# Assignment -2

| Assignment Date     | 27 September 2022                       |  |  |  |  |  |
|---------------------|-----------------------------------------|--|--|--|--|--|
| Team ID             | PNT2022TMID14214                        |  |  |  |  |  |
| Project Name        | Al Based Discourse for Banking Industry |  |  |  |  |  |
| Student Name        | AVINASH.S                               |  |  |  |  |  |
| Student Roll Number | 111619104009                            |  |  |  |  |  |

# Question-1. Download dataset

#### **Solution:**

| wNuml | Customer Surname   | CreditSco | Geograph | Gender | Age | Tenure | Balance  | NumOfPr(Ha | sCrCard IsA | ctiveM | Estimated Exit | ted |
|-------|--------------------|-----------|----------|--------|-----|--------|----------|------------|-------------|--------|----------------|-----|
| 1     | 15634602 Hargrave  | 619       | France   | Female | 42  | 2      | 0        | 1          | 1           | 1      | 101348.9       | 1   |
| 2     | 15647311 Hill      | 608       | Spain    | Female | 41  | 1      | 83807.86 | 1          | 0           | 1      | 112542.6       | 0   |
| 3     | 15619304 Onio      | 502       | France   | Female | 42  | 8      | 159660.8 | 3          | 1           | 0      | 113931.6       | 1   |
| 4     | 15701354 Boni      | 699       | France   | Female | 39  | 1      | 0        | 2          | 0           | 0      | 93826.63       | 0   |
| 5     | 15737888 Mitchell  | 850       | Spain    | Female | 43  | 2      | 125510.8 | 1          | 1           | 1      | 79084.1        | 0   |
| 6     | 15574012 Chu       | 645       | Spain    | Male   | 44  | 8      | 113755.8 | 2          | 1           | 0      | 149756.7       | 1   |
| 7     | 15592531 Bartlett  | 822       | France   | Male   | 50  | 7      | 0        | 2          | 1           | 1      | 10062.8        | 0   |
| 8     | 15656148 Obinna    | 376       | Germany  | Female | 29  | 4      | 115046.7 | 4          | 1           | 0      | 119346.9       | 1   |
| 9     | 15792365 He        | 501       | France   | Male   | 44  | 4      | 142051.1 | 2          | 0           | 1      | 74940.5        | 0   |
| 10    | 15592389 H?        | 684       | France   | Male   | 27  | 2      | 134603.9 | 1          | 1           | 1      | 71725.73       | 0   |
| 11    | 15767821 Bearce    | 528       | France   | Male   | 31  | 6      | 102016.7 | 2          | 0           | 0      | 80181.12       | 0   |
| 12    | 15737173 Andrews   | 497       | Spain    | Male   | 24  | 3      | 0        | 2          | 1           | 0      | 76390.01       | 0   |
| 13    | 15632264 Kay       | 476       | France   | Female | 34  | 10     | 0        | 2          | 1           | 0      | 26260.98       | 0   |
| 14    | 15691483 Chin      | 549       | France   | Female | 25  | 5      | 0        | 2          | 0           | 0      | 190857.8       | 0   |
| 15    | 15600882 Scott     | 635       | Spain    | Female | 35  | 7      | 0        | 2          | 1           | 1      | 65951.65       | 0   |
| 16    | 15643966 Goforth   | 616       | Germany  | Male   | 45  | 3      | 143129.4 | 2          | 0           | 1      | 64327.26       | 0   |
| 17    | 15737452 Romeo     | 653       | Germany  | Male   | 58  | 1      | 132602.9 | 1          | 1           | 0      | 5097.67        | 1   |
| 18    | 15788218 Henderso  | 549       | Spain    | Female | 24  | 9      | 0        | 2          | 1           | 1      | 14406.41       | 0   |
| 19    | 15661507 Muldrow   | 587       | Spain    | Male   | 45  | 6      | 0        | 1          | 0           | 0      | 158684.8       | 0   |
| 20    | 15568982 Hao       | 726       | France   | Female | 24  | 6      | 0        | 2          | 1           | 1      | 54724.03       | 0   |
| 21    | 15577657 McDonald  | 732       | France   | Male   | 41  | 8      | 0        | 2          | 1           | 1      | 170886.2       | 0   |
| 22    | 15597945 Dellucci  | 636       | Spain    | Female | 32  | 8      | 0        | 2          | 1           | 0      | 138555.5       | 0   |
| 23    | 15699309 Gerasimo  | 510       | Spain    | Female | 38  | 4      | 0        | 1          | 1           | 0      | 118913.5       | 1   |
| 24    | 15725737 Mosman    | 669       | France   | Male   | 46  | 3      | 0        | 2          | 0           | 1      | 8487.75        | 0   |
| 25    | 15625047 Yen       | 846       | France   | Female | 38  | 5      | 0        | 1          | 1           | 1      | 187616.2       | 0   |
| 26    | 15738191 Maclean   | 577       | France   | Male   | 25  | 3      | 0        | 2          | 0           | 1      | 124508.3       | 0   |
| 27    | 15736816 Young     | 756       | Germany  | Male   | 36  | 2      | 136815.6 | 1          | 1           | 1      | 170042         | 0   |
| 28    | 15700772 Nebechi   | 571       | France   | Male   | 44  | 9      | 0        | 2          | 0           | 0      | 38433.35       | 0   |
| 29    | 15728693 McWillian | 574       | Germany  | Female | 43  | 3      | 141349.4 | 1          | 1           | 1      | 100187.4       | 0   |
| 30    | 15656300 Lucciano  | 411       | France   | Male   | 29  | 0      | 59697.17 | 2          | 1           | 1      | 53483.21       | 0   |
| 31    | 15589475 Azikiwe   | 591       | Spain    | Female | 39  | 3      | 0        | 3          | 1           | 0      | 140469.4       | 1   |
| 32    | 15706552 Odinakac  | 533       | France   | Male   | 36  | 7      | 85311.7  | 1          | 0           | 1      | 156731.9       | 0   |
| 33    | 15750181 Sanderso  | r 553     | Germany  | Male   | 41  | 9      | 110112.5 | 2          | 0           | 0      | 81898.81       | 0   |
| 34    | 15659428 Maggard   | 520       | Spain    | Female | 42  | 6      | 0        | 2          | 1           | 1      | 34410.55       | 0   |
| 35    | 15732963 Clements  | 722       | Spain    | Female | 29  | 9      | 0        | 2          | 1           | 1      | 142033.1       | 0   |
| 36    | 15794171 Lombardo  | 475       | France   | Female | 45  | 0      | 134264   | 1          | 1           | 0      | 27822.99       | 1   |
| 37    | 15788448 Watson    | 490       | Spain    | Male   | 31  | 3      | 145260.2 | 1          | 0           | 1      | 114066.8       | 0   |
| 38    | 15729599 Lorenzo   | 804       | Spain    | Male   | 33  | 7      | 76548.6  | 1          | 0           | 1      | 98453.45       | 0   |
| 39    | 15717426 Armstron  | 850       | France   | Male   | 36  | 7      | 0        | 1          | 1           | 1      | 40812.9        | 0   |
| 40    | 15585768 Cameron   | 582       | Germany  | Male   | 41  | 6      | 70349.48 | 2          | 0           | 1      | 178074         | 0   |

#### Question-2. Load the dataset

#### **Solution:**

import numpy as np import
pandas as pd import seaborn
as sns import
matplotlib.pyplot as plt import
sklearn
data = pd.read\_csv(r'Churn\_Modelling.csv') df.head

| 0    |        | 1     |               |       | Hargrave     |         | 619   |             | Female |    | 0 1 2 | Gender | c |
|------|--------|-------|---------------|-------|--------------|---------|-------|-------------|--------|----|-------|--------|---|
| 1    |        | 2     |               |       |              |         |       | Spain       |        |    |       |        |   |
| 2    |        |       | 15619         |       | Onio         |         | 502   |             | Female |    |       |        |   |
| 3    |        |       | 15701         |       |              |         | 699   |             | Female |    |       |        |   |
| 4    |        | 5     |               |       | Mitchell     |         | 850   |             |        |    |       |        |   |
| 20   |        | 563   | Section Visit |       |              |         |       | 100 100 100 |        |    |       |        |   |
| 9995 |        | 996   |               | 220   | <br>Obijiaku |         | 771   |             | Male   |    |       |        |   |
| 9995 |        |       |               |       | Johnstone    |         | 516   |             | Male   |    |       |        |   |
| 9990 |        |       |               |       | Liu          |         | 709   |             |        |    |       |        |   |
|      |        |       | 15584         |       |              |         |       |             |        |    |       |        |   |
| 9998 |        |       |               |       | Sabbatini    |         |       | Germany     |        |    |       |        |   |
| 9999 | 10     | 999   | 15628         | 319   | Walker       |         | 792   | France      | Female | 28 |       |        |   |
|      | Tenure |       |               | NumO  | fProducts    | HasCrCa | ird ] | [sActiveMer | mber \ |    |       |        |   |
| 0    | 2      |       | 0.00          |       | 1            |         | 1     |             | 1      |    |       |        |   |
| 1    | 1      | 83    | 807.86        |       | 1            |         | 0     |             | 1      |    |       |        |   |
| 2    | 8      | 159   | 660.80        |       | 3            |         | 1     |             | 0      |    |       |        |   |
| 3    | 1      |       | 0.00          |       | 2            |         | 0     |             | 0      |    |       |        |   |
| 4    | 2      | 125   | 510.82        |       | 1            |         | 1     |             | 1      |    |       |        |   |
|      |        |       |               |       |              |         |       |             |        |    |       |        |   |
| 9995 |        |       | 0.00          |       | 2            |         | 1     |             | 0      |    |       |        |   |
| 9996 |        |       | 369.61        |       | 1            |         | 1     |             | 1      |    |       |        |   |
| 9997 |        |       | 0.00          |       | 1            |         | 0     |             | 1      |    |       |        |   |
| 9998 |        |       | 075.31        |       | 2            |         | 1     |             | 0      |    |       |        |   |
| 9999 | 4      | 136   | 142.79        |       | 1            |         | 1     |             | 0      |    |       |        |   |
|      | Estima | tedSa | lary E        | xited |              |         |       |             |        |    |       |        |   |
| 0    |        | 10134 | 8.88          | 1     |              |         |       |             |        |    |       |        |   |
| 1    |        | 11254 | 2.58          | 0     |              |         |       |             |        |    |       |        |   |
| 2    |        | 11393 | 1.57          | 1     |              |         |       |             |        |    |       |        |   |
| 3    |        | 9382  | 6.63          | 0     |              |         |       |             |        |    |       |        |   |
| 4    |        | 7908  | 4.10          | 0     |              |         |       |             |        |    |       |        |   |
|      |        |       |               |       |              |         |       |             |        |    |       |        |   |
| 9995 |        |       | 0.64          | 0     |              |         |       |             |        |    |       |        |   |
| 9996 |        |       | 9.77          | 0     |              |         |       |             |        |    |       |        |   |
| 9997 |        |       | 5.58          | 1     |              |         |       |             |        |    |       |        |   |
| 9998 |        |       | 8.52          | 1     |              |         |       |             |        |    |       |        |   |
| 9999 |        | 3819  | 0.78          | 0     |              |         |       |             |        |    |       |        |   |

**Question-3.** Perform Below Visualizations.

# 3.1 Univariate Analysis

#### **Solution:**

# sns.displot(data['CreditScore'])



# sns.histplot(data['CreditScore'])



# sns.boxplot(x = data['CreditScore'])



## sns.distplot(data['Age'])



# sns.histplot(data['Age'])





# 3.2 Bivariate Analysis

#### **Solution:**

plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')



plt.figure(figsize=(10,10))

# sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')



plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')



plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])



plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])



# sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')



# 3.3 Multivariate Analysis

Solution: sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')



sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])



# sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])



sns.pairplot(data)



Question-4. Perform descriptive statistics on the dataset.

#### Solution: data.mean(numeric\_only

#### = True)

RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

#### data.median(numeric\_only = True)

5.000500e+03 RowNumber CustomerId 1.569074e+07 CreditScore 6.520000e+02 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.0000000+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00

dtype: float64

#### data['CreditScore'].mode()

0 850 dtype: int64

#### data['EstimatedSalary'].mode()

0 24924.92 dtype: float64

# data['HasCrCard'].unique()

array([1, 0])

#### data['Tenure'].unique()

array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

## data.std(numeric\_only=True)

RowNumber 2886.895680 CustomerId 71936.186123 CreditScore 96.653299 10.487806 Age Tenure 2.892174 Balance 62397.405202 NumOfProducts 0.581654 HasCrCard 0.455840 IsActiveMember 0.499797 EstimatedSalary 57510.492818 Exited 0.402769 dtype: float64

# data.describe()

|       | RowNumber   | CustomerId   | CreditScore  | Age          | Tenure       | Balance                     | NumOfProducts | HasCrCard   | IsActiveMember | EstimatedSalary | Exited       |
|-------|-------------|--------------|--------------|--------------|--------------|-----------------------------|---------------|-------------|----------------|-----------------|--------------|
| count | 10000.00000 | 1.000000e+04 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000                | 10000.000000  | 10000.00000 | 10000.000000   | 10000.000000    | 10000.000000 |
| mean  | 5000.50000  | 1.569094e+07 | 650.528800   | 38.921800    | 5.012800     | 76485.889288                | 1.530200      | 0.70550     | 0.515100       | 100090.239881   | 0.203700     |
| std   | 2886.89568  | 7.193619e+04 | 96.653299    | 10.487806    | 2.892174     | 62397.405202                | 0.581654      | 0.45584     | 0.499797       | 57510.492818    | 0.402769     |
| min   | 1.00000     | 1.556570e+07 | 350.000000   | 18.000000    | 0.000000     | 0.000000                    | 1.000000      | 0.00000     | 0.000000       | 11.580000       | 0.000000     |
| 25%   | 2500.75000  | 1.562853e+07 | 584.000000   | 32.000000    | 3.000000     | 0.000000                    | 1.000000      | 0.00000     | 0.000000       | 51002.110000    | 0.000000     |
| 50%   | 5000.50000  | 1.569074e+07 | 652.000000   | 37.000000    | 5.000000     | 97198.540 <mark>0</mark> 00 | 1.000000      | 1.00000     | 1.000000       | 100193.915000   | 0.000000     |
| 75%   | 7500.25000  | 1.575323e+07 | 718.000000   | 44.000000    | 7.000000     | 127644.240000               | 2.000000      | 1.00000     | 1.000000       | 149388.247500   | 0.000000     |
| max   | 10000.00000 | 1.581569e+07 | 850.000000   | 92.000000    | 10.000000    | 250898.090000               | 4.000000      | 1.00000     | 1.000000       | 199992.480000   | 1.000000     |

# data['Tenure'].value\_counts()

Name: Tenure, dtype: int64

**Question-5.** Handle the Missing values.

Solution: data.isnull().any()

| RowNumber       | False |
|-----------------|-------|
| CustomerId      | False |
| Surname         | False |
| CreditScore     | False |
| Geography       | False |
| Gender          | False |
| Age             | False |
| Tenure          | False |
| Balance         | False |
| NumOfProducts   | False |
| HasCrCard       | False |
| IsActiveMember  | False |
| EstimatedSalary | False |
| Exited          | False |
| dtype: bool     |       |

# data.isnull().sum()

| 0 |
|---|
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
|   |
|   |

**Question-6.** Find the outliers and replace the outliers

Solution: sns.boxplot(data['CreditScore']) #Outlier detection

- box plot



fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

# x-axis label
ax.set\_xlabel('Balance')

# y-axis label ax.set\_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])





# from scipy import stats #Outlier detection - zscore zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore) print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0.332952
1
       0.447540
      1.551761
2
      0.500422
3
      2.073415
9995 1.250458
9996
     1.405920
      0.604594
9997
     1.260876
9998
9999
      1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

#### q = data.quantile([0.75,0.25]) q

|      | RowNumber | CustomerId  | Surname | CreditScore | Geography | Gender | Age  | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|------|-----------|-------------|---------|-------------|-----------|--------|------|--------|-----------|---------------|-----------|----------------|-----------------|--------|
| 0.75 | 7500.25   | 15753233.75 | 2238.25 | 718.0       | 1.0       | 1.0    | 44.0 | 7.0    | 127644.24 | 2.0           | 1.0       | 1.0            | 149388.2475     | 0.0    |
| 0.25 | 2500.75   | 15628528.25 | 773.75  | 584.0       | 0.0       | 0.0    | 32.0 | 3.0    | 0.00      | 1.0           | 0.0       | 0.0            | 51002.1100      | 0.0    |

# iqr = q.iloc[0] - q.iloc[1] iqr

| RowNumber       | 4999.5000   |
|-----------------|-------------|
| CustomerId      | 124705.5000 |
| Surname         | 1464.5000   |
| CreditScore     | 134.0000    |
| Geography       | 1.0000      |
| Gender          | 1.0000      |
| Age             | 12.0000     |
| Tenure          | 4.0000      |
| Balance         | 127644.2400 |
| NumOfProducts   | 1.0000      |
| HasCrCard       | 1.0000      |
| IsActiveMember  | 1.0000      |
| EstimatedSalary | 98386.1375  |
| Exited          | 0.0000      |
| dtype: float64  |             |

# u = q.iloc[0] + (1.5\*iqr) u

```
1.499950e+04
 RowNumber
 CustomerId
                  1.594029e+07
                  4.435000e+03
 Surname
 CreditScore
                  9.190000e+02
 Geography
                  2.500000e+00
 Gender
                  2.500000e+00
                 6.200000e+01
 Age
 Tenure
                  1.300000e+01
 Balance
                  3.191106e+05
 NumOfProducts
                  3.500000e+00
 HasCrCard
                  2.500000e+00
 IsActiveMember
                 2.500000e+00
 EstimatedSalary
                 2.969675e+05
 Exited
                  0.000000e+00
 dtype: float64
I = q.iloc[1] - (1.5*iqr)
 RowNumber
                   -4.998500e+03
 CustomerId
                   1.544147e+97
 Surname
                   -1.423000e+03
 CreditScore
                   3.830000e+02
 Geography
                   -1.500000e+00
 Gender
                   -1.500000e+00
                   1.400000e+01
 Age
 Tenure
                   -3.000000e+00
 Balance
                   -1.914664e+05
 NumOfProducts
                   -5.000000e-01
 HasCrCard
                  -1.500000e+00
 IsActiveMember
                   -1.500000e+00
 EstimatedSalary -9.657710e+04
 Exited
                    0.000000e+00
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
igr = Q3 - Q1 print(igr) upper=Q3 + 1.5 * igr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper)) count
= count + np.size(np.where(data['EstimatedSalary'] < lower))
print('No. of outliers : ', count)
98386.1375
 No. of outliers: 0
data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore']) sns.boxplot(data['CreditScore'])
```



```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma lower
= data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper) print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
   Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1 upper=Q3 +

1.5 * iqr lower=Q1 - 1.5 *

iqr

count = np.size(np.where(data[i] > upper)) count

= count + np.size(np.where(data[i] < lower))

print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in Balance : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

#### **Solution:**

from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder() oneh = OneHotEncoder() data['Surname'] = le.fit\_transform(data['Surname']) data['Gender'] = le.fit\_transform(data['Gender']) data['Geography'] = le.fit\_transform(data['Geography']) data.head()

|   | RowNumber | CustomerId | Surname | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|---|-----------|------------|---------|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|
| 0 | 1         | 15634602   | 1115    | 619         | 0         | 0      | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1      |
| 1 | 2         | 15647311   | 1177    | 608         | 2         | 0      | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0      |
| 2 | 3         | 15619304   | 2040    | 502         | 0         | 0      | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1      |
| 3 | 4         | 15701354   | 289     | 699         | 0         | 0      | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 0      |
| 4 | 5         | 15737888   | 1822    | 850         | 2         | 0      | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0      |

Question-8. Split the data into dependent and independent variables split the data in X and Y

#### **Solution:**

# x # independent values ( inputs) x = data.iloc[:, 0:13]

|       | RowNumber | CustomerId | Surname | CreditScore | Geography | Gender | Age  | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary |
|-------|-----------|------------|---------|-------------|-----------|--------|------|--------|-----------|---------------|-----------|----------------|-----------------|
| 0     | 1         | 15634602   | 1115    | 619         | 0         | 0      | 42   | 2      | 0.00      | 1             | 1         | 1              | 101348.88       |
| 1     | 2         | 15647311   | 1177    | 608         | 2         | 0      | 41   | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       |
| 2     | 3         | 15619304   | 2040    | 502         | 0         | 0      | 42   | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       |
| 3     | 4         | 15701354   | 289     | 699         | 0         | 0      | 39   | 1      | 0.00      | 2             | 0         | 0              | 93826.63        |
| 4     | 5         | 15737888   | 1822    | 850         | 2         | 0      | 43   | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        |
| - 675 |           | 1855       |         | 100         | 1977      | ere.   | 77.5 | 107    | 1777      | 1272          | 771       | (50)           | 1875            |
| 9995  | 9996      | 15606229   | 1999    | 771         | 0         | 1      | 39   | 5      | 0.00      | 2             | 1         | 0              | 96270.64        |
| 9996  | 9997      | 15569892   | 1336    | 516         | 0         | 1      | 35   | 10     | 57369.61  | 1             | 1         | 1              | 101699.77       |
| 9997  | 9998      | 15584532   | 1570    | 709         | 0         | 0      | 36   | 7      | 0.00      | 1             | 0         | 1              | 42085.58        |
| 9998  | 9999      | 15682355   | 2345    | 772         | 1         | 1      | 42   | 3      | 75075.31  | 2             | 1         | 0              | 92888.52        |
| 9999  | 10000     | 15628319   | 2751    | 792         | 0         | 0      | 28   | 4      | 130142.79 | 1             | 1         | 0              | 38190.78        |
|       |           |            |         |             |           |        |      |        |           |               |           |                |                 |

10000 rows × 13 columns

y # dependent values (output) y = data['Exited']

```
0
       1
1
        0
2
        1
3
        0
4
        0
9995
       0
9996
        0
9997
        1
9998
       1
9999
Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

#### **Solution:**

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x\_scaled = sc.fit\_transform(x) x\_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

#### **Solution:**

from sklearn.model\_selection import train\_test\_split x\_train, x\_test, y\_train, y\_test = train\_test\_split(x\_scaled, y, test\_size = 0.3, random\_state = 0)

x\_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

#### x\_train.shape

(7000, 13)

#### x\_test

```
array([[ 1.52229946, -1.04525042,  1.39834429, ...,  0.64609167,  0.97024255,  1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ...,  0.64609167,  -1.03067011,  0.49753166],
[-0.90118604, -0.7932923,  0.41271742, ...,  0.64609167,  0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448,  0.6868966, ...,  0.64609167,  0.97024255,  1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ...,  0.64609167,  0.97024255, -0.50846777],
[ 0.08088677, -1.38538833,  1.11707427, ...,  0.64609167,  0.97024255, -1.15342685]])
```

#### x\_test.shape

(3000, 13)

#### y\_train

```
7681
      1
9031
      0
3691
      0
202
      1
5625
9225
      0
4859
      0
3264
      0
9845
      0
2732
Name: Exited, Length: 7000, dtype: int64
```

# y\_test

```
9394
        0
898
       1
2398
      0
5906
        0
2343
        0
4004
7375
       0
9307
       0
8394
       0
5233
       1
```

Name: Exited, Length: 3000, dtype: int64