Model selection

- Two basic approaches
 - Hypothesis tests
 - Forward selection, backward selection
 - Predictive performance
 - emphasized in machine learning
 - basis for xIC (AIC, BIC, DIC, WAIC, etc)
- Code for the ant dataset
 - 14 2 ants modselect.R
 - 14_2_ants_modselect.md

Predictive performance

Basic idea: out-of-sample validation

Fit model to training dataset

Test model on validation dataset

k-fold cross validation (CV)

Divide dataset into k parts (preferably randomly)

... repeat with each test subset

Leave-one-out cross validation

- LOOCV
- = k-fold CV for k = n

Algorithm

```
for each data point
fit model without point
predict for that point
measure prediction error (compare to observed)
CV_error = mean error across points
```

Information criteria

- AIC
 - frequentist LOOCV asymptotically

Information criteria

- AICc
 - finite sample correction

$$AIC_c = AIC + \frac{2k(k+1)}{n-k-1}$$

finite sample correction

n: number of data points

k: number of estimated parameters (including stochastic, e.g. variance)

Information criteria

WAIC

- widely applicable information criterion
- Bayesian LOOCV asymptotically

LOOIC

- leave-one-out information criterion
- Bayesian LOOCV for finite samples
- loo() function (knows what to do with rstanarm objects)