2D Arrays

The harder you work for something the greater you'll feel when you achieve it

Today's Confunt

- > Introduction to 20 Arrays
 - 2) frint the top row of a matrix
 - 3) Print the left most column of a matria
 - 4) Print matrix row by row
 - 5) Print matria column by column
 - 6) Sum of Matha
 - 7) Waveform printing
 - 8) ROW Wise Sum
 - 9) Column Wise mga

2D Arrays:

Eg. chess, Theater seats, bus seats etc.

Syntar:

datatype [III] array Name = new datatype

[Yow I [CON];

	0	\	2		M-2	M-1
0						
\						
2						
•	•					
	•			• • • • •	•	
•	•					
N-3						
N-2						
N-						

Quiz 1: Matria With 5 Columns and 7 rows.

integes maline = new inte7] [5];

Gviz 2! Top left corner. [0][0]

Suiz 3: lottom right corner.

N-1

| M-1 J [N-1]

	0		2	
0	3	5	7	Rows = 4
1	9	8	11	Cols = 3
2	15	•	D	
3	-2	8	9	

Matria - 2D Array Name.

Itrow
$$N = Matria \cdot length;$$
 4

1) (0) $M = Matria \cdot length;$ 3

output: 3 5 7

(9.2) Usiven a matria of size N*My print it's left most col of matria.

for lint row = 0; row < n; row ++) λ S.O.P(matrix [row] [D] +" ");

(g·3)	biven	G	Mama	N#M,	gring
	matha				

	0		2
0	3	5	7
1	9	8	11
2	15	1	O
3	-2	8	9

Output:

$$3(0,0)$$
 $5(0,1)$ $7(0,2)$
 $9(1,0)$ $8(1,1)$ $11(1,2)$
 $15(2,0)$ $1(2,1)$ $0(2,2)$
 $-2(3,0)$ $8(3,1)$ $9(3,2)$

12 L M23

10γ(int γοω = 0; γοω < N; γοω++)

foγ(int (01=0; (0) < m; (0) + +)

S.O.P(matrix[γοω][601]+")

S.O.PIn(1)

YOU)	Col		Ovtrut
0		Ø X	23	
		OX	23	3 5 77
2		ロナ	23	98115
3		BX.	23	15 10
4	0	1	2	-289
O	3	5	7	
1	9	8	11	7
2	15	\	D	
3	-2	8	9	

	0	1	2	_
0	3	5	7	004.5
	9	8	1)	ROW=4
2	15	1	O	(0)=3
3	-2	8	9	

Output:

3 (0,0) 9 (1,0)
$$15(2,0) - 2 (3,0)$$

5 (0,1) 8 (1,1) $1 (2,1) 8(3,1)$

7 (0,2) $11(1,2) 0(2,2) 9(3,2)$

for (int col=0; (0)< M; (0)+t)

 4
 $5 \cdot 0 \cdot P \cdot (Matrix[TOW][TOW][TO)] + 11$

S.D.PIn();

Doubt Session

$$N-Matrix (ength -> 3$$

 $M \cdot - Matrix [3] \cdot length$

