DHC

Consider a particle of mass m confined in one dimension in a potential well of shape V(x).

- 1. Prove that the time-independent wave function $\phi_n(x)$, with energy E_n , can always be taken to be real, but the time-dependent wavefunction $\psi(x,t)$ cannot. (You can look it up, or use the hint in Griffiths.)
- 2. Show that all E_n must be higher than the minimum of the potential well (again, hint in Griffiths.)
- 3. Consider from this point on the case V(x) = 0 for 0 < x < L and $V(x) = \infty$ otherwise.
 - a. Go through the procedure of finding the normalized eigenfunctions $\phi_n(x)$ and eigenvalues E_n (n = 1, 2, ...) of the time-independent Schroedinger equation with this potential. Show that the eigenfunctions for different n are orthogonal.
 - b. From there, obtain the full series expansion of a general time-dependent wavefunction $\psi(x,t)$ in this potential, define the coefficients, and show how to determine them from the inner product of ψ and the ϕ_n (yes, it's in the book.)
 - c. Sketch the probability density in the ground state, and for n = 10. Which one is more like the classical probability?
- 4. Now assume the wavefunction at t = 0 is $\psi(x, 0) = A[\phi_m(x) + \phi_{m+1}(x)]$ where m is a large, even integer.
 - a. Find A, σ_x and σ_p for this state at t=0. Make use of orthonormality and symmetry where possible in the calculations. Check that the uncertainty principle holds, $\sigma_x \sigma_p \ge \hbar/2$. (TOO HARD WILL NOT BE GRADED!)
 - b. Find $\langle x \rangle$ at time t, and its oscillation frequency, ω_n . (WILL NOT BE GRADED)
 - c. Find the time-dependent probability density $\rho(x,t)$ and identify the scillation frequency, ω_n .
 - d. Consider instead a classical particle in the same box with kinetic energy E. Show that for large m, ω_m approaches ω_c , the fundamental frequency of the classical particle's bouncing back and forth.
 - e. At time t_0 a measurement is made and the result is E_m . What is $\psi(x,t)$ at later times?
- 5. Now assume that at t = 0 the particle is in the left quarter of the well, equally likely to be found anywhere in the range 0 < x < L/4.
 - a. What is $\psi(x, 0)$, assuming it is real and normalized?
 - b. What is the probability that a subsequent measurement of energy yields the result E_1 ?
 - c. If the first measurement yields result E_1 , what is the probability that a second subsequent measurement of the energy will yield result E_2 ?