

pgRouting Manual

Release v2.5.1

pgRouting Contributors

1	Gene	eral eral	3
	1.1	Introduction	3
	1.2	Installation	5
	1.3	Support	9
	1.4	Sample Data	
2	Pgro	outing Concepts	19
	2.1	pgRouting Concepts	19
	2.2	pgr_version	
3	Data	Types	35
	3.1	pgRouting Data Types	35
4	Topo	ology Functions	39
	4.1	Topology - Family of Functions	39
5	Rout	ting functions	69
	5.1	Routing Functions	69
6	Avail	lable Functions but not official pgRouting functions	161
	6.1	Stable Proposed Functions	161
	6.2	Experimental Functions	247
7	Char	nge Log	413
	7.1	Release Notes	413
Bi	bliogr	raphy	425
In	dex		427

 $pgRouting\ extends\ the\ PostGIS^1/PostgreSQL^2\ geospatial\ database\ to\ provide\ geospatial\ routing\ and\ other\ network\ analysis\ functionality.$

This is the manual for pgRouting v2.5.1.

The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License³. Feel free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever possible, a link back to http://pgrouting.org. For other licenses used in pgRouting see the *Licensing* page.

http://postgis.net

² http://postgresql.org

³ http://creativecommons.org/licenses/by-sa/3.0/

CHAPTER 1

General

1.1 Introduction

pgRouting is an extension of PostGIS⁴ and PostgreSQL⁵ geospatial database and adds routing and other network analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp⁶, was later extended by Orkney⁷ and renamed to pgRouting. The project is now supported and maintained by Georepublic⁸, iMaptools⁹ and a broad user community.

pgRouting is part of OSGeo Community Projects¹⁰ from the OSGeo Foundation¹¹ and included on OSGeo Live¹².

1.1.1 Licensing

The following licenses can be found in pgRouting:

License	
GNU General Public License, version	Most features of pgRouting are available under GNU General Public
2	License, version 2 ¹³ .
Boost Software License - Version 1.0	Some Boost extensions are available under Boost Software License -
	Version 1.0^{14} .
MIT-X License	Some code contributed by iMaptools.com is available under MIT-X
	license.
Creative Commons Attribution-Share	The pgRouting Manual is licensed under a Creative Commons
Alike 3.0 License	Attribution-Share Alike 3.0 License ¹⁵ .

In general license information should be included in the header of each source file.

⁴ http://postgis.net
⁵ http://postgresql.org

⁶ http://camptocamp.com

⁷ http://www.orkney.co.jp

⁸ http://georepublic.info

⁹ http://imaptools.com/

¹⁰ http://wiki.osgeo.org/wiki/OSGeo_Community_Projects

¹¹ http://osgeo.org

¹² http://live.osgeo.org/

¹³ http://www.gnu.org/licenses/gpl-2.0.html

¹⁴ http://www.boost.org/LICENSE_1_0.txt

¹⁵ http://creativecommons.org/licenses/by-sa/3.0/

1.1.2 Contributors

This Release Contributors

Individuals (in alphabetical order)

Maoguang Wang, Vidhan Jain, Virginia Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc.

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Georepublic¹⁶
- Google Summer of Code¹⁷
- iMaptools¹⁸
- Paragon Corporation¹⁹

Contributors Past & Present:

Individuals (in alphabetical order)

Akio Takubo, Andrea Nardelli, Anton Patrushev, Ashraf Hossain, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Florian Thurkow, Frederic Junod, Gerald Fenoy, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang, Mohamed Zia, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Stephen Woodbridge, Sylvain Housseman, Sylvain Pasche, Vidhan Jain, Virginia Vergara

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Camptocamp
- CSIS (University of Tokyo)
- Georepublic
- Google Summer of Code
- iMaptools
- Orkney
- Paragon Corporation

¹⁶ https://georepublic.info/en/

¹⁷ https://developers.google.com/open-source/gsoc/

¹⁸ http://imaptools.com

¹⁹ http://www.paragoncorporation.com/

1.1.3 More Information

- The latest software, documentation and news items are available at the pgRouting web site http://pgrouting.org.
- PostgreSQL database server at the PostgreSQL main site http://www.postgresql.org.
- PostGIS extension at the PostGIS project web site http://postgis.net.
- Boost C++ source libraries at http://www.boost.org.
- Computational Geometry Algorithms Library (CGAL) at http://www.cgal.org.
- The Migration guide can be found at https://github.com/pgRouting/pgrouting/wiki/Migration-Guide.

1.2 Installation

Table of Contents

- Short Version
- Get the sources
- Enabling and upgrading in the database
- Dependencies
- Configuring
- Building
- Testing

Instructions for downloading and installing binaries for different Operative systems instructions and additional notes and corrections not included in this documentation can be found in Installation wiki²⁰

To use pgRouting postGIS needs to be installed, please read the information about installation in this Install Guide²¹

1.2.1 Short Version

Extracting the tar ball

```
tar xvfz pgrouting-2.4.0.tar.gz cd pgrouting-2.4.0
```

To compile assuming you have all the dependencies in your search path:

```
mkdir build
cd build
cmake ..
make
sudo make install
```

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

```
createdb routing
psql routing -c 'CREATE EXTENSION postGIS'
psql routing -c 'CREATE EXTENSION pgRouting'
```

1.2. Installation 5

 $^{^{20}\} https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting-pgRouting-pgroutin$

²¹ http://www.postgis.us/presentations/postgis_install_guide_22.html

1.2.2 Get the sources

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

wget

To download this release:

```
wget -0 pgrouting-v2.4.0.tar.gz https://github.com/pgRouting/pgrouting/archive/v2. \hookrightarrow 4.0.tar.gz
```

Goto Short Version to the extract and compile instructions.

git

To download the repository

```
git clone git://github.com/pgRouting/pgrouting.git cd pgrouting git checkout |release|
```

Goto *Short Version* to the compile instructions (there is no tar ball).

1.2.3 Enabling and upgrading in the database

Enabling the database

pgRouting is an extension and depends on postGIS. Enabling postGIS before enabling pgRouting in the database

```
CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;
```

Upgrading the database

To upgrade pgRouting in the database to version 2.4.0 use the following command:

```
ALTER EXTENSION pgrouting UPDATE TO "2.4.0";
```

More information can be found in https://www.postgresql.org/docs/current/static/sql-createextension.html

1.2.4 Dependencies

Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are met:

- C and C++0x compilers * g++ version >= 4.8
- Postgresql version >= 9.2
- PostGIS version >= 2.0
- The Boost Graph Library (BGL). Version >= 1.46
- CMake >= 3.2
- CGAL >= 4.2

optional dependencies

For user's documentation

- Sphinx >= 1.1
- Latex

For developer's documentation

• Doxygen >= 1.7

For testing

- pgtap
- pg_prove

Example: Installing dependencies on linux

Installing the compilation dependencies

```
sudo apt-get install
  cmake \
  g++ \
  postgresql-9.3 \
  postgresql-server-dev-9.3 \
  libboost-graph-dev \
  libcgal-dev
```

Installing the optional dependencies

```
sudo apt-get install -y python-sphinx \
    texlive \
    doxygen \
    libtap-parser-sourcehandler-pgtap-perl \
    postgresql-9.3-pgtap
```

1.2.5 Configuring

pgRouting uses the *cmake* system to do the configuration.

The build directory is different from the source directory

Create the build directory

```
$ mkdir build
```

Configurable variables

To see the variables that can be configured

```
$ cd build
$ cmake -L ..
```

1.2. Installation 7

Configuring The Documentation

Most of the effort of the documentation has being on the HTML files. Some variables for the documentation:

Variable	Default	Comment
WITH_DOC	BOOL=OFF	Turn on/off building the documentation
BUILD_HTML	BOOL=ON	If ON, turn on/off building HTML for user's documentation
BUILD_DOXY	BOOL=ON	If ON, turn on/off building HTML for developer's documentation
BUILD_LATEX	BOOL=OFF	If ON, turn on/off building PDF
BUILD_MAN	BOOL=OFF	If ON, turn on/off building MAN pages
DOC_USE_BOOTSTRAF	BOOL=OFF	If ON, use sphinx-bootstrap for HTML pages of the users documen-
		tation

Configuring with documentation

```
$ cmake -DWITH_DOC=ON ..
```

Note: Most of the effort of the documentation has being on the html files.

1.2.6 Building

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

We have tested on several platforms, For installing or reinstalling all the steps are needed.

Warning: The sql signatures are configured and build in the cmake command.

MinGW on Windows

```
$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install
```

Linux

The following instructions start from path/to/pgrouting

```
mkdir build
cd build
cmake ..
make
sudo make install
```

When the configuration changes:

```
rm -rf build
```

and start the build process as mentioned above.

1.2.7 Testing

Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

```
tools/testers/algorithm-tester.pl
createdb -U <user> __pgr__test__
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> __pgr__test__
```

1.2.8 See Also

Indices and tables

- · genindex
- search

1.3 Support

pgRouting community support is available through the pgRouting website²², documentation²³, tutorials, mailing lists and others. If you're looking for *commercial support*, find below a list of companies providing pgRouting development and consulting services.

1.3.1 Reporting Problems

Bugs are reported and managed in an issue tracker²⁴. Please follow these steps:

- 1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at least indicate that you too are having the problem. This will help us prioritize common issues.
- 2. If your problem is unreported, create a new issue²⁵ for it.
- 3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to replicate a problem.
- 4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem appears.
- 5. For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and PostgreSQL.
- 6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

1.3. Support 9

²² http://pgrouting.org/support.html

²³ http://docs.pgrouting.org

²⁴ https://github.com/pgrouting/pgrouting/issues

²⁵ https://github.com/pgRouting/pgrouting/issues/new

```
SET client_min_messages TO debug;
    <your code>
SET client_min_messages TO notice;
```

1.3.2 Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

- User mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-users
- Developer mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-dev

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange²⁶ and tag the question with pgrouting. Find all questions tagged with pgrouting under http://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed²⁷.

1.3.3 Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the following organizations, which have significantly contributed to the development of pgRouting:

Company	Offices in	Website
Georepublic	Germany, Japan	https://georepublic.info
iMaptools	United States	http://imaptools.com
Paragon Corporation	United States	http://www.paragoncorporation.com
Camptocamp	Switzerland, France	http://www.camptocamp.com

• Sample Data that is used in the examples of this manual.

1.4 Sample Data

The documentation provides very simple example queries based on a small sample network. To be able to execute the sample queries, run the following SQL commands to create a table with a small network data set.

Create table

```
CREATE TABLE edge_table (
   id BIGSERIAL,
   dir character varying,
   source BIGINT,
   target BIGINT,
   cost FLOAT,
   reverse_cost FLOAT,
   capacity BIGINT,
   capacity BIGINT,
   category_id INTEGER,
   reverse_category_id INTEGER,
   x1 FLOAT,
   y1 FLOAT,
   x2 FLOAT,
   y2 FLOAT,
```

10 Chapter 1. General

²⁶ http://gis.stackexchange.com/

²⁷ http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest

```
the_geom geometry
);
```

Insert data

```
INSERT INTO edge_table (
   category_id, reverse_category_id,
   cost, reverse_cost,
   capacity, reverse_capacity,
   x1, y1,
   x2, y2) VALUES
(3, 1,
        1, 1, 80, 130,
                              0,
                                     2, 1),
                           2,
                          2, 1,
3, 1,
        -1, 1,
                -1, 100,
                                     3, 1),
(3, 2,
        -1, 1, -1, 130,
1, 1, 100, 50,
                          3,
                                     4, 1),
(2, 1,
(2, 4,
                                     2, 2),
                           2,
                               1,
(1, 4,
                          3,
        1, -1, 130, -1,
                               1,
                                     3, 2),
                              2,
(4, 2,
        1, 1, 50, 100,
                          Ο,
                                    1, 2),
(4, 1,
        1, 1, 50, 130,
                          1,
                               2,
                                    2, 2),
                              2,
        1, 1, 100, 130,
                          2,
(2, 1,
                                     3, 2),
(1, 3,
        1, 1, 130, 80,
                          3,
                              2,
                                    4, 2),
                              2,
(1, 4,
        1, 1, 130, 50,
                          2,
                                    2, 3),
(1, 2,
        1, -1, 130, -1,
                          3,
                              2,
                                    3, 3),
        1, -1, 100, -1,
(2, 3,
                          2,
                               3,
                                     3, 3),
        1, -1, 100,
                    -1,
(2, 4,
                          3,
                              3,
                                     4, 3),
        1, 1, 80, 130,
                                    2, 4),
(3, 1,
                          2,
                              3,
        1, 1, 80, 50,
                          4,
(3, 4,
                              2,
                                     4, 3),
(3, 3,
        1, 1, 80,
                    80,
                           4,
                                1,
                                     4, 2),
                                     1.999999999999,3.5),
(1, 2,
      1, 1, 130, 100,
                           0.5, 3.5,
(4, 1,
         1, 1,
                50, 130,
                           3.5, 2.3,
                                     3.5,4);
UPDATE edge_table SET the_geom = st_makeline(st_point(x1,y1),st_point(x2,y2)),
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways
          WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the
→LINESSTRING
          WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the_
\hookrightarrowLINESTRING
          ELSE '' END;
                                                    -- unknown
```

Topology

• Before you test a routing function use this query to create a topology (fills the source and target columns).

```
SELECT pgr_createTopology('edge_table',0.001);
```

Points of interest

- When points outside of the graph.
- Used with the withPoints Family of functions functions.

```
CREATE TABLE pointsOfInterest(
   pid BIGSERIAL,
   x FLOAT,
   y FLOAT,
```

1.4. Sample Data 11

```
edge_id BIGINT,
    side CHAR,
    fraction FLOAT,
    the_geom geometry,
    newPoint geometry
);
INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES
(1.8, 0.4,
           1, '1', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, '1', 0.6),
(0.3, 1.8, 6, 'r', 0.3),
           5, '1', 0.8),
(2.9, 1.8,
(2.2, 1.7, 4, 'b', 0.7);
UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);
UPDATE pointsOfInterest
   SET newPoint = ST_LineInterpolatePoint(e.the_geom, fraction)
   FROM edge_table AS e WHERE edge_id = id;
```

Restrictions

• Used with the pgr_trsp - Turn Restriction Shortest Path (TRSP) functions.

```
CREATE TABLE restrictions (
    rid BIGINT NOT NULL,
    to_cost FLOAT,
    target_id BIGINT,
    from_edge BIGINT,
    via_path TEXT
);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),
(1, 100, 11, 8, NULL),
(1, 100, 10, 7, NULL),
(2, 4, 8, 3, 5),
(3, 100, 9, 16, NULL);
```

Categories

• Used with the Flow - Family of functions functions.

```
/*
CREATE TABLE categories (
    category_id INTEGER,
    category text,
    capacity BIGINT
);
INSERT INTO categories VALUES
(1, 'Category 1', 130),
(2, 'Category 2', 100),
(3, 'Category 3', 80),
(4, 'Category 4', 50);
*/
```

Vertex table

• Used in some deprecated signatures or deprecated functions.

```
-- TODO check if this table is still used

CREATE TABLE vertex_table (
    id SERIAL,
    x FLOAT,
    y FLOAT
);

INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);
```

1.4.1 Images

- Red arrows correspond when cost > 0 in the edge table.
- Blue arrows correspond when reverse_cost > 0 in the edge table.
- Points are outside the graph.
- Click on the graph to enlarge.

Network for queries marked as directed and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of vehicles.

Network for queries marked as undirected and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of pedestrians.

Network for queries marked as directed and only cost column is used

Network for queries marked as undirected and only cost column is used

Pick & Deliver Data

```
DROP TABLE IF EXISTS customer CASCADE;
CREATE table customer (
   id BIGINT not null primary key,
   x DOUBLE PRECISION,
   y DOUBLE PRECISION,
   demand INTEGER,
   opentime INTEGER,
   closetime INTEGER,
    servicetime INTEGER,
    pindex BIGINT,
   dindex BIGINT
);
INSERT INTO customer(
               y, demand, opentime, closetime, servicetime, pindex, dindex) VALUES
 id,
         х,
( 0,
         40,
                              0, 1236,
                                                        0),
```

1.4. Sample Data 13

Fig. 1.1: Graph 1: Directed, with cost and reverse cost

14 Chapter 1. General

Fig. 1.2: Graph 2: Undirected, with cost and reverse cost

Fig. 1.3: Graph 3: Directed, with cost

Fig. 1.4: **Graph 4: Undirected, with cost**

1.4. Sample Data

(1,	45,	68,	-10,	912,	967,	90,	11,	0),	
(2,		70,	-20,	825,	870,	90,	6,	0),	
(3,	42,	66,	10,	65,	146,	90,	0,	75),	
(4,		68,	-10,	727,	782,	90,	9,	0),	
(5,	42,	65,	10,	15,	67,	90,	0,	7),	
(6,	40,	69,	20,	621,	702,	90,	0,	2),	
(7,	40,	66,	-10,	170,	225,	90,	5,	0),	
(8,		68,	20,	255,	324,	90,	0,	10),	
(9,		70,	10,	534,	605,	90,	0,	4),	
(10,		66,	-20,	357,	410,	90,	8,	0),	
(11,	35,	69,	10,	448,	505,	90,	0,	1),	
(12,	25,	85,	-20,	652,	721,	90,	18,	0),	
(13,	22,	75,	30,	30,	92,	90,	Ο,	17),	
(14,	22,	85,	-40,	567,	620,	90,	16,	0),	
(15,	20,	80,	-10,	384,	429,	90,	19,	0),	
(16,		85,	40,	475,	528,	90,	0,	14),	
(17,		75,	-30,	99,	148,	90,	13,	0),	
(18,		75 ,	20,	179,	254,	90,	0,	12),	
(19,		80,	10,	278,	345,	90,	0,	15),	
(20,		50,	10,	10,	73,	90,	0,	24),	
(21,		52,	-10,	914,	965,	90,		0),	
(22,		52,	-20,	812,	883,	90,	28,	0),	
(23,		55,	10,	732,	777,	0,	0,	103),	
(24,		50,	-10,	65,	144,	90,	20,	0),	
(25,		52,	40,	169,	224,	90,	0,	27),	
(26,		55,	-10,	622,	701,	90,	29,	0),	
(27,		52,	-40,	261,	316,	90,	25,	0),	
(28,		55,	20,	546,	593,	90,	0,	22),	
(29,		50,	10,	358,	405,	90,	0,	26),	
(30,		55,	10,	449,	504,	90,	0,		
(31,		35,	-30,	200,	237,	90,	32,	0),	
(32,		40,	30,	31,	100,	90,	0,	31),	
(32,			40,	31, 87,		90,			
(33,		40, 45,		751,	158 ,		0, 38,	37), 0),	
			-30 ,		816, 344,	90 ,			
(35,		35 ,	10,	283 ,		90,	0,		
(36,		45 ,	10,	665,	716,	0,	0,	105),	
(37,		40,	-40 ,	383,	434,	90,	33,	0),	
(38,		40,	30,	479 ,	522,	90,	0,	34),	
(39,		45,	-10,	567,	624,	90,	35,	0),	
(40,		30,	-20,	264,	321,	90,	42,	0),	
(41,		32,	-10,	166,	235,	90,	43,	0),	
(42,		32,	20,	68,	149,	90,	0,	40),	
(43,		35,	10,	16,	80,	90,	0,	41),	
(44,		30,	10,	359,	412,	90,	0,	46),	
(45,		30,	10,	541,	600,	90,	0,	48),	
(46,		32,	-10,	448,	509,	90,	44,	0),	
(47,		35,	-10,	1054,	1127,	90,	49,	0),	
(48,	28,	30,	-10,	632,	693,	90,	45,	0),	
(49,	28,	35,	10,	1001,	1066,	90,	0,	47),	
(50,	26,	32,	10,	815,	880,	90,	0,	52),	
(51,	25,	30,	10,	725,	786,	0,	0,	101),	
(52,	25,	35,	-10,	912,	969,	90,	50,	0),	
(53,		5,	20,	286,	347,	90,	0,	58),	
(54,		10,	40,	186,	257,	90,	0,	60),	
(55,		15,	-40,	95,	158,	90,	57 ,	0),	
(56,		5,	30,	385,	436,	90,	0,	59),	
(57,		15,	40,	35,	87,	90,	0,	55),	
(58,		5,	-20,	471,	534,	90,	53,	0),	
(59,		15,	-30,	651,	740,	90,	56,	0),	
(60,		5,	-40,	562,	629,	90,	54,	0),	
(61,		30,	-10,	531,	610,	90,	67,	0),	
(62,		35,	20,	262,	317,	90,	0,	68),	
(63,									
(63,	50,	40,	50,	171,	218,	90,	0,	74),	

16 Chapter 1. General

(64,	48,	30,	10,	632,	693,	0,	0,	102),
(65,	48,	40,	10,	76,	129,	90,	0,	72),
(66,	47,	35,	10,	826,	875,	90,	0,	69),
(67,	47,	40,	10,	12,	77,	90,	0,	61),
(68,	45,	30,	-20,	734,	777,	90,	62,	0),
(69,	45,	35,	-10,	916,	969,	90,	66,	0),
(70,	95,	30,	-30,	387,	456,	90,	81,	0),
(71,	95,	35,	20,	293,	360,	90,	0,	77),
(72,	53,	30,	-10,	450,	505,	90,	65,	0),
(73,	92,	30,	-10,	478,	551,	90,	76,	0),
(74,	53,	35,	-50,	353,	412,	90,	63,	0),
(75,	45,	65,	-10,	997,	1068,	90,	3,	0),
(76,	90,	35,	10,	203,	260,	90,	0,	73),
(77,	88,	30,	-20,	574,	643,	90,	71,	0),
(78,	88,	35,	20,	109,	170,	0,	0,	104),
(79,	87,	30,	10,	668,	731,	90,	0,	
(80,	85,	25,	-10,	769,	820,	90,		0),
(81,	85,	35,	30,	47,	124,	90,	0,	70),
(82,	75,	55,	20,	369,	420,	90,	0,	85),
(83,	72,	55,	-20,	265,	338,	90,	87,	0),
(84,	70,	58,	20,	458,	523,	90,	0,	89),
(85,	68 ,	60,	-20,	555,	612,	90,	82,	0),
(86,	66,	55,	10,	173,	238,	90,	0,	91),
(87,	65,	55,	20,	85,	144,	90,	0,	83),
					708,	90,		
(88, (89,	65 ,	60, 58,	-10 ,	645, 737,	802,		90,	0),
	63,		-20 ,			90,	84,	0),
(90,	60,	55,	10,	20,	84,	90,	0,	88),
(91,	60,	60,	-10,	836,	889,	90,	86,	0),
(92,	67,	85,	20,	368,	441,	90,	0,	93),
(93,	65,	85,	-20,	475,	518,	90,	92,	0),
(94,	65,	82,	-10,	285,	336,	90,	96,	0),
(95,	62,	80,	-20,	196,	239,	90,	98,	0),
(96,	60,	80,	10,	95,	156,	90,	Ο,	94),
(97,	60,	85,	30,	561,	622,	0,	0,	
(98,	58,	75,	20,	30,	84,	90,	0,	95),
(99,	55,	80,	-20,	743,	820,	90,	100,	0),
(100,	55,	85,	20,	647,	726,	90,	0,	99),
(101,	25,	30,	-10,	725,	786,	90,	51,	0),
(102,	48,	30,	-10,	632,	693,	90,	64,	0),
(103,	28,	55,	-10,	732,	777,	90,	23,	0),
(104,	88,	35,	-20,	109,	170,	90,	78,	0),
(105,	5,	45,	-10,	665,	716,	90,	36,	0),
(106,	60,	85,	-30,	561,	622,	90,	97,	0);
(=00/	~ · ·	,		~ ~ ± ,	~~ <i>,</i>	- · ·	- ' '	~ , ,

1.4. Sample Data 17

18 Chapter 1. General

CHAPTER 2

Pgrouting Concepts

2.1 pgRouting Concepts

- pgRouting Concepts
 - Getting Started
 - * Create a routing Database
 - * Load Data
 - * Build a Routing Topology
 - * Check the Routing Topology
 - * Compute a Path
 - Inner Queries
 - * Description of the edges_sql query for dijkstra like functions
 - * Description of the edges_sql query (id is not necessary)
 - * Description of the parameters of the signatures
 - * Description of the edges_sql query for astar like functions
 - * Description of the edges_sql query for Max-flow like functions
 - * Description of the Points SQL query
 - Return columns & values
 - * Description of the return values for a path
 - * Description of the return values for a Cost function
 - * Description of the Return Values
 - Advanced Topics
 - * Routing Topology

- * Graph Analytics
- * Analyze a Graph
- * Analyze One Way Streets
 - · Example
- Performance Tips
 - * For the Routing functions
 - * For the topology functions:
- How to contribute

2.1.1 Getting Started

This is a simple guide to walk you through the steps of getting started with pgRouting. In this guide we will cover:

- Create a routing Database
- Load Data
- Build a Routing Topology
- Check the Routing Topology
- · Compute a Path

Create a routing Database

The first thing we need to do is create a database and load pgrouting in the database. Typically you will create a database for each project. Once you have a database to work in, your can load your data and build your application in that database. This makes it easy to move your project later if you want to to say a production server.

For Postgresql 9.2 and later versions

```
createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c "create extension pgrouting"
```

Load Data

How you load your data will depend in what form it comes it. There are various OpenSource tools that can help you, like:

osm2pgrouting

• this is a tool for loading OSM data into postgresql with pgRouting requirements

shp2pgsql

• this is the postgresql shapefile loader

ogr2ogr

• this is a vector data conversion utility

osm2pgsql

this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that you may then load that data into your database as a table of some kind. At this point you need to know a little about your data structure and content. One easy way to browse your new data table is with pgAdmin3 or phpPgAdmin.

Build a Routing Topology

Next we need to build a topology for our street data. What this means is that for any given edge in your street data the ends of that edge will be connected to a unique node and to other edges that are also connected to that same unique node. Once all the edges are connected to nodes we have a graph that can be used for routing with pgrouting. We provide a tool that will help with this:

Note: this step is not needed if data is loaded with *osm2pgrouting*

```
select pgr_createTopology('myroads', 0.000001);
```

pgr_createTopology

Check the Routing Topology

There are lots of possible sources for errors in a graph. The data that you started with may not have been designed with routing in mind. A graph has some very specific requirements. One is that it is *NODED*, this means that except for some very specific use cases, each road segment starts and ends at a node and that in general is does not cross another road segment that it should be connected to.

There can be other errors like the direction of a one-way street being entered in the wrong direction. We do not have tools to search for all possible errors but we have some basic tools that might help.

- pgr_analyzeGraph
- pgr_analyzeOneway
- pgr_nodeNetwork

Compute a Path

Once you have all the preparation work done above, computing a route is fairly easy. We have a lot of different algorithms that can work with your prepared road network. The general form of a route query is:

```
select pgr_dijkstra(`SELECT * FROM myroads', 1, 2)
```

As you can see this is fairly straight forward and you can look and the specific algorithms for the details of the signatures and how to use them. These results have information like edge id and/or the node id along with the cost or geometry for the step in the path from *start* to *end*. Using the ids you can join these result back to your edge table to get more information about each step in the path.

• pgr_dijkstra

2.1.2 Inner Queries

- Description of the edges_sql query for dijkstra like functions
- Description of the edges_sql query (id is not necessary)
- Description of the parameters of the signatures
- Description of the edges_sql query for astar like functions
- Description of the edges_sql query for Max-flow like functions
- Description of the Points SQL query

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner query will depend on the function(s) requirements. To simplify variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Default	Description
edges_sql	TEXT		SQL query as described above.
via_vertices	ARRAY[ANY-INTEGER]		Array of ordered vertices identifiers that are going to be visited.
directed	BOOLEAN	true	 When true Graph is considered Directed When false the graph is considered as Undirected.
strict	BOOLEAN	false	 When false ignores missing paths returning all paths found When true if a path is missing stops and returns <i>EMPTY SET</i>
U_turn_on_edge	BOOLEAN	true	 When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same id is allowed. When false when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same id is used when no other path is found.

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

ANY-INTEGER smallint, int, bigint **ANY-NUMERICAL** smallint, int, bigint, real, float

2.1.3 Return columns & values

- Description of the return values for a path
- Description of the return values for a Cost function
- Description of the Return Values

There are several kinds of columns returned are depending of the function.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description	
umn			
seq	INT	Sequential value starting from 1.	
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the	
		same start_vid to end_vid combination.	
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.	
start_vidBIGINTIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.			
end_vid BIGINTIdentifier of the ending vertex. Used when multiple ending vertices are in the query.			
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.	
edge	BIGIN	INTIdentifier of the edge used to go from node to the next node in the path sequence1 for	
		the last node of the path.	
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.	
agg_cos	t FLOAT	Aggregate cost from start_v to node.	

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description	
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.	
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.	

Description of the Return Values

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point vertex of the edge.	
target	BIGINT	Identifier of the second end point vertex of the edge.	
flow	BIGINT	Flow through the edge in the direction (source, target).	
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, target).	

2.1.4 Advanced Topics

- Routing Topology
- Graph Analytics
- Analyze a Graph
- Analyze One Way Streets
 - Example

Routing Topology

Overview

Typically when GIS files are loaded into the data database for use with pgRouting they do not have topology information associated with them. To create a useful topology the data needs to be "noded". This means that where two or more roads form an intersection there it needs to be a node at the intersection and all the road segments need to be broken at the intersection, assuming that you can navigate from any of these segments to any other segment via that intersection.

You can use the *graph analysis functions* to help you see where you might have topology problems in your data. If you need to node your data, we also have a function $pgr_nodeNetwork()$ that might work for you. This function splits ALL crossing segments and nodes them. There are some cases where this might NOT be the right thing to do.

For example, when you have an overpass and underpass intersection, you do not want these noded, but pgr_nodeNetwork does not know that is the case and will node them which is not good because then the router will be able to turn off the overpass onto the underpass like it was a flat 2D intersection. To deal with this problem some data sets use z-levels at these types of intersections and other data might not node these intersection which would be ok.

For those cases where topology needs to be added the following functions may be useful. One way to prep the data for pgRouting is to add the following columns to your table and then populate them as appropriate. This example makes a lot of assumption like that you original data tables already has certain columns in it like one_way, fcc, and possibly others and that they contain specific data values. This is only to give you an idea of what you can do with your data.

```
ALTER TABLE edge_table

ADD COLUMN source integer,
ADD COLUMN target integer,
ADD COLUMN cost_len double precision,
ADD COLUMN cost_time double precision,
ADD COLUMN rcost_len double precision,
ADD COLUMN rcost_time double precision,
ADD COLUMN rcost_time double precision,
ADD COLUMN x1 double precision,
ADD COLUMN x2 double precision,
ADD COLUMN x2 double precision,
ADD COLUMN y2 double precision,
ADD COLUMN to_cost double precision,
ADD COLUMN to_cost double precision,
ADD COLUMN rule text,
ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');
```

The function $pgr_createTopology()$ will create the <code>vertices_tmp</code> table and populate the <code>source</code> and <code>target</code> columns. The following example populated the remaining columns. In this example, the <code>fcc</code> column contains feature class code and the <code>CASE</code> statements converts it to an average speed.

```
UPDATE edge_table SET x1 = st_x(st_startpoint(the_geom)),
                      y1 = st_y(st_startpoint(the_geom)),
                      x2 = st_x(st_endpoint(the_geom)),
                      y2 = st_y(st_endpoint(the_geom)),
 cost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/
\hookrightarrow 1000.0.
 len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')
              / 1000.0 * 0.6213712,
 speed_mph = CASE WHEN fcc='A10' THEN 65
                   WHEN fcc='A15' THEN 65
                   WHEN fcc='A20' THEN 55
                   WHEN fcc='A25' THEN 55
                   WHEN fcc='A30' THEN 45
                   WHEN fcc='A35' THEN 45
                   WHEN fcc='A40' THEN 35
                   WHEN fcc='A45' THEN 35
                   WHEN fcc='A50' THEN 25
                   WHEN fcc='A60' THEN 25
                   WHEN fcc='A61' THEN 25
                   WHEN fcc='A62' THEN 25
                   WHEN fcc='A64' THEN 25
                   WHEN fcc='A70' THEN 15
                   WHEN fcc='A69' THEN 10
                   ELSE null END,
 speed_kmh = CASE WHEN fcc='A10' THEN 104
                   WHEN fcc='A15' THEN 104
                   WHEN fcc='A20' THEN 88
                   WHEN fcc='A25' THEN 88
                   WHEN fcc='A30' THEN 72
                   WHEN fcc='A35' THEN 72
                   WHEN fcc='A40' THEN 56
                   WHEN fcc='A45' THEN 56
                   WHEN fcc='A50' THEN 40
                   WHEN fcc='A60' THEN 50
                   WHEN fcc='A61' THEN 40
                   WHEN fcc='A62' THEN 40
                   WHEN fcc='A64' THEN 40
                   WHEN fcc='A70' THEN 25
                   WHEN fcc='A69' THEN 15
                   ELSE null END;
-- UPDATE the cost information based on oneway streets
UPDATE edge_table SET
   cost_time = CASE
       WHEN one_way='TF' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
   rcost_time = CASE
       WHEN one way='FT' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
-- clean up the database because we have updated a lot of records
VACUUM ANALYZE VERBOSE edge_table;
```

Now your database should be ready to use any (most?) of the pgRouting algorithms.

Graph Analytics

Overview

It is common to find problems with graphs that have not been constructed fully noded or in graphs with z-levels at intersection that have been entered incorrectly. An other problem is one way streets that have been entered in the wrong direction. We can not detect errors with respect to "ground" truth, but we can look for inconsistencies and some anomalies in a graph and report them for additional inspections.

We do not current have any visualization tools for these problems, but I have used mapserver to render the graph and highlight potential problem areas. Someone familiar with graphviz might contribute tools for generating images with that.

Analyze a Graph

With *pgr_analyzeGraph* the graph can be checked for errors. For example for table "mytab" that has "mytab_vertices_pgr" as the vertices table:

```
SELECT pgr_analyzeGraph('mytab', 0.000002);
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                        ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                               Isolated segments: 158
NOTICE:
                                         Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527
NOTICE:
                       Intersections detected: 2560
NOTICE:
                                  Ring geometries: 0
pgr_analyzeGraph
   OK
(1 row)
```

In the vertices table "mytab_vertices_pgr":

- Deadends are identified by cnt=1
- Potencial gap problems are identified with chk=1.

```
SELECT count(*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends
------
20028
(1 row)

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
gaps
----
527
(1 row)
```

For isolated road segments, for example, a segment where both ends are deadends. you can find these with the following query:

```
SELECT *
FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;
```

If you want to visualize these on a graphic image, then you can use something like mapserver to render the edges and the vertices and style based on ont or if they are isolated, etc. You can also do this with a tool like graphviz, or geoserver or other similar tools.

Analyze One Way Streets

pgr_analyzeOneway analyzes one way streets in a graph and identifies any flipped segments. Basically if you count the edges coming into a node and the edges exiting a node the number has to be greater than one.

This query will add two columns to the vertices_tmp table ein int and eout int and populate it with the appropriate counts. After running this on a graph you can identify nodes with potential problems with the following query.

The rules are defined as an array of text strings that if match the col value would be counted as true for the source or target in or out condition.

Example

Lets assume we have a table "st" of edges and a column "one_way" that might have values like:

- 'FT' oneway from the source to the target node.
- 'TF' oneway from the target to the source node.
- 'B' two way street.
- "- empty field, assume twoway.
- <NULL> NULL field, use two_way_if_null flag.

Then we could form the following query to analyze the oneway streets for errors.

```
SELECT pgr_analyzeOneway('mytab',

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'TF'],

);

-- now we can see the problem nodes

SELECT * FROM mytab_vertices_pgr WHERE ein=0 OR eout=0;

-- and the problem edges connected to those nodes

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.source=b.id AND ein=0 OR_

-- eout=0

UNION

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.target=b.id AND ein=0 OR_

-- eout=0;
```

Typically these problems are generated by a break in the network, the one way direction set wrong, maybe an error related to z-levels or a network that is not properly noded.

The above tools do not detect all network issues, but they will identify some common problems. There are other problems that are hard to detect because they are more global in nature like multiple disconnected networks. Think of an island with a road network that is not connected to the mainland network because the bridge or ferry routes are missing.

2.1.5 Performance Tips

- For the Routing functions
- For the topology functions:

For the Routing functions

To get faster results bound your queries to the area of interest of routing to have, for example, no more than one million rows.

Use an inner query SQL that does not include some edges in the routing function

```
SELECT id, source, target from edge_table WHERE

id < 17 and

the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table_

where id = 5)
```

Integrating the inner query to the pgRouting function:

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target from edge_table WHERE
    id < 17 and
        the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table_
    where id = 5)',
    1, 2)</pre>
```

For the topology functions:

When "you know" that you are going to remove a set of edges from the edges table, and without those edges you are going to use a routing function you can do the following:

Analize the new topology based on the actual topology:

```
pgr_analyzegraph('edge_table',rows_where:='id < 17');
```

Or create a new topology if the change is permanent:

```
pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');</pre>
```

2.1.6 How to contribute

Wiki

- Edit an existing pgRouting Wiki²⁸ page.
- Or create a new Wiki page
 - Create a page on the pgRouting Wiki²⁹
 - Give the title an appropriate name
- Example 30

²⁸ https://github.com/pgRouting/pgrouting/wiki

²⁹ https://github.com/pgRouting/pgrouting/wiki

³⁰ https://github.com/pgRouting/pgrouting/wiki/How-to:-Handle-parallel-edges-(KSP)

Adding Functionaity to pgRouting

Consult the developer's documentation³¹

Indices and tables

- genindex
- search

Reference

pgr_version - to get pgRouting's version information.

2.2 pgr_version

2.2.1 Name

pgr_version — Query for pgRouting version information.

2.2.2 Synopsis

Returns a table with pgRouting version information.

table() pgr_version();

2.2.3 Description

Returns a table with:

Column	Туре	Description
version	varchar	pgRouting version
tag	varchar	Git tag of pgRouting build
hash	varchar	Git hash of pgRouting build
branch	varchar	Git branch of pgRouting build
boost	varchar	Boost version

History

• New in version 2.0.0

2.2.4 Examples

• Query for full version string

2.2. pgr_version 33

³¹ http://docs.pgrouting.org/doxy/2.4/index.html

```
SELECT version FROM pgr_version();

version
-----
2.5.1
(1 row)
```

 \bullet Query for version and boost attribute

2.2.5 See Also

Indices and tables

- genindex
- search

CHAPTER 3

Data Types

- pgr_costResult[] A set of records to describe a path result with cost attribute.
- pgr_costResult3[] A set of records to describe a path result with cost attribute.
- pgr_geomResult A set of records to describe a path result with geometry attribute.

3.1 pgRouting Data Types

The following are commonly used data types for some of the pgRouting functions.

- pgr_costResult[] A set of records to describe a path result with cost attribute.
- pgr_costResult3[] A set of records to describe a path result with cost attribute.
- pgr_geomResult A set of records to describe a path result with geometry attribute.

3.1.1 pgr_costResult[]

Name

pgr_costResult[] — A set of records to describe a path result with cost attribute.

Description

```
CREATE TYPE pgr_costResult AS
(
    seq integer,
    idl integer,
    id2 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the node id

id2 generic name, to be specified by the function, typically the edge id

cost cost attribute

3.1.2 pgr_costResult3[] - Multiple Path Results with Cost

Name

pgr_costResult3[] — A set of records to describe a path result with cost attribute.

Description

```
CREATE TYPE pgr_costResult3 AS
(
    seq integer,
    id1 integer,
    id2 integer,
    id3 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the path id

id2 generic name, to be specified by the function, typically the node id

id3 generic name, to be specified by the function, typically the edge id

cost cost attribute

History

- New in version 2.0.0
- Replaces path_result

See Also

• Introduction

Indices and tables

- genindex
- · search

3.1.3 pgr_geomResult[]

Name

 $\verb"pgr_geomResult[] -- A set of records to describe a path result with geometry attribute.$

Description

```
CREATE TYPE pgr_geomResult AS
(
    seq integer,
    id1 integer,
    id2 integer,
    geom geometry
);
```

seq sequential ID indicating the path order
id1 generic name, to be specified by the function
id2 generic name, to be specified by the function
geom geometry attribute

History

- New in version 2.0.0
- Replaces geoms

See Also

• Introduction

Indices and tables

- genindex
- search

3.1.4 See Also

Indices and tables

- genindex
- search

Topology Functions

- pgr_createTopology to create a topology based on the geometry.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_nodeNetwork -to create nodes to a not noded edge table.

4.1 Topology - Family of Functions

The pgRouting's topology of a network, represented with an edge table with source and target attributes and a vertices table associated with it. Depending on the algorithm, you can create a topology or just reconstruct the vertices table, You can analyze the topology, We also provide a function to node an unoded network.

- pgr_createTopology to create a topology based on the geometry.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_nodeNetwork -to create nodes to a not noded edge table.

4.1.1 pgr_createTopology

Name

pgr_createTopology — Builds a network topology based on the geometry information.

Synopsis

The function returns:

• OK after the network topology has been built and the vertices table created.

• FAIL when the network topology was not built due to an error.

Description

Parameters

The topology creation function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name AS well)
```

tolerance float 8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom text Geometry column name of the network table. Default value is the_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows that where source or target have a null value, otherwise the condition is used.

clean boolean Clean any previous topology. Default value is false.

Warning: The edge_table will be affected

- The source column values will change.
- The target column values will change.
 - An index will be created, if it doesn't exists, to speed up the process to the following columns:
 - * id
 - * the_geom
 - * source
 - * target

The function returns:

- OK after the network topology has been built.
 - Creates a vertices table: <edge_table>_vertices_pgr.
 - Fills id and the geom columns of the vertices table.
 - Fills the source and target columns of the edge table referencing the id of the vertices table.
- FAIL when the network topology was not built due to an error:
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target or id are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

- id bigint Identifier of the vertex.
- cnt integer Number of vertices in the edge_table that reference this vertex. See
 pgr_analyzeGraph.
- **chk** integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.
- **ein** integer Number of vertices in the edge_table that reference this vertex AS incoming. See pgr_analyzeOneway.
- **eout** integer Number of vertices in the edge_table that reference this vertex AS outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr createTopology is:

When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

```
NOTICE: ------
pgr_createtopology
-----
OK
(1 row)
```

Warning:

An error would occur when the arguments are not given in the appropriate order:

In this example, the column id of the table ege_table is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the id column.

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the parameters would not matter.

```
SELECT pgr_createTopology('edge_table', 0.001,
    source:='source', id:='id', target:='target', the_geom:='the_geom');
pgr_createtopology
-----OK
(1 row)
```

```
SELECT pgr_createTopology('edge_table', 0.001, source:='source');
pgr_createtopology
-----OK
(1 row)
```

Selecting rows using rows_where parameter

Selecting rows based on the id.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
pgr_createtopology
-----
OK
(1 row)</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table_

WHERE id=5)');
pgr_createtopology
------
OK
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);

SELECT 1

SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable_

WHERE gid=100)');
  pgr_createtopology
------
OK
(1 row)
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src ,_

target AS tgt FROM edge_table) ;

SELECT 18
```

Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean_
→:= TRUE);
pgr_createtopology
-----
OK
(1 row)
```

Warning:

An error would occur when the arguments are not given in the appropiriate order:

In this example, the column gid of the table mytable is passed to the function AS the geometry column, and the geometry column mygeom is passed to the function AS the id column.

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table. The order of the parameters do not matter:

Selecting rows using rows_where parameter

Based on id:

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_

where:='gid < 10');
pgr_createtopology
-----
OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt
', the_geom:='mygeom', rows_where:='gid < 10');
pgr_createtopology
------
OK
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

Examples with full output

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean :=_
→true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source',
→'target', rows_where := 'id < 6', clean := t)</pre>
NOTICE: Performing checks, please wait .....
NOTICE: Creating Topology, Please wait...
        ----> TOPOLOGY CREATED FOR 5 edges
NOTICE:
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_
NOTICE: -----
pgr_createtopology
OK
(1 \text{ row})
SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
```

The example uses the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

- genindex
- · search

4.1.2 pgr createVerticesTable

Name

 $\verb|pgr_createVerticesTable| -- Reconstructs the vertices table based on the source and target information.$

Synopsis

The function returns:

- OK after the vertices table has been reconstructed.
- FAIL when the vertices table was not reconstructed due to an error.

```
pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR
```

Description

Parameters

The reconstruction of the vertices table function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name as well)
```

the_geom text Geometry column name of the network table. Default value is the_geom.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows.

Warning: The edge_table will be affected

- An index will be created, if it doesn't exists, to speed up the process to the following columns:
 - the_geom
 - source
 - target

The function returns:

- OK after the vertices table has been reconstructed.
 - Creates a vertices table: <edge_table>_vertices_pgr.
 - Fills id and the_geom columns of the vertices table based on the source and target columns of the edge table.
- FAIL when the vertices table was not reconstructed due to an error.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requierment of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

- id bigint Identifier of the vertex.
- cnt integer Number of vertices in the edge_table that reference this vertex. See
 pgr_analyzeGraph.
- **chk** integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.
- **ein** integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneway.
- **eout** integer Number of vertices in the edge_table that reference this vertex as outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_createVerticesTable is:

```
SELECT pgr_createVerticesTable('edge_table');
```

When the arguments are given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('edge_table','the_geom','source','target');
```

We get the same result as the simplest way to use the function.

Warning: An error would occur when the arguments are not given in the appropriate order: In this example, the column source column source of the table mytable is passed to the function as the geometry column, and the geometry column the geometry column the geometry column.

When using the named notation

The order of the parameters do not matter:

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_createVerticesTable('edge_table',source:='source');
```

Selecting rows using rows_where parameter

Selecting rows based on the id.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_

→buffer(the_geom, 0.5) FROM edge_table WHERE id=5)');
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_ buffer(othergeom, 0.5) FROM otherTable WHERE gid=100)');
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src ,

target AS tgt FROM edge_table);
```

Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt');
```

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column src of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the source column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:=
    'mygeom');
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

Selecting rows using rows_where parameter

Selecting rows based on the gid.

```
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:=
    'mygeom', rows_where:='gid < 10');</pre>
```

Selecting the rows where the geometry is near the geometry of row with gid = 5.

```
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:=

→'mygeom',

rows_where:='mygeom && (SELECT st_buffer(mygeom, 0.5)_

→FROM mytable WHERE id=5)');
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:=

→'mygeom',

rows_where:='the_geom && (SELECT st_buffer(othergeom, 0.

→5) FROM otherTable WHERE gid=100)');
```

Examples

```
SELECT pgr_createVerticesTable('edge_table');
   NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
       Performing checks, pelase wait .....
NOTICE:
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE:
                   VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE:
                                               FOR 18 EDGES
NOTICE:
         Edges with NULL geometry, source or target: 0
                                    Edges processed: 18
NOTICE:
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_
-pgr
NOTICE:
    pgr_createVerticesTable
    OK
    (1 row)
```

The example uses the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- *pgr_createTopology* to create a topology based on the geometry.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.

• pgr_analyzeOneway to analyze directionality of the edges.

Indices and tables

- genindex
- · search

4.1.3 pgr_analyzeGraph

Name

pgr_analyzeGraph — Analyzes the network topology.

Synopsis

The function returns:

- OK after the analysis has finished.
- FAIL when the analysis was not completed due to an error.

Description

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

- Use *pgr_createVerticesTable* to create the vertices table.
- Use *pgr_createTopology* to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name as well)
tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)
the_geom text Geometry column name of the network table. Default value is the_geom.
id text Primary key column name of the network table. Default value is id.
source text Source column name of the network table. Default value is source.
target text Target column name of the network table. Default value is target.
rows where text Condition to select a subset or rows. Default value is true to indicate all rows.
```

The function returns:

- OK after the analysis has finished.
 - Uses the vertices table: <edge_table>_vertices_pgr.

- Fills completely the cnt and chk columns of the vertices table.
- Returns the analysis of the section of the network defined by rows_where
- FAIL when the analysis was not completed due to an error.
 - The vertices table is not found.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target or id are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id bigint Identifier of the vertex.

cnt integer Number of vertices in the edge_table that reference this vertex.

chk integer Indicator that the vertex might have a problem.

ein integer Number of vertices in the edge_table that reference this vertex as incoming. See *pgr_analyzeOneway*.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_analyzeGraph is:

```
SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table',0.001);
```

When the arguments are given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target');
```

We get the same result as the simplest way to use the function.

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column id of the table mytable is passed to the function as the geometry column, and the geometry column the geom is passed to the function as the id column.

When using the named notation

The order of the parameters do not matter:

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');
```

Selecting rows using rows where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

```
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_

→buffer(the_geom,0.05) FROM edge_table WHERE id=5)');
```

Selecting the rows where the geometry is near the geometry of the row with gid = 100 of the table othertable.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_ buffer(other_geom,1) FROM otherTable WHERE gid=100)');
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom_

AS mygeom FROM edge_table);

SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt');
```

Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');
```

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column gid of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the id column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src
→',target:='tgt');
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

Selecting rows using rows where parameter

Selecting rows based on the id.

```
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_ \rightarrowgeom:='mygeom',rows_where:='gid < 10');
```

Selecting the rows WHERE the geometry is near the geometry of row with id = 5.

```
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_

geom:='mygeom',

rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM_

mytable WHERE gid=5)');
```

Selecting the rows WHERE the geometry is near the place='myhouse' of the table othertable. (note the use of quote_literal)

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS_

other_geom);

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',

rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable_

other place='||quote_literal('myhouse')||')';
```

Examples

```
SELECT pgr_createTopology('edge_table',0.001);
   SELECT pgr_analyzeGraph('edge_table', 0.001);
   NOTICE: PROCESSING:
   NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target',
→'true')
   NOTICE: Performing checks, pelase wait...
   NOTICE: Analyzing for dead ends. Please wait...
   NOTICE: Analyzing for gaps. Please wait...
   NOTICE: Analyzing {f for} isolated edges. Please wait...
   NOTICE: Analyzing for ring geometries. Please wait...
   NOTICE: Analyzing {f for} intersections. Please wait...
   NOTICE:
                        ANALYSIS RESULTS FOR SELECTED EDGES:
   NOTICE:
                              Isolated segments: 2
   NOTICE:
                                      Dead ends: 7
   NOTICE: Potential gaps found near dead ends: 1
   NOTICE:
                       Intersections detected: 1
   NOTICE:
                               Ring geometries: 0
   pgr_analyzeGraph
    OK
   (1 row)
   SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');</pre>
   NOTICE: PROCESSING:
   NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target',
→'id < 10')</pre>
   NOTICE: Performing checks, pelase wait...
   NOTICE: Analyzing for dead ends. Please wait...
   NOTICE: Analyzing for gaps. Please wait...
   NOTICE: Analyzing {f for} isolated edges. Please wait...
   NOTICE: Analyzing for ring geometries. Please wait...
   NOTICE: Analyzing for intersections. Please wait...
   NOTICE:
                        ANALYSIS RESULTS FOR SELECTED EDGES:
   NOTICE:
                              Isolated segments: 0
                                      Dead ends: 4
   NOTICE: Potential gaps found near dead ends: 0
   NOTICE:
                         Intersections detected: 0
   NOTICE:
                               Ring geometries: 0
    pgr_analyzeGraph
```

```
(1 row)
    SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
   NOTICE: PROCESSING:
   NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
→'id >= 10')
   NOTICE: Performing checks, pelase wait...
   NOTICE: Analyzing for dead ends. Please wait...
   NOTICE: Analyzing for gaps. Please wait...
   NOTICE: Analyzing for isolated edges. Please wait...
   NOTICE: Analyzing for ring geometries. Please wait...
   NOTICE: Analyzing for intersections. Please wait...
   NOTICE:
                       ANALYSIS RESULTS FOR SELECTED EDGES:
   NOTICE:
                             Isolated segments: 2
   NOTICE:
                                     Dead ends: 8
   NOTICE: Potential gaps found near dead ends: 1
   NOTICE: Intersections detected: 1
   NOTICE:
                               Ring geometries: 0
    pgr_analyzeGraph
    OK
    (1 row)
    -- Simulate removal of edges
    SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');</pre>
    SELECT pgr_analyzeGraph('edge_table', 0.001);
   NOTICE: PROCESSING:
   NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target',
→'true')
   NOTICE: Performing checks, pelase wait...
   NOTICE: Analyzing for dead ends. Please wait...
   NOTICE: Analyzing for gaps. Please wait...
   NOTICE: Analyzing for isolated edges. Please wait...
   NOTICE: Analyzing for ring geometries. Please wait...
   NOTICE: Analyzing for intersections. Please wait...
   NOTICE:
                        ANALYSIS RESULTS FOR SELECTED EDGES:
   NOTICE:
                             Isolated segments: 0
   NOTICE:
                                      Dead ends: 3
   NOTICE: Potential gaps found near dead ends: 0
   NOTICE:
                        Intersections detected: 0
   NOTICE:
                               Ring geometries: 0
    pgr_analyzeGraph
    OK
    (1 row)
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');</pre>
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
→'id <17')</pre>
NOTICE: Performing checks, pelase wait .....
NOTICE: Creating Topology, Please wait...
NOTICE: ----> TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_
NOTICE:
    pgr_analyzeGraph
    OK
```

```
(1 row)
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target',
→'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 0
NOTICE:
                                  Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                    Intersections detected: 0
NOTICE:
                            Ring geometries: 0
    pgr_analyzeGraph
    ΟK
    (1 row)
```

The examples use the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

- · genindex
- · search

4.1.4 pgr_analyzeOneway

Name

pgr_analyzeOneway — Analyzes oneway Sstreets and identifies flipped segments.

Synopsis

This function analyzes oneway streets in a graph and identifies any flipped segments.

Description

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems created by setting the direction of a segment the wrong way. A node is a *source* if it has edges the exit from that node and no edges enter that node. Conversely, a node is a *sink* if all edges enter the node but none exit that node. For a *source* type node it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a *sink* node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a *source* and/or a *sink* node.

So by counting the number of edges entering and exiting each node we can identify both *source* and *sink* nodes so that you can look at those areas of your network to make repairs and/or report the problem back to your data vendor

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

- Use *pgr_createVerticesTable* to create the vertices table.
- Use *pgr_createTopology* to create the topology and the vertices table.

Parameters

```
edge_table text Network table name. (may contain the schema name as well)
s_in_rules text[] source node in rules
s_out_rules text[] source node out rules
t_in_rules text[] target node in rules
t_out_rules text[] target node out rules
oneway text oneway column name name of the network table. Default value is oneway.
source text Source column name of the network table. Default value is source.
target text Target column name of the network table. Default value is target.
two_way_if_null boolean flag to treat oneway NULL values as bi-directional. Default value is true.
```

Note: It is strongly recommended to use the named notation. See *pgr_createVerticesTable* or *pgr_createTopology* for examples.

The function returns:

- OK after the analysis has finished.
 - Uses the vertices table: <edge_table>_vertices_pgr.
 - Fills completely the ein and eout columns of the vertices table.
- FAIL when the analysis was not completed due to an error.
 - The vertices table is not found.
 - A required column of the Network table is not found or is not of the appropriate type.

- The names of source, target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

```
id bigint Identifier of the vertex.
```

cnt integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGgraph.

chk integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.

ein integer Number of vertices in the edge_table that reference this vertex as incoming.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

Examples

```
SELECT pgr_analyzeOneway('edge_table',

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'TF'],

oneway:='dir');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table','{"",B,TF}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{"",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}',''{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}','{",B,FT}
```

The queries use the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- Graph Analytics for an overview of the analysis of a graph.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

Indices and tables

- genindex
- · search

4.1.5 pgr nodeNetwork

Name

pgr_nodeNetwork - Nodes an network edge table.

Author Nicolas Ribot

Copyright Nicolas Ribot, The source code is released under the MIT-X license.

Synopsis

The function reads edges from a not "noded" network table and writes the "noded" edges into a new table.

```
pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where,
    outall)
RETURNS TEXT
```

Description

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not "noded" correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by "noded" is that at every intersection in the road network all the edges will be broken into separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge_table table, that has a primary key column id and geometry column named the_geom and intersect all the segments in it against all the other segments and then creates a table edge_table_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the same node.

Parameters

```
edge_table text Network table name. (may contain the schema name as well)
tolerance float8 tolerance for coincident points (in projection unit)dd
id text Primary key column name of the network table. Default value is id.
the_geom text Geometry column name of the network table. Default value is the_geom.
table_ending text Suffix for the new table's. Default value is noded.
```

The output table will have for edge_table_noded

```
id bigint Unique identifier for the table
old_id bigint Identifier of the edge in original table
sub_id integer Segment number of the original edge
source integer Empty source column to be used with pgr_createTopology function
target integer Empty target column to be used with pgr_createTopology function
the geom geometry Geometry column of the noded network
```

History

• New in version 2.0.0

Example

Let's create the topology for the data in Sample Data

Now we can analyze the network.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',

→'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
                     ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
NOTICE:
                          Isolated segments: 2
NOTICE:
                                  Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
                    Intersections detected: 1
NOTICE:
                            Ring geometries: 0
pgr_analyzegraph
OK
(1 row)
```

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

```
SELECT pgr_nodeNetwork('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_nodeNetwork('edge_table', 0.001, 'the_geom', 'id', 'noded')
NOTICE: Performing checks, pelase wait .....
NOTICE: Processing, pelase wait .....
NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE: Total original Edges: 18
NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15
NOTICE: Total New segments: 21
NOTICE: New Table: public.edge_table_noded
```

```
NOTICE: ------
pgr_nodenetwork
-----
OK
(1 row)
```

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

```
SELECT old_id, sub_id FROM edge_table_noded ORDER BY old_id, sub_id;
old_id | sub_id
1
     1
2
      1
3
      1
5
      6
            1
7
      1
8
      1
9
      1
10
            1
      11
      1
12
      1
13
      1
13
      14
      14
      2
15
      1
16
            1
17
            1
18
            1
            2
18
(21 rows)
```

We can create the topology of the new network

Now let's analyze the new topology

```
NOTICE:
         Analyzing for ring geometries. Please wait...
NOTICE:
         Analyzing for intersections. Please wait...
NOTICE:
                     ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 0
NOTICE:
                                   Dead ends: 6
NOTICE:
         Potential gaps found near dead ends: 0
NOTICE:
                      Intersections detected: 0
NOTICE:
                             Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

Images

Before Image

After Image

Comparing the results

Comparing with the Analysis in the original edge_table, we see that.

	Before	After
Table name	edge_table	edge_table_noded
Fields	All original fields	Has only basic fields to do a topol-
		ogy analysis
Dead ends	 Edges with 1 dead end: 1,6,24 Edges with 2 dead ends 17,18 Edge 17's right node is a dead end because there is no other edge sharing that same node. (cnt=1) 	Edges with 1 dead end: 1-1 ,6-1,14-2, 18-1 17-1 18-2
Isolated segments	two isolated segments: 17 and 18 both they have 2 dead ends	No Isolated segments • Edge 17 now shares a node with edges 14-1 and 14-2 • Edges 18-1 and 18-2 share a node with edges 13-1 and 13-2
Gaps	There is a gap between edge 17 and 14 because edge 14 is near to the right node of edge 17	Edge 14 was segmented Now edges: 14-1 14-2 17 share the same node The tolerance value was taken in account
Intersections	Edges 13 and 18 were intersecting	Edges were segmented, So, now in the interection's point there is a node and the following edges share it: 13-1 13-2 18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2, 18-1 and 18-2 into our edge-table, copying the data for dir,cost,and reverse cost with tho following steps:

- Add a column old_id into edge_table, this column is going to keep track the id of the original edge
- Insert only the segmented edges, that is, the ones whose max(sub_id) >1

We recreate the topology:

```
NOTICE: pgr_createtopology
-----OK
(1 row)
```

To get the same analysis results as the topology of edge_table_noded, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='id not in (select old_id_
→from edge_table where old_id is not null)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
                          'id not in (select old_id from edge_table where old_id_.
→is not null)')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 0
NOTICE:
                                  Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
           Intersections detected: 0
NOTICE:
                            Ring geometries: 0
pgr_createtopology
ΟK
(1 row)
```

To get the same analysis results as the original edge_table, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='old_id is null')
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
→'old_id is null')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 2
NOTICE:
                                  Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
               Intersections detected: 1
NOTICE:
                            Ring geometries: 0
pgr_createtopology
ΟK
(1 row)
```

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street level juction, and the same happens with edges 17 and 13.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
```

```
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',

    'true')

NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing {f for} intersections. Please wait...
NOTICE:
                           ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                                   Isolated segments: 0
NOTICE:
                                             Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                            Intersections detected: 5
NOTICE:
                                     Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

See Also

Routing Topology for an overview of a topology for routing algorithms. pgr_analyzeOneway to analyze directionality of the edges. pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

- genindex
- · search

4.1.6 See Also

Indices and tables

- genindex
- · search

CHAPTER 5

Routing functions

5.1 Routing Functions

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's Algorithm
- pgr_johnson- Johnson's Algorithm

pgr_aStar - Shortest Path A*

pgr_bdAstar - Bi-directional A* Shortest Path

pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- *pgr_dijkstraCost* Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.
- $\bullet \ pgr_driving Distance \ \ Use \ pgr_dijkstra \ to \ calculate \ catchament \ information. \\$
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_KSP - K-Shortest Path

pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_eucledianTSP When input are coordinates.

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- · Post pocessing

- pgr_alphaShape Alpha shape computation
- pgr_pointsAsPolygon Polygon around a set of points

5.1.1 All Pairs - Family of Functions

The following functions work an all vertices pair combinations

pgr_floydWarshall

Synopsis

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Fig. 5.1: Boost Graph Inside

Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr_apspWarshall

The Floyd-Warshall algorithm, also known as Floyd's algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *dense graphs*. We make use of the Boost's implementation which runs in $\Theta(V^3)$ time,

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a $V \times V$ matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When $start_vid = end_vid$, the $agg_cost = 0$.
- Recommended, use a bounding box of no more than 3500 edges.

³² http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

Signature Summary

```
pgr_floydWarshall(edges_sql)
pgr floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_floydWarshall(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 1 On a directed graph.

Complete Signature

```
pgr_floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 2 On an undirected graph.

```
SELECT * FROM pgr_floydWarshall(
   'SELECT id, source, target, cost FROM edge_table where id < 5',
   false
);
start_vid | end_vid | agg_cost
            2 |
5 |
        1 |
        1 |
                1 |
        2 |
                           1
                5 |
                           1
        2 |
        5 |
                1 |
                           2
        5 |
                 2 |
(6 rows)
```

Description of the Signatures

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Receives (edges_sql, directed)

Parame-	Туре	Description
ter		
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Default is true (is directed). When set to false the graph is considered as
		Undirected

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg_cost	FLOAT	Total cost from start_vid to end_vid.

History

• Re-design of pgr_apspWarshall in Version 2.2.0

See Also

- pgr_johnson
- Boost floyd-Warshall³³ algorithm
- Queries uses the Sample Data network.

Indices and tables

- genindex
- · search

pgr_johnson

Synopsis

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Fig. 5.2: Boost Graph Inside

Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr_apspJohnson

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *sparse graphs*. It usees the Boost's implementation which runs in $O(VE \log V)$ time,

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a $V \times V$ matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of (*start_vid*, *end_vid*, *agg_cost*).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When start vid = end vid, the agg cost = 0.

³³ http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

³⁴ http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

Signature Summary

```
pgr_johnson(edges_sql)
pgr johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 1 On a directed graph.

Complete Signature

```
pgr_johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 2 On an undirected graph.

```
SELECT * FROM pgr_johnson(
   'SELECT source, target, cost FROM edge_table WHERE id < 5
       ORDER BY id',
   false
);
start_vid | end_vid | agg_cost
_____
       1 | 2 |
1 | 5 |
2 | 1 |
2 | 5 |
                     1 2
                          1
                          1
       5 |
               1 |
                2 |
        5 |
(6 rows)
```

Description of the Signatures

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Receives (edges_sql, directed)

Parame-	Туре	Description
ter		
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Default is true (is directed). When set to false the graph is considered as
		Undirected

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg_cost	FLOAT	Total cost from start_vid to end_vid.

History

• Re-design of pgr_apspJohnson in Version 2.2.0

See Also

- pgr_floydWarshall
- Boost Johnson³⁵ algorithm implementation.
- Queries uses the Sample Data network.

Indices and tables

- genindex
- · search

Performance

The following tests:

- non server computer
- with AMD 64 CPU
- 4G memory
- trusty
- posgreSQL version 9.3

Data

The following data was used

Data processing was done with osm2pgrouting-alpha

```
createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0
```

Results

Test One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were executed to get the average The tested query is:

³⁵ http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

The results of this tests are presented as:

SIZE is the number of edges given as input.

EDGES is the total number of records in the query.

DENSITY is the density of the data $\frac{E}{V \times (V-1)}$.

OUT ROWS is the number of records returned by the queries.

Floyd-Warshall is the average execution time in seconds of pgr_floydWarshall.

Johnson is the average execution time in seconds of pgr_johnson.

SIZE	EDGES	DENSITY	OUT ROWS	Floyd-Warshall	Johnson
500	500	0.18E-7	1346	0.14	0.13
1000	1000	0.36E-7	2655	0.23	0.18
1500	1500	0.55E-7	4110	0.37	0.34
2000	2000	0.73E-7	5676	0.56	0.37
2500	2500	0.89E-7	7177	0.84	0.51
3000	3000	1.07E-7	8778	1.28	0.68
3500	3500	1.24E-7	10526	2.08	0.95
4000	4000	1.41E-7	12484	3.16	1.24
4500	4500	1.58E-7	14354	4.49	1.47
5000	5000	1.76E-7	16503	6.05	1.78
5500	5500	1.93E-7	18623	7.53	2.03
6000	6000	2.11E-7	20710	8.47	2.37
6500	6500	2.28E-7	22752	9.99	2.68
7000	7000	2.46E-7	24687	11.82	3.12
7500	7500	2.64E-7	26861	13.94	3.60
8000	8000	2.83E-7	29050	15.61	4.09
8500	8500	3.01E-7	31693	17.43	4.63
9000	9000	3.17E-7	33879	19.19	5.34
9500	9500	3.35E-7	36287	20.77	6.24
10000	10000	3.52E-7	38491	23.26	6.51

Test Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were executed to get the average The tested edge query is:

```
WITH

buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom_

→FROM ways),

bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)

SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom &&_

→(SELECT box from bbox);
```

The tested queries

```
SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)
```

The results of this tests are presented as:

SIZE is the size of the bounding box.

EDGES is the total number of records in the query.

DENSITY is the density of the data $\frac{E}{V \times (V-1)}$.

OUT ROWS is the number of records returned by the queries.

Floyd-Warshall is the average execution time in seconds of pgr_floydWarshall.

Johnson is the average execution time in seconds of pgr_johnson.

SIZE	EDGES	DENSITY	OUT ROWS	Floyd-Warshall	Johnson
0.001	44	0.0608	1197	0.10	0.10
0.002	99	0.0251	4330	0.10	0.10
0.003	223	0.0122	18849	0.12	0.12
0.004	358	0.0085	71834	0.16	0.16
0.005	470	0.0070	116290	0.22	0.19
0.006	639	0.0055	207030	0.37	0.27
0.007	843	0.0043	346930	0.64	0.38
0.008	996	0.0037	469936	0.90	0.49
0.009	1146	0.0032	613135	1.26	0.62
0.010	1360	0.0027	849304	1.87	0.82
0.011	1573	0.0024	1147101	2.65	1.04
0.012	1789	0.0021	1483629	3.72	1.35
0.013	1975	0.0019	1846897	4.86	1.68
0.014	2281	0.0017	2438298	7.08	2.28
0.015	2588	0.0015	3156007	10.28	2.80
0.016	2958	0.0013	4090618	14.67	3.76
0.017	3247	0.0012	4868919	18.12	4.48

See Also

- pgr_johnson
- pgr_floydWarshall
- Boost floyd-Warshall³⁶ algorithm

Indices and tables

- genindex
- search

5.1.2 pgr_bdAstar

Name

 $\verb"pgr_bdAstar" — Returns the shortest path using A^* algorithm.$

Fig. 5.3: Boost Graph Inside

 $^{^{36}\} http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html$

³⁷ http://www.boost.org//libs/graph

Availability:

- pgr_bdAstar(one to one) 2.0.0, Signature change on 2.5.0
- pgr_bdAstar(other signatures) 2.5.0

Signature Summary

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq , node, edge, cost, agg_cost)
OR EMPTY SET
```

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Using these signatures, will load once the graph and perform several one to one pgr_bdAstar

- The result is the union of the results of the one to one *pgr_bdAStar*.
- The extra start_vid and/or end_vid in the result is used to distinguish to which path it belongs.

Avaliability

• pgr_bdAstar(one to one) 2.0, signature change on 2.5

• pgr_bdAstar(other signatures) 2.5

Signatures

Minimal Signature

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid

- on a directed graph
- with **heuristic**'s value 5
- with **factor**'s value 1
- with epsilon's value 1

Example Using the defaults

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
                 2 | 4 | 1 |
5 | 8 | 1 |
  1 |
        1 |
                  5 |
                         8 |
            2 |
  2 |
                        9 |
                               1 |
  3 |
            3 |
                   6 |
                        16 |
                               1 |
  4 |
            4 |
                  9 |
                                           3
                               1 |
            5 |
  5 |
                   4 |
                         3 |
                       -1 |
                  3 |
  6 |
            6 |
                                0 1
(6 rows)
```

pgr_bdAstar One to One

```
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid allowing the user to choose

- heuristic,
- and/or factor
- and/or epsilon.

Note: In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

Example Directed using Heuristic 2

```
SELECT * FROM pgr_bdAstar(
    'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
    FROM edge_table',
    2, 3,
    true, heuristic := 2
```

```
seq | path_seq | node | edge | cost | agg_cost
                          1 |
                    4 |
         1 |
               2 |
                                      0
                           1 |
          2 |
                5 |
                      8 |
  2 |
                                      1
          3 |
                            1 |
                6 |
                      9 |
  3 |
          4 |
                            1 |
  4 |
                9 |
                     16 |
                                     3
          5 |
                4 |
  5 |
                      3 |
                            1 |
                3 |
  6 |
          6 1
                    -1 I
                           0 1
(6 rows)
```

pgr_bdAstar One to many

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Directed using Heuristic 3 and a factor of 3.5

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, ARRAY[3, 11],
   heuristic := 3, factor := 3.5
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
          1 | 3 | 2 | 4 | 1 |
          2 |
                   3 | 5 | 8 | 1 |
  2 |
                                               1
           3 |
                   3 |
                               9 |
                                     1 |
  3 |
                          6 |
  4 |
           4 |
                   3 |
                          9 | 16 |
                                     1 |
           5 |
  5 |
                   3 |
                          4 |
                               3 |
                                      1 |
                                               4
                    3 |
  6 |
           6 |
                          3 |
                               -1 |
                                     0 |
                   11 |
                          2 |
                               4 |
  7 |
           1 |
                                      1 |
  8 |
                   11 |
           2 |
                          5 |
                               8 |
                                      1 |
                                               1
  9 |
           3 |
                          6 |
                               11 |
                   11 |
                                      1 |
 10 |
           4 |
                   11 | 11 |
                               -1 |
                                      0 |
(10 rows)
```

pgr_bdAstar Many to One

```
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, →epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic.
- · and/or factor
- and/or epsilon.

Example Undirected graph with Heuristic 4

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], 3,
   false, heuristic := 4
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
           1 |
  1 |
                      2 | 2 | 2 | 1 |
           2 |
                      2 |
  2 |
                            3 | -1 |
                                        0 |
                                                  1
            1 |
                            7 |
                      7 |
  3 |
                                  6 |
                                        1 |
           2 |
                            8 |
                      7 |
                                  7 |
  4 |
                                         1 |
           3 |
                     7 |
                                 4 |
                           5 |
                                        1 |
  5 |
                          2 | 3 |
  6 |
                                 2 |
                                        1 |
                      7 |
           4 |
                                                  3
                      7 |
                                        0 |
  7 |
           5 I
                                 -1 |
                                                  4
(7 rows)
```

pgr_bdAstar Many to Many

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstar(
    'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
    FROM edge_table',
    ARRAY[2, 7], ARRAY[3, 11],
    factor := 0.5
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
           1 | 2 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
3 | 2 | 3 | 6 | 9 | 1 |
4 | 2 | 3 | 9 | 16 | 1 |
5 | 2 | 3 | 4 | 3 | 1 |
6 | 2 | 3 | 3 | -1 | 0 |
1 | 2 | 11 | 2 | 4 | 1 |
   2 |
   3 |
   4 |
                                                                                  3
   5 |
                                                                                   4
                                                                                   5
   6 |
   7 |
                                                                                   0
   8 | 2 |
                               2 | 11 |
                                                    5 |
                                                            8 |
                                                                     1 |
```

9	3	2	11	6	11	1	2	
10	4	2	11	11	-1	0	3	
11	1	7	3	7	6	1	0	
12	2	7	3	8	7	1	1	
13	3	7	3	5	8	1	2	
14	4	7	3	6	9	1	3	
15	5	7	3	9	16	1	4	
16	6	7	3	4	3	1	5	
17	7	7	3	3	-1	0	6	
18	1	7	11	7	6	1	0	
19	2	7	11	8	7	1	1	
20	3	7	11	5	10	1	2	
21	4	7	11	10	12	1	3	
22	5	7	11	11	-1	0	4	
(22 rows)								

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description	
id	ANY-INTEGER		Identifier of the edge.	
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.	
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.	
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.	
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.	
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.	
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.	
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.	
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.	

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.
end_vid	ANY-INTEGER	Ending vertex identifier.
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) 1: h(v) abs(max(dx, dy)) 2: h(v) abs(min(dx, dy)) 3: h(v) = dx * dx + dy * dy 4: h(v) = sqrt(dx * dx + dy * dy) 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see <i>Factor</i>
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the
		same start_vid to end_vid combination.
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

- Bidirectional A* Family of functions
- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- search

5.1.3 pgr_bdDijkstra

pgr_bdDijkstra — Returns the shortest path(s) using Bidirectional Dijkstra algorithm.

Fig. 5.4: Boost Graph Inside

Availability:

- pgr_bdDijkstra(one to one) 2.0.0, Signature changed 2.4.0
- pgr_bdDijkstra(other signatures) 2.5.0

Signature Summary

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

 $^{^{38}}$ http://www.boost.org/libs/graph/doc

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signatures

Minimal signature

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph from one start_vid to one end_vid:

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
  1 |
        1 | 2 | 4 | 1 |
                                  0
  2 |
         2 | 5 | 8 | 1 |
                                   1
          3 | 6 |
                    9 | 1 |
  3 |
  4 |
          4 | 9 | 16 | 1 |
                                   3
 5 |
         5 | 4 | 3 |
                          1 |
                                   4
 6 |
         6 | 3 | -1 | 0 |
                                    5
(6 rows)
```

pgr bdDijkstra One to One

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_bdDijkstra One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all <code>end_vids</code> are reached.

- The result is equivalent to the union of the results of the one to one *pgr_dijkstra*.
- The extra end vid in the result is used to distinguish to which path it belongs.

```
SELECT * FROM pgr_bdDijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  2, ARRAY[3, 11]);
seq | path_seq | end_vid | node | edge | cost | agg_cost
  1 |
         1 |
                 3 |
                       2 | 4 | 1 |
                                         0
                 3 | 5 | 8 | 1 |
  2 |
         2 |
                                         1
  3 |
         3 |
                 3 |
                      6 |
                            9 |
                                 1 |
         4 |
  4 |
                 3 |
                      9 | 16 | 1 |
  5 |
         5 |
                 3 |
                      4 |
                           3 |
                                 1 |
  6 |
         6 |
                 3 |
                      3 | -1 |
                                 0 |
  7 |
         1 |
                11 |
                      2 | 4 |
                                 1 |
 8 |
         2 |
                11 | 5 |
                            8 |
                                 1 |
                                         1
 9 |
         3 |
                11 |
                      6 | 11 |
                                 1 |
                                 0 |
 10 |
         4 |
                11 | 11 |
                           -1 I
(10 rows)
```

pgr bdDijkstra Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one $pgr_dijkstra$ where the ending vertex is fixed.

- The result is the union of the results of the one to one pgr_dijkstra.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
  1 | 2 | 2 | 4 | 1 |
                                              0
  2 |
          2 |
                    2 |
                          5 | 8 | 1 |
                                               1
  3 |
          3 |
                    2 |
                          6 |
                                9 |
                                     1 |
                                               2
  4 |
                    2 |
                          9 | 16 |
           4 |
                                      1 |
                                               3
           5 |
                          4 |
  5 |
                    2 |
                                3 |
                                      1 |
           6 |
  6 |
                     2 |
                          3 | -1 |
                                      0 |
                                               5
           1 |
  7 |
                     7 |
                           7 |
                                      1 |
                                               0
                                6 |
           2 |
  8 |
                     7 |
                          8 |
                                7 |
                                      1 |
                                               1
           3 |
  9 |
                     7 |
                          5 |
                                8 |
                                      1 |
           4 |
                     7 |
                          6 |
                                9 |
 10 |
                                      1 |
           5 |
 11 |
                     7 |
                          9 |
                               16 |
                                      1 |
                                               4
 12 |
           6 |
                     7 |
                          4 |
                                3 |
                                      1 |
                                               5
                     7 |
 13 |
           7 |
                          3 |
                                -1 |
                                      0 |
(13 rows)
```

pgr_bdDijkstra Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or_

GEMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

```
SELECT * FROM pgr_bdDijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11]);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
       1 | 2 | 3 | 2 |
2 | 2 | 3 | 5 |
3 | 2 | 3 | 6 |
4 | 2 | 3 | 9 |
5 | 2 | 3 | 4 |
6 | 2 | 3 | 3 |
1 | 2 | 11 | 2 |
                                               4 | 1 |
                                                 8 |
                                                        1 |
  2 |
                                                                    1
  3 |
                                                 9 |
                                                        1 |
  4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
                                               16 |
                                                      1 |
                                   3 | 4 |
                                                 3 |
                                                        1 |
                                          3 | -1 | 0 |
          11 | 2 | 4 | 1 |
                        2 |
                                  11 | 5 |
                                                 8 |
                                                        1 |
                        2 |
                                  11 |
                                         6 | 11 |
                                                        1 |
                        2 |
 10 |
                                  11 | 11 | -1 | 0 |
                         7 |
                                  3 |
                                          7 | 6 |
 11 |
                                                         1 |
                         7 |
                                   3 |
                                          8 |
                                                 7 |
 12 |
                                                         1 |
                                                                    1
                         7 | 3 |
7 | 3 |
7 | 3 |
7 | 3 |
7 | 3 |
7 | 3 |
7 | 11 |
                                                 8 |
 13 |
                                   3 |
                                          5 |
                                                         1 |
 14 |
                                   3 |
                                          6 |
                                                 9 |
                                                         1 |
                                                                    3
 15 |
                                   3 |
                                           9 | 16 |
                                                         1 |
                                                                    4
 16 |
                                           4 |
                                                 3 |
                                                         1 |
 17 |
                                           3 |
                                                 -1 |
 18 |
                                           7 |
                                                 6 |
                                                         1 |
                                                 7 |
                         7 |
                                   11 |
 19 |
                                          8 |
                                                         1 |
                                  11 | 5 .
                         7 |
 20 |
                                                10 |
                                                         1 |
                         7 |
 21 |
22 |
                                                 12 |
                                                         1 |
                                                                    3
                        7 |
                                                 -1 |
            5 |
                                                         0 |
                                  11 |
                                          11 |
(22 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Default	Description			
sql	TEXT		SQL query as described			
			above.			
start_vid	BIGINT		Identifier of the starting			
			vertex of the path.			
start_vids	ARRAY[BIGINT]		Array of identifiers of			
			starting vertices.			
end_vid	BIGINT		Identifier of the ending			
			vertex of the path.			
end_vids	ARRAY[BIGINT]		Array of identifiers of			
			ending vertices.			
directed	BOOLEAN	true	• When true			
			Graph is consid-			
			ered Directed			
			• When false			
			the graph is			
			considered as			
			Undirected.			
			Chairectea.			

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the
		<pre>same start_vid to end_vid combination.</pre>
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

- The queries use the *Sample Data* network.
- Bidirectional Dijkstra Family of functions
- https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

- genindex
- search

5.1.4 Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_dijkstra

 $\verb|pgr_dijkstra| -- Returns the shortest path(s) using Dijkstra algorithm. In particular, the Dijkstra algorithm implemented by Boost. Graph.$

³⁹ http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

Fig. 5.5: Boost Graph Inside

Availability

- pgr_dijkstra(one to one) 2.0.0, signature change 2.1.0
- pgr_dijkstra(other signatures) 2.1.0

Synopsis

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid). This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost the non included values (v, v) is θ
 - When the starting vertex and ending vertex are the different and there is no path:
 - * The agg_cost the non included values (u, v) is ∞
- For optimization purposes, any duplicated value in the *start_vids* or *end_vids* are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_dijkstra(edges_sql, start_vid, end_vid)
pgr_dijkstra(edges_sql, start_vid, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vid, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_

cost)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph from one start_vid to one end_vid.

Example

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 4 | 1 |
  1 |
                                       \cap
           2 | 5 | 8 | 1 |
  2 |
                                       1
                       9 |
                             1 |
  3 |
           3 | 6 |
           4 |
                             1 |
  4 |
                 9 | 16 |
  5 |
           5 |
                 4 | 3 |
3 | -1 |
                             1 |
                                       4
  6 |
           6 |
(6 rows)
```

pgr_dijkstra One to One

```
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_dijkstra One to many

```
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr_dijkstra.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost FROM edge_table',
    2, ARRAY[3,5],
    FALSE
);
             1 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
3 | 3 | 6 | 5 | 1 |
4 | 3 | 3 | -1 | 0 |
1 | 5 | 2 | 4 |
seq | path_seq | end_vid | node | edge | cost | agg_cost
   1 |
   2 |
                                                                 1
   3 |
   4 |
                                                                  3
   5 |
                                                                  0
   6 |
(6 rows)
```

pgr_dijkstra Many to One

```
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one $pgr_dijkstra$ where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
                           2 | 4 . -1 |
  1 |
           1 |
                     2 |
                          5 |
                                      0 |
          2 |
1 |
2 |
                     2 |
  2 |
                                                 1
                    11 | 11 |
                                13 |
                                       1 |
  3 |
                   11 |
                          12 | 15 |
                                       1 |
                                                 1
  4 |
           3 |
                    11 |
                           9 |
                                 9 |
                                       1 |
                                                 2
  5 |
          4 |
                    11 |
                           6 |
                                8 |
                                       1 |
                                                 3
  6 |
  7 |
           5 |
                    11 |
                           5 | -1 |
                                       0 |
(7 rows)
```

pgr_dijkstra Many to Many

```
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_

→vids,

BOOLEAN directed:=true);

RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or 
→EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr_dijkstra* for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], ARRAY[3,5],
   FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
  1 |
          1 |
                    2 |
                             3 |
                                    2 |
                                         2 |
                                                1 |
                                                          0
  2 |
          2 |
                    2 |
                             3 | 3 | -1 | 0 |
                                                         1
                     2 |
                             5 | 2 |
                                                1 |
  3 |
           1 |
                                         4 |
                                                         0
                    2 | 11 |
          2 | 2 |
1 | 11 |
2 | 11 |
                              5 |
                                    5 |
                                         -1 |
                                                0 |
  4 |
                                                         1
  5 |
                              3 | 11 | 11 | 1 |
                                         5 |
  6 |
                              3 | 6 |
                                                1 |
                                                          1
           3 |
  7 |
                    11 |
                              3 |
                                    3 |
                                         -1 |
                                                0 1
                              5 |
  8 |
           1 |
                     11 |
                                   11 |
                                         11 |
                                                1 |
                              5 | v . 5 |
  9 |
           2 |
                     11 |
                                         8 |
                                                1 |
 10 |
           3 |
                     11 |
                             5 |
                                         -1 |
(10 rows)
```

Description of the Signatures

Description of the edges sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Default	Description			
sql	TEXT		SQL query as described			
			above.			
start_vid	BIGINT		Identifier of the starting			
			vertex of the path.			
start_vids	ARRAY[BIGINT]		Array of identifiers of			
			starting vertices.			
end_vid	BIGINT		Identifier of the ending			
			vertex of the path.			
end_vids	ARRAY[BIGINT]		Array of identifiers of			
			ending vertices.			
directed	BOOLEAN	true	• When true			
			Graph is consid-			
			ered Directed			
			• When false			
			the graph is			
			considered as			
			Undirected.			
			Onuirecteu.			

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Туре	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the
		same start_vid to end_vid combination.
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	l BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

Additional Examples

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and undirected graph with and with out reverse_cost.

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 4 | 1 |
           2 | 5 | 8 | 1 |
  2 |
                                       1
  3 |
           3 | 6 |
                       9 | 1 |
           4 | 9 | 16 | 1 |
  4 |
  5 |
           5 | 4 | 3 | 1 |
                                       4
           6 |
                 3 |
                      -1 |
                             0 |
  6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 5
);
seq | path_seq | node | edge | cost | agg_cost
_____
           1 | 2 | 4 | 1 |
2 | 5 | -1 | 0 |
  1 |
                                      0
  2 |
           2 |
                                      1
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3,5]
```

```
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
       1 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
3 | 3 | 6 | 9 | 1 |
   2 |
  3 |
            4 |
                       3 |
                              9 | 16 |
                                           1 |
  4 |
  5 | 6 |
            5 |
                       3 | 4 | 3 | 1 |
            6 |
                       3 | 3 | -1 | 0 |
            1 |
                       5 | 2 | 4 | 1 |
  7 |
  8 |
             2 |
                       5 | 5 | -1 | 0 |
(8 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   11, 3
) ;
seq | path_seq | node | edge | cost | agg_cost
            1 | 11 | 13 | 1 | 0
2 | 12 | 15 | 1 | 1
3 | 9 | 16 | 1 | 2
4 | 4 | 3 | 1 | 3
5 | 3 | -1 | 0 | 4
  1 |
  2 |
  5 |
(5 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   11, 5
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 11 | 13 | 1 | 0
            2 | 12 | 15 | 1 |
             3 | 9 | 9 | 1 |
  3 |
             4 | 6 | 8 | 1 |
  4 |
5 |
            5 | 5 | -1 | 0 |
(5 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
       1 | 2 | 2 | 4 | 1 |
2 | 2 | 5 | -1 | 0 |
1 | 11 | 11 | 13 | 1 |
2 | 11 | 12 | 15 | 1 |
                                                           1
  2 |
  3 |
  4 | 5 |
                        11 | 9 | 9 | 1 | 1 | 11 | 6 | 8 | 1 |
            3 |
            4 |
  6 1
            5 I
                        11 | 5 | -1 | 0 |
  7 |
(7 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5]
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

    1 |
    2 |
    3 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |
    1

    3 |
    2 |
    3 |
    6 |
    9 |
    1 |
    2

  1 |
   2 |
                                                   9 |
                          2 |
                                   3 |
                                            6 |
                                                           1
```

4	4	2	3	9	16	1	3	
5	5	2	3	4	3	1	4	
6	6	2	3	3	-1	0	5	
7	1	2	5	2	4	1	0	
8	2	2	5	5	-1	0	1	
9	1	11	3	11	13	1	0	
10	2	11	3	12	15	1	1	
11	3	11	3	9	16	1	2	
12	4	11	3	4	3	1	3	
13	5	11	3	3	-1	0	4	
14	1	11	5	11	13	1	0	
15	2	11	5	12	15	1	1	
16	3	11	5	9	9	1	2	
17	4	11	5	6	8	1	3	
18	5	11	5	5	-1	0	4	
(18 rows)								
1								

Examples for queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost columns are used

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      2 |
      1 |
      0

      2 |
      2 |
      3 |
      -1 |
      0 |
      1

  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 5,
    FALSE
);
seq | path_seq | node | edge | cost | agg_cost
            1 | 2 | 4 | 1 | 0
2 | 5 | -1 | 0 | 1
  1 |
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    11, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
                 --+----+---

    1 | 11 | 11 | 1 | 0

    2 | 6 | 5 | 1 | 1

    3 | 3 | -1 | 0 | 2

   1 |
   2 |
   3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    11, 5,
    FALSE
```

```
);
seq | path_seq | node | edge | cost | agg_cost
           1 | 11 | 11 | 1 | 0
2 | 6 | 8 | 1 | 1
3 | 5 | -1 | 0 | 2
    2 |
    3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
      'SELECT id, source, target, cost, reverse cost FROM edge table',
     ARRAY[2,11], 5,
     FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    2 |
    5 |
    -1 |
    0 |
    1

    3 |
    1 |
    11 |
    11 |
    12 |
    1 |
    0

    4 |
    2 |
    11 |
    10 |
    10 |
    1 |
    1

    5 |
    3 |
    11 |
    5 |
    -1 |
    0 |
    2

(5 rows)
SELECT * FROM pgr_dijkstra(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      2, ARRAY[3,5],
     FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    3 |
    2 |
    2 |
    1 |

    2 |
    2 |
    3 |
    3 |
    -1 |
    0 |

    3 |
    1 |
    5 |
    2 |
    4 |
    1 |

  3 | 4 |
                    2 |
                                    5 | 5 | -1 | 0 |
(4 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      ARRAY[2, 11], ARRAY[3,5],
     FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

      1 | 1 | 2 | 3 | 2 | 2 | 1 | 0

      2 | 2 | 2 | 3 | 3 | -1 | 0 | 1

      3 | 1 | 2 | 5 | 2 | 4 | 1 | 0

      4 | 2 | 2 | 5 | 5 | -1 | 0 | 1

      5 | 1 | 11 | 3 | 11 | 11 | 1 | 0

      6 | 2 | 11 | 3 | 6 | 5 | 1 | 1

      7 | 3 | 11 | 11 | 3 | 3 | -1 | 0 | 2

      8 | 1 | 1 | 11 | 5 | 11 | 11 | 1 | 0

      9 | 2 | 11 | 5 | 6 | 8 | 1 | 1

  10 |
                    3 | 11 | 5 | 5 | -1 | 0 |
(10 rows)
```

Examples for queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
(0 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 2 | 4 | 1 | 0
            2 | 5 | -1 | 0 |
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
(0 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
seq | path_seq | node | edge | cost | agg_cost
(0 rows)
SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2,11], 5
) ;
seq | path_seq | start_vid | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    5 |
    -1 |
    0 |
    1

  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
    2, ARRAY[3,5]
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    5 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    5 |
    5 |
    -1 |
    0 |
    1

(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5]
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 1 | 2 | 5 | 2 | 4 | 1 | 0
  2 |
            2 |
                         2 |
                                   5 | 5 | -1 | 0 |
```

Examples for queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
            1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
3 | 6 | 5 | 1 |
4 | 3 | -1 | 0 |
  2 |
                                             1
  3 |
  4 |
(4 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
  1 | 2 | 4 | 1 | 0
            2 | 5 | -1 | 0 |
                                            1
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
            1 | 11 | 11 | 1 | 1 | 2 | 6 | 5 | 1 | 3 | 3 | -1 | 0 |
  1 |
                                         0
  2. |
                                             1
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
                    ---+--
            1 | 11 | 11 | 1 | 0
2 | 6 | 8 | 1 | 1
3 | 5 | -1 | 0 | 2
  2 |
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2,11], 5,
   FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
```

```
    1
    1
    1
    2
    2
    4
    1
    1
    0

    2
    1
    2
    1
    2
    1
    1
    0
    1

    3
    1
    1
    11
    11
    12
    1
    0

    4
    2
    1
    11
    10
    10
    1
    1

   5 |
                                        5 | -1 | 0 |
                3 |
                              11 |
(5 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost FROM edge_table',
     2, ARRAY[3,5],
    FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    3 |
    2 |
    4 |
    1 |

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |

    3 |
    3 |
    6 |
    5 |
    1 |

                4 | 1 | 2 |
                             3 | 3 | -1 | 0 | 5 | 2 | 4 | 1 |
   4 |
   5 |
   6 |
                2 |
                              5 | 5 |
                                               -1 |
(6 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost FROM edge_table',
     ARRAY[2, 11], ARRAY[3,5],
    FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 1
                                                                                      1
                                                                                       0
                                                                                       1
(12 rows)
```

Equvalences between signatures

Examples For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following:

Network for queries marked as directed and cost and reverse_cost columns are used

```
    2 |
    5 |
    8 |
    1 |

    3 |
    6 |
    9 |
    1 |

    4 |
    9 |
    16 |
    1 |

    5 |
    4 |
    3 |
    1 |

                3 |
   3 |
                4 |
   4 |
                5 |
                        4 |
                               3 |
-1 |
   5 |
                6 |
                        3 |
                                         0 |
   6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2,3
);
seq | path_seq | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      4 |
      1 |
      0

      2 |
      2 |
      5 |
      8 |
      1 |
      1

               3 | 6 |
                                9 | 1 |
   3 |
               4 | 9 | 16 | 1 |
5 | 4 | 3 | 1 |
6 | 3 | -1 | 0 |
   4 |
   5 |
                                                       4
   6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, ARRAY[3],
    TRUE
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    3 |
    2 |
    4 |
    1 |

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |

               3 |
                            3 | 6 | 9 | 1 |
  3 |

    4 |
    3 |
    9 |
    10 |
    - .

    5 |
    3 |
    4 |
    3 |
    1 |

    6 |
    3 |
    3 |
    -1 |
    0 |

   4 |
  5 |
  6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, ARRAY[3]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1
    1
    1
    3
    1
    2
    1
    4
    1
    1
    0

    2
    1
    2
    1
    4
    1
    1
    1

    3
    1
    3
    3
    6
    9
    1
    1
    2

    4
    4
    3
    9
    16
    1
    1
    3

               2 | 3 | 4 |
                                     6 | 9 .
                            3 | 9 | 4 |
                                                     1 |
               5 |
                                             3 |
   5 |
               6 | 3 | 3 | -1 | 0 |
   6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ARRAY[2], ARRAY[3],
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
               1 | 2 | 3 | 2 | 4 | 1 |
                                          3 | 5 | 8 | 1 |
               2 |
                             2 |
                                                                                  1
   2 |
   3 |
               3 |
                              2 |
                                           3 | 6 |
                                                            9 | 1 |
                             2 | 2 |
                4 |
   4 |
                                           3 | 9 | 16 | 1 |
                                                                                   3
                5 |
                                           3 |
   5 |
                                                    4 | 3 |
                                                                      1 |
                                                                                    Δ
                 6 |
                               2 |
                                                            -1 |
                                           3 |
                                                    3 |
                                                                      0 |
```

```
(6 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ARRAY[2], ARRAY[3]
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    3 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |
    1

    3 |
    3 |
    2 |
    3 |
    6 |
    9 |
    1 |
    2

               3 |
                             2 |
                                         3 | 6 |
                                                           9 | 1 |
  3 |
              4 | 2 | 5 | 2 |
                                         3 | 9 | 16 | 1 |
  4 |
              5 | 2 | 3 | 4 | 3 | 1 |
6 | 2 | 3 | 3 | -1 | 0 |
  5 I
  6 |
(6 rows)
```

Examples For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following:

Network for queries marked as undirected and cost and reverse_cost columns are used

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 2 | 2 | 1 | 0
          2 |
 2 |
                3 | -1 | 0 |
                                       1
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3],
   FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
____+

    1 |
    1 |
    3 |
    2 |
    2 |
    1 |
    0

    2 |
    2 |
    3 |
    3 |
    -1 |
    0 |
    1

(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], 3,
  FALSE
) ;
seq | path_seq | start_vid | node | edge | cost | agg_cost
____+
  2 |
                    2 | 3 | -1 | 0 |
 2 |
                                                 1
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], ARRAY[3],
   FALSE
) ;
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
```

1	1	2	3	2	2	1	0	
2	2	2	3	3	-1	0	1	
(2 rows)								

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- The queries use the Sample Data network.

Indices and tables

- · genindex
- · search

pgr_dijkstraCost

Synopsis

pgr_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the aggregate cost of the shortest path(s) found, for the combination of vertices given.

Fig. 5.6: Boost Graph Inside

Availability

• pgr_dijkstraCost(all signatures) 2.2.0

The pgr_dijkstraCost algorithm, is a good choice to calculate the sum of the costs of the shortest path for a subset of pairs of nodes of the graph. We make use of the Boost's implementation of dijkstra which runs in $O(V \log V + E)$ time.

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

⁴⁰ http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

- When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost int the non included values (v, v) is θ
- When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* or *end_vids* is ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid);
pgr_dijkstraCost(edges_sql, start_vid, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vid, end_vids, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vids, directed);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal signature

The minimal signature is for a **directed** graph from one start_vid to one end_vid:

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example

pgr_dijkstraCost One to One

This signature performs a Dijkstra from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example

pgr_dijkstraCost One to Many

This signature performs a Dijkstra from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_dijkstraCost Many to One

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

This signature performs a Dijkstra from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

```
SELECT * FROM pgr_dijkstraCost(
    'select id, source, target, cost, reverse_cost from edge_table',
    ARRAY[2, 7], 3);
start_vid | end_vid | agg_cost
```

pgr_dijkstraCost Many to Many

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, array[ANY_INTEGER] → end_vids,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

This signature performs a Dijkstra from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Default	Description
sql	TEXT		SQL query as described
			above.
start_vid	BIGINT		Identifier of the starting
			vertex of the path.
start_vids	ARRAY[BIGINT]		Array of identifiers of
			starting vertices.
end_vid	BIGINT		Identifier of the ending
			vertex of the path.
end_vids	ARRAY[BIGINT]		Array of identifiers of
			ending vertices.
directed	BOOLEAN	true	• When true
			Graph is consid-
			ered Directed
			• When false
			the graph is
			considered as
			Undirected.
			Onuirecteu.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1 Demonstration of repeated values are ignored, and result is sorted.

Example 2 Making *start_vids* the same as *end_vids*

```
SELECT * FROM pgr_dijkstraCost(
       'select id, source, target, cost, reverse_cost from edge_table',
          ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
start_vid | end_vid | agg_cost
        3 | 4 | 3 | 5 |
                          2
                3 |
                          1
        4 |
                5 |
                          3
        4 |
        5 |
                3 |
                           4
                4 |
        5 |
(6 rows)
```

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- Sample Data network.

Indices and tables

- genindex
- search

pgr_dijkstraCostMatrix - proposed

Name

pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_dijktras.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 5.7: Boost Graph Inside

Availability: 2.3.0

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

⁴¹ http://www.boost.org/libs/graph

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_dijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
       1
                          5
                           4
                           2
                           3
                           3
        4 |
                 2 |
                           2
                          1
        4 |
                3 |
(12 rows)
```

Complete Signature

```
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_dijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
) ;
start_vid | end_vid | agg_cost
                       1
2
        1 | 2 |
1 | 3 |
        1 |
                4 |
                            3
                4 |
1 |
3 |
4 |
1 |
2 |
        2 |
                            1
        2 |
        2 |
        3 |
        3 |
        3 |
                4 |
                            1
        4 |
                 1 |
                            3
        4 |
                 2 |
                            2
                 3 |
        4 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Pa-	Туре	Description
rame-		
ter		
edges_sq	l TEXT	Edges SQL query as described above.
start_vic	s array[any-int	EAFIRY of identifiers of the vertices.
di-	BOOLEAN	(optional). When false the graph is considered as Undirected. Default is
rected		true which considers the graph as Directed.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
    SELECT * FROM pgr_dijkstraCostMatrix(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table',
       (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
       false
    $$,
   randomize := false
);
seq | node | cost | agg_cost
       1 | 1 |
  2 |
      2 |
              1 |
                          1
  3 | 3 |
              1 |
                          2
         4 |
               3 |
                          3
  4 |
                0 |
  5 I
         1 |
(5 rows)
```

See Also

- Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_drivingDistance

Name

pgr_drivingDistance - Returns the driving distance from a start node.

Fig. 5.8: Boost Graph Inside

Availability

- pgr_drivingDistance(single vertex) 2.0.0, signature change 2.1.0
- pgr_drivingDistance(multiple vertices) 2.1.0

⁴² http://www.boost.org/libs/graph

Synopsis

Using the Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The edges extracted will conform to the corresponding spanning tree.

Signature Summary

```
pgr_drivingDistance(edges_sql, start_vid, distance)
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)
```

Signatures

Minimal Use

```
pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Driving Distance From A Single Starting Vertex

```
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Driving Distance From Multiple Starting Vertices

```
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Col-	Туре	Description
umn		
edges	sqe xt	SQL query as described above.
start_	vidigint	Identifier of the starting vertex.
start_	vids ray [any	- ANTAN ⊕ Erdentifiers of the starting vertices.
dis-	FLOAT	Upper limit for the inclusion of the node in the result.
tance		
di-	BOOLEAN	(optional). When false the graph is considered as Undirected. Default is true which
rected		considers the graph as Directed.
equice	SB OOLEAN	(optional). When true the node will only appear in the closest start_vid list. De-
		fault is false which resembles several calls using the single starting point signatures.
		Tie brakes are arbitrary.

Description of the return values

Returns set of (seq [, start_v], node, edge, cost, agg_cost)

Column	Type	Description
seq	INTEGER	Sequential value starting from 1.
start_vid	INTEGER	Identifier of the starting vertex.
node	BIGINT	Identifier of the node in the path within the limits from start_vid.
edge	BIGINT	Identifier of the edge used to arrive to node. 0 when the node is the start_vid.
cost	FLOAT	Cost to traverse edge.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ) ;
seq | node | edge | cost | agg_cost
 1 | 2 | -1 | 0 | 0
  2 | 1 | 1 | 1 |
  3 | 5 |
             4 | 1 |
  4 | 6 |
             8 |
                   1 |
             7 |
  5 |
       8 |
                   1 |
  6 | 10 | 10 | 1 |
  7 | 7 | 6 |
                             3
                   1 |
                            3
  8 |
       9 |
             9 |
                   1 |
                             3
  9 | 11 | 12 |
                   1 |
 10 |
       13 | 14 |
                   1 |
(10 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      13, 3
    );
seq | node | edge | cost | agg_cost
_____

    1 |
    13 |
    -1 |
    0 |
    0

    2 |
    10 |
    14 |
    1 |
    1

       5 | 10 | 1 |
  3 |
  4 | 11 | 12 | 1 |
  5 | 2 | 4 |
                   1 |
  6 | 6 |
             8 |
                   1 |
  7 |
       8 |
             7 |
                   1 |
  8 | 12 | 13 |
                   1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3
    );
seq | from_v | node | edge | cost | agg_cost
              2 |
                    -1 | 0 | 0
          2 |
                   1 |
  2 |
               1 |
                           1 |
                                     1
                    4 |
                                     1
          2 |
               5 |
  3 |
                            1 |
         2 |
               6 |
                     8 |
                           1 |
  4 |
```

```
6 |
          2 |
                10 |
                       10 |
                              1 |
  7 |
          2 |
                7 |
                       6 |
                              1 |
               9 |
                      9 |
          2 |
  8 |
                              1 |
  9 |
          2 |
               11 |
                      12 |
                             1 |
 10 I
          2 |
               13 |
                     14 |
                             1 |
                      -1 |
 11 I
         13 I
               13 |
                             0 |
                                       0
 12 I
         13 |
              10 |
                     14 |
                             1 |
                                       1
 13 I
         13 I
                5 I
                     10 |
                             1 |
         13 | 11 | 12 |
 14 |
                             1 |
         13 | 2 | 4 |
 15 I
                             1 |
 16 |
         13 |
                6 | 8 |
                             1 |
 17 |
         13 |
                8 |
                      7 |
                             1 |
 18 |
         13 | 12 | 13 |
                             1 |
(18 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, equicost:=true
     );
seq | from_v | node | edge | cost | agg_cost

    1 |
    2 |
    2 |
    -1 |

    2 |
    2 |
    1 |
    1 |

    3 |
    2 |
    5 |
    4 |

                            0 |
1 |
                                       1
                                       1
                5 |
                            1 |
          2 |
                      8 |
                             1 |
          2 |
                6 |
  4 |
  5 |
          2 |
                8 |
                       7 |
                             1 |
         2 |
                             1 |
                7 |
                      6 |
  6 |
  7 |
          2 |
                             1 |
                9 |
                      9 |
  8 |
        13 | 13 | -1 |
                             0 1
  9 |
         13 | 10 | 14 |
                             1 |
                                       1
 10 |
11 |
        13 | 11 | 12 |
                             1 |
        13 | 12 | 13 |
                             1 |
(11 rows)
```

Examples for queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost columns are used

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      2, 3, false
    );
seg | node | edge | cost | agg_cost
 1 | 2 | -1 | 0 | 0
  2 | 1 | 1 | 1 |
                           1
  3 | 3 | 2 | 1 |
                           1
  4 | 5 |
                           1
            4 |
                  1 |
                  1 |
  5 | 4 |
             3 |
  6 |
      6 |
             8 |
                   1 |
       8 |
             7 |
  7 |
                   1 |
  8 | 10 | 10 |
                   1 |
      7 | 9 |
             6 |
                   1 |
  9 |
                            3
            16 |
 10 |
                   1 |
 11 | 11 |
12 | 13 |
            12 |
                            3
                   1 |
                  1 |
            14 |
(12 rows)
```

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      13, 3, false
    ) ;
seq | node | edge | cost | agg_cost
  1 | 13 | -1 | 0 | 0
      10 | 14 | 1 |
  2. |
                            1
  3 |
       5 | 10 | 1 |
  4 | 11 | 12 | 1 |
  5 | 2 | 4 | 1 |
6 | 6 | 8 | 1 |
  7 | 8 |
             7 | 1 |
  8 | 12 | 13 |
                  1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false
    );
seq | from_v | node | edge | cost | agg_cost

    1 |
    2 |
    2 |
    -1 |
    0 |

    2 |
    2 |
    1 |
    1 |
    1 |

    3 |
    2 |
    3 |
    2 |
    1 |

                                    1
              3 |
                          1 |
                                   1
                    4 |
                          1 |
                                    1
              5 |
         2 |
  4 |
              4 |
                    3 |
                          1 |
         2 |
  5 |
                          1 |
         2 |
              6 | 8 |
  6 |
              8 |
                    7 |
  7 |
         2 |
                          1 |
  8 |
         2 | 10 | 10 | 1 |
        2 | 7 |
  9 |
                    6 |
                          1 |
              9 | 16 | 1 |
 10 |
         2 |
 11 |
        2 | 11 | 12 |
                          1 |
 12 |
         2 | 13 | 14 | 1 |
 13 |
        13 | 13 | -1 | 0 |
 14 |
        13 | 10 | 14 | 1 |
                                    1
        13 | 5 | 10 |
 15 |
                          1 |
 16 |
        13 | 11 | 12 |
                          1 |
                          1 |
 17 |
        13 | 2 | 4 |
 18 |
        13 |
              6 | 8 |
                          1 |
 19 |
                     7 |
        13 |
               8 |
                          1 |
 20 |
        13 | 12 | 13 | 1 |
(20 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false, equicost:=true
    ) ;
seq | from_v | node | edge | cost | agg_cost
  1 | 2 | 2 | -1 | 0 |
        2 | 1 | 1 | 1 |
  2 |
                                    1
        2 | 3 | 2 | 1 |
  3 |
        2 | 5 | 4 | 1 |
  4 |
  5 |
        2 | 4 | 3 | 1 |
  6 |
        2 | 6 | 8 | 1 |
        2 | 8 |
                    7 | 1 |
  7 |
        2 | 7 |
                                    3
  8 |
                          1 |
                    6 |
                                   3
  9 |
         2 |
              9 | 16 |
                          1 |
 10 |
        13 | 13 | -1 |
                                    0
                          0 |
 11 |
                                    1
                          1 |
        13 | 10 | 14 |
 12 |
         13 |
              11 |
                    12 |
                           1 |
                                    2
             12 |
         13 |
                    13 |
                           1 |
```

```
(13 rows)
```

Examples for queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

```
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
      2, 3
    );
seq | node | edge | cost | agg_cost
       2 | -1 | 0 | 0
5 | 4 | 1 | 1
6 | 8 | 1 | 2
  2 |
                    1 |
  3 |
             10 |
                    1 |
      10 |
  4 |
        9 |
                    1 |
  5 1
              9 |
      11 |
                              3
            11 |
                    1 |
  6 |
  7 | 13 | 14 |
                    1 |
(7 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
     );
seq | node | edge | cost | agg_cost
  _____
 1 | 13 | -1 | 0 | 0
(1 \text{ row})
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3
     );
seq | from_v | node | edge | cost | agg_cost
  1 | 2 | 2 | -1 | 0 |
         2 |
               5 |
                            1 |
                     4 |
  2 |
                                       1
                     8 |
         2 |
               6 |
  3 |
                            1 |
         2 | 10 | 10 | 1 |
  4 |
  5 |
         2 |
                9 |
                      9 |
                            1 |
         2 | 11 | 11 |
  6 |
                            1 |
         2 | 13 | 14 | 1 |
  7 |
  8 |
        13 | 13 | -1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3, equicost:=true
     );
seq | from_v | node | edge | cost | agg_cost
  1 | 2 | 2 | -1 | 0 |
2 | 2 | 5 | 4 | 1 |
3 | 2 | 6 | 8 | 1 |
                6 |
          2 |
               10 | 10 |
  4 |
                             1 |
                10 ,
9 | 5 .
11 |
                             1 |
  5 |
          2 |
          2 |
               11 |
                             1 |
  6 |
         13 | 13 | -1 | 0 |
  7 |
```

```
(7 rows)
```

Examples for queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

```
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost FROM edge_table',
       2, 3, false
     );
seq | node | edge | cost | agg_cost
       2 | -1 | 0 |
1 | 1 | 1 |
5 | 4 | 1 |
                                  1
   2 |
        5 |
                       1 |
                                  1
   3 |
        6 |
               8 |
                       1 |
  4 |
        8 |
                7 |
                       1 |
  5 |
  6 | 10 | 10 |
                       1 |
  7 |
        3 |
                5 I
                       1 |
        7 |
  8 |
               6 |
                       1 |
        9 |
                9 |
  9 |
                       1 |
 10 | 11 | 12 |
                       1 |
 11 | 13 | 14 |
                       1 |
(11 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
       13, 3, false
     );
seq | node | edge | cost | agg_cost
  1 | 13 | -1 | 0 | 0
2 | 10 | 14 | 1 | 1
3 | 5 | 10 | 1 | 2
4 | 11 | 12 | 1 | 2
                       1 |
        2 |
6 |
  5 |
                4 |
              8 |
                       1 |
  6 |
  7 |
        8 |
                7 |
                       1 |
  8 | 12 | 13 |
                       1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost FROM edge_table',
       array[2,13], 3, false
     );
 seq | from_v | node | edge | cost | agg_cost

    1 |
    2 |
    2 |
    -1 |
    0 |
    0

    2 |
    2 |
    1 |
    1 |
    1 |
    1

    3 |
    2 |
    5 |
    4 |
    1 |
    1 |

                                           1
  3 |
           2 | 5 | 4 | 1 |
                                1 |
  4 |
           2 | 6 | 8 |
                  8 |
           2 |
                         7 |
                                1 |
   5 |
                                1 |
           2 | 10 | 10 |
   6 |
                  3 |
  7 |
            2 |
                          5 |
                                 1 |
                 7 |
                         6 |
           2 |
   8 |
                                 1 |
                 9 |
                         9 |
           2 |
   9 |
                                 1 |
                 11 |
                        12 |
                                            3
  10 |
           2 |
                                 1 |
  11 |
           2 |
                                1 |
                 13 |
                        14 |
         13 | 13 | -1 |
 12 |
                                0 |
```

```
13 |
                                          2
 14 |
          13 |
                 5 |
                        10 |
                                1 |
                                          2
 15 I
          13 |
                 11 |
                        12 |
                                1 |
                 2 |
                                          3
 16 |
          13 |
                        4 |
                                1 |
 17 |
                 6 |
                        8 |
          13 |
                                1 |
                        7 |
 18 I
          13 |
                 8 |
                                1 |
 19 |
          13 |
                 12 |
                        13 |
                                1 |
(19 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
       array[2,13], 3, false, equicost:=true
seq | from_v | node | edge | cost | agg_cost
           2 |
               2 |
                        -1 |
                               0 |
           2 |
                  1 | 1 |
                               1 |
                                          1
                  5 |
           2 |
                        4 |
                               1 |
                                         1
  3 |
  4 |
           2 |
                  6 |
                        8 |
                               1 |
  5 I
           2 |
                 8 |
                         7 |
                                1 |
  6 |
           2 |
                  3 |
                         5 I
                                1 |
           2 |
                  7 |
                        6 |
                                1 |
                 9 |
  8 |
           2 |
                        9 |
                                1 |
                               0 |
  9 |
          13 |
                 13 |
                        -1 |
                 10 |
                        14 |
  10 |
          13 |
                                1 |
                                          1
 11 |
          13 |
                 11 |
                        12 |
                                1 |
 12 |
          13 |
                 12 |
                                1 |
                        13 |
(12 rows)
```

See Also

- pgr_alphaShape Alpha shape computation
- pgr_pointsAsPolygon Polygon around set of points
- Sample Data network.

Indices and tables

- genindex
- · search

pgr_KSP

Name

pgr_KSP — Returns the "K" shortest paths.

Fig. 5.9: Boost Graph Inside

⁴³ http://www.boost.org/libs/graph

Availability: 2.0.0

• Signature change 2.1.0

Synopsis

The K shortest path routing algorithm based on Yen's algorithm. "K" is the number of shortest paths desired.

Signature Summary

```
pgr_KSP(edges_sql, start_vid, end_vid, K);
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_ksp(edges_sql, start_vid, end_vid, K);

RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Complete Signature

```
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)

RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Description
edges_sql	TEXT	SQL query as described above.
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
k	INTEGE	RThe desiered number of paths.
directed	BOOLEA	N(optional). When false the graph is considered as Undirected. Default is true which
		considers the graph as Directed.
heap_path	is boolea	N(optional). When true returns all the paths stored in the process heap. Default is
		false which only returns k paths.

Roughly, if the shortest path has N edges, the heap will contain about than N $\,\,\star\,\,$ k paths for small value of k and k $\,>\,$ 1.

Description of the return values

Returns set of (seq, path_seq, path_id, node, edge, cost, agg_cost)

Col-	Туре	Description
umn		
seq	INTEGE	Sequential value starting from 1.
path_seq	INTEGE	Relative position in the path of node and edge. Has value 1 for the beginning of a path.
path_id	BIGINT	Path identifier. The ordering of the paths For two paths i, j if $i < j$ then $agg_cost(i) <=$
		agg_cost(j).
node	BIGINT	Identifier of the node in the path.
edge	BIGINT	Identifier of the edge used to go from node to the next node in the path sequence1
		for the last node of the route.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Warning: During the transition to 3.0, because pgr_ksp version 2.0 doesn't have defined a directed flag nor a heap_path flag, when pgr_ksp is used with only one flag version 2.0 signature will be used.

Additional Examples

Examples to handle the one flag to choose signatures

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2,
    directed:=true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
  1 | 1 | 2 | 4 | 1 | 0
         1 |
1 |
                   2 | 5 | 8 | 1 | 3 | 6 | 9 | 1 |
  2 |
                                               1
  3 |
         1, |
                        9 |
 1 | 1 | 5 | 1 | 6 | 2 | 7 | 2 | 8 | 2 |
  4 |
                   4 |
                              15 |
                                     1 |
                              -1 |
                   5 | 12 |
                                    0 |
                   1 | 2 |
2 | 5 |
                                    1 |
                              4 |
                              8 |
                                    1 |
                   3 |
                        6 |
                              11 |
                                    1 |
         2 |
  9 |
                   4 | 11 |
                                    1 |
                              13 I
 10 | 2 |
                  5 | 12 |
                              -1 |
                                    0 |
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
         1 | 2 | 4 | 1 | 0
  2 |
          1 |
                   2 | 5 | 8 | 1 |
                                               1
  3 |
          1 |
                   3 | 6 |
                               9 | 1 |
                   4 |
                         9 |
                              15 |
  4 |
         1 |
                                     1 |
  5 |
         1 |
                              -1 |
                                    0 |
                   5 | 12 |
                   1 | 2 .
                         2 |
  6 |
          2 |
                               4 |
                                     1 |
                               8 |
          2 |
  7 |
                                     1 |
                                               1
  8 |
          2 |
                   3 |
                         6 |
                              11 |
                                     1 |
                        11 |
  9 |
          2 |
                   4 |
                              13 |
                                     1 |
                                               3
         2 |
 10 |
                   5 | 12 |
                              -1 |
                                    0 |
                                              4
```

```
(10 rows)
```

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

```
SELECT * FROM pgr_KSP(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  );
 seq | path_id | path_seq | node | edge | cost | agg_cost
                       1 | 2 | 4 |
2 | 5 | 8 |
3 | 6 | 9 |
           1 |
          1 |
   2 |
                                     9 |
           1 |
                       3 |
                                            1 |
   3 |
                              9 |
           1 |
                        4 |
                                    15 |
                                             1 |
   4 |
                                           0 |
           1 |
                       5 | 12 |
                                     -1 |
  5 |
                              2 |
                                     4 |
           2 |
                       1 |
                                             1 |
  6 |
           2 |
                                     8 |
  7 |
                       2 | 5 |
                                             1 |
                                                        1
           2 |
  8 |
                       3 | 6 | 11 |
                                            1 |
 9 | 10 |
           2 |
                       4 | 11 | 13 |
                                            1 |
           2 |
                       5 | 12 | -1 | 0 |
(10 rows)
SELECT * FROM pgr_KSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, heap_paths:=true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    1 |
    2 |
    4 |
    1 |

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |

    3 |
    1 |
    3 |
    6 |
    9 |
    1 |

    4 |
    1 |
    4 |
    9 |
    15 |
    1 |

           1 |
1 |
1 |
                                     8 | 1 | 9 | 1 |
                                                         1
  4 |
                       5 | 12 |
                                            0 |
                                     -1 |
                       1 | 2 | 2 | 5 |
                                            1 |
                                     4 |
                                                        0
                                     8 |
                                            1 |
                                                         1
                                            1 |
                       3 |
                              6 |
                                     11 |
                       4 | 11 |
                                     13 |
                                             1 |
 10 |
                       5 | 12 |
                                     -1 |
                                             0 |
                                                        4
                       1 | 2 | 4 |
2 | 5 | 10 |
 11 |
                                             1 |
                                                        0
           3 |
 12 |
                                             1 |
                                                        1
           3 |
                       3 | 10 | 12 |
                                             1 |
 13 |
 14 |
                                             1 |
           3 |
                       4 | 11 | 13 |
 15 |
           3 |
                       5 | 12 |
                                     -1 |
                                             0 |
(15 rows)
SELECT * FROM pgr_KSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, true, true
  );
 seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    4 |
    1 |

    1 |
    2 |
    5 |
    8 |
    1 |

   2 |
                        3 |
                                     9 |
                              6 |
   3 |
            1 |
                                              1 |
            1 |
                              9 |
                                            1 |
                        4 |
                                    15 |
   4 |
                                     -1 |
                                            0 |
            1 |
                       5 |
                             12 |
   5 |
                       1 |
                              2 | 4 | 1 |
             2 |
   6 1
```

```
5 I
           2 |
  8 |
                     3 |
                           6 |
                                 11 |
                                        1 |
           2 |
  9 |
                     4 |
                          11 |
                                 13 |
                                        1 |
          2 |
                          12 |
                                 -1 |
 10 |
                    5 |
                                        0 |
 11 |
          3 |
                    1 |
                          2 |
                                 4 |
                                        1 |
                                                 0
                          5 |
          3 |
 12 |
                    2 |
                                 10 |
                                       1 |
                                                 1
          3 |
                    3 |
 13 |
                         10 |
                                 12 |
                                       1 |
          3 |
 14 I
                    4 | 11 |
                                 13 I
                                       1 |
 15 I
           3 |
                    5 | 12 |
                                 -1 I
                                        0 |
(15 rows)
```

Examples for queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost columns are used

```
SELECT * FROM pgr_KSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2, directed:=false
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
        1 | 1 | 2 | 2 | 1 |
1 | 2 | 3 | 3 | 1 |
  1 |
         1 |
  2 |
  3 |
         1 |
                  3 | 4 | 16 | 1 |
  4 |
         1 |
                  4 | 9 | 15 | 1 |
                  5 | 12 | -1 | 0 |
  5 |
         1 |
        2 |
                  1 | 2 | 4 |
  6 |
                                  1 |
         2 |
                  2 | 5 |
                             8 |
  7 |
                                  1 |
                                            1
         2 |
                       6 |
                                  1 |
  8 |
                  3 |
                             11 |
  9 |
         2 |
                  4 | 11 |
                             13 |
                                   1 |
         2 |
 10 |
                  5 | 12 |
                             -1 |
                                  0 |
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2, false, true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
  1 |
         1 | 2 | 2 | 1 | 0
  2 |
         1 |
                  2 |
                       3 |
                             3 |
                                  1 |
                                           1
                  3 |
                       4 | 16 |
  3 |
         1 |
                                  1 |
         1 |
                  4 |
                       9 | 15 |
                                  1 |
  4 |
         1 |
  5 |
                  5 | 12 |
                             -1 |
                                  0 |
  6 |
         2 |
                  1 | 2 |
                             4 |
                                  1 |
                  2 | 5 |
                             8 |
          2 |
  7 |
                                  1 |
                                           1
          2 |
                  3 |
                                  1 |
  8 |
                       6 |
                             11 |
          2 |
                  4 | 11 |
                             13 |
  9 |
                                  1 |
 10 |
          2 |
                  5 | 12 |
                             -1 |
                                   0 |
                                            4
 11 |
          3 |
                             4 |
                  1 | 2 |
                                   1 |
                                            0
 12 |
                  2 |
                       5 |
          3 |
                             10 |
                                   1 |
                                            1
 13 |
          3 |
                  3 | 10 |
                             12 I
                                   1 |
 14 |
          3 |
                  4 |
                       11 |
                             13 |
                                   1 |
 15 |
          3 |
                  5 |
                       12 |
                             -1 |
                                   0 |
 16 |
         4 |
                  1 |
                       2 |
                             4 |
                                   1 |
                                            0
                      5 |
         4 |
 17 |
                  2 |
                             10 |
                                   1 |
                                            1
 18 |
          4 |
                  3 |
                       10 |
                             12 |
                                   1 |
                                            2
                  4 |
 19 I
          4 |
                       11 |
                             11 |
                                            3
                                   1 |
          4 |
                  5 I
                             9 |
                                           4
 20 |
                       6 I
                                   1 |
```

```
21 | 4 | 6 | 9 | 15 | 1 | 5
22 | 4 | 7 | 12 | -1 | 0 | 6
(22 rows)
```

Examples for queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

```
SELECT * FROM pgr_KSP(
      'SELECT id, source, target, cost FROM edge_table',
   );
seq | path_id | path_seq | node | edge | cost | agg_cost
(0 rows)
SELECT * FROM pgr_KSP(
      'SELECT id, source, target, cost FROM edge_table',
       2, 12, 2
   );
 seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    4 |
    1 |
    0

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |
    1

   3 |
               1 |
                              3 | 6 |
                                                9 | 1 |

      4 |
      1 |
      4 |
      9 |
      15 |
      1 |

      5 |
      1 |
      5 |
      12 |
      -1 |
      0 |

      6 |
      2 |
      1 |
      2 |
      4 |
      1 |

      7 |
      2 |
      2 |
      5 |
      8 |
      1 |

      8 |
      2 |
      3 |
      6 |
      11 |
      1 |

      9 |
      2 |
      4 |
      11 |
      13 |
      1 |

      10 |
      2 |
      5 |
      12 |
      -1 |
      0 |

                              4 | 9 | 15 | 1 |
                              5 | 12 | -1 | 0 |
                              1 | 2 | 4 | 1 |
                                                          1 |
                                                          1 |
                                                           1 |
  10 |
(10 rows)
SELECT * FROM pgr_KSP(
      'SELECT id, source, target, cost FROM edge_table',
       2, 12, 2, heap_paths:=true
 seq | path_id | path_seq | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      4 |
      1 |
      0

      2 |
      1 |
      2 |
      5 |
      8 |
      1 |
      1

                              3 | 6 |
                                                9 | 1 |
   3 |
               1 |
               1 |
                              4 | 9 | 15 | 1 |
   4 |
                              5 | 12 | -1 | 0 |
   5 |
               1 |
                              1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
   6 |
              2 |
               2 |
                                                                        1
   7 |
   8 |
               2 |
                              3 | 6 |
                                                11 | 1 |
                              4 | 11 |
   9 |
               2 |
                                                13 | 1 |
              2 |
                                                         0 |
  10 |
                              5 | 12 |
                                                -1 |
                                                                         4
  11 |
                                                 4 |
                              1 | 2 |
                                                          1 |
               3 |
                                                                         0
                                       5 |
  12 |
                              2 | 5 | 3 | 10 |
                                                10 |
                                                          1 |
               3 |
                                                                          1
 13 | 14 | 15 |
              3 |
                                                12 | 1 |
                                       11 |
                3 |
                              4 | 11 |
5 | 12 |
                                                13 |
                                                           1 |
                                                         0 |
  15 I
                3 |
                                                -1 |
(15 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost FROM edge_table',
```

```
2, 12, 2, true, true
 );
seq | path_id | path_seq | node | edge | cost | agg_cost
       1 |
            1 | 2 | 4 | 1 | 0
        1 |
                2 | 5 |
                         8 |
                               1 |
 2 |
                                       1
                          9 |
                    6 |
 3 |
        1 |
                3 |
                               1 |
       1 |
                    9 | 15 |
 4 |
                4 |
                               1 |
                5 I 12 I
 5 I
       1 |
                          -1 |
                               0 |
                1 | 2 | 4 |
 6 |
       2 |
                               1 |
                2 | 5 |
                          8 |
 7 |
        2 |
                               1 |
                                       1
 8 |
       2 |
                3 | 6 | 11 |
                               1 |
 9 |
       2 |
                4 | 11 | 13 |
                               1 |
 10 |
       2 |
                5 | 12 | -1 |
                               0 |
                1 | 2 |
       3 |
                                       0
 11 |
                          4 |
                               1 |
        3 |
                     5 | 10 |
                2 |
                               1 |
                                       1
 12 |
13 |
       3 |
                               1 |
                3 | 10 |
                          12 |
14 |
15 |
        3 |
                4 | 11 |
                               1 |
                          13 |
        3 |
                5 | 12 |
                                0 |
                          -1 |
(15 rows)
```

Examples for queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

```
SELECT * FROM pgr_KSP(
  'SELECT id, source, target, cost FROM edge_table',
      2, 12, 2, directed:=false
   );
 seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    1 |
    2 |
    4 |
    1 |

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |

    3 |
    1 |
    3 |
    6 |
    9 |
    1 |

           1 |
1 |
                        3 |
                        3 .
4 | 9 .
5 | 12 |
            1 |
                                             1 |
   4 |
                                      15 I
  5 | 1 | 6 | 2 | 7 | 2 |
                                             0 |
                        5 |
                                      -1 |
                       1 |
                              2 | 5 |
                                             1 |
                                      4 |
                                                         0
                                      8 |
                                             1 |
                                                         1
                       2 |
  8 |
           2 |
                              6 |
                       3 |
                                      11 |
                                             1 |
            2 |
  9 |
                       4 | 11 |
                                      13 |
                                             1 |
 10 |
                      5 | 12 |
            2 |
                                      -1 |
                                             0 |
(10 rows)
SELECT * FROM pgr_KSP(
     'SELECT id, source, target, cost FROM edge_table',
      2, 12, 2, directed:=false, heap_paths:=true
 seq | path_id | path_seq | node | edge | cost | agg_cost
                       1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
  1 |
             1 |
   2 |
             1 |
                                                          1
   3 |
             1 |
                        3 | 6 |
                                      9 |
                                              1 |
             1 |
                        4 |
                                9 |
  4 |
                                      15 I
                                              1 |
             1 |
                        5 | 12 |
                                      -1 |
                                              0
   5 |
                        1 | \( \( \) \( \) | 5 |
            2 |
                                                         0
   6 |
                                      4 |
                                              1 |
            2 |
                                      8 |
   7 |
                                              1 |
                                                          1
            2 |
                               6 |
                                                         2
                                      11 |
   8 |
                        3 |
                                              1 |
             2 |
                        4 |
                              11 |
                                      13 |
                                              1 |
                                                          3
   9 |
  10 |
            2 |
                        5 | 12 |
                                      -1 |
                                             0 |
                                                         4
```

11	3	1 2	4	1	0
12	3	2 5	10	1	1
13	3	3 10	12	1	2
14	3	4 11	13	1	3
15	3	5 12	-1	0	4
(15 rows)					
(13 10WS)					

See Also

- http://en.wikipedia.org/wiki/K_shortest_path_routing
- Sample Data network.

Indices and tables

- genindex
- search

pgr_dijkstraVia - Proposed

Name

pgr_dijkstraVia — Using dijkstra algorithm, it finds the route that goes through a list of vertices.

Fig. 5.10: Boost Graph Inside

Availability: 2.2.0

Synopsis

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between $vertex_i$ and $vertex_{i+1}$ for all $i < size_of(vertex_via)$.

The paths represents the sections of the route.

Note: This is a proposed function

Signatrue Summary

```
pgr_dijkstraVia(edges_sql, via_vertices)
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)
```

⁴⁴ http://www.boost.org/libs/graph

```
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_dijkstraVia(edges_sql, via_vertices)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

Example Find the route that visits the vertices 1 3 9 in that order

```
SELECT * FROM pgr_dijkstraVia(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
  ARRAY[1, 3, 9]
) ;
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | ...
→route_agg_cost
----+------------
                        1 |
                                                      0 | _
 1 |
        1 |
                1 |
                               3 |
                                    1 | 1 |
                                              1 |
         0
                2 |
                        1 |
                                3 |
                                                      1 | _
 2 |
        1 |
                                    2 | 4 |
                                              1 |
         1
 3 |
        1 |
                3 |
                        1 |
                                3 |
                                    5 | 8 |
                                              1 |
                                                       2 | ...
        2
                        1 |
 4 |
        1 |
                4 |
                                3 |
                                    6 | 9 | 1 |
                                                      3 | __
         3
                5 |
                        1 |
                                    9 | 16 | 1 |
 5 |
        1 |
                                3 |
                                                       4 | _
         4
        1 |
 6 |
                6 |
                        1 |
                                3 |
                                    4 | 3 | 1 |
                                                       5 | _
         5
                                                      6 | _
  7 |
        1 |
                7 |
                        1 |
                                3 |
                                    3 | -1 | 0 |
                                                      0 | _
 8 |
         2 |
                1 |
                        3 |
                                9 |
                                    3 | 5 | 1 |
         6
        2 |
                        3 |
 9 |
                2 |
                                9 | 6 | 9 | 1 |
                                                       1 | __
                3 | 9 | 9 | -2 | 0 |
10 |
        2 |
                                                       2 | ___
         8
(10 rows)
```

Complete Signature

```
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

Example Find the route that visits the vertices 1 3 9 in that order on an undirected graph, avoiding U-turns when possible

```
SELECT * FROM pgr_dijkstraVia(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
    ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false
);
```

	path_id e_agg_cost	path_seq	start_vid		end_vid		node	e	dge		cost	agg_cost	L
+	+-		+	+-		+-		+		+-	+-		+
1	1	1	1		3		1		1		1	0	
	0 1	2	1		3		2		2		1	1	
→ 3	1 1	3	1		3		3		-1		0	2	
→ 4	2 2 1	1	3		9		3		5		1	0	"
→ 5	2 2	2	3		9		6		9		1	1	
↔ 6	3 2	3	3		9		9		-2		0	2	
(6 rows	4 s)												

Description of the Signature

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (tar-
			get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Default	Description
edges_sql	TEXT		SQL query as described above.
via_vertices	ARRAY[ANY-INTEGER]		Array of ordered vertices identifiers that are going to be visited.
directed	BOOLEAN	true	 When true Graph is considered <i>Directed</i> When false the graph is considered as Undirected.
strict	BOOLEAN	false	 When false ignores missing paths returning all paths found When true if a path is missing stops and returns <i>EMPTY SET</i>
U_turn_on_edge	BOOLEAN	true	 When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same id is allowed. When false when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same id is used when no other path is found.

Description of the parameters of the signatures

Param-	Туре	Description
eter		
edges_sql	TEXT	SQL query as described above.
via_vertic	e s rray [any-	TANTERY ERROLLERS
di-	BOOLEAN	(optional) Default is true (is directed). When set to false the graph is considered as
rected		Undirected
strict	BOOLEAN	(optional) ignores if a subsection of the route is missing and returns everything it
		found Default is true (is directed). When set to false the graph is considered as
		Undirected
U_turn_o	n <u>B</u> edgeEAN	(optional) Default is true (is directed). When set to false the graph is considered as
		Undirected

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description		
seq	BIGIN	TSequential value starting from 1.		
path_pid	BIGIN	Tidentifier of the path.		
path_seq	BIGIN	TSequential value starting from 1 for the path.		
start_vid	BIGIN	Identifier of the starting vertex of the path.		
end_vid	BIGIN	Tidentifier of the ending vertex of the path.		
node	BIGIN	Tidentifier of the node in the path from start_vid to end_vid.		
edge	BIGIN TIdentifier of the edge used to go from node to the next node in the path sequence1 for			
		the last node of the path2 for the last node of the route.		
cost	FLOAT	Cost to traverse from node using edge to the next node in the route sequence.		
agg_cost	FLOAT	Total cost from start_vid to end_vid of the path.		
route_agg_	cost oat	Total cost from start_vid of path_pid = 1 to end_vid of the current		
		path_pid.		

Examples

Example 1 Find the route that visits the vertices 1 5 3 9 4 in that order

```
SELECT * FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 5, 3, 9, 4]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost |_
→route_agg_cost
         1 |
                             1 |
                                       5 | 1 | 1 |
  1 |
                   1 |
                                                        1 |
                                                                   0 | _
           0
                                                                  1 | _
          1 |
                    2 |
                              1 |
                                       5 |
                                            2 | 4 |
  2 |
                                                        1 |
           1
                                                                   2 | __
  3 |
           1 |
                    3 |
                              1 |
                                       5 |
                                            5 | -1 |
                                                         0 |
           2
           2 |
                              5 |
                                                                   0 | _
  4 |
                    1 |
                                       3 |
                                            5 | 8 |
                                                        1 |
           2
  5 |
           2 |
                             5 |
                                            6 | 9 |
                                                        1 |
                    2 |
                                       3 |
                                                                   1 | __
           3
                                            9 | 16 |
  6 |
           2 |
                    3 |
                              5 |
                                       3 |
                                                        1 |
                                                                   2 | ___
```

```
5 |
                                      4 | 3 | 1 |
 7 |
         2 |
                 4 |
                                 3 |
         5
                        5 |
8 |
         2 |
                5 |
                                 3 |
                                      3 | -1 |
                                               0 |
                                                        4 | _
         6
 9 |
         3 |
                                      3 | 5 |
                1 |
                         3 |
                                 9 |
                                               1 |
                                                        0 |
         6
         3 |
                 2 |
                         3 |
                                 9 |
                                     6 | 9 |
                                               1 |
10 |
                                                        1 | __
         7
                                                        2 | _
11 |
         3 |
                3 |
                         3 |
                                 9 |
                                     9 | -1 |
                                               0 |
         8
                                                        0 | _
         4 |
                         9 |
12 |
                1 |
                                 4 |
                                     9 | 16 |
                                               1 |
         8
13 |
         4 |
                 2 |
                         9 |
                                 4 | 4 | -2 |
                                               0 |
                                                       1 | ...
         9
(13 rows)
```

Example 2 What's the aggregate cost of the third path?

```
SELECT agg_cost FROM pgr_dijkstraVia(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
    ARRAY[1, 5, 3, 9, 4]
)
WHERE path_id = 3 AND edge <0;
    agg_cost
------
2
(1 row)</pre>
```

Example 3 What's the route's aggregate cost of the route at the end of the third path?

Example 4 How are the nodes visited in the route?

```
SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 5, 3, 9, 4]
WHERE edge <> -1 ORDER BY seq;
node_seq | node
       1 |
            1
       2 |
              2
       3 |
              5
       4 |
              6
        5 |
              9
        6 |
              4
        7 |
              3
        8 |
              6
```

```
10 | 4
(10 rows)
```

Example 5 What are the aggregate costs of the route when the visited vertices are reached?

Example 6 show the route's seq and aggregate cost and a status of "passes in front" or "visits" node 9

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- Sample Data network.

Indices and tables

- genindex
- · search

The problem definition (Advanced documentation)

```
Given the following query:  pgr\_dijkstra(sql, start_{vid}, end_{vid}, directed)  where sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\}
```

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

Directed graph

The weighted directed graph, $G_d(V, E)$, is definied by:

- the set of vertices V
 - $V = source \cup target \cup start_{vid} \cup end_{vid}$
- the set of edges E

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} & \text{if } reverse_cost = \varnothing \\ \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0\} & \text{if } reverse_cost \neq \varnothing \end{cases}$$

Undirected graph

The weighted undirected graph, $G_u(V, E)$, is definied by:

- ullet the set of vertices V
 - $V = source \cup target \cup start_vvid \cup end_{vid}$
- the set of edges E

The problem

Given:

- $start_{vid} \in V$ a starting vertex
- $end_{vid} \in V$ an ending vertex

•
$$G(V, E) = \begin{cases} G_d(V, E) & \text{if 6 } directed = true \\ G_u(V, E) & \text{if 5 } directed = false \end{cases}$$

Then:

•
$$\pi = \{(path_seq_i, node_i, edge_i, cost_i, agg_cost_i)\}$$

where:

- $path_seq_i = i$
- $path_seq_{|\pi|} = |\pi|$

- $node_i \in V$
- $node_1 = start_{vid}$
- $node_{|\pi|} = end_{vid}$
- $\forall i \neq |\pi|, \quad (node_i, node_{i+1}, cost_i) \in E$

$$\bullet \ edge_i = \begin{cases} id_{(node_i, node_{i+1}, cost_i)} & \quad \text{when } i \neq |\pi| \\ -1 & \quad \text{when } i = |\pi| \end{cases}$$

• $cost_i = cost_{(node_i, node_{i+1})}$

•
$$agg_cost_i = \begin{cases} 0 & \text{when } i = 1\\ \sum_{k=1}^{i} cost_{(node_{k-1}, node_k)} & \text{when } i \neq 1 \end{cases}$$

In other words: The algorithm returns a the shortest path between $start_{vid}$ and end_{vid} , if it exists, in terms of a sequence of

- path_seq indicates the relative position in the path of the node or edge.
- cost is the cost of the edge to be used to go to the next node.
- agg_cost is the cost from the $start_{vid}$ up to the node.

If there is no path, the resulting set is empty.

See Also

Indices and tables

- genindex
- · search

5.1.5 pgr_trsp - Turn Restriction Shortest Path (TRSP)

Name

pgr_trsp — Returns the shortest path with support for turn restrictions.

Synopsis

The turn restricted shorthest path (TRSP) is a shortest path algorithm that can optionally take into account complicated turn restrictions like those found in real world navigable road networks. Performance wise it is nearly as fast as the A^* search but has many additional features like it works with edges rather than the nodes of the network. Returns a set of $pgr_costResult$ (seq, id1, id2, cost) rows, that make up a path.

Description

The Turn Restricted Shortest Path algorithm (TRSP) is similar to the shooting star in that you can specify turn restrictions.

The TRSP setup is mostly the same as *Dijkstra shortest path* with the addition of an optional turn restriction table. This provides an easy way of adding turn restrictions to a road network by placing them in a separate table.

sql a SQL query, which should return a set of rows with the following columns:

```
id int4 identifier of the edge
    source int4 identifier of the source vertex
    target int4 identifier of the target vertex
    cost float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

    reverse_cost (optional) the cost for the reverse traversal of the edge. This is only used when the directed and has_rcost parameters are true (see the above remark about negative costs).

source int4 NODE id of the start point
target int4 NODE id of the end point
directed true if the graph is directed
has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.
```

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions

to_cost float8 turn restriction cost
target_id int4 target id
via_path text comma separated list of edges in the reverse order of rule
```

Another variant of TRSP allows to specify **EDGE id** of source and target together with a fraction to interpolate the position:

```
source_edge int4 EDGE id of the start edge
source_pos float8 fraction of 1 defines the position on the start edge
target_edge int4 EDGE id of the end edge
target_pos float8 fraction of 1 defines the position on the end edge
Returns set of pgr_costResult[]:
seq row sequence
id1 node ID
id2 edge ID (-1 for the last row)
cost cost to traverse from id1 using id2
```

History

• New in version 2.0.0

Support for Vias

Warning: The Support for Vias functions are prototypes. Not all corner cases are being considered.

We also have support for vias where you can say generate a from A to B to C, etc. We support both methods above only you pass an array of vertices or and array of edges and percentage position along the edge in two arrays.

sql a SQL query, which should return a set of rows with the following columns:

```
id int4 identifier of the edge
source int4 identifier of the source vertex
target int4 identifier of the target vertex
cost float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only used when the directed and has_rcost parameters are true (see the above remark about negative costs).
```

vids int4[] An ordered array of NODE id the path will go through from start to end.

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions

to_cost float8 turn restriction cost
target_id int4 target id

via path text commar separated list of edges in the reverse order of rule
```

Another variant of TRSP allows to specify **EDGE id** together with a fraction to interpolate the position:

eids int 4 An ordered array of EDGE id that the path has to traverse

pcts float8 An array of fractional positions along the respective edges in eids, where 0.0 is the start of the edge and 1.0 is the end of the eadge.

Returns set of pgr_costResult[]:

```
seq row sequence
id1 route ID
id2 node ID
id3 edge ID (-1 for the last row)
cost cost to traverse from id2 using id3
```

History

• Via Support prototypes new in version 2.1.0

Examples

Without turn restrictions

With turn restrictions

Then a query with turn restrictions is created as:

```
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table
       2, 7, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
  );
seq | id1 | id2 | cost
  0 | 2 | 4 | 1
  1 | 5 | 10 | 1
  2 | 10 | 12 | 1
  3 | 11 | 11 | 1
  4 | 6 | 8 | 1
  5 | 5 | 7 |
                  1
  6 | 8 | 6 | 1
  7 |
       7 | -1 |
(8 rows)
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table
       7, 11, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
   );
seq | id1 | id2 | cost
  0 |
      7 | 6 |
  1 | 8 | 7 |
                  1
  2 | 5 | 8 |
                  1
  3 | 6 | 9 | 1
```

```
4 | 9 | 15 | 1
5 | 12 | 13 | 1
6 | 11 | -1 | 0
(7 rows)
```

An example query using vertex ids and via points:

```
SELECT * FROM pgr_trspViaVertices(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table
       ARRAY[2,7,11]::INTEGER[],
       false, false,
       'SELECT to_cost, target_id::int4, from_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
       1 | 2 | 4 | 1
  1 1
        1 | 5 | 10 |
  2 |
                           1
        1 | 10 | 12 |
  3 |
                           1
  4 |
        1 | 11 | 11 |
        1 |
             6 |
  6 |
        1 |
              5 I
  7 |
        1 |
              8 |
                    6 |
  8 |
        2 |
              7 |
                    6 |
                           1
                    7 |
        2 |
  9 |
              8 |
                           1
        2 |
             5 |
                  8 |
 10 |
                           1
                   9 |
 11 |
        2 |
             6 |
        2 |
 12 |
             9 | 15 |
                           1
       2 | 12 | 13 |
 13 I
 14 | 2 | 11 | -1 |
(14 rows)
```

An example query using edge ids and vias:

```
SELECT * FROM pgr_trspViaEdges(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
       reverse_cost FROM edge_table',
       ARRAY[2,7,11]::INTEGER[],
       ARRAY[0.5, 0.5, 0.5]::FLOAT[],
       true.
       true,
       'SELECT to_cost, target_id::int4, FROM_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
  1 |
       1 | -1 |
                 2 | 0.5
             2 |
  2. |
        1 |
                  4 |
                        1
             5 |
                  8 |
        1 |
  3 1
                          1
        1 |
             6 I
                  9 1
  4 1
                          1
            9 | 16 |
  5 I
        1 |
                          1
  6 |
        1 |
             4 |
                  3 |
                          1
  7 |
                 5 |
        1 |
             3 |
  8 |
        1 |
             6 |
                  8 |
  9 |
        1 |
             5 |
                  7 |
 10 |
        2 |
             5 | 8 |
 11 |
       2 |
            6 | 9 |
                         1
 12 |
        2 |
                         1
             9 | 16 |
 13 | 2 | 4 | 3 |
                        1
 14 | 2 | 3 | 5 |
        2 |
 15 |
             6 | 11 | 0.5
(15 rows)
```

The queries use the Sample Data network.

See Also

• pgr_costResult[]

Indices and tables

- genindex
- · search

5.1.6 Traveling Sales Person - Family of functions

- *pgr_TSP* When input is given as matrix cell information.
- *pgr_eucledianTSP* When input are coordinates.

pgr_TSP

Name

• pgr_TSP - Returns a route that visits all the nodes exactly once.

Availability: 2.0.0

• Signature changed 2.3.0

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of matrix cell contents. The matrix information must be symmetrical.

Signature Summary

```
pgr_TSP(matrix_cell_sql)
pgr_TSP(matrix_cell_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_
    changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Signatures

Basic Use

```
pgr_TSP(matrix_cell_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

Complete Signature

Example:

2	1	8	1	
3	1	5	1	
4		2	1	
5	1	1	2	
6	1	3	1	
7	1	4	1	
8	1	9	1	
9	1	12	1	
10	1	11	1	1
11	1	10	1	1
12	ı	13	3	1
13	1	6	3	1
14	1	7	0	1
(14 1		s)		

Description of the Signatures

Description of the Matrix Cell SQL query

Column Type		Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg_cost	FLOAT	Cost for going from start_vid to end_vid

Can be Used with:

- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed
- pgr_floydWarshall
- pgr_johnson

To generate a symmetric matrix

• directed := false.

If using directed := true, the resulting non symmetric matrix must be converted to symmetric by fixing the non symmetric values according to your application needs.

```
Description Of the Control parameters
The control parameters are optional, and have a default value.
------ -----
Type Default
                                  Description
``BIGINT``
                           , 0,
                                  The greedy part of the
**start_vid**
→implementation will use this identifier.
                          , 0,
                   ``BIGINT``
                                  Last visiting vertex_
**end_vid**
\hookrightarrowbefore returning to start_vid.
                   ``FLOAT`` '+infinity` Stop the annealing_
**max_processing_time**
→processing when the value is reached.
Maximum number of times_
\rightarrowa neighbor(s) is searched in each temperature.
```

```
**max_changes_per_temperature** ``INTEGER`` `60`
                                                    Maximum number of times.
→the solution is changed in each temperature.
**max_consecutive_non_changes** ``INTEGER`` `100` Maximum number of,
→consecutive times the solution is not changed in each temperature.
                            ``FLOAT`` `100`
**initial_temperature**
                                                    Starting temperature.
                            ``FLOAT``
                                        `0.1`
**final_temperature**
**cooling_factor**
                                                    Ending temperature.
                           ``FLOAT`` `0.9` Value between between 0
\rightarrowand 1 (not including) used to calculate the next temperature.
                             ``BOOLEAN`` `true`
**randomize**
                                                     Choose the random seed
                                                     - true: Use current...
→time as seed
                                                      - false: Use `1` as...
→seed. Using this value will get the same results with the same data in each,
______ ______
```

```
Description of the return columns
Returns set of ``(seq, node, cost, agg_cost)``
_______
      Type
                       Description
________
         ``INTEGER`` Row sequence.
**seq**
         ``BIGINT`` Identifier of the node/coordinate/point.
        ``FLOAT`` Cost to traverse from the current ``node`` ito the next_
\rightarrow `node`` in the path sequence.
                  - ``O`` for the last row in the path sequence.
**agg_cost** ``FLOAT`` Aggregate cost from the ``node`` at ``seq = 1`` to the_
⇔current node.
                   - ``0`` for the first row in the path sequence.
```

Examples

Example Using with points of interest.

To generate a symmetric matrix:

- the **side** information of pointsOfInterset is ignored by not including it in the query
- and directed := false

```
start_id := 5,
   randomize := false
);
seq | node | cost | agg_cost
      5 | 1 |
6 | 1 |
  1 |
                        1
  2 |
  3 |
       3 | 1.6 |
                       2
  4 | -1 | 1.3 |
                      3.6
  5 | -6 | 0.3 |
                      4.9
  6 | 5 | 0 |
                       5.2
(6 rows)
```

The queries use the Sample Data network.

See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- · genindex
- · search

pgr eucledianTSP

Name

pgr_eucledianTSP - Returns a route that visits all the coordinates pairs exactly once.

Availability: 2.3.0

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of coordinates.

Signature Summary

```
initial_temperature, final_temperature, cooling_factor,
  randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Signatures

Minimal Signature

```
pgr_eucledianTSP(coordinates_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

Complete Signature

```
pgr_eucledianTSP(coordinates_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_
    ⇔changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,

RETURNS SETOF (seq, node, cost, agg_cost)
```

Example:

```
SELECT* from pgr_eucledianTSP(
    $$
    SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_
    pgr
    $$,
    tries_per_temperature := 3,
    cooling_factor := 0.5,
    randomize := false
);
    seq | node | cost | agg_cost
----+-----+
```

```
1 | 1.4142135623731 |
        3 |
                         1 | 1.4142135623731
  2 |
                          1 | 2.41421356237309
  3 1
        4 |
        9 | 0.58309518948453 | 3.41421356237309
       16 | 0.58309518948453 | 3.99730875185762
  5 |
                         1 | 4.58040394134215
  6 1
       6 |
  7 |
       5 I
                         1 | 5.58040394134215
  8 |
       8 |
                         1 | 6.58040394134215
       7 | 1.58113883008419 | 7.58040394134215
  9 1
 10 | 14 | 1.49999999999 | 9.16154277142634
 11 | 15 |
                       0.5 | 10.6615427714253
 12 | 13 |
                       1.5 | 11.1615427714253
 13 | 17 | 1.11803398874989 | 12.6615427714253
 14 | 12 |
                         1 | 13.7795767601752
 15 | 11 |
                         1 | 14.7795767601752
 16 | 10 |
                        2 | 15.7795767601752
                         1 | 17.7795767601752
 17 | 2 |
       1 |
 18 |
                        0 | 18.7795767601752
(18 rows)
```

Description of the Signatures

Description of the coordinates SQL query

Column	Туре	Description	
id	BIGINT	Identifier of the coordinate. (optional)	
X	FLOAT	X value of the coordinate.	
y	FLOAT	Y value of the coordinate.	

When the value of id is not given then the coordinates will receive an id starting from 1, in the order given.

```
Description Of the Control parameters
The control parameters are optional, and have a default value.
__________
_____
                           Default
                                         Description
------
_____
                       ``BIGINT`` `O`
**start_vid**
                                          The greedy part of the...
→implementation will use this identifier.
**end_vid** ``BIGINT``
                                , 0,
                                         Last visiting vertex.
**end_vid**
→before returning to start_vid.
→processing when the value is reached.
**tries_per_temperature** ``INTEGER`` `500`
                                         Maximum number of times
→a neighbor(s) is searched in each temperature.
**max_changes_per_temperature** ``INTEGER`` `60`
                                         Maximum number of times,
→the solution is changed in each temperature.
**max_consecutive_non_changes** ``INTEGER`` `100`
                                         Maximum number of_
→consecutive times the solution is not changed in each temperature.
                      ``FLOAT`` `100` Starting temperature.
**initial_temperature**
                      ``FLOAT``
                                `0.1`
**final_temperature**
                                          Ending temperature.
                      ``FLOAT`` `0.9`
                                          Value between between 0_
**cooling_factor**
\rightarrowand 1 (not including) used to calculate the next temperature.
```

```
**randomize**

'BOOLEAN'' 'true' Choose the random seed

- true: Use current

- talse: Use '1' as

- seed. Using this value will get the same results with the same data in each

- execution.
```

```
Description of the return columns
Returns set of ``(seq, node, cost, agg_cost)``
______
          Type
                      Description
______
       ``INTEGER`` Row sequence.
``BIGINT`` Identifier of the node/coordinate/point.
**node**
      ``FLOAT`` Cost to traverse from the current ``node`` ito the next_
**cost**
\hookrightarrow ``node`` in the path sequence.
                  - ``0`` for the last row in the path sequence.
**agg_cost** ``FLOAT`` Aggregate cost from the ``node`` at ``seq = 1`` to the_
⇔current node.
                  - ``O`` for the first row in the path sequence.
______
```

Examples

Example Skipping the Simulated Annealing & showing some process information

```
SET client_min_messages TO DEBUG1;
SET
SELECT* from pgr_eucledianTSP(
   SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_
-pgr
   tries_per_temperature := 0,
   randomize := false
);
DEBUG: pgr_eucledianTSP Processing Information
Initializing tsp class ---> tsp.greedyInitial ---> tsp.annealing ---> OK
Cycle(100)
               total changes =0 0 were because delta energy < 0
Total swaps: 3
Total slides: 0
Total reverses: 0
Times best tour changed: 4
Best cost reached = 18.7796
seq | node | cost | agg_cost
```

```
1.4142135623731
  2 |
         3 |
                            1 | 1.4142135623731
  3 |
         4 |
                            1 | 2.41421356237309
         9 | 0.58309518948453 | 3.41421356237309
  4 |
  5 |
        16 | 0.58309518948453 | 3.99730875185762
                           1 | 4.58040394134215
  6 |
         6 |
  7 |
                            1 | 5.58040394134215
  8 1
         8 I
                           1 | 6.58040394134215
  9 I
        7 | 1.58113883008419 | 7.58040394134215
 10 I
        14 | 1.499999999999 | 9.16154277142634
 11 |
        15 I
                         0.5 | 10.6615427714253
        13 |
                         1.5 | 11.1615427714253
 12 |
 13 I
        17 | 1.11803398874989 | 12.6615427714253
 14 |
        12 |
                           1 | 13.7795767601752
 15 I
        11 |
                           1 | 14.7795767601752
        10 |
                           2 | 15.7795767601752
 16 I
 17 I
      2 |
                           1 | 17.7795767601752
                            0 | 18.7795767601752
 18 |
         1 |
(18 rows)
```

The queries use the Sample Data network.

History

• New in version 2.3.0

See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- genindex
- · search

General Information

Origin

The traveling sales person problem was studied in the 18th century by mathematicians Sir Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

- ISBN-13: 978-0198539162
- ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960)⁴⁵

⁴⁵ http://www.cwi.nl/~lex/files/histco.ps

Problem Definition

Given a collection of cities and travel cost between each pair, find the cheapest way for visiting all of the cities and returning to the starting point.

Characteristics

- The travel costs are symmetric:
 - traveling costs from city A to city B are just as much as traveling from B to A.
- This problem is an NP-hard optimization problem.
- To calculate the number of different tours through n cities:
 - Given a starting city,
 - There are n-1 choices for the second city,
 - And n-2 choices for the third city, etc.
 - Multiplying these together we get (n-1)! = (n-1)(n-2)..1.
 - Now since our travel costs do not depend on the direction we take around the tour:
 - * this number by 2
 - * (n-1)!/2.

TSP & Simulated Annealing

The simulated annealing algorithm was originally inspired from the process of annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties due to the changes in its internal structure. As the metal cools its new structure becomes fixed, consequently causing the metal to retain its newly obtained properties. [C001]

Pseudocode

Given an initial solution, the simulated annealing process, will start with a high temperature and gradually cool down until the desired temperature is reached.

For each temperature, a neighbouring new solution **snew** is calculated. The higher the temperature the higher the probability of accepting the new solution as a possible bester solution.

Once the desired temperature is reached, the best solution found is returned

pgRouting Implementation

pgRouting's implementation adds some extra parameters to allow some exit controls within the simulated annealing process.

To cool down faster to the next temperature:

- max_changes_per_temperature: limits the number of changes in the solution per temperature
- max consecutive non changes: limits the number of consecutive non changes per temperature

This is done by doing some book keeping on the times **solution = snew**; is executed.

- max_changes_per_temperature: Increases by one when solution changes
- max_consecutive_non_changes: Reset to 0 when solution changes, and increased each try

Additionally to stop the algorithm at a higher temperature than the desired one:

- max_processing_time: limits the time the simulated annealing is performed.
- book keeping is done to see if there was a change in **solution** on the last temperature

Note that, if no change was found in the first **max_consecutive_non_changes** tries, then the simulated annealing will stop.

```
Solution = initial_solution;
temperature = initial_temperature;
while (temperature > final_temperature) {
    do tries_per_temperature times {
       snew = neighbour(solution);
       If P(E(solution), E(snew), T) >= random(0, 1)
            solution = snew;
        when max_changes_per_temperature is reached
           or max_consecutive_non_changes is reached
            BREAK:
    }
   temperature = temperature * cooling factor;
   when no changes were done in the current temperature
       or max_processing_time has being reached
       BREAK;
Output: the best solution
```

Choosing parameters

There is no exact rule on how the parameters have to be chose, it will depend on the special characteristics of the problem.

- Your computational time is crucial, then put your time limit to **max_processing_time**.
- Make the **tries_per_temperture** depending on the number of cities, for example:
 - Useful to estimate the time it takes to do one cycle: use 1
 - * this will help to set a reasonable max_processing_time
 - -n*(n-1)
 - 500 * n

- For a faster decreasing the temperature set **cooling_factor** to a smaller number, and set to a higher number for a slower decrease.
- When for the same given data the same results are needed, set **randomize** to *false*.
 - When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular data.

Description Of the Control parameters

The control parameters are optional, and have a default value.

Parameter	Type	Default	Description
start_vid	BIGINT	0	The greedy part of the implementation will use this identifier.
end_vid	BIGINT	0	Last visiting vertex before returning to start_vid.
max_processing_time	FLOAT	+infinity	Stop the annealing processing when the value is reached.
tries_per_temperature	INTEGER	500	Maximum number of times a neighbor(s) is searched in each temperature.
max_changes_per_temp		60	Maximum number of times the solution is changed in each temperature.
max_consecutive_non_c	hañges EGER	100	Maximum number of consecutive times the solution is not changed in each temperature.
initial_temperature	FLOAT	100	Starting temperature.
final_temperature	FLOAT	0.1	Ending temperature.
cooling_factor	FLOAT	0.9	Value between between 0 and 1 (not including) used to calculate the next temperature.
randomize	BOOLEAN	true	Choose the random seed

Description of the return columns

Returns set of (seq, node, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Row sequence.
node	BIGINT	Identifier of the node/coordinate/point.
cost	FLOAT	Cost to traverse from the current node ito the next
		• 0 for the last row in the path sequence.
agg_cost	FLOAT	Aggregate cost from the node at seq = 1 to the c
		• 0 for the first row in the path sequence.

See Also

References

- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- genindex
- search

5.1.7 Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- · Post pocessing
 - pgr_alphaShape Alpha shape computation
 - pgr_pointsAsPolygon Polygon around a set of points

pgr_alphaShape

Name

 $\verb"pgr_alphaShape" -- Core function for alpha shape computation.$

Synopsis

Returns a table with (x, y) rows that describe the vertices of an alpha shape.

```
table() pgr_alphaShape(text sql [, float8 alpha]);
```

Description

sql text a SQL query, which should return a set of rows with the following columns:

```
id int4 identifier of the vertex
    x float8 x-coordinate
    y float8 y-coordinate
```

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes⁴⁷.

Returns a vertex record for each row:

- x x-coordinate
- y y-coordinate

If a result includes multiple outer/inner rings, return those with separator row (x=NULL and y=NULL).

History

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return multiple outer/inner ring coordinates with separator row (x=NULL and y=NULL) in version 2.1.0

Examples

PgRouting's alpha shape implementation has no way to control the order of the output points, so the actual output might different for the same input data. The first query, has the output ordered, he second query shows an example usage:

Example: the (ordered) results

```
SELECT * FROM pgr_alphaShape(
    'SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
   FROM edge_table_vertices_pgr') ORDER BY x, y;
 x | y
  0 |
        2
0.5 | 3.5
  2 | 0
  2 |
        4
3.5 |
        4
  4 | 1
  4 |
        2
  4 |
(8 rows)
```

 $^{^{47}\} http://doc.cgal.org/latest/Alpha_shapes_2/group_PkgAlphaShape2.html$

Example: calculating the area

Steps:

- · Calculates the alpha shape
 - the ORDER BY clause is not used.
- · constructs a polygon
- and computes the area

The queries use the Sample Data network.

See Also

- pgr_drivingDistance Driving Distance
- pgr_pointsAsPolygon Polygon around set of points

Indices and tables

- · genindex
- · search

pgr pointsAsPolygon

Name

pgr_pointsAsPolygon — Draws an alpha shape around given set of points.

Synopsis

Returns the alpha shape as (multi)polygon geometry.

```
geometry pgr_pointsAsPolygon(text sql [, float8 alpha]);
```

Description

sql text a SQL query, which should return a set of rows with the following columns:

```
id int4 identifier of the vertex
    x float8 x-coordinate
    y float8 y-coordinate
```

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes⁴⁸.

Returns a (multi)polygon geometry (with holes).

History

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return a (multi)polygon geometry (with holes) in version 2.1.0

Examples

In the following query there is no way to control which point in the polygon is the first in the list, so you may get similar but different results than the following which are also correct.

```
SELECT ST_AsText(pgr_pointsAsPolygon('SELECT id::integer, ST_X(the_geom)::float AS_

→x, ST_Y(the_geom)::float AS y

FROM edge_table_vertices_pgr'));

st_astext

POLYGON((2 4,3.5 4,4 3,4 2,4 1,2 0,0 2,0.5 3.5,2 4))
(1 row)
```

The query use the Sample Data network.

See Also

- pgr_drivingDistance Driving Distance
- pgr_alphaShape Alpha shape computation

Indices and tables

- genindex
- search

 $^{^{48}\} http://doc.cgal.org/latest/Alpha_shapes_2/group_PkgAlphaShape2.html$

See Also

Indices and tables

- genindex
- · search

5.1.8 See Also

Indices and tables

- genindex
- · search

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's Algorithm
- pgr_johnson- Johnson's Algorithm

pgr_aStar - Shortest Path A*

pgr_bdAstar - Bi-directional A* Shortest Path

pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_KSP - K-Shortest Path

pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_eucledianTSP When input are coordinates.

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- Post pocessing
 - pgr_alphaShape Alpha shape computation
 - pgr_pointsAsPolygon Polygon around a set of points

Available Functions but not official pgRouting functions

- Stable Proposed Functions
- Experimental Functions

6.1 Stable Proposed Functions

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

As part of the Dijkstra - Family of functions

- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to calculate a cost matrix.
- pgr_dijkstraVia Proposed Use pgr_dijkstra to make a route via vertices.

Families

aStar - Family of functions

- pgr_aStar A* algorithm for the shortest path.
- $pgr_aStarCost-proposed$ Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix proposed Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Proposed Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix proposed Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

- pgr_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix proposed Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Flow - Family of functions

- pgr_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

withPoints - Family of functions

- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.
- pgr_withPointsDD Proposed Driving distance.

categories

Cost - Category

- pgr_aStarCost proposed
- pgr_bdAstarCost Proposed
- pgr_bdDijkstraCost Proposed
- pgr_dijkstraCost
- pgr_withPointsCost Proposed

Cost Matrix - Category

- pgr_aStarCostMatrix proposed
- pgr_bdAstarCostMatrix proposed
- $\bullet \ pgr_bdDijkstraCostMatrix proposed$
- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed

KSP Category

• pgr_KSP - Driving Distance based on pgr_dijkstra

• pgr_withPointsKSP - Proposed - Driving Distance based on pgr_dijkstra

6.1.1 aStar - Family of functions

The A* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic that allow it to solve most shortest path problems by evaluation only a sub-set of the overall graph.

- pgr_aStar A* algorithm for the shortest path.
- pgr_aStarCost proposed Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix proposed Get the cost matrix of the shortest paths.

pgr_aStar

Name

pgr_aStar — Returns the shortest path using A* algorithm.

Fig. 6.1: Boost Graph Inside

Availability:

- pgr_astar(one to one) 2.0.0, Signature changed 2.3.0
- pgr_astar(other signatures) 2.4.0

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
 - **positive** when it belongs to the edges_sql
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - \ast The agg_cost the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path:
 - * The agg_cost the non included values (u, v) is ∞
- When (x,y) coordinates for the same vertex identifier differ:
 - A random selection of the vertex's (x,y) coordinates is used.
- Running time: $O((E+V) * \log V)$

⁴⁹ http://www.boost.org//libs/graph/doc/astar_search.html

Signature Summary

```
pgr_aStar(edges_sql, start_vid, end_vid)
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
```

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Signatures

Minimal Signature

```
pgr_aStar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example Using the defaults

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   2, 12);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 4 | 1 |
  1 |
                                      0
           2 | 5 | 10 | 1 |
  2 |
                                       1
  3 |
           3 | 10 | 12 | 1 |
                                       2
  4 |
           4 | 11 | 13 |
                            1 |
                                       3
  5 |
           5 | 12 | -1 |
                             0 |
(5 rows)
```

One to One

```
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example Undirected using Heuristic 2

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   2, 12,
   directed := false, heuristic := 2);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 2 | 1 |
2 | 3 | 3 | 1 |
                         3 |
            2 |
  2 |
                        16 |
                                1 |
  3 |
            3 |
                   4 |
                                1 |
                  9 |
  4 |
            4 |
                         15 |
                                           3
            5 |
                                0 |
  5 |
                 12 |
                        -1 |
(5 rows)
```

One to many

```
pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) --_

Proposed

RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a **directed** graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_astar* where the starting vertex is fixed, and stop when all <code>end_vids</code> are reached.

- The result is equivalent to the union of the results of the one to one *pgr_astar*.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   2, ARRAY[3, 12], heuristic := 2);
seq | path_seq | end_vid | node | edge | cost | agg_cost
  1 |
          1 |
                  3 |
                         2 |
                             4 |
                                   1 |
                  3 | 5 |
                                  1 |
          2 |
                            8 |
  2 |
                                             1
          3 |
                  3 |
                        6 |
                             9 |
                                   1 |
  3 |
          4 |
                        9 | 16 |
                                   1 |
  4 |
                  3 |
  5 I
          5 |
                  3 |
                        4 |
                              3 |
                                   1 |
  6 |
          6 |
                  3 |
                        3 |
                             -1 |
                                   0 |
  7 |
          1 |
                 12 |
                        2 |
                             4 |
                                   1 |
                 12 |
  8 |
          2 |
                        5 | 10 |
                                   1 |
  9 |
          3 |
                 12 | 10 | 12 |
                                   1 |
 10 |
          4 |
                 12 | 11 | 13 |
                                   1 |
          5 | 12 | 12 |
 11 |
                             -1 |
                                   0 |
(11 rows)
```

Many to One

```
pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) --_

Proposed

RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one pgr_aStar where the ending vertex is fixed.

- The result is the union of the results of the one to one pgr aStar.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   ARRAY[7, 2], 12, heuristic := 0);
seq | path_seq | start_vid | node | edge | cost | agg_cost
          1 |
                     2 | 2 | 4 |
                                        1 1
                                                   0
           2 |
  2 |
                     2 |
                            5 | 10 |
                                         1 |
                                                   1
           3 |
                      2 | 10 | 12 |
                                         1 |
  3 |
           4 |
  4 |
                      2 |
                           11 | 13 |
                                         1 |
                                                   3
           5 |
  5 |
                      2 |
                          12 |
                                  -1 |
                                         0 |
            1 |
  6 |
                      7 |
                             7 |
                                   6 |
                                         1 |
                                                   0
           2 |
  7 |
                      7 |
                            8 |
                                   7 |
                                         1 |
            3 |
                      7 |
  8 |
                            5 |
                                 10 |
                                         1 |
            4 |
                           10 |
  9 |
                      7 |
                                  12 |
                                         1 |
                                                   3
 10 |
            5 |
                      7 |
                            11 |
                                  13 |
                                         1 |
                                                   4
                      7 |
 11 |
            6 |
                           12 |
                                  -1 |
                                         0 |
(11 rows)
```

Many to Many

```
pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) --

→ Proposed

RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or 
→EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
         1 |
                   2 | 3 |
                                 2 |
                                       4 |
                                             1 |
                    2 |
          2 |
                                  5 |
                                       8 |
  2. 1
                            3 |
                                              1 |
                                                       1
                    2 |
  3 |
          3 |
                            3 |
                                  6 I
                                       9 |
                                              1 |
          4 |
                    2 |
                            3 |
                                 9 | 16 |
                                             1 |
  4 |
          5 I
                    2 |
                            3 |
                                             1 |
  5 |
                                  4 |
                                       3 |
                                            0 |
          6 |
                    2 |
                            3 |
                                  3 |
                                       -1 |
  6 |
  7 |
          1 |
                    7 |
                            3 |
                                  7 |
                                       6 |
                                             1 |
                            3 |
                    7 |
                                       7 |
  8 |
          2 |
                                  8 |
                                              1 |
                                                       1
                            3 |
                                       8 |
                    7 |
  9 |
          3 |
                                  5 |
                                              1 |
                    7 |
                            3 |
                                        9 |
 10 |
                                  6 |
          4 |
                                              1 |
 11 |
          5 |
                    7 |
                             3 |
                                  9 | 16 |
                                              1 |
                                                       4
 12 |
          6 |
                    7 |
                            3 |
                                  4 |
                                              1 |
                                                       5
                                        3 |
 13 |
          7 |
                    7 |
                            3 |
                                   3 |
                                       -1 |
                                              0 1
          1 |
 14 |
                    2 |
                            12 |
                                  2 |
                                        4 |
                                              1 |
                                                       0
 15 |
                    2 |
          2 |
                            12 |
                                   5 I
                                       10 |
                                              1 |
                                                       1
 16 |
           3 |
                            12 |
                    2 |
                                  10 |
                                        12 |
                                              1 |
          4 |
 17 |
                    2 |
                            12 |
                                  11 |
                                       13 |
                                              1
          5 |
 18 |
                    2 |
                            12 |
                                 12 |
                                       -1 |
                                              0 |
          1 |
                    7 |
                           12 |
                                        6 |
 19 |
                                  7 |
                                              1 |
                                                       0
                    7 |
                                       7 |
          2 |
 20 |
                           12 |
                                 8 |
                                              1 |
                                                       1
                    7 |
                                  5 |
 21 |
                           12 |
          3 |
                                       10 |
                                              1 |
                    7 |
          4 |
 22 |
                           12 |
                                       12 |
                                              1 |
                                 10 |
          5 |
                    7 |
 23 |
                           12 |
                                  11 |
                                       13 |
                                              1 1
                    7 |
 24 |
          6 |
                            12 | 12 |
                                       -1 I
                                              0 |
(24 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
end_vid	ANY-INTEGER	Ending vertex identifier.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) 1: h(v) abs(max(dx, dy)) 2: h(v) abs(min(dx, dy)) 3: h(v) = dx * dx + dy * dy 4: h(v) = sqrt(dx * dx + dy * dy) 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see <i>Factor</i>
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Туре	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the
		same start_vid to end_vid combination.
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	l BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

• aStar - Family of functions

- Sample Data
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- · search

pgr_aStarCost - proposed

Name

pgr_aStarCost — Returns the aggregate cost shortest path using aStar - Family of functions algorithm.

Fig. 6.2: Boost Graph Inside

Availability: 2.4.0

Signature Summary

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

```
pgr_aStarCost(edges_sql, start_vid, end_vid) -- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
--- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor,
--- epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor,
--- epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor,
--- epsilon) -- Proposed
```

⁵⁰ http://www.boost.org//libs/graph/doc/astar_search.html

```
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Signatures

Minimal Signature

```
pgr_aStarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Example Using the defaults

One to One

```
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Example Setting a Heuristic

One to many

```
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, →epsilon) -- Proposed
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds a path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- \bullet on an undirected graph when $\mbox{\tt directed}$ flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_astar* where the starting vertex is fixed, and stop when all end_vids are reached.

• The result is equivalent to the union of the results of the one to one *pgr_astar*.

• The extra end_vid column in the result is used to distinguish to which path it belongs.

Example

Many to One

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr_aStar* where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_aStar*.
- The extra start_vid column in the result is used to distinguish to which path it belongs.

Example

Many to Many

```
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor, 

--epsilon) -- Proposed
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

• The result is the union of the results of the one to one *pgr_dijkstra*.

• The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
end_vid	ANY-INTEGER	Ending vertex identifier.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 • 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) • 1: h(v) abs(max(dx, dy)) • 2: h(v) abs(min(dx, dy)) • 3: h(v) = dx * dx + dy * dy • 4: h(v) = sqrt(dx * dx + dy * dy) • 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. See $Factor$
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

See Also

- aStar Family of functions.
- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar_search.html

• http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- · search

pgr_aStarCostMatrix - proposed

Name

pgr_aStarCostMatrix - Calculates the a cost matrix using pgr_aStar.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.3: Boost Graph Inside

Availability: 2.4.0

Synopsis

Using aStar algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_aStarCostMatrix(edges_sql, vids)
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

⁵¹ http://www.boost.org/libs/graph

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_aStarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
        2 | 1 |
                           1
        3 |
                 1 |
                            2
        4 |
                  1 |
                            3
                  2 |
        1 |
                            1
                 2 |
        3 |
                            1
                 2 |
        4 |
                            2
                 3 |
        1 |
                            6
        2 |
                 3 |
                            5
        4 |
                 3 |
                            1
                 4 |
                            5
        1 |
        2 |
                 4 |
                            4
        3 |
                 4 |
                            3
(12 rows)
```

Complete Signature

```
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_aStarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   directed := false, heuristic := 2
);
start_vid | end_vid | agg_cost
        2 | 1 | 3 |
                 1 |
        4 |
                 2 |
        1 |
                             1
                 2 |
        3 |
                             1
                 2 |
                             2
        4 |
                  3 |
                             2
        1 |
        2 |
                  3 |
                             1
        4 |
                  3 |
                             1
```

1	4	3
2	4	2
3	4	1
(12 rows)		

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (tar-
reverse_cost	ANI NOMENICAL	-1	get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.
x1	ANY-NUMERICAL		X coordinate of source
			vertex.
y1	ANY-NUMERICAL		Y coordinate of source
			vertex.
x2	ANY-NUMERICAL		X coordinate of target
			vertex.
y2	ANY-NUMERICAL		Y coordinate of target
			vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Description
edges_sql	TEXT	Edges SQL query as described above.
vids	ARRAY[ANY-INTEGER]	Array of vertices_identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 • 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) • 1: h(v) abs(max(dx, dy)) • 2: h(v) abs(min(dx, dy)) • 3: h(v) = dx * dx + dy * dy • 4: h(v) = sqrt(dx * dx + dy * dy) • 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1.
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
   SELECT * FROM pgr_aStarCostMatrix(
        'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_
        table',
        (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
        directed:= false, heuristic := 2
   )
   $$,
   randomize := false
);</pre>
```

seq	node	cost		agg_cost
1	1	1	İ	0
2	2	1		1
3	3	1		2
4	4] 3		3
5	1	0		6
(5 row	s)			

See Also

- aStar Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- · genindex
- · search

The problem definition (Advanced documentation)

The A* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic, that is an estimation of the remaining cost from the vertex to the goal, that allows to solve most shortest path problems by evaluation only a sub-set of the overall graph. Running time: $O((E+V)*\log V)$

Heuristic

Currently the heuristic functions available are:

- 0: h(v) = 0 (Use this value to compare with pgr_dijkstra)
- 1: $h(v) = abs(max(\Delta x, \Delta y))$
- 2: $h(v) = abs(min(\Delta x, \Delta y))$
- 3: $h(v) = \Delta x * \Delta x + \Delta y * \Delta y$
- 4: $h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)$
- 5: $h(v) = abs(\Delta x) + abs(\Delta y)$

where $\Delta x = x_1 - x_0$ and $\Delta y = y_1 - y_0$

Factor

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

latitude	conversion	Factor
45	1 longitude degree is 78846.81 m	78846
0	1 longitude degree is 111319.46 m	111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the average speed say 25m/s is the speed.

latitude	conversion	Factor
45	1 longitude degree is (78846.81m)/(25m/s)	3153 s
0	1 longitude degree is (111319.46 m)/(25m/s)	4452 s

See Also

- pgr_aStar
- pgr_aStarCost proposed
- pgr_aStarCostMatrix proposed
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- search

6.1.2 Bidirectional A* - Family of functions

- *pgr_bdAstar* Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Proposed Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix proposed Bidirectional A* algorithm to calculate a cost matrix of paths.

pgr_bdAstarCost - Proposed

Name

 $pgr_bdAstarCost$ — Returns the shortest path using A* algorithm.

 $^{^{52}\;} http://www.boost.org//libs/graph$

Fig. 6.4: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signature Summary

Using these signatures, will load once the graph and perform several one to one pgr bdAstarCost

- The result is the union of the results of the one to one *pgr_bdAstarCost*.
- The extra start_vid and/or end_vid in the result is used to distinguish to which path it belongs.

Signatures

Minimal Signature

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid

- on a directed graph
- with **heuristic**'s value 5
- with **factor**'s value 1
- with epsilon's value 1

Example Using the defaults

pgr_bdAstarCost One to One

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

- if the graph is **directed** or **undirected**
- heuristic,
- and/or factor
- and/or epsilon.

Note: In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

Example Directed using Heuristic 2

```
(1 row)
```

pgr_bdAstarCost One to many

```
pgr_bdAstarCost(edges_sql, start_vid, end_vids [, directed, heuristic, factor,______epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Directed using Heuristic 3 and a factor of 3.5

pgr bdAstarCost Many to One

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Undirected graph with Heuristic 4

```
SELECT * FROM pgr_bdAstarCost(
    'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
    FROM edge_table',
    ARRAY[2, 7], 3,
    false, heuristic := 4
);
    start_vid | end_vid | agg_cost
```

```
2 | 3 | 1
7 | 3 | 4
(2 rows)
```

pgr_bdAstarCost Many to Many

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic,
- · and/or factor
- and/or epsilon.

Example Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstarCost(
    'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
    FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11],
   factor := 0.5
);
start_vid | end_vid | agg_cost
        2 |
                 3 |
        2 |
                 11 |
                            3
        7 |
                 3 |
                            6
        7 |
                 11 |
(4 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.
end_vid	ANY-INTEGER	Ending vertex identifier.
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 • 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) • 1: h(v) abs(max(dx, dy)) • 2: h(v) abs(min(dx, dy)) • 3: h(v) = dx * dx + dy * dy • 4: h(v) = sqrt(dx * dx + dy * dy) • 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see Factor
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

See Also

- Bidirectional A^* Family of functions
- Sample Data network.
- Migration Guide⁵³
- http://www.boost.org/libs/graph/doc/astar_search.html
- $\bullet \ http://en.wikipedia.org/wiki/A*_search_algorithm$

⁵³ https://github.com/cvvergara/pgrouting/wiki/Migration-Guide#pgr_bdastar

Indices and tables

- genindex
- · search

pgr_bdAstarCostMatrix - proposed

Name

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr_bdAstar.

Fig. 6.5: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

⁵⁴ http://www.boost.org/libs/graph

Signature Summary

Signatures

Minimal Signature

```
pgr_bdAstarCostMatrix(edges_sql, start_vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start_vid in start_vids to each start_vid in start_vids

- on a directed graph
- with **heuristic**'s value 5
- with **factor**'s value 1
- with epsilon's value 1

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdAstarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
        1 |
            2 |
                             1
        1 |
                  3 |
                             6
        1 |
                  4 |
                             5
        2 |
                  1 |
        2 |
                  3 |
                             5
        2 |
                  4 |
                             4
        3 |
                 1 |
                             2
        3 |
                 2 |
                             1
        3 |
                             3
                  4 |
                 1 |
                             3
        4 |
        4 |
                 2 |
                             2
        4 |
                 3 |
(12 rows)
```

Complete Signature

```
pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, \_
--epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start_vid in start_vids to each start_vid in start_vids allowing the

- if the graph is directed or undirected
- heuristic,
- · and/or factor
- and/or epsilon.

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdAstarCostMatrix(
    'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   false
);
start_vid | end_vid | agg_cost
        1 |
                2 |
                           1
        1 |
                 3 |
        1 |
                 4 |
        2 |
                1 |
        2 |
                 3 |
        2 |
                 4 |
        3 |
                 1 |
                 2 |
        3 |
                            1
        3 |
                 4 |
                            1
                 1 |
                            3
        4 |
        4 |
                 2 |
                            2
        4 |
                  3 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Туре	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.
end_vid	ANY-INTEGER	Ending vertex identifier.
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 • 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) • 1: h(v) abs(max(dx, dy)) • 2: h(v) abs(min(dx, dy)) • 3: h(v) = dx * dx + dy * dy • 4: h(v) = sqrt(dx * dx + dy * dy) • 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see Factor
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
randomize := false
);
seq | node | cost | agg_cost
        1 |
              1 |
                           0
  1 |
        2 |
  2 |
                1 |
                           1
        3 |
                1 |
  3 I
                           2
  4 |
         4 |
                3 I
                           3
  5 I
         1 |
                0 |
(5 rows)
```

See Also

- Bidirectional A* Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- · search

Synopsis

Based on A* algorithm, the bidirectional search finds a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid). It runs two simultaneous searches: one forward from the start_vid, and one backward from the end_vid, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is θ
- When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is ∞
- Running time (worse case scenario): $O((E + V) * \log V)$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_astar

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Description		
edges_sql	TEXT	Edges SQL query as described		
		above.		
start_vid	ANY-INTEGER	Starting vertex identifier.		
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.		
end_vid	ANY-INTEGER	Ending vertex identifier.		
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.		
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed. 		
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 • 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) • 1: h(v) abs(max(dx, dy)) • 2: h(v) abs(min(dx, dy)) • 3: h(v) = dx * dx + dy * dy • 4: h(v) = sqrt(dx * dx + dy * dy) • 5: h(v) = abs(dx) + abs(dy) 		
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see <i>Factor</i>		
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.		

See Also

Indices and tables

- genindex
- search

6.1.3 Bidirectional Dijkstra - Family of functions

- $pgr_bdDijkstra$ Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix proposed Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

pgr_bdDijkstraCost - Proposed

 $\verb|pgr_bdDijkstraCost| - Returns the shortest path (s) 's cost using Bidirectional Dijkstra algorithm.$

⁵⁵ http://www.boost.org/libs/graph/doc

Fig. 6.6: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signature Summary

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a directed graph from one start_vid to one end_vid:

Example

pgr bdDijkstraCost One to One

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_bdDijkstraCost One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one *pgr_dijkstra*.
- The extra end vid in the result is used to distinguish to which path it belongs.

Example

```
2 | 11 | 3
(2 rows)
```

pgr_bdDijkstraCost Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one $pgr_dijkstra$ where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
            1 |
  1 |
                        2. |
                               2 | 4 |
                                            1 1
                                                       0
            2 |
  2 |
                        2 |
                               5 |
                                     8 |
                                            1 |
                                                       1
             3 |
                        2 |
                               6 |
                                     9 |
  3 |
                                            1 |
             4 |
                        2 |
                               9 |
  4 |
                                   16 |
                                            1 |
            5 |
  5 |
                        2 |
                               4 |
                                     3 |
                                            1 |
                        2 |
                                                       5
  6 |
            6 |
                               3 |
                                     -1 |
                                            0 |
                        7 |
            1 |
                               7 |
  7 |
                                     6 |
                                                       Ω
                                            1 |
            2 |
                        7 |
                                     7 |
  8 |
                              8 |
                                            1 |
                                                       1
  9 |
            3 |
                        7 |
                                    8 |
                              5 I
                                            1. |
                                                       2
            4 |
 10 I
                        7 I
                              6 1
                                     9 1
                                                       3
                                            1 |
 11 |
            5 |
                        7 |
                              9 |
                                   16 |
                                            1 |
                                                       4
 12 |
            6 |
                        7 |
                              4 |
                                     3 |
                                            1 |
                                                       5
                        7 |
 13 |
            7 |
                              3 |
                                     -1 |
                                            0 |
(13 rows)
```

pgr_bdDijkstraCost Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or_

GEMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr_dijkstra* for all start_vids.

• The result is the union of the results of the one to one *pgr_dijkstra*.

• The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

'SELECT id, source, target, cost, reverse_cost FROM edge_table', ARRAY[2, 7], ARRAY[3, 11]);								
q :	path_seq	start_vid			_			
1	1	++ 2		+ I 2	 4	 1		
2	2	2		5	8 1	1	1	
3	3	2 1		1 6	9 1	1	2	
4 1	4	2	3	9	16	1	3	
5	5	2 1	3	1 4	3 1	1	4	
6	6	2 1	3	1 3	-1	0	5	
7 1	1	2 1	11	1 2	4 1	1	0	
8	2	2 1	11	1 5	8 1	1	1	
9	3	2 1	11	1 6	11	1	2	
0 1	4	2 1	11	1 11	-1	0	3	
1	1	7 1		1 7	6 1	1	0	
2	2	, , , , , , , , , , , , , , , , , , ,	3	1 8	7 1	1	1	
3	3	, , , , , , , , , , , , , , , , , , , ,	3	1 5	8 1	1	2	
4	4	, , , , , , , , , , , , , , , , , , , ,	3	1 6	9 1	1	3	
5	5	, , , , , , , , , , , , , , , , , , ,	3	1 9	16	1	Δ	
6 1	6	, , , , , , , , , , , , , , , , , , ,	3	1 4	3 1	1	5	
7 1	7	, , , , , , , , , , , , , , , , , , ,	3	I 3	-1 I	0	5	
8	1	, , , , , , , , , , , , , , , , , , ,	11	1 7	. <u>.</u>	1	0	
9	2	, , , , , , , , , , , , , , , , , , ,	11	l 8	7 1	1	1	
0	3	, , , , , , , , , , , , , , , , , , ,	11	1 5	10	1	2.	
1 1	4	, , , , , , , , , , , , , , , , , , ,		1 10	12	1	3	
2	5	, , , , , , , , , , , , , , , , , , ,		1 11		_	4	

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Default	Description
sql	TEXT		SQL query as described
			above.
start_vid	BIGINT		Identifier of the starting
			vertex of the path.
start_vids	ARRAY[BIGINT]		Array of identifiers of
			starting vertices.
end_vid	BIGINT		Identifier of the ending
			vertex of the path.
end_vids	ARRAY[BIGINT]		Array of identifiers of
			ending vertices.
directed	BOOLEAN	true	• When true
			Graph is consid-
			ered Directed
			• When false
			the graph is
			considered as
			Undirected.
			Chairectea.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

See Also

- The queries use the *Sample Data* network.
- pgr_bdDijkstra
- http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path% 20algorithms.pdf
- https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

- genindex
- · search

pgr_bdDijkstraCostMatrix - proposed

Name

pgr_bdDijkstraCostMatrix - Calculates the a cost matrix using pgr_bdDijkstra.

Fig. 6.7: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.

 $^{^{56}\} http://www.boost.org/libs/graph$

- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids)
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
        1 | 2 | 1 | 3 |
                  3 |
        1 |
                             6
        1 |
                  4 |
                             5
        2 |
                  1 |
        2 |
                  3 |
        2 |
                  4 |
                 1 |
        3 |
                             2
        3 |
                 2 |
                             1
        3 |
                             3
                 4 |
                 1 |
                             3
        4 |
        4 |
                 2 |
                             2
        4 |
                 3 |
(12 rows)
```

Complete Signature

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
);
start_vid | end_vid | agg_cost
        1 |
                  2 |
                            1
                 3 |
        1 |
                            2
                 4 |
        1 |
                            3
        2 |
                  1 |
                            1
        2 |
                  3 |
        2 |
                 4 |
        3 |
                 1 |
                 2 |
        3 |
                            1
                 4 |
        3 |
                            1
                            3
        4 |
                 1 |
                 2 |
        4 |
                            2
                  3 |
        4 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Pa-	Туре	Description
rame-		
ter		
edges_sq	l TEXT	Edges SQL query as described above.
start_vic	s array[any-int	EAFIRY of identifiers of the vertices.
di-	BOOLEAN	(optional). When false the graph is considered as Undirected. Default is
rected		true which considers the graph as Directed.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
   SELECT * FROM pgr_bdDijkstraCostMatrix(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table',
        (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
       false
   $$,
   randomize := false
);
seg | node | cost | agg_cost
  1 |
       1 | 1 |
  2 | 2 |
               1 |
                           1
  3 | 3 |
               1 |
                           2
                3 |
                           3
  4 |
         4 |
                0 |
  5 |
         1 |
                           6
(5 rows)
```

See Also

- Bidirectional Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

Synopsis

Based on Dijkstra's algorithm, the bidirectional search finds a shortest path a starting vertex (start_vid) to an ending vertex (end_vid). It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is 0
- When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is ∞
- Running time (worse case scenario): $O((V \log V + E))$

- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra

See Also

Indices and tables

- genindex
- · search

6.1.4 withPoints - Family of functions

When points are also given as input:

- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.
- pgr_withPointsDD Proposed Driving distance.

pgr_withPoints - Proposed

Name

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.8: Boost Graph Inside

⁵⁷ http://www.boost.org/libs/graph

Availability: 2.2.0

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path(s)

Characteristics:

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - **negative** when it belongs to the points_sql
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path. The agg_cost the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path: The agg_cost the non included values (u,v) is ∞
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered: start_vid ascending end_vid ascending
- Running time: $O(|start_vids| \times (V \log V + E))$

Signature Summary

Signatures

Minimal Use

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of points_sql query.

```
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example From point 1 to point 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -3);
seq | path_seq | node | edge | cost | agg_cost
      1 | -1 | 1 | 0.6 | 0
2 | 2 | 4 | 1 | 0.6
            2 | 2 | 4 | 1 | 3 | 5 | 10 | 1 |
  2. 1
  3 |
                                         1.6
            4 | 10 | 12 | 0.6 |
                                         2.6
  4 |
            5 | -3 | -1 | 0 |
 5 I
                                         3.2
(5 rows)
```

One to One

Example From point 1 to vertex 3

```
SELECT * FROM pgr_withPoints(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
      'SELECT pid, edge_id, fraction, side from pointsOfInterest',
      -1, 3,
      details := true);
 seq | path_seq | node | edge | cost | agg_cost

      1 |
      1 |
      -1 |
      1 |
      0.6 |
      0

      2 |
      2 |
      2 |
      4 |
      0.7 |
      0.6

      3 |
      3 |
      -6 |
      4 |
      0.3 |
      1.3

    4 |
    5 |
    8 |
    1 |

    5 |
    6 |
    9 |
    1 |

    6 |
    9 |
    16 |
    1 |

    7 |
    4 |
    3 |
    1 |

                                                                              1.6
    4 |
     5 I
                                                                               2.6
     6 |
                                  4 | 3 |
    7 |
                                                          0 |
                                              -1 |
                      8 |
    8 |
(8 rows)
```

One to Many

Example From point 1 to point 3 and vertex 5

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, ARRAY[-3, 5]);
seq | path_seq | end_pid | node | edge | cost | agg_cost
  1 |
         1 | -3 | -1 | 1 | 0.6 | 0

    -3 |
    2 |
    4 |
    1 |

    -3 |
    5 |
    10 |
    1 |

  2 |
            2 |
  3 |
            3 |
                                                     1.6
                     -3 | 10 | 12 | 0.6 |
  4 |
            4 |
                                                     2.6
```

```
-1 | 0 |
                       -3 I
                              -3 |
                                     1 | 0.6 |
4 | 1 |
-1 | 0 |
                       5 |
                              -1 |
  6 |
             1 |
                              2 |
  7 |
             2 |
                        5 |
                                                       0.6
                       5 |
                              5 |
  8 |
             3 |
                                                       1.6
(8 rows)
```

Many to One

Example From point 1 and vertex 2 to point 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
  ARRAY[-1,2], -3);
seq | path_seq | start_pid | node | edge | cost | agg_cost
  1 | 1 | -1 | 1 | 0.6 | 0
                 2 |
  2. 1
         3 |
  3 |
         4 |
                 -1 | 10 | 12 | 0.6 |
 4 |
         5 |
 5 |
                 -1 | -3 | -1 | 0 |
                                        3.2
                 2 | 2 | 4 | 1 |
                                         0
 6 |
         1 |
         2 |
                 2 |
 7 |
                       5 | 10 | 1 |
                                         1
         3 |
 8 |
                 2 | 10 | 12 | 0.6 |
 9 |
         4 |
                 2 | -3 | -1 | 0 |
                                        2.6
(9 rows)
```

Many to Many

Example From point 1 and vertex 2 to point 3 and vertex 7

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7]);
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
   -3 | -1 | 1 | 0.6 | 0

-3 | 2 | 4 | 1 | 0.6

-3 | 5 | 10 | 1 | 1.6
                   -1 |
-1 |
         1 |
  1 |
                          -3 | 2 |
-3 | 5 |
         2 |
                  -1 |
  2 |
                  -1 |
          3 |
  3 |
                   -1 |
          4 |
                                10 |
                                      12 | 0.6 |
                                                   2.6
                           -3 |
  4 |
         5 |
                   -1 |
                           -3 | -3 |
                                      -1 | 0 |
  5 I
                                                   3.2
                                       1 | 0.6 |
          1 |
                   -1 |
                           7 | -1 |
  6 1
                                                     0
  7 |
          2 |
                   -1 |
                           7 |
                                 2 |
                                       4 | 1 |
                                                   0.6
  8 |
          3 |
                   -1 |
                           7 | 5 |
                                       7 |
                                            1 |
                                                    1.6
                  -1 |
  9 |
         4 |
                           7 | 8 |
                                      6 | 1 |
                                                    2.6
 10 |
         5 |
                   -1 |
                           7 |
                                 7 | -1 | 0 |
                                                    3.6
 11 |
         1 |
                   2 |
                           -3 | 2 | 4 | 1 |
                                                    0
```

12	2	2	-3	5	10	1	1	
13	3	2	-3	10	12	0.6	2	
14	4	2	-3	-3	-1	0	2.6	
15	1	2	7	2	4	1	0	
16	2	2	7	5	7	1	1	
17	3	2	7	8	6	1	2	
18	4	2	7	7	-1	0	3	
(18 rows)								

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (tar-
			get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative position from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter	Туре	Description	
edges_sql	TEXT	Edges SQL query as described	
		above.	
points_sql	TEXT	Points SQL query as described	
		above.	
start_vid	ANY-INTEGER	Starting vertex identifier. When	
		negative: is a point's pid.	
end_vid	ANY-INTEGER	Ending vertex identifier. When	
		negative: is a point's pid.	
start_vids	ARRAY[ANY-INTEGER]	Array of identifiers of starting ver-	ļ
		tices. When negative: is a point's	
		pid.	
end_vids	ARRAY[ANY-INTEGER]	Array of identifiers of ending ver-	
		tices. When negative: is a point's	
		pid.	
directed	BOOLEAN	(optional). When false the	
		graph is considered as Undirected.	
		Default is true which considers	
		the graph as Directed.	
driving_side	CHAR	(optional) Value in ['b', 'r', 'l', NULL] indic	ating if
		• In the right or left or	
		• If it doesn't matter	
		with 'b' or NULL.	
		• If column not present	
		'b' is considered.	
details	BOOLEAN	(optional). When true the re-	
		sults will include the points in	
		points_sql that are in the path.	
		Default is false which ignores	
		other points of the points_sql.	

Description of the return values

Returns set of (seq, [path_seq,] [start_vid,] [end_vid,] node, edge, cost, agg_cost)

TEGER TEGER SINT SINT SINT	Row sequence. Path sequence that indicates the relative position on the path. Identifier of the starting vertex. When negative: is a point's pid. Identifier of the ending vertex. When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the result of the total point of the last row in
GINT	relative position on the path. Identifier of the starting vertex. When negative: is a point's pid. Identifier of the ending vertex. When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the relative position of the edge used to go from node to the relative position.
GINT	Identifier of the starting vertex. When negative: is a point's pid. Identifier of the ending vertex. When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results of the edge used to go from node to the
GINT	When negative: is a point's pid. Identifier of the ending vertex. When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results of the edge used to go from node to the ed
SINT	Identifier of the ending vertex. When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
SINT	When negative: is a point's pid. Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
	Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
	 A positive value indicates the node is a vertex of edges_sql. A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
INT	 A positive value indicates the node is a vertex of edges_sql. A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
INT	cates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
INT	tex of edges_sql. • A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the results.
INT	A negative value indicates the node is a point of points_sql. Identifier of the edge used to go from node to the relationship.
INT	dicates the node is a point of points_sql. Identifier of the edge used to go from node to the reference to
INT	Identifier of the edge used to go from node to the n
INT	Identifier of the edge used to go from node to the n
INT	
	• -1 for the last row in
	the path sequence.
TAC	Cost to traverse from node using edge to the next
	• 0 for the last row in the path sequence.
AT	Aggregate cost from start_pid to node.
	• 0 for the first row in the path sequence.
	DAT

Examples

Example Which path (if any) passes in front of point 6 or vertex 6 with **right** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:
→')::TEXT AS path_at,
       CASE WHEN edge = -1 THEN ' visits'
          ELSE ' passes in front of'
       END as status,
       CASE WHEN node < 0 THEN 'Point'
          ELSE 'Vertex'
       END as is_a,
       abs(node) as id
   FROM pgr_withPoints(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id
       'SELECT pid, edge_id, fraction, side from pointsOfInterest',
       ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
       driving_side := 'r',
       details := true)
   WHERE node IN (-6,6);
      path_at | status | is_a | id
```

```
      (-1 => -6) at 4th step: | visits
      | Point | 6

      (-1 => -3) at 4th step: | passes in front of | Point | 6

      (-1 => -2) at 4th step: | passes in front of | Point | 6

      (-1 => -2) at 6th step: | passes in front of | Vertex | 6

      (-1 => -2) at 6th step: | passes in front of | Point | 6

      (-1 => 3) at 4th step: | passes in front of | Vertex | 6

      (-1 => 6) at 4th step: | passes in front of | Point | 6

      (-1 => 6) at 6th step: | visits | Vertex | 6

      (1 => -6) at 3th step: | visits | Point | 6

      (1 => -3) at 3th step: | passes in front of | Point | 6

      (1 => -2) at 3th step: | passes in front of | Point | 6

      (1 => -2) at 5th step: | passes in front of | Vertex | 6

      (1 => 3) at 3th step: | passes in front of | Vertex | 6

      (1 => 3) at 5th step: | passes in front of | Point | 6

      (1 => 6) at 3th step: | passes in front of | Vertex | 6

      (1 => 6) at 5th step: | passes in front of | Vertex | 6

      (1 => 6) at 5th step: | visits | Vertex | 6
```

Example Which path (if any) passes in front of point 6 or vertex 6 with **left** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:
→')::TEXT AS path_at,
           CASE WHEN edge = -1 THEN ' visits'
                 ELSE ' passes in front of'
            END as status,
            CASE WHEN node < 0 THEN 'Point'
                 ELSE 'Vertex'
            END as is_a,
           abs(node) as id
     FROM pgr_withPoints(
            'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id
            'SELECT pid, edge_id, fraction, side from pointsOfInterest',
           ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
           driving_side := 'l',
           details := true)
     WHERE node IN (-6,6);
                                               status | is_a | id
           path_at |
 (-1 \Rightarrow -6) at 3th step: | visits | Point | 6
 (-1 \Rightarrow -3) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 5th step: | passes in front of | Vertex | 6
 (-1 \Rightarrow -2) at 5th step: | passes in front of | Vertex | 6

(-1 \Rightarrow 3) at 3th step: | passes in front of | Point | 6

(-1 \Rightarrow 3) at 5th step: | passes in front of | Vertex | 6

(-1 \Rightarrow 6) at 3th step: | passes in front of | Point | 6

(-1 \Rightarrow 6) at 5th step: | visits | Vertex | 6

(1 \Rightarrow -6) at 4th step: | visits | Point | 6

(1 \Rightarrow -3) at 4th step: | passes in front of | Point | 6

(1 \Rightarrow -2) at 6th step: | passes in front of | Vertex | 6
 (1 \Rightarrow 3) at 4th step: | passes in front of | Point | 6

(1 \Rightarrow 3) at 6th step: | passes in front of | Vertex | 6
 (1 \Rightarrow 6) at 4th step: | passes in front of | Point | 6
 (1 \Rightarrow 6) at 6th step: | visits
                                                                       | Vertex | 6
(16 rows)
```

Example Many to many example with a twist: on undirected graph and showing details.

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- genindex
- search

pgr_withPointsCost - Proposed

Name

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.9: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path(s) found.

Characteristics:

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
- Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - **negative** when it belongs to the points_sql
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost in the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞
- If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).
- For undirected graphs, the results are symmetric.

⁵⁸ http://www.boost.org/libs/graph

- The agg_cost of (u, v) is the same as for (v, u).
- For optimization purposes, any duplicated value in the *start_vids* or *end_vids* is ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid, directed, driving_
side)
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids, directed, driving_
side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_
side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_
side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Use

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example

One to One

Example

One to Many

Example

Many to One

Example

Many to Many

```
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids,
    directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7]);
start_pid | end_pid | agg_cost
       -1 |
                 -3 |
       -1 |
                 7 |
                          3.6
                 -3 |
                          2.6
       2 |
        2 |
                 7 |
(4 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative position from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter	Type	Description	
edges_sql	TEXT	Edges SQL query as described	
		above.	
points_sql	TEXT	Points SQL query as described	
		above.	
start_vid	ANY-INTEGER	Starting vertex identifier. When	
		negative: is a point's pid.	
end_vid	ANY-INTEGER	Ending vertex identifier. When	
		negative: is a point's pid.	
start_vids	ARRAY[ANY-INTEGER]	Array of identifiers of starting ver-	
		tices. When negative: is a point's	
		pid.	
end_vids	ARRAY[ANY-INTEGER]	Array of identifiers of ending ver-	
		tices. When negative: is a point's	
		pid.	
directed	BOOLEAN	(optional). When false the	
		graph is considered as Undirected.	
		Default is true which considers	
		the graph as Directed.	
driving_side	CHAR	(optional) Value in ['b', 'r', 'l', NULL]	indicating i
		In the right or left or	
		• If it doesn't matter	
		with 'b' or NULL.	
		If column not present	
		'b' is considered.	

Description of the return values

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description	
start_vid	BIGINT	Identifier of the starting vertex. When negative: is a point's pid.	
end_vid	BIGINT	Identifier of the ending point. When negative: is a point's pid.	
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.	

Examples

Example With **right** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'l');
start_pid | end_pid | agg_cost
        -1 |
                 -3 |
                            3.2
                 7 |
        -1 |
                            3.6
        2 |
                  -3 |
                            2.6
         2 |
                  7 |
                             3
```

```
(4 rows)
```

Example With **left** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'r');
start_pid | end_pid | agg_cost
       -1 | -3 | 4
                7 |
                        4.4
       -1 |
       2 |
                -3 |
                        2.6
        2 |
                7 |
                          3
(4 rows)
```

Example Does not matter driving side.

```
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'b');
start_pid | end_pid | agg_cost
       -1 |
                 -3 |
                 7 |
       -1 |
                           3.6
        2 |
                 -3 |
                          2.6
                 7 |
        2 |
(4 rows)
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- genindex
- · search

pgr_withPointsCostMatrix - proposed

Name

pgr_withPointsCostMatrix - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.10: Boost Graph Inside

Availability: 2.2.0

Signature Summary

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Signature

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction from pointsOfInterest',
    array[-1, 3, 6, -6]);
start_vid | end_vid | agg_cost
```

⁵⁹ http://www.boost.org/libs/graph

```
-6 | -1 |
-6 | 3 |
-6 | 6 |
                         4.3
                       1.3
       -6 |
-1 |
               -6 |
               3 | 6 |
       -1 |
                        5.6
       -1 |
                        2.6
       3 |
               -6 I
                        1.7
               -1 |
        3 |
                        1.6
                6 |
        3 |
                          1
               -6 I
                        1.3
        6 |
        6 |
               -1 |
                         2.6
        6 |
                3 |
                          3
(12 rows)
```

Complete Signature

Example returning a symmetrical cost matrix

- Using the default side value on the points_sql query
- Using an undirected graph
- Using the default **driving_side** value

```
SELECT * FROM pgr_withPointsCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction from pointsOfInterest',
   array[-1, 3, 6, -6], directed := false);
start_vid | end_vid | agg_cost
      -6 | -1 |
-6 | 3 |
-6 | 6 |
                     1.3
1.7
                        1.3
       -1 |
              -6 I
                        1.3
               3 |
       -1 |
                        1.6
       -1 |
                6 |
                        2.6
       3 |
               -6 |
                        1.7
       3 |
               -1 |
                        1.6
       3 |
                6 |
                         1
               -6 |
       6 |
                        1.3
       6 |
               -1 |
                        2.6
                3 |
       6 |
                          1
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative position from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter	Туре	Description
edges_sql	TEXT	Edges SQL query as described
		above.
points_sql	TEXT	Points SQL query as described
		above.
start_vids	ARRAY[ANY-INTEGER]	Array of identifiers of starting ver-
		tices. When negative: is a point's
		pid.
directed	BOOLEAN	(optional). When false the
		graph is considered as Undirected.
		Default is true which considers
		the graph as Directed.
driving_side	CHAR	(optional) Value in ['b', 'r', 'l', NULL] indicating
		In the right or left or
		• If it doesn't matter
		with 'b' or NULL.
		• If column not present
		'b' is considered.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
    SELECT * FROM pgr_withPointsCostMatrix(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id
        'SELECT pid, edge_id, fraction from pointsOfInterest',
       array[-1, 3, 6, -6], directed := false);
    $$,
   randomize := false
);
seq | node | cost | agg_cost
  1 | -6 | 1.3 |
                           0
```

2	-1	1.6	1.3		
3	3	1	2.9		
4	6	1.3	3.9		
5	-6 I	0	5.2		
(5 rows)					

See Also

- withPoints Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- sampledata network.

Indices and tables

- genindex
- search

pgr_withPointsKSP - Proposed

Name

pgr_withPointsKSP - Find the K shortest paths using Yen's algorithm.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.11: Boost Graph Inside

⁶⁰ http://www.boost.org/libs/graph

Availability: 2.2.0

Synopsis

Modifies the graph to include the points defined in the points_sql and using Yen algorithm, finds the K shortest paths.

Signature Summary

Signatures

Minimal Usage

The minimal usage:

- Is for a **directed** graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No details are given about distance of other points of the query.
- No heap paths are returned.

```
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
```

Example

Complete Signature

Finds the K shortest paths depending on the optional parameters setup.

Example With details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 6, 2, details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
                  1 | -1 | 1 | 0.6 | 0
         1 |
         1 |
                   2 | 2 | 4 | 0.7 |
  2 |
  3 |
         1 |
                   3 | -6 | 4 | 0.3 |
                                            1.3
                   4 | 5 | 8 | 1 |
5 | 6 | -1 | 0 |
  4 |
         1 |
  5 |
         1 |
                                            2.6
                              1 | 0.6 |
         2 |
                   1 | -1 |
  6 |
                              4 | 0.7 |
  7 |
          2 |
                   2 | 2 |
                                            0.6
  8 |
          2 |
                               4 | 0.3 |
                   3 | -6 |
                                             1.3
  9 |
          2 |
                   4 |
                        5 |
                              10 |
                                   1 |
                                             1.6
 10 |
          2 |
                   5 | 10 |
                               12 |
                                   0.6 |
                                             2.6
                        -3 |
 11 |
                   6 |
          2 |
                               12 | 0.4 |
                                             3.2
 12 |
                              13 | 15 |
          2 |
                   7 | 11 |
                                    1 |
                                             3.6
 13 |
          2 |
                   8 |
                        12 |
                                   0.6
                                             4.6
 14 |
                       -2 |
9 |
          2 |
                   9 |
                              15 | 0.4 |
 15 |
         2 |
                   10 |
                               9 | 1 |
                                             5.6
                       6 |
                                    0 |
         2 |
                              -1 |
 16 |
                   11 |
                                             6.6
(16 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative position from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter	Type	Description
edges_sql	TEXT	Edges SQL query as described
		above.
points_sql	TEXT	Points SQL query as described
		above.
start_pid	ANY-INTEGER	Starting point id.
end_pid	ANY-INTEGER	Ending point id.
K	INTEGER	Number of shortest paths.
directed	BOOLEAN	(optional). When false the
		graph is considered as Undirected.
		Default is true which considers
		the graph as Directed.
heap_paths	BOOLEAN	(optional). When true the paths
		calculated to get the shortests paths
		will be returned also. Default is
		false only the K shortest paths
		are returned.
driving_side	CHAR	(optional) Value in ['b', 'r', 'l', NULL] indicating
		• In the right or left or
		• If it doesn't matter
		with 'b' or NULL.
		• If column not present
		'b' is considered.
details	BOOLEAN	(optional). When true the results
		will include the driving distance to
		the points with in the distance.
		Default is false which ignores
		other points of the points_sql.
		1 - 1

Description of the return values

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Row sequence.
path_seq	INTEGER	Relative position in the path of
		node and edge. Has value 1 for the
		beginning of a path.
path_id	INTEGER	Path identifier. The ordering of the
		paths: For two paths i, j if $i < j$ then
		$agg_cost(i) \le agg_cost(j)$.
node	BIGINT	Identifier of the node in the path.
		Negative values are the identifiers
		of a point.
edge	BIGINT	Identifier of the edge used to go from node to the r
		• -1 for the last row in the path sequence.
cost	FLOAT	Cost to traverse from node using edge to the next
		• 0 for the last row in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_pid to node.
		• 0 for the first row in the path sequence.

Examples

Example Left side driving topology with details.

Example Right side driving topology with heap paths and details.

```
SELECT * FROM pgr_withPointsKSP(
            'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
            'SELECT pid, edge_id, fraction, side from pointsOfInterest',
            -1, -2, 2,
heap_paths := true, driving_side := 'r', details := true);
         seq | path_id | path_seq | node | edge | cost | agg_cost
                   1 | 1 | -1 | 1 | 0.4 | 0
                   1 | 2 | 1 | 1 | 1 | 0.4
1 | 3 | 2 | 4 | 0.7 | 1.4
                                                      2.1
                                         4 | 0.3 |
                                         8 | 1 |
                                         9 |
                                               1 |
                                                        3.4
                                         15 | 0.4 |
                                         -1 | 0 |
1 | 0.4 |
1 | 1 |
4 | 0.7 |
                                                      0.4
                                                       1.4
                                         4 | 0.3 |
                                                       2.1
                                         8 | 1 |
11 | 1 |
                                                       2.4
                                                       3.4
                                         13 |
                                               1 |
                                                       4.4
                                         15 | 1 |
                                                       5.4
                                         15 | 0.4 |
                                                      6.4
                                         -1 | 0 |
                                                       6.8
                                         1 | 0.4 |
                                         1 | 1 |
                                                      0.4
                                         4 | 0.7 |
                                                        1.4
                                         4 | 0.3 |
                                                        2.1
                                         10 | 1 |
                                         12 | 0.6 |
                                                        3.4
                                         12 | 0.4 |
                                         13 | 1 |
                                                        4.4
                                         15 I
                                               1 |
                                                        5.4
                                         15 | 0.4 |
                                                        6.4
                                         -1 |
                                                0 |
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- genindex
- · search

pgr withPointsDD - Proposed

Name

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.12: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or equal to the value distance from the starting point. The edges extracted will conform the corresponding spanning tree.

Signature Summary

Signatures

Minimal Use

The minimal signature:

⁶¹ http://www.boost.org/libs/graph

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of the query.

```
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
    directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8);
seq | node | edge | cost | agg_cost
  --+----
  1 | -1 | -1 | 0 |
  0 . 1 | 1 | 0.4 | 0.4 | 0.4 | 3 | 2 | 1 | 0.6 | 0.6 | 0.6 | 4 | 5 | 0.6 |
  5 | 6 | 8 | 1 |
  6 | 8 | 7 | 1 |
7 | 10 | 10 | 1 |
                             2.6
                             2.6
  8 | 7 | 6 | 0.3 |
                             3.6
        9 |
              9 | 1 |
                             3.6
  9 |
 10 | 11 | 11 |
                             3.6
                     1 |
 11 | 13 | 14 | 1 |
                             3.6
(11 rows)
```

Driving distance from a single point

Finds the driving distance depending on the optional parameters setup.

```
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance,
    directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Example Right side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'r',
   details := true);
seq | node | edge | cost | agg_cost
                    0 |
       -1 | -1 |
                           0.4
       1 |
2 |
               1 | 0.4 |
  2 |
              1 |
                             1.4
  3 |
                    1 |
              4 | 0.7 |
                             2.1
       -6 |
  4 |
       5 |
              4 | 0.3 |
                             2.4
  5 |
       6 |
              8 |
                             3.4
                   1 |
  6 |
  7 |
       8 |
              7 |
                    1 |
                             3.4
  8 | 10 | 10 |
                    1 |
                             3.4
(8 rows)
```

Driving distance from many starting points

Finds the driving distance depending on the optional parameters setup.

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Description of the parameters of the signatures

Parameter	Туре	Description	
edges_sql	TEXT	Edges SQL query as described	
		above.	
points_sql	TEXT	Points SQL query as described	
		above.	
start_vid	ANY-INTEGER	Starting point id	
distance	ANY-NUMERICAL	Distance from the start_pid	
directed	BOOLEAN	(optional). When false the	
		graph is considered as Undirected.	
		Default is true which considers	
		the graph as Directed.	
driving_side	CHAR	(optional). Value in ['b', 'r', 'l', NU	LL] indicating i
		• In the right or left or	
		• If it doesn't matter	
		with 'b' or NULL.	
		• If column not present	
		'b' is considered.	
details	BOOLEAN	(optional). When true the results	
uctans	DOUBLIN	will include the driving distance to	
		the points with in the distance.	
		Default is false which ignores	
		other points of the points_sql.	
equicost	BOOLEAN	(optional). When true the nodes	
equicost		will only appear in the closest	
		start v list. Default is false	
		which resembles several calls us-	
		ing the single starting point signa-	
		tures. Tie brakes are arbitrary.	
		tures. The brakes are arbitrary.	

Description of the return values

Returns set of (seq, node, edge, cost, agg_cost)

Column	Туре	Description
seq	INT	row sequence.
node	BIGINT	Identifier of the node within the Distance from start_pid. If details =: true a negative value is the identifier of a point.
edge	BIGINT	Identifier of the edge used to go from node to the
		• -1 when start_vid = node.
cost	FLOAT	Cost to traverse edge. • 0 when start_vid = node.
agg_cost	FLOAT	Aggregate cost from start_vid to node.
		• 0 when start_vid = node.

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

Example Left side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := '1',
   details := true);
seq | node | edge | cost | agg_cost
        -1 | -1 | 0 |
        2 | 1 | 0.6 |
                             0.6
  2 |
       -6 |
              4 | 0.7 |
4 | 0.3 |
  3 |
                             1.3
        5 |
        1 |
               1 |
  5 |
                    1 |
       6 |
                     1 |
  6 |
              8 |
                              2.6
        8 |
               7 |
                     1 |
  7 |
                             2.6
                    1 |
             10 |
  8 |
       10 |
                             2.6
       -3 |
             12 | 0.6 |
  9 |
                             3.2
       -4 |
              6 | 0.7 |
 10 |
                             3.3
 11 |
        7 |
              6 | 0.3 |
                             3.6
 12 |
        9 |
              9 | 1 |
                             3.6
 13 | 11 | 11 |
                    1 |
                              3.6
 14 | 13 | 14 |
                    1 |
                              3.6
(14 rows)
```

Example Does not matter driving side.

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'b',
   details := true);
seq | node | edge | cost | agg_cost
      -1 | -1 | 0 |
  1 |
     1 | 1 | 0.4 |
  2 |
                           0.4
  3 | 2 |
             1 | 0.6 |
                           0.6
  4 | -6 | 4 | 0.7 |
  5 | 5 | 4 | 0.3 |
  6 | 6 | 8 | 1 |
       8 |
             7 | 1 |
  7 |
  8 | 10 | 10 | 1 |
                           2.6
       -3 | 12 | 0.6 |
  9 |
 10 |
       -4 | 6 | 0.7 |
                            3.3
 10 | . .
11 | 7 |
12 | 9 |
             6 | 0.3 |
                            3.6
             9 | 1 |
                            3.6
 13 | 11 | 11 | 1 |
                            3.6
 14 |
       13 |
             14 |
                    1 |
(14 rows)
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

- pgr_drivingDistance Driving distance using dijkstra.
- pgr_alphaShape Alpha shape computation.
- pgr_pointsAsPolygon Polygon around set of points.

Indices and tables

- genindex
- · search

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.

- Documentation might need refinement.

Images

The squared vertices are the temporary vertices, The temporary vertices are added according to the driving side, The following images visually show the differences on how depending on the driving side the data is interpreted.

Right driving side

Left driving side

doesn't matter the driving side

Introduction

This family of functions was thought for routing vehicles, but might as well work for some other application that we can not think of.

The with points family of function give you the ability to route between arbitrary points located outside the original graph.

When given a point identified with a *pid* that its being mapped to and edge with an identifier *edge_id*, with a *fraction* along that edge (from the source to the target of the edge) and some additional information about which *side* of the edge the point is on, then routing from arbitrary points more accurately reflect routing vehicles in road networks.

I talk about a family of functions because it includes different functionalities.

- pgr_withPoints is pgr_dijkstra based
- pgr_withPointsCost is pgr_dijkstraCost based
- pgr_withPointsKSP is pgr_ksp based
- pgr_withPointsDD is pgr_drivingDistance based

In all this functions we have to take care of as many aspects as possible:

- Must work for routing:
 - Cars (directed graph)
 - Pedestrians (undirected graph)
- Arriving at the point:

- In either side of the street.
- Compulsory arrival on the side of the street where the point is located.
- Countries with:
 - Right side driving
 - Left side driving
- Some points are:
 - Permanent, for example the set of points of clients stored in a table in the data base
 - Temporal, for example points given through a web application
- The numbering of the points are handled with negative sign.
 - Original point identifiers are to be positive.
 - Transformation to negative is done internally.
 - For results for involving vertices identifiers
 - * positive sign is a vertex of the original graph
 - * negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the same number as identifier as the points identifier.

Graph & edges

- Let $G_d(V, E)$ where V is the set of vertices and E is the set of edges be the original directed graph.
 - An edge of the original edges_sql is (id, source, target, cost, reverse_cost) will generate internally
 - * (id, source, target, cost)
 - $* (id, target, source, reverse_cost)$

Point Definition

- A point is defined by the quadruplet: (pid, eid, fraction, side)
 - **pid** is the point identifier
 - eid is an edge id of the edges_sql
 - **fraction** represents where the edge *eid* will be cut.
 - side Indicates the side of the edge where the point is located.

Creating Temporary Vertices in the Graph

For edge (15, 9,12 10, 20), & lets insert point (2, 12, 0.3, r)

On a right hand side driving network

From first image above:

- We can arrive to the point only via vertex 9.
- It only affects the edge (15, 9,12, 10) so that edge is removed.
- Edge (15, 12,9, 20) is kept.
- Create new edges:

- (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
- (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

On a left hand side driving network

From second image above:

- We can arrive to the point only via vertex 12.
- It only affects the edge (15, 12,9 20) so that edge is removed.
- Edge (15, 9,12, 10) is kept.
- Create new edges:
 - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
 - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember that fraction is from vertex 9 to vertex 12

When driving side does not matter

From third image above:

- We can arrive to the point either via vertex 12 or via vertex 9
- Edge (15, 12,9 20) is removed.
- Edge (15, 9,12, 10) is removed.
- Create new edges:
 - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
 - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6
 - (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
 - (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

See Also

Indices and tables

- genindex
- search

6.1.5 Cost - Category

- $\bullet \ pgr_aStarCost-proposed$
- pgr_bdAstarCost Proposed
- pgr_bdDijkstraCost Proposed
- pgr_dijkstraCost
- pgr_withPointsCost Proposed

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

General Information

Characteristics

The main Characteristics are:

- Each function works as part of the family it belongs to.
- It does not return a path.
- Returns the sum of the costs of the resulting path(s) for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost int the non included values (v, v) is 0.
 - When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* or in *end_vids* are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

See Also

Indices and tables

- genindex
- · search

6.1.6 Cost Matrix - Category

- pgr_aStarCostMatrix proposed
- pgr_bdAstarCostMatrix proposed
- pgr_bdDijkstraCostMatrix proposed
- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

General Information

Synopsis

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value ∞ .

This collection of functions will return a cost matrix in form of a table.

Characteristics

The main Characteristics are:

- Can be used as input to *pgr_TSP*.
 - **directly** when the resulting matrix is symmetric and there is no ∞ value.
 - It will be the users responsibility to make the matrix symmetric.
 - * By using geometric or harmonic average of the non symmetric values.
 - * By using max or min the non symmetric values.
 - * By setting the upper triangle to be the mirror image of the lower triangle.
 - * By setting the lower triangle to be the mirror image of the upper triangle.
 - It is also the users responsibility to fix an ∞ value.
- Each function works as part of the family it belongs to.
- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.

- The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
- When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost int the non included values (v, v) is 0.
- When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: approximately $O(|start_vids| * (V \log V + E))$

See Also

• pgr_TSP

Indices and tables

- genindex
- search

6.1.7 KSP Category

- pgr_KSP Driving Distance based on pgr_dijkstra
- pgr_withPointsKSP Proposed Driving Distance based on pgr_dijkstra

Indices and tables

- genindex
- search

6.2 Experimental Functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.

- Signature might change.
- Functionality might change.
- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Contraction - Family of functions - Reduce network size using contraction techniques

• pgr_contractGraph - Experimental - Reduce network size using contraction techniques

Graph Analysis

• pgr_labelGraph - Experimental - Analyze / label subgraphs within a network

Components - Family of functions - Analyze components within a graph

- pgr_connectedComponents Experimental Return the connected components of an undirected graph
- pgr_strongComponents Experimental Return the strongly connected components of a directed graph
- pgr_biconnectedComponents Experimental Return the biconnected components of an undirected graph
- pgr_articulationPoints Experimental Return the articulation points of an undirected graph
- pgr_bridges Experimental Return the bridges of an undirected graph

VRP

- pgr_gsoc_vrppdtw Experimental
- pgr_vrpOneDepot Experimental

6.2.1 Contraction - Family of functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.

- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

pgr_contractGraph - Experimental

pgr_contractGraph - Experimental

pgr_contractGraph — Performs graph contraction and returns the contracted vertices and edges.

Fig. 6.13: Boost Graph Inside

Availability: 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

 $^{^{62}\} http://www.boost.org/libs/graph$

Synopsis

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- There are two types of contraction methods used namely,
 - Dead End Contraction
 - Linear Contraction
- The values returned include the added edges and contracted vertices.
- The returned values are ordered as follows:
 - column *id* ascending when type = v
 - column id descending when type = e

Signature Summary:

The pgr_contractGraph function has the following signatures:

```
pgr_contractGraph(edges_sql, contraction_order)
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices,_
directed)

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)
```

Signatures

Minimal signature

```
pgr_contractGraph(edges_sql, contraction_order)
```

Example Making a dead end contraction and a linear contraction.

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[1, 2]);
seq | type | id | contracted_vertices | source | target | cost
  1 | v | 5 | {7,8}
                                              -1 I
                                                    -1
                                      -1 |
                                              -1 |
        | 15 | {14}
                                      -1 |
  2 | v
                                -1
                                      -1 |
                                              -1 | -1
  3 | v
        | 17 | {16}
                                4 | e
        | -1 | \{1, 2\}
                                       3 |
                                               5 | 2
                                9 |
                                               3 |
  5 | e
        | -2 | {4}
                                5 |
                                              11 |
                                                    2
  6 | e
        | -3 | \{10, 13\}
  7 | e
         | -4 | {12}
                                 11 |
(7 rows)
```

Complete signature

```
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, _ 
→directed)
```

Example Making a dead end contraction and a linear contraction and vertex 2 is forbidden from contraction

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost
                                               -1 | -1
  1 | v | 2 | {1}
                                       -1 |
  2 | v | 5 | {7,8}
                                 -1 |
                                               -1 | -1
        | 15 | {14}
  3 | v
                                 - 1
                                       -1 |
                                               -1 |
                                                     -1
        | 17 | {16}
                                       -1 |
                                 -1 | -1
  4 | v
        | -1 | {4}
                                        9 |
  5 | e
                                 3 | 2
        | -2 | {10,13}
| -3 | {12}
                                               11 |
                                        5 |
  6 | e
                                  7 | e
                                       11 |
                                               9 |
(7 rows)
```

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Description
edges_sql	TEXT	SQL query as described above.
contraction_order	ARRAY[ANY-INTEGER]	Ordered contraction operations.
		 1 = Dead end contraction 2 = Linear contraction
forbidden_vertices	ARRAY[ANY-INTEGER]	(optional). Identifiers of vertices forbidden from contraction. Default is an empty array.
max_cycles	INTEGER	(optional). Number of times the contraction operations on <i>contraction_order</i> will be performed. Default is 1.
directed	BOOLEAN	 When true the graph is considered as <i>Directed</i>. When false the graph is considered as <i>Undirected</i>.

Description of the return values

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
type	TEXT	Type of the <i>id</i> . • 'v' when <i>id</i> is an identifier of a vertex. • 'e' when <i>id</i> is an identifier of an edge.
id	BIGINT	Identifier of: • the vertex when type = 'v'. - The vertex belongs to the edge_table passed as a parameter. • the edge when type = 'e'. - The id is a decreasing sequence starting from -1. - Representing a pseudo id as is not incorporated into the edge_table.
contracted_vertices	ARRAY[BIGINT]	Array of contracted vertex identifiers.
source	BIGINT	Identifier of the source vertex of the current edge <i>id</i> . Valid values when <i>type</i> = 'e'.
target	BIGINT	Identifier of the target vertex of the current edge <i>id</i> . Valid values when $type = 'e'$.
cost	FLOAT	Weight of the edge (source, target). Valid values when type = 'e'.

Examples

Example Only dead end contraction

Example Only linear contraction

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost
  1 | e | -1 | {4}
                                          9 |
                                                     3 |
                                    | -2 | {8}
| -3 | {8}
                                                     7 |
  2 | e
                                            5 |
                                                           2
                                    3 | e
                                           7 |
                                                     5 |
                                                          2.
                                     4 | e
         | -4 | {12}
                                           11 |
                                                     9 1
(4 rows)
```

Indices and tables

- · genindex
- · search

Introduction

In big graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two algorithms:

- 1. Dead end contraction
- 2. Linear contraction

Allowing the user to:

- Forbid contraction on a set of nodes.
- Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Note: UNDER DISCUSSION: Forbid contraction on a set of edges

Dead end contraction

In the algorithm, dead end contraction is represented by 1.

Dead end nodes

The definition of a dead end node is different for a directed and an undirected graph.

In case of a undirected graph, a node is considered a dead end node if

• The number of adjacent vertices is 1.

In case of an directed graph, a node is considered a dead end node if

- There are no outgoing edges and has at least one incoming edge.
- There is one incoming and one outgoing edge with the same identifier.

Examples

- The green node B represents a dead end node
- The node A is the only node connecting to B.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- · Directed graph

Operation: Dead End Contraction

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- \bullet Node B is connected to the rest of the graph with one incoming edge.
- Node B is the only node connecting to C.
- The green node C represents a $Dead\ End$ node

After contracting C, node B is now a *Dead End* node and is contracted:

Node $\ensuremath{\mathsf{B}}$ gets contracted

Nodes $\ensuremath{\mathsf{B}}$ and $\ensuremath{\mathsf{C}}$ belong to node $\ensuremath{\mathsf{A}}$.

Not Dead End nodes

In this graph B is not a *dead end* node.

Linear contraction

In the algorithm, linear contraction is represented by 2.

Linear nodes

A node is considered a linear node if satisfies the following:

- The number of adjacent vertices are 2.
- Should have at least one incoming edge and one outgoing edge.

Examples

- The green node B represents a linear node
- The nodes $\mathbb A$ and $\mathbb C$ are the only nodes connecting to $\mathbb B$.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- Node C is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.

· Directed graph

Operation: Linear Contraction

The linear contraction will stop until there are no more linear nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- Node B is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node C is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node D is connected to the rest of the graph by an unlimited number of edges.
- The green nodes $\ensuremath{\mathsf{B}}$ and $\ensuremath{\mathsf{C}}$ represents $\ensuremath{\mathit{Linear}}$ nodes.

After contracting B, a new edge gets inserted between A and C which is represented by red color.

Node \mathbb{C} is *linear node* and gets contracted.

Nodes B and C belong to edge connecting A and D which is represented by red color.

Not Linear nodes

In this graph $\[Bar{B}$ is not a *linear* node.

The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, cycles max_cycles times through operations_order.

```
<input>
do max_cycles times {
   for (operation in operations_order)
      { do operation }
}
```

Contracting Sample Data

In this section, building and using a contracted graph will be shown by example.

- The Sample Data for an undirected graph is used
- a dead end operation first followed by a linear operation.

The original graph:

After doing a dead end contraction operation:

Doing a linear contraction operation to the graph above

There are five cases, in this documentation, which arise when calculating the shortest path between a given source and target. In this examples, pgr_dijkstra is used.

- Case 1: Both source and target belong to the contracted graph.
- Case 2: Source belongs to a contracted graph, while target belongs to a edge subgraph.
- Case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.
- Case 4: Source belongs to a contracted graph, while target belongs to an vertex subgraph.
- Case 5: The path contains a new edge added by the contraction algorithm.

Construction of the graph in the database

Original Data

The following query shows the original data involved in the contraction operation.

Contraction Results

```
| 15 | {14}
  2 | v
                                             -1 |
                                            -1 |
                                                     -1 |
  3 | v
           | 17 | {16}
                                                             -1
                                       3 |
  4 | e
           |-1|\{1,2\}
                                                      5 |
                                                             2
                                      5 | e
           | -2 | {4}
                                             9 |
                                                      3 |
                                                              2
                                             5 |
           | -3 | \{10, 13\}
  6 | e
                                                      11 |
  7 | e
           | -4 | {12}
                                                      9 |
                                            11 |
                                                              2
(7 rows)
```

The above results do not represent the contracted graph. They represent the changes done to the graph after applying the contraction algorithm. We can see that vertices like 6 and 11 do not appear in the contraction results because they were not affected by the contraction algorithm.

step 1

Adding extra columns to the edge_table and edge_table_vertices_pgr tables:

Column	Description
con-	The vertices set belonging to the vertex/edge
tracted_vertices	
is_contracted	On a <i>vertex</i> table: when true the vertex is contracted, so is not part of the contracted
	graph.
is_contracted	On an <i>edge</i> table: when true the edge was generated by the contraction algorithm.

Using the following queries:

```
ALTER TABLE edge_table ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
SET client_min_messages TO NOTICE;
SET
```

step 2

For simplicity, in this documentation, store the results of the call to pgr_contractGraph in a temporary table

```
SELECT * INTO contraction_results
FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   array[1,2], directed:=true);
SELECT 7
```

step 3

Update the *vertex* and *edge* tables using the results of the call to pgr_contraction

• In edge_table_vertices_pgr.is_contracted indicate the vertices that are contracted.

```
UPDATE edge_table_vertices_pgr
SET is_contracted = true
```

```
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10
```

• Add to edge_table_vertices_pgr.contracted_vertices the contracted vertices belonging to the vertices.

```
UPDATE edge_table_vertices_pgr

SET contracted_vertices = contraction_results.contracted_vertices

FROM contraction_results

WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;

UPDATE 3
```

• Insert the new edges generated by pgr_contractGraph.

step 3.1

Verify visually the updates.

• On the *edge_table_vertices_pgr*

```
SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr
ORDER BY id;
id | contracted_vertices | is_contracted
 1 |
                          | t
 2 |
                          | t
 3 |
                          l f
 4 |
                          Ιt
 5 | {7,8}
                          | f
 6 |
                          | f
 7 |
 8 |
 9 |
                          | f
10 |
                          | t
11 |
                          | f
12 |
                          | t
13 |
                          Ιt
14 |
                          Ιt
15 | {14}
                          | f
16 |
                         | t
17 | {16}
(17 rows)
```

• On the edge_table

```
SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_contracted
FROM edge_table
ORDER BY id;
id | source | target | cost | reverse_cost | contracted_vertices | is_contracted
1 |
        1 |
                2 | 1 |
                                    1 |
                                                           | f
 2 |
        2 |
                3 | -1 |
                                    1 |
                                                           | f
 3 |
                4 | -1 |
                                    1 |
                                                          | f
```

```
2 |
                  5 I
 5 |
          3 |
                  6 |
                         1 |
                                       -1 |
                                                              | f
         7 |
 6
                  8 |
                         1 |
                                       1 |
                                                              | f
 7 |
                                       1 |
         8 |
                  5 |
                         1 |
                                                              | f
                  6 |
 8 |
         5 |
                                       1 |
                         1 |
                                                              | f
 9 |
         6 |
                  9 |
                        1 |
                                       1 |
                                                              l f
10 |
         5 |
                 10 |
                        1 |
                                       1 |
                                                                f
                 11 |
11 |
         6 |
                        1 |
                                      -1 |
                                                              l f
12 I
        10 I
                 11 |
                        1 |
                                      -1 |
                                                              l f
13 |
        11 |
                 12 |
                        1 |
                                      -1 |
                                                              | f
        10 |
14 |
                 13 |
                        1 |
                                      1 |
                                                              | f
15 |
         9 |
                 12 |
                        1 |
                                      1 |
                                                              l f
                        1 |
16 |
         4 |
                 9 |
                                      1 |
                                                              l f
                15 |
17 |
        14 |
                        1 |
                                      1 |
                                                              | f
18 |
        16 |
                17 |
                        1 |
                                      1 |
                                                              | f
         3 |
                5 |
                        2 |
                                      -1 \mid \{1, 2\}
19 |
                                                              | t
20 |
         9 |
                 3 |
                        2 |
                                      -1 \mid \{4\}
                                                              | t
               11 |
21 |
         5 |
                        2 |
                                      -1 \mid \{10, 13\}
                                                              Ιt
22 |
         11 |
                  9 |
                         2 |
                                      -1 | {12}
                                                              Ιt
(22 rows)
```

• vertices that belong to the contracted graph are the non contracted vertices

```
SELECT id FROM edge_table_vertices_pgr
WHERE is_contracted = false
ORDER BY id;
id
----
3
5
6
9
11
15
17
(7 rows)
```

case 1: Both source and target belong to the contracted graph.

Inspecting the contracted graph above, vertex 3 and vertex 11 are part of the contracted graph. In the following query:

- vertices_in_graph hold the vertices that belong to the contracted graph.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 11: $3 \rightarrow 6 \rightarrow 11$, and in the contracted graph, it is also $3 \rightarrow 6 \rightarrow 11$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
    $$
WITH
    vertices_in_graph AS (
        SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false)
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
```

```
3, 11, false);
seq | path_seq | node | edge | cost | agg_cost
 ---+-----
        1 |
                       1 |
              3 |
                   5 |
                                 0
 1 |
         2 |
             6 |
                        1 |
                  11 |
 2 |
                                 1
                       0 |
         3 |
             11 | -1 |
                                 2
 3 |
(3 rows)
```

case 2: Source belongs to the contracted graph, while target belongs to a edge subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 1 belongs to the contracted subgraph

- expand1 holds the contracted vertices of the edge where vertex 1 belongs. (belongs to edge 19).
- vertices_in_graph hold the vertices that belong to the contracted graph and also the contracted vertices of edge 19.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 1: $3 \rightarrow 2 \rightarrow 1$, and in the contracted graph, it is also $3 \rightarrow 2 \rightarrow 1$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   $$
   WITH
   expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_
→table),
   expand1 AS (SELECT contracted_vertices FROM edge_table
       WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 1)),
   vertices_in_graph AS (
       SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
       SELECT unnest(contracted_vertices) FROM expand1)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   $$,
   3, 1, false);
seq | path_seq | node | edge | cost | agg_cost
            1 | 3 | 2 | 1 |
  2 |
            2 | 2 |
                         1 |
                                 1 |
                                            1
  3 |
            3 |
                   1 | -1 |
                                 0 |
(3 rows)
```

case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.

Inspecting the contracted graph above, vertex 7 belongs to the contracted subgraph of vertex 5 and vertex 13 belongs to the contracted subgraph of edge 21. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- expand13 holds the contracted vertices of edge where vertex 13 belongs. (belongs to edge 21)

- vertices_in_graph hold the vertices that belong to the contracted graph, contracted vertices of vertex 5 and contracted vertices of edge 21.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 7 to 13: 7 -> 8 -> 5 -> 10 -> 13, and in the contracted graph, it is also 7 -> 8 -> 5 -> 10 -> 13. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   $$
   WITH
   expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_
→table_vertices_pqr),
   expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
      WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
   expand edges AS (SELECT id, unnest (contracted vertices) AS vertex FROM edge_
→table).
   expand13 AS (SELECT contracted vertices FROM edge table
       WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 13)),
   vertices_in_graph AS (
       SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
       UNION
       SELECT unnest (contracted_vertices) FROM expand13
       UNTON
       SELECT unnest(contracted_vertices) FROM expand7)
   SELECT id, source, target, cost, reverse_cost
   FROM edge table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   7, 13, false);
seq | path_seq | node | edge | cost | agg_cost
  __+____
  1 | 7 | 6 | 1 |
                                         Ω
  2 |
           2 | 8 |
                        7 | 1 |
                                          1
           3 |
  3 |
                  5 | 10 | 1 |
  4 |
            4 | 10 | 14 |
                               1 |
                                          3
           5 | 13 | -1 |
                               0 |
(5 rows)
```

case 4: Source belongs to the contracted graph, while target belongs to an vertex subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 7 belongs to the contracted subgraph of vertex 5. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- vertices_in_graph hold the vertices that belong to the contracted graph and the contracted vertices of vertex 5.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3 -> 2 -> 5 -> 8 -> 7, but in the contracted graph, it is 3 -> 5 -> 8 -> 7. The results, on the contracted graph do not match the results as if it was done on the original graph. This is because the path contains edge 19 which is added by the contraction algorithm.

```
SELECT * FROM pgr_dijkstra(
   WITH
   expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_
→table_vertices_pgr),
   expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
       WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
   vertices_in_graph AS (
       SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
       UNTON
       SELECT unnest (contracted vertices) FROM expand7)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   3, 7, false);
seq | path_seq | node | edge | cost | agg_cost
              --+----
                   3 | 19 |
             1 |
                                  2 |
  1 1
            2 | 5 | 7 | 3 | 8 | 6 |
                                  1 |
  2. 1
  3 |
                                  1 |
  4 1
             4 |
                    7 |
                         -1 |
                                  0 1
(4 rows)
```

case 5: The path contains an edge added by the contraction algorithm.

In the previous example we can see that the path from vertex 3 to vertex 7 contains an edge which is added by the contraction algorithm.

```
WITH
first_dijkstra AS (
    SELECT * FROM pgr_dijkstra(
       $$
       WITH
       expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM_
→edge_table_vertices_pgr),
       expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
            WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
        vertices_in_graph AS (
            SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
            UNION
            SELECT unnest(contracted_vertices) FROM expand7)
        SELECT id, source, target, cost, reverse_cost
       FROM edge_table
       WHERE source IN (SELECT * FROM vertices_in_graph)
       AND target IN (SELECT * FROM vertices_in_graph)
       $$,
       3, 7, false))
SELECT edge, contracted_vertices
   FROM first_dijkstra JOIN edge_table
    ON (edge = id)
   WHERE is_contracted = true;
edge | contracted_vertices
  19 | {1,2}
(1 row)
```

Inspecting the contracted graph above, edge 19 should be expanded. In the following query:

- first_dijkstra holds the results of the dijkstra query.
- edges_to_expand holds the edges added by the contraction algorithm and included in the path.
- vertices_in_graph hold the vertices that belong to the contracted graph, vertices of the contracted solution and the contracted vertices of the edges added by the contraction algorithm and included in the contracted solution.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$, and in the contracted graph, it is also $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra($$
   WITH
   -- This returns the results from case 2
   first_dijkstra AS (
       SELECT * FROM pgr_dijkstra(
           WITH
           expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex_
→FROM edge_table_vertices_pgr),
           expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
               WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
           vertices in graph AS (
               SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
               SELECT unnest (contracted_vertices) FROM expand7)
           SELECT id, source, target, cost, reverse_cost
           FROM edge_table
           WHERE source IN (SELECT * FROM vertices_in_graph)
           AND target IN (SELECT * FROM vertices_in_graph)
           3, 7, false)),
   -- edges that need expansion and the vertices to be expanded.
   edges_to_expand AS (
       SELECT edge, contracted_vertices
       FROM first_dijkstra JOIN edge_table
       ON (edge = id)
       WHERE is_contracted = true),
   vertices_in_graph AS (
       -- the nodes of the contracted solution
       SELECT node FROM first_dijkstra
       UNION
       -- the nodes of the expanding sections
       SELECT unnest (contracted_vertices) FROM edges_to_expand)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   -- not including the expanded edges
   AND id NOT IN (SELECT edge FROM edges_to_expand)
   $$,
   3, 7, false);
seq | path_seq | node | edge | cost | agg_cost
           ----+----+----+-----+-----
       1 |
                 3 | 2 | 1 |
                                           0
  1 |
                          4 | 1 |
                   2 |
  2 |
             2 |
                                             1
                  5 |
                          7 |
                                 1 |
  3 |
             3 I
                                             2
```

4	4	8	6	1	3
5	5	7	-1	0	4
(5 rows)					

See Also

- http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
- http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
- The queries use pgr_contractGraph Experimental function and the Sample Data network.

Indices and tables

- · genindex
- · search

6.2.2 Flow - Family of functions

- pgr_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

pgr_maxFlow - Proposed

Synopsis

pgr_maxFlow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel algorithm.

Fig. 6.14: Boost Graph Inside

Availability: 2.4.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

- The graph is directed.
- When the maximum flow is 0 then there is no flow and **0** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Uses the *pgr_pushRelabel* algorithm.
- Running time: $O(V^3)$

⁶³ http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

Signature Summary

```
pgr_maxFlow(edges_sql, source, target)
pgr_maxFlow(edges_sql, sources, target)
pgr_maxFlow(edges_sql, source, targets)
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

One to One

Calculates the maximum flow from the *source* to the *target*.

```
pgr_maxFlow(edges_sql, source, target)
RETURNS BIGINT
```

Example

One to Many

Calculates the maximum flow from the *source* to all of the *targets*.

```
pgr_maxFlow(edges_sql, source, targets)
RETURNS BIGINT
```

Example

Many to One

Calculates the maximum flow from all the *sources* to the *target*.

```
pgr_maxFlow(edges_sql, sources, target)
RETURNS BIGINT
```

Example

Many to Many

Calculates the maximum flow from all of the *sources* to all of the *targets*.

```
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

Example

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
capacity	ANY-INTEGER		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (tar-
			get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description	
edges_sql	TEXT		The edges SQL query as described above.	
source	BIGINT		Identifier of the starting vertex of the flow.	
sources	ARRAY[BIGINT]		Array of identifiers of the starting vertices of the flow.	
target	BIGINT		Identifier of the ending vertex of the flow.	
targets	ARRAY[BIGINT]		Array of identifiers of the ending vertices of the flow.	

Description of the return value

Type	Description
BIGINT	Maximum flow possible from the source(s) to the target(s)

See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
- $\bullet\ https://en.wikipedia.org/wiki/Push\%E2\%80\%93relabel_maximum_flow_algorithm$

Indices and tables

- genindex
- · search

pgr_pushRelabel - Proposed

Synopsis

 $pgr_pushRelabel$ — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

Fig. 6.15: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowPushRelabel
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

• The graph is directed.

⁶⁴ http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: $O(V^3)$

Signature Summary

```
pgr_pushRelabel(edges_sql, source, target) - Proposed
pgr_pushRelabel(edges_sql, sources, target) - Proposed
pgr_pushRelabel(edges_sql, source, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One

Calculates the flow on the graph edges that maximizes the flow from the source to the target.

```
pgr_pushRelabel(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
   'SELECT id,
            source,
            target,
            capacity,
            reverse_capacity
   FROM edge_table'
    , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
                5 | 10 | 100 |
6 | 5 | 100 |
6 | 11 | 130 |
   1 |
       10 |
                                                             30
         8 |
                                                            30
   2 |
   3 | 11 |
                                                             0
       12 |
                    10 |
                              11 | 100 |
                                                              0
  4 |
(4 rows)
```

One to Many

Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_pushRelabel(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
   'SELECT id,
         source,
         target,
         capacity,
         reverse_capacity
   FROM edge_table'
   , 6, ARRAY[11, 1, 13]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
____+
       1 | 2 | 1 | 130 |
2 | 3 | 2 | 80 |
  1 |
                                                 0
      2 |
                                                20
  2 |
       3 |
                          3 | 80 |
                 4 |
                                                50
  3 |
  4 | 4 |
                 5 |
                          2 | 50 |
                                                 0
  5 |
       7 |
                 5 |
                          8 | 50 |
                                                80
                 5 | 10 | 80 |
6 | 5 | 130 |
  6 | 10 |
7 | 8 |
                                                50
  8 |
       9 |
                 6 |
                          9 | 80 |
                                                50
               6 | 9 | 80 |
6 | 11 | 130 |
7 | 8 | 50 |
8 | 7 | 50 |
 9 | 11 | 10 | 6 |
                                                 0
                                                 0
                                                50
 11 | 6 |
                8 |
       7 |
 12 |
                         5 | 50 |
                                                 0
                 9 |
 13 | 16 |
                          4 | 80 |
                                                 0
                10 | 11 | 80 |
 14 | 12 |
                                                 20
(14 rows)
```

Many to One

Calculates the flow on the graph edges that maximizes the flow from all of the sources to the target.

```
pgr_pushRelabel(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
   'SELECT id,
          source,
          target,
          capacity,
          reverse_capacity
   FROM edge_table'
   , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  1 | 10 | 5 | 10 | 100 |
                                                    30
  2 | 8 |
                  6 |
                           5 | 100 |
                                                   30
```

```
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)
```

Many to Many

Calculates the flow on the graph edges that maximizes the flow from all of the sources to all of the targets.

```
pgr_pushRelabel(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
       'SELECT id,
                     source,
                      target,
                     capacity,
                     reverse_capacity
       FROM edge_table'
       , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity

      1 | 1 | 2 | 1 | 50 |

      2 | 3 | 4 | 3 | 80 |

      3 | 4 | 5 | 2 | 50 |

      4 | 10 | 5 | 10 | 100 |

      5 | 8 | 6 | 5 | 130 |

      6 | 9 | 6 | 9 | 30 |

      7 | 11 | 6 | 11 | 130 |

      8 | 7 | 8 | 5 | 20 |

      9 | 16 | 9 | 4 | 80 |

                                                                                                           80
                                                                                                           50
                                                                                                             0
                                                                                                           30
                                                                                                          100
                                                                                                            0
                                                                                                           30
                                    9 | 4 | 80 |
10 | 11 | 100 |
12 | 9 | 50 |
    9 | 16 |
                                                                                                            0
                                                          4 | 80 |
   10 | 12 |
                                                                                                              0
   11 | 15 |
(11 rows)
```

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description	
edges_sql	TEXT		The edges SQL query as described above.	
source	BIGINT		Identifier of the starting vertex of the flow.	
sources	ARRAY[BIGINT]		Array of identifiers of the starting vertices of the flow.	
target	BIGINT		Identifier of the ending vertex of the flow.	
targets	ARRAY[BIGINT]		Array of identifiers of the ending vertices of the flow.	

Description of the Return Values

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point vertex of the edge.	
target	BIGINT	Identifier of the second end point vertex of the edge.	
flow	BIGINT	Flow through the edge in the direction (source, target).	
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, target).	

See Also

- Flow Family of functions, pgr_boykovKolmogorov, pgr_edmondsKarp
- $\bullet \ http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html$

• https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

- genindex
- · search

pgr_edmondsKarp - Proposed

Synopsis

pgr_edmondsKarp — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

Fig. 6.16: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowEdmondsKarp
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

 $^{^{65}\} http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html$

Characteristics

- The graph is directed.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: $O(V * E^2)$

Signature Summary

```
pgr_edmondsKarp(edges_sql, source, target) - Proposed
pgr_edmondsKarp(edges_sql, sources, target) - Proposed
pgr_edmondsKarp(edges_sql, source, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One

Calculates the flow on the graph edges that maximizes the flow from the source to the target.

```
pgr_edmondsKarp(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
           source,
           target,
           capacity,
           reverse_capacity
   FROM edge_table'
   , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
                5 | 10 | 100 |
6 | 5 | 100 |
        10 |
                                                          30
         8 |
                                                          30
  2 |
                     6 |
10 |
        11 |
  3 |
                              11 |
                                     130 |
                                                           0
  4 |
        12 |
                    10 |
                              11 | 100 |
                                                           0
```

```
(4 rows)
```

One to Many

Calculates the flow on the graph edges that maximizes the flow from the source to all of the targets.

```
pgr_edmondsKarp(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edmondsKarp(
      'SELECT id,
                  source,
                  target,
                  capacity,
                  reverse_capacity
     FROM edge_table'
    , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 80 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 80 |
7 | 11 | 6 | 11 | 130 |
8 | 16 | 9 | 4 | 80 |
9 | 12 | 10 | 11 | 80 |
                                                                                          80
                                                                                          50
                                                                                            0
                                                                                           50
                                                                                            0
                                                                                           50
                                                                                           0
                                                                                            0
                                                                                            20
(9 rows)
```

Many to One

Calculates the flow on the graph edges that maximizes the flow from all of the sources to the target.

```
pgr_edmondsKarp(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)
```

Many to Many

Calculates the flow on the graph edges that maximizes the flow from all of the sources to all of the targets.

```
pgr_edmondsKarp(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edmondsKarp(
      'SELECT id,
                   source,
                   target,
                   capacity,
                   reverse_capacity
     FROM edge_table'
    , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 100 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 80 |
7 | 11 | 6 | 11 | 130 |
8 | 7 | 8 | 5 | 20 |
9 | 16 | 9 | 4 | 80 |
10 | 12 | 10 | 11 | 100 |
                                                                                               80
                                                                                               50
                                                                                                0
                                                                                               30
                                                                                               50
                                                                                                0
                                                                                                30
                                                                                                0
                                                                                                 0
(10 rows)
```

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
capacity	ANY-INTEGER		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (tar-
			get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description
edges_sql	TEXT		The edges SQL query as described above.
source	BIGINT		Identifier of the starting vertex of the flow.
sources	ARRAY[BIGINT]		Array of identifiers of the starting vertices of the flow.
target	BIGINT		Identifier of the ending vertex of the flow.
targets	ARRAY[BIGINT]		Array of identifiers of the ending vertices of the flow.

Description of the Return Values

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point vertex of the edge.	
target	BIGINT	Identifier of the second end point vertex of the edge.	
flow	BIGINT	Flow through the edge in the direction (source, target).	
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, target).	

See Also

- $\bullet \ \ Flow \ \ Family \ of functions, pgr_boykov Kolmogorov, pgr_Push Relabel$
- http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html

• https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

- genindex
- · search

pgr_boykovKolmogorov - Proposed

Synopsis

pgr_boykovKolmogorov — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Boykov Kolmogorov algorithm.

Fig. 6.17: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowBoykovKolmogorov
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

 $^{^{66}~\}rm http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html$

Characteristics

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: Polynomial

Signature Summary

```
pgr_boykovKolmogorov(edges_sql, source, target) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, target) - Proposed
pgr_boykovKolmogorov(edges_sql, source, targets) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One

Calculates the flow on the graph edges that maximizes the flow from the source to the target.

```
pgr_boykovKolmogorov(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
    'SELECT id,
           source,
           target,
           capacity,
           reverse_capacity
   FROM edge_table'
   , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
               5 | 10 | 100 |
6 | 5 | 100 |
                                                           30
       10 I
        8 | 11 |
                                                           30
  2 |
                     6 |
10 |
  3 |
                               11 |
                                     130 |
                                                            0
  4 |
        12 |
                    10 |
                               11 | 100 |
                                                            0
```

```
(4 rows)
```

One to Many

Calculates the flow on the graph edges that maximizes the flow from the source to all of the targets.

```
pgr_boykovKolmogorov(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_boykovKolmogorov(
     'SELECT id,
                  source,
                  target,
                  capacity,
                  reverse_capacity
     FROM edge_table'
     , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 80 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 80 |
7 | 11 | 6 | 11 | 130 |
8 | 16 | 9 | 4 | 80 |
9 | 12 | 10 | 11 | 80 |
                                                                                          80
                                                                                          50
                                                                                           0
                                                                                          50
                                                                                           0
                                                                                          50
                                                                                          0
                                                                                           0
                                                                                           20
(9 rows)
```

Many to One

Calculates the flow on the graph edges that maximizes the flow from all of the sources to the target.

```
pgr_boykovKolmogorov(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
   'SELECT id,
         source,
         target,
         capacity,
         reverse_capacity
  FROM edge_table'
   , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  --+----+-----
 1 | 10 | 5 | 10 | 100 |
                                             3.0
  2 | 8 |
                6 |
                       5 | 100 |
                                             30
```

```
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)
```

Many to Many

Calculates the flow on the graph edges that maximizes the flow from all of the sources to all of the targets.

```
pgr_boykovKolmogorov(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_boykovKolmogorov(
      'SELECT id,
                   source,
                   target,
                   capacity,
                   reverse_capacity
      FROM edge_table'
      , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 100 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 80 |
7 | 11 | 6 | 11 | 130 |
8 | 7 | 8 | 5 | 20 |
9 | 16 | 9 | 4 | 80 |
10 | 12 | 10 | 11 | 100 |
                                                                                              80
                                                                                              50
                                                                                               0
                                                                                              30
                                                                                              50
                                                                                               0
                                                                                              30
                                                                                               0
                                                                                                0
(10 rows)
```

Description of the Signatures

Description of the edges sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description
edges_sql	TEXT		The edges SQL query as described above.
source	BIGINT		Identifier of the starting vertex of the flow.
sources	ARRAY[BIGINT]		Array of identifiers of the starting vertices of the flow.
target	BIGINT		Identifier of the ending vertex of the flow.
targets	ARRAY[BIGINT]		Array of identifiers of the ending vertices of the flow.

Description of the Return Values

Column	Type	Description	
seq	INT	Sequential value starting from 1.	
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point vertex of the edge.	
target	BIGINT	Identifier of the second end point vertex of the edge.	
flow	BIGINT	Flow through the edge in the direction (source, target).	
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, target).	

See Also

- $\bullet \ \ Flow \ \ Family \ of functions, pgr_pushRelabel, pgr_EdmondsKarp$
- http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

Indices and tables

- genindex
- · search

pgr_maxCardinalityMatch - Proposed

Synopsis

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in a graph.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Fig. 6.18: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maximumCardinalityMatching
- New in 2.3.0

Characteristics

• A matching or independent edge set in a graph is a set of edges without common vertices.

⁶⁷ http://www.boost.org/libs/graph/doc/maximum_matching.html

- A maximum matching is a matching that contains the largest possible number of edges.
 - There may be many maximum matchings.
 - Calculates **one** possible maximum cardinality matching in a graph.
- The graph can be **directed** or **undirected**.
- Running time: $O(E * V * \alpha(E, V))$
 - $\alpha(E, V)$ is the inverse of the Ackermann function⁶⁸.

Signature Summary

```
pgr_MaximumCardinalityMatching(edges_sql) - Proposed
pgr_MaximumCardinalityMatching(edges_sql, directed) - Proposed

RETURNS SET OF (seq, edge_id, source, target)
OR EMPTY SET
```

Minimal Use

```
pgr_MaximumCardinalityMatching(edges_sql)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The minimal use calculates one possible maximum cardinality matching on a **directed** graph.

Example

```
SELECT * FROM pgr_maxCardinalityMatch(
   'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_
⇔table'
);
seq | edge | source | target
        1 | 1 | 3 |
  2 |
        9 |
                6 |
  3 |
                7 |
        6 |
  4 |
       14 |
  5 |
               10 |
                        13
      13 |
                11 |
                        12
  6 |
  7 | 17 |
                14 |
                        1.5
  8 | 18 |
               16 |
                        17
(8 rows)
```

Complete signature

```
pgr_MaximumCardinalityMatching(edges_sql, directed)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The complete signature calculates one possible maximum cardinality matching.

⁶⁸ https://en.wikipedia.org/wiki/Ackermann_function

```
SELECT * FROM pgr_maxCardinalityMatch(
   'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_
⇔table',
   directed := false
) ;
seq | edge | source | target
  1 |
      1 | 1 |
      3 |
               3 |
  2 |
  3 |
       9 |
               6 |
  4 |
       6 |
               7 |
  5 | 14 |
               10 |
                       13
  6 | 13 |
               11 |
  7 | 17 |
               14 |
                       15
  8 | 18 |
               16 |
                       17
(8 rows)
```

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
id	ANY-INTEGER	Identifier of the edge.
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.
going	ANY-NUMERIC	A positive value represents the existence of the edge (source, target).
coming	ANY-NUMERIC	A positive value represents the existence of the edge (target, source).

Where:

- **ANY-INTEGER** SMALLINT, INTEGER, BIGINT
- ANY-NUMERIC SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION

Description of the parameters of the signatures

Column	Туре	Description
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Determines the type of the graph. Default TRUE.

Description of the Result

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge in the original query(edges_sql).
source	BIGINT	Identifier of the first end point of the edge.
target	BIGINT	Identifier of the second end point of the edge.

See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/maximum_matching.html
- https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
- https://en.wikipedia.org/wiki/Ackermann_function

Indices and tables

- genindex
- · search

pgr edgeDisjointPaths - Proposed

Name

pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.

Fig. 6.19: Boost Graph Inside

Availability: 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

 $^{^{69}\} http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html$

Synopsis

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate the paths.

Characteristics:

The main characterics are:

- Calculates the edge disjoint paths between any two groups of vertices.
- Returns EMPTY SET when source and destination are the same, or cannot be reached.
- The graph can be directed or undirected.
- One to many, many to one, many to many versions are also supported.
- Uses *pgr_boykovKolmogorov Proposed* to calculate the paths.

Signature Summary

Signatures

Minimal use

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

The minimal use is for a directed graph from one start_vid to one end_vid.

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, 5
);
seq | path_id | path_seq | node | edge | cost | agg_cost
         1 |
                  1 | 3 | 2 | 1 |
  2 |
         1 |
                   2 | 2 |
                              4 | 1 |
                                             1
                   3 | 5 |
                                   0 |
                             -1 |
  3 |
         1 |
         2 |
                         3 | 5 |
                                   1 |
                                             Ω
  4 |
                  1 |
  5 |
          2 |
                  2 | 6 |
                              8 |
                                   1 |
                                             1
                  3 |
          2 |
                         5 |
                                   0 |
  6 |
                              -1 |
(6 rows)
```

One to One

This signature finds the set of dijoint paths from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, 5,
   directed := false
);
seq | path_id | path_seq | node | edge | cost | agg_cost
                    1 | 3 | 2 | 1 |
          1 |
  2 |
           1 |
                     2 |
                           2 |
                                 4 |
                                      1 |
                                                 1
                           5 |
                                       0 |
                                -1 |
  3 |
           1 |
                     3 |
           2 |
                     1 |
                           3 |
                                 3 |
                                     -1 |
                                                 Ω
  4 |
  5 |
           2 |
                     2 |
                           4 |
                                16 | 1 |
                                                 -1
  6 |
           2 |
                     3 |
                           9 |
                                9 |
                                       1 |
                                                 \cap
  7 |
           2 |
                     4 |
                           6 |
                                 8 |
                                       1 |
                                                 1
  8 |
                     5 |
           2 |
                           5 |
                                -1 I
                                       0 |
                                 5 |
  9 |
           3 |
                     1 |
                           3 |
                                       1 |
 10 |
                     2 |
           3 |
                           6 |
                                11 |
                                       1 |
 11 |
                     3 |
           3 |
                          11 |
                                 12 |
                                       -1 |
 12 |
           3 |
                     4 |
                          10 |
                                10 |
                                       1 |
           3 |
                    5 |
 13 |
                          5 |
                                -1 |
                                       0 1
(13 rows)
```

One to Many

This signature finds the sset of disjoint paths from the start_vid to each one of the end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one *pgr_edgeDisjointPaths*.
- The extra end_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

2	1	2	4	6	9	1	1	
3	1	3	4	9	16	1	2	
4	1	4	4	4	-1	0	3	
5	2	1	5	3	2	1	0	
6	2	2	5	2	4	1	1	
7	2	3	5	5	-1	0	2	
8	3	1	5	3	5	1	0	
9	3	2	5	6	8	1	1	
10	3	3	5	5	-1	0	2	
11	4	1	10	3	2	1	0	
12	4	2	10	2	4	1	1	
13	4	3	10	5	10	1	2	
14	4	4	10	10	-1	0	3	
(14 rows)								

Many to One

This signature finds the set of disjoint paths from each one of the start_vid in start_vids to the end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr_edgeDisjointPaths.
- The extra start_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[3, 6], 5
);
seq | path_id | path_seq | start_vid | node | edge | cost | agg_cost
                              0 |
                   1 |
                                    3 | 2 | 1 |
                                                         0
  1 |
         1 |
                             0 |
                                    2 |
  2 |
          1 |
                   2 |
                                         4 | 1 |
                                                         1
                              0 |
  3 |
          1 |
                   3 |
                                    5 |
                                         -1 |
                                                0 |
                              1 |
  4 |
          2 |
                                    3 |
                                          5 |
                   1 |
                                                1 |
                                                         0
  5 |
          2 |
                    2 |
                              1 |
                                    6 |
                                          8 |
                                                         1
                    3 |
                              1 |
  6 |
          2 |
                                    5 |
                                         -1 |
                              2 |
          3 |
                    1 |
  7 |
                                    6 |
                                          8 |
                                                1 |
          3 |
                              2 |
  8 |
                    2 |
                                    5 |
                                         -1 |
                                                0 |
                              3 |
                                          9 |
  9 |
          4 |
                   1 |
                                    6 |
                                                1 |
                                                         0
          4 |
                    2 |
                              3 |
 10 |
                                    9 |
                                         16 |
                                                1 |
                                                         1
 11 |
                   3 |
                              3 |
          4 |
                                    4 |
                                          3 |
                                                1 |
 12 |
          4 |
                             3 |
                                    3 |
                    4 |
                                         2 |
                                                1 |
                                                         3
 13 |
          4 |
                   5 I
                              3 |
                                    2 |
                                          4 |
                                                1 |
                                                         4
 14 |
          4 |
                   6 |
                             3 |
                                    5 |
                                         -1 |
                                                0 |
(14 rows)
```

Many to Many

This signature finds the set of disjoint paths from each one of the start_vid in start_vids to each one of the end_vid

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr_edgeDisjointPaths.
- The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edgeDisjointPaths(
          'SELECT id, source, target, cost, reverse_cost FROM edge_table',
         ARRAY[3, 6], ARRAY[4, 5, 10]
) ;
                                                                                    Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

Ind_v

In
  seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
                         1 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
3 |
3 |
3 |
       1 |
                                                         1 |
                                                                                                                                 3 |
                                                                                                                                                  5 I
                                                                                                                                                                                              0
                                                      1 |
                                                                                                                                                9 |
       2 |
                                                                                                               4 | 6 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
                                                                                                                              9 |
       3 |
                                                                                                                                               16 |
                                                                                                                                                                   1 |
      4 |
5 |
6 |
7 |
8 |
9 |
                                                                                                                                4 |
                                                                                                                                               -1 |
                                                                                                                                                                   0 |
                                                                                                                               3 |
                                                                                                                                                2 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                                                                                               2 |
                                                                                                                                                4 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
                                                                                                                              5 |
                                                                                                                                               -1 |
                                                                                                                                                                  0 |
                                                                                                                               3 |
                                                                                                                                               5 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                                                                                                               8 |
                                                                                                                              6 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
                           3 |
                                                                                                                              5 |
                                                                                                                                               -1 |
                                                                                                                                                                  0 |
    10 |
                                                                                                                                                                                              2
    11 |
                            4 |
                                                                                                                              3 |
                                                                                                                                            2 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                                                                                                               4 |
    12 |
                            4 |
                                                                                                                              2 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
    13 |
                             4 |
                                                        3 |
                                                                                                                              5 | 10 |
                                                                                                                                                                   1 |
                                                                                                          10 | 10 | -1 |
    14 |
                             4 |
                                                        4 |
                                                                                                                                                                   0 |
    15 |
                             5 |
                                                       1 |
                                                                                     4 |
                                                                                                           4 |
                                                                                                                             6 |
                                                                                                                                               9 |
                                                                                                                                                                   1 |
    16 |
                               5 |
                                                      2 |
                                                                                     4 |
                                                                                                            4 |
                                                                                                                              9 | 16 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
                               5 |
                                                                                                                                                                   0 |
    17 |
                                                        3 |
                                                                                      4 |
                                                                                                               4 |
                                                                                                                              4 |
                                                                                                                                               -1 |
                                                                                                                                                                                              2
                                                                                      5 |
                            6 |
                                                                                                                              6 | 8 |
    18 |
                                                       1 |
                                                                                                               5 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                                                     5 |
                                                                                                                              5 | -1 |
                                                                                                                                                                   0 |
    19 |
                              6 |
                                                       2 |
                                                                                                               5 |
                                                                                                                                                                                               1
                               7 |
                                                                                                                                                 9 |
    20 |
                                                                                      6 |
                                                                                                               5 |
                                                                                                                              6 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                        1 |
                               7 |
                                                                                      6 |
    21 |
                                                        2 |
                                                                                                               5 |
                                                                                                                               9 | 16 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              1
                               7 |
    22 |
                                                                                      6 |
                                                                                                               5 |
                                                        3 |
                                                                                                                                4 | 3 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              2.
    23 |
                               7 |
                                                         4 |
                                                                                      6 |
                                                                                                               5 |
                                                                                                                                 3 |
                                                                                                                                                 2 |
                                                                                                                                                                   1 |
                                                         5 |
                                                                                      6 |
    24 |
                               7 |
                                                                                                               5 |
                                                                                                                                                 4 |
                                                                                                                                 2 |
                                                                                                                                                                   1 |
                                                         6 |
                                                                                       6 |
                              7 |
    25 |
                                                                                                               5 |
                                                                                                                                 5 |
                                                                                                                                               -1 |
                                                                                                                                                                   0 |
                                                                                                                                                                                              5
                                                                                      7 |
                                                         1 |
    26 |
                              8 |
                                                                                                             10 |
                                                                                                                                 6 |
                                                                                                                                                 8 |
                                                                                                                                                                   1 |
                                                                                                                                                                                              0
                                                                                       7 |
    27 |
                              8 |
                                                          2 |
                                                                                                              10 |
                                                                                                                                 5 |
                                                                                                                                               10 |
                                                                                                                                                                   1 |
                                                                                                                                                                                               1
                                                                                     7 |
                                                         3 |
                                                                                                                                                                                              2
    28 |
                               8 |
                                                                                                             10 |
                                                                                                                               10 |
                                                                                                                                               -1 I
                                                                                                                                                                   0 |
 (28 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Default	Description
sql	TEXT		SQL query as described
			above.
start_vid	BIGINT		Identifier of the starting
			vertex of the path.
start_vids	ARRAY[BIGINT]		Array of identifiers of
			starting vertices.
end_vid	BIGINT		Identifier of the ending
			vertex of the path.
end_vids	ARRAY[BIGINT]		Array of identifiers of
			ending vertices.
directed	BOOLEAN	true	• When true
			Graph is consid-
			ered Directed
			• When false
			the graph is
			considered as
			Undirected.
			Chairectea.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the
		<pre>same start_vid to end_vid combination.</pre>
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	T Identifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

• Flow - Family of functions

Indices and tables

- genindex
- search

Flow Functions General Information

Characteristics

- The graph is directed.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by $pgr_maxFlow$ when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets

pgr_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functions pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov, but the actual flow through each edge may vary.

Problem definition

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except the for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each edge may vary. Given the following query:

```
\begin{aligned} & \texttt{pgr\_maxFlow} \; (edges\_sql, source\_vertex, sink\_vertex) \\ & \texttt{where} \; edges\_sql = \{(id_i, source_i, target_i, capacity_i, reverse\_capacity_i)\} \end{aligned}
```

Graph definition

The weighted directed graph, G(V, E), is defined as:

- the set of vertices V
 - $source_vertex \cup sink_vertex \cup source_i \cup target_i$
- the set of edges E

```
-E = \begin{cases} \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} & \text{if } reverse\_capacity = \varnothing \\ \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} \\ \cup \{(target_i, source_i, reverse\_capacity_i) \text{ when } reverse\_capacity_i > 0)\} & \text{if } reverse\_capacity \neq \varnothing \end{cases}
```

Maximum flow problem

Given:

- G(V, E)
- $source_vertex \in V$ the source vertex
- $sink_vertex \in V$ the sink vertex

Then:

```
\begin{split} pgr\_maxFlow(edges\_sql, source, sink) &= \mathbf{\Phi} \\ \mathbf{\Phi} &= (id_i, edge\_id_i, source_i, target_i, flow_i, residual\_capacity_i) \end{split}
```

Where:

 Φ is a subset of the original edges with their residual capacity and flow. The maximum flow through the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

- $id_i = i$
- $edge_id = id_i$ in edges_sql
- $residual_capacity_i = capacity_i flow_i$

See Also

• https://en.wikipedia.org/wiki/Maximum_flow_problem

Indices and tables

- genindex
- · search

6.2.3 pgr_labelGraph - Experimental

Name

pgr_labelGraph — Locates and labels sub-networks within a network which are not topologically connected.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Must be run after pgr_createTopology (). No use of geometry column. Only id, source and target columns are required.

The function returns:

- OK when a column with provided name has been generated and populated successfully. All connected
 edges will have unique similar integer values. In case of rows_where condition, non participating rows
 will have -1 integer values.
- FAIL when the processing cannot be finished due to some error. Notice will be thrown accordingly.
- rows_where condition generated 0 rows when passed SQL condition has not been fulfilled by any row.

varchar pgr_labelGraph(text, text, text, text, text, text)

Description

A network behind any routing query may consist of sub-networks completely isolated from each other. Possible reasons could be:

- An island with no bridge connecting to the mainland.
- An edge or mesh of edges failed to connect to other networks because of human negligence during data generation.
- The data is not properly noded.
- Topology creation failed to succeed.

pgr_labelGraph() will create an integer column (with the name provided by the user) and will assign same integer values to all those edges in the network which are connected topologically. Thus better analysis regarding network structure is possible. In case of rows_where condition, non participating rows will have -1 integer values.

Prerequisites: Must run pgr_createTopology() in order to generate source and target columns. Primary key column id should also be there in the network table.

Function accepts the following parameters:

```
edge_table text Network table name, with optional schema name.
```

id text Primary key column name of the network table. Default is id.

```
source text Source column name generated after pgr_createTopology(). Default is source.
```

target text Target column name generated after pgr_createTopology(). Default is
target.

subgraph text Column name which will hold the integer labels for each sub-graph. Default is subgraph.

rows_where text The SQL where condition. Default is true, means the processing will be done on the whole table.

Example Usage

The sample data, has 3 subgraphs.

```
SET client_min_messages TO WARNING;

SET

SELECT pgr_labelGraph('edge_table', 'id', 'source', 'target', 'subgraph');

pgr_labelgraph
-----

OK

(1 row)

SELECT DISTINCT subgraph FROM edge_table ORDER BY subgraph;

subgraph
-----

1
2
3

(3 rows)
```

See Also

• pgr_createTopology⁷⁰ to create the topology of a table based on its geometry and tolerance value.

⁷⁰ https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting_topology.sql

Indices and tables

- genindex
- · search

6.2.4 Components - Family of functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting
- pgr_connectedComponents Experimental Return the connected components of an undirected graph.
- pgr_strongComponents Experimental Return the strongly connected components of a directed graph.
- pgr biconnectedComponents Experimental Return the biconnected components of an undirected graph.
- pgr_articulationPoints Experimental Return the articulation points of an undirected graph.
- pgr_bridges Experimental Return the bridges of an undirected graph.

pgr connectedComponents - Experimental

pgr_connectedComponents — Return the connected components of an undirected graph using a DFS-based approach. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.20: Boost Graph Inside

⁷¹ http://www.boost.org/libs/graph/doc/connected_components.html

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A connected component of an undirected graph is a set of vertices that are all reachable from each other. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- Components are described by vertices
- The returned values are ordered:
 - component ascending
 - node ascending
- Running time: O(V + E)

Signatures

```
pgr_connectedComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, node)
    OR EMPTY SET
```

The signature is for a **undirected** graph.

```
SELECT * FROM pgr_connectedComponents(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | component | n_seq | node
```

```
1 |
                         1 |
  2 |
                1 |
                         2 |
                                2
  3 |
                1 |
                         3 |
                                 3
  4 |
                1 |
                         4 |
                1 |
                         5 |
                1 |
                         6 |
   6 |
  7 |
                         7 1
                                7
                1 |
                         8 |
                                8
  8 |
                1 |
  9 |
                1 |
                         9 |
 10 |
                1 |
                        10 |
                               10
 11 |
                1 |
                        11 |
                1 |
                        12 |
 13 |
                1 |
                        13 |
                               13
 14 |
               14 |
                        1 |
                               14
 15 |
                         2 |
               14 |
                               15
 16 |
               16 |
                         1 |
                               16
 17 |
               16 |
                         2 |
                               17
(17 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second
			end point vertex of the
			edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, tar-
			get) does not exist,
			therefore it's not
			part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (tar-
			get, source),
			• When negative:
			edge (target,
			source) does not
			exist, therefore
			it's not part of the
			graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for connected components and strongly connected components

Returns set of (seq, component, n_seq, node)

Column	Туре	Description		
seq	INT	equential value starting from 1.		
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component.		
n_seq	INT	It is a sequential value starting from 1 in a component.		
node	BIGINT	Identifier of the vertex.		

See Also

- http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
- The queries use the *Sample Data* network.

Indices and tables

- genindex
- · search

pgr_strongComponents - Experimental

pgr_strongComponents — Return the strongly connected components of a directed graph using Tarjan's algorithm based on DFS. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.21: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other. This implementation can only be used with a directed graph.

Characteristics

The main Characteristics are:

- Components are described by vertices
- The returned values are ordered:

⁷² http://www.boost.org/libs/graph/doc/strong_components.html

- component ascending
- node ascending
- Running time: O(V + E)

Signatures

```
pgr_strongComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, node)

OR EMPTY SET
```

The signature is for a **directed** graph.

```
SELECT * FROM pgr_strongComponents(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table'
seq | component | n_seq | node
        1 | 1 | 1
1 | 2 | 2
1 | 3 | 3
  2 |
  3 |
  4 |
            1 |
                   4 |
                         4
                         5
  5 |
            1 |
  6 |
            1 |
                          6
  7 |
            1 |
                   7 |
            1 |
  8 |
                  8 |
                         8
                   9 |
            1 |
  9 |
 10 |
            1 |
                 10 |
                        10
 11 |
            1 |
                   11 |
                         11
 12 |
            1 |
                  12 |
                        12
 13 |
            1 |
                  13 |
                        13
          14 |
 14 |
                   1 |
                        14
 15 I
           14 |
                  2 |
                        15
           16 |
                  1 |
 16 |
                        16
 17 |
           16 |
                  2 | 17
(17 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter Type Default Descrip		Description	
edges_sql	TEXT		SQL query as described above.

Description of the return values for connected components and strongly connected components

Returns set of (seq, component, n_seq, node)

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component	
n_seq	INT	It is a sequential value starting from 1 in a component.	
node	BIGINT	Identifier of the vertex.	

See Also

- http://en.wikipedia.org/wiki/Strongly_connected_component
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_biconnectedComponents - Experimental

pgr_biconnectedComponents — Return the biconnected components of an undirected graph. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.22: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.

 $^{^{73}\} http://www.boost.org/libs/graph/doc/biconnected_components.html$

- Signature might change.
- Functionality might change.
- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Synopsis

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component. So, the output only has edge version.

This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- Components are described by edges
- The returned values are ordered:
 - component ascending
 - edge ascending
- Running time: O(V + E)

Signatures

```
pgr_biconnectedComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, edge)

OR EMPTY SET
```

The signature is for a **undirected** graph.

```
2
                                   5
   5
                           4
                 2
                           5
                                   8
   6
                 2
   7
                           6
                                   9
                 2
                           7
                                  10
   8
   9 1
                 2
                           8
                                  11
  10 |
                 2 |
                           9
                                  12
                 2 |
  11 |
                          10
                                  13
                 2 |
                                  15
 12 I
                          11 |
 13 I
                 2 |
                          12 |
                                  16
 14 |
                 6 |
                           1 |
                                   6
                 7 |
                                   7
                14 |
                                  14
 17 |
                17 |
                           1 |
                                  17
 18 |
                18 |
                                  18
(18 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for biconnected components, connected components (edge version) and strongly connected components

Returns set of (seq, component, n_seq, edge)

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
component	BIGINT	Component identifier. It is equal to the minimum edge identifier in the component.	
n_seq	INT	It is a sequential value starting from 1 in a component.	
edge	BIGINT	Identifier of the edge.	

See Also

- http://en.wikipedia.org/wiki/Biconnected_component
- The queries use the Sample Data network.

Indices and tables

- genindex
- · search

pgr_articulationPoints - Experimental

pgr_articulationPoints - Return the articulation points of an undirected graph. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.23: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

• The returned values are ordered:

⁷⁴ http://www.boost.org/libs/graph/doc/connected_components.html

- node ascending
- Running time: O(V + E)

Signatures

```
pgr_articulationPoints(edges_sql)

RETURNS SET OF (seq, node)

OR EMPTY SET
```

The signature is for a **undirected** graph.

Example

```
SELECT * FROM pgr_articulationPoints(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | node
----+----
1 | 2
2 | 5
3 | 8
4 | 10
(4 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for articulation points

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
node	BIGINT	Identifier of the vertex.

See Also

- http://en.wikipedia.org/wiki/Biconnected_component
- The queries use the Sample Data network.

Indices and tables

• genindex

search

pgr_bridges - Experimental

pgr_bridges - Return the bridges of an undirected graph.

Fig. 6.24: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A bridge is an edge of an undirected graph whose deletion increases its number of connected components. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- The returned values are ordered:
 - edge ascending
- Running time: O(E * (V + E))

⁷⁵ http://www.boost.org/libs/graph/doc/connected_components.html

Signatures

```
pgr_bridges(edges_sql)

RETURNS SET OF (seq, node)

OR EMPTY SET
```

The signature is for a **undirected** graph.

Example

```
SELECT * FROM pgr_bridges(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | edge
----+----
1 | 1
2 | 6
3 | 7
4 | 14
5 | 17
6 | 18
(6 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for bridges

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge.

See Also

- http://en.wikipedia.org/wiki/Bridge_%28graph_theory%29
- The queries use the Sample Data network.

Indices and tables

• genindex

· search

The problem definition

Connected components

A connected component of an undirected graph is a set of vertices that are all reachable from each other.

Notice: This problem defines on an undirected graph.

Given the following query:

```
pgr\_connectedComponentsV(sql)
```

```
where sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\}
```

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- the set of vertices V
 - $V = source \cup target$
- ullet the set of edges E

$$\begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} \\ \text{if } reverse_cost = \varnothing$$

$$\begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} \end{aligned}$$
 if $reverse_cost \neq \varnothing$

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{(component_i, n_seq_i, node_i)\}$$

where:

- $component_i = \min\{node_j | node_j \in component_i\}$
- n_seq_i is a sequential value starting from 1 in a component.
- $node_i \in component_i$
- The returned values are ordered:
 - component ascending
 - node ascending

- The first component is composed of nodes 0, 1 and 4.
- The second component is composed of node 3.
- The third component is composed of nodes 2 and 5.

Strongly connected components

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other.

Notice: This problem defines on a directed graph.

Given the following query:

pgr_strongComponentsV(sql)

where $sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}$

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted directed graph, $G_d(V, E)$, is definied by:

- ullet the set of vertices V
 - $V = source \cup target \cup start_{vid} \cup end_{vid}$
- the set of edges E

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} & \text{if } reverse_cost = \varnothing \\ \\ \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} & \text{if } reverse_cost \neq \varnothing \end{cases}$$

Given:

Then:

$$\pi = \{(component_i, n_seq_i, node_i)\}$$

where:

• $component_i = \min node_j | node_j \in component_i$

- n_seq_i is a sequential value starting from 1 in a component.
- $node_i \in component_i$
- The returned values are ordered:
 - component ascending
 - node ascending

Example:

- The first component is composed of nodes 1, 2 and 4.
- The second component is composed of node 0.
- The third component is composed of node 3.
- The fourth component is composed of node 5.
- The fifth component is composed of node 6.

Biconnected components

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component. So, the output only has edge version.

Notice: This problem defines on an undirected graph.

Given the following query:

pgr_biconnectedComponents(sql)

where $sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}$

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- the set of vertices V
 - $V = source \cup target$
- ullet the set of edges E

```
-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} if reverse\_cost = \varnothing -E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \end{cases} if reverse\_cost \neq \varnothing
```

Given:

• *G*(*V*, *E*)

Then:

$$\boldsymbol{\pi} = \{(component_i, n_seq_i, node_i)\}$$

where:

- $component_i = \min node_i | node_i \in component_i$
- n_seq_i is a sequential value starting from 1 in a component.
- $edge_i \in component_i$
- The returned values are ordered:
 - component ascending
 - edge ascending

Example:

- The first component is composed of edges 1 2, 0 1 and 0 2.
- The second component is composed of edges 2 4, 2 3 and 3 4.
- The third component is composed of edge 5 6.
- The fourth component is composed of edge 6 7.
- The fifth component is composed of edges 8 9, 9 10 and 8 10.

Articulation Points

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph.

Notice: This problem defines on an undirected graph.

Given the following query:

 $pgr_articulationPoints(sql)$

where $sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}$

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- ullet the set of vertices V
 - $V = source \cup target$
- the set of edges E

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} \\ \text{if } reverse_cost = \varnothing$$

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} \end{cases}$$

$$\text{if } reverse_cost \neq \varnothing$$

Given:

• G(V,E)

Then:

$$\pi = \{node_i\}$$

where:

- $node_i$ is an articulation point.
- The returned values are ordered:
 - node ascending

Example:

• Articulation points are nodes 2 and 6.

Bridges

A bridge is an edge of an undirected graph whose deletion increases its number of connected components.

Notice: This problem defines on an undirected graph.

Given the following query:

 $pgr_bridges(sql)$

where $sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}$

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V,E), is definied by:

- \bullet the set of vertices V
 - $V = source \cup target$
- $\bullet \,$ the set of edges E

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{edge_i\}$$

where:

- $edge_i$ is an edge.
- The returned values are ordered:
 - edge ascending

Example:

• Bridges are edges 5 <--> 6 and 6 <--> 7.

Description of the edges sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for connected components and strongly connected components

Returns set of (seq, component, n_seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
node	BIGINT	Identifier of the vertex.

Description of the return values for biconnected components, connected components (edge version) and strongly connected components

Returns set of (seq, component, n_seq, edge)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum edge identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
edge	BIGINT	Identifier of the edge.

Description of the return values for articulation points

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
node	BIGINT	Identifier of the vertex.

Description of the return values for bridges

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge.

See Also

Indices and tables

- genindex
- · search

6.2.5 pgr_gsoc_vrppdtw - Experimental

Name

pgr_gsoc_vrppdtw — Returns a solution for Pick and Delivery with time windows Vehicle Routing Problem

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.

- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Signature Summary

```
pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
RETURNS SET OF pgr_costResult[]:
```

Signatures

Complete signature

```
pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
Returns set of pgr_costResult[]:
```

Example: Show the id1

```
SELECT DISTINCT(id1) FROM pgr_gsoc_vrppdtw(
    'SELECT * FROM customer ORDER BY id', 25, 200)

ORDER BY id1;
id1
----
1
2
3
4
5
6
7
8
9
10
(10 rows)
```

Description of the Signatures

Description of the sql query

Column	Type	Description
id	ANY-INTEGER	Identifier of the customer.
		• A value of 0 identifies the
		starting location
X	ANY-NUMERICAL	X coordinate of the location.
y	ANY-NUMERICAL	Y coordinate of the location.
demand	ANY-NUMERICAL	How much is added / removed
		from the vehicle.
		 Negative value is a delivery,
		 Positive value is a pickup,
openTime	ANY-NUMERICAL	The time relative to 0, when the
		customer opens.
closeTime	ANY-NUMERICAL	The time relative to 0, when the
		customer closes.
serviceTime	ANY-NUMERICAL	The duration of the loading / un-
		loading.
pIndex	ANY-INTEGER	Value used when the current cus-
		tomer is a Delivery to find the cor-
		responding Pickup
dIndex	ANY-INTEGER	Value used when the current cus-
		tomer is a Pickup to find the corre-
		sponding Delivery

Description of the parameters of the signatures

Column	Type	Description
sql	TEXT	SQL query as described above.
vehicle_num	INTEGER	Maximum number of vehicles in the result. (currently is ignored)
capacity	INTEGER	Capacity of the vehicle.

Description of the result

RETURNS SET OF pgr_costResult[]:

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
id1	INTEGER	Current vehicle identifier.
id2	INTEGER	Customer identifier.
cost	FLOAT	Previous cost plus travel time plus wait time plus • when id2 = 0 for the second time for the same id1, then has the total time for the current id1

Examples

Example: Total number of rows returned

```
SELECT count(*) FROM pgr_gsoc_vrppdtw(
    'SELECT * FROM customer ORDER BY id', 25, 200);
count
-----
    126
(1 row)
```

Example: Results for only id1 values: 1, 5, and 9

```
SELECT * FROM pgr_gsoc_vrppdtw(
   'SELECT * FROM customer ORDER BY id', 25, 200)
   WHERE id1 in (1, 5, 9);
seq | id1 | id2 |
  1 | 1 | 0 |
  2 | 1 | 13 | 120.805843601499
  3 | 1 | 17 | 214.805843601499
  4 | 1 | 18 | 307.805843601499
       1 | 19 | 402.805843601499
  5 |
       1 | 15 | 497.805843601499
        1 | 16 | 592.805843601499
  7 |
        1 | 14 | 684.805843601499
        1 | 12 | 777.805843601499
  9 |
            50 | 920.815276724293
        1 |
 11 |
            52 | 1013.97755438446
        1 |
        1 |
            49 | 1106.97755438446
 13 |
        1 |
            47 | 1198.97755438446
 14 |
        1 |
            0 | 1217.00531076178
 57 |
            0 |
        5 |
                               0
 58 |
        5 | 90 | 110.615528128088
 59 |
        5 | 87 | 205.615528128088
 60 I
        5 | 86 | 296.615528128088
 61 |
        5 | 83 | 392.615528128088
 62 |
        5 | 82 | 485.615528128088
        5 | 84 | 581.446480022934
        5 | 85 | 674.27490714768
       5 | 88 | 767.27490714768
       5 | 89 | 860.103334272426
 67 I
        5 | 91 | 953.70888554789
        5 | 0 | 976.069565322888
 68 |
105 |
        9 | 0 |
                               0
106 |
        9 | 67 | 102.206555615734
107 |
        9 | 65 | 193.206555615734
108 |
        9 | 63 | 285.206555615734
109 |
        9 | 62 | 380.206555615734
110 |
        9 |
            74 | 473.206555615734
111 |
        9 |
            72 | 568.206555615734
112 |
        9 | 61 | 661.206555615734
113 |
        9 |
            64 | 663.206555615734
114 |
       9 | 102 | 753.206555615734
      9 | 68 | 846.206555615734
115 |
            0 | 866.822083743822
116 |
      9 |
(38 rows)
```

See Also

- The examples use Pick & Deliver Data
- http://en.wikipedia.org/wiki/Vehicle_routing_problem

Indices and tables

- genindex
- · search

6.2.6 pgr_vrpOneDepot - Experimental

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

No documentation available

Example:

Current Result

66	2	5	0	0
25	3	5	0	0
	4	5	0	0
	5	5	0	0
	6	5	0	1 0
			0	1 0
		1		
24	8	5	0	0
22	9	5	0	0
		5	0	0
19	11	5	0	0
66			11	21
		5	30	
	1 14	5	71	
	15		83	
		1		
	16	5		108
	17		114	
50		5	131	
21	19	5	144	154
25			158	
49		5	179	
-1		5	234	
-1				
	-	6	0	
	3	6	1	0
81	4	6	0	0
94	5	6	0	0
	6	6	0	0
	7		0	0
33		1 6	0	0
	9	6	0	0
27		6	0	0
93		6	15	
32		6	61	
28			78	
31		6	97	
		1 6	112	
	16	6	134	
33	17	6	152	
94	18	6		206
81	19	6	221	
-1		6		
-1		3	0	
	1 2	3	0	1 0
	3	3	0	0
48	4	3	0	0
18	5	3	0	0
17	6	3	0	0
15			0	0
13		3	0	1 0
11		3	0	1 0
10			0	
15			35	
48	12	3	48	58
13			64	74
16		3	82	92
17		3	94	
10			115	
11			130	
14		3	147	
18	19	3	169	179
-1		3	219	
-1		8	0	
71	2	8	0	0

55		8	0	
44	4	8	0	0
43	5	8	0	0
	6	8	0	0
	7	8	0	0
	8	8	0	0
	9	8	0	0
		8	34	44
		8	4 9	59
	12	8	61	
41		8	90	
42		8	1	121
44		8	'	141
55		8	166	
71		8		208
-1		8	228	
-1		1	0	
	2	1	0	0
101		1	0	0
	4	1	0	0
	5	1	0	0
	1 6	1		0
	7	1	38	48
	8	1	55	65
2	9	1	96	96
	1 10	1	135	145
	10			143
5		1	165	
101			192	
-1			1	222
-1				0
	2		0	0
	3	13	0	0
57		13	0	0
		13	0	0
	6	13	0	0
	7		0	0
	8	1 13	. 29	62
68	9	1 13	69	80
52		1 13		
85				
57		13		152
		13		
		13	189	189
-1		7	0	0
	2	7	0	0
_	3	7	0	0
	4	7	0	0
	5	7	0	0
	6	7	0	0
	7	7	1	61
	8	7	70	
	9	7	85	95
		7	149	159
	11		162	172
-1			217	217
-1				217
		2	0	0
47		2	0	0
61		2	0	0
9	1 5	2	0	0
8	6	2	0	0
89	7	2	18	77

8	8	2	96	106
9	9	2	111	121
47	10	2	124	
61			154	
-1			192	
-1			0	
	2		0	
64				1 0
51		14	0	0
96				
77				
96	7		21	
64	8	14	63	73
77		14		93
51		1 14	119	
97				
-1				
-1			0	
67				
73			0	0
95	4	15	0	0
82			0	
72		15	0	
73	1 7		27	
72		15	50	
82	9	15	91	
95		15	114	
67	11	15	144	154
-1			167	
-1				
	2			
26] 3		0	
87			0	•
23				
87	6	11	32	97
23	7			
78	8	1 11		
26	9	11	172	
			227	
		11		
-1				
60				
59	3	4	0	0
100		4	0	0
54		4	0	0
60			1 42	
100				
54		4	103	
59		4		
-1		4		
-1		10	0	0
86				
90				
65				1 0
53				0
53				
65		10		
86	8	10	111	121
90		1 10		
-1				
-1				
_	2			
80		12		
7	4	12	0	0

```
12 |
              12 |
                                    51
  6 |
          6
                         40 |
              12 |
  80 |
          7 |
                         73 |
                                    99
              12 |
                        113 |
                                  123
  7 |
         8
           56 |
         9 |
              12 |
                        142 |
                                  152
 -1 |
        10 |
              12 |
                        166 |
                                  166
                         0 |
 -1 |
         1 |
             19 I
                                   0
 88 I
         2 |
             19 I
                          0 1
                                    0
         3 | 19 |
 70 I
                         0 1
                                   0
 58 |
         4 | 19 |
                         0 |
                                   0
  99 |
         5 | 19 |
                         0 |
                                   0
 70 |
          6 | 19 |
                         9 |
                                   51
                         56 |
  99 |
         7 | 19 |
         8 | 19 |
                                  107
 88 |
                         97 |
 58 |
         9 | 19 |
                        125 |
                                  135
        10 | 19 |
                                  162
 -1 |
                        162 |
         1 | 17 |
                         0 |
                                   0
  -1 |
             17 |
  75 I
         2 |
                          0 |
                                    0
                                   0
  98 |
         3 |
              17 |
                          0 |
  76 I
         4 |
              17 I
                          0 1
                                   0
  76 |
         5 I
              17 I
                         57 I
                                   84
  98 |
          6 |
              17
                         97 |
                                   130
  75 I
          7
              17 |
                        146 |
                                  156
              17
  -1 |
          8
           192 |
                                  192
              16 |
  -1 |
         1
                         0 |
                                   0
                          0 |
  69 I
          2 |
              16 |
                                    0
                         0 |
 79 |
          3
                                   0
              16 |
           0 |
  74 |
                                   0
         4 |
              16 |
  74 |
          5 I
              16 |
                         39 |
                                   87
 79 I
                         94 |
          6 |
              16 |
                                  104
          7 |
              16 |
                        136 |
                                  154
  69 |
          8 |
              16 |
                        164 |
                                  164
  -1 |
  -1 I
          1 |
              9 |
                         0 |
                                   0
              9 |
  62 |
          2 |
                          0 |
                                   0
              9 |
                         0 |
 37 |
         3 |
                                   0
              9 |
                          0 |
                                   0
 45 I
         4 |
              9 |
 37 |
         5 |
                         43 |
                                   53
               9 |
                         63 |
         6 |
                                   74
 45 I
               9 |
                         94 |
  62 |
         7 |
                                  104
               9 |
         8 |
                        120 I
                                   120
  -1 I
              18 |
                        0 |
                                   0
  -1 I
         1 |
         2 |
              18 |
                          0 |
                                    0
  91 |
 12 |
          3 |
              18 |
                          0 |
                                    0
 12 |
         4 |
              18 |
                         34 |
                                   69
  91 |
         5 |
              18 |
                         99 |
                                  109
                        113 |
                                  113
 -1 |
         6 |
              18 |
 -1 |
         1 |
              20 |
                         0 |
                                   0
         2 |
                         0 |
 83 I
              20 |
                                    0
              20 |
                         15 |
         3 |
                                    52
 83 I
         4 |
              20 |
                         67 I
                                    67
 -1 |
 -1 |
          0 |
              0 1
                         -1 I
                                  3712
(241 rows)
ROLLBACK;
ROLLBACK
```

Data

```
drop table if exists vrp_orders cascade;
create table vrp_orders (
```

```
id integer not null primary key,
   order_unit integer,
   open_time integer,
   close_time integer,
   service_time integer,
   x float8,
   y float8
);
copy vrp_orders (id, x, y, order_unit, open_time, close_time, service_time) from_
→stdin;
        40.000000
                         50.000000
                                          0
                                                   0
                                                            240
        25.000000
                         85.000000
                                          20
                                                   145
                                                              175
                                                                         10
                         75.000000
                                                    50
                                                              80
        22.000000
                                          30
                                                                       1.0
        22.000000
                         85.000000
                                          10
                                                    109
                                                              139
                                                                         10
        20.000000
                         80.000000
                                          40
                                                    141
                                                              171
                                                                         10
                                          2.0
        20.000000
                         85.000000
                                                    41
                                                              71
                                                                       10
6
7
        18.000000
                         75.000000
                                          20
                                                    95
                                                              125
                                                                        10
8
        15.000000
                         75.000000
                                          20
                                                    79
                                                              109
                                                                         10
9
        15.000000
                         80.000000
                                          10
                                                    91
                                                              121
                                                                         10
10
         10.000000
                          35.000000
                                          20
                                                    91
                                                              121
                                                                         10
11
         10.000000
                          40.000000
                                          30
                                                    119
                                                               149
                                                                          10
12
         8.000000
                         40.000000
                                          40
                                                    59
                                                              89
                                                                        10
13
         8.000000
                         45.000000
                                          20
                                                    64
                                                              94
                                                                       1.0
14
         5.000000
                                                              172
                         35.000000
                                          10
                                                    142
                                                                         1.0
15
         5.000000
                         45.000000
                                          1.0
                                                    3.5
                                                              6.5
                                                                        10
16
         2.000000
                                          20
                                                    58
                                                             88
                                                                       1.0
                         40.000000
                                                    72.
17
         0.000000
                         40.000000
                                          20
                                                             102
                                                                        1.0
18
                         45.000000
                                          20
                                                    149
                                                              179
                                                                         10
         0.000000
19
         44.000000
                          5.000000
                                          20
                                                    87
                                                              117
                                                                        10
                                                    72
20
         42.000000
                          10.000000
                                          40
                                                              102
                                                                         10
         42.000000
                          15.000000
                                          10
                                                    122
                                                               152
22
         40.000000
                          5.000000
                                          10
                                                    67
                                                              97
                                                                       10
                                                    92
23
         40.000000
                          15.000000
                                          40
                                                              122
                                                                         10
                                                    65
24
         38.000000
                          5.000000
                                          30
                                                              95
                                                                       1.0
25
         38.000000
                          15.000000
                                          10
                                                    148
                                                              178
                                                                         1.0
                                          20
                                                    154
2.6
         35.000000
                          5.000000
                                                              184
                                                                         1.0
                                          30
                                                    115
                          30.000000
27
         95.000000
                                                               145
                                                                         1.0
28
         95.000000
                          35.000000
                                           20
                                                    62
                                                              92
                                                                         10
29
         92.000000
                          30.000000
                                           10
                                                    62
                                                              92
                                                                         10
                                                              97
30
         90.000000
                          35.000000
                                           10
                                                    67
                                                                         10
                                           10
                                                    74
                                                              104
         88.000000
                          30.000000
                                                                         1.0
32
         88.000000
                          35.000000
                                           20
                                                    61
                                                              91
                                                                         10
33
         87.000000
                          30.000000
                                           10
                                                    131
                                                               161
34
         85.000000
                          25.000000
                                           10
                                                    51
                                                              81
                                                                         10
35
                                           30
                                                    111
                                                              141
                                                                         10
         85.000000
                          35.000000
                                                              169
36
         67.000000
                          85.000000
                                           20
                                                    139
                                                                          10
                                                              73
37
         65.000000
                          85.000000
                                          40
                                                    43
                                                                         10
38
         65,000000
                          82.000000
                                           10
                                                    124
                                                               154
                                                                          1.0
39
                          80.000000
                                           30
                                                    75
                                                              105
                                                                         10
         62.000000
40
         60.000000
                          80.000000
                                           10
                                                    37
                                                              67
                                                                         10
41
         60.000000
                          85.000000
                                           30
                                                    85
                                                              115
                                                                         10
                                                    92
         58.000000
                          75.000000
                                           2.0
                                                              122
43
         55.000000
                          80.000000
                                           10
                                                     33
                                                              63
44
         55.000000
                          85.000000
                                           20
                                                    128
                                                               158
                                                                         1.0
                                           10
                                                    64
                                                              94
45
         55.000000
                          82.000000
                                                                         10
                          82.000000
                                           10
                                                     37
                                                               67
                                                                         10
46
         20.000000
47
         18.000000
                          80.000000
                                          1.0
                                                    113
                                                               143
                                                                          10
48
                         45.000000
                                          10
                                                    45
         2.000000
                                                              75
                                                                        10
49
         42.000000
                          5.000000
                                          10
                                                    151
                                                               181
                                                                         10
50
         42.000000
                          12.000000
                                           10
                                                     104
                                                               134
                                                                           10
         72.000000
51
                          35.000000
                                           30
                                                     116
                                                                146
                                                                           10
```

```
55.000000
                         20.000000
                                                                     10
53
         25.000000
                         30.000000
                                        3
                                                 52
                                                          82
                                                                   10
54
         20.000000
                         50.000000
                                        5
                                                 91
                                                          121
                                                                    10
                                                                     10
                                                 139
55
         55.000000
                         60.000000
                                        16
                                                           169
                                                 140
                                                                      10
56
                                        16
                                                            170
         30.000000
                         60.000000
57
                                                 130
                                                           160
         50.000000
                         35.000000
                                        19
                                                                      10
58
                        25.000000
                                        23
                                                 96
                                                                     1.0
         30.000000
                                                           126
59
         15.000000
                        10.000000
                                        2.0
                                                 152
                                                           182
                                                                      10
60
         10.000000
                        20.000000
                                        19
                                                 42
                                                          72
                                                                    10
61
         15.000000
                        60.000000
                                        17
                                                 155
                                                           185
                                                                      10
         45.000000
                        65.000000
                                                 66
                                                          96
                                                                   10
         65.000000
                                        3
                                                52
                                                          82
                         35.000000
         65.000000
                         20.000000
                                                39
                                                          69
                                                                   10
                                                53
                                        17
65
         45.000000
                        30.000000
                                                          83
                                                                    10
                                                11
                                                          41
                                                                    1.0
66
         35.000000
                        40.000000
                                        16
                                                 133
67
         41.000000
                         37.000000
                                        16
                                                           163
                                                                    1.0
                                        9
         64.000000
                        42.000000
                                                 70
                                                          100
68
                                                                    10
                                        2.1
                                                 144
                                                           174
69
         40.000000
                        60.000000
                                                                     1.0
70
         31.000000
                         52.000000
                                        27
                                                 41
                                                           71
                                                                    10
71
         35.000000
                         69.000000
                                        23
                                                 180
                                                           210
                                                                     1.0
72
         65.000000
                         55.000000
                                        14
                                                 65
                                                           95
                                                                    10
73
         63.000000
                        65.000000
                                        8
                                                 30
                                                          60
                                                                    10
74
         2.000000
                        60.000000
                                       5
                                                77
                                                         107
                                                                   10
75
         20.000000
                        20.000000
                                        8
                                                141
                                                          171
                                                                    10
76
         5.000000
                        5.000000
                                       16
                                                74
                                                         104
                                                                    1.0
                                                          105
                                                 75
77
                        12.000000
                                       31
         60.000000
                                                                    1.0
78
                                        7
                                                150
                                                                    10
         23.000000
                        3.000000
                                                          180
                                       27
79
                        56.000000
                                                90
                                                          120
                                                                    10
         8.000000
                                                89
80
         6.000000
                       68.000000
                                       30
                                                          119
                                                                    10
         47.000000
                        47.000000
                                       13
                                                 192
                                                          222
                                                                     10
81
         49.000000
                         58.000000
                                       10
                                                 86
                                                           116
                                                                     10
         27.000000
                        43.000000
                                                42
                                                          72
                                                                   10
         37.000000
                         31.000000
                                       14
                                                35
                                                          65
                                                                    1.0
85
         57.000000
                         29.000000
                                       18
                                                 96
                                                          126
                                                                    10
86
         63.000000
                        23.000000
                                        2
                                                87
                                                          117
                                                                    1.0
                                                87
                                        28
87
         21.000000
                        24.000000
                                                          117
                                                                    10
                                                 90
                                       13
88
         12.000000
                         24.000000
                                                          120
                                                                     10
                                                 67
89
         24.000000
                         58.000000
                                        19
                                                           97
                                                                    10
                                       25
90
                                                 144
                                                          174
         67.000000
                        5.000000
                                                                    1.0
                                       6
91
         37.000000
                        47.000000
                                                 86
                                                          116
                                                                    10
                                                          197
92
         49.000000
                        42.000000
                                        13
                                                167
                                                                     1.0
93
         53.000000
                        43.000000
                                        14
                                                 14
                                                           44
                                                                    10
94
                                                 178
                                                           208
         61.000000
                         52.000000
                                                                     10
95
         57.000000
                         48.000000
                                        23
                                                 95
                                                           125
                                                                     10
96
         56.000000
                         37.000000
                                                 34
                                                          64
97
         55.000000
                        54.000000
                                        26
                                                 132
                                                           162
                                                                      10
98
                                        35
                                                 120
                                                           150
         4.000000
                        18.000000
                                                                     1.0
99
         26.000000
                        52.000000
                                        9
                                                 46
                                                          76
                                                                   1.0
                                                 77
100
          26.000000
                          35.000000
                                         15
                                                           107
                                                                      1.0
101
          31.000000
                          67.000000
                                         3
                                                  180
                                                            210
                                                                      10
١.
drop table if exists vrp_vehicles cascade;
create table vrp_vehicles (
   vehicle_id integer not null primary key,
   capacity integer,
   case_no integer
);
copy vrp_vehicles (vehicle_id, capacity, case_no) from stdin;
        200
                  5
1
2
        200
                  5
3
        200
```

```
200
5
        200
                   5
6
        200
                   5
                   5
        200
                   5
8
        200
9
        200
                   5
10
        200
11
         2.00
12
         200
13
         200
14
         200
         200
15
16
         200
                    5
17
         200
                    5
                    5
18
         200
                    5
19
         200
                    5
20
         200
١.
drop table if exists vrp_distance cascade;
create table vrp_distance (
   src_id integer,
   dest_id integer,
   cost Float8,
   distance Float8,
   traveltime Float8
);
copy vrp_distance (src_id, dest_id, cost, distance, traveltime) from stdin;
                38.078866 38.078866
                                                 38.078866
        2
1
        3
                30.805844
                                30.805844
                                                 30.805844
1
                39.357337
                                39.357337
                                                 39.357337
                36.055513
                                36.055513
                                                 36.055513
                40.311289
                                40.311289
                                                 40.311289
1
        7
                33.301652
                                33.301652
                                                 33.301652
1
        8
                35.355339
                                35.355339
                                                 35.355339
                                                 39.051248
1
        9
                39.051248
                                39.051248
                                33.541020
                                                 33.541020
        10
                33.541020
1
                                 31.622777
                                                 31.622777
        11
                 31.622777
1
                                                 33.526109
        12
                 33.526109
                                 33.526109
1
                                                 32.388269
        13
                 32.388269
                                 32.388269
1
                                                  38.078866
        14
                 38.078866
                                  38.078866
1
        15
                                                  35.355339
1
                  35.355339
                                  35.355339
        16
                 39.293765
                                  39.293765
                                                  39.293765
                                                 41.231056
        17
                 41.231056
                                  41.231056
                                                 40.311289
        18
                 40.311289
                                 40.311289
1
        19
                                                 45.177428
                 45.177428
                                 45.177428
                                                 40.049969
1
        20
                 40.049969
                                 40.049969
                                                 35.057096
1
        21
                 35.057096
                                 35.057096
1
        22
                 45.000000
                                 45.000000
                                                 45.000000
1
        23
                 35.000000
                                 35.000000
                                                 35.000000
1
        24
                 45.044423
                                 45.044423
                                                 45.044423
        25
1
                 35.057096
                                 35.057096
                                                 35.057096
                                                  45.276926
                 45.276926
                                 45.276926
1
        2.6
        27
                 58.523500
                                 58.523500
                                                  58.523500
1
        28
                 57.008771
                                  57.008771
                                                  57.008771
                 55.713553
                                 55.713553
                                                  55.713553
1
        2.9
                                                  52.201533
                 52.201533
                                 52.201533
1
        30
                 52.000000
                                  52.000000
                                                  52.000000
        31
1
        32
                  50.289164
                                  50.289164
                                                  50.289164
1
1
        33
                  51.078371
                                  51.078371
                                                  51.078371
                  51.478151
1
        34
                                  51.478151
                                                  51.478151
        35
                  47.434165
                                  47.434165
                                                  47.434165
```

1	36	44.204072	44.204072	44.204072	
1	37	43.011626	43.011626	43.011626	
1	38	40.607881	40.607881	40.607881	
1	39	37.202150	37.202150	37.202150	
1	40	36.055513	36.055513	36.055513	
1	41	40.311289	40.311289	40.311289	
1	42	30.805844	30.805844	30.805844	
1	43	33.541020	33.541020	33.541020	
1	44	38.078866	38.078866	38.078866	
1	45	35.341194	35.341194	35.341194	
1	46	37.735925	37.735925	37.735925	
1	47	37.202150	37.202150	37.202150	
1	48	38.327536	38.327536	38.327536	
1	49	45.044423	45.044423	45.044423	
1	50	38.052595	38.052595	38.052595	
1	51	35.341194	35.341194	35.341194	
1	52	33.541020	33.541020	33.541020	
1	53	25.000000	25.000000	25.000000	
1	54	20.000000	20.000000	20.000000	
1	55	18.027756	18.027756	18.027756	
	56		14.142136		
1		14.142136		14.142136	
1	57	18.027756	18.027756	18.027756	
1	58	26.925824	26.925824	26.925824	
1	59	47.169906	47.169906	47.169906	
1	60	42.426407	42.426407	42.426407	
1	61	26.925824	26.925824	26.925824	
1	62	15.811388	15.811388	15.811388	
1	63	29.154759	29.154759	29.154759	
1	64	39.051248	39.051248	39.051248	
1	65	20.615528	20.615528	20.615528	
1	66	11.180340	11.180340	11.180340	
1	67	13.038405	13.038405	13.038405	
1	68	25.298221	25.298221	25.298221	
1	69	10.000000	10.000000	10.000000	
1	70	9.219544	9.219544	9.219544	
1	71	19.646883	19.646883	19.646883	
1	72	25.495098	25.495098	25.495098	
1	73	27.459060	27.459060	27.459060	
1	74	39.293765	39.293765	39.293765	
1	75	36.055513	36.055513	36.055513	
1	76	57.008771	57.008771	57.008771	
1	77	42.941821	42.941821	42.941821	
1	78	49.979996	49.979996	49.979996	
1	79	32.557641	32.557641	32.557641	
1	80	38.470768	38.470768	38.470768	
1	81	7.615773	7.615773	7.615773	
1	82	12.041595	12.041595	12.041595	
1	83	14.764823	14.764823	14.764823	
1	84	19.235384	19.235384	19.235384	
1	85	27.018512	27.018512	27.018512	
1	86	35.468296	35.468296	35.468296	
1	87	32.202484	32.202484	32.202484	
1	88	38.209946	38.209946	38.209946	
1	89	17.888544	17.888544	17.888544	
1	90	52.478567	52.478567	52.478567	
1	91	4.242641	4.242641	4.242641	
1	92	12.041595	12.041595	12.041595	
1	93	14.764823	14.764823	14.764823	
1	94	21.095023	21.095023	21.095023	
1	95	17.117243	17.117243	17.117243	
1	96	20.615528	20.615528	20.615528	
1	97	15.524175	15.524175	15.524175	
1	98	48.166378		48.166378	
Τ	70	40.1003/0	48.166378	40.1007\0	

1	99	14.142136	14.142136	14.142136
1	100	20.518285	20.518285	20.518285
1	101	19.235384	19.235384	19.235384
2	1	38.078866	38.078866	38.078866
2	3	10.440307	10.440307	10.440307
2	4	3.000000	3.000000	3.000000
2	5	7.071068	7.071068	7.071068
2	6	5.000000	5.000000	5.000000
2	7	12.206556	12.206556	12.206556
2	8	14.142136	14.142136	14.142136
2	9	11.180340	11.180340	11.180340
2	10	52.201533	52.201533	52.201533
2	11	47.434165	47.434165	47.434165
2	12			
		48.104054	48.104054	48.104054
2	13	43.462628	43.462628	43.462628
2	14	53.851648	53.851648	53.851648
2	15	44.721360	44.721360	44.721360
2	16	50.537115	50.537115	50.537115
2	17	51.478151	51.478151	51.478151
2	18	47.169906	47.169906	47.169906
2	19	82.225300	82.225300	82.225300
2	20	76.902536	76.902536	76.902536
2	21	72.034714	72.034714	72.034714
2	22	81.394103	81.394103	81.394103
2	23	71.589105	71.589105	71.589105
2	24	81.049368	81.049368	81.049368
2	25	71.196910	71.196910	71.196910
2	26	80.622577	80.622577	80.622577
2	27	89.022469	89.022469	89.022469
2	28	86.023253	86.023253	86.023253
2	29	86.683332	86.683332	86.683332
2	30	82.006097	82.006097	82.006097
2	31	83.630138	83.630138	83.630138
2	32	80.430094	80.430094	80.430094
2	33	82.879430	82.879430	82.879430
2	34	84.852814	84.852814	84.852814
2	35	78.102497	78.102497	78.102497
2	36	42.000000	42.000000	42.000000
2	37	40.000000	40.000000	40.000000
2	38	40.112342	40.112342	40.112342
	39	37.336309	37.336309	37.336309
2	40	35.355339	35.355339	37.336309
2	41	35.000000	35.000000	35.000000
2	42	34.481879	34.481879	34.481879
2	43	30.413813	30.413813	30.413813
2	44	30.000000	30.000000	30.000000
2	45	30.149627	30.149627	30.149627
2	46	5.830952	5.830952	5.830952
2	47	8.602325	8.602325	8.602325
2	48	46.141088	46.141088	46.141088
2	49	81.786307	81.786307	81.786307
2	50	74.953319	74.953319	74.953319
2	51	68.622154	68.622154	68.622154
2	52	71.589105	71.589105	71.589105
2	53	55.000000	55.000000	55.000000
2	54	35.355339	35.355339	35.355339
2	55	39.051248	39.051248	39.051248
2	56	25.495098	25.495098	25.495098
2	57	55.901699	55.901699	55.901699
2	58	60.207973	60.207973	60.207973
2	59	75.663730	75.663730	75.663730
2	60	66.708320	66.708320	66.708320
2	61	26.925824	26.925824	26.925824
	-			

2	62	28.284271	28.284271	28.284271
2	63	64.031242	64.031242	64.031242
2	64	76.321688	76.321688	76.321688
2	65	58.523500	58.523500	58.523500
2	66	46.097722	46.097722	46.097722
2	67	50.596443	50.596443	50.596443
2	68	58.051701	58.051701	58.051701
	69	29.154759	29.154759	29.154759
2				
2	70	33.541020	33.541020	33.541020
2	71	18.867962	18.867962	18.867962
2	72	50.00000	50.00000	50.000000
2	73	42.941821	42.941821	42.941821
2	74	33.970576	33.970576	33.970576
2	75	65.192024	65.192024	65.192024
2	76	82.462113	82.462113	82.462113
2	77	80.956779	80.956779	80.956779
2	78	82.024387	82.024387	82.024387
2	79	33.615473	33.615473	33.615473
2	80	25.495098	25.495098	25.495098
2	81	43.908997	43.908997	43.908997
2	82	36.124784	36.124784	36.124784
2	83	42.047592	42.047592	42.047592
2	84	55.317267	55.317267	55.317267
2	85	64.498062	64.498062	64.498062
2	86	72.718636	72.718636	72.718636
2	87	61.131007	61.131007	61.131007
2	88	62.369865	62.369865	62.369865
2	89	27.018512	27.018512	27.018512
2	90	90.354856	90.354856	90.354856
2	91	39.849718	39.849718	39.849718
2	92	49.244289	49.244289	49.244289
2	93	50.477718	50.477718	50.477718
2	94	48.836462	48.836462	48.836462
2	95	48.918299	48.918299	48.918299
2	96	57.140179	57.140179	57.140179
2	97	43.139309	43.139309	43.139309
2	98	70.213959	70.213959	70.213959
2	99	33.015148	33.015148	33.015148
2	100	50.009999	50.009999	50.009999
2	101	18.973666	18.973666	18.973666
3		30.805844	30.805844	30.805844
3		10.440307	10.440307	10.440307
3		10.000000	10.000000	10.000000
3	5	5.385165	5.385165	5.385165
3	6	10.198039	10.198039	10.198039
3	7	4.000000	4.000000	4.000000
3	8	7.000000	7.000000	7.000000
3	9	8.602325	8.602325	8.602325
3	10	41.761226	41.761226	41.761226
3	11	37.000000	37.000000	37.000000
3	12	37.696154	37.696154	37.696154
3	13	33.105891	33.105891	33.105891
3	14	43.462628	43.462628	43.462628
3	15	34.481879	34.481879	34.481879
3	16	40.311289	40.311289	40.311289
3	17	41.340053	41.340053	41.340053
3	18	37.202150	37.202150	37.202150
3	19	73.375745	73.375745	73.375745
3	20	68.007353	68.007353	68.007353
3	21	63.245553	63.245553	63.245553
	22	72.277244	72.277244	72.277244
3	23	62.641839	62.641839	62.641839
3	24	71.805292	71.805292	71.805292

3	25	62.096699	62.096699	62.096699
3	26	71.196910	71.196910	71.196910
3	27	85.755466	85.755466	85.755466
3	28	83.240615	83.240615	83.240615
3	29	83.216585	83.216585	83.216585
3	30	78.892332	78.892332	78.892332
3	31	79.881162	79.881162	79.881162
3	32			77.175126
		77.175126	77.175126 79.056942	
3	33	79.056942		79.056942
3	34	80.430094	80.430094	80.430094
3	35	74.625733	74.625733	74.625733
3	36	46.097722	46.097722	46.097722
3	37	44.147480	44.147480	44.147480
3	38	43.566042	43.566042	43.566042
3	39	40.311289	40.311289	40.311289
3	40	38.327536	38.327536	38.327536
3	41	39.293765	39.293765	39.293765
3	42	36.000000	36.000000	36.000000
3	43	33.376639	33.376639	33.376639
3	44	34.481879	34.481879	34.481879
3	45	33.734256	33.734256	33.734256
3	46	7.280110	7.280110	7.280110
3	47	6.403124	6.403124	6.403124
3	48	36.055513	36.055513	36.055513
3	49	72.801099	72.801099	72.801099
3	50	66.098411	66.098411	66.098411
3	51	64.031242	64.031242	64.031242
3	52	64.140471	64.140471	64.140471
3	53	45.099889	45.099889	45.099889
3	54	25.079872	25.079872	25.079872
3	55	36.249138	36.249138	36.249138
3	56	17.000000	17.000000	17.000000
3	57	48.826222	48.826222	48.826222
3	58	50.635956	50.635956	50.635956
3	59	65.375837	65.375837	65.375837
3	60	56.293872	56.293872	56.293872
3	61	16.552945	16.552945	16.552945
3	62	25.079872	25.079872	25.079872
3	63	58.728187	58.728187	58.728187
3	64	69.814039	69.814039	69.814039
3	65	50.537115	50.537115	50.537115
3	66	37.336309	37.336309	37.336309
3	67	42.485292	42.485292	42.485292
3	68	53.413481	53.413481	53.413481
3	69	23.430749	23.430749	23.430749
3	70	24.698178	24.698178	24.698178
3	71	14.317821	14.317821	14.317821
3	72	47.423623	47.423623	47.423623
3	73	42.201896	42.201896	42.201896
3	74	25.00000	25.000000	25.000000
3	75	55.036352	55.036352	55.036352
3	76	72.034714	72.034714	72.034714
3	77	73.573093	73.573093	73.573093
3	78	72.006944	72.006944	72.006944
3	79	23.600847	23.600847	23.600847
3	80	17.464249	17.464249	17.464249
3	81	37.536649	37.536649	37.536649
3	82	31.906112	31.906112	31.906112
3	83	32.388269	32.388269	32.388269
3	84	46.486557	46.486557	46.486557
3	85	57.801384	57.801384	57.801384
3	86	66.219333	66.219333	66.219333
3	87	51.009803	51.009803	51.009803

3	88	51.971146	51.971146	51.971146
3	89	17.117243	17.117243	17.117243
3	90	83.216585	83.216585	83.216585
3	91	31.764760	31.764760	31.764760
3	92	42.638011	42.638011	42.638011
3	93	44.553339	44.553339	44.553339
3	94	45.276926	45.276926	45.276926
3	95	44.204072	44.204072	44.204072
3	96	50.990195	50.990195	50.990195
3	97	39.115214	39.115214	39.115214
3	98	59.774577	59.774577	59.774577
3	99	23.345235	23.345235	23.345235
3	100	40.199502	40.199502	40.199502
3	101	12.041595	12.041595	12.041595
4	1	39.357337	39.357337	39.357337
4	2	3.000000	3.000000	3.000000
4	3	10.00000	10.00000	10.00000
		5.385165	5.385165	5.385165
4	5		2.000000	
4	6	2.000000		2.000000
4	7	10.770330	10.770330	10.770330
4	8	12.206556	12.206556	12.206556
4	9	8.602325	8.602325	8.602325
4	10	51.419841	51.419841	51.419841
4	11	46.572524	46.572524	46.572524
4	12	47.127487	47.127487	47.127487
4	13	42.379240	42.379240	42.379240
4	14	52.810984	52.810984	52.810984
4	15	43.462628	43.462628	43.462628
4	16	49.244289	49.244289	49.244289
4	17	50.089919	50.089919	50.089919
4	18	45.650849	45.650849	45.650849
4	19	82.969874	82.969874	82.969874
4	20	77.620873	77.620873	77.620873
4	21	72.801099	72.801099	72.801099
4	22	82.000000	82.000000	82.00000
4	23	72.277244	72.277244	72.277244
4	24	81.584312	81.584312	81.584312
4	25	71.805292	71.805292	71.805292
4	26	81.049368	81.049368	81.049368
4	27	91.400219	91.400219	91.400219
4	28	88.481637	88.481637	88.481637
4	29	89.022469	89.022469	89.022469
4	30	84.403791	84.403791	84.403791
4	31	85.912746	85.912746	85.912746
4	32	82.800966	82.800966	82.800966
4	33	85.146932	85.146932	85.146932
4	34	87.000000	87.000000	87.000000
4	35	80.430094	80.430094	80.430094
4	36	45.000000	45.000000	45.000000
4	37	43.000000	43.000000	43.000000
4	38	43.104524	43.104524	43.104524
4	39	40.311289	40.311289	40.311289
4	40	38.327536	38.327536	38.327536
4	41	38.000000	38.000000	38.000000
4	42	37.363083	37.363083	37.363083
4	43	33.376639	33.376639	33.376639
4	44	33.000000	33.000000	33.000000
4	45	33.136083	33.136083	33.136083
4	46	3.605551	3.605551	3.605551
4	47	6.403124	6.403124	6.403124
4	48	44.721360	44.721360	44.721360
4	49	82.462113	82.462113	82.462113
4	50	75.690158	75.690158	75.690158

	-			
4	51	70.710678	70.710678	70.710678
4	52	72.897188	72.897188	72.897188
4	53	55.081757	55.081757	55.081757
4	54	35.057096	35.057096	35.057096
4	55	41.400483	41.400483	41.400483
4	56	26.248809	26.248809	26.248809
4	57	57.306195	57.306195	57.306195
4		60.530984		60.530984
	58		60.530984	
4	59	75.325958	75.325958	75.325958
4	60	66.098411	66.098411	66.098411
4	61	25.961510	25.961510	25.961510
4	62	30.479501	30.479501	30.479501
4	63	65.946948	65.946948	65.946948
4	64	77.935871	77.935871	77.935871
4	65	59.615434	59.615434	59.615434
4	66	46.840154	46.840154	46.840154
4	67	51.623638	51.623638	51.623638
4	68	60.108236	60.108236	60.108236
4	69	30.805844	30.805844	30.805844
4	70	34.205263	34.205263	34.205263
4	71	20.615528	20.615528	20.615528
4	72	52.430907	52.430907	52.430907
4	73	45.617979	45.617979	45.617979
4	74	32.015621	32.015621	32.015621
4	75	65.030762	65.030762	65.030762
4	76	81.786307	81.786307	81.786307
4	77	82.298238	82.298238	82.298238
4	78	82.006097	82.006097	82.006097
4	79	32.202484	32.202484	32.202484
4	80	23.345235	23.345235	23.345235
4	81	45.486262	45.486262	45.486262
4	82	38.183766	38.183766	38.183766
4	83	42.296572	42.296572	42.296572
4	84	56.044625	56.044625	56.044625
4	85	66.037868	66.037868	66.037868
4	86	74.330344	74.330344	74.330344
			61.008196	
4	87	61.008196		61.008196 61.814238
4	88	61.814238	61.814238	
4	89	27.073973	27.073973	27.073973
4	90	91.787799	91.787799	91.787799
4	91	40.853396	40.853396	40.853396
4	92	50.774009	50.774009	50.774009
4	93	52.201533	52.201533	52.201533
4	94	51.088159	51.088159	51.088159
4	95	50.931326	50.931326	50.931326
4	96	58.821765	58.821765	58.821765
4	97	45.276926	45.276926	45.276926
4	98	69.375788	69.375788	69.375788
4	99	33.241540	33.241540	33.241540
4	100	50.159745	50.159745	50.159745
4	101	20.124612	20.124612	20.124612
5	1	36.055513	36.055513	36.055513
5	2	7.071068	7.071068	7.071068
5	3	5.385165	5.385165	5.385165
5	4	5.385165	5.385165	5.385165
5	6	5.000000	5.000000	5.000000
5	7	5.385165	5.385165	5.385165
5	8	7.071068	7.071068	7.071068
5	9	5.000000	5.000000	5.000000
5	10	46.097722	46.097722	46.097722
5	11	41.231056	41.231056	41.231056
5	12	41.761226	41.761226	41.761226
5	13	37.000000	37.000000	37.000000
J	τ 2	37.000000	37.000000	31.00000

5	14	47.434165	47.434165	47.434165	
5	15	38.078866	38.078866	38.078866	
5	16	43.863424	43.863424	43.863424	
5	17	44.721360	44.721360	44.721360	
5	18	40.311289	40.311289	40.311289	
5	19	78.746428	78.746428	78.746428	
5	20	73.375745	73.375745	73.375745	
5	21	68.622154	68.622154	68.622154	
5	22	77.620873	77.620873	77.620873	
5	23	68.007353	68.007353	68.007353	
5	24	77.129761	77.129761	77.129761	
5	25	67.446275	67.446275	67.446275	
5	26	76.485293	76.485293	76.485293	
5	27	90.138782	90.138782	90.138782	
5	28	87.464278	87.464278	87.464278	
5	29	87.658428	87.658428	87.658428	
5	30	83.216585	83.216585	83.216585	
5	31	84.403791	84.403791	84.403791	
5	32	81.541401	81.541401	81.541401	
5	33	83.600239	83.600239	83.600239	
5	34	85.146932	85.146932	85.146932	
5	35	79.056942	79.056942	79.056942	
5	36	47.265209	47.265209	47.265209	
5	37	45.276926	45.276926	45.276926	
5	38	45.044423	45.044423	45.044423	
5	39	42.000000	42.00000	42.00000	
5	40	40.00000	40.00000	40.00000	
5	41	40.311289	40.311289	40.311289	
5	42	38.327536	38.327536	38.327536	
5	43	35.000000	35.000000	35.000000	
5		35.355339	35.355339	35.355339	
	44				
5	45	35.057096	35.057096	35.057096	
5	46	2.000000	2.00000	2.000000	
5	47	2.00000	2.000000	2.000000	
5	48	39.357337	39.357337	39.357337	
5	49	78.160092	78.160092	78.160092	
5	50	71.470274	71.470274	71.470274	
5	51	68.767725	68.767725	68.767725	
	52				
5		69.462220	69.462220	69.462220	
5	53	50.249378	50.249378	50.249378	
5	54	30.000000	30.000000	30.000000	
5	55	40.311289	40.311289	40.311289	
5	56	22.360680	22.360680	22.360680	
5	57	54.083269	54.083269	54.083269	
5	58	55.901699	55.901699	55.901699	
5	59	70.178344	70.178344	70.178344	
5	60	60.827625	60.827625	60.827625	
5	61	20.615528	20.615528	20.615528	
5	62	29.154759	29.154759	29.154759	
5	63	63.639610	63.639610	63.639610	
5	64	75.000000	75.000000	75.000000	
5	65	55.901699	55.901699	55.901699	
5	66	42.720019	42.720019	42.720019	
5	67	47.853944	47.853944	47.853944	
5	68	58.137767	58.137767	58.137767	
5	69	28.284271	28.284271	28.284271	
5	70	30.083218	30.083218	30.083218	
5	71	18.601075	18.601075	18.601075	
5	72	51.478151	51.478151	51.478151	
	73	45.541190	45.541190	45.541190	
	1 3	コン・フォエエフリ	ュン・フォエエフリ	コン・フュエエン()	
5		26 007240	26 007240	26 007240	
5	74	26.907248	26.907248	26.907248	
		26.907248 60.000000 76.485293	26.907248 60.000000 76.485293	26.907248 60.000000 76.485293	

5	77	78.892332	78.892332	78.892332	
5	78	77.058419	77.058419	77.058419	
5	79	26.832816	26.832816	26.832816	
5	80	18.439089	18.439089	18.439089	
5	81	42.638011	42.638011	42.638011	
5	82	36.400549	36.400549	36.400549	
5	83	37.656341	37.656341	37.656341	
5	84	51.865210	51.865210	51.865210	
5	85	63.007936	63.007936	63.007936	
5	86	71.400280	71.400280	71.400280	
5					
	87	56.008928	56.008928	56.008928	
5	88	56.568542	56.568542	56.568542	
5	89	22.360680	22.360680	22.360680	
5	90	88.509886	88.509886	88.509886	
5	91	37.121422	37.121422	37.121422	
5	92	47.801674	47.801674	47.801674	
5	93	49.578221	49.578221	49.578221	
5	94	49.648766	49.648766	49.648766	
5	95	48.918299	48.918299	48.918299	
5	96	56.080300	56.080300	56.080300	
5	97	43.600459	43.600459	43.600459	
5	98	64.031242	64.031242	64.031242	
5	99	28.635642	28.635642	28.635642	
5	100	45.398238	45.398238	45.398238	
5	101	17.029386	17.029386	17.029386	
6	1	40.311289	40.311289	40.311289	
6	2	5.000000	5.000000	5.000000	
6	3	10.198039	10.198039	10.198039	
6	4	2.000000	2.000000	2.000000	
6	5	5.000000	5.000000	5.000000	
6	7	10.198039	10.198039	10.198039	
6	8	11.180340	11.180340	11.180340	
6	9	7.071068	7.071068	7.071068	
6	10	50.990195	50.990195	50.990195	
6	11	46.097722	46.097722	46.097722	
6	12	46.572524	46.572524	46.572524	
6	13	41.761226	41.761226	41.761226	
6	14	52.201533	52.201533	52.201533	
6	15	42.720019	42.720019	42.720019	
6	16	48.466483	48.466483	48.466483	
	17	49.244289	49.244289	49.244289	
6				44.721360	
6	18	44.721360	44.721360		
6	19	83.522452	83.522452	83.522452	
6	20	78.160092	78.160092	78.160092	
6	21	73.375745	73.375745	73.375745	
6	22	82.462113	82.462113	82.462113	
6	23	72.801099	72.801099	72.801099	
6	24	82.000000	82.00000	82.000000	
6	25	72.277244	72.277244	72.277244	
6	26	81.394103	81.394103	81.394103	
6	27	93.005376	93.005376	93.005376	
6	28	90.138782	90.138782	90.138782	
6	29	90.603532	90.603532	90.603532	
6	30	86.023253	86.023253	86.023253	
6	31	87.458562	87.458562	87.458562	
6	32	84.403791	84.403791	84.403791	
6	33	86.683332	86.683332	86.683332	
6	34	88.459030	88.459030	88.459030	
6	35	82.006097	82.006097	82.006097	
6	36	47.000000	47.000000	47.000000	
6	37	45.000000	45.000000	45.000000	
6	38	45.099889	45.099889	45.099889	
6	39	42.296572	42.296572	42.296572	

6	40	40.311289	40.311289	40.311289	
6	41	40.000000	40.000000	40.000000	
6	42	39.293765	39.293765	39.293765	
6	43	35.355339	35.355339	35.355339	
6	44	35.000000	35.000000	35.000000	
6	45	35.128336	35.128336	35.128336	
6	46	3.000000	3.000000	3.000000	
6	47	5.385165	5.385165	5.385165	
6	48	43.863424	43.863424	43.863424	
6	49	82.969874	82.969874	82.969874	
6	50	76.243032	76.243032	76.243032	
6	51	72.138755	72.138755	72.138755	
6	52	73.824115	73.824115	73.824115	
6					
	53	55.226805	55.226805	55.226805	
6	54	35.000000	35.000000	35.000000	
6	55	43.011626	43.011626	43.011626	
6	56	26.925824	26.925824	26.925824	
6	57	58.309519	58.309519	58.309519	
6	58	60.827625	60.827625	60.827625	
6	59	75.166482	75.166482	75.166482	
6	60	65.764732	65.764732	65.764732	
6	61	25.495098	25.495098	25.495098	
6	62	32.015621	32.015621	32.015621	
6	63	67.268120	67.268120	67.268120	
6	64	79.056942	79.056942	79.056942	
6	65				
		60.415230	60.415230	60.415230	
6	66	47.434165	47.434165	47.434165	
6	67	52.392748	52.392748	52.392748	
6	68	61.522354	61.522354	61.522354	
6	69	32.015621	32.015621	32.015621	
6	70	34.785054	34.785054	34.785054	
6	71	21.931712	21.931712	21.931712	
6	72	54.083269	54.083269	54.083269	
6	73	47.423623	47.423623	47.423623	
6	74	30.805844	30.805844	30.805844	
6	75	65.000000	65.000000	65.000000	
6	76	81.394103	81.394103	81.394103	
6	77	83.240615	83.240615	83.240615	
6	78	82.054860	82.054860	82.054860	
6	79	31.384710	31.384710	31.384710	
6	80	22.022716	22.022716	22.022716	
6	81	46.615448	46.615448	46.615448	
6	82	39.623226	39.623226	39.623226	
6	83	42.579338	42.579338	42.579338	
		56.612719	56.612719	56.612719	
6	84				
6	85	67.119297	67.119297	67.119297	
6	86	75.451971	75.451971	75.451971	
6	87	61.008196	61.008196	61.008196	
6	88	61.522354	61.522354	61.522354	
6	89	27.294688	27.294688	27.294688	
6	90	92.784697	92.784697	92.784697	
6	91	41.629317	41.629317	41.629317	
6	92	51.865210	51.865210	51.865210	
6	93	53.413481	53.413481	53.413481	
6	94	52.630789	52.630789	52.630789	
6	95	52.325902	52.325902	52.325902	
6	96	60.000000	60.000000	60.000000	
6	97	46.754679	46.754679	46.754679	
6	98	68.883960	68.883960	68.883960	
6	99	33.541020	33.541020	33.541020	
6	100	50.358713	50.358713	50.358713	
6	101	21.095023	21.095023	21.095023	
7	1	33.301652	33.301652	33.301652	
,	-	33.30±032	JJ.JU10JZ	JJ.JU±UJZ	

7	2	12.206556	12.206556	12.206556
7	3	4.00000	4.000000	4.000000
7	4	10.770330	10.770330	10.770330
7	5	5.385165	5.385165	5.385165
7	6	10.198039	10.198039	10.198039
7	8	3.000000	3.000000	3.000000
7	9	5.830952	5.830952	5.830952
7	10	40.792156	40.792156	40.792156
7	11	35.902646	35.902646	35.902646
7	12	36.400549	36.400549	36.400549
7	13	31.622777	31.622777	31.622777
7	14	42.059482	42.059482	42.059482
7	15	32.695565	32.695565	32.695565
7	16	38.483763	38.483763	38.483763
7	17	39.357337	39.357337	39.357337
7	18	34.985711	34.985711	34.985711
7	19	74.672619	74.672619	74.672619
7	20	69.289249	69.289249	69.289249
7	21	64.621978	64.621978	64.621978
7	22		73.375745	
		73.375745		73.375745
7	23	63.906181	63.906181	63.906181
7	24	72.801099	72.801099	72.801099
7	25	63.245553	63.245553	63.245553
7	26	72.034714	72.034714	72.034714
7	27	89.185201	89.185201	89.185201
7	28	86.769810	86.769810	86.769810
7	29	86.608314	86.608314	86.608314
7	30	82.365041	82.365041	82.365041
7	31	83.216585	83.216585	83.216585
7	32	80.622577	80.622577	80.622577
7	33	82.377181	82.377181	82.377181
7	34	83.600239	83.600239	83.600239
7	35	78.032045	78.032045	78.032045
7	36	50.009999	50.009999	50.009999
7	37	48.052055	48.052055	48.052055
7	38	47.518417	47.518417	47.518417
7	39	44.283180	44.283180	44.283180
7	40	42.296572	42.296572	42.296572
7	41	43.174066	43.174066	43.174066
7	42	40.000000	40.000000	40.000000
7	43	37.336309	37.336309	37.336309
7	44	38.327536	38.327536	38.327536
7	45	37.656341	37.656341	37.656341
7	46	7.280110	7.280110	7.280110
7	47	5.000000	5.00000	5.00000
7	48	34.000000	34.000000	34.00000
7	49	74.000000	74.000000	74.00000
7	50	67.416615	67.416615	67.416615
7	51	67.201190	67.201190	67.201190
7	52	66.287254	66.287254	66.287254
7	53	45.541190	45.541190	45.541190
	53 54	25.079872		25.079872
7	54 55	39.924930	25.079872 39.924930	39.924930
7	56 57	19.209373	19.209373	19.209373
7	57	51.224994	51.224994	51.224994
7	58	51.419841	51.419841	51.419841
7	59	65.069194	65.069194	65.069194
7	60	55.578773	55.578773	55.578773
7	61	15.297059	15.297059	15.297059
7	62	28.792360	28.792360	28.792360
7	63	61.717096	61.717096	61.717096
7	64	72.346389	72.346389	72.346389
7	65	52.478567	52.478567	52.478567

7	66	38.910153	38.910153	38.910153	
7	67	44.418465	44.418465	44.418465	
7	68	56.612719	56.612719	56.612719	
7	69	26.627054	26.627054	26.627054	
7	70	26.419690	26.419690	26.419690	
7	71	18.027756	18.027756	18.027756	
7	72	51.078371	51.078371	51.078371	
7	73	46.097722	46.097722	46.097722	
7	74	21.931712	21.931712	21.931712	
7	75	55.036352	55.036352	55.036352	
7	76	71.196910	71.196910	71.196910	
7	77	75.716577	75.716577	75.716577	
7	78	72.173402	72.173402	72.173402	
7	79	21.470911	21.470911	21.470911	
7	80	13.892444	13.892444	13.892444	
7	81	40.311289	40.311289	40.311289	
7	82	35.355339	35.355339	35.355339	
7	83	33.241540	33.241540	33.241540	
7	84	47.927028	47.927028	47.927028	
7	85	60.307545	60.307545	60.307545	
7	86	68.767725	68.767725	68.767725	
7	87	51.088159	51.088159	51.088159	
7	88	51.351728	51.351728	51.351728	
7	89	18.027756	18.027756	18.027756	
7	90	85.445889	85.445889	85.445889	
7	91	33.837849	33.837849	33.837849	
7	92	45.276926	45.276926	45.276926	
7	93	47.423623	47.423623	47.423623	
7	94	48.764741	48.764741	48.764741	
7	95	47.434165	47.434165	47.434165	
7	96	53.740115	53.740115	53.740115	
7	97	42.544095	42.544095	42.544095	
7	98	58.694122	58.694122	58.694122	
7	99	24.351591	24.351591	24.351591	
7	100	40.792156	40.792156	40.792156	
7	101	15.264338	15.264338	15.264338	
8	1	35.355339	35.355339	35.355339	
8	2	14.142136	14.142136	14.142136	
8	3	7.000000	7.000000	7.000000	
8	4	12.206556	12.206556	12.206556	
8	5	7.071068	7.071068	7.071068	
8	6	11.180340	11.180340	11.180340	
8	7	3.000000	3.000000	3.00000	
8	9	5.000000	5.000000	5.000000	
8	10	40.311289	40.311289	40.311289	
8	11	35.355339	35.355339	35.355339	
8	12	35.693137	35.693137	35.693137	
8	13	30.805844	30.805844	30.805844	
8	14	41.231056	41.231056	41.231056	
8	15	31.622777	31.622777	31.622777	
8	16	37.336309	37.336309	37.336309	
8	17	38.078866	38.078866	38.078866	
8	18	33.541020	33.541020	33.541020	
8	19	75.769387	75.769387	75.769387	
8	20	70.384657	70.384657	70.384657	
8	21	65.795137	65.795137	65.795137	
8	22	74.330344	74.330344	74.330344	
8	23	65.000000	65.000000	65.000000	
8	24	73.681748	73.681748	73.681748	
8	25	64.257295	64.257295	64.257295	
8	26	72.801099	72.801099	72.801099	
8	27	91.787799	91.787799	91.787799	
8	28	89.442719	89.442719	89.442719	
0	40	07.444/13	07.444/19	07.444/17	

8 29 89,185201 99,185201 89,185201 89,185201 8 30 85,0000000 85,000000 85,00						
8 30 85.000000 8	8	29	89.185201	89.185201	89.185201	
8 31 83,755466 85,755466 85,755466 85,240615 83,240615 8						
8 33 84.905910 84.905920 84.905930 84.905830 84.905830 84.905830 84.905830 84.905830 84.905830 84.905830 84.905830 84.905830 85.905830 85.905830 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.023253 86.02325 86.						
8 33 84,905820 84,905820 84,905820 84,905820 84,023253 86,0232577 80,62257 80,622577 80,62257 80,62257 80,62257 80,62257 80,62257 80,62257 80,62257 80,62257 80,6252662 75,026662						
3						
3 36 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 52,952809 53,090195 50,990195 50,990195 50,990195 50,990195 50,990195 50,990195 50,990195 50,990195 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 50,487622 40,697722 46,097722 46,097722 46,097722 46,097722 40,407812 40,41,231056 41,231056<						
3 36 52,952809 52,952809 52,952809 52,952809 8 37 50,990195 50,990195 50,990195 8 38 50,487622 50,487622 50,487622 3 40 45,276926 45,276926 45,276926 4 5,276926 45,276926 45,276926 46,097722 46,097722 4 2 43,00000 43,000000 43,000000 3,000000 8 43 40,311289 40,311289 40,311289 40,311289 8 44 41,231056 41,231056 41,231056 8 45 40,607881 40,607881 40,607881 8 46 8,602325 8,602325 8,602325 8 47 5,830952 5,830952 5,830952 8 49 75,026662 75,026662 75,026662 75,026662 8 50 68,544781 69,634761 69,634761 69,634761 8 52 68,007353 68,007353 68,007353 68,007353 8 54 25,495098 25,495098 25,495098 25,495098		34	86.023253	86.023253	86.023253	
8 37 50.990195 50.990195 50.990195 80.990195 83 39 47.265209 47.265209 47.265209 47.265209 47.265209 47.265209 47.265209 47.265209 47.265209 48.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 46.097722 46.097722 46.097722 46.097722 46.097122 46.0911289 44.0607881 40.607882 40.607828 <t< th=""><th>8</th><th>35</th><th>80.622577</th><th>80.622577</th><th>80.622577</th><th></th></t<>	8	35	80.622577	80.622577	80.622577	
8 39 47.265209 47.265209 47.265209 8 47.265209 8 47.265209 47.265209 47.265209 8 40 45.276926 45.276926 45.276926 45.276926 8 41 46.097722 46.097722 46.097722 46.097722 8 42 43.000000 43.000000 43.000000 68 43 40.311289 40.311289 40.311289 40.311289 40.311289 40.311289 40.311289 40.311289 40.41231056 6 41.231056 41.231056 61.251056 61.231056 61	8	36	52.952809	52.952809	52.952809	
8 40 45.276926 45.276926 45.276926 845.276926 845.276926 85.276926 85.276926 45.276926 85.276926 85.276926 85.276926 86.276926	8	37	50.990195	50.990195	50.990195	
8 40 45.276926 45.276926 45.276926 845.276926 845.276926 85.276926 85.276926 45.276926 85.276926 85.276926 85.276926 86.276926	8	38	50.487622	50.487622	50.487622	
8 40 45.276926 45.276926 45.276926 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 48.40.00000 43.000000 43.000000 43.000000 43.000000 43.000000 40.311289 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607881 40.607872 40.607872 45.26662 75.026662 75.026662 75.026662 75.026662 75.026662 75.026662 75.026662 75.026662 86.5419588 66.5419588 66.0073533	8	39	47.265209	47.265209	47.265209	
8 41 46.097722 46.097722 46.097722 43.00000 8 43 40.311289 40.311289 40.311289 8 44 41.231056 41.231056 41.231056 8 45 40.607881 40.607881 40.607881 8 46 8.602325 8.602325 8.602325 8 47 5.830952 5.830992 5.830992 8 48 32.995565 32.699565 32.695662 75.026662 75.026662 75.026662 8 50 66.541958 68.541958 68.541958 8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 8 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 55 42.720019 42.720019 42.720019 8 56 62.1213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 66.00000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083369 54.083269 54.083269 8 66 60 59.154959 29.154759 8 70 28.017851 28.017851 28.017851 8 71 28.886613 20.886613 20.886613 8 72 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.84933 19.849433 19.849433 8 75 77.7420927 77.420927 77.420927 77.420927 8 77 77.420927 77.420927 77.420927 77.420927 8 77 77.420927 77.420927 77.420927 77.420927 8 77 77.420927 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 72.443081 72 433384 49.193496 49.193496 49.193496 8 8 79 20.248457 20.248457 20.248457 8 90 87.200917 87.200917 87.200917			45 276926	45 276926	45 276926	
8 42 43.000000 43.000000 43.000000 83.000000 843.000000 43.0000000 843.000000 85.000000000 85.0000000 85.0000000000						
8 44 41.231056 41.231056 41.231056 41.231056 8 45 40.607881 40.607881 40.607881 40.607881 40.607881 8 46 8.602325 8.602325 8.602325 8.602325 8 47 5.830952 5.830952 5.830952 5.830952 8 48 32.695565 32.695565 32.695565 32.695565 32.695565 32.695565 32.695662 8 50 68.541958 68.541958 68.541958 68.541958 68.541958 68.07353 68.00						
8 44 44 41.231056 41.231056 41.231056 8 45 40.607881 40.607881 40.607881 40.607881 8 46 8.602325 8.602325 8.602325 8.602325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 6.02325 8 48 32.695565 32.695565 32.695565 32.695565 8 49 75.026662 75.026662 75.026662 75.026662 8 50 68.541958 68.541958 68.541958 68.541958 8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 52.201533 8 59 65.000000 65						
8 45 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607881 40,607882 8,602325 8,602326 8,602327 8,602327 8,602327 8,6007353 8,6007353 8,6007353 8,6007353 8,6007353 8,6007353 8,6007353 8,6007353 8,60073722 46,009722 46,009722 8,50988 8,5195088 8,5195088 8,5195098 8,5195098 8,5195098 8,5195098 8,5195098 8,5195098 8,5						
8 46 8.602325 8.602325 8.602325 8.602325 8 47 5.830952 5.830952 5.830952 32.695565 32.69558 32.69532 32.62520 32.62						
8 47 5,830952 5,830952 5,830952 8 48 32,695565 32,695565 32,695565 8 49 75,026662 75,026662 75,026662 8 50 68,541958 68,541958 68,541958 8 51 69,634761 69,634761 69,634761 69,634761 8 52 68,007353 68,007353 68,007353 8 53 46,097722 46,097722 46,097722 8 54 25,495098 25,495098 25,495098 8 55 42,720019 42,720019 42,720019 8 56 21,213203 21,213203 21,213203 8 57 53,150729 53,150729 53,150729 8 58 52,201533 52,201533 52,201533 8 59 65,000000 65,000000 65,000000 8 60 55,226805 55,226805 55,226805 8 61 15,000000 15,000000 15,000000 8 62 31,622777 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
8 48 32.695565 32.695565 32.695565 8 49 75.026662 75.026662 75.026662 8 50 68.541958 68.541958 68.541958 8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.00000 15.00000 15.00000 8 62 31.622777 31.622777		46				
8 49 75.026662 75.026662 75.026662 8.541958 68.541958 68.541958 68.541958 68.541958 85.1 69.634761 69.6407322 69.77222 69.77222 69.77222 69.77222 <th>8</th> <th>47</th> <th>5.830952</th> <th>5.830952</th> <th>5.830952</th> <th></th>	8	47	5.830952	5.830952	5.830952	
8 50 68.541958 68.541958 68.541958 8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 8 56 21.213203 21.213203 21.213203 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 </th <th>8</th> <th>48</th> <th>32.695565</th> <th>32.695565</th> <th>32.695565</th> <th></th>	8	48	32.695565	32.695565	32.695565	
8 50 68.541958 68.541958 68.541958 8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 8 56 21.213203 21.213203 21.213203 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 </th <th>8</th> <th>49</th> <th>75.026662</th> <th>75.026662</th> <th>75.026662</th> <th></th>	8	49	75.026662	75.026662	75.026662	
8 51 69.634761 69.634761 69.634761 8 52 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 64.031424 8 64 74.330344 74.330344 74.330344 74.330344 74.330344		50	68.541958	68.541958	68.541958	
8 52 68.007353 68.007353 68.007353 8 53 46.097722 46.097722 46.097722 8 54 6.097722 46.097722 46.097722 8 54 62.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 55 42.720019 52.123203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 9 87.200917 87.200917 87.200917						
8 53 46.097722 46.097722 46.097722 8 54 25.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 86.043458 46.043458 46.043458 46.043458 46.043458 46.043458 46.043458 46.043458 46.043458						
8 54 25.495098 25.495098 25.495098 8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.00000 65.00000 65.00000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.						
8 55 42.720019 42.720019 42.720019 8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330345 74.330344 74.330345 74.330344 74.330345 74.330345 74.330345 74.330345 74.330345 74.330345 74.330345 74.330345 74.3						
8 56 21.213203 21.213203 21.213203 8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 84.083269 8 66 40.311289 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 59.076222 8 70 28.017851 28.017851						
8 57 53.150729 53.150729 53.150729 8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603						
8 58 52.201533 52.201533 52.201533 8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
8 59 65.000000 65.000000 65.000000 8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433						
8 60 55.226805 55.226805 55.226805 8 61 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 <		58	52.201533	52.201533	52.201533	
8 61 15.000000 15.000000 15.000000 8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678	8	59	65.000000	65.000000	65.000000	
8 62 31.622777 31.622777 31.622777 8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 7 77.420927 77.420927 77.420927 <th>8</th> <th>60</th> <th>55.226805</th> <th>55.226805</th> <th>55.226805</th> <th></th>	8	60	55.226805	55.226805	55.226805	
8 63 64.031242 64.031242 64.031242 8 64 74.330344 74.330344 74.330344 8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 71 20.880613 20.880613 20.880613 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 77.420927 8 78	8	61	15.000000	15.000000	15.000000	
8 64 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.083269 54.083269 54.083269 54.083269 54.083269 40.311289 40.18458 49.030603 49.030603 49.030603 49.013603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 49.030603 55.226805 55.226805 55.226805 55.226805 55.226	8	62	31.622777	31.622777	31.622777	
8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583	8	63	64.031242	64.031242	64.031242	
8 65 54.083269 54.083269 54.083269 8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583	8	64	74.330344	74.330344	74.330344	
8 66 40.311289 40.311289 40.311289 8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583		65	54.083269	54.083269	54.083269	
8 67 46.043458 46.043458 46.043458 8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156						
8 68 59.076222 59.076222 59.076222 8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015						
8 69 29.154759 29.154759 29.154759 8 70 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 8 82 38.013156 38.013156 8 83 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 86						
8 70 28.017851 28.017851 28.017851 28.017851 8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 86 70.767224						
8 71 20.880613 20.880613 20.880613 8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224						
8 72 53.851648 53.851648 53.851648 8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728						
8 73 49.030603 49.030603 49.030603 8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.088159 8 89 19.235384 19.235384						
8 74 19.849433 19.849433 19.849433 8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917						
8 75 55.226805 55.226805 55.226805 8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 76 70.710678 70.710678 70.710678 8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 77 77.420927 77.420927 77.420927 8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 78 72.443081 72.443081 72.443081 8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.088159 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917	8	76	70.710678	70.710678	70.710678	
8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917	8	77	77.420927	77.420927	77.420927	
8 79 20.248457 20.248457 20.248457 8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917	8	78	72.443081	72.443081	72.443081	
8 80 11.401754 11.401754 11.401754 8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917			20.248457	20.248457	20.248457	
8 81 42.520583 42.520583 42.520583 8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917					11.401754	
8 82 38.013156 38.013156 38.013156 8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 83 34.176015 34.176015 34.176015 8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 8 88 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 84 49.193496 49.193496 49.193496 8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 8 88 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 85 62.289646 62.289646 62.289646 8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 86 70.767224 70.767224 70.767224 8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 87 51.351728 51.351728 51.351728 8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 88 51.088159 51.088159 51.088159 8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 89 19.235384 19.235384 19.235384 8 90 87.200917 87.200917 87.200917						
8 90 87.200917 87.200917 87.200917						
	8	89	19.235384	19.235384	19.235384	
8 91 35.608988 35.608988 35.608988	8	90	87.200917	87.200917	87.200917	
	8	91	35.608988	35.608988	35.608988	

8	92	47.381431	47.381431	47.381431
8	93	49.678969	49.678969	49.678969
8	94	51.429563	51.429563	51.429563
8	95	49.929951	49.929951	49.929951
8	96	55.901699	55.901699	55.901699
8	97	45.177428	45.177428	45.177428
8	98	58.051701	58.051701	58.051701
8	99	25.495098	25.495098	25.495098
8	100	41.484937	41.484937	41.484937
8	101	17.888544	17.888544	17.888544
9	1	39.051248	39.051248	39.051248
9	2	11.180340	11.180340	11.180340
9	3	8.602325	8.602325	8.602325
9	4	8.602325	8.602325	8.602325
9	5	5.00000	5.000000	
				5.000000
9	6	7.071068	7.071068	7.071068
9	7	5.830952	5.830952	5.830952
9	8	5.000000	5.000000	5.000000
9	10	45.276926	45.276926	45.276926
9	11	40.311289	40.311289	40.311289
9	12	40.607881	40.607881	40.607881
9	13	35.693137	35.693137	35.693137
9	14	46.097722	46.097722	46.097722
9	15	36.400549	36.400549	36.400549
9	16	42.059482	42.059482	42.059482
9	17	42.720019	42.720019	42.720019
9	18	38.078866	38.078866	38.078866
9	19	80.411442	80.411442	80.411442
9	20	75.026662	75.026662	75.026662
9	21	70.384657	70.384657	70.384657
9	22	79.056942	79.056942	79.056942
9	23	69.641941	69.641941	69.641941
9	24	78.447435	78.447435	78.447435
9	25	68.949257	68.949257	68.949257
9	26	77.620873	77.620873	77.620873
9	27	94.339811	94.339811	94.339811
9	28	91.787799	91.787799	91.787799
9	29	91.809586	91.809586	91.809586
9	30	87.464278	87.464278	87.464278
9	31	88.481637	88.481637	88.481637
9	32	85.755466	85.755466	85.755466
9	33	87.658428	87.658428	87.658428
9	34	89.022469	89.022469	89.022469
9	35	83.216585	83.216585	83.216585
9	36	52.239832	52.239832	52.239832
9	37	50.249378	50.249378	50.249378
9	38	50.039984	50.039984	50.039984
9	30 39	47.000000	47.000000	47.000000
9	40	45.000000	45.000000	45.00000
9	41	45.276926	45.276926	45.276926
9	42	43.289722	43.289722	43.289722
9	43	40.000000	40.000000	40.00000
9	44	40.311289	40.311289	40.311289
9	45	40.049969	40.049969	40.049969
9	46	5.385165	5.385165	5.385165
9	47	3.000000	3.000000	3.000000
9	48	37.336309	37.336309	37.336309
9	49	79.711982	79.711982	79.711982
9	50	73.164199	73.164199	73.164199
9	51	72.622311	72.622311	72.622311
9	52	72.111026	72.111026	72.111026
9	53	50.990195	50.990195	50.990195
9	54	30.413813	30.413813	30.413813

9	55	44.721360	44.721360	44.721360	
9	56	25.000000	25.000000	25.000000	
9	57	57.008771	57.008771	57.008771	
9	58	57.008771	57.008771	57.008771	
9	59	70.000000	70.000000	70.000000	
9	60	60.207973	60.207973	60.207973	
9	61	20.000000	20.000000	20.000000	
9	62				
		33.541020	33.541020	33.541020	
9	63	67.268120	67.268120	67.268120	
9	64	78.102497	78.102497	78.102497	
9	65	58.309519	58.309519	58.309519	
9	66	44.721360	44.721360	44.721360	
9	67	50.249378	50.249378	50.249378	
9	68	62.008064	62.008064	62.008064	
9	69	32.015621	32.015621	32.015621	
9	70	32.249031	32.249031	32.249031	
9	71	22.825424	22.825424	22.825424	
9	72	55.901699	55.901699	55.901699	
9	73	50.289164	50.289164	50.289164	
9	74	23.853721	23.853721	23.853721	
9	75	60.207973	60.207973	60.207973	
9	76	75.663730	75.663730	75.663730	
9	77	81.541401	81.541401	81.541401	
9	78	77.414469	77.414469	77.414469	
9	79	25.000000	25.000000	25.000000	
9	80	15.000000	15.000000	15.000000	
9	81	45.967380	45.967380	45.967380	
9	82	40.496913	40.496913	40.496913	
9	83	38.897301	38.897301	38.897301	
	84		53.712196	53.712196	
9		53.712196			
9	85	66.068147	66.068147	66.068147	
9	86	74.518454	74.518454	74.518454	
9	87	56.320511	56.320511	56.320511	
9	88	56.080300	56.080300	56.080300	
9	89	23.769729	23.769729	23.769729	
9	90	91.263355	91.263355	91.263355	
9	91	39.661064	39.661064	39.661064	
9	92	50.990195	50.990195	50.990195	
9	93	53.037722	53.037722	53.037722	
9	94	53.851648	53.851648	53.851648	
9	95	52.801515	52.801515	52.801515	
9	96	59.413803	59.413803	59.413803	
9	97	47.707442	47.707442	47.707442	
9	98	62.968246	62.968246	62.968246	
9	99	30.083218	30.083218	30.083218	
9	100	46.324939	46.324939	46.324939	
9	101	20.615528	20.615528	20.615528	
10	1	33.541020	33.541020	33.541020	
10	2	52.201533	52.201533	52.201533	
10	3	41.761226	41.761226	41.761226	
10	4	51.419841	51.419841	51.419841	
10	5	46.097722	46.097722	46.097722	
10	6	50.990195	50.990195	50.990195	
10	7	40.792156	40.792156	40.792156	
10	8	40.311289	40.311289	40.311289	
10	9	45.276926	45.276926	45.276926	
10	11	5.000000	5.000000	5.00000	
10	12	5.385165	5.385165	5.385165	
10	13	10.198039	10.198039	10.198039	
10	14	5.00000	5.000000	5.000000	
10	15	11.180340	11.180340	11.180340	
10	16	9.433981	9.433981	9.433981	
10	17	11.180340	11.180340	11.180340	

10	18	14.142136	14.142136	14.142136
10	19	45.343136	45.343136	45.343136
10	20	40.607881	40.607881	40.607881
10	21	37.735925	37.735925	37.735925
10	22	42.426407	42.426407	42.426407
10	23	36.055513	36.055513	36.055513
10	24	41.036569	41.036569	41.036569
10	25	34.409301	34.409301	34.409301
10			39.051248	
	26	39.051248		39.051248
10	27	85.146932	85.146932	85.146932
10	28	85.000000	85.000000	85.000000
10	29	82.152298	82.152298	82.152298
10	30	80.000000	80.000000	80.000000
10	31	78.160092	78.160092	78.160092
10	32	78.000000	78.000000	78.000000
10	33	77.162167	77.162167	77.162167
10	34	75.663730	75.663730	75.663730
10	35	75.000000	75.000000	75.000000
10	36	75.822160	75.822160	75.822160
10	37	74.330344	74.330344	74.330344
10	38	72.346389	72.346389	72.346389
10	39	68.767725	68.767725	68.767725
10	40	67.268120	67.268120	67.268120
10	41	70.710678	70.710678	70.710678
10	42	62.481997	62.481997	62.481997
10	43	63.639610	63.639610	63.639610
10	44	67.268120	67.268120	67.268120
10	45	65.069194	65.069194	65.069194
10	46	48.052055	48.052055	48.052055
10	47	45.705580	45.705580	45.705580
10	48	12.806248	12.806248	12.806248
10	49	43.863424	43.863424	43.863424
10	50	39.408121	39.408121	39.408121
10	51	62.000000	62.000000	62.000000
10	52	47.434165	47.434165	47.434165
10	53	15.811388	15.811388	15.811388
10	54	18.027756	18.027756	18.027756
10	55	51.478151	51.478151	51.478151
10	56	32.015621	32.015621	32.015621
10	57	40.00000	40.000000	40.000000
10	58	22.360680	22.360680	22.360680
10	59	25.495098	25.495098	25.495098
10	60	15.000000	15.000000	15.000000
10	61	25.495098	25.495098	25.495098
10	62	46.097722	46.097722	46.097722
10	63	55.000000	55.000000	55.000000
10	64	57.008771	57.008771	57.008771
10	65	35.355339	35.355339	35.355339
10	66	25.495098	25.495098	25.495098
10	67	31.064449	31.064449	31.064449
10	68	54.451814	54.451814	54.451814
10	69	39.051248	39.051248	39.051248
10	70	27.018512	27.018512	27.018512
10	71	42.201896	42.201896	42.201896
10	72	58.523500	58.523500	58.523500
10	73	60.901560	60.901560	60.901560
10	74	26.248809	26.248809	26.248809
10	75	18.027756	18.027756	18.027756
10	76	30.413813	30.413813	30.413813
10	77	55.036352	55.036352	55.036352
10	78	34.539832	34.539832	34.539832
10	79	21.095023	21.095023	21.095023
10	80	33.241540	33.241540	33.241540

10	81	38.897301	38.897301	38.897301	
10	82	45.276926	45.276926	45.276926	
10	83	18.788294	18.788294	18.788294	
10	84	27.294688	27.294688	27.294688	
10	85	47.381431	47.381431	47.381431	
10	86	54.341513	54.341513	54.341513	
10	87	15.556349	15.556349	15.556349	
10	88	11.180340	11.180340	11.180340	
10	89	26.925824	26.925824	26.925824	
10	90	64.412732	64.412732	64.412732	
10	91	29.546573	29.546573	29.546573	
10	92	39.623226	39.623226	39.623226	
10	93	43.737855	43.737855	43.737855	
10	94	53.758720	53.758720	53.758720	
10	95	48.764741	48.764741	48.764741	
10	96	46.043458	46.043458	46.043458	
10	97	48.846699	48.846699	48.846699	
10	98	18.027756	18.027756	18.027756	
10	99	23.345235	23.345235	23.345235	
10	100 101	16.000000 38.275318	16.000000 38.275318	16.000000 38.275318	
11	101	38.275318	38.275318	38.275318	
11	2	47.434165	47.434165	47.434165	
11	3	37.000000	37.000000	37.000000	
11	4	46.572524	46.572524	46.572524	
11	5	41.231056	41.231056	41.231056	
11	6	46.097722	46.097722	46.097722	
11	7	35.902646	35.902646	35.902646	
11	8	35.355339	35.355339	35.355339	
11	9	40.311289	40.311289	40.311289	
11	10	5.00000	5.000000	5.000000	
11	12	2.000000	2.000000	2.000000	
11	13	5.385165	5.385165	5.385165	
11	14	7.071068	7.071068	7.071068	
11	15	7.071068	7.071068	7.071068	
11	16	8.000000	8.000000	8.000000	
11	17	10.000000	10.000000	10.000000	
11	18	11.180340	11.180340	11.180340	
11	19	48.795492	48.795492	48.795492	
11	20	43.863424	43.863424	43.863424	
11	21	40.607881	40.607881	40.607881	
11	22	46.097722	46.097722	46.097722	
11	23	39.051248	39.051248	39.051248	
11	24	44.821870	44.821870	44.821870	
11 11	25 26	37.536649 43.011626	37.536649	37.536649	
11	26 27	85.586214	43.011626 85.586214	43.011626 85.586214	
11	28	85.586214	85.586214	85.586214 85.146932	
11	29	82.607506	82.607506	82.607506	
11	30	80.156098	80.156098	80.156098	
11	31	78.638413	78.638413	78.638413	
11	32	78.160092	78.160092	78.160092	
11	33	77.646635	77.646635	77.646635	
11	34	76.485293	76.485293	76.485293	
11	35	75.166482	75.166482	75.166482	
11	36	72.622311	72.622311	72.622311	
11	37	71.063352	71.063352	71.063352	
11	38	69.202601	69.202601	69.202601	
11	39	65.604878	65.604878	65.604878	
11	40	64.031242	64.031242	64.031242	
11	41	67.268120	67.268120	67.268120	
11	42	59.405387	59.405387	59.405387	
11	43	60.207973	60.207973	60.207973	

11	44	63.639610	63.639610	63.639610	
11	45	61.554854	61.554854	61.554854	
11	46	43.174066	43.174066	43.174066	
11	47	40.792156	40.792156	40.792156	
11	48	9.433981	9.433981	9.433981	
11	49	47.423623	47.423623	47.423623	
11	50	42.520583	42.520583	42.520583	
11	51	62.201286	62.201286	62.201286	
11	52	49.244289	49.244289	49.244289	
11	53	18.027756	18.027756	18.027756	
11	54	14.142136	14.142136	14.142136	
11	55	49.244289	49.244289	49.244289	
11	56	28.284271	28.284271	28.284271	
11	57	40.311289	40.311289	40.311289	
11	58	25.000000	25.000000	25.000000	
11	59	30.413813	30.413813	30.413813	
11	60	20.00000	20.000000	20.000000	
11	61	20.615528	20.615528	20.615528	
11	62	43.011626	43.011626	43.011626	
11	63	55.226805	55.226805	55.226805	
11	64	58.523500	58.523500	58.523500	
11	65	36.400549	36.400549	36.400549	
11	66	25.000000	25.000000	25.000000	
11	67	31.144823	31.144823	31.144823	
11	68	54.037024	54.037024	54.037024	
11	69	36.055513	36.055513	36.055513	
11	70	24.186773	24.186773	24.186773	
11	71	38.288379	38.288379	38.288379	
11	72	57.008771	57.008771	57.008771	
11	73	58.600341	58.600341	58.600341	
11	74	21.540659	21.540659	21.540659	
11	75	22.360680	22.360680	22.360680	
11	76	35.355339	35.355339	35.355339	
11	77	57.306195	57.306195	57.306195	
11	78	39.217343	39.217343	39.217343	
11	79	16.124515	16.124515	16.124515	
11	80	28.284271	28.284271	28.284271	
11	81	37.656341	37.656341	37.656341	
11	82	42.953463	42.953463	42.953463	
11	83	17.262677	17.262677	17.262677	
11	84	28.460499	28.460499	28.460499	
11	85	48.270074	48.270074	48.270074	
11	86	55.659680	55.659680	55.659680	
11	87	19.416488	19.416488	19.416488	
11	88	16.124515	16.124515	16.124515	
11	89	22.803509	22.803509	22.803509	
11	90	66.887966	66.887966	66.887966	
11	91	27.892651	27.892651	27.892651	
11	92	39.051248	39.051248	39.051248	
11	93	43.104524	43.104524	43.104524	
11	94	52.392748	52.392748	52.392748	
11	95	47.675990	47.675990	47.675990	
11	96	46.097722	46.097722	46.097722	
11	97	47.127487	47.127487	47.127487	
11	98	22.803509	22.803509	22.803509	
11	99	20.000000	20.000000	20.000000	
11	100	16.763055	16.763055	16.763055	
11	101	34.205263	34.205263	34.205263	
12	1	33.526109	33.526109	33.526109	
12	2	48.104054	48.104054	48.104054	
12	3	37.696154	37.696154	37.696154	
12	4	47.127487	47.127487	47.127487	
12	5	41.761226	41.761226	41.761226	

12	6	46.572524	46.572524	46.572524
12	7	36.400549	36.400549	36.400549
12	8	35.693137	35.693137	35.693137
12	9	40.607881	40.607881	40.607881
12	10	5.385165	5.385165	5.385165
12	11	2.000000	2.000000	2.000000
12	13	5.00000	5.000000	5.000000
12	14	5.830952	5.830952	5.830952
12	15	5.830952	5.830952	5.830952
12	16	6.00000	6.000000	6.000000
12	17	8.000000	8.000000	8.000000
12	18	9.433981	9.433981	9.433981
12	19	50.209561	50.209561	50.209561
12	20	45.343136	45.343136	45.343136
12	21	42.201896	42.201896	42.201896
12	22	47.423623	47.423623	47.423623
12	23	40.607881	40.607881	40.607881
12	24	46.097722	46.097722	46.097722
12	25	39.051248	39.051248	39.051248
12	26	44.204072	44.204072	44.204072
12	27	87.572827	87.572827	87.572827
12	28	87.143560	87.143560	87.143560
12	29	84.593144	84.593144	84.593144
12	30	82.152298	82.152298	82.152298
12	31	80.622577	80.622577	80.622577
12	32	80.156098	80.156098	80.156098
12	33	79.630396	79.630396	79.630396
12	34	78.447435	78.447435	78.447435
12	35	77.162167	77.162167	77.162167
12	36	74.202426	74.202426	74.202426
12	37	72.622311	72.622311	72.622311
12	38	70.802542	70.802542	70.802542
12	39	67.201190	67.201190	67.201190
12	40	65.604878	65.604878	65.604878
12	41	68.767725	68.767725	68.767725
12	42	61.032778	61.032778	61.032778
12	43	61.717096	61.717096	61.717096
12	44	65.069194	65.069194	65.069194
12	45	63.031738	63.031738	63.031738
12	46	43.680659	43.680659	43.680659
12	47	41.231056	41.231056	41.231056
12	48	7.810250	7.810250	7.810250
12	49	48.795492	48.795492	48.795492
12	50	44.045431	44.045431	44.045431
12	51	64.195015	64.195015	64.195015
12	52	51.078371	51.078371	51.078371
12	53	19.723083	19.723083	19.723083
12	54	15.620499	15.620499	15.620499
12	55	51.078371	51.078371	51.078371
12	56	29.732137	29.732137	29.732137
12	57	42.296572	42.296572	42.296572
12	58	26.627054	26.627054	26.627054
12	59	30.805844	30.805844	30.805844
12	60	20.099751	20.099751	20.099751
12	61	21.189620	21.189620	21.189620
12	62	44.654227	44.654227	44.654227
12	63	57.218878	57.218878	57.218878
12	64	60.406953	60.406953	60.406953
12	65	38.327536	38.327536	38.327536
12	66	27.000000	27.000000	27.000000
12	67	33.136083	33.136083	33.136083
12	68	56.035703	56.035703	56.035703
12	69	37.735925	37.735925	37.735925
l				· · · · · · · · · · · · · · · · · · ·

12	70	25.942244	25.942244	25.942244	
12	71	39.623226	39.623226	39.623226	
		58.940648	58.940648	58.940648	
12	72				
12	73	60.415230	60.415230	60.415230	
12	74	20.880613	20.880613	20.880613	
12	75	23.323808	23.323808	23.323808	
12	76	35.128336	35.128336	35.128336	
12	77	59.059292	59.059292	59.059292	
12	78	39.924930	39.924930	39.924930	
12	79	16.000000	16.000000	16.000000	
12	80	28.071338	28.071338	28.071338	
12	81	39.623226	39.623226	39.623226	
12	82	44.777226	44.777226	44.777226	
12	83	19.235384	19.235384	19.235384	
12	84	30.364453	30.364453	30.364453	
12			50.219518		
	85	50.219518		50.219518	
12	86	57.567352	57.567352	57.567352	
12	87	20.615528	20.615528	20.615528	
12	88	16.492423	16.492423	16.492423	
12	89	24.083189	24.083189	24.083189	
12	90	68.600292	68.600292	68.600292	
12	91	29.832868	29.832868	29.832868	
12	92	41.048752	41.048752	41.048752	
12	93	45.099889	45.099889	45.099889	
12	94	54.341513	54.341513	54.341513	
12	95	49.648766	49.648766	49.648766	
12	96	48.093659	48.093659	48.093659	
12	97	49.040799	49.040799	49.040799	
12	98	22.360680	22.360680	22.360680	
12	99	21.633308	21.633308	21.633308	
12	100	18.681542	18.681542	18.681542	
12	101	35.468296	35.468296	35.468296	
13	1	32.388269	32.388269	32.388269	
13	2	43.462628	43.462628	43.462628	
13	3	33.105891	33.105891	33.105891	
13	4	42.379240	42.379240	42.379240	
13	5	37.000000	37.000000	37.000000	
13	6	41.761226	41.761226	41.761226	
13	7	31.622777	31.622777	31.622777	
13	8	30.805844	30.805844	30.805844	
13	9	35.693137	35.693137	35.693137	
13	10	10.198039	10.198039	10.198039	
13	11	5.385165	5.385165	5.385165	
13	12	5.00000	5.000000	5.000000	
13	14	10.440307	10.440307	10.440307	
13	15	3.000000	3.000000	3.000000	
13	16	7.810250	7.810250	7.810250	
13	17	9.433981	9.433981	9.433981	
13	18	8.000000	8.000000	8.000000	
13	19	53.814496	53.814496	53.814496	
13	20	48.795492	48.795492	48.795492	
13	21	45.343136	45.343136	45.343136	
13	22	51.224994	51.224994	51.224994	
13	23	43.863424	43.863424	43.863424	
13	24	50.000000	50.000000	50.000000	
13	25	42.426407	42.426407	42.426407	
13	26	48.259714	48.259714	48.259714	
13	27	88.283634	88.283634	88.283634	
13	28	87.572827	87.572827	87.572827	
13	29	85.328776	85.328776	85.328776	
		82.607506	82.607506	82.607506	
13	30	02:00/000	02:00/000		
13	30 31				
13 13	31 32	81.394103 80.622577	81.394103 80.622577	81.394103 80.622577	

13	33	80.411442	80.411442	80.411442	
13	34	79.555012	79.555012	79.555012	
13	35	77.646635	77.646635	77.646635	
13	36	71.281134	71.281134	71.281134	
13	37	69.634761	69.634761	69.634761	
13	38	67.955868	67.955868	67.955868	
13	39	64.350602	64.350602	64.350602	
13	40	62.681736	62.681736	62.681736	
13	41	65.604878	65.604878	65.604878	
13	42	58.309519	58.309519	58.309519	
13	43	58.600341	58.600341	58.600341	
13	44	61.717096	61.717096	61.717096	
13	45	59.816386	59.816386	59.816386	
13	46	38.897301	38.897301	38.897301	
13	47	36.400549	36.400549	36.400549	
13	48	6.000000	6.000000	6.000000	
13	49	52.497619	52.497619	52.497619	
13	50	47.381431	47.381431	47.381431	
13	51	64.776539	64.776539	64.776539	
			53.235327		
13	52 53	53.235327		53.235327	
13	53	22.671568	22.671568	22.671568	
13	54	13.000000	13.000000	13.000000	
13	55	49.335586	49.335586	49.335586	
13	56	26.627054	26.627054	26.627054	
13	57	43.174066	43.174066	43.174066	
13	58	29.732137	29.732137	29.732137	
13	59	35.693137	35.693137	35.693137	
13	60	25.079872	25.079872	25.079872	
13	61	16.552945	16.552945	16.552945	
13	62	42.059482	42.059482	42.059482	
13	63	57.870545	57.870545	57.870545	
13	64	62.241465	62.241465	62.241465	
13	65	39.924930	39.924930	39.924930	
13	66	27.459060	27.459060	27.459060	
13	67	33.955854	33.955854	33.955854	
13	68	56.080300	56.080300	56.080300	
13	69	35.341194	35.341194	35.341194	
13	70	24.041631	24.041631	24.041631	
13	71	36.124784	36.124784	36.124784	
13	72	57.870545	57.870545	57.870545	
13	73	58.523500	58.523500	58.523500	
13	74	16.155494	16.155494	16.155494	
13	75	27.730849	27.730849	27.730849	
13	76	40.112342	40.112342	40.112342	
13	77	61.587336	61.587336	61.587336	
13	78	44.598206	44.598206	44.598206	
13	79	11.000000	11.000000	11.000000	
13	80	23.086793	23.086793	23.086793	
13	81	39.051248	39.051248	39.051248	
13	82	43.011626	43.011626	43.011626	
13	83	19.104973	19.104973	19.104973	
13	84	32.202484	32.202484	32.202484	
13	85	51.546096	51.546096	51.546096	
13	86	59.236813	59.236813	59.236813	
13	87	24.698178	24.698178	24.698178	
13	88	21.377558	21.377558	21.377558	
13	89	20.615528	20.615528	20.615528	
13	90	71.281134	71.281134	71.281134	
13	91	29.068884	29.068884	29.068884	
13	92	41.109610	41.109610	41.109610	
13	93	45.044423	45.044423	45.044423	
13	94	53.460266	53.460266	53.460266	
13	95	49.091751	49.091751	49.091751	

13	96	48.662100	48.662100	48.662100	
13	97	47.853944	47.853944	47.853944	
13	98	27.294688	27.294688	27.294688	
13	99	19.313208	19.313208	19.313208	
13	100	20.591260	20.591260	20.591260	
13	101	31.827661	31.827661	31.827661	
14	1	38.078866	38.078866	38.078866	
14	2	53.851648	53.851648	53.851648	
14	3	43.462628	43.462628	43.462628	
14	4	52.810984	52.810984	52.810984	
14					
	5	47.434165	47.434165	47.434165	
14	6	52.201533	52.201533	52.201533	
14	7	42.059482	42.059482	42.059482	
14	8	41.231056	41.231056	41.231056	
14	9	46.097722	46.097722	46.097722	
14	10	5.00000	5.000000	5.000000	
14	11	7.071068	7.071068	7.071068	
14	12	5.830952	5.830952	5.830952	
14	13	10.440307	10.440307	10.440307	
14	15	10.000000	10.000000	10.000000	
14	16	5.830952	5.830952	5.830952	
14	17	7.071068	7.071068	7.071068	
14	18	11.180340	11.180340	11.180340	
14	19	49.203658	49.203658	49.203658	
14	20	44.654227	44.654227	44.654227	
14	21	42.059482	42.059482	42.059482	
14	22	46.097722	46.097722	46.097722	
14	23	40.311289	40.311289	40.311289	
14	24	44.598206	44.598206	44.598206	
14	25	38.587563	38.587563	38.587563	
14	26	42.426407	42.426407	42.426407	
14	27	90.138782	90.138782	90.138782	
14	28	90.000000	90.000000	90.000000	
14	29	87.143560	87.143560	87.143560	
14	30	85.000000	85.000000	85.000000	
14	31	83.150466	83.150466	83.150466	
	32	83.00000	83.00000	83.000000	
14	33	82.152298	82.152298	82.152298	
				80.622577	
14	34	80.622577	80.622577		
14	35	80.000000	80.000000	80.000000	
14	36	79.649231	79.649231	79.649231	
14	37	78.102497	78.102497	78.102497	
14	38	76.216796	76.216796	76.216796	
14	39	72.622311	72.622311	72.622311	
14	40	71.063352	71.063352	71.063352	
14	41	74.330344	74.330344	74.330344	
14	42	66.400301	66.400301	66.400301	
14	43	67.268120	67.268120	67.268120	
14	44	70.710678	70.710678	70.710678	
14	45	68.622154	68.622154	68.622154	
14	46	49.335586	49.335586	49.335586	
14	47	46.840154	46.840154	46.840154	
14	48	10.440307	10.440307	10.440307	
14	49	47.634021	47.634021	47.634021	
14	50	43.566042	43.566042	43.566042	
14	51	67.000000	67.000000	67.000000	
14	52	52.201533	52.201533	52.201533	
14	53	20.615528	20.615528	20.615528	
14	54	21.213203	21.213203	21.213203	
14	55	55.901699	55.901699	55.901699	
14	56	35.355339	35.355339	35.355339	
14	57	45.000000	45.000000	45.000000	
14	58	26.925824	26.925824	26.925824	
		20.720024	20.723024	20.72007	

14	59	26.925824	26.925824	26.925824	
14	60	15.811388	15.811388	15.811388	
		26.925824	26.925824	26.925824	
14	61				
14	62	50.000000	50.000000	50.000000	
14	63	60.000000	60.000000	60.000000	
14	64	61.846584	61.846584	61.846584	
14	65	40.311289	40.311289	40.311289	
14	66	30.413813	30.413813	30.413813	
14	67	36.055513	36.055513	36.055513	
14	68	59.413803	59.413803	59.413803	
14	69	43.011626	43.011626	43.011626	
14	70	31.064449	31.064449	31.064449	
14	71	45.343136	45.343136	45.343136	
14	72	63.245553	63.245553	63.245553	
14	73	65.299311	65.299311	65.299311	
		25.179357		25.179357	
14	74		25.179357		
14	75	21.213203	21.213203	21.213203	
14	76	30.000000	30.000000	30.000000	
14	77	59.615434	59.615434	59.615434	
14	78	36.715120	36.715120	36.715120	
14	79	21.213203	21.213203	21.213203	
14	80	33.015148	33.015148	33.015148	
14	81	43.680659	43.680659	43.680659	
14	82	49.648766	49.648766	49.648766	
14	83	23.409400	23.409400	23.409400	
14	84	32.249031	32.249031	32.249031	
14	85	52.345009	52.345009	52.345009	
14	86	59.228372	59.228372	59.228372	
14	87	19.416488	19.416488	19.416488	
14	88	13.038405	13.038405	13.038405	
14	89	29.832868	29.832868	29.832868	
14	90	68.876701	68.876701	68.876701	
14	91	34.176015	34.176015	34.176015	
14	92	44.553339	44.553339	44.553339	
14	93	48.662100	48.662100	48.662100	
14	94	58.523500	58.523500	58.523500	
14	95	53.600373	53.600373	53.600373	
14	96	51.039201	51.039201	51.039201	
14	97	53.488316	53.488316	53.488316	
14	98	17.029386	17.029386	17.029386	
14	99	27.018512	27.018512	27.018512	
14	100	21.000000	21.000000	21.000000	
14	101	41.231056	41.231056	41.231056	
15	1	35.355339	35.355339	35.355339	
15	2	44.721360	44.721360	44.721360	
15	3	34.481879	34.481879	34.481879	
15	4	43.462628	43.462628	43.462628	
		38.078866		38.078866	
15	5		38.078866		
15	6	42.720019	42.720019	42.720019	
15	7	32.695565	32.695565	32.695565	
15	8	31.622777	31.622777	31.622777	
15	9	36.400549	36.400549	36.400549	
15	10	11.180340	11.180340	11.180340	
15	11	7.071068	7.071068	7.071068	
15	12	5.830952	5.830952	5.830952	
15	13	3.000000	3.000000	3.000000	
15	14	10.000000	10.000000	10.000000	
15	16	5.830952	5.830952	5.830952	
15	17	7.071068	7.071068	7.071068	
15	18	5.000000	5.000000	5.00000	
15	19	55.865911	55.865911	55.865911	
15	20	50.931326	50.931326	50.931326	
15	21	47.634021	47.634021	47.634021	
TJ	Z 1	7/.UJ4UZ1	47.004UZI	41.074UZI	

15	22	53.150729	53.150729	53.150729	
15	23	46.097722	46.097722	46.097722	
15	24	51.855569	51.855569	51.855569	
15	25	44.598206	44.598206	44.598206	
			50.000000		
15	26	50.000000		50.000000	
15	27	91.241438	91.241438	91.241438	
15	28	90.553851	90.553851	90.553851	
15	29	88.283634	88.283634	88.283634	
15	30	85.586214	85.586214	85.586214	
15	31	84.344532	84.344532	84.344532	
15	32	83.600239	83.600239	83.600239	
15	33	83.360662	83.360662	83.360662	
15	34	82.462113	82.462113	82.462113	
15	35	80.622577	80.622577	80.622577	
15	36	73.783467	73.783467	73.783467	
15	37	72.111026	72.111026	72.111026	
15	38	70.491134	70.491134	70.491134	
15	39	66.887966	66.887966	66.887966	
15	40	65.192024	65.192024	65.192024	
15	41	68.007353	68.007353	68.007353	
15	42	60.901560	60.901560	60.901560	
15	43	61.032778	61.032778	61.032778	
15	44	64.031242	64.031242	64.031242	
15	45	62.201286	62.201286	62.201286	
15	46	39.924930	39.924930	39.924930	
15	47	37.336309	37.336309	37.336309	
15	48	3.000000	3.000000	3.000000	
15	49	54.488531	54.488531	54.488531	
15	50	49.578221	49.578221	49.578221	
15	51	67.742158	67.742158	67.742158	
15	52	55.901699	55.901699	55.901699	
15	53	25.000000	25.000000	25.000000	
15	54	15.811388	15.811388	15.811388	
15	55	52.201533	52.201533	52.201533	
15	56	29.154759	29.154759	29.154759	
15	57	46.097722	46.097722	46.097722	
15	58	32.015621	32.015621	32.015621	
15	59	36.400549	36.400549	36.400549	
15	60	25.495098	25.495098	25.495098	
15	61	18.027756	18.027756	18.027756	
15	62	44.721360	44.721360	44.721360	
15	63	60.827625	60.827625	60.827625	
15	64	65.000000	65.000000	65.000000	
15	65	42.720019	42.720019	42.720019	
15	66	30.413813	30.413813	30.413813	
15	67	36.878178	36.878178	36.878178	
15	68	59.076222	59.076222	59.076222	
		38.078866		38.078866	
15	69 70		38.078866		
15	70	26.925824	26.925824	26.925824	
15	71	38.418745	38.418745	38.418745	
15	72	60.827625	60.827625	60.827625	
15	73	61.351447	61.351447	61.351447	
15	74	15.297059	15.297059	15.297059	
15	75	29.154759	29.154759	29.154759	
15	76	40.000000	40.000000	40.000000	
15	77	64.140471	64.140471	64.140471	
15	78	45.694639	45.694639	45.694639	
15	79	11.401754	11.401754	11.401754	
15		23.021729	23.021729	23.021729	
	80				
15	81	42.047592	42.047592	42.047592	
15	82	45.880279	45.880279	45.880279	
15	83	22.090722	22.090722	22.090722	
15	84	34.928498	34.928498	34.928498	

15	85	54.405882	54.405882	54.405882	
15	86	62.032250	62.032250	62.032250	
15	87	26.400758	26.400758	26.400758	
15	88	22.135944	22.135944	22.135944	
15	89	23.021729	23.021729	23.021729	
15	90	73.783467	73.783467	73.783467	
15	91	32.062439	32.062439	32.062439	
15	92	44.102154	44.102154	44.102154	
15	93	48.041649	48.041649	48.041649	
15	94	56.435804	56.435804	56.435804	
15	95	52.086467	52.086467	52.086467	
15	96	51.623638	51.623638	51.623638	
15	97	50.803543	50.803543	50.803543	
15	98	27.018512	27.018512	27.018512	
15	99	22.135944	22.135944	22.135944	
15	100	23.259407	23.259407	23.259407	
15	101	34.058773	34.058773	34.058773	
		39.293765	39.293765	39.293765	
16 16	1 2	50.537115	50.537115	50.537115	
16	3	40.311289	40.311289	40.311289	
16	4	49.244289	49.244289	49.244289	
16	5	43.863424	43.863424	43.863424	
16	6	48.466483	48.466483	48.466483	
16	7	38.483763	38.483763	38.483763	
16	8	37.336309	37.336309	37.336309	
16	9	42.059482	42.059482	42.059482	
16	10	9.433981	9.433981	9.433981	
16	11	8.000000	8.000000	8.000000	
16	12	6.000000	6.000000	6.000000	
16	13	7.810250	7.810250	7.810250	
16	14	5.830952	5.830952	5.830952	
16	15	5.830952	5.830952	5.830952	
16	17	2.000000	2.000000	2.000000	
16	18	5.385165	5.385165	5.385165	
16	19	54.671748	54.671748	54.671748	
16	20	50.00000	50.000000	50.000000	
16	21	47.169906	47.169906	47.169906	
16	22	51.662365	51.662365	51.662365	
16	23	45.486262	45.486262	45.486262	
16	24	50.209561	50.209561	50.209561	
16	25	43.829214	43.829214	43.829214	
16	26	48.104054	48.104054	48.104054	
16	27	93.536089	93.536089	93.536089	
16	28	93.134312	93.134312	93.134312	
16	29	90.553851	90.553851	90.553851	
16	30	88.141931	88.141931	88.141931	
16	31	86.579443	86.579443	86.579443	
16	32	86.145226	86.145226	86.145226	
16	33	85.586214	85.586214	85.586214	
16	34	84.344532	84.344532	84.344532	
16	35	83.150466	83.150466	83.150466	
16	36	79.056942	79.056942	79.056942	
16	37	77.420927	77.420927	77.420927	
16	38	75.716577	75.716577	75.716577	
16	39	72.111026	72.111026	72.111026	
16	40	70.455660	70.455660	70.455660	
16	41	73.409809	73.409809	73.409809	
16	42	66.037868	66.037868	66.037868	
16	43	66.400301	66.400301	66.400301	
16	44	69.526973	69.526973	69.526973	
16	45	67.623960	67.623960	67.623960	
16	46	45.694639	45.694639	45.694639	
16	47	43.081318	43.081318	43.081318	

16	48	5.00000	5.000000	5.000000	
16	49	53.150729	53.150729	53.150729	
16	50	48.826222	48.826222	48.826222	
16	51	70.178344	70.178344	70.178344	
16	52	56.648036	56.648036	56.648036	
16	53	25.079872	25.079872	25.079872	
16	54	20.591260	20.591260	20.591260	
16	55	56.648036	56.648036	56.648036	
16	56	34.409301	34.409301	34.409301	
16	57	48.259714	48.259714	48.259714	
16		31.764760	31.764760	31.764760	
	58				
16	59	32.695565	32.695565	32.695565	
16	60	21.540659	21.540659	21.540659	
16	61	23.853721	23.853721	23.853721	
16	62	49.739320	49.739320	49.739320	
16	63	63.198101	63.198101	63.198101	
16	64	66.098411	66.098411	66.098411	
16	65	44.147480	44.147480	44.147480	
16	66	33.000000	33.000000	33.000000	
16	67	39.115214	39.115214	39.115214	
16	68	62.032250	62.032250	62.032250	
16	69	42.941821	42.941821	42.941821	
16	70	31.384710	31.384710	31.384710	
16	71	43.931765	43.931765	43.931765	
16	72	64.761099	64.761099	64.761099	
16	73	65.924199	65.924199	65.924199	
16	74	20.000000	20.000000	20.000000	
16	75	26.907248	26.907248	26.907248	
16	76	35.128336	35.128336	35.128336	
16	77	64.404969	64.404969	64.404969	
16	78	42.544095	42.544095	42.544095	
16	79	17.088007	17.088007	17.088007	
16	80	28.284271	28.284271	28.284271	
16	81	45.541190	45.541190	45.541190	
16	82	50.328918	50.328918	50.328918	
16	83	25.179357	25.179357	25.179357	
16	84	36.138622	36.138622	36.138622	
16	85	56.089215	56.089215	56.089215	
16	86	63.324561	63.324561	63.324561	
16	87	24.839485	24.839485	24.839485	
16	88	18.867962	18.867962	18.867962	
16	89	28.425341	28.425341	28.425341	
16	90	73.824115	73.824115	73.824115	
16	91	35.693137	35.693137	35.693137	
16	92	47.042534	47.042534	47.042534	
16	93	51.088159	51.088159	51.088159	
16	94	60.207973	60.207973	60.207973	
16	95	55.578773	55.578773	55.578773	
16	96	54.083269	54.083269	54.083269	
16	97	54.817880	54.817880	54.817880	
16	98	22.090722	22.090722	22.090722	
16	99	26.832816	26.832816	26.832816	
16	100	24.515301	24.515301	24.515301	
16	101	39.623226	39.623226	39.623226	
17	1	41.231056	41.231056	41.231056	
17	2	51.478151	51.478151	51.478151	
17	3	41.340053	41.340053	41.340053	
17	4	50.089919	50.089919	50.089919	
17	5	44.721360	44.721360	44.721360	
17	6	49.244289	49.244289	49.244289	
17	7	39.357337	39.357337	39.357337	
17	8	38.078866	38.078866	38.078866	
17	9	42.720019	42.720019	42.720019	
t .					

17	10	11.180340	11.180340	11.180340	
17	11	10.000000	10.000000	10.000000	
17	12	8.000000	8.000000	8.000000	
17	13	9.433981	9.433981	9.433981	
17	14				
		7.071068	7.071068	7.071068	
17	15	7.071068	7.071068	7.071068	
17	16	2.000000	2.000000	2.000000	
17	18	5.000000	5.000000	5.000000	
17	19	56.222771	56.222771	56.222771	
17	20	51.613952	51.613952	51.613952	
17	21	48.877398	48.877398	48.877398	
17	22	53.150729	53.150729	53.150729	
17	23	47.169906	47.169906	47.169906	
17	24	51.662365	51.662365	51.662365	
17	25	45.486262	45.486262	45.486262	
17	26	49.497475	49.497475	49.497475	
17	27	95.524866	95.524866	95.524866	
17	28	95.131488	95.131488	95.131488	
17	29	92.541882	92.541882	92.541882	
17	30	90.138782	90.138782	90.138782	
17	31	88.566359	88.566359	88.566359	
17	32	88.141931	88.141931	88.141931	
17	33	87.572827	87.572827	87.572827	
17	34	86.313383	86.313383	86.313383	
17	35	85.146932	85.146932	85.146932	
17	36	80.709355	80.709355	80.709355	
17	37	79.056942	79.056942	79.056942	
17	38	77.388630	77.388630	77.388630	
17	39	73.783467	73.783467	73.783467	
17	40	72.111026	72.111026	72.111026	
17	41	75.000000	75.000000	75.000000	
17	42	67.742158	67.742158	67.742158	
17	43	68.007353	68.007353	68.007353	
17	44	71.063352	71.063352	71.063352	
17	45	69.202601	69.202601	69.202601	
17	46	46.518813	46.518813	46.518813	
17	47	43.863424	43.863424	43.863424	
17	48	5.385165	5.385165	5.385165	
17	49	54.671748	54.671748	54.671748	
17	50	50.477718	50.477718	50.477718	
17	51	72.173402	72.173402	72.173402	
17	52	58.523500	58.523500	58.523500	
17		26.925824	26.925824	26.925824	
	53				
17	54	22.360680	22.360680	22.360680	
17	55	58.523500	58.523500	58.523500	
17	56	36.055513	36.055513	36.055513	
17	57	50.249378	50.249378	50.249378	
17	58	33.541020	33.541020	33.541020	
17	59	33.541020	33.541020	33.541020	
17	60	22.360680	22.360680	22.360680	
17	61	25.000000	25.000000	25.000000	
17	62	51.478151	51.478151	51.478151	
17	63	65.192024	65.192024	65.192024	
17	64	68.007353	68.007353	68.007353	
17	65	46.097722	46.097722	46.097722	
17	66	35.000000	35.000000	35.000000	
17	67				
		41.109610	41.109610	41.109610	
17	68	64.031242	64.031242	64.031242	
17	69	44.721360	44.721360	44.721360	
17	70	33.241540	33.241540	33.241540	
17	71	45.453273	45.453273	45.453273	
17	72	66.708320	66.708320	66.708320	
17	73	00.700020		67.779053	

17	74	20.099751	20.099751	20.099751	
17	75	28.284271	28.284271	28.284271	
17	76	35.355339	35.355339	35.355339	
17	77	66.211781	66.211781	66.211781	
17	78	43.566042	43.566042	43.566042	
17	79	17.888544	17.888544	17.888544	
17	80	28.635642	28.635642	28.635642	
17	81	47.518417	47.518417	47.518417	
17	82	52.201533	52.201533	52.201533	
17	83	27.166155	27.166155	27.166155	
17	84	38.078866	38.078866	38.078866	
17	85	58.051701	58.051701	58.051701	
17	86	65.253352	65.253352	65.253352	
17	87	26.400758	26.400758	26.400758	
17	88	20.00000	20.000000	20.000000	
17	89	30.00000	30.000000	30.000000	
17	90	75.591005	75.591005	75.591005	
17	91	37.656341	37.656341	37.656341	
17	92	49.040799	49.040799	49.040799	
17	93	53.084838	53.084838	53.084838	
17	94	62.169124	62.169124	62.169124	
17	95	57.558666	57.558666	57.558666	
17	96	56.080300	56.080300	56.080300	
17	97	56.753854	56.753854	56.753854	
17	98	22.360680	22.360680	22.360680	
17	99	28.635642	28.635642	28.635642	
17	100	26.476405	26.476405	26.476405	
17	101	41.109610	41.109610	41.109610	
18	1	40.311289	40.311289	40.311289	
18	2	47.169906	47.169906	47.169906	
18	3	37.202150	37.202150	37.202150	
18	4	45.650849	45.650849	45.650849	
18	5	40.311289	40.311289	40.311289	
18	6	44.721360	44.721360	44.721360	
18	7	34.985711	34.985711	34.985711	
18	8	33.541020	33.541020	33.541020	
18	9	38.078866	38.078866	38.078866	
18	10	14.142136	14.142136	14.142136	
18	11	11.180340	11.180340	11.180340	
18		9.433981			
	12		9.433981	9.433981	
18	13	8.00000	8.000000	8.000000	
18	14	11.180340	11.180340	11.180340	
18	15	5.00000	5.000000	5.000000	
18	16	5.385165	5.385165	5.385165	
18	17	5.00000	5.000000	5.000000	
18	19	59.464275	59.464275	59.464275	
				54.671748	
18	20	54.671748	54.671748		
18	21	51.613952	51.613952	51.613952	
18	22	56.568542	56.568542	56.568542	
18	23	50.00000	50.00000	50.000000	
18	24	55.172457	55.172457	55.172457	
18	25	48.414874	48.414874	48.414874	
18	26	53.150729	53.150729	53.150729	
18	27	96.176920	96.176920	96.176920	
18	28	95.524866	95.524866	95.524866	
18	29	93.214806	93.214806	93.214806	
18	30	90.553851	90.553851	90.553851	
18	31	89.269256	89.269256	89.269256	
18	32	88.566359	88.566359	88.566359	
18	33	88.283634	88.283634	88.283634	
18	34	87.321246	87.321246	87.321246	
18	35	85.586214	85.586214	85.586214	
18	36	78.032045	78.032045	78.032045	

18	37	76.321688	76.321688	76.321688	
18	38	74.793048	74.793048	74.793048	
	39	71.196910	71.196910	71.196910	
18					
18	40	69.462220	69.462220	69.462220	
18	41	72.111026	72.111026	72.111026	
18	42	65.299311	65.299311	65.299311	
18	43	65.192024	65.192024	65.192024	
18	44	68.007353	68.007353	68.007353	
18	45	66.287254	66.287254	66.287254	
18	46	42.059482	42.059482	42.059482	
18	47	39.357337	39.357337	39.357337	
		2.000000	2.000000	2.000000	
18	48				
18	49	58.00000	58.000000	58.000000	
18	50	53.413481	53.413481	53.413481	
18	51	72.691127	72.691127	72.691127	
18	52	60.415230	60.415230	60.415230	
18	53	29.154759	29.154759	29.154759	
18	54	20.615528	20.615528	20.615528	
18	55	57.008771	57.008771	57.008771	
18	56	33.541020	33.541020	33.541020	
18	57	50.990195	50.990195	50.990195	
18	58	36.055513	36.055513	36.055513	
18	59	38.078866	38.078866	38.078866	
18	60	26.925824	26.925824	26.925824	
18	61	21.213203	21.213203	21.213203	
18	62	49.244289	49.244289	49.244289	
18	63	65.764732	65.764732	65.764732	
18	64	69.641941	69.641941	69.641941	
18	65	47.434165	47.434165	47.434165	
18	66	35.355339	35.355339	35.355339	
18	67	41.773197	41.773197	41.773197	
18	68	64.070274	64.070274	64.070274	
18	69	42.720019	42.720019	42.720019	
18	70	31.780497	31.780497	31.780497	
18	71	42.438190	42.438190	42.438190	
18	72	65.764732	65.764732	65.764732	
18	73	66.098411	66.098411	66.098411	
18	74	15.132746	15.132746	15.132746	
18	75	32.015621	32.015621	32.015621	
18	76	40.311289	40.311289	40.311289	
18	77	68.476273	68.476273	68.476273	
18	78	47.885280	47.885280	47.885280	
18	79	13.601471	13.601471	13.601471	
18	80	23.769729	23.769729	23.769729	
18	81	47.042534	47.042534	47.042534	
18	82	50.695167	50.695167	50.695167	
18	83	27.073973	27.073973	27.073973	
18	84	39.560081	39.560081	39.560081	
18	85	59.203040	59.203040	59.203040	
18	86	66.730802	66.730802	66.730802	
18	87	29.698485	29.698485	29.698485	
18	88	24.186773	24.186773	24.186773	
18	89	27.294688	27.294688	27.294688	
18	90	78.032045	78.032045	78.032045	
18	91	37.054015	37.054015	37.054015	
18	92	49.091751	49.091751	49.091751	
18	93	53.037722	53.037722	53.037722	
18	94	61.400326	61.400326	61.400326	
18	95	57.078893	57.078893	57.078893	
18	96	56.568542	56.568542	56.568542	
18	97	55.731499	55.731499	55.731499	
18	98	27.294688	27.294688	27.294688	
18	99	26.925824	26.925824	26.925824	

					\neg
18	100	27.856777	27.856777	27.856777	
18	101	38.013156	38.013156	38.013156	
19	1	45.177428	45.177428	45.177428	
19	2	82.225300	82.225300	82.225300	
19	3	73.375745	73.375745	73.375745	
19	4	82.969874	82.969874	82.969874	
19	5	78.746428	78.746428	78.746428	
19	6	83.522452	83.522452	83.522452	
19	7	74.672619	74.672619	74.672619	
19	8	75.769387	75.769387	75.769387	
19	9	80.411442	80.411442	80.411442	
19	10	45.343136	45.343136	45.343136	
		48.795492		48.795492	
19	11		48.795492		
19	12	50.209561	50.209561	50.209561	
19	13	53.814496	53.814496	53.814496	
19	14	49.203658	49.203658	49.203658	
19	15	55.865911	55.865911	55.865911	
19	16	54.671748	54.671748	54.671748	
19	17	56.222771	56.222771	56.222771	
19	18	59.464275	59.464275	59.464275	
19	20	5.385165	5.385165	5.385165	
19	21	10.198039	10.198039	10.198039	
19	22	4.000000	4.000000	4.000000	
19	23	10.770330	10.770330	10.770330	
19	24	6.000000	6.000000	6.000000	
19	25	11.661904	11.661904	11.661904	
19	26	9.000000	9.000000	9.000000	
19	27	56.797887	56.797887	56.797887	
19	28	59.169249	59.169249	59.169249	
19	29	54.120237	54.120237	54.120237	
19	30	54.918121	54.918121	54.918121	
19	31	50.606324	50.606324	50.606324	
19	32	53.254108	53.254108	53.254108	
19	33	49.739320	49.739320	49.739320	
19	34	45.617979	45.617979	45.617979	
19	35	50.803543	50.803543	50.803543	
19	36	83.240615	83.240615	83.240615	
19	37	82.710338	82.710338	82.710338	
19	38	79.812280	79.812280	79.812280	
19	39	77.129761	77.129761	77.129761	
19	40	76.687678	76.687678	76.687678	
19	41	81.584312	81.584312	81.584312	
19	42	71.386273	71.386273	71.386273	
19	43	75.802375	75.802375	75.802375	
19	44	80.752709	80.752709	80.752709	
19	45	77.781746	77.781746	77.781746	
19	46	80.653580	80.653580	80.653580	
19		79.378838	79.378838	79.378838	
	47				
19	48	58.000000	58.000000	58.000000	
19	49	2.000000	2.000000	2.000000	
19	50	7.280110	7.280110	7.280110	
19	51	41.036569	41.036569	41.036569	
19	52	18.601075	18.601075	18.601075	
19	53	31.400637	31.400637	31.400637	
19	54	51.000000	51.000000	51.000000	
19	55	56.089215	56.089215	56.089215	
19	56	56.753854	56.753854	56.753854	
19	57	30.594117	30.594117	30.594117	
19	58	24.413111	24.413111	24.413111	
19	59	29.427878	29.427878	29.427878	
19	60	37.161808	37.161808	37.161808	
19	61	62.177166	62.177166	62.177166	
19	62	60.008333	60.008333	60.008333	
エフ	υZ	00.000333	00.000333	00.00000	

19	63	36.619667	36.619667	36.619667	
19	64	25.806976	25.806976	25.806976	
19	65	25.019992	25.019992	25.019992	
19	66	36.138622	36.138622	36.138622	
19	67	32.140317	32.140317	32.140317	
19	68	42.059482	42.059482	42.059482	
19	69	55.145263	55.145263	55.145263	
19	70	48.764741	48.764741	48.764741	
19	71	64.629715	64.629715	64.629715	
19	72	54.230987	54.230987	54.230987	
19	73	62.936476	62.936476	62.936476	
19	74	69.202601	69.202601	69.202601	
19	75	28.301943	28.301943	28.301943	
19	76	39.000000	39.000000	39.000000	
19	77	17.464249	17.464249	17.464249	
19	78	21.095023	21.095023	21.095023	
19	79	62.425956	62.425956	62.425956	
19	80	73.573093	73.573093	73.573093	
19	81	42.107007	42.107007	42.107007	
19	82	53.235327	53.235327	53.235327	
19	83	41.629317	41.629317	41.629317	
19	84	26.925824	26.925824	26.925824	
19	85	27.294688	27.294688	27.294688	
19	86	26.172505	26.172505	26.172505	
19	87	29.832868	29.832868	29.832868	
19	88	37.215588	37.215588	37.215588	
19	89	56.648036	56.648036	56.648036	
19	90	23.000000	23.000000	23.000000	
19	91	42.579338	42.579338	42.579338	
19	92	37.336309	37.336309	37.336309	
19	93	39.051248	39.051248	39.051248	
19	94	49.979996	49.979996	49.979996	
19	95	44.922155	44.922155	44.922155	
19	96	34.176015	34.176015	34.176015	
19	97	50.219518	50.219518	50.219518	
19	98	42.059482	42.059482	42.059482	
19	99	50.328918	50.328918	50.328918	
19	100	34.985711	34.985711	34.985711	
19	101	63.348244	63.348244	63.348244	
20	1	40.049969	40.049969	40.049969	
20	2	76.902536	76.902536	76.902536	
20	3	68.007353	68.007353	68.007353	
20	4	77.620873	77.620873	77.620873	
20	5	73.375745	73.375745	73.375745	
20	6	78.160092	78.160092	78.160092	
20	7	69.289249	69.289249	69.289249	
20	8	70.384657	70.384657	70.384657	
20	9	75.026662	75.026662	75.026662	
20	10	40.607881	40.607881	40.607881	
20	11	43.863424	43.863424	43.863424	
20	12	45.343136	45.343136	45.343136	
20	13	48.795492	48.795492	48.795492	
20	14	44.654227	44.654227	44.654227	
20	15	50.931326	50.931326	50.931326	
20	16	50.00000	50.00000	50.000000	
20	17	51.613952	51.613952	51.613952	
20	18	54.671748	54.671748	54.671748	
20	19	5.385165	5.385165	5.385165	
20	21	5.000000	5.000000	5.000000	
20	22	5.385165	5.385165	5.385165	
20	23	5.385165	5.385165	5.385165	
20	24	6.403124	6.403124	6.403124	
20	25	6.403124	6.403124	6.403124	

					$\overline{}$
20	26	8.602325	8.602325	8.602325	
20	27	56.648036	56.648036	56.648036	
20	28	58.600341	58.600341	58.600341	
20	29	53.851648	53.851648	53.851648	
20	30	54.120237	54.120237	54.120237	
20	31	50.159745	50.159745	50.159745	
20	32	52.354560	52.354560	52.354560	
20	33	49.244289	49.244289	49.244289	
20	34	45.541190	45.541190	45.541190	
20	35	49.739320	49.739320	49.739320	
20	36	79.056942	79.056942	79.056942	
20	37	78.447435	78.447435	78.447435	
20	38	75.584390	75.584390	75.584390	
20	39	72.801099	72.801099	72.801099	
20	40	72.277244	72.277244	72.277244	
20	41	77.129761	77.129761	77.129761	
20	42	66.940272	66.940272	66.940272	
20	43	71.196910	71.196910	71.196910	
20	44	76.118329	76.118329	76.118329	
20	45	73.164199	73.164199	73.164199	
20	45	75.286121	75.286121	75.286121	
20	46	75.286121	74.000000	73.286121	
			53.150729	53.150729	
20	48	53.150729			
20	49	5.000000	5.000000	5.000000	
20	50	2.000000	2.000000	2.000000	
20	51	39.051248	39.051248	39.051248	
20	52	16.401219	16.401219	16.401219	
20	53	26.248809	26.248809	26.248809	
20	54	45.650849	45.650849	45.650849	
20	55	51.662365	51.662365	51.662365	
20	56	51.419841	51.419841	51.419841	
20	57	26.248809	26.248809	26.248809	
20	58	19.209373	19.209373	19.209373	
20	59	27.000000	27.000000	27.000000	
20	60	33.526109	33.526109	33.526109	
20	61	56.824291	56.824291	56.824291	
20	62	55.081757	55.081757	55.081757	
20	63	33.970576	33.970576	33.970576	
20	64	25.079872	25.079872	25.079872	
20	65	20.223748	20.223748	20.223748	
20	66	30.805844	30.805844	30.805844	
20	67	27.018512	27.018512	27.018512	
20	68	38.832976	38.832976	38.832976	
20	69	50.039984	50.039984	50.039984	
20	70	43.416587	43.416587	43.416587	
20	71	59.413803	59.413803	59.413803	
20	72	50.537115	50.537115	50.537115	
20	73	58.872744	58.872744	58.872744	
20	74	64.031242	64.031242	64.031242	
20	75	24.166092	24.166092	24.166092	
20	76	37.336309	37.336309	37.336309	
20	77	18.110770	18.110770	18.110770	
20	78	20.248457	20.248457	20.248457	
20	79	57.201399	57.201399	57.201399	
20	80	68.264193	68.264193	68.264193	
20	81	37.336309	37.336309	37.336309	
20	82	48.507731	48.507731	48.507731	
20	83	36.249138	36.249138	36.249138	
20	84	21.587033	21.587033	21.587033	
20	85	24.207437	24.207437	24.207437	
20	86	24.207437	24.698178	24.207437	
20	87	25.238859	25.238859	25.238859	
20	88	33.105891	33.105891	33.105891	

20	89	51.264022	51.264022	51.264022	
20	90	25.495098	25.495098	25.495098	
20	91	37.336309	37.336309	37.336309	
20	92	32.756679	32.756679	32.756679	
20	93	34.785054	34.785054	34.785054	
20	94	46.097722	46.097722	46.097722	
20	95	40.853396	40.853396	40.853396	
20	96	30.413813	30.413813	30.413813	
20	97	45.880279	45.880279	45.880279	
20	98	38.832976	38.832976	38.832976	
20	99	44.944410	44.944410	44.944410	
20	100	29.681644	29.681644	29.681644	
20	101	58.051701	58.051701	58.051701	
21	1	35.057096	35.057096	35.057096	
21	2	72.034714	72.034714	72.034714	
21	3	63.245553	63.245553	63.245553	
21	4	72.801099	72.801099	72.801099	
21	5	68.622154	68.622154	68.622154	
21	6	73.375745	73.375745	73.375745	
21	7	64.621978	64.621978	64.621978	
21	8	65.795137	65.795137	65.795137	
21	9	70.384657	70.384657	70.384657	
21		37.735925	37.735925	37.735925	
	10	40.607881	40.607881		
21	11 12	40.607881	40.607881	40.607881 42.201896	
21			42.201896		
	13	45.343136		45.343136	
21	14	42.059482	42.059482	42.059482	
21	15	47.634021	47.634021	47.634021	
21	16	47.169906	47.169906	47.169906	
21	17	48.877398	48.877398	48.877398	
21	18	51.613952	51.613952	51.613952	
21	19	10.198039	10.198039	10.198039	
21	20	5.000000	5.000000	5.000000	
21	22	10.198039	10.198039	10.198039	
21	23	2.000000	2.000000	2.000000	
21	24	10.770330	10.770330	10.770330	
21	25	4.000000	4.000000	4.000000	
21	26	12.206556	12.206556	12.206556	
21	27	55.081757	55.081757	55.081757	
21	28	56.648036	56.648036	56.648036	
21	29	52.201533	52.201533	52.201533	
21	30	52.000000	52.000000	52.000000	
21	31	48.383882	48.383882	48.383882	
21	32	50.159745	50.159745	50.159745	
21	33	47.434165	47.434165	47.434165	
21	34	44.147480	44.147480	44.147480	
21	35	47.423623	47.423623	47.423623	
21	36	74.330344	74.330344	74.330344	
21	37	73.681748	73.681748	73.681748	
21	38	70.837843	70.837843	70.837843	
21	39	68.007353	68.007353	68.007353	
21	40	67.446275	67.446275	67.446275	
21	41	72.277244	72.277244	72.277244	
21	42	62.096699	62.096699	62.096699	
21	43	66.287254	66.287254	66.287254	
21	44	71.196910	71.196910	71.196910	
21	45	68.249542	68.249542	68.249542	
21	46	70.519501	70.519501	70.519501	
21	47	69.289249	69.289249	69.289249	
21	48	50.000000	50.000000	50.000000	
21	49	10.000000	10.000000	10.000000	
21	50	3.000000	3.000000	3.000000	
21	51	36.055513	36.055513	36.055513	

21	52	13.928388	13.928388	13.928388	
21	53	22.671568	22.671568	22.671568	
21	54	41.340053	41.340053	41.340053	
21	55	46.840154	46.840154	46.840154	
21	56	46.572524	46.572524	46.572524	
21	57	21.540659	21.540659	21.540659	
21	58	15.620499	15.620499	15.620499	
21	59	27.459060	27.459060	27.459060	
21	60	32.388269	32.388269	32.388269	
21	61	52.478567	52.478567	52.478567	
21	62	50.089919	50.089919	50.089919	
21	63	30.479501	30.479501	30.479501	
21	64	23.537205	23.537205	23.537205	
21					
	65	15.297059	15.297059	15.297059	
21	66	25.961510	25.961510	25.961510	
21	67	22.022716	22.022716	22.022716	
21	68	34.828150	34.828150	34.828150	
21	69	45.044423	45.044423	45.044423	
21	70	38.600518	38.600518	38.600518	
21	71	54.451814	54.451814	54.451814	
21	72	46.141088	46.141088	46.141088	
21	73	54.230987	54.230987	54.230987	
21	74	60.207973	60.207973	60.207973	
21	75	22.561028	22.561028	22.561028	
21	76	38.327536	38.327536	38.327536	
21	77	18.248288	18.248288	18.248288	
21	78	22.472205	22.472205	22.472205	
21	79	53.263496	53.263496	53.263496	
21	80	64.070274	64.070274	64.070274	
21	81	32.388269	32.388269	32.388269	
21	82	43.566042	43.566042	43.566042	
21	83	31.764760	31.764760	31.764760	
21	84	16.763055	16.763055	16.763055	
21	85	20.518285	20.518285	20.518285	
21	86	22.472205	22.472205	22.472205	
21	87	22.847319	22.847319	22.847319	
21	88	31.320920	31.320920	31.320920	
21	89	46.615448	46.615448	46.615448	
21	90	26.925824	26.925824	26.925824	
21	91	32.388269	32.388269	32.388269	
21	92	27.892651	27.892651	27.892651	
21	93	30.083218	30.083218	30.083218	
21	94	41.593269	41.593269	41.593269	
21	95	36.249138	36.249138	36.249138	
21	96	26.076810	26.076810	26.076810	
21	97	41.109610	41.109610	41.109610	
21	98	38.118237	38.118237	38.118237	
21	99	40.311289	40.311289	40.311289	
21	100	25.612497	25.612497	25.612497	
21	101	53.150729	53.150729	53.150729	
22	1	45.000000	45.000000	45.000000	
22	2	81.394103	81.394103	81.394103	
			72.277244		
22	3	72.277244		72.277244	
22	4	82.000000	82.000000	82.000000	
22	5	77.620873	77.620873	77.620873	
22	6	82.462113	82.462113	82.462113	
22	7	73.375745	73.375745	73.375745	
22	8	74.330344	74.330344	74.330344	
22	9	79.056942	79.056942	79.056942	
22	10	42.426407	42.426407	42.426407	
22	11	46.097722	46.097722	46.097722	
22	12	47.423623	47.423623	47.423623	
22	13	51.224994	51.224994	51.224994	

22	14	46.097722	46.097722	46.097722
22	15	53.150729	53.150729	53.150729
22	16	51.662365	51.662365	51.662365
22	17	53.150729	53.150729	53.150729
22	18	56.568542	56.568542	56.568542
22	19	4.000000	4.000000	4.000000
22	20	5.385165	5.385165	5.385165
22	21	10.198039	10.198039	10.198039
22	23	10.000000	10.000000	10.000000
22	24	2.000000	2.000000	2.000000
22	25	10.198039	10.198039	10.198039
22	26	5.000000	5.000000	5.000000
22	27	60.415230	60.415230	60.415230
22	28	62.649820	62.649820	62.649820
22	29	57.697487	57.697487	57.697487
22	30	58.309519	58.309519	58.309519
22	31	54.120237	54.120237	54.120237
22	32	56.603887	56.603887	56.603887
22	33	53.235327	53.235327	53.235327
22	34	49.244289	49.244289	49.244289
22	35	54.083269	54.083269	54.083269
22	36	84.433406	84.433406	84.433406
22	37	83.815273	83.815273	83.815273
22	38	80.956779	80.956779	80.956779
22	39	78.160092	78.160092	78.160092
22	40	77.620873	77.620873	77.620873
22	41	82.462113	82.462113	82.462113
22	42	72.277244	72.277244	72.277244
22	43	76.485293	76.485293	76.485293
22	44	81.394103	81.394103	81.394103
22	45	78.447435	78.447435	78.447435
22	46	79.555012	79.555012	79.555012
22	47	78.160092	78.160092	78.160092
22	48	55.172457	55.172457	55.172457
22	49	2.000000	2.000000	2.000000
22	50	7.280110	7.280110	7.280110
22	51	43.863424	43.863424	43.863424
22	52	21.213203	21.213203	21.213203
22	53	29.154759	29.154759	29.154759
22	54	49.244289	49.244289	49.244289
22	55	57.008771	57.008771	57.008771
22	56	55.901699	55.901699	55.901699
22	57	31.622777	31.622777	31.622777
22	58	22.360680	22.360680	22.360680
22		25.495098	25.495098	25.495098
	59			
22	60	33.541020	33.541020	33.541020
22	61	60.415230	60.415230	60.415230
22	62	60.207973	60.207973	60.207973
22	63	39.051248	39.051248	39.051248
22	64	29.154759	29.154759	29.154759
22	65	25.495098	25.495098	25.495098
22	66	35.355339	35.355339	35.355339
22	67	32.015621	32.015621	32.015621
22	68	44.102154	44.102154	44.102154
22	69	55.000000	55.000000	55.000000
22	70	47.853944	47.853944	47.853944
22	71	64.195015	64.195015	64.195015
22	72	55.901699	55.901699	55.901699
22	73	64.257295	64.257295	64.257295
22	74	66.850580	66.850580	66.850580
22	75	25.000000	25.000000	25.00000
22	76	35.000000	35.000000	35.00000
			21.189620	21.189620
22	77	21.189620		

					$\overline{}$
22	78	17.117243	17.117243	17.117243	
22	79	60.207973	60.207973	60.207973	
22	80	71.589105	71.589105	71.589105	
22	81	42.579338	42.579338	42.579338	
22	82	53.758720	53.758720	53.758720	
22	83	40.162171	40.162171	40.162171	
22	84	26.172505	26.172505	26.172505	
22	85	29.410882	29.410882	29.410882	
22	86	29.206164	29.206164	29.206164	
22	87	26.870058	26.870058	26.870058	
	88	33.837849	33.837849	33.837849	
22					
22	89	55.362442	55.362442	55.362442	
22	90	27.000000	27.000000	27.000000	
22	91	42.107007	42.107007	42.107007	
22	92	38.078866	38.078866	38.078866	
22	93	40.162171	40.162171	40.162171	
22	94	51.478151	51.478151	51.478151	
22	95	46.238512	46.238512	46.238512	
22	96	35.777088	35.777088	35.777088	
22	97	51.244512	51.244512	51.244512	
22	98	38.275318	38.275318	38.275318	
22	99	49.040799	49.040799	49.040799	
22	100	33.105891	33.105891	33.105891	
22	101	62.649820	62.649820	62.649820	
23	1	35.000000	35.000000	35.000000	
23	2	71.589105	71.589105	71.589105	
23	3	62.641839	62.641839	62.641839	
23	4	72.277244	72.277244	72.277244	
23	5	68.007353	68.007353	68.007353	
23	6	72.801099	72.801099	72.801099	
23	7	63.906181	63.906181	63.906181	
23	8	65.000000	65.000000	65.00000	
23	9	69.641941	69.641941	69.641941	
23	10	36.055513	36.055513	36.055513	
23	11	39.051248	39.051248	39.051248	
23	12	40.607881	40.607881	40.607881	
23	13	43.863424	43.863424	43.863424	
23	14	40.311289	40.311289	40.311289	
23	15	46.097722	46.097722	46.097722	
23	16	45.486262	45.486262	45.486262	
23	17	47.169906	47.169906	47.169906	
23	18	50.000000	50.000000	50.000000	
23	19	10.770330	10.770330	10.770330	
23	20	5.385165	5.385165	5.385165	
23	21	2.000000	2.000000	2.000000	
23	22	10.000000	10.000000	10.000000	
23	24	10.198039	10.198039	10.198039	
23	25	2.000000	2.000000	2.000000	
23	26	11.180340	11.180340	11.180340	
23	27	57.008771	57.008771	57.008771	
23	28	58.523500	58.523500	58.523500	
23	29	54.120237	54.120237	54.120237	
23	30	53.851648	53.851648	53.851648	
23	31	50.289164	50.289164	50.289164	
23	32	52.000000	52.000000	52.000000	
23	33	49.335586	49.335586	49.335586	
23	34	46.097722	46.097722	46.097722	
23	35	49.244289	49.244289	49.244289	
23	36	75.026662	75.026662	75.026662	
23	37	74.330344	74.330344	74.330344	
23	38	71.512237	71.512237	71.512237	
23	39	68.622154	68.622154	68.622154	
23	40	68.007353	68.007353	68.007353	

23	41	72.801099	72.801099	72.801099	
23	42	62.641839	62.641839	62.641839	
23	43	66.708320	66.708320	66.708320	
23	44	71.589105	71.589105	71.589105	
23	45	68.658576	68.658576	68.658576	
23	46	69.921384	69.921384	69.921384	
23	47	68.622154	68.622154	68.622154	
23	48	48.414874	48.414874	48.414874	
23	49	10.198039	10.198039	10.198039	
23	50	3.605551	3.605551	3.605551	
23	51	37.735925	37.735925	37.735925	
23	52	15.811388	15.811388	15.811388	
23	53	21.213203	21.213203	21.213203	
23	54 55	40.311289 47.434165	40.311289 47.434165	40.311289 47.434165	
23	56	46.097722	46.097722	46.097722	
23	57	22.360680	22.360680	22.360680	
23	58	14.142136	14.142136	14.142136	
23	59	25.495098	25.495098	25.495098	
23	60	30.413813	30.413813	30.413813	
23	61	51.478151	51.478151	51.478151	
23	62	50.249378	50.249378	50.249378	
23	63	32.015621	32.015621	32.015621	
23	64	25.495098	25.495098	25.495098	
23	65	15.811388	15.811388	15.811388	
23	66	25.495098	25.495098	25.495098	
23	67	22.022716	22.022716	22.022716	
23	68	36.124784	36.124784	36.124784	
23	69	45.000000	45.000000	45.000000	
23	70	38.078866	38.078866	38.078866	
23	71	54.230987	54.230987	54.230987	
23	72	47.169906	47.169906	47.169906	
23	73	55.036352	55.036352	55.036352	
23	74	58.898217	58.898217	58.898217	
23	75 76	20.615528	20.615528	20.615528 36.400549	
23	76 77	36.400549	36.400549		
23	77 78	20.223748 20.808652	20.223748 20.808652	20.223748 20.808652	
23	79	52.009614	52.009614	52.009614	
23	80	62.968246	62.968246	62.968246	
23	81	32.756679	32.756679	32.756679	
23	82	43.931765	43.931765	43.931765	
23	83	30.870698	30.870698	30.870698	
23	84	16.278821	16.278821	16.278821	
23	85	22.022716	22.022716	22.022716	
23	86	24.351591	24.351591	24.351591	
23	87	21.023796	21.023796	21.023796	
23	88	29.410882	29.410882	29.410882	
23	89	45.880279	45.880279	45.880279	
23	90	28.792360	28.792360	28.792360	
23	91	32.140317	32.140317	32.140317	
23	92	28.460499	28.460499	28.460499	
23	93	30.870698	30.870698	30.870698	
23	94	42.544095	42.544095	42.544095	
23	95	37.121422	37.121422	37.121422	
23	96 97	27.202941 41.785165	27.202941 41.785165	27.202941 41.785165	
23	98	36.124784	36.124784	36.124784	
23	99	39.560081	39.560081	39.560081	
23	100	24.413111	24.413111	24.413111	
23	101	52.773099	52.773099	52.773099	
24	1	45.044423	45.044423	45.044423	
24	2	81.049368	81.049368	81.049368	

24	3	71.805292	71.805292	71.805292
24	4	81.584312	81.584312	81.584312
24	5	77.129761	77.129761	77.129761
24	6	82.000000	82.000000	82.000000
24	7	72.801099	72.801099	72.801099
24	8	73.681748	73.681748	73.681748
24	9	78.447435	78.447435	78.447435
24	10	41.036569	41.036569	41.036569
24	11	44.821870	44.821870	44.821870
24	12	46.097722	46.097722	46.097722
24	13	50.000000	50.000000	50.000000
24	14	44.598206	44.598206	44.598206
24	15	51.855569	51.855569	51.855569
24	16	50.209561	50.209561	50.209561
24	17	51.662365	51.662365	51.662365
24	18	55.172457	55.172457	55.172457
24	19	6.000000	6.000000	6.000000
24	20	6.403124	6.403124	6.403124
24	21	10.770330	10.770330	10.770330
24	22	2.000000	2.000000	2.000000
24	23	10.198039	10.198039	10.198039
24	25	10.000000	10.000000	10.000000
24	26	3.000000	3.000000	3.00000
24	27	62.241465	62.241465	62.241465
24	28	64.412732	64.412732	64.412732
24	29	59.506302	59.506302	59.506302
24	30	60.033324	60.033324	60.033324
		55.901699	55.901699	55.901699
24	31			
24	32	58.309519	58.309519	58.309519
24	33	55.009090	55.009090	55.009090
24	34	51.078371	51.078371	51.078371
24	35	55.758407	55.758407	55.758407
24	36	85.094066	85.094066	85.094066
24	37	84.433406	84.433406	84.433406
24	38	81.596569	81.596569	81.596569
24	39	78.746428	78.746428	78.746428
24	40	78.160092	78.160092	78.160092
24	41	82.969874	82.969874	82.969874
24	42	72.801099	72.801099	72.801099
24	43	76.902536	76.902536	76.902536
24	44	81.786307	81.786307	81.786307
24	45	78.854296	78.854296	78.854296
24	46	79.075913	79.075913	79.075913
24	47	77.620873	77.620873	77.620873
24	48	53.814496	53.814496	53.814496
24	49	4.000000	4.000000	4.000000
24	50	8.062258	8.062258	8.062258
24			45.343136	45.343136
	51	45.343136		
24	52	22.671568	22.671568	22.671568
24	53	28.178006	28.178006	28.178006
24	54	48.466483	48.466483	48.466483
24	55	57.567352	57.567352	57.567352
24	56	55.578773	55.578773	55.578773
24	57	32.310989	32.310989	32.310989
24	58	21.540659	21.540659	21.540659
24	59	23.537205	23.537205	23.537205
24	60	31.764760	31.764760	31.764760
24	61	59.615434	59.615434	59.615434
24	62	60.406953	60.406953	60.406953
24	63	40.360872	40.360872	40.360872
24	64	30.886890	30.886890	30.886890
24	65	25.961510	25.961510	25.961510
24	66	35.128336	35.128336	35.128336
4	00	22.170220	33.140330	JJ.170JJ0

24 67 32,140317 32,140317 32,140317 43,140317 42,21676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 45,221676 46,070274 47,071274 46,070274 46,070274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 47,071274 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
24	24	67	32.140317	32.140317	32.140317	
24 70 47,518417 47,518417 47,518417 40,070274 64,070274 64,070274 64,070274 64,070274 64,070274 64,070274 64,070274 64,070274 64,070274 64,070274 65,084291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 56,824291 57,824249 52,866793 23,866793 <td>24</td> <td>68</td> <td>45.221676</td> <td>45.221676</td> <td>45.221676</td> <td></td>	24	68	45.221676	45.221676	45.221676	
24 70 47,518417 47,518417 47,518417 40,070274 64,070274 65,734314 <td>24</td> <td>69</td> <td>55.036352</td> <td>55.036352</td> <td>55.036352</td> <td></td>	24	69	55.036352	55.036352	55.036352	
24 72 56,020000 65,000000 65,000000 65,000000 65,000000 65,000000 65,000000 65,000000 65,000000 65,000000 24 74 65,734314 <td< td=""><td>24</td><td></td><td>47.518417</td><td>47.518417</td><td>47.518417</td><td></td></td<>	24		47.518417	47.518417	47.518417	
24 73 65,000000 65,000000 65,000000 24 74 65,734314 65,734314 23,430749 23,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 15,132746 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,2053463 24,2053463 26,019224 26,019224 26,019224 26,019224 26,019224	24	71	64.070274	64.070274	64.070274	
24 74 65,734314 65,734314 65,734314 65,734314 23,430749 23,430749 23,430749 23,430749 23,00000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 33,000000 39,169249 50,129444 50,0014449 50,169249 50,0008149 </td <td>24</td> <td>72</td> <td>56.824291</td> <td>56.824291</td> <td>56.824291</td> <td></td>	24	72	56.824291	56.824291	56.824291	
24 75 23,430749 23,430749 23,430749 23,000000 33,000000 33,000000 24 77 23,086793 23,086949 24,096249 26,019249 24,0963463 24,2953463 24,2953463 24,2953463 24,2953463 24,2953463 24,129474 54,129474			65.000000	65.000000	65.000000	
24 76 33,000000 33,000000 33,000000 24 77 23,086793 23,086793 23,086793 23,086793 24 78 15,132748 15,132746 15,132746 15,132746 24 80 70,661163 70,661163 70,661163 42,953464 <	24	74	65.734314	65.734314	65.734314	
24 77 23.086793 23.086793 23.086793 24 78 15.132746 15.132746 15.132746 24 79 59.169249 59.169249 59.169249 24 80 70.661163 70.661163 70.661163 24 81 42.953463 42.953463 42.953463 24 82 54.129474 54.129474 54.129474 24 84 26.019224 26.019224 26.019224 24 85 30.610456 30.610456 30.610456 30.610456 24 86 30.805844 30.805844 30.805844 30.805844 24 87 23.495098 25.495098 25.495098 24 88 32.202484 32.202484 32.202484 24 89 54.817880 54.817880 54.817880 24 91 42.011903 42.011903 42.011903 24 92 38.60518 38.60518 38.60518 24	24	75	23.430749	23.430749	23.430749	
24 78 15.132746 15.132746 15.132746 15.132746 19.169249 59.169249 59.169249 59.169249 19.169249 59.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169244 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169608 19.169244 19.169249 19.169544 19.169608 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169249 19.169344 19.169344 19.169344 <td>24</td> <td>76</td> <td>33.000000</td> <td>33.000000</td> <td>33.000000</td> <td></td>	24	76	33.000000	33.000000	33.000000	
24 79 59,169249 59,169249 59,169249 59,169249 10,661163 70,661163 <td>24</td> <td>77</td> <td>23.086793</td> <td>23.086793</td> <td>23.086793</td> <td></td>	24	77	23.086793	23.086793	23.086793	
24 80 70.661163 70.661163 70.661163 24 81 42.953463 42.953463 42.953463 24 82 54.129474 54.129474 54.129474 24 83 39.560081 39.560081 39.560081 24 84 26.019224 26.019224 26.019224 24 85 30.610456 30.610456 30.610456 24 86 30.805844 30.805844 30.805844 24 87 25.495098 25.495098 25.495098 24 88 32.202484 32.202484 32.202484 24 89 54.817880 54.817880 54.817880 24 90 29.00000 29.00000 29.00000 24 91 42.011903 42.011903 32.011903 24 92 38.600518 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 95 47.010637 <td< td=""><td>24</td><td>78</td><td>15.132746</td><td>15.132746</td><td>15.132746</td><td></td></td<>	24	78	15.132746	15.132746	15.132746	
24 81 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 42,953463 32,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 39,560081 42,619224 <td>24</td> <td>79</td> <td>59.169249</td> <td>59.169249</td> <td>59.169249</td> <td></td>	24	79	59.169249	59.169249	59.169249	
24 82 54.129474 54.129474 54.129474 24 83 39.560081 39.560081 39.560081 24 84 26.019224 26.019224 26.019224 24 85 30.610456 30.610456 30.610456 24 86 30.805844 30.805844 30.805844 24 87 25.495098 25.495098 25.495098 24 88 32.202484 32.202484 24 90 29.000000 29.000000 24 91 42.011903 42.011903 24 92 38.600518 38.600518 24 92 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 94 52.325902 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210	24	80	70.661163	70.661163	70.661163	
24 83 39.560081 39.560081 39.560081 24 84 26.019224 26.019224 26.019224 24 85 30.610456 30.610456 30.610456 24 86 30.805844 30.805844 30.805844 24 87 25.495098 25.495098 25.495098 24 88 32.202484 32.202484 32.202484 24 89 54.817880 54.817880 54.817880 24 90 29.000000 29.000000 29.000000 24 91 42.011903 42.011903 42.011903 24 92 38.600518 38.60518 38.600518 38.600518 38.60518	24	81	42.953463	42.953463	42.953463	
24 84 26.019224 26.019224 26.019224 26.019224 30.610456 30.610456 24 85 30.610456 30.610456 30.610456 30.610456 24 87 25.495098 25.495098 25.495098 25.495098 24 88 32.202484 32.202484 32.202484 32.202484 24 90 29.00000 29.000000 29.000000 24 91 42.011903 42.011903 42.011903 24 92 38.600518 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 94 52.255902 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 97 51.865210 51.865210 51.865210 24 98 36	24	82		54.129474	54.129474	
24 85 30.610456 30.610456 30.610456 30.805844 30.805844 30.805844 30.805844 30.805844 24.850598 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 26.4950998 26.4950998 26.4950998 26.4950998 26.49509998 26.49509998 26.495099999999999999999999999999999999999	24	83	39.560081	39.560081	39.560081	
24 85 30.610456 30.610456 30.610456 30.805844 30.805844 30.805844 30.805844 30.805844 24.850598 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 25.495098 26.4950998 26.4950998 26.4950998 26.4950998 26.49509998 26.49509998 26.495099999999999999999999999999999999999	24	84	26.019224	26.019224	26.019224	
24 87 25,495098 25,495098 32,202484 32,202484 32,202484 24 89 54,817880 54,817880 54,817880 54,817880 24 90 29,000000 29,000000 29,000000 24 91 42,011903 42,011903 42,011903 24 92 38,600518 38,600518 38,600518 24 93 40,853396 40,853396 40,853396 24 94 52,325902 52,325902 52,325902 24 95 47,010637 47,010637 47,010637 24 96 36,715120 36,715120 36,715120 24 97 51,865210 51,865210 51,865210 24 98 36,400549 36,400549 36,400549 24 99 48,507731 48,507731 48,507731 24 99 48,507731 48,507731 48,507731 24 101 62,393910 62,393910 62,393910 25 271,196910 71,196910 71,196910 25 <td></td> <td>85</td> <td>30.610456</td> <td>30.610456</td> <td>30.610456</td> <td></td>		85	30.610456	30.610456	30.610456	
24 87 25,495098 25,495098 32,202484 32,202484 32,202484 24 89 54,817880 54,817880 54,817880 54,817880 24 90 29,000000 29,000000 29,000000 24 91 42,011903 42,011903 42,011903 24 92 38,600518 38,600518 38,600518 24 93 40,853396 40,853396 40,853396 24 94 52,325902 52,325902 52,325902 24 95 47,010637 47,010637 47,010637 24 96 36,715120 36,715120 36,715120 24 97 51,865210 51,865210 51,865210 24 98 36,400549 36,400549 36,400549 24 99 48,507731 48,507731 48,507731 24 99 48,507731 48,507731 48,507731 24 101 62,393910 62,393910 62,393910 25 271,196910 71,196910 71,196910 25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 88 32,202484 32,202484 32,202484 24 89 54,817880 54,817880 54,817880 24 90 29,000000 29,000000 24 91 42,011903 42,011903 42,011903 24 92 38,600518 38,600518 38,600518 38,600518 24 93 40,853396 40,853396 40,853396 24 94 52,325902 52,325902 52,325902 24 95 47,010637 47,010637 47,010637 24 96 36,715120 36,715120 36,715120 24 97 51,865210 51,865210 51,865210 24 98 36,400549 36,400549 36,400549 36,400549 24 99 48,507731 48,507731 48,507731 48,507731 24 101 62,393910 62,393910 62,393910 62,393910 25 1 35,057096 35,057096 35,057096 3						
24 89 54,817880 54,817880 54,817880 24 90 29,000000 29,000000 29,000000 24 91 42,011903 42,011903 42,011903 24 92 38,600518 38,600518 38,600518 24 94 52,325902 52,325902 52,325902 24 94 52,325902 52,325902 52,325902 24 95 47,010637 47,010637 47,010637 24 96 36,715120 36,715120 36,715120 24 97 51,865210 51,865210 51,865210 24 98 36,400549 36,400549 36,400549 24 99 48,507731 48,507731 48,507731 38,507396 24 101 62,393910 62,393910 62,393910 62,393910 25 1 35,057096 35,057096 35,057096 35,057096 25 3 62,096699 62,096699 62,096699 62		88	32.202484	32.202484	32.202484	
24 90 29.000000 29.000000 29.000000 24 91 42.011903 42.011903 42.011903 24 92 38.600518 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 94 52.325902 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 <						
24 91 42.011903 42.011903 42.011903 24 92 38.600518 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 94 52.325902 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 <t< td=""><td></td><td></td><td>29.000000</td><td></td><td>29.000000</td><td></td></t<>			29.000000		29.000000	
24 92 38.600518 38.600518 38.600518 24 93 40.853396 40.853396 40.853396 24 94 52.325902 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 61.446275 67.446275 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
24 93 40.853396 40.853396 40.853396 24 94 52.325902 52.325902 24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 72.277244 25 7 63.245553 63.245553			38.600518	38.600518	38.600518	
24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.3939910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 10 34.409301 34.409301				40.853396		
24 95 47.010637 47.010637 47.010637 24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.3939910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 10 34.409301 34.409301	24	94	52.325902	52.325902	52.325902	
24 96 36.715120 36.715120 36.715120 24 97 51.865210 51.865210 51.865210 24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 </td <td></td> <td>95</td> <td>47.010637</td> <td>47.010637</td> <td>47.010637</td> <td></td>		95	47.010637	47.010637	47.010637	
24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 63.245553 25.27295 25 8 64.257295 64.257295 64.257295 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949256 11 37.536649 37.536649 <td>24</td> <td></td> <td>36.715120</td> <td>36.715120</td> <td>36.715120</td> <td></td>	24		36.715120	36.715120	36.715120	
24 98 36.400549 36.400549 36.400549 24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 63.245553 25.27295 25 8 64.257295 64.257295 64.257295 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949257 68.949256 11 37.536649 37.536649 <td>24</td> <td>97</td> <td>51.865210</td> <td>51.865210</td> <td>51.865210</td> <td></td>	24	97	51.865210	51.865210	51.865210	
24 99 48.507731 48.507731 48.507731 24 100 32.310989 32.310989 32.310989 24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 14 38.587563 38.587563 </td <td></td> <td>98</td> <td>36.400549</td> <td>36.400549</td> <td>36.400549</td> <td></td>		98	36.400549	36.400549	36.400549	
24 101 62.393910 62.393910 62.393910 25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 <td>24</td> <td>99</td> <td>48.507731</td> <td>48.507731</td> <td>48.507731</td> <td></td>	24	99	48.507731	48.507731	48.507731	
25 1 35.057096 35.057096 35.057096 25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 <td>24</td> <td>100</td> <td>32.310989</td> <td>32.310989</td> <td>32.310989</td> <td></td>	24	100	32.310989	32.310989	32.310989	
25 2 71.196910 71.196910 71.196910 25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 <td>24</td> <td>101</td> <td>62.393910</td> <td>62.393910</td> <td>62.393910</td> <td></td>	24	101	62.393910	62.393910	62.393910	
25 3 62.096699 62.096699 62.096699 25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 </td <td>25</td> <td>1</td> <td>35.057096</td> <td>35.057096</td> <td>35.057096</td> <td></td>	25	1	35.057096	35.057096	35.057096	
25 4 71.805292 71.805292 71.805292 25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874<	25	2	71.196910	71.196910	71.196910	
25 5 67.446275 67.446275 67.446275 25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 2.000000	25	3	62.096699	62.096699	62.096699	
25 6 72.277244 72.277244 72.277244 25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039	25	4	71.805292	71.805292	71.805292	
25 7 63.245553 63.245553 63.245553 25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 10.198039 25 23 2.000000 2.000000	25	5	67.446275	67.446275	67.446275	
25 8 64.257295 64.257295 64.257295 25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 <td>25</td> <td>6</td> <td>72.277244</td> <td>72.277244</td> <td>72.277244</td> <td></td>	25	6	72.277244	72.277244	72.277244	
25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.40307 10.440307 25 26 10.440307 10.440307	25	7	63.245553	63.245553	63.245553	
25 9 68.949257 68.949257 68.949257 25 10 34.409301 34.409301 34.409301 25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.400000	25	8	64.257295	64.257295	64.257295	
25 11 37.536649 37.536649 37.536649 25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 <td>25</td> <td>9</td> <td>68.949257</td> <td>68.949257</td> <td>68.949257</td> <td></td>	25	9	68.949257	68.949257	68.949257	
25 12 39.051248 39.051248 39.051248 25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 <td>25</td> <td>10</td> <td>34.409301</td> <td>34.409301</td> <td>34.409301</td> <td></td>	25	10	34.409301	34.409301	34.409301	
25 13 42.426407 42.426407 42.426407 25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	11	37.536649	37.536649	37.536649	
25 14 38.587563 38.587563 38.587563 25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	12	39.051248	39.051248	39.051248	
25 15 44.598206 44.598206 44.598206 25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	13	42.426407	42.426407	42.426407	
25 16 43.829214 43.829214 43.829214 25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	14	38.587563	38.587563	38.587563	
25 17 45.486262 45.486262 45.486262 25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	15	44.598206	44.598206	44.598206	
25 18 48.414874 48.414874 48.414874 25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		16	43.829214	43.829214	43.829214	
25 19 11.661904 11.661904 11.661904 25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		17	45.486262	45.486262	45.486262	
25 20 6.403124 6.403124 6.403124 25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	18	48.414874	48.414874	48.414874	
25 21 4.000000 4.000000 4.000000 25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		19	11.661904	11.661904	11.661904	
25 22 10.198039 10.198039 10.198039 25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		20	6.403124	6.403124	6.403124	
25 23 2.000000 2.000000 2.000000 25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953						
25 24 10.000000 10.000000 10.000000 25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953	25	22	10.198039	10.198039	10.198039	
25 26 10.440307 10.440307 10.440307 25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		23	2.000000	2.000000	2.000000	
25 27 58.940648 58.940648 58.940648 25 28 60.406953 60.406953 60.406953		24	10.000000	10.000000	10.000000	
25 28 60.406953 60.406953 60.406953			10.440307	10.440307	10.440307	
	25	27	58.940648	58.940648	58.940648	
25 29 56.044625 56.044625 56.044625			60.406953	60.406953	60.406953	
	25	29	56.044625	56.044625	56.044625	

25	30	55.713553	55.713553	55.713553	
25	31	52.201533	52.201533	52.201533	
25	32	53.851648	53.851648	53.851648	
25	33	51.244512	51.244512	51.244512	
25	34	48.052055	48.052055	48.052055	
25	35	51.078371	51.078371	51.078371	
25	36	75.769387	75.769387	75.769387	
25	37	75.026662	75.026662	75.026662	
25	38	72.235725	72.235725	72.235725	
25	39	69.289249	69.289249	69.289249	
25	40	68.622154	68.622154	68.622154	
25	41	73.375745	73.375745	73.375745	
25	42	63.245553	63.245553	63.245553	
25					
	43	67.186308	67.186308	67.186308	
25	44	72.034714	72.034714	72.034714	
25	45	69.123079	69.123079	69.123079	
25	46	69.375788	69.375788	69.375788	
25	47	68.007353	68.007353	68.007353	
25	48	46.861498	46.861498	46.861498	
25					
	49	10.770330	10.770330	10.770330	
25	50	5.00000	5.000000	5.000000	
25	51	39.446166	39.446166	39.446166	
25	52	17.720045	17.720045	17.720045	
25	53	19.849433	19.849433	19.849433	
25	54	39.357337	39.357337	39.357337	
25	55	48.104054	48.104054	48.104054	
25	56	45.705580	45.705580	45.705580	
25	57	23.323808	23.323808	23.323808	
25	58	12.806248	12.806248	12.806248	
25	59	23.537205	23.537205	23.537205	
25	60	28.442925	28.442925	28.442925	
25	61	50.537115	50.537115	50.537115	
25	62	50.487622	50.487622	50.487622	
25	63	33.600595	33.600595	33.600595	
25	64	27.459060	27.459060	27.459060	
25	65	16.552945	16.552945	16.552945	
25	66	25.179357	25.179357	25.179357	
25	67	22.203603	22.203603	22.203603	
25	68	37.483330	37.483330	37.483330	
25					
	69	45.044423	45.044423	45.044423	
25	70	37.656341	37.656341	37.656341	
25	71	54.083269	54.083269	54.083269	
25	72	48.259714	48.259714	48.259714	
25	73	55.901699	55.901699	55.901699	
25	74	57.628118	57.628118	57.628118	
25	75	18.681542	18.681542	18.681542	
		34.481879	34.481879	34.481879	
25	76				
25	77	22.203603	22.203603	22.203603	
25	78	19.209373	19.209373	19.209373	
25	79	50.803543	50.803543	50.803543	
25	80	61.911227	61.911227	61.911227	
25	81	33.241540	33.241540	33.241540	
25	82	44.384682	44.384682	44.384682	
25	83	30.083218	30.083218	30.083218	
25	84	16.031220	16.031220	16.031220	
25	85	23.600847	23.600847	23.600847	
25	86	26.248809	26.248809	26.248809	
25	87	19.235384	19.235384	19.235384	
25	88	27.513633	27.513633	27.513633	
25	89	45.221676	45.221676	45.221676	
25	90	30.675723	30.675723	30.675723	
25	91	32.015621	32.015621	32.015621	
25	92	29.154759	29.154759	29.154759	

25	93	31.764760	31.764760	31.764760	
25	94	43.566042	43.566042	43.566042	
25	95	38.078866	38.078866	38.078866	
25	96	28.425341	28.425341	28.425341	
25	97	42.544095	42.544095	42.544095	
25	98	34.132096	34.132096	34.132096	
25	99	38.897301	38.897301	38.897301	
25	100	23.323808	23.323808	23.323808	
25	101	52.469038	52.469038	52.469038	
26	1	45.276926	45.276926	45.276926	
26	2	80.622577	80.622577	80.622577	
26	3	71.196910	71.196910	71.196910	
26	4	81.049368	81.049368	81.049368	
26	5	76.485293	76.485293	76.485293	
26 26	6 7	81.394103	81.394103	81.394103	
26	8	72.034714 72.801099	72.034714 72.801099	72.034714 72.801099	
26	9	77.620873	77.620873	77.620873	
26	10	39.051248	39.051248	39.051248	
26	11	43.011626	43.011626	43.011626	
26	12	44.204072	44.204072	44.204072	
26	13	48.259714	48.259714	48.259714	
26	14	42.426407	42.426407	42.426407	
26	15	50.000000	50.000000	50.00000	
26	16	48.104054	48.104054	48.104054	
26	17	49.497475	49.497475	49.497475	
26	18	53.150729	53.150729	53.150729	
26	19	9.000000	9.000000	9.000000	
26	20	8.602325	8.602325	8.602325	
26	21	12.206556	12.206556	12.206556	
26	22	5.000000	5.000000	5.000000	
26	23	11.180340	11.180340	11.180340	
26	24	3.000000	3.000000	3.000000	
26	25	10.440307	10.440307	10.440307	
26	27	65.000000	65.000000	65.000000	
26 26	28 29	67.082039 62.241465	67.082039 62.241465	67.082039 62.241465	
26	30	62.649820	62.649820	62.649820	
26	31	58.600341	58.600341	58.600341	
26	32	60.901560	60.901560	60.901560	
26	33	57.697487	57.697487	57.697487	
26	34	53.851648	53.851648	53.851648	
26	35	58.309519	58.309519	58.309519	
26	36	86.162637	86.162637	86.162637	
26	37	85.440037	85.440037	85.440037	
26	38	82.637764	82.637764	82.637764	
26	39	79.711982	79.711982	79.711982	
26	40	79.056942	79.056942	79.056942	
26	41	83.815273	83.815273	83.815273	
26	42	73.681748	73.681748	73.681748	
26	43	77.620873	77.620873	77.620873	
26	44	82.462113	82.462113	82.462113	
26	45	79.555012	79.555012	79.555012	
26 26	46 47	78.447435 76.902536	78.447435	78.447435	
26	47 48	51.855569	76.902536 51.855569	76.902536 51.855569	
26	40	7.000000	7.000000	7.000000	
26	50	9.899495	9.899495	9.899495	
26	51	47.634021	47.634021	47.634021	
26	52	25.000000	25.000000	25.000000	
26	53	26.925824	26.925824	26.925824	
26	54	47.434165	47.434165	47.434165	
26	55	58.523500	58.523500	58.523500	

26	56	55.226805	55.226805	55.226805	
26	57	33.541020	33.541020	33.541020	
26	58	20.615528	20.615528	20.615528	
26	59	20.615528	20.615528	20.615528	
26	60	29.154759	29.154759	29.154759	
26	61	58.523500	58.523500	58.523500	
26	62	60.827625	60.827625	60.827625	
26	63	42.426407	42.426407	42.426407	
26	64	33.541020	33.541020	33.541020	
26	65	26.925824	26.925824	26.925824	
26	66	35.000000	35.000000	35.000000	
26	67	32.557641	32.557641	32.557641	
26	68	47.010637	47.010637	47.010637	
26	69	55.226805	55.226805	55.226805	
26	70	47.169906	47.169906	47.169906	
26	71	64.000000	64.000000	64.000000	
26	72	58.309519	58.309519	58.309519	
26	73	66.211781	66.211781	66.211781	
26	74	64.140471	64.140471	64.140471	
26	75	21.213203	21.213203	21.213203	
26	76	30.000000	30.000000	30.000000	
26	77	25.961510	25.961510	25.961510	
26	78	12.165525	12.165525	12.165525	
26	79	57.706152	57.706152	57.706152	
26	80	69.354164	69.354164	69.354164	
26	81	43.680659	43.680659	43.680659	
26	82	54.817880	54.817880	54.817880	
26	83	38.832976	38.832976	38.832976	
26	84	26.076810	26.076810	26.076810	
26	85	32.557641	32.557641	32.557641	
26	86	33.286634	33.286634	33.286634	
26	87	23.600847	23.600847	23.600847	
26	88	29.832868	29.832868	29.832868	
26	89	54.129474	54.129474	54.129474	
26	90	32.000000	32.000000	32.000000	
26	91	42.047592	42.047592	42.047592	
26	92	39.560081	39.560081	39.560081	
26	93	42.047592	42.047592	42.047592	
26	94	53.712196	53.712196	53.712196	
26	95	48.301139	48.301139	48.301139	
26	96	38.275318	38.275318	38.275318	
26	97	52.924474	52.924474	52.924474	
26	98	33.615473	33.615473	33.615473	
26	99	47.853944	47.853944	47.853944	
26	100	31.320920	31.320920	31.320920	
26	101	62.128898	62.128898	62.128898	
27	1	58.523500	58.523500	58.523500	
27		89.022469	89.022469	89.022469	
	2				
27	3	85.755466	85.755466	85.755466	
27	4	91.400219	91.400219	91.400219	
27	5	90.138782	90.138782	90.138782	
27	6	93.005376	93.005376	93.005376	
27	7	89.185201	89.185201	89.185201	
27	8	91.787799	91.787799	91.787799	
27	9	94.339811	94.339811	94.339811	
27	10	85.146932	85.146932	85.146932	
27	11	85.586214	85.586214	85.586214	
27	12	87.572827	87.572827	87.572827	
27	13	88.283634	88.283634	88.283634	
27	14	90.138782	90.138782	90.138782	
27	15	91.241438	91.241438	91.241438	
27	16	93.536089	93.536089	93.536089	
27	17	95.524866	95.524866	95.524866	

27	18	96.176920	96.176920	96.176920	
27	19	56.797887	56.797887	56.797887	
27	20	56.648036	56.648036	56.648036	
27	21	55.081757	55.081757	55.081757	
27	22	60.415230	60.415230	60.415230	
27	23	57.008771	57.008771	57.008771	
27	24	62.241465	62.241465	62.241465	
27	25	58.940648	58.940648	58.940648	
27	26	65.00000	65.000000	65.00000	
27	28	5.000000	5.000000	5.000000	
27		3.000000			
	29		3.000000	3.000000	
27	30	7.071068	7.071068	7.071068	
27	31	7.000000	7.000000	7.000000	
27	32	8.602325	8.602325	8.602325	
27	33	8.00000	8.000000	8.000000	
27	34	11.180340	11.180340	11.180340	
27	35	11.180340	11.180340	11.180340	
27	36	61.717096	61.717096	61.717096	
27	37	62.649820	62.649820	62.649820	
27	38	60.033324	60.033324	60.033324	
27	39	59.908263	59.908263	59.908263	
27	40	61.032778	61.032778	61.032778	
27	41	65.192024	65.192024	65.192024	
27	42	58.258047	58.258047	58.258047	
27	43	64.031242	64.031242	64.031242	
27	44	68.007353	68.007353	68.007353	
27	45	65.604878	65.604878	65.604878	
27	46	91.263355	91.263355	91.263355	
27	47	91.809586	91.809586	91.809586	
27	48	94.201911	94.201911	94.201911	
27	49	58.600341	58.600341	58.600341	
27	50	55.973208	55.973208	55.973208	
27	51	23.537205	23.537205	23.537205	
27	52	41.231056	41.231056	41.231056	
27	53	70.000000	70.000000	70.000000	
27	54	77.620873	77.620873	77.620873	
27	55	50.000000	50.000000	50.000000	
27	56	71.589105	71.589105	71.589105	
27	57	45.276926	45.276926	45.276926	
27	58	65.192024	65.192024	65.192024	
27	59	82.462113	82.462113	82.462113	
27	60	85.586214	85.586214	85.586214	
27	61	85.440037	85.440037	85.440037	
27	62	61.032778	61.032778	61.032778	
27	63	30.413813	30.413813	30.413813	
27	64	31.622777	31.622777	31.622777	
27	65	50.000000	50.000000	50.000000	
27	66	60.827625	60.827625	60.827625	
27	67	54.451814	54.451814	54.451814	
27	68	33.241540	33.241540	33.241540	
27	69	62.649820	62.649820	62.649820	
27	70	67.675697	67.675697	67.675697	
27	71	71.561163	71.561163	71.561163	
27	72	39.051248	39.051248	39.051248	
27	73	47.423623	47.423623	47.423623	
27	74	97.718985	97.718985	97.718985	
27	75	75.663730	75.663730	75.663730	
27	76	93.407708	93.407708	93.407708	
27	77	39.357337	39.357337	39.357337	
27	78	76.896034	76.896034	76.896034	
27	79	90.801982	90.801982	90.801982	
27	80	96.772930	96.772930	96.772930	
27	81	50.921508	50.921508	50.921508	
<u>- '</u>		JU. JZ ± JUU	50.721300	JU. JZ ± JUU	

27	82	53.851648	53.851648	53.851648
27	83	69.231496	69.231496	69.231496
27	84	58.008620	58.008620	58.008620
27	85	38.013156	38.013156	38.013156
27	86	32.756679	32.756679	32.756679
27	87	74.242845	74.242845	74.242845
27	88	83.216585	83.216585	83.216585
27	89	76.321688	76.321688	76.321688
27		37.536649		
27	90	60.440053	37.536649	37.536649 60.440053
	91		60.440053	
27	92	47.539457	47.539457	47.539457
27	93	43.965896	43.965896	43.965896
27	94	40.496913	40.496913	40.496913
27	95	42.047592	42.047592	42.047592
27	96	39.623226	39.623226	39.623226
27	97	46.647615	46.647615	46.647615
27	98	91.787799	91.787799	91.787799
27	99	72.422372	72.422372	72.422372
27	100	69.180922	69.180922	69.180922
27	101	73.925638	73.925638	73.925638
28	1	57.008771	57.008771	57.008771
28	2	86.023253	86.023253	86.023253
28	3	83.240615	83.240615	83.240615
28	4	88.481637	88.481637	88.481637
28	5	87.464278	87.464278	87.464278
28	6	90.138782	90.138782	90.138782
28	7	86.769810	86.769810	86.769810
28	8	89.442719	89.442719	89.442719
28	9	91.787799	91.787799	91.787799
28	10	85.000000	85.000000	85.000000
28	11	85.146932	85.146932	85.146932
28	12	87.143560	87.143560	87.143560
28	13	87.572827	87.572827	87.572827
28	14	90.000000	90.000000	90.000000
28	15	90.553851	90.553851	90.553851
28	16	93.134312	93.134312	93.134312
28	17	95.131488	95.131488	95.131488
28	18	95.524866	95.524866	95.524866
28	19	59.169249	59.169249	59.169249
28	20	58.600341	58.600341	58.600341
28	21	56.648036	56.648036	56.648036
28	22	62.649820	62.649820	62.649820
28	23	58.523500	58.523500	58.523500
28	24		64.412732	
28	25	64.412732 60.406953	60.406953	64.412732 60.406953
28	26	67.082039	67.082039	67.082039
			5.000000	
28	27	5.000000		5.000000
28	29	5.830952	5.830952	5.830952
28	30	5.000000	5.000000	5.000000
28	31	8.602325	8.602325	8.602325
28	32	7.000000	7.000000	7.000000
28	33	9.433981	9.433981	9.433981
28	34	14.142136	14.142136	14.142136
28	35	10.000000	10.000000	10.000000
28	36	57.306195	57.306195	57.306195
28	37	58.309519	58.309519	58.309519
28	38	55.758407	55.758407	55.758407
28	39	55.803226	55.803226	55.803226
28	40	57.008771	57.008771	57.008771
28	41	61.032778	61.032778	61.032778
28	42	54.488531	54.488531	54.488531
28	43	60.207973	60.207973	60.207973
28	44	64.031242	64.031242	64.031242

28	45	61.717096	61.717096	61.717096
28	46	88.509886	88.509886	88.509886
28	47	89.185201	89.185201	89.185201
28	48	93.536089	93.536089	93.536089
28	49	60.901560	60.901560	60.901560
28	50	57.775427	57.775427	57.775427
28	51	23.000000	23.000000	23.000000
28	52	42.720019	42.720019	42.720019
28	53	70.178344	70.178344	70.178344
28	54	76.485293	76.485293	76.485293
28	55	47.169906	47.169906	47.169906
28	56	69.641941	69.641941	69.641941
28	57	45.000000	45.000000	45.000000
28	58	65.764732	65.764732	65.764732
28	59	83.815273	83.815273	83.815273
28	60	86.313383	86.313383	86.313383
28	61	83.815273	83.815273	83.815273
28	62	58.309519	58.309519	58.309519
28	63	30.000000	30.000000	30.000000
28	64	33.541020	33.541020	33.541020
28	65	50.249378	50.249378	50.249378
28	66	60.207973	60.207973	60.207973
28	67	54.037024	54.037024	54.037024
28	68	31.780497	31.780497	31.780497
28	69	60.415230	60.415230	60.415230
28	70	66.219333	66.219333	66.219333
28	71	68.963759	68.963759	68.963759
28	72	36.055513	36.055513	36.055513
	73			
28		43.863424	43.863424	43.863424
28	74	96.301610	96.301610	96.301610
28	75	76.485293	76.485293	76.485293
28	76	94.868330	94.868330	94.868330
28	77	41.880783	41.880783	41.880783
28	78	78.790862	78.790862	78.790862
28	79	89.498603	89.498603	89.498603
28	80	94.921020	94.921020	94.921020
28	81	49.477268	49.477268	49.477268
28	82	51.429563	51.429563	51.429563
28	83	68.468971	68.468971	68.468971
28	84	58.137767	58.137767	58.137767
28	85	38.470768	38.470768	38.470768
28	86	34.176015	34.176015	34.176015
28		74.813100		
	87		74.813100	74.813100
28	88	83.725743	83.725743	83.725743
28	89	74.632433	74.632433	74.632433
28	90	41.036569	41.036569	41.036569
28	91	59.228372	59.228372	59.228372
28	92	46.529560	46.529560	46.529560
28	93	42.755117	42.755117	42.755117
28	94	38.013156	38.013156	38.013156
28	95	40.162171	40.162171	40.162171
28	96	39.051248	39.051248	39.051248
28	97	44.283180	44.283180	44.283180
28	98	92.574294	92.574294	92.574294
28	99	71.063352	71.063352	71.063352
28	100	69.000000	69.000000	69.000000
28	101	71.554175	71.554175	71.554175
29	1	55.713553	55.713553	55.713553
29	2	86.683332	86.683332	86.683332
29	3	83.216585	83.216585	83.216585
29	4	89.022469	89.022469	89.022469
29	5	87.658428	87.658428	87.658428
29	6	90.603532	90.603532	90.603532

29	7	86.608314	86.608314	86.608314	
29	8	89.185201	89.185201	89.185201	
29	9	91.809586	91.809586	91.809586	
29	10	82.152298	82.152298	82.152298	
29	11	82.607506	82.607506	82.607506	
29	12	84.593144	84.593144	84.593144	
29	13	85.328776	85.328776	85.328776	
29	14	87.143560	87.143560	87.143560	
29	15	88.283634	88.283634	88.283634	
29	16	90.553851	90.553851	90.553851	
29	17	92.541882	92.541882	92.541882	
29	18	93.214806	93.214806	93.214806	
29	19	54.120237	54.120237	54.120237	
29	20	53.851648	53.851648	53.851648	
29	21	52.201533	52.201533	52.201533	
29	22	57.697487	57.697487	57.697487	
29	23	54.120237	54.120237	54.120237	
29	24	59.506302	59.506302	59.506302	
29	25	56.044625	56.044625	56.044625	
29	26	62.241465	62.241465	62.241465	
29	27	3.000000	3.000000	3.000000	
29	28	5.830952	5.830952	5.830952	
29	30	5.385165	5.385165	5.385165	
29	31	4.000000	4.000000	4.000000	
29	32	6.403124	6.403124	6.403124	
29	33	5.000000	5.00000	5.00000	
29	34	8.602325	8.602325	8.602325	
29	35	8.602325	8.602325	8.602325	
29	36	60.415230	60.415230	60.415230	
29	37	61.269895	61.269895	61.269895	
29	38	58.591808	58.591808	58.591808	
29	39	58.309519	58.309519	58.309519	
29	40	59.363288	59.363288	59.363288	
29	41	63.631753	63.631753	63.631753	
29	42	56.400355	56.400355	56.400355	
29	43	62.201286	62.201286	62.201286	
29	44	66.287254	66.287254	66.287254	
29	45	63.820060	63.820060	63.820060	
29	46	88.814413	88.814413	88.814413	
29	47	89.308454	89.308454	89.308454	
29	48	91.241438	91.241438	91.241438	
29	49	55.901699	55.901699	55.901699	
29			53.141321		
	50	53.141321		53.141321	
29	51	20.615528	20.615528	20.615528	
29	52	38.327536	38.327536	38.327536	
29	53	67.000000	67.000000	67.000000	
29	54	74.726167	74.726167	74.726167	
29	55	47.634021	47.634021	47.634021	
29	56	68.876701	68.876701	68.876701	
29	57	42.296572	42.296572	42.296572	
29	58	62.201286	62.201286	62.201286	
29	59	79.555012	79.555012	79.555012	
29	60	82.607506	82.607506	82.607506	
29	61	82.637764	82.637764	82.637764	
29	62	58.600341	58.600341	58.600341	
29	63	27.459060	27.459060	27.459060	
		28.792360	28.792360	28.792360	
29	64				
29	65	47.000000	47.000000	47.000000	
29	66	57.870545	57.870545	57.870545	
29	67	51.478151	51.478151	51.478151	
29	68	30.463092	30.463092	30.463092	
29	69	60.033324	60.033324	60.033324	
29	70	64.845971	64.845971	64.845971	

29						
29 73 45.453273 45.453273 45.453273 45.453273 45.453273 45.453273 45.463330 94.868330 94.868330 94.868330 92.520716 90.520717 90.520716 90.520717 90.520717 90.520717 90.520090 90.520090 90.520090 <td>29</td> <td>71</td> <td>69.065187</td> <td>69.065187</td> <td>69.065187</td> <td></td>	29	71	69.065187	69.065187	69.065187	
29 74 94,868330 94,868330 94,868330 29 75 72.691127 72.691127 72.691127 29 76 90,520716 90,520716 90,520716 29 77 36,715120 36,715120 36,715120 29 78 74,094534 74,094534 74,094534 29 80 94,021274 94,021274 94,021274 29 81 48,104054 48,104054 48,104054 29 82 51,312766 51,312766 51,312766 29 83 66,287254 66,287254 66,287254 29 84 55,009090 55,009090 55,009090 29 85 35,014283	29	72	36.796739	36.796739	36.796739	
29 75 72.691127 72.691127 72.691127 72.691127 29 76 90.520716 90.520716 90.520716 29 77 36.715120 36.715120 36.715120 29 78 74.094534 74.094534 74.094534 74.094534 29 79 87.931792 87.931792 87.931792 87.931792 29 80 94.021274 94.021274 94.021274 94.021274 29 81 48.104054 48.104054 48.104054 48.104054 29 82 51.312766 51.312766 51.312766 51.312766 29 83 66.287254 66.287254 66.287254 66.287254 29 84 55.009090 55.009090 55.009090 55.009090 59.00900 29 87 71.253070 71.253070 71.253070 71.253070 29 87 71.253070 71.253070 71.253070 71.253070 29 87 73.5931	29	73	45.453273	45.453273	45.453273	
99 76 90.520716 90.520716 90.520716 29 77 36.715120 36.715120 36.715120 29 78 74.094534 74.094534 74.094534 29 80 94.021274 94.021274 94.021274 29 81 48.104054 48.104054 48.104054 29 82 51.312766 51.312766 51.312766 29 83 66.287254 66.287254 66.287254 29 84 55.009090 55.009090 55.009090 29 85 35.014283 35.035070 71.253070 71.253070 71.253070 71.253070 71.253070 71.253070 71.253070 71.253070 <td< td=""><td>29</td><td>74</td><td>94.868330</td><td>94.868330</td><td>94.868330</td><td></td></td<>	29	74	94.868330	94.868330	94.868330	
29 77 36.715120 36.715120 36.715120 29 78 74.094534 74.094534 74.094534 74.094534 29 79 87.931792 87.931792 87.931792 87.931792 29 80 94.021274 94.021274 94.021274 94.021274 29 81 48.104054 48.104054 48.104054 48.104054 29 82 51.312766 51.312766 51.312766 51.312766 29 84 55.009090 55.009090 55.009090 55.009090 29 85 35.014283 35.014283 35.014283 35.014283 29 86 29.832868 <td< td=""><td>29</td><td>75</td><td>72.691127</td><td>72.691127</td><td>72.691127</td><td></td></td<>	29	75	72.691127	72.691127	72.691127	
29 78 74.094534 74.094534 74.094534 79.31792 87.931792 87.931792 87.931792 87.931792 87.931792 89.931792 89.931792 89.931792 89.931792 89.931792 89.931792 89.931792 89.931792 89.931792 89.0012774 99.0212774 <td>29</td> <td>76</td> <td>90.520716</td> <td>90.520716</td> <td>90.520716</td> <td></td>	29	76	90.520716	90.520716	90.520716	
29 79 87.931792 87.931792 87.931792 94.021274 96.02624 66.287254 80.24684 80.224684 80.224684 80.224684 80.224684 80.224684	29	77	36.715120	36.715120	36.715120	
29 80 94.021274 94.021274 94.021274 29.02174 29.02174 29.02174 48.104054	29	78	74.094534	74.094534	74.094534	
29 81 48.104054 48.104054 48.104054 48.104054 29 82 51.312766 51.312766 51.312766 51.312766 29 83 66.287254 66.287254 66.287254 66.287254 29 85 35.014283 35.014283 35.014283 35.014283 29 86 29.832868 29.832868 29.832868 29.832868 29 87 71.253070 71.253070 71.253070 29 88 80.224684 80.224684 80.224684 29 90 35.355339 35.3	29	79	87.931792	87.931792	87.931792	
29 82 51.312766 51.312766 51.312766 29 83 66.287254 66.287254 66.287254 29 84 55.009090 55.009090 29 85 35.014283 35.014283 35.014283 29 86 29.832868 29.832868 29.832868 29 87 71.253070 71.253070 29 88 80.224684 80.224684 80.224684 29 89 73.539105 73.539105 73.539105 29 90 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242	29	80	94.021274	94.021274	94.021274	
29 84 55.009090 55.009090 55.009090 29 85 35.014283 35.014283 35.014283 29 86 29.832868 29.832868 29.832868 29 87 71.253070 71.253070 71.253070 29 88 80.224684 80.224684 80.224684 29 90 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 39.357337 29 96 36.6742422 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413	29	81	48.104054	48.104054	48.104054	
29 84 55.009090 55.009090 55.009090 29 85 35.014283 35.014283 35.014283 35.014283 29 86 29.832868 29.832868 29.832868 29.832868 29 87 71.253070 71.253070 71.253070 71.253070 29 88 80.224684 80.224684 80.224684 29 99 73.539105 73.539105 73.539105 29 90 35.355399 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29.7567352 29 92 44.643029 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 41.109610 41.109610 41.109610 41.109610 41.109610 41.109610 41.109610 41.10164 44.102154 44.102154 44.102154 44.102154 44.102154 44.102154 44.102154 44.102154 44.102154 44.102154	29	82	51.312766	51.312766	51.312766	
29 85 35.014283 35.014283 35.014283 29.832868 29.832828 29.83282 29.9328 29.9328 29.83282 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 29.9328 <td></td> <td>83</td> <td>66.287254</td> <td>66.287254</td> <td>66.287254</td> <td></td>		83	66.287254	66.287254	66.287254	
29 86 29.832868 29.8328737 29.8328737 29.8328737 29.332873737 29.3357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.35						
29 87 71.253070 71.253070 71.253070 71.253070 71.253070 71.253070 80.224684 80.22684 80.224684 80.224684 80.24684 80.224684 80.24684 80.22684 80.22684 40.403029 44.643029 44.643029 44.643029 44.643029 44.643029 44.643029 44.643029 44.64102154 44.102154 44.102154 44.102154 44.102154 44.102154			35.014283		35.014283	
29 88 80.224684 80.224684 80.224684 29 89 73.539105 73.539105 73.539105 29 90 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.09610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 49 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892						
29 89 73.539105 73.539105 73.539105 29 90 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 30 4 44.403791 84.403791 84.4037						
29 90 35.355339 35.355339 35.355339 35.355339 29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 44.643029 44.643029 44.643029 49 38.013156 38.013156 38.013156 38.013156 38.013156 38.013156 38.013156 39.357337 36.674242 36.674242 36.674242						
29 91 57.567352 57.567352 57.567352 29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253						
29 92 44.643029 44.643029 44.643029 29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 80.23253 30 6 86.023253 86.023253 86.023253 30 8 85.000000 85.000000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 93 41.109610 41.109610 41.109610 29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253						
29 94 38.013156 38.013156 38.013156 29 95 39.357337 39.357337 39.357337 29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 30 1 52.201533 52.201533 52.201533 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 95 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 39.357337 36.674242 36.675010 36.67570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 69.570109 60.612323 66.189123 66.189123 71.344236 71.344236 71.344236 71.344236 71.344236 71.344236 71.344236 71.344236<						
29 96 36.674242 36.674242 36.674242 29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.00000 85.00000 85.00000 30 9 87.464278 87.464278 87.464278 30 10 80.050000 80.055098						
29 97 44.102154 44.102154 44.102154 29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 30 1 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 12 82.152298 82.152298 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 98 88.814413 88.814413 88.814413 29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 99 69.570109 69.570109 69.570109 29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.						
29 100 66.189123 66.189123 66.189123 29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.00000 85.00000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 101 71.344236 71.344236 71.344236 30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
30 1 52.201533 52.201533 52.201533 30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
30 2 82.006097 82.006097 82.006097 30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
30 3 78.892332 78.892332 78.892332 30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.100000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
30 4 84.403791 84.403791 84.403791 30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 20 54.120237 54.120237<						
30 5 83.216585 83.216585 83.216585 30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237						
30 6 86.023253 86.023253 86.023253 30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.00000						
30 7 82.365041 82.365041 82.365041 30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.3095						
30 8 85.000000 85.000000 85.000000 30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 9 87.464278 87.464278 87.464278 30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 10 80.000000 80.000000 80.000000 30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 11 80.156098 80.156098 80.156098 30 12 82.152298 82.152298 82.152298 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 12 82.152298 82.152298 82.607506 30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 13 82.607506 82.607506 82.607506 30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 14 85.000000 85.000000 85.000000 30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 15 85.586214 85.586214 85.586214 30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 16 88.141931 88.141931 88.141931 30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 17 90.138782 90.138782 90.138782 30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 18 90.553851 90.553851 90.553851 30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 19 54.918121 54.918121 54.918121 30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 20 54.120237 54.120237 54.120237 30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 21 52.000000 52.000000 52.000000 30 22 58.309519 58.309519 58.309519						
30 22 58.309519 58.309519 58.309519						
				58.309519	58.309519	
	30		53.851648	53.851648	53.851648	
30 24 60.033324 60.033324 60.033324	30		60.033324	60.033324	60.033324	
30 25 55.713553 55.713553 55.713553	30	25	55.713553	55.713553	55.713553	
30 26 62.649820 62.649820 62.649820	30	26		62.649820	62.649820	
30 27 7.071068 7.071068 7.071068	30	27	7.071068	7.071068	7.071068	
30 28 5.000000 5.000000 5.000000	30	28	5.000000	5.000000	5.000000	
30 29 5.385165 5.385165 5.385165	30	29	5.385165	5.385165	5.385165	
30 31 5.385165 5.385165 5.385165		31	5.385165	5.385165		
30 32 2.000000 2.000000 2.000000						
30 33 5.830952 5.830952 5.830952	30	33	5.830952	5.830952	5.830952	

30	34	11.180340	11.180340	11.180340	
30	35	5.000000	5.000000	5.000000	
30	36	55.036352	55.036352	55.036352	
30	37	55.901699	55.901699	55.901699	
30	38	53.235327	53.235327	53.235327	
30	39	53.000000	53.000000	53.000000	
30	40	54.083269	54.083269	54.083269	
30	41	58.309519	58.309519	58.309519	
30	42	51.224994	51.224994	51.224994	
30	43	57.008771	57.008771	57.008771	
30	44	61.032778	61.032778	61.032778	
30	45	58.600341	58.600341	58.600341	
30	46	84.314886	84.314886	84.314886	
30	47	84.905830	84.905830	84.905830	
30	48	88.566359	88.566359	88.566359	
30	49	56.603887	56.603887	56.603887	
30	50	53.225934	53.225934	53.225934	
30	51	18.000000	18.000000	18.00000	
30					
	52	38.078866	38.078866	38.078866	
30	53	65.192024	65.192024	65.192024	
30	54	71.589105	71.589105	71.589105	
30	55	43.011626	43.011626	43.011626	
30	56	65.000000	65.000000	65.000000	
30	57	40.000000	40.000000	40.000000	
30	58	60.827625	60.827625	60.827625	
30	59	79.056942	79.056942	79.056942	
30	60	81.394103	81.394103	81.394103	
30	61	79.056942	79.056942	79.056942	
30	62	54.083269	54.083269	54.083269	
30	63	25.000000	25.000000	25.00000	
30	64	29.154759	29.154759	29.154759	
30	65	45.276926	45.276926	45.276926	
30	66	55.226805	55.226805	55.226805	
30	67	49.040799	49.040799	49.040799	
30	68	26.925824	26.925824	26.925824	
30	69	55.901699	55.901699	55.901699	
30	70	61.400326	61.400326	61.400326	
30	71	64.660653	64.660653	64.660653	
30	72	32.015621	32.015621	32.015621	
30	73	40.360872	40.360872	40.360872	
30	74	91.482239	91.482239	91.482239	
30	75	71.589105	71.589105	71.589105	
30	76	90.138782	90.138782	90.138782	
30	77	37.802116	37.802116	37.802116	
30	78	74.249579	74.249579	74.249579	
30	79	84.646323	84.646323	84.646323	
30	80	90.249654	90.249654	90.249654	
30	81	44.643029	44.643029	44.643029	
30	82	47.010637	47.010637	47.010637	
30	83	63.505905	63.505905	63.505905	
30	84	53.150729	53.150729	53.150729	
30	85	33.541020	33.541020	33.541020	
30					
	86	29.546573	29.546573	29.546573	
30	87	69.871310	69.871310	69.871310	
30	88	78.771822	78.771822	78.771822	
30	89	69.892775	69.892775	69.892775	
30	90	37.802116	37.802116	37.802116	
30	91	54.341513	54.341513	54.341513	
30	92	41.593269	41.593269	41.593269	
30	93	37.854986	37.854986	37.854986	
30	94	33.615473	33.615473	33.615473	
30	95	35.468296	35.468296	35.468296	
30	96	34.058773	34.058773	34.058773	
		01.000770	31.000770	31.000773	

30	97	39.824616	39.824616	39.824616
30	98	87.664132	87.664132	87.664132
30	99	66.219333	66.219333	66.219333
30	100	64.000000	64.000000	64.000000
30	101	67.119297	67.119297	67.119297
31	1	52.000000	52.000000	52.000000
31	2	83.630138	83.630138	83.630138
31	3	79.881162	79.881162	79.881162
31	4	85.912746	85.912746	85.912746
31	5	84.403791	84.403791	84.403791
31		87.458562		
	6		87.458562	87.458562
31	7	83.216585	83.216585	83.216585
31	8	85.755466	85.755466	85.755466
31	9	88.481637	88.481637	88.481637
31	10	78.160092	78.160092	78.160092
31	11	78.638413	78.638413	78.638413
31	12	80.622577	80.622577	80.622577
31	13	81.394103	81.394103	81.394103
31	14	83.150466	83.150466	83.150466
31	15	84.344532	84.344532	84.344532
31	16	86.579443	86.579443	86.579443
31	17	88.566359	88.566359	88.566359
31	18	89.269256	89.269256	89.269256
31	19	50.606324	50.606324	50.606324
31	20	50.159745	50.159745	50.159745
31	21	48.383882	48.383882	48.383882
31	22	54.120237	54.120237	54.120237
31	23	50.289164	50.289164	50.289164
31	24	55.901699	55.901699	55.901699
31	25	52.201533	52.201533	52.201533
31	26	58.600341	58.600341	58.600341
31	27	7.000000	7.000000	7.000000
31	28	8.602325	8.602325	8.602325
31	29	4.000000	4.000000	4.000000
31	30	5.385165	5.385165	5.385165
31	32	5.000000	5.000000	5.000000
31	33	1.000000	1.000000	1.000000
31	34	5.830952	5.830952	5.830952
31	35	5.830952	5.830952	5.830952
31	36	58.872744	58.872744	58.872744
31	37	59.615434	59.615434	59.615434
31	38	56.859476	56.859476	56.859476
31	39	56.356011	56.356011	56.356011
31	40	57.306195	57.306195	57.306195
31	41	61.717096	61.717096	61.717096
31	42	54.083269	54.083269	54.083269
31	43	59.908263	59.908263	59.908263
31	44	64.140471	64.140471	64.140471
31	45	61.587336	61.587336	61.587336
31	46	85.603738	85.603738	85.603738
31	47	86.023253	86.023253	86.023253
31	4 7	87.298339	87.298339	86.023253
31	49	52.354560	52.354560	52.354560
31	50 51	49.396356	49.396356	49.396356
31	51	16.763055	16.763055	16.763055
31	52	34.481879	34.481879	34.481879
31	53	63.000000	63.000000	63.000000
31	54	70.880181	70.880181	70.880181
31	55	44.598206	44.598206	44.598206
31	56	65.299311	65.299311	65.299311
31	57	38.327536	38.327536	38.327536
31	58	58.215118	58.215118	58.215118
31	59	75.690158	75.690158	75.690158

31	60	78.638413	78.638413	78.638413	
31	61	78.924014	78.924014	78.924014	
31			55.443665	55.443665	
	62	55.443665			
31	63	23.537205	23.537205	23.537205	
31	64	25.079872	25.079872	25.079872	
31	65	43.000000	43.000000	43.000000	
31	66	53.935146	53.935146	53.935146	
31	67	47.518417	47.518417	47.518417	
31	68	26.832816	26.832816	26.832816	
31	69	56.603887	56.603887	56.603887	
31	70	61.098281	61.098281	61.098281	
31	71	65.802736	65.802736	65.802736	
31	72	33.970576	33.970576	33.970576	
31	73	43.011626	43.011626	43.011626	
31	74	91.082380	91.082380	91.082380	
31					
	75	68.731361	68.731361	68.731361	
31	76	86.683332	86.683332	86.683332	
31	77	33.286634	33.286634	33.286634	
31	78	70.384657	70.384657	70.384657	
31	79	84.118963	84.118963	84.118963	
31	80	90.376988	90.376988	90.376988	
31	81	44.384682	44.384682	44.384682	
31	82	48.010416	48.010416	48.010416	
31	83	62.369865	62.369865	62.369865	
31	84	51.009803	51.009803	51.009803	
31	85	31.016125	31.016125	31.016125	
31	86	25.961510	25.961510	25.961510	
31	87	67.268120	67.268120	67.268120	
31	88	76.236474	76.236474	76.236474	
31	89	69.856997	69.856997	69.856997	
31	90	32.649655	32.649655	32.649655	
31	91	53.758720	53.758720	53.758720	
31	92	40.804412	40.804412	40.804412	
31	93	37.336309	37.336309	37.336309	
31	94	34.828150	34.828150	34.828150	
31	95	35.846897	35.846897	35.846897	
31	96	32.756679	32.756679	32.756679	
31	97	40.804412	40.804412	40.804412	
31	98	84.852814	84.852814	84.852814	
31	99	65.787537	65.787537	65.787537	
31	100	62.201286	62.201286	62.201286	
31	101	67.955868	67.955868	67.955868	
32	1	50.289164	50.289164	50.289164	
32	2	80.430094	80.430094	80.430094	
32	3	77.175126	77.175126	77.175126	
32	4	82.800966	82.800966	82.800966	
32	5	81.541401	81.541401	81.541401	
32	6	84.403791	84.403791	84.403791	
		80.622577	80.622577	80.622577	
32	7				
32	8	83.240615	83.240615	83.240615	
32	9	85.755466	85.755466	85.755466	
32	10	78.000000	78.000000	78.000000	
32	11	78.160092	78.160092	78.160092	
32	12	80.156098	80.156098	80.156098	
32	13	80.622577	80.622577	80.622577	
32	14	83.000000	83.000000	83.000000	
32	15	83.600239	83.600239	83.600239	
32	16	86.145226	86.145226	86.145226	
32	17	88.141931	88.141931	88.141931	
32	18	88.566359	88.566359	88.566359	
32	19	53.254108	53.254108	53.254108	
32	20	52.354560	52.354560	52.354560	
32	21	50.159745	50.159745	50.159745	
J 2	4 ±	00.100/10	00.100/10	00.100,10	

32	22	56.603887	56.603887	56.603887	
32	23	52.000000	52.000000	52.000000	
32	24	58.309519	58.309519	58.309519	
32	25	53.851648	53.851648	53.851648	
32	26	60.901560	60.901560	60.901560	
32	27	8.602325	8.602325	8.602325	
32	28	7.000000	7.000000	7.000000	
32	29	6.403124	6.403124	6.403124	
32	30	2.000000	2.000000	2.000000	
32	31	5.000000	5.000000	5.000000	
32	33	5.099020	5.099020	5.099020	
32	34	10.440307	10.440307	10.440307	
32	35	3.000000	3.000000	3.000000	
32	36	54.230987	54.230987	54.230987	
32	37	55.036352	55.036352	55.036352	
32	38	52.325902	52.325902	52.325902	
32	39	51.971146	51.971146	51.971146	
32	40	53.000000	53.000000	53.00000	
32	41	57.306195	57.306195	57.306195	
32	42	50.000000	50.000000	50.00000	
32	43	55.803226	55.803226	55.803226	
32	44	59.908263	59.908263	59.908263	
32	45	57.428216	57.428216	57.428216	
32	46	82.661962	82.661962	82.661962	
32	47	83.216585	83.216585	83.216585	
32	48	86.579443	86.579443	86.579443	
32	49	54.918121	54.918121	54.918121	
32	50	51.429563	51.429563	51.429563	
32	51	16.000000	16.000000	16.00000	
32	52	36.249138	36.249138	36.249138	
32	53	63.198101	63.198101	63.198101	
32	54	69.634761	69.634761	69.634761	
32	55	41.400483	41.400483	41.400483	
32	56	63.158531	63.158531	63.158531	
32	57	38.000000	38.000000	38.000000	
32	58	58.855756	58.855756	58.855756	
32	59	77.162167	77.162167	77.162167	
32	60	79.429214	79.429214	79.429214	
32	61	77.162167	77.162167	77.162167	
32	62	52.430907	52.430907	52.430907	
32	63	23.000000	23.000000	23.000000	
32	64	27.459060	27.459060	27.459060	
32	65	43.289722	43.289722	43.289722	
32	66	53.235327	53.235327	53.235327	
32	67	47.042534	47.042534	47.042534	
32	68	25.000000	25.000000	25.000000	
32	69	54.120237	54.120237	54.120237	
32	70	59.481089	59.481089	59.481089	
32	71	62.968246	62.968246	62.968246	
32	72	30.479501	30.479501	30.479501	
32	73	39.051248	39.051248	39.051248	
32	74	89.560036	89.560036	89.560036	
32	75	69.634761	69.634761	69.634761	
32	76	88.255311	88.255311	88.255311	
32	77	36.235342	36.235342	36.235342	
32	78	72.449983	72.449983	72.449983	
32	79	82.710338	82.710338	82.710338	
32	80	88.391176	88.391176	88.391176	
32	81	42.720019	42.720019	42.720019	
32	82	45.276926	45.276926	45.276926	
32	83	61.522354	61.522354	61.522354	
32	84	51.156622	51.156622	51.156622	
32	85	31.575307	31.575307	31.575307	

32	86	27.730849	27.730849	27.730849	
32	87	67.896981	67.896981	67.896981	
32	88	76.791927	76.791927	76.791927	
32	89	68.007353	68.007353	68.007353	
32	90	36.619667	36.619667	36.619667	
32	91	52.392748	52.392748	52.392748	
32	92	39.623226	39.623226	39.623226	
32	93	35.902646	35.902646	35.902646	
32	94	31.906112	31.906112	31.906112	
32	95	33.615473	33.615473	33.615473	
32	96	32.062439	32.062439	32.062439	
32	97	38.078866	38.078866	38.078866	
32	98	85.702975	85.702975	85.702975	
32	99	64.288413	64.288413	64.288413	
32	100	62.000000	62.000000	62.000000	
32	101	65.368188	65.368188	65.368188	
33	1	51.078371	51.078371	51.078371	
33	2	82.879430	82.879430	82.879430	
33	3	79.056942	79.056942	79.056942	
33	4	85.146932	85.146932	85.146932	
33	5	83.600239	83.600239	83.600239	
33	6	86.683332	86.683332	86.683332	
33	7	82.377181	82.377181	82.377181	
33	8	84.905830	84.905830	84.905830	
33	9	87.658428	87.658428	87.658428	
33	10	77.162167	77.162167	77.162167	
33	11	77.646635	77.646635	77.646635	
33	12	79.630396	79.630396	79.630396	
33	13	80.411442	80.411442	80.411442	
33	14	82.152298	82.152298	82.152298	
33	15	83.360662	83.360662	83.360662	
33	16	85.586214	85.586214	85.586214	
33	17	87.572827	87.572827	87.572827	
33	18	88.283634	88.283634	88.283634	
33	19	49.739320	49.739320	49.739320	
33	20	49.244289	49.244289	49.244289	
33	21	47.434165	47.434165	47.434165	
33	22	53.235327	53.235327	53.235327	
33	23	49.335586	49.335586	49.335586	
33	24	55.009090	55.009090	55.009090	
33	25	51.244512	51.244512	51.244512	
33	26	57.697487	57.697487	57.697487	
33	27	8.000000	8.000000	8.000000	
33	28	9.433981	9.433981	9.433981	
33	29	5.000000	5.000000	5.000000	
33	30	5.830952	5.830952	5.830952	
33	31	1.000000	1.000000	1.000000	
33			5.099020	5.099020	
	32	5.099020			
33	34	5.385165	5.385165	5.385165	
33	35	5.385165	5.385165	5.385165	
33	36	58.523500	58.523500	58.523500	
33	37	59.236813	59.236813	59.236813	
33	38	56.462377	56.462377	56.462377	
33	39	55.901699	55.901699	55.901699	
33	40	56.824291	56.824291	56.824291	
33	41	61.269895	61.269895	61.269895	
33	42	53.535035	53.535035	53.535035	
33	43	59.363288	59.363288	59.363288	
33	44	63.631753	63.631753	63.631753	
33	45	61.057350	61.057350	61.057350	
33	46	84.811556	84.811556	84.811556	
33	47	85.211502	85.211502	85.211502	
33	48	86.313383	86.313383	86.313383	
~ ~		00.01000	00.01000	00.010000	

33	49	51.478151	51.478151	51.478151
33	50	48.466483	48.466483	48.466483
33	51	15.811388	15.811388	15.811388
33	52	33.526109	33.526109	33.526109
	53	62.000000	62.000000	
33				62.000000
33	54	69.921384	69.921384	69.921384
33	55	43.863424	43.863424	43.863424
33	56	64.412732	64.412732	64.412732
33	57	37.336309	37.336309	37.336309
33	58	57.218878	57.218878	57.218878
33	59	74.726167	74.726167	74.726167
33	60	77.646635	77.646635	77.646635
33	61	78.000000	78.000000	78.000000
33	62	54.671748	54.671748	54.671748
33	63	22.561028	22.561028	22.561028
33	64	24.166092	24.166092	24.166092
33	65	42.000000	42.000000	42.000000
33	66	52.952809	52.952809	52.952809
33	67	46.529560	46.529560	46.529560
33	68	25.942244	25.942244	25.942244
33	69	55.758407	55.758407	55.758407
33	70	60.166436	60.166436	60.166436
33	71	65.000000	65.000000	65.000000
33	72	33.301652	33.301652	33.301652
33	73	42.438190	42.438190	42.438190
33	74	90.138782	90.138782	90.138782
33	75	67.742158	67.742158	67.742158
33	76	85.726309	85.726309	85.726309
33	77	32.449961	32.449961	32.449961
33	78	69.462220	69.462220	69.462220
33	79	83.168504	83.168504	83.168504
33	80	89.470666	89.470666	89.470666
33	81	43.462628	43.462628	43.462628
33	82	47.201695	47.201695	47.201695
33	83	61.392182	61.392182	61.392182
33	84	50.009999	50.009999	50.009999
33	85	30.016662	30.016662	30.016662
33	86	25.000000	25.000000	25.000000
33	87	66.272166	66.272166	66.272166
33	88	75.239617	75.239617	75.239617
33	89	68.942005	68.942005	68.942005
33	90	32.015621	32.015621	32.015621
33	91	52.810984	52.810984	52.810984
33	92	39.849718	39.849718	39.849718
33	93	36.400549	36.400549	36.400549
33	94	34.058773	34.058773	34.058773
33	95	34.985711	34.985711	34.985711
33	96	31.780497	31.780497	31.780497
33	97	40.000000	40.000000	40.00000
33	98	83.862983	83.862983	83.862983
33	99	64.845971	64.845971	64.845971
33	100	61.204575	61.204575	61.204575
33	101	67.119297	67.119297	67.119297
34	1	51.478151	51.478151	51.478151
34	2	84.852814	84.852814	84.852814
34	3	80.430094	80.430094	80.430094
34	4	87.000000	87.000000	87.000000
34		85.146932	85.146932	85.146932
	5			
34	6	88.459030	88.459030	88.459030
34	7	83.600239	83.600239	83.600239
34	8	86.023253	86.023253	86.023253
34	9	89.022469	89.022469	89.022469
34	10	75.663730	75.663730	75.663730

34	11	76.485293	76.485293	76.485293	
34	12	78.447435	78.447435	78.447435	
34			79.555012	79.555012	
	13	79.555012			
34	14	80.622577	80.622577	80.622577	
34	15	82.462113	82.462113	82.462113	
34	16	84.344532	84.344532	84.344532	
34	17	86.313383	86.313383	86.313383	
34	18	87.321246	87.321246	87.321246	
34	19	45.617979	45.617979	45.617979	
34	20	45.541190	45.541190	45.541190	
34	21	44.147480	44.147480	44.147480	
34	22	49.244289	49.244289	49.244289	
34	23	46.097722	46.097722	46.097722	
34	24	51.078371	51.078371	51.078371	
34	25	48.052055	48.052055	48.052055	
34	26	53.851648	53.851648	53.851648	
34	27	11.180340	11.180340	11.180340	
34	28	14.142136	14.142136	14.142136	
34	29	8.602325	8.602325	8.602325	
34	30	11.180340	11.180340	11.180340	
34	31	5.830952	5.830952	5.830952	
34	32	10.440307	10.440307	10.440307	
34	33	5.385165	5.385165	5.385165	
34	35	10.00000	10.000000	10.000000	
34	36	62.641839	62.641839	62.641839	
34	37	63.245553	63.245553	63.245553	
34	38	60.406953	60.406953	60.406953	
34	39	59.615434	59.615434	59.615434	
34	40	60.415230	60.415230	60.415230	
34	41	65.000000	65.000000	65.000000	
34	42	56.824291	56.824291	56.824291	
34	43	62.649820	62.649820	62.649820	
34	44	67.082039	67.082039	67.082039	
34	45	64.412732	64.412732	64.412732	
34	46	86.452299	86.452299	86.452299	
34	47	86.683332	86.683332	86.683332	
34	48	85.375641	85.375641	85.375641	
34	49	47.423623	47.423623	47.423623	
34	50	44.922155	44.922155	44.922155	
34	51	16.401219	16.401219	16.401219	
34	52	30.413813	30.413813	30.413813	
34	53	60.207973	60.207973	60.207973	
34	54	69.641941	69.641941	69.641941	
34	55	46.097722	46.097722	46.097722	
34	56	65.192024	65.192024	65.192024	
34	57	36.400549	36.400549	36.400549	
34	58	55.000000	55.000000	55.000000	
34	59	71.589105	71.589105	71.589105	
34	60	75.166482	75.166482	75.166482	
34	61	78.262379	78.262379	78.262379	
34	62	56.568542	56.568542	56.568542	
34	63	22.360680	22.360680	22.360680	
34	64	20.615528	20.615528	20.615528	
34	65	40.311289	40.311289	40.311289	
34	66	52.201533	52.201533	52.201533	
34	67	45.607017	45.607017	45.607017	
34	68	27.018512	27.018512	27.018512	
34	69	57.008771	57.008771	57.008771	
34	70	60.373835	60.373835	60.373835	
34	71	66.603303	66.603303	66.603303	
34	72	36.055513	36.055513	36.055513	
34	73	45.650849	45.650849	45.650849	
34	74	90.077744	90.077744	90.077744	

34 75 65,192024 65,192024 65,192024 34 76 82,462113 82,462113 82,462113 82,178006 34 78 65,1787537 65,787537 65,787537 65,787537 65,787537 34 79 83,006024 84,006024 83,006024 84,006024 84,006024 84,006024						
34 77 28.178006 28.178006 28.178006 34 79 65.787537 65.787537 53.787537 34 79 83.006024 83.006024 83.006024 83.006024 34 80 89.944427 89.944427 89.94427 34 81 43.908997 43.908997 43.908997 34 82 48.836462 48.836462 48.836462 34 83 60.788906 60.728906 60.728906 34 85 28.294271 28.294271 28.294271 34 86 22.090722 22.090722 22.090722 22.090722 34 86 73.006849 73.006849 73.006849 73.006849 34 87 64.007812 64.007812 64.007812 64.007812 34 89 63.934164 69.354164 69.354164 69.354164 34 90 26.907248 26.907248 26.907248 26.907248 34 91 52	34	75	65.192024	65.192024	65.192024	
34 78 65.787537 65.787537 65.787537 34 79 83.006024 83.006024 83.006024 83.006024 34 81 43.908997 43.908997 43.908997 43.908997 34 82 48.836462 48.836462 48.836462 48.836462 34 83 60.728906 60.728906 60.728906 60.728906 34 84 48.373546 48.373546 48.373546 34 85 28.284271 28.284271 28.284271 28.284271 34 85 28.284271 28.284271 28.284271 28.284271 34 86 22.090722 22.090722 22.090722 34 87 64.007812 64.007812 64.007812 34 89 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164 69.354164	34		82.462113	82.462113	82.462113	
34 79 83.066024 83.006024 83.006024 83.006024 83.006024 83.006024 83.006024 83.006024 83.006024 83.006024 83.006024 83.908997 43.908462 48.836462 48.846462 48.846462 48.846462 48.846462 48.846462 48.846462 48.846462 48.846462 48.846462 48.846462 <td>34</td> <td>77</td> <td>28.178006</td> <td>28.178006</td> <td>28.178006</td> <td></td>	34	77	28.178006	28.178006	28.178006	
34 80 89.944427 89.944427 89.944427 34 81 43.908997 43.908997 43.908997 34 82 48.836462 48.836462 48.836462 48.8373546 34 81 48.373546 48.373546 48.373546 34.333546 34 85 28.294271 28.284281 28.284281 28.284281 28.284281	34	78	65.787537	65.787537	65.787537	
34 81 43,908997 43,908997 43,908987 34 82 48,836462 48,836462 48,836462 34,83666 60,728906 60,728906 60,728906 60,728906 34,84 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 34,37346 48,373546 48,373546 48,373546 48,373546 48,373546 48,073466 48,073466 48,07346 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 <	34	79	83.006024	83.006024	83.006024	
34 81 43,908997 43,908997 43,908987 34 82 48,836462 48,836462 48,836462 34,83666 60,728906 60,728906 60,728906 60,728906 34,84 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 48,373546 34,37346 48,373546 48,373546 48,373546 48,373546 48,373546 48,073466 48,073466 48,07346 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 48,07446 <		80	89.944427		89.944427	
34 82 48.836462 48.836462 48.836462 48.836462 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 60.728906 48.373546 <td></td> <td></td> <td></td> <td></td> <td>43.908997</td> <td></td>					43.908997	
34 83 60.728906 60.728906 60.728906 34 84 48.373546 48.373546 48.373546 34 86 22.990722 22.090722 22.090722 34 87 61.007812 64.007812 61.007812 34 88 73.006849 73.006849 73.006849 34 89 69.354164 69.354164 69.354164 34 90 26.907248 26.907248 26.907248 34 91 52.801515 52.801515 52.801515 34 92 39.812058 39.812058 39.812058 34 92 39.812058 39.812058 39.812058 34 93 36.151248 36.124784 36.124784 36.124784 34 94 36.12784 36.124784 36.235342 36.235342 36.235342 36.235342 34 96 31.384710 31.384710 31.384710 31.384710 34 97 41.725292 41						
34 84 48.373546 48.373546 48.373546 34 85 28.284271 28.284271 28.284271 28.284271 34 86 22.090722 22.090722 22.090722 34 87 64.007812 64.007812 64.007812 34 89 69.354164 69.354164 69.354164 69.354164 34 91 52.801515 52.801515 52.801515 32.812058 39.812058 34 91 52.801515 52.801515 52.801515 34.71208 36.715120<						
34 85 28.284271 28.284271 28.284271 28.284271 34 87 64.007812 64.007812 64.007812 34 87 64.007812 64.007812 64.007812 34 88 73.006849 73.006849 73.006849 34 89 69.54164 69.354164 69.354164 34 90 26.907248 26.907248 26.907248 34 91 52.801515 52.801515 52.801515 34 92 39.812058 39.812058 39.812058 34 93 36.715120 36.715120 36.715120 34 94 36.124784 36.124784 36.124784 34 95 31.384710 31.384710 31.384710 34 97 41.725292 41.725292 41.725292 41.725292 41.725292 41.725292 41.725292 41.84513 61.884513 61.884513 61.884513 41.01 68.400524 69.404457						
34 86 22.090722 22.090722 22.090722 34 87 64.007812 64.007812 64.007812 34 88 73.006849 73.006849 73.006849 34 89 69.354164 69.354164 69.354164 34 91 52.801515 52.801515 52.801515 34 91 52.801515 52.801515 52.801515 34 92 39.812058 39.812058 39.812058 34 93 36.715120 36.715120 36.715120 34 94 36.124784 36.124784 36.124784 34 95 36.235342 36.235342 36.235342 31.384710 31.384710 34 96 31.384710 31.384710 31.384710 31.384710 31.384710 34 98 81.301906 81.301906 81.301906 81.301906 34 99 64.884513 64.884513 64.884513 59.841457 59.841457 59.841457						
34 87 64.007812 64.007812 64.007812 34 89 69.354164 69.354164 69.354164 69.354164 34 90 26.907248 26.907248 26.907248 36.907248 34 91 52.801515 52.801515 52.801515 52.801515 52.801515 34 92 39.812058 39.812058 39.812058 39.812058 34 94 36.124784 36.124784 36.124784 36.124784 34 95 36.235342 36.235342 36.235342 36.235342 34 96 31.384710 31.384710 31.384710 31.384710 34 97 41.725292 41.725292 41.725292 41.725292 34 97 41.725292 41.725292 41.725292 41.725292 34 99 64.884513 64.884513 64.884513 64.884513 36.4884513 36.4884513 64.884513 36.4884513 64.8410526 68.410526 68.410526 68.410526 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
34 89 69.354164 69.354164 69.354164 35.34164 35.34164 35.34164 369.354164 35.34164 369.354164 369.354164 369.354164 369.354164 369.354164 369.354164 36.907248 26.907248 26.907248 26.907248 36.912058 39.812058 36.22577 31.384710 31.384710 31.384710 31.384710 31.384710 31.384710<						
34 89 69.354164 69.354164 69.354164 34.364 90 26.907248 26.907248 26.907248 34.91 32.801515 52.801516 36.715120 36.725342 36.2255342 34.715120 36.715120 36.715120 36.715120 36.715120 36.715120 36.715120 36.715120 36.715120 36.715120 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
34 90 26.907248 26.907248 26.907248 36.907248 34 91 52.801515 52.801515 52.801515 39.812058 34 93 36.715120 36.715120 36.715120 34 94 36.124784 36.124784 36.124784 36.124784 36.124784 36.235342 36.235342 36.235342 34.235342 34.96 31.384710 31.384710 31.384710 31.384710 31.384710 31.384710 34.384710 31.4841157 31.4841157 31.4841157 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
34 91 52,801515 52,801515 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 39,812058 36,715120 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
34 92 39,812058 39,812058 39,812058 34 93 36,715120 36,715120 36,715120 34 94 36,124784 36,124784 36,124784 34 95 36,235342 36,235342 36,235342 34 96 31,384710 31,384710 31,384710 34 97 41,725292 41,725292 41,725292 34 98 81,301906 81,301906 81,301906 34 99 64,884513 64,884513 64,884513 34 100 59,881457 59,841657 59,841657 35 1 47,434165 47,434165 47,434165 35 1 47,434165 47,434165 47,434165 35 2 78,102497 78,102497 78,102497 35 3 44,625733 74,625733 74,625733 74,625733 35 4 80,430094 80,430094 80,430094 80,430094 35						
34 93 36,715120 36,715120 36,715120 36,124784 36,124784 36,124784 36,124784 36,124784 36,235342 36,245843 36,235342 36,235342 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 36,245843 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
34 94 36.124784 36.124784 36.235342 36.235342 36.235342 36.235342 34.96 31.384710 31.384716 34.484151 34.484151 34.484151 34.484151 34.484151 34.484151 34.484151 34.484151 34.484151 34.484151						
34 95 36.235342 36.235342 36.235342 34 96 31.384710 31.384710 31.384710 34 97 41.725292 41.725292 41.725292 34 98 81.301906 81.301906 81.301906 34 99 64.884513 64.884513 64.884513 34 100 68.410526 68.410526 68.410526 35 1 47.434165 47.434165 47.434165 35 1 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 34 480.430094 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577						
34 96 31.384710 31.384710 31.384710 34 97 41.725292 41.725292 41.725292 34 98 81.301906 81.301906 81.301906 34 99 64.884513 64.884513 64.884513 34 100 59.841457 59.841457 59.841457 34 101 68.410526 68.410526 68.410526 35 1 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.						
34 97 41.725292 41.725292 41.725292 34 98 81.301906 81.301906 81.301906 34 99 64.884513 64.884513 64.884513 34 100 59.841457 59.841457 59.841457 34 101 68.410526 68.410526 68.410526 35 1 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.						
34 98 81.301906 81.301906 81.301906 34 99 64.884513 64.884513 64.884513 34 100 59.841457 59.841457 59.841457 34 101 68.410526 68.410526 68.410526 35 1 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.162167 77.						
34 99 64.884513 64.884513 64.884513 34 100 59.841457 59.841457 59.841457 59.841457 34.4165 47.434165 68.410526 78.102497 78.020497 78.102497 78.020497 78.020497 79.056942						
34 100 59.841457 59.841457 59.841457 68.410526 35 1 47.434165 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 75.000000 35 12 77.162167 77.162167 77.162167 77.646635 75.166482 75.166482 35 14 80.000000 80.000000 80.000000 80.000000						
34 101 68.410526 68.410526 47.434165 35 1 47.434165 47.434165 47.434165 35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.0						
35 1 47.434165 47.434165 47.434165 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.102497 78.03004 80.430094 80.4200097 80.622577 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
35 2 78.102497 78.102497 78.102497 35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 12 77.162167 77.162167 77.162167 35 12 77.162167 77.162167 77.162167 35 14 80.000000 80.000000 80.000000 35 14 80.000000 80.000000 80.000000 35 16 83.150466 83.150466 83.150466 83.150466 35 17 85.1						
35 3 74.625733 74.625733 74.625733 35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.00000 80.00000 80.00000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146						
35 4 80.430094 80.430094 80.430094 35 5 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.646635 35.314066 83.150466 83.150466 83.150466 83.150466 83.15						
35 5 79.056942 79.056942 79.056942 79.056942 35 6 82.006097 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 37.646635 35 14 80.000000 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.62257 80.622577 80.62257 80.62257 80.62257 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
35 6 82.006097 82.006097 82.006097 35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.00000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 50.803543 35						
35 7 78.032045 78.032045 78.032045 35 8 80.622577 80.622577 80.622577 35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 77.646635 35 14 80.000000 80.000000 80.000000 35 14 80.000000 80.000000 80.000000 35 14 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.7						
35 8 80.622577 80.622577 80.622577 35 9 83.216885 83.216885 83.216585 35 10 75.000000 75.000000 35 11 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35						
35 9 83.216585 83.216585 83.216585 35 10 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 86.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.						
35 10 75.000000 75.000000 75.000000 35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.0						
35 11 75.166482 75.166482 75.166482 35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.3						
35 12 77.162167 77.162167 77.162167 35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.1						
35 13 77.646635 77.646635 77.646635 35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 30 5.000000 5.000						
35 14 80.000000 80.000000 80.000000 35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000						
35 15 80.622577 80.622577 80.622577 35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 32 3.000000 3.000000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
35 16 83.150466 83.150466 83.150466 35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 29 8.602325 8.602325 8.602325 35 30 5.00000 5.00000 5.00000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000						
35 17 85.146932 85.146932 85.146932 35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.00000 3.000000 3.000000 35 34 10.000000 10.000000						
35 18 85.586214 85.586214 85.586214 35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 34 10.000000 10.000000						
35 19 50.803543 50.803543 50.803543 35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321						
35 20 49.739320 49.739320 49.739320 35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321 53.141321						
35 21 47.423623 47.423623 47.423623 35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 22 54.083269 54.083269 54.083269 35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 23 49.244289 49.244289 49.244289 35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 24 55.758407 55.758407 55.758407 35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 25 51.078371 51.078371 51.078371 35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 26 58.309519 58.309519 58.309519 35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 27 11.180340 11.180340 11.180340 35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 28 10.000000 10.000000 10.000000 35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321						
35 29 8.602325 8.602325 8.602325 35 30 5.000000 5.000000 5.000000 35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321			11.180340	11.180340	11.180340	
35 30 5.000000 5.000000 35 31 5.830952 5.830952 35 32 3.000000 3.000000 35 33 5.385165 5.385165 35 34 10.000000 10.000000 35 36 53.141321 53.141321 53.141321			10.000000	10.000000		
35 31 5.830952 5.830952 5.830952 35 32 3.000000 3.000000 3.000000 35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321					8.602325	
35 32 3.000000 3.000000 35 33 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321			5.000000	5.000000	5.000000	
35 33 5.385165 5.385165 5.385165 35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321	35	31	5.830952	5.830952	5.830952	
35 34 10.000000 10.000000 10.000000 35 36 53.141321 53.141321 53.141321			3.000000	3.000000	3.000000	
35 36 53.141321 53.141321 53.141321		33	5.385165	5.385165	5.385165	
	35	34	10.000000	10.000000	10.000000	
35 37 53.851648 53.851648 53.851648		36	53.141321	53.141321	53.141321	
	35	37	53.851648	53.851648	53.851648	

35	38	51.078371	51.078371	51.078371	
35	39	50.537115	50.537115	50.537115	
35	40	51.478151	51.478151	51.478151	
35	41	55.901699	55.901699	55.901699	
35	42	48.259714	48.259714	48.259714	
35	43	54.083269	54.083269	54.083269	
35	44	58.309519	58.309519	58.309519	
35	45	55.758407	55.758407	55.758407	
35	46	80.212219	80.212219	80.212219	
35	47	80.709355	80.709355	80.709355	
35	48	83.600239	83.600239	83.600239	
35	49	52.430907	52.430907	52.430907	
35	50	48.764741	48.764741	48.764741	
35					
	51	13.00000	13.000000	13.000000	
35	52	33.541020	33.541020	33.541020	
35	53	60.207973	60.207973	60.207973	
35	54	66.708320	66.708320	66.708320	
35	55	39.051248	39.051248	39.051248	
35	56	60.415230	60.415230	60.415230	
35	57	35.000000	35.000000	35.000000	
35	58	55.901699	55.901699	55.901699	
35	59	74.330344	74.330344	74.330344	
35	60	76.485293	76.485293	76.485293	
35	61	74.330344	74.330344	74.330344	
35	62	50.000000	50.000000	50.000000	
35					
	63	20.00000	20.000000	20.000000	
35	64	25.000000	25.000000	25.000000	
35	65	40.311289	40.311289	40.311289	
35	66	50.249378	50.249378	50.249378	
35	67	44.045431	44.045431	44.045431	
35	68	22.135944	22.135944	22.135944	
35	69		51.478151	51.478151	
		51.478151			
35	70	56.612719	56.612719	56.612719	
35	71	60.464866	60.464866	60.464866	
35	72	28.284271	28.284271	28.284271	
35	73	37.202150	37.202150	37.202150	
35	74	86.683332	86.683332	86.683332	
35	75	66.708320	66.708320	66.708320	
35	76	85.440037	85.440037	85.440037	
35	77	33.970576	33.970576	33.970576	
35	78	69.771054	69.771054	69.771054	
35	79	79.812280	79.812280	79.812280	
35	80	85.615419	85.615419	85.615419	
35	81	39.849718	39.849718	39.849718	
35	82	42.720019	42.720019	42.720019	
35	83	58.549125	58.549125	58.549125	
35	84	48.166378	48.166378	48.166378	
35	85	28.635642	28.635642	28.635642	
35	86	25.059928	25.059928	25.059928	
35	87	64.938432	64.938432	64.938432	
35	88	73.824115	73.824115	73.824115	
35	89	65.192024	65.192024	65.192024	
35	90	34.985711	34.985711	34.985711	
35	91	49.477268	49.477268	49.477268	
35	92	36.674242	36.674242	36.674242	
35	93	32.984845	32.984845	32.984845	
35	94	29.410882	29.410882	29.410882	
35	95	30.870698	30.870698	30.870698	
35	96	29.068884	29.068884	29.068884	
35	97	35.510562	35.510562	35.510562	
35	98	82.764727	82.764727	82.764727	
35	99	61.400326	61.400326	61.400326	
35	100	59.000000	59.000000	59.000000	

35	101	62.769419	62.769419	62.769419
36	1	44.204072	44.204072	44.204072
36	2	42.000000	42.000000	42.000000
36	3	46.097722	46.097722	46.097722
36	4	45.000000	45.000000	45.000000
36	5	47.265209	47.265209	47.265209
36 36	6 7	47.000000 50.009999	47.000000 50.009999	47.000000 50.009999
36	8	50.009999	52.952809	52.952809
36	9	52.239832	52.239832	52.239832
36	10	75.822160	75.822160	75.822160
36	11	72.622311	72.622311	72.622110
36	12	74.202426	74.202426	74.202426
36	13	71.281134	71.281134	71.281134
36	14	79.649231	79.649231	79.649231
36	15	73.783467	73.783467	73.783467
36	16	79.056942	79.056942	79.056942
36	17	80.709355	80.709355	80.709355
36	18	78.032045	78.032045	78.032045
36	19	83.240615	83.240615	83.240615
36	20	79.056942	79.056942	79.056942
36	21	74.330344	74.330344	74.330344
36	22	84.433406	84.433406	84.433406
36	23	75.026662	75.026662	75.026662
36	24	85.094066	85.094066	85.094066
36	25	75.769387	75.769387	75.769387
36	26	86.162637	86.162637	86.162637
36	27	61.717096	61.717096	61.717096
36	28	57.306195	57.306195	57.306195
36	29	60.415230	60.415230	60.415230
36	30	55.036352	55.036352	55.036352
36	31	58.872744	58.872744	58.872744
36	32	54.230987	54.230987	54.230987
36	33	58.523500	58.523500	58.523500
36	34	62.641839	62.641839	62.641839
36	35	53.141321	53.141321	53.141321
36	37	2.000000	2.000000	2.000000
36	38	3.605551	3.605551	3.605551
36	39	7.071068	7.071068	7.071068
36	40	8.602325	8.602325	8.602325
36	41	7.000000	7.000000	7.000000
36 36	42 43	13.453624 13.000000	13.453624 13.000000	13.453624 13.000000
36	43	12.000000	12.000000	12.000000
36	45	12.369317	12.369317	12.369317
36	46	47.095647	47.095647	47.095647
36	47	49.254441	49.254441	49.254441
36	48	76.321688	76.321688	76.321688
36	49	83.815273	83.815273	83.815273
36	50	77.162167	77.162167	77.162167
36	51	50.249378	50.249378	50.249378
36	52	66.098411	66.098411	66.098411
36	53	69.202601	69.202601	69.202601
36	54	58.600341	58.600341	58.600341
36	55	27.730849	27.730849	27.730849
36	56	44.654227	44.654227	44.654227
36	57	52.810984	52.810984	52.810984
36	58	70.491134	70.491134	70.491134
36	59	91.263355	91.263355	91.263355
36	60	86.452299	86.452299	86.452299
36	61	57.697487	57.697487	57.697487
36	62	29.732137	29.732137	29.732137
36	63	50.039984	50.039984	50.039984

36	64	65.030762	65.030762	65.030762
36	65	59.236813	59.236813	59.236813
36	66	55.217751	55.217751	55.217751
36	67	54.589376	54.589376	54.589376
36	68	43.104524	43.104524	43.104524
36	69	36.796739	36.796739	36.796739
36	70	48.836462	48.836462	48.836462
36	71	35.777088	35.777088	35.777088
36	72	30.066593	30.066593	30.066593
36	73	20.396078	20.396078	20.396078
36	74	69.641941	69.641941	69.641941
36	75	80.212219	80.212219	80.212219
36	76	101.212647	101.212647	101.212647
36	77	73.334848	73.334848	73.334848
36	78	93.059121	93.059121	93.059121
36	79	65.741920	65.741920	65.741920
36	80	63.324561	63.324561	63.324561
36	81	42.941821	42.941821	42.941821
36	82	32.449961	32.449961	32.449961
36	83	58.000000	58.000000	58.000000
36	84	61.773781	61.773781	61.773781
36	85	56.885851	56.885851	56.885851
36	86	62.128898	62.128898	62.128898
36	87	76.400262	76.400262	76.400262
36	88	82.134037	82.134037	82.134037
36	89	50.774009	50.774009	50.774009
36	90	80.000000	80.000000	80.000000
36	91	48.414874	48.414874	48.414874
36	92	46.615448	46.615448	46.615448
36	93	44.271887	44.271887	44.271887
36	94	33.541020	33.541020	33.541020
36	95	38.327536	38.327536	38.327536
36	96	49.244289	49.244289	49.244289
36	97	33.241540	33.241540	33.241540
36	98	91.967386	91.967386	91.967386
36	99	52.630789	52.630789	52.630789
36	100	64.660653	64.660653	64.660653
36	101	40.249224	40.249224	40.249224
37	1	43.011626	43.011626	43.011626
37	2	40.000000	40.000000	40.000000
37	3	44.147480	44.147480	44.147480
37	4	43.000000	43.000000	43.000000
37	5	45.276926	45.276926	45.276926
37	6	45.000000	45.000000	45.000000
37	7	48.052055	48.052055	48.052055
37	8	50.990195	50.990195	50.990195
37	9	50.249378	50.249378	50.249378
37	10	74.330344	74.330344	74.330344
37	11	71.063352	71.063352	71.063352
37	12	72.622311	72.622311	72.622311
37	13	69.634761	69.634761	69.634761
37	14	78.102497	78.102497	78.102497
37	15	72.111026	72.111026	72.111026
37	16	77.420927	77.420927	77.420927
37	17	79.056942	79.056942	79.056942
37	18	76.321688	76.321688	76.321688
37	19	82.710338	82.710338	82.710338
37	20	78.447435	78.447435	78.447435
37	21	73.681748	73.681748	73.681748
37	22	83.815273	83.815273	83.815273
37	23	74.330344	74.330344	74.330344
37	24	84.433406	84.433406	84.433406
37	25	75.026662	75.026662	75.026662

37	26	85.440037	85.440037	85.440037
37	27	62.649820	62.649820	62.649820
37	28	58.309519	58.309519	58.309519
37	29	61.269895	61.269895	61.269895
37	30	55.901699	55.901699	55.901699
37	31	59.615434	59.615434	59.615434
37	32	55.036352	55.036352	55.036352
37	33	59.236813	59.236813	59.236813
37	34	63.245553	63.245553	63.245553
37	35	53.851648	53.851648	53.851648
37	36	2.000000	2.000000	2.000000
37	38	3.000000	3.000000	3.000000
37	39	5.830952	5.830952	5.830952
37	40	7.071068	7.071068	7.071068
37	41	5.000000	5.000000	5.000000
37	42	12.206556	12.206556	12.206556
37	43	11.180340	11.180340	11.180340
37	44	10.000000	10.000000	10.000000
		10.440307		
37	45		10.440307	10.440307
37	46	45.099889	45.099889	45.099889
37	47	47.265209	47.265209	47.265209
37	48	74.625733	74.625733	74.625733
37	49	83.240615	83.240615	83.240615
37	50	76.537572	76.537572	76.537572
37	51	50.487622	50.487622	50.487622
37	52	65.764732	65.764732	65.764732
37	53	68.007353	68.007353	68.007353
37	54	57.008771	57.008771	57.008771
37	55	26.925824	26.925824	26.925824
37	56	43.011626	43.011626	43.011626
37	57	52.201533	52.201533	52.201533
37	58	69.462220	69.462220	69.462220
37	59	90.138782	90.138782	90.138782
37	60	85.146932	85.146932	85.146932
37	61	55.901699	55.901699	55.901699
37	62	28.284271	28.284271	28.284271
37	63	50.000000	50.000000	50.000000
37	64	65.000000	65.000000	65.000000
37	65	58.523500	58.523500	58.523500
37	66	54.083269	54.083269	54.083269
37	67	53.665631	53.665631	53.665631
37	68	43.011626	43.011626	43.011626
37	69	35.355339	35.355339	35.355339
37	70	47.381431	47.381431	47.381431
37	71	34.000000	34.000000	34.000000
37	72	30.000000	30.000000	30.000000
37	73	20.099751	20.099751	20.099751
37	74	67.779053	67.779053	67.779053
37	75	79.056942	79.056942	79.056942
37	76	100.000000	100.000000	100.000000
37	77	73.171033	73.171033	73.171033
37	78	92.130342	92.130342	92.130342
37	79	63.953108	63.953108	63.953108
37	80	61.400326	61.400326	61.400326
37	81	42.047592	42.047592	42.047592
37	82	31.384710	31.384710	31.384710
37	83	56.639209	56.639209	56.639209
37	84	60.827625	60.827625	60.827625
37	85	56.568542	56.568542	56.568542
37	86	62.032250	62.032250	62.032250
37	87	75.213031	75.213031	75.213031
37	88	80.808415	80.808415	80.808415
37	89	49.091751	49.091751	49.091751
J /	- J	17.071731	17.071771	17.07177

37 91 47.201695 47.201						
37 91 47.201695 47.201695 47.201695 37. 92 45.880279 45.880279 45.880279 37. 93 43.680659 43.680659 43.680659 33.241540 33.257295 32.572995 32.572995 32.572995 32.572995 32.572995 37. 99 51.088159 51.	37	90	80.024996	80.024996	80.024996	
37 92 45.880279 45.880279 43.680659 43.680659 33.941540 33.241						
37 93 43.680659 43.680659 43.680659 33.241540 34.241540 34.241540 34.241540 34.241540 34.241540 34.241540 34.241540 34.241540 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
37						
37 95 37.854986 37.854986 37.854986 37 96 48.836462 48.836462 48.836462 37 97 32.572995 32.572995 32.572995 37 98 90.609050 90.609050 90.609050 37 100 63.411355 63.411355 63.411355 38.470768 38 1 40.607881 40.607881 40.607881 40.607881 38 2 40.112342 40.112342 40.112342 40.112342 38 3 43.566042 43.566042 43.566042 43.104524 43.104524 43.104524 38 4 43.104524 43.104524 43.104524 43.104524 43.104524 43.104524 43.104524 43.04423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 46.04423 46.04423 46.04423 47.0464423 47.0464423 47.0464423 47.04644423 47.04644444 47.04644444 <						
37						
37						
37						
37 99 \$1.088159 \$1.088159 \$3.08159 \$3.08155 \$3.411355 \$3.411355 \$3.411355 \$3.470768 \$38.57046042 \$40.103424 \$40.103424 \$40.103424 \$43.104524 \$43						
37						
37						
38 1 40.607881 40.607881 40.607881 38 2 40.112342 40.112342 40.112342 38 3 43.566042 43.566042 43.66042 38 4 43.104524 43.104524 43.104524 38 5 45.044423 45.044423 45.044423 38 6 45.099889 45.099889 45.099889 38 7 47.518417 47.518417 47.518417 38 8 50.487622 50.487622 50.487622 38 9 50.039984 50.039984 50.039984 38 10 72.346389 72.346389 72.346389 38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 67.955868 67.955868 67.955868 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
38 2 40.112342 40.112342 40.112342 43.566042 43.566042 43.566042 35.66042 35.66042 35.66042 35.66042 43.104524 43.104423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 46.04423 46.04423 48.04423 45.044423 45.044423 46.04423 48.04423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.044423 45.04423 46.049344 40.03384 50.03984 50.03984 50.03984 50.03984 5	_					
38 3 43.566042 43.566042 43.566042 43.104524 43.104539 72.346389 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
38 4 43.104524 43.104524 43.104524 38 5 45.044423 45.044423 45.044423 38 6 45.099889 45.099889 45.099889 38 7 47.518417 47.518417 47.518417 38 8 50.487622 50.487622 50.487622 38 9 50.039984 50.039984 50.039984 38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 75.716577 75.84390 38 19 79.812280 79.81228						
38 5 45.044423 45.044423 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 36.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.044423 45.044423 45.044423 45.044423 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099889 45.099882 26.28261 58.2826 50.487622 50.486889 40.52642 70.82642 70.82642 70.82642 70.82642 70.826484						
38 6 45.099889 45.099889 45.099889 38 7 47.518417 47.518417 47.518417 38 8 50.487622 50.487622 50.487622 38 9 50.039984 50.039984 50.039984 38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843						
38 7 47.518417 47.518417 47.518417 36.487622 50.487622 50.487622 50.487622 38.487622 38.487622 38.487622 50.487622 50.487622 50.487622 38.787628 38.7876389 70.39984 50.02601 69.202601						
38 8 50.487622 50.487622 50.487622 38 9 50.039984 50.039984 50.039984 38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 70.837843 38						
38 9 50.039984 50.039984 50.039984 38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 70.837843 38	38	7	47.518417	47.518417	47.518417	
38 10 72.346389 72.346389 72.346389 38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38.12280 38 20 75.584390 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 70.837843 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
38 11 69.202601 69.202601 69.202601 38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 73.388630 38 18 74.793048 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 8		9	50.039984	50.039984	50.039984	
38 12 70.802542 70.802542 70.802542 38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 72.235725 38	38	10	72.346389	72.346389	72.346389	
38 13 67.955868 67.955868 67.955868 38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 77.57.5716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 29 58.591808 58.591808 58.591808 38 30 53.235327	38	11	69.202601	69.202601	69.202601	
38 14 76.216796 76.216796 76.216796 38 15 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.2	38	12	70.802542	70.802542	70.802542	
38 15 70.491134 70.491134 70.491134 70.491134 38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.8	38	13	67.955868	67.955868	67.955868	
38 16 75.716577 75.716577 75.716577 38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902	38	14	76.216796	76.216796	76.216796	
38 17 77.388630 77.388630 77.388630 38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.3	38	15	70.491134	70.491134	70.491134	
38 18 74.793048 74.793048 74.793048 38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.4	38	16	75.716577	75.716577	75.716577	
38 19 79.812280 79.812280 79.812280 38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.0	38	17	77.388630	77.388630	77.388630	
38 20 75.584390 75.584390 75.584390 38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605	38	18	74.793048	74.793048	74.793048	
38 21 70.837843 70.837843 70.837843 38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 37 3.000000 3.000	38	19	79.812280	79.812280	79.812280	
38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000	38	20	75.584390	75.584390	75.584390	
38 22 80.956779 80.956779 80.956779 38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000						
38 23 71.512237 71.512237 71.512237 38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.00000 3.000000 38 39 3.605551 3.605551 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
38 24 81.596569 81.596569 81.596569 38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952						
38 25 72.235725 72.235725 72.235725 38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952						
38 26 82.637764 82.637764 82.637764 38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495						
38 27 60.033324 60.033324 60.033324 38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 28 55.758407 55.758407 55.758407 38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 29 58.591808 58.591808 58.591808 38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 30 53.235327 53.235327 53.235327 38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 31 56.859476 56.859476 56.859476 38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 32 52.325902 52.325902 52.325902 38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 33 56.462377 56.462377 56.462377 38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 34 60.406953 60.406953 60.406953 38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 35 51.078371 51.078371 51.078371 38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						ı
38 36 3.605551 3.605551 3.605551 38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 37 3.000000 3.000000 3.000000 38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 39 3.605551 3.605551 3.605551 38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 40 5.385165 5.385165 5.385165 38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 41 5.830952 5.830952 5.830952 38 42 9.899495 9.899495 9.899495						
38 42 9.899495 9.899495 9.899495						
138 43 10.198039 10.198039 10.198039						
38 44 10.440307 10.440307 10.440307						
38 45 10.000000 10.000000 10.000000						
38 46 45.000000 45.000000 45.000000						
38 47 47.042534 47.042534 47.042534						
38 48 73.061618 73.061618 73.061618		48	73.061618		73.061618	
38 49 80.361682 80.361682 80.361682		49	80.361682	80.361682	80.361682	
38 50 73.681748 73.681748 73.681748	38	50	73.681748	73.681748	73.681748	
38 51 47.518417 47.518417 47.518417	38	51	47.518417	47.518417	47.518417	
38 52 62.801274 62.801274 62.801274	38	52	62.801274	62.801274	62.801274	

38	53	65.604878	65.604878	65.604878
38	54	55.217751	55.217751	55.217751
38	55	24.166092	24.166092	24.166092
38	56	41.340053	41.340053	41.340053
38	57	49.335586	49.335586	49.335586
38	58	66.887966	66.887966	66.887966
38	59	87.658428	87.658428	87.658428
38	60	82.879430	82.879430	82.879430
38	61	54.626001	54.626001	54.626001
38	62	26.248809	26.248809	26.248809
38	63	47.000000	47.000000	47.00000
38	64	62.000000	62.000000	62.000000
38	65	55.713553	55.713553	55.713553
38	66	51.613952	51.613952	51.613952
38	67	51.000000	51.000000	51.000000
38	68	40.012498	40.012498	40.012498
38	69	33.301652	33.301652	33.301652
38	70	45.343136	45.343136	45.343136
38	71	32.695565	32.695565	32.695565
38	72	27.000000	27.000000	27.000000
38	73	17.117243	17.117243	17.117243
38	74	66.730802	66.730802	66.730802
38	75	76.609399	76.609399	76.609399
38	76	97.616597	97.616597	97.616597
38	77	70.178344	70.178344	70.178344
38	78	89.470666	89.470666	89.470666
38	79	62.649820	62.649820	62.649820
38	80	60.638272	60.638272	60.638272
38	81	39.357337	39.357337	39.357337
38	82	28.844410	28.844410	28.844410
38	83	54.451814	54.451814	54.451814
38	84	58.180753	58.180753	58.180753
38	85	53.600373	53.600373	53.600373
38	86	59.033889	59.033889	59.033889
38	87	72.801099	72.801099	72.801099
38	88	78.568442	78.568442	78.568442
38	89	47.507894	47.507894	47.507894
38	90	77.025970	77.025970	77.025970
38	91	44.821870	44.821870	44.821870
38	92	43.081318	43.081318	43.081318
38	93	40.804412	40.804412	40.804412
38	94	30.265492	30.265492	30.265492
38	95	34.928498	34.928498	34.928498
38	96	45.891176	45.891176	45.891176
38	97	29.732137	29.732137	29.732137
38	98	88.413800	88.413800	88.413800
38	99	49.203658	49.203658	49.203658
38	100	61.073726	61.073726	61.073726
38	101	37.161808	37.161808	37.161808
39	1	37.202150	37.202150	37.202150
39	2	37.336309	37.336309	37.336309
39	3	40.311289	40.311289	40.311289
39	4	40.311289	40.311289	40.311289
39	5	42.000000	42.000000	42.000000
39	6	42.296572	42.296572	42.296572
39	7	44.283180	44.283180	44.283180
39	8	47.265209	47.265209	47.265209
39	9	47.000000	47.000000	47.000000
39	10	68.767725	68.767725	68.767725
39	11	65.604878	65.604878	65.604878
39	12	67.201190	67.201190	67.201190
39	13	64.350602	64.350602	64.350602
39	14	72.622311	72.622311	72.622311
J J	_ 1	10.V44711	1 4 • V44 J±±	. u • vaav±±

39	15	66.887966	66.887966	66.887966	
39	16	72.111026	72.111026	72.111026	
39	17	73.783467	73.783467	73.783467	
39					
	18	71.196910	71.196910	71.196910	
39	19	77.129761	77.129761	77.129761	
39	20	72.801099	72.801099	72.801099	
39	21	68.007353	68.007353	68.007353	
39	22	78.160092	78.160092	78.160092	
39	23	68.622154	68.622154	68.622154	
39	24	78.746428	78.746428	78.746428	
39	25	69.289249	69.289249	69.289249	
39	26	79.711982	79.711982	79.711982	
39	27	59.908263	59.908263	59.908263	
39					
	28	55.803226	55.803226	55.803226	
39	29	58.309519	58.309519	58.309519	
39	30	53.000000	53.00000	53.000000	
39	31	56.356011	56.356011	56.356011	
39	32	51.971146	51.971146	51.971146	
39	33	55.901699	55.901699	55.901699	
39	34	59.615434	59.615434	59.615434	
39	35	50.537115	50.537115	50.537115	
39	36	7.071068	7.071068	7.071068	
39	37	5.830952	5.830952	5.830952	
39	38	3.605551	3.605551	3.605551	
39	40	2.000000	2.000000	2.000000	
39	41	5.385165	5.385165	5.385165	
39	42	6.403124	6.403124	6.403124	
39	43	7.000000	7.000000	7.000000	
39	44	8.602325	8.602325	8.602325	
39	45	7.280110	7.280110	7.280110	
39	46	42.047592	42.047592	42.047592	
39	47	44.000000	44.000000	44.00000	
39	48	69.462220	69.462220	69.462220	
39	49	77.620873	77.620873	77.620873	
39	50	70.880181	70.880181	70.880181	
39	51	46.097722	46.097722	46.097722	
39	52	60.406953	60.406953	60.406953	
39	53	62.201286	62.201286	62.201286	
39	54	51.613952	51.613952	51.613952	
39	55	21.189620	21.189620	21.189620	
39	56	37.735925	37.735925	37.735925	
39	57	46.572524	46.572524	46.572524	
39	58	63.631753	63.631753	63.631753	
39	59	84.314886	84.314886	84.314886	
39	60	79.397733	79.397733	79.397733	
39	61	51.078371	51.078371	51.078371	
39	62	22.671568	22.671568	22.671568	
39			45.099889	45.099889	
	63	45.099889			
39	64	60.074953	60.074953	60.074953	
39	65	52.810984	52.810984	52.810984	
39	66	48.259714	48.259714	48.259714	
39	67	47.853944	47.853944	47.853944	
39	68	38.052595	38.052595	38.052595	
39	69	29.732137	29.732137	29.732137	
39	70	41.773197	41.773197	41.773197	
39	71	29.154759	29.154759	29.154759	
39	72	25.179357	25.179357	25.179357	
39	73	15.033296	15.033296	15.033296	
39	74	63.245553	63.245553	63.245553	
39	75	73.239334	73.239334	73.239334	
39	76	94.201911	94.201911	94.201911	
39	77	68.029405	68.029405	68.029405	
39	78	86.313383	86.313383	86.313383	

39	79	59.093147	59.093147	59.093147	
39	80	57.271284	57.271284	57.271284	
39	81	36.249138	36.249138	36.249138	
39	82	25.553865	25.553865	25.553865	
39	83	50.931326	50.931326	50.931326	
39	84	55.009090	55.009090	55.009090	
39	85	51.244512	51.244512	51.244512	
39	86	57.008771	57.008771	57.008771	
39	87	69.404611	69.404611	69.404611	
39	88	75.073298	75.073298	75.073298	
39	89	43.908997	43.908997	43.908997	
39 39	90 91	75.166482 41.400483	75.166482 41.400483	75.166482 41.400483	
39	92	40.162171	40.162171	40.162171	
39	93	38.078866	38.078866	38.078866	
39	94	28.017851	28.017851	28.017851	
39	95	32.388269	32.388269	32.388269	
39	96	43.416587	43.416587	43.416587	
39	97	26.925824	26.925824	26.925824	
39	98	84.899941	84.899941	84.899941	
39	99	45.607017	45.607017	45.607017	
39	100	57.628118	57.628118	57.628118	
39	101	33.615473	33.615473	33.615473	
40	1	36.055513	36.055513	36.055513	
40	2	35.355339	35.355339	35.355339	
40	3	38.327536	38.327536	38.327536	
40	4	38.327536	38.327536	38.327536	
40	5	40.00000	40.000000	40.00000	
40	6	40.311289	40.311289	40.311289	
40	7	42.296572	42.296572	42.296572	
40	8	45.276926	45.276926	45.276926	
40	9	45.000000	45.000000	45.000000	
40	10	67.268120	67.268120	67.268120	
40	11 12	64.031242 65.604878	64.031242 65.604878	64.031242 65.604878	
40	13	62.681736	62.681736	62.681736	
40	14	71.063352	71.063352	71.063352	
40	15	65.192024	65.192024	65.192024	
40	16	70.455660	70.455660	70.455660	
40	17	72.111026	72.111026	72.111026	
40	18	69.462220	69.462220	69.462220	
40	19	76.687678	76.687678	76.687678	
40	20	72.277244	72.277244	72.277244	
40	21	67.446275	67.446275	67.446275	
40	22	77.620873	77.620873	77.620873	
40	23	68.007353	68.007353	68.007353	
40	24	78.160092	78.160092	78.160092	
40	25	68.622154	68.622154	68.622154	
40	26	79.056942	79.056942	79.056942	
40	27	61.032778	61.032778	61.032778	
40	28	57.008771	57.008771	57.008771	
40	29 30	59.363288 54.083269	59.363288 54.083269	59.363288 54.083269	
40	31	57.306195	57.306195	57.306195	
40	32	53.000000	53.000000	53.000000	
40	33	56.824291	56.824291	56.824291	
40	34	60.415230	60.415230	60.415230	
40	35	51.478151	51.478151	51.478151	
40	36	8.602325	8.602325	8.602325	
40	37	7.071068	7.071068	7.071068	
40	38	5.385165	5.385165	5.385165	
40	39	2.000000	2.000000	2.000000	
40	41	5.00000	5.000000	5.000000	

40	42	5.385165	5.385165	5.385165	
40	43	5.00000	5.000000	5.000000	
40	44	7.071068	7.071068	7.071068	
40	45	5.385165	5.385165	5.385165	
40	46	40.049969	40.049969	40.049969	
40	47	42.000000	42.000000	42.000000	
40	48	67.742158	67.742158	67.742158	
40	49	77.129761	77.129761	77.129761	
40	50	70.342022	70.342022	70.342022	
40	51	46.572524	46.572524	46.572524	
40	52	60.207973	60.207973	60.207973	
40	53	61.032778	61.032778	61.032778	
40	54	50.000000	50.000000	50.000000	
40	55	20.615528	20.615528	20.615528	
40	56	36.055513	36.055513	36.055513	
40	57	46.097722	46.097722	46.097722	
40	58	62.649820	62.649820	62.649820	
40	59	83.216585	83.216585	83.216585	
40	60	78.102497	78.102497	78.102497	
40	61	49.244289	49.244289	49.244289	
40	62	21.213203	21.213203	21.213203	
40	63	45.276926	45.276926	45.276926	
40	64	60.207973	60.207973	60.207973	
40	65	52.201533	52.201533	52.201533	
40	66	47.169906	47.169906	47.169906	
40	67	47.010637	47.010637	47.010637	
40	68	38.209946	38.209946	38.209946	
40	69	28.284271	28.284271	28.284271	
40	70	40.311289	40.311289	40.311289	
40	71	27.313001	27.313001	27.313001	
40	72	25.495098	25.495098	25.495098	
40	73	15.297059	15.297059	15.297059	
40	74	61.351447	61.351447	61.351447	
40	75	72.111026	72.111026	72.111026	
40	76	93.005376	93.005376	93.005376	
40	77	68.000000	68.000000	68.000000	
40	78	85.428333	85.428333	85.428333	
40	79	57.271284	57.271284	57.271284	
40	80	55.317267	55.317267	55.317267	
40	81	35.468296	35.468296	35.468296	
40	82	24.596748	24.596748	24.596748	
40	83	49.578221	49.578221	49.578221	
40	84	54.129474	54.129474	54.129474	
40	85	51.088159	51.088159	51.088159	
40	86	57.078893	57.078893	57.078893	
40	87	68.242216	68.242216	68.242216	
40	88	73.756356	73.756356	73.756356	
40	89	42.190046	42.190046	42.190046	
40	90	75.325958	75.325958	75.325958	
40	91	40.224371	40.224371	40.224371	
40	92	39.560081	39.560081	39.560081	
40	93	37.656341	37.656341	37.656341	
40	94	28.017851	28.017851	28.017851	
40	95	32.140317	32.140317	32.140317	
40	96	43.185646	43.185646	43.185646	
40	97	26.476405	26.476405	26.476405	
40	98	83.546394	83.546394	83.546394	
40	99	44.045431	44.045431	44.045431	
40	100	56.400355	56.400355	56.400355	
40	101	31.780497	31.780497	31.780497	
41	1	40.311289	40.311289	40.311289	
41	2	35.000000	35.000000	35.000000	
41	3	39.293765	39.293765	39.293765	

41	4	38.000000	38.000000	38.000000	
41	5	40.311289	40.311289	40.311289	
41	6	40.000000	40.00000	40.00000	
41	7	43.174066	43.174066	43.174066	
41	8	46.097722	46.097722	46.097722	
41	9	45.276926	45.276926	45.276926	
41	10	70.710678	70.710678	70.710678	
41	11	67.268120	67.268120	67.268120	
41	12	68.767725	68.767725	68.767725	
41	13	65.604878	65.604878	65.604878	
41	14	74.330344	74.330344	74.330344	
41	15	68.007353	68.007353	68.007353	
41	16	73.409809	73.409809	73.409809	
41	17	75.000000	75.000000	75.000000	
41	18	72.111026	72.111026	72.111026	
41	19	81.584312	81.584312	81.584312	
41	20	77.129761	77.129761	77.129761	
41	21	72.277244	72.277244	72.277244	
41	22	82.462113	82.462113	82.462113	
41	23	72.801099	72.801099	72.801099	
41	24	82.969874	82.969874	82.969874	
41	25	73.375745	73.375745	73.375745	
41	26	83.815273	83.815273	83.815273	
41	27	65.192024	65.192024	65.192024	
41	28	61.032778	61.032778	61.032778	
41	29	63.631753	63.631753	63.631753	
41	30	58.309519	58.309519	58.309519	
41	31	61.717096	61.717096	61.717096	
41	32	57.306195	57.306195	57.306195	
41	33	61.269895	61.269895	61.269895	
41	34	65.000000	65.000000	65.000000	
41	35	55.901699	55.901699	55.901699	
41	36	7.000000	7.000000	7.000000	
41	37	5.000000	5.000000	5.000000	
41	38	5.830952	5.830952	5.830952	
41	39	5.385165	5.385165	5.385165	
41	40	5.000000	5.000000	5.000000	
41	42	10.198039 7.071068	10.198039	10.198039	
41	43		7.071068	7.071068	
41	44	5.000000	5.000000	5.00000	
41	45	5.830952	5.830952	5.830952	
41	46	40.112342 42.296572	40.112342 42.296572	40.112342 42.296572	
41	47 48	70.455660	70.455660	70.455660	
41	48	82.00000	82.00000	82.000000	
41	50	75.186435	75.186435	75.186435	
41	51	51.419841	51.419841	51.419841	
41	52	65.192024	65.192024	65.192024	
41	53	65.192024	65.192024	65.192024	
41	54	53.150729	53.150729	53.150729	
41	55	25.495098	25.495098	25.495098	
41	56	39.051248	39.051248	39.051248	
41	57	50.990195	50.990195	50.990195	
41	58	67.082039	67.082039	67.082039	
41	59	87.464278	87.464278	87.464278	
41	60	82.006097	82.006097	82.006097	
41	61	51.478151	51.478151	51.478151	
41	62	25.000000	25.000000	25.000000	
41	63	50.249378	50.249378	50.249378	
41	64	65.192024	65.192024	65.192024	
41	65	57.008771	57.008771	57.008771	
41	66	51.478151	51.478151	51.478151	
41	67	51.623638	51.623638	51.623638	
	<u> </u>	31.023030	01.023030	01.000000	

41	68	43.185646	43.185646	43.185646
41	69	32.015621	32.015621	32.015621
41	70	43.931765	43.931765	43.931765
41	71	29.681644	29.681644	29.681644
41	72	30.413813	30.413813	30.413813
41	73	20.223748	20.223748	20.223748
41	74	63.158531	63.158531	63.158531
41	75	76.321688	76.321688	76.321688
41	76	97.082439	97.082439	97.082439
41	77	73.000000	73.000000	73.000000
41	78	89.961103	89.961103	89.961103
41	79	59.539903	59.539903	59.539903
41	80	56.612719	56.612719	56.612719
41	81	40.162171	40.162171	40.162171
41	82	29.154759	29.154759	29.154759
41	83	53.413481	53.413481	53.413481
41	84	58.694122	58.694122	58.694122
41	85	56.080300	56.080300	56.080300
			62.072538	62.072538
41	86	62.072538		
41	87	72.401657	72.401657	72.401657
41	88	77.620873	77.620873	77.620873
41	89	45.000000	45.000000	45.000000
41	90	80.305666	80.305666	80.305666
41	91	44.418465	44.418465	44.418465
41	92	44.384682	44.384682	44.384682
41	93	42.579338	42.579338	42.579338
41	94	33.015148	33.015148	33.015148
41	95	37.121422	37.121422	37.121422
41	96	48.166378	48.166378	48.166378
41	97	31.400637	31.400637	31.400637
41	98	87.321246	87.321246	87.321246
41	99	47.381431	47.381431	47.381431
41	100	60.464866	60.464866	60.464866
41	101	34.132096	34.132096	34.132096
42	1	30.805844	30.805844	30.805844
42	2	34.481879	34.481879	34.481879
42	3	36.000000	36.000000	36.000000
42	4	37.363083	37.363083	37.363083
42	5	38.327536	38.327536	38.327536
42	6	39.293765	39.293765	39.293765
42	7	40.000000	40.000000	40.000000
42	8	43.000000	43.000000	43.000000
42				43.289722
	9	43.289722	43.289722	
42	10	62.481997	62.481997	62.481997
42	11	59.405387	59.405387	59.405387
42	12	61.032778	61.032778	61.032778
42	13	58.309519	58.309519	58.309519
42	14	66.400301	66.400301	66.400301
42	15	60.901560	60.901560	60.901560
42	16	66.037868	66.037868	66.037868
42	17	67.742158	67.742158	67.742158
42	18	65.299311	65.299311	65.299311
42	19	71.386273	71.386273	71.386273
42	20	66.940272	66.940272	66.940272
42	21	62.096699	62.096699	62.096699
42	22	72.277244	72.277244	72.277244
42	23	62.641839	62.641839	62.641839
42	24	72.801099	72.801099	72.801099
42	25	63.245553	63.245553	63.245553
42	26	73.681748	73.681748	73.681748
42	27	58.258047	58.258047	58.258047
42	28	54.488531	54.488531	54.488531
	29	56.400355	56.400355	56.400355

42	30	51.224994	51.224994	51.224994	
42	31	54.083269	54.083269	54.083269	
42	32	50.000000	50.000000	50.000000	
42	33	53.535035	53.535035	53.535035	
42	34	56.824291	56.824291	56.824291	
42	35	48.259714	48.259714	48.259714	
42	36	13.453624	13.453624	13.453624	
42	37	12.206556	12.206556	12.206556	
42	38	9.899495	9.899495	9.899495	
42	39	6.403124	6.403124	6.403124	
42	40	5.385165	5.385165	5.385165	
42	41	10.198039	10.198039	10.198039	
42	43	5.830952	5.830952	5.830952	
42	44	10.440307	10.440307	10.440307	
42	45	7.615773	7.615773	7.615773	
42	46	38.639358	38.639358	38.639358	
42	47	40.311289	40.311289	40.311289	
42	48	63.529521	63.529521	63.529521	
See Also	49	71.805292	71.805292	71.805292	
42	50	65.000000	65.000000	65.000000	
	en.wikipedia.	org/wiki/Vehicle_1	routing problem 0	42.379240	
42	52	55.081757	55.081757	55.081757	
42	53	55.803226	55.803226	55.803226	
Indices and		45.486262	45.486262	45.486262	
42	55	15.297059	15.297059	15.297059	
42 • genind	lex ⁶	31.764760	31.764760	31.764760	
42	57	40.792156	40.792156	40.792156	
42 • search		57.306195	57.306195	57.306195	
42	59	77.935871	77.935871	77.935871	
42 • • • • • • • • • • • • • • • • • • •	60	73.000000	73.000000	73.000000	
_	sformation		45.541190	45.541190	
42	62	16.401219	16.401219	16.401219	
pgr_lineGrap	ph ³ - Experime	40,607881 ental	40.607881	40.607881	
42	64	55.443665	55.443665	55.443665	
42	65	46.840154	46.840154	46.840154	
6.2.7 par	^{. 6} lineGrar	oh - Experime	ental ^{41.880783}	41.880783	
			41.629317	41.629317	
42	68 Tranh Tr	33.541020	33.541020	33.541020 a adaa basad graph	
			graph into its courespondin		
42	70	35.468296	35.468296	35.468296	
42	71	23.769		.769729	
42	72	21.189	DIOYOLS	.189620	
42	73	11.180	The state of the s	.180340	
42	74	57.9741		974132 76 850580	
42	75	66.850500	00.030300		
42	76	87.800911	87.800911 g. 6.25; 3Boost Graph Insi d	87.800911	
42	77				
42	78	80.056230	80.056230	80.056230	
42	79	53.488316	53.488316	53.488316	
T T 7 •		1 (

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.

42/6 http://	//www.boost.org/l	ibs/graph/doc/dijkstra_short	- 34,205263 est paths.html	34.205263	
42	93	32.388269	32.388269	32.388269	
42	94	23.194827	23.194827	23.194827	
42	95	27.018512	27.018512	27.018512	
404	96	38.05 Chapter 6	. Available Function	ns but⊧not official pgRouting fu	ınctions
42	97	21.213203	21.213203	21.213203	
42	98	78.517514	78.517514	78.517514	
42	99	39.408121	39.408121	39.408121	
42	100	51 224994	51 224994	51 224994	

- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Synopsis

Given a graph G, its line graph L(G) is a graph such that:-

- each vertex of L(G) represents an edge of G
- two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G.

The following figures show a graph (left, with blue vertices) and its Line Graph (right, with green vertices).

Signature Summary

```
pgr_lineGraph(edges_sql, directed)
RETURNS SET OF (seq, source, target, cost, reverse_cost)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_lineGraph(edges_sql)
RETURNS SET OF (seq, source, target, cost, reverse_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph:

Example

```
SELECT * FROM pgr_lineGraph(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
```

+			reverse_cost	
-16	 -3	1	-1	
			1	
			-1	
			•	
			1	
			1	
			•	
			-1	
			1	
			1	
			1	
			1	
			-1	
			-1	
			-1	
			-1	
		1	-1	
	9	1	-1	
5	11	1	-1	
7	-4	1	1	
8	11	1	-1	
10	12	1	-1	
11	13	1	-1	
12	13	1	-1	
13	-15	1	-1	
16	-9	1	1	
16				
(28 rows)				
	-15	-15 -9 -14 -10 -14 12 -10 -7 -10 -4 -10 8 -9 -8 -9 11 -8 -7 -8 -7 -8 -4 -7 -6 -4 -1 -3 -2 -3 5 -2 -1 -2 4 5 -8 5 9 5 11 7 -4 8 11 8 11 10 12 13 13 -15 16 -9 16 15	-15 -9 1	

Complete Signature

```
pgr_lineGraph(edges_sql, directed);
RETURNS SET OF (seq, source, target, cost, reverse_cost) or EMPTY SET
```

This signature returns the Line Graph of the current graph:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

```
SELECT * FROM pgr_lineGraph(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    FALSE
) ;
seq | source | target | cost | reverse_cost
   1 | -2 | -1 | 1 |
2 | -4 | -1 | 1 |
3 | 4 | -1 | 1 |
4 | 1 | 4 | 1 |
                                             -1
                                             -1
                                             -1
                                             -1
                     4 |
           -1 |
                             1 |
                                             -1
   6 |
   7 |
           -2 |
                     1 |
                             1 |
                                             -1
                                             -1
   8 |
           -4 |
                     1 |
                              1 |
           4 | 1 |
   9 |
                              1 |
                                             -1
```

10	1			
11	-4	-2	1	-1
12	-1			
13	4			
14	1			
15				
16	-1			
17	-3			
18	5			-1
19	-3	5	1	-1
20	-2			
21	-2			
22	5			
23	-16			
24	16			
25	-3	16	1	-1
26	-3	-16	1	-1
27	7			
28	-8			
29	-10			
30	-7			
31	8			
32	10	-4	1	-1
33	4	-7	1	-1
34	-8			
35	-10		1	
36	-4			
			1	
37	8			
38	10			
39	4	8	1	-1
40	7	8	1	-1
41	-10			
42	-4			
43	-7			
44	10			
45	4			
46	7	10	1	-1
47	-8	10	1	-1
48	-4			-1
49	-7 i			
50	8			
51	7			
52	-8			
53	-10			-1
54	-7 I	4	1	-1
55	8			
56	10			
57	4			
58	-8		1	
59	-10			
60	-4			
61	8	7	1	-1
62	10			
63	4			
64	7			
65	-10			
66	-4			
67	-7 I	-8	1	-1
68	10	-8	1	-1
69	4			
70	7			
71	-8			
72	-4	-10	1	-1

73	-7 I	-10	1	-1
74	8	-10	1	-1
75	5		1	-1
76				-1
77				-1
78				-1
79				-1
80				-1
81				-1
82				-1
83				-1
84				-1
85				-1
86				'
87				-1
88	- 1	_	_	-1
89				-1
90				-1
91				-1
92			1	-1
93			1	-1
94				-1
95				-1
96				-1
97				-1
98				-1
99				-1
100				-1
101				-1
102				-1
103				-1
104				-1
105				-1
106				-1
107				-1
108				-1
109			1	-1
110			1	-1
111	1		1	-1
112	-16	-9	1	-1
113				
114				-1
115				-1
116				-1
117	9	-16	1	-1
118	-15	-16	1	-1
119	-9	-16	1	-1
120				-1
121				-1
122				-1
123				-1
124				-1
125				
126				
127				
128				
				-1
129				-1
130				-1
131				-1
132				-1
133				-1
134				-1
135	14	-10	1	-1

136	10	12	1	-1	
137	-14	12	1	-1	
138	-10	12	1	-1	
139	14	12	1	-1	
140	10	14	1	-1	
141	-10	14	1	-1	
142	12	14	1	-1	
143	-14	10	1	-1	
144	12	10	1	-1	
145	14	10	1	-1	
146	10	-14	1	-1	
147	-10	-14	1	-1	
148	12	-14		-1	
149	11	13	1	-1	
150	12	13	1	-1	
151	12	11	1	-1	
152	13	11	1	-1	
153	11	12	1	-1	
154	13	12	1	-1	
155	13	-15	1	-1	
156	15	13	1	-1	
157	-15	13	1	-1	
158	13	15	1	-1	
(158	(158 rows)				

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Description
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	 When true the graph is considered as <i>Directed</i>. When false the graph is considered as <i>Undirected</i>.

Description of the return values

RETURNS SETOF (seq, source, target, cost, reverse_cost)

Column	Type	Description
seq	INTEGER	Sequential value starting from 1 .
source	BIGINT	Identifier of the source vertex of the current edge <i>id</i> . • When <i>negative</i> : the source is the reverse edge in the original graph.
target	BIGINT	Identifier of the target vertex of the current edge <i>id</i> . • When <i>negative</i> : the target is the reverse edge in the original graph.
cost	FLOAT	Weight of the edge (source, target). • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	FLOAT	Weight of the edge (target, source). • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

See Also

- https://en.wikipedia.org/wiki/Line_graph
- The queries use the *Sample Data* network.

Indices and tables

- genindex
- search

6.2.8 See Also

Indices and tables

- genindex
- search

pgRouting Manual, Release v2.5.1	

CHAPTER 7

Change Log

- pgRouting 2.5.1 Release Notes
- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.2 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

7.1 Release Notes

To see the full list of changes check the list of Git commits⁷⁷ on Github.

⁷⁷ https://github.com/pgRouting/pgrouting/commits

Table of contents

- pgRouting 2.5.1 Release Notes
- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.2 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

7.1.1 pgRouting 2.5.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.1⁷⁸ on Github.

Bug fixes

• Fixed prerequisite minimum version of: cmake

7.1.2 pgRouting 2.5.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.5.0⁷⁹ on Github.

enhancement:

• pgr_version is now on SQL language

Breaking change on:

- pgr_edgeDisjointPaths:
 - Added path_id, cost and agg_cost columns on the result
 - Parameter names changed

 $^{^{78} \} https://github.com/pgRouting/pgrouting/issues?utf8 = \%E2\%9C\%93\&q = milestone\%3A\%22Release\%202.5.1\%22\%2018 + (1.1838) + (1.$

⁷⁹ https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.5.0%22+is%3Aclosed

- The many version results are the union of the one to one version

New Signatures:

• pgr_bdAstar(one to one)

New Proposed functions

- pgr_bdAstar(one to many)
- pgr_bdAstar(many to one)
- pgr_bdAstar(many to many)
- pgr_bdAstarCost(one to one)
- pgr_bdAstarCost(one to many)
- pgr_bdAstarCost(many to one)
- pgr_bdAstarCost(many to many)
- pgr_bdAstarCostMatrix
- pgr_bdDijkstra(one to many)
- pgr_bdDijkstra(many to one)
- pgr_bdDijkstra(many to many)
- pgr_bdDijkstraCost(one to one)
- pgr_bdDijkstraCost(one to many)
- pgr_bdDijkstraCost(many to one)
- pgr_bdDijkstraCost(many to many)
- pgr_bdDijkstraCostMatrix
- pgr_lineGraph
- pgr_connectedComponents
- pgr_strongComponents
- pgr_biconnectedComponents
- pgr_articulationPoints
- pgr_bridges

Deprecated Signatures

• pgr_bdastar - use pgr_bdAstar instead

Renamed Functions

- pgr_maxFlowPushRelabel use pgr_pushRelabel instead
- pgr_maxFlowEdmondsKarp -use pgr_edmondsKarp instead
- pgr_maxFlowBoykovKolmogorov use pgr_boykovKolmogorov instead
- pgr_maximumCardinalityMatching use pgr_maxCardinalityMatch instead

Deprecated function

• pgr_pointToEdgeNode

7.1.3 pgRouting 2.4.2 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.4.280 on Github.

Improvement

• Works for postgreSQL 10

Bug fixes

- Fixed: Unexpected error column "cname"
- Replace __linux__ with __GLIBC__ for glibc-specific headers and functions

7.1.4 pgRouting 2.4.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.4.181 on Github.

Bug fixes

- Fixed compiling error on macOS
- Condition error on pgr_withPoints

7.1.5 pgRouting 2.4.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.4.082 on Github.

New Signatures

• pgr_bdDijkstra

New Proposed Signatures

- pgr_maxFlow
- pgr_astar(one to many)
- pgr_astar(many to one)
- pgr_astar(many to many)
- pgr_astarCost(one to one)
- pgr_astarCost(one to many)
- pgr_astarCost(many to one)

⁸⁰ https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%202.4.2%22%20

 $^{81\} https://github.com/pgRouting/pgrouting/issues?utf8=\%E2\%9C\%93\&q=milestone\%3A\%22Release\%202.4.1\%22\%20$

 $^{^{82}\} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.4.0\%22+is\%3Aclosed$

- pgr_astarCost(many to many)
- pgr_astarCostMatrix

Deprecated Signatures

• pgr_bddijkstra - use pgr_bdDijkstra instead

Deprecated Functions

• pgr_pointsToVids

Bug fixes

- Bug fixes on proposed functions
 - pgr_withPointsKSP: fixed ordering
- TRSP original code is used with no changes on the compilation warnings

7.1.6 pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.283 on Github.

Bug Fixes

- Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.
- Fixed pgr_trsp:
 - Alternate code is not executed when the point is in reality a vertex
 - Fixed ambiguity on seq

7.1.7 pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.184 on Github.

Bug Fixes

- Leaks on proposed max_flow functions
- Regression error on pgr_trsp
- Types discrepancy on pgr_createVerticesTable

7.1.8 pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.085 on Github.

 $^{^{83}\} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.3.2\%22+is\%3Aclosed$

⁸⁴ https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.1%22+is%3Aclosed

 $^{^{85}\} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.3.0\%22+is\%3Aclosed$

New Signatures

- pgr_TSP
- pgr_aStar

New Functions

• pgr_eucledianTSP

New Proposed functions

- pgr_dijkstraCostMatrix
- pgr_withPointsCostMatrix
- pgr_maxFlowPushRelabel(one to one)
- pgr_maxFlowPushRelabel(one to many)
- pgr_maxFlowPushRelabel(many to one)
- pgr_maxFlowPushRelabel(many to many)
- pgr_maxFlowEdmondsKarp(one to one)
- pgr_maxFlowEdmondsKarp(one to many)
- pgr_maxFlowEdmondsKarp(many to one)
- pgr_maxFlowEdmondsKarp(many to many)
- pgr_maxFlowBoykovKolmogorov (one to one)
- $\bullet \ pgr_maxFlowBoykovKolmogorov \ (one \ to \ many)$
- pgr_maxFlowBoykovKolmogorov (many to one)
- pgr_maxFlowBoykovKolmogorov (many to many)
- pgr_maximumCardinalityMatching
- pgr_edgeDisjointPaths(one to one)
- pgr_edgeDisjointPaths(one to many)
- pgr_edgeDisjointPaths(many to one)
- pgr_edgeDisjointPaths(many to many)
- pgr_contractGraph

Deprecated Signatures

- pgr_tsp use pgr_TSP or pgr_eucledianTSP instead
- pgr_astar use pgr_aStar instead

Deprecated Functions

- pgr_flip_edges
- pgr_vidsToDmatrix
- pgr_pointsToDMatrix

• pgr_textToPoints

7.1.9 pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.486 on Github.

Bug Fixes

- Bogus uses of extern "C"
- Build error on Fedora 24 + GCC 6.0
- Regression error pgr_nodeNetwork

7.1.10 pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.387 on Github.

Bug Fixes

• Fixed compatibility issues with PostgreSQL 9.6.

7.1.11 pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.288 on Github.

Bug Fixes

• Fixed regression error on pgr_drivingDistance

7.1.12 pgRouting 2.2.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.189 on Github.

Bug Fixes

- Server crash fix on pgr_alphaShape
- Bug fix on With Points family of functions

7.1.13 pgRouting 2.2.0 Release Notes

To see the issues closed by this release see the Git closed issues for $2.2.0^{90}$ on Github.

 $^{{}^{86}\}text{ https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.2.4\%22+is\%3Aclosed}$

 $^{^{87}\} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.2.3\%22+is\%3Aclosed$

 $[\]frac{88}{\text{https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.2.2\%22+is\%3Aclosed}}$

⁸⁹ https://github.com/pgRouting/pgrouting/issues?q=milestone%3A2.2.1+is%3Aclosed

⁹⁰ https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.0%22+is%3Aclosed

Improvements

- pgr_nodeNetwork
 - Adding a row_where and outall optional parameters
- Signature fix
 - pgr_dijkstra to match what is documented

New Functions

- pgr_floydWarshall
- pgr_Johnson
- pgr_dijkstraCost(one to one)
- pgr_dijkstraCost(one to many)
- pgr_dijkstraCost(many to one)
- pgr_dijkstraCost(many to many)

Proposed functionality

- pgr_withPoints(one to one)
- pgr_withPoints(one to many)
- pgr_withPoints(many to one)
- pgr_withPoints(many to many)
- pgr_withPointsCost(one to one)
- pgr_withPointsCost(one to many)
- pgr_withPointsCost(many to one)
- pgr_withPointsCost(many to many)
- pgr_withPointsDD(single vertex)
- pgr_withPointsDD(multiple vertices)
- pgr_withPointsKSP
- pgr_dijkstraVia

Deprecated functions:

- pgr_apspWarshall use pgr_floydWarshall instead
- pgr_apspJohnson use pgr_Johnson instead
- pgr_kDijkstraCost use pgr_dijkstraCost instead
- pgr_kDijkstraPath use pgr_dijkstra instead

Renamed and deprecated function

• pgr_makeDistanceMatrix renamed to _pgr_makeDistanceMatrix

7.1.14 pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the Git closed issues for $2.1.0^{91}$ on Github.

New Signatures

- pgr_dijkstra(one to many)
- pgr_dijkstra(many to one)
- pgr_dijkstra(many to many)
- pgr_drivingDistance(multiple vertices)

Refactored

- pgr_dijkstra(one to one)
- pgr_ksp
- pgr_drivingDistance(single vertex)

Improvements

• pgr_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed functionality

- Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)
 - pgr_pointToEdgeNode convert a point geometry to a vertex_id based on closest edge.
 - pgr_flipEdges flip the edges in an array of geometries so the connect end to end.
 - pgr_textToPoints convert a string of x,y;x,y;... locations into point geometries.
 - pgr_pointsToVids convert an array of point geometries into vertex ids.
 - $pgr_pointsToDMatrix$ Create a distance matrix from an array of points.
 - pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
 - pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
- Added proposed functions from GSoc Projects:
 - pgr_vrppdtw
 - pgr_vrponedepot

Deprecated functions

- pgr_getColumnName
- pgr_getTableName
- $\bullet \ pgr_isColumnCndexed$
- pgr_isColumnInTable
- pgr_quote_ident

 $^{^{91}\} https://github.com/pgRouting/pgrouting/issues?q=is\%3A issue+milestone\%3A\%22 Release + 2.1.0\%22 + is\%3A closed$

- pgr_versionless
- pgr_startPoint
- pgr_endPoint
- pgr_pointToId

No longer supported

• Removed the 1.x legacy functions

Bug Fixes

• Some bug fixes in other functions

Refactoring Internal Code

- A C and C++ library for developer was created
 - encapsulates postgreSQL related functions
 - encapsulates Boost.Graph graphs
 - * Directed Boost.Graph
 - * Undirected Boost.graph.
 - allow any-integer in the id's
 - allow any-numerical on the cost/reverse_cost columns
- Instead of generating many libraries: All functions are encapsulated in one library The library has the prefix 2-1-0

7.1.15 pgRouting 2.0.1 Release Notes

Minor bug fixes.

Bug Fixes

• No track of the bug fixes were kept.

7.1.16 pgRouting 2.0.0 Release Notes

To see the issues closed by this release see the Git closed issues for $2.0.0^{92}$ on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to pgRouting 1.x releases. The main Goals for this release are:

- Major restructuring of pgRouting.
- Standardization of the function naming
- Preparation of the project for future development.

As a result of this effort:

• pgRouting has a simplified structure

⁹² https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.0.0%22+is%3Aclosed

- · Significant new functionality has being added
- · Documentation has being integrated
- Testing has being integrated
- And made it easier for multiple developers to make contributions.

Important Changes

- Graph Analytics tools for detecting and fixing connection some problems in a graph
- A collection of useful utility functions
- Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)
- Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)
- One to many nodes search (pgr_kDijkstra)
- K alternate paths shortest path (pgr_ksp)
- New TSP solver that simplifies the code and the build process (pgr_tsp), dropped "Gaul Library" dependency
- Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star
- Dropped support for Shooting Star
- Built a test infrastructure that is run before major code changes are checked in
- Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.
- Improved build process for Windows
- · Automated testing on Linux and Windows platforms trigger by every commit
- Modular library design
- Compatibility with PostgreSQL 9.1 or newer
- Compatibility with PostGIS 2.0 or newer
- Installs as PostgreSQL EXTENSION
- · Return types re factored and unified
- Support for table SCHEMA in function parameters
- Support for st_ PostGIS function prefix
- Added pgr_ prefix to functions and types
- Better documentation: http://docs.pgrouting.org
- shooting_star is discontinued

7.1.17 pgRouting 1.x Release Notes

To see the issues closed by this release see the Git closed issues for $1.x^{93}$ on Github. The following release notes have been copied from the previous RELEASE_NOTES file and are kept as a reference.

Changes for release 1.05

· Bug fixes

⁹³ https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+1.x%22+is%3Aclosed

Changes for release 1.03

- Much faster topology creation
- Bug fixes

Changes for release 1.02

- Shooting* bug fixes
- Compilation problems solved

Changes for release 1.01

• Shooting* bug fixes

Changes for release 1.0

- Core and extra functions are separated
- · Cmake build process
- Bug fixes

Changes for release 1.0.0b

- Additional SQL file with more simple names for wrapper functions
- Bug fixes

Changes for release 1.0.0a

- Shooting* shortest path algorithm for real road networks
- Several SQL bugs were fixed

Changes for release 0.9.9

- PostgreSQL 8.2 support
- Shortest path functions return empty result if they could not find any path

Changes for release 0.9.8

- Renumbering scheme was added to shortest path functions
- Directed shortest path functions were added
- routing_postgis.sql was modified to use dijkstra in TSP search

Indices and tables

- genindex
- search

⁴⁶ http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6

426 Bibliography

٨	
A	bdDijkstraCostMatrix(Minimal Use) - Proposed, 201
analyzeGraph(Complete Signature), 51	biconnectedComponents, 310
analyzeOneway(Complete Signature), 57	boykovKolmogorov(Many to Many) - Proposed, 287
articulationPoints, 314	boykovKolmogorov(Many to One) - Proposed, 286
aStar(Many to Many) – Proposed, 166	boykovKolmogorov(One to Many) - Proposed, 286
aStar(Many to One) – Proposed, 165	boykovKolmogorov(One to One) - Proposed, 285
aStar(Minimal Use) – New Signature, 164	bridges, 317
astar(One to Many) – Proposed, 165	•
aStar(One to One) – New Signature, 164	C
aStarCost(Many to Many) – Proposed, 172	connectedComponents, 303
aStarCost(Many to One) – Proposed, 172	contractGraph(Minimal Use), 250
aStarCost(Minimal Signature) – Proposed, 171	createTopology(Complete Signature), 40
aStarCost(One to Many) – Proposed, 171	createVerticesTable(Complete Signature), 46
aStarCost(One to One) – Proposed, 171	D
aStarCostMatrix(Complete Signature) - Proposed, 176	D
aStarCostMatrix(Minimal Use) - Proposed, 176	dijkstra(Many to Many), 94
_	dijkstra(Many to One), 94
В	dijkstra(Minimal Use), 93
bdAstar(Many to Many) - Proposed, 82	dijkstra(One to Many), 93
bdAstar(Many to One) - Proposed, 81	dijkstra(One to One), 93
bdAstar(Minimal Use) – New Signature, 80	dijkstraCost(Many to Many), 109
bdAstar(One to Many) - Proposed, 81	dijkstraCost(Many to One), 108
bdAstar(One to One) – New Signature, 80	dijkstraCost(Minimal Use), 107
bdAstarCost(Many to Many) - Proposed, 184	dijkstraCost(One to Many), 108
bdAstarCost(Many to One) - Proposed, 183	dijkstraCost(One to One), 107
bdAstarCost(Minimal Use) – New Signature, 182	dijkstraCostMatrix(Complete Signature) - Proposed,
bdAstarCost(One to Many) - Proposed, 183	113
bdAstarCost(One to One) – New Signature, 182	dijkstraCostMatrix(Minimal Use) - Proposed, 112
bdAstarCostMatrix(Complete Signature) - Proposed,	dijkstraVia(Full signature) - proposed, 132
188	dijkstraVia(Minimal Use) - proposed, 132
bdAstarCostMatrix(Minimal Use) - Proposed, 188	drivingDistance(Minimal Use), 116
bdDijkstra(Many to Many) - Proposed, 88	drivingDistance(Multiple Starting Vertices), 116
bdDijkstra(Many to One) - Proposed, 87	drivingDistance(Single Start Vertex), 116
bdDijkstra(Minimal Use), 86	_
bdDijkstra(One to Many) - Proposed, 87	E
bdDijkstra(One to One), 86	edgeDisjointPaths(Many to Many) - Proposed, 295
bdDijkstraCost(Many to Many) - Proposed, 197	edgeDisjointPaths(Many to One) - Proposed, 295
bdDijkstraCost(Many to One) - Proposed, 197	edgeDisjointPaths(Minimal Use) - Proposed, 293
bdDijkstraCost(Minimal Use) - Proposed, 195	edgeDisjointPaths(One to Many) - Proposed, 294
bdDijkstraCost(One to Many) - Proposed, 196	edgeDisjointPaths(One to One) - Proposed, 293
bdDijkstraCost(One to One), 196	edmondsKarp(Many to Many) - Proposed, 282
bdDijkstraCostMatrix(Complete Signature) - Proposed,	edmondsKarp(Many to One) - Proposed, 281
201	edmondsKarn(One to Many) - Proposed 281

edmondsKarp(One to One) - Proposed, 280 eucledianTSP(Basic Use), 149 eucledianTSP(Complete Signature), 149	trspViaVertices(text,integer,double precision,integer,double precision,boolean,boolean), 139
F	TSP(Basic Use), 145 TSP(Complete Signature), 145
floydWarshall(Complete Signature), 71 floydWarshall(Minimal Signature), 71	V
G	version(), 33
gsoc_vrppdtw(Complete Signature) - proposed, 328	W withPoints(Many to Many) - Proposed, 208
J	withPoints(Many to One) - Proposed, 208
johnson(Complete Signature), 74 johnson(Minimal Signature), 74	withPoints(Minimal Use) - Proposed, 206 withPoints(One to Many) - Proposed, 207 withPoints(One to One) - Proposed, 207
K	withPointsCost(Many To Many) - proposed, 217
ksp(Complete Signature), 124 KSP(Minimal Signature), 124	withPointsCost(Many To One) - proposed, 217 withPointsCost(Minimal Use) - proposed, 216 withPointsCost(One To Mony), proposed, 217
L	withPointsCost(One To Many) - proposed, 217 withPointsCost(One To One) - proposed, 216
labelGraph(Complete Signature) - Proposed, 300	withPointsCostMatrix(Complete Signature) - Proposed, 223
lineGraph(Complete signature), 406 lineGraph(Minimal Use), 405	withPointsCostMatrix(Minimal use) - Proposed, 222 withPointsDD(Minimal Use) - proposed, 233
M	withPointsDD(Multiple Starting Vertices) - proposed,
maxFlow(Many to Many) - Proposed, 272 maxFlow(Many to One) - Proposed, 271 maxFlow(One to Many) - Proposed, 271 maxFlow(One to One) - Proposed, 271 MaximumCardinalityMatching(Complete Signature) - Proposed, 290 MaximumCardinalityMatching(Minimal Use) - Proposed, 290	withPointsDD(Single Start Vertex) - proposed, 234 withPointsKSP(Complete Signature) - Proposed, 227 withPointsKSP(Minimal Signature) - Proposed, 227
Р	
pgr_alphashape(text,float8), 156 pgr_costResult3[], 36 pgr_costResult[], 35 pgr_geomResult[], 36 pgr_NodeNetwork(Complete Signature), 60 pgr_pointsAsPolygon(text,float8), 158 pushRelabel(Many to Many) - Proposed, 277 pushRelabel(Many to One) - Proposed, 276 pushRelabel(One to Many) - Proposed, 275 pushRelabel(One to One) - Proposed, 275	
S	
strongComponents, 307	
Т	
trsp(text,integer,integer,boolean,boolean), 139 trsp(text,integer,integer,boolean,boolean,text), 139 trspViaEdges(text,integer,double precision,integer,double precision	
sion,boolean,boolean,text), 139	

428 Index