Hands-on 2

Manipulação de áudio e filtragem (arquivos e microfone)

Introdução Teórica

Arquivo WAV

O arquivo wav (Waveform Audio File Format) é um formato de arquivo de áudio criado pela Microsoft e IBM no ano de 1991. Ele é baseado no método de formatação RIFF (Resource Interchange File Format), que armazena arquivos de áudio através do PCM (pulse code modulation). Usuários profissionais podem usar o formato WAV para qualidade máxima de áudio. Um sinal PCM é obtido através de um processo de digitalização de um sinal analógico, o qual consiste de 3 etapas: (i) Amostragem; (ii) Quantização; e (iii) Codificação. A primeira etapa (amostragem) consiste na coleta de amostras em intervalos regulares, discretizando o sinal no tempo. A segunda etapa, quantização, visa a discretização dos valores de amplitude do sinal em um número finito de níveis. Finalmente, a codificação transforma os valores discretos de amplitude em códigos binários. A figura a seguir ilustra a geração de um sinal PCM típico de um sinal de voz usado em telefonia. Ao não ser pela taxa final, a mesma operação é realizada para gerar um arquivo WAV.

The 64-kbps voice channel from PCM

Como converter arquivos de som para Wav

Mostraremos dois meios para gerar arquivos no formato WAV através de arquivos no formato MP3.

1. Linux

a. Instalar o software de processamento de audio SoX. Em um terminal, digite:

\$ sudo apt-get install sox libsox-fmt-all

b. Convertendo arquivos MP3. Em um terminal, digite:

\$ sox arquivo.mp3 -b 16 -r 44100 arquivo.wav

2. Windows

a. Instalar o programa format factory.

http://www.baixaki.com.br/download/formatfactory.htm

b. Este software tem uma grande gama de codecs, sendo muito eficiente na conversão de arquivos. Convertendo arquivos em **wav.**

- Na coluna da esquerda, você deverá encontrar os tipos de arquivos. Clique no tipo *Audio* e depois em *Todos para WAV*.

- Em seguida abrirá outra janela onde você pode definir onde será a pasta de destino, e abrir os arquivos que deseja converter. Em opções de saída você poderá configurar a taxa de amostragem bem como a qualidade do som.

Filtros

Filtros são circuitos especialmente projetados para fornecer sinais de saída com uma amplitude dependente da frequência do sinal aplicado na entrada. Esta definição pode ser aplicada a vários circuitos, como, por exemplo, a amplificadores de áudio com controle de tonalidade, amplamente difundidos no mercado (os equalizadores gráficos). A figura a seguir mostra um equalizador gráfico encontrado no mercado.

Esse exemplo de aplicação ressalta a principal característica de um filtro: sua sensibilidade à frequência do sinal. Esta característica permite que eles sejam utilizados para selecionar uma determinada faixa de frequências, ou para eliminar (sinais indesejáveis) ou para amplificar. Esta característica é chamada seletividade.

Tipos de filtros:

- **Filtro passa-baixa**: permite que os sinais com frequência abaixo de uma frequência determinada passem para a saída, eliminando todos os sinais com frequências superiores.
- **Filtro passa-alta**: funciona de maneira inversa ao filtro passa-baixa. Deixando passar para a saída apenas os sinais cujas frequências estejam acima de certo valor. A figura a seguir mostra a resposta em frequência de um filtro passa-baixa (a esquerda) e um filtro passa-alta (a direita).

- **Filtro passa-faixa**: permite a seleção de apenas uma faixa de frequências, ou seja, apenas essa faixa (intervalo) selecionada passará para a saída do filtro.
- **Filtro rejeita-faixa**: atua de forma inversa ao filtro passa-faixa, eliminando os sinais contidos em um determinado intervalo de frequências definido. A figura a seguir mostra a resposta em frequência de um filtro passa-faixa (a esquerda) e um rejeita-faixa (a direita).

Referências

- [1] http://www2.unicid.br/telecom/fintel/VI-Fintel/feira/E2B2.html acesso em:15/11/2012
- [2] http://es.wikipedia.org/wiki/Filtro acesso em:15/11/2012
- [3] Vicente A. de Sousa Jr.; Slide sobre Modulação AM unidade II acesso em:15/11/2012
- [4] http://www.csun.edu/~skatz/katzpage/sdr_project/sdr/ Acesso em:12/11/2012
- [5] http://lists.gnu.org/archive/html/discuss-gnuradio/2006-07/txtNbXJrpGud .txt Acesso em:12/11/2012
- [6] http://en.wikipedia.org/wiki/wav Acesso em:12/11/2012
- [7] http://support.microsoft.com/kb/89879 Acesso em:12/11/2012
- [8] http://docentes.fam.ulusiada.pt/~d1207/docs/ps/PS Cap5 0506.pdf Acesso em: 30/11/2012

Exercício

OBJETIVO: Usar conceitos básicos e algumas dicas aprendidas em exercícios passados para manipular a saída e entrada de áudio provenientes de arquivos ".wav" e microfone, e com o uso de filtros, fazer o controle de tonalidade.

- 1. Caso ainda não esteja aberto, inicialize o GNU Radio Companion.
 - a. Abra um terminal digitando CRTL+ALT+t
 - b. Digite: gnuradio-companion e pressione ENTER

Alternativa:

a. Clique em Dash Home

b. Digite gnuradio e clique no ícone correspondente ao GRC

2. Com o GNU RADIO COMPANION aberto, crie um novo projeto

Clique duas vezes no Bloco Options. Esse bloco configura alguns parâmetros gerais do flowgraph.
Mantenha o ID como top_block. Digite um título para o projeto e um autor. Selecione Generate
Options como QT GUI, Run para Autostart e Realtime Scheduling para Off. Então, feche a janela de
propriedades.

4. Construa seu projeto utilizando os blocos Wav File Source, Rational Resampler, QT GUI Frequency Sink e Audio Sink que podem ser encontrados na lista de blocos à direita da área de trabalho. Clique duas vezes no bloco Variable e modifique o Sample Rate para 44100, que é geralmente uma taxa de amostragem padrão pela placa de som dos computadores. Altere em todos os blocos o campo Type para Float. No bloco Audio Sink é padrão deixar o campo Device Name em branco, pois é selecionado um dispositivo de saída de áudio automaticamente. Caso dê erro na compilação, é preciso alterar o campo Device Name para hd:1,0 ou pulse. Una os elementos de forma que sua área de trabalho fique similar à figura a seguir.

5. Clique duas vezes no bloco Wav File Source. Clique nos "três pontinhos" no campo File. Localize a pasta "Minicurso_files" na área de trabalho do Ubuntu e selecione o arquivo "handson2_file_minicurso", este arquivo wav possui uma taxa de amostragem de 44100Hz (para verificar a taxa de amostragem clique com o botão direito do mouse e vá em propriedades na aba audio). Modifique a opção Repeat para Yes. Isso fará com que o sinal do arquivo seja tocando continuamente.

6. O bloco Rational Resampler serve para sincronizar a frequência de amostragem da entrada com a

saída. Por padrão, a frequência de amostragem adotada foi 44100Hz, pois a placa de som do computador exige esta taxa. Porém o sinal pode estar em uma taxa diferente necessitando ser reamostrado. Altere o campo *Type para Float->Float (Real Taps)*. O campo *Decimation* serve para decrementar o número de amostras que são processadas, ou seja, um valor dois em *decimation* significa dizer que você descartará metade das amostras que entram. O campo *Interpolation* serve para definir o número de pontos que serão interligados para realizar uma interpolação. Tais campos são essenciais para a reamostragem, mas como foi escolhido um sinal com taxa de amostragem igual à saída não é necessário fazer alterações.

7. Agora que o sistema está pronto, clique no botão *Generate Flow Graph* e em seguida no *Execute the Flow Graph*. Observe o que irá sair das caixas de som de seu computador.

- 8. Selecione agora um novo arquivo wav no bloco *Wav File Source* com amostragem igual a 11025Hz. Com isso feito gere o novo projeto e execute-o. O que acontece com o som? Por que esse efeito acontece?
- 9. Note que a taxa de amostragem do arquivo (10025 Hz) é quatro vezes menor que a taxa de amostragem da placa de som (44100 Hz), por isso o som parece acelerado. Para resolver esse problema, vamos fazer alterações nos parâmetros do bloco *Rational Resampler*. Iremos alterar o campo *Decimation* para 1, ou seja, pegar o número de amostras igual ao que está entrando e em

seguida mudaremos o campo *Interpolation* para o valor de 4, gerando quatro amostras para cada uma que passar pela decimação (por interpolação). Isso siginifica dizer que a taxa de amostragem do arquivo foi multiplicada por 4, se igualando à da placa de som. Com essa alteração realizada gere o projeto e execute-o. O que acontece com a qualidade do som?

10. Agora vamos usar o microfone para nossa voz ser o sinal de entrada. Para isso iremos tirar o bloco Wav File Source e adicionar o bloco Audio Source. Dê dois cliques no bloco Audio Source. O campo Device Name é o destinado para o nome do dispositivo de entrada de som que você desejará usar. Ao deixar este campo em branco, o dispositivo padrão de entrada de voz do computador será selecionado.

11. Altere os campos *Interpolation* e *Decimation* do bloco *Rational Resampler* para o valor 1 (um). Com a inserção do bloco *Audio Source* e as devidas alterações feitas sua área de trabalho deverá estar igual à figura a seguir. Gere o projeto e execute-o. Ao aparecer a tela de execução, fale perto do microfone e veja a tela do analisador de espectro virtualizado.

12. Agora crie um novo projeto ou edite o primeiro projeto criado neste hands-on.

13. Construa (edite) este novo projeto utilizando os blocos Wav File Source, Rational Resampler, dois QT GUI Frequency Sink, Audio Sink e Low Pass Filter que podem ser encontrados na lista de blocos à direita da área de trabalho. Clique duas vezes no bloco Variable e modifique o Sample

Rate para 44100. Como de costume altere o campo *Type* de todos os blocos para *Float*. Conecte os elementos de forma que sua área de trabalho figue igual à figura a seguir.

14. Clique duas vezes no bloco *Wav File Source*. Clique nos "três pontinhos". Localize a pasta "Minicurso_files" na área de trabalho do Ubuntu e selecione o arquivo "handson2_file_minicurso", este arquivo wav possui uma taxa de amostragem de 44100Hz O caminho para o arquivo será mostrado no campo *File*. Modifique a opção *Repeat* para Yes. Isso fará com que o sinal do arquivo seja tocando continuamente.

15. O bloco Low Pass Filter serve para eliminar frequências acima da frequência de corte, como foi explicado na teoria. Altere o campo FIR Type para um dos parâmetros Float->Float(Decimation) ou Float->Float(Interpolation), pois para nosso objetivo não será necessário nenhuma alteração no valor de Decimation ou Interpolation. No campo Cutoff Freq define-se o valor da frequência de corte do filtro, configure com 3000Hz. Por fim no campo Transition Width, que indica a largura da janela de transição, coloque 200Hz.

16. Configure os blocos **QT GUI Frequency Sink** com os parâmetros a seguir. Os valores de Y max e Y min são respectivamente -5 e -140 e foram escolhidos para melhorar a visualização. Já o campo

GUI Hint é utilizado para escolher a posição do gráfico na janela. Neste caso, definimos que a janela será composta por duas colunas, ficando o espectro do sinal original (posição 2,0) à esquerda do filtrado (posição 2,1).

17. Feito isso gere o gráfico e execute-o. Observe o plot das FFT's. O que acontece com o som?

- 18. Usando o mesmo procedimento para definir a frequência de corte do filtro mostrado anteriormente, mude a frequência de corte para 1900Hz, gere e execute novamente o flow graph. Ouça o efeito sonoro. É perceptível o "corte" nas frequências mais agudas, enquanto os sons mais graves são mantidos.
- 19. Agora apague o bloco Low Pass Filter. Em seguida selecione o bloco High Pass Filter na lista de blocos à direita e coloque-o no lugar onde estava o bloco Low Pass Filter. Sua a área de trabalho deverá ficar igual à figura a seguir.

20. Vamos configurar o bloco *High Pass Filter*, este irá filtrar as frequências acima da frequência de corte. Altere o campo FIR *Type para Float->Float(Decimation)*. No campo *Cutoff Freq* define-se o valor da frequência de corte, coloque uma frequência de 5000Hz e *Transition Width* para 10Hz.

21. Tendo feito os passos anteriores, gere o gráfico e execute-o. Observe novamente o plot das FFT's e o efeito sonoro do corte das frequências mais graves.

22. Agora desative o bloco *High Pass Filter*. Em seguida selecione o bloco *Band Pass Filter* na lista de blocos à direita e coloque-o no lugar onde estava o bloco *High Pass Filter*. Sua a área de trabalho deverá ficar igual à figura a seguir.

23. Este bloco irá filtrar frequências de uma faixa determinada. Altere o campo FIR *Type para Float-Float (Real Taps)(Decimation)*. No campo *Low Cutoff Freq* define-se o valor da frequência de corte menor e no campo *High Cutoff Freq* define-se o valor da frequência de corte maior, altere para 2000Hz e 4000Hz, respectivamente. Por fim no campo *Transition Width* coloque 10Hz.

24. Tendo feitos os passos anteriores, gere o gráfico e execute-o. Observe novamente o plot das FFT's e o desaparecimento dos graves e agudos, restando apenas os sons de frequências médias!

25. Agora com o uso desses blocos de filtros e alguns blocos de operação vamos criar o projeto de um equalizador gráfico simples. Para esse novo projeto selecione os blocos: Wav File Source, Rational Resampler, três QT GUI Frequency Sink, três QT GUI Range, Low Pass Filter, High Pass Filter, Band Pass Filter, três Multiply Const, um Audio Sink e um QT GUI Tab Widget. Organize de forma similar a figura a seguir. Apenas una os blocos como na figura e padronize todos os campos Type para Float. Mantenha a configuração dos blocos como nos passos passados alterando apenas o que serão explicados nos próximos passos.

26. Para facilitar a visualização dos efeitos de cada filtro no espectro, iremos utilizar uma aba para cada gráfico e outra para os controles. Sendo assim, iremos necessitar de um bloco **QT GUI Tab Widget**. Configure-o como demostrado abaixo, alterando o *ID* do bloco para janela, o *Num Tabs* para 3 e os *Labels 0, 1 e 2* para, respectivamente, "Controles", "Sinal Original" e "Sinal Filtrado".

27. O bloco QT GUI Range serve para manipular, durante a execução do projeto, os valores das variáveis dos diversos blocos existentes. Dê dois cliques em um dos blocos QT GUI Range. Altere os campos ID, Label e Default Value para slider_low_pass, Grave e 1, respectivamente. Faça as mesmas alterações nos outros dois blocos QT GUI Range, onde apenas o campo Default Value permanecerá igual, os outros dois parâmetros serão slider_band_pass, Medio e slider_high_pass, Agudo. Configure o campo Start para 5, 10 e 10, para Grave, Medio e Agudo, respectivamente.

Configure o campo *GUI Hint* para janela@0, indicando que os controles ficarão na primeira aba, além de definir os campos *Step e Widget para 0.1 e Slider em todos os QT GUI Range*. Sua a área de trabalho deverá ficar igual à figura a seguir.

28. Dê dois cliques no bloco **Add** e altere o campo *Num Inputs* para 3. Assim, será possível ser somado três entradas.

29. Agora dê dois cliques no bloco *Multiply Const* que está conectado ao *Low Pass Filter*. Altere o campo *IO Type* para Float. Em seguida, altere o campo *Constant* para slider_low_pass. Faça as mesmas alterações nos outros dois blocos *Multiply Const*, definindo o campo *Constant* dependendo do filtro ao qual o bloco está conectado. Adicione slider_band_pass para *Band Pass Filter* e slider_high_pass para *High Pass Filter*. Este bloco serve para multiplicar por um valor determinado a amplitude do sinal de entrada e, com a ajuda do *QT GUI Range*, este valor poderá ser alterado em tempo de execução. A figura a seguir mostra como deve ficar um dos blocos.

- 30. Altere o campo *Cutoff Freq* do bloco *Low Pass Filter* para 240Hz, Altere os campos *Low Cutoff Freq* e *High Cutoff Freq* do bloco *Band Pass Filter* para 250Hz e 3900Hz, respectivamente. Finalmente altere o campo *Cutoff Freq* do bloco *High Pass Filter* para 4000Hz.
- 31. Dê dois cliques no bloco Wav File Source e procure um arquivo wav para execução. Feito isso

gere e execute o gráfico. Observe o plot das FFT's, note que você pode alterar o ganho das faixas de frequências.

