Solutions to Midterm

MA1521 CALCULUS FOR COMPUTING

Time allowed: 1 hour 15 mins.

The test is open book. You may use online graphic calculator.

Answer all 7 questions. Each question carries 10 marks.

Justify your answers and show your steps clearly.

1. Let *a* and *b* be integers. It is known that

$$\lim_{x \to 0} \left(\frac{\sin 2x}{x^3} + \frac{a}{3} + \frac{b}{x^2} \right) = 0.$$

Determine the value of a + b.

Answer. 2.

Solution. First $\lim_{x\to 0} \left(\frac{\sin 2x}{x^3} + \frac{a}{3} + \frac{b}{x^2}\right) = 0$ is equivalent to $\lim_{x\to 0} \left(\frac{\sin 2x + bx}{x^3}\right) = -\frac{a}{3}$. Applying L'Hôpital's Rule, we have $\lim_{x\to 0} \left(\frac{\sin 2x + bx}{x^3}\right) = \lim_{x\to 0} \left(\frac{2\cos 2x + b}{3x^2}\right)$. The latter limit exists only if $\lim_{x\to 0} (2\cos 2x + b) = 2 + b = 0$. That is b = -2. When b = -2, we apply L'Hôpital's Rule twice to get $\lim_{x\to 0} \left(\frac{2\cos 2x - 2}{3x^2}\right) = \lim_{x\to 0} \left(\frac{-4\sin 2x}{6x}\right) = \lim_{x\to 0} \left(\frac{-8\cos 2x}{6}\right) = -\frac{4}{3}$. Therefore, $-\frac{a}{3} = -\frac{4}{3}$ so that a = 4 and a + b = 2.

2. Let $f(x) = \sqrt{3x + \sqrt{x}}$ for x > 0. An equation of the tangent line to the graph of f(x) at x = 1 is of the form ax - by + 9 = 0, where a and b are integers. Find the value of a + b. **Answer**. 15.

Solution. $f'(x) = \frac{1}{2\sqrt{3x+\sqrt{x}}} \left(3 + \frac{1}{2\sqrt{x}}\right)$. Thus $f'(1) = \frac{7}{8}$. Also f(1) = 2. Hence, an equation of the tangent line to the graph of f at (1,2) is given by $y-2=\frac{7}{8}(x-1)$, or equivalently, 7x-8y+9=0. Thus a=7, b=8 and a+b=15.

3. A robot X moves from left to right along the positive x-axis whose speed at time t is given by $5(1-\frac{1}{t+1})$ meters per min. Another robot Y moves upward along the positive y-axis whose speed at time t is given by $12(1-\frac{1}{t+1})$ meters per min. At time t=0 min, they both start moving from rest at the origin O. The distance between the two robots at time t=12 min is increasing at the rate of R meters per min. Determine the value of R.

1

Answer. 12.

Solution. The distance measured in meters of *X* from *O* at time *t* min is $x(t) = \int 5 - \frac{5}{t+1} dt = 5t - 5\ln(t+1) + C$. When t = 0, the distance from *O* is zero. Thus C = 0. Therefore, $x(t) = 5t - 5\ln(t+1)$.

Similarly, the distance measured in meters of *Y* from *O* at time *t* min is $y(t) = 12t - 12\ln(t+1)$.

Therefore, the distance between them at time *t* min is given by

$$L = \sqrt{(5t - 5\ln(t+1))^2 + (12t - 12\ln(t+1))^2}.$$

Simplifying, $L = 13(t - \ln(t + 1))$, for $t \ge 0$. Thus $\frac{dL}{dt} = 13(1 - \frac{1}{t+1})$. When t = 12, $R = \frac{dL}{dt}\Big|_{t=12} = 12$.

4. A farmer wishes to employ tomato pickers to harvest 42500 tomatoes. Each picker can harvest 625 tomatoes per hour and is paid \$6 per hour. In addition, the farmer must pay a supervisor \$10 per hour and pay the union \$10 for each picker employed. How many pickers should the farmer employ to minimize the cost of harvesting the tomatoes? Your answer should be a positive integer.

Answer. 8.

Solution. Let x be the number of pickers. Each picker picks $\frac{42500}{x}$ tomatoes. Each picker spends $\frac{42500}{625x}$ hours in picking the tomatoes. The farmer needs to pay each picker $\frac{42500\times 6}{625x}$ dollars. Thus the cost of hiring x pickers is $\frac{42500\times 6}{625}$ = 408 dollars.

The cost of hiring the supervisor is $\frac{42500 \times 10}{625x} = \frac{680}{x}$ dollars. The farmer also needs to pay 10x dollars to the union.

Therefore, the total cost in dollars is $C(x) = 408 + \frac{680}{x} + 10x$, x > 0.

Then
$$C'(x) = -\frac{680}{x^2} + 10$$
. Thus $C'(x) = 0 \Leftrightarrow x = \sqrt{68} = 8.25$.

Also For $0 < x < \sqrt{68}$, C'(x) < 0 and for $x > \sqrt{68}$, C'(x) > 0. Thus by the first derivative test, C has an absolute minimum at $x = \sqrt{68}$. As $\sqrt{68}$ is not a whole number, we look for the value of C at nearby integers x = 8 and 9. We have C(8) = 573 dollars and $C(9) = \frac{5162}{9} = 573.56$ dollars. Comparing these 2 values, we find that the minimum cost is attained at x = 8, and the job is done in 8.5 hours.

5. The curve $y^4 = 36(y^2 - x^2)$ has a shape like a figure **8**. Find the area of the region enclosed by the two loops of the curve.

Answer. 48.

Solution. The curve is symmetric about the *x*-axis and also about the *y*-axis since for any point (x,y) on the curve, the points (x,-y),(-x,y),(-x,-y) are also on the curve. So we may simply consider the curve in the first quadrant in which $x,y \ge 0$.

Solving x in terms of y, we obtain $x = y\sqrt{1 - \frac{y^2}{36}}$. Thus $0 \le y \le 6$. Therefore, the area of the region bounded by the curve and the y-axis in the first quadrant is given by $\int_0^6 y\sqrt{1 - \frac{y^2}{36}} \, dy = \left[-12(1 - \frac{y^2}{36})^{\frac{3}{2}}\right]_0^6 = 12$. Hence the required area is $4 \times 12 = 48$.

6. Let
$$f(x) = \frac{1}{10} \int_{\frac{\pi}{2}}^{x} \sqrt{2 + \sin t + \sin^2 t} \, dt$$
.

Show that f^{-1} exists by proving that f is increasing on \mathbb{R} . Find also the value of $(f^{-1})'(0)$.

Answer. 5.

Solution. By the fundamental theorem of calculus, $f'(x) = \frac{1}{10}\sqrt{2 + \sin x + \sin^2 x} \ge \frac{1}{10}\sqrt{2 + \sin x} \ge \frac{1}{10}\sqrt{2 - 1} > 0$. Therefore, f is increasing on \mathbb{R} . Thus f is injective and f^{-1} exists.

Note that
$$f^{-1}(0) = x \Leftrightarrow f(x) = 0 \Leftrightarrow \frac{1}{10} \int_{\frac{\pi}{2}}^{x} \sqrt{2 + \sin t + \sin^2 t} \, dt = 0.$$

Since $\frac{1}{10} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2 + \sin t + \sin^2 t} \, dt = 0$ and f is injective, we have $x = \frac{\pi}{2}$.

Therefore,
$$f^{-1}(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(\frac{\pi}{2})} = \frac{1}{\frac{1}{10}\sqrt{2 + \sin\frac{\pi}{2} + \sin^2\frac{\pi}{2}}} = 5.$$

7. It is known that the improper integral $\int_0^1 \frac{1}{x^2} - \frac{1}{(x+1)[\ln(x+1)]^2} dx = \frac{p - \ln 8}{\ln 4}.$ Determine the value of p. Justify your answer.

Answer. 2.

Solution.

$$\int_{0}^{1} \frac{1}{x^{2}} - \frac{1}{(x+1)[\ln(x+1)]^{2}} dx$$

$$= \lim_{b \to 0^{+}} \int_{b}^{1} \frac{1}{x^{2}} - \frac{1}{(x+1)[\ln(x+1)]^{2}} dx$$

$$= \lim_{b \to 0^{+}} \left[-\frac{1}{x} + \frac{1}{\ln(x+1)} \right]_{b}^{1}$$

$$= -1 + \frac{1}{\ln 2} + \lim_{b \to 0^{+}} \left(\frac{1}{b} - \frac{1}{\ln(b+1)} \right).$$

By L'Hôpital's rule,
$$\lim_{b \to 0^+} \left(\frac{1}{b} - \frac{1}{\ln(b+1)}\right) = \lim_{b \to 0^+} \frac{\ln(b+1) - b}{b \ln(b+1)} = \lim_{b \to 0^+} \frac{\frac{d}{db}(\ln(b+1) - b)}{\frac{d}{db}(b \ln(b+1))} = \lim_{b \to 0^+} \frac{\frac{1}{b+1} - 1}{\ln(b+1) + \frac{b}{b+1}} = \lim_{b \to 0^+} \frac{-b}{(b+1)\ln(b+1) + b} = \lim_{b \to 0^+} \frac{\frac{d}{db}(-b)}{\frac{d}{db}((b+1)\ln(b+1) + b)}$$

$$= \lim_{b \to 0^+} \frac{-1}{\ln(b+1) + 1 + 1} = -\frac{1}{2}.$$

Therefore, the value of the improper integral is $-1 + \frac{1}{\ln 2} - \frac{1}{2} = -\frac{3}{2} + \frac{1}{\ln 2} = \frac{2 - 3 \ln 2}{2 \ln 2} = \frac{2 - \ln 8}{\ln 4}$. Consequently p = 2.