Deep face recognition

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman

Key Questions

 Can large scale datasets be built with minimal human intervention?

Yes!

 Can we propose a convolutional neural network which can compete with that of internet giants like Google and Facebook?

Yes!

Achievements

- New face dataset of 2.6 Million Faces
- State of the art results on YouTube faces in the wild dataset
- Comparable to the state of the art results on the Labeled faces in the wild dataset

Can large scale datasets be built with minimal human intervention?

- 1. Candidate list generation: Finding names of celebrities
 - Tap the knowledge on the web
 - 5000 identities

Robert Downey Jr. Ashley Hamilton Barack Obama

Allison Hannigan Amitabh Bacchan Vladimir Putin

2. Manual verification of celebrities: Finding Popular Celebrities

- Collect representative images for each celebrity
- 200 images/identity
- Remove people with low representation on Google.
- Remove overlap with public benchmarks
- 2622 celebrities for the final dataset

Popular Celebrity

Robert Downey Jr.

Not so popular celebrity

Ashley Hamilton

2. Manual verification of celebrities: Finding Popular Celebrities

- Collect representative images for each celebrity
- 200 images/identity
- Remove people with low representation on Google.
- Remove overlap with public benchmarks
- 2622 celebrities for the final dataset

Rank image sets

- 2000 images per identity
- Searching by appending keyword "actor"

- Learning classifier using data obtained the previous step. c
- Ranking 2000 images and selecting top 1000 images
- Approx. 2.6 Million images of 2622 celebrities

4. Near duplicate removal

VLAD descriptor based near duplicate removal

5. manual filtering

 Curating the dataset further using manual checks

No.	Aim	Mode	# Persons	# images /person	Total # images	Anno. effort
1	Candidate list generation	Auto	5000	200	1,000,000	-
2	Candidate list filtering	Manual	2622	-	-	4 days
3	Rank image sets	Auto	2622	1000	2,622,000	-
4	Near duplicate removal	Auto	2622	623	1,635,159	-
5	Manual filtering	Manual	2622	375	982,803	10 days

Dataset Comparison

No.	Aim	# Persons	Total # images
1	Labeled Faces In the Wild	5,749	13,233
2	WDRef	2995	99,773
3	Celeb Faces	10177	202,599
4	Ours	2622	1,635,159
5	Facebook	4030	4.4M
6	Google	8M	200M

Example Images From Our Dataset

Can we propose a convolutional neural network which can compete with that of internet giants like Google and Facebook etc.?

Convolutional Neural Network

- The "Very Deep" Architecture
 - Different from previous architectures proposed for face recognition:
 - locally connected layers (Facebook)
 - inception (Google)

- Network Details:
 - 3 x 3 Convolution Kernels (Very small)
 - Conv. Stride 1 px.
 - Relu non-linearity
 - No local contrast normalisation
 - 3 Fully connected layers

Very Deep Convolutional Networks for large-Scale Image Recognition. K. Simonyan and A. Zisserman. image

Conv-64

Conv-64

maxpool

Conv-128

Conv-128

maxpool

Conv-256

Conv-256

maxpool

Conv-512

Conv-512

Conv-512

maxpool

Conv-512

Conv-512

Conv-512

maxpool

fc-4096

fc-4096

fc-2622

Softmax

Convolutional Neural Network

Training

- MatConvNet Tootlbox
 - Nvidia CuDNN bindings
 - Multi GPU Training (approx 3.5x speedup)
 - Nvidia Titan Black
 - 7 days of training
- Random Gaussian Initialization
- Stochastic Gradient Descent with back prop.
 - Accumulator Descent for large batch sizes
- Batch Size: 256
- Incremental FC layer training
- 2622 way multi class criterion (soft max)

Matconvnet – convolutional neural networks for matlab. A Vedaldi and K. Lenc. Arxiv - 2014.

image

Conv-64

Conv-64

maxpool

Conv-128

Conv-128

maxpool

Conv-256

Conv-256

maxpool

Conv-512

Conv-512

Conv-512

Conv-512

Conv-512

Conv-512

maxpool

fc-4096

fc-4096

fc-2622

Softmax

Convolutional Neural Network

Training: Learning Task Specific Embedding

Learning embedding by minimizing triplet loss

$$\sum_{(a,p,n)\in T} \max\{0, \alpha - \|\mathbf{x}_a - \mathbf{x}_n\|_2^2 + \|\mathbf{x}_a - \mathbf{x}_p\|_2^2\}$$

- Learning a projection from 4096 to 1024 dimensions
- On line triplet formation at the beginning of each iteration
- Fine tuned on target datasets
- Only the projection layers learnt

Design Choices

- 1. Network configuration
 - Does increasing the depth improves performance?
- 1. Face alignment
 - Can the network be invariant to changes in the faces?
- 2. Task specific learning
 - What are the effects of task specific embedding learning on performance?

Labeled Faces In the Wild Dataset (LFW)

- Face Verification: Given a pair of images specify
 whether they belong to the same person
- 13K images, 5.7K people
- Standard benchmark in the community
- Several test protocols depending upon availability of training data within and outside the dataset.

Effects of design choices (LFW Unrestricted Protocol)

No.	Network Config.	Dataset	Face Align Training	Face Align Testing	Embedding	100%-EER
1	А	Curated	No	No	No	92.83
2	А	Full	No	No	No	95.80
3	А	Full	No	Yes	No	96.70
4	В	Full	No	Yes	No	97.72
5	В	Full	Yes	Yes	No	97.07
6	D	Full	No	Yes	No	96.60
7	В	Full	No	Yes	Yes	99.13

Comparison with the State of the Art (LFW Unrestricted Protocol)

No.	Method	# Training Images	# Networks	Accuracy
1	Fisher Vector Faces	-	-	93.10
2	DeepFace	4 M	3	97.35
3	DeepFace Fusion	500 M	5	98.37
4	DeepID-2,3	Full	200	99.47
5	FaceNet	200 M	1	98.87
6	FaceNet+ Alignment	200 M	1	99.63
7	VGG Face	2.6 M	1	98.95

YouTube Faces Dataset (YTF) different

- Video Face Verification: Given a pair of videos specify whether they belong to the same person
- 3425 videos, 1595 people

same

- Standard benchmark in the community
- Wide pose, expression and illumination variation

Comparison with the State of the Art (YTF Unrestricted Protocol)

No.	Method	# Training Images	# Networks	100%-EER	Accuracy
1	Video Fisher Vector Faces	-	-	87.7	93.10
2	DeepFace	4 M	1	91.4	91.4
4	DeepID-2,2+,3		200	-	93.2
5	FaceNet + Alignment	200 M	1	-	95.1
7	VGG Face	2.6 M	1	97.4	97.3

Oxford Buffy Dataset

Weakly supervised face classification

- "Buffy The Vampire Slayer"
 - Face tracks from 7 episodes of season 5.
 - Both frontal and profile detections
 - Weak supervision from transcript and subtitles
 - Multi Class classification for every episode

Comparison with the State of the Art (Oxford Buffy Dataset)

No.	Method	Mean AP
1	Sivic et. al (HOG + RBF SVM)	0.81
2	Video Fisher Vector Faces (FV + Lin SVM)	0.86
3	Ours (CNN + MIL SVM)	0.95

Inversion by maximizing class specific neuron responses

Representative Image

Neuron Inversion

[Simonyan et al. NIPS 2014, Mahendran et al. CVPR 2015]

Inversion by maximizing class specific neuron responses

Representative Image

Neuron Inversion

[Simonyan et al. NIPS 2014, Mahendran et al. CVPR 2015]

Inversion by maximizing class specific neuron responses

Representative Image

Neuron Inversion
[Simonyan et al. NIPS 2014, Mahendran et al. CVPR 2015]

Inversion by maximizing class specific neuron responses

Representative Image

Neuron Inversion
[Simonyan et al. NIPS 2014, Mahendran et al. CVPR 2015]

Thank You!