Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

DOE Cooperative Agreement No. DE-EE0005758

RTI International, Duke University,
and Veolia Water Solutions & Technologies North America, Inc.
Project Period: September 1, 2012 to November 30, 2015

Lora Toy (Principal Investigator) RTI International Research Triangle Park, NC 27709

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 6-7, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

Current State/Challenges of Industrial Water Use

Heavy industrial water utilization footprint

Freshwater Withdrawals in the U.S. by Sector (2005)

Source: U.S. CIA World Factbook

Total = $478.4 \text{ km}^3/\text{yr}$

- ~5.2 quadrillion BTU* (2010) consumed for water services in U.S. industrial sector
- Minimal to no water reuse
- Wide spectrum of contaminants in industrial wastewaters, making them difficult to treat
- High energy intensity, pretreatment needs, and water-treatment costs
- Unsustainabilit (limited resources, regulatory pressures)

Water reuse and waste heat can reduce freshwater withdrawal and energy consumption.

Project Objectiv

Develop and demonstrate advanced hybrid industrial water treatment system that will...

- Cost-effectively enable at least 50% water reuse efficiency near term toward Zero-Liquid Discharge (ZLD)
- Improve energy efficiency of industrial wastewater treatment by at least 50%, relative to current technology

^{*} Ref.: Sanders and Weber, Environ. Res. Lett., 7, 1-11 (2012)

Technical Approach

Wastewater Electricity: Increasing feed TDS 50-70 kWh/m³ Current **ZLD Approach** 20 - 60% Product water Evaporation/ for reuse crystallization Reverse Extensive pretreatment **Osmosis** Industrial current statewastewater chemicals + softening of-the-art) Product water for reuse + microfiltration 80 - 40% water recovery Increasing Electricity: **Desired** feed TDS 50-70 kWh/m³ Waste heat: **ZLD Approach** 59-290 kWh/m3 4 - 20% Evaporation/ Product water crystallization for reuse Minimal GRTI pretreatment Smaller size of Industrial evaporator/crystallizer wastewater microfiltration FO/MD

Product water for reuse

96 - 80% water recovery

Innovative Technical Approach

- Beneficial utilization of waste heat
- Synergistic coupling of FO (forward osmosis) and MD (membrane distillation)
 - <u>FO (osmotically driven process)</u>: Pretreatment for MD
 - MD (thermally driven process):
 Regeneration of high-osmotic FO draw solution
- Low-pressure operation
 - Reduced energy requirements
- High water recovery/reuse potential
- Broad applicability to different industries

Technical Approach

Strong, Multidisciplinary Project Team:

Basic R&D

Commercialization

Applied technology development

Transition and Deployment

Stakeholders/End Users in This Technology Development

Broad applicability throughout industrial sectors...

• Economic growth

- Oil & gas
- Refining/Petrochemical
- Chemical

- Pulp & paper
- Biorefineries/Biofuels
- Power generation

- Environmental protection
- Energy/Water/Carbon footprints
- More stringent regulations
 - Wastewater discharges
 - Air emissions

Transition and Deployment Roadmap

	Previous Work	Current Project: RTI / DO	Future Development/Sustainment		
Yr	→2011	2012-14	2015	2016-18	2018+
TRL	2-3	3-5	5-6	7-8	9
Proof-of-Concept / Feasibility		Laboratory Validation ✓ Membrane screening & evaluation ✓ Process development,	 Relevant Environment Testing Installation & commissioning of field prototype Field prototype (500-qpd) 	 Membrane / module manufacturing Pre-commercial demonstration 	Deploy- ment
		 modeling, & integration ✓ Preliminary techno-economic assessment Bench integrated system (50-gpd) testing with real wastewaters Updated techno-economic 	 demonstration at industrial site treating slipstream of real effluent Final techno-economic assessment 	Ongoing membrane, module, and process refinements to increase market relevance and economic competitiveness	
				 Potential technology ov Veolia (JDA / option agreement in place) 	1

Laboratory water test-bed systems

Bench, integrated FO/MD system (50-gpd)

Veolia produced water treatment plant

Measure of Success

Benefits Throughout U.S. Manufacturing Supply Chain

- Enabling cost-effective water reuse toward ZLD
 - Up to 94% reduction in wastewater discharge volumes*
- More than doubling of energy efficiency of industrial water treatment

- >90% lower electricity costs*
- 20% or more reduction in water treatment costs*
- Carbon emissions reduction (>90%*)
- Broad applicability to different industries

Overall Impacts

- Revitalization and strengthening of the U. S. manufacturing base for existing and emerging industries
 - Domestic job creation
 - Increased U.S. manufacturing economic competitiveness & sustainability
 - Support of President's "Plan To Win the Future by Investing in Advanced Manufacturing Technologies"
- U. S. clean energy and water technology leadership

^{*} Based on project's preliminary techno-economic analysis and relative to Reverse Osmosis [RO]

Project Management & Budget

• **Project Duration**: 39 mos. (3.25 yrs.)

Total Project Budget				
DOE Investment	\$4,800,000 [80%]			
Cost Share	\$1,200,000 [20%]			
Project Total	\$6,000,000			

Project Task Structure (Simplified)				
1 – MD membrane development				
2 – FO membrane process evaluation and optimization				
3 – Bench, integrated FO/MD System performance testing				
4 – Hybrid process model development and validation				
5 - Field demonstration of prototype, integrated system				
6 - Hybrid process design integration/Techno-economic analysis				

	Status	Milestones	
	✓	Q ₃ – Successful hydrophobic surface modification of ceramic MD membranes	
BP ₁	\checkmark	Q5 – Bench-scale, integrated FO/MD system design	
(15 mos.)	✓	 Optimized FO membrane process with FO draw solution formulation(s) [Go/No-Go] 	
	✓	 Preliminary techno-economic and environmental analysis [Go/No-Go] 	
		Q7 – Fully operational bench, integrated FO/MD test system (50-gpd) [Go/No-Go]	
	✓	 Preliminary draft engineering design package for prototype, integrated FO/MD unit 	
BP ₂ (12 mos.)		Q8 – Selection of at least one MD membrane having >95% rejection of dissolved solids in complex wastewater feeds [Go/No-Go]	
(12 11108.)		- Hybrid FO/MD process model validation[Go/No-Go]	
		- Selection of host test site [Go/No-Go]	
		 Final engineering design package for field prototype, integrated FO/MD unit 	
		Q9 – Successful development of hierarchal, omniphobic surface for MD membranes	
BP ₃ (12 mos.)		Q11 – Field prototype, integrated system (500-gpd) installation/ commissioning	
(12 11103.)		Q12 – Hybrid FO/MD process modeling tool fully validated	
		Q13 – Final techno-economic and environmental analysis	

Results and Accomplishments

Project Status

- Currently in Month 21 of project (halfway through Budget Period 2)
- Accomplishments to date include
 - All Budget Period 1 milestones achieved
 - FO & MD membrane experimental screening/performance evaluation
 - FO & MD model development
 - Preliminary techno-economic analysis (Class 4 estimate)

<u>Planned Future Work</u>

- Bench, integrated FO/MD testing with real wastewaters
- Demonstration of field integrated prototype at industrial site
- Final techno-economic and environmental analyses

