3 - Constructions

EE1030:Matrix Theory

Gajjarapu Satyanarayana AI24BTECH11009

Ouestion: 3.2.29

Draw a triangle *ABC* in which AB = 5 cm, BC = 6 cm and $\angle ABC = 60^{\circ}$. **Solution:**

Actual Name	Assigned Variable	Given values
AB	С	5 cm
BC	a	6 cm
∠ABC	$\angle B$	60°

Table 3.2.29.1 0: Variables and its values

In $\triangle ABC$, if **B** is considered as origin then the coordinates are represented by

$$\mathbf{A} = c \begin{pmatrix} \cos(\angle B) \\ \sin(\angle B) \end{pmatrix} \tag{0.1}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.2}$$

$$\mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{0.3}$$

Since $\angle B = 60^{\circ}$,

$$\cos\left(\angle B\right) = \frac{1}{2} \tag{0.4}$$

$$\sin\left(\angle B\right) = \frac{\sqrt{3}}{2} \tag{0.5}$$

Therefore using equations 0.1 and 0.3,

$$\mathbf{A} = 5 \left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \tag{0.6}$$

$$\mathbf{A} = \frac{5}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{0.7}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.8}$$

$$\mathbf{C} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \tag{0.9}$$

Fig. 0.1: Triangle ABC