目录

目录

第	一部	部分 什么是导数?	2
第	二部	部分 导数公式	3
1	常用	用的导数	3
	1.1	1 (常数 C)' = 0	
	1.2		
	1 /	$1 (e^x)' - e^x \ln e - e^x$	/
	1.5	$(a) = c \cdot \ln c - c \cdot \dots \cdot$	4
	1.6	$(\ln x)' = \frac{1}{x} \dots \dots$	4
2	反函	函数的导数: $\boxed{[f^{-1}(y)]' = \frac{1}{原函数的导数f'(x)}}$	4
3		角函数的导数	5
	3.1	$1 (\sin x)' = \cos x \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	3.2	$2 (\cos x)' = -\sin x \dots $	
	3.3	$3 (\tan x)' = \sec^2 x \dots $	
	3.4	$4 (\cot x)' = -\csc^2 x \dots $	
	3.5	$5 (\sec x)' = \sec x \cdot \tan x \dots \dots$	
	3.6	$3 (\csc x)' = -\csc x \cdot \cot x \dots \dots \dots \dots \dots \dots$	
4	反三	三角函数的导数	5
	4.1	$\frac{1}{1-r^2}$	
	4.2		
	4.3		
	4.4	4 $(\operatorname{arccot} x)' = -\frac{1}{1+x^2} \dots \dots$	
第	三部	部分 求导的各种方法, 方法论	5
5	求异	导法別・和差积商	5

导数 Derivative

2022年12月8日

第一部分 什么是导数?

某点处的"导数", 就是该点处"切线的斜率".

导数, 就是一个"极限值", 比如, y 在点 x_0 处的导数, 就是: $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

可导, 就意味着图像很"光滑". 即图像没有"尖角"存在 (因为尖角处的左右导数不相等). 并且, 切线不能垂直于x轴. 如果切线是垂直于x轴的, 它的斜率就会是 $+\infty$ 或 $-\infty$ 了.

 x_0 点处的导数, 其实可以有下面4种写法来表示:

- $(1) y'|_{x=x_0}$
- (2) $f'(x_0)$
- $(3) \frac{dy}{dx}|_{x=x_0}$
- $(4) \ \frac{\widetilde{df}(x)}{dx}|_{x=x_0}$

"位置"的瞬时变化率(变换趋势, 能预测未来), 就是"速度". 所以速度是位置的导数.

"速度"的瞬时变化率, 就是"加速度". 所以"加速度"是"速度"的导数. "加速度"就是"位置"的二阶导.

单侧导数, 就是从"某一侧"逼近某一x点时, 该点的切斜斜率.

所以, 左导数, 就是"从左侧向右"逼近了. 右导数, 就是"从右边向左"逼近了.

- 左导数: $f_{-}(x_{0}) = \lim_{x \to x_{0}^{-}} \frac{f(x) - f(x_{0})}{x - x_{0}}$ - 右导数: $f_{+}(x_{0}) = \lim_{x \to x_{0}^{+}} \frac{f(x) - f(x_{0})}{x - x_{0}}$

第二部分 导数公式

1 常用的导数

1.1 (常数C)' = 0

常数不会变化, 自然没有"瞬时变化率"存在, 所以常数的导数就=0.

1.2
$$(x^n)' = nx^{n-1}$$

- (1) 当指数 n=1时, 其导数=1.
- (2) 当 n>1 时, 其导数是 $(x^n)' = nx^{n-1}$

例

求 $y = \frac{1}{x}$ 在点(1/2, 2)处的切线的斜率(即导数), 并求出该切线的方程.

其导数是: $y' = (x^{-1})' = -1x^{-1-1} = -1x^{-2}$

然后把点(x=1/2, y=2) 代入进去,得到: $y'|_{x=\frac{1}{2}} = -1\left(\frac{1}{2}\right)^{-2} = -4 \leftarrow$ 这个数值,就是函数在点(1/2, 2)处的切线的斜率.

然后再套用直线的"点斜式方程" $y-y_1=k(x-x_1)$

本例的切线即:
$$y - \underbrace{y_1}_{=2} = \underbrace{k}_{\mathbb{P}y'=-4} \left(x - \underbrace{x_1}_{=\frac{1}{2}} \right)$$

1.3
$$(a^x)' = a^x \ln a$$

即直接后面跟个尾巴: ln a

例如, $(2^x)' = 2^x \ln 2$

4

2 反函数的导数:
$$[F^{-1}(Y)]' = \frac{1}{原函数的导数F'(X)}$$

1.4
$$(e^x)' = e^x \ln e = e^x$$

1.5
$$(\log_a x)' = \frac{1}{x \ln a}$$

即把 x 提到前面去, 把log 变成 ln, 整体再放在分母上. 分子为1.

1.6
$$(\ln x)' = \frac{1}{x}$$

例如:
$$(\log_e x)' = \frac{1}{x \cdot \ln e} = \frac{1}{x}$$

2 反函数的导数:
$$|[f^{-1}(y)]'|$$

$$[f^{-1}(y)]' = \frac{1}{原函数的导数f'(x)}$$

反函数的导数, 和其原函数的导数, 呈"倒数关系".

原函数是 y=f(x), 其反函数是 x=f(y), 则, 反函数的导数, 就是"原函数导数"的倒数.

换言之, 原函数的导数是 $\frac{\Delta y}{\Delta x}$, 则其反函数的导数就是 $\frac{1}{\frac{\Delta y}{\Delta x}}$

"原函数"和"反函数", 它们"导数"的乘积 =1.

"原函数"与其"反函数"的图像, 是关于 y=x 对称的.

3 三角函数的导数

$$3.1 \quad (\sin x)' = \cos x$$

$$3.2 \quad (\cos x)' = -\sin x$$

3.3
$$(\tan x)' = \sec^2 x$$

$$3.4 \quad (\cot x)' = -\csc^2 x$$

$$3.5 \quad (\sec x)' = \sec x \cdot \tan x$$

$$3.6 \qquad (\csc x)' = -\csc x \cdot \cot x$$

4 反三角函数的导数

4.1
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

4.2
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

4.3
$$(\arctan x)' = \frac{1}{1+x^2}$$

4.4
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

第三部分 求导的各种方法, 方法论

5 求导法则:和差积商