Homework set 7

Due by 15:00 on Monday, October 9, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Recall that if X is an inner product space and $Y \subset X$ is a complete subspace then for any $x \in X$ there exists a unique $y \in Y$ such that |x - y| = d(x, Y). Also recall that if $M \subset X$ is a set, we denote

$$M^{\perp} = \{ x \in X \mid \langle x, y \rangle = 0 \text{ for all } y \in M \}.$$

Problem 1. Let X be a Hilbert space and let $Y \subset X$ be a closed subspace. Define $P: X \to X$ by $x \mapsto y$, where $y \in Y$ is the unique element such that |x-y| = d(x,Y).

- 1. Show that *P* is linear.
- 2. Show that *P* is bounded.
- 3. Show that $P^2 = P$.
- 4. Show that $\ker P = Y^{\perp}$ and $\operatorname{im} P = Y$.
- 5. Conclude that $X = Y \oplus Y^{\perp}$.

Problem 2. Let *X* be a Hilbert space and $M \subset X$ a subset.

- 1. Show that M^{\perp} is a closed subspace of X.
- 2. Show that $M \subset (M^{\perp})^{\perp}$.
- 3. Show that $M=(M^{\perp})^{\perp}$ if M is a closed subspace.

Problem 3. Let X be a Hilbert space and $Y \subset X$ a subspace (not necessarily closed). Show that Y is dense in X if and only if $Y^{\perp} = \{0\}$.

Problem 4. Let X be an inner product space and fix $y \in X$. Show that $f(x) = \langle x, \overline{y} \rangle$ is a bounded linear functional on X and that |f| = |y|.

Problem 5. Let X be a Hilbert space and let $f \in X^{\vee}$ be a bounded linear functional.

- 1. Show that $X = \ker f \oplus \ker f^{\perp}$.
- 2. Show that dim ker $f^{\perp} = 1$.
- 3. Prove the Riesz representation theorem: There exists a unique $y \in X$ such that $f(x) = \langle x, \bar{y} \rangle$ for all x.

¹Kreyszig, Lemma 3.3-2.