Robot Operating System

Лекция № 1

Филатов Антон Юрьевич

Введение

ROS — операционная система на основе Linux.

Задачи ROS:

- Разработка ПО без привлечения роботов
- Универсальный фреймворк
- Software reuse

Преимущества и недостатки ROS

Преимущества:

- Open source
- Аппаратная абстракция устройств робота
- Поддержка распределённых вычислений
- Упрощённое тестирование Недостатки:
- Высокий порог входа
- Нет поддержки Windows

Что было до ROS?

«Робототехника сейчас находится на той стадии, на которой были ПК 30 лет назад. Роботы сегодня часто имеют уникальную операционную систему.»

Насколько сложные роботы существуют?

История развития ROS

ROS появился в 2010 году и с тех пор уже вышло 10 версий. Версии ROS имеют не цифровое обозначение, а буквенное.

Так, например, последние версии ROS имеют названия Kinetik и Lunar. Первая версия ROS называлась Box Turtle.

Для того, чтобы скачать конкретную версию ROS необходимо ввести команду

sudo apt-get install ros-<version>-desktop-full

Почему Turtle?

Исторически сложилось, что первое знакомство с ROS происходит с примера, который называется Turtle Sim.

Новая версия ROS → новый внешний вид черепашки

Описание ROS

Две части:

- ROS core ядро фреймворка. Поддержка всех функций. Реализация передачи сообщений. Имитация операционной системы.
- ROS-pkg пакеты ROS. Написанные пользователями программы, объединённые в пакеты.

Пакет — абстракция, объединяющая несколько исполняемых модулей.

Написанную программу можно внедрить в ROS для общего использования, самостоятельно выбрав тип открытой лицензии.

Основные концепции ROS

- Разделение логики на узлы Node
- Унифицированное общение между Node Topic, Service call

Нода — независимый компонент робота.

Топик — «эфир», к которому подключается нода с целью записи или чтения сообщений.

Сервис — «приватный» канал между нодами вида запрос-ответ

Что такое нода

Node — отдельный поток (или потоки), выполняющий требуемые действия с входными данными и передающий данные другим нодам

О взаимодействии нод

Таким образом разработка — описание узлов-нод и передача сообщений между ними

Файловая система ROS

Для упрощения навигации в ROS построена система пакетов

Все пакеты, поставляемые с ROS, располагаются в директории

opt/ros/kinetic/share

Требования и возможности

- На данный момент программировать под ROS Kinetik можно на:
 - C++11 (Требуется GCC 4.9)
 - Lisp SBCL 1.2.4
 - Python 3.4
- Требования к системе:
 - Ubuntu Willy/Xenial
 - Debian Jessie

Как разрабатывать для ROS

- 0) Установить Linux и ROS
- 1) Инициализировать пакет
- 2) Создать исполняемый модуль, который готов принимать какую-либо информацию в виде сообщений и/или посылать такую информацию
- 3) Создать или подключить исполняемый модуль, обменивающийся сообщения с первым модулем.
- 4) Разрабатывать «топик» не нужно он будет создан автоматически средствами ROS.

Когда программа готова

Существует процедура внедрения готового продукта в систему пакетов ROS — поделиться с другими разработчиками.

Пример — gmapping

Написанная программа будет расположена на репозитории ROS, откуда может быть скачана и использована всеми желающими

Тестирование и отладка в ROS

- ROS поддерживает систему модульного тестирования google Testing (gTest).
- А также предоставляет утилиты rviz и rqt_graph, визуализирующие и упрощающие отладку.

Источники информации

A Gentle Introduction to ROS

Jason M. O'Kane

166 pages

ISBN 978-14-92143-23-9

wiki.ros.org

Спасибо за внимание