Proof:

$$\Phi(\lambda \xi) = \int_{0}^{b} \lambda \xi(n) dx = \lambda \int_{0}^{b} \xi(n) dx = \lambda \Phi(n)$$

$$\Phi(g+g) = \int_{a}^{b} g(n) + g(n) dx = \int_{a}^{b} g(n) dx + \int_{a}^{b} g(n) dx = \Phi(g) + \Phi(g)$$

=> & is a linear mapping.

consider
$$n = 0 \in |R|$$

$$\Phi$$
 (0) = cos (0) = 1 \neq 0

=> \$\overline{\o

$$\Phi(\lambda_{\underline{n}}) = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix} (\lambda_{\underline{n}}) = \lambda \left(\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix} \underline{n} \right) = \lambda \Phi(\underline{n})$$

$$\Phi(x + y) = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix}(x + y) = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix}x + \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix}y = \Phi(x) + \Phi(y)$$

$$\Phi(2 \times 1) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} (2 \times 1) = 2 \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} = 2 \Phi(x)$$

\$(n + y) =	[ws (0)	sin(0)]	, [ως (Θ)	sin (O)] n	[cos (0)	sin (8)] u	= B (m) + T (4)
- 4	- sin (O)	ως (θ)	$(\underline{n} + \underline{y}) = \begin{bmatrix} \omega_3(\theta) \\ -\sin(\theta) \end{bmatrix}$	ως (θ)]	-sin (0)	(a) 3	- *(=)+ A.\$)
	•						

 $\Rightarrow \Phi$ is a linear mapping.