

Objetivos

- Conteúdo da Aula
 - Introdução a programação Ladder;
 - Estrutura da programação Ladder;
 - Funções Lógicas;
- Objetivos
 - Apresentar os conceitos básicos referentes a programação Ladder;
 - Mostrar como a linguagem de programação Ladder está estruturada;
 - Apresentar as funções lógicas existentes na programação Ladder.

Conteúdo

- ⇒ Concepção geral do hardware dos controladores lógicos programáveis (CLP), funções e aplicações;
- ⇒ Instalação, configuração e parametrização de um CLP;
- ⇒ Familiarização com o software de programação e endereçamento de operandos;
- ⇒ Elaboração de programas em software apropriado, utilizando-se da linguagem de diagrama de contatos;
- ⇒ Montagens práticas de sistemas eletropneumáticos controlados por CLP, em unidades de treinamento especialmente desenvolvidas.

Qualificação adquirida

- ⇒ Conhece o funcionamento, a parametrização e programação de um controlador lógico programável (CLP), podendo assim designar sua aplicação e implementação em um sistema de automação industrial;
- ⇒ Instala, desenvolve e faz o *start up* em sistemas automatizados com CLP;
- ⇒ É capaz de identificar com eficiência as causas e solucionar as falhas, tanto no controlador como no sistema automatizado;
- ⇒ Pode conceber e/ou otimizar sistemas com grande flexibilidade produtiva, velocidade e confiabilidade através do uso de controladores lógicos programáveis.

Controladores Lógicos Programáveis - CLP

O controlador lógico programável é um dispositivo eletrônico que controla máquinas e/ou processos. Utiliza uma memória programável para armazenar instruções e executar funções específicas que incluem controle de energização/desernegização, temporização, contagem, operações matemáticas e manipulação de dados.

- Instruções lógicas de relé
 - examinar se enegizado (contatos normalmente abertos NA);
 - examinar se desenergizado (contatos normalmente fechados NF);
 - energizar saídas (bobinas);
 - energizar saídas com retenção;
 - desenergizar saídas com retenção.

- Temporizadores
 - temporizador na energização;
 - temporizador na desernegização;
 - temporizador pulso.

• Operações matemáticas

- adição;

- subtração;

- divisão;

- multiplicação;

- raiz quadrada.

- Contadores crescentes e decrescentes;
- Lógica Booleana;
- Comparação.

Constituição do CLP

- Fonte de Alimentação;
- Unidade Central de Processamento (CPU);
- Memórias;
- Dispositivos de entrada e saída.

Especificações do CLP

- Número de entradas e saídas (I/O);
- Requisitos elétricos;
- Circuitos de saída;
- Requisitos de memória;
- Velocidade da operação;
- Comunicação;
- Interfaces de operação.

Introdução - Sinais

Um sinal é a representação de informações em forma de um valor ou de uma curva de valores de uma grandeza física (DIN 19226).

Sinal Analógico

Um **Sinal Analógico** apresenta uma **variação contínua** ao longo do tempo, podendo ter características de amplitude e freqüência bastante variáveis.

Sinal Digital Binário

Um **Sinal Digital** do tipo **Binário** é uma seqüência de dois níveis de impulsos com amplitude definida, e sucedendo-se a intervalos de tempo regulares.

Constantes e Variáveis Booleanas

Nível Lógico 0	Nível Lógico 1
Falso	Verdadeiro
Desligado	Ligado
Baixo (Low)	Alto (High)
Não	Sim
Chave Aberta	Chave Fechada

Sinal – Níveis

Tabela-Verdade

Uma tabela-verdade é uma técnica para determinar como a saída de um circuito lógico depende dos níveis lógicos presentes nas entradas do circuito.

O número de combinações de saída, em relação ao número de entradas, é dado por:

$$L = 2^{N}$$

Sendo L o número de saídas e N o número de entradas.

Operações básicas dos elementos lógicos binários

As possibilidades de tratamento de sinais binários podem ser descritas, empregando-se as três operações básicas:

E (AND)
OU (OR)

NÃO (NOT)

Operação Lógica "E"

Também conhecida como:

Conjunção;

União AND;

Produto lógico (produto de Boole).

Funcionamento:

O sinal de saída será 1, se, e somente se, todos os sinais de entrada forem 1.

Símbolos lógicos:

s = ab

s = a.b

Lê-se: **s** é igual a **a** e **b**

Operação Lógica "E"

Tabela-verdade:

a	b	S
0	0	0
0	1	0
1	0	0
1	1	1

A tabela verdade também é conhecida como tabela de valores.

Operação Lógica "OU"

Também conhecida como:

Disjunção;

União OR;

Soma lógica (soma de Boole).

Funcionamento:

Se as variáveis de entrada em uma, em várias ou em todas as entradas tem o valor 1, o sinal de saída também tem o valor 1.

Símbolo lógico:

s = a + b

Lê-se: **s** é igual a **a** ou **b**

Operação Lógica "OU"

Tabela-verdade:

a	b	S
0	0	0
0	1	1
1	0	1
1	1	1

Operação Lógica "NÃO"

Também conhecida como:

Negação;

União NOT;

Complemento;

inversão.

Funcionamento:

Se o sinal de entrada for 1 a saída será 0, caso a entrada seja 0 a saída será 1.

Símbolos lógicos:

 $s = \bar{a}$

Lê-se: **s** é igual a não **a**

Operação Lógica "NÃO"

Tabela-verdade:

a	S
0	1
1	0

Contatos

Normal Aberto (NA)

Normal Fechado (NF)

Comutador

Linguagem de programação - Ladder

Linguagem idealizada para facilitar a interpretação e programação por eletricistas.

Operações Lógicas - Ladder

Conceito de Scan

Processamento de sinais

Instruções Diagrama Ladder

Elementos de Trabalho

Atuadores Pneumáticos

Atuadores Elétricos

Atuadores Hidráulicos

Elementos de Comando

Elementos de Processamento de Sinais

Controlador Lógico Programável

Válvulas Pneumáticas

Relés

Energia de Trabalho e de Controle

Unidades de Tratamento de ar

Fonte de Alimentação

Temporizadores

TOFF: retardo na desativação

Temporizadores

0 a 255

Contadores

Os contadores da linguagem LADDER do FST usam três operandos para a contagem:

Cn recebe os incrementos/decrementos da contagem; é *resetado* toda vez que seu valor se iguala a CPn.

CPn recebe o valor pré-estabelecido para a contagem quando o contador é habilitado.

CWn recebe o valor atual da contagem.

Comparadores

Os comparadores permitem comparar valores de acordo com as seguintes expressões: <, >, =, <=, >=

Exemplo:

Quando o valor do **CW0** for (> =) ao **V10**, o comparador será habilitado e acenderá a lâmpada.

Registradores

Os registradores podem armazenar valores numéricos:

Exemplo:

O valor 10 (V10) será recebido pelo registrador R0.

Linguagens de Programação de CLPs

- As linguagens de programação permitem aos usuários se comunicar com o CLP através de um dispositivo de programação e definir as tarefas que o CLP deve executar.
- Linguagens mais utilizadas:
 - Diagrama de Contatos (Ladder);
 - Lista de Instrução
 - GRAFCET

Programação Ladder

- Normalmente usada nos CLP's;
- Cada tarefa do programa é especificada como os degraus de uma escada (ramos);
- Representação gráfica da linguagem de programação do CLP;
- Lógica de diagrama de contatos;
- Mais se assemelha à tradicional notação de diagramas elétricos;
- Sequência seguida por um CLP quando executa um programa em ladder:
 - Ler as entradas associadas com um ramo do programa ladder;
 - Resolver a operação lógica que envolve estas entradas;
 - Setar/resetar as saídas no ramo;
 - Mover para o próximo ramo e repetir os três primeiros passos (repetir até encontrar o final do programa);
 - Retorna então para o início do programa e repete as operações.

Programação Ladder

Simbologia

Funções Lógicas

- Combinação de chaves;
 - o AND
 - o OR
 - NOR
 - NAND
 - o EX-OR

Operação latch

- Situações onde é necessário manter uma bobina energizada, mesmo quando a entrada que foi energizada cessar;
- "Lembra" do seu último estado;

Exemplo 1 - Lach

 Em um determinado processo na indústria, necessita-se que um CLP controle um motor de forma que quando um botão de partida for momentaneamente acionado, o motor inicie a rotação, e quando uma outra chave de parar for acionada, o motor é desligado.

Relés Internos

- Auxiliar ou marcados;
- Relé interno ao CLP.

Exemplo 2

 Considere uma situação em que a chave normalmente aberta A tem que ser ativada e umas das outras duas chaves normalmente abertas B e C tem que ser ativadas para que uma bobina seja energizada.

Exemplo 2

Exemplo 3

Considere um tanque com dois sensores de nível (um para detectar nível alto (S1) e outro para detectar nível baixo(S2)). Esse tanque apresenta uma válvula para controlar a saída do líquido e uma torneira que permite que o tanque receba líquido. Considerando também que o tanque se encontra inicialmente vazio e inicia a partir de um botão a ser pressionado, desenvolver um programa em Ladder que mantenha o nível do tanque dentro dos níveis estabelecidos,

Referências Bibliográficas

MAITELLI, Andre, Apostila do Curso de CLP - Engenharia Elerica, UFRN, 2002

CARVALHO, João, **Apostila Controladores Lógicos Programáveis**, Departamento de Engenharia da Computação e Automação, UFRN, 2011

Bolton, W. Mecatrônica. Uma abordagem multidisciplinar. Bookman, Porto Alegre, 2010. 4 ed.

Obrigado pela atenção...

Até a próxima aula!