The group G is isomorphic to the group labelled by [62, 1] in the Small Groups library. Ordinary character table of $G \cong D62$:

10	31a	31b	31c	31d	31e	31f	31g	31h	31i	31j	31k	31l	31m	31n	31o	2a
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1
χ_3 2	$E(31) + E(31)^{30}$	$E(31)^2 + E(31)^{29}$	$E(31)^3 + E(31)^{28}$	$E(31)^4 + E(31)^{27}$	$E(31)^5 + E(31)^{26}$	$E(31)^6 + E(31)^{25}$	$E(31)^7 + E(31)^{24}$	$E(31)^8 + E(31)^{23}$	$E(31)^9 + E(31)^{22}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{11} + E(31)^{20}$	$E(31)^{12} + E(31)^{19}$	$E(31)^{13} + E(31)^{18}$	$E(31)^{14} + E(31)^{17}$	$E(31)^{15} + E(31)^{16}$	0
χ_4 2	$E(31)^2 + E(31)^{29}$	$E(31)^4 + E(31)^{27}$	$E(31)^6 + E(31)^{25}$	$E(31)^8 + E(31)^{23}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{12} + E(31)^{19}$	$E(31)^{14} + E(31)^{17}$	$E(31)^{15} + E(31)^{16}$	$E(31)^{13} + E(31)^{18}$	$E(31)^{11} + E(31)^{20}$	$E(31)^9 + E(31)^{22}$	$E(31)^7 + E(31)^{24}$	$E(31)^5 + E(31)^{26}$	$E(31)^3 + E(31)^{28}$	$E(31) + E(31)^{30}$	0
χ_5 2	$E(31)^3 + E(31)^{28}$	$E(31)^6 + E(31)^{25}$	$E(31)^9 + E(31)^{22}$	$E(31)^{12} + E(31)^{19}$	$E(31)^{15} + E(31)^{16}$	$E(31)^{13} + E(31)^{18}$	$E(31)^{10} + E(31)^{21}$	$E(31)^7 + E(31)^{24}$	$E(31)^4 + E(31)^{27}$	$E(31) + E(31)^{30}$	$E(31)^2 + E(31)^{29}$	$E(31)^5 + E(31)^{26}$	$E(31)^8 + E(31)^{23}$	$E(31)^{11} + E(31)^{20}$	$E(31)^{14} + E(31)^{17}$	0
χ_6 2	$E(31)^4 + E(31)^{27}$	$E(31)^8 + E(31)^{23}$	$E(31)^{12} + E(31)^{19}$	$E(31)^{15} + E(31)^{16}$	$E(31)^{11} + E(31)^{20}$	$E(31)^7 + E(31)^{24}$	$E(31)^3 + E(31)^{28}$	$E(31) + E(31)^{30}$	$E(31)^5 + E(31)^{26}$	$E(31)^9 + E(31)^{22}$	$E(31)^{13} + E(31)^{18}$	$E(31)^{14} + E(31)^{17}$	$E(31)^{10} + E(31)^{21}$	$E(31)^6 + E(31)^{25}$	$E(31)^2 + E(31)^{29}$	0
χ_7 2	$E(31)^5 + E(31)^{26}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{15} + E(31)^{16}$	$E(31)^{11} + E(31)^{20}$	$E(31)^6 + E(31)^{25}$	$E(31) + E(31)^{30}$	$E(31)^4 + E(31)^{27}$	$E(31)^9 + E(31)^{22}$	$E(31)^{14} + E(31)^{17}$	$E(31)^{12} + E(31)^{19}$	$E(31)^7 + E(31)^{24}$	$E(31)^2 + E(31)^{29}$	$E(31)^3 + E(31)^{28}$	$E(31)^8 + E(31)^{23}$	$E(31)^{13} + E(31)^{18}$	0
$ \chi_8 $ 2	$E(31)^6 + E(31)^{25}$	$E(31)^{12} + E(31)^{19}$	$E(31)^{13} + E(31)^{18}$	$E(31)^7 + E(31)^{24}$	$E(31) + E(31)^{30}$	$E(31)^5 + E(31)^{26}$	$E(31)^{11} + E(31)^{20}$	$E(31)^{14} + E(31)^{17}$	$E(31)^8 + E(31)^{23}$	$E(31)^2 + E(31)^{29}$	$E(31)^4 + E(31)^{27}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{15} + E(31)^{16}$	$E(31)^9 + E(31)^{22}$	$E(31)^3 + E(31)^{28}$	0
$ \chi_9 $ 2	$E(31)^7 + E(31)^{24}$	$E(31)^{14} + E(31)^{17}$	$E(31)^{10} + E(31)^{21}$	$E(31)^3 + E(31)^{28}$	$E(31)^4 + E(31)^{27}$	$E(31)^{11} + E(31)^{20}$	$E(31)^{13} + E(31)^{18}$	$E(31)^6 + E(31)^{25}$	$E(31) + E(31)^{30}$	$E(31)^8 + E(31)^{23}$	$E(31)^{15} + E(31)^{16}$	$E(31)^9 + E(31)^{22}$	$E(31)^2 + E(31)^{29}$	$E(31)^5 + E(31)^{26}$	$E(31)^{12} + E(31)^{19}$	0
$ \chi_{10} $ 2	$E(31)^8 + E(31)^{23}$	$E(31)^{15} + E(31)^{16}$	$E(31)^7 + E(31)^{24}$	$E(31) + E(31)^{30}$	$E(31)^9 + E(31)^{22}$	$E(31)^{14} + E(31)^{17}$	$E(31)^6 + E(31)^{25}$	$E(31)^2 + E(31)^{29}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{13} + E(31)^{18}$	$E(31)^5 + E(31)^{26}$	$E(31)^3 + E(31)^{28}$	$E(31)^{11} + E(31)^{20}$	$E(31)^{12} + E(31)^{19}$	$E(31)^4 + E(31)^{27}$	0
$ \chi_{11} $ 2	$E(31)^9 + E(31)^{22}$	$E(31)^{13} + E(31)^{18}$	$E(31)^4 + E(31)^{27}$	$E(31)^5 + E(31)^{26}$	$E(31)^{14} + E(31)^{17}$	$E(31)^8 + E(31)^{23}$	$E(31) + E(31)^{30}$	$E(31)^{10} + E(31)^{21}$	$E(31)^{12} + E(31)^{19}$	$E(31)^3 + E(31)^{28}$	$E(31)^6 + E(31)^{25}$	$E(31)^{15} + E(31)^{16}$	$E(31)^7 + E(31)^{24}$	$E(31)^2 + E(31)^{29}$	$E(31)^{11} + E(31)^{20}$	0
$ \chi_{12} $ 2	$E(31)^{10} + E(31)^{21}$	$E(31)^{11} + E(31)^{20}$	$E(31) + E(31)^{30}$	$E(31)^9 + E(31)^{22}$	$E(31)^{12} + E(31)^{19}$	$E(31)^2 + E(31)^{29}$	$E(31)^8 + E(31)^{23}$	$E(31)^{13} + E(31)^{18}$	$E(31)^3 + E(31)^{28}$	$E(31)^7 + E(31)^{24}$	$E(31)^{14} + E(31)^{17}$	$E(31)^4 + E(31)^{27}$	$E(31)^6 + E(31)^{25}$	$E(31)^{15} + E(31)^{16}$	$E(31)^5 + E(31)^{26}$	0
χ_{13} 2	$E(31)^{11} + E(31)^{20}$	$E(31)^9 + E(31)^{22}$	$E(31)^2 + E(31)^{29}$	$E(31)^{13} + E(31)^{18}$	$E(31)^7 + E(31)^{24}$	$E(31)^4 + E(31)^{27}$	$E(31)^{15} + E(31)^{16}$	$E(31)^5 + E(31)^{26}$	$E(31)^6 + E(31)^{25}$	$E(31)^{14} + E(31)^{17}$	$E(31)^3 + E(31)^{28}$	$E(31)^8 + E(31)^{23}$	$E(31)^{12} + E(31)^{19}$	$E(31) + E(31)^{30}$	$E(31)^{10} + E(31)^{21}$	0
$ \chi_{14} $ 2	$E(31)^{12} + E(31)^{19}$	$E(31)^7 + E(31)^{24}$	$E(31)^5 + E(31)^{26}$	$E(31)^{14} + E(31)^{17}$	$E(31)^2 + E(31)^{29}$	$E(31)^{10} + E(31)^{21}$	$E(31)^9 + E(31)^{22}$	$E(31)^3 + E(31)^{28}$	$E(31)^{15} + E(31)^{16}$	$E(31)^4 + E(31)^{27}$	$E(31)^8 + E(31)^{23}$	$E(31)^{11} + E(31)^{20}$	$E(31) + E(31)^{30}$	$E(31)^{13} + E(31)^{18}$	$E(31)^6 + E(31)^{25}$	0
$ \chi_{15} $ 2	$E(31)^{13} + E(31)^{18}$	$E(31)^5 + E(31)^{26}$	$E(31)^8 + E(31)^{23}$	$E(31)^{10} + E(31)^{21}$	$E(31)^3 + E(31)^{28}$	$E(31)^{15} + E(31)^{16}$	$E(31)^2 + E(31)^{29}$	$E(31)^{11} + E(31)^{20}$	$E(31)^7 + E(31)^{24}$	$E(31)^6 + E(31)^{25}$	$E(31)^{12} + E(31)^{19}$	$E(31) + E(31)^{30}$	$E(31)^{14} + E(31)^{17}$	$E(31)^4 + E(31)^{27}$	$E(31)^9 + E(31)^{22}$	0
$ \chi_{16} $ 2	$E(31)^{14} + E(31)^{17}$	$E(31)^3 + E(31)^{28}$	$E(31)^{11} + E(31)^{20}$	$E(31)^6 + E(31)^{25}$	$E(31)^8 + E(31)^{23}$	$E(31)^9 + E(31)^{22}$	$E(31)^5 + E(31)^{26}$	$E(31)^{12} + E(31)^{19}$	$E(31)^2 + E(31)^{29}$	$E(31)^{15} + E(31)^{16}$	$E(31) + E(31)^{30}$	$E(31)^{13} + E(31)^{18}$	$E(31)^4 + E(31)^{27}$	$E(31)^{10} + E(31)^{21}$	$E(31)^7 + E(31)^{24}$	0
$ \chi_{17} $ 2	$E(31)^{15} + E(31)^{16}$	$E(31) + E(31)^{30}$	$E(31)^{14} + E(31)^{17}$	$E(31)^2 + E(31)^{29}$	$E(31)^{13} + E(31)^{18}$	$E(31)^3 + E(31)^{28}$	$E(31)^{12} + E(31)^{19}$	$E(31)^4 + E(31)^{27}$	$E(31)^{11} + E(31)^{20}$	$E(31)^5 + E(31)^{26}$	$E(31)^{10} + E(31)^{21}$	$E(31)^6 + E(31)^{25}$	$E(31)^9 + E(31)^{22}$	$E(31)^7 + E(31)^{24}$	$E(31)^8 + E(31)^{23}$	0

Trivial source character table of $G \cong D62$ at p = 31:

Trivial source character table of $G = D02$ at $p = 51$:					
Normalisers N_i					
p-subgroups of G up to conjugacy in G					
Representatives $n_j \in N_i$	1a	2a	1a	2a	
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 $	31	-1	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{1} + 1 \cdot$	31	1	0	0	
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{1} + 0$		1	1	1	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_1 \end{vmatrix} $	1	-1	1	-1	

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,55,47,39,31,23,15,7,61,53,45,37,29,21,13,5,59,51,43,35,27,19,11,3,57,49,41,33,25,17,9)(2,56,48,40,32,24,16,8,62,54,46,38,30,22,14,6,60,52,44,36,28,20,12,4,58,50,42,34,26,18,10)]) \cong C31$

 $N_1 = Group([(1,2)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,56)(10,55)(11,54)(12,53)(13,52)(14,51)(15,50)(16,49)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), \\ N_2 = Group([(1,55,47,39,31,23,15,7,61,53),45,37,29,21,13,559,51,43,35,27,19,11,3,57,49,41,33,25,17,9)(2,56,48,40,32,24,16,862,54,46,38,30,22,14,6,60,52,44,36,28,20,12,45)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), \\ N_3 = Group([(1,55,47,39,31,23,15,7,61,53),45,37,29,21,13,559,51,43,35,27,19,11,3,57,49,41,33,25,17,9)(2,56,48,40,32,24,16,862,54,46,38,30,22,14,6,60,52,44,36,28,20,12,45)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), \\ N_4 = Group([(1,55,47,39,31,23,15,7,61,53),45,37,29,21,13,559,51,43,35,27,19,11,3,57,49,41,33,25,17,9)(2,56,48,40,32,24,16,862,54,46,38,30,22,14,6,60,52,44,36,28,20,12,45)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), \\ N_5 = Group([(1,55,47,39,31,23,15,7,61,53),45,37,29,21,13,559,51,43,35,27,19,11,3,57,49,41,33,25,17,9)(2,56,48,40,32,24,16,86,25,44,46,48,50,22,44,46,48,50,22,44,46,48,50,22,44,46,48,50,22,44,46,48,4$