Математический анализ

Широков Николай Алексеевич 1

 $07.09.2023 - \dots$

 $^{^1}$ "Записал Сергей Киселев, Гараев Тагир"

Оглавление

1	Пос	строение множества вещественных чисел	2
	1.1	Множество	2
	1.2	Сечения	2
	1.3	Сумма сечений	3
	1.4	Теоремы сечений	4
2	Ber	цественные числа	8
	2.1	Супремумы и инфимумы	9
	2.2	Неравенство Бернулли	11
	2.3	Определение степени и логарифма	11
3	Последовательности		
	3.1	Сопоставление вещественным числам десятичных дробей	12
	3.2	Предел последовательности	13
	3.3	Арифметические операции над пределами	14
4	Алгоритмы 1		
	4.1	Продолжение	15
	4.2	Число е	20
	4.3	Критерий Коши, существование конечного предела последо-	
		вательности	23
	4.4	Подпоследовательности	26
	4.5	Верхний и нижний предел последовательности	31
	4.6	Свойства верхних и нижних пределов	33

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множество

я еблан

```
Определение 1. Множества X и У равны, если:
```

 $\forall a \in X : a \in Y \\ \forall b \in Y : b \in X$

Определение 2. $X \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \land a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in A \land a \notin B$

Определение 4. (Декартово произведение множеств)

 $A \times B = \{(a, b) : \forall a \in A, \forall \in B\}; A, B \neq \emptyset$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

- I. $\alpha \neq \emptyset$
- II. если $p \in \alpha$, то q
- \bullet III. в α нет наибольшего

Пример. 1.
$$p^* = \{r \in \mathbb{Q} : r < p\}$$
 - нет наибольшего
2. $\sqrt{2} = \{p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2\}$

Теорема 1. (Утверждение 1)
 Если
$$p \in \alpha \land q \notin \alpha$$
, то $q > p$

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2)
$$\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Теорема 3. Пусть
$$\alpha, \beta$$
 - сечения. Между ними существует одно из нескольких отношений:
$$\begin{bmatrix} \alpha < \beta \\ \beta > \alpha \\ \alpha = \beta \end{bmatrix}$$

Доказательство. Предположим, что
$$\alpha < \beta$$
 и $\beta < \alpha$, тогда:
$$\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$$
 - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

Теорема 4. Пусть
$$\alpha,\beta$$
 - сечения, тогда: $\alpha+\beta=\{p+q:p\in\alpha,q\in\beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть
$$\exists s \notin \alpha, \exists t \notin \beta,$$
 тогда:

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

• (II.)
$$r \in \alpha + \beta, r_1 < r$$

$$r = p + q, p \in \alpha, q \in \beta$$

$$r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta$$

• (III.) $\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta \text{ - нет наибольшего}$ \Box

Теорема 5. (Свойства суммы сечений)

- 1. $\alpha + \beta = \beta + \alpha$
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \beta)$
- 3. $\alpha + 0^* = \alpha$, где $0^* = \{ p \in \mathbb{Q} : p < 0 \}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p + q , т.е. <math>\alpha + 0^* \subset \alpha$
- 2. Пусть $p \in \alpha$, тогда: $\exists p_1 > p \Rightarrow p_1 \in \alpha, p = p_1 + (p p_1)$, при том $p_1 \in \alpha, p p_1 \in 0^* \Rightarrow p \in \alpha + 0^* \Rightarrow \alpha \subset \alpha + 0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r\in\mathbb{Q}^+$, тогда $\exists p\in\alpha\land q\notin\alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Доказательство. (нужно доказать единственность и существование)

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (I.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -р не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p\in\alpha, q\in\beta$ По определению $\beta:-q\notin\alpha\underset{\mathrm{Ytb.}\ 1}{\Rightarrow}-q>p\Leftrightarrow p+q<0\Rightarrow p+q\in0^*\Rightarrow\alpha+\beta\subset0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$

Лекция 2: Сечения

21.09.2023

Теорема 8. Пусть α, β — сечения. Тогда $\exists ! \gamma$ — сечение : $\alpha + \gamma = \beta$

Доказательство. Пусть имеем $\gamma_1 \neq \gamma_2$, удовлетворяющие условию. Тогда: $\alpha + \gamma_1 = \beta = \alpha + \gamma_2 \Rightarrow \gamma_1 = \gamma_2$ — противоречие.

Положим $\gamma = \beta + (-\alpha)$. Тогда в силу свойств сечений имеем: $\alpha + \gamma = \alpha + (\beta + (-\alpha)) = \alpha + ((-\alpha) + \beta) = (\alpha + (-\alpha)) + \beta = 0^* + \beta = \beta$

Определение 7. Сечение γ , построенное в предыдущей теореме обозначается через $\beta-\alpha$

Определение 8. (Абсолютная велечина) $|a| = \begin{cases} \alpha, & \text{если } \alpha \geq 0^* \\ -\alpha, & \text{если } \alpha < 0^* \end{cases}$

Определение 9. (Произведение) Пусть α, β — сечения, причем $\alpha \ge 0^*, \beta \ge 0^*$

Тогда $\alpha\beta = \{r \in \mathbb{Q} : r < 0 \lor r = pq, \text{ где } p \in \alpha, q \in \beta\}$

Пример. $\sqrt{2} \cdot \sqrt{2} = 2^*$

Теорема 9. (Любые 3 из них необоходимо доказать самостоятельно) Для любых сечений α, β, γ имеем:

- 1. $\alpha\beta = \beta\alpha$
- 2. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- 3. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$
- 4. $\alpha 0^* = 0^*$
- 5. $\alpha 1^* = \alpha$
- 6. если $\alpha < \beta$ и $\gamma > 0^*$, то $\alpha \gamma < \beta \gamma$
- 7. если $\alpha \neq 0^*$, то $\exists \beta : \alpha \cdot \beta = 1^*, \beta = \frac{1^*}{\alpha}$
- 8. если $\alpha \neq 0^*$, то $\exists \beta, \gamma: \alpha \cdot \gamma = \beta, \gamma = \frac{\beta}{\alpha}$

Теорема 10. (Свойства рациональных сечений)

- 1. $p^* + q^* = (p+q)^*$
- 2. $p^*q^* = (pq)^*$
- 3. $p^* < q^* \Leftrightarrow p < q$

Доказательство. 1. Возьмем $r \in (p+q)^* \Rightarrow r < p+q$

Положим h = p + q - r:

$$\begin{cases} p_1 = p - \frac{h}{2} \\ q_1 = q - \frac{h}{2} \\ q^* \Rightarrow (p^* + q^*) \subset p^* + q^* \end{cases} \Rightarrow \begin{cases} p_1$$

Теперь возьмем $r \in p^* + q^* \Rightarrow r = p_1 + q_1$:

$$\begin{cases} p_1 \in p^* \\ q_1 \in q^* \end{cases} \Rightarrow \begin{cases} p_1$$

$$\begin{cases} p^* + q^* \subset (p+q)^* \\ (p+q)^* \subset p^* + q^* \end{cases} \Rightarrow p^* + q^* = (p^* + q^*)$$

- 2. Для умножения доказательство аналогично.
- 3. Если p < q, то $p \in q^*, p \notin p^* \Rightarrow p^* < q^*$ Если $p^* < q^*$, то $\exists r \in \mathbb{Q}: r \in q^*, r \notin p^* \Rightarrow p \leq r < q \Rightarrow p < q$ Значит $p^* < q^* \Leftrightarrow p < q$

Теорема 11. Пусть α, β — сечения, $\alpha < \beta$. Тогда $\exists \ r^*$ — рациональное сечение : $\alpha < r^* < \beta$

Доказательство. $\alpha<\beta\Rightarrow\exists\ p:p\in\beta,p\notin\alpha$ Выберем такое r>p, так, что $r\in\beta$. Поскольку $r\in\beta,r\notin r^*$, то $r^*<\beta$

Поскольку $p \in r^*, p \notin \alpha$, то $\alpha < r^*$

Глава 2

Вещественные числа

Определение 10. В дальнейшем сечения будут называться вещественными числами. Рациональные сечения будут отождествляться с рациональными числами. Все другие сечения будут называться иррациональными числами.

Таким образом, множество всех рациональных чисел оказывается подмножеством системы вещественных чисел.

Теорема 12. (Дедекинда) Пусть A и B — такие множества вещественных чисел, что:

- 1. $A \cup B = \mathbb{R}$
- $A \cap B = \emptyset$
- 3. $A, B \neq \emptyset$
- 4. $\forall \alpha \in A, \beta \in B : a < b$

Тогда $\exists ! \ \gamma \in \mathbb{R} : \alpha \leq \gamma \leq \beta \ \forall \alpha \in A, \forall \beta \in B$

Доказательство. 1. Докажем единственность.

Пусть γ_1,γ_2 — два числа, причем $\gamma_1 < gamma_2$. Тогда $\exists \ \gamma_3 : \gamma_1 < \gamma_3 < \gamma_2 \Rightarrow \gamma_3 \in A, \gamma_3 \in B$ — противоречие. Значит $\gamma_1 = \gamma_2$.

2. Проверим, является ли γ сечением.

$$\gamma = \{p \in \mathbb{Q} : \exists \alpha \in A : p \in \alpha\}$$

- I. $\gamma \neq \varnothing$, t.k. $A \neq \varnothing$ $\gamma \neq \mathbb{Q}, \text{t.k. } \exists q \in \mathbb{Q}: q \notin B \Rightarrow q \notin \gamma$
- II. Пусть $p_1 < p, p \in \gamma$. Тогда $\exists \alpha \in A : p_1 \in \alpha \Rightarrow p_1 \in \gamma$
- III. Пусть $p\in\gamma$. Тогда $\exists\alpha\in A:p\in\alpha$. Поскольку α сечение, то $\exists q\in\mathbb{Q}:q\in\alpha,q>p\Rightarrow q\in\gamma$

Ясно, что $\alpha \leq \gamma \forall \alpha \in A$.

Предположим, что $\exists \beta \in B : \beta < \gamma$. Тогда $\exists q \in \mathbb{Q} : q \in \gamma, q \notin \beta \Rightarrow \exists \alpha \in A : q \in \alpha \Rightarrow \alpha > \beta$ — противоречие. Значит $\gamma \leq \beta \ \forall \ \beta \in B$.

2.1 Супремумы и инфимумы

Определение 11. $E\subseteq\mathbb{R}, E\neq\varnothing$ Е - ограничено сверху, если $\exists y\in\mathbb{R}: \forall x\in E: x\leq y$

Определение 12. $G \subseteq \mathbb{R}, G \neq \emptyset$ G - ограничено снизу, если $\exists y \in \mathbb{R} : \forall x \in E : x \geq y$

Замечание. Если множество ограничено сверху и снизу, оно называется ограниченным.

Определение 13. Пусть Е ограничено сверху. Тогда y называется точной верхней границей (верхней гранью) Е, если:

- 1. у верхняя граница множества Е.
- 2. если x < y, то x не является верхней границей множества E.

Определение 14. Пусть Е ограничено снизу. Тогда y называется точной нижней границей (нижней гранью) Е, если:

- 1. у нижняя граница множества Е.
- 2. если x > y, то х не является нижней границей множества E.

Определение 15. Точная верхняя граница — $y \sup E$ Точная нижняя граница — $y \inf E$

Пример. Е состоит из всех чисел $\frac{1}{n}, n=1,2,3,\ldots$ Тогда множество ограничено, верхняя грань равна 1 и принадлежит множеству, а нижняя равна 0 и множеству не принадлежит.

Теорема 13. Пусть E ограничено сверху. Тогда $\sup E$ существует.

Доказательство. Пусть есть множества:

$$A = \{\alpha \in \mathbb{R} : \exists x \in E : x > \alpha\}$$

$$B = \mathbb{R} \setminus A$$
Torda $A \cap B = \emptyset, A \cup B = \mathbb{R}, A \neq \emptyset, B \neq \emptyset$

$$\begin{cases} \beta \in B \\ \alpha \in A \end{cases} \Rightarrow \begin{cases} \forall x \in E : x \leq \beta \\ \exists x_0 \in E : x_0 > \alpha \end{cases} \Rightarrow \alpha < \beta$$

Ясно, что никакой элемент множества A не является верхней гра-

ницей множества E, а любой элемент множества B является верхней границей множества E. Поэтому достаточно доказать, что B содержит наименьшее число.

По теореме Дедекинда:
$$\exists \gamma: \begin{cases} \alpha \leq \gamma \ \forall \alpha \in A \\ \beta \leq \gamma \ \forall \beta \in B \end{cases}$$

Предположим, что $\gamma \in A$. Тогда $\exists x \in E : x > \gamma$.

Возьмем $\gamma_1: \gamma < \gamma_1 < x \Rightarrow \gamma_1 \in A$ — противоречие.

Значит $\gamma \in B$.

Теорема 14. Пусть E ограничено снизу. Тогда $\inf E$ существует.

Доказательство. Доказательство тривиально и предоставляется читателю в качестве упражнения $\bigcirc \smile \bigcirc$.

Теорема 15. (Существование корня из вещественного числа) $\forall x \in \mathbb{R}$: $x > 0, \forall n \in \mathbb{N} : n > 0 \exists ! \ y \in \mathbb{R}, y > 0 : y^n = x, y = \sqrt[n]{x}$

Доказательство. 1. Единственность.

Пусть
$$y_1>y_2:y_2^n=x=y_1^n\Rightarrow y_2^n-y_1^n=0$$
 $>0 >0 (y_2-y_1)\cdot (y_2^{n-1}+y_2^{n-2}\cdot y_1+\ldots+y_1^{n-1})=0$ — противоречие.

2. Существование.

Пусть
$$E = \{t \in \mathbb{R} : t \ge 0, t^n < x\}$$

$$0 \in E \Rightarrow E \neq \emptyset$$

Положим
$$t_0 = 1 + x, t_0^n = (1 + x)^n$$

$$\sum_{k=1}^{n} C_n^k x^k = 1 + nx + \dots > x \Rightarrow E$$
 — ограничено сверху.

Пусть $y = \sup E$ (она существует по теореме о Существовании супремума).

- Допустим, что $y^n < x$. Возьмем h: 0 < h < 1 и $h < \frac{x-y^n}{(1+y)^n-y^n}$ Тогда $(y+h)^n = \sum_{k=0}^n C_n^k y^{n-k} h^k = y^n + \sum_{k=1}^n C_n^k y^{n-k} h^k = y^n + h \sum_{k=1}^n C_n^k y^{n-k} h^{k-1} < y^n + h \sum_{k=1}^n C_n^k y^{n-k} = y^n + h \cdot ((1+y)^n y^n) < (y+1)^n y^n < y^n + x y^n = x y$ не вехрняя граница.
- Допустим, что $y^n > x$. Возьмем $k: 0 < k < 1, \ k < \frac{y^n x}{(1+y)^n y^n}$ и k < y. Тогда аналогично с $y^n > x$ получаем, что y k верхняя граница E, что противоречит тому, что $y = \sup E$.

Значит $y^n = x$.

Лекция 3: Степень, логарифм, десятичные дроби. Последовательности.

287.09.2023

2.2 Неравенство Бернулли

Теорема 16 (Неравенство Бернулли). Пусть x>-1 и $n\in\mathbb{N}$. Тогда $(1+x)^n\geq 1+nx$.

Доказательство. Докажем по индукции. При n=1 неравенство очевидно. Пусть оно верно для n=k. Тогда

$$(1+x)^{k+1} = (1+x)^k(1+x) \ge (1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x.$$

Последнее неравенство выполнено, поскольку $kx^2 \ge 0$.

2.3 Определение степени и логарифма

Определение 16. Пусть $a>0,\ m,n\in\mathbb{Z}, m\neq 0; r=\frac{n}{m}$. Тогда $a^r=(a^{\frac{1}{m}})^n$. Если n>0, то: $x^m=x\cdot x\cdot \ldots\cdot x$ Если m<0, то $x^m=\frac{1}{x^{[m]}}$.

Определение 17. Пусть
$$p \in \mathbb{Q}, p \neq 0, a > 1$$
 Тогда $a^p = \sup\{a^r : r \in \mathbb{Q}, r \neq 0, r < p\}$ $a^0 = 1$

```
Определение 18. Пусть a>1, \alpha\in\mathbb{R} E=\{a^r:r\in\mathbb{Q}, r<\alpha, r\neq 0\} Тогда \sup E=a^\alpha. И \forall a\in\mathbb{R}:0< a<1:a^\alpha=(\frac{1}{a})^{-\alpha}
```

```
Определение 19. Пусть a>0, a\neq 0, x>0. Тогда Если a>1:\log_a x=\sup\{r\in\mathbb{Q}:a^r< x\}. Если 0< a<1:\log_a x=-\log_{\frac{1}{a}}x
```

Теорема 17. (Без доказательства) Для степени и логарифма справедливы все ранее встречавшиеся свойства. (имеется в виду школьный курс)

Глава 3

Последовательности

Определение 20. Пусть X — множество, $X \neq \emptyset$. Тогда последовательностью элементов множества X называется функция $f: \mathbb{N} \to X$. $x_1, x_2, \ldots, x_n \ldots; x_n \in X$ Последовательность — $\{x_n\}_{n=1}^\infty$

3.1 Сопоставление вещественным числам десятичных дробей

Алгоритм. (Построение дроби по числу)

Рассматриваем только $x > 0, x \in \mathbb{R}$

Возьмем $n_0 \in \mathbb{Z}_+ : n_0 \le x, n_0$ — максимальное число с таким свойством.

- Если $n_0 = x$ алгоритм закончен.
- Если $n_0 < x$ продолжаем: выбираем $n_1 \in \mathbb{Z} : n_0 + \frac{n_1}{10} \le x$

Аналогично с n_0 , проверяем равенство с х. Так вплоть до n_k : $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}\leq x$

Если ни на одном шаге равенство не выполняется, то задаем последовательность:

$$\{x_n\}_{n=0}^{\infty} = n_0, \frac{n_1}{10}, \frac{n_2}{10^2}, \dots$$

Теорема 18. (О супремуме десятичных дробей) Рассмотрим $E=\{r: r=\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}, k\in\mathbb{N}\}$ Тогда $\sup E=x$ (из алгоритма).

Доказательство. Так как $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x$, то $\sup E\leq x$ Предположим, что $\sup E< x$. Тогда $\exists r: r=x-\sup E>0$. Выберем такое k, что $\frac{1}{k^9}< r\Leftrightarrow k>\frac{1}{r^9}$. $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x< n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k+1}{10^k}\Rightarrow n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}> x-\frac{1}{10^k}> x-r=\sup E$, значит

$$x = \sup E$$

Лемма 1. (доказать самостоятельно) Пусть есть $E\subset\mathbb{R}, a\in\mathbb{R}, E_a=\{x+a:x\in E\}$ Тогда $\sup E_a=a+\sup E$

Дальше шла какая-то теорема, смысл которой я не понял. Если найдете адекватную запись или сможете объяснить — пишите \bigcirc \smile \bigcirc

3.2 Предел последовательности

Определение 21. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность вещественных чисел. Тогда $a\in\mathbb{R}$ называется пределом последовательности, если $\forall \varepsilon>0 \; \exists N: \forall n>N: |x_n-a|<\varepsilon.$

Замечание. $\forall x,y,z \in \mathbb{R}: |z-x| \leq |z-y| + |y-x|$

Определение 22. Пусть X — множество, функция ρ : $\rho: X \times X \to \mathbb{R}$ X — метрическое пространство, если: $\forall a,b \in X: \rho(a,b) \geq 0$ И выполнены следующие свойства:

- 1. $\rho(a,b) = 0 \Leftrightarrow a = b$
- 2. $\rho(a, b) = \rho(b, a)$
- 3. $\rho(a,b) \le \rho(a,c) + \rho(c,b)$

Тогда ρ — метрика X.

Пример. \mathbb{R} — метрическое пространство, $\rho(x,y) = |x-y|$

Определение 23. Пусть X — метрическое пространство, $a \in X, \{x_n\}_{n=0}^{\infty}, x_n \in X$ $\lim_{n \to \infty} x_n = a, \text{ если } \forall \varepsilon > 0 \; \exists N : \forall n > N : \rho(x_n, a) < \varepsilon$

Теорема 19. (Единственность предела) Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} x_n = b$, то a=b

Доказательство. Пусть $a \neq b$. Тогда $\delta = \rho(a,b) > 0$. Положим $\varepsilon = \frac{\delta}{4}$.

- 1. Так как $\underset{n \to \infty}{x_n} \to a: \exists N_1: \forall n > N_1: \rho(x_n,a) < \varepsilon$
- 2. И так как $\underset{n \to \infty}{x_n} \to b: \exists N_2: \forall n > N_2: \rho(x_n, b) < \varepsilon.$

Пусть $n = N_1 + N_2 + 1$. Тогда для n выполнены (1) и (2) Имеем $0 < \delta = \rho(a,b) \le \rho(a,x_n) + \rho(x_n,b) < \varepsilon + \varepsilon = \frac{\delta}{2}$ — противоре-

Теорема 20. (Ограниченность сходящейся последовательности) X метрическое пространство с метрикой ρ

$$x_n \in X, a \in X$$
 Пусть $x_n \to a$. Тогда $\exists \ R>0: \forall n \in \mathbb{N}: \rho(x_n,a) < R$

Доказательство. Возьмем

$$arepsilon=1\Rightarrow\exists N:\forall n>N:
ho(x_n,a)<1\ (1)$$
 Определим R как $R=\max(
ho(x_1,a)+1,
ho(x_2,a)+1,\dots,
ho(x_N,a)+1,1)$

Тогда:

- если n > N, то из (1) следует (2), значит $R \ge 1$
- если $1 \le n \le N$, то $R \ge \rho(x_n, a)$

В обоих случаях R удовлетворяет условию теоремы.

3.3 Арифметические операции над пределами

Свойства. Для $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, $c \in \mathbb{R}$ справедливы следующие свойства:

- 1. $\forall n \in \mathbb{N} : x_n = a \Rightarrow \lim_{n \to \infty} x_n = a$
- 2. $c \cdot \lim_{n \to \infty} x_n = c \cdot a$ 3. $x_n + y_n \underset{n \to \infty}{\to} a + b$
- 4. $x_n \cdot y_n \underset{n \to \infty}{\longrightarrow} a \cdot b$

Доказательство. 1. $\forall \varepsilon > 0, \forall n > 1: |x_n - a| = |a - a| = 0 < \varepsilon$

- 2. $\forall \varepsilon > 0 \exists N : \forall n > N : |x_n a| < \varepsilon \Rightarrow |cx_n ca| = |c(x_n a)| =$
- $3. \begin{cases} \forall \varepsilon_1 > 0 \exists N_1 : \forall n > N_1 : |x_n a| < \varepsilon_1 \\ \forall \varepsilon_2 > 0 \exists N_2 : \forall n > N_2 : |y_n b| < \varepsilon_2 \end{cases} \Rightarrow \text{при } n > N_1 + N_2 + 1 : |x_n + y_n a b| \leq |x_n a| + |y_n b| < \varepsilon_1 + \varepsilon_2 \end{cases}$
- 4. Аналогично (3) при $n > N_1 + N_2 + 1$: $|x_n y_n ab| = |x_n y_n ay_n + y_n ay_n|$ $|ay_n - ab| \le |x_n y_n - ay_n| + |ay_n - ab| = |x_n - a||y_n| + |a||y_n - b|$ т.к. $\lim_{n\to\infty}y_n=b,$ то $\exists R: \forall n: |y_n|\leq R$ (из предыдущей теоремы)

Тогда $|x_n - a||y_n| + |a||y_n - b| < \varepsilon_1 R + |a|\varepsilon_2$

Глава 4

Алгоритмы

Лекция 4: Продолжение

27.09.2023

4.1 Продолжение

```
5. \ x_n \neq c \forall n, x_n \to a, a \neq 0 => \frac{1}{x_n} \to \frac{1}{a} \\ |a+b| \leq |a| + |b| <=> |a| \geq |a+b| - |b| \\ \varepsilon_0 = \frac{|a|}{2} > 0 \\ => \exists N \text{ т.ч. } \forall n > N \text{ выполняется} \\ |x_n - a| < \varepsilon_0 = \frac{|a|}{2} => |x_n| \geq |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2} \\ \forall \varepsilon \exists N_1 \text{ т.ч. } \forall n > N_1 \text{ (1)} \\ |x_n - a| < \varepsilon \text{ (2)} \\ N_0 = \max(N, N_1)n > N_0 \\ |\frac{1}{x_n} - \frac{1}{a}| = |\frac{a - x_n}{x_n a} = \frac{1}{|a|} \cdot \frac{1}{|x_n|} \cdot |x_n - a| < \\ (1, 2) \\ < \frac{1}{|a|} \cdot \frac{2}{|a|} \cdot \varepsilon \\ 6. \ x_n = 1, \text{ как в 5., } y_n \to b => \\ \frac{y_n}{x_n} \to \frac{b}{a} \\ \frac{y_n}{x_n} = y_n \cdot \frac{1}{x_n} \text{ 4., 5} \\ 7. \ x_n \leq y_n \forall n, x || n \to a, y_n b => a \leq b
```

Доказательство. Предположим, что это не так.

Пусть а $\not>$ (доказали что неверно) b (?) $\varepsilon_0 = \frac{1-b}{2} > 0$ $=> \exists N_1$ т.ч. $\forall n > N_1$ $|x_n - a| < \varepsilon_0$ (3) и $existsN_2$ т.ч $\forall n > N_2$ $|y_n - b| < \varepsilon_0$ (4) $n = N_1 + N_2 + 1$ $|x_n - a| < \varepsilon_0 <=> x_n \in (a - \varepsilon_0, a + \varepsilon_0)$ (3') $|y_n - b| < \varepsilon_0 <=> y_n \in (b - \varepsilon_0, b + \varepsilon_0)$ (4') (3'), (4') $=> y_n < b + \varepsilon_0 = b + \frac{a-b}{2} = \frac{a+b}{2} = a\frac{a-b}{2}$ $= a - \varepsilon_0 < x_n$ $y_n < x_n$

a < b

```
(a,b) = \{ x \in R : a < x < b \}
 [a,b] = \{x \in R : a \le x \le b\}
 [a,b) = \{x \in R : a \le x < b\} \ (a,b] = \{x \in R : a < x \le b\}
Расширенное множество вещественных чисел
+\infty, -\infty
\forall x \in \mathbb{R} \ x < +\infty, x > -\infty
 (\mathbf{a}, \infty) = \{x \in \mathbb{R} : x > a\}
[\mathbf{a}, \infty) = \{x \in \mathbb{R} : x \ge a\}
 (-\infty, a] = \{x \in \mathbb{R} : x < a\}
 (-\infty, a] = \{x \in \mathbb{R} : x \le a\}
8. \xi_n \leq \psi_n \leq \zeta_n \forall n
\xi \to a, \zeta_n \to a => \psi_n \to a
\forall \varepsilon > 0 \exists N_1 т.ч. \forall n > N_1
|x_n - 1| < \varepsilon \leftrightarrow x_n \in (a - \varepsilon, a + \varepsilon) (5)
и \exists N_2 т.ч. \forall n > N_2
 |\zeta_n - a| < \varepsilon \leftrightarrow \zeta_n \in (a - \varepsilon, a + \varepsilon) (6)
(5), (6) = \forall n > N, N = max(N_1, N_2)
a - \varepsilon < x_n \le y_n \le \zeta_n < a + \varepsilon, r.e. y_n \in (a - \varepsilon, a + \varepsilon) \leftrightarrow |y_n - a| < \varepsilon
Определение 24. (Бесконечные пределы)
     \{x_n\}_{n=1}^{\infty}
     x_n \to \infty \ n \to \infty
     \lim x_n = +\infty
     если \forall L \in \mathbb{R} \exists N т.ч. \forall n > N
     выполнено x_n > L(7)
     \{y_n\}_{n=1}^{\infty}
     y_n \to -\infty \ n \to \infty
     \lim_{n \to \infty} y_n = -\infty,
     \forall L_0 \in R, \exists N_0 \text{ т.ч. } \forall n > N_0
     y_n < L_0 (8)
     (возможно сокращение записи n-> далее.)
Единообразная запись определения пределов
a \in \mathbb{R}
w(a) = (a - \varepsilon, a + \varepsilon)
Окрестность +\infty
w(+\infty) = (L, \infty), L \in \mathbb{R}
Окрестность -\infty
w(-\infty) = (-\infty, L)
Пусть имеется некая \alpha \in \overline{\mathbb{R}}
Пусть имеется некая последовательность \{x_n\}_{n=1}^{\infty}
x_n \to \alpha \ n \to \infty
если \forall w(\alpha)
\exists N т.ч. \forall n > N выполнено x_n \in 2(\alpha)(q)
Свойства бесконечных пределов
 \{a_n\}_{n=1}^{\infty}, a \to +\infty
 \{b_n\}_{n=1}^{\infty}, b \to -\infty
```

1.
$$c \neq 0$$
, a) $ca_n \to +\infty$, $cb_n \to -\infty$
6) $c < 0 => ca_n \to -\infty$, $cb_n \to +\infty$

2.
$$x_n \to x$$
, $x \in \mathbb{R} \cup \{+\infty\} => a_n + x_n \to +\infty$
 $y_n \to y$, $y \in \mathbb{R} \cup \{-\infty\} => b_n + y_n \to -\infty$

3.
$$a_n, b_n, x_n, y_n, u_{\varepsilon} 2$$

 $x > 0 \Longrightarrow a_n x_n \to +\infty, b_n x_n \to -\infty$
 $y < 0 \Longrightarrow a_n y_n \to -\infty, b_n y_n \to +\infty$

4. если
$$a_n \neq 0, a_n \neq 0 \forall n => \frac{1}{a_n} \to 0, \frac{1}{b_n} \to 0$$
 Если $x_n > 0, x_n \to 0 => \frac{1}{x_n} \to +\infty$ если $y_n < 0, y_n \to 0 => \frac{1}{y_n} \to -\infty$

5.
$$x_n \leq y_n \forall n, x \to \alpha, y_n \to \beta, \alpha, \beta \in \overline{\mathbb{R}}$$

 $=> \alpha \leq \beta$
 $+\infty = +\infty$
 $-\infty = -\infty$
 $-\infty < +\infty$
 $\alpha \in \overline{\mathbb{R}} => y_n \to \alpha$

(док-ть всё)

Доказательство. $x \in \mathbb{R}$

если последоавтельность имеет предел, то она ограничена (было) нужно сформулировать с дополнительными словами

Пусть $\{x_n\}_{n=1}^\infty$ имеет конечный предел

$$\exists M$$
 т.ч. $|x_n - x| < M \forall n$ $=> x_n > x - M \forall n \ (10)$

 $\exists N$ т.ч. $\forall n>N$ будет выполнено $a_n>L$ (11) (10), (11) => $a_n+x_n>L+x-M$

$$(10)$$
, $(11) = a_n + x_n > L + x - M$

Остальные свойства доказываются аналогично

Дополнительно о терминологии и обозначениях

если $x_n \to 0$, то говорят что x_n - бесконечно малая последовательность если $|a_n| \to +\infty$, то говорят что a_n - бесконечно большая последовательность

Обозначение. о - о малое

О - О Большое

след. читать только слева направо.

Обозначение.
$$x_n = o(1), \text{ если } x_n \to 0$$
 если $\exists M > 0$ т.ч. $|y_n| \le M \forall n,$ $y_n = O(1)$

```
\begin{split} &\{a_n\}_{n=1}^{\infty}, \, \{b_n\}_{n=1}^{\infty}, \, b_n \neq 0 \forall n \\ &a_n = 0(b_n), \, \text{если} \, \frac{a_n}{b_n} \to 0 \\ &\{c_n\}, \{d_n\} \\ &c_n = O(d_n), \, \text{если} \, \exists M_1 \text{ т.ч. } |C_n| \leq M_1 |d_n| \\ &\text{предположим} =, \, \text{что} \, \, a_n = \lambda_n b_n, \lambda_n \to 0 \\ &\text{Тогда пишут, что} \, \, a = o(b)n \\ &\frac{a_n}{b_n} = \lambda_n \end{split}
```

Определение 25. (монотонные последовательности) $\{a_n\}_{n=1}^{\infty}$ монотонно возрастает, если $a_n \leq a_{n+1} \forall n$

Будем говорить, что строго возрастает, если $a_n < a_{n+1}$ $\{b_n\}_{n=1}^{\infty}$ монотонно убывает, если $b_n \ge b_{n+1}$ $\{b_n\}_{n=1}^{\infty}$ строго монотонно убывает, если $b_n > b_{n+1}$ $\{a_n\}_{n=1}^{\infty}$

Если есть некоторая поледовательнотсть c_n говорят что монотонна если либо монотонно возрастает, либо монотонно убывает.

Последовательность c_n называется строго монотонной, если она строго монотонно возрастает либо строго монотонно убывает.

Теорема 21. Теорема о пределе монотонной последовательности $\{C_n\}_{n=1}^{\infty}$ $\exists \lim_{n \to \infty} c_n \in \overline{\mathbb{R}}$

Для того чтобы монотонно возрастающая последовательность имела конечный предел необходимо и достаточно чтобы последовательность была ограничена снизу

Для того чтобы монотонно убывающая последовательность имела конечный предел.

$$C_m \le \lim_{n \to \infty} C_n \forall m$$

$$C_m < \lim_{n \to \infty} C_n$$

$$C_M \ge \lim_{n \to \infty} C_n$$

$$C_M \lim_{n \to \infty} C_n$$

Доказательство. Рассмотрим ситуация, когда C_m монотонно возрастает. Предположим вначалае, что проследовательность C_m не ограничена сверху.

$$\{C_n\}_{n=1}^{\infty}$$
 не огр. сверху $\forall L \in \mathbb{R}$

Посколько мы предполгаем что последовательность не ограничена сверху значит найжется такой лемент послежовательности больший чем L

$$\exists N$$
 т.ч. $C_N > L$

Потому что в противоположном случае L была бы верхней границей $\forall n>N$ тогда, справедливо следующее неравенство $C_n\geq C_{n-1}\geq C_{n-2}\geq \ldots \geq C_N+1\geq C_N>L$ т.е. $C_n>L$

мы взяли любое L и по нему нашли такое N большое, что при любом n>N полуается что с с номером n Больше чем lambda это означает что по определению предела предел $\lim C_n=+\infty$

```
Если последовательность возрастает и не ограничена сверху у нее
есьт пределе и этот предел равен + бесконечности
```

другой вариант: последовательность возрастает и огранчена сверху

Пусть $C_n \leq C_{n+1} n \exists M .. e_n \leq M \forall n$

рассмотрим множество всех элементов последовательности

 $E = \{ \alpha \in \mathbb{R} : \exists n \in \mathbb{N} \text{ т.ч. } \alpha = C_n \}$

Это предположение означает что Е ограничено сверху

в таком случае мы имеем неравенство $C_n \leq C \forall n \ (12)$

Теперь возьмем $\forall \varepsilon > 0$

 $C-\varepsilon$ - это не верхняя граница

$$\exists N$$
 т.ч. $C_N > C - \varepsilon$ (13)

Воспользуемся монотонностью последовательности С

Давайте возьмем $\forall n > N$

$$(13) = C_n \ge C_{n-1} \ge \dots \ge C_{N+1} \ geqC_N > C - \varepsilon \ (14)$$

Посмотрим на соотношение 12, 14

$$C - \varepsilon < C_N \le C < C + \varepsilon \Longrightarrow |C_n - C| < \varepsilon$$
 (15)

Это соотношение означает что

$$(15) = > C = \lim_{n \to \infty} C_n$$

Предел существует, являющийся вещественным числом.

мы доказали что если последовательность ограничена сверху, то существует предел и выполенно такое неравенство.

Если последовательность строго монотонна, то неравенство будет стро-

Доказательство.
$$C_{n_0} < C_{n_0+1} \le c => C_{n_0} < C$$

Если $\exists \lim_{n \to \infty} C_n = C \in R \Longrightarrow \exists M$

т.ч.
$$|C_n - C| \le M => C_n \le C + M \forall n$$

для убывающих доказывается аналогично.

Теорема 22. (Теорема о ложных промежутках) $[a_n, b_n] \supset [a_{n+1}, b_{n+1}] \forall n$

Предположим, что $b_n - a_n \to 0 \ (17) \ n->\infty$

Промежутки замкнутые

$$=> \exists! c \in [a_n, b_n], \forall n \ (18)$$

Доказательство. $a_n \le a_{n+1}, b_n \ge b_{n+q} \forall n \ (19)$

$$a_1 \le a_2 \le \dots \le a_n < b_n \le b_{n-1} \le \dots \le b_2 \le b_1$$
 (19)

$$a_1 \le a_n \le b_n \le b_1 \forall n$$

T.e.
$$a_n < b_1, b_n > a$$
, (20)

(19), (20)
$$=>\exists \lim_{n\to\infty} = a \in \mathbb{R}$$
 и $\exists \lim_{n\to\infty} b_n = b \in \mathbb{R}$ (21)

$$a_n < b_n$$

$$=> \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$
 (22)

$$(21), (22) => a \le b (23)$$

$$a_n \le a \forall n \ b_n \ge \forall n$$

```
=>b-a\le b_n-a_n\forall n (25) 0\le b-a=>\lim_{n\to\infty}(b-a)\le \lim_{n\to\infty}(b_n-a_n)=0 \ (26) (23), (26) =>a=b=\text{def }c (24), (27)=> a_n\le c\le b_n\forall n, т.е. c\in [a_n,b_n] (27') Пусть \exists c_1\ne c т.ч. c_1\in [a_n,b_n]\forall n (28) c< c_1 Тогда, 27' и 28 => что a_n\le c< c_1\le b_n\forall n (30) (30) =>\lim_{n\to\infty}(c_1-c)\le \lim_{n\to\infty}(b_n-a_n)=0 \ 0< c_1-c= Предположение о том что найдется ещё какой-то c_1 неверно теорема доказана.
```

Замечание. В этой теореме рассматриваются замкнутые Промежутки

Пример.
$$a_n = O \forall n, b_n = \frac{1}{n}$$
 $(a_{n+1}, b_{n+1}) = (0, \frac{1}{n+1}) \subset (0, \frac{1}{n}) = (a_n, b_n)$ $b_n - a_n = \frac{1}{n} \to 0 \ n \to \infty$ $\nexists C \in \mathbb{R}$ т.ч. $c \in (0, \frac{1}{n}) \forall n$

в каком месте доказательства предыдущей теоремы мы пользовались тем что промежутки замкнуты?

4.2 Число e

```
е x_n = (1 + \frac{1}{n})^n \ y_n = (1 + \frac{1}{n})^{n+1} \ x_n < y_n \forall n \ (1) x_n \text{ строго возрастает } (2) y_n \text{ строго убывает } (3) x_n \to e, y_n \to e 2 < e < 3 y_n = (1 + \frac{1}{n})x_n > x_n \text{Рассмотрим } \frac{y_n - 1}{y_n} = \frac{(\frac{n}{n-1})^n}{(\frac{n+1}{n})^{n+1}} = (\frac{n}{n-1})^n \cdot (\frac{n}{n+1})^n + 1 \frac{n}{n+1} \cdot (\frac{1}{n-1})^n \cdot (\frac{1}{n+1})^n = \frac{n}{n+1} \cdot (\frac{n^2}{n^2-1})^n = \frac{n}{n+1} \cdot (\frac{n^2-1}{n^2-1})^n = \frac{n}{n+1} \cdot (1 + \frac{1}{n^2-1})^n > (n^2 - 1 = \}x) x > 0, n \ge 2 \ (1 + x)^n > 1 + nx \ (\text{ неравенство бернулли}) > \frac{n}{n+1} (1 + \frac{n}{n^2-1}) = \frac{n}{n+1} \cdot \frac{n^2-1+n}{n^2-1} = = \frac{n^3+n^2-n}{n^3+n^2-n-1} > 1 \frac{y_{n-1}}{y_n} > 1 y_{n-1} > y_n (a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k
```

$$\begin{split} C_n^k &= \frac{n!}{k!(n-k!)} \\ C_n^0 &= C_n^n = 1 \\ C_n^1 &= C_n^{n-1} = n \\ x_n &= \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k = 1 \cdot 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n C_n^k \frac{1}{n^k} \\ &= 2 + \sum_{k=2}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} = 2 + \sum_{k=1}^n \frac{1}{k!} \cdot \frac{(n-k+1) \cdot \dots \cdot n}{n^k} \\ &= 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \\ &= 2 + \sum_{k=2}^{n-2} \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \left(1 - \frac{k-2}{n}\right) \cdot \left(1 - \frac{1}{n}\right) \ (5) \\ &= \frac{n-k+1}{n} = 1 - \frac{k-1}{n} \\ &= 1 - \frac{k-2}{n} \\ &\dots \\ &\frac{n!}{(n-k)!} = \frac{(n-k)!(n-k+1) \cdot \dots \cdot n}{(n-k)!} = (n-k+1) \cdot \dots \cdot n \\ &n \geq 3 \\ &a = 1, b = \frac{1}{n} \\ &1^{n-k} = 1 \end{split}$$

Лекция 5: Продолжение (Часть 1)

05.10.2023

Для того чтобы вывести все слагаемые, мы полагаем, что n >= 3, тогда

$$x_n = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \cdot \dots \cdot \left(1 - \frac{1}{n}\right)$$
 (5)(1)

Пример. (Пример умножения из предыдущей суммы) Если k=3, то

$$(1-\frac{2}{n})\cdot(1-\frac{1}{n})$$

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)\right)$$
(2)

Замечание. Слагаемое из (2) $(1-\frac{n}{n+1})$, также оно же в виде $\frac{1}{(n+1)^{n+1}}$

Замечание. Если
$$r>0$$
, то $1-\frac{r}{n+1}>1-\frac{r}{n}$
$$\Rightarrow (1-\frac{k-1}{n+1})=(1-\frac{1}{n+1})\cdot \cdots \cdot (1-\frac{1}{n+1})>(1-\frac{k-1}{n})\cdot \cdots \cdot (1-\frac{1}{n})$$

Замечание. Получается, что в (1) и (2) одинаковое количество слагаемых. При этом, соотвествующе слагаемые относящихся к n+1 будет строго больше чем слагаемые относящихся к n.

Следовательно, равенство (2) больше, чем равенство (1).

Кроме того, в сумме относящийся к n+1 есть ещё n+1 слагаемое, которые положительно.

$$(1),(2) \Rightarrow x_{n+1} > x_n \tag{3}$$

Примем во внимание неравенства для у и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$(3)28.9(3)5.10 \Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1$$

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$(5) \Rightarrow \exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$(5) \Rightarrow \exists \lim_{n \to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

(Воспользуемся свойством предела произведения пределов)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 1 + \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

Замечание. Пользуемся свойствами пределов строго монотонной последовательностей.

Последовательность y_n строго убывает, а последовательность x_n строго возрастает поэтому её предел меньше любого y_n

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

Глава 4. АЛГОРИТМЫ

Примечание. Нужно посчитать и понять намного ли это меньше 3 или

$$e = 2.718...$$

Замечание. Число е - одно из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья - это π

4.3 Критерий Коши, существование конечного предела последовательности

Теорема 23. Пусть имеется некоторая последовательность x_n .

$$x_{n}^{\infty}$$

Для того чтобы $\exists\lim_{\substack{n\to\infty\\n\to\infty}}x_n\in\mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon>0,\exists N$ такой, что $\forall m,\forall n>N$ выполнено

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. Важное обстоятельство содержащееся в формулиров-

В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует.

Это так называемая теорема существования.

Доказательства начнём с необходимости.

Примечание. Необходимость означает что предел существует.

Доказательство. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon > 0 \exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow \text{при} n > N, m > N$$

$$(9) \Rightarrow \text{при} n > N, m > N$$
$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс А - это

$$A = \alpha \in \mathbb{R} : \exists N \text{такое}, \, \text{что} \forall n > N x_n > \alpha$$
 (10)

Замечание. Номер n от α зависит.

Каждому α соответствует свой номер n.

Вернхний класс А' - это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

Нужно проверить, что A и A' не пустые и не совпадают с множеством вещественных чисел.

Возьмём

$$\varepsilon = 1$$

Тогда,

 $\exists N_0$ такой, что $\forall m, n > N_0$

$$|x_m - x_n| < 1$$

В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) = > x_{N+1} - 1 \in A \tag{12}$$

(по определению)

Пример. Если мы возьмем любой п который > N+1, тогда получается что x_n больше чем число (12)

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A, \text{ то-есть}, x_{N+1} + 1 \in A'$$
 (13)

При всех n, начиная с N + 1 x_n будет меньше чем то число. Оно никак не может удовлетворять соотношению (10).

Значит, это не может быть число из А, значит это число из А'.

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta inA'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N$$
такой, что $\forall n > Nx_n > \alpha$ (14)

Если бы для любого $\forall n>N$ выполнялось $x_n>\beta,$ то $\beta\in A.$ Однако, это не так, т.к. $\beta\in A'.$

То-есть,

$$\exists n_0 > N$$
такое, что $x_{n_0} \le \beta$ (15)

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение. Теперь можно применить теорему Дедекинда. По теореме Дедекинда, существует некое число

 $\exists a \in R$ такое, что $\forall \alpha in A, \forall \beta in A'$

$$\alpha \le a \le \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$

Тогда,

$$(8) = > \exists N$$
такое, что выполнено (8)

m = N + 1

Тогда,

$$(8) \Rightarrow \forall n > N+1$$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon)$$
 (17)

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon u x_n < x_{N+1} + \varepsilon$$

Примечание. при $\forall n > N+1$, выполнена правая счасть неравенства (17) $x_n > x_{N+1} - \varepsilon$.

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит А', потому что если бы принадлежало А, должно было бы быть другое неравенство в другую сторону/

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

a (20) $\Rightarrow x_{N+1} - \varepsilon \text{ как } \beta$,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon \tag{21}$$

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n > N+1$.

Поэтому, (21) и (17') \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела. По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказано. доказать конкретно а мы не смогли, но оно существует.

4.4 Подпоследовательности

Последовательность - это отображение $f: \mathbb{N} \to \mathbb{R}$.

Глава 4. АЛГОРИТМЫ

Допустим, что у нас имеется некое отображение $g:\mathbb{N}\to\mathbb{N}$ которое не является тождественным.

д не тождественное отображение.

Когда каждому n сопоставляется тоже самое n.

$$\forall n < mg(n) < g(m)$$

Тогда, подпоследовательностью называется суперпозиция этих выражений.

$$f(g): \mathbb{N} \to \mathbb{R}$$
.

Примечание. Классический вид:

$$x_{n} = \infty$$

$$g(k) = n_k$$

$$n_1 < n_2 < \dots$$

Тем самым, вместо всей последовательностьи x_n мы рассматриваем только с такими номерами:

$$x_{n_1}, x_{n_2}, \ldots$$

Это только часть первоначальной поледовательности.

Обозначение. Если эти номера определены, то последовательность обозначают

$$x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$$

Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A\in\overline{\mathbb{R}}$ является пределом, то-есть $x_{n_k}\to A$, при $k\to\infty$, если $\forall\Omega(A)$ существует такой номер K, что для любого k > K выполнено $x_{n_k}\in\Omega(A)$

Теорема 24. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$

и пусть мы имеем любой подпоследовательность

 $x_{n_k}{}_{k=1}^{\infty}$ выбранную из этой последовательности. $\Rightarrow x_{n_k} \to A$, при $k \to \infty$

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N$$
такое, что $\forall n > N$

будет выполняться

$$x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает,

$$\rightarrow n_1 \ge 1, n_2 > 1, n_2 \ge 2$$

(Шаг индукции)

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То-есть, если мы выберем подпоследовательность, то n_k будет больше или равно k. Начиная с какого-то индекса, будет строго больше.

Возьмём K=N.

Тогда, при
 $\mathbf{k}>\mathbf{N}$ $n_k\geq k>N$

То-есть, при
 $\mathbf{k}>\mathbf{N},\,x_{n_k}\in\Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$

Лекция 5: Продолжение (Часть 2)

05.10.2023

Теорема 25. (Больцано-Вейерштрасса)

Замечание. Эту теорему обычно называют принципом выбора Больцано-Вейерштрасса.

Пусть имеется некоторая последовательность $x_n,$ которая ограничена.

Примечание. Ограниченность означает ограниченность и сверху и снизу.

$$a \le x_n \le b \forall n \tag{1}$$

$$x_{n} = 1$$

Тогда,

$$\alpha \in [a,b]$$
и $x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$

Такая, что

$$x_{n_k} \to \alpha$$
при $k \to \infty$ (2)

Замечание. Такое α может быть только одним, если последовательность ограниченна и имеет некоторый предел.

Доказательство. определим последовательность промежутков.

$$I_1 = [a, b]$$

$$I_2' = [a, \frac{a+b}{2}], I_2'' = [\frac{a+b}{2}, b]$$

Примечание. $\frac{a+b}{2}$ - это центр отрезка [a, b]

В последовательности x_n имеется бесконечно ммного номеров (начиная с 1).

Рассмотрим множество номеров в множестве
 п таких, что $x_n' \in I_2'$ и п такие что $x_n \in I_2''$

(Какое-то из них, или оба бесконечны.)

Если бы первое и второе множество n выше было конечно, то мы получили бы что у нас есть конечное множество номеров n.

А в силу соотношения 1 на всем промежутки I_1 лежит вся последовательность.

поэтому, если бы и первое и второе множество было бы конечно, мы бы получили что рассматривам конечно множество номеров x_n , которые лежат на всем отрезке I_1 , а на I_1 лежит вся последовательность.

Пусть I_2 - тот из I_2' , I_2'' , для которого \exists бесконечно n таких что $x_n \in I_2$

Примечание. Это может быть либо I_1' , либо I_2' , либо I_2'' если оба удовлетворяем, то любой возьмем. Произвольно. Можно например всегда брать только I_2' , но по крайней мере для одного, таких номеров будет бесконечно много.

Имеется некоторое множество натуральных чисел, таких что x_n принадлежит I_2

Пусть n_1 - минимаьные n, такие что $x_n \in I_2$ $I_2 = [a_2, b_2]$

Примечание. Снова рассмотрим середину, $\frac{a_2+b_2}{2}$

$$I_3' = [a_2, \frac{a_2 + b_2}{2}]$$

$$I_3'' = \left[\frac{a_2 + b_2}{2}, b_2\right]$$

Нам известно, что множество тех n, таких что лежат на I_2 , множество таких n - бесконечно.

По крайней мере в одном из этих множеств тоже будет находится бесконечное множество номеров ${\bf n}.$

Пусть I_3 - тот из I_3' , I_3'' , для которого \exists бесконечно n таких что $x_n \in I_3$

 n_2 - минимальное n такое, что $x_n \in I_3$, и $n_2 > n_1$.

Примечание. Точка x_n1 , может попасть на этот промежуток I_3 , но посколько для этого промежутка существует бесконечно много n, таких что n пренадлежит промежутку I_3 , то мы можем взять следующую, больше чем n_1 , и называем её n_2

И так далее по индукции. Предположим, что мы уже выбрали промежутки

$$I_1 \supset I_2 \supset \cdots \supset I_m$$
 (3')

При этом мы всё время делим пополам.

 $k+1 \le m$

длина $I_{k+1}=\frac{1}{2}$ длинны

$$I_k = \frac{b-a}{2^k} \tag{3}$$

$$n_1 < n_2 < \dots n_m < n_{m+1} \tag{4}$$

$$x_{n_1} \in I_2, x_{n_2} \in I_2, \dots x_{n_{m-1}} \in I_m$$
 (5)

Предположим, что по индукции такое построение уже произошло Пусть

$$I_m = [a_m, b_m] \tag{6}$$

Индуктивное предположение (индуктивный шаг)

Существует бесконечно много n, таких что

$$x_n \in I_m \tag{7}$$

Для двух и трёх мы это проделали. Предположим, что это проделано для n и будем выполнять индуктивный шаг.

$$I'_{m+1} = [a_m, \frac{a_m + b_m}{2}]$$

$$I_{m+1}^{"} = \left[\frac{a_m + b_m}{2}, b_m\right]$$

Мы снова взяли и разделили промежуток $[a_m, b_m]$ пополам.

Рассмотрим множество номеров в множестве
п таких, что $x_n' \in I_{m+1}'$ и п такие что $x_n \in I_{m+1}''$

(Хотя бы одно из них бесконечно, по той причине что объединение этих множеств это множество тех n таких что x_n принаддлежит I_m ,

потому что вместе они дают на I_m , в силу предположения (7). Если бы и то и другое было бы конечно, то на множестве I_m было бы конечно множество номеров таких что x_n лежит на I_m , а по предположениб индукции их должно быть бесконечно.)

Тогда по определению I_{m+1} - тот ищ $I'_m, I''_m,$ для которого \exists бесконечно много п таких что $x_n \in I_{m+1}$

Пускай n_{m+1} - это наименьшее п такое что $x_{n_m} \in I_{m+1}$ и $n_{m+1} > n_m$

Примечание. Если элемент x_{n_m} лежит на I_{m+1} , то мы вычеркиваем его и рассматриваем минимальный следующий (их бесконечно много).

И так мы получили в итоге этих рассуждений:

$$n_1 < n_2 < \dots < n_m < \dots$$

$$x_{n_m} \in I_{m+1}$$

$$(3) \Rightarrow$$
 длина $I_m \to 0$, при $m \to \infty$ (8)

Примечание. Получается, что это вложенные промежутки.

$$(3')$$
и (8)

По теореме о вложенных пределах:

$$\exists ! \alpha$$
 τακοέ чτο $\alpha \in I_m \forall m$ (9)

$$(5) \Rightarrow x_{n_m} \in I_{m+1}$$

Точка α лежит на этом промежутка и точка с номером x_{n_m} лежит на этом же промежутке.

$$(5), (9) \Rightarrow |x_{n_m} - \alpha| \le \frac{b - a}{2^m} \tag{10}$$

 $\begin{array}{l} \forall \varepsilon > 0 \\ k : \frac{b-a}{2^k} < \varepsilon \end{array}$

Возьмём m > K

$$(10), (11) \Rightarrow при m > K$$

выполнено

$$x_{n_m} - \alpha \to \alpha$$
при $m \to \infty$ (12)

Таким образом мы доказали, что существует подпоследовательность у которой есть конечный предел.

 $a \in I_1$

, т.е.

$$a \leq \alpha \leq e$$

4.5 Верхний и нижний предел последовательности

Определение 26. Пусть есть произвольная последовательность x_n .

$$x_{n}_{n=1}^{\infty}, x_n \in \mathbb{R}$$

Если $x_{n}_{n=1}^{\infty}$ не ограничена сверху, то верхний предел $\overline{\lim_{n \ to\infty}} x = +\infty$, по определению.

Если $x_{n_{n=1}}^{\infty}$ ограничена сверху, т.е.

$$\exists M \text{ T.y. } x_n \leq M \forall$$
 (1)

$$E_n = a \in \mathbb{R} : a = x_m, m \ge n$$

(множество всех значение последовательности x_n начиная с множества n)

$$g_n = \sup E_n$$

 $(1) \Rightarrow E_n$ ограничена сверху \Rightarrow

$$g_n \le M \forall n \tag{2}$$

Обратим внимание, что

$$E_{n+1} \subset E_n \Rightarrow g_{n+1} \le g_n \tag{3}$$

Потому что может быть они совпадают, но мы рассматриваем элементов на 1 больше.

$$(3) \Rightarrow \exists \lim_{n \to \infty} g_n \ge -\infty \tag{4}$$

$$(2) \Rightarrow \lim_{n \to \infty} g_n \le M \tag{5}$$

$$\overline{\lim_{n \ to \infty}} x_n = \lim_{n \to \infty} g_n$$
по определению

Если мы посмотрим на определение верхнего предела, видно, что верхний предел, в отличии от просто предела существует в нулевой последовательности. Т.к. последовательность либо ограничена сверху, либо не ограничена сверху.

Если $x_{n}_{n=1}^{\infty}$ не ограничена снизу, то

$$\lim_{n \to \infty} x_n$$
по определению равно — ∞

Если $x_{n}_{n=1}^{\infty}$ ограничена снизу, то-есть

$$\exists L, \text{ T.H. } x_n \ge L \forall n$$
 (7)

$$h_n = \inf E_n$$

$$(7) \Rightarrow h_n > -\infty$$

$$h_{n+1} \ge h_n \tag{8}$$

 h_n - это монотонно возрастающая последовательность, а у любой такой последовательности есть предел. Может быть равный $+\infty$

$$(8) \Rightarrow \exists \lim_{n \to \infty} h_n \le +\infty$$

$$\lim_{n \to \infty} x_n$$
по определению равен
$$\lim_{n \to \infty} h_n \tag{9}$$

Таким образом,
если мы рассматриваем любую последовательность x_n , то у неё существуют верхний и нижний предел.

4.6 Свойства верхних и нижних пределов

1.

$$h_n = \inf E_n \le \sup E_n = g_n \tag{10}$$

и последовательность g_n и h_n имеют пределы.

Для всякого n спораведливо это неравенство (10)

$$(10) \Rightarrow \lim_{n \to \infty} h_n \le \lim_{n \to \infty} g_n \tag{11}$$

$$(11): \lim_{\underline{n \to \infty}} x_n \tag{12}$$

Примечание. В отличии от обычных пределов, верхние и нижние пределы существуют у любой последовательности.

Теорема 26. Есть некоторая последовательность, тогда для того чтобы существовал предел

$$\exists \lim_{n \to \infty} x_n = a \in \overline{\mathbb{R}}$$

необходимо и достаточно, чтобы

$$\lim_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = a \tag{13}$$

Примечание. Здесь нужно рассмотреть все случаи, когда соотвествующие пределы и какой-то из них является символами + или - ∞ , но мы рассмотрим только когда речь идет о когда оба предела это вещественные числа.

Предположим, что существует предел.

Хотим проверить, что верхний предел равен нижнему пределу.

$$\forall \varepsilon > 0 \exists N$$
т.ч. $\forall n > N$

$$a - \varepsilon < x_n < a + \varepsilon \tag{14}$$

Посмотрим на определение g_n и h_n .

$$(14) \Rightarrow \text{ при } n > NE_n \subset (a - \varepsilon, a + \varepsilon) \Rightarrow$$

$$\Rightarrow g_n \le a + \varepsilon, h_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow a - \varepsilon \le \underline{\lim} x_n = \overline{\lim} x_n \le a + \varepsilon$$

$$\underline{\lim} x_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow 0 \le \lim x_n - \lim x_n \le 2\varepsilon \tag{15}$$

Получается, что некоторое не отрицательное число не превосходит 2ε при любом положительном ε . Это может быть только тогда, когда это число равно 0.

$$(15) \Rightarrow \underline{\lim} x_n = \overline{\lim} x_n = \lim x_n$$

И нижние и верхние пределы на самом деле равны а.

Тогда мы получаем следующие суждения

$$g_n \to a, h_n \to a$$

$$g_n \ge a \forall n$$

$$h_n \le a \forall n$$

$$\forall \varepsilon > 0 \exists N_1 \text{ T. q.} a \le g_n < a + \varepsilon \text{при} n > N_1$$
 (16)

И

$$\exists N_2$$
 т.ч $a - \varepsilon < h_n \le a$ при $n > N_2$ (17)

$$N = \max(N_1, N_2)n > N$$

$$(16), (17) \Rightarrow a - \varepsilon < \inf E_n \le \sup E_n < a + \varepsilon \tag{18}$$

$$(18) \Rightarrow \forall m \ge n$$
выполнено $a - \varepsilon < x_m < a + \varepsilon$ (19)

В частности,

$$a - \varepsilon < x_n < a + \varepsilon \tag{20}$$

$$(20): \exists \lim_{n \to \infty} x_n = a = \underline{\lim} x_n = \lim x$$

Теорема доказана.