

Theoretical Mechanics, Lab 14: DYN VIRT DISP GEN EQN

Principle of virtual displacements

General Equation of Dynamics (D'lambert-Lagrange)

innoboriz innoboriz

Principle of virtual displacements

R. O.	Eqn#	Equations	Applications	Extra Info
System	1	1. $\sum \delta A = 0$, where A is a virtual work	To find <i>one</i> force or reaction force.	 Virtual work has infinitesimal
		2. $\sum W = 0$; $W = \vec{F} \cdot \vec{v} = \vec{F} \vec{v} \cos(\vec{F} \vec{v})$, where W is power, $v - v$ irtual velocity		displacements. System must be in static each time.

Task 1 (mine)

The platform structure consists of two frames connected by a rotation joint *C*. The left end of the frame *AC* is rigidly fixed into the wall. the lower end of *CB* is supported by cylindrical movable support *B*.

Determine the vertical support reaction A under the forces P_1 P_2 .

Task 2 (yours): M (rus) 46.1

A weight Q is lifted by means of a screw jack which is set in motion by a handle OA = 0.6. A force P = 160 is applied perpendicularly to the handle.

Determine the magnitude of the weight Q, if the pitch of the screw thread is h = 0.012.

Answer: Q = 52200 N

General Equation of Dynamics

R. O.	Eqn#	Equations	Applications	Extra Info
System	1 in cartesian, n in generalized coordinates	• $\sum \delta A + \sum \delta A^{\Phi} = 0$, where A is a virtual work • $\sum W + \sum W^{\Phi} = 0$, where W is a power	To find accelerations, motion equations	

Task 3 (mine)

A load A of weight P moves down on a weightless inextensible thread which first runs over a fixed weightless pulley D and the coils on a sheave B, thus forcing the shaft C to roll without sliding along a horizontal rail.

The sheave *B* of radius *R* is mounted tightly on the shaft *C* of radius *R*: the total weight of the sheave *B* and the shaft *C* is *Q*.

The axis O is perpendicular to the plane of the drawing and the radius of gyration relative to O is ρ .

Find the acceleration of the load A.

Task 4 (yours): M (rus) 47.5

To the system of blocks shown in the figure are suspended weights $M_1 = 10 \text{ kg}$ and $M_2 = 8$.

Determine the acceleration a_2 of the weight M_2 and the tension of the thread, neglecting the masses of the blocks.

Answer:
$$a_2 = 2.9 \frac{m}{s^2}$$
, $T = 56 N$

