Printz Engineering Services, LLC

January 27, 2023

Mr. Jonny Macfarlane Mays Construction Specialties 2399 Riverside Parkway Grand Junction, Colorado 81505 970-245-0834 ph

RE: 183 River Ridge Court, Grand Junction, CO – Micropile Verification Test

Dear Mr. Macfarlane,

Attached, please find the results of micropile verification test performed on 01/26/23.

The pile installation for the micropile verification test conducted on 1/26/23 was accomplished using simultaneous drilling and grouting operations to an overall installation depth of 50' through a T30/11 hollow reinforcing bar using a 4" diameter sacrificial steel drill bit. The verification test micropile has a 30'-0" bond length, a 20' PVC sleeved length and 3'-0" above ground free length.

Verification Test Pile – Tension Test – The pile was installed to a 30' total bonded length using the drilling method described above. At 200% of the design load, the micropile experienced permanent and elastic movement of 0.023" and 0.180"; respectively. At the end of the test, the micropile debonded -9.01' and has an apparent bond length of 39.01'. Since the micropile head movement at 200% design load (0.203") is less than (0.025 in/kip * 30 kip = 0.75") load versus micropile head settlement and the creep criteria was satisfied, the test passes the micropile verification test per NHI-05-039 "Micropile Design and Construction Manual".

The micropile did not debond the entire sleeved length; therefore, debonding is showing as a negative number; however, the PVC sleeve did debond 10.99'. Based on the verification test results, we have calculated the minimum micropile length, considering the depth of the weathered Dakota Formation. The weather Dakota formation is expansive when wetted; therefore, PVC sleeve and bond length below the weathered formation are required. We recommend a minimum micropile overall length of 40'-0", with the upper 30' PVC sleeved and 3" nominal schedule 40 PVC from 1'-0" below grade to extend into structural concrete for corrosion protection continuation through the 12" void form.

Please do not hesitate to contact me with any questions or concerns that you may have.

Kind Regards,

Thomas A. Printz, P.E. President Printz Engineering Services, LLC

PRINTZ ENGINEERING SERVICES, LLC
1248 W. EL TORO WAY
PUEBLO WEST, CO 81007
TPRINTZ@PRINTZENGINEERINGSERVICES.COM

1

Printz Engineering Services, LLC

Attachments:

Verification Test (6 pages)

15 kip micropile design with grade beam connection (3 pages)

15 kip micropile design with pad footing connection (3 pages)

PRINTZ ENGINEERING SERVICES, LLC
1248 W. EL TORO WAY
PUEBLO WEST, CO 81007
TPRINTZ@PRINTZENGINEERINGSERVICES.COM

Kelley Residen	ce															T
183 River Ridge							Test Performed	by Mays Constr	uction Specialtie	s: Josh & Trever		Observed by	N/A			
Pile:	1		Sacrificial Test	Pile installed			Test Date:					No. of Elements:			1	
tarting Free L	ength:		23.00	ft	276	in	Design Load:			15.000	kip	Modulus of Elasticit	ty:		29000	kip/in2
tarting Bond I	·····		30.00	ft	360	in						Bar Diameter:		T30/11	1.180	in
elow Ground			20	ft	240	in	Max Test Load	(200% DL):		30.000	kip	Bar Area:			0.940	in2
bove Ground			3.00	ft	36	in						Casing OD:			0.00	in
otal Length:			53.00	ft	636	in						Casing TW:			0.00	in
												Casing ID:			0.00	in
heoretical Elo	ngation (calcula	ite at max tes	t load):		0.304	inches		***Casing is not	t considered for a	Tension Test		Jack-Gauge Factor:			0.0118382	kip/psi
												Load Cell Serial Nu			-	
												Load Cell Zero read	ing (avg.):		-	
												Load Cell Scale Fac	tor:		_	
							10 mm					Load Cell Offset:			-	
							10 mm					Casing Area:			0	in^2
est started at a	pproximately 12:	15 AM														
% Design	Holding	Spec.	Calc.	Time of	Observed	Dial Gauge	Dial Gauge	Correct.	Elastic		Commen	nts				_
Load	Time	Load	Jack Press.	Reading	Jack Press.	G1	G2	Avg.	Movement							_
(%)	(min)	(kips)	(psi)	(24h)	(psi)	(in)	(in)	(in)	(theoretical)							
5%	2.5	8.0	194	12:21	195	0.000	0.000	0.000	0.008							-
15%	2.5	2.3	314	12:25	315	0.009	0.004	0.007	0.023						1	
30%	2.5	4.5	494	12:29	495	0.021	0.019	0.020	0.046		-					
45%	2.5	6.8	674	12:32	675	0.043	0.036	0.040	0.068							-
5%	1	8.0	194	12:35	195	0.008	0.011	0.010	0.008				***************************************			
				1		+		0.000	1	+	-					_
15%	1	2.3	314	12:36	315	0.015	0.016	0.016	0.023							
45%	1	6.8	674	12:38	675	0.040	0.035	0.038	0.068							-
60%	2.5	9.0	854	12:42	855	0.056	0.050	0.053	0.091							-
75%	2.5	11.3	1034	12:46	1034	0.075	0.065	0.070	0.114							
90% 100%	2.5 2.5	13.5 15.0	1214 1334	12:49 12:52	1215 1335	0.093	0.080	0.087 0.095	0.137 0.152							
5%	1	0.8	194	12:54	195	0.099	0.090	0.095	0.152							-
370		0.0	194	12.54	195	0.013	0.021	0.018	0.008							
15%	1	2.3	314	12:57	315	0.022	0.026	0.024	0.023							
100%	1	15.0	1334	1:01	1335	0.105	0.094	0.100	0.152							
115%	2.5	17.3	1514	1:04	1515	0.118	0.105	0.112	0.175							
130%	1	19.5	1694	1:08	1695	0.136	0.120	0.128	0.197							
130%	1	19.5	1694	1:09	1695	0.136	0.120	0.128	0.197							
130%	1	19.5	1694	1:10	1695	0.136	0.121	0.129	0.197							
130%	1	19.5	1694	1:11	1695	0.136	0.121	0.129	0.197							
130%	1	19.5	1694	1:12	1695	0.136	0.121	0.129	0.197							-
130%	1	19.5	1694	1:13	1695	0.136	0.121	0.129	0.197							
130%	4	19.5	1694	1:19	1695	0.136	0.122	0.129	0.197	0.001		040" in 10 minutes			<u> </u>	
130%	10	19.5	1694	+		+		0.000	0.197	+	end creep test	t			5 5 6 8 8	-
130%	10	19.5	1694			+		0.000	0.197	+						-
130% 130%	20 10	19.5 19.5	1694 1694	-		+		0.000	0.197 0.197	+						-
145%	2.5	21.8	1874	1:25	1875	0.153	0.136	0.000	0.197							-
5%	1	0.8	194	1:28	195	0.133	0.023	0.020	0.008	PES m	ust have these r	readings, as well				
0,3		3.0	101	20	.00	3.010	0.320	0.020	3.000	Bring back up	to 30kips & incre	ease by 10 kip intervals	until failure			
15%	1	2.3	314	1:30	314	0.025	0.030	0.028	0.023	40k	340		0.305	0.276		
145%	1	21.8	1874	1:33	1875	0.151	0.135	0.143	0.220	50k	420		0.408			
160%	1	24.0	2054	1:35	2055	0.165	0.149	0.157	0.243	60k	500	00	0.524	0.48		
175%	2.5	26.3	2234	1:41	2235	0.184	0.164	0.174	0.266	70k		00 failure at 5600psi	0.99	0.899		_
200%	10	30.0	2534	1:53	2535	0.214	0.192	0.203	0.304	Load at Failure	e =	68279.2				
150%	5	22.5	1934	1:59	1935	0.185	0.168	0.177	0.228	_					<u> </u>	
100%	5	15.0	1334	2:07	1335	0.145	0.132	0.139	0.152	t.u = P.fail/(pi*o	dh*L.b)	15.09301693	USE 7.5 PSI W		ND STRESS	
50%	5	7.5	734	2:13	735	0.083	0.083	0.083	0.076	+	-		IN MICROPILE	DESIGN		_
5%	5	0.8	194	2:19	195	0.020	0.026	0.023	0.008							

Kelley Residence

Pile: Starting Free Length: Starting Bond Length: Below Ground Free Length: Above Ground Free Length: Total Length: Sacrificial Test Pile installed 23.00 ft 276 in 30.00 ft 360 in 20.00 240 3.00 ft 36 53.00 ft 636 in
 Test Date:
 01/00/00

 Design Load (100%):
 15 kip

 Max Test Load (200% DL):
 30 kip

Theoretical Elongation (calculate at max test load):

Apparent Free Length: Debonding: Apparent Bond Length: 0.304 inches

At 200% design load

167.9 inches 13.99 ft
-108.1 inches -9.01 ft
468.1 inches 39.01 ft

No. of Elements:	1	
Modulus of Elasticity:	29000 kip	/in2
Element Area:	0.94 in2	
Casing OD:	in	
Casing TW:	in	
Casing ID:	in	
Jack-Gauge Factor:	0.011838196 kip	/psi
Load Cell Serial Number:		
Load Cell Zero reading (avg.):		
Load Cell Scale Factor:		
Load Cell Offset:		
Casing Area:	0 in^	2

% Design	Holding	Spec.	Time of	Calc.	Observed	Observed		Dial Gauge		Total	Perm.	Elastic	Elastic
Load	Time	Load	Reading	Jack Press.	Jack Press.	Jack Load	G1	G2	Corrected	Movement	Movement	Movement	Movement
(%)	(min)	(kips)	(24h)	(psi)	(psi)	(kips)	(in)	(in)	(in)	(in)	(in)	(in)	(theory)
5%	2.5	0.8		194	195	0.8	0.000	0.000	0.000	0.000			0.008
15%	2.5	2.3		314	315	2.3	0.009	0.004	0.007	0.007			0.023
30%	2.5	4.5		494	495	4.5	0.021	0.019	0.020	0.020			0.046
45%	2.5	6.8		674	675	6.8	0.043	0.036	0.040	0.040	0.010	0.049	0.068
5%	1	0.8		194	195	0.8	0.008	0.011	0.010	0.010			0.008
													0.000
15%	1	2.3		314	315	2.3	0.015	0.016	0.016	0.016			0.023
45%	1	6.8		674	675	6.8	0.040	0.035	0.038	0.038			0.068
60%	2.5	9.0		854	855	9.0	0.056	0.050	0.053	0.053			0.091
75%	2.5	11.3		1034	1034	11.2	0.075	0.065	0.070	0.070			0.114
90%	2.5	13.5		1214	1215	13.5	0.093	0.080	0.087	0.087			0.137
100%	2.5	15.0		1334	1335	15.0	0.099	0.090	0.095	0.095	0.018	0.077	0.152
5%	1	0.8		194	195	0.8	0.015	0.021	0.018	0.018			0.008
													0.000
15%	1	2.3		314	315	2.3	0.022	0.026	0.024	0.024			0.023
100%	1	15.0		1334	1335	15.0	0.105	0.094	0.100	0.100			0.152
115%	2.5	17.3		1514	1515	17.2	0.118	0.105	0.112	0.112			0.175
130%	1	19.5		1694	1695	19.5	0.136	0.120	0.128	0.128			0.197
130%	1	19.5		1694	1695	19.5	0.136	0.120	0.128	0.128			0.197
130%	1	19.5		1694	1695	19.5	0.136	0.121	0.129	0.129			0.197
130%	1	19.5		1694	1695	19.5	0.136	0.121	0.129	0.129			0.197
130%	1	19.5		1694	1695	19.5	0.136	0.121	0.129	0.129			0.197
130%	1	19.5		1694	1695	19.5	0.136	0.121	0.129	0.129			0.197
130%	4	19.5		1694	1695	19.5	0.136	0.122	0.129	0.129	0.001	creep	0.197
130%	10	19.5		1694	0	-1.7	0.000	0.000	0.000	0.000			0.197
130%	10	19.5		1694	0	-1.7	0.000	0.000	0.000	0.000			0.197
130%	20	19.5		1694	0	-1.7	0.000	0.000	0.000	0.000			0.197
130%	10	19.5		1694	0	-1.7	0.000	0.000	0.000	0.000			0.197
145%	2.5	21.8		1874	1875	21.7	0.153	0.136	0.145	0.145	0.020	0.125	0.220
5%	1	0.8		194	195	0.8	0.016	0.023	0.020	0.020			0.008
													0.000
15%	1	2.3		314	314	2.2	0.025	0.030	0.028	0.028			0.023
145%	1	21.8		1874	1875	21.7	0.151	0.135	0.143	0.143			0.220
160%	1	24.0		2054	2055	24.0	0.165	0.149	0.157	0.157	,		0.243
175%	2.5	26.3		2234	2235	26.2	0.184	0.164	0.174	0.174			0.266
200%	10	30.0	-	2534	2535	30.0	0.214	0.192	0.203	0.203	0.023	0.180	0.304
150%	5	22.5		1934	1935	22.5	0.185	0.168	0.177	0.177			0.228
100%	5	15.0		1334	1335	15.0	0.145	0.132	0.139	0.139			0.152
50%	5	7.5		734	735	7.5	0.083	0.083	0.083	0.083			0.076
5%	5	0.8		194	195	0.8	0.020	0.026	0.023	0.023			0.008

Pile:	Sacrificial	Test P	ile installed

Target % Des. Load (%)	Target % Des. Load (KIPS)	Calculated Load (kips)	Total Movement (0.001 in)	Perm. Movement (0.001 in)	Elastic Movement (0.001 in)
5%	0.75	0.75994	0	0	0
45%	7	7	39.5	-9.5	49.0
100%	15	15	94.5	-18.0	76.5
200%	30	30	203.0	-23.0	180.0

Target %	Spec.	Observed	Observed	Total	Total
Des. Load	Load	Load	Load	Movement	Movement
		Jack	Jack		
(%)	(kips)	(psi)	(kips)	(in)	(1/1000in)
5.0%	1	195.00	0.76	0.000	0
15.0%	2	315.00	2.26	0.007	7
30.0%	5	495.00	4.51	0.020	20
60.0%	9	855.00	9.00	0.053	53
75.0%	11	1034.00	11.24	0.070	70
90.0%	14	1215.00	13.50	0.087	87
100.0%	15	1335.00	15.00	0.095	95
5.0%	1	195.00	0.76	0.018	18
15.0%	2	315.00	2.26	0.024	24
100.0%	15	1335.00	15.00	0.100	100
115.0%	17	1515.00	17.25	0.112	112
130.0%	20	1695.00	19.50	0.128	128
130.0%	20	1695.00	19.50	0.129	129
145.0%	22	1875.00	21.75	0.145	145
5.0%	1	195.00	0.76	0.020	20
15.0%	2	314.00	2.25	0.028	28
145.0%	22	1875.00	21.75	0.143	143
160.0%	24	2055.00	24.00	0.157	157
175.0%	26	2235.00	26.24	0.174	174
200.0%	30	2535.00	29.99	0.203	203
150.0%	23	1935.00	22.50	0.177	177
100.0%	15	1335.00	15.00	0.139	139
50.0%	8	735.00	7.51	0.083	83
5.0%	1	195.00	0.76	0.023	23

Test Load	Time	Dial Gauge	Creep
(kips)	(min)	(in)	(in)
19.5	1	0.128	0
19.5	2	0.128	0
19.5	3	0.1285	0.0005
19.5	4	0.1285	0.0005
19.5	5	0.1285	0.0005
19.5	6	0.1285	0.0005
19.5	10	0.129	0.001

Micropile Design

kips := 1000lbfksi := 1000psi

Based on Federal Highway Administration Publication: "Micropile Design and Construction" (Publication No. FHWA-NHI-05-039) December 2005 and IBC 2018

Micropile Properties

Micropile Capacity

Select: 1) IBC Method Micropile Tension Load 2) FHWA Method

D := 4in

Micropile Diameter

= 4000 psi

Nominal Bar Diameter Grout 28-day Compressive Strength

1) Titan 30/16 2) Titan 30/11 3) Titan 40/20 4) Titan 40/16 5) Titan 52/26

4" bit

Select Reinforcing Bar

 $F_v = 42.7 \cdot kips$

Yield Strength of Reinforcing Bar

 $\varphi_c = 0.33 \quad \varphi_v = 0.4 \quad \varphi_t = 0.6$

Reduction Factors

Geotechnical Design

Soil-Grout ULTIMATE Bond Stress (and thickness of corresponding soil layer)

Bond stress FoS $FS_b := 2$

Bearing Soils

Soil-Grout Bond (first 4 layers)

$$G := \sum_{x=0}^{3} \left[\left(\frac{Bs_{x}}{FS_{b}} \cdot D \cdot \pi \right) \cdot Hs_{x} \cdot psi \cdot ft \right] \quad G = 0 \cdot kips$$

Additional Length Required in Last Geostrata

$$L_b := \frac{(P - G) \cdot FS_b}{Bs_{\underline{a}} \cdot D \cdot \pi \cdot psi}$$

$$L_b = 4.974 \cdot ft$$

Total Pile Length Required

$$L_{total} := \sum_{x=0}^{3} (Hs_x \cdot ft) + L_b$$

$$L_{total} = 40 \cdot ft$$

Structural Design

Use 40 ft embedment

Area of Grout

$$A_g := (0.25 \cdot \pi \cdot D^2) - (0.25 \cdot \pi \cdot D_b^2)$$
 $A_g = 11.473 \cdot in^2$

$$A_{\alpha} = 11.473 \cdot in^2$$

Compression Capacity

$$P_c := \, \varphi_c {\cdot} f_c {\cdot} A_g + \, \varphi_y {\cdot} F_y$$

$$P_c = 32.224 \cdot \text{kips}$$

BY: PRINTZ ENGINEERING

$$P_{t.a} := \varphi_t \cdot F_v$$

$$P_{t,a} = 25.62 \cdot kips$$

$$\operatorname{check}_{P,c} := \operatorname{if}(P_c \ge P, "OK", "NO GOOD")$$

$$\mathsf{check}_{P.t} \coloneqq \mathsf{if} \Big(P_{t.a} \ge P_t, "\mathsf{OK"} \;, "\mathsf{NO} \; \mathsf{GOOD"} \Big)$$

$$check_{P_t} = "OK"$$

USE - T30/16 X 40'-0" (OR EQUIVALENT STRENGTH MICROPILE REINFORCING ELEMENT) EMBEDDED LENGTH IN A 4" EFFECTIVE DIAMETER DRILL HOLE DIAMETER.

Connection Design

Check Cone Shear

$f_{cc} := 40$	00psi
b := 4in	$b_2 := 10in$
$h_c := 4in$	

f'c of Concrete

Number of plates n := 1

Plate Dimensions

Concrete Cover

$$\mathbf{d}_1 \coloneqq \sqrt{\frac{4 \cdot \mathbf{b} \cdot \mathbf{b}_2}{\pi}}$$

$$d_1 = 7.136 \cdot in$$

$$d_2 := d_1 + 2 \cdot h_c$$

$$d_2 = 15.136 \cdot in$$

$$A_{cp} := \frac{\pi}{4} \cdot \left(d_2^2 - d_1^2 \right)$$

$$A_{cp} = 139.945 \cdot in^2$$

$$P_{cone} := 4 \cdot \sqrt{\frac{f_{cc}}{psi}} \cdot A_{cp} \cdot psi$$

$$P_{cone} = 35.404 \cdot \text{kips}$$

Cone Design Strength

$$P_{cd} := n \cdot 0.67 \cdot P_{cone}$$

$$P_{cd} = 23.72 \cdot kips$$

Development Length in Concrete

Deformed Bar to Grout Bond

Length of Deformed Bar in Concrete

Development Strength

Total Connection Strength

 $t_{w} := 250 psi$ $L_{d} := 0 in$

$$P_{dev} := L_d \cdot t_w \cdot D_b \cdot \pi$$

$$P_{\text{dev}} = 0 \cdot \text{kips}$$

$$P_{total} := P_{cd} + P_{dev}$$

$$P_{total} = 23.7 \cdot kips$$

Plate Thickness

$$OD_r := 4in$$

Outside diameter of rigid body on plate

$$\mathsf{A}_{\mathsf{p}} \coloneqq \mathsf{b} \! \cdot \! \mathsf{b}_2$$

$$A_{n} = 40 \cdot in^{2}$$

$$f_v := 36ksi$$

$$wbp := \frac{P - P_{dev}}{A_p}$$

$$M_{\text{max}} := \text{wbp} \cdot \left(\frac{b_2 - \text{OD}_r}{2}\right)^2 \cdot \frac{0.5}{n} \text{in} \quad M_{\text{max}} = 1687.5 \cdot \text{in} \cdot \text{lbf}$$

$$M_{\text{max}} = 1687.5 \cdot \text{in} \cdot \text{lbf}$$

$$S_{X} := \frac{M_{max}}{0.55 \cdot f_{V}}$$

$$S_{X} = 0.085 \cdot in^{3}$$

$$t := \sqrt{\frac{6 \cdot S_X}{0.5 \cdot b}}$$

$$t=0.506{\cdot}in$$

BY: PRINTZ ENGINEERING

2

USE -1/2"X4"X10" WITH A MINIMUM OF 4" CONCRETE CLEARANCE TO THE TOP AND BOTTOM OF PLATE TO THE OPEN EDGE OF CONCRETE.

Summary

Design Load $P = 15 \cdot kips$ Concrete Cover $h_c = 4 \cdot in$ Pile Length Development Length of Bar $L_{total} = 40 \cdot ft$ $L_{b} = 59.683 \cdot in$ Structural Capacity Required Plate Thickness $P_c = 32.224 \cdot \text{kips}$ $t = 0.506 \cdot in$ Bar Yield **Total Connection Strength** $F_V = 42.7 \cdot kips$ $P_{total} = 23.72 \cdot kips$

Bar Diameter $D_b = 1.18 \cdot in$ Plate Width $b = 4 \cdot in$

check = "OK"

CONCLUSION - USE T30/16 HOLLOW BAR REINFORCING WITH A 4" DIA. DRILL BIT TO AN OVERALL BELOW GRADE DEPTH OF 40'-0" AND SLEEVE THE UPPER 30' WITH PVC BOND BREAKER. USE 3" NOMINAL SCH. 40 PVC A MINIMUM OF 1'-0" BELOW GRADE TO EXTEND THROUGH THE VOID AND INTO THE GRADE BEAM TO CONTINUE COROSSION PROTECTION THROUGH THE VOID. USE 1/2"X4"X10" A36 STEEL PLATE FOR THE STRUCTURAL CONNECTION, LOCATED A MINIMUM OF 4" UP FROM THE BOTTOM OF THE GRADE BEAM CONCRETE.

Micropile Design

kips := 1000lbfksi := 1000psi

Based on Federal Highway Administration Publication: "Micropile Design and Construction" (Publication No. FHWA-NHI-05-039) December 2005 and IBC 2018

Micropile Properties

Micropile Capacity

Select: 1) IBC Method 2) FHWA Method

Micropile Tension Load

D := 4in

Micropile Diameter

:= 4000 psi

Nominal Bar Diameter

Grout 28-day Compressive Strength

1) Titan 30/16 2) Titan 30/11 3) Titan 40/20 4) Titan 40/16 5) Titan 52/26

4" bit

Select Reinforcing Bar

 $F_v = 42.7 \cdot kips$

Yield Strength of Reinforcing Bar

 $\varphi_c = 0.33 \quad \varphi_v = 0.4 \quad \varphi_t = 0.6$

Reduction Factors

Geotechnical Design

Soil-Grout ULTIMATE Bond Stress (and thickness of corresponding soil layer)

Bond stress FoS $FS_b := 2$

Bond Stress	
	0
	0
	0
	0
	40

Layer Thickne	<u>ess</u>
	35
	0
	0
	0
	0

Bearing Soils

Soil-Grout Bond (first 4 layers)

$$G := \sum_{x=0}^{3} \left[\left(\frac{Bs_{x}}{FS_{b}} \cdot D \cdot \pi \right) \cdot Hs_{x} \cdot psi \cdot ft \right] \quad G = 0 \cdot kips$$

Additional Length Required in Last Geostrata

$$L_b := \frac{(P - G) \cdot FS_b}{Bs_A \cdot D \cdot \pi \cdot psi}$$

$$L_{b} = 4.974 \cdot ft$$

Total Pile Length Required

$$L_{\text{total}} := \sum_{x=0}^{3} (Hs_x \cdot ft) + L_b$$

$$L_{\text{total}} = 40$$

Structural Design

Use 40 ft embedment

Area of Grout

$$A_g := (0.25 \cdot \pi \cdot D^2) - (0.25 \cdot \pi \cdot D_b^2)$$
 $A_g = 11.473 \cdot in^2$

$$A_{\alpha} = 11.473 \cdot in^2$$

Compression Capacity

$$P_c := \varphi_c \cdot f_c \cdot A_g + \varphi_y \cdot F_y$$

$$P_c = 32.224 \cdot \text{kips}$$

BY: PRINTZ ENGINEERING

$$f_c := \phi_c \cdot f_c \cdot A_g + \phi_y \cdot F_g$$

$$P_{t.a} := \varphi_t \cdot F_v$$

$$P_{ta} = 25.62 \cdot \text{kips}$$

$$\operatorname{check}_{P,c} := \operatorname{if}(P_c \ge P, "OK", "NO GOOD")$$

$$\mathsf{check}_{P.t} := \mathsf{if} \Big(\mathsf{P}_{t.a} \ge \mathsf{P}_t, \mathsf{"OK"} \;, \mathsf{"NO} \; \mathsf{GOOD"} \Big)$$

$$check_{P_t} = "OK"$$

USE - T30/16 X 40'-0" (OR EQUIVALENT STRENGTH MICROPILE REINFORCING ELEMENT) EMBEDDED LENGTH IN A 4" EFFECTIVE DIAMETER DRILL HOLE DIAMETER.

Connection Design

Check Cone Shear

$f_{cc} := 4000ps$	si
b := 6in	$b_2 := 6in$
$h_c := 4in$	

f'c of Concrete

Number of plates n := 1

Plate Dimensions

Concrete Cover

$$\mathtt{d}_1 \coloneqq \sqrt{\frac{4 \cdot b \cdot b_2}{\pi}}$$

$$d_1 = 6.77 \cdot in$$

$$d_2 := d_1 + 2 \cdot h_c$$

$$d_2 = 14.77 \cdot in$$

$$A_{cp} := \frac{\pi}{4} \cdot \left(d_2^2 - d_1^2 \right)$$

$$A_{cp} = 135.343 \cdot in^2$$

$$P_{cone} := 4 \cdot \sqrt{\frac{f_{cc}}{psi}} \cdot A_{cp} \cdot psi$$

$$P_{cone} = 34.239 \cdot kips$$

$$P_{cd} := n \cdot 0.67 \cdot P_{cone}$$

$$P_{cd} = 22.94 \cdot kips$$

Development Length in Concrete

Deformed Bar to Grout Bond

Length of Deformed Bar in Concrete

Development Strength

Total Connection Strength

 $t_{w} := 250 psi$ $L_{d} := 0 in$

$$P_{dev} := L_d \cdot t_w \cdot D_b \cdot \pi$$

$$P_{total} := P_{cd} + P_{dev}$$

$$P_{\text{dev}} = 0 \cdot \text{kips}$$

$$P_{total} = 22.9 \cdot kips$$

Plate Thickness

$OD_r := 4in$

Outside diameter of rigid body on plate

$$\mathsf{A}_p \coloneqq \mathsf{b} \!\cdot\! \mathsf{b}_2$$

$$A_{p} = 36 \cdot in^{2}$$

$$f_v := 36ksi$$

$$wbp := \frac{P - P_{dev}}{A_p}$$

Bearing Compression

$$M_{\text{max}} := \text{wbp} \cdot \left(\frac{b_2 - \text{OD}_r}{2}\right)^2 \cdot \frac{0.5}{n} \text{in} \quad M_{\text{max}} = 208.3 \cdot \text{in} \cdot \text{lbf}$$

$$S_{X} := \frac{M_{max}}{0.55 \cdot f_{V}}$$

$$S_{X} = 0.011 \cdot in^{3}$$

$$t := \sqrt{\frac{6 \cdot S_X}{0.5 \cdot b}}$$

$$t=0.145{\cdot}in$$

BY: PRINTZ ENGINEERING

2

USE -1/2"X6"X6"WITH A MINIMUM OF 4" CONCRETE CLEARANCE TO THE TOP AND BOTTOM OF PLATE TO THE OPEN EDGE OF CONCRETE.

Summary

Design Load $P = 15 \cdot kips$ Concrete Cover $h_c = 4 \cdot in$ Pile Length $L_{\text{total}} = 40 \cdot \text{ft}$ Development Length of Bar $L_{b} = 59.683 \cdot in$ Structural Capacity Required Plate Thickness $P_c = 32.224 \cdot \text{kips}$ $t = 0.145 \cdot in$ Bar Yield **Total Connection Strength** $F_V = 42.7 \cdot kips$ $P_{total} = 22.94 \cdot kips$

Bar Diameter $D_{\mathbf{h}} = 1.18 \cdot \text{in}$

Plate Width $b = 6 \cdot in$ check = "OK"

CONCLUSION - USE T30/16 HOLLOW BAR REINFORCING WITH A 4" DIA. DRILL BIT TO AN OVERALL BELOW GRADE DEPTH OF 40'-0" AND SLEEVE THE UPPER 30' WITH PVC BOND BREAKER. USE 3" NOMINAL SCH. 40 PVC A MINIMUM OF 1'-0" BELOW GRADE TO EXTEND THROUGH THE VOID AND INTO THE PAD FOOTING TO CONTINUE COROSSION PROTECTION THROUGH THE VOID. USE 1/2"X6"X6" A36 STEEL PLATE FOR THE STRUCTURAL CONNECTION, LOCATED A MINIMUM OF 4" UP FROM THE BOTTOM OF THE PAD FOOTING CONCRETE.