DOKUMENTACJA TECHNICZNA

LABORATORIUM INTERFEJSÓW OBIEKTOWYCH

Amperomierz

AUTORZY:

Tomasz **Masłoń** Kamil **Nawrot**

OPIEKUN:

mgr inż. Paweł **Dobrowolski**

Wrocław, 2019

Spis treści

1	Ogć	olny opis układu	2
2	Założenia projektowe		
	2.1	Zasilanie	2
	2.2	Przetwarzanie wartości mierzonej	2
	2.3	Dokładność	2
3	Kor	ncepcja działania	3
	3.1	Sygnał napięciowy 0 10V	3
	3.2	Sygnał prądowy 4 20mA	3
	3.3	Wyświetlacze siedmiosegmentowe	3
4	Realizacja zasilania i jego zabezpieczenia		
	4.1	Główne zasilanie układu	3
	4.2	Zasilanie przetwornika ICL7107	4
	4.3	Zasilanie diód wyświelaczy	4
5	Zastosowane elementy i układy elektroniczne 5		
	5.1	Układy scalone	5
	5.2	Elementy półprzewodnikowe	6
\mathbf{S}	pis	rysunków	
	1	Idaayy sahamat yaaligasii gléyynaga gasilania uldadu	1
	$\frac{1}{2}$	Ideowy schemat realizacji głównego zasilania układu	4
		Ideowy schemat realizacji zasilania układu ICL7107	4
	3	Konfiguracja pinów wzmacniacza operacyjnego TL081	5
	4	Konfiguracja pinów przetwornika A/C ICL7107	5

Spis tabel

1 Ogólny opis układu

Realizowany układ elektroniczny miał za zadanie działać jako miernik natężenia prądu stałego z zakresu **0.1 - 2A**, przetwarzając podawany mu prąd na dwa standardy najczęściej stosowane w przemyśle:

- sygnał napięciowy 0...10V
- sygnał prądowy 4...20mA

Oprócz tego, z wykorzystaniem przetwornika analogowo-cyfrowego **ICL7107**, zaimplementowano możliwość wyświetlania mierzonej wartości na trzech wyświetlaczach siedmiosegmentowych. Układ oparty został przede wszystkim na wzmacniaczach operacyjnych, które, skalując i przesuwając, przetwarzały sygnał wejściowy do odpowiednich wartości.

2 Założenia projektowe

2.1 Zasilanie

Układ należało zasilić symetrycznym napięciem $\pm 12V$, ponieważ zastosowane wzmacniacze operacyjne również wymagają tego typu zasilenia. Konieczne było wyprowadzenie z generatorów trzech sygnałów: napięcia dodatniego, ujemnego oraz odniesienia (0V).

2.2 Przetwarzanie wartości mierzonej

Sygnał mierzony musi być podawany na rezystor pomiarowy 0.1Ω , aby uzyskać znany spadek napięcia, na którym mogą pracować kolejne elementy układu. Konieczna jest odpowiednia polaryzacja. Napięcie z rezystora podawane jest na kolejne wzmacniacze operacyjne, które działają w konfiguracji wzmacniacza nieodwracającego (przeskalowywanie sygnału) lub sumującego albo odejmującego (przesuwanie sygnału o stałą wartość).

2.3 Dokładność

W całym urządzeniu stosowano rezystory z szeregu E24, które charakteryzują się tolerancją rzędu $\pm 5\%$. Ich wartości bezpośrednio wpływają na parametr wzmocnienia każdego wzmacniacza oraz mnożniki dzielników napięciowych, w związku z czym w układzie mogą pojawiać się zauważalne różnice pomiędzy wartościami rzeczywistymi a przetworzonymi. W celu redukcji tych błędów, w koniecznych miejscach zastosowano precyzyjne potencjometry, które pozwalają na doregulowanie wartości napięcia. Przy takim rozwiązaniu powinno być możliwe uzyskanie dokładności pomiarów na poziomie 2%.

3 Koncepcja działania

3.1 Sygnał napięciowy 0... 10V

Mierzony prąd podawany jest na opornik pomiarowy. Spadek napięcia na nim może wynosić od 0.01V do 0.2V. Napięcie to kierowane jest na wzmacniacz różnicowy o pięćdziesięciokrotnym wzmocnieniu, zatem na jego wyjściu uzyskuje się napięcie **0.5-10V**. Kolejnym krokiem jest przesunięcie napięcia w dół o 0.5V z jednoczesnym wzmocnieniem, tak aby uzyskać zakres **0-10V**. Wzmacniacz realizujący tę operację pracuje w konfiguracji wzmacniacza odejmującego. Stałe napięcie 0.5V pobierane jest ze stabilizowanego zasilania sterownika **ICL7107** (opisanego w dalszej cześci dokumentacji). Wzmocnienie wynosi około 1.06, tak aby podnieść górną granicę zakresu z 9.5 na 10V. Tak przetworzony sygnał wyprowadzony jest na złącze, które umożliwia jego pomiar.

3.2 Sygnał prądowy 4... 20mA

Napięcie uzyskane na poprzednim wzmacniaczu (0-10V) jest wykorzystywane w celu dalszego przetworzenia. Najpierw, za pomocą dzielnika napięciowego obniża się jego wartość do zakresu **0-4V**. Analogicznie jak 0.5V uzyskuje się napięcie 1V, które następnie jest dodawane za pomocą wzmacniacza sumującego o wzmocnieniu 1 do sygnału z poprzedniego wzmacniacza operacyjnego. W ten sposób uzyskuje się wyjściowe napięcie o zakresie **1-5V**.

3.3 Wyświetlacze siedmiosegmentowe

Sygnał uzyskany za pierwszym wzmacniaczem operacyjnym układu (omówionym w punkcie 3.1) jest kierowany na kolejny wzmacniacz o odwrotnym wzmocnieniu, który sprowadza sygnał ponownie do zakresu 0.01 - 0.2V. Takie napięcie kierowane jest na sterownik wyświetlacza (V_{in}) . Wymaga on także napięcia odniesienia V_{ref} o wartości 1V, które także zostało uzyskane już wcześniej (punkt 3.2). ICL7107 wyświetla wartość napięcia uzyskaną ze wzoru:

$$V_{disp} = 1000 \cdot \frac{V_{in}}{V_{ref}},$$

czyli wartości z zakresu **010 - 200**. Koncepcję działania układu przedstawia także schemat blokowy, Załącznik do dokumentacji.

4 Realizacja zasilania i jego zabezpieczenia

4.1 Główne zasilanie układu

Cały układ zasilany jest stałym napięciem symetrycznym ± 12 V. Układ połączenia zasilaczy (rys) generuje potencjał odniesienia oraz dwie linie o potencjałach +12V i -12V względem masy. Na układ wyprowadzone są więc trzy osobne linie. Szeregowo z napięciem dodatnim połączona jest dioda Schottky'ego **BAT42**, która zabezpiecza układ przed odwrotnym podłączeniem zasilania. Działa ona analogicznie do zwykłej diody prostowniczej, jednak spadek napięcia na samym elemencie jest dużo niższy (około 0.3V).

Rysunek 1: Ideowy schemat realizacji głównego zasilania układu

4.2 Zasilanie przetwornika ICL7107

Sterownik do obsługi wyświetlaczy wymaga zasilania symetrycznego o napięciu 5V. Uzyskuje się je z zasilania głównego z wykorzystaniem diód Zenera o napięciu przebicia równym 5.1V (rys). Uzyskiwany w ten sposób spadek napięcia jest stabilny i niezależny od zmian wartości zasilania głównego. Fakt ten wykorzystuje się, używając napięcie zasilające ICL7107 także do uzyskiwania wartości 0.5V i 1V, które potrzebne są przy przesuwaniu zakresów napięcia na wzmacniaczach operacyjnych. Sygnał zasilający jest dodatkowo odfiltrowywany przez kondensatory elektrolityczne $10\mu F$.

Rysunek 2: Ideowy schemat realizacji zasilania układu ICL7107

4.3 Zasilanie diód wyświelaczy

Przyjęto pobór prądu dla każdej czerwonej diody na poziomie 3-4mA. Realizację układu zasilającego przeprowadzono analogicznie jak przy sterowniku (rys). Osobne zasilanie zapewnia stabilność zasilania ICL7107 oraz wyjść wtórników napięciowych utrzymujących napięcia

0.5V i 1V, ponieważ pobór prądu przy dużej ilości zapalonych segmentów może być znaczny i mógłby wpływać na inne elementy układu, gdyby zostało wykonane wspólne zasilanie.

5 Zastosowane elementy i układy elektroniczne

5.1 Układy scalone

 \bullet wzmacniacz operacyjny **TL081CP** (x8) - przetwarzanie zakresów napięcia, wtórniki napięciowe

Rysunek 3: Konfiguracja pinów wzmacniacza operacyjnego TL081

 \bullet przetwornik analogowo-cyfrowy ICL7107 - przetwarzanie analogowego sygnału napięciowego na cyfrowe sterowanie trzema wyświetlaczami siedmiosegmentowymi

Rysunek 4: Konfiguracja pinów przetwornika A/C ICL7107

5.2 Elementy półprzewodnikowe

- tranzystor bipolarny typu NPN BD139
- dioda Schottky'ego BAT42 zabezpieczenie głównego zasilania przed odwrotną polaryzacją
- \bullet dioda Zenera 5V1 (x2) stabilizator napięcia zasilającego przetwornik ICL7107
- dioda Zenera 5V6 stabilizator napięcia zasilającego wyświetlacze

Wymieniono tylko układy i elementy o większym znaczeniu i bardziej skomplikowanym działaniu. Wykaz wszystkich użytych w projekcie elementów, wraz z podstawowymi parametrami, znajduje się w Załączniku dołączonym do dokumentacji.