Modelos Mixtos

"Análisis de regresión lineal multiple"

M.Sc. Henry Luis López García

Universidad Nacional Autónoma de Nicaragua, Managua Facultad de Ciencia e Ingeniería

Contenidos

- Modelo de regresión múltiple
- Estimación del parámetros
- Prueba de significancia de la regresión
- Supuestos del modelo

Modelos de regresión múltiple

- Es modelo de regresión donde interviene más de una variable regresora se llama modelo de regresión múltiple.
- En general, se puede relacionar la respuesta y con k regresores, variables predictoras, el modelo:

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + \dots + x_k\beta_k + \varepsilon$$

• Se llama modelo regresión lineal múltiple con k regresores los parámetros β_j j=0,...k se llaman coeficientes de regression.

Modelos de regresión múltiple

- Este modelo describe un hiperplano en el espacio de k dimensiones de las variables regresoras x_i .
- El parámetro β_i representa el cambio esperado en la respuesta y por cambio unitario en x_i cuando todas las demás variables regresoras $x_i (i \neq j)$ se

mantienen constantes.

Estimación de los parámetros

- Se puede aplicar el método de mínimos cuadrados para estimar los coeficientes de regresión, supongamos que se dispone n>k observaciones, y sea y_i la $i-\acute{e}sima$ respuesta observada, y x_{ij} la $i-\acute{e}sima$ observación o nivel del regresor x_i .
- Se supone que el término de error ϵ del modelo tiene $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$ y que los errores no están correlacionados

Estimación de los parámetros

Observación	respuesta	Regresores		
i	У	x_1	<i>x</i> ₂	x_k
1	y_1	<i>x</i> ₁₁	x_{12}	x_{1k}
2	y_2	x_{21}	x_{22}	x_{2k}
•				
•	•	•		•
•	•	•		•
	•	•		•
n	\mathcal{Y}_n	x_{n1}	$x_{n2} \cdot \cdot \cdot$	x_{nk}

Estimación de los parámetros

$$y = x\beta + \varepsilon$$
 en donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Prueba de significancia de la regresión

• La prueba de significancia de la regresión es para determinar si hay una relación lineal entre la respuesta y y cualquiera de las variables regresoras $x_1, x_2, x_3, \dots, x_n$, este procedimiento suele considerarse como una prueba general de la adecuación del modelo.

$$H_0: \beta_1 = \beta_1 = \dots = \beta_k = 0$$

$$H_1: \beta_j \neq 0$$
 al menos para una j.

• El rechazo de la Hipótesis nula implica que almenos uno de los regresores contribuye al modelo en forma significativa.

Supuesto del modelo

- 1. La relación entre la respuesta y y los regresores es lineal, al menos en forma aproximada.
- 2. Los e_i siguen una distribución $N \sim (0,1)$.
- 3. Los e_i tienén la misma σ^2 .
- 4. Los e_i son independientes entre sí.

Modelos Mixtos "Análisis de regresión lineal"

M.Sc. Henry Luis López García Universidad Nacional Autónoma de Nicaragua, Managua Facultad de Ciencia e Ingeniería

