Project 6

 One channel EEG sleep staging with open source and open hardware NeuroOn sleep mask

Project Leader:

Franciszek Rakowski PhD

Participants:

Andrey Alekseenko, Charlie Sexton, Michał Narbutt

Goal

Detect sleep stages from single channel differential EEG Δ (FP1, FP2)

Method

- Preprocessing
- Features
- Classification
- Jitter removal

Preprocessing

- 11 sleep recordings
 - Each divided into 30s epochs
- Removal of corrupt epochs NaN
- Removal of one recording with >40% corrupt epochs
- Butterworth Filter, Bandpass 0.5-25 Hz
- Power Spectral Density Welch

Method

- Preprocessing
- Features
- Classification
- Jitter removal

Feature Engineering

- Power spectrum of different waves (alpha, beta, delta, theta, mu, SMR, K-complexes)
 - Also their logarithms
- Signal mean, stdev, skew, and kurtosis
- Hjorth parameters
- SEF50, SEF90

Method

- Preprocessing
- Features
- Classification
 - Linear SVM
 - Not worked: Random Forest, CNN ¯_(ツ)_/¯
- Jitter removal

ROC Curves

Confusion Matrix

Classification results

Reference, Classification

Conclusion

- Accuracy 75±6 % on Δ(FP1, FP2)
 - State of the art:
 - 90% on Pz-Oz [1]
 - 77±4 % on FP1, FP2 [2]

Does not detect wakefulness well

THANK YOU FOR YOUR ATTENTION

