

Ice Tank Model

Michael Wetter

March 28, 2022

Basic assumptions

Model based on paper from 2021 Int. Modelica Conference

An Ice Storage Tank Modelica Model: Implementation and Validation

Guowen Li¹ Yangyang Fu¹ Amanda Pertzborn² Jin Wen³ Zheng O'Neill¹

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX

{guowenli, yangyang.fu, zoneill}@tamu.edu

²National Institute of Standards and Technology, Gaithersburg, MD

{amanda.pertzborn@nist.gov}

³Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA

{jinwen@drexel.edu}

Governing equations

This model implements an ice tank model whose performance is computed based on performance curves.

The model is based on the implementation of <u>Guowen et al., 2020</u> and similar to the detailed EnergyPlus ice tank model <u>ThermalStorage:Ice:Detailed</u>.

The governing equations are as follows:

The mass of ice in the storage m_{ice} is calculated as

$$d SOC/dt = \dot{Q}/(H_f \ m_{ice,max})$$

 $m_{ice} = SOC \ m_{ice,max}$

where SOC is state of charge, \dot{Q} is the heat transfer rate of the ice tank, positive for charging and negative for discharging, Hf is the fusion of heat of ice and $m_{ice,max}$ is the nominal mass of ice in the storage tank.

The heat transfer rate of the ice tank \dot{Q} is computed using

$$\dot{Q} = Q_{\text{sto.nom}} q^*$$

where $Q_{sto,nom}$ is the storage capacity and q^* is a normalized heat flow rate. The storage capacity is

$$Q_{\text{sto,nom}} = Hf \quad m_{\text{ice,max}},$$

where Hf is the latent heat of fusion of ice and $m_{ice,max}$ is the maximum ice storage capacity.

The normalized heat flow rate is computed using performance curves for charging (freezing) or discharging (melting). For charging, the heat transfer rate q^* between the chilled water and the ice in the thermal storage tank is calculated using

$$q^* \Delta t = C_1 + C_2 x + C_3 x^2 + [C_4 + C_5 x + C_6 x^2] \Delta T_{lmtd}^*$$

where Δt is the time step of the data samples used for the curve fitting, C_{1-6} are the curve fit coefficients, x is the fraction of charging, also known as the state-of-charge, and T_{lmtd}^* is the normalized LMTD calculated using <u>Buildings.Fluid.Storage.Ice.BaseClasses.calculateLMTDStar</u>. Similarly, for discharging, the heat transfer rate q^* between the chilled water and the ice in the thermal storage tank is

$$-q^* \Delta t = D_1 + D_2(1-x) + D_3(1-x)^2 + [D_4 + D_5(1-x) + D_6(1-x)^2] \Delta T_{lmtd}^*$$

where Δt is the time step of the data samples used for the curve fitting, D_{1-6} are the curve fit coefficients.

The normalized LMTD ΔT_{lmtd}^* uses a nominal temperature difference of 10 Kelvin. This value must be used when obtaining the curve fit coefficients.

The log mean temperature difference is calculated using

$$\Delta T_{lmtd}^* = \Delta T_{lmtd} / T_{nom}$$

$$\Delta T_{lmtd} = (T_{in} - T_{out}) / ln((T_{in} - T_{fre}) / (T_{out} - T_{fre}))$$

where T_{in} is the inlet temperature, T_{out} is the outlet temperature, T_{fre} is the freezing temperature and T_{nom} is a nominal temperature difference of 10 Kelvin.

Reference

Strand, R.K. 1992. "Indirect Ice Storage System Simulation," M.S. Thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign.

Guowen Li, Yangyang Fu, Amanda Pertzborn, Jin Wen and Zheng O'Neill. *An Ice Storage Tank Modelica Model: Implementation and Validation.* Modelica Conferences. 2021. doi: 10.3384/ecp21181177.

Package structure

- → 🕌 Ice
 - ControlledTank
 - Tank
 - → O Data
 - → 🔘 Tank
 - EnergyPlus
 - **Experiment**
 - **Generic**

Two options:

- Ideally controlled tank (exact solution, not PI controller as was used in Modelica paper)
- 2. Tank only (allows for example glycol-water heat exchanger control)

