Name:

Tutorial time:

Please complete all problems below, and indicate which one problem you want feedback on.

- 1. Let P = (1, 0, -2), Q = (-3, 2, 4), and R = (0, 5, -1) be points in \mathbb{R}^3 .
 - (a) Calculate the vectors $\vec{u} = \overrightarrow{PQ}$, $\vec{v} = \overrightarrow{QR}$, and $\vec{w} = \overrightarrow{PR}$.

(b) Show that $\vec{u} + \vec{v} = \vec{w}$.

(c) Explain, with a diagram, why your result in part (b) makes sense. (You do not have to accurately plot the points P, Q, R.)

2. Let
$$\vec{a} = \begin{bmatrix} 1 \\ 4 \\ -7 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$.

Find the vector \vec{c} given by the linear combination $\vec{c} = 4\vec{a} - 3\vec{b}$.

3. Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and let $\vec{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ be vectors in \mathbb{R}^2 . Sketch the vectors \vec{u}, \vec{v} , and $3\vec{u} - 2\vec{v}$.

4. Recall that the absolute value function |x| is defined by

$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}.$$

(a) Calculate |2|, |3.5|, |0|, |-5|, and |-7/4|.

(b) Explain in your own words what the effect of |x| is on a real number x.

(c) Calculate $\sqrt{(2^2)}$, $\sqrt{(0)^2}$, $\sqrt{(-1)^2}$ and $\sqrt{(-2)^2}$.

(d) Explain why it's true that $\sqrt{x^2} = |x|$ for any real number x.

(e) Let $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be a vector in \mathbb{R}^3 , and let $c \in \mathbb{R}$ be any scalar. Recall that $\|\vec{v}\|$ is defined by

$$\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}.$$

Show that $||c\vec{v}|| = |c|||\vec{v}||$. How is this related to the geometric interpretation of scalar multiplication?