数值分析理论作业

学号: 231501025, 姓名: 张树威

问题 1. §5.T7

对初值问题

$$y' = \frac{1}{1+y^2}, \quad 0 \le t \le 1, \quad y(0) = 1,$$

求 Euler 方法的整体离散误差界.

由于 Euler 方法的整体离散误差估计为:

$$\max_{0 \leq n \leq N} |\varepsilon| \leq \frac{hM_2}{2L} \big(e^{L(b-a)-1}\big)$$

其中

$$M_2 = \max_{t \in [0,1]} |y''| = \max_{t \in [0,1]} \left| \frac{-2y}{(1+y^2)^3} \right| = \frac{1}{4}$$

$$L = \max_{t \in [0,1]} |f'| = \max_{t \in [0,1]} \left| \frac{-2y}{(1+y^2)^2} \right| = \frac{1}{2}$$

于是该初值问题 Euler 方法的整体离散误差界为

$$\max_{0 \le n \le N} |\varepsilon| \le \frac{h}{4} (\sqrt{e} - 1).$$

问题 2. §5.T8

试用改进的 Euler 方法解初值问题

$$y' = t + y$$
, $0 \le t \le 1$, $y(0) = 1$,

取步长 h = 0.2, 并将计算结果与精确值解比较.

可以解得精确解为 $y = 2e^t - t - 1$, 用改进的 Euler 方法得到如下数据:

\overline{t}	0.0	0.2	0.4	0.6	0.8	1.0
计算值	1.000	1.2400	1.5768	2.0317	2.6307	3.4054
准确值	1.000	1.2428	1.5836	2.0442	2.6511	3.4366
绝对误差	0.000	0.0028	0.0068	0.0125	0.0204	0.0311
相对误差	0.000	0.0023	0.0043	0.0062	0.0078	0.0091

问题 3. §5.T12

试验证解初值问题

$$y' = f(t, y), \quad y(t_0) = \eta$$

的数值公式

$$y_{n+1} = y_n + \frac{h}{2}(f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$$

对 $y(t) = 1, t, t^2$ 均准确成立, 但对 $y(t) = t^3$ 不准确成立, 并说明理由.

对 y' = f(t, y) 积分可得

$$y_{n+1} - y_n = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt,$$

对于梯形积分公式 $\int_a^b f(x) dx = \frac{b-a}{2} (f(a)+f(b))$, 其代数精确度为 1, 即当 f(x)=0,1,x 时, 计算值为精确值, 当 $f(x)=x^2$ 时, 计算值不等于精确值.

对与 $y(t)=t^k$, 有 $y'=f(t,y)=kt^{k-1}$, 在梯形计算公式中, 当 k=0,1,2 时, 计算值等于精确值, 当 k=3 时, 计算值不等于精确值.

问题 4. §5.T13

试证明,解初值问题

$$y' = f(t, y).$$
 $y(t_0) = \eta$

的隐式单步法

$$y_{n+1} = y_n + \frac{h}{6} [4f(t_n, y_n) + 2f(t_{n+1}, y_{n+1}) + hf'(t_n, y_n)]$$

为三阶方法.

利用 Hermite 插值多项式, 插值条件为

$$p(t_n) = f(t_n, y_n), \quad p(t_{n+1}) = f(t_{n+1}, y_{n+1}), \quad p'(t_n) = f'(t_n, y_n),$$

得到的插值多项式为 $f(t_n, y_n) + f'(t_n, y_n)(t - t_n) + \frac{f(t_{n+1}, y_{n+1}) - f(t_n, y_n) - f'(t_n, y_n)h}{h^2}(t - t_n)^2$, 此时

$$y_{n+1} - y_n = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt \approx \int_{t_n}^{t_{n+1}} p(t) dt = \frac{h}{6} [4f(t_n, y_n) + 2f(t_{n+1}, y_{n+1}) + hf'(t_n, y_n)]$$

由 Hermite 插值的误差 $f(t,y(t)) - p(t) = \frac{f^{(3)}(\xi,y(\xi))}{6}(t-t_n)^2(t-t_{n+1})$ 可知局部截断误差

$$y(t_{n+1}) - y_{n+1} = \int_{t_n}^{t_{n+1}} f(t, y(t)) - p(t) dt = \frac{f^{(3)}(\eta, y(\eta))}{6} \int_{t_n}^{t_{n+1}} (t - t_n)^2 (t - t_{n+1}) dt = -\frac{f^{(3)}(\eta, y(\eta))}{72} h^4$$

于是局部截断误差为 $O(h^4)$, 整体误差为 $O(h^3)$, 该方法为三阶方法.

问题 5. §5.T15

试写出经典的四阶 Runge-Kutta 方法解初值问题

$$y' = f(t), \quad t_0 \le t \le T, \quad y(t_0) = y_0$$

的计算方法. 它与数值积分公式有什么关系.

将 $[t_0,T]$ 平均分为 N 个小区间,每个分点记为 $t_k=t_0+kh, k=0,1,\cdots,N,$ 其中 $h=\frac{T-t_0}{N}$. 利用 Runge-Kutta 方法可得:

$$y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$
$$= y_n + \frac{h}{6}\left[f(t_n) + 4f\left(t_n + \frac{h}{2}\right) + f(t_n + h)\right]$$

这个公式即为 Simpson 数值积分法.

问题 6. §5.T17

试证明四阶经典 Runge-Kutta 方法解初值问题

$$y' = \lambda y, \quad y(t_0) = y_0$$

的计算公式可写成

$$y_{n+1} = \left(1 + \lambda h + \frac{1}{2}(\lambda h)^2 + \frac{1}{6}(\lambda h)^3 + \frac{1}{24}(\lambda h)^4\right)y_n,$$

并就初值问题

$$y' = -10y, \quad y(0) = 1$$

求 y(1) 的近似值 (取步长 h = 0.1).

利用 Runge-Kutta 方法可以得到该初值问题的数值公式:

$$\begin{split} K_1 &= \lambda y_n; \\ K_2 &= \lambda \left(y_n + \frac{1}{2} h K_1 \right) = \lambda \left(1 + \frac{1}{2} h \lambda \right) y_n; \\ K_3 &= \lambda \left(y_n + \frac{1}{2} h K_2 \right) = \lambda \left(1 + \frac{1}{2} h \lambda + \frac{1}{4} (h \lambda)^2 \right) y_n; \\ K_4 &= \lambda (y_n + h K_3) = \lambda \left(1 + h \lambda + \frac{1}{2} (h \lambda)^2 + \frac{1}{4} (h \lambda)^3 \right) y_n. \end{split}$$

则

$$y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) = \left(1 + \lambda h + \frac{1}{2}(\lambda h)^2 + \frac{1}{6}(\lambda h)^3 + \frac{1}{24}(\lambda h)^4\right)y_n.$$

经计算可以得到 y(1) = 5.4994e - 05, 其绝对误差为 9.5937e - 06, 相对误差为 0.1745.

问题 7. §5.T23

应用 Heun 方法

$$y_{n+1} = y_n + \frac{h}{4} \left[f(t_n, y_n) + 3f \left(t_n + \frac{2}{3}h, y_n + \frac{2}{3}hf(t_n, y_n) \right) \right]$$

解初值问题

$$y' = -y, \quad y(0) = y_0$$

时, 问步长 h 应取何值方能保证方法的绝对稳定性.

解该初值问题的 Heun 方法形式为

$$y_{n+1} = y_n + \frac{h}{4} \left(-4y_n + 2hy_n \right) = \left(1 - h + \frac{1}{2}h^2 \right) y_n,$$

令 $\left| 1 - h + \frac{1}{2}h^2 \right| < 1$, 得到绝对稳定区间为 (0,2), 即当 0 < h < 2 时, Heun 方法绝对稳定.