20053722 Student Number Bryan Hoang Name

(a) Solution:

Proof. Let $\varepsilon \in \mathbb{R}_{>0}$. Then

$$P(X > M + \varepsilon) = P(X - X_n > M - X_n + \varepsilon)$$

$$= P(X - X_n > M - X_n + \varepsilon | M - X_n \ge 0) P(M - X_n \ge 0)$$

$$+ P(X - X_n > M - X_n + \varepsilon | M - X_n < 0) P(M - X_n < 0)$$

by the law of total probability. Then

$$P(X > M + \varepsilon) = P(X - X_n > M - X_n + \varepsilon | M - X_n \ge 0)$$

since $P(|X_n| \le M = 1)$ by assumption. It follows that

$$P(X > M + \varepsilon) \le P(X - X_n > \varepsilon)$$

 $\le P(|X - X_n| > \varepsilon) \to 0$

as $n \to \infty$ since $X_n \to X$ by assumption. Hence, $P(X > M + \varepsilon) = 0 \ \forall \varepsilon \in \mathbb{R}_{>0}$. This implies that P(X > M) = 0, and so $P(X \le M) = 1$. A similar argument can be used to show that $P(-X < -M - \varepsilon) = 0$, and so $P(-X \ge M) = 1$.

Therefore,
$$P(|X| \leq M) = 1$$
.

(b) Solution:

Proof. Let $r \in \mathbb{Z}_{>0}$ and let $B = \{\omega : |X(\omega)| \leq M\}$.

If
$$\omega \in A_n(\varepsilon)^c$$
, then $|X_n(\omega) - X(\omega)| \le \varepsilon \implies |X_n(\omega) - X(\omega)|^r \le \varepsilon^r$.

If $\omega \in A_n(\varepsilon) \cap B$, then

$$|X_n(\omega) - X(\omega)| \le |X_n(\omega)| + |X(\omega)|$$
 by the triangle inequality $\le 2M$ since $P(X_n \le M) = 1$ and $\omega \in B$ $\implies |X_n(\omega) - X(\omega)|^r \le (2M)^r$

Hence, $|X_n - X|^r \le \varepsilon^r I_{A_n(\varepsilon)^c} + (2M)^r I_{A_n(\varepsilon)} \ \forall \omega \in B$. Since by part a, P((B) = 1), then

$$|X_n - X|^r \le \varepsilon^r I_{A_n(\varepsilon)^c} + (2M)^r I_{A_n(\varepsilon)}$$

with probability 1.

By taking the expectations of both sides, we get that

$$E[|X_n - X|^r] \le E[\varepsilon^r I_{A_n(\varepsilon)^c} + (2M)^r I_{A_n(\varepsilon)}]$$

$$= \varepsilon^r P(A_n(\varepsilon)^c) + (2M)^r P(A_n(\varepsilon))$$

$$\le \varepsilon^r + (2M)^r P(A_n(\varepsilon))$$

 $\forall n \in \mathbb{Z}_{>0}$ because $P(A_n(\varepsilon)^c) \leq 1$. Since $X_n \xrightarrow{p} X$ by assumption, it follows that $\lim_{n\to\infty} P(A_n(\varepsilon)) = 0$.

MTHE/STAT 353 -- Homework 8, 2020

We then have

$$\lim_{n\to\infty} \mathrm{E}[|X_n - X|^r] \le \varepsilon^r$$

 $\forall \varepsilon \in \mathbb{R}_{>0}$, which implies that $\lim_{n\to\infty} \mathrm{E}[|X_n - X|^r] = 0$. Therefore, $X_n \xrightarrow{r.m.} X$. \square