Package 'Giotto'

December 9, 2019

```
Title Spatial single-cell transcriptomics pipeline.
Version 0.1.4
Description Pipeline to process, analyze and visualize (spatial) single-cell expression data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.0.1
Depends data.table (>= 1.12.2),
      ggplot2 (>= 3.1.1),
      base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports Rtsne (>= 0.15),
      uwot (>= 0.0.0.9010),
      multinet (>= 3.0.2),
      FactoMineR (>= 1.34),
      factoextra (>= 1.0.5),
      cowplot (>= 0.9.4),
      grDevices,
      RColorBrewer (>= 1.1-2),
      jackstraw (>= 1.3),
      dbscan (>= 1.1-3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      lfa (>= 1.12.0),
      igraph (>= 1.2.4.1),
      plotly,
      reticulate,
      magrittr,
      limma,
      ggdendro,
      smfishHmrf,
      matrixStats (>= 0.55.0),
      IRanges,
      devtools,
      reshape2
```

2 R topics documented:

```
Suggests knitr,
rmarkdown,
MAST,
scran (>= 1.10.1),
png,
tiff,
biomaRt
```

biocViews

VignetteBuilder knitr

Remotes lambdamoses/smfishhmrf-r

${\sf R}$ topics documented:

addCellMetadata	6
	7
	8
	9
addHMRF	0
addNetworkLayout	0
addStatistics	
adjustGiottoMatrix	2
aes_string2	3
allCellCellcommunicationsScores	3
all_plots_save_function	4
annotateGiotto	5
annotateSpatialNetwork	6
annotate_spatlocs_with_spatgrid_2D	7
annotate_spatlocs_with_spatgrid_3D	7
average_gene_gene_expression_in_groups	8
binGetSpatialGenes	8
calculateHVG	0
calculateMetaTable	1
calculateMetaTableCells	2
calculate_spatial_genes_python	3
cellProximityBarplot	4
cellProximityEnrichment	5
cellProximityHeatmap	6
cellProximityNetwork	7
cellProximitySpatPlot	8
cellProximitySpatPlot2D	0
cellProximitySpatPlot3D	2
cellProximityVisPlot	4
cellProximityVisPlot_2D_ggplot	6
cellProximityVisPlot_2D_plotly	8
cellProximityVisPlot_3D_plotly	9
changeGiottoInstructions	1
clusterCells	2
combineMetadata	
convertEnsemblToGeneSymbol	5
createGiottoInstructions 4	

createGiottoObject
createHeatmap_DT
createNearestNetwork
createSpatialEnrich
createSpatialGrid
createSpatialGrid_2D
createSpatialGrid_3D
createSpatialNetwork
create_average_detection_DT 56
create_average_DT
create_cell_type_random_cell_IDs
create_cluster_matrix
create_dimObject
decide_cluster_order
detectSpatialPatterns
dimCellPlot
dimCellPlot2D
dimGenePlot
dimGenePlot2D
dimGenePlot3D
dimPlot
dimPlot2D
dimPlot2D_single
dimPlot3D
direction_test_CPG
doHclust
doHMRF
doKmeans
doLeidenCluster
doLeidenSubCluster
doLouvainCluster
doLouvainCluster_community
doLouvainCluster_multinet
doLouvainSubCluster
doLouvainSubCluster_community
doLouvainSubCluster_multinet
doRandomWalkCluster 98
doSNNCluster
dt to matrix
exportGiottoViewer
exprOnlyCellCellcommunicationScores
extended_gini_fun
extractNearestNetwork
fDataDT
filterCombinations
filterCPGscores
filterDistributions
filterGiotto
findGiniMarkers
findGiniMarkers_one_vs_all
findMarkers
undwarkers one vs all

findMastMarkers
findMastMarkers_one_vs_all
findScranMarkers
findScranMarkers_one_vs_all
find_grid_2D
find_grid_3D
find_grid_x
find_grid_y
find_grid_z
fish_function
fish_function2
FSV_show
GenePattern_show
general_save_function
get10Xmatrix
getCellProximityGeneScores
getClusterSimilarity
getDendrogramSplits
getDistinctColors
getGeneToGeneScores
get_cell_to_cell_sorted_name_conversion
get_interaction_gene_enrichment
get_specific_interaction_gene_enrichment
ggplot_save_function
giotto-class
hyperGeometricEnrich
kmeans_binarize
loadHMRF
makeSignMatrixPAGE
makeSignMatrixRank
make_simulated_network
mergeClusters
mygini_fun
nnDT to kNN
node clusters
normalizeGiotto
OR function2
PAGEEnrich
pDataDT
plotCPGscores
plotGTGscores
plotHeatmap
plottly_axis_scale_2D
plotly_axis_scale_2D
plotly_grid
1 7—6
plotly_network
plotMetaDataCellsHeatmap
plotMetaDataHeatmap
plotPCA
plotPCA_2D
plotPCA_3D
plotTSNE

plotTSNE_2D	
plotTSNE_3D	
plotUMAP	
plotUMAP_2D	
plotUMAP_3D	
plot_network_layer_ggplot	
plot_point_layer_ggplot	169
plot_spat_point_layer_ggplot	171
print.giotto	173
rankEnrich	
rank_binarize	
readGiottoInstructions	
removeCellAnnotation	175
removeGeneAnnotation	175
replaceGiottoInstructions	176
runPCA	
runtSNE	177
runUMAP	179
selectPatternGenes	180
select_expression_values	181
show, giotto-method	181
showClusterDendrogram	182
showClusterHeatmap	
showCPGscores	
showGeneExpressionProximityScore	185
showGiottoInstructions	
showGTGscores	
showIntExpressionProximityScore	187
showPattern	
showPattern2D	189
showPattern3D	190
showPatternGenes	192
showProcessingSteps	193
showTopGeneToGene	
signPCA	
spatCellPlot	195
spatCellPlot2D	198
spatDimCellPlot	201
spatDimCellPlot2D	205
spatDimGenePlot	
spatDimGenePlot2D	
spatDimGenePlot3D	
spatDimPlot	
spatDimPlot2D	
spatDimPlot3D	
spatGenePlot	
spatGenePlot2D	
spatGenePlot3D	
Spatial_AEH	
Spatial_DE	
spatPlot	
spatPlot2D	

6 addCellMetadata

	spatPlot2D_single	. 240
	spatPlot3D	. 243
	specificCellCellcommunicationScores	. 245
	split_dendrogram_in_two	. 246
	stitchFieldCoordinates	. 247
	subClusterCells	. 248
	subsetGiotto	. 250
	subsetGiottoLocs	. 250
	viewHMRFresults	. 251
	viewHMRFresults2D	. 252
	viewHMRFresults3D	. 253
	violinPlot	. 254
	visDimGenePlot	. 255
	visDimGenePlot_2D_ggplot	. 257
	visDimGenePlot_3D_plotly	. 258
	visDimPlot	. 260
	visDimPlot_2D_ggplot	. 262
	visDimPlot_2D_plotly	. 264
	visDimPlot_3D_plotly	. 266
	visForceLayoutPlot	. 267
	visGenePlot	. 269
	visGenePlot_2D_ggplot	. 271
	visGenePlot_3D_plotly	. 272
	visPlot	. 274
	visPlot_2D_ggplot	. 276
	visPlot_2D_plotly	. 279
	visPlot_3D_plotly	. 280
	visSpatDimGenePlot	. 282
	visSpatDimGenePlot_2D	. 285
	visSpatDimGenePlot_3D	. 287
	visSpatDimPlot	. 289
	visSpatDimPlot_2D	. 291
	visSpatDimPlot_3D	. 294
	writeHMRFresults	. 296
	write_giotto_viewer_annotation	. 296
	write_giotto_viewer_dim_reduction	. 297
	write_giotto_viewer_numeric_annotation	. 298
Index		299

Description

addCellMetadata

adds cell metadata to the giotto object

add Cell Metadata

addCellStatistics 7

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

```
gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional cell metadata in two manners: 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject) 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

```
giotto object
```

Examples

```
addCellMetadata(gobject)
```

addCellStatistics

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

8 addGeneMetadata

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addCellStatistics(gobject)
```

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT column_cell_ID column name of new metadata to use if by_column = TRUE

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

addGeneStatistics 9

Value

```
giotto object
```

Examples

```
addGeneMetadata(gobject)
```

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

Value

```
giotto object if return_gobject = TRUE
```

```
addGeneStatistics(gobject)
```

10 addNetworkLayout

addHMRF

addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

 $HMRF \ output \ from \ do HMRF()$

k number of domains

betas_to_add results from different betas that you want to add

name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

addStatistics 11

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

Examples

```
addNetworkLayout(gobject)
```

addStatistics

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

```
gobject giotto object

expression_values

expression values to use

detection_threshold

detection threshold to consider a gene detected

return_gobject boolean: return giotto object (default = TRUE)
```

12 adjustGiottoMatrix

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

```
adjustGiottoMatrix adjustGiottoMatrix
```

Description

normalize and/or scale expresion values of Giotto object

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

Details

This function implements the limma::removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

```
adjustGiottoMatrix(gobject)
```

aes_string2

Description

makes sure aes_string can also be used with names that start with numeric values

Usage

```
aes_string2(...)
```

 $all \textit{CellCellcommunications} Scores \\ all \textit{CellCellcommunications} Scores$

Description

All Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
allCellCellcommunicationsScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types",
  random_iter = 100,
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
  min_observations = 2,
  verbose = c("a little", "a lot", "none")
)
```

```
giotto object to use
gobject
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
gene_set_1
                  first specific gene set from gene pairs
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
allCellCellcommunicationsScores(gobject)
```

```
all_plots_save_function 
 all_plots_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
all_plots_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

```
gobject giotto object
plot_object object to plot
save_dir directory to save to
save_folder folder in save_dir to save to
save_name name of plot
```

annotateGiotto 15

```
save_format format (e.g. png, tiff, pdf, ...)
```

show_saved_plot

load & display the saved plot

ncol number of columns nrow number of rows

scale scale
base_width width
base_height height
base_aspect_ratio

aspect ratio

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

... additional parameters to ggplot_save_function or general_save_function

See Also

```
Giotto::general_save_function
```

Examples

```
all_plots_save_function(gobject)
```

 $annotate {\tt Giotto}$

annotateGiotto

Description

Converts cluster results into provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

```
giotto object
```

Examples

```
annotateGiotto(gobject)
```

```
annotate {\tt Spatial Network}
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column
)
```

Arguments

Value

annotated network in data.table format

```
annotateSpatialNetwork(gobject)
```

```
annotate\_spatlocs\_with\_spatgrid\_2D \\ annotate\_spatlocs\_with\_spatgrid\_2D
```

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

```
{\tt annotate\_spatlocs\_with\_spatgrid\_3D()}
```

18 binGetSpatialGenes

```
average_gene_gene_expression_in_groups

average_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(
  gobject,
  cluster_column = "cell_types",
  gene_set_1,
  gene_set_2
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs
```

Details

Details will follow.

Value

data.table with average expression scores for each cluster

Examples

```
average_gene_gene_expression_in_groups(gobject)
```

binGetSpatialGenes binGetSpatialGenes

Description

Rapid computation of genes that are spatially clustered

binGetSpatialGenes 19

Usage

```
binGetSpatialGenes(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "spatial_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 10,
  do_fisher_test = F,
  community_expectation = 5,
  verbose = F
)
```

Arguments

```
giotto object
gobject
bin_method
                  method to binarize gene expression
expression_values
                  expression values to use
                  only select a subset of genes to test
subset_genes
spatial_network_name
                  name of spatial network to use (default = 'spatial_network')
nstart
                  kmeans: nstart parameter
                  kmeans: iter.max parameter
iter_max
do_fisher_test perform fisher test
community_expectation
                  cell degree expectation in spatial communities
verbose
                  be verbose
rank_percentage
                  percentage of top cells for binarization
```

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a k-nearest neighbor network
- 3. contingency table: A contingency table is calculated based on all pairwise cell-cell interactions (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Additionally 2 other statistics are provided:

- Number of cells with high expression (binary = 1)
- total and ratio of highly connected cells: Cells with a connectivity higher than community_expectation

By selecting a subset of likely spatial genes (e.g. highly variable genes) the function will be much faster.

20 calculateHVG

Value

```
data.table with results (see details)
```

Examples

binGetSpatialGenes(gobject)

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
method
                  method to calculate highly variable genes
reverse_log_scale
                  reverse log-scale of expression values (default = FALSE)
                  if reverse_log_scale is TRUE, which log base was used?
logbase
expression_threshold
                  expression threshold to consider a gene detected
nr_expression_groups
                  number of expression groups for cov_groups
zscore_threshold
                  zscore to select hvg for cov_groups
```

calculateMetaTable 21

Details

Currently we provide 2 ways to calculate highly variable genes: 1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (*difference_in_cov*) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

```
calculateHVG(gobject)
```

calculateMetaTable calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

22 calculateMetaTableCells

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

```
{\tt calculateMetaTableCells}
```

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

```
calculateMetaTableCells(gobject)
```

Description

Calculate spatial genes using distance matrix.

Usage

```
calculate_spatial_genes_python(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use

subset_genes only run on this subset of genes
rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette
python_path specify specific path to python if required
```

Details

Description of how we compute spatial pattern genes.

Value

data.table with spatial scores

```
calculate_spatial_genes_python(gobject)
```

24 cellProximityBarplot

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

```
gobject
                  giotto object
                  CPscore, output from cellProximityEnrichment()
CPscore
                  filter on minimum original cell-cell interactions
min_orig_ints
                  filter on minimum simulated cell-cell interactions
min_sim_ints
                  p-value
p_val
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot barplot
```

```
cellProximityBarplot(CPscore)
```

```
cellProximityEnrichment
```

cellProximityEnrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
cellProximityEnrichment(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by random permutations of the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

```
cellProximityEnrichment(gobject)
```

cellProximityHeatmap cellProximityHeatmap

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
giotto object
gobject
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
color_breaks
                  numerical vector of length 3 to represent min, mean and maximum
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot heatmap

cellProximityNetwork 27

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = "Fruchterman",
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityNetwork"
```

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
{\tt edge\_weight\_range\_depletion}
                  numerical vector of length 2 to rescale depleted edge weights
```

```
edge_weight_range_enrichment
```

numerical vector of length 2 to rescale enriched edge weights

layout algorithm to use to draw nodes and edges

only_show_enrichment_edges

show only the enriched pairwise scores

edge_width_range

range of edge width

node_size size of nodes

node_text_size size of node labels

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

```
cellProximityNetwork(CPscore)
```

```
cellProximitySpatPlot cellProximitySpatPlot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

gobject giotto object

 ${\tt interaction_name}$

cell-cell interaction name

cluster_column cluster column with cell clusters

sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy')

29

```
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
point_other_border_stroke
                  stroke size of other points
                  show plots
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D

Examples

```
cellProximitySpatPlot(gobject)
```

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

cluster_column cluster column with cell clusters x-axis dimension name (default = 'sdimx') sdimx sdimy y-axis dimension name (default = 'sdimy') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show underlying spatial network color of spatial network network_color spatial_network_name name of spatial network to use show spatial grid show_grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points show_plot show plots return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

```
cellProximitySpatPlot2D(gobject)
```

```
cell Proximity SpatPlot 3D \\ cell Proximity SpatPlot 2D
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show\_other\_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
                  show plots
show_plot
return_plot
                  return plotly object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

```
cellProximitySpatPlot3D(gobject)
```

34 cellProximityVisPlot

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_{ticks} = NULL,
  plot_method = c("ggplot", "plotly"),
)
```

cellProximityVisPlot 35

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
sdimz z-axis dimension name (default = 'sdimz')

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

```
cell Proximity VisPlot\_2D\_ggplot \\ cell Proximity VisPlot\_2D\_ggplot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximityVisPlot_2D_ggplot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
)
```

```
color_as_factor
```

convert color column to factor

show_other_cells

decide if show cells not in network

show_network show underlying spatial network

network_color color of spatial network

 $spatial_network_name$

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

```
cell Proximity VisPlot\_2D\_plotly \\ cell Proximity VisPlot\_2D\_plotly
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 2,
  point_size_other = 1,
  point_alpha_other = 0.3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
)
```

Arguments

```
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cell Proximity VisPlot\_2D\_plotly (gobject)
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

```
cellProximityVisPlot_3D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
```

```
color_as_factor = T,
show_other_cells = F,
show_network = F,
show_other_network = F,
network_color = NULL,
spatial_network_name = "spatial_network",
show\_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
show_legend = T,
point_size_select = 2,
point_size_other = 1,
point_alpha_other = 0.5,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_{ticks} = NULL,
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_3D_plotly(gobject)
```

```
{\tt changeGiottoInstructions}
```

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)

return_gobject (boolean) return giotto object
```

Value

named vector with giotto instructions

Examples

changeGiottoInstructions()

42 clusterCells

clusterCells

clusterCells

Description

cluster cells using a variety of different methods

```
clusterCells(
  gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  pyth_leid_resolution = 1,
  pyth_leid_weight_col = "weight",
 pyth_leid_part_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  pyth_leid_init_memb = NULL,
  pyth_leid_iterations = 1000,
  pyth_louv_resolution = 1,
  pyth_louv_weight_col = NULL,
  python_louv_random = F,
  python_path = NULL,
  louvain_gamma = 1,
  louvain\_omega = 1,
  walk\_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
  borderPoints = TRUE,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_centers = 10,
  km_iter_max = 100,
  km_nstart = 1000,
  km_algorithm = "Hartigan-Wong",
 hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  hc_k = 10,
  hc_h = NULL
  return_gobject = TRUE,
  set_seed = T,
```

clusterCells 43

```
seed_number = 1234
)
```

Arguments

gobject giotto object

cluster_method community cluster method to use

name name for new clustering result

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

pyth_leid_resolution

resolution for leiden

pyth_leid_weight_col

column to use for weights

pyth_leid_part_type

partition type to use

pyth_leid_init_memb

initial membership

pyth_leid_iterations

number of iterations

pyth_louv_resolution

resolution for louvain

pyth_louv_weight_col

python louvain param: weight column

python_louv_random

python louvain param: random

python_path specify specific path to python if required

louvain_gamma louvain param: gamma or resolution

louvain_omega louvain param: omega

walk_steps randomwalk: number of steps
walk_clusters randomwalk: number of clusters
walk_weights randomwalk: weight column

sNNclust_k SNNclust: k neighbors to use

sNNclust_eps SNNclust: epsilon

sNNclust_minPts

SNNclust: min points

borderPoints SNNclust: border points

expression_values

expression values to use

 $genes_to_use = NULL,$

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

44 combineMetadata

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

Examples

clusterCells(gobject)

combineMetadata combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from createSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

gobject Giotto object

spat_enr_names names of spatial enrichment results to include

Value

Extended cell metadata in data.table format.

Examples

```
combineMetadata(gobject)
```

convertEnsemblToGeneSymbol

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames

species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

Examples

```
convertEnsemblToGeneSymbol(matrix)
```

create Giot to Instructions

create Giot to Instructions

Description

Function to set global instructions for giotto functions

46 createGiottoObject

Usage

```
createGiottoInstructions(
   python_path = NULL,
   show_plot = NULL,
   return_plot = NULL,
   save_plot = NULL,
   save_dir = NULL,
   plot_format = NULL,
   dpi = NULL,
   units = NULL,
   height = NULL,
   width = NULL
```

Arguments

```
path to python binary to use
python_path
show_plot
                  print plot to console, default = TRUE
                  return plot as object, default = TRUE
return_plot
save_plot
                  automatically save plot, dafault = FALSE
                  path to directory where to save plots
save_dir
                  resolution for raster images
dpi
height
                  height of plots
width
                  width of plots
```

Value

named vector with giotto instructions

Examples

```
createGiottoInstructions()
```

Description

Function to create a giotto object

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
```

createGiottoObject 47

```
gene_metadata = NULL,
spatial_network = NULL,
spatial_network_name = NULL,
spatial_grid = NULL,
spatial_grid_name = NULL,
spatial_enrichment = NULL,
spatial_enrichment_name = NULL,
dimension_reduction = NULL,
nn_network = NULL,
offset_file = NULL,
instructions = NULL
```

Arguments

```
raw_exprs
                  matrix with raw expression counts [required]
spatial_locs
                  data.table or data.frame with coordinates for cell centroids
                  normalized expression values
norm_expr
norm_scaled_expr
                  scaled expression values
custom_expr
                  custom expression values
cell_metadata
                  cell annotation metadata
gene_metadata
                  gene annotation metadata
spatial_network
                  list of spatial network(s)
spatial_network_name
                  list of spatial network name(s)
                  list of spatial grid(s)
spatial_grid
spatial_grid_name
                  list of spatial grid name(s)
spatial_enrichment
                  list of spatial enrichment score(s) for each spatial region
spatial_enrichment_name
                  list of spatial enrichment name(s)
dimension_reduction
                  list of dimension reduction(s)
                  list of nearest neighbor network(s)
nn_network
                  file used to stitch fields together (optional)
offset_file
instructions
                  list of instructions or output result from createGiottoInstructions
```

Details

[Requirements] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. To include spatial information about cells (or regions) you need to provide a data.table or data.frame with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

48 createHeatmap_DT

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- · spatial enrichments
- · dimensions reductions
- · nearest neighbours networks

Value

giotto object

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

```
createHeatmap_DT(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D",
  gene_order = c("custom", "correlation"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete"
)
```

createNearestNetwork 49

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
genes
                 genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
                 custom order for clusters
cluster_cor_method
                 method for cluster correlation
cluster_hclust_method
                 method for hierarchical clustering of clusters
                 method to determine gene order
gene_order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
```

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
{\tt createHeatmap\_DT(gobject)}
```

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
```

50 createNearestNetwork

```
expression_values = c("normalized", "scaled", "custom"),
name = "sNN.pca",
return_gobject = TRUE,
k = 30,
minimum_shared = 5,
top_shared = 3,
verbose = T,
...
)
```

Arguments

```
gobject
                 giotto object
                 sNN or kNN
type
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
expression_values
                 expression values to use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
                 number of k neighbors to use
minimum_shared minimum shared neighbors
top_shared
                 keep at ...
verbose
                 be verbose
```

Details

. . .

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

additional parameters for kNN and sNN functions from dbscan

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

```
• from: cell_ID for source cell
```

• to: cell_ID for target cell

• distance: distance between cells

• weight: weight = 1/(1 + distance)

Output for sNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

createSpatialEnrich 51

- weight: 1/(1 + distance)
- shared: number of shared neighbours
- rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

```
createNearestNetwork(gobject)
```

createSpatialEnrich createSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
createSpatialEnrich(
  gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  name = "PAGE",
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object

enrich_method method for gene signature enrichment calculation

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE
```

52 createSpatialGrid

Details

For details see the individual functions:

```
PAGE: PAGEEnrichPAGE: rankEnrichPAGE: hyperGeometricEnrich
```

Value

Giotto object or enrichment results if return_gobject = FALSE

Examples

```
createSpatialEnrich(gobject)
```

 $create {\tt Spatial Grid} \qquad \textit{create Spatial Grid}$

Description

Create a spatial grid.

Usage

```
createSpatialGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

createSpatialGrid_2D 53

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid(gobject)
```

```
createSpatialGrid\_2D createSpatialGrid\_2D
```

Description

create a spatial grid for 2D spatial data.

Usage

```
createSpatialGrid_2D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid\_3D \quad \textit{createSpatialGrid\_3D}
```

Description

Create a spatial grid for 3D spatial data.

Usage

```
createSpatialGrid_3D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_3D(gobject)
```

createSpatialNetwork 55

```
createSpatialNetwork createSpatialNetwork
```

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  k = 4,
  dimensions = "all",
  maximum_distance = NULL,
  minimum_k = 0,
  name = "spatial_network",
  verbose = F,
  return_gobject = TRUE
)
```

Arguments

gobject giotto object

k number of nearest neighbors based on physical distance

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider

minimum_k minimum nearest neighbours if maximum_distance != NULL

name name for spatial network (default = 'spatial_network')

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. Number of neighbors can be determined by k, maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

maximum_distance: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

Value

giotto object with updated spatial network slot

```
createSpatialNetwork(gobject)
```

56 create_average_DT

```
create\_average\_detection\_DT \\ create\_average\_detection\_DT
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0
)
```

Arguments

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom")
)
```

Arguments

```
gobject giotto object
meta_data_name name of metadata column to use
expression_values
 which expression values to use
```

Value

data.table with average gene epression values for each factor

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

```
create_cell_type_random_cell_IDs(gobject)
```

58 create_dimObject

```
create_cluster_matrix create_cluster_matrix
```

Description

creates aggregated matrix for a given clustering

Usage

```
create_cluster_matrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  gene_subset = NULL
)
```

Examples

```
create_cluster_matrix(gobject)
```

create_dimObject

create_dimObject

Description

Creates an object that stores a dimension reduction output

Usage

```
create_dimObject(
  name = "test",
  reduction_method = NULL,
  coordinates = NULL,
  misc = NULL
)
```

Arguments

```
name arbitrary name for object
reduction_method
method used to reduce dimensions
coordinates accepts the coordinates after dimension reduction
misc any additional information will be added to this slot
```

Value

number of distinct colors

decide_cluster_order 59

```
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cor_method = "pearson",
  hclust_method = "ward.D"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters

cor_method method for correlation
hclust_method method for hierarchical clustering
```

Details

Calculates order for clusters.

Value

custom

```
decide_cluster_order(gobject)
```

60 detectSpatialPatterns

detectSpatialPatterns detectSpatialPatterns

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

Arguments

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

spatial pattern object 'spatPatObj'

```
detectSpatialPatterns(gobject)
```

dimCellPlot 61

dimCellPlot

dim Cell Plot

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show\_center\_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

62 dimCellPlot

```
default_save_name = "dimCellPlot"
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
                     column to use for alpha of the edges
    edge_alpha
                     size of point (cell)
    point_size
```

color of border around points

point_border_col

dimCellPlot2D 63

```
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default\_save\_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
title
                  title for plot, defaults to cell_color parameter
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

Examples

```
dimCellPlot(gobject)
```

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values,
  show_NN_network = F,
```

dimCellPlot2D

```
nn_network_to_use = "sNN",
     network_name = "sNN.pca",
     cell_color_gradient = c("blue", "white", "red"),
     gradient_midpoint = NULL,
     gradient_limits = NULL,
     select_cell_groups = NULL,
     select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 0.5,
     show_cluster_center = F,
     show_center_label = T,
     center_point_size = 4,
     center_point_border_col = "black",
     center_point_border_stroke = 0.1,
     label_size = 4,
     label_fontface = "bold",
     edge_alpha = NULL,
     point_size = 1,
     point_border_col = "black",
     point_border_stroke = 0.1,
     show_legend = T,
     legend_text = 8,
     axis_text = 8,
     axis_title = 8,
     cow_n_col = 2,
     cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "dimCellPlot2D"
   )
Arguments
                   giotto object
   gobject
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
                    dimension to use on x-axis
   dim1_to_use
   dim2_to_use
                    dimension to use on y-axis
   spat_enr_names names of spatial enrichment results to include
   cell_annotation_values
                    numeric cell annotation columns
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
```

network_name name of NN network to use, if show NN network = TRUE cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges size of point (cell) point_size point_border_col color of border around points point_border_stroke stroke size of border around points show_legend show legend legend_text size of legend text axis_text size of axis text size of axis title axis_title show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function() save_param default_save_name default save name for saving, don't change, change save_name in save_param cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors title for plot, defaults to cell_color parameter title

66 dimGenePlot

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

```
dimCellPlot2D(gobject)
```

dimGenePlot

dimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot"
```

dimGenePlot 67

Arguments

gobject giotto object expression_values gene expression values to use genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name column to use for alpha of the edges edge_alpha scale_alpha_with_expression scale expression with ggplot alpha parameter point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points size of point (cell) midpoint cow_n_col cowplot param: how many columns cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width cow_align cowplot param: how to align show_legend show legend show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param parameters for cowplot::save_plot()

Details

Description of parameters.

Value

ggplot

68 dimGenePlot2D

See Also

```
dimGenePlot3D
```

Examples

```
dimGenePlot(gobject)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot2D"
)
```

dimGenePlot2D 69

Arguments

gobject giotto object expression_values gene expression values to use genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name column to use for alpha of the edges edge_alpha scale_alpha_with_expression scale expression with ggplot alpha parameter point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points size of point (cell) midpoint cow_n_col cowplot param: how many columns cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width cow_align cowplot param: how to align show_legend show legend show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param parameters for cowplot::save_plot()

Details

Description of parameters.

Value

ggplot

70 dimGenePlot3D

See Also

```
dimGenePlot3D
```

Examples

```
dimGenePlot2D(gobject)
```

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot3D"
)
```

dimGenePlot3D 71

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

show_legend show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

... parameters for cowplot::save_plot()

Details

Description of parameters.

Value

ggplot

Examples

dimGenePlot3D(gobject)

72 dimPlot

dimPlot

dimPlot

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  axis_text = 8,
  axis_title = 8,
  title = NULL,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

dimPlot 73

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot"
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
```

74 dimPlot

center_point_size

size of center points

label_size size of labels label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

legend_text size of legend text
axis_text size of axis text
axis_title size of axis title

title title for plot, defaults to cell_color parameter

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

groub_by create multiple plots based on cell annotation column

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

Value

ggplot

Examples

dimPlot(gobject)

dimPlot2D 75

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

76 dimPlot2D

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot2D"
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
```

dimPlot2D 77

center_point_size

size of center points

label_size size of labels label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

title title for plot, defaults to cell_color parameter

show_legend show legend

legend_text size of legend text
axis_text size of axis text
axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

groub_by create multiple plots based on cell annotation column

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

dimPlot2D(gobject)

78 dimPlot2D_single

dimPlot2D_single

dimPlot2D_single

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D_single(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  axis_text = 8,
  axis_title = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimPlot2D_single"
```

dimPlot2D_single 79

)

```
gobject
                  giotto object
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
dim1_to_use
                  dimension to use on x-axis
                  dimension to use on y-axis
dim2_to_use
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
```

80 dimPlot3D

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
                  size of legend text
legend_text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

```
dimPlot2D_single(gobject)
```

dimPlot3D

dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot3D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 2,
```

dimPlot3D 81

```
show_NN_network = F,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      color_as_factor = T,
      cell_color = NULL,
      cell_color_code = NULL,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      edge_alpha = NULL,
      point_size = 3,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dim3D"
Arguments
                     giotto object
   gobject
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
   dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
   other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    color_as_factor
                     convert color column to factor
                     color for cells (see details)
    cell_color
    cell_color_code
                     named vector with colors
    show_cluster_center
                     plot center of selected clusters
```

82 direction_test_CPG

```
show_center_label
```

plot label of selected clusters

center_point_size

size of center points

label_size size of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

show_legend show legend

Details

Description of parameters.

Value

plotly

Examples

dimPlot3D(gobject)

direction_test_CPG

direction_test_CPG

Description

shows direction of change

Usage

```
direction_test(x, min_fdr = 0.05)
```

```
direction_test_CPG()
```

doHclust 83

doHclust doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL
  name = "hclust",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

```
giotto object
gobject
expression_values
                  expression values to use
genes_to_use
                  subset of genes to use
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimensions reduction name
dimensions_to_use
                  dimensions to use
distance_method
                  distance method
{\tt agglomeration\_method}
                  agglomeration method for hclust
k
                  number of final clusters
h
                  cut hierarchical tree at height = h
                  name for hierarchical clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
```

84 doHMRF

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

```
doHclust(gobject)
```

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "test",
  k = 10,
  betas = c(0, 2, 50),
  tolerance = 1e-10,
  zscore = c("none", "rowcol", "colrow"),
  numinit = 100,
  python_path = NULL,
  output_folder = NULL,
  overwrite_output = TRUE
)
```

doKmeans 85

```
spatial_genes
                  spatial genes to use for HMRF
spatial_dimensions
                  select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                  use another dimension reduction set as input
dim_reduction_name
                  name of dimension reduction set to use
dimensions_to_use
                  number of dimensions to use as input
name
                  name of HMRF run
k
                  number of HMRF domains
betas
                  betas to test for
tolerance
                  tolerance
zscore
                  zscore
numinit
                  number of initializations
python_path
                  python path to use
output_folder
                  output folder to save results
overwrite_output
                  overwrite output folder
```

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

Examples

```
doHMRF(gobject)
```

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
```

86 doKmeans

```
"manhattan", "canberra", "binary", "minkowski"),
centers = 10,
iter_max = 100,
nstart = 1000,
algorithm = "Hartigan-Wong",
name = "kmeans",
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
```

Arguments

gobject giotto object

expression_values

expression values to use

genes_to_use subset of genes to use

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimensions reduction name

dimensions_to_use

dimensions to use

distance_method

distance method

centers number of final clusters
iter_max kmeans maximum iterations

nstart kmeans nstart algorithm kmeans algorithm

name name for kmeans clustering

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

kmeans

Examples

doKmeans(gobject)

doLeidenCluster 87

doLeidenCluster doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234,
  ...
)
```

```
giotto object
gobject
name
                  name for cluster
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
python_path
                  specify specific path to python if required
resolution
                  resolution
weight_col
                  weight column to use for edges
partition_type The type of partition to use for optimisation.
init_membership
                  initial membership of cells for the partition
                  number of interations to run the Leiden algorithm. If the number of iterations
n_iterations
                  is negative, the Leiden algorithm is run until an iteration in which there was no
                  improvement.
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
```

88 doLeidenSubCluster

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the \leidenal-ghttps://github.com/vtraag/leidenalg github page or the \readthedocshttps://leidenalg.readthedocs.io/en/stable/index.html page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does \emprot use the resolution parameter

Set weight col = NULL to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLeidenCluster(gobject)
```

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(
  gobject,
  name = "sub_pleiden_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
 n_{iterations} = 500,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
```

doLeidenSubCluster 89

```
return_gobject = TRUE,
verbose = T
```

giotto object

Arguments

gobject

name name for new clustering result cluster_column cluster column to subcluster selected_clusters only do subclustering on these clusters hvg_param parameters for calculateHVG hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg parameters for runPCA pca_param nn_param parameters for parameters for createNearestNetwork number of k for createNearestNetwork k_neighbors resolution of Leiden clustering

number of interations to run the Leiden algorithm.

python_path specify specific path to python if required

nn_network_to_use

resolution

n_iterations

type of NN network to use (kNN vs sNN)

name of NN network to use network_name

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

90 doLouvainCluster

See Also

```
doLeidenCluster
```

Examples

```
doLeidenSubCluster(gobject)
```

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
)
```

```
giotto object
gobject
                  implemented version of Louvain clustering to use
version
                  name for cluster
name
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
python_path
                  [community] specify specific path to python if required
resolution
                  [community] resolution
                  [multinet] Resolution parameter for modularity in the generalized louvain method.
gamma
                  [multinet] Inter-layer weight parameter in the generalized louvain method.
omega
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
```

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

See Also

doLouvainCluster_community and doLouvainCluster_multinet

Examples

```
doLouvainCluster(gobject)
```

```
\label{lower} do Louvain {\it Cluster\_community} \\ do Louvain {\it Cluster\_community}
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(
   gobject,
   name = "louvain_clus",
   nn_network_to_use = "sNN",
   network_name = "sNN.pca",
   python_path = NULL,
   resolution = 1,
   weight_col = NULL,
   louv_random = F,
   return_gobject = TRUE,
   set_seed = F,
   seed_number = 1234,
   ...
)
```

weight_col weight column to use for edges

louv_random Will randomize the node evaluation order and the community evaluation order

to get different partitions at each call

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

This function is a wrapper for the Louvain algorithm implemented in Python, which can detect communities in graphs of nodes (cells). See the \readthedocshttps://python-louvain.readthedocs.io/en/latest/index.html page for more information.

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_community(gobject)
```

```
doLouvainCluster_multinet
```

doLouvainCluster_multinet

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

```
doLouvainCluster_multinet(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  gamma = 1,
  omega = 1,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

doLouvainSubCluster 93

Arguments

Details

seed_number

See glouvain_ml from the multinet package in R for more information.

Value

giotto object with new clusters appended to cell metadata

number for seed

Examples

```
doLouvainCluster_multinet(gobject)
```

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

```
doLouvainSubCluster(
 gobject,
 name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
```

94 doLouvainSubCluster

```
gamma = 1,
omega = 1,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

gobject giotto object

name name for new clustering result
version version of Louvain algorithm to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

 $hvg_min_perc_cells$

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

 $\label{eq:kneighbors} $$ number of k for createNearestNetwork $$ resolution $$ resolution for community algorithm$

gamma gamma omega omega

python_path specify specific path to python if required

 $nn_network_to_use$

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLouvainCluster_multinet and doLouvainCluster_community
```

Examples

```
doLouvainSubCluster(gobject)
```

```
\label{loss} do Louvain SubCluster\_community \\ do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(
  gobject,
  name = "sub_louvain_comm_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

```
gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters
```

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name \hspace{0.5cm} name \hspace{0.5cm} of \hspace{0.5cm} NN \hspace{0.5cm} network \hspace{0.5cm} to \hspace{0.5cm} use$

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain community algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain community clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_community

Examples

doLouvainSubCluster_community(gobject)

```
\label{lower} do Louvain SubCluster\_multinet \\ do Louvain SubCluster\_multinet
```

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

Usage

```
doLouvainSubCluster_multinet(
  gobject,
 name = "sub_louvain_mult_clus",
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  gamma = 1,
  omega = 1,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

```
giotto object
gobject
name
                  name for new clustering result
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
```

98 doRandomWalkCluster

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma
omega omega
nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

python_path specify specific path to python if required

Details

This function performs subclustering using the Louvain multinet algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain multinet clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet

Examples

doLouvainSubCluster_multinet(gobject)

 ${\tt doRandomWalkCluster} \qquad doRandomWalkCluster$

Description

Cluster cells using a random walk approach.

doRandomWalkCluster 99

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

```
gobject
                 giotto object
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use
walk_steps
                 number of walking steps
                 number of final clusters
walk_clusters
                 cluster column defining the walk weights
walk_weights
return_gobject boolean: return giotto object (default = TRUE)
set\_seed
                 set seed
seed_number
                 number for seed
```

Details

See cluster_walktrap function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

```
doRandomWalkCluster(gobject)
```

100 doSNNCluster

doSNNCluster doSNNCluster

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

gobject giotto object
name name for cluster
nn_network_to_use

type of NN network to use (only works on kNN)

network_name name of kNN network to use

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

dt_to_matrix

Examples

```
doSNNCluster(gobject)
```

dt_to_matrix

 dt_to_matrix

Description

converts data.table to matrix

Usage

```
dt_to_matrix(x)
```

Examples

```
dt_to_matrix(x)
```

exportGiottoViewer

exportGiot to Viewer

Description

compute highly variable genes

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  factor_annotations,
  numeric_annotations,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("scaled", "normalized", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = 2,
  overwrite_dir = T,
  verbose = T
```

Arguments

```
gobject
                  giotto object
output_directory
                  directory where to save the files
spat_enr_names spatial enrichment results to include for annotations
factor_annotations
                  giotto cell annotations to view as factor
numeric_annotations
                  giotto cell annotations to view as numeric
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
verbose
                  be verbose
```

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

Value

writes the necessary output to use in Giotto Viewer

Examples

```
exportGiottoViewer(gobject)
```

```
expr Only Cell Cell communication Scores \\ expr Only Cell Cell communication Scores
```

Description

Cell-Cell communication scores based on expression only

extended_gini_fun 103

Usage

```
exprOnlyCellCellcommunicationScores(
  gobject,
  cluster_column = "cell_types",
  random_iter = 100,
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
  verbose = T
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

random_iter number of iterations

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

verbose verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on expression only

Examples

```
exprOnlyCellCellcommunicationScores(gobject)
```

```
extended_gini_fun extended_gini_fun
```

Description

calculate gini coefficient on a minimum length vector

Usage

```
extended_gini_fun(x, weights = rep(1, length = length(x)), minimum_length = 16)
```

Value

gini coefficient

104 fDataDT

```
{\tt extractNearestNetwork} \ \ \textit{extractNearestNetwork}
```

Description

Extracts a NN-network from a Giotto object

Usage

```
extractNearestNetwork(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  output = c("igraph", "data.table")
)
```

Arguments

Value

igraph or data.table object

Examples

extractNearestNetwork(gobject)

 ${\sf fDataDT}$

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject giotto object

Value

data.table with gene metadata

filterCombinations 105

Examples

```
pDataDT(gobject)
```

filterCombinations

filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_thresholds
                  all thresholds to consider a gene expressed
gene_det_in_min_cells
                  minimum number of cells that should express a gene to consider that gene fur-
                  ther
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
scale_x_axis
                  ggplot transformation for x-axis (e.g. log2)
x_axis_offset
                 x-axis offset to be used together with the scaling transformation
                  ggplot transformation for y-axis (e.g. log2)
scale_y_axis
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
                  show plot
show_plot
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

106 filterCPGscores

Value

list of data.table and ggplot object

Examples

```
filterCombinations(gobject)
```

filterCPGscores

filterCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
filterCPGscores(
   CPGscore,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
   keep_int_duplicates = TRUE,
   direction = c("both", "up", "down")
```

Arguments

```
min_cells min number of cells threshold
min_fdr false_discovery threshold
min_spat_diff spatial difference threshold
min_log2_fc min log2 fold-change
keep_int_duplicates
keep both cell_A-cell_B and cell_B-cell_A
direction expression changes to keep
method visualization method
```

Details

This function filters the output from getCellProximityGeneScores based on false-discovery rate, minimum absolute difference, minimum log fold-change and direction of change.

Value

Gene to gene scores in data.table format

```
filterCPGscores(CPGscore)
```

filterDistributions 107

```
filterDistributions filterDistributions
```

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
                  offset to be used together with the scaling transformation
axis_offset
show_plot
                  show plot
```

Value

ggplot object

```
filterDistributions(gobject)
```

108 filterGiotto

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
expression_threshold
threshold to consider a gene expressed
gene_det_in_min_cells
minimum # of cells that need to express a gene
min_det_genes_per_cell
minimum # of genes that need to be detected in a cell
verbose verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

giotto object

```
filterGiotto(gobject)
```

findGiniMarkers 109

findGiniMarkers findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
group_1
                  group 1 cluster IDs from cluster_column for pairwise comparison
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter on minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
                  rank scores to include
rank_score
```

Details

Detection of marker genes using the \ginihttps://en.wikipedia.org/wiki/Gini_coefficient coefficient is based on the following steps/principles per gene:

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster
- 3. calculate gini-coefficient for av. expression values over all clusters

- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined gini score = av. expr gini x detection gini
- 7. for each gene create and sort on combined rank score = expr rank x detection rank

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
findGiniMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  min_genes = 10,
  verbose = TRUE
)
```

```
gobject giotto object
expression_values
gene expression values to use
cluster_column clusters to use
subset_clusters
selection of clusters to compare
```

findMarkers 111

```
min_expr_gini_score
filter on minimum gini coefficient on expression

min_det_gini_score
filter on minimum gini coefficient on detection

detection_threshold
detection threshold for gene expression

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose
```

Value

data.table with marker genes

See Also

findGiniMarkers

Examples

```
findGiniMarkers_one_vs_all(gobject)
```

findMarkers findMarkers

Description

Identify marker genes for selected clusters.

```
findMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank\_score = 1,
  group_1_name = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
)
```

112 findMarkers

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
rank_score
                  gini: rank scores to include
                  mast: custom name for group_1 clusters
group_1_name
                  mast: custom name for group_2 clusters
group_2_name
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

 $find Scran Markers, find Gini Markers \ and \ find Mast Markers$

```
findMarkers(gobject)
```

```
find {\it Markers\_one\_vs\_all} \\ find {\it Markers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner.

Usage

```
findMarkers_one_vs_all(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 cluster_column,
  subset_clusters = NULL,
 method = c("scran", "gini", "mast"),
 pval = 0.01,
 logFC = 0.5,
 min\_genes = 10,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
 detection_threshold = 0,
  rank_score = 1,
 adjust_columns = NULL,
 verbose = TRUE,
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  method to use to detect differentially expressed genes
method
pval
                  scran & mast: filter on minimal p-value
logFC
                  scan & mast: filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
```

114 findMastMarkers

```
verbose be verbose
... additional parameters for the findMarkers function in scran or zlm function in MAST
```

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

```
find Scran Markers\_one\_vs\_all, find Gini Markers\_one\_vs\_all \ and \ find Mast Markers\_one\_vs\_all \ and \ find Markers\_one\_v
```

Examples

```
{\tt findMarkers\_one\_vs\_all(gobject)}
```

findMastMarkers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  ...
)
```

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_1_name custom name for group_1 clusters
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
```

```
group_2_name custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
... additional parameters for the zlm function in MAST
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes.

Value

data.table with marker genes

Examples

```
findMastMarkers(gobject)
```

```
findMastMarkers_one_vs_all findMastMarkers_one_vs_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

```
gobject giotto object
expression_values
gene expression values to use
cluster_column clusters to use
subset_clusters
selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
pval filter on minimal p-value
```

116 findScranMarkers

```
logFC filter on logFC
min_genes minimum genes to keep per cluster, overrides pval and logFC
verbose be verbose
... additional parameters for the zlm function in MAST
```

Value

data.table with marker genes

See Also

findMastMarkers

Examples

```
findMastMarkers_one_vs_all(gobject)
```

findScranMarkers findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  ...
)
```

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
findScranMarkers(gobject)
```

```
find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

Usage

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  subset of clusters to use
pval
                  filter on minimal p-value
logFC
                  filter on logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
                  additional parameters for the findMarkers function in scran
. . .
```

find_grid_x

Value

data.table with marker genes

See Also

findScranMarkers

Examples

findScranMarkers_one_vs_all(gobject)

find_grid_2D

find_grid_2D

Description

find grid location in 2D

Usage

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

find_grid_3D

find_grid_3D

Description

find grid location in 3D

Usage

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

find_grid_x

find_grid_x

Description

find grid location on x-axis

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

find_grid_y

 $find_grid_y$

Description

find grid location on y-axis

Usage

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

 $find_grid_z$

Description

find grid location on z-axis

Usage

```
find_grid_z(grid_DT, z_loc)
```

fish_function

fish_function

Description

perform fisher exact test

Usage

```
fish_function(x_to, x_from)
```

fish_function2

fish_function2

Description

perform fisher exact test

```
fish_function2(A, B, C, D)
```

120 FSV_show

FSV_show

FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(
  results,
  ms_results = NULL,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5
)
```

Arguments

results results caculated by spatial_DE

ms_results ms_results caculated by spatial_DE

size indicate different levels of qval

color indicate different SV features

sig_alpha transparency of significant genes

unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

Value

nothing

```
FSV_show(results)
```

GenePattern_show 121

GenePattern_show

GenePattern_show

Description

Visualize genes distribution patterns calculated by spatial_AEH

Usage

```
GenePattern_show(
  gobject = NULL,
  AEH_results = NULL,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0
)
```

Arguments

gobject giotto object results from spatial_AEH AEH_results sdimx x axis of spatial locus sdimy y axis of spatial locus point_size size of points to indicate cells transparency of points to indicate cells point_alpha low_color color to indicate low score level color to indicate middle score level mid_color high_color color to indicate high score level point to set mid_color midpoint

Details

Description of parameters.

Value

nothing

```
GenePattern_show(gobject,AEH_results)
```

122 general_save_function

```
general_save_function general_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
general_save_function(
   gobject,
   plot_object,
   save_dir = NULL,
   save_folder = NULL,
   save_name = NULL,
   default_save_name = "giotto_plot",
   save_format = c("png", "tiff", "pdf", "svg"),
   show_saved_plot = F,
   base_width = NULL,
   base_height = NULL,
   base_aspect_ratio = NULL,
   units = NULL,
   dpi = NULL,
   ...
)
```

Arguments

```
gobject
                  giotto object
                  non-ggplot object to plot
plot_object
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
                  name of plot
save_name
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
```

```
general_save_function(gobject)
```

get10Xmatrix 123

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data)
```

Arguments

```
path_to_data path to the 10X folder
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix. It has 3 files:

- barcodes
- features.tsv.gz
- matrix.mtx.gz

Value

expression matrix from 10X

Examples

```
get10Xmatrix(10Xmatrix)
```

```
{\it get Cell Proximity Gene Scores} \\ {\it get Cell Proximity Gene Scores}
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

```
getCellProximityGeneScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "louvain_clus.1",
  selected_genes = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  do_diff_test = TRUE,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
```

```
fold_change_addendum = 0.1,
  in_two_directions = TRUE,
  exclude_selected_cells_from_test = F,
  verbose = T
)
```

Arguments

```
gobject
                  giotto object
spatial_network_name
                  name of spatial network to use
cluster_column name of column to use for clusters
selected_genes selection of genes to perform calculations for
expression_values
                  expression values to use
do_diff_test
                  perform differential test
diff_test
                  which differential expression test
minimum_unique_cells
                  minimum number of cells needed to proceed
fold_change_addendum
                  constant to add when calculating log2 fold-change
in_two_directions
                  shows enrichment in both directions: cell1-cell2, cell2-cell1
exclude_selected_cells_from_test
                  exclude certain cells from test
verbose
                  verbose
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (according to physical proximity) with other cell types. The results data.table contains the following columns:

- genes: All or selected list of tested genes
- cell_expr_1: average gene expression in cell type 1 from unified_int cell-cell interaction
- cell_expr_2: average gene expression in cell type 2 from unified_int cell-cell interaction
- comb_expr: combined average gene expression in cell type 1 and 2 from unified_int cell-cell interaction
- all_cell_expr_1: average gene expression for all cells from cell type 1
- all_cell_expr_2: average gene expression for all cells from cell type 2
- all_comb_expr: combined average gene expression for all cells from cell type 1 and 2
- pval_1: p-value from test between interacting cells and all cells from cell type 1
- pval_2: p-value from test between interacting cells and all cells from cell type 2
- cell_type_1: first cell type of cell-cell interaction
- cell_type_2: second cell type of cell-cell interaction
- interaction: the cell-cell interaction, based on physical proximity
- nr_1: number of cell type 1 in the unified cell-cell interaction
- nr_2: number of cell type 2 in the unified cell-cell interaction

getClusterSimilarity 125

- all_nr_1: number of all cell type 1 in the whole dataset
- all_nr_2: number of all cell type 2 in the whole dataset
- diff_spat: difference between comb_expr and all_comb_expr
- diff_spat_1: difference between cell_expr_1 and all_cell_expr_1
- diff_spat_2: difference between cell_expr_1 and all_cell_expr_1
- log2fc_spat_1: fold-change of diff_spat_1
- log2fc_spat_2: fold-change of diff_spat_2
- log2fc_spat: fold-change of diff_spat
- type_int: type of interaction
- unified_int: interaction with alphabetically sorted cell type 1 and cell type 2
- unif_int_rank: 1 or 2
- fdr_1: fdr from test between interacting cells and all cells from cell type 1
- fdr_2: fdr from test between interacting cells and all cells from cell type 2

Value

Cell Proximity Gene scores (CPGscores) in data.table format

Examples

```
getCellProximityGeneScores(gobject)
```

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

126 getDendrogramSplits

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  show dendrogram
show_dend
verbose
                  be verbose
```

getDistinctColors 127

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

```
getDendrogramSplits(gobject)
```

getDistinctColors

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

```
getDistinctColors(n)
```

Arguments

n

number of colors wanted

Value

number of distinct colors

getGeneToGeneScores

getGeneToGeneScores

Description

Compute gene-gene enrichment scores.

```
getGeneToGeneScores(
   CPGscore,
   selected_genes = NULL,
   specific_genes_1 = NULL,
   specific_genes_2 = NULL,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
```

```
direction = c("both", "up", "down"),
fold_change_addendum = 0.1,
  verbose = TRUE
)
```

Arguments

```
CPGscore
                  CPGscore, output from getCellProximityGeneScores()
selected_genes select subset of genes
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
                  min number of cells threshold
min_cells
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
fold_change_addendum
                  constant to add when calculating log2 fold-change
verbose
                  verbose
min_pval
                  p-value threshold
```

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

```
getGeneToGeneScores(CPGscore)
```

```
{\it get\_cell\_to\_cell\_sorted\_name\_conversion} \\ {\it get\_cell\_to\_cell\_sorted\_name\_conversion}
```

Description

creates unified cell-cell interaction names

Usage

```
get_cell_to_cell_sorted_name_conversion(all_cell_types)
```

```
get_cell_to_cell_sorted_name_conversion()
```

```
{\it get\_interaction\_gene\_enrichment} \\ {\it get\_interaction\_gene\_enrichment}
```

Description

Computes gene enrichment between all interactions

Usage

```
get_interaction_gene_enrichment(
  spatial_network,
  unified_int_col = "unified_int",
  source_col = "source_clus",
  source_IDs = "from",
  neighb_col = "neighb_clus",
  neighb_IDs = "to",
  expression_matrix,
  cell_annotation,
  annotation_ID = "uniq_ID",
  cell_type_col,
  do_diff_test = T,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
  exclude_selected_cells_from_test = T,
  verbose = T
)
```

Examples

```
get_interaction_gene_enrichment()
```

```
{\tt get\_specific\_interaction\_gene\_enrichment} \\ {\tt get\_specific\_interaction\_gene\_enrichment}
```

Description

Computes gene enrichment between specified interaction

```
get_specific_interaction_gene_enrichment(
  sub_spatial_network,
  source_col = "source_clus",
  source_IDs = "from",
  neighb_col = "neighb_clus",
  neighb_IDs = "to",
  expression_matrix,
```

130 ggplot_save_function

```
interaction_name = "to_specify",
  cell_annotation,
  annotation_ID = "uniq_ID",
  cell_type_col,
  do_diff_test = T,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
  exclude_selected_cells_from_test = T
)
```

Examples

```
get_specific_interaction_gene_enrichment()
```

```
ggplot_save_function ggplot_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
ggplot_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

```
gobject giotto object
plot_object ggplot object to plot
save_dir directory to save to
save_folder folder in save_dir to save to
```

giotto-class 131

save_name name of plot

save_format (e.g. png, tiff, pdf, ...)

show_saved_plot

load & display the saved plot

ncol number of columns nrow number of rows

scale scale
base_width width
base_height height
base_aspect_ratio

aspect ratio

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

See Also

```
cowplot::save_plot
```

Examples

```
ggplot_save_function(gobject)
```

giotto-class S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

```
raw_exprs raw expression counts

norm_expr normalized expression counts

norm_scaled_expr normalized and scaled expression counts

custom_expr custom normalized counts

spatial_locs spatial location coordinates for cells

cell_metadata metadata for cells

gene_metadata metadata for genes

cell_ID unique cell IDs

gene_ID unique gene IDs

spatial_network spatial network in data.table/data.frame format

spatial_grid spatial grid in data.table/data.frame format

dimension_reduction slot to save dimension reduction coordinates
```

nn_network nearest neighbor network in igraph format parameters slot to save parameters that have been used instructions slot for global function instructions offset_file offset file used to stitch together image fields OS_platform Operating System to run Giotto analysis on

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

```
hyperGeometricEnrich(gobject)
```

kmeans_binarize 133

kmeans_binarize

kmeans_binarize

Description

create binarized scores using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
)
```

Arguments

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

```
loadHMRF(gobject)
```

134 makeSignMatrixRank

makeSignMatrixPAGE makeSignMatrixPAGE

Description

Function to convert list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option.

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

sign_names vector with names for each provided gene signature

list of genes (signature)

Value

matrix

sign_list

See Also

PAGEEnrich

Examples

 ${\tt makeSignMatrixPAGE()}$

makeSignMatrixRank makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(sc_matrix, sc_cluster_ids, gobject = NULL)
```

Arguments

sign_names vector with names for each provided gene signature sign_list list of genes (signature)

Value

matrix

See Also

rankEnrich

Examples

```
makeSignMatrixRank()
```

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

Examples

```
make_simulated_network(gobject)
```

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
  return_gobject = TRUE,
  verbose = TRUE
)
```

mygini_fun

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
min_cor_score min correlation score to merge pairwise clusters
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
return_gobject return giotto object
                  be verbose
verbose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value.

A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

mygini_fun

mygini_fun

Description

calculate gini coefficient

Usage

```
mygini_fun(x, weights = rep(1, length(x)))
```

Value

gini coefficient

nnDT_to_kNN

nnDT_to_kNN

 $nnDT_to_kNN$

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

node_clusters

node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

hclus_obj hclus object verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

```
node_clusters(hclus_obj)
```

138 normalizeGiotto

normalizeGiotto normalizeGiotto

Description

normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

Arguments

```
giotto object
gobject
norm_methods
                  normalization method to use
library_size_norm
                  normalize cells by library size
scalefactor
                  scale factor to use after library size normalization
                  transform values to log-scale
log_norm
                  log base to use to log normalize expression values
logbase
scale_genes
                  z-score genes over all cells
scale_cells
                  z-score cells over all genes
scale_order
                  order to scale genes and cells
verbose
                  be verbose
```

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:

OR_function2 139

• 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.

• 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

```
normalizeGiotto(gobject)
```

OR_function2

OR_function2

Description

calculate odds-ratio

Usage

```
OR_function2(A, B, C, D)
```

PAGEEnrich

PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

```
PAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

pDataDT

Arguments

gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment

how to return enrichment output

Details

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\check{\ }mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

Examples

PAGEEnrich(gobject)

pDataDT

pDataDT

Description

show cell metadata

Usage

pDataDT(gobject)

Arguments

gobject

giotto object

Value

data.table with cell metadata

Examples

pDataDT(gobject)

plotCPGscores 141

plotCPGscores

plotCPGscores

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotCPGscores(
   CPGscores,
   selected_interactions = NULL,
   selected_genes = NULL,
   detail_plot = T,
   simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed",
   facet_ncol = length(selected_genes),
   facet_nrow = length(selected_interactions),
   show_plot = F
)
```

Arguments

```
CPGscores
                  CPGscores, output from getCellProximityGeneScores()
selected_interactions
                  interactions to show
selected_genes genes to show
detail_plot
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
show_plot
                  show plot
```

Details

Give more details ...

Value

ggplot barplot

```
\verb"plotCPGscores" (CPGscores")
```

142 plotGTGscores

plotGTGscores

plotGTGscores

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotGTGscores(
  gobject,
 GTGscore,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
 detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("blue", "red"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotGTGscores"
)
```

```
giotto object
gobject
GTGscore
                  GTGscore, output from getGeneToGeneScores()
selected_interactions
                  interactions to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
                  ggplot facet scales paramter
facet_scales
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with 2 colors to represent respectively all and selected cells
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
selected_genes genes to show
```

plotHeatmap 143

Details

Give more details ...

Value

ggplot barplot

Examples

plotGTGscores(GTGscore)

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

```
plotHeatmap(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 genes,
 cluster_column = NULL,
 cluster_order = c("size", "correlation", "custom"),
 cluster_custom_order = NULL,
 cluster_color_code = NULL,
 cluster_cor_method = "pearson",
 cluster_hclust_method = "ward.D",
 gene_order = c("custom", "correlation"),
 gene_custom_order = NULL,
 gene_cor_method = "pearson",
 gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
 gradient_colors = c("blue", "yellow", "red"),
 gene_label_selection = NULL,
 axis_text_y_size = NULL,
 legend_nrows = 1,
 show_plot = NA,
 return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "plotHeatmap"
```

144 plotHeatmap

Arguments

gobject giotto object expression_values expression values to use genes to use genes cluster_column name of column to use for clusters cluster_order method to determine cluster order cluster_custom_order custom order for clusters cluster_color_code color code for clusters cluster_cor_method method for cluster correlation cluster_hclust_method method for hierarchical clustering of clusters gene_order method to determine gene order gene_custom_order custom order for genes gene_cor_method method for gene correlation gene_hclust_method method for hierarchical clustering of genes show_values which values to show on heatmap size_vertical_lines sizes for vertical lines gradient_colors colors for heatmap gradient gene_label_selection subset of genes to show on y-axis axis_text_y_size size for y-axis text legend_nrows number of rows for the cluster legend show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function() save_param default_save_name

Details

If you want to display many genes there are 2 ways to proceed:

default save name

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

plotly_axis_scale_2D 145

Value

ggplot

Examples

```
plotHeatmap(gobject)
```

```
{\tt plotly\_axis\_scale\_2D} \quad \textit{plotly\_axis\_scale\_2D}
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_2D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

Value

```
edges in spatial grid as data.table()
```

```
plotly_axis_scale_2D(gobject)
```

146 plotly_grid

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_3D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location sdimz z axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_3D(gobject)
```

```
plotly_grid
```

 $plotly_grid$

Description

provide grid segment to draw in plot_ly()

Usage

```
plotly_grid(
   spatial_grid,
   x_start = "x_start",
   y_start = "y_start",
   x_end = "x_end",
   y_end = "y_end"
)
```

plotly_network 147

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

```
edges in spatial grid as data.table()
```

Examples

```
plotly_grid(gobject)
```

plotly_network

plotly_network

Description

```
provide network segment to draw in 3D plot_ly()
```

Usage

```
plotly_network(
  network,
  x = "sdimx_begin",
  y = "sdimy_begin",
  z = "sdimz_begin",
  x_end = "sdimx_end",
  y_end = "sdimy_end",
  z_end = "sdimz_end")
```

Arguments

```
gobject network in giotto object
```

Value

```
edges in network as data.table()
```

```
plotly_network(gobject)
```

```
plot {\tt MetaDataCellsHeatmap} \\ plot {\tt MetaDataCellsHeatmap}
```

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

Usage

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_values_order = NULL,
  values_cor_method = "pearson",
  values_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 8,
  x_{text_angle} = 45,
  y_{text_size} = 8,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataCellsHeatmap"
)
```

```
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
                  midpoint of show_values
midpoint
                  size of x-axis text
x_text_size
x_text_angle
                  angle of x-axis text
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
```

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

```
plotMetaDataCellsHeatmap(gobject)
```

```
plotMetaDataHeatmap
```

Description

Creates heatmap for genes within aggregated clusters.

Usage

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson"
  gene_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataHeatmap"
)
```

```
gobject giotto object

expression_values

expression values to use

metadata_cols annotation columns found in pDataDT(gobject)

selected_genes subset of genes to use

first_meta_col if more than 1 metadata column, select the x-axis factor

second_meta_col

if more than 1 metadata column, select the facetting factor

show_values which values to show on heatmap

custom_cluster_order

custom cluster order (default = NULL)
```

plotMetaDataHeatmap 151

```
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
midpoint
                  midpoint of show_values
x_text_size
                  size of x-axis text
                  angle of x-axis text
x_text_angle
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name
```

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

```
plotMetaDataHeatmap(gobject)
```

152 plotPCA

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

```
gobject
                  giotto object
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
group_by_subset
                  subset the group_by factor column
                  dimension to use on x-axis
dim1_to_use
                  dimension to use on y-axis
dim2_to_use
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
                  color for cells (see details)
cell_color
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
```

plotPCA 153

```
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
title
                  title for plot, defaults to cell_color parameter
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

```
plotPCA(gobject)
```

plotPCA_2D

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
   ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 create multiple plots based on cell annotation column
groub_by
group_by_subset
                 subset the group_by factor column
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
                 color for cells (see details)
cell_color
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
cell_color_gradient
                 vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
```

plotPCA_2D 155

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

```
plotPCA_2D(gobject)
```

plotPCA_3D

plotPCA_3D

plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
   ...
)
```

```
gobject
                  giotto object
dim_reduction_name
                  pca dimension reduction name
default_save_name
                  default save name for saving, ideally change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
```

plotTSNE 157

list of saving parameters from all_plots_save_function()

```
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
                  size of labels
label_size
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
```

Details

Description of parameters.

Value

plotly

save_param

Examples

```
plotPCA_3D(gobject)
```

plotTSNE

plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

158 plotTSNE

dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points title title for plot, defaults to cell_color parameter show_legend show legend legend_text size of legend text axis_text size of axis text axis_title size of axis title

plotTSNE_2D 159

```
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE(gobject)
```

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
  ...
)
```

160 plotTSNE_2D

dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points title title for plot, defaults to cell_color parameter show_legend show legend legend_text size of legend text axis_text size of axis text axis_title size of axis title

plotTSNE_3D

```
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE_2D(gobject)
```

plotTSNE_3D

plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D",
  ...
)
```

162 plotTSNE_3D

nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels

point_size size of point (cell)

show_legend show_plot show plot

edge_alpha

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

column to use for alpha of the edges

Details

Description of parameters.

Value

plotly

Examples

plotTSNE_3D(gobject)

plotUMAP 163

plotUMAP plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

```
gobject
                  giotto object
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
group_by_subset
                  subset the group_by factor column
                  dimension to use on x-axis
dim1_to_use
                  dimension to use on y-axis
dim2_to_use
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
                  color for cells (see details)
cell_color
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
```

164 plotUMAP

```
other_point_size
```

size of not selected cells

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

label_size size of labels label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

title title for plot, defaults to cell_color parameter

show_legend show legend

legend_text size of legend text
axis_text size of axis text
axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

 $save_param \qquad list \ of \ saving \ parameters \ from \ all_plots_save_function()$

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

Examples

plotUMAP(gobject)

plotUMAP_2D 165

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_2D",
)
```

```
gobject
                 giotto object
dim_reduction_name
                 dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 create multiple plots based on cell annotation column
groub_by
group_by_subset
                 subset the group_by factor column
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
                 color for cells (see details)
cell_color
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
cell_color_gradient
                 vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
```

166 plotUMAP_2D

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

```
plotUMAP_2D(gobject)
```

plotUMAP_3D 167

plotUMAP_3D plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_3D",
  ...
)
```

```
gobject
                  giotto object
dim_reduction_name
                  umap dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
```

```
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
show_legend
                  show legend
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters.

Value

plotly

Examples

```
plotUMAP_3D(gobject)
```

Description

Visualize cells in network layer according to dimension reduction coordinates

Usage

```
plot_network_layer_ggplot(
   ggobject,
   annotated_network_DT,
   edge_alpha = NULL,
   show_legend = T
)
```

Arguments

```
annotated_network_DT
```

annotated network data.table of selected cells

edge_alpha alpha of network edges

show_legend show legend gobject giotto object

Details

Description of parameters.

Value

ggplot

Examples

```
plot_network_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates

Usage

```
plot_point_layer_ggplot(
  ggobject,
  annotated_DT_selected,
  annotated_DT_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_legend = T
)
```

Arguments

```
annotated_DT_selected
                  annotated data.table of selected cells
annotated_DT_other
                  annotated data.table of not selected cells
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
                  show legend
show_legend
                  giotto object
gobject
```

Details

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot(gobject)
```

Description

creat ggplot point layer for spatial coordinates

Usage

```
plot_spat_point_layer_ggplot(
  ggobject,
  sdimx = NULL,
  sdimy = NULL,
  cell_locations_metadata_selected,
  cell_locations_metadata_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 2,
  point_border_col = "lightgrey",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  show_legend = TRUE
)
```

```
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
cell_locations_metadata_selected
annotated location from selected cells
```

```
{\tt cell\_locations\_metadata\_other}
                  annotated location from non-selected cells
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_other_cells
                  display not selected cells
other_cell_color
                  color for not selected cells
other_point_size
                  point size for not selected cells
show_legend
                  show legend
                  giotto object
gobject
Description of parameters.
```

Details

Value

ggplot

```
plot_spat_point_layer_ggplot(gobject)
```

print.giotto 173

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

174 readGiottoInstructions

Details

First a new rank is calculated as $R = (R1*R2)^{n}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: RBP = $(1 - 0.99) * (0.99)^{n}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

Examples

```
rankEnrich(gobject)
```

rank_binarize

rank_binarize

Description

create binarized scores using arbitrary rank of top genes

Usage

```
rank\_binarize(x, max\_rank = 200)
```

readGiottoInstructions

readGiottoInstrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

```
giotto_instructions
```

giotto object or result from createGiottoInstructions()

param

parameter to retrieve

Value

specific parameter

```
readGiottoInstrunctions()
```

removeCellAnnotation 175

```
remove Cell Annotation remove Cell Annotation
```

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the cell metadata

Value

giotto object

Examples

removeCellAnnotation(gobject)

```
removeGeneAnnotation removeGeneAnnotation
```

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the gene metadata

176 runPCA

Value

```
giotto object
```

Examples

```
removeGeneAnnotation(gobject)
```

```
replaceGiottoInstructions
```

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

```
gobject giotto object
instructions new instructions (e.g. result from createGiottoInstructions)
```

Value

named vector with giotto instructions

Examples

```
replaceGiottoInstructions()
```

runPCA

runPCA

Description

runs a Principal Component Analysis

Usage

```
runPCA(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = NULL,
  return_gobject = TRUE,
  scale_unit = F,
  ncp = 200,
  ...
)
```

runtSNE 177

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  cells or genes
reduction
name
                  arbitrary name for PCA run
                  subset of genes to use for PCA
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
scale_unit
                  scale features before PCA
                  number of principal components to calculate
ncp
                  additional parameters for PCA (see details)
. . .
```

Details

See PCA for more information about other parameters.

Value

giotto object with updated PCA dimension recuction

runtSNE

Examples

```
runPCA(gobject)
```

runtSNE

Description

run tSNE

Usage

```
runtSNE(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "tsne",
  genes_to_use = NULL,
  return_gobject = TRUE,
  dims = 2,
  perplexity = 30,
  theta = 0.5,
  do_PCA_first = F,
  set\_seed = T,
  seed_number = 1234,
)
```

178 runtSNE

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name arbitrary name for tSNE run

genes_to_use if dim_reduction_to_use = NULL, which genes to use

return_gobject boolean: return giotto object (default = TRUE)

dims tSNE param: number of dimensions to return

perplexity tSNE param: perplexity

theta tSNE param: theta

do_PCA_first tSNE param: do PCA before tSNE (default = FALSE)

set_seed use of seed

seed_number seed number to use

... additional tSNE parameters

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple tSNE results can be stored by changing the *name* of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

runtSNE(gobject)

runUMAP 179

runUMAP runUMAP

Description

run UMAP

Usage

```
runUMAP(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "umap",
  genes_to_use = NULL,
  return_gobject = TRUE,
  n_neighbors = 40,
  n_{components} = 2,
  n_{epochs} = 400,
  min_dist = 0.01,
  n_{threads} = 1,
  spread = 5,
  set\_seed = T,
  seed_number = 1234,
)
```

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
n\_neighbors
                 UMAP param: number of neighbors
                 UMAP param: number of components
n_components
n_epochs
                 UMAP param: number of epochs
```

180 selectPatternGenes

```
min_dist UMAP param: minimum distance
n_threads UMAP param: threads to use
spread UMAP param: spread
set_seed use of seed
seed_number seed number to use
additional UMAP parameters
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

Examples

```
runUMAP(gobject)
```

selectPatternGenes selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(
   spatPatObj,
   dimensions = 1:5,
   top_pos_genes = 10,
   top_neg_genes = 10,
   min_pos_cor = 0.5,
   min_neg_cor = -0.5,
   return_top_selection = FALSE
)
```

Arguments

spatPatObj

dimensions	dimensions to identify correlated genes for.
top_pos_genes	Top positively correlated genes.
top_neg_genes	Top negatively correlated genes.
min_pos_cor	Minimum positive correlation score to include a gene.
min_neg_cor	Minimum negative correlation score to include a gene.

Output from detectSpatialPatterns

181

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

Examples

```
selectPatternGenes(gobject)
```

```
select_expression_values
```

select_expression_values

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

show,giotto-method

show method for giotto class

Description

show method for giotto class

```
## S4 method for signature 'giotto'
show(object)
```

 $show Cluster Dendrogram \quad show Cluster Dendrogram \quad$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  rotate dendrogram 90 degrees
rotate
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for ggdendrogram()
```

Details

Expression correlation dendrogram for selected clusters.

showClusterHeatmap 183

Value

ggplot

Examples

showClusterDendrogram(gobject)

showClusterHeatmap

showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
                  vector of genes to use, default to 'all'
genes
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for the Heatmap function from ComplexHeatmap
. . .
```

showCPGscores

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

```
showClusterHeatmap(gobject)
```

showCPGscores

showCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
showCPGscores(
 gobject,
 CPGscore,
 method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey"),
 min_cells = 5,
 min_fdr = 0.05,
 min_spat_diff = 0.2,
 min_log2_fc = 0.5,
 keep_int_duplicates = TRUE,
 direction = c("both", "up", "down"),
 cell_color_code = NULL,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showCPGscores"
)
```

Arguments

```
CPGscore
                 CPGscore, output from getCellProximityGeneScores()
method
                 visualization method
                 min number of cells threshold
min_cells
min_fdr
                 fdr threshold
min_spat_diff
                 spatial difference threshold
                 min log2 fold-change
min_log2_fc
keep_int_duplicates
                 keep both cell_A-cell_B and cell_B-cell_A
direction
                 up or downregulation or both
```

```
cell_color_code
```

color code for cell types

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

```
showCPGscores(CPGscore)
```

showGeneExpressionProximityScore

show Gene Expression Proximity Score

Description

Create heatmap from cell-cell proximity scores

Usage

```
showGeneExpressionProximityScore(
  scores,
  selected_gene,
  sort_column = "diff_spat"
)
```

Arguments

scores CPscore, output from getAverageCellProximityGeneScores()

selected_gene gene to show

sort_column column name to use for sorting

Details

Give more details ...

Value

ggplot barplot

showGTGscores

Examples

```
showGeneExpressionProximityScore(scores)
```

```
showGiottoInstructions
```

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

```
gobject giotto object
```

Value

named vector with giotto instructions

Examples

```
showGiottoInstructions()
```

showGTGscores

showGTGscores

Description

visualize Cell Proximity Gene enrichment scores

```
showGTGscores(
 GTGscore,
 method = c("cell_barplot", "cell-cell", "cell_sankey"),
 min_cells = 5,
 min_pval = 0.05,
 min_spat_diff = 0.2,
 min_log2_fc = 0.5,
 direction = c("both", "up", "down"),
 cell_color_code = NULL,
 show_plot = T,
  specific_genes_1 = NULL,
 specific_genes_2 = NULL,
 first_cell_name = "ligand cell",
 second_cell_name = "receptor cell",
 return_DT = F
)
```

Arguments

```
visualization method
method
min_cells
                  min number of cells threshold
min_pval
                  p-value threshold
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
cell_color_code
                  color code for cell types
show_plot
                  print plot
specific_genes_1
                  subset of genes, matched with specific_genes_2
specific_genes_2
                  subset of genes, matched with specific_genes_1
first_cell_name
                  name for first cells
second_cell_name
                  name for second cells
                  CPGscore, output from getCellProximityGeneScores()
CPGscore
```

Details

Give more details ...

Value

ggplot

Examples

```
showGTGscores(CPGscore)
```

```
show Int {\it Expression Proximity Score} \\ show Int {\it Expression Proximity Score}
```

Description

Create heatmap from cell-cell proximity scores

```
showIntExpressionProximityScore(
   scores,
   selected_interaction,
   sort_column = "diff_spat",
   show_enriched_n = 5,
   show_depleted_n = 5
)
```

188 showPattern

Arguments

scores scores, output from getAverageCellProximityGeneScores()
selected_interaction
interaction to show
sort_column column name to use for sorting
show_enriched_n
show top enriched interactions
show_depleted_n

show top depleted interactions

Details

Give more details ...

Value

ggplot barplot

Examples

showIntExpressionProximityScore(scores)

showPattern

showPattern

Description

```
create a spatial grid
show patterns for 2D spatial data
```

Usage

```
showPattern(gobject, spatPatObj, ...)
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

showPattern2D 189

Details

Description.

Value

ggplot ggplot

See Also

showPattern2D

Examples

```
showPattern(gobject)
showPattern(gobject)
```

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D")
```

190 showPattern3D

Arguments

gobject giotto object spatPatObj Output from detectSpatialPatterns dimension dimension to plot trim Trim ends of the PC values. background_color background color for plot grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

return_plot return ggplot object

directly save the plot [boolean] save_plot

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

showPattern2D(gobject)

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

```
showPattern3D(
 gobject,
  spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
 show_legend = T,
 point_size = 1,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
  z_ticks = NULL,
```

showPattern3D 191

```
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "showPattern3D"
)
```

Arguments

gobject giotto object Output from detectSpatialPatterns spatPatObj dimension to plot dimension Trim ends of the PC values. trim background_color background color for plot grid_border_color color for grid show_legend show legend of plot point_size adjust the point size scale the axis axis_scale cutomize the scale of the axis custom_ratio the tick number of x_axis x_ticks y_ticks the tick number of y_axis the tick number of z_axis z_ticks show plot show_plot return_plot return plot object save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function() default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plotly

Examples

```
showPattern3D(gobject)
```

192 showPatternGenes

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

Arguments

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
dimension
                  dimension to plot genes for.
top_pos_genes
                  Top positively correlated genes.
top_neg_genes
                  Top negatively correlated genes.
                  size of points
point_size
return_DT
                  if TRUE, it will return the data.table used to generate the plots
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
showPatternGenes(gobject)
```

showProcessingSteps 193

```
showProcessingSteps showProcessingSteps
```

Description

shows the sequential processing steps that were performed in a summarized format

Usage

```
showProcessingSteps(gobject)
```

Arguments

```
gobject giotto object
```

Value

list of processing steps and names

Examples

```
showProcessingSteps(gobject)
```

showTopGeneToGene

showTopGeneToGene

Description

Show enriched/depleted gene-gene enrichments

Usage

```
showTopGeneToGene(
  GTGscore,
  top_interactions = 10,
  direction = c("increased", "decreased"),
  complement_data = T,
  subset_cell_ints = NULL,
  subset_genes = NULL
)
```

Arguments

194 signPCA

Details

Give more details ...

Value

ggplot barplot

Examples

showTopGeneToGene(scores)

signPCA

signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
  gobject,
  method = c("screeplot", "jackstraw"),
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  scale_unit = T,
  ncp = 50,
  scree_labels = T,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_verbose = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "signPCA",
)
```

Arguments

spatCellPlot 195

```
ncp
                  number of principal components to calculate
                  show labels on scree plot
scree_labels
scree_ylim
                  y-axis limits on scree plot
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
                  show progress of jackstraw method
jack_verbose
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for PCA
```

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC does not show a significant contribution anymore (= 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

multiple PCA results can be stored by changing the name parameter

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

spatCellPlot spatCellPlot

Description

Visualize cells according to spatial coordinates

```
spatCellPlot(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_annotation_values,
  cell_color_gradient = c("blue", "white", "red"),
```

196 spatCellPlot

```
gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
 center_point_size = 4,
 center_point_border_col = "black",
 center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
 show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
 coord_fix_ratio = NULL,
  show_legend = T,
  legend_text = 8,
  axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
  cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
  default_save_name = "spatCellPlot"
)
```

Arguments

gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis show legend show_legend legend_text size of legend text axis_text size of axis text axis_title size of axis title show_plot show plot return ggplot object return_plot directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function() save_param default_save_name default save name for saving, don't change, change save_name in save_param 198 spatCellPlot2D

Details

Description of parameters.

Value

ggplot

Examples

```
spatCellPlot(gobject)
```

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

```
spatCellPlot2D(
 gobject,
 sdimx = "sdimx",
 sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_annotation_values,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
 show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
  grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
```

spatCellPlot2D 199

```
other_cells_alpha = 0.1,
      coord_fix_ratio = NULL,
      show_legend = T,
      legend_text = 8,
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot2D"
    )
Arguments
    gobject
                     giotto object
                     x-axis dimension name (default = 'sdimx')
    sdimx
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell color parameter
                     select subset of cells based on cell IDs
    select_cells
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
```

show underlying spatial network

show_network

200 spatCellPlot2D

spatial_network_name

name of spatial network to use

network_color color of spatial network

network_alpha alpha of spatial network

show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

point size of not selected cells

other_cells_alpha

alpha of not selected cells

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

legend_text size of legend text

axis_text size of axis text

axis_title size of axis title

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

spatCellPlot2D(gobject)

spatDimCellPlot 201

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values,
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
  dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
  dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_center_point_border_col = "black",
  spat_center_point_border_stroke = 0.1,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 nn_network_name = "sNN.pca",
 dim_edge_alpha = 0.5,
  spat_show_network = F,
```

202 spatDimCellPlot

```
spatial_network_name = "spatial_network",
      spat_network_color = "red",
      spat_network_alpha = 0.5,
      spat_show_grid = F,
      spatial_grid_name = "spatial_grid",
      spat_grid_color = "green",
      show_other_cells = TRUE,
     other_cell_color = "grey"
     dim_other_point_size = 0.5,
      spat_other_point_size = 0.5,
      spat_other_cells_alpha = 0.5,
     coord_fix_ratio = NULL,
      cow_n_col = 2,
     cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
     legend_text = 8,
      axis_text = 8,
     axis_title = 8,
      show_plot = NA,
     return_plot = NA,
      save_plot = NA,
      save_param = list(),
     default_save_name = "spatDimCellPlot"
   )
Arguments
   gobject
                    giotto object
   plot_alignment direction to align plot
   spat_enr_names names of spatial enrichment results to include
   cell_annotation_values
                    numeric cell annotation columns
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
    sdimx
                    = spatial dimension to use on x-axis
   sdimy
                    = spatial dimension to use on y-axis
   cell_color_gradient
                    vector with 3 colors for numeric data
   gradient_midpoint
                    midpoint for color gradient
```

vector with lower and upper limits

select subset of cells/clusters based on cell_color parameter

gradient_limits

select_cell_groups

select_cells select subset of cells based on cell IDs dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network

204 spatDimCellPlot

```
spat_show_grid show spatial grid
spatial_grid_name
                  name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
coord_fix_ratio
                  ratio for coordinates
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_legend
                  show legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

spatDimCellPlot(gobject)

spatDimCellPlot2D 205

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values,
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
  dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
  dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_center_point_border_col = "black",
  spat_center_point_border_stroke = 0.1,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 nn_network_name = "sNN.pca",
 dim_edge_alpha = 0.5,
  spat_show_network = F,
```

206 spatDimCellPlot2D

```
spatial_network_name = "spatial_network",
      spat_network_color = "red",
      spat_network_alpha = 0.5,
      spat_show_grid = F,
      spatial_grid_name = "spatial_grid",
      spat_grid_color = "green",
      show_other_cells = TRUE,
     other_cell_color = "grey"
     dim_other_point_size = 0.5,
      spat_other_point_size = 0.5,
      spat_other_cells_alpha = 0.5,
     coord_fix_ratio = NULL,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
     legend_text = 8,
      axis_text = 8,
     axis_title = 8,
      show_plot = NA,
     return_plot = NA,
      save_plot = NA,
      save_param = list(),
     default_save_name = "spatDimCellPlot2D"
   )
Arguments
   gobject
                    giotto object
   plot_alignment direction to align plot
   spat_enr_names names of spatial enrichment results to include
   cell_annotation_values
                    numeric cell annotation columns
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
    sdimx
                    = spatial dimension to use on x-axis
   sdimy
                    = spatial dimension to use on y-axis
   cell_color_gradient
                    vector with 3 colors for numeric data
   gradient_midpoint
                    midpoint for color gradient
   gradient_limits
                    vector with lower and upper limits
```

select subset of cells/clusters based on cell_color parameter

select_cell_groups

207

select_cells select subset of cells based on cell IDs dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network

208 spatDimCellPlot2D

```
spat_show_grid show spatial grid
spatial_grid_name
                  name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
coord_fix_ratio
                  ratio for coordinates
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_legend
                  show legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

spatDimCellPlot2D(gobject)

spatDimGenePlot 209

spatDimGenePlot

spatDimGenePlot

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 genes,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 midpoint = 0,
 genes_high_color = "red",
  genes_mid_color = "white";
 genes_low_color = "blue",
 cow_n_col = 2,
 cow_rel_h = 1,
  cow_rel_w = 1,
 cow_align = "h",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
 save_plot = NA,
 save_param = list(),
  default_save_name = "spatDimGenePlot"
```

Arguments

gobject giotto object

210 spatDimGenePlot

expression_values gene expression values to use plot_alignment direction to align plot genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dimension to use on y-axis dim2_to_use point_size size of point (cell) dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter spatial_network_name name of spatial network to use spatial_grid_name name of spatial grid to use spat_point_size spatial plot: point size spat_point_border_col color of border around points $spat_point_border_stroke$ stroke size of border around points midpoint size of point (cell) cowplot param: how many columns cow_n_col cow_rel_h cowplot param: relative height cowplot param: relative width cow_rel_w cowplot param: how to align cow_align show_legend show legend show_plot show plots return ggplot object return_plot save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param dim_point_size dim reduction plot: point size

spatDimGenePlot2D 211

Details

Description of parameters.

Value

ggplot

See Also

spatDimGenePlot3D

Examples

```
spatDimGenePlot(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot2D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
 scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
 spatial_grid_name = "spatial_grid",
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 midpoint = 0,
 genes_high_color = "red",
  genes_mid_color = "white",
```

212 spatDimGenePlot2D

```
genes_low_color = "blue",
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot2D"
    )
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    point_size
                     size of point (cell)
    dim_point_border_col
                     color of border around points
    dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
    spatial_network_name
                     name of spatial network to use
    spatial_grid_name
                     name of spatial grid to use
    spat_point_size
                     spatial plot: point size
    spat_point_border_col
                     color of border around points
    spat_point_border_stroke
                     stroke size of border around points
```

spatDimGenePlot3D 213

```
size of point (cell)
midpoint
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim_point_size dim reduction plot: point size
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Examples

```
spatDimGenePlot2D(gobject)
```

```
spatDimGenePlot3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  sdimx = "sdimx",
```

214 spatDimGenePlot3D

```
sdimy = "sdimy",
      sdimz = "sdimz",
     genes,
      cluster_column = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 1.5,
      show_NN_network = F,
     nn_network_to_use = "sNN",
     network_name = "sNN.pca",
     label_size = 16,
     genes_low_color = "blue",
     genes_mid_color = "white",
      genes_high_color = "red",
     dim_point_size = 3,
     nn_network_alpha = 0.5,
      show_spatial_network = F,
      spatial_network_name = "spatial_network",
     network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
     x_{ticks} = NULL,
     y_ticks = NULL,
     z_{ticks} = NULL,
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "spatDimGenePlot3D"
    )
Arguments
    gobject
                    giotto object
    expression_values
                    gene expression values to use
   plot_alignment direction to align plot
    dim_reduction_to_use
                    dimension reduction to use
   \operatorname{dim\_reduction\_name}
                    dimension reduction name
                    dimension to use on x-axis
   dim1_to_use
    dim2_to_use
                    dimension to use on y-axis
```

spatDimGenePlot3D 215

dim3_to_use dimension to use on z-axis genes genes to show show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name dim_point_size dim reduction plot: point size spatial_network_name name of spatial network to use spatial_grid_name name of spatial grid to use spatial_point_size spatial plot: point size show plots show_plot return plotly object return_plot save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function() save_param default_save_name default save name for saving, don't change, change save_name in save_param edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter

Details

point_size

show_legend

Description of parameters.

size of point (cell)

show legend

Value

plotly

Examples

spatDimGenePlot3D(gobject)

216 spatDimPlot

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
```

```
spat_network_color = "blue",
      spat_network_alpha = 0.5,
      show_spatial_grid = F,
      spat_grid_name = "spatial_grid",
      spat_grid_color = "blue",
      show_other_cells = T,
      other_cell_color = "lightgrey",
      dim_other_point_size = 1,
      spat_other_point_size = 1,
      spat_other_cells_alpha = 0.5,
      dim_show_legend = F,
      spat_show_legend = F,
      legend_text = 8,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot"
    )
Arguments
                     giotto object
   gobject
   plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
                     = spatial dimension to use on x-axis
    sdimx
                     = spatial dimension to use on y-axis
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
```

select subset of cells based on cell IDs

select_cells

border color of points in dim. reduction space

dim_point_size size of points in dim. reduction space

dim_point_border_col

dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network show_spatial_grid show spatial grid

```
spat_grid_name name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
{\tt dim\_other\_point\_size}
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
dim_show_legend
                  show legend of dimension reduction plot
spat_show_legend
                  show legend of spatial plot
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimPlot2D and spatDimPlot3D for 3D visualization.

Examples

```
spatDimPlot(gobject)
```

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
```

```
spat_network_color = "blue",
      spat_network_alpha = 0.5,
      show_spatial_grid = F,
      spat_grid_name = "spatial_grid",
      spat_grid_color = "blue",
      show_other_cells = T,
      other_cell_color = "lightgrey",
      dim_other_point_size = 1,
      spat_other_point_size = 1,
      spat_other_cells_alpha = 0.5,
      dim_show_legend = F,
      spat_show_legend = F,
      legend_text = 8,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot2D"
    )
Arguments
                     giotto object
   gobject
   plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
                     = spatial dimension to use on x-axis
    sdimx
                     = spatial dimension to use on y-axis
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
```

select subset of cells based on cell IDs

select_cells

dim_point_size size of points in dim. reduction space

dim_point_border_col

border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network show_spatial_grid show spatial grid

```
spat_grid_name name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
{\tt dim\_other\_point\_size}
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
dim_show_legend
                  show legend of dimension reduction plot
spat_show_legend
                  show legend of spatial plot
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimPlot3D

Examples

spatDimPlot2D(gobject)

spatDimPlot3D

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
spatDimPlot3D(
 gobject,
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
 center_point_size = 4,
 label_size = 16,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
  z_ticks = NULL,
```

```
legend_text_size = 12,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot3D"
Arguments
    gobject
                      giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                      dimension reduction to use
    dim_reduction_name
                      dimension reduction name
    dim1_to_use
                      dimension to use on x-axis
    dim2_to_use
                      dimension to use on y-axis
                      dimension to use on z-axis
    dim3_to_use
    sdimx
                      = spatial dimension to use on x-axis
    sdimy
                      = spatial dimension to use on y-axis
                      = spatial dimension to use on z-axis
    sdimz
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
                      name of NN network to use, if show_NN_network = TRUE
    network_name
    show_cluster_center
                      show the center of each cluster
    show_center_label
                      provide a label for each cluster
    center_point_size
                      size of the center point
    label_size
                      size of the center label
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
                      select subset of cells based on cell IDs
    select_cells
    show_other_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    cell_color
                      color for cells (see details)
    color_as_factor
                      convert color column to factor
    cell_color_code
```

named vector with colors

```
dim_point_size size of points in dim. reduction space
nn_network_alpha
                  column to use for alpha of the edges
show_spatial_network
                  show spatial network
spatial_network_name
                  name of spatial network to use
spatial_network_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
spatial_point_size
                  size of spatial points
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim_point_border_col
                  border color of points in dim. reduction space
dim_point_border_stroke
                  border stroke of points in dim. reduction space
spatial_network_color
                  color of spatial network
spatial_other_point_size
                  size of not selected spatial points
{\tt spatial\_other\_cells\_alpha}
                  alpha of not selected spatial points
dim_other_point_size
                  size of not selected dim. reduction points
show_legend
                  show legend
```

Details

Description of parameters.

Value

plotly

Examples

spatDimPlot3D(gobject)

spatGenePlot 227

spatGenePlot

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 genes,
 genes_high_color = "darkred",
  genes_mid_color = "white",
 genes_low_color = "darkblue",
 show_network = F,
 network_color = NULL,
 spatial_network_name = "spatial_network",
 edge_alpha = NULL,
  show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_size = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

228 spatGenePlot

```
genes_low_color
                  color represents low gene expression
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

spatGenePlot3D and spatGenePlot2D

Examples

spatGenePlot(gobject)

spatGenePlot2D 229

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 genes,
 genes_high_color = "darkred",
  genes_mid_color = "white",
 genes_low_color = "darkblue",
 show_network = F,
 network_color = NULL,
 spatial_network_name = "spatial_network",
 edge_alpha = NULL,
  show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_size = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot2D"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

230 spatGenePlot2D

```
genes_low_color
                  color represents low gene expression
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

 ${\tt spatGenePlot3D}$

Examples

spatGenePlot2D(gobject)

spatGenePlot3D 231

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "spatial_network",
 edge_alpha = NULL,
 show\_grid = F,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
 point_size = 2,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
network_color color of spatial network
```

232 Spatial_AEH

```
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
                  size of point (cell)
point_size
{\sf show\_legend}
                  show legend
show_plot
                  show plots
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
grid_color
                  color of spatial grid
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
```

Details

. . .

Description of parameters.

Value

ggplot

Examples

spatGenePlot3D(gobject)

Spatial_AEH Spatial_AEH

Description

calculate automatic expression histology with spatialDE method

parameters for cowplot::save_plot()

Spatial_DE 233

Usage

```
Spatial_AEH(
  gobject = NULL,
  results = NULL,
  pattern_num = 5,
  1 = 1.05,
  show\_AEH = T,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0,
  python_path = NULL
)
```

Arguments

gobject Giotto object
results output from spatial_DE
pattern_num the number of gene expression patterns
show_AEH show AEH plot
python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

 ${\tt Spatial_DE} \qquad \qquad {\tt Spatial_DE}$

Description

calculate spatial varible genes with spatialDE method

234 spatPlot

Usage

```
Spatial_DE(
  gobject = NULL,
  show_plot = T,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL
)
```

Arguments

gobject Giotto object
show_plot show FSV plot
python_path specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

spatPlot

spatPlot

Description

Visualize cells according to spatial coordinates

```
spatPlot(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
```

spatPlot 235

```
select_cell_groups = NULL,
select_cells = NULL,
point_size = 3,
point_border_col = "black",
point_border_stroke = 0.1,
show_cluster_center = F,
show_center_label = F,
center_point_size = 4,
center_point_border_col = "black",
center_point_border_stroke = 0.1,
label_size = 4,
label_fontface = "bold",
show_network = F,
spatial_network_name = "spatial_network",
network_color = NULL,
network\_alpha = 1,
show_grid = F,
spatial_grid_name = "spatial_grid",
grid_color = NULL,
show_other_cells = T,
other_cell_color = "lightgrey",
other_point_size = 1,
other_cells_alpha = 0.1,
coord_fix_ratio = NULL,
title = NULL,
show_legend = T,
legend_text = 8,
axis_text = 8,
axis_title = 8,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatPlot"
```

236 spatPlot

cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend

legend_text

size of legend text

spatPlot2D 237

```
axis_text
                  size of axis text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Examples

```
spatPlot(gobject)
```

spatPlot2D

Description

Visualize cells according to spatial coordinates

spatPlot2D

```
spatPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
```

238 spatPlot2D

```
cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_size = 3,
 point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
 label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
 legend_text = 8,
  axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D"
)
```

spatPlot2D 239

color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use color of spatial grid grid_color show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis

title of plot

title

240 spatPlot2D_single

```
show_legend
                  show legend
legend_text
                  size of legend text
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
{\sf show\_plot}
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
```

Details

Description of parameters.

Value

ggplot

See Also

spatPlot3D

Examples

spatPlot2D(gobject)

Description

Visualize cells according to spatial coordinates

spatPlot2D_single 241

Usage

```
spatPlot2D_single(
 gobject,
 sdimx = "sdimx",
 sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
 center_point_size = 4,
 center_point_border_col = "black",
  center_point_border_stroke = 0.1,
 label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show\_other\_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
 legend_text = 8,
 axis_text = 8,
 axis_title = 8,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D_single"
)
```

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')
```

242 spatPlot2D_single

sdimy y-axis dimension name (default = 'sdimy') spat_enr_names names of spatial enrichment results to include color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell color parameter select subset of cells based on cell IDs select_cells size of point (cell) point_size point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid ${\tt spatial_grid_name}$ name of spatial grid to use color of spatial grid grid_color show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells

spatPlot3D 243

```
coord_fix_ratio
                  fix ratio between x and y-axis
                  title of plot
title
                  show legend
show_legend
                  size of legend text
legend_text
axis_text
                  size of axis text
                  size of axis title
axis_title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatPlot3D

Examples

```
spatPlot2D_single(gobject)
```

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

```
spatPlot3D(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
```

244 spatPlot3D

```
show_other_cells = T,
other_cell_color = "lightgrey",
other_point_size = 0.5,
show_network = F,
network_color = NULL,
network_alpha = 1,
other_cell_alpha = 0.5,
spatial_network_name = "spatial_network",
show\_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
title = "",
show_legend = T,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_{ticks} = NULL,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spat3D"
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
                  color for cells (see details)
cell color
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
```

```
spatial_grid_name
                  name of spatial grid to use
title
                  title of plot
show_legend
                  show legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
                  set the number of ticks on the x-axis
x_ticks
                  set the number of ticks on the y-axis
y_ticks
z_ticks
                  set the number of ticks on the z-axis
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

```
spatPlot3D(gobject)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

```
specificCellCellcommunicationScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types",
  random_iter = 100,
  cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
  gene_set_1,
  gene_set_2,
```

```
log2FC_addendum = 0.1,
min_observations = 2,
verbose = T
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
cell_type_1
                  first cell type
cell_type_2
                  second cell type
                  first specific gene set from gene pairs
gene_set_1
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
{\tt specific Cell Cell communication Scores (gobject)}
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend dendrogram object

stitchFieldCoordinates 247

Value

list of two dendrograms and height of node

Examples

```
split_dendrogram_in_two(dend)
```

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

Usage

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

```
location_file location dataframe with X and Y coordinates
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
                  column that indicates the x coordinates
X_coord_col
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

248 subClusterCells

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

Examples

```
stitchFieldCoordinates(gobject)
```

subClusterCells

subClusterCells

Description

subcluster cells

```
subClusterCells(
 gobject,
 name = "sub_clus",
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 1,
 gamma = 1,
 omega = 1,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

subClusterCells 249

Arguments

gobject giotto object

name name for new clustering result cluster_method clustering method to use cluster_column cluster column to subcluster selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet, doLouvainCluster_community and @seealso doLeidenCluster

Examples

subClusterCells(gobject)

250 subsetGiottoLocs

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

```
gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose
```

Value

giotto object

Examples

```
subsetGiotto(gobject)
```

 ${\tt subsetGiottoLocs}$

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

viewHMRFresults 251

Arguments

gobject	giotto object
x_max	maximum x-coordinate
x_min	minimum x-coordinate
y_max	maximum y-coordinate
y_min	minimum y-coordinate
z_max	maximum z-coordinate
z_min	minimum z-coordinate
return_gobject	return Giotto object

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

Examples

```
subsetGiottoLocs(gobject)
```

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object

HMRFoutput HMRF output from doHMRF

k number of HMRF domains

betas_to_view results from different betas that you want to view
```

paramters to visPlot()

252 viewHMRFresults2D

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
visPlot
```

Examples

```
viewHMRFresults(gobject)
```

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

viewHMRFresults3D 253

Examples

```
viewHMRFresults2D(gobject)
```

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object

HMRFoutput HMRF output from doHMRF

k number of HMRF domains

betas_to_view results from different betas that you want to view
```

paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot3D
```

Examples

```
viewHMRFresults3D(gobject)
```

254 violinPlot

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip\_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
                  genes to plot
genes
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
strip_text
                  size of strip text
\verb"axis_text_x_size"
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
show_plot
                  show plot
return_plot
                  return ggplot object
```

visDimGenePlot 255

Value

ggplot

Examples

```
violinPlot(gobject)
```

visDimGenePlot

visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
visDimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h"
  show_legend = T,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
)
```

256 visDimGenePlot

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name$ name of NN network to use, if $show_NN_network = TRUE$

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_colcowplot param: how many columnscow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_legend show legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plots = F
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
dim1_to_use
dimension to use on x-axis
```

```
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
                 size of point (cell)
point_size
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
                 size of point (cell)
midpoint
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_legend
                 show legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimGenePlot_2D_ggplot(gobject)
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plots = F
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
show_legend
                 show legend
                 show plots
show_plots
```

Details

Description of parameters.

260 visDimPlot

Value

ggplot

Examples

visDimGenePlot_3D_plotly(gobject)

visDimPlot

visDimPlot

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  plot_method = c("ggplot", "plotly"),
  show_legend = T,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
```

visDimPlot 261

```
save_folder = NULL,
      save_name = NULL.
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
                      giotto object
    gobject
    dim_reduction_to_use
                      dimension reduction to use
    {\tt dim\_reduction\_name}
                      dimension reduction name
    dim1_to_use
                      dimension to use on x-axis
    dim2_to_use
                      dimension to use on y-axis
                      dimension to use on z-axis
    dim3_to_use
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
                      name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                      color for cells (see details)
    color_as_factor
                      convert color column to factor
    cell_color_code
                      named vector with colors
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
    edge_alpha
                      column to use for alpha of the edges
    point_size
                      size of point (cell)
    point_border_col
                      color of border around points
    point_border_stroke
                      stroke size of border around points
    show_legend
                      show legend
    show_plot
                      show plot
    return_plot
                      return ggplot object
                      directly save the plot [boolean]
    save_plot
```

directory to save the plot

save_dir

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visDimPlot(gobject)
```

```
visDimPlot_2D_ggplot visDimPlot_2D_ggplot
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_ggplot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
```

```
edge_alpha = NULL,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
                     color for cells (see details)
    cell_color
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
```

size of center points

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
```

```
center_point_size = 4,
label_size = 4,
edge_alpha = NULL,
point_size = 5
)
```

Arguments

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
color_as_factor
                 convert color column to factor
cell_color
                 color for cells (see details)
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label_size
                 size of labels
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
```

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_2D_plotly(gobject)
```

```
visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 1
```

```
giotto object
gobject
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

visForceLayoutPlot 267

```
name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
```

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_3D_plotly(gobject)
```

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

```
visForceLayoutPlot(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_name = "layout",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = T,
  cell_color = NULL,
  color_as_factor = TRUE,
  cell_color_code = NULL,
  edge_alpha = NULL,
  point_size = 1,
```

268 visForceLayoutPlot

```
point_border_col = "black",
point_border_stroke = 0.1,
show_legend = T,
show_plot = F,
return_plot = TRUE,
save_plot = F,
save_dir = NULL,
save_folder = NULL,
save_format = NULL,
show_saved_plot = F,
...
)
```

```
giotto object
gobject
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  NN network to use
                  name of layout to use
layout_name
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
show_NN_network
                  show underlying NN network
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  directory to save the plot
save_dir
save_folder
                  (optional) folder in directory to save the plot
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

visGenePlot 269

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot

visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

```
visGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
```

270 visGenePlot

Arguments

gobject giotto object expression_values

gene expression values to use

genes genes to show

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align three mode to adjust axis scale axis_scale x_ticks number of ticks on x axis number of ticks on y axis y_ticks number of ticks on z axis z_ticks plot_method two methods of plot show plots show_plots

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visGenePlot(gobject)
```

```
\verb|visGenePlot_2D_ggplot| | \textit{visGenePlot}_2D\_ggplot|
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  genes_high_color = "darkred",
  genes_mid_color = "white",
  genes_low_color = "darkblue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plots = F
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

genes_low_color

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_colcowplot param: how many columnscow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visGenePlot_2D_ggplot(gobject)

 ${\tt visGenePlot_3D_plotly} \ \ {\it visGenePlot_3D_plotly}$

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
  point_size = 1,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plots = F
gobject
                giotto object
```

```
expression_values
                  gene expression values to use
genes
                  genes to show
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
                  size of point (cell)
point_size
show_legend
                  show legend
axis_scale
                  three mode to adjust axis scale
x_ticks
                  number of ticks on x axis
y_ticks
                  number of ticks on y axis
```

274 visPlot

Details

Description of parameters.

Value

plotly

Examples

```
visGenePlot_3D_plotly(gobject)
```

visPlot visPlot

Description

Visualize cells according to spatial coordinates

```
visPlot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cell_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
```

visPlot 275

```
grid_color = NULL,
      grid_alpha = 1,
      spatial_grid_name = "spatial_grid",
      coord_fix_ratio = 0.6,
      title = "",
      show_legend = T,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_{ticks} = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      plot_method = c("ggplot", "plotly"),
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
   gobject
                     giotto object
    sdimx
                     x-axis dimension name (default = 'sdimx')
    sdimy
                     y-axis dimension name (default = 'sdimy')
    sdimz
                     z-axis dimension name (default = 'sdimz')
   point_size
                     size of point (cell)
   point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    cell_color
                     color for cells (see details)
    cell_color_code
                     named vector with colors
    color_as_factor
                     convert color column to factor
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
   other_cell_color
                     color of not selected cells
```

show underlying spatial network

name of spatial network to use

color of spatial network

show_network

network_color

spatial_network_name

276 visPlot_2D_ggplot

```
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot(gobject)
```

Description

Visualize cells according to spatial coordinates

```
visPlot_2D_ggplot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
```

visPlot_2D_ggplot 277

```
color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cells_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 0.6,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show_saved_plot = F,
)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

278 visPlot_2D_ggplot

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

title title of plot

show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

 ${\tt visPlot_2D_ggplot(gobject)}$

visPlot_2D_plotly 279

```
visPlot_2D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
  network_color = "lightgray",
  network_alpha = 1,
  other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_plot = F
```

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

point_size size of point (cell)

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor
```

visPlot_3D_plotly

```
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
                  alpha of spatial grid
grid_alpha
spatial_grid_name
                  name of spatial grid to use
                  show legend
show_legend
show_plot
                  show plot
```

Details

Description of parameters.

Value

plotly

Examples

```
visPlot_2D_plotly(gobject)
```

```
visPlot_3D_plotly
```

Description

Visualize cells according to spatial coordinates

```
visPlot_3D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
```

visPlot_3D_plotly 281

```
network_color = NULL,
network_alpha = 1,
other_cell_alpha = 0.5,
spatial_network_name = "spatial_network",
spatial_grid_name = "spatial_grid",
title = "",
show_legend = T,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
sticks = NULL,
show_plot = F
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
                  title of plot
title
show_legend
                  show legend
show_plot
                  show plot
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
color_as_factor
                  convert color column to factor
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
coord_fix_ratio
                  fix ratio between x and y-axis
```

282 visSpatDimGenePlot

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot_3D_plotly(gobject)
```

visSpatDimGenePlot

visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

```
visSpatDimGenePlot(
 gobject,
 plot_method = c("ggplot", "plotly"),
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
 genes,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
 label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
 genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

visSpatDimGenePlot 283

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
     midpoint = 0,
     point_size = 1,
      cow_n_col = 2,
      cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_legend = T,
      show_plots = F
   )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
   sdimx
                    x-axis dimension name (default = 'sdimx')
   sdimy
                    y-axis dimension name (default = 'sdimy')
    sdimz
                    z-axis dimension name (default = 'sdimz')
   genes
                    genes to show
   dim_point_border_col
                    color of border around points
   dim_point_border_stroke
                    stroke size of border around points
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
```

284 visSpatDimGenePlot

edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter

label_size size for the label

genes_low_color

color to represent low expression of gene

genes_high_color

color to represent high expression of gene

dim_point_size dim reduction plot: point size

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

legend_text_size

the size of the text in legend

axis_scale three modes to adjust axis scale ratio custom_ratio set the axis scale ratio on custom

 x_{ticks} number of ticks on x axis y_{ticks} number of ticks on y axis z_{ticks} number of ticks on z axis

midpoint size of point (cell)
point_size size of point (cell)

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show legend
show_plot show plot

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimGenePlot(gobject)

```
visSpatDimGenePlot_2D visSpatDimGenePlot_2D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
visSpatDimGenePlot_2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  genes,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  point_size = 1,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spatial_point_size = 1,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  midpoint = 0,
  genes_high_color = "red",
  genes_mid_color = "white";
  genes_low_color = "blue",
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_legend = T,
  show_plots = F
```

```
gobject giotto object
```

expression_values

gene expression values to use

plot_alignment direction to align plot

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

point_size size of point (cell)

dim_point_border_col

color of border around points

dim_point_border_stroke

stroke size of border around points

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name \qquad name \ of \ NN \ network \ to \ use, \ if \ show_NN_network = TRUE$

edge_alpha_dim dim reduction plot: column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height

cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align

show_legend show legend

dim_point_size dim reduction plot: point size

show_plot show plot

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimGenePlot_2D(gobject)
```

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
visSpatDimGenePlot_3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  genes,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
  genes_mid_color = "white",
  genes_high_color = "red",
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
```

```
y_ticks = NULL,
z_ticks = NULL
)
```

Arguments

```
gobject
                 giotto object
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
genes_low_color
                 color represent high gene expression (see details)
genes_high_color
                 color represent high gene expression (see details)
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
network_color color of spatial/nn network
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
show_legend
                 show legend
                 show plot
show_plot
```

Details

Description of parameters.

visSpatDimPlot 289

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

visSpatDimPlot

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

Usage

```
visSpatDimPlot(
  gobject,
  plot_method = c("ggplot", "plotly"),
  plot_alignment = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = NULL,
  label_fontface = "bold",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_point_size = 3,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  nn_network_alpha = NULL,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

290 visSpatDimPlot

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      show_plot = F
Arguments
    gobject
                     giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    nn_network_alpha
                     column to use for alpha of the edges
    show\_spatial\_network
                     show spatial network
```

visSpatDimPlot_2D 291

```
spatial_network_name
                 name of spatial network to use
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
show_legend
                 show legend
show_plot
                 show plot
plot_mode
                 choose the mode to draw plot: ggplot or plotly
spatial_network_color
                 color of spatial network
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visSpatDimPlot(gobject)
```

visSpatDimPlot_2D

visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

Usage

```
visSpatDimPlot_2D(
  gobject,
  plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = NULL,
  sdimy = NULL,
```

292 visSpatDimPlot_2D

show_NN_network = F,
nn_network_to_use = "sNN",

```
network_name = "sNN.pca",
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      label_fontface = "bold",
      cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
      dim_plot_mode = NULL,
     dim_point_size = 1,
     dim_point_border_col = "black",
     dim_point_border_stroke = 0.1,
     nn_network_alpha = 0.05,
      show_spatial_network = F,
      spatial_network_name = "spatial_network",
      spatial_network_color = NULL,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_point_size = 1,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
     plot_method = "ggplot"
Arguments
                    giotto object
   gobject
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   show_NN_network
                    show underlying NN network
   nn_network_to_use
```

type of NN network to use (kNN vs sNN)

color for cells (see details)

network_name
cell_color

name of NN network to use, if show_NN_network = TRUE

visSpatDimPlot_2D 293

color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid show_legend show legend show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_dir directory to save the plot (optional) folder in directory to save the plot save_folder

Details

Description of parameters.

Value

ggplot

save_name
save_format

show_saved_plot

Examples

```
visSpatDimPlot_2D(gobject)
```

name of plot

format of plot (e.g. tiff, png, pdf, ...)

load & display the saved plot

294 visSpatDimPlot_3D

visSpatDimPlot_3D
visSpatDimPlot_3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimPlot_3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  legend_text_size = 12
```

Arguments

gobject giotto object

```
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
                 dimension to use on y-axis
dim2_to_use
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
spatial_network_color
                 color of spatial network
                 show legend
show_legend
                 show plot
show_plot
```

Details

Description of parameters.

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

gobject giotto object

HMRF output HMRF output from doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

Description

write out factor-like annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(
  dim_reduction_cell,
  dim_red = NULL,
  dim_red_name = NULL,
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  output_directory = getwd()
)
```

Arguments

```
dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

```
write\_giotto\_viewer\_numeric\_annotation \\ write\_giotto\_viewer\_numeric\_annotation
```

Description

write out numeric annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_numeric_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Index

*Topic giotto ,	cellProximityVisPlot_2D_plotly, 38
giotto-class, 131	cellProximityVisPlot_3D_plotly, 39
print.giotto, 173	changeGiottoInstructions, 41
show, giotto-method, 181	cluster_walktrap,99
*Topic giotto	clusterCells, 42
createGiottoObject, 46	combineMetadata, 44
*Topic object	convertEnsemblToGeneSymbol, 45
giotto-class, 131	cowplot::save_plot, 131
print.giotto, 173	create_average_detection_DT, 56
show, giotto-method, 181	create_average_DT, 56
,	create_cell_type_random_cell_IDs, 57
addCellMetadata, 6, 48	create_cluster_matrix, 58
addCellStatistics, 7, 12	create_dimObject, 58
addGeneMetadata, 8, 48	createGiottoInstructions, 45, 47
addGeneStatistics, 9, <i>12</i>	createGiottoObject, 46, 248
addHMRF, 10	createHeatmap_DT, 48
${\sf addNetworkLayout}, 10$	createNearestNetwork, 49
addStatistics, 11	createSpatialEnrich, 51, 102
adjustGiottoMatrix, 12	createSpatialGrid, 52
aes_string2, 13	createSpatialGrid_2D, 53
all_plots_save_function, 14	createSpatialGrid_3D, 54
allCellCellcommunicationsScores, 13	createSpatialNetwork, 55
annotate_spatlocs_with_spatgrid_2D, 17	
annotate_spatlocs_with_spatgrid_3D, 17	decide_cluster_order, 59
annotateGiotto, 15	detectSpatialPatterns, 60
annotateSpatialNetwork, 16	dimCellPlot, 61
average_gene_gene_expression_in_groups,	dimCellPlot2D, 63, 63
18	dimGenePlot, 66
himCatCaatialCanaa 10	dimGenePlot2D, 68
binGetSpatialGenes, 18	dimGenePlot3D, 68, 70, 70
calculate_spatial_genes_python, 23	dimPlot, 72
calculateHVG, 20	dimPlot2D, 74, 75, 153, 155, 159, 161, 164,
calculateMetaTable, 21	166
calculateMetaTableCells, 22	dimPlot2D_single, 78
cellProximityBarplot, 24	dimPlot3D, 66, 74, 77, 80, 80
cellProximityEnrichment, 25	direction_test (direction_test_CPG), 82
cellProximityHeatmap, 26	direction_test_CPG, 82
cellProximityNetwork, 27	doHclust, 44, 83
cellProximitySpatPlot, 28	doHMRF, 84
cellProximitySpatPlot2D, 29, 30	doKmeans, 44, 85
cellProximitySpatPlot3D, 29, 32	doLeidenCluster, 44, 87, 90, 249
cellProximityVisPlot, 34	doLeidenSubCluster, 88
cellProximityVisPlot_2D_ggplot, 36	doLouvainCluster, 44, 90

300 INDEX

doLouvainCluster_community, 44, 91, 91,	giotto (giotto-class), 131
95, 96, 249	giotto-class, 131
doLouvainCluster_multinet, 44, 91, 92, 95,	<pre>Giotto::general_save_function, 15</pre>
98, 249	glouvain_ml, 93
doLouvainSubCluster, 93	
doLouvainSubCluster_community, 95	hclust, 84
doLouvainSubCluster_multinet, 97	hyperGeometricEnrich, 52, 132
doRandomWalkCluster, 44, 98	3,
doSNNCluster, 44, 100	kmeans, 86
dt_to_matrix, 101	kmeans_binarize, 133
ut_to_matr 1x, 101	knn, <i>50</i>
exportGiottoViewer, 101	1111, 20
expr0nlyCellCellcommunicationScores,	layout_with_drl, <i>ll</i>
102	loadHMRF, 133
extended_gini_fun, 103	1000111111, 133
	make_simulated_network, 135
extractNearestNetwork, 104	makeSignMatrixPAGE, 134
SD-+-DT 104	makeSignMatrixRank, 134
fDataDT, 104	
filterCombinations, 105, 108	mergeClusters, 135
filterCPGscores, 106	mygini_fun, 136
filterDistributions, 107	DT : 1491 127
filterGiotto, 108	nnDT_to_kNN, 137
find_grid_2D, 118	node_clusters, 137
find_grid_3D, 118	normalizeGiotto, 138
find_grid_x, 118	
find_grid_y, 119	OR_function2, 139
find_grid_z, 119	
findGiniMarkers, 109, 111, 112	PAGEEnrich, <i>52</i> , <i>134</i> , 139
findGiniMarkers_one_vs_all, 110, 114	PCA, <i>177</i>
findMarkers, 111, 117	pDataDT, 140
findMarkers_one_vs_all, 113	permutationPA, 195
findMastMarkers, 112, 114, 116	plot_network_layer_ggplot, 168
findMastMarkers_one_vs_all, 114, 115	plot_point_layer_ggplot, 169
findScranMarkers, 112, 116, 118	<pre>plot_spat_point_layer_ggplot, 171</pre>
findScranMarkers_one_vs_all, 114, 117	plotCPGscores, 141
fish_function, 119	plotGTGscores, 142
fish_function2, 119	plotHeatmap, 143
FSV_show, 120	plotly_axis_scale_2D, 145
1 31_3110W, 12U	plotly_axis_scale_3D, 146
GenePattern_show, 121	plotly_grid, 146
general_save_function, 122	plotly_network, 147
get10Xmatrix, 123	plotMetaDataCellsHeatmap, 148, 151
get_cell_to_cell_sorted_name_conversion,	plotMetaDataHeatmap, 149, 150
128	plotPCA, 152
	plotPCA_2D, 154
get_interaction_gene_enrichment, 129	
<pre>get_specific_interaction_gene_enrichment,</pre>	plotPCA_3D, <i>153</i> , <i>155</i> , 156 plotTSNE, 157
	• *
getCellProximityGeneScores, 123	plotTSNE_2D, 159
getClusterSimilarity, 125	plotTSNE_3D, <i>159</i> , <i>161</i> , 161
getDendrogramSplits, 126	plotUMAP, 163
getDistinctColors, 127	plotUMAP_2D, 165
getGeneToGeneScores, 127	plotUMAP_3D, <i>164</i> , <i>166</i> , 167
ggplot_save_function, 130	print.giotto,173

INDEX 301

rank hinariza 174	subClustorColls 240
rank_binarize, 174	subClusterCells, 248
rankEnrich, 52, 135, 173	subsetGiotto, 250
readGiottoInstructions, 174	subsetGiottoLocs, 250
removeCellAnnotation, 175	umap, <i>180</i>
removeGeneAnnotation, 175	ullap, 100
replaceGiottoInstructions, 176	viewHMRFresults, 251
Rtsne, 178	viewHMRFresults2D, 252
runPCA, 176	viewHMRFresults3D, 253
runtSNE, 177	violinPlot, 254
runUMAP, 179	
	visDimGenePlot, 255
select_expression_values, 181	visDimGenePlot_2D_ggplot, 257
selectPatternGenes, 180	visDimGenePlot_3D_plotly, 258
show, giotto-method, 181	visDimPlot, 260
showClusterDendrogram, 182	visDimPlot_2D_ggplot, 262
showClusterHeatmap, 183	visDimPlot_2D_plotly, 264
showCPGscores, 184	visDimPlot_3D_plotly, 266
showGeneExpressionProximityScore, 185	visForceLayoutPlot, 267
showGiottoInstructions, 186	visGenePlot, 269
showGTGscores, 186	<pre>visGenePlot_2D_ggplot, 271</pre>
showIntExpressionProximityScore, 187	<pre>visGenePlot_3D_plotly, 272</pre>
showPattern, 188	visPlot, 252, 274
showPattern2D, 189, 189	<pre>visPlot_2D_ggplot, 276</pre>
showPattern3D, 190	<pre>visPlot_2D_plotly, 279</pre>
showPatternGenes, 192	visPlot_3D_plotly, 280
showProcessingSteps, 193	visSpatDimGenePlot, 282
showTopGeneToGene, 193	visSpatDimGenePlot_2D, 285
signPCA, 194	visSpatDimGenePlot_3D, 287
sNN, 50	visSpatDimPlot, 289
sNNclust, 100	visSpatDimPlot_2D, 291
spatCellPlot, 195	visSpatDimPlot_3D, 294
spatCellPlot2D, 198	, 100pa 65 1 100_05, 1 5 .
	write_giotto_viewer_annotation, 296
spatDimCellPlot, 201	write_giotto_viewer_dim_reduction, 297
spatDimCellPlot2D, 205	write_giotto_viewer_numeric_annotation
spatDimGenePlot, 209	298
spatDimGenePlot2D, 211	writeHMRFresults, 296
spatDimGenePlot3D, 211, 213, 213	wifecinin results, 250
spatDimPlot, 216	zlm, <i>115</i>
spatDimPlot2D, 219, 220	,
spatDimPlot3D, 219, 223, 224	
spatGenePlot, 227	
spatGenePlot2D, 228, 229	
spatGenePlot3D, 228, 230, 231	
Spatial_AEH, 232	
Spatial_DE, 233	
spatPlot, 234	
spatPlot2D, 237, 252	
spatPlot2D_single, 240	
spatPlot3D, 237, 240, 243, 243, 253	
specificCellCellcommunicationScores,	
245	
split_dendrogram_in_two, 246	
stitchFieldCoordinates, 48, 247	
, ,	