FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen Aufgabenblatt 1: Formale Sprachen

Präsenzaufgabe 1.1:

- 1. Geben Sie eine surjektive Abbildung von $\mathbb N$ nach $\mathbb N$ an, die nicht injektiv ist. (Mit Erläuterung!)
- 2. Geben Sie eine injektive Abbildung von $\mathbb N$ nach $\mathbb N$ an, die nicht surjektiv ist. (Mit Erläuterung!)

Präsenzaufgabe 1.2: Wir betrachten den Monoid $(\Sigma^*, \cdot, \lambda)$ aller Wörter des Alphabets $\Sigma = \{a, b, c\}$ mit der Konkatenation \cdot und dem leeren Wort λ .

Betrachten Sie die Teilmengen $X, Y \subseteq \Sigma^*$ mit $X = \{a, ab, \lambda\}$ und $Y = \{c, bc, ac\}$.

- 1. Bestimmen Sie Σ^2 .
- 2. Bestimmen Sie $X \times Y$ und $|X \times Y|$.
- 3. Bestimmen Sie $X \cdot Y$ und $|X \cdot Y|$.
- 4. Bestimmen Sie X^+ und X^* .

Präsenzaufgabe 1.3: Sei Σ ein Alphabet und $U, V, W \subseteq \Sigma^*$ beliebige Sprachen.

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

- 1. $(U \cup V)^* = U^* \cup V^*$
- 2. $(U \cup V) \cdot W = (U \cdot W) \cup (V \cdot W)$

Übungsaufgabe 1.4: Die Abbildung $f: \mathbb{N}_4 \to \mathbb{N}_4$ mit $\mathbb{N}_4 = \{0, 1, 2, 3, 4\}$ sei gegeben durch:

- 1. Ist f injektiv? Ist f surjektiv? (Jeweils mit Begründung.)
- 2. Geben Sie $(f \circ f) : \mathbb{N}_4 \to \mathbb{N}_4$ an:
- 3. Wie viele bijektive Abbildungen $g: \mathbb{N}_4 \to \mathbb{N}_4$ existieren? (Mit Erläuterung.)

Übungsaufgabe 1.5: Wir betrachten den Monoid $(\Sigma^*, \cdot, \lambda)$ aller Wörter des Alphabets Σ mit der Konkatenation · und dem leeren Wort λ . (Hinweis: Beachten Sie, dass $\lambda \notin \Sigma$ gilt!)

- 1. Bestimmen Sie $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2$ für $\Sigma = \{a, b\}$.
- 2. Wie viele Wörter enthält Σ^m für festes m, wenn $|\Sigma| = n$ gilt? (Mit Erläuterungen.)
- 3. Wenn abermals $|\Sigma|=n$ gilt, wie viele Wörter enthält $\bigcup_{i=0}^m \Sigma^i$? (Mit Erläuterungen.)

Übungsaufgabe 1.6: Gegeben die formalen Sprachen $L_1 = \{0^i \mid i \in \mathbb{N}\}$ und $L_2 = \{1^i \mid i \in \mathbb{N}\}$ über dem Alphabet $\Sigma = \{0, 1\}$. Berechnen Sie:

- 1. $L_1 \cap \Sigma^*$
- 2. $(L_1 \cup L_2) \cap \Sigma^3$
- 3. $L_1 \cap L_2$
- 4. $L_1 \cup L_2$
- 5. $L_1 \cdot L_2$
- 6. $(L_1 \cdot \Sigma^*) \cup L_2$

Übungsaufgabe 1.7: Sei Σ ein Alphabet und $U, V, W \subseteq \Sigma^*$ beliebige Sprachen.

von 3

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

- 1. $(U \cdot V) \cup W = (U \cup W) \cdot (V \cup W)$
- 2. $(U^*)^* = U^*$
- 3. $(U \cdot V)^* \cdot U = U \cdot (V \cdot U)^*$

Informationen und Unterlagen zur Veranstaltung unter:

http://www.informatik.uni-hamburg.de/WSV/teaching/vorlesungen/FGI1_SoSe13.shtml