

Automotive-grade N-channel 400 V, 0.063 Ω typ., 38 A, MDmesh™ DM2 Power MOSFET in a D²PAK package

Features

D²PAk

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STB45N40DM2AG	400 V	0.072 Ω	38 A	250 W

- AEC-Q101 qualified
- · Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- · Extremely high dv/dt ruggedness
- · Zener-protected

Applications

· Switching applications

Description

This high-voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast-recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Product status STB45N40DM2AG

Product summary				
Order code STB45N40DM2A				
Marking	45N40DM2			
Package	D ² PAK			
Packing	Tape and reel			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I _D	Drain current (continuous) at T _{case} = 25 °C	38	А
טי	Drain current (continuous) at T _{case} = 100 °C	24	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	110	Α
P _{TOT}	Total power dissipation at T _{case} = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/115
T _{stg}	Storage temperature range	-55 to 150	°C
T _j	Operating junction temperature range	-33 to 130	

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 38~A,~di/dt = 800~A/\mu s,~V_{DS}~peak < V_{(BR)DSS},V_{DD} = 80\%~V_{(BR)DSS}$
- 3. $V_{DS} \le 320 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30	C/VV

1. When mounted on an 1-inch² FR-4, 2 Oz copper board.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	7	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	1100	mJ

- 1. Pulse width is limited by T_{jmax} .
- 2. starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V

DS11238 - Rev 4 page 2/15

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	400			V
	Zana mata waltana duain	V _{GS} = 0 V, V _{DS} = 400 V			10	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V},$ $T_{case} = 125 ^{\circ}\text{C}^{(1)}$			100	μА
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 19 A		0.063	0.072	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2600	-	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	180	-	pF
C _{rss}	Reverse transfer capacitance		-	3.5	-	
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 320 V, $V_{GS} = 0$ V	-	300	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4	-	Ω
Qg	Total gate charge	V _{DD} = 320 V, I _D = 38 A,	-	56	-	
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	13	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	28	-	

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 200 \text{ V}, I_D = 19 \text{ A},$	-	20	-	
t _r	Rise time	$R_G = 4.7 \ \Omega, V_{GS} = 10 \ V$ (see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	6.7	-	
t _{d(off)}	Turn-off delay time		-	68	-	ns
t _f	Fall time		-	9.8	-	

DS11238 - Rev 4 page 3/15

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		38	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		110	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 38 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} =38 A, di/dt = 100 A/μs,	-	95		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	0.4		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	8.5		А
t _{rr}	Reverse recovery time	I _{SD} = 38 A, di/dt = 100 A/μs,	-	185		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	1.62		μC
I _{RRM}	Reverse recovery current		-	17.5		А

- 1. Pulse width is limited by safe operating area.
- 2. Pulse test: pulse duration = 300 μs, duty cycle 1.5%.

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I _{GS} = ±250 μA, I _D = 0 A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

DS11238 - Rev 4 page 4/15

2.1 Electrical characteristics (curves)

DS11238 - Rev 4 page 5/15

Figure 8. Normalized gate threshold voltage vs temperature V _{GS(th)} (norm.) GIPG270815FQ4LBVTH $I_D = 250 \mu A$ 1.1 1.0 0.9 8.0 0.7 0.6 -75 -25 25 75 125 T_j (°C)

Figure 9. Normalized on-resistance vs temperature

R DS(on) (norm.)

2.2

1.8

1.4

1.0

0.6

0.2

-75

-25

25

75

125

T j (°C)

DS11238 - Rev 4 page 6/15

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Figure 14. Test circuit for gate charge behavior

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS11238 - Rev 4 page 7/15

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS11238 - Rev 4 page 8/15

4.1 D²PAK (TO-263) type A2 package information

Figure 19. D²PAK (TO-263) type A2 package outline

0079457_A2_25

DS11238 - Rev 4 page 9/15

Table 9. D²PAK (TO-263) type A2 package mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50	7.75	8.00		
D2	1.10	1.30	1.50		
Е	10.00		10.40		
E1	8.70	8.90	9.10		
E2	7.30	7.50	7.70		
е		2.54			
e1	4.88		5.28		
Н	15.00		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.40			
V2	0°		8°		

Figure 20. D²PAK (TO-263) recommended footprint (dimensions are in mm)

DS11238 - Rev 4 page 10/15

4.2 D²PAK packing information

Figure 21. D²PAK tape outline

AM08852v1

DS11238 - Rev 4 page 11/15

Figure 22. D²PAK reel outline

AM06038v1

Table 10. D²PAK tape and reel mechanical data

Таре		Reel			
Dim.	n	nm	Dim.	mr	n
Diiii.	Min.	Max.		Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base qu	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS11238 - Rev 4 page 12/15

Revision history

Table 11. Document revision history

Date	Revision	Changes
27-Aug-2015	1	Initial version
04-Aug-2016	2	Updated Figure 2: "Safe operating area".
		Minor text changes.
		Removed maturity status indication from cover page.
14-Feb-2018	3	Updated Section 4.1 D ² PAK (TO-263) type A2 package information.
		Minor text changes
	4	Updated Table 1. Absolute maximum ratings and Table 7. Source-drain diode.
23-Oct-2018		Updated Figure 1. Safe operating area and Figure 14. Test circuit for gate charge behavior.
		Minor text changes.

DS11238 - Rev 4 page 13/15

Contents

1	Elec	trical ratings	2		
2					
		Electrical characteristics (curves)			
3	Test	t circuits			
4	Pacl	Package information			
	4.1	[Package name] package information	8		
	4.2	D²PAK packing information	10		
Rev	evision history				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS11238 - Rev 4 page 15/15