

Indice 1 Vettori, coordinate e geometria 11 19 Prefazione Le modalità di utilizzo e distribuzione sono scritte nel file LICENSE.

Capitolo 1

Vettori, coordinate e geometria

Uno degli argomenti su cui il corso si basa sono proprio i *vettori*. All'interno di questo capitolo saranno presenti nozioni e definizioni legate alla natura stessa di queste entità matematiche dai rudimenti ad alcuni spetti più avanzati.

1.1 Vettori Geometrici

Definizione 1.1.1. Un vettore geometrico applicato nel piano è un segmento orientato che va da un punto fisso O "Origine" verso un secondo punto P del piano, come mostrato nella figira 1.1:

Figura 1.1: Esempio vettori geometrici

Analogamente, se il punto P (e quindi il segmento) è libero di variare in tutto lo spazio tridimensionale. In ambo i casi il vettore sarà denotato \overrightarrow{OP} (si denota che il punto finale P può anche uguale a O, ovvero il vettore può essere molto ravvicinato al punto O).

Nota 1.1.1. La direzione è indicata dalla simbolo freccia, graficamente la lunghezza e direzione del vettore implicano il modo in cui agisce nello spazio, ad esempio, se due vettori hanno direzioni opposte uno si sottrarrà potenzialmente al altro.

Denotare che con V_O^2 l'unsieme dei vettori geometrici applicati in O nel piano, e con V_O^3 l'insieme dei vettori geometrici applicati in O liberi di variare in tutto lo spazio tridimensionale. I vettori orientati sono utilizzati infisica, dove vengono usati per rappresentare le forze applicate sul punto O.

Esempio 1.1.1. Si può immaginare che in O si trovi un oggetto sul quale viene esercitata una forza che lo "trascina" nella direzione e nel verso dati dalla freccia come evidenziato nella nota (1.1.1), mentre l'intensità della forza esercitata è rappresentata dlla lunghezza del segmento. Dal

Figura 1.2: Somma vettoriale

momento che \vec{OP}_3 rappresenta la forza totale esercitata la forza totale esercitata su O quando si

applicano contemporaneamente $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$, il meccanismo più immediato è associare l'operazione ad una addizione, infatti, essa viene scritta come:

$$\vec{OP}_3 = \vec{OP}_1 + \vec{OP}_2 \tag{1.1}$$

La rappresentazione grafica è presente in figura 1.2 definisce in modo in cui un'operazione di somma sull'insieme di vettori geometrici (del piono o dello spazio) viene rappresentata.

Per i vettori che non hanno la stessa direzione, si denota che OP_3 è la direzionale del parallelogramma che ha OP_1 e OP_2 come lati (infatti, viene definita anche come regola del parallelogramma). Il motodo descrittivo funziona comunque anche per sommare due o più vettori che hanno la stessa direzione:

Figura 1.3: Regola del parallelogramma

Anche in questo caso vale la formula 1.1, infatti, graficamente la OP_3 è chiaramente frutto di una somma tra il segmento OP_1 e OP_2 . Un'altra operazione è il prodotto del vettore per un numero reale: nel contesto delle forze, il concetto è quella di rappresentare una variazione dell'intensità e eventualmente del verso della forza rappresentata dal vettore.

Più precisamente, dati un vettore geometrico \vec{OP} e un numero releale $c \in \mathbb{R}$, si può definire \vec{cOP} come il vettore che sta sulla stessa retta a cui appartiene \vec{OP} , ma avente:

- 1. Stesso verso e lunghezza c volte la lunghezza di \overrightarrow{OP} , se c è positivo;
- 2. Verso opposto e lunghezza -c volte quella di \overrightarrow{OP} , se c è negativo;
- 3. Lunghezza ulla se c=0, cioè $0\vec{OP} = \vec{OO}$.

Figura 1.4: Prodotto vettoriale

Nel contesto dei vettori, i numeri reali si chiamano anche scalari.

Come si vedra nel ultima parte del capitolo, la nozione di vettore geometrico e le operazioni di somma tra vettori e prodotto di un vettore per un numero che appena definito saranno fornamentali per impostare e risolvere problemi geometrici nel piano e nello spazio. Per questo motivo, è necessario conoscere e mettere in evidenza le proprietà di cui godono tali operazionim che permettono di manipolare le espressioni e formule che coinvolgono i vettori. Si può verificare che valgono le seguenti:

1. La somma è associativa

$$(\vec{OP}_1 + \vec{OP}_2) + \vec{OP}_3 = \vec{OP}_1 + (\vec{OP}_2 + \vec{OP}_3)$$
(1.2)

1.2. COORDINATE 7

2. La somma è commutativa

$$\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_2 + \vec{OP}_1 \tag{1.3}$$

3. Il vettore \vec{OO} funge da elemento neutro per la somma:

$$\vec{OP} + \vec{OO} = \vec{OO} + \vec{OP} = \vec{OP} \tag{1.4}$$

4. Per ogni vettore \vec{OP} , il vettore $(-1)\vec{OP}$ (ovvero il vettore che si ottiene da \vec{OP} basterà invertire il verso, senza modificare direzione e lunghezza) è il suo inverso additivo o opposto rispetto alla somma:

$$\vec{OP} + (-1)\vec{OP} = (-1)\vec{OP} + \vec{OP} = \vec{OO}$$
 (1.5)

5. Dati due numeri reali c_1 , c_2 e un vettore \vec{OP} , si ha

$$c_1(c_2\vec{OP}) = (c_1c_2)\vec{OP} \tag{1.6}$$

(Una situazione molto similare alla proprietà associativa del prodotto).

6. Per ogni vettore \vec{OP} , si ha

$$1\vec{OP} = \vec{OP} \tag{1.7}$$

(ovvero il numero 1 funge da elemento neutro rispetto al prodotto per scalari).

7. Dati due numeri reali c_1, c_2 ed un vettore \vec{OP} , si ha

$$(c_1 + c_2)\vec{OP} = c_1\vec{OP} + c_2\vec{OP} \tag{1.8}$$

8. Dati un numero reale c e due vettori \vec{OP} , \vec{OP} si ha

$$c(\vec{OP}_1 + \vec{OP}_2) = c\vec{OP}_1 + c\vec{OP}_2 \tag{1.9}$$

Lo sviluppo suggerisce che valga la proprietà distributiva rispetto alla somma di numeri reale o rispetto alla somma di vettori.

Osservazione 1.1.1. Come esempio di applicazione delle proprietà appena elencate, è il caso di motrare che in un'uguaglianza tra vettori, esattamente come si fa in un'uguagliana tra numeri, si possono "spostare i vettori" da un membro all'altro cambiandoli di segno:

$$\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_3 \rightarrow \vec{OP}_1 = \vec{OP}_3 - \vec{OP}_2$$

Dove, come nel caso dei numeri lo spostamento dall'altra parte dell'uguaglianza comporta il cambiamento di segno scritto come $\vec{OP}_3 - \vec{OP}_2$ che risulta essere la forma semplificata di $\vec{OP}_3 + (-1)\vec{OP}_2$. Per vederlo, basterà sommare ad antrambi i membri di $\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_3$ il vettore $(-1)\vec{OP}_2$:

$$(\vec{OP}_1 + \vec{OP}_2) + (-1)\vec{OP}_2 = \vec{OP}_3 + (-1)\vec{OP}_2$$

Applicando la propriatà associativa (1.2) a primo membro:

$$\vec{OP}_1 + \left[\vec{OP}_2 + (-1)\vec{OP}_2 \right] = \vec{OP}_3 + (-1)\vec{OP}_2$$

Dopo aver fatto questo passaggio, sarà necessario applicare la proprietà (1.5) che afferma che $(-1)\vec{OP}_2$ è l'opposto di \vec{OP}_2 :

$$\vec{OP}_2 + \vec{OO} = \vec{OP}_3 + (-1)\vec{OP}_2$$

e infine va applicato la proprietà (1.4) che afferma che il vettore nullo funge da elemento neutro:

$$\vec{OP}_1 = \vec{OP}_3 + (-1)\vec{OP}_2$$

e con questo è stata confermata l'affermazione iniziale.

1.2 Coordinate

Considerando due vettori geometrici \vec{OP}_1 e \vec{OP}_2 nel piano, e si può supporre che \vec{OP}_1 e \vec{OP}_2 non abbiano la stessa dimensione.

Affermando che ogni vettore $\vec{OP} \in V_O^2$ può essere ottenuto sommando multipli opportuni di \vec{OP}_1 e \vec{OP}_2 , ovvero:

$$\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$$

dove c_1, c_2 sono opportuni numeri reali.

Infatti, questo può essere facilmente visto graficamente: come nel disegno seguente, prolungando i vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 disegnando le due rette r_1 e r_2 ; proiettando quindi i punti P su r_1 seguendo la direzione parallela a \overrightarrow{OP}_2 , e chiamando il punto proiettato Q_1 : e chiamandolo punto proiettato Q_2 .

Figura 1.5: Costruzione grafica $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$

Avendo costruito le due proiezioni parallelamente a \vec{OP}_1 e \vec{OP}_2 come lati e \vec{OP} come diagonale, quindi per definizione di somma tra vettori geometrici si ha $\vec{OP} = \vec{OQ}_1 + \vec{OQ}_2$.

Ma dal momento che \vec{OQ}_1 si trova sulla stessa retta di \vec{OP}_1 per come è definito il prodotto dei vettori per i numeri realim esisterà un numero reale c_1 tale che $\vec{OQ}_1 = c_1 \vec{OP}_1$ (dove c_1 dipende semplicemente dal rappotro tra la lunghezza di \vec{OQ}_1 e quella di \vec{OP}_1).

Si conclude che $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$. Si noti che nella situazione considerata nel disegno, $c_1, c_2 > 0$ in quanto \vec{OQ}_1 e \vec{OQ}_2 hanno lo stesso verso di \vec{OP}_1 e \vec{OP}_2 rispettivamente. In generale, la stessa costruzione può essere effettuata per qualunque vettore \vec{OP} del piano e i coefficienti c_1 e c_2 potranno anche essere negativi¹ a seconda del quadrante nel quale si trova \vec{OP} , ovvero a seconda che la proiezione di P sulle rette r_1 , r_2 cada dalla stessa parte o dalla parte opposta dei punti P_1 e P_2 .

Figura 1.6: Condizione della formula $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ in base ai reali c_1, c_2

Definizione 1.2.1. La coppia (c_1, c_2) di numeri reali tale che $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ si dice la coppia delle coordinate del vettore \vec{OP} rispetto ai vettori base \vec{OP}_1, \vec{OP}_2 .

Le coordinate c_1 e c_2 di un vettore dipendono chiaramente dalla scelta dei vettori base \vec{OP}_1 , \vec{OP}_2 , ma una volta che essi sono stati fissati seriveremo $\vec{OP} \equiv (c_1, c_2)$, identificando di fatto il vettore con la coppia delle sua coordinate, e quindi l'insieme \vec{V}_O^2 con l'insieme \mathbb{R}^2 delle coppie di numeri reali.

Osservazione 1.2.1. Bisognerebbe porsi il problema dell'*unicità* di c_1 e c_2 : se esistessero due modi diversi, diciamo $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ e $\vec{OP} = c_1' \vec{OP}_1 + c_2' \vec{OP}_2$, di decomporre \vec{OP} , non

 $^{^{1}}$ Può essrere anche $c_{1}=0$ o $c_{2}=0$: nel primo caso, si ha $\vec{OP}=c_{2}\vec{OP}_{2}$, nel secondo $\vec{OP}=c_{1}\vec{OP}_{1}$, cioè \vec{OP} non sta all'interno di uno dei quadranti in cui le rette r_{1}, r_{2} dividono il piano, ma sta sulla retta r_{2} (se $\vec{OP}=c_{2}\vec{OP}_{2}$) cui sulla retta r_{1} (se $\vec{OP}=c_{1}\vec{OP}_{1}$).

1.2. COORDINATE

avremmo una e una spola coppia di numeri con cui identificarlo: in realtà, la costruzione grafica già suggerisce che l'unicità è garantita, ma si tornerà su tel questione nel paragrafo??.

Un risultato analogo a quello visto per i vettori nel piano può essere ottenuto anche nell'insieme V_O^3 dei vettori geometri nello spazio tridimensionale. In questo non si deve però partire da una coppia di vettori non allineati ma da una terna di vettori \vec{OP}_1 , \vec{OP}_2 e \vec{OP}_3 che non siano tutti e tre sullo stesso piano: alloram, è semplice vedere graficamente, utilizzando proiezioni come fatto nel caso di due vettori nel piano, che ogni vettore $\vec{OP} \in V_O^3$ può essere scritto come combinazione $c_1\vec{OP}_1 + c_2\vec{OP}_2 + c_3\vec{OP}_3$.

Figura 1.7: Vettori su spazio tridimensionale

Come rappresentato in figura 1.7, si proietta il punto su cui stanno \vec{OP}_1 e \vec{OP}_2 seguendo la direzione \vec{OP}_3 e si individua così un punto Q; proiettando poi P sulla retta r_3 parallelamente al vettore \vec{OQ} , risulta individuato un parallelogramma, che ci dice che \vec{OP} si scrive come somma $\vec{OP} = \vec{OQ} + c_3 \vec{OP}_3$ di \vec{OQ} e di un opportuno multiplo $c_3 \vec{OP}_3$ di \vec{OP}_3 . A questo punto si osserva che \vec{OQ} , stando sul piano di \vec{OP}_1 e \vec{OP}_2 si scriverà come loro combinazione lineare $\vec{OQ} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2 + c_3 \vec{OP}_3$. In modo analogo a quato già fatto per i vettori geometrico del piano, si può dire che:

Definizione 1.2.2. La terna (c_1, c_2, c_3) di numeri reali tale che $\vec{OQ} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2 + c_3 \vec{OP}_3$ si dice la terna delle coordinate del vettore \vec{OP} rispetto ai vettori di base $\vec{OP}_1, \vec{OP}_2, \vec{OP}_3$.

Come osservato per i vettori del piano, le coordinate c_1 , c_2 , c_3 di un vettore dipendono chiaramente dalla scelta dei vettori base $\vec{OP}_1, \vec{OP}_2, \vec{OP}_3$, ma una volta che essi sono stati fissati si potrà scrivere $\vec{OP} \equiv (c_1, c_2, c_3)$, identificando di fatto il vettore con la terna delle sue coordinate, e quindi l'insieme \vec{V}_O^2 con l'insieme \mathbb{R}^3 della terna di numeri reali.

L'importanza delle coordinate consiste nel fatto che esse, permattendoci di rappresentare i vettori mediamente coppie o terne di numeri, permettano di tradurre in calcolo tra vettori: questa è un'importante semplificazione, in quanto è più semplice lavorare con numeri che con costruzioni o dimostrazioni di geometria eoclidea che sarebbero altrimenti necessarie per lavorare con i vettori, che sono oggetti (entità) geometrici. Per dare un idea più chiara delle affermazioni esposte precedentemente è necessario stimare questo importante risultato:

Proposizione 1.2.1. Sia \vec{OP}_1 , \vec{OP}_2 una coppia di vettori base non allineati nell'insieme V_O^2 . Le coordinate rispetto a \vec{OP}_1 , \vec{OP}_2 hanno le seguenti proprietà:

- 1. Se \vec{OP} e \vec{OP}' hanno coordinate rispettivamente (x_1, x_2) e (x_1', x_2') , le coordinate di $\vec{OP} + \vec{OP}'$ sono date dalla coppia $(x_1 + x_1', x_2 + x_2')$ ottenuta sommando componete per componente le coppie delle coordinate dei due vettori.
- 2. Se \overrightarrow{OP} ha coordinate (x_1, x_2) e $c \in \mathbb{R}$ è un numero reale, allora le coordinate di \overrightarrow{COP} sono date dalla coppia (cx_1, cx_2) ottenuta moltiplicando per c le coordinate di \overrightarrow{OP} .

Dimostrazione. Il fatto che \vec{OP} abbia coordinate (x_1, x_2) rispetto a \vec{OP}_1 , \vec{OP}_2 significa per definizione che $\vec{OP}' = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$, e analogamente il fatto che \vec{OP}' abbia coordinate (x'_1, x'_2) significa che $\vec{OP}' = x'_1 \vec{OP}_1 + x'_2 \vec{OP}_2$. Ma allora

$$\vec{OP} + \vec{OP}' = (x_1 \vec{OP}_1 + x_2 \vec{OP}_2) + (x_1' \vec{OP}_1 + x_2' \vec{OP}_2) =$$

Riordinando gli addendi e raccogliendoli diversamente sfruttando le proprietà associativa e commutativa della somma tra vettori

$$= (x_1 \vec{OP}_1 + x_1' \vec{OP}_1) + (x_2 \vec{OP}_2 + x_2' \vec{OP}_2) =$$

Sfruttando la proprietà 1.8 sia nella prima parentesi che nella saconda, effettuato il raggruppamento mettendo in evvidenza nel caso della prima parentesi \vec{OP}_1 , mentre, nel caso del secondo mettendo in evvidenza \vec{OP}_2 , il risultato sarà

$$= (x_1 + x_1')\vec{OP}_1 + (x_2 + x_2')\vec{OP}_2$$

Ma questo, per definizione di coordinate, significa proprio che le coordinate di $\vec{OP} + \vec{OP}'$ sono date dalla coppia $(x_1 + x'_1, x_2 + x'_2)$, come affermato nel punto 1 della Proposizione 1.2.1.

Per dimostrare la (2), bisogna partire sempre dal fatto che \vec{OP} abbia coordinate (x_1, x_2) significa per definizione che $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$. Allora

$$\vec{cOP} = \vec{c}(x_1\vec{OP}_1 + x_2\vec{OP}_1) =$$

Applicando la proprietà (1.9) otterremo la divisione in due gruppi di parentesi, con c messo in evidenza messi tra di loro in forma di addizione.

$$= c(x_1\vec{OP_1}) + c(x_2\vec{OP_2}) =$$

Applicando la proprietà (1.6) a entrambi gli addendi si otterrà:

$$= (cx_1)\vec{OP_1} + (cx_2)\vec{OP_2}$$

Ma questo, per definizione di coordinate, ci dice proprio che le coordinate di \overrightarrow{cOP} sono date dalla coppia (cx_1, cx_2) , come affermato nella (2) della Proposizione 1.2.1.

Esempio 1.2.1. Per un esempio di quanto appena dimostrato, si prendano i vettori base \vec{OP}_1 e \vec{OP}_2 come nel disegno seguente, e si considerino i due \vec{OQ}_1 e \vec{OQ}_2

Figura 1.8: Rappresentazione grafica OQ_1 e OQ_2

Come si vede dalla figura (1.8), si ha $\vec{OQ_1} = 2\vec{OP_1} + \vec{OP_2}$ e $\vec{OQ_1} = \vec{OP_1} + 2\vec{OP_2}$, ovvero le coordinate $\vec{OP_1}$ sono date dalla coppia (2, 1).

Allora, in base alla (1) della Proposizione 1.2.1, la somma $\vec{OQ}_1 + \vec{OQ}_2$ ha coordinate (sempre rispetto $\vec{a} \cdot \vec{OP}_1 = \vec{OP}_2$) date da

$$\vec{OQ}_1 = \begin{vmatrix} 2 \\ 1 \end{vmatrix}, \ \vec{OQ}_2 = \begin{vmatrix} 1 \\ 2 \end{vmatrix} \quad \rightarrow \quad \vec{OQ}_1 + \vec{OQ}_2 = \begin{vmatrix} 2+1 \\ 1+2 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix} = (3,3).$$

ovvero si ha $\vec{OQ}_1 + \vec{OQ}_2 = 3\vec{OP}_1 + 3\vec{OP}_2$. In effetti, questo può essere verificato graficamente costruendo con la regola del parallelogramma la somma $\vec{OQ}_1 + \vec{OQ}_2$, come nella figura seguente

Figura 1.9: Rappresentazione grafica $\vec{OQ}_1 + \vec{OQ}_2$

L'aspetto notevole è che si può dimostrare chi era il vettore $\vec{OQ}_1 + \vec{OQ}_2$ (in coordinate) con un semplice conto aritmetico, anche prima di disegnarlo con la costruzione geometrica del parallelogramma.

Osservazione 1.2.2. Affermazioni del tutto analoghe a quelle della Proposizione 1.2.1 valgono anche nel caso dei vettori nello spazio. Più precisamente, si ha che fissata una terna $\vec{OP}_1, \vec{OP}_2, \vec{OP}_3$ di vettori non complanari nell'insieme V_O^3 dei vettori dello spazio tridimensionale, allora le coordiante rispetto a tale terna di base hanno le seguenti proprietà:

- 1. Se \vec{OP} e \vec{OP}' hanno coordinate rispettivamete (x_1, x_2, x_3) e (x_1', x_2', x_3') , le coordinate di $\vec{OP}_1 + \vec{OP}_1'$ sono date dalla terna $(x_1 + x_1', x_2 + x_2', x_3 + x_3')$ ottenuta sommando componente per componente le terne delle coordinate dei due vettori.
- 2. Se \vec{OP} ha coordinate (x_1, x_2, x_3) e $c \in \mathbb{R}$ è un numero reale, allora le coordinate, di \vec{COP} sono date dalla terna (cx_1, cx_2, cx_3) ottenuta moltiplicando per c le coordinate di \vec{OP} .

La dimostrazione è perfettamente analoga a quella della Proposizione 1.2.1.

1.3 Lunghezze e angoli

Lavorare in coordiante rispetto a una base ci permette di tradurre numericamente costruzioni geometriche con i vettori e risolvere in modo più semplice problimi relativi ai vettori. Questo è quero qualunque sia la base scelta, tuttavia a seconda del problema specifico da risolvere, alcune basi possono essere più convenienti di altre, e in particolare quando si vuole rispondere, lavorando in coordinate, alle domande seguenti: "Quel'è la lunghezza di un vettore dato? quel'è l'angolo tra due vettori dati?

In tal caso, le basi più convenienti da usare, come visto, sono quelle formate da (due nel caso del piano, tre nel caso dello spazio) vettori ctra loro ortogonali e di lunghezza 1 (rispetto a un'unità di misura scelta). Tali basi si chiamano ortonormale.

Infatti, considerando una tale base nel piano

Figura 1.10: Base del piano

Ora, considerando un vettore \vec{OP} , di quale sono note le coordinate rispetto a tale base sono date da (x_1, x_2) (ovvero, per definizione di coordinate, $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$): è possibile calcolare la lunghezza del vettore \vec{OP} a partire dalle coordinate? Per rispondere a tale domanda, bisogna considerare le seguenti figure, nel quale è rappresentata la decomposizione $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$

Figura 1.11: Base del piano con il vettore \vec{OP}

Dal momento che si è selto i vettori di base perpendicolari, quando si proietta P sulla retta r_1 che contiene \vec{OP}_1 sequendo la direzione \vec{OP}_2 , tale proiezione incontra r_1 con un angolo di 90°, e si viene quindi a formare un triangolo rettangolo (evidenziato nel figura 1.11) avente come ipotenusa proprio \vec{OP} e al quele possiamo quindi applicare il teorema di Pitagora per calcolare la lunghezza di \vec{OP} , che denoterà $|\vec{OP}|$.

A quasto scopo, c'e da notare che il cateto orizzontale di tale triangolo è dato dal vettore $x_1\vec{OP}_1$, e quindi la sua lunghezza è data dal prodotto di x_1 per la lunghezza di \vec{OP}_1 : ma avendo scelto i vettori

di base di lunghezza unitaria, questo implica che la lunghezza di tale cateto sia semplicemente x_1 ; per quello che riguarda il cateto verticale, esso per costruzione ha la stessa lunghezza del vettore $x_2\vec{OP}_2$, ovvero x_2 (in quanto \vec{OP}_2 ha lunghezza 1). Quindi il teorema di Pitagora dice che $|\vec{OP}|^2 = \sqrt{x_1^2 + x_2^2}$,

$$|\vec{OP}| = |x| = \sqrt{x_1^2 + x_2^2} \tag{1.10}$$

che rappresenta la formula cercata, che ci dà la lunghezza di \overrightarrow{OP} in funzione delle sue coordinate. Si nota che nei ragionamenti svolti sono fontamentali per la scelta di una base fatta di vettori ortogonali (questo ha fatto comparire un triangolo rettangolo a cui viene applicato il teorema di Pitagora) e di lunghezza 1 (che ha permesso di esprimere le lunghezze dei cateti in funzione delle sole coordinate).

Dopo aver trattato del piano, adesso è necessario trattare lo spazio nella sua costruzione, infatti lo spazio trigonometrico è composto da una terna di vettori: $\vec{OP}_1, \vec{OP}_2, \vec{OP}_3$ appartenenti all'insieme V_O^3 dei vettori applicati nello spazio tridimensionale:

Figura 1.12: Costruzione grafica base spazio

Supponendo ora di avere un vettore \vec{OP} e di volerne calcolare la lunghezza, si denota $|\vec{OP}|$, in fuzione delle sue coordinate x_1, x_2, x_3 rispetto alla base B scelta. Per definizione di coordinate, \vec{OP} si decompone come somma $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2 + x_3 \vec{OP}_3$, come in figura 1.13.

Figura 1.13: Base dello spazio con il vettore \overrightarrow{OP}

La decomposizione è stata ottenuta graficamente come segue: prima si proietta P perpendicolarmente sul piano su cui stanno P_1 e P_2 ottenendo il punto Q (l'angolo in Q quindi è retto, come messo in evidenza nella figura) e si ottiene un rettangolo, come campitura in grigio nella figura, che dice che $\vec{OP} = \vec{OQ} + x_3 \vec{OP}_3$; poi dal momento che \vec{OQ} giace sul piano di P_1 e P_2 lo si può decomporre come $\vec{OQ} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$ (sempre sul piano retti in quanto \vec{OP}_1 e \vec{OP}_2 sono perpendicolari), e quindi $\vec{OP} = \vec{OQ} + x_3 \vec{OP}_3 = x_1 \vec{OP}_1 + x_2 \vec{OP}_2 + x_3 \vec{OP}_3$ come visto sopra.

Ora, essendo \overrightarrow{OP} l'ipotenusa del triangolo OPQ rettangolo in Q, per il teorema di Pitagora si avrà

$$|OP|^2 = |OQ|^2 + |PQ|^2 (1.11)$$

Ma da una parte, il segmento PQ, essendo un lato del rettangolo ombreggiato in figura, è lungo esattamente quanto il vettore $x_3\vec{OP_3}$, ovvere x_3 (in quanto \vec{OP} ha lunghezza 1); dall'altra, OQ è la diagonale del rettangolo che ha come lati i vettori $x_1\vec{OP_1}$ e $x_2\vec{OP_2}$ di lunghezza rispettivamente x_1 e x_2 (in quanto $\vec{OP_1}$ e $\vec{OP_2}$ hanno lunghezza 1), quindi sempre per il teorema di Pitagora si ha $|OP|^2 = x_1^2 + x_2^2 + x_3^2$, ovvero, se per la terna $x = (x_1, x_2, x_3)$ si utilizza la notazione

$$|x| = \sqrt{x_1^2 + x_2^2 + x_3^2},$$

$$|\vec{OP}| = |x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$
(1.12)

che è la formula cercata, angolora della (1.10), per la lunghezza di un vettore geometrico \overrightarrow{OP} dello spazio in funzione delle sue coordinate rispetto alla base scelta.

Ora, bisogna porsi il problema di calcolare l'angolo tra due vettori non nulli \overrightarrow{OP} , $\overrightarrow{OQ} \in V_O^3$ una volta note le loro coordinate rispetto a una base ortonormale. Supponendo che tali coordinate siano rispettivamente (x_1, x_2, x_3) e (y_1, y_2, y_3) .

Figura 1.14: Triangolo OPQ

Per un risultato di trigonometria, l'angolo θ tra \vec{OP} e \vec{OQ} è collegato alla lunghezza dei segmenti OP, OQ, PQ dalla formuala²

$$|\vec{PQ}|^2 + |OP|^2 + |OQ|^2 - 2\cos\theta|OP| \cdot |OQ| \tag{1.13}$$

Ora, per la (1.12), si ha $|OP| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ e $|OQ| = \sqrt{y_1^2 + y_2^2 + y_3^2}$: per ricavare l'angolo θ tramte la formuala (1.14) resta da calcolare la lunghezza |PQ|. Dal momento che la formuala (1.12) consente di calcolare la lunghezza solo dei vettori applicati in O, sarà possibile tracciare il seguente disegno

Figura 1.15: Triangolo OPQ e OQR

Il vettore \vec{OR} parallelo al segmento PQ e avente la sua stessa lunghezza, ovvero $|PQ| = |\vec{OR}|$. Ora, essendo \vec{OR} parallelo a PQ e della stessa lunghezza, il quadrilattero di vertici O, R, P, Q è un parallelogramma che ha \vec{OR} e \vec{OP} come lati e \vec{OQ} come diagonale: quindi, dalla definizione di somma tra vettori applicati, si ha $\vec{OQ} = \vec{OR} + \vec{OP}$, ovvero $\vec{OR} = \vec{OQ} - \vec{OP}$.

Per le proprietà telle coordinate viste nell'Osservazione 1.2.2, le coordinate di $\vec{OR} = \vec{OQ} - \vec{OP}$ sono date dalle coordinate di \vec{OQ} meno le coordinate di \vec{OP} , ovvero $(y_1 - x_1, y_2 - x_2, y_3 - x_3)$, e quindi, dalla (1.10) si ha finalmente

$$|PQ| = |\vec{OR}| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2}$$
 (1.14)

²Si tratta di una sorta di "teorema di Pitagora per triangoli qualunque": infatti, se il trangolo è rettangolo in O, ovvero $\theta = \frac{\pi}{2}$, allora $\cos \theta = 0$ e la formula si riduce a $|\vec{PQ}|^2 = |OQ| + |OQ|^2$, il classico teorema di Pitagora.

La formula (1.12) diventa allora

$$(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2 = y_1^2 - x_1^2 + y_2^2 - x_2^2 + y_3^2 - x_3^2 - 2\cos\theta\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}$$

$$(1.15)$$

Poiché il primo membro, per la formula del quadrato di binomio³, è uguale a

$$x_1^2 + y_1^2 - 2x_1y_1 + x_2^2 + y_2^2 - 2x_2y_2 + x_3^2 + y_3^2 - 2x_3y_3$$

semplificando con i quadrati a secondo membro rimane:

$$-2x_1y_1 + -2x_2y_2 - 2x_3y_3 = -2\cos\theta\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}$$
 (1.16)

ovvero, ricavando $\cos \theta$,

$$\cos \theta = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}$$
(1.17)

che è finalmente la formula cercata che esprime l'angolo tra due vettori in funzione delle loro coordinate rispetto alla base data.

Con un calcolo analogo nel piano (dove non cambia nulla delle costruzioni fatte e dei passaggi svolti, salvo il fatto che abbiamo due coordinate anziché tre) si ottiene la formula analoga

$$\cos \theta = \frac{x_1 y_1 + x_2 y_2}{\sqrt{x_1^2 + x_2^2} \cdot \sqrt{y_1^2 + y_2^2}}$$
(1.18)

Osservazione 1.3.1. Una volta ricavato il valore del coseno dell'angolo mediante la formula (1.17) [la (1.18) nel caso del piano], all'interno dell'intervallo $[0, 2\pi]$ avremo in generale due possibili valori di θ corrispondenti: ad esempio, se $\cos \theta = \frac{1}{2}$ allora $\theta = \frac{\pi}{3}$ oppure $\theta = 2\pi - \frac{\pi}{3} = \frac{5}{3}\pi$. Questo riflette il fatto geometroco ovvio, illutrato dall'immagine

Figura 1.16: Angolo θ in base al suo valore

che due vettori individuano due angoli, uno minore o uguale a π e un altro maggiore o uguale a π . Per risolvere questa ambiguità, quando si parla di angolo tracciare due vettori d'ora in poi verrà inteso quello minore o uguale di π (il cosiddetto angolo convesso).

Esempio 1.3.1. Considerando ad esempio i vettori \vec{OP} e \vec{OQ} che rispetto a una terna ortonormale $\vec{OP}_1, \vec{OP}_2, \vec{OP}_3$ hanno coordinate rispettivamente (1,0,1) e (1,-1,0) (in base alla definizione di coordinate, sono quindi $\vec{OP} = 1\vec{OP}_1 + 0\vec{OP}_2 + 1\vec{OP}_3 = \vec{OP}_1 + \vec{OP}_3$ e $\vec{OQ} = 1\vec{OP}_1 + (-1)\vec{OP}_2 + 0\vec{OP}_3 = \vec{OP}_1 - \vec{OP}_2$). Allora l'angolo tra \vec{OP} e \vec{OQ} , in base alla formula (1.16), è dato da

$$\cos \theta = \frac{1 \cdot 1 + 0 \cdot (-1) + 1 \cdot 0}{\sqrt{1^2 + 0^2 + 1^2} \cdot \sqrt{1^2 + (-1)^2 + 0^2}} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2}$$

ovvero, dalla trigonometria, $\theta = \frac{\pi}{3}$ (in gradi, 60°)

Le formule (1.17) e (1.18) ci forniscono anche un criterioper verificare in coordinate se due vettori sono perpendicolari: infati, l'angolo θ è $\frac{\pi}{2}$ (ovvero 90 gradi) se e solo se $\cos \theta = 0$, il che può essere vero solo se i numeratori della (1.17) e della (1.18) sono nulli.

³Lo sviluppo del quadrato di binomio è $(a \pm b)^2 = a^2 + b^2 \pm 2ab$

Ad esempio, nello spazio, abbiamo che due vettori $\vec{OP} \equiv (x_1, x_2, x_3)$ e $\vec{OQ} \equiv (y_1, y_2, y_3)$ sono perpendicolari se e solo se si verifica

$$x_1y_1 + x_2y_2 + x_3y_3 = 0 (1.19)$$

Ad esempio, i due vettori di coordinate (1,2,1) e (3,1,-5) sono perpendicolari in quanto

$$1 \cdot 2 + 2 \cdot 1 + 1 \cdot (-5) = 3 + 2 - 5 = 0$$

Osservazione 1.3.2. In base al criterio (1.19), il vettore nullo \vec{OO} risulta essere perpendicolare a qualunque altro vettore \vec{OP} , in quanto le sue coordinate sono (0,0,0) e, qualunque siano le cordinate (x_1, x_2, x_3) di \vec{OP} si ottiene $x_1 \cdot 0 + x_2 \cdot 0 + x_3 \cdot 0 = 0$.

Tuttavia, si noti che le formule (1.17) e (1.18) sono applicabili per calcolrare un angolo solo se nessuno dei vettori è nulla, altrimenti una delle due radici a denominatore verrebbe $\sqrt{0^2 + 0^2 + 0^2} = 0$, e come è noto non è possibile dividere per zero.

Il numeratore che compare nella (1.17), o nella (1.18) nel caso del piano, può essere interpretato come una nuova operazione, una sorta di prodotto che date due terne (due coppie nel caso del piano) di numero reali, dà come risultato un numero reale: si denota $x = (x_1, x_2, x_3)$ e $y = (y_1, y_2, y_3)^4$, è possibile porre:

$$x \cdot y := x_1 y_1 + x_2 y_2 + x_3 y_3 \tag{1.20}$$

mentre, nel caso del piano sarà:

$$x \cdot y := x_1 y_1 + x_2 y_2$$

La (1.20) è un esempio di *prodotto scalare*, una nozione che vedremo più in generale in una dei prossimi capitoli (il nome viene dal fatto che si tratta di un'operazione il cui risultato è un numero reale, e come detto sopra nel contesto dei vettori i numeri reali si chiamano anche scalari).

Si noti che anche le formule (1.10) e (1.11) per calcolare in coordinate della lunghezza di un vettore (rispettivamente nel piano e nello spazio) possono essere espresse in termini del prodotto scalare: infatti, ad esempio per la (1.12) si ha, facendo riferimento alla (1.20),

$$\sqrt{x_1^2 + x_2^2 + x_3^2} = \sqrt{x_1 \cdot x_1 + x_2 \cdot x_2 + x_3 \cdot x_3} = \sqrt{x \cdot x}$$

Il prodotto scalre rappresenta qundi una sorta di "strumento di misura" tramite il quale si esprimono le misure della lunghezza e degli angoli tra vettori quando si lavora in coordinate: quindi per manipolare espressioni che riquardano lunquezza e angolo e, come verrà fatto in capitoli successivi, ricavare le formule che coinvolgono in qualche modo queste nozioni (ad esempio, riflessioni proiezioni ortogonali, etc.) è necessario conoscerne le proprietà algebriche.

Le proprietà più importanti, limitando al cso di \mathbb{R}^3 (tali proprietà saranno valide anche nel caso di \mathbb{R}^2 , dove si ricavano nello stesso modo e l'unica differenza è che nelle formule non compare la terza componente)

1. Il prodotto scalare gode della proprietà commutativa: infatti, si verifica immediatamente che

$$x \cdot y := x_1 y_1 + x_2 y_2 + x_3 y_3 = y_1 x_1 + y_2 x_2 + y_3 x_3 = y \cdot x$$

2. Come visto nel pagrafo precedente che se due vettori geometrici \vec{OP} e \vec{OQ} nello spazio hanno coordinate date rispettivamente da due terne $x=(x_1,x_2,x_3)$ e $y=(y_1,y_2,y_3)$, allora la loro somma $\vec{OP}+\vec{OQ}$ ha coordinate dalla terna $(x_1+y_1,x_2+y_2,x_3+y_3)$ che si ottiene sommando le rispettive componenti delle due terne: questo definisce un'operazione di somma tra le x e y, che prodotto scalare gode delle proprietà distributiva rispetto rispetto a tale somma, ovvero date tre terne $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3),z=(z_1,z_2,z_3)$ valgono le

$$x \cdot (y+z) = x \cdot y + x \cdot z, \quad (x+y) \cdot z = x \cdot z + y \cdot z \tag{1.21}$$

rispettivamente proprietà distributiva a destra e a sinistra.

Infatti, essendo $y + z = (y_1 + z_1, y_2 + z_2, y_3 + z_3)$, dalla (1.20) si ha

$$x \cdot (y+z) = x_1(y_1+z_1) + x_2(y_2+z_2) + x_3(y_3+z_3) =$$

usando per ciascuno dei tre addendi la proprietà distributiva del prodotto di numeri reali rispetto alla somma

$$= x_1y_1 + x_1z_1 + x_2y_2 + x_2z_2 + x_3y_3 + x_3z_3 = x_1y_1 + x_2y_2 + x_3y_3 + x_1z_1 + x_2z_2 + x_3z_3 = x \cdot y + x \cdot z$$

⁴nel caso del piano, $x = (x_1, x_2)$ e $y = (y_1, y_2)$

come si voleva.

Allo stesso modo (omettiamo quindi i dettagli) si verifica che vale anche la proprietà distributiva a sinistra, ovvero la seconda delle (1.21).

3. Visto nel paragrafo precedente che se un vettore geometrico \overrightarrow{OP} nello spazio ha coordinate date dalla terna $x=(x_1,x_2,x_3)$, allora il prodotto \overrightarrow{cOP} del vettore per un numero $c\in\mathbb{R}$ ha coordinate date della terna x per c: posto $cx=(cx_1,cx_2,cx_3)$, ci chiediamo come si comporta il prodotto scalare rispetto a questa operazione (che quindi non è nient'altro per un vettore), ovvero cosa se date due terne $x=(x_1,x_2,x_3)$ e $y=(y_1,y_2,y_3)$ e un numero $c\in\mathbb{R}$ eseguiamo i prodotti scalare $(cx)\cdot y$ oppure $x\cdot (cx)$. Si verifica facilmente che si ha

$$(cx) \cdot y = c(x \cdot y), \quad x \cdot (cy) = c(x \cdot y) \tag{1.22}$$

Infatti, essendo $cx = (cx_1, cx_2, cx_3)$, per la (1.20) si ha

$$(cx) \cdot y = cx_1y_1 + cx_2y_2 + cx_3y_3 =$$

mettendo in evidenza c che compare in tutti e tre gli addendi

$$= c(x_1y_1 + x_2y_2 + x_3y_3) = c(x \cdot y)$$

come volevamo. Allo stesso modo (omettiamo quindi i dettagli) si verifica la seconda delle (1.22).

Vediamo ora che in \mathbb{R}^3 è possibile introdurre anche un'altra operazione molto utile in geometria ma anche in altre ma anche in altre applicazioni (soprattutto in fisica), il prodotto vettoriale, che date due terne di numeri reali dà come risultato non uno scalare (come nel caso del prodotto scalare) ma una nuova terna (che rappresenta in cordinate un nuovo vettore, da cui il nome). La definizione è la seguente: se $x = (x_1, x_2, x_3)$ e $y = (y_1, y_2, y_3)$ allora si pone

$$x \wedge y := (x_2y_3 - x_3y_2, x_2y_1 - x_1y_3, x_1y_2 - x_2y_1) \tag{1.23}$$

Ad esempio, se x = (1, 2, 3) e y = (2, 5, -1) si ha

$$x \wedge y := (2 \cdot (-1) - 3 \cdot 5, 3 \cdot 2 - 1, 1 \cdot 5 - 2 \cdot 2) = (-17, 7, 1)$$

Il motivo di questa particolare definizione è che si vuole che la terna $x \wedge y$ rappresenti (in coordinate rispetto a una base ortonormale) un vettore che è perpendicolare sia al vettore rappresentato da x che a quello rappresentato da y.

Per verificare che effevamente è così, basta usare il criterio di perpendicolarità visto nella (1.19), cioè moltiplicare le rispettive componenti di x e $x \wedge y$ (la prima con la prima, la seconda con la seconda, la terza con la terza) e sommare:

$$x_1(x_2y_3 - x_3y_2) + x_2(x_3y_1 - x_1y_3) + x_3(x_1y_2 - x_2y_1) = x_1x_2y_3 - x_1x_3y_2 - x_2x_1y_3 + x_3x_1y_2 - x_3x_2y_1 = 0$$

in quanto come si vede facilmente tutti i termini si semplificano.

Analogamente, per verificare che anche il vettore di coordiante y è perpendicolare al vettore rappresentato dal prodotto vettoriale $x \wedge y$:

$$y_1(x_2y_3 - x_3y_2) + y_2(x_3y_1 - x_1y_3) + y_3(x_1y_2 - x_2y_1) = y_1x_2y_3 - y_1x_3y_2 - y_2x_1y_3 + y_3x_1y_2 - y_3x_2y_1 = 0$$

come si voleva

Come abbiamo già fatto per il prodotto scalare, vediamo le più importanti proprietà algebriche dell'operazione di prodotto vettoriale: iniziamo con il segnalare subito che esso *non* è commutativo, ma si ha

$$x \wedge y = -y \wedge x$$

ovvero quando combiamo l'ordine dei fattori il risultato cambia di segno (ovvero otteniamo una terna con le componenti di segno opposto). Ad esempio, per i due vettori x=(1,2,3) e y=(2,5,-1) per cui sopra abbiamo già calcolato $x \wedge y=(-17,7,1)$, si ha

$$y \wedge x = (5 \cdot 3 + (-1) \cdot 2, -1 \cdot 3, 2 \cdot 3 - 5 \cdot 1) = (17, -7, -1).$$

Ancora, nella manipolazione di espressioni e formule che coinvolgono il prodotto vettoriale è necessario fare attenzione al fatto che esso non è neanche associativo, cioè in generale si ha

$$x \wedge (y \wedge z) \neq (x \wedge y) \wedge z$$

Ad esempio, se prendiamo x=(1,0,0) e y=z=(0,1,0), si vede facilmente che $x \wedge y=(0,0,1)$ e $(x \wedge y) \wedge z=(-1,0,0)$, mentre dall'altra si ha $y \wedge z=(0,0,0)$ e $x \wedge (y \wedge z)=(0,0,0)$.

Ancora, esattamente come abbiamo fatto nella (1.21) per il prodotto scalare, verifichiamo che anche il prodotto vettoriale gode di proprietà distributiva (sia a destra che a sinistra) rispetto alla somma di terne definite $x + y = (x_1 + y_1, x_2 + y_2x_3 + y_3)$, ovvero

$$x \wedge (y+z) = x \wedge y + x \wedge z, \quad (x+y) \wedge z = x \wedge z + y \wedge z \tag{1.24}$$

Ad esempio, verificando la prima (la seconda è analoga): essendo $y + x = (y_1 + z_1, y_2 + z_2, y_3 + z_3)$, per definizione di prodotto vettoriale si ha

$$x \wedge (y+z) = [x_2 \cdot (y_3+z_3) - x_3 \cdot (y_2+z_2), x_3 \cdot (y_1+z_1) - x_1 \cdot (y_3+z_3), x_1 \cdot (y_2+z_2) - x_2(y_1+z_1)] =$$

Svolgendo i calcoli per ognuna delle tre componenti

$$= (x_2y_3 + x_2z_3 - x_3y_2 - x_3z_2, x_3y_1 + x_2z_1 - x_1y_3 - x_1z_3, x_1y_2 + x_1z_2 - x_2y_1 - x_2z_1) = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) + (x_2z_3 - x_3z_2, x_3z_1 - x_1z_3, x_1z_2 - x_2z_1)$$

ovvero proprio $x \wedge y + x \wedge z$, come voluto. Infine, si verifica che vale un'analoga della (1.22) anche per il prodotto vettoriale, ovvero

$$x \wedge (cy) = c(x \wedge y), \quad (cx) \wedge y = c(x \wedge y)$$
 (1.25)

Ad esempio, si verifica la prima (la seconda è analoga): essendo $cy = (cy_1, cy_2, cy_3)$, per definizione di prodotto vettoriale si ha

$$x \wedge (cy) = (x_2(cy_3) - x_3(cy_2), x_3(cy_1) - x_1(cy_3), x_1(cy_2) - x_2(cy_1)) =$$

mettendo in evidenza il c in ognuna delle componenti

$$=(c(x_2y_3-x_3y_2),c(x_3y_1-x_1y_3),c(x_1y_2-x_2y_1))=$$

ovvero proprio $c(x \wedge y)$, come voluto.

È stato detto che il prodotto vettoriale $v \wedge y$ di due terne $x, y \in \mathbb{R}^3$ dà le coordinate di un vettore perpendicolare a entrambi i vettori rappresentati da x e da y, e che quindi trova sulla retta rappresentata nella figura seguente:

Figura 1.17: Prodotto vettoriale $v \wedge y$

Conoscendo quindi la direzione di tale vettore, per determinarlo completamente bisogna trovarne lunghezza e verso.

Per quello che riguarda la lunghezza, per calcolarla basterà utilizzare la formula (1.11). In base a tale formula e alla (1.23), si ha

$$|x \wedge y|^2 = (x_2y_3 - x_3y_2)^2 + (x_3y_1 - x_1y_3)^2 + (x_1y_2 - x_2y_1)^2$$

Svolgendo i conti (omettendo i passaggi), non è difficile vedere che tale espressione è uguale a

$$(x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2$$

ovvero, ricordando la notazione di prodotto scalare introdotta nella (1.20)

$$|x|^2 \cdot |y|^2 - (x \cdot y)^2$$

Riscrivendo questa espressione come⁵

$$|x|^2 \cdot |y|^2 \left(1 - \frac{(x \cdot y)^2}{|x|^2 \cdot |y|^2}\right)$$

e ricordando che in alla (1.17) si ha $\cos \theta = \frac{x \cdot y}{|x| \cdot |y|}$ (dove θ è l'angolo formato dai vettori rappresentati da $x \in y$) concludendo che

$$|x \wedge y|^2 = |x|^2 \cdot |y|^2 (1 - \cos^2 \theta) = |x|^2 \cdot |y|^2 \sin^2 \theta$$

(dove viene utilizzata l'identità trigonometrica $\cos^2 \theta + \sin^2 \theta = 1$), ovvero, estraendo la radice a entrambi i membri,

$$|x \wedge y| = |x| \cdot |y| \sin \theta \tag{1.26}$$

che è finalmente una formula semplice per la lunghezza vettoriale rappresentato in coordinate da $x \wedge y$, in funzione della lunghezza |x| del vettore rappresentato da x, della lunghezza |y| del vettore rappresentato da y e dell'angolo θ formato da questi due vettori⁶.

ale formula dice ad esempio che $|x \wedge y| = 0$ (ovvero $x \wedge y = (0,0,0)$ rappresenta il vettore nullo \vec{OO}) esattamente quando $\sin \theta = 0$ ovvero, come dice la trigonometria, quando $\theta = 0$ o $\theta = \pi$ (180 gradi). Come si vede nella figura seguente

Figura 1.18: Caso in cui $\theta = 0$ e il caso in cui l'angolo $\theta = \pi$

questo equivale a dire che i vettori sono allineati. In altre parole, si deduce che $x \wedge y = (0,0,0)$ solo quando le terne $x \in y$ sono una multipla dell'altra (ovvero proporzionali).

Conoscendo direttamente e lunghezza del vettore rappresentato da $x \wedge y$, per il verso sono possibili solo due possibilità:

Figura 1.19: Vettore OQ e OP parallele ad x e y

In realtà il verso del vettore rappresentato da $x \wedge y$ non è determinabile in modo univoco, ma dipende da quale base ortonormale è stato scelto per tradurre i vettori in coordinate.

⁵Supponendo che sia x che y siano diverse dalla terna nulla (0,0,0), altrimenti non potrebbe porre $|x|^2 = x_1^2 + x_2^2 + x_3^2$ o $|y|^2 = y_1^2 + y_2^2 + y_3^2$ a denominatore. Del rsto, se x o y fossero uguali alla terna nulla, il problema di calcolare la lughezza di $x \wedge y$ non si porrebbe perché in quel caso dalla definizione di prodotto vettoriale si vedrebbe subito che anche $x \wedge y$ sarebbe la terna nulla, e quindi la lunghezza del vettore corrispondente sarebbe zero.

⁶Si noti che estraendo la radice è stato scritto sin θ , invece del vettore assoluto $|\sin \theta|$ perché, supponendo che θ rappresenti l'angolo convesso tra i due vettori (si veda l'Osservazione 1.3.1), vale $\theta \in [0, \pi]$ e quindi sin $\theta \leq 0$.

1.4 Spazi vettoriali

Come visto, i vettori geometrici sono degli oggetti che possono essere sommati tra loro e moltiplicati per un numero reale, ed è usando queste operazioni e le proprietà (1.2)-(1.9) che esse soddisfano che siano riusciti a introdurre importanti concetti, come quello di coordinate, ricavandone importanti proprietà.

Il fatto notevole è che in matematica e nelle sue applicazioni esistono molti altri insiemi, composti da elementi di natura molto diversa dai vettori geometrici, che si comportano tuttavia in modo analogo a questi ultimi, ovvero che possono essere in un certo senso sommati tra loro e moltiplicati per un numero reale, e che soddisfano proprietà analoghe a quelle viste nelle (1.2)-(1.9).

Ad esempio, si consideri l'insieme di tutte le funzioni $f: \mathbb{R} \to \mathbb{R}$: chiaramente, due funzioni possono essere sommate tra loro per ottenere una nuova funzione (es. se $f(x) = x^2$, e $g(x) = e^x$, la funzione che a ogni $x \in \mathbb{R}$ associa $x^2 + e^x$ costituisce una nuova funzione, che può essere pensata come la somma f + g), e una funzione può essere moltiplicata per un numero reale per ottenere una nuova funzione (ad esempio, data $f(x) = x^2$, la funzione che a ogni $x \in \mathbb{R}$ associa $2x^2$ può essere pensata come la funzione 2f).

Queste operazioni, come è facile verificare, soddisfano le proprietà analoghe alle (1.2)-(1.9) viste per i vettori geometrici: ad esempio, è chiaro che la somma di funzioni gode della proprietà communitativa (facendo riferimento all'esempio di sopra, $x^2 + e^x = e^x + x^2$); o ancora, per quello che riguarda la proprietà (1.4), esiste una funzione che funge da elemento neutro per la somma (la funzione costante uguale a zero) e così via per tutte le altre proprità.

Un altro esempio di insieme che si comporta in modo analogo ai vettori geometrici, che è di fondamentale importanza in matematica e come si vedrà in particolare in questo corso, è quello dell'insieme delle n-uple di numeri reali.

Dato un numero naturale positivo n, una n-uple (x_1, x_2, \ldots, x_n) è una sequenza ordinata di n numero reali $x_1, x_2, x_n \in \mathbb{R}$: ad esempio, per n=2 e n=3 si ottengono rispettivamente le coppie (x_1, x_2) e le terne (x_1, x_2, x_3) , che abbiamo già introdotto parlando di coordinate di vettori geometrici già introdotto parlando di coordinate di vettori geometrici nel piano o nello spazio tridimensionale. Lungi dal rappresentare una generalizzazione astratta delle coppie o delle terne senza più significato concreto o utilità, le n-uple possono modellizzare oggetti e situazioni "reali" le più diverse tra loro: ad esempio, in fisica ogni evento dello spaziotempo è rappresentato da una 4-upla (x_1, x_2, x_3, x_4) , dove le prime tra componenti x_1, x_2, x_3 sono le coordinate del punto in cui avviene l'evento e l'ultima componete x_4 ci dice in quale istante di tempo esso avviene; ancora, la configurazione di un braccio meccanico con n giunture può essere rappresentata da un n-upla in cui ogni componente ci dice l'angolo che formano i bracci nella giuntura corrispondente; oppure, se si avesse un mercato composto da 10 merci, la situazione dei prezzi in quel mercato può essere rappresentata da una 10-upla $(x_1, x_2, \ldots, x_{10})$ in cui ciascuna componente indica il prezzo della merce corrispondente $(x_1$ della prima merce, x_2 della seconda, e così via).

Ora, sull'insieme delle *n*-uple di numeri reali, che si denota \mathbb{R}^n , si può definire un'operazione di somma tra due *n*-uple $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)$ sommando componente per componente

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) := (x_1 + y_1, x_2, \dots, x_n + y_n)$$
 (1.27)

e un'operazione di prodotto di un numero reale $c \in \mathbb{R}$ per una n-upla (x_1, x_2, \dots, x_n) moltiplicando per c tutte le componenti della n-upla:

$$c(x_1, x_2, \dots, x_n) := (cx_1, cx_2, \dots, cx_n)$$
 (1.28)

nel caso delle coppie o delle terne, queste due operazioni sono proprio quelle che traducono in coordinate, come affermano la Proposizione 1.2.1 e l'Osservazione 1.2.2, la somma e il prodotto per uno scalare di vettori geometrici.

Come è facile vedere, queste due operazioni verificano proprietà analoghe alle proprietà (1.2)-(1.9) che hanno somma e prodotto per un numero reale dei vettori geometrici. Ad esempio, sempre in riferimento alla proprietà (1.4), la n-upla che funge da elemento neutro per la somma è la n-upla $(0,0,\ldots,0)$ che ha tutte le componenti nulle, in quanto chiaramente

$$(x_1, x_2, \dots, x_n) + (0, 0, \dots, 0) = (x_1 + 0, x_2 + 0, \dots, x_n + 0) = (x_1, x_2, \dots, x_n).$$
 (1.29)

In altre parole, la n-upla $(0,0,\ldots,0)$ ha in \mathbb{R}^n lo stesso ruolo che il vettore \overrightarrow{OO} ha nell'insieme dei vettori applicati o la funzione costante uguale a zero nell'insieme delle funzioni.

Queste analogie suggeriscono che si può dare una definizione generale, astratta, che comprenda come casi particolari gli esempi appena visti. Il vantaggio di tale impostazione è che può esser studiato una volta per tutte le proprietà di questi insiemi senza doverle vedere nei singoli casi: un teorema dimostrato in generale nel caso astratto risulta poi vero per tutti gli esempi di questo tipo di struttura.

Definizione 1.4.1. Uno spazio vettoriale reale (o \mathbb{R} – spazio vettoriale) è un insieme su cui siano definite un'operazione di somma tra gli elementi di V e un'operazione di prodotto tra numeri reali e elementi di V in modo che siano soddisfatte le seguenti proprità:

1. La somma è associativa, cioè per ogni $v_1, v_2, v_3 \in V$ si ha

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

2. La somma e commutativa, cioè per ogni $v_1, v_2 \in V$ si ha

$$v_1 + v_2 = v_2 + v_1$$

3. Esiste un elemento di V, denotato $\bar{0}$ e chiamato vettore nullo, tale che

$$v + \bar{0} = \bar{0} + v = v$$

(ovvero $\bar{0}$ è l'elemento neutro per la somma data su V)

4. Per ogni $v \in V$, l'elemento (-1)v è il suo opposto rispetto alla somma o inverso additivo:

$$v + (-1)v = (-1)v + v = \bar{0}$$

5. Per ogni $c_1, c_2 \in \mathbb{R}$ e $v \in V$, vale

$$c_1(c_2v) = (c_1c_2)v$$

6. Per ogni $c_1, c_2 \in \mathbb{R}$ e $v \in V$, vale

$$c_1(c_2v) = (c_1c_2)v$$

7. Per ogni $c \in \mathbb{R}$ e ogni $v_1, v_2 \in V$, vale

$$c(v_1 + v_2) = cv_1 + cv_2$$

8. Per ogni $v \in V$, si ha

$$1v = v$$

Gli elementi di uno spazio vettoriale V si chiamano vettori; per contrapposizione, in questo contesto i numeri reali si chiamano anche scalari.

Un vettore cv ottenuto moltiplicando v per uno scalare c si dice proporzionale a v o multipo di v. Quindi sono spazi vettoriali reali gli insiemi V_O^2 e V_o^3 dei vettori geometrici rispettivamente limitati nel piano o liberi di variare in tutto lo spazio tridimensionale, l'insieme \mathbb{R}^n delle n-uple di numeri reali, e l'insieme di tutte le funzioni reali di variabile reale.

Osservazione 1.4.1. Come già visto nel caso particolare dei vettori, grazie alla proprità (1)-(8) di sopra è possibile manipolare le espressioni contenenti vettori nel modo in cui manipolare solitamente le espressioni algebriche tra numeri, e in particolare ad esempio in uno spazio vettoriale si possono "spostare i vettori" da un membro all'altro di un'ugualianza cambiandoli di segno. Più precisamente, da un'espressione del tipo $v_1 + v_2 = v_3$ si può passare a $v_1 = v_3 - v_2$ nel modo seguente:

sommando a entrambi i membri di $v_1 + v_2 = v_3$ in vettore $(-1)v_2$:

$$(v_1 + v_2) + (-1)v_2 = v_3 + (-1)v_2$$

Applicando la proprità associativa della somma (la 1 della Definizione 1.4.1) a primo memebro:

$$v_1 + (v_2 + (-1)v_2) = v_3 + (-1)v_2$$

Applicando la proprità 4 che afferma che $(-1)v_2$ è l'opposto di v_2 :

$$v_1 + \bar{0} = v_3 + (-1)v_2$$

e infine applicando la 3 che definisce che il vettore nullo funge da elemento neutro:

$$v_1 = v_3 + (-1)v_2$$
.

Per un altro esempio di proprietà vera nel caso dei vettori geometrici e che in realtà vale in qualunque spazio vettoriale, consideriamo la $0\vec{OP} = \vec{OO}$, che discendeva dalla definizione stessa di prodotto di un numero reale per un vettore geometrico: infatti, dal momento che in generale $c\vec{OP}$ denota un vettore avente lunghezza uguale a |c| volte la lunghezza di \vec{OP} , questo implica che $0\vec{OP}$ abbia lunghezza zero, e quindi sia il vettore geometrico \vec{OO} "schiacciato" sul punto O.

Ebbene, bisogna motrare che in realtà l'uguaglianza analoga $0v = \bar{0}$ vale per ogni vettore v di un qualunque spazio vettoriale V: infatti, si ha

$$0v = (1 + (-1))v = 1v + (-1)v = v + (-1)v = \bar{0}$$

dove nella seconda uguaglianza è stato sfruttata la proprietà 6 della Definizione 1.4.1, nella terza ugualianza invece è stata la proprietà 8 e nell'ultima uguaglianza la proprietà 4.

QUindi, il fatto che moltiplicando per 0 un vettore si ottenga il vettore nullo si rivela essere una proprietà che non dipende da come si definisce il prodotto nello specifico caso ma semplicemente dalle proprietà algebriche della definizione generale di spazio vettoriale.

Osservazione 1.4.2. Nella definizione di spazio vettoriale data sopra è stato supposto che gli elementi dello spazio V possono essere moltiplicati per numeri reali, e per questo motivo si è parlato in termini di spazio vettoriale reale.

Analogamente, esistono gli spazi vettoriali *complessi*, per i quali la definizione è identica a quella data nella Definizione 1.4.1 con l'unica differenza che i vettori possono essere moltiplicati per numeri complessi anziché reali.

Ricordando che in numero complesso è un'espressione del tipo a + bi, essendo a, b numeri reali e i un nuovo numero, detto *unità immaginaria*, con la proprietà (non soddisfatta da nussun numero reale) che $i^2 = -1$.

Ad esempio, 2 + 3i, $\pi\sqrt{2}i$ sono numeri complessi; dato un numero complesso z = a + bi, il numero reale a si dice parte reale di z, mentre il numero reale b (essendo il coefficente davanti all'unità immaginaria) si dice parte immaginaria di z. La parte immaginaria b può anche uguale a zero: in tale caso il numero complesso a + bi coincide con il numero reale a (quindi ogni numero reale può essere pensato come un particolare numero complesso con parte immaginaria nulla). L'insieme dei numeri complessi si denota \mathbb{C} .

I numeri complessi possono essere sommati semplicemente sommando le rispettive parti reali e immaginarie. Ad esempio

$$(2+3i) + (4+5i) = (2+4) + (3+5)i = 6+8i.$$

Per moltiplicare due numeri complessi, basta prima eseguire il prodotto come se si trattasse di un'espressione algebrica letterale in cui la i è una indeterminata

$$(2+3i) \cdot (4+5i) = 2 \cdot 4 + 2 \cdot 5i + 3i \cdot 4 + 3i \cdot 5i = 8 + 10i + 12i + 15i^2$$

e poi semplificarla ricordando che $i^2 = -1$ e sommando i termini simili:

$$8 + 10i + 12i + 15i^2 = 8 + 22i - 15 = -7 + 22i$$
.

Non è difficile vedere che le operazioni di somma e prodotto così definite verificano le usuali propritàverificate da somma e prodotto di numeri reali: proprietà associativa e commutativa, esistenza di elemeni neutri (il numero 0, con la proprietà che z + 0 = 0 + z = z per ogni $z \in \mathbb{C}$, e il numero 1, con la proprietà che z = 1 per ogni $z \in \mathbb{C}$), proprietà distributiva.

Inoltre, esattamente come succede per i numeri reali, ogni numero complesso a+bi diverso da zero (ovvero per cui a e b non sono entrambi nulli) ammette un inverso moltiplicativo, ovvero un numero complesso che moltiplicato per a+bi dà come risultato 1. Più precisamente, l'inverso di a+bi e il numero complesso

$$\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$$

Per verificare tale affermazione, è sufficiente moltiplicare tra loro a+bi e $\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$ e verificare che il risultato sia uguale a 1. Riscrivendo $\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$ come $\frac{a+bi}{a^2+b^2}$ si vede subito che

$$a+bi\cdot\frac{a+bi}{a^2+b^2}=\frac{(a+bi)(a-bi)}{a^2+b^2}=\frac{a^2-b^2i^2}{a^2+b^2}=\frac{a^2+b^2}{a^2+b^2}=1$$

(nella seconda uguaglianza è stata utilizzata l'identità notevole $(X+Y)(X-Y)=X^2-Y^2$, mentre nella terza il fatto che $i^2=-1$).

Ad esempio, se a + bi = 2 + 3i, ovvero a = 2, b = 3, si ha $a^2 + b^2 = 2^2 + 3^2 = 4 + 9 = 13$ e quindi

$$\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i = \frac{2}{13} - \frac{3}{13}i$$

è l'inverso di 2 + 3i.

Riassumendo, i numeri complessi hanno quindi in comune con i numeri reali le sequenti proprietà:

- 1. La somma e il prodotto godono entrambi delle proprietà associativa e communitativa
- 2. Esiste un elemento neutro per le somme e un elemento neutro per il prodotto
- 3. ogni elemento a ammette un inverso additivo -a, tale che a + (-a) = (-a) + a = 0
- 4. ogni numero a diverso da 0 ammette un inverso moltiplicativo a^{-1} , tale che $aa^{-1} = a^{-1}a = 1$
- 5. vale la proprietà distributiva

Un qualunque insieme numerico le cui operazioni di somma e prodotto godano di queste proprietà si dice un campo numerico (o semplicemente campo). Solitamente un campo si denota come la lettera $\mathbb K$. Dal momento che per la maggior parte della nastra trattazione degli spazi vettoriali, che siano reali o complessi, si utilizzerà solo il fatto che $\mathbb R$ e $\mathbb C$ sono campi, ovvero hanno le proprietà dette, non c'è nessun motivo nelle dimostrazioni che verranno portate di distinguere tra il caso complesso e quello reale: si può tranquillamente parlare di spazio vettoriale definito su un campo $\mathbb K$ e dimostrare le formule supponendo che gli scalari appartengano a $\mathbb K$, che potrebbe essere $\mathbb R$ o $\mathbb C$ senza che questo modifichi nulla rispetto alle dimostrazioni stesse.

L'esempio più importante di spazio vettoriale complesso è l'insieme \mathbb{C} di tutte le n-uple (z_1, z_2, \ldots, z_n) di numeri complessi $z_1, z_2, \ldots, z_n \in \mathbb{C}$, sul quale le operazioni di somma di n-uple e prodotto di una n-upla per uno scalare sono definite esattamente come in \mathbb{R}

$$(z_1, z_2, \dots, z_n) + (w_1, w_2, \dots, w_n) := (z_1 + w_1, z_2 + w_2, \dots, z_n + w_n)$$

$$(1.30)$$

$$c(z_1, z_2, \dots, z_n) := (cz_1, cz_2, \dots, cz_n)$$
 (1.31)

con l'unica differenza che ora lo scalare c appartiene al campo dei numeri complessi.

Ora, verra mostrato come alcune delle più importanti nozioni viste per i vettori geometrici, e in particolare quella di coordinate, possono essere date in qualunque spazio vettoriale.

Ricordando che nello spazio V_O^2 dei vettori applicati nel piano, il punto di partenza della definizione di coordinate consiste nel mostrare che, fissati due vettori \vec{OP}_1 e \vec{OP}_2 non allineati, qualunque vettore $\vec{OP} \in V_O^2$ si può scrivere come loro combinazione $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2$. Analogamente, nello spazio tridimensionale, per poter definire le coordinate si mostra che, fissati tre vettori \vec{OP}_1 , \vec{OP}_2 e \vec{OP}_3 non appartenenti a uno stesso piano, qualunque vettore $\vec{OP} \in V_O^3$ può essere scritto come $\vec{OP} = x_1 \vec{OP}_1 + x_2 \vec{OP}_2 + v_3 \vec{OP}_3$.

A parte il diverso numero di vettori che serve per ottenere le coordinate in V_O^2 e in V_O^3 , in entrambi i casi il punto di partenza è la possibilità di ottenere qualunque vettore dello spazio combinando un numero finito di vettori dati.

Questo suggerisce la sequente definizione per un generico spazio vettoriale (definito su un qualunque campo \mathbb{K}):

Definizione 1.4.2. Sia V un \mathbb{K} -spazio vettoriale. Dei vettori $v_1, v_2, \dots, v_n \in V$ si dicono generatori di V se ogni vettore $v \in V$ si può scrivere come

$$v = x_1v_1 + x_2v_2 + \dots + x_nv_n$$

per certi coefficienti $x_1, x_2, \dots, x_n \in \mathbb{K}$.

Un'espressione del tipo $x_1v_1+x_2v_2+\cdots+x_nv_n$ si dice combinazione lineare dei vettori v_1, v_2, \ldots, v_n sono generatori di V se ongi vettore dello spazio si può scrivere come loro combinazione lineare. Si dice anche che v_1, v_2, \ldots, v_n generano V. Quindi, nello spazio V_O^2 due vettori non allineati danno un insieme di generatori; nello spazio V_O^3 un insieme di generatori è invece dato da tre vettori che non stiano sullo stesso piano.

La Definizione 1.4.2 potrebbe far pansare che a questo punto si possano definire le coordinate di un vettore v in uno spazio vettoriale V rispetto a un insieme di generatori fissato v_1, \ldots, v_n semplicemente come i coefficienti x_1, x_2, \ldots, x_n che appaiono nella combinazione lineare $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$, ovvero ricalcando la definizione 1.2.2 e 1.4.2