

Tecniche per il monitoraggio, tramite una rete neurale artificiale, della respirazione durante la ventilazione meccanica

CANDIDATO

Piffari Michele Matricola: 1040658 Corso di laurea in Ingegneria Informatica

RELATORE

Prof. Angelo Gargantini

DATA

30.03.2021

Sommario

- MVM: Milano Ventilatore Meccanico
- MVM: la ventilazione
- MVM: la ventilazione adattiva
- CNN: workflow
- Dataset
 - Labelling
 - Pre-processing
- Model design
 - UNET
 - Single Output Model
- Risultati
- Predizioni

MVM: Milano Ventilatore Meccanico

- Contesto della pandemia da COVID-19: una percentuale importante di chi contrae il covid sviluppa complicanze polmonari. Questo ha perciò causato:
 - Troppi pazienti
 - Pochi ventilatori
- I ventilatori presenti sul mercato sono costosi e sofisticati;

- Obbiettivo MVM
 - Progettare/Sviluppare/Costruire
 - Certificare

un ventilatore **sicuro**, con design **semplice** e sfruttando componenti **poco costosi** e **facilmente reperibili**;

MVM: la ventilazione

- MVM adotta un controllo in pressione per non danneggiare ulteriormente i polmoni;
- MVM presenta inoltre:
 - PCV (Pressure Controlled Ventilation);
 - **PSV** (Pressure Supported Ventilation)
 - Con garanzia di una ventilazione di backup;

MVM: la ventilazione adattiva

- Trigger inspiratorio
 - Avvallamento nella curva di pressione;
- Trigger espiratorio
 - Istante in cui la curva di flusso cambia segno, assumendo valori negativi;

Ma..

- Necessità di un continuo controllo visivo da parte dell'operatore per l'analisi di presenze di asincronismi paziente/ventilatore;
- Threshold da definire arbitrariamente;

Workflow

Dati Design Validazione Analisi/scelta dataset • Design del • Analisi metriche • Pulizia modello Predizione • Etichettatura • Train Composizione

Dataset

Si è delineato un problema di:

- Multi variate time series;
- Multi class classification con classi mutuamente esclusive tra di loro;

- Ricerca dataset in letteratura;
- Scelta ricaduta su dataset proveniente da Università UCDMC (University of California Davis Medical Center);
- Composizione:
 - 176 file .csv;
 - 333173 respiri acquisiti dal respiratore PB-840;
 - Circa 10 gg di acquisizioni;

Dataset - labelling

Le classi prese in considerazione sono:

- Inizio inspirazione → BS (Breath Start)
- Inizio espirazione $\rightarrow x_0$
- Background

Per garantire alla rete maggiore **robustezza** nella classificazione, in fase di labelling sono stati classificati come inizio **inspirazione** i **5 istanti successivi** al singolo inizio e, per l'inizio **espirazione**, i **5 istanti precedenti** al singolo.

Dataset - pre processing

- Applicato **sliding window** con **overlap** tra campioni
- Due approcci di sliding window e overlap:
 - SW = 16, $O = 8 \rightarrow UNET$
 - SW = 16, O = 15 \rightarrow Single Output Model

Algoritmo di sliding window

Rappresentazione qualitativa del salvataggio dei dati

Model design – UNET 1

- Struttura ENCODER DECODER ad «U»
- Applica Semantic Segmentation

$$INPUT = (timestep \times \# features \times 1)$$

 $(16 \times 2 \times 1)$

$$OUTPUT = (timestep \times \# classi \times 1)$$
$$(16 \times 3 \times 1)$$

Model design – UNET 2

Classificazione di ogni singolo pixel

Classificazione di ogni singolo istante

Model design – Single Model Output 1

$$INPUT = (timestep \times \# features)$$

(16 × 2)

$$OUTPUT = (\# classi \times 1)$$

$$(3 \times 1)$$

Model design – Single Model Output 2

- Design standard per la gestione delle time series (dati 2D e quindi layer 1D (Conv1D, MaxPooling1D etc..));
- Uscita solo 3 valori
 - Probabilità di appartenere ad una delle 3 classi dell'ultimo istante passato in ingresso

1024

512

dense

128

dense

dense

Risultati - 1

- Abbiamo utilizzato metriche in grado di tener conto della class imbalance:
 - Curve di ROC;
 - Coefficiente di Cohen;
 - Micro fl score;

Risultati - 2

Modelli con le migliori performance per i due design analizzati:

• UNET depth 2 CCE 🗸

Predizione – dati MVM reali

Input

Probabilità

Classe predetta

Predizione – condizione di apnea

Input

Probabilità

Classe predetta

Recap

Grazie per l'attenzione!