

RF Exposure Report FCC ID: 2AK8Q-BM308

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless mouse			
Model Name	BM308			
Additional Model	N/A			
Number(s)	1973			
Model Difference	N/A			
Frequency Range	Bluetooth 3.0: 2402~2480 MHz			
Number of Channel:	79 Channels			
Modulation Type	Bluetooth: GFSK/ π /4-DQPSK/8-DPSK			
RF Output Power	Max: 3.770 dBm(GFSK)			
Antenna Type	PCB Antenna (Gain: 0dBi)			
Power Source	DC Powered by Battery .			
Power Rating	DC 3.0V from 2*AA Battery.			
Remark	More details EUT technical specifications, please refer to the User's Manual.			

Version: ATL-FCCRF-15V01.00

Report No.: ATL-FCC20170924880

2. RF EXPOSURE INFORMATION

SAR Test Exclusion Calculations

- 2.1 FCC: According to KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.
 - (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

2.2 Calculation:

Bluetooth Mode							
GFSK(1Mbps)							
Frequency (MHz)	Conducte d Power (dBm)	Turn-up Power Tolerance (dB)	MAX Power of Turn-up Tolerance (dbm)	TX Power (mW)	Calculation Value	Threshold Value	
2402	3.658	3±1	4	2.512	0.779	3.0	
2441	3.770	3±1	4	2.512	0.785	3.0	
2480	3.522	3±1	4	2.512	0.791	3.0	
π /4-DQPSK (2Mbps)							
Frequency (MHz)	Conducte d Power (dBm)	Turn-up Power Tolerance (dB)	MAX Power of Turn-up Tolerance (dbm)	TX Power (mW)	Calculation Value	Threshold Value	
2402	2.221	2±1	3	1.995	0.618	3.0	
2441	2.087	2±1	3	1.995	0.623	3.0	
2480	2.239	2±1	3	1.995	0.628	3.0	
8-DPSK(3Mbps)							
Frequency (MHz)	Conducte d Power (dBm)	Turn-up Power Tolerance (dB)	MAX Power of Turn-up Tolerance (dbm)	TX Power (mW)	Calculation Value	Threshold Value	
2402	2.446	3±1	4	2.512	0.779	3.0	
2441	3.141	3±1	4	2.512	0.785	3.0	
2480	2.043	3±1	4	2.512	0.791	3.0	

So standalone SAR measurements are not required.

*****END OF REPORT*****

Report No.: ATL-FCC20170924880