Material de Estudio No.5 RESISTENCIA Y CORRIENTE ELÉCTRICA

1. Sobre un resistor de 15 Ω y de área de sección 12 cm² se mantiene una corriente de 10.0 A durante 3 minutos, ¿cuántos electrones pasan a través de la sección transversal del resistor durante este tiempo?

(a) $\underline{\textbf{1.13 x } 10^{22}}$ (b) 1.88×10^{20} (c) 1.23×10^{20} (d) 2.5×10^{22} (e) 7.5×10^{-21}

<u>Solución</u>: Para resolver este problema partiremos del concepto de corriente para calcular la cantidad de carga que circula por el conductor en 3 minutos.

$$I = \frac{\Delta Q}{\Delta t} \rightarrow \Delta Q = I\Delta t = (10)(180) = 1800C$$

Ahora conociendo la carga del electrón calculemos la cantidad de electrones que corresponden a la cantidad de carga previamente calculada:

$$\#e^{-} = \frac{Q}{e} = \frac{1800}{(1.6 \times 10^{-19})} = 1.125 \times 10^{22} electrones$$

2. De acuerdo a los datos del problema anterior, ¿Cuál es la resistividad del material (en Ωm) si el campo eléctrico en los extremos del conductor es 75 V/m?

a) 4.63 x 10 ⁻⁷	b) 7.11 x 10 ⁻³	c) 4.05 x 10 ⁻⁷	d) 5.62 x 10 ⁻³	e) 9 x 10 ⁻³

Solución: La resistividad del material está dada por:

$$R = \frac{\rho L}{A}$$
 por lo que $\rho = \frac{RA}{L}$

La longitud del conductor la encontraremos a partir del campo eléctrico: V = EL por lo que

$$L = \frac{V}{E} = \frac{IR}{E} = \frac{(10)(15)}{75} = 2m$$

Entonces la resistividad del material:

$$\rho = \frac{RA}{L} = \frac{15(1.2 \times 10^{-3})}{2} = 9 \times 10^{-3} \Omega m$$

3. Refiriéndonos al problema anterior, si la velocidad de arrastre de los electrones es de 3.80 x 10⁻⁴ m/s y se mantiene una corriente constante de 10.0A, ¿cuál es la densidad de electrones libres en el metal (en electrones /m³)?

a) 5.79×10^{25} b) 1.0×10^{27} c) 4.28×10^{26} d) 1.37×10^{26} e) NEC

<u>Solución:</u> sabemos que la corriente es igual a $I = qnv_dA$ por lo que despejando la densidad de electrones libres en el material por unidad de volumen se tiene:

$$n = \frac{I}{qv_d A} = \frac{(10)}{(1.6 \times 10^{-19})(3.8 \times 10^{-4})(0.0012)} = 1.37 \times 10^{26} electrones/m^3$$

4. Si en un resistor de 20 Ω pasan 5.0 x 10²¹ electrones durante 10 minutos, ¿cuál es la diferencia de potencial (en V) aplicada al resistor?

a) 37.0 b) 54.9 c) 21.1 d) 32.4 <u>e) 26.7</u>

<u>Solución</u>: Aplicaremos la ley de Ohm para conocer la diferencia de potencial entre los terminales del conductor. Para ello previamente necesitamos calcular la corriente:

$$I = \frac{\Delta Q}{\Delta t} = \frac{(1.6 \times 10^{-19})(5 \times 10^{21})}{600} = 1.33A$$

La diferencia de potencial en el alambre es de: V = IR = (1.33)(20) = 26.67V

5. De acuerdo a los datos del problema anterior, cuál es la resistividad del material (en Ω .m) si la sección del conductor es de 1 cm² y el campo eléctrico en el conductor es de 75V/m.

a) 5.62 x 10 ⁻³	b) 4.63 x 10 ⁻⁷	c) 7.11 x 10 ⁻³	d) 4.05 x 10 ⁻⁷	e) 2.73 x10 ⁻³

Solución: Podemos encontrar la resistividad del conductor mediante la siguiente expresión:

$$J = \frac{E}{\rho}$$
 $\rightarrow \rho = \frac{E}{J} = \frac{E}{(I/A)} = \frac{75}{(1.33/0.0001)} = 5.625 \times 10^{-3}$

- 6. Una corriente convencional fluye por un largo conductor cilíndrico. ¿Qué dirección sigue la corriente?
- a) Hacia el extremo con mayor potencial.
- b) Hacia el extremo con el menor potencial
- c) Fluye hacia el potencial cero.
- d) Ni hacia a) ni hacia b), pues la superficie del conductor no es un equipotencial.
- e) NEC
- 7. Una corriente constante fluye por un conductor cónico. Las superficies extremas S1 y S2, son dos superficies equipotenciales diferentes. ¿Por cuál plano fluye la denside de corriente más grande?

	premo menj		ac connente in	<u> </u>			
a) 4	b)3	c) 2	<u>d) 1</u>	e)	La	densidad	de
				corr	riente	es la misma	en
				todo	os los	planos.	

Solución: Para resolver este problema únicamente debemos analizar el concepto de densidad de corriente: $J = \frac{I}{A}$ por lo que

a menor área mayor densidad de corriente y sabemos que en todo el conductor cónico la corriente que fluye es de igual magnitud, por lo tanto el plano 1 será el que presente mayor densidad de corriente.

8. En los extremos de un conductor de cobre, cuya resistividad es de 1.7 x 10^{-8} Ω .m , se le aplican 55.5 V y pasa 12.5 x 10^{21} electrones durante 15 minutos. ¿Cuál es la resistencia, en Ω , del conductor?

a) 37.4 b) 54.0 c) **25.0** d) 20.1 e) 31.5

Solución: La corriente que circula por el conductor es:

$$I = \frac{\Delta Q}{\Delta t} = \frac{(1.6 \times 10^{-19})(12.5 \times 10^{21})}{(15)(60)} = 2.22A$$

Aplicando la Ley de Ohm se tiene entonces: $R = \frac{V}{I} = \frac{55.5}{2.22} = 24.975\Omega$

9. Refiriéndonos al problema anterior, si el conductor tiene un área de sección 0.18 m² y la velocidad de arrastre de los electrones es de 10⁻⁴ m/s, cuál es la densidad de electrones libres en el metal (en electrones/m³)

a) 3.33×10^{23} b) 7.71×10^{23} c) 1.37×10^{26} d) 8.40×10^{28} e) 4.28×10^{28}

Solución: Despejamos la densidad de electrones libres de la expresión de corriente eléctrica:

$$I = nqv_d A$$
 $\rightarrow n = \frac{I}{qv_d A} = \frac{2.22}{(1.6 \times 10^{-19})(1 \times 10^{-4})(0.18)} = 7.708 \times 10^{23} electrones / m^3$

10. Un alambre de cobre y uno de hierro, de igual longitud L=10 m e igual sección de 2.00 mm², se unen en serie para formar un alambre compuesto al que se aplica una diferencia de potencial de V=110 Voltios entre sus extremos. Si ρ_{cu} = 1.7 x 10⁻⁸ Ω .m y ρ_{fe} = 10 x 10⁻⁸ Ω .m, el valor de la corriente (en A) en el alambre de hierro es:

a) 1.88 b) 15.15 c) 1515 <u>d) 188</u> e) NEC

Solución: El alambre de cobre tiene una resistencia de:

$$R_{Cu} = \frac{\rho_{Cu}L}{A} = \frac{(1.7 \times 10^{-8})(10)}{(2 \times 10^{-6})} = 0.085\Omega$$

Asimismo, el alambre de hierro tiene una resistencia de:

$$R_{Fe} = \frac{\rho_{Fe}L}{A} = \frac{(10 \times 10^{-8})(10)}{(2 \times 10^{-6})} = 0.5\Omega$$

La resistencia total del alambre será: $R_T = R_{Cu} + R_{Fe} = 0.585\Omega$, por lo que la corriente que circula por el alambre compuesto es de:

$$I = \frac{V}{R} = \frac{110}{0.585} = 188A$$

Recordemos que la corriente es la misma tanto en el alambre de cobre como en el alambre de hierro ya que éstos se encuentran conectados en serie.

11. De acuerdo a los datos del problema anterior, calcular la diferencia de potencial (en V) en el alambre de cobre:

11. De de de de la 100 de	atos del procienta dinteri	or, carearar ra arrerenera .	de potential (en +) en el	didinore de coore.
a) 15.98	b) 94.0	c) 21.0	d) 89.0	e) 28.0

Solución: La diferencia de potencial en el alambre de cobre:

$$V = IR = (188)(0.085) = 15.98V$$

12. Un alambre de cobre de resistividad 1.7 x 10⁻⁸Ω.m, transporta una corriente de 30A, en una longitud de 1000 metros. Si en los extremos del alambre se aplica una diferencia de potencial de 40V, qué área (en m²) de sección circular deberá tener el alambre para que soporte este potencial.

a) 7.06×10^{-6} b) 10.33×10^{-4} c) 12.75×10^{-6} d) 5.0×10^{-4} e) NEC

Solución: La resistecia que debe tener el alambre, la podemos calcular a partir de la corriente que circula por el alambre y la diferencia de potencial aplicado:

$$R = \frac{V}{I} = \frac{40}{30} = 1.333\Omega$$

Entonces el área de la sección transversal del conductor debe ser:

$$R = \frac{\rho L}{A}$$
 $\rightarrow A = \frac{\rho L}{R} = \frac{(1.7 \times 10^{-8})(1000)}{(1.333)} = 1.275 \times 10^{-5} m^2$

13. De acuerdo al problema anterior, si el alambre inicia su uso a 20°C y después de varias horas de utilizarlo, su temperatura es de 70°C, cuál será el nuevo valor de resistencia (en Ω). Usar el coeficiente térmico de resistividad en el cobre de 4 x 10⁻³/°C

a) 1.33 **b) 1.6** c) 16.67 d) 51.0 e) 66.93

Solución: La resistencia varía con la temperatura de acuerdo a lo siguiente:

$$R(T = 70^{\circ}C) = R_o(1 + \alpha(T - T_o)) = 1.33(1 + (4 \times 10^{-3})(70 - 20)) = 1.596\Omega$$

14. Cuando se aplican 115 V entre los extremos de un alambre conductor recto de 9.66 m de longitud, la densidad de corriente es 1.42 A/cm². ¿Qué valor tiene la resistividad del material (en Ω.m)?

a) 8.38 b) 11.90 c)1.19 x10⁻⁴ d) <u>8.38 x 10⁻⁴</u> e) NAC

Solución:

La diferencia de potencial en el conductor se puede expresar en términos del campo eléctrico:

$$V = EL \implies E = \frac{V}{L} = \frac{115V}{9.66m} = 11.905Volts$$

$$J = 1.42 \frac{A}{cm^2} * \frac{(100cm)^2}{1m^2} = 14,200A/m^2$$

De tal forma que:

$$J = \frac{E}{\rho} \implies \rho = \frac{E}{J} = \frac{11.905 Volts}{14,200 A / m^2}$$

 $\rho = 8.384 \times 10^{-4} \ \Omega \cdot m$

15. Un alambre de cobre (ρ=1.7 x 10⁻⁸Ωm) de sección 1mm² y 150 m de longitud, se conecta a una batería de 12V. a) ¿Cuál es la corriente en el alambre expresada en A?.

a) 705 **b) 4.71** c) 5.88 d) 5882 e) NEC

Solución:

De acuerdo a la Ley de Ohm, V=IR, por lo que antes de calcular la corriente, encontraremos la resistencia:

$$A = 1mm^2 * \frac{1m^2}{(1000mm)^2} = 1 \times 10^{-6} m^2$$

$$R = \frac{\rho L}{A} = \left(\frac{(1.7 \times 10^{-8} \,\Omega \cdot m)(150m)}{(1 \times 10^{-6} \,m^2)}\right) = 2.55\Omega$$

Entonces,
$$V = IR \Rightarrow I = \frac{V}{R} = \frac{12V}{2.55A} = 4.706 Amperes$$

16. La figura muestra dos barras de sección transversal cuadrada de 4mm por lado. La resistividad de la primera es $4.0\times10^{-8}\,\Omega\cdot m$ y la de la derecha $6.0\times10^{-8}\,\Omega\cdot m$. Calcule la resistencia total (en m Ω) de las barras.

a)8.5 b)4.25 c)1.25 d)2.125 e)NEC

Solución: La resistencia total de la barra compuesta será la suma de las resistencias de cada barra:

$$R_{1} = \frac{\rho_{1}L}{A} = \frac{(4 \times 10^{-8})(0.5)}{(4 \times 10^{-3})^{2}} = 1.25 \times 10^{-3} \Omega$$

$$R_2 = \frac{\rho_2 L}{A} = \frac{(6 \times 10^{-8})(0.8)}{(4 \times 10^{-3})^2} = 3.00 \times 10^{-3} \Omega$$

$$R_T = R_1 + R_2 = 4.25 m\Omega$$

17. Por un alambre de radio uniforme de 0.26 cm fluye una corriente de 10 A producida por un campo eléctrico de magnitud 110V/m, la resistividad del material (en unidades SI) es:

magnitud 110 (/m) ia 100001/1000 doi materiai (en umados 51) doi					
	a) 233 . 6×10^{-6}	b)4280.6	c) 467.2×10^{-8}	d) 180×10^{-6}	e)555.56

Solución: En un alambre al cual se le aplica una diferencia de potencial en sus extremos, la densidad de corriente eléctrica es directamente proporcional al campo eléctrico $J = \frac{E}{\rho}$; despejando la resistividad y recordando que densidad de corriente es $J = \frac{I}{A}$ tenemos:

$$\rho = \frac{EA}{I} = \frac{(110)(\pi)(0.26 \times 10^{-2})^2}{10} = 2.336 \times 10^{-4} A$$

18. Dos alambres de forma idéntica A y B, transportan corrientes idénticas. Los alambres están hechos de diferentes sustancias que tienen distintas densidades de electrones, con $n_A > n_B$. El alambre que tendrá la mayor velocidad de arrastre (ó deriva) para los electrones es:

a)El alambre A	b) El alambre B	c)Las velocidades	d)Falta información	e)NEC	
		son iguales			

<u>Solución</u>: Se tiene que $I = nqv_dA$ Despejando la velocidad de arrastre de la ecuación anterior:

$$v_d = \frac{I}{nqA}$$

Ing. Claudia Contreras

Observamos que la velocidad de deriva es inversamente proporcional a la densidad de electrones libres del material, por lo que a menor densidad de electrones libres mayor corriente y considerando que las secciones transversales de A y B son iguales, entonces B tendrá mayor velocidad de arrastre.

19. La cantidad de carga q (en coulombs) que ha pasado a través de una superficie de área $4.00 \ cm^2$ varia con el tiempo de acuerdo con la ecuación $q = 4t^3 + 5t + 6$, donde t se expresa en segundos. La cantidad de electrones que ha pasado por esa superficie en el primer segundo es de:

a) 1.06×10^{20} b) 1.33×10^{20} c) 9.38×10^{19} d) 6.75×10^{19} e)15

Solución: encontremos la cantidad de carga que ha fluido en el primer segundo:

$$q = 4(1)^3 + 5(1) + 6 = 15C$$

Dividamos entonces entre la magnitud de la carga del electrón para encontrar la cantidad de electrones que pasaron por la superficie:

#electrones =
$$\frac{q}{e} = \frac{15}{1.6 \times 10^{-19}} = 9.375 \times 10^{19}$$
 electrones

20. Refiriéndonos al problema anterior, la densidad de corriente (en unidades SI) en *t*=1s, tiene un valor de:

20. Remiencinos ai p	problema anterior, la densidad de corriente (en amadades 51) en 1 15, tiene un varor de:				
a) 4.25 \times 10 ⁴	b) 3.75×10^4	c) 425	d) 375	e) 8.5×10^4	

Solución: La corriente la podemos obtener, derivando la expresión de la carga con respecto al tiempo:

$$I = \frac{dq}{dt} = 12t^2 + 5$$

Para t=1 seg, I=17A; entonces la densidad de corriente es:

$$J = \frac{I}{A} = \frac{17}{4 \times 10^{-4}} = 4.25 \times 10^4 A/m^2$$

21. Dos alambres cilíndricos de cobre tienen la misma masa y están a la misma temperatura. El alambre *A* tiene el doble de largo del alambre *B*. La resistencia del alambre *A* se relaciona con la del alambre *B* mediante:

$a)R_{A=}R_{R}/4$	b) $R_{A} = R_{R}/2$	c) $R_A = R_R$	d) $R_A = 2R_B$	$e) R_A = 4R_B$
$\alpha / \alpha / \alpha = \alpha / \alpha / \alpha$	$U/M_A = MR/A$	$\Gamma \cup \Gamma \cap $	$1 \text{ G} / \text{R}_A = 2 \text{R}_B$	$\frac{C/RA - RR}{R}$

Solución: Para el alambre A:

$$R_A = \frac{\rho_{Cu}L_A}{A_A}$$
 (ecuación 1)

Ahora de acuerdo al problema $L_A = 2L_B$; y también

$$m_A = m_B$$
 (ecuación 2)

En donde: $m_A = densidad_{Cu}Volumen_A = densidad_{Cu}A_AL_A$; haciendo lo mismo en el caso del alambre B y sustituyendo en la ecuación dos;

 $densidad_{Cu}A_AL_A = densidad_{Cu}A_BL_B$

simplificando

$$A_A(2L_R) = A_R L_R$$

Entonces:

$$A_A = \frac{A_B}{2}$$

Sustituyendo este resultado en la ecuación (1) y que $L_A = 2L_B$:

$$R_A = \frac{\rho_{Cu} 2L_B}{\frac{A_B}{2}} = 4 \frac{\rho_{Cu} L_B}{A_B} = 4R_B$$

Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Física -

Ing. Claudia Contreras

22. En un tubo de rayos catódicos se mide la corriente del haz y resulta ser de $40\mu A$. ¿Cuántos electrones chocan contra la pantalla del tubo cada minuto?

a) 1.13×10^{16}	b) 2.88×10^{16}	c) 1.80×10^{14}	d) 1.50×10^{16}	e) 2.5×10^{14}
--------------------------	--------------------------	--------------------------	--------------------------	-------------------------

Solución: Encontramos la carga que pasa cada minuto, cuando la corriente es 40µA.

$$Q = I\Delta t = (40 \times 10^{-6})(60) = 2400 \times 10^{-6}C$$

Ahora calculamos la cantidad de electrones:

#electrones =
$$\frac{Q}{e} = \frac{2400 \times 10^{-6}}{1.6 \times 10^{-19}} = 1.5 \times 10^{16}$$

23. Refiriéndonos a los datos del problema anterior, si los electrones viajan con una velocidad de $3.5 \times 10^{-4} m/s$ ¿Qué cantidad de electrones se encuentran en 25cm de longitud del tubo de rayos catódicos?

candidad de electrones se encuentran en 25 em de longitud del tabo de la jos catodicos.				
a) 1.79 × 10 ¹⁷	b) 1.13×10^{16}	c) 1.33×10^{17}	d) 1.18×10^{16}	e) 1.18×10^{17}

Solución: A partir de la información proporcionada calcularemos el tiempo que los electrones viajando a la velocidad indicada recorren 0.25m de longitud.

$$v = \frac{s}{t}$$
 $\rightarrow t = \frac{0.25}{3.5 \times 10^{-4}} = 714.2857s$

Entonces dado que la corriente es de 40µA, la carga que pasa por el conductor en ese período de tiempo es:

$$Q = I\Delta t = (40 \times 10^{-6})(714.2857) = 0.02857C$$

Y la cantidad de electrones:

$$#e^{-} = \frac{Q}{e} = \frac{0.02857}{1.6 \times 10^{-19}} = 1.786 \times 10^{17}$$