

CLAIMS

What is claimed is:

- 5 **1.** A peptide fragment of a viral Macrophage Inflammatory Protein-II (vMIP-II) (SEQ. ID. NO: 1), wherein said fragment selectively prevents CXCR4 signal transduction and coreceptor function in mediating an entry of an HIV-1.
- 10 **2.** The peptide fragment of **Claim 1**, wherein said fragment comprises an amino-terminal end of said vMIP-II.
- 15 **3.** The peptide fragment of **Claim 2**, wherein said amino-terminal end comprises amino acid residues 1-21 (V1, SEQ ID NO: 2), or any subfragments therein.
- 20 **4.** The peptide fragment of **Claim 1**, wherein said fragment is a lead compound for development of novel small molecular agents to prevent HIV-1 from entering a cell.
- 25 **5.** A peptide of the formula
X-R₁-R₂-R₃-R₄-R₅-R₆-R₇-R₈-R₉-R₁₀-R₁₁-R₁₂-R₁₃-R₁₄-R₁₅-R₁₆-R₁₇-R₁₈-R₁₉-R₂₀-R₂₁-Y
wherein:
X is a substituent attached on the N-terminal of a peptide, X can be H, CH₃CO, C₆H₅CO, or C₆H₅CH₂CO;
Y is a substituent attached on the C-terminal of a peptide with the following general structure,
C(α)-CO-Y
Y can be OH, NH₂, OCH₃, OCH₂C₆H₅, or NHCH₃; Y can be from zero to nine amino acids,
R_i is Ile, Leu, Val, or Phe;

- R₂ is Gly, Ala;
R₃ is Ala, Gly;
R₄ is Ser, Thr, or Tyr;
R₅ is Trp, Phe, Tyr;
- 5 R₆ is His, Lys, Arg, or Tyr;
R₇ is Arg, His, or Lys;
R₈ is Pro, Leu, or Val;
R₉ is Asp, Glu, Arg, or Lys;
R₁₀ is Lys, Arg, or His;
- 10 R₁₁ is Cys, Ser, or Ala;
R₁₂ is Cys, Ser, or Ala;
R₁₃ is Ile, Leu, or Val;
R₁₄ is Gly, Ala;
R₁₅ is Tyr, Thr, Ser;
- 15 R₁₆ is Gln, Asn, Arg, or Lys;
R₁₇ is Lys, Arg, or His;
R₁₈ is Arg, His, or Lys;
R₁₉ is Pro, Leu, or Val;
R₂₀ is Ile, Leu, or Val;
- 20 R₂₁ is Pro, Leu, or Val;
and if R₁₁ is Cys then R₁₂ can be Cys, penicillamine or tertiary
butyloxycarbonyl-a-aminobutyric acid;
if R₁₂ is Cys then R₁₁ can be Cys, penicillamine, tertiary
butyloxycarbonyl-a-aminobutyric acid, and,
- 25 R₁₁ and R₁₂ can be penicillamine, or tertiary butyloxycarbonyl-a-
aminobutyric acid;
and, R₁₁ and R₁₂ can be Ala.

6. The peptide of **Claim 5**, wherein a preferred embodiment,
30 comprises
X can be H, or CH₃CO; Y can be OH, or NH₂; and, R₁ is Leu, R₂ is
Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is

Asp, R₁₀ is Lys, R₁₁ is Cys, R₁₂ is Cys, R₁₃ is Leu, R₁₄ is Gly, R₁₅ is Tyr, R₁₆ is Gln, R₁₇ is Lys, R₁₈ is Arg, R₁₉ is Pro, R₂₀ is Leu, R₂₁ is Pro.

7. The peptide of **Claim 5**, wherein a most preferred embodiment, 5 comprises X is H, Y is NH₂; and, R₁ is Leu, R₂ is Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is Asp, R₁₀ is Lys, R₁₁ is Cys, R₁₂ is Cys, R₁₃ is Leu, R₁₄ is Gly, R₁₅ is Tyr, R₁₆ is Gln, R₁₇ is Lys, R₁₈ is Arg, R₁₉ is Pro, R₂₀ is Leu, R₂₁ is Pro.

10 8. The peptide of **Claim 5**, wherein a preferred embodiment comprises a C-terminal truncation peptide containing at least the following fragment:

X-R₁-R₂-R₃-R₄-R₅-R₆-R₇-R₈-Y, and wherein;
15 R₁ is Ile, Leu, or Phe;
R₂ is Gly, Ala, or Val;
R₃ is Ala, Val, or Gly;
R₄ is Ser, Thr, or Tyr;
R₅ is Trp, Phe, Tyr, or Leu;
R₆ is His, Lys, Arg, or Trp;
20 R₇ is Arg, His, or Lys;
R₈ is Pro, Leu, or Val.
and, a C-terminal truncation peptide preferably containing at least a following fragment, wherein X is H, Y is NH₂; and, R₁ is Leu, R₂ is Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is Asp, R₁₀ is Lys.

25 9. The peptide of **Claim 1**, wherein said peptide comprises between 3-30 amino acids, preferably 8-21 amino acids.

10 10. A synthetic peptide, wherein each amino acid of said synthetic peptide is a D amino acid, having the formula:

X-R_{1d}-R_{2d}-R_{3d}-R_{4d}-R_{5d}-R_{6d}-R_{7d}-R_{8d}-R_{9d}-R_{10d}-R_{11d}-R_{12d}-R_{13d}-R_{14d}-R_{15d}-R_{16d}-R_{17d}-R_{18d}-R_{19d}-R_{20d}-R_{21d}-Y, wherein,

X is a substituent attached on the N-terminal of a peptide, X can be H, CH₃CO, C₆H₅CO, or C₆H₅CH₂CO; and

Y is a substituent attached on the C-terminal of a peptide with the following general structure:

- 5 C(α)-CO-Y, wherein Y can be OH, NH₂, OCH₃, OCH₂C₆H₅, or NHCH₃ and Y can be from zero to nine amino acids.

R_{1d} is Ile, Leu, Val, or Phe;

R_{2d} is Gly, Ala;

R_{3d} is Ala, Gly;

- 10 R_{4d} is Ser, Thr, or Tyr;

R_{5d} is Trp, Phe, or Tyr;

R_{6d} is His, Lys, Arg, or Tyr;

R_{7d} is Arg, His, or Lys;

R_{8d} is Pro, Leu, or Val;

- 15 R_{9d} is Asp, Glu, Arg, or Lys;

R_{10d} is Lys, Arg, or His;

R_{11d} is Ala, Cys, or Ser;

R_{12d} is Ala, Cys, or Ser;

R_{13d} is Ile, Leu, or Phe;

- 20 R_{14d} is Gly, Ala;

R_{15d} is Tyr, Thr, Ser;

R_{16d} is Gln, Asn, Arg, or Lys;

R_{17d} is Lys, Arg, or His;

R_{18d} is Arg, His, or Lys;

- 25 R_{19d} is Pro, Leu, or Val;

R_{20d} is Ile, Leu, or Val;

R_{21d} is Pro, Leu, or Val;

and wherein:

if R_{11d} is Cys then R_{12d} can be Cys, penicillamine or tertiary butyloxycarbonyl-a-aminobutyric acid;

- 30 if R_{12d} is Cys then R_{11d} can be Cys, penicillamine, or tertiary butyloxycarbonyl-a-aminobutyric acid;

and,

R_{11d} and R_{12d} can be penicillamine, or tertiary butyloxycarbonyl-a-aminobutyric acid;

and, R_{11d} and R_{12d} can be Ala.

5

11. The peptide of **Claim 10**, wherein a preferred embodiment comprises the following formula:

X can be H, CH₃CO; Y can be OH, or NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

10

12. The peptide of **Claim 10**, wherein a most preferred embodiment comprises the following formula:

X is H, Y is NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

15

13. The peptide of **Claim 10**, wherein a preferred C-terminal truncation peptide comprising at least the following fragment:

X-R_{1d}-R_{2d}-R_{3d}-R_{4d}-R_{5d}-R_{6d}-R_{7d}-R_{8d}-Y

and wherein;

20

R_{1d} is Ile, Leu, or Phe;

R_{2d} is Gly, Ala, or Val;

R_{3d} is Ala, Val, or Gly;

R_{4d} is Ser, Thr, or Tyr;

R_{5d} is Trp, Phe, Tyr, or Leu;

25

R_{6d} is His, Lys, Arg, or Trp;

R_{7d} is Arg, His, or Lys;

30

R_{8d} is Pro, Leu, or Val.

- TOP SECRET - DESENTRALISATION
14. The peptide of **Claim 10**, wherein a more preferably C-terminal truncation peptide comprises at least the following fragment; X is H, Y is NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys.
15. The peptide of **Claim 10**, comprising between 3-30 amino acids, preferably 8-21 amino acids.
16. The peptide of **Claim 5**, wherein said peptide comprises a reversed form of said formula, comprising,
X-R₂₁-R₂₀-R₁₉-R₁₈-R₁₇-R₁₆-R₁₅-R₁₄-R₁₃-R₁₂-R₁₁-R₁₀-R₉-R₈-R₇-R₆-R₅-R₄-R₃-R₂-R₁-Y
wherein an amino acid is in an L form or as naturally occurring amino acid.
17. The peptide of **Claim 16**, wherein a preferred embodiment, comprises
X can be H, or CH₃CO; Y can be OH, or NH₂; and, R₁ is Leu, R₂ is Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is Asp, R₁₀ is Lys, R₁₁ is Cys, R₁₂ is Cys, R₁₃ is Leu, R₁₄ is Gly, R₁₅ is Tyr, R₁₆ is Gln, R₁₇ is Lys, R₁₈ is Arg, R₁₉ is Pro, R₂₀ is Leu, R₂₁ is Pro.
18. The peptide of **Claim 16**, wherein a most preferred embodiment, comprises X is H, Y is NH₂; and, R₁ is Leu, R₂ is Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is Asp, R₁₀ is Lys, R₁₁ is Cys, R₁₂ is Cys, R₁₃ is Leu, R₁₄ is Gly, R₁₅ is Tyr, R₁₆ is Gln, R₁₇ is Lys, R₁₈ is Arg, R₁₉ is Pro, R₂₀ is Leu, R₂₁ is Pro.
19. The peptide of **Claim 16**, wherein a preferred embodiment comprises a C-terminal truncation peptide containing at least the following fragment:

X-R₁-R₂-R₃-R₄-R₅-R₆-R₇-R₈-Y, and wherein;

R₁ is Ile, Leu, or Phe;

R₂ is Gly, Ala, or Val;

R₃ is Ala, Val, or Gly;

R₄ is Ser, Thr, or Tyr;

R₅ is Trp, Phe, Tyr, or Leu;

R₆ is His, Lys, Arg, or Trp;

R₇ is Arg, His, or Lys;

R₈ is Pro, Leu, or Val.

and, a C-terminal truncation peptide preferably containing at least a following fragment, wherein X is H, Y is NH₂; and, R₁ is Leu, R₂ is Gly, R₃ is Ala, R₄ is Ser, R₅ is Trp, R₆ is His, R₇ is Arg, R₈ is Pro, R₉ is Asp, R₁₀ is Lys.

20. The peptide of **Claim 16**, wherein said peptide comprises between 3-30 amino acids, preferably 8-21 amino acids.

21. The peptide of **Claim 5**, wherein said peptide comprises a reversed form of said formula, comprising

X-R_{21d}-R_{20d}-R_{19d}-R_{18d}-R_{17d}-R_{16d}-R_{15d}-R_{14d}-R_{13d}-R_{12d}-R_{11d}-R_{10d}-R_{9d}-R_{8d}-R_{7d}-R_{6d}-R_{5d}-R_{4d}-R_{3d}-R_{2d}-R_{2d}-Y, wherein an amino acid is in a D form or as an unnaturally occurring amino acid.

22. The peptide of **Claim 21**, wherein a preferred embodiment comprises the following formula:

X can be H, CH₃CO; Y can be OH, or NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

23. The peptide of **Claim 21**, wherein a most preferred embodiment comprises the following formula:
X is H, Y is NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala,
5 R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.
23. The peptide of **Claim 21**, wherein a preferred C-terminal truncation peptide comprising at least the following fragment:
10 X-R_{1d}-R_{2d}-R_{3d}-R_{4d}-R_{5d}-R_{6d}-R_{7d}-R_{8d}-Y
and wherein;
R_{1d} is Ile, Leu, or Phe;
R_{2d} is Gly, Ala, or Val;
R_{3d} is Ala, Val, or Gly;
15 R_{4d} is Ser, Thr, or Tyr;
R_{5d} is Trp, Phe, Tyr, or Leu;
R_{6d} is His, Lys, Arg, or Trp;
R_{7d} is Arg, His, or Lys;
R_{8d} is Pro, Leu, or Val.
20
24. The peptide of **Claim 21**, wherein a more preferably C-terminal truncation peptide comprises at least the following fragment;
X is H, Y is NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys.
25
25. The peptide of **Claim 21**, comprising between 3-30 amino acids, preferably 8-21 amino acids.
30
26. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 5**.

- 40
35
30
25
20
15
10
5
- 27.** A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 10**.
- 28.** A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 16**.
- 29.** A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 21**.
- 30.** A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to **Claim 5**.
- 31.** A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to **Claim 10**.
- 32.** A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to **Claim 16**.
- 33.** A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to **Claim 21**.
- 34.** A method of treating infection by HIV-1, comprising administering to an individual an effective amount of a peptide according to **Claim 5**.

40
35
30
25
20
15
10
5

35. A method of treating infection by HIV-1, comprising
administering to an individual an effective amount of a peptide
according to **Claim 10.**
- 5 36. A method of treating infection by HIV-1, comprising
administering to an individual an effective amount of a peptide
according to **Claim 16.**
- 10 36. A method of treating infection by HIV-1, comprising
administering to an individual an effective amount of a peptide
according to **Claim 21.**
- 15 37. A method of inhibiting a disease, a causative agent of said
disease requiring entry into CXCR4-expressing cells via CXCR4,
comprising contacting said cells with a peptide according to **Claim**
5
- 20 38. A method of inhibiting a disease, a causative agent of said
disease requiring entry into CXCR4-expressing cells via CXCR4,
comprising contacting said cells with a peptide according to **Claim**
10.
- 25 39. A method of inhibiting a disease, a causative agent of said
disease requiring entry into CXCR4-expressing cells via CXCR4,
comprising contacting said cells with a peptide according to **Claim**
16.
- 30 40. A method of inhibiting a disease, a causative agent of said
disease requiring entry into CXCR4-expressing cells via CXCR4,
comprising contacting said cells with a peptide according to **Claim**
21.

41. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide
5 according to **Claim 5.**
42. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide
10 according to **Claim 10.**
43. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide
15 according to **Claim 46.**
44. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide
20 according to **Claim 21.**

2025624760