《数字图像处理》复习提纲

1、图像的分类

模拟图像、数字图像

2、数字图像分类

按照波段数: 单波段、多波段和超波段图像 **按灰度级数:** 二值图像、灰度图像、彩色图像

3、依据抽象的程度和研究方法等不同, 数字图像处理可以分为几个层次

4、图像数字化过程,量化级与图像质量的关系

图像数字化包括**采样和量化**两个过程。

量化级数和图像质量是正相关关系,图像质量会随着量化级数的增多而变好。

5、数字图像的最小单位,以及属性

数字图像的最小单位是**像素**,像素的**位置和灰度**就是像素的属性。

6、数字图像的描述

一幅图像可以被看成是空间各个座标点上强度的集合。它的最普遍的数学表达式为

$$I = f(x, y, z, \lambda, t)$$

其中x,y,z是空间座标, λ 是波长,t是时间,I是图像的强度。

三维静态彩色图像: $I = f(x, y, z, \lambda)$ 二维动态彩色图像: $I = f(x, y, \lambda, t)$ 动态灰度图像: I = f(x, y, t)静止图像: I = f(x, y, t)

7、视觉细胞

锥状细胞: 既能分辨光的强弱,又具有辨色能力。完成白天的视觉过程,称为**明视觉**。 **杆状细胞**: 可以分辨光的强弱,不具有辨色能力。完成夜晚的视觉过程,称为**暗视觉**。 所以,夜晚看到的景物只有黑白、浓淡之分,而看不清颜色的差别。

8、数字图像正交变换的目的

- 1、使图像处理问题简化;
- 2、有利于图像特征提取;
- 3、有助于从概念上增强对图像信息的理解。

9、傅里叶变换

特点:

- 1、频谱的直流成分为F(0,0),说明在频谱原点的傅里叶变换F(0,0)等于图像的平均灰度级;
- 2、幅度谱|F(u,v)|关于原点对称,即F(u,v)=F(-u,-v);
- 3、图像f(x,y)平移后,幅度谱不发生变化,仅有相位发生变化。

性质:

线性、比例性质、周期性、共轭对称性、分配性、空域移位特性、频域移位特性……

频谱中心化:

对一幅图像进行傅立叶变换,变换中心在频谱图左上角,高频成分位于中心,低频成分位于周围。利用移位将变换的原点移到频谱图中心,低频成分位于中心,高频成分位于周围,有助于观察频谱。

10、沃尔什、哈达玛变换

二维沃尔什变换的矩阵形式为

$$W = \frac{1}{N^2} GfG$$

式中,G为N阶沃尔什变换的核矩阵。

离散沃尔什变换(DWT):

沃尔什-哈达玛变换(WHT):

按哈达玛排列的沃尔什函数:
$$N=4$$
: $G=\frac{1}{2}\begin{bmatrix}1&1&1&1\\1&-1&1&-1\\1&1&-1&-1\\1&-1&-1&1\end{bmatrix}$ $N=2$: $G=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}$

例题:

2

11、图像可看成多种频率的合成,低频和高频在图像中的作用

图像的**细节和轮廓**主要位于**高频**部分,高通滤波可以对图像进行**边缘锐化**处理。 图像的**动态范围**主要取决于**低频**部分,低通滤波可以对图像进行**平滑去噪**处理。

12、直方图定义,特点、计算

定义:

灰度直方图反映的是一幅图像中各灰度级像素出现的频率。

特点:

- 1、灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像素的位置信息;
- 2、一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图;
- 3、一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。

例题:

绘制出下列图像的直方图。

13、掌握线性变换(不同斜率、截距对变换的影响)

灰度变换的分类:线性变换、非线性变换。

原始图像: f(i,j), 灰度范围: [a,b], $r \in [a,b]$;

变换后图像: g(i,j), 灰度范围: [a',b'], $s \in [a',b']$

变换存在以下关系:

$$g(i,j) = a' + \frac{b' - a'}{b - a} (f(i,j) - a)$$

斜率 $\frac{b'-a'}{b-a}>1$ 即b'-a'>b-a,使得图像**灰度范围增大**,即**对比度增大**,图像变清晰;

斜率 $\frac{b'-a'}{b-a}$ < 1即b'-a' < b-a,使得图像**灰度范围缩小**,即**对比度减小**,图像变模糊。

截距 $\frac{a'b-ab'}{b-a} > 0$ 即a'b-ab' > b-a,使得图像**变亮**;

截距 $\frac{a'b-ab'}{b-a} < 0$ 即a'b-ab' < b-a,使得图像**变暗**;

例题:

试给出将灰度范围(4,7)变换成(0,7)的变换方程。

$$g = a' + \frac{b' - a'}{b - a}(f - a) = 0 + \frac{7 - 0}{7 - 4}(f - 4) = \frac{7}{3}(f - 4)$$

14、掌握非线性变换(直方图均衡)计算

直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

举例说明直方图均衡过程:

r_k	n _k	$p_{\rm r}(r_{\rm k})=n_{\rm k}/n$	s _{ki†}	s _k #	$n_{\sf sk}$	$p_{\mathbf{k}}(\mathbf{s})$
r ₀ =0	790	0.19	0.19	1/7	790	0.19
r ₁ =1/7	1023	0.25	0.44	3/7	1023	0.25
r ₂ =2/7	850	0.21	0.65	5/7	850	0.21
r ₃₌ 3/7	656	0.16	0.81	6/7		
r ₄ =4/7	329	0.08	0.89	6/7	985	0.24
$r_5 = 5/7$	245	0.06	0.95	1		
r ₆ =6/7	122	0.03	0.98	1		
r ₇ =1	81	0.02	1.00	1	448	0.11

- ① 列出 r_k , 即灰度级k的灰度值;
- ② 列出n_k, 即灰度级k的像素数量;
- ③ 计算 $p_r(r_k) = \frac{n_k}{n}$,即灰度级k的概率,n为图像的总像素量;
- ④ 计算 S_{k+} ,即累计概率;
- ⑤ 计算 $S_{k op} = \frac{INT\left[S_{k op} imes (M-1) + 0.5\right]}{(M-1)}$,即均衡后各像素的灰度值,其中M为灰度级数;
- ⑥ 将相同 S_{k+} 对应的 n_k 合并,得到 S_{nk} ,即均衡后各灰度级的灰度值;
- ⑦ 将相同 $S_{k\dot{H}}$ 对应的 $p_r(r_k)$ 合并,得到 $p_k(s)$,即均衡后各灰度级的概率;
- ⑧ 按题目要求画出新的直方图。

15、掌握平滑作用

抑制噪声改善图像质量所进行的处理称图像平滑或者去噪。

16、掌握均值计算

邻域平均法:

以(i,j)点为中心取一个 $N\times N$ 的窗口(N=3,5,7,...),窗口内像素组成的点集以s来表示,经邻域平均法 滤波后,像素(i,j)的输出为 $g(i,j)=\frac{1}{M}\sum_{i,j\in s}f(i,j)$ 。

其中、s为(i,j)邻域内像素坐标的集合、M表示集合s内像素的总数。

注意: 原点在边界上时, 若题目没有说明, 需要复制边界。(后面几种方法同样需要)

例题:

以 $H = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 为模板对下图进行均值滤波处理,请写出处理结果 (向下取整)。(以(1,1)点作示例)

$$g(2,2) = INT \left[\frac{1}{10} (1 \times 1 + 1 \times 1 + 1 \times 7 + 1 \times 1 + 2 \times 1 + 1 \times 7 + 1 \times 1 + 1 \times 1 + 1 \times 1) \right] = INT(2.2) = 2$$

						1	1	7	1	8	3	3		
1	7	1	8	3		1	1	7	1	8	3	3		2
1	1	1	5	1		1	1	1	1	5	1	1		
1	1	5	5	5	\rightarrow	1	1	1	5	5	5	5	\rightarrow	
2	2	5	5	5		2	2	2	5	5	5	5		
8	1	2	4	1		8	8	1	2	4	1	1		
						8	8	1	2	4	1	1	1	

17、掌握中值计算、特点

计算方法:

用邻域窗口内所有灰度的中值代替窗口内原点处的像素值(非线性)

特点:

当模板窗口内噪声点的个数大于窗口宽度的一半时,中值滤波的效果不好。

例题。

如图为一幅16级灰度的图像,请写出中值滤波的 3×3 滤波器对下图的滤波结果(只处理灰色区域,不处理边界)。(以(2,2)点作示例)

将模板内的所有数值从小到大排列,取中值。

1,1,1,1,2,2,2,2,15

1	2	2	2	3
1	15	1	2	2
2	1	2	0	3
0	2	2	3	1
3	2	0	2	2

	1	2	2	2	3
			_		
	1	2			2
\rightarrow	2				3
	0				1
	3	2	0	2	2

1	2	2	2	3
1	2	2	2	2
2	2	2	2	3
0	2	2	2	1
3	2	0	2	2

18、掌握锐化作用、特点、计算

作用:

图像锐化处理的目的是加强图像中景物的边缘和轮廓,使模糊图像变得更清晰。

特点:

- 1、只对图像边界的像素起作用, 在灰度均匀的区域上像元灰度不变;
- 2、在斜坡底或低灰度侧形成"下冲"; 而在斜坡顶或高灰度侧形成"上冲";
- 3、 α 起调节锐化程度的作用。 α 越大,锐化越强烈,边界轮廓越重。但是并不是 α 越大越好;
- 4、锐化也对噪声起作用,锐化图像的同时也锐化了噪声,所以锐化也不是越强烈越好,即 α 不宜太大;
- 5、系数相加等于1。

计算:

四邻点模板:

-α

1+4α

0

-α

八邻点模板:

-α	-α	-α
-α	1+8α	-α
-α	-α	-α

注意: 若计算结果超过灰度范围(如灰度范围为[0,255]),负值取最小值,正值取最大值。

例题:

用锐化因子 $\alpha = 1$ 的四邻点模板对所给图像进行锐化(不处理边界)。(以(2,2)点作示例)

锐化因子 $\alpha = 1$ 的四邻点模板:

0	-1	0
-1	5	-1
0	-1	0

 $g(2,2) = 0 \times 1 - 1 \times 2 + 0 \times 3 - 1 \times 2 + 5 \times 1 - 1 \times 2 + 0 \times 3 - 1 \times 0 + 0 \times 8 = -1$ (\mathbb{R}^{0})

1	2	З	2	1	
2	1	2	6	2	
3	0	8	7	6	
1	2	7	8	6	
2	3	2	6	9	

	1	2	3	2	1
	2	-1			2
\rightarrow	3				6
	1				6
	2	3	2	6	9

	1	2	3	2	1
	2	0			2
>	3				6
	1				6
	2	3	2	6	9

19、掌握邻点、顶点、四邻点、八邻点

顶点(不一定在中间):

0

0

0

+

0

0

0

0

四邻点:

0	1	0
1	+	1
0	1	0

四对角邻点:

1	0	1
0	+	0
1	0	1

八邻点:

1	1	1
1	+	1
1	1	1

20、掌握勾边(4种算法)

1、梯度法:
$$\Delta f = |f(x,y) - f(x+1,y)| + |f(x,y) - f(x,y+1)|$$

2、Roberts 算子:
$$G_x = \begin{bmatrix} \mathbf{1} & 0 \\ 0 & -1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} \mathbf{0} & 1 \\ -1 & 0 \end{bmatrix}$

3、Prewitt 算子:
$$G_x = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix}$

4、Sobel 算子:
$$G_x = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix}$

计算:

题目要求水平方向则 $\Delta f(x,y) = |G_x|$,要求垂直方向则 $\Delta f(x,y) = |G_y|$,否则 $\Delta f(x,y) = |G_x| + |G_y|$ 。

黑底白边:
$$g(x,y) = \begin{cases} 1, \Delta f(x,y) \ge T \\ 0, \Delta f(x,y) < T \end{cases}$$

白底黑边:
$$g(x,y) = \begin{cases} 0, \Delta f(x,y) \ge T \\ 1, \Delta f(x,y) < T \end{cases}$$

例题:

用梯度算子对所给图像进行勾边处理(白底黑边), T=18。(以(1,1)点作示例)

$$\Delta f(1,1) = |f(1,1) - f(2,1)| + |f(1,1) - f(1,2)| = |10 - 5| + |10 - 20| = 15 < 18$$

$$\therefore g(1,1) = 1$$

					10	20	00	٥٢	٥٢					
10	20	20	25		10	20	20	25	25		1	1	1	1
10	20				5	5	10	15	15			_	1	
5	5	10	15)	J	10	13	10		1	0	0	1
		10	10	\rightarrow	15	20	25	10	10	\rightarrow		U	U	
15	20	25	10		13	20	25	10	10	ĺ	1	0	0	1
13	20	23	10		6	6	5	5	5			U		
6	6	5	5		0	O	5	5	5		1	1	1	1
0	0))		6	6	E	E	_		1	_ T	1	1
			/_		6	6	5	5	5					

21、频域中增强

频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱,再 经逆傅立叶变换得到边缘锐化的图像。

常用的高通滤波器有:

理想高通滤波器、布特沃斯高通滤波器、指数高通滤波器、梯形高通滤波器

22、图像保真度准则分类、特点

保真度: 描述解码图像相对原始图像偏离程度的测度。

常用的保真度准则可分为两大类:客观保真度准则、主观保真度准则。

特点:

客观保真度准则:是一种统计平均意义下的度量准则,对于图像中的细节无法反映出来。 主观保真度准则:人的视觉系统具有独特的特性,用主观的方法来测量图像质量更为合适。

23、统计编码的基本限制

统计编码的基本限制就是码字要有单义性和非续长性。

24、掌握霍夫曼编码、香农-费诺编码、算术编码编码过程

霍夫曼编码:

第一步: 把信源X中的消息按出现的概率从大到小的顺序排列;

第二步: 把最后两个出现概率最小的消息合并成一个消息, 从而使信源的消息数减少一个, 并同时再次将信源中的消息的概率从大到小排列一次;

第三步: 重复上述步骤;

第四步:将被合并的消息分别赋以1和0或0和1(通常上0下1)。

例题:

设有一信源 $X = \{a_1, a_2, a_3, a_4, a_5, a_6\}$,对应概率 $P = \{0.37, 0.24, 0.17, 0.12, 0.07, 0.03\}$,求信源符号的霍夫曼编码。

所以, 信源符号的霍夫曼编码如下:

信源符号	a_1	a_2	a_3	a_4	a_5	a_6
霍夫曼编码	00	01	11	100	1010	1011

香农 - 费诺编码:

第一步: 把信源X中的消息按出现的概率从大到小的顺序排列;

第二步: 把X分成两个子集合, 并且保证两个子集的概率和相等(或相近);

第三步: 给两个子集中的消息分别赋以1和0或0和1 (通常上0下1);

第四步: 重复上述步骤。

码字	消息	概率					,
00	u_1	1/4		0			
01	u_2	1/4	0	1			
100	u_3			1		Ī	
101	$u_{\scriptscriptstyle 4}$	1/8 1/8		0	0		
1100	u_5	1/16			1	0	
1101	u_6	1/16	1		0	1	
1110	u_7	1/16		1	1	0	
1111	u_8	1/16				1	1

消息	概率	码 字
u_1	$\frac{1}{4}$	0 0
u_2	$\frac{4}{\frac{1}{4}}$	0 1
u_3	$\frac{1}{8}$	1 0 0
u_4	$\frac{1}{8}$	1 0 1
u_5	$\frac{1}{16}$	1 1 0 0
u_6	$\frac{1}{16}$	1 1 0 1
u_7	$\frac{1}{16}$	1 1 1 0
u_8	$\frac{1}{16}$	1 1 1 1

算术编码:

初始状态: 概率空间宽度: $A_0 = 1$, 下限初始值 $C_0 = 0$

新区间 $A_n = A_{n-1} \cdot P_n$ ($P_n \to S_n$ 对应的概率)

新下限 $C_n = C_{n-1} + A_{n-1} \cdot p_n \ (p_n \, \exists \, s_n \, \exists \, n \, \text{down} \, p_n \, \exists \, s_n \, \text{down} \, p_n \, p_n \, \text{down} \, p_n \, p_n \, p_n \, \text{down} \, p_n \,$

例如下题,符号0的概率为q,符号1的概率为p;符号0和符号1分配初始区间[0,1),符号0出现的概率分配子区间为[0,q),符号1出现的概率分配子区间为[q,1),则符号0的累积概率为0,符号1的累积概率为q。

【例 5.2】输入的符号序列为 0110。通过简单乘法和加法的递归运算,求 n 个符号输入后的概率区间宽度 A_n 、下限值 C_n 以及上限值 D_n 。

如图 5.6 所示,符号 1 的发生概率为 p,符号 0 的发生概率为 q (q < p, q + p = 1),则概率子空间范围的划分为:符号 0 为[0,q),符号 1 为[q,1)或[1-p,1)。首先,以发生概率 q 和 p 的比率对概率空间宽度 A₀进行内分,将对应于已被输入符号值的概率空间宽度设置为新的概率空间宽度,与此同时,重新设置概率区间下限值。

由于 $s_1=0$ 最先被输入,所以,下一个概图 5.6 符号率空间宽度 A_1 为 q,其下限值 C_1 为 0,没有 (最后一个 0 输入下面变化,按照实际输入值逐次将这样的程序执行下去。迭代过程如下:

图 5.6 符号序列 0110 的算术编码过程 (最后一个 0 输入下面原来的 $q(p+pq+p^2)$ 改为 q^2 $(1+p+p^2)$

设定初始值: $A_0=1$, $C_0=0$

输入 $s_1=0$ 后: $A_1=A_0q=q$, $C_1=C_0=0$

輸入 $s_2=1$ 后: $A_2=A_1p=qp$, $C_2=C_1+A_1q=q^2$

輸入 $s_3 = 1$ 后: $A_3 = A_2 p = q p^2$, $C_3 = C_2 + A_2 q = q^2 (1+p)$

輸入 $s_4 = 0$ 后: $A_4 = A_3 q = q^2 p^2$, $C_4 = C_3 = q^2 (1+p)$

若 $q=p=rac{1}{2}$,则 $C_4=rac{3}{8}$,所以0110的编码范围下限值为0.011(二进制)。

25、编码效率计算

第一步: 计算出该信源的熵

$$H(X) = -\sum_{i=1}^{M} P_i \log_2 P_i$$

式中,H(X)代表熵, P_i 代表第i个消息出现的概率。

第二步: 计算每个消息的平均码长:

$$R(X) = \sum_{i=1}^{M} P_i \cdot L_i$$

式中,R(X)代表平均码长, L_i 代表第i个消息对应的码长。

第三步: 计算编码效率:

$$\eta = \frac{H(X)}{R(X)}$$

例题:

设有一信源X及其对应概率为 $\left\{egin{array}{cccc} U_0 & U_1 & U_2 & U_3 \ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \ \end{array}
ight\}$,求下列编码的编码效率。

$$H(X) = \frac{1}{2} \times 1 + \frac{1}{8} \times 3 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 = \frac{7}{4}$$

编码 1:
$$\{ \begin{matrix} U_0 & U_1 & U_2 & U_3 \\ 00 & 01 & 10 & 11 \end{matrix} \}$$

编码 2:
$$\{ \begin{matrix} U_0 & U_1 & U_2 & U_3 \\ 0 & 111 & 10 & 101 \end{matrix} \}$$

$$R(X) = \frac{1}{2} \times 2 + \frac{1}{8} \times 2 + \frac{1}{4} \times 2 + \frac{1}{8} \times 2 = 2$$

$$R(X) = \frac{1}{2} \times 1 + \frac{1}{8} \times 3 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 = \frac{7}{4}$$

$$\eta = \frac{H(X)}{R(X)} = \frac{\frac{7}{4}}{2} = \frac{7}{8}$$

$$\eta = \frac{H(X)}{R(X)} = \frac{\frac{7}{4}}{\frac{7}{4}} = 1$$

26、掌握预测编码、游程编码、变换编码的原理

预测编码:

利用图像的空间或时间的冗余度、对实际值与预测值之间的误差值进行编码。

通过改变图像的描述方式, 来实现图像的压缩

将一行中灰度值相同的相邻像素,用一个计数值和该灰度值来代替

变换编码:

通过对信号进行某种函数变换, 实现从信号相关性较强的信号空间(如一维时间域、二维空间域) 变换 到像素相关性较弱、便于编码的另一个信号空间(如频率域)

27、点处理、局部处理的区别

点处理:输出值仅与像素灰度有关。

如: 灰度变换、直方图变换。

局部处理: 输出值由输入图像像素的邻域中的像素值确定。

如: 邻域平均法进行平滑、空间域差分法进行锐化。

28、形态学中基本符号,掌握基本运算:腐蚀、膨胀、开、闭

腐蚀: $A \ominus B = \{x: B + x \subset A\}$

a、基于腐蚀定义本身的运算

保留的点 腐蚀掉的点

图像A

结构元B

原点位于结构元素中的腐蚀操作

图像A

结构元B

原点不在结构元素中的腐蚀操作

膨胀: $A \oplus B = [A^c \ominus B^{\lor}]^c$

a、基于膨胀定义本身的运算

结构元 В

原点不在结构元素中的膨胀操作

开运算: $A \cap B = (A \ominus B) \oplus B$ A先被B腐蚀,再被B膨胀。 闭运算: $A \cdot B = (A \oplus B) \ominus B$ A先被B膨胀,再被B腐蚀。

29、图像压缩分类

图像编码从压缩的角度可以分为: 熵压缩法、无失真编码。

30、JPEG 步骤

编码过程: <

第一步: 将量化精度为 8 位的待压缩图像分成若干个 8×8 样值子块, 做基于 8×8 子块的 DCT;

第二部: 根据最佳视觉特性构造量化表,设计自适应量化器并对 DCT 的频率系数进行量化;

第三步: 为了增加连续的"0"系数的个数, 对量化后的系数进行 Z 字形重排;

第四步: 使用霍夫曼码作为变字长熵编码器, 对量化系数进行编码, 进一步压缩数据量。

解码过程:

与编码过程相反。

保留的点