Constraints:

(6) Tutor Course limits

S) Avoiding Overlapping Assignments $\sum_{t'=t}^{t+H} x_{ijt'} \in H \qquad \forall i \in I, j \in J, \ t \in T$ $\sum_{j \in J} x_{ijt} \leq l \qquad \forall i \in I, \ t \in T$ Objective Function:	C 20161mm(1)
S) Avoiding Overlapping Assignments \[\sum_{i\in j\in J} \pi_{ij\in k} \leq \rightarrow \text{VieI, te7} \]	
jej Vije Viel, tel</td <td></td>	
jej Vije Viel, tel</td <td></td>	
Objective Function:	
•	
5	
$\max \sum_{i \in I} p_{ij} x_{ij} - 2 \left(\max \sum_{j \in J} x_{ij} - \min \sum_{\delta \in J} x_{ij} \right)$	
1 weight on heavier weight	
1 weight on heavier weight on fairness than prefrence.	
Make graphs on . fairness from output	
· prefrences from output	
Sets:	
I wors	
T coe was	
T limeslots	
voriables	
pij = preference	
Wj = wearly tutor his I worke	
mj = TMM	
1't = # hirors course j at himes lot t	

- Tutor a with light
a it = Twor a vajiv birig
ejet = if workshop exists at lime t course j Wjet = I if himealof + belongs to source worskshop for jas t-1
θ ο/ω.