Normalizing Social Media Texts by Combining Word Embeddings and Edit Distances in a Random Forest Regressor

Rob van der Goot r.van.der.goot@rug.nl

28-05-2016

Rob van der Goot r.van.der.goot@rug.nl 28-05-2016 1 / 31

- Problem
- 2 Error Detection
- Generation
- Ranking
- Conclusion
- 6 Future Work

Outline

- Problem
- 2 Error Detection
- Generation
- 4 Ranking
- Conclusion
- 6 Future Work

 Adapt Natural Language Processing pipelines to noisy (web) data

- Adapt Natural Language Processing pipelines to noisy (web) data
- Normalize

Spelling Correction vs. Normalization

Spelling Correction

abilites abilities teh the kingdon kingdom

Normalization

abilites abilities

teh the

kingdon kingdom doin doing

Bham Birmingham

2 to

The There

ggggrrrreeeeeaaaaaatttttt great

ur your

Traditional spelling correction framework:

- Error detection
- Candidate generation
- Ranking of candidates

- Train set: 2,577 tweets from (Li and Liu 2014)
- Test set: LexNorm (Han and Baldwin 2011) 549 tweets

Outline

- Problem
- Error Detection
- Generation
- 4 Ranking
- Conclusion
- 6 Future Work

Error Detection

Spelling correction:

Dictionary lookup

Error Detection

- Often skipped in normalization methods
- Here as well, because the goal is to be used in a pipeline
- All tokens are considered to be a possible error/disfluency
- Recall = 100%
- But the original word is always kept!

Outline

- Problem
- 2 Error Detection
- Generation
- 4 Ranking
- Conclusion
- 6 Future Work

Spelling correction:

- Lexical edit distance
- Phonetic edit distance (Double Metaphone)

Spelling correction:

- Lexical edit distance
- Phonetic edit distance (Double Metaphone)
- Good results

Spelling correction:

- Lexical edit distance
- Phonetic edit distance (Double Metaphone)
- Good results
- So we use an existing system (Aspell)

Other disfluencies

• A more data aware model is necessary

Other disfluencies

- A more data aware model is necessary
- Semi-supervised

Other disfluencies

- A more data aware model is necessary
- Semi-supervised
- Word Embeddings

Word Embeddings

- Model taken from (Godin et al. 2015)
- Trained on 400 million Tweets
- 3,039,345 words
- Use cosine distance to find top-n words in vector-space

17 / 31

Outline

- Problem
- 2 Error Detection
- Generation
- Ranking
- Conclusion
- 6 Future Work

Spelling correction:

Combination of edit distances

Previous approaches:

- Ngram based approaches
- Combine Ranking with generation

My approach:

- Use features from generation
- Supplement these features with N-Gram features
- Google Ngrams ¹ & Twitter Ngrams ²
- Combine all features in a Random Forest Classifier
- Default parameters Scikit Learn, except for the number of trees
 = 100

¹Brants and Franz 2006

²Herdağdelen 2013

Rob van der Goot r.van.der.goot@rug.nl 28-05-2016 22 / 31

Ranking (ablation)

28-05-2016

Ranl	king
_	

Manking					
System	top1	top3	top10	top20	upper bound
(Li and Liu 2012)	73.0	81.9	86.7	89.2	94.2
(Li and Liu 2014)	77.14	86.96	93.04	94.82	95.90
(Li and Liu 2015)	87.58				
Our system	82.31	88.70	91.89	93.37	93.37

Outline

- Problem
- 2 Error Detection
- Generation
- 4 Ranking
- Conclusion
- 6 Future Work

Conclusion

Overview

Conclusion

For the normalization task:

- Word embeddings complement edit distances well
- A random forest classifier works very well for ranking
- This is a simple system, with a reasonable performance

Outline

- Problem
- 2 Error Detection
- Generation
- 4 Ranking
- Conclusion
- Future Work

- Multilingual/multiword embeddings
- Generation (build own language models)

- Multilingual/multiword embeddings
- Generation (build own language models)
- Parameter tuning, add domain specific information
- Find candidate with: "word.*"

• This system was created for use in a pipeline system

- This system was created for use in a pipeline system
- Parse a word graph based on the output of this normalization

https://bitbucket.org/robvanderg/errcor

