Simulation of Markov genealogy processes

Aaron A. King

February 27, 2024

Contents

1	Context	1
	1.1 Example: emerging variants	1
	1.2 Phylodynamics	3
	1.3 Problems of phylodynamics	3
2	Population process	4
	2.1 Examples	4
	2.2 Formalization	5
3	Genealogy process	6
	3.1 Genealogies	
	3.2 Induced genealogy process	7
4	Pruned and obscured genealogies	8
5	Theorems	10
	5.1 Pruned genealogies	10
	5.2 Obscured genealogies	
6	Examples	12

Objectives

1 Context

1.1 Example: emerging variants

Example: surveillance for emerging SARS-CoV-2 variants

nextstrain.org (?)

nextstrain.org (?)

$$\lambda_1 = \beta_1 \, \frac{I_1}{N} \qquad \lambda_2 = \beta_2 \, \frac{I_2}{N}$$

(?)

1.2 Phylodynamics

What is phylodynamics?

Broadly: Phylodynamics is the project of inferring determinants of epidemic spread using genomic data from pathogen samples.

In this talk: Phylodynamics means using genomic data to infer stochastic dynamic transmission models.

1.3 Problems of phylodynamics

Core problems of phylodynamics

- unique genealogy process.
 - Pruning and obscuration project a genealogy onto observable data.
 - We derive the exact likelihood as the solution to a nonlinear filtering problem
 - This equation can be solved by standard Monte Carlo methods.

2 Population process

2.1Examples

Population process

$$\mathbb{D} = \{\mathsf{E}_1,\mathsf{I}_1,\mathsf{E}_2,\mathsf{I}_2\}$$

2.2 Formalization

Population process

- Non-explosive Markov jump process, $\mathbf{X}_t \in \mathbb{X}$, $t \in \mathbb{R}_+$: the population process.
- Initial-state distribution, p_0 :

$$\mathsf{Prob}\left[\mathbf{X}_0 \in \mathcal{E}\right] = \int_{\mathcal{E}} p_0(x) \, \mathrm{d}x$$

• Jump rates: $\alpha(t, x, x')$ = rate of jump $x \to x'$

$$\alpha(t, x, x') \ge 0, \qquad \int_{\mathbb{X}} \alpha(t, x, x') \, \mathrm{d}x' < \infty$$

• Multiple events at each jump are allowed.

Kolmogorov forward equation (KFE): If

$$\frac{\partial w}{\partial t}(t, x) = \int w(t, x') \alpha(t, x', x) dx' - \int w(t, x) \alpha(t, x, x') dx'$$

and

$$w(0,x) = p_0(x)$$

then

$$\int_{\mathcal{E}} w(t, x) \, \mathrm{d}x = \mathsf{Prob} \left[\mathbf{X}_t \in \mathcal{E} \right].$$

KFE is sometimes called the master equation for \mathbf{X}_t .

$$\frac{\partial w}{\partial t}(t, x) = \int w(t, x') \alpha(t, x', x) dx' - \int w(t, x) \alpha(t, x, x') dx'$$

 $\mathbb{U} = \{\mathsf{Trans}, \mathsf{Prog}, \mathsf{Recov}, \mathsf{Wane}, \mathsf{Sample}\}$

$$\frac{\partial w}{\partial t}(t,x) = \sum_{u \in \mathbb{U}} \left\{ \int w(t,x') \,\alpha_u(t,x',x) \,\mathrm{d}x' - \int w(t,x) \,\alpha_u(t,x,x') \,\mathrm{d}x' \right\}$$

$$\begin{split} \frac{\partial w}{\partial t}(t,S,E,I,R) = & \frac{\beta(t)\left(S+1\right)I}{N} \, w(t,S+1,E-1,I,R) - \frac{\beta(t)\,S\,I}{N} \, w(t,S,E,I,R) + \sigma\left(E+1\right)w(t,S,E+1,I-1,R) - \sigma\,E\,w(t,S,E,I,R) \\ & + \gamma\left(I+1\right)w(t,S,E,I+1,R-1) - \gamma\,I\,w(t,S,E,I,R) + \omega\left(R+1\right)w(t,S-1,E,I,R+1) - \omega\,R\,w(t,S,E,I,R) \end{split}$$

3 Genealogy process

3.1 Genealogies

What is a genealogy?

3.2 Induced genealogy process

Event types

 $\mathbb{U} = \{\mathsf{Trans}, \mathsf{Prog}, \mathsf{Recov}, \mathsf{Wane}, \mathsf{Sample}\}$

If we write

$$\alpha(t, x, x') = \sum_{u \in \mathbb{U}} \alpha_u(t, x, x'),$$

the KFE becomes

$$\frac{\partial w}{\partial t}(t,x) = \sum_{u} \int w(t,x') \,\alpha_u(t,x',x) \,\mathrm{d}x' - \sum_{u} \int w(t,x) \,\alpha_u(t,x,x') \,\mathrm{d}x'$$

A population process induces a genealogy process

- ullet \mathbf{G}_t is a stochastic process on the space of genealogies.
- The map $X \mapsto G$ is random.
- **Key assumption:** Lineages within a deme are *exchangeable*. There is no more structure than is implied by the population process.
- Simulation code on github.com/kingaa/phylopomp
- Animations at https://kingaa.github.io/manuals/phylopomp/vignettes/

4 Pruned and obscured genealogies

Full genealogy

Pruned genealogy

Local structure of a pruned genealogy

Top row shows the *unpruned genealogy* in neighborhood of an event. Bottom row shows the corresponding *pruned genealogy*.

For $x \in \mathbb{X}$, $i \in \mathbb{D}$, $n_i(x)$ is the *occupancy* of deme i when the system is in state x. In panel A $n = (n_{\mathsf{blue}}, n_{\mathsf{yellow}}) = (4, 4)$; in panel C n = (3, 5);

For $u \in \mathbb{U}$, $i \in \mathbb{D}$, r_i^u is the production of event u in deme i. In panel A, $r = (r_{\mathsf{blue}}, r_{\mathsf{yellow}}) = (1, 1)$; in panel E, r = (0, 2).

The lineage count, $\ell_i(t)$, is the number of unpruned lineages in deme i at time t. In this case, for all panels, $\ell = (2, 2)$.

The saturation, s_i , is the number of unpruned lineages in deme *i descending* from the event. In panels B and D, s = (1,0); in panel F, s = (0,1).

Obviously, $s_i \leq r_i \leq n_i$ and $s_i \leq \ell_i \leq n_i$.

Pruned genealogy

A pruned genealogy is specified by two functions of time, (Y, Z): Z_t gives the local topological structure; Y_t gives the local coloring.

Obscured genealogy

An obscured genealogy is specified by (T, Z).

Binomial ratio

For $n, r, \ell, s \in \mathbb{Z}_+^{\mathbb{D}}$, define the binomial ratio

$$\begin{pmatrix} n & \ell \\ r & s \end{pmatrix} := \begin{cases} \prod_{i \in \mathbb{D}} \frac{\binom{n_i - \ell_i}{r_i - s_i}}{\binom{n_i}{r_i}}, & \text{if } \forall i \ n_i \geqslant \{\ell_i, r_i\} \geqslant s_i \geqslant 0, \\ 0, & \text{otherwise.} \end{cases}$$

Observe that $\begin{pmatrix} n & \ell \\ r & s \end{pmatrix} \in [0,1]$. Moreover,

$$\sum_{s \in \mathbb{Z}_+^{\mathbb{D}}} \binom{n}{r} \binom{\ell}{s} \binom{\ell}{s} = 1.$$

5 Theorems

5.1 Pruned genealogies

Theorem: likelihood of a pruned genealogy

Suppose that P = (Y, Z) is a given pruned genealogy with depth T. Define

$$\phi_u(x, y, y') \coloneqq \begin{pmatrix} n(x) & \ell(y') \\ r^u & s(y, y') \end{pmatrix} Q_u(y, y').$$

Here, Q=1 if the local structure of P is compatible with an event of type u at that time; Q=0 otherwise.

If w = w(t, x) satisfies the initial condition $w(0, x) = p_0(x)$ and the filter equation

$$\begin{split} \frac{\partial w}{\partial t}(t,x) &= \sum_{u} \int w(t,x') \, \alpha_u(t,x',x) \, \phi_u(x,\widetilde{\mathbf{Y}}_t,\mathbf{Y}_t) \, \mathrm{d}x' - \sum_{u} \int w(t,x) \, \alpha_u(t,x,x') \, \mathrm{d}x' \\ &+ \sum_{e \in \mathsf{ev}(\mathbf{P})} \delta(t,e) \, \left\{ \sum_{u} \int w(t,x') \, \alpha_u(t,x',x) \, \phi_u(x,\widetilde{\mathbf{Y}}_t,\mathbf{Y}_t) \, \mathrm{d}x' - w(t,x) \right\}, \end{split}$$

then the likelihood of P is

$$\mathcal{L}(\mathbf{P}) = \int w(\mathbf{T}, x) \, \mathrm{d}x.$$

5.2 Obscured genealogies

Theorem: likelihood of an obscured genealogy

Let (T, Z), be a given obscured genealogy. Then there are probability kernels π and q such that if

$$\beta_u(t, x, x', y, y') = \alpha_u(t, x, x') \,\pi_u(t, x, x', y, y'), \qquad \psi_u(t, x, x', y, y') = \frac{\phi_u(x', y, y')}{\pi_u(t, x, x', y, y')},$$

and if w = w(t, x, y) satisfies the initial condition $w(0, x, y) = p_0(x) q(x, y)$ and the filter equation

$$\begin{split} \frac{\partial w}{\partial t} &= \sum_{uy'} \int w(t,x',y') \, \beta_u(t,x',x,y',y) \, \psi_u(t,x',x,y',y) \, \mathrm{d}x' - \sum_{uy'} \int w(t,x,y) \, \beta_u(t,x,x',y,y') \, \mathrm{d}x' \\ &+ \sum_{e \in \mathsf{ev}(\mathbf{Z})} \delta(t,e) \, \left\{ \sum_{uy'} \int w(t,x',y') \, \beta_u(t,x',x,y,y') \, \psi_u(t,x',x,y',y) \, \mathrm{d}x' - w(t,x,y) \right\}, \end{split}$$

then the likelihood of Z is

$$\mathcal{L}(\mathbf{Z}) = \sum_{y} \int w(T, x, y) \, \mathrm{d}x.$$

6 Examples

Linear birth-death model

Uniform sampling. Exact likelihoood is available in closed form.

SIRS model

Between genealogical events:

$$\frac{\partial w}{\partial t} = \frac{\beta \left(S+1\right) \left(I-1\right)}{N} \left(1 - \frac{\binom{\ell}{2}}{\binom{I}{2}}\right) w(t, S+1, I-1, R) + \gamma \left(I+1\right) w(t, S, I+1, R-1) + \omega \left(R+1\right) w(t, S-1, I, R+1) - \left(\frac{\beta S I}{N} + \gamma I + \omega R + \psi I\right) w(t, S, I, R).$$

At genealogical events:

$$w(t,S,I,R) = \begin{cases} \frac{2\,\beta\,(S+1)}{I\,N}\,\widetilde{w}(t,S+1,I-1,R), & \text{branch point at } t, \\ \\ \psi\,\widetilde{w}(t,S,I,R), & \text{internal sample at } t, \\ \\ \psi\,(I-\ell)\,\widetilde{w}(t,S,I,R), & \text{terminal sample at } t. \end{cases}$$

Uniform sampling. One deme only.

SEIRS model

Summary and outstanding challenges

Concluding remarks

- The theory *corrects* and *strictly extends* all existing likelihood-based phylodynamic methods (e.g., ???????).
- It eliminates the need for large population-size and small sample-fraction assumptions, as well as any dependence on linearization.
- All computations can be carried out forward in time.
- This greatly expands the class of models that can be entertained.
- Great flexibility in sampling model
- Applications in disease ecology and beyond
- The unstructured case can be found in King et al. (2022).

Outstanding challenges

- Choice of importance-sampling kernel
- Borrowing information from future is allowed.
- Phylogenetic uncertainty
- Efficient algorithms
- Reassortment and recombination

Summary

- A discretely structured Markov population process uniquely induces a genealogy-valued Markov process.
- The likelihood of an observed genealogy satisfies a nonlinear filtering equation, which can be efficiently computed via Feynman-Kaç (sequential Monte Carlo) algorithms.
- In principle, these results liberate us to entertain models that more closely match our biological questions, without less hindrance from inference methodology.

References

King AA, Lin Q, Ionides EL (2022). "Markov genealogy processes." Theor Popul Biol, 143, 77–91. doi: 10.1016/j.tpb.2021.11.003.

King AA, Nguyen D, Ionides EL (2016). "Statistical inference for partially observed Markov processes via the R package pomp." J Stat Softw, 69(12), 1–43. doi: 10.18637/jss.v069.i12.

License, acknowledgments, and links

- The materials build on previous versions of this course and related courses.
- Licensed under the Creative Commons Attribution-NonCommercial license. Please share and remix non-commercially, mentioning its origin.
- Produced with R version 4.3.2 and **pomp** version 5.6.
- Compiled on February 27, 2024.

Back to Lesson R codes for this lesson