# USER MANUAL



# **Serial Communication Control Interface (SCOM)**

Applies for redesigned Series 1 Maritime Multi Display (MMD) product range

| User Manual SCOM MMD Series 1       |                             |  |  |  |  |  |
|-------------------------------------|-----------------------------|--|--|--|--|--|
| Updated: 04 Jun 2009                | Doc ld: INB100018-3 (Rev 1) |  |  |  |  |  |
| Created: 6542/363<br>Approved: 6542 |                             |  |  |  |  |  |

Please visit www.hatteland-display.com for the latest electronic version of this manual.

Copyright © 2009 Hatteland Display AS Aamsosen, N-5578 Nedre Vats, Norway

Information in this manual is copyrighted to the respective owners. All rights are reserved by Hatteland Display AS. This information may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form without the prior written consent of Hatteland Display AS.

The products described, or referenced, herein are copyrighted to the respective owners. The products may not be copied or duplicated in any way. This documentation contains proprietary information that is not to be disclosed to persons outside the user's company without prior written consent of Hatteland Display AS.

The copyright notice appearing above is included to provide statutory protection in the event of unauthorized or unintentional public disclosure.

All other product names or trademarks are properties of their respective owners!

WARNING: This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

# Contents

| Contents                                | 3  |
|-----------------------------------------|----|
| HATTELAND® SCOM Control Interface       | 5  |
| Interface Configuration                 | 5  |
| Cable                                   |    |
| Block Diagram                           | 6  |
| Electrical Interface                    |    |
| Data Rate                               | 8  |
| Data Format                             | 8  |
| Message Format                          | 8  |
| Attention (ATTN)                        | 8  |
| Address (ADDR)                          |    |
| Data Length (LEN)                       | 8  |
| Inverse Header Checksum (IHCHK)         | 8  |
| Data Field (DATA)                       | 8  |
| Inverse Data Checksum (IDCHK)           |    |
| Message Commands and Queries(CMD)       | 9  |
| Brightness Command "BRT"                | 9  |
| Buzzer Control "BZZ"                    | 10 |
| Display State "DST"                     | 10 |
| Elapsed Time Counter "ETC"              | 11 |
| Manufacturer ID "MAN"                   |    |
| Unit OSD Control "MCC"                  | 11 |
| Potentiometer Control "POT"             |    |
| Unit Serial Number "SNB"                |    |
| Unit Type/Model Number "TYP"            |    |
| Unit ID Model/Version Number "VER"      | 13 |
| Operational Requirements                | 13 |
| Serial Message Failure                  |    |
| Periodic Messages                       | 13 |
| Keep-alive Alarm                        |    |
| Response Time                           |    |
| Individually Addressed Command Response | 14 |
| Broadcast Command Response              |    |
| Inter-message Gap                       |    |
| Unit Response and Addresses             | 14 |

# Contents

| Additional Commands                 | 15 |
|-------------------------------------|----|
| Video Controller Interface Commands | 16 |
| Revision History - HATTELAND® SCOM  | 23 |

#### **HATTELAND® SCOM Control Interface**

This document defines the electrical interface, serial data format, and communication protocol of the Serial Communication Control Interface for Redesign. The purpose of this interface is to enable a computer application to control one or more units. Units refer to either displays or panel computers.

#### Interface Configuration

The serial interface can have different configurations, selected by the OSD menu.

The configurations are defined as follows:

| RS-232               | One computer controls one unit, no individual address             |
|----------------------|-------------------------------------------------------------------|
| 4-wire RS-485/RS-422 | One computer controls max 16 units, each with individual address. |
| 2-wire RS-485        |                                                                   |

#### Cable

A cable with an overall shield terminated at the back shell should be used.

# Block Diagram



#### Electrical Interface

Electrical signals shall conform to RS-485, RS-422 or RS-232. Only Receive Data, Transmit Data, and Signal Ground are used. The same conditions apply for both 4-wire and 2-wire, and will just be referred to as RS-485 in this document. Hardware handshake is only supported by loopback handshake for RS-232.

The display is shipped with HATTELAND® Multifunction Cable. The cable have 9-way female DSUB connection for RS-232 interface. RS-485 is optional.

Pin assignments at the unit are as shown below.

| Pin | RS 232          | RS422/ RS 485 4-wire | RS 485 2-wire    |
|-----|-----------------|----------------------|------------------|
| 1   | Buzzer CTRL (+) | NC <sup>1)</sup>     | NC <sup>1)</sup> |
| 2   | Tx              | RxD-                 | NC <sup>1)</sup> |
| 3   | Rx              | TxD+                 | Data +           |
| 4   | Pin 6           | NC <sup>1)</sup>     | NC <sup>1)</sup> |
| 5   | GND             | NC <sup>1)</sup>     | NC <sup>1)</sup> |
| 6   | Pin 4           | NC <sup>1)</sup>     | NC <sup>1)</sup> |
| 7   | Pin 8           | RxD+                 | NC <sup>1)</sup> |
| 8   | Pin 9           | TxD-                 | Data -           |
| 9   | Buzzer CTRL (-) | NC <sup>1)</sup>     | NC <sup>1)</sup> |

<sup>1)</sup> NC pins may be internally connected. Do not use these without consulting Hatteland Display.

#### Data Rate

The unit is configured to transmit and receive data at 9600 bits/second.

#### **Data Format**

Data shall be transmitted with no parity, 8 data bits, one start bit and one stop bit.

#### Message Format

The basic message format shall be as follows:

| Byte # | 0    | 1    | 2,3,4 | 5   | 6     | 7, etc | 7+LEN |
|--------|------|------|-------|-----|-------|--------|-------|
|        | ATTN | ADDR | CMD   | LEN | IHCHK | DATA   | IDCHK |

The minimum message size is 7 bytes. The maximum message size is 82 bytes, consistent with 61162-1.

#### Attention (ATTN)

This byte is used to identify a start of message. It can be one of 3 values:

| ATTN | Description                      |              |  |  |
|------|----------------------------------|--------------|--|--|
| 0x07 | Command                          | (ASCII BELL) |  |  |
| 0x06 | Acknowledge (ASCII ACK)          |              |  |  |
| 0x15 | Negative Acknowledge (ASCII NAK) |              |  |  |

A device shall send a command using the 0x07 Attention Code. The unit will respond to the command with either an ACK if the command completed successfully, or a NAK if the command failed.

#### Address (ADDR)

This byte is used to specify a particular unit to receive a Command and to identify the unit responding (ACK or NAK) to a Command. All units will support the broadcast address. The factory default adress is 0.

The Address field shall have the following values:

| ADDR         | Description                                  |
|--------------|----------------------------------------------|
| 0xFF         | Broadcast - Addressed to all units           |
| 0x00 to 0x0F | Address of a specific unit (max of 16 units) |

#### Data Length (LEN)

This byte defines the length of DATA in the message in bytes. The maximum value for this field is 74 bytes. The minimum value is 0 bytes.

#### Inverse Header Checksum (IHCHK)

This is a simple 8-bit checksum of the header data, message bytes 0 to 5 on which a bit-wise inversion has been performed. The checksum shall be initialised to 0. The 8-bit sum (without carry) of bytes 0, 1, 2, 3, 4, 5 and 6 shall be 0xFF.

If the unit receives a message with an incorrect checksum, the unit will reply with the attention code set to NAK and no data field. This does not apply to Broadcast messages in RS-485 mode, in which case there will be no reply.

#### Data Field (DATA)

The DATA field shall only be transmitted if LEN is greater than 0. This field depends on the CMD transmitted.

#### Inverse Data Checksum (IDCHK)

These bytes shall only be transmitted if LEN is greater than 0. This is a simple 8-bit checksum of the data field, message bytes 7 to 7+(LEN-1) on which a bit-wise inversion has been performed. The checksum shall be initialised to 0. The 8-bit sum (without carry) of bytes 7 through 7+LEN inclusive shall be 0xFF. The receiver will reply to any message that the checksum has failed with the attention code set to NAK. This requirement does not reply to broadcast messages in RS-485 (for units that support it) mode, in which case there will be no reply.

#### Message Commands and Queries(CMD)

The command can be one of the following values:

| CMD 0 | CMD 1 | CMD 2 | ASCII | Description                   |
|-------|-------|-------|-------|-------------------------------|
| 0x42  | 0x52  | 0x54  | "BRT" | Brightness Control            |
| 0x42  | 0x5A  | 0x5A  | "BZZ" | Buzzer Control                |
| 0x45  | 0x54  | 0x43  | "ETC" | Elapsed Time Counter Query    |
| 0x46  | 0x53  | 0x54  | "DST" | Display State                 |
| 0x4D  | 0x41  | 0x4E  | "MAN" | Manufacturer ID Code          |
| 0x4D  | 0x43  | 0x43  | "MCC" | OSD Control                   |
| 0x50  | 0x4F  | 0x54  | "POT" | Potentiometer Control         |
| 0x53  | 0x4E  | 0x42  | "SNB" | Serial Number Query           |
| 0x53  | 0x57  | 0x49  | "SWI" | ECOM Software Version Query   |
| 0x53  | 0x57  | 0x50  | "SWK" | Keypad Software Version Query |
| 0x54  | 0x4D  | 0x50  | "TMP" | Current Temperature Query     |
| 0x54  | 0x59  | 0x50  | "TYP" | Type/Model Number Query       |
| 0x56  | 0x45  | 0x52  | "VER" | Unit ID Version Number Query  |

#### **Brightness Command "BRT"**

This command is sent to the unit to command the backlight brightness control setting. The brightness value shall be sent as one byte in the DATA field. A setting of 0x00 will indicate off. A setting of 0xFF will indicate maximum brightness. Intermediate values will control brightness over the range from minimum to maximum luminance. LEN = one data byte.

After any power cycle the BRT will be set to 100%.

If the data checksum is valid and the brightness was set, the unit will reply to this command with an ACK attention code. The DATA field in the reply shall indicate the resulting brightness control setting. If an invalid checksum was received and the message was not Broadcast and RS-485, the unit will reply with an NAK attention code. The DATA field in the reply will indicate the current brightness control setting.

#### Examples:

If BRT is 100%, the user can adjust the brightness from 0-100%. If the BRT is set to 60%, the visual brightness is set to 60%. The user can adjust the brightness from 0-100% within the 60% set by BRT. If the user sets the potensiometer to half, the visual brightness will be 30% (half of 60%). If BRT is set back to 100%, the visual brightness will be 50% (half of 100%).

Command 60% Brightness:

| 0x07   0xFF   0x42   0x52   0x54   0x01   0x10   0x99   0x66 | ĺ | 0x07 | 0xFF | 0x42 | 0x52 | 0x54 | 0x01 | 0x10 | 0x99 | 0x66 |
|--------------------------------------------------------------|---|------|------|------|------|------|------|------|------|------|
|--------------------------------------------------------------|---|------|------|------|------|------|------|------|------|------|

Acknowledge 60% Brightness:

| 0x06 | 0xFF | 0x42 | 0x52 | 0x54 | 0x01 | 0x11 | 0x99 | 0x66 |
|------|------|------|------|------|------|------|------|------|

Negative Acknowledge 40% Brightness:

| ١ | 0x15 | 0xFF | 0x42 | 0x52 | 0x54 | 0x01 | 0x02 | 0x66 | 0x99 |
|---|------|------|------|------|------|------|------|------|------|

#### **Buzzer Control "BZZ"**

This command is sent to the unit to control buzzer on/off if there is a buzzer present. LEN = one data byte.

| 0x00 | Turn the buzzer off. |
|------|----------------------|
| 0xFF | Turn the buzzer on.  |

If the data checksum is valid, the unit will reply to this command with an ACK attention code. The DATA field will indicate the buzzer state. If an invalid data checksum was received and the message was not broadcast and RS-485, the unit will reply with a NAK attention code and the current control setting.

#### Examples:

Command Buzzer disable:

| 0x07 | 0xFF | 0x42 | 0x5A | 0x5A | 0x01 | 0x02 | 0x00 | 0xFF |
|------|------|------|------|------|------|------|------|------|
|------|------|------|------|------|------|------|------|------|

#### Display State "DST"

This command is sent to the unit to control the unit on/off or query the on/off state of the unit. LEN = one data byte.

| 0x00 | Turn the unit off                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------|
| 0xFF | Turn the unit on                                                                                                            |
| 0x3F | "?" - Query the state of the unit. The returned DATA field will indicate the state.  0x00 = Unit is off. 0xFF = Unit is on. |

If the data checksum is valid, the unit will reply to this command with an ACK attention code. The DATA field will indicate the unit sate. If an invalid data checksum was received and the message was not broadcast and RS-485, the unit will reply with a NAK attention code and the current state.

#### Examples:

Query Display State:

|      | <u>-   </u> |      |      |      |      |      |      |      |
|------|-------------|------|------|------|------|------|------|------|
| 0x07 | 0xFF        | 0x44 | 0x53 | 0x54 | 0x01 | 0x0D | 0x3F | 0xC0 |

Acknowledge Display state, unit is on:

| _ |      |      |      |      |      |      |      |      |      |
|---|------|------|------|------|------|------|------|------|------|
| Ī | 0x06 | 0xFF | 0x44 | 0x53 | 0x54 | 0x01 | 0x0E | 0xFF | 0x00 |

Acknowledge Display state, unit is off:

| 0x0 | 6 0x | <ff th=""  <=""><th>0x44</th><th>0x53</th><th>0x54</th><th>0x01</th><th>0x0E</th><th>0x00</th><th>0xFF</th></ff> | 0x44 | 0x53 | 0x54 | 0x01 | 0x0E | 0x00 | 0xFF |
|-----|------|------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
|-----|------|------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|

#### Elapsed Time Counter "ETC"

The unit features an elapsed time counter which counts the total number of hours that the unit has been switched on. The ETC command can be sent to the unit to acquire the elapsed time in hours. No data shall be sent with this command. The unit will reply to this command with an ACK attention code. The DATA field will be set to a three byte string, where the most significant byte is transmitted first.

The ETC has a limit on maximum 298.261 hours, equivalent to 34 years. When this number is reached, the ETC will stop counting, and the ETC command will always reply with maximum number of hours.

#### **Examples:**

#### Query ETC:

| 0x07 | 0xFF | 0x45 | 0x54 | 0x43 | 0x00 | 0x1D |
|------|------|------|------|------|------|------|

#### Answer, two hours elapsed time:

| 0x06 | 0xFF | 0x45 | 0x54 | 0x43 | 0x03 | 0x1B | 0x00 | 0x00 | 0x02 | 0xFD |
|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |      |      |

#### Manufacturer ID "MAN"

This command is sent to the unit to request Manufacturer ID. No data shall be sent with this command. The unit will reply to this command with an ACK attention code. The DATA field indentify the manufacturer in a text string.

#### Examples:

#### Query Manufacturer ID:

| - |      |       |      |      |      |      |        |
|---|------|-------|------|------|------|------|--------|
| ı | 0x07 | 0xFF  | 0x4D | 0x41 | 0x4F | 0x00 | 0x1D   |
| 1 | OAO1 | OAI I | UNID |      |      | ONOO | ן טאום |

#### Acknowledge Manufacturer ID "JHD":

#### **Unit OSD Control "MCC"**

This command gives remote access to the unit's OSD menu settings. The commands are transmitted in the DATA field. See the appendix for a complete list of OSD commands. For future products, it can not be guaranteed that all commands will still be available.

If the checksum is valid, the unit will reply to this command with an ACK attention code, where the data field contains the original command followed by acknowledge from the controller, as described in the appendix. If the checksum is invalid and the message was not broadcast and RS-485, the unit will reply to this command with a NAK attention code, where the data field contains the original command.

#### Examples:

Command 50% contrast 0x82 0x41 0x38 0x30:

(50% of 0xFF=0x80. In ASCII 80 will be: 0x38 0x30)

|  | ſ | 0x07 | 0xFF | 0x4D | 0x43 | 0x43 | 0x04 | 0x22 |
|--|---|------|------|------|------|------|------|------|
|--|---|------|------|------|------|------|------|------|

| - |      |      |      |      |      |
|---|------|------|------|------|------|
| l | 0x82 | 0x41 | 0x38 | 0x30 | 0xD4 |

Acknowledge 50% Contrast:

|   | 0x06 | 0x03 | 0x4D | 0x43 | 0x43 | 0x06 | 0x1D |
|---|------|------|------|------|------|------|------|
| ĺ | 0x82 | 0x41 | 0x38 | 0x30 | 0x38 | 0x30 | 0x6C |

#### Potentiometer Control "POT"

The unit may allow the backlight to be controlled by the local control (potentiometer/keypad) mounted on the front of the unit, by the remote control or by the combination of the two. This command provides means to enable/disable the local control. LEN = one data byte.

| 0x00 | Disables the local control. Backlight controlled only by the remote control.                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xFF | Enables the local control. Backlight is controlled by both the remote control and the local control. (Default)                                              |
|      | Note: In this setting, with the BRT command at 100%, the local control will have full dimming range. This is the initial setting when a unit is powered on. |

If the data checksum is valid, the unit will reply to this command with an ACK attention code. The DATA field will indicate the resulting control setting. If an invalid data checksum was received and the message was not broadcast and RS-485, the unit will reply with a NAK attention code and the current control setting.

#### Unit Serial Number "SNB"

This query is sent to the unit in order to identify the unit serial number. No data shall be sent with this query.

The unit will reply to this command with an ACK attention code. The DATA field will be set to an text string to indicate the specified Serial Number, e.g. "12345".

#### Examples:

Command Display Serial Number

| 0x07 | 0xFF | 0x53 | 0x4E | 0x42 | 0x00 | 0x16 |
|------|------|------|------|------|------|------|

Acknowledge Type/Model Number "12345":

| 0x06 | 0xFF | 0x53 | 0x4E | 0x42 | 0x05 | 0x12 |
|------|------|------|------|------|------|------|
| 0x31 | 0x32 | 0x33 | 0x34 | 0x35 | 0x00 |      |

#### Unit Type/Model Number "TYP"

This query is sent to the unit in order to identify the unit type by its model number / part number. No data shall be sent with this query.

The unit will reply to this command with an ACK attention code. The DATA field will be set to an text string to indicate the specified Type/Model Number, e.g. "JH23T01MMD-A1".

#### Examples:

Command Type/Model Number

|      | J   · · · · |      |      |      |      |      |
|------|-------------|------|------|------|------|------|
| 0x07 | 0xFF        | 0x54 | 0x59 | 0x50 | 0x00 | 0xFC |

Acknowledge Type/Model Number "JH20T03":

| 0x06 | 0xFF | 0x54 | 0x59 | 0x50 | 0x07 | 0x1A |      |
|------|------|------|------|------|------|------|------|
| 0x4A | 0x48 | 0x32 | 0x30 | 0x54 | 0x30 | 0x33 | 0x54 |

#### Unit ID Model/Version Number "VER"

This query is sent to the unit in order to identify unit type by a preassigned code and establish the version of the serial communications interface software. No data shall be sent with this query.

Any future revisions, such as additions or changes to the commands or data fields, shall increment the unit Version Number. The unit will reply to this command with an ACK attention code. The DATA field has a unique 1-byte unit model code. The next 2 bytes shall contain major and minor version of the serial communication protocol in use.

#### Examples:

Command Unit Model/Version Number:

| 0x07 | 0x45 | 0x52 | 0x00 | 0x0C |
|------|------|------|------|------|
|------|------|------|------|------|

#### Unit Version 1.0:

| 0x06 0x05 | 0x56 0x45 | 0x52 0x03 | 0x04 ( | 0x01 0x01 | 0x00 0xFD |
|-----------|-----------|-----------|--------|-----------|-----------|
|-----------|-----------|-----------|--------|-----------|-----------|

#### **Operational Requirements**

The following sections define the operational requirements.

#### Serial Message Failure

If serial messages stop being transmitted or are corrupt, the unit will remain at the last commanded brightness.

#### Periodic Messages

The Brightness Command shall be transmitted to the unit at a repetition no faster than 4 Hz.

#### Keep-alive Alarm

The VER query can be used for keep-alive alarm logic in the application software on the computer. It is recommended to limit this function to one query per second.

#### Response Time

#### Individually Addressed Command Response

The unit will output the required response within Tr = 2.5 character periods after the last byte of a command message is received (2.6ms at 9600 bit/sec), except as specified herein.

#### **Broadcast Command Response**

In response to RS-485 broadcast command messages, after the last byte of the command message is received, all units will reply within the time period defined for Te, below. Further more, any gap between these individual responses will be less than the Intermessage Gap, defined below.

Te = (Tr + Lr) \* N, where

Lr = length of the ACK/NAK message response

Tr = response time

N = the total number of units. \*

The maximum Lr for each command are shown in the table below:

| Command | BRT | BZZ | ETC | DST | MAN | мсс | POT | SNB | SWI | SWK | TMP | TYP | VER |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lr      | 9   | 9   | 11  | 9   | 11  | xx  | 9   | 13  | 19  | 19  | 14  | 28  | 11  |

Example: For the BRT command, and 8 units, this corresponds to Te = (2.5 \* 10 + 9 \* 10) \* 8 / 9600 = 95.8 ms

#### Inter-message Gap

Following an individually addressed command, the next command shall not be issued until at least Tg = 5 character periods after the ACK or NAK message received. At 9600, that is 5 \* 10 / 9600 = 5.2ms.

Following the issue of a broadcast command message, the next command shall not be issued until at least Tc = Te + Tg, where Te is as defined for Broadcast Command response and Tg is defined above.

#### **Unit Response and Addresses**

When individual unit addressing is supported by an installed configuration of units in a RS-485 (for units that support it) system, a separate ACK or NAK message for each unit will be transmitted providing each unit's individual address in response to any broadcast-addressed Command.

NAK messages will not be generated when an error in a Broadcast message is detected. When individual unit addressing is not supported, the unit will only respond to the broadcast address and will include the broadcast address in the ACK and NAK messages. NAK messages will not be generated when an error in a Broadcast message is detected.

When a unit receives an incomplete message and the next byte is not received until after a time equal to the Intermessage Gap, the next bytes received shall be processed to check for the start of a new command (0x07, ASCII Bell).

<sup>\*)</sup> As the units reply in order to their address, the units must be given subsequent addresses, starting at zero, for N to equal the total number of units. If not, N = the highest unit address + 1.

If the header checksum is valid, but the first byte of the command message is not 0x07, as specified, the unit may wait until after the next inter-message gap to resume checking. A NAK message shall not be generated.

If the header checksum is valid, but the value of the CMD field does not equal one of the defined commands, the unit shall reply by generating a NAK message as though a VER command had been received.

If the header checksum is valid, but the value of the LEN field is greater than the maximum allowed, the unit shall ignore the message. A NAK message shall not be generated.

If the data checksum is valid, but the value in the DATA field associated with a command is invalid (out of range, undefined, etc.), the unit shall generate a NAK message indicating the current data value in the DATA field.

#### **Additional Commands**

In time, additional commands and corresponding data fields may be defined. These additions will not conflict with the operation of the interface as defined herein.

#### **COMMAND TABLE**

Commands to implement switch mount control buttons

n = 1-byte ascii-coded hex number, e.g., parameter value of 0x1 is represented by "1" (0x31). nn = 2-byte ascii-coded hex number, e.g., parameter value of 0x1e is represented by "1", "e" | "E" (0x31, x6e)0x4e).

| Function                        | Command                                                    | Description                                                     | Acknowledge (if enabled)                                                                        |
|---------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Brightness control              | 0x81,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"            | Set brightness = value/increment/decrement Reset Query          | Brightness  Range: "0" "0" – "6" "4"  Default: "3" "2"                                          |
| Contrast control - all channels | 0x82, "a"   "A",<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set all contrast = value/increment/decrement Reset Query        | Contrast red  Range: "0" "0" – "6" "4"  Default: "3" "2"                                        |
| Color control                   | 0x83,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"            | Set color = value/increment/decrement Reset Query               | Color (In video mode only) Range: "0" - "6" "4" Default: "3" "2"                                |
| Tint control                    | 0x84,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"            | Set tint = value/increment/decrement Reset Query                | Tint (In video mode) Range: "0" "0" – "6" "4" Default: "3" "2"                                  |
| Manual Phase control            | 0x85,<br>nn   "+"   "-"  <br>"?"                           | Set dot clock phase = value/increment/decrement Query           | Dot clock phase.<br>(In RGB mode only)                                                          |
| Image H position                | 0x86,<br>nnnn   "+"   "-"  <br>"r"   "R"  <br>"?"          | Set image Hpos = value/increment/decrement Reset Query          | Image horizontal position. If Value > 100, Value =100 Range: "0" "0" – "6" "4" Default: "3" "2" |
| Image V position                | 0x87,<br>nnnn   "+"   "-"  <br>"r"   "R"  <br>"?"          | Set image Vpos = value/increment/decrement Reset Query          | Image vertical position. If Value > 100, Value =100 Range: "0" "0" – "6" "4" Default: "3" "2"   |
| Sharpness                       | 0x8a,<br>n   "+"   "-"  <br>"r"   "R"  <br>"?"             | Set sharpness = value/increment/decrement Reset Query           | Sharpness.  Range: "0" "0" – "0" "F"  Default: "0" "7"                                          |
| Manual Frequency control        | 0x8b,<br>nnnn   "+"   "-"  <br>"?"                         | Set dot clock frequency =<br>Value/increment/decrement<br>Query | Dot clock frequency (PC mode only) Range: "0""0" "0""0" - "0""0" "C" "E"                        |

| Function            | Command                                          | Description                                                    | Acknowledge (if enabled)                                                                                                                                                                                          |
|---------------------|--------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scaling Mode        | 0x8c,<br>n  <br>"r"   "R"  <br>"?"               | Set graphic image scaling<br>mode =<br>value<br>Reset<br>Query | Image expansion on/off.  "0" – 1:1  "1" – fill screen  "2" – fill to aspect ratio  "3" – Anamorphic  "4" – Auto                                                                                                   |
| OSD H position      | 0x90,<br>nnn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set OSD Hpos = value/increment/decrement Reset Query           | OSD horizontal position. If Value > 100, Value =100 If Value is not a multiple of ten, it change to less nearest multiple value Range: "0" "0" – "6" "4" Default: "3" "2"                                         |
| OSD V position      | 0x91,<br>nnn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set OSD Ypos = value/increment/decrement Reset Query           | OSD vertical position. If Value > 100, Value =100 If Value is not a multiple of ten, it change to less nearest multiple value Range: "0" "0" – "6" "4" Default: "3" "2"                                           |
| OSD Transparency    | 0x92,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set OSD transparency = value/increment/decrement Reset Query   | OSD transparency.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                                                                     |
| Select menu timeout | 0x93,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Select menu timeout = value/increment/decrement Reset Query    | OSD menu timeout value.  Range: "0" "0" – "1" "E"  Default: "0" "A"                                                                                                                                               |
| Select OSD language | 0x95,<br>n  <br>"r"   "R"  <br>"?"               | Select language =<br>English, Norwegian,<br>Reset<br>Query     | "0" – English (Default) "1" – Norwegian "2" – Chinese simplified "3" – French. "4" – Spanish.                                                                                                                     |
| Input Filter        | 0x96,<br>n  <br>"r"   "R" <br>"?"                | Select input filter = On/Off Reset Query                       | "0" – Off (Default) "1" – On                                                                                                                                                                                      |
| Input main select   | 0x98,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Select input main = PC or VIDEO or next available Reset Query  | Main selected.  "0x41,0x31" ARGB1 (Default) "0x41,0x32" ARGB2 "0x42,0x31" Composite1 "0x42,0x32" Composite2 "0x42,0x33" Composite3 "0x43,0x31" S-video1 "0x43,0x32" S-video2 "0x43,0x33" S-video3 "0x46,0x31" DVI |

| Function                    | Command                                          | Description                                                                       | Acknowledge (if enabled)                                                                                                                                              |
|-----------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Layout               | 0x9a,<br>n  <br>"r"   "R" <br>"?"                | Select source layout =<br>Single, PIP or PBP<br>Reset<br>Query                    | Query: "0" – Single (default) "1" – PIP "2" – PBP                                                                                                                     |
| Video System                | 0x9b,<br>n  <br>"r"   "R"  <br>"?"               | Set video system = Auto/NTSC/PAL/SECAM Reset Query                                | Query: "0" – Auto (default). "1" – NTSC "2" – PAL "3" – SECAM                                                                                                         |
| GAMMA value select          | 0x9d,<br>n  <br>"r"   "R"<br>"?"                 | Select GAMMA value =<br>Value<br>Reset<br>Query                                   | GAMMA value: "0" – 1.0, (default) "1" – 1.6 "2" – 2.2,                                                                                                                |
| Power Down / DPMS<br>Option | 0x9f,<br>"0"   "1"  <br>"r"   "R"  <br>"?"       | Set power down option =<br>On/Off<br>Reset<br>Query                               | "0" – Off.<br>"1" – On.                                                                                                                                               |
| Direct Access               | 0xa0, "1",<br>n  <br>"r"   "R"  <br>"?"          | Set direct access = Value Reset Query                                             | "0" – Brightness "1" – PIP size "2" – Main source "3" – Second source "4" – Alpha Blend "5" – Video Scaling "6" – Swap "7" – Test Pattern "8" – No function (Default) |
| Set runtime counter         | 0xa1,<br>"?"                                     | Set runtime counter value = nnnnn (* 0.5 hour)  Query                             | Runtime = nnnnn.                                                                                                                                                      |
| PIP/PBP brightness control  | 0xa2,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set PIP/PBP window<br>brightness =<br>value/increment/decrement<br>Reset<br>Query | PIP window brightness.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                    |
| PIP/PBP contrast control    | 0xa3,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set PIP/PBP window<br>contrast =<br>value/increment/decrement<br>Reset<br>Query   | PIP window contrast.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                      |
| PIP H position              | 0xa4,<br>nnn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set PIP_Hpos = value/increment/decrement<br>Reset<br>Query                        | PIP window horizontal position  Range: "0""0" "0" -"0" "6" "4"  Default: "0" "0" "0".                                                                                 |

| Function                                    | Command                                          | Description                                                                                                            | Acknowledge (if enabled)                                                                                                                                                                                          |
|---------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIP V position                              | 0xa5,<br>nnn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set PIP_Hpos = value/increment/decrement Reset Query                                                                   | PIP window vertical position.  Range: "0""0" "0" - "0" "6" "4"  Default: "0" "0" "0".                                                                                                                             |
| PIP window size select                      | 0xa6,<br>nn   "+" "-" <br>"r"   "R"  <br>"?"     | Select PIP window size =<br>Increment/decrement<br>Reset<br>Query                                                      | PIP window size.  Range: "0" "0" – "0" "A"  Default: "0" "0".                                                                                                                                                     |
| Second source select                        | 0xa7,<br>nn  <br>"r"   "R"  <br>"?"              | Select input second = Video source value Reset Query                                                                   | Main selected.  "0x41,0x31" ARGB1 (Default) "0x41,0x32" ARGB2 "0x42,0x31" Composite1 "0x42,0x32" Composite2 "0x42,0x33" Composite3 "0x43,0x31" S-video1 "0x43,0x32" S-video2 "0x43,0x33" S-video3 "0x46,0x31" DVI |
| Colour temperature select                   | 0xb3,<br>n  <br>"r"   "R"  <br>"?"               | Select colour temperature = value<br>Reset<br>Query                                                                    | Main selected.<br>"0" – 9500K.<br>"1" – 8000K. (default)<br>"2" – 6500K.<br>"3" – 5000K.<br>"4" – USER.                                                                                                           |
| Red level for selected colour temperature   | 0xb4,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set the level of the red channel for the selected colour temp. = value/increment/decrement Reset Query                 | Red level for selected colour temperature.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                                            |
| Green level for selected colour temperature | 0xb5,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set the level of the green channel for the selected colour temp. = value/increment/decrement Reset Query               | Green level for selected colour temperature.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                                          |
| Blue level for selected colour temperature  | 0xb6,<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?"  | Set the level of the blue<br>channel for the selected<br>colour temp. =<br>value/increment/decrement<br>Reset<br>Query | Blue level for selected colour temperature.  Range: "0" "0" – "6" "4"  Default: "3" "2"                                                                                                                           |
| Graphic horizontal resolution enquiry       | 0xb7                                             | Horizontal resolution (in pixels) in 3 digit hex number                                                                | "nnn" = horizontal resolution                                                                                                                                                                                     |
| Graphic vertical resolution enquiry         | 0xb8                                             | Vertical resolution (in lines) in 3 digit hex number                                                                   | "nnn" = vertical resolution                                                                                                                                                                                       |

| Function                          | Command                                        | Description                                                                   | Acknowledge (if enabled)                                                             |
|-----------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Graphic horizontal sync frequency | 0xb9                                           | Horizontal sync frequency (in units of 100Hz) in 3 digit hex number           | "nnn" = horizontal frequency                                                         |
| Graphic vertical sync frequency   | 0xba                                           | Vertical sync frequency (in units of Hz) in 3 digit hex number and 1 char     | "nnnc" = vertical frequency nnn = 3 digit hex c= "i" or "p" interlace or Progressive |
| Swap Main & PIP/PBP               | 0xe3                                           | Swap Main and PIP/PBP<br>Source                                               | "0" – fail. "1" – successful.                                                        |
| Temperature sensor                | 0xe4                                           | Read Temperature Sensor                                                       | "nn" = Temperature °C                                                                |
| PIP Window<br>Transparency        | 0xed<br>nn   "+"   "-"  <br>"r"   "R"  <br>"?" | Set PIP window<br>transparency<br>Value/increment/decrement<br>Reset<br>Query | PIP window transparency  Range: "0" "0" – "6" "4"  Default: "6" "4"                  |

#### **OTHER COMMANDS**

| Function                   | Command                     | Description                                                    | Acknowledge (if enabled)                                                                                                                              |
|----------------------------|-----------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto-setup                 | 0xc3                        | Auto-setup. (PC only)                                          | "0" – fail. "1" – successful.                                                                                                                         |
| Command availability       | 0xc4, nn                    | Check whether a command is available.                          | "0" – not available. "1" – available.                                                                                                                 |
| Auto-calibration           | 0xc5                        | Start auto-calibration of gain of the RGB amplifier.           | "0" – fail. "1" – successful.                                                                                                                         |
| Soft Power On/Off          | 0xc8,<br>"0"   "1"  <br>"?" | Soft power off/on query                                        | "0" – soft power off. "1" – soft power on.                                                                                                            |
| Query EVX firmware version | 0xcb, "0"                   | Read EVX firmware version                                      | Version "VV.YY.ZZ?"  VV = V0 or E0,  V0 = Release version  E0 = Engineering Sample  YY= Version Number  ZZ= Customer Number  ? = For E0 version (A-Z) |
| Test Pattern               | 0xcd, "0"  <br>"1"          | Leave test pattern display mode<br>Display test pattern screen | "0" = normal display "1" = displaying built in test pattern                                                                                           |

| Function                                   | Command                          | Description A                                                  | cknowledge (if enabled)                                                                                                                                             |
|--------------------------------------------|----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset Factory<br>default                   | 0xce                             | Reset all parameters to default value                          |                                                                                                                                                                     |
|                                            |                                  |                                                                | "1" – successful.  DB – Serial Mode Query m – serial address (0 to 15) n – serial mode 0x31 – RS232 0x32 – 4-wire RS485/422 0x33 – 2-wire RS485                     |
| Saving the user default                    | 0xd7                             | Saving all parameters to user default value                    | "1" - successful.                                                                                                                                                   |
| Loading the user default  Wide Screen Mode | 0xd8                             | Loading all parameters to user default value  Wide Screen Mode | "1" , DB, mn,  "1" – successful.  DB – Serial Mode Query  m – serial address (0 to 15)  n – serial mode  0x31 – RS232  0x32 – 4-wire RS485/422  0x33 – 2-wire RS485 |
| Selection                                  | 0xd9,<br>n  <br>"r"   "R"<br>"?" | Reset Query                                                    | "2" – 1280X/68 "2" – 1366x768                                                                                                                                       |
| Setup DDC                                  | 0xdc                             | Setup DDC                                                      | "1" - successful                                                                                                                                                    |
| Serial Mode Query                          | 0xdb,<br>"?"  <br>mn             | Setting serial address & serial mode:<br>Query<br>Value – m, n | 0x db, mn  m – serial address 0 to 15  n – serial mode 0x31 – RS232 0x32 – 2-wire RS485 0x33 – 4-wire RS485/422                                                     |

### Commands to implement switch mount control buttons

| Function           | Command | Description                | Acknowledge (if enabled) |
|--------------------|---------|----------------------------|--------------------------|
| Menu button        | 0xf7    | Menu button pressed        | Button equivalent        |
| Select-down button | 0xfa    | Select-down button pressed | Button equivalent        |
| Select-up button   | 0xfb    | Select-up button pressed   | Button equivalent        |
| Right/+ button     | 0xfc    | Right/+ button pressed     | Button equivalent        |
| Left/- button      | 0xfd    | Left/- button pressed      | Button equivalent        |

# Revision History - HATTELAND® SCOM

| Rev. | Ву       | Date        | Notes          |
|------|----------|-------------|----------------|
| 1    | BU<br>SE | 04 Jun 2009 | First release. |

