Лабораторна робота 2

ЧИСЛОВІ МЕТОДИ РОЗВ'ЯЗАННЯ ЗАДАЧІ КОШІ ДЛЯ ЗВИЧАЙНИХ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ.

Завдання:

знайти розв'язок звичайного диференціального рівняння аналітично і за допомогою метода Рунге-Кутти. Порівняти аналітичний та наближений результати. Визначити порядок точності формули методу.

При виконанні роботи дозволено використовувати бібліотеки SymPy та SciPy.

Вимоги до виконання роботи

- 1. Напишіть код для розв'язування звичайного диференціального рівняння у формі $y'=f\left(x,y\right)$ з початковою умовою $y\left(x_0\right)=y_0$ методом Рунге- Кутти 2-го порядку. Ваш код повинен містити такі параметри: x_0 , x_n початкове та кінцеве значення незалежної змінної відповідно; y_0 початкове значення шуканої функції, h розмір кроку розбиття відрізка $\left[x_0,x_n\right]$.
- **2.** Перевірте, чи задовольняє наведений у вашому варіанті загальний розв'язок відповідне диференціальне рівняння. Визначте частинний аналітичний розв'язок рівняння, що відповідає початковій умові вашого варіанту.
- **3.** Побудуйте таблицю значень аналітичного та наближеного розв'язків рівняння на відрізку $[x_0, x_n]$ з кроком h = 0.1.
- **4.** Дослідіть, як впливає величина кроку h на точність розв'язку задачі. Для цього побудуйте таблицю значень аналітичного та наближеного розв'язків у точці x_n при різних значеннях h: 0.1, 0.05, 0.025, 0.01. Зробіть висновки.
- **5.** Побудуйте графіки залежності фактичної та теоретичної (аналітичний вираз для оцінки похибки) похибок розв'язку у точці x_n від величини кроку h. На основі графіків поясніть характер отриманої залежності, визначте порядок похибки формули Рунге Кутти відносно кроку h та порівняйте його з теоретичним значенням.
- **6.** ^{3 pts} (Бонус) Виконайте завдання 1 5 для методу Рунге-Кутти 4-го порядку. Зробіть порівняльний аналіз методів.

Контрольні запитання

- 1. 0.5 pts Що являє собою загальний і частинний розв'язки диференціального рівняння?
- 2. 0.5 pts В якому вигляді знаходиться числовий розв'язок задачі Коші?
- 3. 0.5 pts Що таке порядок точності методу?
- **4.** ^{1.5} pts Зробіть порівняльний аналіз методів Ейлера, Тейлора та Рунге-Кутти однакових порядків. У чому полягають їх переваги та недоліки один відносно одного?

Варіанти індивідуальних завдань

Варіант	Диференціальне	x_0	y_0	\mathcal{X}_n	Аналітичний
	рівняння				розв'язок
1	$y' = \frac{y-3}{x(3x+1)}$	0.3	0.7	1.3	$y = \frac{Cx}{3x+1} + 3$
2	$y' = 2xe^{x^2 - y}$	0	1	1	$y = \ln\left(e^{x^2} + C\right)$
3	$y' = \frac{y}{x} \left(\ln \frac{y}{x} + 1 \right)$	1	1.1	2	$y = xe^{Cx}$
4	$y' = y + e^x$	-1	-1.5	0	$y = (x + C)e^x$
5	$y' = y - e^{-x}$	-1	1.38	0	$y = Ce^x + \frac{e^{-x}}{2}$
6	$y' = 2xy + 2x^3$	0	-0.8	1	$y = Ce^{x^2} - x^2 - 1$
7	$y' = -2xy + xe^{-x^2}$	-1.5	0.1	-0.5	$y = \left(\frac{x^2}{2} + C\right)e^{-x^2}$
8	$y' = -\frac{y}{x} + 3x$	0.1	1	1.1	$y = x^2 + \frac{C}{x}$