TECNOLÓGICO NACIONAL DE MÉXICO

INSTITUTO TECNOLÓGICO DE MORELIA

PROGRAMACIÓN AVANZADA

ANÁLISIS DE SEÑALES PERIODICAS

Dr. José Luis Monroy Morales

Cuando el periodo de la función periódica es igual a 2π , v_o se puede expresar con la serie de Fourier:

$$v_o = V_o + \sum_{n=1}^{\infty} a_n \cos n\omega t + \sum_{n=1}^{\infty} b_n \operatorname{sen} n\omega t$$

Donde

¹ Una señal es periódica si f(t) = f(t + nT), donde T es el periodo y $n = \pm 1, \pm 2, \pm 3, ...$

$$V_o = \frac{1}{T} \int_0^T v_o \cdot d\omega t$$

$$a_n = \frac{2}{T} \int_0^T v_o \cdot \cos n\omega t \cdot d\omega t$$

$$b_n = \frac{2}{T} \int_0^T v_o \cdot \sin n\omega t \cdot d\omega t$$

Si el periodo de la función es diferente que 2π , entonces (caso general)

$$v_o = V_o + \sum_{n=1}^{\infty} a_n \cos n\omega_r t + \sum_{n=1}^{\infty} b_n \operatorname{sen} n\omega_r t$$

Donde $\omega_{\rm r}=\frac{2\pi}{T_{\rm r}}\omega$; $T_{\rm r}$ es el periodo de la función en radianes

$$V_o = \frac{1}{T_r} \int_0^{T_r} v_o \cdot d\omega t$$

$$a_n = \frac{2}{T} \int_0^{T_r} v_o \cdot \cos n\omega_r t \cdot d\omega t$$

$$b_n = \frac{2}{T_r} \int_0^{T_r} v_o \cdot \operatorname{sen} n\omega_r t \cdot d\omega t$$

Si la función periódica tiene simetría de media onda², entonces no hay componente de frecuencia 0 ni armónicas pares, y el análisis de las armónicas impares se puede hacer usando solamente medio ciclo de la función:

$$a_n = \frac{2}{T_r/2} \int_0^{T_r/2} v_o \cdot \cos n\omega_r t \cdot d\omega t \qquad n = 1, 3, 5, \dots$$

$$b_n = \frac{2}{T_r/2} \int_0^{T_r/2} v_o \cdot \operatorname{sen} n\omega_r t \cdot d\omega t \qquad n = 1, 3, 5, \dots$$

Onda cuadrada con simetría de media onda

 $^{^{2}}$ Una señal periódica tiene simetría de media onda si $f\left(t\right) = -\left(f\left(t\right) + \frac{T}{2}\right)$

En este caso T_r = 2π , por lo tanto $\omega_r = \omega$

No hay componente armónica de frecuencia cero, no hay armónicas pares y las impares se calculan usando solo medio ciclo de la función:

$$a_n = \frac{2}{\pi} \int_0^{\pi} A \cdot \cos n\omega t \cdot d\omega t = \frac{2A}{n\pi} \left[\sin n\pi - \sin 0 \right] = 0$$
 para todo n
$$b_n = \frac{2}{\pi} \int_0^{\pi} A \cdot \sin n\omega t \cdot d\omega t = \frac{2A}{n\pi} \left[-\cos n\pi + \cos 0 \right] = \frac{4A}{n\pi}$$
 $n = 1, 3, 5...$

Por lo tanto

$$v_o = \sum_{n=1,3,5...}^{\infty} b_n \operatorname{sen} n\omega t$$

Programa en MATLAB

```
clear
A=12;
                        % Amplitud del voltaje vo
N=input('Número de armónicas = ')
                        % Vector de índices de armónicas impares
n=1:2:N;
bn=4*A./(n*pi);
                        % Vector de amplitudes de las componentes seno
wt=0:0.0001:2*pi;
                        % Vector wt
                        % Se quarda el tiempo actual
for k=1:length(wt)
                        % Cálculo del vector vo
vo(k)=0;
                        % Se inicializa el elemento k
for h=1:length(n)
                        % Se calculan los elementos del vector vo
vo(k)=vo(k)+bn(h)*sin(n(h)*wt(k)); % Sumatoria de las componentes
                                    % armónicas de cada elemento de vo
end
end
% vo=bn*sin(n'*wt);
```

Toc plot(wt,vo), grid

Formas de onda obtenidas con N=3, 9, 99 y 399

Tiempo de ejecución con for

N	Tiempo, segundos
3	3.787495
9	3.824645
99	4.128018
399	5.111036

Tiempo de ejecución sin for

N	Tiempo, segundos
3	0.010342
9	0.025532
99	0.193619
399	0.774756

Onda triangular con simetría de media onda

En este caso T_r = 2π , por lo tanto $\omega_r = \omega$

No hay componente armónica de frecuencia cero, no hay armónicas pares

Se define la función en la mitad de un ciclo

Para $0 < \omega t < \pi/2$:

$$v_o = \frac{A}{\pi/2} \omega t = \frac{2A}{\pi} \omega t$$

Para $\pi/2 < \omega t < \pi$:

$$\frac{v_o - A}{\omega t - \frac{\pi}{2}} = -\frac{A}{\pi/2}$$

$$v_o = -\frac{2A}{\pi} \left(\omega t - \frac{\pi}{2} \right) + A$$

Definiendo $m = \frac{2A}{\pi}$, las armónicas impares se calculan como

$$a_n = \frac{2}{\pi} \left[\int_0^{\frac{\pi}{2}} m \cdot \omega t \cdot \cos n\omega t \cdot d\omega t + \int_{\frac{\pi}{2}}^{\pi} \left(-m \cdot \left(\omega t - \frac{\pi}{2} \right) + A \right) \cdot \cos n\omega t \cdot d\omega t \right] = 0$$

$$b_n = \frac{2}{\pi} \left[\int_0^{\frac{\pi}{2}} m \cdot \omega t \cdot \operatorname{sen} n\omega t \cdot d\omega t + \int_{\frac{\pi}{2}}^{\pi} \left(-m \cdot \left(\omega t - \frac{\pi}{2} \right) + A \right) \cdot \operatorname{sen} n\omega t \cdot d\omega t \right] = \frac{4m}{\pi n^2} \operatorname{sen} \frac{n\pi}{2}$$

Como V_0 = 0, entonces

$$v_o = \sum_{n=1,3,5}^{\infty} b_n \operatorname{sen} n\omega t$$

Programa en MATLAB

Onda senoidal positiva (rectificador monofásico de onda completa)

El periodo de la función es $T_r = \pi$. Por lo tanto la $\omega_r = 2\omega$, donde ω es la frecuencia del voltaje de CA de entrada al rectificador dado por V_m sen ωt .

La función no tiene simetría de media onda, por lo tanto tendrá armónicos pares e impares.

La componente de frecuencia cero o valor promedio de la función es

$$V_o = \frac{1}{\pi} \int_0^{\pi} V_m \operatorname{sen} \omega t \cdot d\omega t = \frac{2V_m}{\pi}$$

Las armónicas para n = 1, 2, 3, 4, ... se calculan como

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} V_{m} \operatorname{sen} \omega t \cdot \cos n\omega t \cdot d\omega t = \frac{2}{\pi} \int_{0}^{\pi} V_{m} \operatorname{sen} \omega t \cdot \cos 2n\omega t \cdot d\omega t = \frac{2V_{m}}{\pi} \int_{0}^{\pi} \frac{\operatorname{sen} (\omega t + 2n\omega t) + \operatorname{sen} (\omega_{0}t - 2n\omega t)}{2} \cdot d\omega t = \frac{V_{m}}{\pi} \left[-\frac{\cos(1 + 2n)\omega t}{1 + 2n} - \frac{\cos(1 - 2n)\omega t}{1 - 2n} \right]_{0}^{\pi} = \frac{V_{m}}{\pi} \left[\frac{\cos(1 + 2n)\pi - \cos 0}{1 + 2n} + \frac{\cos(1 - 2n)\pi - \cos 0}{1 - 2n} \right] = -\frac{V_{m}}{\pi} \left[\frac{-2}{1 + 2n} + \frac{-2}{1 - 2n} \right] = -\frac{4V_{m}}{(4n^{2} - 1)\pi}$$

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} V_{m} \operatorname{sen} \omega t \cdot \operatorname{sen} n\omega t \cdot d\omega t = \frac{2}{\pi} \int_{0}^{\pi} V_{m} \operatorname{sen} \omega t \cdot \operatorname{sen} 2n\omega t \cdot d\omega t =$$

$$\frac{2V_{m}}{\pi} \int_{0}^{\pi} \frac{\cos(\omega t - 2n\omega t) - \cos(\omega t + 2n\omega t)}{2} \cdot d\omega t = \frac{V_{m}}{\pi} \left[\frac{\sin(1 - 2n)\omega t}{1 - 2n} - \frac{\sin(1 + 2n)\omega t}{1 + 2n} \right]_{0}^{\pi}$$

$$\frac{V_{m}}{\pi} \left[\frac{\sin(1 - 2n)\pi - \sin 0}{1 - 2n} - \frac{\sin(1 + 2n)\pi - \sin 0}{1 + 2n} \right] = 0$$

Por lo tanto

$$v_o = V_o + \sum_{n=1}^{\infty} a_n \cos 2n\omega t$$

Programa en MATLAB

Forma de onda obtenida con N=99

