

Module 3: Methods of Proof (?q=onlinecourse/course/43512)

Methods of Proof I

- วิชชาภัทร จินดานาถ previously submitted answers to this quiz/test on 23-Oct-2023 @ 09:29:08 and obtained 5 correct answers out of 5.
- This test/quiz can be taken many times.
- Correct answers will NOT be revealed after submission.

undefined

1 Consider the following statement:

"The sum of two even integers is even."

Which of the following is the easiest method for proving the given statement?

By contradiction: Assume that the sum of two even integers is odd.

By direct proof: Let m and n be even integers.

By induction: Prove that the sum of two even integers is even for the base case.

By counterexample: Provide an example where the sum of two even integers is not even.

2 Consider the following proof:

Proof that "1 = 2"

From previous attempt

Steps	Reason	

(1)	a = b	Given
(2)	$a^2 = ab$	Multiply both sides of (1) by a
(3)	$a^2 - b^2 = ab - b^2$	Subtract b^2 from both sides of (2)
(4)	(a-b)(a+b) = b(a-b)	Factor both sides of (3)
(5)	a+b=b	Divide both sides of (4) by $a-b$
(6)	2b = b	Replace a by b in (5) because a=b and simplify
(7)	2 = 1	Divide both sides of (6) by b

What is the step that makes this proof WRONG?

- (1)
- (3)
- (5)

None of the above

3

Consider the following proof:

Prove that "If n is an odd integer, then n^2 is odd."

By using **DIRECT Proof**:

<i>y</i>				
Ste	ps	Reason		
(1)	n=2k+1	Assume that n is odd, where k is an integer.		
(2)	$n^2 = (2k+1)^2$	Square both sides of (1)		
(3)	$n^2 = 2(2k^2 + 2k) + 1$	From the equation (2)		
(4)	$n^2 = 2K + 1$	Group $(2k^2+2k)$ into K which implies that K is an integer since k is an integer		

chods of Proof I myCourseVille 2/10/2567 B						
		(5)	$n^2\mathrm{is}$ odd.	From (4), Q.E.D.		
		What	is the step that makes th	nis proof WRONG ?		
	(1))				
	(2					
	(4					
			the above.			
4			e following statement:			
	"If m a	$\operatorname{ind} n$	are integers and $m{mn}$ is e	ven, then m is even or n is even n^{n} is even n^{n}		
				method for proving the given statement?		
	Di	irect Pi	roof			
	Co	ontrap	osition Proof			
	V	acuous	s Proof			
	N	one of	the above			
5		-	rove the statement in the s should be used for the	previous question, which of the following first step of the proof?		

Assume that "m is odd and n is odd."

Assume that "m is even or n is even."

Assume that "mn is even."

Assume that "mn is odd."

Submit

⟨ Previous (?
q=onlinecourse/theatre/27033/jqcE6x5U9jeF)

Next **>** (? q=onlinecourse/theatre/27034/Ur3qzKAHWeeJyc)

Version 1.15.23.2

Privacy Policy (https://lic.chula.ac.th/?page_id=7606) updated on 06 Jan 2023 Cookie Policy (https://www.mycourseville.com/cookiepolicy.html) updated on 21 May 2022

LMS and Online Course Platform within mycourseville.com are operated by Learning Innovation Center, Chulalongkorn University (http://www.lic.chula.ac.th/)