

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

PROCESSOS DE USINAGEM

AULA 1

Movimentos e Grandezas no Processo de Usinagem

Professor: Dr. Paulo Sergio Olivio Filho

INTRODUÇÃO A PROCESSOS DE USINAGEM

A Usinagem é baseada na mecânica (cinemática, atrito e deformação), na termodinâmica (geração e propagação de calor) e nas propriedades dos materiais.

É uma operação que confere à peça: forma, dimensões ou acabamento superficial, ou ainda uma combinação destes, através da remoção de material sob a forma de cavaco.

INTRODUÇÃO A PROCESSOS DE USINAGEM

Cavaco é a porção de material da peça retirada pela ferramenta, caracterizando-se por apresentar forma irregular.

A remoção de material ocorre através da interferência entre ferramenta e peça, sendo a ferramenta constituída de um material de dureza e resistência muito superior à do material da peça.

SEQUÊNCIA DE USINAGEM

Material Bruto

Sequência de Usinagem

Produto Final

Remoção de cavaco Remoção de cavaco

IMPORTÂNCIA DA USINAGEM NA INDÚSTRIA

- > 80% dos furos são realizados por usinagem
- ➤ 100% dos processos de melhoria da qualidade superficial são feitos por usinagem
- O comércio de máquinas-ferramentas representa uma das grandes fatias da riqueza mundial
- > 70% das engrenagem para transmissão de potência
- > 90% dos componentes da indústria aeroespacial
- > 100% dos pinos médico-odontológicos

IMPORTÂNCIA DA USINAGEM NA INDUSTRIA

- Outros produtos usinados
- > 70% das lentes de contatos extraoculares
- > 100% das lentes de contatos intraoculares
- Óculos
- Matrizes para forjamento e estampo
- Motores

USINAGEM CONVENCIONAL

USINAGEM CONVENCIONAL

Definida

Não

Geometria

de

Ferramenta

USINAGEM NÃO CONVENSIONAL

Usinagem Não convencional

Remoção térmica

- Por corte a Plasma
- Por Laser
- Por Feixe de Ions
- Por Eletroerosão

- Por ultra-som
- Por jato d'água

Remoção Química Remoção Eletroquímica

- Direção: direção instantânea do movimento.
- Velocidades: velocidade instantânea do movimento.
- ❖ Percurso: espaço percorrido sobre a peça, segundo a direção de avanço durante um determinado tempo.

DIREÇÃO DOS MOVIVENTOS

- > Direção de corte, Velocidade de corte (Vc), Percurso de corte (Ic)
- > Direção de avanço, Veloc. de avanço (Vf), Percurso de avanço (If)
- > Direção efetiva de corte, Veloc. efetiva de corte (Ve), Percurso efetivo de corte (le)

MOVIMENTOS ATIVOS

ATIVOS - Movimento com Retirada de Cavaco

- Movimento de corte: é o movimento entre a ferramenta e a peça que provoca remoção de cavaco durante um único curso ou rotações da ferramenta sobre a peça.
- Movimento de avanço: é o movimento entre a ferramenta e a peça que possibilita uma remoção contínua ou repetitiva do cavaco durante várias rotações ou cursos da ferramenta.
- Movimento efetivo de corte: é o movimento entre a ferramenta e a peça a partir do qual resulta o processo de usinagem, sendo composto pela combinação dos movimentos de corte e avanço.

Torneamento

Ilustração dos percursos de corte

Retificação

Ilustração dos percursos de corte

Fresamento periférico ou tangencial

Fresamento frontal

Retificação Plana / Frontal

Ilustração dos percursos de corte

Ilustração dos percursos de corte

MOVIMENTOS PASSIVOS

- Movimento de aproximação: é o movimento de aproximação da ferramenta em direção à peça.
 - Direção de aproximação, Veloc. de aproximação (Va), Percurso de aproximação (la)
- Movimento de recuo: é o movimento de retorno da ferramenta em direção à máquina.
 - Direção de recuo, Veloc. de recuo (Vr), Percurso de recuo (Ir) ÁREA DE SEGURANÇA

PASSIVOS - Movimento sem Retirada de Cavaco

MOVIMENTOS PASSIVOS

- Movimento de correção: é o movimento entre a peça e a ferramenta empregado para compensar alterações de posicionamento devido a desgaste de ferramenta, deformações plásticas e variações de temperatura.
 - > Direção de correção, Veloc. de correção (Vn), Percurso de correção (In)

PASSIVOS - Movimento sem Retirada de Cavaco

MOVIMENTOS PASSIVOS

- Movimento de ajuste/profundidade: é o movimento entre a ferramenta e a peça no qual a espessura da camada de material a ser removida é (pre)determinada. (obs: não acontece nos processos de sangramento, furação e brochamento, pois é definida pela geometria da ferramenta.
 - > Direção de ajuste, Velocidade de ajuste (Vz), Percurso de ajuste (Iz)

PASSIVOS - Movimento sem Retirada de Cavaco

Velocidade de corte: velocidade tangencial instantânea resultante da rotação da ferramenta em torno da peça nas operações de torneamento, furação, fresamento, retificação, etc.

$$V_c = \frac{\pi \times d \times n}{1000}$$

Sendo:

Vc = velocidade de corte (m/min)

d = diâmetro da ferramenta ou peça (mm)

n = rotação da ferramenta (rpm)

- A Vc é um valor obtido experimentalmente encontrado em tabelas de fabricantes de ferramenta.
- Os valores encontrados em tabelas também são função da vida da ferramenta.
- A **Vc** ainda depende da máquina-ferramenta, da geometria da peça, do tipo de dispositivo de fixação e da experiência do operador ou programador

Exemplos de tabela de Velocidade de Corte (Vc)

Table 9.13 GARANT external turning 0° and 7° (finish-machining)

Material	Material designation	Strength	v _c [m/min]			f [mm/rev.]			a _p [mm]				Recommendation WSP					Cooling
group														0°		7°		lubricant
		[N/mm²]	Min.	Start	Max.	Min.	Start	Max.	Min.	Start		Max.		Туре	Chip breaker	Туре	Chip breaker	
13.0	Stainless steel, sulphured	< 700	180 -	220	- 260	0.10	- 0.20	- 0.30	1.50	- 2.20) (+	3.00		HB 7120	VS			dry
			140 -	180	- 220	0.15	- 0.25	- 0.30	1.50	- 2.20	Die:	3.00		HB 7135	VS	HB 7135	VM	dry
13.1	Stainless steel, austenitic	< 700	180 -	220	- 260	0.10	- 0.20	- 0.30	1.50	- 2.20) (H	3.00		HB 7120	VS			dry
			140 -	180	- 220	0.15	- 0.25	- 0.30	1.50	- 2.20	14	3.00		HB 7135	VS	HB 7135	VM	dry
13.2	Stainless steel, austenitic	< 850	140 -	180	- 220	0.10	- 0.20	- 0.30	1.20	- 1.80	1/4	3.00		HB 7120	VS			Emulsion
			120 -	150	- 200	0.15	- 0.25	- 0.30	1.50	- 2.20	82	3.00		HB 7135	VS	HB 7135	VM	Emulsion
13.3	Stainless steel,	< 1100	140 -	180	- 220	0.10	- 0.20	- 0.30	1.20	- 1.80	02	3.00		HB 7120	VS			Emulsion
	martensitic		120 -	150	- 200	0.15	- 0.25	- 0.30	1.50	- 2.20	79 <u>84</u>	3.00		HB 7135	VS	HB 7135	VM	Emulsion
14.0	Special alloys	<1200	30 -	50	- 80	0.10	- 0.20	- 0.30	0.70	- 1.50	\ <u>\tag{8}</u>	2.00		HB 7120	VS	HB 7135	VM	Emulsion
			20 -	30	- 40	0.15	- 0.18	- 0.22	1.50	- 2.00	- C-T-	2.50				HU 70AL	ALX	Emulsion
15.0	Cast iron (GG)	< 180 HB	200 -	250	- 320	0.12	- 0.20	- 0.30	0.50	- 1.50	0 5	2.20		CU 7033	SS	CU 7033	SS	dry
			300 -	400	- 700	0.05	- 0.15	- 0.30	0.05	- 0.15	1.5	0.50		CBN 725	G			dry
15.1	Cast iron (GG)	> 180 HB	170 -	200	- 280	0.12	- 0.20	- 0.30	0.50	- 1.50	(=	2.20		CU 7033	SS	CU 7033	SS	dry
		ė.	300 -	400	- 700	0.05	- 0.15	- 0.30	0.05	- 0.15) 	0.50		CBN 725	G			dry
15.2	Cast iron (GGG, GT)	> 180 HB	170 -	200	- 280	0.12	- 0.20	- 0.30	0.50	- 1.50) 	2.20		CU 7033	SS	CU 7033	SS	dry
			300 -	400	- 700	0.05	- 0.15	- 0.30	0.05	- 0.15	1. 44	0.50		CBN 725	G			dry
15.3	Cast iron (GGG, GT)	> 260 HB	150 -	180	- 250	0.12	- 0.20	- 0.30	0.50	- 1.50	0.9	2.20		CU 7033	SS	CU 7033	SS	dry
			300 -	400	- 700	0.05	- 0.15	- 0.30	0.05	- 0.15	4	0.50		CBN 725	G			dry

Velocidade de avanço: produto do avanço pela rotação da ferramenta.

$$V_f = f \times n = \frac{1000 \times V_c \times f}{\pi \times d}$$
 Sendo:
 $V_f = \text{veloc. de avanço (mm/min)}$
 $f = \text{avanço (mm/volta)}$

Avanço (f): é o percurso de avanço em cada volta ou curso.

Avanço por dente (fz): é o percurso de avanço de cada dente, medido na direção de avanço da ferramenta.

$$f_Z = \frac{f}{Z}$$

Sendo:

Z = número de dentes ou arestas de corte

Tempo de corte (ativo): tempo em que o movimento de usinagem está efetivamente ocorrente (remoção de cavaco).

$$T_c = \frac{l_f}{V_f} = \frac{l_f}{f \times n} = \frac{\pi \times d \times l_f}{1000 \times f \times V_c} \begin{cases} \text{Sendo:} \\ T_c = \text{tempo de corte (min)} \\ l_f = \text{percurso de avanço (mm)} \end{cases}$$

Tempo passivo: somatório dos demais tempos relacionados aos movimentos de usinagem. Ex: zeramento, correção de plano, troca de ferramenta, reposicionamento.

CONCEITOS AUXILIARES

Plano de trabalho: é o plano que contém as direções de corte e de avanço (passando pelo ponto de referência da ferramenta). É neste plano que se realizam todos os movimentos que tomam parte na formação do cavaco.

Ângulo da direção de avanço (ϕ): é o ângulo entre a direção de avanço e a direção de corte. Pode ser constante (torneamento: ϕ =90°) ou variável durante o corte (fresamento).

CONCEITOS AUXILIARES

Ângulo da direção efetiva de corte (η): é o ângulo entre a direção de efetiva de corte e a direção de corte. Este ângulo pode ser considerado desprezível na maioria dos casos (h~0).

$$tan(\eta) = \frac{sen(\phi)}{cos(\phi) + \frac{Vc}{Vf}}$$

Em torneamento e furação: η=90°

$$\tan(\eta) = \frac{Vf}{Vc}$$

CONCEITOS AUXILIARES EM FRESAMENTO

Fresamento tangencial discordante

Fresamento tangencial concordante

- Profundidade ou largura de corte (ap): profundidade ou largura de penetração da ferramenta numa direção perpendicular ao plano de trabalho.
 - Profundidade de corte: torneamento, aplainamento, fresamento frontal / retificação frontal
 - <u>Largura de corte:</u> fresamento tangencial / retificação tangencial

Obs: Na furação, a largura de corte ap = d/2.

• Penetração de Trabalho ou espessura de penetração (ae): espessura de corte em cada curso ou revolução, medida no plano de trabalho e numa direção perpendicular à direção de avanço. É de importância predominante no fresamento e na retificação.

Conceitos auxiliares em fresamento frontal

Conceitos auxiliares em retificação plana frontal

Aplainamento.

Retifica plana frontal.

Retifica plana tangencial.

Furação.

COMPRIMENTO E ESPESSURA DO CAVACO

Comprimento de corte (b): é o comprimento do cavaco a ser retirado, medido na superfície de corte e normal à direção de corte.

$$b = \frac{ap}{sen(\chi r)}$$

χr = ângulo de posição da aresta de corte

Situação idealmente simples:

- Aresta de corte retilínea
- Ponta de corte de canto vivo

COMPRIMENTO E ESPESSURA DO CAVACO

Espessura de corte (h): é a espessura calculada do cavaco a ser retirado, medida normalmente à superfície de corte e segundo a direção perpendicular à direção de corte.

$$h = f \cdot sen(\chi r)$$

Área de seção de corte (s): é a área calculada da seção do cavaco a ser retirado.

$$s = b^*h = ap^*f$$

Situação idealmente simples:

- Aresta de corte retilínea
- Ponta de corte de canto vivo

REFERÊNCIA BIBLIOGRÁFICAS

- MACHADO, Álisson Rocha et al. Teoria da usinagem dos materiais. . São Paulo: Edgard Blücher. . Acesso em: 20 ago. 2023. , 2009
- FERRARESI, D. –Fundamentos da Usinagem dos Metais. –São Paulo: MM Editora, 1995
- ANSELMO, E. D.; MARCONDES, F. C.; COPPINI, N.L.—Tecnologia da Usinagem dos Materiais —6ªedição, Editora ArtLiber.
- ABNT (Associação Brasileira de Normas Técnicas); NBR 6175: "A importância dos Processos mecânicos de usinagem", Rio de Janeiro, 2015.
- ABNT (Associação Brasileira de Normas Técnicas); NBR 6162 "Movimentos e Relações Geométricas na Usinagem dos Metais", Rio de Janeiro, 1989.

LINK PARA AS ATIVIDADES

https://pauloolivio.github.io/Site/