

≥ e64069094@gs.ncku.edu.tw | A lufteracademy | D Lufter

Research Interests

Quantum Computing, Quantum Information, Computer Simulating Physics.

Education

National Cheng Kung University (NCKU)

Tainan, Taiwan

B.S. IN CIVIL ENGINEERING

06/2020

- Overall GPA: 3.55/4.3, Physics Major: 4.16/4.3
- · Courses: Physcis (Quantum Physics I&II, Electromagnetism I&II, Solid State Physcis), Computational Science, Engineering, Material Science

Research Experience

Research Assistant, Physics Dept. Matterwave Lab, Prof. Pei Chen Kuan

Tainan, Taiwan

MULTIPLE WAY QUANTUM WALK (MWQW)

08/2019 - PRESENT

- Discussed the error tolerance when implementing MWQW in matterwave systems by using analytical and numerical methods.
- · Deployed a computer program that simulates and visualizes MWQW, which enhanced our working efficiency.
- Investigated the defects in previous asymptotic analysis methods when implementing Schrödinger's approach to MWQW.
- Implemented ${
 m \underline{automation\ method}}$ and ${
 m \underline{recursive\ relations}}$ to proved the exit probability p_{∞} of MWQW.

SENSITIVE MEASUREMENTS THROUGH MATTER WAVES.

• Research on implementing double-diffraction Bloch oscillation to cancel the phase perterbation when performing sensitive measurements.

Research Assistant, Civil Engineering Dept. AI Material Lab, Prof. Yun Che Wang

Tainan, Taiwan

MACHINE LEARNING IN MATERIAL DESIGN. [APCOM2019] [CTAM2020]

02/2019 - 06/2020

- · Applied generative adversarial networks (GAN) to generate high fidelity microstructure images.
- Proposed regression VGG networks (rVGG) that can predict mechanical properties from material images with 95% accuracy.
- Outperformed Finite Element Methods (FEM) in predicting time over 100 times.
- Investigated a Bayesian-optimization model that can fine-tune GAN-generated microstructure geometry through the rapid-labeling rVGG.

CONSTRUCTING HOMOGENOUS MATERIALS UNSING COMPUTATIONAL METHODS.

- · Implemented pruning protocol on 96 core CPUs to generate auxetic networks inspired by "Auxetic metamaterials from disordered networks".
- Implemented a stochastic protocol to produce large scale homogenous microstructure datasets by two-point correlation function.

Publication

- [1] Chun Wei Liu, Pei Chen Kuan, "Symmetric Quantum Walk With Phase Transition Feature". (In preperation, to be summited in Dec. 2020).
- [2] **Chun Wei Liu**, Jyun-Ping Wang, Yun-Che Wang, "Machine Learning of Viscoelastic Properties of 2D Porous Materials via Deep Neural Network". (In preperation, to be summitted in Nov. 2020).
- [3] Chun Wei Liu, Tsai-Wen Ko, Yun-Che Wang, "Effective Mechanical Properties of Chiral Materials Predicted by Deep Neural Network". (In preperation, to be summited in Dec. 2020).

Honors & Awards

- 2020 Chairman Special Award (entering final round), IBMq Qiskit Hackthon Taiwan
- 2018 **5th Place (out of 250 students)**, Asia Pacific Mechanics Contest for College Students
- 2016 **Dean's list**, GPA in top 5% of the department

Presentation

Design of Viscoelastic Auxetic Materials Through Machine Deep Learning |Link

Taipei, Taiwan

ASIAN PACIFIC CONGRESSON COMPUTATIONAL MECHANICS (APCOM2019)

12/2019

• Discussed the use of VGG networks as an alternative of Finite Element Methods (FEM) when labeling mechanical properties for microstructures.

Selected Projects

Predicting Handwriting Recognition With Parametrized Quantum Circuit |Link

Xitou, Taiwan

FOR IBMQ QISKIT HACKTHON TAIWAN 2020

09/2020

- Implemented 4qubit-Ry gate circuits in predicting MNIST dataset with the learning curve converged after ten iterations.
- Analized the potential in predicting molecular ground state energies with Quantum LSTM Meta-Learner and VQE.

Extracurricular Activity

American Language Program, School of Professional Studies, Columbia University

New York City, NY

STUDENT

07/2018 - 08/2018

• Passed the intensive C1-level English program and visited some advanced academic facilities to prepare for my graduate studies.

Skills

Languages: Python, C/C++, MATLAB Libraries/Tools: Qiskits, Tensorflow, PyTorch Other Technologies: GNU/Linux, Raspberry Pi, GCP, Git, LAMMPS, LTeX