

Home Gameboard Chemistry Organic Reactions Isopentyl Bromide

Isopentyl Bromide

When isopentyl bromide (F), $(CH_3)_2CHCH_2CH_2Br$, reacts with hot aqueous ethanolic KOH, two products are formed: compound **G**, $C_5H_{12}O$, and compound **H**, $C_7H_{16}O$.

$$\begin{array}{c|cccc} CH_3 & H & H \\ \hline & & & \\ & & & \\ H & & C & C & C \\ \hline & & & \\ CH_3 & H & H \\ \end{array}$$

Figure 1: Isopentyl bromide (F)

Part A Hydroxide with ethanol

The hydroxide ion and ethanol can take part in an acid-base reaction. Write an equation to represent this. State symbols are not required.

Part B Compound G

What is compound G?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part C Compound H

What is compound H?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part D Type of reaction

State the type of reaction undergone by compound **F**

Part E F with ammonia

Draw the structure of the product derived from compound **F** by reaction with concentrated aqueous ammonia.

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part F Reaction with potassium cyanide

Draw the structure of the product derived from compound **F** by reaction with ethanolic potassium cyanide.

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 1, Question 10

Home Gameboard Chemistry Organic Reactions Mechanism Types

Mechanism Types

Part A Perspex intermediate

The following reaction is an intermediate stage in the manufacture of the important polymer known as *Perspex*.

$$CH_3COCH_3 + HCN$$
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

Figure 1: Intermediate in manufacture of Perspex

What type of mechanism is involved in this reaction?

free radical substitution
electrophilic substitution
electrophilic addition
nucleophilic substitution

nucleophilic addition

Part B Reaction with chlorine

A non-polar organic compound undergoes a reaction with chlorine $[A_r(Cl)=35.5]$ when light is shone upon the reaction mixture. The relative molecular mass of the product is 34.5 greater than that of the original compound.

The rea	action is most likely to be:
	electrophilic substitution
	electrophilic addition
	nucleophilic substitution
	free radical substitution
	nucleophilic addition

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 23; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 21

 ${\color{red} \underline{\textbf{Home}}} \quad {\color{red} \underline{\textbf{Gameboard}}} \quad {\color{red} \textbf{Chemistry}} \quad {\color{red} \textbf{Organic}} \quad {\color{red} \textbf{Reactions}} \quad {\color{red} \textbf{Reactions}} \quad {\color{red} \textbf{Reactions}} \quad {\color{red} \textbf{N}} \\ {\color{red} \textbf{H}}_3 \\ {\color{red} \textbf{N}} \\ {\color{red} \textbf{H}}_3 \\ {\color{red} \textbf{N}} \\ {$

Reactions of $NH_{\rm 3}\,$

Part A With haloalkanes

An amine is produced in the following reaction.

$$C_2H_5I + 2\,NH_3 \longrightarrow C_2H_5NH_2 + NH_4I$$

What is the mechanism?

	nucleophilic substitution
--	---------------------------

Part B With aldehydes

Ethanal can react with ammonia as shown.

$$\mathrm{CH_{3}CHO} + \mathrm{NH_{3}} \longrightarrow \mathrm{CH_{3}CH(OH)NH_{2}}$$

Which kind of chemical reaction takes place?

addition-elimination
electrophilic addition
nucleophilic addition
free-radical addition

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 22; Part B adapted with permission from OCR, A-Level Chemistry, June 1999, Paper 3, Question 21

<u>Home</u> <u>Gameboard</u> Chemistry Organic Reactions Organic Reaction Intermediates

Organic Reaction Intermediates

Part A	Hydroh	romic ac	id with	ethene
raitA	HVULUU	i Ulliic ac	iu wili	ethene

Hydrogen bromide reacts with eth	ene to form bromoethane.	. Which of the follo	wing is the best
description of the organic interme	diate?		

- It has a negative charge
- It contains carbon, hydrogen and bromine
- Its structure is planar
- It is a free radical
- It is an electrophile

Part B Carbocation intermediate

In which of the following reactions is a cation an intermediate?

- $\\ \bigcirc \quad CH_3CH_2Br + NaOH \xrightarrow{H_2O} CH_3CH_2OH + NaBr \\$
- $\bigcirc \quad \text{CH}_{3}\text{CH}_{3} + \text{Cl}_{2} \longrightarrow \text{CH}_{3}\text{CH}_{2}\text{Cl} + \text{HCl}$
- $\bigcirc \quad CH_3CHO + HCN \xrightarrow{CN^-} CH_3CH(OH)CN$
- $\bigcirc \quad \text{CH}_2 = \text{CH}_2 + \text{Br}_2 \longrightarrow \text{CH}_2 \text{Br} \text{CH}_2 \text{Br}$

Part A adapted with permission from UCLES, A-Level Chemistry, 1988, Paper 3, Question 23; Part B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 22

<u>Home</u>

<u>Gameboard</u>

Chemistry

Organic

Compounds from Haloalkanes

Compounds from Haloalkanes

Part A Compounds from C_3H_7Br

The compound C_3H_7Br undergoes a sequence of reactions as follows:

Reactions

$$C_3H_7Br \xrightarrow{OH^-\,(\mathrm{aq})} \textbf{X} \xrightarrow{\mathrm{acidified}\ K_2Cr_2O_7} \textbf{Y} \xrightarrow{\mathrm{Tollens'}\ \mathrm{reagent}} \textbf{Z} + \text{silver}\ \mathsf{mirror}$$

What could be the formulae for **X**, **Y** and **Z**?

	X	Υ	Z
Α	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}COOH}$	$\mathrm{CH_{3}CH_{2}CHO}$
В	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH(OH)CH_{2}OH}$	$\mathrm{CH_{3}COOH}$
С	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}CHO}$	$\mathrm{CH_{3}CH_{2}COOH}$
D	$\mathrm{CH_{3}CH(OH)CH_{3}}$	$\mathrm{CH_{3}COCH_{3}}$	$\mathrm{CH_{3}COOH}$

- () A
- B
- \bigcirc

Part B Compounds from chloroethane

Chloroethane is converted into a carboxylic acid containing one more carbon atom through a two-stage process.

Which of the following compounds could be the intermediate in the synthesis of the carboxylic acid?

$\mathrm{CH_{3}CH_{2}COOCH_{3}}$
$\mathrm{CH_{3}CH_{2}OH}$
$\mathrm{CH_{3}CH_{2}CN}$
$\mathrm{CH_{3}CH_{2}CH_{2}NH_{2}}$
$\mathrm{CH_{3}CH_{2}CH_{2}CN}$

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 26; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 3, Question 25

Home Gameboard Chemistry

Organic Reactions

Compounds from But-2-ene

Compounds from But-2-ene

Complete the reaction scheme shown below which starts with but-2-ene. In each of the boxes **A** to **D** give the principal organic product or intermediate compound.

Use the structure editor to generate a SMILES string.

Figure 1: Compounds from but-2-ene

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

D	-	rŧ	Δ	Δ
_	а		\boldsymbol{H}	~

A is:

Part B	В		
B i	S:		
Part C	С		
C i	S:		
Part D	D		
D i	3:		

Adapted with permission from UCLES, A-Level Chemistry, June 1996, Chains and Rings, Question 1

<u>Home</u>

Gameboard

Chemistry

Organic

Reactions Ketones with HCN Further

Ketones with HCN Further

The initial product of the reaction between HCN and propanone gives **A** which is then subjected to a dehydration reaction to produce **B**.

$$\mathrm{CH_3COCH_3} \xrightarrow{\mathrm{HCN}} \mathbf{A} \xrightarrow{\mathrm{dehydration}} \mathbf{B} \xrightarrow{\mathrm{hydrolysis}} \mathbf{C}$$

Part A Propanone with HCN

What is A?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B Dehydration

What is **B**?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part C Hydrolysis

The product of the dehydration reaction **B** is hydrolysed under acidic conditions to give **C**.

What is C?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part A and B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 28; Part C created for isaacphysics.org by R. Less

More Nitriles — Isaac Physics 05/10/2023, 13:37

Home Gameboard Chemistry Organic Reactions More Nitriles

More Nitriles

Part A Reaction with cyanide ions

Which of the following compounds could be the product of a reaction involving a nucleophilic attack by cyanide ions in aqueous ethanolic solution?

- CH₂=CHCN
- $(CH_3)_2$ CHCN
- CH₃CONH₂
- CH₃CH₂CH₂CH₂NH₂

Part B Hydrolysis of CS

CS has the structure shown below, is an active component of 'tear gas' and is readily hydrolysed.

Figure 1: Structure of CS

Which of the following is a possible hydrolysis product of CS?

More Nitriles — Isaac Physics 05/10/2023, 13:37

A
$$CH = C$$
 CH_2NH_2
 CH_2NH_2

$$\mathsf{B} \qquad \bigcirc \mathsf{CH} = \mathsf{C} \qquad \mathsf{COOH}$$

c
$$CH_2CH$$

Figure 2: Possible hydrolysis products of CS

() A

○ R

() C

() D

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 23; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 25

<u>Home</u> <u>Gameboard</u> Chemistry Organic Reactions Role of Reagent

Role of Reagent

Part A Bradosol

Bradosol is a compound used for the relief of sore throats. It is produced in the following reaction.

Figure 1: Bradosol synthesis

What is the role of compound Y in this reaction?

- an electrophile
- a nucleophile
- a ligand
- a reducing agent

Part B Inorganic reagent

In which reaction does the inorganic reagent act as a nucleophile?

- $CH_3CH=CH_2+Br_2\longrightarrow CH_3CHBrCH_2Br$
- $CH_3CH_2Br + NaOH \longrightarrow CH_3CH_2OH + NaBr$
- $\bigcirc \quad \mathrm{CH_{3}CH_{3} + Cl_{2}} \xrightarrow{\mathit{h\nu} \; (\mathrm{light})} \mathrm{CH_{3}CH_{2}Cl} + \mathrm{HCl}$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1998, Paper 3, Question 19; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 20

Reaction Types — Isaac Physics 05/10/2023, 13:38

Home Gameboard Chemistry Organic Reactions Reaction Types

Reaction Types

Part A Sunburn ointment

Many sunburn ointments contain benzocaine which relieves the pain caused by sunburn. It can be made in the laboratory by using the following reaction scheme.

Figure 1: Preparation of benzocaine

Which of the following statements about this reaction scheme are correct?

Reaction Types — Isaac Physics 05/10/2023, 13:38

1 Step 1 is an oxidation.
2 Step 2 is an esterification.
3 Step 3 is a reduction.
1, 2 and 3 are correct
1 and 2 only are correct
1 and 3 only are correct
2 and 3 only are correct
1 only is correct
2 only is correct
3 only is correct

Part B Aldol

The Russian composer Borodin was also a research chemist who discovered a reaction in which two ethanal molecules combine to form a compound commonly known as aldol (reaction I). Aldol forms another compound on heating (reaction II).

- (I) $2 \text{ CH}_3 \text{CHO} \longrightarrow \text{CH}_3 \text{CH(OH)CH}_2 \text{CHO}$
- (II) $CH_3CH(OH)CH_2CHO \longrightarrow CH_3CH=CHCHO + H_2O$

Which of the following best describes reactions I and II?

	I	II
Α	addition	elimination
В	addition	reduction
С	elimination	reduction
D	substitution	elimination

() A	
-------	--

$$\bigcirc$$
 D

Part A adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 36; Part B adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 21