

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 9: Sistemas de Proteção Contra Descargas Atmosféricas (SPDA) — Aula 21

Instalações Elétricas I Engenharia Elétrica

9.4- Métodos de Proteção

- Um sistema de proteção contra descargas atmosféricas (SPDA) é formado pelos seguintes elementos:
 - Captores (para-raios, terminais e cabos);
 - Condutores de descida;
 - Sistema de aterramento
- O SPDA uma configuração série.

Classe do SPDA

• As características deum SPDA são determinadas pelas características da estrutura a ser protegida e pelo nível de proteção considerado para descargas atmosféricas.

Tabela 1 – Relação entre níveis de proteção para descargas atmosféricas e classe de SPDA (ver ABNT NBR 5419-1)

Nível de proteção	Classe de SPDA
1	1
II	II
III	III
IV	IV

A classe do SPDA requerido deve ser selecionada com base na avaliação de risco.

Eficiência do SPDA

Quanto maior a classe do SPDA menor a probabilidade de danos físicos.

Tabela B.2 – Valores de probabilidade P_B dependendo das medidas de proteção para reduzir danos físicos

Características da estrutura	Classe do SPDA	P_{B}
Estrutura não protegida por SPDA	_	1
Estrutura protegida por SPDA	IV	0,2
	111	0,1
	11	0,05
	1 1 1 7	0,02
Estrutura com subsistema de captação confor estrutura metálica contínua ou de concreto ar subsistema de descida natural		0,01
Estrutura com cobertura metálica e um subsis cossivelmente incluindo componentes naturai de qualquer instalação na cobertura contra de diretas e uma estrutura metálica contínua ou de atuando como um subsistema de descidas na	s, com proteção completa escargas atmosféricas de concreto armado	0,001

Subsistema de Captação

- O subsistema de captação pode ser constituído por um, ou uma combinação, dos seguintes elementos:
 - a) Hastes/mastros;
 - b) Condutores suspensos;
 - c) Condutores em malha;
 - d) Elementos naturais.

Posicionamento do Subsistema de Captação

- Os componentes do subsistema instalados na estrutura devem ser posicionados nos cantos salientes, pontas expostas e nas beiradas, especialmente no nível superior de qualquer fachada.
- Para o posicionamento do subsistema captor deve-se utilizar um, ou mais, dos seguintes métodos:
 - Método do ângulo de proteção (Franklin);
 - Método da esfera rolante (Eletrogeométrico);
 - Método das malhas (Faraday).

9.4.1- Método do Ângulo de Proteção

- Formado por uma haste metálica (captor) a uma determinada altura do solo.
- Forma um cone que delimita o volume de proteção.
- É indicado para edificações com formato simples, mas está sujeito aos limites de altura dos captores.

Método do Ângulo de Proteção

- Como é definido o ângulo de proteção?
 - H é a altura do captor acima do plano de referência da área a ser protegida.
 - Classe de proteção (I a IV).

Método do Ângulo de Proteção

 Volume de proteção provido pelo mastro do para-raios para duas alturas.

 Volume de proteção provido por um cabo condutor suspenso.

Para-raios Tipo Franklin

- Captor
 - É o principal elemento do para-raios.
 - Formado por três ou mais pontas de aço inoxidável ou cobre.
- Mastro ou haste
 - É o suporte do captor, formado por um tubo de cobre de comprimento entre 3 a 10 m.
- Base de ferro fundido para o mastro
- Condutor de descida
- Isolador
 - Tem como função a fixação da haste e isolação dos condutores de descida.
 - Em geral de porcelana vitrificada (tensão de isolamento 10 kV).

Método do Ângulo de Proteção

Para-Raios Radioativo

- No seu captor são colocados os elementos radioativos (Rádio-266, Radônio-266).
- Sua ação é produzida pelos elementos radioativos que bombardeiam o ar, ionizando-o.
- Esse tipo de para-raios radioativo é proibido no Brasil, pelos seguintes motivos:
 - A zona de proteção não é maior que a do para-raios tipo Franklin;
 - Risco de armazenagem e manutenção;
 - Vida útil superior a 450 anos, maior que a vida útil da edificação;
- NBR 5419/2015-3:
 - Os captores com material radioativo devem ser retirados de operação (Res. 04/89- CNEN).

Utilizando o método do ângulo de proteção, qual deve ser a altura do captor instalado no topo do edifício residencial para garantir uma proteção contra descargas atmosféricas. Adote o SPDA com uma classe III.

- Valores comerciais de captores Franklin:
 - 4, 5, 6, 7, 8, 9 e 10 m
 - Fabricante Termotécnica
 - https://tel.com.br/

Solução: Um captor com quatro metros. Para que o prédio fique dentro da região de proteção, o raio de proteção deverá ser igual a:

- Com H= 10m (6m +4m) => R_{P2} = 19,6m e α =63°.
- Com H= 30m (26m +4m) => R_{P1} = 22,6m e α =37°.

9.4.2-Método das Malhas

- É baseado na teoria de que o campo magnético no interior de uma gaiola condutora é nulo.
- O sistema de captores é formado por condutores horizontais interligados em forma de malha.
- O método das malhas é apropriado:
 - para telhados horizontais e inclinados sem curvatura.
 - para proteger superfícies laterais planas contra descargas atmosféricas laterais.

Método das Malhas

- Captores verticais ou terminais aéreos
 - A NBR 5419-2015 recomenda instalar captores verticais ou terminais aéreos de 30 a 50 cm de altura, separados de 5 a 8m ao longo dos condutores da malha.

Método das Malhas

• Largura do módulo da malha (NBR 5419-3:2015):

Classe do SPDA	Máximo afastamento dos condutores da malha	
	a x b	
1	5×5	
11	10×10	
III	15×15	
IV	20×20	

- $A_{rmc} \leq A_{mc}$
 - A_{mc}- área mínima do módulo da malha captora, em m² (NBR 5419-3:2015):
 - A_{rmc} área do módulo da malha captora obtida a partir da área de cobertura da edificação, em m².

Método das Malhas

• Número de malhas:

$$N_{cl} = \frac{Largura}{a} + 1$$

$$N_{cc} = \frac{Comprimento}{b} + 1$$

- Onde:
 - $-N_{cl}$: número de cabos na largura da malha;
 - $-N_{cc}$: número de cabos no comprimento da malha.

• Dimensione o SPDA com o método das malhas. O prédio possui altura de 12 m, comprimento 75 m e largura 40 m.

- $A_{mc}=15 \times 15=225 \text{ m}^2$ (Classe III)
- $A_{rmc} = 13,3 \times 15 = 199,5 \text{ m}^2$
- $\bullet A_{\rm rmc} \le A_{\rm mc} (Ok!)$

9.4.3- Método da Esfera Rolante

- Também designado como método eletrogeométrico.
- Tal método delimita o volume a ser protegido, podendo ser constituído de:
 - Hastes;
 - Cabos;
 - Uma combinação de ambos.
- Este método é baseado no conceito de distância de atração, que é definido como a maior distância em que o raio será atraído pelo captor.
- Tal distância define o raio da esfera rolante e depende da corrente do raio.

Método da Esfera Rolante

• Distância R em função da corrente I_{max}

A distância R entre o ponto de partida do líder ascendente e a extremidade do líder descendente (ver figura) é o parâmetro utilizado para posicionar os captores segundo o modelo eletrogeométrico. Seu valor é dado por:

$$R = 10 \times I_{\text{máx}}^{0,65}$$

sendo R, em metros, e $I_{\text{máx}}$ o valor de crista máximo do primeiro raio negativo, em quiloampéres.

Classe do SPDA	Raio da Esfera Rolante – R (m)	Valor de crista de I _{máx} kA
I	20	3
II	30	5
III	45	10
IV	60	15

Método Eletrogeométrico

O adequado posicionamento do subsistema captor ocorre se nenhum ponto da estrutura a proteger entrar em contato com a esfera, a qual deve ser rolada no topo e ao redor da estrutura em todas as direções possíveis.

Descargas laterais com probabilidade desprezível

Método Eletrogeométrico

Altura da Edificação > 60m

Aumento da probabilidade de descargas laterais, com a norma indicando 20% do topo da edificação.

Método da esfera rolante se aplica apenas para a parte superior da estrutura