Introduction to Internet technology

What's the Internet: "nuts and bolts" view

millions of connected computing devices:

- hosts = end systems
- running network apps

wireless links

wired links Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

a human protocol and a computer network protocol:

Client-Server System

A simple definition of CS is

"server software accepts requests for data from client software and returns the results to the client"

Application Tasks

Client (dumb) – Server Model

True Client-Server Model

Distributed Client-Server Model

CHARACTERISTICS OF A CLIENT

- ✓ Arbitrary application program
- ✓ Can also perform other computations
- ✓ Invoked directly by user
- √ Runs locally on user's computer
- ✓ Actively initiates contact with a server

CHARACTERISTICS OF A SERVER

- ✓ Special-purpose, privileged program
- ✓ Dedicated to providing one service
- ✓ Can handle multiple remote clients simultaneously
- ✓ Invoked automatically when system boots
- ✓ Executes forever
- ✓ Needs powerful computer and operating system
- ✓ Waits passively for client contact
- ✓ Accepts requests from arbitrary clients

RPC Look and Feel like Local Calls

Flow Control in a Sychronous RPC

CATEGORIES OF SERVERS

FILE SERVER

Clients

Working of web servers

What is Web GIS

Web GIS is a type of distributed information system. The simplest form of Web GIS should have at least a server and a client, where the server is a Web application server, and the client is a Web browser, a desktop application, or a mobile application. [ESRI,2011]

Web GIS functions

- Web Mapping (Visualization)
 - · It is a common and important functions of Web GIS.
- Query
 - · Asks for information about features display in the map.
 - Point-based queries on map data is a common task.
- Collecting/Editing geospatial information
 - Allow down-to-top information flow
 - Crowdsourcing up-to-date information
- Dissemination of geospatial information
 - Wide distribution of information
 - Seamless: No need to know servers, Dynamic Link to Server, No Need to Copy Huge Dataset
- Analysis
 - Provide analytical funcations

Complexity

Advantage of Web GIS over desktop GIS

- Global accessible
 - Web remove the constraint of distance
- A large number of user
 - Desktop GIS is used by only one users at a time, while Web GIS can be used by dozens or hundreds of user simultaneously.
 - Proven collaboration environment
- Better cross-platform capability
- Low cost as averaged by the number of users
 - Investment on server-side to support many users
- Makes spatial data accessible to non-technical people
 - User expect Web GIS as easy as using a regular web site
- Unified Update
 - Simplifies software and application code versioning and upgrades
- Diverse application
 - Broad user needs drive the innovative applications

Fundamental Architectures

Mapping Applications

A mapping application is a web component/page (HTML, PHP, JavaScript etc.) that handles requests/responses to and from the mapping server.

Typical functionality includes handling navigation panning/zooming, layer management, attribute queries and advanced processing tasks (buffer, distance calculations, etc).

Mapping applications
On Web Server

Access via Web Browser Client

On Local machine

Desktop Application Client

Layers Control

Extensible Mapping Applications:

Thousand lines of code are written to perform a fruitful Mapping applications. Extensible Mapping Application tools helps developer to easily perform a common task (layer control, zoom-to-extent, query etc.) and allow them to customize the functionalities as well.

- ESRI WebADF/JavaScript API
- Google Maps API /ArcGIS JS Extension
- Google Earth API
- Bing Maps API /ArcGIS JS Extension
- Bing Maps Silverlight API (Microsoft)
- Flex (Adobe) / ArcGIS Extension
- Yahoo Maps API
- OpenLayers API
- ArcGIS for iPhone API

File-based Data Sharing

- Consider about "Time-critical applications" scenario
 - Download the data
- Results
 - Slow and High Cost
 - Data are not up-to-date
 - Redundancy
 - Ownership, License

OGC Web Services (OWS)

- OGC Web Services (OWS) specification
 - Exchange geospatial data and functionalities as web service
 - Rich query interface
 - Self Described
 - On-demand
 - Interoperability
 - Reusability
 - Scalability

OGC Web Services ("W*S") Pattern

WMS: Indian Ocean Tsunami 2004

Source: GISTDA&RTAF

Sensor Web Enablement (SWE)

- Different real-time acquisition system
 - Different makers, Different architecture
 - No standards
- Sensor Observation Service (SOS)
 - Accessing observation from various type sensor system in a common manner
 - Compliance testing of standard web service with heterogeneous system

Web Processing Service (WPS)

- Web Processing Service (WPS)
 - OGC launches a specification as Version 1.0.0
 - Provides client access to pre-programmed calculations and/or computation models that operate on spatially referenced data
 - The result of request process are available to download for further analysis at user's machine.
- GetCapabilities, DescribeProcess, Execute

Web Processing Service Server

User

