Interpolare

O metodă de aproximare

Radu T. Trîmbiţaș

Universitatea "Babeș-Bolyai"

6 aprilie 2023

Un spațiu util

• Pentru $n \in \mathbb{N}^*$, definim

$$H^n[a,b]=\{f:[a,b] o\mathbb{R}:f\in C^{n-1}[a,b],$$
 $f^{(n-1)}$ absolut continuă pe $[a,b]\}.$ (1)

• Orice funcție $f \in H^n[a, b]$ admite o reprezentare de tip Taylor cu restul sub formă integrală

$$f(x) = \sum_{k=0}^{n-1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$
 (2)

- $H^n[a, b]$ este un spațiu liniar.
- Funcția $f:I \to \mathbb{R}$, I interval, se numește absolut continuă pe I dacă $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ astfel încât oricare ar fi un sistem finit de subintervale disjuncte ale lui I $\{(a_k,b_k)\}_{k=\overline{1,n}}$ cu proprietatea $\sum_{k=1}^n (b_k-a_k) < \delta$ să avem

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

Teorema lui Peano I

- Teorema următoare, de o importanță deosebită în analiza numerică, este o teoremă de reprezentare a funcționalelor liniare reale, definite pe Hⁿ[a, b].
- Ea dă un procedeu general de obținere a erorii de aproximare.
- Funcţia

$$z_{+} = \left\{ \begin{array}{ll} z, & z \geq 0 \\ 0, & z < 0 \end{array} \right.$$

se numește parte pozitivă, iar z_{+}^{n} se numește putere trunchiată.

Teorema lui Peano II

Teorema 1 (Peano)

Fie L o funcțională reală, continuă, definită pe $H^n[a,b]$. Dacă $KerL = \mathbb{P}_{n-1}$ atunci

$$Lf = \int_{a}^{b} K(t)f^{(n)}(t)dt, \tag{3}$$

unde

$$K(t) = \frac{1}{(n-1)!} L[(\cdot - t)_+^{n-1}] \quad (nucleul \ lui \ Peano). \tag{4}$$

Teorema lui Peano - continuare I

Demonstrație. f admite o reprezentare de tip Taylor, cu restul în formă integrală

$$f(x) = \left(T_{n-1}f\right)(x) + \left(R_{n-1}f\right)(x)$$

unde

$$R_{n-1}(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt = \frac{1}{(n-1)!} \int_{a}^{b} (x-t)_{+}^{n-1} f^{(n)}(t) dt$$

Aplicând L obținem

$$Lf = \underbrace{LT_{n-1}}_0 + LR_{n-1} \Rightarrow Lf = \frac{1}{(n-1)!}L\left(\int_a^b (\cdot - t)_+^{n-1} f^{(n)}(t)dt\right) =$$

$$\stackrel{cont}{=} \frac{1}{(n-1)!} \int_{a}^{b} L(\cdot - t)_{+}^{n-1} f^{(n)}(t) dt.$$

Teorema lui Peano - continuare II

Observația 2

Concluzia teoremei rămâne valabilă și dacă f nu este continuă, ci are forma

$$Lf = \sum_{i=0}^{n-1} \int_{a}^{b} f^{(i)}(x) d\mu_{i}(x), \quad \mu_{i} \in BV[a, b].$$

Corolarul 3

Dacă K păstrează semn constant pe [a,b] și $f^{(n)}$ este continuă pe [a,b], atunci există $\xi \in [a,b]$ astfel încât

$$Lf = \frac{1}{n!} f^{(n)}(\xi) Le_n, \tag{5}$$

unde $e_k(x) = x^k$, $k \in \mathbb{N}$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

Teorema lui Peano - continuare III

Demonstrație. Deoarece K păstrează semn constant putem aplica în (3) teorema de medie

$$Lf = f^{(n)}(\xi) \int_a^b K_n(t) dt, \quad \xi \in [a, b].$$

Concluzia se obține luând $f = e_n$. \blacksquare Acest corolar este folosit în aplicații.

Figura: Giuseppe Peano (1858-1932)

Exemplu I

Exemplul 4

Vom folosi teorema lui Peano pentru a da expresia erorii in formula

$$\int_{a}^{b} f(x) dx = (b-a)f\left(\frac{a+b}{2}\right) + R(f)$$

numită formula dreptunghiului.

Soluție. Funcționala de reprezentat este

$$R(f) = \int_{a}^{b} f(x) dx - (b - a) f\left(\frac{a + b}{2}\right).$$

Exemplu II

Ea se anulează pentru f(x)=1 și f(x)=x, deci $Ker(R)=\mathbb{P}_1$. Din teorema lui Peano rezultă

$$R(f) = \int_{a}^{b} K(t)f''(t)dt$$

unde

$$K(t) = R\left(\frac{(x-t)_{+}}{1!}\right) = \int_{a}^{b} (x-t)_{+} dt - (b-a)\left(\frac{a+b}{2} - t\right)_{+}$$
$$= (b-t)^{2}/2 - (b-a)\left(\frac{a+b}{2} - t\right)_{+}$$

Nucleul păstrează semn constant

$$K(f) = \begin{cases} \frac{(b-t)^2}{2}, & \operatorname{dacă} \ t > (a+b)/2; \\ \frac{(t-a)^2}{2}, & t \le (a+b)/2. \end{cases}$$

Exemplu III

Putem aplica corolarul la teorema lui Peano

$$R(f) = \frac{f''(\xi)}{2!}R(e_2), \qquad e_2(x) = x^2$$

și obținem

$$R(f) = \frac{f''(\xi)}{2!} \left[\int_{a}^{b} x^{2} dx - (b - a) \left(\frac{a + b}{2} \right)^{2} \right]$$

$$= \frac{f''(\xi)}{2!} \left[\frac{b^{3} - a^{3}}{3} - (b - a) \left(\frac{a + b}{2} \right)^{2} \right]$$

$$= \frac{f''(\xi)}{2!} \left[\frac{1}{12} b^{3} - \frac{1}{12} a^{3} + \frac{1}{4} b a^{2} - \frac{1}{4} b^{2} a \right]$$

$$= \frac{(b - a)^{3}}{24} f''(\xi).$$

Interpolare Lagrange

Fie intervalul închis $[a,b]\subset\mathbb{R}$, o mulțime de m+1 puncte distincte $\{x_0,x_1,\ldots,x_m\}\subset[a,b]$ și o funcție $f:[a,b]\mapsto\mathbb{R}$. Dorim să determinăm un polinom P, de grad minim care să reproducă valorile funcției f în x_k , adică $P(x_k)=f(x_k)$, $k=\overline{0,m}$.

Interpolare Lagrange I

Teorema 5

Există un polinom și numai unul $L_m f \in \mathbb{P}_m$ astfel încât

$$\forall i = 0, 1, ..., m, (L_m f)(x_i) = f(x_i);$$
 (6)

acest polinom se scrie sub forma

$$(L_m f)(x) = \sum_{i=0}^m f(x_i) \ell_i(x), \tag{7}$$

unde

$$\ell_i(x) = \prod_{j=0}^m \frac{x - x_j}{x_i - x_j}.$$
 (8)

Interpolare Lagrange II

Demonstrație. Se verifică imediat că $\ell_i \in \mathbb{P}_m$ și că $\ell_i(x_j) = \delta_{ij}$ (simbolul lui Kronecker); rezultă că polinomul $L_m f$ definit de (7) este de grad cel mult m și verifică (6).

Presupunem că există un alt polinom $p_m^* \in \mathbb{P}_m$ care verifică (6) și punem $q_m = L_m - p_m^*$; avem $q_m \in \mathbb{P}_m$ și $\forall i = 0, 1, \ldots, m, \ q_m(x_i) = 0$; deci q_m având (m+1) rădăcini distincte este identic nul, de unde unicitatea lui L_m .

Definiția 6

Polinomul $L_m f$ definit astfel se numește polinom de interpolare Lagrange a lui f relativ la punctele x_0, x_1, \ldots, x_m , iar funcțiile $\ell_i(x)$, $i = \overline{0, m}$, se numesc polinoame de bază (fundamentale) Lagrange asociate acelor puncte.

Interpolare Lagrange III

Observația 7

Polinomul fundamental ℓ_i este deci unicul polinom care verifică

$$\ell_i \in \mathbb{P}_m \ \text{si} \ \forall \ j = 0, 1, \dots, m, \quad \ell_i(x_j) = \delta_{ij}$$

Punând

$$u(x) = \prod_{j=0}^{m} (x - x_j)$$

din (8) se deduce că
$$\forall x \neq x_i$$
, $\ell_i(x) = \frac{u(x)}{(x-x_i)u'(x_i)}$.

- Demonstrând teorema 5 am demonstrat de fapt existența și unicitatea soluției problemei generale de interpolare Lagrange:
- **[PGIL]** Fiind date $b_0, b_1, \ldots, b_m \in \mathbb{R}$, să se determine

$$p_m \in \mathbb{P}_m$$
 astfel încât $\forall i = 0, 1, ..., m, \quad p_m(x_i) = b_i.$ (9)

15 / 70

Interpolare Lagrange IV

- Problema (9) conduce la un sistem liniar de (m+1) ecuații cu (m+1) necunoscute (coeficienții lui p_m).
- Din teoria sistemelor liniare se știe că

 $\{\text{existența unei soluții} \ \forall \ b_0, b_1, \dots, b_m\} \Leftrightarrow \{\text{unicitatea soluției}\} \Leftrightarrow$

$$\{(b_0=b_1=\cdots=b_m=0)\Rightarrow p_m\equiv 0\}$$

• Punem $p_m = a_0 + a_1 x + \cdots + a_m x^m$

$$a = (a_0, a_1, ..., a_m)^T, \quad b = (b_0, b_1, ..., b_m)^T$$

și notăm cu $V=(v_{ij})$ matricea pătratică de ordin m+1 cu elementele $v_{ij}=x_i^j$. Ecuația (9) se scrie sub forma

$$Va = b$$

Interpolare Lagrange V

• Matricea V este inversabilă (este Vandermonde); se arată ușor că $V^{-1} = U^T$ unde $U = (u_{ij})$ cu $\ell_i(x) = \sum_{k=0}^m u_{ik} x^k$; se obține în acest mod un procedeu puțin costisitor de inversare a matricei Vandermonde și prin urmare și de rezolvare a sistemului (9).

Exemple de PIL I

Exemplul 8

Polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor x_0 și x_1 este

$$(L_1 f)(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$$

adică dreapta care trece prin punctele $(x_0, f(x_0))$ și $(x_1, f(x_1))$.

Exemple de PIL II

Exemplul 9

Analog, polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor x_0 , x_1 și x_2 este

$$(L_2 f)(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2),$$

adică parabola care trece prin punctele $(x_0, f(x_0)), (x_1, f(x_1))$ și $(x_2, f(x_2)).$

Figura: Joseph Louis Lagrange (1736-1813)

Expresia erorii de interpolare

Propoziția 10

Operatorul L_m este proiector, adică

- este liniar $(L_m(\alpha f + \beta g) = \alpha L_m f + \beta L_m g)$;
- este idempotent $(L_m \circ L_m = L_m)$.

Demonstrație. Liniaritatea rezultă imediat din formula (7). Datorită unicității polinomului de interpolare Lagrange $L_m(L_m f) - L_m f$ este identic nul, deci $L_m(L_m f) = L_m f$ și am arătat idempotența.

Expresia erorii de interpolare

- Dacă dorim să utilizăm polinomul de interpolare Lagrange pentru a aproxima funcția f într-un punct $x \in [a, b]$, distinct de nodurile de interpolare (x_0, \ldots, x_m) , trebuie să estimăm eroarea comisă $(R_m f)(x) = f(x) (L_m f)(x)$.
- Dacă nu posedăm nici o informație referitoare la f în afara punctelor x_i , este clar că nu putem spune nimic despre $(R_m f)(x)$; într-adevăr este posibil să schimbăm f în afara punctelor x_i fără a modifica $(L_m f)(x)$.
- Trebuie deci să facem ipoteze suplimentare, care vor fi ipoteze de regularitate asupra lui f. Să notăm cu $C^m[a, b]$ spațiul funcțiilor reale de m ori continuu diferențiabile pe [a, b].

Avem următoarea teoremă referitoare la estimarea erorii în interpolarea Lagrange.

Expresia erorii de interpolare I

Teorema 11

Presupunem că $f \in C^m[\alpha, \beta]$ și există $f^{(m+1)}$ pe (α, β) , unde $\alpha = \min\{x, x_0, \dots, x_m\}$ și $\beta = \max\{x, x_0, \dots, x_m\}$; atunci, pentru orice $x \in [\alpha, \beta]$, există un $\xi_x \in (\alpha, \beta)$ astfel încât

$$(R_m f)(x) = \frac{1}{(m+1)!} u_m(x) f^{(m+1)}(\xi_x), \tag{10}$$

unde

$$u_m(x) = \prod_{i=0}^m (x - x_i).$$

Expresia erorii de interpolare II

Demonstrație. Dacă $x=x_i$, $(R_m f)(x)=0$ și (10) se verifică trivial. Presupunem că x este distinct de x_i și considerăm, pentru x fixat, funcția auxiliară

$$F(z) = \begin{vmatrix} u_m(z) & (R_m f)(z) \\ u_m(x) & (R_m f)(x) \end{vmatrix}.$$

Se observă că $F \in C^m[\alpha, \beta]$, $\exists F^{(m+1)}$ pe (α, β) , F(x) = 0 și $F(x_k) = 0$ pentru $k = \overline{0, m}$. Deci, F are (m+2) zerouri. Aplicând succesiv teorema lui Rolle, rezultă că există cel puțin un $\xi \in (\alpha, \beta)$ astfel încât $F^{(m+1)}(\xi) = 0$, adică

$$F^{(m+1)}(\xi) = \begin{vmatrix} (m+1)! & f^{(m+1)}(\xi) \\ u_m(x) & (R_m f)(x) \end{vmatrix} = 0, \tag{11}$$

unde s-a ținut cont că $(R_m f)^{(m+1)} = f^{(m+1)} - (L_m f)^{(m+1)} = f^{(m+1)}$. Exprimând $(R_m f)(x)$ din (11) se obține (10).

Expresia erorii de interpolare III

Corolarul 12

Punem $M_{m+1}=\max_{x\in[a,b]}|f^{(m+1)}(x)|=\|f^{(m+1)}\|_{\infty}$; o margine superioară a erorii de interpolare $(R_mf)(x)=f(x)-(L_mf)(x)$ este dată prin

$$|(R_m f)(x)| \le \frac{M_{m+1}}{(m+1)!} |u_m(x)|.$$

Acest corolar ne permite să delimităm eroarea sau să obținem m dacă se impune o margine superioară a erorii.

Expresia erorii de interpolare IV

Deoarece L_m este proiector, rezultă că R_m este de asemenea proiector; în plus $\mathrm{Ker} R_m = \mathbb{P}_m$, deoarece $R_m f = f - L_m f = f - f = 0$, $\forall f \in \mathbb{P}_m$. Deci, putem aplica lui R_m teorema lui Peano.

Teorema 13

Dacă $f \in C^{m+1}[a,b]$, atunci

$$(R_m f)(x) = \int_a^b K_m(x; t) f^{(m+1)}(t) dt$$
 (12)

unde

$$K_m(x;t) = \frac{1}{m!} \left[(x-t)_+^m - \sum_{k=0}^m \ell_k(x) (x_k - t)_+^m \right]. \tag{13}$$

Expresia erorii de interpolare V

Demonstrație. Aplicând teorema lui Peano, avem

$$(R_m f)(x) = \int_a^b K_m(x;t) f^{(m+1)}(t) dt$$

și ținând cont că

$$K_m(x;t) = R_m \left[\frac{(x-t)_+^m}{m!} \right] = \frac{(x-t)_+^m}{m!} - L_m \left[\frac{(x-t)_+^m}{m!} \right],$$

teorema rezultă imediat.

Exemplu

Exemplul 14

Pentru polinoamele de interpolare din exemplul 8 resturile corespunzătoare sunt

$$(R_1 f)(x) = \frac{(x - x_0)(x - x_1)}{2} f''(\xi)$$

și respectiv

$$(R_2f)(x) = \frac{(x-x_0)(x-x_1)(x-x_2)}{6}f'''(\xi).$$

Eroarea pentru noduri Cebîşev I

• Fiind date funcția f și gradul m al polinomului de interpolare, cum trebuie alese nodurile astfel ca restul să fie cât mai mic posibil?

$$(R_m f)(x) = \frac{u_m(x)}{(m+1)!} f^{(m+1)}(\xi).$$

Deoarece

$$|(R_m f)(x)| \le \frac{\|u_m\|_{\infty}}{(m+1)!} \|f^{(m+1)}\|_{\infty},$$

nodurile trebuie alese astfel ca $\|u_m\|_\infty$ să fie minimă. Rezultă că u_m trebuie să fie polinomul monic Cebîșev de speța I de grad m+1, \mathring{T}_{m+1}

• În acest caz

$$||R_m f|| \le \frac{||f^{(m+1)}||_{\infty}}{2^m (m+1)!}.$$

Metode de tip Aitken I

- În multe situații gradul necesar pentru a atinge precizia dorită în interpolarea polinomială este necunoscut.
- El se poate determina din expresia restului, dar pentru aceasta este necesar să cunoaștem $\|f^{(m+1)}\|_{\infty}$.
- $P_{m_1,m_2,...,m_k}$ polinomul de interpolare Lagrange având nodurile x_{m_1},\ldots,x_{m_k} .

Propoziția 15

Dacă f este definită în $x_0, \ldots, x_k, x_j \neq x_i, 0 \leq i, j \leq k$, atunci

$$P_{0,1,\dots,k}(x) = \frac{(x-x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x-x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{x_i - x_j}$$

$$= \frac{1}{x_i - x_j} \begin{vmatrix} x - x_j & P_{0,1,\dots,i-1,i+1,\dots,k}(x) \\ x - x_i & P_{0,1,\dots,j-1,j+1,\dots,k}(x) \end{vmatrix}$$
(14)

Metode de tip Aitken II

Demonstrație. $Q = P_{0,1,...,i-1,i+1,...,k}, \ \widehat{Q} = P_{0,1,...,j-1,j+1,k}$

$$P(x) = \frac{(x - x_j)\widehat{Q}(x) - (x - x_i)Q(x)}{x_i - x_j}$$

$$P(x_r) = \frac{(x_r - x_j)\widehat{Q}(x_r) - (x_r - x_i)Q(x_r)}{x_i - x_j} = \frac{x_i - x_j}{x_i - x_j}f(x_r) = f(x_r)$$

pentru $r \neq i \land r \neq j$, căci $Q(x_r) = \widehat{Q}(x_r) = f(x_r)$. Dar

$$P(x_i) = \frac{(x_i - x_j)\widehat{Q}(x_i) - (x_i - x_i)Q(x_i)}{x_i - x_j} = f(x_i)$$

și

$$P(x_j) = \frac{(x_j - x_j)\widehat{Q}(x_j) - (x_j - x_i)Q(x_j)}{x_i - x_i} = f(x_j),$$

deci $P = P_{0.1....k}$. ■

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト - 夏 - 釣 Q

Metode de tip Aitken III

- am stabilit o relație de recurență între un polinom de interpolare Lagrange de gradul k și două polinoame de interpolare Lagrange de gradul k-1.
- Calculele pot fi așezate în formă tabelară

• Dacă $P_{0,1,2,3,4}$ nu ne asigură precizia dorită, se poate selecta un nou nod și adăuga o nouă linie tabelei

$$x_5$$
 P_5 $P_{4,5}$ $P_{3,4,5}$ $P_{2,3,4,5}$ $P_{1,2,3,4,5}$ $P_{0,1,2,3,4,5}$

Metode de tip Aitken IV

- Criteriu de oprire: elementele vecine de pe linie, coloană sau diagonală se pot compara pentru a vedea dacă s-a obținut precizia dorită.
- metoda lui Neville
- Notațiile pot fi simplificate

$$Q_{i,j} := P_{i-j,i-j+1,\dots,i-1,i},$$

$$Q_{i,j-1} := P_{i-j+1,\dots,i-1,i},$$

$$Q_{i-1,j-1} := P_{i-j,i-j+1,\dots,i-1}.$$

• Din (14) rezultă, pentru j = 1, 2, 3, ..., i = j + 1, j + 2, ...,

$$Q_{i,j} = \frac{(x - x_{i-j})Q_{i,j-1} - (x - x_i)Q_{i-1,j-1}}{x_i - x_{i-j}}.$$

Metode de tip Aitken V

• În plus, $Q_{i,0} = f(x_i)$. Obținem tabelul

• Dacă procedeul de interpolare converge, atunci șirul $Q_{i,i}$ converge și el și s-ar putea lua drept criteriu de oprire

$$|Q_{i,i}-Q_{i-1,i-1}|<\varepsilon.$$

- Pentru a rapidiza algoritmul nodurile se vor ordona crescător după valorile $|x_i x|$.
- Metoda lui Aitken este similară cu metoda lui Neville.

Metode de tip Aitken VI

• Ea construiește tabelul

 Pentru a calcula o nouă valoare se utilizează valoarea din vârful coloanei precedente și valoarea din aceeași linie, coloana precedentă.

Metoda diferențelor divizate I

- Vom nota cu $L_k f$ PIL cu nodurile x_0, x_1, \ldots, x_k pentru $k = 0, 1, \ldots, n$. Vom construi L_m prin recurență.
- Avem

$$(L_0 f)(x) = f(x_0)$$

pentru $k \ge 1$

• polinomul $L_k - L_{k-1}$ este de grad k, se anulează în punctele $x_0, x_1, \ldots, x_{k-1}$ și deci este de forma:

$$(L_k f)(x) - (L_{k-1} f)(x) = f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$
(15)

unde $f[x_0, x_1, ..., x_k]$ desemnează coeficientul lui x^k din $(L_k f)(x)$.

Metoda diferențelor divizate II

• Se deduce expresia polinomului de interpolare $L_m f$ cu nodurile x_0, x_1, \ldots, x_n

$$(L_m f)(x) = f(x_0) + \sum_{k=1}^m f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}),$$
(16)

- forma Newton a polinomului de interpolare Lagrange
- Formula (16) reduce calculul prin recurență al lui $L_m f$ la cel al coeficienților $f[x_0, x_1, \ldots, x_k], k = \overline{0, m}$.

Recurența pentru diferențe divizate

Lema 16

$$\forall k \geq 1 \quad f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0} \quad (17)$$

și

$$f[x_i] = f(x_i), \quad i = 0, 1, ..., k.$$

Demonstrație. Notăm, pentru $k \geq 1$ cu L_{k-1}^*f polinomul de interpolare pentru f de grad k-1 și cu nodurile x_1, x_2, \ldots, x_k ; coeficientul lui x^{k-1} este $f[x_1, x_2, \ldots, x_k]$. Polinomul q_k de grad k definit prin

$$q_k(x) = \frac{(x - x_0)(L_{k-1}^* f)(x) - (x - x_k)(L_{k-1} f)(x)}{x_k - x_0}$$

coincide cu f în punctele x_0, x_1, \ldots, x_k și deci $q_k(x) \equiv (L_k f)(x)$. Formula (17) se obține identificând coeficientul lui x^k din cei doi membri.

Calculul PIL cu diferențe divizate I

Definiția 17

Cantitatea $f[x_0, x_1, ..., x_k]$ se numește diferență divizată de ordinul k a lui f în punctele $x_0, x_1, ..., x_k$.

Altă notație utilizată este $[x_0, \ldots, x_k; f]$.

Din definiție rezultă că $f[x_0, x_1, \ldots, x_k]$ este independentă de ordinea punctelor x_i și ea poate fi calculată în funcție de $f(x_0), \ldots, f(x_m)$. Într-adevăr PIL de grad $\leq m$ relativ la punctele x_0, \ldots, x_m se scrie

$$(L_m f)(x) = \sum_{i=0}^m \ell_i(x) f(x_i)$$

și coeficientul lui x^m este

$$f[x_0, \dots, x_m] = \sum_{i=0}^m \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^m (x_i - x_j)}.$$
 (18)

Calculul PIL cu diferențe divizate II

 Diferențele divizate se pot obține prin algoritmul tabelar următor, bazat pe formula (17), care este mai flexibil și mai puțin costisitor decât aplicarea formulei (18)

$$Q_{i,j} = \frac{Q_{i+1,j-1} - Q_{i,j-1}}{x_{i+1} - x_i}, \quad j = 1, \dots, m, \ i = 0, \dots, m-j.$$

Calculul PIL cu diferențe divizate III

- Prima coloană este formată din valorile funcției f, a doua din diferențele divizate de ordinul I, etc.; se trece la coloana următoare folosind formula (17).
- Pentru a rapidiza algoritmul nodurile se vor ordona crescător după valorile $|x_i x|$.

Exemplul 18

Să calculăm forma Newton a polinomului de interpolare Lagrange pentru funcția $f(x) = x^3$ și nodurile $x_k = k$, k = 0, ..., 3. Tabela diferențelor divizate este:

La calculul polinomului de interpolare se folosesc diferențele divizate din prima linie a tabelei.

$$(L_3f)(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$

= $x + 3x(x - 1) + x(x - 1)(x - 2)$;

- 4 ロ ト 4 団 ト 4 差 ト 4 差 ト 2 を 9 Q @

Proprietăți ale diferențelor divizate I

Teorema 19

Eroarea de interpolare este dată de

$$f(x) - (L_m f)(x) = u_m(x) f[x_0, x_1, \dots, x_m, x].$$
 (19)

Demonstrație. Într-adevăr, este suficient să observăm că

$$(L_m f)(t) + u_m(t) f[x_0, \ldots, x_m; x]$$

este conform lui (16) polinomul de interpolare (în t) al lui f în punctele x_0, x_1, \ldots, x_m, x .

Proprietăți ale diferențelor divizate II

Teorema 20 (formula de medie pentru diferențe divizate)

Dacă $f \in C^m[a,b]$, există $\xi \in (a,b)$ a.î.

$$f[x_0, x_1, \dots, x_m] = \frac{1}{m!} f^{(m)}(\xi)$$
 (20)

Demonstrație. Rezultă din (10) și din (19) ■

Proprietăți ale diferențelor divizate III

Teorema 21 (scrierea sub forma unui cât a doi determinanți)

Are loc

$$f[x_0, ..., x_m] = \frac{(Wf)(x_0, ..., x_m)}{V(x_0, ..., x_m)}$$
 (21)

unde

$$(Wf)(x_0,\ldots,x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{m-1} & f(x_0) \\ 1 & x_1 & x_1^2 & \dots & x_1^{m-1} & f(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{m-1} & f(x_m) \end{vmatrix}, \tag{22}$$

iar $V(x_0, ..., x_m)$ este determinantul Vandermonde.

Proprietăți ale diferențelor divizate IV

Demonstrație. Se dezvoltă $(Wf)(x_0, \ldots, x_m)$ după elementele ultimei coloane; fiecare complement algebric este un determinant Vandermonde. Se obține

$$f[x_0, ..., x_m] = \frac{1}{V(x_0, ..., x_m)} \sum_{i=0}^m V(x_0, ..., x_{i-1}, x_{i+1}, ..., x_m) f(x_i) =$$

$$=\sum_{i=0}^{m}(-1)^{m-i}\frac{f(x_i)}{(x_i-x_0)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_n-x_i)},$$

din care după schimbarea semnelor ultimilor m-i termeni rezultă (18).

Figura: Sir Isaac Newton (1643 - 1727)

Metoda baricentrică I

• Rescriem (7), (8) a.î. PIL să poată fi evaluat și actualizat cu O(m) operații. Avem

$$\ell_j(x) = \frac{u_m(x)}{\prod\limits_{k \neq j} (x_j - x_k)} \cdot \frac{1}{x - x_j},\tag{23}$$

unde

$$u_m(x) = (x - x_0)(x - x_1) \cdots (x - x_m)$$
 (24)

Definind ponderile baricentrice prin

$$w_j = \frac{1}{\prod\limits_{k \neq j} (x_j - x_k)}, \quad j = 0, \dots, m,$$
 (25)

adică, $w_j = 1/u_m'(x_j)$ și putem scrie ℓ_j sub forma

$$\ell_j(x) = u_m(x) \frac{w_j}{x - x_j}.$$

Metoda baricentrică II

• Acum PIL se scrie $(f_j := f(x_j))$

$$p(x) = u_m(x) \sum_{j=0}^{m} \frac{w_j}{x - x_j} f_j.$$
 (26)

Interpolând funcția constantă 1 obținem

$$1 = \sum_{j=0}^{m} \ell_j(x) = u_m(x) \sum_{j=0}^{m} \frac{w_j}{x - x_j}.$$
 (27)

• Împărțind (26) cu expresia de mai sus și simplificând cu $u_m(x)$, obținem

$$p(x) = \frac{\sum_{j=0}^{m} \frac{w_j}{x - x_j} f_j}{\sum_{j=0}^{m} \frac{w_j}{x - x_j}},$$
(28)

numită formula baricentrică.

Distribuții remarcabile I

- În cazul unor noduri particulare se pot da formule explicite pentru ponderile baricentrice w_i .
- Pentru noduri echidistante

$$w_j = (-1)^j \binom{m}{j}. (29)$$

• Familia de *puncte Cebîşev* se poate obţine proiectând puncte egal spaţiate pe cercul unitate pe intervalul [-1,1]. Pornind de la formula

$$w_j = \frac{1}{u'_m(x_j)},\tag{30}$$

se pot obține formule explicite pentru ponderile w_i .

Distribuții remarcabile II

• Punctele Cebîşev de speța I sunt date de

$$x_j = \cos \frac{(2j+1)\pi}{2m+2}, \quad j = 0, ..., m.$$

Anulând factorii independenți de j se obține

$$w_j = (-1)^j \sin \frac{(2j+1)\pi}{2m+2}.$$
 (31)

Punctele Cebîşev de speţa II sunt date de

$$x_j = \cos \frac{j\pi}{m}, \quad j = 0, \dots, m,$$

iar ponderile corespunzătoare sunt

$$w_j = (-1)^j \delta_j, \qquad \delta_j = \left\{ \begin{array}{ll} 1/2, & j=0 \text{ sau } j=m, \\ 1, & \text{altfel.} \end{array} \right.$$

Interpolarea în puncte Cebîşev I

- Dificultățile legate de interpolarea polinomială de grad mare pot fi depășite aglomerând punctele de interpolare la capătul intervalului în loc de a alege puncte echidistante
- Noduri: puncte de interpolare Cebîşev de speța a doua sau puncte Gauss-Lobatto pe [-1,1]

$$x_j = \cos \frac{\pi j}{n}, \qquad j = 0, \dots, n \tag{32}$$

• Pentru un interval [a, b] se face schimbarea de variabilă

$$t = \frac{2x - b - a}{b - a}$$

 Utilizate în pachetul MATLAB chebfun - Univ. Oxford, L. N. Trefethen

Interpolarea în puncte Cebîşev II

• Dacă $(x_j)_{j=0}^n$ sunt puncte Cebîșev, polinomul nodurilor satisface

$$\left| \prod_{j=0}^{n} (x - x_j) \right| \le 2^{-n+1}$$

Ponderile baricentrice au forma

$$w_j = \frac{2^{n-1}}{n} \left\{ \begin{array}{ll} (-1)^j / 2 & \text{dacă } j = 0 \text{ sau } j = n, \\ (-1)^j & \text{altfel,} \end{array} \right.$$
 (33)

deci foarte convenabile la evaluare. Factorul $2^{n-1}/n$ se poate elimina deoarece în formula baricentrică (28) apare și la numărător și la numitor

Proprietăți ale interpolării în puncte Cebîșev

Teorema 22

Fie $f \in C[-1,1]$, p_n polinomul său de interpolare în puncte Cebîșev (32) și p_n^* polinomul său de cea mai bună aproximare în norma $\|\cdot\|_{\infty}$. Atunci

- ② Dacă $\exists k \in \mathbb{N}^*$ a.î. $f^{(k)}$ este cu variație mărginită pe [-1,1], atunci $\|f p_n\|_{\infty} = O\left(n^{-k}\right)$, când $n \to \infty$.
- ① Dacă f este analitică într-o vecinătate din planul complex a lui [-1,1], atunci $\exists C<1$ a.î. $\|f-p_n\|_\infty=O\left(C^n\right)$; în particular dacă f este analitică în elipsa închisă cu focarele ± 1 și semiaxele $M\geq 1$ și $m\geq 0$, putem lua C=1/(M+m).

Interpolare Hermite I

În loc să facem să coincidă f și polinomul de interpolare în punctele x_i din [a, b], am putea face ca f și polinomul de interpolare să coincidă împreună cu derivatele lor până la ordinul r_i în punctele x_i . Se obține:

Teorema 23

Fiind date (m+1) puncte distincte x_0, x_1, \ldots, x_m din [a,b] și (m+1) numere naturale r_0, r_1, \ldots, r_m , punem $n=m+r_0+r_1+\cdots+r_m$. Atunci, fiind dată o funcție f, definită pe [a,b] și admițând derivate de ordin r_i în punctele x_i există un singur polinom și numai unul H_nf de grad $\leq n$ astfel încât

$$\forall (i,\ell), \ 0 \le i \le m, \ 0 \le \ell \le r_i \qquad (H_n f)^{(\ell)}(x_i) = f^{(\ell)}(x_i), \qquad (34)$$

unde $f^{(\ell)}(x_i)$ este derivata de ordinul ℓ a lui f în x_i .

10 × 40 × 40 × 40 × 40 ×

Interpolare Hermite II

Definiția 24

Polinomul definit în acest mod se numește polinom de interpolare al lui Hermite al funcției f relativ la punctele x_0, x_1, \ldots, x_m și la întregii r_0, r_1, \ldots, r_m .

Demonstrație. Ecuația (34) conduce la un sistem liniar de (n+1) ecuații cu (n+1) necunoscute (coeficienții lui $H_n f$), deci este suficient să arătăm că sistemul omogen corespunzător admite doar soluția nulă, adică relațiile

$$H_n f \in \mathbb{P}_n \text{ si } \forall \ (i, \ell), \ 0 \le i \le k, \ 0 \le \ell \le r_i, \ (H_n f)^{(\ell)}(x_i) = 0$$

ne asigură că pentru orice $i=0,1,\ldots,m,$ x_i este rădăcină de ordinul r_i+1 a lui H_nf ; prin urmare H_nf are forma

$$(H_n f)(x) = q(x) \prod_{i=0}^m (x - x_i)^{r_i+1},$$

Interpolare Hermite III

unde q este un polinom. Cum $\sum_{i=0}^m (r_i+1)=n+1$, acest lucru nu este compatibil cu apartenența lui H_n la \mathbb{P}_n , decât dacă $q\equiv 0$ și deci $H_n\equiv 0$.

Diferențe divizate cu noduri multiple I

Formulele (20) și (21) servesc ca bază pentru introducerea diferenței divizate cu noduri multiple: dacă $f \in C^m[a, b]$ și $\alpha \in [a, b]$, atunci

$$\lim_{x_0,\ldots,x_m\to\alpha}[x_0,\ldots,x_m;f]=\lim_{\xi\to\alpha}\frac{f^{(m)}(\xi)}{m!}=\frac{f^{(m)}(\alpha)}{m!}$$

Aceasta justifică relația

$$[\underbrace{\alpha,\ldots,\alpha}_{m+1};f]=\frac{1}{m!}f^{(m)}(\alpha).$$

Reprezentând aceasta ca pe un cât de doi determinanți se obține

$$(Wf)\left(\underbrace{\alpha,\ldots,\alpha}_{m+1}\right) = \begin{vmatrix} 1 & \alpha & \alpha^2 & \ldots & \alpha^{m-1} & f(\alpha) \\ 0 & 1 & 2\alpha & \ldots & (m-1)\alpha^{m-2} & f'(\alpha) \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & (m-1)! & f^{(m-1)}(\alpha) \\ 0 & 0 & 0 & \ldots & 0 & f^{(m)}(\alpha) \end{vmatrix}$$

Diferențe divizate cu noduri multiple II

şi

$$V\left(\underbrace{\alpha,\ldots,\alpha}_{m+1}\right) = \left| \begin{array}{cccccc} 1 & \alpha & \alpha^2 & \ldots & \alpha^m \\ 0 & 1 & 2\alpha & \ldots & m\alpha^{m-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & m! \end{array} \right|,$$

adică cei doi determinanți sunt constituiți din linia relativă la nodul α și derivatele succesive ale acesteia până la ordinul m în raport cu α .

Generalizarea pentru mai multe noduri este următoarea: Fie $r_k \in \mathbb{N}$, $k = \overline{0, m}$, $n = r_0 + \cdots + r_m + m$. Presupunem că există $f^{(j)}(x_k)$, $k = \overline{0, m}$, $j = \overline{0, r_k}$. Mărimea

$$[\underbrace{x_0, \dots, x_0}_{r_0+1}, \underbrace{x_1, \dots, x_1}_{r_1+1}, \dots, \underbrace{x_m, \dots, x_m}_{r_m+1}; f] = \frac{(Wf)(x_0, \dots, x_0, \dots, x_m, \dots, x_m)}{V(x_0, \dots, x_0, \dots, x_m, \dots, x_m)}$$

unde

$$(Wf)(x_0, \dots, x_0, \dots, x_m, \dots, x_m) =$$

$$= \begin{vmatrix} 1 & x_0 & \dots & x_0^{r_0} & \dots & x_0^{n-1} & f(x_0) \\ 0 & 1 & \dots & (r_0)x_0^{r_0-1} & \dots & (n-1)x_0^{n-2} & f'(x_0) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (r_0)! & \dots & \prod_{p=1}^{r_0}(n-p)x_0^{n-r_0+1} & f^{(r_0)}(x_0) \\ 1 & x_m & \dots & x_m^{r_m} & \dots & x_m^{n-1} & f(x_m) \\ 0 & 1 & \dots & (r_m)x_m^{r_m-1} & \dots & (n-1)x_m^{n-2} & f'(x_m) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (r_m)! & \dots & \prod_{p=1}^{r_m}(n-p)x_m^{n-r_m+1} & f^{(r_m)}(x_m) \end{vmatrix}$$

iar $V(x_0,\ldots,x_0,\ldots,x_m,\ldots,x_m)$ este ca mai sus, exceptând ultima coloană care este

$$(x_0^n, nx_0^{n-1}, \dots, \prod_{p=0}^{r_0} (n-p)x_0^{n-r_0+1}, \dots, x_m^n, nx_m^{n-1}, \dots, \prod_{p=0}^{r_m} (n-p)x_m^{n-r_m+1})^T$$

se numește diferență divizată cu nodurile multiple x_k , $k = \overline{0, m}$ și ordinele de multiplicitate r_k , $k = \overline{0, m}$.

Polinomul de interpolare Hermite I

Generalizând forma Newton a polinomului de interpolare Lagrange se obține o metodă bazată pe diferențele divizate cu noduri multiple pentru PIH.

Presupunem că se dau nodurile x_i , $i=\overline{0,m}$ și valorile $f(x_i)$, $f'(x_i)$. Definim secvența de noduri z_0,z_1,\ldots,z_{2m+1} prin $z_{2i}=z_{2i+1}=x_i$, $i=\overline{0,m}$. Construim acum tabela diferențelor divizate utilizând nodurile z_i , $i=\overline{0,2m+1}$. Deoarece $z_{2i}=z_{2i+1}=x_i$ pentru orice i, $f[x_{2i},x_{2i+1}]$ este o diferență divizată cu nod dublu și este egală cu $f'(x_i)$, deci vom utiliza $f'(x_0),f'(x_1),\ldots,f'(x_m)$ în locul diferențelor divizate de ordinul I

$$f[z_0, z_1], f[z_2, z_3], \ldots, f[z_{2m}, z_{2m+1}].$$

Restul diferențelor se obțin în manieră obișnuită, așa cum se arată în tabelul 1. Ideea poate fi extinsă și pentru alte interpolări Hermite. Se pare că metoda este datorată lui Powell.

Polinomul de interpolare Hermite II

$$z_{0} = x_{0} \quad f[z_{0}] \quad f[z_{0}, z_{1}] = f'(x_{0}) \quad f[z_{0}, z_{1}, z_{2}] = \frac{f[z_{1}, z_{2}] - f[z_{0}, z_{1}]}{z_{2} - z_{0}}$$

$$z_{1} = x_{0} \quad f[z_{1}] \quad f[z_{1}, z_{2}] = \frac{f(z_{2}) - f(z_{1})}{z_{2} - z_{1}} \quad f[z_{1}, z_{2}, z_{3}] = \frac{f[z_{3}, z_{2}] - f[z_{2}, z_{1}]}{z_{3} - z_{1}}$$

$$z_{2} = x_{1} \quad f[z_{2}] \quad f[z_{2}, z_{3}] = f'(x_{1}) \quad f[z_{2}, z_{3}, z_{4}] = \frac{f[z_{4}, z_{3}] - f[z_{3}, z_{2}]}{z_{4} - z_{2}}$$

$$z_{3} = x_{1} \quad f[z_{3}] \quad f[z_{3}, z_{4}] = \frac{f(z_{4}) - f(z_{3})}{z_{4} - z_{3}}$$

$$z_{4} = x_{2} \quad f[z_{4}] \quad f[z_{4}, z_{5}] = f'(x_{2})$$

$$z_{5} = x_{2} \quad f[z_{5}]$$

Tabela: Tabelă de diferențe divizate pentru noduri duble

Expresia erorii

Folosind teorema de medie pentru diferențe divizate obținem următoarea expresie a erorii pentru interpolarea Hermite:

Propoziția 25

Dacă $f \in C^{n+1}[a,b]$ există $\xi \in [a,b]$ astfel încât

$$(R_n f)(x) = \frac{u(x)}{(n+1)!} f^{(n+1)}(\xi), \tag{35}$$

unde

$$u(x) = (x - x_0)^{r_0 + 1} \dots (x - x_m)^{r_m + 1} = \prod_{k=0}^m (x - x_k)^{r_k + 1}.$$

Figura: Charles Hermite

Charles Hermite (1822-1901), matematician francez de frunte, membru al Academiei Franceze, cunoscut pentru lucrările sale în domeniul teoriei numerelor, algebră și analiză. A devenit faimos după ce a dat, în 1873, demonstrația transcendenței numărului e.

Exemplul 26

Pentru $f \in C^4[a, b]$, să se calculeze polinomul de interpolare Hermite cu nodurile duble $x_0 = a$ și $x_1 = b$ și sa se dea expresia erorii de interpolare.

Soluție. Avem $x_0 = a$, $r_0 = 1$, $x_1 = b$, $r_1 = 1$ și m = 1. Gradul polinomului va fi $n = 1 + r_0 + r_1 = 3$.

Tabela diferențelor divizate este:

$$z_3 = b \quad f(b)$$

Polinomul de interpolare va fi

$$(H_3f)(x) = f[z_0] + (x - z_0)f[z_0, z_1] + (x - z_0)(x - z_1)f[z_0, z_1, z_2] + (x - z_0)(x - z_1)(x - z_2)f[z_0, z_1, z_2, z_3]$$

$$= f(a) + (x - a)f'(a) + (x - a)^2 \frac{f(b) - f(a) - (b - a)f'(a)}{(b - a)^2} + (x - a)^2(x - b)\frac{(b - a)(f'(b) + f'(a)) - 2(f(b) - f(a))}{(b - a)^3}.$$

Restul

$$(R_3f)(x) = \frac{(x-a)^2(x-b)^2}{4!}f^{(4)}(\xi).$$

Bibliografie I

- E. Blum, Numerical Computing: Theory and Practice, Addison-Wesley, 1972.
- P. G. Ciarlet, *Introduction à l'analyse numérique matricielle et à l'optimisation*, Masson, Paris, Milan, Barcelone, Mexico, 1990.
- Gheorghe Coman, Analiză numerică, Editura Libris, Cluj-Napoca, 1995.
- W. Gautschi, Numerical Analysis. An Introduction, Birkhäuser, Basel, 1997.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sidney, 1996, disponibila prin www, http://www.nr.com/.

Bibliografie II

- D. D. Stancu, Analiză numerică Curs şi culegere de probleme, Lito UBB, Cluj-Napoca, 1977.
- J. Stoer, R. Burlisch, Introduction to Numerical Analysis, 2nd ed., Springer Verlag, 1992.
- R. Trîmbiţaş, Numerical Analysis in MATLAB, Cluj University Press, 2010