Counting distinct (non-)crossing substrings

Haruki Umezaki¹, Hiroki Shibata²[0009-0006-6502-7476], Dominik Köppl³[0000-0002-8721-4444], Yuto Nakashima⁴[0000-0001-6269-9353], Shunsuke Inenaga⁴[0000-0002-1833-010X], and Hideo Bannai⁵[0000-0002-6856-5185]

- Department of Information Science and Technology, Kyushu University umezaki.haruki.314@s.kyushu-u.ac.jp
- ² Joint Graduate School of Mathematics for Innovation, Kyushu University shibata.hiroki.753@s.kyushu-u.ac.jp
- ³ Department of Computer Science and Engineering, University of Yamanashi dkppl@yamanashi.ac.jp

Abstract. Let w be a string of length n. The problem of counting factors crossing a position - Problem 64 from the textbook "125 Problems in Text Algorithms" [Crochemore, Leqroc, and Rytter, 2021], asks to count the number $\mathcal{C}(w,k)$ (resp. $\mathcal{N}(w,k)$) of distinct substrings in w that have occurrences containing (resp. not containing) a position k in w. The solutions provided in their textbook compute $\mathcal{C}(w,k)$ and $\mathcal{N}(w,k)$ in O(n) time for a single position k in w, and thus a direct application would require $O(n^2)$ time for all positions $k=1,\ldots,n$ in w. Their solution is designed for constant-size alphabets. In this paper, we present new algorithms which compute $\mathcal{C}(w,k)$ in O(n) total time for general ordered alphabets, and $\mathcal{N}(w,k)$ in O(n) total time for linearly sortable alphabets, for all positions $k=1,\ldots,n$ in w.

Keywords: string algorithms, distinct substrings, runs, LPF arrays

1 Introduction

Let w be a string of length n. The problem of counting factors crossing a position - Problem 64 from the textbook "125 Problems in Text Algorithms" [3], asks to count the number $\mathcal{C}(w,k)$ (resp. $\mathcal{N}(w,k)$) of distinct substrings in w that have occurrences containing (resp. not containing) a position k in w. According to the textbook [3], the notions of $\mathcal{C}(w,k)$ and $\mathcal{N}(w,k)$ are inspired by the notion of string attractors [8], which form a set $\mathcal{P} = \{p_1, \ldots, p_\gamma\}$ of γ positions such that any substring of w has an occurrence containing a position $p_i \in \mathcal{P}$. Besides this origin, how efficiently one can compute $\mathcal{C}(w,k)$ and $\mathcal{N}(w,k)$ for a given string w, is an intriguing stringology question.

The solutions provided in the textbook [3] compute C(w, k) and $\mathcal{N}(w, k)$ in O(n) time for a single position k in w for constant-size alphabets. Thus, a direct application of their solutions to the all-position variant of the problems, which ask to compute C(w, k) and $\mathcal{N}(w, k)$ for all positions $k = 1, \ldots, n$ in w, requires $O(n^2)$ total time.

In this paper, we present new algorithms which compute for all positions k = 1, ..., n, C(w, k) in O(n) total time and space for general ordered alphabets, and $\mathcal{N}(w, k)$ in O(n) total time and space for linearly sortable alphabets. Our solution for computing C(w, k) for k = 1, ..., n exploits

the combinatorial property of the problem and utilizes the runs (a.k.a. $maximal\ repetitions$) [9] occurring in w, which is completely different from the original solution from the textbook [3].

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet. An element of Σ^* is called a string. The length of a string $w \in \Sigma^*$ is denoted by |w|. The empty string ε is the string of length 0. Let $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$. For string w = xyz, x, y, and z are called a prefix, substring, and suffix of w, respectively. Let $\mathsf{Substr}(w)$ and $\mathsf{Suffix}(w)$ denote the sets of substrings and suffixes of w, respectively. For a string w of length n, w[i] denotes the ith character of w and $w[i..j] = w[i] \cdots w[j]$ denotes the substring of w that begins at position i and ends at position j for $1 \le i \le j \le n$. For convenience, let $w[i..j] = \varepsilon$ for i > j.

For two non-empty strings s and w, let $occ(s, w) = \{i \mid w[i..i+|s|-1] = s\}$ denote the set of occurrences of s in w, where we identify an occurrence of s with its starting position. For each position $1 \le k \le |w|$ in w, let

$$\begin{aligned} & \mathsf{cocc}_k(s,w) = \{i \in \mathsf{occ}(s,w) \mid i \leq k \leq i + |s| - 1\} \\ & \mathsf{ncocc}_k(s,w) = \{i \in \mathsf{occ}(s,w) \mid i + |s| - 1 < k \text{ or } k < i\} \end{aligned}$$

denote the sets of occurrences of string s that cross (resp. do not cross) the position k in w. Let

$$\begin{split} \mathsf{C}(w,k) &= \{s \in \varSigma^+ \mid \mathsf{cocc}_k(s,w) \neq \emptyset\} \\ \mathsf{N}(w,k) &= \{s \in \varSigma^+ \mid \mathsf{ncocc}_k(s,w) \neq \emptyset\} \\ &= \mathsf{Substr}(w[1..k-1]) \cup \mathsf{Substr}(w[k+1..|w|]) \end{split}$$

denote the sets of substrings s of string w that have crossing (resp. non-crossing) occurrence(s) for the position k in w.

Problem 1 (Counting distinct substrings with (non-)crossing occurrences). Given a string w of length n, compute $C(w,k) = |\mathsf{C}(w,k)|$ and $\mathcal{N}(w,k) = |\mathsf{N}(w,k)|$ for all positions $k = 1, \ldots, n$ in w.

2.2 Repetitions and runs

For a string s, an integer p $(1 \le p \le |s|)$ is a period of s if s[i] = s[i+p] for all $1 \le i \le |s|-p$. The exponent of s is the rational |s|/p, where p is the smallest period of s. A string $s \in \mathcal{L}^+$ is said to be periodic if the exponent of s is at least 2, or equivalently, s's smallest period is at most |s|/2. A maximal periodic substring s = w[i..j] of w, i.e., the smallest period p of s does not extend to the left of position i nor to the right of position j, namely, i = 1 or $w[i-1] \ne w[i+p-1]$ and j = |w| or $w[j+1] \ne w[j-p+1]$, is called a maximal repetition, or run, in w. We identify a run w[i..j] with the smallest period p by a tuple $\langle i, j, p \rangle$. Let $\mathsf{Runs}(w) = \{\langle i, j, p \rangle \mid w[i..j] \text{ is a run in } w\}$ denote the set of runs in w.

Theorem 1 ([1]). |Runs(w)| < n holds for any string w of length n.

Theorem 2 ([5]). Runs(w) can be computed in O(n) time for any string w[1..n] over an ordered alphabet.

2.3 Suffix trees

The suffix tree [10] of a string w, denoted $\mathsf{STree}(w)$, is a path-compressed trie representing $\mathsf{Suffix}(w)$ such that (1) each internal node has at least two children, (2) each edge is labeled by a non-empty substring of w, and (3) the labels of out-going edges of the same node begin with distinct characters. Each leaf of $\mathsf{STree}(w)$ is associated with the occurrence of its corresponding suffix of w.

For a node v of $\mathsf{STree}(w)$, let $\mathsf{str}(v)$ denote the string label of the path from the root to v. Each node v stores its string depth $|\mathsf{str}(v)|$. The locus of a substring $s \in \mathsf{Substr}(w)$ in $\mathsf{STree}(w)$ is the position where s is spelled out from the root. The number of nodes in $\mathsf{STree}(w)$ is at most 2n-1, where n=|w|. We can represent $\mathsf{STree}(w)$ in O(n) space by representing each edge label s with a pair (i,j) of positions in w such that w[i..j] = s.

Suppose that string w terminates with an end-marker t that does not occur anywhere else in w. Then, since $|\operatorname{occ}(y, w)| = 1$ holds for every suffix y of w, $\operatorname{STree}(w)$ has exactly |w| leaves.

Theorem 3 ([6]). STree(w) can be built in O(n) time for any string w[1..n] over a linearly-sortable alphabet.

3 Computing C(w, k) for all positions k in a string w

In this section, we show how to compute C(w, k) in O(n) total time for all positions k in a given string w of length n over an ordered alphabet.

In our algorithm for computing C(w, k), we first compute the size of the multiset of substrings that cross position k in w, and then subtract the number $\mathcal{D}(w, k)$ of duplicates. Let U(w, k) be the multiset of substrings crossing k in a given string w. Since |U(w, k)| is equal to the number of intervals including k in w, |U(w, k)| = k(|w| - k + 1) holds: [i, j] includes k iff $i \in [1, k]$ and $j \in [k, |w|]$.

Let us consider how to compute $\mathcal{D}(w,k)$. The following observation and lemma are a key.

Observation 1 For any substring x and position k in string w, if $cocc_k(x, w) \ge 2$, then x is a substring of a run of w with smallest period p < |x|.

We use the following well-known result:

Lemma 1 (Weak periodicity lemma [7]). If p and q are periods of a string w, then gcd(p,q) is also a period of w.

Lemma 2. For a run $r = \langle i, j, p \rangle$ of a string w, the distance d between any two consecutive occurrences of a substring x in r with $|x| \geq p$ must be p.

Proof. Due to the periodicity of r, any two consecutive occurrences are at distance $d \leq p$. If d < p, it follows from the weak periodicity lemma that d and p are periods of a substring of length d + |x| > d + p, implying that $p' = \gcd(d, p) < p$ is a period of r, which contradicts the minimality of p.

Let $\mathsf{Runs}(w,k) = \{\langle i,j,p \rangle \in \mathsf{Runs}(w) \mid i \leq k \leq j \}$ denote the set of runs in w that cross position k. For a run $\langle i,j,p \rangle \in \mathsf{Runs}(w,k)$, let

$$S(\langle i, j, p \rangle, k) = \{x \in \Sigma^+ \mid x = w[g..h], i \le g \le k \le h \le j, |x| = h - g + 1 > p\}$$

Fig. 1. Illustration for $dup(\langle i, j, p \rangle, k)$ for Cases (1) and (2).

denote the set of substrings x of length at least p+1 that occur in the run $\langle i, j, p \rangle$ and cross k. Let $\mathsf{dup}(\langle i, j, p \rangle, k) = \sum_{x \in S(\langle i, j, p \rangle, k)} (|\mathsf{cocc}_k(x, w)| - 1)$ be the number of duplicates contained in the run $\langle i, j, p \rangle$. From Observation 1 and Lemma 2, it follows that

$$\operatorname{dup}(\langle i, j, p \rangle, k) = \begin{cases} 0 & \text{if } i \le k \le i + p - 1, \\ (k - i - p + 1)(j - p + 1 - k) & \text{if } i + p \le k \le j - p, \\ 0 & \text{if } j - p + 1 \le k \le j. \end{cases} \tag{2}$$

See Fig. 1. In Case (1), there is only one crossing occurrence for each substring x of length at least p+1 in the run $\langle i,j,p\rangle$, and thus $\operatorname{dup}(\langle i,j,p\rangle,k)=0$. Case (3) is symmetric. In Case (2), for each substring x of length at least p+1 in the run $\langle i,j,p\rangle$, we count all occurrences crossing k except for the rightmost one. Notice that any substring x that starts in the dark gray region of length k-i-p+1 and ends in the light gray region of length j-p+1-k crosses k and has exactly one occurrence that starts in the region of length p between the two gray regions and crosses k. Therefore, a total of (k-i-p+1)(j-p+1-k) duplicate occurrences are counted in Case (2).

Lemma 3.
$$\mathcal{D}(w,k) = \sum_{\langle i,j,p \rangle \in \mathsf{Runs}(w,k)} \mathsf{dup}(\langle i,j,p \rangle,k).$$

Proof. It is clear that $\mathcal{D}(w,k) \leq \sum_{\langle i,j,p \rangle \in \mathsf{Runs}(w,k)} \mathsf{dup}(\langle i,j,p \rangle, k)$. We prove the lemma by showing that the same duplicates are counted in different runs. Assume for a contradiction that the same substring x is counted in $\mathsf{dup}(\langle i,j,p \rangle,k)$ and in $\mathsf{dup}(\langle i',j',p' \rangle,k)$ by two distinct runs $\langle i,j,p \rangle$, $\langle i',j',p' \rangle \in \mathsf{Runs}(w,k)$. Without loss of generality suppose that $p \leq p'$.

If x has only a single occurrence that crosses k within the run $\langle i, j, p \rangle$, then it is not counted in $\operatorname{dup}(\langle i, j, p \rangle, k)$ because of the definition $\operatorname{dup}(\langle i, j, p \rangle, k) = \sum_{x \in S(\langle i, j, p \rangle, k)} (|\operatorname{cocc}_k(x, w)| - 1)$. The other case with $\langle i', j', p' \rangle$ is analogous.

For the case where x has at least two occurrences that cross k in each of the runs $\langle i, j, p \rangle$ and $\langle i', j', p' \rangle$, Lemma 2 implies that p = p'. However, since the runs overlap by at least p positions, the periodicity of one run extends into the other, contradicting their maximality.

After O(n)-time preprocessing for computing Runs(w) with Theorem 2, Observation 1 and Lemma 3 immediately lead us to an O(n)-time solution to compute C(w, k) for a fixed k.

Fig. 2. Illustration for R_k^1 , R_k^2 , and R_k^3 .

Our strategy to compute C(w, k) for all k = 1, ..., n is first to compute $C(w, 1) = |\mathsf{U}(w, 1)| - \mathcal{D}(w, 1)$ for k = 1 in O(n) time, and compute $C(w, k) = |\mathsf{U}(w, k)| - \mathcal{D}(w, k)$ in amortized O(1) time for increasing k = 2, ..., n. Since $|\mathsf{U}(w, k)|$ is computable in O(1) time by a simple arithmetic for every k, in what follows we focus on how to compute $\mathcal{D}(w, k)$.

The next lemma exploits a useful structure of $\mathsf{dup}(\langle i, j, p \rangle, k)$ for the consecutive positions $k = i + p, \dots, j - p$.

Lemma 4. For each run $\langle i, j, p \rangle$, consider the sequence

$$num_{\langle i,j,p\rangle} = \mathsf{dup}(\langle i,j,p\rangle,i+p),\ldots,\mathsf{dup}(\langle i,j,p\rangle,j-p)$$

of j-i-2p+1 integers. Then, $num_{\langle i,j,p\rangle}$ is an integer sequence whose difference sequence is an arithmetic progression that starts with $\mathsf{dup}(\langle i,j,p\rangle,i+p)$ and has common difference -2.

Proof. Let $b = \operatorname{\mathsf{dup}}(\langle i,j,p\rangle,i+p) = j-i-2p+1$ from Case (2). Let $num_{\langle i,j,p\rangle}[a]$ denote the ath term in the sequence. Then $num_{\langle i,j,p\rangle}[a] = a(b+1-a)$, and hence $num_{\langle i,j,p\rangle}[a+1] - num_{\langle i,j,p\rangle}[a] = (a+1)(b-a) - a(b+1-a) = ab-a^2+b-a-ab-a+a^2=b-2a$. This is the general term of the arithmetic progression that starts with b and has common difference -2. Therefore, $num_{\langle i,j,p\rangle}$ is an integer sequence whose difference sequence is an arithmetic progression that starts with $b = \operatorname{\mathsf{dup}}(\langle i,j,p\rangle,i+p)$ and has common difference -2.

For each position k, let $R_k = \{\langle i, j, p \rangle \in \mathsf{Runs}(w, k) \mid i + p \le k \le j - p\}$ be the set of runs $\langle i, j, p \rangle$ such that $\mathsf{dup}(\langle i, j, p \rangle, k) > 0$. We divide runs $\langle i, j, p \rangle \in R_k \cup R_{k+1}$ into the following three disjoint subsets (see also Fig. 2):

$$R_k^1 = R_k \cap R_{k+1},$$

$$R_k^2 = R_k \setminus R_{k+1},$$

$$R_k^3 = R_{k+1} \setminus R_k.$$

Recall that for each $\langle i, j, p \rangle \in R_k$, we have $\mathsf{dup}(\langle i, j, p \rangle, k) = (k - i - p + 1)(j - p + 1 - k)$. By Lemma 4, $num_{\langle i, j, p \rangle}$ is an integer sequence whose difference sequence is an arithmetic progression that starts with $\mathsf{dup}(\langle i, j, p \rangle, i + p)$ and has a common difference -2.

By Lemma 3, $\mathcal{D}(w,k) = \sum_{\langle i,j,p\rangle \in \mathsf{Runs}(w,k)} \mathsf{dup}(\langle i,j,p\rangle,k)$ holds. For computing $\mathcal{D}(w,k)$ for increasing k, we maintain the following invariants:

$$\begin{split} m_k &= |R_k|, \\ f_k &= \sum_{\langle i,j,p\rangle \in R_k} \operatorname{dup}(\langle i,j,p\rangle, i+p) = \sum_{\langle i,j,p\rangle \in R_k} num_{\langle i,j,p\rangle}[1], \\ d_k &= \sum_{\langle i,j,p\rangle \in R_k} (k-(i+p)), \\ e_k &= \sum_{\langle i,j,p\rangle \in R_k^2} \operatorname{dup}(\langle i,j,p\rangle, j-p) = \sum_{\langle i,j,p\rangle \in R_k^2} num_{\langle i,j,p\rangle}[1]. \end{split}$$

 f_k is the sum of the first terms of $num_{\langle i,j,p\rangle}$, for $\langle i,j,p\rangle \in R_k$. d_k is the sum of the distances between k and i+p, for $\langle i,j,p\rangle \in R_k$. e_k is the sum of the last terms of $num_{\langle i,j,p\rangle}$, for $\langle i,j,p\rangle \in R_k^2$

By Lemma 4, for a run $\langle i, j, p \rangle$, $\mathsf{dup}(\langle i, j, p \rangle, k+1)$ can be maintained with the following recurrence:

$$\operatorname{dup}(\langle i, j, p \rangle, k+1) = \operatorname{dup}(\langle i, j, p \rangle, k) + num_{\langle i, j, p \rangle}[1] - 2(k - (i+p)).$$

This leads to the following recurrence for $\mathcal{D}(w, k+1)$:

$$\begin{split} \mathcal{D}(w,k+1) &= \sum_{\langle i,j,p\rangle \in \mathsf{Runs}(w,k+1)} \mathsf{dup}(\langle i,j,p\rangle,k+1) \\ &= \sum_{\langle i,j,p\rangle \in R_k^1} \mathsf{dup}(\langle i,j,p\rangle,k+1) + \sum_{\langle i,j,p\rangle \in R_k^2} \mathsf{dup}(\langle i,j,p\rangle,k+1) \\ &= \sum_{\langle i,j,p\rangle \in R_k^1} (\mathsf{dup}(\langle i,j,p\rangle,k) + num_{\langle i,j,p\rangle}[1] - 2(k+1-(i+p))) \\ &+ \sum_{\langle i,j,p\rangle \in R_k^3} num_{\langle i,j,p\rangle}[1] \\ &= f_{k+1} + \sum_{\langle i,j,p\rangle \in R_k^1} (\mathsf{dup}(\langle i,j,p\rangle,k) - 2(k+1-(i+p))) \\ &= f_{k+1} + \sum_{\langle i,j,p\rangle \in R_k^1} \mathsf{dup}(\langle i,j,p\rangle,k) - \sum_{\langle i,j,p\rangle \in R_k^2} \mathsf{dup}(\langle i,j,p\rangle,k) \\ &- 2 \sum_{\langle i,j,p\rangle \in R_k^1} (k+1-(i+p)) \\ &= f_{k+1} + \mathcal{D}(w,k) - e_k - 2d_{k+1} \end{split}$$

Therefore, $\mathcal{D}(w, k+1)$ can be computed with this recurrence relation $\mathcal{D}(w, k+1) = \mathcal{D}(w, k) + f_{k+1} - e_k - 2d_{k+1}$. We show how to compute m_k, f_k, d_k, e_k . First, $m_1 = 0, f_1 = 0, d_1 = 0, e_1 = 0$ because $R_1 = \emptyset$ and $R_1^2 = \emptyset$. Then, $m_{k+1}, f_{k+1}, d_{k+1}$ can be computed from m_k, f_k, d_k as follows: m_{k+1} can be computed from m_k by adding the number of runs $\langle i, j, p \rangle$ such that i + p = k + 1.

A pseudo-code of the proposed algorithm is shown in Algorithm 1. Below, we describe our algorithm.

Algorithm 1: Compute C(w, k) for all positions

```
Input: a string w[1..n] over an ordered alphabet
     Output: C(w, k) for all k = 1, 2, ..., n
  1 Compute the sorted list L of the runs \langle i, j, p \rangle \in \mathsf{Runs}(w) in increasing order of i + p;
 2 Compute the sorted list R of the runs (i, j, p) \in \mathsf{Runs}(w) in increasing order of j - p;
 3 for each \langle l_1, r_1, p_1 \rangle, \ldots, \langle l_{|L|}, r_{|L|}, p_{|L|} \rangle \in \mathsf{L} \operatorname{\mathbf{do}}
 4 | \mathsf{L}_l[q] \leftarrow l_q, \, \mathsf{L}_r[q] \leftarrow r_q;
 5 end
 6 for each \langle l_1, r_1, p_1 \rangle, \ldots, \langle l_{|R|}, r_{|R|}, p_{|R|} \rangle \in \mathsf{R} do
       \mid \mathsf{R}_{l}[q] \leftarrow l_{q}, \, \mathsf{R}_{r}[q] \leftarrow r_{q};
 8 end
     y \leftarrow 1, z \leftarrow 1, m \leftarrow 0, d \leftarrow 0, f \leftarrow 0, \mathcal{D}(w, 0) \leftarrow 0;
10
     for all k = 1, \ldots, n do
            e \leftarrow 0;
11
            d \leftarrow d + m;
12
            while L_l[y] = k \operatorname{do}
13
                  f \leftarrow f + \mathsf{L}_r[y] - \mathsf{L}_l[y] + 1;
14
                  m \leftarrow m + 1;
15
                  y \leftarrow y + 1;
16
            end
17
            while R_r[z] = k \operatorname{do}
18
                  f \leftarrow f - (\mathsf{R}_r[z] - \mathsf{R}_l[z] + 1);
19
                  m \leftarrow m-1;
20
21
                  z \leftarrow z + 1;
                  e \leftarrow e - (\mathsf{R}_r[z] - \mathsf{R}_l[z] + 1);
22
            end
23
24
            \mathcal{D}(w,k) \leftarrow \mathcal{D}(w,k-1) + f - 2d - e;
25
            C(w, k) \leftarrow k(n - k + 1) - D(w, k);
26
27 end
```

For each run $r = \langle i, j, p \rangle$, we call the interval [i+p, j-p] the run interval for r. To find runs by the starting and ending positions of their run intervals, we create two sorted lists L and R of pairs composed of positions and runs. The list L (resp. R) is sorted by the positions, which are the starting positions (resp. the ending positions) of the run intervals of the respective runs. L and R help us to access a run in amortized constant time, when we process the string positions $k=1,\ldots,n$ in increasing order. The sorted lists L and R can be computed in linear time with an integer sorting algorithm.

 f_{k+1} can be computed from f_k by adding $num_{i,j,p}[1]$ for runs $\langle i,j,p\rangle$ such that i+p=k+1 and subtracting $num_{i,j,p}[1]$ for runs $\langle i,j,p\rangle$ such that j-p=k.

We have $d_k = \sum_{\langle i,j,p\rangle \in R_k} (k-(i+p))$ and $d_{k+1} = \sum_{\langle i,j,p\rangle \in R_{k+1}} (k+1-(i+p))$, and therefore the sum increases by $|R_k| = m_k$ and decreases by $\sum_{\langle i,j,p\rangle \in R_k^2} (k+1-(i+p)) = \sum_{\langle i,j,p\rangle \in R_k^2} (j-p+1-(i+p)) = \sum_{\langle i,j,p\rangle \in R_k^2} num_{i,j,p}[1] = e_k$. This is why d_{k+1} can be computed by recurrence relation $d_{k+1} = d_k + m_k - e_k$.

Finally, e_k can be directly computed by summing the last term of $num_{\langle i,j,p\rangle}$ for runs $\langle i,j,p\rangle$ such that j-p=k.

4 Computing $\mathcal{N}(w,k)$ for all positions k in w

We show the following result.

Theorem 4. Given a string w[1..n] of length n over a linearly-sortable alphabet, we can sequentially output $\mathcal{N}(w,1),\ldots,\mathcal{N}(w,n)$ such that the first value needs O(n) time, but all subsequent values need constant-time delay.

Let $A_x = \mathsf{Substr}(w[1..x])$ and $B_x = \mathsf{Substr}(w[x..n])$. Then, $\mathcal{N}(w,x) = |A_{x-1} \cup B_{x+1}|$. The idea is to compute, for increasing values of x, the two differences $|A_x \cup B_{x+1}| - |A_{x-1} \cup B_{x+1}|$ and $|A_x \cup B_{x+2}| - |A_x \cup B_{x+1}|$ so that $\mathcal{N}(w,x+1) = |A_x \cup B_{x+2}|$ can be computed from $\mathcal{N}(w,x)$ by adding these differences. If we can find the two differences in constant time for each x, then we can solve the addressed problem using the O(n) textbook algorithm for $\mathcal{N}(w,1)$.

We make use of the following two data structures that can be built in O(n) time. The longest previous non-overlapping factor table (LPnF) of w is an integer array $\mathsf{LPnF}_w[1..n]$ whose i-th integer is the length of the longest prefix of w[i..n] that has an occurrence in w[1..i-1]. The longest next factor table (LNF) of w is an integer array $\mathsf{LNF}_w[1..n]$ whose i-th integer is the length of the longest prefix of w[i..n] that has an occurrence in w[i+1..n].

Lemma 5 ([2], [4]). We can build $LPnF_w$ in O(n) time.

Lemma 6. We can build LNF_w in O(n) time.

Proof. First, we build the suffix tree STree over w by Theorem 3. Next, we select sequentially the leaves of STree in ascending order with respect to their suffix numbers. For each such leaf λ with suffix number i, we move to its parent, write its string depth into $\mathsf{LNF}[i]$, delete λ , and continue the iteration. We keep the invariant that an internal node always has two children. In case that we deleted the penultimate leaf of a node, we merge this node with its remaining child.

We first claim that having the arrays $\mathsf{LNF}_w, \mathsf{LPnF}_w$ for w at hand, $|A_x \cup B_{x+2}| - |A_x \cup B_{x+1}|$ can be computed in O(1) time. Since $A_x \cup B_{x+2} \subseteq A_x \cup B_{x+1}$, we only need to count how many elements are removed, which must be prefixes of w[x+1..n]. The removed prefixes are the prefixes of w[x+1..n] that do not occur in A_x and do not occur in B_{x+2} . From the definitions, $\alpha = \mathsf{LPnF}_w[i+1]$ is the length of the longest prefix of w[x+1..n] that has an occurrence in w[1..x] thus included in A_x , and $\beta = \mathsf{LNF}_w[i+1]$ is the length of the longest prefix of w[x+1..n] that has an occurrence in w[x+1..n] thus included in B_{x+2} . Therefore, the prefixes of w[x+1..n] are removed if and only if they are longer than $\max(\alpha, \beta)$, and their number is $n-x-\max(\alpha, \beta)$.

The case for $|A_x \cup B_{x+1}| - |A_{x-1} \cup B_{x+1}|$ is symmetric and can be computed using the arrays LNF_{w^R} and LPnF_{w^R} for the reverse string w^R in a similar fashion.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers JP23K24808, JP23K18466 (SI), JP23H04378, JP25K21150 (DK), JP24K02899 (HB).

References

- 1. Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501–1514, 2017.
- 2. Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear time and applications. *Inf. Process. Lett.*, 106(2):75–80, 2008.
- 3. Maxime Crochemore, Thierry Lecroq, and Wojciech Rytter. 125 Problems in Text Algorithms. Cambridge University Press, Cambridge, 2021.

- 4. Maxime Crochemore and German Tischler. Computing longest previous non-overlapping factors. *Inf. Process. Lett.*, 111(6):291–295, 2011.
- 5. Jonas Ellert and Johannes Fischer. Linear time runs over general ordered alphabets. In ICALP 2021, volume 198 of LIPIcs, pages 63:1–63:16, 2021.
- 6. Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree construction. *J. ACM*, 47(6):987–1011, 2000.
- 7. Nathan J Fine and Herbert S Wilf. Uniqueness theorems for periodic functions. *Proceedings of the American Mathematical Society*, 16(1):109–114, 1965.
- 8. Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors. In STOC 2018, pages 827–840. ACM, 2018.
- 9. Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time. In FOCS 1999, pages 596–604, 1999.
- 10. Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and Automata Theory, pages 1–11, 1973.