CSE 370– Database Systems

Assignment 2

Fall 2023

Submission Instructions:

- 1. Write your name, id, section on top of the first page
- 2. Your answer should be handwritten, take pictures and create a single pdf.
- 3. Submit the pdf in the following form: https://forms.gle/96D5wcmyLhcRRpVi7
- 4. **Submission Deadline**: 1st December, 2023(Friday) 11:59 pm (midnight)
- 5. NO LATE SUBMISSION WILL BE ACCEPTED

Question 1 [10 Marks]

X	Y	Z	A
abcefg	1	q	10
xyz	2	p	11
feg	3	q	12
xyz	2	р	13
abcdefg	3	q	10

State which of the following dependencies are valid and which are not. For each dependency, briefly write the reasons. The first one is explained and solved for you:

Functional dependency is valid if for the same value of XY, the corresponding value of A is also the same. Here ("xyz", 2) is the repeated value for X and Y in row 2 and 4. The corresponding value in A is 11 and 13 respectively, therefore this functional dependency is not valid according to the definition of FD. [Note: if all values of XY were unique, i.e. no repetition, then the FD will be valid as it does not contradict the definition of FD]

- B. $X \rightarrow YZ$
- $C. A \rightarrow XYZ$
- D. $YZ \rightarrow X$
- $E. Y \rightarrow Z$

Question 2[CO4] [10 Marks]

Consider the following relation:

Computer_Repair(Comp ID, Engineer ID, Date Assigned, Customer_name, Customer_phone, Engineer_Name, Engineer_phone, Date_Repaired, Issue, Priority_Level, Service_Charge, Commission_Percentage, Total_Repairs)

The primary key of the relation is underlined

The relation has the following additional functional dependencies:

FD1: Engineer_ID → Engineer_Name, Total_Repairs, Commission_Percentage, Engineer_phone

FD2: Comp_ID, Date_Assigned → Issue, Priority_Level, Service_Charge

FD3: Comp_ID → Customer_name, Customer_phone

FD4: Priority Level → Service Charge

FD5: Total Repairs → Commission Percentage

- i. Explain if this is in 1NF or not. If not, apply normalization to decompose it to 1NF. [2]
- ii. Explain if this is in 2NF or not. If not, apply normalization to decompose it to 2NF. [4]
- iii. Explain if this is in 3NF or not. If not, apply normalization to decompose it to 3NF [4]