HOMEWORK 6

JESSE COBB - 2PM SECTION

5.1.1 *Proof.* Let A be a set then $A \approx A$ since there exists a bijection $I_A : A \to A$ given by $I_A(x) = x$. Thus \approx is a reflexive relation.

Let A and B be sets and $A \approx B$ so there exists a bijection $f: A \to B$. Then by definition there exists an inverse bijection $f^{-1}: B \to A$ so $B \approx A$. Thus \approx is a symmetric relation.

Now Let A,B, and C be sets and let $A \approx B$ and $B \approx C$ so that there exists bijections $f: A \to B$ and $g: B \to C$. By definition there exists a bijection $g \circ f: A \to C$ that is a composite of two bijections. This implies $A \approx C$ so \approx is a transitive relation.

Thus we've shown \approx to be an equivalence relation as it is reflexive, symmetric, and transitive.

5.1.2 a. $A = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512\} \approx \mathbb{N}_{10}$

 $f: \mathbb{N}_{10} \to A \text{ where } f(n) = 2^{n-1} \text{ so } \overline{\overline{A}} = 10$

c. $B = \{x \in \mathbb{Z} : x^2 < 11\} \approx \mathbb{N}_7$

 $g: \mathbb{N}_7 \to B$ where g(n) = n - 4 so $\overline{\overline{B}} = 7$

d. $C = \{(x, y) \in \mathbb{N} : x + y < 6\} \approx \mathbb{N}_{10}$

 $h: \mathbb{N}_{10} \to C \text{ where } h(1), h(2), h(3), h(4), h(5), h(6), h(7), h(8), h(9), h(10)$

=(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1) so $\overline{\overline{C}}=10$

- 5.1.13 *Proof.* Let $x \in \mathbb{N}_r$ where r is a positive integer. By definition there exists an identity bijection $f: \mathbb{N}_r \to \mathbb{N}_r$ where f(n) = n for all $n \in \mathbb{N}_r$. Due to this definition of the identity bijection there exists $g: \mathbb{N}_r \{x\} \to \mathbb{N}_{r-1}$ where $g(m) = f(m) = m \in \mathbb{N}_r \{0\}$ where there is 1 less one-to-one mapping so g is a one-to-one correspondence on \mathbb{N}_{r-1} . Thus we've proved that $\mathbb{N} \{0\} \approx \mathbb{N}_{r-1}$.
- 5.1.14 Proof. Let $\overline{\overline{A}} = n$ and $\overline{\overline{B}} = r$ where r < n. This implies there exists bijections $f: \mathbb{N}_n \xrightarrow{1-1} A$ and $g: B \xrightarrow{1-1} \mathbb{N}_r$. Now, seeking a contradiction, assume there exists an injection $h: A \xrightarrow{1-1} B$. This implies there exists an injection $g \circ (f \circ g): \mathbb{N}_n \xrightarrow{1-1} \mathbb{N}_r$ which is a contradiction by the Pigeonhole Principle as there is no injection from $\mathbb{N}_n \to \mathbb{N}_r$ where r < n. Then h can't possibly be an injection. Thus we've proved there exists no injection from A to B if $\overline{\overline{A}} = n$ and $\overline{\overline{B}} = r$ where r < n.
- 5.2.2 a. *Proof.* Let $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} ...\}$ and $B = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} ...\}$ where $B \subsetneq A$. There exists a function $f : A \to B$ where $f(x) = \frac{1}{1 + \frac{1}{x}}$. Let $x = \frac{1}{\frac{1}{y} 1} \in A$,

note that:

$$f(x) = f(\frac{1}{\frac{1}{y} - 1})$$

$$= \frac{1}{1 + \frac{1}{\frac{1}{\frac{1}{y} - 1}}}$$

$$= \frac{1}{1 + \frac{1}{y} - 1}$$

$$= \frac{1}{\frac{1}{y}}$$

$$= y$$

So we've proved f to be a surjection as there always exists an $x \in A$ for all values of $y \in B$ such that f(x) = y. Next let $x_1, x_2 \in A$ and note:

$$f(x_1) = f(x_2) \implies \frac{1}{1 + \frac{1}{x_1}} = \frac{1}{1 + \frac{1}{x_2}}$$

$$\implies 1 + \frac{1}{x_2} = 1 + \frac{1}{x_1}$$

$$\implies \frac{1}{x_2} = \frac{1}{x_1}$$

$$\implies x_1 = x_2$$

So we've proved f to be an injection as any two equal elements in B are mapped to by the same element in A. Thus f is a bijection showing that $A \approx B$, but since $B \subsetneq A$ then A must be an infinite set. Thus we've proved A to be an infinite set.

b. Proof. Let $\mathbb{N} - \mathbb{N}_{15} = \{16, 17, 18...\}$ and $\mathbb{N} - \mathbb{N}_{16} = \{17, 18, 19...\}$ exist as well as a function $f: \mathbb{N} - \mathbb{N}_{15} \to \mathbb{N} - \mathbb{N}_{16}$ where f(x) = x + 1. Let $x = y - 1 \in \mathbb{N} - \mathbb{N}_{15}$ so that $f(x) = f(y - 1) = y - 1 + 1 = y \in \mathbb{N} - \mathbb{N}_{16}$. Thus we've shown f to be a surjection as there always exists an x for all y such that f(x) = y. Next note that if, for $x_1, x_2 \in \mathbb{N} - \mathbb{N}_{15}$:

$$f(x_1) = f(x_2)$$

$$\implies x_1 + 1 = x_2 + 1$$

$$\implies x_1 = x_2$$

So we've shown f to be an injection as any two equal elements in $\mathbb{N} - \mathbb{N}_{16}$ are mapped to by two equal elements in $\mathbb{N} - \mathbb{N}_{15}$. Thus f is a bijection so $\mathbb{N} - \mathbb{N}_{15} \approx \mathbb{N} - \mathbb{N}_{16}$. Since $\mathbb{N} - \mathbb{N}_{16} \subsetneq \mathbb{N} - \mathbb{N}_{15}$, this shows that $\mathbb{N} - \mathbb{N}_{15}$ is an infinite set.

5.2.3 c. Proof. Let $3\mathbb{Z} = \{\dots -6, -3, 0, 3, 6\dots\}$ and there exist a function $f: \mathbb{Z} \to 3\mathbb{Z}$ where f(x) = 3x. Let $x = \frac{y}{3} \in \mathbb{Z}$. Note that: $f(x) = f(\frac{y}{3}) = 3(\frac{y}{3}) = y$. Thus we've shown f to be a surjection as there always exists an $x \in \mathbb{Z}$ for all $y \in 3\mathbb{Z}$ such that f(x) = y. Next note when $x_1, x_2 \in \mathbb{Z}$ and $f(x_1) = f(x_2)$ then $3x_1 = 3x_2 \implies x_1 = x_2$. Thus we've shown f to be an injection as all same images in $3\mathbb{Z}$ have the same preimages in \mathbb{Z} . Since f is a

bijection $\mathbb{Z} \approx 3\mathbb{Z}$. Since $\mathbb{N} \approx \mathbb{Z}$ then $\mathbb{N} \approx 3\mathbb{Z}$ by transitivity. Thus $3\mathbb{Z}$ is denumerable.

- e. Proof. Let $A = \{x : x \in \mathbb{Z} \text{ and } x < -12\}$. Then there exists a function $f : \mathbb{N} \to A$ given by f(x) = -x 11. Let x = -y 11 then f(x) = f(-y-11) = -(-y-11) 11 = y. Thus we've shown f to be a surjection as there always exists and an $x \in \mathbb{N}$ for all $y \in A$ such that f(x) = y. Next if $x_1, x_2 \in \mathbb{N}$ then $f(x_1) = f(x_2) \Longrightarrow -x_1 11 = -x_2 11 \Longrightarrow x_1 = x_2$. Thus we've shown f to be an injection as each value in \mathbb{N} is mapped to a unique value in A. Since there exists a bijection, f, between \mathbb{N} and f then f and f then f and therefore f is denumerable. f
- f. Proof. Let $A = \mathbb{N} \{5,6\}$. Then there exists a function $f : \mathbb{N} \to A$ given by $f(x) = \begin{cases} x & x < 5 \\ x + 2 & x \geq 5 \end{cases}$. For the case of x < 5 let x = y so that f(x) = f(y) = y and for the case that $x \geq 5$ let x = y 2 so f(x) = f(y 2) = y 2 + 2 = y so we've shown f to be a surjection as there always exists an $\in \mathbb{N}$ for either case for any $y \in A$. Then if $x_1 = x_2$ where $x_1, x_2 < 5$ then $x_1 = x_2$. If $x_1, x_2 \geq 5$ then $x_1 + 2 = x_2 + 2 \Longrightarrow x_1 = x_2$. Then finally, without loss of generality, if $x_1 < 5$ and $x_2 \geq 5$ then $x_1 = x_2 + 2$ which is impossible as $x_2 > x_1$. Thus we've shown f to be an injection for all $x_1, x_2 \in \mathbb{N}$. Since f is a bijection between \mathbb{N} and A we can say that A is denumerable.
- 5.2.4 a. Proof. Let $f:(0,1)\to (1,\infty)$ be a function given by $f(x)=\frac{1}{x}$. Let $x=\frac{1}{y}\in (0,1)$ then note $f(x)=f(\frac{1}{y})=\frac{1}{\frac{1}{y}}=y$, thus f is a surjection as there always exists an $x\in (,1)$ for all $y\in (1,\infty)$ so that f(x)=y. Next assume for $x_1,x_2\in (0,1)$ that $f(x_1)=f(x_2)\Longrightarrow \frac{1}{x_1}=\frac{1}{x_2}\Longrightarrow x_2=x_1$, thus f is an injection for all $x_1,x_2\in (0,1)$. Since there exists a bijection, f, between f and f are f and f and f and f and f are f and f and f are f and f and f and f are f and f and f are f and f and f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f and f are f ar
 - b. Proof. Let $f:(0,1)\to (a,\infty)$ be a function given by $f(x)=\frac{1}{x}+a-1$. Let $x=\frac{1}{y-a+1}\in (0,1)$ then note $f(x)=f(\frac{1}{y-a+1})=a+\frac{1}{\frac{1}{y-a+1}}=a-1+y-a+1=y$, thus f is a surjection as there always exists an $x\in (0,1)$ for any $y\in (a,\infty)$ such that f(x)=y. Additionally if $x_1,x_2\in (0,1)$ and we assume $f(x_1)=f(x_2)$ then $\frac{1}{x_1}+a-1=\frac{1}{x_2}+a-1 \Longrightarrow \frac{1}{x_1}=\frac{1}{x_2}\Longrightarrow x_2=x_1$ so f is an injection. Since a bijection, f, exists between (0,1) and (a,∞) then $(0,1)\approx (a,\infty)$. Thus $\overline{(a,\infty)}=\mathfrak{c}$.

 $5.3.1 \ f(28) = 9$

5.3.4 *Proof.* Let $f: \mathbb{N} \xrightarrow{biject} A$ and $g: \mathbb{N} \xrightarrow{biject} B$. Define $h: \mathbb{N} \to A \cup B$:

$$h(n) = \begin{cases} f(\frac{n+1}{2}) & 2 \nmid n \\ g(\frac{n}{2}) & 2 \mid n \end{cases}$$

Let $n = 2y - 1 \in \mathbb{N}$ where $y\mathbb{N}$ and therefore $2 \nmid n$ then note:

$$h(n) = h(2y - 1)$$

$$= f(\frac{2y - 1 + 1}{2})$$

$$= f(y) \in A$$

$$= f(y) \in A \cup B$$

Now let $n=2y\in\mathbb{N}$ where $y\in\mathbb{N}$ so $2\mid n$ then note:

$$h(n) = h(2y)$$

$$= g(\frac{2y}{2})$$

$$= g(y) \in B$$

$$= g(y) \in A \cup B$$

Thus we've shown h to be a surjection as there exists an $n \in \mathbb{N}$ for any $f(y), g(y) \in A \cup B$. Next assume $n_1, n_2 \in \mathbb{N}$, first let $2 \nmid n_1, n_2$ so:

$$h(n_1) = h(n_2) \implies f(\frac{n_1 + 1}{2}) = f(\frac{n_2 + 1}{2})$$

$$\implies (f^{-1} \circ f)(\frac{n_1 + 1}{2}) = (f^{-1} \circ f)(\frac{n_2 + 1}{2})$$

$$\implies \frac{n_1 + 1}{2} = \frac{n_2 + 1}{2}$$

$$\implies n_1 = n_2$$

Similarly if $2 \mid n_1, n_2$ note:

$$h(n_1) = h(n_2) \implies g(\frac{n_1}{2}) = f(\frac{n_2}{2})$$

$$\implies (g^{-1} \circ g)(\frac{n_1}{2}) = (g^{-1} \circ g)(\frac{n_2}{2})$$

$$\implies \frac{n_1}{2} = \frac{n_2}{2}$$

$$\implies n_1 = n_2$$

Without loss of generality $2 \mid n_1$ and $2 \nmid n_2$ is not possible as g and f map to disjoint sets. Thus we've shown h to be an injection. Thus h is a bijection from \mathbb{N} to $A \cup B$ so $\mathbb{N} \approx A \cup B$. Thus we've proven $A \cup B$ to be denumerable. \square

- 5.3.13 a. Proof. Let $A = \mathbb{R} \mathbb{Q}$ be the set of all irrationals. Since $\mathbb{R} = \mathbb{Q} \cup A$ by definiton, then A must be uncountable as we know \mathbb{R} is uncountable so it can't be the union of two countable sets and \mathbb{Q} is countable. Thus A, the set of all irrationals, must be uncountable.
- 5.4.1 a. $\frac{\mathbb{N} \subsetneq \mathbb{N} \{0\}}{\overline{\mathbb{N}} = \mathbb{N} \{0\}} = \aleph_0$ b. $\frac{\mathbb{N} \subsetneq \mathbb{Z}}{\overline{\mathbb{N}} = \overline{\mathbb{Z}} = \aleph_0}$ c. $\frac{\mathbb{R} \mathbb{Q} \subsetneq \mathbb{R}}{\overline{\mathbb{R}} \mathbb{Q} = \overline{\mathbb{R}} = \mathfrak{c}}$ d. $\frac{\mathbb{N} \{0\} \times \mathbb{N} \subsetneq \mathbb{N} \times \mathbb{N}}{\overline{\mathbb{N}} \{0\} \times \mathbb{N} = \overline{\mathbb{N}} \times \mathbb{N}} = \aleph_0^2$

5.4.5 Proof. Let A be a set. We'll prove that there exists no largest cardinal number by showing that $\overline{\overline{A}} < \overline{\overline{\mathscr{P}(A)}}$. So for any set there is a set with a larger cardinal number. To prove this we will show that the function $f: A \to \mathscr{P}(A)$ given by $f(x) = \{x\}$ is an injection. If $x, y \in A$ and f(x) = f(y) then $\{x\} = \{y\} \implies x = y$ which shows f's bijectivity. This shows that $\overline{\overline{A}} \leq \overline{\overline{\mathscr{P}(A)}}$. Now to show $\overline{\overline{A}} \neq \overline{\overline{\mathscr{P}(A)}}$. Seeking a contradiction suppose $A \approx \mathscr{P}(A)$ so that there exists a bijection $g: A \xrightarrow[onto]{1-1} \mathscr{P}(A)$. Now define set $B = \{y \in A : y \notin g(y)\} \in \mathscr{P}(A)$. Since g is a surjection there exists a $z \in A$ so that g(z) = B, now consider the following cases.

Case 1: If $z \in B$ then, by definition of $B, z \notin g(z)$ which is a contradiction as g(z) = B.

Case 2: If $z \notin B$ then, by definition of $B, z \in g(z)$ which is a contradiction as g(z) = B.

Thus we've shown that it is not possible for g to be a surjection so $\overline{\overline{A}} \neq \overline{\mathscr{P}(A)}$. Thus we've shown that $\overline{\overline{A}} < \overline{\overline{\mathscr{P}(A)}}$ for any set A. We can use this fact to show that there exists no largest cardinal number as any cardinal number is attached to the size of a set but there is no largest size for a set as $\overline{\overline{A}} < \overline{\overline{\mathscr{P}(A)}}$. Thus we've proved there exists no largest cardinal number.