MATH 447: Real Variables - Homework #2

Jerich Lee

December 1, 2024

Problem 1 (9.12). • Assume all $s_n \neq 0$ and that the limit $L = \lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right|$ exists.

- (a) Show that if L < 1, then $\lim s_n = 0$. Hint: Select a so that L < a < 1 and obtain N so that $|s_{n+1}| < a|s_n|$ for $n \ge N$. Then show $|s_n| < a^{n-N}|s_N|$ for n > N.
- (b) Show that if L > 1, then $\lim |s_n| = +\infty$. Hint: Apply (a) to the sequence $t_n = \frac{1}{|s_n|}$; see Theorem 9.10.

Solution 1.

Problem 2 (9.14). Let p > 0. Use Exercise 9.12 to show

$$\lim_{n \to \infty} \frac{a^n}{n^p} = \begin{cases} 0 & \text{if } |a| \le 1\\ +\infty & \text{if } a > 1\\ does & \text{not exist} & \text{if } a < -1. \end{cases}$$

Hint: For the a > 1 case, use Exercise 9.12(b).

$$\frac{1}{n^2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Solution 2.

Problem 3 (10.6). (a) Let (s_n) be a sequence such that

$$|s_{n+1} - s_n| < 2^{-n}$$
 for all $n \in \mathbb{N}$.

Prove (s_n) is a Cauchy sequence and hence a convergent sequence.

(b) Is the result in (a) true if we only assume $|s_{n+1} - s_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$?

Solution 3.

Problem 4 (10.8). Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \cdots + s_n)$. Prove (σ_n) is an increasing sequence.

Solution 4.

Problem 5 (10.10). Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.

- (a) Find s_2 , s_3 and s_4 .
- (b) Use induction to show $s_n > \frac{1}{2}$ for all n.
- (c) Show (s_n) is a decreasing sequence.
- (d) Show $\lim s_n$ exists and find $\lim s_n$.

Solution 5.

Problem 6 (10.12). Let $t_1 = 1$ and $t_{n+1} = \left[1 - \frac{1}{(n+1)^2}\right] \cdot t_n$ for $n \ge 1$.

- (a) Show $\lim t_n$ exists.
- (b) What do you think $\lim t_n$ is?
- (c) Use induction to show $t_n = \frac{n+1}{2n}$.
- (d) Repeat part (b).

Solution 6.