Assignment #9

Name Answer Rey

Due 25 March 2015

- 1. Consider the infinite series $\sum_{k}^{\infty} ke^{-k}$.

(a) Evaluate
$$\int xe^{-x}dx$$
. $u = x$ $dv = e^{-x}dx$ $du = dx$ $v = -e^{-x}$

$$\int x e^{-x} dx = -x e^{-x} + \int e^{-x} dx$$
$$= -x e^{-x} - e^{-x} + c$$
$$= -e^{-x} (x+i) + c$$

(b) Show that the two conditions of the integral test are satisfied by the series and show that the Let fix = x ex.

O f is non-negative because x≥1 and ex >0.

$$\int_{a}^{\infty} x e^{x} dx = \lim_{b \to \infty} \int_{a}^{b} x e^{x} dx = \lim_{b \to \infty} \left(\frac{-(b+1)}{e^{b}} + \frac{2}{e} \right)$$

since
$$\int_{1}^{\infty} = 0 + 2 = 2$$
, by l'hôpital.
Since $\int_{1}^{\infty} = \sqrt{\frac{1}{2}} \, dx$ converges, $\sum_{k=1}^{\infty} k \in k$ converges.

(c) Let L denote the sum of the series and let $s_n = \sum_{k=1}^n ke^{-k}$ be the nth partial sum of the series. Compute s_4 , expressing your answer as a decimal.

$$S_{4} = 1e^{1} + 2e^{2} + 3e^{3} + 4e^{4}$$

 $\approx .861174$

(d) Find upper and lower bounds for the error in approximating L by s_4 .

Sixe
$$X \le R \le \int_{-\infty}^{\infty} xe^{-x} dx$$

Such $\int_{4}^{\infty} xe^{-x} dx = \lim_{b \to \infty} \left(\frac{-(b+1)}{e^b} + \frac{5}{e^4} \right) = \frac{5}{e^4}$
 $\int_{5}^{\infty} xe^{-x} dx = \lim_{b \to \infty} \left(\frac{-(b+1)}{e^b} + \frac{6}{e^5} \right) = \frac{6}{e^5}$
 $\frac{6}{e^5} \le R \le \frac{5}{e^4}$

Show $\int_{5}^{\infty} xe^{-x} dx = \int_{6}^{\infty} xe^{-x} dx$
 $\int_{5}^{\infty} xe^{-x} dx = \int_{6}^{\infty} xe^{-x} dx$
 $\int_{5}^{\infty} xe^{-x} dx = \int_{6}^{\infty} xe^{-x} dx$
 $\int_{6}^{\infty} xe^{-x} dx = \int_{6}^{\infty} xe^{-x} dx$
 $\int_{7}^{\infty} xe^{-x} dx = \int_{7}^{\infty} xe^{-x} dx$