Disciplina: USP-EACH 2053 Introdução à Estatística

Documento: Resumo de Estatística para P2

Livro referência: deGroot, edição 2

Revisão: 8 data: 2012-06-25

Inferência Estatística Capítulo 6

Introdução: (pag311)

Estatística: Temos dados da amostra de um evento e precisamos inferir sobre propriedades da distribuição. (indução)

Probabilidade: Temos dados sobre a distribuição e precisamos calcular a probabilidade de um evento. (dedução)

Inferência Estatística:

Notações:

 θ é o parâmetro (teta) procurado

 Ω é o espaço paramétrico (omega) que contém todos os valores possíveis de θ $f(x|\theta)$ é uma função probabilidade de um evendo, dado o parâmetro θ

Parâmetros θ da distribuição pode ser μ , σ^2 em uma distribuição normal; λ em uma distribuição exponencial, etc.

Amostras aleatórias:

Amostras aleatórias são múltiplos eventos i.i.d. (independentes e identicamente distribuídos).

Notações:

 $X = \text{vetor de variáveis } X_1, \dots, X_n \text{ anteriores ao experimento.}$

 $x = \text{vetor de dados de amostras } x_1, \dots, x_n \text{ de um experimento.}$

 $f_n(\mathbf{x}|\theta) =$ função de probabilidade conjunta de uma série de eventos, dado θ

$$f_{n}(\boldsymbol{x}|\boldsymbol{\theta}) = f_{n}(x_{1},...,x_{n}|\boldsymbol{\theta}) = f(x_{1}|\boldsymbol{\theta}) \cdot f(x_{2}|\boldsymbol{\theta}),...,f(x_{n}|\boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_{i}|\boldsymbol{\theta})$$

Distribuições a priori: (pag313)

Na estatística Bayesiana podemos restringir Ω antes de coletar dados do experimento e/ou fornecer uma distribuição a priori para os valores de θ .

Notações:

 $\xi(\theta)$ é uma função de probabilidade (xi) da distribuição a priori de θ

Distribuições a posteriori: (pag316)

Na estatística Bayesiana, a distribuição a posteriori é um estimador do parâmetro θ depois de ser observados os valores $x_1, ..., x_n$ da amostra.

Notações:

 $\xi(\theta|\mathbf{x})$ é a função de distribuição a posteriori de θ , dado o vetor \mathbf{x} $\xi(X_1,...,X_n)$ ou $\xi(\mathbf{X})$ é um estimador, antes de ter os dados do evento $\xi(x_1,...,x_n)$ ou $\xi(\mathbf{x})$ é uma estimativa, depois de ter os dados do evento

Temos $f_n(x|\theta)$ e $\xi(\theta)$ e queremos achar $\xi(\theta|x)$. Para isso podemos aplicar Bayes P(B|A) = P(A|B)P(B)/P(A) calculando a função da distribuição marginal de x independente de θ :

$$g_n(\mathbf{x}) = \int_{\Omega} f_n(\mathbf{x}|\theta) \xi(\theta) d\theta$$

A função da distribuição a posteriori de θ dado x é

$$\xi(\theta|\mathbf{x}) = \frac{f_n(\mathbf{x}|\theta)\xi(\theta)}{g_n(\mathbf{x})}$$

Podemos chamar $g_n(x)$ de constante k pois não depende de θ

$$k = \frac{1}{\int f_n(\mathbf{x}|\theta)\xi(\theta)d\theta}$$

A função de distribuição de verossimilhança a posteriori de θ é $\xi(\theta|\mathbf{x}) = k \cdot f_n(\mathbf{x}|\theta) \cdot \xi(\theta)$

Exemplo com uma Bernoulli: (pag317)

Um processo de manufatura tem uma probabilidade p desconhecida de fabricar uma peça com defeito.

 $\theta = p$

 $\Omega = 0,...,1$ o domínio de θ é o domínio de p

 $\xi(\theta) = 1$ é uma uniforme entre 0 e 1

x é a quantidade de sucessos até que ocorra 1 defeito

Função de probabilidaded p é uma Bernoulli

$$P(X=n)=p^{n}(1-p)^{(1-n)}$$

1. Encontrar a distribuição de cada evento $f(x|\theta)$; Procurando parâmetro θ como sendo a probabilidade p de um evento e x sendo a quantidade de eventos

$$f(x|\theta) = \begin{cases} \theta^{x} (1-\theta)^{(1-x)} se x = 0, 1 \\ 0 se outros casos \end{cases}$$

2. Calcular a distribuição conjunta $f_n(\mathbf{x}|\theta)$; Fazendo o produto de todos os eventos do vetor $\mathbf{x} = x_1, ..., x_n$

$$f_n(\mathbf{x}|\theta) = \theta^y (1-\theta)^{(n-y)}$$
 quando $y = \sum_{i=1}^n x_i$

- 3. Encontrar $\,\xi(\theta)\,$ a priori. Não temos uma distribuição a priori, portanto é uma uniforme $\,\xi(\theta)\!=\!1\,$
- 4. Calcular a distribuição de verossimilhança a posteriori $\xi(\theta|\mathbf{x}) = k f_n(\mathbf{x}|\theta) \xi(\theta)$

$$\xi(\theta|\mathbf{x}) = k \theta^{y} (1-\theta)^{(n-y)}$$
 quando $y = \sum_{i=1}^{n} x_{i}$

5. Encontrar $\xi(\theta|\mathbf{x})$ como sendo uma distribuição f.d.p a posteriori, no caso uma Beta com os parâmetros $\alpha = y+1$ e $\beta = n-y+1$

$$\xi(\theta|\mathbf{x}) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)} \theta^{y} (1-\theta)^{n-y} \text{ quando } y = \sum_{i=1}^{n} x_{i}$$

Exemplo com uma Exponencial: (pag318)

Uma lâmpada fluorescente tem uma vida útil que segue uma exponencial com parâmetro λ desconhecido. A distribuição a priori do parâmetro λ é uma Gamma com média 0.00002 e desvio padrão 0.0001.

 α/β =0.00002 é a média da Gamma α/β^2 = $(0.0001)^2$ é a variáncia da Gamma que é o quadrado do desvio padrão f(x)= $\lambda e^{-\lambda x}$ função da vida útil que segue uma função exponencial

- 1. Encontrar a distribuição de cada evento $f(x|\theta)$; foi dado do problema $f(x) = \lambda e^{-\lambda x}$
- 2. Calcular a distribuição conjunta $f_n(\mathbf{x}|\theta)$; Fazendo o produto de todos os eventos do vetor $\mathbf{x} = x_1, ..., x_n$

$$f_n(\mathbf{x}|\theta) = \lambda^n e^{(-\lambda y)}$$
 quando $y = \sum_{i=1}^n x_i$

3. Calcular qual é a distribuição a priori $\xi(\lambda)$

$$α=4$$
 $β=20000$

$$Γ(α) = \int_{0}^{\infty} x^{(α-1)} e^{x} dx = (α-1)!$$

$$Γ(x|α,β) = \frac{β^{α}}{Γ(α)} x^{α} e^{βx} \text{ para } x>0 \text{ e } Γ(x|α,β)=0 \text{ para } x≥0$$

$$ξ(λ) = \frac{(20000)^{4}}{3!} λ^{3} e^{-20000λ}$$

$$ξ(λ) = k λ^{3} e^{-20000λ}$$

4. Calcular a distribuição de verossimilhança a posteriori $\xi(\theta|\mathbf{x}) = k f_n(\mathbf{x}|\theta) \xi(\theta)$

$$\xi(\lambda|\mathbf{x}) = k \cdot \lambda^n e^{(-\lambda y)} \cdot \lambda^3 e^{-20000\lambda} \text{ quando } y = \sum_{i=1}^n x_i$$

$$\xi(\lambda|\mathbf{x}) = k \lambda^{(n+3)} e^{-(y+20000)\lambda} \text{ quando } y = \sum_{i=1}^n x_i$$

5. Encontrar $\xi(\lambda|\mathbf{x})$ como sendo uma distribuição f.d.p a posteriori, no caso uma Gamma com os parâmetros $\alpha = n+4$ e $\beta = y+20000$

$$\xi(\lambda|\mathbf{x}) = \frac{(y+20000)^{n+4}}{(n+3)!} \lambda^{(n+3)} e^{-(y+20000)\lambda} \text{ quando } y = \sum_{i=1}^{n} x_i$$

Observação sequencial: (pag319)

A função a priori de observações sequenciais pode ser incremental, ou pode ser absoluta (sempre se calcula a mesma apriori para toda a sequencia). Em ambos os casos, o resultado é o mesmo.

Distribuição conjugada: (pag321)

Amostragem de uma Bernoulli:

função de probabilidade para um evento

$$f(x|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(x|\theta) = \theta^y (1-\theta)^{n-y}; y = \sum_{i=1}^n x_i$$

para um θ desconhecido $0 < \theta < 1$

a função a priori é uma Beta com parâmetros $\alpha_1 > 0$ e $\beta_2 > 0$ a função a posteriori é uma Beta com parâmetros

$$\alpha_2 = \alpha_1 + \sum_{i=0}^{n} x_i$$
 e $\beta_2 = \beta_1 + n - \sum_{i=0}^{n} x_i$

Amostragem de uma Uniforme:

função de probabilidade para um evento

$$f(x|\theta) = \frac{1}{\theta}$$
; $0 \le x \le \theta$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(\mathbf{x}|\theta) = \frac{1}{\theta^n}; 0 \le x_i \le \theta$$

Amostragem de uma Poisson:

função de probabilidade para um evento

$$f(x|\theta) = \frac{e^{-\theta}\theta^x}{x!}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(\mathbf{x}|\theta) = (\prod_{i=1}^n \frac{1}{x_i!})e^{-n\theta}\theta^y; y = \sum_{i=1}^n x_i$$

para um θ desconhecido $0 < \theta$

a função a priori é uma Gamma com parâmetros $\alpha_1 > 0$ e $\beta_1 > 0$ a função a posteriori é uma Beta com parâmetros

$$\alpha_2 = \alpha_1 + \sum_{i=0}^{n} x_i$$
 e $\beta_2 = \beta_1 + n$

Amostragem de uma Exponencial:

função de probabilidade para um evento

$$f(x|\theta) = \theta e^{-\theta x}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(\mathbf{x}|\theta) = \theta^n e^{-\theta y}; y = \sum_{i=1}^n x_i$$

para um θ desconhecido $0 < \theta$ e σ_0^2 conhecido $\sigma_0^2 > 0$ a função a priori é uma Gamma com parâmetros $\alpha_1 > 0$ e $\beta_1 > 0$

a função a posteriori é uma Gamma com parâmetros

$$\alpha_2 = \alpha_1 + n \ e \ \beta_2 = \beta_1 + \sum_{i=0}^{n} x_i$$

Amostragem de uma Normal:

função de probabilidade para um evento

$$f(x|\mu) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left[\frac{(x-\mu)^2}{2\sigma^2}\right]}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(\mathbf{x}|\mu) = \frac{1}{(\sigma 2\pi)^{n/2}} e^{-\left[\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right]}$$

para uma média θ desconhecida $-\infty < \theta < \infty$ e σ_0^2 conhecido $\sigma_0^2 > 0$ a função a priori é uma Normal com parâmetros μ_1 e σ_1^2 a função a posteriori é uma Normal com parâmetros

$$\mu_2 = \frac{\sigma_0^2 \mu_1 + \sigma_1^2 n \, \bar{x_n}}{\sigma_0^2 + n \, \sigma_1^2} e \, \sigma_2^2 = \frac{\sigma_0^2 \sigma_1^2}{\sigma_0^2 + n \, \sigma_1^2}$$

Amostragem de uma Gamma:

função de probabilidade para um evento, esperança e variância

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}; x > 0$$

$$E(X) = \frac{\alpha}{\beta}$$

$$VAR(X) = \frac{\alpha}{\beta^{2}}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_n(x|\theta) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)} (\prod_{i=1}^n x_i)^{\alpha-1} e^{(-\beta y)}; y = \sum_{i=1}^n x_i$$

Amostragem de uma Beta:

função de probabilidade para um evento, esperança e variância

$$f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}; 0 < x < 1$$

$$E(X) = \frac{\alpha}{\alpha+\beta}$$

$$VAR(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

função de probabilidade conjunta (para um vetor de eventos)

$$f_{n}(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} \left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1} e^{(-\beta y)}; y = \sum_{i=1}^{n} x_{i}$$

Estimadores de Bayes: (pag330)

Para aplicar a teoria dos estimadores Baysianos, é necessário:

- 1. especificar uma função de perda
- 2. determinar uma função a priori para o parâmetro

Um bom estimador $\delta(X)$ do parâmetro θ é aquele que faz o valor do erro definido por $\delta(X) - \theta$ tender a zero. Sendo $a = \delta(x)$ e $a \in \Omega$ uma estimativa de θ . Então $L(\theta, a)$ é a função que mede a diferença entre uma estimativa a e o seu respectivo parâmetro θ .

Diferentes funções de perta:

$$L(\theta, a) = (\theta - a)^{2}$$

$$L(\theta, a) = |\theta - a|$$

Sendo a esperança
$$E(x) = \int_{\Omega} x \cdot f(x) dx$$
 portanto $E[L(\theta, a)] = \int_{\Omega} L(\theta, a) \xi(\theta) d\theta$

A função L para o qual o valor $E[L(\theta, a)]$ será minimizada é chamada de função de perda.

Sendo x um vetor de dados observados para estimar θ

$$E[L(\theta, a)|\mathbf{x}] = \int_{\Omega} L(\theta, a) \xi(\theta|\mathbf{x}) d\theta$$

A função $\delta *(X)$ é chamado de estimador de Bayes quando, para cada x de X, faz com que $E[L(\theta, \delta *(x))|x] = min_{a \in \theta} E[L(\theta, a)|x]$. Ou seja é o estimador que fornece a menor função de perda.

Diferentes funções de perda:

para
$$L(\theta, a) = (\theta - a)^2$$
 então $\delta *(X) = E(\theta | X)$ será a média para $L(\theta, a) = |\theta - a|$ então $\delta *(X) = E(|\theta - a| X)$ será a mediana para $L(\theta, a) = |\theta - a|^k$ e $k \in N$ ou $k > 2$ então $L(\theta, a) = \lambda(\theta) |\theta - a|^2$

O estimador de Bayes para a função de perda quardrática é:

$$\delta * (X) = E(\theta | X)$$

O estimador de Bayes genérico é:

$$\delta * (\mathbf{X}) = E(L(\theta, a)|\mathbf{X}) = \int_{\Omega} L(\theta, a) \xi(\theta|\mathbf{x}) d\theta$$

Estimador de Bayes com função de perda quadrática para Bernouli:

Sendo a posteriori $\xi(\theta|x)$ uma Beta com parâmetros

$$\alpha_2 = \alpha_1 + y$$
 e $\beta_2 = \beta_1 + n - y$ sendo $y = \sum_{i=0}^{n} x_i$

Sendo a esperança para a Beta $E(X) = \frac{\alpha}{\alpha + \beta}$

$$E(X) = \frac{\alpha}{\alpha + \beta}$$

O estimador de Bayes com função de perda quadrática para uma posteriori Beta é

$$\delta * (X) = \frac{\alpha_1 + y}{\alpha_1 + \beta_1 + n} \text{ sendo } y = \sum_{i=0}^n x_i$$

Estimador de Bayes com função de perda quadrática para Normal:

Sendo a posteriori $\xi(\theta|\mathbf{x})$ uma Normal $N(\theta, \sigma^2)$ e uma distribuição a priori $\xi(\theta)$ conhecida $N(\mu, \nu^2)$.

O estimador de Bayes com função de perda quadrática para uma posteriori Normal é

$$\delta * (\mathbf{X}) = \frac{\sigma^2 \mu + n v^2 \bar{X}_n}{\sigma^2 + n v^2}$$

Estimadores de Bayes para grandes amostras: (pag335)

Para grandes amostras $n \to \infty$, mesmo partindo de funções a priori diferentes, a estimativa converge para o valor de θ .

Estimador de máxima verossimilhança (EMV): (pag338)

Estimador de máxima verossimilhança é o estimador $\hat{\theta}$ cuja estimativa θ aplicada à função $f_n(\mathbf{x}|\theta)$ tenha a maior probabilidade de gerar o vetor de dados \mathbf{x} .

Notação:

 $\hat{\theta}$ (teta chapeu) é o estimador de máxima verossimilhança $L(\theta) = \log f_n(\mathbf{x}|\theta)$ é o log da função de probabilidade conjugada

O estimador de máxima verossimilhança (MVE) é o ponto máximo de $L(\theta)$ ou seja $dL(\theta)$

MVE é
$$\frac{dL(\theta)}{d\theta} = 0$$
 ou $\frac{d}{d\theta} (\log f_n(\mathbf{x}|\theta)) = 0$

O EMV pode ser único, pode ser múltiplo ou pode ser inexistente.

Exemplo de EMV para uma Bernoulli

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^y (1-\theta)^{n-y}; y = \sum_{i=1}^n x_i$$

Aplicando um log.

$$L(\theta) = \log f_n(\mathbf{x}|\theta) = y \log \theta + (n-y) \log(1-\theta); y = \sum_{i=1}^{n} x_i$$

O ponto de mínima de $L(\theta)$ é $dL(\theta)/d\theta=0$, encontramos $\hat{\theta}=\bar{x_n}$

Mortanto o EMV de θ para uma Bernoulli é $\hat{\theta} = \overline{X}_n$

Exemplo de EMV para uma Normal com média e variância desconhecidas.

$$\hat{\mu} = \bar{X}_n \text{ e } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=0}^n (x_i - \bar{x}_n)^2$$

Propriedades do estimador de máxima verossimilhança: (pag338)

Estatística suficiente: (pag356)

Estatística suficiente é quando, dado observações de uma amostra x_1, x_2, \dots, x_n , uma estatística $T = r(x_1, x_2, \dots, x_n)$ e sendo função r o EMV, T é a melhor estimativa da observação, podendo substituir os dados da amostra sem nenhuma perda no resultado final.

Para uma Bernoulli $f_n(\mathbf{x}|\theta) = \theta^y (1-\theta)^{n-y}$; $y = \sum_{i=1}^n x_i$, são estatística suficiente $y = \sum_{i=1}^n x_i$ pois eles substituem totalmente a amostra x_1, x_2, \dots, x_n .

Estatísticas suficientes mais comuns

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \text{ \'e a m\'edia amostral}$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2 \text{ \'e a variância amostral}$$

$$x_{(1)} = \min(\mathbf{x}) = \min(x_1, ..., x_n) \text{ o menor valor da amostra}$$

$$x_{(n)} = \max(\mathbf{x}) = \max(x_1, ..., x_n) \text{ o maior valor da amostra}$$

$$x_{(i)} \text{ a i-\'esima maior observação da amostra}$$

Limites de estatísticas suficientes.

Estimador rubusto é um estimador suficiente para ampla variedade de possíveis f.d.p's.

Estimadores não Viesados:

Um estimador não viesado $\delta(X)$ tem sua esperança $E[\delta(X)]$ igual ao valor desconhecido verdadeiro de θ .

Exemplo: se a média é a esperança da média amostral $\mu = E(\bar{X}_n)$, um estimador não viesado da média $\delta(\mu) = \bar{X}_n$ é a média amostral.

Estimadores não viesados (ENV):

$$\delta(\mu) = \bar{x_n} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ um ENV da média é a média amostral}$$

$$\delta(\sigma^2) = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x_n})^2 \text{ um ENV da variância é a variância amostral}$$

Teste de Hipóteses Capítulo 8

Problemas de teste de hipótese: (pag 437)

Em um problema estatístico envolvendo o parâmetro $\,\theta\,$, cujo valor desconhecido pertence ao espaço $\,\Omega\,$, alguns valores de $\,\theta\,$ podem ser satisfatórios para uma determinada hipótese $\,H_0\,$.

Hipótese nula e alternativa: (pag 437)

O conjunto dos valores satisfatórios é chamado de Ω_0 e o conjunto dos valores não satisfatórios é chamado de Ω_1

Notação:

 H_0 Hipótese nula $\theta \in \Omega_0$, ou seja, hipótese de interesse

 H_1 Hipótese alternativa $\theta \in \Omega_1$

θ Parâmetro que está sendo testado

 Ω_0 Espaço paramétrico da hipótese nula (teta zero), ou seja, de interesse.

 Ω_1 Espaço paramétrico da hipótese alternativa (teta um)

 Ω Espaço paramétrico total (teta) onde $\Omega_0 \cup \Omega_1 = \Omega$

 $\theta = \theta_0$ Parâmetro dentro do espaço paramêtrico da hipótese nula $\theta \in \Omega_0$

 $\theta = \theta_1$ Parâmetro dentro do espaço paramêtrico da hipótese alternativa $\theta \in \Omega_1$

Região Crítica: (pag 438)

Região do espaço amostral S_1 que rejeita a hipótese nula, ou seja, que está associada ao parâmetro dentro da hipótese alternativa $\theta \in \Omega_1$.

Notação:

- S Espaço amostral
- S_0 Espaço amostral que aceita a hipótese nula
- S₁ ou C ou RC Região crítica é o espaço amostral que rejeita a hipótese nula

Função Poder: (pag 438)

É a função $\pi\left(\theta\right)$ que dá a probabilidade de rejeitar a hipótese nula H_{0} . Ou seja é a probabilidade de θ \in Ω_{1} . A função poder, como toda probabilidade, varia no intervalo de zero a um.

Notação:

 $\pi(\theta)$ = função poder (pi) é a probabilidade de $\theta \in \Omega_1$ ou seja, rejeitar H_0

 $x = \text{vetor de dados de amostras } x_1, ..., x_n \text{ de um experimento}$

 $f(x|\theta)$ = função de probabilidade de um evento, dado θ

 $F(x|\theta)$ = função de probabilidade acumulada de um evento, dado θ

 $f_n(\mathbf{x}|\theta)$ = função de probabilidade conjunta de uma série de eventos, dado θ

Probabilidade conjunta:

$$f_{n}(\mathbf{x}|\theta) = f_{n}(x_{1},...,x_{n}|\theta) = f(x_{1}|\theta) \cdot f(x_{2}|\theta),...,f(x_{n}|\theta) = \prod_{i=1}^{n} f(x_{i}|\theta)$$

Função poder:

$$\pi(\theta) = f_n(\mathbf{x} \in S_1 | \theta); \theta \in \Omega$$

Tamanho do Teste:

Tamanho do teste $\,\alpha\,$ é a maior probabilidade, entre todos os valores de $\,\theta\,$, que satisfaça a hipótese nula em não fazer uma decisão errada.

Notação:

 α_0 = nível de significância $0 < \alpha_0 < 1$

 α = tamanho do teste

Tamanho do teste:

$$\alpha = \sup_{\theta \in \Omega} \pi (\theta | \delta)$$

Para uma hipótese nula simples, o tamanho do teste é

$$\alpha = \pi \left(\theta_0 | \delta\right)$$

Teste:

Um teste δ é a definição de uma função poder $\pi(\theta|\delta)$.

Notação:

$$\pi(\theta|\delta)$$
 = função poder (pi) de um teste δ
 $\alpha(\delta)$ = tamanho do teste δ

Roteiro:

(1) Identificar o parâmetro θ e sua distribuição

 $Uniforme(0,\theta)$ ou $Uniforme(\theta,0)$

 $Normal(\theta, \sigma^2)$

 $Poison(\theta)$

Exponencial (θ)

 $Polinomial(\hat{\theta})$

(2) Identificar a hipótese de interesse H_0

$$H_0 = 3 \le \theta \le 4$$

- (3) Identificar o espaço paramêtrico $\,\Omega\,$, $\,\Omega_0\,$ e $\,\Omega_1\,$
 - Ω Espaço paramétrico total (teta) onde $\Omega_0 \cup \Omega_1 = \Omega$
 - Ω_0 Espaço paramétrico da hipótese nula (teta zero), ou seja, de interesse.
 - Ω_1 Espaço paramétrico da hipótese alternativa (teta um)

Traçar a linha do espaço parâmetrico

(4) Identificar o teste δ com o seu espaço amostral S_1

 S_1 ou C ou RC **Região crítica** é o espaço amostral que rejeita a hipótese nula Traçar a linha do espaço amostral

(5) identificar a função a acumulada $F(x|\theta)$ e a conjunta $f_n(x|\theta)$

$$f(x|\theta)$$
 para $x=k$

$$F(x|\theta)$$
 para $k \le x \le m$

 $f_n(\mathbf{x}|\theta)$ a função conjugada

(6) Achar a função poder para cada sub-espaço do espaço paramétrico

se
$$\pi (\theta \in \Omega_a | \delta)$$
 calcular $f_n(\mathbf{x} \in S_{1a} | \theta) + f_n(\mathbf{x} \in S_{1b} | \theta) + \dots$

se
$$\pi (\theta \in \Omega_b | \delta)$$
 calcular $f_n(\mathbf{x} \in S_{1a} | \theta) + f_n(\mathbf{x} \in S_{1b} | \theta) + \dots$

(7) Calcular o tamanho do teste

$$\alpha(\delta) = \sup_{\theta \in \Omega} \pi(\theta | \delta)$$

Exemplo:

Dada uma amostra aleatória $x_1, ..., x_n$ de uma distribuição uniforme no intervalo de $(0,\theta)$ sendo θ desconhecido e $\theta > 0$. A hipótese testa é $H_0 = 3 \le \theta \le 4$.

Estimativa suficiente para o máximo da uniforme é

$$x_{(n)}=max(x_1,...,x_n)$$

O teste pode ser definido como, a hipótese será expandida para $H_0=2.9 \le \theta \le 4$ portanto

$$\pi (\theta | \delta) = P(x_{(n)} < 2.9 | \theta) + P(x_{(n)} > 4 | \theta)$$

$$f(x|\theta) = \frac{1}{\theta}$$

$$F(x < 2.9 | \theta) = \frac{2.9}{\theta}$$

$$f_n(\mathbf{x}_{(n)} < 2.9 \mid \theta) = \left(\frac{2.9}{\theta}\right)^n$$

$$F(x>4|\theta)=1-F(x<4|\theta)=1-\frac{4}{\theta}$$

$$f_n(\mathbf{x_{(n)}} < 4 \mid \theta) = 1 - \left(\frac{4}{\theta}\right)^n$$

Calculando a função poder

$$\pi \left(\theta \middle| \delta\right) = \left(\frac{2.9}{\theta}\right)^n + 1 - \left(\frac{4}{\theta}\right)^n$$

Calculando o tamanho do teste

$$\alpha = \sup_{\theta \in \Omega} \pi (3) = (\frac{2.9}{3})^n$$

Testando hipótese simples: (pag 442)

Erro tipo 1: Rejeitar hipótese H_0 quando de fato ela é verdadeira.

Erro tipo 2: Aceitar hipótese H_0 quando de fato ela é falsa.

δ Procedimento de teste

Erro tipo 1

$$\alpha(\theta) = P(rejeitar H_0 | \theta = \theta_0)$$

Erro tipo 2

$$\beta(\theta) = P(aceitar H_0 | \theta = \theta_1)$$

O ideal é encontrar um procedimento de teste que mantenha $\alpha(\theta)$ e $\beta(\theta)$ o menor possível.

Minimizando a combinação linear

$$a\alpha(\delta^*)+b\beta(\delta^*) \le a\alpha(\delta)+b\beta(\delta)$$

Minimizando a combinação linear

mizando a combinação linear
$$a \alpha(\delta_1) + b \beta(\delta_1) = a \sum_{x \in R} f_0(x) + b \sum_{x \in R^c} f_1(x)$$

$$= a \sum_{x \in R} f_0(x) + b(1 - \sum_{x \in R} f_1(x))$$

$$= b + \sum_{x \in R} [a f_0(x) - b f_1(x)]$$

Problema de multi-decisão: (pag 456)

Teste uniformemenete mais poderoso: (pag 466) Selecionando procedimento de teste: (pag 477)

Teste T: (pag 485)

Discussão sobre metodologia de teste de hipótese: (pag 494)

Distribuição F: (pag 499)

Comparando média de duas distribuições normais: (pag 506)