B1 Numerical Algorithms

4 lectures, MT 2023
Introduction

Wes Armour 23rd October 2023

Course Overview

- 4 Lectures and 1 computational class.
- The focus of this course will be on the use of numerical methods in engineering science.
- Supporting material from courses:
 - P101 Calculus 1
 - P102 Calculus 2
 - P104 ODEs
 - A102 PDEs

Acknowledgements

- Special thanks to Prof Ron Daniel who delivered this course up to 2012.

 The lecture slides you have include some material prepared by Prof Daniel.
- Special thanks to Professor Vicente Grau who lectured this course 2013-2017.
 The lecture slides that I will present borrow some content (plots) from Prof Grau.
- Special thanks to Professor Stephen Roberts who lectured "Engineering Computation".
 The lecture slides that I will present borrow some content from Prof Roberts.

Course Material

PDF copies of:

- These slides.
- Tutorial sheet.
- OLD lecture notes <u>use as a guide only!</u>

Bonus videos on Panopto – playlist for each lecture on Canvas.

Useful material – weblinks on Canvas.

MATLAB codes used are also available on canvas.

If something is *really* not clear, and you are *really* stuck, email wes.armour@eng.ox.ac.uk

Course Material

Numerical representations and details

Panopto bonus video

Reading

- Wikipedia has some excellent material that can be extremely helpful.
- G. Wheatley, "Applied Numerical Analysis 7th Editions", Pearson International Edition.
- R.L Burden, J.D. Faires, "Numerical Analysis 8th Edition", Thomson International Student Edition.
- F B Hildebrand, "Introduction to Numerical Analysis 2nd Edition", Dover reprint.

The Classics...

- ☐ Press, Teukolsky, et. al., "Numerical Recipes 3rd Edition: The Art of Scientific Computing" (2007).
- ☐ Froberg, "Introduction to Numerical Analysis" (2nd edition): Addison Wesley (1973).

A hands on text...

* Kiusalaas, "Numerical Methods in Engineering with Matlab/Python...", Cambridge (2016).

Learning Outcomes

- > Finite difference approximations (numerical differentiation...) (Lecture 1)
 - forward, backward and central difference equations,
 - formulae for more than one variable,
 - formulae for higher order derivatives.
- > Numerical quadrature (also known as integration...) (Lecture 1)
 - trapezium rule,
 - Simpson's rule,
 - sampling methods.
- > Sources of error and convergence (Lecture 1)
 - round-off error,
 - truncation error,
 - order of an algorithm,
 - Taylor series analysis,

Learning Outcomes

- > Function fitting and approximation (Lecture 2)
 - Linear regression,
 - polynomial regression,
 - condition number,
 - Richardson's method,
 - differentiation and noise.
- Numerical integration of ODEs (Lecture 3)
 - predictor-corrector methods,
 - modified Euler method,
 - Runge-Kutta methods,
 - adaptive step-size control (Adams-Bashforth / Adams-Moulton).
- Linear PDE solution by finite differences (Lecture 4)
 - Elliptic (*Laplace*),
 - Parabolic (diffusion),
 - Hyperbolic (wave).

Finally...

Remember, if something is *really* not clear, and you are *really* stuck, email wes.armour@eng.ox.ac.uk

I do hope you find the course interesting and enjoyable!