# El problema Knapsack Múltiples vistas

Rudik Rompich/ Alejandro Pallais

Universidad del Valle de Guatemala





- 1 Introducción
- 2 Variaciones
- 3 Conclusiones
- Referencias



1 Introducción

Introducción 00000



## £Qué es el problema Knapsack?

El problema Knapsack es un problema fundamental en la optimización combinatoria, el cual intuitivamente se describe como:

- Dado un conjunto de artículos, cada uno con un peso y un valor.
- Debemos determinar el número de cada artículo para incluir en una colección, de modo que el peso total sea menor o igual a un límite dado.
- Y el propósito del valor total sea maximizado.



### Problema Knapsack en una dimensión



En una dimensión el problema knapsack se puede representar de la siguiente manera.

Introducción 00000

#### Problema Básico de la Mochila

### Descripción:

Introducción

- Mochila con capacidad máxima de peso W.
- n objetos, cada uno con un peso wi y un valor vi.
- Objetivo: Maximizar el valor total sin exceder W.

#### Formulación Matemática:

Maximizar 
$$\sum_{i=1}^n v_i \cdot x_i$$
Sujeto a  $\sum_{i=1}^n w_i \cdot x_i \leq W$ 
 $x_i \in \{0,1\} \quad \forall i$ 

### Comparaciones de las variaciones del problema

| Variación              | Descripción                                                                        | Enfoque                  |
|------------------------|------------------------------------------------------------------------------------|--------------------------|
| 0/1                    | Los objetos no se pueden dividir                                                   | Programación<br>Dinámica |
| Fraccionaria           | Los objetos se pueden divi-<br>dir; se pueden tomar frac-<br>ciones de los objetos | Algoritmo<br>Greedy      |
| Multi-<br>dimensional  | Múltiples restricciones de capacidad (p.ej., volumen, peso)                        | algoritmo ge-<br>netico  |
| Múltiples<br>knapsacks | Más de un knapsack, cada<br>una con su capacidad                                   | Heurísticas/DP           |

Cuadro 1: Tabla comparativa de las variaciones



Variaciones •0000000000

- 1 Introducción
- 2 Variaciones
- 3 Conclusiones
- 4 Referencias



- PD aplica cuando los problemas se sobreponen y se compone de múltiples subproblemas.
- Surge como una mejora a los algoritmos de dividir y conquistar.
- PD resuelve un problema una única vez y lo guarda en una tabla. Evitando el desgaste computacional.



## Enfoque de Programación Dinámica

La Programación Dinámica es un enfoque eficiente para el problema knapsack 0/1. Implica descomponer el problema en subproblemas más pequeños y resolver cada uno solo una vez.

- La PD construye una matriz  $DP[0 \dots n][0 \dots W]$ .
- DP[i][w] representa el valor máximo alcanzable con los primeros i ítems y una capacidad de mochila de w.
- La solución se construye de manera iterativa.

## Enfoque de Programación Dinámica

- Link a matriz de ejemplo.
- Demostración en código.



11 / 22

## Knapsack Fraccional

Esta es una variante del problema donde se pueden seleccionar fracciones de los elementos. A diferencia del Problema 0/1, este problema permite un enfoque más flexible donde los elementos se pueden dividir en partes más pequeñas.

### Formulación Matemática

#### Sea:

- n: Número total de objetos disponibles.
- $w_i$ : Peso del objeto i, para  $i = 1, 2, \ldots, n$ .
- $v_i$ : Valor del objeto i, para  $i = 1, 2, \ldots, n$ .
- W: Capacidad máxima de peso de la mochila.
- x<sub>i</sub>: Fracción del objeto i que se incluye en la mochila, donde  $0 < x_i < 1$ .

### Objetivo:

Maximizar 
$$Z = \sum_{i=1}^{n} v_i \cdot x_i$$

#### Restricciones:

$$\sum_{i=1}^n w_i \cdot x_i \leq W$$

$$0 \le x_i \le 1$$
 para todo  $i = 1, 2, \dots, n$ 



## Enfoque del Algoritmo greedy

- ① Calcular la relación valor-peso para cada elemento.
- Ordenar los elementos por esta relación en orden descendente.
- 3 Añadir los elementos a la mochila en este orden, tomando tanto de cada elemento como sea posible.

#### Multidimensional

Esta es una variante del problema donde se pueden poner múltiples restricciones a los elementos. A diferencia del Problema 0/1, este problema permite un enfoque más real donde podemos poner mas limitantes a los elementos.

### Formulación Matemática

#### Sea:

- n: Número total de objetos disponibles.
- m: Número total de restricciones.
- $w_{j_i}$ : Característica j del objeto i, para  $i = 1, 2, \dots, n, j = 1, 2, \dots, m$ .
- $v_i$ : Valor del objeto i, para i = 1, 2, ..., n.
- $W_j$ : Capacidad máxima de restricción j, para  $j=1,2,\ldots,m$ .

### Objetivo:

Maximizar 
$$Z = \sum_{i=1}^{n} v_i \cdot x_i$$

#### Restricciones:

$$\sum_{i=1}^{n} w_{j_i} \cdot x_i \leq W_j, \forall j \in \mathbb{Z} \cap [1, m]$$

$$x_i \in \{0,1\} \quad \forall i$$

## Enfoque del Algoritmo genético

- Crea una población aleatoria (eligiendo objetos aleatorios)
- Revisa si encontró la respuesta
- 8 Elimina las que no cumplen alguna restricción.
- 4 De las dos con mayor valor hace una nueva población agarrando una cantidad aleatoria de decisiones de una y el resto de la otra.
- 6 muta y vuelve a empezar



## Ejemplo

• Demostración en código.



- 1 Introducción
- 2 Variaciones
- 3 Conclusiones
- 4 Referencias



 Programación dinámica busca descomponer el problema en problemas más pequeños.

Conclusiones

- El algoritmo greedy busca optimizar en cada paso.
- El algoritmo genético para el problema multimensional tiene la capacidad de encontrar el resultado con un promedio de 3 iteraciones, la desventaja es que diverge un 30 % de las veces

- 1 Introducción

- Referencias



#### Referencias

- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press.
- J. Doe and A. Smith, .ºptimización de rutas utilizando algoritmos genéticos "Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 347-360, Octubre 2010.