iterated Denoising Energy Matching

for sampling from Boltzmann densities

Tara Akhound-Sadegh et al

paper presentation - arXiv:2402.06121

Chivintar Amenty, June 2025

Introduction

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx.$$

- Boltzmann Probability Density
- Partition function Z: intractable
- Goal: sample from distribution μ only having access to Boltzmann energy

Motivation

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx.$$

- Statistical Physics
- Molecular Dynamics
- Protein Modeling
- Material Science
- Bayesian Inference in Astrophysics, Quantum Chromo-Dynamics and many more . . .

Related Work

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx.$$

- MC techniques: AIS, SMC
 - Computationally expensive
 - Slow convergence in HD spaces
- Simulation techniques
 - Scalability issues
- Diffusion Models
 - Need training data

7/3/2025

iDEM introduction

- Neural sampler
- Diffusion-style
- Simulation-free (in inner loop)
- Computationally tractable
- Stochastic regression objective
- Diffusion sampled data
- Good coverage of all modes
- Imbues symmetries (SE(3) group)

iDEM introduction

Bi-Level algorithm

Inner loop

- Optimizes score function
 - 1. How, when we do not have samples from the distribution?

Outer loop

- Reverse SDE of score function
- Actual samples are generated
 - 2. Where to get good samples?

C1 – Inner Loop

$$\nabla \log p_t(x_t) = \frac{((\nabla p_0) * \mathcal{N}(0, \sigma_t^2))(x_t)}{p_t(x_t)}$$

$$\mathbb{E} \left[\nabla p_0(x_t) \right]$$

$$= \frac{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [\nabla p_0(x_{0|t})]}{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [p_0(x_{0|t})]}$$

$$= \frac{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} \left[\nabla \exp(-\mathcal{E}(x_{0|t}))\right]}{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} \left[\exp(-\mathcal{E}(x_{0|t}))\right]}, \quad \approx \frac{\frac{1}{K} \sum_i \nabla \exp(-\mathcal{E}(x_{0|t}^{(i)}))}{\frac{1}{K} \sum_i \exp(-\mathcal{E}(x_{0|t}^{(i)}))}$$

$$x_{0|t}^{(1)}, \dots, x_{0|t}^{(K)} \sim \mathcal{N}(x_t, \sigma_t^2)$$

C1 – Inner Loop

$$\mathcal{S}_K(x_t,t) \leftarrow s_\theta(x_t,t)$$

 $\mathcal{L}_{\text{DEM}}(x_t, t) := \|\mathcal{S}_K(x_t, t) - s_{\theta}(x_t, t)\|^2$

inner loop summary:

- Estimate the smoothed score function using noisy samples
- Train a neural network with DEM loss
- Use network in outer loop

DEM

C2 – Outer Loop

- With $s_{\theta}(x_t, t)$ frozen:
- Reverse time SDE
- Generate samples
- Store in replay buffer

Algorithm 1 Iterated Denoising Energy Matching

```
Input: Network s_{\theta}, Batch size b, Noise schedule \sigma_t^2,
   Prior p_1, Num. integration steps L, Replay buffer \mathcal{B}, Max
   Buffer Size |\mathcal{B}|, Num. MC samples K.
   while Outer-Loop do
       \{x_1\}_{i=1}^b \sim p_1(x_1)
        \{x_0\}_{i=1}^b \leftarrow \text{sde\_int}(\{x_1\}_{i=1}^b, s_\theta, L) \{\text{Sample}\}
       \mathcal{B} = (\mathcal{B} \cup \{x_0\}_{i=1}^b) {Update Buffer \mathcal{B}}
       while Inner-Loop do
           x_0 \leftarrow \mathcal{B}.\mathsf{sample}() {Uniform sampling from \mathcal{B}}
           t \sim \mathcal{U}(0,1), x_t \sim \mathcal{N}(x_0, \sigma_t^2)
           \mathcal{L}_{\text{DEM}}(x_t, t) = \|\mathcal{S}_K(x_t, t) - s_{\theta}(x_t, t)\|^2
           \theta \leftarrow \text{Update}(\theta, \nabla_{\theta} \mathcal{L}_{\text{DEM}})
       end while
   end while
output s_{\theta}
```

iDEM algorithm

Algorithm 1 Iterated Denoising Energy Matching

Input: Network s_{θ} , Batch size b, Noise schedule σ_t^2 , Prior p_1 , Num. integration steps L, Replay buffer \mathcal{B} , Max Buffer Size $|\mathcal{B}|$, Num. MC samples K. while Outer-Loop do $\{x_1\}_{i=1}^b \sim p_1(x_1)$ $\{x_0\}_{i=1}^b \leftarrow \text{sde_int}(\{x_1\}_{i=1}^b, s_\theta, L) \{\text{Sample}\}$ $\mathcal{B} = (\mathcal{B} \cup \{x_0\}_{i=1}^b)$ {Update Buffer \mathcal{B} } while Inner-Loop do $x_0 \leftarrow \mathcal{B}.sample()$ {Uniform sampling from \mathcal{B} } $t \sim \mathcal{U}(0,1), x_t \sim \mathcal{N}(x_0, \sigma_t^2)$ $\mathcal{L}_{\text{DEM}}(x_t, t) = \|\mathcal{S}_K(x_t, t) - s_{\theta}(x_t, t)\|^2$ $\theta \leftarrow \text{Update}(\theta, \nabla_{\theta} \mathcal{L}_{\text{DEM}})$ end while end while output s_{θ}

Evaluation on 4 tasks, 5 benchmarks

- 40-mode GMM
- **Lennard-Jones 13**
- Lennard-Jones 55
- 4-particle double-well potential

- > PIS
- DDS
- FAB
- **iDEM**

Evaluation on 4 tasks, 5 benchmarks 40-mode GMM

12

Evaluation on 4 tasks, 5 benchmarks

Lennard-Jones 13, Lennard-Jones 55

Evaluation on 4 tasks, 5 benchmarks

> 4-particle double-well potential, LJ-13

Performance Results

- Negative Log Likelihood
- Effective Sample Size
- Wasserstein distance
- Efficient
- High quality samples

$\overline{\text{Algorithm} \downarrow \text{Dataset} \rightarrow}$	GMM	DW-4	LJ-13	LJ-55
FAB (Midgley et al., 2023b)	1.71	6.87	21.78	40.35
PIS (Zhang & Chen, 2022)	4.11	11.29	17.36	*
DDS (Vargas et al., 2023)	1.81	5.65	*	*
pDEM (ours)	0.36	1.40	1.79	*
iDEM (ours)	0.87	4.30	6.55	7.75

$Energy \rightarrow$	GMM $(d=2)$			DW-4 ($d = 8$)		LJ-13 ($d = 39$)			LJ-55 ($d = 165$)			
Algorithm \downarrow	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2
FAB (Midgley et al., 2023b)	7.14 ± 0.01	0.653 ± 0.017	12.0±5.73	7.16 ±0.01	0.947 ±0.007	2.15±0.02	17.52±0.17	0.101 ± 0.059	4.35±0.01	200.32±62.3	0.063 ±0.001	18.03±1.21
PIS (Zhang & Chen, 2022)	$7.72{\scriptstyle\pm0.03}$	0.295 ± 0.018	7.64 ± 0.92	$7.19{\scriptstyle\pm0.01}$	0.901 ± 0.003	2.13 ± 0.02	$47.05{\scriptstyle\pm12.46}$	0.004 ± 0.002	$4.67{\scriptstyle\pm0.11}$	*	*	*
DDS (Vargas et al., 2023)	7.43 ± 0.46	0.687 ± 0.208	9.31 ± 0.82	11.27 ± 1.24	0.408 ± 0.001	2.15 ± 0.04	*	*	*	*	*	*
pDEM (ours)	$7.10{\scriptstyle\pm0.02}$	0.634 ± 0.084	$12.20{\scriptstyle\pm0.14}$	7.44 ± 0.05	0.547 ± 0.010	2.11 ± 0.03	18.80 ± 0.48	0.044 ± 0.013	4.21 ± 0.06	*	*	*
iDEM (ours)	6.96 ± 0.07	0.734 ± 0.092	7.42 ± 3.44	7.17 ± 0.00	0.825 ± 0.002	$2.13 {\pm} 0.04$	$17.68 {\pm} 0.14$	$\textbf{0.231} \pm 0.005$	$\textbf{4.26} \!\pm\! 0.03$	$\boldsymbol{125.86} {\pm} 18.03$	0.106 ± 0.022	$\boldsymbol{16.128} {\scriptstyle \pm 0.071}$

Discussion & Future Work

- Consistent DEM objective
 - can it be biased still?
- reverse SDE: simulation step still
 - can it be replaced by a learned policy? RL-like or GFlowNets inspired methods?
- Molecule's energy is really complex (low temperatures, huge variations)
 - maybe flatten a little the energy landscape with more energy?
 - collect samples and then somehow simulate the trained model at lower temperature progressively until we reach the target temperature?

Conclusion & Acknowledgements

iDEM strong step forward:

- scalable
- symmetry-aware
- simulation-efficient sampling
- general
- extensible
 - Feynman-Kac Correctors, Schrodinger Bridges, Transition Matching . . .
- special thanks to the authors for their work and the code availability \rightarrow

Tara Akhound-Sadegh*, Jarrid Rector-Brooks*, Avishek Joey Bose*, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong

paper

code

