CMOS LSI

Battery Fuel Gauge LSI for 1-Cell Lithium-ion (Li+)

http://onsemi.com

Overview

The LC709203F is an IC that measures the remaining power level of 1-cell lithium-ion (Li+) batteries used for portable equipment etc.

This product reduces fuel gauge errors with a unique correction technology during measurement of battery temperature and voltage.

This technology has inherent high precision without the need for an external sense resistor.

Applications

- Wireless Handsets
- Smartphones / PDA devices
- MP3 players
- Digital cameras
- Portable Game Players
- USB-related devices

Features

- High accuracy of remaining battery power measurements
- Precision Voltage Measurement
- No external sense resistor
- Alert function
- Interface
 - I²C Interface (up to 400 kHz supported)
- Low power consumption
- Corresponding battery models for various battery electrode materials
- Ports

I²C communication pin
 Battery temperature reading control pin
 Analog voltage input pin for battery temperature
 External alarm / Interrupt for Low-Battery warning
 Power supply pin
 2 (SDA, SCL)
 1 (TSW)
 1 (TSENSE)
 2 (ALARMB)
 2 (VSS, VDD)

■ Package form

WDFN8 3×4, 0.65P: Lead-free typeWLCSP9, 1.60×1.76: Lead-free type

WDFN8 3x4, 0.65P

WLCSP9, 1.60x1.76

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

^{*} I²C Bus is a trademark of Philips Corporation.

Package Dimensions

unit: mm

WDFN8 3x4, 0.65P CASE 509AF **ISSUE C**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30mm FROM THE TERMINAL TIP.
 PROFILE TOLERANCE APPLIES TO THE
 EXPOSED PAD AS WELL AS THE LEADS.

	MILLIM	ETERS			
DIM	MIN	MAX			
Α		0.80			
A1	0.00	0.05			
A3	0.20	REF			
b	0.20	0.30			
D	3.00	BSC			
D2	1.70	1.90			
Е	4.00	BSC			
E2	2.30	2.50			
е	0.65 BSC				
L	0.45	0.55			
L1		0.10			

GENERIC MARKING DIAGRAM*

= Assembly Location

= Year

WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

WLCSP9, 1.60x1.76

CASE 567JH **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

	MILLIMETERS				
DIM	MIN	MAX			
Α		0.51			
A1	0.09	0.19			
b	0.20	0.30			
D	1.60 BSC				
E	1.76	BSC			
е	0.50	BSC			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Pin Assignment

WDFN8 3x4, 0.65P "Lead-free Type"

WLCSP9, 1.60x1.76 "Lead-free Type"

Bottom view

Pin Function

WDFN8	WLP9	Pin Name	I/O	Description
1	1B	TEST	ı	Factory Test pin *Connect to VSS.
2	1A	V _{SS}	-	Connect to the - terminal of the battery.
3	3A	V _{DD}	-	Connect to the + terminal of the battery.
4	2A	ALARMB	0	Alert indication. An active low output used to indicate specified condition thresholds have been met. *When you do not use an alert function, please connect with V _{SS} . (Note 3)
5	3B	TSW	0	Battery temperature reading control pin (Note.1)
6	3C	TSENSE	-	Battery temperature analog voltage input pin (Note.2)
7	1C	SDA	I/O	I ² C data pin
8	2C	SCL	I/O	I ² C clock pin
-	2B	NC	-	Not used pin. *Recommend to connect to V _{SS} .
	-	EP	-	Exposed Pad, must not be connected.

(Note 1)

This pin provides power for the thermistor and goes high during a temperature read operation from Command code x08.

(Note 2)

If TSENSE is not used leave leads TSW and TSENSE disconnected, as in figure 4 and set bit 0 of command code register x16 low.

If TSENSE is utilized connect as in figure 5 with resistor network and set bit 0 of command code register x16 high.

(Note 3)

ALARMB indicates a low RSOC, or an under voltage battery.

Alert Function

- Configurable Alert Indicator
- Low RSOC
- Battery Under Voltage

Block Diagram

Absolute Maximum Ratings at Ta = 25°C, $V_{SS} = 0V$

		D: 4D	0 1111			Specification	l	
Parameter	Symbol			V _{DD} [V]	min	typ	max	Unit
Maximum supply voltage	V _{DD} max	V _{DD}			-0.3		+6.5	
Input voltage	V _I (1)	TSENSE			-0.3		V _{DD} +0.3	
Output voltage	V ₀ (1)	TSW			-0.3		V _{DD} +0.3	V
	V ₀ (2)	ALARMB			-0.3			
Input/output voltage	V _{IO} (1)	SDA, SCL			-0.3		+5.5	
Allowable power	Pd max	WDFN8	Ta = -40 to +85°C				480	
dissipation		WLP9]				210	mW
Operating ambient temperature	Topr				-40		+85	°C
Storage ambient temperature	Tstg				-55		+125	Ţ,

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Conditions at Ta = -40 to +85°C, $V_{SS} = 0V$

Danamatan	O. made al	Dire /Decreative	Conditions	Specification			l	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD} (1)	V _{DD}			2.5		4.5	
High level input voltage	V _{IH} (1)	TSENSE		2.5 to 4.5	0.7V _{DD}		V _{DD}	
	V _{IH} (2)	ALARMB, SDA, SCL		2.5 to 4.5	1.4			V
Low level input voltage	V _{IL} (1)	TSENSE		2.5 to 4.5	V _{SS}		0.25V _{DD}	
	V _{IL} (2)	ALARMB, SDA, SCL		2.5 to 4.5			0.5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at Ta = -40 to +85°C, $V_{SS} = 0V$

Danamatan	O. wash a l	Dia/Damada	O and it is an			Specification		Unit
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	Unit
High level input current	I _{IH} (1)	SDA, SCL	V _{IN} = V _{DD} (including output transistor off leakage current)	2.5 to 4.5			1	
Low level input current	I _{IL} (1)	SDA, SCL	V _{IN} = V _{SS} (including output transistor off leakage current)	2.5 to 4.5	-1			μΑ
High level output voltage	V _{OH} (1)	TSW	I _{OH} = -0.4 mA	3.0 to 4.5	V _{DD} -0.4			
voltago	V _{OH} (2)		I _{OH} = -0.2 mA	2.5 to 4.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	TSW,	I _{OL} = 3.0 mA	3.0 to 4.5			0.4	٧
voltage	V _{OL} (2) ALARMB, SDA, SCL		I _{OL} = 1.3 mA	2.5 to 4.5			0.4	
Hysteresis voltage	VHYS(1)	SDA, SCL		2.5 to 4.5		0.1V _{DD}		
Pin capacitance	CP	All pins	Pins other than the pin under test VIN = VSS Ta = 25°C	2.5 to 4.5		10		pF
Consumption	I _{DD} (1)	V _{DD}	Testing Mode	2.5 to 4.5		15	26	
current (Note 1)	I _{DD} (2)		Operational Mode	2.5 to 4.5		2	4.5	μA
(Note 1)	I _{DD} (3)		Sleep Mode	2.5 to 4.5		0.2	4	
Voltage	V _{ME} (1)	V _{DD}	Ta = +25°C	3.6	-7.5		+7.5	
measurement accuracy	V _{ME} (2)		Ta = -20°C to +70°C	2.5 to 4.5	-20	_	+20	mV/cell

Note 1 : Consumption current is a value in the range of -20°C to +70°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$\mbox{l}^{2}\mbox{C}$ Slave Characteristics at $Ta=-\!\!40$ to $+85^{\circ}C,\,V_{SS}=0V$

December	Symbol Pin/Remarks		Conditions		Specif	ication	. 1
Parameter	Symbol	Pin/Remarks	eniarks Conditions		min	Max	unit
Clock frequency	TSCL	SCL				400	kHz
Bus free time between STOP condition and START condition	TBUF	SCL, SDA	See Fig. 1.		1.3		μѕ
Hold time (repeated) START condition First clock pulse is generated after this interval	THD:STA	SCL, SDA	See Fig. 1.		0.6		μs
Repeated START condition setup time	TSU:STA	SCL, SDA	See Fig. 1.	2.5 to 4.5	0.6		μ\$
STOP condition setup time	TSU:STO	SCL, SDA	See Fig. 1.	2.5 10 4.5	0.6		μS
Data hold time	THD:DAT	SCL, SDA	See Fig. 1.		0	0.9	μS
Data setup time	TSU:DAT	SCL, SDA	See Fig. 1.		100		ns
Clock low period	TLOW	SCL			1.3		μS
Clock high period	THIGH	SCL			0.6		μS
Clock/data fall time	TF	SCL, SDA			20 + 0.1C _B	300	ns
Clock/data rise time	TR	SCL, SDA			20 + 0.1C _B	300	ns

Figure 1 I²C Timing

Discharge Characteristics

Figure 2 Discharge Characteristics by Temperature Change

Figure 3 Discharge Characteristics by Load Change

Communication Protocol

Communication protocol type : I²C Frequency : to 400kHz

IC address : 0x16 (It becomes "0001011X" when you write a binary, because the slave address is 7 bits. [X]=Rd/Wr.)

Bus Protocols

S : Start Condition

 Sr
 : Repeated Start Condition

 Rd
 : Read (bit value of 1)

 Wr
 : Write (bit value of 0)

 A
 : ACK (bit value of 0)

 N
 : NACK (bit value of 1)

 P
 : Stop Condition

CRC-8 : Slave Address to Last Data (CRC-8-ATM : ex.3778mV : 0x16,0x09,0x17,0xC2,0x0E →0x86)

: Master-to-Slave
: Slave-to-Master
: Continuation of protocol

Read Word Protocol

	S	Slave Address	Wr	Α	Command Code	Α		
	Sr	Slave Address	Rd	Α	Data Byte Low	Α	Data Byte High]
I	Α	CRC-8	N	Р				

^{*}When you do not read CRC -8, there is not the reliability of data. CRC-8-ATM ex : (5 bytes) 0x16,0x09,0x17,0xC2,0x0E → 0x86

Write Word Protocol

S	Slave Addre	ess	Wr	Α	Co	ommand C	Code	Α			
Da	ata Byte Low	Α	D	ata Byte F	ligh	Α		CRC-8	Α	Р	

^{*}When you do not add CRC -8, the Written data (Data byte Low/High) become invalid.

CRC-8-ATM ex: (4 bytes) 0x16, 0x09, 0x55, 0xAA → 0x3B

Command Code	Slave Functions	Access	Range	Unit	Description	Initial Value
0x06	Thermistor β	R/W	0x0000 to 0xFFFF	β	Sets selected thermistor constant value β	0x0D34
0x07	Initial RSOC	w	0xAA55	Value	Sets RSOC to its initial value	-
0x08	Cell Temperature	R W	0x0000 to 0xFFFF (Thermistor Mode) 0x09E4 to 0x0D04 (Via I ² C)	0.1°K (0.0°C = 0x0AAC)	Displays the value of the Cell Temperature	0x0BA6 (25°C)
0x09	Cell Voltage	R	0x0000 to 0xFFFF	mV	Displays the value of the Cell Voltage	-
0x0A	Current Direction	R/W	0x0000: Auto 0x0001: Charge 0xFFFF: Discharge	Function that allows Fuel Gauge to report RSOC in various conditions		0x0000
0x0B	APA (Adjustment Pack Application)	R/W	0x0000 to 0xFFFF	Value	Compensate for total impedance between the Battery and Fuel Gauge	-
0x0C	APT (Adjustment Pack Thermistor)	R/W	0x0000 to 0xFFFF	Delay time to compensate thermistor value due to parallel capacitor & Pull-Up Resistor		0x001E
0x0D	RSOC (Relative State of Charge)	R	0x0000 to 0x0064	% Displays RSOC value based on a 0-100 scale		-
0x0F	FG unit	R	0x0000 to 0x03E8	Displays remaining ca	pacity of battery based on a 0-1000 scale	-
0x11	IC Version	R	0x0000 to 0xFFFF	Version	Displays the IC version	from 0x2717
0x12	Default or Alternative Profile Select	R/W	0x0000 or 0x0001	Allows to choose betw	veen stored battery profiles (Please refer to lower list)	0x0000
0x13	Alarm Low RSOC	R/W	0x0000 to 0x0064	% (activate under)	Allows the assignment of an alarm with a given RSOC value	0x0008
0x14	Alarm Low Cell Voltage	R/W	0x0000 to 0xFFFF	mV (activate under)	Allows the assignment of an alarm with a given voltage value	0x0000
0x15	IC Power Mode	R/W	0x0000 to 0x0002	0x0000 : Testing Mode 0x0001 : Operational Mode 0x0002 : Sleep Mode		0x0001
0x16	Thermistor Status Bit	R/W	bit 0 : Thermistor Mode bit 1 to 15 : Reserved (fix 0)	0 : disable 1 : enable	Displays whether thermistor is enabled or disabled	0x0000
0x1A	Profile Number	R	0x0301 or 0x0504	Displays battery profile	es uploaded 301 or 504 (Please refer to lower list)	-

	Type Of The Battery	Number Of The Parameter	Change Of The Parameter	
LC709203F-01	Normal Voltage3.8V, Charge Voltage 4.35V	0x0301	0x0000	
LO7032031 -01	Normal Voltage3.7V, Charge Voltage 4.2V	0.0001	0x0001	
LC709203F-04	ICR18650-26H (SAMSUNG)	0x0504	0x0000	
107032031 -04	UR18650ZY (Panasonic)	0.0004	0x0001	

RSOC = Relative State Of Charge 0xXXXX = Hexadecimal notation

(Note)

Initialization from Host :

- The IC will initialize reading the battery temperature until Initialization sequence with serial port is executed. (Please see EVB manual for sequences.) Control from Host :

 - The Remaining State of Charge (RSOC) is normally read periodically.
 To read temperature the part will need a sequence of instructions and then returned to RSOC reading.

Application Circuit Example

Figure 4 Example of an application schematic using LC709203F (not use temperature detection function)

Figure 5 Example of an application schematic using LC709203F (use temperature detection function)

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC709203FQH-01TWG	WDFN8 3x4, 0.65P (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC709203FQH-02TWG	WDFN8 3x4, 0.65P (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC709203FQH-03TWG	WDFN8 3x4, 0.65P (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC709203FQH-04TWG	WDFN8 3x4, 0.65P (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC709203FXE-01MH	WLCSP9, 1.60x1.76 (Pb-Free / Halogen Free)	5000 / Tape & Reel
LC709203FXE-02MH	WLCSP9, 1.60x1.76 (Pb-Free / Halogen Free)	5000 / Tape & Reel
LC709203FXE-03MH	WLCSP9, 1.60x1.76 (Pb-Free / Halogen Free)	5000 / Tape & Reel
LC709203FXE-04MH	WLCSP9, 1.60x1.76 (Pb-Free / Halogen Free)	5000 / Tape & Reel

(Note)

The type of battery affects the performance to some degree. Contact your sales team for assistance in choosing the correct model.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent reg

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>LC709203FXE-01MH</u> <u>LC709203FQH-01TWG</u> <u>LC709203FQH-04TWG</u> <u>LC709203FQH-02TWG</u> <u>LC709203FQH-02TWG</u> <u>LC709203FXE-02MH</u> <u>LC709203FXE-04MH</u> <u>LC709203FQH-03TWG</u>