Flexible Models for Microclustering with Application to Entity Resolution

Brenda Betancourt,¹ Giacomo Zanella,² Hanna Wallach,³ Jeffrey W. Miller,⁴ Abbas Zaidi,¹ and Rebecca C. Steorts¹ Duke University,¹, Bocconi University,² Microsoft Research,³ and Harvard University⁴

Summary

- Many models assume the number of data points in each cluster grows linearly with the total number of data points.
- Examples include infinitely exchangeable clustering processes.
- Entity resolution: the size of each cluster is often unrelated to the size of the data set.
- Requires models that yield clusters whose sizes grow sublinearly with the size of the data set.

FIGURE 1: Two illustrations of the microclustering problem: (Left) a histogram of the number of records per entity (i.e., cluster sizes) for a database of 100,000 campaign finance donations from 2011–2012. Right: A histogram of the cluster sizes generated from a Chinese restaurant process simulation with concentration parameter 0.1.

Microclustering property

Traditional Clustering

- A number of popular clustering applications assume priors on partitions such as the Dirichlet process and Pitman-Yor process distributions.
- \bullet Any infinitely exchangeable partition distribution on the positive integers has a Kingman paintbox representation.
- Having a Kingman paintbox representation implies that the number of data points in each cluster grows (a.s.) linearly with the total number of data points N.
- By contrast, in entity resolution (and other problems), we expect the size of the clusters to be small even for large datasets.

Microclustering

A sequence of random partitions exhibits the *microclustering property* if M_N is $o_p(N)$, where $M_N \leq N$ is the size of the largest cluster in C_N , where C_N is a partition of $[N] = \{1, 2, ..., N\}$.

- Equivalently, $M_N/N \to 0$ in probability as $N \to \infty$.
- Microclustering requires sacrificing either (i) exchangeability or (ii) selfconsistent marginalization of the partitions.
- Previous work Wallach et al. (2010) sacrificed (i); we sacrifice (ii).

Flexible Models for Microclustering

Notation

- K: number of clusters (random).
- N_k , k = 1, ... K: size of the kth cluster.
- $N = \sum_{k=1}^{K} N_k$: total number of data points.
- z_n , n = 1, ... N: cluster assignment of the nth data point.

Define

$$K \sim \kappa \quad \text{and} \quad N_1, \dots, N_K \mid K \stackrel{iid}{\sim} \mu.$$
 (1)

where $\kappa = (\kappa_1, \kappa_2, ...)$ and $\mu = (\mu_1, \mu_2, ...)$ are probability distributions on $\{1, 2, ...\}$. Given $N_1, ..., N_K$, generate $z_1, ..., z_N$ by drawing a vector uniformly at random from the set of permutations of

$$(\underbrace{1,\ldots,1}_{N_1 \text{ times}},\underbrace{2,\ldots,2}_{N_2 \text{ times}},\ldots,\underbrace{K,\ldots,K}_{N_K \text{ times}}).$$

NBNB Model

Suppose that we allow

$$K \sim \text{Neg-Bin}(a, q)$$
 and $N_1, \dots, N_k \mid K \sim \text{Neg-Bin}(r, p)$,

Note

- \bullet a and q are assumed to be known.
- \bullet r and p are sampled from Gamma and Beta priors.

We call the resulting marginal distribution of C_N the NegBin-NegBin (NBNB) model.

NBD Model

For a fully nonparametric approach, allow

$$K \sim \text{Neg-Bin}(a, q) \text{ and } N_1, \dots, N_k \mid K \sim \boldsymbol{\mu},$$

$$\boldsymbol{\mu} \sim \text{Dirichlet}(\alpha, \boldsymbol{\mu}^{(0)}),$$

with fixed concentration parameter $\alpha > 0$ and known base measure

$$\boldsymbol{\mu}^{(0)} = (\mu_1^{(0)}, \mu_2^{(0)}, \cdots).$$

Sampling

The reseating algorithm for the NBNB model is:

- for n = 1, ... N, reassign element n to
- an existing cluster $c \in C_N \setminus n$ with probability $\propto |c| + r$ a new cluster with probability $\propto (|C_N \setminus n| + a)\beta r$.

We can derive a similar reseating algorithm for the NBD model.

Compare to the reseating of the Chinese Restaurant Process (CRP):

- for n = 1, ..., N, reassign element n to
- an existing cluster $c \in C_N \setminus n$ with probability $\propto |c|$
- a new cluster with probability $\propto \alpha$.

The parameter α induces the richer get richer behavior in the CRP.

Main difference is the assignment to a new cluster depends on K through the term $|C_N \setminus n|$.

FIGURE 2: Empirical evidence suggesting that the NBNB (left) and NBD (right) models exhibit the microclustering property.

- We can use the reseating algorithms to draw samples from $P(C_N \mid N)$ but they do not produce exact samples like the CRP.
- When the NBNB or NBD models are used as the prior in a partition-based clustering model, the resulting Gibbs sampling algorithm for C_N is similar to this algorithm accompanied by appropriate likelihood terms.
- Unfortunately, incremental Gibbs sampling is slow for large data sets.

Inference

In real world clustering tasks, data points x_1, \ldots, x_n and N are observed. Assume $x_{n,\ell}$ where:

- n = 1, ... N indexes how many records we observe.
- $\ell = 1, \dots L$ indexes the categorical features within a record.

Let $\zeta: \bigcup_{N=0}^{\infty} (\mathcal{C}_N \times [N]) \to \{1, 2, \ldots\}$ be a function that maps a partition C_N and a record $x_{n,\ell}$ to its latent cluster assignment z_n .

$$C_N \sim \mathrm{FMM}(\cdot)$$

$$z_n \mid C_N = \zeta(C_N, n)$$

$$oldsymbol{ heta}_{\ell,k} \sim \mathrm{Dirichlet}(\delta_\ell, oldsymbol{\gamma}_\ell)$$

$$x_{n,\ell} \mid z_n, \boldsymbol{\theta}_{\ell,1}, \boldsymbol{\theta}_{\ell,2}, \ldots \sim \text{Multinomial}(\boldsymbol{\theta}_{\ell,z_n}),$$

- ullet The base measure γ_ℓ is assumed known.
- The concentration parameter $\delta_{\ell} \sim \text{Gamma}(1,1)$.

Chaperones Algorithm

If we let $c_n \in C_N$ denote the cluster containing element n, then each iteration consists of:

- **1.** Randomly choose two *chaperones*, $i, j \in \{1, ..., N\}$ from a distribution $P(i, j | x_1, ..., x_N)$ where the probability of i and j given $x_1, ..., x_N$ is greater than zero for all $i \neq j$. This distribution must be independent of the current state of the Markov chain C_N ; however, crucially, it may depend on the observed data points $x_1, ..., x_N$.
- **2.** Reassign each $n \in c_i \cup c_j$ by sampling from $P(C_N | N, C_N \setminus n, c_i \cup c_j, x_1, \dots, x_N)$.

Step 2 is almost identical to the restricted Gibbs moves found in existing split-merge algorithms (Jain and Neal, 2004), except that the chaperones i and j can also change clusters, provided they do not abandon any of their children.

Experiments

The Data

We assess how well each model "fits" on simulated data based on three real data sets (medical data, official statistics data, and the Syrian conflict).

- Italy Data: Survey data from Italy with 74% of data are singletons.
- NLTCS5000: Sample from the National Long Term Care Survey (NLTCS) with 68% singletons.
- Syria2000: Sample from Syrian conflict with 86% singletons.
- Ground truth is known for all the above data sets, so we compare using such unique identifiers.

Evaluation Criterion

- Consider four statistics: the number of singleton clusters, the maximum cluster size, the mean cluster size, and the 90% quantile of cluster sizes.
- Consider three entity resolution metrics: estimated mean cluster size, False Negative Rate (FNR), and False Discovery Rate (FDR).
- Comparisons performed against the DP and PYP.

Results

FIGURE 3: Top: Italy data. Middle: NLTCS5000. Bottom: Syria2000. The dashed horizontal line represents the true value of the statistic.

	\hat{K}	SD	FNR	FDR	$\hat{\delta}_{\ell}$
$\overline{DP_{\delta_{\ell}=0.02}}$	594.00	4.51	0.07	0.03	0.02
$PY_{\delta_\ell=0.02}$	593.90	4.52	0.07	0.03	0.02
$NBNB_{\delta_{\ell}=0.02}$	591.00	4.43	0.04	0.03	0.02
$DNB_{\delta_{\ell}=0.02}$	590.50	3.64	0.03	0.00	0.02
$\overline{DP_{\delta_{\ell}=0.05}}$	601.60	5.89	0.13	0.03	0.03
$PY_{\delta_\ell=0.05}$	601.50	5.90	0.13	0.03	0.04
$NBNB_{\delta_{\ell}=0.05}$	596.40	5.79	0.11	0.04	0.04
$DNB_{\delta_{\ell}=0.05}$	592.60	5.20	0.09	0.04	0.04

Table 1: Italy Data: Entity-resolution summary statistics and posterior expected value of δ . The true number of clusters is K=587.

Discussion

- NBD and NBNB do as well or better than PYP and DP for real data sets.
- ullet Expect the FMM models to beat the PYP and DP models as N increases.
- Ongoing work to string-valued features for inference is in progress.

Acknowledgements: This work was supported in part by NSF grants SBE-0965436, DMS-1045153, and IIS-1320219; NIH grant 5R01ES017436-05; the John Templeton Foundation; the Foerster-Bernstein Postdoctoral Fellowship; the UMass Amherst CIIR; and an EPSRC Doctoral Prize Fellowship.