Math 240 Tutorial Questions

July 18

Question 1. For the following matrices, give a basis for their null space.

(a) $A = \begin{pmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{pmatrix}.$

(b) $A = \begin{pmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}.$

(c) $A = \begin{pmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$

Question 2. Find a basis for the space spanned by

$$\begin{pmatrix} -8 \\ 7 \\ 6 \\ 5 \\ -7 \end{pmatrix}, \begin{pmatrix} 8 \\ -7 \\ -9 \\ -5 \\ 7 \end{pmatrix}, \begin{pmatrix} -8 \\ 7 \\ 4 \\ 5 \\ -7 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 9 \\ 6 \\ -7 \end{pmatrix}, \begin{pmatrix} -9 \\ 3 \\ -4 \\ -1 \\ 0 \end{pmatrix}.$$

Question 3. Given vectors $\vec{u}_1, \ldots, \vec{u}_p$ in a vector space V, show \vec{x} is a linear combination of $\vec{u}_1, \ldots, \vec{u}_p$ if and only if $[\vec{x}]_B$ is a linear combination of $[\vec{u}_1]_B, \ldots, [\vec{u}_p]_B$.

Question 4. Find a basis for the vectors in \mathbb{R}^4 of the form

$$\begin{pmatrix} 3a + 6b - c \\ 6a - 2b - 2c \\ -9a + 5b + 3c \\ -3a + b + c \end{pmatrix}$$

where $a, b, c \in \mathbf{R}$.

Question 5. Find a basis for

$$H_1 = \{(a, b, c) : a - 3b + c = 0, b - 2c = 0, 2b - c = 0\}$$

and

$$H_2 = \{(a, b, c, d) : a - 3b + c = 0\}.$$

Question 6. The the space $C(\mathbf{R})$ of all continuous functions on the real line is an infinite dimensional vector space.

Question 7. For an $n \times n$ matrix A, we use

$$A\begin{pmatrix} i_1 & \cdots & i_k \\ i_1 & \cdots & i_k \end{pmatrix}$$

to denote the determinant of the submatrix formed by choosing the rows i_1, \ldots, i_k and the columns j_1, \ldots, j_k . Let $\vartheta_1, \ldots, \vartheta_n$ be the not necessarily distinct and possibly complex eigenvalues of A. Prove that

$$\sum_{1 \leq i_1 < \dots < i_k \leq n} \vartheta_{i_1} \cdots \vartheta_{i_k} = \sum_{1 \leq i_1 < \dots < i_k \leq n} A \begin{pmatrix} i_1 & \dots & i_k \\ j_1 & \dots & j_k \end{pmatrix}.$$

Use this to prove $\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i} = \sum_{i=1}^n \vartheta_i$ and $\det(A) = \vartheta_1 \cdots \vartheta_n$. [Hint: You will need to consider the characteristic equation $\det(xI - A)$ and the multilinearity of the determinant.]