How to represent a function in a quantum computer

Michel Alexis (Bonn)

Joint work with Lin Lin (Berkeley), Gevorg Mnatsakanyan (UW-Madison), Christoph Thiele (Bonn), and Jiasu Wang (Industry)

El Escorial 2025

June 11, 2025

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

linear Fourier transform

$$: (F_k)_k \mapsto$$

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_{i=1}^{k} F_k z^k$

nonlinear Fourier transform (NLFT)

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto$

Let z denote an element of the unit circle $\mathbb{T} \subset \mathbb{C}$:

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-F_k} z^{-k} & f_k z^k \\ -\overline{F_k} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *j* increases.

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-\overline{F_k}} z^{-k} & f_k z^k \\ -\overline{F_k} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases. NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-\overline{F_k}} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-\overline{F_k}} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *j* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

Thus the NLFT of F is an SU(2)-valued function

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\begin{pmatrix} a(z) & b(z) \\ -b(z) & \overline{a(z)} \end{pmatrix} := \prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-\overline{F_k}} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

Thus the NLFT of F is an SU(2)-valued function

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\begin{pmatrix} a(z) & b(z) \\ -\overline{b(z)} & \overline{a(z)} \end{pmatrix} := \prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-\overline{F_k}} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

Thus the NLFT of F is an SU(2)-valued function, and so the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The NLFT of a sequence $(F_k)_k$ is the matrix function

$$\begin{pmatrix} a(z) & b(z) \\ -b(z) & \overline{a(z)} \end{pmatrix} := \prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-F_k} z^{-k} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

Thus the NLFT of F is an SU(2)-valued function, and so the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

We abbreviate this SU(2) matrix as the pair (a, b), and call (a, b) the NLFT of $(F_k)_k$.

nonlinear Fourier transform (NLFT) : $(F_k)_k \mapsto a$ matrix of Laurent series.

The NLFT of a sequence $(F_k)_k$ is the matrix function

"
$$(a,b) :=$$
" $\begin{pmatrix} a(z) & b(z) \\ -b(z) & a(z) \end{pmatrix} := \prod_{k=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_k|^2}} \begin{pmatrix} \frac{1}{-F_k}z^{-k} & 1 \end{pmatrix}$

where the matrix product should be read left to right as *i* increases.

NLFT is well-defined for compactly supported (F_k) , since only finitely many matrices above are not the identity.

Recall
$$SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

Thus the NLFT of F is an SU(2)-valued function, and so the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

We abbreviate this SU(2) matrix as the pair (a, b), and call (a, b) the NLFT of $(F_k)_k$.

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} = \left(\prod_{j} (1 + |F_j|^2)^{-\frac{1}{2}} \right) \prod_{j} \begin{pmatrix} 1 & F_j z^j \\ -\overline{F_j} z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} 1 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$
$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix}.$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix}.$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \\ n = 3: \\ n \text{ odd}: \\ n = 0: \qquad n = 3:$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \ldots$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \sum_{j} \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 3: \qquad \qquad n \text{ odd}: \qquad \qquad n \text{ odd}: \qquad \qquad n \text{ odd}: \qquad \qquad b =$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \ldots$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \qquad n \text{ even } :$$

$$n \text{ even } :$$

$$n \text{ odd } :$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geq 0} \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} -F_{j_{1}}\overline{F_{j_{2}}}z^{j_{1}-j_{2}} & 0 \\ 0 & -\overline{F_{j_{1}}}F_{j_{2}}z^{j_{2}-j_{1}} \end{pmatrix} \qquad n = 3:$$

$$n \text{ even :}$$

$$a = \begin{pmatrix} n & 0 & 0 & 0 & 0 \\ -\overline{F_{j_{1}}}F_{j_{2}}z^{j_{2}-j_{1}} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdots$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad \qquad n = 3:$$

$$n \text{ even } :$$

$$a = \qquad \qquad n \text{ odd } :$$

$$b = \qquad \qquad n \text{ odd } :$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \begin{pmatrix} 0 & F_{j_{3}}z^{j_{3}} \\ -\overline{F_{j_{3}}}z^{-j_{3}} & 0 \end{pmatrix}$$

$$n \text{ even}: \qquad \qquad n \text{ odd}: \qquad n \text{ od$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geq 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & n = 1: \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \sum_{\substack{j_{1} < j_{2} < 0 \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{n} \end{pmatrix} & n = 3: \sum_{\substack{j_{1} < j_{2} < j_{3} \\ O(F)^{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & 0 \end{pmatrix}$$

$$n = 3: \sum_{\substack{j_{1} < j_{2} < j_{3} \\ O(F)^{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & O(F)^{3} \end{pmatrix}$$

$$n = 3: \sum_{\substack{j_{1} < j_{2} < j_{3} \\ O(F)^{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & O(F)^{3} \end{pmatrix}$$

$$n = 3: \sum_{\substack{j_{1} < j_{2} < j_{3} \\ O(F)^{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & O(F)^{3} \end{pmatrix}$$

$$n = 3: \sum_{\substack{j_{1} < j_{2} < j_{3} \\ O(F)^{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{3} & O(F)^{3} \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \dots$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{\substack{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \\ n \text{ even}: \qquad \sum_{\substack{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & 0 \\ 0 & O(F)^{n} \end{pmatrix} \\ n = 1 + \text{ higher order terms} \qquad n \text{ odd}: \qquad \sum_{\substack{j_{1} < \dots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{2} & 0 \\ O(F)^{2} & 0 \\ 0 & O(F)^{n} \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < j_{2} < j_{3} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{3} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{2} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ j_{1} < \ldots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix} }$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O($$

We do an informal computation, assuming F is "small."

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{J} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & F_{j_{1}}z^{j_{1}} \\ -\overline{F_{j_{1}}}z^{-j_{1}} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_{n}}z^{j_{n}} \\ -\overline{F_{j_{n}}}z^{-j_{n}} & 0 \end{pmatrix} \ldots$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2} < 0} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} 0 & O(F)^{3} \\ O(F)^{3} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} 0 & O(F)^{3} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \ldots < j_{n}} \begin{pmatrix} 0 & O(F)^{n} \\$$

Expansion also shows the support of F dictates the frequency supports of a, b.

Quantum signal processing (QSP) asks the following: given a function b on $\mathbb T$ satisfying $|b(z)|\leqslant 1$, does there exist a sequence $F=(F_k)_k$ for which

$$(*,b) = NLFT(F)? (1)$$

Quantum signal processing (QSP) asks the following: given a function b on $\mathbb T$ satisfying $|b(z)|\leqslant 1$, does there exist a sequence $F=(F_k)_k$ for which

$$(*,b) = NLFT(F)? (1)$$

Why care? QSP is a way to represent functions in a quantum computer.

Quantum signal processing (QSP) asks the following: given a function b on $\mathbb T$ satisfying $|b(z)|\leqslant 1$, does there exist a sequence $F=(F_k)_k$ for which

$$(*,b) = NLFT(F)? (1)$$

Why care? QSP is a way to represent functions in a quantum computer. Also if z is a 1×1 unitary matrix, then we are doing spectral calculus.

Quantum signal processing (QSP) asks the following: given a function b on $\mathbb T$ satisfying $|b(z)|\leqslant 1$, does there exist a sequence $F=(F_k)_k$ for which

$$(*,b) = NLFT(F)? (1)$$

Why care? QSP is a way to represent functions in a quantum computer. Also if z is a 1×1 unitary matrix, then we are doing spectral calculus.

Theorem (A.-Lin-Mnatsakanyan-Thiele-Wang, 2024)

If $b: \mathbb{T} \to \mathbb{C}$ satisfies $\|b\|_{\infty} \leqslant 1$ and $\int_{\mathbb{T}} \log(1-|b(z)|^2) > -\infty$, then there

exists a unique sequence $F \in \ell^2(\mathbb{Z})$ such that (*,b) = NLFT(F), and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + |F_{k}|^{2}) = -\int_{\mathbb{T}} \log(1 - |b(z)|^{2}).$$

Quantum signal processing (QSP) asks the following: given a function b on $\mathbb T$ satisfying $|b(z)|\leqslant 1$, does there exist a sequence $F=(F_k)_k$ for which

$$(*,b) = NLFT(F)? (1)$$

Why care? QSP is a way to represent functions in a quantum computer. Also if z is a 1×1 unitary matrix, then we are doing spectral calculus.

Theorem (A.-Lin-Mnatsakanyan-Thiele-Wang, 2024)

If $b: \mathbb{T} \to \mathbb{C}$ satisfies $\|b\|_{\infty} \leqslant 1$ and $\int_{\mathbb{T}} \log(1-|b(z)|^2) > -\infty$, then there exists a unique sequence $F \in \ell^2(\mathbb{Z})$ such that (*,b) = NLFT(F), and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + |F_k|^2) = -\int_{\mathbb{T}} \log(1 - |b(z)|^2) .$$

Question: How do define NLFT(F) for $F \in \ell^2(\mathbb{Z})$?

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \bar{a} in \mathbb{D} .

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

With this, one can extend the NLFT to $\ell^2(\mathbb{Z})$:

Domain of sequences

NLFT is

codomain of pairs (a, b)

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

With this, one can extend the NLFT to $\ell^2(\mathbb{Z})$:

Domain of sequences NLFT is codomain of pairs (a, b)

$$\ell^2(\mathbb{Z}_{\geqslant 0})$$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

With this, one can extend the NLFT to $\ell^2(\mathbb{Z})$:

Domain of sequences NLFT is codomain of pairs (a, b)

 $\ell^2(\mathbb{Z}_{\geqslant 0})$

bijective with

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	H _{≥0}

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$H_{\geqslant 0} \subset \mathit{L}^2_{-}(\mathbb{T}) imes \mathit{L}^2_{+}(\mathbb{T})$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$\mathbf{H}_{\geqslant 0} \subset L^2(\mathbb{T}) \times L^2_+(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$		

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

	···· · · · · · · · · · · · · · · · · ·	
Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$H_{\geqslant 0} \subset \mathit{L}^{2}_{-}(\mathbb{T}) imes \mathit{L}^{2}_{+}(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Tricii cino, one can extend		, .
Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$H_{\geqslant 0} \subset \mathit{L}^{2}_{-}(\mathbb{T}) imes \mathit{L}^{2}_{+}(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$H_{<0}$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$H_{\geqslant 0} \subset \mathit{L}^2_{-}(\mathbb{T}) imes \mathit{L}^2_{+}(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) imes z^{-1}L^2(\mathbb{T})$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \bar{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$\mathbf{H}_{\geqslant 0} \subset L^2(\mathbb{T}) imes L^2_+(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) \times z^{-1}L^2(\mathbb{T})$
$\ell^2(\mathbb{Z})$		

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \bar{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$\mathbf{H}_{\geqslant 0} \subset L^2(\mathbb{T}) \times L^2_+(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) \times z^{-1}L^2(\mathbb{T})$
$\ell^2(\mathbb{Z})$	not injective into	

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$H_{\geqslant 0} \subset \mathit{L}^{2}_{-}(\mathbb{T}) imes \mathit{L}^{2}_{+}(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) \times z^{-1}L^2(\mathbb{T})$
$\ell^2(\mathbb{Z})$	not injective into	its image $\subset L^2(\mathbb{T}) imes L^2(\mathbb{T})$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \overline{a} in \mathbb{D} .

With this, one can extend the NLFT to $\ell^2(\mathbb{Z})$:

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$\mathbf{H}_{\geqslant 0} \subset L^2(\mathbb{T}) \times L^2_+(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) \times z^{-1}L^2(\mathbb{T})$
$\ell^2(\mathbb{Z})$	not injective into	its image $\subset L^2(\mathbb{T}) imes L^2(\mathbb{T})$

In particular, a pair $(a,b) \in L^2_-(\mathbb{T}) \times L^2(\mathbb{T})$ is the NLFT of some sequence $F \in \ell^2(\mathbb{Z})$

A contour integral of $2 \log |a(z)|$ yields the nonlinear Plancherel identity

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of the analytic extension of \bar{a} in \mathbb{D} .

With this, one can extend the NLFT to $\ell^2(\mathbb{Z})$:

Domain of sequences	NLFT is	codomain of pairs (a, b)
$\ell^2(\mathbb{Z}_{\geqslant 0})$	bijective with	$\mathbf{H}_{\geqslant 0} \subset L^2(\mathbb{T}) \times L^2_+(\mathbb{T})$
$\ell^2(\mathbb{Z}_{<0})$	bijective with	$\mathbf{H}_{<0} \subset L^2(\mathbb{T}) \times z^{-1}L^2(\mathbb{T})$
$\ell^2(\mathbb{Z})$	not injective into	its image $\subset L^2(\mathbb{T}) imes L^2(\mathbb{T})$

In particular, a pair $(a,b) \in L^2_-(\mathbb{T}) \times L^2(\mathbb{T})$ is the NLFT of some sequence $F \in \ell^2(\mathbb{Z})$ if and only if

$$(a,b) = (a_-,b_-)(a_+,b_+)$$

where $(a_-, b_-) \in \mathbf{H}_{<0}$ is the NLFT of $F_{<0}$, and $(a_+, b_+) \in \mathbf{H}_{\geqslant 0}$ is the NLFT of $F_{>0}$.

QSP Problem: given b on \mathbb{T} with $||b||_{\infty} \leq 1$ and $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find F such that (*,b) = NLFT(F).

QSP Problem: given b on \mathbb{T} with $\|b\|_{\infty} \leqslant 1$ and $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best a.

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best a. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$.

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best a. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$.

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best a. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T} \log(1-|b|^2)>-\infty$.

Reduced problem: Given $(a, b) \in L^2_-(\mathbb{T}) \times L^\infty(\mathbb{T})$ such that \overline{a} outer and $|a|^2 + |b|^2 = 1$, find F such that (a, b) = NLFT(F).

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best *a*. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T} \log(1-|b|^2)>-\infty$.

Reduced problem: Given $(a, b) \in L^2_-(\mathbb{T}) \times L^\infty(\mathbb{T})$ such that \overline{a} outer and $|a|^2 + |b|^2 = 1$, find F such that (a, b) = NLFT(F).

Theorem (inverse NLFT, A. - Lin - Mnatsakanyan- Thiele- Wang)

There exists a unique F satisfying the above.

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best *a*. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T} \log(1-|b|^2)>-\infty$.

Reduced problem: Given $(a,b) \in L^2_-(\mathbb{T}) \times L^\infty(\mathbb{T})$ such that \overline{a} outer and $|a|^2 + |b|^2 = 1$, find F such that (a,b) = NLFT(F).

Theorem (inverse NLFT, A. - Lin - Mnatsakanyan- Thiele- Wang)

There exists a unique F satisfying the above.

Recall
$$(a, b) = NLFT(F)$$
 iff $(a, b) = (a_-, b_-)(a_+, b_+)$, where $(a_-, b_-) \in \mathbf{H}_{<0}$ and $(a_+, b_+) \in \mathbf{H}_{\geqslant 0}$.

QSP Problem: given b on $\mathbb T$ with $\|b\|_{\infty}\leqslant 1$ and $\int\limits_{\mathbb T}\log(1-|b|^2)>-\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best *a*. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T} \log(1-|b|^2)>-\infty$.

Reduced problem: Given $(a,b) \in L^2_-(\mathbb{T}) \times L^\infty(\mathbb{T})$ such that \overline{a} outer and $|a|^2 + |b|^2 = 1$, find F such that (a,b) = NLFT(F).

Theorem (inverse NLFT, A. - Lin - Mnatsakanyan- Thiele- Wang)

There exists a unique F satisfying the above.

Recall (a, b) = NLFT(F) iff $(a, b) = (a_-, b_-)(a_+, b_+)$, where $(a_-, b_-) \in \mathbf{H}_{<0}$ and $(a_+, b_+) \in \mathbf{H}_{\geqslant 0}$. Suffices to solve for (a_+, b_+) .

QSP Problem: given b on $\mathbb T$ with $\|b\|_\infty \leqslant 1$ and $\int\limits_{\mathbb T} \log(1-|b|^2) > -\infty$,

find F such that (*,b) = NLFT(F).

Step 1: choose the best a. Choose \overline{a} to be the outer function on $\mathbb D$ (basically \overline{a} and $\frac{1}{\overline{a}}$ extend to holomorphic functions on $\mathbb D$) satisfying $|a|^2+|b|^2=1$. Uses $\int\limits_{\mathbb T} \log(1-|b|^2)>-\infty$.

Reduced problem: Given $(a,b) \in L^2_-(\mathbb{T}) \times L^\infty(\mathbb{T})$ such that \overline{a} outer and $|a|^2 + |b|^2 = 1$, find F such that (a,b) = NLFT(F).

Theorem (inverse NLFT, A. - Lin - Mnatsakanyan- Thiele- Wang)

There exists a unique F satisfying the above.

Recall (a, b) = NLFT(F) iff $(a, b) = (a_-, b_-)(a_+, b_+)$, where $(a_-, b_-) \in \mathbf{H}_{\leq 0}$ and $(a_+, b_+) \in \mathbf{H}_{\geqslant 0}$.

Suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we write

$$(a_-, b_-) = (a, b)(a_+, b_+)^{-1}$$
.

One can show the vector $(A,B):=\overline{a_+}(0)(a_+,b_+)$ necessarily satisfies

One can show the vector $(A,B):=\overline{a_+}(0)(a_+,b_+)$ necessarily satisfies

$$\begin{bmatrix} \operatorname{Id} + \begin{pmatrix} 0 & P_{-\frac{\overline{b}}{\overline{a}}}P_{+} \\ -P_{+\frac{b}{\overline{a}}}P_{-} & 0 \end{bmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

One can show the vector $(A,B):=\overline{a_+}(0)(a_+,b_+)$ necessarily satisfies

$$\begin{bmatrix} \operatorname{Id} + \begin{pmatrix} 0 & P_{-\frac{\overline{b}}{\overline{a}}}P_{+} \\ -P_{+\frac{b}{a}}P_{-} & 0 \end{bmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .$$

But our operator looks like Id +antisymmetric operator on $L^2(\mathbb{T}) \times L^2(\mathbb{T})$.

One can show the vector $(A,B):=\overline{a_+}(0)(a_+,b_+)$ necessarily satisfies

$$\begin{bmatrix} \operatorname{Id} + \begin{pmatrix} 0 & P_{-\frac{\overline{b}}{\overline{a}}}P_{+} \\ -P_{+\frac{b}{a}}P_{-} & 0 \end{bmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .$$

But our operator looks like Id +antisymmetric operator on $L^2(\mathbb{T}) \times L^2(\mathbb{T})$. So (A, B) exists and is always unique! Uniqueness of (a_+, b_+) then follows!

Thank you for Listening!