MATEMATIKA DISKRETUA

2012-ko urtarrilaren 27a

1. ARIKETA

1.- Aztertu honako proposizio hauek tautologiak diren ala ez:

$$(p \longrightarrow r) \longrightarrow ((q \longrightarrow r) \longrightarrow (p \lor q \longrightarrow r))$$

$$[(p \longrightarrow q) \land (p \longrightarrow r)] \longrightarrow (p \longrightarrow q \land r)$$

2.- Estatistikako azterketa batera 4 talde desberdineko ikasleak aurkeztu dira:

A taldea: 80 ikasle, hauetariko %35 emakumeak dira

B taldea: 72 ikasle, hauetariko %25 emakumeak dira

C taldea: k ikasle, hauetariko %80 gizonak dira

D taldea: 60 ikasle, hauetariko %85 gizonak dira

Areto nagusian biltzen dira eta zoriz bat aukeratzen da azterketa banatzeko, hau emakumea suertatuz. D taldekoa izateko probabilitatea 9/68 bada, zenbat ikasle daude C taldean?

3.- Kontsidera dezagun A = {6, 10, 12, 18, 21, 40, 441, 1323} multzoa, non honako erlazioa definitu baita:

 $x \mathcal{R} y \Leftrightarrow x \text{ eta } y \text{ zenbakiek zatitzaile lehen berdinak dituzte}$

Froga ezazue $\mathcal R$ baliokidetasun-erlazioa dela A multzoan eta lortu baliokidetasun-klaseak.

4.- Izan bitez f, g: $\mathbb{R} \longrightarrow \mathbb{R}$ aplikazioak honela definituta:

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 5 & x = 0 \end{cases}$$

$$g(x) = x^2 + 2$$

- a) Aurkitu f eta g funtzioen izate-eremuak eta irudi-multzoak.
- b) Sailkatu f eta g.
- c) Aurkitu fog eta gof, eta hal bada, f⁻¹, g⁻¹.

2. ARIKETA

KUDEAKETAREN ETA INFORMAZIO SISTEMEN INFORMATIKAREN

INGENIARITZAKO GRADUA

MATEMATIKA DISKRETUA

2014-ko urtarrilaren 14a

1. ARIKETA

1.- Frogatu, propietatek erabiliz, honako proposizio honen egiatasuna:

$$[p \to (q \to r)] \leftrightarrow [(p \land \neg r) \to \neg q]$$

(6 puntu)

- 2.- Honako hau dakigu:
 - a) Luis Londresera badoa, Logroñora ere joango da.
 - b) Luis Londresera doa edo dirua beste gauza baten gastatuko du.
 - c) Luis Logroñora badoa Maria ikusiko du.
 - d) Luisek dirua beste gauza baten gastatzen badu, Maria ikusiko du.

Frogatu Luisek Maria ikusiko duela.

(6 puntu)

- 3.- Ikerketa-talde baten 50 pertsona daude. Hauetariko 40 ezkonduta daude, 24 arraza zurikoak eta 34 amerikarrak. Gainera honako hau dakigu: 24 pertsona ezkondu amerikarrak dira, 16 pertsona ezkondu arraza zurikoak dira, 22 amerikar zuriak dira eta taldean ez dago inor amerikarra, ezkondua edo zuria ez dena.
 - a) Zenbat amerikar zuri eta ezkondu daude?
 - b) Zenbat amerikar ezkondu daude zuriak ez direnak? Eta, zenbat amerikar zuri ez daude ezkonduta?

(8 puntu)

4.- \mathbb{Z} multzoan honako \mathcal{R} erlazio bitarra definitu da:

$$a\mathcal{R}b \Leftrightarrow a^3 - a = b^3 - b$$

- a) Aztertu $\mathcal R$ erlazioak egiaztatzen dituen propietateak.
- b) Zer elementu dago 1-ekin erlazionatuta?

(5 puntu)

KUDEAKETAREN ETA INFORMAZIO SISTEMEN INFORMATIKAREN

INGENIARITZAKO GRADUA

MATEMATIKA DISKRETUA

2013-ko urtarrilaren 14a

1. ARIKETA

1.- Frogatu honako baliokidetasuna propietateak erabiliz eta egia-taularen bidez:

$$q \wedge \left[\left(p \vee q \right) \wedge \neg \left(\neg q \wedge \neg p \right) \right] \equiv q \wedge \left(q \vee p \right)$$

(6 puntu)

2.- aztertu honako arrazonamendu logikoaren baliagarritasuna:

$$((p \lor q) \rightarrow (r \land s), r \rightarrow t, \neg t; \neg p)$$

(5 puntu)

- **3.-** Utopiako Unibertsitateko konputagailu-zientzien saileko lehen kurtsoko 100 ikasleetako bakoitzak honako irakasgaietako bat gutxienez ikasten dute. matematika, elektronika eta kontabilitatea. Jakinda 65 ikaslek matematika ikasten dutela, 45 ikaslek elektronika, 42 ikaslek kontabilitatea, 20 ikaslek matematika eta elektronika, 25 ikaslek matematika eta kontabilitatea eta 15 ikaslek elektronika eta kontabilitatea, aurkitu:
- a.- Hiru irakasgaiak ikasten duten ikasle kopurua.
- b.- Matematika eta elektronika, baina ez kontabilitatea ikasten duten ikasle kopurua.
- c.- Elektronika bakarrik ikasten duen ikasle kopurua.

(7 puntu)

4.- Kontsidera dezagun honako erlazioa \mathbb{R}^2 multzoan:

$$(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow x_1 + y_1 = x_2 + y_2$$

Aztertu \mathcal{R} erlazioak egiaztatzen dituen propietateak.

R baliokidetasun-erlazioa al da?

Baiezkoan, aurkitu C[(0,0)].

(7 puntu)

MATEMATIKA DISKRETUA

2012-ko ekainaren 27a

1. ARIKETA

1.- Frogatu:

a)
$$[q \land \neg p \land (q \land \neg p \longrightarrow p \lor q)] \longrightarrow p \lor q \equiv T$$

b)
$$\neg (r \lor q \longrightarrow \neg r \land q) \land \neg r \land q \equiv C$$

(6 puntu)

2.- Ingeniaritza eskola baten Matematika diskretua eta Aljebrako irakasgaietan matrikulatutako 200 ikasletik otsaileko deialdian Matematika diskretua % 35ak gainditu du, Aljebra %30ak eta biak %10ak. Zer ikasle-portzentaiak ez du bi irakasgaietatik bat ere gainditu? Zenbat ikaslek gainditu du bietako bat gutxienez?

(5 puntu)

3.- Indukzio metodoa erabiliz, frogatu honako hau:

$$\frac{1}{1.3} + \frac{1}{3.5} + \ldots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

(7 puntu)

4.- Konstidera dezagun honako erlazio hau R gainean:

$$x \mathcal{R} y \Leftrightarrow x - y \in \mathbb{Z}$$

 $\mathcal R$ baliokidetasun erlazioa al da? Arrazoitu erantzuna.

Baiezkoan, kalkulatu [2] eta [1/3].

(7 puntu)

MATEMATIKA DISKRETUA

2011-ko urtarrilaren 10a

1. ariketa

1.- Ikus ezazue honako proposizio hauek tautologiak diren ala ez:

$$((\neg p \longrightarrow q) \lor (\neg q \longrightarrow r)) \longrightarrow (\neg r \longrightarrow (p \lor q))$$
$$((\neg p \longrightarrow q) \lor (\neg q \longrightarrow r)) \longrightarrow ((\neg p \lor \neg q) \longrightarrow r)$$

2.- Izan bedi Q(x, y) honako sententzia hau: "x + y = x - y". Bi aldagaien izateeremua zenbaki osoen multzoa bada, zein dira honako sententzien egiabalioak?

a.-
$$Q(1, 1)$$
 d.- $\exists x Q(x, 2)$
b.- $Q(2, 0)$ e.- $\exists y \forall x Q(x, y)$
c.- $\forall y Q(1, y)$ f.- $\forall x \forall y Q(x, y)$

3.- Celofania herraialdean hil-zigorra duten presoek azken aukera bat dute salbatzeko.

Honako konfigurazioa duten 3 kutxa jartzen dira: 1. kutxan 5 bola zuri eta beltz bat daude, 2. kutxan 4 bola zuri eta 2 beltz daude, eta 3. kutxan 3 bola zuri eta 3 bola beltz daude.

Begiak estalita kutxa bat aukeratuko du eta bola bat aterako du. Zuria den kasuan hil-zigorra saihestuko du. Zein da salbatzeko probabilitatea?

(10 puntu)

2. ariketa

1.- Kontsidera dezagun N gainean definitutako honako erlazio bitar hau:

$$x \mathcal{R} y \Leftrightarrow x + y$$
 bikoitia da

Froga ezazue baliokidetasun-erlazioa dela.

Zenbat baliokidetasun-klase daude? Aurkitu, ahal bada.

 $x \mathcal{R} y \Leftrightarrow x + y$ bakoitia da, erlazioa kontsideratuz gero, baliokidetasun-erlazioa da?

KUDEAKETAREN ETA INFORMAZIO SISTEMEN INFORMATIKAREN

INGENIARITZAKO GRADUA

MATEMATIKA DISKRETUA

2014-ko ekainaren 25a

1. ARIKETA

1.- Aztertu proposizio hau tautologia bat bada:

$$[p \rightarrow (q \land r)] \rightarrow (p \rightarrow q)$$

(6 puntu)

- **2.-** Izan bedi A ={1, 2, 3, 4} multzoa. Zehaztu honako enuntziatu hauen egiazko balioa:
 - a) $\exists x \in A / x^2 1 = 0$
 - b) $\exists x \in A/2x^2 + x = 15$
 - c) $\forall x \in A : x+3>2$

(6 puntu)

- 3.- Denaikasita B. I. ko lehen ikasturteko 60 ikasletik 15ek errusiera baino ez dute ikasten, 11k errusiera eta ingelesa,12k alemana baino ez, 8k errusiera eta alemana, 10ek ingelesa baino ez, 5ek ingelesa eta alemana eta 3k hiru hizkuntzak. Zehaztu:
 - a) Zenbatek ez dute hizkuntza bat ere ikasten?
 - b) Zenbatek ikasten duten alemana?
 - c) Zenbatek ikasten dute alemana eta ingelesa?
 - d) Zenbatek ikasten dute errusiera?

(8 puntu)

4.- Kontsidera dezagun A = {1, 2, 3, 4, 5, 6, 7, 8, 9} multzoa honako erlazio bitar honekin:

$$a\Re b \Leftrightarrow a+b < 12$$

- a) Aztertu \mathcal{R} erlazioak egiaztatzen dituen propietateak.
- b) Baliokidetasun-erlazioa al da?
- c) Ordena-erlazioa al da?
- d) Aurkitu 1ekin erlazionatuta dauden elementuak.

(5 puntu)

MATEMATIKA DISKRETUA

2013-ko uztailak 3

1. ARIKETA

1.- Egia al da $[(\neg p \land q) \rightarrow (p \lor \neg q)] \leftrightarrow [q \rightarrow (\neg q \land p)]$ adierazpena? (6 puntu)

2.- Aztertu honako arrazonamendu logikoaren baliagarritasuna:

$$(p \rightarrow \neg q, p \land r, q \lor r; r)$$

(6 puntu)

- **3.-** Inkesta bat egin da 60 pertsonako talde baten zein umorezko aldizkari irakurtzen duten jakiteko, honako emaitza hauek lortuz::
 - 25 pertsonek "El jueves" irakurtzen dute
 - 26 pertsonek "La Kodorniz" irakurtzen dute
 - 26 pertsonek "La Rotativa" irakurtzen dute
 - 8 pertsonek ez dute aldizkaririk irakurtzen
 - 9 pertsonek "El jueves" eta "La Rotativa" irakurtzen dituzte
 - 11 pertsonek "El jueves" et "La Kodorniz" irakurtzen dituzte
 - 8 pertsonek "La Kodorniz" eta "La Rotativa" irakurtzen dituzte
 - a. Zenbat pertsonek irakurtzen dituzte hiru aldizkariak?.
 - b. Zehaztu aldizkari bakarra irakurtzen dutenen kopurua.

(6 puntu)

- **4.-** $A = \{12, 16, 17, 26, 29, 35, 52, 53\}$ multzoan honako erlazioa definituko da: $aRb \Leftrightarrow a ren zifren batura eta <math>b ren zifren batura berdinak dira,$ a eta b A ren edozein elementu izanik
 - a. Frogatu baliokidetasun-erlazio bat dela .
 - b. Zenbat baliokidetasun-klase daude? Zehaztu zeintzuk diren.

(7 puntu)

MATEMATIKA DISKRETUA

2011-ko ekainak 13

1. ariketa

A) Frogatu honako baliokidetasun hauek:

a)
$$(p \lor \neg q) \lor [(p \lor \neg q) \to (p \land q)] \equiv T$$

b)
$$(r \land q) \rightarrow p \equiv (r \rightarrow p) \lor (q \rightarrow p)$$

B) Izan bitez honako f,g,h: $\mathbb{R} \to \mathbb{R}$ aplikazio hauek:

f funtzioak zenbaki bakoitzari 7 zenbaki egokituko dio.

g funtzioak zenbaki bakoitzari haren bikoitza egokituko dio.

h funtzioak zenbaki positibo bakoitzari eta zerori bere karratua egokituko dio eta zenbaki negatiboei haien hirukoitza.

- a) Adierazi matematikoki f,g eta h.
- b) Aurkitu f, g eta h funtzioen izate-eremua eta irudi-multzoak.
- c) Sailkatu f, g eta h.
- d) Lortu: $f \circ g$, $g \circ f$, $g \circ h$
- e) Aurkitu, ahal bada: f⁻¹, g⁻¹.

(15 puntu)

3. ariketa

A) $A = \{1,2,3,4,5,6\}$ multzoan honako grafoa duen \mathcal{R} erlazioa kontsideratuko dugu:

 $G = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,6),(6,2),(2,3),(1,5),(5,2),(5,3),(4,3),(6,3),(1,2),(1,3)\}$ \mathcal{R} \square ordena-erlazioa al da?. Arrazoitu erantzuna.

B) Izan bedi E multzoa 50 baino txikiagoak diren zenbaki arruntek osatzen dutena. Kontsidera ditzagun E-ren honako azpimultzo hauek:

 $A = \{x \in E \mid x \text{ bikoitia da}\}\$

 $B = \{ x \in E / x \quad 5\text{-en multiploa da} \}$

 $C = \{ \ x{\in}E \ / \ 10 \le x \le 30 \}$

Aurkitu: $A \cap B$, A^c , $A \cup C$, $A \cap B \cap C$, $C^c \cap B$, B - A.