习频集第四章

1. #:
$$f(x) = ce^{-x+x} = ce^{+e^{-(x-\frac{1}{2})^2}}$$

:EX= = , Var(X)==

8.解:
$$EX = \int_0^\infty \frac{x^{n+1}e^{-x}}{n!} dx = \frac{p(n+2)}{n!} = n+1$$

$$E[X^2] = \int_0^\infty \frac{x^{n+2}e^{-x}}{n!} dx = \frac{17(n+3)}{n!} = (n+1)(n+2)$$

$$[0.$$
 角) $EX=0.S$ => $\int_0^1 f(x) dx = 1$ $\int_0^1 xf(x) dx = 0.5$

$$\Rightarrow \begin{cases} b = -12 \\ c = 3 \end{cases}$$

17.解: 记次函数为X, 可知X. 遵从超几何分布
Pr X~h(150, 20000, 1000)
对于超几何分布 h(n, N, M), 其数学期望为
$EX = Y_{1} \begin{pmatrix} M \\ k \end{pmatrix} \begin{pmatrix} N-M \\ n-k \end{pmatrix} = M = M = M + M + M + M + M + M + M + M$
$\frac{EX = \sum_{k=0}^{\infty} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} = n \frac{M}{N} \sum_{k=1}^{\infty} \frac{\binom{M-1}{k-1} \binom{N-M}{n-k}}{\binom{N-1}{n-k}} = n \frac{M}{N}$
其中 Y=min {/N, n}
从而起中所要求的数学期望代入即得 7.5
8.解·记义为空盒子数,Xk=1表示第k个盒子为空,否则Xk=0
(k=1, 2,, n)
$ P(X_{k}=1) = (\frac{n-1}{n})^{n} $
EX=E(是Xk)=是EXk=n(1-六)n
n->四时,空盆子平均比例为 lim (1-方) = e1
11-30-0
12.解: E[(X-1)(X-2)]=5 => Ex2-3EX-3=0 0
对于 Poisson 与布 P(A), EX=1, Var(X)=1
故の⇒ λ^2 - $z\lambda$ - $3=0$ ⇒ $\lambda=3$ (λ 0)