Class 14 lab

A17576411

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.3.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,

colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"
# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

condition SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna

```
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns). Tip: What will rowSums() of countData return and how could you use it in this context?

```
# Filter count data where you have 0 read count across all samples.
row_sums <- rowSums(countData[, -1])
countData_filtered <- countData[row_sums != 0, ]
head(countData_filtered)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds
```

```
class: DESeqDataSet
dim: 15879 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15879): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
     Q. Call the summary() function on your results to get a sense of how many genes
     are up or down-regulated at the default 0.1 p-value cutoff.
  summary(res)
out of 15879 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                    : 4364, 27%
LFC < 0 (down)
                   : 4418, 28%
outliers [1]
                    : 0, 0%
low counts [2]
                    : 1538, 9.7%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
  plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

Make a color vector for all genes

```
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
```

Warning: package 'AnnotationDbi' was built under R version 4.3.2

```
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

```
res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                           stat
                                                                     pvalue
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                  <numeric>
                  29.913579
                                 0.1792795 0.3245323
                                                       0.552424 5.80658e-01
ENSG00000279457
ENSG00000187634 183.229650
                                 0.4264445 0.1401543
                                                       3.042680 2.34482e-03
ENSG00000188976 1651.188076
                              -0.6927208 0.0548418 -12.631264 1.41979e-36
ENSG00000187961 209.637938
                                 0.7297602 0.1317626 5.538448 3.05163e-08
```

0.0405481 0.2716368 0.149273 8.81338e-01

0.5427396 0.5210745 1.041578 2.97607e-01

ENSG00000187583 47.255123

ENSG00000187642 11.979750

```
ENSG00000188290 108.922128
                                 2.0570462 0.1967692 10.454108 1.40312e-25
                                 0.2573752 0.1026587
                                                        2.507095 1.21728e-02
ENSG00000187608 350.716868
ENSG00000188157 9128.439422
                                 0.3899088 0.0467420
                                                        8.341716 7.32201e-17
ENSG00000237330
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                   0.158192
                       padj
                                 symbol
                                             entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.77340e-01
                                     NA
ENSG00000187634 4.97957e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.69253e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ..
ENSG00000187961 1.07765e-07
                                 KLHL17
                                             339451 kelch like family me..
ENSG00000187583 9.16287e-01
                                PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 3.94333e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.17812e-24
                                   HES4
                                               57801 hes family bHLH tran..
                                                9636 ISG15 ubiquitin like...
ENSG00000187608 2.30000e-02
                                  ISG15
ENSG00000188157 4.26676e-16
                                   AGRN
                                             375790
                                                                      agrin
ENSG00000237330
                                 RNF223
                                             401934 ring finger protein ...
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                            "1807"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                                            "7172"
                        "7083"
                                  "7084"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                                                "112"
                                                                          "113"
                                   "111"
                                             "11128"
                                                      "11164"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                      "2618"
                                                                "26289"
                                                                          "270"
                         "272"
                                             "2977"
 [41] "271"
                "27115"
                                   "2766"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                                                      "30834"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                         "29922"
                                   "3000"
                                             "30833"
                "3614"
                         "3615"
                                   "3704"
                                                      "471"
                                                                "4830"
                                                                          "4831"
 [57] "353"
                                             "377841"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
                                                      "57804"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                                "58497"
                                                                          "6240"
                "64425"
[137] "6241"
                         "646625" "654364" "661"
                                                      "7498"
                                                                "8382"
                                                                          "84172"
```

```
[145] "84265"
               "84284"
                         "84618"
                                  "8622"
                                           "8654"
                                                    "87178"
                                                              "8833"
                                                                       "9060"
[153] "9061"
                         "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                                       "957"
               "93034"
                                                              "956"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                   51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313737 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                         "stats"
  head(keggres$less)
                                                                  p.val
                                      p.geomean stat.mean
hsa04110 Cell cycle
                                   9.178354e-06 -4.374797 9.178354e-06
hsa03030 DNA replication
                                   8.343481e-05 -3.987549 8.343481e-05
hsa03013 RNA transport
                                   1.337716e-03 -3.037673 1.337716e-03
hsa03440 Homologous recombination 2.833509e-03 -2.881805 2.833509e-03
hsa04114 Oocyte meiosis
                                   3.277977e-03 -2.747404 3.277977e-03
hsa00240 Pyrimidine metabolism
                                   8.211034e-03 -2.421063 8.211034e-03
                                         q.val set.size
hsa04110 Cell cycle
                                   0.001477715
                                                    120 9.178354e-06
hsa03030 DNA replication
                                   0.006716503
                                                     36 8.343481e-05
hsa03013 RNA transport
                                   0.071790767
                                                    143 1.337716e-03
\verb|hsa|03440| Homologous recombination 0.105550857|
                                                     28 2.833509e-03
hsa04114 Oocyte meiosis
                                   0.105550857
                                                    102 3.277977e-03
hsa00240 Pyrimidine metabolism
                                   0.208417400
                                                     97 8.211034e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa04110.pathview.png
  pathview(gene.data=foldchanges, pathway.id="hsa03030")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa03030.pathview.png
  pathview(gene.data=foldchanges, pathway.id="hsa03013")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa03013.pathview.png
  pathview(gene.data=foldchanges, pathway.id="hsa04114")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa04114.pathview.png
  pathview(gene.data=foldchanges, pathway.id="hsa03440")
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14

Info: Writing image file hsa03440.pathview.png

A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

[,1] [,2] [1,] "9" "300" [2,] "9" "306"

Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14

Info: Writing image file hsa04110.pathview.pdf

Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres\$greater)[1:5]</pre>

```
# Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04740"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/koac2/Downloads/BIMM143/Class 14

Info: Writing image file hsa04740.pathview.png

Info: some node width is different from others, and hence adjusted!

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-regulated pathways?

```
lkeggrespathways <- rownames(keggres$less)[1:5]
lkeggresids = substr(lkeggrespathways, start=1, stop=8)
lkeggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

data(go.sets.hs)
data(go.subs.hs)

```
# Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          0.0001023982 3.775667 0.0001023982
GD:0007610 behavior
                                          0.0001748323 3.591157 0.0001748323
G0:0002009 morphogenesis of an epithelium 0.0001883739 3.574796 0.0001883739
GO:0048729 tissue morphogenesis
                                          0.0002001781 3.554800 0.0002001781
GO:0035295 tube development
                                          0.0006067279 3.248262 0.0006067279
GO:0060562 epithelial tube morphogenesis 0.0007501480 3.192807 0.0007501480
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.2038813
                                                         113 0.0001023982
GO:0007610 behavior
                                          0.2038813
                                                         423 0.0001748323
GO:0002009 morphogenesis of an epithelium 0.2038813
                                                         339 0.0001883739
GO:0048729 tissue morphogenesis
                                          0.2038813
                                                         424 0.0002001781
GO:0035295 tube development
                                                         389 0.0006067279
                                          0.3627158
GO:0060562 epithelial tube morphogenesis 0.3627158
                                                         257 0.0007501480
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         9.875751e-16 -8.123242 9.875751e-16
GO:0000280 nuclear division
                                         2.876946e-15 -7.993921 2.876946e-15
GO:0007067 mitosis
                                         2.876946e-15 -7.993921 2.876946e-15
GO:0000087 M phase of mitotic cell cycle 7.812827e-15 -7.853464 7.812827e-15
GO:0007059 chromosome segregation
                                         1.429060e-11 -6.936776 1.429060e-11
GO:0000236 mitotic prometaphase
                                         1.366254e-10 -6.740266 1.366254e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         3.906892e-12
                                                           375 9.875751e-16
GO:0000280 nuclear division
                                         3.906892e-12
                                                           351 2.876946e-15
GD:0007067 mitosis
                                                           351 2.876946e-15
                                         3.906892e-12
GO:0000087 M phase of mitotic cell cycle 7.957364e-12
                                                           361 7.812827e-15
GO:0007059 chromosome segregation
                                         1.164398e-08
                                                           142 1.429060e-11
GO:0000236 mitotic prometaphase
                                                            84 1.366254e-10
                                         8.235257e-08
```

stat.mean

exp1

\$stats

```
GO:0007156 homophilic cell adhesion 3.775667 3.775667 GO:0007610 behavior 3.591157 3.591157 GO:0002009 morphogenesis of an epithelium 3.574796 3.574796 GO:0048729 tissue morphogenesis 3.554800 3.554800 GO:0035295 tube development 3.248262 3.248262 GO:0060562 epithelial tube morphogenesis 3.192807 3.192807
```

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8175"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

A: Dectin2 Family has the highest p value, 1 x 10⁰. My previous KEGG results state that