- 2 座標平面において,x 軸上に 3 個の点 $P_0(0,0)$, $P_1(c,0)$, $P_2(2,0)$ をとり,直線 y=1 上に (n+1) 個の点 $Q_0(0,1)$, $Q_1(1,1)$, $Q_2(2,1)$,……, $Q_n(n,1)$ をとる $(n\geqq 1)$.ただし,c は 0 < c < 2 なる無理数とする.点 P_i と点 Q_j を結ぶ線分を P_iQ_j (i=0,1,2;j=0,1,……,n) とし,これら 3(n+1) 本の線分から生じる交点の総数を a_n とする.ただし, $P_i(i=0,1,2)$, $Q_j(j=0,1,……,n)$ は交点とはみなさない.
- (1) どの交点においても,これらの線分の中の3本が同時に交わることはない.このことを証明せよ.
- (2) $a_n a_{n-1} \ (n \ge 2)$ を求めよ.
- (3) $a_n (n \ge 1)$ を求めよ.