Mental Dental - Oral Radiology

FUNDAMENTALS OF X-RAYS	
X-RAY SETTINGS	а
RADIATION DOSE	5
Dosimetry	5
EFFECTS	
Dose Reduction	
Sources of Radiation Exposure	6
FILM VS DIGITAL IMAGING	7
Detector Characteristics	
Troubleshooting	
TYPES OF RADIOGRAPHS	8
SPECIALIZED VIEWS	g
Techniques	
COMMON ERRORS	
RADIOGRAPH INTERPRETATION	10
BENIGN VS MALIGNANT LESIONS	11
CARIES DETECTION	
PERIODONITIES DETECTION	12

Fundamentals of X-Rays

Fundamentals of	7. hays
Position-Indicating Device (PID)	Allow you to line up the tube head and distance from the Position- indicating device
Within the Tube Head	A circuit heats up a filament -> Emits electrons from the Cathode to the Anode Electrons fire towards a Tungsten target -> X-Ray is produced when e' hits the atoms *Copper rod is present to dissipate the heat
	Filament and electron cloud Focal spot on tungsten target Fo
	Cathode (-) Tungsten filament that produces electrons
	- Molybdenum focusing cup focuses the beam onto a small focal spot Anode (+) Tungsten target converts electrons to X-ray photons Connected the disciplates heat
	- Copper stem dissipates heat Glass Insulation
	Aluminum Filtration
What is an V Pay2	Lead Collimation High Energy and High Frequency waves Thermal Ultraviolet
What is an X-Ray?	- Between UV rays and Gamma Rays on the spectrum Radio Waves Microwaves Visible X-Rays Gamma Rays Gamma Rays
Attenuation	 How the X-Ray beam weakens as it passes through matter on its way to the receptor Density of the material it is passes through AND the energy of the photon (kVp) determines how many photons will actually make it to the receptor
Filtration	 Removes the lower energy photos from the bean to ↓ patient exposure (and ↑ image quality) Conceptually similar to beam hardening
Collimation	= Involves Lead - ↓ Scatter radiation by ↓ diameter of the beam - Rectangular is the best method to ↓ patient exposure and also ↑ image quality (by ↓ scatter radiation)

2 Types of Ionizing Radiation

Electromagnetic	= Movement of energy as a combination of electrical and magnetic fields - Shorter Wavelength = ↑ Energy	LOWER EMERGY HIGHER EMERGY
	Gamma > X-Ray > UV > Violet-Red > Infrared > Microwave > Radio	hado-over Morevanie infortal Visia unicon Loop Common hadoson tyr in the Non-territory addition.
Particulate	= Atomic nuclei or subatomic particles moving at high velocity - Alpha (α) or Beta (β) particles from Radioactive decay - α is stopped by paper (pussy) - β is stopped by aluminum (this is why we use filtration) β	Paper Aluminium Lead

2 Types of X-Ray Production

X-Ray Settings

	Definitions	
Inten <u>sity</u>	= Quantity of electrons and photons	of the state of th
	Effects: Density - Darkness of the image	
Energy	= Quality of electrons and Energy of photos	
	Effects: Contrast - Difference among gray values	alle alle

Variables

Tube Current (mA) = Flow of e⁻ from filament to the anode and back to the filament Not really adjustable easily <u>lf</u>: Too much -> Too dark, underexposed Too little -> Noisy, underexposed Affects: Photon energy (keV) Intensity (Density) **Tube Potential (kVp)** = acceleration of e⁻ from cathode to anode number of photons Affects both the number and energy of the photons 100 100 KVP 75 90 kVP <u>If</u>: Too high -> Too gray (not enough contrast), mostly 50 **Compton Scattering** Too Low -> Too light (very high contrast), Mostly photoelectric absorption 40 50 Affects: Photon energy (keV) **Density and Intensity** Distance Inverse Square Law = Further from the source, ψ photons per unit area Intensity is inversely proportional to the distance (short distance = \uparrow intensity = \uparrow Density = Dark) *Operator should be at least 6ft away* Source to Object Distance Object to Image Distance Source to Image Distance Ideal = ↑ Source Object distance and ↓ Object-Image Distance \uparrow SOD = \downarrow intensity (density), \uparrow Quality \downarrow OID = \uparrow Quality, \downarrow Magnification Focal spot Penumbra Geometry Umbra = Shadow behind an image Penumbra = Side Shadow (blurriness) <u>Size depends on</u>: Focal Spot Size, Source-to-Object distance, Object to image distance *Ideal*: \downarrow FSS, \downarrow OID, and \uparrow SOD = Chris P image

Everything	in	one	Table ->	
------------	----	-----	----------	--

	Intensity	Energy
↑ seconds	个 density	
↑ mA	个 density	
↑ kVp	个 density	↓ contrast
↑ filter	↓ density	↑ contrast
↑ distance	↓ density	

Radiation Dose

Coherent Scattering	= Incident photon contacts an outer electron - No energy loss, just a change in direction - Only about 8% of interactions (pretty minor) Effect: - ↓ Contrast
Photoelectric Absorption	= Incident photo <u>contacts</u> and <u>ejects</u> an <u>inner</u> electron and forms an <u>ion pair</u> - If your kVp is too ↓ ↓ you will get ↑ Photoelectric Absorption - About 30% of interactions Effect: - ↑ Contrast
Compton Scattering	= Incident photon contacts an outer electron and form and ion pair - If kVp is ↑ ↑ you get ↑ Compton Scattering - About 62% of interactions in a dental X-ray beam Effects: - ↓ Contrast Compton Scattering Compton Scattering Valence electrons Valence el

Dosimetry

Term	Unit of Measure	What It Is
Exposure	Roentgen 1 C/kg = 3.88 x 10 ³ R	Energy produced by x-ray tube
Absorbed Dose	Gray 1 Gray = 100 rads	Energy absorbed in tissue
Equivalent Dose	Sievert 1 Sievert= 100 rems	Energy absorbed in tissue multiplied by radiation weighting factor
Effective Dose	Sievert 1 Sievert= 100 rems	Energy absorbed in tissue multiplied by tissue weighting factor

ightharpoonup Different tissues are affected differently (\uparrow/\downarrow)

Effects

Deterministic	= Hair loss, Cataracts, Skin Damage, Oral Mucositis Threshold Dose needs to be reached -> ↓ than this dose = no effects - 0.1Gy = In-utero birth defects - 0.5 Gy = Cataracts
	- 3.0 Gy = Radiation burns Dose **Dental X-Rays are Micro Grays, so they are FAR FAR away from causing Deterministic Effects**
Stochastic Effects	= Cancer, Leukemia, Heritable Effects - Accumulates over years of doses. This is why we are conservative Linear, no-threshold model. Dose builds up over years
	dose (Extrapolating)
	- 0.0017% risk 个 by 1Gy Dose Radiation Chemistry
Direct	= Direct alteration of biologic molecules (Proteins, DNA etc)
5.1000	 Accounts for 1/3 of biologic effects Effects caused by α and β particles
Indirect	= Ionizing radiation converts H ₂ O into free radicals which then alter biologic molecules (proteins, DNA etc) - Account for 2/3 of biologic effects
	**Cells that are mitotically active are more radiosensitive ** - Most Sensitive: Hematopoietic Cells, Epithelial Cells, Sperm Cells - Least Sensitive: Nerve cells, Muscle cells

Dose Reduction

- Occupational Exposure limit = 50mSv per year
- ALARA = As Low As Reasonably Achievable
- ALADA = As Low As Diagnostically Acceptable
- Use E/F speed films, or digital imaging
- >18cm source to object distance to ↓ exposure and ↑ clarity
- Rectangular Collimation

Sources of Radiation Exposure

- Background radiation (just surviving on earth) = 3.1mSc per year -> mostly from Radon
- Man-made radiation = 3.1mSv per year-> Mostly medical imaging, building materials, etc
- Average Annual exposure = 6.2 mSv

^{**}Dental X-Rays are MICRO Sv...SOOOOOO much $\downarrow \downarrow \downarrow \downarrow$ than what we are exposed to on a daily basis

Technique	Effective dose in μSv	Dose as multiple of average † panoramic dose	Dose per capital background	Probability of x in a million fatal cancer‡
FMX with PSP or F Speed film w Rectangular Collimation	35	2.2	4.3	2
FMX with PSP or F Speed film w Round Cone	171	10.7	21	9
FMX with D Speed film w round cone¶	388	24.1	47	21
Panoramic – CCD†	16.1	1.0	2	0.9
Lateral Cephalometric - PSP	5.6	0.3	0.7	0.3
CB Mercuray- "Panoramic" FOV	560	35	68	30.8
Galileos – (default exposure)	70	4.3	9	3.9
Somaton 64 MDCT	860	53.4	105	47.3

Film vs Digital Imaging

Film		Digital	
- Requires Chemicals to process		- No chemicals needed	
 Requires time to develop 		- Instant viewing	
 Superior image quality 		 Image enhancement w/ computer software 	
 More radiation dose to the patie 	nt	- ↓ Radiation Dose to patient	
·		Ex:	
Composition:		- PSP	
- Base = Flexible Plastic		- CCD/CMOS	
- <u>Emulsion</u> = Silver halide crystals i	n gelatin material (sensitive to	·	
light) -> this is where the magic h			
	fluorescent phosphor to ↓ amount	t PSP:	
of exposure needed (converts ph		- Barium Fluorohalide plates capture and store X-ra	V
resolution	\$ 50, 11 0 1,7 1 1 1 1 V	energy from dental exposure	′
		 Need scanner to scan the image into the compute 	r
• Pr	rotective layer	CCD/CMOS:	•
	Im emulsion	- Silicon sensor chip captures x-ray and rapidly disp	lavs
→ Ac	dhesive layer	image on the monitor	۵,5
		image on the monitor	
✓ Fi	Im base		
	dhesive layer		
	Im emulsion rotective layer		
	otootive layer		
Speed:			
- A < B < C < D < E < F			
_			
- <u>Determined by several factors:</u>	or films		
- Larger crystals = faste			
- Double emulsion = Fa			
- Radiosensitive dyes i	n emulsion = Faster film		
Luca et a co			
Imaging:	alice offices health assumed to to be		
- X-Ray photos chemically change the silver halide crystals into			
neutral silver atoms in the emuls	ion -> Creates latent image		
<u>Chemical Processing</u>			
1. Developing			
2. Fixing			
 Wash away unexposed silv 	er halide crystals		
3. Washing			
 Wash away residual chemi 	cals		
4. Drying			

	Chemical Processing		
Developing	 Converts exposed crystals into metallic silver grains that appear dark on the radiograph Phenidone = 1st e⁻ donor that reduces silver ions to metallic silver at latent image site Hydroquinone = Provides electron to reduce the oxidized phenidone back to its original active state (so it can continue to work) If final image is light: Developer is probably old 		
Fixing	= Wash away unexposed silver halide crystals - Ammonium Thiosulphate = Cleaning agent, removes undeveloped silver halide crystals - Aluminum Salts = Tanning agent, hardens and preserves the emulsion		
	 Acetic Acid = Acidifier, maintains the fixer's level of acidity and neutralizes the developer Sodium Sulfite = Preservative, Prolongs shelf life of the solution Water = Solvent, Dissolves the other ingredients 		
Washing	= Wash away residual chemicals		
Drying			

Detector Characteristics

Contrast Resolution	= Ability to distinguish shades of Gray		
	Film > Digital		
Spatial Resolution	= Ability to distinguish 2 close points		
	Film > CCD/CMOS > PSP		
Detector Latitude	= Exposure range providing useful image		
	PSP > CCD/CMOS > Film		
Detector Sensitivity	= Dose required to achieve standard gray level		
	CCD/CMOS is ½ the speed of n F Speed Film -> WAY less radiation		

Troubleshooting

Underexposed Image	 Inadequate Exposure Time Inadequate Development Time Old Development Solution Temp too low
Overexposed Image	- Exposed for too long - Exposed to light
Creases	
Static Electricity	
Film is placed backwards	= Herringbone/Tire Track Effect

Types of Radiographs

Intraoral/Direct	Extraoral/Indirect
- Periapical (PA)	- Panoramic (Pan
- Bitewing (BW)	- Cephalometric (Ceph)
- Occlusal	 Cone Beam Computed Tomography (CBCT)

	Intraoral	
Periapical	= Used to capture the roots and apices of teeth - Manifestations of pulpal or periodontal disease = Used also to capture anterior interproximal decay	
Bitewing	*Does not usually show root apices = Used for posterior interproximal caries detection and bone levels - Angulation is more parallel for BW's so bone is more accurate	
Occlusal	Receptor lies flat on the occlusal plane - Captures from Canine to Canine = Used for further assessments of: Trauma, Impacted Teeth, Supernumerary	

	Extraoral		
Panoramic	Useful for screening, pathology, and 3 rd molar location		
Cephalometric	Lateral - Relationship of teeth and jaws in relation to the cranium - Treatment changes - Growth Posterior-Anterior (PA) Transverse Asymmetry		
	 Transverse Asymmetry Not really used anymore, mostly CBCT now 	600	
Cone Beam Computed Tomography (CBCT)	3D radiographic image: - Axial View (top bottom) - Sagittal (Side-side view) - Coronal (Front Back view) - 3D Volumetric render	Antager Antager Right	Posterior Anterior
	- 3D Volumetric render Used for: - Implant Planning - Endodontics (strange anatomy) - Orthodontics - TMJ (Hard tissue only) -> MRI is used for soft tissue - Pathology	Coronal Superior Right Left	Volume

Specialized Views

Waters View	PA Ceph at an angle (45° to the orbito medial line) Best for: - Paranasal Sinus - Midface - Orbits
Towne's View	PA Ceph at an angle again (30° from the orbito-medial line) - Angled directly at the condyles. Eliminates the superimposition of the Mastoid and Zygoma over the condyles Best for: - Condyle
Submentovertex View	Base projection of the skull Best for: - Basilar skull fractures - Zygomatic fractures

Techniques

Bisecting Angle Technique	= Central ray of the X-Ray beam is aimed perpendicular to the imaginary bisecting line between the long axis of the tooth and the long axis of the receptor - This creates 2 equal triangleswhich means there is minimal magnification!
Paralleling Technique	= Receptor is placed parallel to the long axis of the tooth - Central ray of the x-ray beam is aimed perpendicular to the long axis of both the tooth and receptor *Less distortion and ↑ quality image* - Problem is that the Object film distance is ↑ (less comfy and more magnification)

Common Errors

COMMINION ENTORS			
Elongation	= Most common error - Could be anglulation issue or bending of the film		
Cone Cut	x-Ray beam and receptor were not lined up properly		
Underexposed	Grainy or too light image - Exposure time is too short - ↓ mA - ↓ kVP		
Overexposed	Image too dark - ↑ mA - ↑ kVp		
Double Exposure	2 Images exposed on the same PSP plate		
Pans			
Motion	Wavy and Irregular borders		
	- If patient swallows or moves		
Chin Down	= Big Smile		
Chin Up	= Frown		
Ghosting	RO Artipfct is projected to the other side of the image		

Radiograph Interpretation

- Know what normal is
- Compare R and L sides (especially with Pan)
- Categorize the disease or abnormality
- Start globally -> then go locally

Descriptions

	Radiolucent Descriptors					
Corticated Unilocular	One Compartment		Non-Corticated Unilocular	One Compartment		
	Radiopaque Border	A Ton	AND THE	No clear border Diffuse edges		
Multilocular	Multiple compartments separated by thin septae		Multifocal Confluent	Multiple points of origin converging onto each other		
Moth-Eaten	Irregular, ragged edges Can be generalized or localized					

	Radiopaque Des	scriptors		
Focal Opacity	Single Site	Target Lesion	Radiopaque Center	
	Homogenous = Same density		RL Band around the F	RO center
	Heterogenous = Varying density	第((*))签	Corticated border	(Bond)
			around the RL halo	19
Multifocal Confluent	Multiple Points of origin converging on	Irregular	III defined Edges	A.5370
	each other			
Ground Glass	Fine granular/orange peel appearance	Mixed Density	Both RO and RL	
**************************************			May or may not be corticated	
Soft Tissue Opacity	Calcification embedded within the soft			
	tissue			

Soft Tissue RO in a Pan

Benign vs Malignant Lesions

	Ber	nign	Malignant
Margins	Well-defined (narrow zone of transition), smooth, regular, corticated		III-defined (wide zone of transition), ragged, moth-eaten
Shape	Round, oval		Irregular
Internal Architecture	Tumors Multilocular, more likely to resorb roots	Cysts Unilocular, hydrostatic, tend to be more corticated	Usually radiolucent
Location	Coronal or above man	dibular canal	Ramus or posterior body of mandible
Effect on Cortical Bone	Expansion, thinning, displacement, may erode if aggressive		Erosion, destruction
Effect on Maxillary Sinus	Displacement		Erosion, destruction
Effect on Mandibular Canal	Displacement, no neurosensory defects		Invasion and destruction, anesthesia or paresthesia
Effect on Tooth Position	Displaced teeth, may prevent eruption		Floating teeth
Effect on Tooth Roots	Horizontal resorption		Vertical resorption resulting in spiked roots, or no resorption at all (floating teeth)
Effect on PDL Space and Lamina Dura	N/A		Asymmetric widening of PDL space and loss of lamina dura

Caries Detection

Tooth needs 30-40% demineralization before it will appear on a radiograph

Interproximal	Small triangle at or below the contact point	
Occlusal	Subtle RL beneath the fissure - Hard to trace	
Buccal	Small circle in the buccal or lingual pit	
Recurrent	Gingival to the restoration	
Root	Hemispherical at or below the CEJ - Important to distinguish from cervica	al burnout

Periodontitis Detection

- Use BW Radiographs, the Bone levels are more accurate -> Except for Anteriors were we can't really use BW's
- Alveolar crest is fuzzy =
- Normal bone levels: 1-2mm apical to the CEJ

Mild Bone Loss	Upper 3 rd of root	
Moderate BL	Middle 3 rd of root	
Severe BL	Lower 3 rd of root	