
Hyperproperties: Verification of Proofs

Denis L. Bueno Michael R. Clarkson

{d1b335,clarkson}@cs.cornell.edu

Department of Computer Science

Cornell University

Computing and Information Science Technical Report

<http://hdl.handle.net/1813/11153>

July 25, 2008

Hyperproperties: Verification of Proofs*

Denis L. Bueno Michael R. Clarkson
`{d1b335,clarkson}@cs.cornell.edu`
Department of Computer Science
Cornell University

July 25, 2008

Abstract

This paper formalizes some proofs by Clarkson and Schneider about hyperproperties. The proofs are mechanically verified using the proof assistant Isabelle.

1 Introduction

Properties are sets of execution traces, and hyperproperties are sets of properties. This paper formalizes Clarkson and Schneider’s theory of hyperproperties [3] using Isabelle/HOL [4]. We present human-readable, mechanically-verified proofs of the propositions and theorems in [3]—except those related to topology, which we leave for future work. The proofs given here are formal analogues of informal proofs that were given in a previous technical report [2]. Thus, in addition to verifying the propositions and theorems, we have also verified the original proofs themselves.

This document was produced from L^AT_EX output, which was generated from Isabelle theory files. Those theory files are available for download from the same URL that hosts this technical report [1]. The numbering of propositions and theorems in this document follows the numbering in [2, 3].

*Supported in part by AFOSR grant F9550-06-0019, National Science Foundation Grants 0430161 and CCF-0424422 (TRUST), and a gift from Microsoft Corporation. Denis Bueno is supported by a Sandia National Laboratories Fellowship; Michael Clarkson is supported by an Intel Foundation PhD Fellowship.

```

theory HyperDefs
imports Main LList2 LaTeXsugar OptionalSugar
begin

notation {} ( $\emptyset$ )

```

2 Definitions

typeddecl state

— An abstract notion of a state.

types trace = state llist

— Traces are (possibly infinite) lists of states.

consts States :: state set (Σ)

— An abstract set of states.

consts BottomState :: state

syntax (latex)

$\text{BottomState} :: \text{state} (\perp)$

consts DummyState :: state

We assume the existence of one DummyState, which is used by Theorem 3 and Proposition 3.

axioms DummyState-is-State: DummyState $\in \Sigma$

constdefs

$\psi\text{-fin} :: \text{trace set } (\Psi_{\text{fin}})$

$\Psi_{\text{fin}} \triangleq \Sigma^*$

$\psi\text{-inf} :: \text{trace set } (\Psi_{\text{inf}})$

$\Psi_{\text{inf}} \triangleq \Sigma^\omega$

$\Psi :: \text{trace set}$

$\Psi \triangleq \Psi_{\text{fin}} \cup \Psi_{\text{inf}}$

types

$\text{property} = \text{trace set}$

$\text{hyperproperty} = \text{property set}$

constdefs

$\text{Prop} :: \text{property set}$

$Prop \triangleq Pow \Psi_{\inf}$

$HP :: \text{hyperproperty set}$
 $HP \triangleq Pow Prop$

consts

$\text{property-satisfies} :: trace set \Rightarrow property \Rightarrow bool ((- \models -) [80,80] 80)$
 $\text{hyperproperty-satisfies} :: trace set \Rightarrow hyperproperty \Rightarrow bool ((- \models -) [80,80] 80)$

defs (overloaded)

$\text{property-satisfies-def}: ts \models p \triangleq ts \subseteq p$
 $\text{hyperproperty-satisfies-def}: ts \models h \triangleq ts \in h$

constdefs

$\text{property-lift} :: property \Rightarrow hyperproperty ([[-]] 80)$
 $\text{property-lift } p \triangleq Pow p$

notation $\text{property-lift} ([-] 80)$

constdefs

$\text{trace-set-prefix} :: trace set \Rightarrow trace set \Rightarrow bool (\text{infix } \leq 80)$
 $\text{trace-set-prefix-def}:$
 $T \leq T' \triangleq \forall t. t \in T \longrightarrow (\exists t'. t' \in T' \wedge t \leq t')$

$Obs :: trace set set$

$Obs \triangleq \{ts. ts \subseteq \Psi_{\text{fin}} \wedge \text{finite } ts\}$

$sp :: property \Rightarrow bool$
 $sp P \triangleq P \in Prop \wedge$
 $(\forall t \in \Psi_{\inf}. t \notin P \longrightarrow$
 $(\exists m \in \Psi_{\text{fin}}. m \leq t \wedge$
 $(\forall t' \in \Psi_{\inf}. m \leq t' \longrightarrow t' \notin P)))$

$SP :: property set$

$SP \triangleq \{P. sp P\}$

$false-p :: property$

$false-p \triangleq \emptyset$

$shp :: hyperproperty \Rightarrow bool$
 $shp H \triangleq H \in HP \wedge$
 $(\forall T \in Prop. T \notin H \longrightarrow$
 $(\exists M \in Obs. M \leq T \wedge$
 $(\forall T' \in Prop. M \leq T' \longrightarrow T' \notin H)))$

$SHP :: hyperproperty set$

$SHP \triangleq \{hp. shp hp\}$

$false-hp :: hyperproperty$

false-hp \triangleq [*false-p*]

lp :: *property* \Rightarrow *bool*
lp L \triangleq $L \in Prop \wedge (\forall t \in \Psi_{\text{fin}}. (\exists t' \in \Psi_{\text{inf}}. t \leq t' \wedge t' \in L))$
LP :: *property set*
LP \triangleq {*P*. *lp P*}
lhp :: *hyperproperty* \Rightarrow *bool*
lhp H \triangleq $H \in HP \wedge (\forall T \in Obs. (\exists T' \in Prop. T \leq T' \wedge T' \in H))$
LHP :: *hyperproperty set*
LHP \triangleq {*hp* . *lhp hp*}

true-Prop :: *property*
true-Prop \triangleq Ψ_{inf}
true-HP :: *hyperproperty*
true-HP \triangleq *Prop*

end

theory *Hyper*
imports *HyperDefs*
begin

3 Proposition 1

3.1 Lemmas

lemma *property-lifts-into-hyperproperty*:
assumes *P-Prop*: $P \in Prop$
shows $[P] \in HP$
using *P-Prop*
unfolding *property-lift-def Prop-def HP-def* **by** *blast*

3.2 Proposition

theorem *proposition-1-oif*:
assumes *S-Prop*: $S \in Prop$ **and** *S-SP*: $S \in SP$
shows $[S] \in SHP$
proof –
 have *lift-S-HP*: $[S] \in HP$
 using *S-Prop property-lifts-into-hyperproperty* **by** *blast*
 {

```

fix T :: property
assume T-st: T ∈ Prop T ∉ [S]
from ⟨T ∉ [S]⟩ have ¬(T ⊆ S) by (simp add: property-lift-def)
then obtain t where t-st: t ∈ T t ∉ S by blast

have ∃ m. m ∈ Ψfin ∧ m ≤ t ∧ (∀ t' ∈ Ψinf. m ≤ t' → t' ∉ S)
proof -
  from t-st and T-st have t-psι-inf: t ∈ Ψinf
    unfolding Prop-def by blast
  with S-Prop and S-SP and T-st and t-st
    show ?thesis unfolding SP-def Prop-def sp-def by blast
qed
then obtain m where m-st: m ∈ Ψfin m ≤ t ∵ t' ∈ Ψinf ∧ m ≤ t' →
t' ∉ S
  by blast

let ?M = {m}
from m-st and t-st have M-prf-T: ?M ≤ T
  unfolding trace-set-prefix-def by blast
with m-st and t-st have M-Obs: ?M ∈ Obs
  unfolding Obs-def by blast

{
  fix T' :: property
  assume T'-st: T' ∈ Prop ?M ≤ T'

  then have ∃ t' ∈ T'. m ≤ t'
    by (simp only: trace-set-prefix-def) blast
  then obtain t' where t'-st: t' ∈ T' m ≤ t' ..
  with m-st and T'-st have t'-out-S: t' ∉ S
    unfolding Prop-def by blast
  from T'-st and S-Prop and S-SP and t'-st and t'-out-S
    have T' ∉ [S] unfolding property-lift-def by blast
}

hence ∀ T'. T' ∈ Prop ∧ ?M ≤ T' → T' ∉ [S] by blast

with m-st and M-prf-T and M-Obs
have ∃ M. M ∈ Obs ∧ M ≤ T ∧ (∀ T'. T' ∈ Prop ∧ M ≤ T' → T' ∉ [S])
  by blast
}

thus ?thesis using lift-S-HP unfolding SHP-def shp-def by blast
qed

```

lemma prefix-set-has-longest:

```

fixes t :: 'a llist
assumes X-fin: finite X and X-non-empty: X ≠ ∅
and X-prefix-t: ∀ x ∈ X. x ≤ t
shows ∃ m ∈ X. (∀ x ∈ X. x ≤ m)
using prems
proof (induct X rule: Finite-Set.finite-ne-induct)
  fix x :: 'a llist show ∃ m ∈ {x}. ∀ x ∈ {x}. x ≤ m by blast
next
  fix x :: 'a llist and F::'a llist set
  assume
    R: ∀ x ∈ F. x ≤ t  $\implies$  ∃ m ∈ F. ∀ x ∈ F. x ≤ m
    and t-upper-bound: ∀ x ∈ insert x F. x ≤ t
  then obtain m where
    m-in-F: m ∈ F and m-le-t: m ≤ t and x-le-t: x ≤ t
    and m-max-F: ∀ x ∈ F. x ≤ m using R by (auto dest: R)
    from m-le-t x-le-t have m ≤ x ∨ x ≤ m by (rule pref-locally-linear)
    thus ∃ m ∈ insert x F. ∀ x ∈ insert x F. x ≤ m
  proof
    assume m ≤ x with m-max-F
    have ∀ xa ∈ insert x F. xa ≤ x by auto
    thus ?thesis by blast
  next assume x ≤ m with m-max-F
    have ∀ xa ∈ insert x F. xa ≤ m by auto
    thus ?thesis using m-in-F by blast
  qed
qed

```

theorem proposition-1-if:

```

assumes S-Prop: S ∈ Prop and lift-S-shp: [S] ∈ SHP
shows S ∈ SP
proof –
{ — Show that t has finite bad thing m.
  fix t :: trace
  assume t-st: t ∉ S {t} ∈ Prop
  then have t-out-lift-S: {t} ∉ [S] by (simp add: property-lift-def)

  obtain M where
    M-st: M ∈ Obs M ≤ {t} ∀ T'. T' ∈ Prop ∧ M ≤ T'  $\longrightarrow$  T' ∉ [S]
    using t-out-lift-S and t-st and S-Prop and lift-S-shp
    unfolding SHP-def shp-def
    by blast

  have ∃ ms ∈ Ψfin. ms ∈ M ∧ ms ≤ t ∧ (∀ m ∈ M. m ≤ ms)

```

```

proof -
  have  $M\text{-}pfx\text{-}t: \forall m \in M. m \leq t$ 
    using  $M\text{-}st$  unfolding  $\text{trace-set-prefix-def}$  by  $\text{blast}$ 
  have  $M\text{-nonempty}: M \neq \emptyset$ 
  proof (rule ccontr)
  {
    assume  $M\text{-empty}: \neg M \neq \emptyset$ 
    {
      fix  $T' :: \text{property}$  assume  $T' \in \text{Prop}$ 
      with  $M\text{-empty}$  have  $M \leq T'$  unfolding  $\text{trace-set-prefix-def}$  by  $\text{blast}$ 
    }
    hence  $M\text{-pfx-Prop}: \forall T' \in \text{Prop}. M \leq T'$  by  $\text{blast}$ 
    have  $\emptyset \in \text{Prop}$  unfolding  $\text{Prop-def}$  by  $\text{blast}$ 
    hence  $M \leq \emptyset$  using  $M\text{-pfx-Prop}$  by  $\text{blast}$ 
    hence  $\emptyset \notin [S]$  using  $M\text{-st}$  and  $\langle \emptyset \in \text{Prop} \rangle$  by  $\text{blast}$ 
    have  $\emptyset \in [S]$  using  $\text{property-lift-def}$  by  $\text{blast}$ 
    from  $\langle \emptyset \in [S] \rangle$  and  $\langle \neg \emptyset \in [S] \rangle$  have  $\text{False}$  by  $\text{blast}$ 
  }
  thus  $\neg M \neq \emptyset \implies \text{False}$  by  $\text{blast}$ 
qed

```

```

have  $M\text{-fin}: \text{finite } M$  using  $M\text{-st}$  unfolding  $\text{Obs-def}$  by  $\text{blast}$ 
from this obtain  $ms$  where  $ms\text{-st}: ms \in M \ \forall x \in M. x \leq ms$ 
  using  $M\text{-pfx-t}$  and  $M\text{-nonempty}$ 
  apply (insert prefix-set-has-longest [where t=t and X=M], blast)
  done
hence  $ms\text{-psi-fin}: ms \in \Psi_{\text{fin}}$  using  $M\text{-st}$  unfolding  $\text{Obs-def}$  by  $\text{blast}$ 
have  $ms\text{-pfx-t}: ms \leq t$  using  $ms\text{-st}$  and  $M\text{-st}$  unfolding  $\text{trace-set-prefix-def}$ 
  by  $\text{blast}$ 
  from  $ms\text{-psi-fin}$  and  $ms\text{-st}$  and  $ms\text{-pfx-t}$ 
  show  $\exists ms \in \Psi_{\text{fin}}. ms \in M \wedge ms \leq t \wedge (\forall m \in M. m \leq ms)$ 
  by  $\text{blast}$ 
qed
from this obtain  $m\text{-star}$  where
   $m\text{-star-st}: m\text{-star} \in \Psi_{\text{fin}} \ m\text{-star} \in M \ m\text{-star} \leq t$ 
   $\forall m \in M. m \leq m\text{-star}$ 
by  $\text{auto}$ 

{
  fix  $t'$ 
  assume  $t'\text{-st}: \{t'\} \in \text{Prop} \ m\text{-star} \leq t'$ 
  let  $?T' = \{t'\}$ 
  have  $M \leq ?T'$ 
  proof -

```

```

{
  fix m
  assume m ∈ M
  with m-star-st have m ≤ m-star by blast
  with t'-st have m ≤ t' using llist-le-trans by blast
}
thus M ≤ ?T' unfolding trace-set-prefix-def by blast
qed

with M-st and t'-st have ?T' ∉ [S] by blast
hence t' ∉ S unfolding property-lift-def by blast
}

with m-star-st have ∃ m ∈ Ψfin. m ≤ t ∧ (∀ t' ∈ Ψinf. m ≤ t' → t' ∉ S)
  unfolding Prop-def
  by blast
}
thus ?thesis
  using S-Prop
  unfolding SP-def sp-def Prop-def by blast
qed

```

4 Proposition 2

```

theorem proposition-2-oif:
  fixes L :: trace set
  assumes L-Prop: L ∈ Prop and L-LP: L ∈ LP
  shows [L] ∈ LHP
proof -
  have lift-L-HP: [L] ∈ HP
    using L-Prop property-lifts-into-hyperproperty by blast
{
  fix M assume M-st: M ∈ Obs
  {
    fix m assume m-st: m ∈ M
    have ∃ t. m ≤ t ∧ t ∈ L
    proof -
      from m-st and M-st have m ∈ Ψfin
        unfolding Obs-def by blast
      with L-Prop and L-LP and m-st show ?thesis
        unfolding LP-def lp-def Prop-def by blast
    qed
  }
  hence M-more: ∀ m ∈ M. (∃ t. m ≤ t ∧ t ∈ L) by blast
}

```

```

let ?T = {tm. ∃ m ∈ M. m ≤ tm ∧ tm ∈ L}
have ?T ⊆ L by blast
hence T-in-lift: ?T ∈ [L] unfolding property-lift-def by blast
with M-more have M-pfx-T: M ≤ ?T
  unfolding trace-set-prefix-def by blast
have ?T ∈ Prop using M-st L-Prop
  unfolding Prop-def psi-inf-def Obs-def psi-fin-def
  by blast
with T-in-lift and M-pfx-T and L-Prop
  have ∃ T. T ∈ Prop ∧ M ≤ T ∧ T ∈ [L] by blast
}
thus [L] ∈ LHP using lift-L-HP unfolding LHP-def lhp-def by blast
qed

```

```

theorem proposition-2-if:
fixes L :: trace set
assumes L-Prop: L ∈ Prop and L-lift-lhp: [L] ∈ LHP
shows L ∈ LP
proof -
{ fix t :: trace assume t-st: t ∈ Ψfin
let ?T = {t}
obtain T' where T'-st: ?T ≤ T' T' ∈ [L] T' ∈ Prop
proof -
  from t-st have t-Obs: {t} ∈ Obs using Obs-def by blast
  hence ∃ T' ∈ Prop. ?T ≤ T' ∧ T' ∈ [L]
    using L-lift-lhp unfolding LHP-def lhp-def by blast
  thus ?thesis by auto
qed
then obtain t' where t'-st: t ≤ t' t' ∈ T' t' ∈ Ψinf
  unfolding trace-set-prefix-def Prop-def by blast
have t' ∈ L using ⟨t' ∈ T'⟩ and ⟨T' ∈ [L]⟩
  unfolding property-lift-def by blast
with t'-st have ∃ t' ∈ Ψinf. t ≤ t' ∧ t' ∈ L by blast
}
thus L ∈ LP unfolding LP-def lp-def using L-Prop by blast
qed

```

5 Theorem 3

5.1 Definitions and Lemmas

constdefs

Safe :: hyperproperty ⇒ hyperproperty

$$\begin{aligned} \text{Safe } P &\triangleq \{T \in \text{Prop}. (\forall M \in \text{Obs}. M \leq T \longrightarrow \\ &\quad (\exists T' \in \text{Prop}. M \leq T' \wedge T' \in P))\} \\ \text{Live} :: \text{hyperproperty} &\Rightarrow \text{hyperproperty} \\ \text{Live } P &\triangleq P \cup (\text{Prop} - \text{Safe } P) \end{aligned}$$

```
lemma Safe-is-HP:
  fixes P :: hyperproperty
  assumes P ∈ HP
  shows Safe P ∈ HP
  unfolding Safe-def HP-def by blast
```

```
lemma Live-is-HP:
  fixes P :: hyperproperty
  assumes P-HP; P ∈ HP
  shows Live P ∈ HP
  using P-HP
  unfolding Live-def HP-def by blast
```

```
lemma Safe-is-hypersafety:
  fixes P :: hyperproperty
  assumes P-HP; P ∈ HP
  shows Safe P ∈ SHP
  using P-HP Safe-is-HP
  unfolding Safe-def SHP-def shp-def
  by blast
```

```
lemma P-subset-Safe-P:
  fixes P :: hyperproperty
  assumes P-HP; P ∈ HP
  shows P ⊆ Safe P
  using P-HP
  unfolding Safe-def HP-def
  by blast
```

```
lemma stutter-append-is-infinite:
  fixes x :: trace
  assumes x-fin: x ∈ Ψfin and s-st: s ∈ Σ
  shows (x @@ lconst s) ∈ Ψinf
  proof -
    from s-st have lconst s ∈ inflsts Σ
    by (rule lconstT [of s Σ])
    thus (x @@ lconst s) ∈ Ψinf
    using x-fin s-st lapp-fin-infT
    unfolding psi-fin-def psi-inf-def
    by blast
```

qed

constdefs

asInfinite :: *trace* \Rightarrow *trace*

asInfinite t \triangleq *if LNil = t then lconst DummyState else t @@ (lconst (llast t))*

— Converts a finite trace to an infinite trace. If the given finite trace is non-empty, it returns a suffix in which the final state is infinitely stuttered; otherwise it returns the constant *DummyState* trace.

lemma *llast-in-trace-alphabet*:

assumes *t* $\in \Psi_{\text{fin}}$

shows *t* $\neq \text{LNil} \longrightarrow \text{llast } t \in \Sigma$ (**is** *?P t*)

using *prems*

unfolding *psi-fin-def*

by (*induct t rule: finsts.induct*) *auto*

lemma *asInfinite-correctness*:

assumes *t-fin*: *t* $\in \Psi_{\text{fin}}$

shows *asInfinite t* $\in \Psi_{\text{inf}} \wedge t \leq \text{asInfinite } t$

proof *cases*

assume *LNil = t*

thus *?thesis unfolding asInfinite-def psi-inf-def using DummyState-is-State*

by (*simp add: lconstT [of DummyState Σ]*)

next

assume *t-positive*: *LNil ≠ t*

with *t-fin have res-inf*: *asInfinite t* $\in \Psi_{\text{inf}}$

proof –

have *llast t* $\in \Sigma$ **using** *t-positive t-fin llast-in-trace-alphabet* **by** *simp*

moreover

have *lconst (llast t)* $\in \Psi_{\text{inf}}$

using *t-fin t-positive llast t ∈ Σ unfolding psi-fin-def psi-inf-def*

by (*simp add: lconstT [of llast t Σ]*)

moreover

have *t@@lconst (llast t)* $\in \Psi_{\text{inf}}$

using *t-fin llast t ∈ Σ*

by (*simp add: stutter-append-is-infinite [of t llast t]*)

ultimately

show *asInfinite t* $\in \Psi_{\text{inf}}$ **unfolding** *asInfinite-def*

using *t-positive* **by** *simp*

qed

from *t-fin and t-positive*

have *t ≤ asInfinite t*

unfolding *psi-fin-def asInfinite-def using le-lappend by simp*

with *res-inf show ?thesis ..*

qed

lemma *Live-is-hyperliveness*:
 fixes P :*hyperproperty*
 assumes $P\text{-}HP$: $P \in HP$
 shows *Live P* $\in LHP$
 proof –
 have $Live\text{-}HP$: *Live P* $\in HP$ **using** $P\text{-}HP$ *Live-is-HP* **by** *blast*
 {
 fix T **assume** $T\text{-st}$: $T \in Obs$
 have $\exists T' \in Prop. T \leq T' \wedge T' \in Live P$
 proof cases
 assume $\exists T' \in Prop. T \leq T' \wedge T' \in P$
 then obtain T' **where** $T'\text{-st}$: $T' \in Prop$ $T \leq T'$ $T' \in P$ **by** *blast*
 hence $T' \in Live P$ **unfolding** *Live-def* **by** *blast*
 thus *?thesis* **using** $T'\text{-st}$ **by** *blast*
 next
 assume $T'\text{-non-extends}$: $\neg(\exists T' \in Prop. T \leq T' \wedge T' \in P)$
 {
 fix T' **assume** $T'\text{-extends-T}$: $T' \in Prop$ $T \leq T'$
 hence $T' \notin P$ **using** $T'\text{-non-extends}$ **by** *blast*
 hence $T' \notin Safe P$
 proof –
 have $\exists T \in Obs. T \leq T' \wedge (\forall T' \in Prop. \neg(T \leq T') \mid (T' \notin P))$
 using $T\text{-st}$ **and** $T'\text{-extends-T}$ **and** $T'\text{-non-extends}$ **by** *blast*
 hence $\neg(\forall M \in Obs. M \leq T' \longrightarrow (\exists T'' \in Prop. M \leq T'' \wedge T'' \in P))$
 by *blast*
 thus *?thesis* **using** $\langle T' \in Prop \rangle$ **unfolding** *Safe-def* **by** *blast*
 qed
 hence $T' \in (Prop - Safe P)$ **using** $\langle T' \in Prop \rangle$ **by** *blast*
 }
 hence *all-pfx*: $\forall T' \in Prop. T \leq T' \longrightarrow T' \in Prop - Safe P$ **by** *simp*
 show $\exists T' \in Prop. T \leq T' \wedge T' \in Live P$
 proof –
 let $?T' = \{asInfinite x \mid x. x \in T\}$
 have $T'\text{-suff}$: $T \leq ?T'$ **using** *asInfinite-correctness* $T\text{-st}$
 unfolding *trace-set-prefix-def* *Obs-def* **by** *blast*
 have $T'\text{-Prop}$: $?T' \in Prop$ **using** $T\text{-st}$ *asInfinite-correctness*
 unfolding *Obs-def* *Prop-def* **by** *blast*
 from $T'\text{-suff}$ **and** $T'\text{-Prop}$ **have** $?T' \in Prop - Safe P$ **using** *all-pfx* **by**
 blast
 with $T'\text{-suff}$ **and** $T'\text{-Prop}$ **show** *?thesis* **unfolding** *Live-def* **by** *blast*
 qed

```

qed
}
thus ?thesis using Live-HP unfolding Live-def LHP-def lhp-def by blast
qed

```

5.2 Theorem

```

theorem theorem-3:
fixes P :: trace set set
assumes P-HP: P ∈ HP
shows ∃ S ∈ SHP. ∃ L ∈ LHP. P = S ∩ L
proof -
let ?S = Safe P let ?L = Live P
have ?S ∩ ?L = (P ∪ Safe P) ∩ (P ∪ (Prop - Safe P))
  unfolding Live-def using P-HP P-subset-Safe-P by blast
also have (P ∪ Safe P) ∩ (P ∪ (Prop - Safe P))
  = P ∩ (Safe P ∪ (Prop - Safe P))
  using P-HP unfolding HP-def by blast
also have P ∩ (Safe P ∪ (Prop - Safe P)) = P ∩ Prop
  unfolding Safe-def by blast
also have P ∩ Prop = P using P-HP unfolding HP-def by blast
finally have witness: ?S ∩ ?L = P by blast

have Safe-SHP: Safe P ∈ SHP using Safe-is-hypersafety P-HP by blast
have Live-LHP: Live P ∈ LHP using Live-is-hyperliveness P-HP by blast

show ?thesis using Safe-SHP Live-LHP witness by blast
qed

```

6 Theorem 1

6.1 Definitions and Lemmas

constdefs

```

Systems :: trace set set
Systems ≡ {ts. ts ≠ ∅ ∧ ts ⊆ Ψinf}
refinedby :: trace set ⇒ trace set ⇒ bool (infix ≤ 80)
S ≤ S' ≡ S' ⊆ S
rc :: hyperproperty ⇒ bool
rc H ≡ ∀ S ∈ Systems. S ⊨ H →
  (∀ S' ∈ Systems. S ≤ S' → S' ⊨ H)
RC :: hyperproperty set
RC ≡ {H ∈ HP. rc H}

```

axioms safety-and-liveness-onlyif-true:

$\llbracket p \in LP; p \in SP \rrbracket \implies p = \text{true-Prop}$

— Any property which is both safety and liveness is the *true* property. This is axiomatised since it is well-known about the theory of properties.

```

lemma hypersafety-and-hyperliveness-onlyif-true:
  fixes H :: hyperproperty
  assumes H-SHP: H ∈ SHP and H-LHP: H ∈ LHP
  shows H = true-HP
  proof (rule ccontr)
    have H-HP: H ∈ HP using H-SHP unfolding SHP-def shp-def by blast
    {
      assume H-untrue: H ≠ true-HP
      then obtain Tstar where Tstar-st: Tstar ∈ Prop Tstar ∉ H
        using H-HP unfolding HP-def true-HP-def Prop-def by blast
      obtain M where M-st: M ∈ Obs M ≤ Tstar
         $\forall T' \in \text{Prop}. M \leq T' \longrightarrow T' \notin H$ 
        using H-SHP Tstar-st
        unfolding SHP-def shp-def by blast
      then obtain Th where Th-st: Th ∈ Prop M ≤ Th Th ∈ H
        using H-LHP
        unfolding LHP-def lhp-def by blast
        hence Th ∉ H using ⟨Th ∈ Prop⟩ M-st by blast
        thus False using Th-st by blast
    }
  qed

```

lemma hypersafety-and-hyperliveness-onlyif-true-contrapos:

```

  fixes H :: hyperproperty
  shows H ≠ true-HP  $\longrightarrow$  (H ∉ LHP  $\mid$  H ∉ SHP)
  apply (insert hypersafety-and-hyperliveness-onlyif-true [of H])
  by blast

```

axioms Ex-nontrue-Prop: $\exists l \in LP. l \neq \text{true-Prop}$

— There is a liveness property other than *true*. This is axiomatised since it is well-known about the theory of properties.

```

lemma system-is-property:
  fixes s :: trace set
  assumes s-Sys: s ∈ Systems
  shows s ∈ Prop
  using s-Sys
  unfolding Systems-def Prop-def by blast

```

lemma HP-contains-SHP: SHP ⊆ HP **unfolding** SHP-def shp-def **by** blast

6.2 Theorem

theorem *theorem-1-relaxed*:
shows $SHP \subseteq RC$
proof (*rule ccontr*)
assume $\neg SHP \subseteq RC$
then obtain S **where** $S-SHP: S \in SHP$ **and** $S\text{-not-}RC: S \notin RC$ **by** *blast*
have $S\text{-}HP: S \in HP$ **using** $S\text{-}SHP$ *HP-contains-SHP* **by** *blast*
from $S\text{-}HP$ **and** $S\text{-not-}RC$
obtain $T T'$ **where** $T\text{-st}: T \in Prop$ $T \in S$
and $T'\text{-st}: T' \in Prop$ $T' \notin S$
and $T\text{-gt-}T': T \supseteq T'$
unfolding *RC-def* *rc-def* *HP-def* *Systems-def* *Prop-def*
unfolding *refinedby-def* *hyperproperty-satisfies-def*
by *blast*
from $T'\text{-st}$ **obtain** M
where $M\text{-st}: M \leq T'$ ($\forall T'' \in Prop. M \leq T'' \longrightarrow T'' \notin S$)
using $S\text{-}SHP$ **unfolding** *SHP-def* *shp-def* **by** *blast*
have $M \leq T$
using $M\text{-st}$ $T\text{-st}$ $T'\text{-st}$ $T\text{-gt-}T'$
unfolding *trace-set-prefix-def* **by** *blast*
hence $T \notin S$ **using** $T\text{-st}$ $M\text{-st}$ **by** *blast*
thus *False* **using** $T\text{-st}$ **by** *blast*
qed

theorem *theorem-1*: $SHP \subset RC$
proof
show $SHP \subseteq RC$ **using** *theorem-1-relaxed* **by** *assumption*
obtain l **where** $l\text{-}LP: l \in LP$ **and** $l\text{-untrue}: l \neq true\text{-}Prop$
using *Ex-nontrue-Prop* **by** *blast*
hence $cx\text{-}RC: [l] \in RC$
unfolding *property-lift-def* *LP-def* *lp-def* *RC-def* *rc-def* *Systems-def*
refinedby-def *HP-def* *Prop-def* *psi-inf-def* *psi-fin-def*
hyperproperty-satisfies-def
by *blast*
from $l\text{-untrue}$ **have** $[l] \neq true\text{-}HP$
using $l\text{-}LP$
unfolding *LP-def* *lp-def* *true-Prop-def* *true-HP-def* *property-lift-def*
psi-inf-def *Prop-def*
by *blast*
hence $[l] \notin SHP$
proof –
have $l \in Prop$ **using** $l\text{-}LP$ **unfolding** *LP-def* *lp-def* **by** *blast*
with $l\text{-}LP$ **have** $[l] \in LHP$ **using** *proposition-2-oif* **by** *blast*
thus $[l] \notin SHP$

```

using ⟨[l] ≠ true-HP⟩
    hypersafety-and-hyperliveness-onlyif-true-contrapos by blast
qed
thus SHP ≠ RC using cx-RC by blast
qed

```

7 Proposition 3

7.1 Definitions and Lemmas

constdefs

$\text{Cls} :: ('a \text{ set} \Rightarrow 'a \text{ set}) \text{ set}$
 $\text{Cls} \triangleq \{cl. \forall T :: 'a \text{ set}. T \subseteq cl T\}$

$\text{PIF} :: \text{hyperproperty set}$
 $\text{PIF} \triangleq \{\{Cl T \mid T. T \in \text{Prop}\} \mid Cl. Cl \in \text{Cls}\}$

$\text{lsingle} :: 'a \Rightarrow 'a \text{ llist}$
 $\text{lsingle } x \triangleq x \# LNil$

$\text{hasDummyState} :: \text{trace} \Rightarrow \text{bool}$
 $\text{hasDummyState } t \triangleq \exists t'. t' @ @ (\text{lsingle DummyState}) \leq t$

$\text{GS} :: \text{trace set}$

$\text{GS} \triangleq \{t. t \in \Psi_{\text{inf}} \wedge \text{hasDummyState } t\}$

— The guaranteed service property, GS , contains infinite traces in which a designated state occurs. This definition generalizes GS from the technical report.

axioms

$\text{Cl-produces-Props}: \llbracket T \in \text{Prop}; Cl \in \text{Cls} \rrbracket \implies Cl T \in \text{Prop}$

— This axiom is essentially a type signature on closures. It is axiomatised because although it is not mentioned in the technical report, it is required for Proposition 3.

$\text{EX-trace-sans-DummyState}: \exists t \in \Psi_{\text{inf}}. \neg \text{hasDummyState } t$

— There is an infinite trace without a certain state (the *DummyState*, in this case). This is axiomatised because it is well-known about the theory of properties.

$\text{GS-liveness}: \text{lp GS}$

— The GS property is a liveness property. This is axiomatised since it is well-known.

```

lemma GS-LHP: [GS] ∈ LHP
proof -
  have GS ∈ Prop unfolding Prop-def GS-def by blast
  thus ?thesis using GS-liveness proposition-2-of unfolding LP-def by blast
qed

lemma trace-set-prefix-expanding':
fixes T :: trace set
assumes T-st: T ≤ T' and T'-sub: T' ⊆ T"
shows T ≤ T"
using T-st T'-sub unfolding trace-set-prefix-def by blast

```

7.2 Proposition

```

theorem proposition-3-relaxed:
  shows PIF ⊆ LHP
proof -
{
  fix P assume P ∈ PIF
  then obtain Cl-P where P-st: P = {Cl-P T | T. T ∈ Prop}
    and Cl-P-closure: Cl-P ∈ Cls
    unfolding PIF-def by blast
  have P-HP: P ∈ HP
  proof -
  {
    fix x assume x ∈ P
    then obtain T where T-st: x = Cl-P T T ∈ Prop
      using P-st by blast
    hence x ∈ Prop using Cl-P-closure Cl-produces-Props by blast
  }
  thus ?thesis unfolding HP-def by blast
qed
{
  fix T assume T-Obs: T ∈ Obs
  have ∃ T' ∈ Prop. T ≤ T' ∧ T' ∈ P
  proof -
    let ?T-inf = {asInfinite t | t. t ∈ T}
    let ?T' = Cl-P ?T-inf
    have T'-suff: T ≤ ?T'
    proof -
      have Cl-P-monotonic: ⋀ X. X ⊆ Cl-P X
        using Cl-P-closure unfolding Cls-def by blast
      hence Cl-P-prop: ?T-inf ⊆ Cl-P ?T-inf by auto
      have T-pfx-T-inf: T ≤ ?T-inf
        using T-Obs asInfinite-correctness
    qed
  qed
}
```

```

unfolding Obs-def trace-set-prefix-def by blast
with Cl-P-prop show ?thesis
  apply (insert trace-set-prefix-expanding' [OF T-pfx-T-inf Cl-P-prop])
  apply assumption
  done
qed
have ?T-inf ∈ Prop using T-Obs asInfinite-correctness
  unfolding Obs-def Prop-def by blast
hence T'-P: ?T' ∈ P using P-st by blast
have T'-Prop: ?T' ∈ Prop
  using ‹?T-inf ∈ Prop› Cl-P-closure Cl-produces-Props by blast
with ‹?T' ∈ P› and T'-suff show ?thesis by blast qed
}
hence P ∈ LHP using P-HP unfolding LHP-def lhp-def by blast
}
thus PIF ⊆ LHP by blast
qed

```

theorem proposition-3:

shows PIF ⊂ LHP

proof

show PIF ⊆ LHP using proposition-3-relaxed .

have GS-lift-LHP: [GS] ∈ LHP by (simp add: GS-LHP)

show PIF ≠ LHP

proof (rule ccontr)

{

assume PIF = LHP

hence [GS] ∈ PIF using GS-lift-LHP by simp

then obtain CL-GS

where CL-GS-st: [GS] = {CL-GS T | T. T ∈ Prop}

and CL-GS-Cls: CL-GS ∈ Cls unfolding PIF-def by blast

obtain t

where t-infrace: t ∈ Ψ_{inf}

and t-no-Dummy: ¬ hasDummyState t

using EX-trace-sans-DummyState by blast

hence ts-Prop: {t} ∈ Prop unfolding Prop-def by blast

have t ∈ CL-GS {t} using CL-GS-Cls unfolding Cls-def by blast

hence ¬ (CL-GS {t}) ⊨ GS)

using t-no-Dummy

unfolding property-satisfies-def GS-def by blast

hence False using CL-GS-st

using ts-Prop unfolding property-satisfies-def property-lift-def by blast

}

thus ¬ PIF ≠ LHP ⇒ False by blast

qed

qed

8 Theorem 2

8.1 Definitions and Lemmas

We represent traces over the alphabet A^k as ' a llist llist' where ' a ' is the type of elements of A . That is, instead of using k -tuples, we use lists of length k .

constdefs

$$\begin{aligned} kshp :: nat \Rightarrow hyperproperty \Rightarrow bool \\ kshp k S \triangleq \\ S \in HP \wedge \\ (\forall T \in Prop. T \notin S \longrightarrow \\ (\exists M \in Obs. M \leq T \wedge \text{card } M = k \wedge \\ (\forall T' \in Prop. M \leq T' \longrightarrow T' \notin S))) \\ KSHP :: nat \Rightarrow hyperproperty set \\ KSHP k \triangleq \{S. kshp k S\} \end{aligned}$$

$$\begin{aligned} fromSome :: 'a option \Rightarrow 'a \\ fromSome x \triangleq (\text{case } x \text{ of Some } e \Rightarrow e \mid None \Rightarrow \text{arbitrary}) \\ fromSomeSt :: state option \Rightarrow state \\ fromSomeSt x \triangleq (\text{case } x \text{ of Some } s \Rightarrow s \mid None \Rightarrow \perp) \end{aligned}$$

$$\begin{aligned} zipn :: nat \Rightarrow (state llist) llist \Rightarrow (state llist) llist \Rightarrow bool \\ zipn k T t \triangleq \\ \forall j :: nat. j < k \longrightarrow t!!j = Some (\text{lmap } (\lambda t. fromSomeSt (t!!j)) T) \\ — The zip relation. We get unzip for free. \end{aligned}$$

$$\begin{aligned} set-to-list :: 'a set \Rightarrow 'a llist \\ set-to-list S \triangleq SOME l. lset l = S \end{aligned}$$

Following are various axioms about the *zip* operator. Each axiom corresponds to an unproved fact about the operator.

axioms

$$\begin{aligned} &\text{zip-of-Obs-exists:} \\ &M \in Obs \implies \exists m. zipn k (set-to-list M) m \\ &— Any observation can be zipped. This axiom is used in the if direction of theorem 3. \end{aligned}$$

$$\begin{aligned} &\text{zip-EX-suffix:} \\ &[\![M \in Obs; S \in Systems; zipn k (set-to-list M) m; M \leq S]\!] \\ &\implies \exists s \in kProd k S. prefix-k k m s \\ &— There is a suffix S^k to any zip of an observation, if the system S is a suffix of the observation. \end{aligned}$$

zip-of-Obs-fin:

$$[\![M \in Obs; \text{zipn } k (\text{set-to-llist } M) m]\!]$$

$$\implies m \in (\Sigma^*)^*$$

— Zipping an observation produces a finite trace over Σ^k .

unzipped-recoverable:

$$\text{zipn } k (\text{set-to-llist } M) Mz$$

$$\implies \forall j < k. \exists m \in M. m = lmap (\lambda t. \text{fromSome } (t!!j)) Mz$$

— Every member from an unzipped trace set corresponds to some element of the zip.

unzip-monotonic-wrt-prefix-k:

$$[\![\text{zipn } k (\text{set-to-llist } M) Mz; \text{zipn } k (\text{set-to-llist } T) Tz; \text{prefix-}k k Mz Tz]\!]$$

$$\implies M \leq Tl$$

— Unzipping is monotonic.

constdefs

$$noBot :: state llist \Rightarrow \text{bool}$$

$$noBot \triangleq \text{finlsts-rec } \text{True } (\lambda s r b. b \wedge (s \neq \perp))$$

— $noBot t$ asserts that the finite trace t does not contain \perp .

$$bottoms :: state llist \text{ — infinite list of bottoms}$$

$$bottoms \triangleq lconst \perp$$

$$prefix-bottom :: state llist \Rightarrow state llist \Rightarrow \text{bool } (\text{infix } \leq_{\perp} 60)$$

$$t \leq_{\perp} u \triangleq \exists tp. noBot tp \wedge t \leq tp @@ bottoms \wedge tp \leq u$$

— Effectively removes the bottoms from the first trace, then compares it to the second.

$$prefix- k :: (state llist) llist \Rightarrow \text{nat} \Rightarrow (state llist) llist \Rightarrow \text{bool } (- \leq_{-} - 60)$$

$$t_k \leq_k u_k \triangleq$$

$$\forall j. j < k \longrightarrow$$

$$(lmap (\lambda t. \text{fromSome } (t!!j)) t_k) \leq_{\perp} (lmap (\lambda t. \text{fromSome } (t!!j)) u_k)$$

— The input traces are over the alphabet Σ^k . We project the j th position of each element, which creates two traces each with state elements, and compare those with *prefix-bottom*.

$$State-K :: state llist \text{ set}$$

$$State-K \triangleq \Sigma^*$$

$$TraceFin-K :: state llist llist \text{ set}$$

$$TraceFin-K \triangleq State-K^*$$

$$TraceInf-K :: state llist llist \text{ set}$$

$$TraceInf-K \triangleq State-K^\omega$$

$$Prop-K :: state llist llist \text{ set set}$$

$$Prop\text{-}K \triangleq Pow\ TraceInf\text{-}K$$

A generic definition of safety which takes an alphabet as a parameter. For theorem 2 we require reasoning about traces over Σ and Σ^k .

constdefs

$$\begin{aligned} spa :: nat \Rightarrow (state\ llist)\ llist\ set \Rightarrow bool \\ spa\ k\ P \triangleq P \in Prop\text{-}K \\ \wedge (\forall t \in TraceInf\text{-}K. t \notin P \longrightarrow \\ (\exists m \in TraceFin\text{-}K. m \leq_k t \wedge \\ (\forall t' \in TraceInf\text{-}K. m \leq_k t' \longrightarrow t' \notin P))) \end{aligned}$$

$$\begin{aligned} SPA :: nat \Rightarrow (state\ llist)\ llist\ set\ set \\ SPA\ k \triangleq \{P. spa\ k\ P\} \end{aligned}$$

$$\begin{aligned} kProd :: nat \Rightarrow state\ llist\ set \Rightarrow (state\ llist)\ llist\ set \\ kProd\ k\ S \triangleq \{t \in TraceInf\text{-}K. \exists S' \in Systems. \\ S' \subseteq S \wedge card\ S' = k \wedge zipn\ k\ (set\text{-}to\text{-}llist\ S')\ t\} \\ — k\text{-product of a system } S. \end{aligned}$$

$$\begin{aligned} pa\text{-}satisfies :: 'a\ llist\ set \Rightarrow 'a\ llist\ set \Rightarrow bool\ ((- \models -) [80,80] 80) \\ pa\text{-}satisfies\text{-}def: ts \models p \triangleq ts \subseteq p \\ — Whether a set of traces over an alphabet ' a ' satisfies a property. \end{aligned}$$

$$\begin{aligned} KSP :: nat \Rightarrow (state\ llist)\ llist\ set\ set \\ KSP\ k \triangleq SPA\ k \end{aligned}$$

$$\begin{aligned} Bads\text{-}from\text{-}KSaf :: nat \Rightarrow hyperproperty \Rightarrow trace\ set\ set \\ Bads\text{-}from\text{-}KSaf\ k\ KK \triangleq \\ \{M \in Obs. card\ M \leq k \\ \wedge (\exists T \in Prop. T \notin KK \wedge M \leq T) \\ \wedge (\forall T' \in Prop. M \leq T' \longrightarrow T' \notin KK)\} \\ — Boldface M in the proof of theorem 2. \end{aligned}$$

$$\begin{aligned} Saf\text{-}from\text{-}KSaf :: nat \Rightarrow hyperproperty \Rightarrow (state\ llist)\ llist\ set \\ Saf\text{-}from\text{-}KSaf\ k\ KK \triangleq \\ \{t \in TraceInf\text{-}K. \\ \neg(\exists M \in Obs. \exists tz \in TraceFin\text{-}K. \\ M \in Bads\text{-}from\text{-}KSaf\ k\ KK \wedge zipn\ k\ (set\text{-}to\text{-}llist\ M)\ tz \wedge tz \leq_k t)\} \\ — Boldface K in the proof of theorem 2. \end{aligned}$$

lemma *Saf-from-KSaf-is-safety*:

fixes $k :: nat$
assumes $KK\text{-}KSHP: KK \in KSHP\ k$
shows $Saf\text{-}from\text{-}KSaf\ k\ KK \in KSP\ k$
proof —

```

let ?K = Saf-from-KSaf k KK
have Saf-from-KSaf-st: ?K ∈ Prop-K
  unfolding Saf-from-KSaf-def TraceInf-K-def State-K-def Prop-K-def
  by blast
{
  fix t assume t-st: t ∈ TraceInf-K t ∉ ?K
  then have ∃ M ∈ Obs. M ∈ Bads-from-KSaf k KK
    ∧ (∃ tz ∈ TraceFin-K. zipn k (set-to-llist M) tz ∧ tz ≤k t)
  unfolding Saf-from-KSaf-def TraceInf-K-def TraceFin-K-def State-K-def
  by blast
  then obtain M tz where M-tz-st:
    M ∈ Obs
    M ∈ Bads-from-KSaf k KK
    tz ∈ TraceFin-K
    zipn k (set-to-llist M) tz
    tz ≤k t
  by blast
{
  fix u assume u-st: u ∈ TraceInf-K tz ≤k u
  hence u ∉ ?K using M-tz-st
    unfolding TraceInf-K-def Saf-from-KSaf-def State-K-def by blast
}
hence ∃ tz ∈ TraceFin-K.
  tz ≤k t ∧ (∀ u ∈ TraceInf-K. tz ≤k u → u ∉ Saf-from-KSaf k KK)
  using M-tz-st unfolding TraceFin-K-def TraceInf-K-def State-K-def
  by blast
}
thus ?K ∈ KSP k
  unfolding KSP-def SPA-def spa-def using Saf-from-KSaf-st by blast
qed

```

```

lemma trace-set-prefix-transitive:
  assumes X-p-Y: X ≤ Y and Y-p-Z: Y ≤ Z
  shows X ≤ Z
proof-
{
  fix x assume x ∈ X
  then obtain y where y ∈ Y x ≤ y
    using X-p-Y unfolding trace-set-prefix-def by blast
  then obtain z where z ∈ Z y ≤ z
    using Y-p-Z unfolding trace-set-prefix-def by blast
  have x ≤ z using ⟨x ≤ y⟩ ⟨y ≤ z⟩
    by (rule llist-le-trans [of x y z])
  hence ∃ z ∈ Z. x ≤ z using ⟨z ∈ Z⟩ by blast
}

```

}

thus $X \leq Z$ unfolding trace-set-prefix-def by blast

qed

8.2 Theorem

theorem theorem-2-onlyif:

fixes $k :: nat$

assumes $S\text{-Sys}: S \in Systems$ and $KK\text{-KSHP}: KK \in KSHP k$

shows $\exists K \in KSP k. ((S \models (KK :: hyperproperty)) \longrightarrow ((kProd k S) \models K))$

proof –

let $?K = Saf\text{-from}\text{-KSaf} k KK$

let $?MM = Bads\text{-from}\text{-KSaf} k KK$

let $?S\text{-}k = kProd k S$

have $K\text{-is-safety}: ?K \in KSP k$ using $KK\text{-KSHP}$ by (simp add: $Saf\text{-from}\text{-KSaf-is-safety}$)

have $(S \models (KK :: hyperproperty)) \longrightarrow ((?S\text{-}k) \models ?K)$

proof (rule ccontr)

{

assume $neg: \neg (S \models (KK :: hyperproperty)) \longrightarrow (?S\text{-}k) \models ?K$

hence $S\text{-Sat}\text{-}KK: S \models KK$ by blast

have $S\text{-}k\text{-Unsat}: \neg ((?S\text{-}k) \models ?K)$ using neg by blast

have $S\text{-in}\text{-}KK: S \in KK$

using $S\text{-Sat}\text{-}KK$ unfolding $hyperproperty\text{-satisfies}\text{-def}$.

have $S\text{-unsub}\text{-}K: \neg ?S\text{-}k \subseteq ?K$ using $S\text{-}k\text{-Unsat}$ unfolding $pa\text{-satisfies}\text{-def}$.

then obtain t where $t\text{-st}: t \in ?S\text{-}k \wedge t \notin ?K$ by blast

hence $t \in TraceInf\text{-}K$ unfolding $kProd\text{-def}$ by blast

then obtain $M \text{ zip-}M$ where $M\text{-zip-}M\text{-st}: M \in Obs$

$M \in ?MM$

$zipn k (set\text{-to}\text{-}llist M) \text{ zip-}M$

$zip- M \leq_k t$

using $t\text{-st}$ unfolding $Saf\text{-from}\text{-KSaf}\text{-def}$ by blast

obtain T where $T\text{-st}: zipn k (set\text{-to}\text{-}llist T) \models t$

$T \in Prop$

$T \subseteq S$

using $\langle t \in ?S\text{-}k \rangle$ unfolding $kProd\text{-def}$ $Systems\text{-def}$ $Prop\text{-def}$ by blast

have $M\text{-pfx-}T: M \leq T$ using $\langle zipn k (set\text{-to}\text{-}llist T) \models t \rangle$

$\langle zipn k (set\text{-to}\text{-}llist M) \text{ zip-}M \rangle$

$\langle zip- M \leq_k t \rangle$

by (simp add: unzip-monotonic-wrt-prefix-k)

hence $T \notin KK$ using $\langle M \in ?MM \rangle \langle T \in Prop \rangle$

unfolding $Bads\text{-from}\text{-KSaf}\text{-def}$ by blast

have $T \leq S$ using $T\text{-st}$ $S\text{-Sys}$ $\langle t \in ?S\text{-}k \rangle$

unfolding $trace\text{-set}\text{-prefix}\text{-def}$ $Systems\text{-def}$ $kProd\text{-def}$ $zipn\text{-def}$

by blast

with $M\text{-}pfx\text{-}T$ **have** $M\text{-}pfx\text{-}S: M \leq S$
by (rule trace-set-prefix-transitive [of $M T S$])

have $S \in Prop$ **using** $S\text{-}Sys$ **unfolding** $Systems\text{-}def$ $Prop\text{-}def$ **by** blast
have $S \notin KK$ **using** $M\text{-}zip\text{-}M\text{-}st$ $M\text{-}pfx\text{-}S \langle S \in Prop \rangle$ **unfolding** $Bads\text{-}from\text{-}KSaf\text{-}def$
by blast
 with $S\text{-}in\text{-}KK$ **have** $False$ **by** simp
 }
 thus $\neg(S \models KK \longrightarrow kProd k S \models ?K) \implies False$ **by** assumption
qed
 thus $\exists K \in KSP k. S \models KK \longrightarrow kProd k S \models K$
 using $K\text{-is-safety}$ **by** blast
qed

theorem theorem-2-if:
fixes $k :: nat$
assumes $S\text{-}Sys: S \in Systems$ **and** $KK\text{-}KSHP: KK \in KSHP k$
shows $\exists K \in KSP k. (((kProd k S) \models K) \longrightarrow (S \models (KK :: hyperproperty)))$
proof–
 let $?K = Saf\text{-}from\text{-}KSaf k KK$
 let $?M = Bads\text{-}from\text{-}KSaf k KK$
 let $?S\text{-}k = kProd k S$
have $K\text{-is-safety}: ?K \in KSP k$ **using** $KK\text{-}KSHP$ **by** (simp add: $Saf\text{-}from\text{-}KSaf\text{-}is\text{-}safety$)
have $((?S\text{-}k) \models ?K) \longrightarrow (S \models (KK :: hyperproperty))$
proof (rule ccontr)
 { assume neg: $\neg((?S\text{-}k) \models ?K) \longrightarrow (S \models (KK :: hyperproperty))$
 hence $?S\text{-}k \subseteq ?K$ **unfolding** pa-satisfies-def **by** simp
 have $\neg(S \models KK)$ **using** neg **by** simp
 have $S \in Prop$ **using** $S\text{-}Sys$ **unfolding** $Prop\text{-}def$ $Systems\text{-}def$ **by** blast
 hence $S \notin KK$ **using** $\neg(S \models KK)$
 unfolding hyperproperty-satisfies-def **by** simp

 hence
 $\exists M \in Obs. M \leq S \wedge card M = k \wedge$
 $(\forall T' \in Prop. M \leq T' \longrightarrow T' \notin KK)$
 using $\langle S \in Prop \rangle$ $KK\text{-}KSHP$ **unfolding** $KSHP\text{-}def$ $kshp\text{-}def$
 by blast
 then obtain M **where** $M\text{-}st: M \leq S$ $card M = k$ $M \in Obs$
 $\forall T' \in Prop. M \leq T' \longrightarrow T' \notin KK$ **by** blast
 have $\exists m. zipn k (set\text{-}to\text{-}llist M) m$
 using $\langle M \in Obs \rangle$ **by** (simp add: zip-of-Obs-exists [of $M k$])
 then obtain m **where** $m\text{-}st: zipn k (set\text{-}to\text{-}llist M) m$ **by** blast
 obtain s **where** $s \in ?S\text{-}k$ $m \leq_k s$
 using $\langle M \in Obs \rangle \langle S \in Systems \rangle m\text{-}st \langle M \leq S \rangle$
 using zip-EX-suffix **by** best

```

have  $M \in ?M$  unfolding Bads-from-KSaf-def using  $M\text{-st } \langle S \in Prop \rangle$ 
  by blast
have  $m \in TraceFin-K$  unfolding TraceFin-K-def
  using  $m\text{-st } \langle M \in Obs \rangle$  zip-of-Obs-fin
  unfolding zipn-def State-K-def Obs-def psi-fin-def
  by blast
have  $s \notin ?K$  unfolding Saf-from-KSaf-def
  using  $\langle M \in Obs \rangle \langle m \in TraceFin-K \rangle \langle M \in ?M \rangle \langle zipn k (set-to-llist M) m \rangle$ 
   $\langle m \leq_k s \rangle$  by blast
hence  $\neg ?S\text{-}k \subseteq ?K$  using  $\langle s \in ?S\text{-}k \rangle$  by blast
hence False using  $\langle ?S\text{-}k \subseteq ?K \rangle$  by blast
}
thus  $\neg (kProd k S \models Saf\text{-from-KSaf } k \text{ KK} \longrightarrow S \models KK) \implies False$  by
assumption
qed
thus  $\exists K \in KSP k. kProd k S \models K \longrightarrow S \models KK$ 
  using K-is-safety by blast
qed

end

```

References

- [1] Denis L. Bueno and Michael R. Clarkson. Hyperproperties: Verification of proofs. Cornell University Computing and Information Science Technical Report, <http://hdl.handle.net/1813/11153>, July 2008.
- [2] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Cornell University Computing and Information Science Technical Report, <http://hdl.handle.net/1813/9480>, January 2008.
- [3] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In *Proc. IEEE Computer Security Foundations Symposium*, pages 51–65, June 2008.
- [4] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. *Isabelle/HOL: A Proof Assistant for Higher-Order Logic*. Springer-Verlag, London, Cambridge, Massachusetts, 2002.