Métodos Iterativos para la Resolución Numérica de Sistemas de Ecuacionesl Lineales.

José Luis Ramírez B.

January 21, 2025

1 Introducción

2 Métodos Iterativos

Refinamiento Iterativo

• El método de Gauss y sus variantes se conocen con el nombre de métodos directos: se ejecutan un número finito de pasos y dan a lugar a una solución que sería exacta si no fuese por los errores de redondeo.

- El método de Gauss y sus variantes se conocen con el nombre de métodos directos: se ejecutan un número finito de pasos y dan a lugar a una solución que sería exacta si no fuese por los errores de redondeo.
- Cuando el tamaño de la matriz A es grande (n >> 100), la propagación del error de redondeo es también grande, y los resultados obtenidos pueden diferir de los exactos.

• Muchas de las matrices que aparecen en (SL) poseen la mayoría de sus elementos nulos. Estas matrices reciben el nombre de matrices dispersas o sparse.

- Muchas de las matrices que aparecen en (SL) poseen la mayoría de sus elementos nulos. Estas matrices reciben el nombre de matrices dispersas o sparse.
 - Si los elementos no nulos están distribuidos alrededor de la diagonal principal, son de aplicación todavía los métodos directos que conservan la estructura diagonal, como LU.

- Muchas de las matrices que aparecen en (SL) poseen la mayoría de sus elementos nulos. Estas matrices reciben el nombre de matrices dispersas o sparse.
 - Si los elementos no nulos están distribuidos alrededor de la diagonal principal, son de aplicación todavía los métodos directos que conservan la estructura diagonal, como LU.
 - Si no ocurre lo anterior, al aplicar métodos directos se produce un fenómeno de llenado. Entonces, si no se realiza una adaptación de los métodos directos los resultados no van a ser, en general, buenos.

• Un método iterativo que da resolución al sistema Ax = b es aquel que genera, a partir de un vector inicial $x^{(0)}$, una sucesión de vectores $x^{(1)}, x^{(2)}, \ldots$

- Un método iterativo que da resolución al sistema Ax = b es aquel que genera, a partir de un vector inicial $x^{(0)}$, una sucesión de vectores $x^{(1)}, x^{(2)}, \ldots$
- El método se dirá que es consistente con el sistema Ax = b, si el límite de dicha sucesión, en caso de existir, es solución del sistema.

- Un método iterativo que da resolución al sistema Ax = b es aquel que genera, a partir de un vector inicial $x^{(0)}$, una sucesión de vectores $x^{(1)}, x^{(2)}, \ldots$
- El método se dirá que es consistente con el sistema Ax = b, si el límite de dicha sucesión, en caso de existir, es solución del sistema.
- Se dirá que el método es convergente si la sucesión generada por cualquier vector inicial $x^{(0)}$ es convergente a la solución del sistema.

- Un método iterativo que da resolución al sistema Ax = b es aquel que genera, a partir de un vector inicial $x^{(0)}$, una sucesión de vectores $x^{(1)}, x^{(2)}, \ldots$
- El método se dirá que es consistente con el sistema Ax = b, si el límite de dicha sucesión, en caso de existir, es solución del sistema.
- Se dirá que el método es convergente si la sucesión generada por cualquier vector inicial $x^{(0)}$ es convergente a la solución del sistema.
- El vector $r^{(k)} = b Ax^{(k)}$ es el vector residual obtenido en la k-ésima iteración.

Si un método es convergente es consistente, sin embargo, el recíproco no es cierto.

Si un método es convergente es consistente, sin embargo, el recíproco no es cierto.

Ejemplo:

El método $x^{(n+1)} = 2x^{(n)} - A^{-1}b$ es consistente con el sistema Ax = b pero no es convergente. En efecto:

$$x^{(n+1)} - x = 2x^{(n)} - A^{-1}b - x = 2x^{(n)} - 2x - A^{-1}b + x$$
$$= 2(x^{(n)} - x) - (A^{-1}b - x)$$

y como $A^{-1}b = x$, se tiene que:

$$x^{(n+1)} - x = 2(x^{(n)} - x)$$

$$x^{(n+1)} - x = 2x^{(n)} - A^{-1}b - x = 2x^{(n)} - 2x - A^{-1}b + x$$
$$= 2(x^{(n)} - x) - (A^{-1}b - x)$$

y como $A^{-1}b = x$, se tiene que:

$$x^{(n+1)} - x = 2(x^{(n)} - x)$$

Si existe $\lim_{n\to\infty} x^{(n)} = x^*$, se tiene que:

$$x^* - x = 2(x^* - x) \Rightarrow x^* - x = 0 \Rightarrow x^* = x$$

es decir, el límite es solución del sistema Ax = b, por lo que el método es consistente.

Sin embargo, de $x^{(n+1)} - x = 2(x^{(n)} - x)$ se obtiene que:

$$||x^{(n+1)} - x|| = 2||x^{(n)} - x||$$

es decir, el vector $x^{(n+1)}$ dista el doble de lo que distaba $x^{(n)}$, por lo que el método no puede ser convergente.

• Al resolver un sistema de ecuaciones Ax = b utilizando un método numérico se obtiene una aproximación \tilde{x} de la verdadera solución del sitema.

- Al resolver un sistema de ecuaciones Ax = b utilizando un método numérico se obtiene una aproximación \tilde{x} de la verdadera solución del sitema.
- La exactitud de dicha solución depende de errores inherentes a los cálculos realizados.

- Al resolver un sistema de ecuaciones Ax = b utilizando un método numérico se obtiene una aproximación \tilde{x} de la verdadera solución del sitema.
- La exactitud de dicha solución depende de errores inherentes a los cálculos realizados.
- Sea x la solución exacta del sistema y \tilde{x} es la aproximación, por lo tanto cuando se sustituye \tilde{x} en el sistema se obtiene:

$$A\tilde{x} \approx b$$

esto significa que al realizar la resta $b - A\tilde{x} \neq 0$

• Definiendo a esta diferencia r (residuo), así $r = b - A\tilde{x}$.

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x} + z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x} + z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

$$A(\tilde{x}+z) = b$$

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x}+z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

$$A(\tilde{x} + z) = b$$
$$A\tilde{x} + Az = b$$

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x} + z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

$$A(\tilde{x} + z) = b$$

$$A\tilde{x} + Az = b$$

$$Az = b - A\tilde{x}$$

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x} + z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

$$A(\tilde{x} + z) = b$$

$$A\tilde{x} + Az = b$$

$$Az = b - A\tilde{x}$$

$$Az = r$$

- Definiendo a esta diferencia r (residuo), así $r = b A\tilde{x}$.
- La solución deseada es de la forma $\tilde{x} + z$ tal que al sustituir en el sistema de ecuaciones se obtenga

$$A(\tilde{x} + z) = b$$

y desarrollando se obtiene

$$A(\tilde{x} + z) = b$$

$$A\tilde{x} + Az = b$$

$$Az = b - A\tilde{x}$$

$$Az = r$$

• Una vez que obtenida z se puede crear una mejor aproximación $\tilde{x} + z$ de la solución.

Al resolver el sistema Ax = b donde

$$A = \begin{bmatrix} 60 & 30 & 20 \\ 30 & 20 & 15 \\ 20 & 15 & 12 \end{bmatrix} \quad \mathbf{y} \quad b = \begin{bmatrix} 110 \\ 65 \\ 47 \end{bmatrix}$$

suponiendo que una solución aproximada es
$$b = \begin{bmatrix} 0.9 \\ 0.8 \\ 1.2 \end{bmatrix}$$

• Aplicando un paso de refinamiento iterativo tomando $tol = 10^{-5}$, se tendría que:

$$x^{(0)} = \left[\begin{array}{c} 0.9 \\ 0.8 \\ 1.2 \end{array} \right]$$

• Aplicando un paso de refinamiento iterativo tomando $tol = 10^{-5}$, se tendría que:

$$x^{(0)} = \left[\begin{array}{c} 0.9 \\ 0.8 \\ 1.2 \end{array} \right]$$

• Calculando el residuo $r^{(0)} = b - Ax^{(0)} = \begin{bmatrix} 8 \\ 4 \\ 2.6 \end{bmatrix}$

• Aplicando un paso de refinamiento iterativo tomando $tol = 10^{-5}$, se tendría que:

$$x^{(0)} = \left[\begin{array}{c} 0.9 \\ 0.8 \\ 1.2 \end{array} \right]$$

- Calculando el residuo $r^{(0)} = b Ax^{(0)} = \begin{bmatrix} 8 \\ 4 \\ 2.6 \end{bmatrix}$
- Verificando criterio de parada $||r^{(0)}||_{\infty} = 8 > tol$

• Obteniendo z resolviendo el sistema Az = r se obtiene

$$z = \begin{bmatrix} 0.1\\ 0.2\\ -0.2 \end{bmatrix}$$

 \bullet Obteniendo z resolviendo el sistema Az=r se obtiene

$$z = \left[\begin{array}{c} 0.1 \\ 0.2 \\ -0.2 \end{array} \right]$$

• Generando la nueva aproximación

$$x^{(1)} = x^{(0)} + z = \begin{bmatrix} 0.9 \\ 0.8 \\ 1.2 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• Obteniendo z resolviendo el sistema Az = r se obtiene

$$z = \begin{bmatrix} 0.1\\ 0.2\\ -0.2 \end{bmatrix}$$

• Generando la nueva aproximación

$$x^{(1)} = x^{(0)} + z = \begin{bmatrix} 0.9 \\ 0.8 \\ 1.2 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• Calculando el residuo

$$r^{(1)} = b - Ax^{(1)} = \begin{bmatrix} -0.14210854715202 \\ 0 \\ 0 \end{bmatrix} \times 10^{-13}$$

• Verificando criterio de parada $\|r^{(1)}\|_{\infty}=0.14210854715202\times 10^{-13}< tol$

- Verificando criterio de parada $||r^{(1)}||_{\infty} = 0.14210854715202 \times 10^{-13} < tol$
- Según el criterio de parada la mejor aproximación es

$$x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• Si suponemos que la solución aproximada al sistema lineal Ax=b se determina usando aritmética de t dígitos, se puede demostrar que el vector residual r para la aproximación \tilde{x} tiene la propiedad

$$||r|| = 10^{-t} ||A|| ||\tilde{x}||$$

• Si suponemos que la solución aproximada al sistema lineal Ax = b se determina usando aritmética de t dígitos, se puede demostrar que el vector residual r para la aproximación \tilde{x} tiene la propiedad

$$||r|| = 10^{-t} ||A|| ||\tilde{x}||$$

 De esta ecuación aproximada, se puede obtener una estimación del número de condición efectivo para la aritmética de t dígitos, sin la necesidad de invertir la matriz A.

• La aproximación del número de condición $\kappa(A)$ a t dígitos viene de considerar el sistema lineal Az = r.

- La aproximación del número de condición $\kappa(A)$ a t dígitos viene de considerar el sistema lineal Az = r.
- De hecho \tilde{z} , la solución aproximada de Az = r, satisface que

$$\tilde{z} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = A^{-1}b - A^{-1}A\tilde{x} = x - \tilde{x}$$

- La aproximación del número de condición $\kappa(A)$ a t dígitos viene de considerar el sistema lineal Az = r.
- De hecho \tilde{z} , la solución aproximada de Az = r, satisface que

$$\tilde{z} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = A^{-1}b - A^{-1}A\tilde{x} = x - \tilde{x}$$

• así que \tilde{z} es una estimación del error cometido al aproximar la solución del sistema original.

$$\|\tilde{z}\| \approx \|x - \tilde{x}\| = \|A^{-1}r\| \le \|A^{-1}\| \|r\|$$
$$\approx \|A^{-1}\| \left(10^{-t} \|A\| \|\tilde{x}\|\right) = 10^{-t} \|\tilde{x}\| \kappa(A)$$

- La aproximación del número de condición $\kappa(A)$ a t dígitos viene de considerar el sistema lineal Az = r.
- \bullet De hecho $\tilde{z},$ la solución aproximada de Az=r, satisface que

$$\tilde{z} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = A^{-1}b - A^{-1}A\tilde{x} = x - \tilde{x}$$

• así que \tilde{z} es una estimación del error cometido al aproximar la solución del sistema original.

$$\|\tilde{z}\| \approx \|x - \tilde{x}\| = \|A^{-1}r\| \le \|A^{-1}\| \|r\|$$
$$\approx \|A^{-1}\| \left(10^{-t} \|A\| \|\tilde{x}\|\right) = 10^{-t} \|\tilde{x}\| \kappa(A)$$

• Esto proporciona una aproximación para el número de condición involucrado en la solución del sistema Ax = b usando t dígitos:

$$\kappa(A) \approx 10^t \frac{\|\tilde{z}\|}{\|\tilde{x}\|}$$

• El sistema lineal Ax = b dado por

$$\begin{pmatrix} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15913 \\ 28.544 \\ 8.4254 \end{pmatrix}$$

tiene la solución exacta $x = (1, 1, 1)^t$

• El sistema lineal Ax = b dado por

$$\begin{pmatrix} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15913 \\ 28.544 \\ 8.4254 \end{pmatrix}$$

tiene la solución exacta $x = (1, 1, 1)^t$

• Usando eliminación Gaussiana y aritmética de redondeo de 5 dígitos a

$$\begin{pmatrix}
3.333 & 15920 & -10.333 & 15913 \\
0 & -10596 & 16.501 & -10580 \\
0 & 0 & -5.079 & -4.7
\end{pmatrix}$$

La solución aproximada a este sistema es

$$\tilde{x} = (1.2001; 0.99991; 0.92538)^t$$

• El vector residual correspondiente a \tilde{x} calculado con doble precisión (y luego redondeado a cinco dígitos) es

$$\begin{array}{lll} r & = & b - A\tilde{x} = \\ & = & \left(\begin{array}{c} 15913 \\ 28.544 \\ 8.4254 \end{array} \right) - \left(\begin{array}{ccc} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{array} \right) \left(\begin{array}{c} 1.2001 \\ 0.99991 \\ 0.92538 \end{array} \right) \\ & = & \left(\begin{array}{c} -0.0051818 \\ 0.27413 \\ -0.18616 \end{array} \right) \end{array}$$

• El vector residual correspondiente a \tilde{x} calculado con doble precisión (y luego redondeado a cinco dígitos) es

$$\begin{array}{lll} r & = & b - A\tilde{x} = \\ & = & \begin{pmatrix} 15913 \\ 28.544 \\ 8.4254 \end{pmatrix} - \begin{pmatrix} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{pmatrix} \begin{pmatrix} 1.2001 \\ 0.99991 \\ 0.92538 \end{pmatrix} \\ & = & \begin{pmatrix} -0.0051818 \\ 0.27413 \\ -0.18616 \end{pmatrix} \end{array}$$

• así que

$$||r||_{\infty} = 0.27413$$

• La estimación del número de condición se obtiene resolviendo primero el sistema Az = r:

$$\left(\begin{array}{ccc} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{array}\right) \left(\begin{array}{c} z_1 \\ z_2 \\ z_3 \end{array}\right) = \left(\begin{array}{c} -0.0051818 \\ 0.27413 \\ -0.18616 \end{array}\right)$$

• La estimación del número de condición se obtiene resolviendo primero el sistema Az = r:

$$\begin{pmatrix} 3.333 & 15920 & -10.333 \\ 2.222 & 16.71 & 9.612 \\ 1.5611 & 5.1791 & 1.6852 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} -0.0051818 \\ 0.27413 \\ -0.18616 \end{pmatrix}$$

• La solución $z = (-0.20008; 8.9989 \times 10^{-5}; 0.074607)^t$ Usando la estimación del número de condición

$$\kappa(A) \approx 10^5 \frac{\|\tilde{z}\|_{\infty}}{\|\tilde{x}\|_{\infty}} = \frac{10^5 (0.20008)}{1.2001} = 16672$$

• Se ha usado la estimación $\tilde{z} \approx x - \tilde{x}$, donde \tilde{z} es la solución aproximada al sistema Az = r.

- Se ha usado la estimación $\tilde{z} \approx x \tilde{x}$, donde \tilde{z} es la solución aproximada al sistema Az = r.
- A partir de este resultado, se genera la nueva aproximación $\tilde{x} + \tilde{z}$.

- Se ha usado la estimación $\tilde{z} \approx x \tilde{x}$, donde \tilde{z} es la solución aproximada al sistema Az = r.
- A partir de este resultado, se genera la nueva aproximación $\tilde{x} + \tilde{z}$.
- Este proceso puede ser repetido para refinar la solución sucesivamente hasta alcanzar convergencia.

Algoritmo

```
input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, Número máximo de iteraciones N,
          tolerancia TOL.
output: Solución aproximada x \in \mathbb{R}^n.
Resolver Ax = b
for k \leftarrow 1 to N do
    r = b - Ax
    Resolver Ay = r (usando eliminación Gaussiana en el mismo
     orden que en el paso 1).
    Calcular K(A) = 10^t \frac{\|y\|}{\|x\|} (solo se calcula la primera vez).
   x = x + y
   if ||y|| < TOL then
       salida x
        parar
    end
end
```

Algorithm 1: Algoritmo de Refinamiento Iterativo.

Métodos Iterativo

Un métodos iterativo es estacionarios cuando la transición de $x^{(k)}$ a $x^{(k+1)}$ no depende de la historia anterior:

- Métodos Estacionarios: $x^{(k+1)} = f(x^{(k)})$
- Métodos no Estacionarios:

$$x^{(k+1)} = f(x^{(k)}, x^{(k-1)}, x^{(k-2)}, \ldots)$$