Курс электроники

Электроника: аналоговая электроника, цифровая электроника

Цифровая электроника (цифровые автоматы):

- •Стохастические автоматы (вероятностные);
- •Детерминированные автоматы (определенные).

Детерминированные автоматы:

- •Вневременные автоматы (комбинационные схемы, логические схемы);
- •Временные автоматы (автоматы с памятью, последовательные схемы)

Синтез и анализ

Синтез электронных схем — разработка. Анализ электронных схем — ремонт.

Синтез детерминированных автоматов

Z – преобразование входного слова в выходное слово

Синтез комбинационных схем

Входные данные для простых логических схем надежнее всего задавать в виде таблицы истинности

Если количество входных сигналов n, то количество наборов 2ⁿ

В таблице каждому входному слову ставится в соответствие выходное слово.

В таблице истинности некоторые входные слова могут быть несущественными, то есть таких входных наборов подать невозможно. Такие таблицы (функции) называются не полностью определенными, а в таблице в этих позициях выходному слову соответствует (*, -, d).

Синтез комбинационных схем

По таблице истинности составляются логические функции, которые реализуется в виде аппаратуры (или программно).

Для сокращения затрат следует упростить логические функции – процесс минимизации.

Процесс минимизации основывается на законах математической логики.

Следует отметить, что если функция (таблица истинности) не полностью определенная, то при минимизации вместо * можно подставлять или 1 или 0. Это позволяет часто улучшить минимизацию.

Таблица истинности

Таблица истинности для 3 аргументов

x_1	α_2	x_3	$f(\tilde{\tilde{x}}_i)$	4(ži)
0	0	0	1	0
0	0	1	0	*
0	1	0	0	*
0	1	1	1	1
1	0	0	0	0
1	0	1	1	*
1	1	0	0	1
1	1	1	0	1

Количество наборов $2^3=8$

Для n аргументов можно построить 2^{2^n} различных булевых функций.

Элементарные логические функции

В теории булевых функций особое место занимают функции одной и двух переменных. С использованием этих функций можно построить булевы функции от большего числа переменных (используя метод суперпозиций).

	-				n=1
x x	0	1	Услов.	Название	кол-бо набороб = 2 кол-бо ор-ций = 4.
J(2)		-	одозниг		
fo	0	9	0	Константа нуля	fo - всегда принимает знаго при мод.
f_{1}				переменная	fs-coon. с X (диз. аналог проводни
f_2	1	0	\bar{x}	инверсия (отрицание X)	
f_3	1	1	1	Константа езиницы	f2 - ориу пишког проб-ка сверия. чере резистор.

Функция двух переменных

n=2 число наборов = 4. число функций = 24 = 16

Функции дизъюнкции, конъюнкции и отрицания (ИЛИ, И, НЕ) называются основными логическими функциями.

Минимальное количество элементарных функций с помощью которых можно построить любую функцию называется — логическим базисом.

Примеры:

- Функция Шеффера
- Функция Пирса
- Дизъюнкция и отрицание
- Конъюнкция и отрицание

x_1	0	0	1	1	Условное	11. 2.	
f(2) 22	0	1	0	1	обозначение	Название	
fo	0	0	0	0	0	константа риза	
f_1	0	0	0	1	$x_1 \cdot x_2 (x_1 & x_2)$ $(x_1 \land x_2)$	конъюнкция (погитеское И,	
f_2	0	0	1	0	$\alpha_1 \rightarrow \alpha_2 (\alpha_1 \overline{\alpha_2})$	Banken X2 (Banken of Xs	
f_3	0	0	1	1	x_{i}	$(nedimental x_1)$	
54	0	1	0	0	$x_1 = x_2(\bar{x}_1 \cdot x_2)$	Banken X1 (Sanken + X2 K X1) Neperusiones X2	
fs	0	1	0	1	x_2	(not maplous x2)	
f_{c}	0	1	1	0	$x_1 \oplus x_2$	Сложение по меддые 2 (нерабы значнося, обращание рабызменией	
£7	0	1	1	1	$x_1 \vee x_2 (x_1 + x_2)$	943 Bronkyner (ADTICTERSO WAW, ACTUS. CLOSELOWIC)	
f8	1	0	0	0	$x_1 \mid x_2(x_1 \vee x_2)$	Стренья Пиреа (функция Пираз отрикание дизонения)	
fg	1	0	0	1	$x_1 \sim x_2(x_1 x_2)$		
Sto	1	0	1	0	\overline{x}_2 $(7x_2)$	Undepend of (He Iz,	
Sa	1	0	1	1	$x_2 \rightarrow x_1$	UMMANGRAGIA X_2 8 X_4 (UMMANGRAGIA OT X_2 X_4)	
$f_{\ell 2}$	1	1	0	0	\overline{x}_{1} $(7x_{1})$	Mortepenor X, (He X1)	
frs	1	1	0	1	$\alpha_1 \rightarrow \alpha_2$	Humanowayuk X, 8 X,	
f14	1	1	1	0	x_1/x_2 $(\overline{x_1\cdot x_2})$	Штрих Шеффффа (функция Шеф фера (фирмания пененаниями)	
\$15	1	1	1	1	1	Канстанта единицы	

Основные законы и аксиомы алгебры логики

Основные законы и аксиомы алгебры логики

5.	Закон	склендания
		$x_1 x_2 \vee x_1 \overline{x}_2 = x_1$ (went suggestantium exemberates
6	Закон	nozhouseruia
		$x_1 \vee x_1 x_2 = x_1 (x_1 normal across x_1 x_2)$
7	Закен	де Моргана
		$\alpha_1 \cdot \alpha_2 = \alpha_1 \vee \alpha_2$ B 3-av & Mufrance saying - e.s
		$ \frac{\alpha_1 \cdot \alpha_2}{\alpha_1 \vee \alpha_2} = \frac{\alpha_1 \vee \alpha_2}{\alpha_1 \vee \alpha_2} $ B 3-av & Nuframus scyry-ext essays completes source sayues $ \frac{\alpha_1 \vee \alpha_2}{\alpha_1 \vee \alpha_2} = \frac{\alpha_1 \cdot \alpha_2}{\alpha_2} $ C Enqueners Mederfefa a The box
	T VESTER	Пиреа.

Accurate:
$$x \lor 0 = x$$
 $x \cdot 0 = 0$
 $x \lor 1 = 1$ $x \cdot 1 = x$
 $x \lor \bar{x} = 1$ $x \cdot \bar{x} = 0$

Аналитическая запись логических функций

1	Прабило единиц
	Для паждой стреки таблицы истичности в который
	функция = 1 состояниется петобронения буквененых
	изобранистий призний в При чем воли значение пру-
	emprusamuca.
	Полученные Т.О. констинии объединаного знакой дизычений
0	
٠.	Прабило нулей
	Для канцай строки чаба испинений в казорый значение
	Для канций строки чаба историей в когорый значение пручания = 0 собламантия дирентична буковенской иробраниемия буковенской иробраниемий причения верением верением обраниеми верением верением верением верением верением верением
H	apopularing apresented. Min war con greatenent
Ħ	с отрицанием.
	Получений дизинониции бовединения знакари кончениции

Одноразрядный сумматор

Таблица истинности

S= cymma

Р= перенос

x_i	α_z	2,	S	P
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
٥	1	1	0	1
1	٥	٥	1	0
1	0	1	0	1
1	1	0	٥	1
1	1	1	1	1

По правилу единиц

$$S_1 = \overline{x_1} \cdot \overline{x_2} \cdot x_3 \vee \overline{x_1} \cdot x_2 \cdot \overline{x_3} \vee x_1 \cdot \overline{x_2} \cdot \overline{x_3} \vee x_1 \cdot \overline{x_2} \cdot x_3 \vee x_1 \cdot x_2 \cdot x_3$$

$$P_1 = \overline{x_1} \cdot x_2 \cdot x_3 \vee x_1 \cdot \overline{x_2} \cdot x_3 \vee x_1 \cdot x_2 \cdot \overline{x_3} \vee x_1 \cdot x_2 \cdot x_3 \vee x_3 \cdot x_2 \cdot x_3 \vee x_4 \cdot x_2 \cdot x_3 \vee x_3 \cdot x_3$$

Минимизированная функция переноса

Сложность исходного выражения = 23, а минимизированного выражения = 11.