

شبيهسازى مقاله

عليرضا عباسي

چکیده

• در این مقاله، مساله ربات تعادلی با رویکرد کنترلر LQR حل شده. در ابتدا مدل ریاضی بدست آمده و به فضای حالت میرسیم. سپس کنترلر مناسب را طراحی میکنیم.

متغيرهاي حالت

* موقعیت و سرعت در جهت X، زاویه پیچ و مشتق آن (سرعت زاویهای)، زاویه چرخش و مشتق آن.

$X_{\scriptscriptstyle RM}$, $V_{\scriptscriptstyle RM}$	Level position, velocity
$ heta_{\scriptscriptstyle P}$, $ heta_{\scriptscriptstyle P}$	Angle, velocity of angle
δ	Angle of turn

خروجي فضاي حالت

$$y = \begin{bmatrix} V_{RM} & \boldsymbol{\theta}_P & \dot{\boldsymbol{\delta}} \end{bmatrix}^T$$

X_{RM} , V_{RM}	Level position, velocity
$ heta_{\scriptscriptstyle P}$, $ heta_{\scriptscriptstyle P}$	Angle, velocity of angle
	L Anolo of

كميتهاى ورودى فضاى حالت

$$\begin{pmatrix} C_L \\ C_R \end{pmatrix} \qquad \begin{pmatrix} C_\theta \\ C_\delta \end{pmatrix} \qquad C_R \, , C_L \qquad \begin{array}{c} \text{Driven} \\ \text{torque of wheels} \end{array}$$

استفاده از دیکوپلینگ

از آنجا که C_L and C_R بطور همزمان روی خروجی اثر میگذارند. مجبوریم برای ازبین بردن این مشکل از دیکوپلینگ زیر استفاده کنیم:

system, C_{θ} and C_{δ} are expressed as inputs that C_{θ} is the input toque produced as TWSBR rotates around Z-axis and C_{δ} is that produced as TWSBR rotates around Y-axis, the decoupling control elements are designed and shown in Fig.3.

Fig.3 Decoupling Control Element of TWSBR

معادلات ریاضی مدل

$$\begin{split} \ddot{X}_{RM} &= \frac{1}{J_{P} \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) M_{P} L^{2} + M_{P}^{2} L^{2} \sin^{2} \theta_{P}} \\ & \cdot \Big[\Big(J_{P} + M_{P} L^{2} \Big) M_{P} L \sin \theta_{P} \dot{\theta}_{P}^{2} - M_{P}^{2} L^{2} g \cos \theta_{P} \sin \theta_{P}} \\ & + \Big(\frac{1}{R} \Big(J_{P} + M_{P} L^{2} \Big) + M_{P} L \cos \theta_{P} \Big) \Big(C_{R} + C_{L} \Big) \\ & + \Big(J_{P} + M_{P} L^{2} \Big(f_{RR} + f_{RL} \Big) \Big) \Big] \\ \ddot{\theta}_{P} &= -\frac{1}{J_{P} \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) M_{P} L^{2} + M_{P}^{2} L^{2} \sin^{2} \theta_{P}} \\ & \cdot \Big[M_{P}^{2} L^{2} \sin \theta_{P} \cos \theta_{P} \dot{\theta}_{P}^{2} + \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) M_{P} g L \sin \theta_{P}} \\ & - \Big(M_{P} L \cos \theta_{P} / R + 2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) \Big(C_{R} + C_{L} \Big) \\ & - M_{P} L \cos \theta_{P} \Big(f_{RR} + f_{RL} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) L \cos \theta_{P} f_{P} \Big] \\ \ddot{\delta} &= \Big[\Big(C_{L} - C_{R} \Big) / R + \Big(f_{L} - f_{R} \Big) \Big] / \Big(2 J_{P} M_{W} + J_{W} D / R^{2} \Big) \end{split}$$

خطیسازی

$$\sin \theta_P \approx \theta_P, \cos \theta_P \approx 1$$

$$A_{23} = \frac{-M_P^2 L^2 g}{M_P J_P + 2 (J_P + M_P L^2) (M_W + J_W / R^2)}$$

$$A_{43} = \frac{M_P^2 g L + 2 M_P g L (M_W + J_W / R^2)}{M_P J_P + 2 (J_P + M_P L^2) (M_W + J_W / R^2)}$$

$$B_{21} = B_{22} = \frac{(J_P + M_P L^2) / (R + M_P L)}{M_P J_P + 2 (J_P + M_P L^2) (M_W + J_W / R^2)}$$

$$B_{41} = B_{42} = \frac{-(R + L) M_P / R - 2 (M_W + J_W / R^2)}{M_P J_P + 2 (J_P + M_P L^2) (M_W + J_W / R^2)}$$

$$B_{61} = B_{62} = \frac{D / 2 R}{J_P + \frac{D^2}{2 R} (M_W R + \frac{J_W}{R})}$$

فضاي حالت

$$\dot{x} = Ax + Bu = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_P \\ \omega_P \\ \delta \\ \dot{\delta} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ B_{21} & B_{22} \\ 0 & 0 \\ B_{41} & B_{42} \\ 0 & 0 \\ B_{61} & B_{62} \end{pmatrix} \begin{pmatrix} C_L \\ C_R \end{pmatrix}$$

$$y = Cx = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_P \\ \omega_P \\ \delta \\ \dot{\delta} \end{pmatrix}$$

فضای حالت بعد از دیکوپلینگ

$$\begin{pmatrix}
\dot{X}_{RM} \\
\dot{V}_{RM} \\
\dot{\theta}_{P} \\
\dot{\omega}_{P}
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & A_{23} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & A_{43} & 0
\end{pmatrix} \begin{pmatrix}
X_{RM} \\
V_{RM} \\
\theta_{P} \\
\omega_{P}
\end{pmatrix} + \begin{pmatrix}
0 \\
B_{21} \\
0 \\
B_{41}
\end{pmatrix} C_{\theta}$$

$$\begin{pmatrix}
\dot{\delta} \\
\ddot{\delta}
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
\delta \\
\dot{\delta}
\end{pmatrix} + \begin{pmatrix}
0 \\
B_{61}
\end{pmatrix} C_{\delta}$$
Let $D_{11} = D_{21} = D_{12} = D_{22} = 0.5$, then
$$\begin{pmatrix}
C_{L} \\
C_{2}
\end{pmatrix} = \begin{pmatrix}
0.5 & 0.5 \\
0.5 & -0.5
\end{pmatrix} \begin{pmatrix}
C_{\theta} \\
C_{2}
\end{pmatrix}$$

بررسی کنترلپذیری و رویتپذیری

```
%% Controllability and Observability
Ct = rank(ctrb(sys));
Ob = rank(obsv(sys));
```

```
Ct = Ob = 4
```

نتیجه میگیریم که سیستم بطور کامل رویتپذیر و کنترلپذیر حالت نیست

نمایش مودها

$$\overline{A} = \begin{bmatrix} A_{no} & A_{12} \\ 0 & A_o \end{bmatrix}$$

Abaro =

1.0000	0	0	0	0	0
0	0	-1.0000	0	0	0
0	-60.5288	0	0	0	0
0	0	0	0	0	0
0	0	0	-1.0000	0	0
0	_6 3715	0	0	0	0

%% Observable Modes

[Abaro Bbaro Cbaro To ko] = obsvf(A, B, C);

%% Controllable Modes

[Abarc, Bbarc, Cbarc, Tc, kc] = ctrbf(A, B, C);

Abarc =

-0.4665	0.3202	-0.0000	-0.0000	0.0000	-0.0000
-0.6798	0.4665	-0.0000	0.0000	-0.0000	0.0000
-0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
0.2461	0.3586	0.2809	0.0000	7.5671	0.0000
0.0000	-0.0000	-0.0000	-0.0000	-0.0000	1.0000
1 9593	2 8550	2 2364	0 0000	60 2479	-0 0000

$$\overline{A} = \begin{bmatrix} A_{uc} & 0 \\ A_{21} & A_c \end{bmatrix}$$

```
%% minimal form for the system
sysr = minreal(sys);
```

نمایش مینیمال

3 states removed.
>> sysr

Continuous-time state-space model.

بلوک دیاگرام شبیهسازی

فضاهای حالت

4x4 state space

2x2 state space

دیکوپلینگ ورودی

پاسخ سیستم بدون فیدبک

خروجي

طراحی فیدبک حالت

```
%% State Feedback
K1 = place(A1, B1, [-2 -3 -4 -5]);
K2 = place(A2, B2, [-1 -3]);
```

```
>> K1

K1 =

-15.0287 -19.2868 -58.1495 -9.0291

>> K2

K2 =

5.8997 7.8663
```

پاسخ سیستم با فیدبک

خروجي

متغير هاى حالت

پایداری

• همانطور که مشاهده میشود سیستم نسبت به حلقه باز بسیار پایدارتر شده. چونکه قطبهای سیستم اولیه ناپایدار بودند.

طراحی فیدبک حالت برای جانمایی قطبهای دور

```
K1 = place(A1, B1, [-20 -30 -40 -50]);

K2 = place(A2, B2, [-10 -30]);
```

```
K1 =
    1.0e+05 *
    -1.5029    -0.1929    -0.2722    -0.0316
>> K2
K2 =
    589.9705    78.6627
```

فیدبک حالت برای قطبهای دور

خروجي

متغیر های حالت

سرعت سيستم

• همانطور که مشاهده میشود سیستم بسیار سریعتر شده و به مقدار نهایی خود رسیده همچنین یکی از حالت ها که به مقدار صفر نرسیده بود در قطب نزدیک، با قطب دور به سرعت به stedy state رسیده است

طراحی ردیاب استاتیک

• در سیستم پایدار (با فیدبک حالت) بنظر میرسد که سیستم به حالت ثابت میرسد. با مقدار تقریبی خروجی در بینهایت، یک ردیاب استاتیک طراحی میکنیم:

- گین تقریبا برابر با
 - 1e6 در نظرمیگیریم

قرار دادن ردیاب استاتیک

پاسخ سیستم با ردیاب استاتیک

• مىبينيم كه مساله رديابى به خوبى تحقق نيافته است.

از قطبهای سریعتر استفاده میکنیم

• میبینیم که ردیابی بهتر از حالت قبل رخ داده است و با فیلتر پایین گذر احتمالاً به پاسخ دلخواه میتوانیم برسیم

* Trace Selection ** Trace Selection **

ردیاب انتگرالی

• میبینیم که ماتریس A_new فول رنک نیست. بنابراین نمیتوان از ردیاب انتگرالی استفاده کرد.

```
%% Robust Tracking
A_new = [A1 zeros(4,2); C1 zeros(2,2)];

B_new = [B1;zeros(2,1)];

C_new = [C1 zeros(2,1)];

Ki = place(A_new, B_new,[-2 -3 -4 -5 -6 -7]);

3
```

طراحی تخمینگر مرتبه کامل

• مشاهده میشود چون سیستم اولیه رویت پذیر نیست، قادر به تعیین ماتریس L برای طراحی تخمینگر نیستیم اگر رویتپذیر هم میشد باید قطبهای تخمینگر را طوری جایابی میکردیم که اثرات نویز را تقویت نکند. و از فیلترهای بهینه استفاده میکردیم. (تئوری تخمین) ولی در نهایت حداقل باید ۴ الی ۵ برابر دورتر از قطبهای سیستم اولیه جایابی کنیم تا سریعتر باشد.

```
>> rank(obsv(A1, C1))
ans =
```

طراحی تخمینگر کاهش یافته

```
• ماتریس ·
                                C1 =
                       • به فرم دلخواه نیست پس، از تبدیل همانندی استفاده میکنیم:
    P = [C1;
        0, 0, 0, 1;
        1, 0, 0, 0];
                                                      :C new ماتریس
                      C_new =
C \text{ new} = C1/P;
```

فضاى حالت جديد

• بقیه ماتریس ها را بدست می آوریم:

```
A_{new} = P*A1/P;

B_{new} = P*B1;
```

```
0 -6.3880 0 0
0 0 1.0000 0
0 60.6861 0 0
1.0000 0 0
```

```
>> B_new

B_new =

0.3803

0

-2.3629
```

0

A new =

بدست آوردن بهره تخمینگر

• بعلت عدم مشاهدهپذیری، بهره تخمینگر قابل دسترسی نیست

```
A12_new = A_new([1 2], [3 4]);

L = place(A22_new', A12_new', [-10 -20])';

Error using place (line 171)
The "place" command could not place the poles at the specified locations. Probable causes include:
* (A,B) is nearly uncontrollable
* The specified locations are too close to each other.

Error in Taklif (line 118)
L = place(A22_new', A12_new', [-10 -20])';
```

A22 new = A new([3 4], [3 4]);

Linear Quadratic Regulator

```
%% LQR state feedback

Q1 = eye(4);

R1 = 1;

K1 = lqr(A1, B1, Q1, R1);

Q2 = eye(2);

R2 = 1;

K2 = lqr(A2, B2, Q2, R2);
```


Linear Quadratic Regulator

```
%% LQR state feedback
Q1 = 100 * eye(4);
R1 = 1;
K1 = lqr(A1, B1, Q1, R1);

Q2 = 100 * eye(2);
R2 = 1;
K2 = lqr(A2, B2, Q2, R2);
```


Linear Quadratic Regulator

```
%% LQR state feedback
Q1 = eye(4);
R1 = 100;
K1 = lqr(A1, B1, Q1, R1);
Q2 = eye(2);
R2 = 100;
K2 = lqr(A2, B2, Q2, R2);
```


رویکرد مقاله برای کنترل ربات

- ابتدا به مدل خطی دست پیدا کرده
- سپس از شماتیک زیر برای کنترل بهره گرفته

Fig.4 Decoupling Control System for TWSBR

پیاده سازی مدار کنترلی

• در سیمولینک برای شبیهسازی مراحل طی شده، بلوک دیاگرام زیر را پیادهسازی کردهام:

كنترل با دىكوپلينگ سيگنال مرجع

• همانطور که مشاهده میکنید، دیکوپلینگ به اینصورت است که Ctheta و Cdelta به عنوان خروجی های کنترلر به CL و CR تبدیل شده و درنهایت به عنوان فیدبک با ستپوینت مرجع مقایسه میشوند.

تبدیل سیستم اصلی به ۲ زیر سیستم اصلی

• در مقاله به علت اثرگذاری CL و CR روی یکدیگر از Ctheta و Cdelta استفاده شده که هرکدام مربوط به یک سیستم میباشند. بنابراین ۶ متغیر حالت اولیه به دو گروه ۴ متغیره و ۲ متغیره تقسیم شده است:

كنترل

• در بخش کنترل نیز از متد LQR بهره گرفته شده که برای آن مقادیر Q و R در مقاله بطور خاص مشخص نشده است. برای تعیین آن باید سیگنالینگ ورودی و محدودیتهای اور شوت در نظر گرفته شوند.

شبیهسازی مدل غیرخطی

مدل زیاضی

۰ ۳ معادله اصلی داریم که باید پیادهسازی کنیم:

$$\begin{split} \ddot{X}_{RM} &= \frac{1}{J_{P} \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) M_{P} L^{2} + M_{P}^{2} L^{2} \sin^{2}\theta_{P}} \\ & \cdot \Big[\Big(J_{P} + M_{P} L^{2} \Big) M_{P} L \sin\theta_{P} \dot{\theta}_{P}^{2} - M_{P}^{2} L^{2} g \cos\theta_{P} \sin\theta_{P}} \\ & + \Big(\frac{1}{R} \Big(J_{P} + M_{P} L^{2} \Big) + M_{P} L \cos\theta_{P} \Big) \Big(C_{R} + C_{L} \Big) \\ & + \Big(J_{P} + M_{P} L^{2} \Big(f_{RR} + f_{RL} \Big) \Big) \Big] \\ \ddot{\theta}_{P} &= -\frac{1}{J_{P} \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) M_{P} L^{2} + M_{P}^{2} L^{2} \sin^{2}\theta_{P}} \\ & \cdot \Big[M_{P}^{2} L^{2} \sin\theta_{P} \cos\theta_{P} \dot{\theta}_{P}^{2} + \Big(2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) M_{P} g L \sin\theta_{P}} \\ & - \Big(M_{P} L \cos\theta_{P} / R + 2 \Big(J_{W} / R^{2} + M_{W} \Big) + M_{P} \Big) \Big(C_{R} + C_{L} \Big) \\ & - M_{P} L \cos\theta_{P} \Big(f_{RR} + f_{RL} \Big) + 2 \Big(J_{W} / R^{2} + M_{W} \Big) L \cos\theta_{P} f_{P} \Big] \\ \ddot{\delta} &= \Big[\Big(C_{L} - C_{R} \Big) / R + \Big(f_{L} - f_{R} \Big) \Big] / \Big(2 J_{P} M_{W} + J_{W} D / R^{2} \Big) \end{split}$$

پیاده سازی در سیمولینک

توابع سیمولینک در mfile.

:Xdotdot •

```
function xdotdot = fcn(theta,thetadot,Cr,Cl)
 mp = 20;
 mw = 6;
 1 = 0.2;
 jpy = 1.33;
 r = 0.2;
 d = 0.5;
 jp = 0.27;
 jw = 0.12;
 q = 9.82;
 frr = 0;
 frl = 0;
\sqrt{\frac{1}{2}} xdotdot = 1/(jp*(2*(jw/r^2+mw)+mp)+2*(jw/r^2+mw)*mp*1^2+mp^2*1^2*sin(theta)^2)*((jp+mp*1^2)*mp*1*sin(theta)^2)
```

توابع سیمولینک در mfile.

:Thetadotdot •

```
function thetadotdot = fcn(theta,thetadot,Cl,Cr)
 mp = 20;
 mw = 6;
 1 = 0.2;
 jpy = 1.33;
 r = 0.2;
 d = 0.5;
 jp = 0.27;
 jw = 0.12;
 q = 9.82;
 frr = 0;
 frl = 0;
 fp = 0;
thetadotdot = -1/(jp*(2*(jw/r^2+mw)+mp)+2*(jw/r^2+mw)*mp*1^2+mp^2*1^2*sin(theta)^2)*(mp^2*1^2*sin(theta)
```

توابع سیمولینک در mfile.

:Deltadotdot •

```
function deltadotdot = fcn(Cl, Cr)

mp = 20;
mw = 6;
l = 0.2;
jpy = 1.33;
r = 0.2;
d = 0.5;
jp = 0.27;
jw = 0.12;
g = 9.82;
fr = 0;
fl = 0;
deltadotdot = ((Cl-Cr)/r+(fl-fr))/(2*jp*mw+jw*d/r^2);
```

پاسخ طبیعی سیستم غیرخطی

كنترلر بهينه روى مدل غيرخطى

توجه

- البته باید توجه شود که نمیتوان همان کنترلر بهینه را روی مدل غیرخطی پیادهسازی کرد، زیرا برای ورودی CL و Ctehta و Ctehta طراحی شده بود. ولی سیستم ما مدل غیرخطی برای ورودی های CL و CR مدلسازی شده است.
- برای پیادهسازی کنترلر روی مدل غیرخطی بکمک مدل خطی باید مدل خطی کنترلپذیر حالت باشد. که در اینجا اینطور نیست.
 - البته یک روش نیز بدست آوردن رابطه xdotdot و thetadotdot و deltadotdot بر حسب Ctheta بر حسب Ctheta و Cdelta