## >#``Лабораторная работа 3

- > #` `<u>"Функциональные ряды. Степенные ряды"</u>
- > #` `Слуцкий Никита | гр. 053506 (ФКСиС, ИиТП)
- **>** #` `Вариант 1 (номер в журнале 21)
- > restart;
- > <u># Задание 1. Найти область сходимости функционального ряда, построить график его суммы и сравнить с полученным результатом</u>

> 
$$row_1 := \frac{2n}{n+1} \cdot \frac{1}{(3x^2+4x+2)^n}$$
:

- > sequencical\_part\_1 :=  $\frac{2 n}{n+1}$ :
- > # воспользовавшись признаком Даламбера или Коши, можно, получив L(x) и решив неравенство L(x) < 1, найти область сходимости функционального ряда
- >  $limit\_sequence := limit (\sqrt[n]{sequencical\_part\_1}, n = infinity)$ :
- >  $solve\left(abs\left(limit\_sequence \cdot \frac{1}{3x^2 + 4x + 2}\right) < 1, x\right);$

$$RealRange(-\infty, Open(-1)), RealRange(Open(-\frac{1}{3}), \infty)$$
 (1)

- # на данных участках х функциональный ряд из условия сходится абсолютно
- $sum\_function\_1 := sum(row\_1, n = 1..100): # c inifinity долгая компиляция: непонятно, будет ли результат <math>plot(sum\ function\ 1, x = -1..0, color = green, thickness = 3);$



<u>ать равномерную сходимость функционального ряда на отрезке [ 0, 1 </u> 01 график частичной суммы nmin S рядане выходит на отрезке [0,1] за пределы  $\varepsilon$  — полосы, центрированной относительно графика суммы ряда результатом

> sequence\_2 := 
$$\frac{(-1)^n \cdot x^n}{7 n - 11}$$
 :

# Ряд сходится как ряд Лейбница. Выполняются условия знакочередования, стремления к нулю и убывания (т.к. на данном промежутке х < 1 => xn < 1

# Оценю модуль. Для знакочередующегося ряда n-ый остаток не превосходит по модулю (n+1)-го элемента

epsilon 
$$2 := 0.01$$
:

$$= psilon_2 := 0.01 :$$
 $= x^n + 1 < \frac{1}{7n - 11}$  для всех  $x$  из  $[0..1]$ 

$$\Rightarrow$$
 solve  $\left(\frac{1}{7(n+1)-11} < epsilon_2\right);$ 

 $RealRange(-\infty, Open(0.5714285714)), RealRange(Open(14.85714286), \infty)$ 

**(2)** 

> # Nmin беру равным 16

$$Nmin \ 2 := 15 :$$

Nmin\_2 := 15 :
$$\int Sums_2 := plot \left( \sum_{n=1}^{5000} sequence_2, x = 0 ...1, color = brown, thickness = 3 \right);$$



# Построив график сумм (здесь частичных, но 5000 - достаточно большое число), можно увидеть, что ряд действительно сходится на отрезке [0 ..1].
# Почему ? Потому что в каждой точке х из этого отрезка сумма принимает конкретное конечное значение ⇒ ряд сходится для этого х

# Ну а теперь построю в соответствии с условием демонстрацию "невыхода" графика частичной суммы Nmin за пределы

partSum := plot(sum(sequence\_2, n = 1 ..Nmin\_2), x = 0 ..1, color = black, thickness = 3):
 sumEpsilonPositive := plot(sum(sequence\_2, n = 1 ..5000) + epsilon\_2, x = 0 ..1, thickness = 1, color = red):

>  $sumEpsilonNegative := plot(sum(sequence\_2, n = 1 ..5000) - epsilon\_2, x = 0 ..1, thickness = 1, color = red)$ :

> plots[display](partSum, sumEpsilonPositive, sumEpsilonNegative);



# действительно. Найденное Nmin в погрешность вписывается

> restart;

**>** <u>#</u> <u>Задание 3. Вычислить интеграл с точностью до 0.</u> <u>001 и проконтролироватьрезультат с помощью расчетов в системе Maple</u> . Обосновать свое решение

 $\rightarrow$  epsilon 3 := 0.001:

[> function\_3 := 
$$\exp(-6x^2)$$
 : # на промежутке 0..0.1

> integral\_3 :=  $evalf(int(function_3, x = 0..0.1), 5)$ ;

 $integral_3 := 0.098035$ 

# реальное значение интеграла (округлено)

**(3)** 

> plots[display](plot(function\_3, x =-0.1 ..0.5, thickness = 3, color = blue), plot(function\_3, x = 0 ..0.1, filled = true));

