Glucose Level Prediction project using machine learning

What To Do

- 1. Import and explore the framingham.csv dataset.
- 2. Clean the data (handle nulls, correct formats, etc.).
- 3. Visualize the distribution of glucose and related health indicators.
- 4. Perform feature selection and engineering.
- 5. Train ML models (e.g., Logistic Regression, Decision Tree, Random Forest).
- 6. Evaluate models using classification metrics.
- 7. Predict glucose levels and draw insights.
- 8. Visualize the model's important features and performance.

This project focuses on predicting glucose levels using health-related features from the Framingham Heart Study dataset. We approach this as a binary classification problem, where glucose levels are categorized as normal or high based on a clinical threshold (≥126 mg/dL).

Glucose Level Prediction Project

Predicting glucose levels (as a classification task) using the Framingham dataset.

```
In [4]: # Step 1: Import Libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import classification_report, confusion_matrix, accurac
In [5]: # Import and explore the `framingham.csv` dataset
        # Step 2: Load and Explore the Dataset
        df = pd.read_csv("/Users/nikhilreddyponnala/Desktop/Machine Learning project
        # Show the first few rows
        df.head()
```

```
Out[5]:
           male age education currentSmoker cigsPerDay BPMeds prevalentStroke prevalentHy
         0
                  39
                                                             0.0
                                                                             0
              1
                           4.0
                                                    0.0
         1
              0
                  46
                           2.0
                                           0
                                                    0.0
                                                             0.0
                                                                             0
         2
                  48
                           1.0
                                           1
                                                   20.0
                                                             0.0
                                                                             0
              1
         3
              0
                  61
                           3.0
                                                   30.0
                                                             0.0
                                                                             0
                                           1
         4
              0
                  46
                           3.0
                                           1
                                                   23.0
                                                             0.0
                                                                             0
In [6]:
        # Step 3: Data Cleaning
         # Clean the data (handle nulls, correct formats, etc.).
         # Check for missing values
         print(df.isnull().sum())
         # Drop rows where glucose is missing
         df = df.dropna(subset=['glucose'])
         # Fill remaining nulls with median (if any)
         df.fillna(df.median(numeric_only=True), inplace=True)
         # Create a new target column: classify glucose as high (1) or normal (0)
         df['glucose_level'] = df['glucose'].apply(lambda x: 1 if x >= 126 else 0)
         # Drop the original glucose column (optional)
         df.drop(columns=['glucose'], inplace=True)
         df['glucose_level'].value_counts()
        male
                               0
        age
                               0
                             105
        education
        currentSmoker
                               0
                              29
        cigsPerDay
        BPMeds
                              53
        prevalentStroke
                               0
        prevalentHyp
                               0
        diabetes
                               0
        totChol
                              50
        sysBP
                               0
        diaBP
                               0
        BMI
                              19
        heartRate
                               1
        qlucose
                             388
        TenYearCHD
                               0
        dtype: int64
        glucose_level
Out[6]:
              3766
                86
        Name: count, dtype: int64
In [7]: # Step 4: Visualizations
         # Visualize the distribution of glucose and related health indicators.
         # Glucose Level Distribution
         sns.countplot(x='glucose_level', data=df)
         plt.title("Glucose Level Classification (0: Normal, 1: High)")
         plt.show()
```

```
# Correlation Heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Between Features")
plt.show()
```



```
In [8]: # Step 5: Feature Selection and Engineering
         # Perform feature selection and engineering.
         # # Predict glucose levels and draw insights.
         # Define input and target
         X = df.drop(columns=['glucose level'])
         y = df['qlucose level']
         # Train/Test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran
         # Feature Scaling
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
 In [9]: # Step 6: Train Machine Learning Models
         # Train ML models (e.g., Logistic Regression, Decision Tree, Random Forest)
         # Logistic Regression
         log_model = LogisticRegression()
         log_model.fit(X_train_scaled, y_train)
         y_pred_log = log_model.predict(X_test_scaled)
         # Decision Tree
         tree_model = DecisionTreeClassifier(random_state=42)
         tree_model.fit(X_train, y_train)
         y pred tree = tree model.predict(X test)
         # Random Forest
         forest model = RandomForestClassifier(n estimators=100, random state=42)
         forest_model.fit(X_train, y_train)
         y_pred_forest = forest_model.predict(X_test)
In [10]: # Step 7: Evaluate Models
         # Evaluate models using classification metrics.
         def evaluate_model(name, y_test, y_pred):
             print(f"=== {name} ===")
             print("Accuracy:", accuracy_score(y_test, y_pred))
             print("Classification Report:\n", classification_report(y_test, y_pred)
             print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
             print("-" * 40)
         evaluate_model("Logistic Regression", y_test, y_pred_log)
         evaluate_model("Decision Tree", y_test, y_pred_tree)
         evaluate_model("Random Forest", y_test, y_pred_forest)
```

```
=== Logistic Regression ===
Accuracy: 0.9792477302204928
Classification Report:
               precision
                            recall f1-score
                                                support
           0
                   0.99
                              0.99
                                        0.99
                                                   754
           1
                   0.53
                              0.53
                                        0.53
                                                    17
                                        0.98
    accuracy
                                                   771
                   0.76
                              0.76
                                        0.76
   macro avq
                                                   771
weighted avg
                   0.98
                              0.98
                                        0.98
                                                   771
Confusion Matrix:
 [[746
        81
        911
 8
=== Decision Tree ===
Accuracy: 0.9701686121919585
Classification Report:
               precision
                            recall f1-score
                                                support
           0
                   0.98
                              0.99
                                        0.98
                                                   754
           1
                   0.31
                              0.29
                                        0.30
                                                    17
    accuracy
                                        0.97
                                                   771
   macro avg
                   0.65
                              0.64
                                        0.64
                                                   771
weighted avg
                   0.97
                              0.97
                                        0.97
                                                   771
Confusion Matrix:
 [[743 11]
 [ 12
        511
=== Random Forest ===
Accuracy: 0.9792477302204928
Classification Report:
               precision
                            recall f1-score
                                                support
                             1.00
           0
                   0.98
                                        0.99
                                                   754
           1
                   0.57
                              0.24
                                        0.33
                                                    17
                                        0.98
                                                   771
    accuracy
   macro avq
                   0.78
                              0.62
                                        0.66
                                                   771
weighted avg
                   0.97
                              0.98
                                        0.97
                                                   771
Confusion Matrix:
 [[751 3]
 [ 13
        4]]
```

```
importances = forest_model.feature_importances_
features = X.columns

importance_df = pd.DataFrame({'Feature': features, 'Importance': importances
importance_df = importance_df.sort_values(by='Importance', ascending=False)

# Plot
plt.figure(figsize=(10, 6))
sns.barplot(data=importance_df, x='Importance', y='Feature')
plt.title("Feature Importance from Random Forest")
plt.show()
```



```
In [12]:
        # Step 9: ROC Curve for Random Forest
         y_prob_rf = forest_model.predict_proba(X_test)[:, 1]
         fpr, tpr, _ = roc_curve(y_test, y_prob_rf)
         roc_auc = roc_auc_score(y_test, y_prob_rf)
         plt.figure(figsize=(6, 4))
         plt.plot(fpr, tpr, label=f"AUC = {roc_auc:.2f}")
         plt.plot([0, 1], [0, 1], linestyle='--')
         plt.title("ROC Curve - Random Forest")
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.legend()
         plt.grid()
         plt.show()
```


Conclusion

Exploration:

Through exploratory data analysis, we identified key health indicators such as BMI, systolic blood pressure, and age as strong correlates of elevated glucose levels.

Modeling:

We implemented multiple classification models, including logistic regression, decision tree, and random forest. Among them, Random Forest achieved the highest accuracy and offered clear insights through feature importance scores.

Results:

The models showed promising performance in classifying individuals at risk of high glucose levels. The ROC curve and classification metrics supported the robustness of our results, especially for Random Forest.

Impact:

Predictive models like these can play a critical role in early diagnosis, preventive healthcare, and risk stratification, enabling more informed clinical decision-making.

Future Improvements

Advanced Models:

Explore ensemble techniques like XGBoost or LightGBM for improved performance.

Hyperparameter Tuning: Use grid search or random search to optimize model parameters.

Feature Engineering: Incorporate interaction features or non-linear transformations.

External Data: Integrate additional datasets (e.g., dietary data, genetic info) to enhance predictive power.

Deployment: Package the model as a web app or API for clinical use.

Thank You

In []: