概率论与数理统计

§ 8.2 正态总体的参数检验

- 一个正态总体
- (1) 关于μ 的检验 拒绝域的推导

给定显著性水平 α 及其样本值 (x_1, x_2, \dots, x_n)

设 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知,需要检验

$$H_0: \mu = \mu_0$$

构造统计量 $U = \frac{X - \mu_0}{\sqrt{n}} \sqrt{n} \sim N(0,1)$

所以本检验的拒绝域为 $|U| \ge u_{\alpha}$ |U| 检验法

检验步骤

- (1) 提出统计假设 $H_0: \mu = \mu_0$
- (2) 选择统计量 $U = \frac{\bar{X} \mu_0}{\sigma} \sqrt{n}$,从样本值计算出U.
- (3) 对于给定的显著性水平 α , 从附表中查出 在 H_0 成立的条件下满足等式

$$P\left(\left|\frac{\bar{X}-\mu_0}{\sigma}\sqrt{n}\right| \geq u_{\frac{\alpha}{2}}\right) = \alpha$$
 的临界值

(4) 判断:若 $|u| \ge u_{\frac{\alpha}{2}}$,则拒绝

例1某测距仪在500米范围内,测距精度 $\sigma=10m$,测距仪一次测量的距离为X设 $X\sim N(\mu,\sigma^2)$,现对距离500m的目标测量9次,得到平均距离 $\bar{X}=510m$,问该测距仪是否存在系统误差 $\alpha=0.05$

- 一个正态总体
- (1) 关于 μ 的检验 拒绝域的推导

给定显著性水平 α 及其样本值 (x_1, x_2, \dots, x_n)

设 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知,需要检验

$$H_0: \mu \leq \mu_0$$

构造统计量

$$U = \frac{X - \mu_0}{\sigma} \sqrt{n}$$

所以本检验的拒绝域为 $U \ge u_{\alpha}$

U检验法

U检验法 $(\sigma^2$ 已知)

原假设 <i>H</i> ₀	检验统计量	拒绝域
$\mu = \mu_0$	$u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$	$ u \ge u_{\frac{\alpha}{2}}$
$\mu \leq \mu_0$		$u \ge u_{\alpha}$
$\mu \ge \mu_0$		$u \leq -u_{\alpha}$

t 检验法(σ^2 未知)

原假设 H_0	检验统计量	拒绝域
$\mu = \mu_0$	$T = \frac{\bar{X} - \mu_0}{S} \sqrt{n}$	$ T \ge t_{\frac{\alpha}{2}}$
$\mu \ge \mu_0$		$T \leq -t_{\alpha}$
$\mu \leq \mu_0$		$T \ge t_{\alpha}$

例 某厂生产小型马达,说明书上写着:这种小型马达在正常负载下平均消耗电流不会超过0.8 安培.

现随机抽取16台马达试验,求得平均消耗电流为0.92安培,消耗电流的标准差为0.32安培.

假设马达所消耗的电流服从正态分布,取显著性水平为 $\alpha = 0.05$,问根据这个样本,能否否定厂方的断言?

解 根据题意待检假设可设为

 $H_0: \mu \leq 0.8$

 σ 未知, 故选检验统计量:

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{16}}$$

查表得 $t_{0.05}(15) = 1.753$, 故拒绝域为 T > 1.753

现将样本值带入 $t = \frac{0.92 - 0.8}{0.32} \times 4 = 1.5 < 1.753$

故接受原假设,即不能否定厂方断言.

(2) 关于 σ^2 的检验 $(\chi^2$ 检验法)

原假设 H_0	检验统计量	拒绝域
$\sigma^2 = \sigma_0^2$	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}}$	$\chi^{2} \leq \chi_{1-\frac{\alpha}{2}}^{2}(n-1)$ 或 $\chi^{2} \geq \chi_{\frac{\alpha}{2}}^{2}(n-1)$
$\sigma^2 \ge \sigma_0^2$	σ_0^2	$\chi^2 \leq \chi_{1-\alpha}^2(n-1)$
$\sigma^2 \leq \sigma_0^2$		$\chi^2 \geq \chi_\alpha^2(n-1)$

一 两个正态总体

设
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), X 与 Y 相 互独立,$$

样本:
$$(X_1, X_2, \dots, X_{n_1}), (Y_1, Y_2, \dots, Y_{n_2});$$

样本值
$$(x_1, x_2, \dots, x_{n_1}), (y_1, y_2, \dots, y_{n_2})$$

显著性水平α

(1) 关于平均值μ-μ2 的检验

原假设
H_0

检验统计量的分布

拒绝域

$$\mu_1 = \mu_2$$

$$T = \frac{X - Y}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} S_w}$$

 $|T| \ge t_{\frac{\alpha}{2}}$

$$\mu_1 \geq \mu_2$$

$$T \leq -t_{\alpha}$$

$$\mu_1 \leq \mu_2$$

$$T \ge t_{\alpha}$$

(2) 关于方差比 σ_1^2/σ_2^2 的检验

原假设 H_0	检验统计量	拒绝域
$\sigma_1^2 = \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	$F \leq F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$ 或 $F \geq F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$
$\sigma_1^2 \ge \sigma_2^2$	S_2^2	$F \leq F_{1-\alpha}(n_1 - 1, n_2 - 1)$
$\sigma_1^2 \leq \sigma_2^2$		$F \ge F_{\alpha}(n_1 - 1, n_2 - 1)$

例题设某次考试学生的成绩服从正态分布, 从中随机抽取36位考生的成绩,算的平均 成绩为66.5分,标准差为15分,问在显著 水平0.05下,是否可以认为这次考试全体 考生的平均成绩为70分?并给出检验的过程。 6. <u>设总体</u> $X \sim N(\mu, \sigma^2)$, σ^2 未知,且 $X_1, X_2, ..., X_n$ 为其简单随机样本, \overline{X} 是样本均值,

 S^2 是样本方差,则对于假设 $H_0: \mu \geq \mu_0$,应选取检验统计量为() .

(A)
$$\frac{\overline{X} - \mu_0}{S} \sqrt{n}$$
;

(A)
$$\frac{\overline{X} - \mu_0}{S} \sqrt{n}$$
; (B) $\frac{\overline{X} - \mu}{S} \sqrt{n}$;

(C)
$$\frac{\overline{X} - \mu}{\sigma} \sqrt{n}$$
;

(C)
$$\frac{\overline{X} - \mu}{\sigma} \sqrt{n}$$
; (D) $\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$.