Question Answering

Question Answering

Transfer learning

Question Answering

Not just the model

Data

Training

Model

Training } Transfer Learning!

Model

Classical training

Transfer learning

Transfer Learning: Different Tasks

• BERT: Bi-directional Context

Uni-directional

Learning from deeplearning.ai is like watching the sunset with my best friend!

context

Bi-directiona

Learning from deeplearning.ai is like watching the sunset with my best friend!

context

context

T5: Single task vs. Multi task

• T5: more data, better performance

English wikipedia ~13 GB

Desirable Goals of

Colossal Clean
Crawled
Corpus
~800 GB

Transfer learning

Desirable Goals: Reduce training time Improve predictions; Small datasets

General purpose learning

Feature-based vs. Fine-Tuning

Pre-train data

Data and performance

 Labeled vs Unlabeled Data Labeled text data

Transfer learning with unlabeled data

Which tasks work with **unlabeled** data?

Self-supervised tasks

Fine-tune a model for each downstream task

Summary

ELMo, GPT, BERT, T5 - Outline

... right ...

Context

... they were on the right ...

... they were on the right side of the street

Continuous Bag of Words

"on"

"the"

"of"

... they were on the right side of history.

The legislators believed that they were on the right side of history, so they changed the law.

ELMo: Full context using RNN

GPT: Uni-directional

BERT Transformer

Decoder

Encoder

GPT

The legislators believed that they were on the Bi-directional

_side of history, so they changed the law.

Transformer + Bi-directional Context

Multi-Mask Language Modeling

BERT Pre-training Tasks

Multi-Mask Language Modeling

Next Sentence Prediction

T5: Encoder vs. Encoder-Decoder

- T5: Multi-task
 - Studying with deeplearning.aiwas ...

How

T5: Text-to-Text

Summary

Bidirectional Encoder Representations from Transformers (BERT)

- BERT architecture
- BERT pre-training works

Makes use of transfer learning/pre-training:

BERT

- A multi layer bidirectional transformer
- Positional embeddings
- BERT_base:
 - 12 layers (12 transformer blocks); 12 attentions heads; 110 million parameters
- BERT pre-training

After school Lukasz does his ______ in the library.

Masked language modeling (MLM)

After school Lukasz does his homework in the library.

After school _____ his homework in the _____

BERT Objective

- Understand how BERT inputs are fed into the model
- Visualize the output
- Learn about the BERT objective
- Formalizing the input

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E [CLS]	E my	E dog	E is	E cute	E [SEP]	E he	E likes	E play	E ##ing	E [SEP]
Segment Embeddings	E A	E A	E _A	E A	E A	E A	E _B				
Position Embeddings	E ₀	E ₁	E ₂	E 3		E 5	E ₆	E 7			

Visualizing the output

 [CLS]: a special classification symbol added in front of every input

[SEP]: a special separator token

BERT Objective

EPT Education

FPT UNIVERSITY

Objective 1: Multi-Mask LM

Loss: Cross Entropy Loss

Objective 2: Next Sentence Prediction

Loss: Binary Loss

- Summary
 - BERT objective
 - Model inputs/outputs

Fine-tuning BERT: Outline

Inputs

Summary

Transformer - T5 Model

- Understand how T5 works
- Recognize the different types of attention used
- Overview of model architecture

Transformer - T5 Model

Model Architecture

Model Architecture

- Encoder/decoder
- 12 transformer blocks each
- 220 million parameters

© Exploring the Limits of Transfer learning with a unified text to Text Transformer. Raffel et. al. 2020

- Summary
 - Prefix LM attention
 - Model architecture
 - Pre-training T5 (MLM)

Multi-task training strategy

Input and Output Format

FPT UNIVERSITY

Machine translation:

- translate English to German: That is good.
- Predict entailment, contradiction, or neutral
 - mnli premise: I hate pigeons hypothesis: My feelings towards pigeons are filled with animosity. target: entailment
- Winograd schema
 - The city councilmen refused the demonstrators a permit because *they* feared violence

Multi-task Training Strategy

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
* All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d=32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d=128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d=512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d=2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

How much data from each task to train on?

Data Training Strategies Examples-proportional mixing

Equal mixing

Gradual unfreezing vs. Adapter layers

Gradual unfreezing

Adapter layers

Fine-tuning

Pre Training

GLUE Benchmark

- General Language Understanding Evaluation
 - A collection used to train, evaluate, analyze natural language
 - understanding systems
 - Datasets with different genres, and of different sizes and difficulties
 - Leaderboard
- Tasks Evaluated on
 - Sentence grammatical or not?
 - Sentiment; Paraphrase; Similarity
 - Questions duplicates; Answerable; Contradiction
 - Entailment; Winograd (co-ref)
- General Language Understanding Evaluation
 - Drive research; Model agnostic; Makes use of transfer learning

Question Answering - Transformer encoder

Feedforward:


```
LayerNorm,
dense,
activation,
dropout_middle,
dense,
dropout final
```

```
Residual(
    LayerNorm,
    attention,
    dropout_,
Residual(
    feed_forward,
```

Data examples

Question: What percentage of the French population today is non - European?

Context: Since the end of the Second World War , France has become an ethnically diverse country . Today , approximately five percent of the French population is non - European and non - white . This does not approach the number of non - white citizens in the United States (roughly 28 – 37 %, depending on how Latinos are classified; see Demographics of the United States). Nevertheless, it amounts to at least three million people, and has forced the issues of ethnic diversity onto the French policy agenda. France has developed an approach to dealing with ethnic problems that stands in contrast to that of many advanced, industrialized countries. Unlike the United States, Britain, or even the Netherlands, France maintains a "color - blind" model of public policy. This means that it targets virtually no policies directly at racial or ethnic groups. Instead, it uses geographic or class criteria to address issues of social inequalities. It has, however, developed an extensive anti-racist policy repertoire since the early 1970s. Until recently, French policies focused primarily on issues of hate speech—going much further than their American counterparts—and relatively less on issues of discrimination in jobs, housing, and in provision of goods and services.

Target: Approximately five percent

Implementing Q&A with T5

- Load a pre-trained model
- Process data to get the required inputs and outputs: "question: Q context: C" as input and "A" as target
- Fine tune your model on the new task and input
- Predict using your own model

