Centrální limitní věta – výsledky testu

odhad průměrného počtu bodů z testu 5. 12. 11:30

tipované
hodnoty
8.3
9
8
7
9.5
11
7
8
7.6
6.5
6
4

histogram hodnot

očekávaná hodnota 7.83

• rozptyl 3.14 (1.77²)

• šikmost - 0.29

y špičatost 0.002

normální rozdělení

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• odhad μ 7.66

• odhad σ 1.79

Centrální limitní věta – výsledky testu

odhad průměrného počtu bodů z testu 5. 12. 11:30

tipované
hodnoty
8.3
9
8
7
9.5
11
7
8
7.6
6.5
6
4

normální rozdělení

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- 7.66 odhad μ
- odhad σ 1.79

experiment

- průměrný počet bodů 9.46
- pravděpodobnost 31.5 %

$$P(x \ge x_{exp}) = 1 - F(x_{exp}|\mu, \sigma) = 1 - \frac{1}{2} \left[1 + \text{erf} \left(\frac{x_{exp} - \mu}{\sigma \sqrt{2}} \right) \right]$$
$$P(|x - \mu| \ge |x_{exp} - \mu|) = 2P(x \ge x_{exp}) = 31.5 \%$$

$$P(|x - \mu| \ge |x_{exp} - \mu|) = 2P(x \ge x_{exp}) = 31.5 \%$$

Metoda nejmenších čtverců

• sada naměřených hodnot $x = (x_1, x_2, ..., x_n)$

$$x = (x_1, x_2, ..., x_n)$$

nezávislé proměnné

$$y = (y_1, y_2, ..., y_n)$$

– závislé proměnné $y_i \in N(\mu_i, \sigma_i)$

modelová funkce

$$\lambda(x, \boldsymbol{\theta})$$

- modelujeme závislost y(x)

$$\theta = \theta_1, \theta_2, ... \theta_m$$

parametry modelové závislosti

Metoda nejmenších čtverců

• sada naměřených hodnot $x=(x_1,x_2,...,x_n)$ – nezávislé proměnné

$$oldsymbol{y} = (y_1, y_2, ..., y_n)$$
 – závislé proměnné $y_i \in N(\mu_i, \sigma_i)$

• modelová funkce $\lambda(x, \theta)$ – modelujeme závislost y(x)

$$\theta = \theta_1, \theta_2, ... \theta_m$$
 – parametry modelové závislosti

věrohodnostní funkce $L(\theta|y) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(y_i - \lambda(x_i|\theta))^2}{2\sigma_i^2}\right]$

$$\ln L(\boldsymbol{\theta}|\boldsymbol{y}) = -\sum_{i=1}^{n} \frac{(y_i - \lambda(x_i|\boldsymbol{\theta}))^2}{2\sigma_i^2} - \sum_{i=1}^{n} \ln \sqrt{2\pi\sigma_i^2}$$

minimalizujeme tzv. "chí kvadrát"

$$\chi^{2}(\boldsymbol{\theta}|\boldsymbol{y}) = \sum_{i=1}^{n} \frac{(y_{i} - \lambda(x_{i}|\boldsymbol{\theta}))^{2}}{\sigma_{i}^{2}}$$

modelová funkce

$$\lambda(x|m) = mx$$

"chí kvadrát"

$$\chi^2(m|\mathbf{y}) = \sum_{i=1}^n \frac{(y_i - mx_i)^2}{\sigma_i^2}$$

• lineární regrese

$$\hat{m} = \frac{\sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}} = \frac{\langle xy \rangle}{\langle x^2 \rangle}$$

$$\sigma_{\hat{m}}^2 = \frac{1}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}} = \frac{1}{\langle x^2 \rangle}$$

• označení $\langle a \rangle \equiv \sum_{i=1}^n \frac{a_i}{\sigma_i^2}$