Decay Behaviors of H₂⁻ Anions in Solid Parahydrogen: Effect of Nuclear Spins on Chemical Reactions

Takayuki Kumada,*,† Hirohisa Inagaki,† Naoki Kitagawa,† Kenji Komaguchi,† Yasuyuki Aratono,† and Tetsuo Miyazaki†,‡

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-11, Japan, and Department of Applied Chemistry, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan

Received: August 13, 1996; In Final Form: November 26, 1996[®]

Decay processes of H_2^- anions in γ -ray-irradiated solid parahydrogen were studied by using an ESR spectrometer. The following interesting results were obtained. First, the initial yields of ortho- H_2^- anions in the γ -irradiated solid parahydrogen were 3 times as large as those of para- H_2^- anions. Second, the yields of para- H_2^- anions decrease faster than those of ortho- H_2^- anions upon storage of the irradiated samples at 4.2 K. Third, the decay rate of H_2^- anions is accelerated by the addition of HD and D_2 molecules. Fourth, H_2^- anions at 2.2 K decay faster than at 4.2 K. According to the parity conservation rule in a homonuclear diatomic molecule, the energy of ortho- H_2^- anions at the ground state is lower than that of para- H_2^- anions, whereas that of ortho- H_2 molecules is higher than that of para- H_2 molecules at low temperatures. The first and second results are ascribed to para \rightarrow ortho conversion of H_2^- anions. The third result indicates that nearby HD and D_2 accelerate the decay of H_2^- anion or broaden the spectra by superhyperfine interactions. The fourth result suggests a coherent tunneling mechanism of decay of H_2^- anions in the solid parahydrogen.

Introduction

The solid hydrogen is a matrix of great interest that shows remarkable quantum phenomena.^{1,2} Recently, Miyazaki has proposed that the solid parahydrogen (p-H2), which has no nuclear spin moment, is a very useful matrix for a highresolution ESR spectroscopy at ultralow temperatures, at which unstable species are trapped. Because of the absence of their superhyperfine interactions, the spectra narrow drastically.³ In the γ -ray-irradiated solid p-H₂, we have found the new stable species of H₂⁻ anions for the first time, which are unstable in the gas phase.⁴ In addition, the new observation gives additional interesting results. para-H₂⁻(p-H₂⁻) and ortho-H₂⁻(o-H₂⁻) are formed in the ratio of 1:3,4 though the purity of p-H₂ molecules in the solid is higher than 95%. It suggests that para → ortho conversion has occurred during the irradiation, while in the case of the H_2 molecule, ortho \rightarrow para conversion generally occurs at low temperatures. If the para \rightarrow ortho conversion of H_2 anions still occurs after the irradiation, it should be detectable. In this study, we have examined the time evolution of the storage of para- and ortho- H_2^- anions in the γ -irradiated solid p- H_2 at 2.2 and 4.2 K. Effects of HD and D₂ on the decay processes of H₂⁻ anions were also studied.

Experimental Section

p-H₂ samples were synthesized by normal hydrogen liquid passing through a column of iron(III) hydroxide (FeO(OH)) at 14 K. The purity of p-H₂ was more than 95 mol %. The solidified samples were irradiated at 4.2 K with γ -rays from a Co-60 source to a total dose of 0.3 kGy. In order to reduce the amounts of color centers in γ -irradiated quartz, we have used a new cryostat for γ -irradiation. In some cases, the samples were irradiated with X-rays (60 kV, 45 mA) at 4.5 K. The radical

Figure 1. ESR spectra of H_2^- anions in γ -ray-irradiated solid parahydrogen at 4.2 K measured in a wide range of magnetic field. The peaks, indicated by B1, B2, B3, and B4, are attributed to $|I=1,I_z=0\rangle$, $|0,0\rangle$, $|1,1\rangle$, and $|1,-1\rangle$ states of H_2^- anions, respectively.

species produced were measured by ESR spectroscopy at 4.2 and 2.2 K. The 2.2 K was produced by evacuating the liquid helium by a rotary pump. The relative yields of H₂⁻ anions were obtained by measuring the peak heights of the ESR spectra. It was verified that the influence of the color centers on the peak height is almost negligible, because the signals originating from color centers did not decay at all during the measurements. The details of the experimental procedure were described in the previous paper.⁵

Results

Figure 1 shows the ESR spectrum of the solid parahydrogen γ -ray-irradiated at 4.2 K. The peaks, indicated by B1, B2, B3, and B4, are of H_2^- anions, while the peak indicated by A is due to other species that has not been identified yet. B1, B2, B3, and B4 peaks are attributed to the states of $|I=1,I_z=0\rangle$, $|0,0\rangle$, $|1,1\rangle$, and $|1,-1\rangle$ of H_2^- , where I and I_z indicate the spin quantum number and the spin magnetic quantum number, respectively.⁴ Thus, the B2 peak is of p- H_2^- and the others, B1, B3, and B4, are of o- H_2^- . As discussed above, it is interesting that the yields of o- H_2^- are by 3 times larger than

^{*} To whom correspondence should be addressed.

[†] Japan Atomic Energy Research Institute.

Nagoya University.

[⊗] Abstract published in Advance ACS Abstracts, January 15, 1997.

Figure 2. Yields of H_2^- anions in γ -irradiated solid p- H_2 as a function of storage time at 4.2 K. $(\bullet, \blacksquare, \blacktriangle)$ B1 (o-H₂⁻) peak in Figure 1; (O, \square , \triangle) B2 (p-H₂⁻) peak in Figure 1. Circles, squares, and triangles are the results in three different samples.

Figure 3. Ratios of the yields of o- H_2^- (\bullet , \blacksquare , \blacktriangle) and p- H_2^- (\bigcirc , \square , △) to the total yields of H₂⁻ anions against storage time at 4.2 K (see text).

those of p-H₂⁻, while the concentration of p-H₂ in the solid is greater than 95%. Though ortho-H2 molecules (o-H2) at 6 mol % were added to the solid p-H₂, the ratio of the yields of o-H₂⁻ to those of p-H₂⁻ was not changed.

Figure 2 shows time course of the yields of H₂⁻ anions upon storage of γ-irradiated solid p-H₂ at 4.2 K. The yields of B1 $(I_{\rm B1})$ and B2 $(I_{\rm B2})$ peaks in Figure 1, corresponding to o-H₂⁻ and p-H₂⁻, are shown. The experiments have been done for three different samples, depicted by circles, squares, and triangles, respectively. As shown in the figure, the reproducibility of these data is good. The yields of B3 peak (I_{B3}) and B4 peak (I_{B4}) could not be measured because of their poor S/N ratio. But they are expected to be the same as those of B1, since they are attributed to ortho-H₂⁻ and just separated by their spin magnetic quantum number (I_z) , which are not degenerated.⁴

Figure 3 shows the ratios of the yields of p-H₂⁻ and o-H₂⁻ to the total yields of H₂⁻ anions that are obtained from Figure 2 as $I_{B2}/(3I_{B1} + I_{B2})$ and $3I_{B1}/(3I_{B1} + I_{B2})$, respectively. Note that their denominators indicate the total yields of H₂⁻ anions $(I_{\rm H_2}$ -) calculated as

$$I_{\text{H}_2^-} = I_{\text{o-H}_2^-} + I_{\text{p-H}_2^-} = I_{\text{B1}} + I_{\text{B2}} + I_{\text{B3}} + I_{\text{B4}} = 3I_{\text{B1}} + I_{\text{B2}}$$

The ratio of o-H₂⁻ increases upon the storage, while that of p-H₂⁻ decreases.

Figure 4 shows the initial yields of B1 and B2 peaks in Figure 1, corresponding to o- H_2^- and p- H_2^- , respectively, in γ -irradiated p-H₂-HD-D₂ mixtures as a function of concentrations of HD and D₂ molecules at 4.2 K. The initial yields of H₂⁻ anions decrease as the concentration of HD and D2 in the solid increases.

Figure 4. Initial yields of H_2^- anions in γ -irradiated solid p- H_2 at 4.2 K as a function of concentrations of HD (\blacktriangle , \triangledown) or D₂ (\spadesuit , \square) molecules. Data depicted by \spadesuit and \square contain 0.03 mol % HD. (\blacktriangle , \spadesuit) B1 (o- H_2^-) peak in Figure 1; (∇, \square) B2 $(p-H_2^-)$ peak in Figure 1.

Figure 5. Relative yields of ${\rm H_2}^-$ anions in γ -irradiated p-H₂-HD mixtures against storage time at 4.2 K. $(\bullet, \blacksquare, \blacktriangle)$ o-H₂⁻ and $(\bigcirc, \square,$ △) p-H₂⁻, obtained from B1 and B2 peaks in Figure 1. Circles, squares, and triangles correspond to the HD concentrations at 0.03, 0.01, and 0.30 mol %, respectively. All the yields at t = 0 are normalized to 10.

Figure 6. Relative yields of H_2^- anions in γ -irradiated p- H_2 - D_2 mixtures against storage time at 4.2 K. $(\bullet, \blacksquare, \blacktriangle)$ o-H₂⁻ and $(\bigcirc, \square,$ △) p-H₂⁻, obtained from B1 and B2 peaks in Figure 1. Circles, squares, and triangles correspond to the D₂ concentrations at 0, 0.01, and 0.10 mol %, respectively. All the samples contain 0.03 mol % HD. And all the yields at t = 0 are normalized to 10.

Figures 5 and 6 show the time course of relative yields of $o-H_2^-$ and $p-H_2^-$ in γ -irradiated $p-H_2-HD$ and $p-H_2-D_2$ mixtures upon the storage of the sample at 4.2 K, respectively, where all the yields at t = 0 are normalized to 10. The yields of the anions in the solids containing 0.03, 0.10, and 0.30 mol % HD are shown in Figure 5, and those in the solids containing 0, 0.01, and 0.1 mol % D₂ are shown in Figure 6. It is pointed out that, in Figures 4 and 5, the results in the sample containing 0.03 mol % HD are obtained from pure solid parahydrogen,

Figure 7. Time course of the total yields of H_2^- anions in γ -irradiated solid p- H_2 at 4.2 K (\spadesuit , \blacksquare , \blacktriangle) and 2.2 K (\diamondsuit , ∇). The experiments were done for three samples at 4.2 K and for two samples at 2.2 K.

TABLE 1: Parities of Wave Functions on Exchanging Each Proton in a H_2 Molecule or a H_2 -Anion^a

	vibration	rotation	electron	nuclear spin	total
para-H ₂	sym	sym	sym	anti	anti
ortho-H ₂	sym	anti	sym	sym	anti
para-H ₂ ⁻	sym	anti	anti	anti	anti
ortho- H_2^-	sym	sym	anti	sym	anti

^a The abbreviations sym and anti represent symmetric and antisymmetric of wave functions, respectively.

which contains 0.015% D atoms estimated from the natural abundance of D and H. Similarly, all the samples shown in Figure 6 inevitably contain 0.03 mol % HD. Both o- ${\rm H_2}^-$ and p- ${\rm H_2}^-$ anions decay faster proportional to the concentration of HD or D₂.

Figure 7 shows the time course of the total yields of $\rm H_2^-$ anions ($\it I_{n-H_2}^-$) at 4.2 and 2.2 K. The experiments were done for three samples at 4.2 K and for two at 2.2 K. It is interesting that $\rm H_2^-$ anions at 2.2 K apparently decay faster than at 4.2 K.

Discussion

Conversion of p-H₂⁻ Anions to o-H₂⁻ Anions. We now consider the problems why p-H₂⁻ anions decay faster than o-H₂⁻ and why the initial yields of o-H₂⁻ anions are higher than those of p-H₂⁻ anions. In a homonuclear diatomic molecule, its quantum state is restricted by its parity on exchanging each proton in a molecule. Since a proton is a fermion, the total parity of the wave function of the molecule ($\Psi_{molecule}$) should be antisymmetric. Besides, it is represented as a product of that of each quantum state (φ) , which is written as $\Psi_{\text{molecule}} =$ $\varphi_{
m vibration} imes \varphi_{
m rotation} imes \varphi_{
m electron} imes \varphi_{
m nuclear spin.}^6$ Parities of wave functions on exchanging each proton in a H2 molecule and a H₂⁻ anion are summarized in Table 1. Since a rotational wave function of a p-H2 molecule is symmetric and that of an o-H2 molecule is antisymmetric, p-H₂ and o-H₂ are in J = 0 and J =1 rotational states at low temperatures, respectively. So the energy level of o-H₂ molecule at the ground state is 170.5 K higher than that of p-H₂. Accordingly, o-H₂ molecules convert into p-H₂ molecules by themselves, when magnetic perturbations exist around them. On the contrary, the electronic state of electrons in a H_2^- anion is ${}^2\Sigma^+_u$, which means antisymmetric on the exchanging, while that in H_2 molecule is ${}^1\Sigma^+_{g}$, which means symmetric. 7,8 Then, p-H₂⁻ and o-H₂⁻ anions at ground states are in J = 1 and J = 0 rotational states, respectively. Therefore, the energy of o-H₂⁻ anion becomes lower than that of p-H₂⁻ at 4 K. Accordingly, the result in Figure 3 is explained

TABLE 2: Decay Rate of H₂⁻ Anions and Yields of H₂⁻ Anions and H Atoms in X-ray-Irradiated p-H₂ at 4.5 K

	irradiation time (min)	
	17	150
decay rate ^a (arb unit)	0.087	0.056
yields of H ₂ ⁻ (arb unit)	0.43	3.5
yields of H (arb unit)	2.5×10^{3}	2.3×10^{4}

^a Obtained by the kinetic plot of pseudo-first-order reaction for the data.

as para \rightarrow ortho conversion of H_2^- anion under the magnetic perturbation caused by an unpaired electron in it.

$$p-H_2^- \rightarrow o-H_2^- \tag{2}$$

When $o-H_2$ at 6 mol % was added to $p-H_2$, the ratio of the initial yields of $o-H_2^-$ to those of $p-H_2^-$ in the irradiated solid is the same as that in the irradiated pure $p-H_2$. Thus, the higher yields of $o-H_2^-$ anions compared to those of $p-H_2^-$ cannot be ascribed to the electron transfer from $p-H_2^-$ anion to $o-H_2$ molecule (reaction 5).

$$p-H_2 \longrightarrow p-H_2^+ + e^-$$
 (3)

$$e^{-} + p - H_{2} \rightarrow p - H_{2}^{-}$$
 (4)

$$p-H_2^- + o-H_2 \rightarrow p-H_2 + o-H_2^-$$
 (5)

The high initial yields of $o-H_2^-$ are probably due to the para \rightarrow ortho conversion of $p-H_2^-$ during γ -irradiation (reaction 2). In contrast with the case of H_2 molecules, $p-H_2^-$ anions convert into $o-H_2^-$.

Decay Mechanism of H₂⁻ Anions. H₂⁻ anions would migrate in the solid and finally meet to react with other species in the solid. Now, we will discuss the mechanism of the decay of H₂⁻ anions. Table 2 shows decay rates of H₂⁻ anions and initial yields of H atoms and H₂⁻ anions at 4.5 K in the solid parahydrogen irradiated by X-rays at 17 and 150 min. In spite of the large difference in their irradiation times, both decay rates are the same within their experimental errors, while the yields of H₂⁻ anions and H atoms increase linearly with an increase of the irradiation time. As accompanied by the yields of H₂⁻ anions, those of cations are also expected to increase with an increase of the irradiation time for conservation of their charge in the solid. If H₂⁻ anions react with H atoms by the electron transfer reaction, $H_2^- + H \rightarrow H_2 + H^-$, or neutralize with cations, the decay rate of H₂⁻ anions must be proportional to the yields of H atoms or cations, respectively. However, as discussed above, it does not depend upon the yields of H atoms or cations, suggesting that the disappearance process of H₂⁻ anions is due to neither the reaction with H atoms nor that with cations.

Now, the effect of the addition of HD and D_2 on the decay of H_2^- anions will be discussed. Figure 4 shows that the initial yields of B1 (o- H_2^-) and B2 (p- H_2^-) peaks in Figure 1 decrease as the concentration of HD and D_2 in the solid increases. Moreover, Figures 5 and 6 show that the decay rates of both o- H_2^- and p- H_2^- anions are accelerated by addition of HD and D_2 molecules, indicating that H_2^- anions interact with HD and D_2 molecules. When H_2^- anions (probably electrons in H_2^-), HD, and D_2 migrate in the solid (reaction 6) and meet, they disappear by some reaction with HD or D_2 molecules. 9,10 Note that HD $^-$ or D_2^- anions are never created, because reactions 7

and 8 are endothermic processes, which are derived from ground state vibrational energies of H₂, HD, and D₂ molecules.

$$H_2^- + H_2 \rightarrow H_2 + H_2^-$$
 (6)

$$\mathrm{H_2}^- + \mathrm{HD} \rightarrow \mathrm{H_2} + \mathrm{HD}^- \tag{7}$$

$$H_2^- + D_2 \rightarrow H_2 + D_2^-$$
 (8)

In these experiments, the ESR spectrum of HD⁻ and D₂⁻ anions could not be detected.

So, it is probable that nearby HD and D₂ accelerate the decay of H₂⁻ anion or broaden the spectra by superhyperfine interactions. To clarify the problem, we are now planning additional experiments.

Temperature Dependence of the Decay of H₂⁻ Anions. Figure 7 shows that the H₂⁻ anions at 2.2 K decay faster than those at 4.2 K. Though the decay rate should decrease with decreasing temperature in the classical theory, it increases at lower temperature in this work. The decay rate is probably controlled by the rate for the diffusion of electron in H₂⁻ anions (reaction 6). Therefore, the data suggest that the electron in H₂⁻ anions migrate faster at the lower temperatures. It is probable that the reaction occurs via tunneling because of the light mass of an electron. Moreover, its inverse temperature dependence of the diffusion rate is probably caused by repetition of coherent tunneling: particle transfer without phonon absorption or emission.¹¹ For example, Kiefl et al. previously reported that muon, whose mass is about 1/9 of a proton, migrates in ionic solids by coherent tunneling processes at ultralow temperatures. 12,13 The rate for the diffusion increases clearly with decreasing temperature. By the same behavior as this, the temperature dependence on the decay of H₂⁻ anions shown in Figure 7 suggests that H₂⁻ anions diffuse in the solid parahydrogen by coherent tunneling.

Acknowledgment. The authors thank Emeritus Professor F. Nakano of Nagoya University and Doctor K. Yokoyama of Japan Atomic Energy Research Institute for their helpful comments and Mr. T. Nagasawa of Nagoya University for his help in the experiment. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture.

References and Notes

- (1) Kranendonk, V. Solid Hydrogen; Plenum: New York, 1983; Chapter 2.
- (2) Souers, P. C. Hydrogen Properties for Fusion Energy; University of California Press: Berkeley, CA, 1986; Chapter 6.
- (3) Miyazaki, T.; Hiraku, T.; Fueki, K.; Tsuchihashi, Y. J. Phys. Chem. **1991**, 95, 26.
- (4) Kumada, T.; Inagaki, H.; Nagasawa, T.; Aratono, Y.; Miyazaki, T. Chem. Phys. Lett. 1996, 251, 219.
- (5) Miyazaki, T.; Kitamura, S.; Morikita, H.; Fueki, K. J. Phys. Chem. 1992, 96, 10331 and references therein.
- (6) Rushbrooke, G. S. Introduction to Statistical Mechanics; Clarendon: Oxford, 1951.
- (7) DeRose, E. F.; Gislason, E. A.; Sabelli, N. H.; Sluis, K. M. J. Chem. Phys. 1988, 88, 4878.
 - (8) Nakano, F. Private communication.
 - (9) Delrieu, J. M.; Sullivan, N. S. Phys. Rev. B 1981, 23, 3197.
- (10) Rall, M.; Zhou, D.; Kisvarsanyi, Erika, G.; Sullivan, N. S. Phys. Rev. B 1992, 45, 2800. (11) Kagan, Y.; Klinger, M. I. J. Phys. 1974, C7, 2791.
- (12) Kiefl, R. F.; Kadono, R.; Brewer, J. H.; Luke, G. M.; Yen, H. K. Phys. Rev. Lett. 1989, 62, 792.
- (13) Kadono, R.; Kiefl, R. F.; Ansaldo, E. J.; Brewer, J. H.; Celio, M.; Kreitzman, S. R.; Luke, G. M. Phys. Rev. Lett. 1990, 64, 665.