

Internet das Coisas

Aula 05 - Transistores

Os transistores são considerados, sem dúvida, como o mais importante componente eletrônico de todos os tempos, sendo um dos grandes responsáveis por impulsionar a tecnologia que hoje nos cerca. A sua variedade de flexibilidade. montagens possibilidades de aplicação, tornam um componente bem difícil de ser dominado e conhecido dentro de todo seu potencial.

Basicamente, um transistor é a associação de junções PN. O tipo mais comum de transistor (que recebe o nome de BJT, ou Bipolar Junction Transistor), associa duas dessas junções, unindo seus lados iguais. Quando a união dá pelos seus lados P, temos um transistor NPN; ao contrário, quando a união se dá pelos seus lados N, temos um transistor PNP. O lado unido (central à montagem) é chamado de Base e os outros 2 lados iguais são chamados de Coletor e Emissor.

Quando uma corrente é aplicada à base (entrando por ela no tipo NPN ou saindo por ela no tipo PNP), é provocada uma diminuição na área de depleção. Pelas características dos seus materiais, essa diminuição já permite que uma corrente flua entre os elementos iguais (do coletor para o emissor em transistores NPN e do emissor para o coletor em transistores PNP). Quando maior a corrente da Base, maior é a "abertura" (como uma válvula de água) para a passagem da corrente entre coletor e emissor. NPN **PNP**

Estes transistores podem ter 3 estados distintos:

- Estado de corte: n\u00e3o existe corrente na Base (ou existe e esta \u00e9 insuficiente).
 Deste modo, a passagem da corrente entre emissor e condutor est\u00e1 interrompida.
- Estado de saturação: a corrente da Base atinge um valor determinado que "abre" totalmente a passagem da corrente entre emissor de condutor.
- Estado ativo: na base existe uma corrente nem tão baixa para o estado de corte
 e nem tão alta para o estado de saturação, permitindo uma passagem apenas
 parcial da corrente entre emissor e condutor.

Analogia com uma válvula de água:

o HFE ("ganho" representado pelo símbolo β) funciona como um multiplicador, fazendo com que uma pequena corrente na base gere uma grande corrente no coletor.

Vamos analisar um transistor do tipo NPN:

V_{CF} = Tensão da fonte do coletor

 R_c = resistor do coletor

I_C = corrente do coletor

I_F = corrente do emissor

V_{CE} = perda de tensão do coletor (datasheet)

Exemplo de aplicação: um pequeno produtor rural resolveu desenvolver um sistema de rega que pudesse ser acionado à distância através de um botão. Para isso, possui uma válvula de água solenoide, alimentada por 9V e que ao ser acionada para liberar a passagem da água, necessita de uma corrente máxima de até 0,5A. Sabendo que o produtor possui apenas duas fontes de tensão (uma de 12V e outra de 5V), desenhe e dimensione um circuito para ativar e desativar essa válvula com o uso do transistor BC-548A (do tipo NPN).

- Desenhar circuito
- 2) Olhar datasheet
- $I_{\rm B} = I_{\rm C} / \beta$
- $\mathbf{4)} \quad \mathbf{R}_{\mathrm{B}} = (\mathbf{V}_{\mathrm{B}} \mathbf{V}_{\mathrm{BE}}) / \mathbf{I}_{\mathrm{B}}$
- 5) $\mathbf{R}_{\mathrm{C}} = (\mathbf{V}_{\mathrm{C}} \mathbf{V}_{\mathrm{CE}}) / \mathbf{I}_{\mathrm{C}}$
- 6) $I_E = I_B + (I_B \cdot \beta)$

- 1) Desenhar circuito
- 2) Olhar datasheet
- 3) $I_B = I_C / \beta$
- 4) $R_B = (V_B V_{BE}) / I_B$
- 5) $R_C = (V_C V_{CE}) / I_C$ 6) $I_E = I_B + (I_B \cdot \beta)$

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$	548	110	800	
			548A	110	220	
			548B	200	450	
			548C	420	800	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$			0.25	V
		$I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$			0.60	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$		0.58	0.70	V
		$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$			0.77	V

B (
$$H_{FE}$$
) = 110 / V_{CE} = 0,25 V / V_{BE} = 0,58 V

Para calcular a corrente da base, necessitamos saber a corrente que queremos liberar pelo transistor entre coletor e emissor (no caso 0,5 A necessários para acionar a válvula de água) e o ganho do transistor (já consultado no datasheet e no caso 110). Assim, temos:

$$I_B = I_C / \beta = 0.5 / 110 = 0.0045 \text{ A (ou } 4.5 \text{ mA)}$$

- 1) Desenhar circuito
- 2) Olhar datasheet
- $I_B = I_C / \beta$
- $\mathbf{A}) \quad \mathbf{R}_{\mathrm{B}} = (\mathbf{V}_{\mathrm{B}} \mathbf{V}_{\mathrm{BE}}) / \mathbf{I}_{\mathrm{B}}$
- $\mathbf{S}) \quad \mathbf{R}_{\mathbf{C}} = (\mathbf{V}_{\mathbf{C}} \mathbf{V}_{\mathbf{CE}}) / \mathbf{I}_{\mathbf{C}}$
- 6) $I_E = I_B + (I_B \cdot \beta)$

Como já temos a corrente a ser aplicada na base para liberar a corrente de 0,5 A necessária do outro lado para acionar o motor, podemos calcular o valor do resistor que, em série com a fonte de 5 V, garante essa corrente de 0,0045 A. Assim, temos:

- 1) Desenhar circuito
- 2) Olhar datasheet
- $I_{B} = I_{C} / \beta$
- 4) $R_B = (V_B V_{BE}) / I_B$
- 5) $R_C = (V_C V_{CE}) / I_C$
- 6) $I_E = I_B + (I_B \cdot \beta)$

$$\mathbf{R}_{B} = (\mathbf{V}_{B} - \mathbf{V}_{BE}) / \mathbf{I}_{B} = (5 - 0.58) / 0.0045 = 4.42 / 0.0045 = 982.2 \Omega \cong 1 \text{ K}\Omega$$

Do outro lado, já possuímos as informações necessárias para calcular o valor do resistor entre coletor e fonte (de 12 V) que garante o ajuste dos 0,5 A que irão alimentar a válvula solenoide, evitando sobrecargas. Assim, temos.

$$\mathbf{R_c} = (\mathbf{V_c} - \mathbf{V_{ce}}) / \mathbf{I_c} = (12-0.25) / 0.5 = 11.75 / 0.25 = 47 \Omega$$

- Desenhar circuito
 Olhar datasheet
- 2) Olhar datasheet
- 3) $I_B = I_C / \beta$
- 4) $R_B = (V_B V_{BE}) / I_B$
- 5) $R_C = (V_C V_{CE}) / I_C$
- 6) $I_E = I_B + (I_B \cdot \beta)$

Apenas para complementar as informações e o dimensionamento do circuito, calculamos a corrente que atravessará o emissor. Ela é a soma da corrente do coletor (0,5 A) com a corrente da base já amplificada. Assim, temos:

 $I_E = I_B + (I_B \cdot \beta) = 0.0045 + (0.0045 \cdot 110) = 0.4995 \approx 0.5 \text{ A}$

- Desenhar circuito
 Olhar datasheet
- 3) $I_B = I_C / \beta$
- 4) $R_B = (V_B V_{BE}) / I_B$
- $\mathbf{S}) \quad \mathbf{R}_{\mathbf{C}} = (\mathbf{V}_{\mathbf{C}} \mathbf{V}_{\mathbf{CE}}) / \mathbf{I}_{\mathbf{C}}$
- 6) $I_E = I_B + (I_B \cdot \beta)$

Finalmente, temos:

Transistor regulador de tensão LM78xx (fixo): família mais comum e barata do mercado, conta com proteção contra curto-circuito em sua saída. Possui tensão de saída fixa e não necessita de nenhum outro componente adicional. O valor dessa tensão de saída dá origem aos dois últimos números que dá nome ao transistor: LM7805 (5 V), LM7806 (6 V), LM7808 (8 V), LM7812 (12 V), LM7815 (15 V), LM7818 (18 V), LM7824 (24 V). Para usar, basta conectar ao pino 1 a tensão a ser regulada e o pino 2 ao terra (GND) e assim a tensão de saída do pino 3 será a indicada pelo transistor da família LM78xx escolhido.

Transistor regulador de tensão LM78xx (fixo): cuidados

- Tensão máxima de entrada a ser regulada: máximo de 35 V (com exceção do transistor LM7824 que suporta até 40 V na entrada).
- Para a tensão de saída ser garantida, a tensão de entrada deve ser no mínimo 3 V maior do que ela.

Transistor regulador de tensão LM78xx (fixo): cuidados

- A corrente máxima utilizada pelo subcircuito que utiliza a tensão de saída deve ser limitada à 1 A.
 - A potência dissipada deve ser calculada e se o seu valor superar 1W, o transistor deverá utilizar um dissipador de calor. Para essa cálculo, $P = (V_{entrada} V_{saída}) / I_{saída}$

Transistor regulador de tensão LM317: o transistor LM317 é também um regulador de tensão, com uso um pouco mais difícil do que os da família LM78xx, porém com uma grande vantagem: através da combinação de 2 resistores é possível regular a tensão de saída desejada. Para o seu uso, também é suportada uma tensão de entrada de até 40 V, com tensão de saída entre 3 e 37 V (pela queda de tensão dissipada) e corrente máxima de 1 A. Quanto ao seu uso, o LM317 pode ser utilizado com diversas montagens diferentes que variam a sua aplicação.

Como usar: nesta configuração, independente de qual for a tensão de entrada (até 40 V), a tensão de saída é definida pela combinação dos resistores R₁ e R₂.

$$U_{ajustada} = 1,25 \cdot (1 + R_2 / R_1)$$

Podemos isolar os resistores para descobrir quais valores devem ter para chegar à tensão de saída desejada:

$$R_1 = R_2 / ((V_{aiustada} / 1,25) - 1)$$

$$R_2 = ((V_{aiustada}/1,25) - 1) \cdot R_1$$

Exemplo: precisamos obter uma tensão de saída de 10 V com o LM317. Quais valores de resistores devemos utilizar e qual a tensão de entrada mínima e máxima?

U_{entrada} = qualquer valor entre 13 V e 40 V

Para calcular os resistor, podemos "chutar" um para $\bar{}$ descobrir o outro. Exemplo, vamos dar um chute \mathbf{R}_1 de 240 Ω .

$$R_2$$
 = ((V_{aiustada}/1,25) - 1) . R_1 = ((10/1,25) - 1) . 240 = 7 . 240 = **1680** Ω = **1,68** ΚΩ