# Creating train, test, and validation datasets

MODEL VALIDATION IN PYTHON



**Kasey Jones**Data Scientist



# Traditional train/test split

- Seen data (used for training)
- Unseen data (unavailable for training)





#### Dataset definitions and ratios

| Dataset               | Definition                                          |
|-----------------------|-----------------------------------------------------|
| Train                 | The sample of data used when fitting models         |
| Test (holdout sample) | The sample of data used to assess model performance |

#### Ratio Examples

- 80:20
- 90:10 (used when we have little data)
- 70:30 (used when model is computationally expensive)

가

# The X and y datasets

```
import pandas as pd

tic_tac_toe = pd.read_csv("tic-tac-toe.csv")

X = pd.get_dummies(tic_tac_toe.iloc[:,0:9])

y = tic_tac_toe.iloc[:, 9]
```

Python courses covering dummy variables: train\_test\_split() tic\_tac\_toe

- Supervised Learning tic\_tac\_toe 9
- Preprocessing for Machine Learning

## Creating holdout samples

```
X_train, X_test, y_train, y_test =\
    train_test_split(X, y, test_size=0.2, random_state=1111)
```

#### Parameters:

```
• test_size float test_set size
```

- train\_size train set seize 가
- random\_state

# Dataset for preliminary testing?

What do we do when testing different model parameters?

• 100 *versus* 1000 trees

```
test hyperparameter model 가 hold - out sample . 
validation_set
```





### Train, validation, test continued

```
X_temp, X_test, y_temp, y_test =\
    train_test_split(X, y, test_size=0.2, random_state=1111)

X_train, X_val, y_train, y_val =\
    train_test_split(X_temp, y_temp, test_size=0.25, random_state=11111)
```



# It's holdout time

MODEL VALIDATION IN PYTHON



# Accuracy metrics: regression models

MODEL VALIDATION IN PYTHON



**Kasey Jones**Data Scientist



# Regression models

12.2 points

15 gallons of gas

\$1,323,492

6 new puppies

4,320 people



# Mean absolute error (MAE)

ex) 6 , 
$$MAE = rac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

가

ex)

- Simplest and most intuitive metric
- Treats all points equally
- Not sensitive to outliers

# Mean squared error (MSE)

$$MSE = rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n}$$

- Most widely used regression metric
- Allows outlier errors to contribute more to the overall error
- Random family road trips could lead to large errors in predictions

#### MAE vs. MSE

- Accuracy metrics are always application specific
- MAE and MSE error terms are in different units and should not be compared

#### Mean absolute error

```
rfr = RandomForestRegressor(n_estimators=500, random_state=1111)
rfr.fit(X_train, y_train)
test_predictions = rfr.predict(X_test)
sum(abs(y_test - test_predictions))/len(test_predictions)
```

9.99

```
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, test_predictions)
```



### Mean squared error

mean\_squared\_error()

```
sum(abs(y_test - test_predictions)**2)/len(test_predictions)
```

#### 141.4

```
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, test_predictions)
```

```
가
, 가 ,
```



### Accuracy for a subset of data

```
chocolate_preds = rfr.predict(X_test[X_test[:, 1] == 1])
mean_absolute_error(y_test[X_test[:, 1] == 1], chocolate_preds)
```

#### 8.79

```
nonchocolate_preds = rfr.predict(X_test[X_test[:, 1] == 0])
mean_absolute_error(y_test[X_test[:, 1] == 0], nonchocolate_preds)
```

```
・
1 1 0
9 가 11 가 ,
```

# Let's practice

MODEL VALIDATION IN PYTHON



# Classification metrics

MODEL VALIDATION IN PYTHON



**Kasey Jones**Data Scientist



#### Classification metrics

- Precision
- Recall (also called sensitivity)
- Accuracy
- Specificity
- F1-Score, and its variations
- ...

#### Classification metrics

metric 가 :

- Precision
- Recall (also called sensitivity)
- Accuracy
- Specificity
- F1-Score, and its variations
- ...

#### **Confusion matrix**

#### **Predicted Values**

True Positive: Predict/Actual are both 1

True Negative: Predict/Actual are both 0

False Positive: Predicted 1, actual 0

False Negative: Predicted 0, actual 1

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, test_predictions)
print(cm)
array([[ 23, 7],
       [ 8, 62]])
cm[<true_category_index>, , cmicted_category_index>]
cm[1, 0]
    1,0
```

# Accuracy

#### **Predicted Values**



$$\frac{23(TN)+62(TP)}{23+7+8+62} = .85$$

#### **Precision**





#### Recall

#### **Predicted Values**



# Accuracy, precision, recall

```
from sklearn.metrics import accuracy_score, precision_score, recall_score
accuracy_score(y_test, test_predictions)
```

.85

precision\_score(y\_test, test\_predictions)

.8986

recall\_score(y\_test, test\_predictions)



# Practice time

MODEL VALIDATION IN PYTHON



# The bias-variance tradeoff

MODEL VALIDATION IN PYTHON



**Kasey Jones**Data Scientist



#### Variance

- Variance: following the training data too closely
  - Fails to generalize to the test data
  - Low training error but high testing error
  - Occurs when models are overfit and have high complexity

# Overfitting models (high variance)

overfitting model



—Predictions • Actuals



#### Bias

- Bias: failing to find the relationship between the data and the response
  - High training/testing error
  - Occurs when models are underfit

train dataset test dataset

underfit model

# Underfitting models (high bias)

underfitting model





# **Optimal performance**



• Bias-Variance Tradeoff

# Parameters causing over/under fitting

```
rfc = RandomForestClassifier(n_estimators=100, max_depth=4)
rfc.fit(X_train, y_train)
print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))
```

#### Training: .84

```
print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))
```

#### Testing: .77

```
trian_accuracy가 test accuracy -> , underfitting max_depth=4가 .
```



```
rfc = RandomForestClassifier(n_estimators=100, max_depth=14)
rfc.fit(X_train, y_train)
print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))
```

#### Training: 1.0

```
print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))
```

Testing: .83

overfitting

```
rfc = RandomForestClassifier(n_estimators=100, max_depth=10)
rfc.fit(X_train, y_train)
print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))
```

#### Training: .89

```
print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))
```

Testing: .86



# Remember, only you can prevent overfitting!

MODEL VALIDATION IN PYTHON