計量経済 I: 宿題 4

村澤 康友

提出期限:2023年6月6日

注意: すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること (乱数は除く). グループで取り組んでよいが,個別に提出すること.解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない.すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は問題番号順に重ねて左上隅をホッチキスで留めること.

- 1. (教科書 p. 158, 実証分析問題 6-A) データセット「6_1_income.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 教科書 p. 135 のミンサー方程式の推定結果を再現しなさい.
 - (b) OLS の実行結果の画面でメニューから「検定」 \rightarrow 「変数を取り除く」として説明変数を取り除けば、取り除いた説明変数の係数=0の F 検定が実行できる.上の分析で就業可能年数とその 2 乗の係数=0の F 検定を実行し、教科書 p. 155 の結果と一致することを確認しなさい.
- 2. (教科書 p. 158, 実証分析問題 6-B) データセット「 6_2 -yeduc.dta」を gretl に読み込み,母親の大学進学が子どもの修学年数に与える効果を以下の 3 つの方法で推定しなさい. ※係数の推定値は等しいが,標準誤差・t 値は異なるはず(重回帰が正しい).
 - (a) 子どもの修学年数を, 父親と母親の大学進学ダミーに重回帰 (教科書 p. 142).
 - (b) 母親の大学進学ダミーを父親の大学進学ダミーに単回帰し、その OLS 残差に子どもの修学年数を 単回帰(定数項あり). ※ OLS の実行結果の画面でメニューから「保存」→「残差」とすれば OLS 残差を保存できる.
 - (c) 前問の2段階目で定数項なしの単回帰(これが本来の偏回帰).
- 3. (教科書 p. 158, 実証分析問題 6-C) データセット「6_3_happy_work.dta」を gretl に読み込み, 以下 の分析を行いなさい.
 - (a) 仕事に対する満足度を通勤時間に単回帰.
 - (b) 上の単回帰に共変量として年収と修学年数を追加して重回帰.
 - (c) 重回帰モデルの 2 つの共変量の係数 = 0 の F 検定.
- 4. (教科書 p. 158, 実証分析問題 6-D) データセット「6_4_minshu.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 民主党への支持感情を年収に単回帰
 - (b) 上の単回帰に共変量として修学年数を追加して重回帰.

解答例

1. (a) ミンサー方程式

モデル 1: 最小二乗法 (OLS), 観測: 1–4299 従属変数: lincome

	係数	Std	Error	$t ext{-ratio}$	p 値
const	2.48550	0.110	0782	22.44	0.0000
yeduc	0.117547	0.007	06026	16.65	0.0000
exper	0.196174	0.007	749354	26.18	0.0000
exper2	-0.0063811	5 0.000	316188	-20.18	0.0000
Mean depende	ent var 5.	290452	S.D. de	pendent va	ar 0.895883
Sum squared r	resid 27	736.905	S.E. of	regression	0.798267
\mathbb{R}^2	0.	206603	Adjuste	$ed R^2$	0.206049
F(3,4295)	37	72.8097	P-value	e(F)	3.4e-215
Log-likelihood	-5.5	129.400	Akaike	criterion	10266.80
Schwarz criter	ion 10	0292.26	Hannar	n–Quinn	10275.79

(b) F 検定

モデル 1 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

exper, exper2

検定統計量: F(2, 4295) = 499.754, p値 7.46193e-196

2. (a) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

		係数	汝	Std.	Error	t-ratio	p 値	Ì
	const	13.59	46	0.023	35193	578.0	0.000	00
	mocograd	0.49'	7015	0.07	62982	6.514	0.000	00
	pacograd	1.108	886	0.04'	75107	23.34	0.000	00
Mean	dependent v	ar	13.96	131	S.D.	dependent v	ar 1	.369695
Sum s	squared resid		6109.	357	S.E.	of regression	. 1	.243496
\mathbb{R}^2			0.176	201	Adju	sted R^2	O	0.175784
F(2,3)	3951)		422.5	373	P-val	ue(F)	5	5.1e-167
Log-li	kelihood	-	-6470.	663	Akail	ke criterion	1	2947.33
Schwa	arz criterion		12966	6.17	Hann	an-Quinn	1	2954.01

(b) 偏回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

係数	ξ Std.	Error	$t ext{-}\mathrm{ratio}$	p 値	
const 13.961	3 0.021	16886	643.7	0.0000	
$uhat1 \qquad 0.497$	015 0.083	36795	5.940	0.0000	
Mean dependent var	13.96131	S.D.	dependent	t var	1.369695
Sum squared resid	7350.465	S.E.	of regressi	on	1.363795
R^2	0.008848	Adj_{1}	usted \mathbb{R}^2	(0.008597
F(1,3952)	35.27776	P-va	alue(F)		3.11e–09
Log-likelihood	-6836.294	Aka	ike criterio	n :	13676.59
Schwarz criterion	13689.15	Han	nan–Quinn	1	13681.04

(c) 偏回帰

モデル 3: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

	係数	Std.	Error	$t ext{-}\mathrm{ratio}$	p 値	
uhat1 0	.497015	0.860	0819	0.5774	0.563°	7
Mean dependent var	13.96	3131	S.D. d	ependent	var	1.369695
Sum squared resid	7780	56.4	S.E. of	f regression	n	14.02950
Uncentered \mathbb{R}^2	0.000	0084	Center	$red R^2$		-103.914783
F(1,3953)	0.333	3361	P-valu	e(F)		0.563720
Log-likelihood	-1605	3.14	Akaike	criterion	ı	32108.28

32110.50

Schwarz criterion 32114.56 Hannan–Quinn

3. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3604 従属変数: happy_work

	係数		Std. Error		t-ratio	p値
const	2.2255	1	0.03	37480	65.94	0.0000
commute	-0.00143	3366	0.00	0832606	-1.722	0.0852
Mean dependen	ıt var	2.1778	858	S.D. depe	endent var	1.159856
Sum squared re	sid	4843.0	007	S.E. of re	gression	1.159540
\mathbb{R}^2		0.0008	322	Adjusted	\mathbb{R}^2	0.000545
F(1, 3602)		2.9649	926	P-value(I	7)	0.085174
Log-likelihood	-	5646.3	330	Akaike cr	iterion	11296.66
Schwarz criterio	on	11309	.04	Hannan-	Quinn	11301.07

(b) 重回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–3604 従属変数: happy_work

	係数		Sto	d. Error	t-ratio	p 値
const	1.83565		0.14	1758	12.95	0.0000
commute	-0.00249	144	0.00	0848820	-2.935	0.0034
income	0.00047	3488	8.75	913e-005	5.406	0.0000
yeduc	0.02021	23	0.01	04646	1.931	0.0535
Mean depende	nt var	2.1778	358	S.D. depen	ident var	1.159856
Sum squared r	esid	4791.8	317	S.E. of reg	ression	1.153716
\mathbb{R}^2		0.0113	384	Adjusted I	\mathbb{R}^2	0.010560
F(3, 3600)		13.817	752	P-value (F))	5.87e-09
Log-likelihood	_	-5627.1	182	Akaike crit	erion	11262.36
Schwarz criteri	ion	11287	.12	Hannan-Q	uinn	11271.19

(c) 共変量の係数=0のF検定

モデル 2 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

income, yeduc

検定統計量: F(2, 3600) = 19.2288, p値 4.93539e-009

4. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	係数		Std. Error		t-ratio p		値
const	43.8237		0.423	993	103.4	0.0	000
income	0.002490	040	0.001	19858	2.078	0.0	378
Mean depender	nt var	44.47	606	S.D. de	pendent v	ar	18.51297
Sum squared re	esid	1443	814	S.E. of	regression		18.50569
\mathbb{R}^2		0.001	023	Adjuste	$ed R^2$		0.000786
F(1,4216)		4.317	219	P-value	e(F)		0.037789
Log-likelihood	_	18292	2.54	Akaike	criterion		36589.07
Schwarz criteri	on	36601	.77	Hannai	n–Quinn		36593.56

(b) 重回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

		係	数	Std	. Error	$t ext{-ratio}$	p 1	值
	const	39.302	8	2.12	491	18.50	0.00	000
	income	0.002	00227	0.00	121897	1.643	0.10	005
	yeduc	0.334	907	0.15	4250	2.171	0.03	300
Mean	depender	ıt var	44.47	606	S.D. de	pendent	var	18.51297
Sum s	squared re	sid	1442	2201	S.E. of	regression	n	18.49754
\mathbb{R}^2			0.002	2139	Adjuste	$ed R^2$		0.001665
F(2, 4)	(215)		4.517	'554	P-value	e(F)		0.010969
Log-li	kelihood		-18290	0.18	Akaike	criterion		36586.36
Schwa	arz criterio	on	3660	5.40	Hannai	n–Quinn		36593.09