Design of Experiments: One Factor and Randomized Block Experiments

Prof. Daniel A. Menasce Dept. of Computer Science George Mason University

© 2001. D. A. Menascé. All Rights Reserved.

Basic Notions in Design of Experiments

- Response: what you want to measure.
- Factor: what affects the response.
- Level: value of a factor.

		Response		
	CPU Clock Frequency (MHz)	Number of CPUs	Main Memory (MB)	Benchmark Execution Time (sec)
	550	1	128	25.0
	750	1	128	32.0
	1000	1	128	48.0
	550	2	128	19.0
	750	2	128	13.5
<u>e</u>	1000	2	128	10.0
Levels	550	1	256	23.0
_	750	1	256	29.0
	1000	1	256	45.0
	550	2	256	16.5
	750	2	256	11.8
	1000	2	256	8.8

2

Comparing Means of Various Groups

- ANOVA: Analysis of Variance.
- Consider c groups (each group is a level of a factor).
- Subdivide total variation in the response into variations attributable to differences among the c groups and differences within the c groups (experimental error).

3

© 2001. D. A. Menascé. All Rights Reserved.

- A, B, C, and D are different page replacement algorithms.
- Factor: page replacement algorithm.
- Levels: A, B, C, and D.
- Number in each column: running times of programs under each replacement algorithm.

Page Replacement	Algorithm
------------------	-----------

Α	В	С	D
11	12	18	11
13	14	16	12
17	17	18	16
17	19	20	15
15	21	22	14
16	18	15	17
14	19	17	13
10	18	21	16
12	16	16	17
14	18	20	18

4

How about the Influence of Uncontrolled and Unforeseen Factors?

- The running time of a program depends on many other factors. Its locality of reference plays a role in the effectiveness of a page replacement algorithm.
- Randomization: consider a large set of programs and randomly assign programs to each group.

© 2001. D. A. Menascé. All Rights Reserved.

Randomization

A

Randomizer

B

C

C

C

C

C

C

C

D

6

ANOVA

- Assumptions:
 - c groups or levels of the factor being examined represent populations whose outcome measurements are randomly and independently drawn and follow a normal distribution and have equal variances.
- Hypotheses:

 $H_0: \mathbf{m}_1 = \mathbf{m}_2 = ... = \mathbf{m}_c$ $H_1:$ not all \mathbf{m}_i are equal (j=1,...,c)

9

© 2001. D. A. Menascé. All Rights Reserved.

ANOVA Model Total Variation (SST) df = n - 1Among Group Variation (SSA) df = c - 1Within-Group Variation (SSW) df = n - c

SST (Sum of Squares Total)

$$SST = \sum_{j=1}^{c} \sum_{i=1}^{n_j} \left(X_{ij} - \overline{\overline{X}} \right)^2$$

where

$$\overline{\overline{X}} = \frac{\sum_{j=1}^{c} \sum_{i=1}^{n_j} X_{ij}}{n}$$
: overall or grand mean.

 X_{ij} : i-th observation in group or level j.

 n_i : number of observations in group or level j.

n: total number of observations: $\sum_{j=1}^{c} n_j$

11

© 2001. D. A. Menascé. All Rights Reserved.

SST Example

Page Replacement Algorithm

Α	В	С	D
11	12	18	11
13	14	16	12
17	17	18	16
17	19	20	15
15	21	22	14
16	18	15	17
14	19	17	13
10	18	21	16
12	16	16	17
14	18	20	18

Grand Mean 16.075

$$SST = (11-16.075)^2 + (13-16.075)^2 + \dots + (18-16.075)^2 = 336.75$$

12

SSA (Sum of Squares Among Groups)

Groups)
$$SSA = \sum_{j=1}^{c} n_j \left(\overline{X}_j - \overline{\overline{X}} \right)^2$$

where

$$\overline{\overline{X}} = \frac{\sum_{j=1}^{c} \sum_{i=1}^{n_j} X_{ij}}{n}$$
: overall or grand mean.

 \overline{X}_{i} : sample mean corresponding to group or level j.

 n_j : number of observations in group or level j.

14

SSA Example

14.9

Page Replacement Algorithm D В С

18.3

Grand Mean

Mean

SSA =
$$10 (13.9 - 16.075)^2 + 10 (17.2 - 16.075)^2 + 10 (18.3 - 16.075)^2 + 10 (14.9 - 16.075)^2$$

= 123.275

17.2

© 2001. D. A. Menascé. All Rights Reserved.

13.9

16.075

SSW (Sum of Squares Within Groups)

Groups)
$$SSW = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_j)$$

where

 X_{ii} : i-th observation in group or level j.

 $\overline{X}_{\scriptscriptstyle j}$: sample mean corresponding to group or level j.

17

© 2001. D. A. Menascé. All Rights Reserved.

SSW Example

Page Replacement Algorithm

raye Kepiacement Algorithm						
Α	В	С	D			
11	12	18	11			
13	14	16	12			
17	17	18	16			
17	19	20	15			
15	21	22	14			
16	18	15	17			
14	19	17	13			
10	18	21	16			
12	16	16	17			
14	18	20	18			
13.9	17.2	18.3	14.9			

Mean

SSW =
$$(11-13.9)^2 + ... + (14-13.9)^2 + (12-17.2)^2 + ... + (18-17.2)^2 + (18-18.3)^2 + ... + (20-18.3)^2 + (11-14.9)^2 + ... + (18-14.9)^2$$

= 213.5

18

ANOVA Model: Mean Squares

$$MSA = \frac{SSA}{c-1}$$

$$MSW = \frac{SSW}{n-c}$$

$$MST = \frac{SST}{n-1}$$

The mean squares are variances!

If there are no real differences among the c groups, MSA, MSW, and MST provide estimates for the variance inherent in the data.

The one-way ANOVA F Test Static

$$F = \frac{MSA}{MSW}$$

- The F-test statistic follows an F distribution with c-1 degrees of freedom in the numerator corresponding to MSA and n-c degrees of freedom in the denominator corresponding to MSW.
- Null hypothesis:

$$H_0: \mu 1 = \mu 2 = ... = \mu c$$

•Alternative hypothesis:

 H_1 :Not all μj are equal (j=1,...c)

21

© 2001. D. A. Menascé. All Rights Reserved.

ANOVA Summary Table

Source of Variation	Degrees of Freedom	Sum of Squares	•	F
Among groups	c-1	SSA	MSA= SSA/(c-1)	F=MSA/MSW
Within Groups	n-c	SSW	MSW=SSW/(n-c)	
Total	n-1	SST		

23

ANOVA With Excel

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	10	139	13.9	5.877778
Column 2	10	172	17.2	6.844444
Column 3	10	183	18.3	5.566667
Column 4	10	149	14.9	5.433333

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	123.275	3	41.09167	6.928806	0.000844	2.866265
Within Groups	213.5	36	5.930556			
Total	336.775	39				

Since the p-value is less than $\alpha = 0.05$, reject Ho.

25

© 2001. D. A. Menascé. All Rights Reserved.

Multiple Comparisons: The Tukey-Kramer Procedure

- If Ho is rejected, then the question is "Which groups are different?"
- Use the Tukey-Kramer procedure to compare all pairs of groups simultaneously.
- Must compute the differences $\overline{X}_j \overline{X}_j$ for $j \neq j$ among all c(c-1)/2 pairs of means.

26

Multiple Comparisons: The Tukey-Kramer Procedure

• Obtain the critical range:

critical range =
$$q_u \sqrt{\frac{MSW}{2} \left(\frac{1}{n_j} + \frac{1}{n_{j'}} \right)}$$

where q_u is the upper-tail critical value from a *Studentized range** distribution with c degrees of freedom in the numerator and (n-c) degrees of freedom in the denominator.

* See statistical table.

27

© 2001. D. A. Menascé. All Rights Reserved.

Multiple Comparisons: The Tukey-Kramer Procedure

• A pair is considered significantly different if the absolute difference between the sample means exceeds the critical range.

Multiple Comparisons: The Tukey-Kramer Procedure

critical range

qu 3.81 (from table)

MSW 5.930556

29

© 2001. D. A. Menascé. All Rights Reserved.

Reviewing ANOVA Assumptions

- Randomness and independence: must always be met.
- Normality: ANOVA F test is robust as long as distributions are not extremely different from a normal distribution particularly for large samples.
- Homogeneity of variance: $s_1^2 = s_2^2 = ... = s_c^2$
 - If unequal sample sizes between groups, different variances is a problem.
 - Should try to use same-size groups.

30

- each block contains the response of the same item to the c levels of the factor being analyzed.
- Purpose: remove as much block or subject variability as possible by reducing experimental error.

31

	Pag	e Replacen	nent Algori	thm	
	Α	В	C	D	
block 1	11.0	12.0	18.0	11.0	program 1
block 2	13.0	14.0	19.0	12.0	program 2
block 3	17.0	18.4	23.4	16.5	program 3
block 4	14.0	14.9	20.0	12.5	program 4
block 5	15.0	16.0	21.0	13.5	program 5
r = 5 $c = 4$					
© 2001. D. A. Menascé. A	all Rights Reserve	d.			34

SST (Sum of Squares Total)

$$SST = \sum_{j=1}^{c} \sum_{i=1}^{r} \left(X_{ij} - \overline{\overline{X}} \right)^{2}$$

$$\overline{\overline{X}} = \frac{\sum_{j=1}^{r} \sum_{i=1}^{r} X_{ij}}{rc}$$
: overall or grand mean.

 X_{ij} : observation in i-th block and level j.

r: number of blocks.

37

© 2001. D. A. Menascé. All Rights Reserved.

Page Replacement Algorithm

	Α	В	С	D	
block 1	11.0	12.0	18.0	11.0	program 1
block 2	13.0	14.0	19.0	12.0	program 2
block 3	17.0	18.4	23.4	16.5	program 3
block 4	14.0	14.9	20.0	12.5	program 4
block 5	15.0	16.0	21.0	13.5	program 5

Grand Mean
$$= 15.61$$

SST =
$$(11.0-15.61)^2+(13.0-15.61)^2+...+(15.0-15.61)^2+$$

... $(11.0-15.61)^2+(12.0-15.61)^2+...+(13.5-15.61)^2$
= 232.44

38

SSA (Sum of Squares Among Group)

$$SSA = r \sum_{j=1}^{c} \left(\overline{X}_{.j} - \overline{\overline{X}} \right)^{2}$$

where

$$\overline{X}_{.j} = \frac{\sum_{i=1}^{r} X_{ij}}{r}$$
: group mean.

40

Page Replacement Algorithm						
	Α	В	С	D		
block 1	11.0	12.0	18.0	11.0	program 1	
block 2	13.0	14.0	19.0	12.0	program 2	
block 3	17.0	18.4	23.4	16.5	program 3	
block 4	14.0	14.9	20.0	12.5	program 4	
block 5	15.0	16.0	21.0	13.5	program 5	
Mean	14.0	15.1	20.3	13.1		
Grand Mean	15.61					
	10.01					
SA = 5 * [(1 = 155.013	4.0-15.61) ² +(15.1-	-15.61) ² +.	+(13.1	-15.61) ²]	

SSBL (Sum of Squares Among Blocks)

Blocks)
$$SSBL = c \sum_{i=1}^{r} \left(\overline{X}_{i.} - \overline{\overline{X}} \right)^{2}$$

where

$$\overline{X}_{i.} = \frac{\sum_{j=1}^{c} X_{ij}}{c}$$
: block mean.

43

© 2001. D. A. Menascé. All Rights Reserved.

Page	Ren	lacement	ΔΙαο	rithm
Pace	ReD	lacement	AIGO	HIMIT

A B C D Mea	
11 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20
block 1 11.0 12.0 18.0 11.0 program 1	3.0
block 2 13.0 14.0 19.0 12.0 program 2	4.5
block 3 17.0 18.4 23.4 16.5 program 3	8.8
block 4 14.0 14.9 20.0 12.5 program 4	5.4
block 5 15.0 16.0 21.0 13.5 program 5	6.4
Mean 14.0 15.1 20.3 13.1	

Grand Mean 15.61

SSBL =
$$4 * [(13.0-15.61)^2 + (14.5-15.61)^2 + ... + (16.4-15.61)^2]$$

= 76.133

44

SSE (Random Error)

$$SSE = \sum_{j=1}^{c} \sum_{i=1}^{r} \left(X_{ij} - X_{.j} - X_{i.} + \overline{\overline{X}} \right)^{2}$$

46

ANOVA Model: Mean Squares

$$MSA = \frac{SSA}{c-1}$$

$$MSBL = \frac{SSBL}{r-1}$$

$$MSE = \frac{SSE}{(r-1)(c-1)}$$

The mean squares are variances!

If there are no real differences among the c groups, MSA, MSBL, and MSE provide estimates for the variance inherent in the data.

© 2001. D. A. Menascé. All Rights Reserved.

ANOVA Hypothesis Testing

$$H_0: \mathbf{m}_{1} = \mathbf{m}_{2} = ... = \mathbf{m}_{c}$$

 H_1 : Not all \mathbf{m}_{j} (j = 1,...,c) are equal.

F-Test statistic:
$$F = \frac{MSA}{MSE}$$

The F-test statistic follows an F distribution with (c-1) degrees Of freedom in the numerator and (r-1)(c-1) in the denominator.

Reject
$$H_0$$
 if $F > Fu$

49

© 2001. D. A. Menascé. All Rights Reserved.

	Page	Replaceme	nt Algori	ithm			
	A	В	C	D		Mean	
block 1	11.0	12.0	18.0	11.0	program 1	13.0	
block 2	13.0	14.0	19.0	12.0	program 2	14.5	
block 3	17.0	18.4	23.4	16.5	program 3	18.8	
block 4	14.0	14.9	20.0	12.5	program 4	15.4	
block 5	15.0	16.0	21.0	13.5	program 5	16.4	
Mean	14.0	15.1	20.3	13.1			
Grand Mean SSA SSE SSBL SST MSA MSBL MSE F df numer. df denom. Fu	15.61 155.018 1.287 76.133 232.438 51.67267 19.03325 0.10725 481.80 3 12 7.23	(from table)			F-	=MSA/MSE	
	F>	Fu 🗀	reie	ct Ho			
			- J-				50
© 2001. D. A. Menaso	eé. All Right	s Reserved.					

Anova: Two-Factor With	out Replication
------------------------	-----------------

.....

SUMMARY	Count	Sum	Average	Variance
Row 1	4	52	13	11.333
Row 2	4	58	14.5	9.667
Row 3	4	75.3	18.825	9.949
Row 4	4	61.4	15.35	10.590
Row 5	4	65.5	16.375	10.563
Column 1	5	70	14	5
Column 2	5	75.3	15.06	5.638
Column 3	5	101.4	20.28	4.292
Column 4	5	65.5	13.1	4.425

, MSA

ANOVA				1		
Source of Variation	SS	df	MS	/ F	P-value	F crit
Rows (blocks)	76.133		19.03325	177.4662	1.46E-10	3.25916
Columns (groups)	155.018		3 51.67267	481.79643	9.11E-13	3.4903
Error	1.287	1:	0.10725			
			`\	ISE \	=MSA	/MSE
Total	232 438	1		IDL		

Since the p-value is less than $\alpha = 0.05$, reject Ho. Since F > F critical, reject Ho.

© 2001. D. A. Menascé. All Rights Reserved.

51

Estimated Relative Efficiency (RE)

SSBL

$$RE = \frac{\overbrace{(r-1)MSBL + r(c-1)MSE}}{\underbrace{(rc-1)MSE}}$$
n-1

 Used to assess if blocking results in an increase in precision in comparing the different groups.

> MSA 51.67267 MSBL 19.03325 MSE 0.10725

• If blocking is not used, we would need 38.2 times as many observations to obtain the same precision in comparing the groups.

© 2001. D. A. Menascé. All Rights Reserved.

Multiple Comparisons: The Tukey-Kramer Procedure

• Obtain the critical range:

critical range =
$$q_u \sqrt{\frac{MSE}{r}}$$

where q_u is the upper-tail critical value from a *Studentized range** distribution with c degrees of freedom in the numerator and (r-1)(c-1) degrees of freedom in the denominator.

(See Statistical Tables).

53

© 2001. D. A. Menascé. All Rights Reserved.

Multiple Comparisons: The Tukey-Kramer Procedure

Tukev Kramer Multiple Comparisons

Comparison
Group 1 to Group 2
Group 1 to Group 3
Group 1 to Group 4
Group 2 to Group 3
Group 2 to Group 4
Group 3 to Group 4

		Critical	Absolute
	Result	Range	Difference
e differen	Means are	0.615124	1.06
e differen	Means are	0.615124	6.28
e differen	Means are	0.615124	0.9
e differen	Means are	0.615124	5.22
e differen	Means are	0.615124	1.96
e differen	Means are	0.615124	7.18

54