Portuguese (BRA)

Árvore Beech

Vétyem Woods é uma famosa floresta com imensas árvores coloridas. Uma das mais altas e antigas árvores é conhecida como Ős Vezér.

A árvore Ős Vezér pode ser vista como um conjunto de N **vértices** and N-1 **arestas**. Os vértices são numerados de 0 a N-1 e as arestas numeradas de 1 a N-1. Cada aresta liga dois vértices distintos da árvore. Mais especificamente, a aresta i ($1 \le i < N$) liga o vértice i ao vértice P[i], onde $0 \le P[i] < i$. O vértice P[i] é chamado de **pai** do vértice i, e o vértice i é chamado de **filho** do vértice P[i].

Cada aresta tem uma cor. Há M possíveis cores de aresta, numeradas de 1 a M. A cor da aresta i é C[i]. Diferentes arestas podem ter a mesma cor.

Note que segundo as definições acima, o caso i=0 não corresponde a uma aresta da árvore. Por conveniência, deixamos P[0]=-1 e C[0]=0.

Por exemplo, suponha que a Ős Vezér tem N=18 vértices e M=3 possíveis cores de aresta, com 17 arestas descritas pelas ligações P=[-1,0,0,0,1,1,1,2,2,3,3,3,4,4,5,10,11,11] e com as cores C=[0,1,2,3,1,2,3,1,3,3,2,1,1,2,2,1,2,3]. A árvore pode ser visualizada na seguinte figura:

Árpád é um talentoso guarda florestal que gosta de estudar partes especificas da árvore chamadas de **subárvores**. Para cada r tal que $0 \le r < N$, a subárvore do vértice r é o conjunto T(r) de vértices com as seguintes propriedades:

- Vértice r pertence a T(r).
- Sempre que um vértice x pertence a T(r), todos os filhos de x também pertencem a T(r).
- Nenhum outro vértice pertence a T(r).

O tamanho do conjunto T(r) é denotado por |T(r)|.

Árpád descobriu uma propriedade complicada porém interessante da subárvore. A descoberta de Árpád envolveu brincar bastante com papel e caneta, e ele suspeita que você também precise fazer o mesmo para entendê-la. Ele também vai te mostrar múltiplos exemplos que depois você pode analizar detalhadamente.

Suponha que tenhamos um r fixo e uma permutação $v_0, v_1, \dots, v_{|T(r)|-1}$ dos vértices na subárvore T(r).

Para todo i tal que $1 \le i < |T(r)|$, seja f(i) o número de vezes que a cor $C[v_i]$ aparece na seguinte sequência de i-1 cores: $C[v_1], C[v_2], \ldots, C[v_{i-1}]$.

(Note que f(1) é sempre 0 porque a sequência de cores em sua definição é vazia.)

A permutação $v_0,v_1,\ldots,v_{|T(r)|-1}$ é uma **permutação linda** se e somente se satisfaz à todas as propriedades a seguir:

- $v_0 = r$.
- Para todo i tal que $1 \le i < |T(r)|$, o pai do vértice v_i é o vértice $v_{f(i)}$.

Para qualquer r tal que $0 \le r < N$, a subárvore T(r) é uma **subárvore linda** se e somente se existe uma permutação linda dos vértices em T(r). Note que de acordo com a definição toda subárvore que consiste de apenas um único vértice é linda.

Considere o exemplo da árvore anterior. Pode ser provado que as subárvores T(0) e T(3) desta árvore não são lindas. A subárvore T(14) é linda, visto que contém um único vértice. Abaixo, mostraremos que a subárvore T(1) também é linda.

Considere a sequência de inteiros distintos $[v_0,v_1,v_2,v_3,v_4,v_5,v_6]=[1,4,5,12,13,6,14]$. Esta sequência é uma permutação dos vértices em T(1). A figura abaixo retrata essa permutação. Os rótulos anexados aos vértices são os índices nos quais estes vértices aparecem na permutação.

Vamos agora verificar que esta é uma permutação linda.

- $v_0 = 1$.
- f(1) = 0 pois $C[v_1] = C[4] = 1$ aparece 0 vez na sequência [].
 - ° Correspondentemente, o pai de v_1 é v_0 . Isto é, o pai do vértice 4 é o vértice 1. (Formalmente, P[4]=1.)
- f(2) = 0 pois $C[v_2] = C[5] = 2$ aparece 0 vez na sequência [1].
 - \circ Correspondentemente, o pai de v_2 é v_0 . Isto é, o pai do vértice 5 é o vértice 1.
- f(3) = 1 pois $C[v_3] = C[12] = 1$ aparece 1 vez na sequência [1,2].
 - \circ Correspondentemente, o pai de v_3 é v_1 . Isto é, o pai do vértice 12 é o vértice 4.
- f(4) = 1 pois $C[v_4] = C[13] = 2$ aparece 1 vez na sequência [1,2,1].
 - \circ Correspondentemente, o pai de v_4 é v_1 . Isto é, o pai do vértice 13 é o vértice 4.
- f(5)=0 pois $C[v_5]=C[6]=3$ aparece 0 vez na sequência [1,2,1,2].
 - ° Correspondentemente, o pai de $v_{\rm 5}$ é $v_{\rm 0}$. Isto é, o pai do vértice 6 é o vértice 1.
- f(6)=2 pois $C[v_6]=C[14]=2$ aparece 2 vezes na sequência [1,2,1,2,3].
 - ° Correspondentemente, o pai de v_6 é v_2 . Isto é, o pai do vértice 14 é o vértice 5.

Como encontramos uma $permutação\ linda\ dos\ vértices\ em\ T(1)$, então a subárvore T(1) é uma $subárvore\ linda$.

Sua tarefa é ajudar Árpád a decidir para cada subárvore da Ős Vezér se ela é linda.

Detalhes de Implementação

Você deve implementar o seguinte procedimento.

```
int[] beechtree(int N, int M, int[] P, int[] C)
```

• *N*: o número de vértices da árvore.

- *M*: o número de possíveis cores de aresta.
- P, C: vetores de tamanho N descrevendo as arestas da árvore.
- Este procedimento deve retornar um vetor b de tamanho N. Para cada r tal que $0 \le r < N$, b[r] deve ser 1 se T(r) é linda ou 0 caso contrário.
- Este procedimento é chamado exatamente uma vez para cada caso de teste.

Exemplos

Exemplo 1

Considere a seguinte chamada:

```
beechtree(4, 2, [-1, 0, 0, 0], [0, 1, 1, 2])
```

A árvore é mostrada na figura a seguir:

T(1), T(2) e T(3) contêm cada uma um único vértice e portanto são lindas. T(0) não é linda. Então, o procedimento deve retornar [0,1,1,1].

Exemplo 2

Considere a seguinte chamada:

```
beechtree(18, 3,
[-1, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 10, 11, 11],
[0, 1, 2, 3, 1, 2, 3, 1, 3, 3, 2, 1, 1, 2, 2, 1, 2, 3])
```

Este exemplo foi ilustrado no enunciado.

Exemplo 3

Considere a seguinte chamada:

beechtree(7, 2, [-1, 0, 1, 1, 0, 4, 5], [0, 1, 1, 2, 2, 1, 1])

Este exemplo é ilustrado na figura a seguir:

T(0) é a única subárvore que não é linda. O procedimento deve retornar [0,1,1,1,1,1].

Restrições

- $3 \le N \le 200\,000$
- $2 \le M \le 200\,000$
- $0 \le P[i] < i$ (para cada i tal que $1 \le i < N$)
- $1 \leq C[i] \leq M$ (para cada i tal que $1 \leq i < N$)
- P[0] = -1 e C[0] = 0

Subtarefas

- 1. (9 pontos) $N \leq 8$ e $M \leq 500$
- 2. (5 points) A aresta i liga o vértice i ao vértice i-1. Isto é, para cada i tal que $1 \leq i < N$, P[i] = i-1.
- 3. (9 pontos) Com exceção ao vértice 0, todos os vértices estão ou ligados ao vértice 0, ou ligados a um vértice que está ligado ao vértice 0. Isto é, para cada i tal que $1 \le i < N$, vale P[i] = 0 or P[P[i]] = 0.
- 4. (8 pontos) Para cada c tal que $1 \leq c \leq M$, existem no máximo duas arestas com a cor c.
- 5. (14 pontos) $N \leq 200$ e $M \leq 500$
- 6. (14 pontos) $N \leq 2\,000$ e M=2
- 7. (12 pontos) $N \leq 2\,000$
- 8. (17 pontos) M=2
- 9. (12 pontos) Nenhuma restrição adicional.

Corretor exemplo

O corretor exemplo lê a entrada no seguinte formato:

- linha 1:NM
- linha 2: P[0] P[1] ... P[N-1]
- linha 3:C[0] C[1] \dots C[N-1]

Sejam $b[0],\ b[1],\ldots$ os elementos do vetor retornado por beechtree. O corretor exemplo imprime a sua resposta em uma única linha, no seguinte formato:

• linha $1:b[0]\ b[1]\ \dots$