

Risk Prediction Modelling

Introduction to Data Science for Health and Social Care

(Week 9 – 23/11/2022)

Kevin Tsang

Risk Prediction Modelling

- Why Use Risk Prediction Modelling
- Training-Validation-Testing
- Real-World Example: Death From Injury
 - Model: Logistic Regression
 - Performance Metric

Summary

Why Use Risk Prediction Modelling

Can help guide decisions

Make data-driven decisions

Can predict future events based on historic patterns

Training-Validation-Testing

Training	Validation	Testing
Fit model to the data.	Assess the model fitted to the training data. Refine model where needed and retrain the model if needed.	Evaluate the model on completely unseen data. Ideally, models are tested only once, and no changes are made at this stage.

Steps to Build and Test Model

Build:

- 1. Pick predictor variables and target variable
- 2. Train model using training set
- 3. Evaluate and optimise model using validation set

Test:

4. Test model with unseen testing set

Li

Someone who is **70 years-old** has just died from injury, what is the probability that their death resulted from a fall?

Real-World Example: Death From Injury

Total Patients: 88,670

Years: 2012 – 2021

Location: Scotland

Source: Public Health Scotland

Reference: https://www.opendata.nhs.scot/dataset/unintentional-injuries

Steps to Build and Test Model

Build:

- 1. Pick predictor variables and target variable
- 2. Train model using training set
- 3. Evaluate and optimise model using validation set

Test:

4. Test model with unseen testing set

A Simple Model

- Predictor variables (input): Age Range
- Target variable (output): Risk of Death from Fall
- Model: Logistic Regression

Deaths from Falls in Scotland (2012 - 2020)

Source: Public Health Scotland

Proportion of Deaths from Falls in Scotland (2012 - 2020)

Source: Public Health Scotland

Steps to Build and Test Model

Build:

- 1. Pick predictor variables and target variable
- 2. Train model using training set
- 3. Evaluate and optimise model using validation set

Test:

4. Test model with unseen testing set

Logistic Regression

Target ~ Predictors

(~) can be read as "modelled by"

In our case:

Risk of death by fall ~ age

Logistic Regression (Equations)

Sigmoid(x) =
$$\frac{1}{1 + \exp(-x)}$$
, this is a S-shaped curve.

When we **fit** or **train** a model to the data, the Intercept and Coefficients are appropriately chosen

In our case:

Risk of death by fall = Sigmoid(Intercept + Coefficient $1 \times age$)

Logistic Regression Fit

Logistic Regression Model

Our Model:

Risk of death by fall =
Sigmoid(Intercept + Coefficient 1 × age)

Fitted Model:

Risk of death by fall = Sigmoid($-7.29 + 0.12 \times age$)

Steps to Build and Test Model

Build:

- 1. Pick predictor variables and target variable
- 2. Train model using training set
- 3. Evaluate and optimise model using validation set

Test:

4. Test model with unseen testing set

relevant elements

selected elements

How many relevant items are selected? e.g. How many sick people are correctly identified as having the condition.

Sensitivity= Spe

How many negative selected elements are truly negative? e.g. How many healthy people are identified as not having the condition

Specificity =

Source: https://en.wikipedia.org/wiki/ Sensitivity and specificity

Performance Metric

Sensitivity: the measure of how many positive outcomes were correctly identified

Number of predicted deaths by falls ÷ actual deaths by falls

Specificity: the measure of how many negative results were correctly identified

Number of predicted deaths by other injuries ÷ actual deaths by other injuries

Confusion Matrix

		Ground truth	
		Positive (death by fall injury)	Negative (death by other injury)
Prediction	Positive (fall injury predicted)	True Positive (predicted fall and died by fall)	False Positive (predicted fall but died by other injury)
	Negative (other injury predicted)	False Negative (predicted other injury but died by fall)	True Negative (predicted other injury and died by other injury)
		Sensitivity = $\frac{TP}{TP + FN}$	Specificity = $\frac{TN}{FP + TN}$

Thresholds and Decision Boundaries

High Sensitivity (True Positive Rate)
Low Specificity (True Negative Rate)

Low Sensitivity (True Positive Rate)
High Specificity (True Negative Rate)

Pick The "Best" Threshold

There is no single "best" threshold

... using the balance of sensitivity and specificity is one method to define an optimal threshold

Optimised Model

Using the optimal threshold 0.59, is equivalent to an age threshold of **65 years-old**.

Model interpretation:
Death by other injury is
more likely when the
patient is younger than 65
years-old

Steps to Build and Test Model

Build:

- 1. Pick predictor variables and target variable
- 2. Train model using training set
- 3. Evaluate and optimise model using validation set

Test:

4. Test model with unseen testing set

Test On Unseen Data (Year 2021)

Model: If the patient is or older than 65 years-old, then predict death by fall injury. Otherwise, predict death by other injury.

Positive (death by fall Negative (death by injury) other injury)

Ground truth

Sensitivity = 0.93

Specificity = 0.85

		,,,	
Prediction	Positive (fall injury predicted) (Age ≥ 65 years-old)	3652 True Positive	992 False Positive
Predi	Negative (other injury predicted) (Age < 65 years-old)	256 False Negative	5786 True Negative

Sensitivity =
$$\frac{3652}{3652 + 256}$$
 Specificity = $\frac{5786}{992 + 5786}$

Li

Someone who is **70 years-old** has just died from injury, what is the probability that their death resulted from a fall?

According to Our Model

75% =
$$\frac{1}{1 + \exp(-(-7.29 + 0.12 \times 70 \text{ years old}))}$$

Using the model, the patient would be predicted to have died from a fall injury.

Summary

- Risk prediction models can help guide decisions using data
- Models are trained by appropriately choosing parameters
- Model performance can be assessed using sensitivity and specificity