

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

MINI PROJECT

SUBTITLE. SUBTITLE. SUBTITLE. SUBTITLE.

ONE LOVE. ONE FUTURE.

OUTLINE

- 1. Problem
 - 2. Method
- 3. Details
 - 4. Test and Evaluate
 - 5. Conclusion
 - 6. Improvement

MINI PROJECT : Solve the object detection problem:

- Identify goods
- Counting number of products moving on the conveyor

DESCRIBE the Problem:

Image below represents the components of the problem

- □Conveyor transport objects
- ☐ Fixed cameras
- □ Products : goods, confectionarys

TARGET

- 1. Classify the goods
- 2. Count the number of each class
- 3. Show results

CHALLENGES:

- Speed and time processing
- Diversity in Size and Shape
- Complex and Noisy Background
- Changes in Lighting Conditions
- In actual problem, we can face additional problem such as:
- Object interaction
- High throughput
- Continuous Operation Mode
- Resource Limitations

2. Method

FLOWCHART about method proposed

DATA PROCESSING

- Data: conveyor_video_for_train, cellphone_video_for_train
- Data preparation: Label each object in the frames.
 Split data into training and validate sets, using tool LabelImg or YOLOv5 for auto labeled images
- Data augmentation: Enhance the diversity of training data by creating variations of origional images, using OpenCV for this.

- ➤ This is **object detection** problem, there are many models used for this problem include:
- FASTER_RCNN
- CENTERNET
- YOLO
- DETR
- SSD
- Etc...

How to select best Model for this Problem?

→ Survey of recent research on the **performance** and **inference speed** of object detection models

GLE-Net: A Global and Local Ensemble Network for Aerial Object Detection

JiaJia Liao, Yujun Liu

Method	Params (MB)	inference time (ms)
Yolov5	89.0	6.6
CenterNet	74.99	28

Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms

Muniyah Harati Hamidon, Tofael Ahamed

Model	Recall (%)	mAP (%)
CenterNet	58.0	81.2
YOLOv4	74.0	76.2
YOLOv5	79.4	84.1

Choose YOLOv5 for this project

→ K-Folds cross validation for YOLOv5n

→Overall evaluate about performance of YOLOv5

Model Tuning (Optional)

Fine-tune hyperparameters of the model to optimize performance on custom data

Model Training

- Train the YOLOv5n model on the prepared dataset
- On the period of training time with train and val dataset, evaluate model's performance by mAP, precision, recall

Inference

Use the trained model for inference test data

Optimization

• Improve inference speed by resize image to 320x320, but this can affect to the model's performance

Performance Evaluate (Precision, Recall, mAP)

Precision-Recall Curve

F1-Score

Precision-Confidence Curve

Recall-Confidence Curve

Confusion Matrix

5.Conclusion

6.Improvement

- Object Tracking (Yolov5 + DEEPSORT, SORT)
- Quantization
- Ensemble Learning

THANK YOU!