We define the following:

- A *subarray* of an n-element array is an array composed from a contiguous block of the original array's elements. For example, if array = [1, 2, 3], then the subarrays are [1], [2], [3], [1, 2], [2, 3], and [1, 2, 3]. Something like [1, 3] would *not* be a subarray as it's not a contiguous subsection of the original array.
- The *sum* of an array is the total sum of its elements.
 - \circ An array's sum is *negative* if the total sum of its elements is negative.
 - An array's sum is *positive* if the total sum of its elements is positive.

Given an array of n integers, find and print its number of *negative subarrays* on a new line.

Input Format

The first line contains a single integer, n, denoting the length of array $A = [a_0, a_1, \dots, a_{n-1}]$. The second line contains n space-separated integers describing each respective element, a_i , in array A

Constraints

• $1 \le n \le 100$ • $-10^4 \le a_i \le 10^4$

Output Format

Print the number of subarrays of \boldsymbol{A} having negative sums.

Sample Input

5 1 -2 4 -5 1

Sample Output

9

Explanation

There are nine negative subarrays of A = [1, -2, 4, -5, 1]:

1. $[1:1] \Rightarrow -2$ 2. $[3:3] \Rightarrow -5$ 3. $[0:1] \Rightarrow 1+-2=-1$ 4. $[2:3] \Rightarrow 4+-5=-1$ 5. $[3:4] \Rightarrow -5+1=-4$ 6. $[1:3] \Rightarrow -2+4+-5=-3$ 7. $[0:3] \Rightarrow 1+-2+4+-5=-2$ 8. $[1:4] \Rightarrow -2+4+-5+1=-2$ 9. $[0:4] \Rightarrow 1+-2+4+-5+1=-1$

Thus, we print **9** on a new line.