

Beijing-Dublin International College

_		
S	SEMESTER I EXAMINAT	ΓΙΟΝ - 2018/2019

School of Computer Science

BDIC Final Exam COMP3014J Performance of Computer Systems

HEAD OF SCHOOL: Pádraig Cunningham MODULE COORDINATOR: Lina Xu*

Time Allowed: 120 minutes

Instructions for Candidates

All questions carry equal marks. The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

BJUT Student ID:	UCD Student ID:
I have read and clearly understand the E	Examination Rules of both Beijing University of
Technology and University College Dublin	n. I am aware of the Punishment for Violating the
Rules of Beijing University of Technolog	gy and/or University College Dublin. I hereby
promise to abide by the relevant rules and	d regulations by not giving or receiving any help
during the exam. If caught violating the rul	les, I accept the punishment thereof.
Honesty Pledge:	(Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates. Obtained score

Question 1: General Theories on Performance

- 1. What are the three common performance evaluation techniques and when to use them? Talk a little bit about their advantages and disadvantages. (6 Marks)
- 2. What will be the main concerns when deciding which simulator to use for system evaluation? List four of those you think are important.

(4 Marks)

 Random number generation is often required to generate synthetic data. Linear-Congruential Generators are the popular ones that can be applied efficiently. List at least three factors that you can use to determine whether a random number sequence is good or not. (10 Marks)

Obtained score

Question 2: Workload Characterization

- 1. What are the differences between factors and parameters? Present the answer in your own words and also give some examples for both. (5 Marks)
- 2. In this case this was a small survey to only a few people, where each person answered six attitudinal questions and a question regarding how often they visit the mall, all on a scale 1-7, as well as one question regarding their household income. Based on the information below, who do you think person ID 1 would enjoy shopping with? Demonstrate your conclusion step by step.

(15 Marks)

ID	V1	V2	V3	V4	V5	V6	Incomo	Mall.Visits
טו	VΙ	٧Z	V 3	V4	VO	VO	Income	IVIdII.VISILS
1	6	4	7	3	2	3	60000	3
2	2	3	1	4	5	4	30000	1
3	7	2	6	4	1	3	70000	3
4	4	6	4	5	3	6	30000	7
5	1	3	2	2	6	4	60000	1
6	6	4	6	3	3	4	50000	2
7	5	3	6	3	3	4	65000	3
8	7	3	7	4	1	4	55000	4
9	2	4	3	3	6	3	70000	0
10	3	5	3	6	4	6	25000	6

Name Description	Scale
V1 Shopping is fun	1-7
V2 Shopping is bad for your budget	1-7
V3 I combine shopping with eating out	1-7
V4 I try to get the best buys while shopping	1-7
V5 I don't care about shopping	1-7
V6 You can save lot of money by comparing prices	1-7
Income The household income of the respondent	Dollars
Mall.Visits How often they visit the mall	1-7

3. When observing the traffic in a local network, we know that small packets = 87.5%; large packets = 12.5%. The transition matrix between state small packet (S) and sate large packet (L) is like below. What is the chances to get a small packet for the 20th packet if the current packet is a small one (the current one can be seen at the 0th one)
(5 Marks)

$$P = \begin{bmatrix} P_{SS} & P_{SL} \\ P_{LS} & P_{LL} \end{bmatrix}$$

Obtained score

Question 3: Summarize Measured Data

- 1. Using a Q-Q plot to test for normality, the data is likely normal if: (5 Marks)
 - a) The Q-Q plot shows that all the data is on the x-axis
 - b) The Q-Q plot is a close to positively sloped straight line
 - c) The Q-Q plot shows all of the data is above a 45-degree line from the origin
 - d) The Q-Q plot shows a pattern

2. Scores for 10 students are:

81, 78, 85, 80, 86, 82, 83, 80, 87, 85

Are the results following Normal distribution? Demonstrate your answer step by step.

(10 Marks)

3. Mc Donalds is also considering changing pickle suppliers. With the current supplier, each Mc Donalds pays an average of 1 cent per pickle. A rival in a sample of 49 pickle prices from a rival supplier (pickle prices vary by region due to shipping costs etc.) The average price was 0.9 cents per pickle with a standard deviation of 0.02 cents. Should we switch suppliers? Explain why or why not. (10 Marks)

Obtained
score
30

Question 4: Queuing Model

- 1. Cars arrive at a small gas station to refuel according to a Poisson process with rate 30 per hour and have an exponential service time distribution with mean 4 minutes. Since there are four gas pumps available, four cars can refuel simultaneously, but unfortunately there is no room for cars to wait. Hence, if a car arrives when all pumps are busy, the driver leaves immediately. For each customer that is served, an average profit is made of 7 euros.
 - a) Determine the probability that an arriving car is not refueled. (15 Marks)
 - b) What is the long-run expected profit per day (consisting of eight hours)? (5 Marks)
- 2. Someday, one manager has the opportunity to buy an adjacent parking lot, so there is room to wait for all cars that arrive when the four pumps are busy. Suppose all drivers decide to wait instead of leaving when this happens. Another manager wants to buy two new gas pumps to increase the serving rate. Supposedly buying the car park space is the same as buying the two gas pumps. Which suggestions do you thinking is better?

(10 Marks)

Appendix:

Tables of the Normal Cumulative Distribution

The table below gives the probability p that a Standard Normal random variable Z (ie mean = 0 and variance = 1) is less than or equal to z.

z =	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997

Table entry for p and C is the critical value t^* with probability p lying to its right and probability C lying between $-t^*$ and t^* .

	Upper-tail probability p											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.000
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.6
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.9
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.04
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.92
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.85
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.81
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3,505	3.79
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.74
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.72
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.69
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.65
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2,457	2.750	3.030	3.385	3.64
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2,423	2.704	2.971	3.307	3.55
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.49
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.46
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.41
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.39
000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.30
z*	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.29
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9