May 13, 2015 Math 201, Tutorial 1

- 1) Verify by direct substitution that each of the given functions is a solution to the given DE on the specified interval and suggest why the particular interval is chosen.
 - a) $y'' = (y')^2/(2y) 2y$ $y = \sin^2(x)$ on $(0, \pi)$.
 - b) y' = y/x 4xy $y = xe^{-2x^2}$ on $(0, \infty)$.
 - c) y'' = -2y' 2y $y = e^{-t}(\sin(t) + \cos(t))$ on $(-\infty, \infty)$.
- 2) Consider the autonomous D.E. y' = (y-1)(y-2)(y-3).
 - a) Find the equilibrium solutions.
 - b) Draw the 1-dimensional phase protrait and classify the equilibrium points as stable, unstable, or semi-stable.
 - c) Comment on uniqueness and existence of the IVP associated with this DE, y(0) = 1.
- 3) Solve the following IVP problems:
 - a) $y' = -\lambda y$ where $\lambda > 0$ is a constant and y(0) = 10000. $(y = ce^{-\lambda t})$ is a one parameter family of solutions to the ODE on $(-\infty, \infty)$.
 - b) y'' + 2y' + 2y = 0 where $y(0) = y_0$ and $y'(0) = y_1$ where y_0 and y_1 are constants. $(y = e^{-t}(c_1 sin(t) + c_2 cos(t))$ is a 2 parameter family of solutions to the second order ODE on $(-\infty, \infty)$).