Wine_Quality_Groupe1

June 9, 2023

0.1 Prédicition de la qualité du vin

1. Lecture des données

```
[1]: import numpy as np import pandas as pd
```

Importons fichier de données. Il est nommé winequality.csv.

[2]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	\
0	7.4	0.70	0.00	1.9	0.076	
1	7.8	0.88	0.00	2.6	0.098	
2	7.8	0.76	0.04	2.3	0.092	
3	11.2	0.28	0.56	1.9	0.075	
4	7.4	0.70	0.00	1.9	0.076	

	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	\
0	11.0	34.0	0.9978	3.51	0.56	
1	25.0	67.0	0.9968	3.20	0.68	
2	15.0	54.0	0.9970	3.26	0.65	
3	17.0	60.0	0.9980	3.16	0.58	
4	11.0	34.0	0.9978	3.51	0.56	

```
alcohol quality
0 9.4 5
1 9.8 5
2 9.8 5
3 9.8 6
4 9.4 5
```

Avant de faire l'analyse, il est mieux de s'assurer du types de variable grâce à la fonction dtypes

[3]: df.dtypes

[3]: fixed acidity float64 volatile acidity float64 citric acid float64 residual sugar float64 chlorides float64 free sulfur dioxide float64 total sulfur dioxide float64 density float64 float64 рΗ sulphates float64 alcohol float64 quality int64dtype: object

On comprend que toutes les données sont de type numérique (float64 et int64) Maintenant voyons quelques details de chaque colonne, c'est -à-dire le nombre total, la moyenne, le minimum , le maximum et l'écart-type

[4]: df.describe()

Γ47.		e:a							`	
[4]:		fixed acidit	•	•				_	\	
	count	1599.00000			1599.000000 1599.000000					
	mean	8.31963		527821		70976		38806		
	std	1.74109		179060		94801		09928		
	min	4.60000		120000		00000		00000		
	25%	7.10000		390000		90000		00000		
	50%	7.90000	0 0.	520000	0.2	60000	2.2	00000		
	75%	9.20000	0 0.	640000	0.4	20000	2.6	00000		
	max	15.90000	0 1.	580000	1.0	00000	15.5	00000		
		chlorides	free sulfur	dioxide	total	sulfur	dioxide	de	nsity	\
	count	1599.000000	1599	0.000000		1599	9.000000	1599.0	00000	
	mean	0.087467	15	5.874922		40	6.467792	0.9	96747	
	std	0.047065	10	.460157		33	2.895324	0.0	01887	
	min	0.012000	1	.000000		(6.000000	0.9	90070	
	25%	0.070000	7	7.000000		2:	2.000000	0.9	95600	
	50%	0.079000	14	1.000000		38	3.000000	0.9	96750	
	75%	0.090000	21	.000000		6:	2.000000	0.9	97835	
	max	0.611000	72	2.000000		289	9.000000	1.0	03690	
		рН	sulphates	alo	cohol	qua.	lity			
	count	1599.000000	1599.000000	1599.00	00000	1599.000	0000			
	mean	3.311113	0.658149	10.42	22983	5.63	6023			
	std	0.154386	0.169507	1.06	55668	0.80	7569			
	min	2.740000	0.330000	8.40	00000	3.000	0000			
	25%	3.210000	0.550000		00000	5.000				
	50%	3.310000	0.620000	10.20		6.000				
	/0	0.010000	0.020000	-0.20		0.00				

75%	3.400000	0.730000	11.100000	6.000000
max	4.010000	2.000000	14.900000	8.000000

0.2 2. Analyse Exploratoire et Visualisation des données

Le type de données de la colonne **quality** est un int64 Maintenant, inspectons chaque features (colonnes) pour mieux comprendre notre dataset. Le target dans notre cas est la qualité (quality). Recherchons les nombres dont est composée notre cible afin de determiner si l'espace est restreint ou non. Cela est possible par la methode **unique()** utilisée ci-dessous.

Le target est uniquement composé de nombre allant de 3 à 8. Notre espace n'est pas infini. On vient de faire une **analyse univariée** .

Chaque nombre de l'intervale de 3 à 8 represente une catégorie de notre dataset.

Voyons l'histogramme de notre target quality

[6]: <Axes: >

Essayons de visualiser notre dataset en important les bibliothèques - seaborn - matplotlib

```
[7]: import matplotlib.pyplot as plt import seaborn as sns
```

```
[8]: # on fixe la taille de la figure
plt.figure(figsize=(16,7))
# on affiche les différents tracés
plt.subplot(1,2,1)
df['quality'].value_counts(normalize=True).plot.bar(rot=0,color='#099b8a')
plt.ylabel('Qualité')
plt.xlabel('Distribution de chaque catégorie en %')
plt.subplot(1,2,2)
# on affiche le compte de chaque catégorie de notre target
sns.countplot(data=df,y='quality')
plt.tight_layout()
plt.show()
```


La catégorie 5 a une forte distribution. Elle est secondée par la catégorie 6 . Mais la catégorie 3 présente une faible distribution

La qualité du vin est déterminée par les differentes caractéristiques qu'on appelle **features** . De ce fait regroupons tous nos features dans une variable :

```
[9]: # on stocke dans une variable les colonnes sans le target quality
df_features = df.drop(columns = 'quality')

plt.figure(figsize=(16,7))
plt.subplot(1,2,1)
```

```
ax = sns.kdeplot(df_features['alcohol'], fill = True, color = '#d1aa00')
plt.ylabel('alcohol')
plt.ylabel('Distribution de chaque catégorie en %')
plt.subplot(1,2,2)
df_features['alcohol'].plot.box()
plt.tight_layout()
plt.show()
```


hypothèse(1): Le rendu ci-dessus pourrait laisser croire que les données du feature alcohol sont plus concentrées à gauche.

Nous avons la distribution du feature alcohol. Nous allons afficher toutes les distributions des autres features . Pour cela, mettons tous nos features dans une liste.

```
[10]: # on convertit les features en une liste de columns
columns = df_features.columns.tolist()
columns
```

Déterminons la taille de notre liste, c'est-à-dire le nombre d'élément qu'elle contient :

```
[11]: len(columns)
```

[11]: 11

On voit quelle contient onze (11) éléments. Nous allons examiner tous ces éléments grâce à la boucle **for** pour pouvoir les visualiser. Cela doit permettre de voir leur disparité et leur symétrie.

```
[12]: plt.figure(figsize=(16,38))

for i, col in enumerate(columns, 1):
    plt.subplot(8,4,i)
    sns.kdeplot(df[col], color = '#d1aa00', fill = True)
    plt.subplot(8,4,i+11)
    df[col].plot.box()
plt.tight_layout()
plt.show()
```


0.3 3. Traitement des Valeurs abbérrantes

Recherchons si les caratéristiques présentent de valeur nulle.

```
[13]:
       df.isnull().sum()
[13]: fixed acidity
                                0
      volatile acidity
                                0
      citric acid
                                0
      residual sugar
                                0
      chlorides
                                0
      free sulfur dioxide
                                0
      total sulfur dioxide
                                0
      density
                                0
      рΗ
                                0
      sulphates
                                0
      alcohol
                                0
      quality
                                0
      dtype: int64
     On constate qu'il y aucune valeur nulle
     Vérifions s'il existe de valeurs manquantes
[14]:
       df.isna().sum()
[14]: fixed acidity
                                0
      volatile acidity
                                0
      citric acid
                                0
      residual sugar
                                0
      chlorides
                                0
      free sulfur dioxide
                                0
      total sulfur dioxide
                                0
      density
                                0
      рΗ
                                0
      sulphates
                                0
      alcohol
                                0
      quality
                                0
      dtype: int64
[15]: df.duplicated()
[15]: 0
               False
               False
      1
      2
               False
      3
               False
```

```
4
          {\tt True}
1594
         False
1595
         False
          True
1596
1597
         False
1598
         False
Length: 1599, dtype: bool
Il ya de valeurs en double.
Examinons de plus près encore.
```

[16]:	df.lo	c[df.dupl:	icated(),	:]									
[16]:		fixed ac	idity vo	latile	acidity	citric	aci	id resid	dual su	gar	chlori	des	\
	4		7.4		0.700		0.0	00	1	.90	0.	076	
	11		7.5		0.500		0.3	36	6	.10	0.	071	
	27		7.9		0.430		0.2	21	1	.60	0.	106	
	40		7.3		0.450		0.3	36	5	.90	0.	074	
	65		7.2		0.725		0.0)5	4	.65	0.	086	
	•••		••		•••	•••		•••					
	1563		7.2		0.695		0.3	13	2	.00	0.	076	
	1564		7.2		0.695		0.3	13	2	.00	0.	076	
	1567		7.2		0.695		0.3	13	2	.00	0.	076	
	1581		6.2		0.560		0.0)9	1	.70	0.	053	
	1596		6.3		0.510		0.3	13	2	.30	0.	076	
		free suli	fur dioxi	de tot	al sulfur	dioxid	de.	density	рН	sul	phates	\	
	4	IIOO Dull		.0	our burrur	34		0.99780	3.51	Dui	0.56	`	
	11			.0		102		0.99780	3.35		0.80		
	27			.0		37		0.99660	3.17		0.91		
	40			.0		87		0.99780	3.33		0.83		
	65			.0		11.	. 0	0.99620	3.41		0.39		
	•••		•••			•••		•••	•••				
	1563		12	.0		20	. 0	0.99546	3.29		0.54		
	1564		12	.0		20	. 0	0.99546	3.29		0.54		
	1567		12	.0		20	. 0	0.99546	3.29		0.54		
	1581		24	.0		32	. 0	0.99402	3.54		0.60		
	1596		29	.0		40	. 0	0.99574	3.42		0.75		
		alcohol	quality										
	4	9.4	5										
	11	10.5	5										
	27	9.5	5										
	40	10.5	5										
	65	10.9	5										

```
      1563
      10.1
      5

      1564
      10.1
      5

      1567
      10.1
      5

      1581
      11.3
      5

      1596
      11.0
      6
```

[240 rows x 12 columns]

Sans doute voyons-nous qu'il ya de doublons.

Alors vérifions la somme de valeur double dans le DataFrame

```
[17]: # nombre des valeurs double dans le dataframe df.duplicated().sum()
```

[17]: 240

```
[18]: # Prenons une colonne et vérifions si elle contient de valeurs double Ce sera⊔

→le feature alcohol

df.alcohol.duplicated().sum()
```

[18]: 1534

Ce feature contient aussi de valeur double.

```
[19]: # nombre de valeurs non dupliquées (~df.duplicated()).sum()
```

[19]: 1359

```
[20]: # boucle pour les valeurs dupliquées
from scipy.stats import zscore

for i in columns:
    double = df[i].duplicated().sum()
    print('Le nombre de valeur dupliquée de [',i,'] est ',double)
    # y_outliers
```

```
Le nombre de valeur dupliquée de [ fixed acidity ] est 1503

Le nombre de valeur dupliquée de [ volatile acidity ] est 1456

Le nombre de valeur dupliquée de [ citric acid ] est 1519

Le nombre de valeur dupliquée de [ residual sugar ] est 1508

Le nombre de valeur dupliquée de [ chlorides ] est 1446

Le nombre de valeur dupliquée de [ free sulfur dioxide ] est 1539

Le nombre de valeur dupliquée de [ total sulfur dioxide ] est 1455

Le nombre de valeur dupliquée de [ density ] est 1163

Le nombre de valeur dupliquée de [ pH ] est 1510
```

Le nombre de valeur dupliquée de [sulphates] est 1503 Le nombre de valeur dupliquée de [alcohol] est 1534

```
[21]: # Extraction de ligne dupliquée
      duplicateRows = df[df.duplicated()]
      duplicateRows
[21]:
            fixed acidity volatile acidity citric acid residual sugar
                                                                              chlorides \
      4
                       7.4
                                        0.700
                                                      0.00
                                                                       1.90
                                                                                  0.076
      11
                       7.5
                                        0.500
                                                      0.36
                                                                       6.10
                                                                                  0.071
      27
                       7.9
                                                      0.21
                                                                       1.60
                                        0.430
                                                                                  0.106
      40
                       7.3
                                        0.450
                                                      0.36
                                                                       5.90
                                                                                  0.074
      65
                       7.2
                                        0.725
                                                      0.05
                                                                       4.65
                                                                                  0.086
      1563
                       7.2
                                        0.695
                                                      0.13
                                                                       2.00
                                                                                  0.076
                       7.2
                                                      0.13
                                                                       2.00
      1564
                                        0.695
                                                                                  0.076
      1567
                       7.2
                                        0.695
                                                      0.13
                                                                       2.00
                                                                                  0.076
                       6.2
                                                                       1.70
      1581
                                        0.560
                                                      0.09
                                                                                  0.053
      1596
                       6.3
                                        0.510
                                                      0.13
                                                                       2.30
                                                                                  0.076
            free sulfur dioxide total sulfur dioxide density
                                                                     pH sulphates
      4
                            11.0
                                                   34.0 0.99780
                                                                   3.51
                                                                               0.56
      11
                            17.0
                                                  102.0 0.99780
                                                                   3.35
                                                                               0.80
      27
                            10.0
                                                   37.0 0.99660
                                                                   3.17
                                                                               0.91
      40
                            12.0
                                                   87.0 0.99780
                                                                   3.33
                                                                               0.83
      65
                             4.0
                                                   11.0 0.99620
                                                                   3.41
                                                                               0.39
      1563
                            12.0
                                                   20.0 0.99546
                                                                   3.29
                                                                               0.54
      1564
                            12.0
                                                   20.0 0.99546
                                                                   3.29
                                                                               0.54
      1567
                            12.0
                                                   20.0 0.99546
                                                                   3.29
                                                                               0.54
                            24.0
      1581
                                                   32.0 0.99402
                                                                   3.54
                                                                               0.60
      1596
                            29.0
                                                   40.0 0.99574
                                                                   3.42
                                                                               0.75
            alcohol quality
      4
                9.4
      11
               10.5
                            5
      27
                9.5
                            5
      40
               10.5
                            5
                            5
      65
               10.9
                            5
      1563
               10.1
               10.1
                            5
      1564
```

[240 rows x 12 columns]

10.1

11.3

11.0

1567 1581

1596

5

5

6

```
[22]: # on supprime les valeurs doubles sur les ligne
      df = df.drop_duplicates(keep=False)
      df
[22]:
            fixed acidity volatile acidity citric acid residual sugar chlorides \
                      7.8
                                       0.880
                                                     0.00
                                                                       2.6
                                                                                0.098
      2
                      7.8
                                                     0.04
                                                                       2.3
                                       0.760
                                                                                0.092
                     11.2
                                                     0.56
                                                                       1.9
      3
                                       0.280
                                                                                0.075
      5
                      7.4
                                       0.660
                                                     0.00
                                                                       1.8
                                                                                0.075
                      7.9
                                       0.600
                                                     0.06
                                                                       1.6
      6
                                                                                0.069
                                       0.620
                                                     0.08
                                                                       1.9
                                                                                0.068
      1593
                      6.8
                      6.2
      1594
                                                     0.08
                                                                       2.0
                                                                                0.090
                                       0.600
                      5.9
                                                     0.10
                                                                       2.2
      1595
                                       0.550
                                                                                0.062
      1597
                      5.9
                                                     0.12
                                                                       2.0
                                       0.645
                                                                                0.075
      1598
                      6.0
                                       0.310
                                                     0.47
                                                                       3.6
                                                                                0.067
            free sulfur dioxide total sulfur dioxide density
                                                                    pH sulphates \
      1
                           25.0
                                                  67.0 0.99680
                                                                 3.20
                                                                             0.68
      2
                           15.0
                                                                             0.65
                                                  54.0 0.99700
                                                                 3.26
      3
                           17.0
                                                  60.0 0.99800
                                                                  3.16
                                                                             0.58
      5
                           13.0
                                                  40.0 0.99780
                                                                  3.51
                                                                             0.56
                           15.0
                                                  59.0 0.99640
                                                                  3.30
                                                                             0.46
      1593
                           28.0
                                                  38.0 0.99651
                                                                  3.42
                                                                             0.82
      1594
                           32.0
                                                  44.0 0.99490
                                                                             0.58
                                                                  3.45
      1595
                           39.0
                                                  51.0 0.99512
                                                                             0.76
                                                                 3.52
      1597
                           32.0
                                                  44.0 0.99547
                                                                  3.57
                                                                             0.71
                           18.0
      1598
                                                  42.0 0.99549 3.39
                                                                             0.66
            alcohol quality
      1
                9.8
      2
                9.8
                           5
      3
                9.8
                           6
      5
                9.4
                           5
                9.4
                           5
      6
      1593
                9.5
                           6
      1594
               10.5
                           5
               11.2
                           6
      1595
                           5
      1597
               10.2
      1598
               11.0
                           6
      [1139 rows x 12 columns]
```

[23]: # Assurons de notre nettoyage
df.duplicated().sum()

[23]: 0

Maintenant essayons de voir s'il n'ya pas de colonnes en double.

[24]: duplicateColumns = df.T duplicateColumns

[24]:		1	2	3	5	6	7	\
	fixed acidity	7.8000	7.800	11.200	7.4000	7.90	7.300	0
	volatile acidity	0.8800	0.760	0.280	0.6600	0.60	0.650	0
	citric acid	0.0000	0.040	0.560	0.0000	0.06	0.000	0
	residual sugar	2.6000	2.300	1.900	1.8000	1.60	000 1.200	0
	chlorides	0.0980	0.092	0.075	0.0750	0.06	390 0.065	0
	free sulfur dioxide	25.0000	15.000	17.000	13.0000	15.00	000 15.000	0
	total sulfur dioxide	67.0000	54.000	60.000	40.0000	59.00	000 21.000	0
	density	0.9968	0.997	0.998	0.9978	0.99	964 0.994	:6
	рН	3.2000	3.260	3.160	3.5100	3.30	3.390	0
	sulphates	0.6800	0.650	0.580	0.5600	0.46	0.470	0
	alcohol	9.8000	9.800	9.800	9.4000	9.40	000 10.000	0
	quality	5.0000	5.000	6.000	5.0000	5.00	7.000	0
		8	10	12	13	•••	1587	\
	fixed acidity	7.8000	6.7000	5.6000	7.800	0	5.80000	
	volatile acidity	0.5800	0.5800	0.615	0.610	0	0.61000	
	citric acid	0.0200	0.0800	0.000	0.290	0	0.11000	
	residual sugar	2.0000	1.8000	1.6000	0 1.600	0	1.80000	
	chlorides	0.0730	0.0970	0.0890	0.114	0	0.06600	
	free sulfur dioxide	9.0000	15.0000	16.0000	9.000	0	18.00000	
	total sulfur dioxide	18.0000	65.0000	59.000	0 29.000	0	28.00000	
	density	0.9968	0.9959	0.994	3 0.997	4	0.99483	
	рН	3.3600	3.2800	3.580	0 3.260	0	3.55000	
	sulphates	0.5700	0.5400	0.520	0 1.560	0	0.66000	
	alcohol	9.5000	9.2000	9.9000	0 9.100	0	10.90000	
	quality	7.0000	5.0000	5.000	0 5.000	0	6.00000	
		1588	3 158	9	1590	1591	1593	\
	fixed acidity	7.20000		0 6.30	0000 5.	40000	6.80000	
	volatile acidity	0.66000			5000 0.	74000	0.62000	
	citric acid	0.33000	0.200	0 0.1	5000 0.	09000	0.08000	
	residual sugar	2.50000				70000	1.90000	
	chlorides	0.06800	0.073	0.0		08900	0.06800	
	free sulfur dioxide	34.00000				00000	28.00000	
	total sulfur dioxide	102.00000	79.000	0 35.00	0000 26.	00000	38.00000	
	density	0.99414				99402	0.99651	
	pН	3.27000				67000	3.42000	
	sulphates	0.78000				56000	0.82000	
	alcohol	12.80000	9.200	0 11.60	0000 11.	60000	9.50000	

quality	6.00000	5.0000	6.00000	6.00000	6.00000
	1594	1595	1597	1598	
fixed acidity	6.2000	5.90000	5.90000	6.00000	
volatile acidity	0.6000	0.55000	0.64500	0.31000	
citric acid	0.0800	0.10000	0.12000	0.47000	
residual sugar	2.0000	2.20000	2.00000	3.60000	
chlorides	0.0900	0.06200	0.07500	0.06700	
free sulfur dioxide	32.0000	39.00000	32.00000	18.00000	
total sulfur dioxide	44.0000	51.00000	44.00000	42.00000	
density	0.9949	0.99512	0.99547	0.99549	
рН	3.4500	3.52000	3.57000	3.39000	
sulphates	0.5800	0.76000	0.71000	0.66000	
alcohol	10.5000	11.20000	10.20000	11.00000	
quality	5.0000	6.00000	5.00000	6.00000	

[12 rows x 1139 columns]

```
[25]: duplicateColumns.duplicated().sum()
```

[25]: 0

Aucune colonne en double

Maintenant, il n'ya pas de lignes ni colonnes en double. Donc notre dataset est maintenant bon.

Nous allons utiliser les mesures **skweness et kurtosis** pour faire l'évaluation de la distributions de données.

Skewness permet de voir la symétrie et Kurtosis permet de voir la disparité.

Prenons le feature fixed acidity et affichons son Skewness et kurtosis.

```
[26]: myskew = df['fixed acidity'].skew()
  mykurtosis = df['fixed acidity'].kurtosis()
  print(myskew)
  print(mykurtosis)
```

- 0.889582473732798
- 0.9416591528597245

La variable **myskew** est supérieure à zero. Alors on peut confirmer notre **hypothèse** (1) (concentration de données du feature **fixed acidity** à gauche).

On peut étendre ce principe à tous les autres features.

```
[27]:
                fixed acidity volatile acidity citric acid residual sugar \
                     0.889582
      skewness
                                       0.777681
                                                    0.304091
                                                                    4.517631
                     0.941659
                                       1.240553
                                                   -0.793704
                                                                    30.119815
     kurtosis
                chlorides free sulfur dioxide total sulfur dioxide
                                                                        density
                5.310016
                                      1.194147
                                                             1.58463
                                                                      0.011417
      skewness
     kurtosis
               35.434907
                                      1.717221
                                                             4.35024
                                                                      0.654488
                      pH sulphates
                                      alcohol
                                     0.859555
      skewness
                0.273667
                           2.366662
                         10.244253 0.119427
     kurtosis
                0.996855
```

Maintenant, vérifions s'il n'existe pas des outliers dans nos features.

Nous allons utiliser le **z-score**.

Si le z-score est inférieur à -3 ou supérieur à 3, il est considéré comme un outlier.

```
for i in columns:
    y_outliers = df[abs(zscore(df[i])) >= 3 ]
    print('Le nombre des outliers de ',i,'est ',len(y_outliers))
    y_outliers
```

```
Le nombre des outliers de fixed acidity est 7

Le nombre des outliers de volatile acidity est 8

Le nombre des outliers de citric acid est 1

Le nombre des outliers de residual sugar est 25

Le nombre des outliers de chlorides est 24

Le nombre des outliers de free sulfur dioxide est 14

Le nombre des outliers de total sulfur dioxide est 9

Le nombre des outliers de density est 8

Le nombre des outliers de pH est 8

Le nombre des outliers de sulphates est 20

Le nombre des outliers de alcohol est 6
```

L'analyse univariée nous a permis de voir la distribution de nos caractérisques. Maintenant, essayons de trouver une corrélation entre nos features(caractéristiques) et notre target(cible). Nous allons procéder par l'analyse bivariée.

L'analyse bivariée consiste à mettre les features en rélation avec le target.

Etant en face de données numériques, on peut les classer par catégories.

Prenons par exemple le feature 'alcohol', examinons le de près. Donc nous allons voir ces valeurs afin de determiner le minimum et le maximum.

[9.8	9.4	10.	9.5	9.2	9.9
9.1	10.5	9.3	9.	9.7	10.1
10.6	9.6	10.8	10.3	13.1	10.2
10.7	12.9	10.4	10.9	11.5	13.
11.4	12.4	11.	12.2	12.8	12.6
11.7	12.5	11.3	12.3	12.	11.9
11.8	8.7	13.3	11.2	11.6	11.1
13.4	14.	12.1	8.4	12.7	14.9
13.2	13.6	13.5	9.55	8.5	11.06666667
9.56666667	10.55	13.56666667	11.95	9.95	9.23333333
9.25	9.05	10.75]		

```
le minimum est 8.4 le maximum est 14.9
```

Le taux d'alcool commence de 8.4 et finit à 14.9

Divisons cet intervale en quatre.

- Faible : quand le taux est inférieur à 10
- Moyen: quand le taux est entre 10 et 11,6
- Haut : quand le taux est entre 11,6 et 13.2
- Très Haut : quand le taux est supérieur à 13,2

```
[30]: def alcool_join(alcohol):
    if alcohol <= 10:
        return "Faible"
    elif alcohol <= 11.6:
        return "Moyen"
    elif alcohol <= 13.2:
        return "Haut"
    else:
        return "Très Haut"

df['catégorie_alcool'] = df['alcohol'].apply(alcool_join)
    df.sample(frac=1).head(100)</pre>
```

```
[30]: fixed acidity volatile acidity citric acid residual sugar chlorides \ 1045 6.9 0.440 0.00 1.4 0.070
```

1593		6.8	0.620	0.	08		1.9	0.	068
1374		6.8	0.815	0.	00		1.2	0.	267
811		12.9	0.500	0.	55		2.8	0.	072
106		7.8	0.410	0.	68		1.7	0.	467
		•••	•••	•••			•••		
551		9.4	0.430	0.	24		2.8	0.	092
467		8.8	0.460	0.	45		2.6	0.	065
470		13.0	0.320	0.	65		2.6	0.	093
1568		7.0	0.560	0.	13		1.6	0.	077
791		8.8	0.640	0.	17		2.9	0.	084
									,
1045	iree sul	fur dioxide	total sulfur		density	pH	sulpi	nates	\
1045		32.0		38.0	0.99438	3.32		0.58	
1593		28.0		38.0	0.99651	3.42		0.82	
1374		16.0		29.0	0.99471	3.32		0.51	
811 106		7.0		24.0	1.00012	3.09		0.68	
		18.0		69.0	0.99730	3.08		1.31	
 551		14.0		45.0	0.99800	 3.19		0.73	
467		7.0		18.0	0.99470	3.32		0.79	
470		15.0		47.0	0.99470	3.05		0.73	
1568		25.0		42.0	0.99629	3.34		0.59	
791		25.0		130.0	0.99818	3.23		0.54	
731		20.0		150.0	0.55010	0.20		0.04	
	alcohol	quality cat	égorie_alcool						
1045	11.4	6	Moyen						
1593	9.5	6	Faible						
1374	9.8	3	Faible						
811	10.9	6	Moyen						
106	9.3	5	Faible						
•••	•••	•••	•••						
551	10.0	6	Faible						
467	14.0	6	Très Haut						
470	10.6	5	Moyen						
1568	9.2	5	Faible						
791	9.6	5	Faible						

[100 rows x 13 columns]

Mettons la colonne que nous avons nommé catégorie_alcool en relation avec la qualité du vin.

```
[31]: import numpy as np

plt.figure(figsize=(15,30))

cross = pd.

→crosstab(index=df['quality'],columns=df['catégorie_alcool'],normalize='index')
```

<Figure size 1500x3000 with 0 Axes>

On constate que les vins de la catégorie 3 n'ont ni un très haut taux ni un haut taux d'alcool.

Par contre, les vins de la catégorie 8 ont les différents taux d'alocool

Si le but de l'analyse bivariée est de voir la corrélation entre les features (caractéristiques) et target (cible), faisons une corrélation de Pearson.

```
[32]: plt.figure(figsize=(15,2))
sns.heatmap(df.corr(numeric_only=True).

iloc[[-1]],cmap='RdBu_r',annot=True,vmin=-1, vmax=1)
```

[32]: <Axes: >

Le graphique ci-dessus est appélé **HeatMap**.

Il nous révèle que les features alcohol, sulphates, citric acid, et fixed acidity ont une forte corrélation avec la qualité du vin.

En effet, d'après la formule de Pearson, plus la valeur est proche de 0, moins il ya de corrélation. Plus on se rapproche de 1 , plus la corrélation est positive. Plus on se rapproche de -1, plus la corrélation est négative.

Faisons la corrélation de tous les éléments pour voir leurs liaisons. Le resultat se traduit par ce graphique :

```
[33]: plt.figure(figsize=(15,2)) sns.heatmap(df.corr(numeric_only=True),cmap='RdBu_r',annot=True,vmin=-1, vmax=1)
```

[33]: <Axes: >

On y voit les corrélations entre chaque caractéristiques.

Commençons par créer une variable de type DataFrame à laquelle nous allons attribuer les données de notre cible

```
[34]: df_target = df['quality']
df_features = df.drop(columns = 'catégorie_alcool')
```

0.4 4. Entrainement du Modèle

Preparons les données en deux endroits :

- L'entrainement (train)
- Le test

Soient X reprensentant de features et Y celui de target(cible).

On aura ainsi:

- X train
- X test
- y_train
- \bullet y_test

```
[35]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df_features, df_target,__

stest_size=0.20)
```

Affichons la taille de chaque variable.

```
[36]: print((len(X_train), len(y_train)))
print((len(X_test), len(y_test)))

(911, 911)
(228, 228)
```

0.5 5. Validation et test du modèle

```
[37]: from sklearn import tree

decisionTree = tree.DecisionTreeClassifier()
decisionTree.fit(X_train, y_train)
```

[37]: DecisionTreeClassifier()

```
[38]: decisionTree.score(X_test, y_test)
```

[38]: 1.0

```
[39]: y_test.iloc[:1]
```

[39]: 376 6
Name: quality, dtype: int64

```
[40]: from sklearn.ensemble import RandomForestClassifier

randomForest = RandomForestClassifier(n_estimators=100)

randomForest.fit(X_train, y_train)
```

```
[40]: RandomForestClassifier()

[41]: randomForest.score(X_test, y_test)

[41]: 0.9912280701754386

[42]: y_test.iloc[:1]

[42]: 376    6
    Name: quality, dtype: int64
```

0.6 Conclusion

D'après la lecture de données, leur visualisation, l'entrainement et le test de modèle , on conclue que le vin de la catégorie 6 est de bonne qualité. Ce resultat est confirmé par les Modèle Tree de Décision et Random Forest qui donne une précision de 0.99%

[]: