

planetmath.org

Math for the people, by the people.

compact element

 $\begin{array}{lll} {\rm Canonical\ name} & {\rm CompactElement} \\ {\rm Date\ of\ creation} & 2013\text{-}03\text{-}22\ 15\text{:}52\text{:}50 \\ {\rm Last\ modified\ on} & 2013\text{-}03\text{-}22\ 15\text{:}52\text{:}50 \end{array}$

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 17

Author CWoo (3771)
Entry type Definition
Classification msc 06B23
Synonym finite element

Let X be a set and \mathcal{T} be a topology on X, a well-known concept is that of a compact set: a set A is compact if every open cover of A has a finite subcover. Another way of putting this, symbolically, is that if

$$A \subseteq \bigcup \mathcal{S}$$
,

where $S \subset \mathcal{T}$, then there is a finite subset \mathcal{F} of S, such that

$$A \subseteq \bigcup \mathcal{F}$$
.

A more general concept, derived from above, is that of a *compact element* in a lattice. Let L be a lattice and $a \in L$. Then a is said to be *compact* if

whenever a subset S of L such that $\bigvee S$ exists and $a \leq \bigvee S$, then there is a finite subset $F \subset S$ such that $a \leq \bigvee F$.

If we let \mathcal{D} to be the collection of closed subsets of X, and partial order \mathcal{D} by inclusion, then \mathcal{D} becomes a lattice with meet and join defined by set theoretic intersection and union. It is easy to see that an element $A \in \mathcal{D}$ is a compact element iff D is a compact closed subset in X.

Here are some other common examples:

- 1. Let C be a set and 2^C the subset lattice (power set) of C. The compact elements of 2^C are the finite subsets of C.
- 2. Let V be a vector space and L(V) be the subspace lattice of V. Then the compact elements of L(V) are exactly the finite dimensional subspaces of V.
- 3. Let G be a group and L(G) the subgroup lattice of G. Then the compact elements are the finitely generated subgroups of G.
- 4. Note in all of the above examples, atoms are compact. However, this is not true in general. Let's construct one such example. Adjoin the symbol ∞ to the lattice \mathbb{N} of natural numbers (with linear order), so that $n < \infty$ for all $n \in \mathbb{N}$. So ∞ is the top element of $\mathbb{N} \cup \{\infty\}$ (and 1 is the bottom element!). Next, adjoin a symbol a to $\mathbb{N} \cup \{\infty\}$, and define the meet and join properties with a by
 - $a \vee n = \infty$, $a \wedge n = 1$ for all $n \in \mathbb{N}$, and

• $a \vee \infty = \infty$, $a \wedge \infty = a$.

The resulting set $L = \mathbb{N} \cup \{\infty, a\}$ is a lattice where a is a non-compact atom.

Remarks.

- As we have seen from the examples above, compactness is closely associated with the concept of finiteness, a compact element is sometimes called a *finite element*.
- Any finite join of compact elements is compact.
- An element a in a lattice L is compact iff for any http://planetmath.org/DirectedSetdirect subset D of L such that $\bigvee D$ exists and $a \leq \bigvee D$, then there is an element $d \in D$ such that $a \leq d$.
- As the last example indicates, not all atoms are compact. However, in an algebraic lattice, atoms are compact. The first three examples are all instances of algebraic lattices.
- A compact element may be defined in an arbitrary poset $P: a \in P$ is compact iff a is way below itself: $a \ll a$.

References

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, Cambridge (2003).