Assignment 1, Part 1: The Logic of Compound Statements

Noah Hinojos

January 14, 2024

Exercise Set 2.1

5 - b

"She is a mathematics major." is a proposition.

5 - c

 $128 = 2^6$ is a proposition.

5 - d

 $x=2^6$ is not a proposition. The statement's truth value depends on the value of x. Since x may or may not be 128, the equation may be either true and false.

8 - c

 $\sim h \wedge \sim w \wedge \sim q$

10 - e

 $\sim p \vee (q \wedge r)$

30

The dollar is not at an all-time high or the stock is not at a record low.

37

$$(x < -7) \lor (x \ge 0)$$

39

 $(num_orders \ge 50 \text{ or } num_instock \le 300) \text{ and } ((num_orders < 50 \text{ or } num_orders \ge 75) \text{ or } (num_instock \le 500)$

42

p	q	r	$\sim p$	$\sim q$	$\sim p \wedge q$	$q \wedge r$	$((\sim p \land q) \land (q \land r)) \land \sim q$
Т	Τ	Τ	F	F	F	Т	F
Τ	Τ	\mathbf{F}	F	F	F	F	F
Τ	\mathbf{F}	\mathbf{T}	F	Τ	F	F	F
Τ	F	F	F	Τ	F	F	${ m F}$
\mathbf{F}	Τ	T	Τ	F	Т	Т	${ m F}$
\mathbf{F}	Τ	\mathbf{F}	Τ	\mathbf{F}	Т	F	F
\mathbf{F}	F	T	Τ	Τ	F	F	${ m F}$
\mathbf{F}	F	F	Τ	Τ	F	F	\mathbf{F}

The formula $((\sim p \land q) \land (q \land r)) \land \sim q$ is a **contradiction**. This can also be understood considering the following proof:

$$((\sim p \land q) \land (q \land r)) \land \sim q$$
$$(q \land \sim q) \land (\sim p \land q \land r)$$
$$\mathbf{c} \land (\sim p \land q \land r)$$

49

- a. Commutative Law
- b. Distributive Law
- c. Negation Law
- d. Identity Law

54

$$\begin{split} p &\equiv (p \wedge (\sim (\sim p \vee q))) \vee (p \wedge q) \\ &\equiv (p \wedge (p \wedge \sim q))) \vee (p \wedge q) & \text{De Morgan's Law} \\ &\equiv ((p \wedge p) \wedge \sim q) \vee (p \wedge q) & \text{Associative Law} \\ &\equiv (p \wedge \sim q) \vee (p \wedge q) & \text{Idempotent Law} \\ &\equiv p \wedge (\sim q \vee q) & \text{Distributive Law} \\ &\equiv p \wedge \mathbf{c} & \text{Negation Law} \\ &\equiv p & \text{Universal Bound Law} \end{split}$$

Canvas Problem