Chapter 7 Optimization

Numerical Methods Fall 2019

Optimization

- ▶ Optimization (최적화 ?)
- From a mathematical perspective, optimization deals with finding the maxima and minima of a function that depends on one or more variables.

Optimization

An object can be projected upward at a specified velocity. If it is subject to linear drag, its altitude as a function of time can be computed as

$$z = z_0 + \frac{m}{c} \left(v_0 + \frac{mg}{c} \right) \left(1 - e^{-(c/m)t} \right) - \frac{mg}{c} t$$

Optimization

Example

 \circ g = 9.81 m/s², z₀ = 100 m, v₀ = 55 m/s, m = 80 kg, and c = 15 kg/s.

$$\frac{dz}{dt} = v_0 e^{-(c/m)t} - \frac{mg}{c} \left(1 - e^{-(c/m)t} \right)$$
$$t = \frac{m}{c} \ln \left(1 + \frac{cv_0}{mg} \right)$$
$$t = \frac{80}{15} \ln \left(1 + \frac{15(55)}{80(9.81)} \right) = 3.83166 \,\mathrm{s}$$

$$z = 100 + \frac{80}{15} \left(50 + \frac{80(9.81)}{15} \right) \left(1 - e^{-(15/80)3.83166} \right) - \frac{80(9.81)}{15} (3.83166) = 192.8609 \text{ m}$$

Multidimensional Optimization

- One-dimensional problems involve functions that depend on a single dependent variable—for example, f(x).
- Multidimensional problems involve functions that depend on two or more dependent variables—for example, f(x,y)

Global vs. Local

- A *global optimum* represents the very best solution while a *local optimum* is better than its immediate neighbors. Cases that include local optima are called *multimodal*.
- Generally desire to find the global optimum.

- Search algorithm for finding a minimum on an interval $[x_l, x_u]$ with a *single* minimum (*unimodal* interval)
- Uses the *golden ratio* ϕ =1.6180... to determine location of two interior points x_1 and x_2 ; by using the golden ratio, one of the interior points can be re–used in the next iteration.

Golden ratio

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities.

$$d = (\varphi - 1)(x_u - xl)$$
$$x_1 = xl + d$$
$$x_2 = xu - d$$

- If $f(x_1) < f(x_2)$, x_2 becomes the new lower limit and x_1 becomes the new x_2 (as in figure).
- If $f(x_2) < f(x_1)$, x_1 becomes the new upper limit and x_2 becomes the new x_1 .
- In either case, only one new interior point is needed and the function is only evaluated one more time.

Example

$$f(x) = \frac{x^2}{10} - 2\sin(x)$$

- initial interval: $x_1=0$, $x_n=4$

$$d = 0.61803(4 - 0) = 2.4721$$

$$x_1 = 0 + 2.4721 = 2.4721$$

$$x_2 = 4 - 2.4721 = 1.5279$$

$$f(x_2) = \frac{1.5279^2}{10} - 2\sin(1.5279) = -1.7647$$

$$f(x_1) = \frac{2.4721^2}{10} - 2\sin(2.4721) = -0.6300$$

- New upper bound: $x_u = 2.4721$
- new $x_1 = 1.5279 \Rightarrow f(1.5279) = -1.7647$ d = 0.61803(2.4721 - 0) = 1.5279 $x_2 = 2.4721 - 1.5279 = 0.9443$

x_l	$f(x_l)$	x_2	$f(x_2)$	x_1	$f(x_1)$	x_u	$f(x_u)$	đ
0	0	1.5279	-1.7647	2.4721	-0.6300	4.0000	3.1136	2.4721
0	0	0.9443	-1.5310	1.5279	-1.7647	2.4721	-0.6300	1.5279
0.9443	-1.5310	1.5279	-1.7647	1.8885	-1.5432	2.4721	-0.6300	0.9443
0.9443	-1.5310	1.3050	-1.7595	1.5279	-1.7647	1.8885	-1.5432	0.5836
1.3050	-1.7595	1.5279	-1.7647	1.6656	-1.7136	1.8885	-1.5432	0.3607
1.3050	-1.7595	1.4427	-1.7755	1.5279	-1.7647	1.6656	-1.7136	0.2229
1.3050	-1.7595	1.3901	-1.7742	1.4427	-1 <i>.77</i> 55	1.5279	-1.7647	0.1378
1.3901	-1.7742	1.4427	-1 <i>.77</i> 55	1.4752	-1 <i>.77</i> 32	1.5279	-1.7647	0.0851
	0 0 0.9443 0.9443 1.3050 1.3050 1.3050	0 0 0 0 0.9443 -1.5310 0.9443 -1.5310 1.3050 -1.7595 1.3050 -1.7595 1.3050 -1.7595	0 0 1.5279 0 0 0.9443 0.9443 -1.5310 1.5279 0.9443 -1.5310 1.3050 1.3050 -1.7595 1.5279 1.3050 -1.7595 1.4427 1.3050 -1.7595 1.3901	0 0 1.5279 -1.7647 0 0 0.9443 -1.5310 0.9443 -1.5310 1.5279 -1.7647 0.9443 -1.5310 1.3050 -1.7595 1.3050 -1.7595 1.5279 -1.7647 1.3050 -1.7595 1.4427 -1.7755 1.3050 -1.7595 1.3901 -1.7742	0 0 1.5279 -1.7647 2.4721 0 0 0.9443 -1.5310 1.5279 0.9443 -1.5310 1.5279 -1.7647 1.8885 0.9443 -1.5310 1.3050 -1.7595 1.5279 1.3050 -1.7595 1.5279 -1.7647 1.6656 1.3050 -1.7595 1.4427 -1.7755 1.5279 1.3050 -1.7595 1.3901 -1.7742 1.4427	0 0 1.5279 -1.7647 2.4721 -0.6300 0 0 0.9443 -1.5310 1.5279 -1.7647 0.9443 -1.5310 1.5279 -1.7647 1.8885 -1.5432 0.9443 -1.5310 1.3050 -1.7595 1.5279 -1.7647 1.3050 -1.7595 1.5279 -1.7647 1.6656 -1.7136 1.3050 -1.7595 1.4427 -1.7755 1.5279 -1.7647 1.3050 -1.7595 1.3901 -1.7742 1.4427 -1.7755	0 0 1.5279 -1.7647 2.4721 -0.6300 4.0000 0 0 0.9443 -1.5310 1.5279 -1.7647 2.4721 0.9443 -1.5310 1.5279 -1.7647 1.8885 -1.5432 2.4721 0.9443 -1.5310 1.3050 -1.7595 1.5279 -1.7647 1.8885 1.3050 -1.7595 1.5279 -1.7647 1.6656 -1.7136 1.8885 1.3050 -1.7595 1.4427 -1.7755 1.5279 -1.7647 1.6656 1.3050 -1.7595 1.3901 -1.7742 1.4427 -1.7755 1.5279	0 0 1.5279 -1.7647 2.4721 -0.6300 4.0000 3.1136 0 0 0.9443 -1.5310 1.5279 -1.7647 2.4721 -0.6300 0.9443 -1.5310 1.5279 -1.7647 1.8885 -1.5432 2.4721 -0.6300 0.9443 -1.5310 1.3050 -1.7595 1.5279 -1.7647 1.8885 -1.5432 1.3050 -1.7595 1.5279 -1.7647 1.6656 -1.7136 1.8885 -1.5432 1.3050 -1.7595 1.4427 -1.7755 1.5279 -1.7647 1.6656 -1.7136 1.3050 -1.7595 1.3901 -1.7742 1.4427 -1.7755 1.5279 -1.7647

- After the eighth iteration, the minimum occurs at x = 1.4427 with a function value of -1.7755.
- The result is converging on the true value of -1.7757 at x = 1.4276.
- Error measure

$$\varepsilon_a = (2 - \phi) \left| \frac{x_u - x_l}{x_{\text{opt}}} \right| \times 100\%$$

Code for Golden-Section Search

```
function [x,fx,ea,iter]=goldmin(f,xl,xu,es,maxit,varargin)
% goldmin: minimization golden section search
    [x, fx, ea, iter] = goldmin(f, xl, xu, es, maxit, pl, p2, ...):
      uses golden section search to find the minimum of f
% input:
% f = name of function
   xl, xu = lower and upper guesses
 es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
  p1, p2, \dots = additional parameters used by f
% output:
% x = location of minimum
% fx = minimum function value
% ea = approximate relative error (%)
    iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es), es=0.0001;end</pre>
if nargin<5|isempty(maxit), maxit=50;end</pre>
phi=(1+sqrt(5))/2; d = (phi-1)*(xu - xl);
iter = 0; x1 = x1 + d; x2 = xu - d;
f1 = f(x1, varargin\{:\}); f2 = f(x2, varargin\{:\});
while (1)
  xint= xu - xl:
  if f1 < f2
    xopt = x1; x1 = x2; x2 = x1; f2 = f1;
    x1 = x1 + (phi-1)*(xu-x1); f1 = f(x1, varargin{:});
  else
    xopt = x2; xu = x1; x1 = x2; f1 = f2;
   x2 = xu - (phi-1)*(xu-x1); f2 = f(x2, varargin{:});
  end
  iter=iter+1;
  if xopt \sim = 0, ea = (2 - phi) * abs(xint / xopt) * 100; end
  if ea <= es | iter >= maxit,break,end
end
x=xopt; fx=f(xopt, varargin{:});
```

- Another algorithm uses parabolic interpolation of three points to estimate optimum location.
- The location of the maximum/minimum of a parabola defined as the interpolation of three points $(x_1, x_2, \text{ and } x_3)$ is:

$$x_4 = x_2 - \frac{1}{2} \frac{(x_2 - x_1)^2 [f(x_2) - f(x_3)] - (x_2 - x_3)^2 [f(x_2) - f(x_1)]}{(x_2 - x_1) [f(x_2) - f(x_3)] - (x_2 - x_3) [f(x_2) - f(x_1)]}$$

The new point x_4 and the two surrounding it (either x_1 and x_2 or x_2 and x_3) are used for the next iteration of the algorithm.

Example

$$f(x) = \frac{x^2}{10} - 2\sin(x)$$

- initial guesses of $x_1 = 0$, $x_2 = 1$, and $x_3 = 4$.

$$x_1 = 0$$
 $f(x_1) = 0$
 $x_2 = 1$ $f(x_2) = -1.5829$
 $x_3 = 4$ $f(x_3) = 3.1136$

$$x_4 = 1 - \frac{1}{2} \frac{(1-0)^2 [-1.5829 - 3.1136] - (1-4)^2 [-1.5829 - 0]}{(1-0) [-1.5829 - 3.1136] - (1-4) [-1.5829 - 0]} = 1.5055$$

- f(1.5055) = -1.7691

$$x_1 = 1$$
 $f(x_1) = -1.5829$
 $x_2 = 1.5055$ $f(x_2) = -1.7591$
 $x_3 = 4$ $f(x_3) = 3.1136$
 $x_4 = 1.5055 - \frac{1}{2} \frac{(1.5055 - 1)^2 [-1.7691 - 3.1136] - (1.5055 - 4)^2 [-1.7691 - (-1.5829)]}{(1.5055 - 1) [-1.7691 - 3.1136] - (1.5055 - 4) [-1.7691 - (-1.5829)]}$
 $= 1.4903$

i	x_1	$f(x_1)$	x_2	$f(x_2)$	x_3	$f(x_3)$	x_4	$f(x_4)$
1	0.0000	0.0000	1.0000	-1.5829	4.0000	3.1136	1.5055	-1.7691
2	1.0000	-1.5829	1.5055	-1.7691	4.0000	3.1136	1.4903	-1.7714
3	1.0000	-1.5829	1.4903	-1.7714	1.5055	-1.7691	1.4256	-1.7757
4	1.0000	-1.5829	1.4256	-1.7757	1.4903	-1.7714	1.4266	-1 <i>.7757</i>
5	1.4256	-1.7757	1.4266	-1.7757	1.4903	-1.7714	1.4275	-1.7757

The result is converging rapidly on the true value of -1.7757 at x = 1.4276.

Newton-Rapson Method

In the one-dimensional problem, Newton's (or Newton-Rapson) method attempts to find the roots of f' by constructing a sequence x_n from an initial guess x_0 that converges towards some value x^* satisfying $f'(x^*) = 0$.

Newton-Rapson Method

Suppose that f(x) is approximated by a *quadratic function* at a point x^k (*Taylor series*) $f(x) = ax^2 + bx + c$

$$f(x^{k+1}) \cong f(x^k) + f'(x^k)(x^{k+1} - x^k) + \frac{1}{2!}f''(x^k)(x^{k+1} - x^k)^2$$

Then the stationary point, df(x)/dx = 0, is given as:

$$f'(x^k) + f''(x^k)(x^{k+1} - x^k) = 0$$

yielding the next approximation x^{k+1} as:

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

Newton-Rapson Method

fminbnd Function

MATLAB has a built-in function, fminbnd, which combines the golden-section search and the parabolic interpolation.

```
[xmin, fval] = fminbnd(function, x1, x2)
```

Options may be passed through a fourth argument using optimset, similar to fzero.

fminbnd Function

```
>> g=9.81; v0=55; m=80; c=15; z0=100;
>> z=@(t) -(z0+m/c*(v0+m*g/c)*(1-exp(-c/m*t))-m*g/c*t);
>> [x,f]=fminbnd(z,0,8)

x =
    3.8317
f =
   -192.8609
```

Func-count	x	f(x)	Procedure
1	3.05573	-189.759	initial
2	4.94427	-187.19	golden
3	1.88854	-171.871	golden
4	3.87544	-192.851	parabolic
5	3.85836	-192.857	parabolic
6	3.83332	-192.861	parabolic
7	3.83162	-192.861	parabolic
8	3.83166	-192.861	parabolic
9	3.83169	-192.861	parabolic

fminsearch Function

MATLAB has a built-in function, fminsearch, that can be used to determine the minimum of a multidimensional function.

```
[xmin, fval] = fminsearch(function, x0)
```

- xmin in this case will be a row vector containing the location of the minimum, while x_0 is an initial guess. Note that x_0 must contain as many entries as the function expects of it.
- The function must be written in terms of a single variable, where different dimensions are represented by different indices of that variable.

fminsearch Function

To minimize

```
f(x,y)=2+x-y+2x^2+2xy+y^2
rewrite as
f(x_1, x_2)=2+x_1-x_2+2(x_1)^2+2x_1x_2+(x_2)^2
>> f=@(x) 2+x(1)-x(2)+2*x(1)^2+2*x(1)*x(2)+x(2)^2;
>> [x,fval]=fminsearch(f,[-0.5,0.5])
x =
-1.0000 1.5000
fval =
0.7500
```

Note that x0 has two entries, f is expecting it to contain two values.