SIEET INCEX ISSUE NO. CONTENTS CONTENTS 21 81 8779 CINCUIT REQUIREMENTS TABLE F1 SHEET INDEX SUPPORTING INFORMATION APPARATUS INVEX AZ OPTION INDEX FS 1 STEERING AND CUT-THROUGH CKT CAD 1-4 B2 1 2 FS 2 CONTROL & MONITOR CKT CAO 5 APP FIG. 1 CIRCUIT NOTES EQUIPMENT NOTES INFORMATION NOTES D1 SUPPORTING INFORMATION SHEET INDEX NOTES NOTICE - NOT FOR USE OR DISCLOSURE OUTSIDE THE BELL SYSTEM EXCEPT UNDER WRITTEN AGREEMENT. CATEGORY NO. HHEN CHANGES ARE MADE IN THIS ORBHING ONLY THOSE SHEETS AFFECTED WILL BE REISSUED." EQUIPMENT DWG J99359AS 2. THIS SHEET INDEX HILL BE REISSUED AND BROUGHT UP TO DATE EACH TIME ANY SHEET OF THE ORAHING IS REISSUED, OR A NEW SHEET IS ADDED. EQUIPMENT DESIGN REQTS J99359 (801-408-153) INIS STANDARD THE ISSUE NUMBER ASSIGNED TO A CHANGED OR NEW SHEET MILL BE THE SAME ISSUE NUMBER AS THAT OF THE SHEET INDEX. CC'MON SYSTEMS SWITCHED MAINTENANCE ACCESS SYSTEM NO. 58 4. SHEETS THAT APE NOT CHANGED WILL RETAIN THE!R EXISTING ISSUE NUMBER. INTERFACE CIRCUIT 5. THE LAST ISSUE NUMBER OF THE SHEET INDEX IS RECOGNIZED AS THE LATEST ISSUE NUMBER OF THE ORAHING AS A WHOLE. ONG SIZE 2A 65 9 SHEETS BELL LABORATORIES SD-99641-01-

CODE		APPARAT	US			ME	CH REQT		-	CIRCUIT F		_	_						
PRESENT PRES			T	-		RSP	CONT	ADM	BLOCK		TEST	SEE	DIRECT CURRENT FLOW REQT						
RELAT 202 1U(64) GBD 1 0 33,2 13,5 NTD MITH (59) CIT A112 220 U(CIT) GBD 0 0 43,40,5 GF1 A112 220 U(GF1) GBD 0 24,5 23 GF1 A141 220 U(GF1) GBD 0 24,5 23 LIT A141 220 U(GF1) GBD 0 24,5 23 SEL A112 220 U(GF1) GBD 0 41,40,5 SEL A112 220 U(GF1) GBD 0 41,40,5 SEL A112 220 U(GF1) GBD 0 53,2 12,5 NTD MITH (59) SEM I/ZMAC 202 G(W) Z(CFM) GBT 1 0 53,2 12,5 NTD MITH (59) SEM I/ZMAC 202 S(W) Z(CFM) GBT 1 0 53,2 12,5 NTD MITH (59) SEM I/ZMAC 202 S(W) Z(CFM) GBT 1 0 53,2 12,5 NTD MITH (59)			OPT	PRA		FIG.	PRES	TRVL	OR	CONN BAT.	CONN GRO		NOTE	WDG	FOR				REMARKS
CTT A112 220 U(CTT) GRO 0 0 33 40,5 5 DF1 A101 220 U(CTT) GRO 0 0 24,5 23 DF1 A101 220 U(DF2) B70 0 0 24,5 23 LL A112 210 U(CT) MAT. 0 24,5 23 LL A112 220 U(DF2) B70 0 0 41 40,5 SEL A112 220 U(SEL) GRO 0 0 41 40,5 SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 51,5 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 0 15,2 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 0 15,2 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 0 15,2 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 0 15,2 12,5 RID MITH (SPO 1/24,5 12) SEL A112 220 U(SEL) GRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RELAY											-	-	_	-		-	-	-
CIT A112 220 U(CIT) GRO 0 0 33 40,5 5 DIT A161 220 U(CIT) GRO 0 0 24,5 23 DIT A161 220 U(CIT) GRO 0 0 24,5 23 LL A161 220 U(CIT) GRO 0 0 24,5 23 LL A161 220 U(CIT) GRO 0 0 24,5 23 LL A161 220 U(CIT) GRO 0 0 24,5 23 LL A161 220 U(CIT) GRO 0 0 24,5 23 LL A161 220 U(CIT) GRO 0 0 24,5 23 SEL A162 220 U(CIT) GRO 0 0 44 60,5 SEL A162 220 U(CIT) GRO 0 0 45 60,5 SEL A162 220 U(CIT) GRO 0 0 5,5 12,5 810 MITH (SPG 12,5 810 MITH	6W	1/2AK47	-			202	-				10000								
DET ALIA											10(0%)	GND		-	0		13.2	12.5	MTD WITH (SPC)
DET ALIE 220		-	-	Н	-		-	\vdash				_							
	CTT	AJ12				220					U(CTT)	GRD	_		0		43	40.5	
9F2 AB1		-	\vdash	Н	_	-	├-	\vdash				_					Ľ	1417	
														-	-	-	\vdash		
LT ALBI 2750 L(CT) BATE, 0 24.5 23 SEL ALIZ 270 L(CT) BATE, 0 24.5 23 SEL ALIZ 270 L(CT) BATE, 0 34.5 23 SEL ALIZ 270 L(CT) BATE, 0 35.5 21.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) SPAN L/ZAMAY 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 35.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(ZAMAY) BATE, 1 0 0 15.2 12.5 810 MITH (SPAN) 270 L(DF1	AJ81	Н	-	_	220	-	-			U(0F1)	GRD			0		24.5	23	
LLT ALBIT 220 LL(LT) BAT, 0 0 24.5 23 SEL ALIZ 220 USSEL) GOD 0 45 60,5 SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN) SPAN 1/28647 202 G(GW) 20(SPAN) BAT, 1 0 15.2 12.5 RTD MITH (SPAN)	DF2	AJ81				220				L(DF2)	U(DF2)	8/9		_	0		24.5	23	
\$51. M12 220 46(9W) 72(5FW) 981, 1 0 245,9 23 \$52. M12 220 46(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M12 420 46(9W) 72(5FW) 881, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 86(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 96(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 96(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE)			Н	\vdash			-	\vdash					_						
\$51. M12 220 46(9W) 72(5FW) 981, 1 0 245,9 23 \$52. M12 220 46(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M12 420 46(9W) 72(5FW) 881, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 86(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 96(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE) \$52. M1 1/2862, 202 96(9W) 72(5FW) 981, 1 0 0 152,2 12,5 RID MITH (SPE)							_								-	_	-	\vdash	
\$50. U12	LI	AJ 81	\vdash	\dashv	-	220	-	\vdash		L(LT)		BAT.			0		24.5	23	
\$50. U12															-	_	-	-	
3PAR 1/28/67 202		AJ12	\neg	-	-	220	-	\rightarrow			11/551 \	500							
SPAI 1/28667 202 8 (NW) 2 (SPAI) 081, 1 0 133,2 12,5 MTD WITH (SPAI) SPAI 1/28667 202 8 (NW) 2 (SPAI) 081, 1 0 132,2 12,5 MTD WITH (SPAI) SPAI 1/28667 202 8 (NW) 2 (SPAI) 081, 1 0 132,2 12,5 MTD WITH (SPAI) SPAI 1/28667 202 9 (NW) 2 (SPAI) 081, 1 0 132,2 12,5 MTD WITH (SPAI) SPAI 1/28667 202 9 (NW) 2 (SPAI) 081, 1 0 132,2 12,5 MTD WITH (SPAI)	2080	1 (24742	=	=	_						U(3EL)	-				-			
5598 1/28447 202 9(6W) 27(5F8F) 887, 1 0 15.2 12.5 MID WITH (SPE 5F8T 1/28447 202 9(6W) 27(5F8F) 887, 1 0 15.2 12.5 MID WITH (SPE 6F8T 1/28447 202 9(6W) 27(5F8T) 887, 1 0 15.2 12.5 MID WITH (SPE 6F8T 1/28447 202 9(6W) 27(5F8T) 887, 1 0 15.2 12.5 MID WITH (SPE			\neg	\dashv	_	202	-	-	8(6W)	ZU(SPAR)		BAT.	1		0	-	13.2	12.5	MTD WITH (SPAT)
SPRT 1/28437 202 9(6W) 2L(SPRT) BRT. 1 0 13.2 12.5 MTO WITH (SPR OF 1/28437 202 9(6W) 2L(SPRT) BRT. 1 0 13.2 12.5 MTO WITH (SPR OF 1/28437 202 9(6W) 2L(SPRT) BRT. 1 0 13.2 12.5 MTO WITH (SPR	SPAT	1/2AK47	\exists	\exists		202			8(6W)	2L(SPAT)		BAT.	1		0		13.2	12.5	MTD WITH (SPAR)
SP8T 1/284A7 202 9(6W) 2L(SP8T) 88T. 1 0 13.2 12.5 MID MITH (SP8	SPBR	1/2AK47	_	-	_	202		-	9 (6W)	2L(SPBR)		DAT	-,	_	-				
SP 1736437 303	COUT		=											-	-		13.2	12.5	MID MITH (SPBT)
9PC 1/28667 202 2K(SPC) BAT. 1 0 13.2 12.5 NITO WITH (60)			-	-			-	-	9(6W)	2L(SPBT)		BAT.	1		0	=	13.2	12.5	MTD WITH (SPBR)
	SPC	1/26847		\exists		202				2L(SPC)		BAT.	1	-	0	-	13.2	12.5	MTD WITH (6H)
					\neg		-	-						-					
			7	7											\dashv	\dashv	\dashv	-	
			\dashv	+	-	-	-	-				\neg		_					
			7	\exists				\Rightarrow						-	-+	-+			
			\neg	.		-		-				-+	-+	-	-		-	_	

TEST NOTES:

INTERFACE CIRCUIY

SD-99641-01-FI

BELL TELEPHONE LABORATORIES 65

P

^{1.} ARMATURE BACK TENSION MINIMUM 20 GRAMS READJUST: 15 GRAM TEST.

