Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 08

16 de Abril

MAT1106 - Introducción al Cálculo

- 1) Usaremos la notación $\{(x+y)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(x+y)_n = x_n + y_n$, y $\{(xy)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(xy)_n = x_n \cdot y_n$. Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadero demuestre, en caso contrario presente un contraejemplo:
 - a) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es creciente.

Solución. Como $\{x_n\}_{n\in\mathbb{N}}$ es creciente, para todo n tenemos que $x_n \leq x_{n+1}$. Del mismo modo, para todo n se cumple $y\leq y_{n+1}$. Sumando ambas desigualdades tenemos que

$$x_n + y_n \le x_{n+1} + y_{n+1} \Rightarrow (x+y)_n \le (x+y)_{n+1},$$

por lo que esta proposición es cierta.

- b) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es creciente. Solución. Consideremos $x_n = n$, $y_n = -1$. Notar que ambas sucesiones son crecientes, pero $(xy)_n = -n$ es decreciente, por lo que la proposición es falsa.
- c) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es monótona.
 - Solución. Consideremos $x_n = n^2$ y $y_n = -n!$. Notemos que los primeros cuatro términos de $(x+y)_n$ son 0, 2, 3, -8. Como $(x+y)_2 < (x+y)_3$ la sucesión no es decreciente, pero como $(x+y)_3 > (x+y)_4$ la sucesión no es creciente. Luego, $(x+y)_n$ no es monótona, por lo que la propiedad no se cumple.
- d) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es monótonas.

Solución. Consideremos $x_n=n^2,\ y_n=(n!)^{-1}$ (está bien definido porque $n!\neq 0$ con n natural). Notemos que $(xy)_n=1,2,\frac{3}{2},\ldots$ Como $(xy)_1<(xy)_2$ la sucesión no puede ser decreciente, pero como $(xy)_2>(xy)_3$ la sucesión no es creciente. Luego, $(xy)_n$ no es monótona y la propiedad no se cumple.

e) Si $\{x_n\}_{n\in\mathbb{N}}$ es monótona, entonces $\{(x^2)_n\}_{n\in\mathbb{N}}$ es creciente.

Solución. Consideremos $x_n = n - 2$. Los primeros tres términos de esta sucesión son -1,0 y 1. Luego, los primeros tres términos de $(x^2)_n$ son 1,0 y 1. Como $(x^2)_1 > (x^2)_2$ la sucesión no puede ser creciente, pero como $(x^2)_2 < (x^2)_3$ la sucesión no es decreciente. Luego, $(x^2)_n$ no es monótona y la propiedad no se cumple.

- 2) Sea $\{x_n\}_{n\in\mathbb{N}}=r^n$, para algún valor constante de r.
 - a) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ no es monótona si r<0.

Demostración. Notemos que $x_1 = r < 0$, $x_2 = r^2 > 0$ (por ser un cuadrado distinto de 0) y $x_3 = r^3 < 0$ (porque es la multiplicación de un positivo (r^2) y un negativo (r).

b) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ es decreciente si $0 \le r \le 1$.

Demostración. Notar que para todo $n, r^n \ge 0$, por lo que multiplicando por r^n a ambos lados tenemos que para todo n se cumple que $r^{n+1} \le r^n$. Esto implica directamente que x_n es decreciente en este caso.

c) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ es creciente si $1 \leq r$.

Demostración. Como r > 1, r > 0 asi que $r^n > 0$ para todo n. Luego, multiplicando por r^n a ambos lados de la desigualdad se llega a $r^n \le r^{n+1}$, por lo que la sucesión es creciente.

d) Concluya que la sucesión $\{y_n\}_{n\in\mathbb{N}}=|r^n|$ (donde r es una constante) siempre es monótona, sin importar el valor de r.

Demostración. Notemos que $|r^n| = |r|^n$. En efecto, sabemos que $|r \cdot r| = |r|^2$ (por propiedad vista en clase). Ahora, si $|r^k| = |r|^k$, basta ver que $|r^{k+1}| = |r^k \cdot r| = |r^k| \cdot |r| = |r|^k |r| = |r|^{k+1}$, por lo que se

cumple para todo n natural por inducción.

Ahora, tenemos que $y_n = |r|^n$. Como $|r| \ge 0$, entonces $0 \le |r| \le 1$ o $1 \le |r|$. En el primer caso y_n es monótona por la parte b), en el segundo caso y_n es monótona por la parte c).

Por lo tanto, y_n es monótona sin importar el valor de r.

- e) Notar que tanto la parte b) como c) incluyen al 1 dentro del intervalo. ¿Por qué esto no genera problemas?
 - Solución. Cuando $r=1,\ x^n=1^n=1,\ {\rm por}$ lo que es creciente y decreciente a la vez.
- 3) Sea $\{x_n\}_{n\in\mathbb{N}}$ definida de manera recursiva: $x_{n+1}=\sqrt{3x_n+4}$. ¿Es $\{x_n\}_{n\in\mathbb{N}}$ monótona si...
 - a) ... $x_1 < 4$?

Solución. Notar que con $x_1 = -2$, tenemos que $x_2 = \sqrt{3(-2) + 4} = \sqrt{-2} \notin \mathbb{R}$, por lo que la sucesión se indefine.

b) ... $-\frac{4}{3} < x_1 < 4$? Notar que si x_n es no-negativo, entonces x_{n+1} está bien definido (si $x_n \ge 0$, entonces $3x_n \ge 0$ y $3x_n + 4 \ge 4 > 0$). Luego, lo único que nos importa es que x_2 esté bien definido (ya que es no-negativo por ser una raíz cuadrada). Para esto, solo necesitamos que $3x_1 + 4 \ge 0 \iff x \ge -\frac{4}{3}$.

Probaremos que x_n es creciente usando inducción. Para ver el caso base, ntemos que si $x_1 < 0$ es trivial. En otro caso, notemos que

$$x_2 \ge x_1 \iff \sqrt{3x_1 + 4} \ge x_1 \iff 3x_1 + 4 \ge x_1^2 \iff x_1^2 - 3x_1 - 4 \le 0.$$

Factorizando, se tiene que lo anterior es equivalente a $(x_1-4)(x_1+1) \le 0$, donde la solución es $-1 \le x_1 \le 4$. Como x_1 está siempre dentro de ese intervalo, el caso base se cumple.

Supongamos que $x_k \leq x_{k+1}$. Trabajando esto tenemos que

$$x_k \le x_{k+1} \iff 3x_k \le 3x_{k+1}$$
$$\iff 3x_k + 4 \le 3x_{k+1} + 4$$

Como x_k es positivo, tenemos que lo de arriba implica $x_{k+1} \leq x_{k+2}$.

Por lo tanto, usando inducción x_n es creciente.

c) ...
$$x_1 > 4$$
?

Solución. Por la parte anterior ya sabemos que la sucesión está bien definida. Probemos por inducción que x_n es decreciente. En efecto, notemos que

$$x_2 \le x_1 \iff \sqrt{3x_1 + 4} \le x_1 \iff 3x_1 + 4 \le x_1^2 \iff x_1^2 - 3x_1 - 4 \ge 0$$

Ya vimos los puntos críticos arriba, por lo que sabemos que cuando $x_1 > 4$ la expresión de arriba es positiva. Ahora, si se cumple para algún k que $x_k \ge x_{k+1}$, tenemos que

$$x_{k} \ge x_{k+1} \iff 3x_{k} \ge 3x_{k+1}$$

$$\iff 3x_{k} + 4 \ge 3x_{k+1} + 4$$

$$\iff \sqrt{3x_{k} + 4} \ge \sqrt{3x_{k+1} + 4}$$

$$\iff x_{k+1} \ge x_{k+2},$$

por lo que por inducción tenemos que es decreciente.

4) Muestre que $\{x_n\}_{n\in\mathbb{N}} = \sqrt[n]{n!}$ es creciente. (Hint: Recuerde que si x > 0, entonces $\sqrt[a]{x} = \sqrt[ab]{x^b}$ con $a, b \in \mathbb{N}$.)

Demostración. Como n! > 0 para todo n natural, así que x_n está bien definido para todo n y además es positiva. $\{x_n\}_{n\in\mathbb{N}}$ es decreciente si y solo si para todo n natural, $x_n > x_{n+1}$. Como x_n siempre es positivo, lo único

que nos importa probar es que $1 > \frac{x_{n+1}}{x_n}$. Notemos que

$$\frac{x_{n+1}}{x_n} = \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}$$

$$= \frac{\sqrt[n(n+1)]{(n+1)!^n}}{\sqrt[n(n+1)!^n]{(n+1)!^n}}$$

$$= \sqrt[n(n+1)]{\frac{(n+1)!^n}{n!^{n+1}}}$$

$$= \sqrt[n(n+1)]{\frac{1^n \cdot 2^n \cdot \dots \cdot n^n \cdot (n+1)^n}{n!^n \cdot n!}}$$

$$= \sqrt[n(n+1)]{\frac{(n+1)^n}{n!}}$$

Sabemos que $n! \le n^n \le (n+1)^n$, por lo que $\frac{(n+1)^n}{n!} \ge 1$. Luego, $\sqrt[n(n+1)]{\frac{(n+1)^n}{n!}} \ge 1$, por lo que $\frac{x_{n+1}}{x_n} \ge 1$.

Por lo tanto, x_n es creciente.

5) ¿Es $\{x_n\}_{n\in\mathbb{N}}$ definida como $x_n=\sqrt[n]{n}$ monótona? ¿Cual es la diferencia entre $\{x_n\}_{n\in\mathbb{N}}$ y $\{x_n\}_{n\geq 3}$?

Solución. No. Notar que $x_1=1, x_2=\sqrt{2}$ (por lo que no es decreciente), pero $x_8=\sqrt[8]{8}=\sqrt[8]{2}<\sqrt{2}$, por lo que no es creciente. Así, tenemos que no es monótona.

La diferencia entre $\{x_n\}_{n\in\mathbb{N}}$ y $\{x_n\}_{n\geq 3}$ es que la segunda es monótona (visto en clase), ya que se remueven los dos primeros términos (que son los que generan problemas).