Specyfikacja Wstępna

Zmodyfikowany algorytm ewolucji różnicowej

Monika Żurkowska Kacper Sarnacki

15 maja 2016

1 Wstęp

Ewolucja różnicowa jest stosunkowo nowym algorytmem optymalizacji numerycznej. Osobnikami są L-wymiarowe wektory liczb rzeczywistych, w których mutacja polega na perturbacji wybranego wektora o różnicę dwóch innych wektorów pomnożoną przez stały współczynnik.

Algorytm jest bardzo prosty i działa bardzo dobrze na typowych funkcjach testowych. Wymaga tylko trzech parametrów:

```
\mu - rozmiar populacji 
F - odpowiedzialny za sterowanie mutacją 
c_r - sterujący krzyżowaniem
```

2 Pseudokod

```
\begin{split} P^0 &= P_1^0, P_2^0, P_3^0...P_{\mu}^0 \\ t &= 0 \\ \textbf{while }! stop \\ \textbf{for } i &\in 1: \mu \\ P_j^t &= select(P^t) \\ P_k^t, P_l^t &= sample(P^t) \\ M_i^t &= P_j^t + F \cdot (P_k^t - P_l^t) \\ O_i^t &= crossover(P_i^t, M_i^t) \\ P_i^{t+1} &= tournament(P_i^t, O_i^t) \\ t &= t+1 \end{split}
```

3 Selekcja

Algorytm ewolucji różnicowej operuje na populacji μ osobników: $P_1, P_2, \ldots, P_{\mu}$, gdzie $P_i \in \mathbf{R}^L$. W każdej iteracji t, dla każdego osobnika P_i z populacji liczony jest osobnik P_j będący średnią wszystkich μ osobników populacji. Następnie wybierane są losowo osobniki P_k , P_l takie, że $i \neq l \neq k$.

4 Mutacja

Wynikiem mutacji jest nowy wektor M_i (zwany osobnikiem **mutantem**) otrzymany w następujący sposób:

$$M_i = P_j + F \cdot (P_k - P_l) \tag{1}$$

gdzie $F \in [0,1]$ jest stały parametrem zwanym współczynnikiem amplifkacji (typowa wartość tego współczynnika wynosi F = 0.5). Operacja sumy oraz różnicy polega na dodaniu (odjęciu) odpowiadających sobie składowych wektorów dodawanych (odejmowanych).

5 Krzyżowanie

Wynikiem krzyżowania operującego na rodzicu P_i i mutancie M_i jest **osobnik próbny** O_i , który następnie w procesie sukcesji zostanie porównany z osobnikiem P_i . Każdy element $O_{i,j}(j=1,2,\ldots,L)$, wektora O_i jest wyznaczany w następujący sposób:

$$O_{i,j} = \begin{cases} M_{i,j} & \text{jeżeli } rnd_j < c_r \text{ lub j} = d \\ P_{i,j} & \text{w przeciwnym przypadku} \end{cases}$$
 (2)

gdzie rnd_j jest liczbą losową z przedziału [0,1) losowaną niezależnie od każdego j. $c_r \in [0,1]$ jest stałym parametrem algorytmu a d jest losowym numerem elementu wektora losowanego ze zbioru $1, 2, \ldots, L$.

 c_r oznacza prawdopodobieństwo przejścia elementu z wektora mutanta M_i do wektora próbnego O_i . Dla $c_r=1$ wszystkie elementy wektora próbnego O_i pochodzą z mutanta M_i (analogicznie dla $c_r=0$ wszystkimi, z wyjątkiem jednego - warunek j=d - elementami wektora M_i będą elementy pochodzące od rodzica P_i). Operator krzyżowania "miesza" więc losowo elementy rodzica P_i i mutanta M_i dając w wyniku wektor próbny O_i .

Następnie dopasowanie osobnika próbnego O_i porównywane jest z osobnikiem rodzica P_i (funkcja tournament). Jeśli jest ono lepsze od rodzica (czyli jego wartość funkcji celu jest niższa), P_i zostaje zastąpione osobnikiem próbnym, w przeciwnym przypadku osobnik O_i zostaje odrzucony.

6 Testowanie

Powyższy algorytm będzie porównywany z klasycznym algorytmem genetycznym. Do porównania użyta zostanie wersja z selekcją losowego osobnika (DE/rand/1/bin) oraz najlepszego w populacji (DE/best/1/bin).

Jako funkcję celu wykorzystamy 28 funkcji benchmarka CEC-2013. Testom poddane zostaną klasyczne algorytmy ewolucji różnicowej oraz zmodyfikowana wersja uwzględniająca wybór średniej populacji w mutacji z kolejno 10, 30 i 50-wymiarowymi wektorami populacji. Każdy test zostanie przeprowadzony 21 razy (dla każdego wymiaru osobno). Następnie dla każdego algorytmu i dla każdej funkcji benchmarka zostanie obliczona tabela zawierająca: najlepsze, najgorsze, średnie oraz medianowe rozwiązanie a także odchylenie standardowe.

Algorytm zatrzyma się po odpowiedniej ilości iteracji - 10000 * D, gdzie D jest wymiarem wektora (10, 30 i 50), bądź gdy wartość błędu spadnie poniżej 10^{-8} . Przestrzeń przeszukiwania dla każdego wymiaru znajdować się będzie w zakresie $[-100, 100]^D$. Pierwsza populacja generowana będzie losowo w przestrzeni przeszukiwania.

Oczekiwanym rezultatem testów jest najlepszy wynik dla algorytmu klasycznego z selekcją najlepszego elementu populacji. Gorszym powinien okazać się algorytm z wyborem elementu średniego, a najgorszy z wyborem elementu losowego.

Literatura

- [1] https://elektron.elka.pw.edu.pl/~jarabas/WAE/wyklad10.pdf
- [2] https://www.rforge.net/doc/packages/cec2013/cec2013.html
- [3] http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/Definitions%20of%20%20CEC%2013%20benchmark%20suite%200117.pdf
- [4] http://aragorn.pb.bialystok.pl/~wkwedlo/EA6.pdf
- [5] http://www.mini.pw.edu.pl/~mandziuk/2012-01-12.pdf