

Long-term Stable, Large-Scale, Optical Timing Distribution Systems with Sub-Femtosecond Timing Stability

M.Y. Peng¹, P.T. Callahan¹, A.H. Nejadmalayeri¹, F.X. Kärtner¹ K. Ahmed², S. Valente², M. Xin², F.X. Kärtner² J.M. Fini³, L. Grüner-Nielsen³, E. Monberg³, M.Yan³ P. Battle⁴, T.D. Roberts⁴

¹Department of EECS and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA ²Center for Free-Electron Laser Science, DESY, Hamburg, Germany ³OFS Laboratories, Somerset, NJ, USA ⁴AdvR, Inc., Bozeman, MT, USA

Timing Distribution for X-ray Free Electron Laser

Timing Link Stabilization Scheme

- 1. Detect timing error at link input via Balanced Optical Cross-correlator (BOC)
- 2. Compensate error with negative feedback via Variable Delay

Balanced Optical Cross-Correlator (BOC)

Previous Results

Eliminating Polarization-Mode Dispersion

PM Link Testbed with Temperature Stabilization

Long-term Stabilization

Long-term Stabilization

Laser Timing Jitter Measurement

Ultralow-noise femtosecond lasers

- Sub-femtosecond timing jitter
- Commercially available

Laser Timing Jitter Measurement

BOC Method (requires locking laser's repetition rate)

Timing Jitter measurement results

Bulk-Optic vs Waveguide BOC

Need to improve BOC accuracy...

Bulk-Optic Crystal

- Poor Environmental Isolation
 - Thermal
 - Acoustic
 - Vibration
- Limited SHG power
 - Fiber nonlinearity

Integrated Waveguides

- > Fiber-coupled packaging
 - Ease of implementation
 - Eliminates free-space misalignment and drift
- Higher SHG power
 - Tightly-confined mode
 - Longer interaction length
 - x10–100 SHG efficiency

Comparison of Measured SHG Efficiency

Bulk-optic crystal BOC:

$$\tau$$
 = 200 fs
 f_r = 200 MHz
 $P_{avg,FH}$ = 15 mW
 $P_{avg,SH}$ = 60 μ W

$$\Rightarrow$$
 η = 0.4 %*

Waveguide BOC:

$$η_0$$
 = 1.76 % / [W-cm²]
L≈ 1.72 mm
(same input pulses)

- > Lower operating power
 - Reduce nonlinearity-induced timing errors
 - Increase number of links

Fiber-Coupled Waveguide Device

> Preliminary Device Operation

4 mV/fs timing sensitivity

Further improvements

- Coupling loss
- Dispersion-compensation

Conclusion

1.2-km PM Link Stabilization

- PM fiber reduced PMD effects (sub-10fs limited)
 - 0.6 fs RMS drift over 16 days → limited by temperature drifts
 - 0.13 fs RMS drift over 3 days

Laser Timing Jitter

- Low jitter fs lasers commercially available (Onefive-ORIGAMI-15)
 - <70 as integrated jitter for f = [1 kHz, 1 MHz]</p>

Integrated BOC

- Increased SHG conversion efficiency (vs bulk-optic crystals)
 - 50x expected improvement
 - 4 mV/fs measured can be further improved

