

TD 0: SUP brief review

Exercise 1

Let's consider the circuit nearby. Following data are given:

- E = 10V, $I_0 = 10mA$
- $R_1 = 1k\Omega$, $R_2 = 1.2k\Omega$, $R_3 = 500\Omega$, $R_4 = 1.5 k\Omega$, $R_5 = 2k\Omega$

Determine Thévenin's generator as seen by R_2 . Use any method that you prefer (Equivalence or theorem directly), you will express your result in terms of I_0 , E and R_i .

Deduce then the voltage at R_2 's terminals.

Exercise 2

Let's consider the circuit nearby. We assume that E_1, E_2, I and R are known and that sources are independent.

Determine the expression of voltage \boldsymbol{U} by using the most appropriate method (namely Kirchoff's law,

superposition, Thévenin's, Norton's or Millman's theorems) by explaining your reasoning.

Exercise 3

In the following circuit:

$$E_{1} = 20 V \quad E_{2} = 5 V$$

$$E_{4} = 10 V$$

$$I_{0} = 0.25 \, mA \, R_{0} = 1 k\Omega$$

$$R_{1} = 10 \, k\Omega \, R_{2} = 50 \, k\Omega$$

$$R_{3} = 12 \, k\Omega$$

Determine the expression of voltage U by using the most appropriate method (as above, for instance Kirchoff's law, etc.). You will express U in terms of E_1 , E_2 , E_4 , I_0 and resistances R_i .

Exercise 4

Let's study the circuit nearby.

Determine U.

