Problem H. Kuriyama Mirai's Stones

Time limit 2000 ms **Mem limit** 262144 kB

Kuriyama Mirai has killed many monsters and got many (namely n) stones. She numbers the stones from 1 to n. The cost of the i-th stone is v_i . Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions:

- 1. She will tell you two numbers, l and r $(1 \le l \le r \le n)$, and you should tell her $\sum_{i=l}^{r} v_i$.
- 2. Let u_i be the cost of the i-th cheapest stone (the cost that will be on the i-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, l and r ($1 \le l \le r \le n$), and you should tell her $\sum_{i=l}^r u_i$.

For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.

Input

The first line contains an integer n ($1 \le n \le 10^5$). The second line contains n integers: $v_1, v_2, ..., v_n$ ($1 \le v_i \le 10^9$) — costs of the stones.

The third line contains an integer m ($1 \le m \le 10^5$) — the number of Kuriyama Mirai's questions. Then follow m lines, each line contains three integers type, l and r ($1 \le l \le r \le n$; $1 \le type \le 2$), describing a question. If type equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.

Output

Print *m* lines. Each line must contain an integer — the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.

Sample 1

Input	Output
6	24
6 4 2 7 2 7	9
3	28
2 3 6	
1 3 4	
1 1 6	

Static Range Queries: Frequency Array, Partial Sum, Prefix Sum Jul 23, 2023

Sample 2

Input	Output
4	10
5 5 2 3	15
10	5
1 2 4	15
2 1 4	5
1 1 1	5
2 1 4	2
2 1 2	12
1 1 1	3
1 3 3	5
1 1 3	
1 4 4	
1 2 2	

Note

Please note that the answers to the questions may overflow 32-bit integer type.