Alternating Finite Automata on Ω Words

Avik Shakahari — Shobhit Singh

Logic Automata Games

May 11, 2024

Alternating finite automata

- \rightarrow An alternating finite automaton (abbreviated afa) is a sextuple $M=(Q,f,\Sigma,\Delta,q_0,\mathscr{F})$, where:
- \rightarrow Q is a finite set of states and f is a mapping $f:Q\rightarrow \{$ and, or $\}$. If f(q)= and (resp. or), q is called a universal state (resp. existential state).
- \rightarrow Σ is a finite alphabet.
- $ightarrow \Delta(q,a) = \{p \mid (\dot{q},a,p) \text{ is in } \Delta\} \text{ is not empty for any } q \text{ in } Q$ and any $a \text{ in } \Sigma$.
- \rightarrow q_0 is initial state.
- $\to \mathscr{F}$ is a family of subsets of Q. For F in \mathscr{F}, F is called a final set and elements in F are called final states. If \mathscr{F} consists of a single final set, then we say that M is simple.

Computation Tree

 $x = x_1 x_2 x_3 \dots$ be in Σ^w , where x_n is in Σ for $n \ge 1$. A computation tree T(M,x) of M on x is an infinite labelled tree satisfying the following conditions:

- \rightarrow The nodes are labelled with the elements in Q. In particular, the root of T(M,x) is labelled with q_1 .
- \rightarrow For each $n \ge 1$, the edges between level n and level n+1 are labelled with x_n .
- \rightarrow If node v in level n is labelled with a universal state q, then v has a child labelled with p for each p in $\Delta(q, x_n)$.
- \rightarrow If node v in level n is labelled with an existential state q, then v has exactly one child labelled with p for some p in $\Delta(q, x_n)$.

Run

An infinite path α in T(M,x) beginning at the root is called a run in T(M,x). For a run α , we define

- $\rightarrow I(\alpha) = \{q \mid \text{ state } q \text{ occurs in } \alpha \text{ infinitely many times } \},$
- $\rightarrow O(\alpha) = \{q \mid \text{ state } q \text{ occurs in } \alpha\}.$

Accepting Conditions

- $\rightarrow C_1: I(\alpha) \cap F \neq \emptyset$
- $\rightarrow C_2: I(\alpha) \subseteq F$
- $\rightarrow C_3: O(\alpha) \cap F \neq \emptyset$
- \rightarrow $C_4: O(\alpha) \subseteq F$

Automata Classes

```
For i = 1, ..., 4, we define
1 \mathcal{A}_i = \{L_i(M) \mid M \text{ is an } afa,
2 \mathcal{A}_i^s = \{L_i(M) \mid M \text{ is a simple } afa\},
3 \mathcal{N}_i = \{L_i(M) \mid M \text{ is an } nfa\},
4 \mathcal{N}_i^s = \{L_i(M) \mid M \text{ is a simple } nfa\},
5 \mathcal{D}_i = \{L_i(M) \mid M \text{ is a } dfa\},
6 \mathcal{D}_i^s = \{L_i(M) \mid M \text{ is a simple } dfa\}.
```

Automata Classes

	C_1	C_2	<i>C</i> ₃	C ₄
\mathscr{D}_{i}	G_{δ}^{R}	F_{σ}^{R}	G^R	F ^R
\mathscr{N}_i	Ř	F_{σ}^{R}	G^R	F^R
\mathscr{A}_{i}	R	Ŕ	G^R	F^R