Heritage Health Claims Data

October 2, 2020

1 Predicting Hospital Admissions using Claims Data

1.1 Summary

With the rise of readily available data, health-centers nationwide are actively working to minimize costs while producing optimal health outcomes. The only question remains is as follows: how do we predict costs? Hospitalization time is a key driver in healthcare billing. In the **Heritage Health Data Challenge** via Kaggle, I sought to address this via basic classification model building. In addition to exploratory data analysis and feature engineering, I fit three models. The **random forest** algorithm was the most accurate, yielding an accuracy rate of 86.7%

1.2 Introduction

Health informatics can carry significant impact with regards to costs and availability of services. The Heritage Health Competition was a past data competition hosted on Kaggle. Participants use available patient data to predict which patients are more likely to experience readmission.

In this project, I use the past datasets to conduct data cleaning, exploratory data analysis, modeling, and appropriate predictive analysis.

1.3 Data Processing

The datasets were released via Kaggle in CSV formats. They contain many instances of incomplete cases and require extensive cleaning. The tables were pulled from a relational database, in which the member id is the primary field linking tables. Therefore, joins are required; the **members** and **target** tables have one-to-one relationships, they can be merged using left and/or inner joins. The **drugs** and **labs** tables have a one-to-many relationship with the member table, as they contain records on a yearly basis.

1.3.1 Selecting Predictors

[11]:	MemberID	AgeAtFirstClaim	Sex	${\tt ClaimsTruncated}$	DaysInHospital	Year	\
0	210	30-39	NaN	0.0	0.0	Y1	
1	210	30-39	NaN	0.0	0.0	Y3	
2	3197	0-9	F	0.0	0.0	Y1	
3	3197	0-9	F	0.0	0.0	Y2	

4	3197		0-9	9 F			0.0		0.0	Y3
	DrugCount	LabCount	AMI	APPCHOL	•••	RENAL2	2 RENAL3	RESPR4	ROAMI	\
0	2	0	0.0	0.0		0.0	0.0	0.0	0.0	
1	2	0	0.0	0.0		0.0	0.0	0.0	0.0	
2	1	0	0.0	0.0		0.0	0.0	1.0	0.0	
3	2	0	0.0	0.0		0.0	0.0	1.0	0.0	
4	1	0	0.0	0.0		0.0	0.0	1.0	0.0	
	SEIZURE	SEPSIS	SKNAUT	STROKE	TR	J AMUA	JTI			
0	0.0	0.0	0.0	0.0		0.0	0.0			
1	0.0	0.0	0.0	0.0		0.0	0.0			
2	0.0	0.0	0.0	0.0		0.0	0.0			
3	0.0	0.0	0.0	0.0		0.0	0.0			
4	0.0	0.0	0.0	0.0		0.0	0.0			

[5 rows x 53 columns]

1.3.2 Outcome Variable

[12]:			Mem	berID	Year	DSFS	PrimaryCondit	ionGroup		
	LengthOf	Stay	7							
	1 day			25210	25210	22532		24541		
	1- 2 wee	ks		358	358	322		276		
	2 days			2767	2767	1944		2445		
	2- 4 wee	ks		318	318	293		289		
	26+ week	S		1	1	1		1		
	3 days			1014	1014	755		848		
	4 days			418	418	350		312		
	4- 8 wee	ks		431	431	418		414		
	5 days			155	155	129		109		
	6 days			62	62	55		28		
F										
[14]:			Year			Primary	ConditionGroup	•	•	\
[14]:	0	4	Y2		month	Primary	RESPR4	J	NaN	\
[14]:	0 1	4 210	Y2 Y1	0- 1	month month	Primary	RESPR4 GIOBSENT	2	NaN days	\
[14]:	0 1 3	4 210 210	Y2 Y1 Y1	0- 1 0- 1	month month month	Primary	RESPR4 GIOBSENT GYNEC1	2	NaN	\
[14]:	0 1 3 4	4 210 210 210	Y2 Y1 Y1 Y1	0- 1 0- 1 1- 2	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	\
[14]:	0 1 3 4	4 210 210	Y2 Y1 Y1 Y1	0- 1 0- 1 1- 2	month month month	Primary	RESPR4 GIOBSENT GYNEC1	2	NaN days NaN	\
[14]:	0 1 3 4 6	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	\
[14]:	0 1 3 4 6	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	\
[14]:	0 1 3 4 6 lengt	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1 Occoded	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	\
[14]:	0 1 3 4 6	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	
[14]:	0 1 3 4 6 lengt 0 1 3	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1 Y1 ecoded 0.0 2.0 0.0	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	
[14]:	0 1 3 4 6 lengt	4 210 210 210 210	Y2 Y1 Y1 Y1 Y1 Y1 ecoded 0.0 2.0	0- 1 0- 1 1- 2 3- 4	month month month months	Primary	RESPR4 GIOBSENT GYNEC1 MSC2a3	2	NaN days NaN NaN	

[15]:		MemberID	Year	length_recoded
	0	4	Y2	0.0
	1	210	Y1	2.0
	2	210	Y2	0.0
	3	210	Y3	0.0
	4	3197	Y1	0.0

1.3.3 Feature Engineering

One aspect of this project, which may differ from how other participants approached the challenge, entails my experience as a hospital volunteer, a public health student, and later a research assistant. Based on this, rather than employing forward or backward stepwise model building, I will be deliberately selecting features that have documented impacts on health.

One feature that I will be constructing is an SES categorical variable (low_SES), derived from the pay delay field. Pay delays can be the result of financial hardship, as I've learned through first hand experience. Socioeconomic status is a key determinant of health and will therefore be included in model building.

Another feature I will be adding is the count of timepoints within a year (time_count) in which a patient has a claim. So if a patient has a claim at 0-1 months and 3-4 months during Year One, this feature would be a value of 2.

[17]:		${\tt MemberID}$	PayDelay
	0	4	43
	1	210	57
	2	210	162+
	3	210	151
	4	210	22

[19]: (154212, 2)

[21]:		MemberID	Year	DSFS
	0	4	Y2	1
	1	210	Y1	8
	2	210	Y2	6
	3	210	Y3	4
	4	3197	Y1	5

1.3.4 Merging Datasets Back Together

[23]:	MemberID	${\tt AgeAtFirstClaim}$	Sex	${\tt ClaimsTruncated}$	${ t DaysInHospital}$	Year	\
0	210	30-39	NaN	0.0	0.0	1	
1	210	30-39	NaN	0.0	0.0	3	
2	3197	0-9	F	0.0	0.0	1	
3	3197	0-9	F	0.0	0.0	2	

4	319	7		0-9	F			0	.0	0.	0 3	
5	371		/	0-49	F				.0	0.		
6	371			'0-79	r F				.0			
7			,							0.		
•	388		_	NaN	F				.0	0.		
8	404			0-59	M				.0	0.		
9	418	7	b	0-59	F			0	.0	0.	0 1	
	DrugCou	nt Lab	Count	AMI	APPC	HOL		ROAMI	SEIZURE	SEPSIS	SKNAUT	\
0	2	.0	0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	
1	2	.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
2	1	.0	0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	
3	2	.0	0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	
4	1	.0	0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	
5	6	.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
6		.0	5.0	0.0		0.0	•••	0.0	0.0	0.0	1.0	
7		.0	NaN	0.0		0.0	•••	0.0	1.0	0.0	0.0	
8		.0	NaN	0.0		0.0	•••	0.0	0.0	0.0	0.0	
9		aN	0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	
	STROKE	TRAUMA	UTI	low_	SES	DSFS	1	ength_r	ecoded			
0	0.0	0.0	0.0		1.0	8			2.0			
1	0.0	0.0	0.0		1.0	4			0.0			
2	0.0	0.0	0.0		0.0	5			0.0			
3	0.0	0.0	0.0		0.0	5			0.0			
4	0.0	0.0	0.0		0.0	11			0.0			
5	0.0	0.0	1.0		0.0	10			0.0			
6	0.0	0.0	0.0		0.0	20			0.0			
7	1.0	0.0			0.0	13			3.0			
8	0.0	0.0			0.0	22			1.0			
9	0.0	0.0			0.0	4			0.0			
-			2.3			-			- • •			

[10 rows x 56 columns]

1.4 Exploratory Data Analysis

The first step in any data-based problem is understanding the features and outcome we're working with. In addition to visualizing frequencies of specific demographic categories and clinical variables, we'll also visualize the days of hospitalization outcome variable (length_recoded).

[26]:		index	${\tt AgeAtFirstClaim}$
	6	0-9	7848
	7	10-19	7478
	8	20-29	6756
	5	30-39	11663
	2	40-49	17041
	3	50-59	15862

1	60-69	20782
0	70-79	29820
4	80+	14595

1.4.1 Outcome Visualized

[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7ffcda5db5b0>

1.5 Modeling

Since we're looking at multiple outcomes with a series of co-variates, decision tree learning would be most appropriate in this scenario. This is further supported knowing that the winning methods used extended decision tree modeling for their predictive analyses.

[128]:		APPCHOL	AR	THSPIN	CANO	CRA	CANCRB	CANCRM	CAT	ΓAST	CHF	COPD	FLaELI	EC	\
	0	0.0		0.0	(0.0	0.0	0.0		0.0	0.0	0.0	0	. 0	
	1	0.0		0.0	(0.0	0.0	0.0		0.0	0.0	0.0	0	. 0	
	2	0.0		0.0	(0.0	0.0	0.0		0.0	0.0	0.0	0	. 0	
		FXDISLC	•••	DSFS	Year	Ag	eAtFirst	Claim_10	-19	Age	AtFir	stClai	m_20-29	9	\
	0	0.0	•••	8	1				0				()	
	1	0.0	•••	4	3				0				()	
	2	0.0		5	1				0				()	
		AgeAtFir	stC	laim_3	0-39	Age	AtFirstC	$laim_40-$	49	AgeA	tFirs	tClaim	_50-59	\	
	0				1				0				0		
	1				1				0				0		
	2				0				0				0		
		AgeAtFir	stC	laim_6	0-69	Age	AtFirstC	:laim_70-	79	AgeA	tFirs	tClaim	_80+		
	0				0				0				0		
	1				0				0				0		
	2				0				0				0		
	[3	rows x 5	5 с	olumns]										
[40]:	CO	unt 14	155	8.0000	00										
	me	an		0.3422	20										
	st	d		4.7116	22										
	mi	n		0.0000	00										
	259	%		0.0000	00										
	509	%		0.0000	00										
	759	%		0.0000	00										
	ma	X	44	1.0000	00										
	3.7	- .													

1.5.1 Linear Regression: Low SES

[105]: (141558, 55)

Name: length_recoded, dtype: float64

While low_SES was an engineered feature, based on the patient's pay delay, I was curious what it's impact was on other features. This was a question of my own (external to the challenge). I fit an

OLS Linear Regression Model. The low_SES coefficient, when controlling for age categories, was statistically significantly associated (= 2.6505, p < 0.0001) with the total number of conditions attributed toward hospitalization (per patient). Nothing definitive can be concluded from this, but it is still an interesting observation altogether.

OLS Regression Results

			=====	=======		
======						
Dep. Variable:	S	sum	R-sq	uared (unce	ntered):	
0.725						
Model:	(DLS	Adj.	R-squared	(uncentered):	
0.725						
Method:	Least Squar	es	F-st	atistic:		
4.672e+04						
Date:	Fri, 02 Oct 20)20	Prob	(F-statist	ic):	
0.00						
Time:	21:02:	31	Log-	Likelihood:		
-3.3906e+05						
No. Observations:	1415	558	AIC:			
6.781e+05						
Df Residuals:	1415	550	BIC:			
6.782e+05						
Df Model:		8				
Covariance Type:	nonrobu					
		====	=====	=======	========	:=======
=======	coef	a+ d	l err	+	P> t	[0.025
0.975]						
AgeAtFirstClaim_20-29	9 2.5657	C	0.032	79.290	0.000	2.502
2.629						
AgeAtFirstClaim_30-39	9 2.7627	C	0.025	111.896	0.000	2.714
AgeAtFirstClaim_40-49	9 3.0008	C	0.021	145.983	0.000	2.960
3.041						
AgeAtFirstClaim_50-59	9 3.3048	C	0.021	154.550	0.000	3.263
AgeAtFirstClaim_60-69	9 3.8142	C	0.019	199.888	0.000	3.777
3.852		-		050 404	0.000	4 400
AgeAtFirstClaim_70-79	9 4.2291	C	0.017	253.426	0.000	4.196
4.262	4 5005			405 550	0.000	4 545
AgeAtFirstClaim_80+	4.5627	C	0.023	197.753	0.000	4.517
4.608	0 6505	_) (1E	170 /10	0.000	0.600
low_SES 2.681	2.6505	C	0.015	172.416	0.000	2.620
2.001	=======================================	====	=====	========		
Omnibus:	9157.3	372	Durb	in-Watson:		1.433

Prob(Omnibus):	0.000	Jarque-Bera (JB):	11675.912
Skew:	0.612	Prob(JB):	0.00
Kurtosis:	3.693	Cond. No.	2.80

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.5.2 Classification Models: Decision Tree

Note that this tree was fit without any dimmensionality reduction. As a result, there's definitely room for pruning and making the model more parsimonious. While the tree is ridiculously large and not as helpful as we'd like, the feature importance is worth noting: besides the time variables, RESPR4 (acute respiratory infections), ARTHSPIN (arthropathies and spine disorders), NEUMENT(neurological problems), and low_SES were ranked the most important features. Overall, the model was 77.4% accurate.

[50]: DecisionTreeClassifier(random_state=11)

[53]:		features	importance
	45	DSFS	0.188571
	46	Year	0.062379
	1	ARTHSPIN	0.037378
	44	low_SES	0.037099
	36	RESPR4	0.035005
	26	NEUMENT	0.034198
	22	MISCHRT	0.031744
	18	INFEC4	0.030325
	25	MSC2a3	0.027085
	40	SKNAUT	0.026664

Accuracy: 0.774

1.5.3 Classification Models: Random Forest

For this model, I utilized a grid search to optimize parameters based on accuracy and refit accordingly. The model was 86.7% accurate. Furthermore, one of the key advantages of random forest was being able to visualize feature importance. GIBLEED and ROAMI were the leading clinical features.

Accuracy: 0.867

[215]: name score 10 GIBLEED 0.15 45 DSFS 0.13 37 ROAMI 0.12

- 42 TRAUMA 0.09
- 27 ODaBNCA 0.07