纠缠光子的制备及性质实验报告

何金铭 PB21020660

实验目的, 实验原理, 实验内容已于预习报告中给出, 这里不再复述。

1 实验结果与分析

1.1 系统搭建 1

表 1: 光子数计数表 1

偏振片组合	符合计数
0/90°	3650
90°/0	2129

表 2: 光子数计数表 2

偏振片组合	符合计数
45°/45°	2564
-45°/-45°	1716
45°/-45°	51
-45°/45°	53

1.2 CHSH 不等式的测量

记: $\theta_{a1} = 0^{\circ}, \theta_{a2} = 45^{\circ}, \theta_{b1} = 22.5^{\circ}, \theta_{b2} = -22.5^{\circ}$

表 3: CHSH 不等式偏振组合 1

偏振片组合	符合计数
$C(\theta_{a1}, \theta_{b1})$	304
$C(\theta_{a1}, \theta_{b1}^{\perp})$	2466
$C(\theta_{a1}^{\perp}, \theta_{b1})$	2180
$C(\theta_{a1}^{\perp}, \theta_{b1}^{\perp})$	537

得: $E(a_1, b_1) = -0.6935$

表 4: CHSH 不等式偏振组合 2

偏振片组合	符合计数
$C(\theta_{a1},\theta_{b2})$	164
$C(\theta_{a1}, \theta_{b2}^{\perp})$	2056
$C(\theta_{a1}^{\perp}, \theta_{b2})$	2167
$C(\theta_{a1}^{\perp}, \theta_{b2}^{\perp})$	225

得: $E(a_1, b_2) = -0.8313$

表 5: CHSH 不等式偏振组合 3

偏振片组合	符合计数
$C(\theta_{a2},\theta_{b1})$	2049
$C(\theta_{a2}, \theta_{b1}^{\perp})$	356
$C(\theta_{a2}^{\perp}, \theta_{b1})$	410
$C(\theta_{a1}^{\perp}, \theta_{b1}^{\perp})$	2545

得: $E(a_2, b_1) = 0.7142$

表 6: CHSH 不等式偏振组合 4

偏振片组合	符合计数
$C(\theta_{a2},\theta_{b2})$	550
$C(\theta_{a2}, \theta_{b2}^{\perp})$	1928
$C(\theta_{a2}^{\perp}, \theta_{b2})$	1719
$C(\theta_{a1}^{\perp}, \theta_{b1}^{\perp})$	390

得: $E(a_2, b_2) = -0.5901$ 最终计算得:

 $|E\left(m{a}_{1},m{b}_{1}
ight)+E\left(m{a}_{1},m{b}_{2}
ight)+E\left(m{a}_{2},m{b}_{1}
ight)-E\left(m{a}_{2},m{b}_{2}
ight)|=2.8291=2\sqrt{2}+0.00067,$ CHSH 不等式的误差在 0.5% 以内,可以认为此结果为 $2\sqrt{2}>2$ 违背了 CHSH 不等式。

1.3 测量关联曲线

1.3.1 一个偏振片为 0° 时的关联曲线

表 7: 一个偏振片为 0° 时的关联曲线记录表

转动角度	光子计数	转动角度	光子计数
0	333	100	2501
10	109	110	2417
20	338	120	2047
30	592	130	1602
40	952	140	1037
50	1401	150	666
60	1794	160	201
70	2134	170	32
80	2544	180	20

图 1: 一个偏振片为 0° 时的关联曲线

1.3.2 一个偏振片为 45° 时的关联曲线

表 8: 一个偏振片为 45° 时的关联曲线记录表

转动角度	光子计数	转动角度	光子计数
0	1416	100	807
10	1773	110	428
20	2036	120	228
30	2232	130	92
40	2307	140	41
50	2232	150	136
60	2060	160	338
70	1813	170	642
80	1441	180	922

图 2: 一个偏振片为 45° 时的关联曲线

2 实验结论

- 1. 取 $\theta_{a1} = 0^{\circ}$, $\theta_{a2} = 45^{\circ}$, $\theta_{b1} = 22.5^{\circ}$, $\theta_{b2} = -22.5^{\circ}$, 测得结果违背了 CHSH 不等式
- 2. 并且测得了一个偏振片角度为 0°,45° 的结果,发现关联曲线有明显的干涉特性

3 思考题

3.1 实验原理部分给出的 CHSH 不等式最大违背条件下有 $B_{\text{CHSH}}=2\sqrt{2}$, 给出详细 计算过程.

取 $\theta_{a1}=0^{\circ}, \theta_{a2}=45^{\circ}, \theta_{b1}=22.5^{\circ}, \theta_{b2}=-22.5^{\circ}$,在 Bloch 矢量中,偏振片的角度 0° 对应了 $|V\rangle, 22.5^{\circ}$ 对应了 $|+\rangle$ 则有:

- 1. $E(a_1, b_1) = -\cos(45^\circ)$
- 2. $E(a_1, b_2) = -\cos(45^\circ)$
- 3. $E(a_2, b_1) = -\cos(45^\circ)$
- 4. $E(a_2, b_2) = -\cos(135^\circ)$

$$|E(a_1, b_1) + E(a_1, b_2) + E(a_2, b_1) - E(a_2, b_2)| = 2\sqrt{2}$$

3.2 根据实验数据分析, 该实验中我们制备的纠缠态是四个 Bell 态中的哪一个? (需给出分析的过程)

是 Bell 态中的 $|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$ 态分析如下:

图 3: 实验装置示意图

将 PPKTP 晶体和 Sagnac 环结合,即可产生高亮度的偏振纠缠源,下面给出详细分析. 泵浦光被由极化分束器 (PBS) 反射只剩下 V 分量,再由半波片将 V 极化的泵浦光置于 45° 极化,之后再次入射极化分束器 (PBS), H 分量透射,V 分量反射. 透射部分直接进入 PPKTP 晶体,以一定概率打出一对信号光 (H) 和闲频光 (V),经 45 度半波片后极化翻转,分别记为 $|V_s\rangle$ 和 $|H_i\rangle$;反射部分泵浦光经过 45 度半波片变换为 H,同样以一定概率打出一对信号光 (H) 和闲频光 (V),分别记为 $|H_s\rangle$ 和 $|V_i\rangle$. 透射和反射的泵浦光由于光强相同,所以泵出一对光子的概率也相同. 透射 (反射)泵浦光所产生的下转换光子分别沿 Sagnac 环逆时针 (顺指针)再次进入 PBS,经 PBS 变换,信号光进入路径 3,闲频光进入路径 4,记为 $|V_s\rangle_3|H_i\rangle_4(|H_s\rangle_3|V_i\rangle_4)$. 由于光子的全同性,当在 3 和 4 端口观测到符合计数时,我们无法分辨下转换光子的顺 (逆) 时针,此时在 3 和 4 路径上,两个光子便处于纠缠态

$$|\Psi^{+}\rangle_{34} = \frac{1}{\sqrt{2}} (|V_{s}\rangle_{3} |H_{i}\rangle_{4} + |H_{s}\rangle_{3} |V_{i}\rangle_{4}).$$

3.3 实验中需调节 405nm 泵浦光路径上的四分之一波片和半波片, 其作用是什么?

作用为将入射的 $|V\rangle$ 光转换为 $|+\rangle$ 光使其既可以透过第二个 $PBS(|H\rangle)$,也可以在第二个 $PBS(|V\rangle)$ 上反射 $(|V\rangle)$

3.4 如果我们实验中制备的态是 HV 和 VH 的概率叠加, 测到的关联曲线会是什么样子? 尝试计算此时 CHSH 不等式违背情况. 结合本问题谈谈 Sagnac 环在实验中起到的作用.

我们本次实验中制备的态就为 HV 和 VH 的概率叠加:

$$|\Psi^{+}\rangle_{34} = \frac{1}{\sqrt{2}} \left(|V_s\rangle_3 |H_i\rangle_4 + |H_s\rangle_3 |V_i\rangle_4 \right).$$

得到的关联曲线如图1,图2所示。

Sagnac 环的作用为:

- 1. 进入路径 3(4) 的光子均为信号 (闲频) 光,这样的 Sagnac 结构能够避免由于光谱不同产生的 纠缠干涉对比度下降.
- 2. 另外由于 Sagnac 干涉环的两臂重合,故此结构能够保证即便较长距离的干涉,光子的波包也能较好的重合.
- 3.5 调研双光子干涉现象 (Hong-Ou-Mandel interference); 该现象是由于光子的 波色统计特性, 如果用费米子做同样的实验会有怎样的现象. (选做)

3.5.1 HOM 干涉的原理

如下图所示, 当两个光子沿路径 a 和 b 入射到分束器时, 其出射光子的可能情况有四种, 即两个光子同时透射和反射, 其中一个光子透射另一个光子反射, 分别对应下图中的四种光子出射分布情况。

图 4: 两光子入射到分束器上有四种可能的输出状态

在光子数表象下, 出射光子的量子态可以写成:

$$|\Phi\rangle_{out} = (R - T)|1_c, 1_d\rangle + i\sqrt{2RT}|2_c, 0_d\rangle + |0_c, 2_d\rangle \tag{1}$$

其中符合计数指: c,d 同时有光子出射

若假设我们的干涉滤波器的滤波函数是高斯型函数 $g(\tau) = \exp\{(-\Delta\omega\tau^2/2)\}$ 。最后得到复合计数的表达式为:

$$N_{cd} = \kappa (T^2 + R^2) [1 - \frac{2RT}{T^2 + R^2} \exp\{(-\Delta\omega\delta\tau)\}]$$
 (2)

可以很明显的看出,复合计数在相对延迟为零时的符合计数最低,形成一个低谷,低谷的半高宽度与光子的带宽 $\Delta\omega$ 有关。得到的结果如下图所示:

图 5: 第一次 HOM 干涉曲线

3.5.2 费米子的 HOM 干涉

然而,对于费米子(如电子),根据泡利不相容原理,两个费米子不能占据相同的量子态。因此,费米子的 HOM 干涉实验会有所不同。由于费米子的波函数是反对称的,两个费米子的波函数在空间上有所重叠时,它们的自旋或其他自由度必须不同,以满足泡利不相容原理。因此,费米子的 HOM 实验中,即使两个费米子的波包完全重叠,它们也不会产生完全的干涉,而是会出现一些分离。

因此,费米子的 HOM 干涉实验不会呈现出明显的干涉消除现象,而是会有一些衰减。这是由于费米子的反对称性质所导致的,与玻色子的干涉实验有所不同。