

A simple example of a regression equation to predict the glucose level given the age.

SUBJECT	AGE X	GLUCOSE LEVEL Y		
1	43	99		
2	21	65		
3	25	79		
4	42	75		
5	57	87		
6	59	81		
7	55	?		

Johnsowed

A simple example of a regression equation to predict the glucose level given the age.

Step 1: Make a chart of your data, filling in the columns in the same way as you would fill in the chart if you were finding the <u>Pearson's Correlation Coefficient</u>

SUBJECT	AGE X	GLUCOSE LEVEL Y	XY	X ²	γ2
1	43	99	4257	1849	9801
2	21	65	1365	441	4225
3	25	79	1975	625	6241
4	42	75	3150	1764	5625
5	57	87	4959	3249	7569
6	59	81	4779	3481	6561
Σ	247	486	20485	11409	40022
/ 11 4					

A simple example of a regression equation to predict the glucose level given the age.

Find b₁:

$$b_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b_1 = \frac{6(20485) - (247)(486)}{6(11409) - (247)^2}$$

$$b_1 = \frac{2868}{7445} = 0.385335$$

A simple example of a regression equation to predict the glucose level given the age.

• Step 3: Insert the values into the equation.

$$y' = b_0 + b_1 x$$

 $y' = 65.14 + 0.385225x$

• **Step 4:** Prediction – the value of y for the given value of x = 55

$$y' = 65.14 + (0.385225 * 55)$$

 $y' = 86.327$

Hence, the glucose level for the given age 55 is 86.327

What is an error of the model? Evaluation?

