Chapter 4 Notions sur les fonctions en analyse

4.1 Fonctions d'une variable réelle à valeurs réelles

Solution 4.9

Solutions à justifier!

1. Dom
$$f = \mathbb{R}$$
.

2. Dom
$$f =]-\infty, 1]$$
.

3. Dom
$$f = \left[-\infty, -\sqrt{5} \right] \cup \left[\sqrt{5}, +\infty \right].$$

4. Dom
$$f = \emptyset$$
.

5. Dom
$$f = [0, 1]$$
.

6. Dom
$$f = \{-1\} \cup \mathbb{R}_+$$
.

7. Dom
$$f = \{-1, 1\}.$$

8. Dom
$$f = \mathbb{R} \setminus \{-1, 0, 1\}$$
.

9. Dom
$$f = [1, +\infty[$$
.

10. Dom
$$f = \mathbb{R}^*$$
.

11. Dom
$$f = \mathbb{R} \setminus \{-2, -1, 1, 2\}$$
.

Solution 4.10

Comme toute fonction rationnelle, g est définie sur \mathbb{R} privé des pôles de cette fonction. Or $x^2 - 3x - 4 = (x - 1)(x + 4)$, d'où l'on déduit que g est définie sur $\mathbb{R} \setminus \{-4, 1\}$.

La fonction h apparaît comme la composée de la fonction ln et de la fonction g précédente. On a donc

$$h(x)$$
 est défini \iff $g(x)$ est défini et $g(x) \in \text{Dom}(\ln)$
 \iff $x \in \mathbb{R} \setminus \{-4, 1\}$ et $g(x) > 0$.

Cherchons donc le signe de g(x). On a $g(x) = \frac{(x+1)(x+2)}{(x-1)(x+4)}$, d'où

х	$-\infty$		-4		-2		-1		+1		+∞
x + 1		-		-		_	0	+		+	
x + 2		-		-	0	+		+		+	
x-1		-		-		_		-	0	+	
x + 4		_	0	+		+		+		+	
g(x)		+		-	0	+	0	-		+	

Et par conséquent

$$Dom(h) =]-1, -\infty, -4[\cup]-2, -1[\cup]1, +\infty[.$$

4.2 Courbe représentative d'une fonction

Solution 4.12

Solution 4.13

Solution 4.14

Solution 4.15 Solution 4.16

4.3 Symétries du graphe

Solution 4.20

Solutions à justifier!

- 1. Ni paire ni impaire.
- 2. Paire et non impaire.
- 3. Impaire et non paire.
- 4. Paire et impaire.
- 5. Ni paire ni impaire.
- **6.** Ni paire ni impaire.
- 7. Ni paire ni impaire.

- **8.** Paire et non impaire.
- 9. Impaire et non paire.
- 10. Ni paire ni impaire.
- 11. Impaire et non paire.
- 12. Impaire et non paire.
- 13. Ni paire ni impaire.
- 14. Impaire et non paire.

Solution 4.21

Solution 4.22

Pour démontrer un énoncé aussi général, il faut commencer par prendre des notations. Soit A, B, C trois parties de \mathbb{R} , $f:A\to B$ et $g:B\to C$.

Supposons f impaire et g impaire. Soit $x \in A$, alors $-x \in A$ car f est impaire, donc définie sur un ensemble symétrique par rapport à 0. Deplus,

$$g \circ f(-x) = g(f(-x)) = g(-f(x)) = -g(f(x)) = -(g \circ f(x)).$$

L'application $g \circ f$ est donc impaire.

De manière analogue, on montre que

- si f est paire et g est paire, alors $g \circ f$ est paire;
- si f est impaire et g est paire, alors $g \circ f$ est paire;
- si f est paire et g est impaire, alors $g \circ f$ est paire.

Solution 4.23

Démontrer que l'on a effectivement trouver la période principale (la plus petite période) est bien difficile. Par contre, il est facile de vérifier (à faire donc!) que les périodes suivantes conviennent.

- 1. $2\pi/3$.
- **2.** $2\pi/3$.
- **3.** 2.
- **4.** 4π .
- **5.** *π*.

- **6.** $\pi/2$
- 7. $\pi/2$.
- 8. 96π
- **9.** π

Solution 4.24

Solution 4.25

4.4 Injections, surjections, bijections

Solution 4.26

Soit $y \in]-\infty, -2[$ et $x \in]3, +\infty[$.

$$y = f(x) \iff y = \frac{2x}{3-x} \iff 3y - yx = 2x \iff 3y = 2x + yx \iff x = \frac{3y}{2+y}$$

De plus, on vérifie que si y < -2, on a bien

$$\frac{3y}{2+y} = 3\frac{y+2-2}{2+y} = 3 - \frac{6}{2+y} > 3.$$

On a donc

$$\forall y \in]-\infty, -2[, \exists!x \in]3, +\infty[, y = f(x)]$$

ainsi, f est bijective. De plus,

$$f^{-1}$$
: $]-\infty, -2[\rightarrow]3, +\infty[$.
 $x \mapsto \frac{3x}{2+x}$

Solution 4.27

Soit $y \in \mathbb{R}$ et $x \in \mathbb{R}$.

$$y = f(x) \iff 2y = e^x - e^{-x} \iff e^{2x} - 2ye^x - 1 = 0.$$

Or le polynôme $X^2 - 2yX - 1$ a pour discriminant $4y^2 + 4 = 4(y^2 + 1) > 0$ et pour racines

$$y - \sqrt{y^2 + 1}$$
 et $y + \sqrt{y^2 + 1}$.

Remarquons que la première est < 0. Finalement,

$$y = f(x) \iff e^x = y - \sqrt{y^2 + 1}$$
 ou $e^x = y + \sqrt{y^2 + 1} \iff x = \ln\left(y + \sqrt{y^2 + 1}\right)$.

Conclusion

La fonction f est bijective et pour $y \in \mathbb{R}$, $f^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$. Autrement dit

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \ln\left(x + \sqrt{x^2 + 1}\right)$

Remarquez que f = sh et que sa réciproque f^{-1} est notée argsh.

Solution 4.28

1. On peut étudier la fonction f en remarquant que f est continue sur \mathbb{R} en tant que quotient défini de fonctions continues. De plus, f est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ et

$$\forall x < 0, f(x) = \frac{x}{1-x} \text{ et } f'(x) = \frac{1}{(1-x)^2} > 0$$

et

$$\forall x > 0, f(x) = \frac{x}{1+x}$$
 et $f'(x) = \frac{1}{(1+x)^2} > 0$

La fonction f est continue sur \mathbb{R} et pour $x \in \mathbb{R}^*$, f'(x) > 0. La fonction f est donc strictement croissante sur \mathbb{R} (on pourrait vérifier qu'elle est aussi dérivable en 0, mais c'est inutile). La fonction f est donc injective. On a de plus,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{1+x} = 1 \text{ et } \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{1-x} = -1.$$

Puisque f est continue, l'image de l'intervalle $\mathbb R$ est un intervalle et puisque f est strictement croissante, on en déduit

$$f(\mathbb{R}) =]-1,1[$$
.

La fonction f réalise donc une bijection de \mathbb{R} sur]-1,1[.

Cette question peut en fait se déduire de la suivante. Néanmoins, il est alors plus difficile de deviner l'intervalle image] – 1, 1[.

2. Soit $x \in \mathbb{R}$ et $y \in]-1,1[$.

narque

$$y = g(x) \iff y = \frac{x}{1 + |x|} \iff (1 + |x|)y = x$$

On constate que dans la dernière relation, que x et y on nécessairement le même signe. Si $y \in [0, 1[$,

$$y = g(x) \iff (1+x)y = x \iff y = x(1-y) \iff x = \frac{y}{1-y}.$$

Et si $y \in]-1,0[$,

$$y = g(x) \iff (1 - x)y = x \iff y = x(1 + y) \iff x = \frac{y}{1 + y}$$

Finalement,

$$g^{-1}(y) = \begin{cases} \frac{y}{1-y} & \text{si } y \in [0,1[,\\ \frac{y}{1+y} & \text{si } y \in]-1,0]. \end{cases}$$

On peut donc écrire

$$g^{-1}$$
: $]-1,1[\rightarrow \mathbb{R}$. $x \mapsto \frac{x}{1-|x|}$.

Solution 4.29

Pour $x \in \mathbb{R}$ et $y \in \mathbb{R}$,

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y - 1}{2}$$
.

Conclusion

L'application f est bijective et $f^{-1}: \mathbb{R} \to \mathbb{R}, y \mapsto \frac{y-1}{2}$. Ce qui s'écrit également (le y est muet)

$$f^{-1}: \mathbb{R} \to \mathbb{R} x \mapsto \frac{x-1}{2}.$$

Solution 4.30

Soit $x \in [0, 2]$ et $y \in [0, 2]$.

$$y = f(x) \iff y = \sqrt{4 - x^2}$$

$$\iff y^2 = 4 - x^2 \qquad \because y \ge 0$$

$$\iff x^2 = 4 - y^2$$

$$\iff x = \sqrt{4 - y^2} \qquad \because x \ge 0.$$

Conclusion

L'application f est bijective et

$$f^{-1}: [0,2] \rightarrow [0,2]$$

 $x \mapsto \sqrt{4-x^2}$

Solution 4.31

Soit $x \in [-4, 0]$ et $y \in [0, 4]$.

$$y = f(x) \iff y = \sqrt{16 - x^2}$$

$$\iff y^2 = 16 - x^2 \qquad \because y \ge 0$$

$$\iff x^2 = 16 - y^2$$

$$\iff x = -\sqrt{16 - y^2} \qquad \because x \le 0.$$

Conclusion

L'application f est bijective et

$$f^{-1}: [0,4] \rightarrow [-4,0]$$

 $x \mapsto -\sqrt{16-x^2}$

Solution 4.33

Solution 4.34

- 1. Clairement a = 2.
- **2.** Soit $x \in \mathbb{R} \setminus \{2\}$ et $y \in \mathbb{R}$. On a

$$f(x) = y \iff \frac{3x - 1}{x - 2} = y \iff 3x - 1 = xy - 2y$$
$$\iff 3x - xy = 1 - 2y \iff x(3 - y) = 1 - 2y.$$

Ainsi, si $y \neq 3$, $f(x) = y \iff x = \frac{1-2y}{3-y}$. Donc y admet un antécédent et un seul par f qui est $\frac{1-2y}{3-y}$. Si y = 3, alors $f(x) = y \iff 0x = 5$, donc y n'a pas d'antécédent par f.

Conclusion

Il existe donc un réel et un seul, b = 3, n'ayant pas d'antécédent par f.

3. On a pour $x \in \mathbb{R} \setminus \{2\}$ et $y \in \mathbb{R} \setminus \{3\}$,

$$g(x) = y \iff \frac{3x-1}{x-2} = y \iff x = \frac{2y-1}{y-3}$$

Conclusion

Ainsi, tout élément y de l'espace d'arrivée admet un antécédent et un seul par g, donc g est bijective, et l'application réciproque de g est

$$g^{-1}: \mathbb{R} \setminus \{3\} \rightarrow \mathbb{R} \setminus \{2\}$$
.
 $y \mapsto \frac{2y-1}{y-3}$

Solution 4.35

Solution 4.40

Solution 4.41

4.5 Notions liées à l'ordre

Solution 4.42

1. f est croissante sur \mathbb{R}^* car pour $x, y \in \mathbb{R}^*$,

$$x \le y < 0 \implies \frac{1}{y} \le \frac{1}{x} \implies -\frac{1}{x} \le -\frac{1}{y}.$$

2. f est croissante sur \mathbb{R}_+^* car pour $x, y \in \mathbb{R}_+^*$,

$$0 < x \le y \implies \frac{1}{y} \le \frac{1}{x} \implies -\frac{1}{x} \le -\frac{1}{y}$$

3. f n'est pas croissante car

$$-1 \le 3$$
 et non $\left(f(-1) = 1 \le f(3) = -\frac{1}{3} \right)$.

- **4.** f est strictement croissante sur \mathbb{R}_{-}^{\star} (remplacer \leq par < dans f croissante).
- **5.** f est strictement croissante sur \mathbb{R}_+^* (remplacer \leq par < dans f croissante).
- **6.** f n'est pas strictement croissante car elle n'est pas croissante.

Solution 4.43

1. Vrai. Soient $f: A \to \mathbb{R}$ et $g: A \to \mathbb{R}$ deux fonctions croissantes. Soit $x, x' \in A$ tels que $x \le x'$. Puisque f et g sont croissantes, on a

$$f(x) \le f(x')$$
 et $g(x) \le g(x')$.

En sommant ces deux inégalités, on obtient

$$(f+g)(x) = f(x) + g(x) < f(x') + g(x') = (f+g)(x').$$

Conclusion

On a montré

$$\forall x, x' \in A, x \le x' \implies (f+g)(x) \le (f+g)(x');$$

c'est-à-dire f + g est croissante.

- **2.** Faux. Comme contre exemple, on peut prendre $f: x \in \mathbb{R} \mapsto x$ et $g: x \in \mathbb{R} \mapsto 3x$. Ces deux fonctions sont croissantes, alors que la fonction $f g: x \mapsto -2x$ n'est pas croissante.
- **3.** Faux. Comme contre exemple, on peut prendre $f: x \in \mathbb{R} \mapsto x$ et $g: x \in \mathbb{R} \mapsto 3x$. Ces deux fonctions sont croissantes, alors que la fonction $fg: x \mapsto 3x^2$ n'est pas croissante.
- **4.** Vrai. Supposons f croissante et g croissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \le g(f(x'))$ car g est croissante.

Ainsi $g \circ f$ est croissante.

- 5. Faux. Remarquons tout d'abord que l'inverse d'une fonction n'est pas toujours définie (il faut que la fonction ne s'annule pas). Comme contre exemple, on peut prendre exp : $x \mapsto e^x$. Cette fonction est croissante, et sont inverse $\frac{1}{\exp}$: $x \mapsto e^{-x}$ n'est pas croissante.
- **6.** Vrai. Soit $f: A \to B$ une bijection croissante. Remarquons d'abord que f étant croissante et injective, elle est donc strictement croissante,

Nous allons montrer que sa réciproque $f^{-1}: B \to A$ est aussi croissante, c'est-à-dire

$$\forall (x, x') \in B^2, x \le x' \implies f^{-1}(x) \le f^{-1}(x').$$

Soient $x, x' \in B$ tels que $x \le x'$. On peut réécrire cette inégalité

$$f\left(f^{-1}(x)\right) \le f\left(f^{-1}(x')\right).$$

et puisque f est strictement croissante, cela équivaut à la relation

$$f^{-1}(x) \le f^{-1}(x').$$

Conclusion

La récirpoque d'une bijection croissante est croissante.

- 7. Faux. On peut choisir par exemple $f: x \mapsto x$ qui est croissante, et la constante -3. Alors $-3f: x \mapsto -3x$ n'est pas croissante.
- **8.** Vrai. Ce sont les fonctions constante.

Solution 4.44

1. Supposons f croissante et g croissante.

Remarque

On doit montrer que $g \circ f$ est croissante, c'est-à-dire

$$\forall (x, x') \in A^2, x \le x' \implies g \circ f(x) \le g \circ f(x').$$

Le « $\forall (x, x') \in A^2$ suggére de commencer la preuve par «Soient $x, x' \in A$ ». Pour montrer l'implication, on suppose $x \le x'$ et on se débrouille pour arriver à $g(f(x)) \le g(f(x'))$. Pour y arriver, nous avons le droit (en fait nous n'avons trop le choix) d'utiliser les hypothèses : f et g sont croissantes.

Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \le g(f(x'))$ car g est croissante.

- 2. Supposons f croissante et g décroissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \ge g(f(x'))$ car g est décroissante.
- 3. Supposons f décroissante et g croissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \ge f(x')$ car f est décroissante, puis $g(f(x)) \ge g(f(x'))$ car g est croissante.
- **4.** Supposons f décroissante et g décroissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \ge f(x')$ car f est décroissante, puis $g(f(x)) \le g(f(x'))$ car g est décroissante.

4.6 Tangente et dérivées

Solution 4.45

1. Pour $x \in \mathbb{R}$, f'(x) = 2x d'où f'(1) = 2 et la tangente recherchée admet pour équation cartésienne

v = 2(x - 1) + 4

c'est-à-dire

v = 2x + 2.

2. Pour $x \in \mathbb{R}$, f'(x) = 2x + 3 d'où f'(-2) = -1 et la tangente recherchée admet pour équation cartésienne

y = -(x + 2) + 2

c'est-à-dire

y = -x.

5. Pour x > 0, $f'(x) = \frac{1}{2\sqrt{x}}$ d'où $f'(1) = \frac{1}{2}$ et la tangente au point d'abscisse 1 admet pour équation cartésienne

 $y = \frac{1}{2}(x - 1) + 1$

c'est-à-dire

 $y = \frac{1}{2}x + \frac{1}{2}$.

6. Pour x > 1, $f'(x) = \frac{1}{2\sqrt{x-1}}$ d'où $f'(5) = \frac{1}{4}$ et la tangente au point d'abscisse 5 admet pour équation cartésienne

 $y = \frac{1}{4}(x-5) + 2$

c'est-à-dire

 $y = \frac{1}{4}x + \frac{3}{4}$.

Solution 4.47

Soit $a \in \mathbb{R}$. L'application f est dérivable en a et f'(a) = 4 - 2a. La tangente T_a à la courbe de f au point d'abscisse a admet pour équation cartésienne

 $y = (4 - 2a)(x - a) + 4a - a^2$ c'est-à-dire

 $T_a: v = (4-2a)x + a^2$

Enfin

$$A \in T_a \iff 5 = (4 - 2a) \times 2 + a^2 \iff a^2 - 4a + 3 = 0 \iff (a = 1 \text{ ou } a = 3)$$

Conclusion

Il y a deux tangente à la courbe de f passant par le point A(2,5):

 $T_1: y = 2x + 1$

et

 $T_3: y = -2x + 9.$

Soit $a \in \mathbb{R}$. L'application f est dérivable en a et f'(a) = 2a. La tangente T_a à la courbe de f au point d'abscisse a admet pour équation cartésienne

 $v = 2a(x - a) + a^2$

c'est-à-dire

 $T_a: y = 2ax - a^2$.

Enfin

$$A \in T_a \iff -3 = 2a \times 1 - a^2 \iff a^2 - 2a - 3 = 0 \iff (a = -1 \text{ ou } a = 3)$$

Conclusion

Il y a deux tangente à la courbe de f passant par le point A(1, -3):

 $T_1: y = -2x + 1$

et

 $T_3: y = 6x - 9.$

Solution 4.50

- **1.** La fonction $f: x \mapsto 4x^5 + 5x^3 3x + 4$ est une fonction polynômiale. Elle est donc dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = 20x^4 + 15x^2 3$.
- **2.** La fonction $f: x \mapsto x^{-1/\sqrt{2}}$ est dérivable sur \mathbb{R}_+^* (c'est une fonction usuelle) et

$$\forall x > 0, f'(x) = -\frac{1}{\sqrt{2}} x^{\frac{-1}{\sqrt{2}} - 1} = -\frac{1}{\sqrt{2}} x^{\frac{-1 - \sqrt{2}}{\sqrt{2}}}.$$

3. La fonction $f: x \mapsto (x-a)(x^2-b^2)(x^3-c^3)$ est une fonction polynômiale ; elle est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, f'(x) = (x^2 - b^2)(x^3 - c^3) + 2x(x - a)(x^3 - c^3) + 3x^2(x - a)(x^2 - b^2).$$

4. La fonction $f: x \mapsto \frac{1+x}{1-x}$ est une fonction rationnelle ; elle est donc dérivable sur son ensemble de définition $\mathbb{R} \setminus \{1\}$ et

$$\forall x \in \mathbb{R} \setminus \{1\}, f'(x) = \frac{1(1-x)-(1+x)(-1)}{(1-x)^2} = \frac{2}{(1-x)^2}.$$

5. La fonction $f: x \mapsto \frac{7x-3}{x+2}$ est une fonction rationnelle ; elle est donc dérivable sur son ensemble de définition $\mathbb{R} \setminus \{-2\}$ et

$$\forall x \in \mathbb{R} \setminus \{-2\}, f'(x) = \frac{7(x+2) - (7x-3)(1)}{(x+2)^2} = \frac{17}{(x+2)^2}.$$

6. La fonction $f: x \mapsto \log x = \frac{\ln x}{\ln 10}$ est dérivable sur \mathbb{R}_+^* (c'est une fonction usuelle) et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{1}{\ln 10} \frac{1}{x} = \frac{1}{x \ln 10}.$$

7. La fonction $f: x \mapsto \frac{3x^4 - 5x^3 + 1}{2x^2 + x - 3}$ est une fonction rationnelle ; elle est donc dérivable sur son ensemble de définition $D = \mathbb{R} \setminus \left\{ -\frac{3}{2}, 1 \right\}$ et

$$\forall x \in D, f'(x) = \frac{(12x^3 - 15x^2)(2x^2 + x - 3) - (3x^4 - 5x^3 + 1)(4x + 1)}{(2x^2 + x - 3)^2}$$
$$= \frac{12x^5 - x^4 - 46x^3 + 45x^2 - 4x - 1}{(2x^2 + x - 3)^2}$$

Solution 4.51

1. La fonction ln est dérivable sur \mathbb{R}_+^* et

$$\sin x > 0 \iff x \in D = \bigcup_{k \in \mathbb{Z}}]2k\pi, (2k+1)\pi[.$$

De plus, la fonction sin est dérivable sur D. La fonction $f: x \mapsto \ln(\sin x)$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = \sin'(x) \ln'(\sin x) = \cos(x) \frac{1}{\sin x} = \frac{\cos x}{\sin x}.$$

2. La fonction arctan est dérivable sur \mathbb{R} et ln est dérivable sur \mathbb{R}^*_+ (à images dans \mathbb{R}). La fonction f: $x \mapsto \arctan(\ln x)$ est donc dérivable sur \mathbb{R}^*_+ et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \arctan'(\ln x) \ln'(x) = \frac{1}{1 + (\ln x)^2} \frac{1}{x} = \frac{1}{x(1 + \ln^2 x)}.$$

3. La fonction exp est dérivable sur $\mathbb R$ et cos est dérivable sur $\mathbb R$ (à images dans $\mathbb R$). La fonction $f: x \mapsto e^{\cos x}$ est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, f'(x) = \exp'(\cos x)\cos'(x) = -\sin(x)e^{\cos x}$$

4. La fonction $x \mapsto x^3$ est dérivable sur \mathbb{R} et la fonction tan est dérivable sur $D = \mathbb{R} \setminus \left\{ \left| \frac{\pi}{2} + k\pi \right| \mid k \in \mathbb{Z} \right. \right\}$. La fonction $f: x \mapsto \tan^3 x$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = 3\tan'(x)\tan^2(x) = 3(1 + \tan^2(x))\tan^2(x) = 3\frac{\sin^2(x)}{\cos^4(x)}.$$

5. La fonction arcsin est définie sur [-1, 1] et

$$e^x \in [-1, 1] \iff -1 \le e^x \le 1 \iff x \le 0.$$

La fonction $f: x \mapsto \arcsin(e^x)$ est donc définie sur $]-\infty, 0]$.

Néanmoins, la fonction arcsin n'est dérivable que sur]-1, 1[et

$$e^x \in]-1,1[\iff x < 0.$$

Le théorème de dérivation d'une composée n'assure donc la dérivabilité de f que sur $]-\infty,0[$ et alors

$$\forall x \in]-\infty, 0[, f'(x) = \arcsin'(e^x)e^x = \frac{e^x}{\sqrt{1 - (e^x)^2}} = \frac{e^x}{\sqrt{1 - e^{2x}}}.$$

La fonction f est-elle dérivable en 0? Les théorèmes généraux ne permettent pas de conclure. Il faudrait donc revenir à la définition, mais lever l'indétermination est pour l'instant un peu compliqué.

6. La fonction sin est dérivable sur \mathbb{R} et la fonction ln est dérivable sur \mathbb{R}_+^* (à valeurs dans \mathbb{R}). La fonction $f: x \mapsto \sin(\ln x)$ est donc dérivable sur \mathbb{R}_+^* et

$$\forall x > 0, f'(x) = \sin'(\ln x) \ln'(x) = \cos(\ln x) \frac{1}{x} = \frac{\cos(\ln x)}{x}.$$

7. La fonction sin est dérivable sur \mathbb{R} (à valeurs réelles). La fonction $f: x \mapsto \sin(\sin x)$ est donc dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = \sin'(\sin x)\sin'(x) = \cos(\sin x)\cos(x).$$

8. La fonction arctan est dérivable sur \mathbb{R} et la fonction tan est dérivable sur $D = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$ (à images dans \mathbb{R}). La fonction $f: x \mapsto \arctan(\tan x)$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = \arctan'(\tan x) \tan'(x) = \frac{1}{1 + \tan^2 x} 1 + \tan^2 x = 1.$$

9. La fonction $f: x \mapsto e^{e^x}$ est clairement dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = e^{e^x} e^x = e^{x+e^x}.$$

10. La fonction arcsin est définie sur [-1, 1] et

$$\forall x \in \mathbb{R}, \cos x \in [-1, 1].$$

La fonction $f: x \mapsto \arcsin(\cos x)$ est donc définie sur \mathbb{R} .

De plus, la fonction arcsin est dérivable sur]-1,1[et

$$\cos x = \pm 1 \iff \exists k \in \mathbb{Z} x = k\pi.$$

Le théorème de dérivation d'une composée assure donc la dérivabilité de f sur $D = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ et on a

$$\forall x \in D, f'(x) = \arcsin'(\cos x)\cos'(x) = \frac{1}{\sqrt{1 - \cos^2 x}}(-\sin x) = \frac{-\sin x}{|\sin x|}$$

On a donc,

$$f'(x) = \begin{cases} -1 & \text{si } x \in \left] -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[\\ +1 & \text{si } x \in \left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right[\end{cases} (k \in \mathbb{Z}).$$

Lorsque $x \equiv 0 \pmod{\pi}$, les théorèmes généraux ne permettent pas de conclure. On peut revenir à la définition, mais l'indétermination est un peu compliquée à lever pour l'instant.

Solution 4.53

1. La fonction $x \mapsto x^2$ est dérivable sur \mathbb{R} (à images dans \mathbb{R}) et f est dérivable sur \mathbb{R} , donc $g: x \mapsto f(x^2)$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = 2xf'(x^2).$$

2. La fonction $x \mapsto \sin x$ est dérivable sur \mathbb{R} (à images dans \mathbb{R}) et f est dérivable sur \mathbb{R} , donc $g: x \mapsto f(\sin x)$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = \cos x f'(\sin x).$$

3. La fonction $u: x \mapsto \frac{3x}{x^2+1}$ est une fonction rationnelle, elle est donc dérivable sur \mathbb{R} son ensemble de définition et

$$\forall x \in \mathbb{R}, u'(x) = \frac{3(x^2 + 1) - 3x(2x)}{(x^2 + 1)^2} = \frac{-3x^2 + 3}{(x^2 + 1)^2}.$$

De plus, f est dérivable sur \mathbb{R} , donc $g: x \mapsto f\left(\frac{3x}{x^2+1}\right)$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = u'(x)f'(u(x)) = \frac{-3x^2 + 3}{(x^2 + 1)^2} \times f'\left(\frac{3x}{x^2 + 1}\right).$$

4. L'application sin est dérivable sur \mathbb{R} et f est dérivable sur \mathbb{R} (à images réelles), donc $g: x \mapsto \sin(f(x))$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = f'(x)\sin'(f(x)) = f'(x)\cos(f(x)).$$

5. La fonction $h: x \mapsto x^{-3/2}$ est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, h'(x) = -\frac{3}{2}x^{-5/2}.$$

Notons $D = \{ x \in \mathbb{R} \mid f(x) > 0 \}$. De plus, f est dérivable sur \mathbb{R} , elle est donc dérivable sur D et

$$\forall x \in D, f(x) > 0.$$

La fonction $g: x \mapsto \frac{1}{f(x)^{3/2}}$ est donc dérivable sur D et

$$\forall x \in D, g'(x) = f'(x) \times \frac{-3}{2} f(x)^{-5/2} = \frac{-3f'(x)}{2f(x)^{5/2}}.$$

6. La fonction ln est dérivable sur \mathbb{R}_+^* . Notons $D = \{ x \in \mathbb{R} \mid f(e^x) > 0 \}$. La fonction exp est dérivable sur D, à images dans \mathbb{R} et la fonction f est dérivable sur \mathbb{R} , donc la fonction $g: x \mapsto f(e^x)$ est dérivable sur D et

$$\forall x \in D, g'(x) = e^x f'(e^x).$$

De plus, ln dérivable sur \mathbb{R}_+^{\star} et pour $x \in D$, $g(x) = f(e^x) > 0$; la fonction $h: x \mapsto \ln(f(e^x))$ est donc dérivable sur D et

$$\forall x \in D, h'(x) = g'(x) \ln'(g(x)) = e^x f'(e^x) \frac{1}{g(x)} = \frac{e^x f'(e^x)}{g(x)}.$$

Solution 4.55

1. La fonction $g: x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ et la fonction $u: x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} , et

$$\forall x \in \mathbb{R}, u(x) = x^2 + 1 \in]0, +\infty[.$$

La fonction $f = g \circ u$ est donc dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = g'(u(x))u'(x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}.$$

2. La fonction sin est dérivable sur \mathbb{R} et la fonction $u: x \mapsto x^2$ est dérivable sur \mathbb{R} , à images dans \mathbb{R} . La fonction $g_1 = \sin \circ u: x \mapsto \sin (x^2)$ est donc dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g_1'(x) = \sin'(u(x))u'(x) = \cos(x^2) \times 2x.$$

De plus, la fonction ln est dérivable sur $]0, +\infty[$ et $v: x \mapsto 1 + x^2$ est dérivable sur \mathbb{R} , à image dans $[1, +\infty] \subset]0, +\infty[$. La fonction $g_2: x \mapsto \ln(1+x^2)$ est donc dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g_2'(x) = \ln'(v(x)) v'(x) = \frac{2x}{1 + x^2}.$$

Enfin, la fonction $x \mapsto x$ est dérivable sur \mathbb{R} ; la fonction $g_3 : x \mapsto xg_2(x)$ est donc dérivable sur \mathbb{R} en tant que produit de fonctions dérivables sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g_3'(x) = \ln(1 + x^2) + \frac{2x^2}{1 + x^2}.$$

Conclusion

La fonction $g=g_1+g_3$ est dérivable sur $\mathbb R$ en tant que somme de fonctions dérivables sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, g'(x) = 2x \cos(x^2) + \ln(1 + x^2) + \frac{2x^2}{1 + x^2}.$$

3. La fonction sin est dérivable sur $\mathbb R$ et la fonction $x\mapsto x^2$ est dérivable sur $\mathbb R$ (à images dans $\mathbb R$). La fonction $h_1:x\mapsto \exp\left(x^2\right)$ est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, h'_1(x) = 2x \exp\left(x^2\right).$$

La fonction ln est dérivable sur $]0,+\infty[$ et la fonction $x\mapsto 1+x^4$ est dérivable sur $\mathbb R$ à images dans $]0,+\infty[$. La fonction $h_2:x\mapsto \ln(1+x^4)$ est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, h_2'(x) = \frac{4x^3}{1 + x^4}.$$

Ainsi, la fonction $h_3 = h_1 h_2$: $x \mapsto \exp(x^2) \ln(1 + x^4)$ est dérivable sur \mathbb{R} en tant que produit de fonctions dérivables sur \mathbb{R} et

$$\forall x \in \mathbb{R}, h_3'(x) = 2x \exp\left(x^2\right) \ln\left(1 + x^4\right) + \exp\left(x^2\right) \frac{4x^3}{1 + x^4} = \exp\left(x^2\right) \left(2x \ln\left(1 + x^4\right) + \frac{4x^3}{1 + x^4}\right).$$

La fonction $x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ et l'application $x \mapsto 1 + x^2$ est dérivable sur $\mathbb R$ à valeurs dans $]0, +\infty[$. La fonction $h_4: x \mapsto \sqrt{1+x^2}$ est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, h_4'(x) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}.$$

Remarquons que h_4 ne s'annule pas sur \mathbb{R} . La fonction $h = h_3/h_4$ est donc dérivable sur \mathbb{R} en tant que quotient défini de fonctions dérivables sur \mathbb{R} et

$$\forall x \in \mathbb{R}, h'(x) = \frac{h'_3(x)h_4(x) - h_3(x)h'_4(x)}{h_4(x)^2}$$

$$= \frac{\exp\left(x^2\right)\left(2x\ln\left(1 + x^4\right) + \frac{4x^3}{1 + x^4}\right)}{\sqrt{1 + x^2}} - \frac{x\left(\exp\left(x^2\right)\ln\left(1 + x^4\right)\right)}{\left(1 + x^2\right)^{3/2}}.$$

Solution 4.77 Solution 4.79

1. La fonction f est clairement définie, continue et dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = 1 + e^x > 0.$$

De plus

$$\lim_{x \to -\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = +\infty.$$

La fonction f étant continue sur l'intervalle $\mathbb{R} =]-\infty, +\infty[$, strictement croissante, elle réalise une bijection de \mathbb{R} sur $]-\infty, +\infty[=\mathbb{R}$.

2. Soit $b \in \mathbb{R}$, on note $a = f^{-1}(b) = g(b)$. La fonction f est continue et strictement croissante sur l'intervalle \mathbb{R} ; de plus, f est dérivable en a et $f'(f^{-1}(b)) = f'(a) = 1 + e^a \neq 0$. La fonction g est donc dérivable en b = f(a) et on a

$$g'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{1 + e^{f^{-1}(b)}} = \frac{1}{1 + e^{g(b)}}.$$

On constate que f(0) = 1 donc g(1) = 0, d'où

$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(0)} = \frac{1}{2}.$$

La fonction g est dérivable sur \mathbb{R} , la fonctin exp également donc $x\mapsto 1+e^{g(x)}$ est dérivable sur \mathbb{R} . De plus,

$$\forall y \in \mathbb{R}, 1 + e^{g(y)} \neq 0.$$

La fonction $g': x \mapsto \frac{1}{1+e^{g(x)}} = \frac{1}{f'(g(x))}$ et donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, g''(x) = -\frac{f''(g(x))g'(x)}{(f'(g(x)))^2}.$$

En particulier,

$$g''(1) = -\frac{f''(g(1))g'(1)}{(f'(g(1)))^2} = -\frac{f''(0) \times \frac{1}{2}}{(f'(0))^2} = -\frac{\frac{1}{2}}{2^2} = -\frac{1}{8}.$$

4.7 Convexité

Solution 4.80

4.8 Branches infinies

4.9 Étude pratique des fonctions

Solution 4.81

1. f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(x + 2\pi) = \sin(x + 2\pi) - \sin(3x + 6\pi) = \sin(x) - \sin(3x) = f(x)$$
$$f(-x) = \sin(-x) - \sin(-3x) = -\sin(x) + \sin(3x) = -f(x)$$
$$f(\pi - x) = \sin(\pi - x) - \sin(3\pi - 3x) = \sin(x) - \sin(3x) = f(x).$$

¹ Nous pouvons donc

- étudier et tracer la courbe de f sur $[0, \frac{\pi}{2}]$;
- effectuer une symétrie d'axe $x = \frac{\pi}{2}$, on obtient la courbe sur $[0, \pi]$;
- effectuer une symétrie par rapport à l'origine, on obtient la courbe sur $[-\pi, \pi]$;
- effectuer des translations de vecteur $k2\pi \vec{e_1}$, $k \in \mathbb{Z}$, on obtient la courbe sur \mathbb{R} .
- **2.** f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(x+2\pi) = \sin(x/2+\pi)\sin(3x/2+3\pi) = (-\sin(x/2))(-\sin(3x/2) = f(x))$$
$$f(-x) = \sin(-x/2) - \sin(-3x/2) = (-\sin(x/2))(-\sin(3x/2) = f(x))$$

² Nous pouvons donc

¹On peut également utiliser la π -antipériodicité.

²On a également $f(2\pi - x) = f(x)$, mais cela n'apporte rien de plus que la périodicité et la parité.

- étudier et tracer la courbe de f sur $[0, \pi]$;
- effectuer une symétrie d'axe (Oy), on obtient la courbe sur $[-\pi, \pi]$;
- effectuer des translations de vecteur $2k\pi \vec{e_1}$, $k \in \mathbb{Z}$, on obtient la courbe sur \mathbb{R} .
- **3.** f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(-\frac{2}{3} - x) = -x^3 - 2x^2 - \frac{4}{3}x - \frac{8}{27} + x^2 + \frac{4}{3}x + \frac{4}{9} - \frac{2}{3} - x$$
$$= -(x^3 + x^2 + x) - \frac{14}{9}$$
$$= -f(x) - \frac{14}{27}.$$

La courbe de f est donc symétrique par rapport au point $A\left(-\frac{1}{3},-\frac{7}{27}\right)$. Il suffit donc d'étudier f sur $\left[-\frac{1}{3},+\infty\right[\left(\text{ou}\right]-\infty,-\frac{1}{3}\right]$) et d'effectuer cette symétrie.

Solution 4.82

1. La fonction f est dérivable sur $]0, +\infty[$ et

$$\forall x > 0, f'(x) = \frac{1}{2\sqrt{x+1}} \left(1 + \frac{1}{\sqrt{x}} \right) + \sqrt{x+1} \left(-\frac{1}{2} x^{-3/2} \right)$$

$$= \frac{1}{2\sqrt{x+1}} + \frac{1}{2\sqrt{x}\sqrt{x+1}} - \frac{\sqrt{x+1}}{2x\sqrt{x}}$$

$$= \frac{x\sqrt{x} + x - (x+1)}{2x\sqrt{x}\sqrt{x+1}}$$

$$= \frac{x\sqrt{x} - 1}{2x\sqrt{x}\sqrt{x+1}}.$$

Ainsi,

$$f'(x) \ge 0 \iff x\sqrt{x} \ge 1 \iff x^{3/2} \ge 1 \iff x \ge 1.$$

Avec égalité si, et seulement si x = 1. D'où le tableau de variation

x	0		1		+∞
f'(x)		_	0	+	
f(x)	+∞ _		$2\sqrt{2}$		<u>,</u> +∞

On en déduit que le minimum de f sur $]0, +\infty[$ est $f(1) = 2\sqrt{2}$.

Soit a > 0 et b > 0, alors

$$\sqrt{a+b}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)=\sqrt{a/b+1}\sqrt{b}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)=\sqrt{a/b+1}\left(\frac{\sqrt{b}}{\sqrt{a}}+1\right)=f\left(a/b\right)\geq2\sqrt{2}.$$

Solution 4.83

Solution 4.84

Solution 4.86

Solution 4.87

Solution 4.94

Solution 4.101

f est définie et continue en tout x où $\sin x + \cos x \neq 0$, c'est-à-dire sur

$$D = \mathbb{R} \setminus \left\{ -\frac{\pi}{4} + k\pi \mid k \in \mathbb{Z} \right\}.$$

De plus f est 2π -périodique, on a même

$$\forall x \in D, x + \pi \in D \text{ et } f(x + \pi) = \frac{\sin^2(x + \pi)}{\sin(x + \pi) + \cos(x + \pi)} = \frac{\sin^2(x)}{-\sin(x) - \cos(x)} = -f(x).$$

Cette invariance du graphe par translation-symétrie permet de borner l'étude à un intervalle d'amplitude π . En outre,

$$\forall x \in D, \frac{\pi}{2} - x \in D \text{ et } f\left(\frac{\pi}{2} - x\right) = \frac{\sin^2(\pi/2 - x)}{\sin(\pi/2 - x) + \cos(\pi/2 - x)} = \frac{\sin^2(x)}{\sin(x) + \cos(x)} = f(x).$$

Il suffit d'étudier f dans un intervalle d'amplitude $\frac{\pi}{2}$ et d'extrémité $\frac{\pi}{4}$, par exemple $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, et d'effectuer la symétrie par rapport à la droite d'équation $x = \frac{\pi}{4}$ du graphe de cette restriction.

f est définie et continue sur $\left] -\frac{\pi}{4}, +\frac{\pi}{4} \right]$, dérivable sur cette intervalle en tant que quotient de fonction dérivables sur leur ensemble de définition et on a

$$\forall x \in \left] -\frac{\pi}{4}, +\frac{\pi}{4} \right], f'(x) = \frac{2\cos x}{(\cos x + \sin x)^2} > 0.$$

Solution 4.102

x

f(x)

 $-\infty$

Considèrons la fonction $f_b:\mathbb{R}\to\mathbb{R}$ définie par $f_b(x)=e^{x-1}-bx+b\ln b$. La fonctions f_b est dérivable sur \mathbb{R} et

$$f_b'(x) = e^{x-1} - b.$$

De plus,

$$f_b'(x) \ge 0 \iff e^{x-1} - b \ge 0 \iff e^{x-1} \ge b$$

 $\iff x - 1 \ge \ln b$: In strictement croissante
 $\iff x \ge 1 + \ln b$.

De plus, $f_b(1 + \ln b) = e^{\ln b} - b = 0$. D'où le tableau de variation de f_b

x	$-\infty$	1 + ln <i>b</i>	+∞
$f_b'(x)$		- 0 +	
Variations de f_b		0	,,

On a donc pour tout $a \in \mathbb{R}$, $f_b(a) \ge 0$, c'est-à-dire $e^{a-1} - ab + b \ln b \ge 0$. Conclusion:

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}_+^{\star}, e^{a-1} - ab + b \ln b \ge 0.$$

Solution 4.103

1. La fonction f est polynômiale. Elle est donc définie, continue et dérivable pour toute valeur de $x \in \mathbb{R}$. Sa dérivée,

$$f'(x) = 3x^2 + 4x$$

est nulle pour $x = -\frac{4}{3}$, positive pour $x < -\frac{4}{3}$ ou x > 0, négative pour $-\frac{4}{3} < x < 0$.

Enfin, $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Tous ces résultats permettent de dresser le tableau suivant

À faire : faire un tableau plus joli et tracer la courbe (c'est à vous!).

2. Les racines de l'équation $x^3 + 2x^2 - 4 = m$, lorsqu'elles existent, ne sont autres que les abscisses des points communs à l acourbe précédente et à la droite (Δ) parallèle à x'x et d'ordonnée égale à m.

Un simple examen du graphique conduit alors aux conclusions suivantes:

- m < -4: une racine (négative);
- m = 4: un racine négative et une racine double, x = 0;
- $-4 < m < -\frac{76}{27}$: trois racines (deux négatives et une positive);
- $m = -\frac{76}{27}$: une racine double, $x = -\frac{4}{3}$, et une racine positive;
- $m > -\frac{76}{27}$: un racine (positive).

Solution 4.104

La fonction f est définie sur $D = \mathbb{R} \setminus \{-3, 3\}$.

Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{-x}{(-x)^2 - 9} = \frac{-x}{x^2 - 9} = -f(x).$$

La fonction f est donc impaire. Nous effectuons donc l'étude de f sur $A = D \cap \mathbb{R}_+ = [0, 3[\cup]3, +\infty[$ et compléterons le tracé de la courbe à l'aide d'une symétrie de centre O.

On peut écrire $f(x) = \frac{x}{(x-3)(x+3)}$ d'où

$$\lim_{x \to 3} f(x) = -\infty \text{ et } \lim_{x \to 3} f(x) = +\infty.$$

De plus, pour x au voisinage de $+\infty$,

$$f(x) = \frac{x}{x^2} \frac{1}{1 - \frac{9}{x^2}} = \frac{1}{x} \frac{1}{1 - \frac{9}{x^2}} \xrightarrow{x \to +\infty} 0 \times 1 = 0.$$

La fonction f est une fonction rationnelle. Elle est donc dérivable sur A et

$$\forall x \in A, f'(x) = \frac{(1)(x^2 - 9) - (x)(2x)}{(x^2 - 9)^2} = \frac{-x^2 - 9}{(x^2 - 9)^2} < 0.$$

On en déduit le tableau de variations

x	0	3 +∞
f'(x)	$-\frac{1}{9}$ –	_
Variations de <i>f</i>	0	+∞ 0

La courbe de f possède une asymptote verticale \mathcal{A}_1 d'équation x=3 et une asymptote horizontale \mathcal{A}_2 d'équation y=0. Le tableau de variations nous permet de préciser que la courbe de f est au dessus de \mathcal{A}_2 au voisinage de $+\infty$.

Solution 4.106

Pour $x \in \mathbb{R}$,

$$1 - x^2 > 0 \iff x^2 < 1 \iff -1 < x < 1.$$

La fonction f est définie au point x si, et seulement si

$$1 - x^2 \ge 0 \text{ et } x \ne 0$$

Donc f est définie sur $D = [-1, 0[\cup]0, 1]$.

Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{\sqrt{1 - (-x)^2}}{-x} = -\frac{\sqrt{1 - x^2}}{x} = -f(x).$$

La fonction f est donc impaire Nous effectuons donc l'étude de f sur $A = D \cap \mathbb{R}_+ =]0, 1]$ et compléterons le tracé de la courbe à l'aide d'une symétrie de centre O.

On a

$$\lim_{\substack{x \to 0 \\ >}} f(x) = \lim_{\substack{x \to 0 \\ >}} \frac{\sqrt{1 - x^2}}{x} = +\infty.$$

La droite d'équation x = 0 (l'axe des ordonnées) est asymptote à la courbe de f.

La fonction $x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ et la fonction $u: x \mapsto 1-x^2$ est dérivable sur [0, 1[et pour $x \in]0, 1],$

$$u(x) \in]0, +\infty[\iff 1 - x^2 > 0 \iff x^2 < 1 \iff x < 1.$$

La fonction $v: x \mapsto \sqrt{1-x^2}$ est donc dérivable sur]0, 1[et

$$\forall x \in]0,1[,v'(x) = \frac{-2x}{2\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}.$$

Enfin, f est dérivable sur]0,1[en tant que quotient définit de fonction dérivable sur]0,1[et

$$\forall x \in]0,1[,f'(x) = \frac{v'(x)x - v(x)}{x^2} = \frac{\frac{-x^2}{\sqrt{1-x^2}} - \sqrt{1-x^2}}{x^2}$$
$$= \frac{-x^2 - 1 + x^2}{x^2\sqrt{1-x^2}} = \frac{-1}{x^2\sqrt{1-x^2}} < 0.$$

On en déduit le tableau de variations

x	0	1
f'(x)	_	
Variations de <i>f</i>	+∞	0

Étudions le taux d'accroissement de f en 1.

$$\frac{f(x) - f(1)}{x - 1} = \frac{\frac{\sqrt{1 - x^2}}{x}}{x - 1} = \frac{\sqrt{1 - x^2}}{x(x - 1)} = -\frac{\sqrt{1 + x}}{x\sqrt{1 - x}} \xrightarrow[x \to 1]{} -\infty.$$

La fonction f n'est donc pas dérivable en 1. Néanmoins, la courbe de f admet une demi-tangente verticale au point d'abscisse 1.

Solution 4.107

Pour $x \in \mathbb{R}$, $x^2 - 1 > 0 \iff x < -1$ ou x > 1. La fonction f est donc définie sur $D =]-\infty, -1[\cup]1, +\infty[$.

Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{-x}{\sqrt{(-x)^2 - 1}} = -\frac{x}{\sqrt{x^2 - 1}} = -f(x).$$

La fonction f est impaire. Nous l'étudions sur $A =]1, +\infty[$ et compléterons la courbe de f avec une symétrie de centre O.

On a clairement

$$\lim_{x \to 1} f(x) = +\infty.$$

La droite A_1 d'équation x = 1 est asymptote verticale à la courbe de f. De plus, pour x au voisinage de $+\infty$,

$$f(x) = \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{x} \frac{1}{\sqrt{1 - \frac{1}{x^2}}} = \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \xrightarrow{x \to +\infty} 1.$$

La droite A_2 d'équation y = 1 est asymptote horizontale à la courbe de f.

La fonction $x \mapsto x^2 - 1$ est dérivable sur A. De plus, la fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* et pour $x \in A$, $x^2 - 1 \in \mathbb{R}_+^*$. La fonction $u : x \mapsto \sqrt{x^2 - 1}$ et donc dérivable sur A et

$$\forall x \in A, u'(x) = 2x \frac{1}{2\sqrt{x^2 - 1}} = \frac{x}{\sqrt{x^2 - 1}}.$$

La fonction f est donc dérivable sur A en tant que quotient défini de fonction dérivable et

$$\forall x \in A, f'(x) = \frac{\sqrt{x^2 - 1} - x \frac{x}{\sqrt{x^2 - 1}}}{x^2 - 1} = \frac{x^2 - 1 - x^2}{(x^2 - 1)^{3/2}} = \frac{-1}{(x^2 - 1)^{3/2}} < 0.$$

On en déduit le tableau de variations

x	1	+∞
f'(x)		-
Variations de <i>f</i>		+∞

La courbe de f est donc au-dessus de A_2 au voisinage de $+\infty$.

Solution 4.108 *Tangentes perpendiculaires en une infinité de points d'intersection* **Solution 4.109**

Pour $x \in \mathbb{R}$,

$$1 + \cos x = 0 \iff x \equiv \pi \pmod{2\pi}$$
.

La fonction f est définie sur $D = \mathbb{R} \setminus \{ \pi + 2k\pi \mid k \in \mathbb{Z} \} = \mathbb{R} \setminus (\pi + 2\pi\mathbb{Z})$. Pour $x \in D$, $x \pm 2\pi \in D$ et

$$f(x+2\pi) = \frac{\sin(x+2\pi)}{1+\cos(x+2\pi)} = \frac{\sin x}{1+\cos x} = f(x).$$

La fonction f est donc 2π -périodique. De plus, pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{\sin(-x)}{1 + \cos(-x)} = \frac{-\sin x}{1 + \cos x} = -f(x).$$

La fonction f est impaire. Nous étudions donc f sur $A = D \cap [0, \pi] = [0, \pi[$ et compléterons la courbe de f avec une symétrie de centre O puis des translations de vecteurs $2k\pi 1$, $k \in \mathbb{Z}$.

Pour $x \in A$,

$$f(x) = \frac{\sin x}{1 + \cos x} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \xrightarrow{x \to \pi} +\infty.$$

La droite \mathcal{A} d'équation $x = \pi$ est asymptote verticale à la courbe de f.

La fonction f est dérivable sur A en tant que quotient défini de fonction dérivables sur A et

$$\forall x \in A, f'(x) = \frac{(\cos x)(1 + \cos x) - (\sin x)(-\sin x)}{(1 + \cos x)^2} = \frac{\cos x + 1}{(1 + \cos x)^2} = \frac{1}{1 + \cos x}.$$

De plus, pour $x \in A = [0, \pi[, \cos x > -1, \text{donc } f'(x) > 0]$. On en déduit le tableau de variations

x	0		π
f'(x)	$\frac{1}{2}$	+	
Variations de <i>f</i>	0	+	∞

Solution 4.110

Pour $x \in \mathbb{R}$, $2 + \cos x \neq 0$. La fonction f est définie sur \mathbb{R} . Pour $x \in \mathbb{R}$, $x \pm 2\pi \in \mathbb{R}$ et

$$f(x+2\pi) = \frac{\sin(x+2\pi)}{2 + \cos(x+2\pi)} = \frac{\sin x}{2 + \cos x} = f(x).$$

La fonction f est donc 2π -périodique. De plus, pour $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et

$$f(-x) = \frac{\sin(-x)}{2 + \cos(-x)} = \frac{-\sin x}{2 + \cos x} = -f(x).$$

La fonction f est impaire. Nous étudions donc f sur $A = [0, \pi]$ et compléterons la courbe de f avec une symétrie de centre O puis des translations de vecteurs $2k\pi 1$, $k \in \mathbb{Z}$.

La fonction f est dérivable sur A en tant que quotient défini de fonction dérivables sur A et

$$\forall x \in A, f'(x) = \frac{(\cos x)(2 + \cos x) - (\sin x)(-\sin x)}{(2 + \cos x)^2} = \frac{2\cos x + 1}{(2 + \cos x)^2}$$

De plus, pour $x \in A = [0, \pi]$,

$$f'(x) = 0 \iff 2\cos x + 1 = 0 \iff \cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3}.$$

De plus, cos est décroissante sur $A = [0, \pi]$ d'où

$$f'(x) \ge 0 \iff 2\cos x + 1 \ge 0 \iff \cos x \ge -\frac{1}{2} \iff x \le \frac{2\pi}{3}.$$

On en déduit le tableau de variations

x	0		$\frac{2\pi}{3}$		π
f'(x)	$\frac{3}{4}$	+	0	-	-1
Variations de <i>f</i>	0		1		$\frac{\sqrt{3}}{5}$

Solution 4.114

La fonction f est définie, continue, dérivable, pour tout valeur de x différente de 2. Lorsque $x \to 2$, (...) on obtient

$$\lim_{\substack{x \to 2 \\ <}} f(x) = -\infty \qquad \qquad \lim_{\substack{x \to 2 \\ >}} f(x) = +\infty$$

$$\lim_{\substack{x \to -\infty \\ x \to +\infty}} f(x) = -\infty \qquad \qquad \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty$$

La droite D d'équation x = 2 est une asymptote à la courbe de f.

(...) On trouve pour dérivée

$$f'(x) = \frac{x^2 - 4x + 3}{(x - 2)^2}.$$

Le numérateur est un polynôme du second degré ayant pour racines 1 et 3, on en déduit

$$f'(x) \le 0 \iff 1 \le x \le 3.$$

x	-∞	1	2	2	3	+∞
f'(x)	+	0	-	_	0	+
f(x)	-∞	-3	-∞	+∞	1	+∞

(...) On trouve successivement les limites

$$\frac{f(x)}{x} \xrightarrow{x \to \pm \infty} 1$$

$$f(x) - x = \frac{-3x + 7}{x - 2} \xrightarrow{x \to \pm \infty} -3$$

$$f(x) - x + 3 = \frac{1}{x - 2} \begin{cases} > 0 & (x > 2) \\ < 0 & (x < 2). \end{cases}$$

La courbe de f admet donc pour asymptote en $\pm \infty$ la droite Δ d'équation y=x-3. La courbe de f est en-dessous de Δ au voisinage de $-\infty$ et au-dessus de Δ au voisinage de $+\infty$.

Joli Dessin...

Intégration des fonctions continues 4.10

Solution 4.117

Solution 4.118 Calcul d'intégrale

Pour calculer l'intégrale $\int_0^1 2^t \cdot 3^{2t} \cdot 5^{3t} dt$, nous simplifions l'expression sous l'intégrale. Nous utilisons les propriétés des exponentielles :

$$2^t \cdot 3^{2t} \cdot 5^{3t} = 2^t \cdot (3^2)^t \cdot (5^3)^t = 2^t \cdot 9^t \cdot 125^t = (2 \cdot 9 \cdot 125)^t = 2250^t$$

L'intégrale devient :

$$\int_0^1 2250^t \, \mathrm{d}t = \left[\frac{2250^t}{\ln 2250} \right]_0^1 = \frac{2250 - 1}{\ln 2250}$$

Solution 4.119 *Intégration par parties*

Solution 4.120 Intégration par parties

Solution 4.121

1.
$$2e^{3/2} + 4$$

3.
$$\frac{\pi}{8} - \frac{1}{4}$$
.

5.
$$\left(\pi - 3\sqrt{3} + 6\right)/6$$
.

7.
$$\frac{1}{2}(e(\sin 1 - \cos 1) + 1)$$

7.
$$\frac{1}{2} (e(\sin 1 - \cos 1) + 1)$$
.
8.
9. $\frac{4}{3} \sqrt{2} \ln 2 - \frac{8}{9} \sqrt{2} + \frac{4}{9}$.

Solution 4.122

Solution 4.123

Solution 4.124

Solution 4.125 *Intégration par parties*

Pour calculer l'intégrale $\int_0^{\pi} t^2 \sin t \, dt$, nous utilisons une intégration par parties deux fois. Posons $u = t^2$ et $dv = \sin t \, dt$. Alors $du = 2t \, dt$ et $v = -\cos t$. La première intégration par parties donne :

$$\int_0^{\pi} t^2 \sin t \, dt = \left[-t^2 \cos t \right]_0^{\pi} + \int_0^{\pi} 2t \cos t \, dt = \pi^2 + 2 \int_0^{\pi} t \cos t \, dt$$

Pour la deuxième intégrale, nous utilisons une autre intégration par parties. Posons u = t et $dv = \cos t dt$. Alors du = dt et $v = \sin t$. L'intégrale devient :

$$2\left(\left[t\sin t\right]_0^{\pi} - \int_0^{\pi} \sin t \, dt\right) = 2\left(0 - \left[-\cos t\right]_0^{\pi}\right) = 2\left(0 + 2\right) = 4$$

Donc, l'intégrale originale est :

$$\pi^2 + 4$$

Solution 4.126 *Intégration par parties*

Pour calculer l'intégrale $\int_0^{\frac{\pi}{2}} x \sin x \, dx$, nous utilisons une intégration par parties. Posons u = x et $dv = \sin x \, dx$. Alors du = dx et $v = -\cos x$. L'intégrale devient :

$$\int_0^{\frac{\pi}{2}} x \sin x \, dx = \left[-x \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x \, dx = 0 + \left[\sin x \right]_0^{\frac{\pi}{2}} = 1$$

Solution 4.127 Intégration par parties

Pour calculer l'intégrale $\int_1^2 x^2 \ln x \, dx$, nous utilisons une intégration par parties. Posons $u = \ln x$ et $dv = x^2 \, dx$. Alors $du = \frac{1}{x} \, dx$ et $v = \frac{x^3}{3}$. L'intégrale devient :

$$\int_{1}^{2} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln x \right]_{1}^{2} - \int_{1}^{2} \frac{x^{3}}{3} \cdot \frac{1}{x} \, dx = \left(\frac{8}{3} \ln 2 - 0 \right) - \frac{1}{3} \int_{1}^{2} x^{2} \, dx$$
$$= \frac{8}{3} \ln 2 - \frac{1}{3} \left[\frac{x^{3}}{3} \right]_{1}^{2} = \frac{8}{3} \ln 2 - \frac{1}{3} \left(\frac{8}{3} - \frac{1}{3} \right) = \frac{8}{3} \ln 2 - \frac{7}{9}$$

Solution 4.128

Ajouter une constante pour obtenir toutes les primitives (I est un intervalle).

1.
$$x^3 + x^5$$
.

2.
$$\frac{1}{3}x^3 - \cos x$$
.

3.
$$\frac{3}{2}\sin(2x)$$
.

4.
$$\frac{1}{3} \sin \left(3x - \frac{\pi}{4} \right)$$
.

5.
$$-\frac{1}{2x^2}$$
.

6.
$$\frac{3}{4x^4}$$
.

7.
$$-\frac{1}{x} - 2\sqrt{x}$$
.

8.
$$\frac{1}{16} (x^2 + 1)^8$$
.

9.
$$x - \frac{2}{3}x^3 + \frac{1}{5}x^5$$
.

10.
$$\frac{1}{3}(x^2+1)^{3/2}$$
.

11.
$$\frac{1}{3}\sin^3 x$$
.

12.
$$-\frac{1}{4}\cos^4 x$$

13.
$$\ln|x^2 + 3x| = \ln(x^2 + 3x)$$
.

14.
$$-\frac{1}{x^2+x+2}$$
.

15.
$$\ln|x^2 + 2x + 2| = \ln(x^2 + 2x + 2)$$
.

16.
$$-2\sqrt{3-x}$$
.

17.
$$-e^{1/x}$$

18.
$$\frac{1}{4}e^{x^4+4x+1}$$

Solution 4.129

1. La fonction $u: t \mapsto t^3$ est de classe \mathscr{C}^1 sur [0,1] et on a $du = 3t^2 dt$. Ainsi,

$$\int_0^1 \frac{t^2}{t^6 + 1} dt = \int_0^1 \frac{1}{3} \frac{du}{u^2 + 1} = \frac{1}{3} \arctan 1 = \frac{\pi}{12}.$$

2. La fonction $u: t \mapsto \sqrt{t}$ est de classe \mathscr{C}^1 sur [1/3, 1] et on a $du = \frac{1}{2\sqrt{t}} dt$. Ainsi,

$$\int_{1/3}^{1} \frac{1}{(t+1)\sqrt{t}} dt = \int_{1/\sqrt{3}}^{1} \frac{2}{u^2 + 1} du = \left[2 \arctan u\right]_{1/\sqrt{3}}^{1} = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}.$$

3. La fonction $u: t \mapsto 1 + t^2$ est de classe \mathscr{C}^1 sur [0, 1] et on a du = 2t dt. Ainsi,

$$\int_0^1 t\sqrt{1+t^2} \, \mathrm{d}t = \int_1^2 \frac{1}{2} \sqrt{u} \, \mathrm{d}u = \left[\frac{u^{3/2}}{3} \right]_1^2 = \frac{2\sqrt{2}-1}{3}.$$

4. La fonction $u: t \mapsto \ln t$ est de classe \mathscr{C}^1 sur [2, e] et on a $du = \frac{1}{t} dt$. Ainsi,

$$\int_{2}^{e} \frac{1}{(\ln t)^{3}t} dt = \int_{\ln 2}^{1} \frac{1}{u^{3}} du = \left[\frac{-1}{4u^{4}}\right]_{\ln 2}^{1} = \frac{1}{4} - \frac{1}{4\ln^{4} 2}.$$

5. La fonction $u: t \mapsto \ln t$ est de classe \mathscr{C}^1 sur [1,2] et on a $du = \frac{1}{t} dt$. Ainsi,

$$\int_{1}^{2} (\ln t)^{2} dt = \int_{1}^{2} t (\ln t)^{2} \frac{1}{t} dt = \int_{0}^{\ln 2} e^{u} u^{2} du.$$

On peut chercher une primitive de e^uu^2 sous la forme $(au^2 + bu + c)e^u$ ou faire une triple intégration par parties donne

$$\int_{1}^{2} (\ln t)^{2} dt = \left[\left(u^{2} - 2u + 2 \right) e^{u} \right]_{0}^{\ln 2} = 2(\ln^{2} 2 - 2\ln 2 + 2) - 2 = 2 + 2\ln^{2} 2 - 2\ln 2.$$

6. La fonction $u: t \mapsto \sqrt{t}$ est de classe \mathscr{C}^1 sur [1,2] et on a $du = \frac{1}{2\sqrt{t}} dt$. Ainsi,

$$\int_{1}^{2} \frac{1}{t + \sqrt{t}} dt = \int_{1}^{2} \frac{2}{\sqrt{t} + 1} \frac{1}{2\sqrt{t}} dt = \int_{1}^{\sqrt{2}} \frac{2}{u + 1} du$$

$$= \left[2\ln(u + 1) \right]_{1}^{\sqrt{2}} = 2\ln\left(\sqrt{2} + 1\right) - 2\ln(2) = 2\ln\frac{\sqrt{2} + 1}{2}.$$

7. La fonction $u: t \mapsto \cos t$ est de classe \mathscr{C}^1 sur $[0, \pi/4]$ et on a $du = -\sin t \, dt$. Ainsi,

$$\int_0^{\pi/4} \cos^5 t \sin t \, dt = \int_1^{\sqrt{2}/2} u^5 (-du) = \int_{\sqrt{2}/2}^1 u^5 \, du = \left[\frac{u^6}{6} \right]_{\sqrt{2}/2}^1 = \frac{1}{6} - \frac{1}{48} = \frac{7}{48}.$$

8. La fonction $u: t \mapsto \sin t$ est de classe $\mathscr{C}^1 \operatorname{sur} [\pi/6, \pi/3]$ et on a $\mathrm{d}u = \cos t \, \mathrm{d}t$. Ainsi,

$$\int_{\pi/6}^{\pi/3} \frac{1}{\tan t} \, \mathrm{d}t. = \int_{\pi/6}^{\pi/3} \frac{\cos t}{\sin t} \, \mathrm{d}t. = \int_{1/2}^{\sqrt{3}/2} \frac{\mathrm{d}u}{u} = [\ln u]_{1/2}^{\sqrt{3}/2} = \ln \sqrt{3} = \frac{1}{2} \ln 3.$$

Solution 4.130 Changement de variable

Pour calculer l'intégrale $\int_0^1 \frac{\arctan x}{1+x^2} dx$, nous utilisons un changement de variable. Posons $u = \arctan x$. Alors $du = \frac{1}{1+x^2} dx$. Lorsque x = 0, u = 0 et lorsque x = 1, $u = \frac{\pi}{4}$. L'intégrale devient :

$$\int_0^{\frac{\pi}{4}} u \, \mathrm{d}u = \left[\frac{u^2}{2} \right]_0^{\frac{\pi}{4}} = \frac{\pi^2}{32}$$

Solution 4.131 Changement de variable

Pour calculer l'intégrale $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \, dx$, nous utilisons un changement de variable et la propriété arctan $x + \arctan \frac{1}{x} = \frac{\pi}{2}$. Posons $u = \frac{1}{x}$. Alors $du = -\frac{1}{x^2} dx$. Lorsque $x = \frac{1}{2}$, u = 2 et lorsque x = 2, $u = \frac{1}{2}$. L'intégrale devient :

$$\int_{\frac{1}{2}}^{2} \arctan x \, dx + \int_{\frac{1}{2}}^{2} \frac{\arctan x}{x^{2}} \, dx = \int_{\frac{1}{2}}^{2} \arctan x \, dx + \int_{2}^{\frac{1}{2}} \arctan \left(\frac{1}{u}\right) (-du)$$

$$= \int_{\frac{1}{2}}^{2} \arctan x \, dx + \int_{\frac{1}{2}}^{2} \left(\frac{\pi}{2} - \arctan u \right) du = \frac{\pi}{2} \int_{\frac{1}{2}}^{2} 1 \, dx = \frac{\pi}{2} \left(2 - \frac{1}{2} \right) = \frac{3\pi}{4}$$

Solution 4.133 Changement de variable

Pour calculer l'intégrale $\int_0^{\sqrt{3}} \frac{x^2}{\sqrt{4-x^2}} \, dx$, nous utilisons un changement de variable. Posons $x = 2 \sin \theta$. Alors $dx = 2 \cos \theta \, d\theta$. Lorsque x = 0, $\theta = 0$ et lorsque $x = \sqrt{3}$, $\theta = \frac{\pi}{3}$. L'intégrale devient :

$$\int_0^{\frac{\pi}{3}} \frac{4\sin^2\theta \cdot 2\cos\theta}{2\cos\theta} \, d\theta = 4 \int_0^{\frac{\pi}{3}} \sin^2\theta \, d\theta$$

Nous utilisons l'identité $\sin^2 \theta = \frac{1-\cos 2\theta}{2}$:

$$4\int_0^{\frac{\pi}{3}} \frac{1 - \cos 2\theta}{2} \, d\theta = 2\left[\theta - \frac{\sin 2\theta}{2}\right]_0^{\frac{\pi}{3}} = 2\left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right) = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

Solution 4.134 Changement de variable

Pour calculer l'intégrale $\int_{-1}^{1} \frac{1}{x^2+4x+7} dx$, nous complétons le carré au dénominateur :

$$x^2 + 4x + 7 = (x + 2)^2 + 3$$

Nous utilisons un changement de variable. Posons $u = \frac{x+2}{\sqrt{3}}$. Alors $du = \frac{1}{\sqrt{3}} dx$. Lorsque x = -1, $u = \frac{1}{\sqrt{3}}$ et lorsque x = 1, $u = \frac{3}{\sqrt{3}} = \sqrt{3}$. L'intégrale devient :

$$\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{3u^2 + 3} \cdot \sqrt{3} \, du = \frac{\sqrt{3}}{3} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{u^2 + 1} \, du$$

$$= \frac{\sqrt{3}}{3} \left[\arctan u \right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} = \frac{\sqrt{3}}{3} \left(\arctan \sqrt{3} - \arctan \frac{1}{\sqrt{3}} \right)$$

$$= \frac{\sqrt{3}}{3} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\sqrt{3}}{3} \cdot \frac{\pi}{6} = \frac{\pi \sqrt{3}}{18} = \frac{\pi}{6\sqrt{3}}$$

Solution 4.137 Changement de variable

Pour calculer l'intégrale $\int_0^1 \frac{t}{\sqrt{1-t^2}} dt$, nous utilisons un changement de variable. Posons $u = 1 - t^2$. Alors du = -2t dt. Lorsque t = 0, u = 1 et lorsque t = 1, u = 0. L'intégrale devient :

$$\int_{1}^{0} \frac{-1/2}{\sqrt{u}} du = \frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{u}} du = \frac{1}{2} \left[2\sqrt{u} \right]_{0}^{1} = 1$$

Solution 4.138 Changement de variable

Pour calculer l'intégrale $\int_0^a \sqrt{a^2 - t^2} \, dt$, nous utilisons un changement de variable. Posons $t = a \sin \theta$. Alors $dt = a \cos \theta \, d\theta$. Lorsque t = 0, $\theta = 0$ et lorsque t = a, $\theta = \frac{\pi}{2}$. L'intégrale devient :

$$\int_0^{\frac{\pi}{2}} \sqrt{a^2 - a^2 \sin^2 \theta} \cdot a \cos \theta \, d\theta = a^2 \int_0^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$

Nous utilisons l'identité $\cos^2 \theta = \frac{1+\cos 2\theta}{2}$:

$$a^{2} \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta = \frac{a^{2}}{2} \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{a^{2}}{2} \cdot \frac{\pi}{2} = \frac{\pi a^{2}}{4}$$

Solution 4.139 Changement de variable, intégration par parties

Pour calculer l'intégrale $\int_{1-\frac{\pi^2}{t}}^{1} \cos \sqrt{1-t} \, dt$, nous utilisons un changement de variable. Posons $t=1-u^2$.

Alors dt = -2u du. Lorsque $t = 1 - \frac{\pi^2}{4}$, $u = \frac{\pi}{2}$ et lorsque t = 1, u = 0. L'intégrale devient :

$$\int_{\frac{\pi}{2}}^{0} \cos u \cdot (-2u) \, \mathrm{d}u = 2 \int_{0}^{\frac{\pi}{2}} u \cos u \, \mathrm{d}u$$

Nous utilisons une intégration par parties. Posons v = u et $dw = \cos u \, du$. Alors dv = du et $w = \sin u$. L'intégrale devient :

$$2\left(\left[u\sin u\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}}\sin u\,\mathrm{d}u\right) = 2\left(\frac{\pi}{2} - \left[-\cos u\right]_0^{\frac{\pi}{2}}\right) = 2\left(\frac{\pi}{2} - 1\right) = \pi - 2$$

Solution 4.142 Changement de variable
Pour calculer l'intégrale $\int_{-\pi}^{\pi} \sqrt{1 + \cos t} \, dt$, nous utilisons un changement de variable. Posons $u = \frac{t}{2}$. Alors $du = \frac{1}{2}dt$. Lorsque $t = -\pi$, $u = -\frac{\pi}{2}$ et lorsque $t = \pi$, $u = \frac{\pi}{2}$. L'intégrale devient :

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 + \cos 2u} \cdot 2 \, \mathrm{d}u = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2 \cos^2 u} \, \mathrm{d}u = 2 \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos u| \, \mathrm{d}u$$

Puisque $\cos u$ est positif $\sin -\frac{\pi}{2} < u < \frac{\pi}{2}$, l'intégrale devient :

$$2\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos u \, du = 2\sqrt{2} \left[\sin u \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\sqrt{2} (1 - (-1)) = 4\sqrt{2}$$

Solution 4.143