Rényi relative entropies and noncommutative L_p -spaces II

Anna Jenčová *

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, 814 73 Bratislava, Slovakia

Abstract

We show the relation between two versions of sandwiched Rényi relative entropies for von Neumann algebras, introduced recently in [M. Berta et al, arXiv:1608.05317] and [A. Jenčová, arXiv:1609.08462]. It is also proved that equality in data processing inequality for a quantum channel and $\alpha \in (1/2, 1)$ is equivalent to sufficiency (reversibility) of the channel.

1 Introduction

In [4], we introduced a version of sandwiched Rényi relative α -entropy \tilde{D}_{α} with $\alpha > 1$ for normal positive linear functionals on a von Neumann algebra. Our definition is based on non-commutative L_p spaces with respect to a state, defined by Kosaki [6]. Another version, called the Araki-Masuda divergences which we will denote by D_{α}^{BST} , was introduced in [2], based on the weighted L_p -norms of Araki and Masuda [1], this definition works for all $\alpha \in [1/2, 1) \cup (1, \infty]$. We show that for $\alpha > 1$ these two versions are equal and we give an expression for D_{α}^{BST} , $\alpha \in [1/2, 1)$, in the framework of [4]. For this, we use the polar decomposition in the Araki-Masuda L_p -spaces. Similar results, by different methods, were independently obtained by Hiai, [3]. We also prove that for a quantum channel Φ , two normal states ψ, φ such that the support projections satisfy $s(\psi) \leq s(\varphi)$ and $\alpha \in (1/2, 1)$, the equality

$$D_{\alpha}^{BST}(\psi \| \varphi) = D_{\alpha}^{BST}(\Phi(\psi) \| \Phi(\varphi))$$

implies that the channel Φ is sufficient for $\{\psi, \varphi\}$.

The present paper is intended as a continuation of [4] and all the basic definitions and notations introduced therein will be used freely, without a separate introduction. We will also refer to the definitions and properties of Haagerup L_p -spaces, relative modular operators and conditional expectations, listed in [4, Appendix].

^{*}jenca@mat.savba.sk

2 The Araki-Masuda divergences

In this section, we recall the definition of the Araki-Masuda divergences of [2] and prove that they are equal to \tilde{D}_{α} for $\alpha > 1$. We first introduce the Araki-Masuda L_p -spaces and their properties, in particular the norm duality and polar decompositions that are crucial for our results, and prove their relation to the norms $\|\cdot\|_{p,\varphi}$. Then we discuss the Araki-Masuda divergences and \tilde{D}_{α} . If not stated otherwise, we will work in the standard form $(l(\mathcal{M}), L_2(\mathcal{M}), L_2(\mathcal{M})^+, J = *)$, [4, Appendix A.1].

2.1 The Araki-Masuda weighted L_p -spaces

Let us assume that $\varphi \in \mathcal{M}_*^+$ is faithful. The Araki-Masuda noncommutative L_p -spaces with respect to φ are defined as follows [1]:

1. for $2 \leq p \leq \infty$, $L_p^{AM}(\mathcal{M}, \varphi)$ is a subspace in $L_2(\mathcal{M})$ of elements

$$k \in \cap_{\sigma \in \mathfrak{S}_*(\mathcal{M})} \mathcal{D}(\Delta_{\sigma,\varphi}^{1/2-1/p}), \quad \|k\|_{p,\varphi}^{AM} := \sup_{\sigma \in \mathfrak{S}_*(\mathcal{M})} \|\Delta_{\sigma,\varphi}^{1/2-1/p} k\|_2 < \infty$$

2. for $1 \leq p < 2$, $L_p^{AM}(\mathcal{M}, \varphi)$ is the completion of $L_2(\mathcal{M})$ under the norm

$$||k||_{p,\varphi}^{AM} := \inf_{\sigma \in \mathfrak{S}_*(\mathcal{M}), s(\omega_k) \le s(\sigma)} ||\Delta_{\sigma,\varphi}^{1/2 - 1/p} k||_2.$$

Here $\Delta_{\sigma,\psi}$ for $\sigma,\psi\in\mathcal{M}_*^+$ is the relative modular operator ([1, Appendix C], see [4, Appendix A.1] for its properties in the present standard form).

With these norms, $L_p^{AM}(\mathcal{M}, \varphi)$ are Banach spaces for $1 \leq p \leq \infty$. Let 1/p + 1/q = 1. By [1, Theorem 1], the inner product (\cdot, \cdot) restricted to $[L_p^{AM}(\mathcal{M}, \varphi) \cap L_2(\mathcal{M})] \times [L_q^{AM}(\mathcal{M}, \varphi) \cap L_2(\mathcal{M})]$ extends uniquely to a continuous sesquilinear form $\langle \cdot, \cdot \rangle_{p,\varphi}^{AM}$ on $L_p^{AM}(\mathcal{M}, \varphi) \times L_q^{AM}(\mathcal{M}, \varphi)$, through which $L_q^{AM}(\mathcal{M}, \varphi)$ is the dual of $L_p^{AM}(\mathcal{M}, \varphi)$ for $1 \leq p < \infty$. In particular, we have

$$||k||_{p,\omega}^{AM} = \sup\{|(k,k')|, k' \in L_2(\mathcal{M}), ||k'||_{q,\omega}^{AM} \le 1\}$$
 (1)

for $k \in L_p^{AM}(\mathcal{M}, \varphi)$ and $1 \le p \le \infty$.

By [1, Theorem 3], we have the following polar decomposition for $k \in L_p^{AM}(\mathcal{M}, \varphi)$: there is a (unique) partial isometry $u \in \mathcal{M}$ and $\rho \in \mathcal{M}_*^+$, such that $uu^* = s(\omega_k)$, $u^*u = s(\rho)$ and

$$k = u\Delta_{\rho,\varphi}^{1/p}h_{\varphi}^{1/2} = uh_{\rho}^{1/p}h_{\varphi}^{1/2-1/p}$$

if $2 \le p < \infty$ and

$$\langle k, k' \rangle_{p,\varphi}^{AM} = (\Delta_{\rho,\varphi}^{1/2} h_{\varphi}^{1/2}, \Delta_{\rho,\varphi}^{1/p-1/2} u^* k') = (h_{\rho}^{1/2}, \Delta_{\rho,\varphi}^{1/p-1/2} u^* k')$$

for all $k' \in L_q^{AM}(\mathcal{M}, \varphi)$ if $1 \leq p \leq 2$. Conversely, any element of this form is in $L_p^{AM}(\mathcal{M}, \varphi)$ and $||k||_{p,\varphi}^{AM} = \rho(1)^{1/p}$. In this case, we will symbolically write

$$k = u\rho^{1/p}.$$

Moreover, for $1 and <math>k = u\rho^{1/p}$, $k' = \rho(1)^{-1/q}u\rho^{1/q}$ is the unique element in the unit ball of $L_q^{AM}(\mathcal{M},\varphi)$ such that $\langle k,k'\rangle_{p,\varphi}^{AM} = \|k\|_{p,\varphi}^{AM}$.

We next find the relation to the Kosaki L_p -norm $\|\cdot\|_{p,\varphi}$.

Proposition 1. Let $k \in L_2(\mathcal{M})$, $1 . Then <math>k \in L_{2p}^{AM}(\mathcal{M}, \varphi)$ if and only if $k^*k \in L_p(\mathcal{M}, \varphi)$ and $||k||_{2p,\varphi}^{AM} = ||k^*k||_{p,\varphi}^{1/2}$.

Proof. Let $k \in L_{2p}^{AM}(\mathcal{M}, \varphi)$ and let $k = u\rho^{1/2p}$ be the polar decomposition, so that $k = uh_{\rho}^{1/2p}h_{\varphi}^{1/2-1/2p}$. Then $k^*k = h_{\varphi}^{1/2q}h_{\rho}^{1/p}h_{\varphi}^{1/2q} \in L_p(\mathcal{M}, \varphi)$, moreover, $\|k\|_{2p,\varphi}^{AM} = \rho(1)^{1/2p} = \|k^*k\|_{p,\varphi}^{1/2}$.

For the converse, let $k = vh_{\psi}^{1/2}$ be the (unique) polar decomposition of k as an element in $L_2(\mathcal{M})$. Then $v^*v = s(\psi)$, $vv^* = s(\omega_k)$ and $h_{\psi} = k^*k \in L_p(\mathcal{M}, \varphi)^+$. Hence there is some $\rho \in \mathcal{M}_*^+$ such that $h_{\psi} = h_{\varphi}^{1/2q} h_{\rho}^{1/p} h_{\varphi}^{1/2q}$. Let $k' := h_{\rho}^{1/2p} h_{\varphi}^{1/2q}$, then $k' \in L_2(\mathcal{M})$ has the polar decomposition $k' = wh_{\psi}^{1/2}$, with $w^*w = v^*v = s(\psi)$. It follows that

$$k = vh_{\psi}^{1/2} = vw^*wh_{\psi}^{1/2} = vw^*k' = vw^*h_{\rho}^{1/2p}h_{\varphi}^{1/2q},$$

and since $vw^*wv^* = vv^*vv^* = vv^* = s(\omega_k)$, we obtain $k \in L_{2p}^{AM}(\mathcal{M}, \varphi)$, the equality for the norms holds as before.

Remark 2. Let us note that the Araki-Masuda L_p -spaces can be obtained by complex interpolation as in [6, Section 3], using the embeddings $\mathcal{M} \hookrightarrow L_2(\mathcal{M}) \hookrightarrow L_1(\mathcal{M}) \simeq \mathcal{M}_*$, given by

$$\mathcal{M} \ni x \mapsto xh_{\omega}^{1/2} \in L_2(\mathcal{M}), \quad L_2(\mathcal{M}) \ni k \mapsto (h_{\omega}^{1/2}, \cdot k) \in \mathcal{M}_*.$$

We then have the isometric isomorphisms

$$L_{p,\varphi}^{AM} \simeq C_{1/p}(\mathcal{M}, L_1(\mathcal{M})) \simeq C_{2/p}(\mathcal{M}, L_2(\mathcal{M})), \quad 2 \leq p \leq \infty$$

$$L_{p,\varphi}^{AM} \simeq C_{1/p}(\mathcal{M}, L_1(\mathcal{M})) \simeq C_{2/p-1}(L_2(\mathcal{M}), L_1(\mathcal{M})), \quad 1 \leq p \leq 2.$$

This can be seen from [1, Thm 4], the polar decompositions and [6, Thm 9.1].

2.2 The Araki-Masuda divergences

In this paragraph, $\varphi \in \mathcal{M}_*^+$ is not assumed faithful and $\pi : \mathcal{M} \to B(\mathcal{H})$ is any *-representation. For $\xi \in \mathcal{H}$, let ω_{ξ} be the vector state given by ξ , that is $\omega_{\xi}(a) = (\xi, \pi(a)\xi)$. We also denote by ω'_{ξ} the corresponding state on the commutant: $\omega'_{\xi}(a') = (\xi, a'\xi)$, $a' \in \pi(\mathcal{M})'$. Let $\Delta(\xi/\varphi)$ denote the spatial derivative as defined in [2, Sec. 2.2] (we give this definition in the Appendix). The φ -weighted p-norm of $\xi \in \mathcal{H}$ is defined as:¹

1. for $2 \le p \le \infty$,

$$\|\xi\|_{p,\varphi}^{BST} := \sup_{\zeta \in \mathcal{H}, \|\zeta\| = 1} \|\Delta(\zeta/\varphi)^{1/2 - 1/p} \xi\|$$

if $s(\omega_{\xi}) \leq s(\varphi)$ and $+\infty$ otherwise. Note that the supremum can be infinite also if the condition on the supports holds.

¹The expression in 2. is slightly different from [2] but it seems it does not work otherwise

2. for $1 \le p < 2$, we define

$$\|\xi\|_{p,\varphi}^{BST}:=\inf_{\zeta\in\mathcal{H},\|\zeta\|=1,s(\omega_\zeta')\geq s(\omega_\xi')}\|\Delta(\zeta/\varphi)^{1/2-1/p}\xi\|.$$

The following relation to the Araki-Masuda L_p -norms is immediate from the results in the Appendix and properties of the standard representation on $L_2(\mathcal{M})$.

Proposition 3. Let $\varphi \in \mathcal{M}_*^+$ be faithful and let $k \in L_2(\mathcal{M})$, $1 \leq p \leq \infty$. Then $||k||_{p,\varphi}^{BST} = ||k^*||_{p,\varphi}^{AM}$.

The use of the BST-norms has the advantage that this definition works for non-faithful φ and does not depend on the representation π nor the particular vector representing the functional ω_{ξ} . We now recall the definition of Araki-Masuda divergences.

Definition 1. [2] Let $\varphi \in \mathcal{M}_*^+, \psi \in \mathfrak{S}_*(\mathcal{M})$ and $\alpha \in [1/2, 1) \cup (1, \infty)$. Let ξ_{ψ} be any vector representative of ψ for a *-representation $\pi : \mathcal{M} \to B(\mathcal{H})$. Then

$$D_{\alpha}^{BST}(\psi \| \varphi) = \frac{2\alpha}{\alpha - 1} \log \|\xi_{\psi}\|_{2\alpha, \varphi}^{BST}$$
 (2)

2.3 The relation of D_{α}^{BST} and \tilde{D}_{α}

We now prove equality of the two versions of Rényi relative entropies for $\alpha > 1$ and find a suitable expression for D_{α}^{BST} , $\alpha \in [1/2, 1)$, in terms of the operators $h_{\psi}, h_{\varphi} \in L_1(\mathcal{M})$. We will need the following result.

Lemma 4. Let $1 and let <math>\varphi \in \mathcal{M}_*^+$, $k \in L_2(\mathcal{M})$. Then

$$||k||_{p,\omega}^{BST} = \rho(1)^{1/p},$$

where $\rho \in \mathcal{M}_*^+$ is obtained from the polar decomposition $k^*h_{\varphi}^{1/p-1/2} = uh_{\rho}^{1/p}$ in $L_p(\mathcal{M})$. Moreover, if φ is faithful, then $k^* = u\rho^{1/p}$ is the polar decomposition of k^* in $L_p^{AM}(\mathcal{M}, \varphi)$.

Proof. Similarly as before, using Appendix and the properties of a standard representation we obtain

$$||k||_{p,\varphi}^{BST} = \inf_{\sigma \in \mathfrak{S}_*(\mathcal{M}), s(\sigma) \ge s(\omega_{k^*})} ||\Delta_{\sigma,\varphi}^{1/2 - 1/p} k^*||_2.$$

Since $k^* \in L_2(\mathcal{M})$, we have $k^*h_{\varphi}^{1/p-1/2} \in L_p(\mathcal{M})$, so that $k^*h_{\varphi}^{1/p-1/2} = uh_{\rho}^{1/p}$ for some $\rho \in \mathcal{M}_*^+$. Assume that $\sigma \in \mathfrak{S}_*(\mathcal{M})$ is such that $s(\omega_{k^*}) \leq s(\sigma)$ and $k^* \in \mathcal{D}(\Delta_{\sigma,\varphi}^{1/2-1/p})$. Then (see [4, Appendix A]) $\Delta_{\sigma,\varphi}^{1/2-1/p}k^* =: k' \in L_2(\mathcal{M})$ satisfies

$$uh_{\rho}^{1/p} = s(\sigma)k^*h_{\varphi}^{1/p-1/2} = h_{\sigma}^{1/p-1/2}k'.$$

By Hölder's inequality, we obtain

$$\rho(1)^{1/p} = \|uh_{\rho}^{1/p}\|_{p} \le \|h_{\sigma}^{1/p-1/2}\|_{2p/(2-p)}\|k'\|_{2} = \|k'\|_{2}.$$
(3)

On the other hand, put $\rho_u(a) = \rho(u^*au)$, then $s(\rho_u) = uu^* \leq s(\omega_{k^*})$. Let $\sigma_0 \in \mathfrak{S}_*(\mathcal{M})$ be any state such that $s(\sigma_0) = s(\omega_{k^*}) - s(\rho_u)$ and put $\sigma_{\epsilon} = s(\omega_{k^*})$ $\epsilon \rho(1)^{-1} \rho_u + (1-\epsilon)\sigma_0$. Then $\sigma_{\epsilon} \in \mathfrak{S}_*(\mathcal{M})$, $s(\sigma_{\epsilon}) = s(\omega_{k^*})$ and we have

$$k^* h_{\varphi}^{1/p-1/2} = u h_{\rho}^{1/p} = h_{\sigma_{\epsilon}}^{1/p-1/2} k'$$

where $k' = \epsilon^{1/2 - 1/p} \rho(1)^{1/p} h_{\rho_u(1)^{-1}\rho_u}^{1/2} u$. From this and (3), it follows that

$$\rho(1)^{1/p} \le \|k\|_{p,\varphi}^{BST} \le \|\Delta_{\sigma_{\epsilon},\varphi}^{1/2-1/p} k^*\|_2 = \|k'\|_2 = \epsilon^{1/2-1/p} \rho(1)^{1/p}$$

for all $\epsilon \in (0,1)$. Letting $\epsilon \to 1$, we get $\rho(1)^{1/p} = ||k||_{p,\varphi}^{BST}$. Assume next that φ is faithful and let $k' \in L_q^{AM}(\mathcal{M}, \varphi) \subseteq L_2(\mathcal{M})$, with polar decomposition $k' = v\sigma^{1/q}$. Then

$$\begin{split} \langle k^*,k'\rangle_{p,\varphi}^{AM} &= (k^*,k') = (k^*,vh_\sigma^{1/q}h_\varphi^{1/p-1/2}) = \operatorname{Tr} h_\sigma^{1/q}v^*k^*h_\varphi^{1/p-1/2} \\ &= \operatorname{Tr} h_\sigma^{1/q}v^*uh_\rho^{1/p} = (h_\rho^{1/2},\Delta_{\rho,\varphi}^{1/p-1/2}u^*k') \end{split}$$

so that $k^* = u\rho^{1/p}$ is the polar decomposition of k^* in $L_p^{AM}(\mathcal{M}, \varphi)$.

Theorem 5. Let $\psi, \varphi \in \mathcal{M}_+^+$. Then

- (i) for $\alpha \in (1, \infty)$, $D_{\alpha}^{BST}(\psi \| \varphi) = \tilde{D}_{\alpha}(\psi \| \varphi)$.
- (ii) for $\alpha \in [1/2, 1)$, we have

$$D_{\alpha}^{BST}(\psi \| \varphi) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left(h_{\varphi}^{\frac{1 - \alpha}{2\alpha}} h_{\psi} h_{\varphi}^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha}$$

Proof. For (i), we may assume that $s(\psi) \leq s(\varphi)$, otherwise both expressions are infinite. By restriction to the compressed algebra $s(\varphi)\mathcal{M}s(\varphi)$, we may suppose that φ is faithful. The statement then follows by Prop. 1.

For (ii), let $\alpha \in [1/2, 1)$. Then $h_{\psi}^{1/2} \in L_2(\mathcal{M}) \cap L_{2\alpha}^{AM}(\mathcal{M}, \varphi)$ and by Lemma 4, we have that

$$(\|h_{\psi}^{1/2}\|_{2\alpha,\varphi}^{BST})^{2\alpha} = \|h_{\psi}^{1/2}h_{\varphi}^{1/2\alpha - 1/2}\|_{2\alpha}^{2\alpha} = \operatorname{Tr}(h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}h_{\varphi}^{\frac{1-\alpha}{2\alpha}})^{\alpha}.$$

3 Monotonicity, equality and sufficiency

Let $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ be a quantum channel (that is, a completely positive trace preserving map). Then the dual map $\Phi^*: \mathcal{N} \to \mathcal{M}$ is a completely positive unital normal map. Using Stinespring representation, there exists a Hilbert space \mathcal{K} , a normal *-representation $\pi: \mathcal{N} \to B(\mathcal{K})$ and an isometry $T: L_2(\mathcal{M}) \to \mathcal{K}$ such that

$$\Phi^*(a) = T^*\pi(a)T, \qquad a \in \mathcal{N}.$$

Let $k \in L_2(\mathcal{M})$ be a representing vector for $\psi \in \mathcal{M}_*^+$, then $Tk \in \mathcal{K}$ is a representing vector for $\Phi(\psi)$, hence we have

$$D_{\alpha}^{BST}(\Phi(\psi), \Psi(\varphi)) = \frac{2\alpha}{\alpha - 1} \log ||Tk||_{2\alpha, \Phi(\varphi)}^{BST}.$$

The following data processing inequality (DPI) for D_{α}^{BST} was proved in [2]:

$$D_{\alpha}^{BST}(\psi \| \varphi) \ge D_{\alpha}^{BST}(\Phi(\psi) \| \Phi(\varphi)), \qquad \alpha \in [1/2, 1) \cup (1, \infty].$$

This is equivalent to

$$||Tk||_{p,\Phi(\varphi)}^{BST} \le ||k||_{p,\varphi}^{BST}, \ 2 (4)$$

for any Stinespring dilation (K, π, T) . We next show that equality in DPI implies that the channel Φ is sufficient with respect to $\{\psi, \varphi\}$.

Theorem 6. Assume that $s(\psi) \leq s(\varphi)$ and let $\alpha \in (1/2,1)$. Then $D_{\alpha}^{BST}(\psi \| \varphi) = D_{\alpha}^{BST}(\Phi(\psi) \| \Phi(\varphi))$ if and only if Φ is sufficient for $\{\psi, \varphi\}$.

Proof. Because of the assumption on the supports, we may suppose that both φ and $\Phi(\varphi)$ are faithful. Assume that the equality holds, so that $\|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} = \|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST}$, here $p=2\alpha\in(1,2)$. Let $h_{\psi}^{1/2}=u\rho^{1/p}$ be the polar decomposition in $L_p^{AM}(\mathcal{M},\varphi)$, then

$$\|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} = \|h_{\psi}^{1/2}\|_{p,\varphi}^{AM} = (\|k\|_{q,\varphi}^{AM})^{-1}(k,h_{\psi}^{1/2})_{L_2(\mathcal{M})},$$

where 1/p + 1/q = 1 and $k \in L_q^{AM}(\mathcal{M}, \varphi)$ has polar decomposition $k = u\rho^{1/q}$. By Lemma 4, $h_{\psi}^{1/2} h_{\varphi}^{1/p-1/2} = u h_{\rho}^{1/p}$ and we have $k = u h_{\rho}^{1/q} h_{\varphi}^{1/2-1/q}$. Since T is an isometry, we get using the norm duality in [2, Sec. 3.2]

$$(k, h_{\psi}^{1/2})_{L_2(\mathcal{M})} = (h_{\psi}^{1/2}, k^*)_{L_2(\mathcal{M})} = (Th_{\psi}^{1/2}, Tk^*)_{\mathcal{K}}$$

$$\leq ||Th_{\psi}^{1/2}||_{p, \Phi(\varphi)}^{BST} ||Tk^*||_{q, \Phi(\varphi)}^{BST}$$

By the assumption and Proposition 3,

$$\|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST} = \|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} \leq (\|k^*\|_{q,\varphi}^{BST})^{-1}\|Tk^*\|_{q,\Phi(\varphi)}^{BST}\|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST},$$

which implies that $||Tk^*||_{q,\Phi(\varphi)}^{BST} \ge ||k^*||_{q,\varphi}^{BST}$. By (4) for q > 2, we get the equality $||Tk^*||_{q,\Phi(\varphi)}^{BST} = ||k^*||_{q,\varphi}^{BST}$ which by Theorem 5 yields

$$\tilde{D}_{\beta}(\omega\|\varphi) = D_{\beta}^{BST}(\omega\|\varphi) = D_{\beta}^{BST}(\Phi(\omega)\|\Phi(\varphi)) = \tilde{D}_{\beta}(\Phi(\omega)\|\Phi(\varphi)),$$

where $\beta := q/2$ and $h_{\omega} = \|k\|_{2}^{-2} k^{*} k$ is the state given by the (normalized) vector k^{*} . By [4, Thm. 7], this equality implies that Φ is sufficient with respect to $\{\omega, \varphi\}$. Since $h_{\omega} = \|k\|_{2}^{-2} h_{\varphi}^{1/2\alpha} h_{\rho}^{1/\beta} h_{\varphi}^{1/2\alpha}$, [4, Lemma 8] implies that Φ is sufficient with respect to $\{\rho(1)^{-1}\rho, \varphi\}$.

Let $E: \mathcal{M} \to \mathcal{M}$ be a faithful normal conditional expectation as in [4, Lemma 7], so that $\varphi \circ E = \varphi$ and Φ is sufficient for $\{\psi, \varphi\}$ if and only if

 $\psi \circ E = \psi$. Let E_p be the extension of E to $L_p(\mathcal{M})$ ([5], [4, Appendix A.3]). We have by [4, Eq. (A.5)],

$$u^* h_{\psi}^{1/2} h_{\varphi}^{1/p-1/2} = h_{\rho}^{1/p} = E_p(h_{\rho}^{1/p}) = E_2(u^* h_{\psi}^{1/2}) h_{\varphi}^{1/p-1/2}.$$

Since φ is faithful, we have $uu^* = s(\psi)$ by the properties of polar decomposition, and the above equalities imply that $u^*h_{\psi}^{1/2} = E_2(u^*h_{\psi}^{1/2})$, hence

$$h_{\psi \circ E} = E_1(h_{\psi}) = h_{\psi}^{1/2} u u^* h_{\psi}^{1/2} = h_{\psi}$$

so that Φ is sufficient for $\{\psi, \varphi\}$. The converse is obvious from DPI.

Appendix: The spatial derivative

We recall the definition of the spatial derivative $\Delta(\eta/\varphi)$ of [2], using the standard representation $(l(\mathcal{M}), L_2(\mathcal{M}), L_2(\mathcal{M})^+, \cdot^*)$. Let $\mathcal{H}_{\varphi} := [\mathcal{M}h_{\varphi}^{1/2}] = L_2(\mathcal{M})s(\varphi)$ and let $k \in L_2(\mathcal{M})$ be such that the corresponding functional is majorized by φ :

$$\omega_k(a^*a) = ||ak||^2 \le C_k \varphi(a^*a), \quad \forall a \in \mathcal{M},$$

for some positive constant C_k . Then

$$R^{\varphi}(k): ah_{\varphi}^{1/2} \mapsto ak, \qquad a \in \mathcal{M}$$

extends to a bounded linear operator $\mathcal{H}_{\varphi} \to L_2(\mathcal{M})$. Obviously, $R^{\varphi}(k)$ extends to a bounded linear operator on $L_2(\mathcal{M})$ by putting it equal to 0 on $L_2(\mathcal{M})(1-s(\varphi))$. Moreover, this operator commutes with the left action of \mathcal{M} , so that it belongs to $l(\mathcal{M})' = r(\mathcal{M})$, where r is the right action $r(a): h \mapsto ha$, $h \in L_2(\mathcal{M})$. In fact, ω_k is majorized by φ if and only if $k \in h_{\varphi}^{1/2}\mathcal{M}$, so that there is some $y_k \in \mathcal{M}$ such that $k = h_{\varphi}^{1/2}y_k$, $s(\varphi)y_k = y_k$ and we have $R^{\varphi}(k) = r(y_k)$.

Let now $h \in L_2(\mathcal{M})$, $\omega := \omega_h$. The spatial derivative $\Delta(h/\varphi)$ is a positive self-adjoint operator associated with the quadratic form $k \mapsto (h, R^{\varphi}(k)R^{\varphi}(k)^*h)$ as

$$\begin{split} (k, \Delta(h/\varphi)k) &= (\Delta(h/\varphi)^{1/2}k, \Delta(h/\varphi)^{1/2}k) = (h, R^{\varphi}(k)R^{\varphi}(k)^*h) \\ &= (R^{\varphi}(k)^*h, R^{\varphi}(k)^*h) = (hy_k^*s(\varphi), hy_k^*s(\varphi)) = (F_{h, h_{\varphi}^{1/2}}k, F_{h, h_{\varphi}^{1/2}}k), \end{split}$$

(see [4, Appendix A], for the definition of $F_{\eta,\xi}$). Since $h_{\varphi}^{1/2}\mathcal{M}+(1-s(\varphi))L_2(\mathcal{M})$ is a core for both $\Delta(h/\varphi)$ and $F_{h,h_{\varphi}^{1/2}}$, it follows that

$$\Delta(h/\varphi) = F_{h,h_{\varphi}^{1/2}}^* F_{h,h_{\varphi}^{1/2}} = J \Delta_{\omega,\varphi} J.$$

This implies that for any $k \in L_2(\mathcal{M})$ and $\gamma \in \mathbb{C}$, we have

$$\|\Delta(h/\varphi)^{\gamma}k\|_2 = \|\Delta_{\omega,\varphi}^{\gamma}Jk\|_2 = \|\Delta_{\omega,\varphi}^{\gamma}k^*\|_2.$$

References

- [1] H. Araki and T. Masuda. Positive cones and L_p -spaces for von Neumann algebras. *Publ. RIMS, Kyoto Univ.*, 18:339411, 1982.
- [2] M. Berta, V. B. Scholz, and M. Tomamichel. Rnyi divergences as weighted non-commutative vector valued L_p -spaces. arXiv:1608.05317, 2016.
- [3] F. Hiai. Unpublished notes, 2017.
- [4] A. Jenčová. Rényi relative entropies and noncommutative L_p -spaces. arXiv:1604.08462, 2016.
- [5] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. *Ann. Probab.*, 31:948–995, 2003.
- [6] H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L_p -spaces. J. Funct. Anal., 56:26–78, 1984.