Fundamentals of theory of computation I Test 2

Send your solutions as a single NEPTUNCODE.zip file to ktichler@inf.elte.hu or tichlerk@gmail.com

Exercise 1: Make a reduced grammar, according to the algorithm we learnt, generating the same language as the following type 2 grammar G. $G = \langle \{S, A, B, C, D, E\}, \{a, b\}, S, P \rangle$, where the set of production rules P is a follows.

$$S \rightarrow AaA \mid DaD$$

$$A \rightarrow SbDD \mid a$$

$$B \rightarrow aAE \mid BC$$

$$C \rightarrow \lambda \mid SA$$

$$D \rightarrow SbSA \mid B$$

$$E \rightarrow aBSCC$$

Exercise 2: Make a grammar in Chomsky normal form, according to the algorithm we learnt, generating the same language as the following type 2 grammar G. $G = \langle \{S, A, B\}, \{a, b\}, S, P \rangle$, where the set of production rules P is a follows.

$$S \rightarrow AA \mid AaBb$$
$$A \rightarrow aB \mid \lambda$$
$$B \rightarrow BaS \mid b$$

Exercise 3: Decide by CYK algorithm whether the word abcab can be generated in the grammar $G = \langle \{S, A, B, C, K\}, \{a, b, c\}, S, P \rangle$, where the set of production rules P is a follows.

$$S \rightarrow SS \mid BC \mid SB$$

$$A \rightarrow KK \mid a$$

$$B \rightarrow AB \mid b$$

$$C \rightarrow SB \mid c$$

$$K \rightarrow KB \mid c$$

Exercise 4: Let $|u|_t$ denote the number of t's in the word u. Make a pushdown automaton accepting the language $L = \{ a^n b^k \mid n \ge k \ge 1 \}$.

You are allowed to accept L either by accepting states or by empty store. The default is accepting by accepting states. State it clearly, if your solution accepts L by empty store.

Choose EXACTLY ONE from the following two exercises!

Exercise 5A: Let $|u|_t$ denote the number of t's in the word u. Prove by Myhill-Nerode Theorem, that $\{u \in \{a,b\}^* \mid |u|_a = |u|_b + 2\} \notin \mathcal{L}_3$.

OR

Exercise 5B: Prove by Bar-Hillel Lemma, that $\{(b^n a^n)^n \mid n \in \mathbb{N}\} \notin \mathcal{L}_2$.

Exercise 1: Make a reduced grammar, according to the algorithm we learnt, generating the same language as the following type 2 grammar G. $G = \langle \{S, A, B, C, D, E\}, \{a, b\}, S, P \rangle$, where the set of production rules P is a follows.

$$S \rightarrow AaA \mid DaD$$
 $A \rightarrow SbDD \mid a$
 $B \rightarrow aAE \mid BC$.
 $C \rightarrow \lambda \mid SA$
 $D \rightarrow SbSA \mid B$
 $E \rightarrow aBSCC$

Step 1.

 $A_1 = \{A, C\}$
 $A_2 = \{A, C, S\}$
 $A_3 = \{A, C, S, D\} = A_4 = Set$ of active nonterminals

Leave oil
 $S \rightarrow AaA \mid DaD$
 $A \rightarrow SbDD \mid a$
 $C \rightarrow \lambda \mid SA$
 $D \rightarrow SbSA$
 $R_1 = \{S\}$
 $R_2 = \{S, A, D\} = Set$ of reachable nonterminals
 $S \rightarrow AaA \mid DaD$
 $A \rightarrow SbDD \mid a$
 $S \rightarrow SbDD \mid a$

Exercise 2: Make a grammar in Chomsky normal form, according to the algorithm we learnt, generating the same language as the following type 2 grammar G. $G = \langle \{S, A, B\}, \{a, b\}, S, P \rangle$, where the set of production rules P is a follows.

$$S \rightarrow AA \mid AaBb$$

 $A \rightarrow aB \mid \lambda$
 $B \rightarrow BaS \mid b$
Step 1: introducing fake terminals
 $S \rightarrow AA \mid AXBY$
 $A \rightarrow XB \mid \lambda$
 $B \rightarrow BXS \mid b$
 $X \rightarrow a$
 $Y \rightarrow b$
Step 2: eliminating λ rules
 $U_1 = \{A, B\}$
 $U_2 = \{A, B\}, S\} = U_3 = U$

Exercise 3: Decide by CYK algorithm whether the word abcab can be generated in the grammar $G = \langle \{S, A, B, C, K\}, \{a, b, c\}, S, P \rangle$, where the set of production rules P is a follows.

$$\begin{split} S \rightarrow SS \,|\, BC \,|\, SB \\ A \rightarrow KK \,|\, a \\ B \rightarrow AB \,|\, b \\ C \rightarrow SB \,|\, c \\ K \rightarrow KB \,|\, c \end{split}$$

Since His contains S, aboab can be derived in the grammar

Exercise 4: Let $|u|_t$ denote the number of t's in the word u. Make a pushdown automaton accepting the language $L = \{ a^n b^k \mid n \geq k \geq 1 \}$.

You are allowed to accept L either by accepting states or by empty store. The default is accepting by accepting states. State it clearly, if your solution accepts L by empty store.

$$\langle f #, a_1b_3 \rangle$$
, $\{90.91.75\}$, $\{a_1b_3, M, 90.9 \}$, $\{90.91.75\}$, $\{a_1b_3, M, 90.9 \}$, $\{90.91.75\}$, $\{a_1b_3, M, 90.9 \}$, $\{a_$

#9. aaabb \Rightarrow #a9. aabb \Rightarrow # aaq aabb \Rightarrow # aaaq abb \Rightarrow # aaaq abb \Rightarrow # aaq abb \Rightarrow

Exercise 5A: Let $|u|_t$ denote the number of t's in the word u. Prove by Myhill-Nerode Theorem, that $\{u \in \{a,b\}^* \mid |u|_a = |u|_b + 2\} \notin \mathcal{L}_3$.

if $b^k \in La^n$, so $K \in h$ Land $La^n \in h$ and $La^n \in h$ are different Because $b^{n-1} \in La^n$, we know $a^n b^{n-2}$ has less b than a, $b^{n-2} \notin La^n$, because $n-2 \ge m$, $a^m b^{n-2}$ does not have less b than a. All, by Myhill-Nerode Theorem, fuela, b^* | $|u|a = |u|b + 23 \notin L_3$.