Practical No. 15

Title: Implementation of Booth's Algorithm for Arithmetic Operations

Objective: To implement **Booth's Algorithm** for performing multiplication of signed binary numbers using shifting and addition.

Theory:

Booth's Algorithm is an efficient method for multiplying two signed binary numbers in **two's complement representation**. It reduces the number of addition and subtraction operations by encoding the multiplier bits effectively.

Steps of Booth's Algorithm:

- 1. Initialize the Registers:
 - Multiplicand (M) The number being multiplied.
 - \circ **Multiplier** (**Q**) The number by which the multiplicand is multiplied.
 - \circ **Q-1** Extra bit used for tracking shifts.
 - Accumulator (A) Stores intermediate results.
- 2. Perform Booth's Encoding on the Multiplier:
 - Read two bits at a time: (Q0 and Q-1)
 - Apply the following rules:
 - $00 \rightarrow \text{No operation (only shift right)}.$
 - $01 \rightarrow \text{Add } \mathbf{M} \text{ to } \mathbf{A} \text{ (then shift right)}.$
 - $10 \rightarrow \text{Subtract } \mathbf{M} \text{ from } \mathbf{A} \text{ (then shift right)}.$
 - $11 \rightarrow \text{No operation (only shift right)}$.
- 3. Perform Arithmetic Right Shift (ARS):
 - Shift the bits of A, Q, and Q-1 right as a unit.
 - o Preserve the sign bit during shifting.
- 4. Repeat the Process for n Bits:
 - o Continue until all bits of the multiplier are processed.

Example (Multiplication of -6 and 3 in 4-bit Representation):

Step	A (Accumulator)	Q (Multiplier)	Q-1	Operation
0	0000	0011	0	Initial
1	1010	0011	0	A = A - M
2	1101	0001	1	Shift Right
3	1110	0000	1	Shift Right
4	1111	0000	0	Final Result (-18 in 2's complement)

Materials/Tools Required:

- Microprocessor/microcontroller (e.g., 8085/8051)
- Assembler/Simulator
- Computer system with programming software
- Binary calculator (optional)

Procedure:

1. Initialize Registers:

- Store the **multiplicand** (**M**) in one register.
- o Store the **multiplier** (**Q**) in another register.
- Set Q-1 to 0.
- Set Accumulator (A) to 0.

2. Perform Booth's Algorithm:

- Read the LSB of Q (Q0) and Q-1.
- o Perform the appropriate operation (Addition, Subtraction, or No Operation).
- o Apply Arithmetic Right Shift (ARS) on A, Q, and Q-1.
- o Repeat until all bits are processed.

3. Store and Display the Result:

- o The final result is stored in A & Q registers.
- Convert to decimal to verify correctness.

Observations:

• The algorithm efficiently handles signed multiplication.

Using Booth's encoding minimizes the number of addition/subtraction operations.					
The result is stored in two registers representing the final product.					
Conclusion:					
Booth's Algorithm is successfully implemented for multiplying two signed 8-bit numbers using shifting and arithmetic operations . The method optimizes performance by reducing redundant operations.					
Applications (Optional):					
• Used in microprocessors for signed binary multiplication .					
Applied in digital signal processing and computer arithmetic.					
• Helps in hardware implementation of arithmetic logic units (ALUs).					