Alex Gilson AS.410.635.81 Genomics Spring 2021 Units 5-6 Graded Homework

Part 1

We aim to get the number of common SNPs in the exonic regions of EPHX1 gene (NM 001291163).

a. (0.5 pts) Use <u>Galaxy</u> to retrieve all RefSeq Genes (hg38) from the UCSC Main table browser in the region for the EPHX1 (NM_001291163) gene (type in the RefSeq ID, click lookup, then click on the RefSeq ID) and output the results in BED format. On the next page, choose Coding Exons. How many coding exons were identified?

- a. 52 coding exons were ID'd by USCS table browser and shown on Galaxy.
- b. (0.75 pts) Retrieve Common SNPs (147) from the same region. You may use group: Variation: Common SNPs (147). How many regions were identified?

202 Common SNPs were ID'd.

Part 2

a.

a. (0.25 pts) Use Galaxy to query for hg38 genes in ENCODE region ENm008 (chr16:1-500000) from the UCSC Main table browser at UCSC (group: Genes and Gene Predictions, track: GENCODE v32 or newer, output format: BED). On the next page, choose Whole Gene. How many genes were identified?

198 total genes were identified.

b. (0.25 pts) Determine how many genes in this output are on the plus strand and the minus strand. Use the *Group* tool making sure to group on the correct column of the BED file and using the "Count" operation. How many genes are on the plus strand? the minus strand?

From the Group tool, it was found that 87 genes from the search are on the minus strand and 111 are on the plus strand.

c. (0.25 pts) Draw a histogram of the number of exons in each gene. You may use any tools. Check out details on BED12 format here if you're not sure which column to use. Play around with the parameters to produce a graph that looks good. Don't forget to label the x axis! Submit the histogram.

The "Histogram of a numeric column" function on Galaxy was used show the frequency at which genes for specific number of exons was seen in the dataset.

Using IGV for hg19, load dbSNP 1.4.7 or newer (i.e. Available Datasets > Annotations > Variation and Repeats > dbSNP 1.4.7) and an exome sequencing track from the 1000 Genomes project (1000 Genomes > Alignments > GBR > exome > HG00096 exome). Go to the EPHX1 gene and zoom in on the exon #4.

a. (0.25 pts) How many SNPs overlap this exon and what are the SNP IDs?

Found on IGV, and retrieved the list via UCSC

						chr1	226026385	226026386	rs763704955	0	+
						chr1	226026388	226026389	rs773821078	0	+
						chr1	226026389	226026390	rs761335756	0	+
						chr1	226026392	226026393	rs754199890	0	+
chr1	226026355	226026356	rs746998584	0	+	chr1	226026397	226026398	rs755378466	0	+
chr1	226026372	226026373	rs770682588	0	+	chr1	226026398	226026399	rs141157588	0	+
chr1	226026376	226026377	rs112721617	0	+	chr1	226026403	226026404	rs752988508	0	+
chr1	226026377	226026378	rs745675416	0	+	chr1	226026404	226026405	rs55784606	0	+
chr1	226026379	226026380	rs769262345	0	+	chr1	226026405	226026406	rs2234922	0	+
chr1	226026383	226026383	rs756407271	0	+	chr1	226026409	226026410	rs761017131	0	+
chr1	226026383	226026384	rs775238551	0	+	chr1	226026411	226026412	rs373688139	0	+
chr1	226026383	226026384	rs764460024	0	+	chr1	226026433	226026434	rs766545273	0	+
chr1	226026384	226026385	rs762318357	0	+	chr1	226026434	226026435	rs769650380	0	+
chr1	226026436	226026437	rs779549215	0	+						
chr1	226026442	226026443	rs147296174	0	+						
chr1	226026445	226026446	rs144904318	0	+	chr1	226026508	226026509	rs764312984	0	+
chr1	226026454	226026455	rs199979074	0	+	chr1	226026512	226026513	rs151050888	0	+
chr1	226026455	226026456	rs761426131	0	+	chr1	226026518	226026519	rs757356785	0	+
chr1	226026469	226026470	rs771499872	0	+	chr1	226026524	226026525	rs371520880	0	+
chr1	226026472	226026473	rs777312225	0	+	chr1	226026529	226026530	rs755831510	0	+
chr1	226026483	226026484	rs139835141	0	+	chr1	226026542	226026543	rs779962356	0	+
chr1	226026487	226026488	rs754290186	0	+	chr1	226026543	226026544	rs748882501	0	+
chr1	226026490	226026491	rs765684911	0	+	chr1	226026557	226026558	rs768301272	0	+
chr1	226026493	226026494	rs376877493	0	+	chr1	226026562	226026563	rs778715423	0	+
chr1	226026504	226026505	rs763302326	0	+	chr1	226026572	226026573	rs140788022	0	+

b. (0.25 pts) At which SNP(s) in part a does this individual appear to be heterozygous? What is the sequence count for each nucleotide at this(these) position(s) (**Hint**: look at the HG00096 exome Coverage track)

- SNP rs2234922 appears to be heterozygous at position chr1:226026406. chr1:226,026,406

Total count: 91 A: 57 (63%, 27+, 30-)

C:0

G: 34 (37%, 20+, 14-)

T:0 N:0

The sequence count is as follows:

c. (0.25 pts) Submit the image from IGV, zoomed in on but showing all of the exon #4 including the SNP and exome tracks.

Part 4

a. (0.25 pts) Using IGV, load the Firehose (TCGA) data from January 28, 2016 for OV-TP (ovarian cancer) using hg19. The following four genes have been shown to be associated with CNV in some forms of ovarian cancer: PKN2, GRXCR1, PRKN (or PARK2), and PPIAL4A. In a table, qualitatively evaluate the CNV summary (minus germline) in each gene's region (e.g. "even blue and red", "twice as much blue as red", "overwhelmingly red").

• PKN2: Majority Red

• GRXCR1: Slightly more blue than red

PRKN/PARK2: Majority Blue

• PPIAL4A: Completely Red(chr1:147,954,635-147,955,419)

b.(0.25 pts) Repeat part a but for Firehose (TCGA) data for BRCA-TP (breast cancer). Add CNV summaries for part b as another column in the same table as part a.

• PKN2: Slightly more blue

• GRXCR1: Majority Blue

• PRKN/PARK2: Majority Blue

• PPIAL4A: Completely Red

c. (0.25 pts) Submit the table and briefly summarize the similarities or differences between ovarian cancer and breast cancer in each of these genes in terms of CNVs. Make a third column in the table for these summaries.

Gene	Ovarian	Breast Cancer	Comparison of Results		
	Cancer				
PKN2	Majority Red	Slightly more Blue	Ovarian cancer shows a loss while breast cancer shows a gain, which could indicate that this gene is involved in the pathway for one of these diseases, but not the other.		
GRXCR1	Slightly more Blue	Majority Blue	Since both show more blue here, this gene could be implicated in both cancers, with BC showing more copy number gain and therefore more effect from the gene in the development of that cancer type, BUT could also mean that this gene plays little role in the development of these diseases.		
PRKN	Majority Blue	Majority Blue	As both are majority blue, it is similar to GRXCR1 where the gain of CN in PRKN plays a role in the development of both OC and BC, or since it shows similarly in both, doesn't play much of a role in the difference between the two diseases.		
PPIAL4A	Completely Red	Completely Red	Both cancers show a loss of CNV in this region of the genome, indicating that PPIAL4A is implicated in both diseases, where the loss of this gene's expression could lead to cancerous conditions.		

Part 5

Find the human CACNA1A gene in NCBI ClinVar. Filter to limit results to Variation type: Deletion.

a. (0.25 pts) How many total variations are listed after filtering?

103 results are shown after filtering.

b. (0.25 pts) How many variants from part a are pathogenic?

56 results are listed as "pathogenic".

c. (0.25 pts) Find the CACNA1A gene in Ensembl and look for structural variants. How many structural variant entries can you find from the excel table?

59 entries are found in the excel file.

d. (0.25 pts) Find the CACNA1A gene in the NCBI Variation Viewer. Filter for dbVar and CNV. How many total CNVs?

455 total CNVs are listed after filtering for those conditions on Variation Viewer. e. (0.25 pts) What is the most typical pathogenic condition for the CACNA1A gene variation from ClinVar?

Episodic Ataxia type 2

f. (0.25 pts) For the previous part5e, what clinical treatment options available? (you can use google or uptodate or epocrates or pubmed).

According to this healthline.com article regarding types of episodic ataxia, treatment includes: anticonvulsant/antiseizure medications(acetazolamide being the most common); flunarizine and dalfampridine; physical therapy to improve strength and mobility in patients or lifestyle/diet changes.

https://www.healthline.com/health/episodic-ataxia#treatment