Last time
$$\pi_1(X, x) = \{[y] \mid \text{loops } y \text{ in } X \text{ at } x\}$$

under the operation $[\beta] * [y] = [\beta * y]$ [what's the id elt?]

Q how much does it depend on X, x?

if γ is a path in X, then $f \circ \gamma$ is a path in Y

if h is a path homotopy from γ to γ' then $f \circ h$ is a path homotopy from $f \circ \gamma$ to $f \circ \gamma'$

<u>Thm</u> suppose f : X to Y is cts

- 1) if γ , γ' are paths in X s.t. $\gamma \sim_p \gamma'$ then $f \circ \gamma$, $f \circ \gamma'$ are paths in Y s.t. $f \circ \gamma \sim_p f \circ \gamma'$
- 2) if β , γ are paths in X s.t. $\beta(1) = \gamma(0)$, then $f \circ (\beta * \gamma) = (f \circ \beta) * (f \circ \gamma)$

Cor suppose
$$f : X \text{ to } Y \text{ is cts and } f(x) = y$$

1) well-def map $f_* : \pi_1(X, x)$ to $\pi_1(Y, y)$ s.t.

$$f_*([y]) = [f \circ y]$$

[if
$$[y] = [y']$$
, then $[f \circ y] = [f \circ y']$]

2) f_* is a group homomorphism:

$$f_*([\beta] * [\gamma]) = f_*([\beta]) * f_*([\gamma])$$

[LHS =
$$f_*([\beta * \gamma])$$

= $[f \circ (\beta * \gamma)]$
= $[(f \circ \beta) * (f \circ \gamma)]$
= $[f \circ \beta] * [f \circ \gamma]$ = RHS]

space & point group $(X, x) \mapsto \pi_1(X, x)$

cts map homomorphism $f: X \text{ to } Y \qquad \mapsto \qquad f_^*: \pi_1(X, x) \text{ to } \pi_1(Y, y)$

Q what about a composition of cts maps?

 $\underline{\mathsf{Thm}} \qquad (\mathsf{g} \circ \mathsf{f}) \underline{\ \ }^* = \mathsf{g} \underline{\ \ }^* \circ \mathsf{f} \underline{\ \ }^*$

analogies:

sets bijections spaces homeomorphisms groups isomorphisms

<u>Cor</u> if f : X to Y is a homeo then f_* is an isomorphism

 \underline{Ex} if $f = id_X$, then $f_* = id_{\pi_1(X, x)}$

Pf know f_* is always a homomorphism need f_* bijective

show that $(f^{-1})_*$ is the two-sided inverse to f_*