

Zektor: Al in Vertical Farming

Batuhan Arat, Volkan Işık

Advisor: Sajit Rao

Department of Computer Engineering

Koç University

Project Description / Objectives

- Zektor enhances agricultural efficiency and reduces human labor in hydroponic farming, through image processing, sensor technology and artificial intelligence.
- Zektor is a solution for the first step through automation: monitoring.
- Our automated image gathering system collects images of each lettuce plant regularly. The images are analyzed by Al to guess each plant's growth and health.
- The results are displayed on a user-friendly UI.

System Design

- Robotic part of the hardware moves along the rail, capturing images of each plant, while the stationary sensors gather environmental data for the entire setup.
- Model and Backend deployed on the virtual cloud computer, process the collected data to analyze plant growth (4-step development cycle) and healthy or unhealthy

System Architecture

- NodeMCU controls the sensors and motor.
- Raspberry Pi controls the robotic hardware.
- Images stored in the S3, metadata stored in the MongoDB.

Methods

Hardware: Raspberry Pi
 & NodeMCU

ML Models: Tensorflow

 Backend: Express & Node.js

Frontend: React and Typescript

Deployment: Amazon EC2

Storage: MongoDB Atlas
 & Amazon S3 Bucket

Results

Growth:

Accuracy: 0.85

Confusion Matrix 0 - 167 0

Health:

Accuracy: 0.86

- Web Application Features
 - Predict Plant Harvest Time
 - Analyse Plant Health Status
 - 24/7 Controlled Farm Environment
 - Observe Plant Development Process
- Future Works
 - More Plant Types Analysis
 - Movement in Y and Z Axis