

Unsupervised Night Image Enhancement: When Layer Decomposition Meets Light-Effects Suppression

Yeying Jin¹, Wenhan Yang², Robby T. Tan^{1,3}

¹National University of Singapore; ²Nangyang Technological University; ³Yale-NUS College

Night Image Problem

► Low Light:

➤ Light-Effects/Glare/Floodlight:

Motivation

Existing low-light enhancement methods:

✓ Enhance low-light regions

× Over-enhance light-effects regions

→ Low-light regions

× Enhance low-light regions

✓ Suppress glow; × Suppress light-effects

Main task: Boost dark regions, at the same time, suppress light-effects.

Challenge

> Lack of paired training data, hard to collect ground truth

Rendering physically correct night light-effects images is challenging

We propose an unsupervised night image enhancement method.

- Model-based Layer Decomposition
- Unpaired Light-Effects Suppression

Contributions

To boost dark regions, at the same time, suppress light-effects.

- We introduce an unsupervised learning network, that integrates layer decomposition and light-effects suppression.
- ➤ We propose utilizing the light-effects layer as guidance, to distinguish light-effects from background regions, e.g., white/multi-colored light-effects.
- ➤ We introduce **unsupervised losses** based on the structure and HF-features consistency, to **restore the background details**.

Framework: Overview

Framework: Layer Decomposition

Framework: Overview

Framework: Light-effects Suppression

Framework: Light-effects Suppression

Results on Light-Effects Suppression

➤ User Study

User study evaluation on the real night data, our method obtained the highest mean (the max score is 7) and lowest standard deviation.

3.3 ± 1.5	5.5 ± 1.3	3.7 ± 2.0	3.5 ± 1.6	3.1 ± 1.8	2.8 ± 1.5	6.1 ± 0.8
		1				
3.1 ± 1.6	4.2 ± 1.5	4.7 ± 1.5	3.7 ± 1.1	3.8 ± 1.5	3.0 ± 1.4	$\textbf{6.4} \pm \textbf{0.7}$
	3.3 ± 1.5 1.7 ± 0.8	$3.3 \pm 1.5 \ 5.5 \pm 1.3$ $1.7 \pm 0.8 \ 3.1 \pm 1.3$	$3.3 \pm 1.5 \ 5.5 \pm 1.3 \ 3.7 \pm 2.0$ $1.7 \pm 0.8 \ 3.1 \pm 1.3 \ 4.6 \pm 1.4$	$3.3 \pm 1.5 \ 5.5 \pm 1.3 \ 3.7 \pm 2.0 \ 3.5 \pm 1.6$ $1.7 \pm 0.8 \ 3.1 \pm 1.3 \ 4.6 \pm 1.4 \ 3.9 \pm 1.1$	$3.3 \pm 1.5 \ 5.5 \pm 1.3 \ 3.7 \pm 2.0 \ 3.5 \pm 1.6 \ 3.1 \pm 1.8$ $1.7 \pm 0.8 \ 3.1 \pm 1.3 \ 4.6 \pm 1.4 \ 3.9 \pm 1.1 \ 5.2 \pm 1.2$	EG [15] Afifi [1] Yan [38] Zhang [44] Li [23] Sharma [32] 3.3 ± 1.5 5.5 ± 1.3 3.7 ± 2.0 3.5 ± 1.6 3.1 ± 1.8 2.8 ± 1.5 1.7 ± 0.8 3.1 ± 1.3 4.6 ± 1.4 3.9 ± 1.1 5.2 ± 1.2 3.0 ± 1.5 3.1 ± 1.6 4.2 ± 1.5 4.7 ± 1.5 3.7 ± 1.1 3.8 ± 1.5 3.0 ± 1.4

realistic light-effects suppressed good visibility

Quantitative Evaluation

Quantitative light-effects suppression comparison on the night data.

Learning	-	UL	ZSL	SL	SL	SSL	Opti	Opti	SSL	UL
Datasets	Metrics	EG [15]	ZD+ [19]	RN [7]	Afifi [1]	Yan [38]	Zhang [44]	Li [23]	Sharma [32	Ours
GTA5 [38]	PSNR↑	10.94	21.13	7.79	15.47	26.99	20.92	21.02	8.14	29.79
G1A5 [58]	SSIM↑	0.31	0.68	0.23	0.53	0.85	0.65	0.64	0.29	0.88
Syn-light-effects [27]	PSNR↑	7.38	7.84	6.39	11.31	14.88	16.30	14.66	14.00	16.95
	SSIM↑	0.17	0.20	0.16	0.35	0.23	0.38	0.37	0.37	0.39

Ground Truth Input Ours

APSF Model Ground Truth

Results on Light-Effects Suppression

Results on Light-Effects Suppression

► Dark Zurich Dataset

Results on Low-light Enhancement

Quantitative comparisons on the LOL-test dataset

		LOL-test						
Learning	Method	$MSE(\times 10^3)$ $\downarrow PSNR\uparrow SSIM\uparrow LPIPS \downarrow$						
		MSE(×10,)↑	PSNK	SSIM	TLIL21			
Opti	LIME [14]	-	16.760	0.560	0.350			
	RetinexNet [7]	1.651	16.774	0.462	0.474			
	KinD++ [47]	1.298	17.752	0.760	0.198			
SL	Afifi [1]	4.520	15.300	0.560	0.392			
	RUAS [24]	3.920	18.230	0.720	0.350			
ZSL	ZeroDCE [13]	3.282	14.861	0.589	0.335			
SSL	DRBN [40]	2.359	15.125	0.472	0.316			
UL	EnlightenGAN [15]	1.998	17.483	0.677	0.322			
SSL	Sharma [32]	3.350	16.880	0.670	0.315			
UL	Ours	1.070	21.521	0.763	0.235			

Quantitative comparisons on the *LOL-Real* dataset.

Learning	NA	Opti	Opti	Opti	ZSL	ZSL	ZSL	ZSL	SL
Method	Input	JED [29]	RRM [21]	SRIE [9]	RDIP [48]	MIRNet [43]	RRDNet [50]	ZD [13]	RUAS [24]
$PSNR\uparrow$	9.72	17.33	17.34	17.34	11.43	12.67	14.85	20.54	15.33
$SSIM\uparrow$	0.18	0.66	0.68	0.68	0.36	0.41	0.56	0.78	0.52
Learning	SL	SL	SL	SL	SL	SSL	UL	SSL	UL
Method	LLNet [25]	RN [7]	DUPE [34]	SICE [6]	Afifi [1]	DRBN [41]	EG [15]	Sharma [32]	Ours
$PSNR\uparrow$	17.56	15.47	13.27	19.40	16.38	19.66	18.23	18.34	25.53
$SSIM\uparrow$	0.54	0.56	0.45	0.69	0.53	0.76	0.61	0.64	0.88
	•								

Results on Low-light Enhancement

► LOL-test dataset

► LOL-Real dataset

Ground Truth

Ours

Sharma

EG

Conclusion

- ➤ We presented an **unsupervised learning** framework for night image enhancement, which boost dark regions and suppress light-effects simultaneously.
- ➤ With light-effects layer guidance, our method separate white/multi-colored light-effects more properly.

➤ With unsupervised structure and HF-features consistency loss, our method restore the background details.

Thank you!

JINYEYING@U.NUS.EDU

CODES AND MODEL:

HTTPS://GITHUB.COM/JINYEYING/NIGHT-ENHANCEMENT