LC17: Solides Cristallins

Niveau: CPGE

<u>Prérequis</u>: - Modèle du cristal parfait

- Notion de coordinence, compacité, masse

volumique

- Maîtrise de la structure CFC
- Sites octaédriques et tétraédriques

Introduction

Triangle de Ketelaar

Cristaux ioniques

Electronégativité croissante

Structure type NaCl

Autres types de structures

Structure type CsCl

Cl : réseau cubique

Cs: au centre du cube

Structure type ZnS

S: réseau CFC

Zn: un site tétraédrique sur deux

Résumé des différentes structures

Mesure de la masse volumique du cyclohexane au pycnomètre

- On pèse le pycnomètre à vide : m_{pyc}
- On pèse le pycnomètre rempli de cyclohexane : $m_{pyc+cyclo}$

$$\rho_{cyclo} = \frac{m_{pyc+cyclo} - m_{pyc}}{V_{pyc}}$$

$$\rho_{cyclo}^{exp} = 0,776 \, g/cm^3$$

Mesure de la masse volumique de NaCl au pycnomètre

$$\rho_{NaCl} = \rho_{cyclo} \frac{m_{NaCl}}{m_{cyclo} - (m_{pyc + cyclo' + NaCl} - m_{pyc + NaCl})}$$

$$a_{NaCl} = (\frac{4M(NaCl)}{N_A \rho_{NaCl}})^{\frac{1}{3}}$$

$$a_{NaCl}^{tab} = 564 pm$$

Cristaux métalliques

Electronégativité croissante

Structure CFC

a : paramètre de maille

Empilements compacts

Empilement type **ABCA** structure **CFC**

Empilement type **ABA**structure hexagonale compacte
exemple: Mg

Empilements compacts

Empilement type **ABCA** structure **CFC**

Empilement type **ABA**structure hexagonale compacte
exemple: Mg

Empilement non compact

cubique centrée : compacité=68 %

exemple: Na

Rappels sur les sites de la structure CFC

Alliages d'insertion

Alliages de substitution

Principe du dosage du cuivre dans une pièce

Réaction:

$$\overline{7HNO_{3}}_{(aq)} + 7H^{+}_{(aq)} + Cu_{(s)} + Al_{(s)} + Zn_{(s)} = 7NO_{2(s)} + 7H_{2}O_{(l)} + Cu^{2+}_{(aq)} + Zn^{2+}_{(aq)} + Al^{3+}_{(aq)}$$

Principe du dosage du cuivre dans une pièce

Montage réalisé

