Problem Set 3

Submission date: Monday, 11 Apr. 2022

- 1. Let $X = \{x_1, x_2, x_3\}$ be a ternary random variable with probability distribution $\{0.5, 0.4, 0.1\}$.
 - a) Construct a binary Huffman code for X. Calculate the code's expected length \bar{L}_1 and code efficiency $\eta_1 = H(X)/\bar{L}_1$.
 - b) Construct a binary Huffman code for two i.i.d. copies X^2 of X, calculate the code's expected length \bar{L}_2 and code efficiency $\eta_2 = H(X^2)/\bar{L}_2 = 2H(X)/\bar{L}_2$.
 - c) Make a comparison between η_1 and η_2 . If a binary Huffman code is used for n i.i.d. copies X^n , what is the asymptotic value of $\eta_n = H(X^n)/\overline{L}_n = nH(X)/\overline{L}_n$ when $n \to \infty$?
- 2. Consider 4 different codes:

```
{000, 10, 00, 11};

{100, 101, 0, 11};

{01, 100, 011, 00, 111, 1010, 1011, 1101};

{01, 111, 011, 00, 010, 110}
```

- a) Which ones do not satisfy Kraft inequality?
- b) Is each of these codes qualified as a prefix code? If not, please explain.

- 3. For the following three codes, which ones cannot be constructed by Huffman coding?
 - a) {0, 10, 11};
 - b) {00, 01, 10, 110};
 - c) {01, 10};
- 4. Consider a binary erasure channel (BEC) with $X = \{0, 1\}, Y$

= {0, e, 1}, and
$$p_{Y|X} = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}$$
. Assume $P(X = 0)$

$$= p_0, P(X = 1) = 1 - p_0.$$

- a) Calculate H(Y|X);
- b) Find the distribution of Y;
- c) What is the value of p_0 that maximizes H(Y)?
- d) What is the capacity C of this channel?