ε 計算とクラスの導入による具体的で直観的な集合論の構築

関根深澤研修士二年 百合川尚学 学籍番号: 29C17095

2020年1月28日

本論文では **ZF** 集合論の一つの拡張を提示したが、そこでの主要な定理は、**ZF** 集合論のどの命題に対しても「**ZF** 集合論で証明可能」ならば「本論文の集合論で証明可能」であり、逆に「本論文の集合論で証明可能」ならば「**ZF** 集合論で証明可能」であるということである.これを精密に言い直せば、**ZF** 集合論の任意の命題 ψ に対して「 Γ から ψ への **HK** の証明で \mathcal{L}_{ϵ} の式の列であるものが取れる」ことと「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるものが取れる」ことが同値であるということになる.以下で記号を解説する.

 \mathcal{L}_{\in} とは **ZF** 集合論の言語 $\{\in\}$ のことである. 本論文ではもう二つの言語 $\mathcal{L}_{\mathcal{E}}$ と \mathcal{L} があり,項および式の形成規則はそれぞれの言語の中で指定される. 変項の自由な出現が無い式を文と呼ぶ. 「とは \mathcal{L}_{\in} の文で書かれた **ZF** 集合論の公理系 (外延性・相等性・置換・対・合併・冪・正則性・無限) を表す. **HK** とは古典論理の Hilbert 流証明体系のことであり,「 Γ からの **HK** の証明で \mathcal{L}_{\in} の式の列であるもの」とは, \mathcal{L}_{\in} の式の列 $\varphi_1, \varphi_2, \cdots, \varphi_n$ で,各 φ_i について以下のいずれかが満たされるものを言う:(1) **HK** の公理である. (2) Γ の公理である. (3) 列の前の式 φ_j, φ_k から三段論法で得られる. つまりその場合は φ_j が $\varphi_k \rightarrow \varphi_i$ なる式であるか, φ_k が $\varphi_j \rightarrow \varphi_i$ なる式である。 (4) 列の前の式 φ_i から汎化で得られる.

これらに対して、 \mathcal{L} も Σ も \mathbf{HE} も本論文特有のものである。 \mathcal{L} とは \mathcal{L}_{\in} の語彙を拡張した言語であり、拡張の中間にもう一つ $\mathcal{L}_{\mathcal{E}}$ がある。 $\mathcal{L}_{\mathcal{E}}$ とは \mathcal{L}_{\in} に ε を追加した言語であるが、この ε とは数論の無矛盾性の考察過程で Hilbert[1] が発案したものである。 \mathcal{L} には $\{x \mid \varphi\}$ の形の項を追加し、正式に類 (class) が扱えるようになる。 Σ とは本論文における集合論の公理系であり、 Γ の「外延性」、「相等性」が類に対する言明に変更され、また「内包性」と「要素」の公理が新たに追加される。

内包性公理は

$$\forall u (u \in \{x \mid \varphi(x)\} \leftrightarrow \varphi(u))$$

なる式を指し、 $\{x \mid \varphi(x)\}$ に対して「 φ である x の全体」の意味を与える.一方要素の公理は

$$a \in b \rightarrow \exists x (a = x)$$

なる式を指し、これによって要素となりうるものは集合に限られる。右辺の $\exists x (a = x)$ は「a は集合である」という意味の式であり、竹内 [2] の集合の定義を引用したものである。**HE** とは **HK** を改造した証明体系で、量化の公理に違いがあり、**HK** の公理である $\forall y (\psi \rightarrow \varphi(x/y)) \rightarrow (\psi \rightarrow \forall x\varphi)$ と $\forall y (\varphi(x/y) \rightarrow \psi) \rightarrow (\exists x \varphi \rightarrow \psi)$ が削除され、代わりに

$$\neg \forall x \varphi \rightarrow \exists x \neg \varphi,$$
$$\exists x \varphi \rightarrow \varphi(x/\varepsilon x \varphi)$$

が **HE** の公理となる. **HE** の証明は全て文で行う. 「 Σ からの **HE** の証明で \mathcal{L} の文の列であるもの」とは, \mathcal{L} の文の列 $\varphi_1, \varphi_2, \cdots, \varphi_n$ で,各 φ_i について以下のいずれかが満たされるものを言う:(1) **HE** の公理である. (2) Σ の公理である. (3) 列の前の式 φ_j, φ_k から三段論法で得られる. ε 項の作用によって **HE** では汎化は不要になる.

参考文献

- [1] D. ヒルベルト and P. ベルナイス, 数学の基礎 (吉田夏彦, 渕野昌訳), 丸善出版株式会社, 2012, pp. 23-63, ISBN 978-4-621-06405-4.
- [2] 竹内外史, 現代集合論入門, 增強版, 日本評論社, 2016, pp. 138-183, ISBN 978-4-535-60116-1.