15. Responda razonadamente a las siguientes cuestiones:

- a) Demuestre que un entero positivo N termina en m ceros $(m \ge 0)$ si y sólo si m es el mínimo de los exponentes de 2 y 5 en la factorización canónica de N.
- b) Calcule el número de ceros en los que termina 100!.

El apartado b) de este problema figura resuelto en la página 580 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

- SOLUCIÓN: a) Un entero positivo N, escrito en forma decimal, termina exactamente en m ceros $(m \ge 0)$ si es divisible por 10^m y no lo es por 10^{m+1} . Como es $10^m = 2^m \cdot 5^m$ y las potencias 2^m y 5^m son números primos entre sí, podemos afirmar que N termina en m ceros si y sólo si N es divisible por 2^m y por 5^m y no lo es por 2^{m+1} o 5^{m+1} . En otras palabras, N termina en m ceros si y sólo si m es el mínimo de los exponentes de 2 y 5 en la factorización canónica de N.
- b) En el caso particular de ser N un factorial, es decir, N=n!, si p es un primo tal que $p \le n$, el exponente de p en la forma canónica de n! es

$$\sum_{k=1}^{\infty} \left| \frac{n}{p^k} \right|$$

En la descomposición canónica de cualquier factorial n!, el exponente de 5 es siempre menor o igual que el de 2, pues $\left|\frac{n}{5^k}\right| \leq \left|\frac{n}{2^k}\right|$, para cada k=1,2,3,... Por tanto, n! termina en tantos ceros como indica el exponente de 5 en la forma canónica de n!.

El exponente de 5 en la factorización canónica de 100! es

$$\left| \frac{100}{5} \right| + \left| \frac{100}{25} \right| = 20 + 4 = 24$$

así es que la expresión decimal de 100! termina en 24 ceros