Polinomio di Newton: Esempio di prima

 $x_0 = 2, x_1 = 2.5, x_2 = 4$. Si vuole trovare il polinomio di interpolazione di secondo grado di f(x) = 1/x.

$$\Rightarrow y_0 = 0.5$$
 $y_1 = 0.4$ $y_2 = 0.25$

2.5 0.4
$$\frac{0.4-0.5}{2.5-2} = -0.2$$

2.5 0.4
$$\frac{0.4-0.5}{2.5-2} = -0.2$$

4 0.25 $\frac{0.25-0.4}{4-2.5} = -0.1$ $\frac{-0.1+0.2}{4-2} = 0.05$

$$p_2(x) = f(x_0) + f[x_0x_1](x - x_0) + f[x_0x_1x_2](x - x_0)(x - x_1)$$

$$p_2(x) = 0.5 - 0.2(x - 2) + 0.05(x - 2)(x - 2.5)$$
$$p_2(x) = 1.15 - 0.425x + 0.05x^2$$

Generalmente, a meno di non interpolare un polinomio di grado non superiore a n_i il polinomio $p_n(x)$ assume valori diversi dalla funzione f(x), tale che $p_n(x_i) = f(x_i) = y_i$, i = 0, ..., n, che si vuole interpolare con il polinomio di Lagrange.

Si dice errore di interpolazione la funzione

$$R(x) = f(x) - p_n(x) \quad x \in [a, b]$$

 $R(x)=f(x)-p_n(x) \quad x\in [a,b]$ che è tale che $R(x_i)=0,\ i=0,...,n$, ma è $R(x)\neq 0$, per $x\neq x_i$.

Se non si sa nulla della f(x), non si può dire nulla su R(x).

Ci sono infinite funzioni f(x), tali che $f(x_i) = y_i$ e sono interpolate dal medesimo polinomio.

Se si possiede una conoscenza qualitativa delle derivate di f(x), allora è possibile calcolare R(x), $x \in [a, b]$.

Teorema. Sia $f(x) \in C^{n+1}[a,b]$. Siano $x_0,...,x_n$ punti distinti in [a,b] e sia $p_n(x)$ il polinomio di grado al più n che interpola f(x) in [a,b]. Allora esiste un punto $\xi \in [a,b]$, dipendente da $x,x_0,...,x_n$ e da f(x) tale che

$$R(x) = f(x) - p_n(x) = \frac{(x - x_0)...(x - x_n)}{(n+1)!} f^{(n+1)}(\xi) =$$
$$= \frac{\omega(x)}{(n+1)!} f^{(n+1)}(\xi)$$

ove
$$\omega(x) = (x - x_0)(x - x_1)...(x - x_n)$$
.

Poichè il punto $\xi \in [a,b]$ dipendente da x, per x_0,\ldots,x_n fissati è incognito, la formula dell'errore di interpolazione ha significato teorico. Tuttavia, poichè $f^{(n+1)}(x)$ è continua in [a,b] chiuso e limitato, esiste una costante M tale che

$$|f^{(n+1)}(x)| \le M \qquad x \in [a,b]$$

Pertanto

$$|R(x)| \le \frac{M}{(n+1)!} |\omega(x)|$$

Inoltre, poichè $\omega(x)$ è continua in [a,b], esiste ω^* tale che

$$|\omega(x)| \le \omega^* \quad x \in [a, b]$$

Pertanto

$$|R(x)| \le \frac{M\omega^*}{(n+1)!}$$

Assegnata $\epsilon > \frac{M\omega^*}{(n+1)!}$, $p_n(x)$ è una approssimazione di f(x) entro la tolleranza ϵ .

Per il polinomio di interpolazione nella forma di Newton si ha

$$R(x) = f(x) - p_n(x) = f[x, x_0, \dots, x_n]\omega(x).$$

 $R(x)=f(x)-p_n(x)=f[x,x_0,\dots,x_n]\omega(x).$ La formula è generale e fornisce una caratterizzazione di R(x) anche per funzioni $f(x)\not\in$ $C^{n+1}[a,b].$

<u>Tuttavia</u> poiché R(x) è univocamente determinato, se $f(x) \in C^{n+1}[a,b]$, dati x_0,x_1,\ldots,x_n distinti, segue che esiste ξ dipendente da x e da $x_0, x_1, \ldots x_n$ tale che

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} = f[xx_0x_1...x_n].$$

Il concetto di differenza divisa è una generalizzazione della definizione di derivata.

Sia
$$f(x) = \ln(x)$$
, $[a, b] = [0.4, 0.8]$. Dati $x_0 = 0.4$, $x_1 = 0.5$, $x_2 = 0.7$, $x_3 = 0.8$
$$y_0 = \ln(x_0) = -0.916291$$

$$y_1 = \ln(x_1) = -0.693147$$

$$y_2 = \ln(x_2) = -0.356675$$

$$y_3 = \ln(x_3) = -0.223144$$

determinare il polinomio di interpolazione di grado 3 di $\ln(x)$ in [0.4, 0.8].

Sia
$$f(x) = \ln(x)$$
, $[a, b] = [0.4, 0.8]$. Dati $x_0 = 0.4$, $x_1 = 0.5$, $x_2 = 0.7$, $x_3 = 0.8$

$$y_0 = \ln(x_0) = -0.916291$$

$$y_1 = \ln(x_1) = -0.693147$$

$$y_2 = \ln(x_2) = -0.356675$$

$$y_3 = \ln(x_3) = -0.223144$$

determinare il polinomio di interpolazione di grado 3 di ln(x) in [0.4, 0.8].

$$L_0(x) = \frac{(x-0.5)(x-0.7)(x-0.8)}{(0.4-0.5)(0.4-0.7)(0.4-0.8)}$$

$$L_1(x) = \frac{(x-0.4)(x-0.7)(x-0.8)}{0.006}$$

$$L_2(x) = \frac{(x-0.4)(x-0.5)(x-0.8)}{-0.006}$$

$$L_3(x) = \frac{(x-0.4)(x-0.5)(x-0.7)}{0.012}$$

$$L_0(x) = \frac{(x - 0.5)(x - 0.7)(x - 0.8)}{(0.4 - 0.5)(0.4 - 0.7)(0.4 - 0.8)}$$

$$L_1(x) = \frac{(x - 0.4)(x - 0.7)(x - 0.8)}{0.006}$$

$$L_2(x) = \frac{(x - 0.4)(x - 0.5)(x - 0.8)}{-0.006}$$

$$L_3(x) = \frac{(x - 0.4)(x - 0.5)(x - 0.7)}{0.012}$$

$$p_3(x) = -0.916291L_0(x) - 0.693147L_1(x) + 0.356675L_2(x) - 0.223144L_3(x)$$

$$p_3(x) = -0.916291L_0(x) - 0.693147L_1(x) + -0.356675L_2(x) - 0.223144L_3(x)$$

Errore numerico di interpolazione

Per
$$x = 0.6$$
, $p_3(0.6) = -0.509975$ invece di -0.510826 .
$$R(0.6) = \ln(0.6) - p_3(0.6) = -0.000851$$
.

Dalla formula dell'errore di interpolazione si può trovare una maggiorazione di R(0.6) se si conosce la derivata quarta di $\ln(x)$ ($D^4(\ln(x)) = -6/x^4$).

$$R(x) = \frac{(x - 0.4)(x - 0.5)(x - 0.7)(x - 0.8)}{4!}(-\frac{6}{\xi^4})$$

con ξ dipendente da x appartiene a (0.4,0.8). Poichè $6/x^4$ è decrescente in tale intervallo con valore massimo in 0.4, si ha

$$|-6/x^4| \le 6/(0.4)^4 = 234.4$$

$$|R(x)| \le |(x - 0.4)(x - 0.5)(x - 0.7)(x - 0.8)| \frac{234.4}{24}$$

Per x = 0.6,

$$|R(0.6)| \le 0.0039$$

che è una sovrastima di 0.000851.

Problema di interpolazione

Resto dell'interpolazione

Siano $x_0, ..., x_n$ punti distinti in [a,b] e sia $p_n(x)$ il polinomio di grado al più nche interpola f(x) in $[a,b], f(x) \in C^{n+1}[a,b].$

Allora esiste un punto $\xi \in [a,b]$, dipendente da $x,x_0,...,x_n$ e da f(x) tale che

$$R_n(x) = f(x) - p_n(x) = \frac{(x - x_0)...(x - x_n)}{(n+1)!} f^{(n+1)}(\xi) = \frac{\omega(x)}{(n+1)!} f^{(n+1)}(\xi)$$

ove $\omega(x) = (x - x_0)(x - x_1)...(x - x_n)$.

$$\text{Se } |f^{(n+1)}(x)| \leq M, \ |\omega(x)| \leq \omega^*, \ x \in [a,b] \Longrightarrow |R_n(x)| \leq \frac{M\omega^*}{(n+1)!}$$

$$|R_{n}(x)| \leq \frac{M\omega^{*}}{(n+1)!}$$

In generale che accade a $\lim_{n\to\infty} \|R_n(x)\|_{\infty}$?

Dipende dalla scelta nodi e dalle caratteristiche di f!

Resto dell'interpolazione

Nel caso n=1, supponendo $x_0 \leq x \leq x_1$, il resto è dato da

$$R_1(x) = (x - x_0)(x - x_1) \frac{f''(\xi)}{2}, \quad \xi \in (x_0, x_1).$$

Posto $M_2 = \max_{x \in (x_0, x_1)} |f''(x)| e h = x_1 - x_0$, si ha

$$\max_{x \in (x_0, x_1)} |(x - x_0)(x - x_1)| = \frac{h^2}{4} \quad e \quad |R_1(x)| \le \frac{M_2 h^2}{8}.$$

Per n=2, supponendo $x_0 < x_1 < x_2$ e $x_0 \leq x \leq x_2,$ il resto è dato da

$$R_2(x) = (x - x_0)(x - x_1)(x - x_2) \frac{f'''(\xi)}{6}, \quad \xi \in (x_0, x_2).$$

Posto $M_3 = \max_{x \in (x_0, x_2)} |f'''(x)|$, si ha

$$|R_2(x)| \le \max_{x \in (x_0, x_2)} |(x - x_0)(x - x_1)(x - x_2)| \frac{M_3}{6}.$$

Nodi di interpolazione equidistanti

$$R_{\max} = \max_{x \in [a,b]} |R_n(x)| \le \max_{x \in [a,b]} |(x - x_0)(x - x_1) \cdots (x - x_n)| \frac{M}{(n+1)!},$$

$$M = \max_{x \in [a,b]} |f^{(n+1)}(x)|$$

Per i nodi equidistanti (con passo h): $x_i = x_0 + ih$, per i = 0, ..., n, ponendo $x = x_0 + th$, si ha

$$R_{\max} \le \max_{t \in [0,n]} |\pi_n(t)| \ h^{n+1} \frac{M}{(n+1)!}, \quad \text{dove} \quad \pi_n(t) = t(t-1) \cdots (t-n).$$

Nodi di interpolazione equidistanti: polinomio nodale per n=5

Nodi di interpolazione equidistanti: polinomio nodale per n=8

Fenomeno di Runge

$$f(x) = \frac{1}{1+x^2}, \ x \in [a,b] = [-5,5] \implies p_n(x), \ x_i = a+i(b-a)/n, \ i = \overline{0,n}.$$
$$p_5(x) = \frac{1}{520}x^4 - \frac{9}{130}x^2 + \frac{59}{104}$$

Fenomeno di Runge

$$f(x) = \frac{1}{1+x^2}, \ x \in [a,b] = [-5,5] \implies p_n(x), \ x_i = a+i(b-a)/n, \ i = \overline{0,n}.$$
$$p_{10}(x) = -\frac{1}{44200}x^{10} + \frac{7}{5525}x^8 - \frac{83}{3400}x^6 + \frac{2181}{11050}x^4 - \frac{149}{221}x^2 + 1,$$

Interpolazione in MATLAB

Il polinomio è individuato dai coefficienti che devono essere memorizzati in un vettore.

In MATLAB i coefficienti devono essere **ordinati** a partire da quello corrispondente al termine di grado **più elevato** fino a quello di grado zero. I coefficienti nulli vanno esplicitati.

$$p(x) = 1 - 2x + 4x^3$$
 $c = [4 \ 0 \ -2 \ 1].$

Per valutare un polinomio in uno o più punti si usa il comando polyval:

$$>> y = polyval(p,x)$$

- x è un vettore dove si specificano le ascisse nelle quale si vuole valutare il polinomio p.
- y è un vettore che contine i valori di p in x.

Se x e y sono due vettori di n+1 componenti, il comando p=polyfit(x,y,n) calcola il polinomio interpolatore dei dati $\{(x_i,y_i)\}_{i=0}^n$.

Interpolazione di Chebyshev

Il fenomeno di Runge può essere evitato utilizzando opportune distribuzioni di nodi.

Nell'intervallo [a, b] consideriamo i nodi x_i dati da:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\hat{x}_i \quad \cos \hat{x}_i = -\cos(\frac{\pi i}{n}), \ i = 0, \dots, n.$$

I punti $\hat{x}_i \in [-1, 1]$ si dicono nodi di Chebyshev.

Teorema (di Bernstein)

Sia $f:[a,b]\to\mathbb{R}$ una funzione di classe \mathbf{C}^1 . Sia $P_n(x)$ il polinomio interpolatore di grado n costruito usando i nodi di Chebyshev. Allora

$$\lim_{n\to\infty} \|f - p_n(x)\|_{\infty} = 0.$$