Thursday, February 1, 2024 11:30 AM

+ Draw an NFA N3 such that

 $L(N_3) = L(N_1) \cdot L(N_2)$ set concat

aabbe $L(N_1).L(N_2)$ aabb $\notin L(N_1).L(N_2)$ bbaaa $\notin L(N_1).L(N_2)$ bbbaa $\notin L(N_1).L(N_2)$

AB = {xy: xeA,

bback $\notin L(N_1), L(N_2)$ be $L(N_1), L(N_2)$

NFAs with E-transitions:

We extend $\Delta: Q \times Z \longrightarrow 2$ to

 $\Delta: Q \times (\Sigma \cup \{\xi\}) \longrightarrow 2^Q$ so that

the NFA can change its state without consuming any symbol.

Thm. Any NFA with &-transitions can be turned into an equivalent NFA (or DFA) (if you're interested, check the book but we don't cover it)

Example: Assume you are given an NFA N2 such that

(a)
$$L(N_2) = L(N_1)^{\dagger}$$

(b) $L(N_2) = L(N_1)^{\dagger}$
Recall: $A^* = A^{\circ} U A^{\dagger} U A^2 U A^3 U \dots$
 $= \{x_1 x_2 x_3 \dots : x_1 \in A_2^{\circ} U \{ \epsilon \} \}$
 $A^{\dagger} = A^{\dagger} U A^2 U A^3 U \dots$
 $= \{x_1 x_2 x_3 \dots : x_1 \in A_2^{\circ} \}$
 $e.g. A = \{aa,bb\}$
 $e.g. A = \{aa,bb\}$
 $aaaabbaabbe A^{\dagger}$
 eA^{\dagger}
 eA^{\dagger}

