SEMIEMP

-Open source code for semiempirical quantum chemistry calculation

Soumen Ghosh

Please cite our original publications when you use Semiemp-

Soumen Ghosh, Jason C. Asher, Laura Gagliardi, Christopher J. Cramer, Niranjan Govind. A Semiempirical Effective Hamiltonian Based Approach for Analyzing Excited State Wave Functions and Computing Excited State Absorption Spectra Using Real-Time Dynamics. J. Chem. Phys. 2019, 150, 104103.

Soumen Ghosh, Amity Andersen, Laura Gagliardi, Christopher J. Cramer and Niranjan Govind. Modeling Optical Spectra of Large Organic Systems using Real-Time Propagation of Semiempirical Effective Hamiltonians. J. Chem. Theory Comput. 2017, 13, 4410–4420.

If you have any questions or suggestions, please contact me at chemsghosh(at)gmail.com.

15/09/2020

Setting up the code- SEMIEMP can be interfaced with NWChem. Few steps has to be followed to set up the code-

- Download the code –
 git clone https://github.com/SoumenChem/semiemp.git
- 2. Move "semiemp" folder to "nwchem/src/".
- 3. Copy task.F, task_input.F, task_energy, task_gradient.F files from "nwchem/src/semiemp/setup" folder to "nwchem/src/task/" folder.
- 4. Copy input_parse.F file from "nwchem/src/semiemp/setup" folder to "nwchem/src/input/" folder.
- 5. Copy make_nwchem_config from "nwchem/src/semiemp/setup" folder to "nwchem/src/config" folder.
- 6. Copy util_module_avail.F from "nwchem/src/semiemp/setup" folder to "nwchem/src/util" folder.
- 7. Compile nwchem. (It might be necessary to run "make realclean" before compiling the code.

Single point calculation

Below is a sample input for a single point calculation for INDO Hamiltonian:

start benzene_scf

charge 0

geometry noautosym noautoz

C	-0.804616000	0.000000000	-2.637508000
C	-1.968653000	-0.357135000	-1.934532000
C	0.359421000	0.357135000	-1.934532000
Η	-2.876005000	-0.635517000	-2.482493000
Η	1.266773000	0.635517000	-2.482493000
C	-1.968653000	-0.357135000	-0.528579000
C	0.359421000	0.357135000	-0.528579000
Η	-2.876005000	-0.635517000	0.019382000
Η	1.266773000	0.635517000	0.019382000
C	-0.804616000	0.000000000	0.174397000
Н	-0.804616000	0.000000000	1.270320000
Н	-0.804616000	0.000000000	-3.733431000
end			

semiemp mult 1 apx INDO/1 scftype rhf maxiter 50 end

task semiemp energy

No basis set is needed.

MULT- MULTIPLICITY

Multiplicity of the system can be defined here.

APX-Approximate Hamiltonian

Currently available methods are CNDO/1, CNDO/2, INDO/1 and INDO/2. (1 and 2 indicates two different parametrization for one centre core integrals).

SCFTYPE-Wave function type

Currently only RHF and UHF is available.

MAXITER-Iteration limit.

This keyword indicate maximum allowed iterations. Default is 50.

SCFTOL-Convergence criteria for density.

Default value is 10⁻⁷.

INTTYP- Integral type

0 (default) for ground state calculations

1 for spectroscopic calculations (INDO/S etc)

INTPOL-Control for interpolation step in SCF

Default is FAST.

If SCF iteration shows instability, INTPOL should be set to SLOW. It might help with the convergence.

RT-INDO/S

Input for RT-INDO/S

start benzene_y

```
charge 0
```

geometry noautosym noautoz

C	-0.804616000	0.000000000	-2.637508000
C	-1.968653000	-0.357135000	-1.934532000
C	0.359421000	0.357135000	-1.934532000
Η	-2.876005000	-0.635517000	-2.482493000
Η	1.266773000	0.635517000	-2.482493000
C	-1.968653000	-0.357135000	-0.528579000
C	0.359421000	0.357135000	-0.528579000
Η	-2.876005000	-0.635517000	0.019382000
Η	1.266773000	0.635517000	0.019382000
C	-0.804616000	0.000000000	0.174397000
Η	-0.804616000	0.000000000	1.270320000
Η	-0.804616000	0.000000000	-3.733431000
end			

semiemp mult 1.0 apx INDO/1 scftype rhf maxiter 100 inttyp 1 end

rt_semiemp nrestarts 100

15/09/2020

tmax 1000 dt 0.1 tag "kick_y" field_type delta field_max 0.0001 polarization y print dipole end

task semiemp rt_semiemp

RT-INDO/S is currently available only for RHF wave functions.

NRESTARTS

This sets the number of run-time check points where the time-dependent complex density matrix is saved to file, allowing the simulation to be restarted from that point.

PROPAGATOR

If nothing is mentioned modified Chebyshev propagator will be used. Only other option available for now is conventional Chebyshev propagator. The keyword "Propagator Chebyshev" will activate the conventional Chebyshev propagator. For understanding the difference between two propagators please check our original paper (J. Chem. Phys. 2019, 150, 104103).

TMAX

This option specifies the maximum time (in au) to run the simulation before stopping, which must be a positive real number.

DT

This specifies the electronic time step for time integration.

TAG -- Output label

This option sets a label for the output for convenient parsing (e.g., with "grep").

Tag "kick y"

It appears in the output as:

Kick_ytotal 0.1 2.20000 -7.589146713114E+001 -7.589146713114E+001 -7.589146713114E+001 #Dipole moment [system]

FIELD_TYPE

This option sets type of external electric field. Two options currently available are "delta" and "Gaussian".

Gaussian field (only works with "propagator Chebyshev" keyword) has some other options-

15/09/2020

FREQUENCY 0.12 au #frequency of laser in au (e.g., 0.12 au = 3.27 eV)

CENTER 200.0 #center of Gaussian envelop (in au time)

WIDTH 50.0 #width of Gaussian pulse (in au time)

FIELD_MAX

This option sets the maximum value of the electric field

SPIN

SPIN TOTAL has to be used for UHF wave function.

Polarization

This option sets the polarization direction. It can be x, y or z.

PRINT

This option sets the different time-dependent properties to be computed and printed at each time step.

Dipole: Dipole moment

ORBSPACE

This option activates MO pair decomposition of the dipole moment. To reduce the amount data printed, a user defined orbital space is used. Only MO decomposed dipole moment information within that orbital space is printed. To print all the MO pair contribution full MO space can be specified. This keyword works with all propagator but **only** available for **RHF** wave functions. The key word format is-

ORBSPACE [lowest occupied MO number] [highest occupied MO number]