Aroject hotel

presented by

karim Atef

PROBLEM STATEMENT

OBJECTIVE

It is the design and implementation of a machine learning model for a hotel to predict whether the booking will be canceled or not.

• Goal: He did the classification correctly.

FIRST STEP

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix

data = pd.read_csv(r"C:\Users\karem\Downloads\first inten project.csv")
data.head(10)
```

IMPORT DATA AND LIBRARYS

- pandas : To maintain and retrieve the data
- seaborn, matplotlib: To create a visualization for the data
- train_test_splite: To split the data into test data and train data
- KNeighborsClassifier: To create a model of type KNN
- Confusion_matrix : He is doing a test for the model.

DATA EXAMINATION AND PROCESSING

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36285 entries, 0 to 36284
Data columns (total 17 columns):
# Column
                            Non-Null Count Dtype
0 Booking ID
                            36285 non-null object
  number of adults
                            36285 non-null int64
2 number of children
                            36285 non-null int64
3 number of weekend nights 36285 non-null int64
4 number of week nights
                            36285 non-null int64
5 type of meal
                            36285 non-null object
6 car parking space
                            36285 non-null int64
   room type
                            36285 non-null object
8 lead time
                            36285 non-null int64
9 market segment type
                            36285 non-null object
10 repeated
                            36285 non-null int64
11 P-C
                            36285 non-null int64
12 P-not-C
                            36285 non-null int64
13 average price
                            36285 non-null float64
14 special requests
                            36285 non-null int64
15 date of reservation
                            36285 non-null object
                            36285 non-null object
16 booking status
dtypes: float64(1), int64(10), object(6)
memory usage: 4.7+ MB
  data[data.duplicated() == True]
```

NULL CHECK

Null does not exist in the data.

DUPLICATED CHECK

• There are no duplicates.

CHECK DATA TYPE

• The type of data for the date of reservation is incorrect and we will change it to date, time, but we faced some problems that there is a date of 2018-2-29 which is wrong, so I replaced it with 1/3/2018.

DATA ANALYSIS

Here I wanted to study if there is a relationship between 'booking status' and 'market segment type'.

• In that case, it turned out that the highest number of bookings was online, and there was a higher number of cancellations.

• Also, the difference between 'canceled' and 'not canceled' is in 'complementary.'

It is clear that the 'market segment type' affects the 'booking status,' so we will take the 'market segment type.'

sns.countplot(data=data, x='type of meal', hue='booking status') plt.show()

HERE I WANTED TO STUDY IF THERE IS A RELATIONSHIP BETWEEN 'BOOKING STATUS' AND 'TYPE OF MEAL' BY BAR PLOT.

- It is clear that plan 1 is the best in terms of performance and that plan 2 is less efficient regarding the difference between canceled and not canceled.
- Plan 3 is to be the least plan in terms of quantity and may reach zero.

It is clear that the 'type of meal' affects the 'booking status'.

HERE I WANTED TO STUDY IF THERE IS A RELATIONSHIP BETWEEN 'BOOKING STATUS' AND 'LEAD TIME' BY BOX PLOT.

• It is clear that the longer the lead time, the higher the number of cancellations.

• It is clear that the shorter the lead time, the higher the number of Not_canceled.

```
le = LabelEncoder()
data['type of meal'] = le.fit_transform(data['type of meal'])
data['market segment type'] = le.fit_transform(data['market segment type'])
data['booking status'] = le.fit_transform(data['booking status'])
data['room type'] = le.fit_transform(data['room type'])
data.drop(['Booking_ID','month'] , inplace= True ,axis= 1)
```

• This is to do encoding for the column categories because the KNN model cannot accept non-numeric data.

• This heatmap represents the correlation between the column and then.

colum	correlation
date of reservation	-0.17
special requests	0.25
average price	-0.14
p-not-c	0.06
p-c	0.03
repeated	0.11
market segment type	-0.14
lead time	-0.44

SELECT BEST COLUMES

```
data_traning = data.loc[:,['type of meal','repeated', 'car parking space','lead time', 'market segment type', 'average price ', 'special requests']]
targetcolum = data['booking status']
data_traning

X_train, X_test, y_train, y_test = train_test_split(data_traning, targetcolum, test_size=0.3, random_state=42)

model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
```

BEST COLUMS

 'type of meal', 'repeated', 'car parking space', 'lead time', 'market segment type', 'average price', 'special requests'

TRAIN MODEL

• I chose here that it takes 5 from neighbors because it was giving the best result.

SPLIT DATA

 Here I did a split of the data with a 70 to 30 ratio, and this was the best ratio used. EVALUATING THE MODEL

y_pred = moreport = cl

HIS RESULTS

• It is clear that the model predicts canceled cases very accurately, as it predicted 6461 correctly and 2310 correctly for not canceled cases.

PRESENTED BY:

karem atef

THANKS karem atel