SC402: Introduction to Cryptography

3/5/2022

Homework 2

Prof. Manish K. Gupta

Details:

Name: Madhvi Padshala

ID: 201901171

Q.1

Suppose we consider a random throw of a pair of dice. Let X be the random variable defined on the set $X = \{2, \ldots, 12\}$, obtained by considering the sum of two dice. Further, suppose that Y is a random variable which takes on the value D if the two dice are the same (i.e., if we throw "doubles"), and the value N, otherwise. Determine all the joint and conditional probabilities, Pr[x, y], Pr[x|y], and Pr[y|x], where $x \in \{2, \ldots, 12\}$ and $y \in \{D, N\}$.

Ans:

$X = \{1,2,312\}$
$Y = \{D, N\}$

Х	Dies Rolls	P(x)	Count of	Count of
			D	N
2	(1,1)	1/36	1	0
3	(1,2)(2,1)	2/36	0	2
4	(1,3)(2,2)(3,1)	3/36	1	2
5	(1,4)(2,3)(3,2)(4,1)	4/36	0	4
6	(1,5)(2,4)(3,3)(4,2)(5,1)	5/36	1	4
7	(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)	6/36	0	6
8	(2,6)(3,5)(4,4)(5,3)(6,2)	5/36	1	4
9	(3,6)(4,5)(5,4)(6,3)	4/36	0	4
10	(4,6)(5,5)(6,4)	3/36	1	2
11	(5,6)(6,5)	2/36	0	2
12	(6,6)	1/36	1	0
			6	30

P(X,Y) = P(X=2,Y=D) = 1/36, P(X=2,Y=N)=0

P(X=3,Y=D)=0	P(X=3,Y=N)=2/36		
P(X=4,Y=D)=1/36	P(X=4,Y=N)=2/36		
P(X=5,Y=D)=0	P(X=5,Y=N)=4/36		
P(X=6,Y=D)=1/36	P(X=6,Y=N)=4/36		
P(X=7,Y=D)=0	P(X=7,Y=N)=6/36		
P(X=8,Y=D)=1/36	P(X=8,Y=N)=4/36		
P(X=9,Y=D)=0	P(X=9,Y=N)=4/36		
P(X=10,Y=D)=1/36	P(X=10,Y=N)=2/36		
P(X=11,Y=D)=0	P(X=11,Y=N)=2/36		
P(X=12,Y=D)=1/36	P(X=12,Y=N)=0		

P(Y=D/X=2)=1	P(Y=N/X=2)=0	
P(Y=D/X=3)=0	P(Y=N/X=3)=1	
P(Y=D/X=4)=3/3	P(Y=N/X=4)=2/3	
P(Y=D/X=5)=0	P(Y=N/X=5)=1	
P(Y=D/X=6)=3/5	P(Y=N/X=6)=4/5	
P(Y=D/X=7)=0	P(Y=N/X=7)=1	
P(Y=D/X=8)=1/5	P(Y=N/X=8)=4/5	
P(Y=D/X=9)=0	P(Y=N/X=9)=1	
P(Y=D/X=10)=1/3	P(Y=N/X=10)=2/3	
P(Y=D/X=11)=0	P(Y=N/X=11)=1	
P(Y=D/X=12)=1	P(Y=N/X=12)=0	

P(XIY) = Brobability of X given Y Now as Y = 0 is only possible put X reven and once in every even value of X.
$P(x \rightarrow even) = \frac{1}{6} \{x = 2,4,6,8,10,12\}$
$P(x \to odd) = 0 (x = 3.5.7.9.11)$
P' (X/Y=N) -> Paob of X given Y=N.
P (x=2/y=N)=0 P (x=3/y=N) = 30
P (x=4/4=N)=330 P(x=5/4=N)=430
P(x=6/Y=N)=4/30 P(x=7/Y=N)=930
P (x=8/y=N) = 4/30 P (x=9/y=N)=4/30
P (x=10/y=N) = 2/30 P(x=11 /y=N) = 30
P (x=12/y=w) = 0

Q.2

Let $P = \{a, b\}$ and let $K = \{K1, K2, K3, K4, K5\}$. Let $C = \{1, 2, 3, 4, 5\}$, and suppose the encryption functions are represented by the following encryption matrix:

	a	b
K_1	1	2
K_2	2	3
K_3	3	1
K_4	4	5
K_5	5	4

Now choose two positive real numbers α and β such that $\alpha + \beta = 1$, and define Pr[K1] = Pr[K2] = Pr[K3] = $\alpha/3$ and Pr[K4] = Pr[K5] = $\beta/2$.

Prove that this cryptosystem achieves perfect secrecy.

Ans:

```
P = \{a,b\}
K = \{K1, K2, K3, K4, K5\}
C = \{1,2,3,4,5\}
    \Rightarrow Alpha + beta = 1
Pr[K1] = Pr[K2] = Pr[K3] = \alpha/3
Pr[K4] = Pr[K5] = \beta/2
Let P(a) = x and P(b) = 1-x
Here we need to prove P(X)=P(X/4)
Y=1,2,3
P(y) = P(X=a,y) + P(X=b,y)
    = x(\alpha/3) + (1-x)(\alpha/3)
    = \alpha/3 .....(1)
P(y/x) = P(Key) where Key=K1,K2,K3
       = P(K1) = \alpha/3 .....(2)
From Eq 1 and 2
P(y) = P(y/x)
For,
  P(x/y) = P(x)*P(y/x) / P(y)
So, P(x/y) = P(x) - --- \rightarrow for Y=1,2,3
```

Y=4,5

$$P(y) = P(x=a,y) + P(x=b,y)$$

= $x(\beta/2) + (1-x)(\beta/2)$
= $\beta/2$(3)

$$P(y/x) = P(Key)$$
 where $Key=K4,K5$
= $P(Key) = \beta/2$ (4)

Similarly,

$$P(x/y) = P(x) * P(y/x) / P(y)$$

= $P(x)$

$$P(x/y) = P(x)$$

So now, We can say that, Cryptosystem achieve perfect secrecy.

Q.3

A) Prove that the Affine Cipher achieves perfect secrecy if every key is used with equal probability 1/312.

Ans:

Probability = 1/312

Since equal probability for each k belong to K

We get Pk(K) = 1/312

We show that there are exatly 12 keys that encrypt x to y for any combination of plain text – cipher text letter (x,y)

For every different value of 'a', the key (a, y - axe) encrypts 'x' to 'y'. There are 12 keys that map a given plaintext letter to a given cipher text letter since there are 12 possibilities for a,

Pk(K) * Pp(d_k(y)) =
$$\frac{12}{312} Pp(a) + \frac{12}{312} (Pp(b)) + \dots + \frac{12}{312} Pp(z)$$

= $\frac{12}{312} * 1$
= $\frac{1}{26}$

Also ,
$$Pc(y/x) = \sum_{x=x=dk(y)}^{K=x=dk(y)} Pk(K)$$

= 12/312
=1/26

$$Pp(x/y) = \frac{Pp(x)*Pc(\frac{y}{x})}{Pc(y)}$$

$$= \frac{Pp(x)*1/26}{1/26}$$
= $Pp(x)$

So using Baye's theorem, we see that if we use every key with equal probability 1/312 then we can achieve perfect secrecy.

B) More generally, suppose we are given a probability distribution on the set

$${a \in Z26 : gcd(a, 26) = 1}.$$

Suppose that every key (a, b) for the Affine Cipher is used with probability Pr[a]/26.

Prove that the Affine Cipher achieves perfect secrecy when this probability distri-bution is defined on the keyspace.

Ans:

Q.4

Suppose that S is a random variable representing the sum of a pair of dice. Compute H(S).

Ans:

S is sum of pair of dies
$$So S \in \{2,3,4,5,...12\}$$

$$P(S=2) = 1/36 = p(S=12)$$

$$P(S=3) = 2/36 = p(S=11)$$

$$P(S=4) = 3/36 = S(S=10)$$

$$P(S=5) = 4/36 = p(S=9)$$

$$P(S=6) = 5/36 = p(S=8)$$

$$P(S=7) = 6/36$$

$$H(S) = \sum_{i=2}^{12} P(S=i) * \log_2 \frac{1}{P_S(i)}$$

$$H(S) = \frac{2*\log_2 36}{36} + \frac{2*2*\log_2 36/2}{36} + \frac{2*3*\log_2 36/3}{36} + \frac{2*4*\log_2 36/4}{36} + \frac{2*5*\log_2 36/5}{36} + \frac{6*\log_2 36/6}{36}$$

$$= \frac{2}{36} (\log_2 36 + 2 * \log_2 \frac{36}{2} + 3 * \log_2 \frac{36}{3} + 4 * \log_2 \frac{36}{4} + 5 * \log_2 \frac{36}{5} + 3 * \log_2 \frac{36}{6})$$

$$= 2.5686$$

Q.5 Consider a cryptosystem in which $P = \{a, b, c\}$, $K = \{K1, K2, K3\}$ and $C = \{1, 2, 3, 4\}$.

Suppose the encryption matrix is as follows:

	a	b	c
K_1	1	2	3
K_2	2	3	4
K_3	3	4	1

Given that keys are chosen equiprobably, and the plaintext probability distribution is

$$Pr[a] = 1/2$$
, $Pr[b] = 1/3$, $Pr[c] = 1/6$, compute $H(P)$, $H(C)$, $H(K)$, $H(K|C)$, and $H(P|C)$.

Ans.

P={a,b,c}
Pr[a] = 1/2, Pr[b] = 1/3, Pr[c] = 1/6
K = {K1,K2,K3} = Pr[K1] = Pr[K2] = Pr[K3] = 1/3
C = {1,2,3,4}
H(P) =
$$\frac{\log_2 2}{3} + \frac{\log_2 3}{3} + \frac{\log_2 6}{6}$$

= 0.50 + 0.53 + 0.43
= 1.46
H(K) = $\frac{\log_2 3}{3} + \frac{\log_2 3}{3} + \frac{\log_2 3}{3}$
= 1.58
Pr[C=1] = Pr[a] * Pr[K1] + Pr[c] * Pr[K3]
= 1/6 + 1/18 => 2/9
Pr[C=2] = 5/18 Pr[C=3] = 1/3 Pr[C=4] = 1/6
H(C) = $\frac{2}{9}$ (log₂ 9 - log₂ 2) + $\frac{5}{18}$ (log₂ 18 - log₂ 5) + $\frac{1}{3}$ (log₂ 3 - log₂ 1) + $\frac{1}{6}$ (log₂ 6 - log₂ 1)
= 0.48 + 0.51 + 0.53 + 0.43
= 1.95
H(K|C) = H(K) + H(P) - H(C)
= 1.09
For H(P|C),
Pr[p=a, y], y=1,2,3 Pr[p=b, y], y=2,3,4 Pr[p=c, y], y=1,3,4 = 1/6 = 1/9 = 1/18
H(P,C) = 3 ($\frac{\log_2 6}{6} + \frac{\log_2 9}{9} + \frac{\log_2 18}{18}$)
 $\stackrel{?}{=}$ 3.044 = 1.95
= 1.094