

Outline

- Decision Tree Induction: Basic Idea and Algorithm
- Alternative Attribute Selection Measures in Decision Tree Induction
- Overfitting and Tree Pruning
- Decision Tree Construction in Large Datasets
- Visualization of Decision Trees and Tree Construction by Visual Data Mining

Decision Tree Induction: An Example

□ Decision tree construction:

A top-down, recursive, divide-andconquer process

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

From Entropy to Info Gain: A Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - \Box Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \quad where \ p_i = P(Y = y_i)$$

- Interpretation
 - □ Higher entropy → higher uncertainty
 - Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

© 2007 Brona; Alessio Damato; Rubber Duck / CC BY-SA 3.0 / https://goo.gl/DtnBNp

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3)
- □ Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

□ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

□ Information gained by branching on attribute A:

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes's and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Decision Tree Induction: Algorithm

- Basic algorithm
 - ☐ Tree is constructed in a top-down, recursive, divide-and-conquer manner
 - At start, all the training examples are at the root
 - Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain) age?
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- ☐ Method 1: Discretize continuous values and treat them as categorical values
 - □ E.g., age: < 20, 20...30, 30...40, 40...50, > 50
- ☐ Method 2: Determine the **best split point** for continuous-valued attribute A
 - □ Sort the value A in increasing order, E.g., 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: The midpoint between each pair of adjacent values
 - \square (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - \square e.g., (15+18)/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- ☐ Split: Based on split point P
 - □ The set of tuples in D satisfying $A \le P$ vs. those with A > P