Exercice 1:

- 1. Soit (u_n) définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{3u_n + 4}$.
 - (a) Montrer: $\forall n \in \mathbb{N}, u_n > 0.$
 - (b) Pour tout entier naturel n, on pose $v_n = \frac{1}{u_n}$. Exprimer v_{n+1} en fonction de v_n . De quel type est la suite (v_n) ?
 - (c) Déterminer v_n puis u_n en fonction de n.
- 2. Généralisation

Soit $(a, b, c) \in \mathbb{R}_+^* \times \mathbb{R}_+ \times \mathbb{R}_+^*$ tel que $c \neq a$. Décrire une méthode permettant de calculer le terme général w_n d'une suite (w_n) définie par :

$$w_0 \in]0, +\infty[$$
 et $\forall n \in \mathbb{N}, \ w_{n+1} = \frac{aw_n}{bw_n + c}.$

Comment faire si c = a?

Exercice 2:

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0=\frac{1}{2}$ et $\forall n\in\mathbb{N},\ u_{n+1}=\frac{2u_n+1}{2+u_n}$.

- 1. Montrer: $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Montrer que : $\forall n \in \mathbb{N}, \exists (a_n, b_n) \in \mathbb{N}^2 / u_n = \frac{a_n}{b_n}$. On exprimera a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- 3. Montrer que les suites (a_n) et (b_n) sont récurrentes linéaires d'ordre deux. En déduire u_n en fonction de n ainsi que sa limite (quand n tend vers $+\infty$).

Exercice 3 : Les deux questions sont indépendantes.

1. Étudier le système linéaire ci-dessous (calcul du rang, détermination de l'ensemble des solutions) :

(S):
$$\begin{cases} 2x + y - z = 1 \\ x - y + z = 2 \\ 8x + y - z = 7 \end{cases}$$

2. Montrer qu'il existe une unique fonction polynôme $P: x \longmapsto a+bx+cx^2$ de degré 2 (où $(a,b,c) \in \mathbb{R}^3$) telle que $P(-1)=1,\ P(1)=2,\ P(2)=3$ et la déterminer.