Polynômes de Hilbert

Notations:

- n désigne un entier naturel
- $\mathbb{C}_n[X]$ l'espace des polynômes complexes de degré inférieur ou égal à n.
- Pour P dans $\mathbb{C}[X]$, soit T(P) le polynôme P(X+1). L'application T ainsi définie est clairement un endomorphisme de $\mathbb{C}[X]$. De plus, si $n \in \mathbb{N}$, $\mathbb{C}_n[X]$ est stable par T et on note T_n l'endomorphisme de $\mathbb{C}_n[X]$ induit par T.
- Soit $(H_i)_{i\in\mathbb{N}}$ la suite des polynômes de Hilbert, définie par :

$$H_0 = 1$$
 et $\forall i \in \mathbb{N}^*, H_i = \frac{1}{i!} \prod_{k=0}^{i-1} (X - k).$

Partie I: Inversion d'une matrice

- 1. Soit n dans \mathbb{N} .
 - (a) Écrire la matrice M_n de T_n dans la base $(1, X, ..., X^n)$ de $\mathbb{C}_n[X]$.
 - (b) Vérifier que M_n est inversible
 - (c) Expliciter M_n^{-1} .
- 2. (a) Montrer que $(H_i)_{0 \leq i \leq n}$ est une base de $\mathbb{C}_n[X]$.
 - (b) Si $j \in \mathbb{Z}$ et $i \in \mathbb{N}^*$, donner une expression simple de $H_i(j)$ montrant que $H_i(j)$ est dans \mathbb{Z} . (On distinguera les trois cas : j < 0, $0 \le j \le i 1$ et $j \ge i$.)

Partie II: Polynômes de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$

Soit P dans $\mathbb{C}_n[X]$. On décompose P sur $(H_i)_{0 \leqslant i \leqslant n}$ en $P = \sum_{i=0}^n a_i H_i$.

- 3. Vérifier l'égalité suivante : $\begin{pmatrix} P(0) \\ \vdots \\ P(n) \end{pmatrix} = {}^tM_n \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}$, où tM_n est la transposée de la matrice M_n .
- 4. Établir : $\forall i \in [0, n]$, $a_i = \sum_{j=0}^{i} (-1)^{i-j} C_i^j P(j)$.
- 5. Si $i \ge n + 1$, que vaut $\sum_{j=0}^{i} (-1)^{i-j} C_i^j P(j)$?
- 6. Montrer que les trois conditions suivantes sont équivalentes :
 - (a) $\forall i \in \{0, \dots, n\}, P(i) \in \mathbb{Z}$
 - (b) $\forall i \in \{0, \dots, n\}, a_i \in \mathbb{Z}$
 - (c) $P(\mathbb{Z}) \subset \mathbb{Z}$

En particulier les polynômes P de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$ sont les combinaisons linéaires à coefficients dans \mathbb{Z} des polynômes de Hilbert.

- 7. Soit $(u_i)_{i\in\mathbb{N}}$ une suite complexe. Démontrer que les deux conditions suivantes sont équivalentes :
 - (a) il existe $P \in \mathbb{C}_n[X]$ tel que : $\forall j \in \mathbb{N}, u_j = P(j)$
 - (b) $\forall i \in \mathbb{N}, i \ge n+1 \Rightarrow \sum_{j=0}^{i} (-1)^{i-j} C_i^j u_j = 0.$

Polynômes de Hilbert

Partie I: Inversion d'une matrice

- 1. (a) $T_n(X^j) = (X+1)^j = \sum_{i=0}^j C^i_j X^i$, donc le terme d'indice (i,j) de M_n est égal à C^i_j pour $i \leq j$, et 0 pour i > j, i et j variant de 0 à n.
 - (b) M_n est triangulaire supérieure et ses coefficients diagonaux valent 1, donc son déterminant vaut 1 et elle est inversible.
 - (c) $T_n^{-1}(P) = P(X-1)$, d'où $T_n^{-1}(X^j) = \sum_{i=0}^j (-1)^{j-i} C_j^i X^i$, donc le terme d'indice (i,j) de M_n^{-1} est égal à $(-1)^{j-i} C_j^i$ pour $i \leq j$, et 0 pour i > j, i et j variant de 0 à n.
- 2. (a) H_i étant de degré i, la famille $(H_i)_{0 \le i \le n}$ est échelonnée en degrés, elle forme donc une base de $\mathbb{C}_n[X]$.

(b)
$$0 \le j \le i-1 \implies H_i(j) = 0$$

 $j \ge i \implies H_i(j) = C_j^i$
 $j < 0 \implies H_i(j) = (-1)^i C_{-j+i-1}^i$.

Partie II: Polynômes de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$

3. Pour
$$0 \le k \le n$$
, $P(k) = \sum_{i=0}^{n} a_i H_i(k) = \sum_{i=0}^{k} a_i C_k^i = \sum_{i=0}^{n} ({}^t M_n)_{ki}.a_i \text{ soit } \begin{pmatrix} P(0) \\ \vdots \\ P(n) \end{pmatrix} = {}^t M_n. \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}.$

4.
$$\begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = {}^t M_n^{-1} \cdot \begin{pmatrix} P(0) \\ \vdots \\ P(n) \end{pmatrix}$$
, d'où $a_i = \sum_{j=0}^n ({}^t M_n^{-1})_{ij} \cdot P(j) = \sum_{j=0}^n (M_n^{-1})_{ji} \cdot P(j) = \sum_{j=0}^i (-1)^{i-j} C_i^j P(j)$.

5. Soit $i \ge n+1$. On se place dans $\mathbb{C}_i[X]$, i.e on remplace l'entier n par l'entier i.

On applique ce qui précède à $P = \sum_{k=0}^{n} a_k H_k$. La composante de P suivant H_i est nulle, donc $0 = \sum_{j=0}^{i} (-1)^{i-j} C_i^j P(j)$.

- 6. $(a) \Rightarrow (b)$: La question 4 donne le résultat.
 - $(b)\Rightarrow (c):$ La question 2(b) montre que $H_i(\mathbb{Z})\subset \mathbb{Z},$ or $P=\sum_{i=0}^n a_iH_i,$ d'où $P(\mathbb{Z})\subset \mathbb{Z}.$
 - $(c) \Rightarrow (a) : \text{\'evident}$
- 7. $(a) \Rightarrow (b) : \text{Pour } i \geqslant n+1, \sum_{j=0}^{i} (-1)^{i-j} C_i^j u_j = \sum_{j=0}^{i} (-1)^{i-j} C_i^j P(j) = 0 \text{ d'après la question 5.}$

$$(b) \Rightarrow (a)$$
: On pose pour $i \in [0, n]$, $a_i = \sum_{j=0}^{i} (-1)^{i-j} C_i^j u_j$, puis $P = \sum_{i=0}^{n} a_i H_i$.

$${}^t \! M_n^{-1} \begin{pmatrix} P(0) \\ \vdots \\ P(n) \end{pmatrix} = \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = {}^t \! M_n^{-1} \begin{pmatrix} u_0 \\ \vdots \\ u_n \end{pmatrix}, \, \text{donc } P(j) = u_j \text{ pour } 0 \leqslant j \leqslant n.$$