

Homotopietypentheorie

Oberseminar Theoretische Informatik

Florian Chudigiewitsch

Institut für Theoretische Informatik

Themen

- Geschichtliches
- Grundlagen der Typentheorie
- Homotopietypentheorie
- Anwendungen & Aktuelle Forschungsfragen

Russellsche Antinomie

Special Year on Univalent Foundations of Mathematics

Quellen und Referenzen

https://homotopytypetheory.org/book/[Uni13]

Computerphile (Youtube)

- Type Theory
- Propositions as Types
- Voevodsky
- Homotopy Type Theory

Emily Riehl

- Video
- Slides

Grundlagen der Typentheorie

Konstruktivität

- Law of excluded middle (LEM) wichtiges Axiom in der klassischen Mathematik
- $\bullet \ \vdash \phi \lor \neg \phi$
- Ermöglicht Widerspruchsbeweise
- Konstruktive Logik verzichtet auf LEM
- Dadurch wird durch einen Beweis immer ein "Witness" erzeugt
- Keine wirkliche Einschränkung, da man LEM jederzeit als Annahme hinzunehmen kann

Dependent Type Theory: Die vier "Grundaussagen"

Die vier Grundformen ("judgements") der "wohlgeformten Formeln" der Dependent Type Theory sind:

Formel	Interpretation	Beispiel
$\Gamma \vdash A$ type	"A ist ein Typ"	N type
$\Gamma \vdash a : A$	"a ist ein Term vom Typ A"	$1: \mathbb{N}$
$\Gamma, x : A \vdash B(x)$ type	" $B(x)$ ist eine Typfamilie über A "	$n: \mathbb{N} \vdash \mathbb{R}^n$ type
$\Gamma, x : A \vdash b(x) : B(x)$	" $b(x)$ ist eine Termfamilie"	$n: \mathbb{N} \vdash \vec{0}: \mathbb{R}^n$

 Γ ist der *Kontext*, der die Typen aller vorkommenen Variablen deklariert.

Universum: Typ, dessen Elemente Typen sind. Bilden Hierarchie

$$\mathcal{U}_0:\mathcal{U}_1:\mathcal{U}_2:\cdots$$

Dependent Type Theory: Die vier "Grundregelarten" I

- Name: *x*-formation rules
- Beschreibung: Haben wir Typen A und B gegeben, gibt es einen Produkttypen $A \times B$.
- Formal:

$$\frac{\Gamma \vdash A \text{ type } \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \text{ type}}$$

Dependent Type Theory: Die vier "Grundregelarten" II

- Name: *x*-introduction rules
- Beschreibung: Haben wir Terme a:A und b:B gegeben, gibt es einen Term $(a,b):A\times B$.
- Formal:

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash (a, b) : A \times B}$$

Dependent Type Theory: Die vier "Grundregelarten" III

- Name: *x*-elimination rules
- Beschreibung: Haben wir einen Term $p: A \times B$ gegeben, gibt es Terme $\operatorname{pr}_1(p): A$ und $\operatorname{pr}_2(p): B$.
- Formal:

$$\frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \operatorname{pr}_{1}(p) : A} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \operatorname{pr}_{2}(p) : B}$$

Weiterhin: *Judgemental equality* (α -conversion), computation rules (β -reduction): verbinden introduction und elimination rules, optionales *uniqueness principle* (η -expansion).

Funktionstypen

- \rightarrow -formation: Haben wir Typen A und B gegeben, gibt es einen Typen $A \rightarrow B$.
- \rightarrow -introduction: Haben wir im Kontext eines Terms x:A einen Term b(x):B gegeben, gibt es einen Term $\lambda x.b(x):A\rightarrow B$. Formal:

$$\frac{\Gamma, x : A \vdash b(x) : B}{\Gamma \vdash \lambda x . b(x) : A \to B}$$

- \rightarrow -elimination: Haben wir Terme $f:A\rightarrow B$ und a:A gegeben, gibt es einen Term f(a):B.
- Zwei computation rules.

Propositions as Types

- Aussagen werden durch Typen repräsentiert
- Man beweist sie indem man einen Term vom entsprechenden Typ erzeugt

•

$$\frac{Beweise}{Aussagen} = \frac{Programme}{Typen}$$

- Klassisch: Prop → Bool, "Wahrheit"
- \bullet Andere Möglichkeit: Prop \Longleftrightarrow Types, "Zeugnis"

Propositions as Types: Beispiel

Beispiel 1

Aussage: Für beliebige Typen P und Q gibt es den Term

modus-ponens :
$$P \times (P \rightarrow Q) \rightarrow Q$$
.

Beweis: Mit \rightarrow -introduction aus Term $x: P \times (P \rightarrow Q)$ einen Term aus Q generieren. x-elimination liefert uns $\operatorname{pr}_1(x): P$ und $\operatorname{pr}_2(x): P \rightarrow Q$. \rightarrow -elimination liefert $(\operatorname{pr}_2(x))(\operatorname{pr}_1(x)): Q$.

Somit: modus-ponens := $\lambda x.(pr_2(x))(pr_1(x))$.

Curry-Howard-Isomorphismus: Ein Beweis korrespondiert zu einem Computerprogramm, welches einen Term vom Typ der Aussage zurückgibt.

Gleichheit als Identitätstyp

Mathematische Gleichheit wird über Identitätstypen ausgedrückt.

- =-formation: Haben wir einen Typ A und zwei Terme x, y : A gegeben, gibt es einen Typ $x =_A y$.
- =-introduction: Haben wir einen Term x : A gegeben, so gibt es einen Term $refl_x : x =_A x$.

Elimination rule via path induction:

Haben wir eine Typfamilie Γ , x, y: A, p: $x =_A y \vdash B(x, y, p)$ gegeben und wollen einen Term von B(x, y, p) konstruieren, reicht es anzunehmen, dass y x und p reflx ist.

Gleichheit ist eine Äquivalenzrelation

Lemma 2 Für beliebige
$$x, y : A$$
 gilt $(x =_A y) \rightarrow (y =_A x)$.

Beweis.

Hausaufgabe. ©

Lemma 3 Für beliebige
$$x, y, z : A$$
 gilt $(x =_A y) \rightarrow ((y =_A z) \rightarrow (x =_A z))$.

Beweis.

Hausaufgabe. ©

Path induction homotopisch interpretiert

- Typ $A \leftrightarrow \text{Raum } A$
- Term $a: A \leftrightarrow \text{Punkt } a \text{ in } A$
- Term $p: x =_A y \Leftrightarrow \text{Pfad } p \text{ von } x \text{ nach } y \text{ in } A$
- Term $p : p =_{x=Ay} a \Leftrightarrow \text{Homotopie } h \text{ von } p$ nach q in A

- Symmetrie und Transitivität wird als Umkehrung und Komposition von Pfaden, Homotopien, höheren Homotopien... interpretiert.
- $\bullet\,$ van den Berg/Garner und Lumsdaine: Typen haben die Struktur eines schwachen $\infty\text{-Gruppoiden}$
- Unterschied: Homotopietheorie analytisch, Homotopietypentheorie synthetisch

"Indiscernibility of identicals"

Beantwortete offene Frage der Beweistheorie:

- "Indiscernibility of identicals": Wenn zwei Beweise p und q beide A zeigen, kann man dann immer p = q zeigen?
- Nein!

• Homotopie-Äquivalenzklassen von Schleifen an einem Punkt x_0 bilden die *fundamentale Gruppe*.

Weitere Typen – mit homotopischer Interpretation

- Typfamilie $x : A \vdash B(x)$ type \iff Faserung über A
- Dependent sum Typ $\sum_{x:A} B(x) \iff$ Totalraum einer Faserung Beispiel:

Gruppoid :=
$$\sum_{A:\mathcal{U}} (A \to A \to A)$$

Weitere Typen – mit homotopischer Interpretation

- Typfamilie $x : A \vdash B(x)$ type \iff Faserung über A
- Dependent function Typ $\prod_{x:A} B(x) \iff$ Raum der Sektionen Beispiel:

swap:
$$\prod_{A:\mathcal{U}} \prod_{B:\mathcal{U}} \prod_{C:\mathcal{U}} (A \to B \to C) \to (B \to A \to C)$$

Zusammenziehbare Typen

Definition 4: (Zusammenziehbare Typen)

Es gibt einen eindeutigen Term vom Typ *A* gdw.

$$\sum_{a:A} \prod_{x:A} a =_A x$$

bewohnt ist, bzw. wenn der Raum A zusammenziehbar ist.

Typenäquivalenz

Definition 5: (Typenäquivalenz)

Zwei Typen A und B sind äquivalent, wenn der Typ

$$A \simeq B :\equiv \sum_{f:A \to B} \left(\sum_{g:B \to A} \prod_{a:A} g(f(a)) =_A a \right) \times \left(\sum_{h:B \to A} \prod_{b:B} f(h(b)) =_B b \right)$$

bewohnt ist.

Univalenzaxiom

Man kann leicht beweisen, dass

$$(A = B) \rightarrow (A \simeq B).$$

Definition 6: (Univalenzaxiom (Voevodsky))

$$(A = B) \simeq (A \simeq B)$$

Der "Stein von Rosette" für HoTT

Typen	Logik	Mengen	Homotopie
\overline{A}	Aussage	Menge	Raum
a:A	Beweis	Element	Punkt
B(x)	Prädikat	Mengenfamilie	Faserung
b(x):B(x)	Bedingter Beweis	Elementfamilie	Sektion
0, 1	⊥,⊤	\emptyset , $\{\emptyset\}$	\emptyset, \star
A + B	$A \vee B$	Disjunkte Vereinigung	Coprodukt
$A \times B$	$A \wedge B$	Menge von Paaren	Produktraum
$A \rightarrow B$	$A \Rightarrow B$	Menge von Funktionen	Funktionsraum
$\sum_{(x:A)} B(x)$	$\exists_{x:A}B(x)$	Disjunkte Summe	Totalraum
$\prod_{(x:A)} B(x)$	$\forall_{x:A}B(x)$	Produkt	Raum der Sektionen
Id_A	Gleichheit (=)	$\{(x,x)\mid x\in A\}$	Pfadraum A^I

Was gibt es noch?

- HoTT und der λ-Kalkül
- Higher inductive types
- Beweistheorie in HoTT

Anwendungen & Aktuelle Forschungsfragen

Anwendungen

- Homotopietheorie
- Kategorientheorie
- Theorembeweiser
- Programmverifikation
- Funktionale Progammierung

Aktuelle Forschungsfragen

- Informelle Typentheorie
- Formalisierung der klassischen Mathematik in HoTT
- Konstruktivität des Univalenzaxioms (Cubical Type Theory)
- HoTT auf diskreten Räumen (wie N) führt zu vielen "unnötigen" Identitätstermen
 - Möglichkeit, diese zu kollabieren
- HoTT und Topoi
 - $\bullet\,$ Intuitionistische Higher Order Logic ist die interne Sprache von 1-Topoi, HoTT könnte die von $(\infty,1)$ -Topoi sein

- Wenn HoTT Grundlage der Mathematik sein kann, muss man mit ihr auch Komplexitätstheorie betreiben können
- Klassische Komplexitätstheorie sehr "mengenzentriert"
- HoTT eng verbunden mit funktionalen Programmiersprachen
- Mathematische Strukturen sind "First Class Citizens" in HoTT
 - Codierung egal
- Eher rekursionstheoretische Ansätze erforderlich [Con95]
 - Maschinenunabhängige Komplexitätstheorie
 - Implizite Komplexitätstheorie [Lag12]

Definition von Komplexitätsmaßen

^{*} Danke an Prof. Thorsten Altenkirch [McB; Atk18]

Definition von Komplexitätsmaßen

^{*} Danke an Prof. Thorsten Altenkirch [McB; Atk18]

Charakterisierung von effizienter Berechenbarkeit [Ste]

^{*} Danke an Prof. Thorsten Altenkirch [McB; Atk18]

Danke!

Fragen?

Quellenverweise i

- Robert Atkey. Syntax and Semantics of Quantitative Type Theory. 2018. DOI: https://doi.org/10.1145/3209108.3209189.
- R.L. Constable. "Expressing computational complexity in constructive type theory". In: Leivant D. (eds) Logic and Computational Complexity (1995). DOI: https://doi.org/10.1007/3-540-60178-3_82.
- U. Dal Lago. "A Short Introduction to Implicit Computational Complexity". In: Bezhanishvili N., Goranko V. (eds) Lectures on Logic and Computation (2012). DOI:

https://doi.org/10.1007/978-3-642-31485-8_3.

Quellenverweise ii

- Conor McBride. I Got Plenty o' Nuttin'. URL: https: //personal.cis.strath.ac.uk/conor.mcbride/Plenty0-CR.pdf.
- Stephen Cook Stephen Bellatoni. A New Recursion-Theoretic Characterization of the Polytime Functions. URL: https://www.cs.toronto.edu/~sacook/homepage/ptime.pdf.
- The Univalent Foundations Program. *Homotopy Type Theory: Univalent Foundations of Mathematics*. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.