Andrea Augello
Department of Engineering, University of Palermo, Italy

Approssimatori universali e scelta degli iperparametri

Il problema della regressione

Il problema della regressione

- La regressione è un problema di <u>apprendimento supervisionato</u>
- L'obiettivo è quello di approssimare una funzione f che mappa un vettore di input \vec{x} in un valore reale y:

$$f: \mathbb{R}^n \to \mathbb{R}$$

La funzione f è sconosciuta, ma si hanno a disposizione m coppie (\vec{x}_i, y_i) , dette <u>esempi di addestramento</u>, che sono estratti da f e che vengono utilizzati per approssimarla

Il problema della regressione

- ▶ Per un'ampia classe di funzioni è possibile ottenere una approssimazione arbitrariamente precisa attraverso reti neurali sufficientemente grandi.
- ▶ Nella pratica, per n sufficientemente piccolo, è possibile ottenere buoni risultati con reti neurali di dimensione ridotta a patto di calcolare delle feature appropriate a partire dai dati di input.

Nota bene

Questo ragionamento può essere esteso anche a problemi di classificazione, considerando la funzione f come il confine di decisione (non necessariamente lineare) tra le classi.

I due dataset

I due dataset

Useremo come esempio due dataset sintetici generati con le seguenti funzioni:

Una funzione polinomiale di grado 5 con rumore gaussiano:

$$y = 0.0125x^5 - 0.125x^3 + 0.25x^2 - 0.5x + 1 + \epsilon$$

Una funzione sinusoidale con rumore gaussiano:

$$y = \sin(x) + \epsilon$$

I due dataset

Le solite funzioni di utilità

Approccio base

Approccio base

- ▶ Definiamo una serie di reti neurali di dimensione crescente, e addestriamo ciascuna di esse sui due dataset.
- Per ciascuna rete, valutiamo la bontà dell'approssimazione attraverso il mean squared error (MSE):

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Useremo mezzo dataset per l'addestramento e mezzo per la validazione

Classe base

```
import torch
import torch.nn as nn
class Net(nn Module).
   def init (self):
        super().__init__()
   def forward(self, x):
        pass
   def fit(self, x, y, lr=0.01, epochs=300, show=False, decay=True):
       losses = []
        loss fn = nn.MSELoss()
        optimizer = torch.optim.SGD(self.parameters(), lr=lr)
       if decay:
            scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.995)
        for epoch in range(epochs):
            loss = loss_fn(self.forward(x).squeeze(), y)
            optimizer.zero grad()
           loss backward()
            losses.append(loss.item())
            optimizer.step()
            if show :
                utils.plot(x, y, self, f"{epoch}, {loss.item():.2f}", pause=False)
            if decay:
                scheduler.step()
        return losses
```

Scheduler del learning rate

Scheduler del learning rate

- ▶ Il learning rate è un iperparamentro che tipicamente varia nel range $[10^{-6}, 10^{-1}]$, con 0.01 come valore molto comune.
- Un learning rate troppo piccolo rallenta eccessivamente l'addestramento, tipicamente si preferisce iniziare con il massimo learning rate possibile che non faccia divergere l'addestramento.
- ▶ Nelle reti moderne è comune utilizzare strategie per ridurre il learning rate durante l'addestramento.

Perché ridurre il learning rate?

Ipotesi sul perché variare il learning rate durante l'addestramento sia utile¹:

- Un learning rate troppo elevato può far sì che la rete "salti" da un minimo locale all'altro senza convergere.
- ► Un learning rate più basso consente alla rete di convergere in un minimo più "profondo" ma "stretto".
- ► Un learning rate iniziale elevato impedisce alla rete di apprendere il rumore nei dati, la riduzione graduale permette di imparare pattern più complessi.

¹Per approfondimenti: https://arxiv.org/pdf/1908.01878

Perché ridurre il learning rate?

Ipotesi sul perché variare il learning rate durante l'addestramento sia utile¹:

- ▶ Un learning rate troppo elevato può far sì che la rete "salti" da un minimo locale all'altro senza convergere.
- Un learning rate più basso consente alla rete di convergere in un minimo più "profondo" ma "stretto".
- ► Un learning rate iniziale elevato impedisce alla rete di apprendere il rumore nei dati, la riduzione graduale permette di imparare pattern più complessi.

Strategie popolari per lo scheduling del learning rate:

- step
- cyclic
- exponential

¹Per approfondimenti: https://arxiv.org/pdf/1908.01878

Scheduler esponenziale

- ▶ Ha meno parametri da settare/su cui ragionare rispetto ad altri scheduler.
- ▶ Ad ogni epoca, il learning rate viene moltiplicato per un fattore $\gamma \leq 1$.
- Se $\gamma = 1$, il learning rate rimane costante.
- ► Se avessimo più batch, andremmo a variare il learning rate solo dopo che tutti i batch sono stati processati.

Le epoche di addestramento

- ▶ Il tuning del numero di epoche è sostanzialmente gratuito: si lascia addestrare la rete per un numero elevato di epoche e si ferma quando la funzione di loss smette di migliorare.
- ► Lo stop può essere automatico (utilizzando un dataset di validazione separato da quello di addestramento per evitare l'overfitting) o manuale, vedendo a partire da che epoca la loss smette di migliorare, e tagliando l'addestramento a partire da quella epoca.
- Cosa costituisce un numero di epoche "elevato" dipende dal problema e dalla dimensione del dataset, potrebbero essere sufficienti poche decine/centinaia di epoche o potrebbero essere necessarie qualche migliaio di epoche.

Reti larghe

Reti larghe

- Un elevato numero di neuroni permette alla rete di apprendere numerose features
- ► In caso di parallelizzazione su GPU, il minor numero di operazioni sequenziali permette di sfruttare meglio le capacità di calcolo della scheda grafica
- ▶ La backpropagation è più semplice
- Possibile problema: overfitting

Reti larghe

Primo tentativo: un unico layer nascosto di dimensione variabile.

```
class WideNet(Net):
    def __init__(self, hidden_size):
        super().__init__()
        hidden_size = max(1, hidden_size)
        self.fc1 = nn.Linear(1, hidden_size)
        self.fc2 = nn.Linear(hidden_size, 1)
        self.activation = nn.ReLU()
    def forward(self, x):
        x = self.activation(self.fc1(x))
        x = self.fc2(x)
        return x
```

Reti larghe — Polinomio

Reti larghe — Sinusoide

Reti profonde

Reti profonde

- Una rete molto profonda può ottenere feature di più alto livello e "ragionare" ad un livello più astratto
- Questo tipo di rete può soffrire con più facilità del problema dell'esplosione/scomparsa del gradiente

Rete più profonda

```
class DeepNet(Net):
    def __init__(self, depth, hidden_size):
        super().__init__()
        hidden_size = max(1, hidden_size)
        depth = max(1, depth)
        self.activation = nn.ReLU()
        lavers = [nn.Linear(1, hidden_size), self.activation]
        for _ in range(depth-2):
            layers += [nn.Linear(hidden_size, hidden_size),
               self.activation1
        self.layers = nn.Sequential(*layers)
        self.output = nn.Linear(hidden_size, 1)
    def forward(self, x):
        x = self.layers(x)
        x = self.output(x)
        return x
```

Reti profonde — Polinomio

Reti profonde — Sinusoide

Nota bene

- Questa distinzione tra reti larghe e reti profonde non è così netta nella pratica.
- ▶ Una rete può essere molto larga nei primi layer e successivamente può avere numerosi livelli con meno neuroni.
- Non esiste una regola generale per la scelta della dimensione e del numero dei layer.

Dimensionare la rete

Dimensionare la rete

Non esiste una regola generale per la scelta della dimensione e del numero dei layer. Ci sono però alcune linee guida empiriche che si possono tenere a mente nel lavoro "artigianale" di progettazione di una rete:

- Spesso le reti con il primo strato nascosto più largo dell'input funzionano meglio di reti "undercomplete".
- Avere tutti i layer centrali con lo stesso numero di neuroni da spesso risultati equivalenti, se non migliori, di reti con un numero di neuroni crescente/decrescente.
- "Sbagliare" usando strati troppo larghi tipicamente ha meno effetti negativi che "sbagliare" usando strati troppo stretti (oltre al costo di addestramento maggiore).

Esempio pratico

Esempio pratico

Dato il codice nel file main2.py, scrivere il codice mancante per creare la rete e addestrarla sul dataset dataset3.dat. Determinare una architettura adeguata per la rete e individuare i parametri migliori per l'addestramento.

Si tenga presente che la rete deve risolvere un problema di classificazione su tre classi con due feature in input.

Obbiettivo: ottenere un'accuratezza sul dataset di test maggiore del 94.5%.