Задача проверки модели (Model checking)

Евтушенко Н.В. Винарский Е.М.

по всем вопросам писать на vinevg2015@gmail.com или в телеграмм @evgenii1996

7 ноября 2024 г.

"Текущий" пример

Algorithm 1 "Текущий пример"

- 1: i = 0
- 2: for true do
- 3: i = i + 2
- 4: i = i 1
- 5: i = i 1
- 6: end for

Hac интересует следующее свойство:

Переменная і бесконечно много раз принимает значение 2

события:
$$\{i=0;\ i=2;\ i=1\}$$

2 / 17

Структура Крипке

Пусть AP – множество *атомарных высказываний*, тогда под структурой Крипке будем понимать систему $M = (S, S_0, \rightarrow, L)$

- S множество состояний
- $S_0 \subset S$ множество начальных состояний
- $\rightarrow \subseteq S \times S$ тотальное¹ отношение переходов
- $L: S \to 2^{AP}$ функция разметки состояний

$$L(s_0) = \{p, q\}, L(s_1) = \{p\}$$

 $^{^{1}}$ отношение переходов *тотально*, если для любого состояния $s \in S$ существует $s' \in \mathcal{S}$ такое, что существует переход из s в s'vinevg2015@gmail.com

Трассы, порождаемые структурой Крипке

- Путь π из состояния s это бесконечная последовательность состояний вида: $s \rightarrow s_1 \rightarrow s_2 \dots$
- Трасса $\alpha(\pi)$ пути π это бесконечная последовательность событий: $L(s)L(s_1)L(s_2)...$
- $\Pi(M)$ множество всех путей из начальных состояний структуры Kрипке M
- $Tr(M) = \{\alpha(\pi) \mid \pi \in \Pi(M)\}$

vinevg2015@gmail.com

Трассы, порождаемые структурой Крипке (Пример)

- $L(s_0) = \{p, q\}$
- $L(s_1) = \{p\}$
- ullet Путь π из состояния $s_0: s_0 o s_1 o s_0 o \dots$
- ullet Трасса $lpha(\pi)$ пути π : $\{p,q\}\{p\}\{p,q\}\dots$

Логика линейного времени (LTL)

Пусть AP — множество *атомарных высказываний*, тогда LTL-формула φ строится по следующим правилам:

- $\varphi = a$, где $a \in AP$
- ullet φ *LTL*-формула, тогда $\neg \varphi$ *LTL*-формула
- ullet φ_1 и $arphi_2$ LTL-формулы, тогда $arphi_1 \wedge arphi_2$ LTL-формула
- ullet arphi LTL -формула, тогда $\mathbf{X} arphi$ LTL -формула
- ullet arphi LTL -формула, тогда $\mathbf{F} arphi$ LTL -формула
- ullet arphi LTL -формула, тогда $\mathbf{G} arphi$ LTL -формула

Логика линейного времени (LTL)

- AP множество атомарных высказываний
- Трасса τ (возможно) бесконечная последовательность событий
- $\tau[i]$ i-ое событие трассы τ
- τ^{i} суффикс трассы τ , начинающийся с i-ого события

Тогда отношение выполнимости формулы φ на трассе τ определяется следующим образом:

- $\tau \models a \Leftrightarrow a \in \tau[0]$
- $\tau \models \psi_1 \land \psi_2 \Leftrightarrow \tau \models \psi_1 \land \tau \models \psi_2$
- $\bullet \ \tau \models \mathbf{X}\varphi \Leftrightarrow \tau^1 \models \varphi$
- $\tau \models \psi_1 \mathbf{U} \psi_2 \Leftrightarrow \exists k, k \geq 0$: $\tau^k \models \psi_2, \tau^m \models \psi_1$ для всех $m \in [0, k)$
- $\tau \models \mathbf{F}\phi \Leftrightarrow \exists k > 0 : \tau^k \models \varphi$
- $\tau \models \mathbf{G}\varphi \Leftrightarrow \forall k > 0$: $\tau^k \models \varphi$

vinevg2015@gmail.com

Логика линейного времени (Пример)

 $arphi = \mathbf{GF}q$. Верно ли, что в любой трассе структуры Крипке $\mathcal M$ событие q будет встречаться бесконечно-часто?

 $au=(\{p,q\},\{p\})^\omega$. Верно ли, что $au=\mathbf{GF}q$? То есть верно ли, что $\forall k\geq 0, au^k\models \mathbf{F}q$?

В структуре Крипке ${\cal M}$

- ullet $au^k = \{p,q\}, \{p\}, \{p,q\}, \{p\}, \dots$ если $k = 2 * \ell$
- ullet $au^k = \{p\}, \{p,q\}, \{p\}, \{p,q\}, \dots$ если $k = 2*\ell+1$

Верно ли, что $\forall k \geq 0 \; \exists m > k : q \in \tau[m]$?

Логика линейного времени (LTL) Примеры

 Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ:

Логика линейного времени (LTL) Примеры

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ: $\mathbf{G}(request \Rightarrow \mathbf{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ:

Логика линейного времени (LTL) Примеры

• Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ:

 $G(request \Rightarrow Freply)$

• Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ: $G(send \Rightarrow X(\neg send Ureceive))$

• Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой" ситуации никогда не поднят:

Логика линейного времени (LTL) Примеры

 Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ:

 $G(request \Rightarrow Freply)$

• Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ:

 $G(send \Rightarrow X(\neg send Ureceive))$

• Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой" ситуации никогда не поднят:

 $G(deadlock_flag == false)$

• Если система послала сообщение, то ответ будет обязательно получен, и не наступит момента, когда мы больше не сможем отправлять сообщения:

Логика линейного времени (LTL)

Примеры

 Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ:

$$G(request \Rightarrow Freply)$$

• Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ:

$$G(send \Rightarrow X(\neg send Ureceive))$$

 Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой" ситуации никогда не поднят:

$$G(deadlock_flag == false)$$

• Если система послала сообщение, то ответ будет обязательно получен, и не наступит момента, когда мы больше не сможем отправлять сообщения:

$$G((send \Rightarrow XFreceive) \land Fsend)$$

Свойства вычисления программ

- Каждое вычисление системы характеризуется трассой, то есть последовательностью событий
- Поведение системы характеризуется свойством, то есть множеством трасс

Формально:

- AP конечное множество атомарных предикатов
- ullet Событие E любое множество атомарных предикатов, $E\subseteq AP$
- Трасса α любая бесконечная последовательность событий, $\alpha \in (2^{AP})^\omega$
- ullet Вычислительное свойство P любое трасс, то есть $P\subseteq (2^{AP})^\omega$

Свойства вычисления программ (2)

- $M = (S, S_0, \to, L)$ структура Крипке
- $\Pi(M)$ множество всех путей из начальных состояний структуры Крипке M
- $Tr(M) = \{\alpha(\pi) \mid \pi \in \Pi(M)\}$ множество всех трасс, порождаемых структурой Крипке M

Структура Крипке M удовлетворяет свойству P ($M \models P$), если $Tr(M) \subseteq P$

Свойство безопасности (safety)

Неформально:

- "ничего плохого не произойдёт"
- "Если случится что-то плохое, это уже никак не исправить"

Свойство P_{safe} – свойство безопасности, если для каждой трассы $\sigma, \sigma \in (2^{AP})^{\omega} \backslash P_{safe}$ такой, что у σ существует конечный префикс β такой, что $\beta.\sigma' \notin P_{safe}$ для любой трассы σ'

Примеры:

- Несколько процессов не могут одновременно войти в одну критическую секцию
- Сообщение не может быть потеряно при передачи

Свойство живости (liveness)

Неформально:

- "что-нибудь хорошее обязательно произойдёт"
- "Цель будет достигнута, независимо от того, что было ранее"

Свойство P_{live} – *свойство живости*, если для каждой конечной трассы $\beta, \beta \in (2^{AP})^*$ существует $\sigma \in (2^{AP})^\omega$ такая, что $\beta.\sigma \in (2^{AP})^\omega$ Примеры:

- Процессов может входить в критическую секцию бесконечное количество раз
- Сообщение когда-нибудь будет доставлено

13 / 17

Автоматы Бюхи (1)

Пусть $\Sigma=\{\sigma_1,\ldots,\sigma_m\}$ – конечный алфавит, тогда под автомтом Бюхи будем понимать систему $M=(S,S_0,\to,L)$

- S множество состояний
- $S_0 \subseteq S$ конечное непустое множество начальных состояний
- ullet $\to \subseteq S imes \Sigma imes S$ отношение переходов
- $F \subseteq S$ конечное непустое множество финальных состояний

Автоматы Бюхи (2)

- Автомат Бюхи работает с бесконечными словами вида $\sigma_1\sigma_2\ldots\sigma_n\ldots$, где $\sigma_i\in\Sigma$
- Трасса автомата Бюхи это бесконечная последовательность вида: $run = s_0 \xrightarrow{\sigma_1} s_1 \xrightarrow{\sigma_2} s_2 \xrightarrow{\sigma_3} s_3$
- слово принимается автоматом Бюхи, если и только если $\inf(run)^2 \cap F \neq \emptyset$

 $^{^2}$ inf (run) – состояния, встречающиеся бесконечно часто на трассе $run_{vg2015@gmail.com}$

Задача Model Checking

- ullet Пусть имеем LTL-формулу arphi и структуру Крипке M
- *LTL*-формула φ выполняется на пути π в M ($M, \pi \models \phi$), если $\alpha(\pi) \models \phi$
- LTL-формула φ выполняется на модели M ($M \models \varphi$), если она выполняется на каждом пути π множества Tr(M), т.е. $Tr(M) \subseteq Tr(\varphi)$

Задача Model Checking — проверить справедливость соотношения $M \models \varphi$

Схема решения задачи Model Checking

- ① По модели M строится автомат Бюхи A_M , распознающий множество бесконечных трасс Tr(M)
- 2 Строится отрицание формулы φ , затем по ней строится автомат $A_{\neg \varphi}$, распознающий множество бесконечных трасс $\mathit{Tr}(\neg \varphi)$
- ullet Строится автомат A, распознающий множество бесконечных трасс $Tr(M) \cap Tr(
 eg arphi)$
- lacktriangle Анализируется язык, распознаваемый автоматом Бюхи A $Tr(M) \cap Tr(
 eg arphi)$
 - ullet если язык, распознаваемый A **пустой**, то $M \models arphi$
 - если язык, распознаваемый A **HE пустой**, то $M \not\models \varphi$ и слова, принадлежащие этому языку контрпримеры