

Description

The VSM7N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 7A$ $R_{DS(ON)} < 160mΩ @ V_{GS} = 10V (Typ:136mΩ)$ $R_{DS(ON)} < 170mΩ @ V_{GS} = 4.5V (Typ:140mΩ)$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM7N10-T2	VSM7N10	TO-252			

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Theoretical material go (14 = 0 outlines of the total)					
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	100	V		
Gate-Source Voltage	Vgs	±12	V		
Drain Current-Continuous	I _D	7	А		
Drain Current-Pulsed (Note 1)	I _{DM}	20	А		
Maximum Power Dissipation	P _D	40	W		
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$		

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{eJC}	3.75	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	8.0	1.1	1.5	V
Dunin Course On State Resistance	-	V _{GS} =10V, I _D =3A	-	136	160	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =3A	-	140	170	
Forward Transconductance	g FS	$V_{DS}=5V,I_{D}=3A$	-	5	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	650	-	PF
Output Capacitance	C _{oss}	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	25	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0IVIH2	-	20	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	6	-	nS
Turn-on Rise Time	t _r	V_{DD} =50V, R_L =19 Ω	-	4	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	20	-	nS
Turn-Off Fall Time	t _f		-	4	-	nS
Total Gate Charge	Qg	\/ F0\/ L 0A	-	20.6		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=50V,I_{D}=3A,$	-	2.1	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	3.3	-	nC
Drain-Source Diode Characteristics			•	•		•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	7	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to productio

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Ip- Drain Current (A) 8 6 4 2 0 25 50 75 100 125 150 175 0

12

10

Figure 7 Capacitance vs Vds

T_J-Junction Temperature(°C) Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance