1

NCERT 11.15. Q10

EE23BTECH11010 - Venkatesh Bandawar*

Question: For the travelling harmonic wave $y(x,t) = 2.0\cos 2\pi (10t - 0.0080x + 0.35)$ where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of

- (a) 4*m*
- (b) 0.5m
- (c) $\lambda/2$
- (d) $3\lambda/4$

Solution:

Parameter	Description	Value
$y(x_i,t)$	equation of harmonic wave	$A\cos(2\pi ft - kx_i + \phi)$
k	angular wave number	$2\pi (0.008)$
$\lambda = \frac{2\pi}{k}$	wavelength	125 cm
f	frequency	10
A	amplitude	2.0
φ	phase constant	$2\pi (0.35)$
θ_i	phase of <i>i</i> th harmonic wave	$(2\pi ft - kx + \phi)$
x_i	position of <i>i</i> th harmonic wave	
t	time	
$x_2 - x_1$	path difference	400 cm
		50 cm
		λ
		$\frac{\overline{2}}{3\lambda}$
		4

TABLE 1 Given parameters

Phase difference
$$(\Delta \theta) = (2\pi f t - kx_1 + \phi)$$

 $-(2\pi f t - kx_2 + \phi)$ (1)
 $= k(x_2 - x_1)$ (2)

Parameter	Description	subquestion	Value
$\Delta heta$	$\theta_1 - \theta_2$	(a)	6.4π radians
		(b)	0.8π radians
		(c)	π radians
		(d)	$\frac{3\pi}{2}$ radians

TABLE 2
Phase differences