

FIXED-BIAS CIRCUIT

BJT DC BIASING

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Fixed-Bias Circuit

- Base-Emitter Loop
- Collector-Emitter Loop
- Load Line Analysis

FIXED-BIAS CIRCUIT

CURRENT GAIN

The <u>current gain</u> parameters <u>alpha</u> (α) and <u>beta</u> (β) describe the relationship between currents in the transistor's three terminals (emitter, base, and collector).

Alpha (α) is the ratio of the collector current to the emitter current.

Formula

$$\alpha = \frac{i_C}{i_E}$$

 α is always less than 1 (typically 0.95 to 0.995)

Beta (β) is the ratio of the collector current to the base current.

Formula

$$\beta = \frac{i_C}{i_B}$$

FIXED-BIAS CIRCUIT

Fixed-bias configuration is the simplest method – the biasing voltage applied to the base of the BJT is fixed by a single resistor (R_B) connected directly to the power supply (v_{CC}).

BASE-EMITTER LOOP

$$\frac{KVL @B-E}{Vcc}$$

$$-260 + Vpp + Vpp + Vpp = 0$$

$$Vpp = Vcc - Vpp = 0$$

$$\frac{Ip pp}{Ip} = \frac{Vcc - Vpp}{Ip}$$

$$ip = \frac{Vcc - Vpp}{Ip}$$

$$ip = \frac{Vcc - Vpp}{Ip}$$

$$tp$$

$$tp$$

$$tp$$

$$tp$$

$$tp$$

COLLECTOR-EMITTER LOOP

Determine the following parameters for the given fixed-bias circuit:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ})
- Base voltage (v_B)
- Base-Collector voltage (v_{BC})

In DC analysis,
Replace capacitors w/
Open CK4. equivalent.

$$\frac{|41 \text{Leb}|}{|120|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\frac{|41 \text{Leb}|}{|120|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\frac{|41 \text{Leb}|}{|120|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\frac{|41 \text{Leb}|}{|41 \text{Leb}|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\frac{|41 \text{Leb}|}{|41 \text{Leb}|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\frac{|41 \text{Leb}|}{|41 \text{Leb}|} = \frac{12 - 0.7}{240 \text{K}}$$

$$\beta = \frac{lc}{\kappa i \phi}$$

$$ic = 2.35 \text{ m/s}$$

$$\frac{|\mathcal{U} \cup \mathcal{O}| + |\mathcal{V} \cup \mathcal{C}|}{|\mathcal{U} \cup \mathcal{C}|} = 0$$

$$|\mathcal{U} \cup \mathcal{C}| + |\mathcal{V} \cup \mathcal{C}| = 0$$

$$|\mathcal{U} \cup \mathcal{C}| = |\mathcal{U} \cup \mathcal{C}| + |\mathcal{U} \cup \mathcal{C}|$$

$$|\mathcal{U} \cup \mathcal{C}| = |\mathcal{U} \cup \mathcal{C}| + |\mathcal{U} \cup \mathcal{C}|$$

$$|\mathcal{U} \cup \mathcal{C}| = |\mathcal{U} \cup \mathcal{C}| + |\mathcal{U} \cup \mathcal{C}|$$

$$|\mathcal{U} \cup \mathcal{C}| = |\mathcal{U} \cup \mathcal{C}| + |\mathcal{U} \cup \mathcal{C}|$$

$$|\mathcal{U} \cup \mathcal{C}| = |\mathcal{C} \cup \mathcal{C}|$$

$$|\mathcal{C} \cup \mathcal{C}| = |\mathcal{C}|$$

LOAD LINE ANALYSIS

SATURATION POINT

The <u>saturation point</u> is the operating state where BJT conducts the <u>maximum collector curren</u>t ($i_{C(sat)}$) with zero collector-emitter voltage ($v_{CE} = 0$).

In this region the transistor acts like a <u>closed switch</u> (zero resistance between collector-emitter).

SATURATION POINT

Mentally Short

CUTOFF POINT

The <u>cutoff point</u> is the operating state where BJT conducts zero collector current ($i_C = 0$) with v_{CE} at its maximum ($v_{CE} = V_{CC}$).

In this region the transistor acts like an <u>open switch</u> (infinite resistance between collector-emitter).

CUTOFF POINT

Mentally Open

QUIESCENT POINT

The <u>Q-point</u> is the stable DC operating condition characterized by specific value of collector current (i_C) and collector-emitter voltage (v_{CE}) .

Plot the DC load line for the fixed-bias circuit and clearly indicate the following points on the graph.

- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

$$ic(skT) = \frac{12}{2.2k}$$

Load Line Analysis

Determine the following parameters for the given fixed-bias circuit:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ}) and clearly indicate the following points on the load line analysis graph.
- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

$$\frac{\text{KVLQ B-E}}{\text{Vcc}}$$

$$-200 + \text{Vpp} + \text{Vpt} = 0$$

$$\text{Vpp} = \text{Vcc} - \text{Vpt}$$

$$\frac{\text{Ipp}}{\text{Ipp}} = \frac{\text{Vcc} - \text{Vpt}}{\text{Ipp}}$$

$$\frac{\text{Ipp}}{\text{Ipp}} = \frac{12 - 0.7}{240 \text{K}}$$

$$\text{Ipp} = \frac{47.08 \text{ M}}{\text{ans}}$$

Solution

Current Gain

$$B = \frac{ic}{ip}$$

$$ic = Bip$$

$$ic = 100 (47.08 m)$$

$$ica = 4.71 mt$$
ans

$$\frac{|\mathsf{kVLQCt}|}{-2007} + \mathsf{VRC} + \mathsf{VCT} = 0$$

$$\mathsf{VCT} = \mathsf{VCC} - \mathsf{VRC}$$

$$\mathsf{VCT} = \mathsf{VCC} - \mathsf{ICRC}$$

$$\mathsf{VCT} = \mathsf{I2} - \mathsf{4.71m}(2.2\mathsf{K})$$

$$\mathsf{VCT} = \mathsf{I.64V}$$
ans

$$ic(spr) = \frac{12}{2.2k}$$

$$\frac{|\text{LVL Q Gt}|}{|\text{Vac}|} = 0$$

$$-200 + 2 \text{pc} + 2 \text{vac} = 0$$

$$200 + 2 \text{vac} + 2 \text{vac} = 0$$

$$200 + 2 \text{vac} + 2 \text{vac} = 0$$

$$200 + 2 \text{vac} + 2 \text{vac} = 0$$

$$200 + 2 \text{vac}$$

Load Line Analysis

UNSTABLE Q-POINT

Bias	β	$i_B(\mu A)$	$i_C(mA)$	$v_{CE}(V)$	$\%\Delta v_{\it CE}$
Fixed-Bias	₩	47.08	2.35	6.83	-76%
	lm	47.08	4.71	1.64	
Emitter- Stabilized					
Voltage- Divider Bias					

LABORATORY

