# Instrumentação Industrial Introdução aos processos de medição

Prof. Felipe Pinheiro

Universidade Federal do Rio Grande do Norte 2019.2



# Sumário

Conceitos básicos

2 Unidades e Padrões



# Introdução

- Instrumentação é a ciência que estuda, desenvolve e aplica instrumentos de medição, monitoramento e controle de processos.
- Grande número de variáveis podem ser medidas simultaneamente.
- Avanço tecnológico pela necessidade de melhores exatidão, precisão e qualidade.



Controle de Processos

É o controle automático de uma variável de saída através da detecção de parâmetros do processo e da comparação dessa variável a um valor desejado de referência, realimentando um sinal de erro para ajustar uma variável de entrada.



# Conceitos Básicos Exemplo

• Sistema de controle simples.







Elementos de um laço de controle

- Laço de realimentação: O caminho do sinal de saída ao ser realimentado na entrada para corrigir alguma variação na variável controlada.
- Variável controlada: É a variável de saída monitorada a partir de um processo.
- Variável manipulada: É a variável de entrada (do sistema de controle) que é alterada por um sinal de controle do processador através de um atuador.
- Referência: É o valor desejado para a variável de saída do sistema.

Elementos de um laço de controle

- Sensores: Dispositivos que podem detectar variáveis físicas.
- **Transdutor:** Dispositivos que podem converter uma forma de energia em outra.
- **Conversor:** Dispositivos utilizados para modificar o formato de um sinal sem mudar sua forma de energia.
- Atuador: Dispositivos utilizados para controlar uma variável de entrada em resposta à um sinal de controle.
- Controladores: Dispositivos que monitoram sinais e atuam de forma a manter o processo dentro dos limites especificados.

Elementos de um laço de controle

- Controladores Lógicos Programáveis (CLP): Sistemas baseados em microprocessadores utilizados em aplicações de controle de processos.
- **Sinal de erro:** Diferença entre a amplitude da referência e da variável medida.
- Sinal de controle: Sinal usado para definir o nível de potência do atuador e controlar a amplitude da variável de entrada.
- Transmissores: Dispositivos usados para amplificar e formatar sinais tal que eles possam ser transmitidos através de longas distâncias.

#### Exercício 1

#### Identifique os seguintes elementos:

- O sensor
- O transdutor
- O atuador
- O transmissor
- O controlador
- A variável manipulada
- A variável medida





#### Unidades e Padrões

- Um conjunto de normas e padrões são necessários para garantir a consistência de informações e evitar confusões.
- Para unidades de medições existem dois sistemas distintos: O
  Sistema Britânico e o Sistema Internacional (SI).



# Unidades e Padrões

TABLE 1.1 Basic Units

| Quantity                        | English           |           | SI               |        |                                     |
|---------------------------------|-------------------|-----------|------------------|--------|-------------------------------------|
| Base units                      | Units             | Symbol    | Units            | Symbol | Conversion to SI                    |
| Length                          | Foot              | ft        | Meter            | m      | 1 ft = 0.305 m                      |
| Mass                            | Pound (slug)      | lb (slug) | Kilogram         | kg     | 1  lb(slug) = 14.59  kg             |
| Time                            | Second            | s         | Second           | s      |                                     |
| Temperature<br>Electric current | Rankine<br>Ampere | R<br>A    | Kelvin<br>Ampere | K<br>A | $1^{\circ}\text{R} = 5/9 \text{ K}$ |



### Unidades e Padrões

TABLE 1.2 Units in Common Use in the English and SI System

|                    | English                      |        |                                    | SI      |        |                                                            |
|--------------------|------------------------------|--------|------------------------------------|---------|--------|------------------------------------------------------------|
| Quantity           | Name                         | Symbol | Units                              | Name    | Symbol | Units                                                      |
| Frequency          | Hertz                        |        |                                    | Hertz   | Hz     | $s^{-1}$                                                   |
| Energy             | Foot-pound                   | ft-lb  | lb·ft <sup>2</sup> /s <sup>2</sup> | Joule   | J      | kg·m²/s²                                                   |
| Force              | Pound                        | lb     | lb·ft/s <sup>2</sup>               | Newton  | N      | kg·m/s <sup>2</sup>                                        |
| Resistance         | Ohm                          |        |                                    | Ohm     | Ω      | kg·m <sup>2</sup><br>per (s <sup>3</sup> ·A <sup>2</sup> ) |
| Electric Potential | Volt                         |        |                                    | Volt    | V      | Α·Ω                                                        |
| Pressure           | Pound<br>per in <sup>2</sup> | psi    | lb/in <sup>2</sup>                 | Pascal  | Pa     | N/m <sup>2</sup>                                           |
| Charge             | Coulomb                      |        |                                    | Coulomb | С      | A·s                                                        |
| Inductance         | Henry                        |        |                                    | Henry   | Н      | kg·m <sup>2</sup><br>per (s <sup>2</sup> ·A <sup>2</sup> ) |
| Capacitance        | Farad                        |        |                                    | Farad   | F      | s <sup>4</sup> ·A <sup>2</sup><br>per (kg·m <sup>2</sup> ) |
| Magnetic flux      |                              |        |                                    | Weber   | Wb     | V·s                                                        |
| Power              | Horsepower                   | hp     | lb·ft <sup>2</sup> /s <sup>3</sup> | Watt    | w      | J/s                                                        |

Conversion to SI

1 ft·lb = 1.356 J 1 lb (F) = 4.448 N

1 psi = 6897 Pa

1 hp = 746 W



#### Exercício 2

- Quantos metros equivalem a 110 jardas?
- Quanto equivale 2,5 m em polegadas?
- O peso de um objeto é 2,5 lb. Qual é a força e massa equivalentes no sistema SI?
- Qual a pressão equivalente a 18 psi no sistema SI?



# Próxima aula

Continuação.

Plantão de dúvidas: msc.felipepinheiro@gmail.com

