AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1. (Currently amended) A method for separating and purifying a nucleic acid from a

biological sample, comprising a step of:

adsorbing and desorbing a nucleic acid to and from a membrane of an organic

macromolecule which has a membrane thickness of 10 μ m to 500 μ m.

2. (Original) The method according to claim 1, wherein the organic macromolecule

is an organic macromolecule having a hydroxyl group on surface thereof.

3. (Original) The method according to claim 1, wherein the organic macromolecule

is surface-saponified acetylcellulose.

4. (Original) The method according to claim 1, wherein the organic macromolecule

is surface-saponified triacetylcellulose.

5. (Original) The method according to claim 3, wherein the surface-saponification

rate of acetylcellulose is 5% or higher.

6. (Original) The method according to claim 3, wherein the surface-saponification

rate of acetylcellulose is 10% or higher.

Amendment dated December 19, 2005 Reply to Office Action of September 19, 2005

Page 3

7. (Original) The method according to claim 2, wherein acetylcellulose is a porous

film.

8. (Original) The method according to claim 2, wherein acetylcellulose is a non-

porous film.

9. (Currently amended) The method according to claim 1, wherein the nucleic acid is

in a sample solution when being in a sample solution is adsorbed to and desorbed from the

membrane of organic macromolecule which has a membrane thickness of 10 μ m to 500 μ m.

10. (Original) The method according to claim 9, wherein the sample solution is a

solution prepared by adding a water-soluble organic solvent to a solution obtained by treating a

cell- or virus-containing test sample with a nucleic acid-solubilizing reagent.

11. (Original) The method according to claim 10, wherein the nucleic acid-

solubilizing reagent is a guanidine salt, a surfactant and a proteolytic enzyme.

12. (Original) The method according to claim 1, comprising steps of:

adsorbing the nucleic acid to a membrane of the organic macromolecule;

washing the membrane using a nucleic acid-washing buffer; and

Amendment dated December 19, 2005

Reply to Office Action of September 19, 2005

Page 4

desorbing the nucleic acid adsorbed to the membrane by using a liquid capable of

desorbing the nucleic acid adsorbed to the membrane.

13. (Original) The method according to claim 12, wherein the nucleic acid-washing

buffer is a solution containing 20 to 100 % by weight of methanol, ethanol, isopropanol or n-

propanol.

14. (Original) The method according to claim 12, wherein the liquid capable of

desorbing the nucleic acid adsorbed to the membrane is a solution having a salt concentration of

0.5 M or lower.

15. (Original) The method according to claim 1, wherein adsorption and desorption of

the nucleic acid is carried out by using an unit for separation and purification of nucleic acid in

which a container having at least two openings contains a membrane of the organic

macromolecule which has a membrane thickness of 10 μ m to 500 μ m.

16. (Original) The method according to claim 1, wherein adsorption and desorption of

the nucleic acid is carried out by using an unit for separation and purification of nucleic acid

which comprises (a) a membrane of the organic macromolecule which has a membrane thickness

of 10 μ m to 500 μ m, (b) a container having at least two openings and containing the membrane,

and (c) a pressure difference-generating apparatus connected to one opening of the container.

Amendment dated December 19, 2005
Reply to Office Action of September 19, 2005

Page 5

17. (Currently amended) A The method according to claim 16, comprising steps of:

(a) preparing a sample solution containing a nucleic acid by using a test sample and inserting one opening of <u>a</u> an unit for separation and purification of nucleic acid, which comprises a membrane of an organic macromolecule which has a membrane thickness of 10 μm to 500 μm, a container having at least two openings and containing the membrane, and a pressure

o 300 µm, a container having at least two openings and containing the memorane, and a pressure

difference-generating apparatus connected to one opening of the container, into said sample

solution containing the nucleic acid;

(b) sucking the sample solution containing the nucleic acid by making an inside of the container in a reduced pressure condition by using the pressure difference-generating apparatus connected to the other opening of the unit for separation and purification of nucleic acid, and contacting the sample solution to a membrane of the organic macromolecule which has a

(c) making the inside of the container in a pressurized condition by using the pressure

difference-generating apparatus connected to the other opening of the unit for separation and

purification of nucleic acid, and discharging the sample solution containing the sucked nucleic

acid to an outside of the container:

membrane thickness of 10 μ m to 500 μ m;

(d) inserting one opening of the unit for separation and purification of nucleic acid

into the nucleic acid-washing buffer;

(e) sucking the nucleic acid-washing buffer by making the inside of the container in

the reduced pressure condition by using the pressure difference-generating apparatus connected

Amendment dated December 19, 2005

Reply to Office Action of September 19, 2005

Page 6

to the other opening of the unit for separation and purification of nucleic acid, and contacting the

nucleic acid-washing buffer to the membrane;

(f) making the inside of the container in the pressurized condition by using the

pressure difference-generating apparatus connected to the other opening of the unit for separation

and purification of nucleic acid, and discharging the sucked nucleic acid-washing buffer to the

outside of the container;

(g) inserting one opening of the unit for separation and purification of nucleic acid

into the liquid capable of desorbing the nucleic acid adsorbed to the membrane;

(h) making the inside of the container in the reduced pressure condition by using the

pressure difference-generating apparatus connected to the other opening of the unit for separation

and purification of nucleic acid, and sucking the liquid capable of desorbing the nucleic acid

adsorbed to the membrane to contact the liquid to the membrane; and

(i) making the inside of the container in the pressurized condition by using the

pressure difference-generating apparatus connected to the other opening of the unit for separation

and purification of nucleic acid, and discharging the liquid capable of desorbing the nucleic acid

adsorbed to the membrane to the outside of the container.

18. (Currently amended) A The method according to claim 16, comprising steps of:

(a) preparing a sample solution containing the nucleic acid using a test sample and

injecting said sample solution containing the nucleic acid into one opening of a the unit for

separation and purification of nucleic acid, which comprises a membrane of an organic

Amendment dated December 19, 2005
Reply to Office Action of September 19, 2005

Page 7

macromolecule which has a membrane thickness of $10 \, \mu \text{m}$ to $500 \, \mu \text{m}$, a container having at least two openings and containing the membrane, and a pressure difference-generating apparatus connected to one opening of the container;

- (b) making the inside of the container in the pressurized condition by using the pressure difference-generating apparatus connected to said one opening of the unit for separation and purification of nucleic acid, and discharging the injected sample solution containing the nucleic acid from the other opening to contact the sample solution to a membrane of the organic macromolecule which has a membrane thickness of $10 \mu m$ to $500 \mu m$;
- (c) injecting the nucleic acid-washing buffer into said one opening of the unit for separation and purification of nucleic acid;
- (d) making the inside of the container in the pressurized condition by using the pressure difference-generating apparatus connected to said one opening of the unit for separation and purification of nucleic acid, and discharging the injected nucleic acid-washing buffer from said other opening to contact the nucleic acid-washing buffer to the membrane;
- (e) injecting the liquid capable of desorbing the nucleic acid adsorbed to the membrane into said one opening of the unit for separation and purification of nucleic acid; and
- (f) making the inside of the container in the pressurized condition by using the pressure difference-generating apparatus connected to said one opening of the unit for separation and purification of nucleic acid, and discharging the liquid capable of desorbing the injected nucleic acid from said other opening, so as to desorb the nucleic acid adsorbed to the membrane and discharge the nucleic acid to the outside of the container.