电源 基础知识

一个离不开电的世界

Our 21st century lives rely on electronics

Without it, our day-to-day lives are completely different

Electronics require power to operate

什么是电源?

为什么需要电源?

- 1. Every electronic system uses power.
- 2. What you have never matches what you need.

What you have

110/220 VAC

4.2V-3.0V

Power supply gets you from here to there

What you need

1.2V Core @ 2A

2.5V I/O @ 1.2A

3.3V

5V

+/-12V

典型的供电系统

- Due to the high number of unique voltage rails, an intermediate-bus architecture is commonly used – similar to the US Power Grid
 - 12Vdc is distributed throughout a server motherboard
- Voltage is converted from 12Vdc to 1.5Vdc, 0.9Vdc, 3.3Vdc, etc. at the loads
 - Commonly referred to "Point of Load" conversion

电源的基本结构

当我们谈论电源,我们在谈论什么?

- 拓扑结构
- 功率元器件
- 控制方式
- 布局布线

拓扑结构

 Three basic types of switching converter topologies: Buck, Boost and Buck-boost

8

功率元器件

控制方式

布局布线

电源转换器的分类

- DC-DC 转换
 - 线性稳压器(Linear Regulator)
 - 降压转换器(Buck Converter)
 - 升压转换器(Boost Converter)
 - 升/降压转换器(Buck/Boost Converter)
- AC-DC 转换
 - 反激变换器(Flyback Converter)
 - 桥式变换器(Half-bridge/Full-bridge Converter)
- DC -AC 转换
 - 逆变器(Inverter)
- AC-AC 转换
 - 变压器(Transformers)

DC-DC 电源转换器类型

- 线性电源
 - 能量的传输是连续的
 - 通流器件(负责调节能量传输的主要器件)工作在线性状态
- 开关电源
 - 能量的传输是非连续的
 - 通流器件工作在开关状态

电源的性能指标

- 输入/输出指标:输出电压、输出电流、输入电压范围
- 效率
- 稳态性能: 稳压范围, 精度
- 暂态响应: 响应速度, 稳定性
- 体积, 成本,

线性电源 VS 开关电源

72	W
----	---

	线性电源	开关电源
效率	低	硘
纹波	很小	大
EMI 辐射	小	大
外围元件	少	多
体积	大	小
成本	较低	较高

65W

Linear Regulator

Applications

- Radio frequency or precise analog (measuring very small voltages) circuits that require extremely low ripple & noise
- Applications where V_{IN} V_{OUT} is very small.
- Applications that require a precisely regulated.
- FPGA or Multi-Core processors that require fast transient response due to fast changes in the load.

Advantages

- Low O/P ripple & noise
- Fast transient response at V_{OUT} on large changes of the Load
- Low cost (for low power, at least)
- Few external components make the linear regulator easy to design
- Since linear regulators don't switch current into an inductor there is no EMI to worry about
- · Easy to implement short circuit protection

Disadvantages

- Low efficiency at V_{IN}>>V_{OUT} which requires a larger supply power source
- Power generated from the regulator (V_{IN} V_{OUT}) *
 I_{OUT} is dissipated through the Regulator typically requiring a heat-sink
- V_{OUT} will always be less than V_{IN}

Inductive Switcher

Buck-Boost

Advantages

- Since regulation is done by dumping energy into and out of an inductor versus burning power through the regulator
 - Higher efficiencies can be obtained
 - Lower power dissipates through the regulator requiring a smaller heat sink.
 - Topologies of the switching power supply allow V_{OUT}>=<V_{IN}
 - High Power Density (Watt/cm2)
 - Allows wider input voltage range
- Isolation possible (with transformer)
- Multiple O/Ps possible (with transformer)

Applications

- Applications where high efficiency (Power_{IN} Power_{OUT} is very small)
- Applications with extremely high ambient temperatures such as Industrial or Automotive
- Applications where V_{IN} is much larger than V_{OUT}
- Applications where the power supply has space constraints (small area)
- Applications requiring High output power

Disadvantages

- Switching current into and out of an inductor:
 - Generates Electromagnetic Interference (EMI)
 - Causes the output to respond slower to transients in load
 - Produces higher output ripple & noise
- More external components and design variables make switching power supplies difficult to design

Charge Pump

Applications

- Applications requiring a low output current
- Applications with moderate input to output voltage difference
- · Applications that have space constraints

Advantages

- Moderate Efficiency
- Since charge pumps switch voltages across capacitors in and out of the output:
 - No inductor is needed
 - $-V_{OUT}>=<V_{IN}$
- Fewer components make the charge pump easier to design

Disadvantages

- Switching of the capacitor in and out of the circuit generates EMI
- Since the output of the charge pump is dependent on the charging and discharging of a capacitor, it has limited current capability

Converter Comparison

The choice of converter type depends on the power design priorities.

	Linear	Switching Regulator	
	Regulator	Inductive	Charge Pump
Efficiency	20-60%	90-95%	75-90%
Ripple	Very low	Low	Moderate
EMI Noise	Very low	Moderate	Low
PCB Area	Very small	Largest	Medium
Cost	Lowest	Highest	Medium

思考题: 电压源 vs. 电流源

1. 为什么家里的墙插都是电压源?

2. 用5V 2A的充电器给5V 1A的手机充电,会不会充坏手机?