Design and Analysis of Machine Learning Experiments 1) How can we assess the expected error of a learning algorithm for a given problem? 2) Given two or more algorithms, how con we say that one is better than the other (s) for a given problem? WE CANNOT USE THE TRAINING SET TO ANSWER D&2! training set error < test set error JAlg. will be tromed on this part. VALIDATION SETS: Test ? Not available property simulate the future testing phase.

Centrollable [-algorithm-factors [-mpxt features] > outputs inputs 1 I uncentrellable - rendomness n the optimizer noise in the
data. Translator profession professions

Classified predictions

Classified predictions

PCA + k-NN

D=reduced dm.

D=reduced dm.

PCA + k-NN

resphbors. Optimizention problem becomes finding (D'*, E*)

a time: 40 50 D 30 25 possible positions

I tried only 9 out of 25 possitions.

Exhaustre Enumeration

not Try all possible positions
possible beto "computational complexity"

1) Find best D' by setting k to a specified value. Assume k=5 => D=? A1 A2 A3 A4 A5 (10,5) (20,5) (30,5) (40,5) (50,5)

2) Fmd best k by using D' from step #1. Assume $D'=20 \Rightarrow k=?$ A1 A2 A3 A4 A5 (20,1) (20,3) (20,5) (20,7) (20,9)

$$(\dot{D}^{*}, \dot{k}^{*}) = (20,7)$$

Guidelmes for ML Experiments
Guidelmes for ML Experiments -> evaluate a single algorithm. -> pick the best algorithm for
Aim of the study —> evaluate a single algorithm for > pick the best algorithm for aspecific problem. > pick the best algorithm for > pick the best algorithm for
-> prck the best of problems.
$\sim \sim $
2) Selection of the response variable algorithms 3) Choice of factors and their levels > algorithms 3) Choice of factors and their levels > perameters 3) Choice of factors and design time
3 Choice of Disposed despon
3) Choice of
-> respense surplies
1

(5) Run exper: ments -> use (porallel) amputing if possible. (6) Startestreel enalyses of the results -> AlgAIZAGAZ bypothesis Jestry.

(7) Conclusions & Recommenda trons.

CROSS-VACIDATION & RESAMPLING

