2023 Table of Dipole Polarizability

E-mail:

Static scalar dipole polarizabilities (in atomic units) for neutral atoms. If not otherwise indicated by the state symmetry, $M_L(M_J)$ -averaged polarizabilities are listed; $M_L(M_J)$ respectively denotes that the polarizability for each $M_L(M_J)$ state can be found in the reference given. Abbreviations used (uncertainties given here consistently as \pm values): exp.: experimentally determined value; NR: nonrelativistic; R: Relativistic, DK: Scalar relativistic Douglas-Kroll; MVD: mass-velocity-Darwin; SO: Spin-orbit coupled; SF: Dyall's spin-free formalism (scalar relativistic); PP: relativistic pseudopotential; LDA: local (spin) density approximation; PW91: Perdew-Wang 91 functional; RPA: Random phase approximation; PolPot: Polarization potential; MBPT: many-body perturbation theory; CI: configuration interaction; CCSD(T): coupled cluster singles doubles (SD) with perturbative triples; FS Fock-space; CEPA: coupled electron pair approximation; MR: multi-reference; CAS: complete active space; VPA: variational perturbation approach. For all other abbreviations see text or references. If the symmetry of the state is not clearly specified as in Doolen's calculations, the calculation was most likely set at a specific configuration (orbital occupancy) as listed in the Desclaux tables 1, reflecting the ground state symmetry of the specific atom. NB: 1 a.u. = 0.1481847113 Å³ = 1.6487773 × 10⁻⁴¹ C m²/V.

Z	Atom	Refs.	State	α	Year	Comments
1	Н	[2]	^{2}S	4.5	1989	NR, exact
		[2,3]	$^{2}S_{1/2}$	4.49975145989	2012	R, Dirac, variational, Slater/B-splines
		[2,9]	$\mathcal{O}_{1/2}$	1.10010110000		(more digits are given in Ref. 3)
		[3]	$^{2}S_{1/2}$	4.500170623	2012	R, Dirac (as above), but with finite mass correction added for the ¹ H isotope
		[4]	$^{2}S_{1/2}$	4.4997519518	2014	R, Dirac, Lagrange mesh method (more digits are given in this paper)
		[5]	$^{2}S_{1/2}$	4.50711 ± 0.00003	2019	recommended
		[6]	$^{2}S_{1/2}$	4.511 ± 0.004	2024	NR, neural network QMC, DS (DeepSolid) method
2	Не	[7,8]	$^{1}S_{0}$	1.383746 ± 0.000007	1992	exp.

Z	Atom	Refs.	State	α	Year	Comments
		[9]	$^{1}S_{0}$	1.383191	2000	R, Dirac, Breit-Pauli, QED, mass pol, correlated basis (⁴ He)
		[10]	1S_0	$1.38376079 \pm 0.00000023$	2004	R, Dirac, Breit-Pauli, QED, mass pol,
		[10]	\mathcal{S}_0	$1.36570079 \pm 0.00000025$	2004	exponentially correlated Slater functions (⁴ He)
		[11]	${}^{1}S_{0}$	1.383759 ± 0.000013	2007	exp.
		[12]	${}^{1}S_{0}$	$1.3837295330 \pm 0.0000000001$	2016	R, Dirac, Breit, QED, recoil, (⁴ He)
		[13]	${}^{1}S_{0}$	1.3837616 ± 0.0000027	2018	exp.
		[5]	${}^{1}S_{0}$	1.38375 ± 0.00002	2019	recommended
		[14]	${}^{1}S_{0}$	$1.38376078 \pm 0.00000014$	2020	R, Dirac, Breit-Pauli, QED $+$ finite nuclear size correction
,	Li	[15]	$^{2}S_{1/2}$	164.0 ± 3.4	1974	exp.
		[16,17]	2S	164.05	2001	NR, exponentially correlated Gaussians [18] + R/DK
		[19]	$^{2}S_{1/2}$	164.2 ± 1.1	2006	exp.
		[20]	$^{2}S_{1/2}$	164.21	2007	Frozen core Hamiltonian, semi-empirical polarisation potential
		[21]	$^{2}S_{1/2}$	164.084	2008	R, Dirac, MBPT, Breit, QED, recoil (⁷ Li)
		[22]	$^{2}S_{1/2}$	164.1125 ± 0.0005	2011	Hyleraas basis, RMW + Darwin + Breit, QED, recoil (7 Li)
		[5]	$^{2}S_{1/2}$	164.1125 ± 0.0005	2019	recommended
		[23]	$^{2}S_{1/2}$	164.2	2021	NR, CCSD(T)
		[24]	$^{2}S_{1/2}$	162.00 ± 0.24	2022	R, Dirac-HF, pertubative singles $+$ doubles method, RPA
		[6]	$^{2}S_{1/2}$	165.0 ± 0.1	2024	NR, neural network QMC, DS (DeepSolid) method
	Be	[1]	${}^{1}S_{0}$	37.29	1984	All-electron SCF plus valence CI
		[25]	${}^{1}S_{0}$	37.73 ± 0.05	1997	CCSD(T)
		[26]	${}^{1}S_{0}$	37.9	2000	Model potential
		[16]	^{1}S	37.755	2001	NR, exponentially correlated Gaussians [18]
		[27]	${}^{1}S_{0}$	37.69	2003	Combination of ab initio and semi-empirical methods
		[28]	${}^{1}S_{0}$	37.807	2004	CI, expanded London formula
		[29]	$^{1}S_{0}$	37.76 ± 0.22	2006	R,Dirac,CI+MBPT2+experimentaldata

Z	Atom	Refs.	State	α	Year	Comments
		[16,30]	1S_0	37.739 ± 0.030	2006	R correction of -0.016 applied to value from ref [16]
		[31]	$^{1}S_{0}$	37.80 ± 0.47	2008	R, Dirac, CCSD
		[32]	${}^{1}S_{0}$	37.86 ± 0.17	2013	R, Dirac, MBPT, CCSD
		[33,34]	${}^{1}S_{0}$	37.73 ± 0.04	2015	Combination of theoretical (CICP) and experimental data
		[35]	$^{1}S_{0}$	37.75	2019	NR, CCSD
		[36]	$^{1}S_{0}$	37.69/37.71	2019	CCSD(T), R $X2C-0/NR-0$
		[5]		37.74 ± 0.03	2019	recommended
		[23]	${}^{1}S_{0}$	37.7	2021	NR, CCSD(T)
		[37]	$^{1}S_{0}$	37.614	2021	R, MCDHF
		[38]	$^{1}S_{0}$	37.787	2023	R, DF, CICP (CP: core polarization)
		[6]	$^{1}S_{0}$	37.58 ± 0.03	2024	NR, neural network QMC, DS (DeepSolid) method
<u>,</u>	В	[39]	^{2}P	20.47	1976	NR, PNO-CEPA, M_L res.
		[40]	^{2}P	20.43 ± 0.11	1998	NR, $CCSD(T)$, M_L res.
		[41]	^{2}P	20.59	2005	R, SF, MRCI, M_L res.
		[41]	$^{2}P_{1/2}/^{2}P_{3/2}$	20.53/20.54	2005	R, Dirac, MRCI, M_J res.
		[35]	^{2}P	20.42	2019	NR, CCSD
		[5]		20.5 ± 0.1	2019	recommended
		[42]	^{2}P	20.480	2021	NR, CCSD(T), CBS(T, Q), CBS(Q, 5)
		[43]	^{2}P	20.30 ± 0.26	2021	NR, CCSD(T)
5	\mathbf{C}	[44]	^{3}P	11.39	1992	NR, CASPT2, M_L res.
		[40]	^{3}P	11.67 ± 0.07	1998	NR, CCSD(T), M_L res.
		[45]	${}^{3}P_{0}$	11.26 ± 0.20	2008	R, Dirac+ Gaunt, CCSD(T)
		[35]	^{3}P	11.63	2019	NR, CCSD
		[5]		11.3 ± 0.2	2019	recommended
		[43]	^{3}P	11.64 ± 0.15	2021	NR, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[42]	^{3}P	11.683	2021	NR, CCSD(T), CBS(T, Q)
		[42]	^{3}P	11.324	2021	NR, CCSD(T), CBS(Q, 5)
		[46]	^{3}P	11.542	2021	R, CCSD(T)
		[47]	^{3}P	11.61	2023	R, CCC (convergent close-coupling method)
7	N	[15,48]	$^{4}S_{3/2}$	7.6 ± 0.4	1974	exp.
		[39]	4S	7.43	1976	NR, PNO-CEPA
		[49]	4S	7.36	1995	NR, numerical MCSCF, M. res.
		[40]	4S	7.26 ± 0.05	1998	NR, CCSD(T)
		[50]	4S	7.41	2004	R, DK, CASPT2
		[51,52]	$^{4}S_{3/2}$	7.28	2010	exp.
		[35]	4S	7.21	2019	NR, CCSD
		[5]		7.4 ± 0.2	2019	recommended
		[53]	4S	7.2	2020	AE, CCSD(T)
		[43]	4S	7.25 ± 0.09	2021	NR, CCSD(T)
		[42]	4S	7.367	2021	NR, CCSD(T), CBS(T, Q)
		[42]	4S	7.153	2021	NR, CCSD(T), CBS(Q, 5)
		[46]	4S	7.178	2021	R, CCSD(T)
		[6]	4S	7.189 ± 0.008	2024	NR, neural network QMC, DS (DeepSolid) method
8	O	[48]	${}^{3}P_{2}$	5.2 ± 0.4	1959	exp.
		[44]	^{3}P	5.4	1992	NR, CASPT2, M_L res.
		[39,54]	^{3}P	5.41 ± 0.11	2004	NR, PNO-CEPA, M_L res.
		[30,40]	^{3}P	5.24 ± 0.04	2006	NR, CCSD(T), M_L res.
		[35]	^{3}P	5.15	2019	NR, CCSD
		[5]		5.3 ± 0.2	2019	recommended
		[43]	^{3}P	5.21 ± 0.07	2021	NR, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[42]	^{3}P	5.145	2021	NR, CCSD(T), CBS(T, Q)
		[6]	^{3}P	5.236 ± 0.008	2024	NR, neural network QMC, DS (DeepSolid) method
9	F	[39]	^{2}P	3.76	1976	NR, PNO-CEPA, M_L res.
		[40]	^{2}P	3.70 ± 0.03	1998	NR, CCSD(T), M_L res.
		[55]	^{2}P	3.76 ± 0.06	2000	NR, CASPT2, M_L res.
		[35]	^{2}P	3.62	2019	NR, CCSD
		[5]		3.74 ± 0.08	2019	recommended
		[43]	^{2}P	3.68 ± 0.05	2021	NR, CCSD(T)
		[42]	^{2}P	3.701	2021	NR, CCSD(T), CBS(T, Q)
		[42]	^{2}P	3.655	2021	NR, CCSD(T), CBS(Q, 5)
		[6]	^{2}P	3.776 ± 0.007	2024	NR, neural network QMC, DS (DeepSolid) method
10	Ne	[39]	^{1}S	2.676	1976	NR, PNNO-CEPA, M_L res.
		[56]	${}^{1}S_{0}$	2.6669 ± 0.0008	1991	exp.
		[57]	^{1}S	2.68	1992	NR, CCSD(T)
		[58]	${}^{1}S_{0}$	2.663	1997	exp.
		[59]	${}^{1}S_{0}$	2.66053 ± 0.00001	2001	CCSD(T), ECP
		[60]	^{1}S	2.665	2003	NR, CC3
		[60–62]	^{1}S	2.666	2003	R, CC3 + FCI + DK3 correction
		[30]	${}^{1}S_{0}$	2.661 ± 0.005	2006	R, CCSD(T)
		[63]	${}^{1}S_{0}$	2.66110 ± 0.00003	2010	exp.
		[64,65]	${}^{1}S_{0}$	2.677 ± 0.070	2012	R, Dirac-Coulomb, non-linear PRCC
		[13]	${}^{1}S_{0}$	2.6610570 ± 0.0000064	2018	exp.
		[5]		2.66110 ± 0.00003	2019	recommended
		[66]	${}^{1}S_{0}$	2.66080 ± 0.00036	2020	R, QED, AE-CCSD(T), finite nucl. mass & size corrections
		[43]	^{1}S	2.662 ± 0.034	2021	NR, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[67]	$^{1}S_{0}$	2.661067 ± 0.000077	2022	R, QED, AE-CCSDT(Q), finite nucl. mass & size corrections
		[47]	$^{1}S_{0}$	2.661 ± 0.005	2023	R, CCSD(T)
11	Na	[68]	$^{2}S_{1/2}$	162.7 ± 0.5	1995	exp.
		[69]	$^{2}S_{1/2}$	162.6 ± 0.3	1999	R, SD all orders + exp. data
		[30,70]	$^{2}S_{1/2}$	162.88 ± 0.60	2006	R, CCSD(T)
		[71]	$^{2}S_{1/2}$	$162.7 \pm 0.1/ \pm 1.2$	2010	exp.
		[72]	$^{2}S_{1/2}$	161 ± 7.5	2015	exp.
		[5]		162.7 ± 0.5	2019	recommended
		[23]	$^{2}S_{1/2}$	163.9	2021	NR, CCSD(T)
		[24]	$^{2}S_{1/2}$	162.44 ± 0.16	2022	R, Dirac-HF, pertubative singles $+$ doubles method, RPA
12	Mg	[73]	$^{1}S_{0}$	71.5 ± 3.5	1973	exp.
		[74]	^{1}S	71.32	1976	NR, PNO-CEPA
		[75]	$^{1}S_{0}$	70.5	1979	NR, CI + pseudo-potential
		[76]	^{1}S	71.7	1991	NR, MBPT4
		[77]	^{1}S	71.8	1991	NR, MBPT4
		[49,78]	$^{1}S_{0}$	75.0 ± 3.5	1995	exp.
		[69]	$^{1}S_{0}$	74.9 ± 2.7	1999	${\rm Hybrid\text{-}RCI} + {\rm MBPT} \ {\rm sum} \ {\rm rule}$
		[26]	$^{1}S_{0}$	72.0	2000	Model potential
		[79]	$^{1}S_{0}$	71.4	2002	CI, oscillator strength correction
		[27]	${}^{1}S_{0}$	71.35	2003	Combination of ab initio and semi-empirical methods
		[80]	^{1}S	70.90	2004	R, DK, CASPT2
		[29,81]	$^{1}S_{0}$	70.89	2006	R, Dirac, CI $+$ MBPT2 $+$ experimental data
		[30]	$^{1}S_{0}$	71.22 ± 0.36	2006	R, DK, CCSD(T)
		[29]	${}^{1}S_{0}$	71.33	2006	R, Dirac, CI+ MBPT2
		[29]	${}^{1}S_{0}$	71.3 ± 0.7	2006	R, Dirac, CI + MBPT2, recommended

			~			
Z	Atom	Refs.	State	α	Year	Comments
		[31]	${}^{1}S_{0}$	73.4 ± 2.3	2008	R, Dirac, CCSD
		[82]	${}^{1}S_{0}$	77.6 ± 7.8	2012	exp.
		[32]	${}^{1}S_{0}$	72.54 ± 0.50	2013	R, Dirac, MBPT, CCSD
		[83]	$^{1}S_{0}$	70.76	2014	R,Dirac+Breit,perturbedrelativistic
		[55]	~ 0	10.10	2011	coupled-cluster theory (PRCC)
		[72]	${}^{1}S_{0}$	59 ± 16	2015	exp.
		[36]	${}^{1}S_{0}$	71.15/71.63	2019	CCSD(T), R $X2C-0/NR-0$
		[36]	${}^{1}S_{0}$	71.02/71.01	2019	CCSD(T), R $X2C-2/NR-2$
		[84]	${}^{1}S_{0}$	73.0	2019	R,KRCISD/aug-QZ
		[5]		71.2 ± 0.4	2019	recommended
		[85]	${}^{1}S_{0}$	71.9	2020	R, MCDF
		[46]	${}^{1}S_{0}$	72.121	2021	R, CCSD(T)
		[86]	${}^{1}S_{0}$	71.643	2021	R, CCSD(T)
		[23]	${}^{1}S_{0}$	71.5	2021	NR, CCSD(T)
		[87]	${}^{1}S_{0}$	81 ± 17	2022	exp.
13	Al	[78]	^{2}P	62.0	1971	NR, numerical MCSCF, M_L res.
		[74]	^{2}P	56.27	1976	NR, PNO-CEPA
		[88]	^{2}P	59.47	1980	NR, MRCI
		[89][92]	^{2}P	46 ± 2	1990	exp. (see also ref [72])
		[90]	^{2}P	61.0	2004	SIC-DFT
		[91]	^{2}P	58.0 ± 0.4	2004	CCSD(T)
		[92]	^{2}P	57.74	2005	NR, CCSD(T), M_L res.
		[41]	^{2}P	55.5	2005	R, SF, MRCI, M_L res.
		[41]	$^{2}P_{1/2}/^{2}P_{3/2}$	$55.4 \pm 2.2 / 55.9 \pm 2.2$	2005	R, Dirac, MRCI, M_J res.
		[30]	2P	57.79 ± 0.30	2006	R, DK, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[93]	$^{2}P_{1/2}/^{2}P_{3/2}$	$57.8 \pm 1.0 / 58.0 \pm 1.0$	2010	SI-SOCI, M_L res.
		[82,94]	^{2}P	55.3 ± 5.5	2012	exp.
		[95]	^{2}P	58.3	2016	SIC-DFT (RXH)
		[35]	^{2}P	57.85	2019	NR, CCSD
		[5]		57.8 ± 1.0	2019	recommended
		[46]	^{2}P	58.089	2021	R, CCSD(T)
		[86]	^{2}P	48.455	2021	R, CCSD(T)
		[96]	$^{2}P_{1/2}/^{2}P_{3/2}$	$58.8 \pm 1.2/64.7 \pm 1.3$	2022	R, Breit+QED, CCSD
		[87]	^{2}P	54 ± 11	2022	exp.
		[97]	^{2}P	54.9 ± 5.3	2022	exp.
		[43,98]	^{2}P	47.69 ± 0.82	2023	NR, CCSD(T)
14	Si	[74]	^{3}P	36.32	1976	NR, PNO-CEPA, M_L res.
		[88]	^{3}P	36.95	1980	NR, MRCI
		[44]	^{3}P	36.54	1992	NR, CASPT2, M_L res.
		[49]	^{3}P	38.8	1995	NR, numerical MCSCF, M_L res.
		[99]	^{3}P	37.4 ± 0.1	2003	NR, CCSD(T), M_L res.
		[90]	^{3}P	38.9	2004	SIC-DFT
		[92]	^{3}P	37.17 ± 0.21	2005	NR, CCSD(T), M_L res.
		[45]	${}^{3}P_{0}$	37.31 ± 0.70	2008	R, Dirac+Gaunt, CCSD(T)
		[95]	^{3}P	37.8	2016	SIC-DFT (RXH)
		[35]	^{3}P	37.16	2019	NR, CCSD
		[5]		37.3 ± 0.7	2019	recommended
		[43]	^{3}P	36.90 ± 0.63	2021	NR, CCSD(T)
		[46]	^{3}P	36.803	2021	R, CCSD(T)
15	Р	[74]	4S	24.7 ± 0.5	1976	NR, PNO-CEPA

Z	Atom	Refs.	State	α	Year	Comments
		[44]	4S	24.6 ± 0.2	1992	NR, CASPT2
		[49]	4S	25.5	1995	NR, numerical MCSCF, M_L res.
		[50]	4S	24.9	2004	R, DK, CASPT2
		[90]	4S	26.11	2004	SIC-DFT
		[92]	4S	24.93 ± 0.15	2005	NR, CCSD(T)
		[52]	4S	25.06	2010	R, DK, CASPT2
		[95]	4S	25.3	2016	SIC-DFT (RXH)
		[35]	4S	24.88	2019	NR, CCSD
		[5]		25 ± 1	2019	recommended
		[53]	4S	25.0	2020	AE, CCSD(T)
		[43]	4S	24.95 ± 0.43	2021	NR, CCSD(T)
		[46]	4S	24.980	2021	R, CCSD(T)
16	S	[74]	^{3}P	19.60	1976	NR, PNO-CEPA, M_L res.
		[44]	^{3}P	19.6	1992	NR, CASPT2, M_L res.
		[55]	^{3}P	19.6	2000	NR, CASPT2, M_L res.
		[90]	^{3}P	19.72	2004	SIC-DFT
		[92]	^{3}P	19.37 ± 0.12	2005	NR, CCSD(T), M_L res.
		[35]	^{3}P	19.22	2019	NR, CCSD(T)
		[5]		19.4 ± 0.1	2019	recommended
		[43]	^{3}P	19.38 ± 0.33	2021	NR, CCSD(T)
17	Cl	[74]	^{2}P	14.71	1976	NR, PNO-CEPA, M_L res.
		[44]	^{2}P	14.6	1992	NR, CASPT2, M_L res.
		[55]	^{2}P	14.73	2000	NR, CASPT2, M_L res.
		[90]	^{2}P	14.7	2004	SIC-DFT
		[92]	^{2}P	14.57 ± 0.10	2005	NR, CCSD(T), M_L res.

Z	Atom	Refs.	State	α	Year	Comments
		[5]		14.6 ± 0.1	2019	recommended
		[43]	^{2}P	14.59 ± 0.25	2021	NR, CCSD(T)
		[46]	^{2}P	14.582	2021	R, CCSD(T)
18	Ar	[7]	${}^{1}S_{0}$	11.083 ± 0.002	1965	exp.
		[65]	${}^{1}S_{0}$	11.081 ± 0.005	1967	exp.
		[100]	${}^{1}S_{0}$	11.091	1969	exp.
		[74]	^{1}S	11.10	1976	NR, PNO-CEPA
		[101,102]	${}^{1}S_{0}$	11.070 ± 0.007	1990	exp.
		[58]	${}^{1}S_{0}$	11.080	1997	exp.
		[59]	^{1}S	11.08401 ± 0.00004	2001	NR, CCSD(T)
		[59,62]	^{1}S	11.10	2001	R, CCSD(T) + DK3 correction
		[50]	^{1}S	11.1	2004	R, DK, CASPT2
		[30]	${}^{1}S_{0}$	11.078 ± 0.010	2006	exp.
		[30,82,92]	^{1}S	11.085 ± 0.060	2012	R, CCSD(T)
		[32]	^{1}S	11.089 ± 0.004	2013	R, CCSD(T)
		[13]	${}^{1}S_{0}$	11.07718 ± 0.00064	2018	exp.
		[5]		11.083 ± 0.007	2019	recommended
		[43]	^{1}S	11.08 ± 0.19	2021	NR, CCSD(T)
		[103]	1S	11.0775 ± 0.0019	2023	R,DKH2,CCSD(T)+Breit-Pauli
		[100]	D	11.0779 ± 0.0019	2020	+ QED $+$ finite nuclear mass and size
19	K	[15]	$^{2}S_{1/2}$	292.9 ± 6.1	1974	exp.
		[69]	$^{2}S_{1/2}$	289.1	1999	RLCCSD
		[69]	$^{2}S_{1/2}$	290.2 ± 0.8	1999	R, SD all orders + exp. data for electronic transitions
		[27]	$^{2}S_{1/2}$	290.0	2003	Combination of ab initio and semi-empirical methods
		[104]	2S	291.1 ± 1.5	2005	R, DK, CCSD(T), AE

Z	Atom	Refs.	State	α	Year Comments	
		[105]	$^{2}S_{1/2}$	290.2	2010 Combination of theoretical and experimental data	
		[71]	$^{2}S_{1/2}$	290.6 ± 1.4	2010 exp. (for hyperfine effects see ref [106])	
		[106]	$^{2}S_{1/2}$	290.05	2013 Oscillator-strength sum rule	
		[107,108]	$^{2}S_{1/2}$	289.7 ± 0.3	2016 exp.	
		[5]		289.7 ± 0.3	2019 recommended	
		[23]	$^{2}S_{1/2}$	289.6	2021 SR, CCSD(T), ECP	
		[24]	$^{2}S_{1/2}$	290.30 ± 0.23	2022 R, Dirac-HF, pertubative singles $+$ doubles method, RPA	
20	Ca	[75]	^{1}S	153.7	1979 NR, CI + pseudo-potential	
		[109]	^{1}S	152.0	$1991 \mathrm{R, MVD, CCSD} + \mathrm{T}$	
		[76]	^{1}S	157	1991 NR, MBPT4	
		[110]	${}^{1}S_{0}$	160	2002 R, CI+MBPT	
		[79]	^{1}S	158.6	2002 CI, oscillator strength correction	
		[27]	^{1}S	159.4	2003 Combination of ab initio and semi-empirical methods	
		[111]	${}^{1}S_{0}$	155.3/157.7	2003 CCSD R/NR	
		[80]	^{1}S	163	2004 R, DK, CASPT2	
		[112]	${}^{1}S_{0}$	158.0	$2004 \mathrm{R, DK + SO, CCSD(T)}$	
		[54,113]	${}^{1}S_{0}$	169 ± 17	2004 exp.	
		[29,81]	${}^{1}S_{0}$	155.9	2006 R, Dirac, CI + MBPT2 + experimental data	
		[29]	${}^{1}S_{0}$	157.1 ± 1.3	2006 Hybrid-RCI + MBPT sum rule + experimental data	
		[29]	${}^{1}S_{0}$	159.0	2006 R, Dirac, $CI + MBPT$	
		[30]	${}^{1}S_{0}$	157.9 ± 0.8	2006 R, DK, CCSD(T)	
		[31]	${}^{1}S_{0}$	154.58	2008 R, Dirac, coupled cluster	
		[31]	$^{1}S_{0}$	154.6 ± 5.4	2008 R, Dirac, CCSD	
		[114]	${}^{1}S_{0}$	154.7	2008 ab initio $+$ experimental data	
		[105]	1S_0	157.1	2010 Combination of theoretical and experimental data	

Z	Atom	Refs.	State	α	Year	Comments
		[32]	${}^{1}S_{0}$	157.03 ± 0.80	2013	R, Dirac, MBPT, CCSD
		[83]	1S_0	160.77	2014	R,Dirac+Breit,perturbedrelativistic
		[00]	\mathcal{D}_0	100.77	2014	coupled-cluster theory (PRCC)
		[36]	${}^{1}S_{0}$	156.10	2019	CCSD(T), ECP
		[36]	${}^{1}S_{0}$	157.61/159.81	2019	CCSD(T), R $X2C-10/NR-10$
		[84]	${}^{1}S_{0}$	157.5	2019	R,KRCISD/aug-QZ
		[5]		160.8 ± 4.0	2019	recommended
		[85]	${}^{1}S_{0}$	158.2	2020	R, MCDF
		[23]	${}^{1}S_{0}$	156.2	2021	SR, CCSD(T), ECP
		[115]	${}^{1}S_{0}$	159.43 ± 0.97	2023	R, CI+MBPT
21	Sc	[116,117]	$^2D^{,3d1}$	107.1	1987	NR, small CI, VPA
		[117,118]	$^2D^{,3d1}$	138.8	1987	NR, small CI, VPA
		[119]	$^2D^{,3d1}$	142 ± 21	1995	NR, MCPF
		[120]	$^2D^{,3d1}$	114.00	2002	Interacting-induced-dipoles polarisation model
		[54,121]	$^{2}D_{3/2}^{,3d1}$	120 ± 30	2004	R, Dirac, LDA
		[122]	$^{2}D_{3/2}^{,3d1}$	121 ± 12	2005	R, DK, MRCI
		[123]	$^2D^{,3d1}$	105.88	2005	TD-DFT
		[124]	$^2D^{,3d1}$	115.46	2009	DFT
		[72]	$^2D^{,3d1}$	97.2 ± 9.5	2015	exp.
		[125]	$^2D^{,3d1}$	123	2016	TD-DFT (LEXX)
		[90,95]	$^{2}D_{3/2}^{,3d1}$	106.0	2016	SIC-DFT (RXH)
		[95]	$^2D^{,3d1}$	134.6	2016	TD-DFT (PGG)
		[35]	$^{2}D^{,3d1}$	125.84	2019	NR, CCSD
		[126]	$^{2}D_{3/2}^{,3d1}$	138.39	2019	R, CCSD(T)/ANO-RCC
		[5]		97 ± 10	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
22	Ti	[116]	$^{3}F^{,3d2}$	91.8	1987	NR, small CI, VPA
		[116]	3F , 3d2	91.4	1987	NR, small CI, VPA
		[119]	3F , 3d2	114 ± 17	1995	NR, MCPF
		[54,121]	$^{3}F_{2}^{,3d2}$	99 ± 25	2004	R, Dirac, LDA
		[90]	3F , 3d2	85.7	2004	SIC-DFT
		[122]	$^{3}F_{2}^{,3d2}$	102 ± 10	2005	R, DK, MRCI
		[123]	3F , 3d2	94.69	2005	TD-DFT
		[72]	$^{3}F_{2}^{,3d2}$	63.4 ± 3.4	2015	exp.
		[125]	$^{3}F, 3d^{2}$	102	2016	TD-DFT (LEXX)
		[95]	$^{3}F, 3d^{2}$	89.4	2016	SIC-DFT (RXH)
		[95]	$^{3}F, 3d^{2}$	111.4	2016	TD-DFT (PGG)
		[35]	$^{3}F, 3d^{2}$	86.92	2019	NR, CCSD
		[126]	$^3F, 3d^2$	104.01	2019	R, CCSD(T)/ANO-RCC
		[5]		100 ± 10	2019	recommended
		[46]	$^{3}F, 3d^{2}$	106.22	2021	R, CCSD(T)
		[86]	$^{3}F, 3d^{2}$	98.373	2021	R, CCSD(T)
		[127]	$^3F_4, 3d^2$	100.4 ± 1.8	2023	R, Dirac-HF, CI $+$ all-order
23	V	[116]	$^4F, 3d^3$	80.6	1987	NR, small CI, VPA
		[116]	$^4F, 3d^3$	84.6	1987	NR, small CI, VPA
		[119]	$^{4}F, 3d^{3}$	97 ± 15	1995	NR, MCPF
		[54,121]	$^{4}F_{3/2}, 3d^{3}$	84 ± 21	2004	R, Dirac, LDA
		[90]	$^4F, 3d^3$	72.8	2004	SIC-DFT
		[122]	$^{4}F_{3/2}, 3d^{3}$	87.3 ± 8.7	2005	R, DK, MRCI
		[72]	$^4F_{3/2}, 3d^3$	68.2 ± 5.4	2015	exp.
		[125]	$^4F, 3d^3$	87.3	2016	TD-DFT (LEXX)

Z	Atom	Refs.	State	α	Year	Comments
		[95]	$^4F, 3d^3$	78.2	2016	SIC-DFT (RXH)
		[95]	$^4F, 3d^3$	96.2	2016	TD-DFT (PGG)
		[35]	$^4F, 3d^3$	86.85	2019	NR, CCSD
		[126]	$^4F, 3d^3$	94.30	2019	R, CCSD(T)/ANO-RCC
		[5]		87 ± 10	2019	recommended
		[46]	$^4F, 3d^3$	90.298	2021	R, CCSD(T)
		[86]	$^{4}F, 3d^{3}$	86.798	2021	R, CCSD(T)
24	Cr	[119]	$^{7}S, 3d^{5}$	95 ± 15	1995	NR, MCPF
		[54,121]	$^{7}S_{3}, 3d^{5}$	78 ± 20	2004	R, Dirac, LDA
		[90]	$^{7}S, 3d^{5}$	60.7	2004	SIC-DFT
		[128]	$^{7}S_{3}, 3d^{5}$	78.4 ± 7.8	2005	DK, CASPT2
		[52]	$^{7}S_{3}, 3d^{5}$	83.2	2010	R, CCSD(T)
		[72]	$^{7}S_{3}, 3d^{5}$	60 ± 24	2015	exp.
		[125]	$^{7}S_{3}, 3d^{5}$	78.4	2016	TD-DFT (LEXX)
		[95]	$^{7}S_{3}, 3d^{5}$	70.4	2016	TD-DFT (PGG)
		[95]	$^{7}S_{3}, 3d^{5}$	69.8	2016	SIC-DFT (RXH)
		[35]	$^{7}S, 3d^{5}$	87.77	2019	NR, CCSD
		[126]	$^{7}S, 3d^{5}$	96.20	2019	R, CCSD(T)/ANO-RCC
		[5]		83 ± 12	2019	recommended
25	Mn	[116]	$^{6}S, 3d^{5}$	65.4	1987	NR, small CI, VPA
		[119]	$^{6}S, 3d^{5}$	76 ± 11	1995	NR, MCPF
		[54,121]	$^6S_{5/2}, 3d^5$	63 ± 16	2004	R, Dirac, LDA
		[90]	$^{6}S, 3d^{5}$	56.8	2004	SIC-DFT
		[128]	$^6S_{5/2}, 3d^5$	66.8 ± 6.7	2005	DK, CASPT2
		[52]	$^6S_{5/2}, 3d^5$	68.5	2010	R, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[125]	$^{6}S, 3d^{5}$	66.8	2016	TD-DFT (LEXX)
		[95]	$^6S, 3d^5$	76.3	2016	TD-DFT (PGG)
		[95]	$^{6}S, 3d^{5}$	63.1	2016	SIC-DFT (RXH)
		[35]	$^6S_{5/2}, 3d^5$	83.98	2019	NR, CCSD
		[126]	$^6S_{5/2}, 3d^5$	73.55	2019	R, CCSD(T)/ANO-RCC
		[5]		68 ± 9	2019	recommended
		[46]	$^{6}S, 3d^{5}$	70.154	2021	R, CCSD(T)
		[86]	$^{6}S, 3d^{5}$	63.476	2021	R, CCSD(T)
26	Fe	[116]	$^{5}D, 3d^{6}$	58.4	1987	NR, small CI, VPA
		[119]	$^{5}D, 3d^{6}$	63.93	1995	NR, MCPF
		[54,121]	$^{5}D_{4}, 3d^{6}$	57 ± 14	2004	R, Dirac, LDA
		[90]	$^{5}D_{4}, 3d^{6}$	54.4	2004	SIC-DFT
		[129]	$^{5}D, 3d^{6}$	62.65	2004	NR, DFT, GGA(PW86)
		[125]	$^{5}D_{4}, 3d^{6}$	60.4	2016	TD-DFT (LEXX)
		[95]	$^{5}D_{4}, 3d^{6}$	67.8	2016	TD-DFT (PGG)
		[95]	$^{5}D_{4}, 3d^{6}$	56.3	2016	SIC-DFT (RXH)
		[35]	$^{5}D, 3d^{6}$	67.96	2019	NR, CCSD
		[126]	$^{5}D, 3d^{6}$	63.82	2019	R, CCSD(T)/ANO-RCC
		[5]		62 ± 4	2019	recommended
27	Co	[116]	$^{4}F, 3d^{7}$	52.3	1987	NR, small CI, VPA
		[119]	$^4F, 3d^7$	57.71	1995	NR, MCPF
		[54,121]	$^{4}F_{9/2}, 3d^{7}$	51 ± 13	2004	R, Dirac, LDA
		[90]	$^{4}F_{9/2}, 3d^{7}$	48.9	2004	SIC-DFT
		[125]	$^{4}F, 3d^{7}$	53.9	2016	TD-DFT (LEXX)
		[95]	$^{4}F, 3d^{7}$	60.9	2016	TD-DFT (PGG)

Z	Atom	Refs.	State	α	Year	Comments
		[95]	$^{4}F, 3d^{7}$	50.8	2016	SIC-DFT (RXH)
		[35]	$^{4}F_{9/2}, 3d^{7}$	62.03	2019	NR, CCSD
		[126]	$^{4}F_{9/2}, 3d^{7}$	56.66	2019	R, CCSD(T)/ANO-RCC
		[5]		55 ± 4	2019	recommended
28	Ni	[116]	$^3F, 3d^8$	48.3	1987	NR, small CI, VPA
		[119]	$^3F, 3d^8$	51.10	1995	NR, MCPF
		[54,121]	$^{3}F_{4}, 3d^{8}$	46 ± 11	2004	R, Dirac, LDA
		[90]	$^{3}F_{4}, 3d^{8}$	44.5	2004	SIC-DFT
		[122]	$^{3}F_{4}, 3d^{8}$	47.4 ± 4.7	2005	R, DK, MRCI
		[125]	$^3F, 3d^8$	48.4	2016	TD-DFT (LEXX)
		[95]	$^{3}F, 3d^{8}$	55.3	2016	TD-DFT (PGG)
		[95]	$^{3}F, 3d^{8}$	46.2	2016	SIC-DFT (RXH)
		[35]	$^{3}F_{4}, 3d^{8}$	57.32	2019	NR, CCSD
		[126]	$^{3}F_{4}, 3d^{8}$	56.57	2019	R, CCSD(T)/ANO-RCC
		[5]		49 ± 3	2019	recommended
		[46]	$^{3}F, 3d^{8}$	50.849	2021	R, CCSD(T)
		[86]	$^{3}F, 3d^{8}$	46.919	2021	R, CCSD(T)
29	Cu	[130]	$^2S_{1/2}, 3d10$	45.0	1994	R, PP, QCISD(T)
		[119]	$^{2}S, 3d^{10}$	53.44	1995	NR, MCPF
		[54,121]	$^2S_{1/2}, 3d^{10}$	41 ± 10	2004	R, Dirac, LDA
		[90]	$^{2}S_{1/2}, 3d^{10}$	39.5	2004	SIC-DFT
		[128]	$^2S_{1/2}, 3d10$	40.7 ± 4.1	2005	R, DK, CASPT2
		[122]	$^2S_{1/2}, 3d10$	43.7 ± 4.4	2005	R, DK, MRCI
		[30,131]	$^2S_{1/2}, 3d10$	46.50 ± 0.35	2006	R, DK, CCSD(T)
		[132]	$^2S_{1/2}, 3d^{10}$	46.98	2009	R, DK, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[133,134]	$^2S_{1/2}, 3d^{10}$	41.65	2010	CICP
		[82,94]	$^{2}S_{1/2}, 3d^{10}$	54.7 ± 5.5	2012	exp.
		[72]	$^2S_{1/2}, 3d^{10}$	58.7 ± 4.7	2015	exp.
		[135]	$^{2}S, 3d^{10}$	51.8	2016	semi-empirical
		[136]	$^{2}S_{1/2}, 3d^{10}$	42.6 ± 4.3	2016	DFT B3LYP/aug-cc-pVDZ
		[125]	$^2S_{1/2}, 3d10$	41.7	2016	TD-DFT (LEXX)
		[95]	$^2S_{1/2}, 3d10$	46.1	2016	TD-DFT (PGG)
		[95]	$^2S_{1/2}, 3d10$	41.2	2016	SIC-DFT (RXH)
		[5]		46.5 ± 0.5	2019	recommended
30	Zn	[137]	$^{1}S, 3d^{10}$	37.6	1995	R, MVD, CCSD(T)
		[138]	$^{1}S, 3d^{10}$	39.2 ± 0.8	1996	NR, CCSD(T), MP2 basis correction
		[138]	$^{1}S_{0}, 3d^{10}$	38.8 ± 0.8	1996	exp.
		[139]	$^{1}S, 3d^{10}$	38.01	1997	R, PP, CCSD(T)
		[140]	$^{1}S_{0}, 3d^{10}$	39.12	2001	R, MRCI, pseudo-potential
		[54,121]	$^{1}S_{0}, 3d^{10}$	38 ± 9	2004	R, Dirac, LDA
		[90]	$^{1}S_{0}, 3d^{10}$	37.7	2004	SIC-DFT
		[128]	$^{1}S, 3d^{10}$	38.4	2005	R, DK, CASPT2
		[30,137]	$^{1}S_{0}, 3d^{10}$	38.35 ± 0.29	2006	R, MVD, CCSD(T)
		[141]	$^{1}S_{0}, 3d^{10}$	38.666 ± 0.096	2014	R, Dirac, CCSDT
		[142]	$^{1}S_{0}, 3d^{10}$	38.75	2015	R, PRCC(T)
		[142,143]	$^{1}S_{0}, 3d^{10}$	38.92	2015	exp.+fitting
		[95]	$^{1}S_{0}, 3d^{10}$	39.2	2016	SIC-DFT (RXH)
		[126]	$^{1}S_{0}, 3d^{10}$	41.50	2019	R, CCSD(T)/ANO-RCC
		[5]		38.67 ± 0.30	2019	recommended
		[144]	$^{1}S, 3d^{10}$	37.7	2021	ECP, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[145]	$^{1}S_{0}, 3d^{10}$	38.99 ± 0.31	2022	R, NCCSD
31	Ga	[49]	^{2}P	54.9 ± 1.0	1995	NR, PNO-CEPA, M_L res.
		[146]	^{2}P	52.91 ± 0.40	2003	R, DK, CCSD(T)
		[41]	^{2}P	50.7	2005	R, SF, MRCI, M_L res.
		[41]	$^{2}P_{1/2}/^{2}P_{3/2}$	49.9/51.6	2005	R, Dirac, MRCI, M_J res.
		[93]	$^{2}P_{1/2}/^{2}P_{3/2}$	$51.3 \pm 2.0 / 53.0 \pm 2.0$	2010	SI-SOCI, M_J res.
						R, Dirac, FSCC, M_J res.
		[147]	$^{2}P_{1/2}/^{2}P_{3/2}$	$51.1 \pm 1.5 / 53.4 \pm 3.0$	2012	$(J=3/2: M_J=3/2: 41.9,$
						$M_J = 1/2$: 65.0)
		[72]	$^{2}P_{1/2}$	46.6 ± 4.0	2015	exp.
		[125]	$^{2}P_{1/2}$	52.1	2016	TD-DFT (LEXX)
		[95]	$^{2}P_{1/2}$	56.0	2016	SIC-DFT (RXH)
		[35]	$^{2}P_{1/2}$	53.01	2019	NR, CCSD
		[5]		50 ± 3	2019	recommended
		[46]	$^{2}P_{1/2}$	40.899	2021	R, CCSD(T)
32	Ge	[49]	^{3}P	41.0	1995	NR, PNO-CEPA, M_L res.
		[90]	^{3}P	41.6	2004	SIC-DFT
		[30]	$^{3}P_{0}$	40.80 ± 0.82	2006	R, PNO-CEPA
		[45]	^{3}P	39.97	2008	R, DK, CCSD(T), M_L res.
		[19]	-	50.01	2000	$(M_L = 0: 32.11, M_L = 1: 43.90)$
		[45]	$^{3}P_{0}$	39.43 ± 0.80	2008	R, Dirac Gaunt, $CCSD(T)$
		[95]	^{3}P	41.2	2016	SIC-DFT (RXH)
		[35]	$^{3}P_{0}$	39.78	2019	NR, CCSD
		[5]		40 ± 1	2019	recommended
33	As	[49]	4S	29.1	1995	NR, PNO-CEPA

Z	Atom	Refs.	State	α	Year	Comments
		[49]	4S	30.5	1995	NR, numerical MCSCF
		[50]	4S	29.8 ± 0.6	2004	R, DK, CASPT2
		[90]	4S	31.52	2004	SIC-DFT
		[52]	4S	29.92	2010	R, DK, CCSD(T)
		[52]	4S	29.81	2010	ECP, CCSD(T)
		[125]	4S	29.6	2016	TD-DFT (LEXX)
		[95]	4S	30.7	2016	SIC-DFT (RXH)
		[35]	4S	29.65	2019	NR, CCSD
		[5]		30 ± 1	2019	recommended
		[53]	4S	29.6	2020	ECP, CCSD(T)
34	Se	[48]	^{3}P	26.24 ± 0.52	1959	R, MVD, CASPT2, M_L res.
		[148]	${}^{3}P_{2}$	28.9 ± 1.0	1997	exp.
		[90]	^{3}P	26.65	2004	SIC-DFT
		[95]	^{3}P	29.3	2016	TD-DFT (PGG)
		[95]	^{3}P	24.0	2016	SIC-DFT (RXH)
		[35]	^{3}P	25.03	2019	NR, CCSD
		[5]		28.9 ± 1.0	2019	recommended
35	Br	[55]	^{2}P	21.03	2000	R, MVD, CASPT2, M_L res.
		[149]	$^{2}P_{1/2}$	21.9	2002	R, DK, SO-CI
		[149]	$^{2}P_{3/2}$	21.7	2002	R, DK, SO-CI, M_J res.
		[90]	^{2}P	21.5	2004	SIC-DFT
		[30,55]	^{2}P	21.13 ± 0.42	2006	R, MVD, CASPT2
		[95]	^{2}P	21.6	2016	TD-DFT (LEXX)
		[35]	^{2}P	20.4	2019	NR, CCSD
		[5]		21 ± 1	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
36	Kr	[65]	$^{1}S_{0}$	16.766 ± 0.008	1967	exp.
		[101]	^{1}S	16.80 ± 0.13	1990	R, DK3, CCSD(T)
		[56]	${}^{1}S_{0}$	16.782 ± 0.005	1991	exp.
		[150]	${}^{1}S_{0}$	16.79	1992	DOSD (constrained dipole oscillator strength distribution)
		[58,101]	${}^{1}S_{0}$	16.740	1997	exp.
		[58]	${}^{1}S_{0}$	16.734	1997	exp.
		[50]	^{1}S	16.6	2004	R, DK, CASPT2
		[151]	${}^{1}S_{0}$	16.012	2009	R, Dirac, CCSD/T
		[152]	${}^{1}S_{0}$	16.736	2012	R, DK3, CCSD(T)
		[153]	${}^{1}S_{0}$	16.47	2016	R, RPA, PolPot
		[5]		16.78 ± 0.02	2019	recommended
		[154]	${}^{1}S_{0}$	16.800	2020	R, DHF, MBPT
37	Rb	[15]	$^{2}S_{1/2}$	319 ± 6	1974	exp.
		[27]	2S	315.7	2003	Combination of ab initio and semi-empirical methods
		[104]	2S	316.2 ± 3.2	2005	R, DK, CCSD(T), AE
		[30]	$^{2}S_{1/2}$	319.2 ± 6.1	2006	exp.
		[69,105]	$^{2}S_{1/2}$	318.6 ± 0.6	2010	R, SD all orders + exp. data
		[71]	$^{2}S_{1/2}$	318.8 ± 1.4	2010	exp.
		[33]	2S	317.0	2015	Oscillator-strength sum rule
		[107,108]	$^{2}S_{1/2}$	319.8 ± 0.3	2016	exp.
		[5]		319.8 ± 0.3	2019	recommended
		[23]	$^{2}S_{1/2}$	317.4	2021	SR, CCSD(T), ECP
		[155]	$^{2}S_{1/2}$	318.5 ± 0.6	2022	R, DHF, all orders
		[24]	$^{2}S_{1/2}$	318.38 ± 0.38	2022	R, Dirac-HF, pertubative singles + doubles method, RPA

Z	Atom	Refs.	State	α	Year	Comments
		[156]	2 C	319.5 ± 1.5	2023	R,TDHF+Breit+QED+scaling
		[156]	$^{2}S_{1/2}$	319.0 ± 1.0	2023	+ structure radiation $+$ normaliz.
38	Sr	[26]	${}^{1}S_{0}$	193.2	2000	Model potential
		[79]	${}^{1}S_{0}$	198.5 ± 1.3	2002	CI, oscillator strength correction
		[27]	${}^{1}S_{0}$	201.2	2003	Combination of ab initio and semi-empirical methods
		[112]	${}^{1}S_{0}$	199.4	2004	R,DK+SO,CCSD(T)
		[112]	${}^{1}S_{0}$	198.85	2004	R, DK, CCSD(T)
		[54]	${}^{1}S_{0}$	186 ± 15	2004	exp.
		[30,110]	^{1}S	199.0 ± 2.0	2006	R, CI, MBPT2
		[29]	${}^{1}S_{0}$	202.0	2006	${\rm Hybrid\text{-}RCI} + {\rm MBPT} \; {\rm sum} \; {\rm rule}$
		[31]	${}^{1}S_{0}$	199.71	2008	R, Dirac, coupled cluster
		[81,157]	${}^{1}S_{0}$	197.2 ± 3.6	2008	R,Dirac,CI+MBPT+experimentaldata
		[114]	${}^{1}S_{0}$	201.6	2008	Combination of ab initio and experimental results
		[158]	${}^{1}S_{0}$	197.6	2010	${ m CI}$ + core polarisation (corrected to exp. term energies)
		[29,105]	${}^{1}S_{0}$	197.2 ± 0.2	2010	${\rm Hybrid\text{-}RCI} + {\rm MBPT} \; {\rm sum} \; {\rm rule}$
		[32]	${}^{1}S_{0}$	186.98 ± 0.85	2013	R, Dirac, MBPT, CCSD
		[34]	${}^{1}S_{0}$	197.8	2013	Combination of theoretical (CICP) and experimental methods
		[159]	${}^{1}S_{0}$	197.14 ± 0.2	2013	$\mathrm{CI}+\mathrm{MBPT}$ and experimental results
		[159]	${}^{1}S_{0}$	198.9 ± 2.0	2013	CI + MBPT-SD and experimental results
		[60]	1 <i>c</i>	100.00	2014	R, Dirac + Breit, perturbed relativistic
		[83]	${}^{1}S_{0}$	190.82	2014	coupled-cluster theory (PRCC)
		[33]	${}^{1}S_{0}$	197.9	2015	Oscillator-strength sum rule
		[36]	${}^{1}S_{0}$	198.62/198.93	2019	CCSD(T), ECP/R $X2C-28$
		[84]	${}^{1}S_{0}$	196.5	2019	$\rm R,KRCISD/aug\text{-}QZ$
		[5]		197.2 ± 0.2	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
		[85]	$^{1}S_{0}$	214.5	2020	R, MCDF
		[46]	${}^{1}S_{0}$	203.16	2021	R, CCSD(T)
39	Y	[54,121]	$^{2}D_{3/2},4d^{1}$	153 ± 38	2004	R, Dirac, LDA
		[160]	$^{2}D_{3/2},4d^{1}$	140.94	2009	DFT, ECP
		[82,161]	$^{2}D_{3/2},4d^{1}$	139 ± 28	2012	TD-DFT
		[72]	$^{2}D_{3/2},4d^{1}$	163 ± 12	2015	exp.
		[95]	$^{2}D_{3/2},4d^{1}$	134.9	2016	SIC-DFT (RXH)
		[125]	$^{2}D_{3/2},4d^{1}$	163	2016	TD-DFT (LEXX)
		[95]	$^{2}D_{3/2},4d^{1}$	134.9	2016	SIC-DFT (RXH)
		[95]	$^{2}D_{3/2},4d^{1}$	126.74	2016	TD-DFT (PGG)
		[162]	$^{2}D_{3/2},4d^{1}$	163 ± 12	2016	LR-CCSD
		[5]		162 ± 12	2019	recommended
40	Zr	[54,121]	$^3F_2, 4d^2$	121 ± 30	2004	R, Dirac, LDA
		[72]	$^3F_2, 4d^2$	112 ± 13	2015	exp.
		[162]	$^3F_2, 4d^2$	119.97	2016	LR-CCSD
		[125]	$^{3}F_{2},4d^{2}$	112	2016	TD-DFT (LEXX)
		[95]	$^3F_2, 4d^2$	109.8	2016	SIC-DFT (RXH)
		[95]	$^3F_2, 4d^2$	130.5	2016	TD-DFT (PGG)
		[5]		112 ± 13	2019	recommended
41	Nb	[54,121]	$^6D_{1/2}, 4d^4$	106 ± 27	2004	R, Dirac, LDA
		[72]	$^{6}D_{1/2}, 4d^{4}$	97.9 ± 7.4	2015	exp.
		[162]	$^{6}D_{1/2}, 4d^{4}$	101.60	2016	LR-CCSD
		[125]	$^{6}D_{1/2}, 4d^{4}$	97.9	2016	TD-DFT (LEXX)
		[95]	$^6D_{1/2}, 4d^4$	99.6	2016	TD-DFT (PGG)
		[95]	$^{6}D_{1/2}, 4d^{4}$	95.5	2016	SIC-DFT (RXH)

Z	Atom	Refs.	State	α	Year	Comments
		[35]	$^{6}D_{1/2}, 4d^{4}$	106.43	2019	ECP, CCSD
		[5]		98 ± 8	2019	recommended
42	Mo	[163]	$^{7}S_{3},4d^{5}$	61 ± 10	1956	exp.
		[54,121]	$^{7}S_{3},4d^{5}$	86 ± 22	2004	R, Dirac, LDA
		[52]	$^{7}S_{3},4d^{5}$	84	2010	R, CCSD(T)
		[52]	$^{7}S_{3},4d^{5}$	79	2010	MRCI
		[82,128]	$^{7}S, 4d^{5}$	73 ± 11	2012	R, DK, CASPT2
		[72]	$^{7}S_{3},4d^{5}$	87.1 ± 6.1	2015	exp.
		[162]	$^{7}S_{3},4d^{5}$	88.42	2016	LR-CCSD
		[125]	$^{7}S_{3},4d^{5}$	87.1	2016	TD-DFT (LEXX)
		[95]	$^{7}S_{3},4d^{5}$	82.7	2016	TD-DFT (PGG)
		[95]	$^{7}S_{3},4d^{5}$	79.0	2016	SIC-DFT (RXH)
		[35]	$^{7}S_{3},4d^{5}$	85.93	2019	ECP, CCSD
		[5]		87 ± 6	2019	recommended
		[86]	$^{7}S_{3},4d^{5}$	84.355	2021	R, CCSD(T)
		[87]	$^{7}S_{3},4d^{5}$	76 ± 15	2022	exp.
43	Tc	[54,121]	$^6S_{5/2}, 4d^5$	77 ± 20	2004	R, Dirac, LDA
		[52]	$^6S_{5/2}, 4d^5$	78.6	2010	R, CCSD(T)
		[82,128]	$^{6}S, 4d^{5}$	80 ± 12	2012	R, DK, CASPT2
		[125]	$^6S_{5/2}, 4d^5$	79.6	2016	TD-DFT (LEXX)
		[95]	$^6S_{5/2}, 4d^5$	93.9	2016	TD-DFT (PGG)
		[95]	$^6S_{5/2}, 4d^5$	78.5	2016	SIC-DFT (RXH)
		[162]	$^6S_{5/2}, 4d^5$	80.08	2016	LR-CCSD
		[35]	$^6S_{5/2}, 4d^5$	80.9	2019	ECP, CCSD
		[5]		79 ± 10	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
		[46]	$^{6}S_{5/2}, 4d^{5}$	71.113	2021	R, CCSD(T)
		[86]	$^6S_{5/2}, 4d^5$	65.158	2021	R, CCSD(T)
44	Ru	[54,121]	$^{5}F_{5}, 4d^{7}$	65 ± 16	2004	R, Dirac, LDA
		[125]	$^{5}F_{5}, 4d^{7}$	72.3	2016	TD-DFT (LEXX)
		[95]	$^{5}F_{5}, 4d^{7}$	69.5	2016	TD-DFT (PGG)
		[95]	$^{5}F_{5}, 4d^{7}$	71.4	2016	SIC-DFT (RXH)
		[162]	$^{5}F_{5}, 4d^{7}$	65.89	2016	LR-CCSD
		[35]	$^{5}F_{5}, 4d^{7}$	71.27	2019	ECP, CCSD
		[5]		72 ± 10	2019	recommended
45	Rh	[54,121]	$^{4}F_{9/2}, 4d^{8}$	58 ± 15	2004	R, Dirac, LDA
		[72]	$^4F_{9/2}, 4d^8$	11 ± 22	2015	exp. (an unusually low value was obtained)
		[125]	$^4F_{9/2}, 4d^8$	66.4	2016	TD-DFT (LEXX)
		[95]	$^{4}F_{9/2}, 4d^{8}$	66.2	2016	TD-DFT (PGG)
		[95]	$^{4}F_{9/2}, 4d^{8}$	65.7	2016	SIC-DFT (RXH)
		[162]	$^{4}F_{9/2}, 4d^{8}$	56.10	2016	LR-CCSD
		[35]	$^{4}F_{9/2}, 4d^{8}$	61.94	2019	ECP, CCSD
		[5]		66 ± 10	2019	recommended
46	Pd	[54,121]	$^{1}S_{0},4d^{10}$	32 ± 8	2004	R, Dirac, LDA
		[164]	$^{1}S_{0},4d^{10}$	26.612	2008	NR, ECP, CCSD(T)
		[165]	$^{1}S_{0}, 4d^{10}$	24.581	2011	R, DK
		[125]	$^{1}S_{0},4d^{10}$	61.7	2016	TD-DFT (LEXX)
		[95]	$^{1}S_{0},4d^{10}$	20.0	2016	TD-DFT (PGG)
		[95]	$^{1}S_{0},4d^{10}$	61.1	2016	SIC-DFT (RXH)
		[162]	$^{1}S_{0}, 4d^{10}$	23.68	2016	LR-CCSD
		[166]	$^{1}S_{0},4d^{10}$	26.14 ± 0.10	2018	${\tt CCSDTQDP,DKH2+Gaunt,CBS}$

Z	Atom	Refs.	State	α	Year	Comments
		[35]	$^{1}S_{0},4d^{10}$	24.36	2019	ECP, CCSD
		[5]		26.14 ± 0.10	2019	recommended
		[87]	$^{1}S_{0},4d^{10}$	43 ± 9	2022	exp.
47	Ag	[131]	$^2S_{1/2}, 4d^{10}$	55.3 ± 0.5	1997	R, DK, CCSD(T)
		[128]	$^{2}S,4d^{10}$	36.7	2005	R, DK, CCSD(T)
		[30,131]	$^{2}S,4d^{10}$	52.46 ± 0.52	2006	R, DK, CCSD(T)
		[134]	$^2S_{1/2}, 4d^{10}$	46.17	2008	CICP
		[130,132]	$^{2}S,4d^{10}$	52.2	2009	R, PP, QCISD(T)
		[167]	$^2S_{1/2}, 4d^{10}$	56 ± 14	2010	exp.
		[82]	$^2S_{1/2}, 4d^{10}$	63.1 ± 6.3	2012	exp.
		[72]	$^2S_{1/2}, 4d^{10}$	45.9 ± 7.4	2015	exp.
		[135]	$^{2}S,4d^{10}$	55.2	2016	Semi-empirical
		[125]	$^2S_{1/2}, 4d^{10}$	46.2	2016	TD-DFT (LEXX)
		[95]	$^{2}S_{1/2}, 4d^{10}$	63.3	2016	TD-DFT (PGG)
		[95]	$^{2}S_{1/2}, 4d^{10}$	57.3	2016	SIC-DFT (RXH)
		[162]	$^2S_{1/2}, 4d^{10}$	50.60	2016	LR-CCSD
		[35]	$^{2}S_{1/2}, 4d^{10}$	55	2019	ECP, CCSD
		[5]		55 ± 8	2019	recommended
		[23,168]	$^{2}S_{1/2}, 4d^{10}$	50.2	2021	SR, ECP, CCSD(T)
		[169]	$^2S_{1/2}, 4d^{10}$	50.6	2021	R, CI+MBPT
		[54,170][2023114]	$^2S_{1/2}, 4d^{10}$	48.4	2023	R, Dirac, LDA
48	Cd	[137]	$^{1}S, 4d^{10}$	46.8	1995	R, MVD, CCSD(T)
		[171]	$^{1}S_{0},4d^{10}$	49.7 ± 1.6	1995	exp.
		[172]	$^{1}S_{0},4d^{10}$	48.2 ± 1.1	1995	exp.
		[139]	$^{1}S, 4d^{10}$	46.25	1997	R, PP, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[172,173]	$^{1}S_{0}, 4d^{10}$	45.3 ± 1.4	2002	exp.
		[111]	$^{1}S_{0},4d^{10}$	45.91/53.99	2003	$\operatorname{CCSD}\operatorname{R/NR}$
		[128]	$^{1}S,4d^{10}$	46.9	2005	R, DK, CASPT2
		[30,137]	$^{1}S_{0},4d^{10}$	47.55 ± 0.48	2006	R, MVD, CCSD(T)
		[174]	$^{1}S_{0},4d^{10}$	44.63	2008	R, DHF, CPMP
		[141]	$^{1}S_{0},4d^{10}$	45.86 ± 0.15	2014	R, DF, CCSD(T), MBPT3
		[125]	$^{1}S_{0},4d^{10}$	46.7	2016	TD-DFT (LEXX)
		[175]	$^{1}S_{0},4d^{10}$	46.02 ± 0.50	2018	R, DHF, CCSD(T)
		[35]	$^{1}S_{0},4d^{10}$	48.3	2019	ECP, CCSD
		[5]		46 ± 2	2019	recommended
		[154]	$^{1}S_{0},4d^{10}$	39.79	2020	LR-CCSD
		[176]	$^{1}S_{0},4d^{10}$	45.92 ± 0.10	2021	R, CCSD(T)
		[144]	$^{1}S_{0},4d^{10}$	45.8	2021	ECP, CCSD(T)
		[177]	$^{1}S_{0},4d^{10}$	46 ± 2	2021	R, DFCP+RCI
		[178]	$^{1}S_{0},4d^{10}$	47.5 ± 2.0	2022	exp.
49	In	[179]	$^{2}P_{1/2}$	68.7 ± 8.1	1984	exp.
		[146]	$^{2}P_{1/2}$	68.67 ± 0.69	2003	R, DK, CCSD(T)
		[90]	$^{2}P_{1/2}$	70.3	2004	SIC-DFT
		[41]	^{2}P	66.7	2005	R, SF, MRCI, M_L res.
		[41]	$^{2}P_{1/2}/^{2}P_{3/2}$	$61.9 \pm 1.2/69.6 \pm 1.4$	2005	R, Dirac, MRCI, M_J res.
		[93]	$^{2}P_{1/2}/^{2}P_{3/2}$	$66.4 \pm 5.0 / 74.4 \pm 8.0$	2010	SI-SOCI, M_J res.
						R, Dirac, FSCC, M_J res.
		[147]	$^{2}P_{1/2}/^{2}P_{3/2}$	$62.0 \pm 1.9/69.7 \pm 4.0$	2012	$(J = 3/2: M_J = 3/2: 55.1,$
						$M_J = 1/2$: 84.6)
		[41,147]	$^{2}P_{1/2}$	61.5 ± 5.6	2012	CCSD(T)

Z	Atom	Refs.	State	α	Year Comments	Year
		[180]	$^{2}P_{1/2}$	62.4	2013 R, Dirac $+$ Breit, CI $+$ all-order	2013
		[72]	$^{2}P_{1/2}$	62.1 ± 6.1	2015 exp.	2015
		[95]	$^{2}P_{1/2}$	73.1	2016 SIC-DFT (RXH)	2016
		[162]	$^{2}P_{1/2}$	70.22	2016 LR-CCSD	2016
		[5][155]	$^{2}P_{1/2}$	65.2	2019 R, DFT	2019
		[35]	$^{2}P_{1/2}$	67.9	2019 ECP, CCSD	2019
		[5]		65 ± 4	2019 recommended	2019
		[86]	$^{2}P_{1/2}$	70.070	2021 R, $CCSD(T)$	2021
		[96]	$^{2}P_{1/2}$	$64.3 \pm 1.3/82.3 \pm 1.7$	2022 R, Breit+QED, CCSD	2022
		[35][2023185]	$^{2}P_{1/2}$	64.5	2023 R, (D)BSR	2023
50	Sn	[54,121]	^{3}P	52 ± 13	2004 R, Dirac, LDA	2004
		[90]	^{3}P	57.5	2004 SIC-DFT	2004
		[45]	$^{3}P_{0}$	52.9 ± 2.1	$2008 \mathrm{R,Dirac+Gaunt,CCSD}(\mathrm{T})$	2008
		[45]	$^{3}P_{0}$	42.4 ± 11	2008 exp.	2008
		[181]	$^{3}P_{0}$	54.48	2009 R, PP, DFT, BP386	2009
		[72]	${}^{3}P_{0}$	67.5 ± 8.8	2015 exp.	2015
		[95]	$^{3}P_{0}$	57.9	2016 SIC-DFT (RXH)	2016
		[90,125]	$^{3}P_{0}$	60.0	2016 TD-DFT (LEXX)	2016
		[162]	$^{3}P_{0}$	55.95	2016 LR-CCSD	2016
		[35]	$^{3}P_{0}$	54.29	2019 ECP, CCSD	2019
		[5]		53 ± 6	2019 recommended	2019
		[46]	$^{3}P_{0}$	60.115	2021 R, $CCSD(T)$	2021
		[86]	$^{3}P_{0}$	61.063	2021 R, $CCSD(T)$	2021
51	Sb	[54,121]	4S	45 ± 11	2004 R, Dirac, LDA	2004
		[50]	4S	42.2 ± 1.3	2004 R, DK, CASPT2	2004

Z	Atom	Refs.	State	α	Year Comments
		[90]	4S	47.07	2004 SIC-DFT
		[182]	4S	42.26	2007 NR, $CCSD(T)$
		[52]	4S	43.03	2010 ECP, $CCSD(T)$
		[95]	4S	45.7	2016 SIC-DFT (RXH)
		[90,125]	4S	44.0	2016 TD-DFT (LEXX)
		[35]	4S	42.78	2019 ECP, CCSD
		[5]		43 ± 2	2019 recommended
		[53]	4S	42.8	2020 ECP, CCSD(T)
52	Te	[54,121]	^{3}P	37 ± 4	2004 R, LDA
		[90]	^{3}P	40.06	2004 SIC-DFT
		[30,183]	^{3}P	38.1 ± 3.8	2006 QR, MVD-HF, GTO basis set
		[95]	^{3}P	36.9	2016 SIC-DFT (RXH)
		[162]	^{3}P	37.65	2016 LR-CCSD
		[35]	^{3}P	37.51	2019 ECP, CCSD
		[5]		38 ± 4	2019 recommended
		[184]	^{3}P	37.3	2022 R, Dirac, CIPT+SD (RPA)
53	I	[185]	$^{2}P_{3/2}$	32.9 ± 1.3	1997 \exp .
		[185][162]	$^{2}P_{3/2}$	33.4	$1997 \exp.$
		[149]	$^{2}P_{1/2}$	35.1	2002 R, DK, SO-CI
		[149]	$^{2}P_{3/2}$	34.1	2002 R, DK, SO-CI, M_J res.
		[90]	^{2}P	33.6	2004 SIC-DFT
		[30,149,183]	$^{2}P_{3/2}$	33.0 ± 1.7	2006 R, DK, SO-CI
		[95]	^{2}P	30.5	2016 SIC-DFT (RXH)
		[162]	^{2}P	35.00	2016 LR-CCSD
		[35]	^{2}P	31.57	2019 ECP, CCSD

Z Atom	Refs.	State	α	Year	Comments
	[5]		32.9 ± 1.3	2019	recommended
	[46]	^{2}P	31.101	2021	R, CCSD(T)
	[86]	^{2}P	31.114	2021	R, CCSD(T)
54 Xe	[100]	${}^{1}S_{0}$	27.342	1969	exp.
	[56]	${}^{1}S_{0}$	27.078 ± 0.050	1991	exp.
	[150]	${}^{1}S_{0}$	27.16	1992	DOSD (constrained dipole oscillator strength distribution)
	[58]	${}^{1}S_{0}$	27.292	1997	exp.
	[186]	${}^{1}S_{0}$	27.36	1998	R, SOPP, $CCSD(T) + MP2$ basis set correction
	[62]	^{1}S	27.06 ± 0.27	2001	R, DK3, CCSD(T)
	[59]	${}^{1}S_{0}$	27.2937 ± 0.0003	2001	CCSD(T), ECP
	[50]	^{1}S	26.7	2004	R, DK, CASPT2
	[151]	${}^{1}S_{0}$	25.297	2009	R, Dirac, $CCSD/T$
	[167]	${}^{1}S_{0}$	27.42	2010	R, DK3, CCSD(T)
	[152]	$^{1}S_{0}$	26.432	2012	R, DK3, CCSD
	[153]	${}^{1}S_{0}$	26.7	2016	R, RPA, PolPot
	[95]	$^{1}S_{0}$	25.4	2016	SIC-DFT (RXH)
	[162]	${}^{1}S_{0}$	27.30	2016	LR-CCSD
	[187]	${}^{1}S_{0}$	28.4 ± 0.5	2018	R, CCSD(T)
	[188]	$^{1}S_{0}$	27.508	2018	R, CCSD(T)
	[35]	${}^{1}S_{0}$	26.6	2019	ECP, CCSD
	[5]		27.32 ± 0.20	2019	recommended
	[154]	${}^{1}S_{0}$	27.099	2020	R, DHF, MBPT
	[189]	$^{1}S_{0}$	27.55 ± 0.30	2023	CCSD + hyperfine-induced contributions
55 Cs	[69]	$^{2}S_{1/2}$	399.9 ± 1.9	1999	R, Dirac, SD, all orders $+$ exp. data
	[69]	$^{2}S_{1/2}$	401.5	1999	R, SD all orders + exp. data for electronic transitions

Z	Atom	Refs.	State	α	Year	Comments
		[190]	$^{2}S_{1/2}$	401.0 ± 0.6	2003	exp.
		[191]	$^{2}S_{1/2}$	398.2 ± 0.9	2004	R, Dirac, SDpT
		[104]	2S	396.0 ± 5.9	2005	R, DK, CCSD(T), AE
		[192]	$^{2}S_{1/2}$	398.4 ± 0.7	2008	R, DF, RPA, SD-all order
		[105]	$^{2}S_{1/2}$	399.8	2010	Combination of theoretical and experimental data
		[193]	$^{2}S_{1/2}$	399.0	2013	R, Dirac, CCSD(T)
		[33]	$^{2}S_{1/2}$	396.7 ± 7.9	2015	Combination of theoretical and experimental data
		[194]	$^{2}S_{1/2}$	399.5 ± 0.8	2016	R, Dirac, RCC-SD
		[107,108]	$^{2}S_{1/2}$	400.8 ± 0.4	2016	exp.
		[5]		400.9 ± 0.7	2019	recommended
		[23]	$^{2}S_{1/2}$	391.1	2021	SR, CCSD(T), ECP
		[155]	$^{2}S_{1/2}$	399.9 ± 0.6	2022	R, DHF, all order
		[24]	$^{2}S_{1/2}$	399.74 ± 0.55	2022	R, Dirac-HF, pertubative singles $+$ doubles method, RPA
56	Ba	[113]	$^{1}S_{0}$	268 ± 22	1974	exp.
		[26]	$^{1}S_{0}$	261.2	2000	Model potential
		[29,110]	^{1}S	262.2	2006	R, CI, MBPT
		[30,112]	$^{1}S_{0}$	273.5 ± 4.1	2006	R, DK + SO, CCSD(T)
		[29]	$^{1}S_{0}$	272.1	2006	${\rm Hybrid\text{-}RCI} + {\rm MBPT} \ {\rm sum} \ {\rm rule}$
		[195]	$^{1}S_{0}$	275.5 ± 5.5	2007	R, DK, CCSD(T)
		[31]	$^{1}S_{0}$	268.19	2008	R, Dirac, coupled cluster
		[29,105]	$^{1}S_{0}$	273.5 ± 2.0	2010	${\rm Hybrid\text{-}RCI} + {\rm MBPT} \ {\rm sum} \ {\rm rule}, \ {\rm recommended}$
		[196]	$^{1}S_{0}$	272.7	2013	$\rm R,Dirac+Gaunt,CCSD(T)$
		[83]	1S_0	274.68	2014	R, Dirac + Breit, perturbed relativistic
		[00]	\mathcal{D}_0	214.00	2014	coupled-cluster theory (PRCC)
		[33]	$^{1}S_{0}$	278.1 ± 5.6	2015	Combination of theoretical and experimental data

Z	Atom	Refs.	State	α	Year	Comments
		[153]	$^{1}S_{0}$	251	2016	R, RPA, PolPot
		[162]	$^{1}S_{0}$	275.0	2016	LR-CCSD
		[197]	$^{1}S_{0}$	274.92 ± 0.01	2018	CCSD(T), R DKH ECP/CBS
		[36]	$^{1}S_{0}$	273.90/276.98	2019	CCSD(T), R, ECP-46/X2C-46
		[84]	1S_0	269.0	2019	R,~KRCISD/aug-QZ
		[5]		272 ± 10	2019	recommended
		[85]	$^{1}S_{0}$	276.2	2020	R, MCDF
57	La	[54,121]	$^{2}D_{3/2},5d^{1}$	210 ± 52	2004	R, Dirac, LDA
		[161]	$^{2}D_{3/2},5d^{1}$	201 ± 40	2007	TD-DFT
		[198]	$^{2}D_{3/2},5d^{1}$	219.8	2007	R, CASSCF, ECP
		[82,198]	$^{2}D_{3/2},5d^{1}$	220 ± 22	2012	R, CASSCF, ECP
		[199] ${}^2D_{3/2}, 5d^1$	213.7	2014	R, Dirac, CI + MBPT + CP(RPA);	
		[199]	$D_{3/2}, 5a$	210.7	2014	$(\alpha_D=218.7 \text{ for the } 5d^26s^1 \text{ configuration})$
		[72]	$^{2}D_{3/2},5d^{1}$	170.7 ± 8.1	2015	exp.
		[35]	$^{2}D_{3/2},5d^{1}$	214.72	2019	ECP, CCSD
		[5]		215 ± 20	2019	recommended
		[200]	$^{2}D_{3/2},5d^{1}$	190.9	2022	R (ZORA), DFT (B3LYP)
58	Ce	[54,121]	$4f^15d^1$	200 ± 50	2004	R, Dirac, LDA
		[161]	$4f^15d^1$	194 ± 39	2007	TD-DFT
		[199]	$4f^15d^1$	204.7	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4 <i>j</i> 5 <i>a</i>	204.1	2014	$(\alpha_D=223.4 \text{ for the } 4f^2 \text{ configuration})$
		[72]	$^{1}G_{4},4f^{1}5d^{1}$	192 ± 20	2015	exp.
		[5]		205 ± 20	2019	recommended
		[201]	$4f^15d^1$	206.51	2020	R, DKH2-B3LYP/ADZP
		[201]	$4f^15d^1$	219.66	2020	R, DKH2-B3LYP/ADZP-DKH

Z	Atom	Refs.	State	α	Year	Comments
59	Pr	[54,121]	$4f^3$	190 ± 48	2004	R, Dirac, LDA
		[161]	$4f^3$	220 ± 44	2007	TD-DFT
		[199]	$4f^3$	215.8	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4)	219.0	2014	$(\alpha_D = 195.7 \text{ for the } 4f^25d^1 \text{ configuration})$
		[72]	$^4I_{9/2}, 4f^3$	239 ± 28	2015	exp.
		[5]		216 ± 20	2019	recommended
60	Nd	[54,121]	$4f^4$	212 ± 53	2004	R, Dirac, LDA
		[161]	$4f^4$	213 ± 43	2007	TD-DFT
		[199]	$4f^4$	208.4	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4)	200.4	2014	$(\alpha_D = 187.5 \text{ for the } 4f^35d^1 \text{ configuration})$
		[72]	$^{5}I_{4},4f^{4}$	184 ± 20	2015	exp.
		[5]		208 ± 20	2019	recommended
		[201]	$4f^4$	194.56	2020	R,DKH2-B3LYP/ADZP
		[201]	$4f^4$	203.07	2020	R,DKH2-B3LYP/ADZP-DKH
61	Pm	[54,121]	$4f^5$	203 ± 51	2004	R, Dirac, LDA
		[161]	$4f^{5}$	206 ± 41	2007	TD-DFT
		[100]	$4f^5$	200.2	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4)	200.2	2014	$(\alpha_D = 179.3 \text{ for the } 4f^45d^1 \text{ configuration})$
		[5]		200 ± 20	2019	recommended
62	Sm	[54,121]	$4f^6$	194 ± 48	2004	R, Dirac, LDA
		[161]	$4f^6$	200 ± 40	2007	TD-DFT
		[198]	$4f^6$	196.8	2007	R, CASSCF, ECP
		[82,198]	$4f^6$	197 ± 20	2012	R, CASSCF, ECP
		[100]	4 f 6	109 1	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	$4f^6$	192.1	2014	$(\alpha_D = 171.7 \text{ for the } 4f^55d^1 \text{ configuration})$

Z	Atom	Refs.	State	α	Year	Comments
		[72]	$^{7}F_{0}, 4f^{6}$	157 ± 16	2015	exp.
		[5]		192 ± 20	2019	recommended
63	Eu	[54,121]	$4f^7$	187 ± 47	2004	R, Dirac, LDA
		[161]	$4f^{7}$	194 ± 39	2007	TD-DFT
		[198]	$4f^7$	189.4	2007	R, CASSCF, ECP
		[82,198]	$4f^7$	189 ± 19	2012	R, CASSCF, ECP
		[199]	$4f^7$	184.2	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	41	104.2	2014	$(\alpha_D=164.7 \text{ for the } 4f^65d^1 \text{ configuration})$
		[72]	$^8S_{7/2}, 4f^7$	155 ± 25	2015	exp.
		[5]		184 ± 20	2019	recommended
		[202]	$4f^7$	188	2020	$\rm r,CI{+}MBPT$
64	Gd	[54,121]	$4f^75d^1$	159 ± 40	2004	R, Dirac, LDA
		[161]	$4f^75d^1$	161 ± 32	2007	TD-DFT
		[199]	$4f^75d^1$	158.3	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4) 0a	100.0	2014	$(\alpha_D = 194.5 \text{ for the } 4f^75d^26s^1 \text{ configuration})$
		[72]	$^9D_2, 4f^75d^1$	176 ± 26	2015	exp.
		[5]		158 ± 20	2019	recommended
		[202]	$4f^75d^1$	159	2020	R, CI+MBPT
		[201]	$4f^75d^1$	171.40	2020	R, DKH2-B3LYP/ADZP
		[201]	$4f^75d^1$	145.74	2020	R, DKH2-B3LYP/ADZP-DKH
65	Tb	[54,121]	$4f^{9}$	172 ± 43	2004	R, Dirac, LDA
		[161]	$4f^9$	181 ± 36	2007	TD-DFT
		[100]	$4f^{9}$	169.5	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4 J	103.0	2014	$(\alpha_D=152.4 \text{ for the } 4f^85d^1 \text{ configuration})$
		[72]	$^{6}H_{15/2}, 4f^{9}$	159 ± 11	2015	exp.

Z	Atom	Refs.	State	α	Year	Comments
		[5]		170 ± 20	2019	recommended
66	Dy	[54,121]	$4f^{10}$	165 ± 41	2004	R, Dirac, LDA
		[161]	$4f^{10}$	175 ± 35	2007	TD-DFT
		[199]	$4f^{10}$	162.7	2014	R, Dirac, CI + MBPT + CP(RPA);
		[133]	±J	102.1	2014	$(\alpha_D = 148.3 \text{ for the } 4f^95d^1 \text{ configuration})$
		[199]	$4f^{10}$	165	2014	R, RPA, PolPot
		[72]	$^5I_8, 4f^{10}$	157 ± 11	2015	exp.
		[153]	$4f^{10}$	168	2016	R, RPA, PolPot
		[203]	$^5I_8, 4f^{10}$	164	2016	exp.
		[5]		163 ± 15	2019	recommended
		[202]	$4f^{10}$	164	2020	R, CI+MBPT
		[201]	$4f^{10}$	169.69	2020	R, DKH2-B3LYP/ADZP
		[201]	$4f^{10}$	157.20	2020	R, DKH2-B3LYP/ADZP-DKH
67	Но	[54,121]	$4f^{11}$	159 ± 40	2004	R, Dirac, LDA
		[161]	$4f^{11}$	170 ± 34	2007	TD-DFT
		[199]	$4f^{11}$	156.3	2014	R, Dirac, CI + MBPT + CP(RPA);
		[133]	±J	100.0	2014	$(\alpha_D=142.9 ext{ for the } 4f^{10}5d^1 ext{ configuration})$
		[72]	$^4I_{15/2}, 4f^{11}$	145 ± 12	2015	exp.
		[153]	$4f^{11}$	161	2016	R, RPA, PolPot
		[203]	$^4I_{15/2}, 4f^{11}$	160	2016	exp.
		[5]		156 ± 10	2019	recommended
68	Er	[54,121]	$4f^{12}$	153 ± 38	2004	R, Dirac, LDA
		[161]	$4f^{12}$	166 ± 33	2007	TD-DFT
		[199]	$4f^{12}$	150.2	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	4 J	100.2	2014	$(\alpha_D = 139.4 \text{ for the } 4f^{11}5d^1 \text{ configuration})$

Z	Atom	Refs.	State	α	Year	Comments
		[199]	$4f^{12}$	169	2014	R, RPA, PolPot
		[204]	$4f^{12}$	141 ± 7	2014	R, HF, Darwin, SO
		[72]	$^3H_6, 4f^{12}$	217 ± 39	2015	exp.
		[153]	$4f^{12}$	154	2016	R, RPA, PolPot
		[205]	$4f^{12}$	149	2018	R, HF, Darwin, SO
		[205]	$^3H_6, 4f^{12}$	155	2018	exp.
		[5]		150 ± 10	2019	recommended
		[201]	$4f^{12}$	143.98	2020	R, DKH2-B3LYP/ADZP
		[201]	$4f^{12}$	145.01	2020	R, DKH2-B3LYP/ADZP-DKH
		[206]	$^3H_6, 4f^{12}$	166.67	2020	R, Dirac, CIPT+HF+RPA
69	Tm	[54,121]	$4f^{13}$	147 ± 37	2004	R, Dirac, LDA
		[161]	$4f^{13}$	161 ± 32	2007	TD-DFT
		[198]	$4f^{13}$	152.2	2007	R, CASSCF, ECP
		[82,207]	$4f^{13}$	152 ± 15	2012	R, MR-ACQQ, ECP
		[199]	$4f^{13}$	144.3	2014	R, Dirac, CI + MBPT + CP(RPA);
		[100]	1 J	111.0	2014	$(\alpha_D = 137.8 \text{ for the } 4f^{12}5d^1 \text{ configuration})$
		[72]	$^{2}F_{7/2}, 4f^{13}$	130 ± 16	2015	exp.
		[153]	$4f^{13}$	147	2016	R, RPA, PolPot
		[5]		144 ± 15	2019	recommended
		[206]	$^{2}F_{7/2}^{0},4f^{13}$	153.02	2020	R, Dirac, CIPT+HF+RPA
70	Yb	[208]	$^{1}S_{0},4f^{14}$	141 ± 4	1998	R,DHF+Breit+QED,PP
		[54,121]	$^{1}S_{0},4f^{14}$	142 ± 36	2004	R, Dirac, LDA
		[207]	$^{1}S_{0},4f^{14}$	152.9	2006	R, Dirac, CCSD(T)
		[209]	$^{1}S_{0},4f^{14}$	143	2007	R, DCHF, CCSD(T), ECP
		[161]	$^{1}S_{0},4f^{14}$	157.3	2007	TD-DFT

Z Atom	Refs.	State	α	Year	Comments
	[198]	$^{1}S_{0}, 4f^{14}$	151.0	2007	R, CASSCF, ECP
	[31]	$^{1}S_{0},4f^{14}$	144.6 ± 5.6	2008	R, Dirac, coupled cluster
	[210]	$^{1}S_{0},4f^{14}$	140.7 ± 7.0	2009	R, Dirac + Gaunt, CCSD(T)
	[211]	$^{1}S_{0},4f^{14}$	144	2009	R, CCSD, PolPot
	[210]	$^{1}S_{0},4f^{14}$	140.44	2009	R, Dirac, CCSD(T)
	[212]	$^{1}S_{0},4f^{14}$	142.6	2010	ECP, CCSD(T)
	[213]	$^{1}S_{0},4f^{14}$	141 ± 6	2011	R,Dirac,CI+MBPT+experimentaldata,
	[210]	$\mathcal{D}0, \mathcal{A}J$	141 ± 0	2011	see also ref [214] for error estimates
	[215]	$^{1}S_{0},4f^{14}$	141 ± 2	2012	$\rm R,Dirac,CI+MBPT+RPA$
	[82,207]	$^{1}S_{0},4f^{14}$	145.3 ± 4.4	2012	R, Dirac, CCSD(T)
	[214]	$^{1}S_{0},4f^{14}$	139.3 ± 5.9	2012	exp.
					R, Dirac, CI+ MBPT+ CP(RPA);
	[199]	$^{1}S_{0},4f^{14}$	138.9	2014	$(\alpha_D=312.2 \; { m for}$
					the $4f^146s^16p^1$ configuration)
	[72]	$^{1}S_{0},4f^{14}$	147 ± 20	2015	exp.
	[153]	$^{1}S_{0},4f^{14}$	142	2016	R, RPA, PolPot
	[216]	$^{1}S_{0},4f^{14}$	135.73	2016	R, DFT, CAM-B3LYP, 2c-NESC
	[216]	$^{1}S_{0},4f^{14}$	147.26	2016	R, DFT, PBE0, 2c-NESC
	[217]	$^{1}S_{0},4f^{14}$	135.50	2017	R, CCSD
	[187]	$^{1}S_{0},4f^{14}$	136 ± 5	2018	R, CCSD(T)
	[218]	$^{1}S_{0},4f^{14}$	135 ± 3	2018	R, CI+MBPT+FC
	[219]	$^{1}S_{0},4f^{14}$	150 ± 9	2018	R, CIPT
	[36]	$^{1}S_{0},4f^{14}$	140.54	2019	R, CCSD(T)
	[5]		139 ± 6	2019	recommended
	[202]	$^{1}S_{0},4f^{14}$	147	2020	R, CI+MBPT

Z	Atom	Refs.	State	α	Year	Comments
		[201]	$^{1}S_{0}, 4f^{14}$	133.65	2020	R, DKH2-B3LYP/ADZP
		[201]	$^{1}S_{0},4f^{14}$	134.44	2020	R, DKH2-B3LYP/ADZP
		[206]	$^{1}S_{0},4f^{14}$	143	2020	R, Dirac, CIPT+HF+RPA
		[168]	$^{1}S_{0},4f^{14}$	136.0	2021	SR, ECP, CCSD(T)
		[220]	$^{1}S_{0},4f^{14}$	139 ± 3	2023	${\bf MCDHF+Breit+QED}$
71	Lu	[54,121]	$^{2}D_{3/2},5d^{1}$	148 ± 17	2004	R, Dirac, LDA
		[161]	$^{2}D_{3/2}, 5d^{1}$	131 ± 26	2007	TD-DFT
						R, Dirac, CI + MBPT + CP(RPA);
		[199]	$^{2}D_{3/2},5d^{1}$	137 ± 7	2014	$(\alpha_D=61.3 \text{ for the}$
						$4f^{14}6s^26p^1$ configuration)
		[221]	$^{2}D_{3/2}, 5d^{1}$	145	2014	R,DF,CI+all-order+Breit+QED
		[72]	$^{2}D_{3/2}, 5d^{1}$	124 ± 18	2015	exp.
		[5]		137 ± 7	2019	recommended
72	Hf	[54,121]	$^3F_2, 5d^2$	109 ± 27	2004	R, Dirac, LDA
		[221]	$^3F_2, 5d^2$	97	2014	R,DF,CI+all-order+Breit+QED
		[199,221]	$^{3}F_{2},5d^{2}$	103 ± 5	2014	R,DF,CI+MBPT+Breit+QED
		[72]	$^3F_2, 5d^2$	84 ± 19	2015	exp.
		[77,125]	$^{3}F_{2},5d^{2}$	83.7	2016	NR, MBPT4
		[162]	$^3F_2, 5d^2$	99.52	2016	LR-CCSD
		[35]	$^{3}F_{2},5d^{2}$	102.55	2019	ECP, CCSD
		[5]		103 ± 6	2019	recommended
		[200]	$^3F_2, 5d^2$	95.6	2022	R (ZORA), DFT (B3LYP)
		[222]	$^3F_2, 5d^2$	94.2	2023	R (ATZP-ZORA), DFT (B3LYP)
73	Та	[163]	$^4F_{3/2}, 5d^3$	115 ± 20	1956	exp.
		[223]	$^4F_{3/2}, 5d^3$	128 ± 20	1986	exp.

Z	Atom	Refs.	State	α	Year	Comments
		[223]	$^4F_{3/2}, 5d^3$	108 ± 20	1986	exp.
		[54,121]	$^4F_{3/2}, 5d^3$	88 ± 22	2004	R, Dirac, LDA
		[72]	$^4F_{3/2}, 5d^3$	58 ± 12	2015	exp.
		[153]	$^4F_{3/2}, 5d^3$	73.7	2016	R, RPA, PolPot
		[125]	$^4F_{3/2}, 5d^3$	73.9	2016	TD-DFT (LEXX)
		[162]	$^4F_{3/2}, 5d^3$	82.53	2016	LR-CCSD
		[35]	$^4F_{3/2}, 5d^3$	84.22	2019	ECP, CCSD
		[5]		74 ± 20	2019	recommended
		[200]	$^4F_{3/2}, 5d^3$	79.6	2022	R (ZORA), DFT (B3LYP)
74	W	[163]	$^{5}D_{0},5d^{4}$	47 ± 7	1956	exp.
		[54,121]	$^{5}D_{0},5d^{4}$	75 ± 19	2004	R, Dirac, LDA
		[153]	$^{5}d^{4}$	68.1	2016	R, RPA, PolPot
		[125]	$^{5}D_{0},5d^{4}$	65.8	2016	TD-DFT (LEXX)
		[162]	$^{5}D_{0}, 5d^{4}$	68.5	2016	LR-CCSD
		[35]	$^{5}D_{0},5d^{4}$	71.04	2019	ECP, CCSD
		[5]		68 ± 15	2019	recommended
		[200]	$^{5}D_{0}, 5d^{4}$	65 ± 13	2022	R (ZORA), DFT (B3LYP)
		[200]	$^{5}D_{0}, 5d^{4}$	73.2	2022	R (ZORA), $CCSD(T)$
		[87]	$^{5}D_{0}, 5d^{4}$	68.98	2022	exp.
75	Re	[54,121]	$^6S_{5/2}, 5d^5$	65 ± 16	2004	R, Dirac, LDA
		[128]	$^6S_{5/2}, 5d^5$	61.1	2005	DK, CASPT2
		[52]	$^6S_{5/2}, 5d^5$	61.9	2010	R, CCSD(T)
		[153]	$^{5}d^{5}$	65.6	2016	R, RPA, PolPot
		[125]	$^6S_{5/2}, 5d^5$	60.2	2016	TD-DFT (LEXX)
		[162]	$^6S_{5/2}, 5d^5$	63.04	2016	LR-CCSD

Z	Atom	Refs.	State	α	Year	Comments
		[35]	$^6S_{5/2}, 5d^5$	65.55	2019	ECP, CCSD
		[5]		62 ± 3	2019	recommended
76	Os	[54,121]	$^5D_4, 5d^6$	57	2004	R, Dirac, LDA
		[153]	$^{5}d^{6}$	57.8	2016	R, RPA, PolPot
		[125]	$^{5}D_{4}, 5d^{6}$	55.3	2016	TD-DFT (LEXX)
		[162]	$^{5}D_{4}, 5d^{6}$	55.06	2016	LR-CCSD
		[35]	$^{5}D_{4}, 5d^{6}$	56.56	2019	ECP, CCSD
		[5]		57 ± 3	2019	recommended
		[200]	$^{5}D_{4}, 5d^{6}$	53.1	2022	R (ZORA), DFT (B3LYP)
		[222]	$^{5}D_{4}, 5d^{6}$	54.1	2023	R (ATZP-ZORA), DFT (B3LYP)
77	Ir	[223,224]	$^4F_{9/2}, 5d^7$	54.0 ± 6.7	1986	exp.
		[54,121]	$^4F_{9/2}, 5d^7$	51 ± 13	2004	R, Dirac, LDA
		[153]	$^{5}d^{7}$	51.7	2016	R, RPA, PolPot
		[125]	$^{4}F_{9/2}, 5d^{7}$	51.3	2016	TD-DFT (LEXX)
		[125]	$^{4}F_{9/2}, 5d^{7}$	51.3	2016	TD-DFT (LEXX)
		[162]	$^4F_{9/2}, 5d^7$	42.51	2016	LR-CCSD
		[35]	$^{4}F_{9/2}, 5d^{7}$	49.48	2019	ECP, CCSD
		[5]		54 ± 7	2019	recommended
		[200]	$^{4}F_{9/2}, 5d^{7}$	40.0	2022	R (ZORA), DFT (B3LYP)
		[222]	$^4F_{9/2}, 5d^7$	39.8	2023	R (ATZP-ZORA), DFT (B3LYP)
78	Pt	[54,121]	$^{3}D_{3}, 5d^{9}$	44 ± 11	2004	R, Dirac, LDA
		[125]	$^{3}D_{3}, 5d^{9}$	48.0	2016	TD-DFT (LEXX)
		[162]	$^{3}D_{3}, 5d^{9}$	39.68	2016	LR-CCSD
		[35]	$^{3}D_{3}, 5d^{9}$	43.83	2019	ECP, CCSD
		[5]		48 ± 4	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
		[225]	$^{3}D_{3}, 5d^{9}$	41.2 ± 1.1	2021	ECP, CCSD(T)
		[200]	$^{3}D_{3}, 5d^{9}$	37.5	2022	R (ZORA), DFT (B3LYP)
		[87]	$^{3}D_{3}, 5d^{9}$	38 ± 8	2022	exp.
		[222]	$^{3}D_{3}, 5d^{9}$	40.9	2023	R (ATZP-ZORA), DFT (B3LYP)
79	Au	[226]	$^2S_{1/2}, 5d^{10}$	30 ± 4	1997	R, HFR, HS, CI, CACP
		[227]	$^{2}S,5d^{10}$	34.9	2000	R, DK, CCSD(T)
		[128]	$^2S_{1/2}, 5d^{10}$	39.1 ± 9.8	2005	exp.
		[30,131]	$^{2}S,5d^{10}$	36.06 ± 0.54	2006	R, DK, CCSD(T)
		[130,132,228]	$^{2}S,5d^{10}$	35.1	2009	R, PP, QCISD(T)
		[82,128]	$^{2}S,5d^{10}$	27.9 ± 4.2	2012	R, DK, CASPT2
		[82,94]	$^2S_{1/2}, 5d^{10}$	49.1 ± 4.9	2012	exp.
		[125]	$^2S_{1/2}, 5d^{10}$	45.4	2016	TD-DFT (LEXX)
		[162]	$^2S_{1/2}, 5d^{10}$	36.50	2016	LR-CCSD
		[35]	$^2S_{1/2}, 5d^{10}$	39.56	2019	ECP, CCSD
		[5]		36 ± 3	2019	recommended
		[169]	$^2S_{1/2}, 5d^{10}$	34.0	2021	R, CI+MBPT
		[168]	$^2S_{1/2}, 5d^{10}$	36.3	2021	SR, ECP, CCSD(T)
		[200]	$^2S_{1/2}, 5d^{10}$	34.2	2022	R (ZORA), DFT (B3LYP)
		[87]	$^2S_{1/2}, 5d^{10}$	40 ± 8	2022	exp.
		[222]	$^2S_{1/2}, 5d^{10}$	34.1	2023	R (ATZP-ZORA), DFT (B3LYP)
80	Hg	[137]	$^{1}S, 5d^{10}$	31.24	1995	R, MVD, CCSD(T)
		[229]	$^{1}S_{0}, 5d^{10}$	33.91 ± 0.34	1996	exp.
		[139]	$^{1}S, 5d^{10}$	34.42	1997	R, PP, CCSD(T)
		[128]	$^{1}S,5d^{10}$	33.3	2005	R, DK, CASPT2
		[30,230]	$^{1}S_{0}, 5d^{10}$	34.73 ± 0.52	2006	R, DK, CCSD(T)

Z	Atom	Refs.	State	α	Year	Comments
		[231]	$^{1}S_{0},5d^{10}$	34.15	2008	R, Dirac, CCSD(T)
		[137,143,232]	$^{1}S_{0}, 5d^{10}$	33.75	2012	exp.
		[233]	$^{1}S_{0}, 5d^{10}$	34.27	2015	m R,Dirac,CCSDT+QED
		[234]	$^{1}S_{0}, 5d^{10}$	34.1	2015	R, Dirac, CCSD(T)
		[142]	$^{1}S_{0}, 5d^{10}$	33.59	2015	R, PRCC(T)
		[135]	$^{1}S,5d^{10}$	32.9	2016	semi-empirical
		[153]	$^{1}S_{0}, 5d^{10}$	39.1	2016	R, RPA, PolPot
		[162]	$^{1}S_{0}, 5d^{10}$	33.90	2016	LR-CCSD
		[125]	$^{1}S_{0}, 5d^{10}$	33.5	2016	TD-DFT (LEXX)
		[235]	$^{1}S_{0}, 5d^{10}$	34.2 ± 0.5	2018	R, CCSD(T) + Breit
		[187]	$^{1}S_{0}, 5d^{10}$	34.5 ± 0.8	2018	R, CCSD(T)
		[35]	$^{1}S_{0}, 5d^{10}$	35.45	2019	ECP, CCSD
		[5]		33.91 ± 0.34	2019	recommended
		[236]	$^{1}S_{0}, 5d^{10}$	33.69 ± 0.34	2021	PRCC(T) + Breitt + QED
		[200]	$^{1}S_{0}, 5d^{10}$	36.1	2022	R (ZORA), DFT (B3LYP)
		[222]	$^{1}S_{0}, 5d^{10}$	34.9	2023	R (ATZP-ZORA), DFT (B3LYP)
81	Tl	[146]	^{2}P	50.48	2003	R, DK, CCSD(T)
		[146]	^{2}P	50.62	2003	R, DK, CCSD(T)
		[54]	$^{2}P_{1/2}$	51.3 ± 5.4	2004	exp.
		[41]	^{2}P	70.0	2005	R, SF, MRCI, M_L res.
		[41]	$^{2}P_{1/2}/^{2}P_{3/2}$	51.6/81.2	2005	R, Dirac, MRCI, M_J res.
		[237]	^{2}P	50.4	2006	R, DHF, SD, MBPT all-order
		[238]	$^{2}P_{1/2}$	52.3	2008	R, Dirac, FS-CCSD
		[239]	^{2}P	48.81	2009	R, Dirac, CI+MBPT
		[133,240]	^{2}P	49.2	2010	$\mathrm{RCI} + \mathrm{MBPT}$

Z	Atom	Refs.	State	α	Year	Comments
		[93]	$^{2}P_{1/2}/^{2}P_{3/2}$	$50.7 \pm 5.0 / 78.5 \pm 6.0$	2010	SI-SOCI, M_J res.
						R, Dirac, FSCC, M_J res.
		[147]	$^{2}P_{1/2}/^{2}P_{3/2}$	50.3/80.9	2012	$(J=3/2: M_J=3/2: 56.7,$
						$M_J = 1/2$: 105.1)
		[82,146]	^{2}P	71.7 ± 1.1	2012	R, DK, CCSD(T)
		[147]	^{2}P	$52.1 \pm 1.6 / 80.4 \pm 4.0$	2012	R, Dirac, FSCC
		[241]	^{2}P	50.0 ± 1.0	2013	R, CC
		[241]	^{2}P	50.7	2013	R, CI + all-order
		[234,238]	^{2}P	51.3	2015	R, Dirac, FS-CCSD
		[242]	^{2}P	47.78	2016	R, Dirac+Breit+QED, SD+CI, RPA
		[125]	^{2}P	51.4	2016	TD-DFT (LEXX)
		[162]	^{2}P	69.92	2016	LR-CCSD
		[243]	^{2}P	49.2 ± 2.0	2018	R, Dirac+Breit, CCSD
		[35]	^{2}P	70.06	2019	ECP, CCSD
		[5]		50 ± 2	2019	recommended
82	Pb	[121]	^{3}P	46 ± 11	1987	R, Dirac, LDA
		[244]	$^{3}P_{0}$	51.0	2005	R, SOPP, CCSD(T)
		[45]	${}^{3}P_{0}$	47.70	2008	R, Dirac+ Gaunt, CCSD(T)
		[231]	$^{3}P_{0}$	46.96	2008	R, Dirac, CCSD(T)
		[45]	${}^{3}P_{0}$	47.3 ± 1.9	2008	R, Dirac+ Gaunt, CCSD(T)
		[45,54]	$^{3}P_{0}$	47.1 ± 7.1	2008	exp.
		[234]	$^{3}P_{0}$	47.0	2015	R, Dirac, FS-CCSD
		[72]	$^{3}P_{0}$	56 ± 18	2015	exp.
		[242]	${}^{3}P_{0}$	44.04	2016	R,Dirac+Breit+QED,SD+CI,RPA
		[245]	$^{3}P_{0}$	46.5	2016	R, CI + all-order, RPA

Z	Atom	Refs.	State	α	Year	Comments
		[125]	$^{3}P_{0}$	47.9	2016	TD-DFT (LEXX)
		[162]	${}^{3}P_{0}$	61.80	2016	LR-CCSD
		[35]	${}^{3}P_{0}$	60.07	2019	EP, CCSD
		[5]		47 ± 3	2019	recommended
		[202]	${}^{3}P_{0}$	46	2020	R, CI+MBPT
		[246]	${}^{3}P_{0}$	47.0	2020	R, FS-RCCSD(T)
		[222]	${}^{3}P_{0}$	56.3	2023	R (ATZP-ZORA), DFT(B3LYP)
83	Bi	[247]	4S	52.85	1992	R, Cowan-Griffin, HF only
		[54,121]	4S	50 ± 12	2004	R, Dirac, LDA
		[50]	4S	48.6	2004	R, DK, CASPT2
		[52]	4S	48.75	2010	ECP, CCSD(T)
		[72]	$^{4}S_{3/2}$	55 ± 11	2015	exp.
		[242]	4S	44.62	2016	R,Dirac+Breit+QED,SD+CI,RPA
		[125]	4S	43.2	2016	TD-DFT (LEXX)
		[162]	4S	49.02	2016	LR-CCSD
		[35]	4S	48.88	2019	ECP, CCSD
		[5]		48 ± 4	2019	recommended
		[53]	4S	48.8	2020	ECP, CCSD(T)
		[200]	4S	44.36	2022	R (ZORA), CCSD(T)
		[200]	4S	53.1	2022	R (ATZP-ZORA), DFT (B3LYP)
		[222]	4S	46.6	2023	R (ZORA), DFT (B3LYP)
84	Po	[247]	${}^{3}P_{2}$	46.8	1992	R, Cowan-Griffin, HF only, M_L res.
		[54,121]	${}^{3}P_{2}$	46	2004	R, Dirac, LDA
		[30,82,247]	${}^{3}P_{2}$	43.6 ± 4.4	2012	R, Cowan-Griffin, HF only
		[162]	${}^{3}P_{2}$	45.01	2016	LR-CCSD

Z	Atom	Refs.	State	α	Year	Comments
		[35]	${}^{3}P_{2}$	44.22	2019	ECP, CCSD
		[5]		44 ± 4	2019	recommended
		[200]	${}^{3}P_{2}$	44.77	2022	R (ZORA), $CCSD(T)$
		[200]	${}^{3}P_{2}$	47.1	2022	R (ZORA), DFT (B3LYP)
		[222]	${}^{3}P_{2}$	46.5	2023	R (ATZP-ZORA), DFT (B3LYP)
35	At	[149]	$^{2}P_{1/2}$	45.6	2002	R, DK, SO-CI
		[149]	$^{2}P_{3/2}$	41.9	2002	R, DK, SO-CI, M_J res.
		[30,82,247]	$^{2}P_{3/2}$	40.7 ± 2.0	2012	R, Cowan-Griffin, HF only
		[162]	$^{2}P_{3/2}$	38.93	2016	LR-CCSD
		[35]	$^{2}P_{3/2}$	38.15	2019	ECP, CCSD
		[5]		42 ± 4	2019	recommended
		[200]	$^{2}P_{3/2}$	40.4	2022	R (ZORA), DFT (B3LYP)
		[222]	$^{2}P_{3/2}$	41.1	2023	R (ATZP-ZORA), DFT (B3LYP)
86	Rn	[186]	${}^{1}S_{0}$	34.33	1998	R, SOPP, $CCSD(T) + MP2$ basis set correction
		[186]	${}^{1}S_{0}$	34.60	1998	R, SOPP, $CCSD(T) + MP2$ basis set correction
		[62]	^{1}S	33.18	2001	R, DK3, CCSD(T)
		[59]	${}^{1}S_{0}$	34.4374 ± 0.0001	2001	CCSD(T), ECP
		[50]	^{1}S	32.6	2004	R, DK, CASPT2
		[54,121]	${}^{1}S_{0}$	36 ± 5	2004	R, Dirac, LDA
		[244]	${}^{1}S_{0}$	28.6	2005	R, SOPP, CCSD(T)
		[227,248]	${}^{1}S_{0}$	35.77	2005	R, DK, CCSD(T)
		[248]	${}^{1}S_{0}$	35.47	2005	CCSD, ECP
		[152]	${}^{1}S_{0}$	35.391	2012	R, RPA, PolPot
		[249]	${}^{1}S_{0}$	35.87	2012	R, DFT, DC, PBE38
		[250]	${}^{1}S_{0}$	34.89	2012	R, DKH2, B3LYP, SARC

Z	Atom	Refs.	State	α	Year Comments
		[250]	$^{1}S_{0}$	34.70	2012 R, DKH2, B3LYP, UGBS
		[249]	$^{1}S_{0}$	33.62	2012 R, DFT, sfDC, PBE38
		[82,251]	$^{1}S_{0}$	35.04 ± 1.8	2012 R, Dirac, CCSD(T)
		[234]	${}^{1}S_{0}$	35.0	2015 R, Dirac, CCSD(T)
		[153]	${}^{1}S_{0}$	34.2	2016 R, RPA, PolPot
		[125]	${}^{1}S_{0}$	32.2	2016 TD-DFT (LEXX)
		[162]	${}^{1}S_{0}$	33.54	2016 LR-CCSD
		[187,252]	${}^{1}S_{0}$	37.0 ± 0.5	2018 R, CCSD(T)
		[252]	${}^{1}S_{0}$	35.3	2018 R, Dirac-Gaunt, CCSD(T)
		[253]	${}^{1}S_{0}$	35.00	2018 R, RPA
		[35]	${}^{1}S_{0}$	32.8	2019 ECP, CCSD
		[5]		35 ± 2	2019 recommended
		[202]	${}^{1}S_{0}$	35	2020 R, RPA
		[154]	${}^{1}S_{0}$	34.66	2020 R, DHF, MBPT
		[254]	$^{1}S_{0}$	36.14	2020 R, DK, CCSD(T)
		[236]	${}^{1}S_{0}$	35.53 ± 0.36	$2021 \mathrm{PRCC}(\mathrm{T}) + \mathrm{Breit} + \mathrm{QED}$
		[200]	${}^{1}S_{0}$	34.6	2022 R (ZORA), DFT (B3LYP)
		[222]	${}^{1}S_{0}$	30.9	2023 R (ATZP-ZORA), DFT (B3LYP)
87	Fr	[104]	2S	315.2	2005 R, DK, CCSD(T), AE
		[255]	$^{2}S_{1/2}$	313.7	2007 R, DF, RPA, MBPT
		[69,105]	$^{2}S_{1/2}$	317.8 ± 2.4	2010 R, Dirac, SD all orders $+$ experimental data
		[193]	$^{2}S_{1/2}$	311.5	2013 R, Dirac, CCSD(T)
		[162]	$^{2}S_{1/2}$	317.8	2016 LR-CCSD
		[256]	$^{2}S_{1/2}$	316.8	2016 R, Dirac-Fock, CCSD(T)
		[5]		317.8 ± 2.4	2019 recommended

Z	Atom	Refs.	State	α	Year	Comments
		[257]	$^{2}S_{1/2}$	317.1 ± 1.3	2021	R, Dirac-HF, CCSD
		[23]	$^{2}S_{1/2}$	325.8	2021	SR, CCSD(T), ECP
		[258]	$^{2}S_{1/2}$	316.6 ± 2.4	2022	R, all orders, Dirac-Fock, RPA
		[24]	$^{2}S_{1/2}$	316.6 ± 1.5	2022	R, Dirac-HF, perturbative singles $+$ doubles method, RPA
88	Ra	[112]	${}^{1}S_{0}$	248.56	2004	R, DK + SO, CCSD(T)
		[30,112]	${}^{1}S_{0}$	246.2 ± 4.9	2006	R, DK + SO, CCSD(T)
		[196]	${}^{1}S_{0}$	242.8	2013	m R,Dirac+Gaunt,CCSD(T)
		[83]	${}^{1}S_{0}$	242.42	2014	R, Dirac + Breit, perturbed relativistic
		[00]	\mathcal{D}_0	242.42	2014	coupled-cluster theory (PRCC)
		[153]	${}^{1}S_{0}$	232	2016	R, RPA, PolPot
		[162]	${}^{1}S_{0}$	246.2	2016	LR-CCSD
		[187]	${}^{1}S_{0}$	236 ± 15	2018	R, CCSD(T)
		[84]	${}^{1}S_{0}$	248.5	2019	$R,\ KRCISD/aug-QZ$
		[5]		246 ± 4	2019	recommended
		[154]	${}^{1}S_{0}$	247.838	2020	R, DHF, MBPT
		[202]	${}^{1}S_{0}$	250	2020	R, CI+MBPT
		[23]	${}^{1}S_{0}$	250.5	2021	SR, CCSD(T), ECP
89	Ac	[54,121]	$^{2}D_{3/2},6d^{1}$	217 ± 44	2004	R, Dirac, LDA
		[199]	$^{2}D_{3/2},6d^{1}$	203.3	2014	R, Dirac, CI + MBPT + CP(RPA); ($\alpha_D=141.9$ for the $7s^27p^1$ configuration)
		[5]		203 ± 12	2019	recommended
		[202]	$^{2}D_{3/2},6d^{1}$	195	2020	R, CI+MBPT
90	Th	[54,121]	$6d^2$	217 ± 54	2004	R, Dirac, LDA
		[82]	$6d^2$	166.7	2012	Estimated from correlation with ionization energies
		[5]		217 ± 54	2019	recommended
91	Pa	[54,121]	$5f^26d^1$	171 ± 34	2004	R, Dirac, LDA

Z	Atom	Refs.	State	α	Year	Comments
		[100]	z 12c J1	154.4	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	$5f^26d^1$	154.4	2014	$(\alpha_D = 151.9 \text{ for the } 5f^26d^27s^1 \text{ configuration})$
		[5]		154 ± 20	2019	recommended
		[202]	$5f^26d^1$	170	2020	R, CI+MBPT
92	U	[259]	$^5L_6, 5f^36d^1$	137 ± 9	1994	exp.
		[54,121]	$5f^36d^1$	153 ± 38	2004	R, Dirac, LDA
		[199]	$5f^36d^1$	127.8	2014	R, Dirac, CI + MBPT + CP(RPA); ($\alpha_D = 153.2$ for the $5f^4$ configuration)
		[5]		129 ± 17	2019	recommended
		[202]	$5f^{3}6d^{1}$	165	2020	R, CI+MBPT
93	Np	[54,121]	$5f^46d^1$	167 ± 42	2004	R, Dirac, LDA
		[100]	E 146 J1	150 5	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	$5f^46d^1$	150.5	2014	$(\alpha_D=127.5 \text{ for the } 5f^5 \text{ configuration})$
		[5]		151 ± 20	2019	recommended
		[202]	$5f^46d^1$	160	2020	R, CI+MBPT
94	Pu	[54,121]	$5f^6$	165 ± 41	2004	R, Dirac, LDA
		[199]	$5f^6$	132.2	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	<i>5 j</i>	102.2	2014	$(\alpha_D=147.6 \text{ for the } 5f^56d^1 \text{ configuration})$
		[5]		132 ± 20	2019	recommended
		[202]	$5f^6$	144	2020	R, CI+MBPT
95	Am	[54,121]	$5f^7$	157 ± 39	2004	R, Dirac, LDA
		[260]	$5f^7$	116 ± 29	2005	R, DK, CASPT2
		[100]	$5f^7$	131.2	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	<i>5)</i>	131.2	2014	$(\alpha_D=144.7 \text{ for the } 5f^66d^1 \text{ configuration})$
		[261]	$5f^{7}$	122.4	2016	R, DFT, DKH, B3LYP
		[5]		131 ± 25	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
96	Cm	[54,121]	$5f^76d^1$	155 ± 39	2004	R, Dirac, LDA
		[199]	$5f^{7}6d^{1}$	143.6	2014	R, Dirac, CI + MBPT + CP(RPA);
		[133]	<i>5)</i> 0 <i>a</i>	140.0	2014	$(\alpha_D=128.6 \text{ for the } 5f^8 \text{ configuration})$
		[5]		144 ± 25	2019	recommended
97	Bk	[54,121]	$5f^{9}$	153 ± 38	2004	R, Dirac, LDA
		[199]	$5f^{9}$	125.3	2014	R, Dirac, CI + MBPT + CP(RPA);
		[100]	<i>J</i>	12010	2011	$(\alpha_D = 141.6 \text{ for the } 5f^86d^1 \text{ configuration})$
		[5]		125 ± 25	2019	recommended
98	Cf	[54,121]	$5f^{10}$	138 ± 34	2004	R, Dirac, LDA
		[199]	$5f^{10}$	121.5	2014	R, Dirac, CI + MBPT + CP(RPA);
		[200]	<i>J</i>	12110	_011	$(\alpha_D = 142.3 \text{ for the } 5f^96d^1 \text{ configuration})$
		[5]		122 ± 20	2019	recommended
99	Es	[54,121]	$5f^{11}$	133 ± 33	2004	R, Dirac, LDA
		[199]	$5f^{11}$	117.5	2014	R, Dirac, CI + MBPT + CP(RPA);
		[100]	<i>5 j</i>		2011	$(\alpha_D=146.1 \text{ for the } 5f^{10}6d^1 \text{ configuration})$
		[5]		118 ± 20	2019	recommended
100	Fm	[54,121]	$5f^{12}$	161 ± 40	2004	R, Dirac, LDA
		[199]	$5f^{12}$	113.4	2014	R, Dirac, CI + MBPT + CP(RPA);
		[100]	\circ_j	110.1	2011	$(\alpha_D=155.6 \text{ for the } 5f^{11}6d^1 \text{ configuration})$
		[5]		113 ± 20	2019	recommended
101	Md	[54,121]	$5f^{13}$	123 ± 31	2004	R, Dirac, LDA
		[199]	$5f^{13}$	109.4	2014	R, Dirac, CI + MBPT + CP(RPA);
		[100]	\circ_J	100.1	2014	$(\alpha_D=179.6 \text{ for the } 5f^{12}6d^1 \text{ configuration})$
		[5]		109 ± 20	2019	recommended
102	No	[54,121]	$^{1}S_{0},5f^{14}$	118 ± 30	2004	R, Dirac, LDA

Z	Atom	Refs.	State	α	Year	Comments
		[210]	$^{1}S_{0}, 5f^{14}$	110.8 ± 5.5	2009	R, Dirac + Gaunt, CCSD(T)
		[210]	$^{1}S_{0},5f^{14}$	115.64	2009	R, DK, CCSD(T)
		[199]	$^{1}S_{0},5f^{14}$	105.4	2014	R, Dirac, CI + MBPT + CP(RPA);
		[199]	S_0, S_f	100.4	2014	$(\alpha_D = 267.8 \text{ for the } 5f^{14}7s7p^1 \text{ configuration})$
		[199,221]	$^{1}S_{0},5f^{14}$	112 ± 6	2014	R,DF,CI+MBPT+Breit+QED
		[199,221]	$^{1}S_{0},5f^{14}$	110 ± 8	2014	R, DF, CI + all-order + Breit + QED
		[153]	$^{1}S_{0},5f^{14}$	114	2016	R, RPA, PolPot
		[216]	$^{1}S_{0},5f^{14}$	107.77	2016	R, DFT, CAM-B3LYP, 2c-NESC
		[261]	$^{1}S_{0},5f^{14}$	115.6	2016	R, DFT, DKH, B3LYP
		[5]		110 ± 6	2019	recommended
103	Lr	[221]	$7p^1$	323 ± 80	2014	R,DF,CI+all-order+Breit+QED
		[221]	$7p^1$	320 ± 80	2014	R,DF,CI+MBPT+Breit+QED
		[262]	$7p^1$	225.2	2016	R, DK, DFT, CAM-B3LYP
		[5]		320 ± 20	2019	recommended
104	Rf	[221]	$6d^2$	107 ± 5	2014	R,DF,CI+MBPT+Breit+QED
		[221]	$6d^2$	115 ± 13	2014	R, DF, CI + all-order + Breit + QED
		[5]		112 ± 10	2019	recommended
105	Db	[153]	$6d^3$	42.5	2016	R, RPA, PolPot
		[153]	$6d^3$	42 ± 4	2016	R, RPA, PolPot (value recommended by authors)
		[5]		42 ± 4	2019	recommended
106	Sg	[153]	$6d^4$	40.7	2016	R, RPA, PolPot
		[153]	$6d^4$	40 ± 4	2016	R, RPA, PolPot (value recommended by authors)
		[5]		40 ± 4	2019	recommended
107	Bh	[153]	$6d^5$	38.4	2016	R, RPA, PolPot
		[153]	$6d^5$	38 ± 4	2016	R, RPA, PolPot (value recommended by authors)

Z	Atom	Refs.	State	α	Year	Comments
		[5]		38 ± 4	2019	recommended
108	Hs	[153]	$6d^6$	36.2	2016	R, RPA, PolPot
		[153]	$6d^6$	36 ± 4	2016	R, RPA, PolPot (value recommended by authors)
		[5]		36 ± 4	2019	recommended
109	Mt	[153]	$6d^7$	34.2	2016	R, RPA, PolPot
		[153]	$6d^7$	34 ± 3	2016	R, RPA, PolPot (value recommended by authors)
		[5]		34 ± 3	2019	recommended
110	Ds	[153]	$6d^{8}$	32.3	2016	R, RPA, PolPot
		[153]	$6d^8$	32 ± 3	2016	R, RPA, PolPot (recommended value by authors)
		[5]		32 ± 3	2019	recommended
111	Rg	[263]	$6d^{9}$	31.6	1996	ARPP, CCSD(T)
		[153]	$6d^{9}$	30.6	2016	R, RPA, PolPot
		[153]	$6d^{9}$	30 ± 3	2016	R, RPA, PolPot (value recommended by authors)
		[5]		32 ± 6	2019	recommended
112	Cn	[139]	$^{1}S_{0},6d^{10}$	25.82	1997	R, PP, CCSD(T)
		[244]	$^{1}S_{0},6d^{10}$	28.68	2005	R, SOPP, CCSD(T)
		[231]	$^{1}S_{0},6d^{10}$	27.64	2008	R, Dirac, CCSD(T)
		[231]	$^{1}S_{0},6d^{10}$	27.40	2008	R, Dirac, CCSD(T)
		[153]	$^{1}S_{0},6d^{10}$	28.2	2016	R, RPA, PolPot
		[153]	$^{1}S_{0},6d^{10}$	28 ± 4	2016	R, RPA, PolPot (value recommended by authors)
		[5]		28 ± 2	2019	recommended
		[236]	$^{1}S_{0},6d^{10}$	27.44 ± 0.88	2021	PRCC(T) + Breit + QED
113	Nh	[238]	$^{2}P_{1/2}$	29.85	2008	R, Dirac, FS-CCSD
		[242]	$^{2}P_{1/2}$	28.8	2016	R, Dirac+Breit+QED, SD+CI, RPA
		[5]		29 ± 2	2019	recommended

Z	Atom	Refs.	State	α	Year	Comments
114	Fl	[244]	$^{3}P_{0}$	34.35	2005	R, SOPP, CCSD(T)
		[45]	$^{3}P_{0}$	31.87	2008	R, Dirac+ Gaunt, CCSD(T)
		[231]	${}^{3}P_{0}$	30.59	2008	R, Dirac, CCSD(T)
		[231]	$^{3}P_{0}$	29.52	2008	estimate
		[45]	$^{3}P_{0}$	31.0	2008	R, Dirac+ Gaunt, CCSD(T)
		[242]	$^{3}P_{0}$	31.4	2016	R,Dirac+Breit+QED,SD+CI,RPA
		[5]		31 ± 4	2019	recommended
115	Mc	[264]	$^{4}S_{3/2}$	66	2014	Estimated via correlation with $R_{\text{max}}(np_{3/2})$
		[242]	$^{4}S_{3/2}$	70.5	2016	R,Dirac+Breit+QED,SD+CI,RPA
		[5]		71 ± 20	2019	recommended
116	Lv	[264]	$^{3}P_{2}$	61.17	2014	Estimated via correlation with $R_{\text{max}}(np_{3/2})$
		[5]		67 ± 10	2019	recommended
117	Ts	[264]	$^{2}P_{3/2}$	52.24	2014	Estimated via correlation with $R_{\text{max}}(np_{3/2})$
		[265]	$^{2}P_{3/2}$	76.3	2017	empirical estimate
		[5]		76 ± 15	2019	recommended
118	Og	[244]	$^{1}S_{0}$	52.4	2005	R, SOPP, CCSD(T)
		[251]	$^{1}S_{0}$	46.33	2008	R, Dirac, CCSD(T)
		[153]	$^{1}S_{0}$	59.0/57.2	2016	R, RPA, PolPot
		[153]	$^{1}S_{0}$	57 ± 3	2016	R, RPA, PolPot
		[266]	$^{1}S_{0}$	57.98	2018	R, Dirac + Gaunt, CCSD(T)
		[5]		58 ± 6	2019	recommended
		[236]	$^{1}S_{0}$	56.5 ± 1.8	2021	PRCC(T) + Breit + QED
119	Uue	[17]	2S	169	1999	R, Dirac, CCSD(T)
		[104]	2S	163.7	2005	R, DK, CCSD(T), ARPP
		[104]	2S	166.0	2005	R, DK, CCSD(T), AE

Z	Atom	Refs.	State	α	Year	Comments
		[193]	$^{2}S_{1/2}$	169.7	2013	R, Dirac, CCSD(T)
		[5]		169 ± 4	2019	recommended
120	Ubn	[196]	${}^{1}S_{0}$	162.6	2013	R, Dirac+ Gaunt, CCSD(T)
		[153]	${}^{1}S_{0}$	147	2016	R, RPA, PolPot
		[153]	$^{1}S_{0}$	159 ± 10	2016	R, RPA, PolPot
		[5]		159 ± 10	2019	recommended

References

- (1) Müller, W.; Flesch, J.; Meyer, W. Treatment of Intershell Correlation Effects in Ab Initio Calculations by Use of Core Polarization Potentials. Method and Application to Alkali and Alkaline Earth Atoms. *The Journal of Chemical Physics* **1984**, *80*, 3297–3310.
- (2) Goldman, S. P. Gauge-Invariance Method for Accurate Atomic-Physics Calculations: Application to Relativistic Polarizabilities. Phys. Rev. A 1989, 39, 976–980.
- (3) Tang, L.-Y.; Zhang, Y.-H.; Zhang, X.-Z.; Jiang, J.; Mitroy, J. Computational Investigation of Static Multipole Polarizabilities and Sum Rules for Ground-State Hydrogenlike Ions. *Phys. Rev. A* **2012**, *86*, 012505.
- (4) Filippin, L.; Godefroid, M.; Baye, D. Relativistic Polarizabilities with the Lagrange-mesh Method. Phys. Rev. A 2014, 90, 052520.
- (5) Schwerdtfeger, P.; Nagle, J. K. 2018 Table of Static Dipole Polarizabilities of the Neutral Elements in the Periodic Table. Mol. Phys. 2019, 117, 1200–1225.
- (6) Li, X.; Qian, Y.; Chen, J. Electric Polarization from a Many-Body Neural Network Ansatz. Phys. Rev. Lett. 2024, 132, 176401.
- (7) Newell, A. C.; Baird, R. C. Absolute Determination of Refractive Indices of Gases at 47.7 Gigahertz. Journal of Applied Physics 1965, 36, 3751–3759.
- (8) Schooley, J. F. Temperature: Its Measurement and Control in Science and Industry; American Institute of Physics: New York, 1992; Vol. 1269.
- (9) Pachucki, K.; Sapirstein, J. Relativistic and QED Corrections to the Polarizability of Helium. Phys. Rev. A 2000, 63, 012504.
- (10) Łach, G.; Jeziorski, B.; Szalewicz, K. Radiative Corrections to the Polarizability of Helium. Phys. Rev. Lett. 2004, 92, 233001.
- (11) Schmidt, J. W.; Gavioso, R. M.; May, E. F.; Moldover, M. R. Polarizability of Helium and Gas Metrology. Phys. Rev. Lett. 2007, 98, 254504.

- (12) Puchalski, M.; Piszczatowski, K.; Komasa, J.; Jeziorski, B.; Szalewicz, K. Theoretical Determination of the Polarizability Dispersion and the Refractive Index of Helium.

 Phys. Rev. A 2016, 93, 032515.
- (13) Gaiser, C.; Fellmuth, B. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology. Phys. Rev. Lett. 2018, 120, 123203.
- (14) Puchalski, M.; Szalewicz, K.; Lesiuk, M.; Jeziorski, B. QED Calculation of the Dipole Polarizability of Helium Atom. Phys. Rev. A 2020, 101, 022505.
- (15) Molof, R. W.; Schwartz, H. L.; Miller, T. M.; Bederson, B. Measurements of Electric Dipole Polarizabilities of the Alkali-Metal Atoms and the Metastable Noble-Gas Atoms. *Phys. Rev. A* **1974**, *10*, 1131–1140.
- (16) Komasa, J. Dipole and Quadrupole Polarizabilities and Shielding Factors of Beryllium from Exponentially Correlated Gaussian Functions. Phys. Rev. A 2001, 65, 012506.
- (17) Lim, I. S.; Pernpointner, M.; Seth, M.; Laerdahl, J. K.; Schwerdtfeger, P.; Neogrady, P.; Urban, M. Relativistic Coupled-Cluster Static Dipole Polarizabilities of the Alkali Metals from Li to Element 119. *Phys. Rev. A* 1999, 60, 2822–2828.
- (18) Singer, K.; Wilkes, M. V. The Use of Gaussian (Exponential Quadratic) Wave Functions in Molecular Problems I. General Formulae for the Evaluation of Integrals.

 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1997, 258, 412–420.
- (19) Miffre, A.; Jacquey, M.; Büchner, M.; Trénec, G.; Vigué, J. Measurement of the Electric Polarizability of Lithium by Atom Interferometry. Phys. Rev. A 2006, 73, 011603.
- (20) Zhang, J.-Y.; Mitroy, J.; Bromley, M. W. J. Dispersion Coefficients of the Excited States of Lithium Atoms. Phys. Rev. A 2007, 75, 042509.
- (21) Johnson, W. R.; Safronova, U. I.; Derevianko, A.; Safronova, M. S. Relativistic Many-Body Calculation of Energies, Lifetimes, Hyperfine Constants, and Polarizabilities in \$^{7}\text{L}\text{i}\$. Phys. Rev. A 2008, 77, 022510.
- (22) Puchalski, M.; Kędziera, D.; Pachucki, K. Lithium Electric Dipole Polarizability. Phys. Rev. A 2011, 84, 052518.
- (23) Śmiałkowski, M.; Tomza, M. Highly Polar Molecules Consisting of a Copper or Silver Atom Interacting with an Alkali-Metal or Alkaline-Earth-Metal Atom. *Phys. Rev.* A 2021, 103, 022802.
- (24) Badhan, V.; Kaur, S.; Arora, B.; Sahoo, B. K. Assessing Slowdown Times Due to Blackbody Friction Forces for High-Precision Experiments. Eur. Phys. J. D 2022, 76, 252.
- (25) Tunega, D.; Noga, J.; Klopper, W. Basis Set Limit Value for the Static Dipole Polarizability of Beryllium. Chem. Phys. Lett. 1997, 269, 435–440.
- (26) Patil, S. A Simple Model Potential Description of the Alkaline Earth Isoelectronic Sequences. Eur. Phys. J. D 2000, 10, 341–347.
- (27) Mitroy, J.; Bromley, M. W. J. Semiempirical Calculation of van Der Waals Coefficients for Alkali-Metal and Alkaline-Earth-Metal Atoms. Phys. Rev. A 2003, 68, 052714.

- (28) Bendazzoli, G. L.; Monari, A. A Davidson Technique for the Computation of Dispersion Constants: Full CI Results for Be and LiH. Chem. Phys. 2004, 306, 153–161.
- (29) Porsev, S. G.; Derevianko, A. High-Accuracy Calculations of Dipole, Quadrupole, and Octupole Electric Dynamic Polarizabilities and van Der Waals Coefficients C6, C8, and C10 for Alkaline-Earth Dimers. J. Exp. Theor. Phys. 2006, 102, 195–205.
- (30) Maroulis, G. Atoms, Molecules And Clusters In Electric Fields: Theoretical Approaches To The Calculation Of Electric Polarizability; World Scientific, 2006.
- (31) Sahoo, B. K.; Das, B. P. Relativistic Coupled-Cluster Studies of Dipole Polarizabilities in Closed-Shell Atoms. Phys. Rev. A 2008, 77, 062516.
- (32) Singh, Y.; Sahoo, B. K.; Das, B. P. Correlation Trends in the Ground-State Static Electric Dipole Polarizabilities of Closed-Shell Atoms and Ions. *Phys. Rev. A* **2013**, 88, 062504.
- (33) Jiang, J.; Mitroy, J.; Cheng, Y.; Bromley, M. W. J. Effective Oscillator Strength Distributions of Spherically Symmetric Atoms for Calculating Polarizabilities and Long-Range Atom-Atom Interactions. *Atomic Data and Nuclear Data Tables* **2015**, *101*, 158–186.
- (34) Cheng, Y.; Jiang, J.; Mitroy, J. Tune-out Wavelengths for the Alkaline-Earth-Metal Atoms. Phys. Rev. A 2013, 88, 022511.
- (35) A. Manz, T.; Chen, T.; J. Cole, D.; Gabaldon Limas, N.; Fiszbein, B. New Scaling Relations to Compute Atom-in-Material Polarizabilities and Dispersion Coefficients: Part 1. Theory and Accuracy. RSC Adv. 2019, 9, 19297–19324.
- (36) Visentin, G.; Buchachenko, A. A. Polarizabilities, Dispersion Coefficients, and Retardation Functions at the Complete Basis Set CCSD Limit: From Be to Ba plus Yb.

 The Journal of Chemical Physics 2019, 151, 214302.
- (37) Dong, H.; Jiang, J.; Wu, Z.; Dong, C.; Gaigalas, G. Calculations of Atomic Polarizability for Beryllium Using MCDHF Method*. Chinese Phys. B 2021, 30, 043103.
- (38) Wu, L.; Wang, X.; Wang, T.; Jiang, J.; Dong, C. Be Optical Lattice Clocks with the Fractional Stark Shift up to the Level of 10-19. New J. Phys. 2023, 25, 043011.
- (39) Werner, H.-J.; Meyer, W. Finite Perturbation Calculations for the Static Dipole Polarizabilities of the First-Row Atoms. Phys. Rev. A 1976, 13, 13–16.
- (40) Das, A. K.; Thakkar, A. J. Static Response Properties of Second-Period Atoms: Coupled Cluster Calculations. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 2215.
- (41) Fleig, T. Spin-Orbit-Resolved Static Polarizabilities of Group-13 Atoms: Four-component Relativistic Configuration Interaction and Coupled Cluster Calculations. *Phys. Rev. A* **2005**, *72*, 052506.
- (42) Éhn, L.; Černušák, I. Atomic and Ionic Polarizabilities of B, C, N, O, and F. Int. J. Quantum Chem. 2021, 121, e26467.
- (43) Wang, K.; Wang, X.; Fan, Z.; Zhao, H.-Y.; Miao, L.; Yin, G.-J.; Moro, R.; Ma, L. Static Dipole Polarizabilities of Atoms and Ions from Z = 1 to 20 Calculated within a Single Theoretical Scheme. Eur. Phys. J. D 2021, 75, 1–11.

- (44) Andersson, K.; Sadlej, A. J. Electric Dipole Polarizabilities of Atomic Valence States. Phys. Rev. A 1992, 46, 2356–2362.
- (45) Thierfelder, C.; Assadollahzadeh, B.; Schwerdtfeger, P.; Schäfer, S.; Schäfer, R. Relativistic and Electron Correlation Effects in Static Dipole Polarizabilities for the Group-14 Elements from Carbon to Element \$Z=114\$: Theory and Experiment. *Phys. Rev. A* **2008**, 78, 052506.
- (46) Canal Neto, A.; Ferreira, I. B.; Jorge, F. E.; de Oliveira, A. Z. All-Electron Triple Zeta Basis Sets for ZORA Calculations: Application in Studies of Atoms and Molecules.

 Chemical Physics Letters 2021, 771, 138548.
- (47) Mori, N. A.; Scarlett, L. H.; Bray, I.; Fursa, D. V. Convergent Close-Coupling Calculations of Positron Scattering from Atomic Carbon. Phys. Rev. A 2023, 107, 032817.
- (48) Alpher, R. A.; White, D. R. Optical Refractivity of High-Temperature Gases. I. Effects Resulting from Dissociation of Diatomic Gases. Phys. Fluids 1959, 2, 153.
- (49) Stiehler, J.; Hinze, J. Calculation of Static Polarizabilities and Hyperpolarizabilities for the Atoms He through Kr with a Numerical RHF Method. J. Phys. B: At. Mol. Opt. Phys. 1995, 28, 4055.
- (50) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858.
- (51) Zeiss, G.; Meath, W. J. Dispersion Energy Constants C 6(A, B), Dipole Oscillator Strength Sums and Refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O.

 Mol. Phys. 1977, 33, 1155–1176.
- (52) Buchachenko, A. A. Anisotropy of the Static Dipole Polarizability Induced by the Spin-Orbit Interaction: The S-state Atoms N-Bi, Cr, Mo and Re. Proc. R. Soc. Math. Phys. Eng. Sci. 2010, 467, 1310-1328.
- (53) Visentin, G.; Kalinina, I. S.; Buchachenko, A. A. Extended Combination Rule for Like-Atom Dipole Dispersion Coefficients. *The Journal of Chemical Physics* **2020**, *153*, 064110.
- (54) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC press, 2004; Vol. 85.
- (55) MEDVED, M.; FOWLER, P. W.; HUTSON, J. M. Anisotropie Dipole Polarizabilities and Quadrupole Moments of Open-Shell Atoms and Ions: O, F, S, Cl, Se, Br and Isoelectronic Systems. *Mol. Phys.* **2000**, *98*, 453–463.
- (56) Huot, J.; Bose, T. K. Experimental Determination of the Dielectric Virial Coefficients of Atomic Gases as a Function of Temperature. *The Journal of Chemical Physics* 1991, 95, 2683–2687.
- (57) Rice, J. E.; Scuseria, G. E.; Lee, T. J.; Taylor, P. R.; Almlöf, J. Connected Triple Excitations in Coupled-Cluster Calculations of Hyperpolarizabilities: Neon. *Chem. Phys. Lett.* **1992**, *191*, 23–28.

- (58) Dalgarno, A.; Kingston, A. E.; Bates, D. R. The Refractive Indices and Verdet Constants of the Inert Gases. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1997, 259, 424–431.
- (59) Soldán, P.; Lee, E. P. F.; Wright, T. G. Static Dipole Polarizabilities (α) and Static Second Hyperpolarizabilities (γ) of the Rare Gas Atoms (He–Rn). *Phys. Chem. Phys.* **2001**, 3, 4661–4666.
- (60) Hald, K.; Pawłowski, F.; Jørgensen, P.; Hättig, C. Calculation of Frequency-Dependent Polarizabilities Using the Approximate Coupled-Cluster Triples Model CC3. *The Journal of Chemical Physics* **2003**, *118*, 1292–1300.
- (61) Larsen, H.; Olsen, J.; Hättig, C.; Jo/rgensen, P.; Christiansen, O.; Gauss, J. Polarizabilities and First Hyperpolarizabilities of HF, Ne, and BH from Full Configuration Interaction and Coupled Cluster Calculations. *The Journal of Chemical Physics* 1999, 111, 1917–1925.
- (62) Nakajima, T.; Hirao, K. Relativistic Effects for Polarizabilities and Hyperpolarizabilities of Rare Gas Atoms. Chem. Lett. 2001, 30, 766–767.
- (63) Gaiser, C.; Fellmuth, B. Experimental Benchmark Value for the Molar Polarizability of Neon. Europhys. Lett. 2010, 90, 63002.
- (64) Chattopadhyay, S.; Mani, B. K.; Angom, D. Electric Dipole Polarizability from Perturbed Relativistic Coupled-Cluster Theory: Application to Neon. *Phys. Rev. A* **2012**, 86, 022522.
- (65) Orcutt, R. H.; Cole, R. H. Dielectric Constants of Imperfect Gases. III. Atomic Gases, Hydrogen, and Nitrogen. The Journal of Chemical Physics 1967, 46, 697–702.
- (66) Lesiuk, M.; Przybytek, M.; Jeziorski, B. Theoretical Determination of Polarizability and Magnetic Susceptibility of Neon. Phys. Rev. A 2020, 102, 052816.
- (67) Hellmann, R. \$Ab\phantom{\rule{4pt}{0ex}}initio\$ Determination of the Polarizability of Neon. Phys. Rev. A 2022, 105, 022809.
- (68) Ekstrom, C. R.; Schmiedmayer, J.; Chapman, M. S.; Hammond, T. D.; Pritchard, D. E. Measurement of the Electric Polarizability of Sodium with an Atom Interferometer.

 Phys. Rev. A 1995, 51, 3883–3888.
- (69) Derevianko, A.; Johnson, W. R.; Safronova, M. S.; Babb, J. F. High-Precision Calculations of Dispersion Coefficients, Static Dipole Polarizabilities, and Atom-Wall Interaction Constants for Alkali-Metal Atoms. *Phys. Rev. Lett.* **1999**, *82*, 3589–3592.
- (70) Thakkar, A. J.; Lupinetti, C. The Polarizability of Sodium: Theory and Experiment Reconciled. Chem. Phys. Lett. 2005, 402, 270–273.
- (71) Holmgren, W. F.; Revelle, M. C.; Lonij, V. P. A.; Cronin, A. D. Absolute and ratio measurements of the polarizability of Na, K, and Rb with an atom interferometer.

 *Physical Review A 2010, 81, 053607, Publisher: American Physical Society.

- (72) Ma, L.; Indergaard, J.; Zhang, B.; Larkin, I.; Moro, R.; de Heer, W. A. Measured Atomic Ground-State Polarizabilities of 35 Metallic Elements. *Phys. Rev. A* 2015, 91, 010501.
- (73) Lundin, L.; Engman, B.; Hilke, J.; Martinson, I. Lifetime Measurements in Mg I-Mg IV. Phys. Scr. 1973, 8, 274.
- (74) Reinsch, E.-A.; Meyer, W. Finite Perturbation Calculation for the Static Dipole Polarizabilities of the Atoms Na through Ca. Phys. Rev. A 1976, 14, 915–918.
- (75) Maeder, F.; Kutzelnigg, W. Natural States of Interacting Systems and Their Use for the Calculation of Intermolecular Forces: IV. Calculation of van Der Waals Coefficients between One- and Two-Valence-Electron Atoms in Their Ground States, as Well as of Polarizabilities, Oscillator Strength Sums and Related Quantities, Including Correlation Effects. Chemical Physics 1979, 42, 95–112.
- (76) Archibong, E. F.; Thakkar, A. J. Finite-Field Many-Body-Perturbation-Theory Calculation of the Static Hyperpolarizabilities and Polarizabilities of Mg, \$\{\mathrm{Al}}^{+}\\$, and Ca. Phys. Rev. A 1991, 44, 5478-5484.
- (77) Sadlej, A. J.; Urban, M. Medium-Size Polarized Basis Sets for High-Level-Correlated Calculations of Molecular Electric Properties: III. Alkali (Li, Na, K, Rb) and Alkaline-Earth (Be, Mg, Ca, Sr) Atoms. *Journal of Molecular Structure: THEOCHEM* 1991, 234, 147–171.
- (78) Stwalley, W. C. Polarizability and Long-Range Interactions of Magnesium Atoms. The Journal of Chemical Physics 1971, 54, 4517–4518.
- (79) Bromley, M. W. J.; Mitroy, J. Configuration-Interaction Calculations of Positron Binding to Group-II Elements. Phys. Rev. A 2002, 65, 062505.
- (80) Roos, B. O.; Veryazov, V.; Widmark, P.-O. Relativistic Atomic Natural Orbital Type Basis Sets for the Alkaline and Alkaline-Earth Atoms Applied to the Ground-State Potentials for the Corresponding Dimers. *Theor. Chem. Acc.* **2004**, *111*, 345–351.
- (81) Porsev, S. G.; Derevianko, A. Multipolar Theory of Blackbody Radiation Shift of Atomic Energy Levels and Its Implications for Optical Lattice Clocks. *Phys. Rev. A* **2006**, 74, 020502.
- (82) Hohm, U.; Thakkar, A. J. New Relationships Connecting the Dipole Polarizability, Radius, and Second Ionization Potential for Atoms. *J. Phys. Chem. A* **2012**, *116*, 697–703.
- (83) Chattopadhyay, S.; Mani, B. K.; Angom, D. Electric Dipole Polarizability of Alkaline-Earth-Metal Atoms from Perturbed Relativistic Coupled-Cluster Theory with Triples. *Phys. Rev. A* **2014**, *89*, 022506.
- (84) Bala, R.; Nataraj, H. S.; Nayak, M. K. Ab Initio Calculations of Permanent Dipole Moments and Dipole Polarizabilities of Alkaline-Earth Monofluorides. *J. Phys. B: At. Mol. Opt. Phys.* **2019**, *52*, 085101.

- (85) Shukla, N.; Arora, B.; Sharma, L.; Srivastava, R. Two-Dipole and Three-Dipole Dispersion Coefficients for Interaction of Alkaline-Earth-Metal Atoms with Alkaline-Earth-Metal Ions. *Phys. Rev. A* **2020**, *102*, 022817.
- (86) Neto, A. C.; de Oliveira, A. Z.; Jorge, F. E.; Camiletti, G. G. ZORA All-Electron Double Zeta Basis Sets for the Elements from H to Xe: Application in Atomic and Molecular Property Calculations. *J Mol Model* **2021**, *27*, 1–9.
- (87) Sarkisov, G. S. Laser Measurements of Static and Dynamic Dipole Polarizability for 11 Metal Atoms Using Fast Exploding Wires in Vacuum and Integrated-Phase Technique. *Physics of Plasmas* **2022**, *29*, 073502.
- (88) Hibbert, A. Atomic Polarisabilities and Polarised Pseudostates in the Multiconfigurational Approach. III. Second-row Atoms and Ions. J. Phys. B At. Mol. Phys. 1980, 13, 3725.
- (89) Milani, P.; Moullet, I.; de Heer, W. A. Experimental and Theoretical Electric Dipole Polarizabilities of Al and \${\mathrm{Al}}_{2}\$. Phys. Rev. A 1990, 42, 5150–5154.
- (90) Chu, X.; Dalgarno, A. Linear Response Time-Dependent Density Functional Theory for van Der Waals Coefficients. The Journal of Chemical Physics 2004, 121, 4083–4088.
- (91) Fuentealba, P. The Static Dipole Polarizability of Aluminium Atom: Discrepancy between Theory and Experiment. Chem. Phys. Lett. 2004, 397, 459–461.
- (92) Lupinetti, C.; Thakkar, A. J. Polarizabilities and Hyperpolarizabilities for the Atoms Al, Si, P, S, Cl, and Ar: Coupled Cluster Calculations. *The Journal of Chemical Physics* **2005**, *122*, 044301.
- (93) Buchachenko, A. A. State-Interacting Spin-Orbit Configuration Interaction Method for J-resolved Anisotropic Static Dipole Polarizabilities: Application to Al, Ga, In, and Tl Atoms. Russ. J. Phys. Chem. 2010, 84, 2325–2333.
- (94) Sarkisov, G. S.; Beigman, I. L.; Shevelko, V. P.; Struve, K. W. Interferometric Measurements of Dynamic Polarizabilities for Metal Atoms Using Electrically Exploding Wires in Vacuum. *Phys. Rev. A* 2006, 73, 042501.
- (95) Gould, T. How Polarizabilities and C6 Coefficients Actually Vary with Atomic Volume. The Journal of Chemical Physics 2016, 145, 084308.
- (96) Kumar, R.; Angom, D.; Mani, B. K. Fock-Space Perturbed Relativistic Coupled-Cluster Theory for Electric Dipole Polarizability of One-Valence Atomic Systems:

 Application to Al and In. *Phys. Rev. A* **2022**, *106*, 032801.
- (97) Chen, Z.; Wu, J.; Lu, Y.; Jiang, Z.; Zhang, C.; Wang, Z.; Shi, H.; Li, X.; Zhou, L. Measurement of Dynamic Atomic Polarizabilities of Al at 19 Wavelengths from 420 Nm to 680 Nm in Electrical Exploding Wire Experiments. Opt. Express, OE 2022, 30, 26102–26110.

- (98) Wang, K.; Fang, S.-Z.; Fan, Z.; Zhao, H.-Y.; Miao, L.; Yin, G.-J.; Moro, R.; Ma, L. Reconciliation of the Theoretical and Experimental Value of the Static Electric Polarizability of the Aluminum Atom. *J Clust Sci* **2023**, *34*, 2147–2151.
- (99) Maroulis, G.; Pouchan, C. Static Dipole (Hyper)Polarizability of the Silicon Atom. J. Phys. B: At. Mol. Opt. Phys. 2003, 36, 2011.
- (100) Langhoff, P. W.; Karplus, M. Padé Summation of the Cauchy Dispersion Equation*. J. Opt. Soc. Am., JOSA 1969, 59, 863–871.
- (101) Hohm, U.; Kerl, K. Interferometric Measurements of the Dipole Polarizability α of Molecules between 300 K and 1100 K. Mol. Phys. 1990, 69, 803–817.
- (102) Johnston, D. R.; Oudemans, G. J.; Cole, R. H. Dielectric Constants of Imperfect Gases. I. Helium, Argon, Nitrogen, and Methane. *The Journal of Chemical Physics* 1960, 33, 1310–1317.
- (103) Lesiuk, M.; Jeziorski, B. First-Principles Calculation of the Frequency-Dependent Dipole Polarizability of Argon. Phys. Rev. A 2023, 107, 042805.
- (104) Lim, I. S.; Schwerdtfeger, P.; Metz, B.; Stoll, H. All-Electron and Relativistic Pseudopotential Studies for the Group 1 Element Polarizabilities from K to Element 119.

 The Journal of Chemical Physics 2005, 122, 104103.
- (105) Derevianko, A.; Porsev, S. G.; Babb, J. F. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms.

 Atomic Data and Nuclear Data Tables 2010, 96, 323–331.
- (106) Jiang, J.; Mitroy, J. Hyperfine Effects on Potassium Tune-out Wavelengths and Polarizabilities. Phys. Rev. A 2013, 88, 032505.
- (107) Gregoire, M. D.; Hromada, I.; Holmgren, W. F.; Trubko, R.; Cronin, A. D. Measurements of the Ground-State Polarizabilities of Cs, Rb, and K Using Atom Interferometry.

 Phys. Rev. A 2015, 92, 052513.
- (108) Gregoire, M. D.; Brooks, N.; Trubko, R.; Cronin, A. D. Analysis of Polarizability Measurements Made with Atom Interferometry. Atoms 2016, 4, 21.
- (109) Sadlej, A. J.; Urban, M.; Gropen, O. Relativistic and Electron-Correlation Contributions to the Dipole Polarizability of the Alkaline-Earth-Metal Atoms Ca, Sr, and Ba. *Phys. Rev. A* 1991, 44, 5547–5557.
- (110) Porsev, S. G.; Derevianko, A. High-Accuracy Relativistic Many-Body Calculations of van Der Waals Coefficients \${C}_{6}\$ for Alkaline-Earth-Metal Atoms. *Phys. Rev.* A **2002**, 65, 020701.
- (111) Moszynski, R.; Łach, G.; Jaszuński, M.; Bussery-Honvault, B. Long-Range Relativistic Interactions in the Cowan-Griffin Approximation and Their QED Retardation:
 Application to Helium, Calcium, and Cadmium Dimers. *Phys. Rev. A* 2003, *68*, 052706.

- (112) Lim, I. S.; Schwerdtfeger, P. Four-Component and Scalar Relativistic Douglas-Kroll Calculations for Static Dipole Polarizabilities of the Alkaline-Earth-Metal Elements and Their Ions from \${\mathbb{C}}^{n}\$ to \${\mathbb{C}}^{n}\$ (\$n=0\$,+1,+2). Phys. Rev. A **2004**, 70, 062501.
- (113) Schwartz, H. L.; Miller, T. M.; Bederson, B. Measurement of the Static Electric Dipole Polarizabilities of Barium and Strontium. Phys. Rev. A 1974, 10, 1924–1926.
- (114) Mitroy, J.; Zhang, J.-Y. Properties and Long Range Interactions of the Calcium Atom. The Journal of Chemical Physics 2008, 128, 134305.
- (115) Zhang, R.-K.; Jiang, J.; Dong, C.-Z.; Tang, Y.-B. Magic-Zero and Magic Wavelengths of the Ca Atom. Phys. Rev. A 2023, 108, 012803.
- (116) Chandler, G. S.; Glass, R. Evaluation of Atomic Polarisabilities Using the Variational Perturbation Approach: The First Transition Series. J. Phys. B: Atom. Mol. Phys. 1987, 20, 1.
- (117) Glass, R.; Chandler, G. S. The Mean Static Dipole Polarisability of Scandium. J. Phys. B: Atom. Mol. Phys. 1983, 16, 2931.
- (118) Glass, R. The Average Static Dipole Polarisability and Polarised Pseudostates for Scandium. J. Phys. B: Atom. Mol. Phys. 1987, 20, 1379.
- (119) Pou-Amérigo, R.; Merchán, M.; Nebot-Gil, I.; Widmark, P.-O.; Roos, B. O. Density Matrix Averaged Atomic Natural Orbital (ANO) Basis Sets for Correlated Molecular Wave Functions. *Theoret. Chim. Acta* 1995, 92, 149–181.
- (120) Torrens, F. Molecular Polarizability of Scn, Cn and Endohedral Scn@Cm Clusters. Nanotechnology 2002, 13, 433.
- (121) Doolen, G.; Liberman, D. A. Calculations of Photoabsorption by Atoms Using a Linear Response Method. Phys. Scr. 1987, 36, 77.
- (122) Kłos, J. Anisotropic Dipole Polarizability of Transition Metal Atoms: Sc(D2), Ti(F3,P3), V(F4,P4,D6), Ni(F3) and Ions: Sc2+(D2), Ti2+(F3,P3). The Journal of Chemical Physics 2005, 123, 024308.
- (123) Chu, X.; Dalgarno, A.; Groenenboom, G. C. Polarizabilities of Sc and Ti Atoms and Dispersion Coefficients for Their Interaction with Helium Atoms. *Phys. Rev. A* **2005**, 72, 032703.
- (124) Xi-Bo, L.; Hong-Yan, W.; Jiang-Shan, L.; Yun-Dong, G.; Wei-Dong, W.; Yong-Jian, T. Static Dipole Polarizabilities of Scn (n ≤ 15) Clusters. Chinese Phys. B 2009, 18, 3414.
- (125) Gould, T.; Bučko, T. C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table. J. Chem. Theory Comput. 2016, 12, 3603–3613.
- (126) Szarek, P.; Witkowski, M.; Woźniak, A. P. Unconventional Look at the Diameters of Quantum Systems: Could the Characteristic Atomic Radius Be Interpreted as a Reactivity Measure? J. Phys. Chem. C 2019, 123, 11572–11580.

- (127) Eustice, S.; Filin, D.; Schrott, J.; Porsev, S.; Cheung, C.; Novoa, D.; Stamper-Kurn, D. M.; Safronova, M. S. Optical Telecommunications-Band Clock Based on Neutral Titanium Atoms. *Phys. Rev. A* 2023, *107*, L051102.
- (128) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å. Å.; Veryazov, V.; Widmark, P.-O. O. New Relativistic ANO Basis Sets for Transition Metal Atoms. *J. Phys. Chem. A* 2005, 109, 6575–6579.
- (129) Calaminici, P. Polarizability of Fen (N<4) Clusters: An All-Electron Density Functional Study. Chemical Physics Letters 2004, 387, 253–257.
- (130) Schwerdtfeger, P.; Bowmaker, G. A. Relativistic Effects in Gold Chemistry. V. Group 11 Dipole Polarizabilities and Weak Bonding in Monocarbonyl Compounds. *The Journal of Chemical Physics* **1994**, *100*, 4487–4497.
- (131) Neogrády, P.; Kellö, V.; Urban, M.; Sadlej, A. J. Ionization Potentials and Electron Affinities of Cu, Ag, and Au: Electron Correlation and Relativistic Effects. *Int. J. Quantum Chem.* **1997**, *63*, 557–565.
- (132) Mohr, F. Gold Chemistry: Applications and Future Directions in the Life Sciences; John Wiley & Sons, 2009.
- (133) Mitroy, J.; Safronova, M. S.; Clark, C. W. Theory and Applications of Atomic and Ionic Polarizabilities. J. Phys. B: At. Mol. Opt. Phys. 2010, 43, 202001.
- (134) Zhang, J. Y.; Mitroy, J.; Sadeghpour, H. R.; Bromley, M. W. J. Long-Range Interactions of Copper and Silver Atoms with Hydrogen, Helium, and Rare-Gas Atoms. *Phys. Rev. A* 2008, 78, 062710.
- (135) Dyugaev, A. M.; Lebedeva, E. V. New Qualitative Results of the Atomic Theory. Jetp Lett. 2016, 104, 639-644.
- (136) Ernst, M.; Santos, L. H. R. D.; Macchi, P. Optical Properties of Metal-Organic Networks from Distributed Atomic Polarizabilities. CrystEngComm 2016, 18, 7339–7346.
- (137) Kellö, V.; Sadlej, A. J. Polarized Basis Sets for High-Level-Correlated Calculations of Molecular Electric Properties. Theoret. Chim. Acta 1995, 91, 353–371.
- (138) Goebel, D.; Hohm, U.; Maroulis, G. Theoretical and Experimental Determination of the Polarizabilities of the Zinc \$^{1}\$\${\mathbf{S}}_{0}\$ State. Phys. Rev. A 1996, 54, 1973–1978.
- (139) Seth, M.; Schwerdtfeger, P.; Dolg, M. The Chemistry of the Superheavy Elements. I. Pseudopotentials for 111 and 112 and Relativistic Coupled Cluster Calculations for (112)H+, (112)F2, and (112)F4. The Journal of Chemical Physics 1997, 106, 3623–3632.
- (140) Ellingsen, K.; Mérawa, M.; Rérat, M.; Pouchan, C.; Gropen, O. Dynamic Dipole Polarizabilities for the Ground 4 1S and the Low-Lying 4 1,3P and 5 1,3S Excited States of Zn. Calculation of Long-Range Coefficients of Zn2. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 2313.

- (141) Singh, Y.; Sahoo, B. K. Correlation Trends in the Polarizabilities of Atoms and Ions in the Boron, Carbon, and Zinc Homologous Sequences of Elements. *Phys. Rev. A* **2014**, 90, 022511.
- (142) Chattopadhyay, S.; Mani, B. K.; Angom, D. Triple Excitations in Perturbed Relativistic Coupled-Cluster Theory and Electric Dipole Polarizability of Group-IIB Elements.

 Phys. Rev. A 2015, 91, 052504.
- (143) Qiao, L. W.; Li, P.; Tang, K. T. Dynamic Polarizabilities of Zn and Cd and Dispersion Coefficients Involving Group 12 Atoms. *The Journal of Chemical Physics* **2012**, 137, 084309.
- (144) Zaremba-Kopczyk, K.; Tomza, M. Van Der Waals Molecules Consisting of a Zinc or Cadmium Atom Interacting with an Alkali-Metal or Alkaline-Earth-Metal Atom.

 Phys. Rev. A 2021, 104, 042816.
- (145) Chakraborty, A.; Rithvik, S. K.; Sahoo, B. K. Relativistic Normal Coupled-Cluster Theory Analysis of Second- and Third-Order Electric Polarizabilities of Zn \$1\$. Phys. Rev. A 2022, 105, 062815.
- (146) Černušák, I.; Kellö, V.; Sadlej, A. J. Standardized Medium-Size Basis Sets for Calculations of Molecular Electric Properties: Group IIIA. Collect. Czech. Chem. Commun. 2003, 68, 211–239.
- (147) Borschevsky, A.; Zelovich, T.; Eliav, E.; Kaldor, U. Precision of Calculated Static Polarizabilities: Ga, In and Tl Atoms. Chem. Phys. 2012, 395, 104–107.
- (148) Cuthbertson, C.; Metcalfe, E. P.; Trouton, F. T. On the Dispersion of Gaseous Mercury, Sulphur, Phosphorous, and Helium. *Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character* **1997**, *80*, 411–419.
- (149) Fleig, T.; Sadlej, A. J. Electric Dipole Polarizabilities of the Halogen Atoms in \${}^{2}{P}_{1/2}\$ and \${}^{2}{P}_{3/2}\$ States: Scalar Relativistic and Two-Component Configuration-Interaction Calculations. *Phys. Rev. A* **2002**, *65*, 032506.
- (150) Thakkar, A. J.; Hettema, H.; Wormer, P. E. S. Ab Initio Dispersion Coefficients for Interactions Involving Rare-gas Atoms. *The Journal of Chemical Physics* **1992**, *97*, 3252–3257.
- (151) Mani, B. K.; Latha, K. V. P.; Angom, D. Relativistic Coupled-Cluster Calculations of \$^{20}\text{N}\text{e}\$, \$^{40}\text{R}\text{K}\text{K}\text{r}\$, and \$^{129}\text{X}\text{e}\$: Correlation Energies and Dipole Polarizabilities. *Phys. Rev. A* **2009**, *80*, 062505.
- (152) Chattopadhyay, S.; Mani, B. K.; Angom, D. Perturbed Coupled-Cluster Theory to Calculate Dipole Polarizabilities of Closed-Shell Systems: Application to Ar, Kr, Xe, and Rn. Phys. Rev. A 2012, 86, 062508.
- (153) Dzuba, V. A. Ionization Potentials and Polarizabilities of Superheavy Elements from Db to Cn \$(Z=105-112)\$. Phys. Rev. A 2016, 93, 032519.

- (154) Dutta, N. N. Trend of Gaunt Interaction Contributions to the Electric Dipole Polarizabilities of Noble Gas, Alkaline-Earth, and a Few Group-12 Atoms. *Chemical Physics Letters* **2020**, *758*, 137911.
- (155) Kaur, S.; Arora, B.; Sahoo, B. K. Roles of Blackbody Friction Forces in the Rb and Cs Atom Interferometers. 2022.
- (156) Hamilton, R.; Roberts, B. M.; Scholten, S. K.; Locke, C.; Luiten, A. N.; Ginges, J. S.; Perrella, C. Experimental and Theoretical Study of Dynamic Polarizabilities in the \$5{S} {1/2}\$-\$5{D} {5/2}\$ Clock Transition in Rubidium-87 and Determination of Electric Dipole Matrix Elements. *Phys. Rev. Appl.* **2023**, *19*, 054059.
- (157) Porsev, S. G.; Ludlow, A. D.; Boyd, M. M.; Ye, J. Determination of Sr Properties for a High-Accuracy Optical Clock. Phys. Rev. A 2008, 78, 032508.
- (158) Mitroy, J.; Zhang, J. Dispersion and Polarization Interactions of the Strontium Atom. Mol. Phys. 2010, 108, 1999–2006.
- (159) Safronova, M. S.; Porsev, S. G.; Safronova, U. I.; Kozlov, M. G.; Clark, C. W. Blackbody-Radiation Shift in the Sr Optical Atomic Clock. Phys. Rev. A 2013, 87, 012509.
- (160) Li, X.-B.; Wang, H.-Y.; Lv, R.; Wu, W.-D.; Luo, J.-S.; Tang, Y.-J. Correlations of the Stability, Static Dipole Polarizabilities, and Electronic Properties of Yttrium Clusters. J. Phys. Chem. A 2009, 113, 10335–10342.
- (161) Chu, X.; Dalgarno, A.; Groenenboom, G. C. Dynamic Polarizabilities of Rare-Earth-Metal Atoms and Dispersion Coefficients for Their Interaction with Helium Atoms. Phys. Rev. A 2007, 75, 032723.
- (162) Gobre, V. V. Efficient Modelling of Linear Electronic Polarization in Materials Using Atomic Response Functions; Technische Universitaet Berlin (Germany), 2016.
- (163) Liepack, H.; Drechsler, M. Messung der Polarisierbarkeiten von Metallatomen mit dem Feldelektronenmikroskop. Naturwissenschaften 1956, 43, 52–53.
- (164) Bast, R.; Heßelmann, A.; Sałek, P.; Helgaker, T.; Saue, T. Static and Frequency-dependent Dipole–Dipole Polarizabilities of All Closed-shell Atoms up to Radium: A Four-component Relativistic DFT Study. ChemPhysChem 2008, 9, 445–453.
- (165) Granatier, J.; Lazar, P.; Otyepka, M.; Hobza, P. The Nature of the Binding of Au, Ag, and Pd to Benzene, Coronene, and Graphene: From Benchmark CCSD(T) Calculations to Plane-Wave DFT Calculations. J. Chem. Theory Comput. 2011, 7, 3743–3755.
- (166) Jerabek, P.; Schwerdtfeger, P.; Nagle, J. K. Static Dipole Polarizability of Palladium from Relativistic Coupled-Cluster Theory. Phys. Rev. A 2018, 98, 012508.
- (167) Bezchastnov, V. G.; Pernpointner, M.; Schmelcher, P.; Cederbaum, L. S. Nonadditivity and Anisotropy of the Polarizability of Clusters: Relativistic Finite-Field Calculations for the Xe Dimer. *Phys. Rev. A* 2010, *81*, 062507.
- (168) Tomza, M. Interaction Potentials, Electric Moments, Polarizabilities, and Chemical Reactions of YbCu, YbAg, and YbAu Molecules. New J. Phys. 2021, 23, 085003.

- (169) Dzuba, V. A.; Allehabi, S. O.; Flambaum, V. V.; Li, J.; Schiller, S. Time Keeping and Searching for New Physics Using Metastable States of Cu, Ag, and Au. *Phys. Rev.* A 2021, 103, 022822.
- (170) Bromley, M. W. J.; Mitroy, J. Positron and Positronium Interactions with Cu. Phys. Rev. A 2002, 66, 062504.
- (171) Goebel, D.; Hohm, U. Dispersion of the Refractive Index of Cadmium Vapor and the Dipole Polarizability of the Atomic Cadmium \$^{1}\$\${\mathbb{S}}_{0}\$ State. Phys. Rev. A 1995, 52, 3691–3694.
- (172) Goebel, D.; Hohm, U.; Kerl, K. Dispersive Fourier Transform Spectroscopy in the Visible of Absorbing Gases and Vapours. *Journal of Molecular Structure* **1995**, *349*, 253–256.
- (173) Bromley, M. W. J.; Mitroy, J. Configuration-Interaction Calculations of Positron Binding to Zinc and Cadmium. Phys. Rev. A 2002, 65, 062506.
- (174) Ye, A.; Wang, G. Dipole Polarizabilities of \$n{s}^{2}\text{ }{^{1}S}_{0}\$ and \$nsnp\text{ }{^{3}P}_{0}\$ States and Relevant Magic Wavelengths of Group-IIB Atoms. Phys. Rev. A 2008, 78, 014502.
- (175) Sahoo, B. K.; Yu, Y.-m. Dipole Polarizability Calculation of the Cd Atom: Inconsistency with Experiment. Phys. Rev. A 2018, 98, 012513.
- (176) Guo, X. T.; Yu, Y. M.; Liu, Y.; Suo, B. B.; Sahoo, B. K. Electric Dipole and Quadrupole Properties of the Cd Atom for Atomic-Clock Applications. *Phys. Rev. A* 2021, 103, 013109.
- (177) Zhou, M.; Tang, L.-Y. Calculations of Dynamic Multipolar Polarizabilities of the Cd Clock Transition Levels*. Chinese Phys. B 2021, 30, 083102.
- (178) Hohm, U. Dipole–Dipole Polarizability of the Cadmium 1S0 State Revisited. Opt. Spectrosc. 2022, 130, 290–294.
- (179) Guella, T. P.; Miller, T. M.; Bederson, B.; Stockdale, J. A. D.; Jaduszliwer, B. Polarizability of \$5{s}^{2}5p(^{2}P_{\hat{z}}) Atomic Indium. *Phys. Rev. A* **1984**, 29, 2977–2980.
- (180) Safronova, M. S.; Safronova, U. I.; Porsev, S. G. Polarizabilities, Stark Shifts, and Lifetimes of the In Atom. Phys. Rev. A 2013, 87, 032513.
- (181) Assadollahzadeh, B.; Schäfer, S.; Schwerdtfeger, P. Electronic properties for small tin clusters Snn (n ≤ 20) from density functional theory and the convergence toward the solid state. J. Comput. Chem. 2010, 31, 929–937.
- (182) Maroulis, G. Cluster Size Effect on the Electric Polarizability and Hyperpolarizability in Small Antimony Clusters Sbn, N=1,2 and 4. Chem. Phys. Lett. 2007, 444, 44-47.
- (183) Sadlej, A. J. Medium-Size Polarized Basis Sets for High-Level-Correlated Calculations of Molecular Electric Properties. Theoret. Chim. Acta 1992, 81, 339–354.

- (184) Allehabi, S. O.; Brewer, S. M.; Dzuba, V. A.; Flambaum, V. V.; Beloy, K. High-Accuracy Optical Clocks Based on Group-16-like Highly Charged Ions. *Phys. Rev. A* 2022, 106, 043101.
- (185) Maroulis, G.; Makris, C.; Hohm, U.; Goebel, D. Electrooptical Properties and Molecular Polarization of Iodine, I2. J. Phys. Chem. A 1997, 101, 953–956.
- (186) Runeberg, N.; Pyykkö, P. Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon. Int. J. Quantum Chem. 1998, 66, 131–140.
- (187) Sahoo, B. K.; Das, B. P. The Role of Relativistic Many-Body Theory in Probing New Physics beyond the Standard Model via the Electric Dipole Moments of Diamagnetic Atoms. J. Phys. Conf. Ser. 2018, 1041, 012014.
- (188) Sakurai, A.; Sahoo, B. K.; Das, B. P. Electric Dipole Polarizability of \$^{129}\mathrm{Xe}\$ Using the Relativistic Coupled-Cluster and the Normal Coupled-Cluster Methods. Phys. Rev. A 2018, 97, 062510.
- (189) Sahoo, B. K.; Yamanaka, N.; Yanase, K. Revisiting Theoretical Analysis of the Electric Dipole Moment of \$^{129}\mathrm{Xe}\$. Phys. Rev. A 2023, 108, 042811.
- (190) Amini, J. M.; Gould, H. High Precision Measurement of the Static Dipole Polarizability of Cesium. Phys. Rev. Lett. 2003, 91, 153001.
- (191) Safronova, M. S.; Clark, C. W. Inconsistencies between Lifetime and Polarizability Measurements in \$\text{Cs}\$. Phys. Rev. A 2004, 69, 040501.
- (192) Iskrenova-Tchoukova, E.; Safronova, M. S.; Safronova, U. I. High-Precision Study of Cs Polarizabilities. J. Comput. Methods Sci. Eng. 2007, 7, 521–540.
- (193) Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. Ab Initio Studies of Atomic Properties and Experimental Behavior of Element 119 and Its Lighter Homologs. *The Journal of Chemical Physics* **2013**, *138*, 124302.
- (194) Singh, S.; Kaur, K.; Sahoo, B. K.; Arora, B. Comparing Magic Wavelengths for the Transitions of Cs Using Circularly and Linearly Polarized Light. *J. Phys. B At. Mol. Opt. Phys.* **2016**, 49, 145005.
- (195) Schäfer, S.; Mehring, M.; Schäfer, R.; Schwerdtfeger, P. Polarizabilities of Ba and ${\text{Ba}}_{2}$: Comparison of Molecular Beam Experiments with Relativistic Quantum Chemistry. *Phys. Rev. A* **2007**, *76*, 052515.
- (196) Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. Ab Initio Predictions of Atomic Properties of Element 120 and Its Lighter Group-2 Homologues. *Phys. Rev. A* 2013, 87, 022502.
- (197) Buchachenko, A. A.; Viehland, L. A. Interaction Potentials and Transport Properties of Ba, Ba+, and Ba2+ in Rare Gases from He to Xe. *The Journal of Chemical Physics* **2018**, *148*, 154304.

- (198) Buchachenko, A. A.; Chałasiński, G.; Szczęśniak, M. M. Diffuse Basis Functions for Small-Core Relativistic Pseudopotential Basis Sets and Static Dipole Polarizabilities of Selected Lanthanides La, Sm, Eu, Tm and Yb. Struct Chem 2007, 18, 769–772.
- (199) Dzuba, V. A.; Kozlov, A.; Flambaum, V. V. Scalar Static Polarizabilities of Lanthanides and Actinides. Phys. Rev. A 2014, 89, 042507.
- (200) Centoducatte, R.; de Oliveira, A. Z.; Jorge, F. E.; Camiletti, G. G. ZORA Double Zeta Basis Sets for Fifth Row Elements: Application in Studies of Electronic Structures of Atoms and Molecules. *Computational and Theoretical Chemistry* **2022**, *1207*, 113511.
- (201) Ferreira, I. B.; Campos, C. T.; Jorge, F. E. All-Electron Basis Sets Augmented with Diffuse Functions for He, Ca, Sr, Ba, and Lanthanides: Application in Calculations of Atomic and Molecular Properties. *J Mol Model* **2020**, *26*, 95.
- (202) Flambaum, V. V.; Dzuba, V. A. Electric Dipole Moments of Atoms and Molecules Produced by Enhanced Nuclear Schiff Moments. Phys. Rev. A 2020, 101, 042504.
- (203) Li, H.; Wyart, J.-F.; Dulieu, O.; Nascimbène, S.; Lepers, M. Optical Trapping of Ultracold Dysprosium Atoms: Transition Probabilities, Dynamic Dipole Polarizabilities and van Der Waals C6 Coefficients. J. Phys. B: At. Mol. Opt. Phys. 2016, 50, 014005.
- (204) Lepers, M.; Wyart, J.-F.; Dulieu, O. Anisotropic Optical Trapping of Ultracold Erbium Atoms. Phys. Rev. A 2014, 89, 022505.
- (205) Becher, J. H.; Baier, S.; Aikawa, K.; Lepers, M.; Wyart, J.-F.; Dulieu, O.; Ferlaino, F. Anisotropic Polarizability of Erbium Atoms. Phys. Rev. A 2018, 97, 012509.
- (206) Dzuba, V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry 2020, 12, 1950.
- (207) Buchachenko, A. A.; Szczęśniak, M. M.; Chałasiński, G. Van Der Waals Interactions and Dipole Polarizabilities of Lanthanides: Tm(F2)–He and Yb(S1)–He Potentials.

 J. Chem. Phys. 2006, 124, 114301.
- (208) Wang, Y.; Dolg, M. Pseudopotential Study of the Ground and Excited States of Yb2. Theor Chem Acc 1998, 100, 124–133.
- (209) Zhang, P.; Dalgarno, A. Static Dipole Polarizability of Ytterbium. J. Phys. Chem. A 2007, 111, 12471–12476.
- (210) Thierfelder, C.; Schwerdtfeger, P. Effect of Relativity and Electron Correlation in Static Dipole Polarizabilities of Ytterbium and Nobelium. *Phys. Rev. A* **2009**, *79*, 032512.
- (211) Zhang, P.; Dalgarno, A.; Côté, R. Scattering of Yb and ${\text{Yb}}^{+}\$. Phys. Rev. A **2009**, 80, 030703.
- (212) Buchachenko, A. A. Ab Initio Dipole Polarizabilities and Quadrupole Moments of the Lowest Excited States of Atomic Yb. Eur. Phys. J. D 2011, 61, 291–296.
- (213) Dammalapati, U.; Santra, B.; Willmann, L. Light Shifts and Magic Wavelengths for Heavy Alkaline Earth Elements: Ba and Ra. J. Phys. B: At. Mol. Opt. Phys. 2011, 45, 025001.

- (214) Beloy, K. Experimental Constraints on the Polarizabilities of the $6\{s\}^{2}$ \$\{\gamma\}\phantom{\rule{-0.16em}{0ex}}{S}_{0}\$ and \$6s6p\$ \$\{\gamma\}\phantom{\rule{-0.16em}{0ex}}{F} \{0}^{o}\$ States of Yb. Phys. Rev. A **2012**, 86, 022521.
- (215) Safronova, M. S.; Porsev, S. G.; Clark, C. W. Ytterbium in Quantum Gases and Atomic Clocks: Van Der Waals Interactions and Blackbody Shifts. *Phys. Rev. Lett.* **2012**, *109*, 230802.
- (216) Yoshizawa, T.; Zou, W.; Cremer, D. Calculations of Electric Dipole Moments and Static Dipole Polarizabilities Based on the Two-Component Normalized Elimination of the Small Component Method. *The Journal of Chemical Physics* **2016**, *145*, 184104.
- (217) Sahoo, B. K.; Singh, Y. Significance of Distinct Electron-Correlation Effects in Determining the (\$P,T\$)-Odd Electric Dipole Moment of \$^{171}\backslash Mathrm{Yb}\$. Phys. Rev. A 2017, 95, 062514.
- (218) Tang, Z.-M.; Yu, Y.-M.; Dong, C.-Z. Determination of Static Dipole Polarizabilities of Yb Atom*. Chinese Phys. B 2018, 27, 063101.
- (219) Dzuba, V. A.; Flambaum, V. V.; Schiller, S. Testing Physics beyond the Standard Model through Additional Clock Transitions in Neutral Ytterbium. *Phys. Rev. A* **2018**, 98, 022501.
- (220) Tang, Z.-M.; Yu, Y.-m.; Sahoo, B. K.; Dong, C.-Z.; Yang, Y.; Zou, Y. Simultaneous Magic Trapping Conditions for Three Additional Clock Transitions in Yb to Search for Variation of the Fine-Structure Constant. *Phys. Rev. A* **2023**, *107*, 053111.
- (221) Dzuba, V. A.; Safronova, M. S.; Safronova, U. I. Atomic Properties of Superheavy Elements No, Lr, and Rf. Phys. Rev. A 2014, 90, 012504.
- (222) Neto, A. C.; Jorge, F. E.; da Cruz, H. R. C. All-Electron ZORA Triple Zeta Basis Sets for the Elements Cs-La and Hf-Rn. Chinese Phys. B 2023, 32, 093101.
- (223) Cole, M. W.; Bardon, J. Van Der Waals Interaction between a Tungsten Surface and Iridium and Tantalum Atoms. Phys. Rev. B 1986, 33, 2812–2813.
- (224) Bardon, J.; Audiffren, M. THE POLARISABILITY OF IRIDIUM NEUTRAL ATOMS AND THEIR VAN DER WAALS INTERACTION WITH A TUNGSTEN SURFACE MEASURED BY F.I.M. J. Phys. Colloques 1984, 45, C9–249.
- (225) Irikura, K. K. Polarizability of Atomic Pt, Pt+, and Pt-. The Journal of Chemical Physics 2021, 154, 174302.
- (226) Henderson, M.; Curtis, L. J.; Matulioniene, R.; Ellis, D. G.; Theodosiou, C. E. Lifetime Measurements in Tl III and the Determination of the Ground-State Dipole Polarizabilities for Au I–Bi V. Phys. Rev. A 1997, 56, 1872–1878.
- (227) Wesendrup, R.; Schwerdtfeger, P. Extremely Strong S2 S2 Closed-Shell Interactions. Angew. Chem. Int. Ed. 2000, 39, 907–910.

- (228) Schwerdtfeger, P.; Brown, J. R.; Laerdahl, J. K.; Stoll, H. The Accuracy of the Pseudopotential Approximation. III. A Comparison between Pseudopotential and All-Electron Methods for Au and AuH. *The Journal of Chemical Physics* **2000**, *113*, 7110–7118.
- (229) Goebel, D.; Hohm, U. Dipole Polarizability, Cauchy Moments, and Related Properties of Hg. J. Phys. Chem. 1996, 100, 7710–7712.
- (230) Kellö, V.; Sadlej, A. J. Standardized Basis Sets for High-Level-Correlated Relativistic Calculations of Atomic and Molecular Electric Properties in the Spin-Averaged Douglas-Kroll (No-Pair) Approximation I. Groups Ib and IIb. *Theoret. Chim. Acta* 1996, 94, 93–104.
- (231) Pershina, V.; Borschevsky, A.; Eliav, E.; Kaldor, U. Prediction of the Adsorption Behavior of Elements 112 and 114 on Inert Surfaces from Ab Initio Dirac-Coulomb Atomic Calculations. *The Journal of Chemical Physics* **2008**, *128*, 024707.
- (232) Tang, K.; Toennies, J. The Dynamical Polarisability and van Der Waals Dimer Potential of Mercury. Mol. Phys. 2008, 106, 1645–1653.
- (233) Singh, Y.; Sahoo, B. K. Rigorous Limits on the Hadronic and Semileptonic \$\mathit{CP}\$-Violating Coupling Constants from the Electric Dipole Moment of \$^{199}\mathbb{H}. Phys. Rev. A 2015, 91, 030501.
- (234) Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U. High-Accuracy Coupled Cluster Calculations of Atomic Properties. AIP Conference Proceedings 2015, 1642, 209–212.
- (235) Sahoo, B. K.; Das, B. P. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the \$^{199}\mathbb{F} Atom. Phys. Rev. Lett. 2018, 120, 203001.
- (236) Kumar, R.; Chattopadhyay, S.; Angom, D.; Mani, B. K. Relativistic Coupled-Cluster Calculation of the Electric Dipole Polarizability and Correlation Energy of Cn, \$\{\mathrm{Nh}}^{+}\\$, and Og: Correlation Effects from Lighter to Superheavy Elements. Phys. Rev. A **2021**, 103, 062803.
- (237) Safronova, M. S.; Johnson, W. R.; Safronova, U. I.; Cowan, T. E. Relativistic Many-Body Calculations of the Stark-induced Amplitude of the \$6{P} {1/2}\text{\ensuremath{-}}7{P} {1/2}\$ Transition in Thallium. Phys. Rev. A 2006, 74, 022504.
- (238) Pershina, V.; Borschevsky, A.; Eliav, E.; Kaldor, U. Atomic Properties of Element 113 and Its Adsorption on Inert Surfaces from Ab Initio Dirac-Coulomb Calculations.

 J. Phys. Chem. A 2008, 112, 13712–13716.
- (239) Dzuba, V. A.; Flambaum, V. V. Calculation of the \$(T,P)\$-Odd Electric Dipole Moment of Thallium and Cesium. Phys. Rev. A 2009, 80, 062509.
- (240) Kozlov, M. G.; Porsev, S. G.; Johnson, W. R. Parity Nonconservation in Thallium. Phys. Rev. A 2001, 64, 052107.
- (241) Safronova, M. S.; Majumder, P. K. Thallium 7\$p\$ Lifetimes Derived from Experimental Data and Ab Initio Calculations of Scalar Polarizabilities. *Phys. Rev. A* 2013, 87, 042502.

- (242) Dzuba, V. A.; Flambaum, V. V. Electron Structure of Superheavy Elements Uut, Fl and Uup (Z=113 to 115). Hyperfine Interact. 2016, 237, 160.
- (243) Tang, Y.-B.; Gao, N.-N.; Lou, B.-Q.; Shi, T.-Y. Relativistic Coupled-Cluster Calculations of the Polarizabilities of Atomic Thallium. Phys. Rev. A 2018, 98, 062511.
- (244) Nash, C. S. Atomic and Molecular Properties of Elements 112, 114, and 118. J. Phys. Chem. A 2005, 109, 3493–3500.
- (245) Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.; Plunien, G. Spin-Statistic Selection Rules for Multiphoton Transitions: Application to Helium Atoms. *Phys. Rev. A* **2016**, *93*, 012510.
- (246) Oleynichenko, A. V.; Zaitsevskii, A.; Skripnikov, L. V.; Eliav, E. Relativistic Fock Space Coupled Cluster Method for Many-Electron Systems: Non-Perturbative Account for Connected Triple Excitations. Symmetry 2020, 12, 1101.
- (247) Kellö, V.; Sadlej, A. J. Medium-Size Polarized Basis Sets for High-Level-Correlated Calculations of Molecular Electric Properties. Theoret. Chim. Acta 1992, 83, 351–366.
- (248) Labello, N. P.; Ferreira, A. M.; Kurtz, H. A. An augmented effective core potential basis set for the calculation of molecular polarizabilities. *J. Comput. Chem.* **2005**, *26*, 1464–1471.
- (249) Sulzer, D.; Norman, P.; Saue, T. Atomic C 6 Dispersion Coefficients: A Four-Component Relativistic Kohn-Sham Study. Mol. Phys. 2012, 110, 2535–2541.
- (250) Pantazis, D. A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the 6p Elements. Theor Chem Acc 2012, 131, 1292.
- (251) Pershina, V.; Borschevsky, A.; Eliav, E.; Kaldor, U. Adsorption of Inert Gases Including Element 118 on Noble Metal and Inert Surfaces from Ab Initio Dirac-Coulomb Atomic Calculations. *The Journal of Chemical Physics* **2008**, *129*, 144106.
- (252) Smits, O. R.; Jerabek, P.; Pahl, E.; Schwerdtfeger, P. A Hundred-year-old Experiment Re-evaluated: Accurate Ab Initio Monte Carlo Simulations of the Melting of Radon.

 Angew. Chem. Int. Ed. 2018, 57, 9961–9964.
- (253) Dzuba, V. A.; Berengut, J. C.; Ginges, J. S. M.; Flambaum, V. V. Screening of an Oscillating External Electric Field in Atoms. Phys. Rev. A 2018, 98, 043411.
- (254) McNeill, A. S.; Peterson, K. A.; Dixon, D. A. Polarizabilities of Neutral Atoms and Atomic Ions with a Noble Gas Electron Configuration. *The Journal of Chemical Physics* **2020**, *153*, 174304.
- (255) Safronova, U. I.; Johnson, W. R.; Safronova, M. S. Excitation Energies, Polarizabilities, Multipole Transition Rates, and Lifetimes of Ions along the Francium Isoelectronic Sequence. Phys. Rev. A 2007, 76, 042504.
- (256) Singh, S.; Sahoo, B. K.; Arora, B. Determination of Magic Wavelengths for the \$7s ^{2}S_{1/2}\ensuremath{-}7p ^{2}P_{3/2,1/2}\$ Transitions in Fr. Phys. Rev. A **2016**, 94, 023418.

- (257) Aoki, T.; Sreekantham, R.; Sahoo, B. K.; Arora, B.; Kastberg, A.; Sato, T.; Ikeda, H.; Okamoto, N.; Torii, Y.; Hayamizu, T.; Nakamura, K.; Nagase, S.; Ohtsuka, M.; Nagahama, H.; Ozawa, N.; Sato, M.; Nakashita, T.; Yamane, K.; Tanaka, K. S.; Harada, K.; Kawamura, H.; Inoue, T.; Uchiyama, A.; Hatakeyama, A.; Takamine, A.; Ueno, H.; Ichikawa, Y.; Matsuda, Y.; Haba, H.; Sakemi, Y. Quantum Sensing of the Electron Electric Dipole Moment Using Ultracold Entangled Fr Atoms. Quantum Sci. Technol. 2021, 6, 044008.
- (258) Kaur, H.; Badhan, V.; Arora, B.; Sahoo, B. K. Determination of Quadrupolar Dispersion Coefficients of the Alkali-Metal Atoms Interacting with Different Material Media. *Phys. Rev. A* 2022, 106, 042813.
- (259) Kadar-Kallen, M. A.; Bonin, K. D. Uranium Polarizability Measured by Light-Force Technique. Phys. Rev. Lett. 1994, 72, 828–831.
- (260) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. New Relativistic ANO Basis Sets for Actinide Atoms. Chem. Phys. Lett. 2005, 409, 295–299.
- (261) Martins, L. S. C.; Jorge, F. E.; Franco, M. L.; Ferreira, I. B. All-Electron Gaussian Basis Sets of Double Zeta Quality for the Actinides. *The Journal of Chemical Physics* **2016**, 145, 244113.
- (262) Srivastava, A. K.; Pandey, S. K.; Misra, N. Encapsulation of Lawrencium into C60 Fullerene: Lr@C60 versus Li@C60. Materials Chemistry and Physics 2016, 177, 437–441.
- (263) Seth, M.; Schwerdtfeger, P.; Dolg, M.; Faegri, K.; Hess, B. A.; Kaldor, U. Large Relativistic Effects in Molecular Properties of the Hydride of Superheavy Element 111.

 Chemical Physics Letters 1996, 250, 461–465.
- (264) Pershina, V. In The Chemistry of Superheavy Elements; Schädel, M., Shaughnessy, D., Eds.; Springer: Berlin, Heidelberg, 2014; pp 135–239.
- (265) de Farias, R. F. Estimation of Some Physical Properties for Tennessine and Tennessine Hydride (TsH). Chem. Phys. Lett. 2017, 667, 1–3.
- (266) Jerabek, P.; Schuetrumpf, B.; Schwerdtfeger, P.; Nazarewicz, W. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit.

 Phys. Rev. Lett. 2018, 120, 053001.