BS2280 - Econometrics 1

Lecture 1 - Part 2: Review of Fundamental Statistical Methods

Dr. Yichen Zhu

Outline

- Summation Operator
- Scientific Notation
- Pop. vs Sample
- 4 Desc. Stats
- 6 Random Variables and Distributions

Summation Operator

.0000000

Additions are very common in econometrics and statistics

Pop. vs Sample

Company 1	Company 2	Company 3
100	150	200

$$TR = R_1 + R_2 + R_3 = 100 + 150 + 200 = 450$$

Summation Operator

.0000000

- Additions are very common in econometrics and statistics
- Example: three Italian restaurants in Birmingham sell Pizza and report their revenues (R) as follows:

Company 1	Company 2	Company 3
100	150	200

Summation Operator

.0000000

- Additions are very common in econometrics and statistics
- Example: three Italian restaurants in Birmingham sell Pizza and report their revenues (R) as follows:

Company 1	Company 2	Company 3
100	150	200

$$TR = R_1 + R_2 + R_3 = 100 + 150 + 200 = 450$$

Summation Operator

0000000

• Calculate total revenues for 9 Italian restaurants in Birmingham:

C1	C2	СЗ	C4	C5	C6	C7	C8	C9
100	150	200	50	25	75	100	20	80

$$TR = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 =$$

= 100 + 150 + 200 + 50 + 25 + 75 + 100 + 20 + 80 = 800

- Revenues of 20 or 500 or 1 million companies?
- Calculations become cumbersome to write down need a compact way of writing out calculations:
- Summation operator ∑ can simplify analysis

Summation Operator

0000000

Calculate total revenues for 9 Italian restaurants in Birmingham:

C1	C2	СЗ	C4	C5	C6	C7	C8	C9
100	150	200	50	25	75	100	20	80

$$TR = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 =$$

= 100 + 150 + 200 + 50 + 25 + 75 + 100 + 20 + 80 = 800
Problem

- Revenues of 20 or 500 or 1 million companies?
- Summation operator ∑ can simplify analysis

Summation Operator

0000000

• Calculate total revenues for 9 Italian restaurants in Birmingham:

C1	C2	СЗ	C4	C5	C6	C7	C8	C9
100	150	200	50	25	75	100	20	80

$$TR = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 =$$

= 100 + 150 + 200 + 50 + 25 + 75 + 100 + 20 + 80 = 800
Problem

- Revenues of 20 or 500 or 1 million companies?
- Calculations become cumbersome to write down need a compact way of writing out calculations:
- Summation operator ∑ can simplify analysis

Summation Operator

0000000

• Calculate total revenues for 9 Italian restaurants in Birmingham:

C1	C2	СЗ	C4	C5	C6	C7	C8	C9
100	150	200	50	25	75	100	20	80

$$TR = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 =$$

= 100 + 150 + 200 + 50 + 25 + 75 + 100 + 20 + 80 = 800
Problem

- Revenues of 20 or 500 or 1 million companies?
- Calculations become cumbersome to write down need a compact way of writing out calculations:
- Summation operator ∑ can simplify analysis

Summation Operator

0000000

Calculate total revenues for 9 Italian restaurants in Birmingham:

C1	C2	СЗ	C4	C5	C6	C7	C8	C9
100	150	200	50	25	75	100	20	80

Calculating total revenues (TR) across these three firms:

$$TR = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 =$$

= 100 + 150 + 200 + 50 + 25 + 75 + 100 + 20 + 80 = 800

Problem

- Revenues of 20 or 500 or 1 million companies?
- Calculations become cumbersome to write down need a compact way of writing out calculations:
- Summation operator ∑ can simplify analysis

Summation Operator

00000000

$$TR = \sum_{i=1}^{n} R_i$$

- "Sum the values of revenues across all companies, from the first company (i = 1) to the last company (i = n)"
- Using previous examples:

$$TR = \sum_{i=1}^{3} R_i = R_1 + R_2 + R_3 = 450$$

$$TR = \sum_{i=1}^{9} R_i = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 = 800$$

Summation Operator

00000000

$$TR = \sum_{i=1}^{n} R_i$$

- "Sum the values of revenues across all companies, from the first company (i = 1) to the last company (i = n)"
- Using previous examples:

$$TR = \sum_{i=1}^{3} R_i = R_1 + R_2 + R_3 = 450$$

$$TR = \sum_{i=1}^{9} R_i = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 = 800$$

Summation Operator

00000000

$$TR = \sum_{i=1}^{n} R_i$$

- "Sum the values of revenues across all companies, from the first company (i = 1) to the last company (i = n)"
- Using previous examples:

$$TR = \sum_{i=1}^{3} R_i = R_1 + R_2 + R_3 = 450$$

$$TR = \sum_{i=1}^{9} R_i = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 = 800$$

Summation Operator

The Summation Operator III

$$TR = \sum_{i=1}^{n} R_i$$

- "Sum the values of revenues across all companies, from the first company (i = 1) to the last company (i = n)"
- Using previous examples:

$$TR = \sum_{i=1}^{3} R_i = R_1 + R_2 + R_3 = 450$$

$$TR = \sum_{i=1}^{9} R_i = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 = 800$$

• Consider the following data for three Italian restaurants:

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

- Calculate
 - Total Number of waiters (TW)
 - Total Revenue (TR
 - Total number of employees (TE

Consider the following data for three Italian restaurants:

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

Calculate:

- Total Number of waiters (TW)
- Total Revenue (TR
- Total number of employees (TE)

Consider the following data for three Italian restaurants:

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

- Calculate:
 - Total Number of waiters (TW)
 - Total Revenue (TF
 - Total number of employees (TE

Consider the following data for three Italian restaurants:

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

- Calculate:
 - Total Number of waiters (TW)
 - Total Revenue (TR)
 - Total number of employees (TE)

Consider the following data for three Italian restaurants:

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

- Calculate:
 - Total Number of waiters (TW)
 - Total Revenue (TR)
 - Total number of employees (TE)

Summation Operator

00000000

 3 main summation operator rules will make our life much easier during the module!

Pop. vs Sample

- 2 $\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$ where a is a constant
- 3 $\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$

Summation Operator

00000000

 3 main summation operator rules will make our life much easier during the module!

Pop. vs Sample

- $\sum_{i=1}^{n} a = na$ where a is a constant
- $\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$ where a is a constant
- 3 $\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$

Summation Operator

00000000

- 3 main summation operator rules will make our life much easier during the module!
- $\sum_{i=1}^{n} a = na$ where a is a constant
- $\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$ where a is a constant

Summation Operator

00000000

- 3 main summation operator rules will make our life much easier during the module!
- $\sum_{i=1}^{n} a = na$ where a is a constant
- $\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$ where a is a constant

Rule 1

00000000

Summation Operator

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

Calculate Total number of waiters (TW)

$$TW = 5 + 5 + 5 = 15$$

Could have written above more compactly as:

$$TW = \sum_{i=1}^{n} w_i$$

since w is a constant equal to 5:

$$TW = \sum_{i=1}^{n} w = nw = \sum_{i=1}^{3} 5 = 3 \times 5 = 15$$

00000000

Summation Operator

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

• Calculate Total Revenue $(p \times q)$

$$TR = (p_1 \times q_1) + (p_2 \times q_2) + (p_3 \times q_3) =$$

= $(3 \times 150) + (3 \times 200) + (3 \times 250) = 1800$

Could have written above more compactly as:

$$TR = \sum_{i=1}^{n} p_i q_i = \sum_{i=1}^{3} p_i q_i$$

since p is a constant equal to 3:

$$TR = \sum_{i=1}^{3} 3q_i = 3\sum_{i=1}^{3} q_i = 3(150 + 200 + 250) = 1800$$

0000000

Summation Operator

company (i)	price (p)	quantity (q)	chefs (c)	waiters (w)
1	3	150	2	5
2	3	200	3	5
3	3	250	2	5

Calculate Total Number of Employees (w + c)

$$TE = (c_1 + w_1) + (c_2 + w_2) + (c_3 + w_3) =$$

= $(2+5) + (3+5) + (2+5) = 22$

Could have written above more compactly as:

$$TE = \sum_{i=1}^{n} (c_i + w_i) = \sum_{i=1}^{3} (c_i + w_i)$$

this is identical to

$$TE = \sum_{i=1}^{3} c_i + \sum_{i=1}^{3} w_i = 7 + 15 = 22$$

Scientific notation

Extremely large or small numerical values

- GDP of UK (2018): £2,855,000,000,000 (2.9 trillion £)
- Apples A14 chip: 0.00000005m (5 nanometre)

Scientific notation

- GDP of UK (2018): £2.9 × 10¹²
- Apples new A14 chip: 5×10^{-9} m

Scientific notation in R

- GDP of UK (2018):
 - 2.9e12
- Apples new A14 chip: 5e-09

Review: Population vs Sample

- Population: refers to *all* cases or situations the 'statistician' wants his inferences or guesses or estimates to apply to.
- Sample: a relatively small selection from the population. We use samples to make inferences for population.

Review: Population vs Sample

• Examples:

Question	Population	Sample
Starting salary of graduate Voting forecasts Salt content of meal	All graduates All UK voters The whole pot of the meal	Aston graduates A random 10% selection of UK voters A spoon of the meal

Review: Measures of location and dispersion

Measure of central tendency, E.g. mean

- Is a single value that attempts to describe a set of data by identifying the central position within that set of data.
- Example: What is the average income of economics graduates in the UK?

Measure of dispersion, E.g. variance, standard deviation

- Measure how spread out a set of data is.
- Example: How dispersed is the income of economics graduates in the UK?

Review: Measures of location and dispersion

Measure of central tendency, E.g. mean

- Is a single value that attempts to describe a set of data by identifying the central position within that set of data.
- Example: What is the average income of economics graduates in the UK?

Measure of dispersion, E.g. variance, standard deviation

- Measure how spread out a set of data is.
- Example: How dispersed is the income of economics graduates in the UK?

Summation Operator

Review: Measures of location and dispersion

- Arithmetic Mean (μ or \bar{x}): measure of a mean, or average
- Variance (σ^2 or s^2): Average of the squared discrepancies from the mean.
- Standard deviation (σ or s): Positive square root of variance.

Measures		Population	Sample
Measure of central tendency	Arithmetic Mean	$\mu = rac{\sum\limits_{i=1}^{N} x_i}{N}$ $N\ldots$ population size	$\bar{x} = \frac{\sum\limits_{i=1}^{n} x_i}{n}$ $n \dots$ sample size
Measure of dispersion	Variance $(\sigma^2 \text{ or } s^2)$	$\sigma^2 = \frac{\sum_{i=1}^{N} (Y_i - \mu)^2}{N}$	$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}$
	Standard deviation (σ or s)	$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}(Y_i - \mu)^2}{N}}$	$\hat{\sigma} = s = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}}$

Review: Measures of location and dispersion

Measures		Population	Sample
Measure of central tendency	Arithmetic Mean	$\mu = rac{\sum\limits_{i=1}^{N} x_i}{N}$ $N \ldots$ population size	$ar{X} = rac{\sum\limits_{i=1}^{n} x_i}{n}$ $n \dots$ sample size
Measure of dispersion	Variance $(\sigma^2 \text{ or } s^2)$	$\sigma^2 = \frac{\sum_{i=1}^{N} (Y_i - \mu)^2}{N}$	$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}$
	Standard deviation (σ or s)	$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}(Y_i - \mu)^2}{N}}$	$\hat{\sigma} = s = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}}$

Review: Variance and Standard Deviation

Student Task:

- (i) What is the average revenue of the three Italian restaurants? ($q_1 = 150$, $q_2 = 200$ and $q_3 = 250$)?
- (ii) What is the Standard Deviation of revenue?

Solution I (using R)

- (i) What is the average revenue of the three Italian restaurants? ($q_1 = 150$, $q_2 = 200$ and $q_3 = 250$)?
 - First, we assign our values to an object. Note we have to combine the values to a vector using the c command:

```
> revenue <- c(150, 200, 250)
> revenue
[1] 150 200 250
```

• Use mean () command to calculate mean:

```
> mean.revenue <- mean(revenue)
> mean.revenue
[1] 200
```

Solution II (using R)

- (ii) What is the Standard Deviation of revenue?
 - Use sd() command to calculate standard deviation:

```
> sd.revenue <- sd(revenue)
> sd.revenue
[1] 50
```

- A random variable (RV) is any variable whose value is not known in advance and cannot be predicted exactly
- Two types of RVs exist: discrete RVs and continuous RVs

Population of an RV is the set of all possible values of an RV

Example of an RV

Total score when you through a dice twice - call it X.

We do not know which score we get but we know the population of X will be numbers from 2 to 12.

- Each of the numbers from 2 to 12 is an experimental outcome
- 36 possible combinations
- X can only take 11 possible values from 2 to 12
- Calculate frequencies & probability distributions on these numbers

- Each of the numbers from 2 to 12 is an experimental outcome
- 36 possible combinations
- X can only take 11 possible values from 2 to 12
- Calculate frequencies & probability distributions on these numbers

- Each of the numbers from 2 to 12 is an experimental outcome
- 36 possible combinations
- X can only take 11 possible values from 2 to 12
- Calculate frequencies & probability distributions on these numbers

- Each of the numbers from 2 to 12 is an experimental outcome
- 36 possible combinations
- X can only take 11 possible values from 2 to 12
- Calculate frequencies & probability distributions on these numbers

- Each of the numbers from 2 to 12 is an experimental outcome
- 36 possible combinations
- X can only take 11 possible values from 2 to 12
- Calculate frequencies & probability distributions on these numbers

Frequency and probability distribution

Total score on rolling two dice

Value of X	2	3	4	5	6	7	8	9	10	11	12
Frequency	1	2	3	4	5	6	5	4	3	2	1
Probability	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

These probabilities should add up to 1

Distribution of Scores (discrete variable)

Probability distribution of two dices

Summation Operator

• If X can take *n* particular values, $x_1, x_2, x_3, \dots, x_n$ and probability of each x_i is

$$E(X) = x_1p_1 + x_2p_2 + x_3p_3 + \cdots + x_np_n = \sum_{i=1}^n x_ip_i$$

• From previous dice rolling experiment, the values of $x_1, x_2, x_3, \dots, x_n$ range

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + \dots + 12 \times \frac{1}{36} = 7$$

Summation Operator

- **Expected value** of a random variable X is the weighted average of all its values, with probability of each outcome used as weight
- If X can take n particular values, $x_1, x_2, x_3, \ldots, x_n$ and probability of each x_i is p_i , the expected value of X, E(X) is:

$$E(X) = x_1p_1 + x_2p_2 + x_3p_3 + \cdots + x_np_n = \sum_{i=1}^n x_ip_i$$

• From previous dice rolling experiment, the values of $x_1, x_2, x_3, \ldots, x_n$ range from 2 to 12, with their corresponding probabilities, $p_1, p_2, p_3, \ldots, p_n$

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + \dots + 12 \times \frac{1}{36} = 7$$

Summation Operator

- **Expected value** of a random variable X is the weighted average of all its values, with probability of each outcome used as weight
- If X can take n particular values, $x_1, x_2, x_3, \ldots, x_n$ and probability of each x_i is p_i , the expected value of X, E(X) is:

$$E(X) = x_1p_1 + x_2p_2 + x_3p_3 + \cdots + x_np_n = \sum_{i=1}^n x_ip_i$$

• From previous dice rolling experiment, the values of $x_1, x_2, x_3, \ldots, x_n$ range from 2 to 12, with their corresponding probabilities, $p_1, p_2, p_3, \ldots, p_n$

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + \dots + 12 \times \frac{1}{36} = 7$$

Student Task: Expected Value

- Expected values are important for decision making! (but not only...)
- Assume you have two investment options (A, B) whereby their return will depend on the economic performance:

Econ. Perf.	Prob.	Portfolio A	Portfolio B
Boom	0.5	20	50
Slow down	0.3	10	
Recession	0.2	-10	-50

• What is the expected value of investment A and B? Which investment would you select?

Student Task: Expected Value

- Expected values are important for decision making! (but not only...)
- Assume you have two investment options (A, B) whereby their return will depend on the economic performance:

Econ. Perf.	Prob.	Portfolio A	Portfolio B
Boom	0.5	20	50
Slow down	0.3	10	0
Recession	0.2	-10	-50

• What is the expected value of investment A and B? Which investment would you select?

Student Task: Expected Value

- Expected values are important for decision making! (but not only...)
- Assume you have two investment options (A, B) whereby their return will depend on the economic performance:

Econ. Perf.	Prob.	Portfolio A	Portfolio B
Boom	0.5	20	50
Slow down	0.3	10	0
Recession	0.2	-10	-50

• What is the expected value of investment A and B? Which investment would you select?

More rules for expected values...

Summation Operator

Rules below valid for both discrete and continuous random variables

1.
$$E(X + Y + Z) = E(X) + E(Y) + E(Z)$$

- 2. E(bX) = bE(X) where b is a constant
- 3. E(b) = b where b is a constant
- Example: Calculate E(Y) for the following (b_1, b_2) are constants)

$$Y = b_1 + b_2 X$$

More rules for expected values...

Rules below valid for both discrete and continuous random variables

Pop. vs Sample

1.
$$E(X + Y + Z) = E(X) + E(Y) + E(Z)$$

- 2. E(bX) = bE(X) where b is a constant
- 3. E(b) = b where b is a constant
- Example: Calculate E(Y) for the following (b_1, b_2) are constants)

$$Y=b_1+b_2X$$

Applying above rules:

$$E(Y) = E(b_1 + b_2 X) = E(b_1) + E(b_2 X) = b_1 + b_2 E(X)$$

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

- Many variables are continuous, e.g. temperature, time waiting in the morning for a Cross City Line train.
- Example: Assume a MCQ test had a mean value of 53.4 and a s.d. of 15.1
- Most students have a mark around the average, some of the further away from the mean, the more unlikely the mark gets.
- MCQ marks could be approx. normal
- Normal distribution will be the key distribution for econometrics!!!
- What does it look like?

Case Study: Student MCQ Marks III

BELL CURVE

The shaded area represents 95% of the area under the curve. It is bounded on the left by a vertical line drawn up from whatever value of the variable falls at the -2 SD position. On the right it is bounded by the +2 SD point.

- Area below distribution curve shows probability
- Shape depends on mean value and standard deviation
- How can I compare different normal distribution? How can I undertake standardised hypothesis test?
- Use standard normal distribution, N(0,1)

- Area below distribution curve shows probability
- Shape depends on mean value and standard deviation
- How can I compare different normal distribution? How can I undertake standardised hypothesis test?
- Use standard normal distribution, N(0,1)

- Area below distribution curve shows probability
- Shape depends on mean value and standard deviation
- How can I compare different normal distribution? How can I undertake standardised hypothesis test?
- Use standard normal distribution, N(0,1)

- Area below distribution curve shows probability
- Shape depends on mean value and standard deviation
- How can I compare different normal distribution? How can I undertake standardised hypothesis test?
- Use standard normal distribution, N(0,1)

- So far we analysed the distribution of one variable.
- Assume you take several samples from the whole population
- How is the mean of all the samples distributed?
- We use sample statistics to estimate population parameters.
- This is the foundation of any estimation and hypotheses testing

- So far we analysed the distribution of one variable.
- Assume you take several samples from the whole population.
- How is the mean of all the samples distributed?
- We use sample statistics to estimate population parameters.
- This is the foundation of any estimation and hypotheses testing

- So far we analysed the distribution of one variable.
- Assume you take several samples from the whole population.
- How is the mean of all the samples distributed?
- We use sample statistics to estimate population parameters.
- This is the foundation of any estimation and hypotheses testing

- So far we analysed the distribution of one variable.
- Assume you take several samples from the whole population.
- How is the mean of all the samples distributed?
- We use sample statistics to estimate population parameters.
- This is the foundation of any estimation and hypotheses testing

- So far we analysed the distribution of one variable.
- Assume you take several samples from the whole population.
- How is the mean of all the samples distributed?
- We use sample statistics to estimate population parameters.
- This is the foundation of any estimation and hypotheses testing.

- Do we always take several samples of the population to derive the mean and standard deviation of sample means?
- Usually, we only have one sample, but that is sufficient!
- We know that $E(\bar{x}) = \mu$ and the variance of sample means will be $\frac{\sigma^2}{n}$.
- The standard deviation of the sampling distribution of the mean is called Standard Error of the Mean.
- For a mathematical derivation see Barrow page 134.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

- Do we always take several samples of the population to derive the mean and standard deviation of sample means?
- Usually, we only have one sample, but that is sufficient!
- We know that $E(\bar{x}) = \mu$ and the variance of sample means will be $\frac{\sigma^2}{n}$.
- The standard deviation of the sampling distribution of the mean is called Standard Error of the Mean.
- For a mathematical derivation see Barrow page 134.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

- Do we always take several samples of the population to derive the mean and standard deviation of sample means?
- Usually, we only have one sample, but that is sufficient!
- We know that $E(\bar{x}) = \mu$ and the variance of sample means will be $\frac{\sigma^2}{n}$.
- The standard deviation of the sampling distribution of the mean is called Standard Error of the Mean.
- For a mathematical derivation see Barrow page 134.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

- Do we always take several samples of the population to derive the mean and standard deviation of sample means?
- Usually, we only have one sample, but that is sufficient!
- We know that $E(\bar{x}) = \mu$ and the variance of sample means will be $\frac{\sigma^2}{n}$.
- The standard deviation of the sampling distribution of the mean is called Standard Error of the Mean.
- For a mathematical derivation see Barrow page 134.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

Summation Operator

- Do we always take several samples of the population to derive the mean and standard deviation of sample means?
- Usually, we only have one sample, but that is sufficient!
- We know that $E(\bar{x}) = \mu$ and the variance of sample means will be $\frac{\sigma^2}{\bar{x}}$.
- The standard deviation of the sampling distribution of the mean is called Standard Error of the Mean.
- For a mathematical derivation see Barrow page 134.

$$\bar{\mathbf{x}} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

Application IV

Theorem

The mean, \bar{x} , of a random sample drawn from a population which has a normal distribution with a mean μ and a variance σ^2 , has a sampling distribution which is Normal, with mean μ and variance $\frac{\sigma^2}{n}$, where n is the sample size.

$$ar{x} \sim N\left(\mu, rac{\sigma^2}{n}
ight) \quad \leftarrow ext{Sample Mean Distribution} \ x \sim N\left(\mu, \sigma^2
ight) \quad \leftarrow ext{Population Distribution}$$

Another Important Theorem

Central Limit Theorem

- If the sample size is large (n > 30) the population does not have to be Normally distributed, the sample mean is (approximately) Normal whatever the shape of the population distribution.
- The approximation gets better, the larger the sample size. 30 is a safe minimum to use.