Восстановление пропущенных значений временного ряда

Ничто не бъет человека в лоб с такой силой, как пропущенное им мимо ушей.

Ю. Слободенюк

© М.Л. Цымблер 07.12.2023

Содержание

- Постановка задачи
- Классификация методов восстановления
- Аналитические методы восстановления
- Нейросетевые методы восстановления
- Оценка точности восстановления

Восстановление потокового ряда в режиме реального времени

Одномерный ряд

Многомерный ряд

Восстановление ряда (в режиме офлайн)

Одномерный ряд

Многомерный ряд

Механизмы формирования пропущенных значений

- MCAR (Missing Completely At Random), совершенно случайный пропуск Вероятность пропуска не зависит от имеющихся и пропущенных данных
- MAR (Missing At Random), случайный пропуск
 Вероятность пропуска не зависит от пропущенных данных, но зависит от имеющихся данных
- MNAR (Missing Not At Random), неслучайный пропуск Вероятность пропуска зависит от пропущенных данных

независимо от дня недели, времени суток, температуры и др.

Датчик может выходить из строя в дни с очень низкой/высокой температурой

Классификация методов восстановления

- Интерполяция заполнение пропусков на основе функции(-й), синтезируемой на основе известных значений
- Сглаживание заполнение пропусков на основе среднего значения или др. статистических мер
- Машинное обучение
 - Аналитические алгоритмы (обучение без учителя)
 - Нейросетевые методы

Линейная интерполяция

- На соседних точках [i, k, j] ($t_k = \text{NULL}$) функция t(k) заменяется прямой, проходящей через точки (i, t_i) и (j, t_j) , которая задается уравнением $\frac{t-t_i}{t_j-t_i} = \frac{k-i}{j-i}$
- Приближенное представление ряда в виде кусочно-линейной функции

Содержание

- Постановка задачи
- Классификация методов восстановления
- Аналитические методы восстановления
- Нейросетевые методы восстановления
- Оценка точности восстановления

Восстановление на основе шаблонов

• Основные идеи

- Базовый ряд (base time series) может иметь пропуски
- Опорные ряды (reference time series) не имеют пропусков
- Высокое сходство между базовым и опорными рядами
- При обнаружении пропуска для каждого опорного ряда определяется образец – набор точек, захватывающих момент (для офлайн) или предшествующих моменту (для онлайн) пропуска
- В опорных рядах выполняется поиск по образцу
- Точки найденных шаблонов используются для синтезирования пропусков (усреднение и др.)

Параметры

- Длина образца влияет на точность и производительность:
 маленькая длина потеря точности (особенно для нецикличных рядов), большая длина возрастание затрат на поиск
- Способ поиска шаблона, мера схожести, число искомых шаблонов

TKCM (Top-*k* Case Matching)

Wellenzohn K. et al. Continuous imputation of missing values in streams of pattern-determining time series. EDBT 2017.

_
k = 2
$\ell = 3$
d=2
i, j
$ \mathbf{A}, \mathbf{A} = k$

- Найти *k* наиболее похожих шаблонов
 - шаблон не содержит момент пропуска
 - шаблоны не пересекаются между собой
 - отличие между шаблонами и образцами минимально

$$\triangle = \sum_{i \in \mathbf{A}}^{k} \delta\left(R_{i,\ell}, R_{n-\ell+1,\ell}\right) \to \min$$

$$\delta(R_{i,\ell}, R_{n-\ell+1,\ell}) = \sqrt{\sum_{p=1}^{d} \sum_{q=0}^{\ell} (r_{i-q}^{(p)} - r_{n-q}^{(p)})^2}$$

• Восстановить усреднением значений в якорных точках

$$\tilde{t}_n = \frac{1}{k} \sum_{i \in \mathbf{A}}^k t_i$$

Сингулярное разложение (SVD, Singular Value Decomposition)

- Сингулярное разложение матрицы $M \in \mathbb{R}^{m \times n}$ $M = U \cdot \Sigma \cdot V^{\mathrm{T}}$
- Матрица левых сингулярных векторов $U \in \mathbb{R}^{m \times m}$ унитарная: $UU^{\mathrm{T}} = E$
- Матрица правых сингулярных векторов $V \in \mathbb{R}^{n \times n}$ унитарная: $VV^T = E$
- Матрица сингулярных элементов $\Sigma \in \mathbb{R}^{m \times n}$ $\forall i \neq j \; \Sigma_{ij} = 0,$ $\forall i = j \; \Sigma_{ij} -$ сингулярное число матрицы M
- $\sigma \in \mathbb{R}_+$ сингулярное число матрицы M, если:
 - $\exists u \in \mathbb{R}^m, v \in \mathbb{R}^n ||u|| = ||v|| = 1$ (левый и правый сингулярные векторы);
 - $-Mv = \sigma u \wedge M^{\mathrm{T}}u = \sigma v$

SVD: пример

Сокращенное сингулярное разложение (Reduced SVD)

Восстановление на основе матричного разложения

Содержание

- Постановка задачи
- Классификация методов восстановления
- Аналитические методы восстановления
- Нейросетевые методы восстановления
- Оценка точности восстановления

07.12.2023

BRITS (Bidirectional Recurrent Imputation for Time Series)

Cao W. et al. BRITS: Bidirectional recurrent imputation for time series. NeurIPS 2018.

https://proceedings.neurips.cc/paper_f iles/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf

- Два слоя рекуррентных нейронов для обработки входной подпоследовательности и ее реверскопии
- Количество нейронов в слое совпадает с длиной подпоследовательности
- Каждый нейрон прогнозирует следующую точку, учитывая все предшествующие ей точки
- Пропущенная i-я точка восстанавливается как среднее прогнозов обоих слоев по (i-1)-й точке, которое далее передается на вход (i+1)-го нейрона

NAOMI (Non-AutOregressive Multiresolution Imputation)

Liu Y. *et al.* NAOMI: Non-autoregressive multiresolution sequence imputation. NeurIPS 2019. 11236–11246. https://proceedings.neurips.cc/paper_files/paper/2019/file/50c1f44e426560f3f2cdcb3e19e39903-Paper.pdf

- Энкодер преобразует $(x_1, ..., x_5)$ в скрытые состояния
- Декодер предсказывает x_3 , используя скрытые состояния h_1 , h_5
- После предсказания скрытые состояния обновляются
- Затем x_2 восстанавливается на основе x_1 и x_3
- Процесс повторяется, пока не восстановлены все пропуски

- Энкодер и Декодер представляют собой два слоя рекуррентных нейронов, направленных друг к другу
- Энкодер для каждой из двух крайних точек подпоследовательности формирует ее скрытое состояние
- Декодер, используя полученные от Энкодера значения скрытого состояния крайних точек, восстанавливает значение точки, находящейся в середине подпоследовательности
- Далее Энкодер+Декодер так же рекурсивно обрабатывает части входной подпоследовательности слева и справа от ее серединной точки

GAIN (Generative Adversarial Imputation Networks)

Yoon J. *et al.* GAIN: Missing data imputation using generative adversarial nets. ICML 2018. Proc. of Machine Learning Research. 2018. 80, 5675–5684 https://arxiv.org/abs/1806.02920

• Cxema GAN

- Генератор принимает на вход вектор случайных чисел и продуцирует синтетическую подпоследовательность меньшей длины
- Дискриминатор оценивает вероятность факта, является ли некая входная подпоследовательность ряда реальной или синтетической
- Обучение Генератора и Дискриминатора осуществляется совместно:
 - сперва производится обновление весов нейронов Дискриминатора для максимизации точности классификации реальных и синтетических данных;
 - далее выполняется обновление весов нейронов Генератора для минимизации расхождения реальных и синтетических данных, полученных Генератором
- Генератор получает на вход исходную подпоследовательность, в которой пропущенные значения заменены на случайный шум, и битовую матрицу пропусков
- Дискриминатор получает на вход исходную подпоследовательность с пропусками и ее версию с восстановленными значениями и определяет степень правдоподобия восстановленных значений

Содержание

- Постановка задачи
- Классификация методов восстановления
- Регрессионные методы восстановления
- Аналитические методы восстановления
- Нейросетевые методы восстановления
- Оценка точности восстановления

Метрики точности восстановления

- Средняя квадратичная ошибка MSE, Mean Squared Error
- Средняя абсолютная ошибка **MAE**, Mean Absolute Error
- Коэффициент детерминации **R**², квадрат коэффициента корреляции
- Средняя абсолютная процентная ошибка **MAPE**, Mean Absolute Percentage Error
- Корень средней квадратичной ошибки **RMSE**, Root Mean Square Error
- Симметричная MAPE **SMAPE**, Symmetric MAPE
- Средняя абсолютная масштабированная ошибка **MASE**, Mean absolute scaled error

Средняя квадратичная ошибка (Mean Squared Error)

$$MSE = \frac{1}{h} \sum_{i=1}^{h} (t_i - \tilde{t}_i)^2$$

- Полезна, когда важно минимизировать большие ошибки (большие ошибки штрафуются сильнее, чем маленькие)
- Неустойчива к выбросам. Затрудняет интерпретацию результатов (ошибка в квадрате)
- Если важно минимизировать среднюю ошибку без учета величины ошибок, то лучше использовать МАЕ. Если важно минимизировать процентную ошибку, то лучше использовать МАРЕ или SMAPE

Средняя абсолютная ошибка (Mean Absolute Error)

$$MAE = \frac{1}{h} \sum_{i=1}^{h} |t_i - \tilde{t}_i|$$

- Полезна, когда важно минимизировать среднюю ошибку без учета величины ошибок и когда выбросы не являются серьезной проблемой
- Преимущества по сравнению с MSE
 - Более устойчива к выбросам: не штрафует большие ошибки сильнее, чем маленькие
 - Облегчает интерпретацию результатов: измеряет ошибку в тех же единицах, что и исходные данные
- Недостатки по сравнению с MSE
 - Может быть менее чувствительна к изменениям в данных и не давать достаточно большого веса большим ошибкам

Коэффициент детерминации

$$R^{2} = 1 - \frac{\sum_{i=1}^{h} (t_{i} - \tilde{t}_{i})^{2}}{\sum_{i=1}^{h} (t_{i} - \bar{t})^{2}}$$

- Измеряет долю дисперсии спрогнозированной/восстановленной части ряда в общей дисперсии ряда. Соответствует нормированной среднеквадратичной ошибке
- Если $R^2 \approx 1$, то модель/алгоритм хорошо объясняет данные. Если $R^2 \approx 0$, то качество прогноза сопоставимо с константным предсказанием
- Завышенное качество при малом количестве данных или наличии в данных выбросов и/или неслучайных ошибок (систематические ошибки измерения и др.). Неадекватное сравнение моделей при использовании ими разных наборов переменных

Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error)

$$MAPE = 100\% \cdot \frac{1}{h} \sum_{i=1}^{h} \frac{|t_i - \tilde{t}_i|}{|t_i|}$$

- Метрика с простой интерпретацией: ошибка прогноза составляет МАРЕ от фактических значений
- Полезна, когда прогнозные значения имеют разный масштаб или положительные и отрицательные отклонения прогноза от фактических значений влияют на результат одинаково
- Неустойчива к выбросам. Может давать некорректные результаты, когда фактические значения близки к нулю

Корень средней квадратичной ошибки (Root Mean Square Error)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{h} \sum_{i=1}^{h} (t_i - \tilde{t}_i)^2}$$

- Среднеквадратическое отклонение прогноза от фактического значения. Чем меньше RMSE, тем лучше качество прогноза
- Неустойчива к выбросам. Может давать некорректные результаты, когда фактические значения близки к нулю
- Одна из наиболее часто используемых метрик

Симметричная MAPE (SMAPE, Symmetric MAPE)

$$SMAPE = \frac{1}{h} \sum_{i=1}^{h} 2 \cdot \frac{|t_i - \tilde{t}_i|}{|t_i| + |\tilde{t}_i|}$$

- Средняя относительная ошибка прогноза в процентах. Чем меньше SMAPE, тем лучше качество прогноза
- Полезна, когда прогнозные значения имеют разный масштаб или положительные и отрицательные отклонения прогноза от фактических значений влияют на результат одинаково
- Неустойчива к выбросам. Может давать некорректные результаты, когда фактические значения близки к нулю

Средняя абсолютная масштабированная ошибка (Mean absolute scaled error)

$$MASE = \frac{\frac{1}{h}\sum_{i=1}^{h}|t_i - \tilde{t}_i|}{\frac{1}{h-1}\sum_{i=2}^{h}|t_i - prev(t_i)|}$$

- Измеряет МАЕ в единицах фактических значений ряда, нормированную на МАЕ наивного прогноза (предыдущее значение ряда)
- Позволяет сравнивать качество восстановления/прогноза разных рядов
- Если MASE < 1, то прогноз лучше, чем наивный прогноз, MASE = 1 не лучше, MASE > 1 хуже. Например,
 - *MASE* = 0.5: МАЕ прогноза в 2 раза меньше, чем МАЕ наивного прогноза
 - *MASE* = 2: MAE прогноза в 2 раза больше, чем MAE наивного прогноза

Метрики точности восстановления: резюме

Метрика	Применение и недостатки
MSE	 Важно минимизировать большие ошибки Неустойчива к выбросам, может давать завышенную оценку качества модели
MAE	 Важно минимизировать ср. ошибку, независимо от ее размера. Менее чувствительна к выбросам, чем МSE Менее чувствительна к изменениям в данных, чем MSE. Может не давать большого веса большим ошибкам
\mathbb{R}^2	 Оценка соответствия модели данным в целом. Сравнение качества нескольких моделей Неустойчива к выбросам. Отсутствие возможности сравнения моделей с разными наборами переменных
MAPE	 Важно минимизировать процентную ошибку. Сравнение качества моделей на разных временных рядах Неустойчива к выбросам, может давать некорректные результаты, когда фактические значения близки к нулю
RMSE	 Важно минимизировать большие ошибки. Сравнение качества моделей на одном временном ряде Неустойчива к выбросам, может давать некорректные результаты, когда фактические значения близки к нулю
SMAPE	 Важно минимизировать процентную ошибку. Сравнение качества моделей на одном временном ряде Неустойчива к выбросам, может давать некорректные результаты, когда фактические значения близки к нулю
MASE	 Сравнение качества модели с качеством наивного прогноза. Сравнение качества моделей на разных рядах Неустойчива к выбросам

Дополнительный показатель: корреляции Пирсона и Спирмена

$$Pearson(T, \tilde{T}) = \frac{\sum_{i=1}^{h} t_i \tilde{t}_i - h \mu_T \mu_{\tilde{T}}}{h \sigma_T \sigma_{\tilde{T}}}$$

 $Spearman(T, \tilde{T}) = Pearson(r(T), r(\tilde{T}))$

Шкала Чеддока силы корреляции

- +1.0 идеальная положительная
- +0.9 очень сильная положительная
- +0.7 сильная положительная
- +0.4 умеренная положительная
- +0.1 слабая положительная
 - 0.0 отсутствие корреляции
- -0.1 слабая отрицательная
- -0.4 умеренная отрицательная
- **-0.7** сильная отрицательная
- **-0.9** очень сильная отрицательная
- **-1.0** идеальная отрицательная

1-я строка: линейная зависимость

2-я строка: линейная зависимость с наклоном

3-я строка: нелинейная зависимость

Карл Пирсон (**Karl Pearson**) 1857-1936

Чарльз Спирмен (Charles Spearman) 1863-1945

Сценарии оценки точности восстановления: режим реального времени

- Гиперпараметры:
 - длина блока пропущенных значений (доля длины ряда)
 - количество временных рядов-координат, в которых имеются блоки пропущенных значений (доля от размерности)
- Обучающая и тестовая выборки не должны пересекаться

Сценарии оценки точности восстановления: режим офлайн

Гиперпараметры: длина блока, количество координат

Подбор алгоритма восстановления

Точность восстановления Высокая корреляция Смешанная корреляция Отключение (Blackout) Нерегулярность данных Размер данных

- Высокая корреляция: между рядами-координатами •
- Смешанная корреляция: много случаев однократной высокой/низкой и положительной/отрицательной корреляции

- *Нерегулярность данных*: флуктуации, выбросы, пики и др.
- Отключение: режим Blackout
- Размер данных: количество и длина рядов

Литература

- 1. Khayati M., Lerner A., Tymchenko Z., Cudre-Mauroux P. Mind the gap: An experimental evaluation of imputation of missing values techniques in time series. Proc. VLDB Endow. 2020. 13(5), 768–782. https://doi.org/10.14778/33773693377383
- 2. Khayati M., Arous I., Tymchenko Z., Cudre-Mauroux P. ORBITS: Online recovery of missing values in multiple time series streams. Proc. VLDB Endow. 2020. 14(3). 294–306. https://dl.acm.org/doi/10.14778/3430915.3430920
- 3. Fang C., Wang C. Time series data imputation: A survey on deep learning approaches. https://doi.org/10.48550/arXiv.2011.11347