Part II Listing

Listing 1. Preamble

^aCheck the documentation portion of the source file, ccool.dtx, for exhaustive settings

- % \usepackage{amsmath, amsthm, commath}
- % \usepackage[T1]{fontenc}% \char`[
- %

Listing 2. Separators

- x @ y
- x % y @ z
- x & y
- x & y
- x & y & z
- x, y & z
- x, y & z

Listing 3. Hello, world!

 $\{H\}.\{e\}.\{l\}.\{o\}, [world!]$

Listing 4. Listing 3 read from file.

 $\{H\}.\{e\}.\{l\}.\{o\}, [world!]$

Listing 5. Probability space

Let $\{\Omega, \mathcal{F}, \mathcal{P}\}$ denote the probability space, where $\mathcal{F} \subset 2^{\Omega}$.

Listing 6. Listing 5 read from file.

 $\Omega \mathcal{F} \mathcal{P}$

Listing 7. Mittelwertsatz für n Variable

Theorem 1 (Mittelwertsatz für n Variable) Es sei $n \in \mathbb{N}$, $D \subseteq \mathbb{N}^n$ eine offene Menge und $f \in C^1(D,\mathbb{R})$. Dann gibt es auf jeder Strecke $[x_0,x] \subset D$ einen Punkt $\xi \in [x_0,x]$, so dass gilt

$$\frac{f(x) - f(x_0)}{x - x_0} = \operatorname{grad} f(\xi)^{\top}$$

(Check: \mathbb{N}, ξ)

Listing 8. Listing 7 read from file.

 $\mathbb{N} \mathbb{R} D C^1 [x_0, x]$

Listing 9. Excerpt from a thesis

The CUSUM statistic process and the corresponding one-sided CUSUM stopping time are defined as follows:

Definition 1 Let $\lambda \in \mathcal{R}$ and $\nu \in \mathcal{R}^+$. Define the following processes:

1.
$$u_t(\lambda) = \lambda \xi_t - \frac{1}{2}\lambda^2 t$$
; $m_t(\lambda) = \inf_{0 \le s \le t} y_s(\lambda)$.

2.
$$y_t(\lambda) = m_t(\lambda) - u_t(\lambda) \ge 0$$
, which is the CUSUM statistic process.

3.
$$T_c(\lambda, m) = \inf[t \ge 0; y_t(\lambda) \ge m]$$
, which is the CUSUM stopping time.

(Check: λ, y)