QUADRATURE METHODS

Kenneth L. Judd

Hoover Institution

July 19, 2011

Integration

- Most integrals cannot be evaluated analytically
- Integrals frequently arise in economics
 - Expected utility
 - Discounted utility and profits over a long horizon
 - Bayesian posterior
 - Likelihood functions
 - Solution methods for dynamic economic models

_

Newton-Cotes Formulas

• Idea: Approximate function with low order polynomials and then integrate approximation

- Step function approximation:
 - Compute constant function equalling f(x) at midpoint of [a, b]
 - Integral approximation is aUQVb box
- Linear function approximation:
 - Compute linear function interpolating f(x) at a and b
 - Integral approximation is trapezoid aPRb

- Parabolic function approximation:
 - Compute parabola interpolating f(x) at a, b, and (a + b)/2
 - Integral approximation is area of aPQRb

• Midpoint Rule: piecewise step function approximation

$$\int_{a}^{b} f(x) \ dx = (b-a) \ f\left(\frac{a+b}{2}\right) + \frac{(b-a)^{3}}{24} f''(\xi)$$

- Simple rule: for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) \ dx = (b-a) \ f\left(\frac{a+b}{2}\right) + \frac{(b-a)^{3}}{24} f''(\xi)$$

- Composite midpoint rule:
 - * nodes: $x_j = a + (j \frac{1}{2})h$, j = 1, 2, ..., n, h = (b a)/n
 - * for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) \ dx = h \sum_{i=1}^{n} f\left(a + (j - \frac{1}{2})h\right) + \frac{h^{2}(b-a)}{24} f''(\xi)$$

__

- Trapezoid Rule: piecewise linear approximation
 - Simple rule: for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) \ dx = \frac{b-a}{2} \left[f(a) + f(b) \right] - \frac{(b-a)^{3}}{12} f''(\xi)$$

- Composite trapezoid rule:

* nodes:
$$x_j = a + (j - \frac{1}{2})h$$
, $j = 1, 2, ..., n$, $h = (b - a)/n$

* for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f_0 + 2f_1 + \dots + 2f_{n-1} + f_n \right] - \frac{h^2 (b-a)}{12} f''(\xi)$$

_

- Simpson's Rule: piecewise quadratic approximation
 - for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) dx = \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{(b-a)^{5}}{2880} f^{(4)}(\xi)$$

- Composite Simpson's rule: for some $\xi \in [a, b]$

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{n-1} + f_n \right] - \frac{h^4(b-a)}{180} f^{(4)}(\xi)$$

• Obscure rules for degree 3, 4, etc. approximations.

_

Gaussian Formulas

• All integration formulas are of form

$$\int_{a}^{b} f(x) dx \doteq \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

$$(7.2.1)$$

for some quadrature nodes $x_i \in [a, b]$ and quadrature weights ω_i .

- Newton-Cotes use arbitrary x_i
- Gaussian quadrature uses good choices of x_i nodes and ω_i weights.
- Exact quadrature formulas:
 - Let \mathcal{F}_k be the space of degree k polynomials
 - A quadrature formula is exact of degree k if it correctly integrates each function in \mathcal{F}_k
 - Gaussian quadrature formulas use n points and are exact of degree 2n-1

Theorem 1 Suppose that $\{\varphi_k(x)\}_{k=0}^{\infty}$ is an orthonormal family of polynomials with respect to w(x) on [a, b].

- 1. Define q_k so that $\varphi_k(x) = q_k x^k + \cdots$.
- 2. Let x_i , i = 1, ..., n be the n zeros of $\varphi_n(x)$
- 3. Let $\omega_i = -\frac{q_{n+1}/q_n}{\varphi'_n(x_i)\,\varphi_{n+1}(x_i)} > 0$

Then

- 1. $a < x_1 < x_2 < \cdots < x_n < b$;
- 2. if $f \in C^{(2n)}[a, b]$, then for some $\xi \in [a, b]$,

$$\int_{a}^{b} w(x) f(x) dx = \sum_{i=1}^{n} \omega_{i} f(x_{i}) + \frac{f^{(2n)}(\xi)}{q_{n}^{2}(2n)!};$$

3. and $\sum_{i=1}^{n} \omega_i f(x_i)$ is the unique formula on n nodes that exactly integrates $\int_a^b f(x) w(x) dx$ for all polynomials in \mathcal{F}_{2n-1} .

_

Gauss-Chebyshev Quadrature

• Domain: [-1, 1]

• Weight: $(1-x^2)^{-1/2}$

• Formula:

$$\int_{-1}^{1} f(x)(1-x^2)^{-1/2} dx = \frac{\pi}{n} \sum_{i=1}^{n} f(x_i) + \frac{\pi}{2^{2n-1}} \frac{f^{(2n)}(\xi)}{(2n)!}$$
 (7.2.4)

for some $\xi \in [-1, 1]$, with quadrature nodes

$$x_i = \cos\left(\frac{2i-1}{2n}\pi\right), \quad i = 1, ..., n.$$
 (7.2.5)

Arbitrary Domains

- Want to approximate $\int_a^b f(x) dx$
 - Different range, no weight function
 - Linear change of variables x = -1 + 2(y a)(b a)
 - Multiply the integrand by $(1-x^2)^{1/2}/(1-x^2)^{1/2}$.
 - C.O.V. formula

$$\int_{a}^{b} f(y) \ dy = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(x+1)(b-a)}{2} + a\right) \frac{\left(1-x^{2}\right)^{1/2}}{\left(1-x^{2}\right)^{1/2}} \ dx$$

- Gauss-Chebyshev quadrature produces

$$\int_{a}^{b} f(y) dy \doteq \frac{\pi(b-a)}{2n} \sum_{i=1}^{n} f\left(\frac{(x_i+1)(b-a)}{2} + a\right) \left(1 - x_i^2\right)^{1/2}$$

where the x_i are Gauss-Chebyshev nodes over [-1, 1].

Gauss-Legendre Quadrature

- Domain: [-1, 1]
- Weight: 1
- Formula:

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} \omega_{i} f(x_{i}) + \frac{2^{2n+1} (n!)^{4}}{(2n+1)! (2n)!} \cdot \frac{f^{(2n)}(\xi)}{(2n)!}$$

for some $-1 \le \xi \le 1$.

- Convergence:
 - use $n! \doteq e^{-n-1} n^{n+1/2} \sqrt{2\pi n}$
 - error bounded above by $\pi 4^{-n} M$

$$M = \sup_{m} \left[\max_{-1 \le x \le 1} \frac{f^{(m)}(x)}{m!} \right]$$

- Exponential convergence for analytic functions
- In general,

$$\int_{a}^{b} f(x) \, dx \doteq \frac{b-a}{2} \sum_{i=1}^{n} \omega_{i} f\left(\frac{(x_{i}+1)(b-a)}{2} + a\right)$$

• Use values for Gaussian nodes and weights from tables instead of programs; tables will have 16 digit accuracy

Table 7.2: Gauss – Legendre Quadrature

N	x_i	ω_i
2	± 0.5773502691	0.1000000000(1)
3	± 0.7745966692	0.555555555
	0	0.888888888
5	± 0.9061798459	0.2369268850
	± 0.5384693101	0.4786286704
	0	0.5688888888
10	± 0.9739065285	0.6667134430(-1)
	± 0.8650633666	0.1494513491
	± 0.6794095682	0.2190863625
	± 0.4333953941	0.2692667193
	± 0.1488743389	0.2955242247

Life-cycle example:

- $c(t) = 1 + t/5 7(t/50)^2$, where $0 \le t \le 50$.
- Discounted utility is $\int_0^{50} e^{-\rho t} u(c(t)) dt$
- $\rho = 0.05$, $u(c) = c^{1+\gamma}/(1+\gamma)$.
- Errors in computing $\int_0^{50} e^{-.05t} \left(1 + \frac{t}{5} 7\left(\frac{t}{50}\right)^2\right)^{1-\gamma} dt$

	$\gamma =$.5	1.1	3	10
Truth		1.24431	.664537	.149431	.0246177
Rule:	GLeg 3	5(-3)	2(-3)	3(-2)	2(-2)
	GLeg 5	1(-4)	8(-5)	5(-3)	2(-2)
	GLeg 10	1(-7)	1(-7)	2(-5)	2(-3)
	GLeg 15	1(-10)	2(-10)	9(-8)	4(-5)
	GLeg 20	7(-13)	9(-13)	3(-10)	6(-7)

. .

Gauss-Hermite Quadrature

- Domain: $[-\infty, \infty]$
- Weight: e^{-x^2}
- Formula:

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{n} \omega_i f(x_i) + \frac{n!\sqrt{\pi}}{2^n} \cdot \frac{f^{(2n)}(\xi)}{(2n)!}$$

for some $\xi \in (-\infty, \infty)$.

. ..

Table 7.4: Gauss – Hermite Quadrature

N	x_i	ω_i
2	± 0.7071067811	0.8862269254
3	$\pm 0.1224744871(1)$	0.2954089751
	0	0.1181635900(1)
4	$\pm 0.1650680123(1)$	0.8131283544(-1)
	± 0.5246476232	0.8049140900
7	100001001950(1)	0.0717010450/2\
7	$\pm 0.2651961356(1)$	0.9717812450(-3)
	$\pm 0.1673551628(1)$	0.5451558281(-1)
	± 0.8162878828	0.4256072526
	0	0.8102646175
10	100406150110(1)	0.7040400077(F)
10	$\pm 0.3436159118(1)$	0.7640432855(-5)
	$\pm 0.2532731674(1)$	0.1343645746(-2)
	$\pm 0.1756683649(1)$	0.3387439445(-1)
	$\pm 0.1036610829(1)$	0.2401386110
	± 0.3429013272	0.6108626337

- Normal Random Variables
 - -Y is distributed $N(\mu, \sigma^2)$
 - Expectation is integration:

$$E\{f(Y)\} = (2\pi\sigma^2)^{-1/2} \int_{-\infty}^{\infty} f(y)e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

- Use Gauss-Hermite quadrature
 - * linear COV $x = (y \mu)/\sqrt{2} \sigma$
 - * COV formula:

$$\int_{-\infty}^{\infty} f(y)e^{-(y-\mu)^2/(2\sigma^2)} \, dy = \int_{-\infty}^{\infty} f(\sqrt{2}\,\sigma\,x + \mu)e^{-x^2}\sqrt{2}\,\sigma\,dx$$

* COV quadrature formula:

$$E\{f(Y)\} \doteq \pi^{-\frac{1}{2}} \sum_{i=1}^{n} \omega_i f(\sqrt{2} \sigma x_i + \mu)$$

where the ω_i and x_i are the Gauss-Hermite quadrature weights and nodes over $[-\infty, \infty]$.

- Portfolio example
 - An investor holds one bond which will be worth 1 in the future and equity whose value is Z, where $\ln Z \sim \mathcal{N}(\mu, \sigma^2)$.
 - Expected utility is

$$U = (2\pi\sigma^2)^{-1/2} \int_{-\infty}^{\infty} u(1+e^z)e^{-(z-\mu)^2/2\sigma^2} dz$$

$$u(c) = \frac{c^{1+\gamma}}{1+\gamma}$$
(7.2.12)

and the certainty equivalent of (7.2.12) is $u^{-1}(U)$.

- Errors in certainty equivalents: Table 7.5

Rule
$$\gamma$$
: $-.5$ -1.1 -2.0 -5.0 -10.0 GH2 $1(-4)$ $2(-4)$ $3(-4)$ $6(-3)$ $3(-2)$ GH3 $1(-6)$ $3(-6)$ $9(-7)$ $7(-5)$ $9(-5)$ GH4 $2(-8)$ $7(-8)$ $4(-7)$ $7(-6)$ $1(-4)$ GH7 $3(-10)$ $2(-10)$ $3(-11)$ $3(-9)$ $1(-9)$ GH13 $3(-10)$ $2(-10)$ $3(-11)$ $5(-14)$ $2(-13)$

• The certainty equivalent of (7.2.12) with $\mu = 0.15$ and $\sigma = 0.25$ is 2.34. So, relative errors are roughly the same.

Gauss-Laguerre Quadrature

- Domain: $[0, \infty]$
- Weight: e^{-x}
- Formula:

$$\int_0^\infty f(x)e^{-x}dx = \sum_{i=1}^n \omega_i f(x_i) + (n!)^2 \frac{f^{(2n)}(\xi)}{(2n)!}$$

for some $\xi \in [0, \infty)$.

- General integral
 - Linear COV x = r(y a)
 - COV formula

$$\int_{a}^{\infty} e^{-ry} f(y) \ dy \doteq \frac{e^{-ra}}{r} \sum_{i=1}^{n} \omega_{i} f\left(\frac{x_{i}}{r} + a\right)$$

where the ω_i and x_i are the Gauss-Laguerre quadrature weights and nodes over $[0, \infty]$.

Table 7.6: Gauss – Laguerre Quadrature

N	x_i	ω_i
2	0.5857864376	0.8535533905
	0.3414213562(1)	0.1464466094
3	0.4157745567	0.7110930099
	0.2294280360(1)	0.2785177335
	0.6289945082(1)	0.1038925650(-1)
4	0.3225476896	0.6031541043
	0.1745761101(1)	0.3574186924
	0.4536620296(1)	0.3888790851(-1)
	0.9395070912(1)	0.5392947055(-3)
7	0.1930436765	0.4093189517
	0.1026664895(1)	0.4218312778
	0.2567876744(1)	0.1471263486
	0.4900353084(1)	0.2063351446(-1)
	0.8182153444(1)	0.1074010143(-2)
	0.1273418029(2)	0.1586546434(-4)
	0.1939572786(2)	0.3170315478(-7)

- -

• Present Value Example

- Use Gauss-Laguerre quadrature to compute present values.
- Suppose discounted profits equal

$$\eta \left(\frac{\eta - 1}{\eta}\right)^{\eta - 1} \int_0^\infty e^{-rt} m(t)^{1 - \eta} dt.$$

- Errors: Table 7.7

$$r = .05 \quad r = .10 \quad r = .05$$

$$\lambda = .05 \quad \lambda = .05 \quad \lambda = .20$$
Truth:
$$49.7472 \quad 20.3923 \quad 74.4005$$
Errors: GLag 4
$$3(-1) \quad 4(-2) \quad 6(0)$$
GLag 5
$$7(-3) \quad 7(-4) \quad 3(0)$$
GLag 10
$$3(-3) \quad 6(-5) \quad 2(-1)$$
GLag 15
$$6(-5) \quad 3(-7) \quad 6(-2)$$
GLag 20
$$3(-6) \quad 8(-9) \quad 1(-2)$$

- Gauss-Laguerre integration implicitly assumes that $m(t)^{1-\eta}$ is a polynomial.
 - * When $\lambda = 0.05$, m(t) is nearly constant
 - * When $\lambda = 0.20$, $m(t)^{1-\eta}$ is less polynomial-like.

Do-It-Yourself Gaussian Formulas

- Question: What should you do if your problem does not fit one of the conventional integral problems?
- Answer: Create your own Gaussian formula!
- Theorem: Let w(x) be a weight function on [a, b], and suppose that all moments exist; i.e.,

$$\int_{a}^{b} x^{i} w(x) dx < \infty, \quad i = 1, 2, \dots$$

Then for all n there exists quadrature nodes $x_i \in [a, b]$ and quadrature weights ω_i such that the approximation

$$\int_a^b f(x) w(x) dx = \sum_{i=1}^n \omega_i f(x_i)$$

is exact for all degree 2n-1 polynomials.

- Algorithm to find formula:
 - Construct the polynomial

$$p(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2}... + a_0$$

and pick the coefficients a_j to minimize the integral

$$\int_{a}^{b} p(x)^{2} w(x) dx$$

_ _

- The x_i nodes are the zeros of p(x).
- The weights ω_i are chosen to satisfy the linear equations

$$\int_{a}^{b} x^{k} w(x) dx = \sum_{i=1}^{n} \omega_{i} x_{i}^{k}, \ k = 0, 1, ..., 2n - 1$$

which is overdetermined but has a unique solution.

- -

General Applicability of Gaussian Quadrature

Theorem 2 (Gaussian quadrature convergence) If f is Riemann Integrable on [a,b], the error in the n-point Gauss-Legendre rule applied to $\int_a^b f(x) dx$ goes to 0 as $n \to \infty$.

Comparisons with Newton-Cotes formulas: Table 7.1

Rule	n	$\int_0^1 x^{1/4} dx$	$\int_1^{10} x^{-2} dx$	$\int_0^1 e^x dx$	$\int_{1}^{-1} (x + .05)^{+} dx$
Trapezoid	4	0.7212	1.7637	1.7342	0.6056
	7	0.7664	1.1922	1.7223	0.5583
	10	0.7797	1.0448	1.7200	0.5562
	13	0.7858	0.9857	1.7193	0.5542
Simpson	3	0.6496	1.3008	1.4662	0.4037
	7	0.7816	1.0017	1.7183	0.5426
	11	0.7524	0.9338	1.6232	0.4844
	15	0.7922	0.9169	1.7183	0.5528
G-Legendre	4	0.8023	0.8563	1.7183	0.5713
	7	0.8006	0.8985	1.7183	0.5457
	10	0.8003	0.9000	1.7183	0.5538
	13	0.8001	0.9000	1.7183	0.5513
Truth		.80000	.90000	1.7183	0.55125

Multidimensional Integration

- Most economic problems have several dimensions
 - Multiple assets
 - Multiple error terms
- Multidimensional integrals are much more difficult
 - Simple methods suffer from curse of dimensionality
 - There are methods which avoid curse of dimensionality

Product Rules

- Build product rules from one-dimension rules
- Let x_i^{ℓ} , ω_i^{ℓ} , $i=1,\cdots,m$, be one-dimensional quadrature points and weights in dimension ℓ from a Newton-Cotes rule or the Gauss-Legendre rule.
- The product rule

$$\int_{[-1,1]^d} f(x)dx \doteq \sum_{i_1=1}^m \cdots \sum_{i_d=1}^m \omega_{i_1}^1 \omega_{i_2}^2 \cdots \omega_{i_d}^d f(x_{i_1}^1, x_{i_2}^2, \cdots, x_{i_d}^d)$$

- Gaussian structure prevails
 - Suppose $w^{\ell}(x)$ is weighting function in dimension ℓ
 - Define the d-dimensional weighting function.

$$W(x) \equiv W(x_1, \cdots, x_d) = \prod_{\ell=1}^d w^{\ell}(x_{\ell})$$

- Product Gaussian rules are based on product orthogonal polynomials.
- Curse of dimensionality:
 - $-m^d$ functional evaluations is m^d for a d-dimensional problem with m points in each direction.
 - Problem worse for Newton-Cotes rules which are less accurate in \mathbb{R}^1 .

Monomial Formulas: A Nonproduct Approach

- Method
 - Choose $x^i \in D \subset \mathbb{R}^d$, i = 1, ..., N
 - Choose $\omega_i \in \mathbb{R}, i = 1, ..., N$
- \bullet Quadrature formula

$$\int_{D} f(x) dx \doteq \sum_{i=1}^{N} \omega_{i} f(x^{i})$$

$$(7.5.3)$$

• A monomial formula is complete for degree ℓ if

$$\sum_{i=1}^{N} \omega_i \, p(x^i) = \int_D p(x) \, dx \tag{7.5.3}$$

for all polynomials p(x) of total degree ℓ ; recall that \mathcal{P}_{ℓ} was defined in chapter 6 to be the set of such polynomials.

• For the case $\ell = 2$, this implies the equations

$$\sum_{i=1}^{N} \omega_{i} = \int_{D} 1 \cdot dx$$

$$\sum_{i=1}^{N} \omega_{i} x_{j}^{i} = \int_{D} x_{j} dx, \ j = 1, \dots, d$$

$$\sum_{i=1}^{N} \omega_{i} x_{j}^{i} x_{k}^{i} = \int_{D} x_{j} x_{k} dx, \ j, k = 1, \dots, d$$
(7.5.4)

- $-1+d+\frac{1}{2}d(d+1)$ equations
- -N weights ω_i and the N nodes x^i each with d components, yielding a total of (d+1)N unknowns.

Quadrature Node Sets

• Natural types of nodes:

- The center
- The circles: centers of faces
- The stars: centers of edges
- The squares: vertices

- -

• Simple examples

- Let $e^j \equiv (0, \dots, 1, \dots, 0)$ where the '1' appears in column j.
- -2d points and exactly integrates all elements of \mathcal{P}_3 over $[-1,1]^d$

$$\int_{[-1,1]^d} f \doteq \omega \sum_{i=1}^d \left(f(ue^i) + f(-ue^i) \right)$$
$$u = \left(\frac{d}{3} \right)^{1/2}, \ \omega = \frac{2^{d-1}}{d}$$

– For \mathcal{P}_5 the following scheme works:

$$\int_{[-1,1]^d} f \doteq \omega_1 f(0) + \omega_2 \sum_{i=1}^d \left(f(ue^i) + f(-ue^i) \right) \\
+ \omega_3 \sum_{\substack{1 \leq i < d, \\ i < j < d}} \left(f(u(e^i \pm e^j)) + f(-u(e^i \pm e^j)) \right)$$

where

$$\omega_1 = 2^d (25 \ d^2 - 115 \ d + 162), \quad \omega_2 = 2^d (70 - 25d)$$

 $\omega_3 = \frac{25}{324} \ 2^d, \quad u = (\frac{3}{5})^{1/2}.$

~ ~