Mathematical Methods for Computer Science 1 Fall 2017

Series 7

Sylvain Julmy

1

(a)

In order to show that $\{\rightarrow, \neg\}$ is complete, we have to found the equivalent formula of $a \lor b$ and $a \land b$ ($\neg a$ and $a \rightarrow b$ are trivial...).

 $a \vee b$

$$(\neg a) \to b = (\neg \neg a) \lor b = a \lor b$$

and the truth table to validate the result:

 $a \wedge b$

$$\neg(a \to \neg b) = \neg(\neg a \lor \neg b)$$
$$= \neg \neg(a \land b)$$
$$= (a \land b)$$

and the truth table to validate the result :

(b)

In order to show that $\{\uparrow\}$ is complete, we have to found the equivalent formula of $a \to b$ and $\neg a$, because we just showed that $\{\neg, \to\}$ is complete. We know that $a \uparrow b \leftrightarrow \neg (a \land b)$. $\neg a$

$$a \uparrow a = \neg(a \land a) = \neg a$$

and the truth table to validate the result :

 $a \rightarrow b$

$$a \to b = \neg a \lor b$$

$$= \neg \neg (\neg a \lor b)$$

$$= \neg (a \land \neg b)$$

$$= \neg (a \land \underbrace{\neg (b \land b)})$$

$$= \underbrace{\neg (a \land (b \uparrow b))}_{a \uparrow (b \uparrow b)}$$

$$= a \uparrow (b \uparrow b)$$

and the truth table to validate the result :

- 2
- (a)
- (b)
- 3
- (a)
- (b)
- (c)
- 4
- (a)
- (b)
- (c)
- 5
- (a)
- (b)
- 6