PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-202893

(43) Date of publication of application: 19.07.2002

(51)Int.CI.

G06F 9/46

GO6F 1/00

(21)Application number: 2001-325363

(71)Applicant:

TEXAS INSTRUMENTS INC

(22)Date of filing:

23.10.2001

(72)Inventor:

CHAUVEL GERARD

D INVERNO DOMINIQUE

EDWARDS DARVIN R

(30)Priority

Priority number: 2000 00402948

Priority date: 24.10.2000

Priority country: EP

(54) METHOD FOR CONTROLLING EXECUTION OF MULTIPLEX TASK AND PROCESSING CIRCUIT

(57)Abstract:

PROBLEM TO BE SOLVED: To achieve energy control in a circuit without

exerting any significant influence on performance.

SOLUTION: This multi-processor system (10) includes a plurality of processing modules, such as an MPU (12), a DSP (14), and a co-processor/DMA channel (16). Then, a scenario fulfilling such planned power objectives, such as providing maximum operation within package thermal constraints or using minimum energy is built/by using a profile (36) for the various processing modules and a task to be executed and power management software (38). The actual activity associated with the task is monitored during operation, to ensure compatibility with the objectives. It is possible to dynamically change the allocation of tasks by coping with the changes in environment conditions and the changes in task list. The activity information related with various sub-systems is monitored so that it is possible to compute temperatures at various points in the multiprocessor system.

LEGAL STATUS

[Date of request for examination]

25.10.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-202893 (P2002-202893A)

(43)公開日 平成14年7月19日(2002.7.19)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)
G06F	9/46	360	G06F	9/46	360B 5B098
					360C
	1/00	3 4 0		1/00	3 4 0

審査請求 未請求 請求項の数3 OL (全 11 頁)

(21)出願番号	特顧2001-325363(P2001-325363)	(71)出願人	501229528
			テキサス インスツルメンツ インコーポ
(22)出顧日	平成13年10月23日(2001.10.23)		レイテッド
			アメリカ合衆国、テキサス、ダラス、チャ
(31)優先権主張番号	00402948. 4		ーチル ウエイ 7839
(32)優先日	平成12年10月24日(2000.10.24)	(72)発明者	ジェラール ショーヴェル
(33)優先權主張国	欧州特許庁(EP)		フランス国 アンティーヴ、シェマン デ
			ュ ヴァルボスケ 292、 レジダンス
			デュ ヴァルポスケ 20
		(74)代理人	100066692
			弁理士 浅村 皓 (外3名)
			最終頁に続く

(54) 【発明の名称】 多重タスクの実行を制御する方法と処理回路

(57)【要約】

【課題】 性能に重大な影響を与えずに、回路内のエネルギ管理をする。

【解決手段】 マルチプロセッサ・システム(10)が、MPU(12)、DSP(14)及びコプロセッサ/DMAチャンネル(16)のような複数個の処理モジュールを含む。種々の処理モジュール及び実行すべきタスクに対するプロファイル(36)と共に電力管理ソフトウエア(38)を使って、熱パッケージの制約のの地域で表高の動作を与えるとか最小限のエネルギを使うとかというような予定の電力目標を満たすシナリオを組して、この目標と両立することを確かめる。環境状態の変化及びタスク・リストの変更に対処して、タスクの質とてをダイナミックに変えることが出来る。種々のサブシステムに関連する活動情報を監視することにより、マルチプロセッサ・システム内の種々の点に於ける温度を計算することが出来る。

【特許請求の範囲】

【請求項1】 幾つかのモジュールを含む処理回路に於ける多重タスクの実行を制御する方法に於て、

1

前記処理回路の種々の区域に於ける温度に関連する情報 を決定し、

1 つ又は更に多くの区域が温度閾値を超える問題を防止 する為に、前記温度に関連する情報に応答して、前記複 数個の処理モジュールでタスクを実行する工程を含む方 法。

【請求項2】 多重タスクを実行する複数個の処理モジ 10 ュールを含む処理回路に於て、

前記処理回路の種々の区域に於ける温度に関連する情報 を決定する回路と、

1つ又は更に多くの区域が温度閾値を超えることに伴う 問題を防止する為に、前記温度に関連する情報に応答し て、前記複数個の処理モジュールでタスクを実行する回 路とを含む処理回路。

【請求項3】 信号を受信及び送信するアンテナと、前記アンテナに結合されていて、オーディオ及びデータ信号を送信及び受信する受信/送信回路とを含み、前記 20 受信/送信回路は、処理回路を含んでおり、前記処理回路は、前記処理回路の種々の区域に於ける温度に関連する情報を決定する回路、及び1つ又は更に多くの区域が温度閾値を超えることに伴う問題を防止する為に、前記温度に関連する情報に応答して、前記複数個の処理モジュールでタスクを実行する回路を含む移動通信装置。

【発明の詳細な説明】

【0001】この出願は2000年10月24日に出願されたヨーロッパ出願通し番号00402948.4 (TI-31362EU)の優先権を主張する。

[0002]

【発明の属する技術分野】この発明は全般的に集積回路、更に具体的に言えば、プロセッサのエネルギ管理に関する。

[0003]

【従来の技術及び課題】長年の間、マイクロプロセッサ・ユニット(MPU)、コプロセッサ及びディジタル信号プロセッサ (DSP) の設計を含むプロセッサの設計の焦点は、プロセッサの速度及び機能性を高めることであった。現在、エネルギ消費が重大な問題になっている。速度及び機能性に重大な障害とならずに、エネルギ消費を小さく保つことが、多くの設計で前面に押し出されていることが重要である。スマート・ホン、携帯電話、PDA(パーソナル・ディジタル・アシスタンツ)及びハンドヘルド・コンピュータのような多くのシステムは、比較的小さい電池で動作するので、多くの用途ではエネルギ消費が重要になっている。短い期間で電池を再充電するのは不便であるので、こういうシステムは、比較的小さい電池で動作するので、男祖で電池を再充電するのは不便であるので、こういうシステムは、北較の寿命を最大にすることが望ましい。現在、エネルギ消費を最小限に加える方式は、スタティック・エネル

ギ管理、即ち使うエネルギが少ない回路を設計することである。場合によっては、休止期間の間、クロック速度を下げたり、回路を不作動にするようなダイナミックな措置も取られている。こういう変更も重要であるが、特にデバイスを使う便宜の点で、寸法、従って電池の寸法が重要であるようなシステムでは、エネルギ管理を常に改善することが必要である。全体的なエネルギ節約の他に、複雑な処理の場合には、集積回路から熱を散逸する能力が1つの因子になっている。集積回路はある量の熱を散逸するように設計されている。タスク(アプリケーション・プロセス)が集積回路の幾つかのシステムを必要として、高いレベルの電流を流す場合、回路が過熱し、システム故障又は誤った挙動の原因になることがある。

【0004】将来、集積回路によって実行されるアプリ ケーションは更に複雑になるであろうし、1つの集積回 路内にあるMPU、DSP、コプロセッサ及びDMAチ ャンネルを含む幾つかのプロセッサ(以下「マルチプロ セッサ・システム」)によるマルチ処理を必要とする可 能性がある。DSPは、幾つかの併行するアプリケーシ ョンを支援するように発展しようとし、このアプリケー ションのあるものは特定のDSPプラットフォームに専 用ではなく、インターネットのようなグローバル・ネッ トワークからロードされることになろう。これは、厳し いコストの制約から、小形でピン数の少ない、低コスト のパッケージ技術を使うことを必要とする無線マルチメ ディア機器の分野では特にそうである。従って、過熱を 起こさずにマルチプロセッサ・システムが扱うことが出 来るであろうタスクは予測できなくなる。従って、性能 30 に重大な影響を与えずに、回路内のエネルギ管理をする 方法と装置に対する必要が生じている。

[0005]

40

【課題を解決する為の手段及び作用】この発明は、幾つかのモジュールを含む処理回路に於ける多重タスクの実行を制御する方法と装置を提供する。処理回路の種々の区域に於ける温度に関連する情報を決定する。1つ又は更に多くの区域が温度閾値を超えることに伴う問題を防止する為に、温度に関連する情報に応答して、処理回路の複数個の処理モジュールでタスクが実行される。この発明は従来に比べて、装置の種々の区域の温度又は推理の実に基づいて、完全にダイナミックなエネルギ管理は提供することにより、かなりの利点を提供する。とにより、かなりの利点を提供する。装置内で実行されるタスクが変わるとき、エネルギ管理は関値を超えることがないように保証することが出来る。こ次に図面について説明する。

[0006]

電池の寿命を最大にすることが望ましい。現在、エネル 【実施例】この発明は図面の図1-13についてみれば ギ消費を最小限に抑える方式は、スタティック・エネル 50 一番よく理解される。図面全体に互り、同じ要素には同

じ参照数字を使っている。図1は、MPU 12、1つ 又は更に多くのDSP 14及び1つ又は更に多くのD MAチャンネル又はコプロセッサ(これを包括的にDM A/コプロセッサ16として示してある)を含む一般的 なマイクロプロセッサ・システム10の全体的なブロッ ク図を示す。この実施例では、MPU 12はコア18 及びキャッシュ20を含む。DSP 14は処理コア2 2及びローカルメモリ24 (実際には別々の命令及びデ ータ命令を使うことが出来るし、或いは一体にしたデー タ及びメモリを使ってもよい)を含む。メモリ・インタ ーフェース26が共有メモリ28をMPU 12、DS P 14又はDMA/コプロセッサ16の内の1つ又は 更に多くに結合する。各々のプロセッサ(MPU 1 2、DSP 14) は現実のマルチプロセッサ・システ ムでは、それ自身のオペレーティング・システム(O S) 又は実時間オペレーティング・システム(RTO S) の下に完全に自律的に動作することが出来るし、或 いはMPU 12が共有の資源及びメモリの環境を監視 するグローバルOSを運用することが出来る。図2はマ ルチプロセッサ・システム10に対するソフトウエア・ レーヤ線図を示す。図1に示すように、MPU 12が OSを実行し、DSP 14がRTOSを実行する。O S及びRTOSはソフトウエアのOSレーヤ30を構成 している。分布アプリケーション・レーヤ32がJAV A(登録商標)、C++及びその他のアプリケーション 34と、プロファイリング・データ36を使う電力管理 タスク38とグローバル・タスク・スケジューラ40と を含む。ミドルウエア・ソフトウエア・レーヤ42が、 OSレーヤ30と分布アプリケーション・レーヤ32内 のアプリケーションとの間を連絡する。

【0007】図1及び2について、マルチプロセッサ・ システム10の動作を説明する。マルチプロセッサ・シ ステム10は種々のタスクを実行することが出来る。マ ルチプロセッサ・システム10の典型的なアプリケーシ ョンはスマートホン・アプリケーションで、この場合、 マルチプロセッサ・システム10は、無線通信、ビデオ 及びオーディオ圧縮解除及びユーザ・インターフェース (即ちLCDの更新、キーボードの復号) を取扱う。こ のアプリケーションでは、マルチプロセッサ・システム 10に組込まれた異なるシステムが、優先度の異なる幾 40 つかのタスクを実行する。典型的には、OSは、組込ま れた種々のシステムに対する異なるタスクのタスク・ス ケジュール作りを行う。この発明は、タスクのスケジュ ールを作るときの判断基準として、エネルギ消費を積算 する。好ましい実施例では、分布アプリケーション・レ ーヤ32の電力管理アプリケーション38及びプロファ イル36を使って、タスクのリストを実行する為に、確 率論的な値に基づくシステム・シナリオを組立てる。シ ナリオが予定の判断基準に合わない場合、例えば、電力 消費が大きすぎる場合、新しいシナリオを作成する。受 50 # 2002 — 2028 9 : 4

容れることが出来るシナリオが確立された後、OSレー ヤがハードウエアの活動を監視して、シナリオで予測し た活動が正確であったことを検証する。受容れることの 出来るタスク・スケジュール作りのシナリオに対する判 断基準は、装置の性質に応じて変わることがある。移動 装置に対する1つの重要な判断基準は、エネルギ消費量 が最小であることである。前に述べたように、電子通信 装置が更に小形化されると、一層小さい電池を割当てる ことが、エネルギ消費にプレミアムを付けることにな る。多くの場合、装置の動作中、電力を減らす為に、特 に電池が低レベルに達したとき、タスクに対する動作モ ードが縮小することを許すことが出来る。例えば、LC Dの更新速度を下げることは、画質は犠牲にするけれど も、電力を減らす。別の選択は、性能が遅くなるという 犠牲は払うが、電力を減らす為に、マルチプロセッサ・ システム10のMIP (毎秒の百万単位の命令)を減ら すことである。電力管理ソフトウエア38は、縮小した 性能の異なる組合せを使う異なるシナリオを解析して、 受容れることが出来る装置の動作に達する。

【0008】電力を管理するときのもう1つの目標は、所定の電力限界の設定に対し、最高のMIP又は最も少ないエネルギを見付けることであることがある。図3a及び3bは、マルチプロセッサ・システム10が平均電力散逸(powerdissipation)限界を超えるのを防ぐ為に電力管理アプリケーション38を使った一例を示す。図3aでは、DSP 14、DMA 16及びMPU 12が同時に多数のタスクを運用している。時刻t1に、組込まれた3つのシステムの平均電力散逸が、マルチロセッサ・システム10に課せられた平均限界を超える。図3bは、同じタスクが実行される場合のシナリオを示しているが、受容れることが出来る平均電力散逸プロファイルを維持する為に、DMA及びDSPのタスクが完了する後まで、MPUのタスクを遅らせる。

【0009】図4aは第1の実施例の電力管理タスク3 8の動作を示すフローチャートである。ブロック50 で、電力管理タスクをグローバル・スケジューラ40に よって発動し、これはMPU 12又はDSP 14の 内の1つによって実行することが出来る。 スケジューラ が、近づくアプリケーションを評価し、関連する優先及 び除外の規則に従って、それをタスクに分割する。タス ク・リスト52は、例えば、オーディオ/ビデオ復号、 表示装置制御、キーボード制御、記号認識等を含んでい てよい。工程54で、タスク・リスト52が、タスク・ モデル・ファイル56及び縮小許容ファイル58に照ら して評価される。タスク・モデル・ファイル56は分布 アプリケーション・レーヤ32のプロファイル36の一 部分である。タスク・モデル・ファイル56は、タスク ・リストにある各々のタスクに異なるモデルを割当てる 前もって作成されたファイルである。各々のモデルが、 待ち時間の制約、優先度、データの流れ、基準プロセッ

サ速度に於ける初期エネルギ推定値、縮小の影響、及び MIP及び時間の関数としての所定のプロセッサの実行 プロファイルのような関連するタスクの特性を定めるデータの集まりであり、これは実験的に、又は計算機支援 ソフトウエア設計技術によって導き出すことが出来る。 縮小リスト58は、シナリオを作成するときに使うこと が出来る縮小の種類を示している。

【0010】タスク・リストが修正される(即ち、新し いタスクが作られるか或いはタスクが削除される)度 に、又は実時間事象が起こったときに、工程54のタス ク・リスト52及びタスク・モデル56に基づいて、シ ナリオが組立てられる。このシナリオは、モジュールに 対して種々のタスクを割当て、それらのタスクを実行す る優先順位を設定する優先度情報を与える。基準速度に 於けるシナリオ・エネルギ推定値59をタスクのエネル ギ推定値から計算することが出来る。必要な場合又は望 ましい場合、タスクを縮小させることが出来る。即ち、 一層少ない資源を使うタスクのモードを、完全版のタス クの代りに使うことが出来る。このシナリオから、ブロ ック60で活動の推定値が発生される。活動の推定値 は、タスク活動プロファイル62(これは分布アプリケ ーション・レーヤ32のプロファイリング・データ36 から)及びハードウエア・アーキテクチュア・モデル6 4 (これも分布アプリケーション・レーヤ32のプロフ ァイリング・データ36から)を使って、このシナリオ によって生ずるハードウエアの活動に対する確率論的な 値を発生する。確率論的な値は、各々のモジュールの待 ち/運用時間の割合(実効MHz)、キャッシュ及びメ モリに対するアクセス、I/Oトグル速度及びDMAの 流れの要請及びデータの分量を含む。熱時定数と釣合う 期間Tを使って、基準プロセッサ速度に於けるエネルギ 推定値59と工程60で得られた平均活動(特に、実行 プロセッサ速度)から、平均電力散逸を計算することが 可能であり、これを熱パッケージ・モデルと比較する。 電力の値が、熱パッケージ・モデル72に定められた何 れかの閾値を超えた場合、判定ブロック74で、シナリ オを拒絶する。この場合、ブロック54で新しいシナリ オが組立てられ、工程60、66及び70が繰返され る。そうでない場合、シナリオを使って、タスク・リス トを実行する。

【0011】シナリオによって定められたタスクの動作中、OS及びRTOSが、ハードウエアに設けられたカウンタ78を使って、ブロック76で夫々のモジュールの活動を追跡する。マルチプロセッサ・システム10のモジュールに於ける実際の活動は、ブロック60で推定した活動とは違っていることがある。ハードウエア・カウンタからのデータを期間下毎に監視して、活動測定値を発生する。活動測定値をブロック66で用いてこの期間に対するエネルギの値、従って前述のようにブロック66に於ける平均電力の値を計算し、ブロック72の熱50

パッケージ・モデルと比較する。測定値が閾値を超える場合、プロック54で新しいシナリオを組立てる。活動測定値を連続的に監視することにより、シナリオをダイナミックに修正して、予め定めた限界内に留まるようにするか、或いは変化する環境条件に合わせて調節するこ

6

とが出来る。 【0012】チップに対するTの間の合計エネルギ消費 量は次のように計算される。

 $[\alpha \cdot Cpd \cdot f \cdot V_{dd}^{2}] \cdot dt$ $\mathrm{E} = \int _{\mathsf{T}} \sum_{\mathsf{codules}}$ $\equiv \sum_{\text{modules}} \left[\sum_{\text{T}} (\alpha) \right] \cdot C p d \cdot f \cdot V_{dd}$ ここで f は周波数、Vaa は電源電圧、αは確率論的な (又は測定された、この図のブロック76に関する説明 を参照されたい) 活動である。言い換えると、Σ τ (α) *Cpd*f*Vaa 'は等価散逸静電容量Cpd によって特長付けられる特定のハードウエア・モジュー ルに対応するエネルギであり、カウンタの値は、Στ (α) を示し、EはT内に散逸されるマルチプロセッ サ・システム10内の全てのモジュールに対する全部の エネルギの和である。平均システム電力散逸W=E/T である。好ましい実施例では、測定された並びに確率論 的なエネルギ消費量を計算し、平均電力散逸を期間Tに 互るエネルギ消費量から導き出す。大抵の場合、エネル ギ消費量の情報の方が一層容易に入手出来る。しかし、 測定された及び確率論的な電力消費量から電力散逸を計 算することも可能である。

【0013】図4bは、第2の実施例の電力管理タスク38の動作を示すフローチャートである。図4bの流れは図4aと同じであるが、工程50でシナリオ組立てアルゴリズムが発動されたとき(新しいタスク、タスクの削除、実時間事象があるとき)、1つの新しいシナリオを選ぶ代りに、性能の制約に見合うn個の異なるシナリオを予め工程54及び59で計算しておいて記憶し、ダイナミック・ループ内での動作の数を減らすと共に、追跡ループで計算された電力がブロック74での現在のシナリオの拒絶になった場合、一層素早く適応出来るようにする。図4bでシナリオが拒絶された場合、ブロック65で、予め計算されている別のシナリオが選択される。その他の点で、動作は図4aに示すものと同じである。

【0014】図5-8は、図3の種々のブロックの動作を更に詳しく示している。組立てシステム・ブロック54が図5に示されている。このブロックでは、タスク・リスト52、タスク・モデル56及び考えられるタスク縮小リスト58を使って、シナリオを作成する。タスク・リストは、マルチプロセッサ・システム10でどのタスクを実行すべきであるかに応じて変わる。図5の例では、3つのタスクが示されている。MPEG4が復号し、無線モデムがデータを受信し、キーボード事象を監視する。実例では、タスクは任意の数の源から来るものであってよい。タスク・モデルは、待ち時間及び優先度

の制約、データの流れ、初期のエネルギ推定値及び縮小 の影響のような、シナリオを定めるときに考慮すべき条 件を示すものである。この他の条件もこのブロックで使 うことが出来る。組立てシステム・シナリオ・ブロック の出力がシナリオ80であり、これは種々のタスクをモ ジュールと関係付け、各々のタスクに優先順位を割振 る。例えば、図5に示す例では、MPEG4復号タスク は16の優先度を持ち、無線モデム・タスクは4の優先 度を持っている。ブロック54で組立てられるシナリオ は、多数の異なる観点に基づくことが出来る。例えば、 熱パッケージの制約の範囲内で最大の性能を与えること に基づいて、シナリオを組立てることが出来る。この代 りに、考えられる最小のエネルギを使うことに基づいて シナリオを組立てることが出来る。最適のシナリオは、 装置の動作の間に変化することがある。例えば、電池を 一杯に充電したとき、装置は最高の性能レベルで動作す ることが出来る。電池の電力がプリセット・レベルより 少なくなったとき、装置は、動作を維持する為の考えら れる最低電力レベルで動作することが出来る。ブロック 54からのシナリオ80を図6に示す活動推定ブロック 60で使うことが出来る。このブロックは、マルチプロ セッサ・システム10に於ける電力使用量に影響を与え る種々のパラメータに対する確率計算をする。タスク活 動プロファイル62及びハードウエア・アーキテクチュ ア・モデル64と関連して、確率論的な確率推定値が発 生される。タスク活動プロファイルは、データ・アクセ スの種類(ロード/記憶)、異なるメモリに対する発生 事象、タスクに使われるブランチ及びループのようなコ ード・プロファイル及びタスク内の命令に対する命令当 たりのサイクル数に対する情報を含む。ハードウエア・ アーキテクチュア・モデル64は、(プロセッサ運用/ 待ち時間の割合のような)推定されたハードウエア活動 の計算が出来るようにする、システムの待ち時間に対す るタスク活動プロファイル62の影響を何らかの形で記 述する。このモデルは、タスクが実施されるハードウエ アの特性、例えばキャッシュの寸法、種々のバスの幅、 I/Oピンの数、キャッシュが書込みか書戻しか、使わ れるメモリの種類(ダイナミック、スタティック、フラ ッシュ等)及びモジュールで使われるクロック速度を考 慮に入れる。典型的には、モデルは、データにキャッシ ュが使えるか/使えないか、読取/書込みアクセスの割 合、命令当たりのサイクル数等のような異なるパラメー タに対するMPU及びDSPの実効周波数の変動を表す 曲線群で構成することが出来る。図6に示す実施例で は、各々のモジュールの実効周波数、メモリ・アクセス の回数、I/Oトグル速度及びDMAの流れに対する値 が計算される。電力に影響するその他の因子も計算する ことが出来る。

【0015】電力計算ブロック66が図7に示されてい る。このブロックでは、ブロック60からの確率論的な 50 活動又はブロック76からの測定された活動を使って、 種々のエネルギの値を計算し、こうして期間Tに互る電 力の値を計算する。電力の値が、マルチプロセッサ・シ ステム10のハードウエアの設計に特定のハードウエア 電力プロファイルに関連して計算される。ハードウエア ・プロファイルは、各々のモジュールに対するCpd、 論理設計形式(D型フリップフロップ、ラッチ、ゲート ・クロック等)、電源電圧及び出力に対する容量性負荷 を含むことがある。電力の計算は、集積モジュールに対 し、並びに外部メモリ又はその他の外部装置に対して行 うことが出来る。活動測定及び監視ブロック76が図8 に示されている。マルチプロセッサ・システム10の全 体に互ってカウンタを設けて、キャッシュ・ミス、TL B (変換ルックアサイド・バッファ) ミス、キャッシュ が使えないメモリ・アクセス、待ち時間、異なる資源に 対する読取/書込み要請、メモリ・オーバヘッド及び温 度のような種々のモジュールの活動を測定する。活動測 定及び監視ブロック76が、各モジュールの実効周波数 に対する値、メモリ・アクセスの回数、I/Oトグル速 度及びDMAの流れを出力する。特定の構成では、この 他の値も測定することが出来る。このブロックの出力が 電力計算ブロック66に送られる。

8

【0016】図9は、電力/エネルギ管理ソフトウエア を用いるマルチプロセッサ・システム10の一例を示 す。この例では、マルチプロセッサ・システム10が、 OSを実行するMPU 12、及び夫々のRTOSを実 行する2つのDSP 14 (個別にDSP1 14a及 びDSP2 14 b と示す)を含んでいる。各々のモジ ュールが、マルチプロセッサ・システム10に互って種 々の活動カウンタ78の値を監視する監視タスク82を 実行する。電力計算タスクがDSP 14 a で実行され る。種々の監視タスクが、関連する活動カウンタ78か らのデータを検索し、その情報をDSP 14aに送っ て、測定された活動に基づいて電力の値を計算する。電 力計算タスク84及び監視タスク82のような電力管理 タスクは、他のアプリケーション・タスクと共に実行す ることが出来る。好ましい実施例では、電力監視タスク 38及びプロファイル36が、JAVA実時間の環境で JAVAクラス・パッケージとして構成されている。図 10は、図9に示す種類の処理装置100の分解図で、 種々の部品の配置が半導体ダイ102の上に示されてい る。例えば、MPU 12、DSP1 14a及びDS P2 14bという部品の境界が図10ではダイ102 の上に示されている。ダイ102は、パッケージ110 の中に設けられている。ダイ102の上方に、処理装置 100の動作中に起こり得る電力散逸プロファイル11 2の一例が示されている。電力散逸プロファイル112 は、夫々の部品の動作に関連するピーク114、116 及び118を示している。この図から判るように、電力 散逸ピーク114は予定の安全範囲を超えている。

a

【0017】電力散逸プロファイル112は、図9に示 すような部品に関連した種々のカウンタ78によって検 出された事象から計算することが出来る。ダイに対する 温度フィールドは散逸電力プロファイルから計算するこ とが出来る。ピーク114に示したような臨界的な電力 サージが検出されたとき、電力計算タスク84によっ て、タスクのスケジュールのやり直しを計算することが 出来る。この場合、ピーク114を受容可能なレベルに 下げる為に、幾つかの解決策を利用することが出来る。 第1に、MPU 12で運用するタスクが優先度の高い 10 タスクであった場合、優先度の低いタスクをDSP1 14a又はDSP2 14bにスケジュールし直すこと が可能であるかもしれない。DSP1 14a及びDS P2 14bで表した区域に於ける電力散逸が、MPU 12で表した区域に於ける電力散逸に寄与するから、 DSP1 14a又はDSP2 14bを使うタスクの 1つ又は更に多くのスケジュールのやり直しが、ピーク を下げることがある。この代りに、MPU 12、DS P1 14a及びDSP2 14bの周波数を下げるこ とにより、ピーク114で示した電力散逸を下げること が可能であることがある。カウンタ78は、ダイ102 の多くの区域に於ける活動を測定することが出来る。例 えば、MPU 12では、第1のカウンタが命令キャッ シュの活動を測定し、第2のカウンタがデータ・キャッ シュの活動を測定し、第3のカウンタがMAC(マルチ プライヤ・アキュムレータ) の活動を測定することが出 来る。カウンタ78は、その活動を測定する回路の区域 内に物理的に配置する必要はない。1個のカウンタが、 ダイ102の多数の区域に影響する活動を測定すること も可能である。活動の影響は、ダイ102の1つ又は更 30 に多くの区域に於ける電力散逸の推定値に直接的に変換 することが出来るから、活動の継続的な測定が、装置の 性能に影響を与える危険のある電力サージを確認するこ とが出来る。閾値は、危険な状況を識別するように設定 することが出来る。

【0018】図11は、ダイの特定の区域に於ける臨界的な温度の影響を避ける為に事象をスケジュールする動作を示すフローチャートである。工程120で、電力管理ソフトウエアが活動情報を受取る。この情報を使って、工程122で、半導体ダイ102の上に於ける電力散逸の分布を計算する。電力散逸の分布が工程124で解析される。半導体ダイ102の何れかの区域で閾値を超えた場合、工程126で、タスクを調節して、その区域に於ける電力散逸を減らす。活動の測定値を用いて電力散逸の分布が推定されるが、半導体上の種々の点に於ける温度を直接的に測定し、実際の温度測定値に基づいてタスクをスケジュールすることが可能である。例えば、PN接合のI-V特性の測定された変化により、温度を推定することが出来る。装置100の動作中、種々の部品に於ける活動を監視する他に、カウンタ78を使 50 出来る。動作について説明すると、マルチプロセッサ・システム10によって実行される各々のタスクは独特の確認タグ、即ち、タスクIDがタスクIDがタスクIDがタスクIDがタスクIDがタスクIDがタスクIDが表表したが出来る)。比較器134にロードされたタスクIDと合うとき、第1の論理信号(例えば論理1)を出力する。同様に、タスクIDと異なるとき、第2の論理信号(例えば論理0)を出力する。比較器134の出力が装置10にある種々を出力する。比較器134の出力が装置10にある種々

って、タスクを実行する間のダイ102の任意の区域に 於ける臨界的な温度を避けるスケジュールを作る為に、 区域の特定の温度に対してタスクのプロファイルを決め るのに必要な情報を取出すことが出来る。これは図4a 及び4bに示すように実施することが出来、装置100 の種々の区域に閾値を適用する。この発明のこの一面 は、従来に比べて重要な利点である。第1に、これによ って、装置の種々の区域の温度又は推定温度に基づく完 全にダイナミックな電力管理が出来る。装置100で実 行されるタスクが変化するとき、電力管理が新しいシナ リオを組立てて、装置のどの区域でも温度閾値を超えな いように保証することが出来る。電力管理ソフトウエア は、それが管理する種々のタスクに対してトランスペア レントである。即ち、特定のタスクが電力管理が出来な いものであっても、電力管理ソフトウエアは、装置10 0の電力容量に見合う形で、タスクを実行する責任を負 う。図11は、特定のタスクの動作に関するエネルギ情 報を正確に測定するこの発明の実施例を示す。タスクに 関連するエネルギ情報の精度を高めることにより、提案 されたグローバル・シナリオに対する成功の確率も同様 に高くなる。

【0019】図12は、MPU 12の更に詳しいブロ ック図である。MPUコア130がタスクIDレジスタ 132及び比較回路134を含む。コア130が命令キ ヤッシュ20a及びデータ・キャッシュ20bに結合さ れる。カウンタ78がコア内の活動を監視する。カウン タ78は、比較回路134の出力に結合された付能ポー ト(En)を持っている。独立にタスクを実行するかも しれない各々のプロセッサ(即ち、MPU又はDSPの ような「自律的な」プロセッサであるが、一般的にはコ プロセッサ又はDMAの物理的なチャンネルはそうでは ない)は、タスクIDレジスタ132及び比較回路13 4を持つことが出来る。この為、図9に示す装置は、M PU 12、DSP1 14a及びDSP2 14bに 対応する3つのタスクIDレジスタ132を持つことが 出来る。動作について説明すると、マルチプロセッサ・ システム10によって実行される各々のタスクは独特の 確認タグ、即ち、タスクIDを持っている。タスクが実 行されるとき、そのタスクIDがタスクIDレジスタ1 32に記憶される。システムのエネルギ消費量の正確な 測定値が特定のタスクに対して測定されているとき、特 定のタスクのタスクIDが比較器134にロードされる (監視されるタスクのタスク I Dは比較器 1 3 4 又はレ ジスタ又は他のメモリに記憶することが出来る)。比較 器134は、タスクIDレジスタにある識別子が比較器 134にロードされたタスクIDと合うとき、第1の論 理信号(例えば論理1)を出力する。同様に、タスク I Dレジスタの識別子が比較器134にロードされたタス クIDと異なるとき、第2の論理信号(例えば論理0)

のカウンタの付能ポートに結合される。比較器134で符合があるとき、カウンタはタスクに関連する活動を測定することが出来る。符合しないとき、カウンタは不作動にされ、他のタスクに関連する活動は測定されないようになっている。幾つかのプロセッサの間で、あるハードウエア・システムが共有になっている。この為、個別のタスクに帰因するこういう共有システムの活動を正確に測定する為に、幾つかのカウンタを夫々の比較回路134に結合することが出来る。この代りに、共有のハードウエア・システムのカウンタにタスクIDレジスタ及10び比較器を設けて、あるタスクが作用しているときだけ、計数を許すことが出来る。

【0020】この実施例は、タスク・プロファイルに対 するエネルギ情報を発生する為に使うことが出来る。エ ネルギ情報は、装置10をエネルギ情報を収集する為に 動作させている場合は、「オフライン」モードで収集す ることが出来るし、装置10の実際の動作中にこの情報 が収集される場合は、「オンライン」モードで収集する ことが出来る。タスク・プロファイル36は、タスクを 作り且つ終了するとき、スケジュールを改善する為の装 置の動作中、ダイナミックに更新する。エネルギ・プロ ファイルを作る他に、上に述べたタスクに特定の事象監 視能力を他の目的の為に使うことが出来る。このような 1つの目的は、性能をよくしたデバッグ技術を提供する ことであろう。例えば、所定のタスクに対し、活動カウ ンタがある値に達したとき、ブレークポイントをセット することが出来る。装置10の動作中、各々の自律的な プロセッサに対し、現在のタスクのタスクIDをタスク IDレジスタ132に記憶する。多重タスク・システム では、プロセッサが各々の現在のタスクの間で切換わ り、全ての現在のタスクが同時に実行されているような 観を生ずる。各々のタスクがプロセッサによってロード されるとき(「活動する」タスク)、種々の状態情報が プロセッサに復元される。図12に示す実施例では、活 動するタスクに関連するタスクIDが、このタスクに対 する状態情報が復元されるとき、タスク I D レジスタ 1 32に記憶される。自律的なプロセッサに対するタスク IDレジスタ132の内容が、監視されるタスクのタス クIDと符合する時間の間、カウンタ78が付能され て、活動情報を蓄積する。プロセッサが異なるタスクに 40 切換わるとカウンタは活動を無視する。この為、多重タ スク動作中のあるタスクに関連する活動に関する正確な 情報を求めることが出来る。

【0021】図12に示す実施例は、図10及び図11に示す実施例と共に使って、希望により、区域に特定の温度データを求めることが出来る。この発明のこの一面は、更に正確なプロファイル・データが得られ、これはタスクをスケジュールする為に使うことが出来る。一層よいエネルギ情報を提供することにより、図4a及び4bに関連して説明したグローバル・シナリオを計算する 50

成功率が高くなる。

【0022】図13は、マイク152、スピーカ15 4、キーパッド156、表示装置158、及びアンテナ 140を持つ移動無線装置150の構成を示す。内部処 理回路162が、ここで述べたエネルギ節約の特長を持 つ1つ又は更に多くの処理装置を含む。勿論、他の色々 な形式の通信装置及びコンピュータ・システムも、特に 電池の電力に頼るものは、この発明から利益を生むこと が出来ると考えられている。このような他のコンピュー タ・システムの例としては、パーソナル・ディジタル・ アシスタンツ (PDA)、ポータブル・コンピュータ、 スマートホン、ウエブホン等がある。デスクトップ及び 線路から給電されるコンピュータ・システム及びマイク ロコントローラの用途でも、特に信頼性の観点から、電 力散逸は関心があるから、この発明はこのような線路か ら給電されるシステムにとっても利点をもたらすと考え られる。電気通信装置150が、オーディオ入力を受取 るマイク152、及びオーディオ出力を出力するスピー カ154を普通のように具えている。マイク152及び スピーカ154が、オーディオ及びデータ信号を受信及 び送信する処理回路162に接続されている。この発明 の詳しい説明はある実施例を対象としているが、これら の実施例の種々の変更並びにこの他の実施例も、当業者 に容易に考えられよう。この発明は、特許請求の範囲内 に属するあらゆる変更又は代りの実施例をも含むもので ある。

【0023】以上の説明に関し、更に以下の項目を開示する。

- (1) 幾つかのモジュールを含む処理回路に於ける多 30 重タスクの実行を制御する方法に於て、前記処理回路の 種々の区域に於ける温度に関連する情報を決定し、1つ 又は更に多くの区域が温度閾値を超える問題を防止する 為に、前記温度に関連する情報に応答して、前記複数個 の処理モジュールでタスクを実行する工程を含む方法。
 - (2) 第1項に記載の方法に於て、前記決定する工程 が、前記モジュールによって実行される動作を監視する 工程を含む方法。
 - (3) 第1項に記載の方法に於て、前記決定する工程 が、前記処理回路内の種々の場所に於ける電力散逸情報 を計算する工程を含む方法。
 - (4) 第1項に記載の方法に於て、前記決定する工程 が、前記処理回路内の種々の場所に於ける現在の温度を 計算する工程を含む方法。
 - (5) 第1項に記載の方法に於て、前記決定する工程が、タスク割当てシナリオを作成し、前記処理回路内の種々の場所に対する温度に関連する情報を推定し、この活動に伴う温度を計算する工程を含む方法。
 - (6) 第5項に記載の方法に於て、タスク割当てシナリオを作成する前記工程が、実行すべきタスクを記述するタスク・リスト及びタスクを記述するタスク・モデル

を受取る工程を含む方法。

(7) 第6項に記載の方法に於て、前記タスク・モデルが各々のタスクに対する初期の区域特定電力散逸推定値を含む方法。

【0024】(8) 多重タスクを実行する複数個の処理モジュールを含む処理回路に於て、前記処理回路の種々の区域に於ける温度に関連する情報を決定する回路と、1つ又は更に多くの区域が温度閾値を超えることに伴う問題を防止する為に、前記温度に関連する情報に応答して、前記複数個の処理モジュールでタスクを実行す 10る回路とを含む処理回路。

- (9) 第8項に記載の処理回路に於て、前記決定する 回路が、前記処理モジュールによって実行される動作を 監視する回路を含む処理回路。
- (10) 第8項に記載の処理回路に於て、前記決定する回路が、前記処理回路内の種々の場所に於ける電力散逸情報を計算する回路を含む処理回路。
- (11) 第8項に記載の処理回路に於て、前記決定する回路が、前記処理回路内の種々の場所に於ける現在の温度を計算する回路を含む処理回路。
- (12) 第8項に記載の処理回路に於て、前記決定する回路が、タスク割当てシナリオを作成し、前記処理回路内の種々の場所に対する温度に関連する情報を推定し、この活動に伴う温度を計算する回路を含む処理回路
- (13) 第12項に記載の処理回路に於て、前記タスク割当てシナリオを作成する回路が、実行すべきタスクを記述するタスク・リスト及びタスクを記述するタスク・モデルを受取る回路を含む処理回路。
- (14) 第13項に記載の処理回路に於て、前記タス 30 ク・モデルが各々のタスクに対する初期の区域特定電力 散逸推定値を含む処理回路。
- (15) 信号を受信及び送信するアンテナと、前記アンテナに結合されていて、オーディオ及びデータ信号を送信及び受信する受信/送信回路とを含み、前記受信/送信回路は、処理回路を含んでおり、前記処理回路は、前記処理回路の種々の区域に於ける温度に関連する情報を決定する回路、及び1つ又は更に多くの区域が温度閾値を超えることに伴う問題を防止する為に、前記温度に関連する情報に応答して、前記複数個の処理モジュール 40でタスクを実行する回路を含む移動通信装置。

【0025】(16) マルチプロセッサ・システム(10)が、MPU(12)、DSP(14)及びコプロセッサ/DMAチャンネル(16)のような複数個の処理モジュールを含む。種々の処理モジュール及び実行すべきタスクに対するプロファイル(36)と共に電力管理ソフトウエア(38)を使って、熱パッケージの制約の範囲内で最高の動作を与えるとか最小限のエネルギを使うとかというような予定の電力目標を満たすシナリ

オを組立てる。タスクに関連する実際の活動を動作中に 監視して、この目標と両立することを確かめる。環境状態の変化及びタスク・リストの変更に対処して、タスク の割当てをダイナミックに変えることが出来る。種々の サブシステムに関連する活動情報を監視することにより、マルチプロセッサ・システム内の種々の点に於ける 温度を計算することが出来る。活動測定値を使って、ダイ上の現在の電力散逸分布を計算することが出来る。必 要であれば、シナリオの中のタスクを調節して、電力散逸を減らすことが出来る。更に、更に正確なプロファイル情報を得る為に、特定のタスクに対して活動カウンタを選択的に付能することが出来る。

【図面の簡単な説明】

- 【図1】マルチプロセッサ・システムのブロック図。
- 【図2】マルチプロセッサ・システムのソフトウエア・レーヤ線図。
- 【図3】マルチプロセッサ・システムに対するエネルギ 管理の利点を示す一例のグラフ。
- 【図4a】図2のエネルギ管理ソフトウエアの好ましい 実施例の動作を示すフローチャート。
- 【図4b】図2のエネルギ管理ソフトウエアの好ましい 実施例の動作を示すフローチャート。
- 【図5】図4のシステム・シナリオの組立てブロックの図。
- 【図6】図4の活動推定ブロックの図。
- 【図7】図4の電力計算ブロックの図。
- 【図8】図4の活動測定及び監視ブロックの図。
- 【図9】活動カウンタを持つマルチプロセッサ・システムのブロック図。
- 【図10】図9のブロック図に示した種類の処理装置の 分解図並びに動作中の散逸電力(mW/mm²)のグラ
 - 【図11】タスクをスケジュールする為の区域に特定の 温度データを使うことを示すフローチャート。
 - 【図12】タスクに関連する活動の正確な測定値を出す 実施例のブロック図。
 - 【図13】この発明を用いた移動通信装置の図。

【符号の説明】

- 12 MPU
- 40 14 DSP
 - 16 コプロセッサ/DMAチャンネル
 - 30 OSレーヤ
 - 32 分布アプリケーション・レーヤ
 - 34 アプリケーション
 - 36 プロファイル
 - 38 電力管理
 - 40 グローバル・タスク・マネージャ
 - 42 ミドルウェア

14

フロントページの続き

(72) 発明者 ドミニク ディンヴェルノ フランス国 ヴィルヌーヴ - ルーベ、 シェマン デ バセ ジネスティエー ル、47 (72)発明者 ダーヴィン アール、エドワーズ アメリカ合衆国 テキサス、ガーランド、 グレン ヴィスタ ドライヴ 5301 Fターム(参考) 58098 AA09 AA10 GA02 GA04 GC00 GC10 JJ08 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第3区分

【発行日】平成17年7月7日(2005.7.7)

【公開番号】特開2002-202893(P2002-202893A)

【公開日】 平成14年7月19日(2002.7.19)

【出願番号】特願2001-325363(P2001-325363)

【国際特許分類第7版】

G 0 6 F 9/46 G 0 6 F 1/00

[FI]

G 0 6 F 9/46 3 6 0 B G 0 6 F 9/46 3 6 0 C G 0 6 F 1/00 3 4 0

【手続補正書】

【提出日】平成16年11月10日(2004.11.10)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

幾つかのモジュールを含む処理回路に於ける多重タスクの実行を制御する方法に於て、 前記処理回路の種々の区域に於ける温度関連情報を決定し、

前記いくつかの処理モジュールのうちの第1の処理モジュールに関連した領域における 過剰温度を示す温度関連情報に応答して、1又は2以上の近接処理モジュールのタスクを 実行するパラメータを変更してその近接処理モジュールから発生される熱を減少して前記 第1の処理モジュールの過剰温度に対応させる、

工程を含む方法。

【請求項2】

請求項1記載の方法に於て、前記決定する工程が、前記モジュールによって実行される動作を監視する工程を含む方法。

【請求項3】

請求項1記載の方法に於て、前記決定する工程が、前記処理回路内の種々の場所に於ける電力散逸情報を計算する工程を含む方法。

【請求項4】

請求項1記載の方法に於て、前記決定する工程が、前記処理回路内の種々の場所に於ける現在の温度を計算する工程を含む方法。

【請求項5】

多重タスクを実行する複数個の処理モジュールを含む処理回路に於て、

前記処理回路の種々の区域に於ける温度に関連する情報を決定する回路と、

前記いくつかの処理モジュールのうちの第1の処理モジュールに関連した領域における 過剰温度を示す温度関連情報に応答して、1又は2以上の近接処理モジュールのタスクを 実行するパラメータを変更してその近接処理モジュールから発生される熱を減少して前記 第1の処理モジュールの過剰温度に対応させる回路と、

を含む処理回路。

【請求項6】

請求項5記載の処理回路に於て、前記決定する回路が、前記処理モジュールによって実

行される動作を監視する回路を含む処理回路。

【請求項7】

請求項 5 記載の処理回路に於て、前記決定する回路が、前記処理回路内の種々の場所に 於ける電力散逸情報を計算する回路を含む処理回路。

【請求項8】

請求項5記載の処理回路に於て、前記決定する回路が、前記処理回路内の種々の場所に於ける現在の温度を計算する回路を含む処理回路。