4. Ejercicios de condensadores y bobinas

Condensadores

4.1 Si la diferencia de tensión entre las armaduras (o placas) de un condensador de 5 F es $2te^{-3t}$ V, cuanto vale la corriente y la potencia.

Sol:
$$i(t) = 10(1-3t)e^{-3t}$$
 A, $p = 20t(1-3t)e^{-6t}$ W de G-286, G. Ing. Tec. Tel. unican.es

4.2 La corriente que fluye a través de un condensador de 2 F es $6\sin(4t)$ A. Calcular la diferencia de tensión en el condensador, sabiendo que v(0) = 1 V.

Sol:
$$v(t) = 1,75 - 0,75\cos(4t) \text{ V}$$
 de G-286, G. Ing. Tec. Tel. unican.es

4.3 En la figura se muestra la forma de onda de tensión en los terminales de un condensador de 30 μ F. Dibujar la forma de onda de corriente en él.

4.4 En la figura se muestra la corriente que fluye a través de un condensador de 4 mF. Dibujar la forma de onda de la tensión entre los terminales del condensador suponiendo que $v(0)=10\,\mathrm{V}$.

4.5 En régimen de corriente continua calcular las tensiones indicadas.

Sol:
$$v_1 = 30V \ y \ v_2 = 40V$$
 de G-286, G. Ing. Tec. Tel. unican.es

4.6 Tres condesadores de 5 uF, 10 uF y 20 uF se conectan en paralelo a una fuente de 150 V. Calcular a) la capacidad total, b) la carga almacenada en cada condensador y c) la energía total almacenada en el sistema.

Sol: a)
$$C_{eq} = 35 \text{ uF}$$
, b) $Q = 0.75mC$, $1.5mC$, $3mC$ c) $w = 393mJ$ G-286, G. Ing. Tec. Tel. unican.es

4.7 Calcular las capacidades equivalentes.

Sol: a)
$$C_{eq}=$$
 1,6 C b) $C_{eq}=C$ de G-286, G. Ing. Tec. Tel. unican.es

4.8 En el circuito de la figura $i_S=30e^{-2t}$ mA, $v_1(0)=50$ V y $v_2(0)=20$ V. Determinar $v_1(t)$, $v_2(t)$ y la energía almacenada en los condensadores en t=0.5 s.

Sol:
$$w_{12uF} = 4.2J$$
, $w_{20uF} = 0.3J$, $w_{40uF} = 0.6J$ de G-286, G. Ing. Tec. Tel. unican.es

Bobinas

4.9 La corriente que fluye a través de una bobina de 12 mH es $i(t) = 30 \cdot t \cdot e^{-2t}$ A, para $t \ge 0$. Determinar a) la diferencia de tensión entre los terminales de la bobina, b) la potencia suministrada a la bobina en t=1 s y c) la energía almacenada en la bobina en t=1 s.

Sol: b)
$$p = -0.2W$$
 c) $w = 99mJ$ de G-286, G. Ing. Tec. Tel. unican.es

4.10 La tensión entre los terminales de una bobina de 2H vale $20(1-e^{-2t})$ V. Si la corriente inicial es de 0.3A, calcular la corriente y la energía almacenada en t=1s

Sol:
$$i = 5,9A, w = 35,7J$$

de G-286, G. Ing. Tec. Tel. unican.es

4.11 En la figura se muestra la corriente que fluye a través de una bobina de 5mH. Calcular la tensión entre los terminales en los instantes $t=1,3,5\,\mathrm{ms}$.

Sol:
$$v(1ms) = 25V$$
, $v(3ms) = 0V$, $v(5ms) = -25V$

4.12 En la figura se muestra la forma de onda de tensión en los terminales de una bobina de 10mH. ¿Cuánto vale la corriente i(t) en la bobina si i(0) = 0?.

Sol:
$$i(t) = \begin{cases} 0.25t^2 \ kA & \text{para } 0s < t < 1s \\ 1 - t + 0.25t^2 \ kA & \text{para } 1s < t < 2s \\ \text{de G-286, G. lng. Tec. Tel. unican.es} \end{cases}$$

4.13 Calcular la tensión y corriente indicadas y la energía almacenada en la bobina y el condensador en régimen de corriente continua.

Sol:
$$V_C=0V$$
 , $i_L=2A$, $w_L=1J$, $w_C=0J$ de G-286, G. Ing. Tec. Tel. unican.es

4.14 Calcular la autoinductancia equivalente suponiendo que todas las bobinas son iguales y de 10 mH.

 $\textit{Sol:}~3,\!75~mH$ de G-286, G. Ing. Tec. Tel. unican.es

4.15 Calcular la autoinductancia equivalente.

