Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria

Ejercicio 1. (2.5 puntos) Sean f, g funciones enteras verificando

$$(f \circ g) \left(\frac{1}{n}\right) = \frac{1}{n}$$

para todo $n \in \mathbb{N}$. Probar que existen $\alpha, \beta \in \mathbb{C}$ con $\alpha \neq 0$ de modo que $g(z) = \alpha z + \beta$ y $f(z) = \frac{z - \beta}{\alpha}$ para cada $z \in \mathbb{C}$.

Ejercicio 2. (2.5 puntos) Dado $a \in \mathbb{R}$ con a > 1, integrar la función $z \mapsto \frac{z}{a - e^{-iz}}$ sobre la poligonal $[-\pi, \pi, \pi + in, -\pi + in, -\pi]$, con $n \in \mathbb{N}$, para probar que:

$$\int_{-\pi}^{+\pi} \frac{x \operatorname{sen}(x) dx}{1 + a^2 - 2a \cos(x)} = \frac{2\pi}{a} \ln\left(\frac{1+a}{a}\right).$$

Ejercicio 3. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{e^{\frac{z^2}{1+t^2}}}{(1+t)^2} dt \qquad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 4. (2.5) Probar el Lema de Schwarz: Sea $f \in \mathcal{H}(D(0,1))$ verificando f(0) = 0 y $|f(z)| \leq 1$ para cada $z \in D(0,1)$. Entonces $|f'(0)| \leq 1$ y $|f(z)| \leq |z|$ para cada $z \in D(0,1)$. Además, si ocurre |f'(0)| = 1 ó $|f(z_0)| = |z_0|$ para algún $z_0 \in D(0,1) \setminus \{0\}$, entonces existe $\alpha \in \mathbb{T}$ de modo que $f(z) = \alpha z$ para cada $z \in D(0,1)$.

Pista: Para cada 0 < r < 1 estimar convenientemente el valor $\max\{|g(z)| : z \in \overline{D}(0,r)\}$ donde la función $g: D(0,1) \to \mathbb{C}$ viene dada por g(0) = f'(0) y $g(z) = \frac{f(z)}{z}$ para cada $z \in D(0,1)$.

Ejercicio 1. (2.5 puntos) Sean f, g funciones enteras verificando

$$(f\circ g)\left(\frac{1}{n}\right)=\frac{1}{n}$$

para todo $n\in\mathbb{N}.$ Probar que existen $\alpha,\beta\in\mathbb{C}$ con $\alpha\neq 0$ de modo que $g(z)=\alpha z+\beta$ y $f(z)=\frac{z-\beta}{\alpha}$ para cada $z\in\mathbb{C}.$

Como f, ge ((0) => {(g(0)) = 0

Sa $A = \{ z \in \mathbb{C} \mid f(g(z)) = z \} = \{ \frac{1}{n} \mid n \in \mathbb{N} \} \cup \{ 0 \} \Rightarrow A' \cap \mathbb{C} \neq \emptyset \Rightarrow \}$ Por principio Idnibidod, $f(g(z)) = z \quad \forall z \in \mathbb{C}$

Sup. 8 no polinómico > corolario cosorati, Kr>019 (CID(011))

denso en C => 3/20) C (T) D(011) / (20) -> co y (g(011)) -> coc

(f(g(20))) ? = /20/2 -> coo, pero también (f(g(20))-> f(0120))

Por tauto, of polihomio. Veamos que of 10 es:

Sa [wn] > 00

Por To Fundamental A'Igebra, of sobreyectiva =>
3 fizzy = 0 / g(24) = wn

Supergamos (20) $\rightarrow \infty$ = 3 (200) $\rightarrow \infty$ / $\{3(2n)\} \rightarrow \{2n\} \rightarrow \infty$ = $\{3(2n)\} \rightarrow \{2n\} \rightarrow \infty$ = $\{3(2n)\} \rightarrow \{2n\} \rightarrow \infty$ | $\{3(2n)\} \rightarrow \{2n\} \rightarrow \infty$ = $\{3(2n)\} \rightarrow \{3(2n)\} \rightarrow \{3(2n)$

Por tauto, $gr(g \circ g) = grf \cdot grg = 1$ $f(g(z)) = f(dz + \beta) = z \implies$ $f(g(z)) = f(dz + \beta) = z \implies$