MATH-300 Andrew Jones

Worksheet 3

Let $A,\ B,\ and\ C$ be sets. Prove or disprove the following statements.

1.	If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$
	<i>Proof.</i> Assume that $A=\{a\}$ and $C=\{a\}$ and $B=\{b\}$ It follows that $A\cap B=\emptyset$ and $B\cap C=\emptyset$ however $A\cap C=\{a\}$ There for: $\exists A:\exists C$ $A\cap C\neq\emptyset$ and $A\cap B=\emptyset$ and $B\cap C=\emptyset$
2.	If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$
	<i>Proof.</i> Assume that $A=\{a\}$ and $C=\{a,c\}$ and $B=\{b\}$ It follows that $A\not\subseteq B$ and $B\not\subseteq C$ however $A\subset C$ There for: $\exists A:\exists C:A\subset C$ and $A\not\subseteq B$ and $B\not\subseteq C$
3.	If $A \subseteq \emptyset$, then $a = \emptyset$
	<i>Proof.</i> Assume the negation $A\subseteq\emptyset$ and $A\neq\emptyset$. If $A\neq\emptyset$ then $A\not\subseteq\emptyset$ by definition of \emptyset
4.	If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$
	<i>Proof.</i> Assume that $A\subseteq C$ and $B\subseteq C$ there for 2 cases can occur fo $A\cap B\subseteq C$ Case 1: $A\cap B=\emptyset$ there for $A\cap C\subseteq C$ as $\emptyset\subset C$ Case 2: $A\cap B\neq\emptyset$ then $\forall e\in A\cap B: e\in C$ there for $A\cap B\subseteq C$
5.	If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective.
	<i>Proof.</i> Assume that $\forall x,y \in A$ if $f(x) = f(y)$ then $x = y$ and the same for g . $f(A) \subseteq B$ and $g(B) \subseteq C$ there for as both f and g are injective the subset of B passed from f to g will also be injective. Hence $g \circ f$ injective.
6.	If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective
	Proof. Assume that
7.	Give an example of a function $f:A\to A$ that is injective but not surjective.

Proof. $g:b\to 2b$ maps to only the even co-domain

8. Give an example of a function $g:A\to A$ that is surjective but not injective.

Proof. \Box

- 9. Let $f:A\to B$ and $g:B\to A$. If $g\circ f=id_a,$ then both f and g are bijections.
- 10. If $f:A\to A$ is surjective, and if A is a finite set, then f is injective.
- 11. If $f:A\to A$ satisfies the property that $f\circ f=id_a$ then f is a bijection.