1. Calculations

To design a CMOS circuit consisting of a two-input NOR gate. First, we know the following circuit diagram and data:

$ m V_{DD}$	4 V
$ m V_{Tn}$	0.25 V
$ m V_{Tp}$	-0.25 V
C_{o}	$5 \times 10^{-4} Fm^{-2}$
Electron mobility	$0.1 m^2 V^{-1} s^{-1}$
Hole mobility	$0.05 m^2 V^{-1} s^{-1}$
Minimum feature size	0.2 μm
Maximum alignment error	0.1 μm

Fig.1. The CMOS NOR gate with two-inputs [1]

According to the lecture hints, the operating point of MOSFET is assumed to be point C.

Therefore:

$$V_A = V_B = V_{out} = \frac{V_{DD}}{2} = 2 V$$

First, we assume that M3 works in the linear region and M4 works in the saturation region. And, we already know the current relationship for each transistor as follows: $I_{d3} = I_{d4} = 2I_{d1} = 2I_{d2}$. Second, the equation for the current in the linear region is: $I_D = \beta [(V_{GS} - V_T) \times V_{DS} - \frac{V_{DS}^2}{2}]$. The equation for the current in the saturation region is: $I_D = \frac{\beta}{2} (V_{GS} - V_T)^2$ Thus:

$$I_{D3} = I_{D4} = \beta [(V_{GS3} - V_{Tp}) \times V_{DS3} - \frac{V_{DS3}^2}{2}] = \frac{\beta}{2} (V_{GS4} - V_{Tp})^2$$

We assume that the voltage difference between M3 and M4 is V₁, then we know

$$V_{GS3} = 2 - 4 = -2V, V_{DS3} = (V_1 - 4)V, V_{GS4} = (-2 - V_1)V.$$

Thus, we can obtain the following equation:

$$\beta[(-2 - (-0.25)) \times (V_1 - 4) - \frac{(V_1 - 4)^2}{2}] = \frac{\beta}{2}((-2 - V_1) - (-0.25))^2$$

Solving the equation gives: $V_1 = 0.25V$

We can determine the operating area of each transistor based on the PMOS operating area determination conditions, as shown in the following table:

Regime	N-MOS	P-MOS
Cut off	$ m V_{GS} > m V_{T}$	$ m V_{GS} < m V_{T}$
Linear	$ m V_{DS} < m V_{GS}$ - $ m V_{T}$	$ m V_{DS} > m V_{GS}$ - $ m V_{T}$
Saturation	$ m V_{DS} > m V_{GS}$ - $ m V_{T}$	$ m V_{DS} < m V_{GS}$ - $ m V_{T}$

For M3 MOSFET, V_{DS} (-3.75) $< V_{GS}$ (-2) - V_{T} (-0.25). Therefore, M3 works in the saturation region, this is contrary to our previous assumptions. However, M3 does not work in the linear region but should work in the saturation region. For M4, V_{DS} (-3.75) $< V_{GS}$ (-2.25) - V_{T} (-0.25). Thus, M4 is in the saturation region. For M1, V_{DS} (2) $> V_{GS}$ (2) - V_{T} (0.25). Therefore, M1 works in the saturation region. For M2, V_{DS} (2) $> V_{GS}$ (2) - V_{T} (0.25). Therefore, M2 works in the saturation region. Thus: $I_{d1} = I_{d2} = \frac{\beta}{2} (V_{GS} - V_{Tn})^2$, and $2I_{d1} = 2I_{d2} = I_{d3} = I_{d4}$, $\beta \equiv \mu C_0 \frac{w}{L}$ Therefore: $2I_{d2} = I_{d4} = 2\mu_n C_0 \frac{w_n}{L_n} (V_{GS2} - V_{Tn})^2 = \mu_p C_0 \frac{w_p}{L_p} (V_{GS4} - V_{Tp})^2$ Simplification gives: $4 \frac{w_n}{L_n} = \frac{w_p}{L_p}$, In addition, there are two transistors connected in parallel, doubling the length. To ensure that the β remains the same, so the width is also doubled. Since there are two inputs, they are related as follows:

$$8\frac{W_n}{L_n} = \frac{W_p}{L_p}$$

According to the lecture hints, we can define the channel length of N-MOS and P-MOS as $2\lambda i.e.$, $L_n=L_p=2\lambda$. And we can define the width of the N-MOS as $4\lambda, i.e.$, $W_n=4\lambda$. Furthermore, based on the ratio between $\frac{W_n}{L_n}$ and $\frac{W_p}{L_p}$, we can conclude that $W_p=8\times W_n=8\times 4\lambda=32\lambda$. Finally, we know that the minimum feature size is 0.2 μm , so the channel length L should be 0.2 μm , which means that λ should be 0.1 μm .

2. Layout

• Design:

Fig.2. The design for two input NOR gate

• The design rules and explanation:

For N-well region, the minimum distance between N-well region and active region of PMOS must at least 3λ [2]. And, the minimum distance between N-well region and active region of NMOS must at least 5λ , this is to prevent N-well region diffusion into the n-channel leading to a short circuit [2].

For active region, the contact must be surrounded by the active region and have a width of at least λ to prevent short circuits [2].

For poly-silicon region, it must extend from the active region at least 2λ . The minimum distance between the edge of the active region and poly-silicon must be λ . The minimum width of poly-silicon should be 2λ [2].

For metal, the minimum width of metal is 3λ . The minimum width of V_{DD} and GND is 4λ , and the minimum width of the V_{out} is 3λ . Metal must be overlapped with contacts [2].

For contact, the minimum size of the active region contacts is 2λ and the spacing between them is 2λ . To prevent short circuits, the minimum distance between the contact and the edge of the active region is λ [2].

References:

 $[1] I. MITROVIC, "ELEC212_SlidesLects7-9," canvas. [Online]. Available: https://liverpool.instructure.com/courses/60802/pages/week-7-lectures-8-and-9-cmoscircuits-+-design-assignment-2023?module_item_id=1689286. [Accessed: 26-Apr-2023]. [2] I. MITROVIC, "REVISION + Design Assignment," canvas. [Online]. Available: https://liverpool.instructure.com/courses/60802/files/9139976?module_item_id=1716440. [Accessed: 26-Apr-2023]. [2] Accessed: 26-Apr-2023]. [2] Accessed: 26-Apr-2023]. [2] Accessed: 26-Apr-2023]. [2] Accessed: 26-Apr-2023]. [2] Available: https://liverpool.instructure.com/courses/60802/files/9139976?module_item_id=1716440. [Accessed: 26-Apr-2023]. [2] Accessed: 26-Apr-2023]. [2] Acce$