Artificial Intelligence and Machine Learning (AIML)

SDP: (integer) compositions

- A composition is a way of writing a whole number as a sum of whole numbers, where the order of the terms in the sum matters
- **Example**: 4 has eight compositions [4], [1, 3], [2, 2], [1, 1, 2], [3, 1], [1, 2, 1], [2, 1, 1], [1, 1, 1, 1] where e.g. [1, 3] means 1+3, [3, 1] means 3+1 and [1, 1, 2] means 1+1+2
- A simple *n*-step procedure for generating all compositions, can be described as follows: iterate through integers *n*, and on each stage, keep the current composition, or extend with a single value which makes it add up to *n*
- For computational convenience we use a **memoized SDP** to keep track of the stage $\left(S_0,S_1,S_2\right)$ and so on in which the configuration was generated

$\bigcirc S_0$:[]	<i>n</i> =0 (init)
	<i>n</i> =1
	n=2
	n=3

• Solve the **maximum sum composition** optimization problem:

$$X^* = \arg \max_{X' \in \mathcal{X}} \left(\sum_{i \in X} \Pr(i) \right)$$

where X is the set of all compositions of n, mapped to the data Pr.

 In Tutorial 5 problem Q1, an element of a composition is a plant cut length (units), and the data Pr is the price of each length:

Length (units)	Price (£)
1	2
2	4
3	7
4	3
5	9

Corresponding DP Bellman recursion:

$$P_0^{\star} = 0$$

$$P_n^{\star} = \max_{i \in \{1, 2, \dots, n\}} \left(P_{n-i}^{\star} + \Pr(i) \right)$$

- Maximum is over all previously retained (memoized) stages (compositions of i)
- The best price for length 0 plant is zero. Otherwise, the best price of a plant of length n, is the best composition of plant of length i extended to length n (SDP: extension, Pr(i) term) using the best (cut) plant at length n-i (SDP: keep current composition, P^*_{n-i} term)
- Computational graph illustration (feasible up to length n=4).

$$P_0^{\star} = 0$$

$$P_n^{\star} = \max_{i \in \{1, 2, \dots, n\}} \left(P_{n-i}^{\star} + \Pr(i) \right)$$

$$n=0 \text{ (init)}$$

$$n=1$$

$$n=3$$

n=4

n=4

DP: composition algorithm analysis

- Solving the problem exhaustively requires generating all 2^{n-1} compositions of n: exponential time (and space) complexity, $O(2^n)$
- DP solution compares up to n previous compositions over n iterations, taking n^2 time: polynomial time complexity $O(n^2)$
- DP solution memory required, must store (memoize) n previous optimal solutions: linear space complexity, O(n)