Lógica Aula 17

Leliane Nunes de Barros

2018

leliane@ime.usp.br

Teste de programas: coleta de evidências sobre a corretude do programa

Teste de programas: coleta de evidências sobre a corretude do programa

1. Testes caixa-preta: projetados independentemente do código; e

Teste de programas: coleta de evidências sobre a corretude do programa

- 1. Testes caixa-preta: projetados independentemente do código; e
- 2. Testes caixa-branca: projetados com base no código

Teste de programas: coleta de evidências sobre a corretude do programa

- 1. Testes caixa-preta: projetados independentemente do código; e
- 2. Testes caixa-branca: projetados com base no código

Análogo a checar:

Teste de programas: coleta de evidências sobre a corretude do programa

- 1. Testes caixa-preta: projetados independentemente do código; e
- 2. Testes caixa-branca: projetados com base no código

Análogo a checar:

 se uma fórmula proposicional é uma tautologia testando apenas algumas valorações, ou

Teste de programas: coleta de evidências sobre a corretude do programa

- 1. Testes caixa-preta: projetados independentemente do código; e
- 2. Testes caixa-branca: projetados com base no código

Análogo a checar:

- se uma fórmula proposicional é uma tautologia testando apenas algumas valorações, ou
- se uma fórmula da LPO é um teorema com base na construção de apenas alguns modelos e interpretações.

Teste de programas: coleta de evidências sobre a corretude do programa

- 1. Testes caixa-preta: projetados independentemente do código; e
- 2. Testes caixa-branca: projetados com base no código

Análogo a checar:

- se uma fórmula proposicional é uma tautologia testando apenas algumas valorações, ou
- se uma fórmula da LPO é um teorema com base na construção de apenas alguns modelos e interpretações.

Um método de teste exaustivo é difícil até para programas pequenos e impossível para programas que podem consumir uma quantidade ilimitada de dados.

Verificação Formal de Programas

Por que verificar?

Verificação Formal de Programas

Por que verificar?

 foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude

- foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude
- 10 anos de desenvolvimento

- foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude
- 10 anos de desenvolvimento
- custo: US\$ 7 bilhões

- foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude
- 10 anos de desenvolvimento
- custo: US\$ 7 bilhões
- explodiu em menos de 40 segundos após o lançamento

- foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude
- 10 anos de desenvolvimento
- custo: US\$ 7 bilhões
- explodiu em menos de 40 segundos após o lançamento
- falha no software de cálculo de altitude do sistema de referência inercial.

- foquete lançador descartável usado para colocar satélites artificiais em órbitas geoestacionárias e enviar cargas para órbitas de baixa altitude
- 10 anos de desenvolvimento
- custo: US\$ 7 bilhões
- explodiu em menos de 40 segundos após o lançamento
- falha no software de cálculo de altitude do sistema de referência inercial.
- "The internal SRI* software exception was caused during execution
 of a data conversion from 64-bit floating point to 16-bit signed
 integer value. The floating point number which was converted had a
 value greater than what could be represented by a 16-bit signed
 integer."

• Verificação baseada em Prova ou em Modelo:

- Verificação baseada em Prova ou em Modelo:
 - Prova: Dado um conjunto de fórmulas lógicas Γ sobre um sistema e uma fórmula φ descrevendo uma propriedade do sistema desejada nessa mesma lógica, queremos encontrar uma demonstração para $\Gamma \vdash \varphi$

- Verificação baseada em Prova ou em Modelo:
 - Prova: Dado um conjunto de fórmulas lógicas Γ sobre um sistema e uma fórmula φ descrevendo uma propriedade do sistema desejada nessa mesma lógica, queremos encontrar uma demonstração para $\Gamma \vdash \varphi$
 - Modelo: Dado que o sistema é representado por um modelo M em uma linguagem apropriada e uma fórmula φ descrevendo uma propriedade desejada, verificar se o modelo satisfaz $M \vDash \varphi$

- Verificação baseada em Prova versus Modelo.
- Grau de automatização, sendo os extremos: "completamente automatizado" e "completamente manual". Existem muitas ferramentas no mercado que estão entre esses 2 extremos.

- Verificação baseada em Prova versus Modelo.
- Grau de automatização, sendo os extremos: "completamente automatizado" e "completamente manual". Existem muitas ferramentas no mercado que estão entre esses 2 extremos.
- Verificação de propriedade ou sistema completo: verificar uma única propriedade ou o comportamento completo do sistema.

- Verificação baseada em Prova versus Modelo.
- Grau de automatização, sendo os extremos: "completamente automatizado" e "completamente manual". Existem muitas ferramentas no mercado que estão entre esses 2 extremos.
- Verificação de propriedade ou sistema completo: verificar uma única propriedade ou o comportamento completo do sistema.
- Domínio de aplicação: hardware ou software; sequencial ou concorrente; programas que terminam ou reativos (que reagem ao ambiente e não se espera que terminem).

- Verificação baseada em Prova versus Modelo.
- Grau de automatização, sendo os extremos: "completamente automatizado" e "completamente manual". Existem muitas ferramentas no mercado que estão entre esses 2 extremos.
- Verificação de propriedade ou sistema completo: verificar uma única propriedade ou o comportamento completo do sistema.
- Domínio de aplicação: hardware ou software; sequencial ou concorrente; programas que terminam ou reativos (que reagem ao ambiente e não se espera que terminem).
- Verificação pré versus pós-desenvolvimento: mais vantajosa se introduzida cedo durante o desenvolvimento; erros encontrados depois são mais difíceis e custosos de se detectar.

A verificação de programas serve para:

 Documentação: especificações formais servem como base para a escrita do programa

A verificação de programas serve para:

- Documentação: especificações formais servem como base para a escrita do programa
- Redução do tempo de chegar ao mercado: redução do tempo de desenvolvimento

A verificação de programas serve para:

- Documentação: especificações formais servem como base para a escrita do programa
- Redução do tempo de chegar ao mercado: redução do tempo de desenvolvimento
- Reuso: uma especificação clara e formal permite um melhor reuso de código

A verificação de programas serve para:

- Documentação: especificações formais servem como base para a escrita do programa
- Redução do tempo de chegar ao mercado: redução do tempo de desenvolvimento
- Reuso: uma especificação clara e formal permite um melhor reuso de código
- Certificados de Auditoria: sistemas conputacionais de segurança crítica, ou de comércio crítico, demandam que o software seja especificado e verificado com maior rigor e formalidade

A verificação de programas serve para:

- Documentação: especificações formais servem como base para a escrita do programa
- Redução do tempo de chegar ao mercado: redução do tempo de desenvolvimento
- Reuso: uma especificação clara e formal permite um melhor reuso de código
- Certificados de Auditoria: sistemas conputacionais de segurança crítica, ou de comércio crítico, demandam que o software seja especificado e verificado com maior rigor e formalidade

A plataforma A# é um exemplo de tecnologia emergente que combina verificação de programas, testes e técnicas de verificação de modelos.

Triplas de Hoare: método introduzido por Tony Hoare em 1969.

 Baseado em provas: não verifica exaustivamente todos os estados em que o sistema pode estar (como em Verificação de Modelos, Cap.3), uma vez que é impossível obter modelos finitos com variáveis inteiras;

- Baseado em provas: não verifica exaustivamente todos os estados em que o sistema pode estar (como em Verificação de Modelos, Cap.3), uma vez que é impossível obter modelos finitos com variáveis inteiras;
- Semi-automático: regras de cálculo podem ser mecânicas mas alguns passos são manuais;

- Baseado em provas: não verifica exaustivamente todos os estados em que o sistema pode estar (como em Verificação de Modelos, Cap.3), uma vez que é impossível obter modelos finitos com variáveis inteiras;
- Semi-automático: regras de cálculo podem ser mecânicas mas alguns passos são manuais;
- Verifica propriedades (e n\u00e3o o comportamento completo do programa)

- Baseado em provas: não verifica exaustivamente todos os estados em que o sistema pode estar (como em Verificação de Modelos, Cap.3), uma vez que é impossível obter modelos finitos com variáveis inteiras;
- Semi-automático: regras de cálculo podem ser mecânicas mas alguns passos são manuais;
- Verifica propriedades (e n\u00e3o o comportamento completo do programa)
- Domínio de aplicação: programas sequenciais e "de transformação" (input/output, isto é, não reativos)

- Baseado em provas: não verifica exaustivamente todos os estados em que o sistema pode estar (como em Verificação de Modelos, Cap.3), uma vez que é impossível obter modelos finitos com variáveis inteiras;
- Semi-automático: regras de cálculo podem ser mecânicas mas alguns passos são manuais;
- Verifica propriedades (e n\u00e3o o comportamento completo do programa)
- Domínio de aplicação: programas sequenciais e "de transformação" (input/output, isto é, não reativos)
- Usado durante a codificação para pequenos fragmentos.

Etapas da Verificação de Programas

1. Partindo de uma descrição informal R de requisitos do programa, gerar uma fórmula lógica φ_R que especifica formalmente R.

Etapas da Verificação de Programas

- 1. Partindo de uma descrição informal R de requisitos do programa, gerar uma fórmula lógica φ_R que especifica formalmente R.
- 2. Escrever o programa P que tem a intenção de satisfazer φ_R (no ambiente de programação usado ou selecionado pelo cliente).

Etapas da Verificação de Programas

- 1. Partindo de uma descrição informal R de requisitos do programa, gerar uma fórmula lógica φ_R que especifica formalmente R.
- 2. Escrever o programa P que tem a intenção de satisfazer φ_R (no ambiente de programação usado ou selecionado pelo cliente).
- 3. Provar $P \vdash \varphi_R$.

Etapas da Verificação de Programas

- 1. Partindo de uma descrição informal R de requisitos do programa, gerar uma fórmula lógica φ_R que especifica formalmente R.
- 2. Escrever o programa P que tem a intenção de satisfazer φ_R (no ambiente de programação usado ou selecionado pelo cliente).
- 3. Provar $P \vdash \varphi_R$.

Etapas da Verificação de Programas

- 1. Partindo de uma descrição informal R de requisitos do programa, gerar uma fórmula lógica φ_R que especifica formalmente R.
- 2. Escrever o programa P que tem a intenção de satisfazer φ_R (no ambiente de programação usado ou selecionado pelo cliente).
- 3. Provar $P \vdash \varphi_R$.

Se o sistema de prova é correto isso implica que o programa satisfaz a sua especificação formal para todas as entradas.

Linguagem de Programação

- Vamos descrever sistemas de prova para programas escritos em uma linguagem simples que contém o núcleo de linguagens como C/C++ e Java.
- A sintaxe do programa é parte do sistema de prova.

Linguagem de Programação

- linguagem imperativa: sequência de comandos, sem concorrência ou threads.
- transformacional: a execução do programa transforma um estado inicial (valores iniciais das variáveis do programa) em um estado final.
- contém expressões inteiras e booleanas, atribuições, comandos de seleção (if-then-else), laços (while) e arrays.
- não trataremos elementos comuns às linguagens de programação tais como: funções, objetos, estruturas de dados baseadas em ponteiros ou recursão (esses elementos podem ser implementados em cima da linguagem base, isto é, apartir dos comandos primitivos)

Exemplo - Soma dos Primeiros *x* **Naturais**

```
z = 0;
while (x > 0) {
   z = z + x;
   x = x - 1;
}
```

Queremos poder expressar:

Exemplo - Soma dos Primeiros *x* **Naturais**

```
z = 0;
while (x > 0) {
   z = z + x;
   x = x - 1;
}
```

Queremos poder expressar:

• Com entrada $x \ge 0$ o programa devolve z = 1 + 2 + ... + x

Exemplo - Soma dos Primeiros *x* **Naturais**

```
z = 0;
while (x > 0) {
   z = z + x;
   x = x - 1;
}
```

Queremos poder expressar:

- Com entrada $x \ge 0$ o programa devolve z = 1 + 2 + ... + x
- O programa termina.

Seja o requisito:

R: "Calcule um número y cujo quadrado seja menor que a entrada x."

Seja o requisito:

R: "Calcule um número y cujo quadrado seja menor que a entrada x."

$$\varphi_R: y.y < x$$

Seja o requisito:

R: "Calcule um número y cujo quadrado seja menor que a entrada x."

$$\varphi_R: y.y < x$$

E se x for -4?

Seja o requisito:

R: "Calcule um número y cujo quadrado seja menor que a entrada x."

$$\varphi_R : y.y < x$$

E se x for -4?

R': "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

Seja o requisito:

R: "Calcule um número y cujo quadrado seja menor que a entrada x."

$$\varphi_R : y.y < x$$

E se x for -4?

R': "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

Ou seja:

- não basta descrever o estado que deve ser satisfeito após a execução do programa!
- também precisamos descrever o estado que antecede a execução do programa!

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

 φ é a pré-condição

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

 φ é a pré-condição

 ψ é a pós-condição

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

$$\varphi$$
 é a pré-condição

$$\psi$$
 é a pós-condição

Notação:

(|arphi|) é o conjunto de estados que satisfaz arphi

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

$$\varphi$$
 é a pré-condição

$$\psi$$
 é a pós-condição

Notação:

 $(|\varphi|)$ é o conjunto de estados que satisfaz φ (pode ser (|T|))

Uma especificação é dada por uma tripla

$$(|\varphi|)P(|\psi|)$$

"Se o programa P é executado num estado que satisfaz φ , então o estado resultante da execução de P satisfaz ψ ."

$$\varphi$$
 é a pré-condição

$$\psi$$
 é a pós-condição

Notação:

- $(|\varphi|)$ é o conjunto de estados que satisfaz φ (pode ser (|T|))
- $(|\psi|)$ é o conjunto de estados que satisfaz ψ

R: "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

R: "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

$$(|x > 0|)P(|y.y < x|)$$

R: "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

$$(|x > 0|)P(|y.y < x|)$$

$$P: y = 0$$

ou

R: "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

$$(|x > 0|)P(|y.y < x|)$$
P: $y = 0$
ou
P: $y = 0$;
while $(y*y < x)$ {
 $y = y+1$;
 $y = y-1$;

satisfazem a especificação! Uma especificação melhor seria:

R: "Se a entrada x é um número positivo, calcule um número y cujo quadrado seja menor que a entrada x."

$$(|x>0|)P(|y.y< x|)$$
 P: $y = 0$ ou P: $y = 0$; while $(y*y { $y = y+1$; $y = y-1$;$

satisfazem a especificação! Uma especificação melhor seria:

$$(|x > 0|)P(|y.y < x \land \forall z(z * z < x \rightarrow z < y)|)$$

 Fórmulas da LPO com símbolos de funções e de predicados da aritmética inteira:

$$\mathcal{F} = \{-, +, *\} \qquad \quad e \qquad \quad \mathcal{P} = \{<, =\}$$

 Fórmulas da LPO com símbolos de funções e de predicados da aritmética inteira:

$$\mathcal{F} = \{-, +, *\} \qquad e \qquad \mathcal{P} = \{<, =\}$$

- O Universo de Discurso é o conjunto dos inteiros (A = Z) e o modelo
 M interpreta as funções de F e predicados de P de maneira padrão.
- Um estado é uma função / (tabela de contexto):

$$I: Var \longmapsto \mathbb{Z}$$

 Fórmulas da LPO com símbolos de funções e de predicados da aritmética inteira:

$$\mathcal{F} = \{-, +, *\}$$
 e $\mathcal{P} = \{<, =\}$

- O Universo de Discurso é o conjunto dos inteiros ($\mathcal{A} = \mathbb{Z}$) e o modelo \mathcal{M} interpreta as funções de \mathcal{F} e predicados de \mathcal{P} de maneira padrão.
- Um estado é uma função / (tabela de contexto):

$$I: Var \longmapsto \mathbb{Z}$$

• Dizemos que um estado / satisfaz φ sse ${\mathcal M}$ satisfaz φ , isto é:

$$I \vDash \varphi \Longleftrightarrow \mathcal{M} \vDash_I \varphi$$

 Fórmulas da LPO com símbolos de funções e de predicados da aritmética inteira:

$$\mathcal{F} = \{-, +, *\}$$
 e $\mathcal{P} = \{<, =\}$

- O Universo de Discurso é o conjunto dos inteiros (A = Z) e o modelo
 M interpreta as funções de F e predicados de P de maneira padrão.
- Um estado é uma função / (tabela de contexto):

$$I: Var \longmapsto \mathbb{Z}$$

• Dizemos que um estado / satisfaz φ sse ${\mathcal M}$ satisfaz φ , isto é:

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

• Dada a tripla $(|\varphi|)P(|\psi|)$, as fórmulas φ e ψ contém apenas quantificadores sobre variáveis que não pertencem ao programa P.

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

$$I \vDash \varphi \Longleftrightarrow \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$I(x) = -2$$
, $I(y) = 5$, $I(z) = -1$

(a)
$$I \vDash \neg(x + y < z)$$

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$I(x) = -2$$
, $I(y) = 5$, $I(z) = -1$

(a)
$$I \vDash \neg(x + y < z) \checkmark$$

$$I \vDash \varphi \Longleftrightarrow \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$I(x) = -2$$
, $I(y) = 5$, $I(z) = -1$

(a)
$$I = \neg(x + y < z)$$

(b)
$$l \models y - x * z < z$$

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$I(x) = -2$$
, $I(y) = 5$, $I(z) = -1$

(a)
$$I = \neg(x + y < z) \checkmark$$

(b)
$$l \models y - x * z < z X$$

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$l(x) = -2$$
, $l(y) = 5$, $l(z) = -1$

- (a) $I = \neg(x + y < z) \checkmark$
- (b) l = y x * z < z X
- (c) $I \models \forall u(y < u \rightarrow y * z < u * z)$

$$I \vDash \varphi \iff \mathcal{M} \vDash_I \varphi$$

Exemplo:
$$l(x) = -2$$
, $l(y) = 5$, $l(z) = -1$

- (a) $l = \neg(x + y < z) \checkmark$
- (b) l = y x * z < z X
- (c) $I \models \forall u(y < u \rightarrow y * z < u * z) X$

Notação:

 $\vdash_{AR} \varphi \rightarrow \psi$ (teorema da aritmética inteira)

Correção Parcial

Relação de satisfação para a correção parcial $(\models_{\it par})$

$$\models_{\mathit{par}} (|\varphi|) P(|\psi|)$$

$$\updownarrow$$

"Para qualquer estado satisfazendo φ , se P termina, o estado final satisfaz ψ ".

Qualquer programa que não termina é parcialmente correto.

Correção Total

Relação de satisfação para a correção total (\models_{tot})

$$\models_{tot} (|\varphi|)P(|\psi|)$$

$$\updownarrow$$

"Para qualquer estado satisfazendo φ nos quais P é executado, o programa sempre termina e o estado final satisfaz ψ ".

Correção Parcial e Total

$$\models_{tot} (|\varphi|)P(|\psi|)$$

$$\updownarrow$$

$$\models_{par} (|\varphi|)P(|\psi|) \in P \text{ termina}.$$

Em geral, a demonstração da correção total é facilitada fazendo primeiro a demonstração da correção parcial, e em seguida a demonstração que o programa termina.

Linguagem para Descrição de Programas: domínio da aplicação

Expressões inteiras:

$$E := n|x|(-E)|(E+E)|(E*E)$$

Linguagem para Descrição de Programas: domínio da aplicação

Expressões inteiras:

$$E := n|x|(-E)|(E+E)|(E*E)$$

Expressões booleanas:

$$B := true|false|(!B)|(B\&B)|(B||B)|(E < E)$$

$$E_1 == E_2 \equiv !(E_1 < E_2) \& !(E_2 < E_1)$$

Linguagem para Descrição de Programas: domínio da aplicação

Expressões inteiras:

$$E := n|x|(-E)|(E+E)|(E*E)$$

Expressões booleanas:

$$B := true|false|(!B)|(B\&B)|(B||B)|(E < E)$$

$$E_1 == E_2 \equiv !(E_1 < E_2) \& !(E_2 < E_1)$$

Comandos:

$$C := x = E|C; C| \text{if } B\{C\} \text{else } \{C\} | \text{while } B\{C\}$$

```
0! = 1
(n+1)! = (n+1).n!
y = 1;
z = 0;
while (z != x) \{
z = z + 1;
y = y * z;
}
```

```
0! = 1
(n+1)! = (n+1).n!

y = 1;
z = 0;
while (z != x) \{
z = z + 1;
y = y * z;
}
```

$$\models_{par} (|x \ge 0|)$$
 Fatorial 1 $(|y = x!|)$

```
0! = 1
(n+1)! = (n+1).n!
y = 1;
while (x != 0) {
y = y * x;
x = x - 1;}
```

```
0! = 1
                    (n+1)! = (n+1).n!
y = 1;
while (x != 0) {
   y = y * x;
   x = x - 1;
            \models_{par} (|x \ge 0|) Fatorial 2 (|y = x!|)???
```

$$0! = 1$$
 $(n+1)! = (n+1).n!$
 $y = 1;$
while $(x != 0) \{$
 $y = y * x;$
 $x = x - 1;$
}

 $\models_{par} (|x \ge 0|) \text{ Fatorial 2 } (|y = x!|) \times$
 $\models_{par} (|x = x_0 \land x \ge 0|) \text{ Fatorial 2 } (|y = x_0!|)$

```
Soma: z = 0;

while (x > 0) {

z = z + x;

x = x - 1;

}
```

```
Soma: z = 0;

while (x > 0) {

z = z + x;

x = x - 1;

}

(|x = 3|) Soma (|z = 6|)
```

```
Soma: z = 0;

while (x > 0) {

z = z + x;

x = x - 1;

}

(|x = 3|) Soma (|z = 6|)

(|x = 8|) Soma (|z = 36|)
```

```
Soma: z = 0;
            while (x > 0) {
               z = z + x;
              x = x - 1;
(|x = 3|) Soma (|z = 6|)
(|x = 8|) Soma (|z = 36|)
(|x = x_0 \land x \ge 0|) Soma (|z = (x_0, (x_0 + 1))/2|)
```

São variáveis que só aparecem na especificação φ e não aparecem no programa!

```
Soma: z = 0;

while (x > 0) {

z = z + x;

x = x - 1;

}

(|x = 3|) Soma (|z = 6|)

(|x = 8|) Soma (|z = 36|)

(|x = x_0 \land x \ge 0|) Soma (|z = (x_0, (x_0 + 1))/2|)
```

O estado dá um valor para as variáveis do programa, mas não para variáveis lógicas (que podem ser variáveis livres ou variáveis sob o escopo de um quantificador).

Regra da Composição

$$\frac{(|\varphi|)\textit{C}_1(|\eta|) \quad (|\eta|)\textit{C}_2(|\psi|)}{(|\varphi|)\textit{C}_1;\textit{C}_2(|\psi|)} \ \textit{composic\~ao}$$

"Se sabemos que C_1 leva de estados que satisfazem φ em estados que satisfazem η e que C_2 leva de estados que satisfazem η em estados que satisfazem ψ

então

executando C_1 e C_2 (nessa ordem) em estados que satisfazem φ leva a estados que satisfazem ψ ."

Regra da Composição

$$\frac{(|\varphi|)\mathit{C}_1(|\eta|) \quad (|\eta|)\mathit{C}_2(|\psi|)}{(|\varphi|)\mathit{C}_1;\mathit{C}_2(|\psi|)} \ \textit{composiç\~ao}$$

O uso numa demosntração é *de baixo para cima*: para demonstrar

$$(|\varphi|) C_1; C_2(|\psi|)$$

precisamos demonstrar

$$(|\varphi|) C_1(|\eta|) e (|\eta|) C_2(|\psi|)$$

Regra da Implicação

$$\frac{\vdash_{\mathit{AR}} \varphi' \to \varphi \qquad (|\varphi|) \, \mathcal{C}(|\psi|) \qquad \vdash_{\mathit{AR}} \psi \to \psi'}{(|\varphi'|) \, \mathcal{C}(|\psi'|)} \; \mathit{implicac\~ao}$$

• "Se demonstramos $(|\varphi|) C(|\psi|)$, fortalecemos a pré-condição φ com o teorema $\vdash_{AR} \varphi' \to \varphi$ e enfraquecemos a pós-condição ψ com o teorema $\vdash_{AR} \psi \to \psi'$, então demonstramos $(|\varphi'|) C(|\psi'|)$."

Regra da Implicação

$$\frac{\vdash_{\mathit{AR}} \varphi' \to \varphi \qquad (|\varphi|) \, \mathcal{C}(|\psi|) \qquad \vdash_{\mathit{AR}} \psi \to \psi'}{(|\varphi'|) \, \mathcal{C}(|\psi'|)} \; \mathit{implicaç\~ao}$$

- "Se demonstramos $(|\varphi|) C(|\psi|)$, fortalecemos a pré-condição φ com o teorema $\vdash_{AR} \varphi' \to \varphi$ e enfraquecemos a pós-condição ψ com o teorema $\vdash_{AR} \psi \to \psi'$, então demonstramos $(|\varphi'|) C(|\psi'|)$."
- A regra de demonstração da implicação é importante para completar provas usando lógica de primeira ordem e aritmética de inteiros: faz o elo entre o cálculo de demonstração de programas e a LPO.

$$\overline{(|\psi[E/x]|) \quad x = E; \quad (|\psi|)}$$

- Não tem premissas!!
- O uso numa demonstração é de trás para frente: "Se queremos demonstrar que ψ é verdadeira no estado após a atribuição x=E, precisamos mostrar que $(|\psi[E/x]|)$ é verdadeira no estado anterior à execução da atribuição."

$$\overline{(|\psi[E/x]|) \quad x = E; \quad (|\psi|)}$$

- Não tem premissas!!
- O uso numa demonstração é de trás para frente:
 "Se queremos demonstrar que ψ é verdadeira no estado após a atribuição x = E, precisamos mostrar que (|ψ[E/x]|) é verdadeira no estado anterior à execução da atribuição."
- Exemplos:

$$(|2 = y|)$$
 $x = 2;$ $(|x = y|)$

$$\overline{(|\psi[E/x]|) \quad x = E; \quad (|\psi|)}$$

- Não tem premissas!!
- O uso numa demonstração é de trás para frente: "Se queremos demonstrar que ψ é verdadeira no estado após a atribuição x=E, precisamos mostrar que $(|\psi[E/x]|)$ é verdadeira no estado anterior à execução da atribuição."
- Exemplos:

$$(|2 = y|)$$
 $x = 2;$ $(|x = y|)$
 $(|x + 1 + 5 = y|)$ $x = x + 1;$ $(|x + 5 = y|)$

$$\overline{(|\psi[E/x]|) \quad x = E; \quad (|\psi|)}$$

- Não tem premissas!!
- O uso numa demonstração é de trás para frente:
 "Se queremos demonstrar que ψ é verdadeira no estado após a atribuição x = E, precisamos mostrar que (|ψ[E/x]|) é verdadeira no estado anterior à execução da atribuição."
- Exemplos:

$$(|2 = y|)$$
 $x = 2;$ $(|x = y|)$
 $(|x + 1 + 5 = y|)$ $x = x + 1;$ $(|x + 5 = y|)$
que usando a regra da implicação fica:
 $(|x + 6 = y|)$ $x = x + 1;$ $(|x + 5 = y|)$

Prova de Correção: árvore de prova

Existem 2 maneiras diferentes de construção de uma prova de um programa:

1. Como uma árvore de prova, na qual cada nó é rotulado como uma tripla de Hoare. A raiz da árvore (invertida) é rotulada com a especificação que queremos provar; as arestas que saem de cada nó, apontam para os nós filhos de um nó rotulados com os antecedentes da regra de prova usada, para estabelecer a validade da Tripla de Hoare associada aquele nó.

Prova de Correção: prova sequencial

2. Como uma prova sequencial, em que *P* é visto como uma sequencia de comandos primitivos (atribuições, seleção, repetição):

$$C_1; C_2; ... C_2;$$

assim, uma prova de correção de P para sua especificação:

$$(|\varphi_0|)P(|\psi_n|)$$

pode ser expressa, intercalando fórmulas:

$$(|\varphi_0|),(|\varphi_1|),...,(|\varphi_n|)$$

com os comandos primitivos::

$$(|\varphi_0|) C_1; (|\varphi_1|) C_2; (|\varphi_2|)...(|\varphi_{n-1}|) c_n; (|\varphi_n|)$$

tal que podemos provar a validade de cada Tripla de Hoare:

$$(|\varphi_i|)C_{i+1};(|\varphi_{i+1}|).$$