Classe: MASTER RAIA

TD N°1 SYSTMES DE COMMUNICATION

Exercice 1

On désire commander deux moteurs dans le même sens, en utilisant la figure 1 compléter le schéma de câblage (figure2) et le programme 1.

Figure 1

Figure 2 : Schéma de câblage

Programme 1:

```
// Moteur 1
int IN1 = 5;
int IN2 = 6;
// Moteur 2
int IN3 = 10;
int IN4 = 11;
void setup() {
 pinMode(---, ----);
 -----;
-----;
 -----;
void loop() {
// Marche Avant
 digitalWrite(---, 1);
 digitalWrite(---, 0);
 digitalWrite(---, 1);
 digitalWrite(---, 0);
// Attente 2s
 -----;
// Arrêt des moteurs
 digitalWrite(---, 0);
// Attente 1s
// Marche arrière
-----
// Attente 2s
-----
// Arrêt des moteurs
// Attente 1s
```

Classe: MASTER RAIA

Exercice 2

Le montage à réaliser devra comporter :

- Un servomoteur qui jouera le rôle de barrière
- Un bouton pour demander l'ouverture de la barrière
- Un feu bicolore qui passera au vert lorsque la barrière sera complètement ouverte

Le scénario sera le suivant :

Le fonctionnement normal est un feu allumé au rouge et une barrière fermée (0°).

Le fonctionnement normal est interrompu par l'appui sur un bouton poussoir.

Si l'appui du bouton est détecté, alors la barrière (actionnée par le servomoteur) se relève doucement; Lorsque la barrière est à la verticale (90°), le feu vert s'allume pendant 5 secondes pendant lesquelles la barrière reste ouverte (90°). Après les 5 secondes, le feu repasse au rouge, la barrière redescend doucement et le fonctionnement normal reprend.

Question : Compléter le schéma de câblage (figure3) et le programme2.

Classe : MASTER RAIA

Carte Arduino UNO

Figure 3

Programme 2 :

#include <servo.h> //Appel de la librairie "SERVO"</servo.h>
void setup() {
// Défintion des entrées/sorties
}
void loop() { // On initialise dés le début l'état des led
// Lit l'état du bouton poussoir // si bouton appuyé, alors on lève la barrière et on fait changer l'état des led, sinon, on reboucle
// on commence à actionner dans // un sens la barrière, jusqu'à 90°, degrè par degre// va à la position "POS"

```
// attends 15ms

// la barrière est levée, on peut allumer la led verte et éteindre la rouge
----
-----------// Attends 5 secondes
// La led rouge s'allume et on éteind la verte
-------//On referme ensuite la barrière
-----// cette fois si, on passe de 90° à 0°
//(décroit à chaque fois de -1)
myservo.write(pos); // va à la position "POS"
delay(15); // attends 15ms
}
}
```

Exercice 3

Q1 : Parmi ces affirmations, cochez celles qui vous paraissent justes :

☐ Le BUS I2C est un BUS parallèle	☐ Le BUS I2C est unidirectionnel
☐ Le BUS I2C est un BUS série	☐ Le BUS I2C permet le transfert à 100kb ^{s-1}
☐ Le BUS I2C est un BUS synchrone	☐ Le BUS I2C est un bus adressable
☐ Le BUS I2C est un BUS asynchrone	☐ Plusieurs octets peuvent être transmis en une seule trame
☐ N'importe quel circuit peut prendre la main sur le BUS I2C pour communiquer	☐ On ne peut relier que deux circuits sur un
	BUS I2C

Q2 : Combien de signaux sont utilisés sur un BUS I2C ? Donnez leur nom et leur rôle :

Q3 : Comment sont reliés les différents circuits I2C sur le BUS ?

Q4: Comment un circuit peut-il prendre la main sur le BUS ? Comment appelle-t-on cette opération dans la trame ?

Q5 : Comment un circuit libère-t-i le BUS ? Comment appelle-t-on cette opération dans la trame ?

Q6: Quelle est la condition pour placer un bit (0 ou 1) sur le signal SDA ? A quel moment ce bit serat-il lu par l'esclave ?

Q7 : Quel est l'élément de transmission permettant de vérifier que la communication des requêtes entre deux circuits se passe bien ?

Q8 : Sur combien de bits est codée une adresse I2C ? Quel est le rôle du bit R/W ?

Q9 : Pourquoi une communication entre Maitre / Esclave commence-t-elle toujours par une écriture ?