

FORM PTO-1390 (REV. 5-93)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER 10191/1790
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO. (If known, see 37 CFR 1.5) 09/807378	
INTERNATIONAL APPLICATION NO. PCT/DE99/03273	INTERNATIONAL FILING DATE (12.10.99) 12 October 1999		PRIORITY DATES CLAIMED (12.10.98) 12 October 1998
TITLE OF INVENTION RADIO METHOD AND DEVICE HAVING A FRAME STRUCTURE			
APPLICANT(S) FOR DO/EO/US <u>RADIMIRSCH, Markus</u>			
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information</p> <p>1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.</p> <p>2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.</p> <p>3. <input checked="" type="checkbox"/> This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).</p> <p>4. <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.</p> <p>5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2))</p> <p>a. <input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau).</p> <p>b. <input checked="" type="checkbox"/> has been transmitted by the International Bureau.</p> <p>c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US)</p> <p>6. <input checked="" type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)).</p> <p>7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))</p> <p>a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau).</p> <p>b. <input type="checkbox"/> have been transmitted by the International Bureau.</p> <p>c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired.</p> <p>d. <input checked="" type="checkbox"/> have not been made and will not be made.</p> <p>8. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).</p> <p>9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)) (UNSIGNED).</p> <p>10. <input checked="" type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).</p> <p>Items 11. to 16. below concern other document(s) or information included:</p> <p>11. <input checked="" type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98.</p> <p>12. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.</p> <p>13. <input checked="" type="checkbox"/> A FIRST preliminary amendment.</p> <p><input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment.</p> <p>14. <input checked="" type="checkbox"/> A substitute specification and marked-up version.</p> <p>15. <input type="checkbox"/> A change of power of attorney and/or address letter.</p> <p>16. <input checked="" type="checkbox"/> Other items or information: Copy of International Search Report, IPER, PCT/RO/101..</p>			

APPLICATION NO. (known as) 097807378

INTERNATIONAL APPLICATION NO.
PCT/DE99/03273ATTORNEY'S DOCKET NUMBER
10191/179017. The following fees are submitted:**Basic National Fee (37 CFR 1.492(a)(1)-(5)):**

Search Report has been prepared by the EPO or JPO \$860.00

International preliminary examination fee paid to USPTO (37 CFR 1.482) ... \$690.00

No international preliminary examination fee paid to USPTO (37 CFR 1.482) but
international search fee paid to USPTO (37 CFR 1.445(a)(2)) \$710.00Neither international preliminary examination fee (37 CFR 1.482) nor international
search fee (37 CFR 1.445(a)(2)) paid to USPTO \$1,000.00
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all
claims satisfied provisions of PCT Article 33(2)-(4) \$100.00

CALCULATIONS | PTO USE ONLY

ENTER APPROPRIATE BASIC FEE AMOUNT =

\$860

Surcharge of \$130.00 for furnishing the oath or declaration later than 20 30 months
from the earliest claimed priority date (37 CFR 1.492(e)).

\$

Claims	Number Filed	Number Extra	Rate
Total Claims	16 - 20 =	0	X \$18.00
Independent Claims	2 - 3 =	0	X \$80.00
Multiple dependent claim(s) (if applicable)			+ \$270.00

\$

\$

\$

TOTAL OF ABOVE CALCULATIONS =

\$860

Reduction by ½ for filing by small entity, if applicable. Verified Small Entity statement must
also be filed. (Note 37 CFR 1.9, 1.27, 1.28).

\$

SUBTOTAL =

\$860

Processing fee of \$130.00 for furnishing the English translation later the 20 30
months from the earliest claimed priority date (37 CFR 1.492(f)).

+

TOTAL NATIONAL FEE =

\$860

Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be
accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property

+

TOTAL FEES ENCLOSED =

\$860

Amount to be:

refunded \$

charged \$

a. A check in the amount of \$ _____ to cover the above fees is enclosed.b. Please charge my Deposit Account No. 11-0600 in the amount of \$860.00 to cover the above fees. A duplicate copy of this
sheet is enclosed.c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit
Account No. 11-0600. A duplicate copy of this sheet is enclosed.**NOTE:** Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must
be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

 SIGNATURE

Richard L. Mayer, Reg. No. 22,490

NAME

4/11/01

DATE

[10191/1790]

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor(s) : Markus RADIMIRSCH
Serial No. : To Be Assigned
Filed : Herewith
For : RADIO DEVICE HAVING A FRAME STRUCTURE
Examiner : To Be Assigned
Art Unit : To Be Assigned

Assistant Commissioner
for Patents
Washington, D.C. 20231

PRELIMINARY AMENDMENT

SIR:

Kindly amend the above-identified application before examination, as set forth below.

IN THE TITLE:

Please replace the title with the following:
--RADIO METHOD AND DEVICE HAVING A FRAME STRUCTURE--.

IN THE SPECIFICATION:

Please amend the specification, including abstract, pursuant to the attached substitute specification. Also attached is a marked up copy of the specification, indicating deleted and added sections. No new matter has been added.

IN THE CLAIMS:

Please cancel claims 1-17 in the underlying PCT application, without prejudice.

Please also cancel claims 1 and 2 in the annex to the International Preliminary Examination Report, without prejudice.

Please add the following new claims:

18. (New) A method having a frame structure for transmitting digital data in a radio communication system, the radio communication system including a plurality of central units, each of the central units assigned a plurality of subscribers, the plurality of subscribers including digital voice services, each of the digital voice services being accommodated in a data packet inside the frame structure, the method comprising:

providing multiframe, each of the multiframe being divided into a plurality of containers, each of the containers being selected to be so large that a complete transmission frame, including at least one of an uplink data packet and a downlink data packet, and corresponding signaling data, can be accommodated in a single one of the containers;

monitoring by a first one of the central units at least one complete one of the multiframe;

determining free capacity of frequency channels for further multiframe as a function of the monitoring;

occupying one of the frequency channels that has free capacity;

when there is a collision with a second one of the central units, the second one of the central units using a same time slot and a same frequency channel for a transmission frame as the first central unit, at least one of the first one of the central units and the second one of the central units: i) immediately refraining from occupying the time slot, and ii) attempting occupation again after a time lag.

19. (New) A method having a frame structure for transmitting digital data in a radio communication system, the radio communication system including a plurality of central units, each of the central units assigned a plurality of subscribers, the plurality of subscribers including digital voice services, each of the digital voice services being accommodated in a data packet inside the frame structure, the method comprising:

providing multiframe, each of the multiframe being divided into a plurality of containers, each of the containers being selected to be so large that a complete transmission frame, including at least one of an uplink data packet and a downlink data packet, and corresponding signaling data, can be accommodated in a single one of the containers;

transmitting by a first one of the central units a signal in irregular intervals, the signal announcing that the first one of the central units wants to occupy one of the containers in a following multiframe;

between transmissions by the first one of the central units, determining by the first one of the central units if another one of the central units wants to occupy a same one of the containers that the first one of the central units wants to occupy; and

if another one of the central units wants to occupy the same one of the containers, withdrawing by the first one of the central units and attempting occupation again after a lag time.

20. (New) The method as recited in claim 19, wherein the transmitting step includes transmitting the signal in random intervals.

21. (New) The method as recited in claim 18, wherein different ones of the central units can occupy a selected time slot, the method further comprising:

providing a collision prevention measure.

22. (New) The method as recited in claim 18, further comprising providing a radio cell of the radio communication system, the radio cell being assigned at least one of the containers and at least one of the frequency channels.

23. (New) The method as recited in claim 21, wherein a carrier sense multiple access/collision avoidance (CSMA/CA) method is used for the collision prevention measure.

24. (New) The method as recited in claim 18, further comprising:

selecting by the at least one of the first central unit and second central unit the lag time in a random manner.

25. (New) The method as recited in claim 18, wherein occupying step includes reserving an entire container for a multiframe.

26. (New) The method as recited in claim 18, wherein the radio communication system includes sectored radio cells.

27. (New) The method as recited in claim 18, wherein each of the central units only occupies one container per radio sector.

28. (New) The method as recited in claim 18, wherein the first central unit occupies more than one of the containers in at least one of the frequency channels.

29. (New) The method as recited in claim 18, further comprising:

occupying by the first central unit selected containers on different ones of the frequency channels using several transmission and reception branches, the selected containers coinciding or lying one behind the

30. (New) The method as recited in claim 18, further comprising:

using an ATM cell as the data packet accommodating digital voice services.

31. (New) The method as recited in claim 31, further comprising:

carrying out radio communication by using a centrally controlled protocol, the centrally controlled protocol being one of a MAC protocol, an Internet protocol, an Ethernet protocol and an UMTS protocol.

32. (New) The method as recited in claim 21, further comprising using the preventive collision measure to resolve a hidden station problem and a terminal having an occupation attempt transmitting in a transmit break of the first central unit attempting occupation, the hidden station problem including a relatively unnoticeable terminal which lies outside a radio reception range of the first central unit and the first central unit operates outside of a radio reception range of a second central unit.

33. (New) The method as recited in claim 18, further comprising selecting a large duration for the monitoring by the first central unit to provide a high probability of an active terminal transmitting once during the large duration.

REMARKS

This Preliminary Amendment cancels, without prejudice, claims 1-17 in the underlying PCT Application No. PCT/DE99/03273. This Preliminary Amendment also cancels, without prejudice, claims 1 and 2 in the annex of the International Preliminary Examination Report, and adds new claims 18-33. The new claims conform the claims to the U.S. Patent and Trademark Office rules and does not add new matter to the application.

0980738 "D70904

The amendments to the specification and abstract reflected in the substitute specification are to conform the specification and abstract to U.S. Patent and Trademark Office rules, and do not introduce new matter into the application.

The underlying PCT Application No. PCT/DE99/03273 includes an International Search Report, issued April 10, 2000, a copy of which is included. The Search Report includes a list of documents that were considered by the Examiner in the underlying PCT application.

The underlying PCT Application No. PCT/DE99/03273 also includes an International Preliminary Examination Report, issued January 10, 2001. A translation of the International Preliminary Examination Report and annex thereto is included herewith.

It is respectfully submitted that the present invention is new, non-obvious, and useful. Prompt consideration and allowance of the claims are respectfully requested.

Respectfully Submitted,

KENYON & KENYON

Dated: 4/11/01

By:
Richard L. Mayer
Reg. No. 22,490

One Broadway
New York, NY 10004
(212) 425-7200
(212) 425-5288
CUSTOMER NO. 26646

[10191/1790]

RADIO DEVICE HAVING A FRAME STRUCTURE

Field of the Invention

The present invention relates to a radio device having a frame structure, for transmitting digital data in a radio communication system.

5

Background Information

Conventional methods in cellular technology allow a frequency band to be used simultaneously by a plurality of radio base stations. In such a radio communication system, several terminals are controlled by a central unit, e.g., a radio base station, which, however, can also be a terminal itself. This central unit defines a radio cell, which indicates the spatial dimensions of the coverage area of the central unit. In general, such radio cells are represented as hexagons or circles in plan view. Such a system is represented in Figure 1.

20

Figure 2 depicts a cellular network having radio cells R1 through R8. However, if a radio cell is now defined, the terminals and the central unit generate interference which extends beyond the boundary of the radio cell. This can completely or partially prevent the operation of a second radio cell that uses the same frequency channel. As an example, the same frequency could be used in radio cells R1 and R4 in Figure 2. Because of the short distance, signals from R4 interfere with the operation of R1, and vice versa. This problem predominantly occurs when the number of allowed frequency channels is too low.

25

30

Various solutions have been proposed for this problem, which are essentially based on separating the radio channels in the frequency or code directions (FDMA and CDMA). Recently, there have also been proposals for separating the channels in the

time direction. An example of this is the DECT system.

Summary of the Invention

The present invention enables voice services to be supported by ATM, e.g., voice-over ATM. The present invention can further allow radio resources to be utilized effectively, since the outlay for overhead decreases due to the relatively large length of a transmission frame. In further refinements of the present invention, collisions can be resolved in a simple manner. The method according to the present invention is very well suited for operating sectorized radio cells.

Brief Description of the Drawings

Figure 1 shows a radio communication system in which several terminal are controlled by a central unit;

Figure 2 shows a cellular network having radio cells R1 through R8;

Figure 3 shows a schematic signaling diagram for transmitted ATM cells in an embodiment of the present invention;

Figure 4 shows the structure of a multiframe in an embodiment of the present invention;

Figure 5 shows the layout of a cellular network in an embodiment of the present invention;

Figure 6 shows an instantaneous survey of the occupancy of a container inside a transmission frame in an embodiment of the present invention;

Figure 7 shows an instantaneous survey according to Figure 6, after the addition of a further radio cell, in an embodiment of the present invention;

Figure 8 shows a collision resolution within a container, in

an embodiment of the present invention;

Figure 9 shows sectored radio cells in an embodiment of the present invention; and

5

Figure 10 shows the container occupancy for a particular radio cell in an embodiment of the present invention.

Detailed Description

10 A protocol (cf. D. Petras, A. Krämling, "MAC protocol with polling and fast collision resolution for an ATM air interface", IEEE ATM Workshop, San Francisco, CA, August 1996; D. Petras, A. Krämling, A. Hettich, "MAC protocol for Wireless ATM: contention free versus contention based transmission of reservation requests", PIMRC' 96, Taipei, Taiwan, October 1996; D. Petras, A. Hettich, A. Krämling: "Design Principles for a MAC Protocol of an ATM Air Interface", ACTS Mobile Summit 1996, Granada, Spain, November 1996) of layer 2 (DLC layer), can be used for the exemplary embodiment(s) considered here. ATM cells may be used as data packets. However, it is also possible to use data packets of other protocols above the DLC layer, e.g., IP (Internet Protocol), Ethernet, or UMTS. In this case, a layer is introduced between the DLC layer and the protocol of the higher layer, which adapts the data packets of the higher layer to the requirements of the DLC layer.

25

30

35

In accordance with Figure 3, which shows the basic principle of the DSA protocol (dynamic slot assignment) described in detail in German Patent Application No. P 197 26 120.5, the transmission may take place according to the TDD (time division duplex) system. The physical channel is subdivided into time slots, which each receive a data burst. Such a data burst contains an ATM cell including the overhead for a training sequence, synchronization, forward error correction, FEC, and blocking times. In the downlink signaling burst, the central controller assigns each terminal a certain transmission capacity in the form of time slots, for a

specific time interval known as SP (signaling period), as a function of the transmission resource requirements of the terminal. The total number of slots of an SP can be variable, and can vary over time. Or, the duration of the SP can be
5 fixed, and the occupancy can be flexible.

An uplink phase includes a number of bursts transmitted by the terminals, and an uplink signaling phase. During the uplink signaling phase, the terminals are authorized to send
10 signaling messages to the central controller, when they have not been allocated any reserved time slots for transmitting inside the normal bursts (piggy-back method). Polling or random access can be used for the uplink signaling. In the downlink phase, the signaling PDU (protocol data unit) and all of the bursts from the central controller are sent to the terminals. All of the sets of information for the next SP, including the signaling slots, are transmitted to the terminals, inside a signaling PDU. In addition, the signaling PDU contains feedback messages for previously emitted sets of uplink signaling information which, for example, can be used
15 for a collision resolution or functions such as automatic requests for repeat (ARQ). Using these sets of information, the terminals can know when they are allowed to send and receive bursts. When different types of bursts, e.g., short or long, are used, the type of burst is announced by the central controller, inside the signaling PDU.
25

The reason for using such a protocol of the DLC layer is the necessity of ensuring the quality of service for ATM traffic.
30 See also D. Petras et al., "Support of ATM Service Classes in Wireless ATM Networks", ACTS Mobile Communications Summit, Aalborg, Denmark, October 1997. A centrally controlled MAC protocol can be used which, till now, has not been utilized in this manner in any radio communication system. On the other hand, a condition for this is that the methods already
35 introduced for the common usage of frequencies, such as, e.g., the DECT method, cannot be used here.

One method for assigning channels in wireless ATM networks is described in A. Krämling et al., "Dynamic Channel Allocation in Wireless ATM Networks", International Conference on Telecommunications (ICT 98), Greece, June 1998 ("ICT 98 reference"). It also lists the reasons why existing methods cannot be used. The use of the term "frame" in the ICT 98 reference is different from its use in connection with the specification of the present invention. What is referred to here as a frame (transmission frame) is referred to there as a signaling period; what is referred to as a frame in the ICT 98 reference is called multiframe below, so that a multiframe can include a plurality of containers.

The method according to the ICT 98 reference relates to frames having a flexible duration, even when the simulations are carried out using a fixed frame duration. However, the use of a fixed frame duration is especially important in connection with the present invention.

In the ICT 98 reference, a frame is divided up among several containers. This requires a very large administrative outlay for the time-related control, both in central unit ZE and in the terminals. In addition, the ICT 98 reference does not indicate any specific duration for a multiframe. The service in ATM networks is the voice service. Voice has a low processing speed, e.g., ≤ 64 kbit/s, but, in return, has very high demands on the end-to-end delay of the packets, as well as on the variance of this delay. If it is assumed that the end-to-end delay is limited to 50 ms, then each network element can generate a certain portion of this delay. In the case of the wireless transmission system, this amounts to 5 ms for the delay and approximately 2 ms for the delay variance. In addition, it must be taken into account that, in the case of 64 kbit/s, an ATM cell is filled approximately every 6 ms. This depends on the AAL (adaption layer) used. An ATM cell contains 48 useful bytes, from which AAL5 uses 1 byte, AAL1 uses 2 bytes, and AAL2 uses 3 bytes, so that only 47, 46 or 45

useful bytes, respectively, are available. This results in a filling time of AAL5 = 5.875 ms, AAL1 = 5.75 ms, and AAL2 = 5.625 ms. If, for voice connections, at least one container is not available for a voice connection, within the interval of
5 the filling time, it is not possible to support voice services using ATM (voice-over ATM). Therefore, the present invention provides for using a multiframe that may have a data-packet filling time of approximately 6 ms or multiples thereof.

10 The present invention provides using one container per radio sector, each container transmitting a complete frame (transmission frame). Taking the 6 ms filling time into consideration for voice connections allows the radio resources to be utilized more efficiently, since the outlay for overhead decreases due to the relatively large length of a frame.
15

The present invention further provides for incorporating voice services into the division of a multiframe into several containers, in such a manner, that the duration of a multiframe corresponds to time period during which a data packet, e.g., an ATM cell, is filled with voice data of, e.g., a 64 kbit/s connection. As a refinement according to the present invention, the time needed to fill an ATM cell with voice information ($T_{\text{sub } F}$) approximately corresponds to
25 the duration of a multiframe. Then, the following applies:

$$T_{\text{sub } F} = T_{\text{sub } S}$$

30 The duration of a single frame $T_{\text{sub } R}$ is calculated from the duration of a multiframe $T_{\text{sub } S}$, divided by the number of frames per multiframe ($N_{\text{sub } R}$):

$$T_{\text{sub } R} = T_{\text{sub } S} / N_{\text{sub } R}$$

Thus, the result is that the duration of a container $T_{\text{sub } C}$ is equal to the duration of a frame:
35

$$T_{\text{sub } C} = T_{\text{sub } R}$$

This factual situation is represented in Figure 4. In the

indicated example, multiframe S is subdivided into six containers C1 ... C6. However, other numbers of containers are also possible.

5 The following forms the basis of a cellular network as shown in Figure 5. Three frequency channels are available, and a multiframe includes six containers. In this example, radio cells R1, R2, R4, and R5 are initially active, an instantaneous survey of the utilized frequencies and
10 containers being shown in Figure 6. Central units ZE in radio cells R1, R2, R3, and R4 are in a steady state, so that the utilized containers do not change much from frame to frame. The required transmission capacity of central unit ZE in radio cell R4 has increased prior to the shift from multiframe S1 to multiframe S2, so that radio cell R4 occupies another container in multiframe S2, namely container C5 on frequency channel F3. In the next step, central unit ZE in radio cell R3 goes into operation. It can initially monitor the channel for a certain period of time, e.g., at least for the duration of a multiframe, and determine that the frequency channels are occupied in the manner represented in Figure 6. In this context, it is not important that central unit ZE in radio cell R3 knows the numbering of the containers, for the boundary of the multiframe must still be detected.

25 It can be useful in the present invention to recognize the time-related boundaries between the containers. The periodicity of the pattern can be revealed by monitoring a single multiframe, from the known duration of a multiframe, 30 which all central units ZE working in these frequency channels must know.

From the result of monitoring multiframe S2, central unit ZE may conclude that, inter alia, containers C3, C4, and C6 of frequency channel F3 are free, and initially occupies container C4 of frequency channel F3, in multiframe S3. The resulting pattern of the used containers is shown in Figure 7.

It may be assumed that radio cell R3 would have monitored multiframe S1, and determined that container 5 of frequency channel F3 is free, and would have decided to occupy this in multiframe S2. In this case, there would have been a collision
5 between central unit ZE in radio cell R5, and central unit ZE in radio cell R3, which, in this case, had used the same container. In order to prevent this, a method utilized, e.g., in Ethernet-based LAN's, can be put into use. This method is known as CSMA/CD (carrier sense multiple access/collision
10 detection; see IEEE 802.3), and means that, in response to the detection of a collision, the two central units ZE immediately refrain from occupying the container, and attempt to gain access to this container, or another free container which can be on a different frequency channel, after a period of time individually ascertained by each central unit in accordance with a random process. However, this method is the collision detection by the transmitting devices, themselves. Therefore,
15 the CSMA/CA method (carrier sense/collision avoidance) was developed for the MAC layer in wireless LAN's.

Methods, which have been developed for competition-based MAC protocols for use in wireless LAN's (local area networks), and have already been standardized, are an additional possibility for preventing collisions while containers are being occupied.
25 These methods can be based on the so-called CSMA/CA principal (carrier sense multiple access/collision avoidance). Such methods are used in the standards of HIPERLAN type 1 and IEEE 802.11 systems, see also ETSI RES 10, "Radio Equipment and Systems (RES); High Performance Radio Local Area Network
30 (HIPERLAN) Type 1; Functional specification", 1996; and IEEE 802.11, "Tutorial of draft standard 802.11/D3.0, Part 3: the MAC entity",
<http://grouper.ieee.org/groups/802/11/main.htm#tutorial>. The purpose of the CSMA/CA method used in these standards is to describe a procedure, which determines how several devices wanting to communicate with each other divide the commonly used channel, and access it. In the case of the present
35

invention, the method provides that the devices not wanting to communicate with each other use the CSMA/CA method for occupying channels in order to not get in the way of each other. This allows devices, whose communication methods are different, and which can therefore not communicate with each other, to share a frequency band in the described manner.

In contrast to the methods described in ETSI RES 10, "Radio Equipment and Systems (RES); High Performance Radio Local Area Network (HIPERLAN) Type 1; Functional specification", 1996; and IEEE 802.11, "Tutorial of draft standard 802.11/D3.0, Part 3: the MAC entity",

<http://grouper.ieee.org/groups/802/11/main.htm#tutorial>, it is not necessary within the framework of the method according to the present invention, that the access is granted in a priority-controlled manner. Rather, it is sufficient for each central unit ZE to select one or more randomly chosen times at which they access the new container, and otherwise, monitor to determine if another central unit ZE is accessing it as well.

Another embodiment of the present invention can involve using an entire container for collision prevention. For example, this can be useful when the duration of a container corresponds to an entire frame because, after the collision prevention phase, no more complete frames fit into the container, anyway. In this case, a central unit ZE wanting to reserve a container sends a signal at irregular and randomly selected time intervals, the signal being used to announce that the central unit wants to occupy the container in the following multiframe. Between the individual emissions, it monitors the container to determine if another central unit wants to occupy the container as well. If it determines that this is the case, then the central unit ZE that noticed the collision withdraws and proceeds as described above:

A new attempt to access this container or another free container that can be on another frequency channel, after a

period of time individually ascertained by each central unit ZE, in accordance with a random process.

An example for such a collision resolution is shown in Figure 8. Central units ZE7 and ZE8 which, for example, could come from Figure 5, attempt to occupy the same container. To that end, both of them switch between monitoring the channel and emitting a signal, by means of which the channel should be occupied. In general, it is not possible to switch over between transmitting and receiving without a time-related pause. This is represented in the drawing by a time gap between transmitting and monitoring the channel (transceiver turnaround interval, TTT). The two central units ZE initially monitor the channel. Then, they begin to transmit in a slightly time-staggered manner. However, because of the TTT, the two do not notice that a second one is also transmitting. They both transmit a second time, almost simultaneously, and in so doing, do not notice each other. During the third time, central unit ZE7 selects a shorter time interval than that of central unit ZE8, so that central unit ZE8 hears central unit ZE7 and gives up attempting to occupy the container. Since central unit ZE7 did not detect the access attempt of central unit ZE8, it continues the procedure up to the end of the container.

The method for preventing collisions can also be used to resolve the hidden station problem. In this case, a central unit ZE1 is already using the container, but is not heard by a central unit ZE2 that wants to occupy the container, because, e.g., the central unit is momentarily not in the range of reception. However, it could be, that a terminal communicating with central unit ZE1 does, in fact, hear central unit ZE2, and that the occupation of this container by central unit ZE2 can interfere with its communication with central unit ZE1. In this case, it can be useful when the terminal thwarts the access attempt of central unit ZE2, by transmitting in a transmit break of central unit ZE2 (see Figure 8), even when

this causes it to briefly interfere with the communication in the radio cell formed by central unit ZE1.

Another embodiment of the present invention for the hidden station problem involves increasing the monitoring interval (carrier sense). Since a terminal does not necessarily transmit in each frame, a central unit ZE can easily assume the container to be free after monitoring it one time. For that reason, the monitoring time must be increased prior to the occupation of a container, in such manner, that there is a high probability of an active terminal transmitting at least once within this monitoring time. Then, the central unit concerned about the container recognizes that this container is already being used, and that its own occupation would interfere with the communication in other radio cells.

The above-described method of the present invention can also be suited for use in sectored radio cells. An embodiment of such a system is represented in Figure 9. A central unit ZE is located in the middle of each radio cell, each radio cell being divided into three sectors. Residing in each of the sectors are zero terminals, one terminal, or several terminals, which want to communicate with central unit ZE. It can initially be assumed that central unit ZE controls all of the sectors, using only one frequency. The result for radio cell R3 is the occupation of containers in frequency channel F3, as shown in Figure 10. The container occupancies of radio cells R1 and R2 are not represented. Sector R3.1 occupies containers C1 and C4, sector R3.2 occupies container C2, and sector R3.3 does not occupy any container, since there is no terminal located in it.

The sectoring reduces interference between the radio cells. This is primarily based on the directionally selective effect of sectoring the radio cells. Thus, e.g., in certain usage scenarios, it is possible for container C2 of frequency channel F3 to already be used again in sector R1.3. In the

overall view of a cellular network, this considerably increases the reuseability of frequencies by reducing the interference.

5 Is also possible to carry out the measures of the present invention that are indicated above, when the duration of a multiframe is a multiple of filling time T_F . In this case, a central unit ZE, which must support at least one voice connection, can occupy containers having time interval T_F . It
10 is also possible for these containers not to exactly have time interval T_F , but rather to approximately have interval T_F , the time discrepancy being limited by the allowed delay variance (cell delay variation, CDV) of the voice connection.

25 In the above exemplary embodiments, the container occupancy of a central unit ZE can be principally limited to one frequency, i.e., various containers of a single frequency were occupied. However, it is also possible (see the ICT 98 reference), that one ZE occupies several containers lying on different frequencies. This is also possible in the case of sectored radio cells. If there is only one transmitter/receiver unit in central unit ZE, the transceiver turnaround time should generally be considered, which can lead to a container which is not being used by central unit ZE having to lie between occupied containers on different frequencies channels. However, under the condition of one ZE having more than one transmitting and receiving branch, it is possible for one ZE to use different containers on different frequency channels, which coincide or lie one behind the other.

Abstract

A radio device having a frame structure is proposed for transmitting digital data in a radio communication system, a multiframe being used, which is made of a plurality of containers. The duration of the multiframe can be selected in such a manner that, during this time, a data packet can be filled with voice data of a predetermined bit rate. A container can be selected to be large enough, that a complete transmission frame can be accommodated therein.

T1160270 * 37370696

[10191/1790]

RADIO DEVICE HAVING A FRAME STRUCTURE

Field of the Invention

The present invention relates to a radio device having a frame structure, for transmitting digital data in a radio communication system.

5

Background Information

[The present invention relates to a radio device having a frame structure, for transmitting digital data Conventional methods in [a radio communication system. Methods are known from] cellular technology[, which] allow a frequency band to be used simultaneously by a plurality of radio base stations. In such a radio communication system, several terminals are controlled by a central unit, e.g., a radio base station, which, however, can also be a terminal itself. This central unit defines a radio cell, which indicates the spatial dimensions of the coverage area of the central unit. In general, such radio cells are represented as hexagons or circles in plan view. Such a system is represented in Figure 1.]

20

Figure 2 depicts a cellular network having radio cells R1 through R8. However, if a radio cell is now defined, the terminals and the central unit generate interference[, which extends beyond the boundary of the radio cell. This can completely or partially prevent the operation of a second radio cell that uses the same frequency channel. As an example, the same frequency could [thus] be used in radio cells [C1] R1 and [C4] R4 in Figure 2. Because of the short distance, signals from [C4] R4 interfere with the operation of [C1] R1, and vice versa. This problem predominantly occurs when the number of allowed frequency channels is too low.]

[Till now, various] Various solutions have been proposed for this problem, which are essentially based on separating the radio channels in the frequency or code directions (FDMA and CDMA). Recently, there have also been proposals for separating the channels in the time direction. An example of this is the DECT system.

Summary of the Invention

The [measures according to the] present invention [enable] enables voice services to be supported by ATM[], e.g., voice-over ATM(). It allows]. The present invention can further allow radio resources to be utilized effectively, since the outlay for overhead decreases due to the relatively large length of a transmission frame. In further refinements of the present invention, [it is indicated how] collisions [are] can be resolved in a simple manner. The method according to the present invention is very well suited for operating sectorized radio cells.

Brief Description of the Drawings

[Exemplary embodiments of the present invention are explained in detail, using the additional drawings. The figures show:]

Figure 1 shows a radio communication system in which several terminal are controlled by a central unit;

[Figure 3]Figure 2 shows a cellular network having radio cells R1 through R8;

Figure 3 shows a schematic signaling diagram for transmitted ATM cells in an embodiment of the present invention;[;]

Figure 4 shows the structure of a multiframe in an embodiment of the present invention;[;]

Figure 5 shows the layout of a cellular network in an

embodiment of the present invention; [;]

Figure 6 shows an instantaneous survey of the occupancy of a container inside a transmission frame [; and] in an embodiment of the present invention;

Figure 7 shows an [instantaneous] instantaneous survey [as in according to Figure 6, after the addition of a further radio cell, in an embodiment of the present invention;];

[Figure 8 an example of]Figure 8 shows a collision resolution within a container [and], in an embodiment of the present invention;

[Figure 9] Figure 9 shows sectored radio cells in an embodiment of the present invention; and

Figure 10 shows the container occupancy for a particular radio cell in an embodiment [Description] of [the Exemplary Embodiments]

Before the layout of the frame structure according to the present invention [is explained in detail, a few conditions and definitions, which are used in connection with achieving the objective of the present invention, will first be explained.].

A protocol (cf. [1], [2], [3]) Detailed Description
A protocol (cf. D. Petras, A. Krämling, "MAC protocol with polling and fast collision resolution for an ATM air interface", IEEE ATM Workshop, San Francisco, CA, August 1996; D. Petras, A. Krämling, A. Hettich, "MAC protocol for Wireless

ATM: contention free versus contention based transmission of reservation requests", PIMRC' 96, Taipei, Taiwan, October 1996; D. Petras, A. Hettich, A. Krämling: "Design Principles for a MAC Protocol of an ATM Air Interface", ACTS Mobile Summit 1996, Granada, Spain, November 1996) of layer 2 (DLC layer), [which is briefly explained below, is] can be used for the exemplary embodiment(s) considered here. ATM cells [are preferably] may be used as data packets. However, it is also possible to use data packets of other protocols above the DLC layer, e.g., IP (Internet Protocol), Ethernet, or UMTS. In this case, a layer is introduced between the DLC layer and the protocol of the higher layer, which adapts the data packets of the higher layer to the requirements of the DLC layer.

In accordance with Figure 3, which shows the basic principle of the DSA protocol (dynamic slot assignment) described in detail in German Patent Application No. P 197 26 120.5, the transmission [preferably takes] may take place according to the TDD (time division duplex) system. The physical channel is subdivided into time slots, which each receive a data burst. Such a data burst contains an ATM cell including the [necessary] overhead for a training sequence, synchronization, forward error correction, FEC, and blocking times. In the downlink signaling burst, the central controller assigns each terminal a certain transmission capacity in the form of time slots, for a specific time interval known as SP (signaling period), as a function of the transmission resource requirements of the terminal. The total number of slots of an SP [is variable,] can be variable, and [varies] can vary over time. [Another possibility:] Or, the duration of the SP [is] can be fixed, and the occupancy [is] can be flexible.

An uplink phase includes a number of bursts transmitted by the terminals, and an uplink signaling phase. During the uplink signaling phase, the terminals are authorized to send signaling messages to the central controller, when they have

not been allocated any reserved time slots for transmitting inside the normal bursts (piggy-back method). Polling or random access can be used for the uplink signaling. In the downlink phase, the signaling PDU (protocol data unit) and all of the bursts from the central controller are sent to the terminals. All of the [necessary] sets of information for the next SP, including the signaling slots, are transmitted to the terminals, inside a signaling PDU. In addition, the signaling PDU contains feedback messages for previously emitted sets of uplink signaling information which, for example, [are necessary] can be used for a collision resolution or functions such as automatic requests for repeat (ARQ). Using these sets of information, the terminals can know when they are allowed to send and receive bursts. When different types of bursts, e.g., short or long, are used, the type of burst is announced by the central controller, inside the signaling PDU.

The reason for using such a protocol of the DLC layer is the necessity of ensuring the quality of service for ATM traffic[, see also [4]. Therefore, a]. See also D. Petras et al., "Support of ATM Service Classes in Wireless ATM Networks", ACTS Mobile Communications Summit, Aalborg, Denmark, October 1997. A centrally controlled MAC protocol [is] can be used which, till now, has not been utilized in this manner in any radio communication system. On the other hand, a condition for this is that the methods already introduced for the common usage of frequencies, such as, e.g., the DECT method, cannot be used here.

[A possible] One method for assigning channels in wireless ATM networks is described in [[5]] A. Krämling at al., "Dynamic Channel Allocation in Wireless ATM Networks", International Conference on Telecommunications (ICT 98), Greece, June 1998 ("ICT 98 reference"). It also lists the reasons why existing methods cannot be used. The use of the term "frame" in [[5]] the ICT 98 reference is different from its use in connection

with the specification of the present invention. What is referred to here as a frame (transmission frame) is referred to there as a signaling period; what is referred to as a frame in [[5]] the ICT 98 reference is called multiframe below, so that a multiframe can include a plurality of containers.

[

Inter alia, the use of the described method for effectively implementing such a system for sectored radio cells will be discussed later.]

The method according to [[5]] the ICT 98 reference relates to frames having a flexible duration, even when the simulations are carried out using a fixed frame duration. However, the use of a fixed frame duration is especially important in connection with the present invention.

In [[5]] the ICT 98 reference, a frame is divided up among several containers. This requires a very large administrative outlay for the time-related control, both in central unit ZE and in the terminals. In addition, [[5]] the ICT 98 reference does not indicate any specific duration for a multiframe. The [critical] service in ATM networks is the voice service. Voice [does have quite] has a low processing speed, e.g. ≤ 64 kbit/s, but, in return, has very high demands on the end-to-end delay of the packets, as well as on the variance of this delay. If it is assumed that the end-to-end delay is limited to 50 ms, then each network element can generate a certain portion of this delay. In the case of the wireless transmission system, this amounts to 5 ms for the delay and approximately 2 ms for the delay variance. In addition, it must be taken into account that, in the case of 64 kbit/s, an ATM cell is filled approximately every 6 ms. This depends on the AAL (adaption layer) used. An ATM cell contains 48 useful bytes, from which AAL5 uses 1 byte, AAL1 uses 2 bytes, and AAL2 uses 3 bytes, so that only 47, 46 or 45 useful bytes, respectively, are available. This results in a filling time of AAL5 = 5.875 ms, AAL1 = 5.75 ms, and AAL2 = 5.625 ms. If, for

voice connections, at least one container is not available for
a voice connection, within the interval of the filling time,
it is not possible to support voice services using ATM
(voice-over ATM). Therefore, the present invention provides
5 for using a multiframe that [preferably has] may have a
data-packet filling time of approximately 6 ms or multiples
thereof.

[A development of the] The present invention [proposes]
10 provides using one container per radio sector, each container
transmitting a complete frame (transmission frame). Taking the
6 ms filling time into consideration for voice connections
allows the radio resources to be utilized more efficiently,
since the outlay for overhead decreases due to the relatively
15 large length of a frame.

The present invention further provides for incorporating voice
services into the division of a multiframe into several
containers, in such a manner, that the duration of a
multiframe corresponds to time period during which a data
packet, e.g. an ATM cell, is filled with voice data of, e.g.,
20 a 64 kbit/s connection. As a refinement according to the
present invention, the time needed to fill an ATM cell with
voice information ($T_{\text{sub } F}$) [should] approximately
25 [correspond] corresponds to the duration of a multiframe.
Then, the following applies:

$$T_{\text{sub } F} = T_{\text{sub } S}$$

The duration of a single frame $T_{\text{sub } R}$ is calculated from the
30 duration of a multiframe $T_{\text{sub } S}$, divided by the number of
frames per multiframe ($N_{\text{sub } R}$):

$$T_{\text{sub } R} = T_{\text{sub } S} / N_{\text{sub } R}$$

Thus, the result is that the duration of a container $T_{\text{sub } C}$
35 is equal to the duration of a frame:

$$T_{\text{sub } C} = T_{\text{sub } R}$$

This factual situation is represented in Figure 4. In the indicated example, multiframe S is subdivided into six containers C1 ... C6. However, other numbers of containers are also possible.

5

[This factual situation is represented in Figure 4. In the indicated example, multiframe S is subdivided into six containers C1 ... C6. However, other numbers of containers are also conceivable.] The following forms the basis of a cellular network as shown in Figure 5. Three frequency channels are available, and a multiframe includes six containers. In this example, radio cells R1, R2, R4, and R5 are initially active, an instantaneous survey of the utilized frequencies and containers being shown in Figure 6. Central units ZE in radio cells R1, R2, R3, and R4 are [essentially] in a steady state, so that the utilized containers do not change much from frame to frame. The required transmission capacity of central unit ZE in radio cell R4 has increased prior to the shift from multiframe S1 to multiframe S2, so that radio cell R4 occupies another container in multiframe S2, namely container C5 on frequency channel F3. In the next step, central unit ZE in radio cell R3 goes into operation. It can initially [monitors] monitor the channel for a certain period of time, [specifically] e.g., at least for the duration of a multiframe, and [determines] determine that the frequency channels are occupied in the manner represented in Figure 6. In this context, it is not important that central unit ZE in radio cell R3 knows the numbering of the containers, for the boundary of the multiframe must still be detected.

25

30

It [is only important] can be useful in the present invention to recognize the time-related boundaries between the containers. [In addition, the] The periodicity of the pattern [is] can be revealed by monitoring a single multiframe, from the known duration of a multiframe, which all central units ZE working in these frequency channels must know.

From the result of monitoring multiframe S2, central unit ZE [concludes] may conclude that, inter alia, containers C3, C4, and C6 of frequency channel F3 are free, and initially occupies container C4 of frequency channel F3, in multiframe 5 S3. The resulting pattern of the used containers is shown in Figure 7.

It [is] may be assumed that radio cell R3 would have monitored multiframe S1, and determined that container 5 of frequency 10 channel F3 is free, and would have decided to occupy this in multiframe S2. In this case, there would have been a collision between central unit ZE in radio cell R5, and central unit ZE in radio cell R3, which, in this case, had used the same 15 container. In order to prevent this, a method utilized, e.g., in Ethernet-based LAN's, can be put into use. This method is known as CSMA/CD (carrier sense multiple access/collision detection; see IEEE 802.3), and means that, in response to the detection of a collision, the two central units ZE immediately 20 refrain from occupying the container, and attempt to gain access to this container, or another free container which can be on a different frequency channel, after a period of time individually ascertained by each central unit in accordance with a random process. [The problem with] However, this method 25 is the collision detection by the transmitting devices, themselves. Therefore, the CSMA/CA method (carrier sense/collision avoidance) [explained below] was developed for the MAC layer in wireless LAN's.

Methods, which have been developed for competition-based MAC 30 protocols for use in wireless LAN's (local area networks), and have already been standardized, are an additional possibility for preventing collisions while containers are being occupied. These methods [are] can be based on the so-called CSMA/CA principal (carrier sense multiple access/collision avoidance). 35 Such methods are [already] used in the standards of HIPERLAN type 1 and IEEE 802.11 systems, see also [[6] and [7]] ETSI

RES 10, "Radio Equipment and Systems (RES); High Performance Radio Local Area Network (HIPERLAN) Type 1; Functional specification", 1996; and IEEE 802.11, "Tutorial of draft standard 802.11/D3.0, Part 3: the MAC entity".

5 <http://grouper.ieee.org/groups/802/11/main.htm#tutorial>. The purpose of the CSMA/CA method used in these standards is to describe a procedure, which determines how several devices wanting to communicate with each other divide the commonly used channel, and access it. In the case of the present invention, the [idea is to have] method provides that the devices not wanting to communicate with each other use the CSMA/CA method for occupying channels[, with the object of not getting] in order to not get in the way of each other. [In particular, this] This allows devices, whose communication methods are different, and which can therefore not communicate with each other, to share a frequency band in the described manner.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
1017

because, after the collision prevention phase, no more complete frames fit into the container, anyway. In this case, a central unit ZE wanting to reserve a container sends a signal at irregular and randomly selected time intervals, the
5 signal being used to announce that the central unit wants to occupy the container in the following multiframe. Between the individual emissions, it monitors the container to determine if another central unit wants to occupy the container as well. If it determines that this is the case, then the central unit
10 ZE that noticed the collision withdraws and proceeds as described above:

A new attempt to access this container or another free container that can be on another frequency channel, after a period of time individually ascertained by each central unit ZE, in accordance with a random process.

An example for such a collision resolution is shown in Figure 8. Central units ZE7 and ZE8 which, for example, could come from Figure 5, attempt to occupy the same container. To that end, both of them switch between monitoring the channel and emitting a signal, by means of which the channel should be occupied. In general, it is not possible to switch over between transmitting and receiving without a time-related
25 pause. This is represented in the drawing by a time gap between transmitting and monitoring the channel (transceiver turnaround interval, TTT). The two central units ZE initially monitor the channel. Then, they begin to transmit in a slightly time-staggered manner. However, because of the TTT,
30 the two do not notice that a second one is also transmitting. They both transmit a second time, almost simultaneously, and in so doing, do not notice each other. During the third time, central unit ZE7 selects a shorter time interval than that of central unit ZE8, so that central unit ZE8 hears central unit
35 ZE7 and gives up attempting to occupy the container. Since central unit ZE7 did not detect the access attempt of central

unit ZE8, it continues the procedure up to the end of the container.

The method for preventing collisions can also be used to
5 resolve the hidden station problem. In this case, a central
unit ZE1 is already using the container, but is not heard by a
central unit ZE2 that wants to occupy the container, because,
e.g., the central unit is momentarily not in the range of
reception. However, it could be, that a terminal communicating
10 with central unit ZE1 does, in fact, hear central unit ZE2,
and that the occupation of this container by central unit ZE2
can interfere with its communication with central unit ZE1. In
this case, it can be useful when the terminal thwarts the
access attempt of central unit ZE2, by transmitting in a
transmit break of central unit ZE2 (see Figure 8), even when
this causes it to briefly interfere with the communication in
the radio cell formed by central unit ZE1.

Another [solution] embodiment of the present invention for the
hidden station problem [is to increase] involves increasing
the monitoring interval (carrier sense). Since a terminal does
not necessarily transmit in each frame, a central unit ZE can
easily assume the container to be free after monitoring it one
time. For that reason, the monitoring time must be increased
25 prior to the occupation of a container, in such manner, that
there is a high probability of an active terminal transmitting
at least once within this monitoring time. Then, the central
unit concerned about the container recognizes that this
unit is already being used, and that its own occupation
30 would interfere with the communication in other radio cells.

The above-described method [is also]of the present invention
can also be suited for use in sectored radio cells. [Such] An
embodiment of such a system is represented in Figure 9. A
35 central unit ZE is located in the middle of each radio cell,
each radio cell being divided into three sectors. Residing in

each of the sectors are zero terminals, one terminal, or several terminals, which want to communicate with central unit ZE. It [should] can initially be assumed that central unit ZE controls all of the sectors, using only one frequency. The
5 result for radio cell R3 is the occupation of containers in frequency channel F3, as shown in Figure 10. The container occupancies of radio cells R1 and R2 are not represented. Sector R3.1 occupies containers C1 and C4, sector R3.2 occupies container C2, and sector R3.3 does not occupy any
10 container, since there is no terminal located in it.

The sectoring reduces interference between the radio cells. This is primarily based on the directionally selective effect of sectoring the radio cells. Thus, e.g., in certain usage scenarios, it is possible for container C2 of frequency channel F3 to already be used again in sector R1.3. In the overall view of a cellular network, this considerably increases the reuseability of frequencies by reducing the interference.
15
20

Is also possible to carry out the measures of the present invention that are indicated above, when the duration of a multiframe is a multiple of filling time T_f . In this case, a central unit ZE, which must support at least one voice
25 connection, can occupy containers having time interval T_f . It is also possible for these containers not to exactly have time interval T_f , but rather to approximately have interval T_f , the time discrepancy being limited by the allowed delay variance (cell delay variation, CDV) of the voice connection.
30

In the above exemplary embodiments, the container occupancy of a central unit ZE [was] can be principally limited to one frequency, i.e., various containers of a single frequency were occupied. [This is often favorable from the viewpoint of
35 implementation.] However, it is also possible [(and already described in [5])] (see the ICT 98 reference), that one ZE

occupies several containers lying on different frequencies.
This is also possible in the case of sectored radio cells. If
there is only one transmitter/receiver unit in central unit
ZE, the transceiver turnaround time [must] should generally be
5 considered, which can lead to a container[,] which is not
being used by central unit ZE[,] having to lie between
occupied containers on different frequency channels.
However, under the condition of one ZE having more than one
transmitting and receiving branch, it is possible for one ZE
10 to use different containers on different frequency channels,
which coincide or lie one behind the other.

09807378 - 070904

Abstract

A radio device having a frame structure is proposed for
5 transmitting digital data in a radio communication system, a
multiframe [(S)] being used, which is made of a plurality of
containers[(C1, C2, C3, C4, C5, C6)]. The duration of the
multiframe [(S) is] can be selected in such a manner that,
during this time, a data packet can be filled with voice data
of a predetermined bit rate. A container [is] can be selected
10 to be large enough, that a complete transmission frame can be
[accommodated] accommodated therein.[

(Figure 4)]

00000000000000000000000000000000

6/PRFS

09/807378
JC03 Rec'd PCT/PtO 11 APR 2001

[10191/1790]

RADIO DEVICE HAVING A FRAME STRUCTURE

Background Information

The present invention relates to a radio device having a frame structure, for transmitting digital data in a radio communication system. Methods are known from cellular technology, which allow a frequency band to be used simultaneously by a plurality of radio base stations. In such a radio communication system, several terminals are controlled by a central unit, e.g. a radio base station, which, however, can also be a terminal itself. This central unit defines a radio cell, which indicates the spatial dimensions of the coverage area of the central unit. In general, such radio cells are represented as hexagons or circles in plan view. Such a system is represented in Figure 1. Figure 2 depicts a cellular network having radio cells R1 through R8. However, if a radio cell is now defined, the terminals and the central unit generate interference, which extends beyond the boundary of the radio cell. This can completely or partially prevent the operation of a second radio cell that uses the same frequency channel. As an example, the same frequency could thus be used in radio cells C1 and C4 in Figure 2. Because of the short distance, signals from C4 interfere with the operation of C1, and vice versa. This problem predominantly occurs when the number of allowed frequency channels is too low.

Till now, various solutions have been proposed for this problem, which are essentially based on separating the radio channels in the frequency or code directions (FDMA and CDMA). Recently, there have also been proposals for separating the channels in the time direction. An example of this is the DECT system.

Summary of the Invention

The measures according to the present invention enable voice services to be supported by ATM (voice-over ATM). It allows
5 radio resources to be utilized effectively, since the outlay for overhead decreases due to the relatively large length of a transmission frame. In further refinements of the present invention, it is indicated how collisions are resolved in a simple manner. The method according to the present invention
10 is very well suited for operating sectorized radio cells.

Brief Description of the Drawings

Exemplary embodiments of the present invention are explained in detail, using the additional drawings. The figures show:

- Figure 3 a schematic signaling diagram for transmitted ATM cells;
- Figure 4 the structure of a multiframe;
- Figure 5 the layout of a cellular network;
- Figure 6 an instantaneous survey of the occupancy of a container inside a transmission frame; and
- Figure 7 an instantaneous survey as in Figure 6, after the addition of a further radio cell;
- Figure 8 an example of collision resolution within a container and
- Figure 9 sectored radio cells; and
- Figure 10 the container occupancy for a particular radio cell.

Description of the Exemplary Embodiments

Before the layout of the frame structure according to the present invention is explained in detail, a few conditions and definitions, which are used in connection with achieving the objective of the present invention, will first be explained.

A protocol (cf. [1], [2], [3]) of layer 2 (DLC layer), which is briefly explained below, is used for the exemplary embodiment considered here. ATM cells are preferably used as data packets. However, it is also possible to use data packets of other protocols above the DLC layer, e.g. IP (Internet Protocol), Ethernet, or UMTS. In this case, a layer is introduced between the DLC layer and the protocol of the higher layer, which adapts the data packets of the higher layer to the requirements of the DLC layer.

In accordance with Figure 3, which shows the basic principle of the DSA protocol (dynamic slot assignment) described in detail in German Patent Application No. P 197 26 120.5, the transmission preferably takes place according to the TDD (time division duplex) system. The physical channel is subdivided into time slots, which each receive a data burst. Such a data burst contains an ATM cell including the necessary overhead for a training sequence, synchronization, forward error correction, FEC, and blocking times. In the downlink signaling burst, the central controller assigns each terminal a certain transmission capacity in the form of time slots, for a specific time interval known as SP (signaling period), as a function of the transmission resource requirements of the terminal. The total number of slots of an SP is variable, and varies over time. Another possibility: the duration of the SP is fixed, and the occupancy is flexible.

An uplink phase includes a number of bursts transmitted by the terminals, and an uplink signaling phase. During the uplink signaling phase, the terminals are authorized to send

signaling messages to the central controller, when they have
not been allocated any reserved time slots for transmitting
inside the normal bursts (piggy-back method). Polling or
random access can be used for the uplink signaling. In the
5 downlink phase, the signaling PDU (protocol data unit) and all
of the bursts from the central controller are sent to the
terminals. All of the necessary sets of information for the
next SP, including the signaling slots, are transmitted to the
terminals, inside a signaling PDU. In addition, the signaling
10 PDU contains feedback messages for previously emitted sets of
uplink signaling information which, for example, are necessary
for a collision resolution or functions such as automatic
requests for repeat (ARQ). Using these sets of information,
the terminals know when they are allowed to send and receive
bursts. When different types of bursts, e.g. short or long,
are used, the type of burst is announced by the central
controller, inside the signaling PDU.

The reason for using such a protocol of the DLC layer is the
necessity of ensuring the quality of service for ATM traffic,
see also [4]. Therefore, a centrally controlled MAC protocol
is used which, till now, has not been utilized in this manner
in any radio communication system. On the other hand, a
condition for this is that the methods already introduced for
25 the common usage of frequencies, such as, e.g. the DECT method,
cannot be used here.

A possible method for assigning channels in wireless ATM
networks is described in [5]. It also lists the reasons why
30 existing methods cannot be used. The use of the term "frame"
in [5] is different from its use in connection with the
specification of the present invention. What is referred to
here as a frame (transmission frame) is referred to there as a
signal period; what is referred to as a frame in [5] is
35 called multiframe below, so that a multiframe can include a
plurality of containers.

Inter alia, the use of the described method for effectively implementing such a system for sectored radio cells will be discussed later.

- 5 The method according to [5] relates to frames having a flexible duration, even when the simulations are carried out using a fixed frame duration. However, the use of a fixed frame duration is especially important in connection with the present invention.

10

In [5], a frame is divided up among several containers. This requires a very large administrative outlay for the time-related control, both in central unit ZE and in the terminals. In addition, [5] does not indicate any specific duration for a multiframe. The critical service in ATM networks is the voice service. Voice does have quite a low processing speed, e.g. ≤ 64 kbit/s but, in return, has very high demands on the end-to-end delay of the packets, as well as on the variance of this delay. If it is assumed that the end-to-end delay is limited to 50 ms, then each network element can generate a certain portion of this delay. In the case of the wireless transmission system, this amounts to 5 ms for the delay and approximately 2 ms for the delay variance. In addition, it must be taken into account that, in the case of 64 kbit/s, an ATM cell is filled approximately every 6 ms. This depends on the AAL (adaption layer) used. An ATM cell contains 48 useful bytes, from which AAL5 uses 1 byte, AAL1 uses 2 bytes, and AAL2 uses 3 bytes, so that only 47, 46 or 45 useful bytes, respectively, are available. This results in a filling time of AAL5 = 5.875 ms, AAL1 = 5.75 ms, and AAL2 = 5.625 ms. If, for voice connections, at least one container is not available for a voice connection, within the interval of the filling time, it is not possible to support voice services using ATM (voice-over ATM). Therefore, the present invention provides for using a multiframe that preferably has a data-packet filling time of approximately 6 ms or multiples thereof.

A development of the present invention proposes using one container per radio sector, each container transmitting a complete frame (transmission frame). Taking the 6 ms filling time into consideration for voice connections allows the radio resources to be utilized more efficiently, since the outlay for overhead decreases due to the relatively large length of a frame.

The present invention provides for incorporating voice services into the division of a multiframe into several containers, in such a manner, that the duration of a multiframe corresponds to time period during which a data packet, e.g. an ATM cell, is filled with voice data of, e.g. a 64 kbit/s connection. As a refinement according to the present invention, the time needed to fill an ATM cell with voice information ($T_{\text{sub } F}$) should approximately correspond to the duration of a multiframe. Then, the following applies:

$$T_{\text{sub } F} = T_{\text{sub } S}$$

The duration of a single frame $T_{\text{sub } R}$ is calculated from the duration of a multiframe $T_{\text{sub } S}$, divided by the number of frames per multiframe ($N_{\text{sub } R}$):

$$T_{\text{sub } R} = T_{\text{sub } S} / N_{\text{sub } R}$$

Thus, the result is that the duration of a container $T_{\text{sub } C}$ is equal to the duration of a frame:

$$T_{\text{sub } C} = T_{\text{sub } R}$$

This factual situation is represented in Figure 4. In the indicated example, multiframe S is subdivided into six containers C1 ... C6. However, other numbers of containers are also conceivable. The following forms the basis of a cellular network as shown in Figure 5. Three frequency channels are available, and a multiframe includes six containers. In this example, radio cells R1, R2, R4, and R5 are initially active, an instantaneous survey of the utilized frequencies and containers being shown in Figure 6. Central units ZE in radio

cells R1, R2, R3, and R4 are essentially in a steady state, so that the utilized containers do not change much from frame to frame. The required transmission capacity of central unit ZE in radio cell R4 has increased prior to the shift from
5 multiframe S1 to multiframe S2, so that radio cell R4 occupies another container in multiframe S2, namely container C5 on frequency channel F3. In the next step, central unit ZE in radio cell R3 goes into operation. It initially monitors the channel for a certain period of time, specifically, at least
10 for the duration of a multiframe, and determines that the frequency channels are occupied in the manner represented in Figure 6. In this context, it is not important that central unit ZE in radio cell R3 knows the numbering of the containers, for the boundary of the multiframe must still be
15 detected.

It is only important to recognize the time-related boundaries between the containers. In addition, the periodicity of the pattern is revealed by monitoring a single multiframe, from the known duration of a multiframe, which all central units ZE working in these frequency channels must know.
20

From the result of monitoring multiframe S2, central unit ZE concludes that, inter alia, containers C3, C4, and C6 of
25 frequency channel F3 are free, and initially occupies container C4 of frequency channel F3, in multiframe S3. The resulting pattern of the used containers is shown in Figure 7.

It is assumed that radio cell R3 would have monitored
30 multiframe S1, and determined that container 5 of frequency channel F3 is free, and would have decided to occupy this in multiframe S2. In this case, there would have been a collision between central unit ZE in radio cell R5, and central unit ZE in radio cell R3, which, in this case, had used the same container. In order to prevent this, a method utilized, e.g.
35 in Ethernet-based LAN's, can be put into use. This method is known as CSMA/CD (carrier sense multiple access/collision

detection; see IEEE 802.3), and means that, in response to the detection of a collision, the two central units ZE immediately refrain from occupying the container, and attempt to gain access to this container, or another free container which can be on a different frequency channel, after a period of time individually ascertained by each central unit in accordance with a random process. The problem with this method is the collision detection by the transmitting devices, themselves. Therefore, the CSMA/CA method (carrier sense/collision avoidance) explained below was developed for the MAC layer in wireless LAN's.

Methods, which have been developed for competition-based MAC protocols for use in wireless LAN's (local area networks), and have already been standardized, are an additional possibility for preventing collisions while containers are being occupied. These methods are based on the so-called CSMA/CA principal (carrier sense multiple access/collision avoidance). Such methods are already used in the standards of HIPERLAN type 1 and IEEE 802.11 systems, see also [6] and [7]. The purpose of the CSMA/CA method used in these standards is to describe a procedure, which determines how several devices wanting to communicate with each other divide the commonly used channel, and access it. In the case of the present invention, the idea is to have devices not wanting to communicate with each other use the CSMA/CA method for occupying channels, with the object of not getting in the way of each other. In particular, this allows devices, whose communication methods are different, and which can therefore not communicate with each other, to share a frequency band in the described manner.

In contrast to the methods described in [6] and [7], it is not necessary within the framework of the method according to the present invention, that the access is granted in a priority-controlled manner. Rather, it is sufficient for each central unit ZE to select one or more randomly chosen times at which they access the new container, and otherwise, monitor to

determine if another central unit ZE is accessing it as well.

Another possibility is to use an entire container for collision prevention. For example, this is useful when the duration of a container corresponds to an entire frame because, after the collision prevention phase, no more complete frames fit into the container, anyway. In this case, a central unit ZE wanting to reserve a container sends a signal at irregular and randomly selected time intervals, the signal being used to announce that the central unit wants to occupy the container in the following multiframe. Between the individual emissions, it monitors the container to determine if another central unit wants to occupy the container as well. If it determines that this is the case, then the central unit ZE that noticed the collision withdraws and proceeds as described above:

A new attempt to access this container or another free container that can be on another frequency channel, after a period of time individually ascertained by each central unit ZE, in accordance with a random process.

An example for such a collision resolution is shown in Figure 8. Central units ZE7 and ZE8 which, for example, could come from Figure 5, attempt to occupy the same container. To that end, both of them switch between monitoring the channel and emitting a signal, by means of which the channel should be occupied. In general, it is not possible to switch over between transmitting and receiving without a time-related pause. This is represented in the drawing by a time gap between transmitting and monitoring the channel (transceiver turnaround interval, TTT). The two central units ZE initially monitor the channel. Then, they begin to transmit in a slightly time-staggered manner. However, because of the TTT, the two do not notice that a second one is also transmitting. They both transmit a second time, almost simultaneously, and in so doing, do not notice each other. During the third time,

central unit ZE7 selects a shorter time interval than that of central unit ZE8, so that central unit ZE8 hears central unit ZE7 and gives up attempting to occupy the container. Since central unit ZE7 did not detect the access attempt of central unit ZE8, it continues the procedure up to the end of the container.

The method for preventing collisions can also be used to resolve the hidden station problem. In this case, a central unit ZE1 is already using the container, but is not heard by a central unit ZE2 that wants to occupy the container, because, e.g. the central unit is momentarily not in the range of reception. However, it could be, that a terminal communicating with central unit ZE1 does, in fact, hear central unit ZE2, and that the occupation of this container by central unit ZE2 can interfere with its communication with central unit ZE1. In this case, it can be useful when the terminal thwarts the access attempt of central unit ZE2, by transmitting in a transmit break of central unit ZE2 (see Figure 8), even when this causes it to briefly interfere with the communication in the radio cell formed by central unit ZE1.

Another solution for the hidden station problem is to increase the monitoring interval (carrier sense). Since a terminal does not necessarily transmit in each frame, a central unit ZE can easily assume the container to be free after monitoring it one time. For that reason, the monitoring time must be increased prior to the occupation of a container, in such manner, that there is a high probability of an active terminal transmitting at least once within this monitoring time. Then, the central unit concerned about the container recognizes that this container is already being used, and that its own occupation would interfere with the communication in other radio cells.

The above-described method is also suited for use in sectored radio cells. Such a system is represented in Figure 9. A central unit ZE is located in the middle of each radio cell,

each radio cell being divided into three sectors. Residing in each of the sectors are zero terminals, one terminal, or several terminals, which want to communicate with central unit ZE. It should initially be assumed that central unit ZE
5 controls all of the sectors, using only one frequency. The result for radio cell R3 is the occupation of containers in frequency channel F3, as shown in Figure 10. The container occupancies of radio cells R1 and R2 are not represented.
10 Sector R3.1 occupies containers C1 and C4, sector R3.2 occupies container C2, and sector R3.3 does not occupy any container, since there is no terminal located in it.

The sectoring reduces interference between the radio cells. This is primarily based on the directionally selective effect of sectoring the radio cells. Thus, e.g. in certain usage scenarios, it is possible for container C2 of frequency channel F3 to already be used again in sector R1.3. In the overall view of a cellular network, this considerably increases the reuseability of frequencies by reducing the interference.

Is also possible to carry out the measures of the present invention that are indicated above, when the duration of a multiframe is a multiple of filling time T_f . In this case, a
25 central unit ZE, which must support at least one voice connection, can occupy containers having time interval T_f . It is also possible for these containers not to exactly have time interval T_f , but rather to approximately have interval T_f , the time discrepancy being limited by the allowed delay variance
30 (cell delay variation, CDV) of the voice connection.

In the above exemplary embodiments, the container occupancy of a central unit ZE was principally limited to one frequency, i.e. various containers of a single frequency were occupied.
35 This is often favorable from the viewpoint of implementation. However, it is also possible (and already described in [5]), that one ZE occupies several containers lying on different

5 frequencies. This is also possible in the case of sectored
radio cells. If there is only one transmitter/receiver unit in
central unit ZE, the transceiver turnaround time must
generally be considered, which can lead to a container, which

10 5 is not being used by central unit ZE, having to lie between
occupied containers on different frequencies channels.

However, under the condition of one ZE having more than one
transmitting and receiving branch, it is possible for one ZE
to use different containers on different frequency channels,

10 which coincide or lie one behind the other.

139807378 .070901

Literature:

[1] D. Petras, A. Krämling, "MAC protocol with polling and fast collision resolution for an ATM air interface", IEEE ATM
5 Workshop, San Francisco, CA, August 1996

[2] D. Petras, A. Krämling, A. Hettich, "MAC protocol for Wireless ATM: contention free versus contention based transmission of reservation requests", PIMRC' 96, Taipei,
10 Taiwan, October 1996

[3] D. Petras, A. Hettich, A. Krämling: "Design Principles for a MAC Protocol of an ATM Air Interface", ACTS Mobile Summit 1996, Granada, Spain, November 1996

[4] D. Petras et al., "Support of ATM Service Classes in Wireless ATM Networks", ACTS Mobile Communications Summit, Aalborg, Denmark, October 1997

[5] A. Krämling at al., "Dynamic Channel Allocation in Wireless ATM Networks", International Conference on Telecommunications (ICT 98), Greece, June 1998

[6] ETSI RES 10, "Radio Equipment and Systems (RES); High Performance Radio Local Area Network (HIPERLAN) Type 1; Functional specification", 1996
25

[7] IEEE 802.11, "Tutorial of draft standard 802.11/D3.0, Part 3: the MAC entity",
30 <http://grouper.ieee.org/groups/802/11/main.htm#tutorial>

What is claimed is:

1. A radio device having a frame structure, for transmitting digital data in a radio communication system that includes, in particular, a plurality of central units (ZE), each of which having a plurality of subscribers assigned to it, including digital voice services, the individual voice services being accommodated in data packets inside the frame structure; having the following features:
 - a multiframe (S; S₁, S₂, S₃...) is used, which includes a plurality of containers (C; C₁, C₂, C₃...); and
 - a container (C; C₁, C₂, C₃...) is selected to be so large, that at least one complete transmission frame, which includes, in particular, uplink and downlink data packets as well as corresponding signaling data, can be accommodated therein.
2. The radio device as recited in Claim 1, wherein the duration of the multiframe (S; S₁, S₂, S₃...) is selected in such a manner that, in view of the delays inside the radio communication system, a data packet can be filled with voice data of a predetermined bit rate, during this time period or a multiple thereof.
3. The radio device as recited in Claim 1 or 2, wherein different central units/radio base stations (ZE) can occupy a time slot for a multiframe or a container, and measures are provided for preventing collisions.
4. The radio device as recited in Claim 1, 2, or 3, wherein a radio cell (R₁, R₂, R₃...) of the radio communication system is only assigned one or more containers (C), as well as only one or more frequency channels.

5. The radio device as recited in Claim 3 or 4, wherein the following measures are provided for preventing collisions:
 - a central unit (ZE), which intends to occupy a multiframe, monitors at least one complete multiframe;
 - free capacity for transmission frames is detected in the respective frequency channels;
 - a frequency channel that is still free is occupied; and
 - when there is a collision with another central unit (ZE), which also uses the same time slot for a transmission frame in one of the frequency channels, one or both central unit(s) (ZE) immediately refrain(s) from occupying this time slot, and attempt(s) to occupy it after a time lag.
6. The radio device as recited in Claim 3 or 4, wherein the following measures are provided for preventing collisions:
 - a central unit (ZE), which intends to occupy a multiframe, using an entire container, transmits a signal in irregular, especially random intervals, the signal being used to announce that the central unit wants to occupy the container in the following multiframe;
 - Between the individual emissions, it monitors the container to determine if another central unit (ZE) wants to occupy the container as well; and
 - when it determines that this is the case, the central unit (ZE) that noticed the collision withdraws, and attempts the occupation again after a time lag.
7. The radio device as recited in Claim 3 or 4, wherein a CSMA/CA method known per se is used for collision prevention.

- 35007378.9 PGPDA
8. The radio device as recited in one of Claims 3 through 7, wherein each central unit (ZE) selects the time for repeating an occupation attempt after a detected collision, especially in a random manner.
 9. The radio device as recited in one of Claims 3 through 8, wherein, for an occupation attempt, a central unit (ZE) reserves an entire container (C) for a multiframe, instead of a time slot.
 10. The radio device as recited in one of Claims 1 through 9, wherein the radio communication system includes sectored radio cells.
 11. The radio device as recited in one of Claims 1 through 10, wherein each central unit (ZE) only occupies one container (C), particularly per radio sector.
 12. The radio device as recited in one of Claims 1 through 11, wherein a central unit (ZE) occupies several containers(C) in one or various frequency channels.
 13. The radio device as recited in one of Claims 1 through 12, wherein, using several transmission and reception branches, a central unit (ZE) occupies various containers on different frequency channels, which coincide or lie one behind the other.
 14. The radio device as recited in one of Claims 1 through 13, wherein an ATM cell is used as a data packet.
 15. The radio device as recited in Claim 14, wherein a centrally controlled protocol, especially an

MAC protocol or an Internet, Ethernet, or a UMTS protocol are used for carrying out radio communication.

16. The radio device as recited in one of Claims 3 through 15,
wherein the measures for preventing collisions can be used to resolve the hidden station problems, i.e. a terminal particularly not being noticed because it lies outside the radio reception range of its central unit (ZE), or a central unit lies outside the radio reception range of another central unit (ZE); and a terminal disturbed by such an occupation attempt possibly transmits in a transmit break of the central unit (ZE) attempting occupation, in order to thwart this occupation attempt.
17. The radio device as recited in one of Claims 3 through 16,
wherein, in order to prevent collisions, the monitoring duration for the one central unit (ZE) attempting occupation is selected to be so large, that there is a high probability of an active terminal transmitting once during this time, especially when it does not transmit in every transmission frame.

NY01 363981 v 1

Abstract

A radio device having a frame structure is proposed for transmitting digital data in a radio communication system, a
5 multiframe (S) being used, which is made of a plurality of containers (C1, C2, C3, C4, C5, C6). The duration of the multiframe (S) is selected in such a manner that, during this time, a data packet can be filled with voice data of a predetermined bit rate. A container is selected to be large
10 enough, that a complete transmission frame can be accommodated therein.

(Figure 4)

200907378-070904

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

**COMBINED DECLARATION AND
POWER OF ATTORNEY FOR PATENT APPLICATION**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below adjacent to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **RADIO DEVICE HAVING A FRAME STRUCTURE**, and the specification of which:

- is attached hereto;
- was filed as United States Application Serial No. _____ on _____, 19__ and was amended by the Preliminary Amendment filed on _____, 19__.
- was filed as PCT International Application Number PCT/DE99/03273, on the 12th day of October, 1999
- an English translation of which is filed herewith.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a). I hereby claim foreign priority benefits under Title 35, United States Code § 119 of any foreign application(s) for patent or inventor's certificate or of any PCT international applications(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

**PRIOR FOREIGN/PCT APPLICATION(S)
AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. § 119**

Country : Federal Republic of Germany

Application No. : 198 46 730.3

Date of Filing: 12 October 1998

Priority Claimed
Under 35 U.S.C. § 119 : [x] Yes [] No

I hereby claim the benefit under Title 35, United States Code § 120 of any United States Application or PCT International Application designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations § 1.56(a) which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:

**PRIOR U.S. APPLICATIONS OR
PCT INTERNATIONAL APPLICATIONS
DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. § 120**

U.S. APPLICATIONS

Number :

Filing Date :

**PCT APPLICATIONS
DESIGNATING THE U.S.**

PCT Number :

PCT Filing Date :

I hereby appoint the following attorney(s) and/or agents to prosecute the above-identified application and transact all business in the Patent and Trademark Office connected therewith.

(List name(s) and registration number(s)):

 Richard L. Mayer, Reg. No. 22,490
Gerard A. Messina, Reg. No. 35,952

All correspondence should be sent to:

Richard L. Mayer, Esq.
Kenyon & Kenyon
One Broadway
New York, New York 10004

Telephone No.: (212) 425-7200
Facsimile No.: (212) 425-5288

CUSTOMER NO. 26646

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Full name of inventor

Markus RADIMIRSCH

Inventor's signature

Markus Rad - isch

Date 25.5.2001

Citizenship Federal Republic of Germany

Residence Wirringer Garten 2

30880 Laatzen DE
Federal Republic of Germany

Post Office Address Same as above