Тема 1 а Дефинирайте релация и релация на еквивалентност. Докажете, че всяка релация на еквивалентност разбива областта си на класовете на еквивалентност.

Тема 1 в Докажете, че неориентиран граф е свързан, точно когато има покриващо дърво.

Тема 2 а Дефинирайте крайно, безкрайно и изброимо множество. Докажете, че съществува безкрайно множество, което не е изброимо.

Тема 2 b Докажете, че е вярна следната формула на Нютон:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Тема 3 а Докажете, че декартовото произведение на две изброими безкрайни множества е изброимо.

Тема 3 b Докажете, че всяка булева функция може да се представи като формула над елементарните функции отрицание, конюнкция и дизюнкция. Твърдението е известно като $Teopema\ na\ Eyn$.

Тема 4 а Дайте дефиниция на крайна и безкрайна редица. Дефинирайте крайно, безкрайно и изброимо множество. Формулирайте принципа на Дирихле.

Тема 4 b Докажете, че всяка булева функция може да се представи по единствен начин чрез полином на Жегалкин.

Тема 5 а Дефинирайте частична наредба, верига и контур в релация. Докажете, че една рефлексивна и транзитивна релация е частична наредба точно когато не съдържа контури.

Тема 5 b Дефинирайте функциите n! и $\binom{n}{k}$.

Нека A и B са крайни множества и |A|=n, |B|=m.

Изведете формули за броя на функциите $f: A \to B$, при допълнително изискване:

- (a) f е тотална.
- (b) f е частична.
- (c) f е инекция.

Тема 6 а Дефинирайте минимален и максимален елемент в частична наредба. Докажете, че всяка крайна частична наредба може да се разшири до пълна.

Тема 6 b Дефинирайте понятията импликанта и проста импликанта. Дайте пример на булева функция на 3 променливи, която има 4 единици в табличното си изписване, такава че минималната й Π съвпада със Съв Π С.

Тема 7 а Докажете, че няма биекция $f: \mathbb{N} \to 2^{\mathbb{N}}$. Твърдението е известно като Диагонален метод на Кантор.

Тема 7 b Дефинирайте графа на n-мерния хиперкуб. Дайте обоснован отговор на въпросите:

- (a) За кои стойности на n в този граф има хамилтонов цикъл?
- (b) За кои n в графа има ойлеров цикъл?

Тема 8 а Докажете, че има биекция $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Тема 8 b Опишете задачите, които решават алгоритмите на Прим и Дейкстра. Посочете прилики и разлики между тия задачи и между съответните алгоритми.

Тема 9 а Дефинирайте релация на частична наредба. Дефинирайте понятието път в граф. Разгледайте релацията "има път от връх u до връх v". Кога тази релация е частична наредба и кога е релация на еквивалентност?

Тема 9 b Дефинирайте графа на n-мерния хиперкуб. Дайте обоснован отговор на въпросите:

- (a) За кои стойности на n в този граф има хамилтонов цикъл?
- (b) За кои n графът е двуделен?

Тема 10 а Докажете, че няма биекция $f:A\to 2^A$ за произволно множество A. Твърдението е известно като Диагонален метод на Кантор.

Тема 10 b Изведете формула за броя на редиците от естествени числа x_1, x_2, \dots, x_k , за които $\sum_{i=1}^k x_i = n$ и $x_i \geq 0$.

Тема 11 а Докажете, че декартовото произведение на две изброими безкрайни множества е изброимо.

Тема 11 b Дефинирайте понятието "свързана компонента" в неориентиран граф. Дефинирайте понятието "силно свързана компонента" в ориентиран граф.

Тема 12 а Докажете теоремата на Ойлер, описваща необходимите и достатъчни условия за съществуване на ойлеров цикъл в граф.

Тема 12 b Формулирайте принципа на Дирихле. Формулирайте принципа за включване и изключване.