[AIMLBD] MACHINE LEARNING, BIG DATA, ARTIFICIAL INTELLIGENCE per medicina e chirurgia high tech

L02: Optimization

Dott. Giorgio De Magistris

demagistris@diag.uniroma1.it

Corso di Laurea in Medicina e Chirurgia High Tech

I3S

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica

Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

Optimization in Machine Learning

 In general a ML model is trained to minimize an error function with respect to the model parameters

Partial Derivatives

- Suppose we have a function of two variables z = f(x,y), (the blue surface in the figure)
- If I fix the value of one variable, say y=y_o then I obtain a function of one variable z = f(x,y_o) (the curve C₁ in the figure)
- The slope of the tangent of C₁ at a point P(x_P,y_P) (T₁ in the figure) is the Partial Derivative of f with respect to x and it is indicated as:

$$\frac{\partial f}{\partial x}(x_P, y_P)$$

Minimization of a 2D function

P is a critical point if

$$\bar{P}(\bar{x}, \bar{y}) = \begin{cases} \frac{\partial f}{\partial x}(\bar{x}, \bar{y}) = 0\\ \frac{\partial f}{\partial y}(\bar{x}, \bar{y}) = 0 \end{cases}$$

$$H_{\bar{x}_0} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0,y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0) & \frac{\partial^2 f}{\partial y^2}(x_0,y_0) \end{pmatrix} \qquad \begin{array}{c} \bullet \quad \text{Positive semidefinite} \to \mathbf{x_0} \text{ is min} \\ \bullet \quad \text{Negative semidefinite} \to \mathbf{x_0} \text{ is max} \\ \bullet \quad \text{Indefinite} \to \mathbf{x_0} \text{ is saddle} \\ \end{array}$$

$$\frac{\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)}{\frac{\partial^2 f}{\partial y^2}(x_0, y_0)}$$

image credit: https://www.offconvex.org/2016/03/22/saddlepoints/

Minimization of an n-variable function

Find critical points as before

$$\bar{\mathbf{x}} = \begin{pmatrix} \bar{x}_1 \\ \dots \\ \bar{x}_n \end{pmatrix} = \begin{cases} \frac{\partial f}{\partial \bar{x}_1} = 0 \\ \dots \\ \frac{\partial f}{\partial \bar{x}_n} = 0 \end{cases}$$

- Check whether max, min or saddle as before
- Closed form solution for the system of partial derivatives not always exists

Convex functions

convex subset of \mathbb{R}^2

Given X a convex subset of R^N and the function
f: X → R

Then f is convex if

$$\forall 0 \le t \le 1 \text{ and } \forall x_1, x_2 \in X \text{ then } f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Image credit: https://en.wikipedia.org/wiki/File: Convex polygon illustration1.sv

 Convex functions are easy to optimize, because they admit only a global minimum

Image credit: https://en.wiki pedia.org/wiki/ File:Convex_v s_Not-convex .jpg

Gradient Vector

- The gradient vector at a point P is the vector of all partial derivatives at the point P
- It points in the direction in which the function increases the most
- The vector field that associates at each point in the domain the corresponding gradient vector is called the Gradient Vector Field

image credit: https://en.wikipedia.org/wiki/Gradient

Level Curves

- The level curves of a function z = f(x,y) are the curves with equation f(x,y) = k where k is a constant in the range of f
- In other words the function f(x,y) is constant along the level curves
- For 3 or higher dimensional functions we talk about level surfaces (the blue surface in the right figure) or level hypersurfaces

Gradient and Level Curves

 The gradient is always perpendicular to the level curves (or level hypersurfaces for higher dimensional functions)

Numerical Optimization

Notation: bold symbols (e.g. **x**) denote vectors

- In order to find the minimum x* of f(x):
 - Initialize x₀ with a random point in the domain of f
 - Update **x** moving along a vector proportional to the inverse of the gradient vector (direction in which the function f decreases the most): $\mathbf{x}_{t+1} = \mathbf{x}_t \delta_t \nabla \mathbf{f}(\mathbf{x}_t)$
 - Continue until convergence: $|f(\mathbf{x}_{t-1}) f(\mathbf{x}_{t})| < \varepsilon$

Non convex optimization

- Often in machine learning the function to optimize with respect to the model parameters is not convex
- It could have many local minima, saddle points, flat regions
- Often the best we can do is local optimization, e.g. find local optima
- However often local optima works well on real data, while the global optima result in overfitting

Image credit: What is Gradient Descent?

Optimization Strategy

- The optimization strategy is the rule that tells how to update the weights with respect to the gradients
- They are variations of the basic formula shown in the previous slide:

$$\circ \quad \mathbf{x}_{t+1} = \mathbf{x}_t - \delta_t \nabla \mathbf{f}(\mathbf{x}_t)$$

 Many different strategies exist and they have different convergence time and stability

Gradient Descent

- In ML the function to optimize $L(\mathbf{D}, \boldsymbol{\theta})$ is a function both of the trainingset \mathbf{D} and the model parameters $\boldsymbol{\theta}$.
- In the gradient descent the parameters are updated according to the formula:
- Note that for each update I have to compute the Loss function L for each training sample
- The resulting gradient is exact but the algorithm requires a lot of space and memory

$$\nabla_{\mathbf{\Theta}} L(\mathbf{D}, \mathbf{\Theta}) = \nabla_{\mathbf{\Theta}} \sum_{x \in \mathbf{D}} L(x, \mathbf{\Theta}) = \sum_{x \in \mathbf{D}} \nabla_{\mathbf{\Theta}} L(x, \mathbf{\Theta})$$

Stochastic Gradient Descent

- Similar to Gradient Descent but the gradient is not exact but rather it is estimated from a subset of elements sampled uniformly at random from the trainingset (mini-batch)
- The update formula is

$$\mathbf{\Theta}_{new} = \mathbf{\Theta}_{old} - \delta_t \nabla_{\mathbf{\Theta}} \frac{1}{n} \sum_{x \in \mathbf{B}} L(x, \mathbf{\Theta}_{old})$$

- Where B is the mini-batch and n is the size of the mini-batch
- The main advantage is that the optimization algorithm does not depend on the size of the dataset

Slides distribuite con Licenza Creative Commons (CC BY-NC-ND 4.0) Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale

PUOI CONDIVIDERLE ALLE SEGUENTI CONDIZIONI

(riprodurre, distribuire, comunicare o esporre in pubblico, rappresentare, eseguire e recitare questo materiale con qualsiasi mezzo e formato)

Attribuzione*

Devi riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche. Puoi fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli te o il tuo utilizzo del materiale.

Non Commerciale

Non puoi utilizzare il materiale per scopi commerciali.

Non opere derivate

Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così modificato.

Divieto di restrizioni aggiuntive

Non puoi applicare termini legali o misure tecnologiche che impongano ad altri soggetti dei vincoli giuridici a questa licenza