

Республиканская физическая олимпиада (III этап) 2009 год.

Теоретический тур.

9 класс.

Задание 1. «Просто кинематика»

- **1.1** Материальная точка движется вдоль оси Ox. Проекция ее скорости на эту ось зависит от времени по закону представленному на графике 1.
- **1.1.1** Постройте график зависимости координаты точки от времени, считая, что при t = 0 материальная точка находилась в начале координат.
- **1.1.2** Найдите путь и перемещение точки за все время движения (за 8 секунд).
- **1.2** Материальная точка движется вдоль оси Ox. Проекция ее ускорения на эту ось зависит от времени по закону представленному на графике 2.
- **1.2.1** Постройте график зависимости проекции скорости на ось Ox от времени, считая, что при t=0 скорость точки равнялась нулю.
- **1.2.2** Найдите путь и перемещение точки за все время движения (за 8 секунд).

- **1.3** На практике в разных странах используются различные системы единиц измерения. Вы должны уметь переводить физические величины от одних единиц измерения к другим.
- **1.3.1** В США в качестве единицы измерения часто используется миля (1 миля = 1609 м). Автомобиль движется со скоростью $60 \frac{MUЛb}{vac}$. Выразите скорость автомобиля в $\frac{M}{c}$.
- **1.3.2** В аэродинамике скорость тел часто измеряют в *Махах* (отношение скорости тела, к скорости звука скорость в *1 Мах* равна скорости звука). Самолет движется со скоростью $2600\frac{\kappa M}{vac}$. Найдите его скорость в *Махах*. Считайте, что скорость звука в воздухе равна $330\frac{M}{c}$.
- **1.4** Материальная точка движется вдоль оси Ox . Проекция ее скорости V на эту ось зависит от времени t по закону

$$V = V_0 \sqrt{1 - \frac{t^2}{\tau^2}} \,, \tag{1}$$

где V_0 и au - известные постоянные величины, V_0 задана в $\frac{ extit{M}}{c}$, au - в секундах.

Точка движется, когда ее скорость отлична от нуля, в том числе и при отрицательных значениях t.

- **1.4.1** Постройте график зависимости величины $\frac{V}{V_0}$ (т.е. скорости, измеренной в
- единицах V_0) от величины $\frac{t}{ au}$ (т.е. времени измеренном в единицах au).
- **1.4.2** Используя построенный график, найдите путь (в M), пройденный точкой, за все время движения.
- **1.4.3** Используя тот же график, найдите зависимость ускорения точки (в единицах системы СИ) от времени.

<u>Задание 2</u> «Кастрюля»

В этой задаче Вам необходимо описать нагревание и остывание воды в кастрюле с учетом теплообмена с окружающей средой. Как Вам, наверное, известно, мощность тепловых потерь в окружающую среду пропорциональна разности температур тела и окружающей среды:

$$P_{\uparrow} = \alpha (T - T_0) \tag{1},$$

где α - коэффициент тепловых потерь (постоянная для поверхности некоторого вещества величина); T - температура тела; T_0 - температура окружающей среды.

В кастрюлю доверху наливают $m = 3.0 \, \kappa c$ воды (удельная теплоемкость $c = 4200 \, \mathcal{J} \mathcal{M} / \kappa c^{\circ} C$) при $T = 0.0^{\circ} C$ и ставят на плиту.

При решении задачи используйте следующие приближения:

- мощность плиты постоянна;
- плита передает тепло только кастрюле;
- температуры воды и кастрюли всегда одинаковы;
- температура окружающей среды остается всегда постоянной;
- потери тепла через дно кастрюли отсутствуют;
- вода не испаряется;
- теплоемкость кастрюли равна нулю.
- **2.1** Плиту включили и измерили зависимость температуры от времени. В результате были получены следующие данные. От $0^{\circ}C$ до $5^{\circ}C$ вода нагрелась за 51 секунду; от $40^{\circ}C$ до $45^{\circ}C$ за 89 секунд; и от $80^{\circ}C$ до $85^{\circ}C$ за 339 секунд.
- **2.1.1** Исходя из этих данных, покажите, что мощность теплопотерь действительно пропорциональна разности температур (формула (1)).
- **2.1.2** Определите коэффициент тепловых потерь α . Укажите размерность этого коэффициента.
 - **2.1.3** Определите, за какое время вода нагревается от $20^{\circ}C$ до $25^{\circ}C$.
- **2.1.4** Определите, до какой максимальной температуры можно нагреть воду на этой плите.
- **2.2** После длительного нагревания, плиту выключили, и кастрюля начала остывать. Было обнаружено, что вода остыла от $95^{\circ}C$ до $90^{\circ}C$ за 67 секунд; от $65^{\circ}C$ до $60^{\circ}C$ за 114 секунд; и от $35^{\circ}C$ до $30^{\circ}C$ за 393 секунды.

- **2.2.1** Покажите, что и в этом случае мощность теплопотерь пропорциональна разности температур.
 - **2.2.2** Определите значение комнатной температуры T_0 .
 - **2.2.3** Определите, за какое время вода остывает от $50^{\circ}C$ до $45^{\circ}C$.
 - **2.2.4** Используя данные части 2.1, определите мощность электрической плиты P.

Задание 3. «Чем длина отличается от ширины?»

3.1 Цилиндр радиуса r и длиной L изготовлен из материала с удельным электрическим сопротивлением ρ_1 . Цилиндр покрывают тонкой оболочкой толщиной h (h << r) из материала, удельное сопротивление которого равно ρ_2 . Полученный таким образом образец зажимают между двумя хорошо проводящими пластинами. Найдете электрическое сопротивление полученного элемента, при его подключении к проводящим пластинами.

3.2 Электрическая цепь, состоящая из двух последовательно соединенных резисторов, сопротивления которых равны R_1 и R_2 , подключена к источнику постоянного напряжения U_0 . Найдите силу тока в цепи и напряжение на резисторе R_1 .

3.3 В цепи, рассмотренной в предыдущем пункте, к резистору R_{1} параллельно подключают резистор сопротивлением R_{0} . При этом в цепь включают амперметр и вольтметр, как Считая приборы идеальными показано схеме. (сопротивление амперметра пренебрежимо вольтметра очень сопротивление велико), показания этих приборов. Найдите показания этих приборов, если сопротивление R_0 значительно больше сопротивлений

 R_1 и R_2 . В этом случае ток через амперметр оказывается малым, поэтому вместо амперметра в цепь включают миллиамперметр.

3.4 Для измерения удельного сопротивления изоляционного материала используют следующую методику. Цилиндр радиуса r и длиной L (L>>r) с удельным сопротивлением ρ_0 покрывают тонким слоем исследуемого материала толщиной h (h<< R) . Полученный таким образом элемент помещают внутрь цилиндрической трубки, электрическое сопротивление которой пренебрежимо мало. Этот элемент включают в электрическую цепь, как показано на схеме. Напряжение

источника равно U_0 , амперметр показывает малый (по сравнению с током через источник) ток величиной I. Определите по этим данным удельное электрическое сопротивление исследуемого изоляционного материала.

Во всех пунктах данной задачи сопротивлением подводящих проводов можно пренебречь.

11 класс.

Задание 1. Электрическое поле Земли

Между поверхностью Земли и ионосферой существует электрическое поле, которое можно считать примерно однородным. Напряженность поля Земли

$$E_0 = 100 \frac{B}{M}$$
, а его направление

соответствует отрицательному заряду Земли. Будем считать, что отрицательный заряд равномерно распределен по поверхности нашей планеты несмотря на то, что физические свойства суши и воды заметно различаются. На высоте $h \approx 50\,\kappa M$ в атмосфере находится однородный слой положительно заряженных частиц, называемых *ионосферой*. Суммарный электрический заряд Земли и ионосферы равен нулю. Радиус Земли $R_3 = 6.4 \cdot 10^6 \, M$, ускорение свободного падения $g = 9.8 \frac{M}{c^2}$. Диэлектрическую проницаемость воздуха примите равной диэлектрической проницаемости вакуума $\varepsilon \approx 1$.

1.1 Для измерения электрического заряда Земли предлагается следующий эксперимент. Подвесим незаряженный проводящий шарик массы m=2,0 и радиуса r=1,0 см на проводящей пружине малой электроемкости. При этом шарик растянул пружину на $\Delta l_1=2,5$ см . После установления равновесия шарик при помощи ключа K подключили к источнику постоянного напряжения U=20 кВ . Вычислите удлинение пружины Δl_2 после замыкания ключа K в новом положении равновесия. Найдите относительное

изменение удлинения пружины $\varepsilon = \frac{\Delta l_2 - \Delta l_1}{\Delta l_1}$ после замыкания ключа K. Сделайте

выводы о возможности измерения заряда планеты подобным способом. Считайте, что в этом пункте на шарик действует только электрическое поле Земли.

1.2 Для более точного измерения напряженности поля Земли использовали электрометра, основной частью которого служат два небольших одинаковых шарика массой $m=1,5\,\varepsilon$ каждый, подвешенных на легких проводящих нитях длины $l=50\,\mathrm{cm}$ каждая. Проводящий корпус электрометра заземлен и экранирует поле Земли. На стержне электроскопа укреплен проводящий диск радиусом $R=1,0\,\mathrm{m}$.

$$|\vec{g}|_{B}^{A}$$

Два таких же проводящих параллельных диска, соединенные проводником AB, для зарядки посредством электростатической индукции в поле Земли сблизили на

малое расстояние d. После разрыва проводника AB верхний диск A подносят на малое расстояние к диску электроскопа, не касаясь его. Затем аналогичным образом заряжают следующий диск A' и кладут его на диск A. Процесс зарядки повторяют N=10 раз. Оцените расстояние a, на которое разойдутся лепестки электроскопа после зарядки. Укажите знак электрического заряда шариков электроскопа в описанном эксперименте.

- **1.3** Предполагая, что удельное сопротивление воздуха постоянно и равно $\rho = 2.9 \cdot 10^{13} \ Om \cdot m$, найдите силу тока I утечки с поверхности Земли через атмосферу к ионосфере. Оцените время разрядки τ Земли вследствие существования тока утечки.
- **1.4** Удивительно, но, несмотря на ток утечки, электрический заряд Земли с течением времени практически не меняется. Следовательно, должен существовать ток подзарядки планеты, который компенсирует ее разрядку с течением времени. Основной механизм подзарядки Земли осуществляется в результате грозовой активности в атмосфере.

При зарождении грозового фронта в результате электризации капелек воды в восходящих потоках воздуха в атмосфере образуются области положительного (в верхней части облака) и отрицательного (в его нижней части) зарядов . Считайте, что эти области накопления зарядов имеют форму шара радиуса $r \approx 0.10 \, \text{кm}$. Расстояние между этими областями примите равным $H = 5.0 \, \text{кm}$, а расстояние от нижнего края грозового облака до земли $h \approx 1.0 \, \text{кm}$. Известно, что при напряженности электрического

поля $E_1 = 3.0 \frac{\kappa B}{c_M}$ (и более) наступает пробой воздуха, при котором

он становится проводником. Примем, что в этот момент ударяет молния. Оцените, при каком минимальном заряде q_{\min} заряженной области облака в Землю может ударить молния? В данном пункте считайте поверхность Земли хорошим проводником.

1.5 Считая, что при ударе мощной молнии, длящемся $\tau_2 = 40\,\text{мc}$ средняя сила тока $I_2 = 200\,\text{кA}$, и что грозы на планете в течение года происходят равномерно, оцените среднее количество ударов молний в Землю на Земле в течение суток.

Подсказка. Потенциал заряженного шара радиуса R и имеющего заряд д равен

$$\varphi = \frac{q}{4\pi\varepsilon_0 R}.$$

<u>Задание 2.</u> «Ваттметр»

Существует множество хитроумных устройств, измеряющих мощность в цепи постоянного тока. Принцип их работы сводится к тому, чтобы каким-либо способом перемножить ток и напряжение на нагрузке. Мы предлагаем Вам рассмотреть наиболее простую схему такого устройства, состоящую из резисторов, вольтметра и двух диодов.

2.1. Сначала разберемся с диодом. Этот полупроводниковый прибор является нелинейным элементом, т.е. сила тока не пропорциональна напряжению. В данной задаче диоды будут включаться в прямом направлении. В этом случае можно считать, что сила тока пропорциональна квадрату напряжения:

$$I_D = kU_D^2,$$

где k – известный коэффициент.

 $^{^{1}}$ Механизм разделения зарядов в восходящих потоках очень сложен и в данной задаче не рассматривается.

- **2.1.1** Рассмотрим участок цепи, состоящей из последовательно включенного диода и резистора с сопротивлением R (рис. 1). Разность потенциалов на участке равна $\Delta \varphi$. Определите силу тока, текущего в этом участке.
- **2.1.2** Определите разность потенциалов на резисторе $\Delta arphi_{\scriptscriptstyle R}$.

2.1.3 Покажите, что если выполняется условие:

$$kR\Delta\varphi <<1$$
,

то сила тока в таком участке $I \approx k(\Delta \varphi)^2$, а разность потенциалов на резисторе $\Delta \varphi_R \approx Rk(\Delta \varphi)^2$.

Воспользуйтесь формулой приближенного вычисления:

$$(1+x)^{\alpha} \approx 1 + \alpha x \quad x << 1.$$

2.2 Схема ваттметра представлена на рис.2. Устройство состоит из двух участков с диодами (AE и BF), резистора R_1 и вольтметра. Сопротивление резистора R, гораздо больше сопротивления нагрузки ($R >> R_H$). Кроме того, выполняется условие пункта 1.3: $kR\Delta \varphi << 1$. Вольтметр — идеальный, т.е. обладает очень большим сопротивлением.

2.2.1 Напряжение в цепи равно U , сила тока, текущего в нагрузке, равна I . Выберем потенциал нижнего проводника равным нулю ($\varphi_0 = 0B$), а потенциал второго проводника,

Рис.2

идущего от источника напряжения, $\varphi_{\rm l} = U$ (точка A на рис. 2). Определите потенциалы точек B , C и D .

2.2.2 Определите разность потенциалов между точками C и D. Преобразуйте, полученное выражение к виду:

$$U_V = \xi IU$$
.

Выразите коэффициент ξ через k, R, R_1 и R_H .

- **2.2.3** Покажите, что при малом сопротивлении резистора $R_{\rm l}$ по сравнению с сопротивлением нагрузки ($R_{\rm l} << R_{\rm h}$), коэффициент ξ не зависит от $R_{\rm h}$, а определяется только характеристиками элементов ваттметра.
- **2.2.4** Определите относительную погрешность η измерения мощности в приближении, описанном в предыдущем пункте.

7

Задание 3. «Сила и импульс»

3.1 Небольшой упругий шарик массы m быстро движется со скоростью v_0 по гладкой горизонтальной поверхности, ограниченной двумя стенками, находящимися на расстоянии l

друг от друга. Найдите среднюю силу давления шарика на одну из стенок, считая все удары шарика о стенки абсолютно упругими.

<u>Пояснение.</u> Сила давления возникает из-за ударов шарика о стенку. В соответствии со вторым законом Ньютона средняя сила равна отношению импульса, полученного стенкой ко времени, в течение которого этот импульс был получен $F = \frac{\Delta p}{\Delta t}$. В данном случае усреднение должно проводиться за промежуток времени Δt , значительно превышающий время между ударами шарика о стенку.

3.2 Два упругих тела движутся вдоль оси Ox: тело массы m_1 со скоростью u_0 , тело массы m_2 со скоростью v_0 . Тела сталкиваются абсолютно упруго.

- 3.1.1 Найдите скорости тел после столкновения.
- **3.1.2** Допустим, масса второго тела пренебрежимо мала. Чему будут равны скорости тел после столкновения в этом случае.
- **3.3** Рассмотрим движение тяжелого поршня и легкого шарика массы m, (который можно считать материальной точкой) по гладкой горизонтальной

поверхности, ограниченной вертикальной стенкой. Столкновения шарика с поршнем и стенкой абсолютно упругие. Поршень движется с малой постоянной скоростью u_0 по направлению к стенке. Первоначально шарик находится на расстоянии l_0 от стенки.

- **3.3.1** Чему будет равна скорость шарика v_1 после его столкновения с поршнем?
- **3.3.2** На каком расстоянии l_1 от стенки шарик столкнется с поршнем следующий раз? Через какой промежуток времени τ_1 произойдет это столкновение?
- **3.3.3** Найдите скорость шарика v_k после k-того столкновения с поршнем (k номер удара шарика о поршень). На каком расстоянии l_k произойдет следующее столкновение? Через какой промежуток времени τ_k оно произойдет?

Выразите величины $v_{\scriptscriptstyle k}$, $l_{\scriptscriptstyle k}$, $\tau_{\scriptscriptstyle k}$ в явном виде через заданные значения $l_{\scriptscriptstyle 0}$ и $u_{\scriptscriptstyle 0}$.

3.3.4 Покажите, что средняя сила давления шарика на стенку F , зависит от расстояния поршня до стенки l по закону

$$F = Al^{\gamma}$$
,

где A и γ - постоянные величины. Найдите, чему они равны.

По-прежнему считайте, что промежуток времени, за который происходит усреднение, значительно больше времени между ударами шарика о стенку. Также можно считать, что число столкновений шарика с поршнем очень велико.