

Billboard Music Trend

Chia-Wen Chen, Jyun-Hao Chen, Shih-Man Wang

Team Members

Mickey Chen

Jyun-Hao Chen

Shih-Man Wang

- 01 Background
- **02** Research Questions
- **03** Derivative Data

- 04 Analysis Approach
- 05 Findings

01 Background

- Significant role in our daily lives.
- Highly profitable industry.
- The transition of popular music and identify the types of music people enjoy more today.

02 Research Questions

© Research Questions

- 1. What are the most frequently charted music genres in history, and how have music attributes changed in a period?
- 2. Is there a correlation between music attributes and popularity on Billboard? And the prediction of music trends for the 2020s.
- 3. Do audiences prefer fixed songs, or are new songs introduced weekly?

03 Derivative data

— Derivative Data


```
genre[150:159]
    ['mellow gold',
\Box
     'motown',
     'quiet storm',
     'soft rock',
     'soul',
     'adult standards',
     'disco',
     'funk',
     'mellow gold']
```

Derivative Data

df_	df_musicfactors_trends.head()										
	week_id	danceability	energy	loudness	speechiness	acousticness	instrumentalness	liveness	valence	tempo	
0	2020-05-02	0.696938	0.647797	-5.826313	0.117678	0.183440	0.005359	0.185391	0.538859	121.486109	
1	2020-05-09	0.684484	0.649797	-5.826937	0.102336	0.174324	0.005352	0.187403	0.517977	119.390906	
2	2020-05-16	0.682131	0.644623	-5.907557	0.117861	0.211857	0.005612	0.196775	0.511180	118.065852	
3	2020-05-23	0.677696	0.639393	-5.930232	0.093173	0.194417	0.006131	0.180252	0.510527	119.614250	
4	2020-05-30	0.714136	0.626780	-6.353305	0.143324	0.185313	0.005829	0.183998	0.488729	121.897237	

04 Analysis Approach

Narrative Analysis

Multiple Linear Regression

Narrative Analysis

1. Separate "Genre" & 11 Music Attributes

They have different data types.

- Genre: String
- 11 Music Attributes: Float type. Range of 0 to 1.

2. Limit duration from 2020 to 2021.

Too much data and hard to see the trends by weeks.

— Multiple Linear Regression Model

Goal: Determine the correlation between Attributes and weeks_on_chart.

Check relationships between the attributes.

Correlation between independent variables is low.

>> No Multicollinearity.

— Multiple Linear Regression Model

2. Identify outliers again.

Outliers in: instrumentalness, liveness, and acousticness.

To execute accurate prediction

>> Remain the outlier and not delete.

Multiple Linear Regression Model

- 3. Develop model for independent variables and dependent variables.
 - Independent Variables : Samples = 1:10
 - Apply multiple linear regression model to generate result summary.
 - >>For advanced summarization & Analysis of results.

```
aa = df_mr.sort_values(by=['weeks_on_chart'], ascending=False).dropna(subset=['liveness','spotify_track_duration_ms', 'spotify_genre']).head(100)
aa = aa.drop(columns=['week_id','song','performer','song_id','spotify_genre','spotify_track_explicit','key','mode','time_signature'])
```

```
x = sm.add_constant(aa.iloc[:,1:])
y = aa['weeks_on_chart']
model = sm.OLS(y, x)
result = model.fit()
result.summary()
```


05 Findings

OLS Regression Results weeks_on_chart R-squared: 0.229 Dep. Variable: Model: OLS Adj. R-squared: 0.142 Least Squares F-statistic: Method: 2.637 Wed, 26 Apr 2023 Prob (F-statistic): 0.00734 Date: Log-Likelihood: -320.58 Time: 20:11:23 AIC: 663.2 No. Observations: 100 BIC: 691.8 **Df Residuals:** 89 **Df Model:** 10 Covariance Type: nonrobust P>ltl [0.025 0.9751 std err 53.0083 10.372 5.111 0.000 32.399 const 73.618 **spotify_track_duration_ms** 1.748e-05 2.01e-05 0.872 0.386 -2.24e-05 5.73e-05 danceability -0.7473 6.425 -0.116 0.908 -13.514 12.020 -3.5542 7.811 -0.455 0.650 -19.074 11.966 energy 0.474 0.950 0.345 -0.492 loudness 0.4504 1.393 speechiness -12.7439 11.371 -1.121 0.265 -35.338 9.850 1.250 0.214 -2.903 12.757 acousticness 4.9271 3.940 34.6931 10.895 3.184 0.002 13.044 56.342 instrumentalness 6.083 liveness 13.7441 2.259 0.026 1.657 25.831 valence 4.030 -0.945 0.347 - 11.818 4.197 -3.8104 0.026 0.833 0.407 -0.030 tempo 0.0217 0.074 Omnibus: 48.226 Durbin-Watson: 0.475 Prob(Omnibus): 0.000 Jarque-Bera (JB): 127.572 Prob(JB): Skew: 1.791 1.99e-28 **Kurtosis:** 7.218 Cond. No. 5.12e+06

The independent variables can only explain 22% relationship of the weeks_on_chart.

>> 78% of elements are not found.

"Const", "liveness", "instrumentalness" have a p-value < 0.05.

>> Significant differences from the dependent variable.

OLS Regression Results

Dep. Variable: weeks_on_chart **R-squared:** 0.146

Model: OLS Adj. R-squared: 0.129

Method: Least Squares F-statistic: 8.306

Date: Wed, 26 Apr 2023 **Prob (F-statistic):** 0.000468

Time: 20:11:24 Log-Likelihood: -325.65

 No. Observations: 100
 AIC:
 657.3

 Df Residuals:
 97
 BIC:
 665.1

Df Model: 2

Covariance Type: nonrobust

coef std err t P>Itl [0.025 0.975]

const 52.2948 1.137 46.007 0.000 50.039 54.551

instrumentalness 35.7923 10.117 3.538 0.001 15.713 55.872

liveness 13.4826 5.939 2.270 0.025 1.695 25.270

Omnibus: 50.779 Durbin-Watson: 0.326

Prob(Omnibus): 0.000 Jarque-Bera (JB): 137.679

Skew: 1.890 **Prob(JB):** 1.27e-30

Kurtosis: 7.330 **Cond. No.** 16.1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Remove the variables that do not have significant difference.

Only explain 14.6% reasons of weeks_on_chart.

>> R^ decline as lesser independent variables are in the model.

Music genre that people love the most

- 1. Separate music genres from the dataset [Mellow gold, pop, classic]
- 2. Calculate the number of different genres

People love new songs but also stick to old songs

- Record the song_id that appears each week.
- 2. Compare and calculate the difference.

Thank you for your listening!

Chia-Wen Chen, Jyun-Hao Chen, Shih-Man Wang