The Al Scientist

Automating discovery, from cognitive robotics to computational biology

For copy of slides email Hod.Lipson@Columbia.edu

Evolution

With Nick Cheney

The New York Times

THURSDAY, AUGUST 31, 2000

Scientists Report They Have Made Robot That Makes Its Own Robots

By KENNETH CHANG

For the first time, computer scientists have created a robot that designs and builds other robots, almost entirely without human help.

In the short run, this advance could lead to a new industry of inexpensive robots customized for specific tasks. In the long run - decades at least - robots may one day be truly regarded as "artificial life," able to reproduce and evolve, building improved versions of them-

Such durable, adaptive robots, astronomers have suggested, could someday be sent into space to explore the galaxy or search for other

But the quest to create artificial

The "Arrow" left a trail as it crawled across a bed of sand.

were not manufactured by humans."

Dr. Pollack and Dr. Lipson, a research scientist, report their results in today's issue of the journal Na-

"This is the first avamale of areas

Adapting in simulation

Adapting in reality

Simulation & Reality

System Identification

Candidate models

$$\begin{cases} \frac{dx}{dt} = -2y^2 + \log x \\ \frac{dy}{dt} = -x + \frac{y}{6} \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = -3\frac{y+1}{y-1} \\ \frac{dy}{dt} = -\frac{x^2}{x^2+1} \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = -\sqrt{y} + \frac{x}{5} \\ \frac{dy}{dt} = -\sin y \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = -y^{1.8} + \log x \\ \frac{dy}{dt} = -x + \frac{y}{4x} \end{cases}$$

Candidate tests

Inference Process

Structural Damage Diagnosis

Symbolic Regression

What function describes this data?

Encoding Equations

Building Blocks: + - * / sin cos exp log ... etc

Models: Expression trees
Subject to mutation and selection

Experiments: Data-points
Subject to mutation and selection

{const,+,-,*,/,sin,cos,exp,log,abs}

Solution Accuracy

Solution Complexity

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Semi-empirical mass formula

Modeling the binding energy of an atomic nucleus

Inferred Formula:

$$E_B = 14.83 - 13.43A + 12.39A^{0.64} + \frac{0.39Z^2}{A^{0.26}} + \frac{17.29(N-Z)^2}{A} \longrightarrow \mathbb{R}^2 = \mathbf{0.99944}$$

Weizsäcker's Formula:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z) \longrightarrow \mathbb{R}^2 = \mathbf{0.999915}$$

$$\delta(A, Z) = \begin{cases} +\delta_0 & Z, N \text{ even} \\ 0 & A \text{ odd} \\ -\delta_0 & Z, N \text{ odd} \end{cases} \qquad \delta_0 = \frac{a_P}{A^{1/2}}$$

Systems of Differential Equations

Regress on derivative

State	Variables		Derivative	S	
<u>time</u>	<u>x</u> 1	<u>X</u> 2	 dx ₁ /dt	<u>x₂/dt</u>	
0	3.4	-1.7	 -2.0	0.8	
0.1	3.2	-0.9	 -1.0	8.0	
0.2	3.1	-0.1	 -4.0	1.3	
0.3	2.7	1.2	 -5.7	1.9	
			 		•••

Inferring Biological Networks

Original Equations

Inferred Equations

Bacilius Subtilis

Wet Data, Unknown System

Cell #3-60 ...

$$\frac{d^2 G}{dt^2} = 0.329708 - \frac{0.494562 \left(G - \frac{dG S^2}{(dG - G)^2}\right)}{19.75 + 2 dG + e^{\frac{dG S^2}{dG - G}}}$$

$$\frac{d^2 S}{dt^2} = -0.0949 + \frac{0.511803}{-36.951 + 4 dG + G} + \frac{13.1334 - 1.46 dG}{-1.42633 (18.96 - dG) + S}$$

Blue Dots = data points, Green Line = regressed fit

Symbolic Regression Inferred *Time-Delay* Model:

$$\frac{dK}{dt} = a_K + \frac{b_K + c_K S}{K}$$
$$\frac{dS}{dt} = a_S + \frac{b_S + c_S K}{S}$$

Biologist's Inferred Model: Gurol Suel, et. al., Science

$$\frac{dK}{dt} = \alpha_k + \frac{\beta_K K^n}{k_0^n + K^n} - \frac{\delta_K K}{1 + K / \Gamma_K + S / \Gamma_S} - \lambda_K K$$

$$\frac{dS}{dt} = \alpha_S + \frac{\beta_S}{1 + (K / k_1)^p} - \frac{\delta_k S}{1 + K / \Gamma_K + S / \Gamma_S} - \lambda_S S$$

Withheld Test Set #1 Fit

$$\frac{dG_t}{dt} = \frac{1582.0 + 17.3214 \cdot S_{t-51}}{G_{t-18}} - 16.7423$$

$$\frac{dS_t}{dt} = \frac{114.922 + 0.3019 \cdot G_{t-25}}{S_{t-15}} - 3.05$$

Withheld Test Set #2 Fit

$$\frac{dG_t}{dt} = \frac{3526.92 - 21.312 \cdot S_{t-54}}{G_{t-17}} - 10.1355$$

$$\frac{dS_t}{dt} = \frac{132.271 - 0.0178 \cdot G_{t-57}}{S_{t-18}} - 2.9693$$

Withheld Test Set #3 Fit

$$\frac{dG_t}{dt} = \frac{5057.1 - 39.7452 \cdot S_{t-46}}{G_{t-21}} - 6.4406$$

$$\frac{dS_t}{dt} = \frac{295.426 - 0.2965 \cdot G_{t-54}}{S_{t-20}} - 3.871$$

Correlations

$$f(\theta_t, \omega_t) = const$$

42

42+x-x

42+x/1000

Homework

$$x^2 + y^2 - 16 = 0$$

$$x^2 + y^2 - 16 = 0$$
 $x^3 + x - y^2 - 1.5 = 0$ $x^2 + y^2 + z^2 - 1 = 0$

$$x^2 + y^2 + z^2 - 1 = 0$$

From Data:

Calculate partial derivatives Numerically:

From Equation:

Calculate predicted partial derivatives Symbolically:

$$\frac{\delta f}{\delta x} / \frac{\delta f}{\delta y} \longrightarrow \frac{\delta x'}{\delta y'}, \frac{\delta y'}{\delta x'}, \dots$$

$$H = 114.28* \left(\frac{dx}{dt}\right)^{2} + 692.322* x^{2}$$

$$L = 61.591* \left(\frac{dx}{dt}\right)^{2} - 369.495* x^{2}$$

Coefficients may have different scales and offsets each run

$$\mathbf{H} = \left(\frac{d\theta}{dt}\right)^2 + 2.42847 * \cos(\theta)$$

$$\mathbf{L} = 3.52768 * \left(\frac{d\theta}{dt}\right)^2 - 9.43429 * \cos(\theta)$$

$$H = -14.691*x_1^2 - 15.551*x_2^2 - 21.676*x_1x_2 + 8.3808*\left(\frac{dx_2}{dt}\right)^2 + 2.6046*\left(\frac{dx_1}{dt}\right)^2$$
would be plus for Lagrangian

Detected Invariance:

$$L_1^2(m_1+m_2)\omega_1^2 + m_2L_2^2\omega_2^2 +$$
 $m_2L_1L_2\omega_1\omega_2\cos(\theta_1-\theta_2) 19.6L_1(m_1+m_2)\cos\theta_1 19.6m_2L_2\cos\theta_2$

$$\frac{d\mathbf{K}}{dt} = a_{\mathbf{K}} + \frac{b_{\mathbf{K}} + c_{\mathbf{K}} \mathbf{S}_{t-t_1}}{\mathbf{K}_{t-t_2}}$$
$$\frac{d\mathbf{S}}{dt} = a_{\mathbf{S}} + \frac{b_{\mathbf{S}} + c_{\mathbf{S}} \mathbf{K}_{t-t_3}}{\mathbf{S}_{t-t_4}}$$

Stochastic Models

 \boldsymbol{x}

X

Reaction Systems

Maximum Likelihood Stochastic Model

$$X \xrightarrow{10} 2 X$$

$$x + y \xrightarrow{0.1} 2 y$$

$$y \xrightarrow{10} \emptyset$$

Chattopadhay and Lipson, PNAS, 2013

Hybrid Systems

$$\theta_t$$
, ω_t

$$f(\theta_t, \omega_t) = const$$

Real

Predicted (~0.5 sec in advance)

Real

Predicted (~0.5 sec in advance)

Predicted
(~0.5 sec in advance)

Chen, Huang, Raghupathi, Preetam, Du, Lipson. In review. 2022

System	ID from Latent Vectors	Ground Truth
Circular motion	2.19 (± 0.05)	2
Reaction diffusion	2.16 (± 0.14)	2
Single pendulum	2.05 (± 0.02)	2
Rigid double pendulum	4.71 (±0.03)	4
Swing stick	4.89 (± 0.33)	4
Elastic double pendulum	5.34 (± 0.20)	6
Air dancer	7.57 (± 0.13)	Unknown
Lava lamp	7.89 (±0.96)	Unknown
Fire	24.70 (± 2.02)	Unknown

f-ma

1687

The New York Times

"... Theoretical physicists are not yet obsolete, but scientists have taken steps toward replacing themselves ..."

The Al Scientist

Automating discovery, from cognitive robotics to computational biology

For copy of slides email Hod.Lipson@Columbia.edu

This research was supported in part by

