auroc

July 25, 2024

```
[]: import pickle
     import torch
     with open(f'./data/openai_gpt_final_results.pkl', 'rb') as infile:
         results_gpt = pickle.load(infile)
     with open(f'./data/openai_deberta_final_results.pkl', 'rb') as infile:
         results_deberta = pickle.load(infile)
     print(len(results_gpt['ids']))
    1824
[]: import numpy as np
     import pandas as pd
     questions = pd.read_csv('~/RCOG_Uncertainty_Dataset_Unanswered.csv')
     print(questions.Source.unique())
     part1 = ['part 1' in x.lower() for x in questions.Source]
     part2 = ['part 2' in x.lower() for x in questions.Source]
     sba = ['sba' in x.lower() for x in questions['Question Type']]
     emq = ['emq' in x.lower() for x in questions['Question Type']]
     assert len(results gpt['ids']) == len(results deberta['ids']) == len(part1)
     print(f'''
     {np.sum(part1)}
     {np.sum(part2)}
     {np.sum(sba)}
     {np.sum(emq)}
           111)
    ['SBAs for the Part 1 MRCOG' 'RCOG'
     'Part 1 MRCOG Revision Notes and Sample SBAs' 'SBAs for the Part 2 MRCOG'
     'Cambridge SBA Questions for the Part 2 MRCOG'
     'Part 2 MRCOG: 500 EMQs and SBAs' 'EMQs for the MRCOG Part 2']
    411
```

849

```
[]: # subset results
     dlld = lambda DL: [dict(zip(DL,t)) for t in zip(*DL.values())]
     lddl = lambda LD: {k: [dic[k] for dic in LD] for k in LD[0]}
     # deberta subsets
     deberta_part1 = lddl([res for inc, res in zip(part1, dlld(results_deberta)) ifu
     deberta_part2 = lddl([res for inc, res in zip(part2, dlld(results_deberta)) ifu
      ⇒inc])
     deberta_sba = lddl([res for inc, res in zip(sba, dlld(results_deberta)) if inc])
     deberta_emq = lddl([res for inc, res in zip(emq, dlld(results_deberta)) if inc])
     # qpt subsets
     gpt_part1 = lddl([res for inc, res in zip(part1, dlld(results gpt)) if inc])
     gpt_part2 = lddl([res for inc, res in zip(part2, dlld(results_gpt)) if inc])
     gpt_sba = lddl([res for inc, res in zip(sba, dlld(results_gpt)) if inc])
     gpt_emq = lddl([res for inc, res in zip(emq, dlld(results_gpt)) if inc])
[]: from roc import rocs_from_results, table_from_results
     import matplotlib.pyplot as plt
     table_from_results([results_deberta, results_gpt], ["Accuracy Deberta_
      ⇔Entailment", "Accuracy LLM Entailment"])
     _, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4.8))
     rocs_from_results(
         [results_deberta, results_gpt],
         [ax1, ax2],
```

Metric	Accuracy Deberta Entailment	Accuracy LLM Entailment
SE	0.408443	0.464912
SDE	0.400219	0.456689
OSE	0.430373	0.480263
Perp	0.411184	0.480263

["Deberta Entailment", "GPT Entailment"]


```
[]: table_from_results(
       [deberta_part1, deberta_part2, gpt_part1, gpt_part2],
       ["deb ent P1", "deb ent P2", "LLM ent P1", "LLM ent P2"])
       _, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 12))
    rocs_from_results(
       [deberta_part1, deberta_part2, gpt_part1, gpt_part2],
       [ax1, ax2, ax3, ax4],
       ["Deberta Part 1", "Deberta Part 2", "LLM Part 1", "LLM Part 2"]
       )
```

Metric	deb ent P1	deb ent P2	LLM ent P1	LLM ent P2
SE	0.450122	0.325088	0.515815	0.375736
SDE	0.447689	0.31331	0.498783	0.368669
OSE	0.46472	0.354535	0.513382	0.400471
Perp	0.459854	0.322733	0.510949	0.393404


```
[]: table_from_results(
        [deberta_sba, deberta_emq, gpt_sba, gpt_emq],
        ["deb ent sba", "deb ent emq", "LLM ent sba", "LLM ent emq"])
        _, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 12))
    rocs_from_results(
        [deberta_sba, deberta_emq, gpt_sba, gpt_emq],
        [ax1, ax2, ax3, ax4],
        ["Deberta sba", "Deberta emq", "LLM sba", "LLM emq"]
        )
```

Metric	deb ent sba	deb ent emq	LLM ent sba	LLM ent emq
SE	0.438904	0.3	0.496489	0.3525

