(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年1 月3 日 (03.01.2003)

PCT

(10) 国際公開番号 WO 03/000686 A1

(51) 国際特許分類7:

C07D 413/12, A01N 43/80

(21) 国際出願番号:

PCT/JP02/06183

(22) 国際出願日:

2002年6月20日(20.06.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-187679 2001 年6 月21 日 (21.06.2001) J

(71) 出願人 (米国を除く全ての指定国について): クミアイ化学工業株式会社 (KUMIAI CHEMICAL INDUSTRY CO., LTD.) [JP/JP]; 〒110-0008 東京都台東区池之端1丁目4番26号 Tokyo (JP). イハラケミカル工業株式会社 (IHARA CHEMICAL INDUSTRY CO., LTD.) [JP/JP]; 〒110-0008 東京都台東区池之端1丁目4番26号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 中谷 昌央 (NAKATANI,Masao) [JP/JP]; 〒437-1213 静岡県 磐田郡福田町塩新田408番地の1株式会社ケイ・アイ研究所内 Shizuoka (JP). 伊藤稔 (ITO,Minoru) [JP/JP]; 〒437-1213 静岡県 磐田郡福田町塩新田408番地の1株式会社ケイ・アイ研究所内 Shizuoka (JP). 君島恭子 (KIMIJIMA,Kyoko) [JP/JP]; 〒411-0021 静岡県三島市富士見台41番地の7 Shizuoka (JP). 宮崎雅弘 (MIYAZAKI,Masahiro) [JP/JP]; 〒437-1213 静岡県磐田郡福田町塩新田408番地の1株式会社ケイ・アイ研究所内 Shizuoka (JP). 藤波周

(FUJINAMI,Makoto) [JP/JP]; 〒439-0031 静岡県 小笠郡 菊川町加茂 1 8 0 9 番地 Shizuoka (JP). 上野 良平 (UENO,Ryohei) [JP/JP]; 〒439-0031 静岡県 小笠郡 菊川町加茂 1 8 0 9 番地 Shizuoka (JP). 髙橋智(TAKAHASHI,Satoru) [JP/JP]; 〒420-0046 静岡県 静岡市吉野町 5 番地の 1 8 Shizuoka (JP).

- (74) 代理人: 小林 雅人 (KOBAYASHI,Masato); 〒162-0825 東京都 新宿区 神楽坂 4 丁目 3 番地 煉瓦塔ビル 5 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

-- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ISOXAZOLINE DERIVATIVES AND HERBICIDES

(54) 発明の名称: イソオキサゾリン誘導体及び除草剤

(57) Abstract: The invention aims at providing isoxazoline derivatives having excellent herbicidal effect and selectivity between crops and weeds. Isoxazoline derivatives represented by the following general formula or pharmacologically acceptable salts thereof: wherein R¹ is haloalkyl; R² is hydrogen, alkyl, or the like; R³, R⁴, R⁵, and R⁶ are each hydrogen or the like; Y is pyrrolyl, pyrazolyl, isothiazolyl, oxazolyl, imidazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, triazolyl, oxadiazolyl, or the like; and n is an integer of 0 to 2.

(57) 要約:

本発明は、優れた除草効果と作物・雑草間の選択性を有するイソオキサゾリン誘導体を提供することを課題とする。

本発明のイソオキサゾリン誘導体又はその薬理上許容される塩は、一般式

$$\begin{array}{c|c}
R^2 & R^3 \\
R^4 & R^6 \\
S(O)n - C - Y \\
R^5
\end{array}$$

[式中、

R¹はハロアルキル基を示し、R²は、水素原子、アルキル基等を示し、R³、R⁴、R⁵、R⁶は、水素原子等を示し、Yはピロリル基、ピラゾリル基、イソチアゾリル基、オキサゾリル基、イミダゾリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリアゾリル基、オキサジアゾリル基等を示し、nは0~2の整数を示す。]で表される。

明細書

イソオキサゾリン誘導体及び除草剤

5 技術分野

本発明は新規なイソオキサゾリン誘導体及びそれを有効成分として含有する除 草剤に関するものである。

背景技術

10 イソオキサゾリン環の5位にハロアルキル基を有するイソオキサゾリン誘導体が除草活性を有することは、例えば、特開平8-225548号公報、特開平9-328477号公報及び特開平9-328483号公報等により報告されている。しかしながら本発明化合物はこれらの文献や他の文献に記載されていない。

又、有用作物に対して使用される除草剤は、土壌又は茎葉に施用した際に、低薬 15 量で十分な除草効果を示し、しかも作物・雑草間に高い選択性を発揮する薬剤であ ることが望まれる。然しながら、これらの点で、当該公報に記載の化合物は満足す べきものとは言い難い。

本発明者らはこの様な状況に鑑み、除草効果と作物・雑草間の選択性とを検討した結果、新規なイソオキサゾリン誘導体が、優れた除草効果と作物・雑草間の選択性を有することを見いだし、本発明を完成するに至った。

発明の開示

即ち、本発明は以下の発明を提供するものである。

(1) 一般式 [I] を有するイソオキサゾリン誘導体又はその薬理上許容される

25 塩

20

式中、

10

5 R¹は、C1~C4ハロアルキル基を示し、

 R^2 は、水素原子、 $C1\sim C10$ アルキル基、 $C1\sim C4$ ハロアルキル基、 $C3\sim C8$ シクロアルキル基又は $C3\sim C8$ シクロアルキル $C1\sim C3$ アルキル基示し、

R⁸及びR⁴は、同一又は異なって、水素原子、C1~C10アルキル基又はC3~C 8シクロアルキル基を示すか、或いは、R⁸とR⁴とが一緒になって、これらの結合 した炭素原子と共にC3~C7のスピロ環を形成しても、さらにR²とR⁸とが一緒に なって、これらの結合した炭素原子と共に5~8員環を形成してもよく、

R⁵及びR⁶は、同一又は相異なって、水素原子又はC1~C10アルキル基を示し、 Yはピロリル基、ピラゾリル基、イソチアゾリル基、オキサゾリル基、イミダゾ リル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリ アゾリル基、オキサジアゾリル基、ベンゾチエニル基、インドリル基、ベンゾオキ サゾリル基、ベンゾイミダゾリル基、ベンゾイソキサゾリル基、ベングイソチアゾ リル基、インダゾリル基、キノリル基、イソキノリル基、フサラジニル基、キノキ サリニル基、キナゾリニル基、シンノリニル基又はベンゾトリアゾリル基を示し(こ こで、これらのヘテロ環基のヘテロ原子が窒素原子の時は酸化されてNーオキシド 20 になってもよい。)、これらのヘテロ環基は置換基群αより選択される1~6個の 同一又は相異なる基で置換されていてもよく(ここで、ヘテロ環基の置換基は、隣 接したアルキル基同士、アルコキシ基同士、アルキル基とアルコキシ基、アルキル 基とアルキルチオ基、アルキル基とアルキルスルホニル基、アルキル基とモノアル キルアミノ基又はアルキル基とジアルキルアミノ基が結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成してもよい。)、

nは0~2の整数を示す。

5 「置換基群α」

水酸基、ハロゲン原子、 $C1\sim C10$ アルキル基、置換基群 β より選択される任意 の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8 シクロアルキル基、C1~C10アルコキシ基、置換基群γより選択される任意の基 でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3~C8 シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、 10 C1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ置換された C1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6アルケニル基、 C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アルキニルオキ シ基、 $C1\sim C10$ アルキルスルフィニル基、 $C1\sim C10$ アルキルスルホニル基、層 15 換基群γより選択される任意の基でモノ置換されたC1~C10アルキルスルホニ ル基、C1~C4ハロアルキルスルフィニル基、C1~C4ハロアルキルスルホニル 基、C1~C10アルキルスルホニルオキシ基、C1~C4ハロアルキルスルホニルオ キシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、 置換されていてもよいフェニルチオ基、置換されていてもよい芳香族へテロ環基、 20 置換されていてもよい芳香族ヘテロ環オキシ基、置換されていてもよい芳香族ヘテ ロ環チオ基、置換されていてもよいフェニルスルフィニル基、置換されていてもよ いフェニルスルホニル基、置換されていてもよい芳香族へテロ環スルフィニル基、 置換されていてもよい芳香族へテロ環スルホニル基、置換されていてもよいフェニ ルスルホニルオキシ基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、 25 置換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 カルボキシル基、C1~C10アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基又は置換されていてもよいフェニル基で置換されていてもよい。)、C1~C6アシルオキシ基、C1~C4ハロアルキルカルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、置換されていてもよいベンジイルオキシ基、二トロ基、アミノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、置換されていてもよいフェニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジイル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベンジイル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよい。)

「置換基群 β」

5

10

水酸基、C3~C8シクロアルキル基(該基はハロゲン原子又はC1~C10アルキ
15 ル基で置換されてもよい)、C1~C10アルコキシ基、C1~C10アルキルチオ基、
C1~C10アルキルスルホニル基、C1~C10アルコキシカルボニル基、C2~C6
ハロアルケニル基、アミノ基(該基の窒素原子は、同一又は異なって、C1~C10
アルキル基、C2~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10
アルキルスルホニル基、C1~C4ハロアルキルスルホニル基で置換されていてもよ
20 い。)、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基又は置換されていてもよいフェニル基で置換されていてもよい。)、C2~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシイミノ基、シアノ基、置換されていてもよいフェノキシ基

25 「置換基群γ」

C1~C10アルコキシカルボニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族へテロ環基、シアノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基で置換されていてもよい。)

5

10

15

20

25

(2) 置換基群 α が、水酸基、ハロゲン原子、C1~C10アルキル基、置換基群 β より選択される任意の基でモノ置換された $C1\sim C10$ アルキル基、 $C1\sim C4$ ハロ アルキル基、C3~C8シクロアルキル基、C1~C10アルコキシ基、置換基群γよ り選択される任意の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロア ルコキシ基、C3~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C 3アルキルオキシ基、C1~C10アルキルチオ基、置換基群γより選択される任意 の基でモノ置換されたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、 C2~C6アルケニル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、 C2~C6アルキニルオキシ基、C1~C10アルキルスルホニル基、C1~C4ハロア ルキルスルホニル基、置換されていてもよいフェニル基、置換されていてもよいフ ェノキシ基、置換されていてもよいフェニルチオ基、置換されていてもよい芳香族 ヘテロ環基、置換されていてもよい芳香族ヘテロ環オキシ基、置換されていてもよ い芳香族へテロ環チオ基、置換されていてもよいフェニルスルホニル基、置換され ていてもよい芳香族へテロ環スルホニル基、C1~C6アシル基、C1~C4ハロア ルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されてい てもよいベンゾイル基、カルボキシル基、C1~C10アルコキシカルボニル基、シ アノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アル キル基又は置換されていてもよいフェニル基で置換されていてもよい。)、ニトロ 基、アミノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、置 換されていてもよいフェニル基、C1~C6アシル基、C1~C4ハロアルキルカル ボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベ ンゾイル基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル WO 03/000686

15

基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよい。)によって表される(1)記載のイソオキサゾリン誘導体又はその薬理上許容される塩。

- (3) 置換基群 α が、ハロゲン原子、C1~C10アルキル基、C1~C4ハロアル キル基、C1~C10アルコキシC1~C3アルキル基、C3~C8シクロアルキル基(該 基はハロゲン原子又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、 置換されていてもよいフェノキシ基、C1~C10アルキルチオ基、C1~C10アルキルスルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルボニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は、同一又 は異なってC1~C10アルキル基で置換されていてもよい)によって表される(2) 記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
 - (4) R¹がクロロメチル基、R²がメチル基もしくはエチル基、R³、R⁴、R⁵ 及びR⁶が水素原子である(1)、(2) 又は(3) 記載のイソオキサゾリン誘導 体又はその薬理上許容される塩。
 - (5) Yがピロリル基、ピラゾリル基、イソチアゾリル基、オキサゾリル基、イミダゾリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリアゾリル基、オキサジアゾリル基である(1)、(2)、(3) 又は(4) 記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
- 20 (6) Yがピラゾリル基又はピリミジニル基である(5) 記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
 - (7) Yがピラゾールー4ーイル基又はピリミジンー5ーイル基である(6)記載のイソオキサゾリン誘導体又はその薬理上許容される塩。

基、置換基群 β より選択される任意の基でモノ置換された $C1\sim C10$ アルキル基、 C1~C4ハロアルキル基、C3~C8シクロアルキル基、C2~C6アルケニル基、 C2~C6アルキニル基、C1~C10アルキルスルフィニル基、C1~C10アルキル スルホニル基、置換基群γより選択される任意の基でモノ置換されたC1~C10ア ルキルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよい 5 フェニル基、置換されていてもよい芳香族へテロ環基、置換されていてもよいフェ ニルスルホニル基、置換されていてもよい芳香族へテロ環スルホニル基、アシル基、 C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、 置換されていてもよいベンゾイル基、C1~C10アルコキシカルボニル基、置換さ 10 れていてもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカ ルボニル基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10 アルキル基又は置換されていてもよいフェニル基で置換されていてもよい)、アミ ノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、置換されて いてもよいフェニル基、アシル基、C1~C4ハロアルキルカルボニル基、置換され ていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、C1~ 15 C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されてい てもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基 で置換されていてもよい)が置換した(7)記載のイソオキサゾリン誘導体又はそ の薬理上許容される塩。

- 20 (9) Yがピリミジンー5ーイル基で、置換基群αより選択される任意の基がピリミジン環の4位及び6位に置換した(7)記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
 - (10)(1)~(9)のいずれかに記載のイソオキサゾリン誘導体又は薬理上 許容される塩を有効成分として含有する除草剤。
- 25 尚、本明細書において、用いられる用語の定義を以下に示す。

 $C1\sim C10$ 等の表記は、この場合ではこれに続く置換基の炭素数が、 $1\sim 10$ で あることを示している。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 $C1\sim C10$ アルキル基とは、特に限定しない限り、炭素数が $1\sim 10$ の直鎖又は

5

15

分岐鎖状のアルキル基を示し、例えばメチル基、エチル基、nープロピル基、イソ プロピル基、nーブチル基、イソブチル基、secーブチル基、tertーブチル基、n ーペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル 基、3,3-ジメチルブチル基、ヘプチル基又はオクチル基等を挙げることができ る。

10 C3~C8シクロアルキル基とは、炭素数が3~8のシクロアルキル基を示し、例 えばシクロプロピル基、シクロブチル基、シクロペンチル基又はシクロヘキシル基 等を挙げることができる。

C3~C8シクロアルキルC1~C3アルキル基(該基はハロゲン原子又はアルキ ル基で置換されてもよい)とは、特に限定しない限り、同一又は異なって、ハロゲ ン原子1~4又はC1~C3アルキル基で置換されてもよいC3~C8シクロアルキ ル基により置換されたC1~C3アルキル基を示し、例えばシクロプロピルメチル基、 1ーシクロプロピルエチル基、2ーシクロプロピルエチル基、1ーシクロプロピルプ ロピル基、2-シクロプロピルプロピル基、3-シクロプロピルプロピル基、シク ロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基2-クロロ シクロプロピルメチル基、2,2-ジクロロシクロプロピルメチル基、2-フルオ 20 ロシクロプロピルメチル基、2,2-ジフルオロシクロプロピルメチル基、2-メ チルシクロプロピルメチル基、2,2-ジメチルシクロプロピルメチル基又は2-メチルシクロプロピルエチル基等を挙げることができる。

C3~C8シクロアルキルC1~C3アルキル基とは、炭素数が3~8のシクロア ルキル基により置換された炭素数1~3のアルキル基を示し、例えばシクロプロピ 25

WO 03/000686

20

25

ルメチル基、1ーシクロプロピルエチル基、2ーシクロプロピルエチル基、1ーシクロプロピルプロピル基、2ーシクロプロピルプロピル基、3ーシクロプロピルプロピルプロピル基、サクロプチルメチル基、シクロペンチルメチル基又はシクロヘキシルメチル基等を挙げることができる。

- 5 C1~C4ハロアルキル基とは、特に限定しない限り、同一又は異なって、ハロゲン原子1~9で置換されている炭素数が1~4の直鎖又は分岐鎖のアルキル基を示し、例えばフルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2-ジフルオロエチル基、2,2,2ートリフルオロエチル基又はペンタフルオロエチル基等を挙げることができる。
- 10 C2~C6アルケニル基とは、炭素数が2~6の直鎖又は分岐鎖のアルケニル基を示し、例えばエテニル基、1ープロペニル基、2ープロペニル基、イソプロペニル基、1ーブテニル基、2ーブテニル基、3ーブテニル基又は2ーペンテニル基等を挙げることができる。

C2~C6アルキニル基とは、炭素数が2~6の直鎖又は分岐鎖のアルキニル基を 15 示し、例えばエチニル基、2ープロピニル基、1ーメチルー2ープロピニル基、2 ーブチニル基、3ーブチニル基又は2ーメチルー3ーブチニル基等を挙げることが できる。

C2~C6ハロアルケニル基とは、特に限定しない限り、同一又は異なって、ハロゲン原子1~4で置換されている炭素数が2~6の直鎖又は分岐鎖のアルケニル基を示し、例えば3-クロロー2-プロペニル基、又は2-クロロー2-プロペニル基等を挙げることができる。

C1~C10アルコキシ基とは、アルキル部分が上記の意味である(アルキル) - O-基を示し、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、tert-ブトキシ基、n-ブトキシ基、sec-ブトキシ基又はイソブトキシ基等を挙げることができる。

20

25

PCT/JP02/06183

C1~C10アルコキシC1~C3アルキル基とは、アルコキシ部分、アルキル部分が上記の意味である(アルキル)-O-(アルキル)基を示し、例えばメトキシメチル基、エトキシメチル基、メトキシエチル基又はエトキシエチル基等を挙げることができる。

5 C1~C4ハロアルコキシ基とは、ハロアルキル部分が上記の意味である(ハロアルキル)-O-基を示し、例えばジフルオロメトキシ基、トリフルオロメトキシ基、2,2-ジフルオロエトキシ基又は2,2,2-トリフルオロエトキシ基等を挙げることができる。

C3~C8シクロアルキルオキシ基とは、シクロアルキル部分が上記の意味である
10 (シクロアルキル) - O - 基を示し、例えばシクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基又はシクロヘキシルオキシ基等を挙げることができる。

C3~C8シクロアルキルC1~C3アルキルオキシ基とは、シクロアルキルアルキル部分が上記の意味である(シクロアルキルアルキル) - O - 基を示し、例えばシクロプロピルメトキシ基、1 - シクロプロピルエトキシ基、2 - シクロプロピルエトキシ基、2 - シクロプロピルプロポキシ基、3 - シクロプロピルプロポキシ基、シクロブチルメトキシ基、シクロプロピルプロポキシ基、シクロブチルメトキシ基又はシクロヘキシルメトキシ基等を挙げることができる。

C2~C6アルケニルオキシ基及びC2~C6アルキニルオキシ基とは、アルケニ ル又はアルキニル部分が上記の意味である(アルケニル)-O-基、(アルキニル)-O-基を示し、例えば2-プロペニルオキシ基又は2-プロピニルオキシ基等を 挙げることができる。

C1~C10アルコキシイミノ基とは、アルコキシ部分が上記の意味である(アルコキシ)-N=基を示し、例えばメトキシイミノ基又はエトキシイミノ基等を挙げることができる。

C1~C10アルキルチオ基、C1~C10アルキルスルフィニル基及びC1~C10 アルキルスルホニル基とは、アルキル部分が上記の意味である(アルキル)-S-基、(アルキル)-SO-基、(アルキル)-SO₂-基を示し、例えばメチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、メチルスルフィニル基、メチルスルホニル基、エチルスルホニル基、ロープロピルスルホニル基又はイソプロピルスルホニル基等を挙げることができる。

C1~C10アルキルスルホニルオキシ基とは、アルキルスルホニル部分が上記の 意味である(アルキルスルホニル) -O-基を示し、例えばメチルスルホニルオキ シ基又はエチルスルホニルオキシ基等を挙げることができる。

10 C1~C10アルコキシカルボニル基とは、アルコキシ部分が上記の意味である (アルコキシ) - CO-基を示し、例えばメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基又はイソプロポキシカルボニル基等を挙げる ことができる。

C1~C6アシル基とは、炭素数 1~6の直鎖又は分岐鎖状の脂肪族アシル基を示 15 し、例えばホルミル基、アセチル基、プロピオニル基、イソプロピオニル基、ブチ リル基又はピバロイル基等を挙げることができる。

C1~C10アシルオキシ基とは、アシル部分が上記の意味である(アシル)-O-基、を示し、例えばアセトキシ基、プロピオニルオキシ基、イソプロピオニルオキシ基又はピバロイルオキシ基等を挙げることができる。

20 C1~C4ハロアルキルカルボニル基、C1~C4ハロアルキルチオ基、C1~C4 ハロアルキルスルフィニル基及びC1~C4ハロアルキルスルホニル基とは、ハロア ルキル部分が上記の意味である(ハロアルキル)~CO一基、(ハロアルキル)~ S一基、(ハロアルキル)~SO一基、(ハロアルキル)~SO2~基を示し、例 えばクロロアセチル基、トリフルオロアセチル基、ペンタフルオロプロピオニル基、 ジフルオロメチルチオ基、トリフルオロメチルチオ基、クロロメチルスルフィニル

基、ジフルオロメチルスルフィニル基、トリフルオロメチルスルフィニル基、クロロメチルスルホニル基、ジフルオロメチルスルホニル基又はトリフルオロメチルスルホニル基等を挙げることができる。

C1~C4ハロアルキルカルボニルオキシ基及びC1~C4ハロアルキルスルホニルオキシ基とは、ハロアルキルカルボニル部分及びハロアルキルスルホニル部分が上記の意味である(ハロアルキルカルボニル)-O-基、(ハロアルキルスルホニル)-O-基を示し、例えばクロロアセチルオキシ基、トリフルオロアセチルオキシ基、クロロメチルスルホニルオキシ基又はトリフルオロメチルスルホニルオキシ基等を挙げることができる。

10 (置換されていてもよい)フェニル基、(置換されていてもよい)芳香族ヘテロ 環基、(置換されていてもよい)フェノキシ基、(置換されていてもよい)芳香族 ヘテロ環オキシ基、(置換されていてもよい)フェニルチオ基、(置換されていて もよい) 芳香族へテロ環チオ基、(置換されていてもよい) フェニルスルフィニル 基、(置換されていてもよい)フェニルスルホニル基、(置換されていてもよい) フェニルスルホニルオキシ基、(置換されていてもよい) 芳香族ヘテロ環スルフィ 15 ニル基、(置換されていてもよい) 芳香族ヘテロ環スルホニル基、(置換されてい てもよい) ベンジルカルボニル基、(置換されていてもよい) ベンジルカルボニル オキシ基、(置換されていてもよい)ベンジルスルホニル基、(置換されていても よい)ベンゾイル基、(置換されていてもよい)ベンゾイルオキシ基、(置換され ていてもよい)ベンジルオキシカルボニル基又は(置換されていてもよい)フェノ 20 キシカルボニル基における「置換されていてもよい」とは、これらの基が、例えば ハロゲン原子、C1~C10アルキル基、C1~C4ハロアルキル基、C1~C10アル コキシ $C1\sim C3$ アルキル基、 $C1\sim C10$ アルコキシ基、 $C1\sim C10$ アルキルチオ基、 C1~C10アルキルスルホニル基、アシル基、C1~C10アルコキシカルボニル基、 シアノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10ア 25

ルキル基で置換されていてもよい)、ニトロ基、又はアミノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルホニル基又はC1~C4ハロアルキルスルホニル基で置換されていてもよい)等で置換されていてもよいことを示す。

5

10

15

20

(置換されていてもよい) 芳香族へテロ環基、(置換されていてもよい) 芳香族へテロ環オキシ基、(置換されていてもよい) 芳香族へテロ環チオ基、(置換されていてもよい) 芳香族へテロ環スルフィニル基又は(置換されていてもよい) 芳香族へテロ環スルホニル基の芳香族へテロ環とは、窒素原子、酸素原子及び硫黄原子から任意に選択されるヘテロ原子を1~3個有する5~6員の基を示し、例えばフリル基、チエニル基、ピロリル基、ピラゾリル基、イソキサゾリル基、イソチアゾリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジール基、トリアブリル基、オキサジアゾリル基又はチアジアゾリル基等を挙げることができる。

薬理上許容される塩とは、一般式 [I] を有する化合物において、水酸基、カルボキシル基又はアミノ基等がその構造中に存在する場合に、一般式 [I] を有する化合物と金属もしくは有機塩基との塩又は鉱酸もしくは有機酸との塩であり、例えば、金属としてはナトリウム又はカリウム等のアルカリ金属或いはマグネシウム又はカルシウム等のアルカリ土類金属を挙げることができ、有機塩基としてはトリエチルアミン又はジイソプロピルアミン等を挙げることができ、鉱酸としては塩酸又は硫酸等を挙げることができ、有機酸としては酢酸、メタンスルホン酸又はpートルエンスルホン酸等を挙げることができる。

上記した一般式 [I] で表される化合物の中で、R¹がクロロメチル基であり、R²が、メチル基もしくはエチル基であり、R³、R⁴、R⁵及びR⁶が水素原子であり、n が2の整数であり、Yがピラゾールー4ーイル基(ここで該基の3位及び5位25 は、ハロゲン原子、アルキル基、ハロアルキル基、アルコキシアルキル基、シクロ

WO 03/000686

アルキル基、アルコキシ基、ハロアルコキシ基、シクロアルキルアルキルオキシ基、 置換されていてもよいフェノキシ基、アルキルチオ基、アルキルスルホニル基、ア シル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基又はカル バモイル基(該基の窒素原子は、同一又は異なって、アルキル基で置換されていて もよい)が、さらに1位に水素原子、アルキル基、置換基群βより選択される任意 5 の基でモノ置換されたアルキル基、ハロアルキル基、シクロアルキル基、アルケニ ル基、アルキニル基、アルキルスルホニル基、置換基群ッより選択される任意の基 でモノ置換されたアルキルスルホニル基、ハロアルキルスルホニル基、置換されて いてもよいフェニル基、置換されていてもよい芳香族へテロ環基、置換されていて もよいフェニルスルホニル基、置換されていてもよい芳香族へテロスルホニル基、 10 アシル基、ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル 基、置換されていてもよいベンゾイル基、アルコキシカルボニル基、置換されてい てもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカルボニ ル基又はカルバモイル基(該基の窒素原子は、同一又は異なって、アルキル基又は 置換されていてもよいフェニル基で置換されていてもよい)が必ず置換する。)、 15 或いはピリミジンー5ーイル基(該基の4位及び6位は、ハロゲン原子、アルキル 基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、 ハロアルコキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアル キルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基 の窒素原子は、同一又は異なって、アルキル基で置換されていてもよい)が必ず置 20 換する。)であるイソオキサゾリン誘導体が好ましい。

発明を実施するための最良の形態

次に、一般式 [I] を有する本発明化合物の代表的な化合物例を表1~表57に 25 記載する。しかしながら、本発明化合物はこれらに限定されるものではない。 WO 03/000686 PCT/JP02/06183

15

本明細書における表中の次の表記は下記の通りそれぞれ該当する基を表す。

Me : メチル基 Et : エチル基

Pr : n-プロピル基 Pr-i : イソプロピル基

Pr-c :シクロプロピル基 Bu :n-ブチル基

5 Bu-i :イソーブチル基 Bu-sec:secーブチル基

Bu-t:tert-ブチル基 Bu-c:シクローブチル基

Pen-c:シクローペンチル基 Hex-c :シクローヘキシル基

Ph :フェニル基

尚、一般式 [I] を有する本発明化合物は、置換基として水酸基を含む場合、ケ 10 トーエノール互変異性体を有することもあるが、何れの異性体もその混合物も、本 発明化合物に包含される。

表 1

表 2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
\mathbb{R}^1	\mathbf{R}^{2}	\mathbb{R}^3	R4	n	\mathbb{R}^{5}	\mathbb{R}^6	\mathbb{R}^{15}	\mathbf{Z}^2	R ¹⁶			
CH ₂ Cl	Me	Н	H	2	H	H	H	N-Me	Cl			
CH ₂ Cl	Me	H	H	2	H	H	Me	N-Me	Me			
CH ₂ Cl	Me	H	н	2	H	Н	Me	N-Me	CI			
CH ₂ Cl	Me	Н	н	2	H	н	Cl	N-Me	CI			
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-Me	CF ₃			
CH ₂ Cl	Me	H	н	2	H	H	CHF ₂	N-Me	Cl			
CH ₂ Cl	Me	H	н	2	Н	H	CF ₃	N-Me	Cl			
CH ₂ Cl	Me	Н	н	2	H	Н	CF ₃	N-Me	CN			
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-Me	ОМе			
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Me	OEt			
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Me	OPr-i			
CH ₂ Cl	Me	H	н	2	Н	н	CF ₃	N-Me	OPr			
CH ₂ Cl	Me	н	H	2	н	Н	CF ₃	N-Me	OCH ₂ CH=CH ₂			
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-Me	OCH ₂ CF ₃			
CH ₂ Cl	Me	Н	н	2	н	н	CF ₃	N-Me	OPh			
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-Me	SMe			
CH ₂ Cl	Me	Н	н	2	н	H	CF ₃	N-Me	SOMe			
CH ₂ Cl	Me	Н	н	2	н	H	CF ₃	N-Me	SO ₂ Me			
CH ₂ Cl	Me	H	н	2	н	н	CF ₈	N-Me	SCF ₈			
CH ₂ Cl	Me	H	н	2	Н	H	CF ₃	N-Me	SOCF ₈			
CH ₂ Cl·	Me	н	н	2	н	H	CF ₃	N-Me	SO ₂ CF ₃			
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-Me	SPh			
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Me	SOPh			
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-Me	SO ₂ Ph			
CH ₂ Cl	Me	н	н	2	н	H	CF ₃	N-Me	Ph			
CH ₂ Cl	Me	н	н	2	н	H	CF ₂ CF ₃	N-Me	Cl			
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-H	Cl			
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-CH ₂ OH	Cl			
CH ₂ CI	Me	н	H	2	н	H	CF ₃	N-CH ₂ OMe	Cl			
CH ₂ Cl	Me	н	н	2	н	H	CF ₃	N-CH ₂ CN	C1			

表 3

R ¹	R ²	\mathbb{R}^3	R4	n	\mathbb{R}^{5}	\mathbb{R}^6	R^{16}	Z^2	R ¹⁶
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-CH ₂ CH=CH ₂	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-CH ₂ C≡CH	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₈	N-Et	Cl
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Pr-i	Cì
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Pr	Cl
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-Bu-t	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃ '	N-CH ₂ Ph	Cl
CH ₂ Cl	Me	н	H	2	н	н	CF ₃	N-CH ₂ CF ₃	C1
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-CH ₂ C(=O)OMe	Cl
CH ₂ Cl	Me	н	н	2	H	H	$\mathbf{CF_8}$	N-CH(Me)C(=O)OMe	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-C(Me) ₂ C(=O)OMe	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-CH ₂ CH ₂ SMe	Cı
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-CH ₂ CH ₂ SO ₂ Me	CI
CH₂Cl	Me	н	н	2	н	н	CF ₃	N-SO ₂ Me	CI
CH₂Cl	Me	н	H	2	н	н	CF ₃	N-SO ₂ CHF ₂	Cı
CH ₂ Cl	Me	н	н	2	н	н	CF ₈	N-SO ₂ CF ₃	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-SO ₂ Ph	Cı
CH₂Cl	Me	н	н	2	H	н	CF ₃	N-C(=O)Me	Cl
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-C(=O)Ph	CI
CH ₂ Cl	Me	н	H	2	H	н	CF ₈	N-C(=O)CH ₂ Ph	cı ·
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Ph	Me
CH ₂ Cl	Me	H	H	2	H	н	Et	N-Ph	Cl
CH ₂ Cl	Me	н	н	2	H	н	Pr	N-Ph	Cl
CH ₂ Cl	Me	H	н	2	H	н	Pr-i	N-Ph	Cı
CH ₂ Cl	Me	н	н	2	H	н	Bu-t	N-Ph	Cı
CH ₂ Cl	Me	н	н	2	H	н	CH ₂ OMe	N-Ph	Cl
CH₂Cl	Me	H	н	2	H	н	CF ₃	N-Ph	Me
CH ₂ Cl	Me	H	н	2	H	н	CHF ₂	N-Ph	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Ph	Cl
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Ph	ОМе
CH ₂ Cl	Me	н	н	2	н	H	CF ₃	N-Ph	OEt
CH ₂ Cl	Me	н	н	2	H	ı	CF ₃	N-Ph	OPr-i
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Ph	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Ph	OCH ₂ C≡CH
CH ₂ Cl	Me	н	н	2	H	H	CF ₈	N-Ph	OCH ₂ CF ₃

表 4

R ¹	R ²	R ³	R ⁴	n	\mathbb{R}^{5}	\mathbb{R}^6	R ¹⁶	Z^2	R ¹⁶
CH₂Cl	Me	H	н	2	H	Н	CF ₃	N-Ph	OCH ₂ C(=O)OMe
CH ₂ Cl	Me	H	н	2	H	н	CF_3	N-Ph	OCH(Me)C(=O)OMe
CH ₂ Cl	Me	H	H	2	H	н	CF ₃	N-Ph	OC(Me) ₂ C(=0)OMe
CH ₂ Cl	Me	Н	н	2	H	н	CF ₃	N-Ph	ОН
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph	OC(=O)Me
CH₂Cl	Me	H	H	2	H	н	CF ₃	N-Ph	OC(=O)Ph
CH ₂ Cl	Me	H	н	2	H	H	CF ₈	N-Ph	OSO ₂ Me
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-Ph	OSO ₂ CF ₃
CH ₂ Cl	Me	H	H	2	H	H	CF ₃	N-Ph	OSO ₂ Ph
CH ₂ Cl	Me	H	H	2	H	H	CF ₃ .	N-Ph	SMe
CH_2Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Ph	SOMe
$\mathrm{CH_{2}Cl}$	Me	н	н	2	H	H	CF ₃	N-Ph	SO ₂ Me
CH_2Cl	Me	H	H	2	H	н	CF ₃	N-Ph	SPh
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph	SOPh
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph	SO ₂ Ph
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Ph	Imidazol-1-yl
CH ₂ Cl	Me	H,	H.	2	H	н	CF ₃	N-Ph	1,2,4-Triazol-1-yl
CH₂Cl	Me	H	H	2	H	H	CF ₃	N-Ph	1,2,4-Triazol-4-yl
CH₂Cl	Me	H	н	2	H	н	CF ₃	N-Ph	Tetrazol-1-yl
CH ₂ Cl	Me	H	н	2	H	н	CF ₂ CF ₃	N-Ph	Cl
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(2-Cl)	Cl
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(2-F)	Cl
CH ₂ Cl	Me	H	H	2	H	H	CF ₃	N-Ph(2-OMe)	CI
CH ₂ Cl	Me	H	н	2	H	н	CF ₈	N-Ph(2-Me)	CI
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(2-NO ₂)	Cl ·
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(3-Cl)	CI
$\mathrm{CH_{2}Cl}$	Me	H	н	2	H	н	CF ₃	N-Ph(3-F)	Cl
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Ph(3-OMe)	Cl
$\mathrm{CH_{2}Cl}$	Me	H	н	2	H	н	CF ₃	N-Ph(3-Me)	Cl
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(3-NO ₂)	Cl
CH ₂ Cl	Me	H	н	2	н	H	CF ₈	N-Ph(4-Cl)	Cl
CH_2Cl	Me	H	н	2	н	н	CF ₃	N-Ph(4-F)	Cl
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Ph(4-OMe)	Cl
CH_2Cl	Me	H	н	2	H	H	CF ₃	N-Ph(4-Me)	Cl
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Ph(4-NO ₂)	Cl

表 5

R ¹	${f R}^2$	R³	R ⁴	n	\mathbb{R}^{6}	R^6	R ¹⁵	\mathbf{Z}^2	R ¹⁶
CH ₂ Cl	Me	H	Н	2	Н	H	Ph	N-Me	Me
CH ₂ Cl	Me	H	н	2	H	H	Ph	N-Me	Cl
CH ₂ Cl	Me	H	н	2	H	H	Ph	N-Me	OEt
CH ₂ Cl	Me	н	н	2	H	H	Ph	N-Me	CF ₃
CH ₂ Cl	Me	H	н	2	H	H	Ph	N-Me	Ph
CH ₂ Cl	Me	H	н	2	H	H	Me	s ·	Cl
CH ₂ Cl	Me	Н	н	2	H	H	Me	s	OEt
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	s	CI
$\mathbf{CH_{2}Cl}$	Me	H	H	2	н	H	CF ₃	s	OMe
CH ₂ Cl	Me	H	н	2	н	H	CF_3	s	OEt
CH ₂ Br	н	H	н	2	H	H	CF ₃	N-Me	Cl
CH ₂ Cl	н	H	н	2	н	H	CF ₃	N-Me	Cl
CH ₂ Cl	H	Me	н	2	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	H	н	2	Ме	H	CF ₃	N-Me	Cı
CH ₂ Cl	Me	H	н	2	Et	н	CF ₈	N-Me	Cl
CH ₂ Cl	Me	H	H	2	Pr-i	H	$\mathbf{CF_3}$	N-Me	CI
CH ₂ Cl	Me	H	H	2	Me	Me	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ Cl	Et	H	н	2	H	н	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ Cl	CH ₂ Cl	H	H	2	H	H	CF ₃	N-Me	CI
CH ₂ Cl	Pr-i	H	н	2	н	н	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ Cl	Pr	H	н	2	H	Н	CF ₃	N-Me	Cı
CH ₂ Cl	Pr-c	H	H	2	Н	н	CF ₃	N-Me	Cl
CH ₂ Cl	CH ₂ Pr-c	H	н	2	Н	н	CF ₈	N-Me	CI
$\mathrm{CH_2F}$	Me	H	н	2	н	н	CF ₃	N-Me	Cl
CH ₂ Br	Me	H	н	2	Н	н	CF ₃	N-Me	Cl
CH ₂ I	Me	H	н	2	н	H	CF ₃	N-Me	Cl
CF ₃	Me	H	н	2	H	н	CF ₃	N-Me	Cl
CH₂Cl	-(CH ₂)	9-	н	2	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	-(CH ₂)	4-	н	2	H	н	CF ₃	N-Me	CI
CH ₂ Cl	-(CH ₂)	-	H	2	Н	Н	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ Cl	-(CH ₂)	6-	н	2	н	Н	CF ₃	N-Me	C1
CH ₂ Cl	Me	H	н	1	н	H	н	N-Me	Cl
CH ₂ Cl	Me	H	н	1	H	н	Me	N-Me	Me
CH ₂ Cl	Me	H	н	1	H	H	Me	N-Me	Cl
CH ₂ Cl	Me	H	H	1	H	H	Cl	N-Me	Cl

表 6

R ¹	\mathbb{R}^2	\mathbb{R}^8	R4	n	\mathbb{R}^5	\mathbf{R}^{6}	R ¹⁵	$\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	H	H	1	Н	H	Cl	N-Me	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CHF ₂	N-Me	Cl
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-Me	cı
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	CN ·
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	OMe
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	OEt
$\mathrm{CH_{2}Cl}$	Me	H	н	1	H	н	$\mathbf{CF_3}$	N-Me	OPr-i
CH₂Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	OPr
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OCH ₂ CF ₃
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Me	OPh
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-Me	SMe
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SOMe
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Me	SO₂Me
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SCF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SOCF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SO ₂ CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₈	N-Me	SPh
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SOPh
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SO ₂ Ph
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	Ph
CH ₂ Cl	Me	н	Н	1	H	H	CF ₂ CF ₈	N-Me	CI
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	H	н	1	H	н	CF ₈	N-CH₂OH	Cl
CH₂Cl	Me	н	н	1	H	н	CF ₈	N-CH ₂ OMe	Cl
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-CH ₂ CN	Cl
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-CH ₂ CH=CH ₂	Cl
CH ₂ Cl	Me	н	Н	1	H	H	CF ₃	N-CH ₂ C≡CH	Cl
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Et	Cl
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Pr-i	CI
CH ₂ Cl	Me	н	н	1	н	H	CF ₃	N-Pr	CI
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-Bu-t	C1
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-CH₂Ph	Cl
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-CH ₂ CF ₈	Cl
CH ₂ Cl	Me	н	H	1	H	Н	CF ₃	N-CH ₂ C(=O)OMe	CI

表 7

R ¹	R ²	R ³	R ⁴	n	R^{6}	\mathbb{R}^6	R^{15}	\mathbf{Z}^2	R ¹⁶
CH ₂ Cl	Me	H	H	1	Н	н	CF ₃	N-CH(Me)C(=O)OMe	Cl
CH ₂ Cl	Me	H	н	1	Н	H	CF ₃	N-C(Me) ₂ C(=0)OMe	Cl
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	N-CH ₂ CH ₂ SMe	C1
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	N-CH ₂ CH ₂ SO ₂ Me	Cl
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	N-SO ₂ Me	Cl
CH ₂ Cl	Me	H	н	1	н	н	CF ₃	N-SO ₂ CHF ₂	Cı
CH ₂ Cl	Me	Н	н	1	H	н	CF ₃	N-SO ₂ CF ₃	Cı
CH ₂ Cl	Me	Н	н	1	H	Н	CF ₃	N-SO ₂ Ph	Cl
CH₂Cl	Me	н	н	1	Н	Н	CF ₃	N-C(=0)Me	Cl
CH ₂ Cl	Me	Н	н	1	H	н	CF ₃	N-C(=0)Ph	Cl
CH₂Cl	Me	н	н	1	H	н	CF ₃	N-C(=O)CH ₂ Ph	Cı
CH ₂ Cl	Me	н	н	1	H	Н	Me	N-Ph	Me
CH₂Cl	Me	Н	н	1	H	н	Me	N-Ph	Cl
CH₂Cl	Me	H	H	1	Н	Н	Et	N-Ph	Cl
CH ₂ Cl	Me	H	H	1	H	н	Pr	N-Ph	Cı
CH ₂ Cl	Мe	H	н	1	Н	Н	Pr-i	N-Ph	Cl
CH ₂ Cl	Me	H	H	1	H	H	Bu-t	N-Ph	CI .
CH ₂ Cl	Me	H	H	1	H	н	CH ₂ OMe	N-Ph	Cl
CH ₂ Cl	Me	H	н	1	н	Н	CF ₃	N-Ph	Me
CH₂Cl	Me	H	н	1	н	н	CHF ₂	N-Ph	Cl
CH ₂ Cl	Me	H	н	1	Н	н	CF ₃	N-Ph	Cl
CH ₂ Cl	Me	H	н	1	H	Н	CF ₃	N-Ph	OMe
CH₂Cl	Me	Н	н	1	н	н	CF ₈	N-Ph	OEt
CH₂Cl	Me	H	H	1	Н	Н	CF ₃	N-Ph	OPr-i
CH₂Cl	Me	н	н	1	H	Н	CF ₃	N-Ph	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-Ph	OCH ₂ C≡CH
CH ₂ Cl	Me	H	H	1	H	H	CF ₃	N-Ph	OCH ₂ CF ₃
CH ₂ Cl	Me	H	H	1	Н	H	CF ₃	N-Ph	OCH ₂ C(=0)OMe
CH ₂ Cl	Me	H	н	1	H	н	CF ₈	N-Ph	OCH(Me)C(=O)OMe
CH₂Cl	Me	н	H	1	Н	H	CF ₃	N-Ph	OC(Me) ₂ C(=O)OMe
CH ₂ Cl	Me	H	H	1	H	H	CF ₃	N-Ph	он
CH ₂ Cl	Me	H	H	1	H	H	CF ₈	N-Ph	OC(=O)Me
CH₂Cl	Me	н	H	1	H	H	CF ₈	N-Ph	OC(=O)Ph
CH ₂ Cl	Me	H	H	1	н	н	CF ₃	N-Ph	OSO ₂ Me
CH ₂ Cl	Me	H	H	1	H	H	CF ₃	N-Ph	OSO ₂ CF ₃

表 8

	Γ								<u> </u>
R ¹	\mathbb{R}^2	R ³	R ⁴	n	R ⁵	\mathbb{R}^6	R ¹⁵	$\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	H	H	1	H	H	CF ₃	N-Ph	OSO ₂ Ph
CH ₂ Cl	Me	H	H	1	H	н	$\mathbf{CF_3}$	N-Ph	SMe
CH₂Cl	Me	н	H	1	H	н	$\mathbf{CF_3}$	N-Ph	SOMe
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Ph	SO ₂ Me
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Ph	SPh
CH₂Cl	Me	н	H	1	H	н	CF ₃	N-Ph	SOPh
CH₂Cl	Me	н	н	1	H	н	CF ₃	N-Ph	SO₂Ph
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Ph	Imidazol-1-yl
CH₂Cl	Me	н	H	1	H	н	CF ₃	N-Ph	1,2,4-Triazol-1-yl
CH₂Cl	Me	H	н	1	H	н	CF ₃	N-Ph	1,2,4-Triazol-4-yl
CH₂Cl	Me	н	н	1	H	Н	CF ₃	N-Ph	Tetrazol-1-yl
CH₂Cl	Me	н	н	1	H	н	CF ₂ CF ₃	N-Ph	Cı
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph(2-Cl)	CI
CH₂Cl	Me	н	н	1	H	н	CF ₃	N-Ph(2-F)	Cl
CH ₂ Cl	Me	н	H	1	H	н	$\mathbf{CF_3}$	N-Ph(2-OMe)	C1 ·
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph(2-Me)	Cl
CH ₂ Cl	Me	н	н	1	Н	н	CF ₃	N-Ph(2-NO ₂)	Cl
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-Ph(3-Cl)	Cl
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph(3-F)	Cl
CH ₂ Cl	Ме	н	н	1	H	н	CF ₃	N-Ph(3-OMe)	Cı
CH ₂ Cl	Me	н	н	1	H	·H	CF ₃	N-Ph(3-Me)	Cı
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph(3-NO ₂)	Cl
CH ₂ Cl	Me	н	H	1	н	н	CF ₈	N-Ph(4-Cl)	Cl
CH ₂ Cl	Me	н	н	1	Н	н	CF ₃	N-Ph(4-F)	Cl
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph(4-OMe)	CI
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-Ph(4-Me)	CI
CH ₂ Cl	Me	H	Н	1	H	H	CF ₃	N-Ph(4-NO ₂)	Cı
CH ₂ Cl	Me	H	н	1	H	н	Ph	N-Me	Me
CH ₂ Cl	Ме	H	н	1	H	H	Ph	N-Me	CI
CH ₂ Cl	Me	н	н	1	н	н	Ph	N-Me	OEt
CH ₂ Cl	Me	н	н	1	H	H	Ph	N-Me	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	Ph	N-Me	Ph
CH ₂ Cl	Me	н	H	1	H	H	Me	s	CI
CH ₂ Cl	Me	н	н	1	H	н	Me	s	OEt
CH₂CI	Me	H	H	1	н	н	CF ₃	s	Cl

表 9

\mathbb{R}^1	R ²	\mathbb{R}^3	\mathbb{R}^4	n	\mathbb{R}^5	\mathbb{R}^6	R^{15}	${f Z^2}$	\mathbf{R}^{16}
CH ₂ Cl	Me	H	Н	1	H	H	CF ₃	S	OMe
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	s	OEt
$\mathrm{CH_{2}Br}$	н	н	н	1	H	н	CF ₃	N-Me	Cl
CH₂Cl	н	н	н	1	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	н	Ме	н	1	H	H	CF ₃	N- М е	Cl
CH_2Cl	Me	н	н	1	Me	н	CF ₃	N-Me	Cl
CH_2Cl	Me	н	н	1	Et	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	н	н	1	Pr-i	н	CF₃	N-Me	Cl
CH ₂ Cl	Me	н	н	1	Me	Me	CF ₃	N-Me	CI
CH ₂ Cl	Et	H	н	1	H	н	CF ₃	N-Me	CI
$\mathrm{CH_{2}Cl}$	CH ₂ Cl	н	н	1	H	Н	CF ₃	N-Me	Cl
CH ₂ Cl	Pr-i	н	H	1	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Pr	H	H	1	H	н	CF ₃	N-Me	CI
CH ₂ Cl	Pr-c	H	н	1	н	н	CF ₃	N-Me	CI
$\mathrm{CH_{2}Cl}$	CH ₂ Pr-c	н	н	1	н	н	$\mathbf{CF_3}$	N-Me	Cl
$\mathrm{CH_2F}$	Me	Н	н	1	H	н	$\mathbf{CF_3}$	N-Me	Cl
$\mathrm{CH_{2}Br}$	Me	н	н	1	н	н	CF ₃	N-Me	Ci
$\mathrm{CH_{2}I}$	Me	H	н	1	н	н	CF ₃	N-Me	Cı
CF ₃	Me	H	H	1	Н	н	CF ₃	N-Me	Cl
CH ₂ Cl	-(CH ₂) ₃ -	н	1	н	н	CF ₃	N-Me	Cl
CH ₂ Cl	-(CH ₂		н	1	H	н	CF ₃	N-Me	C1
CH ₂ Cl	-(CH ₂) ₅ -	н	1	н	н	CF ₃	N-Me	Cl
CH ₂ Cl	-(CH ₂) ₆ -	н	1	н	н	CF ₃	N-Me	Cı
CH₂Cl	Me	н	H	0	H	Н	н	N-Me	Cl
CH₂Cl	Me	H	н	0	н	H	Me	N-Me	Me
CH ₂ Cl	Me	н	н	0	н	н	Me	N-Me	Cl
CH ₂ Cl	Me	H	н	0	H	н	Cl	N-Me	C1
CH ₂ Cl	Me	H	H	0	н	н	Cı	N-Me	CF ₃
CH₂Cl	Me	H	H	0	H	н	CHF ₂	N-Me	Cl
CH ₂ Cl	Me	н	H	0	н	Н	CF ₃	N-Me	Cl
CH₂Cl	Me	н	H	0	H	н	CF ₃	N-Me	CN
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-Me	ОМе
CH ₂ Cl	Me	Ĥ	H	0	н	H	CF ₃	N-Me	OEt .
CH ₂ Cl	Me	H	H	0	Н	H	CF ₃	N-Me	OPr-i
CH ₂ Cl	Me	H	H	0	H	H	CF ₈	N-Me	OPr

表10

		,							
R¹	\mathbb{R}^2	\mathbb{R}^3	R4	n	\mathbb{R}^{5}	\mathbb{R}^6	R ¹⁵	${\bf Z^2}$	R ¹⁶
CH ₂ Cl	Me	н	H	0	H	н	$\mathbf{CF_3}$	N-Me	OCH ₂ CH=CH ₂
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-Me	OCH ₂ CF ₃
CH ₂ Cl	Me	H	H	0	н	н	CF ₃	N-Me	OPh
CH₂Cl	Me	H	н	0	H	H	CF ₃	N-Me	SMe
CH₂Cl	Me	н	H	0	H	н	CF ₈	N-Me	SOMe
CH₂Cl	Me	H	H	0	H	H	$\mathbf{CF_3}$	N-Me	SO ₂ Me
CH ₂ Cl	Me	H	н	0	H	н	ĊF₃	N-Me	SCF ₃
CH ₂ Cl	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	SOCF ₃
CH ₂ Cl	М́е	н	H	0	н	н	$\mathbf{CF_3}$	N-Me	SO ₂ CF ₃
CH ₂ Cl	Me	н	H	0	H	н	$\mathbf{CF_3}$	N-Me	SPh
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Me	SOPh
CH ₂ Cl	Me	н	н	0	Н	н	$\mathbf{CF_3}$	N-Me	SO_2Ph
CH ₂ Cl	Me	н	H	0	Н	н	$\mathbf{CF_3}$	N-Me	Ph
CH ₂ Cl	Me	H	н	0	H	н	$\mathbf{CF_2CF_3}$	N-Me	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	Н	н	0	H	н	CF ₃	N-CH ₂ OH	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-CH ₂ OMe	Cı
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-CH ₂ CN	Cl
CH ₂ Cl	Me	H	н	0	H	Н	CF ₈	N-CH ₂ CH=CH ₂	Cl
$\mathrm{CH_{2}Cl}$	Me	H	H	0	H	H	CF ₃ -	N-CH ₂ C≡CH	Cl
CH ₂ Cl	Me	H	H	0	H	H	CF ₃	N-Et	Cl
CH ₂ Cl	Me	H	н	0	H	H	CF ₈	N-Pr-i	Cı
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-Pr	Cl
CH ₂ Cl	Me	н	н	0	H	H	CF ₈	N-Bu-t	Cl
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-CH ₂ Ph	Cl
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-CH ₂ CF ₃	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-CH ₂ C(=O)OMe	Cl
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-CH(Me)C(=O)OMe	Cı
CH ₂ Cl	Me	н	H	0	н	H	CF ₃	N-C(Me) ₂ C(=O)OMe	Cl
CH₂Cl	Me	H	H	0	н	H	CF ₈	N-CH ₂ CH ₂ SMe	Cl
CH₂Cl	Me	н	H	0	н	H	CF ₃	N-CH ₂ CH ₂ SO ₂ Me	Cl
CH₂Cl	Me	н	Н	0	H	H	CF ₃	N-SO ₂ Me	Cl
CH₂Cl	Me ·	н	H	0	H	н	CF ₃	N-SO ₂ CHF ₂	Cl
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-SO ₂ CF ₃	CI
CH ₂ Cl	Me	H	н	0	н	H	CF ₃	N-SO ₂ Ph	Cl

表11

R¹	R ²	R ³	R4	n	R ⁵	\mathbb{R}^6	R ¹⁵	$\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	H	H	0	H	H	CF ₃	N-C(=O)Me	Cl
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-C(=0)Ph	Cl
CH₂Cl	Me	н	н	0	н	н	CF ₃	N-C(=O)CH ₂ Ph	Cl
CH ₂ Cl	Me	н	н	0	Н	H	Me	N-Ph	Me
CH ₂ Cl	Me	н	н	0	н	H	Me	N-Ph	Cı
CH ₂ Cl	Me	н	н	0	н	H	Et	N-Ph	Cl
CH ₂ Cl	Me	н	н	0	H	H	Pr	N-Ph	C1
CH₂Cl	Mе	н	н	0	H	н	Pr-i	N-Ph	Cl
CH ₂ Cl	Me	н	н	0	Н	н	Bu-t	N-Ph	Cl
CH ₂ Cl	Me	н	н	0	H	Н	CH ₂ OMe	N-Ph	C1
CH ₂ Cl	Ме	н	н	0	H	Н	CF ₃	N-Ph	Me
CH ₂ Cl	Me	н	н	o	H	H	CHF ₂	N-Ph	C1
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Ph	Cl
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-Ph	OMe
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	OEt ·
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	OPr-i
CH ₂ Cl	Me	н	н	0	H	·H	CF ₃	N-Ph	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-Ph	OCH ₂ C≡CH
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Ph	OCH ₂ CF ₃
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Ph	OCH ₂ C(=O)OMe
CH₂Cl	Me	н	н	0	H	H	CF ₃	N-Ph	OCH(Me)C(=O)OMe
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-Ph	OC(Me) ₂ C(=O)OMe
CH₂Cl	Me	н	н	0	H	H	CF ₃	N-Ph	он .
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Ph	OC(=O)Me
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	OC(=O)Ph
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-Ph	OSO ₂ Me
CH ₂ Cl	Me	H	H	0	H	H	CF ₃	N-Ph	OSO ₂ CF ₃
CH₂Cl	Me	н	н	0	H	Н	CF ₃	N-Ph	OSO ₂ Ph
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	SMe
CH ₂ Cl	Me	н	H	0	н	H	CF ₃	N-Ph	SOMe
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Ph	SO₂Me
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	SPh
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-Ph	SOPh
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	SO ₂ Ph
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Ph	Imidazol-1-yl

表12

R ¹	R ²	R³	R ⁴	n	\mathbb{R}^{5}	\mathbb{R}^6	R ¹⁶	\mathbf{Z}^2	R^{16}
CH ₂ Cl	Me	Н	H	0	H	H	CF ₃	N-Ph	1,2,4-Triazol-1-yl
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-Ph	1,2,4-Triazol-4-yl
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Ph	Tetrazol-1-yl
CH ₂ Cl	Me	H	н	o	H	н	CF ₂ CF ₃	N-Ph	CI
CH ₂ Cl	Me	H	H	0	H	H	CF ₃	N-Ph(2-Cl)	Cl
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-Ph(2-F)	Cl
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-Ph(2-OMe)	Cl
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Ph(2-Me)	Cl
CH ₂ Cl	Me	H	H	o	H	н	CF ₃	N-Ph(2-NO ₂)	Cl
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Ph(3-Cl)	Cl
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Ph(3-F)	Cl
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Ph(3-OMe)	Cl
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Ph(3-Me)	Cl
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Ph(3-NO ₂)	Cl
CH ₂ Cl	Me	н	н	0	H	H	$\mathbf{CF_3}$	N-Ph(4-Cl)	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph(4-F)	Cl
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Ph(4-OMe)	CI
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph(4-Me)	Cl
CH ₂ Cl	Me	H	H	0	H	H	CF ₃	N-Ph(4-NO ₂)	Cı
CH₂Cl	Me	н	H	0	H	н	Ph	N-Me	Me
CH ₂ Cl	Me	H	H	0	H	Н	Ph	N-Me	Cl
CH ₂ Cl	Me	H	H	0	H	н	Ph	N-Me	OEt
CH₂Cl	Me	H	H	0	H	н	Ph	N-Me	CF ₃
CH ₂ Cl	Me	H	н	0	H	H	Ph	N-Me	Ph
CH ₂ Cl	Me	H	H	0	H	H	Me	s	CI
CH ₂ Cl	Me	н	н	0	H	н	Me	s	OEt
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	S	Cı
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	s	OMe
CH ₂ Cl	Me	Н	H	0	Н	H	CF ₃	s	OEt
CH ₂ Br	н	н	н	0	н	н	CF ₃	N-Me	Cı
CH ₂ Cl	H	H	н	0	н	н	CF ₃	N-Me	Cl
CH ₂ Cl	H	Me	н	0	н	H	CF ₃	N-Me	CI ·
CH ₂ Cl	Me	н	н	0	Me	H	CF ₃	N-Me	Cl
CH ₂ Cl	Me	н	н	0	Et	H	CF ₃	N-Me	Cl
CH ₂ Cl	Me	н	H	0	Pr-i	H	CF ₃	N-Me	Cl

表13

R ¹	R ²	R³	R ⁴	n	R^{5}	\mathbb{R}^6	R ¹⁶	Z²	R ¹⁶
CH ₂ Cl	Me	H	н	0	Me	Мe	CF ₃	N-Me	Cl
CH₂Cl	Et	H	н	0	H	н	CF_3	N-Me	CI ·
CH ₂ Cl	CH₂Cl	н	н	0	H	н	CF ₃	N-Me	C1
CH₂Cl	Pr-i	н	н	0	Н	н	$\mathbf{CF_3}$	N-Me	Cl
CH₂Cl	Pr	H	н	0	н	н	CF ₃	N-Me	Cl
CH₂Cl	Pr-c	н	н	0	H	н	CF_3	N-Me	Cl
CH₂Cl	CH ₂ Pr-c	н	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	H	н	0	н	H	$\mathbf{CF_3}$	N-Me	CI
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-Me	Cl
CH₂Cl	Me ·	н	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	CI
CH ₂ Cl	-(CH ₂)	3-	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ Cl	-(CH ₂)	4-	н	0	H	н	CF ₃	N-Me	C1
CH ₂ Cl	-(CH ₂)	6-	н	0	H	н	CF ₃	N-Me	CI .
CH ₂ Cl	-(CH ₂)	6-	Н	0	H	H	CF ₃	N-Me	CI
CH ₂ Cl	Et	H	н	2	H	н	н	N-H	н
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-Et	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	C1	N-Pr	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	Cl	N-Pr-i	CF ₈
CH ₂ Cl	Me	н	н	2	н	H	C1	N-Bu-n	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Bu-n	CI
CH ₂ Cl	Me	H	н	2	H	H	CI	N-Bu-s	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	$\mathbf{CF_3}$	N-Bu-s	Cl
CH ₂ Cl	Me	H	н	2	H	н	Cı	N-Bu-i	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Bu-i	Cl
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Bu-t	н
CH ₂ Cl	Me	H	H	2	H	н	Cl	N-CH₂Ph	CF ₃
CH ₂ Cl	Me	н	H	2	H	н	Cl	N-CH ₂ CH ₂ OMe	CF ₃
CH ₂ Cl	Me	H	Н	2	H	н	CF3	N-CH ₂ CH ₂ OMe	Cı
CH ₂ CI	Me	H	H	2	H	н	Cl	N-CH ₂ SMe	CF ₈
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-CH ₂ SMe	Cl
CH₂Cl	Me	н	н	2	H	н	Cl	N-CH ₂ OEt	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-CH₂OEt	Cl
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-CH ₂ CHF ₂	CF ₈
CH₂Cl	Me	H	H	2	H	H	CF ₃	N-CH ₂ CHF ₂	Cl

表14

R ¹	R ²	R³	R4	n	R ⁵	\mathbb{R}^6	R ¹⁶	\mathbf{Z}^{2}	R ¹⁶
CH ₂ Cl	Me	H	H	2	H	H	Cl	N-CHF ₂	CF ₃
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-CHF ₂	Cı
CH ₂ Cl	Me	H	н	2	H	H	Cl	N-CH ₂ CF ₃	CF ₃
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-CH ₂ OMe	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	Cl	N-CH ₂ COOEt	CF ₃
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-CH ₂ COOEt	Cl
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-CH ₂ CH=CH ₂	CF ₃
CH ₂ Cl	Me	н	н	2	н	н	Cl	N-CH ₂ C≡CH	CF ₃
CH ₂ Cl	Me	н	н	2	н	н	Cl	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-CH ₂ Pr-c	Cl
CH ₂ CI	Me	н	н	2	H	H	Cl	N-CH ₂ Bu-c	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-CH ₂ Bu-c	CI
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-CH ₂ Pen-c	CF ₃
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-CH ₂ Pen-c	Cl .
CH ₂ CI	Me	н	н	2	н	н	Cl	N-CH ₂ Hex-c	CF ₃
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-CH ₂ Hex-c	C1
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-CH ₂ CCl=CHCl	CF ₈
CH ₂ Cl	Me	н	н	2	Н	н	CF ₃	N-CH2CCl=CHCl	Cı
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Hex-c	Cı
CH ₂ Cl	Me	Н	н	2	н	н	$\mathbf{CF_3}$	N-Pen-c	Cl
CH ₂ Cl	Me '	н	H	2	H	н	Cl	N-CH ₂ NMe ₂	CF ₃
CH ₂ CI	Me	н	H	2	H	н	CF ₃	N-CH ₂ NMe ₂	Cl
CH₂Cl	Me	н	н	2	н	H	Cl	N-CH ₂ NHMe	CF ₃
CH ₂ Cl	Me	Н	H	2	H	H	CF ₃	N-CH ₂ NHMe	Cl
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-CH ₂ N(Me)COMe	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	CF ₈	N-CH ₂ N(Me)COMe	Cl
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-CH ₂ N(Me)COCF ₃	CF ₈
CH ₂ Cl	Me	Н	н	2	H	H	CF ₃	N-CH ₂ N(Me)COCF ₃	Cı
CH ₂ Cl	Me	н	н	2	н	н	Cı	N-CH ₂ N(Me)SO ₂ Me	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-CH ₂ N(Me)SO ₂ Me	Cı
CH ₂ Cl	Me	Н	Н	2	н	H	Cl	N-CH2CONH2	CF ₃
CH ₂ Cl	Me	н	H	2	н	Н	CF ₃	N-CH2CONH2	Cl
CH ₂ Cl	Me	н	н	2	H	Н	Cl	N-CH ₂ CONHMe	CF ₃
CH ₂ Cl	Me	H	н	2	н	•	CF ₈	N-CH ₂ CONHMe	Cı
CH ₂ Cl	Me ·	н	н	2	H	н	CI	N-CH ₂ CONMe ₂	CF ₃

表15

R^1	R ²	\mathbb{R}^3	R ⁴	n	\mathbb{R}^5	\mathbb{R}^6	R ¹⁵	$\mathbf{Z}^{2\cdot}$	R ¹⁶
CH ₂ Cl	Me	H	н	2	Н	н	CF ₃	N-CH ₂ CONMe ₂	Cl
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-CH ₂ COMe	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-CH ₂ COMe	Cl
CH ₂ Cl	Me	H	н	2	H	н	Cl	N-CH ₂ CH ₂ COMe	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-CH ₂ CH ₂ COMe	CI
CH ₂ Cl	Me	Ħ	н	2	H	H	C1	N-CH ₂ COCF ₃	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-CH ₂ COCF ₃	Cl
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Me	F
CH ₂ Cl	Me	H	H	2	H	н	$\mathbf{CF_3}$	N-Me	Me
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Me	CF ₃
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Me	ОН
CH ₂ Cl	Me	Н	н	2	Н	H	$\mathbf{CF_3}$	N-Me	OBu-n
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Me	OBu-t
CH_2Cl	Me	н	н	2	H	н	CF ₃	N-Me	OCH ₂ CHF ₂
$\mathrm{CH_{2}Cl}$	Me	H	н	2	Н	н	CF ₃	N-Me	OCHF ₂
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	OPen-c
CH ₂ Cl	Me	H	н	2	H	H	$\mathbf{CF_3}$	N-Me	ОНех-с
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	OCH ₂ Pr-c
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	NH ₂
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	NHMe
$\mathrm{CH_{2}Cl}$	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Me	NMe ₂
CH ₂ Cl	Me	H	н	2	H	Н	CF ₃	N-Me	NHPh [.]
CH ₂ Cl	Me	H	H	2	·H	H	CF ₃	N-Me	NMePh
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Me	O-Ph(2-Cl)
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Me	O-Ph(3-Cl)
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Me	O-Ph(4-Cl)
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	O-Ph(4-F)
CH ₂ Cl	Me	H	н	2	H	H	$\mathbf{CF_3}$	N-Me	O-Ph(4-Me)
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Me	O-Ph(4-OMe)
CH ₂ Cl	Me	H	н	2	Н	H	CF ₃	N-Me	SO₂Et
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Ph	н
CH ₂ Cl	Me	H	н	2	н	H	$\mathbf{CF_3}$	N-Ph	F
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Ph	CN
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-Ph	CF ₈
CH₂Cl	Me	H	н	2	H	H	CF ₃	N-Ph	Pr-n

表16

R ¹	R ²	\mathbb{R}^3	R4	n	\mathbb{R}^5	\mathbb{R}^6	R ¹⁵	$\mathbf{z}^{\mathbf{z}}$	R ¹⁶
CH ₂ Cl	Me	H	Н	2	H	H	$\mathbf{CF_3}$	N-Ph	OBu-t
CH ₂ Cl	Me	н	н	2	H	H	$\mathbf{CF_3}$	N-Ph	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Ph	OCHF ₂
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Ph	NH2
CH ₂ Cl	Me	Н	н	2	H	н	CF ₃	N-Ph	NHMe
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-Ph	NMe_2
CH ₂ Cl	Me	H	H	2	H	H	$\mathbf{CF_3}$	N-Ph	SO ₂ Et
CH₂Cl	Me	H	н	2	H	н	Cl	N-Bu-t	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Ph(4-COMe)	C1
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Ph(4-CN)	Cı
CH ₂ Cl	Me	H	н	2	H	H	$\mathbf{CF_3}$	N-Ph(4-COOMe)	Cl
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Ph(4-NO ₂)	Cl
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Pyrimidin-2-yl	Cl
CH ₂ Cl	Me	H	н	1	H	н	Cl	N-Et	CF ₃
CH ₂ Cl	Me	H	H	1	Н	н	Cı	N-Pr	CF ₃
CH₂Cl	Me	H	н	1	н	H	Cı	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	н	1	Н	н	Cl	N-Bu-n	CF ₃
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	N-Bu-n	Cl
CH ₂ Cl	Me	H	н	1	Н	н	Cı	N-Bu-s	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	CF ₃ ,	N-Bu-s	Cl
CH ₂ Cl	Me	H	н	1	H	Н	Cı	N-Bu-i	CF ₃
CH ₂ Cl	Me	H	н	1	H	н	CF ₃	N-Bu-i	Cl
CH ₂ Cl	Me	н	н	1	н	H	CF ₃	N-Bu-t	н
CH ₂ Cl	Me	H	H	1	H	н	Cı	N-CH ₂ Ph	CF ₃
CH ₂ Cl	Me	H	H	1	H	н	Cı	N-CH ₂ CH ₂ OMe	CF ₃
CH ₂ Cl	Me	H	н	1	H	Н	CF ₃	N-CH ₂ CH ₂ OMe	CI
CH ₂ Cl	Me	H	н	1	н	Н	Cl	N-CH ₂ SMe	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	CF ₃	N-CH ₂ SMe	CI
CH ₂ Cl	Me	H	H	1	н	н	CI	N-CH ₂ OEt	CF ₃
CH ₂ Cl	Me	H	н	1	н	H	CF ₃	N-CH ₂ OEt	Cl
CH ₂ Cl	Me	н	H	1	н	H	Cl	N-CH ₂ CHF ₂	CF ₃
CH ₂ Cl	Me	H	H	1	Ĥ	H	CF ₈	N-CH ₂ CHF ₂	C1
CH ₂ Cl	Me	н	н	1	н	н	Cl	N-CHF ₂	CF ₃
CH ₂ Cl	Me	H	H	1	н	н	CF ₃	N-CHF ₂	Cı
CH₂Cl	Me	H	H	1	н	н	Cl	N-CH ₂ CF ₃	CF ₈

表17

R ¹	R ²	\mathbb{R}^3	R4	n	\mathbb{R}^{5}	\mathbb{R}^6	R ¹⁵	Z^2	R ¹⁶
CH ₂ Cl	Me	H	Н	1	H	H	Cl	N-CH ₂ OMe	CF ₃
CH ₂ Cl	Me	н	н	1	Н	н	Cl	N-CH ₂ COOEt	CF ₃
CH ₂ Cl	Me	H	H	1	H	н	$\mathbf{CF_3}$	N-CH ₂ COOEt	Cı
CH₂Cl	Me	н	н	1	H	н	Cl	N-CH ₂ CH=CH ₂	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	Cl	N-CH ₂ C≡CH	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	C1	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-CH ₂ Pr-c	CI
CH ₂ Cl	Me	H	H	1	H	н	Cl	N-CH ₂ Bu-c	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-CH ₂ Bu-c	C1
CH ₂ Cl	Me	н	н	1	Н	н	Cl	N-CH ₂ Pen-c	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₈	N-CH ₂ Pen-c	Cl
CH ₂ Cl	Me	н	н	1	н	н	Cl	N-CH ₂ Hex-c	CF ₃
CH₂Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-CH ₂ Hex-c	Cl
CH ₂ Cl	Me	H	н	1	H	н	Cl	N-CH ₂ CCl=CHCl	CF ₃
CH ₂ Cl	Me	н	н	1	н	н	$\mathbf{CF_3}$	N-CH ₂ CCl=CHCl	Cl
CH₂Cl	Me	н	H	1	H	н	$\mathbf{CF_3}$	N-Hex-c	Cı
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-Pen-c	Cl
CH ₂ Cl	Me	H	н	1	H	н	Cl	N-CH ₂ NMe ₂	CF ₃
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-CH ₂ NMe ₂	Cl
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-CH₂NHMe	CF ₃
CH ₂ Cl	Me	H	н	1	H	н	$\mathbf{CF_3}$	N-CH ₂ NHMe	Cl
CH ₂ Cl	Me	н	н	1	Н	н	CI	N-CH ₂ N(Me)COMe	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-CH ₂ N(Me)COMe	Cl
CH ₂ Cl	Me	н	н	1	H	H	Cl	N-CH ₂ N(Me)COCF ₃	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-CH ₂ N(Me)COCF ₃	CI
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-CH ₂ N(Me)SO ₂ Me	CF ₃
CH ₂ Cl	Me	н	н	1	Н	H	$\mathbf{CF_8}$	N-CH ₂ N(Me)SO ₂ Me	Cl
CH ₂ Cl	Me	н	н	1	н	н	Cl	N-CH ₂ CONH ₂	CF ₃
CH ₂ Cl	Me	н	н	1	н	H	CF ₃	N-CH ₂ CONH ₂	Cl
CH ₂ Cl	Me	н	H	1	н		Cl	N-CH ₂ CONHMe	CF ₃
CH ₂ Cl	Me	н	н	1	н	[CF ₃	N-CH ₂ CONHMe	Cl
CH ₂ Cl	Me	н	ł	1	н		Cl	N-CH ₂ CONMe ₂	CF ₃
CH ₂ Cl	Me	н	н	1	н	H	CF ₃	N-CH ₂ CONMe ₂	Cl
CH ₂ Cl	Me	н	н	1	н	! 1	Cl	N-CH ₂ COMe	CF ₃
CH ₂ Cl	Me	H	H	1	H	H	CF ₃	N-CH₂COMe	Cl

表18

R ¹	R ²	\mathbf{R}^{s}	R ⁴	n	\mathbb{R}^{5}	R ⁶	R ¹⁵	Z^2	R ¹⁶ ,
CH ₂ Cl	Me	H	H	1	н	H	Cl	N-CH ₂ CH ₂ COMe	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-CH ₂ CH ₂ COMe	Cl
CH ₂ Cl	Me	н	н	1	н	н	Cl	N-CH₂COCF ₃ .	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-CH ₂ COCF ₃	Cl
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-Me	F
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	Me
CH_2Cl	Me	н	н	1	H	H	CF ₃	N-Me	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	он
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OBu-n
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OBu-t
CH ₂ Cl	Me	н	н	1	H	H	$\mathbf{CF_3}$	N-Me	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OCHF ₂
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	OPen-c
CH ₂ Cl	Me	н	н	1	Н	н	CF ₃	N-Me	ОНех-с
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	OCH ₂ Pr-c
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-Me	NH ₂
$\mathbf{CH_{2}Cl}$	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	NHMe
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	NMe ₂
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	NHPh
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-Me	NMePh
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Me	O-Ph(2-Cl)
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	O-Ph(3-Cl)
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-Me	O-Ph(4-Cl)
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	O-Ph(4-F)
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Me	O-Ph(4-Me)
CH ₂ Cl	Me	н	н	1	H	н	CF ₈	N-Me	O-Ph(4-OMe)
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	SO₂Et
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Ph	н
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Ph	F
CH ₂ Cl	Me	Н	Н	1	H	н	CF ₃	N-Ph	CN
CH ₂ Cl	Me	H	н	1	H	H	CF ₈	N-Ph	CF ₃
CH₂Cl	Me	H	н	1	Ħ	н	CF ₃	N-Ph	Pr-n
CH₂Cl	Me	н	н	1	H	н	CF ₃	N-Ph	OBu-t
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-Ph	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	н	1	H	Н	CF ₃	N-Ph	OCHF ₂

表19

R ¹	R ²	R ³	R ⁴	n	\mathbb{R}^{6}	\mathbb{R}^6	R ¹⁶	$\mathbf{Z^2}$	R^{16}
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Ph	NH ₂
CH ₂ Cl	Me	н	н	1	H	Н	CF ₃	N-Ph	NHMe
CH ₂ Cl	Me	н	H	1	H	н	CF ₃	N-Ph	NMe ₂
CH ₂ Cl	Me	н	н	1	H	H	CF ₃	N-Ph	SO ₂ Et
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-Bu-t	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	$\mathbf{CF_3}$	N-Ph(4-COMe)	Cl
CH ₂ Cl	Me	н	H	1	H	н	CF_3	N-Ph(4-CN)	Cl
CH ₂ Cl	Me	H	н	1	H	н	$\mathbf{CF_3}$	N-Ph(4-COOMe)	CI .
CH ₂ Cl	Me	H	н	1	H	H	CF ₃	N-Ph(4-NO ₂)	Cl
CH ₂ Cl	Me	н	н	1	H	Н	CF ₃	N-Pyrimidin-2-yl	Cl .
CH ₂ Cl	Me	н	H	0	H	н	Cl	N-Et	CF ₃
CH ₂ Cl	Me	н	н	0	Н	H	Cl	N-Pr	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	Cl	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	H	0	H	н	Cl	N-Bu-n	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Bu-n	Cı
CH ₂ Cl	Me	H	н	0	H	н	Cl	N-Bu-s	CF ₃
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-Bu-s	Cl
CH ₂ Cl	Me	H	н	0	H	Н	Cl	N-Bu-i	CF ₈
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-Bu-i	Cl
CH ₂ Cl	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Bu-t	н
CH ₂ Cl	Me	н	Н	0	н	H	Cl	N-CH ₂ Ph	CF ₃
CH ₂ Cl	Me	н	H	0	H	Н	Cl	N-CH ₂ CH ₂ OMe	CF ₃
CH ₂ Cl	Me	H	н	0	н	H	CF ₈	N-CH ₂ CH ₂ OMe	Cı
CH ₂ Cl	Me	H	н	0	H	н	Cl	N-CH ₂ SMe	CF ₃
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-CH ₂ SMe	Cl
CH ₂ Cl	Me	н	н	0	H	н	Cl	N-CH ₂ OEt	CF ₈
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-CH ₂ OEt	Cl
CH ₂ Cl	Me	н	н	0	н	н	Cı	N-CH ₂ CHF ₂	CF ₃
CH ₂ Cl	Me	н	H	0	H	Н	CF ₃	N-CH ₂ CHF ₂	Cl
CH ₂ Cl	Me	H	н	0	Н	н	Cl	N-CHF ₂	$\mathbf{CF_3}$
CH ₂ Cl	Me	н	н	0	н	H	CF ₈	N-CHF ₂	Cl
CH ₂ Cl	Me	н	н	0	н	н	Cl .	N-CH ₂ CF ₃	CF ₃
CH ₂ Cl	Me	н	н	0	H	Н	Cl	N-CH ₂ OMe	CF ₃
CH ₂ Cl	Me	н	н	0	н	H	Cı	N-CH ₂ COOEt	CF ₃
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-CH2COOEt	Cı

表20

R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	n	R ⁵	\mathbb{R}^6	R ¹⁶	Z^2	R^{16}
CH ₂ Cl	Me	H	H	0	Н	Н	Cl	N-CH ₂ CH=CH ₂	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	Cl	N-CH ₂ C≡CH	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	Cl	N-CH ₂ Pr-c	CF ₈
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-CH ₂ Pr-c	CI
CH ₂ Cl	Me	H	н	0	H	н	Cl	N-CH ₂ Bu-c	CF ₃
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	N-CH ₂ Bu-c	Cl
CH ₂ Cl	Me	н	н	0	H	H	Cl	N-CH ₂ Pen-c	CF ₃
CH ₂ Cl	Me	н	H	0	H	Н	CF ₃	N-CH ₂ Pen-c	CI
CH ₂ Cl	Me	н	н	0	H	н	Cl	N-CH ₂ Hex-c	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-CH ₂ Hex-c	Cl
CH ₂ Cl	Me	н	H	0	H	н	Cl	N-CH ₂ CCl=CHCl	CF ₃
CH₂Cl	Me	н	H	0	H	н	CF ₃	N-CH ₂ CCl=CHCl	Cı
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Hex-c	CI
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Pen-c	Cl
CH ₂ Cl	Me	н	H	0	H	Н	C1	N-CH ₂ NMe ₂	CF ₃
CH ₂ Cl	Me	н	н	0	H	Н	CF ₃	N-CH ₂ NMe ₂	C1
CH ₂ Cl	Me	н	H	0	H	н	Cl	N-CH ₂ NHMe	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-CH ₂ NHMe	CI
CH ₂ Cl	Me	н	н	0	Н	H	Cı	N-CH ₂ N(Me)COMe	CF ₃
CH ₂ Cl	Me	н	н	0	Н	н	CF ₃	N-CH ₂ N(Me)COMe	Cl
CH₂Cl	Me	н	н	0	H	H	Cı	N-CH ₂ N(Me)COCF ₈	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-CH ₂ N(Me)COCF ₃	Cı
CH₂Cl	Me	н	н	0	H	H	CI	N-CH ₂ N(Me)SO ₂ Me	CF ₃
CH ₂ Cl	Me	н	Н	0	H	H	CF ₃	$N-CH_2N(Me)SO_2Me$	Cl
CH ₂ Cl	Me	н	·H	0	н	H	Cı	N-CH ₂ CONH ₂	CF ₃
CH ₂ Cl	Me	н	н	0	Н	H	CF ₃	N-CH ₂ CONH ₂	Cı
CH ₂ Cl	Me	Н	Н	o'	H	H	Cl	N-CH ₂ CONHMe	CF ₃
CH ₂ Cl	Me	н	H	0	Н	н	CF ₃	N-CH ₂ CONHMe	Cl
CH ₂ Cl	Me	н	н	0	H	н	CI	N-CH ₂ CONMe ₂	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-CH ₂ CONMe ₂	Cl
CH ₂ Cl	Me	н	H	0	н	Н	CI	N-CH ₂ COMe	CF ₃
CH ₂ Cl	Me	н	H	0	н	H	CF ₃	N-CH ₂ COM _e	Cl
CH ₂ Cl	Me	н	H	0	H	H	CI	N-CH ₂ CH ₂ COMe	CF ₃
CH ₂ Cl	Me	н	Н	0	н	н	CF ₃	N-CH ₂ CH ₂ COMe	Cl
CH ₂ Cl	Me	н	H	0	H	н	Cl	N-CH ₂ COCF ₃	CF ₃

表21

R ¹	R ²	\mathbb{R}^3	R⁴	n	\mathbb{R}^5	\mathbb{R}^6	R^{15}	\mathbf{z}^2	R ¹⁶
CH₂Cl	Me	H	H	0	Н	H	CF ₃	N-CH ₂ COCF ₃	Cl
CH₂Cl	Me	H	H	0	Ħ	н	CF ₃	N-Me	F
CH₂Cl	Me	H	н	0	H	H	CF ₃	N-Me	Me
CH₂Cl	Me	H	н	0	H	н	CF ₃	N-Me	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	ОН
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-Me	OBu-n
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	OBu-t
CH₂Cl	Me	H	н	0	H	H	$\mathbf{CF_3}$	N-Me	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	OCHF ₂
CH₂Cl	Me	H	н	0	H	н	CF ₃	N-Me	OPen-c
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-Me	ОНех-c
CH₂Cl	Me	H	н	0	H	н	$\mathbf{CF_3}$	N-Me	OCH ₂ Pr-c
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Me	NH ₂
CH₂Cl	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	NHMe
CH ₂ Cl	Me	H	н	0	H	н	$\mathbf{CF_3}$	N-Me	NMe ₂
CH₂Cl	Me	H	н	0	H	н	$\mathbf{CF_3}$	N-Me	NHPh
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Me	NMePh
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Me	O-Ph(2-Cl)
CH ₂ Cl	Me	H	н	0	H	н	$\mathbf{CF_3}$	N-Me	O-Ph(3-Cl)
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	O-Ph(4-Cl)
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Me	O-Ph(4-F)
CH ₂ Ci	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	O-Ph(4-Me)
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	O-Ph(4-OMe)
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	SO₂Et
CH₂Cl	Me	H	н	0	H	н	CF ₃	N-Ph	н
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-Ph	F
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	CN
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Ph	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Ph	Pr-n
CH ₂ Cl	Me	н	н	0	H	н	CF ₈	N-Ph	OBu-t
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-Ph	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	н	0	H	н	CF ₈	N-Ph	OCHF ₂
CH₂Cl	Me	н	н	0	H	H	CF ₃	N-Ph	NH ₂
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Ph	NHMe
CH ₂ Cl	Me	н	н	0	H	н	CF ₈	N-Ph	NMe ₂

表 2 2

\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	n	\mathbb{R}^{5}	\mathbb{R}^6	R^{16}	$\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Ph	SO ₂ Et
CH ₂ Cl	Me	н	н	0	н	н	Cl	N-Bu-t	CF ₃
CH ₂ Cl	Me	Н	н	0	н	н	CF ₃	N-Ph(4-COMe)	Cı
CH ₂ Cl	Me	H	H	0	н	н	CF ₃	N-Ph(4-CN)	CI
CH₂Cl	Me	н	н	0	н	н	$\mathbf{CF_3}$	N-Ph(4-COOMe)	Cı
CH ₂ Cl	Me	H	H	0	н	н	CF ₃	N-Ph(4-NO ₂)	Cl
CH₂Cl	Me	Н	Н	0	н	н	CF ₃	N-Pyrimidin-2-yl	Cl
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-NH ₂	Cı
CH ₂ Cl	Me	H	H	2	H	н	Cl	N-NH ₂	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	ОН	N-Me	CF ₃
CH₂Cl	Me	H	H	2	H	н	ОМе	N-Me	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	OEt	N-Me	CF ₃
CH ₂ Cl	Me	Н	н	2	н	н	OPr-i	N-Me	CF ₃
CH ₂ Cl	Me	H	Н	2	H	н	OCHF ₂	N-Me	CF₃
CH ₂ Cl	Me	Н	н	2	Н	н	OCH2CHF2	N-Me	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	OCH ₂ CF ₃	N-Me	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	OCHF ₂	N-Me	OCHF ₂
CH ₂ Cl	Me	н	н	2	н	н	CF ₈	N-Me	CONH ₂
CH ₂ Cl	Me	H	н	2	H	н	CF ₃ ·	N-Me	CONHMe
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Me	CONMe ₂
CH ₂ Cl	Me	Н	н	2	H	н	CF ₃	N-Me	COOMe
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Me	COOEt
CH ₂ Cl	Me	H	н	2	H	н	$\mathbf{CF_3}$	N-Me	COOPr-i
CH₂Cl	Me	H	H	2	H	н	CF ₃	N-Me	COMe
CH₂Cl	Me	H	н	2	H	н	CF ₃	N-Me	COEt
CH ₂ Cl	Me	H	н	2	H	н	OCHF ₂	N-Ph	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	OCH ₂ CHF ₂	N-Ph	CF ₃
CH ₂ Cl	Me	Н	н	2	H	Н	OCH_2CF_3	N-Ph	CF ₃
CH₂Cl	Me	н	н	2	H	H	CF ₃	N-CHF ₂	F
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-CHF ₂	OMe
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-CHF ₂	OCHF ₂
CH₂Cl	Me	H	н	2	H	H	Cl	N-CHF ₂	Cl
CH ₂ Cl	Me	H	H	2	H	H	F	N-CHF ₂	CF ₃
CH ₂ Cl	Me	H	Н	2	H		ОМе	N-CHF ₂	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	OCHF ₂	N-CHF ₂	CF ₃

表 2 3

R ¹	R ²	\mathbb{R}^3	\mathbb{R}^4	n	R^5	\mathbb{R}^6	\mathbf{R}^{15}	$\mathbf{Z^2}$	R ¹⁸
CH ₂ Cl	Me	H	H	2	H	H	OCHF ₂	N-CHF ₂	OCHF ₂
CH ₂ Cl	Me	H	H	2	H	H	CI	N-Et	Cl
CH ₂ Cl	Me	н	н	2	H	H	Cl	N-Pr-i	Cl
CH ₂ Cl	Me	н	н	2	H	н	Cl	N-Pr	Cl
CH ₂ Cl	Me	н	H	2	H	н	Cl	N-CH ₂ Pr-c	Cl
CH₂Cl	Me	н	H	2	H	H	Cl	N-CH ₂ C≡CH	CI
CH ₂ Cl	Me	н	н	2	H	н	Cl	N-CH ₂ OMe	cı
CH ₂ Cl	Me	н	н	2	H	н	OCHF ₂	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	2	H	н	OCHF ₂	N-Pr-i	OCHF ₂
CH₂Cl	Me	н	н	2	H	н	OCHF ₂	N-Pr	OCHF ₂
CH ₂ Cl	Me	н	н	2	H	н	OCHF2	N-CH ₂ Pr-c	OCHF ₂
CH₂Cl	Me	н	н	2	H	н	OCHF ₂	N-CH ₂ C≡CH	OCHF ₂
CH ₂ Cl	Me	н	н	2	Н	н	OCHF2	N-CH ₂ OMe	OCHF ₂
CH₂Cl	Me	н	H	2	H	н	CF ₃	N-CH ₂ Pr-c	F ·
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-ÇH₂Pr-c	ОМе
CH ₂ Cl	Me	н	н	2	H	н	CF ₈	N-CH ₂ Pr-c	OCHF ₂
CH ₂ Cl	Me	н	H	2	H	н	F	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	H	2	H.	н	ОМе	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	OCHF ₂	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	H	1	н	H,	CF ₃	N-NH ₂	Cı
CH ₂ Cl	Me	н	н	1	н	н	C1	N-NH ₂	CF ₃
CH ₂ Cl	Me	н	H	1	H	н	он	N-Me	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	ОМе	N-Me	CF ₃
CH₂CI	Me	Н	н	1	H	н	OEt	N-Me	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	OPr-i	N-Me	CF ₃
CH ₂ Cl	Me	H	н	1	н	H	OCHF ₂	N-Me	CF ₃
CH ₂ Cl	Me	H	н	1	н	н	OCH2CHF2	N-Me	CF ₃
CH ₂ Cl	Me	н	н	1	н	н	OCH ₂ CF ₃	N-Me	CF ₃
CH ₂ Cl	Me	н	H	1	н	H	OCHF ₂	N-Me	OCHF ₂
CH ₂ Cl	Me	н	н	1	н	н	CF ₃	N-Me	CONH ₂
CH ₂ Cl	Me	Н	н	1	н	H	CF ₃	N-Me	CONHMe
CH ₂ Cl	Me	H	н	1	н	н	CF ₃	N-Me	CONMe ₂
CH ₂ Cl	Me	н	н	1	н	н	CF ₈	N-Me	COOMe
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-Me	COOEt
CH ₂ Cl	Me	н	н	1	н	н	CF ₈	N-Me .	COOPr-i

表24

R ¹	R ²	\mathbb{R}^3	R ⁴	n	R^{5}	\mathbb{R}^6	R ¹⁵	$\mathbf{Z^2}$	R^{16}
CH ₂ Cl	Me	H	H	1	H	н	CF ₃	N-Me	COMe
CH ₂ Cl	Me	н	н	1	Н	н	CF ₃	N-Me	COEt
CH ₂ Cl	Me	н	н	1	H	н	OCHF ₂	N-Ph	CF ₃
CH ₂ Cl	Me	н	н	1	H	H	OCH2CHF2	N-Ph	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	OCH ₂ CF ₃	N-Ph	CF ₃
CH ₂ Cl	Me	н	H	1	H	H	CF ₃	N-CHF ₂	F
CH ₂ Cl	Me	н	н	1	H	H	$\mathbf{CF_3}$	N-CHF ₂	ОМе
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	$N-CHF_2$	OCHF ₂
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-CHF ₂	Cl
CH ₂ Cl	Me	н	н	1	H	H	F	N-CHF ₂	CF ₃
CH ₂ Cl	Me	H	н	1	H	H	ОМе	N-CHF ₂	CF ₃
CH ₂ Cl	Me	н	н	1	H	н	OCHF ₂	N-CHF ₂	CF ₈
CH₂Cl	Me	н	н	1	H	н	OCHF ₂	N-CHF ₂	OCHF ₂
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-Et	Cı
CH ₂ Cl	Me	н	н	1	H	н	Cl	N-Pr-i	Cl
CH ₂ Cl	Mė	H	н	1	H	н	Cı	N-Pr	Cı
CH ₂ Cl	Me	H	н	1	H	н	Cl	N-CH ₂ Pr-c	Cl
CH ₂ Cl	Me	н	н	1	н	н	Cl	N-CH ₂ C≡CH	Cl
CH ₂ Cl	Me	н	H	1	н	н	Cı	N-CH ₂ OMe	Cl
CH₂Cl	Me	н	н	1	н	н	OCHF ₂	N-Et	OCHF ₂
CH₂CI	Me	н	н	1	н	н	OCHF ₂	N-Pr-i	OCHF ₂
CH₂Cl	Me	н	Н	1	Н	н	OCHF ₂	N-Pr	OCHF ₂
CH₂Cl	Me	н	н	1	н	н	OCHF ₂	N-CH ₂ Pr-c	OCHF ₂
CH₂Cl	Me	н	H	1	H	н	OCHF ₂	N-CH ₂ C≡CH	OCHF ₂
CH ₂ Cl	Me	н	н	1	н	н	OCHF ₂	N-CH ₂ OMe	OCHF ₂
CH ₂ CI	Me	н	н	1	н	н	CF ₃	N-CH ₂ Pr-c	F
CH ₂ Cl	Me	н	H	1	н	н	CF ₃	N-CH ₂ Pr-c	OMe .
CH ₂ Cl	Me	H	н	1	н	н	CF ₃	N-CH ₂ Pr-c	OCHF ₂
CH ₂ Cl	Me	н	н	1	H	н	F	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	н	1	н	H	ОМе	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	H	1	н	H	OCHF ₂	N-CH ₂ Pr-c	CF ₈
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-NH ₂	Cl
CH₂Cl	Me	H	н	0	н	н	Cı	N-NH ₂	CF ₃
CH ₂ Cl	Me	H	H	0	н	н	он	N-Me	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	ОМе	N-Me	CF ₈

表25

R ¹	R ²	R ³	R4	n	R ⁵	\mathbb{R}^6	R ¹⁵	Z^2	R^{16}
CH ₂ Cl	Me	н	н	0	H	H	OEt	N-Me	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	OPr-i	N-Me	CF ₃
CH ₂ Cl	Me	н	н	o	Н	H	OCHF ₂	N-Me	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	OCH ₂ CHF ₂	N-Me	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	OCH ₂ CF ₃	N-Me	CF ₃
CH ₂ Cl	Me	н	н	0	H	H	OCHF ₂	N-Me	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	H	$\mathbf{CF_3}$	N-Me	CONH ₂
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	CONHMe
CH ₂ Cl	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	CONMe ₂
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	COOMe
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	COOEt
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-Me	COOPr-i
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Me	COMe
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Me	COEt
CH ₂ Cl	Me	Н	н	0	H	н	OCHF ₂	N-Ph	CF ₈
CH ₂ Cl	Me	H	н	0	H	н	OCH ₂ CHF ₂	N-Ph	CF ₈
CH₂C1	Me	н	н	0	H	н	OCH ₂ CF ₃	N-Ph	CF ₃
CH₂Cl	Me	H	H	0	H	н	CF ₃	N-CHF ₂	F
CH₂Cl	Me	H	н	0	H	н	CF ₃	N-CHF ₂	ОМе
CH₂Cl	Me	H	н	0	H	H	CF ₃	N-CHF ₂	OCHF ₂
CH₂Cl	Me	H	н	0	H	H	Cl	N-CHF ₂ ,	Cl
CH ₂ Cl	Me	H	H	0	H	H	F	N-CHF ₂	CF ₃
CH ₂ Cl	Me	н	н	0	н	н	OMe	N-CHF ₂	CF ₈
CH ₂ Cl	Me	Н	H	0	H	н	OCHF ₂	N-CHF ₂	CF ₃
CH₂Cl	Me	H	н	0	H	н	OCHF ₂	N-CHF ₂	OCHF ₂
CH₂Cl	Me	Н	н	0	H	н	Cı	N-Et	Cl
CH ₂ Cl	Me	H	H	0	H	H	Cl	N-Pr-i	Cl
CH2Cl	Me	H	H	0	Н	H	CI	N-Pr	Cl
CH₂Cl	Me	н	н	0	H	н	Cl	N-CH ₂ Pr-c	C1
CH ₂ Cl	Me	H	H	0	н	н	Cl	N-CH ₂ C≡CH	CI
CH₂CI	Me	н	н	0	н	H	Cı	N-CH ₂ OMe .	Cl
CH ₂ Cl	Me	H	н	0	н	н	OCHF ₂	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	0	н	H	OCHF ₂	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	H	н	0	H	H	OCHF2	N-Pr	OCHF ₂
CH ₂ Cl	Me	H	н	0	H	H	OCHF2	N-CH ₂ Pr-c	OCHF ₂

表 2 6

R ¹	R ²	\mathbb{R}^3	R ⁴	n	\mathbb{R}^5	\mathbb{R}^6	R ¹⁵	Z^2	R ¹⁶
CH ₂ Cl	Me	Н	н	0	H	H	OCHF ₂	N-CH ₂ C≡CH	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	н	OCHF ₂	N-CH ₂ OMe	OCHF ₂
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-CH ₂ Pr-c	F
CH₂Cl	Me	н	н	0	H	н	CF ₃	N-CH ₂ Pr-c	ОМе
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-CH ₂ Pr-c	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	н	F	N-CH ₂ Pr-c	CF ₃
CH₂Cl	Me	н	н	0	H	н	OMe	N-CH ₂ Pr-c	CF ₈
CH₂Cl	Me	H	н	0	H	H	OCHF ₂	N-CH ₂ Pr-c	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-(C	H ₂) ₂ O-
CH ₂ Cl	Me	Н	н	2	H	н	$\mathbf{CF_3}$	N-(C	$\mathrm{H_2)_3O}$ -
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-(C	H ₂) ₂ S-
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-(C	$\mathrm{H_2})_2\mathrm{SO}_2$ -
CH₂Cl	Me	н	н	2	H	н	Cı	N-(C	$H_2)_2O$ -
CH₂Cl	Me	н	н	2	H	н	Cl	N-(C	H ₂) ₃ O-
CH₂Cl	Me	н	н	2	H	н	Cl	N-(C	$\mathrm{H_2)_2S}$ -
CH₂Cl	Me	н	н	2	H	н	Cı	N-(C	$\mathrm{H_2)_2SO_2}$ -
CH ₂ Cl	Me	H	H	1	H	н	$\mathbf{CF_3}$	N-(C	H ₂) ₂ O-
CH ₂ Cl	Me	н	н	1	H	н	CF ₃	N-(C	H ₂) ₃ O-
CH ₂ Cl	Me	Н	н	1	H	н	CF ₃	N-(C	$\mathrm{H_2)_2S}$ -
CH₂Cl	Me	н	н	1	H	н	CF ₈	N-(C	H ₂) ₂ SO ₂ -
CH₂Cl	Me	H	н	1	H	н	Cl	N-(C	H ₂) ₂ O-
CH₂Cl	Me	н	н	1	H	н	Cı	N-(C	$\mathrm{H_2)_3O}$ -
CH₂Cl	Me	H	н	1	H	н	Cl	N-(C	$\mathrm{H_2)_2S}$ -
CH ₂ Cl	Me	H	H	1	H	н	Cı	N-(C	$\mathrm{H_2})_2\mathrm{SO}_2$ -
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-(C	$\mathrm{H_2})_2\mathrm{O}$ -
CH₂Cl	Me	н	H	0	H	H	CF ₃	N-(C	H ₂) ₃ O-
CH ₂ Cl	Me	H	H	o	H	н	CF ₃	N-(C	$\mathrm{H_2)_2S}$ -
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-(C	H ₂) ₂ SO ₂ -
CH ₂ Cl	Me	н	н	0	H	H	Cl	N-(CH ₂) ₂ O-	
CH ₂ Cl	Me	н	H	0	Н	H	Cı ·	N-(C	$H_2)_3O$ -
CH ₂ Cl	Me	H	н	0	H	H	Cı	N-(C	$\mathrm{H_2})_2\mathrm{S}$ -
CH ₂ Cl	Me	H	н	0	H	н	cı ·	N-(C	H ₂) ₂ SO ₂ -
CH ₂ Cl	Me	н	H	2	H	H	CF ₈	N-Et	F
CH ₂ Cl	Me	н	H	2	н	H	F	N-Et	CF ₃
CH ₂ Cl	Me	Н	H	2	H	Н	CF ₈	N-Et	Br

表 2 7

R1	R ²	R³	R4	n	R ⁵	R ⁸	Ř ¹⁵	\mathbf{Z}^2	R ¹⁶
CH ₂ Cl	Me	Н	H	2	Ĥ	н	Br	N-Et	$\mathbf{CF_3}$
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Et	$\mathbf{CF_3}$
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Et	CN
CH ₂ Cl	Me	H	н	2	н	н	CN	N-Et	CF ₃
CH ₂ Cl	Me	н	н	2	н	H	CF ₃	N-Et	Me
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Et	CF ₃
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-Et	Et
CH ₂ Cl	Me	н	н	2	H	н	Et	N-Et	CF ₃
CH ₂ Cl	Me	H	н	2	H	H	CF ₃	N-Et	он
CH ₂ Cl	Me	H	н	2	н	H	CF ₃	N-Et	OMe ·
CH ₂ Cl	Me	H	н	2	H	Н	ОМе	N-Et	CF ₃
CH ₂ Cl	Me	Н	н	2	н	Н	CF ₃	N-Et	OEt
CH ₂ Cl	Me	Н	н	2	H	н	OE t	N-Et	CF ₃
CH ₂ Cl	Me	Н	н	2	H	Н	CF ₃	N-Et	OPr-i
CH ₂ Cl	Me	H	н	$ _{2} $	H	н	OPr-i	N-Et	CF ₃
CH ₂ Cl	Me	Н	н	2	н	н	$\mathbf{CF_3}$	N-Et	OPr
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-Et	OBu-t
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Et	OPh .
CH ₂ Cl	Me	H	н	2	H	Н	CF ₃	N-Et	OCH ₂ Ph
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Et	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	н	н	2	H	Н	CF ₃	N-Et	OCH(Me)CH=CH ₂
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-Et	OCH ₂ C≡CH
CH ₂ Cl	Me	н	н	2	H	Н	$\mathbf{CF_3}$	N-Et	OCH(Me)C≡CH
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	2	н	Н	OCHF ₂	N-Et	CF ₃
CH ₂ Cl	Me	H	н	2	Н	н	CF ₃	N-Et	OCH ₂ CF ₃
CH ₂ Cl	Me	н	н	2	H	Н	CF ₃	N-Et	OCH ₂ CHF ₂
CH ₂ Cl	Me	H	н	2	H	н	OCH ₂ CHF ₂	N-Et	CF ₈
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Et	SMe
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-Et	SOMe
CH ₂ Cl	Me	Н	н	2	H	н	CF ₃	N-Et	SO ₂ Me
CH ₂ Cl	Me	н	н	2	н	H	CF ₃	N-Et	SEt
CH ₂ Cl	Me	H	Н	2	H	Н	CF ₃	N-Et	SOEt
CH ₂ Cl	Me	н	н	2	H	H	CF ₈	N-Et	SO ₂ Et
CH ₂ Cl	Me	H	H	2	н	н	CF ₃	N-Et	SPr-i

表28

R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	n	\mathbb{R}^{5}	\mathbb{R}^6	\mathbb{R}^{15}	. $\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	H	H	2	H	H	CF ₃	N-Et	SOPr-i
CH ₂ Cl	Me	н	н	2	н	H	CF ₃ ·	N-Et	SO ₂ Pr-i
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-Et	SCF ₃
CH ₂ Cl	Me	H	H	2	H	н	CF ₃	N-Et	SOCF ₃
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-Et	SO ₂ CF ₃
CH ₂ Cl	Me	н	н	2	H	H	CF ₈	N-Et	SCHF ₂
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-Et	SOCHF ₂
CH ₂ Cl	Me	н	H	2	н	H	CF ₃	N-Et	SO ₂ CHF ₂
CH ₂ Cl	Me	н	H	2	H	н	CHF ₂	N-Et	CI
CH ₂ Cl	Me	н	H	2	H	H	CHF ₂	N-Et	ОМе
CH ₂ Cl	Me	H	H	2	H	H	CHF ₂	N-Et	OCHF ₂
CH ₂ Cl	Me	H	н	2	H	н	CHF ₂	N-Et	CN
CH ₂ Cl	Me	н	н	2	H	H	CHF ₂	N-Et	Me .
CH ₂ Cl	Me	н	H	2	H	H	Me	N-Et	CI
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Et	ОМе
CH ₂ Cl	Me	н	н	2	н	н	Me	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	2	н	н	Me	N-Et	CN
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Et	Me .
CH ₂ Cl	Me	н	н	2	Н	н	Et	N-Et	C1·
CH ₂ Cl	Me	н	н	2	H	H	Et	N-Et	ОМе
CH ₂ Cl	Me	н	н	2	H	н	Et	N-Et	OCHF2
CH ₂ Cl	Me	н	н	2	н	H	Et	N-Et	CN
CH ₂ Cl	Мe	н	н	2	н	н	Et ·	N-Et	Me
CH ₂ Cl	Me	н	H	2	н	н	OCHF ₂	N-Et	Cl
CH ₂ Cl	Me	н	н	0	Н	Н	CF ₃	N-Et	F
CH ₂ Cl	Me	н	н	0	н	H	F	N-Et	CF ₃
CH_2Cl	Me	н	н	0	н	н	CF ₃	N-Et	Br
CH ₂ Cl	Me	н	н	o	н	н	Br	N-Et	CF ₃
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Et	CF ₃
CH ₂ Cl	Me	н	Н	0	н	Н	CF ₃	N-Et	CN
CH ₂ CI	Me	н	H	0	н	H	CN ·	N-Et	CF ₃
CH ₂ Cl	Me	н	H	0	H	H	CF ₈	N-Et	Me
CH ₂ Cl	Me	н	н	0	н	H	Me	N-Et	CF ₃
CH ₂ Cl	Me	н	Н	0	н	н	CF ₃	N-Et	Et
CH ₂ Cl	Me	н	Н	0	н	H	Et	N-Et	CF ₃

表29

R ¹	\mathbb{R}^2	\mathbb{R}^3	24		~5	76	7-15	\mathbf{Z}^2	_ 18
K-	R-	K°	R ⁴	n	R ⁵	\mathbb{R}^6	R ¹⁵	Z-	· R ¹⁶
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-Et	ОН
CH ₂ Cl	Me	H	H	0	H	H	$\mathbf{CF_3}$	N-Et	OMe
CH ₂ Cl	Me	н	н	0	H	н	OMe	N-Et	CF ₃
CH₂Cl	Me	н	H	0	H	H	CF ₃	N-Et	OEt
CH ₂ Cl	Me	н	н	0	H	н	OEt	N-Et	CF ₃
CH₂Cl	Me	H	н	0	н	н	CF ₃	N-Et	OPr-i
CH ₂ Cl	Me	н	H	0	H	Н	OPr-i	N-Et	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Et	OPr
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	N-Et	OBu-t
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Et	OPh
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	N-Et	OCH ₂ Ph
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Et	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Et	OCH(Me)CH=CH ₂
CH ₂ Cl	Me	н	H	0	Н	H	CF ₃	N-Et	OCH ₂ C≡CH
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Et	OCH(Me)C≡CH
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	н	OCHF ₂	N-Et	CF ₃
CH₂Cl .	Me	н	H	0	H	н	CF ₃	N-Et	OCH ₂ CF ₃
CH₂Cl	Me	н	H	0	H	H	CF ₃	N-Et	OCH ₂ CHF ₂
CH₂Cl	Me	H	H	0	H	H	OCH ₂ CHF ₂	N-Et	CF ₃
CH ₂ Cl	Me	H	H	0	H	H	$\mathbf{CF_3}$	N-Et	SMe
CH ₂ Cl	Me	н	H	0	Н	н	CF ₃	N-Et	SOMe
CH ₂ Cl	Me	н	H	0	H	н	$\mathbf{CF_3}$	N-Et	SO₂Me
CH ₂ Cl	Me	H	H	0	H	н	$\mathbf{CF_3}$	N-Et	SEt
CH₂Cl	Me	Н	H	0	H	н	$\mathbf{CF_3}$	N-Et	SOEt
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Et	SO₂Et
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Et	SPr-i
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Et	SOPr-i
CH₂Cl	Me	н	н	0	H	н	CF_3	N-Et	SO ₂ Pr-i
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	N-Et	SCF ₃
CH ₂ Cl	Me	н	н	0	н	Н	CF_3	N-Et	SOCF ₃
CH ₂ Cl	Me	H	н	0	H	Н	CF ₃	N-Et	SO ₂ CF ₃
CH ₂ Cl	Me	н	н	0	н	Н	CF ₃	N-Et	SCHF ₂
CH ₂ Cl	Me	H	H	0	H	н	CF ₃	N-Et	SOCHF ₂
CH ₂ Cl	Me	Н	H	0	Н	H	CF ₃	N-Et	SO ₂ CHF ₂

WO 03/000686

表30

R ¹	\mathbb{R}^2	R ³	R4	n	\mathbb{R}^{5}	\mathbf{R}^{6}	R ¹⁵	\mathbf{Z}^{2}	R ¹⁶
CH ₂ Cl	Me	H	H	0	H	Н	CHF ₂	N-Et	Cl
CH ₂ Cl	Me	н	н	0	H	н	CHF ₂	N-Et	ОМе
CH ₂ Cl	Me	н	н	0	H	н	CHF ₂	N-Et	OCHF ₂
CH ₂ Cl	Me	н	H	0	H	н	CHF ₂	N-Et	CN
CH ₂ Cl	Me	н	H	0	н	н	CHF ₂	N-Et	Me
CH ₂ Cl	Me	H	H	0	H	H	Me	N-Et	Cl
CH ₂ Cl	Me	н	н	0	H	H	Ме	N-Et	OMe
CH ₂ Cl	Me	н	н	0	H	н	Me	N-Et	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	H	Me	N-Et	CN
CH ₂ Cl	Me	Н	н	0	H	H	Me	N-Et	Me
CH ₂ Cl	Me	н	н	0	H	н	Et	N-Et	Cl
CH ₂ Cl	Me	н	н	0	H	н	Et	N-Et	OMe
CH ₂ Cl	Me	H	н	0	H	н	Et	N-Et	OCHF ₂
CH₂Cl	Me	н	н	0	H	н	Et	N-Et	CN
CH ₂ Cl	Me	н	н	0	H	н	Et	N-Et	Me
CH ₂ Cl	Me	H	н	o	H	н	OCHF ₂	N-Et	Cı
CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Me	Et
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Me	CF ₃
CH ₂ Cl	Me	н	н	2	н	H	CF ₈	N-Me	Br
CH ₂ Cl	Me	н	н	2	н	н	Br	N-Me	CF ₃
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Me	Et
CH ₂ Cl	Me	Н	H	0	Н	н	Me	N-Me	CF ₃
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Me	Br
CH ₂ Cl .	Me	н	н	0	H	н	Br	N-Me	CF ₃
CH₂Cl	Me	H	н	2	H	H	CF ₃	N-Pr-i	F
CH₂Cl	Me	н	н	2	H	H	F	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	H	2	H	н	CF ₃	N-Pr-i	Br
CH ₂ Cl	Me	н	H	2	н	н	Br	N-Pr-i	CF ₃
CH₂Cl	Me	Н	H	2	H	н	CF ₃	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	H	2	н	H	CF ₃	N-Pr-i	CN
CH ₂ Cl	Me	н	H	2	H	H	CN	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	H	2	H	H	CF ₃	N-Pr-i	Me
CH ₂ Cl	Me	н	H	2	н	H	Me	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	Н	2	н	H	$\mathbf{CF_3}$	N-Pr-i	Et
CH ₂ Cl	Me	H	H	2	Н	H	Et	N-Pr-i	CF ₃

表31

R ¹	R ²	R ³	R ⁴	n	R ⁶	\mathbb{R}^6	R^{16}	\mathbf{Z}^2	R ¹⁶
CH ₂ Cl	Me	Н	H	2	н	H	CF ₃	N-Pr-i	ОН
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Pr-i	ОМе
CH ₂ Cl	Me	н	н	2	H	H	ОМе	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Pr-i	OEt
CH ₂ Cl ,	Me	н	н	2	H	н	OEt	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	н	2	Н	н	CF ₃	N-Pr-i	OPr-i
CH ₂ Ci	Me	H	н	2	H	H	OPr-i	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	н	2	H	н	$\mathbf{CF_3}$	N-Pr-i	OPr
CH ₂ Cl	Me	H	н	2	Н	н	CF ₃	N-Pr-i	OBu-t
CH ₂ Cl	Me	Н	н	2	H	н	CF ₃	N-Pr-i	OPh
CH ₂ Cl	Me	н	н	2	Н	н	CF ₃	N-Pr-i	OCH ₂ Ph
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Pr-i	OCH ₂ CH=CH ₂
CH ₂ Cl	Me	H	H	2	н	H	CF ₃	N-Pr-i	OCH(Me)CH=CH ₂
CH ₂ Cl	Me	H	н	2	н	н	CF ₃	N-Pr-i	OCH ₂ C≡CH
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Pr-i	OCH(Me)C≡CH
CH ₂ Cl	Me	H	н	2	H	н	CF ₃	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	н	Н	2	н	н	OCHF ₂	N-Pr-i	CF ₃
CH ₂ Cl	Me	H.	н	2	H	H	CF ₃	N-Pr-i	OCH ₂ CF ₃
CH ₂ Cl	Me	H	H	2	н	н	CF ₃	N-Pr-i	OCH ₂ CHF ₂
CH ₂ Cl	Me	н	Н	2	H	H	OCH2CHF2	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	H	2	н	н	CF ₃	N-Pr-i	SMe
CH ₂ Cl	Me	H	H	2	Н	н	CF ₃	N-Pr-i ,	SOMe
CH ₂ Cl	Me	H	н	2	н	H	CF _{a.}	N-Pr-i	SO ₂ Me
CH ₂ Cl	Me	H	H	2	H	н	$\mathbf{CF_3}$	N-Pr-i	SEt
CH ₂ Cl	Me	н	H	2	H	H	CF ₃	N-Pr-i	SOEt
CH ₂ Cl	Me	н	н	2	H	H	CF ₃	N-Pr-i	SO ₂ Et
CH ₂ Cl	Me	H	H	2	H	H	CF ₃	N-Pr-i	SPr-i
CH ₂ Cl	Me	н	H	2	н	H	CF ₃	N-Pr-i	SOPr-i
CH₂Cl	Me	н	H	2	H	н	$\mathbf{CF_3}$	N-Pr-i	SO ₂ Pr-i
CH ₂ Cl	Me	н	н	2	н	н	$\mathbf{CF_3}$	N-Pr-i	SCF ₃
CH ₂ Cl	Me	н	н	2	н	н	CF ₃	N-Pr-i	SOCF ₃
CH ₂ Cl	Me	н	H	2	н	H	$\mathbf{CF_3}$	N-Pr-i	SO ₂ CF ₃
CH ₂ Cl	Me	н	H	2	H	н	CF ₃	N-Pr-i	SCHF ₂
CH ₂ Cl	Me	н	H	2	н	H	CF ₃	N-Pr-i	SOCHF ₂
CH ₂ Cl	Me	Н	H	2	H	H	$\mathbf{CF_3}$	N-Pr-i	SO ₂ CHF ₂

表32

R ¹	R ²	\mathbb{R}^3	R ⁴	n	R ⁵	\mathbb{R}^6	R ¹⁵	$\mathbf{Z^2}$	R ¹⁶
CH ₂ Cl	Me	H	H	2	н	H	CHF ₂	N-Pr-i	Cl
CH ₂ Cl	Me	н	н	2	Н	н	CHF_2	N-Pr-i	OMe
CH ₂ Cl	Ме	н	н	2	H	н	CHF ₂	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	н	н	2	H	H	$\mathbf{CHF_2}$	N-Pr-i	CN
CH ₂ Cl	Me	н	н	2	H	. H	CHF_2	N-Pr-i	Me
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Pr-i	CI
CH ₂ Cl	Me	H	н	2	H	н	Me	N-Pr-i	ОМе
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	н	н	2	H	н	Me	N-Pr-i	CN
CH ₂ Cl	Me	H	H	2	H	н	Me	N-Pr-i	Me
CH ₂ Cl	Me	н	н	2	н	н	Et	N-Pr-i	Cl
CH ₂ Cl	Me	н	н	2	н	н	Et	N-Pr-i	ОМе
CH ₂ Cl	Me	H	н	2	H	н	Et	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	н	H	2	H	H	Et	N-Pr-i	CN
CH ₂ Cl	Me	н	н	2	Н	н	Et	N-Pr-i	Me
CH ₂ Cl	Me	H	H	2	H	н	OCHF ₂	N-Pr-i	Cl
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	F
CH ₂ Cl	Me	H	н	0	H	н	F	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	H	0	H	н	CF ₃	N-Pr-i	Br
CH ₂ Cl	Me	н	н	0	H	н	Br	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	H	0	н	н	CF ₃	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	Н	0	H	н	CF ₃	N-Pr-i	CN
CH ₂ Cl	Me	H	н	0	H	H	CN	N-Pr-i	CF ₈
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Pr-i	Me
CH ₂ Cl	Me	H	H	0	H	H	Me	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Pr-i	Et
CH₂Cl	Me	Н	H	0	н	H	Et	N-Pr-i	CF ₃
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	он
CH ₂ Cl	Me	H	H	0	н	H	CF ₃	N-Pr-i	ОМе
CH₂Cl	Me	H	H	0	н	H	OMe	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	H	0	H	H	$\mathbf{CF_{8}}$	N-Pr-i	OEt
CH ₂ Cl	Me	H	H	: a	H	Н	OEt	N-Pr-i	CF ₈
CH₂Cl	Me	н	Н		H	H	CF ₃	N-Pr-i	OPr-i
CH ₂ Cl	Me	Н	H		H	H	OPr-i	N-Pr-i	CF ₃
CH ₂ Cl	Me	H	Н		H	H	CF ₃	N-Pr-i	OPr

表33

R ¹	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	n	\mathbb{R}^5	R ⁶	\mathbb{R}^{15}	$\mathbf{Z^2}$	R ¹⁶	
CH ₂ Cl	Me	H	н	0	H	H	CF ₃	N-Pr-i	OBu-t	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	OPh	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	OCH ₂ Ph	
CH ₂ Cl	Me	н	H	0	н	н	CF ₃	N-Pr-i	OCH ₂ CH=CH ₂	
CH ₂ Cl	Me	н	н	0	н	н	CF ₃	N-Pr-i	OCH(Me)CH=CH ₂	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	OCH ₂ C≡CH	
CH ₂ Cl	Me	н	н	0	Н	н	CF ₃	N-Pr-i	OCH(Me)C≡CH	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	OCHF ₂	
CH ₂ Cl	Me	н	н	0	H	н	OCHF ₂	N-Pr-i	CF ₃	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	OCH ₂ CF ₃	
CH₂Cl	Me	н	н	0	H	H	$\mathbf{CF_3}$	N-Pr-i	OCH ₂ CHF ₂	
CH ₂ Cl	Me	н	н	0	H	н	OCH ₂ CHF ₂	N-Pr-i	CF ₃	
CH₂Cl	Me	H	н	0	H	н	$\mathbf{CF_3}$	N-Pr-i	SMe	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	SOMe	
CH ₂ Cl	Me	H	н	0	H	н	CF ₃	N-Pr-i	SO₂Me	
CH ₂ Cl	Me	н	н	0	н	Н	CF ₃	N-Pr-i	SEt	
CH₂Cl	Me	н	н	0	н	H	$\mathbf{CF_3}$	N-Pr-i	SOEt	
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Pr-i	SO_2Et	
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Pr-i	SPr-i	
CH ₂ Cl	Me	Н	н	0	H	н	CF ₃	N-Pr-i	SOPr-i	
CH ₂ Cl	Me	н	н	0	H	H	CF ₃	N-Pr-i	SO ₂ Pr-i	
CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Pr-i	SCF ₃	
CH ₂ Cl	Me	н	н	0	H	н	CF ₃	N-Pr-i	SOCF ₈	
CH ₂ Cl	Me	H	н	0	Н	Н	CF ₃	N-Pr-i	SO ₂ CF ₃	
CH ₂ Cl	Me	H	н	0	н	H	CF ₃	N-Pr-i	SCHF ₂	
CH ₂ Cl	Me	H	Н	0	н	H	CF ₃	N-Pr-i	SOCHF ₂	
CH ₂ Cl	Me	H	н	0	н	н	CF ₃	N-Pr-i	SO ₂ CHF ₂	
CH ₂ Cl	Me	H	н	0	н	н	CHF ₂	N-Pr-i	Cl	
CH ₂ Cl	Me	H	H	0	H	н	CHF ₂	N-Pr-i	OMe	
CH ₂ Cl	Me	н	н	0	н	H	CHF ₂	N-Pr-i	OCHF ₂	
CH₂Cl	Me	н	н	0	н	H	CHF ₂	N-Pr-i	CN	
CH₂Cl	Me	H	H	0	Н	H	CHF ₂	N-Pr-i	Me	
CH₂Cl	Me	H	Н	0	н	H	Ме	N-Pr-i	Cl	
CH ₂ Cl	Me	H	H	0	н	H	Me	N-Pr-i	OMe	
CH ₂ Cl	Me	н	H	0	H	H	Me	N-Pr-i	OCHF ₂	

表34

R ¹	R²	\mathbb{R}^3	R4	n	R ⁵	\mathbb{R}^6	\mathbb{R}^{15}	$\mathbf{Z^2}$	\mathbb{R}^{16}
CH ₂ Cl	Me	H	H	0	H	H	Me	N-Pr-i	CN
CH ₂ Cl	Me	н	н	0	H	H	Me	N-Pr-i	Me
CH ₂ Cl	Me	н	H	0	H	н	Et	N-Pr-i	Cl
CH ₂ Cl	Ме	н	н	0	H	н	Et	N-Pr-i	OMe
CH ₂ Cl	Me	н	H	0	H	н	Et	N-Pr-i	OCHF ₂
CH ₂ Cl	Me	H	н	0	H	н	Et	N-Pr-i	CN
CH₂Cl	Me	н	н	o	н	н	Et	N-Pr-i	Me
CH ₂ Cl	Me	н	H	0	H	н	OCHF ₂	N-Pr-i	Cl
CHCl ₂	Me	н	H	2	н	н	CF ₃	N-Me	Cl
CHF ₂	Me	н	н	2	Н	н	CF ₃	N-Me	Cl
CHCIF	Me	н	н	2	H	н	CF ₃	N-Me	Cl
CHFMe	Me	н	H	2	H	H	CF ₃	N-Me	CI
CHClMe	Me	н	H	2	H	н	CF ₃	N-Me	Cl
CF ₂ Me	Me	н	н	2	H	н	CF ₃	N-Me	Cl
$\mathrm{CH_2CH_2F}$	Me	н	H	2	H	н	CF ₃	N-Me	Cl
CH ₂ CHF ₂	Me	н	н	2	H	н	CF ₃	N-Me	Cl
CH ₂ CH ₂ Cl	Me	н	н	2	H	н	CF ₃	N-Me	Cl
CH ₂ CHCl ₂	Me	н	н	2	н	н	CF ₃	N-Me	Cı
CH ₂ CClF ₂	Me	н	н	2	н	н	CF ₃	N-Me	Cl
CH ₂ CF ₃	Me	н	н	2	H	н	CF ₃	N-Me	Cl
CF ₂ CF ₈	Me	н	H	2	H	н	CF ₃	N-Me	Cl
CH ₂ CH ₂ CF ₃	Me	н	H	2	н	н	CF ₃	N-Me	Cı
CH ₂ CH ₂ CHF ₂	Me	н	H	2	H	н	CF ₃	N-Me	Cl
CF ₂ CF ₂ CF ₈	Me	н	н	2	н	H	CF ₃	N-Me	Cl
CH ₂ CF ₂ Me	Me	н	H	2	н	н	CF ₃	N-Me	Cl
CH ₂ CHFMe	Me	н	H	2	н	н	CF ₃	N-Me	CI
CF ₃	CF ₃	н	н	2	н	н	CF ₃	N-Me	Cl
CHFPr-n	Me	н	H	2	н	н	CF ₃	N-Me	Cl .
CF ₂ Pr-n	Me	H	H	2	н	н	CF ₃	N-Me	CI
CHCl ₂	Me	н	H	0	H	H	CF ₃	N-Me	CI
CHF ₂	Me	н	н	0	н	н	CF ₃	N-Me	CI
CHCIF	Me	н	н	0	H	H	CF ₃	N-Me	Cl
CHFMe	Me	H	H	0	н	H	CF ₃	N-Me	CI
CHClMe	Me	H	н	Ó	H	H	CF ₃	N-Me	Cl
CF ₂ Me	Me	H	H	0	н	H	CF ₃	N-Me	C1

表35

R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	n	\mathbb{R}^6	\mathbb{R}^6	$ m R^{15}$	Z^2	\mathbb{R}^{16}
CH ₂ CH ₂ F	Me	H	H	0	H	Н	CF ₃	N-Me	Cl
CH ₂ CHF ₂	Me	н	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ CH ₂ Cl	Me	н	H	0	H	H	CF ₃	N-Me	Cl
CH ₂ CHCl ₂	Me	н	н	0	H	H	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ CClF ₂	Me	н	н	0	H	н	CF ₃	N-Me	Cı
CH ₂ CF ₃	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	Cl
CF ₂ CF ₃	Me	н	н	0	H	H	CF ₃	N-Me	Cl
CH ₂ CH ₂ CF ₃	Me	н	н	0	H	н	$\mathbf{CF_3}$	N-Me	Cl
CH ₂ CH ₂ CHF ₂	Me	н	H	0	H	н	$\mathbf{CF_3}$	N-Me	Cl
CF ₂ CF ₂ CF ₈	Me	н	н	0	H	н	CF ₃	N-Me	Cl
$\mathrm{CH_2CF_2Me}$	Me	н	н	0	H	н	CF ₃	N-Me	Cl
CH ₂ CHFMe	Me	н	н	0	H	н	CF ₃	N-Me	Cl
CF ₃	$\mathbf{CF_8}$	н	н	0	H	н	CF ₃	N-Me	Cl
CHFPr-n	Me	н	н	0	н	Н	CF ₃	N-Me	Cl
CF ₂ Pr-n	Me	H	н	0	H	н	CF ₈	N-Me	Cl

表36

$R^{1} \xrightarrow{R^{2} R^{3} R^{4}} \qquad $														
	$S(O)_{\overline{n}}$ C \overline{C} C													
R^1	\mathbb{R}^2	R ³	R4	n	\mathbb{R}^5	R ⁶	Z ⁴	R ¹⁸	R ¹⁹					
CH ₂ Cl	Me	Н	н	2	H	н	N-Me	Cl	H					
CH₂Cl	Me	н	H	2	н	H	N-Me	Cl	Me					
CH ₂ Cl	Me	н	н	2	н	H	N-Me	Cl	Et					
CH₂Cl	Me	H	н	2	H	Н	N-Me	Cl	CF3					
CH ₂ Cl	Me	H	H	2	н	H	N-Me	Cl	Me					
CH ₂ Cl	Me	н	H	2	н	н	N-Pr-i	Cl	Me					
CH ₂ Cl	Me	н	H	2	н	н	N-Pr	Cl	Me					
CH ₂ Cl	Me	н	H	2	н	н	N-Bu-t	Cl	Me					
CH₂Cl	Me	н	н	2	н	н	N-CH ₂ Ph	Cı	Me					
CH₂Cl	Me	н	н	2	н	н	N-Ph	OMe	Me					
CH₂Cl	Me	н	H	2	н	H	N-Ph	OEt	Me					
CH₂Cl	Me	н	н	2	н	н	N-Ph	OCHF ₂	Me					
CH₂CI	Me	н	Н	2	н	H	N-Ph	OCH ₂ CF ₃	Me					
CH₂Cl	Me	н	н	2	н	н	N-Ph	CF ₃	н					
CH ₂ Cl	Me	н	н	2	н	н	N-Ph	OCH ₂ CH=CH ₂	Me					
CH ₂ Cl	Me	н	н	2	H	н	N-Ph	OCH ₂ C≡CH	Me					
CH₂Cl	Me	н	H	2.	н	H	N-Ph	CI	Me					
CH₂Cl	Me	н	н	2	н	н	N-Ph(2-Cl)	Cl ,	Me					
CH ₂ Cl	Me	н	H	2	н	н	N-Ph(2-F)	Cl	Me					
CH ₂ Cl	Me	н	н	2	н	н	N-Ph(2-OMe)	Cı	Me					
CH ₂ Cl	Me	н	H	2	н	H	N-Ph(2-Me)	Cl	Me					
CH ₂ Cl	Me	н	н	2	н	н	N-Ph(3-Cl)	Cl	Me					
CH ₂ Cl	Me	н	H	2	н	H	N-Ph(3-F)	Cl	Me					
CH ₂ Cl	Me	н	H	2	н	н	N-Ph(3-OMe)	Cı	Me					
CH ₂ Cl	Me	н	H	2	H	H	N-Ph(3-Me)	Cı	Me					
CH ₂ Cl	Me	н	н	2	H	H	N-Ph(4-Cl)	CI	Мe					
CH ₂ Cl	Me	н	H	2	н	н	N-Ph(4-F)	Cl	Me					
CH ₂ Cl	Me	H	н	2	H	н	N-Ph(4-OMe)	Cl	Me					
CH ₂ Cl	Me	н	н	2	н	н	N-Ph(4-Me)	Cl	Me					

表37

R ¹	R ²	R ³	R ⁴	n	R ⁵	R^6	Z ⁴	R ¹⁸	R ¹⁹
CH ₂ Br	Н	H	Н	2	H	H	N-Ph	Cl	Me
CH ₂ Cl	н	H	H	2	н	H	N-Ph	Cl	·Ме
CH ₂ Cl	н	Ме	H	2	H	H	N-Ph	Cl	Мe
CH ₂ Cl	Me	н	н	2	Me	H	N-Ph	Cl	Me
CH₂Cl	Me	н	н	2	Et	H	N-Ph	Cl	Me
CH ₂ Cl	Me	н	H	2	Pr-i	H	N-Ph	Cl	Me
CH ₂ Cl	Me	Ħ	н	2	Me	Me	N-Ph	Cl	Me
CH ₂ Cl	Et	н	н	2	H	H	N-Ph	Cı	Me
CH ₂ Cl	CH ₂ Cl	н	H	2	н	Н	N-Ph	Cl	Me
CH ₂ Cl	Pr-i	н	H	2	н	н	N-Ph	Cl	Ме
CH ₂ Cl	Pr	H	н	2	H	H	N-Ph	Cl	Me
CH ₂ Cl	Pr-c	H	н	2	H	н	N-Ph	Cl	Me
CH ₂ Cl	CH ₂ Pr-c	H	н	2	н	H	N-Ph	Cl	Me
CH_2F	CH ₂ Cl	H	н	2	н	н	N-Ph	Cl	Me
CH ₂ Br	CH ₂ Cl	н	н	2	н	Н	N-Ph	Cl	Me
CH₂I	CH ₂ Cl	н	н	2	н	н	N-Ph	Cl	Me
CF ₃	CH ₂ Cl	н	н	2	н	Н	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂)3-	н	2	н	н	N-Ph	Cı	Me
CH ₂ Cl	-(CH ₂)4-	н	2	н	Н	N-Ph	Cl	Me
ÇH₂Cl	-(CH ₂) ₅ -	н	2	H	Н	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂) ₆ -	н	2	H	H	N-Ph	Cl	Me
CH₂Cl	Me	H	н	1	H	н	N-Ph	Cı	H
CH₂Cl	Me	н	н	1	H	H	N-Ph	Cı	Me
CH ₂ Cl	Me	н	н	1	н	H	N-Ph	Cı	Et
CH₂Cl	Me	н	н	1	н	H	N-Ph	C1 ·	CF ₃
CH ₂ Cl	Me	H	н	1	н	H	N-Et	CI	Me
CH ₂ Cl	Me	н	H	1	H	н	N-Pr-i	CI	Me
CH ₂ Cl	Me	H	н	1	н	н	N-Pr	Cl	Me
CH ₂ Cl	Me	н	н	1	H	н	N-Bu-t	Cl	Me
CH ₂ CI	Me	H	H	1.	H	н	N-CH ₂ Ph	C1 .	Me
CH ₂ Cl	Me	H	H	1	H	н	N-Ph	OMe	Me
CH ₂ Cl	Me	н	H	1	H	н	N-Ph	OEt	Me
CH ₂ Cl	Me	н	H	1	H	H	N-Ph	OCHF ₂	Me

表38

R ¹	R ²	R ³	R ⁴	n	\mathbb{R}^{6}	\mathbf{R}^{6}	Z ⁴	R ¹⁸	R ¹⁹
CH ₂ Cl	Me	H	Н	1	H	H	N-Ph	OCH ₂ CF ₃	Me
CH ₂ Cl	Me	H	н	1	н	H	N-Ph	CF ₃	н
CH ₂ Cl	Me	H	н	1	H	H	N-Ph	OCH ₂ CH=CH ₂	Me
CH₂Cl	Me	H	н	1	H	H	N-Ph	OCH ₂ C≡CH	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph	Cl	Me
CH₂Cl	Me	H	н	1	н	H	N-Ph(2-Cl)	Cl	Me
CH ₂ Cl	Me	H	H	1	H	H	N-Ph(2-F)	Cl	Me
CH ₂ Cl	Me	н	H	1	н	H	N-Ph(2-OMe)	Cl	Me
CH₂Cl	Me	H	H	1	н	H	N-Ph(2-Me)	Cl	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph(3-Cl)	Cl	Me
CH ₂ Cl	Me	н	H	1	н	H	N-Ph(3-F)	Cl	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph(3-OMe)	Cl	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph(3-Me)	Cl	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph(4-Cl)	Cl	Me
CH₂Cl	Me	H	H	1	н	H	N-Ph(4-F)	C1	Me
CH₂Cl	Me	H	H	1	н	H	N-Ph(4-OMe)	Cı	Me
CH ₂ Cl	Me	H	H	1	н	H	N-Ph(4-Me)	Cl	Me
CH ₂ Br	H	H	H	. 1	н	H	N-Ph	Cl	Me
CH ₂ Cl	H	H	H	1	н	H	N-Ph	Cl	Me
CH ₂ Cl	H	Me	H	1	н	H	N-Ph	Cl	Me
CH ₂ Cl	Me	H	н	1	Me	H	N-Ph	Cı	Me
CH ₂ Cl	Me	н	н	1	Et	H	N-Ph	Cl	Me
CH ₂ Cl	Me	H	н	1	Pr-i	H	N-Ph	Cl	Me
CH ₂ Cl	Me	H	н	1	Me	Ме	N-Ph	CI	Me
CH ₂ Cl	Et	H	н	1	н	H	N-Ph	Cı	Me
CH ₂ Cl	CH ₂ Cl	H	H] 1	н	н	N-Ph	CI	Me
CH ₂ Cl	Pr-i	H	н	1	н	H	N-Ph	Cı	Me
CH ₂ Cl	Pr	H	H	1	н	н	N-Ph	Cl	Me
CH ₂ Cl	Pr-c	н	н	1	H	н	N-Ph	C1	Me
CH ₂ Cl	CH ₂ Pr-c	H	н	1	H	н	N-Ph	Cl	Me
CH ₂ F	CH ₂ Cl	н	н	1	H	н	N-Ph	Cl	Ме
CH ₂ Br	CH ₂ Cl	H	н	1	H	н	N-Ph	Cl	Me
CH ₂ I	CH ₂ Cl	H	н	1	н	н	N-Ph	Cl	Me

表39

R ¹	R ²	R ³	R4	n	R ⁵	\mathbb{R}^6	Z ⁴ ·	R ¹⁸	R ¹⁹
CF ₃	CH ₂ Cl	н	Н	1	Н	H	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂	2)3-	H	1	н	Ħ	N-Ph	Cl	Me
CH₂Cl	-(CH ₂	2)4-	н	1	н	H	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂	₂) ₅ -	H	1	H	H	N-Ph	Cl	Me
CH ₂ Cl ·	-(CH ₂	₂) ₆ -	H	1	н	H	N-Ph	CI	Me
CH ₂ Cl	Me	н	H	0	н	H	N-Me	Cı	H
CH ₂ Cl	Me	H	H	0	н	H	N-Me	Cl	Me
CH ₂ Cl	Me	н	H	0	H	H	N-Me	Cı	Et
CH ₂ Cl	Me	H	Н	0	н	H	N-Me	CI	CF ₈
CH₂Cl	Me	H	н	0	H	H	N-Et	Cı	Me
CH ₂ Cl	Me	H	н	0	н	н	N-Pr-i	Cı	Me
CH ₂ Cl	Me	H	н	0	н	H	N-Pr	Cı	Me
CH₂Cl	Me	н	н	0	н	H	N-Bu-t	C1	Me
CH₂Cl	Me	H	н	0	н	H	N-CH ₂ Ph	Cı	Me
CH ₂ Cl	Me	н	н	0	н	н	N-Ph	ОМе	Me
CH ₂ Cl	Me	н	н	0	н	H	N-Ph	OEt	Me
CH ₂ Cl	Me	н	н	0	н	H	N-Ph	OCHF ₂	Me
CH ₂ Cl	Me	H	H	0	н	Н	N-Ph	OCH ₂ CF ₃	Me
CH₂Cl	Me	H	н	0	H	H	N-Ph	CF ₈	H
CH ₂ Cl	Me	H	H	0	н	H	N-Ph	OCH ₂ CH=CH ₂	Me
CH ₂ Cl	Me	H	H	0	н	н	N-Ph	OCH ₂ C≡CH	Me
CH ₂ Cl	Me	н	H	0	H	н	N-Ph	Cı	Me
CH ₂ Cl	Me	H	H	0	H	н	N-Ph(2-Cl)	Cı	Me
CH ₂ Cl	Me	н	н	0	H	H	N-Ph(2-F)	Cı	Me
CH ₂ Cl	Me	H	H	0	H	н	N-Ph(2-OMe)	Cı	Me
CH ₂ Cl	Me	н	н	0	H	H	N-Ph(2-Me)	Cı .	Me
CH₂Cl	Me	Н	н	0	н	H	N-Ph(3-Cl)	Cı	Me
CH ₂ Cl	Me	H	H	0	н	H	N-Ph(3-F)	CI	Me
CH ₂ Cl	Me	H	H	0	H	H	N-Ph(3-OMe)	Cı	Me
CH ₂ Cl	Me	H	H	0	H	н	N-Ph(3-Me)	Cı	Me
CH ₂ Cl	Me	H	H.	0	H	н	N-Ph(4-Cl)	Cı	Me
CH ₂ Cl	Me	H	н	0	н	Н	N-Ph(4-F)	Cı	Ме
CH ₂ Cl	Me	H	н	0	н	н	N-Ph(4-OMe)	Cı	Ме

表40

R ¹	R ²	R ³	R ⁴	n	\mathbb{R}^5	R^6	Z^4	R ¹⁸	R ¹⁹
CH ₂ Cl	Me	H	Н	0	H	Н	N-Ph(4-Me)	Cl	Me
CH ₂ Br	н	H	н	0	н	H	N-Ph	Cl	Me
CH ₂ Cl	н	H	H	0	H	H	N-Ph	Cl	Me
CH ₂ Cl	H	Me	н	0	Н	H	N-Ph	Cl	Me
CH ₂ Cl	Me	Н	H	0	Me	H	N-Ph	Ci	Me
CH ₂ Cl	Me	H	H	0	Et	H	N-Ph	Cl	Me
CH ₂ Cl	Me	H	н	0	Pr-i	н	N-Ph	Cl	Me
CH ₂ Cl	Me	H	н	0,	Me	Me	N-Ph	Cl	Me
CH ₂ Cl	Et	н	н	0	н	H	N-Ph	Cl	Me
CH ₂ Cl	CH ₂ Cl	H	н	0	H	Н	N-Ph	C1	Me
CH ₂ Cl	Pr-i	H	н	0	н	H	N-Ph	CI	Me
CH ₂ Cl	\mathbf{Pr}	H	н	0	H	H	N-Ph	Cl	Me
CH₂Cl	Pr-c	H	H	0	H	H	N-Ph	Cı	Me
CH ₂ Cl	CH ₂ Pr-c	H	H	0	H	Н	N-Ph	Cı	Ме
CH ₂ F	CH ₂ Cl	н	H	0	H	H	N-Ph	Cı	Ме
CH_2Br	CH ₂ Cl	н	н	0	H	H	N-Ph	Cl	Ме
CH ₂ I	CH ₂ Cl′	н	H	0	H	H	N-Ph	Cl	Me
CF ₈	CH ₂ Cl	H	н	0	H	H	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂		н	0	H	Н	N-Ph	Cl .	Ме
CH ₂ Cl	-(CH ₂		H	0	Н	Н	N-Ph	Cl	Me
CH ₂ Cl	-(CH ₂		н	0	H	н	N-Ph	Cl	Me
CH ₂ Cl	'-(CH ₂)6-	Н	0	H	H	N-Ph	Cı	Me
CH ₂ Cl	Et	H	H	2	H	H	N-H	H	H
CH ₂ Cl	Me	H	Н	2	H	H	N-H	CF ₃	H
CH ₂ Cl	Me	H	H	2	H	Н	N-CHF ₂	COMe	H
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	COMe	Me
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	COOMe	H
CH ₂ Cl	Me	H	H	2	н	H	N-CHF ₂	COOMe	Me
CH ₂ Cl	Me	Н	H	2	H	H	N-CHF ₂	OCHF ₂	H
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	OCHF ₂	Me
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	OCHF ₂	Et
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	CF ₃	H
CH ₂ Cl	Me	H	н	2	H	H	N-CHF ₂	CF ₃	Me

表41

R ¹	R ²	\mathbb{R}^3	R4	n	\mathbb{R}^5	\mathbb{R}^6	Z ⁴	R ¹⁸	R ¹⁹
CH ₂ Cl	Me	H	Н	2	H	Н	N-CHF ₂	CF ₃	Et
CH ₂ Cl	Me	H	H	2	H	H	N-CHF ₂	-(CH ₂) ₃ -	
CHCl ₂	Me	н	H	2	H	H	N-Me	CF ₃	H
CHF ₂	Me	н	H	2	H	H	N-Me	CF ₃	н
CHCIF	Me	н	H	2	н	H	N-Me	CF ₃	н
CHFMe	Me	н	н	2	н	H	N-Me	CF ₃	н
CHClMe	Me	H	H	2	H	H	N-Me	CF ₃	H
CF ₂ Me	Me	н	H	2	H	H	N-Me	CF ₃	H
CH ₂ CH ₂ F	Me	н	н	2	н	н	N-Me	CF ₃	Н
CH ₂ CHF ₂	Me	н	H	2	H	Н	N-Me	CF ₃	н
CH ₂ CH ₂ Cl	Me	H	H	2	н	H	N-Me	CF ₃	н
CH ₂ CHCl ₂	Me	н	н	2	H	H	N-Me	CF ₃	H
CH ₂ CClF ₂	Me	H	H	2	H	H	N-Me	CF ₃	н
CH ₂ CF ₃	Me	н	H	2	н	H	N-Me	CF ₃	н
CF ₂ CF ₃	Me	н	H	2	H	H	N-Me	CF ₃	H
CH ₂ CH ₂ CF ₃	Me	H	H	2	H	H	N-Me .	CF ₃	H
CH ₂ CH ₂ CHF ₂	Me	H	н	2	н	H	N-Me	CF ₃	H
CF ₂ CF ₂ CF ₃	Me	н	H	2	н	H	N-Me	CF ₃	H
CH ₂ CF ₂ Me	Me	H	н	2	н	H	N-Me	CF ₃	H
CH ₂ CHFMe	Me	н	H	2	H	H	N-Me	CF ₃	н
CF ₃	$\mathbf{CF_3}$	н	н	2	H	Н	N-Me	CF ₃	н
CHFPr-n	Me	н	H	2	H	H	N-Me	CF ₃	H
CF ₂ Pr-n	Me	н	н	2	H	н	N-Me	CF ₃	·H

表 4 2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
R ¹	R ²	\mathbb{R}^{8}	R ⁴	n	R^5	\mathbb{R}^6	\mathbf{Z}^{6}	R ²⁰	\mathbb{R}^{21}		
CH ₂ Cl	Me	н	Н	2	H	н	N-Me	Н	ОМе		
CH ₂ Cl	Me	н	н	2	н	H	N-Me	H	OEt		
CH ₂ Cl	Me	H	Н	2	н	H	N-Me	H	OCHF ₂		
CH ₂ Cl	Me	H	H	2	н	H	N-Me	Н	OCH ₂ CF ₃		
CH ₂ Cl	Me	н	н	2	н	H	N-Ph	H	OMe		
CH ₂ Cl	Me	H	H	2	н	H	N-Ph	H	OEt		
CH ₂ Cl	Me	H	H	2.	н	H	N-Ph	н	OCHF ₂		
CH ₂ Cl	Me	н	H	2	н	H	N-Ph	н	OCH ₂ CF ₃		
CH ₂ Cl	Me	H	H	2	н	н	s	Me	H		
CH ₂ Cl	CH ₂ Cl	H	н	2	н	H	N-Ph	н	OMe		
CH₂Cl	H	H	н	2	н	н	N-Ph	н	OEt		
CH ₂ Cl	н	Me	н	2	н	H	N-Ph	H	OMe		
CH ₂ Cl	Me	н	н	2	Ме	н	N-Ph	н	OEt		
CH ₂ Cl	Me	H	н	2	Et	H	N-Ph	н	ОМе		
CH ₂ Cl	Me	H	н	2	Pr-i	Н	N-Ph	н	OEt		
CH₂Cl	Me	H	н	2	Me	Me	N-Ph	H	ОМе		
CH ₂ Cl	Et	н	н	2	н	H	N-Ph	н	OEt		
CH ₂ Cl	CH_2Br	H	H	2	н	H	N-Ph	H	OMe		
CH ₂ Cl	Pr-i	H	H	2 ·	н	н	N-Ph	H	OEt		
CH ₂ Cl	Pr	н	н	2	н	H	N-Ph	H	OMe		
CH ₂ Cl	Pr-c	H	н	2	н	H	N-Ph	H	OEt		
CH ₂ Cl	CH ₂ Pr-c	H	· H	2	н	H	N-Ph	H	OMe		
CH_2Br	Me	H	н	2	н	H	N-Ph	н	OEt		
CH ₂ F	Me	H	H	2	н	H	N-Ph	н	OMe		
CH ₂ I	Me	H	н	2	н	H	N-Ph	H	OE t		
CF ₃	Me	H	H	2	н	H	N-Ph	н	OMe		
CH ₂ Cl	-(CH ₂)3-	н	2	н	H	N-Ph	H	OEt		
CH ₂ Cl	-(CH ₂)4-	н	2	н	H	N-Ph	H	OMe		
CH ₂ Cl	-(CH ₂) ₅ -	н	2	H	н	N-Ph	H	OMe		
CH₂Cl	-(CH ₂)6-	н	2	н	н	N-Ph	н	OEt		
CH ₂ Cl	Me	H	H	1	H	H	N-Me	н	OMe		

表43

R ¹	\mathbb{R}^2	R³	R ⁴	n	R^{5}	R ⁶	\mathbf{Z}^{5}	\mathbb{R}^{20}	R ²¹
CH ₂ Cl	Me	H	Н	1	Н	H	N-Me	H	OEt
CH ₂ Cl	Me	H	H	1	н	H	N-Me	H	OCHF ₂
CH ₂ Cl	Me	н	H	1	H	H	N-Me	н	OCH ₂ CF ₃
CH ₂ Cl	Me	H	H	1	н	H	N-Ph	н	ОМе
CH ₂ Cl	Me	H	H	1	н	H	N-Ph	н	OEt
CH ₂ Cl	Me ·	H	H	1	н	H	Ň-Ph	н	OCHF ₂
CH₂Cl	Me	H	н	1	н	H	N-Ph	н	OCH ₂ CF ₃
CH ₂ Cl	Me	H	н	1	H	H	s	Me	н
CH ₂ Cl	CH ₂ Cl	H	H	1	н	H	N-Ph	н	OMe
CH ₂ Cl	н	н	H	1	H	H	N-Ph	H	OEt
CH ₂ Cl	н	Me	Н	1	н	H	N-Ph	н	OMe
CH ₂ Cl	Me	H	H	1	Ме	H	N-Ph	н	OEt
CH ₂ Cl	Me	H	H	1	Et	H	N-Ph	н	OMe
CH ₂ Cl	Me	H	H	. 1	Pr-i	н	N-Ph	н	OEt
CH ₂ Cl	Me	H	H	1	Me	Ме	N-Ph	н	OMe `
CH ₂ Cl	Et	н	H	1	н	H	N-Ph	н	OEt
CH ₂ Cl	CH_2Br	H	н	1	H	H	N-Ph	н	ОМе
CH ₂ Cl	Pr-i	H	H	1	н	H	N-Ph	H	OEt
CH₂Cl	Pr	H	H	1	H	H	N-Ph	н	ОМе
CH ₂ Cl	Pr-c	H	н	1	н	H	N-Ph	H	OEt
CH ₂ Cl	CH ₂ Pr-c	н	н	1	н	H	N-Ph	н	ОМе
CH_2Br	Me	H	н	1	н	H	N-Ph	н	OEt
$\mathrm{CH_2F}$	Me	H	н	1	н	H	N-Ph	н	ОМе
CH_2I	Me	H	H	1	н	H	N-Ph	н	OEt
CF ₃	Me	H	н	1	н	H	N-Ph	н	ОМе
CH ₂ Cl	-(CH ₂)8-	Н	1	H	H	N-Ph	н	OEt
CH ₂ Cl	-(CH ₂)4-	н	1	н	H	N-Ph	н	ОМе
CH ₂ Cl	-(CH ₂) ₅ -		H	1	н	H	N-Ph	H	ОМе
CH ₂ Cl	-(CH ₂) ₆ -	н	1	н	н	N-Ph	н	OEt
CH ₂ Cl	Me	Н	н	0	н	H	N-Me	H	ОМе
CH ₂ Cl	Me	H	H	0	н	H	N-Me	Н	OEt
CH₂Cl	Me	H	H	0	н	H	N-Me	н	OCHF ₂
CH ₂ Cl	Me	H	H	0	н	H	N-Me	H	OCH ₂ CF ₃
CH ₂ Cl	Me	H	H	0	н	H	N-Ph	H	ОМе

表44

\mathbb{R}^1	R ²	R ³	R ⁴	n	R ⁵	R ⁶	\mathbf{Z}^{5}	R ²⁰	R ²¹
CH ₂ Cl	Me	H	н	0	Н	H	N-Ph	H	OEt
CH ₂ Cl	Me	н	н	0	н	н	N-Ph	н	OCHF ₂
CH ₂ Cl	Me	н	н	0	H	н	N-Ph	н	OCH ₂ CF ₃
CH ₂ Cl	Me	н	н	0	н	H	S	Me	н
CH ₂ Cl	CH ₂ Cl	н	H	0	н	н	N-Ph	н	OMe
CH ₂ Cl	н .	H	н	0	н	н	N-Ph	н	OEt
CH ₂ Cl	н	Me	н	0	н	н	N-Ph	н	OMe
CH ₂ Cl	Me	н	н	0	Me	н	N-Ph	н	OEt
CH ₂ Cl	Me	н	н	0	Et	н	N-Ph	н	OMe
CH ₂ Cl	Me	н	н	0	Pr-i	н	N-Ph	н	OEt
CH ₂ Cl	Me	H	н	0	Me		N-Ph	н	OMe
CH ₂ Cl	Et	H	н	0	н	н	N-Ph	н	OEt
CH ₂ Cl	$\mathrm{CH_{2}Br}$	H	н	0	н	н	N-Ph	н	OMe
CH_2Cl	Pr-i	H	н	0	н	н	N-Ph	н	OEt
CH ₂ Cl	\mathbf{Pr}	Н	н	0	н	н	N-Ph	н	OMe
CH ₂ Cl	Pr-c	н	н	0	H	н	N-Ph	н	OEt
CH ₂ Cl	CH ₂ Pr-c	H	н	0	н	н	N-Ph	н	OMe
CH_2Br	Me	н	н	0	н	н	N-Ph	H	OEt
$\mathrm{CH_2F}$	Me	H	н	0	н	н	N-Ph	н	ОМе
CH_2I	Me	н	н	0	н	н	N-Ph	H	OEt
$\mathbf{CF_3}$	Me	н	н	0	н	н	N-Ph	н	OMe
$\mathrm{CH_{2}Cl}$	-(CH ₂)8-	н	0	н	н	N-Ph	н	OEt
CH ₂ Cl	-(CH ₂)4-	н	0	н	H	N-Ph	н	OMe
CH₂Cl	-(CH ₂)5-	н	0	н	H	N-Ph	н	OMe
CH ₂ Cl	-(CH ₂)6-	н	0	н	H	N-Ph	н	OEt
CH ₂ Cl	Et	H	H	2	н	H	s	н	н
CH ₂ Cl	Et	н	н	2	н	H	N-H	H	н
CH ₂ Cl	Me	H	н	2	н	H	N-Me	Cı	CHF2
CH ₂ Cl	Me	H	н	2	H	н	N-Me	Cl	CF ₃
$CHCl_2$	Me	н	н	2	H	н	N-Me	Cl	CF ₃
CHF ₂	Me	н	H	2	H	н	N-Me	Cl	CF ₈
CHCIF	Me	H	H	2	Н	H	N-Me	Cl	CF ₃
CHFMe	Me	H	н	2	н	н	N-Me	Cl	CF ₃

表45

R ¹	R²	R ³	R ⁴	n	R ⁵	\mathbf{R}^{6}	\mathbf{Z}^{5}	R ²⁰	R ²¹
CHClMe	Me	H	н	2	Н	H	N-Me	Cl	CF ₃
CF ₂ Me	Me	H	H	2	н	H	N-Me	Cl	CF ₃
CH_2CH_2F	Me	н	н	2	H	H	N-Me	CI	CF ₃
CH ₂ CHF ₂	Me	н	н	2	H	н	N-Me	Cl	CF ₃
CH ₂ CH ₂ Cl	Me	н	H	2	H	н	N-Me	Cl	CF ₃
CH ₂ CHCl ₂	Me	н	н	2	H	H	N-Me	Cl	CF ₃
CH ₂ CClF ₂	Me	H	H	2	H	н	N-Me	Cl	CF ₃
CH ₂ CF ₃	Me	н	H	2	H	Н	N-Me	Cl	CF ₃
CF ₂ CF ₃	Me	н	H	2	H	H	N-Me	Cı	CF ₃
CH ₂ CH ₂ CF ₃	Me	H	H	2	H	H	N-Me	Cı	CF ₃
CH ₂ CH ₂ CHF ₂	Me	H	H	2	H	н	N-Me	Cl	CF ₃
CF ₂ CF ₂ CF ₃	Me	н	H	2	н	H	N-Me	Cl	CF ₈
$\mathrm{CH_2CF_2Me}$	Me	н	H	2	H	н	N-Me	Cl	CF ₃
CH ₂ CHFMe	Me	H	H	2	H	н	N-Me	Cl	CF ₃
CF ₃	CF ₃	H	H	2	Ħ	н	N-Me	CI	CF ₃
CHFPr-n	Me	H	H	2 .	н	н	N-Me	Cl	CF ₃
CF ₂ Pr-n	Me	H	H	2	H	н	N-Me	Cl	CF ₃
CH ₂ Cl	Me	H	H	0	H	H	N-Me	Cl	CHF ₂
CH ₂ Cl	Me	H	H	0	H	н	N-Me	CI	CF ₃
CHCl ₂	Me	н	H	0	H	н	N-Me	Cl	CF ₃
CHF ₂	Me	H	H	0	н	H	N-Me	Cl	CF ₈
CHCIF	Me	H	H	0	H	н	N-Me	Cl	CF ₃
CHFMe	Me	H	H	0	н	н	N-Me	Cl	CF ₃
CHClMe	Me	H	H	0	H	H	N-Me	C1	CF ₃
CF ₂ Me	Me	н	H	0	H	н	N-Me	Cl	CF ₃
CH ₂ CH ₂ F	Me	H	H	0	H	н	N-Me	Cı	CF ₃
CH ₂ CHF ₂	Me	H	H	0	H	H	N-Me	Cl	CF ₃
CH ₂ CH ₂ Cl	Me	H	H.	0	н	н	N-Me	Cı	CF ₃
CH ₂ CHCl ₂	Me	H	H	0	н	Н	N-Me	Cı	CF ₃
CH ₂ CClF ₂	Me	H	H	0	H	н	N-Me	Cı	CF ₃
CH ₂ CF ₃	Me	H	H	0	H	н	N-Me	Cı	CF ₃
CF ₂ CF ₈	Me	H	н	0	H	Н	N-Me	Cl	CF ₈
CH ₂ CH ₂ CF ₃	Me	H	H	0	H	H	N-Me	Cı	CF ₃

表46

R ¹	\mathbb{R}^2	R³.	R ⁴	n	\mathbb{R}^{6}	R ⁶	\mathbf{Z}^{5}	R ²⁰	\mathbb{R}^{21}
CH ₂ CH ₂ CHF ₂	Me	Н	н	0	H	Н	N-Me	Cl	CF ₃
CF ₂ CF ₂ CF ₃	Me	H	H	0	н	H	N-Me	Cl	CF ₃
CH_2CF_2Me	Me	н	H	0	н	Н	N-Me	Cı	CF ₃
$\mathrm{CH_{2}CHFMe}$	Me	H	H	0	H	H	N-Me	Cı	CF ₈
CF ₃	CF ₃	H	н	0	H	H	N-Me	Çı	CF ₃
CHFPr-n	Me	H	н	0	н	H	N-Me	Ci	CF ₃
CF ₂ Pr-n	Me	H	H	0	H	H	N-Me	Cı	CF ₃

表47

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
R ¹	R²	R³	R ⁴	n	\mathbb{R}^{6}	\mathbb{R}^6	\mathbf{Y}^{1}						
CH ₂ Cl	Me	H	H	2	H	H	1,2,4-Oxadiazol-3-yl						
CH ₂ Cl	Me	H	н	2	H	H	3-Phenyl-1,2,4-oxadiazol-5-yl						
CH ₂ Cl	Me	н	н	2	H	H	3-Benzyl-1,2,4-oxadiazol-5-yl						
CH ₂ Cl	Me	H	Н	2	Pr-i	H	4-Trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4,6-Dimetoxypyrimidin-2-yl						
CH ₂ Cl	Me	H	H	2	H	H	4,6-Dichloropyrimidin-5-yl						
CH ₂ Cl	Me	H	H	2	H	H	1,4-Dimethylimidazol-5-yl						
CH ₂ Cl	Me	H	H	2	H	H	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl						
CH ₂ Cl	Me	H	Н	2	H	H	4-Methyl-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4-Chloro-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	H	2	Н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4-Phenoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	Н	4-Phenyl-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	H	2	H	H	4-Chloro-6-methylpyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4-Chloro-6-methoxypyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2	H	H	4,6-Dimethoxypyrimidin-5-yl						
CH ₂ Cl	Me	H	H	2	H	H	4,6-Diethoxypyrimidin-5-yl						
CH ₂ Cl	Me	н	H	2.	H	H	4,6-Dimethoxypyrimidin-2-yl						
CH ₂ Cl	Me	н	H	2	H	H	4,6-Diethoxypyrimidin-2-yl						
CH ₂ Cl	H	н	H	2	H	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	H	н	н	2	Н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	н	Me	H	2	H	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	н	2	Мe	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	H	2	Et	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	н	2	Pr-i	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Me	H	н	2	Me	Me	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Et	H	Н	2	н	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Et	H	н	2	н	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl						
CH ₂ Cl	Pr-i	Н	н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl						

表48

R ¹	R ²	R³	R4	n	R ⁵	\mathbb{R}^6	Y¹
CH ₂ Cl	Pr	H	н	2	Н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Pr-c	H	Н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	CH ₂ Pr-c	H	H	2	н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Br	Me	H	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH₂F	Me	H	H	2	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ I	Me	H	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₃	Me	H	H	2	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂))3-	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂)) ₄ -	H	2	н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	-(CH ₂)) ₅ -	н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂)) ₆ -	H	2	н	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	Me	H	н	2	н	H	4,6-Bis(difluoromethoxy)pyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	н		1,2,4-Oxadiazol-3-yl
CH₂Cl	Me	H	н	1	н	Н	3-Phenyl-1,2,4-oxadiazol-5-yl
CH₂Cl	Me	H	Н	1	н	H	3-Benzyl-1,2,4-oxadiazol-5-yl
CH₂Cl	Me	H	н	1	Pr-i	H	4-Trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	H	1	н	н	4,6-Dichloropyrimidin-5-yl
CH ₂ Cl	Me	H	H	1	н	Н	1,4-Dimethylimidazol-5-yl
CH ₂ Cl	Me	H	н	1	н	н	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl
CH ₂ Cl	Me	н	н	1	н	н	4-Methyl-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	н	H	4-Chloro-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	н	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	1	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	1	н	H	4-Phenoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	1	н	H	4-Phenyl-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	Me	Н	н	1	н	H	4-Chloro-6-methylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	1	н	Н	4-Chloro-6-methoxypyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	н	Н	4,6-Dimethoxypyrimidin-5-yl
CH ₂ Cl	Me	н	н	1	H	Н	4,6-Diethoxypyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	н	H	4,6-Dimethoxypyrimidin-2-yl
CH ₂ Cl	Me	н	н	1	н	Ħ	4,6-Diethoxypyrimidin-2-yl
CH ₂ Cl	н	H	н	1	H.	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	н	н	H	1	H	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	H	Me	H	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl

表49

\mathbb{R}^1	R ²	R³	R ⁴	n	\mathbb{R}^5	\mathbb{R}^6	$\mathbf{Y^1}$
CH ₂ Cl	Me	н	H	1	Me	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	H	1	Et	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	1	Pr-i	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	1	Me	Me	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Et	н	н	1	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Et	H	н	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Pr-i	Н	н	1	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Pr	н	н	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	Pr-c	H	H	1	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH₂CI	CH ₂ Pr-c	H	н	1	Н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Br	Me	H	H	1	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH_2F	Me	Н	н	1	н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ I	Me	H	н	1	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₃	Me	н	н	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂)3-	н	1	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂) ₄ -	н	1	H	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂) ₅ -	H	1	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂) ₆ -	H	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	H	н	1,2,4-Oxadiazol-3-yl
CH ₂ Cl	Me	H	Н	0	н	н	3-Phenyl-1,2,4-oxadiazol-5-yl
CH ₂ Cl	Me	H	H	0	H	H	3-Benzyl-1,2,4-oxadiazol-5-yl
CH ₂ Cl	Me	H	H	0	Pr-i	H	4-Trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	Н	0	H	н	4,6-Dichloropyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	H	H	4,6-Bis(difluoromethoxy)pyrimidin-5-yl
CH ₂ Cl	Me	H	H	0	H	H	1,4-Dimethylimidazol-5-yl
CH ₂ Cl	Me	H	H	0	H	H	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl
CH ₂ Cl	Me	H	H	0	H	н	4-Methyl-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	H	0	H	Н	4-Chloro-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	0	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	Н	H	0	H	Н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	H	H	4-Phenoxy-6-trifluoromethylpyrimidin-5-yl

表50

R ¹	R ²	R ³	R4	n	R ⁵	R ⁶	Y ¹
CH ₂ Cl	Me	н	н	0	H	н	4-Phenyl-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	н	H	4-Chloro-6-methylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	H	H	4-Chloro-6-methoxypyrimidin-5-yl
CH ₂ Cl	Me	H	н	0	H	H	4,6-Dimethoxypyrimidin-5-yl
CH ₂ Cl	Me	н	H	0	H	н	4,6-Diethoxypyrimidin-5-yl
CH ₂ Cl	Me	н	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
CH ₂ Cl	Me	н	Н	0	Н	H	4,6-Diethoxypyrimidin-2-yl
CH ₂ Cl	н	H	H	0	н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	H	H	H	0	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	н	Ме	H	0	н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	Н	0	Me	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	Me	н	Н	0	Et	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	H	0	Pr-i	Н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	H	0	Me	Me	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Et	H	H	0	н	Н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Et	н	н	0	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Pr-i	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	\mathbf{Pr}	H	H	0	Н	·H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Pr-c	H	H	0	н	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	CH ₂ Pr-c	H	H	0	Н	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH_2Br	Me	H	н	0	H	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ F	Me	н	H	0	н	н	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ I	Me	H	H	0	Н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₃	Me	H	H	0	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂	-	H	0	H	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂)4-	H	0	Н	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂) ₅ -	H	0	Н	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	-(CH ₂) ₆ -	Н	0	H	H	4-Methoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	CH ₂ Cl	H	H	2	H	н	Pyrrol-1-yl
CH ₂ Cl	CH ₂ Cl	н	н	2	н	H	Oxazol-2-yl
CH ₂ Cl	CH ₂ Br	H	H	2	H	H	1H-Imidazol-2-yl
CH ₂ Cl	CF ₃	H	н	2	н	H	1H-Imidazol-4-yl
CH ₂ Cl	CH ₂ Cl	H	H	2	H	Н	1H-Imidazol-5-yl
CH ₂ Cl	CH ₂ Cl	н	H	2	H	H	1H-1,3,4-Triazol-2-yl

表 5 1

R ¹	R ²	R ³	R ⁴	n	R ⁶	R^6	Y ¹ .
CH ₂ Cl	CH ₂ Cl	Н	H	2	н	H	1H-1,3,4-Triazol-5-yl
CH ₂ Cl	Me	H	н	2	н	H	4-iso-Propoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	2	н	Н	4-Difluoromethoxy-6-trifluoromethylpyrimidin-5- yl
CH₂Cl	Me	н	н	2	н	н	4-Methoxy-2-methyl-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	н	н	2	н	H	4-Ethoxy-2-methyl-6-trifluoromethylpyrimidin-5- yl
CH ₂ Cl	Me	н	н	2	н	H	2,4-Dimethoxy-6-trifluoromethylpyrimidin-5-yl
CH₂Cl	Me	н	н	2	н	H	2,4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	2	н	H	2-Amino-4-methoxy-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	н	н	2	н	н	2-Amino-4-ethoxy-6-trifluoromethylpyrimidin-5- yl
CH ₂ Cl	Me	н	н	2	н	н	4-Methoxy-2-methylthio-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	2	н	н	4-Ethoxy-2-methylthio-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	2	н	н	4-Methoxy-2-methylsulfonyl-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	2	н	н	4-Ethoxy-2-methylsulfonyl-6- trifluoromethylpyrimidin-5-yl
CH₂Cl	Me _.	н	н	2	н	н	2-Difluoromethoxy-4-methoxy-6- trifluoromethylpyrimidin-5-yl
CH₂Cl	Me	Н	н	2	н	н	2-Difluoromethoxy-4-ethoxy-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	2	н	н	2-Cyano-4-methoxy-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	H	н	2	н	н	2-Cyano-4-ethoxy-6-trifluoromethylpyrimidin-5- yl
CH ₂ Cl	Me	H	н	2	H	н	4-Methoxy-2-methylamino-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	2	н	H	4-Ethoxy-2-methylamino-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	2	н	н	2-Dimethylamino-4-methoxy-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	H	н	2	н	н	2-Dimethylamino-4-ethoxy-6- trifluoromethylpyrimidin-5-yl

表 5 2

R ¹	R ²	\mathbb{R}^3	R ⁴	n	\mathbb{R}^5	\mathbb{R}^6	Y ¹
CH ₂ Cl	Me	н	н	2	н	н	4-Cyano6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	4-iso-Propoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	H	4-Difluoromethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н.	0	н	н	4-Methoxy-2-methyl-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	н	н	0	н	н	4-Ethoxy-2-methyl-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me ·	н	н	0	н	н	2,4-Dimethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2,4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Amino-4-methoxy-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	н	H	0	н	н	2-Amino-4-ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	4-Methoxy-2-methylthio-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	H	н	4-Ethoxy-2-methylthio-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	H	н	4-Methoxy-2-methylsulfonyl-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	4-Ethoxy-2-methylsulfonyl-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Difluoromethoxy-4-methoxy-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Difluoromethoxy-4-ethoxy-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Cyano-4-methoxy-6-trifluoromethylpyrimidin- 5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Cyano-4-ethoxy-6-trifluoromethylpyrimidin-5-yl
CH2Cl	Me	н	н	0	н	н	4-Methoxy-2-methylamino-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	H	4-Ethoxy-2-methylamino-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Me	н	н	0	н	н	2-Dimethylamino-4-methoxy-6- trifluoromethylpyrimidin-5-yl

表53

R ¹	R ²	R³	R ⁴	n	\mathbb{R}^{6}	\mathbf{R}^{6}	Y¹
CH ₂ Cl	Me	H	н	0	н	н	2-Dimethylamino-4-ethoxy-6- trifluoromethylpyrimidin-5-yl
CH ₂ Cl	Ме	H	н	0	H	н	4-Cyano6-trifluoromethylpyrimidin-5-yl
CHCl ₂	Me	H	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHF ₂	Me	H	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHCIF	Me :	H	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHFMe	Me	Н	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHClMe	Me	H	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF₂Me	Me	H	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ F	Me	H	н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH_2CHF_2	Me	H	H	2	Н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ Cl	Me	Н	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CHCl ₂	Me	н	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CClF ₂	Me	Н	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CF ₃	Me	H	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ CF ₃	Me	H	н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ CF ₃	Me	H	H	2	Н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ CHF	Me	н	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ CF ₂ CF ₃	Me	H	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CF ₂ Me	Me	н	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CHFMe	Me	H	H	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₃	CF ₃	H	н	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHFPr-n	Me	H	H	2	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
$\mathbf{CF_{2}Pr}$ -n	Me	H	н	2	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHCl ₂	Me	H	Н	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHF ₂	Me	H	H	0	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHCIF	Me	Н	н	0	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHFMe	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHCIMe	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ Me	Me	Н	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
$\mathrm{CH_{2}CH_{2}F}$	Me	H	н	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH_2CHF_2	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ Cl	Me	H	н	0	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CHCl ₂	Me	н	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CClF ₂	Me	Н	H	0	н	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl

表54

R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	n	R^5	\mathbb{R}^6	\mathbf{Y}^{1}
CH ₂ CF ₃	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ CF ₃	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ CF ₃	Me	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CH ₂ CHF	Me	н	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ CF ₂ CF ₃	Me	н	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CF ₂ Me	Me	H	н	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CH ₂ CHFMe	Me	н	Н	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
$\mathbf{CF_3}$	CF ₃	H	H	0	H	H	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CHFPr-n	Me	н	н	0	H	Н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl
CF ₂ Pr-n	Me	H	H	0	H	н	4-Ethoxy-6-trifluoromethylpyrimidin-5-yl

表 5 5

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
R ¹	R ²	\mathbb{R}^3	R ⁴	n	R ⁵	\mathbb{R}^6	Y¹						
CH ₂ Cl	Me	н	н	2	Н	Н	Benzimidazol-2-yl						
CH ₂ Cl	Me	H	н	2	H	H	Benzothiophen-2-yl						
CH ₂ Cl	Me	н	н	2	н	H	3-Chlorobenzothiophen-2-yl						
CH ₂ Cl	Me	н	Н	2	н	н	Benzotriazol-1-yl						
CH ₂ Cl	Me	н	H	2	H	н	1-Methylindazol-4-yl						
CH ₂ Cl	Me	H	H	2	н	н	Benzoxazol-2-yl						
CH ₂ Cl	Me	H	H	2	н	н	3-Methylbenzothiophen-2-yl						
CH ₂ Cl	Me	н	H	2	H	н	3-Bromobenzothiophen-2-yl						
CH ₂ Cl	Me	н	H	2	н	н	Benzothiophen-7-yl						
CF ₃	Me	н	H	2	H	н	Benzothiophen-7-yl						
CH ₂ F	Me	н	н	2	н	н	Benzothiophen-7-yl						
CH ₂ CI	Me	H	H	2	н	н	1-Methylindazol-7-yl						
CH ₂ Cl	Me	н	H	2	н	H	3-Chloro-1-methylindol-2-yl						
CH ₂ Cl	Me	н	H	1	н	H	Benzimidazol-2-yl						
CH ₂ Cl	Me	Н.	H	1	н	H	Benzothiophen-2-yl						
CH ₂ Cl	Me	н	H	1	.н	н	3-Chlorobenzothiophen-2-yl						
CH ₂ Cl	Me	н	н	1	H	H	Benzotriazol-1-yl						
CH ₂ Cl	Me	н	н	1	н	H	1-Methylindazol-4-yl						
CH ₂ Cl	Me	н	н	1	н	н	Benzothiophen-3-yl						
CH ₂ Cl	Me	Н	н	1	н	H	5-Chlorobenzothiophen-3-yl						
CH ₂ Cl	Me	н	H	1	н	H	Benzoxazol-2-yl						
CH ₂ Cl	Me	н	H	1	н	H	3-Methylbenzothiophen-2-yl						
CH ₂ Cl	Me	н	Н	1	Н	H	3-Bromobenzothiophen-2-yl						
CH ₂ Br	Me	н	н	1	н	H	Benzothiophen-7-yl						
CF ₃	Me	н	H	1	н	H	Benzothiophen-7-yl						
$\mathrm{CH_{2}F}$	Me	н	н	1	H	н	Benzothiophen-7-yl						
CH ₂ Cl	Me	н	H	1	H	н	Benzothiophen-7-yl						
CH ₂ Cl	Me	н	н	1	н	H	1-Methylindazol-7-yl						

表 5 6

R ¹	R²	\mathbb{R}^3	\mathbb{R}^4	n	\mathbb{R}^5	R^6	Y ¹
CH ₂ Cl	Ме	H	н	1	. Н	H	3-Chloro-1-methylindol-2-yl
CH ₂ Cl	Me	H	H	0	H	H	Benzimidazol-2-yl
CH ₂ Cl	Me	H	н	0	H	H	Benzothiophen-2-yl
CH ₂ Cl	Me	H	H	0	H	H	3-Chlorobenzothiophen-2-yl
CH ₂ Cl	Me	H	H	0	Ħ	H	Benzotriazol-1-yl
CH ₂ Cl	Me	H.	H	0	H	H	1-Methylindazol-4-yl
CH ₂ Cl	Me	H	H	0	H	H	Benzothiophen-3-yl
CH ₂ Cl	Me	н	H	0	H	н	5-Chlorobenzothiophen-3-yl
CH ₂ Cl	Me	H	H	0	н	H	Benzoxazol-2-yl
CH ₂ Cl	Me	Η.	н	0	H	н	3-Methylbenzothiophen-2-yl
CH ₂ Cl	Me	H	H	0	н	н	3-Bromobenzothiophen-2-yl
CH ₂ Br	Me	H	н	0	H	н	Benzothiophen-7-yl
$\mathbf{CF_3}$	Me	H	H	0	H	H	Benzothiophen-7-yl
CH_2F	Me	H	H	. 0	Н	н	Benzothiophen-7-yl
CH ₂ Cl	Me	H	H	0	н	н	Benzothiophen-7-yl
CH ₂ Cl	Me	H	н	0	н	Н	1-Methylindazol-7-yl
CH ₂ Cl	Me	H	н	0	н	H	3-Chloro-1-methylindol-2-yl
CH ₂ Cl	Pr-c	н	н	2	н	н	Benzoxazol-2-yl
CH ₂ Cl	Me	H	H	2	н	H	4-Chlorobenzoxazol-2-yl
CH ₂ Cl	Me	H	н	2	н	H	5-Chlorobenzoxazol-2-yl
CH ₂ Cl	Me	H	н	2	н	н	6-Chlorobenzoxazol-2-yl
CH ₂ Cl	Me	H	H	2	н	н	7-Chlorobenzoxazol-2-yl
CH ₂ Cl	Me	H	н	2	н	н	4-Fluorobenzoxazol-2-yl
CH ₂ Cl	Me	H	н	2	Н	н	5-Fluorobenzoxazol-2-yl
CH ₂ Cl	Me	H	H	2	н	H	6-Fluorobenzoxazol-2-yl
CH ₂ Cl	Me	н	н	2	н	H	7-Fluorobenzoxazol-2-yl
CH ₂ Cl	CH ₂ Pr-c	H	H·	2	Н	H	4-Methylbenzoxazol-2-yl
CH ₂ Cl	Me	H	н	2	н	н	5-Methylbenzoxazol-2-yl
CH ₂ Cl	Me	н	н	2	н	H	6-Methylbenzoxazol-2-yl
CH ₂ Cl	Me	н	н	2	н	н	7-Methylbenzoxazol-2-yl
CH ₂ Cl	Me	н	н	2	н	н	4-Methoxybenzoxazol-2-yl
CH ₂ Cl	Me	н	H	2	H	H	5-Methoxybenzoxazol-2-yl
CH ₂ Cl	Ме	H	н	2	н	H	6-Methoxybenzoxazol-2-yl

表 5 7

R ¹	R ²	\mathbb{R}^3	R ⁴	n	\mathbf{R}^{5}	R ⁶	Y ¹
CH ₂ Cl	Me	H	Н	2	H	H	7-Methoxybenzoxazol-2-yl
CH ₂ Cl	Me	H	H	2	H	H	Quinolin-2-yl
CH ₂ Cl	CH ₂ Cl	H	H	2	н	н	Quinolin-6-yl
CH_2Cl	Me	Н	н	2	H	H	Quinoxalin-2-yl

一般式 [I] を有する本発明化合物は、以下に示す方法により製造することがで 5 きるが、これらの方法に限定されるものではない。

<製造法1>

(工程1~工程5)

(式中、R¹、R²、R³、R⁴、R⁵、R⁶及びYは前記と同じ意味を表し、X¹はハロゲン原子を表し、R7はC1~C4のアルキル基、置換されていてもよいフェニル基又は置換されていてもよいベンジル基を表し、Lはハロゲン原子、C1~C4のアルキルスルホニル基、置換されていてもよいフェニルスルホニル基又は置換されていてもよいベンジルスルホニル基等の脱離基を表し、xは1以上の数値を表す。)以下、上記製造方法を各工程毎に詳説する。

(工程1)

5

10 一般式[5]で表されるスルフィド誘導体は、一般式[1]で表される化合物と、

WO 03/000686

5

10

15

20

一般式[2]で示される水硫化ナトリウム水和物とを、溶媒中又は溶媒の非存在下 (好ましくは適当な溶媒中で)、塩基の存在下又は非存在下で反応させることによ り一般式[3]で表されるメルカプタンの塩を反応系内で製造した後、このメルカプタンの塩[3]を単離することなく、一般式[4]で表されるハロゲン誘導体と 反応させる {場合によってはラジカル発生剤 (例えばロンガリット[商品名]: CH 2 (OH) SO2Na・2H2O 等)を添加することもできる} ことによって製造することができる。

反応温度は、いずれの反応も0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは0 \mathbb{C} \sim 1 0 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが0. 5 時間 \sim 2 4 時間である。

反応に供される試剤の量は、一般式[1]で表される化合物1当量に対して、一般式[2]で表される化合物及び一般式[4]で表される化合物1~3当量、塩基を使用する場合は、塩基0.5~3当量である。

溶媒としては、例えばジオキサン、テトラヒドロフラン(THF)等のエーテル類;ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類; N,Nージメチルアセトアミド、N,Nージメチルホルムアミド (DMF)又はNーメチルー2ーピロリジノン等のアミド類;ジメチルスルホキシド (DMSO)又はスルホラン等の硫黄化合物;ベンゼン、トルエン又はキシレン等の芳香族炭化水素類;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類;アセトン又は2ーブタノン等のケトン類;アセトニトリル等のニトリル類;水、或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物類;ナトリウムアミド 又はリチウムジイソプロピルアミド等のアルカリ金属アミド類;ピリジン、トリエ 25 チルアミン又は1,8ージアザビシクロ[5.4.0]-7ーウンデセン等の有機塩基 類;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物;炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属重炭酸塩等の無機塩類、或いはナトリウムメトキシド、ナトリウムエトキシド又はカリウム tertーブトキシド等の金属アルコラート類が挙げ

(工程2)

られる。

5

15

WO 03/000686

一般式[6]で表されるスルホキシド誘導体は、一般式[5]で表されるスルフィド誘導体と酸化剤とを、適当な溶媒中、触媒の存在下又は触媒の非存在下で反応 10 させることにより製造することができる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは0 \mathbb{C} \sim 6 0 \mathbb{C} ∞ の温度範囲であり、反応時間は、化合物により異なるが 1 時間 \sim 7 2 時間である。

反応に供される試剤の量は、一般式 [5] で表される化合物1当量に対して、酸化剤1~3当量であり、触媒を使用する場合は、触媒0.01~0.5当量である。

溶媒としては、例えばジクロロメタン、クロロホルム、ジクロロエタン、四塩化

炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類;ジオキサン、テトラヒドロフラン (THF)、ジメトキシエタン又はジエチルエーテル等のエーテル類; N,Nージメチルアセトアミド、N,Nージメチルホルムアミド (DM 20 F) 又はNーメチルー2ーピロリジノン等のアミド類; メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類; アセトン又は2ーブタノン等のケトン類; アセトニトリル等のニトリル類; 酢酸; 水、或いはこれらの混合物が挙げられる。

酸化剤としては、例えば、m-クロロ過安息香酸、過酸化水素、過ギ酸又は過酢 25 酸等の有機過酸化物、或いは過マンガン酸カリウム又は過ヨウ素酸ナトリウム等の 無機過酸化物が挙げられる。

WO 03/000686

触媒としては、例えば、タングステン酸ナトリウム等の金属触媒が挙げられる。 (工程3)

一般式[7]で表されるスルホン誘導体は、一般式[6]で表されるスルホキシ 5 ド誘導体と酸化剤とを、適当な溶媒中、触媒の存在下又は触媒の非存在下で反応さ せることにより製造することができる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 1 時間 \mathbb{C} \mathbb{C} 時間である。

10 反応に供される試剤の量は、一般式[6]で表される化合物1当量に対して、酸化剤1~3当量であり、触媒を使用する場合は、触媒0.01~0.5当量である。溶媒、酸化剤及び触媒としては、工程2と同様なものが挙げられる。

(工程4)

一般式[7]で表されるスルホン誘導体は、適当な溶媒中、触媒の存在下又は触 **15** 媒の非存在下で、一般式[5]で表されるスルフィド誘導体と好適な量の酸化剤に より、一般式[6]で表されるスルホキシド誘導体を単離することなく製造するこ ともできる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 1 時間 \mathbb{C} \mathbb{C} \mathbb{C} 時間である。

反応に供される試剤の量は、一般式[5]で表される化合物1当量に対して、酸化剤1~3当量であり、触媒を使用する場合は、触媒0.01~0.5当量である。

溶媒、酸化剤及び触媒としては、工程2と同様なものが挙げられる。

(工程5)

20

25 一般式[5]で示されるスルフィド誘導体は、一般式[8]で表される化合物と、

一般式[9]で示されるメルカプタン誘導体とを、溶媒中又は溶媒の非存在下(好ましくは適当な溶媒中)、塩基の存在下で反応させることにより製造することもできる。

反応に供される試剤の量は、一般式[8]で表される化合物1当量に対して、一般式[9]で表される化合物1~3当量、塩基0.5~3当量である。

溶媒としては、例えばジエチルエーテル、ジメトキシエタン、ジオキサン又はテトラヒドロフラン (THF) 等のエーテル類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類;N,Nージメチルアセトアミド、N,Nージメチルホルムアミド (DMF) 又はNーメチルー 2ーピロリジノン等のアミド類;ジメチルスルホキシド (DMSO) 又はスルホラン等の硫黄化合物;ベンゼン、トルエン又はキシレン等の芳香族炭化水素類;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類;アセトン又は2ーブタノン等のケトン類;アセトニトリル等のニトリル類;水、或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物類;ナトリウムアミド 20 又はリチウムジイソプロピルアミド等のアルカリ金属アミド類;ピリジン、トリエ チルアミン又は1,8ージアザビシクロ[5.4.0]ー7ーウンデセン等の有機塩基 類;水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物;水酸化カル シウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物;炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム又は炭酸水素カリウム 4等のアルカリ金属重炭酸塩等の無機塩基類、或いはナトリウムメトキシド、ナト

リウムエトキシド又はカリウムtertーブトキシド等の金属アルコキシドが挙 げられる。

一般式[8]で示される化合物のうちLがハロゲン原子で表される一般式[12] 及び[13]で示される化合物は、以下に示す方法により製造することができる。 (工程6)

(式中、X1、R1、R2、R8及びR4は前記と同じ意味を表す。)

10 一般式[12]及び[13]で表されるイソオキサゾリン化合物は、一般式[10]で表されるオレフィン誘導体と、一般式[11]で示されるオキシム誘導体とを、溶媒中又は溶媒の非存在下(好ましくは適当な溶媒中)、塩基の存在下で反応させることにより製造することができ、必要に応じ一般式[12]と[13]を分離精製する。但し、R3,R4の両者が水素原子の場合には一般式[12]で表されるイソオキサゾリン化合物が優先的に得られる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは 1 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 0 . 5 時間 \mathbb{C} 2 週間である。

反応に供される試剤の量は、一般式 [11] で表される化合物1当量に対して、 20 一般式 [10] で表される化合物1~3当量である。

溶媒としては、例えばエチレングリコールジメチルエーテル、エチレングリコー

10

15

ルジエチルエーテル、ジエチルエーテル、ジオキサン又はテトラヒドロフラン等の エーテル類;ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン 等のハロゲン化炭化水素類;ベンゼン、トルエン又はキシレン等の芳香族炭化水素 類;酢酸エチル又は酢酸ブチル等の酢酸エステル類;水、或いはこれらの混合物等 が挙げられる。

塩基としては、例えば水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物類;水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物類;炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩類;炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属重炭酸塩類;酢酸ナトリウム又は酢酸カリウム等のアルカリ金属酢酸塩類;フッ化ナトリウム又はフッ化カリウム等のアルカリ金属フッ素化塩類、或いはピリジン、トリエチルアミン又は1,8ージアザビシクロ[5.4.0]-7ーウンデセン等の有機塩基類等が挙げられる。

尚、上記製造方法で用いる製造中間体である一般式[10]で表される化合物は、 市販のものを用いるか、又はウィッティヒ(Wittig)反応等の公知の反応により製 造することができる。又、一般式[11]で示される化合物は、例えば、Liebigs Annalen der Chemie, 985(1989)に記載の方法に準じて製造することができる。

一般式[1]で表される化合物は、前記に示した一般式[12]で表される化合物から、以下の方法により製造することができる。

(工程7~工程10)

(式中、X¹、R¹、R²、R⁸、R⁴及びR⁷は前記と同じ意味を表す。)

一般式[15]で表される化合物は、前記工程5に示した方法に準じ(工程7)、

- 5 一般式[16]で表される化合物は、前記工程2に示した方法に準じ(工程8)、一般式[1]で表される化合物は、一般式[15]から前記工程4に示した方法(工程10)、又は、一般式[16]から前記工程3に示した方法に準じ(工程9)、それぞれ製造することができる。溶媒、塩基、酸化剤及び触媒としては工程2、工程3、工程4又は工程5で記載したものと同じものが挙げられる。
- 10 一般式[4]で表される化合物中、一般式[21]で表される化合物は、以下に 示す方法により製造することができる。

(工程11、12).

(式中、R⁵、X¹及びYは前記と同じ意味を表し、R⁸はアルキル基を表す。) (工程11)

5 一般式 [20] で表される化合物は、一般式 [17]、 [18] 又は [19] と 還元剤とを溶媒中で反応させることにより製造することができる。

この反応は通常、反応温度−60℃~150℃で10分~24時間行う。

反応に供される試剤の量は、一般式[17]、[18]又は[19]1当量に対して、還元剤0.5~2当量が望ましいが、反応の状況に応じて任意に変化させる 10 ことができる。

還元剤としては、一般式[17]から一般式[20]の製造では、例えば水素化ジイソブチルアルミニウム等の金属水素化物類、又は水素化ホウ素ナトリウム又は水素化リチウムアルミニウム等の金属水素錯化合物類が挙げられ、一般式[18]又は[19]から一般式[20]の製造では、例えば水素化ジイソブチルアルミニウム等の金属水素化物類、水素化ホウ素ナトリウム又は水素化リチウムアルミニウム等の金属水素錯化合物類、或いはジボラン等が挙げられる。

溶媒としては、例えばジエチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類;ベンゼン、トルエン等の芳香族炭化水素類、或いはメタノール又はエタノール等のアルコール類が挙げられる。

(工程12)

一般式[21]で表される化合物は、一般式[20]とハロゲン化剤とを溶媒中で反応させることにより製造することができる。

この反応は通常、反応温度−50~100℃で10分~24時間行う。

5 反応に供される試剤の量は、一般式[20]1当量に対して、ハロゲン化剤1~ 3当量が望ましいが、反応の状況に応じて任意に変化させることができる。

ハロゲン化剤としては、例えば塩化水素、臭化水素、三塩化リン、三臭化リン又は塩化チオニル等が挙げられる。

溶媒としては、例えばジクロロエタン又は四塩化炭素等のハロゲン化炭化水素 10 類;酢酸等の酸類、或いはテトラヒドロフラン等のエーテル類が挙げられる。

一般式[4]で表される化合物は、以下の方法により製造することができる。

$$R^5$$
 ハロゲン化剤 R^5 $H-C-Y$ \longrightarrow X^1-C-Y R^6 R^6 R^6 R^6 [22] 工程13 [4]

15 (式中、R⁵、R⁶、X¹及びYは前記と同じ意味を表す。)

(工程13)

- 一般式[4]で表される化合物は、一般式[22]で表される化合物とハロゲン 化剤とを溶媒中、触媒の存在下又は非存在下で反応させることにより製造すること ができる。本工程では光照射下で反応をおこなってもよい。
- 20 この反応は通常、反応温度30~150℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [22] 1 当量に対して、ハロゲン化剤 $1\sim$ 1 0 当量が望ましいが、反応の状況に応じて任意に変化させることができる。触媒は $0.01\sim0.5$ 当量である。

ハロゲン化剤としては、例えば臭素又は塩素等のハロゲン類; Nーブロモコハク酸イミド等のNーハロコハク酸イミド、或いは過臭化ピリジニウム等のピリジン塩等が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、或いはギ酸又は酢酸等のカルボン酸類が挙げられる。

触媒としては、例えば過酸化ベンゾイル、 α , α -アゾビスイソブチロニトリル 又はこれらの混合物が挙げられる。

一般式[4]で表される化合物中、一般式[24]で表される化合物は、以下の 10 方法により製造することができる。

(式中、X1及びYは前記と同じ意味を表す。)

15 (工程14)

- 一般式 [24] で表される化合物は、Org.Synth.,III,557(1955)又は
- J.Am.Chem.Soc.,72,2216(1950)に記載の方法に準じて、一般式 [23]で表される化合物とハロゲン化水素及びホルムアルデヒドもしくはパラホルムとを、溶媒中、ルイス酸存在下もしくは非存在下で反応させるか、或いは
- 20 J.Am.Chem.Soc.,97,6155(1975)に記載の方法に準じて、一般式 [23]で表される化合物とハロゲノメチルエーテルとを、溶媒中、ルイス酸存在下で反応させる方法により製造することができる。

この反応は通常、反応温度-40~150℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [23]1当量に対して、ハロゲン化水素1

~2当量、ホルムアルデヒドもしくはパラホルム1~2当量、ルイス酸1~2当量、 及びハロゲノメチルエーテル1~2当量が望ましいが、反応の状況に応じて任意に 変化させることができる。

ルイス酸としては、例えば四塩化チタン、塩化亜鉛、塩化アルミニウム又は臭化 5 亜鉛等が挙げられる。

ハロゲン化水素としては、塩化水素、臭化水素又はヨウ化水素が挙げられる。 溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲン化炭化水素類; ヘキサン又はヘプタン等の脂肪族炭化水素類; ジオキサン又はテトラヒドロフラン等のエーテル類; 酢酸等のカルボン酸類; 二硫化炭素、或いはこれらの混合物が挙げられる。

一般式[19]で表される化合物中、一般式[25]で表される化合物は、以下の方法により製造することができる。

15

10

(式中、Yは前記と同じ意味を表す。)

(工程15)

一般式 [25]で表される化合物は、Org.Synth.,IV,831(1963)に記載のビルスマイヤー(Vilsmeier)法に準じて、一般式 [23]とN,Nージメチルホルムアミ ド(DMF)とを溶媒中又は溶媒の非存在下、塩化ホスホリル、ホスゲン又は塩化チオニル存在下で反応させるか、或いはChem.Ber.,93,88(1960)に記載の方法に準じて、一般式 [23]とジハロゲノメチルエーテルとを溶媒中、ルイス酸存在下で反応させた後、加水分解する方法により製造することができる。

この反応は通常、反応温度−40~150℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [23]で表される化合物1当量に対して、 塩化ホスホリル、ホスゲン又は塩化チオニル1~2当量、N,Nージメチルホルム アミド1~2当量、ルイス酸1~2当量、ジハロゲノメチルエーテル1~2当量が 望ましいが、反応の状況に応じて任意に変化させることができる。

ルイス酸としては、例えば四塩化チタン、四塩化スズ、塩化亜鉛、塩化アルミ又は臭化亜鉛等が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲン化炭化水素類; ヘキサン又はヘプタン等の脂肪族炭化水素類; ジオキサン又はテトラヒドロフラン等のエーテル類; 酢酸等のカルボン酸類; N,Nージメチルホルムアミド等のアミド類; 二硫化炭素等の硫黄化合物類、或いはこれらの混合物が挙げられる。

一般式[17]、[18]及び[19]で表される化合物は、以下の方法により 製造することができる。

15

5

(式中、X²は塩素原子、臭素原子又はョウ素原子を表し、R⁵、R⁸及びYは前記と同じ意味を表す。)

(工程16、17)

一般式 [17]、 [18] 又は [19] で表される化合物は、J.Org.Chem., 65,4618(2000)に記載の方法に準じて、一般式 [26] で表される化合物とマグネシウム試薬とを溶媒中又は溶媒の非存在下、反応させることによって一般式 [27] を得た後、一般式 [27] と求電子試薬とを反応させるか、或いは Synth.Commum.,24(2),253(1994)に記載方法に準じて、一般式 [26] とリチウム試薬とを溶媒中で反応させ一般式 [28] を得た後、一般式 [28] と求電子試薬とを反応させる方法により製造することができる。

この反応は通常、反応温度−100~150℃で10分~24時間行う。

10 反応に供される試剤の量は、一般式 [26] 1当量に対して、マグネシウム試薬 1~5当量及び求電子試薬 1~5当量、或いはリチウム試薬 1~5当量及び求電子試薬 1~5当量が望ましいが、反応の状況に応じて任意に変化させることができる。 マグネシウム試薬としては、例えば金属マグネシウム、臭化イソプロピルマグネシウム又はジイソプロピルマグネシウム等が挙げられる。

15 リチウム試薬としては、例えばnーブチルリチウム又はnーヘキシルリチウム等 が挙げられる。

求電子試薬としては、例えばギ酸エチル、シアノギ酸エチル又は酢酸エチル等の エステル類;アセチルクロリド又はクロロギ酸メチル等の酸ハライド類;N,Nー ジメチルホルムアミド等のアミド類、或いは二酸化炭素等が挙げられる。

20 溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲン化炭化水素類; ヘキサン又はペンタン等の脂肪族炭化水素類; ジオキサン又はテトラヒドロフラン等のエーテル類、或いはそれらの混合物が挙げられる。

一般式[31]で表される化合物は、以下の方法により製造することができる。

(式中、Yは前記と同じ意味を表し、R9は水素原子、アルキル基、アシル基又は アルコキシカルボニル基を表し、R10はアルキル基、ハロアルキル基、シクロアル 5 キル基、シクロアルキル基、シクロアルキルアルキル基、アルコキシカルボニルア ルキル基、置換されていてもよいベンジル基、置換されていてもよいヘテロ環アル キル基、アルケニル基、アルキニル基、アルキルスルホニル基、ハロアルキルスル ホニル基、置換されていてもよい芳香族へテロ環基、置換されていてもよいフェニ ルスルホニル基、アシル基、ハロアルキルカルボニル基、置換されていてもよいべ 10 ンジルカルボニル基又は置換されていてもよいベンゾイル基を表し、L1はハロゲ ン原子、C1~C4アルキルスルホニルオキシ基、C1~C4アルキルスルホニル 基、置換されていてもよいベンジルスルホニル基、置換されていてもよいフェニル スルホニルオキシ基又は置換されていてもよいベンジルスルホニルオキシ基等の 脱離基を表す。但し、R10がハロアルキル基の場合は、L1はハロアルキル化して残 15 ったハロゲン原子より反応性の高い脱離基を表す。例えばR10がCHF2基の場合、 L1は塩素原子又は臭素原子を表し、R10がCH2CF3基の場合はL1は塩素原子、 臭素原子、ヨウ素原子、pートルエンスルホニルオキシ基、メチルスルホニルオキ シ基又はトリフルオロメチルスルホニルオキシ等を表す。)

(工程18)

20 一般式[31]で表される化合物は、一般式[29]で表される化合物と一般式 [30]で表される化合物とを溶媒中、塩基存在下で反応させることにより製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

10

反応に供される試剤の量は、一般式[29]で表される化合物1当量に対して、 一般式[30]で表される化合物は1~20当量、塩基は1~3当量である。

塩基としては、例えば炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩類;水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物類;水素化カリウム又は水素化ナトリウム等のアルカリ金属水素化物類;ナトリウムエトキシド又はナトリウムメトキシド等のアルカリ金属アルコキシド類、或いは1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基類が挙げられる。

溶媒としては例えばクロロホルム又はジクロロエタン等のハロゲン化炭化水素類;ジエチルエーテル又はテトラヒドロフラン等のエーテル類;ベンゼン又はトルエン等の芳香族炭化水素類;ヘキサン又はヘプタン等の脂肪族炭化水素類;アセトン又はメチルイソブチルケトン等のケトン類;酢酸エチル等のエステル類;Nーメチルピロリドン又はN,Nージメチルホルムアミド等のアミド類;ジメチルスルホキシド又はスルホラン等の硫黄化合物;アセトニトリル、或いはそれらの混合物が挙げられる。

15 一般式[34]で表される化合物は、以下の方法により製造することができる。

(式中、 L^1 、 α 、 β 又は γ は前記と同じ意味を表し、 R^1 はアルキル基、置換基 20 群 β より選択される任意の基でモノ置換されたアルキル基、ハロアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルキルスルフィニル基、アルキルスルスルホニル基、置換基群 γ より選択される任意の基でモノ置換されたアルキルスルホニル基、のロアルキルスルホニル基、置換されていてもよいフェニル基、置換さ

れていてもよい芳香族へテロ環基、置換されていてもよいフェニルスルホニル基、 置換されていてもよい芳香族へテロスルホニル基、アシル基、ハロアルキルカルボ ニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベン ゾイル基、アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボ ニル基、置換されていてもよいフェノキシカルボニル基、カルバモイル基(該基の 窒素原子は同一又は異なって、アルキル基又は置換されていてもよいフェニル基で 置換されていてもよい)を表す。この場合、ピラゾール環の炭素原子は、置換基群 αより選択される、1~2個の同一又は相異なる基で置換されていてもよい。) (工程19)

10 一般式[34]で表される化合物は、一般式[32]で表される化合物を溶媒中、 塩基存在下、一般式[33]で表される化合物と反応させることにより製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。 反応に供される試剤の量は、一般式[32]で表される化合物1当量に対して、

15 一般式[33]で表される化合物は1~20当量、塩基は1~3当量である。 塩基及び溶媒としては、例えば工程18と同様なものが挙げられる。 又、Yにトリフルオロメチル基を導入する方法として、J.Chem. Soc.

PerkinTrans.1,8,2293-2299(1990), J.Fluorine Chem.,50(3),411-426 (1990), J.Chem.Soc. Chem.Commun.,18,1389-1391(1993), J.Chem.Soc.

Chem.Commun., 1,53-54(1992), Chem.Lett., 1719-1720(1981), Chem.
Pharm.Bull., 38(9), 2446-2458(1990), J.Chem. Soc. Perkin Trans.1,
921-926(1988), Hetercycles, 37(2),775-782(1994), Tetrahedron Lett., 30(16),
2133-2136(1989), J.Chem.Soc.Perkin TRans.1, 2755-2761 (1980), Hetercycles,
22(1),117-124(1984), Eur.J.Med.Chem.Chim. Ther.,24,249-258(1989), Acta
Chem.Scand.Ser.B, 38(6),505-508(1984), J.Fluorine Chem.,21,495-514(1982),

25

J.Chem.Soc.Chem.Commun., 10,638-639(1988)、J.Fluorine
Chem.,67(1),5-6(1994)、J.Heterocycl. Chem., 31(6), 1413-1416(1994)、
Chem.Heterocycl.Compd., 30(5), 576-578(1994)、J.Fluorine Chem.,
78(2),177-182(1996)、J.Heterocycl. Chem., 34(2),551-556(1997)、Tetrahedron,
55(52),15067-15070(1999)、Synthesis, 11,932-933(1980)に記載の方法又は準じた
方法等が挙げられる。

又、一般式[4]、[17]、[18]、[19]、[20]、[21]、[2 2]、[23]、[24]、[25]、[26]、[29]及び[31]で表され る化合物は、Yがピロリル基の場合はMethoden der Organischen Chemie, E6a, 556-798 (1994)、Yがピラゾリル基の場合はMethoden der Organischen 10 Chemie,E8b,399-763 (1994)もしくは特開平2000-219679号公報明細書、Yがイソ チアゾリル基の場合はMethoden der Organischen Chemie, E8a, 668-798 (1993)、Yがオキサゾリル基の場合はMethoden der Organischen Chemie, E8a, 891-1019 (1993)、Yがイミダゾリル基の場合はMethoden der Organischen Chemie, E8c, 1-215 (1994)、Yがピリダジニル基の場合はMethoden der 15 Organischen Chemie, E9a, 557-682 (1997)、Yがピリミジニル基の場合は Methoden der Organischen Chemie, E9b/1, 1-249(1998)、 Yがピラジニル基の場 合はMethoden der Organischen Chemie. E9b/1. 250-372 (1998)、Yがトリアジニ ル基の場合はMethoden der Organischen Chemie, E9c, 530-796(1998)、Yがトリ アゾリル基の場合はMethoden der Organischen Chemie, E8d, 20 305-405,479-598(1994)、Yがオキサジアゾリル基の場合はMethoden der Organischen Chemie. E8c, 397-818 (1994)、Yがベンゾチエニル基の場合は Methoden der Organischen Chemie, E6b1, 217-322項(1994)、Yがインドリル基

の場合はMethoden der Organischen Chemie, E6b1、546-848 (1994)、Methoden

der Organischen Chemie, E6b2, 849-1336(1994)もしくは国際公開番号

WO97/42188号公報明細書、Yがベンゾオキサゾリル基の場合はMethoden der Organischen Chemie, E8a,1020-1194 (1993)、Yがベンゾイミダゾリル基の場合 はMethoden der Organischen Chemie, E8c, 216-391 (1994)、Yがベンゾイソキサ ゾリル基の場合は(Methoden der Organischen Chemie, E8a,226-348 (1993))、 Yがベンゾイソチアゾリル基の場合はMethoden der Organischen Chemie, E8a, 5 799-852(1993)、Yがインダゾリル基の場合はMethoden der Organischen Chemie. E8b, 764-864 (1994)、Yがキノリル基の場合はMethoden der Organischen Chemie, E7a, 290-570 (1991)、Yがイソキノリル基の場合はMethoden der Organischen Chemie, E7a, 571-758 (1991)、Yがフサラジニル基の場合は 10 Methoden der Organischen Chemie, E9a, 744-789 (1997)、Yがキノキサリニル 基の場合はMethoden der Organischen Chemie, E9b/2, 93-265 (1998)、Yがキナ ゾリニル基の場合はMethoden der Organischen Chemie, E9b/2, 1-192 (1998)、Y がシンノリニル基の場合はMethoden der Organischen Chemie, E9a, 683-743 (1997)、又はYがベンゾトリアゾリル基の場合はMethoden der Organischen 15 Chemie, E8d, 406-478 (1994) 記載の方法又は準じた方法等で製造することがで きる。

<製造法2>

$$R^{1}$$
 R^{4} R^{6} R^{5} N R^{5} N R^{5} N R^{5} N R^{5} N R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} N R^{5} N R^{5} N R^{5} N R^{5} N R^{5} N R^{6} N R^{7} $R^{$

20

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び α は前記と同じ意味を表す。この場合、ピラゾール環の炭素原子は、置換基群 α より選択される、 $1\sim 2$ 個の同一又は相異

なる基で置換されていてもよい。)

(工程20)

5

一般式[36]で表される本発明化合物は、製造法1により製造することができる、一般式[35]で表される本発明化合物と酸とを、溶媒中で反応させることにより製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [35] で表される本発明化合物 1 当量に対して、酸 $1\sim10$ 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

10 酸としては、例えば塩酸、臭化水素酸又はトリフルオロ酢酸等が挙げられる。 溶媒としては、例えばジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類;N,Nージメチルアセトアミド、N,Nージメチルホルムアミド(DMF)又はNーメチルー2ーピロリジノン等のアミド類;ジメチルスルホキシド(DMSO)又はスルホラン等の硫黄化合物;ギ酸、酢酸等のカルボン酸類、或いは水等が挙げられる。

<製造法3>

20 (式中、 L^1 、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{11} 及び α は前記と同じ意味を表す。 この場合、ピラゾール環の炭素原子は、置換基群 α より選択される、 $1\sim 2$ 個の同 一又は相異なる基で置換されていてもよい。) (工程21)

一般式[38]で表される本発明化合物は、製造法2により製造することができる、一般式[36]で表される本発明化合物と一般式[33]で表される化合物とを溶媒中、塩基存在下で反応させることにより製造することができる。

5 反応に供される試剤の量は、一般式[36]で表される化合物1当量に対して、 一般式[33]で表される化合物1~3当量、塩基1~3当量である。

溶媒としては、例えばジオキサン、テトラヒドロフラン (THF) 等のエーテル類; ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類; N,Nージメチルアセトアミド、N,Nージメチルホルムアミド (DMF) 又はNーメチルー2ーピロリジノン等のアミド類; ジメチルスルホキシド (DMSO) 又はスルホラン等の硫黄化合物; ベンゼン、トルエン又はキシレン等の芳香族炭化水素類; メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類; アセトン又は2ーブタノン等のケトン類; アセトニトリル等のニトリル類; 水、或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物類;ナトリウムアミド又はリチウムジイソプロピルアミド等のアルカリ金属アミド類;ピリジン、トリエチルアミン又は1,8ージアザビシクロ[5.4.0]-7ーウンデセン等の有機塩基類;水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物類;水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物類;炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩類;炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属重炭酸塩類、或いはナトリウムメトキシド、ナトリウムエトキシド又はカリウムtertーブトキシド等の金属アルコキシド類が挙げられる。

25 <製造法4>

20

$$R^{13}$$
-OH $[40]$ E^{13} -OH E^{14} -OH E^{13} -OH E^{14} -

(式中、R¹、R²、R³、R⁴、R⁵、R⁶及びR¹0は前記と同じ意味を表し、R¹²は トリフルオロメチル基、ジフルオロメチル基又はジフルオロメトキシ基を表し、X β は塩素原子又はフッ素原子を表し、R¹³はアルキル基、ハロアルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、アルキニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族へテロ環基、アルコキシカルボニルアルキル基、置換されていてもよいヘテロアルキル基、又は置換されていてもよいベンジル基を表し、R¹⁴はアルキル基、ハロアルキル基、置換されていてもよいフェニル基、置換されていてもよいボンジル基を表し、R¹⁵及びR¹6は、同一又は異なって、水素原子、アルキル基、置換されていてもよいベンジルカルボニル基、アシル基、ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置

WO 03/000686

ル基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基を表し、 Z^1 はイオウ原子又は $N-R^{17}$ を表し、 R^{17} は水素原子又は R^{10} を表す。)

一般式[41]、一般式[43]又は一般式[45]で表される本発明化合物は、 5 一般式[39]で表される本発明化合物と、それぞれ一般式[40](工程22)、 一般式[42](工程23)又は一般式[44](工程24)で表される化合物を、 無溶媒又は溶媒中、必要に応じ塩基存在下で反応させることにより製造することが できる。

この反応は通常、反応温度20~200℃、好ましくは30~180℃で、10 10 分~48時間、必要に応じ加圧下で行う。

反応に供される試剤の量は、一般式[39]で表される本発明化合物1当量に対して、一般式[40]、一般式[42]又は一般式[44]で表される化合物1~20当量である。

塩基としては、例えば炭酸カリウム、水酸化ナトリウム、水素化カリウム、水素化ナトリウム等の無機塩基;ナトリウムエトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド、或いは1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。

溶媒としては例えばクロロホルム等のハロゲン化炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;ベンゼン、トルエン等の芳香族炭化水素類;
20 ヘキサン、ヘプタン等の脂肪族炭化水素類;アセトン、メチルイソブチルケトン等のケトン類;酢酸エチル等のエステル類; Nーメチルピロリドン、N, Nージメチルホルムアミド等のアミド類;ジメチルスルホキシド、スルホラン等の硫黄化合物;アセトニトリル等のニトリル類、或いはそれらの混合物が挙げられる。
<製造法5>

15

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{6} R^{6} R^{13} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} $R^$

(式中、R¹、R²、R³、R⁴、R⁵、R⁶、R¹²、R¹³及びZ¹は前記と同じ意味を表す。)

5 (工程25)

一般式[47]で表される本発明化合物は、一般式[41]で表される本発明化合物を溶媒中、酸と反応させることにより製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [41]で表される本発明化合物1当量に対 10 して、酸 1~10 当量が望ましいが、反応の状況に応じて任意に変化させることが できる。

酸及び溶媒としては、製造法2と同様なものが挙げられる。

<製造法6>

15

(式中、Y、R¹、R²、R³、R⁴、R⁵、R⁶、R¹⁰、L¹及び α は前記と同じ意味を表す。この場合、Yは置換基群 α より選択される、 $1\sim$ 5個までの同一又は相異な

る基で置換されていてもよい。)

(工程26)

5

一般式[49]で表される本発明化合物は、一般式[48]で表される本発明化合物を溶媒中、塩基存在下で一般式[30]で表される化合物と反応させることにより製造することができる。

この反応は通常、反応温度0~150℃で10分~24時間行う。

反応に供される試剤の量は一般式 [48]で表される本発明化合物 1 当量に対して、塩基 $1\sim1.2$ 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

10 塩基及び溶媒としては、製造法3と同様なものが挙げられる。

<製造法7>

$$R^{1}$$
 R^{4} R^{6} R^{1} R^{5} R^{2} R^{3} R^{4} R^{6} R^{1} R^{5} R^{5} R^{5} R^{6} R^{1} R^{5} R^{6} R^{6} R^{1} R^{6} $R^{$

15 (式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び α は前記と同じ意味を表し、 R^{18} はアルキル基、置換されていてもよいベンジル基及び置換されていてもよいフェニル基を表す。この場合、Yは置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

(工程27)

20 一般式[51]で表される本発明化合物は、一般式[50]で表される本発明化 合物を、水又は水と混合した溶媒中、塩基存在下又は非存在下で加水分解すること により製造することができる。 この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [50]で表される本発明化合物 1 当量に対して、塩基を使用する場合 $1\sim2$ 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

5 塩基としては、例えば炭酸カリウム、水素化ナトリウム、水酸化ナトリウム等の 無機塩基、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基 が挙げられる。

水と混合する溶媒としては、例えばメタノール、エタノール等のアルコール類; テトラヒドロフラン等のエーテル類、アセトン、メチルイソブチルケトン等のケト 20 ン類; N, Nージメチルホルムアミド等のアミド類; ジメチルスルホキシド、スルホラン等の硫黄化合物; アセトニトリル等のニトリル類、或いはそれらの混合物が挙げられる。

<製造法8>

15

20

(式中、Y、R¹、R²、R³、R⁴、R⁵、R⁶及び α は前記と同じ意味を表し、R¹⁹は水素原子又はアルキル基を表す。R²⁰はアルキル基を表す。この場合、Yは置換基群 α より選択される、 $1\sim$ 5個までの同一又は相異なる基で置換されていてもよい。)

(工程28)

一般式[54]で表される本発明化合物は、一般式[52]で表される本発明化

合物を溶媒中、塩基存在下で、一般式[53]で表される化合物と反応することにより製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、一般式[52]で表される本発明化合物1当量に対 して、一般式[53]で表される化合物1~5 当量、塩基1~10 当量が望ましい が、反応の状況に応じて任意に変化させることができる。

塩基としては、例えば炭酸カリウム、炭酸ナトリウム等の金属炭酸塩類;酢酸カリウム、酢酸ナトリウム等の金属酢酸塩類、或いはトリエチルアミン、ジメチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。

NH₂OR²⁰ の塩としては、NH₂OR²⁰ の塩酸塩又は NH₂OR²⁰ の硫酸塩等が挙げられる。

溶媒としては、例えばメタノール、エタノール等のアルコール類;テトラヒドロフラン等のエーテル類;N,Nージメチルホルムアミド等のアミド類、水或いはそ15 れらの混合物が挙げられる。

<製造法9>

10

$$R^1$$
 R^2 R^3 R^4 R^6 R^6 R^5 R^5 R^5 R^5 R^6 $R^$

$$R^{1}$$
 R^{21} R^{22} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{5} R^{5} R^{5} R^{6} R

ļ.

(式中、Y、R¹、R²、R³、R⁴、R⁵、R⁶及び α は前記と同じ意味を表し、R²¹及びR²²は水素原子又はアルキル基を表す。この場合、Yは置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

5 (工程29、30)

10

一般式[58]で表される本発明化合物は、一般式[51]で表される本発明化合物を溶媒中又は無溶媒中、ハロゲン化剤と反応させて一般式[56]で表される本発明化合物を製造した後(工程29)、一般式[56]で表される本発明化合物を溶媒中又は無溶媒中、一般式[57]で表される化合物と反応させることにより(工程30)、製造することができる。

工程29の反応は、通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、一般式 $[5\ 1]$ で表される本発明化合物 1 当量に対して、ハロゲン化剤 $1\sim100$ 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

15 ハロゲン化剤としては、例えば塩化チオニル、オキサリルクロリド等が挙げられる。

溶媒としては、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類、或いはベンゼン、トルエン等の芳香族炭化水素類が挙げられる。

20 工程30の反応は、通常、反応温度0~100℃で10分~24時間行う。 反応に供される試剤の量は、一般式[56]で表される本発明化合物1当量に対 して、一般式[57]で表される化合物2~100当量が望ましいが、反応の状況に 応じて任意に変化させることができる。

溶媒としては、例えば工程29の反応と同様なものが挙げられる。

25 <製造法10>

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{6} R^{5} R^{5} R^{12} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{6} R^{1} $R^$

(式中、Z¹、R¹、R²、R³、R⁴、R⁵、R⁶、R¹²及びX³は前記と同じ意味を表す。) 一般式 [60] で表される本発明化合物は、一般式 [39] で表される本発明化合物を溶媒中、化合物 [59] で表される化合物と反応させることにより製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、一般式[39]で表される本発明化合物1当量に対 10 して、化合物[59]で表される化合物1~2当量が望ましいが、反応の状況に応 じて任意に変化させることができる。

溶媒としては、例えばジオキサン、テトラヒドロフラン等のエーテル類;ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類;N,Nージメチルアセトアミド、N,Nージメチルホルムアミド又はNー15 メチルー2ーピロリジノン等のアミド類;ジメチルスルホキシド又はスルホラン等の硫黄化合物;アセトン又は2ーブタノン等のケトン類;アセトニトリル等のニトリル類;水、或いはこれらの混合物が挙げられる。

<製造法11>

5

$$R^{28}$$
-OH R^{28} -OH $R^$

(式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び α は前記と同じ意味を表し、 R^{23} はアルキル基、ハロアルキル基、シクロアルキル基、シクロアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルコキシカルボニルアルキル基、置換されていてもよいヘテロアルキル基、又は置換されていてもよいベンジル基を表す。この場合、Yは置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

(工程32)

10 一般式 [62] で表される本発明化合物は、一般式 [48] で表される本発明化合物を溶媒中、アゾ化合物及びトリフェニルホスフィンの存在下、一般式 [61] で表される化合物と反応させる、公知の方法(Synthesis,1981,1-28) に準じて製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

15 反応に供される試剤の量は、一般式 [48]で表される本発明化合物 1 当量に対して、一般式 [61]で表される化合物 1~1.5 当量、アゾ化合物 1~1.5 当量、トリフェニルホスフィン 1~1.5 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

溶媒としては、例えばジオキサン、テトラヒドロフラン等のエーテル類;ジクロ ロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化 水素類; N, Nージメチルアセトアミド、N, Nージメチルホルムアミド又はNーメチルー2-ピロリジノン等のアミド類;ジメチルスルホキシド又はスルホラン等

の硫黄化合物;ベンゼン、トルエン又はキシレン等の芳香族炭化水素類;アセトニトリル等のニトリル類、或いはこれらの混合物等が挙げられる。

アゾ化合物としては、例えばアゾジカルボン酸ジエチル又はアゾジカルボン酸ジイソプロピル等が挙げられる。

5 <製造法12>

(式中、 X^3 、n、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{10} 及び α は前記と同じ意味を 10 表し、 Z^2 は酸素原子、硫黄原子又は $N-R^{17}$ を表し、 R^{17} は水素原子又は R^{10} を表し、mは $1\sim4$ の整数を表す。この場合、ピラゾール環の3位の炭素原子は、置換 基群 α より選択される基で置換されていてもよい。)

(工程33)

一般式[64]で表される本発明化合物は、一般式[63]で表される本発明化 15 合物を溶媒中、塩基存在下で反応させることにより製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [63]で表される本発明化合物 1 当量に対して、塩基 1~3 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

20 塩基及び溶媒としては、製造法3と同様なものが挙げられる。

次に、実施例をあげて本発明化合物の製造法、製剤法及び用途を具体的に説明する。尚、本発明化合物の製造中間体の製造法も併せて記載する。

<実施例1>

3-(5-クロロー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5-クロロメチルー5-メチルー2-イソオキサゾリン(本発明化合物番号1)の製造

<実施例2>

20

3-(5-クロロー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルスルホニル)-5-クロロメチルー5-メチルー2-イソオキサゾリン(本発明化合物番号2)の製造

25 反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜

硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次 洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、析出した結晶 をヘキサンで洗浄し、白色粉末(融点 $114\sim116$ °C)の3-(5-クロロ-1ーメチル-3-トリフルオロメチル-1 H-ピラゾール-4-イルメチルスルホ ニル) -5-クロロメチル-5-メチル-2-イソオキサゾリン2.8 g(収率76.0%)を得た。

¹H-NMR : (CDCl₃/TMS, δ (ppm)): 4.63(2H,s), 3.96(3H,s), 3.62(2H,q), 3.32 (2H, ABq, J=13.4, Δ ν =164.1Hz), 1.63(3H,s)

<実施例3>

5

15

20

10 3-(1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピ ラゾール-4-イルメチルチオ) -5-クロロメチル-5-メチル-2-イソオ キサゾリン(本発明化合物番号3)の製造

(1ーtertーブチルー5ークロロー3ートリフルオロメチルー1Hーピラ ゾールー4ーイル)ーメタンチオール2 $4.2 \, \mathrm{g} (7\, 0.9 \, \mathrm{s} \, \mathrm{J} \, \mathrm{T} \, \mathrm{J} \, \mathrm{T} \, \mathrm{J} \,$

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.24(2H,s), 3.55(2H,q), 3.02(2H,ABq, J=16.7, $\Delta \nu = 110.5$ Hz), 1.71(9H,s), 1.57(3H,s)

<実施例4>

3-(5-クロロー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ) -5-クロロメチルー5-メチルー2-イソオキサゾリン(本発明化合物番号4)の製造

25%臭化水素酸酢酸溶液100mlに3-(1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ) -5-クロロメチル-5-メチル-2-イソオキサゾリン22.0g(54.4ミリモル)を加え、室温で2時間攪拌し、さらに40℃で1時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水で洗浄した後、無水硫酸マグネシウムで乾燥した。濾過後、溶媒を減圧留去し、析出した結晶をヘキサンで洗浄し、乳白色粉末(融点105~107℃) の3-(5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ) -5-クロロメチルー5-メチル-2-イソオキサゾリン17.7g(収率93.7%)を得た。

¹H-NM R (CDCl₃/TMS, δ (ppm)): 4.26(2H,s), 3.56(2H,q), 3.03(2H,ABq, J=16.7, $\Delta \nu = 111.8$ Hz), 1.56(3H,s)

<実施例5>

15

20

25

3-(1-エチルー5-クロロー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ) -5-クロロメチルー5-メチルー2-イソオキサゾリン (本発明化合物番号5) 及び3-(1-エチルー3-クロロー5-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ) -5-クロロメチルー5-メチルー2-イソオキサゾリン (本発明化合物番号6) の製造

時間攪拌した。反応終了確認後、反応溶液を水にあけ、酢酸エチルで抽出した。有機層をクエン酸水溶液、飽和食塩水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、濾過後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィーで精製し、3ー(1ーエチルー5ークロロー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ークロロメチルー5ーメチルー2ーイソオキサゾリン0.91g(収率56.0%)、3ー(1ーエチルー3ークロロー5ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ークロロメチルー5ーメチルー2ーイソオキサゾリン0.45g(収率28.0%)を得た。

<実施例6>

10 3-(1-エチルー5-クロロー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルスルホニル)-5-クロロメチルー5-メチルー2-イソオキサゾリン(本発明化合物番号7)の製造

3-(1-エチルー5-クロロー3-トリフルオロメチルー1Hーピラゾールー4-イルメチルチオ) -5-クロロメチルー5-メチルー2-イソオキサゾリン
15 0.91g(2.4ミリモル)のクロロホルム40m1溶液に、氷冷下、mークロロ過安息香酸(70%)1.31g(5.3ミリモル)を加え、室温で20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、析出した結晶20 をジイソプロピルエーテルで洗浄し、白色粉末(融点123~124℃)の3-(1-エチルー5-クロロー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル) -5-クロロメチルー5-メチルー2-イソオキサゾリン0.81g(収率82.0%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.64(2H,s), 4.29(2H,q), 3.62(2H,q),

25 3.30(2H,ABq, J=17.8, $\Delta \nu = 125.6$ Hz), 1.55 \sim 1.50(6H,m)

<実施例7>

3-(4-エトキシー6-トリフルオロメチルピリミジン-5-イルメチルチオ)-5-クロロメチル-5-メチル-2-イソオキサゾリン (本発明化合物番号8)の製造

3 ーメチルスルホニルー 5 クロロメチルー 5 ーメチルー 2 ーイソオキサゾリン 4.6 g(21.6 ミリモル)のDMF 7 0 m 1 溶液に、水硫化ナトリウム水和物 3.4 g(純度 7 0 %、4 2.3 ミリモル)を加え 2 時間攪拌した。その後、炭酸カリウム 3.0 g(21.6 ミリモル)、ロンガリット 3.3 g(21.6 ミリモル)及び 5 ープロモメチルー 4 ーエトキシー 6 ートリフルオロメチルピリミジンを加え、さらに室温で 2 1 時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機相を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残査をシリカゲルカラムクロマトグラフィー(溶媒系へキサンー酢酸エチル)で精製し、3 ー(4 ーエトキシー 6 ートリフルオロメチルピリミジンー 5 ーイルメチルチオ) ー 5 ークロロメチルー 5 ーメチルー 2 ーイソオキサゾリン 1.9 g(収 率 3 0.3 %)を得た。

¹H-NM R (CDCl₈/TMS, δ (ppm)): 8.78(1H,s), 4.57(2H,q), 4.45(2H,s), 3.57(2H, q), 3.03(2H,ABq, J=16.8, Δ ν =114.3Hz), 1.58(3H,s), 1.45(3H,t)

<実施例8>

25

3-(4-エトキシー6-トリフルオロメチルピリミジンー5-イルメチルスル20 ホニル)-5-クロロメチルー5-メチルー2-イソオキサゾリン(本発明化合物番号9)の製造

3-(4-エトキシー6-トリフルオロメチルピリミジンー5-イルメチルチオ)-5-クロロメチルー5-メチルー2-イソオキサゾリン1.9g(5.1ミリモル)のクロロホルム30m1溶液に、氷冷下、m-クロロ過安息香酸(70%)3.2g(12.9ミリモル)を加え、室温にて5時間攪拌した。反応終了後、反応溶液を

¹H-NMR (CDCl₃/TMS, δ (ppm)): 8.87(1H,s), 5.03(2H,s), 4.59(2H,q), 3.64(2H, q), 3.33(2H,Abq,J=17.7, Δ ν =125.9Hz), 1.64(3H,s), 1.46(3H,t)

<実施例9>

5

5-クロロメチルー3ー(1-エチルー5-フルオロー3ートリフルオロメチルー1H-ピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン(本発明化合物番号10)の製造

5-クロロメチルー5-メチルー3-メチルスルホニルー2-イソオキサゾリ ン9. 1 g (42. 9 ミリモル) のN、Nージメチルホルムアミド 5 0 m 1 溶液中 15 に、室温にて水硫化ナトリウム水和物6.9g(純度70%、85.8ミリモル) を加え2時間攪拌した。その後、無水炭酸カリウム5.9g(42.9ミリモル)、 ロンガリット6.6g(42.9ミリモル) 及び参考例20にて製造した4-ブ ロモメチルー1ーエチルー5ーフルオロー3ートリフルオロメチルー1Hーピラ ゾールの粗生成物(42.9ミリモル相当)を加え、さらに室温にて30分攪拌し 20 た。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を 水で洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣 をシリカゲルカラムクロマトグラフィーで精製し、5-クロロメチルー3-(1-エチルー5-フルオロー3-トリフルオロメチルー1H-ピラゾールー4-イル メチルチオ) -5-メチル-2-イソオキサブリン10.3g(収率66.9%) 25 を得た。

¹H-NMR(CDCl₃/TMS, δ (ppm)): 4.15~4.08(4H,m), 3.54(2H,q), 3.01(2H, ABq, J=16.7, $\Delta \nu$ =110.8Hz), 1.55(3H,s), 1.47(3H,t)

<実施例10>

5 ークロロメチルー3ー(1ーエチルー5ーフルオロー3ートリフルオロメチル 5 ー1Hーピラゾールー4ーイルメチルスルホニル) ー5ーメチルー2ーイソオキ サゾリン(本発明化合物番号11)の製造

5-クロロメチルー3-(1-エチルー5-フルオロー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ) ー5ーメチルー2ーイソオキサゾリン0.72g(2.0ミリモル)のクロロホルム10ml溶液中に、氷冷下、mークロロ過安息香酸1.23g(純度70%、5.0ミリモル)を加え、さらに室温にて20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をnーヘキサンで洗浄し、白色粉末(融点73~75℃)の5-クロロメチルー3ー(1-エチルー5-フルオロー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル) ー5ーメチルー2ーイソオキサゾリン0.64g(収率82.1%)を得た。

¹H-NMR(CDCl₃/TMS, δ (ppm)): 4.56(2H,s), 4.17(2H,q), 3.61(2H,q), 3.31(2H, ABq, J=17.8, Δ ν =123.6Hz), 1.58(3H,s), 1.50(3H,t)

20 < 実施例 1 1 >

5 ークロロメチルー3 ー (1 ーエチルー5 ーメトキシー3 ートリフルオロメチルー1 Hーピラゾールー4 ーイルメチルチオ) – 5 ーメチルー2 ーイソオキサゾリン (本発明化合物番号12) の製造

5 ークロロメチルー3 ー (1 ーエチルー5 ーフルオロー3 ートリフルオロメチル 25 ー1 Hーピラゾールー4 ーイルメチルチオ) ー5 ーメチルー 2 ーイソオキサゾリン 5.4g(15.0ミリモル)のメタノール30ml溶液中に、室温にてナトリウムメトキシド4.3g(28%メタノール溶液、22.5ミリモル)を加え、さらに8時間加熱環流した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5ークロロメチルー3ー(1ーエチルー5ーメトキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン3.3g(収率59.1%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.26(2H,s), 4.06(5H,m), 3.55(2H, q), 3.02(2H, 10 ABq, J=16.9, Δ ν =110.5Hz), 1.56(3H,s), 1.41(3H,t)

<実施例12>

5ークロロメチルー3ー(1ーエチルー5ーメトキシー3ートリフルオロメチル -1Hーピラゾールー4ーイルメチルスルホニル)-5ーメチルー2ーイソオキサ ゾリン(本発明化合物番号13)の製造

5 ークロロメチルー3ー(1ーエチルー5ーメトキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリンの、74g(2.0ミリモル)のクロロホルム10m1溶液中に、氷冷下、mークロロ過安息香酸1.24g(純度70%、5.0ミリモル)を加え、さらに室温にて20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をローヘキサンで洗浄し、白色粉末(融点139~140℃)の5ークロロメチルー3ー(1ーエチルー5ーメトキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル)ー5ーメチルー2ーイソオキサゾリンの、72(収率89.2%)を得た。

PCT/JP02/06183

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.60(2H,s), 4.13 \sim 4.06(5H,m), 3.30(2H, ABq, J=17.8, Δ ν =122.8Hz), 1.58(3H,s), 1.46(3H,t)

<実施例13>

5-クロロメチルー3-(1-エチルー5-メチルチオー3-トリフルオロメチ 5 ルー1Hーピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリ ン(本発明化合物番号14)の製造

5-クロロメチルー3-(1-エチルー5-フルオロー3-トリフルオロメチル -1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン 1.08g(3.0ミリモル)のN, N-ジメチルホルムアミド10m1溶液中に、 空間にてメチルメルカプタンナトリウム4-21g(15%水溶液-Q-0ミリエ

室温にてメチルメルカプタンナトリウム4.21g(15%水溶液、9.0ミリモル)を加え、さらに室温にて一夜攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、5ークロロメチルー3ー(1ーエチルー5ーメチルチオー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ) -5ーメチルー2ーイソオキサゾリンの粗生成物を得た。

<実施例14>

10

15

5 ークロロメチルー3 ー (1 ーエチルー5 ーメチルスルホニルー3 ートリフルオロメチルー1 Hーピラゾールー4 ーイルメチルスルホニル) ー5 ーメチルー2 ーイソオキサゾリン (本発明化合物番号15) の製造

5ークロロメチルー3ー(1ーエチルー5ーメチルチオー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリンの粗生成物(3.0ミリモル相当)のクロロホルム30m1溶液中に、氷冷下、mークロロ過安息香酸3.74g(純度70%、15.0ミリモル)を加え、さらに室温にて20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで
 抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウ

ム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。 減圧下溶媒を留去し、析出した結晶をn-ヘキサンで洗浄し、白色粉末(融点11 $3\sim114\%$)の5-クロロメチル-3-(1-エチル-5-メチルスルホニル-3-トリフルオロメチル-1 H-ピラゾール-4-イルメチルスルホニル)-5-メチル-2-イソオキサゾリン1.15(収率84.8%)を得た。

¹H-NMR(CDCl₃/TMS, δ (ppm)): 5.08(2H,bR), 4.60(2H,q), 3.64(2H,q),

3.41(3H,s), $3.36(2H, ABq, J=17.5, \Delta \nu=163.1Hz)$, 1.65(3H,s), 1.60(3H,t) <実施例 1 5 >

5-クロロメチルー3-(5-シアノ-1-エチルー3-トリフルオロメチルー10 1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン(本発明化合物番号16)の製造

 $5-クロロメチルー3-(1-エチルー5-フルオロー3-トリフルオロメチルー1H-ピラゾールー4ーイルメチルチオ)-5-メチルー2-イソオキサゾリン1.08g(3.0ミリモル)のN, <math>\dot{N}-\ddot{\nu}$ メチルホルムアミド10m1溶液中に、

15 室温にてシアン化ナトリウム 0.3 0 g (6.0 ミリモル)を加え、さらに50℃にて10時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5-クロロメチルー3-(5-シアノー1-エチルー3-トリフルオロメチルー1
 20 Hーピラゾールー4ーイルメチルチオ)-5-メチルー2-イソオキサゾリン1.

Hーピラゾールー4ーイルメチルチオ) -5-メチル-2-イソオキサゾリン1. 10g(収率:定量的)を得た。

<実施例16>

WO 03/000686

5

5-クロロメチルー3-(5-シアノ-1-エチルー3-トリフルオロメチルー 1H-ピラゾールー4-イルメチルスルホニル)-5-メチルー2-イソオキサゾ 25 リン(本発明化合物番号17)の製造 5

10

5ークロロメチルー3ー(5ーシアノー1ーエチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン1.10g(3.0ミリモル)のクロロホルム20m1溶液中に、氷冷下、mークロロ過安息香酸1.85g(純度70%、7.5ミリモル)を加え、さらに室温にて20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をnーヘキサンで洗浄し、白色粉末(融点76~78℃)の5ークロロメチルー3ー(5ーシアノー1ーエチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル)ー5ーメチルー2ーイソオキサゾリン1.15(収率84.8%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.73(2H,s), 4.45(2H,q), 3.63(2H,q), 3.35(2H, ABq, J=17.6, $\Delta \nu$ =129.6Hz), 1.59 \sim 1.46(6H,m)

<実施例17>

15 5-クロロメチルー3-(1-エチルー5-ヒドロキシー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン(本発明化合物番号18)の製造

5-クロロメチルー3-(1-エチルー5-メトキシー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン20 2.5g(6.7ミリモル)のジクロロメタン30m1溶液中に、一60℃にて三臭化ホウ素10m1(2モル/1ジクロロメタン溶液、20.2ミリモル)を加え、さらに室温にて一夜攪拌した。反応終了後、反応溶液を氷水中に注ぎクロロホルムで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5-クロロメチルー3-(1-エチルー5-ヒドロキシー3-トリフ

ルオロメチルー1Hーピラゾールー4ーイルメチルチオ)-5-メチルー2-イソオキサゾリン1. 6g(収率66. 7%)を得た。

<実施例18>

 5-クロロメチルー3-(5-エトキシー1-エチルー3-トリフルオロメチル
 5 -1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン (本発明化合物番号19)の製造

5-クロロメチルー3-(1-エチルー5-ヒドロキシー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン1.6g(4.5ミリモル)のテトラヒドロフラン20m1溶液中に、室温にてエタノール0.3g(5.4ミリモル)及びトリフェニルホスフィン1.4g(5.4ミリモル)を加えた。さらに氷冷下、反応溶液中にアゾジカルボン酸ジイソプロピル1.1g(5.4ミリモル)を加え1時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5-クロロメチルー3-(5-エトキシー1-エチルー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン1.5g(収率86.8%)を得た。

<実施例19>

25

 5-クロロメチルー3ー(5-エトキシー1-エチルー3ートリフルオロメチル
 20 -1H-ピラゾールー4ーイルメチルスルホニル)-5-メチルー2ーイソオキサ ゾリン(本発明化合物番号20)の製造

5-クロロメチルー3-(5-エトキシー1-エチルー3-トリフルオロメチルー1H-ピラゾールー4ーイルメチルチオ)-5-メチルー2ーイソオキサゾリン1.5g(3.9ミリモル)のクロロホルム<math>10m1溶液中に、氷冷下、m-クロロ過安息香酸2.4g(純度70%、9.7ミリモル)を加え、さらに室温にて2

〇時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をジイソプロピルエーテルで洗浄し、白色粉末(融点 $6.7 \sim 6.9 \, ^{\circ} \! ^$

¹H-NMR(CDCl₈/TMS, δ (ppm)): 4.58(2H,s), 4.32(2H,q), 4.09(2H,q),

3.61(2H,q), 3.28(2H, ABq, J=17.8, $\Delta \nu$ =121.7Hz), 1.62(3H,s), 1.48 \sim 1.43(6H,m)

10 < 実施例 2 0 >

5

5 ークロロメチルー3 ー(5 ーフルオロー1 ーメチルー3 ートリフルオロメチルー1 Hーピラゾールー4 ーイルメチルチオ) ー5 ーメチルー2 ーイソオキサゾリン(本発明化合物番号21)の製造

5 ークロロメチルー 5 ーメチルー 3 ーメチルスルホニルー 2 ーイソオキサゾリ ン8.5g(40.0ミリモル)のN、Nージメチルホルムアミド40m1溶液中に、室温にて水硫化ナトリウム水和物6.4g(純度70%、80.0ミリモル)を加え1時間攪拌した。その後、氷冷下にて無水炭酸カリウム6.6g(48.0ミリモル)、ロンガリット7.4g(48.0ミリモル)及び4ーブロモメチルー5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾール10.4g(40.0ミリモル)を加え、さらに氷冷下にて30分攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水で洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、淡黄色粘稠性液体(屈折率:n_p²⁰=1.4974)の5ークロロメチルー3ー(5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾ

リン11.8g(収率85.5%)を得た。

¹H-NM R (CDCl₃/TMS, δ (ppm)): 4.15(2H,s), 3.80(3H,s), 3.54(2H,q), 3.01(2H, ABq, J=16.8, Δ ν =147.8Hz), 1.53(3H,s)

<実施例21>

5 5ークロロメチルー3ー(5ーメトキシー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン(本発明化合物番号22)の製造

5-クロロメチルー3-(5-フルオロー1-メチルー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)-5-メチルー2ーイソオキサゾリン
10 1.0g(2.9ミリモル)のメタノール10m1溶液中に、室温にてナトリウムメトキシド0.9g(28%メタノール溶液、4.4ミリモル)を加え、さらに5時間加熱環流した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5-クロロメチルー3-(5-メトキシー1-メチルー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)-5-メチルー2ーイソオキサゾリン3.3g(収率:定量的)を得た。

¹H-NM R (CDCl₃/TMS, δ (ppm)): 4.26(2H,s), 4.06(3H,s), 3.72(3H,s), 3.55(2H,q), 3.02(2H, ABq, J=16.7, $\Delta \nu$ =111.0Hz), 1.56(3H,s)

20 < 実施例 2 2 >

5-クロロメチルー3-(5-ヒドロキシー1-メチルー3ートリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5-メチルー2-イソオキサゾリン(本発明化合物番号23)の製造

5 ークロロメチルー3ー(5 ーメトキシー1 ーメチルー3 ートリフルオロメチル 25 ー1 Hーピラゾールー4 ーイルメチルチオ) ー5 ーメチルー2 ーイソオキサゾリン 10.0g(28.0ミリモル)のジクロロメタン30m1溶液中に、0℃にて三臭化ホウ素28.0m1(2モル/1ジクロロメタン溶液、55.9ミリモル)を加え、さらに室温にて30分間攪拌した。反応終了後、反応溶液を氷水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をn-へキサンで洗浄し、淡桃色粉末(融点111~112℃)の5-クロロメチルー3-(5-ヒドロキシー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4ーイルメチルチオ)-5-メチルー2-イソオキサゾリン8.4g(収率87.2%)を得た。

<実施例23>

WO 03/000686

5

15

20

25

5 ークロロメチルー3 ー (1ーメチルー5ーisoープロポキシー3ートリフル オロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオ キサゾリン(本発明化合物番号24)の製造

5ークロロメチルー3ー(5ーヒドロキシー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン1.0g(2.9ミリモル)のN,Nージメチルホルムアミド10ml溶液中に、室温にて無水炭酸カリウム0.5g(3.5ミリモル)を加えた。さらに、室温にて反応溶液中にヨウ化イソプロピル0.6g(3.5ミリモル)を加え30分間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5ークロロメチルー3ー(1ーメチルー5ーisoープロポキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン0.

WO 03/000686 PCT/JP02/06183

119

5g(収率45.0%)を得た。

<実施例24>

 $5-クロロメチルー3-(1-メチルー5-iso_ープロポキシー3-トリフル オロメチルー1Hーピラゾールー4ーイルメチルスルホニル)-5-メチルー2ーイソオキサゾリン(本発明化合物番号25)の製造$

5ークロロメチルー3ー(1ーメチルー5ーisoープロポキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5ーメチルー2ーイソオキサゾリン0.5g(1.2ミリモル)のクロロホルム10ml溶液中に、氷冷下、mークロロ過安息香酸0.65g(純度70%、2.64ミリモル)を加え、さらに室温にて20時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、水、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、析出した結晶をジイソプロピルエーテルで洗浄し、淡黄色粘稠性液体の5ークロロメチルー3ー(1ーメチルー5ーisoープロポキシー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル)ー5ーメチルー2ーイソオキサゾリン0.49g(収率90.0%)を得た。

 1 H-NMR(CDCl₈/TMS, δ (ppm)): 4.64(1H,m), 4.51(2H,s), 3.76(3H,s), 3.61(2H,q), 3.24(2H, ABq, J=17.8, Δ ν =116.9Hz), 1.61(3H,s), 1.40(6H,d) 実施例 1-2 4の方法に準じて製造した化合物を表 5 8 \sim 6 0 に示す。

表58

化合物番号	桦造式	融点(℃) 又は 屈折率(n _p ²⁰)
26	CICH ₂ Me CF ₃ CF ₃ N SO ₂ -CH ₂ N CH ₂ OMe	111-112
27	CICH ₂ Me CF ₃ N SO ₂ -CH ₂ N Cl Pr-i	130-132
28	CICH ₂ Me CF ₃ CF ₃ N SO ₂ -CH ₂ N Cl Bu-t	122-124
29	CICH ₂ Me Cl Cl N SO ₂ -CH ₂ N Et	122-123
30	ClCH ₂ Cl Cl N SO ₂ -CH ₂ N Pr-i	155-156
31	ClCH ₂ Me Cl N SO ₂ -CH ₂ N CHF ₂	117-118
32	CICH ₂ O SO ₂ -CH ₂ N CHF ₂	137-138
33	CICH ₂ CI O _N SO ₂ -CH ₂ N CH ₂ OMe	114-116
34	CICH ₂ CI ON SO ₂ -CH ₂ CH ₂ CH ₂ Pr-c	125-126
35	CICH ₂ Me CF ₃ N SO ₂ -CH ₂ N CH ₂ Pr-c	77-78

表59

化合物番号	桦造式	融点(℃) 又は 屈折率(n _p ²º)
36	CICH ₂ CI O _N SO ₂ -CH ₂ N CF ₃ CH ₂ C≡CH	114-115
37	CICH ₂ Me CF ₃ CF ₃ N CH ₂ C≡CH	125-126
38	CICH ₂ Me CF ₃ ON SO ₂ CH ₂ N Me	1.4828
39	CICH ₂ CF ₃ O CO ₂ CH ₂ N CN Me	77-79
40	CICH ₂ CF ₃ ON SO ₃ -CH ₂ N OMe Me	139-140
41	CICH ₂ Me ON SO ₂ -CH ₂ N CHF ₂	101-103
42	CICH ₂ Me F ₃ C Me	123-124
43	CICH ₂ F ₃ C N SO ₂ -CH ₂ N Me	106-107
44	CICH ₂ F ₃ C F ₃ C N SO ₂ -CH ₂ N Me	測定不可
45	CICH ₂ F ₃ C N SO ₂ -CH ₂ N F ₂ HCO	測定不可

表60

化合物番号	构造式	融点(℃) 又は 屈折率(n _D ²⁰)
46	CICH ₂ F ₃ C F ₃ C N Me	測定不可
47	CICH ₂ F ₃ C N SO ₂ -CH ₂ N Et	88-90
48	$\begin{array}{c} \text{CICH}_2 \\ \text{O}_{\text{N}} \\ \text{SO}_2 \text{-CH}_2 \\ \text{CI} \end{array} \begin{array}{c} \text{N} \\ \text{Me} \end{array}$	80-81
49	CICH ₂ Me F ₃ C N SO ₂ -CH ₂ N Me	1.5006

(中間体の製造例)

<参考例1>

5 1ーメチルー3ートリフルオロメチルー1Hーピラゾールー5ーオールの製造トリフルオロアセト酢酸エチルエステル92.1g(0.5モル)のエタノール500m1溶液にモノメチルヒドラジン23.0g(0.5モル)及び濃塩酸5m1を加えた後、2日間加熱還流した。反応終了後、溶媒の大部分を減圧留去し、残渣を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をnーヘキサンで洗浄し、白色粉末の1ーメチルー3ートリフルオロメチルー1Hーピラゾールー5ーオール60.0g(収率72.2%)を得た。

<参考例2>

5 ークロロー1 ーメチルー 3 ートリフルオロメチルー1 Hーピラゾールー4 ー 15 カルボアルデヒドの製造

N,N-ジメチルホルムアミド60.0g(0.76モル)に、氷冷下、オキシ塩化

リン360g(2.31モル)を加えた。次に、室温で1ーメチルー3ートリフルオロメチルー1Hーピラゾールー5ーオール64.0g(0.385モル)を加えた後、1時間加熱還流した。反応終了後、氷冷下、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、白色結晶の5ークロロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド60.4g(収率73.4%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 9.96(1H,d), 3.96(3H,s)

10 <参考例3>

5

15

(5-クロロー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4-イル)-メタノールの製造

5-クロロ-1-メチル-3-トリフルオロメチル-1H-ピラゾール-4-カルボアルデヒド10.0g(47.0ミリモル)のメタノール100m1溶液を0℃に冷却し、水素化ホウ素ナトリウム2.1g(56.5ミリモル)を徐々に加えた。さらに室温で2時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、(<math>5-クロロ-1-メチル-3-トリフルオロメチル-1H-ピラゾール-4-イル)-メタノール8.3g(収率82.2%)を得た。

20 <参考例4>

4ーブロモメチルー5ークロロー1ーメチルー3ートリフルオロメチルー1H ーピラゾールの製造

(5-クロロー1-メチルー3ートリフルオロメチルー1Hーピラゾールー4ーイル)ーメタノール8.3g(38.7ミリモル)のジエチルエーテル100m1溶
 液を-10℃に冷却し、三臭化リン12.6g(46.4ミリモル)を加えた。さら

に室温で1時間攪拌した。反応終了後、反応溶液を氷水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、4ーブロモメチルー5ークロロー1ーメチルー3ートリフルオロメチルー1Hーピラゾール10.7g(収率99.9%)を得た。

5 <参考例5>

1-tertーブチル-3-トリフルオロメチル-1H-ピラゾール-5-オールの製造

トリフルオロアセト酢酸エチルエステル552.3g(3.0モル)のエタノール1500m1溶液にteRtーブチルヒドラジン塩酸塩373.8g(3.0モル)及び10濃塩酸50m1を加えた後、2日間加熱還流した。反応終了後、溶媒の大部分を減圧留去し、残渣を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をnーヘキサンで洗浄し、白色粉末の1-tertーブチル-3-トリフルオロメチル-1H-ピラゾール-5-オール369.0g(収率59.1%)を得た。

15 <参考例6>

1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾ ール-4-カルボアルデヒドの製造

N, Nージメチルホルムアミド87.7g(1.2 モル)に、氷冷下、オキシ塩化リン462.0g(3.0モル)を加えた。次に、室温で1ーtertープチルー3ート20 リフルオロメチルー1Hーピラゾールー5ーオール208.2g(1.0モル)を加えた後、10時間加熱還流した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を水、5%水酸化ナトリウム水溶液及び水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン:酢酸エチル混合溶媒)で精製し、白色25 結晶の1ーtertーブチルー5ークロロー3ートリフルオロメチルー1Hーピ

ラゾール-4-カルボアルデヒド131.5g(収率21.7%)を得た。

¹H-NMR: (CDCl₃/TMS, δ (ppm)): 9.97(1H,d), 1.76(9H,s)

<参考例7>

(1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾ5 ールー4-イル)-メタノールの製造

1 - t e r t - ブチル-5 - クロロ-3 - トリフルオロメチル-1H-ピラゾール-4 - カルボアルデヒド39.9 g(156.9ミリモル)のメタノール300 m 1溶液を0℃に冷却し、水素化ホウ素ナトリウム6.5 g(172.6ミリモル)を徐々に加えた。さらに室温で3時間攪拌した。反応終了後、反応溶液を水中に注ぎ10 酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、(1 - t e r t - ブチル-5 - クロロ-3 - トリフルオロメチル-1H-ピラゾール-4-イル)-メタノール37.7 g(収率93.6%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 4.60(2H,d), 1.72(9H,s), 1.58(1H,t)

15 <参考例8>

4ーブロモメチルー1ーtertーブチルー5ークロロー3ートリフルオロメ チルー1Hーピラゾールの製造

(1-tert-ブチルー5-クロロー3-トリフルオロメチルー1Hーピラゾールー4-イル)ーメタノール9.2 g(35.7ミリモル)のジエチルエーテル100 m1溶液を-10℃に冷却し、三臭化リン11.6 g(42.9ミリモル)を加えた。 さらに室温で一夜攪拌した。反応終了後、反応溶液を氷水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、4-ブロモメチルー1-tert-ブチルー5-クロロ-3-トリフルオロメチルー1H-ピラゾール10.0 g(収率87.3%)を得 た。

<参考例9>

5

10

(1-tertーブチルー5-クロロー3-トリフルオロメチルー1H-ピラゾ ールー4-イル)-メタンチオールの製造

水硫化ナトリウム水和物 2 1.8 g(純度 7 0%、2 7 2.2 ミリモル)のN, Nージメチルホルムアミド 3 0 0 m 1 に 4 ーブロモメチルー 1 ー t e r t ーブチルー 5 ークロロー 3 ートリフルオロメチルー 1 Hーピラゾール 4 3.5 g(1 3 6.1 ミリモル)を加えた。さらに室温で一夜攪拌した。反応終了後、反応溶液を氷水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、(1 ー t e r t ーブチルー 5 ークロロー 3 ートリフルオロメチルー 1 Hーピラゾールー 4 ーイル)ーメタンチオール 3 2.3 g (収率 8 7.0%) を得た。

¹H-NM R (CDCl₃/TMS, δ (ppm)): 3.65(2H,d), 1.90(1H,t), 1.70(9H,s)

<参考例10>

5-ブロモー4-ヒドロキシー6-トリフルオロメチルピリミジンの製造

4ーヒドロキシー6ートリフルオロメチルピリミジン49.2g(300.0ミリモル)の酢酸600m1溶液に、室温で無水酢酸ナトリウム77.5g(945.0ミリモル)を加えた。さらに45℃で反応溶液中に臭素50.3g(315ミリモル)を徐々に加え、同温度で3時間攪拌した。反応終了確認後、溶媒を減圧留去し、残渣を水にあけ、酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をnーヘキサンで洗浄し5ーブロモー4ーヒドロキシー6ートリフルオロメチルピリミジン38.9g(収率53.4%)を得た。

<参考例11>

5-ブロモー4-クロロー6-トリフルオロメチルピリミジンの製造

25 5 - ブロモー4ーヒドロキシー6ートリフルオロメチルピリミジン24.3 g(1

00.0ミリモル)をオキシ塩化リン18.5g(120.0ミリモル)に懸濁させ、100℃で2時間攪拌した。反応終了確認後、反応溶液を徐々に水にあけクロロホルムで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、5ープロモー4ークロロー6ートリフルオロメチルピリミジン21.5g(収率82.4%)を得た。

<参考例12>

5

5-ブロモー4-エトキシー6-トリフルオロメチルピリミジンの製造

5-ブロモー4-クロロー6-トリフルオロメチルピリミジン3.00g(11.

10 48ミリモル)のエタノール50m1溶液に、室温でナトリウムエトキシド0.94g(13.77ミリモル)を加え攪拌した。反応終了確認後、溶媒を減圧留去した。残渣を水にあけ、クロロホルムで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5ーブロモー4ーエトキシー6ートリフルオロメチルピリミジン2.44g(収率82.9%)を得た。

· <参考例13>

4-エトキシー6-トリフルオロメチルピリミジン-5-カルボアルデヒドの 製造

5ーブロモー4ーエトキシー6ートリフルオロメチルピリミジン5.76g(2 1.3ミリモル)のテトラヒドロフラン250ml溶液を一78℃に冷却し、nーブチルリチウムーヘキサン1.6M溶液22.6ml(36.1ミリモル)を滴下し、40分間攪拌した。ギ酸メチル2.7g(45.1ミリモル)を加え、さらに1.5時間攪拌した。反応終了後、塩化アンモニウム水溶液を加え、エーテルで抽出した。得られた有機相を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を 減圧留去し、残査をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサンー

酢酸エチル混合溶媒)で精製し、4-エトキシ-6-トリフルオロメチルピリミジン-5-カルボアルデヒド3.82g(収率81.6%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 10.41(1H,s), 8.95(1H,s), 4.63(2H,q),

1.48(3H,t)

5 <参考例14>

(4-エトキシー6-トリフルオロメチルピリミジン-5-イル)-メタノール の製造

水素化ほう素ナトリウム1.7g(45.7ミリモル)のメタノール50m1溶液に、氷冷下、4-エトキシー6ートリフルオロメチルピリミジンー5ーカルボアル デヒド3.82g(17.2ミリモル)のメタノール50m1溶液を加えた。0℃で 1時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、(4-エトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメタノール3.77g(収率97.8%)を得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 8.80(1H,s), 4.81(2H,s), 4.59(2H,q),

2.28(1H,bR), 1.48(3H,t)

<参考例15>

5ーブロモメチルー4ーエトキシー6ートリフルオロメチルピリミジンの製造 (4ーエトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメタノール
 3.77g(17.0ミリモル)のエーテル50ml溶液を0℃に冷却し、三臭化リン2.0g(7.2ミリモル)を加えた。室温で1時間攪拌した。生じた塩をメタノールで溶解し、さらに1時間攪拌した。反応溶液を水中に注ぎエーテルで抽出した。得られた有機相を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、5ーブロモメチルー4ーエトキシー6ートリフルオロメチルピリミジンをクルードで得た。

¹H-NMR (CDCl₃/TMS, δ (ppm)): 8.79(1H,s), 4.61(2H,q), 4.55(2H, s), 1.49(3H,t)

<参考例16>

5

10

1-エチルー3-トリフルオロメチルー1H-ピラゾールー5-オールの製造トリフルオロアセト酢酸エチルエステル55.2g(300.0ミリモル)のエタノール300ml溶液中にモノエチルヒドラジン18.0g(300.0ミリモル)及び濃塩酸5mlを加えた後、2日間加熱還流した。反応終了後、減圧下溶媒を大部分留去し、残渣を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をnーヘキサンにて洗浄し、白色粉末の1-エチルー3-トリフルオロメチルー1H-ピラゾールー5-オール35.5g(収率65.7%)を得た。<参考例17>

5-クロロー1-エチルー3-トリフルオロメチルー1H-ピラゾールー4-カルボアルデヒドの製造

N, Nージメチルホルムアミド18.0g(246.3ミリモル)に、氷冷下、オキシ塩化リン91.1g(591.2ミリモル)を加えた。次に、室温にて1ーエチルー3ートリフルオロメチルー1Hーピラゾールー5ーオール35.5g(197.1ミリモル)を加えた後、3時間加熱還流した。反応終了後、氷冷下、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、5ークロロー1ーエチルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒドの粗生成物を得た。

<参考例18>

25 1-エチルー5-フルオロー3-トリフルオロメチルー1H-ピラゾールー4

WO 03/000686

ーカルボアルデヒドの製造

5-クロロー1-エチルー3-トリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒドの粗生成物(197.1ミリモル相当)のジメチルスルホキシド100ml溶液中に室温にてフッ化カリウム34.3g(スプレードライ品、595.1.3ミリモル)を加えた後、100℃にて3日間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、1-エチルー5-フルオロー3-トリフルオロメチルー1Hーピラゾールー4-カルボアルデヒド11.1g(収率26.8%)を得た。

130

¹H-NMR(CDCl₃/TMS, δ (ppm)): 9.86(1H,d), 4.19(2H,q), 1.52(3H,t) <参考例 1 9 >

(1-エチル-5-フルオロ-3-トリフルオロメチル-1H-ピラゾール-4 -イル)-メタノールの製造

15 1ーエチルー5ーフルオロー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド11.1g(52.8ミリモル)のメタノール50m1溶液を0℃に冷却し、水素化ホウ素ナトリウム2.1g(55.5ミリモル)を徐々に加えた。さらに室温にて3時間攪拌した。反応終了後、反応溶液を水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、(1ーエチルー5ーフルオロー3ートリフルオロメチルー1Hーピラゾールー4ーイル)ーメタノール9.1g(収率81.3%)を得た。

<参考例20>

4 ーブロモメチルー 1 ーエチルー 5 ーフルオロー 3 ートリフルオロメチルー 1 25 Hーピラゾールの製造

<参考例21>

5

25

5-フルオロー1-メチルー3-トリフルオロメチルー1H-ピラゾールー410 -カルボアルデヒドの製造

5-クロロー1ーメチルー3ートリフルオロメチルー1 Hーピラゾールー4ーカルボアルデヒド60.4g(282.7ミリモル)のジメチルスルホキシド700m 1溶液に、ふっ化カリウム42.0g(711.9ミリモル)を加え、120~140℃で5時間攪拌した。反応終了確認後、反応溶液を水に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、5-フルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4-36.8g(収率66.0%)を得た。

<参考例22>

20 (5-フルオロ-1-メチルー3ートリフルオロメチルー1H-ピラゾールー4 ーイル)-メタノールの製造

水素化ホウ素ナトリウム 3.9 g ($102.6 \le$ リモル) のメタノール 500 m 1 に溶液、氷冷下、5- フルオロー1- メチルー 3- トリフルオロメチルー 1H- ピラゾールー4- カルボアルデヒド 36.8 g ($187.6 \le$ リモル) のメタノール 200 m 1 溶液を加えた。0 % 700 % で 300 % 間攪拌した。反応終了確認後、反応溶液を水

に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(5-フルオロ-1-メチル-3-トリフルオロメチル-1H-ピラゾール-4-イル)-メタノール35.4g (収率95.4%)を得た。

5 <参考例23>

20

4ーブロモメチルー5ーフルオロー1ーメチルー3ートリフルオロメチルー1 Hーピラゾールの製造

5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド35.4g(178.7ミリモル)のジエチルエーテル500ml 溶液を-30℃に冷却し、三臭化りん54.0g(199.5ミリモル)を加えた。室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎジエチルエーテルで抽出した。得られた有機層を水及び食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、4ーブロモメチルー5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾール31.4g(収率80.8%)を得た。

15 本発明の除草剤は、一般式[I]で示されるイソオキサゾリン誘導体を有効成分と してなるものである。

本発明化合物を除草剤として使用するには、本発明化合物それ自体で用いてもよいが、製剤化に一般的に用いられる担体、界面活性剤、分散剤又は補助剤等を配合して、粉剤、水和剤、乳剤、フロアブル剤、微粒剤又は粒剤等に製剤して使用することもできる。

製剤化に際して用いられる担体としては、例えばタルク、ベントナイト、クレー、カオリン、珪藻土、ホワイトカーボン、バーミキュライト、炭酸カルシウム、消石灰、珪砂、硫安、尿素等の固体担体、イソプロピルアルコール、キシレン、シクロヘキサン、メチルナフタレン等の液体担体等があげられる。

25 界面活性剤及び分散剤としては、例えばアルキルベンゼンスルホン酸金属塩、ジ

5

10

ナフチルメタンジスルホン酸金属塩、アルコール硫酸エステル塩、アルキルアリールスルホン酸塩、リグニンスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタンモノアルキレート等があげられる。補助剤としては、例えばカルボキシメチルセルロース、ポリエチレングリコール、アラビアゴム等があげられる。使用に際しては適当な濃度に希釈して散布するか又は直接施用する。

本発明の除草剤は茎葉散布、土壌施用又は水面施用等により使用することができる。有効成分の配合割合については必要に応じて適宜選ばれるが、粉剤又は粒剤とする場合は0.01~10%(重量)、好ましくは0.05~5%(重量)の範囲から適宜選ぶのがよい。乳剤及び水和剤とする場合は1~50%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。又、フロアブル剤とする場合は1~40%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。

本発明の除草剤の施用量は使用される化合物の種類、対象雑草、発生傾向、環境 条件ならびに使用する剤型等によってかわるが、粉剤及び粒剤のようにそのまま使 用する場合は、有効成分として1~クタール当り1g~50kg、好ましくは10 g~10kgの範囲から適宜選ぶのがよい。又、乳剤、水和剤及びフロアブル剤と する場合のように液状で使用する場合は、0.1~50,000ppm、好ましく は10~10,000ppmの範囲から適宜選ぶのがよい。

20 又、本発明の化合物は必要に応じて殺虫剤、殺菌剤、他の除草剤、植物生長調節 剤、肥料等と混用してもよい。

次に代表的な製剤例をあげて製剤方法を具体的に説明する。化合物、添加剤の種類及び配合比率は、これのみに限定されることなく広い範囲で変更可能である。以下の説明において「部」は重量部を意味する。

25 〈製剤例1〉 水和剤

本発明化合物番号2の10部にポリオキシエチレンオクチルフェニルエーテルの0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5部、 珪藻土の20部、クレーの69部を混合粉砕し、水和剤を得た。

〈製剤例2〉 フロアブル剤

5 粗粉砕した本発明化合物番号2の20部を水69部に分散させ、ポリオキシエチレンスチレン化フェニルエーテル硫酸塩4部、エチレングリコール7部を加えるとともにシリコーンAF-118N(旭化成工業株式会社製)を製剤に対し200ppm加え、高速攪拌機で30分間混合した後、湿式粉砕機で粉砕しフロアブル剤を得た。

10 〈製剤例3〉 乳剤

本発明化合物番号2の30部にキシレンとイソホロンの等量混合物60部、界面活性剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルアリールポリマー及びアルキルアリールスルホネートの混合物の10部を加え、これらをよくかきまぜることによって乳剤を得た。

15 〈製剤例4〉 粒剤

20

本発明化合物番号2の10部、タルクとベントナイトを1:3の割合の混合した 増量剤の80部、ホワイトカーボンの5部、界面活性剤ポリオキシエチレンソルビ タンアルキレート、ポリオキシエチレンアルキルアリールポリマー及びアルキルア リールスルホネートの混合物の5部に水10部を加え、よく練ってペースト状とし たものを直径0.7mmのふるい穴から押し出して乾燥した後に0.5~1mmの 長さに切断し、粒剤を得た。

次に試験例をあげて本発明化合物の奏する効果を説明する。

〈試験例1〉 水田土壌処理による除草効果試験

100 c m²プラスチックポットに水田土壌を充填し、代掻後、タイヌビエ、コ 25 ナギの種子を播種し、水深3 c mに湛水した。翌日、製剤例1に準じて調製した水 和剤を水で希釈し、水面滴下した。施用量は、有効成分を、1へクタール当り1000gとした。その後、温室内で育成し、処理後21日目に表61の基準に従って除草効果を調査した。結果を表62に示す。

表 6 1

指数	除草効果(生育抑制程度)及び薬害
5	90%以上の抑制の除草効果、薬害
4	70%以上90%未満の除草効果、薬害
3	50%以上70%未満の除草効果、薬害
2	30%以上50%未満の除草効果、薬害
1	10%以上30%未満の除草効果、薬害
O	0%以上10%未満の除草効果、薬害

5

表62

化合物番号	薬量(g a.i. /ha)	タイヌピエ	コナキ
2	1000	5	5

〈試験例2〉 畑地土壌処理による除草効果試験

80 c m²プラスチックポットに畑土壌を充填し、イヌビエ、エノコログサの種 10 子を播種して覆土した。製剤例1に準じて調製した水和剤を水で希釈し、1へクタ ール当り有効成分が1000gになる様に、1へクタール当り10001を小型噴 霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理21日目に表6 1の基準に従って、除草効果を調査した。結果を表63に示す。

表 6 3

化合物番号	薬量(g a.i. /ha)	イヌヒ'エ	エノコロク・サ
2	1000	5	5

〈試験例3〉 畑地茎葉処理による除草効果試験

80 c m²プラスチックポットに砂を充填し、イヌビエ、エノコログサの種子を 播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤を水に希釈し、 1へクタール当り有効成分が1000gになる様に、1へクタール当り10001 を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表61の基準に従って、除草効果を調査した。結果を表64に示す。

表64

化合物番号	薬量(g a.i. /ha)	イヌヒ'エ	エノコロク・サ
40	1000	5	5

10

15

20

5

産業上の利用可能性

一般式[I]で表される本発明の化合物は、畑地において問題となる種々の雑草、例えばオオイヌタデ、アオビユ、シロザ、ハコベ、イチビ、アメリカキンゴジカ、アメリカツノクサネム、アサガオ、オナモミ等の広葉雑草をはじめ、ハマスゲ、キハマスゲ、ヒメクグ、カヤツリグサ、コゴメガヤツリ等の多年生及び1年生カヤツリグサ科雑草、ヒエ、メヒシバ、エノコログサ、スズメノカタビラ、ジョンソングラス、ノスズメノテッポウ、野生エンバク等のイネ科雑草の発芽前から生育期の広い範囲にわたって優れた除草効果を発揮する。又、水田に発生するタイヌビエ、タマガヤツリ、コナギ等の一年生雑草及びウリカワ、オモダカ、ミズガヤツリ、クログワイ、ホタルイ、ヘラオモダカ等の多年生雑草を防除することもできる。

一方、本発明の除草剤は作物に対する安全性も高く、中でもイネ、コムギ、オオムギ、トウモロコシ、グレインソルガム、ダイズ、ワタ、テンサイ等に対して高い安全性を示す。

WO 03/000686

請求の範囲

1. 一般式 [I] を有するイソオキサゾリン誘導体又はその薬理上許容される塩:

5 式中、

15

20

R1は、C1~C4ハロアルキル基を示し、

 R^2 は、水素原子、 $C1\sim C10$ アルキル基、 $C1\sim C4$ ハロアルキル基、 $C3\sim C8$ シクロアルキル基又は $C3\sim C8$ シクロアルキル $C1\sim C3$ アルキル基示し、

R³及びR⁴は、同一又は異なって、水素原子、C1~C10アルキル基又はC3~C 8シクロアルキル基を示すか、或いは、R³とR⁴とが一緒になって、これらの結合した炭素原子と共にC3~C7のスピロ環を形成しても、さらにR²とR³とが一緒になって、これらの結合した炭素原子と共に5~8 員環を形成してもよく、

R5及びR6は、同一又は相異なって、水素原子又はC1~C10アルキル基を示し、

Yはピロリル基、ピラブリル基、イソチアブリル基、オキサブリル基、イミダブリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリアブリル基、オキサジアブリル基、ベンブチエニル基、インドリル基、ベンブオキサブリル基、ベンブイミダブリル基、ベンブイソキサブリル基、ベンブイソチアブリル基、インダブリル基、キノリル基、インタブリル基、キノリル基、インキノリル基、フサラジニル基、キノキサリニル基、キナブリニル基、シンノリニル基又はベンブトリアブリル基を示し(ここで、これらのヘテロ環基のヘテロ原子が窒素原子の時は酸化されてNーオキシドになってもよい。)、これらのヘテロ環基は置換基群αより選択される1~6個の同一又は相異なる基で置換されていてもよく(ここで、ヘテロ環基の置換基は、隣

接したアルキル基同士、アルコキシ基同士、アルキル基とアルコキシ基、アルキル基とアルキルチオ基、アルキル基とアルキルスルホニル基、アルキル基とモノアルキルアミノ基又はアルキル基とジアルキルアミノ基が結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成してもよい。)、

5 nは0~2の整数を示す。

「置換基群α」

10

15

20

25

水酸基、ハロゲン原子、C1~C10アルキル基、置換基群βより選択される任意 の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8 シクロアルキル基、C1~C10アルコキシ基、置換基群γより選択される任意の基 でモノ置換された $C1\sim C10$ アルコキシ基、 $C1\sim C4$ ハロアルコキシ基、 $C3\sim C8$ シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、 C1~C10アルキルチオ基、置換基群ッより選択される任意の基でモノ置換された C1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6アルケニル基、 C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アルキニルオキ シ基、C1~C10アルキルスルフィニル基、C1~C10アルキルスルホニル基、置 換基群γより選択される任意の基でモノ置換されたC1~C10アルキルスルホニ ル基、C1~C4ハロアルキルスルフィニル基、C1~C4ハロアルキルスルホニル 基、C1~C10アルキルスルホニルオキシ基、C1~C4ハロアルキルスルホニルオ キシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、 置換されていてもよいフェニルチオ基、置換されていてもよい芳香族へテロ環基、 置換されていてもよい芳香族へテロ環オキシ基、置換されていてもよい芳香族へテ ロ環チオ基、置換されていてもよいフェニルスルフィニル基、置換されていてもよ いフェニルスルホニル基、置換されていてもよい芳香族ヘテロ環スルフィニル基、 置換されていてもよい芳香族へテロ環スルホニル基、置換されていてもよいフェニ ルスルホニルオキシ基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、

置換されていてもよいベンジルカルボニル基、置換されていてもよいベンソイル基、カルボキシル基、C1~C10アルコキシカルボニル基、置換されていてもよいブェノキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル 基又は置換されていてもよいフェニル基で置換されていてもよい。)、C1~C6 アシルオキシ基、C1~C4ハロアルキルカルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、に1~C4ハロアルキルカルボニルオキシ基、に1~C10アルキルカルボニルス・と1~C10アルキルカルボニル基、置換されていてもよいブェニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルスルホニル基、に1~C4ハロアルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよい。)

「置換基群β」

15 水酸基、C3~C8シクロアルキル基(該基はハロゲン原子又はC1~C10アルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C10アルキルチオ基、C1~C10アルキルスルホニル基、C1~C10アルコキシカルボニル基、C2~C6ハロアルケニル基、アミノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、C2~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基で置換されていてもよい。)、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基又は置換されていてもよいフェニル基で置換されていてもよい。)、C2~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシイミノ基、シアノ基、置換されていてもよいフェノキシ基

「置換基群γ」

C1~C10アルコキシカルボニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族へテロ環基、シアノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基で置換されていてもよい。)

2. 置換基群 α が、水酸基、ハロゲン原子、 $C1\sim C10$ アルキル基、置換基群 β よ 5 り選択される任意の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアル キル基、C3~C8シクロアルキル基、C1~C10アルコキシ基、置換基群ッより選 択される任意の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコ キシ基、C3~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3ア ルキルオキシ基、C1~C10アルキルチオ基、置換基群ッより選択される任意の基 10 でモノ置換されたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2 ~C6アルケニル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2 ~C6アルキニルオキシ基、C1~C10アルキルスルホニル基、C1~C4ハロアル キルスルホニル基、置換されていてもよいフェニル基、置換されていてもよいフェ 15 ノキシ基、置換されていてもよいフェニルチオ基、置換されていてもよい芳香族へ テロ環基、置換されていてもよい芳香族へテロ環オキシ基、置換されていてもよい 芳香族へテロ環チオ基、置換されていてもよいフェニルスルホニル基、置換されて いてもよい芳香族へテロ環スルホニル基、C1~C6アシル基、C1~C4ハロアル キルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていて 20 もよいベンゾイル基、カルボキシル基、C1~C10アルコキシカルボニル基、シア ノ基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10アルキ ル基又は置換されていてもよいフェニル基で置換されていてもよい。)、ニトロ基、 アミノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、置換さ れていてもよいフェニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニ ル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾ 25

20

イル基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基、 置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニル スルホニル基で置換されていてもよい。)によって表される請求項1記載のイソオ キサゾリン誘導体又はその薬理上許容される塩。

- 3. 置換基群αが、ハロゲン原子、C1~C10アルキル基、C1~C4ハロアルキル基、C1~C10アルコキシC1~C3アルキル基、C3~C8シクロアルキル基(該基はハロゲン原子又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、置換されていてもよいフェノキシ基、C1~C10アルキルチオ基、C1~C10アルキルスルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルカルボニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は、同一又は異なってC1~C10アルキル基で置換されていてもよい)によって表される請求項2記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
- 4. R¹がクロロメチル基、R²がメチル基もしくはエチル基、R³、R⁴、R⁵及びR 15 6が水素原子である請求項1、2又は3記載のイソオキサゾリン誘導体又はその薬 理上許容される塩。
 - 5. Yがピロリル基、ピラゾリル基、イソチアゾリル基、オキサゾリル基、イミダ ゾリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ト リアゾリル基、オキサジアゾリル基である請求項1、2、3又は4記載のイソオキ サゾリン誘導体又はその薬理上許容される塩。
 - 6. Yがピラゾリル基又はピリミジニル基である請求項5記載のイソオキサゾリン 誘導体又はその薬理上許容される塩。
 - 7. Yがピラゾールー4ーイル基又はピリミジンー5ーイル基である請求項6記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
- 25 8. Υがピラゾールー4ーイル基で、置換基群αより選択される任意の基がピラゾ

ール環の3及び5位に置換され、更に、1位に水素原子、C1~C10アルキル基、 置換基群 β より選択される任意の基でモノ置換された $C1 \sim C10$ アルキル基、C1~C4ハロアルキル基、C3~C8シクロアルキル基、C2~C6アルケニル基、C2 ~C6アルキニル基、C1~C10アルキルスルフィニル基、C1~C10アルキルスル ホニル基、置換基群 y より選択される任意の基でモノ置換された C1~ C10 アルキ 5 ルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいフェ ニル基、置換されていてもよい芳香族ヘテロ環基、置換されていてもよいフェニル スルホニル基、置換されていてもよい芳香族へテロ環スルホニル基、アシル基、C 1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、 10 置換されていてもよいベンゾイル基、C1~C10アルコキシカルボニル基、置換さ れていてもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカ ルボニル基、カルバモイル基(該基の窒素原子は、同一又は異なって、C1~C10 アルキル基又は置換されていてもよいフェニル基で置換されていてもよい)、アミ ノ基(該基の窒素原子は、同一又は異なって、C1~C10アルキル基、置換されて いてもよいフェニル基、アシル基、C1~C4ハロアルキルカルボニル基、置換され 15 ていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、C1~ C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されてい てもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基 で置換されていてもよい) が置換した請求項7記載のイソオキサゾリン誘導体又は 20 その薬理上許容される塩。

- 9. Υがピリミジン-5-イル基で、置換基群 α より選択される任意の基がピリミジン環の 4 位及び 6 位に置換した請求項 7 記載のイソオキサゾリン誘導体又はその薬理上許容される塩。
- 10.請求項1~9のいずれかに記載のイソオキサゾリン誘導体又は薬理上許容さ 25 れる塩を有効成分として含有する除草剤。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/06183

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 .C07D413/12, A01N43/80					
According t	According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED				
Minimum d Int.	ocumentation searched (classification system followed Cl ⁷ C07D413/12, A01N43/80	by classification symbols)			
Dogumentoi	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
	lata base consulted during the international search (naming), REGISTRY (STN)	e of data base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X,Y	JP 9-328483 A (Sankyo Co., L 22 December, 1997 (22.12.97), (Family: none)		1–10		
Y	JP 5-105672 A (Sankyo Co., L 27 April, 1993 (27.04.93), (Family: none)	1-10			
Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document defining the general state of the art which is not considered to be of particular relevance "E" later document published after the international filing date or priority date and not in conflict with the application but cited understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot step when the document is taken alone document of particular relevance; the claimed invention cannot document of particular relevance;			ne application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be		
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family					
Date of the actual completion of the international search 03 September, 2002 (03.09.02) Date of mailing of the international search report 17 September, 2002 (17.09.02)					
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer					
Facsimile N	io.	Telephone No.			

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl ⁷ C07D413/12, A01N43/80					
B 調本を2	テッた分野				
調査を行った	B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ C07D413/12, A01N43/80				
最小限資料以外	外の資料で調査を行った分野に含まれるもの				
国際調査で使り CAPLUS, REGI	用した電子データベース(データベースの名称、 STRY(STN)	調査に使用した用語)			
C. 関連する	ると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Х, Ү	JP 9-328483 A(SANKYO CO., LTD.) 19	997.12.22 (ファミリーなし)	1-10		
Y	JP 5-105672 A(SANKYO CO., LTD.) 19		1-10		
□ C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する大数(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「A」特に関連のある文献であって、当該文献のみで発の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1上の文献との、当業者にとって自明である組合せよって進歩性がないと考えられるもの「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献			送明の原理又は理論 当該文献のみで発明 たられるもの 当該文献と他の1以 自明である組合せに		
国際調査を完了した日 03.09.02 国際調査報告の発送日 17.09.02			9.02		
日本国	D名称及びあて先 国特許庁(ISA/JP) 耶便番号100-8915 耶千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 富永 保 電話番号 03-3581-1101	4P 9159 内線 3490		