

ATMEGA 328P

PRINCIPAIS CARACTERÍSTICAS

ATMEGA 328P

Atmega 328p

- Microcontrolador de baixa potência, com arquitetura RISC avançada.
- 131 instruções, a maior parte executada em 1 ou 2 ciclos de *clock* (poucas em 3 ou 4 ciclos).
- 32 registradores de propósito geral (8 bits cada). Alguns trabalham em par para endereçamentos de 16 bits.
- Operação de até 20 MIPS a 20 MHz.
- Multiplicação por hardware em 2 ciclos de clock.
- 32 kbytes de memória de programa flash de auto programação In-System
- I kbytes de memória EEPROM.
- 2 kbytes de memória SRAM.
- Ciclos de escrita e apagamento: memória flash 10 mil vezes, EEPROM 100 mil vezes.

ATMEGA 328P

Periféricos disponíveis

- 23 entradas e saídas (I/Os) programáveis.
- 2 Temporizadores/Contadores de 8 bits com Prescaler e modo de comparação.
- I Temporizador/Contador de 16 bits com Prescaler, modo de comparação e captura.
- 6 canais PWM.
- 8 canais AD com resolução de 10 bits.
- Interface I2C, USART e SPI Master/Slave.
- Watchdog Timer com oscilador interno.
- I comparador analógico.

BARRAMENTOS

Pipeline de 2 Estágios

BANCO DE REGISTRADORES

Rápido, Caro e Pequeno

Registradores

Cache

Mem. Princ. (RAM)

Mem. Sec (HDD, Flash..)

Lento, Barato e Grande

MEMÓRIAS

Memória de Programa (Flash)

Memória de Dados (RAM)

Data Memory	
32 Registers	0x0000 - 0x001F
64 I/O Registers	0x0020 - 0x005F
160 Ext I/O Registers	0x0060 - 0x00Ff
Internal SRAM (1048 x 8)	0x0100
	0x08FF

Programação:

In System Programmer (via SPI) Bootloader (via UART)

CLOCK

MODOS DE RESET

- **Power-on Reset**: ocorre na energização enquanto a fonte de alimentação estiver abaixo da tensão limiar de power-on reset (VPOT).
- Reset externo: ocorre quando o pino de reset é aterrado (0 V) por um determinado período de tempo.
- Watchdog Reset: ocorre quando o watchdog está habilitado e o seu contador atinge o valor limite.
- Brown-out Reset: ocorre quando a tensão de alimentação cair abaixo do valor definido para o brown-out reset (VBOT) e o seu detector estiver habilitado

GERENCIAMENTO DE ENERGIA

	Sinais de <i>clock</i> ativos					Osciladores		Fontes de <i>wake-up</i> (para 'despertar')							
Modos Sleep	Clock CPU	Clock FLASH	Clock 10	Clock ADC	Clock ASY	Fonte principal de <i>cloc</i> k habilitada	Oscilador do Temporizador habilitado	INT1, INT0 e mudança nos pinos	Casamento de endereço da interface serial à 2 fios	Temporizador 2	SPM/EEPROM prontos	ADC	Watchdog Timer	Outras I/O	BOD⁴ desabilitado por software
Idle			х	х	Х	х	Χ²	X ³	х	Х	Х	Х	Х	Х	
Redução de Ruído para o ADC				х	Х	Х	X²	X ³	х	X²	х	х	Х		
Power-Down								X ³	Х				х		х
Power-Save					х		Χ²	X ³	х	х			х		х
Standby ¹						х		X ³	х				х		х
Extended Standby					Χ²	х	X²	X ³	х	х			х		х

ARDUINO UNO X ATMEGA328P

Arduino UNO

IDE Arduino

REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

