Algoritmos y estructuras de datos Estrategia incremental

CEIS

Escuela Colombiana de Ingeniería

2024-1

Agenda

Problema de ordenamiento

Formulación Diseño Análisis Código

2 Diseño

3 Análisis

4 Aspectos finales Ejercicios

Agenda

1 Problema de ordenamiento Formulación

> Diseño Análisis Código

2 Diseño

Análici

Análisis

4 Aspectos finales Ejercicios

Formulación

- **Entrada:** Una secuencia de n números a_1 , a_2 , ..., a_n
- ▶ Salida: Una permutación $\langle a'_1, a'_2, ..., a'_n \rangle$ tal que $a'_1 \leq a'_2 \leq ... \leq a'_n$

Algoritmo Correcto: Una algoritmo se dice correcto si para cada instancia de la entrada, entrega una salida correcta.

Agenda

1 Problema de ordenamiento

Formulación

Diseño

Análisis

2 Diseño

Análisis

4 Aspectos finales Ejercicios

Funciona de manera similar a como una persona organiza una mano de cartas.

5 2 4 6 1 3

- (b) 2 5 4 6 1 3
- (c) 2 4 5 6 1 3
- (d) 2 4 5 6 1 3

5 2 4 6 1 3

¿Qué condición se cumple siempre?

Los elementos antes del actual

- son los originales
- pero ahora están ordenados

- (b) 2 5 4 6 1 3
- (c) 2 4 5 6 1 3
- (d) 2 4 5 6 1 3
- (e) 1 2 3 4 5 6 3
 - 1 2 3 4 5 6

¿Qué condición se cumple siempre?

Los elementos antes del actual

- son los originales
- pero ahora están ordenados

Este es el INVARIANTE

- (b) 2 5 4 6 1 3
- (c) 2 4 5 6 1 3
- (d) 2 4 5 6 1 3
- (e) 1 2 3 4 5 6 3

Invariante

- Los invariantes del ciclo ayudan a probar que un algoritmo es correcto. Se deben demostrar tres cosas sobre un invariante de ciclo:
 - Iniciación: El invariante es verdadero antes de la primera iteración.
 - Estabilidad: Si es verdadero antes de una iteración del ciclo, debe ser verdadero después de la iteración.
 - Terminación: Cuando el ciclo termina, el invariante es una propiedad importante que ayuda a demostrar que el algoritmo correcto.

Se formula el siguiente invariante:

A[1 . . j-1] consta de los elementos originalmente en A[1 . . j-1], pero ordenados ascendentemente.

```
\begin{split} & \text{INSERTION-SORT}(A) \\ & 1 \quad \text{for } j = 2 \text{ to } A.length \\ & 2 \qquad key = A[j] \\ & 3 \qquad \text{// Insert } A[j] \text{ into the sorted sequence } A[1 \ldots j-1]. \\ & 4 \qquad i = j-1 \\ & 5 \qquad \text{while } i > 0 \text{ and } A[i] > key \\ & 6 \qquad A[i+1] = A[i] \\ & 7 \qquad i = i-1 \\ & 8 \qquad A[i+1] = key \end{split}
```

Iniciación

- ► Se debe demostrar que el invariante es cierto antes de la primera iteración, es decir, cuando j = 2.
 - ▶ El subarreglo A[1 . . j 1] consiste únicamente del elemento A[1], que es el elemento original en A[1]
 - Adicionalmente, A[1] está ordenado ascendentemente demanera trivial (solo hay un elemento)

```
 \begin{array}{ll} \text{INSERTION-SORT}(A) \\ 1 & \text{ for } j = 2 \text{ to } A.length \\ 2 & key = A[j] \\ 3 & \text{ // Insert } A[j] \text{ into the sorted sequence } A[1 \mathinner{.\,.} j-1]. \\ 4 & i = j-1 \\ 5 & \text{ while } i > 0 \text{ and } A[i] > key \\ 6 & A[i+1] = A[i] \\ 7 & i = i-1 \\ 8 & A[i+1] = key \\ \end{array}
```

Estabilidad

Se debe demostrar la estabilidad del invariante.

A[j] y lo inserta allí (línea 8).

- Como se supone que el invariante vale antes de la elecución del ciclo, entonces se sabe que los elementos originales están en las posiciones 1, . . . , j-1 ordenados ascendentemente en el subarreglo A[1 . . j − 1].
- 1, . . . , j-1 ordenados ascendentemente en el subarreglo A[1 . . j El ciclo en la línea 5 mueve A[j - 1], A[j - 2], A[j - 3], etc. una posición a la derecha hasta que encuentra la posición adecuada para
- ► Entonces, los elementos originalmente en 1, . . . , j están en A[1 . . . j. Además, la inserción de A[j] preserva el orden ascendente de los elementos que al inicio de la iteración estaban en A[1 . . j 1]; entonces A[1 . . j] está ordenado ascendentemente.

Terminación

- El ciclo termina cuando la guarda j = 2 to A.length es falsa, es decir, cuando j > A.length. Además, por la propiedad de estabilidad se puede suponer que el invariante es cierto.
 - ► En el cuerpo del ciclo, el valor de j aumenta exactamente en 1; entonces, al finalizar el ciclo, debe ser cierto que j = n + 1
 - ► Al reemplazar j = n + 1 en el invariante, se obtiene que el arreglo A[1..(n - 1) + 1] (es decir, A[1..n]) está ordenado ascendentemente y contiene los valores originalmente en A[1..r
- Como el subarreglo A[1 . . n] es en realidad la totalidad de A, por el argumento anterior, el algoritmo Insertion-Sort ordena el arreglo A ascendentemente.

Agenda

1 Problema de ordenamiento

Formulación

Análisis

Código

2 Diseño

.

3 Análisis

.

4 Aspectos finales Ejercicios

- El análisis de algoritmos trata de identificar los recursos que el algoritmo requiere o utilizará. Ejemplos de estos recursos son la cantidad de memoria, hardware o tiempo de ejecución.
- Utilizaremos en el curso un modelo tecnológico llamado RAM (Random Access Machine). Este modelo tiene varias características:
 - Un solo procesador
 - Instrucciones se ejecutan de manera secuencial
 - Las operaciones booleanas y aritméticas se presumen eficientes y su costo operativo es constante.

- Generalmente hablamos del tiempo de ejecución como una función del tamaño de la entrada.
- Tamaño de la entrada: Es dependiente del problema y es una medida de la cantidad de elementos en la entrada.
- Tiempo de ejecución: Número de operaciones primitivas o pasos que son ejecutados para resolver el problema.

- Estamos interesados en encontrar el tiempo de ejecución mas largo.
 - Un limite superior para el tiempo de ejecución del algoritmo con cualquier entrada.
 - Generalmente el caso promedio es igual al peor caso.
 - Muchas veces el peor caso se ejecuta frecuentemente.

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Meior

eor

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j-1) + c_7 \sum_{j=2}^n (t_j-1) + c_8 (n-1)$$

$$\downarrow b \qquad t_j = 1; j = 2, 3, \dots, n$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8).$$

$$an + b \qquad \text{Función lineal de } n$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

$$t_i = 1; j = 2, 3, ..., n$$

$$\begin{array}{l} t_j = 1; j = 2, 3, \dots, n \\ T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) \\ = (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8) \ . \\ an + b \qquad \text{Función lineal de n} \end{array}$$

$$t_j = j; j = 2, 3, ..., n$$

$$\begin{aligned} & t_j = j; j = 2, 3, \dots, n \\ & T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1) \\ & = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8) \\ & an^2 + bn + c & Función cuadrática de n \end{aligned}$$

Agenda

1 Problema de ordenamiento

Formulación Diseño Análisis Código

2 Diseño

3 Análisis

.

4 Aspectos finales Ejercicios

Código

```
def insertion_sort(A):
    for j in range(2, len(A)):
        key = A[j]
        i = j - 1

        while i > 0 and A[i] > key:
            A[i + 1] = A[i]
            i = i - 1

        A[i + 1] = key
```

Agenda

1 Problema de ordenamiento Formulación Diseño Análisis

2 Diseño

Análisis

4 Aspectos finales Ejercicios

Invariante

- Los invariantes del ciclo ayudan a probar que un algoritmo es correcto. Se deben demostrar tres cosas sobre un invariante de ciclo:
 - Iniciación: El invariante es verdadero antes de la primera iteración.
 - Estabilidad: Si es verdadero antes de una iteración del ciclo, debe ser verdadero después de la iteración.
 - Terminación: Cuando el ciclo termina, el invariante es una propiedad importante que ayuda a demostrar que el algoritmo correcto.

Agenda

1 Problema de ordenamiento Formulación Diseño Análisis Código

2 Diseño

3 Análisis

4 Aspectos finales Ejercicios

Análisis Asintótico

- Cuando se estudia la eficiencia asintótica de un algoritmo, estamos interesados en saber como el tiempo de ejecución aumenta con una entrada que se incrementa sin límite.
- El orden de crecimiento del tiempo de ejecución de un algoritmo nos da una caracterización sencilla de la eficiencia del algoritmo y nos permite comparar el desempeño relativo de varios algoritmos.
- La notación que se usa para describir el tiempo de ejecución asintótico de un algoritmo esta definido en términos de funciones cuyo dominio es el conjunto de números naturales N = {0, 1, 2, ...}.

Notación O

$$\begin{split} \Theta\big(g(n)\big) = \\ \{f(n): Existen\ constantes\ positivas\ c_1, c_2\ y\ n_0\\ tales\ que\ 0 \le c_1g(n) \le f(n) \le c_2g(n)\\ para\ todos\ los\ n \ge n_0\} \end{split}$$

La notación **0** envuelve a la función por arriba y por abajo.

Notación O

O(g(n)) = $\{f(n): Existen \ constantes \ positivas \ c \ y \ n_0$ $tales \ que \ 0 \le \ f(n) \le cg(n)$ $para \ todos \ los \ n \ge n_0 \}$

Cuando solo se tienen un límite superior, se usa la notación-O.

Notación Ω

 $\Omega\left(g(n)\right) = \\ \{f(n): Existen \ constantes \ positivas \ c \ y \ n_0 \\ tales \ que \ 0 \le \ cg(n) \le f(n) \\ para \ todos \ los \ n \ge n_0\} \\ Esta \ notación \ provec un límite inferior asintótico para la función.$

Notaciones Θ O Ω

Para dos funciones f(n) y g(n), se tiene que

$$f(n) = \Theta(g(n))$$
 si y solo si

$$f(n) = O(g(n))$$

$$f(n) = \Omega(g(n))$$

Orden de crecimiento

 $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

Orden de crecimiento

$$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$$

Análisis comparativo

n	logn	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4, 294, 967, 296
64	6	64	384	4,096	262, 144	1.84×10^{19}
128	7	128	896	16,384	2,097,152	3.40×10^{38}
256	8	256	2,048	65,536	16,777,216	1.15×10^{77}
512	9	512	4,608	262, 144	134, 217, 728	1.34×10^{154}

Running	Maximum Problem Size (n)		
Time (µs)	1 second	1 minute	1 hour
400n	2,500	150,000	9,000,000
$2n^2$	707	5,477	42,426
2^n	19	25	31

Agenda

1 Problema de ordenamiento Formulación Diseño Análisis Código

2 Diseño

Análisis

4 Aspectos finales Ejercicios

Eiercicios

1. Ordenar las siguientes funciones de menor a mayor orden:

1. n	5. 2^n	9. $n \log n$	13. ln <i>n</i>
$2. n - n^3 + 7n^5$	$6.\log n$	10. \sqrt{n}	14. e^n
$3. n^2 + \log n$	7. n^2	11. 2^{n-1}	15. $\log \log n$
$4. n^3$	8. $(\log n)^2$	12. <i>n</i> !	16. $n^{1+\varepsilon}$, $0 < \varepsilon < 1$

2. Para las siguientes funciones, determinar el resultado como una función de n y representar el peor caso de ejecución con notación Big Oh:

$$\sum_{n=1}^{n} x = \frac{1}{2} n(n+1)$$

$$\sum_{j=i+1}^n j = \sum_{j=1}^n j - \sum_{j=1}^i j$$

$$\sum_{x=1}^{n} x = \frac{1}{2} n(n+1) \qquad \sum_{j=1}^{n} j = \sum_{j=1}^{n} j - \sum_{j=1}^{i} j \qquad \sum_{x=1}^{n} x^{2} = \frac{1}{6} n(n+1)(2n+1)$$

3. Implementar el algoritmo de insertion sort para ordenar en orden descendente en vez de ascendente.