

de la Décision et des Organisations

Algèbre linéaire 3, Rattrapage, Juin 2023

Durée : 2h. Documents et appareils électroniques interdits. Sauf mention explicite du contraire, toutes les réponses doivent être justifiées. La qualité de la rédaction sera un élément essentiel de l'appréciation des copies. Vous êtes vivement encouragés à lire l'ensemble du sujet avant de commencer. Le barème est sur 20 points. Il est à titre indicatif.

Exercice 1 (Questions de cours, 1,5 points). — Les trois questions sont indépendantes.

- 1. Donner l'ensemble des solutions des suites complexes $(u_n)_{n\in\mathbb{N}}$ vérifiant, pour tout $n\in\mathbb{N}$, $2u_{n+2}=u_{n+1}-u_n$. (0,5 point)
- 2. Soit (E, \langle, \rangle) un espace euclidien. Soit e un vecteur non nul de E. Donner une formule explicite de la projection orthogonale sur Vect(e). (0,5 point)
- 3. Donner la définition d'un endomorphisme nilpotent d'un espace vectoriel réel. (0,5 point)

Exercice 2 (Une matrice de $M_3(\mathbb{R})$, 4 points). —

Soit la matrice
$$A = \begin{pmatrix} -2 & -2 & -1 \\ 0 & -2 & -1 \\ 0 & 1 & 0 \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A et déterminer le spectre de A. (0,5 point)
- 2. Déterminer les sous-espaces propres de A. (0,5 point)
- 3. La matrice A est-elle diagonalisable? Trigonalisable? (0,5 point)
- 4. Déterminer le polynôme minimal de A. (0,75 point)
- 5. Pour tout $k \in \mathbb{N}$, déterminer $\operatorname{tr}(A^k)$. (0,75 point)
- 6. Existe-t-il une matrice $B \in M_3(\mathbb{R})$ telle que $B^2 = A$? (1 point)

Exercice 3 (Orthogonalisation dans \mathbb{R}^3 , 4,5 points). — Soit a un réel. Soit l'application b_a

$$b_a: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$$

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \end{pmatrix} \longrightarrow ax_1y_1 + 2x_2y_2 + x_3y_3 + \frac{a}{2}x_2y_3 + \frac{a}{2}y_2x_3$$

et l'application q_a : pour tout $x \in \mathbb{R}^3$, on a $q_a(x) = b_a(x, x)$.

- 1. Montrer que b_a est une forme bilinéaire symétrique et que q_a est une forme quadratique. (0,5 point)
- 2. Effectuer la réduction de Gauss de q_a . (1 point)
- 3. Donner une condition nécessaire et suffisante sur a pour que b_a soit un produit scalaire sur \mathbb{R}^3 . (1 point)
- 4. Dans le cas où b_a est un produit scalaire, orthonormaliser la base canonique de \mathbb{R}^3 (dans l'ordre) selon le procédé de Gram-Schmidt en utilisant le produit scalaire b_a . (2 points)

de la Décision et des Organisations

Exercice 4 (projection sur le noyau, 6 points). — Soit E un \mathbb{R} -espace vectoriel et $u \in \mathcal{L}(E)$. Soit P un polynôme que l'on suppose premier avec X. On suppose que le polynôme X^2P annule u.

- 1. Montrer qu'il existe deux polynômes Q et R tels que $PQ + X^2R = 1$. (0,5 point)
- 2. Montrer que $\ker(u^2) \oplus \ker(P(u)) = E$. (0,5 point)
- 3. Notons p la projection sur $\ker(u^2)$ parallèlement à $\ker(P(u))$. Le but de cette question est de montrer que p est un polynôme en u.
 - (a) Montrer que $P(u) \circ Q(u) \circ u^2 \circ R(u) = 0_{\mathcal{L}(E)}$. (0,5 point)
 - (b) En déduire que $(P(u) \circ Q(u))^2 = P(u) \circ Q(u)$. (0,5 point)
 - (c) Montrer que $\ker(P(u) \circ Q(u)) = \ker(P(u))$. (0,75 point)
 - (d) Montrer que $\operatorname{Im}(P(u) \circ Q(u)) = \ker(u^2)$. (0,75 point)
 - (e) En déduire que p = (PQ)(u). (0,5 point)
- 4. Déterminer de même la projection q sur $\ker(P(u))$ parallèlement à $\ker(u^2)$. (0,5 point)
- 5. En reprenant la question 1, déterminer q lorsque P = X 1. (0,75 point)
- 6. On suppose que P'(0) = 0. En reprenant la question 1, montrer que $P(0) \neq 0$ et que $p = \frac{1}{P(0)}P(u)$. (0,75 point)

Exercice 5 (Endomorphismes symétriques, 4 points). — Soit (E, <, >) un espace euclidien de dimension $n \in \mathbb{N}^*$.

- 1. Dans cette question on considère un endomorphisme symétrique w tel que pour tout $x \in E$ on a $\langle w(x), x \rangle = 0$.
 - (a) Soit $\lambda \in \mathbb{R}$ une valeur propre de w. Montrer que $\lambda = 0$. (0,25 point)
 - (b) En déduire que $w = 0_{\mathcal{L}(E)}$. (0,5 point)
- 2. Soient u_1 et u_2 deux endomorphismes symétriques tels que $< u_1(x), x > + < u_2(x), x > = < x, x >$ pour tout $x \in E$ et $\operatorname{rg}(u_1) + \operatorname{rg}(u_2) = n$.
 - (a) Montrer que $u_1 + u_2 = id_E$. (0,5 point)
 - (b) Montrer que $E = \operatorname{Im}(u_1) \oplus \operatorname{Im}(u_2)$. (0,75 point)
 - (c) En déduire que u_1 est la projection orthogonale sur $\text{Im}(u_1)$ et que u_2 est la projection orthogonale sur $\text{Im}(u_2)$. (1 point)
 - (d) On suppose que u_1 et u_2 sont non nuls. Donner l'ensemble des valeurs propres de u_1 . (1 point)