

Physique - Interrogation Ecrite $n^{\circ}2$ - semestre 1 Barème (/20)

Commentaires généraux valables pour la notation des trois exercices :

- Bonus/malus jusqu'à + / 1 point <u>au total</u> pour l'orthographe et la présentation des copies.
- Comme indiqué dans l'en-tête du sujet, **tout résultat numérique donné sans son unité ne rapporte aucun point**.

1 - Étude d'une lunette servant à observer les anneaux de Saturne (/ 9,5 points)

1.		Sur 0.5 point
	ntille (L_1) est une lentille convergente qui représente l'objectif et la lentille st une lentille divergente qui représente l'oculaire.	0.25 + 0.25
2.		Sur 1 point
objet image	que la lunette soit afocale il faut que le foyer image F_1 ' de (L_1) (image d'un A_∞ à travers (L_1)) soit confondu avec le foyer objet F_2 de (L_2) (objet d'une B_∞ à travers (L_2))	0.5
Donc	$e = \overline{O_1 O_2} = \overline{O_1 F_1'} + \overline{F_1' O_2} = \overline{O_1 F_1'} + \overline{F_2 O_2} = f_1' + f_2'$	0.25
A.N.	e = (100 - 20)cm = 80 cm	0.25
3.		sur 8 points
a)	Pour une vue complète du schéma, voir l'annexe fournie avec le barème	Sur 1.5 point
	Positionnement de la lentille divergente (cohérent avec <i>e</i> calculé à la question précédente)	0.5
	Natures des deux lentilles correctement indiquées	0.25 + 0.25
	Positionnement des points caractéristiques	0.25 + 0.25
b)	Voir Schéma	Sur 1.25 point
	Construction de l'image intermédiaire :	
	Le rayon qui passe par le centre optique O_1 de (L_1) n'est pas dévié : tracé en traits pleins jusque (L_2) puis en pointillés après (L_2)	0.25
	Les deux rayons viennent converger au même point dans le plan focal image de (L_1) : tracé du $2^{\text{ème}}$ rayon en traits pleins jusque (L_2) puis en pointillés après (L_2)	0.5
	$\overline{A_1B_1}$ est tracée en pointillés dans le PFI de (L_1)	0.25
	Réponse sur copie : L'image $\overline{A_1B_1}$ est un objet virtuel pour (L_2) car elle est située après (L_2) dans le sens de propagation de la lumière.	0.25
c)	Voir Schéma	Sur 1 point (+0.25)

1 dilliee, 2015-2020
0.25
0.25 + 0.25
0.25
+ 0.25
Sur 1.25 point
0.25
0.25
0.5
0.25
Sur 1.5 point
0.25
0.25
0.25
0.25
0.25
0.25
Sur 1.5 point
0.5
0.25
0.25
0.25
0.25

2 -« Mesures et Incertitudes » (/7,5 points)

1.	Sur 3 points (±0.25)
Graphique en annexe 2	
 Qualité du graphique (nom des grandeurs physiques sur chaque axe; unités; choix pertinent de l'échelle, points correctement placés) 	0.75
Note : A cette étape, les étudiants ont pu tracer <i>i</i> en degrés (comme ci-dessous) ou <i>i</i> en radians. Les deux sont OK bien-sûr: mettre les points dans les deux cas en appréciant uniquement les critères ci-dessus / ci-dessous.	
- Présence des boîtes d'incertitudes sur le graphique	0.5
- Valeurs correctes pour les boîtes d'incertitude	0.25
- Bonus / Malus de soin pour le tracé du graphique	± 0.25

Voici la courbe obtenue en traçant les points de mesure et leurs incertitudes :

Raisonnement	
 D'après l'équation (2) de l'énoncé, si on est dans l'approximation des petits angles, les points de mesure doivent être alignés sur une droite passant par (0; 0), tracée sur le graphique. 	0.5
MALUS : si la droite de régression / les droites extrêmales n'ont pas été forcées à passer par (0 ; 0), ne mettre que 0.25 / 0.5 pour explication points alignés sur une droite.	
- Sur le graphique, c'est vrai pour les premiers points mais le $6^{\text{ème}}$ point à $i=30^{\circ}$ n'est plus tout à fait aligné avec les autres, même si la droite passe par sa boite	0.5

	2, 2019-2020
d'incertitude. On peut décider de le prendre en compte. Par contre, le dernier point à i=40° est clairement en dehors de la droite, y compris sa boite d'incertitude.	
Enoncé de la conclusion	
- L'approximation des petits angles semble valable au moins jusqu'à 30° car on peut considérer comme alignés tous les points dans ce domaine, en considérant leurs boîtes d'incertitude respectives. Par contre, ce n'est plus vrai à partir de 40°. La limite de l'approximation des petits angles se trouve donc quelque part entre 30° et 40°.	0.5
2.	Sur 1 point
Raisonnement	F
- D'après la question précédente, les premiers points expérimentaux du graphique correspondent donc à l'équation $d = e \cdot i \cdot \left(1 - \frac{1}{n}\right)$ car l'approximation des petits	
angles est vérifiée. - Dans cette équation, l'angle i et la distance d sont liés par un coefficient de proportionnalité $p = e \cdot \left(1 - \frac{1}{n}\right)$	0.5
- Expérimentalement, on a accès à ce coefficient p (la pente de la droite) et on connaît	0.25
l'épaisseur e . On peut donc écrire $n = \frac{e}{e-p}$ pour trouver n . NB : L'expression de n est bien homogène !	
3.	Sur 3.5 points
Raisonnement	
Comme on a des incertitudes, et que l'indice n dépend de la pente de la droite joignant les points, il faut trouver les droites de pente min et max qui passent néanmoins par toutes les boîtes d'incertitude et par $(0;0)$	0.25
Sur le graphique : tracé des droites extrémales	0.25 + 0.25
Calcul des pentes min et max (expliqué):	
Pente min : 0,232 mm.degré ⁻¹ ; Pente max : 0,272 mm.degré ⁻¹ ou	0.5 + 0.5 (0 si pas d'unités)
Pente min: 13,3 mm.rad ⁻¹ ; Pente max: 15,6 mm.rad ⁻¹	
Pente min : 13,3 mm.rad ⁻¹ ; Pente max : 15,6 mm.rad ⁻¹ Conversion des degrés en radians : La conversion peut avoir été faite dès le début (tracé du graphique avec <i>i</i> en radians) ou bien une fois la pente calculée. Dans les deux cas, mettre les points.	0.25
Pente min : 13,3 mm.rad ⁻¹ ; Pente max : 15,6 mm.rad ⁻¹ Conversion des degrés en radians : La conversion peut avoir été faite dès le début (tracé du graphique avec <i>i</i> en radians) ou bien	0.25 0.5 pour les formules
Pente min : 13,3 mm.rad $^{-1}$; Pente max : 15,6 mm.rad $^{-1}$ Conversion des degrés en radians : La conversion peut avoir été faite dès le début (tracé du graphique avec i en radians) ou bien une fois la pente calculée. Dans les deux cas, mettre les points. Calcul de n_{max} et n_{min} :	0.5 pour les

Note 2 : si les valeurs utilisées pour le calcul de l'indice sont restées en degrés mais que le raisonnement est correct : - mettre 0.75 / 0.75 si commentaire sur la valeur d'indice <i>n</i> aberrante pas de points si pas de commentaires.	
Calcul de $\Delta n = \frac{(n_{max} - n_{min})}{2} = 0.10$ et $n = \frac{(n_{max} + n_{min})}{2} = 1.57$	0.5
Présentation du résultat dans les règles de l'art	0.25

3 – Application directe du cours : Mesure au voltmètre (/ 3 points)

1.	Sur 1 point
Soit juste, soit faux, pas d'intermédiaire de notation $U = -E - RI$	1
2.	Sur 1.25 points
 a) Il faut brancher le voltmètre en parallèle sur la résistance en mettant la borne + en A et le COM en C. Ainsi on mesure V_s = RI > 0. On peut aussi inverser les bornes du voltmètre et mesurer V_s = -RI < 0. Note 1 : la question ne porte que sur le branchement correct du voltmètre. Note 2 : Si le voltmètre a été placé aux bornes de l'ensemble (E + R), mettre 0 	0.75
b) $I = \frac{V_S}{R} > 0$ si $V_S > 0$ (borne + du voltmètre en A) ou bien $I = -\frac{V_S}{R} > 0$ si on a mis la borne + du voltmètre en C.	0.5
Note : Si le voltmètre a été placé aux bornes de l'ensemble $(E+R)$, et que l'expression de I donnée est cohérente avec le branchement indiqué (par exemple $I=(U-E)/R$), mettre les 0.5 pts	
3.	Sur 0.75 point
On exprime $U = P/I$ d'où dim $(U) = \frac{\dim(P)}{I} = \frac{ML^2T^{-3}}{I} = ML^2T^{-3}I^{-1}$	0.75

TOTAL: 20 points

Auxquels s'ajoutent 0.5 point bonus

Département FIMI - Filière Classique Année 2019-2020