

Overview of degradation monitoring options in the context of REDD+

07-11 May 2018 | Phnom Penh

Objectives

Definition(s) of degradation

Use of proxies for monitoring degradation (indirect approach)

Use of remote sensing for detection of degradation (direct approach)

Definition(s): in terms of carbon biomass

deforestation

degradation

enhancement

$$\Delta C = \sum \Delta S \cdot B \cdot E_{def} + \sum S \cdot \Delta B \cdot E_{deg} + \sum S \cdot \Delta B \cdot R_{reg}$$

Definition(s): in terms of ecosystem services

Table 1. A suggested framework of criteria and indicators for defining and delineating areas of degraded forest. A suggested minimum set of seven indicators is indicated by an asterisk (*).

Criterion	Indicator(s)	Variable(s)	General methods
Production	Growing stock*	m³/ha of wood	Satellite imagery, LiDAR, ground plots
	Nontimber forest products	Monetary value, number/yr	Country reporting, questionnaires by management unit
Biodiversity	Ecosystem state*	Area of specific forest type	Satellite imagery
	Fragmentation*	Area fragmented	Satellite imagery, aerial photography
	Species	Presence/absence, population density, relative abundance, indicator of abundance	Aerial or ground surveys
Unusual disturbances	Invasive species*	Population density, area affected	Satellite imagery, aerial photography, ground surveys
	Fire*	Area affected	Satellite imagery, aerial photography
Protective function	Soil erosion*	Area affected	Satellite imagery, aerial photography
	Water volume or flow	Flow rate	River or stream flow meters
Carbon storage	Stored carbon*	Biomass/ha	Satellite imagery, ground plots
	High wood-density trees species	Tree density, relative abundance	Ground plots, aerial photography

Thompson, I. D., M. R. Guariguata, K. Okabe, C. Bahamondez, R. Nasi, V. Heymell, and C. Sabogal. 2013. An operational framework for defining and monitoring forest degradation. Ecology and Society 18(2): 20.

Definition(s): in terms of carbon, biodiversity and ES

Bustamante et al. (2016), Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biol, 22: 92–109. doi:10.1111/gcb.13087

Definition(s): quantification of degradation degrees

Sasaki et al., 2011. Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. Biogeosciences and Forestry, vol. 4, pp. 1-6, 2011

Definition(s): complex structure of natural forests

Chambers et al., 2013. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. PNAS

Definition(s): Importance of the MMU

Shugart, H. H., S. Saatchi, and F. G. Hall (2010), Importance of structure and its measurement in quantifying function of forest ecosystems, J. Geophys. Res., 115, G00E13, doi:10.1029/2009JG000993.

Definition(s): Scale of observations: micro vs macro

No convergence at micro scale

Convergence at macro scale

Definition(s): A lot of possible processes

GFOI (2016), Methods and Guidance Document V2 www.reddcompass.org

Technical approaches to degradation

Indirect approaches

Combination of existing data as proxies

- national forest inventories
- forestry statistics (volumes, exploited areas, road lengths),
- field survey (woodfuel, shifting cultivation)

Direct approaches

- Specific indices
- Dense time series
- Fragmentation
- Spatial synthesis

FREL submission of Congo (2016)

Emission liée à l'extraction de bois conventionelle_Biomasse aerienne	3,250,870	teCO2/an
Emission liée à l'extraction de bois certifiée_Biomass aerienne	1,166,595	teCO2/an
Emission liée à l'extraction de bois conventionelle_Biomasse souterrain	1,202,822	teCO2/an
Emission liée à l'extraction de bois certifiée_Biomass souterrain	431,640	teCO2/an
Emission liée au dommage d'extraction conventionelle_Biomasse aerienne	7,157,185	teCO2/an
Emission liée au dommage d'extraction certifiée_Biomass aerienne	1,284,200	teCO2/an
Emission liée au dommage d'extraction conventionelle_Biomasse so	2,648,158	teCO2/an
Emission liée au dommage d'extraction certifiée_Biomass souterrain	475,154	teCO2/an
Emissions Historiques bruts liées à la Dégradation Planifiée (EH-DEG-PL)	17,616,624	teCO2/an

Specific indices, spectral unmixing

$$NFDI = \frac{GV_{Shade} - (NPV + Soil)}{GV_{Shade} + (NPV + Soil)}$$

$$GV_{shade} = \frac{GV}{100 - Shade}$$

Souza, C., Roberts D., Cochrane, M., 2005. Combining spectral and spatial information to map canopy damage from selective logging and forest fires.

Remote Sensing of Environment 98

Specific indices, self referenced NBR

Langner et al., 2018. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia, Remote Sensing

Dense time series analisis of indices, BFAST

B DeVries, J Verbesselt, L Kooistra, M Herold, 2015. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sensing of Environment, 2015

Landscape Fragmentation Tool (LFT)

Shapiro et al., (2016) Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo. *Carbon Balance and Management*.

Intact Forest Landscapes

Margono, B.A. et al. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. *Environ. Res Letters*

Spatial aggregation on a fixed grid (JRC IMPACT toolbox)

Verhegghen, A., Bodart, C.& Eva, H.; Projet ReCaREDD - Atelier sur le suivi de la dégradation forestière par télédétection — Brazzaville 2016

Spatial aggregation into objects

Requires input data (GFC, roadless, other)

Independent of the resolution of auxillary product

Segmentation may not be relevant in future evaluations

Presentation adapted from S Saatchi (JPL / NASA)

Remi d'Annunzio | remi.dannunzio @fao.org

Connect with us online:

www.un-redd.org www.unredd.net

