Geometry

geometry geometric transformation reflection

Source: Own

uraharakisuk...
230 posts

Yesterday at 11:21 PM • 7 i

#1

 $\triangle ABC$ with altitudes BE,CF intersect at H. EF cuts BC at T. P is the projection of O on the A- symmedian line. OP cuts BC at G. L reflects with G about T. Prove that $PL \perp PH$

Attachments:

tastymath750...

Today at 2:06 AM • 6 🐽

very nice <u>("</u>

#3

Let D be the foot of the A-altitude, let B_1, C_1 be the midpoints of AC, AB, and let (BHC) meet AC, AB at B_2, C_2 . It's well-known (and provable by angle-chasing) that E, F are the mipdoints of AB_2, AC_2 . Let X be the projection of A onto OH and let M be the midpoint of BC.

First, we know that $G=AA\cap BC$, and AA||EF. Therefore, since $d(AA,EF)=d(EF,B_2C_2)$, we know that if B_2C_2 meets BC at a point L', then $T=EF\cap BC$ is the midpoint of $GL'\implies L'=L$.

By radical axis on (AH), (AO), and the nine-point circle of ABC, we know that $L_1 = EF \cap B_1C_1$ lies on the radical axis of (AH), (AO), which is obviously line AX. But a homothety centered at A with ratio 2 sends EF, B_1C_1 to B_2C_2, BC , so L_1 goes to L, implying that $AL \perp OH$. Remark that HDXL, AOPX are cyclic with diameters HL, OA.

Now take an inversion with power 0.5bc centered at A followed by a reflection across the A-angle bisector, so that $D \iff O, P \iff M$. Then clearly $\angle HDP = \angle ADP = \angle AMO = \angle DAM = \angle OAP = \angle OXP$, so that DHXP is cyclic, so $P \in (HL) \implies HP \perp PL$ as desired.

98 posts

HARD AND NICE PROBLEM (U)

Complex number can solve it but it is Long way.

very long! (!)

BUT CAN KILL IT. 🕙

I solved it by Complex number.

GOOD LUCK 😁

zadaops 23 posts

Today at 4:00 AM

#5

s rezareza14 wrote:

HARD AND NICE PROBLEM (!)

Complex number can solve it but it is Long way.

very long! (!)

BUT CAN KILL IT. (2)

I solved it by Complex number.

GOOD LUCK 🤭

Nice solution! (♦)

EulerMacaroni

666 posts

Today at 4:47 AM • 2 ⋅ •

666th post (U)

First note that $G \equiv AA \cap BC$; I now claim that AL is perpendicular to the Euler line of $\triangle ABC$. To prove this, define X, Y as the midpoints of AB, AC, respectively. Note that the line between $FX \cap EY$ and $FE \cap XY$ is the polar of $FY \cap XE$ with respect to the nine-point circle of $\triangle ABC$ by Brokard's theorem, but by Pappus' theorem on \overline{FXB} and \overline{YEC} , we have that $FY \cap XE$ lies on the Euler line of $\triangle ABC$, so the line between A and $FE \cap XY$ is perpendicular to OH. Let this line intersect BC again at L'; it is easy to see that the tangent to $\odot(ABC)$ at A is parallel to EF, so a dilation centered at L' with ratio $\frac{1}{2}$ maps G to T, implying $L' \equiv L$ and proving the claim.

To finish, let $Z \equiv AL \cap OH$; note that quadrilateral AZPO is cyclic. Since A is the spiral center sending segment OP to MD, where D is the foot of A on BC, we have $\angle HDP = \angle ADP = \angle AMO = \angle OAP = \angle HZP$, so $P \in \odot(HZL)$, as desired.

This post has been edited 1 time. Last edited by EulerMacaroni, Today at 4:49 AM

livetolove212

Today at 3:25 PM • 1 ⋅ 6

Nice observation from my problem (!)

810 posts

Let M, N be the midpoints of AH, BC. Altitude AD intersects OG at Q. APintersects BC at K.

We have $\angle PQK = \angle PDK = \angle GAP = \angle AOG$ then $QK \parallel AO \parallel MN$. Let MN cut EF at J then J is the midpoint of EF or $J \in AK$. We have $\angle DMJ = \angle DQK = \angle DPK$ then MJPD is cyclic. This means D, P, Jare belong to circle with diameter MT. We obtain $\angle MPT = 90^{\circ}$ then

#6

#7