MEEN 644 - Homework 3

Logan Harbour February 17, 2019

Problem statement

Consider a thin copper square plate of dimensions $0.5~\mathrm{m}\times0.5~\mathrm{m}$. The temperature of the west and south edges are maintained at $50~\mathrm{^{\circ}C}$ and the north edge is maintained at $100~\mathrm{^{\circ}C}$. The east edge is insulated. Using finite volume method, write a program to predict the steady-state temperature solution.

- (a) (35 points) Set the over relaxation factor α from 1.00 to 1.40 in steps of 0.05 to identify $\alpha_{\rm opt}$. Plot the number of iterations required for convergence for each α .
- (b) (15 points) Solve the same problem using $21^2, 25^2, 31^2$, and 41^2 CVs, respectively. Plot the temperature at the center of the plate (0.25 m, 0.25 m) vs CVs.
- (c) (10 points) Plot the steady state temperature contour in the 2D domain with the 41² CV solution.

Preliminaries

Two-dimensional heat conduction

With two-dimensional heat conduction with constant material properties, insulation on the right and prescribed temperatures on all other sides, we have the PDE

$$\begin{cases} k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} = 0, \\ T(x,0) = T_B, \\ T(0,y) = T_L, \\ T(0,L) = T_T, \\ -k \frac{\partial T}{\partial x} \Big|_{x=L} = 0, \end{cases}$$

$$(1)$$

where

$$\begin{split} T_B &\equiv 50~^{\circ}\mathrm{C}\,, & T_L &\equiv 50~^{\circ}\mathrm{C}\,, \\ k &\equiv 386~\mathrm{W/m}~^{\circ}\mathrm{C}\,, & L &\equiv 0.5~\mathrm{m}\,. \end{split}$$

We discretize the region on $x \times y = [0, L]^2$ by N^2 internal nodes with $\Delta x = x/N, \Delta y = y/N$.

Control volume equations

Integrate over an internal control volume (i, j) to obtain

$$k \iint_{CV_{i,j}} \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right] dx dy = 0, \quad (i,j) \in [2,3,\dots,N-1]^2.$$

$$k \Delta y \left[\frac{\partial T}{\partial x} \Big|_{w_{i,j}} - \frac{\partial T}{\partial x} \Big|_{e_{i,j}} \right] + k \Delta x \left[\frac{\partial T}{\partial y} \Big|_{n_{i,j}} - \frac{\partial T}{\partial y} \Big|_{s_{i,j}} \right] = 0, \quad (i,j) \in [2,3,\dots,N-1]^2.$$

Now use the two node formulation for the derivative terms to obtain

$$k\Delta y \left[\frac{T_{E_{ij}} - T_{P_{ij}}}{\Delta x} - \frac{T_{P_{ij}} - T_{W_{ij}}}{\Delta x} \right] + k\Delta x \left[\frac{T_{N_{ij}} - T_{P_{ij}}}{\Delta y} - \frac{T_{P_{ij}} - T_{S_{ij}}}{\Delta y} \right] = 0, \quad (i, j) \in [2, 3, \dots, N-1]^2.$$

Collect like terms and modify the index to obtain

$$T_{i,j}a_p - T_{i,j+1}a_n - T_{i+1,j}a_e - T_{i,j-1}a_s - T_{i-1,j}a_w = 0, \quad (i,j) \in [2,3,\dots,N-1]^2,$$

where (note that the below applies only to internal control volumes)

$$a_n \equiv \frac{k\Delta y}{\Delta x}$$
, $a_e \equiv \frac{k\Delta x}{\Delta y}$, $a_s \equiv \frac{k\Delta y}{\Delta x}$, $a_w \equiv \frac{k\Delta x}{\Delta y}$, $a_p \equiv a_n + a_e + a_s + a_w$.

The remaining equations are solved similarly but with slight differences depending on which boundary the CV is on; for example, for control volumes on the left boundary we instead have $a_w = 2k\Delta y/\Delta x$.

Solving method

The problem is to be solved by the line-by-line method. In specific, the sweeping arrangement is: **south to north, west to east, north to south, east to west**. In this method, the contribution from one direction in a given control volume is lagged and moved to the right hand side in order to solve a tri-diagonal system. For example, in a south to north sweep, a single row in the physical mesh is solved (integrated) at a time. The terms that are on the left hand side that come from CVs above and below the given row are lagged (not solved for, the most up-to-date solution is known) in order to move said terms to the right hand side. The resulting system of equations for a single row is a diagonally dominant tri-diagonal matrix, which allows for a quick solve. In the iteration process, the initial guess is the average of the Dirichlet boundary values.

Convergence is declared when

$$R = \sum_{\text{CV}} \left| a_p T_p - \sum_{\text{nb}} a_{\text{nb}} T_{\text{nb}} b_p \right| \le 10^{-5} \,. \tag{3}$$

Upon solving an individual system $Ax^{\ell+1} = b$ with relaxation (where ℓ is the iteration index), the system is relaxed with the coefficient α by modifying it after construction by

$$\begin{cases} a_{ii} = a_{ii}/\alpha, \\ b_i = b_i + (\alpha^{-1} - 1)a_{ii}x_i^{\ell}, \end{cases} \qquad i = 1, \dots, N,$$

and it is then solved using the standard TDMA algorithm.

Results

Part a

With the given range of α , it was determined for this specific problem with 15² CVs that $\alpha_{\rm opt} \approx 1.3$ (given that it required the fewest iterations). The solve did not converge (with an attempted 1,000 iterations) for $\alpha = 1.4$. The requested figure showing the residuals follows in Figure 1.

Figure 1: Plot of the residual vs. iteration count for each relaxation parameter, α .

Part b

With a mesh refinement of $21^2, 25^2, 31^2$, and 41^2 CVs, the center temperature for each refinement with varying relaxation parameter α is plotted below in Figure 2. The same result is tabulated in Table 1. Note the fact that to 6 digits the solution does not change for a given refinement with a change in α . This is due to the fact that (providing the scheme converges to within the desired tolerance) relaxation will not change the solution significantly (to within the tolerance).

Figure 2: Plot of the center temperature with mesh refinement.

Table 1: The temperature at the center of the plate with varying refinements and relaxation parameters.

CVs	$\alpha = 1.0$	$\alpha = 1.15$	$\alpha = 1.30$
225	68.19568	68.19568	68.19568
441	68.19919	68.19919	68.19919
625	68.20026	68.20026	68.20026
961	68.20116	68.20116	68.20116
1681	68.20188	68.20188	68.20188

With refinement, the residuals were plotted below in Figure 3. No refinement levels for 21^2 CVs and above converged for $\alpha = 1.4$ and $\alpha = 1.35$.

Figure 3: Plot of the residual vs. iteration count for the more refined problems.

Part c

With the final mesh refinement of 41^2 CVs, a colored contour plot of the temperature solution follows in Figure 4.

Figure 4: Plot of the solution with 41^2 CVs.

Code listing

For the implementation, we have the following files:

- \bullet Makefile Allows for compiling the c++ project with make.
- hwk3.cpp Contains the main() function that is required by C that runs the cases requested in this problem set.
- Conduction2D.h / Conduction2D.cpp Contains the Conduction2D class which is the solver for the 2D heat conduction problem required in this homework.
- Matrix.h Contains the Matrix class which provides storage for a matrix with various standard matrix operations.
- TriDiagonal.h Contains the TriDiagonal class which provides storage for a tri-diagonal matrix including the TDMA solver found in the member function solveTDMA().
- plots.py Produces the plots in this report.

Makefile

```
.PHONY: clean
clean:
        rm -f $(obj) hwk-opt
hwk3.cpp
#include "Conduction2D.h"
#include <boost/format.hpp>
#include <map>
#include <sstream>
template <typename T> void save(const std::vector<T> &v, std::string filename) {
  std::ofstream f;
  f.open(filename);
  for (unsigned int i = 0; i < v.size(); ++i)</pre>
    f << std::scientific << v[i] << std::endl;</pre>
  f.close();
}
int main() {
 // Part a: change relaxation factor
  std::cout << "Part a" << std::endl;</pre>
  for (double w : {1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4}) {
    std::cout << " Running with w = " << w << ": ";
    Conduction2D problem(15, 15, w);
    problem.solve();
    // Save residuals if converged
    if (problem.converged()) {
     std::stringstream filename;
      filename << boost::format("results/a/w%1%.csv") % w;</pre>
      save(problem.getResiduals(), filename.str());
   }
  }
  std::cout << std::endl;</pre>
  // Part b: refine mesh and retreive center value
  std::cout << "Part b" << std::endl;</pre>
  std::map<double, std::vector<double>> temps;
  for (unsigned int N : {15, 21, 25, 31, 41}) {
    std::cout << " Running with " << N * N << " CVs: " << std::endl;
    for (double w : {1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3}) {
      std::cout << "
                       Running with w = " << w << ": ";
      Conduction2D problem(N, N, w);
      problem.solve();
      // Store iteration count and center solution if it converged
      if (problem.converged()) {
        std::stringstream filename;
        filename << boost::format("results/b-iterations/N%1%_w%2%.csv") % N % w;</pre>
        save(problem.getResiduals(), filename.str());
        temps[w].push_back(problem.getT((N - 1) / 2, (N - 1) / 2));
      }
      // Part c: save solution for 41x41
```

```
if (N == 41 && w == 1.0)
    problem.saveT("results/c/solution.csv");
}

// Save temperatures for each alpha
for (double w : {1.0, 1.15, 1.3})
    save(temps[w], "results/b-temps/" + std::to_string(w) + ".csv");

return 0;
}
```

Conduction2D.h

```
#ifndef CONDUCTION2D_H
#define CONDUCTION2D_H
#include <cmath>
#include <fstream>
#include <iomanip>
#include <iostream>
#include "Matrix.h"
#include "TriDiagonal.h"
/**
* Solves a 2D heat conduction problem with dirichlet conditions on the top,
* left, bottom and with a zero-flux condition on the right with Nx x Ny
* internal control volumes.
*/
class Conduction2D {
public:
  Conduction 2D (unsigned int Nx, unsigned int Ny, double alpha, double Lx = 0.5,
               double Ly = 0.5, double k = 386.0, double T_L = 50.0,
               double T_T = 100.0, double T_B = 50.0, double tol = 1e-5,
               unsigned int max_its = 1000);
  void solve();
  // See if this is solved/converged
  bool converged() { return (residuals.size() != 0 && residuals.size() != max_its); }
  // Get the solution at the (i, j) internal node
  const double getT(unsigned int i, unsigned int j) const { return T(i, j); }
  // Get the residuals and number of iterations
  const std::vector<double> &getResiduals() const { return residuals; }
  unsigned int getNumIterations() { return residuals.size(); }
  // Save the solution
  void saveT(std::string filename) const { T.save(filename); }
private:
  double computeResidual() const;
  // Precompute operations
  void precomputeProperties();
  void precomputeColumn(unsigned int col);
```

```
void precomputeRow(unsigned int row);
  // Solve and sweep operations
  void solveColumn(unsigned int col);
  void solveRow(unsigned int row);
protected:
  // Number of interior nodal points in the x and y-dimensions
 const unsigned int Nx, Ny;
 // Geometry [m]
  const double Lx, Ly, dx, dy;
  // Heat conduction coefficient [W / m k]
  const double k;
  // Dirichlet oundary conditions (left, top, bottom) [C]
  const double T_L, T_T, T_B;
  // Properties stored in matrix form
 Matrix a_p, a_n, a_e, a_s, a_w;
 // Inverse of the relaxation coefficient
  const double w_inv;
  // Iteration tolerance
 const double tol;
 // Maximum iterations
  const unsigned int max_its;
 // Temperature solution
 Matrix T;
 // Precomputed matrices for the TDMA solves
  std::vector<TriDiagonal> pre_A_x, pre_A_y;
  // Precomputed RHS for the TDMA solves
  std::vector<std::vector<double>> pre_b_x, pre_b_y;
  // Matrices for the TDMA solves
 TriDiagonal A_x, A_y;
  // RHS/solution vector for the TDMA solves
  std::vector<double> b_x, b_y;
  // Residual for each iteration
 std::vector<double> residuals;
};
#endif /* CONDUCTION2D_H */
Conduction2D.cpp
#include "Conduction2D.h"
Conduction2D::Conduction2D(unsigned int Nx, unsigned int Ny, double w,
                           double Lx, double Ly, double k, double T_L,
                           double T_T, double T_B, double tol,
                           unsigned int max_its)
    : // Interior nodal points
     Nx(Nx), Ny(Ny), Lx(Lx), Ly(Ly), dx(Lx / Nx), dy(Ly / Ny),
     // Material properties
     k(k),
     // Boundary conditions
     T_L(T_L), T_T(T_T), T_B(T_B),
```

```
// Material properties in matrix form
      a_p(Nx, Ny), a_n(Nx, Ny), a_e(Nx, Ny), a_s(Nx, Ny), a_w(Nx, Ny),
      // Solver properties
      w_inv(1.0 / w), tol(tol), max_its(max_its),
      // Initialize matrices and vectors
      T(Nx, Ny, (T_L + T_T + T_B) / 3.0), pre_A_x(Ny, Nx), pre_A_y(Ny, Nx),
      pre_b_x(Ny, std::vector<double>(Nx)),
      pre_by(Nx, std::vector < double>(Ny)), A_x(Nx), A_y(Ny), b_x(Nx), b_y(Ny) {
}
void Conduction2D::solve() {
 // Compute the a coefficients for each CV
  precomputeProperties();
  // Compute the unchanging LHS and RHS for each column
  for (unsigned int i = 0; i < Nx; ++i)
   precomputeColumn(i);
  // Compute the unchanging LHS and RHS for each row
  for (unsigned int j = 0; j < Ny; ++j)
    precomputeRow(j);
  // Iterate and exit when complete
  for (unsigned int l = 1; l <= max_its; ++l) {</pre>
   // Sweep south to north
   for (int j = 0; j < Ny; ++j)
     solveRow(j);
   // Sweep west to east
   for (int i = 0; i < Nx; ++i)
     solveColumn(i);
   // Sweep north to south
   for (int j = Ny - 1; j >= 0; --j)
     solveRow(j);
   // Sweep east to west
    for (int i = Nx - 1; i >= 0; --i)
      solveColumn(i);
   // Check for convergence and store residual
   double R = computeResidual();
    residuals.push_back(R);
    if (R < tol) {
      std::cout << "Converged with " << l << " iterations" << std::endl;</pre>
      return;
   }
  }
  std::cout << "Failed to converge in " << max_its << " iterations"</pre>
            << std::endl;
void Conduction2D::precomputeProperties() {
 // Set all neighbors to the default at first
 a_n = k * dx / dy;
 a_e = k * dy / dx;
 a_s = k * dx / dy;
  a_w = k * dy / dx;
 // Top Dirichlet
 a_n.setRow(Ny - 1, 2 * k * dx / dy);
 // Right Neumann
  a_e.setColumn(Nx - 1, 0);
```

```
// Bottom Dirichlet
  a_s.setRow(0, 2 * k * dx / dy);
 // Left dirichlet
 a_w.setColumn(0, 2 * k * dy / dx);
 // Center point
  for (unsigned int i = 0; i < Nx; ++i)
    for (unsigned int j = 0; j < Ny; ++j)
      a_p(i, j) = a_n(i, j) + a_e(i, j) + a_s(i, j) + a_w(i, j);
}
void Conduction2D::precomputeRow(unsigned int j) {
  TriDiagonal \&A = pre\_A\_x[j];
  std::vector<double> &b = pre_b_x[j];
  // First treat all as an internal volume
  A.addTopRow(a_p(0, j) * w_inv, -a_e(0, j));
  A.addBottomRow(-a_w(Nx - 1, j), a_p(Nx - 1, j) * w_inv);
  for (unsigned int i = 1; i < Nx - 1; ++i)
   A.addMiddleRow(i, -a_w(i, j), a_p(i, j) * w_inv, -a_e(i, j));
  // Left Dirichlet
  b[0] += T_L * a_w(0, j);
 // Top dirichlet
  if (j == Ny - 1)
    for (unsigned int i = 0; i < Nx; ++i)
      b[i] += T_T * a_n(i, j);
  // Bottom dirichlet
  else if (j == 0)
    for (unsigned int i = 0; i < Nx; ++i)
      b[i] += T_B * a_s(i, j);
}
void Conduction2D::precomputeColumn(unsigned int i) {
  TriDiagonal &A = pre_A_y[i];
  std::vector<double> &b = pre_b_y[i];
  // First treat all as an internal volume
  A.addTopRow(a_p(i, 0) * w_inv, -a_n(i, 0));
  A.addBottomRow(-a_s(i, Ny - 1), a_p(i, Ny - 1) * w_inv);
  for (unsigned int j = 1; j < Ny - 1; ++j)
   A.addMiddleRow(j, -a_s(i, j), a_p(i, j) * w_inv, -a_n(i, j));
  // Left Dirichlet
  if (i == 0)
    for (unsigned int j = 0; j < Ny; ++j)
      b[j] += T_L * a_w(i, j);
 // Top Dirichlet
  b[Ny - 1] += T_T * a_n(i, Ny - 1);
 // Bottom Dirichlet
 b[\theta] += T_B * a_s(i, \theta);
}
void Conduction2D::solveRow(unsigned int j) {
 // Copy pre-filled Ax = b for this row
 A_x = pre_A_x[j];
 b_x = pre_b_x[j];
 // RHS contribution from volumes above and below
```

```
if (j > 0)
    for (unsigned int i = 0; i < Nx; ++i)
      b_x[i] += T(i, j - 1) * a_s(i, j);
  if (j < Ny - 1)
    for (unsigned int i = 0; i < Nx; ++i)
      b_x[i] += T(i, j + 1) * a_n(i, j);
 // Relax, solve, and store solution (which is in b_x)
  if (w_inv != 1)
    for (unsigned int i = 0; i < Nx; ++i)
      b_x[i] += (w_inv - 1.0) * a_p(i, j) * T(i, j);
 A_x.solveTDMA(b_x);
 T.setRow(j, b_x);
}
void Conduction2D::solveColumn(unsigned int i) {
 // Copy pre-filled Ax = b for this row
 A_y = pre_A_y[i];
 b_y = pre_b_y[i];
 // RHS contribution from volumes left and right
  if (i > 0)
    for (unsigned int j = 0; j < Ny; ++j)
      b_y[j] += T(i - 1, j) * a_w(i, j);
  if (i < Nx - 1)
    for (unsigned int j = 0; j < Ny; ++j)
      b_y[j] += T(i + 1, j) * a_e(i, j);
  // Relax, solve, and store solution (which is in b_{-}y)
  if (w_inv != 1)
    for (unsigned int j = 0; j < Ny; ++j)
      b_y[j] += (w_inv - 1.0) * a_p(i, j) * T(i, j);
  A_y.solveTDMA(b_y);
 T.setColumn(i, b_y);
double Conduction2D::computeResidual() const {
  double R = 0.0, val = 0.0;
  // Sum over all CVs
  for (unsigned int i = 0; i < Nx; ++i)
    for (unsigned int j = 0; j < Ny; ++j) {
      // Main diagonal contribution and pre-computed RHS (from BC)
      val = a_p(i, j) * T(i, j) - pre_b_y[i][j];
      // Not on left boundary
      if (i > 0)
        val -= a_w(i, j) * T(i - 1, j);
      // Not on right boundary
      if (i < Nx - 1)
        val -= a_e(i, j) * T(i + 1, j);
      // Not on bottom boundary
      if (j > 0)
        val -= a_s(i, j) * T(i, j - 1);
      // Not top boundary
      if (j < Ny - 1)
       val -= a_n(i, j) * T(i, j + 1);
      R += std::abs(val);
    }
  return R;
```

Matrix.h

```
#ifndef MATRIX
#define MATRIX
#define NDEBUG
#include <cassert>
#include <vector>
/**
* Class that holds a Nx x Ny matrix with common matrix operations.
class Matrix {
public:
  Matrix(unsigned int Nx, unsigned int Ny, double v = 0)
      : Nx(Nx), Ny(Ny), M(Nx, std::vector<double>(Ny, v)) {}
 // Const operator for getting the (i, j) element
  const double &operator()(unsigned int i, unsigned int j) const {
    assert(i < Nx && j < Ny);
    return M[i][j];
  }
 // Operator for getting the (i, j) element
  double &operator()(unsigned int i, unsigned int j) {
    assert(i < Nx && j < Ny);
    return M[i][j];
  // Operator for setting the entire matrix to a value
  void operator=(double v) {
    for (unsigned int j = 0; j < Ny; ++j)
      setRow(j, v);
  }
  // Saves the matrix in csv format
  void save(const std::string filename, unsigned int precision = 12) const {
    std::ofstream f;
    f.open(filename);
    for (unsigned int j = \theta; j < Ny; ++j) {
      for (unsigned int i = 0; i < Nx; ++i) {
        if (i > 0)
          f << ",";
        f << std::setprecision(precision) << M[i][j];</pre>
     }
      f << std::endl;
    }
    f.close();
 // Set the j-th row to v
  void setRow(unsigned int j, double v) {
    assert(j < Ny);</pre>
    for (unsigned int i = 0; i < Nx; ++i)
     M[i][j] = v;
  // Set the i-th column to v
  void setColumn(unsigned int i, double v) {
    assert(i < Nx);</pre>
    for (unsigned int j = 0; j < Ny; ++j)
```

```
M[i][j] = v;
  }
 // Set the j-th row to vs
  void setRow(unsigned int j, std::vector<double> &vs) {
   assert(j < Ny \&\& vs.size() == Nx);
    for (unsigned int i = 0; i < Nx; ++i)
     M[i][j] = vs[i];
  }
 // Set the i-th column to vs
 void setColumn(unsigned int i, std::vector<double> &vs) {
   assert(i < Nx && vs.size() == Ny);
   for (unsigned int j = 0; j < Ny; ++j)
     M[i][j] = vs[j];
  }
private:
 // The size of this matrix
 const unsigned int Nx, Ny;
 // Matrix storage
 std::vector<std::vector<double> > M;
};
#endif /* MATRIX_H */
TriDiagonal.h
#ifndef TRIDIAGONAL_H
#define TRIDIAGONAL_H
#define NDEBUG
#include <cassert>
* Class that holds a tri-diagonal matrix and is able to perform TDMA in place
* with a given RHS.
class TriDiagonal {
public:
 TriDiagonal(unsigned int N, double v = 0)
      : N(N), A(N, v), B(N, v), C(N - 1, v) {}
  // Operator for setting the entire matrix to a value
  void operator=(TriDiagonal & from) {
   assert(from.getN() == N);
   A = from.getA();
   B = from.getB();
   C = from.getC();
  }
 // Gets the value of the (i, j) entry
  const double operator()(unsigned int i, unsigned int j) const {
   assert(i < N && j > i - 2 && j < i + 2);
   if (j == i - 1)
     return A[i];
   else if (j == i)
```

```
return B[i];
   else if (j == i + 1)
      return C[i];
   else {
      std::cerr << "( " << i << "," << j << ") out of TriDiagonal system";</pre>
      std::terminate();
   }
  }
 // Adders for the top, middle, and bottom rows
  void addTopRow(double b, double c) {
   B[0] += b;
   C[0] += c;
  void addMiddleRow(unsigned int i, double a, double b, double c) {
   assert(i < N - 1 \&\& i != 0);
   A[i] += a;
   B[i] += b;
   C[i] += c;
  void addBottomRow(double a, double b) {
   A[N - 1] += a;
   B[N - 1] += b;
  // Getters for the raw vectors
  const std::vector<double> &getA() const { return A; }
  const std::vector<double> &getB() const { return B; }
  const std::vector<double> &getC() const { return C; }
 // Getter for the size
  unsigned int getN() { return N; }
  // Solves the system Ax = d in place where d eventually stores the solution
  void solveTDMA(std::vector<double> &d) {
   // Forward sweep
   double tmp = 0;
   for (unsigned int i = 1; i < N; ++i) {
     tmp = A[i] / B[i - 1];
     B[i] -= tmp * C[i - 1];
     d[i] -= tmp * d[i - 1];
   }
   // Backward sweep
   d[N - 1] /= B[N - 1];
    for (unsigned int i = N - 2; i != std::numeric_limits<unsigned int>::max();
     d[i] -= C[i] * d[i + 1];
      d[i] /= B[i];
   }
  }
protected:
  // Matrix size (N x N)
  unsigned int N;
 // Left/main/right diagonal storage
 std::vector<double> A, B, C;
};
```

```
#endif /* TRIDIAGONAL_H */
```

plots.py

```
import numpy as np
import matplotlib.pyplot as plt
import glob
import os
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
# Problem a
fig = plt.figure()
fig.set_figwidth(9)
fig.set_figheight(4)
alphas = [1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35]
for alpha in alphas:
    residuals = np.loadtxt('results/a/w{}.csv'.format(alpha))
    iterations = list(range(1, len(residuals) + 1))
    plt.semilogy(iterations, residuals, '-', linewidth=1,
                 label=r'$\alpha = $\{:.2f\}'.format(alpha))
plt.xlabel(r'Iteration count')
plt.ylabel(r'Residual')
plt.legend()
plt.tight_layout()
plt.grid()
fig.savefig('results/a.pdf')
# Problem b number of iterations
fig, ax = plt.subplots(2, 2)
fig.set_figwidth(11)
fig.set_figheight(8)
alphas = [1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3]
Ns = [[21, 25], [31, 41]]
for i in range(2):
    for j in range(2):
        N = Ns[i][j]
        for alpha in alphas:
            residuals = np.loadtxt('results/b-iterations/N{}_w{}.csv'.format(N, alpha))
            iterations = list(range(1, len(residuals) + 1))
            ax[i][j].semilogy(iterations, residuals, '-', linewidth=1,
                              label=r'$\alpha = ${:.2f}'.format(alpha))
        ax[i][j].set_title('{} CVs'.format(N * N))
        ax[i][j].grid()
        if i == 1: ax[i][j].set_xlabel('Iteration count')
        if j == 0: ax[i][j].set_ylabel('Residual')
handles, labels = ax[1][1].get_legend_handles_labels()
lgd = ax[1][1].legend(handles, labels, loc='lower center', bbox_to_anchor=(-0.2, -0.34),
                      ncol=4, fontsize=9)
fig.savefig('results/b-iterations.pdf', bbox_inches='tight', bbox_extra_artists=(lgd,))
# Problem b temps
fig = plt.figure()
fig.set_figwidth(9)
fig.set_figheight(4)
```

```
Ns = [15**2, 21**2, 26**2, 31**2, 41**2]
for file in glob.glob('results/b-temps/*.csv'):
    alpha = float(os.path.splitext(file)[0].split("/")[-1])
    temps = np.loadtxt(file)
    plt.plot(Ns, temps, '.-', linewidth=1, label=r'$\alpha =$ {:.2f}'.format(alpha))
plt.xlabel(r'Number of CVs')
plt.ylabel(r'Center plate temperature ($^\circ$C)')
plt.ticklabel_format(useOffset=False)
plt.legend()
plt.tight_layout()
plt.grid()
fig.savefig('results/b-temps.pdf')
# Problem c
T = np.loadtxt('results/c/solution.csv', delimiter=',')
fig = plt.figure()
fig.set_figwidth(5.5)
fig.set_figheight(4)
x, y = np.meshgrid(np.linspace(0, 0.5, num=41), np.linspace(0, 0.5, num=41))
plot = plt.contourf(x, y, T, levels=np.linspace(50, 100, num=25))
cbar = fig.colorbar(plot)
cbar.set_ticks(np.arange(50, 101, 10))
cbar.ax.set_ylabel(r'$T$ ($^\circ$C)')
plt.xlabel('$x$ (m)')
plt.ylabel('$y$ (m)')
plt.tight_layout()
fig.savefig('results/c.pdf')
```