Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - * end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Performance
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Goal: connect end-systems

end systems (hosts or servers):

- run application programs
- e.g. web, email
- at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

A closer look at network structure:

 network edge: applications and hosts

 access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets (local telco or TV company)
- institutional access networks (school, company)
- * mobile access networks

Characteristics of access:

- bandwidth (bits per second) of access network?
- shared or dedicated?
- other?

Access net: Dial-up Modem

- uses existing telephony infrastructure
 - Twisted pair, convert digital to analog
 - home directly-connected to central office
- ❖ <56Kbps direct access to router (was 14Kbps ©)</p>
 - It sounded like this: https://www.youtube.com/watch?v=gsNaR6FRu00
 - Data on the wire restricted to a band of ~= 4000Hz
 - 8000 samples per sec; 8 bits per sample (1 bit for control); 56,000bits/sec= 56kbps
- Couldn't surf and phone at same time: not "always on"

Access net: Digital Subscriber Line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)
 </p>

Access network: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access net: Cable network

- Use existing cable TV infrastructure
- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- network of cable+fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Fiber to the Home (FTTH)

- optical links from central office to the home
- much higher rates; fiber also carries television and phone services
- fiber.google.com

Access net: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate
- 802.11n: up to 600 Mbps

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G: LTE, 5G

Characteristics of selected wireless links

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - * signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Physical media – twisted pair (TP)

- two insulated copper wires
 - Category 3: traditional telephone network
 - Category 5: 100 Mbps, I Gbps Ethernet
 - Category 6a: 10Gbps up to 100m

Speed depends on material, thickness of wire, #twists, shielding, and distance

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed point-to-point transmission
 - e.g., 10' s-100' s Gpbs
- low error rate:
 - low attenuation up to 100s kms
 - repeaters spaced far apart
 - immune to electromagnetic noise
- Hard to tap
- Top-choice for long distance
- Residential: fiber.google.com

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - I I Mbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Transmission over a single point-topoint link

Notes on Bandwidth and Delay (Transmission vs. Propagation Delay)

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at link transmission rate R
 - aka link capacity, aka link bandwidth

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = L/R= 5 sec

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Do not confuse Transmission with Propagation Delay!

Check out the online interactive exercise:

Host sends one bit

Host: sends one packet

Host: sends 2 packets of data

Caravan analogy: d_{trans}vs. d_{prop}

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?
- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec = 2min
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr=60min
- A: 62 minutes

Caravan analogy: d_{trans} < d_{prop}

Transmission delay $d_{trans} = 2min$

Propagation delay d_{prop} =60min

Caravan analogy: d_{trans} > d_{prop}

- cars now "propagate" at 1000 km/hr, i.e. 6min
- toll booth now takes I min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?
 - A: Yes! After 7 min, 1st car arrives at second booth; three cars still at 1st booth.
 - Ist bit of packet can arrive at 2nd router before packet is fully transmitted at Ist router! (see applet at AWL Web site)

Caravan analogy: d_{trans} > d_{prop}

Throughput

- throughput: rate (bits/time unit) at which bits are transferred
 - instantaneous: rate at given point in time
 - average: rate over longer period of time
 - application throughput <= link rate (bandwidth)

