DM N°8 (pour le 27/01/2017)

Intégrales elliptiques.

PARTIE I : Moyenne arithmético-géométrique

Soient a et b deux réels strictement positifs. On considère les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par récurrence par

$$\begin{cases} a_0 = a \\ b_0 = b \end{cases} \text{ et } \forall n \in \mathbb{N} , \begin{cases} a_{n+1} = \frac{1}{2}(a_n + b_n) \\ b_{n+1} = \sqrt{a_n b_n} \end{cases}$$

- 1. Montrer que ces deux suites sont bien définies.
- **2.** Montrer que, pour tout $n \in \mathbb{N}^*$: $a_n \geqslant b_n$.
- **3.** Montrer que les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes. On notera M(a,b) leur limite commune.
- 4. Démontrer que, pour tous réels a, b, c strictement positifs :
 - **a)** M(b,a) = M(a,b);
 - **b)** M(ca, cb) = cM(a, b);
 - c) $M(a,b) = M\left(\frac{a+b}{2}, \sqrt{ab}\right)$.
- 5. Démontrer que $a_{n+1} b_{n+1} \underset{n \to \infty}{\sim} \frac{(a_n b_n)^2}{8M(a, b)}$.
- 6. Écrire une fonction Python M(a,b,eps) permettant de calculer M(a,b) à une précision eps donnée.

PARTIE II : Intégrales elliptiques

Pour $x \in [0; 1[$, on pose $\varphi(x) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1 - x^2 \sin^2 t}}$.

- 1. Montrer que φ est bien définie sur [0;1[. Pour la suite, on admettra que φ est continue sur [0;1[(les 5/2 peuvent le démontrer...).
- **2.** Montrer que φ est croissante sur [0;1[.
- 3. Pour $t \in \left[0; \frac{\pi}{2}\right]$, on pose $\sin \theta = \frac{(1+x)\sin t}{1+x\sin^2 t}$
 - a) Démontrer que cette relation permet de définir une application $u: \left[0; \frac{\pi}{2}\right] \longrightarrow \left[0; \frac{\pi}{2}\right]$ avec $\theta = u(t)$.
 - **b)** Démontrer que u est une bijection de classe \mathscr{C}^1 strictement monotone de $\left[0; \frac{\pi}{2}\right]$ sur $\left[0; \frac{\pi}{2}\right]$.
- 4. Démontrer :
 - a) $\cos \theta = \frac{\cos t}{1 + x \sin^2 t} \sqrt{1 x^2 \sin^2 t}$;

b)
$$\frac{1 - x \sin^2 t}{1 + x \sin^2 t} = \sqrt{1 - \frac{4x}{(1+x)^2} \sin^2 \theta}$$
;

c)
$$\varphi(x) = \frac{1}{1+x} \varphi\left(\frac{2\sqrt{x}}{1+x}\right)$$
.

- **5.** Soit $0 < b \leqslant a$ et soit : $I(a,b) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{a^2 \cos^2 t + b^2 \sin^2 t}}$.

 Montrer que $I(a,b) = \frac{1}{a} \varphi\left(\frac{\sqrt{a^2 b^2}}{a}\right)$, et en déduire : $I(a,b) = I\left(\frac{a+b}{2}, \sqrt{ab}\right)$.
- **6.** Les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ étant définies comme dans la première partie, montrer que $\forall n\in\mathbb{N}$, $I(a_n,b_n)=I(a,b)$.

En déduire :
$$I(a,b) = \frac{\pi}{2} \frac{1}{M(a,b)}$$
.

- 7. Démontrer que, pour tout $x \in [0;1[:\varphi(x)=\frac{\pi}{2}\frac{1}{M(1,\sqrt{1-x^2})}]$
- **8.** Application 1: On pose $K = \int_0^{\frac{\pi}{2}} \sin^{\frac{3}{2}} \theta \, d\theta$. Montrer que:

a)
$$K = \frac{1}{3} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}}$$
 (intégrer par parties).

b)
$$K = \frac{2}{3} \int_0^1 \frac{du}{\sqrt{1 - u^4}}$$
 (poser $u = \sqrt{\sin \theta}$).

c)
$$K = \frac{\pi}{3M(1,\sqrt{2})}$$
.

9. Application 2:

On considère la lemniscate de Bernouilli dont une représentation paramétrique est

$$\begin{cases} x(t) &= (\sqrt{\cos 2t}) \cos t \\ y(t) &= (\sqrt{\cos 2t}) \sin t \end{cases}.$$

- a) Étude et courbe représentative.
- b) Prouver que sa longueur L est donnée par

$$L = 4 \int_0^{\frac{\pi}{4}} \frac{\mathrm{d}\theta}{\sqrt{\cos 2\theta}} \, \cdot$$

c) A l'aide du changement de variable $\varphi = \operatorname{Arc}\cos(\sqrt{\cos 2\theta})$, montrer que :

$$L = \frac{2\pi}{M(1,\sqrt{2})} \cdot$$

