Spis treści

1	$V_{ m Step}$	2
	.1 "Prawo" Kompresji bezstratnej	
2	Геоria informacji	2
	2.1 Miara informacji	. 2
	2.2 Entropia	. 2
	2.2.1 Entropia źródła	. 3
	2.2.2 Entropia Pierwszego Rzędu	. 3
	2.3 Entropia warunkowa	. 3
	2.4 Wspólna informacja wzajemna	
	2.5 Entropia różniczkowa	
3	Kodowanie	3
	3.1 Modelowanie danych	. 3
	3.2 Średnia długość kodu	
	3.3 Jednoznaczna dekodowalność	
	3.3.1 Nierówność Krafta	
	3.3.2 Kod prefiksowy	
	3.4 Kod natychmiastowy	
	Itou nawy ommiastory	
4	Kompresja bezstratna	4
	.1 Statyczny Kod Huffmana	. 4
	.2 Kodowanie Shannon-Fano	
	.3 Kodowanie Tunstalla	
	.4 Kodowanie Golomba	
	.5 Dynamiczne kodowanie Huffmana	
	6.6 Problem kodowania uniwersalnego	
	4.6.1 Kodowanie Eliasa	
	4.6.2 Kodowanie Fibonacciego	
	4.0.2 Rodowanie Producciego	
	4.7.1 Kodowanie zmiennoprzecinkowe	
	8.8 Kodowanie Słownikowe	
	4.8.1 Statyczne kodowanie słownikowe	
	4.8.2 LZ77	
	4.8.3 LZ78	
	4.8.4 LZW	
	.9 bzip2	
	4.9.1 Kodowanie tabelą	
	4.9.2 Kodowanie szybkie	
	4.9.3 Dekodowanie	. 8
	4.9.4 Move to Front	. 9
	.10 V.42bis	. 9
	.11 Kodowanie predykcyjne	. 9
	4.11.1 PPM	. 9
	4.11.2 CALIC	. 9
	4.11.3 JPEG-LS	
	4.11.4 Poziomy rozdzielczości	
		-
5	Macierzowa notacja kodów	10

6		rekcja błędów	10
	6.1	Kody parzystości	10
	6.2	Algorytm Luhna	11
		Kod powtórzeniowy	
	6.4	Współczynnik informacji	11
	6.5	Odległość Hamminga	11
	6.6	Kody Hamminga	12
	6.7	Kody cykliczne	12
	6.8	Kody doskonałe	12
	6.9	Burst Error	13
7	Kwa	antyzacja	13

1 Wstęp

Wyróżniamy dwa rodzaje kompresji. W kompresji stratnej dopuszczalny jest pewien stopień straty informacji wejściowej. W kompresji bezstratnej nie jest to dopuszczalne.

1.1 "Prawo" Kompresji bezstratnej

Nie istnieje algorytm, który potrafi zmniejszyć rozmiar dowolnych danych

- Kompresja bezstratna musi być bijekcją
- \bullet Dowolne dane przyjmują postać ciągu bitów długości n. Jest 2^n takich ciągów.
- Danych krótszych niż n, np.: o jeden jest 2^{n-1}
- Nie da się stworzyć bijekcji z zbioru o mocy 2^n do zbioru o mocy 2^{n-1}

Wniosek jest taki, że koniecznym jest konstruowanie kompresji bezstratnej na podzbiorach danych, takich jak np.: obrazów, dźwięków, tekstów.

2 Teoria informacji

Teoria informacji to dziedzina zajmująca się przetwarzaniem informacji. W teorii informacji mamy do czynienia z podstawowym założeniem, że zdarzenia niosą ze sobą pewną ilość informacji. Im rzadsze zdarzenie, tym bardziej informacyjne. Można to sobie wyobrazić jako zaskoczenie, jakie niesie ze sobą dane zdarzenie. Zaskoczenie wynikające, z tego że wstało słońce, jest mniejsze niż zaskoczenie wynikające z tego, że konkretny autobus się spóźnił.

2.1 Miara informacji

Miarą informacji, którą niesie ze sobą zdarzenie A jest:

$$I(A) = -\log_x P(A)$$

gdzie x to baza systemu liczbowego. Jeśli miarą informacji jest bit to x=2. Jeśli zdarzenia A i B są niezależne to:

$$I(AB) = I(A) + I(B)$$

2.2 Entropia

Entropia to miara średniej informacji przekazywanej przez źródło. Kody jednoznacznie dekodowalne w modelu z niezależnymi wystąpieniami symboli muszą mieć średnią długość co najmniej równą entropii.

2.2.1 Entropia źródła

Dla źródła danych S generującego ciąg X nad alfabetem $\mathcal{A} = \{1, 2, \dots m\}$

$$H(S) = \lim_{n \to \infty} \frac{G_n}{n}$$

$$G_n = -\sum_i \cdots \sum_j P(X_1 = i, \dots, X_n = j) \log P(X_1 = i, \dots, X_n = j)$$

2.2.2 Entropia Pierwszego Rzędu

Dla źródła informacji X, z zbiorem wiadomości (zdarzeń) A_1, \ldots, A_n , gdzie $P(A_i)$ to prawdopodobieństwo wystąpienia zdarzenia A_i i zdarzenia są niezależne to entropia źródła to:

$$H(X) = \sum_{i=1}^{n} P(A_i)I(A_i)$$

2.3 Entropia warunkowa

Dla alfabetu $\mathcal{A} = \{x_0, x_1, \dots x_n\}$ i $\mathcal{B} = \{y_0, y_1, \dots y_m\}$ rekonstrukcji, oraz zmiennych losowych $X \in \mathcal{A}$ i $Y \in \mathcal{B}$, entropia warunkowa to:

$$H(X|Y) = -\sum_{i=0}^{n} \sum_{j=0}^{m} P(x_i|y_j)P(y_j)\log P(y_j|x_i)$$

$$H(X|Y) \le H(X)$$

2.4 Wspólna informacja wzajemna

$$I(X;Y) = \sum_{i=0}^{n} \sum_{j=0}^{m} P(x_i|y_j) P(y_i) \log(\frac{P(x_i|y_j)}{P(x_i)})$$
$$I(X;Y) = H(X) - H(X|Y)$$

2.5 Entropia różniczkowa

Dla zmiennej losowej X z funkcją gęstości rozkładu $f_X(x)$ dzielimy zakres wartości X na podprzedziały o rozmiarze Δ . Dla każdego przedziału $[(i-1)\Delta, i\Delta)$ istnieje liczba x_i , taka, że

$$f_X(x_i)\Delta = \int_{(i-1)\Delta}^{i\Delta} f_X(x)dx$$

$$h(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

Jeśli $X \sim U(a,b)$, to $h(X) = \log(b-a)$

3 Kodowanie

Kodowanie to przyporządkowanie elementom jakiegoś alfabetu ciągu binarnych. Przykładami kodowania są: ASCII, UTF-8 oraz inne. Typowym jest konstruowanie kodowania pod konkretny zestaw danych, optymalizując je pod kątem częstości występowania poszczególnych elementów.

3.1 Modelowanie danych

Rozważmy ciąg: $a_n = 9, 11, 11, 11, 14, 13, 15, 17, 16, 17, 20, 21$. $\max(a_n) = 21$ stąd koniecznym jest 5 bitów na element. Ale jeśli wykorzystamy wzór $e_n = a_n - n + 8$ do stworzenia nowego ciągu, to ten ciąg przyjmuje postać: 0, 1, 0, -1, 1, -1, 0, 1, -1, -1, 1, 1. Teraz wystarczą tylko 2 bity na zakodowanie elementu.

3.2 Średnia długość kodu

$$I = \sum_{i=1}^{n} p_i \cdot l_i$$

gdzie p_i to prawdopodobieństwo wystąpienia elementu i, a l_i to długość kodu dla elementu i.

3.3 Jednoznaczna dekodowalność

Jeśli dla dowolnego ciągu znaków istnieje tylko jedno jego rozkodowanie to kod jest jednoznacznie dekodowalny. Aby sprawdzić czy kod jest jednoznacznie dekodowalny, należy zastosować następujący algorytm.

- 1. Stwórz listę słów kodowych.
- 2. Dla każdego elementu z listy sprawdź czy jedno jest prefiksem drugiego. Jeśli tak, dodaj sufiks drugiego słowa do listy, jeśli już go tam nie ma.
- 3. Jeśli na liście jest słowo kodowe, to kod nie jest jednoznacznie dekodowalny.

3.3.1 Nierówność Krafta

Jeżeli \mathcal{C} jest kodem jednoznacznie dekodowalnym z n słowami to:

$$K(\mathcal{C}) = \sum_{i=1}^{n} 2^{-l_i} \le 1$$

Jest to warunek konieczny bycia kodem jednoznacznie dekodowalnym.

3.3.2 Kod prefiksowy

Kod w którym żadne słowo kodowe nie jest prefiksem innego słowa kodowego. Wszystkie kody prefiksowe są jednoznacznie dekodowalne.

3.4 Kod natychmiastowy

Jest kodem pozwalającym stwierdzić w którym miejscu zakończone jest słowo kodowe w momencie odczytania ostatniej litery.

4 Kompresja bezstratna

Z reguły kompresja bezstratna opiera się na stworzeniu kodu, który pozwala na zakodowanie będące krótsze niż oryginalne dane. W tym celu wykorzystuje się różne techniki kodowania.

4.1 Statyczny Kod Huffmana

Kod Huffmana to kod prefiksowy o minimalnej średniej długości kodu. Są one optymalne wśród kodów prefiksowych. Dla alfabetu \mathcal{A} o długości n i prawdopodobieństwach wystąpienia p_1, \ldots, p_n algorytm tworzenia kodu Huffmana wygląda następująco: Znajdź dwa najrzadziej występujące elementy i połącz je w jeden element o prawdopodobieństwie $p_1 + p_2$. Rozróżnij je 0 lub 1. Powtórz ten krok na liście n-1 długiej aż zostanie jeden element.

4.2 Kodowanie Shannon-Fano

Dla symboli a_1, \ldots, a_n o prawdopodobieństwach p_1, \ldots, p_n , ustalmy kody długości $l_n = \lceil -\log p_i \rceil$. Następnie zdefiniujmy zmienne pomocnicze $w_1, \ldots w_n$ jako:

$$w_1 = 0, w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}$$

Diagram 1: Przykład kodu Huffmana dla P(a) = 0.5, P(b) = 0.25, P(c) = 0.15, P(d) = 0.1

Jeżeli $\lceil \log w_j \rceil = l_j$ to j-te słowo kodowe jest binarną reprezentacją w_j . Jeżeli $\lceil \log w_j \rceil < l_j$ to reprezentację uzupełniamy zerami z lewej strony.

Dla $P(a) = \frac{1}{3}$, $P(b) = \frac{1}{4}$, $P(c) = \frac{1}{4}$, $P(d) = \frac{1}{6}$ mamy:

$$l_a = 2, l_b = 2, l_c = 2, l_d = 3$$

$$w_1 = 0, w_2 = 2, w_3 = 2, w_4 = 6$$

$$kod(a) = 00, kod(b) = 01, kod(c) = 10, kod(d) = 110$$

4.3 Kodowanie Tunstalla

Chcemy stworzyć kod na n bitach dla a_1, \ldots, a_m symboli o prawdopodobieństwach p_1, \ldots, p_m . Tworzenie kodu Tunstalla polega na iteracyjnym wyborze ze zbioru symbolu o największym prawdopodobieństwie S i łączenie go z wszystkimi innymi symbolami tworząc symbole Sa_m , nadając im prawdopodobieństwa $P \cdot p_m$. Proces ten powtarzamy aż do uzyskania kodu o długości n.

4.4 Kodowanie Golomba

Kody Golomba są parametryzowane liczbą m>0. Każda liczba n jest zapisywana za pomocą $q=\lfloor\frac{n}{m}\rfloor$ oraz $r=n-q\cdot m$ w postaci

$$(q)_1(r)_2$$

4.5 Dynamiczne kodowanie Huffmana

Głównym problemem kodowania Huffmana jest konieczność znania całego ciągu danych przed rozpoczęciem kodowania. Rozwiązaniem tego problemu jest dynamiczne kodowanie, gdzie stosujemy kodowanie Huffmana dla k+1 symbolu na podstawie kodowania dla k symboli. W tym celu tworzymy dynamicznie drzewo, gdzie każdy liść ma wagę równą ilości wystąpień danego symbolu. Drzewo zaczyna się od liścia z symbolem EOF o wadze 0.

Diagram 2: Przykład kodowania dynamicznego

4.6 Problem kodowania uniwersalnego

Szukamy sposobu na kodowanie dowolnej liczby $n \in \mathbb{N}$. Problem polega na skonstruowaniu kodu, który będzie jednoznacznie dekodowalny i uniwersalny. To oznacza, że ma się skalować w nieskończoność.

4.6.1 Kodowanie Eliasa

Kodowanie Eliasa to kodowanie uniwersalne, które wykorzystuje kodowanie unarne do zapisania długości kodu binarnego liczby n.

$$n = |\log_2(x)| + 1$$

 γ Jest to najprostsze z kodowań Eliasa. Polega na zakodowaniu liczby x w postaci binarnej, a następnie dodaniu przed nią liczby n-1 zer.

$$\gamma(x) = 0^{n-1}(x)_2$$

$$(13)_{10} = 1101_2 \Rightarrow \gamma(13) = 0001101$$

 δ Cały trik kodu δ polega na zakodowaniu długości kodu binarnego liczby x przy pomocy kodu γ . Istotnym trikiem jest usunięcie najstarszego bitu z zakodowanej liczby x.

$$\delta(x) = \gamma(n) + (x)_2$$
 (13)₁₀ = 1101₂ \Rightarrow δ (13) = 00100101

Jak widać, jest on bardziej efektywny dla większych liczb. Długość kodu δ to $2 \cdot \lceil \log_2(\lceil \log_2 x \rceil) \rceil - 1 + \lceil \log_2 x \rceil - 1$.

 ω Jest to kodowanie rekurencyjne, które działa jak kodowanie δ , ale w nieskończoność. Na koniec umieszczane jest 0, potem kodowana jest liczba k=x. Potem ten krok jest powtarzany dla k=n-1 gdzie n to liczba bitów z poprzedniego kroku.

$$(13)_{10} = 1101_2 \Rightarrow \omega(13) = 1111010$$

4.6.2 Kodowanie Fibonacciego

Liczba Fibonacciego ma postać:

$$f_0 = f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} : n \ge 2$$

Kodowanie fibonacciego polega na reprezentacji liczby x jako sumę liczb fibonacciego.

$$x = \sum_{i=0}^{n} a_i \cdot f_i, a_i \in \{0, 1\}$$

$$(13)_{10} = f_7 = 1101_2 \Rightarrow Fib(13) = 0000011$$

4.7 Kodowanie arytmetyczne

Kodowanie arytmetyczne to kodowanie, które odwzorowywuje dowolny ciąg wejściowy na liczbę z zakresu [0,1). Głównym pomysłem stojącym za algorytmem, jest iteracyjne przypisywanie coraz to mniejszych przedziałów do kolejnych symboli ciągu wejściowego.

4.7.1 Kodowanie zmiennoprzecinkowe

Dla zakresu początkowego [l, p) = [0, 1), ciągu symboli wejściowych a_j , dystrybuanty F(j) i prawdopodobieństw p_j algorytm wygląda następująco:

- d = p l
- $p = l + d \cdot F(j+1)$
- $l = l + d \cdot F(i)$

Diagram 3: Wizualizacja kodowania arytmetycznego

Powyższe kroki wykonujemy dla każdego symbolu ciągu wejściowego. Na koniec dostajemy zakres, z którego potem możemy wybrać dowolną liczbę jako wynik kodowania.

Takie kodowanie jest dekodowane, poprzez iteracyjne zmniejszanie zakresu. Podobnie jak z kodowaniem, zaczynamy od zakresu [0,1) i iteracyjnie zmniejszamy go.

- d = p l
- Wybieramy takie j, że $F(j) \leq \frac{x-l}{d} < F(j+1)$
- $p = l + d \cdot F(j+1)$
- $l = l + d \cdot F(j)$

4.7.2 Kodowanie całkowitoliczbowe

Liczbe z kodowania zmiennoprzecinkowego, można zakodować jako zbiór 2^m wartości binarnych.

$$kod(0) = \overbrace{00...0}^{m}$$

$$kod(1) = \overbrace{11...1}^{m}$$

$$kod(0.5) = 1 \overbrace{00...0}^{m-1}$$

4.8 Kodowanie Słownikowe

4.8.1 Statyczne kodowanie słownikowe

Zawczasu określamy jakiś słownik słów. Następnie przypisujemy każdemu słowu kod binarny. W ten sposób kodujemy cały tekst. Takie kodowanie ma sporo wad, głównie związanych z koniecznością przesyłania słownika oraz z słabą odpornością na błędy i zmienność danych wejściowych.

4.8.2 LZ77

Słownikiem jest zakodowana/odkodowana część tekstu. W ten sposób jesteśmy bardzo elastyczni w zakresie zmiany danych wejściowych, oraz nie musimy przesyłać słownika. Kodem jest trójka (o,l,k) gdzie o to przesunięcie, l to długość, a k to kolejny znak. W ten sposób (0,0,n),(1,1,k) dekoduje się jako "nnk". Proces kodowania jest parametryzowany n i m, gdzie o < n i l < m. W oknie długości n szukamy najdłuższego prefiksu, który jest w części zakodowanej długości m.

Na przykład, w stanie w którym mamy zakodowane "abcdefgh", trójka (4,3,i) oznacza "efgi", ponieważ cofamy się o 4 litery do tyłu, bierzemy 3 kolejne litery i dodajemy na koniec kolejną literę i.

4.8.3 LZ78

Istnieje osobny słownik, do którego trafiają kolejne słowa. Podczas kodowania kolejno szukamy w słowniku najdłuższego słowa, które jest prefiksem ciągu wejściowego. Jeśli nic nie znajdziemy to dodajemy pierwszą literę do słownika, lecz jeśli znajdziemy taki prefiks, to kodujemy go jako indeks w słowniku, wraz z kodem następnej litery. Zatem kod (0, k), (1, a)(2, b) oznacza "kkakab", a słownik s zawiera s(1) = k, s(2) = ka, s(3) = kab.

Odkodowywanie wygląda podobnie jak kodowanie. Zaczynamy od pustego słownika, i wraz z kolejnymi krokami dodajemy nowe elementy do słownika. Zatem (0, k) oznacza dodanie k do słownika, (1, a) oznacza dodanie s(1)a, czyli ka, a (2, b) oznacza dodanie s(2)b, czyli kab.

4.8.4 LZW

Ta wersja algorytmu pozbywa się drugiego elementu pary z kodowania LZ78. Z kolei potrzebny jest słownik początkowy zawierający wszystkie możliwe symbole. Poza tą mała różnicą, algorytm jest identyczny z LZ78.

Odkodowywanie znacznie się różni od kodowania. Mając ciąg 3245 i słownik s(1) = a, s(2) = b, s(3) = c, zaczynamy od pierwszego znaku. Przy drugim znaku do słownika dodajemy s(4) = s(3)s(2). Ogólnie bierzemy poprzedni symbol bez pierwszego znaku i dodajemy do niego pierwszy znak z aktualnego symbolu.

Może wystąpić sytuacja, kiedy nie mamy w słowniku symbolu którego potrzebujemy. Np.: słowo to "abababa", s(1) = a, s(2) = b, a kod to: 1235. W takim przypadku, w momencie dekodowania 5 mamy w słowniku: s(3) = ab, s(4) = ba, s(5) = ab?. Nie mamy s(5), więc dodajemy ab i pierwszą literę z ab, czyli s(5) = aba.

4.9 bzip2

4.9.1 Kodowanie tabelą

Mając blok danych o długości n, tworzymy wszystkie n rotacji tego bloku. Następnie sortujemy je leksykograficznie. W ten sposób otrzymujemy blok transformowany.

0	е	1	1	О	h
1	h	е	l	1	О
2	1	1	О	h	е
3	1	О	h	е	1
4	О	h	е	1	l

Tabela 1: Przykład bloku transformowanego dla słowa "hello"

4.9.2 Kodowanie szybkie

Alternatywnie zamiast tworzenia ogromnej tabeli, wystarczy stworzyć pierwszą i ostatnią kolumnę. Pierwszą kolumnę tworzy się przez posortowanie słowa leksykograficznie (w przypadku konfliktu patrzymy na kolejne litery). Ostatnią kolumnę tworzymy poprzez zapisanie litery poprzedzającej daną literę w oryginalnym słowie. Na pod-

e	h
h	О
11	е
lo	1
О	l

Tabela 2: Wygenerowana pierwsza i ostatnia kolumna dla słowa "hello"

stawie tej tabeli zapisujemy numer wiersza, w którym znajduje się oryginalne słowo, oraz ostatnią kolumnę. W ten sposób uzyskujemy kod 1, "hoell".

4.9.3 Dekodowanie

Mając tylko te dane, jesteśmy bardzo łatwo w stanie odtworzyć oryginalne słowo. Najpierw sortujemy nasz kod leksykograficznie, zapamiętując indeksy. Mając taką tabelę, następnie konstruujemy ciąg, traktując tabelę jak

0	1	2	3	4
e	h	l	l	О
2	0	3	4	1

Tabela 3: Tabela dekodowania dla kodu 1, "hoell"

permutację, zaczynając od indeksu zawartego w kodzie. W naszym przypadku powstaje permutacja cykliczna (1,0,2,3,4). Wykorzystując tę permutację, odtwarzamy oryginalne słowo.

4.9.4 Move to Front

Zaczynamy od tabeli liter posortowanych z słowa wejściowego. Następnie dla każdej litery w słowie, kodujemy ją jako jej indeks w tabeli, a następnie literę w tabeli przesuwamy na początek. W ten sposób kodujemy słowo "hello" jako "11203". Taki kod ma mniejszą entropię i jest łatwiej kompresowalny.

4.10 V.42bis

To jest standard, głównie wykorzystywany w modemach, do kompresji i korekcji błędów w sieciach telefonicznych. Może działać w dwóch trybach: przezroczystym (bez kompresji) i z kompresją (LZW).

Zaczynamy z słownikiem, o wcześniej ustalonej, negocjowalnej, wielkości. Wyróżniamy w komunikacji trzy specjalne kody:

- 1. ETM przejście do trybu przezroczystego
- 2. FLUSH oczyszczenie danych
- 3. STEPUP zwiększenie rozmiaru słownika ×2

Gdy liczba elementów w słowniku przekroczy wartość dozwoloną, wysyłany jest kod STEPUP. Gdy słownik jest pełny, wysyłany jest kod FLUSH. W ten sposób, mamy zmienny, dynamiczny słownik, który dostosowuje się do danych wejściowych po stronie nadawcy i odbiorcy.

4.11 Kodowanie predykcyjne

W tekstach naturalnych symbole bardzo często zależą od siebie. Można wykorzystać informację o prawdopodobieństwach wystąpienia symboli, pod warunkiem wystąpienia poprzednich symboli. Dla dłuższego okna kontekstowego, kodowanie predykcyjne jest bardziej skuteczne, lecz wymaga większej ilości pamięci.

4.11.1 PPM

Dla każdej litery, określamy maksymalną długość kontekstu k i zapisujemy w tym kontekście daną literę. Kod jest parametryzowany przez maksymalną długość kontekstu. Jeśli symbol pojawia się po raz pierwszy, to zapisujemy w specjalnym kontekście o długości -1. Zatem dla przykładowego słowa dłuższego niż 3 i maksymalnej długości kontekstu 2, będziemy mieli konteksty długości: $\{-1,0,1,2\}$. Szczególnym symbolem w tym drzewie jest ESC, który oznacza brak wystąpienia symbolu w danym kontekście. W ten sposób możemy zbudować drzewo, które pozwala na przewidywanie kolejnych symboli, które potem można wykorzystać do zbudowania dynamicznego kodowania Huffmana.

			Kontekst	Symbol	Licznik	Kontekst	Symbol	Licznik
			t	ESC	1	th	ESC	1
Symbol	Symbol	Licznik		h	1		i	1
5y111001 +	ESC	1	h	ESC	1	hi	ESC	1
b	t	1		i	1		s	1
h	h	1	i	ESC	1	is	ESC	1
1	i	1		s	2		-	1
S	S	2	s	ESC	1	S-	ESC	1
_	-	1		-	1		i	1
			-	ESC	1	-i	ESC	1
				i	1		s	1

Tabela 4: Przykład drzew kontekstowych z maksymalna długościa 2 dla słowa "this-is"

4.11.2 CALIC

Algorytm CALIC jest algorytmem kompresji obrazów, który wykorzystuje kodowanie predykcyjne. Dla każdego piksela obrazu, wykorzystuje się kontekst pikseli wokół niego, aby przewidzieć wartość piksela. Chcemy wiedzieć czy w sąsiedztwie piksela są krawędzie pionowe lub poziome.

		NN	NNE
	NW	N	NE
WW	W	X	Е

Diagram 4: Kontekst dla algorytmu CALIC

$$d_h = |W-WW| + |N-NW| + |NE-N| \label{eq:dh}$$

$$d_v = |W - NW| + |N - NN| + |NE - NNE|$$

Następnie na podstawie tych dwóch wartości, tworzymy \hat{X} i kodujemy różnicę między X a \hat{X} .

4.11.3 JPEG-LS

JPEG-LS to standard kompresji obrazów, podobny do CALIC, który też wykorzystuje kodowanie predykcyjne.

NW	N
W	X

Diagram 5: Kontekst dla algorytmu JPEG-LS

- 1. $\widehat{X} = W$
- $2. \ \widehat{X} = N$
- 3. $\hat{X} = NW$
- $4. \ \widehat{X} = N + W NW$
- 5. $\hat{X} = N + \frac{W NW}{2}$
- 6. $\hat{X} = W + \frac{N NW}{2}$
- 7. $\hat{X} = \frac{N+W}{2}$

Wśród tych siedmiu możliwości, wybieramy tę, która daje najmniejszą różnicę między X a \widehat{X} i podobnie jak dla CALIC kodujemy ciąg różnic.

4.11.4 Poziomy rozdzielczości

Kodujemy obraz wysyłając średni kolor kwadratów o rozmiarze $2^k \times 2^k$ a następnie różnice między tą średnią a średnią kwadratow $2^{k-1} \times 2^{k-1}$. Kończymy na pojedynczych pikselach. Różnice między tymi kwadratami łatwo się kompresuje bo są małe.

5 Macierzowa notacja kodów

Macierz generująca, to macierz przez którą mnożymy wektor danych, aby uzyskać kod. Macierz parzystości to macierz, przez którą mnożymy kod, aby uzyskać wektor zer. Macierz generująca i parzystości są ze sobą powiązane. Syndrom to niezerowy wynik mnożenia wektora kodu przez macierz parzystości.

6 Korekcja błędów

6.1 Kody parzystości

Do każdego bloku danych dodawany jest bit parzystości, który przyjmuje wartość 1, gdy liczba jedynek w bloku jest nieparzysta. W przeciwnym razie przyjmuje wartość 0. W ten sposób jesteśmy w stanie wykryć jeden błąd w bloku danych.

$$G(n) = \underbrace{\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}}_{\times n} \times n + 1$$

$$H(n) = \underbrace{\begin{bmatrix} 1 & \dots & 1 \end{bmatrix}}_{\times n+1}$$

6.2 Algorytm Luhna

Jest to algorytm wykorzystywany do weryfikacji poprawności numerów z cyfrą kontrolną. Polega on na pomnożeniu co drugiej cyfry przez 2, wyeliminowaniu wszystkich liczb dwucyfrowych przez dodanie ich cyfr, a następnie dodaniu wszystkich cyfr. Na koniec dobierana jest cyfra kontrolna, tak aby suma wszystkich cyfr była podzielna przez 10.

6.3 Kod powtórzeniowy

Kod powtórzeniowy polega na powtórzeniu bloku danych k razy. W ten sposób jesteśmy w stanie wykryć k-1 błędów. Kod powtórzeniowy jest bardzo nieskuteczny, ponieważ wymaga k razy więcej miejsca na przechowywanie danych.

$$G(n) = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right\} \times n$$

$$H(n) = \underbrace{\begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{bmatrix}}_{\times n} \right\} \times n - 1$$

6.4 Współczynnik informacji

Dla kodu \mathcal{C} długości n współczynnikiem informacji nazywamy:

$$\frac{1}{n}\log|\mathcal{C}|$$

Dla kodu powtórzeniowego k współczynnik informacji wynosi: $\frac{1}{n}$. Dla kodów parzystości współczynnik informacji wynosi $\frac{n}{n+1}$.

6.5 Odległość Hamminga

$$d(a,b) = \sum_{i=1}^{n} a_i \neq b_i$$

Dla kodu K minimalną odległością tego kodu nazywamy minimalną odległość Hamminga tego kodu. Kod K wykrywa t błędów jeśli jego minimalna odległość jest mniejsza niż t. Z kolei ten sam kod koryguje te błedy jeśli jego minimalna odległość jest większa niż 2t.

6.6 Kody Hamminga

Kody doskonałe dla korekcji jednego błędu. Dla długości kodu $n = 2^m - 1$, mają liczbę bitów informacji k = n - m. Najprostszą macierzą Hamminga dla n powyższego, jest taka kodująca kolejne liczby binarne od 1 do n. Dla m = 3:

$$H_H(3) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

To jest macierz parzystości dla kodu Hamminga dla m=3. Taką macierz można następnie zamienić na macierz generującą, poprzez potraktowanie jej jako macierzy z metody Gaussowskiej, w tym wypadku równoważnej z:

$$x_5 = x_2 + x_3 + x_4$$
$$x_6 = x_1 + x_3 + x_4$$
$$x_7 = x_1 + x_2 + x_4$$

Następnie wystarczy potraktować ten układ równań jako macierz, z 7 wierszami, z czego pierwsze 4 (ilość kolumn) są jednostkowe, a ostatnie 3 odpowiadają układowi równań.

$$G_H(3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Dla wektora informacji x, kod liczymy jako: k(x) = G(K)x

6.7 Kody cykliczne

Kod liniowy nazywamy cyklicznym wtedy i tylko wtedy, jeśli dla każdego słowa kodowego $v_0v_1...v_n$ cykliczne przesunięcie $v_nv_0v_1...v_{n+1}$. Kod parzystości i powtórzeniowy są kodami cyklicznymi.

Kody cykliczne można reprezentować przy pomocy wielomianów. W takiej reprezentacji, dodawanie słów kodowych jest równoważne dodawaniu reprezentujących wielomianów.

$$a_0a_1\ldots a_n\Rightarrow a(x)=a_0+a_1x+\cdots+a_nx^n\in\mathbb{Z}_2$$

Każdy nietrywialny (n, k)-kod cykliczny (kod długości n z k bitami) zawiera słowo kodowe g(x) stopnia n - k. Dla takiego kodu:

$$G(k) = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}$$

6.8 Kody doskonałe

Binarny (n, k)-kod jest doskonały dla t błędów, jeśli ma minimalną odległość równą 2t + 1 oraz spełniona jest:

$$2^{n-k} = \sum_{i=0}^{t} \binom{n}{i}$$

Przykładem kodu doskonałego jest kod Golav. Jest to (23, 12)-kod

$$q(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$$

Odległość minimalna tego kodu to 7 i koryguje 3 błędy.

6.9 Burst Error

Burst error to ciąg błędów, długości t. Kod dualny do kodu Hamminga z $g(x) = 1 + x^2 + x^3 + x^4$ jest (7,3)-kodem korygującym 2 burst errors.

7 Kwantyzacja

Kwantyzacja to proces przekształcenia danych wejściowych przez funkcję kwantyzującą, która oprócz dyskretyzowania wartości wejściowych, odwzorowywuje je na mniejszy zbiór. Dwa odwzorowania:

- kodujące: dzieli zbiór wartości na pewną liczbę podprzedziałów, przypisuje każdemu podprzedziałowi odpowiedni symbol
- dekodujące: przyjmuje symbol i zwraca odpowiedni podprzedział