A quick lemma that will be useful for this proof:

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D). \tag{*}$$

Proof: Let A, B, C, D be sets, and let $(x, y) \in (A \times B) \cap (C \times D)$, then $(x, y) \in A \times B$ and $(x, y) \in C \times D$, thus $x \in A$ and $x \in C$, and $y \in B$ and $y \in D$, thus $x \in A \cap C$ and $y \in B \cap D$, thus $(x, y) \in (A \cap C) \times (B \cap D)$. These statements are biconditional, so the converse is also proven.

Let \mathcal{T} and \mathcal{T}' be the topologies defined in the problem. If \mathcal{T} and \mathcal{T}' are equal, then a subset $U \subseteq A \times B$ is open in \mathcal{T} if and only if it is open in \mathcal{T}' . Let U be open in \mathcal{T} , then there exist collections $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of open sets in A and B respectively where

$$U = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \times V_{\alpha} .$$

Since for all $\alpha \in \mathcal{A}$, U_{α} and V_{α} are open in A and B respectively, we know that for each α , there exist open sets $U'_{\alpha} \subseteq X$ and $V'_{\alpha} \subseteq Y$ where $U_{\alpha} = A \cap U'_{\alpha}$ and $V_{\alpha} = B \cap V'_{\alpha}$. From this, it is clear that

$$U = \bigcup_{\alpha \in A} (A \cap U'_{\alpha}) \times (B \cap V'_{\alpha}),$$

thus by (*), we have

$$U = \bigcup_{\alpha \in A} (A \times B) \cap (U'_{\alpha} \times V'_{\alpha}) = (A \times B) \cap \bigcup_{\alpha \in A} U'_{\alpha} \times V'_{\alpha}.$$

Since $\{U'_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V'_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ are collections of open sets in X and Y respectively, we know that $\bigcup U'_{\alpha} \times V'_{\alpha}$ is open in $X \times Y$, thus by definition, U is open in the subspace topology on $A \times B$, and thus U is open in \mathcal{T}' .

Conversely, let $U \subseteq A \times B$ be open in \mathcal{T}' , then there exist collections of open sets $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ in X and Y respectively where

$$U = (A \times B) \cap \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \times V_{\alpha},$$

thus by (*),

$$U = \bigcup_{\alpha \in \mathcal{A}} (A \times B) \cap (U_{\alpha} \times V_{\alpha}) = \bigcup_{\alpha \in \mathcal{A}} (A \cap U_{\alpha}) \times (B \cap V_{\alpha}).$$

We know that for each α , $A \cap U_{\alpha}$ and $B \cap V_{\alpha}$ are open in A and B respectively. Finally, let $\{U'_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V'_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be collections of sets where $U'_{\alpha}=A\cap U_{\alpha}$ and $V'_{\alpha}=A\cap V_{\alpha}$. It is clear that

$$U = \bigcup_{\alpha \in \mathcal{A}} U'_{\alpha} \times V'_{\alpha},$$

and since for all α , U'_{α} and V'_{α} are open in A and B respectively, we know that U is open in the product topology on $A \times B$, thus U is open in \mathcal{T} , and thus $\mathcal{T} = \mathcal{T}'$.