МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО АЛТАЙСКИЙ ГОСУДАСТВЕННЫЙ УНИВЕРСИТЕТ

Институт цифровых технологий, электроники и физики Кафедра вычислительной техники и электроники

Лабораторная работа №3. Задача коммивояжера

(ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО КУРСУ «МЕТОДЫ ОПТИМИЗАЦИИ». 13 ВАРИАНТ)

Вы	полнил	: ст. 595	гр.:	
		Д. В.	Осипенко	
Про	оверил:	к.ф-м. н	іаук, доцент каф. ВТи	Э
		В. И.	Иордан	
«	>>		2022 г	

1 Краткие теоретические сведения по теме лабораторной работы

Имеется п городов. Расстояния между любой парой городов і и ј известны и составляют с іј . Коммивояжер выезжает из какого-либо города и должен посетить все города, побывав в каждом только один раз и вернуться в исходный город. Ставится задача определить такую последовательность объезда городов, или маршрут, при которой суммарная длина маршрута была бы минимальной

2 Решение индивидуального задания

Дана задача (12 вариант, т.к. 13 нету):

a	b	С	d	е	f	g	h	k	m	n	р	q	r	S	t	Х	у	Z	w
8	5	15	6	6	5	5	2	6	5	5	6	5	3	5	4	8	4	5	9

Матрица растояний (С):

	n1	n2	n3	n4	n5
n1	∞	8	5	15	6
n2	6	∞	5	5	2
n3	6	5	∞	5	6
n4	5	3	5	∞	4
n5	8	4	5	9	∞

2.1 MS Exel

Начнём работу в электронной таблице MS Excel. Создадим на листе матрицу состояний C, заполнив её исходными данными:

1	В	С	D	E	F	G	Н	1			
1				Матрица состояния С							
2	Пункты	N1	N2	N3	N4	N5	N6				
3	N1	1000	8	5	15	6	1000				
4	N2	6	1000	5	5	2	1000				
5	N3	6	5	1000	5	6	1000				
6	N4	5	3	5	1000	4	1000				
7	N5	8	4	5	9	1000	1000				
8	N6	1000	1000	1000	1000	1000	1000				
9	9 Матрица переменных X										
10	Пункты	N1	N2	N3	N4	N5	N6	Выход			
11	N1	0	0	0	0	0	0	=SUM(C11:H11)			
12	N2	0	0	0	0	0	0	=SUM(C12:H12)			
13	N3	0	0	0	0	0	0	=SUM(C13:H13)			
14	N4	0	0	0	0	0	0	=SUM(C14:H14)			
15	N5	0	0	0	0	0	0	=SUM(C15:H15)			
16	N6	0	0	0	0	0	0	=SUM(C16:H16)			
17	Вход	=SUM(C11:C16)	=SUM(D11:D16)	=SUM(E11:E16)	=SUM(F11:F16)	=SUM(G11:G16)	=SUM(H11:H16)				
18				Дополни	тельные переменны	ie					
19			u2	u3	u4	u5	u6				
20											
21		Специальное услов	ие (обеспечивает устр	анение нескольких несвяз	анных между собой г	иаршрутов и циклов))				
22	u2+ui	+n*x2i	0	=\$D\$20+E\$20+5*E12	=\$D\$20+F\$20+5*F12	=\$D\$20+G\$20+5*G12	=\$D\$20+H\$20+5*H12				
23	u3+ui	+n*x3i	=\$E\$20+D\$20+5*D13	0	=\$E\$20+F\$20+5*F13	=\$E\$20+G\$20+5*G13	=\$E\$20+H\$20+5*H13				
24	u4+ui	+n*x4i	=\$F\$20+D\$20+5*D14	=\$F\$20+E\$20+5*E14	0	=\$F\$20+G\$20+5*G14	=\$F\$20+H\$20+5*H14				
25	u5+ui+n*x5i		=\$G\$20+D\$20+5*D15	=\$G\$20+E\$20+5*E15	=\$G\$20+F\$20+5*F15	0	=\$G\$20+H\$20+5*H15				
26	u6+ui+n*x6i		=\$H\$20+D\$20+5*D16	=\$H\$20+E\$20+5*E16	=\$H\$20+F\$20+5*F16	=\$H\$20+G\$20+5*G16	0				
27											
28		Целевая функция		=SUMPRODUCT(C3:G7;C11:	G15)						
29											

Матрицу переменных X заполняем нулями

В ячейку C16 запишем формулу: =CУММ(C11:C15). Автозаполнением скопируем эту формулу в ячейки диапазона D16:G16.

В ячейку H11 запишем формулу: =CУММ(C11:G11). Автозаполнением скопируем эту формулу в ячейки диапазона H12:15.

В ячейку F28 вводим формулу целевой функции: =СУММПРОИЗВ(C3:G7;C11:G15). В ячейки диапазона D22:G25 вводим формулы, соответствующие ограничениям:

- В ячейку E22: =\$D\$20-E20+6*E12. Автозаполнением копируем формулу в ячейки F26, G26;
- В ячейку D23: =\$E\$20-D20+6*D13. Автозаполнением копируем формулу в ячейки E23,
 G23;
- В ячейку D24: =\$F\$20-D20+6*D14. Автозаполнением копируем формулу в ячейки E24, G24;
- В ячейку D25: =\$G\$20-D20+6*D15. Автозаполнением копируем формулу в ячейки E25, G25.
- Ячейки D22, E23, F24, G25 = 0.

На вкладке «Данные» выбираем пункт «Поиск решения». В появившемся окне «Параметры поиска решения» (рис.2) выполняем необходимые установки:

В поле «Оптимизировать целевую функцию» вводим абсолютный адрес ячейки F28; Направление целевой функции устанавливаем «Минимум»;

- 1. C\$11:\$G\$15 = бинарное
- 2. C\$16:G\$16 = 1
- 3. $D^22:G^25 <= 5$
- 4. H\$11:H\$15 = 1

Устанавливаем галочку «Сделать переменные без ограничений неотрицательными» и выбираем метод решения «Поиск решения линейных задач симплекс-методом».

Нажимаем «Найти решение». Таким образом, путь:N1-N3-N4-N2-N5-N1. Минимальная длина маршрута 23.

\square	Α	В	С	D	Е	F	G	Н	1				
1				Мат	рица состоян	ия С							
2		Пункты	N1	N2	N3	N4	N5						
3		N1	1000	8	5	15	6						
4		N2	6	1000	5	5	2						
5		N3	6	5	1000	5	6						
6		N4	5	3	5	1000	4						
7		N5	8	4	5	9	1000						
8													
9		Матрица переменных Х											
10		Пункты	N1	N2	N3	N4	N5	Выход					
11		N1	0	0	1	0	0	1					
12		N2	0	0	0	0	1	1					
13		N3	0	0	0	1	0	1					
14		N4	0	1	0	0	0	1					
15		N5	1	0	0	0	0	1					
16		Вход	1	1	1	1	1						
17													
18					Дополнител	ьные пере	менные						
19				u2	u3	u4	u5						
20				2	0	1	3						
		Спе	циальное	условие (с	обеспечивает	устранени	е несколь	ких					
21			несвяз	анных меж	ду собой мар	шрутов и ц	циклов)						
22		u2-ui+	⊦n*x2i	0	2	1	4						
23		u3-ui+	+n*x3i	-2	0	4	-3						
24		u4-ui-	⊦n*x4i	4	1	0	-2						
25		u5-ui+n*x5i		1	3	2	0						
26													
27													
28		Цел	левая фуні	кция	23								
29													

3 Вывод

Задача коммивояжера может применяться для нахождения оптимального маршрута, позволяющего объехать определенные города по одному разу и вернуться в исходную точку.