DEPARTMENT OF MATHEMATICS MTL 100: Calculus

Major - Nov. 2015

Marks - 40

Answer as is asked. All questions are compulsory.

- (1.) (a) Find $\limsup s_n$ and $\liminf s_n$, when
- $(i) s_n = \frac{3}{4n+1},$

(ii) $s_n = (-1)^n + \frac{1}{n}$.

[2 marks]

(b) Let f, g be differentiable functions on \mathbb{R} . If f(0) = g(0) and if $f'(x) \leq g'(x)$ then show that $f(x) \leq g(x)$ for all $x \geq 0$.

[3 marks]

(2.) (a) Determine whether $\sum_{n=1}^{\infty} \frac{e^n}{e^{2n}+1}$ converges.

[3 marks]

(b) Write the Taylor series of $f(x) = x^2 - 8$ centered at $x_0 = 1$.

[2 marks]

(3.) (a) Find the directional derivative of $f(x,y) = y\sin(xy)$ in the direction of 2i + j at $(\pi/8, 2)$.

[3 marks]

(b) For the function $f(x,y) = x^2y - 2x^2 - y^2$ find the critical points and categorize each critical point as a relative maximum, relative minimum or saddle point.

[3 marks]

(4.) (a) If z = f(x, y), $x = e^{u} - e^{v}$, $y = e^{-u} + e^{v}$, then determine

$$\frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} - x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$$

[3 marks]

(b) Find the area of the domain in the XY-plane bounded by the curves $x = y^2$, and $y=x^2$

[3 marks]

(5.) (a) Write down the iterated triple integral in cylindrical coordinates WITH PROPER LIMITS for the volume of D, the solid inside $x^2 + y^2 + z^2 = 9$ and above the plane $z = \sqrt{5}$. DO NOT EVALUATE.

[3 marks]

(b) Let R be the region in the xy-plane bounded by $y = x^2$, $y = 4 - x^2$ and y = 3x. Let D be the solid above R and below the plane x + y + z = 5.

[3 marks]

Set up an iterated integral for the volume of D. DO NOT EVALUATE.

(6.) (a) Perform a change of variables and evaluate the integral $\iint_R x \, dA$ over a rectangle S in the uv-plane. Here R is the region bounded by the lines y-x=0, y-x=2, 3x+y=0and 3x + y = 4. Make sure that all your steps are clear and draw both your regions R and

[3 marks]

(b) Evaluate $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{xe^{2y}}{4-y} dy dx$.

[3 marks]

- (7.) Determine where the vector field F is conservative and compute $\int_C F \cdot dr$ for
- (a) F(x,y) = (2x 6y + 7)i (5x + 7y 8)j, and

(b) $F(x,y) = (3x^2y^2)i + (2x^3y)j$

where C is the curve first along the y-axis from (0,1) to (0,-1) and then along the semi-circle $x^2 + y^2 = 1$ joining (0, -1) to (0, 1).

3+3 marks