Array lineare di antenna a microstriscia per applicazioni IEEE 802.11

Francesco Morgillo

Università degli studi di Genova francesco.morgillo@hotmail.com

October 28, 2019

Abstract

Design of a patch antenna linear array for IEEE 802.11 wireless based application.

I. Introduction

Si vuole progettare un array lineare di 4 antenne a micro-striscia (patch) destinata ad applicazioni wireless con standard IEEE 802.11. L'antenna dovrà operare nella banda 2400 – 2483.5 MHz che comprende i tipici 12 canali Wi-fi. In base ai requisiti appena riportati, ricaviamo le seguenti specifiche per l'antenna

- 1. Frequenza centrale
- 2. Banda:
- 3. Guadagno

e per l'array

- 1. Numero di elementi
- 2. Tipo schiera

II. SINGOLO ELEMENTO

Il singolo elemento dell'array è costituito da un'antenna a micro-striscia rettangolare. Viene realizzata su di un substrato di materiale dielettrico, su cui viene fotoinciso uno strato conduttivo di lunghezza L e larghezza W. Sulla faccia opposta del substrato viene posto un piano di massa. L'elemento radiante può essere alimentato in diversi modi: per esempio tramite una linea realizzata in micro-striscia che raggiunge il bordo della patch, oppure con una sonda coassiale che attraversa il substrato.

Geometria

Il dimensionamento della patch richiede l'impiego di equazioni ricavate con metodi numerici o empirici che tengono conto di effetti fisici dovuti alla complessità e non idealità dell'antenna. Innanzitutto è necessario tenere presente che per via degli effetti ai bordi, le linee di campo della micro-striscia attraversano due dielettrici differenti, l'aria e il substrato. E' necessario quindi considerare una costante di conducibilità elettrica effettiva ϵ_{reff} che otteniamo è data da

$$\epsilon_{reff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-\frac{1}{2}}$$
 (1)

Questa quantità corrisponde alla conducibilità elettrica di un materiale dielettrico omogeneo in cui si assume di immergere il modello della microstriscia.

L'effetto ai bordi è poco influente dato che in linea generale $L/h \gg 1$, ma non può essere ignorato dato che influisce sulla frequenza risonante dell'antenna.

Sempre a causa dell'effetto ai bordi, la lunghezza dell'antenna risulta elettricamente maggiore rispetto alla dimensione reale. Il campo elettrico che curva attorno le aperture allunga elettricamente ogni lato di una quantità ΔL . Un'approssimazione di questa quantità è

Figure 1: Linee di campo E ed H di una microstriscia.

data da

$$\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{reff} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\epsilon_{reff} - 0.258) \left(\frac{W}{h} + 0.8\right)} \tag{2}$$

Si ha quindi che

$$L_{eff} = L + 2\Delta L \tag{3}$$

dove $L=\lambda/2$ per il modo dominante TM_{010} senza effetto ai bordi. La frequenza di risonanza è funzione della lunghezza dell'antenna e considerando l'effetto ai bordi è

$$f_{r(010)} = \frac{1}{2L_{eff}\sqrt{\epsilon_{reff}}\sqrt{\mu_0\epsilon_0}}$$
 (4)

La larghezza W dell'antenna patch è data da

$$W = \frac{1}{2f_r\sqrt{\mu_0\epsilon_0}}\sqrt{\frac{2}{\epsilon_r + 1}}$$
 (5)

mentre combinando la (4) e la (3) si può ricavare la lunghezza L della patch

$$L = \frac{1}{2f_r \sqrt{\mu_0 \epsilon_0} \sqrt{\epsilon_{reff}}} - 2\Delta L \tag{6}$$

Note la frequenza centrale $f_r = 2.45GHz$, e considerato il substrato di spessore h di 1.6 mm ed $\epsilon_r = 4.4$, si ricavano i valori

$$\begin{array}{c|c}
W & 35 \\
L & 27.8 \\
\epsilon_{reff} & 4.01
\end{array}$$

i. Adattamento di impedenza

Il metodo più semplice per studiare l'impedenza dell'antenna a micro-striscia è quello di analizzare il suo modello come linea di trasmissione. L'antenna viene vista quindi come una linea di trasmissione i cui estremi (che corrispondono agli "slot" radianti ai bordi della patch) sono modellati come due paralleli RC. I due slot sono identici con ammettenza $Y_1 = G_1 + jB_1$. Inoltre l'ammettenza totale è puramente reale, data dal parallelo delle due conduttanze $Y_{in} = Y_1 + Y_2 = 2G_1$ (per via di una "trasformazione di ammettenza"vedi balanis). Per ricavare il valore di G_1 si fa riferimento all'equazione

$$G_1 = \frac{I_1}{120\pi} \tag{7}$$

dove

$$I_{1} = \int_{0}^{\pi} \left[\frac{\sin(\left(\frac{k_{0}W}{2}\cos\theta\right)}{\cos\theta} \right]^{2} \sin^{3}\theta d\theta =$$

$$= -2 + \cos(X) + XS_{i}(X) + \frac{\sin X}{X}$$

con

$$X = k_0 W \tag{8}$$

Nota G_1 si può dedurre la resistenza in ingresso R_{in} della patch dato che

$$R_{in} = Z_{in} = \frac{1}{Y_{in}} = \frac{1}{2G_1} \tag{9}$$

Si modifica questa espressione in modo tale da considerare gli effetti di accoppiamento fra i due slot.

$$R_{in} = Z_{in} = \frac{1}{Y_{in}} = \frac{1}{2G_1 + 2G_{12}}$$
 (10)

REFERENCES

[Figueredo and Wolf, 2009] Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative pairing and life history strategy - a cross-cultural study. *Human Nature*, 20:317–330.