BMD ENG 301 Quantitative Systems Physiology (Nervous System)

Spinal Reflex Circuits (cont'd)

Professor Malcolm MacIver

Types of Neurons

Type	Axon Diameter (µm)	Signal Speed (ms ⁻¹)	Soma Location	Innervate	
la sensory	13-20	70-120	Dorsal root ganglion	Nuclear bag fibers	Very fast
II sensory	6-12	30-70	Dorsal root ganglion	Nuclear bag and nuclear chain fibers	Fast, second most highly myelinated axon type
γ motor	5-8	4-24	Ventral horn	Intrafusal fibers	Small and slower conduction
α motor	13-20	80-120	Ventral horn	Muscle fibers	Very fast

Placement of Spindles

- ★ Found in almost all muscles
- ★ From 10 to over a 1000 spindles in each muscle
- Number of spindles roughly proportional to size of muscle
- ★ Do not run the length of the muscle
 - ★ except for short muscles

Number of Spindles

Negative feedback regulation of muscle tension by Golgi tendon organs

Muscle force

Spindles and GTOs

Spindle Sensor	GTO Sensor		
Length and △L/dt	Force		
la and II afferents	lb afferent		
la afferent provides <u>direct</u> excitatory drive to alpha motor neurons innervating homonymous and synergist muscles	Ib afferent provides inhibitory drive to alpha motor neurons innervating homonymous muscle through interneurons		
la afferent provides inhibitory drive to alpha motor neurons innervating antagonist muscle through interneurons	Ib afferent provides excitatory drive to alpha motor neurons innervating antagonist muscle through interneurons		
	Ib afferent has widespread connections in the spinal cord		
Spindle arranged in parallel with the extrafusal fibers	GTO arranged in series with the extrafusal fibers		

(A) Muscle passively stretched

(B) Muscle actively contracted

NEUROSCIENCE 6e, Figure 16.13
© 2018 Oxford University Press

Flexor Reflex

Spinal cord circuitry for the flexion–crossed extension reflex

NEUROSCIENCE 6e, Figure 16.14 © 2018 Oxford University Press

Withdrawal + Crossed Extension Reflexes

Reflexes

Reflex	Afferent	Detects	Mode of Action	Function
Stretch (Myotatic)	la from spindle (70-120 ms ⁻¹)	Phasic stretch of muscle	Contraction of homonymous muscle, relaxation of antagonist muscle	Adjust a motor action for unpredicted perturbation
"Inverse" Myotatic	Ib from GTO (70- 120 ms ⁻¹)	Active stretch of tendon	Contraction of antagonist muscle, relaxation of homonymous muscle (BUT not really the exact opposite of the myotatic action)	Control of muscle force/stiffness (prevent overstretch)
Group II	II from spindle (30-70 ms ⁻¹)	Steady stretch of muscle	Complex	Posture
Flexor	II, III, IV from cutaneous nerve endings (0.5-70 ms ⁻¹)	Harmful stimulus	Ipsilateral flexion and contralateral extension	Withdraw limb from harm

Doc cam

BMD ENG 301 Quantitative Systems Physiology (Nervous System)

Locomotion

Professor Malcolm MacIver

Motor control is distributed

Circuits for body movements

Movement requires the coordinated activation of many different neuronal populations across multiple brain regions.

The mammalian cycle of locomotion is organized by central pattern generators in the spinal cord

After Pearson (1976) Sci. Amer. 235: 72-86.

NEUROSCIENCE 6e, Figure 16.15 (Part 1)
© 2018 Oxford University Press

The mammalian cycle of locomotion is organized by central pattern generators in the spinal cord

NEUROSCIENCE 6e, Figure 16.15 (Part 2)
© 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 16.15 (Part 3)
© 2018 Oxford University Press

Doc cam

Central pattern generator in the spinal cord

NEUROSCIENCE 6e, Figure 16.15 (Part 4)

© 2018 Oxford University Press

The reticular formation

The Interacting Parts

Optogenetic methods used to control electrical activity in nerve cells

NEUROSCIENCE 6e, Figure 1.11
© 2018 Oxford University Press

Courtesy
Cris Neil,
U.
Oregon

