLAN
SRI INTERNATIONAL

LIST OF EFFECTIVE PAGES

The following is a list of current pages for Part I, Phenomenology, of DNA Effects Manual Number 1 (DNA EM-1), Capabilities of Nuclear Weapons. When applicable, insert latest change pages; dispose of superceded pages in accordance with applicable regulations.

Total number of pages in this part of the Handbook is consisting of the following:

i through ii	. change 2
iii through vi	
vii through viii	
ix through xxii	
xxiii through xxv	
xxv-a through xxv-b	. change 2
xxvi	
xxvii through xl	
xli through xlii	
xliii through xliv	
xlv through xlvi	
xlvii through xlviii	. original
1-1 through 1-30	. original
2-1 through 2-146	. original
2-147 through 2-204	. change 2
2-205 through 2-304 (Renumbered from 2-177 through 2-276)	. original
3-1 through 3-114	. original
4-1 through 4-50	. original
5-1 through 5-144	. original
5-145 through 5-152	. change 1
6-1 through 6-4	. original
6-5 through 6-8	. change l
6-9 through 6-16	. original
7-1 through 7-40	. change
8-1 through 8-94	original

DNA EM-1

HEADQUARTERS
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305

1 July 1972

EFFECTS MANUAL NUMBER 1

CAPABILITIES OF NUCLEAR WEAPONS

The Revised Edition January 1968, Capabilities of Nuclear Weapons DASA EM-1 is hereby superseded and cancelled.

With the concurrence of the Military Services, this document was redesignated DASA Effects Manual Number 1 (DASA EM-1) by action of the Joint Chiefs of Staff on 8 July 1966. With the change of the Defense Atomic Support Agency to the Defense Nuclear Agency on 1 July 1971, this document was redesignated the DNA Effects Manual Number 1 (DNA EM-1). Publication and initial distribution of future changes and revisions of this document will be effected by the Defense Nuclear Agency.

FOR THE DIRECTOR:

JOHN A. NORTHROP

Deputy Director (Science & Technology)

FOREWORD

This edition of the Capabilities of Nuclear Weapons represents the continuing efforts by the Defense Nuclear Agency to correlate and make available nuclear weapons effects information obtained from nuclear weapons testing, small-scale experiments, laboratory effort and theoretical analysis. This document presents the phenomena and effects of a nuclear detonation and relates weapons effects manifestations in terms of damage to targets of military interest. It provides the source material and references needed for the preparation of operational and employment manuals by the Military Services.

The Capabilities of Nuclear Weapons is not intended to be used as an employment or design manual by itself, since more complete descriptions of phenomenological details should be obtained from the noted references. Every effort has been made to include the most current reliable data available on 31 December 1971 in order to assist the Armed Forces in meeting their particular requirements for operational and target analysis purposes.

Comments concerning this manual are invited and should be addressed;

Director

Defense Nuclear Agency

ATTN: STAP

Washington, D. C. 20305

Lt General, USA Director

C. H. DUNN

TABLE OF CONTENTS PART I PHENOMENOLOGY

CHAPTER 1 INTRODUCTION	Page
PURPOSE	_
CHARACTERISTICS OF NUCLEAR EXPLOSIONS 1-1 Fission Energy and the Chain Reaction 1-2 Fusion (Thermonuclear) Reactions 1-3 Weapon Yield Ratings 1-4 Effects of Environment and Time 1-5 Early Time History	1-1 1-2 1-4 1-5 1-6
	1-7
1-6 Development 1-7 Thermal Radiation 1-8 The Blast Wave 1-9 Nuclear Radiation 1-10 Electromagnetic Pulse 1-11 Electromagnetic Wave Propagation 1-12 The Cloud THE SURFACE BURST	1-7 1-9 1-9
1-13 Ground Shock 1-14 The Crater 1-15 Thermal Radiation 1-16 Initial Nuclear Radiation 1-17 Residual Nuclear Radiation 1-18 Electromagnetic Pulse (EMP) Radiation 1-19 Electromagnetic Wave Propagation 1-20 The Cloud 1-21 Water Surface Bursts	1-12 1-12 1-12 1-12 1-14 1-14
THE TRANSITION ZONE BETWEEN AN AIR BURST AND A SURFACE BURST.	1-14
THE HIGH-ALTITUDE BURST 1-22 Description 1-23 Development 1-24 The Blast Wave 1-25 Thermal Radiation 1-26 Nuclear Radiation 1-27 Electromagnetic Pulse 1-28 Electromagnetic-Wave Propagation	1-15 1-17 1-19 1-19
ERRATA whood. THE \$ 123/88	

CHAPTER 1 INTRODUCTION (Continued)	
,	Page
•	1-20 1-20
	1-20 1-20 1-20
1-33 Crater 1-34 Thermal and Nuclear Radiation	1-20 1-23
1-35 Electromagnetic Pulse	1-23
THE UNDERWATER BURST	1-23 1-23
1-37 Water Shock Waves and Other Pressure Pulses	1-27
1-38 Air Blast	1-27 1-27
1-40 Thermal and Nuclear Radiation	1-29
l-41 Electromagnetic Pulse BIBLIOGRAPHY	1-29
•	
CHAPTER 2 BLAST AND SHOCK PHENOMENA	
INTRODUCTION	2-1
SECTION I AIR BLAST PHENOMENA	2-1
RELIABILITY	
2-1 Interpretation of Reliability Statements	
2-3 Errors Due to Altitude Scaling	
2-4 Errors at Long Ranges	
2-6 Effect of Weapon Characteristics	2–3
BLAST WAVE CALCULATIONS IN FREE AIR	
2-8 Peak Dynamic Pressure	2-4
2-9 Time of Arrival	

DNA EM-1 PART I 1 JULY 1972

DEFENSE NUCLEAR AGENCY EFFECTS MANUAL NUMBER 1

CAPABILITIES OF NUCLEAR WEAPONS

PART I PHENOMENOLOGY

HEADQUARTERS
Defense Nuclear Agency
Washington, D.C. 20305

EDITOR
PHILIP J. DOLAN
STANFORD RESEARCH INSTITUTE

UNANNOUNCED

	 -		-
Access	ion Fo	r 	
RTIS	GRA&I	Z.	
DTIC 1	TAB	₹	
Unanne	omnoeg	- A	
Jug	Scatio:	- 1949 -	_
-XX	Z		
Bv			_
	ibution	/	_
Ava1	lab1l1t	y Codes	
	Avail a	and/or	
Dist	Spec:	ial	
į.	•	Į	
١.			
A-1	1	ļ	
141	<u> </u>	i	_

CHAPTER 2 BLAST AND SHOCK PHENOMENA (Continued)	
2-69 Bottom Reflection	2-198 226 2-260 228
SURFACE EFFECTS OTHER THAN WAVES 2-73 Spray Dome 2-74 Plumes, Column, Cauliflower Cloud 2-75 Base Surge 2-76 Foam Patch and Ring	2-214 242 2-214 242 2-214 242 2-215 243
WATER SURFACE WAVES 2-77 Generation and Propagation of Water Surface Waves 2-78 Refraction and Shoaling UNDERWATER CRATERING	2-216 244 2-293 251 2-293 251
CHAPTER 3 THERMAL RADIATION PHENOMENA	
RADIANT EXPOSURE 3-1 Thermal Partition 3-2 Range Effects	3-2
TRANSMITTANCE 3-3 Specification of Transmittance 3-4 Model Atmospheres 3-5 Effects of Clouds and Reflecting Surfaces 3-6 Transmittance to Targets Above the Surface 3-7 Visual Range 3-8 Nighttime Visual Range	3–5 3–6 3–27 3–30 3–33
APPROXIMATE CALCULATIONS OF RADIANT EXPOSURE	
SURFACE AND SUBSURFACE BURSTS 3-9 Surface Bursts 3-10 Subsurface Bursts	3–42
THE THERMAL PULSE 3-11 Thermal Power-Time Curve 3-12 Energy-Time Curve	3–46

CHAPTER 5 NUCLEAR RADIATION PHENOMENA (Continued)	
	Page
FALLOUT 5-15 Early Fallout 5-16 Air Bursts 5-17 Land Surface Bursts 5-18 Deposition Patterns 5-19 Idealized Contours 5-20 Dose Rate Contour Dimensions 5-21 Decay of Early Fallout	5-65 5-65 5-66 5-66 5-67 5-67 5-70 5-72
5-22 Bursts in the Transition Zone 5-23 Underground Bursts 5-24 Beta Radiation	5-76
RESIDUAL RADIATION FROM WATER SURFACE AND UNDERWATER BURSTS 5-25 Water Surface Bursts 5-26 Underwater Bursts	5-104
DOSE RECEIVED WHILE FLYING THROUGH A NUCLEAR CLOUD	5-139
PRECIPITATION EFFECTS 5-27 Precipitation Scavenging 5-28 Prediction of Ground Contamination from Precipitation Effects 5-29 Some Specific Examples of Possible Contamination Resulting from Precipitation	5-145 5-146
BIBLIOGRAPHY	5-154
CHAPTER 6 TRANSIENT-RADIATION EFFECTS ON ELECTRONICS (TREE) PHENOMENA	
INTRODUCTION	6-1
ENVIRONMENT 6-1 Weapon Output 6-2 Time Considerations 6-3 Description of Radiation Fields	6-3 6-4 6-4
INTERACTIONS BASIC TO TREE 6-4 Ionization 6-5 Displacement	6-6

•	

CHAPTER 4 X-RAY RADIATION PHENOMENA (Continued)	
	Page
SECTION II X-RAY ENVIRONMENTS PRODUCED BY NUCLEAR WEAPONS	4-25
4-9 Exoatmospheric (Vacuum) Detonations	4-25
4-10 Endoatmospheric Detonations	
4-11 The Standard Atmosphere	
4-12 Direct X-Ray Fluence in the Atmosphere	
4-13 Scattered X-Ray Fluence	
4-15 High Altitude Endoatmospheric Detonations	
BIBLIOGRAPHY	
CHAPTER 5 NUCLEAR RADIATION PHENOMENA	
CHAPTER 5 NOCLEAR RADIATION PRENOMENA	
INTRODUCTION	5-1
SECTION I INITIAL NUCLEAR RADIATION	5-1
NEUTRONS	5-2
5-1 Neutron Source	
5-2 Exoatmospheric (Vacuum) Transport	
5-3 Neutron Transport Through Materials	5-5
GAMMA RAYS	
5-4 Gamma Ray Sources	
5-5 Prompt Gamma Rays	
5-6 Air-Ground Secondary Gamma Rays	
5-7 Fission Product Gamma Rays	
INITIAL RADIATION DOSE TO PERSONNEL	
5-8 Initial Neutron Dose	
5-9 Air-Ground Secondary Gamma Ray Dose	5-25
5-10 Fission Product Gamma Ray Dose	
5-12 Height of Burst	
5-13 Soil Types	
SECTION III RESIDUAL RADIATION	> − 05

CHAPTER 3 THERMAL RADIATION PHENOMENA (Continued)	
3-13 The Standard Thermal Pulse	3-52
3-16 The Effects of Thermal Pulse Specifications on Thermal Partition	3-52
FIREBALL BRIGHTNESS	3-55
THE THERMAL PULSE FROM SPECIAL WEAPONS 3-17 Effective Thermal Yield of Special Weapons 3-18 Thermal Pulse Shape from Special Weapons	3-57
HIGH ALTITUDE THERMAL PHENOMENA 3-19 Thermal Partition 3-20 High Altitude Thermal Pulse Duration 3-21 Bursts Above 250 Kilofeet	3-63 3-64
RELIABILITY OF THERMAL SOURCE DATA	3–72
RELATION OF RADIANT EXPOSURE TO PEAK OVERPRESSURE	3-74
PHYSICS OF FIREBALL DEVELOPMENT 3-22 Black Body Radiation 3-23 Opacity 3-24 The Fireball Before Final Maximum 3-25 History of Fireball Evolution 3-26 Comparison with Recent Analysis of Experiments	3-104 3-104 3-105 3-107
BIBLIOGRAPHY	
CHAPTER 4 X-RAY RADIATION PHENOMENA	
INTRODUCTION	
4-1 Production of X-Rays	4-3
SECTION I NUCLEAR WEAPONS AS X-RAY SOURCES	4-9
4-4 X-Ray Production in Nuclear Weapons 4-5 X-Ray Energy Emitted 4-6 Rate of X-Ray Emission 4-7 Spectral Distribution of X-Rays 4-8 Real Nuclear Weapons as X-Ray Sources	4-11 4-11 4-12

CHAPTER 6 TRANSIENT RADIATION EFFECTS	
ON ELECTRONICS (TREE) PHENOMENA (Continued)	Page
MANIFESTATIONS OF TREE IN MATERIALS	6-10
6-7 Ionization Effects	
6-8 Displacement Effects	-
6-9 Heating Effects	6-14
BIBLIOGRAPHY	6-16
CHAPTER 7 ELECTROMAGNETIC PULSE (EMP) PHENOMENA	
ENVIRONMENT - GENERAL DESCRIPTION	7-1
7-1 Weapon Gamma Radiation	7-1
7-2 Compton Current	
7-3 Air Conductivity	
7-4 Radial Electric Field	
ELECTROMAGNETIC FIELD GENERATION	
7-5 Medium Altitude Air Burst	
7-6 Surface Burst	
_	
INTERNAL EMP	
7-8 General Description	
7–10 Problem Definition	
COMPUTER CODE DESCRIPTIONS	
7-11 Code Utility	
7–12 Code Classes	
SYSTEMS EFFECTS	
7-13 System Definitions	
7-14 Threat Definition	
7-15 Effects Comparisons	
BIBLIOGRAPHY	7–32
CHAPTER 8 PHENOMENA AFFECTING ELECTROMAGNETIC WAVE PROPAGATION	
INTRODUCTION	. 8-1

CHAPTER 8 PHENOMENA AFFECTING ELECTROMAGNETIC WAVE PROPAGATION (Continued)

WAYE THO AGAINST	Page
SECTION I PHENOMENA AFFECTING RADIO FREQUENCIES	_
IONIZATION AND DEIONIZATION	
8-1 Electron Density Within the Fireball	
8-2 Electron Density Caused by Prompt Radiation Outside the Fireball	
8-3 Electron Density Caused by Delayed Gamma Radiation	
Outside the Fireball	
8-4 Electron Density Caused by Beta Particles Outside the Fireball	
TRAVELING DISTURBANCES IN E AND F REGIONS OF IONOSPHERE	
ELECTROMAGNETIC RADIATIONS	
ABSORPTION	
8-6 Absorption Within the Fireball	
8-8 Absorption Caused by Delayed Radiation Outside the Fireball	
PHASE CHANGES	
8-9 Velocity of Propagation	
8-10 Frequency of Propagation	
8-11 Direction of Propagation	8-21
8-12 Scatter and Scintillation	8-21
SECTION II METHODS FOR CALCULATING ABSORPTION	
OF RADIO FREQUENCIES	8–23
8-13 Size and Location of Fireball and Debris Regions	
for Detonations Below 85 kilometers	8–25
8-14 Size and Location of Fireball and Debris Regions for Detonations Between 85 and 120 kilometers	9_25
8-15 Size and Location of Fireball and Debris Regions	0~23
for Detonations Above 120 kilometers	8-25
BIELIOGRAPHY	
PART II DAMAGE CRITERIA	
CHAPTER 9 INTRODUCTION TO DAMAGE CRITERIA	
SECTION I CONTENT AND LIMITATIONS OF PART II	9-1

•

CHAPTER 9 INTRODUCTION TO DAMAGE CRITERIA (Continued)	
	Page
SECTION II BLAST AND SHOCK DAMAGE	9-2
LOADING	9-3
RESPONSE AND DAMAGE	9-11
SECTION III THERMAL RADIATION DAMAGE	9-13
INTRODUCTION	9-13
THERMAL RESPONSE OF MATERIALS	9-15
SURVIVAL IN FIRE AREAS	9-28
SECTION IV THERMAL RADIATION DEGRADATION OF	
STRUCTURAL RESISTANCE TO AIR BLAST	
THERMAL ENERGY ABSORBED	
CHANGES IN MATERIAL STATE AND MATERIALS PROPERTIES	
RESISTANCE TO LOAD	
SECTION V X-RAY DAMAGE EFFECTS	9–67
INTRODUCTION	9-67
X-RAY ENERGY DEPOSITION CALCULATIONS	9-68
INITIAL PRESSURIZATION OF MATERIALS DUE TO X-RAY DEPOSITION	9-93
SHOCK WAVE PROPAGATION AND DAMAGE PREDICTIONS	9-103
IMPULSE AND STRUCTURAL RESPONSE ANALYSIS	9-107
REENTRY VEHICLE HARDENING	9-115
SECTION VI NUCLEAR RADIATION SHIELDING	9-118
SECTION VII TREE - COMPONENT PART AND CIRCUIT RESPONSE	9-121
SEMICONDUCTOR COMPONENT PARTS	9-122
OTHER ELECTRONIC COMPONENT PARTS	9-147
ELECTRONIC CIRCUITS	9-155
SECTION WHI ELECTROMAGNETIC PULSE (EMP) DAMAGE MECHANISMS	9-170
ENERGY COUPLING	9-170
COMPONENT DAMAGE	9-172
EMP HARDENING	9-175

CHAPTER 10 PERSONNEL CASUALTIES

_		-	
	_		

	Page
INTRODUCTION 10-	-l
SECTION I AIR BLAST	- 1
MECHANISMS AND CRITERIA FOR INJURY10	-i
CASUALTY PREDICTION10	- 4
SECTION II THERMAL RADIATION	-10
SKIN BURNS10	-10
CLASSIFICATION OF BURNS10	-10
BURN INJURY ENERGIES AND RANGES10	-11
EFFECTS OF THERMAL RADIATION ON THE EYES	-15
SECTION III NUCLEAR RADIATION	-23
INITIAL RADIATION10	-23
RESIDUAL RADIATION	-25
SECTION IV COMBINED INJURY10	-31
CASUALTY CRITERIA10	⊢33
PERSONNEL IN THE OPEN	-33
PERSONNEL IN STRUCTURES	⊢35
TREATMENT 10	-35
CHAPTER 11 DAMAGE TO STRUCTURES	
INTRODUCTION	-1
SECTION I DAMAGE TO ABOVEGROUND STRUCTURES	-1
AIR BLAST EFFECTS	-2
SECTION II DAMAGE TO BELOWGROUND STRUCTURES	-40
STRUCTURES BURIED IN SOIL	-40
LINED AND UNLINED OPENINGS IN ROCK	-49
SECTION III SHOCK VULNERABILITY OF EQUIPMENT AND PERSONNEL11	-97
SECTION IV DAMS AND HARBOR INSTALLATIONS	-109
AIR BLAST11	-109

	CHAPTER 11	DAMAGE	TO STRUCTURES	s 🔳	(Continued)	
						Pag
WATER SH	юск		• • • • • • • • • • • • • • • • • • • •			11–10
CRATERIN	G					11-10
WATER WA	AVES					11–11
THERMAL-	RADIATION DA	MAGE				11-11
SECTION V	PETROLEUM,	OIL, AND	LUBRICANT (PO	L) STO	RAGE TANK	S 11-11
SECTION VI	FIELD FORT	IFICATIONS				11-11
SECTION VII	FIRE IN URI	BAN AREAS				11-12
INTRODUC	TION					11-12
EVOLUTIO	N OF MASS FI	RES				11-12
ESTIMATIO	ON AND CONTR	OL OF THE	ERMAL DAMAGE			11–13
			DAMAGE DISTA			
INTRODUC	TION				. 	12–1
SECTION I	DAMAGE TO	SURFACE	SHIPS FROM AI	R BURS	TS	12–2
BLAST DA	MAGE					12–2
DAMAGE I	FROM OTHER A	AIR BURST	PHENOMENA			12–6
SECTION II	SURFACE SE	IIP DAMAG	E FROM UNDER	WATER	BURSTS	12–8
DAMAGE I	FROM THE SHO	CK WAVE	IN THE WATER			12–8
DAMAGE I	FROM OTHER U	JNDERWAT	ER BURST PHEN	OMENA		12–17
			ROM UNDERWA			
			IN THE WATER			
DAMAGE 1	FROM OTHER U	JNDERWAT	ER BURST PHEN	OMENA		12–19
	СНАРТ	ER 13 D	AMAGE TO AIR	CRAFT		
INTRODUC	TION					13–1
SECTION I	BLAST AND	THERMAL	EFFECTS ON AL	IRCRAF	Т	13-1
NUCLEAR	WEAPON EFFE	CTS ANALY	rsis			13-4

			:	
CHAPTER 13	DAMAGE	то	AIRCRAFT	(Continued)

	Page
SECTION II	AIRCRAFT RESPONSE TO BLAST AND THERMAL EFFECTS 13-10
AIRCRAFT I	RESPONSE TO GUST EFFECTS
AIRCRAFT I	RESPONSE TO OVERPRESSURE EFFECTS
AIRCRAFT I	RESPONSE TO THERMAL RADIATION EFFECTS
BURST-TIME	E ENVELOPES
СН	APTER 14 DAMAGE TO MILITARY FIELD EQUIPMENT
INTRODUCT	ION
	AIR BLAST DAMAGE14-1
SECTION II	DAMAGE PREDICTIONS
SECTION III	DAMAGE FROM CAUSES OTHER THAN BLAST
	AND NUCLEAR RADIATION
SECTION IV	TREE DAMAGE CRITERIA14-59
SYSTEMS A	NALYSIS 14–60
REVIEW OF	ELECTRONIC SUSCEPTIBILITY TO NUCLEAR RADIATION14-62
TREE-DAMA	GE ESTIMATES14-64
	CHAPTER 15 DAMAGE TO FOREST STANDS
	CHAPTER IS DAMAGE TO FOREST STANDS
INTRODUCT	ION
SECTION I	AIR BLAST 15-1
SECTION II	TROOP AND VEHICLE MOVEMENT
SECTION III	THERMAL RADIATION
	CHAPTER 16 DAMAGE TO MISSILES
SECTION I	BLAST DAMAGE TO TACTICAL MISSILE SYSTEMS
	WEAPON SYSTEM16-3
LANCE WEA	PON SYSTEM16-12

CHAPTER 16	DAMAGE TO	MISSILES	(Cor	ntinued)
------------	-----------	----------	------	----------

, continued,	_
HANK UTABON OVOTEN	Page
HAWK WEAPON SYSTEM	16-19
SAMPLE PROBLEM: AIR BLAST DAMAGE TO A TACTICAL MISSILE SYSTEM	16-26
SECTION II BLAST AND THERMAL VULNERABILITY	10-20
OF IN-FLIGHT STRATEGIC SYSTEMS	16-34
INTRODUCTION	16-34
BLAST LOADING ON REENTRY (RV) SYSTEMS	16-39
RESULTS OF SOME RV BLAST AND THERMAL LOAD	
AND VULNERABILITY CALCULATIONS	16-66
ANTIMISSILE (ABM) SYSTEMS	16-81
BLAST AND THERMAL LETHALITY	16–96
CHAPTER 17 RADIO FREQUENCY SIGNAL DEGRADATION RELEVAN	NT
TO COMMUNICATIONS AND RADAR SYSTEMS	
INTRODUCTION	17–1
SECTION I DEGRADATION MECHANISMS	17–2
ATTENUATION	17–2
INTERFERENCE	17–6
SIGNAL DISTORTION	17–6
SECTION II SYSTEM CHARACTERISTICS AND EFFECTS	17-7
VLF AND LF SYSTEMS	17–7
HF SYSTEMS	17-13
SATELLITE COMMUNICATION SYSTEMS	17–19
TROPOSCATTER COMMUNICATION SYSTEMS	17-22
IONOSCATTER COMMUNICATION SYSTEMS	17–26
RADAR SYSTEMS	17–30
APPENDIX A SUPPLEMENTARY BLAST DATA	
SECTION I MATHEMATICAL DESCRIPTION OF THE SHOCK FRONT	Δ_1
SECTION II PHYSICAL DESCRIPTION OF SHOCK WAVE BEHAVIOR	
SECTION II PRISICAL DESCRIPTION OF SHOCK WAVE BEHAVIOR	A-0

		•			Page
APPENDIX B	USEFUL RELATI	ONSHIPS			. B –1
	APPENDIX C	PROBABILIT	Y CONSIDERATION	ONS TO	
SECTION I	DAMAGE PROBA	BILITIES			. C-2
DAMAGE CA	USED BY MOTIO	N INPUT			. C-2
DAMAGE CA	USED BY PRESSU	JRE			. C-7
SECTION II	DERIVATION OF	EQUATIONS	USED IN SECTION	ON I	. C-14
APPENDIX D	ABSTRACTS OF	DNA HANDB	оокѕ 🔳	••••••	. D –1
APPENDIX E	GLOSSARY				. E-1
APPENDIX F	LIST OF SYMBO	LS 🔳			. F-1

LIST OF ILLUSTRATIONS

PART I

Figure	Title	Page
1-1 1-2	Development of an Air Burst Development of a Surface Burst	1-10 1-13
1–3	Altitude-Yield Map Showing Differing	
	Photographs of High Altitude Bursts, $t = 100$ sec Development of a Shallow Underground Burst Development of a Deep Underground Burst Development of a Shallow Underwater Burst	1-17
1-4	Photographs of High Altitude Bursts, $t = 100 \text{ sec}$	1-18
1-5	Development of a Shallow Underground Burst	1-21
1-6	Development of a Deep Underground Burst	1-22
1-7 1-8	Development of a Deep Underwater Burst Development of a Deep Underwater Burst	1-24
1-0 2-1		1-25
2-1	Ideal Pressure-Time Relationships for a Blast Wave in	2 1
2-2	the Low Pressure Region (below 5 psi) Peak Overpressure from a 1 kt Free Air Burs:	2-1
2-2	in a Standard Sea Level Atmosphere	2_7
2-3	Peak Overpressure in Free Air as a Function	2-7
2 3	of Yield and Slant Range	2-8
2-4	Peak Dynamic Pressure from a 1 kt Free Air Burst	2 0
	in a Standard Sea Level Atmosphere	2-10
2-5	Time of Arrival of the Shock Front from a 1 kt Free Air	
	Burst in a Standard Sea Level Atmosphere	2-12
2-6	Duration of Positive Overpressure and Dynamic Pressure Phases for a 1 kg	
	Free Air Burst in a Standard Sea Level Atmosphere	
2-7	Overpressure and Dynamic Pressure Impulse from I kt Free Air	
	Burst in a Standard Sea Level Atmosphere	2-16
2-8	Positive Overpressure Waveforms for an Ideal Shock Wave	
	in a Standard Sea Level Atmosphere	2-18
2-9	Positive Dynamic Pressure Waveforms for an Ideal Shock	-
	wave in a Standard Sea Level Atmosphere	2-19
2–10	Effective Triangular Duration Correction Factors	
	$(i\Delta = C_t t_p^+ \text{ or } t\Delta = C_t t_q^+)$	2-20
2-11	Altitude Scaling Factors for Blast Wave Calculations	2-27
2-12	Shock Front Velocity, Peak Particle Velocity and Peak	2 24
2-13	Peak Reflected Overpressure at Normal Incidence and Peak Dynamic	2-34
2-13	Pressure as Functions of Peak Overpressure in a	
	Standard Sea Level Atmosphere	2-36
	Statidate Sea Level Authosphiele	2-50

Figure	Title	Page
2-14 2-15 2-16	Distortion of Blast Wave by a Stratum of Warm Air Growth of the Mach Stem (Idealized) Precursor Characteristics	2–40
2-17	Peak Overpressures at the Surface for a 1 kt Burst Over a Near-Ideal Surface, Very High Overpressure Region	2-53
2-18	Peak Overpressures at the Surface for a 1 kt Burst Over a Near-Ideal Surface, High Overpressure Region	2-54
2-19	Peak Overpressures at the Surface for a 1 kt Burst Over a	2-55
2-20	Peak Overpressures at the Surface for a 1 kt Burst Over a Near-Ideal	
2-21	or Thermally Nonideal Surface, Very Low Overpressure Region Peak Overpressures at the Surface for a 1 kt Burst Over a	2–56
2-22	Thermally Nonideal Surface, High Overpressure Region	2-57
2-22	Peak Overpressures at the Surface for a 1 kt Burst Over a Thermally Nonideal Surface, Low Overpressure Region	2-58
2-23 2-24	Peak Overpressure from a Contact Surface Burst	2-59
2-24	Peak Dynamic Pressure at the Surface from a 1 kt Explosion Over an Ideal Surface	2–61
2-25	Peak Dynamic Pressure at the Surface from a 1 kt Explosion Over a Surface with Light Dust Conditions	2-62
2-26	Peak Dynamic Pressure at the Surface from a 1 kt	
2-27	Explosion Over a Surface with Heavy Dust Conditions Comparison of Predicted Ideal, Light-Dust, and Heavy-Dust	2–63
	Dynamic Pressures for a 1 kt Explosion at a Height of Burst	2.4
2–28	of 200 feet in a Sea Level Atmosphere Time of Arrival of the Blast Wave Along the Surface	2-64
	from a 1 kt Explosion Over a Near-Ideal Surface, High Overpressure Region	2-66
2-29	Time of Arrival of the Blast Wave Along the Surface	2-00
	trom a 1 kt Explosion Over a Near-Ideal Surface, Low Overpressure Region	2-67
2-30	Time of Arrival of the Blast Wave Along the Surface	
	From a 1 kt Explosion Over a Thermally Nonideal Surface, Very High Overpressure Region	2-68
2-31	Time of Arrival of the Blast Wave Along the Surface	
	from a 1 kt Explosion Over a Thermally Nonideal Surface, High Overpressure Region	2-69

Figure	Title	Page
2-121	Peak Air Blast Overpressure Along the Water Surface	
•	from Underwater Nuclear Explosions	2-248 276
2-122	Velocity of Shock Wave in Free Water vs Peak Shock Pressure	2-251 279
2-123		2-253 281
2-124	Column and Cloud Dimensions for Shallow and	
'	Very Shallow Bursts	2-254 282
2-125	Height of Visible Base Surge Cloud as a Function	
_	of Time After Burst	2-252 285
2-126	Reduced Base Surge Radius vs Reduced Time	
	for Shallow and Very Shallow Bursts	2-258 284
2-127	Reduced Base Surge Radius vs Reduced Time	
	for Deep and Very Deep Bursts	2-259 287
2-128	Peak Wave Height H as a Function of Yield W	
	Range R and Water Depth d _w	2-262 290
2-129	Apparent Crater Radius as a Function of Yield for	
	Various Water Depths Over a Clayey Sand Bottom, where	
	d _w = Water Depth in Feet. Shaded Areas Denote Possible	
	Transition Regions from a Washed to an Unwashed Crater	
	for $d_{\rm w}$ = 20, 40, and 60	2-266 294
2-130		_
	Various Water Depths Over a Clayey Sand Bottom, where	
	$d_{\rm res}$ = Water Depth in Feet. Shaded Areas Denote Possible	
	Transition Regions from a Washed to an Unwashed	
	Crater for $d_{\rm sp} = 20$, 40, and 60	2-267 295
2-131	Average Height of Crater Lip as a Function of Yield for	2-200
2-131	Various Water Depths with the Charge Near a Clayey Sand	
	Bottom, where d_{uv} = Water Depth in Feet. Shaded Areas	
	Denote Possible Transition Regions from Crater for	
	<u>d</u> = 20, 40, and 60	2 360 291
2-132		2-2064
2-132	Yield for a Clayey Sand Bottom	2 340 20
٠,		=
3-1	Thermal Partition as a Function of Yield and Altitude	
3-2	Effective Height of Model Atmosphere (Visual Range = 16 Miles)	3-10
3–3	aransmittance Between a Burst Within 1/4 Mile	
	of the Surface and a Target on the Ground	3-11
3–4	Transmittance to a Target on the Ground on a Clear Day	2
	(Visual Range = 1 Mile)	3–15

Title	Page
Transmittance to a Target on the Ground on a Clear Day	
isual Range = 1 Mile)	3-16
Transmittance to a Target on the Ground on a Clear Day isual Range = 2 Miles)	3_17
Teansmittenes to a Torget on the Cround on a Clear Day	
usual Range = 2 Miles)	3-18
Transmittance to a Target on the Ground on a Clear Day	
Transmittance to a Target on the Ground on a Clear Day	3-19
sual Range = 4 Miles)	3-20
Transmittance to a Target on the Ground on a Clear Day	
sual Range = 8 Miles) Transmittance to a Target on the Ground on a Clear Day	3-21
isual Range = 8 Miles)	3-22
Transmittance to a Target on the Ground on a Clear Day	
sual Range = 16 Miles)	3–23
Transmittance to a Target on the Ground on a Clear Day sual Range = 16 Miles)	3-24
Transmittance to a Target on the Ground on a Clear Day	
sual Range = 16 Miles)	3–25
Transmittance to a Target on the Ground on a Clear Day sual Range = 32 Miles)	3-26
Atmospheric Transmittance for Thermal Radiation from High	
itude Nuclear Bursts (Height of Burst > 100 kft)	3-28
Equivalent Daytime Visual Range as a Function Jighttime Visual Range	
Approximate Values of Radiant Exposure	3-30
ough a Clear Atmosphere	3-40
Approximate Values of Radiant Exposure	2 41
Ough a Clear Atmosphere Thermal Partition for Surface Bursts	3-45
Calculated Power-Time Curve for a 200 kiloton Burst at 5,000 Feet	3-47
Power-Time and Energy-Time Curves for a 200 kiloton	
t at 5,000 Feet Time of Final Maximum as a Function of Yield and Altitude	3-48
Power-Time Curve for a 200 kiloton Burst at 100,000 Feet	3-53
Power-Time Curve for a 200 kiloton Burst at 40 kilometers	3-54

xxviii

Figure	Title	Pag
3-24	Distribution of Deposited X-ray Energy in a Sea Level	
	Atmosphere as a Function of Source Spectrum	3-62
3-25a	Density of Deposited Energy from Various Energy Sources	3-67
3-25b	Density of Deposited Energy from Various Energy Sources	3 – 68
3–26	A Comparison of Calculated Effective Times of Final Maximum	3 (0
2 27	with Predictions from the Simplified Equation	3–69
3–27	Equivalent Point Source at Median Radius When Height of Burst	
2 70		3-71 3-73
3–28		3-73
3-29	Free Field Radiant Exposure and Air Blast Overpressure at the	
	Surface, as a Function of Height of Burst and Ground Distance, for	
	0.01 kilotons, No Atmospheric Attenuation, High Overpressure Region	3-76
3–30	Free Field Radiant Exposure and Air Blast Overpressure at the	
	Surface, as a Function of Height of Burst and Ground Distance, for	2 22
2 21	0.01 kilotons, No Atmospheric Attenuation, Low Overpressure Region	3–77
3-31	Free Field Radiant Exposure and Air Blast Overpressure at the	
	Surface, as a Function of Height of Burst and Ground Distance, for	3-78
2 22	0.01 kilotons, 16 Mile Visual Range, High Overpressure Region	3-78
3-32	Free Field Radiant Exposure and Air Blast Overpressure at the	
	Surface, as a Function of Height of Burst and Ground Distance, for	3-79
3-33	0.01 kilotons, 16 Mile Visual Range, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-19
3-33	Surface, as a Function of Height of Burst and Ground Distance, for	
	0.1 kilotons, No Atmospheric Attenuation, High Overpressure Region	3-80
3-34	Free Field Radiant Exposure and Air Blast Overpressure at the	3-00
3-34	Surface, as a Function of Height of Burst and Ground Distance, for	
	0.1 kilotons, No Atmospheric Attenuation, Low Overpressure Region	3-81
3-35	Free Field Radiant Exposure and Air Blast Overpressure at the	J-01
J- JJ	Surface, as a Function of Height of Burst and Ground Distance, for	
	0.1 kilotons, 16 Mile Visual Range, High Overpressure Region	3-82
3-36	Free Field Radiant Exposure and Air Blast Overpressure at the	J 01
5 50	Surface, as a Function of Height of Burst and Ground Distance, for	
	Official Range, Low Overpressure Region	3-83
3-37	Field Radiant Exposure and Air Blast Overpressure at the	5 05
J J.	Summe, as a Function of Height of Burst and Ground Distance, for	
		3-84
	The state of the s	

Figure	Title	Page
3–38	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-39	l kiloton, No Atmospheric Attenuation, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3 – 85
	Surface, as a Function of Height of Burst and Ground Distance, for 1 kiloton, 16 Mile Visual Range, High Overpressure Region	3-86
3–40	Free Field Radiant Exposure and Air Blast Overpressure at the	3-60
	Surface, as a Function of Height of Burst and Ground Distance, for 1 kiloton, 16 Mile Visual Range, Low Overpressure Region	3-87
3-41	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-42	10 kilotons, No Atmospheric Attenuation, High Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3–88
	Surface, as a Function of Height of Burst and Ground Distance, for	2.00
3-43	10 kilotons, No Atmospheric Attenuation, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3–89
	Surface, as a Function of Height of Burst and Ground Distance, for 10 kilotons, 16 Mile Visual Range, High Overpressure Region	3-90
3-44	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-45	10 kilotons, 16 Mile Visual Range, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-91
3-43	Surface, as a Function of Height of Burst and Ground Distance, for	
3–46	100 kilotons, No Atmospheric Attenuation, High Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-92
	Surface, as a Function of Height of Burst and Ground Distance, for 100 kilotons, No Atmospheric Attenuation, Low Overpressure Region	3-93
3–47	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
	100 kilotons, 16 Mile Visual Range, High Overpressure Region	3-94
3–48	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-49	100 kilotons, 16 Mile Visual Range, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3–95
	Surface, as a Function of Height of Burst and Ground Distance, for	
	l megaton, No Atmospheric Attenuation, High Overpressure Region	3-96

Figure	Title	Page
3–50	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-51	1 megaton, No Atmospheric Attenuation, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3–97
	Surface, a Function of Height of Burst and Ground Distance, for 1 megaton, 16 Mile Visual Range, High Overpressure Region	3-98
3-52	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	
3-53	1 megaton, 16 Mile Visual Range, Low Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-99
3–54	Surface, as a Function of Height of Burst and Ground Distance, for 10 megatons, No Atmospheric Attenuation, High Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-100
3-34	Surface, as a Function of Height of Burst and Ground Distance, for 10 megatons, No Atmospheric Attenuation, Low Overpressure Region	3-101
3–55	Free Field Radiant Exposure and Air Blast Overpressure at the Surface, as a Function of Height of Burst and Ground Distance, for	J-101
3–56	10 megatons, 16 Mile Visual Range, High Overpressure Region Free Field Radiant Exposure and Air Blast Overpressure at the	3-102
	Surface, as a Function of Height of Burst and Ground Distance, for 10 megatons, 16 Mile Visual Range, Low Overpressure Region	3-103
3–57 3–58	Fireball Properties after Breakaway Calculated Power-Time Curves for a 200 kiloton	3-106
3-59	Burst at 5,000 Feet Altitude Variation of Phenomena for a 200 kiloton Burst	3-107 3-110
3-60	Comparison of Equations for t_{min} and t_{max} , $HOB = 180W^{0.4}$ Feet	3-112
4-1 4-2	Properties of Electromagnetic Radiation	
-	Wavelength, Frequency, and Temperature as a Function of Electromagnetic Photon Energy	4-3
4-3 4-4 _	Spectral Distribution of a Black Body Source Mass Attenuation Coefficients for Air	
4-5		4–13
4–6 4–7		4-16 4-17
4–8		4-18

	Figure	Title	Page
DNA	4-9 4-10		4–19
€ 113	4–11		4-21 4-22
	4-12 4-13	A-Ray Fluence in a Vacuum The Standard Atmosphere	4-26 4-29
	4-14 4-15	Energy Fluence and Build-up Factor for a 50 keV Monoenergetic Source in Homogeneous Air	4–31
THA	34-16		4-32
νę <i>′</i>	4-17	Mass Integral for Specified Coaltitude Separation	4–33
	4-18	Distances as a Function of Altitude Transmission of Direct X-Ray Fluence Through	4–36
Dua	4-19 4-20	X-Ray Fluence Through Air for Various Black Body Sources	4–37 4–38
(e-X=	3) ⁻²⁰ 4-21		4-40 4-41
	5-1 5-2	Spectrum for a Fission Weapon (Normalized to 1 kt) Spectrum for a Thermonuclear Weapon (Normalized to 1 kt)	5-3 5-4
	5-3	Spectra from the Fission Source of Figure 5-1 with the Receiver On or Near the Surface of the Earth at Various Slant Ranges	5-8
	5-4	Spectra from the Thermonuclear Source of Figure 5-2 with the Receiver On or Near the Surface of the Earth at Various Slant Ranges	5-9
	5–5	Neutron Fluence Incident on a Receiver Located On or Near the Surface of the Earth from the Fission Spectrum Shown in Table 5-1 and Figure 5-1	5-10
	5–6	Neutron Fluence Incident on a Receiver Located On or Near the Surface of the Earth from the Thermonuclear Spectrum	3-10
	5-7	Shown in Table 5-1 and Figure 5-2 Neutron Energy Build-Up Factors for Various	5-11
	5–8	Monoenergetic Sources in Homogeneous Air Calculated Time Dependence of the Gamma Ray Output	5-15
		from a Large Yield Explosion, Normalized to 1 kt	5-19

xxxii

Figure	Title	Page
5-9a	Neutron Dose as a Function of Slant Range from a 1 kt Surface	
5 - 9b	Neutron Dose as a Function of Slant Range from a 1 kt Surface	5-33
5-10a	Burst, Weapon Types I through IV, Long Ranges Neutron Dose as a Function of Slant Range from a 1 kt Surface	5-34
	Burst, Weapon Types V through VIII, Short Ranges	5-35
5-10b	Neutron Dose as a Function of Slant Range from a 1 kt Surface surst, Weapon Types V through VIII, Long Ranges	5-36
5-11	Burst Height Adjustment Factors for Neutrons	
5-12a	and Secondary Gamma Rays Secondary Gamma Ray Dose as a Function of Slant Range_from a	5-37
5-12b	Let Surface Burst, Weapon Types I through IV, Short Ranges Secondary Gamma Ray Dose as a Function of Slant Range from a	5-38
	Ikt Surface Burst, Weapon Types I through IV, Long Ranges	5-39
5-13a	Secondary Gamma Ray Dose as a Function of Slant Range from a 1 kt Surface Burst, Weapon Types V through VIII, Short Ranges	5-40
5-13b	Secondary Gamma Ray Dose as a Function of Slant Range from a	5-41
5-14a	Kt Surface Burst, Weapon Types V through VIII, Long Ranges Fission Product Gamma Ray Dose as a Function of Slant Range	3-41
5-14b	from a 1 kt (Fission Yield) Surface Burst, Short Ranges Fission Product Gamma Ray Dose as a Function of Slant Range	5-42
	from a 1 kt (Fission Yield) Surface Burst, Intermediate Ranges	5-43
5-14c	Fission Product Gamma Ray Dose as a Function of Slant Range from a 1 kt (Fission Yield) Surface Burst, Long Ranges	5-44
5-15	Range Dependent Burst Height Adjustment Factors for	- 45
5–16	Fission Product Gamma Rays Yield Dependent Burst Height Adjustment Factors for	5–45
5-17a	Fission Product Gamma Rays Fission Product Gamma Ray Hydrodynamic Enhancement Factors	5–46
J-174	as a Function of Slant Range for Relative Air Density of 1.1	5-47
5–1 <i>7</i> b	Fission Product Gamma Ray Hydrodynamic Enhancement Factors Function of Slant Range for Relative Air Density of 1.0	5-48
5-17c	ission Product Gamma Ray Hydrodynamic Enhancement Factors	5 40
5-17d	Function of Slant Ranges for Relative Air Density of 0.9 Fission Product Gamma Ray Hydrodynamic Enhancement Factors	. 5–49
	as a Function of Slant Range for Relative Air Density of 0.8	. 5–50

Figure	Title	Page
5-17e	Fission Product Gamma Ray Hydrodynamic Enhancement Factors	
	as a Function of Slant Range for Relative Air Density of 0.7	5–51
5-18	Neutron-Induced Gamma Dose Rate as a Function of Slant	
5-19	Range at a Reference Time of 1 Hour After Burst Decay Factors for Neutron-Induced Gamma Activity	5-5/
	Decay Factors for Neutron-Induced Gamma Activity	5-59
5–20	by Neutron-Induced Gamma Activity, Soil Type I	
5-21	Total Radiation Dose Received in an Area Contaminated	
	by Neutron-Induced Gamma Activity, Soil Type II	5–62
5-22	Total Radiation Dose Received in an Area Contaminated	
	by Neutron-Induced Gamma Activity, Soil Type III	5-63
5-23	Total Radiation Dose Received in an Area Contaminated	
	by Neutron-Induced Gamma Activity, Soil Type IV	5-64
5-24	Idealized Early Fallout Dose Rate Contour	5-68
5-25	Comparison of Idealized Dose Rate Contours with Observed	
	Contours from a Low Yield Explosion	5-69
5-26	Hodograph of a Typical Summer Wind Structure Over	
	Fort Worth, Texas	5–70
5–27	Comparison of Idealized Dose Rate Contours with Those Calculated	
	by a Complex Computer Code for a 2 Mt Explosion	
	and the Winds of Figure 5-25	5–71
5-28	Downwind Distance as a Function of Yield,	
	10 Knot Effective Wind	5-79
5-29	Downwind Distance as a Function of Yield,	
	20 Knot Effective Wind	5–80
5-30	Downwind Distance as a Function of Yield,	
	40 Knot Effective Wind	
5-31	Maximum Width as a Function of Yield, 10 Knot Effective Wind	
5-32	Maximum Width as a Function of Yield, 20 Knot Effective Wind	
5–33	Maximum Width as a Function of Yield, 40 Knot Effective Wind	5–84
5-34	Distance to Maximum Width as a Function of Yield,	
	10 Knot Effective Wind	5–85
5-35	Distance to Maximum Width as a Function of Yield,	
	20 Knot Effective Wind	5–86
5-36	Distance to Maximum Width as a Function of Yield,	
	40 Knot Effective Wind	5–87
5–37	Ground Zero Width as a Function of Yield	5–88

xxxiv

Figure	Title	Page
5-38	Height of the Stabilized Cloud Bottom as a Function of Yield	5-89
5-39	Height of the Stabilized Cloud Top as a Function of Yield	5-90
5-40	Fission Product Decay Factors Normalized to Unity at	
	Hour After Detonation	. 5–92
5-41	Normalized Dose Accumulated in a Fallout Contaminated	
5-42	Area from H + 1 Hour to H + 1,000 Days	. 5–94
3-42	Total Radiation Dose from Early Fallout as a Function of Entry Time and Stay Time, Normalized to Unit Time	
		5-96
5-43	Minimum Height of Burst for No Fallout as a Function of Yield	. 3 -90 5-99
5-44	Height of Burst Adjustment Factors for Various Yields	. 5-100
5-45	Depth Multiplication Factor for Linear Dimensions of the Fallout Pattern	
	from a 1 kt Explosion as a Function of Depth of Burst	
5-46	Base Surge Radiation Exposure Rate 15 Feet Above the Water	
	Surface from a 10 kt Explosion at a Depth of 65 Feet in	
	5,000 Feet of Water, No-Wind Environment	. 5–109
5-47	Base Surge Radiation Exposure Rate 15 Feet Above the Water	
	Surface from a 10 kt Explosion on the Bottom in 65 Feet	
5 40	of Water, No-Wind Environment	. 5–110
5-48	Base Surge Radiation Exposure Rate 15 Feet Above the Water	
	Surface from a 10 kt Explosion at a Depth of 150 Feet in 5.000 Feet of Water, No-Wind Environment	5 111
5-49	Base Surge Radiation Exposure Rate 15 Feet Above the Water	. 3–111
J -4 7	Surface from a 10 kt Explosion at a Depth of 500 Feet in	
	5.000 Feet of Water, No-Wind Environment	. 5-112
5-50	Base Surge Radiation Exposure Rate 15 Feet Above the Water	
	Surface from a 10 kt Explosion at a Depth of 1,000 Feet in	
	5.000 Feet of Water, No-Wind Environment	. 5–113
5-51	Base Surge Radiation Exposure Rate 15 Feet Above the Water	
	Surface from a 10 kt Explosion at a Depth of 1,500 Feet in	_
	5000 Feet of Water, No-Wind Environment	. 5–114
5-52	ool Radiation Exposure Rate 15 Feet Above the Water Surface	
	10 kt Explosion at a Depth of 65 Feet in 5,000 Feet	5-115
5-53	Pool Radiation Exposure Rate 15 Feet Above the Water Surface	. 5-115
J-JJ	from a 10 kt Explosion on the Bottom in 65 Feet of Water,	
	No-Current Environment	. 5-116
	· · · · · · · · · · · · · · · · · · ·	

Figure	Title	Page
5-54	Pool Radiation Exposure Rate 15 Feet Above the Water Surface from a 10 kt Explosion at a Depthof 150 Feet in 5,000 Feet	
		5-117
5-55	Pool Radiation Exposure Rate 15 Feet Above the Water Surface	11,
	from a 10 kt Explosion at a Depth of 500 Feet in 5,000 Feet	
	of Water, No-Current Environment	5–118
5-56	Pool Radiation Exposure Rate 15 Feet Above the Water Surface	
	from a 10 kt Explosion at a Depth of 1,000 Feet in 5,000 Feet	
		5–119
5-57	Pool Radiation Exposure Rate 15 Feet Above the Water Surface	
•	from a 10 kt Explosion at a Depth of 1,500 Feet in 5,000 Feet	
	of Water, No-Current Environment	5-120
5-58	Two-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 1 kt Explosion at a Depth of 30 Feet in 5.000 Feet	
	of Water, 15 Knot Wind, No-Current Environment	5-121
5-59	Ten-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 1 kt Explosion at a Depth of 30 Feet in 5,000 Feet	
	of Water, 15 Knot Wind, No-Current Environment	5-122
5–60	Thirty-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 1 kt Explosion at a Depth of 30 Feet in 5,000 Feet	
	of Water, 15 Knot Wind, No-Current Environment	5–123
5-61	Two-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 10 kt Explosion at a Depth of 65 Feet in 5,000 Feet	
<i>5 (3</i>	of Water, 15 Knot Wind, No-Current Environment	5-124
5–62	Ten-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 10 kt Explosion at a Depth of 65 Feet in 5,000 Feet	5 126
5 62	of Water, 15 Knot Wind, No-Current Environment Thirty-Minute Total Exposure 15 Feet Above the Water Surface	5-123
5-63	from a 10 kt Explosion at a Depth of 65 Feet in 5.000 Feet	
	of Water, 15 Knot Wind, No-Current Environment	5 176
<i>c c</i> a		3-120
5-64	Two-Minute Total Exposure 15 Feet Above the Water Surface	
	from a 100 kt Explosion at a Depth of 140 Feet in 5,000 Feet of Water, 15 Knot Wind, No-Current Environment	6 127
5-65	Ten-Minute Total Exposure 15 Feet Above the Water Surface	3-127
2-03	from a 100 kt Explosion at a Depth of 140 Feet in 5,000 Feet	
	of Water, 15 Knot Wind, No-Current Environment	5_128
	OL WALLE, ID MICH WING, NO-COLLCIL DIVILORIICIE - L	

Figure	Title	Page
5–66	Thirty-Minute Total Exposure 15 Feet Above the Water Surface from a 100 kt Explosion at a Depth of 140 Feet in 5,000 Feet	
5–67	of Water, 15 Knot Wind, No-Current Environment Two-Minute Total Exposure 15 Feet Above the Water Surface from a 1 kt Explosion at a Depth of 280 Feet in 5,000 Feet	
5-68	of Water, 15 Knot Wind, No-Current Environment Ten-Minute Total Exposure 15 Feet Above the Water Surface from a 1 kt Explosion at a Depth of 280 Feet in 5,000 Feet	
5–69	of Water, 15 Knot Wind, No-Current Environment Thirty-Minute Total Exposure 15 Feet Above the Water Surface from a 1 kt Explosion at a Depth of 280 Feet in 5,000 Feet	5–131
5–70	of Water, 15 Knot Wind, No-Current Environment Two-Minute Total Exposure 15 Feet Above the Water Surface from a 10 kt Explosion at a Depth of 500 Feet in 5,000 Feet	5–132
5-71	of Water, 15 Knot Wind, No-Current Environment Ten-Minute Total Exposure 15 Feet Above the Water Surface from a 10 kt Explosion at a Depth of 500 Feet in 5,000 Feet	5-133
5-72	of Water, 15 Knot Wind, No-Current Environment Thirty-Minute Total Exposure 15 Feet Above the Water Surface from a 10 kt Explosion at a Depth of 500 Feet in 5,000 Feet	5-134
5-73	of Water, 15 Knot Wind, No-Current Environment Two-Minute Total Exposure 15 Feet Above the Water Surface from a 100 kt Explosion at a Depth of 890 Feet in 5,000 Feet	5–135
5-74	of Water, 15 Knot Wind, No-Current Environment Ten-Minute Total Exposure 15 Feet Above the Water Surface from a 100 kt Explosion at a Depth of 890 Feet in 5,000 Feet	5–136
5-75	of Water, 15 Knot Wind, No-Current Environment Thirty-Minute Total Exposure 15 Feet Above the Water Surface from a 100 kt Explosion at a Depth of 890 Feet in 5,000 Feet	5–137
5-76	of Water, 15 Knot Wind, No-Current Environment Cloud Diameter as a Function of Time After Burst	
5-77	Parious Weapon Yields Peight of Cloud Bottom as a Function of Time for the Seapon Yields	
5–78	Height of Cloud Top as a Function of Time for Various Weapon Yields	

Figure	Title	Page
5-79	Dose Received While Flying Through a Nuclear Cloud as a	
	Function of Transit Time Through the Cloud	5-144
6-1	Gamma Ray Interaction with Matter	6–7
6-2	Displacement Damage in a Crystalline Solid	6-9
6-3	Annealing Due to Vacancy-Interstitial Recombination and	
	Escape of Defects from Semiconductor	6-10
6-4	Heating Heating	6-10
6-5	Thermomechanical Shock Effects	6-15
7-1	The Compton Effect	7-2
7-2	Compton Current at any Meters from a 1-Mt Cround Burst with	/
7–3	Conductivity at 500 Meters from a 1-Mt Low Altitude Burst	7–4
7–4	Charge Separation Model	7–5
7-5	Limits on Electric Field Time Waveforms	
7–6	Simple Illustration of Air-Burst EMP	7–7
7–7	Comparison of General Waveforms for the Dipole Moment,	
	he Current, and the E-Field	7–8
7–8	Simple Illustration of Surface Burst EMP	
7–9	Shape of Magnetic Field for Toroid Model	
7–10	Illustration of the Basic Geometry of the High-Altitude Burst	7–11
7-11	Ground Coverage for Bursts of 100, 300, and 500 km	
	(about 62, 186, and 310 miles)	7–12
7-12	Maximum Peak Electric Field as a Function of Gamma Ray	
	Yield for Selected Burst Heights	
7-13	Time Waveform of High-Altitude Radiated Signal	
7-14	Amplitude of High-Altitude Radiated Signal	/-15
7-15	Geometry of Propagation Effects on Exoatmospheric Systems	/ - 15
7-16	IEMP Generation Categories of System Operation Regions	/-10 7 10
7-17	Mission/Environment Matrix	
7-18	Mission/Environment Matrix Field Directions of Ground-Burst EMP	7-20
7-19 7-20	Peak Magnetic Field B_{ω} Versus Overpressure for Varying	1–20
7-20	Ground Conductivities and Yields	7_21
7-21	Peak Radial Electric Field E. Versus Overpressure	
, -21	for Varying Ground Conductivities and Yields	7-22
7-22	Peak Transverse Electric Field E_{θ} Versus Overpressure	
	for Varying Ground Conductivities and Yields	7–23

Figure	Title	Page
7-23	Peak Air Conductivity Versus Overpressure for Yields	
7-24	of 100 kt and 1 Mt B _o Time Waveform at the Air-Ground Interface	7-24
	tor Several psi Levels	7-25
7-25	Fourier Amplitude of B_{φ} Waveform of Figure 7-24	7-26
7-26	E. Time Waveform at the Air-Ground Interface for	
	Several psi Levels, $\sigma_{\rm g} = 10^{-2}$ mho/m Fourier Amplitude of $E_{\rm r}$ Waveform of Figure 7-26 E. Time Waveform of the Air-Ground Interface for	7-27
7–27	Fourier Amplitude of E_r Waveform of Figure 7-26	7–28
7–28	Da izne waveleni er die im erediate interiate ier	
_	Several psi Levels, $\sigma_g = 10^{-2}$ mho/m Fourier Amplitude of E_{θ} Waveform of Figure 7-28	7–29
7–29	Fourier Amplitude of E_{θ} Waveform of Figure 7-28	7–30
7–30	Air Conductivity Time Waveforms at the Air-Ground	7 01
	Interface for Several psi Levels, $\sigma_g = 10^{-2}$ mho/m Optical and Radio Frequency Bands	
8–1 8–2	Optical and Radio Frequency Bands	
8-3	Fireball Electron Density and Temperature, 1-Mt at 25 km Fireball Electron Density and Temperature, 1-Mt at 50 km	
8 -4	Fireball Electron Density and Temperature, 1-Mt at 30 km	
8-5	Fireball Electron Density and Temperature, 1-Mt at 150 km	
8-6	Fireball Electron Density and Temperature, 1-Mt at 400 km	
8–7	Ion-Pair Density Due to Prompt Radiation from a	0 10
	-Mt Burst Detonated at 120 km, $t = 0$	8-11
8-8		8-12
8–9	Quasi-Equilibrium Electron Density Due to Gamma Rays	8-13
8-10	Location of Delayed Ionization Regions	8-14
8-11	Quasi-Equilibrium Electron Density Due to Beta Particles,	
	Debris Altitude Greater Than 60 km	8-15
8-12	Incremental Absorption Due to Electron-Neutral Collisions	8-17
8–13	Incremental Absorption Due to Electron-Ion Collisions,	0.10
8-14	Radiation Sources Causing Absorption Outside the Fireball Appropriate Fireball Surface Scattering Coefficient at 400 MHz	8-18
8-15	Apparent Fireball Surface Scattering Coefficient at 400 MHz	8-33
8-16	Examples of Fireball Geometry	8_24
8-17	Debris Behavior for Detonation Altitudes Greater Than 85 km	
8-18	Illustration of Debris and Beta-Particle Absorption Regions	
- 7	for Times Later Than 10 Minutes After Burst, H ₀ Above 120 km	8-27
8-19	Maximum Fireball Rise	8-31
8-20	Time for Fireball to Reach Its Maximum Altitude	8-32

xxxix

Figure	Title	Page
8-21	Altitude Normalizing Factor h _N	8-33
8-22	Fireball Height Factor	8-34
8-23	Initial Fireball Radius	
8-24	Fireball Radius	
8-25	Change in Fireball/Debris-Region Radius after Seven Minutes	8-37
8-26	Magnetic Equilibrium Radius	8-41
8-27	Debris Height Factor	
8-28	Maximum Debris Offset	8-42
8-29	Debris Offset Correction Factor	8-42
8-30	Fraction of Total Debris Transported	
	to Conjugate Region (Region 3)	8-52
8-31	Altitude of Debris Region 1, 10-kt Burst	8-53
8-32	Altitude of Debris Region 1, 100-kt Burst	8-53
8-33	Altitude of Debris Region 1, 1-Mt Burst	8-54
8-34	Altitude of Debris Region 1, 10-Mt Burst Radius of Debris Region 1, 10-kt Burst	8-54
8-35	Radius of Debris Region 1, 10-kt Burst	8-55
8-36	Radius of Debris Region 1, 100-kt Burst	8-55
8-37	Radius of Debris Region 1, 1-Mt Burst	
8-38	Radius of Debris Region 1, 10-Mt Burst	8-56
8–39	One-Way Absorption Through Debris Region	
	Due to Beta-Particle Ionization	8–64
8–40	Reference Weapon Yield W,	8–67
8-41	One-Way Vertical Absorption Due to Prompt Radiation	8–68
8–42	Geometry for Gamma Ray Absorption	8–73
8–43	One-Way Absorption Due to Gamma Rays,	
	$f = 1000$ MHz, $\theta_d = +60$ Degrees	8–74
8-44	One-Way Absorption Due to Gamma Rays,	
	$f = 1000$ MHz, $\theta_d = 0$ Degrees	8-75
8–45	One-Way Absorption Due to Gamma Rays,	
	$f = 1000$ MHz, $\theta_d = -60$ Degrees	8-76
8-46	Gamma Radiation Intensity Nomogram	8–77
8-47	Correction Factor for Gamma Ray Flux	8-78
8-48	One-Way Vertical Absorption Due to Gamma Rays	
8-49	Offset of Beta-Absorption Region	8-83
8-50	Beta Radiation Intensity Nomogram	8-84
8-51	One-Way Vertical Absorption Due to Beta Particles,	
	Debris Altitude Above 60 km	8-85

Figure		Title	Page
8-52 8-53 8-54 8-55	1	Sketch of Absorption-Region Geometry for Example 2 Magnetic Conjugate Map World Map of Magnetic Dip Secant & Chart	8-88 8-90

de la companya de la

(This page intentionally left blank)

LIST OF TABLES (Continued)

Table	Title	Page
5–1	Weapon Neutron Output Spectra	5-2
5-2	The Standard Atmosphere	
5-3	Representative Types of Nuclear Weapons	
5-4	Chemical Composition of Illustrative Soils	
5-5	Relative Theoretical Dose Rates from Early Fallout at	•
	Various Times After a Nuclear Explosion	5-73
5-6	Percentage of the Infinite Residence Dose Received from	
	Hour to Various Times After Explosion	5-75
5-7	Examples Selected for Base Surge and Pool Exposure Rates	
5-8	Examples Selected for Total Exposure	
7-1	Variation of Range, R_0 , at Which the Radiation	
•	Region Begins, with Yield	7-10
8-1	Approximate Stopping Altitudes for Principal Weapon	
	Outputs Causing Ionization	8-3
8-2	Fireball Location and Dimensions for Detonations Above 80 km	
8-3	Absorption (dB) Through Fireball for	• • • •
•	Detonations Below 80 km, $W = 10$ kt	8-59
8-4	Absorption (dB) Through Fireball for	
•	Detonations Below 80 km, $W = 100$ kt	8-60
8-5	Absorption (dB) Through Fireball for	
	Detonations Below 80 km, W = 1 Mt	8-61
8-6	Absorption (dB) Through Fireball for	0 0.
	Detonations Below 80 km, $W = 10 \text{ Mt}$	8-62
8-7	Absorption (dB) Through Fireball at	0.02
J .	1000 MHz for Detonations Above 80 km	8-63

xliii

Change 1

(This page intentionally left blank)

xlviii

Security Crassification

Security Calesification	LIN	K A	LIN	K 8	LIN	
KEY WORDS	ROLE	~ T	ROLE	WT	ROLE	
Nuclear Weapon Effects			HOLE	_ W 1	- XOLE	₩7
Blast and Shock Phenomena		l	1		1	
Air Blast Phenomena		!	1 1		!	
Cratering Phenomena		Ì	1 1		l l	
Ground Shock Phenomena		}	1 1		1	
Water Shock Phenomena					1	
		1			Į i	
Underwater Cratering Phenomena Water Surface Phenomena			1 1		1	
Thermal Radiation Phenomena		•				
X-Ray Radiation Phenomena		l				
Nuclear Radiation Phenomena		ł	l i		l i	
Initial Nuclear Radiation		ł				
Neutron Induced Activity		1	1			
Residual Radiation		1	ì !		· '	
		i			<u> </u>	
Transient Radiation Effects on Electronics						
Phenomena						ĺ
TREE Phenomena						
Electromagnetic Pulse Phenomena		1			j	
EMP Phenomena		l				
Phenomena Affecting Electromagnetic Wave Propagatio	n	l	1			
Blast and Shock Damage		1	1			
Thermal Radiation Damage			1			
X-Ray Damage		ļ	1 .		l .	
Nuclear Radiation Shielding		1				
TREE Damage Mechanisms					İ '	
EMP Damage		ļ	1			
Personnel Casualties		ŀ	1			
Blast Injury						
Thermal Injury		į]			
Nuclear Radiation Injury		ŀ]			
Combined Injury			1			
Damage to Structures		i	1 :		1	
Shock Vulnerability of Equipment and Personnel			l		'	
Damage to Field Fortifications	ļ		į l		j	
Damage to Dam and Harbor Installations		i				
Damage to POL Tanks	1	j]		1 :	
Fire in Urban Areas		1]		i	
Demage to Naval Equipment		l				
Damage to Surface Ships						
Demage to Subsurface Ships		1	1 1			
Damage to Aircraft		1				
Damage to Military Field Equipment]			1	
Air Blast Damage to Military Field Equipment		l	1			
Thermal Damage to Military Field Equipment		i				
TREE Damage to Military Field Equipment	İ	1				
Forest Stand Damage		1)			
Air Blast in Forest Stands			1 .		1	
Blowdown		l	1		1	ļ
Thermal Damage in Forests]	1		1	
Forest Blowdown Effects on Mobility						
Damage to Missiles		1] :		j :	
Radio Frequency Signal Degradation Relevant to	1					
Communications Systems		1] .		j 1	
Radio Frequency Signal Degradation Relevant to Rada	_ ~	L			1	
remain a reducine a remain pegramation were saut to wade	Loyst	- 1018			1	

LIST OF PROBLEMS (Continued)

Problem	Title	Page
5-12	Calculation of Fallout Gamma Radiation Dose Rate	
	Contours for Bursts in the Transition Zone	5-97
5-13	Calculation of Fallout Gamma Ray Dose Rate Contours	
	for Underground Bursts	5-101
5-14	Calculation of Dose Received While Flying Through a Nuclear Cloud	5-140
8-1	Calculation of Fireball Size, Shape, and Location	
	for a Burst Below 85 kilometers	8-29
8-2	Calculation of Fireball Size, Shape, and Location	
	for a Burst Between 85 and 120 kilometers	8-38
8-3	Calculation of Size, Shape, and Location of Fireball and	
	Debris Regions for a Burst Above 120 kilometers	8-43
8-4	Absorption through the Fireball	8-57
8-5	Absorption Due to Prompt Radiation Outside the Fireball	865
8-6	Absorption Outside the Fireball Due to Delayed Gamma Rays	
8–7	Calculation of Absorption Outside the Fireball Due to Beta Particles	
8–8	Magnetic Conjugate Map	
8-9	Geomagnetic Dip Angle Map	
8-10	Secant # Chart	

xlvii

Continu						
DOCUMENT CONTROL DATA - R & D Compared title, body of sharrest and indexing annotation must be entered when the overall report is classified)						
1. ORIGINAL SECURITY CLASSIFICATION						
Direction						
Deficiency Agency	28. GROUP					
Waster C. 20305						
Capabil Nuclear Weapons Effects M	Ianual Number 1					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Handbook						
5. AUTHOR(S) (First name, middle initial, last name)						
N. A.						
S. REPORT DATE	76. TOTAL NO. OF PAGES	70. NO. OF REFS				
1 July 1972	999 858					
DASA 01-69-C-0022	THE UNIVERSE REPORT NUL	195, KIJ				
b, PROJECT NO.	DNA EM-1, Part	I				
NWER XXAXD						
^c Task and Subtask A002	DO. OTHER REPORT NO. (2) (Any other numbers that may be assigned this report)					
« Work Unit 01 and 02	<u> </u>					
None						
11. SUPPLEMENTARY NOTES Supersedes and can-	12. SPONSORING MILITARY ACT	TIVITY				
cels "Capabilities of Nuclear Weapons,"	Director Defense Nuclear	Agency				
DASA EM-1 dated January 1968.	Washington, D.C.	20305				
This edition of the "Capabilities of No efforts by the Defense Nuclear Agency to weapons effects information obtained from experiments, laboratory effort and theore the phenomena and effects of a nuclear demanifestations in terms of damage to targ source material and references needed for employment manuals by the Military Serv	correlate and make an nuclear weapons tentical analysis. This tonation and relates tets of military interest the preparation of	available nuclear sting, small-scale document presents weapons effects est. It provides the				
The "Smakilities of Nuclear Weapons ment or the manual by itself, since me logical made to the most current reliable order to the Armed Forces in meet operation." Due to the physical size of the docum	ore complete descripe noted references. data available on 31 ting their particular	tions of phenomeno- Every effort has been December 1971 in requirements for				

DD FORM 1473

1 4 4

Security Classification