satisfying $\| e_n \otimes e_n \| \le 1$ and $(e_n \otimes e_n) (e_m \otimes e_m) = \delta_{n,m} (e_n \otimes e_n)$ for $n \in \mathbb{Z}$.

$$\begin{split} \mathtt{T(t)} &:= \sum_{\mathbf{n} \in \mathbb{Z}} \; \exp\left(-\pi^2 \mathbf{n}^2 \mathbf{t}\right) \; \cdot \; \mathbf{e}_{\mathbf{n}} \; \otimes \; \mathbf{e}_{\mathbf{n}} \\ &= \mathbf{e}_{\mathbf{0}} \; \otimes \; \mathbf{e}_{\mathbf{0}} \; + \; 2\sum_{\mathbf{n}=1}^{\infty} \; \exp\left(-\pi^2 \mathbf{n}^2 \mathbf{t}\right) \; \cdot \; \mathbf{e}_{\mathbf{n}} \; \otimes \; \mathbf{e}_{\mathbf{n}} \end{split}$$

or

$$T(t) f(x) = \int_0^1 k_t(x,y) f(x) dy$$
 where $k_t(x,y) = 1 + 2 \sum_{n=1}^{\infty} \exp(-\pi^2 n^2 t) \cos \pi n x \cos \pi n y$.

The Jacobi identity

$$w_{t}(x) := 1/(4\pi t)^{\frac{1}{2}} \sum_{m \in \mathbb{Z}} \exp(-(x+2m)^{2}/4t)$$
$$= \frac{1}{2} + \sum_{n \in \mathbb{N}} \exp(-\pi^{2}n^{2}t) \cos \pi nx$$

and trigonometric relations show that

$$k_{t}(x,y) = w_{t}(x+y) + w_{t}(x-y)$$

which is a positive function on $\left[0,1\right]^2$. Therefore T(t) is a bounded operator on C[0,1] with

$$||T(t)|| = ||T(t)1|| = \sup_{x \in [0,1]} \int_0^1 k_t(x,y) dy = 1$$
.

From the behavior of T(t) on the dense subspace E_O it follows that $(T(t))_{t\geq 0}$ with T(0)=Id is a strongly continuous semigroup on E and its generator A coincides with B on E_O . Finally we observe that E_O is a core for (A,D(A)) by Prop.1.9(ii).

Consequently (T(t)) $_{t\geq 0}$ is the semigroup generated by the closure of the second derivative with domain D(B) .

2.8. n-dimensional Diffusion Semigroup

On E = L^p(
$$\mathbb{R}^n$$
), 1 \leq p < ∞ , the operators
$$T(t) f(x) := (4\pi t)^{-n/2} \int_{\mathbb{R}^n} \exp(-|x-y|^2/4t) f(y) dy$$
$$:= \mu_t * f(x)$$

for $x \in \mathbb{R}^n$, t > 0 and $\mu_t(x) := (4\pi t)^{-n/2} \exp(-|x|^2/4t)$ form a strongly continuous semigroup:

In fact the integral exists for every $f \in L^p(\mathbb{R}^n)$, since μ_t is an element of the Schwartz space $S(\mathbb{R}^n)$ of all rapidly decreasing smooth functions on \mathbb{R}^n .

Moreover,

$$\|T(t)f\|_p \leq \|\mu_t\|_1 \|f\|_p = \|f\|_p$$
 by Young's inequality [Reed-Simon (1975), p.28], hence $\|T(t)\| \leq 1$ for every $t > 0$. Next we observe that $S(\mathbb{R}^n)$ is dense in E and invariant under each $T(t)$. Therefore we can apply the Fourier trans-