

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
19 February 2004 (19.02.2004)

PCT

(10) International Publication Number
WO 2004/015139 A1

- (51) International Patent Classification⁷: **C12Q 1/68**
- (21) International Application Number:
PCT/EP2003/008602
- (22) International Filing Date: 1 August 2003 (01.08.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
102 36 406.0 2 August 2002 (02.08.2002) DE
- (71) Applicant (*for all designated States except US*): EPIGENOMICS AG [DE/DE]; Kastanienallee 24, 10435 Berlin (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): ADORJAN, Peter [HU/DE]; Dunckerstrasse 4, 10437 Berlin (DE). PIEPENBROCK, Christian [DE/DE]; Schwartzkoffstrasse 7 B, 10115 Berlin (DE). RUJAN, Tamas [HU/DE]; Hiddenseer Strasse 13, 10437 Berlin (DE). SCHMITT, Armin [DE/DE]; Hortensiengasse 29, 12203 Berlin (DE).
- (74) Agent: SCHUBERT, Klemens; Neue Promenade 5, 10178 Berlin-Mitte (DE).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/015139 A1

(54) Title: METHOD FOR AMPLIFICATION OF NUCLEIC ACIDS OF LOW COMPLEXITY

(57) Abstract: The invention describes a method for amplifying nucleic acids, such as DNA with means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to DNA pre-treated with bisulfite is disclosed. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of low complexity.

Method for amplification of nucleic acids of low complexity

5 The present invention relates to a method for the amplification of nucleic acids.

Description

10 This invention relates to the fields of genetic engineering, molecular biology and computer science, and more specifically to the field of nucleic acid analysis based on specific nucleic acid amplification.

15 The matter of the present invention is a method for amplifying nucleic acids, such as DNA by means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to
20 DNA pre-treated with bisulfite. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of unusually low complexity. Also, for the
25 optimal primer design it was considered that the treated template DNA is single stranded.

30 The amplification of nucleic acids relies mainly on a method called polymerase chain reaction (PCR). The PCR is based on the activity of the enzyme DNA polymerase, which is elongating primer molecules, which bind to the template DNA by adding dNTPs and hereby copying the template sequence (Saiki RK, Gelfand DH, Stoeffel S, Scharf SJ, Higuchi R, Horn T, Mullis KB and Erlich HA (1988).
35 Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 : 487-491). The

primer molecules are designed to specifically hybridize to those regions of the template DNA that define both ends of the amplificate. The forward primer binds to the 5' end of the sense strand of the amplificate, whereas 5 the reverse primer binds to the 5' end of the reverse strand, hereby defining the starting points of the polymerase reaction and eventually determining the length of the amplificate.

10 Before the polymerase starts the template DNA gets denatured, this is usually done by a short cycle of heating the reaction mixture up to about 95°C, then cooling it down to the annealing temperature determined by the melting temperature of the primer molecules used and finally 15 allowing the polymerase to elongate the annealed primers at its ideal working temperature for some minutes. This cycle is repeated several times each starting with the denaturation step. The primer molecules hybridize to the single stranded DNA. The forward primer is the starting 20 molecule for a copy of the sense strand and the reverse primer is the starting molecule for a copy of the anti-sense strand.

These first copies will be of unspecific length, limited 25 only by the polymerase's activity. However in the following cycle, the forward primer will also bind to the first copy of the anti-sense strand, the polymerase will take that copy as a template and will elongate the primer only as far as there is template DNA. Hereby the length of the 30 second copy gets limited to the length defined by the first nucleotide of the second primer. In the following cycles more and more pieces of template DNA compete for the primer molecules and eventually the DNA amplificate of defined length will be the main product.

However, in the case of a bisulfite treated DNA the template DNA is single stranded. The bisulfite or similar treatment alters the original sequences on both strands such that these are not complementary to each other after 5 the treatment. As a result no complementary strand to the target sequence exists. A first primer molecule binds to the one end of the single stranded target sequence. The polymerase elongates said primer and copies said target sequence. The second primer molecule cannot bind to the 10 complementary, so called anti-sense strand, as it would in a standard PCR. Therefore the second primer molecule is designed to bind to the first copied sequence instead. More specifically it will bind to that part of the copied 15 nucleic acid which is the complement to the other end of said target sequence.

The results of a PCR are highly depending on the choice of the ideal primer. The choice of a primer molecule must respect constraints permitting a correct amplification by 20 PCR, fulfilling hybridization temperature conditions and auto- or hetero-hybridization prevention.

In other words, as any PCR requires two primer molecules to amplify a specific piece of DNA in one reaction the 25 melting temperatures of both primers need to be very similar in order to allow proper binding of both at the same hybridization temperature. That is why most primer design programs require the user to define a preferred melting temperature or a permitted range of melting 30 temperatures. This requirement becomes the limiting factor when designing primers for a so called multiplex PCR, as all primer pairs in use need to have the same or at least very similar melting temperatures. Additionally primers have to be very specific, in order to only amplify those 35 pieces of DNA that are the target.

By providing the means for designing extremely accurate primer pairs for DNA hybridization procedures this invention relates to the so called PCR primer design. More specifically the body of this invention relates to the 5 specific requirements of primers and therefore of primer design when using template DNA that consists of essentially only three different nucleotides and is single stranded. This is the case when using bisulfite treated DNA as a template, as it contains no cytosine other than 10 the methylated cytosines in a CG dinucleotide and a rest of insufficiently treated and therefore untransformed non-methylated cytosines. The invention relates specifically to the primer design when using bisulfite treated DNA as template.

15

It would be obvious to an individual skilled in the art that the use of the primers as specified in this invention are not limited to nucleic acid amplification. Said primers can be used for several purposes, such as amplification, but also for nucleic acid sequencing or as 20 blocking oligonucleotides during analysis of bisulfite treated DNA. Therefore the use of said primers is not limited to nucleic acid amplification but extends to all standard molecular biological methods.

25

Pairs of these primers are used to specifically amplify DNA from a small amount of sample DNA that consists of bisulfite treated DNA originating from a limited source of DNA like a bodily fluid or tissue sample.

30

DNA can occur methylated or non-methylated at certain positions and this information is relevant for the status of a genes transcription. The methyl group is attached to the cytosine bases in CpG positions. The identification 35 of 5-methylcytosine in a DNA sequence as opposed to unmethylated cytosine is of greatest importance for example

- when studying the role of DNA methylation in tumorigenesis. But, because the 5-Methylcytosine behaves just as a cytosine for what concerns its hybridization preference (a property relied upon for sequence analysis) its positions can not be identified by a normal sequencing reaction. Furthermore in a PCR amplification this relevant epigenetic information, methylated cytosine or unmethylated cytosine, will be lost completely.
- 10 This problem is usually solved by treating the genomic DNA with a chemical leading to a conversion of the cytosine bases, which consequently allows to differentiate the bases afterwards.
- 15 A tool most useful for analyzing DNA methylation is the bisulfite conversion of DNA that converts cytosine bases into bases showing a hybridization behavior as thymine bases. Hereby the DNAs complexity is reduced by a fourth.
- 20 Bisulfite conversion is the most frequently used method for analyzing DNA for 5-methylcytosine. It is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil, whereas 5-methylcytosine remains unmodified under these conditions (Shapiro et al. (1970) Nature 227: 1047). However, in its base pairing behavior, uracil corresponds to thymine, that is, it hybridizes to adenine; whereas 5-methylcytosine doesn't change its chemical properties under this treatment and therefore still has the base pairing behavior of a cytosine, that is hybridizing with guanine. Consequently, the original DNA is converted in such a manner that methyl-cytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the only remaining cytosine using "normal" molecular biological techniques, for example, by amplification and hy-

bridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited. Comparing the sequences of the DNA prior to and after bisulfite treatment allows an easy identification of those bases that have been methylated.

In the scope of this invention when it says "a nucleotide (...) was converted by the treatment..." this conversion is meant to be able to differentiate between methylated and un-methylated cytosine bases within said sample, as for example the conversion of un-methylated cytosine bases to bases which hybridize to adenine by the treatment with bisulfite.

An alternative method is to use restriction enzymes that are capable of differentiating between methylated and un-methylated DNA, but this is restricted in its uses due to the selectivity of the restriction enzyme towards a specific sequence.

An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article: Rein T, DePamphilis ML, Zorbas H, Nucleic Acids Res. 1998, 26, 2255.

In terms of sensitivity, the prior art is defined by a method, which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite reacts with single-stranded DNA only), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulfite based cytosine methylation analysis. Nucleic Acids Res. 24: 5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method.

To date, barring few exceptions (e.g., Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B (1997) A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 5: 94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 3: 275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML and Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25 :2529-31; WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25: 2532-4).

Another technique to detect hypermethylation is the so called methylation specific PCR (MSP) (Herman JG, Graff JR, Myohanen S, Nelkin BD and Baylin SB (1996), Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93: 9821-6). The technique is based on the use of primers that differentiate between a methylated and a non-methylated sequence if applied after bisulfite treatment of said DNA sequence. The primer either contains a guanine at the position corresponding to the cytosine in which case it will after bisulfite treatment only bind if the position was methylated. Or the primer contains an adenine at the corresponding cytosine position and therefore only binds to said DNA sequence after bisulfite treatment if the cytosine was unmethylated and has hence been altered by the bisulfite treatment so that it hybridizes to adenine.

With the use of these primers amplicons can be produced specifically depending on the methylation status of a certain cytosine and will as such indicate its methylation state. The present invention, however, does preferably not include CpGs in the primer sequence.

Another new technique is the detection of methylation via Taqman PCR, also known as MethylLight (WO 00/70090). With this technique it became feasible to determine the methylation state of single or of several positions directly during PCR, without having to analyze the PCR products in an additional step.

In addition, detection by hybridization has also been described (WO 99/28498).

Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are:

- Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. Bioassays 16: 431-6; Zeschnick M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 6: 387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W (1994) Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 22: 695-6; Martin V, Ribieras S, Song-Wang X, Rio MC, Dante R (1995) Genomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its expression in human breast cancer cell lines. Gene 157 : 261-4; WO 97/46705; WO 95/15373; WO 97/45560

For all those methods mentioned above, which are based on PCR amplification of bisulfite treated DNA, the biggest challenge is to design primers that are specific.

5

THE PROBLEM AND ITS SOLUTION

There are a number of programs available on the market that offer to design primer pairs in order to amplify a piece of DNA in a PCR. Usually they require as input the 10 template DNA sequence, the preferred melting temperature TM, the desired length of the amplicate and optionally the preferred length of the primer molecules.

However if a primer is required to bind specifically to 15 bisulfite treated DNA, the design of the primer molecule is especially difficult and those tools known in the art are not competent to design primers that lead to specific products. The following problems occur when dealing with bisulfite treated DNA instead of standard DNA:

20

First, the sequence complexity of the bisulfite treated genome is reduced dramatically. Complexity in this context is meant to be a measure for the similarity of a given sequence to a random or stochastic sequence; the 25 more complex a sequence is the more it is similar to a random sequence. A reduced complexity of the genome means there are less degrees of variation. Where there are essentially only three different nucleotides rather than four, the probability of a sequence to occur twice in a 30 given length of sequence is much higher. For example, a primer molecule of 20 nucleotides in length is likely to be unique in the human genome, if it is not part of a repeat sequence: The human genome is known to consist of about 3×10^9 bases. There are $420 \approx 10^{12}$ different ways 35 to form sequences of a length of 20 nucleotides, assuming equidistribution of the bases, which makes multiple oc-

- currences of a given 20-mer (oligonucleotide of 20 nucleotides) extremely unlikely. However since there are only $320 \approx 3 \times 10^9$ different 20-mers possible over a 3-letter alphabet, this multiple occurrence cannot be excluded. In addition a bisulfite treated sequence, enriched in thymine in the sense strand and enriched in adenine in the reverse complementary strand, will contain more repeats and regions of general low complexity.
- 10 Another way to enhance or guarantee uniqueness of primer and/or oligo molecules is to estimate their expected frequency in the genome based upon a Markov model of order n for the human genome or to check their uniqueness explicitly by counting their exact occurrence. The estimation based upon the Markov model relies upon the determination of the probabilities of all 4^n n-mers (oligo molecules of n nucleotides) in the human genome or in all amplicates which are used in the hybridization and the conditional probabilities of all four bases given these n-mers. The 15 primer pairs will be constructed from forward and reverse oligos which lie within an appropriate distance to each other and which have minimal individual expected occurrence elsewhere in the genome.
- 20 25 A second challenge in primer design for bisulfite treated DNA is that the melting temperature TM of a bisulfite DNA primer of a certain length is typically lower than the melting temperature TM of a standard primer containing cytosines. This is due to the fact that every cytosine in 30 a bisulfite treated DNA is - after amplification by PCR - replaced by thymine. Cytosine binds its corresponding base guanine via three hydrogen bonds, whereas thymine binds its corresponding base adenine via two hydrogen bonds only, leading to a generally weaker binding, a 35 lower TM.

A third problem arises from the fact that bisulfite treated sequences are not only lacking cytosines but are also thymine-rich. Thymine also hybridizes unspecifically with guanine. This makes mismatching (unspecific binding of a primer to a sequence not identical) of a primer designed for bisulfite treated DNA much more likely than mismatching of a standard primer consisting of four different nucleotides.

10 It is the aim of this invention to overcome these problems, which are specific for primer based amplification of bisulfite treated DNA.

For a so called "multiplex PCR" it becomes especially difficult to design primer pairs. This expression is used to describe an experiment in which several different pieces of DNA are amplified simultaneously, in one reaction vessel and at the same time. Obviously this saves a lot of effort and time and is as such a basic requirement for high throughput assays based on PCR amplification. An overview on the state of the art concerning multiplex PCR is given by Henegariu et al. (Henegariu O, Heerema NA, Dlouhy SR, Vance GH and Vogt PH (1997) Multiplex PCR: Critical Parameters and Step-by-Step Protocol. BioTechniques 23: 504-511), who offer a step-by-step protocol on how to tackle multiplex PCR problems. However, the possibility of a special primer design is not mentioned in this article.

30 To ensure that the multiplex PCR works and the multiple products are amplified indeed usually a gel electrophoresis of the reaction mixture is performed. The products get separated due to their different sizes. Unfortunately, the ability of agarose gel electrophoresis to distinguish the products is slightly limited. However, it 35 is possible to test for different product sizes with the

means of a fragment analyzer, which is much more accurate and able to distinguish product sizes of one base difference. Hence different product sizes are no longer a requirement to be considered in the primer design for a

5 multiplex PCR.

In patent WO 01/94634 a method for a multiplex PCR using at least two primer pairs is described that consists of basically a two step amplification procedure wherein one
10 step is referred to as pre-amplification. After pre-amplification (by means of PCR) with a number of primer pairs the sample gets divided into as many portions as there are primer pairs. At least one (and preferably only one) of the previously used primer pairs is added. This
15 method doesn't relate in any way to the selection or design of primer molecules described herein.

In an article by Shuber et al. (Shuber AP, Grondin VJ and Klinger KW (1995) A simplified procedure for developing
20 multiplex PCRs. Genome Res 5 (5) : 488-493) regarding multiplex PCR, the authors suggest to use primers, which contain a 3' region complementary to sequence specific recognition sites and a 5' region of a defined length of 20 nucleotides each. The authors claim that they could
25 establish identical reaction conditions, cycling times and annealing temperatures for any PCR primer pair following those requirements.

In several recent papers successful multiplex PCRs have
30 been established. For example, Becker et al. have reported the development of a multiplex PCR reaction for the detection of multiple staphylococcal enterotoxin genes, which uses individual primer sets for each toxin gene (Becker K, Roth R and Peters G (1998) Rapid and specific detection of toxigenic *Staphylococcus aureus* : use of two multiplex PCR enzyme immunoassays for amplifica-

tion and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J. Clin. Microbiol. 36: 2548-2553). This has been developed even further by Monday and Bohach, by increasing the number of primer pairs applied in one reaction up to about 10 in order to have one assay to amplify all of the characterized enterotoxin genes. This still required a unique established primer pair for the detection of every individual gene (Monday SR and Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37: 3411-3414).

In another paper by Sharma et al. a method for a one-vessel-multiplex PCR is described wherein each of six chosen primer pair consists of one identical universal forward primer, based on a highly conserved region of those genes of interest and one reverse primer, specific for each individual gene. As such the assay leads to a rapid amplification of a family of genes, which all have a conserved region in common. It is designed to detect presence or absence of certain genes in an unknown mixture. No further information is given about the primer design, apart from saying that they were designed by alignment of published DNA sequences. This is certainly not the only requirement though, as one big limitation of the method is the need of getting PCR products of different sizes in order to identify those in the end (Sharma NK, Rees CED and Dodd CER (2000) Development of a single-reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Applied and Environmental Microbiology 66 (4) : 1347-1353).

In the patent application WO 01/36669 a method is described which uses a similar approach for the controllable amplification of a higher number of sequences in selec-

ting one randomly chosen reverse primer that hybridizes unspecifically and a number of specific forward primers to amplify a group of sequences. As the reverse primer is labeled all products formed will be labeled as well. By 5 hybridizing said amplicons towards immobilized detection oligos, which are able to differentiate the products, it will be easy to see which products have been amplified and herein the presence or absence of said sequences in the mixture can be determined.

10

The big disadvantage in all these methods is that every primer pair needs to be established individually first to ensure that a PCR product of the expected size was produced and that no additional or nonspecific products are 15 generated. Once the specificity of the primer pairs had been determined, PCR conditions, buffers, and primer concentrations need to be optimized to establish conditions under which the primer molecules can be combined into one single PCR reaction without affecting the ability of the 20 primer pairs to generate a gene specific amplicon.

A more recently published approach by Nicodeme and Steyaert describes the conditions required for multiplex PCR and suggests an algorithm to automatically select for 25 primer pairs (Nicodeme P and Steyaert JM (1997) Selecting optimal oligonucleotide primers for multiplex PCR. Proc. Int. Conf. Intell Syst Mol Biol; 5 : 210-213). In this approach the conditions for pre-selecting primer pairs for a successful one locus amplification (singleplex PCR 30 conditions) are rather broad. The three basic requirements are the pairing distance between a forward and a reverse primer, the condition of non-palindromicity of a primer, and the condition that the 3' end of a primer must not be reverse complementary to any of the other 35 primers sequence. This selection is done with the help of a typical primer design program called PRIMER. However,

PRIMER is a two step program, and in this approach the new method to design primers for a multiplex PCR takes the output from step 1 as input, which is a list of possible forward and a list of possible reverse primers for every amplicate.

The only further selection criteria for the multiplex PCR primers are the absence of the reverse complementarity of their 3' end towards the other primer sequences in the experiment. A second critical factor considered here is the GC versus AT ratio. To some extent it is this ratio that determines the melting temperature of a primer pair. The authors suggest to limit the GC/AT ratio to be inside a given range which would enable the simultaneous hybridization of several primer pairs at one reaction temperature. The final requirement is the electrophoresis distance, determined by the tool that is used to differentiate the PCR products in, for example, a gel electrophoresis. This most common method requires the products to be of different sizes. The whole concept of this method also requires to have a pool of possible primer pairs for each amplicon.

The design of suitable primers for a multiplex PCR on bisulfite treated DNA is an even greater challenge. The low complexity of the DNA, being reduced to essentially three different bases rather than four different bases, requires an extra careful selection of primers to avoid mismatching and unwanted amplification.

In the scope of this invention the word "mismatching" corresponds to the situation when the alignment of two sequences which are essentially complementary reveals positions in one of the sequences where the nucleotide base does not align with its corresponding base but a different one. The corresponding or complementary base pairs are adenine and thymine, cytosine and guanine,

are adenine and thymine, cytosine and guanine, uracil and adenine. For example, a cytosine that aligns with a thymine in its otherwise complementary sequence creates a mismatch of one base or nucleotide.

5

Accordingly "base mismatches" refers to the situation of a base mismatching with another as explained above, respectively "one or more base mismatches" refers to one or more bases (in a given sequence) that cannot be aligned with their corresponding bases.

10

Also, when the alignment reveals single nucleotide gaps in one of the aligned sequences this is understood under the term "mismatch" in the scope of this invention.

15

A 'gap' is to be understood as follows: If an alignment reveals that, in order to get the highest number of corresponding base pairs aligned, some bases are lacking a corresponding base in its otherwise complementary sequence, this is called a gap. Such a gap can have a length of one or more nucleotides.

20
25

To solve the problems mentioned above we invented a method consisting of several steps that is applicable for the amplification of nucleic acids in singleplex as well as in multiplex PCR experiments.

SUMMARY OF THE INVENTION

30
35

The method is comprised of the following steps: Firstly, the nucleic acid sample containing the region of interest, which is to be amplified, is isolated. Secondly, this nucleic acid sample is treated in a manner that differentiates between methylated and un-methylated cytosine bases within said sample. Thirdly, a reaction mixture is set up containing a) the treated template nu-

cleic acids, carrying the region of interest (also called: target nucleic acid) that is to be amplified, b) specified oligo-nucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, d) 5 the necessary nucleotides required for the nucleic acid synthesis and e) a suitable buffer.

- Said specified oligo-nucleotide primers are characterized in that
- 10 their sequences each reach a predefined measure of complexity (as described in detail below) every possible combination of two primer molecules in said reaction mixture has a melting temperature below a specified threshold temperature
- 15 none of the possible combinations of two primer molecules in said reaction mixture leads to the amplification of an additional unwanted product as determined by virtual testing for amplification.
- 20 In the last step of the method said amplified target nucleic acid is detected by means commonly used by one skilled in the art.

The invention is composed of a method for the amplification of nucleic acids comprising the following steps of isolating a nucleic acid sample, treating said sample in a manner that differentiates between methylated and unmethylated cytosine bases within said sample, amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules, wherein said primer molecules are characterized in that

25 a) each primer molecule sequence reaches a predefined measure of complexity, b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature and c) every combi-

nation of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample 5 nucleic acids as template and the last step of detecting said amplified target nucleic acid.

More detailed description of the method:

10 The method is comprised of the following steps:
In the first step of the method, the nucleic acid sample, which contains the region of interest that is to be amplified, must be isolated from tissue or cellular sources. Such sources may include at least one cell, but 15 usually several cells, cell lines, histological slides, bodily fluids, or tissue embedded in paraffin.

20 In a preferred embodiment of this invention the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.

For example a certain kind of organ sample from a patient or an animal can be used to extract genomic DNA by the usually applied methods. Preferably, in this invention 25 DNA is extracted from a tissue sample or a biological fluid like blood, serum, urine or other fluids. 'Bodily fluid' herein refers to a mixture of macromolecules obtained from an organism. This includes, but is not limited to, blood, blood plasma, blood serum, urine, sputum, 30 ejaculate, semen, tears, sweat, saliva, lymph fluid, bronchial lavage, pleural effusion, peritoneal fluid, meningeal fluid, amniotic fluid, glandular fluid, fine needle aspirates, nipple aspirate fluid, spinal fluid, conjunctival fluid, vaginal fluid, duodenal juice, pancreatic juice, bile and cerebrospinal fluid. This also 35 includes experimentally separated fractions of all of the

preceding. 'Bodily fluid' also includes solutions or mixtures containing homogenized solid material, such as feces.

5 The nucleic acids may include DNA or RNA. Isolation may be by means that are standard to one skilled in the art, this includes for example extraction of DNA with the use of detergent lysates, sonification and vortexing with glass beads. An example is the extraction of DNA from a 10 piece of a plant, like a leave or fruit. Once the nucleic acids, like genomic double stranded DNA, have been extracted they are used in the analysis.

15 In a preferred embodiment of this invention the nucleic acid sample is comprised of plasmid DNA, BACs (bacterial artificial chromosomes), YACs (yeast artificial chromosomes) or genomic DNA.

20 In another especially preferred embodiment of this invention the nucleic acid sample is comprised of human genomic DNA. It is preferred that the nucleic acids are of human origin.

25 In the second step, this nucleic acid sample is treated in a manner that differentiates between methylated and un-methylated cytosine bases within said sample. Cytosine bases which are unmethylated at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. 30 This will be understood as 'treatment' hereinafter. The method most commonly used so far is the so called bisulfite treatment.

35 This step is of essential meaning to the process as it translates the methylation pattern of said nucleic acids into a pattern that is something like an imprint of the

methylation status itself. It contains essentially the same information but the pre-treated nucleic acids are no longer sensitive to amplification via PCR. Amplification via PCR does not differentiate between methylated and un-methylated cytosines and therefore leads to the loss of this level of information. The original methylation status however can be deducted whenever the described pre-treatment had been performed prior to the amplification step. Hence any means suitable to differentiate between a methylated and an un-methylated cytosine base are applicable, as long as the modified bases are still capable of being amplified by enzymatic means after treatment.

It is a preferred embodiment of this invention that said sample is treated by means of a solution of a bisulfite, hydrogen sulfite or disulfite. A treatment of genomic DNA as described above is carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.

In the third step of this method, a reaction mixture is set up containing a) the treated template nucleic acids, comprising the region of interest (also called target nucleic acid) that is to be amplified, b) specified oligonucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, for example a polymerase, d) the necessary nucleotides required for the nucleic acid synthesis and e) a suitable buffer. The template nucleic acid contains at least one target nucleic acid, which is amplified in the reaction. One primer molecule of the at least one primer pair in the reaction mixture is capable of binding to the 3' end of one specified target nucleic acid. The first primer binds to the

- 3' end of the target sequence, this primer is elongated and a complementary sequence to the target sequence is made. The polymerase stops to elongate unspecifically.
- 5 The next cycle starts by thermally denaturing the now double stranded template nucleic acid into single stranded template nucleic acids. This is followed by the next phase of annealing when both primer molecules specifically bind to the target nucleic acid and its complementary strand. The second primer is identical to the 5' 10 end of the target molecule. It doesn't bind to the target sequence itself but to said complementary nucleic acid to the target sequence, as soon as this is denatured from the template.
- 15 The process is finished by the actual amplification phase at a slightly lower reaction temperature, during which the enzyme, for example the polymerase elongates the primer as a complementary sequence to the target nucleic acid. The polymerase elongates this second primer by using the first copy as template until the end of said copied nucleic acid is reached. That way an identical copy to the original single stranded target nucleic acid is created. Hence, the length of the amplicon is determined by choosing the two primers.
- 25 The elongation products, being complementary to each other and hereby building a double stranded version of the target nucleic acid, serve as additional targets for the primer molecules binding in the next cycle of amplification.
- 30 Essentially step 3 of the method is comprised of amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules.

Said primer molecules used in said method are characterized in that they, in addition to fulfilling all the usual requirements towards a PCR primer as will be specified in more detail later, also fulfill the following requirements:

Firstly, the sequence of each primer molecule used in step 3 of this method reaches a predefined measure of complexity.

10

In a preferred embodiment of this method the primer molecules are reaching a certain value of linguistic complexity. A notion and a measure of linguistic complexity has been introduced by Trifonov in 1990 and has been used for analysis of nucleotide sequences before (Trifonov, EN 15 (1990) Making sense of the human genome. In Structure & Methods. Vol 1 pp 69-77 (eds. Sarma, RH and Sarma MH, Adenine Press, Albany, US). The linguistic complexity technique allows a calculation to be made of the structural complexity of any linear sequence of characters irrespective of whether the text is cognized or presently undeciphered. The sequences are compared exclusively from the point of view of their structural complexity with no reference to the meaning of the texts. In 1997 Trifonov 20 published how the linguistic complexity of nucleosomal sequences is defined (Bolshoy, A; Shapiro, K; Trifonov, E and Ioshikhes I. (1997) Enhancement of the nucleosomal pattern in sequences of lower complexity. NAR 25 (16): 3248-3254). Quote: "The linguistic complexity measure exploits the major distinguishing feature between natural 25 nucleotide sequences and uniformly random ones: the repetitiveness of the natural sequences, i.e. the frequent repetition, not necessarily a tandem one, of some oligonucleotides ("words"), while others are avoided. (...) Complexity can be directly calculated as the extent to 30 which the maximal possible vocabulary (all word sizes

35

considered) is utilized in a given strength of sequence (...)."

In another preferred embodiment of this method said measure of complexity is set by the so called Shannon entropy (Shannon, C E., (1948) A Mathematical Theory of Communication, University of Illinois Press, Urbana). This is the most common measure to assess the information content (in a technical, non-semantic meaning) of linear information carriers. It attributes the maximal value (which can be chosen to be 1 without restrictions) to sequences where all symbols (characters) occur at equal probability and a value of 0 to sequences consisting of just one repeated symbol (character, letter). A derived and more general measure is the higher order Shannon entropy which attributes maximal value to sequences where all its subsequences occur at equal probability and a value of 0 or close to 0 to sequences consisting of periodic repetitions of short subsequences. The practical determination of the (higher order) Shannon entropy however is limited by the finite lengths of sequences which often does not permit a precise estimation of the probability distribution of their constitutive symbols.

Further possible measures are for example the Lempel-Ziv complexity (Lempel, LB and Ziv, J (1976) On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, 75-81), the grammar complexity (Ebeling, W; Jimenez-Montano, MA (1980) On Grammars, Complexity and Information Measures of Biological Macromolecules. Mathematical Bioscience 52, 53-71), the algorithmic complexity (Chaitin, 1990) and the conditional entropy.

Secondly, said primer molecules are also characterized in that every possible combination of any two primer molecules, in the set, has a melting temperature below a

specified threshold temperature. That way the accumulation of dimers caused by the binding of two primer molecules to each other in said reaction mixture is excluded. The number of primer pairs used in that step can be any 5 between one and n, leading to one or n amplificates respectively (n being a natural number).

As mentioned in the text the word "dimer" refers to a secondary structure formed by the hybridization of two 10 primer molecules to each other.

As referred to in the text 'melting temperature' refers to the temperature at which 50% of the nucleic acid molecules are in duplex and 50% are denatured under standard 15 reaction solution conditions.

Some primer design tools disqualify a primer if, besides the target sequence, a second identical sequence can be found in the template. However, due to the higher probability of a bisulfite primer to mismatch with non-identical bisulfite treated DNA, it is an embodiment of this invention that only those primers are allowed to be used in said amplification method, for which no sequence homology can be found, to the extent that even those sequences that are different and/or mismatching in several 20 nucleotides are excluded. However, this would exclude primer molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template in a distance allowing for the amplification of an unwanted product. This test is performed by means as, for example, 25 the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to assess the suitability of primer molecules prior to in vitro PCR. In the scope of this invention this testing will be called 30 product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to assess the suitability of primer molecules prior to in vitro PCR. In the scope of this invention this testing will be called 35 'virtual testing' and it will be referred to as "virtually tested" or "virtually testing".

Thirdly, the primers used in step 3 of this invention are characterized, in that every possible combination of two primer molecules, in said reaction mixture, does not lead 5 to the amplification of an additional unwanted product, when virtually testing for amplification using the treated and the untreated nucleic acid sample as template, even under conditions allowing for at least one base but not more than 20% of the total number of bases 10 per sequence mismatching per primer. In the scope of this invention it is to be understood that those primer molecules are considered to bind to the template for which a template sequence exists that is in at least 80% of its nucleotide sequence identical to the target sequence the 15 primer originally has been designed for. For example, a primer molecule of 50 nucleotides length is considered to still hybridize to a template sequence that differs in less than 11 nucleotides (= is identical in at least 80% of its nucleotide sequence) from the according target sequence. If a match is considered to be possible it has to 20 be tested whether this match would lead to the amplification of an unwanted product. This can be done with the use of a program similar to e-PCR (see below).

Especially preferred is an embodiment of said method 25 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of in silico PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample. It 30 is especially preferred to perform the virtual testing with a tool like electronic PCR on the pretreated, preferably bisulfite treated, template sequence consisting of the treated sense and the treated anti-sense strand, and 35 on the unconverted template.

Furthermore it is preferred that this treatment is bisulfite treatment and hence the nucleic acid template is the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome. Preferred is an embodiment of said method wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, hereby taking as template nucleic acid the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome.

It is preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer.

It is also preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 5% of the number of nucleotides of the primer.

It is a preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than seven.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than five.

5

It is another preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than three.

10

It is especially preferred in the scope of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is one.

15

It is also included in the scope of this invention to consider such primer molecules as being sufficiently similar to facilitate their binding to the template sequence, for which a template sequence can be found that differs in the number of nucleotides but is otherwise identical to the target sequence. When the alignment of the primer and the template sequence leads to a gap of up to 20% of the nucleotides of one sequence, preferably of the primer sequence, this shall still be considered to be sufficient for binding and hence potentially leading to the amplification of an unwanted product. Therefore these primers also need to be tested with the means of virtual PCR (for example with a program like e-PCR). Only if this test reveals the virtual amplification of an unwanted product caused by the combination of two primers, the according primer pairs are excluded from the set of selected pairs.

It is preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed

for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer molecule.

5

It is also preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer molecule.

10

It is preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 5% of the number of nucleotides of the primer molecule.

20

Both of these situations, mismatching due to an alternative nucleotide or no-matching due to a missing nucleotide, are meant to be covered in the expression describing those primer molecules that will eventually be selected : "said primer molecules are characterized in that every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template".

25

It is also preferred that the primer molecules that exceed a pre-specified melting temperature when binding to the template have to be virtually tested for amplification of unwanted products using the treated and the untre-

30

ted sample nucleic acids as template according to step 3
c) of the method.

5 The basic problem of finding a primer specific enough to
give only one product on the little complex bisulfite
DNA, is finally solved by testing each potential primer
pair for hybridization across the whole bisulfite con-
verted human genome. This requires translating the whole
human genome sequence information virtually into its bi-
10 sulfite treated version before performing a similarity
search against the primer pairs, which is based on a
method like the so called e-PCR (Schuler G.D. (1997) Se-
quence Mapping by electronic PCR. Genome Research 7(5):
541-550). However, as the bisulfite conversion results in
15 two no longer complementary strands this virtual hybridiza-
tion test needs to be done against both bisulfite con-
verted strands. In addition in most cases the template
DNA is contaminated with unconverted genomic DNA. To also
exclude unwanted amplification on the unconverted DNA as
20 template, the same hybridization test has to be performed
a third time using the whole human genome sequence as a
template.

25 Therefore it is a preferred embodiment of this invention
that the ability of said primer molecules to amplify an
unwanted product is tested by means such as electronic
PCR.

30 In the last step of the method said amplified target nu-
cleic acid gets detected by any means standard to one
skilled in the art.

35 In a preferred embodiment of this method the set of
primer molecules is comprised of at least two primer
molecules but not more than 64 primer molecules, given

the number is a multiple of 2; in other words, the set is comprised of 1-32 primer pairs.

5 In another preferred embodiment of this method the set of primer molecules is comprised of between 2 and 32 primer molecules, given the number is a multiple of 2; in other words the set is comprised of 1-16 primer pairs.

10 In a preferred embodiment of this method, said primer molecule comprises at least one nucleotide within the last three nucleotides from the 3' end of the molecule, wherein said nucleotide is complementary to a nucleotide of the target sequence that, as a result of the treatment performed in step 2) of the invention, changed its
15 hybridization behavior.

20 It is a preferred embodiment of this method, that said primer molecule comprises at least one nucleotide within the last three nucleotides from its 3' end that is complementary to a nucleotide of the target sequence that was converted by the treatment performed in step 2 of the method to another base exhibiting an alternative base pairing behavior.

25 In an especially preferred embodiment said nucleotide is a cytosine prior to the treatment that converts unmethylated cytosines. In a preferred embodiment said treatment is bisulfite treatment. Said primer molecule comprises at least one nucleotide within the last three nucleotides
30 from the 3' end of the molecule, wherein said nucleotide is complementary to a cytosine, that was converted by bisulfite treatment to another base exhibiting the base pairing behavior of thymine.

35 This is to exclude binding of said primer molecules to the remaining untreated or un-sufficiently treated nu-

cleic acids, which might still serve as template nucleic acid in the PCR.

Furthermore it is a preferred embodiment of this invention that said primer molecules do not form loops or hairpins on their own or with each other.

In another preferred embodiment of the method said primer molecules do not form dimers with each other.

10 In the text the word 'hairpin' is taken to mean a secondary structure formed by a primer molecule when the 3' terminal region of said nucleic acid hybridizes to the 5' terminal region of said nucleic acid forming a double stranded stem structure and wherein only the central region of the primer is single stranded.

20 As described in the text the word 'loop' refers to a secondary structure formed by a primer molecule when two or more nucleotides of said molecule hybridize thereby forming a secondary structure comprising a double stranded structure one or more base pairs in length and further comprising a single stranded region between said double stranded region.

25 The binding of a primer molecules 3' end to any part of a second primer molecule in the set needs to be avoided. Otherwise the polymerase would extend the first primer using the second primer as template, which would lead to 30 a new unwanted product, an extended primer, or rather a primer-hybrid, which would serve as the preferred template for the next round of the polymerase chain reaction and thereby prevent a sufficient amplification of the wanted product.

35

Therefore it is another preferred embodiment of this method that each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.

It is also preferred that said primer molecules do not bind to nucleic acids which prior to treatment of step 2 contained a 5'-CG-3' site. This would lead to a binding 10 of the primers to bisulfite treated nucleic acids, specifically depending on their cytosines methylation status. A CG corresponding primer would bind to the treated methylated version only, whereas a primer corresponding to TG would bind to the treated unmethylated 15 version of these nucleic acids only. It is therefore preferred that said primer molecules do not contain nucleic acid sequences complementary or identical to nucleic acid sequences which prior to treatment of step 2 contained a 5'-CG-3' site.

20

In a preferred embodiment of this method said primer molecules are of a specified size range.

25

It is especially preferred that these primers are comprised of 16-50 nucleotides.

30

In a preferred embodiment of this method said primer molecules do not comprise sequences that are complementary to regions of the target nucleic acids that contained specified restriction enzyme recognition sites prior to the treatment that altered the unmethylated cytosines base pairing behavior. It is preferred that said primers are complementary to target sequences which prior to the treatment performed in step 2 of the invention did not contain specified restriction enzyme recognition sites.

By selecting for the right primer molecules also the amplificates sequence is determined. That is why it has to be taken into account to only use those primer molecules that lead to amplification of nucleic acids containing a reasonable high number of CpG sites to be analyzed. Due to the treatment of step 2 of this invention these CpG sites, depending on the methylation status of the cytosine, are converted and will therefore either appear as CG dinucleotides or as TG dinucleotides in the amplificate.

It is preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than eight 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than six 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than four 5'-CG-3' sites also referred to as CG dinucleotides and finally it is especially preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than two 5'-CG-3' sites also referred to as CG dinucleotides.

Said primer molecules lead to amplificates within a specified size range.

It is a preferred embodiment of this sequence that said primer molecules lead to amplificates which are comprised of at least 50 bp but not more than 2000 bp.

- 5 Especially preferred are primer molecules that lead to amplificates which are comprised of at least 80 bp but not more than 1000 bp.

Furthermore a method is preferred wherein said primer
10 molecules lead to amplificates of treated nucleic acids
which prior to the treatment which altered the unmethylated
cytosines base pairing behavior did not contain restriction
enzyme recognition sites. Said primer molecules
lead to amplificates that are amplified regions of the
15 treated nucleic acids which prior to the treatment performed
in step 2) of the method did not contain specified
restriction enzyme recognition sites.

A further subject of this invention is a method on how to
20 produce said primer molecules. The main step of producing
a primer molecule is determining its sequence. In the
following the phrase "primer design" will be used instead
of primer production, whenever it is referred to the step
of determining said specific primer sequences. Designing
25 primer molecules is a process which as such is well known
to scientists skilled in the art. The programs usually
used for this purpose are such as PRIMER3 or OSP (Rozen S
and Skaletsky H (2000) PRIMER3 on the WWW for general users
and for biologist programmers. Methods Mol Biol 132:
30 365-386; Hillier L and Green P (1991) OSP: A computer
program for choosing PCR and DNA sequencing primers. PCR
Methods and Applications 1: 124-128). Other primer design
systems (like described in EP-A 1136932) are often based
on those commonly known programs.

An embodiment of this invention takes advantage of using a program like PRIMER3 first, to then add a number of steps that finally result in an advanced method of designing primers that are specifically useful for amplifying sequences of low complexity.

In the first step of this method for designing specific primer molecules for nucleic acids of low complexity, primer pairs that amplify single products are selected by applying standard tools of primer design known in the art, like for example the program PRIMER3 (Rozen, S and Skaltsky, H (2000) Methods Mol Biol 132: 365-386).

In the second step of the method said primer pairs are tested whether or not one of its primer molecules when hybridizing to any other primer molecule in the set exceeds a specified threshold melting temperature TM. If this is the case the primer pair that comprises of said primer is excluded from the set of potentially combined pairs.

In the third step of the method the number of previously selected primer pairs, is reduced to a smaller number by implementing as new criteria a measure for the primer sequence's complexity. Primer pairs that consist of a primer molecule which does not meet said criteria are excluded.

The basic problem of finding a primer specific enough to give only one product on the little complex bisulfite DNA, is finally solved by testing each potential primer pair for hybridization across the whole bisulfite converted human genome. This requires translating the whole human genome sequence information virtually (as in "in silico") into its treated, for example bisulfite treated, version before performing a similarity search against the

primer pairs, which is based on a method like the so called e-PCR (Schuler G.D. (1997) Sequence Mapping by electronic PCR. Genome Research 7(5): 541-550). However, as the bisulfite conversion results in two different versions 5 of the double helix whose sense and anti-sense strands are no longer mutually complementary, this in silico amplification needs to be performed on both bisulfite converted versions of the genome. In addition in most cases the template DNA is contaminated with unconverted 10 genomic DNA. It cannot be excluded that single cytosines or longer runs of DNA remain unconverted or are only converted incompletely by the bisulfite treatment. To also exclude unwanted amplification of the unconverted DNA as template, the same hybridization test has to be 15 performed a third time using the whole human genome sequence as a template.

As this is quite some effort and requires time (CPU time) this is the fourth and last step of this design method, 20 that is absolved prior to the final testing in a "wet", lab based, experiment.

In addition to improve the specificity of said primer molecules the stringency of the selection criteria is increased: Some standard primer design tools disqualify a 25 primer if in the template sequence, a second identical sequence, besides the target sequence, can be found. That way mispriming at rather stringent hybridization conditions is avoided. This mispriming would not necessarily lead to an additional unwanted product, but would lead to 30 the dilution of the primer molecules available for amplification. This selection has been performed in step one already (for example by PRIMER3). However, due to the higher probability of a bisulfite primer molecule to mismatch 35 with non-identical bisulfite treated DNA, there is still a chance for said primer molecules to misprime even

when up to 20% of the nucleotides of the primer sequence differ. Therefore it is claimed in this invention to only use primer molecules for which not even a weak sequence homology can be found. However, this would exclude primer 5 molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template and amplify an unwanted product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to asses 10 the suitability of primers prior to in vitro PCR.

In the fourth step of the method on how to design these primers it is therefore tested whether there are any regions of the template nucleic acid, said template being 15 comprised of the sense and the anti-sense strand of the treated and the untreated nucleic acids, that are identical in sequence with the primer molecule to more than 80% and if those primer molecules are able to amplify an unwanted product. If this is the case, the primer pair 20 comprising said primer molecule is excluded from the selection.

The template nucleic acid is comprised of the treated template nucleic acid and the untreated template nucleic 25 acid. The treated nucleic acid in itself is comprised of a two strands which after treatment are not complementary to each other anymore. This virtual testing for example can be performed as described by Gregory Schuler in his article (cited above) about sequence mapping by "Electronic 30 PCR". The primer pairs remaining can be used to specifically amplify regions of nucleic acids of low complexity, which is the aim of this invention. Hence step 4 of the design method is the virtual testing of each possible primer pair combination, under pre-specified conditions 35 at a stringency allowing for one or more base pair mismatches, as to whether no unwanted nucleic acids are

amplified. Said virtual testing is carried out upon both untreated and treated nucleic acids. The wording "possible combinations" refers to all combinations that are possible within a set of primer pairs to be used in one amplification reaction vessel.

In a preferred embodiment an additional step is added following the virtual testing, which is testing in a lab based single PCR assay all those pairs that remained, whether the desired amplicate can be obtained or not. If that is the case, the chosen pairs can be used to specifically amplify those regions of nucleic acids of low complexity according to the method as described before.

In a specially preferred embodiment the first step of the design method is characterized as selecting a pool of possible primer pairs per amplicate by means of a standard PCR primer design program using said nucleic acids as template that have been masked for repeats and SNPs considering the following factors: length of amplicate, length of primer, melting temperature of the primer molecule, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, exclusion of restriction enzyme recognition sites.

In a preferred embodiment of this invention this measure of complexity is a measure of linguistic complexity as defined by Bolshoy et al. (see above). Those primer pairs are excluded from the previously selected ones, which comprise of one primer that doesn't reach a set level of this linguistic complexity.

In another preferred embodiment of this invention this measure of complexity is a measure of Shannon entropy (as described before).

In an especially preferred embodiment of this design method, prior to performing step d) the additional step of excluding primer pairs from the remaining primer pairs which consist of a primer molecule that comprises of at least one CpG site, is carried out.

5 In an especially preferred embodiment of this method according to the design of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining pairs when one of its primer molecules does not contain at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment, is carried out.

10 In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step, of excluding primer pairs from the remaining primer pairs which amplify a nucleic acid that did not prior to treatment with bisulfite contain a minimum of two CpG sites, is carried out.

15 25 In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining primer pairs when one of its primer molecules contains more than 5 bases at its 3' end that are complementary to any other primer molecules sequence in the set, is carried out.

30 35 In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one

primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of 5 mismatching nucleotides of 20% of the number of nucleotides of the primer molecule, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the 10 remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of 15 nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule, is carried out.

20 In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one 25 primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for four or less mismatching base pairs, is carried out.

30 In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one 35 primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when

virtually testing according to step 3 c) of the amplification method under conditions allowing for two or less mismatching base pairs, is carried out.

5 The following example is intended to illustrate the invention :

Example

10 Here we present experimental data that shows that multiplex PCRs designed with a tool according to this invention are more successful compared to multiplex PCRs not designed in this manner.

15 It is the aim of the experiment to amplify 40 different nucleic acids. The genomic regions of interest are given in the sequence protocol (SEQ ID 41-80). These genomic sequences were translated into their bisulfite converted versions and served as templates for amplification of 20 specific regions with the primer sequences described as follows.

25 Primer molecule pairs used for single PCRs were originally designed with the use of the standard primer design program PRIMER3 (as mentioned in the description). The criteria used in that step will not be discussed in detail. This selection however provides several possible primer pairs per amplicon. Following the present invention these primer pairs were selected further, according 30 to the following criteria:

- The restriction enzyme recognition site to be excluded from the genomic nucleic acid (which subsequent to bisulfite conversion becomes the template for the PCR amplification step) is : GTTTAAAC.

- The minimum length of the primer molecule is 18 nucleotides. The maximum length is 27 nucleotides. Ideally the primer consists of 22 nucleotides.
- 5 • The minimum required measure of linguistic complexity is 0.2.
- The minimum melting temperature of a primer molecule is 54°C and the maximum melting temperature is 57°C.
- 10 The ideal melting temperature however is 55°C.
- The minimum length of an amplicate is 100 bp and the maximum length is 500 bp.
- 15 • The minimum number of CpG sites, that were present in the region of the nucleic acid, prior to bisulfite treatment, that was amplified is 4.
- The number of mismatch bases allowed for when virtually testing the primer pairs according to the invention for amplification of an unwanted product with the help of e-PCR (Electronic PCR) is 2.
- 20

The use of this invention, that is the use of either the design method, being the subject of the invention, and/or performing the steps of said method as described above (assuming a set size of 1) leads to the selection of the following 40 optimized primer molecule pairs:

30 TABLE 1:

primer sequence	amplificate identifier	SEQ ID	number starting position of indicating primer in the bisulfite converted sequence of the ROI	starting position of primer in the bisulfite converted sequence of the ROI
AATCCTCCAAATTCTAAAAACA	2025	81	0	1816
AGGAAAGGGAGTGAGAAAAT	2025	82	1	2138

primer sequence	amplificate identifier	SEQ ID	number indicating primer direction	starting position of primer in the bisulfite converted sequence of the ROI
GGATAGGAGTTGGGATTAAGAT	2044	83	0	2070
AAATCTTTCAACACCAAAAT	2044	84	1	2483
AACCCTTCTCAAATTACAAA	2045	85	0	1340
TGATTGGGTTTAGGGAAATA	2045	86	1	1687
TTGAAAATAAGAAAGGTTGAGG	2106	87	0	1481
CTTCTACCCCAAATCCCTA	2106	88	1	1764
TGTTGGGATTGGGTAGG	2166	89	0	2226
CATAACCTTACCTATCTCCTCA	2166	90	1	2437
TTTAGATTGAGGTTTAGGGT	2188	91	0	101
ATCCATTCTACCTCCTTTCT	2188	92	1	598
GGAGGGGAGAGGGTTATG	2191	93	0	133
TACTATACACACCCAAAACAA	2191	94	1	506
TTTGGAATGGGTGTAT	2194	95	0	1628
CTACCCTAACCTCCATCCTA	2194	96	1	1996
TTGTTGGAGTTTAAGTTT	2212	97	0	1711
CAAATTCTCCTTCAAATAAT	2212	98	1	2063
GTAATTGAAGAAAGTTGAGGG	2267	99	0	1709
CCAACAACAAACAAACCTCT	2267	100	1	2004
GGAGTTGTATTGTTGGAGA	2317	101	0	1110
TAAAACCCAATTTCACTAA	2317	102	1	1388
TTTGTATTAGGTTGGAAGTGGT	2383	103	0	1
CCCAAATAAATCAACAAACAA	2383	104	1	285
GATTTGGAGAGGAAGTTAAG	2387	105	0	789
AAAACTAAAAACCAAACCCATA	2387	106	1	1169
TGGGGTTAGTTAGGATAGG	2391	107	0	1353
CTAAAAAACACTAAAACCTCTAAA	2391	108	1	1750
TTTTGTATTGGGGTAGGTT	2395	109	0	547
CCCAACTATCTCTCCTCTATAA	2395	110	1	1094
ATTAGAAGTGAAAGTAATGGAATT	2401	111	0	381
TCAATTCCAAAAACCAAC	2401	112	1	795

primer sequence	amplificate identifier	SEQ ID	number indicating primer direction	starting position of primer in the bisulfite converted sequence of the ROI
GGGATGGGTTATTAGTTGTAAA	2453	113	0	1867
CCTTCACACAAACTACAAAAAA	2453	114	1	2139
TAATTGAAGGGGTTAATAGTGG	2484	115	0	1861
AAAACCAAAACCAAAACTAAAAA	2484	116	1	2252
AGTGGATTGGAGTTAGATGT	2512	117	0	1016
AACAAAATAAAACTTCTCCCA	2512	118	1	1446
TAGGGGAAAGTTAGAGTTGAG	2741	119	0	1413
CCCATTAAACCCACAAAAAA	2741	120	1	1888
ATTTTAGTTGTGAAATGGGAT	2745	121	0	1685
TCTTAACCAATAACCCCTCAC	2745	122	1	2097
GTGGGTTTGGGTAGTTATAGA	2746	123	0	1679
TAACCTCCTCTCCTTACCAA	2746	124	1	2163
TAGGATGGGGAGAGTAATGTTT	2747	125	0	972
ACAACTTATCCAACCTCCATT	2747	126	1	1448
TCCCCACAAAAACTAAACAATT	2749	127	0	1370
AGGTTTTAGATGAAGGGGTTT	2749	128	1	1789
TTTGGAGGGTTAGTAGAAGTTA	2751	129	0	88
CCCAATAATCACAAAATAAAC	2751	130	1	567
ATACAACCTCAAATCCTATCCA	2752	131	0	228
AGGGAGAAGGAAGTTATTGTT	2752	132	1	712
GGAAGATGAGGAAGTTGATTAG	2755	133	0	1000
CCTACAACCCCTATCCTCTAAA	2755	134	1	1371
TTAGTAGGGGTGTGAGTGTTTT	2831	135	0	1313
CAAACAAAACCTCTATCTCAACC	2831	136	1	1499
TTATAGGGTTGAGTTGGGAT	2850	137	0	2100
TAAACAAACAACAAATCTTCCA	2850	138	1	2400
TGAAAATGAAGGTATGGAGTTT	2852	139	0	1262
TTAAAACCATATAATCCCTCCA	2852	140	1	1583
TATGTTGGTTTGTGAGA	2859	141	0	1093
AACCCCATCACTTTATTTCTT	2859	142	1	1491

primer sequence	amplificate identifier	SEQ ID	primer direction	number starting position of primer in the bisulfite converted sequence of the ROI
GGGTGTAGAAGTGTAGGTTT	2861	143	0	2385
TTTCTCCCTTACAACAATAAC	2861	144	1	2732
TCCCCCTCCAATATCTCTC	2864	145	0	884
TGAGAGTGTAGGGAAAGTTT	2864	146	1	1175
AAAACCAAAACATAAACCAAAA	2867	147	0	1312
GATTAGGAGGGTTTGAGAT	2867	148	1	1701
AATGGTTGATGATTTGGTTT	2961	149	0	2039
ACTCTCTCCCTATACCCCTAA	2961	150	1	2311
AGTTAGAAGAGGAGTTAGGATGG	3511	151	0	1340
TAATTTCCAATACCCATTTC	3511	152	1	1711
TGTTAGTAGAGTTAGGGAGGTT	3532	153	0	1135
ACACTACCTATCCTAACCCAC	3532	154	1	1592
TTTTTGTGTTATGGGTGTAT	3534	155	0	1909
TTAAATATCCCTCCTAACCA	3534	156	1	2385
TGGGTAGTATTTTGTGGTTT	3538	157	0	956
CCTAAAAACTCTCATCCTCA	3538	158	1	1414
AGTGGTTAGGAGTATTTGGTTA	3540	159	0	659
AACTCCCTCATCTACAATATC	3540	160	1	1064

These primer pairs lead to the amplification of specific regions (amplificates Seq IDs 1- 40) of the bisulfite converted sequences of the genomic ROIs (Seq IDs 41- 80) of interest. The ROIs can be identified by the four digit number that specifies the ROI and the corresponding amplificate - as indicated in the following table.

10 TABLE 2:

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	Identifier	Kind of DNA
1	amplificate	2025	bisulfite sequence	41	ROI	2025	genomic sequence

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	Identifier	Kind of DNA
2	amplificate	2044	bisulfite se- quence	42	ROI	2044	genomic se- quence
3	amplificate	2045	bisulfite se- quence	43	ROI	2045	genomic se- quence
4	amplificate	2106	bisulfite se- quence	44	ROI	2106	genomic se- quence
5	amplificate	2166	bisulfite se- quence	45	ROI	2166	genomic se- quence
6	amplificate	2188	bisulfite se- quence	46	ROI	2188	genomic se- quence
7	amplificate	2191	bisulfite se- quence	47	ROI	2191	genomic se- quence
8	amplificate	2194	bisulfite se- quence	48	ROI	2194	genomic se- quence
9	amplificate	2212	bisulfite se- quence	49	ROI	2212	genomic se- quence
10	amplificate	2267	bisulfite se- quence	50	ROI	2267	genomic se- quence
11	amplificate	2317	bisulfite se- quence	51	ROI	2317	genomic se- quence
12	amplificate	2383	bisulfite se- quence	52	ROI	2383	genomic se- quence
13	amplificate	2387	bisulfite se- quence	53	ROI	2387	genomic se- quence
14	amplificate	2391	bisulfite se- quence	54	ROI	2391	genomic se- quence
15	amplificate	2395	bisulfite se- quence	55	ROI	2395	genomic se- quence
16	amplificate	2401	bisulfite se- quence	56	ROI	2401	genomic se- quence
17	amplificate	2453	bisulfite se- quence	57	ROI	2453	genomic se- quence

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	Identifier	Kind of DNA
18	amplificate	2484	bisulfite se- quence	58	ROI	2484	genomic se- quence
19	amplificate	2512	bisulfite se- quence	59	ROI	2512	genomic se- quence
20	amplificate	2741	bisulfite se- quence	60	ROI	2741	genomic se- quence
21	amplificate	2745	bisulfite se- quence	61	ROI	2745	genomic se- quence
22	amplificate	2746	bisulfite se- quence	62	ROI	2746	genomic se- quence
23	amplificate	2747	bisulfite se- quence	63	ROI	2747	genomic se- quence
24	amplificate	2749	bisulfite se- quence	64	ROI	2749	genomic se- quence
25	amplificate	2751	bisulfite se- quence	65	ROI	2751	genomic se- quence
26	amplificate	2752	bisulfite se- quence	66	ROI	2752	genomic se- quence
27	amplificate	2755	bisulfite se- quence	67	ROI	2755	genomic se- quence
28	amplificate	2831	bisulfite se- quence	68	ROI	2831	genomic se- quence
29	amplificate	2850	bisulfite se- quence	69	ROI	2850	genomic se- quence
30	amplificate	2852	bisulfite se- quence	70	ROI	2852	genomic se- quence
31	amplificate	2859	bisulfite se- quence	71	ROI	2859	genomic se- quence
32	amplificate	2861	bisulfite se- quence	72	ROI	2861	genomic se- quence
33	amplificate	2864	bisulfite se- quence	73	ROI	2864	genomic se- quence

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	Identifier	Kind of DNA
34	amplificate	2867	bisulfite sequence	74	ROI	2867	genomic sequence
35	amplificate	2961	bisulfite sequence	75	ROI	2961	genomic sequence
36	amplificate	3511	bisulfite sequence	76	ROI	3511	genomic sequence
37	amplificate	3532	bisulfite sequence	77	ROI	3532	genomic sequence
38	amplificate	3534	bisulfite sequence	78	ROI	3534	genomic sequence
39	amplificate	3538	bisulfite sequence	79	ROI	3538	genomic sequence
40	amplificate	3540	bisulfite sequence	80	ROI	3540	genomic sequence

5 The second task in this example is to select from these
 40 primer pairs those pairs which can be combined in five
 multiplex PCRs to amplify eight targets simultaneously.

10 The following steps, as disclosed in the invention, are
 performed for selection of those subsets:

15

- The melting temperature of any combination of two of those primer molecules hybridizing to each other taking part in one multiplex experiment must be below 20°C.

20

- The last seven nucleotides from the 3' end of every primer molecule in a subset is used to check if those are complementary and/or binding to any other primer molecules' sequence used in the set.

- The number of mismatch bases allowed for when virtually testing the primer pairs for amplification of an unwanted product is 2. For this step every possible combination of 16 primer molecules in one subset is checked for its ability to amplify an unwanted product. This is done by means of e-PCR (electronic PCR).
5

Having performed all these steps results in the selection of three different optimized sets of primer molecule pairs that can be used in multiplex PCRs. These sets are in the following described as a set of numbers. Each number refers to a specific amplicate and therefore also
10 to a single primer pair (out of the list given above) which proved to be able to specifically amplify said nucleic acid in a single PCR experiment.
15

TABLE 3:

optimized set 1								
8plex1	2194	2191	2391	2025	2961	3540	2861	2188
8plex2	2484	2106	2401	2850	3532	2044	2512	2852
8plex3	2453	2741	2867	2755	2267	2387	2864	2317
8plex4	2859	2383	2752	2747	2751	3511	2212	2746
8plex5	3534	2395	2745	3538	2749	2166	2831	2045
optimized set 2								
8plex1	2166	2212	3511	2383	2745	2859	3534	2861
8plex2	2749	2191	2751	2395	2961	2512	2831	3538
8plex3	2850	2025	2188	2317	2391	2852	3540	2194
8plex4	2106	2387	2867	2864	2401	2747	2746	2453
8plex5	2044	2484	2267	2755	2752	2741	2045	3532
optimized set 3								
8plex1	2194	2391	2191	2749	2745	3538	2861	2961
8plex2	2166	2188	2859	2212	2864	2746	2383	2752
8plex3	2484	2401	2850	2852	2512	2755	2106	2044
8plex4	2867	2453	3532	2025	2741	2267	2317	2387
8plex5	3511	3534	2751	2747	2395	3540	2831	2045

Without the use of said invention, the selection would have been performed randomly and tested for successful application later. Three randomly chosen subsets are shown here.

TABLE 4:

random set 1								
8plex1	2191	2194	2267	2741	3534	3511	2749	2747
8plex2	2391	2484	2867	2852	2453	2512	2025	3538
8plex3	2746	2212	2755	2045	2044	2188	2961	2864
8plex4	2831	2383	3540	2859	2861	2395	2401	2317
8plex5	2106	2751	2387	2745	2752	3532	2850	2166
random set 2								
8plex1	2045	2106	2212	2745	2044	2749	2752	2391
8plex2	2025	2831	2401	3540	2395	2484	2453	2961
8plex3	2194	2859	2746	2512	2267	2864	2861	2751
8plex4	2383	2166	2747	2387	3532	2741	2867	2852
8plex5	3534	2755	2850	2317	2191	3538	3511	2188
random set 3								
8plex1	2484	2850	2741	2747	2755	2745	2025	2746
8plex2	2383	3534	2861	2751	2749	2391	2188	2191
8plex3	2194	3538	2512	2961	2864	2867	2831	3532
8plex4	3511	2045	2387	2212	2166	2267	3540	2401
8plex5	2395	2317	2859	2453	2852	2106	2752	2044

5 The sequences of all of those amplificates and the according primers are given in the sequence protocol (primers SEQ IDs 81-160; amplificates SEQ IDs 1-40). SEQ IDs refer to the internal numbers used in these tables as is shown in TABLES 1 and 2.

10 To show if the use of the design method described herein was superior to the common method of selecting primers for simultaneous amplification randomly said multiplex PCRs were performed. This example hereby demonstrates the advantage of the method which is subject of the invention:
15 tion:

A total of 40 amplicates (with lengths ranging from 187 - 499 bp) were partitioned into five 8-plex PCRs using either of two strategies.

5 First: the grouping was based on the invention using said "optimised sets" ("designed group").

Second: the grouping was done without using the selection criteria established by this invention using the "random sets" ("control group").

10 Whether such grouping can improve the success rate of mPCRs was subsequently tested experimentally by comparing the number of true and false positives and false negatives for each of the two classes.

15 Each of the five mPCRs (multiplex PCRs) contained 8 primer pairs specific for 8 amplicates with one primer of each pair being labeled with a Cy-5 fluorescent tag.

20 Only fragments that performed successfully in sPCR (singleplex PCR) using bisulfite-modified human DNA from whole blood were included in this study. Isomolar primer concentrations were used in a 20 μ l PCR reaction volume and cycling was done for 42 cycles using a 96-well micro-
25 titer plate thermocycler.

30 Group assignments for the "optimized" and "random" groups were done in triplicate and all mPCRs were run at the same time such as to minimize experimental variation in PCR performance.

35 A mixture of the amplicates that were expected to be generated in a specific mPCR reaction but were generated in eight corresponding sPCR reactions was called sPCR-pool. Electrophoresis of sPCR-pool amplicates and mPCR amplicates was done simultaneously using the ALFexpress

system (Amersham Pharmacia). In order to obtain the best comparability for mPCRs with their respective sPCR standard, these products were electrophoresed next to each other on the gels.

5

Figures 1 and 2 show examples of these results as electropherograms, given as ALFexpress output files.

Success or failure scoring for each mPCR was based on assessing the number of generated or absent fragments compared to their respective pool of sPCR fragments. Only fragments with peak areas equal or larger than 8% of the largest peak within one electropherogram were included into the analysis.

15

Figure 1 illustrates a result of an 8-plex PCR based on a primer combination from the "optimized set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the optimized sets of primer combinations. By comparing these graphs it becomes visible that, in this specific example, there is only one false negative (FN) and three false positives (FP), whereas there are eight true positives (TP).

20

Figure 2, however, illustrates a result of an 8-plex PCR based on a primer combination from the "control set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the randomly chosen sets, as is the state of the art. This graph clearly shows that, there are eight false negative and six false positive

peaks, whereas there is only one true positive. Hence, for this specific example we have demonstrated the superiority of the design method.

- 5 A more comprehensive view on the results is given in **Figures 3 and 4**.

10 By applying the Wilcoxon rank sum test for the determination of false positives or false negatives as follows, it becomes evident that the optimized set resulted in a more reliable amplification experiment:

```
data:      False negatives (FN)
p-value = 0.02602 rejection of null hypothesis
15 null hypothesis (H0): true if median of designed set
equal or greater than of control set alternative hypothesis (H1): true if median of designed set less than of
control set

20 data:      False positives (FP)
p-value = 0.06711 rejection of null hypothesis
null hypothesis (H0): true if median of designed set
equal or less than of control set
alternative hypothesis (H1): true if median of designed
set greater than of control set

30 data:      True positives (TP)
p-value = 0.02146 rejection null hypothesis
null hypothesis (H0): true if median of designed set
equal or less than of control set
alternative hypothesis (H1): true if median of designed
set greater than of control set
```

35 Figure 3 illustrates a summary of several such comparisons (as described in detail above). Six diagrams are shown, that illustrate the numbers of false positives

(FP), false negatives (FN) and true positives (TP) for a number of 18 experiments. In the top row of figure 3 the results for experiments that employed the design method are shown whereas in the lower row results from experiments are shown, that did use the conventional method of random selection.

At the x-axis the occurrence of an event (like a false positive) per 8plex is given whereas the values of the y-axis indicate the frequency of an event like this occurring within the number of experiments performed.

For example, in the diagram title FN, a y-value of 0 indicates that the event did not occur in a single experiment, a y-value of four indicates that the according number of occurrences given as the x-value was found in four experiments (out of the 18 experiments considered for these analyses). The x-value indicates what kind of occurrence is counted; a x-value of three in this diagram indicates the occurrence of three false negatives. A data point with an x-value of 0 and an y-value of 9 means, that in the set of mPCR results considered, nine experiments showed 0 false negatives.

Figure 4 gives all of the data from the 18 multiplex PCR experiments of this example in one table. The letter A, heading the four columns presented on the left side, is indicating the results from multiplex PCRs of the designed group using the five optimized sets of primer pairs that have been designed and selected according to the invention. The letter C is indicating the results from multiplex PCRs of the control group using the five randomized sets of primer pairs.

The first column lists the identifying numbers of the experiments, the second column gives the numbers of true

positives (TP) within this experiment, the third column gives the numbers of false positives (FP) and the last column gives the numbers of false negatives (FN).

- 5 The average false negative rate ($\bar{\theta}$ FN) of the optimized group is significantly lower than in the control group. Complementary the average true positive rate ($\bar{\theta}$ TP) is significantly higher. The average false positive rates ($\bar{\theta}$ FP) of the two sets do not differ from each other significantly.
- 10

This is due to the high deviation of false positives observed between individual ALFexpress analysis runs. Those 36 sets of amplicates have been analyzed on two separate gel runs. These runs were not designed to simply duplicate the results, but could be used to analyze whether the average TP, FP and FN rates are similar, independent of the run, and the sets chosen. Only three of those sets have been duplicated, as indicated by the letters a and b for sets 11, 21 and 23. It turned out that the rate of true positives as well as the rate of false negatives averaged over 18 sets per run were highly reproducible, 6.83 versus 7.33 and 1.44 versus 1.39 respectively. However, the rate of false positives was determined as 4.11 in the first run and 7.61 in the second run.

15

20

25

Taken together, it could be concluded that the overall success rate of amplifying 40 fragments within 5 groups of 8plex PCRs was significantly increased when the primer grouping was based on the method being subject of this invention compared to an arbitrary primer grouping. The improved success rate of only 11% failures versus 24% in the random control group clearly becomes relevant when much larger numbers of mPCRs have to be established as is the case in a high throughput laboratory.

30

35

Claims

1. A method for the amplification of nucleic acids comprising the following steps
 - 1) isolating a nucleic acid sample,
 - 2) treating said sample in a manner that differentiates between methylated and un-methylated cytosine bases within said sample,
 - 3) amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules, wherein said primer molecules are characterized in that
 - a) each primer molecule sequence reaches a predefined measure of complexity,
 - b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature,
 - c) every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template,
 - and
 - 4) detecting said amplified target nucleic acid.
2. A method according to claim 1 wherein said primer molecules do not contain nucleic acid sequences com-

plementary or identical to nucleic acid sequences of the target sequence which prior to treatment of step 2 contained a 5'-CG-3' site.

- 5 3. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 32 primer pairs.
- 10 4. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 16 primer pairs.
- 15 5. A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of linguistic complexity.
- 20 6. A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of Shannon entropy.
- 25 7. A method according to claims 1 to 6 wherein the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.
- 30 8. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of plasmid DNA, BACs, YACs or genomic DNA.
- 35 9. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of human genomic DNA
10. A method according to claims 1 to 9 wherein said sample is treated by means of a solution of a bisulfite, hydrogen sulfite or disulfite.

11. A method according to claims 1 to 10 wherein said primer molecule comprises of at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by the treatment performed in step 2) of claim 1.

5
10 12. A method according to claims 1 to 10 wherein said primer molecule comprises of at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment.

15
20 13. A method according to claims 1 to 12 wherein each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.

25 14. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.

30 15. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.

16. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.
5
17. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.
10
18. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.
15
19. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.
20
20. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than seven.
30
21. A method according to claim 20 wherein the number of mismatches allowed for is less than five.
35

22. A method according to claim 20 wherein the number of mismatches allowed for is less than three.
23. A method according to claim 20 wherein the number of mismatches allowed for is one.
- 10 24. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is determined by a pre-specified maximum melting temperature.
- 15 25. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than eight 5'-CG-3' sites.
- 20 26. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than six 5'-CG-3' sites.
- 25 27. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than four 5'-CG-3' sites.
- 30 28. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than two 5'-CG-3' sites.
- 35 29. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR.

30. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample.

5
10 31. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, taking as template nucleic acid the coding strand of the bisulfite converted human genome, the non-coding strand of the bisulfite converted human genome and both of the strands of the untreated human genome.

15
20 32. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 50 bp but not more than 2000 bp.

25 33. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 80 bp but not more than 1000 bp.

30
34. A method according to claims 1 to 33 wherein said primer molecules are comprised of 16 - 50 nucleotides.

35. A method according to claims 1 to 34 wherein said primer molecules do not form dimers with each other.

36. A method according to claims 1 to 35 wherein said primer molecules do not form loops or hairpin structures.

37. A method according to claims 1 to 36 wherein said primer molecules are complementary to target sequences which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
5
38. A method according to claims 1 to 37 wherein said primer molecules amplify regions of the treated nucleic acids which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
10
39. A method for designing primers according to claim 1,
15 comprising the steps of
 - a) selecting a pool of possible primer pairs per amplificate by means of a standard PCR primer design program using said nucleic acids as template
20
 - b) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set exceeds a threshold melting temperature
25
 - c) excluding those primer pairs which comprise of a primer that does not reach a specified level of complexity
 - d) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set, under conditions allowing for one or more base mismatches per primer, amplifies an unwanted product when virtually tested using the treated and the untreated sample nucleic acid as template.
30
35

40. A method for designing said primer molecules according to claim 1 and 43, adding the step of

5 e) excluding from the remaining confirmed primer pairs those pairs which in said amplification step do not result in the amplification of the intended product when performing a single PCR experiment.

10 41. A method for designing primers according to claims 39 and 40 , wherein said template nucleic acids are masked for repeats and SNPs before designing said primer molecules and wherein said standard PCR primer design program considers one or more of the following factors

15 length of amplicate, length of primer, melting temperature of the primers, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, 20 exclusion of restriction enzyme recognition sites.

25 42. A method according to claims 39 to 41 wherein said measure of complexity is a measure of linguistic complexity.

30 43. A method according to claims 39 to 41 wherein said measure of complexity is a measure of Shannon entropy.

44. A method according to claims 39 to 43 wherein the following step is carried out prior to performing step d)

35 excluding from the remaining primer pairs those

pairs, which consist of a primer molecule that comprises of at least one CpG site.

45. A method according to claims 39 to 44 wherein the
5 following step is carried out prior to performing
step d)

excluding from the remaining primer pairs those
pairs, which consist of a primer molecule that does
10 not contain at least one nucleotide within the last
three nucleotides from the 3' end of the molecule
wherein said nucleotide is complementary to a nucleo-
tide of the target sequence that was converted to a
different nucleotide by the treatment performed in
15 step 2) of claim 1.

46. A method according to claims 39 to 45 wherein the
following step is carried out prior to performing
step d)

20 excluding from the remaining primer pairs those
pairs, which consist of a primer molecule that con-
tains more than 5 bases at its 3' end that are com-
plementary to any other primer molecules' sequence in
25 the set.

47. A method according to claim 39 to 46 wherein the fol-
lowing step is carried out prior to performing step
d)

30 excluding from the remaining primer pairs those
pairs, which amplify a nucleic acid that did not,
prior to the treatment in step 2 of claim 1, contain
at least two CpG sites

48. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those
5 pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of mismatching nucleotides of
10 20% of the number of nucleotides of the primer molecule.

49. A method according to claim 39 to 47 wherein the following step is added before performing step d)

15 excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of nucleotides creating one
20 gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule.

- 25 50. A method according to claim 39 to 47 wherein the following step is added before performing step d)

30 excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for four or less mismatching base pairs.

51. A method according to claim 39 to 47 wherein the
following step is added before performing step d)

5 excluding from the remaining primer pairs those
pairs, which comprise of one primer molecule that in
combination with another primer molecule in the set
amplifies an unwanted product, when virtually testing
according to step 3 c) of claim 1 under conditions
allowing for two or less mismatching base pairs.

Sequence listing

<110> Epigenomics AG

5 <120> Method for amplification of nucleic acids of low complexity

<160> 160

<210> 1

10 <211> 322

<212> DNA

<213> Artificial Sequence

<220>

15 <223> 2025

<400> 1

aatcctccaa attctaaaaa cataaaaata acgcaaccca aaaacaaaaa acccctccgc	60
ccattaatta ctatacacta acgaaacttt cccgacccac aacgacgaaa ataaaaacaa	120
tgcgtaacgc taaaaaacat caaaaacact acccaaccca aatatcgccg ccgttccac	180
aaaactctac taaacgcccgc cgccggcgt accaccgcct ctaatccaaa ccaccccg	240
ccaaataaac cccgaaatcc taactcaaat atatatctct ccctccctct ccctccattc	300
gtcattttct cactccctt cc	322

25

<210> 2

<211> 413

<212> DNA

<213> Artificial Sequence

30

<220>

<223> 2044

<400> 2

35

ggataggagt tgggattaag attttcggtt agtttcgtat tttttcgtat ttttttagtat	60
--	----

cgttcgtat ttttcgtatt tttttcggg ttattacgtt ttttatgtga ttcgtttggg 120
taacgtcgaa tttagtcgcg tagcgttgta gtgaattttt tttttaaatt gtaataagtc 180
gttttttaag gtaattacgt tttttttgtt ttttttaa aaaataaaaaa taaaaaattt 240
atagaaaaaa attcgcgagt ttagaaaaaa gaagtaattg gttagtattt aaaaatgtt ggtaattttt 300
5 taaagagttt taaggcgaag ttaagaaaaat gttagtattt aaaaatgtt ggtaattttt 360
ataagggttt ttggggagag gtatataagag ggatttttgtt gttaaaaaag att 413

<210> 3
<211> 347
10 <212> DNA
<213> Artificial Sequence

<220>
<223> 2045
15 <400> 3

aaccctttct tcaaattaca aaccccttta ccttcaaacc tcgactccaa caccaatccg 60
acaaaaaaaaac ccaatctaataa aaaaatcgct cccttcctac cattctctat tccattaacc 120
20 tatttcgtaa taaacgtaaa actaatcctc caaaaattacc ttattaaatta acttacatata 180
ttattatcta tctatcccac caaaaatacaa atttccgaaa aacaaaaatt taaaaaaatc 240
tattttatttcc tatataattt tcccatatcca aacaccgtac ccgacacaaaa ctaaaatccc 300
aatacacatc tcgaaacgaa aaaaccgtat ttccctaaaa cccaaatc 347

25 <210> 4
<211> 283
<212> DNA
<213> Artificial Sequence

30 <220>
<223> 2106

<400> 4

35 ttgaaaataa gaaagggttga ggttagagagg ataataatgtt ttttagttat ttttttagtat 60
tttggtaatt ttttttaatt ttttagttata aattcgagat ataacgtttt ttttttaaag 120

aggtcgcgtt ttttttgtgg tggtttttag ggattcgaaa tagttttttt ttcgtttta 180
gttttatata ttgggattat taggtattta agattttattt ttttaggtgg tatTTTTAGC 240
gttagttgtt attagtttt ttttttagga ttggggtag aag 283

5 <210> 5
<211> 211
<212> DNA
<213> Artificial Sequence

10 <220>
<223> 2166

<400> 5

15 tgTTTGGGAT TGGGTAGGGT TATCGGGGTT GGGGGGGCGG GGTTTGTGGG TAAGGCAGGC 60
GGAGGCCGTGG ATTTTCGTT CGATGATAAGG GTTGGAGGGAG GAAGGGGCAGG GTTGAAGAAG 120
GGAAAGGGTGG GAAGAGTTTA GTCGGGGTTA TAAATTGGGT GAAGCGTTGA GGTTTTAGTA 180
TTTCGTTTG AGGAGATAGG TAAAGGTTAT G 211

20 <210> 6
<211> 497
<212> DNA
<213> Artificial Sequence

25 <220>
<223> 2188

<400> 6

30 ttttagattt aggttttagg gttaaaggat tttttttttt tttagcgttg gttcgggaaa 60
ggtaagtttc gggcgggagc gtacgtcggt tttcgaagt ttggTTTTT cgttacgttt 120
atTTTTGTT TTTATTCGCT GTTTTTTAGG GTTTTTTC GGTGAATCGG ATGTTTTGTT 180
AGTTTTTAT TTGCGTTTT CGGTGCGGTG TCGGGTTTT CGTAAAGTCG TTGTTATTTC 240
GGAGGGTTTA GTTACCGGGT TTTCGGAGGT TGTCGGGTA GGCCTGGTGC GCCTGAGGAG 300
35 TTGGGCGCGT ACGGTTATCG CGCGTGGAGG AGATATTGTT TTGTCGCGAT GGGGGTTCGG 360
GGCGTTTTT TACGTCGTAG GTAAGCGGGG CGGCCTGGTGC GGTATTGTT TATCAGGAGT 420

ttttttttt ttttttgtt gttgttgtt tgtatttagt tcggggagg atagaagaaa 480
aaggaggtag aatggat 497

<210> 7

5 <211> 373

<212> DNA

<213> Artificial Sequence

<220>

10 <223> 2191

<400> 7

ggaggggaga gggttatgcg attttatttt tggtagggt cggggaggtt tttgttttc 60

15 gggagtttg ttccgggttt ttgggtcgtag ggttgttggg ttttaggtag gaacgagagg 120

gtgagggtta tatgtggttc ggcggtttag ggcggttgt agcgtttta ttgtttcggt 180

tgttaggggt tgcggcgacg cggttagtta gtacgcagtt taggtcgcgt agattttatt 240

gatgagtttt gatttttagt attttttta agttaagaag agtttagcgt atttttcggt 300

tgttttattt tagttttttt gtttagttt ttttagttta tttttttcg ttttggttt 360

20 gggtgtgtat agt 373

<210> 8

<211> 368

<212> DNA

25 <213> Artificial Sequence

<220>

<223> 2194

30 <400> 8

tttgggaat gggttgtatc gagaggttcg attagttta gggtttagt gagggggtag 60

tggaaatttag cgagggattg agagtttat agtatgtacg agtttgatgt tagagaaaa 120

gtcggggagat aaaggagtcg cgtgttatta aattgtcgac gtagtcgtag ttatthaagt 180

35 gtcggatttg tgagtatttt gcgttttag tttcggata gaagttggag aattttttg 240

gagaattttt cgagtttagga gacgagattt ttataataatt attatTTTT tttcggttt 300

ttatggcg ttcgtggga taaacgatac ttatagttt tttgacgata ggatggaggt 360
taaggqta 368

<210> 9

5 <211> 352

<212> DNA

<213> Artificial Sequence

<220>

10 <223> 2212

<400> 9

ttgttggag ttttaagtt ttgtgagaat tttgggagg ggtgatgtta gattagttgg 60
gttatttcaa ggtagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120
taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgtt tagaggttagg 180
agggtttatt ttttgttaaa ggggggattt gaattttttt atgcgagttt tttgaggatt 240
gggatgtcga gaacgcgagc gattcgagta gggtttgttt gggtatcgtc gggtaggat 300
tcggAACGTA ttccggaaagg tttttgttaag tatttatttg gaaggagaat tt 352

20

<210> 10

<211> 295

<212> DNA

<213> Artificial Sequence

25

<220>

<223> 2267

<400> 10

30

\
<210> 11
<211> 278
<212> DNA
<213> Artificial Sequence

5

<220>
<223> 2317

<400> 11

10

ggagttgtat tggtggaga ttgggtgt aatgttaggat tattcgaatt 60
taaagttagaa cgtttaggtt gaggagtgg aatggggat attttgcgac 120
gtatttttt gtatattat tcgggtttgg gcgttagggaa ttttgaaat aaaagatgt 180
taaagtattt aggtttgaga ttttgatt tcgaaatatt gagaattttt agttgtat 240
15 ttttagatttt atggatttt agtggaaaatt ggggtttt 278

<210> 12

<211> 285
<212> DNA

20 <213> Artificial Sequence

<220>
<223> 2383

25 <400> 12

tttgtattttt gttggaaatg gtcgttagtt ttccgtgtaa ttttattttt tggaaaatgt 60
gaattttttt gtatgttta gcgtgatgg tgagggttgcgat ttttaatagt taaaagaatgt 120
aaatggatg ttatccgc ggggttgcgtt ttccgcgagg tggttatttc gtatgttta 180
30 tggaaaacgtt gggagcgat ggaaggaaatt cggtttgtaa agttatttgtt tttgggttattt 240
agttttttttaatgttttc gtgtatgttgcgtt tttgggttta tttgg 285

<210> 13

<211> 380

35 <212> DNA

<213> Artificial Sequence

<220>

<223> 2387

5 <400> 13

gattttgga gaggaagtta agtgttttt tgttttttt cggtaattta tttaaggcga 60
ttagttaga attggtttc ggaagcgttc gggtaaagat tgcaagaag aaaagatatt 120
tggcgaaat ttgtgcgtt gggcggtgg aattcgggg aagagagggag ggatttagata 180
10 ggagagtggg gattattttt ttgtttta aattgggta gtttttggg ttttcgattt 240
ttttatttc gtgggtaaaa aattttgtt ttatcgggt tacgttaattt ttttaagggg 300
agaggaggaa aaaaattgtg ggggtacga aaaggcggaa agaaaatagtt atttcgttat 360
atgggtttgg ttttagttt 380

15 <210> 14

<211> 397

<212> DNA

<213> Artificial Sequence

20 <220>

<223> 2391

<400> 14

25 tgggttagt ttaggatagg cgttcgaaaa acgcgtgtt ttatTTTACG gggacgggg 60
aggaggtta gcgagggttc gagggtagg tattttAACG aatggttttt ttgggttttt 120
ttgcgtttcg tcggtttatt tttttttta taaaacgggt ttagttttta gtatTTTATT 180
ttcgTTTATTtta attaggtatt tcggagatt agttcgTTCG aaagtTTTGT CGTTATTTCG 240
cgggttttt taggtggttt ttttagtttgc ttTTTTTTC gggatgttttgg ttgatttttt 300
30 cgagttcgCG tggcgtaaga gtacgagcgt cgagttcgtg cgcgttaagg ttgcgtggc 360
gggtatcgat tttttgaga agtttttagtg tttttaa 397

<210> 15

<211> 547

35 <212> DNA

<213> Artificial Sequence

<220>

<223> 2395

5 <400> 15

	tttttgttatt ggggttagtt tcggtaggtt tatggggaga agtacggaga atttataagt	60
	tttcgattt tttagtttag acgttggg gttttttcg ttggagatcg cgttttttt	120
	aaatttttgt gagcgttgcg gaagtacgcg gggttcggtt cgttgcgcgt tgtaagatag	180
10	gggagggagt cgggcgggag agggaggggc ggctcgaaaa cgggtttga tataagatag	240
	gcgtcgccgg tcgttagtata gtccggatgc gtatccggaa gttcggttta gggtttattt	300
	gttttcgtat cgtcggatcg ctgttttttgc tcgtatgtt cggtgagtgt cgccgttttgc	360
	agatttcgg gtcggatgcg cggcggtttt agtttcgag cgtttgttttgc ttccgttttgc	420
	ggttgttcgg gtttttggg ttttcggcgc gttgtacggaa gttaaaggcgtt tcgtttcgg	480
15	gcgttttcg cgggtgtcga tttagttgt tcggagttcg gagttatag aggagagaga	540
	tagttgg	547

<210> 16

<211> 414

20 <212> DNA

<213> Artificial Sequence

<220>

<223> 2401

25

<400> 16

35

<210> 17

attagaagtg aaagtaatgg aatttcgatg taaatataat attatttttt tgttagagttt	60
ttttgagtat aataaatttg aattgtgtta atgttgggag aaaaaattta aaagaagaac	120
ggagcgaata gtagttttt cgttcgttga ttagaaatag taggacgata tttttcgat	180
tggaggagag cgtttgcgtt cgtatttagt tggcgttgcgt ttttttgtt ttttttagt	240
cgtttttttt ttttttttc gcgttttagt tattcggaa ggtattgcgg tagttgggtt	300
ttgattgtt gttttgaaag ttacgggtt attcgattgg tgaattcggg gtttttagc	360
acggatgatgtt taaaattttt cgtatttggt tttaaagttt gtttttggaa attg	414

<211> 272

<212> DNA

<213> Artificial Sequence

5 <220>

<223> 2453

<400> 17

10 gggatgggtt attagttgt aatcggtggaa ttttttttga tataatgaaa agatgagggt 60
gtataagttt tttagtaggg tgatgtatata aaaagttatc ggagtatttt ataaggtaa 120
aattttttaga gatagtagag tatataagtt tttaggataa gagtttagaa gaaatttatcg 180
gaaggaatta ttttattgtg tgtaaatatg attttaagt tggtcgtgg ttttttggta 240
gtttttttga tttttgtagt tttgtgtgaa gg 272

15

<210> 18

<211> 391

<212> DNA

<213> Artificial Sequence

20

<220>

<223> 2484

<400> 18

25

taattgaagg ggttaatagt ggaatttgggt tgggtgtttg ttaaattttt ttttttgggt 60
ttgttttggg tttttttttt aagggatttt ttttcgtttt tgtaataaga ttttttataaa 120
agtatagatt ttttatttttta ttccgcgtta tttgtatcg gttttattgg ttttaggagt 180
tgaatatttt tttaggtata tataagggtgg atataaataaa gggttttggaa attattattt 240
30 ttttattacg atagtaattt aaaatgtttg ggaagatggt cgtgattttt ggagttttaa 300
atatattttt gataatgtttt gtagtttgta agttattttt ttttattttgt tttaaatgtt 360
agtatttaat tttagttttg gttttgggtt t 391

<210> 19

35 <211> 430

<212> DNA

<213> Artificial Sequence

<220>

<223> 2512

5

<400> 19

	agtggatttg gagtttagat gtaatataat gattgatatt ggtatagtat atttattttg	60
	tttttgtaaa taaaatggta tatgtatgt tttttttgt ttttttgtat ataaaataat	120
10	atttgtttt atttattatg tatttatgtt tttattttgt atgttaggag ttaagtattt	180
	tgtatgtatt aatttattttt gttttataa taatttttat atgttaggaat tattatagtt	240
	attttatgaa tgagtcgagg aaggtattga gacgttaagt aatttgttta aggttacgta	300
	gttagtaagt gtagactaa gaattattat gttttataa gtttagaaaa aagtttggaa	360
	gaattaaaat gttaatagcg gggattttaa ggaagtattt aagaggattt gggagaagtt	420
15	tttattttgt	430

<210> 20

<211> 475

<212> DNA

20 <213> Artificial Sequence

<220>

<223> 2741

25 <400> 20

	agggaaaa gtttagagttg agaggttggg gcgcgacgag tttggatatc gggcgggat	60
	ttaagtttt ttcgtttagt taataattgt gttttttta ggaaggcgtg agggaaatgtt	120
	ttaattaatt ttgttatttt tttttggaa tttgggttgtt atttttttat ttattgtaaa	180
30	ttttataatt tatttagggg ttttttagt gtttggatcc acgggtttcg gtgtttattt	240
	attagtgttg ttttttttt ttcgttaagat tgcgttttag ttttagttt tttttcgcg	300
	ggtgtttttt aaatcggtttt attatttcg ggtttaggaa ggcggaaatcg tggtttttt	360
	tcggtttttt taagaggcgt cggtttattt ttttttagag tcgcggttt acgcgagatg	420
	atagtaacga gttcgtatg tttatgtaaa taagcgttt tttgtgggtt aatgg	475

35

<210> 21

<211> 412

<212> DNA

<213> Artificial Sequence

5 <220>

<223> 2745

<400> 21

10 attttagttt gtgaaatggg atttaggatt tagtagagg tgcgtttcg gtttgggat 60
cgagtatccc gtgcgttcg gtaacgtagg aagatagcgt tattgatatt ttagagatta 120
gcgggtatcg tttggaggcg ttttattat ttggcggtt cgggttcgcg ttttatcgcg 180
ttataagatt tacgttcgaa ttacgtgatt agggctgtgg ttgcgttcg ttttcgcgtc 240
gcgcgtcggtt ttcggtaggg gcggaaagcg gaagtgtggg agggtttgcg gggcggtt 300
15 aggaggttcg cgggaggatg gagtagtgag cgggtttggg cggttgttgg tagcgttatg 360
gagacggtat agttgaggaa ttgcgtcggtt cggtgagggg ttattggta ag 412

<210> 22

<211> 484

20 <212> DNA

<213> Artificial Sequence

<220>

<223> 2746

25 <400> 22

gtgggttttg ggtagttata gaagttatcg cgttggcggtt gaggaggggg atcgatcggtt 60
tttatgttcc gggtagttt attttttttt tttgcgaagg gttttgttc ggcgggagga 120
30 gagaggcgcg ttttattcgg gttttttat atttgcgtc gtttgggtcg atttcgcggg 180
tttcgttcgg cgtttttagtc gatttcgtt tagttcggg tttatggcg cggttagtag 240
ggcgggttag ggccggcggtt cgcgatattt ggaggaagtgg cgggtcggtt gttcgggcgc 300
gttaaggaag ttgtttaaaa tgaggaagag tcgcgggttc ggcgggtttag gttatttcgg 360
cggcggttgg agagcgagga ggagcggttgg gtttcgttgcgtt gcttcgtt tcgttttattt 420
35 tggcgtaggtt aggtgtggtc gcgtttttta ttccgtcggtt gtttcgttgcgtt tcgttttattt 480
ggttt

<210> 23

<211> 476

<212> DNA

5 <213> Artificial Sequence

<220>

<223> 2747

10 <400> 23

taggatgggg agagtaatgt tttcgagtag aatagggtgg gttttttaga ttatTTTTT	60
ttttttatag ttggTTTTat tttatcgatt ttatTTAAgt tttttggga gtatTTTtaga	120
gaagagttac gtttaggtcg gttttggTT gtttggttta cggcggaaatt tttagtatta	180
15 cgtttcgtag gtcgggTTta aagtatgttt agtgaaggag taggtatTTa ttgttagatg	240
gagttatTTT ttagatTTT gggtttttt ataacgatgg ttatgtttgg tatggaaGTT	300
tttttagaag ttaatagtag gaaataaggg ttaatagtat ttaattgtgg agtaaggTTT	360
aaatTTtagt ttgttattt aatcgTTcg aatttggTT tttattgttag aggCGAAAAG	420
gttaatatta ttttatttgc gagggTTatc gtggagaatg gaagttggat aagttg	476

20

<210> 24

<211> 419

<212> DNA

<213> Artificial Sequence

25

<220>

<223> 2749

<400> 24

30

tcccacaaaa actaaacaat tattacaat tcaaaaaacc ccgaccaatt tttcaaaaat	60
ttctccctcct ctTTTcccccc taaaactcgt aatactttt aCTCTACTTTC aaaatacatt	120
aaatctcta ctTTATAACT acTTAAAAC caacaaatac tctaataatata ataatTTCAA	180
ttatacAAAT ttcacgaata aatttaatct tatttttAAAt attaattAAAt aaacaAATAA	240
35 tattttAAAAA aatattaact tataattatt tcaccTTT tactttAAAc atttttattA	300
cttctcgacc tttaactaa aatcaaataat atactttAAAc catTTTTAAAt aataAAAATA	360

tcctttaat ttaataaaaa aacaaaattc tacataaaaa aacccttca tctaaaacc 419

<210> 25

<211> 479

5 <212> DNA

<213> Artificial Sequence

<220>

<223> 2751

10

<400> 25

tttggagggt ttagtagaaat ttatTTTtagg ggagggttcg ataggaagga aggtaggTTT 60

gtcgaggGGG tatataggag tttttttttt cgTTtatagtG tttagggTTt attgttttag 120

15 ttttaggTT gggtaatAG gatggatAG tttaggcggA aggAAATTTg tggggaggGA 180

tatttcgtAG atagaAGtag ggatATGGGG tggggagagg taggaAGagt tgTCGGGTTg 240

ttgagttggc gtttttttag tagatTTtagg aggggcggtg ataggaggTTt atttttttt 300

tatttcgtA gttttgggtt ttttggTTt tggtaatAG tattattattt attattattg 360

ttgttgttcg ttagttggg ttttagatATt attaaaaAA aattatcgGA agatacgtAT 420

20 agtattggta gttttaaaaA gaattaATTt ttttttGTg tttatTTTgt gattattgg 479

<210> 26

<211> 484

<212> DNA

25 <213> Artificial Sequence

<220>

<223> 2752

30 <400> 26

atacaacCTC aaatCCTATC caaACCCCCA aaACATCACA CTCGAAACTT ATTCTACATA 60

ttttacttt tacCTCCAC taataCTAAT tCTTCCGTA aacaACCTAA ATCCCTTCAA 120

atacttaata tttttCTCA aataCTACCA taaaACCAA TCTCCACCgt CTAAAACAT 180

35 tccttttaa aaataaaaaa tatataTCGc tcctttata taatttACAT tCTATCTAA 240

ataatttaAC catCACCGTA attCATTCAA ATCTATTAA ATCCTACCCA TCTCAACTTC 300

aatccatttc attcttttaa atctaatcga caattacctc caacaacttc atcacaaatc 360
actcacaaaa ataaccttaa tcctaaaatt tatttacgaa aaacacactt actaaatata 420
taacaaatat acaaaaaaca caaaataaaa caacaaatct aaaaacaaat aacttccttc 480
tccc 484

5

<210> 27
<211> 371
<212> DNA
<213> Artificial Sequence

10

<220>
<223> 2755

<400> 27

15

ggaagatgag gaagttgatt agatattaag gatgagcgga tgatttaata ggtttttttg 60
ttaagatttg gttgggtagg tcaaagataa agtcgaggag tggttatgggt gtggtataga 120
agaagggtta gaggacggtt tttgttattt ttttatgttt gagttttttt ttttgtaaaa 180
tggggataat aagagtgcgtt atataggaa ttgttgttag gattaaatga gataatgtat 240
20 gtgaaacgtt ttgggtttagt gtttttttagt aaatgggtac gatttgcggga gtggggattt 300
gaatttacgt ttggcgggat gtttaagttg ttatttgtat cgttagggag ttttagagga 360
tagggttgtat g 371

<210> 28

25 <211> 186

<212> DNA

<213> Artificial Sequence

<220>

30 <223> 2831

<400> 28

35 ttagtagggg tgtgagtgtt ttgatttagaa ttatttttt ttgttagaat ttgatgtaat 60
tcgaatgttt ttatttttgt ttgaagggtt taaataataa attaggtttt gtcgtgttat 120
tatgggggtg gttatattt gtattttagga aataggtacg gtagggttga gatagaagtt 180

ttgttt

186

<210> 29

<211> 300

5 <212> DNA

<213> Artificial Sequence

<220>

<223> 2850

10

<400> 29

ttatagggtt gagtttggga tcgaggtgag agtcgtcggg ttgggagtga gggagatggg	60
aataaggtcg tcgggtggcg aggggagtgcg agggaaattcg ggggattggg aggtttgggg	120
15 cggcgcggtt tggtcgggtt gggatcggtt ttgcgttta gacgttcgcg atgttggat	180
tttttgttat tttttatgg ggttttaggg gttcggtttt ggtagtttg gagttttcg	240
agggtggagg atcgggcgga ggtggagaa gttttttt qgaagattt gttttgtt	300

<210> 30

20 <211> 321

<212> DNA

<213> Artificial Sequence

<220>

25 <223> 2852

<400> 30

tggatggat ttgggtttaa aagaaatttt tttaaaaat taaaataataa	60
30 tattagagta aagtttttag ggcgagataa ggagttgtaa taaaataagc gggaaattcga	120
gaagcgttaa tgttttaaag ggttaatgt tatataat ttacgttagt aacgtgttaa	180
aatatattaa cgtatTTTT ttTTTtaat aaagttagaa agcggatTTT gtatgaggg	240
cgggttgtcg atttagtagt ttTTTcgga tagttcgTT tgatTTTT tggTTggTCG	300
tggaggatt atatggTTT a	321

35

<210> 31

<211> 398
<212> DNA
<213> Artificial Sequence

5 <220>
<223> 2859

<400> 31

10 tatgttttgtt tttgttttga gatagagttt cgttttgtcg tttaggttgg ttaaaagata 60
gggttttagt cgggtgcggg ggtttacgtt tgtaatttta gtattttggg aggtcgaggc 120
gggcggatta tttgaggttc ggagttcgag attagttgg gttaatatgg cgaaacgttg 180
tttttattaa aaataataaa aattatttag gcgtgggtggc gcgtatttgc aatttttagtt 240
attcgggagg ttgaggttagg agaatttattt gaatttagga ggttagacgtt gtagtgagtc 300
15 gagatcgcgt tattgtattt tagtttggc gatagaggggaa gatttcgttt taaaaaaaaagg 360
aaaaaaaaaaa aaaagaaaaag aaataaaaagt gatgggggt 398

<210> 32

<211> 347

20 <212> DNA
<213> Artificial Sequence

<220>

<223> 2861

25 <400> 32

gggtgttagaa gtgttttagt ttttttcgt tgggggtggg agtttggta ggttagttt 60
attttttta agttcgtttt tgggtttcgg gtttagttc gtttattatg tttcgtttaga 120
30 ttattttgt gggtttttagt tgtttggatt tgtggagggaa aaagaatgat cggttcgttc 180
gataggttaa ggtaatacgg ttgttggat tttcggtttg tagtttaag atttttgaaa 240
gcgggtttgt agtggattta tttaataga tggggagggaa ttgagtttga ttaaagagtt 300
agaaatgatt ggagaatgta tttttgtta ttgtttaag gggagaa 347

35 <210> 33
<211> 291

<212> DNA

<213> Artificial Sequence

<220>

5 <223> 2864

<400> 33

tccccttcca actatatctc tcacccaaaa ataacttcta acttcgtat tcatctaaaa 60
10 ctcctcccttc catataccaa caattaacta taaccctcc aaaaacgctc catctccaaa 120
tatactccca catccaaacc acgaaccctt cacccgatca catacttcat acacctataa 180
ctccgcactc cccaaatata cctctaacgt acaacttatta cccctcccc cgattataac 240
cctataactc gccacataca actataacta aaacttccct aaaacactct c 291

15 <210> 34

<211> 389

<212> DNA

<213> Artificial Sequence

20 <220>

<223> 2867

<400> 34

25 aaaaacaaaa cataaaccaa aaaccaaact cgaaccgaaa acaataaccg caacgccccga 60
aaactaaacc cacgacgcgc taacaacgcg aaccgaacta cgaaaacgat cacgtcaacg 120
tccgttccaa accgactaac aatctccgtt ctacattaac gtcaacactc ccgttaaaaa 180
taatacatct ctcccataacc aaaaaaactt aaataactact aaaaaccaac cctccgaata 240
ctaccaaacc gacgctcacc cgccacccctt atcttccctt ctcccttacc ccaaaacaac 300
30 cgaaaatata taattaaatt cccctacccc ataaaaaaac caaaaataaaa aaactaacga 360
cctactcgat ctcaacaaac cctcctaatt 389

<210> 35

<211> 272

35 <212> DNA

<213> Artificial Sequence

<220>

<223> 2961

5 <400> 35

aatggttat gattttgggtt ttttttcgtc gtcggagagc ggtgtttcgga	60
ggaggattcg gcggtcgttt ttttggtta gtaggagagc gagattgttag gtatagagaa	120
cgacgagggt ttcgggtat ttgtcggtag ttatgcgggtt ttcgcgtat cgggtttac	180
10 gagtgggggt gagttagcgc ggggtttgga gagggttta gggcgcgtat tcggggatt	240
tcggtcgggg ttttagggta taggaaagag ag	272

<210> 36

<211> 371

15 <212> DNA

<213> Artificial Sequence

<220>

<223> 3511

20 <400> 36

agttagaaga ggagtttagga tgggtttcgg gtagtttaat agtatagttg aagttttaat	60
tattatgtta atagttttt gtttttatat atttatggg aagaggaaaa taaaaggtta	120
25 tttatttgtat tattttttta tttttgatat aagaagttaga atttttttta tatgattttat	180
gtttatTTAA tacgttattt tgaaattttat taataaaatt ttttaagcgt tagaaaatttg	240
ttagtggttt tttttatTTT tttttgtgtt attaatttttggg tttttttttt	300
ttagaaggTTT gtcggaaatAG taaatattta ttgatatgtt ataatttttggg	360
attggaaaAT t	371

30 <210> 37

<211> 457

<212> DNA

<213> Artificial Sequence

35 <220>

<223> 3532

<400> 37

5	tgttagtaga gtttttaggga ggttttatii ttatattttta tttaaagtii tatttgtgg ggtgggggtt ttgttgaa gggaaagggtt taaggttggtt tttagcgtgtt ttttttattt tgattgtttt tggcggggcg ggggtgtttt tgttattttag ttgtataacg gtaggaagg gtttaaatta tttttagggt taatttaagg tcgttttttgg gttttgtata tttttgttt gagtgcggat cgggagaggt tggtgaagat aggaggggat aaatggggga cgaagggtt	60 120 180 240 300
10	cgagggaggg gattgaagga ttgggttaa gtcgggagtt ttcgagggcg gagttaaaac gtatggat ttgttagtt taaaattttg tttttattgt tgtaagttt ttagatcgag gatttcggg ttgaggggtgg ggttaaggata ggttagtg	360 420 457

<210> 38

15 <211> 476
<212> DNA
<213> Artificial Sequence

<220>

20 <223> 3534

<400> 38

	tttttgtttt tatggggtgt atatttaagt agttgaaata gatagtgaat aaataaaaaa	60
25	ggataataat tttaaataat aatgtatgtt tcggtaggt gtgggggtt atgtttataa	120
	tttttagtatt ttgggaagtt aagttaaagcg gattatttga ggtaggagt ttaagaatag	180
	tttggttagt atggtgaat ttattttttta taaaaaatat aaaaattagt tagatatggt	240
	ggtatatatatt tgtaatttttta gttatggg agggtgacgt aggagaattt gttgagttcg	300
	ggagggggag gttgttagtga gttaagattt gatagggttt tagtattatt gtatttttaga	360
30	ttgggtgata gagcgagatt ttgttaaaaa aaaaaaaagtt ataaatagat tttaataggg	420
	taatatgata gggaggggagg gataggggag taggggtgtt aaggaaggga tattta	476

<210> 39

<211> 458

35 <212> DNA
<213> Artificial Sequence

<220>

<223> 3538

5 <400> 39

tggtagtat	ttttgttggt	tttttttat	attataaggt	tacgttagagt	tggcggaggg	60
ttatggttt	atttatgtta	ggtgtttta	atttggtaag	gaaatgtaat	ttacgtgaat	120
tttaataggt	agtgaagtat	cgttttttt	tgatTTtagg	tagggtaag	aaaatgggat	180
10 agtagtacgg	ggtgcgggta	taaacgtata	attttgtttt	tttagacgta	gagttgtggg	240
gttgtgagaa	tgttaggagg	aggtaagaaa	gggcgggTTT	atggggggtt	tgtagggtgg	300
gataagtttta	agaggtttt	atatttagt	ttgggtgggg	aggtgagttt	ttggtttac	360
gagggggttt	ttttttgttt	tcggaaat	tgtagttttt	atttttatcg	ttttttcgtt	420
gcggggattt	aggggcgtga	ggatgagaga	gttttttag			458

15

<210> 40

<211> 405

<212> DNA

<213> Artificial Sequence

20

<220>

<223> 3540

<400> 40

25

agtggtttag	gagtatttgg	ttatTTcgg	aaaaatcgg	tttggtaaag	gttttttcga	60
gggtacgcgt	ttttcggata	gtgaggtagg	atTTaaattt	tttcgttaat	attatatttt	120
tctatTTTT	gtagtgttg	tatTTtagg	tttattatt	tttcgtatt	ttttaggag	180
aagttttcga	cgttttattt	tttttggaaag	ggtttgttt	ttagagattt	ttaggttaat	240
30 gtttaattt	tagtgtttt	agggagagg	gggggtgtaga	aaaatagttt	gggttataaa	300
agaggtgcga	gggttgtgag	atTCGGAGG	tatcgacggg	aagcgagacg	gagaatagga	360
ggtaggacg	gggtggaggt	ggggatatt	gtagatggag	ggagt		405

<210> 41

35 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 41

5	ccagttccag tcccgggtcc tgtggccgcc ctgccccgca ccctgcggag agcgagtctt	60
	agataccca g tccccagccc cgagtttta ttccctcgct gtagttaaga aggaggagat	120
	caattaaggg catcttagaa gttaggcgtt cccgctgcct ccttgagca cggaggccac	180
	caaccccta ggggaaagag atgtagcgcg aggcagggt gtcgtctaa gaaatttca	240
	cgctctggg gactgaggac aaaggtgcgg acacgacccc ggggtacctg gagttccgt	300
10	actcgccca cggacggcac acctaggggc taatttctgc tctgcctcaa agaacctcaa	360
	gctagagtcc ttgcctccgc ccacagcccc gggatgccgc tgctgcgctc accgcacagg	420
	cagcggccgg accggctgca gcagatcgcg cgctgcgcgt tccaccggga gatggtggag	480
	acgctgaaaa gcttcttct tgccactctg gacgctgtgg gccgcagcg ccttagtccc	540
	tacctctgct gagctgaacg ctcaggcaca gtggaactga aacccgggtc tgccggatgt	600
15	gagagctgtt gaggtcacgc gtaattgggt gtgatggagg ggcgcgttc gtgatgtgt	660
	caggtttgat gcaaggcagg catcgctgtg cgagtgtgtg gatgcgaccg cccgagagac	720
	tcggaggcag gcttggaca cgttttagt aacacccatg gatactcttc tggccagat	780
	ctgttttta gtgtctgtga ttcagagtgg gcacatgtt ggagacagta atgggtttgg	840
	gtgtgtgtaa atgagtgtga ccggaagcga gtgtgagctt gatctaggca gggaccacac	900
20	agcaactgtca cacctgcctg ctcttagta gaggactgaa gtgcgggggt ggggtacgg	960
	ggccggaaaata gaatgtctc gggacatctt ggcaaacagc agccggaaagc aaagggggcag	1020
	ctgtgcaaac ggctcaggca ggtgatggat ggcagggtag gaagggggag gtccagaggt	1080
	ctggatggag gcttccgcattt ctgtacccatc caactcaccc ctcaggccca gcaggtcatc	1140
	ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cggggagatg	1200
25	gagatcgga aagtatccat ggagatctt cagaatcccc tgcgggacc agggaaactct	1260
	tgttagatccc tgcctatctg aggcccaggc gctggctgt ttctcacaat attccttcaa	1320
	gatgagattt tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc	1380
	ccatgatcac acaaccaggaa attggccaa ctgtatttgc actctgtct aacaaatgtt	1440
	ttgctccag ctccgtctct tggttccac gagccctggc cctctgtggg taataccagc	1500
30	tactggagtc agatcttgc gcccaggAAC ccaccccttag gggcatttaac cttaaaatc	1560
	tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggacccttc	1620
	cgcacaaatcg taaaaccagg ggtggagttt ggcagggtt caaaaccagg cccgactgag	1680
	aggtaattt caccatgacg tcaaactgcc ctcaaattcc cgctacttt aagggcgtt	1740
	cttggatgtt ccccccattt ttccatcaat gacctcaatg caaatacaag	1800
35	tggacggtc ctgctggatc ctccagggtt tggaaagcatg agggtgacgc aacccagggg	1860
	caaaggaccc ctccgccccat tggttgcgtt gcactggcgg aactttcccc acccacagcg	1920

	gcgggaataa gagcagtcgc tggcgctggg aggcatcaga gacactgccc agcccaagtg	1980
	tcggccgc tcaccacaggc ctctgctgga cggccgcgcc gccgctgcca cgcctctga	2040
	tccaaagccac ctccccccag gtgagccccg agatcctggc tcaggtatat gtctccct	2100
	ccctctccct ccattcgtca ttttctcact cccttcctc ctctccctct ctctccgtta	2160
5	gtctcttcat cagatagtct ctgttagtcc gcgatttata ccaggctcggt gcccattgtt	2220
	ggatcgaca gtctcaatcc cccggctcgcc tcttcctgtt cgctgcggc ctccaggctt	2280
	actctctcgactgcacaca ggcttaggccc agtctcgaaa cactcaggct ccccaaggac	2340
	cgcgcacaga gcctgaggca agagaaactt tcccgagacg gtgcgtatcg ggacggcg	2400
	tggagcccg cagtcggcagg gaaattgggtt cagaacctgg aacagagcgg atgggtggca	2460
10	aataggcacg acgactgagg gacaaggcgc cctaaactgc a	2501

<210> 42

<211> 2501

<212> DNA

15 <213> Homo Sapiens

<400> 42

	agatttactc aaatttaaga atgagaatac aaatccacat cttgaagtgt ttcacagaaa	60
20	ggcttatctt aatgtctgga gtatataattt caatgaacat tcattttatt ttatattctt	120
	ccattcctga atcaagcaat cttgaatcta aagttgctat gattagcact gaaaagacca	180
	ctggactatt aattgtgtga ctttggaca gtaactttct gcaccttagt ttgtttacat	240
	gttatacatg aaggttgaag tctgattctg ctctgtact atcattctaa acatctgtat	300
	aaatcaaatt tcagtgtttt gaatggtagt acaataaatt tactaagaat aaataattca	360
25	ctgcaaaaac acattgattt ccaaattgtt taactgacag ttatattact gcagaggct	420
	gataaataac aaaagaaaatg aaagatgcac atggtgagaa ctgaaattat cctgacaagt	480
	cttctacctg tttatcactt aaaatcaatg accatgctga atgcctacaa attacaaaat	540
	ataaaaagaaa tcttataaat ggcgcattgtac aggagtctaa gttactaaaa gttttaaagc	600
	ataagtttaa accaaactaa tcaaagaatg tgagaggaaa aattggcttt catctttat	660
30	cactactgtt ttgaggtcct atgttataata taattttcta agtagaggct tcagagagaa	720
	gagttgttag gatactttca tattttgttta gaaggaaaag tttgcctatcc attcttagtat	780
	cccttagtgtt atactgtatgt gcaccttggc tttatattgtt tcctattgtt taaaactcata	840
	cttgacttca aagaaaagga aaatccaaag tccctttt ctaaggggac agaaaatcctt	900
	tgtgtcaact gtttgcctt tttctgttta aggtcctattt gaaatcttt tgtaacacaa	960
35	tgcaggggac tcttccatgt gttgatgttgc tttacacagt ggggtgggccc tgactgaaga	1020
	aaaaaaaaatcg catatacgca tgaaagatta tggctttatt tccggaaagc atgaaaggta	1080

	attgatactt ccaagaagtc cctgttactc agaaaaatta tcaaatatc tactcagaga	1140
	tactggaaa gactgaagga aaggaagaac gaagaaagca gaatctagac ttatgtgggg	1200
	agagatttgt ggcagaggaa aagtattctc tttgaatccg acaaggatt tgccctgggg	1260
	aatttcctgt ccagcctttt attaccaggg tctttgaag ccggcctccc cattggcag	1320
5	ttccctggga gtgcagtggg gaattcttac actttccctc taggtccccg aaggatctcg	1380
	tttctcagt gtctcttca gggtggcagg agccttgagc ctgacacttc cctttgatgg	1440
	gacaggcaag ctctgtggc gcgtaaacac gctgttaacca agtttttgc tgatttaca	1500
	gttttgttg ctcccggagaa gaagtgtatcg tactcaatttgc tctattgctg gcctgcccc	1560
	taagagcctg ggggctcctt tcccctaacc cagaacttagc tgacacgggg gcggggaaat	1620
10	gggggtgggg aaggagttggg agggcagtgg tttccgcagc cagagcgtatg ttactgatgt	1680
	agtcctgaa tggggagcgc tgctgtcccc aagccgatttgc tcttttgc tcaggaagaa	1740
	acgccaagag gtggggagtgc ctggggaggg aggccaggcgg tccctaccgc aggccgggg	1800
	agctgcctt ccgccttc gcctgcatttca aggccttgc ctcttaggag tggctgaagc	1860
	tgccggagcgc ttttggagcc tgtgaatgaa cccttccttcc tccttccttc cttttctcg	1920
15	ctgagtctcc tcctcggctc tgacggtaca gtgtatataat gatgtatgggt gtcacaaccc	1980
	gcatttgaac ttgcaggcga gctgccccga gcctttctgg ggaagaactc caggcgtgcg	2040
	gacgcaacag ccgagaacat taggtgttgttggacaggagc tgggaccaag atcttcggcc	2100
	agcccccgcatttccctccat cttccagcac cgtccgcac cctccgcac cttcccccgg	2160
	ccaccacgc tccatgtga cccgcctggg caacgcggaa cccagtcgcg cagcgtgcac	2220
20	gtgaattttc ccccaaaact gcaataagcc gccttccaag gtaatcacgt ttcttttgc	2280
	cccccttaa aaaacaaaaaa caaaaaactt atagaaaaaa accccgcgagc ttagaaaaaa	2340
	gaagcaatttgc ttagaaggct ttaattaagg caaagagctg taaggcgaag ttaagaaaaat	2400
	gttaggcatttccatggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatgg	2460
	ggaccttgggttggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatgg	2501
25	<210> 43	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
30	<400> 43	
	tgtgggtcat taatgcatttgc ttatccaatgc ctaggatttgc gctggggcgca gtggctcacg	60
	cctgttatcc cagcactgtg ggaggccgag ccggggaggat cacctgaggt caggagttca	120
35	agaccagccttccatggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatgg	180
	catagtcaca tgcctgttatccatggtaatccatggtaatccatggtaatccatggtaatccatggtaatccatgg	240

	cccgaggcggc ggaggcggag tttgcagtga gccaagattt cacaactgca ctccagtctg	300
	ggccacaaga gcgaaaaccc gtctaaaaaa aaaaaaaaaaag actaggattt gacataaggc	360
	ctgagggta ttctttgtt ttgtttgcc ttgtttcaa gaggccaaaa tcttcacagt	420
	tgaaaaatttc tggtgaacca cagagattt aaccaactca gtttagaaag cctggggatt	480
5	tgaacaacgg tatggatcgg aaatctttc atctgtcagt ttcatcatt ctaggcagta	540
	aaatagattt cccttttagga gcttttacc gtttggggtt ctccagcagt gggatgtggg	600
	gaatcaaccc ttcttcgtct ccacccaaac attaggtggg agcaagggtt gggaaagtaga	660
	gaaagtggat agaggtctcc agtggatatg ggatctttgtt gttagaccgc acagtcctca	720
	gaaatctcat gcaagcaaca taggtactgt tatattttct atggccacc ttttaaaaag	780
10	taaacagggtt aggccgggccc cggtcgac gcctgtaaatc ccagcacattt gggaggccca	840
	ggcgggcgga tcacgaggc aagagatgga gaccatcctg gtcgacacgg tgaaaccccg	900
	tctctactaa aaatacaaaa attagctggg catggtgacg cgcgactgta gtcctagcta	960
	ctggggaggc cgaggcagga gaatcaattt aaccctggag gtggagggtt ccacgctcca	1020
	ctacactcca gcctggcgac agagtgagac tccgtctcaa aaaaaagaaa gtaaacaggt	1080
15	gaaattaatt ttaataatataatttttttta acccaacgta tccaaaatac tatcattttga	1140
	aagtgtaatg aatataaaaaa tattcatgag atattttca ttctcatatc catactgtct	1200
	tggactctaa tgtgtatTTT acacttacag cacaattaat ttgggacttag ctacatttca	1260
	gctcaacaat agccaatagc atatggata gcgc当地aaacttgc tctgttgc	1320
	cattttttctt cggagacctt aaccctttct tcagattgca aaccttcttgc cttcaagcc	1380
20	tcggctccaa caccagtccg gcagaggAAC ccagtctaat gaggtacgct cccttcctgc	1440
	cattctctat tccattaacc ttgtttcggtt taaacgttagg actgatcctc caaaattacc	1500
	ttatttttttta gcttacatataatttttctt tctgtcccac cagaatgcag gtttccggaa	1560
	ggcaggatt taaaaaaaatc ttgtttgttc tatgtgattt tcccatatcca agcaccgtgc	1620
	ccggcacaag ctgggatccc agtacacatc tcgggacgga agaaccgtgt ttccctagaa	1680
25	cccaagtcaga gggcagctt gcaatgtgtc acaggtgggg cgccccgtt ccgggcggac	1740
	gcactggctc cccggccggc gtgggtgtgg ggcgagtttgg tttgtgcggg gtgtgcgg	1800
	tagagcgcgc cagcgcgcggc ggagcgcggc gctgggagga gcagcgcgcg ccgcgcagaa	1860
	cccgccgcgc cggcctggca gggcagctcg gaggtgggtg ggccgcgcgg ccagccgc	1920
	tgcagggtcc ccattggccg cctgcccggcc gccctccggcc caaaaggcgg caaggagccg	1980
30	agaggctgtc tcggagtgtt aggaggacag ccggaccgag ccaacgcgg ggactttttt	2040
	ccctccgcgg agggactcg gcaactcgca gcggcagggt ctggggccgg cgcctggag	2100
	ggatctgcgc cccccactca ctccctagct gtgttccgc cgcgcggc ctagtctccg	2160
	gcgcgtggcgc ctatggtcgg cctccgacag cgctccggag ggaccgggggg agctcccagg	2220
	ccggccgggtt agtagccagg cgccgcgtccc cggccccccc gaccccccggc gcaagctttt	2280
35	gctttcccaag ccaggcgcgc gtggggtttgc tccggcagt gcctcgagca actggaaagg	2340
	ccaaaggcggc gggaaacttgc gtttccgggaa gaagtgcgtt cgcagccgg aggcttcccc	2400

agccccgcgg gcccggtag aacagggtggc gccggcccgaa ccaggcgctt tgggtcgaaa 2460
 cgcgaggatc tggagcgaac tgctgcgcct cggtggggccg c 2501

<210> 44

5 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 44

10

gatgtaaaaa gagaaataat taaaaagac tggagtacat atactatcta cagtgtctgt 60

ttaaagaaa caacattcta gcacaccctt ctacccttga ctaagattac tgtaatgaga 120

gcaccagtag ccctgagtaa ccgaaaggc atttggaaa ctgagctttt ggtgtttata 180

tgaacattct gtcttccagg acctgccttg atttattcaa gactcataact gctgtatatg 240

15

gtgtgtata cattaggggt agttggtag cagtaactga tatagaaaaat tttaaatgta 300

aaaaacactg gggagtgaac ctttccatta tatatatata tatatatata tatatatata 360

tatatatata tatatatata tataaattca catcaggatg agtttctgtt taggcaatgt 420

tggaaaacgc tatttccatt tttttttttt aacaaatatt taacaaacat ttataaggca 480

cttaaatcca tgctggctct tacaaatgtt gactcatttc tcataaccac cttggggtag 540

20

aaacggagag gctaaacaat ctgcaggcga tgcttcacta ctaaatgcag gtggcagcct 600

tgcctgtgtt ctctgcttgg ctaggaacac aggtcttacc tattgagctg ggctgtgtag 660

aactctgttg tggagacatc tgcccctgg gcagaagcct ctgcttttc cccctccctcc 720

catcttactc catgtctcg agagctctga atcccacttg gagaatcaca cttaaacccct 780

ctaaaaacct aatgatgaat aaaaataagt tctctagaac ttctggagaa aaaagtaata 840

25

aagctaccag gttaaaatgac taaaaattcct gagagaaaac aacatgtgtg tgggtctcta 900

gaaagggggc ccaataactga ataccaggaa gtcctatagt aaatggaatg tgactctatg 960

tgggatccgg cgttcctatt tcatccgaat gcatgtctgc tgcttcagtg ggaagggtgc 1020

ttgcacacca ggtacccact ccctgggtc atgtgtatg cagtccaaag acagaaccag 1080

gaatggtgag cccatgagcc tgctggaccc agcccctccg aggtccggag tgacaaccag 1140

30

tgccgtattt ctagatcaa cctgaacccc tcctacaggg aaaagatttc cagggattt 1200

tgaaagttcc aacatttac agggagaagaa gaagataagc aggatataagc agaagagttc 1260

atgttataca gcccggctt ccactgacgc taacactggaa ttctcgatggatggatggatgg 1320

atctgttgcc accaaatggaa aaacgtaaac aagatattct aagtggtttt agagaatatg 1380

caacacaagg aacaaggcaga acattcttct ctggaatctg acataatggaa ctgtactttc 1440

35

acagacagca ctgatgttag atgtacgtga aataggctaa actgaaaata agaaaggctg 1500

aggcagagag gataatatacgatccagcata tctccagcata cttgttaat ttctctcaac 1560

	ctccagccac aaatccgaga cacaacgctc ttccctccaaa gaggtcgccc cttctctgtg	1620
	gtgggttctca gggatccgccc ccagctcctt ctccgttccc agccccacac actgggatca	1680
	ccaggcaccc aagatcccac ctctcagggt gtatcttcag cgaggctgc cactcagccc	1740
	ccctccaggg atctggggca gaaggcgaat atccagagt ctcaagatcc acaggaggta	1800
5	ctctgaaggg cgaggcgcgg gctgcattcag tggaccccca caccccaccc gcaccccaag	1860
	cgctccaccc tggggggcggg gccgtcgct tcctccgga ctgggatcg atctggact	1920
	ccgggaattt ccctggcccg ggggctccgg gcttccagc cccaaaccatg cataaaaggg	1980
	gttcgcggat ctggagagc cacagagccc gggcgcagg cacccctcg ccagctttc	2040
	cgctcctctc acagccgcca gacccgcctg ctgagcccca tggccgcgc tgctctcc	2100
10	gccggcccca gcaatccccg gctcctgcga gtggcgctgc tgctcctgtc cctggtagcc	2160
	gctggccggc ggcgcagg tgggtaccgg cgcctgggg tccccgggccc ggacgcggct	2220
	ggggtaggca cccagcgcgg acagcctcgc tcagtcagtg agtctttctc tccctaggag	2280
	cgtccgtggc cactgaactg cgctgccagt gcttcagac cctgcaggga attcaccacca	2340
	agaacatcca aagtgtgaac gtgaagtccc ccggacccca ctgcgcggaa accgaagtca	2400
15	tgttaagtccc gccccgcgtc gcctctgcca ccgggggggt cccagaccct cctgctgccc	2460
	caaccctgtc cccagccga cctcctgcct cacgagattc c	2501

<210> 45

<211> 2501

20 <212> DNA

<213> Homo Sapiens

<400> 45

25	ggcgacagag caagactccc tctaaaaaaa aaaaaaaaaaa aaagattctg agtcaaagtg	60
	ctcaaggta atgcattttg tcataccaa gacaaatcg gttaacccct tgtggttac	120
	tttatctata aaatagagat aacaatagtt cctgcttcta ggggtttgt gggattaaa	180
	gacttagaat aatgttcagc ctctaatcag tgctgtcaca actgtctgtat acaattgtat	240
	tatatttgtt tactttgtat attgatatta aatcataactt ttaaaaatag gtgcttaatg	300
30	ttccactcaa ttaccttaaa acatgtttaa ttatgtctct atcctactct tataacactt	360
	ctataaaaaac tttttacata tagcgccac tttgggttca gtttctttagg aaaataactt	420
	ttagacttcag ctatctgaac caaagaaaca ttaacattac cagactatat tgggatttt	480
	gagactggct tttatcaatt cttagctac gggctttgt catcatctct accagtgacc	540
	taagtgtcaa acccaaatgc cttgtatctg tcccataaa gagatgcagc atctgctcct	600
35	ttcttactgt ttccattttc tctgcattgc ctccctttac aaccataaat atccaggatct	660
	cttaggtttt aaacggggca tctctcaacc cccacattct tttcccttgggt tattcccttc	720

	cctccaaacag ttcaattcac ctagatcccc acgcctgaaa ttatcctaga tgtcctagag	780
	gcgcctcatc attacaatgg tacattattc tccactcctt tacatgtcac gccagcttc	840
	aaactgaaaa tctgagcggtt catccctggt gcatcacctt taaattccag atctccaaaa	900
	tccagggtca tgtaacctta aaaaattttt accctcttctt ctccactgccc tttgttcagg	960
5	ccttatctct tccagcagct gttccaaagg cctactctgt tttccttctg gagtgctaacc	1020
	ctccaccgaa gcctccaccc agttgccaat tctgccccat gcctgataat ttgctcggtc	1080
	gttgacatac ataaaatttc taagacaaaa attttttaat aatggtaaat gaaccttggg	1140
	aactgcatac agatcataca gatccataat aagagaaaaag gtcccagatt aacacggaaa	1200
	actttccatt taactaacat ttgactgtt aaacttcatac aagcaagacc ctacttaatc	1260
10	ccacattacc ttctactgaa gaggttgtgg tcattctctg gaaatatctg aattcattcc	1320
	tacaagttag agaaacagcg ttactcgaaa cattatccct tgggctcgag ctctaaaggca	1380
	cctgacaaac ggagcgctgt gggtaggggt gaggtgtttt ctccagggtc gggactttgc	1440
	cctggcgag ggccgcgcag ggcaaagacc tcaccggca gcagaatccg ggcagaaatc	1500
	agcaactggg cctccgcgc agcagaaaaag gggaatccag tcggggccca cccttcctgc	1560
15	cagcgcagac cgcaagtctg gccccatcct ctgcggggga gtcggcctgg cgcgtccgc	1620
	ccaggtaccc cgaccgtggg cagcctgcgc ccgttgggtt cccatcgccc cggccggca	1680
	gatacctgag cggtgccag ggcaggtccc cgttcttgc gatgccatg ttctggaca	1740
	cagcgcacat gcagtttagc gaaccaacca tgacagcagc gggaggaccc cgcggccgc	1800
	tcgttacagc agaacgcgcg gtcaagtttgc ggcggaaattt gtggccccc cgcggccctgc	1860
20	tccctatttg tgcaggcgag gcccccccccc cccggccgg cgcacgcagg gtcggccgt	1920
	gctcgccccc gcagacgcct gggaaactgcg gccgggggtt cgcgtccctc gccggggccct	1980
	gccccgggc tgccatcctt gccctgccc gtcgtccgg aagcctgcgt cggccggccct	2040
	cgctgcctcc agctcagccc ctgcgaggca agcggttttt agccgattct tccagtctac	2100
	ggaaaggctg aaatccaccc ctcctccac aggtgcagcc gaccagggtgg accctggcgc	2160
25	tgcagcggcc gcagcgcggcc cagcggccgc cttccccc cagctgcgc cgcacgttagt	2220
	agtttctgtc tgggactggg cagggccatc ggggctgggg gggcggggct tggggtaag	2280
	gcggggcggag gcgtggaccc tccggccat gatagggctg gaggaggaag gggcggggctg	2340
	aagaaggsga aggtggaaag agcccagccg gggctacaaa ttgggtgaag cgctgagggtt	2400
	tttagtacttc cgtttgagga gataggcaaa ggtaggcag gttttatgc gcaaggcctga	2460
30	gacagggact caggtctctt gactcccatt ctgatgagggg g	2501

<210> 46

<211> 1092

<212> DNA

35 <213> Homo Sapiens

<400> 46

	aagcttcccc ttcatcatcc aagaaggcat tcaggcttt ctgtgcttagg ccccaggtaa	60
	agtgcgtggac tacccagtaa ttgggttcag tagcaggatg gcctcagatt gaggtcccag	120
5	ggccaaagga ccactcctct cctcagcgct ggtccggaa aggcaagctc cgggggggag	180
	cgcacgcccgc gcccccaag cctggctccc tcgccacgcc cacttcctgc ccccatcccg	240
	cgccttcca ggtcttctcc cggtgaaccg gatgcctgt cagtctccta ctctgcgtcc	300
	tcggccgccc cccgggtccc tcgcaaagcc gctgccatcc cggagggccc agccagcggg	360
	ctcccgagg ctggccgggc aggctgttg cgcgttagga gctgggcgcg cacggctacc	420
10	gcgcgtggag gagacactgc cctgcgcga tggggcccg gggcgtcttc tcacgcgtta	480
	ggcaagcggg gcggcggctg cggtaacctgc ccaccggag cttcccttc cttccctgc	540
	tgcgtgtct ctgcatccag ctccggggag gacagaagaa aaaggaggta gaatggatcc	600
	ccttggcctt cccctgtggt cggggccggg ccaggggtgg cccgcgttgcc caggcagccc	660
	tgccgtgttg ctaggcagcc tggtcgcggg cgtggcgat gccggcgctg gggcgggagc	720
15	cgcgagggtg ggaggccctg gggcgtttcc gggacgtgga gtttagcaggg ttctgacttg	780
	aaaaacgcacg gcaaagcgtg ttcttgactg cttctgagca ctcacacact ttcagaccca	840
	gggcgccttt attcccaagct ggaagcccag cttagagcaa tggtgccact aaaagggtg	900
	tgttggatgt gaaaataccc tttgaaagta tttataagcc tgcaggaaat atgtttccct	960
	tattttctta ctctgtccc ttcattaccc atttcaagaa gcaacagaac ctgtgcagag	1020
20	tgtgttttaa gttacactgt atgtttatgt ttgttatgt tgaactcggt gtataacttgt	1080
	gagaataagc tt	1092

<210> 47

<211> 2501

25 <212> DNA

<213> Homo Sapiens

<400> 47

30	cgaaatgaaa cctcgcccag gaggccgcgg acctggacac ccggcgccac ctccttcacc	60
	tctgacccag gtttctccc ggcgtgcga gctccgggg aagggttaga gccggcagcc	120
	ctccccagcc cggggagggg agagggttat gcgcacccac ctctggctag ggccggggag	180
	gcctttgttt cccgggagcc ctgccccggc tccttggtcg cagggctgct gggtcccagg	240
	caggaacgag agggtgaggc ccacatgtgg cccggcggcc cagggcggct tgcafcgtcc	300
35	tcactgtccc ggctgccagg ggctgcggcg acgcggccag tcagcagcga gttcaggctg	360
	cgcagatttt attgatgagc tctgactttc agcactttcc ctaagtcaag aagagtctag	420

	cgtacccttc ggctgcttca tttcagccctc cctgcctcag ctcttcagcc ctattcccc	480
	tcgcctgtc ctgggggtgt tacagcagcc caggcccttc ttctccttcc cggctccgtg	540
	gcccgaagcc gccgagagag ctcgggacag cgcaggacca ggcagccgct cgctctcctg	600
	tcacctaacc tgcaggctcc gaggggcgcc tttggagtgt actgaggtgt gtccataatcg	660
5	tgcggcattc aacaaatgga cttctgggtgt gtggtcagaa gagaaaagcc atttacttac	720
	tttcctcccc ggaaaaatgg caacagctga aggggagctg cctccgtgga ctgagcagac	780
	ccaggagagg gagtcgtggt gcggagacac acgcaccaca cacagatgac cggtggcaca	840
	cacgacacac gctgacatac cgacatcgcc agtgggacac acacacacac acacacacac	900
	acacacacac acacagagag agagagagaa tccctccag cattggtcat ccgcgggggg	960
10	acccaggctt ccactcccccc tccctctta tctccctgg cttccctcc tctcgggcgc	1020
	tgcgaaaagc agccgcactt agtcaacaaa tggcacgtgg gagaagttgg tgagtgtttg	1080
	gtgaggactc ttcaaggctt ttcaacaagaa ccctctgtac acaaagaatgg tggcgtgttt	1140
	actcgggcct ctccagccag agctgtgcct ctgctccgct ggcacccgct gcttccgaaa	1200
	ggagaaagga gagaagaaag ggccgggaga gcggggtgga ggattttggac aggccctgga	1260
15	ggcttggct gggggggct ctggcctcg ttagtctcg gccggcaac ctccctctgg	1320
	cctaggcttc gccgcggcct ccgcagctgg aatggagctg ccaggaccca gtgacgctcc	1380
	cgcccccttc ctcttcttcc aaggggccag gtgggctggg gtgcggccgc cgctgtgctc	1440
	tgtgtcttgg gccccggct gggatgggt gggggggggc gggggggggc cggcaggcca	1500
	cgctgtctcg gagttggcaa gaaaggacag cacagaaact tgccacctcc gaggactggg	1560
20	agtcccgagt ccagcttagg gggagtgggg gcgcgacccc caacccagaa accttcactt	1620
	gaccgctaa gttcgccgca gcagggccggg ccgcgcggaa tctcggcgtg cgcggagcgg	1680
	ggagatgcag gcgagcgcca gagcccgggc tcggggccccc tgccgggggg agaggagccg	1740
	ggacccaccc gcggagccga aaacaagtgt attcatatcc aaacaaacgg accaattgca	1800
	ccaggcgggg agagggagca tccaatcgcc tggcgcgagg ccccgccgct gctttgcata	1860
25	aagcaatatt ttgtgtgaga gcgagcggtg catttgcatt ttcggagtg attagtgggt	1920
	ttgaaaaggc aaccgtggct cggcctcatt tcccgtctg gttcaggcgc aggaggaagt	1980
	gttttgcgttgg agatgtatga cagaggtcag gttcgctaa tggccagtg aggagcggtg	2040
	gaggcggggc cggggccgg cacacacaca ttaacacact tgagccatca ccaatcagca	2100
	taggtgtct ggctgcagcc acttccctca cccacactct ttatctctca ctctccagcc	2160
30	gctgacagcc cattttattt tcaatctctg tcccttccc aggaatctga gaattgctct	2220
	cacacaccaa cccagcaaca tccgtggaga aaactctcac cagcaactcc tttaaaacac	2280
	cgtcatttca aaccattgtg gtcttcaagc aacaacagca gcacaaaaaa ccccaaccaa	2340
	acaaaactct tgacagaagc tgtgacaacc agaaaggatg cctcataaaag gtgagtcgc	2400
	ttctttcttc tcgctttatt ttatttgcaa tattcagaca ggtctcccccc tccctcccc	2460
35	cttccttcct cccctctcgcc cggccccctc ccccaactgtc a	2501

<210> 48
<211> 2501
<212> DNA
<213> Homo Sapiens

5

<400> 48

	tgatggttgc acaactctga gtacatgaaa aatcaatgaa ctgatacttt gagtgagctg	60
	tatgatactg gaattacacc tcaataaagc atggtaactg tttaagata ggctggaaag	120
10	agaaaggctg aaaacaacaa taatgatatt aataaattag ttacttctc tagtctcata	180
	tacctctgtg cccacacttg ctcccttctt attcataatg gtccttgc agttgcata	240
	ttatatacctg ccatttgatg cccggtaac attctatacc tgcttcccag aattctctt	300
	acctttcctc tatctgccta acttccacat atctaaaatt aatcagagta aactattac	360
	tagaacaacc aactccaaat cctagtaacc taacatgata aaggtttgtt tctcactcat	420
15	atagccccctc cccagatgat cgagggtgcc aggccctta cctctagtgg ctccccacc	480
	ttctggagtc ttctgcattc tttatacatg gttgagataa actatgagtc attagcacag	540
	ctagaccttg aggtcctaca agaaaatttg caaatcattc actctgtttt gaacaaggta	600
	tattnaagat gatgttaaaa tacccaatgg tcttgggtca aatacagttt atgactgtgt	660
	atctaaaata tatattgcaa tattctccc ttttctact gacttcatga atttagcggg	720
20	gatccatttt ataagctcaa agataattac ttttcagact aagaatattt agggtaaaaa	780
	gtactgttca acatctctac tgaggatgtt atgatgtgc acactgtata agctggagct	840
	aaaggaaact ttcccttaaag tgcttatttac taaaaattgg aacacattcc ttaagacaaa	900
	tcgaagtgtg gcacacaaca tccaaacttc catcatagat acagaggtgt taccatctcc	960
	cactccaaa ttctttgtc acgctgagga tactcaagag gaggcggaca tgggtggcg	1020
25	agcaggagaa acttggaaagc attcactttt atgaaactca taagggagag aatttcttat	1080
	tttagtatcg tccttgatac atttatttatt taaaaagata atgtagccaa atgtcttcct	1140
	ctgtgttaaa tctttacaaa actgaaatct taaaatggtg aaaaaatttc tacttctgat	1200
	agaatctatt cattttcca attagatagg gcataattct taatttgc当地 aacaaaacgt	1260
	aatatgctta tgagggttcca tcccaaagaa cctgctattt agagtagcat tcagaataac	1320
30	gggtggaaat gccaaactcca gagttcaga tcctaccgt aattgggtt gggagggtt	1380
	ttggggcgaaa cctccctaga ggaggaggcg ttgttagaaa gctgtctggc cagtcacag	1440
	ctgtcaactaa tcggggtaag cttgttgta tttgtgcgtg tgggtggcat tctcaatgag	1500
	aacttagctt acttgcatt tgagtgaaat ctacaacccg aggccggctag tgctcccgca	1560
	ctactggat ctgagatctt cgagatgac tgtcgcccgc agtacggagc cagcagaagt	1620
35	ccgacccttc ctggaaatgg gctgtaccga gaggtccgac tagccccagg gttttagtga	1680
	ggggcgagtg gaactcagcg agggactgag agcttcacag catgcacgag tttgtgcca	1740

	gagaaaaagt cgggagataa aggagccgcg tgtcaactaaa ttgccgtgc agccgcagcc	1800
	actcaagtgc cggacttgtg agtactctgc gtctccagtc ctccggacaga agttggagaa	1860
	ctcttttggaa gaaactcccccg agttaggaga cgagatctcc taacaattac tacttttct	1920
	tgcgtcccc acttgccgtc cgctgggaca aacgacagcc acagttcccc tgacgacagg	1980
5	atggaggcca agggcaggag ctgaccagcg ccgcctccc ccgcggccga cccaggaggt	2040
	ggagatccct ccggtccagc cacattcaac acccactttc tcctccctct gcccttatat	2100
	tcccgaaacc ccctccctct tccctttcc ctccctccctg gagacggggg aggagaaaag	2160
	gggagtccag tcgtcatgac tgagctgaag gcaaagggtc cccgggtcc ccacgtggcg	2220
	ggcgccccgc cctcccccga ggtcgatcc ccactgtgt gtccggcagc cgcaggtccg	2280
10	ttcccgggga gccagacctc ggacaccttgc cctgaagttt cgccatacc tatctccctg	2340
	gacgggctac tttccctcg gcctgccag ggacaggacc cctccgacga aaagacgcag	2400
	gaccagcagt cgctgtcggta cgtggagggc gcatattcca gagctgaagc tacaagggt	2460
	gctggaggca gcagttctag tccccagaa aaggacagcg g	2501
15	<210> 49	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
20	<400> 49	
	tacttcata aaaggatctt tgacttggta agtgtgtgcg atgcataactt ttcatgttac	60
	accacaagtgc ccaccttagca actccactag acagggcagt gtttcagcat ggggtggggt	120
	gccttcgtac aggctttaa aaggccccga tgccaatgca cattccaaca ctatccacaa	180
25	aaaggagact ggagcagtgc tcttcctgc attggcaag gagactctcc ctccctgcct	240
	aaccacttgc ctgcccgtt ttgtggaga attacaagta aatgctacag aggcagtggaa	300
	gaaaaaagggtgttttaatt cctctccaga gtttccttta tttgatgtat gttgcacccct	360
	ttaaaacaagt tgcataat ggctgcagg tagattggct ctcccttta aagctctcca	420
	tccggctggg tttatttgcata aatactgcattt cttcccttct tagtgcatttta ggactggctg	480
30	gaaagactct tcttcctgtt ggtgggtca gtgtggaga tctaaaaat cattttccct	540
	taaaaattact gtattttaaat aaaaggattt ggcaggggct ggaatgagag aaaactggtc	600
	cttcaaaatg taaaactgtc atacttaaac cagtttacaa aatatgcgtt taattatgttgc	660
	gtggatgttgc tgcgtttgttgc tgcgtttttttt ggggtgcag	720
	gatgtggaa caggcaagta atttcacat tggactttca tccttagggag ctgggttcta	780
35	gtcacagctc tgagctgtgt gaccttgggt aggtctcatc tccccgggtt tttgtttcac	840
	cagttgaaca gatgtggggat gagtcacagc taacatttgt tccatgatata ttacccagca	900

	ccatacaagt gttatttctg tcctcccagt taacactgac gtggtagta ttatatgcc	960
	atttacaga tgagggaaact gaagcctgaa gaagttaaat acttatccca gaacacacag	1020
	ctggtaagt gcagacctgg aatttggaaatc tagttcagtt tgattccccca acccatgctc	1080
	ttgaccacta tactgtttt tcaagtccag atctgaaatc tcattttctg tgtggctgt	1140
5	tgttggac agggtaacc aattcctgac tactctatat gctycataga acctggagag	1200
	gattttcaa agtaaatgaa tctcgaaagc tggattgcag agcaaacgag tgcagtcaat	1260
	tcagccaggg gcttgcaaga gggagaaaga gaaaaagact gtggaatgga aagtttccca	1320
	acccaaggct ttcccaaggg gtagccattc tctgttctac agtttagggc ttgcattgtgc	1380
	ttttctgga gtggaaaaat acataagtt taaggatatt aacagacaga aaggcgcaca	1440
10	gaggaattta aagtgtggc tggggggcga ggccgtggc gggaggcag cgggcgcagg	1500
	cggaacacccg ttttccaagc taagccgccc caaataaaaa ggcgtaaagg gagagaagtt	1560
	ggtgctcaac gtgagccagg agcagcgtcc cggctccctcc cctgctcatt taaaagcac	1620
	ttcttgtatt gtttttaagg tgagaaatag gaaagaaaaac gccggcttgt ggcgtcgctg	1680
	cctgcctctc tggctgtctg ctttgcagg gctgctggg gtttttaagc tctgtgagaa	1740
15	tcctggagt tggatgtc agactagttt ggtcatttga aggttagcag cccggtagg	1800
	gttcacccgaa agttcactcg catatattag gcaattcaat ctttcattct gtgtgacaga	1860
	agtagtagga agtgagctgt tcagaggcag gagggtctat tctttgccaa aggggggacc	1920
	agaattcccc catgcagct gtttggggc tggatgccc agaacgcgag cgatccgagc	1980
	agggtttgtc tggcaccgt cggggtagga tccggAACgc attcggagg cttttgcaa	2040
20	gcatttactt ggaaggagaa ctggatct ttctggaaac ccccccgggg ggctggattt	2100
	gccgagcaag cctggaaaat ggtttatgtat cattggatc aattacaggc ttttagctgg	2160
	cttgcgttc ataattcatg attcggggct gggaaaaaga ccaacagcct acgtgcacaa	2220
	aaaggggcag agtttgcattt gttttgtgg acttttctat gccatggcc tccacaccta	2280
	gaggataagc acttttgcag acattcagtg caagggagat catgtttgc tttatggat	2340
25	ttctgtcagt ggttcctggg caaatcctgg atttctacac tgcgagtcgg tcttcctgca	2400
	tgcgtccagga gaaagctctc aaagcatgct tcagtggatt gacccaaacc gaatggcagc	2460
	atcggcacac tgctcaatgt aggtttatcc tttcccttc t	2501

<210> 50

30 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 50

35

ggaggataga aatataaatt aaagaatgac acaaataatt ataaagttac agctgttaaa

60

	agaaaaagcat atggtgccaa gagaacgtgt aatacaagat ctactcatgg aggtgaggga	120
	aagcttgc(ccc atcaaagaag ttatgattca atccacgaag accaggagtt ggctgggtga	180
	agaaaaaaaag gtcagaggaa ggaagtccac actggggaaag gctctaagca taaaggtag	240
	gaggattaca gaggcatatt cacgaaattt ggagaaggct ttcagtaagc aaggagaagc	300
5	caaatgaaag ttacgggag agttggagac ttgaagacac gttcaaggat ctggttttta	360
	tcttctctt atctcaagag cagtggaaag ccattaaatg attttaatca gagggttgg	420
	ataactagtt ttgtatTTTaaaagctgaa ttcaagcttc gtttgagaaa ctgagtgaaa	480
	gagccagaa cggccgtggc tgagggtgac tcgtggaga ctcctacaca agccatggca	540
	gtggcatggg ctggtggcag aagaggaaat agggagaaga tttggaaactc aatcttcctc	600
10	cattgacaaa gtcactccag ctttggcaag gcaattaatt ggtggaaag aagatgccta	660
	gccctcctga tttcaetgca ctttctgcat cttcaacatg agtactggga agtggcaaaa	720
	catccagagg cagcttgggt gctaggtgaa gcatgagttt aaattccagg atgaagcaaa	780
	tgaacactta gaatgacagg aaagatttg gatgtgggtt tggggaggg ctatttacct	840
	ttattccctg gagaccctgg cacaacccct tgcctctgca atcttcctc caggtaaagg	900
15	aattcattaa atgaattgtt agaagatcta ctgaccagag ggctgtacag aatcatatct	960
	ttgagagtgg gaagtaggtt gatcacatag tttattatcc aatcaggaca tatctgaaag	1020
	agaaaggggg ttcttattat atttaaacta caaaacatgt acaccaggaa tgtcttggc	1080
	aaatctgggtt gccctagcaa gaaaggaaat ttgaaagttt atactgttct gctccatgt	1140
	taccccttt gcacatgaga gggtaagtat tctcttctt cacctgcatt aagggataaa	1200
20	aagcacaagc attcaggtga ctcccaaccc actttaatt ttacagttc tgctatactc	1260
	tatacattct gaaaattaca tttccacca ctatcaatc gtgataggtg atcatttaca	1320
	attactcaat gactcagtcc cgggaagagg cggtgaaaaa tgggacgctc tatccaggt	1380
	ctcattagaa atgcagaatc tctgcctgca tcctagacact actgaatttag aatctgcatt	1440
	tttaaataag atttccaggt gatcaatatg tacattaaaa ctgagaaaa acctctagac	1500
25	ttcgacctaa agaaaaacat ttacaactt gacagtgtat gcacatacat acatgcata	1560
	agacacaact gaagcacaaa tttaatgaag tagaatttac cgttactatt ttatTTgg	1620
	aagaaatgtg ctcgcactc aatagattgg agtattcaat cctggatctc aacttgcata	1680
	ttgaaaacgc atctctaaag cacctaggag caatctgaag aaagctgagg ggaggcggca	1740
	gatgttctga tctacttaggg aaaacgtgga cgtttctgt tttactttt tgaactgtgt	1800
30	gcacttagtc attcttgagt aaatacttgg agcgaggAAC tcctgagtgg tttggaggg	1860
	cggtgaggGG cagctgaaag tcggccaaag ctctcgagg ggctggctta ggaaacatga	1920
	ttggcagcta cgagagactc aggggctgga cgtcgaggag agggagaagg ctctcgccg	1980
	gagagaggc tcgcccagct gttggcagg agttccctgt ttccccccca ggcctgagtt	2040
	gaagtttgagt gatcactcg cgcgcacgga ggcacgacac ccccgccgtt gcacccctc	2100
35	gggacaggag ccggactctc gtgcagcttc cctcgccgc cggggccctc cccgcgcctc	2160
	gccggcctcc aggccccctc ctggctggcg agcggcgcc acatctggcc cgcacatctg	2220

cgctgccggc ccggcgcggg gtccggagag ggccgcggcgc ggaggcgcag ccaggggtcc 2280
 gggaaaggcgc cgtccgctgc gctggggct cggtctatga cgagcagcgg ggtctgcat 2340
 gggtcggggg ctgctcaggg gcctgtggcc gctcacatc gtccctgtgga cgcgtatcgc 2400
 cagcacgatc ccacccgcac ttcagaagtc gggtagtgg tccccagccc gggctcggcg 2460
 5 gggcgccggg ggtttccctg gggccccgc ctctccgcgtc 2501

<210> 51

<211> 2500

<212> DNA

10 <213> Homo Sapiens

<400> 51

ttcccatcaa gcccttagggc tcctcgtggc tgctggagt tgtagtctga acgttttat 60
 15 cttggcgaga agccctacg ctccccctac cgagtcccgc ggttaattctt aaagcacctg 120
 cacccgggggg cccggccctg cagagggcgc agcaggtctt gcacctcttc tgcatctcat 180
 tctccaggct tcagacctgt ctccctcatt caaaaaatata ttattatcga gctcttactt 240
 gctaccacgc actgatatacg gcactcagga atacaacaat gaataagata gtagaaaaat 300
 tctatatcct cataaggcctt acgtttccat gtactgaaag caatgaacaa ataaatctt 360
 20 tcagagtgtat aagggttgtt aaggagatta aataagatgg tggatataa agtatactggg 420
 agaaaacgtt agggtgtat attacgaaaa gccttcctaa aaaatgacat tttaactgat 480
 gagaagaaag gatccagctg agagcaacgc caaaagctt cttccttcca cccttcata 540
 ttgacacaat gcaggattcc tccaaaatga tttccaccaa ttctgcctc acagctctgg 600
 cttgcagaat tttccacccc aaaatgttag tatctacggc accaggtcgg cgagaatcct 660
 25 gactctgcac cctccctcccc aactccattt ctttgcttc ctccggcagg cggattactt 720
 gcccttactt gtcatggcga ctgtccagct ttgtgccagg agcctcgcag ggggtatgg 780
 yattggggtt ttccctccc atgtgtctaa gactggcgct aaaagttttg agcttctcaa 840
 aagtcttagag ccaccgtcca gggagcaggt agctgtggg ctccggggac actttgcgtt 900
 cgggtggga gctgtcttcc cacgacggtg acacgcctcc ctggattggg taagctcctg 960
 30 actgaacttg atgagtcttc tctgagtcac gggctctcgg ctccgtgtat ttctcagctcg 1020
 gggaaatcgc tggggctggg ggtggggcag tggggactta gcgagttgg gggtagtgg 1080
 gatggaaatgt tggcttagagg gatcatcata ggagttgcat tggatggaga cctgggtgt 1140
 gatgtatgggg atgttaggac catccgaact caaatggaa cgcctaggca gaggagtgaa 1200
 gctttggggaa accttgagcc ggcctaaagc gtacttctt gcacatccac cccgtgctgg 1260
 35 gctgtggaa tccctgaaat aaaagatgca caaagcattt aggtctgaga cttttggatc 1320
 tcgaaacatt gagaactcat agctgtatata tttagagcccc atggcatcct agtggaaaact 1380

	ggggctccat tccgaaatga tcatttgggg gtgatccggg gagcccaagc tgctaaggtc	1440
	ccacaacttc cggacctttg tccttcctgg agcgatctt ccaggcagcc cccggctccg	1500
	ctagatggag aaaatccaat tgaaggctgt cagtcgtgga agtgagaagt gctaaaccag	1560
	gggttgcggcc gccaggccga ggaggaccgt cgcaatctga gaggccggc agccctgtta	1620
5	ttgtttggct ccacatcac atttctgcct ttgcagcagc cattccgggt ttcttttgc	1680
	cggagcagct cactattcac ccgatgagag gggaggagag agagagaaaa tgccttttag	1740
	gccggttcct cttaatggc agagggaggc tgctattcgc cgcctgcatt tcttttctg	1800
	gattacttag ttatggcctt tgcaaaggca ggggtatgg ttttgc aacctaattc	1860
	cctcccccttc tttaatgggt gtgcggcacc cccgggtcg cctgcacact aggccggacgc	1920
10	taccatggcg tagacaggga gggaaagaag tgtgcagaag gcaagccgg aggcaattc	1980
	aagaatgagc atatctcatc ttcccggaga aaaaaaaaaa agaatggta tcgtgagaat	2040
	gaaattttaa aagagtgc aaatgggtcg ttgtataatt tgtcggaaa aacaatctac	2100
	ctgttatcta gctttggct aggccattcc agttccagac gcaggctgaa cgtcgtgaag	2160
	cggaaggggc gggccgcag gcgtccgtgt ggtccctcg cgcgcctcg gcccggccg	2220
15	gttcttcctg gtaggaggcg gaactcgaat tcatttcctcc cgctgccccca tctcttagct	2280
	cgcgggttgtt tcattccgca gtttcttccc atgcacctgc cgcgtaccgg ccacttttg	2340
	ccgtacttac gtcatctttt tcctaaatcg aggtggcatt tacacacagc gccagtgac	2400
	acagcaagtg cacaggaaga tgagtttgg cccctaaccg ctccgtgatg cctaccaagt	2460
	cacagaccct tttcatcgac ccagaaacgt ttcatcacgt	2500
20	<210> 52	
	<211> 286	
	<212> DNA	
	<213> Homo Sapiens	
25	<400> 52	
	tttgcactag gctgaaatgc gcccgcagtc ccccggtgaa ttccattctc tggaaaatgt	60
	gaatcagctg gcattgccccca gcgtgatgg tgaggctgag ccccaacagt ccaaagaagc	120
30	aaatggatg ccacccctccgc ggggctcgct cctcgcgagg tgctcaccccc gtatctgc	180
	tgcaaaacga gggagcggtta ggaaggaatc cgtttgtaa agccattggc cctggtcac	240
	agcccttacc caatgtttc gtgtatcgatc tgctgatcta ttgggg	286
	<210> 53	
35	<211> 1400	
	<212> DNA	

<213> Homo Sapiens

<220>

<221> unsure

5 <222> (1371)

<223> unknown base

<400> 53

10	ttccagctgt caaaatctcc cttccatcta attaattcct catccaaacta tgttccaaaa cgagaataga aaatttagccc caataagccc aggcaactga aaagtaaatg ctatgttga cttgatcca tggtcacaac tcataatctt ggaaaagtgg acagaaaaga caaaagagt aactttaaaa ctcgaattta ttttaccagt atctcctatg aagggttagt aacccaaata atccacgcat cagggagaga aatgccttaa ggcatacggt ttggacattt agcgtccctg	60 120 180 240 300
15	caaattctgg ccacatcgccgc ttccctttgtc catcagaagg caggaaacctt tatattgg acccgtggag ctcacattaa ctatcacag ggtaactgct taggaccagt attatgagga gaatttacct ttcccgccctc tctttccaag aaacaaggag ggggtgaagg tacggagaac agtatttctt ctgttgaag caacttagct acaaagataa attacagcta tgtacactga aggttagctat ttcatccac aaaataagag tttttaaaa agctatgtat gtatgtgctg	360 420 480 540 600
20	catatagagc agatatacag cctattaagc gtgcgtacta aaacataaaaa catgtcagcc tttcttaacc ttactcgccc cagtctgtcc cgacgtgact tcctcgaccc tctaaagacg tacagaccag acacggcggc ggcggcggga gaggggattc cctgcgcccc cggacctcag ggccgctcag attccctggag aggaagccaa gtgtccttct gccctcccc ggtatcccat ccaaggcgt cagtccagaa ctggctctcg gaagcgctcg ggcaaaagact gcgaagaaga	660 720 780 840 900
25	aaagacatct ggcggaaacc tgcgcgcctg gggcggtgga actcggggag gagagggagg gatcagacag gagagtgggg actacccct ctgctccaa attggggcag cttccctgggt ttccgattt ctcatttccg tggtaaaaa accctgcccc cacccggctt acgcaatttt tttaaggggaa gaggagggaa aaatttgtgg gggtacgaa aaggcggaaa gaaacagtca	960 1020 1080 1140
30	tttcgtcaca tggcttgggt ttccgtctt ataaaaagga aggttctctc ggtagcgcac caattgtcat acgacttgca gtgagcgtca ggagcacgtc caggaactcc tcagcagcgc ctccctcagc tccacagcca gacgcctca gacagcaaag cctacccccc cgccgcgc tgcccgccgc tgcgatgcctc gcccgcgc tgctgttg cgccgtcctg ncgctcagcc atacaggta gtacctggcg	1260 1320 1380 1400

35 <210> 54

<211> 2501

<212> DNA

<213> Homo Sapiens

<400> 54

5

gataatcttt tcataacaaga tgcattctgc ttttgtggc ctcttcagc cctcaagccc 60
ccatctgatt tgtacacaat gatccagtgg gccagaggag cccagagcca tgagcggccc 120
atccctccaa gaactatttc tgactgtcca gtatcatgga gcaagtggaa agaagaaaaaa 180
aaaaacccaa ttactttcg aagagcaaga tgaatgctgt agaaggagaa ggaaggggag 240
10 ggagatggat ggggtccat tccagaatct tcagatctgc ttggatgaat cattacctat 300
gatttgcggg acaagaatct gattttattc atcaaccagt agaaaactttt ctttctgcct 360
cccaacatct gaaatccaac aaacatgtgc ctttagaaca taccggcat ctttttagagg 420
cattttatat acatatttag taactagaaa acacttttc cgttaatacac acacacacac 480
acacacacac acaccatctt gtcataacaac actcccacgc aagaaaagcg aaactgctgt 540
15 ttatgtaaatg taaacacttg gctgtttgc gcagtcggga gtcctgccag tttaagtgc 600
taagatggga ggtgaacccc aggggtttcc ccctgcccgt gctgagatcc ttatggc 660
aagcttctac ctatgcctcg gcctcggagc gagcccgata gcgcgtggatc acagcagagg 720
gagcgaggcg gctgacgtcc catcccgaaag agatgaatgg aattccagga agctagagtc 780
atgctggctt gggacagtgg cttggagacc agacttcaat gacagaagca ctaggcagcg 840
20 gcactcatgg caatgtgtgc acccacagaa atgttaaccca cacctcggt tcaggagccg 900
aaaaatgaaa agaacgttta gggagaaaaa agggaaaatac aataataggc agagagtaat 960
ttattactct atgggtctgc tctgtaaata gctgaagact ctggagccag atgggtctgc 1020
aaattctcca aacaggagtc acgttaagaa gcacgagtgg gcacaaaaac tggggccaa 1080
gacacaattt caatggct tggaaact ggatacgatg aagtttcctt aaaattcgag 1140
25 tagaaagcag ctgtccccc cggggccctt gatgagaata cgcacaccgc ccccaagccg 1200
ccggccgagg gagcgcgcgcg gcagcggag aggctctct gtggggcccc tggcagccgc 1260
ggcaggaaag gccccgaagg cagcgaaggc gaacgcggcg caccaacctg cccgccccgc 1320
cgacgcgcgc ctcacccccc tccggggcg gcgtggggcc agctcaggac aggcgctcgg 1380
gggacgcgtg tcctcacccc acggggacgg tggaggagag tcagcgaggg cccgaggggc 1440
30 aggtacttta acgaatggct ctcttgggtt cccctgcggcc ccgtcgccc atttttctt 1500
ttacaaaacg ggcccagtct ctgttatcca cctctgcaca tcaaccaggc attccggag 1560
atcagctcgc ccgaaagccc ctgcgcacc cccggggccc tcctaggtgg tctccccagc 1620
cccgccctt ttcggatgc ttgctgatca ccccgagccc gcgtggcgca agagtacgag 1680
cgccgagccc gtgcgcgcca aggctgcgtg ggcgggcacc gactttctg agaagttcta 1740
35 gtgctcccaa gccccgaccc cccggggccctt cactttctag ctggaaagtt gcgcgcagg 1800
cagcgggggg cgagagagg agcccagact ggccccacc tcccgttcc tgcccgcccg 1860

	ccgcccattg gccggaggaa tccccagaa tgcgagcgcc cctttaaaag cgcgccgctc	1920
	ctccgccttg ccagccgtg cgcccggact ggcctgcgag ttcaaggcgtc ctgtcgctct	1980
	ccaggagca a cctctactcc ggacgcacag gcattccccg cgcccttcca gccctcgccg	2040
	ccctcgccac cgctccggc cgccgcgtc cggtacacac aggttaagtgcg ccccccggcgg	2100
5	ccgcccggaga ccaaagctgc ccgggacatc cacctggagc gctgaggcgtt cagtcctct	2160
	ggtgccaccc ggaacctaca ctctccccgc tcgcctaccc cagccgcgtc ctctcagccg	2220
	ctggaggact cttcagggca aggctccaga gccatcctct ccagccttga ggttcacaaa	2280
	ccaactcatc aggacacccc aagatttct tactctctga agtcctcctt aagcctttgt	2340
	atcagcactc cagggaaagag tctgtacttc ccctgcctc cctgcaaccc caaactacag	2400
10	ttctgtatct tgctcacctt cgaetccca aaagccccca aatttgttgt ctgcgcccc	2460
	ccacacitaa aaccaggcat ctcttcctc cacctctctc t	2501

<210> 55

<211> 7258

15 <212> DNA

<213> Homo Sapiens

<400> 55

20	ttcaatagga agcaccaaca gtttatgccc taggactttg ttcccacaat cctgtaacat	60
	catatcacga cacctaacc aatccttatac aagccctgtc aaaaacggac tttaaaccaa	120
	gctgcaaatt ttcagtaatc tggccttgcc tttcccccctc tgatagcacc atcaaacaaa	180
	cccccttact gccgaaagca ataagcccg ctttgttcca tccactgggt gtgttgtga	240
	tatctgggga ctgccactga acagacgcac agagggagcc cctacaggca ggggttttc	300
25	tgtctgtct tcttgggaga gtatgtctcg tacatttgcgcgtgatgaa gacttcacag	360
	ctccatccag cgaccagact cacagctcca tccagctgcg gcaagggggctgaggcagt	420
	cttaggcaag ttggggccca gggggagaag ttgcagaaga actgattttaga ggaccaggaa	480
	ggcttcagag ctgggctgag gtagagagtc tccgtgcgc ttctctctctctgtcaatt	540
	cggggactcc ttgcactggg gcaggccccg gcaggtgcat gggaggaagc acggagaatt	600
30	tacaaggctc tcgattccctc agtccagacg ctgttgggtc ccctccgtcg gagatcgcc	660
	ttcccccaaa tctttgtgag cgttgcggaa gcacgcgggg tccgggtcg ttagcgctgc	720
	aagacagggg agggagccgg gcggggaggg gagggggcgcc gcccggggcg gcccgtat	780
	agagcaggcg cccggggctcg cagcacagtc ggagaccgca gcccggagcc cggggccagg	840
	tccacctgtc cccgcagcgc cggctcgccg cctcctgcgg cagccaccgg ttagtgcgc	900
35	ggtcctgaga tccccggggc ggatgcgggg cggcccccagc tcccgagcgt ctgcctgccc	960
	cgccctgggc tgcccggtc ccctgggtc cccggggct gcacggagtc aaggcgcccc	1020

	gtccccggcg tcccccgcg gtgccgatcc aggctgccc gagtccggag cccatagagg	1080
	agagagacag ctggggagcc tggtcaccgc gggcatctcc cctgcgctgc agtcgcccgc	1140
	ctggcctgcc ttcccggttcc tccgcctttt gccctgactt ctcccttctt tgcaagagccg	1200
	ccgtctagcg ccccgaccc gcccaccatga gagccctgct ggccgcctg cttctctgcg	1260
5	tcctggctgt gaggcactcc aaagttagtg cgctcttgct ttgactgtat ctgcccagg	1320
	acctctgatc agcaccaggag gagaggaggag gctgctcagg gagctggggt ctccggattc	1380
	catccacagc agggccagac tctccccagg aaatgggaca gggtggcagc ggaggcttga	1440
	gaaccacggg ggttggcaact ggctggcaag ggaggaagag ggccaccggg actgccccag	1500
	cctgcgggca tctggtagat gaagcttaat ccatttctcc tggctggaaa ccatggtctt	1560
10	ccatttggaga actagatacg aacagggtga ggcgagaggag agagggaaaga gtgggttttgc	1620
	ggattggggc cagtttaccc tcacccttggaa tccctggcagg atgggacctt tggatggaa	1680
	tcctcccgaa tctcttccag ggcagcaatg aacttcatca agttccatgt ggttatccac	1740
	ccctacaaca gttggctgca cagacaagtt gggaggctt caggggacac tccctccct	1800
	gccctctgt gcagcgtgcg ccacccctta ccactccac tccccctcgc ttacccacc	1860
15	tttggctctt ccagcgaact gtgactgtct aaatggagga acatgtgtgt ccaacaagta	1920
	cttctccaac attcaactggt gcaactgccc aaagaaattc ggagggcagc actgtgaaat	1980
	aggtatgggg atctccactg caactggag agaaatttgg ggacagggag ggatgggtgg	2040
	gaggcaagag caggcaggag ttaggagctg gaggtagggt gggtagacatc ttcatcccta	2100
	tgtgacaagc ataaacacac acacacgctc acgaaacagt gcccacacaa atgtgagggt	2160
20	gggttggaaag gagaccctgt ccagtcttctt ggcaggctcg aaacgacatc tttaaaatgt	2220
	ccgttggcag cccggcatgg tggctcacgc ttgttaatccc agcattttga gaggtcaagt	2280
	ttgagtgat cattaggtc aggagttcaa gaccagcctg gacaacatgg tgtaaccctg	2340
	cctctactaa aaatgaaaa atcagcctgg catgggggtg gatgcctgtt gtcggcgtt	2400
	cttgggaggc tgaggcagga gaattgctt aacatggag gccagatctc agttagctgt	2460
25	gatcacacca ctgcactcca actggggcagc agagcaagac tccatctcaa aaaaaaaaaaa	2520
	aaataaaaagt tagttggaat gttttttctt ttctcatatt ctctcatctt cctgtccct	2580
	tgtagataag tcaaaaacct gctatgaggg gaatggtcac ttttaccgag gaaaggccag	2640
	cactgacacc atggggccgc cctgcctgcc ctggactctt gccactgtcc ttcagcaac	2700
	gtaccatgcc cacagatctg atgctttca gctggccctg gggaaacata attactgcag	2760
30	gtgagggtggg ggcaacaagg accaaaaagcc ctccctacag ctcccagaa accttggttac	2820
	catcccttc tcccaagagg ctggccatag cacaagagaa gtgcggcctc tgggttagtc	2880
	ttccctgagg ggaggaggca gggaaaggccc tctgggttgg aatgacatcc cctatcttc	2940
	tgtgttgtgc caggaaccca gacaacccgaa ggcgaccctg gtgctatgtg caggtggcc	3000
	taaagccgt tgcataagag tgcataatgtc atgactgcgc agatggtgag catcaactgac	3060
35	ctgctgatga caggtgggtg gaaggggaca aacttacatg tcccttattt ccatcacagg	3120
	aggactgagg aggtgggggg tgcccgagag ggatgttttc tcctacctgc ctccctaaga	3180

	catccctctg tttgtcctcc aggaaaaaaag ccctcctctc ctccagaaga attaaaattt	3240
	cagtgtggcc aaaagactct gaggccccgc tttaagatta ttgggggaga attcaccacc	3300
	atcgagaacc agccctggtt tgccgcac tacaggaggc accggggggg ctctgtcacc	3360
	tacgtgtgtg gaggcagccct catgagccct tgctgggtga tcagcgccac acactgctc	3420
5	atgtacggcc ctgggtttct cctcttcgac tcttctgccc caccccaagc acatccctt	3480
	ctccctccca gcaaagtgtt ccgcctcatt tctccctcat ctgcccctgt ccatgcgcc	3540
	atggccttgg ggacaagtcg tgcttgagg cctctaggga gggaaaggaag aagtggcatg	3600
	atttcatggg actaagctgt ttgatggta tcttcttcca cagtgattac ccaaagaagg	3660
	aggactacat cgtctacctg ggtcgctcaa ggcttaactc caacacgcaa ggggagatga	3720
10	agtttgaggt gaaaaacctc atcctacaca aggactacag cgctgacacg cttgctcacc	3780
	acaacgacat tggtgagggg gaacgccccgc gactactgtg gccataatgg cttggggaga	3840
	gtgggaccca gggagagact ggagctgagt tgaagctgcc ggtggggcag ggggtggcg	3900
	aggacacctg aagcctcgat atacatgaca aaggatggca gggaaagagtt ccatgaagtc	3960
	ttaggggcct ggtgctcctc tggagagacc ctgaatttcc ccaacaagta gccctcttgc	4020
15	gagttggaaac agccctgtgg gtatatggct tgggctggga aggccctgtt tatatgaatt	4080
	agaaaaagac acaccccttctt ttgtggatg cagcctctgt ctgtgctagg atatagaact	4140
	tggagaatgg agccttggga tggattccag cctaactacc tcagggggat cctctagagt	4200
	gcagctggga gtttttgcaaa aacgcacctg tacagctgtt tgcaatggct ctggccatcc	4260
	aaggctttt caacacctgg aacaaagccc ttggggcatg gggcagggga ggtttccagg	4320
20	tgataagcga ccagcagacc tccctggatg actgacctag ggataggcat agctacttcc	4380
	tcggcacttg gaggggacag atggggaccg cctaaccagt agtgatcttt ctccctctgac	4440
	cctctgtcct cccccagccct tgctgaagat ccgttccaag gagggcaggt gtgcgcagcc	4500
	atcccgact atacagacca tctgcctgcc ctgcgttat aacgatcccc agtttggcac	4560
	aagctgtgag atcactggct ttggaaaaga gaattcttagt aagtgacaat tgcaactgac	4620
25	ttagaaggtc ctgaggagtg ttttgacctg aaaatgagcc cagtgtgatc aagggaaagac	4680
	tgcagagtta gaggtggag cactgaggcg gtggcagatg ggtccaggaa tggatgaaga	4740
	gtgttgttta gggagcgatg ggctgcaaaag gtaaatagat ggttagggct ataggtggag	4800
	gtaaatggct cagatttgca tggagagaga ataatggcc tctccctggg tgatgataact	4860
	ttatgggttc ccctctctgg cgagacgtcc cacgtggagg cagataaattt ttgatgcaaa	4920
30	cgcctccctg ttttctccac ctgcgcact atctctatcc ggagcagctg aaaatgactg	4980
	ttgtgaagct gatcccac cgggagtgcc agcagccccca ctactacggc tctgaagtca	5040
	ccaccaaaat gctgtgtgt gctgaccac agtggaaaac agattcctgc caggtgagtg	5100
	ttccaagcat ctctctccac ctctccata tctccctaga gtcctgggc ttgttccagc	5160
	cagcttaagg gtgtctctct ctagccaaag ccctaagtag ccagaatcag gagtcaggt	5220
35	ctttgagggt ttaaaccagt ccttatgtgt ttgccagaca ttacaaaaaa aatcccagct	5280
	ctgcgctagt cacttcagac tgggggcacg agatcctaga aagaggaaac agtaaaaagac	5340

	aatgttaactc agtgcccagg gtgtgttgc aactataaat gatcagggtgt tcaggagagg	5400
	gaggtgagtg ccaacctgag ggtcagggag gggaggcttt aaaggaaatg tgacttgata	5460
	ggcatttgaa gaggcagagg gaagaaagga aggtgttca gttgaaaagat acaaaaactga	5520
	gaaggaggct ggcattttcc gggtggggag gagaactagg gtctggagt gtggatggaa	5580
5	tagtggcaga tgacagggt tttaaagcca agcaggggat tttccaaactt cgatgtggta	5640
	gaaatggggc tgcgtcaggc acagtggctc atgcctgtaa tcccaagcatt gggctaggcc	5700
	gtatgcgtat gatcatttgc gcccaggatg agaccggct ggaccaacat ggtgaaaccc	5760
	tgtgtctact aaaaaatgca aaaaaaaaaa tttagccagggt gtgggtgtc ctgcctgtaa	5820
	tcccaagctaa tccaggaggct gagacatggc atcgcttgc cacaggaggc aagtttgacg	5880
10	tgagctgaga tcacgtcatt gcacgccagc ctggcgaca gagcgagatt ctgtccccc	5940
	gccgaaaaaaaaa gaaagaaaat gggaaagtcgc taaggacttt gactggaaa ctcttccctc	6000
	tctctggtat ggttgggtga tgggatcaga aatccctcc tcacttctct agggctcatc	6060
	ttttgtatct ttggcgtcac agggagactc agggggaccc ctcgtctgtt ccctccaagg	6120
	ccgcattact ttgactggaa ttgtgagctg gggccgtgaa tgtccctga aggacaagcc	6180
15	aggcgtctac acgagagtct cacacttctt accctggatc cgcagtcaca ccaaggaaga	6240
	gaatggctg gcccctctgag ggtccccagg gaggaaacgg gcaccacccg ctttcttgct	6300
	ggttgtcatt ttgcgttag agtcatctcc atcagctgtt agaagagact gggaaagatag	6360
	gctctgcaca gatggatttgc cctgtgccac ccaccagggt gaacgacaat agcttaccc	6420
	tcaggcatag gcctgggtgc tggctgcca gaccctctg gccaggatgg aggggtggc	6480
20	ctgactcaac atgttactga ccagcaactt gtcttttctt ggactgaagc ctgcaggagt	6540
	taaaaaggc agggcatctc ctgtgcatttgg gtgaagggag agccagctcc cccgacgggt	6600
	ggcatttgcaggccatgg ttgagaaatg aataatttcc caatttaggaa gtgtaacagc	6660
	tgaggtctct tgagggagct tagccaatgt gggagcagcg gtttggggag cagagacact	6720
	aacgacttca gggcagggtct ctgatattcc atgaatgtat cagggaaatat atatgtgt	6780
25	gtatgtttgc acacttgtgt gtgggtgtg agtgtaaatgt tgtagtaagag ctgggtgtctg	6840
	attgttaagt ctaaatattt ctttaaactg tggactgt gatgccacac agagtggct	6900
	ttctggagag gttataggcact cttctgggg cctctgggt ccccacgtg acagtgcctg	6960
	ggaatgtact tattctgcag catgacctgt gaccagcaact gtttcagttt cactttcaca	7020
	tagatgtccc tttcttggcc agttatccct tccttttagc ctgttcatc caatcctcac	7080
30	tgggtgggt gaggaccact cttacactg aatatttata ttctactatt ttatattata	7140
	tttttgcataat tttaataaaa agtgcataat aaaatgtgat ttctgtatc acaaatctcc	7200
	ctgggtcttgc tatggaaagg agttggagta cataaaaagg agaaaataac aaaggtgg	7258

<210> 56

35 <211> 852

<212> DNA

<213> Homo Sapiens

<400> 56

5 cagctgcgct ggaggctgag gccgattgct tgagcccagg atttgaggc cagcatgcgc 60
aacataatga gacccagtct ctaaatgcat gcctctctat atattaaaat tctgtatgtga 120
aaatatttta aaatttaata catttcaaat gttttaatt gtataataaa caaatgtaa 180
ataataaaaat aatttaatat taaattcaaa aatgaggtag aaacaaagca cagcgatata 240
aataataaaat ttccctttac attttgagg cggtctttg agttttggat ttcccttctta 300
10 ggtcactgaa atgtgctcct tggagccagc ccgcaaatac cgcatttaga aaaacataac 360
tatacactcc taaccctaag tattagaagt gaaagtaatg gaatctcgat gtaaacacaa 420
tatcactttt ttgttagagct attttgagta taataaattt gaactgtgcc aatgctggga 480
gaaaaaaattt aaaagaagaa cggagcgaac agtagcttcc tcgtccgctg actagaaaca 540
gtaggacgac actctcccgaa ctggaggaga gcgccttgcgc tcgcactcag ttggcgcccg 600
15 ccctcctgct tttctcttag ccgccttcc ctcttcctt cgcgtcttag ccacccggga 660
aggcactgct gtagctgggc tctgattggc tgctttgaaa gtctacgggc tacccgattt 720
gtgaatccgg ggcccttttag cgccgtgagt ttgaaactgc tcgcacttgg cttcaaagct 780
ggctcttggaa attgagcgg agagcgaacgc ggttgttgta gctcgctgctg gccgcccgg 840
aataataagc cg 852

20

<210> 57
<211> 2501
<212> DNA
<213> Homo Sapiens

25

• <400> 57

tcttgtcaact ccatgcactg tgttcogtat gctaaatagt ttgagaaacc caaatgggcc 60
atgttcgcct acatttcatt gtcctgtact tcctgtctg tactagcaaa gcagtcctcat 120
30 tggctttct tctcctcatt aacaataaag gtaacacttt tgatgttgg tcttcagaaa 180
accttcattc atcaaaaactg cctcaaaagat catgtttgtt tgattccaga acttcctgt 240
attacctgtt attgtaacac tcatcactgt attttactta cttgtgtAAC taattttcca 300
tattctgcac tagacaacaa agtccttaa gtcaaggact atatctattt acatagcatt 360
cacatctcct acaataaggg acattagcag ataaacaaca catattaaat gaataatgaa 420
35 gtttctgaaa tactacagtt gaaaactata ggagctacat tatatagaat aaacatttac 480
tttgctatag aattcagttgtt aacccaggca ttatTTTATC ctcaagtctt aggttgggtt 540

	gagaaaagata acaaaaagaa acatgattgt gcagaaaacag acaaaccctt ttggaaagca	600
	tttggaaaatg gcattcccccc tccacagtgt gttcacagtg tgggcaaatt cactgctctg	660
	tgcgtactttc tgaaaatgaa gaactgttac accaaggta attattata aattatgtac	720
	ttggcccagaa gcgaaacagac ttttactatc ataagaaccc ttcccttggtg ctctttatct	780
5	acagaatcca agaccccttca agaaaaggct tggattcttt tcttcaggac actaggacat	840
	aaaggccacct ttttatgatt tggtaaaatt tctcactcca tccctttgc tagtgatcat	900
	gggtcctcag aggtcagact tgggtgcctt ggataaaagag catgaagcaa cagtggctga	960
	accagagttg gaacccagat gctctttcca ctaagcatac aactttccat tagataacac	1020
	ctccctccca ccccaaccaa gcagctccag tgcaccactt tctggagcat aaacataacct	1080
10	taactttaca acttgagtgg ctttgaatac tggatcttgc tggatgtgc tggatcttt	1140
	catcttcctc tattgaagcc ctccctattcc tcaatgcctt gctccaaactg cctttggaaag	1200
	attctgctct tatgcctcca ctggaaattaa tgtcttagta ccacttgtct attctgctat	1260
	atagtcagtc cttacattgc ttttttttc tgatagacca aactctttaa ggacaagttac	1320
	ctagtcttat ctatttcttag atccccacaa ttactcagaa agttactcca taaatgtttg	1380
15	tggaaactgat ttctatgtga agcacatgtg ccccttcaact ctgttaacat gcattagaaa	1440
	actaaaatctt ttgaaaagtt gtagtatgcc ccctaagagc agtaacagtt cctagaaaact	1500
	ctctaaaatg cttagaaaaaa gatttatttt aaattacctc cccaataaaaa tgattggctg	1560
	gcttatcttc accatcatga tagcatctgt aattaactga aaaaaaataa ttatgccatt	1620
	aaaagaaaaat catccatgat ctgttctaa cacctgccac tctagacta tatctgtcac	1680
20	atggtaactat gataaagttt tctagaaata aaaaagcata caattgataa ttccaccaaatt	1740
	tgtggagctt cagtattttt aatgtatatt aaaattaaat tattttaaag atcaaagaaa	1800
	actttcgtca tactccgtat ttgataagga acaaatacgaa agtgtgatga ctcaggtttgc	1860
	cccttgagggg atggccatc agttgcaaat cgtggattt cctctgacat aatggaaaaga	1920
	tggggtgca taagttctct agtagggta tgatataaaaa agccaccggaa gcactccata	1980
25	aggcacaaac ttccagagac agcagagcac acaagcttct aggacaagag ccaggaagaa	2040
	accaccggaa ggaaccatct cactgtgtt aaacatgact tccaagctgg ccgtggctct	2100
	cttggcagcc ttccctgattt ctgcagctct gtgtgaaggt aagcacatct ttctgaccta	2160
	cagcgttttc ctatgtctaa atgtgatctt tagatagcaa agctattctt gatgtttgg	2220
	taacaaacat ctttttattt cagaaacaga atataatctt agcagtcaat taatgttaaa	2280
30	ttgaagattt agaaaaaaact atatataaaca ctttagaaag tataaagttt gatcaatata	2340
	gatattctgc ttttataattt tataccatgt agcatgcata tatttaacgt aaataagtaa	2400
	tttatagtat gtccatttgc gaaccacggt tacctatattt atgttataat attgagttga	2460
	gcaaggtaac tcagacaattt ccactccctt tagtatttca t	2501
35	<210> 58	
	<211> 2501	

<212> DNA

<213> Homo Sapiens

<400> 58

5

10 attaattctg caaattttaa taaatgcctt attttaagct aaatgcttag atgaaaaaat
gaaaccatat gagttagcaa agtagaaaat ataggcatat taatcagtaa atgcagaatg
ataaatgctc catcaatatg cacttgtgt agtgaggcca ccgaggaggg tgcaatcctc
tcaacctggg aggagcaggt aggacttcag atgtcatcca actcaaagat atagtgaggg
acttgatcaa acatttgcca agaccactat gagttaaatg aatagattag gcatttctcc
aatgttgcaa gcttcgaatc atatccaaac tcagaacaac atagcttggg cataatgatc
ccaaggatcc tattggccat tgtcttgag cctcaaagga acatattaaa actccataat
accctttga tctattctga agttaagttag tgaatttaca tgatgtatgac acaaacactg
taaaggacct ctgggttact tgtttataag ctagtatttc ctgaatcaat ttttctgatc
cctagatatt tggtaggtga agtcataacct atatatcccc acaccctaga acagcatctc
caacttattt ttccctcctt gtcttttagt gggagccaca tcagtatcca agaggagatc
cagaagcctc tccaaccagg tagggacagt tatagattcc agacctcagc tatggcctt
gttacagagt acaaatgtta tatagtacaa gtttattgtta cacatcccat tgagtctctg
agctttagaa ttttcttgta gaatttaaca gtttttcat gccgtattta catattattg
ctagtatTTTtta gaattttctt ctccaaatgt ataacgttta ttattgcatt ttttgcatt
actaagtggaa aaatcatgca ttagatattg tagaagttaga tacaacaatg aacaagaact
ggtctgacc atgagaggaa ctgatgatcc aatggggag atagacctgc acgtgtttaa
taaaaggaag tggctattcc ggTTTCTTT tgatggcaa gcatttgca aggccttggg
ctatgtgtgt gcaaggctaa gccagttgt taattggat tttttaaaa aggacttca
ctggggggaa aaggaacata gagttggta ttgtcccctt gcctataata aaaacctatt
atTTTTaatt tttaactgg gtttgcgggtt aaatctcaca gccaaagaga tttgccactt
cagatggatt ccatacacTTt gcatttaagt atgaaaaaaaa attccaatta tccagcaatt
taaccaaattt attggtaact ttctaaaac aaaaaaaaaat tgTTTCCCTT gtttggcag
caatttcagt tacagtcctt tactttctac tcaagaaaat agttcaaaa agttgtatgtt
tgTTGCTAAA agaactatTTt ttatgaataa atataaaaact aagaagttat ggtgtccctt
ttttaaaaaaaaa tgactcatca aaagaaataa cttttccctt tctcttgtaa gagaaaaaaaa
ttaatctctt tttagaattgc aaacatattt cttgtatgga gaaaatcaat tcacatggca
tagtcgttat ttatccagtt caaaaaccag agttagaattt actactctgt ctccattttt
tctctcccca ccccccttaac ccacattgga ttccagaaagc ttccattctgc aatcagcatt
gtcctttatc ttccagtaa agatgcctt ttggagtcga agatgagggaa aagcctgtat
tttatAGTCT tggaaagtgtc ttctttqcc aggacaaqaga qaggagctc aqcaagtgaga
tttatAGTCT tggaaagtgtc ttctttqcc aggacaaqaga qaggagctc aqcaagtgaga

	gcaactgaag gggtaatacg tggaaacttgg ctgggtgtct gttaaacttt tttccctggc	1920
	tctgccctgg gtttccccctt gaagggattt ccctccgcct ctgcaacaag accctttata	1980
	aagcacagac tttctatttc actccgcgtt atctgcatcg ggccctcaactg gcttcaggag	2040
	ctgaataccccc tcccaggcac acacagggtgg gacacaataa agggtttgg aaccactatt	2100
5	ttctcatcac gacagcaact taaaatgcct gggaaatgg tcgtgatcct tggagcctca	2160
	aatatacttt ggataatgtt tgcaagttgt aagttatttc ctttcatctg tttcaaattgt	2220
	tagcattcaa tttagccct ggtttggct tcagtcgtt ttgcgtatgt agtgaagtaa	2280
	agacactagg attttaaaca gtaggaaaag ttaatttagt ctaactttta atatgcaatt	2340
	gagtttgct atataccatt gtactgtcat agttagagct gaaaattgtat gttttggta	2400
10	tcttttttc caaaggcaat tgagtaattt ggattctgtc tctagtcgtt ctgtctctt	2460
	agtttcctat acttgacaat gaggtcaaac ttagcaaata a	2501

<210> 59

<211> 2501

15 <212> DNA

<213> Homo Sapiens

<400> 59

20	ataaaaaaaag acatgaaatg aatcgaaaaa aatatttgc acataactaa gaatgaaggc	60
	ccttaataaa atctgtaaaa ctatacacac ttttagaat gaatcaacaa ataatttcta	120
	tgaatttagaa aaaagtgaca atccaactaa aaaatgaata agggatataa gcaatgttt	180
	tcacagaaaa aataaaaatt gacaatgaag ttatgaaaaa atgttcagtc tccttagtaa	240
	ttgcacaaaa caaactaaaa caatgagaca ttacccctaa gattagtaaa tgttaaagaa	300
25	aaataataat tggtgagggt gtggggaaat gggcacttac acctatgttt ggaaatataa	360
	attggtgcaa ctttataggg agagcaatct cacaacattt tccaaagact tacatgcaca	420
	accctatggc agagaaattt attcctcttc caggattttt ttcccttcaa aaacagtgtat	480
	gtggatgaaa aacacatgtt cactactgca caggtataa cagctgaaaa ctggaaacga	540
	taatactcac attcccttca gttagggaaat gtttaaataa attttacaag ccattctggta	600
30	gataccaggc atgagctaaa agttagggtc cagtttagaga tggaaagcac accagtaatt	660
	tgaaaggaa aatgtaatat gaagaattat taacttagtaa aagaaggcta actgctaaag	720
	gtacaagagc actcaagctg tctgcagtca gcaggccccg gctgggtgagc aggaagctgc	780
	ccgctggag gctgccaaag ttccctgaag gtgagcacca ctggttctac aagctgtgg	840
	cagtcatggc gttaaagagca ggaagagaag caccagaacc cgaaagagaa atccagtcct	900
35	ctgctaggcc ttgcaccgtc cctctggcgc cctctactga caaagccagt aaaattgtgc	960
	cgctagcaaa ggagatcttt ttatggatg tagcttggtg tcaccaaaga gaacagagtg	1020

	gacttggagc tcagatgcaa cacaatgatt gatactggca cagtatactt accctgctt	1080
	tgtaaaacaaa atggtatatg tcatgtctct ctttgtctct ctgtatataa aacaatattt	1140
	gtttctactt attatgtatt tatgtcttta ctctgcattc caggagctaa gtatggca	1200
	tgtattaact cattttgttc tcataataac cttcacatgc aggaatcatt atagctactt	1260
5	tatgaatgag ccgaggaagg cactgagacg ttaagtaact tgcccaaggt cacgcagta	1320
	gtaagtggca gagcaagaat tactatggct ttataaggct agaaaaaaat ctgaaagaat	1380
	caaaaatgtta acagcgggaa cctcaaggaa gcattgaaga gccatggga gaagtttca	1440
	ctttgttaaa aaatcagtcc ttcaaataaa taaatacagt gaggctccc cagaagcaga	1500
	tgtcactatg cttcctgtac agcctgtgga actgtgagcc agttaaacct ctttcttta	1560
10	taaattatcc agtcttaggt atttctttt aacagtgcata ggatgagctg atacagttc	1620
	ctacactgta acctaaggca atgccttgca caaaggatg agccagattt cttagtaatt	1680
	aaaacgc当地 tacaaaccac aagcatatcc attcatgaat tgggggctg ctttgtgc	1740
	atagataagg tatattttttt aaaaaaaaaa ttttccaag aagaaaataa accagttaat	1800
	aaacgacaac tcacagtgcc aggaagttag aaacaagtgt gtgataaacg gtggagaatg	1860
15	ggagcactct ccgcgtggg cgggaggaga cgaggaggc gttccctggg gagttggcagt	1920
	gggtggagca aagggttggg ggaggtaagt catgtctct gagttttgg tttctgttcc	1980
	accttgc当地 tgagctggc tgaaggctgg ttgttcagac tgagcttcct gcctgcctgt	2040
	acccgc当地 cagttcaga agaaggtagc tggggctgc ctgaggaata ccagtggca	2100
	agagaattag catttctggg gcatctgctg tctgtgagat taagcactat gtatattgt	2160
20	ttattcactc cccacagcaa ctttaccaag cagttttt ccacgtgaaa agatggaggc	2220
	tgggtggagc aaaaggaggt atttagagtc ctcagcaagt gagaggcaga gctgggattt	2280
	gaatccagat ctgc当地 gtaaggctta ggctggttcc acctctccgg actgc当地	2340
	aggagtaga agacagatatttttacccat ctggctgttt ctagaagtct gaccctgctg	2400
	gctcaaaacg acttttagttc cttgcccaga ggctgc当地 tgccggtaa gacatcagta	2460
25	gaaggaggc ccagccagag aggctgacat gggcttctac t	2501

<210> 60

<211> 2501

<212> DNA

30 <213> Homo Sapiens

<400> 60

35	cgggc当地 taatcactgc ctcccatccc cttaaacatg ccaagatgct ttatccctag	60
	gatgaggtga cttactccag gtaactccta ttgc当地 aacc actgaccaat tactctgccc	120
	tttagtcttt atgtcattaa atctgcattaa agaatttcat ggaataggcc cggcatggc	180

	gctcatgcct gtaatcccag caccttggga gaccgagggtg ggaggatcac ttgaggtcag	240
	cagttcgaga ccagcctgga caacatggcg aaacccatc tctactaaaa acacaaaata	300
	actagccagg tgtggtggtg ggcacctgta atcccagcta tttgggaagc tgaggcagca	360
	ggagaatcgc ttgaactggg gaggcagagg ttgcagttag tcgagatcgt gccagtgcac	420
5	tccagcctgg gcgcacagagc gagactctgt ctcaaaaaaa aaaaaaaaaa aaactcagg	480
	aatggatagc agcattgatg aatattgcgt ctggagagat cagatcactt gtcacttgtt	540
	tccaggcaca gggcttacca agagggcagat tccagattta aataattctg taacagcaaa	600
	gtccaagcta tttcactgc tttggagaaa agaccagac ccagagcttg aacctcactt	660
	tgcagcaccc cagttctaat cttttaagtt tttttttttt tttttttttt tttctgctgg	720
10	gcacgggtgt tcatgcctat aatcccagca ctttggaaag ccgaggggga aggatcgctt	780
	gaggccagga gttcgaaacc agtctggca acatggcaa accccatctc tacaaaaaat	840
	acaaaaatta gcccagagtg gtggcgcgc cctgttagttc cagctacgtg agaggcggag	900
	gtgggagaat cgcttgaacc cgggaggcag aggttgcata gagctcagat cccgccactg	960
	cactccaggt tgggcacag agcgatacccc tttttttttt ttctccaacg	1020
15	ggctticcag agaagtgtgt gatatgtgcgt gtgtgtgcgc gagcgtgctt gcttgggctt	1080
	aaactttctg tcgggcccaca ctttcccaag tctttgcact ggctgttaggg tgggctttat	1140
	cctcgggacg tcctcctccc caagtccagc ctgcagctgg aagtcttcac tgatctccat	1200
	ctctcctccc tgatctccgt ctctcctccc tgccgcctc aggactggga ggccgatctc	1260
	tctctctcgc cctccctcc accagccctt tccagatgta tgtctgccaa agacccccc	1320
20	gtgcagagga tgatgaatga agatcctcg gccagcccg tggaaagtt tcgtgcctta	1380
	caaaagcgcag gaaaaaggaa gggaaagttgg ggttagggaa aaagtttagag ctgagaggct	1440
	ggggcgcgcac gagtctggac accgggcggg gacccaagct ctctccgcctc agccaataaac	1500
	tgtgcctccc ttaggaaggc gtgagggaaat gctccaatca atccctgcac tctcccttg	1560
	gaatttggc tttttttttt tatttactgc aaacccaca atccacccag gggtttcccc	1620
25	agtgtttgcc tccagcggc cccgtgcccc tttactagtg ctgctccctc tcttcgccaa	1680
	gactgcgcctc cagtcctcagc ctccctctcc ggggtgcct cccaaaccgt tctatcattc	1740
	tcgggttcag ggaggcggaa tcgtgcctgc tctccggttc cttaagagg cgtcgctcc	1800
	acccctctca gagtcgcggc ctgacgcgcg atgacagcaa cgagttcggt atgtctatgc	1860
	aaataagcgc cctttgtgg gccaatgggg agcggagggtg cccgaaccac ggaccaatgg	1920
30	ggcggggcgc ctggggctca ccatataagg agcggcctcg ccataaaaagg aaacattgta	1980
	tctctttata tggggggaaag ggtcggggaa tccctccgc gccagcgcgt ggtccggcc	2040
	ccctccaccc gccgtctcgg cccgcggccag cagccctgc ccccccgggg acgctgacgg	2100
	ccgccccggcg cccgcgccta gcagacggac agggggcgt ggcgcggcc tggggcaacc	2160
	cggggccacag gggcaggaaa gtgagggccc aggtcgcccc gggcgtgcag gggccccggg	2220
35	ttcgcagcgg cggccgcggc agcgatacg gcactagcag cagcgggagt gccgggttga	2280
	gccgggaagc cgatggcggc ggctgcggcg gctccgattc ctcgcgtact gcccgtccgc	2340

cctcctgcat cgagcgccat gttaccgacc caagctgggg ccgcggcgcc tctggggccgg 2400
ggctcgcccc tggggggcag cctgaacccgg accccgacgg ggccggccggg cggcgccggc 2460
gggacacgca gggctaacgg gggccgggtc cccggaaatg g 2501

5 <210> 61
<211> 2501
<212> DNA
<213> Homo Sapiens

10 <400> 61

ggaaccctct gatagagagg gctgactgta ttatttggaaa acaaaaacaaa acaaaaacaag 60
ggtgttattg gtggacccat gcagctaaaa cccttgggt tcccagggtca actgtatatc 120
cagagcttat aggaaaatac ctctccagt aaccctgctc accatttctc tcttaagcta 180
15 ttattatgt tagccacggt ttgctattta aattttaaatt taaaataaaaaa tgtggccctt 240
cagttatgct agccacattt aaagtgctca atagccatat gtggctaattt gttactattt 300
cgAACAGCAC atatTTAGAA cattcccatc atttcagaaa ttttcattgg gaacactctg 360
cgaaaaaagg gggccatcat aatgtgagtc catcttctgg aaaaatccctg ggaaggggac 420
aaaggaggtc tgTTTGGCAT tgtgtaatgg taatttggta ttaatttttcaaaaatgttt 480
20 accaattcc tattcatcag ccaggtgtgg tggctcttgc ctgtatccc agcactctgg 540
gaggccgagg tgggaggact gctgcagccc aggagttga gaccagcctg ggtataata 600
gggagatcct gtttctacaa aacacccaaaa acaaaaacac aactttgtat ttgtggagtc 660
aggacagtcc tgggttaaaa cctttgtct ccttagctgt gtAAAACCGTG ggtctcagct 720
ttcttatctg ttaacggtag gtacttcttc cttagggctgt ttgaggatt aagtgaaagt 780
25 ccaagattgt gtctggcaca cagtagcttc tcagcaaatg ttttcctcct atgtcaggga 840
atggctcctt tatcccgttt tgggccccatg ggtggccctg aagggtgggt gctcagggt 900
taagttctgt agatggcata tccttggaa aagcaaggca attaaaaaca gtgagaggtt 960
gctctggta agttttctcc tataactttc cccatgggtc aattgggttag aatctgcac 1020
tttcctaata cttaactgtatg gtatggcat tcggaaagcac aatagctgaa gccggagctc 1080
30 tgagtggaga gaaaggcttg tttctcaggc ccaaaaagag gttacacacc catggctgtc 1140
cagtttggtg gtgcaggccc tggaaatcaga ccaaaactggta tttaaatccc caaacctata 1200
ctctaaagcta tgtgaccttg ggctagatac ttcaccttc tggcctttagt aagttaggaat 1260
aataataata ccgtcttagt tgtagggatg attaaatggat gtAAAGCAGT GAAAACGTTT 1320
agggactgtg ttaaatcatt aaataaataa aaacggggat gaccttacatcg gcttgacaca 1380
35 ggggattaaa tgagataata tatgaagaca agtacacggc aaatgcttaa ttaatgttgc 1440
ttatTTTAT gtctgcaaac tgacttaaag gggaggcctt taagaaagac agtggggcaa 1500

	tttgcgcgtt gatgcattgt aggagaaaat gtgcaggggg cccgttggga ccagagttca	1560
	accaggtaag cggcagaaaa ccacaaatac ctccaggcgct tcctgggca gcgcgcctc	1620
	ccccaaatca cgcaaaactt ggtttgctaa gaattgtcag ctcttctaaa ggaggcgctt	1680
	cacgcacatctc agtctgtgaa atgggaccca ggaccaggat agaggtgcgt tctcggcctg	1740
5	gggaccgagt attttgtcgct tcggtaac gcaggaagac acgcgcactg acactctaga	1800
	gaccagcggg cacccgcctgg aggccgccttc accacttggc ggttccgggt ccgcgcctca	1860
	ccgcgcaca agactcacgc ccgaaccacg tgatcagggc cgtggctccg ccccgctccc	1920
	gcccgcgcgc cccgttccgg taggggcgga aagcggaaat gtgggagggt ctgcggggcg	1980
	ggctcaggag gtccgcggga ggatggagca gtgagcgggt ctggcggct gctggcagcg	2040
10	ccatggagac ggtacagctg aggaaccgc cgcgcgggt aggggccact ggctaagagg	2100
	acgggcattgg ggtcaggggaa agaaaaggcg ggaactgggtt gaggggatac acctgtgtgg	2160
	gagtcggcg agctaagcga cccagccat gggcacctg ctgagtgagg ggggggacgt	2220
	ctggtgggtg agggtccggc tgaggggagc atctgctaag gaggttagac ttgggaccgg	2280
	ttagagggag cactcgctgt ggtgagactg tgctgaggaa cgtggggaca agttagggag	2340
15	agtacctgct gaggccgggc cactcggggg aacgctatcc aagcaggac tcacggaggt	2400
	ggggcgaat gctgaagcag ggtgagaatc tgtgagggt ctcttaagg gggtgatcg	2460
	agaactggcc aagaggaagg ccgggtggac tttctaagg t	2501

<210> 62

20 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 62

25	gcatggtggc tcacgcctgt aatcccagca ttttgggagg ccaaggcagg cagatcacga	60
	ggtcaggaga tcgagaccat cctggcgaac acggtaaac cccgtctcta ctaaaaatac	120
	aaaaaattag ccgggcatgg tggcggcgc ctatagtccc agtacttcgg gaggctgagg	180
	caggagaatg gctgtggccc aggaggcaga gcttgcgggt agctgagatg atcggccac	240
30	tgtactccag cctggcaac agagtggaggc tccgtctcaa aaaaaaaaaa aattactaca	300
	tgatactaag taatgcggaa ggtgactcaa agggggaaag gaacacagca gtgtaaagga	360
	aggaggttgt agatggatct agaatttccc cctcatttcc atcaggatgaa agcctgagaa	420
	aactgcaatc tttgtgcagg ctgggtttgc tttgtacaca ctggccct agtgttcatc	480
	tccaaataatg ctgacaactc tgaaaaccat ctgttagacat tctgcggct ccatctcagg	540
35	aacaatggct atttttcgg gtagttgaag caaaattaag tccaatgata agcaaataata	600
	accattatca aaatcttcca tttatgttttgc taaaagcaac ctaagtatga tctgagaagg	660

	actctgtatt ctatatttga gtccttgg atgaactgta acctagctta ataggcagac	720
	aagattgaaa acctaatttgc ggagtatgtg ccttaacaa tagctgagtc ttggccaatc	780
	ccagtgccca tacttcaacc attcatacac tgctgagtg tcaaactgtg ttcaaagaag	840
	gcaaaagcca acctgttaacc aatccagttg tttctctgcc ttacctccaa ttctgtatg	900
5	tcaattccct tttttgtct ataaatatgt tctgaccatg aggcattccct ggagtctctg	960
	aatccgctgt gattctggaa gctgccccat tcgcaaataatca ttcatctactc aattaaactg	1020
	ctttaaattt aattctgctg aagttttctt ttaacagggtt tagaaaaaaat aatggcaaaa	1080
	atgaatgaaa atccaataac cctggaaagca gaaaaggctg ggggctccaa taagtgtaaa	1140
	tagtcccatac cctatatttt ctccatggca attacaatcc agcacattat atatataattt	1200
10	tttgcttct cgcattttgg cttagggtaa agcttttaa aacaggcact gccaaccagt	1260
	gttatcaaga aggtctggat gccgtttgt gggAACATTAAAGAGGAA TGTCCAAAAG	1320
	gaaaaggggg atgggttggg agaagggtat caggcgggta tctcaaaacc attcttaggg	1380
	ctataggttt aatttatttt gttgtggacg tcagagccgt catggtaaga aggaagcaaa	1440
	gcctttgtta ataattaaag cttcagaag cagcgtgccc cattgcccac tagtgcgccc	1500
15	tgaagtctgg tggtcaccta cagggccct ctcagcactg cccaggcctc ccgagtgtc	1560
	cagcacagta gcttggagct tggtggttt gtgaccaaga tacactccag ggaatatgcc	1620
	atgcagtggta gtctctccc cgccactgca tagcaaaagg aaaggccgc tgggtgtctg	1680
	tgggtctgg gcagtcacag aagccaccgc gctggcgggg aggagggggg ccgatgcgg	1740
	ccatgtcccg ggcagccca cttctctgc ctgcgaaggg ccctgtccg gcgggaggag	1800
20	agaggcgcgc cccacccggg ctcccttaca cctgcccgg cctgggcccga ttccgcggc	1860
	ctcgccggc gcttcagccg attccgcggc agctccgggc tcatggcgc ggtcagcagg	1920
	gcggggccagg gcggcgggg ggcacactgg gaggaagtgc gggccgcctg cccggccgc	1980
	ttaaggaagt tgcccaaaat gaggaagagc cgccggcccg gcggctgagg ccacccggc	2040
	ggccgctgga gagcgaggag gagcgggtgg ccccgccctg cgcctcacct	2100
25	ggcgcaggta ggtgtggccg cgtccctac cggccggga ctttctggta aggagaggag	2160
	gttacgggaa acgacgcgt gctttcatgc ctttctgt tctacattca tggccgagg	2220
	taaaagtgtct gaaaccatgt gaataaaata cagggtggtt ccgcctgtt cgtctgtaa	2280
	cctacccgcg ctgggatcc agaagctgca cggggagaga ggggctcagg cttggggcga	2340
	ggggacggag gtcagaccgt gcggaaagtgc accccggcac cccaggccgc ccaggcccc	2400
30	agggagcgcg gaaagtgcgg tcgcggcccg gccctcgaaa gacgcggat tggatcagg	2460
	cacagcgcga ggaagtgcgtt cttggagcta gaacattttc c	2501

<210> 63

<211> 2501

35 <212> DNA

<213> Homo Sapiens

<400> 63

	ccaaaagat acaaagggt ataaggtaa aaattattct aacccatccc tcagtgacct	60
5	agttcccttc ctctgaggta accaatttct tggatctt tcctgagata atctatacat	120
	atagcaccat atacaagcaa atgaaatatg ttttattttt ttttttgaga ctgggtctca	180
	ctctatcacc caggctggag tgcaatgaca ccatttgc tctccgaac ctctgcctcc	240
	tgggctcagg tgatcctccc accttaacct ccagatgc tggactaca cgctcacacc	300
	accacaccca cctaattttt gtttttgt agagacgggg tttcaccatg ttgcccgaggc	360
10	tggctcaaa ctccctgaggta caagtatct gccacactcg gcctccaaa gtgctgagat	420
	tacaggcgtg agcctccacg cccggccca aaatctgttt taaaagcaga catttcttgg	480
	tgattctaat aaagggggtt ctcagacata tttggaaaaa tatatcccta ctttatgcc	540
	agaccctgtg ctgggtcccc gggctgtgtg acctgacact gcacagtct gcctagaatg	600
	cttaaagaga gttataagg taccacccctc tatccatag gcggggagca aaggggctcc	660
15	agtggccct gccttaggagg cctgaagcta gagctgtga gggcagggt gtgctgcaaa	720
	gaaaatgtct gagagctgca ggcgtttcat cttctgtcat cagctgtggc acctggcaga	780
	cactggatag gctttagac aaagacctgg taactcaagg agctgcttgg ctttcctgcc	840
	cagtccttc ccagaggcac tgtacatctc tggtttctc agggggccct gtgtggaaat	900
	atctttgtc tccctgggtg caggatatac atcacgtgcc tggggcttag gcggccccc	960
20	cgcccagtct cctaggatgg ggagagtaat gttcccgagc agaacagggt ggggctttca	1020
	gactactccc tttccctttac agctggcttc attccatcga cctcatcaaa gccttcctgg	1080
	gagcacccta gagaagagtt acgtccagggc cggggctgg ctgcctgggt cacggcggaa	1140
	tcccccacac cacgcctcg acgtcggttcaaagcatgt ttagtgaagg agtaggtacc	1200
	tactgctaga tggagccatc tctctagact tggggttcc ctataacgat ggctatgttt	1260
25	ggcatggaaat ccttttaga agtcaatagt aggaataaag ggctaaacagc acctaattgt	1320
	ggagtaaggt tcaaattccta gctctccac ttaaccgttc cgaacctgtt ccctcactgc	1380
	agaggcgaaa aggctaacac tatttcacct cggagggtta ccgtggagaa tggaaatgg	1440
	acaagctgta tcgatccatc agtaaaacac acacacacaa gcgcggccacc cccacccac	1500
	cccacccacat gaatgaacac acacacccgc gcgcgcacat acacctcagg aatgaacaca	1560
30	cgcgctaca cacacacgca gccccccca ggagtgaaca cacacacaca cggccgttc	1620
	tgttggccc aggaacacac acagagacgc acacactcgc cgggtttgt tttttccagg	1680
	cttttaact ggggtctttc actcggttta gggcaccgct gcctgaaaga cttttctagg	1740
	ccagtcgggg tccggccccc agttgacgag acagcgccgc gctttcagag ctggggagag	1800
	gcgaaaactc ttccggccccc ccgtcccccc ggcagccgc cccggcgc tccttgcgc	1860
35	ctcccgccct gggccccc agccgttctc gcctgcccgt caggcgatct cggcgccag	1920
	cccaagccgcg atgtgacgccc gcgcgcggc gggcctcg cgcctgcgc ctctcctata	1980

	aagcagacgc	cgcggcgcc	tgcgacgctg	tagtggcttc	gtcttcggtt	tttctttcc	2040
	ttcgctaacg	cctcccggt	ctcgtcagcc	tcccggcgc	cgttcctta	acaccgaaca	2100
	ccgtgagtag	ccgcccactg	aactggaaag	ggtcgtggct	accggattgc	gtgccggctg	2160
	gcctcaccgc	tgcggtttg	gcctgcccgc	ggcggggcgt	gactgggcct	ggccttcttt	2220
5	cgggccccgt	ggatcgcggt	gtcgaccctg	ttcttcggga	gacactacca	ggttccggttc	2280
	acctgccccg	cccccgactc	agcgaggcct	cctctggccg	ggcgtcctca	cggcgtcctca	2340
	taagtgagcc	gaaccccggg	ctgggccttc	tctgcacccgg	ccgagcgtca	gccggcgcgg	2400
	agctcggtct	caaggcccag	gctgcggccg	ggggcctctc	tttgtcttaa	gcctgtgtc	2460
	ccggggacca	gggcgggggt	ggcggcgggg	tttgtaatgg	g		2501

10

<210> 64
<211> 2501
<212> DNA
<213> Homo Sapiens

15

<400> 64

	gatctgacag	gttaaagggt	tacacttatt	ttctctgtaa	gaagcgtcat	ctggtaagat	60
	gatcaagaat	ggtgcaaagc	aggatgggaa	gtttaaaatt	gtttccaaat	gtggaaatgt	120
20	aaatgaatat	aaacatgtaa	attttaata	taccaaactg	atcagattct	gtgttaatttc	180
	caagtttctt	ttttcttca	aaactcctct	gaaatctgac	tgtccacaaa	aacttacttt	240
	atagaatttt	atgtgattta	tttactcaga	tattatactg	acctcacatc	cagtagtgaa	300
	aacagatttt	attttagaat	ctggaaagat	agagggccat	atagttgtt	ttttcagttt	360
	tgtttatact	aacacgtgtt	tacaacccag	tttaatttac	accctgtatt	gtattattgt	420
25	tgtcatatct	ctgtatgcat	gtaagtataa	tatgtgttgg	caaaggaaaa	ttttgagtaa	480
	gaagaagctc	tctgatctat	ttgattcaat	atgtatttga	gtgtctaaca	gacactgttt	540
	tagacactgg	tgataacaaca	ctgaacggag	caccaaatac	tttacagcgt	ctcctggagc	600
	tgttgtcaag	acatactttc	caagggaaat	atttcagaat	aggtgataac	tagtcaacga	660
	aggaaaaagta	ccttagtcat	ctaggagagt	tgtactttaga	gtgaactgaa	ataaaactaag	720
30	ctcacgaaag	acagagattt	tttgtttggc	ttttgtctgt	tgcattcaact	actgtatctc	780
	cagggcccaa	aatagtgc	ggctcataat	aagtattcag	caaatatatg	ttgttatttg	840
	gagtgtttgt	tttgaatttc	tgtaatcaa	cacatacctt	gttaaatttat	ctttacatct	900
	tgcgttgta	aaattttatc	tcagttgctt	tgttttaat	gttaccttgc	tttttgttcc	960
	tacttgtgcc	atacatcagg	atgctggaaa	agtttattaa	tattgacagt	catatggta	1020
35	tctgatattg	aaaagaatag	atttggaaag	gaacctaaga	ggtcatctt	tgttcagctt	1080
	cctgcctagg	aaaactaagt	aagatgatta	ggtatgtata	tttaatttagt	catttaaaaa	1140

	aaaaccagga caacataatt gagttccctc ttgagaaaat ggagaaaagg acttaaccct	1200
	agctataaaag ggactaacct ggaaattttt gaacttctgt gtggggaaagt ggaaaaaaaaa	1260
	aaaaaggcaca actaagctgc tctttgttga tatcagaaat gggcctgtca ttcattttgg	1320
	cattgaagca tagcctccta tctcggggca ggactgggac atttttttcc tcccacaaga	1380
5	gctggacagt tattacaggt tcaaaaagcc ccgaccagg ttcaagagt ttctcctcct	1440
	cttttcccccc tgaaaactcggt ggtgcttttgc ctctgcttc aagatgcatt aagtctcctg	1500
	cttttgtact gctttggagc cagcagatac tctgatatgt ataattcaaa ttatgcagg	1560
	ttcacgagta agtttaatct tatttttaa gtttagttaaa aggcaagtga tatttagaaa	1620
	aatgttaact tgttagttatt tcacccttt tacttaagc atttttatttgc ttctcggcc	1680
10	ttttggtctaa gatcaagtgt gtactttaag catttttaa aataaaaata tccttttaat	1740
	ttaataagaa aacaagggttc tacatagaaa agcccttca tctaagacct gcactttca	1800
	atttcttttgc agatgtctt gttgtaaaca gtattcatat gtctttgaa agccagttaa	1860
	ctaaacagtt ttcttgagca tcttttagt tttactgaga agtattttaa attgagcttt	1920
	tctgagctcg attgcttacg tctgacacag tctcaagttt ccactgaatg gtaacaaaga	1980
15	ctgtagaatg ttgttggtagc tgcaagtgaga ggcatgcttc cttagaccag gtaagagaga	2040
	tcaagtttttgc tctcaactgctt gggtagttt ttacagctct tattttatat tcttttaagca	2100
	gcagcaatat taaattgata aatagccagg agcacgctga ttcaagacg tccttgcttg	2160
	ttgcagacag aaaaactaca gggttatgta tgggggttgg ggtggggggg gaggggaaga	2220
	attagtttat tactcagttt cttatataaa ttaattaaaaa tgtgaaaata attctggagc	2280
20	tcaagtttttgc taattcagga actaaaggcag cagttgagga aatcagtaat tttaaaggta	2340
	cttcatgggtt attacttgc aaagcaattc aaaggatagt ttacttcc attttttcc	2400
	ccagtagtttataaaataag ctgtccctt aactaaacat ttttccact tacgaaaact	2460
	tttaaattgc caacagcaaa atatacttcc caaggatcct t	2501
25	<210> 65	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
30	<400> 65	

	cacaagtcaa gaccgctccc tgcttcttag cccgctgggg agccaggcca gcaggccccca	60
	cattcctgag gaaggggacag ggttctggcc tggagggtct agcagaagcc accccagggg	120
	aggccccac aggaaggaag gtggcctgc cgaggggggca tacaggagct tcctctcccg	180
35	ccacagtgtc caggccaaac tgctccagcc ctcaggctgg gtcaacagga tggacagcc	240
	caggcgaaag gaaacctgtg gggagggaca ccccgagac agaagcaggg acatgggtg	300

	gggagaggca ggaagagctg ccgggctgct gagctggcgc ctctccagca gactcaggag	360
	ggcggtgac aggaggccat tccctctca tccccgcagc cctgggcctc tctggtcctg	420
	gccaacagta ttactatcat tattattgct gttttcgct agcctgggcc ttagatacat	480
	tagaaaaaaa ccatcggaaag atacgcatac cattggcagt ttctaaaaga attaattccc	540
5	ttcctgtt cattctgtga ttactggat agaaatgcta tttgcattac cagccttca	600
	ttcagttaca gagacgtgag tgctcgaagg agagacagtg attttgccct taaattcagc	660
	ctgtccaaat cggataagat ctccgatttgc tttaagccc cgttatcact gccttcctct	720
	ccaacaacag ctgctgtat cacgcacaaa cggccaaacg gggcaaatc cgtgccaag	780
	cagggccatg ggcttcctg atcagaaggc ctagccccag ccccccaggcg cagcacacgg	840
10	gcggcttcct ttcaaaaaacc cagcctgcct cccaccagct ggagtgggtg ggtggggcg	900
	tagtggtgcc agtttcaggg aacggccggc aaaccacccctt ccaggcgtgc tccagcggga	960
	gcctggagac cctaggagag ccctccccac aagcggcttc caggcaggac gcttccagag	1020
	gtcttggtcc aggggtgggg gtgaggtggg gtctacccctt gaaacagcta caatttaaac	1080
	ttcagctaca ccgagctcaa actcgattcc gcagccgagt gtcggcgcaca gagaaggata	1140
15	aaaactcggg tctacggctc cccaccacgc ccctggtccg gtccctctggg cttccaggag	1200
	tcctcacgcc atcctctggg ttgcccagga ggaaggatgg gcggggcggg caggcgtgc	1260
	gggcgctgca gatggggagg gcgagccgc ggcacggcgt gacggggggg gaggcgcgcg	1320
	agcagggtgc ggctccgtga cagggtcccc catccgcgc cccagtgcctc cccgaggctt	1380
	agtgaggcaa aacccagcaa atgcttcaga aatgcagctc agtcggtcac cgggttctgc	1440
20	ttcctcatca gacgcgcaag aggatggcgc ttccaatgca aatcttctgg ctccggccccc	1500
	ttggctggca gccgcccgt ccccccgcctg cctggcgtcc cggccactcc gtggcggtct	1560
	gagacgaggc cggcgccgga gggacgggg cggagcgggc atccctcccc accccccacg	1620
	tggggctggc cctccgcagt gctggcgcc gctcagtcg cgcgcctcc cccggccgcgg	1680
	caccgcctct ctaggcaggc gcgggggacg aggggcaagg agtggggcag gggtgggcga	1740
25	ggggcggggg gcgtcactca atcaggtggc ctctggagtt ccccgggca gggcagaggg	1800
	aacacgctgc cggggattgt gtacacgctc cactgacacc agcttcacgc tgccggcag	1860
	tcgcccgtca cgcgtggccc cgcgcggcc ttggccggcg ctcacacac ctttgcgtt	1920
	gattggccgg cctcaggctc cgcgcggcc cccgcgcgc gcgcggggca ggctgagcgg	1980
	ctacctgaat ggggaggggg cagacggcgc tgagcgcgc ggcggcggga gcggcgtcga	2040
30	gtgtctccgt gcggccgtct gtggcaagc agccagcagc ctagcagcca gtcagcttc	2100
	cggccggcggc caagcagcca accatgctca acttcggtgc ctctctccag cagactgcgg	2160
	taagtcatggggatgccc ctgtgttcc tcgcctggtc ttgtctgggg ggccaaaggg	2220
	ggcgcgaacc cgcgcggcc gacatcagcc atgcctgaga attggggctg cagcggagtc	2280
	gtggggaggaaagg aaagggttc ctcgcgtcag actatggca ttagtgggg cgtgtgtt	2340
35	ggggagggggg tcgaaccagg gggctggat cttcagacag ggacagggt ctgtcttag	2400
	atgtactgag gggaggac aactccgcattt ggagacccga gagggtcggt gaggaggagg	2460

atgacgagcg ggggaggagt ggggaggggg ccgttgccct g 2501

<210> 66

<211> 2501

5 <212> DNA

<213> Homo Sapiens

<400> 66

10	ggggctgttag aaatggcggc cccatctccc aacaacttgg gcattgtcaa tatcacctcc ttaaagggaa ttcctttgg tcataccgtc tagagcagcc accataactt ctgagcgaaa attgctagct gatataatatac agaaaaatac aaattccaca aaagcaggga ctggtctgt tctccctg cagggcccag gttctggcac atagttggtg cagaaagtgt gcagcctc gtcctatcca agccccagg gcatcacact cgggacttgt tctgcattt tttactttt cctcccaactg gtacttagtto ttccgtggaa cagcctgagt cccttcagat acttaatgtt ttttctcaag tgctgccatg aagccagatc tccaccgtct tggggcatc ctttttaggg atgggaagta tatgtcgctc ctttatgtt atttacattt tattttggat aatttggcca tcaccgttgt tcatttcagat ctgtttggat ctcggccatc tcagcttc tcttttaat ctgatcgaca gttacctcca acagcttcat cacaatcac tcacaaaaat 20 ggccttaatc ctgaagttt tttacggaga gcacacttgc taggtgtgtg gcagatatac aggaagcaca agatgaggca gcagatctag aggcaaatga cttccttctc cctgcctagt ggtgactgcc agcatcacgc cttccggga gaggtgagaa acccctccac gcaagcactg gaaccttcac agtcaagagt ggcaacagct cccgttactg gacttggcc tggtaattc taatactctg tgactccaca tctggctga atttttgc agtatgtatgg aattttacatg 25 cttccctccct agccccactt tgtctgtata gttggatat ttgggtgcct cctctggagg gatctagttac gtttagagtc tagacgctgg aactgtcaaa gttcagagga aagagctcca gctgcaaagc aagagaaatg ggctggaaatt ctatccatc cccttaatga atgcttctga ttttttttttttttttt ttgagaccta gtctcactct atcggccagg ctggatttca gtggccacga tctcagctca ctgcacccctc cgcctccag actcaagcga ttctcgtgcc 30 tgagccctt gagtagctgg gattacagggc gtgcgttacc acggccggct aattttgtt tttttagtag agacagtttt tggccatgtt ggtcaggctg gtcttgaact catgacccatca agtatctac cttccctccgc ctccgaaatg gctgggatta caggccggag ccaccgc cagccgttc tgatcattaa aaaaaattttttttggc gggggaaacg aagtgtccct ctgttgcgtca ggctggagtg cagtcgttactg atctccgttacttccatc ctgcctccca 35 ggttcaagcg atttccctgc ctcagccctcc tgagtagctg ggaatacggg tgccccccac cacacccaggc taatttttgc atttttagta gcgatgggtt ttcggccatgt tggccaaggc 1620	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620
----	---	---

	tggcttcgaa cttctggcct caggtatct gccttccttg gcctccaaa gtgctggat	1680
	tacaggcgtg agccaccgtg cctggccaaa aaatttatgt tttaaaaaga ctatgtcaagt	1740
	gcagtagtga gaagggggga aagagtagag caaggagtttatactgttgc ttctgaccat	1800
	tttgaacaag ttacctaatt ctctgaggac aagctcgag aatggagag acagttatct	1860
5	atttgcaggg ttgttggag gaataagtga catcatgagt gtgtgccagg tgtctgatta	1920
	cagaaggtgt tcaattaatc tgcaatcatt aattaaccct tcagtcgtg gtattatttg	1980
	ccatccatcc tccgagtgtt gccaagttat gggtgcgttc tgccagcgtc cttagcagtgg	2040
	taaggcttct ggctgccagc ggcgaacctc tcccttcgag tatttctcct cttgtctgaga	2100
	tgaaaatgcga cgggtctct ttaagggccca ggccgcggga tccaggccgc gcccaacggc	2160
10	tggactagca gtgtcccgcg ccgactcgca caagaaggaa ccccggcct ctggatccgc	2220
	tcgccccgtt atgctgtgtt ggccgctcgcg gggctgggccc gcccggcgc tgccgtgcctt	2280
	tggccggga agtcgcggga gcccgccctc aggccccggg ccgcggaggg tgccgtgcgg	2340
	ggccctggcct cccggtaacg cgccgttctgg tcccgctcc caggagcccc tatgcgcggc	2400
	cctactcccc gccccctcgcc ttccggaaacc cggccgagcc cgaagcgccct ttcccgaggc	2460
15	qcqqqatttc ctccccggct qccggctggga cggggggccgc c	2501

<210> 67

<211> 2501

<212> DNA

20 <213> Homo Sapiens

<400> 67

	atggctcgaa tttcctgacc tcatacgatccg cccacacccg cctcccaaaag tgctgggatt	60
25	acaggcgta gcccactgtgc ccggccctcta tcagcatttt ctttctttt ctttttcttt	120
	ttttttttt gagacagagt ttagctcttg ttgcccaggc tgaaggcata tggtgtgatc	180
	tcggctcaact gcaacttctg cctcccaagt tcaagcgatt ctcctgcctc agcctccctga	240
	atagctggaa ttacaggtgc ccaccacccat gcccagctaa ttttgcatt ttttagtagag	300
	acagggttcc accatgttgg ccagtcgttgc cttgaactcc tgacctcagg tgatccgcccc	360
30	gcctccacct cccaaagtgc tgggattaca ggtgtgaaag agaccattcc cgatctcttt	420
	cagcattttc atactgaatg tccacagctg cccctgtgagg aggctttta cccatatttt	480
	ctgactcaga gagaagcagc cacatgtccc ttggccatgg cagttaaagac caactccatg	540
	gagctgggtg tcttagctca catctgtaat cccagcactt tggaaagcca aggaggatg	600
	attgcttgag gccagaagtt caagaccaggc ctgggcaaca tagccagacc ccattctac	660
35	aaaaatttaa aaatttagccca caaaaatttaa aaattaacaa caaaaagggcc gggtgcggtg	720
	qctcacgcgtt gtaatccccag cgctttggga gggtgtatca cgaggtcagg agttcgagac	780

	cagcctggcc aagatggtga aatcccacatct ctactaaaaaa tacaaaaatt agccggcgta	840
	ggtgtggggc gcctgttgc ccaagctaccc aggaggctga ggcaggagaa tcgcttgaat	900
	ccgggagtct gaggttgcag tgagccaga tcgcagcatt gcactccagc ctggcgaca	960
	agagcgaaac tccatcttaa aaaaaaaaaaaa aaaaaaaaaagt ggaagatgag gaagttgatc	1020
5	agacatcaag gatgagcggta tgacttaata ggcttccttg ctaagacttg gctggcgagg	1080
	tgaaagacaa agtcgaggag tggttatgggt gtggcacaga agaagggtca gaggacggtc	1140
	tttgttacct cttcatgcct gagtttcttc ctctgtgaaa tggggataat aagagccgcc	1200
	atacaggaa ttgctgctag gatcaa atga gataatgtat gtgaaacgct ctggctgttag	1260
	gcttcctcagc aaatgggcac gacttgcggta gtggggattt gaattcacgt ctggcggtat	1320
10	gtccaagctg ctaccctgac cgcttagggag cttcagagga caggcgctgca ggtgtacagg	1380
	aagaggactg gggcagggtgg gcgaggaatg cctcccagga gtgaaggagg gggattcta	1440
	gtcagcagga tggagtccggc caggtagaaa cgaggaaag gagacaggac cggatggaac	1500
	gggaaagcca aaggcaggcg cgtcggaggg ttgaatggtg gccggcgacg ctttgaacac	1560
	cgaggtgagg acatgcagct gtgtccttagg gtcaggaccg tacacgcctg acccaattcc	1620
15	acagcacgga ggggaaactcc aggatccggc cgcgttgcac acacacttcg ctctccctcc	1680
	cgccctctcgc aagccccctcc cccgtctccg tccaccgagt gccagccaat agcagaagcg	1740
	acagcgcate tgggtgccga ctcagccaat cgccgtctgag tgacgaatga gccccaggac	1800
	caatgagagt gcccacca tggcaaaaaaa aaaaaaatcc aatggtgacg agcaggagaa	1860
	acagagcagc tgccaatggg cgtgtcgctt tcaggcgcc aatgggagga ggcgtctcgg	1920
20	cggggacaa cagtagcta cccgcggag cggggagggg tccgggttcg agcttggtt	1980
	cccccggaag ggtgagtctg gacgcggcg cggaaggagc gcggccggag gtcctcagga	2040
	agaagccgcg gggactggct ggcgttgaca ggctgcactt ggatgggagc acctggtgcc	2100
	tcgggactgc tccgatgccg ggtgggtgca catcccagtt cccgcgttg ccggccgggt	2160
	ttagagggtt tggggggagg acatggggc gtgcagcctt cccagttgca aacttcactc	2220
25	cgaccctgtc ttcaaagctg ggtctgggtc cagtgggac gagaaggag gaaggagaa	2280
	gtaggctccg cgaaagcccc atccccggga tctcatctat aacatgaata ggtattaatg	2340
	gcaaaggcta attaagcgct tactgtatac caggcacttt ctctgcctcc tcgcgttaaa	2400
	tcctcccagc agcctttga ggtagacact gttacatgcc cattttccag atgaggaaac	2460
	cagcaacatg ggtggaaatg acagccctc cacttccata c	2501
30	<210> 68	
	<211> 2455	
	<212> DNA	
	<213> Homo Sapiens	
35	<400> 68	

ggagtgc_aag aacacaga_ac taaaacagag cttgaaactt aaagaaagg_g agagacttgg 60
gggaggagtg ggg_tggagtg acgtgatgtg ctgctggaaa ccagcagttg gtggttcct 120
cttgc_ttc ctcttc_tgtg_t ggtttctcc tgctgtggg agggccttt tctctcc 180
5 cgacagaaag gctatcttgc t_tgttgc_ttc cttgaactg taacatc_ttg taagggtatg 240
attccatgcc tctgtgtggg t_tgtgaattcc ctc_tatgg_tga ccctcaaaat ctgcacacag 300
gacccttcc cattgagggg aggggatcaa aacaactcta cttctcagg_g tcctctc_ttg 360
ttccactgg tctgtgtcc_a agagaaggct taggtaaatg gggccagctt gaagatcaa 420
caggttggc agcctctccc ggc_tctctt ttctctc_tta cagcttata gctacagctg 480
10 cctgtat_tatc aatattgact ttggctggct ggc_tatgacta cccacagg_g atcgtgc_ttt 540
aatttaccag gtgacaggca acgctgc_tct ctc_ttg_aac catccagcag agccagg_gct 600
gtaccccaa atcctgcaac agagg_ttcc ctc_tatctca ctc_tcc_tgtc ctc_tgattc 660
tcctatctca gtagctc_ttc tttccctc_ttc tggc_tttc_ttc tttccactcc ctc_tcc_tttcc 720
tggc_tttgg_t aaactagtcc ctaatctt_tcacaccc_tg attggaaggt ggg_tcc_tcc 780
15 ctgacactcc c_tcagagctgt caccaac_ttc ctcca_tagttt ctatagctcc attgctcaac 840
agatttgcca gggtaacca ttaacc_tac_tg c_tttaactct gttccccac ctttcttgct 900
ggaggggatt ttccaattac tggtagc_tac agcttagtca tctcaccccc accatcttcc 960
ctaacttctt ggg_tttgggg gctggggagg aatctccca tctcagg_tta ctaggaacaa 1020
agctggggag gatgg_tgcat ttaaagg_tat tatatatata tatatatata tttttttct 1080
20 ttctccctca taaccc_tacc cccgcaacac acacacacac acacacacac acacacacac 1140
acacacacac agacgcacaa ataagcttta tggagcagtg acttcattat gttcaccgct 1200
ttgagtccaa cccctggccc aaaataggca ctaaatagtt gccgaatgca tgaatgatag 1260
atacctctct gtc_ttcagg_g gtgtgt_tgaa gtgc_taggg gtatgg_tcat gtc_tcc_tagtag 1320
gggtgtgagt gttctgatca gaactacttc tctctg_tccag aattt_tgt_tgt aattcgaatg 1380
25 cttccac_ttc tgcttgaagg gtttaataa taaattag_tgc ctc_tgtc_tgc cattatggg 1440
gtggcatac cctgtaccc_tca ggaaacaggc acggtagggc tgagacagaa gtc_tctg_tttg 1500
tttccgctta tttat_ttgaa acaccgctca tttaggtctt actttgttt_tg ccaggcactg 1560
ttctaagctc tgtataaataa ttaactcaga gggtaacaaat attaacttaa gagttgttgc 1620
aggaaaaaaa ataagcg_tct ctggctt_tttt aagtttgcc tccccc_tcaa aacccccc_tca 1680
30 acgg_tcccaa accccttcc_tca gggactgg_tga ctacggaccc tgg_tccgacc ttctcg_tggg 1740
cttcccactg cgccaatcaa atcccagaaa cagtg_tgtgc tagaggcc_tg gctgct_taa_tg 1800
aacggcagag ggcgggaagt ttgaacgttc tggacccg_tcc c_tgaagg_tcaa ataggccaaat 1860
cagcgtcc_tccag acttcc_tcagc tacggcagtc cg_tctctc_tct ctc_tgc_tctg tcggatctct 1920
aggctggatc cgggc_tctc_tca_tcaacag cggctaggag ggcggggcgc gtcgcgcgc 1980
35 ac_ttcgctca cgcgc_tggcgc_tcg_tcc_tttt gcaggctcg_tgt ggc_tgg_tcg_tgt cagcggggcgc 2040
ttctccacc_t t_tgt_tagcgact caggttactg aaaaggcggg aaaacgctgc gatggcggca 2100

gctgggggag gaggaagata agcgctgag gctgggtcc tggcgcgtgg ttggcagagg	2160
cagagacata agacgtgcac gactcgcccc acagggccct cagaccctt cttccaaag	2220
ggtaaacctcc gcgtgacagg aatgagggtg gggcgcgtgg agtttccac aatctgtact	2280
ttagttaaat acccgagaat tcaccccttg tgtccacagc tctccacgccc ctcagccct	2340
gccccgcagc cctgtagcag aagtacttag tgctttgcat tctgcgcgcc accctacccc	2400
ggccctctgtgaatcgtt gcttccgaaac cgccctcaact ttttgcattcc gcaga	2455

<210> 69

<211> 2625

10 <212> DNA

<213> Homo Sapiens

<400> 69

15	ttttaaacga gaagtatgt ttccggagca taaaaactga agtgattca aaaccatgtt gcactcacac gaacagggtgt gcacttaatg gactaaacta gttcagctga catgtcttct tcatttaggaa cagtgtggag actgaaaaac taatttagcc tagagcagct atttaattgt aaagtctcct ttctcaaata ttgatTTact atgtgaggaa atatTTactt tgtatagaag tgtgtggaat tggacgaggg ggttgaccta cacatgtggt ttggtataca catacctca	60 120 180 240 300
20	ttacagaggg tgtaatgaag atatagggtgg ttcagcacca taggaaaggg aaaaaaagaaa aaaaaaagac ggtagaggtg gcctcccaag catccactcc cactcctctt gttaatgatt cacaatttgt tgTTattgtt gtcatTTactt gttctccaca cctttccaca aggccTgtgt gctttgaaaa aatatgttctc tactccggat agaagtgggg cacacagggc caggcgcggt ggetcacgcc tgtaatccc gcactttggg aggccgagggc aggcatca caaggtcagg	360 420 480 540 600
25	agttcgagat cagcctggcc aatatggta aaccccatct ctactaaaaa tacaaaaaatt agcctggcgt ggtggcacgt gcctgttagtc ccagataactt gggaggctga ggcagaagaa tcacttgaac cccggaggca gaggttgcag tgagccgaga tggtaccact gcactccagc ctgggcgaga gtcataatgag actccgttctc caaaaaaaaaa aaaaaaaaaaaga aaaaaaagaaa agtaagtggg gcacacgatt caggcctaag ctaaccagac caacctcatt cctgtatggtt	660 720 780 840 900
30	gttaatgttt cagatacggg ccccgagccc tacgttagaga agaggccaag gtagaaaaaca tgaatctgag gtaaaaaagaa atgaggtact tgTTTgcctc atcaaggctc tcaattaaac taaccttgaac gcctgtctt ccttggact tctagtatgt tcacccggta aagcccattt gtttcaggac gtaagagttg ggtttctgt gacttggAAC caaaaccatt ccaatttaca aaatgagcaa cttaatatt accatgaga aataacttcat tggtatatgc tctttcctag	960 1020 1080 1140 1200
35	cgTTTTgaa aactaaacta ggtgggtgaa aagtataatct ttgcatgaaa ctTTTcatt ccagaaaaaca ttttgcatac ttgataataa tggccaatgc tactatatcc aaatTTTgt.	1260 1320

	ctttttttt ttttgagaca gagtctcgct ctgccgctca ggtgtgatgg cgcgatctcg	1380
	gctcaactgca acctctgcct ccctgggtca agcgattctc ctgcctcagc ctccctgagt	1440
	agctgggatt acaggcatgc gccaccacac ctggctaatt tttgtatTTT tactgttagac	1500
	ggggTTTcac cattttggcc aggctggtct cgaactccc acttccagt atcctcctgc	1560
5	ctacacctaaa aagcaacttg ataaatccac aggctcggtt tttttaaaa attcttttaa	1620
	atacagtata cttttctctt ttttccaga attaaccatg aatcgcacac acagccagag	1680
	gcttttaacc cgagaacgga caaaggggcc tgcttgtgca atacaattat tttaatgg	1740
	taaacaaatt aatacataag accagctta cctaataataa taataacgaa ccaaagtta	1800
	caacagacaa gaaaagcacc agctgtcccc gccaccccg agcgatctcc aaggggacgc	1860
10	gggagagcgc cgcgggggac gcggaaagtct gacgtcacag gaactgggg cgggcgccc	1920
	aggcccgcac accctattgc gcatgctccc gcctccccc cccgcgcctg ggcgcgtgc	1980
	cacgcgcgcg ggtggcgccc ttgtactggc cgttaggtct ggcgcgttgg tgaatggcgt	2040
	tggggcggg aaagttgagt ctctcctgcg ccgagccttc gggcgatgt gtagtgcctt	2100
	ccatagggtct gagtctggga ccgaggtgag agccgcggg ttgggagtga gggagatgg	2160
15	aacaaggccg cccgtggggcgg aggggagccg agggaaaccccg ggggattttggg aggcttgggg	2220
	cggcgccggcc tggccgggct gggaccggcc tctcggccta gacgccccgcg atgctggcac	2280
	cctctgccac ctctcacctg ggccccagggt gtccgcctt gggcagcctg gagtcctccg	2340
	agggtggagg accggggcggg ggtggaggaa gtctttctt ggaagacttg ctgcctgccc	2400
	agatcgatat aacatacggag gtctctcctc ccaagagttt tggctaaaa accccteaca	2460
20	aattaactac cgttggaaat gtcaagctat gcaagaaaag ctagaaaagg ggaggggtcg	2520
	cccggttggag catttggagc ttttctggaa caggtgggtgt ttgcggaggt tgcctcacct	2580
	ccctgttagcc cacgtgtctc tgcttagggc agctggccct cgcca	2625

<210> 70

25 <211> 2540

<212> DNA

<213> Homo Sapiens

<400> 70

30

	tagtcccagc tactcgggag gctgaggcag gagaattgct tgaacccagg aagcagaggt	60
	tgcagtgagc tgagattatg ccactgcact ccagcctggg caacagaggg agactccatc	120
	tcaaaaaaaaaaaaaatcat taaaatacag taattcaggt ttattaagtc attaccattt	180
	ggttacctca caaataaact aagtttagat gcgaactcaa agatactgag acactaatcc	240
35	atttcttaag ctgctaagtt agccttctt aacacact tcgttagctct gcaaacaatg	300
	tacttttgcac atcccaagct cacaggaata aaaaaccacc tgccagttgt ttccgtttc	360

	caccttatgtc taatttatgt acttataattt ataagaaaaca aatcaactaag tcttatttca	420
	tccttagtta tggtgtttt ctatcgataa cagcatgaag atttcgggaa cctggacatt	480
	aaaataagt ttagtactgg ctttacaatc tacttaggtgt gatccgaggc aagtcagtct	540
5	cttcatgttt cacttcttcc acttgtaaac atctattcag aagttgctgt gaacttgata	600
	tttccatgct tataaaactga tttttgaaa agagcctggt acataggacg tgataataaa	660
	tgaaagcatt tgctactttt ggaaaaacaa gcatgacaag atagttata tactgttgat	720
	cttaagcaca gtatatgcat cttatTTTA gctagtctga cagttagata ataaaaagag	780
	ttatcttga cttgcactac gagtagaaga attcaacttc agtttctaga aagatgtata	840
10	agaattaaga gtggcagtc tcctagtctc aactgcccattt ttcccaccag gtggtaaatt	900
	cgtccagaga agaaaatgaa ttattgctat atgggattct gcagcaactt ctgtgaacat	960
	aggctcataa ttttcacca tggagactca agcttttgg agtcatagtt gttttgggt	1020
	ctatttgcag gcatgcatttcc tttgtccaga aatatacata acatttgca catggacctg	1080
	gaggtaaaag aggaggaagg cctgaggcta gacaccactc caataagtttca attaagctcc	1140
15	tagaaggcata atccacctt gcagagaact cttaaactatt aaaacctata gcttgaaag	1200
	cagcattttc aaagttaaga gaagaaggta gaagggtctt gagaggctac tgactaaaca	1260
	gatgaaaatg aaggatggta gtttgggcc aaaagaaaact ccccccaaaa atcaaacaat	1320
	aacaccagag taaagccctt agggcgagat aaggagttgc aacaaaacaa gcggaaaactc	1380
	gagaagcgct aatgcttcaa agggtcaatg accacacata atctacgttag ccaacgttt	1440
	aaaacacacc aacgcatttt ttttcctaa acaaagttagg aaagcggact ttgcatgagg	1500
20	ggcgggctgc cgaccaggca gtcttcctcg gacagtccgt cctgattctc tctgggtggc	1560
	cgtggagggc ccacatggct ccaaggcctc tcagctccgg gcccacacac cccgggctgc	1620
	cgccacaaact ccagccctag tctagatcca caaccccttc tcgaagatca accgcgcacct	1680
	gggagcccca cttcttacca tagcgaggcc ggcgatgccc cagccacatc acccttccgg	1740
	ggctcaggcg gaagaggctg catgtccgt ctgcccctt cgcctctcc agccgtccgg	1800
25	ttgggcttgt cacggcaccgc cttaccaaga cgggcgggta agacactagg ataggctct	1860
	ctccaccggaa aaaggcggga ttttagatcac gtcccgcagg cggcggaaag tagctgatac	1920
	tctcatttgt tgcaaaacact tgatctgtga aagcgggcgt tttggaaagat accggaagta	1980
	gagtcacgga gaggttaggat ccggaagtgg ggctgcctct ttaaataaca aaaatctgag	2040
	gttctgttct ttttatcttt ttgctttctt tttaaaaaaag ttccctgtca cttacccctta	2100
30	gaactccaca atgcgagaat cccctcaat ttgtgagctc ccgcgacttc ctcttgtggg	2160
	cttttgggaa tgcttagggtt ctccggcatta tcctcagggt ggcacactt cacccttctt	2220
	tcagttctc cgtttgcattc tgaggatttc ttggaaatgc gaagcacttt tgaaatgctc	2280
	tgtgttgtt gtgggattgg gaggacgggtt gaatccagag ggttagtgg agtaggctgt	2340
	ttgagcattt ccccagcaact ggctgtcct ttcaatcccc agatattggt aaactgtggg	2400
35	ttccaaccag gcatcgaggc tgaaacgtac taggcaattt gaggtcagga aagaacttcc	2460
	tgtqtaacc aatqqqaagg aactgcccgtt tgccggactgc agcgattgtat taggtacttt	2520

aaagagatca actggcaaga 2540

<210> 71

<211> 2610

5 <212> DNA

<213> Homo Sapiens

<400> 71

10 ctacaggcgtcgtcaccac actggcaat aaaaaata caaaaaaaaaa attttgcattt 60
ttttgttagag acgaggcttc gccatattgc ccaggctgga attcttacct ttgttactgt 120
attnaacgtatcttttccct ccggccatct tcatggttt ctctctgatt tccacagttt 180
gaatacactg catgtgtcag gcagggctc atatttatca agttttgtgt gtgctctgag 240
ctcaggcttc tcattatttt gggaaaatta ttggtaattt tctcttcaaa catttttat 300
15 gatttgttct ttcttcttc tttgggagtc ctattacatg catatgatcatat catttgat 360
tttccccacag ttcttggatg cttttttaa aaaaaactt ttttcttct ttatttcca 420
acgtggtaa ttccatatttt tctcagctgt gttgatcccta ctgctgcccc atcagaaaa 480
ttacctgtta tcagcggttct tccttctta taatttgatg agtttcccttcc tcattgat 540
tggtcacctt tcgtacaaga gacctccaca tattaatcac agttaattt aatttccagc 600
20 ctgtttcaat ttctcgatca cctctgagtc tagtcgtt aattgcttag tgttat 660
tgttttgaa acagggtctt gctctgtgc ccaggctgga gtgcagcggc gcatctcag 720
gctgtccct gagttcacac catccccctc aaccacgaga ttgcaagtg tccgagtcgg 780
gccgtgcagg agtctttgtg gggtttcat ggactccgaa ttctcatttc tgctccatcc 840
ccatctcatg aatccaaggc cccactctgt gcctcggctc ttcttgcgt gtcgtgaacg 900
25 tcatctacgt catctacgcc atctacgtaa tcaacacaat aaagacgcct gccggaaacg 960
cgcccctcg gctgaatccc ttccgggtt ccaaggccac tgccagagga tgccggacggg 1020
tctccaggcc ctctacttac ccaggactt gaggcacatt agttcgcct aggactcgc 1080
ttttacgaat ttctatgttt ggttttttg ttgagacagag tctcgctctg ccgcccaggc 1140
tggttaaaag atagggtctc agccgggtgc ggtggctcac gcctgtaatc ccagcaactt 1200
30 gggaggccga ggcggccgga tcacctgagg tccggagttc gagactagcc tgggccaaca 1260
tgcgaaacg ctgtctctac taaaataac aaaaatcatc caggcgtggt ggcgcgcacc 1320
tgcaatccca gctactcggg aggctgaggc aggagaatca cctgaaccca ggaggcagac 1380
gttgcagtga gccgagatcg cgccactgca ctccagcctg ggcgcacagag ggagactccg 1440
tctcaaaaaa agaaaaaaa aaaaaaagaa aagaaacaaa agtgtatgggg tctcgctctg 1500
35 ttgcccaggc tagtctggaa ttccctggct caagcgaccc tccagcctcg gcctcccaa 1560
gcgcgtggaa tacaggcgcg gctaccgcgc ggtctccggc tgccgaaaca cgcgcctgcg 1620

	cgcggaccgt tcggccgccc ggaggaacag cggctgccc gagctcagag ggcgcgcggg	1680
	ctttcgctc ccccgccgcgc tctgagcctg cctcgcttg gttggccagg tggtctttc	1740
	aggaccaacc ccagtcatc ccggcaggaa ccacgcttga ggggcggcag tctgcccgcg	1800
	cgagacgccc cccggacta caccgcggcg gcaaagccaa acgaaaaaac tacctcaccg	1860
5	cgcgaggcg ctcggccag gaccaacatg gccacgacgc aaggcctcga cctgaggggc	1920
	gtggcctggc cgccgccagc caacgggtgt gcgcgcctgg ccgcagccaa taggaaggca	1980
	gcgcggggctc gggcgaggag agccgcgc ggggctgttag gcgcacaaggc catgtccgac	2040
	tcgtgggtcc cgaactccgc ctggggccag gacccagggg gccgcggag ggccctggcc	2100
	gagctgctgg gtaggtggc gcggcaggcc gcgggagtgg gcggcgtccg gcccgggacg	2160
10	gttgcggg ttccccgate cttccgcggc agagcctcgg cggctcgat cccggacgc	2220
	cgcgcgggg gggctgtgcg gggctggcgc ccggctgggg cggcgccgct gcctcgacc	2280
	cgccccctcc tgccctggg cggacgcaca ccagacgcgc gcccgcgggg cgctcccttc	2340
	tttccgaac gccgcggggcc cggccggccc tgtcaggcgg gcctgggtg cgccgcctgg	2400
	ggctcccttc agcgcagagg cggccctcg ccagccgtcc ccggcgtccc ctgcctcggg	2460
15	ccctcctggg ccgtctcccc cggcgtccgc ggtggggccg tctccgttag tttcccgaga	2520
	cctgcgcctt ggggaggaggc cccggccctt ctccggagg gtgtcgctgg tgggtttctc	2580
	cgccgcgtcc acctgcgcgt cggccgggg	2610

<210> 72

20 <211> 3076

<212> DNA

<213> Homo Sapiens

<400> 72

25	gctgggatta caggcataaac atggccggc cctggccatg ttttaactg tgtttctcta	60
	atagctaata atgccgagca tcttttatg tgtttcttag ccattagtag attttttg	120
	gtaaaatgtc tttttttttt ttttggtcc atctaaaat ttttttttgt tttgttttga	180
	gacagggtct cactttgttg cccacgctgg agtgcagtgg ctcaatcatg gctactgca	240
30	gcttcgacat ccctgagctc aggtgatect cccacctaag tttcccgagt agatggact	300
	acaggtgtgt gccaccatgc ccagctaatt tttgtatTTT tttgttagag gtggggTTT	360
	gctatgtgc ccaggcagggt cttaaacttc tgaggctcaa atgatcctcc cacctcagcc	420
	tcccaaagtg ctgggataac aggcatgaac caccacaccc agctaagatt ttttttaaaa	480
	atctttttct tgagttttgg gagttttat gtgttaggaa taccagtccc ttatgaggta	540
35	tataaattgc aagtagtttc tcccactctg tgactgtgac ctttctttt ttgaggcagg	600
	gtctcactct gttactcagg ctggaggggca gtgggtgtat catggctcac tgcaacctgg	660

	aactcctagg ctcaagggtc cctccaccc cagccccc agtagctggg tctacaggtg	720
	tgttattgtg ccagggttaa tgttttaat ttgtttaga gataatgtct ctacaaaaga	780
	caccatctt gttgcctagg ctggcttga actccctggct tcagggaaatc ctccagcctc	840
	agccccc aaatgtctggga ttacagcatg agccacatcc agcctatgtat ttcttctt	900
5	ttcttttctt ttctttttt ttcttttga gatggagtct cgctgttgc caggctggag	960
	tgcaatgggg cgatctcgcc tcactgcagg ctctggcccg cgggggtcac gccttcctcc	1020
	tgcctcagcc tccccgatgt ctgggactac aggccccgc cacatcgccc ggctaatttt	1080
	ttgttattttt agtagagacg gggtttccacc gtgttagcca tgatggtctc gatctcctga	1140
	cctcgtgatc cgccccgcctc ggtctcccaa agtctggga tcgcaggcgt gagccacggc	1200
10	gcccgccccc agcgtatgac ttcttaatga tgtctttgtat gataaagagt tttaatttt	1260
	aataaagtta actttttttt aaattgtaca agcttttagt gctgtgtcta acaacttgtt	1320
	gccaaacccca aggtcataaa gctgttctct tacgttttctt ttttttttt ttgtttagac	1380
	ggagtctcac tctgtcaccc aggctggagt gcaatggcac gatgtcggtct cactgcaacc	1440
	tccggccaccc gggttcaaggc gattcttccg cctcagcctc cggggtagct gggattacag	1500
15	gcccacgaca ccacgcctgt ctaatttttt tttttttgtat gagaagggtt caccatgtta	1560
	gtttaggctgc tttacgtttt cttttagaaag ttttatattt ttggcttcta tatttagttt	1620
	gtgatccatt gagttgattt tatgtacgtat gtatggtgc cgtttttttctt tttcctgtct	1680
	ttttttttttt tttttttttt catatggata ttcaattctc ctatgtccat ttaatttggaa	1740
	atgattgggc aggtactttt gagcagtgc agtacagagc gcaactgcca gcagactaca	1800
20	cgcggtagaa agccgacccctt ggtgagcgtt ttgggtctcg acagtgtacca gagaaggat	1860
	ggacgattac ggagcgcctt cgtctccagt taccgttttgc tggaaacacc atccggccgg	1920
	gcggagctgt tccggcccggt tgccgtacta cgactcccaag catgcaccc tcagtcggcc	1980
	ctcgggtggaa gcgggaaaccc aggaggaccc ggggggtgtgg cagcgaggaa gggccgagcc	2040
	acggactgtg gggccgaaac tcgctccgc ccaccccttc tcgaggctgt ggcctcccg	2100
25	agagccgagc gggccgcacc gcccggcgtt cgactgccttcc agtcaagacac gacccggct	2160
	tctagccgc ctaagcctgt ttgggttgc tgactcgat ttcccccggat ttcccccgg	2220
	yaactaactc ttcaagagga ccaaccgcag cccagacgtt cgcaagaccc gccaaccaga	2280
	ggcgagggtt agagccggc gggccgcggg gagagacgtt cccatctgtc ctggaaagcc	2340
	tggcggtgtt gattgggacc ccgagagaag cagggagctt cggcggtgtt cagaagtgc	2400
30	caggcccctc cccgctgggg ttgggagctt gggcaggcca gtttccaccct tcctaagtcc	2460
	gcttctggtc tccggccca gcctcgccca ccatgtcccg ccagaccacc tctgtggct	2520
	ccagctgcctt ggacctgtgg agggaaaaga atgaccggctt cgatcgacag gccaaggtaa	2580
	cacgggtgtt ggcacccctcg gtttgcagcc tcaagatccc tgaaagcggg tttgcagtgg	2640
	atttacccca acagatgggg agggactgag cttgacccaaa gagccagaaa tgactggaga	2700
35	atgcatccct tgccactgtt gcaaggggag aaaaaaggat tgatcctcag tgacaacccc	2760
	tccctcatgt ggcagggtggc tcagaactcc ggtctgactc tgaggcgaca gcagttggct	2820

caggatgcac tggaaaggct cagagggctc ctccatagtc tgcaaggtag gcgggtcctc 2880
cccaggatgg tcagttcccc tcttccatag ccagagaaac atccgctct gcgttttgg 2940
gatcgatata attactcggg gcagggagtc ctgttaagg cacagaggag actggagtgg 3000
aatcatctt gtacaggcaa atccctctct tccttacaca ctcacagagt ggcatttgaa 3060
5 aaatggtttc caagat 3076

<210> 73

<211> 2567

<212> DNA

10 <213> Homo Sapiens

<400> 73

15 cacaccatct cttgtccgt gagtatcttt gtctctctag ctccctttct tctctcagta 60
catgtccctc cttgactccc gcctctctgc aagggttatt tggtgcctc agttggcctc 120
tccccctctg catctctggg tggggtgttc tctgcccgtc tcccacccac acccaccccc 180
ggtgtcccccc ttccccccag caggacagcg gtcaggttc acgcacccca cggcggccg 240
gctggcgca cgacgtcct tgcacacaag ccgcacgtag ctgtacttga gcacgtcgat 300
gagcgtgtag agcggggcg cactggcca gcccgcgc gccaggtgca tggagcttt 360
20 gacaaagaag agcgccagcc gctgctggca ccacgcgtcg aagaagcggc tgaactcgcc 420
ccacgagaag aaggcccgct cccgcagctc ctgctcctcc tgcccccgcag ccgtgccggg 480
tggggctcc ggccgctcca tcctggggc ctgcgtggag gaggggagaa caggtggata 540
tcagacccat tcccacccgg ggtatctcat ctactccatt ctggcctgc cccgtcggtt 600
gctggtgccct ctatcgaggt gggtagcccg ggtcggacg tgcctgttt tctccaaata 660
25 tataaaatatc aacctccatc ctatcttgg cctccatccca ccgccttatac cctggttcac 720
ttggagcctg tcatcttcat tcctaattcc aactcgctc ctccctccgca gatgtgaccc 780
ttaggtacag ttggaatctc tcctccaaa atacgaccct taagctcaga tggccatctaa 840
ggacatctcc tcaaattgtgt tctcaaattc cagctaaaac ctccctccct tccagctgt 900
tctctcaccc aagagtaact tctaactctc gtattcatct ggaactcctc cttccatgtg 960
30 ccaacagttg gctgtAACCC ctccaaAGAC gtcacatctc cagatgtgt 1020
ggccacggac ccctcaccgg gtcacatgt tcatgcacct gtggctccgc actccccaga 1080
tgtgcctctg gcgtgcagct gttgcccctt ccccccgtt tgaccctatg gtcgcccaca 1140
tgcagctgtt gctggggctt ccctgagaca ctctcatctc cagatgtact ccccacatgc 1200
agtatccac gtttcgccta caggtgtgtg ccccaactgtt ggtctgttct ctcggaaatgt 1260
35 gtcaccagta ttcacctgtt gtccctctt cctcagatgc ggcccccaatgtt ccagctgtgg 1320
ggccctccctc ccagttacat ccaccatccc ccgcaatatgtt ctagacatgg 1380

	ccccctcggtcc tcggatgggc tccttcaccc cagatgtcc ccccacgtcc agctgcgagt	1440
	ctccccctcga gcagccccat ccagcccgct cccgacgctc ctactccccc cctccccgcc	1500
	cgctgcggca cttccagcc cccgggtccc acctagctgt gcctctcccc tccccaagat	1560
	gtgcaccctt cccggccctc cccactcacc taccggcccc ggagcggcgt ccacccca	1620
5	caatgccccg cgccaggcc tggccggcc ttgtctcccg ggatgcccccg cgccgtctcc	1680
	cgcctcttcccgcgtgc ctgcgggggg cgcttccacc gattcctcct ctttcctgc	1740
	cagtcaactcc tcagaccctc agccacaccc gctcatccag ggcgaggaa agcgccggca	1800
	ttttcccaagt gtgctctgcg ggagggtcg ccccaactca cccctttcc cgccctcctc	1860
	ccattcggga gactacgact cccagtgtcc tccgcgcac ggccggcgtg cggacggtgc	1920
10	ccagggtcccg ccccttaggc ctgccccggcc cccggccgca gacgtctgcg cgcaatgcc	1980
	gtggcgcgaa cttgggactg cagaggcgcg cctggcgat ctgagtgtgt tgccgggca	2040
	gcggcgcgca ggaccaacgc aaggcaagtggccgtccg caagcagatg ggaggcggag	2100
	ggccggcgggt ggcggcaatg cttgggacct atgcggccatgtgggt gtctgcagag	2160
	gagtgccgt ggggacgcgt aggctgccgagcgcgtg gagacggaag agcgccggct	2220
15	gcggggccgca ggagagtgcgagggatggggggca ggtagagggt	2280
	agacgagaga cagagacagt tggacaggc ctctgagaag aggcccttgcgtgcgagttc	2340
	acgtggaaagg gggagaggcc aaatggaaact gagggggcggg gcgggggggg ggaaaaactgt	2400
	gtggggggggccagctggaa atcggaaaggc ccccccgggg ggcggggcta tctgggaggg	2460
	ggagggggctg aaggggagcta aggggggggg ccggggaaaa gattgcgtgt gggcggggcc	2520
20	acgtggaaagg gggaggtgccc aagggtgggg ctggctggaa accggaa	2567

<210> 74

<211> 2278

<212> DNA

25 <213> Homo Sapiens

<400> 74

	tcacagaagt caaagcttagt gaaaagcccc tcgagggttt ttgtgcggca gaggtgggtt	60
30	gtgggggtggg attgtgcctg ccacagtggaa gggccctgc agacccagat aaaccccaa	120
	gtggccagaa gggggggatg gctctgtgg gtgtggggc tgccatgggc cgtgggagcc	180
	agcagtgtgc ccagctccct cagggccgt ccccttaggc cttccgtccca ctggccaaag	240
	caccgtccct gcccctccct agggcatgg atctgacttg agaggttgtg agagcttaca	300
	ggcgctggc cgtggggag gcctcagaag cgtggacgg ctgcgcactg ccggccgtg	360
35	ttcagccctg gtctggcctc ggccctctaga ggaggctgcc tgccgtccag caggccaaac	420
	ccagaacgtg ggcgagctcc cttcagcatc cctggggcggaa aagaggatg ggggctctgc	480

	tgcagaggca gaatccgcgc cgctccctcc ttccctcccc cgaccagcct gtgacaaccc	540
	cggccagggg cgggggccc cgcacaagcc tggcgccac ttccctggata aggactcccc	600
	ggcccactcc ggaccagggc tggggcggcc tcccaggcgc tcactccgct ggcacccac	660
	cgaaaaacac gtctgcccgc cgcccccctcc cccaaagcac gaccactccg cccggggccc	720
5	tcgaggatcc actcaggatcc acgacggggcc cgtcctctcg gtggtctgac caccggctgg	780
	tggagtgggc tctggggccg ccaggcgacc agggcgagg cggggggcggga cagctcattg	840
	ggagggggcgc cggggcacag tgcggggctc gccccacccc caggtcccc ttcccccgtc	900
	tcgcctcgca ggcacccgcat cggggccggg aatcggtccg gacctggcgg tgggcgtgg	960
	gaagaggatc caccctccacg tggcccccggg cggggggggg ggcacggccag ttcccgccg	1020
10	tcactgcccc ctttctcccg gtttccgtcc ctttctgcgc aggccgcgtc ccgcggcggt	1080
	ccttaggggtg ctccctgtgt cggcgctgc tggcgccgc gccgggggtcc gagtcccacg	1140
	aagccccggc ccgagccgc cggatgcccgc gcgcagcggg gcccaggta gcgcgcgcct	1200
	cggccgcggcc gcggaaacaga cggcccccacc cccaggcgca gcagcgaggc cggccgcggg	1260
	agcgggagtg cgggggacgg gcgtagcgcc caccggcccg agggttcggg gcagagccag	1320
15	agcataggcc aaggggccaag ctggggccga gagcagtggc cgcaggccc gggggctgaa	1380
	cccacggcgc gctggcagcg cggggccgagc tgcggagacg gtcacgtcag cgtccgttcc	1440
	aggccgactg gcagtctccg ttctacatta acgtcagcac tcccgtaaaa aataatgcat	1500
	ctctcccatg ccaggaggac ttaggtgtc taaagacca gccctccggg tgctgccagg	1560
	ccggcgctca cccgcccacct tcatcttccc ttctcctttg ccccaggaca gccgaggatg	1620
20	tgtgtttagg ttcccccata ccatggggag gccagagggt ggaggctggc ggcctgctcg	1680
	gtctcagcag accctcttag tccctcgat gaccttgcct ttgccccact tgctcggttat	1740
	ccagcctggg ccatgaagca gaggacagtt agggaccctg agcacgcgtt ggtcaccccg	1800
	gtgtcaccc ctccctgtgt gtccgaccc tggccctgcta agatcctgtg ttttgaattc	1860
	tggcaagggt tggatgaaag ggcagggtc cagaaaccag ctcagacgtt tgcttggac	1920
25	ctgcatgatg agtgggaatc ggagggcacc agccctgtcg tcccaggcgc aggccccat	1980
	ctgctccccca ggtcatgcag cctggggcccc catgcgtgc agctcgacata tatgtggggc	2040
	agagcagcca ccctgcccccc agcagcagcc gtccatcgatc agacgtgatc atttccttag	2100
	gcctcgagtg tgtcagggtg tttgtgcctc ataacaaccc acaggatggt caccggcgt	2160
	ttgcagatga agaaacccaaa gcagggtgtc agatccagtc cttgcacttc ctgagcctga	2220
30	ccttaccaca cagctgtctc ctattcgat gcttatttat ttttttccc attacagt	2278

<210> 75

<211> 2401

<212> DNA

35 <213> Homo Sapiens

<400> 75

	tcatgcctgt aatcctaaca ctttggaaag ccaaggtggg aggactgctt gaggccagga	60
	gttcaatact agcctggca acacagcaag atctcatctc taccaagaaaa aacaaaggat	120
5	agaggagtca actgaaaaag atcccagtga ctaaagctcg aacaattttt gcaataaaaat	180
	aaatacgcattt gatataaata catggctgaa taaataaaact ggggagaata gaaaaatatc	240
	ctgtgcagaa gaattccaag taacttatagatattttt cccttacctt caaggaagta	300
	gaacataact tttcattcct tcccaggatggctt ggttagcat gatgacttcc ttccaaagag	360
	tacagaacgg aaacagggca gggggattaa cagtgagaa acctgaccaa cgctactgca	420
10	gcttaggtgat caaggccaaa acatcgacag tgataaagca tgctgagagc acctttgatt	480
	tgtatgtatgaaaatcgtgc ttacacccctg taatcttcctt gccaaaaacc cataatcccc	540
	gccccaatta tgagagaaac attaggcaaa tatcaatttga gaaatatttct aaaaaatacc	600
	tgactgttac tcctgaaaac tgtcaaggatcc accaaaaaca ataaaagctc aaaaaactgt	660
	cacagcccaag aggaacctaa gatgtgacta ctaaatggca tgtagtaccc taaatggat	720
15	cctggaacac aaaaagagta tcaggtaaaa actaagagaa tcagaataaaa gaaaggactt	780
	ttgttaataa tagtgtatca atattggttc atcaattttt acaagtgtac catactaata	840
	atgcaagggttcaataaagaa acattcagca tgagatttt aggaattttc tatattatct	900
	tcacaatttc ctgttaatctt aatctctcc taatgacaag tttttttaaa aagtaaaaaca	960
	aaacttgaag gagggaggaa acaagaaggaggaa acggaaacatt ggagacagaa ccagcttggc	1020
20	aagttgacag ataaggctctg agaagtaggc agggaaaaga tcattcattt caggcaatat	1080
	ttttccattt tacctgtata agaaccatat gagccctatt tttctttctt tctttttctt	1140
	ttctttcttt tctttttttt ttttttttgt agagatgaag atttcaactat gttgaacagg	1200
	ctggtctcaa actcctggcc tcaagcaatc ctcccacctc agcctcccaa agcatgagcc	1260
	accatggtgg gcctgtatga aggaactttt taaaaaatgc tacaagccgg gtgcagttggc	1320
25	tcattacctg taatcccagc attctggag gccaaggtaa gaggatcaact tgggcccaga	1380
	agttcaagac catcctgaac aacatagcaa gaccctgttc tctgcttaaa aaaaacaaaa	1440
	acaagctggg cgtggtgat cacgcctgta atccacgac tttgggaggc tgaggtggc	1500
	agatcatgag gtcaggagtt cgagaccaga ctgaccaaca tggtaaaacc ccatcttac	1560
	taaaaaataca aaaattagct gggcacggtg gtgtcgccct gtgatcccag ctactcagga	1620
30	ggctgaggca ggagaatcgc ttgaacccgg gagacggagg ttgcagtgag ctgagaaagc	1680
	agttagctga gatagcacca ctgtgcctta gcctggaga cggagtgaga ctctgtttca	1740
	aaaaaaatcag cctgcccagt cagagcgcct cagcgcgtg ctgggacat cccgcctgc	1800
	ggccagcccc cgcgtgacgt caccgcattc cggctccgt cctcccccgg cggcccccgc	1860
	accgcagtga cagccagccg gggccgggtgc cggagaggaa gtgcggtccg cgccaaagccc	1920
35	gtccccggccg acgcccggctc cccgcggctc gggtagacgc gtcgcggccg cggacgcag	1980
	cgcggggcag ggcggggcag agccgagcgc agcggaggct ccggcggagg cgccggggaaa	2040

	atggctgatg actttggctt cttctcgtcg tcggagagcg gtgc(ccc)gga ggcccggag	2100
	gaggac(cc)gg cgccccctt cctggccca(g caggagagcg agattgcagg catagagaac	2160
	gacgagggtc tcggggcacc tgccggcagc catgcggccc ccgcgcagcc gggccccacg	2220
	agtgggggtg agtcagcgcg gggcctggag aggggctcag ggccgcacc cgggggaccc	2280
5	cggccggggc ccaggggcac agggaa(gaga gcctgc(ta) ggcacccgg ggcaggagct	2340
	gggagacgtg gggaaaatc ttcttgaga tctccatgt a ggacttccga gctggggatg	2400
	a	2401

<210> 76

10 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 76

15

	ccagcctggg ccgcagagt g agaccctgtc tcaaaaaaag aacctactag tctacatacc	60
	acacttcctc atccccatct gagactat atatttttc taacatgagg caatgc(aa	120
	aaggggct ggtgatgaa agtaagaaca gaaagacatg gaggcaagtc ttatagaata	180
	atagccaaca cttaaac(ta) cacttaacag cgtgataggt attgttccaa acacattaa	240

20

	ttcatttaat ggtccttaca tgcataatgta tttggtgatt attatccta ttattcacat	300
	tgctgagtgt attattctgt tctcatgatg ctgatagaga catacccgag actggataac	360
	ttataaaaaa aaaaaggtt taatggactc acagttccac gtggatgggg agtcctcaca	420
	atcatggtag aaagcaa(a)g acacgtctt(a) catggcagca gggaa(gag) agaaatgaga	480
	accaaaca(a) aggggttcc cttataaaaa ccatcagctc tcatgcgact tattcactac	540

25

	catgagaaca gatgggggaa accaccccc atgattcaat gatctaccag gtgcctccca	600
	caacctgtgg gaattatggg agctacaatt ccagatgaga tttgggtggg gacacagcca	660
	aaccacatca ctgaggaaac tgagttatag ggagattagt aacgccccaa acagctggta	720
	ggtgtggag ccaggcagtc tgactctagg gtctggactc tgaactgc(t) catgctgcc	780
	agaagttcc(t) catttttcc tctctctaag tttcccttat tccctacag tcattcc	840

30

	aacagcattt cttcacat ctttctact tctactat aattaatttt ttcttcttgg	900
	tcccaaattt caacgtgcaa atgcagc(t) atatacccta attcatctt accttttagac	960
	tttcttccaa tgtttctact tcattccatt ttaaattttt ccatgagatg cctatttaca	1020
	agctgttaacc atcatgaagt gaatgaagaa taatacctac tactgtacaa tagaattcca	1080
	agagtataaa taggatgtt ggctttctga cttgaaacta aatacttgat acttgat	1140

35

	gctgtctgag atcaatctga aaagtaataa taatcactaa catttggta gcatcaattt	1200
	tggccaaatg gtcatttcaa tcactctgta catattaact catttcatcc tacaacaacc	1260

	cggtgaggca agttctgtta ttctgtttt cagttgagga aacagaggca tagagagctt	1320
	aagtagtttgc cccagtat agccagaaga ggagccagga tgggtctcg gcagttaac	1380
	agcacagctg aagtcttaac cactatgcc aca gttttt ggtcctacac atccatggg	1440
	aagaggaaaa taaaaaggta tctatggta taccttttta ttctgtat aagaagcaga	1500
5	attccttca catgacctat gtctat taa tacgtcattt tgaaacttac caataaaatt	1560
	tcccaagcgc cagaaaactg ttagtgcc ttccat ttc tctctat ttttgtgc	1620
	actaattttgc ttctttccc tcagaaggct gccgaaatag taaacattca ctgacatgtc	1680
	ataattactg gaaaatggc actggaaaat cacattgtaa ttaattcaaa gcatgtttc	1740
	caa atgtact ac tttaaattt ggagcttata tcataatcca aggaaacctt tgtgtgtgt	1800
10	ctgttccac attgctcagc ctggat atc caggat gtaat tcaccc tgc cctccca	1860
	gaccatcttc catggaagg ggtgaccct tgccttgg caaccat ttc taagctg	1920
	ccaacattac tcttgcatta tcaacattct aacttcatgg gaaggctgt ggtgagttc	1980
	tggaatgtga ataggaagtt gttttctaa acagcctgac actgagg ggcagt gaga	2040
	ctgtaagcag tctgggttgg gcagaaggca gaaaaccagc agagtca cag aggagatgg	2100
15	gagtttattt tttctgcat gggaaagtgg tgaagt gat tggagtggta tggagtaaag	2160
	tcaggcaggt aaaggttcag aaagt gagg aca ggc gat ag ccatgg agtttgc a	2220
	ttgccttattt gat tttgtga gtactttaa acttgc tgc cactt gacc ctcccaacac	2280
	ccttgc gat ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc	2340
	ctgtgttttca tctaagcttc actgttaggc tacatgatgt tggatctgg ggcctgtcc	2400
20	ctggctccgc agctgctgtt ctcctacta gaatttata gggctctg agaata gatc	2460
	atggtaaacc tgcacccca tttccaaga ctgtacttctc	2501

<210> 77

<211> 2501

25 <212> DNA

<213> Homo Sapiens

<400> 77

30 cctgggtcct ctcttccagc tcccaaaatg tactctattt ttatctgttt cacgaacgc 60
ggtccagata gtcttccatc ccccactgac tgtagaagt gactctcagc ttttgtccat 120
ctcgaagttt ctgtgcttag tgcctctc agactaaagg cttccttgg gaagccccga 180
ctctcgcttc tcaggacaga gatccagggg ttgggggagg aaaaggttga ccagaagcca 240
tagcggagca gggagagaga gtgtaaaaga cagaccgcg gccaggctcc cagttctcca 300
35 gtcgttagag ggcccaagtg gccgctataa tctgaaagag cagatatcgt aatcccatag 360
tacttcstat tqqctqcagg acacagttct gtcctgacac taaaatttgg gtgtgtcagg 420

gttctggaa ttcacaacgc tcacaacttg tgaagcagct gtgggtggg ggatggggag
ggtttcagca gaggaagtga ggtcagtc aaattatgc ctgtctgac ttttagccat
tatctcccc agcctctatt cctgtcaaaa ggtggggcg ggcaggagga ggggtccctg
gctcatctt tagaatcccc atatttagt aagacaccc agaggtctac tcctgttct
5 aatacccacg tctttccaag tgtctctgag gccacccct ccccagcctt ttcatttatt
catttaatta acgaacgcct tcattgaggg cctcctctga gtcaggctca gccagccagc
atcttgcta tgagctgaga taagcatcat ttccgtctat tctcacaacc accctatgag
gctggcacgg tttactatgc ctatttagca gatggggac tgaagcatgg agagggtca
900 cttagcctacg gtaacacaac cagcctgcat tccttagtagg tagttgact tcagagtctc
960 tgtggataac caggaggcta ggactaagac cagagtcctg caggtactta gatgggttga
1020 gcaaaggcagg gcagtgaggt cagtgctccc agcctgtca ggagcatcag gaagagtctg
tgtccccctc ccotgcccgt atgaagccat tctgcttccc tccccagctg ctttgtca
1080 gcagagttcc agggaggctc cattccccac ctctatctaa agctccattt gctgggttgg
1140 gggccctgcc tggaaaggggg agggtccaagg ctgctccctc cgtgtccctc catcctgact
1200 1260 gtccctggcg gggcgggggt gtcttgcata cccagctgca caacggccag gaagggtca
1320 aaccatcctc agggcttaacc caaggccgtc ctctggccct gtataccct gtgctgagtg
1380 cggatcggga gaggctgctg aagacaggag gggacaaatg gggacgaag gggcccgagg
1440 gaggggactg aaggatttgg gccaagtcgg gagttcccaagg gggcggagtc aaaacgcactc
1500 tggatttgc tagccccaaa ctctgcccctc attgctgcaaa gcctcctaga ccgaggaccc
1560 ccgggctgag ggtgggtaa ggataggtag tgtccctccc cgtcccaccc cgcctgtcc
1620 ctccctcggt ggccttcc cggcccccggg attccaggcg gcccctccgc tgctgcccagc
1680 cgatccccct ctaccccccac ccactactcc ggcggccaga cgtgcctac agtctcggt
1740 ctgtctccca cggctgtggg tccggacccc acgggacccc tatgggaccc ccacaggacc
1800 cccacggccct gagtccaagg cccgccccct cggggaggcg gatgtggag gcccggcccg
1860 ggtgcgggccc agcgaccccg gagctgcggg cggctggag gggaggccgc cctgaggggc
1920 tgggagcggc gcgggggtgg gtcccggtcc tgcagccca gcgagggcg agcggccggcc
1980 agtcggcgag ctgggcaata agggaaacggt ttatttaggag ggagtgggtgg agctggccca
2040 ggcaggaaga cgctggaaata agaaacatit ttgctccagc ccccatccca gtcccgggag
2100 gctgccgcgc cagctgcgcc gagcgagccc ctccccggct ccagcccggt cggggccgc
2160 30 gcccggaccc cagccgcgc tccagcgctg cgggtcaac tgccgcgc cggtgagggg
gaggtggccc cggtccgcgc aaggctagcg ccccgccacc cgcagagcgg gcccagaggt
2220 gagtcgaggt cccgcgcacgg gaccgggtgg cggccggccct gaccccccgt tcagtggcc
2280 cttccctcgg gccggacccc gagtcaccgc agagtggtcg cgggaggctc agtcccagct
2340 cattagaaag gcaagctgct cctggctgac cacgcacagc tcccatgacc ctacctgaga
2400 35 cttggagggg aatggacgag actggactgg aaatcagaaaa c
2460 2501

<210> 78
<211> 2501
<212> DNA
<213> Homo Sapiens

5

<400> 78

	tggctaattt tttgtatTTT tagtagagac gggTTTctc catgttgagg ctagtctcga	60
	actcctgacc tcaggtgatC tgccCGCCtc agcCTCCaa agtgcTggga ttacaggcgt	120
10	gagCCaccAC gcctggCCgc taactacatg tggTCTatga ggtgaggTcc ttcccagacc	180
	ctggaatcaG gggTTgcaat tagggTccaa ataATgaggT tggactacAG ataACCCatc	240
	tccttCTta cCTTgacta gatccaAGGA ctaAACTCCA agAACCCGAG catCTGTCCC	300
	caAAACTgaa aggATTggac tagTCACCCCC ttgTTTCCCT acAGCCACAT CCCAGGcAcc	360
	tggCCCTTgc tttgtccaga aattcagcta taactCCACA catCTgatgg ccCTTCTgg	420
15	caAGCAGGCA ttTCCATcaG gACCCTCAGC tgCCAGACAC attTAActGGa ggtcacttat	480
	taAAACCTGGG CTCAATTCC ACACAGGGAG GCTACTGAAG CATCACACTG ggtctCCAG	540
	CCCTTCTCA tagAGGAAAG ATCTCTGT CCTGCAGGGT TGGCAGTCAG CGCCAAgTAA	600
	AGGGAATTa GCTCTTGGCC CAAGATCCCT GCCAGGAAA GTACTTGCG CCTGCTGAA	660
	ACTTGGGCT gaAGTATACT CCTTCCAAA AACTCAGGTC TGATATTAC ACAAAgTCTG	720
20	AAATTAAATGC AGAGAAAAct TCCAAGTgCT TGGACTGGAG CAGAAGGCTG AGAACAGGAA	780
	GGGGCTGGTC CCTGGTACTA GTTTTGGTTT TTGGTGGTT TTTTTTTTC TTGTTTTTC	840
	TCAcAGAAACA GGGCAAAGCT GAGTGTCCt GGATGAGTGA AGCAGGAGGA TTAATCATGC	900
	CCAGTGTTC TCCACTTTAA ACTGGTTTC CTGGAAATTt GCAATTGAGA GTGGGGAGGG	960
	GTAAGAAATCG TGGAAAAGG CTGATGGGTG TCAgCCAAAT TCATCCTCA CGTCCCACC	1020
25	CTTCTACAGG CACATGCTT GGGGCCATCC ACGGCTGCAG CCACCCCATC CTTAGGAAGC	1080
	ACCACTGGCC TTCCCTTCG GTACCTGGAC TCAGCATCAC TCCCAGCCTC TTGGAGATGC	1140
	AGCCTTCATT CAGCACACAG CTCAgCTCTG AGTCTGTt TTGTCCTAG ATGTCTGTG	1200
	GGTCACCTAC TACTCCCTGC TTGGTGGCCC AGGCCATCC TTCTCCACTC TTGcacCTC	1260
	TTTAGCAGAA AAGGAGTgAG AATGGATATT TCCATGGGCC GTGTGTGcAC TCCCGCTAC	1320
30	CCCTGACAGC TCTACTCAGA GCTACCCtCC CTCCTGGGGC TTCTTATGTG TTCTAAGGCT	1380
	GAGGCAgGAA GACTGTGAGA TCAGGTGACA CTCAACAGTT ATGATCGGTc TTAAGATTA	1440
	CAGTCCTGGC CGGGCGCAGT GGCTCACGCC TGTAAATCCCA ACACTTGGG AGGCCAGGC	1500
	AGGCAGACCA CGAGATCAGG AGATCAAGAC CATCCTGGCT AACACAGTGA AACCCCGTCT	1560
	CTACTAAAAAA TACAAAAAAAT TAGCCAGGCG TGGTGGCGGG CACCTGTAGT CCCAGCTACT	1620
35	CAGGAGGCTG AGGCAGGAGA ATGGCGTGAa CCCAGGAGGC GGAGCTTGCA GTAAGCCAAG	1680
	ATTGCGCCAC TGCACTCCCC GGTGACAGAG CGAGACTCCG TCTCAAAAAA AAAAACAAACA	1740

	acaacaacaa aaagattaac actccttcta cttccaaacc taatacaaag ggacattgcc	1800
	tagtgattaa gagaattcat tcattcaaca aatactgtt gagcacctac tatgtgccaa	1860
	gcactgttct aggcaccgga aatacagcag tgagaaaaac caaaaaaact ccctgcctc	1920
	atgggtgtta tattcaagta gctgaaacag acagtgaaca aacaaaaaag gacaataatt	1980
5	tcaaataata atgatgctat cggccagggtg tggtgctca tgcctataat cccagcattt	2040
	tggaaagcca agtcaagcgg attacctgag gtcaggagtt caagaacagc ctggccagca	2100
	tggtggaaacc ccatctctac taaaataaca aaaattagcc agacatggtg gcacacacct	2160
	gtaatcccag ctacttggga ggctgacgca ggagaattgc ttgagcccg gaggtggagg	2220
	ttgcagttag ccaagatctg acaggccttc agcaccactg cactctagac tggctgacag	2280
10	agcgagactc tgtcaaaaaa aaaaaagcta taaatagact ttaacagggt aacatgatag	2340
	ggagggaggg ataggggagc agggtggtca aggaagggac attaaacag gctagaatga	2400
	caatggccag cgagggaaag atccagaagt gtgtgctgga agaagaaaga gcaagcacaa	2460
	aacccttagg acaaaatcag ctcgtgttgtt caaggcacag c	2501
15	<210> 79	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
20	<400> 79	
	tgtttctgac ccctggctgc agcctaattgg gccgactgct ggacagcggt cctgagtcc	60
	gtttgaattt gtgctcccc gacatcctct gacccctact aatgatcctg cctgcccagg	120
	gcagacaggt ctctgcaacc ctatgggtgg taggggttgtt gatgagagga gaggtgtct	180
25	cacttgcaca gattttgggtg tatgggtctg tctttgcac tctttcaaca gaggtctgtc	240
	cagtccctct tgcaagtgtg gggaggggtt ggtgcaggac tatgaggtaa ctgtgagaag	300
	aggggctcca gcagaaccag ggtccaaatgg ccttgaagag atggctgggg acagctggac	360
	tcatttacgtc tactcctaaa tggagggaaac gacccctcag ctacacagca cctgagccag	420
	aatgtcacca tggtgctgtt ccacaggatg acagctaccc ggtttgttgtt ggcccttatt	480
30	ctagggacacat ctaacttccatt ctggccctccc agagcagcaa gcaacaaccc tatgccagga	540
	ggccaattgg cacgtcaagt gccagctcca atcgattgtat agtagctgcc tggctctgaa	600
	aggcagctgg gatcgattca ccatgctgcc agcacacaga tggacccagc ggtggtccca	660
	gcagtgttgtt ctgccttgg gccatccat tttctttgtc ctggccaagg aatgattggaa	720
	tgaacacact ggactccaa tatgggtggta taagacaaga gtgtctggtc acaccctcc	780
35	accactcata agcatggttt tggcagttt gggtcccttgg gggcccttgg agaatgcaat	840
	gagccgagga actggtcata tccaggtgca tccagggcag gaaaggatga cagcatgcgt	900

	gagccagggt cactggctaa gaagtcatct caggacctcc ccctagaaaa gcccactgg	960
	cagcatccct gctggttccc ccctacacca caaggttacg cagagctggc ggagggtcat	1020
	ggtcccactc atgtcaggtg ctcttaatct ggcaaggaaa tctaacc tac gtgaatctca	1080
	acaggcagtg aagcacccgtt tcttcctgac tccaggttagg gtgaagaaaa tgggacaga	1140
5	gtacgggtg cgggcataaa cgcacaactc tgctcccca gacgcagagc tgtgggctg	1200
	tgagaatgcc aggaggaggt aagaaaggc gcgcctatgg gggcctgca gggtgggaca	1260
	agcccaagag gtctctacat ccaggcctgg tggggaggt gagccctgg tttaccgagg	1320
	gggtcccttc ctgcctcgaaatactgca gctcctacat ccatcgctc cccgctcg	1380
	ggacccaggc gcgtgaggat gagagagccc ccaggccca ggtcagacg actgtgttca	1440
10	agcaagttag aacctctctg aggctgttcc caactgtaa aatggggata gcagcagaac	1500
	tctctctcgc ggcttgcgtg aagaatacaa ttcatgtcg acaggaggaa gcggcgccca	1560
	gcgcgcagcg agtagcagggc gctgaagaag gatacctgtg aactgggagt gttggcgag	1620
	gctacgcgc cagagtccgg ggaaggggcg ccggctctgc cagtcctgc tcggggctgg	1680
	atgtcgggg gatgttctcg taagtccgtt gggagggage ggtcccgctg accctgccac	1740
15	cgccgcccga gaggttcggg caggtcggg gccgcggccc ctccgcgagg gggccggta	1800
	tccgcggga ctgacatccc ggaggccaa tggcaagccg tcatctccgc gcatccccc	1860
	aatcgccgc ggttgcgtt ccgcgcggg tctctcgacc aatgggaaaa ttgctgtca	1920
	gatggggcgg ggcggagatt cgctcgccg gcccgtccg ctttgcgcac gggccgcgt	1980
	aggcggggag ggctggcccgg ggtctcggg ttgcgcgtg ggcctggagg gggggggcgg	2040
20	ccccgcacc ggtccgagtt gcccgcgcg ggactgcgcac ccgcgcgcg ccgcaccgc	2100
	ccgcgcctg ggaacgcgcg tccccgcgcg ccaacggacc cggggaaagcc cttctgggt	2160
	ccgaggccgc gctgcggggc cgcacgcgt ggcgcagg taagctcgag ccagtggcg	2220
	gggtgtggga cccggggctg gggcctcggg tcggagccgg gactggggc gggctgcag	2280
	atatggacg cattcggggc agcggtccgg acagggtctt atccctggag tcgagatccg	2340
25	ggcgagggtc tgggcgggac gtcggagcca atctccgcacc caccgcgtc ttgtccgc	2400
	gctctgcggc gtccgagacc cggggccggc gggggcgggt ctcttgcgtc gtggccttgg	2460
	ggccctaccc taccctcgcc ggcgtcttgc actgagcact c	2501

<210> 80

30 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 80

35

acagatgacc gaggggctcc cagccggga ggtggaaatc cagcaggat ttccaaggcc 60

	tagttgcag ggctccagga tcgttcctag atcctggtct tgca gccctg acaaggggaa	120
	ggaggggaggc agcagaagga gggcagaaca atccatgcc a ggtgtgatt tgccaagtga	180
	ccatctggga agaatggct ctcagaccag ggacagggag cagaggcaag cccgcatctg	240
	ccctgggtgc agaaccggaa ttca gactca gggccccat ttctgcctgg atcgctccac	300
5	tggccggagg agtgactgtg gacacatcca gggttctc caagtcggct tccatctg	360
	ccaaatagag accgcagacc accagctccc aggcagggtc tactcttccg gcccctccca	420
	aggcaggagg gccaggcgta ctgcagacac aggtgtgctg gggcccccagg tggcccgcc	480
	agcagcatcc tgcagggtaa tggagcagg tggcacccc gaggctggca gtaaacactg	540
	gctatctgcc cccaggctcc caggagggtt ctgggcctc acctcctccg gccggAACAG	600
10	gaaagcagct ccaggcagct gggccacaa aaatctccgt tccctgaggt ctcagaggca	660
	gtggccagg agcatctggt cacattcggg aaaaacccgc ttggcaaagg ctcccccag	720
	ggcacgcgtt tcccgacag tgaggcagga cctaaactct tccgttaaca ctatTTTT	780
	cgcattctg cagtgttgc actctcaggc cccaccattt cccgcacatct ctttagggaga	840
	agttctcgac gtcccacctc ccctggaaagg gtgctgctcc cagagacattt caggccaaatg	900
15	gccccatctc agtgcctca ggggagaggg gggcagaa aaacagcctg ggtcacaaaa	960
	gagggtgcag ggctgtgaga tcccgaggc accgcaggaa agcggacagg agaacaggag	1020
	ggcaggacgg gctggaggtg gggatactg cagatggagg gagccacggt gggggaggc	1080
	gtggaccta ccgtcctggc acaaggcggt cgggtgcaga cttccaggcc ctccgggtta	1140
	aggtgccc cagagccctc aggccgggg cgacggaaa ccacaggcag ggtgcgcgtg	1200
20	gaggacggg gaaagcgggg cgggtgggg aaggcgggg gggacctga acctccacc	1260
	ccgcctcagt ctgcaccact ccttaagccc cacccggcc caggtaaaggc gcagtccacc	1320
	cccatccccca gtagattaac gcacagggtgg gggcgctc gggacatagc tgcgttaggg	1380
	gacacgcgc ccagccctgt cggggggcgg aggacgggg cggggccag caggaaccca	1440
	gctttgttag cgtatctccc cgtgagccac gcgcacacgc tacgccttc ctcaatggg	1500
25	ccggcgtgg agccgcggcc tgcgcattt gccaacacggg tggccacqa ttggctgaga	1560
	ccctggccccc cgcctctcg gccccaggag ggtggggcgt ggggtgtggc tgcgcggcgc	1620
	gtgctgcccc cggggatctt gcgcgcctcc cgaacagccg tttgtcgcc agggccgc	1680
	cttccctccc acacgcgcgc ctgcgcgtgc gaaggcttgg cggctttgg gactggcggg	1740
	gctgcgcgc gggtaggtt ggggtacgg gaaggctaa cccaggacat gcgtacattt	1800
30	ctttgggggc gactaagca cctggccggaa gcaggggcgc caccggaaac tcgcagattt	1860
	cgccagttgg gcgcactggg gatctgttga ctgcgtccgg gggatggcgt agggggacat	1920
	gcgcacgcctt tggcccttac agaatgtat cgcgcggagg ggagggcga gctggcggg	1980
	aggcggaggc gaaggaagga gggcgtgaga aaggcgcagg cggcggcgc gaggagggtt	2040
	atctatacat taaaaacca gcccctgcg cgcgcctgc ggagacctgg gagagtccgg	2100
35	ccgcacgcgc gggacacgc gttccacgc tccctggcgc tgcggcctg ccaccactag	2160
	gcctcctatc cccggctcc agacgaccta ggacgcgtgc cctggggagt tgcctggcgg	2220

5 cgccgtgcc a aagccccct tggggcgcca c agtttccc cgtgcctcc ggttcctctg 2280
cctgcacctt cctgcggcgc g c cgggac ct ggaggggcg ggtggatgca ggcgcgatgg 2340
acggcggcac actgcccagg tccgcgc ccc ctgcgc ccc cgtccctgtc ggctgcgc tg 2400
cccgccggag acccgctcc ccggaactgt tgcgtgcag ccggcggcgg cgaccggcca 2460
ccgcagagac cggaggcggc gcagcggccg tagcgcggcg c 2501

<210> 81
<211> 22
<212> DNA
10 <213> Artificial Sequence

<220>
<223> primer

15 <400> 81

aatcctccaa attctaaaaa ca 22

<210> 82
20 <211> 20
<212> DNA
<213> Artificial Sequence

<220>
25 <223> primer

<400> 82

30 agaaaaggga gtgagaaaat 20

<210> 83
<211> 22
<212> DNA
<213> Artificial Sequence

35 <220>

<223> primer

<400> 83

5 ggataggagt tgggattaag at 22

<210> 84

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 84

aaatctttt caacacccaa at

22

<210> 85

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 85

aaccctttct tcaaattaca aa

22

30

<210> 86

<211> 21

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 86

5 tgattgggtt ttagggaaat a

21

<210> 87

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 87

ttgaaaataa gaaaggttga gg

22

<210> 88

20 <211> 19

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 88

cttctacccc aaatcccta

19

30

<210> 89

<211> 18.

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 89

<210> 90

<211> 23

<212> DNA

10 <213> Artificial Sequence

<220>.

<223> primer

15 <400> 90

cataacctt acctatatcc tca

23

<210> 91

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 91

tttagattg agttttagg gt

22

30

<210> 92

<211> 22

<212> DNA

<213> Artificial Sequence

35

5220>

<223> primer

<400> 92

5 atccattcta cctcctttt ct

22

<210> 93

<211> 18

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 93

ggaggggaga gggttatg

18

<210> 94

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 94

tactatacac accccaaaac aa

22

30

<210> 95

<211> 19

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 95

5 ttttggaaat gggttgtat

19

<210> 96

<211> 21

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 96

ctacccttaa cctccatcct a

21

<210> 97

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 97

ttgttggag ttttaagtt tt

22

30

<210> 98

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 98

5 caaattctcc ttccaaataa at

22

<210> 99

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 99

gtaatttgaa gaaagttgag gg

22

<210> 100

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 100

ccaacaacta aacaaaacct ct

22

30

<210> 101

<211> 20

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 101

5 ggagttgtat tgggggaga

20

<210> 102

<211> 21

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 102

taaaaacccca attttacta a

21

<210> 103

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 103

tttgtattag gttggaaatg gt

22'

30

<210> 104

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 104

5 cccaaataaa tcaacaacaa ca

22

<210> 105

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 105

gatttttgg a gaggaagtta ag

22

<210> 106

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 106

aaaactaaaa accaaaccca ta

22

30

<210> 107

<211> 20

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 107

5 tggggtagt ttaggatagg

20

<210> 108

<211> 25

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 108

ctaaaaaca ctaaaacttc tcaaa

25

<210> 109

20 <211> 21

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 109

tttttgtatt gggtaggtt t

21

30

<210> 110

<211> 24

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 110

5 cccaaactatc tctctcctct ataa

24

<210> 111

<211> 25

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 111

attagaagtg aaagtaatgg aattt

25

<210> 112

20 <211> 19

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 112

tcaatttcca aaaaccaac

19

30

<210> 113

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 113

5 gggatgggtt attagttgta aa

22

<210> 114

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 114

ccttcacaca aaactacaaa aa

22

<210> 115

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 115

taattgaagg ggttaatagt gg

22

30

<210> 116

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 116

5 aaaacccaaaa ccaaaactaa aa

22

<210> 117

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 117

agttggatttg gagtttagat gt

22

<210> 118

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 118

aacaaaataa aaacctctcc ca

22

30

<210> 119

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 119

5 tagggaaaaa gtttagatgg ag

22

<210> 120

<211> 18

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 120

cccattaacc cacaaaaaa

18

<210> 121

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 121

attttagttt gtgaaatggg at

22

30

<210> 122

<211> 21

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 122

5 tcttaaccaa taaccctca c

21

<210> 123

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 123

gtgggttttg ggtagttata ga

22

<210> 124

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 124

taacctcctc tccttaccaa

20

30

<210> 125

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 125

5 taggatgggg agagtaatgt tt

22

<210> 126

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 126

acaacttatac caacttccat tc

22

<210> 127

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 127

tcccacaaaa actaaacaat ta

22

30

<210> 128

<211> 21

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 128

5 aggttttaga tgaaggggtt t

21

<210> 129

<211> 23

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 129

tttggagggt ttagtagaaag tta

23

<210> 130

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 130

cccaataatc aaaaaataaa ca

22

30

<210> 131

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 131

5 atacaacctc aaatcctatc ca 22

<210> 132

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 132

agggagaagg aagttatttg tt

22

<210> 133

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 133

ggaagatgag gaagttgatt ag

22

30

<210> 134

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 134

5 cctacaaccc tatcctctaa aa

22

<210> 135

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 135

ttagtagggg tgtgagtgtt tt

22

<210> 136

20 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 136

caaacaaaac ttcttatctca acc

23

30

<210> 137

<211> 21

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 137

5 ttatagggtt gagtttggga t

21

<210> 138

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 138

taaacaaaca acaaatcttc ca

22

<210> 139

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 139

tgaaaatgaa ggtatggagt tt

22

30

<210> 140

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 140

5 ttaaaaaccat ataatccctc ca

22

<210> 141

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 141

tatgttttgtt tttgttttga ga

22

<210> 142

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 142

aaccccatca cttttatttc tt

22

30

<210> 143

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 143

5 gggtgttagaa gtgttttaggt tt 22

<210> 144

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 144

tttctccct tacaacaata ac

22

<210> 145

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 145

tcccccattcca actatatctc tc

22

30

<210> 146

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 146

5 tgagagtgtt ttagggaaat tt

22

<210> 147

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 147

aaaaccaaaa cataaaccua aa

22

<210> 148

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 148

gattaggagg gtttgtttag at

22

30

<210> 149

<211> 21

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 149

5 aatgggtgat gat~~tttggtt~~ t

21

<210> 150

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 150

actctcttcc ctataccctt aa

22

<210> 151

20 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 151

tgttagtaga gtttttaggga ggtt

24

30

<210> 152

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 152

5 acactaccta tccttacccc ac

22

<210> 153

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 153

ttttgtttt tatgggtgt at

22

<210> 154

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 154

ttaaatatcc cttccttaac ca

22

30

<210> 155

<211> 23

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 155

5 agttagaaga ggagtttagga tgg

23

<210> 156

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 156

taatttcca atacccattt tc

22

<210> 157

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 157

tgggtagtat ttttgttggt tt

22

30

<210> 158

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

<223> primer

<400> 158

5 cctaaaaact ctctcatcct ca

22

<210> 159

<211> 23

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 159

agtggtag gagtattgg tta

23

<210> 160

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 160

aactccctcc atctacaata tc

22

Figure 1

Figure 2

Figure 3

Figure 4

	A	TP	FP	FN
11-a		9	8	0
11-b		9	7	0
12		7	9	0
13		7	6	1
14		9	11	1
15		7	5	1
21-a		8	4	2
21-b		8	4	0
22		8	9	2
23-a		7	5	0
23-b		7	10	1
24		10	17	0
25		8	0	0
31		9	3	0
32		4	7	4
33		6	9	2
34		8	3	0
35		7	4	2

	C	TP	FP	FN
11-a		8	7	1
11-b		8	4	1
12		7	6	1
13		8	6	0
14		6	6	2
15		4	9	5
21-a		7	3	0
21-b		8	4	0
22		4	6	3
23-a		6	4	3
23-b		8	5	1
24		8	10	4
25		5	1	3
31		7	2	1
32		8	3	1
33		2	3	7
34		7	8	1
35		6	3	1

	TP	FP	FN
Ø	7,67	6,72	0,89
STABW	1,37	3,86	1,13

	TP	FP	FN
Ø	6,5	5	1,94
STABW	1,76	2,45	1,89

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/08602

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01 62960 A (BERLIN KURT ; EPIGENOMICS AG (DE); OLEK ALEXANDER (DE)) 30 August 2001 (2001-08-30) page 10, line 9 - line 12; claims 1-26 page 13, line 10 - line 29 ----	1-51
X	HERMAN J G ET AL: "METHYLATION-SPECIFIC PCR: A NOVEL PCR ASSAY FOR METHYLATION STATUS OF CPG ISLANDS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 93, 1 September 1996 (1996-09-01), pages 9821-9826, XP002910406 ISSN: 0027-8424 cited in the application page 9821 -page 9823 ----	1-51 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

10 December 2003

Date of mailing of the international search report

02/01/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Favre, N

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/08602

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 786 146 A (HERMAN JAMES G ET AL) 28 July 1998 (1998-07-28) page 6, line 1 -page 7, line 6; claim 1 ---	1-51
X	WO 01 44504 A (FOX JAYNE CATHERINE ;HAQUE KEMAL (GB); LITTLE STEPHEN (GB); ASTRAZ) 21 June 2001 (2001-06-21) page 6, line 26 -page 8, line 7; figure 1 ---	1-51
X	WO 98 56952 A (UNIV SOUTHERN CALIFORNIA) 17 December 1998 (1998-12-17) page 9, line 20 -page 10, line 2; claims 9,10 ---	1-51
X	REIN ET AL: "Identifying 5-methylcytosine and related modifications in DNA genomes" NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 26, no. 10, 1998, pages 2255-2264, XP002143106 ISSN: 0305-1048 cited in the application abstract; figure 2 ---	1-51
X	WO 00 70090 A (UNIV SOUTHERN CALIFORNIA) 23 November 2000 (2000-11-23) page 13, line 29 -page 14, line 34; claim 1 ---	1-51
X	ZESCHNIGK M ET AL: "A SINGLE-TUBE PCR TEST FOR THE DIAGNOSIS OF ANGELMAN AND PRADER-WILLI SYNDROME BASED ON ALLELIC METHYLATION DIFFERENCES AT THE SNRPN LOCUS" EUROPEAN JOURNAL OF HUMAN GENETICS, KARGER, BASEL, CH, vol. 5, no. 2, 1997, pages 94-98, XP009011533 ISSN: 1018-4813 cited in the application abstract; figure 1 ---	1-51
A	GRIFFIN HG AND GRIFFIN AM (EDS.): "PCR TECHNOLOGY: Current Innovations" 1994 , CRC PRESS , BOCA RATON XP008025537 page 5 -page 11 ---	1-51
A	US 6 007 231 A (BISHOP ROBERT ET AL) 28 December 1999 (1999-12-28) the whole document ---	1-51
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/08602

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SEIJEN A M ET AL: "Systematic design of mouse Vh gene family-specific oligonucleotides" JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, vol. 254, no. 1-2, 1 August 2001 (2001-08-01), pages 161-168, XP004245450 ISSN: 0022-1759 the whole document ---	1-51
A	WO 00 49177 A (DU PONT ; ROUVIERE PIERRE (US)) 24 August 2000 (2000-08-24) the whole document ---	1-51
A	SCHULER G D: "SEQUENCE MAPPING BY ELECTRONIC PCR" GENOME RESEARCH, COLD SPRING HARBOR LABORATORY PRESS, US, vol. 7, 1997, pages 541-550, XP000872176 ISSN: 1088-9051 cited in the application the whole document ---	1-51
A	ENGELS W R: "Contributing software to the internet: the Amplify program" TRENDS BIOCHEM. SCI., vol. 18, 1993, pages 448-450, XP001161002 the whole document ---	1-51
P,X	US 2003/068625 A1 (BARRETT WADE A ET AL) 10 April 2003 (2003-04-10) Claims 1-32; figures 1-4 ----	39-51

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 03/08602

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of Invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Insofar as they include the step of isolating a nucleic sample, i.e: a step which could be performed on the living human or animal body, claims 1-38 relate to a method of treatment and/or diagnostic performed on the living human or animal body, the search has been carried out and restricted on in vitro methods.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP 03/08602

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0162960	A	30-08-2001	DE 10010282 A1 AU 4227701 A CA 2401233 A1 WO 0162960 A2 EP 1257670 A2 JP 2003525041 T US 2003157510 A1	06-09-2001 03-09-2001 30-08-2001 30-08-2001 20-11-2002 26-08-2003 21-08-2003
US 5786146	A	28-07-1998	CA 2257104 A1 EP 0954608 A1 IL 127342 A JP 2000511776 T WO 9746705 A1 US 6200756 B1 US 6265171 B1 US 6017704 A	11-12-1997 10-11-1999 25-07-2002 12-09-2000 11-12-1997 13-03-2001 24-07-2001 25-01-2000
WO 0144504	A	21-06-2001	AU 2194801 A WO 0144504 A2	25-06-2001 21-06-2001
WO 9856952	A	17-12-1998	AU 7829398 A US 6251594 B1 WO 9856952 A1 US 2002177154 A1 US 2003211473 A1	30-12-1998 26-06-2001 17-12-1998 28-11-2002 13-11-2003
WO 0070090	A	23-11-2000	US 6331393 B1 AU 4712200 A CA 2372665 A1 EP 1185695 A1 JP 2002543852 T WO 0070090 A1 US 2002086324 A1	18-12-2001 05-12-2000 23-11-2000 13-03-2002 24-12-2002 23-11-2000 04-07-2002
US 6007231	A	28-12-1999	AU 3632097 A CA 2263731 A1 EP 0925372 A1 WO 9806872 A1	06-03-1998 19-02-1998 30-06-1999 19-02-1998
WO 0049177	A	24-08-2000	CA 2359645 A1 EP 1153141 A2 WO 0049177 A2 US 2003113886 A1 US 6365376 B1 US 2002127666 A1	24-08-2000 14-11-2001 24-08-2000 19-06-2003 02-04-2002 12-09-2002
US 2003068625	A1	10-04-2003	WO 03021259 A1 US 2003108919 A1 US 2003073093 A1	13-03-2003 12-06-2003 17-04-2003