

1 1. A large format display comprising:
2 a plurality of emissive display modules, each
3 module including at least two alignment elements; and
4 a backframe including a plurality of alignment
5 devices to mate with the alignment elements of said display
6 modules.

1 2. The display of claim 1 wherein each module
2 includes an electroluminescent display tile secured to a
3 backplate, said backplate including said alignment
4 elements.

1 3. The display of claim 2, said display tile
2 including front and back surfaces and including a driver
3 chip on the back surface of said display tile and one more
4 emissive elements on the front surface thereof.

1 4. The display of claim 3, said modules including
2 fasteners extending from said backplates.

1 5. The display of claim 4 including elements on said
2 backframe that engage said fasteners to secure said
3 backframe to said modules.

1 6. The display of claim 4 wherein said backframe
2 removeably connects said modules to said backframe.

1 7. The display of claim 6 wherein said fasteners are
2 threaded fasteners.

1 8. The display of claim 1 wherein each module
2 includes a transparent layer and a plurality of spaced
3 apart light emissive cells formed on said layer and
4 defining regions between said cells.

1 9. The display of claim 8 including an optically
2 absorbing material formed on said layer so as to overlay
3 the region between the cells.

1 10. The display of claim 1 including a plurality of
2 gaps between adjacent modules, said gaps being covered by
3 an optically absorbing material.

1 11. The display of claim 10 including an optically
2 clear adhesive between adjacent modules.

1 12. A method comprising:
2 engaging a plurality of emissive display modules
3 with a backframe; and
4 aligning said modules with respect one another
5 using a characteristic of said backframe.

1 13. The method of claim 12 wherein aligning includes
2 causing pins on one of said modules or said backframe to
3 engage holes in one of said modules or said backframe.

1 14. The method of claim 12 including forming said
2 modules by securing light emitting tiles to a backplate
3 having alignment elements, and causing said alignment
4 elements to engage alignment devices on said backframe.

1 15. The method of claim 14 including providing tiles
2 with a plurality of light emitting cells, and coating a
3 region visually between the cells with optically absorbent
4 material.

1 16. The method of claim 14 including filling the
2 seams between adjacent modules with an optical adhesive.

1 17. The method of claim 14 including threadedly
2 securing said modules to said backframe.

1 18. The method of claim 17 including filling the
2 seams between adjacent modules with an optical adhesive
3 material and covering the adhesive material with an
4 optically absorbing material.

1 19. A system to connect tiles together to form a
2 large format display, said system comprising:

3 a backplate to mount a tile, said backplate
4 including at least two alignment pins; and
5 a backframe including a plurality of alignment
6 holes to receive the pins of said backplate.

1 20. The system of claim 19 wherein said backplate
2 includes fasteners extending outwardly from a surface
3 thereof.

1 21. The system of claim 20 wherein a threaded
2 fastener is utilized to secure said backplate to said
3 backframe.

1 22. A method comprising:

2 forming a display device having a plurality of
3 spaced, light emitting cells; and
4 coating the device with a matrix of light
5 absorbing material.

1 23. The method of claim 22 including forming said
2 spaced light emitting cells on one side of a transparent
3 layer.

1 24. The method of claim 23 including coating a second
2 side of said transparent layer with said absorbing
3 material.

1 25. The method of claim 24 including coating said
2 transparent layer at locations overlying the regions
3 between spaced, light emitting cells with first stripes of
4 black material of a first width, coating the regions
5 between the edge displays of the devices and the light
6 emitting cells with a black second stripe of a smaller
7 width, and joining display devices together so that said
8 second stripes have a combined width approximately equal to
9 the width of said first stripes.

1 26. A method of forming a large format display
2 comprising:

3 securing a plurality of light emissive display
4 tiles to one another;
5 defining gaps between adjacent display tiles; and
6 filling said gaps with a light absorbing material.

1 27. The method of claim 26 including adhesively
2 coupling said display tiles to one another by injecting
3 adhesive into said gaps and covering said adhesive with a
4 light absorbing material.

1 28. The method of claim 27 including using display
2 tiles having a plurality of light emitting cells and
3 coating the regions between said cells with a light
4 absorbing material.

1 29. The method of claim 26 including securing said
2 tiles to a support and defining structure on said tiles and
3 said support to align said tiles.

1 30. The method of claim 29 including removeably
2 mounting said tiles on said support.