# Predicting Coronary Heart Disease

Henri Antikainen, Rachel Appel, Melanie King, Sriram Raghunath, Shanise Walker

The Erdős Institute Fall 2023 Data Science Bootcamp

### **Overview: Coronary Heart Disease**

Heart disease, a type of cardiovascular disease, is the leading cause of death in the United States. **Coronary heart disease** (coronary artery disease) is the most common type of heart disease and is responsible for over 365,000 deaths each year.

<u>Stakeholders:</u> People living in the United States, county officials, healthcare providers, policy makers

**KPI:** Mean Squared Error

<u>Goal:</u> Develop a model that accurately predicts coronary heart disease and detects important features.



Normal and Partially Blocked Blood Vessels

#### **Dataset Information**

- Gathered from Center for Disease Control and Prevention's Interactive Atlas of Heart Disease and Stroke (IAHDS) online mapping tool
- County level data for 3226 counties in the United States, which includes data from all 50 states and all US territories
- 59 total columns in the data set at the county level
  - County fips codes
  - County names and state
  - Coronary heart disease percentage
  - □ 56 possible modeling features



### **Data Cleaning and Challenges**

- Missing data for some county features, especially US territories, identified in the data set as value -1
- ☐ States with **small number of counties** (i.e. less than five data points available)
- ☐ Modified data to remove all US territories, Alaska, Hawaii, Washington DC, and Delaware

|   | cnty_fips | display_name              | heart_disease | high_cholesterol | diagnosed_diabetes | obesity | physical_inactivity | current_smoker | broadband_internet | computer |     |
|---|-----------|---------------------------|---------------|------------------|--------------------|---------|---------------------|----------------|--------------------|----------|-----|
| 0 | 2013      | "Aleutians<br>East, (AK)" | 5.9           | 31.2             | 9.9                | 27.2    | 21.5                | 18.5           | 42.1               | 11.5     |     |
| 1 | 2016      | "Aleutians<br>West, (AK)" | 4.6           | 30.3             | 9.3                | 25.4    | 20.0                | 16.7           | 21.0               | 8.2      |     |
| 2 | 2020      | "Anchorage,<br>(AK)"      | 4.9           | 29.4             | 8.3                | 29.8    | 17.9                | 15.7           | 8.0                | 3.3      | ••• |
| 3 | 2050      | "Bethel, (AK)"            | 8.1           | 28.7             | 8.8                | 23.8    | 22.0                | 34.0           | 26.6               | 10.2     |     |
| 4 | 2060      | "Bristol Bay,<br>(AK)"    | 7.5           | 32.3             | 9.2                | 24.6    | 20.9                | 17.8           | 19.0               | 7.0      |     |

### **Exploring Data Set**

Top features strongly correlated with heart disease:

- ☐ High cholesterol
- ☐ Households without a computer
- Individuals of age 25+ without 4 or more years of college

## Top features negatively correlated with heart disease:

- Median household income
- Asian Pacific Islander race, all ages
- Asian and Pacific Islander cholesterol-lowering medication nonadherence, medicare beneficiaries Part D



# Training Three Models:

- □ XGBoost
- GaussianNaive Bayes
- LinearRegression(LassoCV)



Comparison of supervised learning mean squared error on state-specific models and the continental model

#### **Comparison of Three Continental Models**

| Model                       | MSE   | MAE   | R-squared score |  |
|-----------------------------|-------|-------|-----------------|--|
| XGBoost                     | 0.226 | 0.338 | 0.901           |  |
| Gaussian Naive<br>Bayes     | 5.440 | 1.667 | 0.338           |  |
| Linear Regression (LassoCV) | 0.278 | 0.323 | 0.879           |  |

- State-level training data is constructed so that 80% of the available data from each state is represented in the set.
- ☐ The continental model is supervised learning on the aggregated state-level data.

### XGBoost Model Analysis

- Notable results:
  - The continental model outperforms the state specific model.
  - Both models perform the worst on Nevada data.
  - Both models perform the same on Ohio data.



- 2.00

- 1.75

- 1.50

- 1.25

-1.00

-0.75

0.50

0.25

### XGBoost Model Feature Importances



### **Future Work/Next Steps**

For the county officials and the general population, we will produce predictive information about coronary heart disease which is relevant to geographic location.

- Deeper Analysis of XGBoost Model
  - Compare feature importance
- Improve Supervised Learning Models
  - ☐ Include states with small number of counties
  - Add data for Hawaii, Alaska, and US territories
  - Better feature selection
- Disseminate Results
  - Create an interactive map

