

矩形波导是高通滤波器,有截止频率f。

由色散方程

$$k'_{zmn} = \sqrt{k^2 - k'_{t}^2}$$

$$= \sqrt{k^2 - k'_{xm}^2 - k'_{yn}^2} = \sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

可知当 $\omega^2 \mu \varepsilon < k_t^2$, k_z 为虚数, 波不能传播; 只有当 $\omega^2 \mu \varepsilon > k_t^2$, k_z 为实数, 波可以传播。 所以矩形波导是高通滤波器。

a=2b的截止波长分布图

関係を形成分を同題派派和の $f_c = \frac{k_t}{2\pi\sqrt{\mu\varepsilon}} = \frac{k_t}{2\pi}v$ 截止频率 f_c 或截止波长 λ_c 由 $k_t^2 = \omega_c^2 \mu \varepsilon$ 决定,并得到 $\begin{cases} f_c = \frac{k_t}{2\pi\sqrt{\mu\varepsilon}} = \frac{k_t}{2\pi}v \\ \lambda = v/f = 2\pi/k \end{cases}$

$$f_{c} = \frac{k_{t}}{2\pi\sqrt{\mu\varepsilon}} = \frac{k_{t}}{2\pi}v$$

$$\lambda_{c} = v/f_{c} = 2\pi/k_{t}$$

将矩形波导 $k_{\rm t} = \sqrt{\left(m\pi/a\right)^2 + \left(n\pi/b\right)^2}$ 代入,得到

$$f_{c} = \frac{\sqrt{(m\pi/a)^{2} + (n\pi/b)^{2}}}{2\pi}v \qquad \lambda_{c} = \frac{2}{\sqrt{(m/a)^{2} + (n/b)^{2}}}$$

对于a=2b的波导,当 $a<\lambda<2a$ 时, ${\rm TE}_{10}$ 模,可以做到单模工作

模式简并

a=2b矩形波导的截止波长分布图

波导中不同模具有相同的截止波长(或截止频率)的现象,称为波导模式的"简并",在矩形波导中,除 TE_{m0} 模和 TE_{0n} 模以外的模都有简并,即 TE_{mn} 模和 TM_{mn} 模(m、 $n\neq 0$)是简并的。

波导中截止波长最长(或截止频率最低)的模称为波导的最低型模(或称主模、基模),其他的模称为高次模。矩形波导中的主模是 TE_{10} 模(如果a>b),其截止波长最长,等于2a。

矩形波导色散特性曲线

$$k'_{zmn} = \sqrt{k^2 - k'_t^2} = \sqrt{k^2 - k'_{xm}^2 - k'_{yn}^2}$$
$$= \sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

上式表示的在($\omega \setminus k_z$)平面上的曲线 称为矩形波导的色散关系。

纵坐标 ω 用 ω_{10} 归一化, ω_{10} 是 TE_{10} 模的截止角频率,横坐标 k_z 用 k_0 归一化, k_0 为自由空间波数。

经归一化后,色散曲线上任一点与原点连线 斜率表示相速与光速之比,切线斜率表示群 速与光速之比。右图表明,不管什么模色, 愈接近截止频率色散愈严重。

矩形波导色散特性

相速度、群速度和波导波长

$$\pm k_z^2 = \omega^2 \mu \varepsilon - k_t^2$$

得到
$$\frac{k_z^2}{\omega^2} = \mu \varepsilon - \frac{k_t^2}{\omega^2} = \frac{\lambda_c^2 - \lambda^2}{\lambda_c^2 v^2} = \frac{1 - (\lambda/\lambda_c)^2}{v^2}$$
 其中
$$\begin{cases} \lambda_c = 2\pi/k_t \\ v = 1/\sqrt{\mu \varepsilon} \end{cases}$$

所以
$$\mathbf{v}_{p} = \frac{\omega}{k_{z}} = \frac{v}{\sqrt{1 - (\lambda/\lambda_{c})^{2}}}$$
 $\mathbf{v}_{g} = \frac{d\omega}{dk_{z}} = v\sqrt{1 - (\lambda/\lambda_{c})^{2}}$

由此可见,波导中传输模的相速度大于同一介质中的光速。

群速度小于同一介质中的光速。

传输模的相速度和群速度有关系

$$v_{\rm p} \cdot v_{\rm g} = v^2$$

对于
$$TE_{10}$$
模 $\mathbf{v}_{pTE_{10}} = \frac{\mathbf{v}}{\sqrt{1 - (\lambda/2a)^2}}, \quad \mathbf{v}_{gTE_{10}} = v\sqrt{1 - (\lambda/2a)^2}$

波导波长
$$\lambda_{\rm g} = \frac{v_{\rm p}}{f} = \frac{\lambda}{\sqrt{1 - (\lambda/\lambda_{\rm c})^2}}$$
,对于 TE_{10} 模 $\lambda_{\rm gTE_{10}} = \frac{\lambda}{\sqrt{1 - (\lambda/2a)^2}}$

特征阻抗与等效阻抗

TE模特征阻抗为 TM模特征阻抗为

$$Z_{\text{TE}} = \omega \mu / k_z$$
$$Z_{\text{TM}} = k_z / \omega \varepsilon$$

得到
$$Z_{\mathrm{TE}} = \sqrt{\frac{\mu}{\varepsilon}} \frac{\lambda_{\mathrm{g}}}{\lambda} = \eta \frac{\lambda_{\mathrm{g}}}{\lambda}$$
 $Z_{\mathrm{TM}} = \sqrt{\frac{\mu}{\varepsilon}} \frac{\lambda}{\lambda_{\mathrm{g}}} = \eta \frac{\lambda}{\lambda_{\mathrm{g}}}$

式中
$$\eta = \sqrt{\mu/\varepsilon}$$
 真空中 $\eta_0 = \sqrt{\mu_0/\varepsilon_0} \approx 377\Omega$

所以
$$Z_{\mathrm{TE}} = \eta_0 \frac{\lambda_{\mathrm{g}}}{\lambda}$$
 $Z_{\mathrm{TM}} = \eta_0 \frac{\lambda}{\lambda_{\mathrm{g}}}$

空气填充的矩形波导, $Z_{\text{TE}_{10}}$ = $\frac{\eta_0}{\sqrt{1-\left(\lambda/2a\right)^2}}$ 与波导窄边b无关。

特征阻抗与等效阻抗

TE10模等效阻抗有三种定义

电压—电流定义

$$Z_{U \cdot I} = U/I$$

功率——电流定义

$$Z_{P:I} = 2P/|I|^2$$

功率—电压定义

$$Z_{P:V} = |U|^2/2P$$

$$P$$
 为 TE_{10} 模的纵向功率流

$$P$$
 为TE₁₀模的纵向功率流 $p = \int_0^a dx \int_0^b dy (-E_y \times H_x)$

U 为波导截面中心从底 面到顶面电场的线积分

$$U = \int_0^b E_y \mid_{x = \frac{a}{2}} \mathrm{d}y$$

所以

$$I$$
 为顶面上总的纵向电流
$$I = \int_0^a H_x dx = \int_0^a J_z dx$$

$$(Z_{\text{eTE}_{10}})_{P \cdot U} = \frac{\pi}{2} \frac{b}{a} Z_{\text{TE}_{10}}, \quad (Z_{\text{eTE}_{10}})_{P \cdot I} = \frac{\pi^2}{8} \frac{b}{a} Z_{\text{TE}_{10}}, \quad (Z_{\text{eTE}_{10}})_{U \cdot I} = \frac{\pi^2}{8} \frac{b}{a} Z_{\text{TE}_{10}}$$

$$(Z_{\text{eTE}_{10}})_{P \cdot I} = \frac{\pi^2}{8} \frac{b}{a} Z_{\text{TE}_{10}},$$

$$(Z_{\text{eTE}_{10}})_{U \cdot I} = \frac{\pi^2}{8} \frac{b}{a} Z_{\text{TE}_{10}}$$

等效阻抗都与
$$b/a$$
 有关,一般定义为

等效阻抗都与
$$b/a$$
 有关,一般定义为 $Z_{eTE_{10}} = \frac{b}{a} Z_{TE_{10}}$

矩形波导管壁的电流

管壁电流的分布由管壁附 近的磁场分布决定

$$\boldsymbol{J}_{S} = \boldsymbol{n} \times \boldsymbol{H}_{S}$$

n是波导内壁的单位法 向矢量, H_S 为管壁附近的切 向磁场。

TE₁₀模的管壁电流结构

将 TE_{10} 模管壁表面的切向磁场分量代入上式即可得到 TE_{10} 模的管壁电流分布,结果表明,当矩形波导传输 TE_{10} 模时,在左、右侧壁只有 J_y 分量电流,且大小相等,方向相同。在上、下宽壁内电流由 J_x 和 J_z 合成,在同一x位置的上下宽壁内的电流大小相等,方向相反。在波导宽边中心只有纵向电流。

矩形波导的激励与耦合

波导的激励与耦合是微波源向波导内有限空间的辐射或在波导的有限空间内接收微波信息。辐射和接收是互易的。

激励波导的方法通常有三种: 电激励, 磁激励和电流激励。

1. 电激励

2. 磁激励

3. 电流激励

定向耦合器

(a) 宽边耦合的定向耦合器

(b) 窄边耦合的定向耦合器

圆波导 用纵向场量表示横向场量

圆波导在圆柱坐标系下求解,先 求纵向场量再求横向场量比先求 横向场量再求纵向场量方便得多。

$$\nabla \times \boldsymbol{E} = -j\omega\mu H$$

$$\nabla \times \boldsymbol{H} = j\omega\varepsilon\boldsymbol{E}$$

$$\boldsymbol{E} = \boldsymbol{E}_{t} + \boldsymbol{E}_{z}\boldsymbol{z}_{0}$$

$$\boldsymbol{H} = \boldsymbol{H}_{t} + \boldsymbol{H}_{z}\boldsymbol{z}_{0}$$

$$\nabla = \nabla_{t} + \frac{\partial}{\partial z}\boldsymbol{z}_{0}$$

$$\nabla_{t} = \boldsymbol{\rho}_{0} \frac{\partial}{\partial \rho} + \boldsymbol{\rho}_{0} \frac{1}{\rho} \frac{\partial}{\partial \varphi}$$

$$\left(\nabla_{t} + \frac{\partial}{\partial z} z_{\theta}\right) \times \left(E_{t} + E_{z} z_{\theta}\right) = j\omega\mu \left(H_{t} + H_{z} z_{\theta}\right)$$

$$\left(\nabla_{t} + \frac{\partial}{\partial z} z_{\theta}\right) \times \left(\boldsymbol{H}_{t} + \boldsymbol{H}_{z} z_{\theta}\right) = -j\omega\varepsilon \left(\boldsymbol{E}_{t} + \boldsymbol{E}_{z} z_{\theta}\right)$$

圆波导 用纵向场量表示横向场量

$$\left(\nabla_{t} + \frac{\partial}{\partial z} z_{\theta}\right) \times \left(E_{t} + E_{z} z_{\theta}\right) = j\omega\mu \left(H_{t} + H_{z} z_{\theta}\right)$$

$$\left(\nabla_{t} + \frac{\partial}{\partial z} z_{\theta}\right) \times \left(\boldsymbol{H}_{t} + \boldsymbol{H}_{z} z_{\theta}\right) = j\omega\varepsilon \left(\boldsymbol{E}_{t} + \boldsymbol{E}_{z} z_{\theta}\right)^{\frac{1}{2}}$$

两边纵向、横向场量分别相等,得到

$$-j\omega\mu\boldsymbol{H}_{z}\boldsymbol{z}_{0} = \nabla_{t}\times\boldsymbol{E}_{t}$$

$$-j\omega\rho\boldsymbol{H}_{t} = \nabla_{t}\times\boldsymbol{z}_{0}\boldsymbol{E}_{z} + \boldsymbol{z}_{0}\times\frac{\partial\boldsymbol{E}_{t}}{\partial t}$$

$$-j\omega\rho\boldsymbol{E}_{z}\boldsymbol{z}_{0} = \nabla_{t}\times\boldsymbol{H}_{t}$$

$$j\omega\varepsilon\boldsymbol{E}_{t} = \nabla_{t}\times\boldsymbol{z}_{0}\boldsymbol{H}_{z} + \boldsymbol{z}_{0}\times\frac{\partial\boldsymbol{H}_{t}}{\partial z}$$

从两个表示横向场量间关系式,并利用

$$\boldsymbol{z}_{0} \times (\nabla_{t} \times \boldsymbol{E}_{z} \boldsymbol{z}_{0}) = \nabla_{t} \boldsymbol{E}_{z}, \quad \boldsymbol{z}_{0} \times (\boldsymbol{z}_{0} \times \boldsymbol{E}_{t}) = -\boldsymbol{E}_{t}$$

可得

$$\boldsymbol{E}_{t} = \frac{1}{\omega^{2} \mu \varepsilon - k_{z}^{2}} \left[\nabla_{t} \frac{\partial E_{z}}{\partial z} + j \omega \mu \nabla_{t} \times \boldsymbol{z}_{0} \boldsymbol{H}_{z} \right]$$

$$\boldsymbol{H}_{t} = \frac{1}{\omega^{2} \mu \varepsilon - k_{z}^{2}} \left[\nabla_{t} \frac{\partial H_{z}}{\partial z} - j\omega \varepsilon \nabla_{t} \times \boldsymbol{z}_{0} E_{z} \right]$$

假定z方向按 e^{-jk_zz} 变化。

$$\frac{\partial^2}{\partial z^2} = -k_z^2$$

圆波导 用纵向场量表示横向场量

$$\boldsymbol{E}_{t} = \frac{1}{\omega^{2} \mu \varepsilon - k_{z}^{2}} \left[\nabla_{t} \frac{\partial E_{z}}{\partial z} + j \omega \mu \nabla_{t} \times \boldsymbol{z}_{0} \boldsymbol{H}_{z} \right]$$

$$\boldsymbol{H}_{t} = \frac{1}{\omega^{2} \mu \varepsilon - k_{z}^{2}} \left[\nabla_{t} \frac{\partial H_{z}}{\partial z} - j\omega \varepsilon \nabla_{t} \times \boldsymbol{z}_{0} E_{z} \right]$$

若在z方向场按e^{-jk_zz}变化,则 $\frac{\partial^2}{\partial z^2} = -k_z^2$

$$E_{\rho} = -\frac{1}{k_{t}^{2}} \left[jk_{z} \frac{\partial E_{z}}{\partial \rho} + \frac{j\omega\mu}{\rho} \frac{\partial H_{z}}{\partial \varphi} \right]$$

$$E_{\varphi} = -\frac{1}{k_{t}^{2}} \left[\frac{jk_{z}}{\rho} \frac{\partial E_{z}}{\partial \varphi} - j\omega\mu \frac{\partial H_{z}}{\partial \rho} \right]$$

$$H_{\rho} = -\frac{1}{k_{t}^{2}} \left[jk_{z} \frac{\partial H_{z}}{\partial \rho} - \frac{j\omega\varepsilon}{\rho} \frac{\partial E_{z}}{\partial \varphi} \right]$$

$$H_{\varphi} = -\frac{1}{k_{t}^{2}} \left[\frac{jk_{z}}{\rho} \frac{\partial H_{z}}{\partial \varphi} + j\omega\varepsilon \frac{\partial E_{z}}{\partial \rho} \right]$$

$$k_{\rm t}^2 = \omega^2 \mu \varepsilon - k_z^2 = k^2 - k_z^2$$

纵向场量 E_z 、 H_z 的解

TE模,
$$E_z=0$$
, $(\nabla^2 + k^2)H_z = 0$

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial H_z}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 H_z}{\partial \varphi^2} + \frac{\partial^2 H_z}{\partial Z^2} + k^2 H_z = 0$$

令
$$H_z = \rho(\rho)\Phi(\varphi)e^{-jk_zz}$$
 代入上式得到

$$\frac{\rho^2}{\rho(0)} \frac{\partial^2 \rho(0)}{\partial \rho^2} + \frac{\rho}{\rho(0)} \frac{\partial \rho(0)}{\partial \rho} + k_t^2 \rho^2 = -\frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \phi^2}$$

$$k_{\rm t}^2 = k^2 - k_{\rm z}^2$$

等式两边须等于一个共同的常数。令此常数为 m^2 ,则得到

$$\frac{d^{2}\Phi}{d\varphi^{2}} + m^{2}\Phi = 0, \quad \rho^{2} \frac{d^{2}\rho(0)}{d\rho^{2}} + \rho \frac{d\rho(0)}{d\rho} + (k_{t}^{2}\rho^{2} - m^{2})\rho(0) = 0$$

其解分别为 $\Phi(\varphi) = B_{1}\cos m\varphi + B_{2}\sin m\varphi = B \frac{\cos m\varphi}{\sin m\varphi}$

$$\rho(\rho) = A_1 \mathbf{J}_m(k_t \rho) + A_2 \mathbf{Y}_m(k_t \rho) m$$

 $J_m(k,\rho)$ 、 $Y_m(k,\rho)$ 是第一类、第二类m阶贝塞尔函数。

注意:上面公式有打印错误。

贝塞尔函数

(a) 第一类贝塞尔函数 $J_m(x)$ 及其导数 $J'_m(x)$ 的变化曲线 (b) 第二类贝塞尔函数 $Y_m(x)$ 的变化曲线

贝塞尔函数与三角函数、指数函数

贝塞尔函数	正弦、余弦函数、指数函数			
第 n 阶贝塞尔方程	正弦、余弦函数、指数函数满足的微分方程			
$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x} + \left(\lambda^{2} x^{2} - n^{2}\right) y = 0$	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \lambda^2 y = 0$			
(i) $\lambda^2 > 0$, λ 是实数, n 为整数	$(i) \lambda^2 > 0$, λ 是实数			
用级数方法求解贝塞尔方程	用级数方法求解上面的微分方程			
得到两个独立的解:	得到两个独立的解:			
$J_n(\lambda x)$ — 第 n 阶第一类贝塞尔函数	$\sin(\lambda x)$ ——正弦函数			
$Y_n(\lambda x)$ — 第 n 阶第二类贝塞尔函数	$\cos(\lambda x)$ 一余弦函数			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{2}$ $\frac{1}{1}$ $\frac{1}$			

比较 $J_n(\lambda x)$ 、 $Y_n(\lambda x)$ 与 $\sin(\lambda x)$ 、 $\cos(\lambda x)$ 确有相似之处。

贝塞尔函数与三角函数、指数函数

(ii) $\lambda^2 < 0$, λ 是虚数

 $\partial \lambda = j\gamma$

微分方程成为

$$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + (\gamma^{2} x^{2} + n^{2}) y = 0$$

用级数方法求解得到两个独立的解

 $I_n(\gamma x)$ — 一第 n 阶第一类修正贝塞尔函数

 $K_n(\gamma x)$ — 第 n 阶第二类修正贝塞尔函数

(ii) $\lambda^2 < 0$, λ 是虚数

 $设\lambda = j\gamma$

微分方程成为

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \gamma^2 y = 0$$

用级数方法求解得到两个独立的指数函数解

比较 $I_n(\gamma x)$ 、 $K_n(\gamma x)$ 与 $\exp(-\gamma x)$ 、 $\exp(\gamma x)$ 确有相似之处。

有关贝塞尔函数进一步讨论

贝塞尔函数是一种特殊函数。有关特殊函数的讨论,推荐一本经典书籍《特殊函数 概论》(王竹溪 著)。

有关贝塞尔函数进一步讨论简单介绍如下:

贝塞尔函数

纵向场量 E_z 、 H_z 的解

$$\begin{cases}
\Phi(\varphi) = B & m = 0, 1, 2, \dots \\
\sin m\varphi & \\
\rho(\rho) = A_1 J_m(k_t \rho) + A_2 Y_m(k_t \rho) \\
\text{由此得到}
\end{cases}$$

$$H_z = \left\{ A_1 J_m(k_t \rho) + A_2 Y_m(k_t \rho) \right\} B \cos m \varphi \cos m \varphi e^{-jk_z z}$$

代入边界条件: (1)
$$0 \le \rho \le a$$
, E_z 为有限值, $(2)\rho = a$ 处 $E_{\varphi} = E_z = 0$

故得
$$A_2 = 0$$
, $\frac{\partial H_z}{\partial \rho}\Big|_{\rho=a} = \{A_1 k_t J'_m(k_t a)\} B \frac{\cos m\phi}{\sin m\phi} e^{-jk_z z} = 0$
则须 $J'_m(k_t a) = 0 \to k_t a = u'_{mn} \to k_t = \frac{u'_{mn}}{a} \to \lambda_c = \frac{2\pi a}{k_t} = \frac{2\pi a}{u'_{mn}}$

$$J'_{m}(k_{t}a) = 0 \to k_{t}a = u'_{mn} \to k_{t} = \frac{u'_{mn}}{a} \to \lambda_{c} = \frac{2\pi}{k_{t}} = \frac{2\pi a}{u'_{mn}}$$

$$H_z$$
的解形为 $H_z = H_{mn}J_m \left(\frac{u'_{mn}}{a}\rho\right) \frac{\cos m\varphi}{\sin m\varphi} e^{-jk_z z}$

一般解应为
$$H_z = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} H_{mn} J_m \left(\frac{u'_{mn}}{a} \rho \right) \cos m \varphi e^{-jk_z z}$$

纵向场量 E_z 、 H_z 的解

TM模, $H_z=0$, $E_z\neq 0$ 。用同样的方法可以求得

$$E_z = \left\{ A_3 J_m(k_t \rho) + A_4 Y_m(k_t \rho) \right\} C \frac{\cos m\varphi}{\sin m\varphi} e^{-jk_z z}$$

边界条件要求:

(1)
$$0 \le \rho \le a$$
, E_z 为有限值, (2) $\rho = a$, $E_{\varphi} = E_z = 0$

得到:
$$A_4 = 0$$
,

$$\mathbf{J}_{m}(k_{t}a) = 0,$$

得到:
$$A_4 = 0$$
, $J_m(k_t a) = 0$, $k_t = \frac{u_{mn}}{R} (n = 1, 2, ...)$

由此可求得圆波导中TM模的截止波长为 $\lambda_c = \frac{2\pi}{k} = \frac{2\pi a}{u}$

这样,
$$E_z$$
的解就变成 $E_z = E_{mn} J_m \left(\frac{u_{mn}}{a} \rho \right) \frac{\cos m\varphi}{\sin m\varphi} e^{-jk_z z}$

方程的一般解应为
$$E_z = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} E_{mn} J_m \left(\frac{u_{mn}}{a} \rho \right) \frac{\cos m\varphi}{\sin m\varphi} e^{-jk_z z}$$

场量表达式

横向场量可用纵向场量表示,因此由Ez、Hz得到其他各场分量表达式

(1) TE模

$$E_{\rho} = \pm \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{j\omega\mu ma^{2}}{(u'_{mn})^{2}\rho} H_{mn} J_{m} \left(\frac{u'_{mn}}{a}\rho\right) \frac{\sin m\varphi}{\cos m\varphi} e^{j(\omega t - k_{z}z)}$$

$$E_{\varphi} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{j\omega\mu a}{u'_{mn}} H_{mn} J'_{m} \left(\frac{u'_{mn}}{a}\rho\right) \frac{\cos m\varphi}{\sin m\varphi} e^{j(\omega t - k_{z}z)}$$

$$E_{z} = 0$$

$$H_{\rho} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{-jk_{z}a}{u'_{mn}} H_{mn} J'_{m} \left(\frac{u'_{mn}}{a}\rho\right) \frac{\cos m\varphi}{\sin m\varphi} e^{j(\omega t - k_{z}z)}$$

$$H_{\varphi} = \pm \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{jk_{z}ma^{2}}{(u'_{mn})^{2}\rho} H_{mn} J_{m} \left(\frac{u'_{mn}}{a}\rho\right) \frac{\sin m\varphi}{\cos m\varphi} e^{j(\omega t - k_{z}z)}$$

$$H_{z} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} H_{mn} J_{m} \left(\frac{u'_{mn}}{a}\rho\right) \frac{\cos m\varphi}{\sin m\varphi} e^{j(\omega t - k_{z}z)}$$

由此可见,圆波导中的TE模有无穷多个,以 TE_{mn} 表示之,m表示场沿圆周分布的驻波数,n表示场沿半径分布的半驻波数或场的最大值个数。

场量表达式

TM 模

$$E_{\rho} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{-jk_{z}a}{u_{mn}} E_{mn} J'_{m} \left(\frac{u_{mn}}{a}\rho\right) \cos m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)} \sin m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)}$$

$$E_{\varphi} = \pm \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{jk_{z}a^{2}m}{u_{mn}^{2}} E_{mn} J_{m} \left(\frac{u_{mn}}{a}\rho\right) \sin m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)} \operatorname{cos} m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)}$$

$$E_{z} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} E_{mn} J_{m} \left(\frac{u_{mn}}{a}\rho\right) \cos m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)} \operatorname{sin} m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)}$$

$$H_{\rho} = \mp \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{\mathrm{j}\omega\varepsilon a^{2}m}{u_{mn}^{2}\rho} E_{mn} J_{m} \left(\frac{u_{mn}}{a}\rho\right) \sin m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)}$$

$$H_{\varphi} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{-\mathrm{j}\omega\varepsilon a}{u_{mn}} E_{mn} J'_{m} \left(\frac{u_{mn}}{a}\rho\right) \cos m\varphi \operatorname{e}^{\mathrm{j}(\omega t - k_{z}z)}$$

$$H_{\varphi} = 0$$

结果表明,圆波导中的 TM 模也有无穷多,以 TM_{mn} 表示之。

圆波导也具有高通特性

色散关系
$$k_z^2 = \omega^2 \mu \varepsilon - k_{\mathrm{t}}^2$$

色散关系
$$k_z^2 = \omega^2 \mu \varepsilon - k_t^2$$

$$\begin{cases} k_t = \frac{u'_{mn}}{a} & (n = 1, 2, ...) & \text{TE} \\ k_t = \frac{u_{mn}}{a} & (n = 1, 2, ...) & \text{TM} \end{cases}$$

$$k_t^2 = \omega^2 \mu \varepsilon \text{ 决定的频率叫截止频率,相应波长叫截止波长}$$

$$k_{\rm t}^2 = \omega^2 \mu \varepsilon$$
 决定的频率叫截止频率,相应波长叫截止波长

$$\lambda_{\rm c} = 2\pi a / u'_{mn}$$

$$\lambda_{\rm c} = 2\pi a / u'_{mn}$$
 TE $\lambda_{\rm c} = 2\pi u_{mn} / a$ TM

圆波导中只能传输 $\lambda < \lambda_c$ 的模,半径a 越小, λ_c 越小

 u'_{mn} 值与相应 TE_{mn} 模的 λ_c 值

波型	u' _{mn} 值	$\lambda_{ m c}$ 值	波型	u' _{mn} 值	$\lambda_{ m c}$ 值
$\begin{array}{c} {\sf TE}_{11} \\ {\sf TE}_{21} \\ {\sf TE}_{01} \\ {\sf TE}_{31} \\ {\sf TE}_{12} \end{array}$	1.841 3.054 3.832 4.201 5.332	3.41 <i>a</i> 2.06 <i>a</i> 1.64 <i>a</i> 1.50 <i>a</i> 1.18 <i>a</i>	TE ₂₂ TE ₀₂ TE ₁₃ TE ₀₃	6.705 7.016 8.536 10.173	0.94 <i>a</i> 0.90 <i>a</i> 0.74 <i>a</i> 0.62 <i>a</i>

截止波长分布与模式兼并

圆波导的模式截止波长分布图

圆波导中的主模是TE11模,其截止波长最长。

当 $2.61a < \lambda < 3.41a$ 时,圆波导中只能传输 TE_{11} 模,可以做到单模工作。

圆波导简并现象:

一种是 TE_{0n} 模和 TM_{1n} 模简并,这两种模的 λ_c 相同。

另一种是特殊的简并现象,即所谓"极化简并"。这是因为场分量沿 φ 方向的分布存在着 $\cos(m\varphi)$ 和 $\sin(m\varphi)$ 两种可能性。这两种分布模的m、n和场结构完全一样,只是极化面相互旋转了90°/m,故称为极化简并。

除 TE_{0n} 和 TM_{0n} 模外,每种 TE_{mn} 和 TM_{mn} 模($m \times n \neq 0$)本身都存在极化简并现象。

三个主要模式TE11模、TM01模、TE01模及其应用

24

- (1) 主模 TE_{11} 模: TE_{11} 模的截止波长最长,是圆波导中的最低次模,也是主模。
- (2) 圆对称 TM_{01} 模: TM_{01} 模是圆波导的第一个高次模。
- (3) 低损耗TE₀₁模: TE₀₁模是圆波导的高次模式,当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其他模式来说是低的。

圆波导三种模式的导体衰减曲线。

不同模式的导体衰减随频率变化曲线

TM₀₁模

TE₀₁模

管壁电流

管壁电流

+

第19讲复习

复习要点

- 矩形波导的色散关系为 $k_z = \sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$ 。色散特性可用

截止波长 λ_c (或截止频率 f_c)、相速 ν_p 、群速 ν_g 、波导波长 λ_g 等表示。工作于TE₁₀模的矩形波导、等效阻抗更能反映不同波导连接时引起的反射。

年形波导横截面场分布用三角函数表示,圆波导横截面内场分布 在半径方向用贝塞尔函数表示,如果注意到三角函数与贝塞尔函 数的相似性,那么将圆波导与矩形波导进行对比,圆波导就容易 理解与掌握。

复习范围

6.2.3~5, 6.2.7, 6.3

帮助理解的多媒体演示: MMS14, MMS7