ε計算とクラスの導入による具体的で直観的な集合論の構築

関根深澤研修士二年 百合川尚学 学籍番号: 29C17095

2020年1月28日

本論文の主要な結果は、 \mathbf{ZF} 集合論のどの命題に対しても「 \mathbf{ZF} 集合論で証明可能」ならば「本論文の集合論で証明可能」であり、逆に「本論文の集合論で証明可能」ならば「 \mathbf{ZF} 集合論で証明可能」であるということである。これを精密に言い直せば、 \mathbf{ZF} 集合論の任意の命題 ψ に対して「 Γ から ψ への \mathbf{HK} の証明で $\mathcal{L}_{\mathbf{C}}$ の式の列であるものが取れる」ことと「 Σ から ψ への \mathbf{HE} の証明で \mathcal{L} の式の列であるという意味になる。以下で記号を解説する。

 \mathcal{L}_{ϵ} とは **ZF** 集合論の言語 $\{\epsilon\}$ のことであり, Γ とは \mathcal{L}_{F} の文で書かれた ZF 集合論の公理系 (外 延性・相等性・置換・対・合併・冪・正則性・無 限)を表す. HK とは古典論理の Hilbert 流証明体 系を指し、「 Γ からの **HK** の証明で \mathcal{L}_{ϵ} の式の列で あるもの」とは、 \mathcal{L}_{ϵ} の式の列 $\varphi_1, \varphi_2, \cdots, \varphi_n$ で、 各 φ_i について以下のいずれかが満たされるもの を言う:(1) HK の公理である. (2) Γ の公理であ る. (3) 列の前の式 φ_i, φ_k から三段論法で得られ る. つまりその場合は φ_i が $\varphi_k \rightarrow \varphi_i$ なる式で あるか、 φ_k が $\varphi_i \rightarrow \varphi_i$ なる式である. (4) 列の 前の式 φ_i から汎化で得られる. つまりその場合 は φ_i は $\xi(x/a)$ なる式で φ_i は $\forall x \xi$ なる式である. ここで $\xi(x/a)$ とは ξ に自由に現れる x に変項 aを代入した式であり、この a はこの汎化の固有変 項と呼ばれる.

これに対して、 \mathcal{L} も Σ も **HE** も本論文特有のものである. \mathcal{L} とは \mathcal{L}_{ϵ} の語彙を拡張した言語である. 本論文に登場する言語はもう一つ $\mathcal{L}_{\mathcal{E}}$ というものがある. $\mathcal{L}_{\mathcal{E}}$ とは \mathcal{L}_{ϵ} に ϵ 項と呼ばれる項を

追加した言語であるが、 ε 項とは形式的述語計算から存在論理式を削除するために $\operatorname{Hilbert}[]$ が発案したものである。 $\mathcal L$ に追加するものは $\{x \mid \varphi\}$ の形の項であり、この内包的記法にちなんでこれを内包項と呼ぶことにする。 Σ とは本論文における集合論の公理であり、 Γ と違うところは「外延性」、「相等性」が類に対する言明に変更されることと、「内包性」と「要素」の公理が新たに追加されることである。内包性公理は

$$\forall u (u \in \{x \mid \varphi(x)\} \leftrightarrow \varphi(u))$$

なる図式を指し、 $\{x \mid \varphi(x)\}$ に対して φ である x の全体」の意味を与える.要素の公理は

$$a \in b \rightarrow \exists x (a = x)$$

なる図式を指し、これによって要素となりうるものは集合に限られる。右辺の $\exists x (a = x)$ とはa が集合であるという意味の式であり、竹内 [] の集合の定義を引用したものである。HE とは HK を改造した証明体系であり、量化の公理に違いがある。HK と HE で被るのは「 \exists 導入」 $\varphi(x/\tau) \to \exists x \varphi$ と「 \forall 除去」 $\forall x \varphi \to \varphi(x/\tau)$ であるが、HK にはもう二つ $\forall y (\psi \to \varphi(x/y)) \to (\psi \to \forall x \varphi)$ と $\forall y (\varphi(x/y) \to \psi) \to (\forall x \varphi \to \psi)$ があるが、HE ではこれらの代わりに

$$\neg \forall x \varphi \to \exists x \neg \varphi,$$
$$\exists x \varphi \to \varphi(x/\varepsilon x \varphi)$$

を公理とする. **HE** の証明は全て文で行う. Γ からの **HE** の証明で \mathcal{L} の文の列であるもの」とは,

 \mathcal{L} の文の列 $\varphi_1, \varphi_2, \cdots, \varphi_n$ で,各 φ_i について以下のいずれかが満たされるものを言う:(1) **HE** の公理である.(2) Σ の公理である.(3) 列の前の式 φ_j, φ_k から三段論法で得られる. ε 項の作用によって **HE** では汎化は不要になる.

1 導入

2 言語

本稿の言語は三つある.一つ目は言語 \mathcal{L}_{ϵ} であり,その語彙は次から成る:

矛盾記号 丄

論理記号 →, ∨, ∧, →

量化子 ∀,∃

述語記号 =, ∈

変項 x,y,z,\cdots .

 \mathcal{L}_{E} の項と式は次で定義される:

項 変項のみが \mathcal{L}_{C} の項である.

式 ● 」は式である.

- s,t を項とするとき ∈ st,= st は式である.
- φ , ψ を式とするとき $\forall \varphi \psi$, $\land \varphi \psi$, $\rightarrow \varphi \psi$ は式である.
- x を項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は式である.

二つ目は言語 $\mathcal{L}_{\mathcal{E}}$ であり、その語彙は $\mathcal{L}_{\mathcal{E}}$ の語彙に $\mathcal{L}_{\mathcal{E}}$ の項と式は循環定義になる.

- 」は式である.
- s,t を項とするとき $\in st$, = st は式である.
- φ , ψ を式とするとき $\forall \varphi \psi$, $\land \varphi \psi$, $\rightarrow \varphi \psi$ は式である.
- x を変項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は 式である.
- x を変項とし φ を式とするとき $\varepsilon x \varphi$ は項である.

x を変項とし φ を $\mathcal{L}_{\mathcal{E}}$ の式とするとき,以下では $\varepsilon x \varphi$ なる項を ε 項と呼び, $\{x \mid \varphi\}$ なる項を内包項と呼ぶ.三つめは言語 \mathcal{L} である. \mathcal{L} の語彙は $\mathcal{L}_{\varepsilon}$ の語彙に ε 項及び内包項が加えたものである.

項 変項, ε 項, 内包項のみが項である.

- 式 ⊥は式である.
 - *s*, *t* を項とするとき ∈ *st*, = *st* は式である.
 - φ , ψ を式とするとき $\lor \varphi \psi$, $\land \varphi \psi$, $\rightarrow \varphi \psi$ は式である.
 - x を項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は式である.

 ε 項と内包項の中でも性質の良いものは

- 3 証明と公理
- 4 類と集合
- 5 保存拡大