The biOps Package

August 14, 2007

ne as and
,

biOps-package 3

biOp	ps-package Basic image ope	erations		
Index				67
	writeTiff			
	writeJpeg			
	readTiff			
	readJpeg			
	r_threshold			
	r_negative_lut			
	r_negative			
	r_look_up_table			
	r_inc_intensity			
	r_inc_contrast			
	r_imgMaximum			
	r_imgDiffer			
	r_imgAverage			
	r_imgAdd			
	r_gamma			
	r_dec_intensity			
	r_dec_contrast			
	plot.imagedata			
	Ç			
	imgXOR			
	imgVerticalMirroring			
	imgUnsharpen			
	imgTranslate			
	' T 1.4.			4.0

Description

Basic image operations. It includes: arithmetic, logic, look up table and geometric operations. The supported file formats are jpeg and tiff.

Details

Package: biOps
Type: Package
Version: 0.1
Date: 2007-06-18

License: GPL

Built: R 2.2.1; i486-pc-linux-gnu; 2007-06-27 18:02:45; unix

Index:

biOps-package Basic image operations

4 biOps-package

imageType Get information on color type of imagedata

Generate an imagedata imagedata

imgAND And two images imgAdd Add two images Average images imgAverage Shrink an image imgAverageShrink imgBilinearRotate Rotate an image Scale an image Return the image blue band imgBilinearScale
imgBlueBand

imgCubicRotate Rotate an image imgCubicScale Scale an image imgDecreaseContrast Decrease contrast Decrease intensity imgDiffer Substract two images imgDivide Divide two images imgGamma Gamma correct an image Return the image green band imgGreenBand

imgHorizontalMirroring

Horizontal mirror an image

imgIncreaseContrast
imgIncreaseIntensity
Increase contrast
Increase intensity imgMedianShrink Shrink an image Multiply two images imgMultiply

imgNearestNeighborRotate

Rotate an image

imgNearestNeighborScale

imgNegative

Scale an image Negate an image

imgNormalize Normalization for vector and matrix

imgOR Or two images

Convert color imagedata to grey imagedata Return the image red band imgRGB2Grey

imgRedBand

imgRotate Rotate an image imgRotate90Clockwise Rotate an image

imgRotate90CounterClockwise

Rotate an image imgScale Scale an image imgSplineRotate Rotate an image imgSplineScale Scale an image imgThreshold

Threshold an image Translate an image block imgTranslate imgVerticalMirroring Vertical mirror an image

imqXOR Xor two images R logo imagedata logo

plot.imagedata Plotting an imagedata object

print.imagedata Print information on a given imagedata object

Decrease contrast r_dec_contrast r_dec_intensity Decrease intensity imageType 5

r_gamma_img Gamma correct an image r_imgAdd Add two images
r_imgAverage Average images
r_imgDiffer Substract two image
r_inc_contrast Increase contrast
r_inc_intensity Increase intensity
r_negative Substract two images r_negative Negate an image r_threshold Threshold an image Read jpeg file readJpeg readTiff Read tiff file violet.picture JPEG picture of a violet flower writeJpeg Write jpeg file writeJpeg writeTiff Write tiff file

Author(s)

MatÃ∎as Bordese, Walter Alini

Maintainer: MatÃ∎as Bordese <mbordese@yahoo.com>

imageType

Get information on color type of imagedata

Description

This function returns color type ("rgb" or "grey") of a given imagedata.

Usage

```
imageType(x)
```

Arguments

Х

The image

Value

```
"rgb" or "grey"
```

6 imagedata

			-		
- 1	.ma	C C	2	$^{-}$	2
	ша	.ч.	z Cu	aч	а

Generate an imagedata

Description

This function makes an imagedata object from a matrix. This data structure is primary data structure to represent image in biOps package.

Usage

```
imagedata(mat, type=NULL, ncol=dim(mat)[1], nrow=dim(mat)[2])
```

Arguments

mat	array, matrix or vector
type	"rgb" or "grey"
ncol	width of image
nrow	height of image

Details

For grey scale image, matrix should be given in the form of 2 dimensional matrix. First dimension is row, and second dimension is column.

For rgb image, matrix should be given in the form of 3 dimensional array (row, column, channel). mat[,,1], mat[,,2], mat[,,3] are red plane, green plane and blue plane, respectively.

You can omit 'type' specification if you give a proper array or matrix.

Value

return an imagedata object

See Also

```
plot.imagedata print.imagedata
```

```
p <- q <- seq(-1, 1, length=20)
r <- 1 - outer(p^2, q^2, "+") / 2
plot(imagedata(r))</pre>
```

imgAND 7

imgAND And two images

Description

This function does a logic AND between two images and returns a new image.

Usage

```
imgAND(imgdata1, imgdata2)
```

Arguments

imgdata1 The first image
imgdata2 The second image

Value

return an imagedata object

See Also

```
imgOR imgXOR
```

Examples

imgAdd

Add two images

Description

This function adds two images and returns a new image.

Usage

```
imgAdd(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image imgdata2 The second image
```

8 imgAverage

Value

return an imagedata object

Note

To add a constant c to an image you can just do: »> imgdata + c.

Examples

imgAverage

Average images

Description

This function calculates the average of the given images and returns a new image.

Usage

```
imgAverage(imgdata_list)
```

Arguments

```
imgdata_list An image list
```

Value

return an imagedata object

imgAverageShrink 9

```
imgAverageShrink Shrink an image
```

Description

This function shrinks an image using the average and returns a new image.

Usage

```
imgAverageShrink(imgdata, x_scale, y_scale)
```

Arguments

imgdata	The image
x_scale	The horizontal scale factor
y_scale	The vertical scale factor

Value

return an imagedata object

Note

The scale factors are expected to be less than 1.

See Also

 $img Median Shrink\ img Nearest Neighbor Scale\ img Bilinear Scale\ img Cubic Scale$

10 imgBilinearScale

```
imgBilinearRotate Rotate an image
```

Description

This function rotates an image using bilinear interpolation and returns a new image.

Usage

```
imgBilinearRotate(imgdata, angle)
```

Arguments

imgdata The image

angle The clockwise deg angle to rotate

Value

return an imagedata object

See Also

 $imgRotate\ imgNearest NeighborRotate\ imgCubicRotate\ imgSplineRotate\ imgRotate90Clockwise\ imgRotate90CounterClockwise$

Examples

imgBilinearScale Scale an image

Description

This function scales an image using bilinear interpolation and returns a new image.

Usage

```
imgBilinearScale(imgdata, x_scale, y_scale)
```

imgBlueBand 11

Arguments

imgdata	The image
x_scale	The horizontal scale factor
y_scale	The vertical scale factor

Value

return an imagedata object

Note

The scale factors are expected to be greater than 1. To reduce an image use the minification functions instead.

See Also

 $\verb|imgScale| imgNearestNeighborScale| imgCubicScale| imgSplineScale| imgMedianShrink| imgAverageShrink|$

Examples

imgBlueBand

Return the image blue band

Description

This function returns the blue band of the imagedata.

Usage

```
imgBlueBand(x)
```

Arguments

Х

The image

Value

grey imagedata

imgBlur

Examples

imgBlur

Blurs an image

Description

This function blurs an image by convoluting with the following matrix:

```
1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16
```

Usage

```
imgBlur(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

See Also

```
imgStdBlur
```

imgBoost 13

imgBoost	High Boosts an image	

Description

This function high boosts an image by convoluting with the following matrix:

14 imgCanny

It increases intensity by a given proportion (p) and substracting a lowpass filter

Usage

```
imgBoost(imgdata, proportion)
```

Arguments

```
imgdata The image
proportion Proportion of intensity to be increased (optional: default = 1 -HighPassFilter-)
```

Value

return an imagedata object

Note

When proportion=1, it's the same as imgHighPassFilter

Examples

imgCanny

Canny Edge Detection Method

Description

This function does edge detection using the Canny algorithm.

Usage

```
imgCanny(imgdata, sigma, low=0, high=-1)
```

Arguments

imgdata	The image
sigma	The standard deviation used for the gaussian smoothing convolution
low	The lower threshold for hysteresis
high	The higher threshold for hysteresis

imgConvolve 15

Value

return an imagedata object

Note

If not specified, the low and high parameters are estimated based in a histogram of the image.

Examples

imgConvolve

Performs an image convolution

Description

This function performs an image convolution with given mask

Usage

```
imgConvolve(imgdata, mask, bias)
```

Arguments

imgdata	The image
mask	Kernel's convolution matrix
bias	Value to be added to each pixel after method is applied (used to correct some expected behaviour). This argument is optional (default = 32)

Value

return an imagedata object

imgCubicRotate

imgCrop Crops an image

Description

This function crops image.

Usage

```
imgCrop(imgdata, x_start, y_start, c_width, c_height)
```

Arguments

Value

return an imagedata object

Examples

 $\verb"imgCubicRotate"$

Rotate an image

Description

This function rotates an image using cubic interpolation and returns a new image.

Usage

```
imgCubicRotate(imgdata, angle)
```

Arguments

imgdata The image

angle The clockwise deg angle to rotate

imgCubicScale17

Value

return an imagedata object

See Also

imgRotate imgNearestNeighborRotate imgBilinearRotate imgSplineRotate imgRotate90Clockwise imgRotate90CounterClockwise

Examples

```
## Not run:
                 x <- readJpeg(system.file("data", "violet.jpg", package="biOps"))
                 y <- imgCubicRotate(x, 45)</pre>
 ## End(Not run)
imgCubicScale
```

Scale an image

Description

This function scales an image using cubic interpolation and returns a new image.

Usage

```
imgCubicScale(imgdata, x_scale, y_scale)
```

Arguments

```
imgdata
                 The image
x_scale
                 The horizontal scale factor
y_scale
                 The vertical scale factor
```

Value

return an imagedata object

Note

The scale factors are expected to be greater than 1. To reduce an image use the minification functions instead.

See Also

 $\verb|imgScale| imgNearestNeighborScale| imgBilinearScale| imgSplineScale| imgMedianShrink| |$ imgAverageShrink

Examples

Description

This function decreases an image contrast, leaving each pixel value between given values.

Usage

```
imgDecreaseContrast(imgdata, min_desired, max_desired)
```

Arguments

```
imgdata The image
min_desired The min value
max_desired The max value
```

Value

return an imagedata object

See Also

```
imgIncreaseContrast\ r\_dec\_contrast\ r\_inc\_contrast
```

imgDecreaseIntensity 19

```
imgDecreaseIntensity
```

Decrease intensity

Description

This function decreases an image intensity by a given factor.

Usage

```
imgDecreaseIntensity(imgdata, percentage)
```

Arguments

```
imgdata The image
```

percentage A non negative value representing the intensity percentage to be decreased. 1

stands for 100% (eg. 0.5 = 50%).

Value

return an imagedata object

See Also

```
imgIncreaseIntensity r_dec_intensity r_inc_intensity
```

Examples

imgDiffer

Substract two images

Description

This function substracts two images and returns a new image, imgdata1 - imgdata2.

Usage

```
imgDiffer(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image
imgdata2 The second image
```

Value

return an imagedata object

Note

To substract a constant c to an image you can just do: »> imgdata - c.

Examples

 $\verb|imgDifferenceEdgeDetection||$

Enhaces image edges

Description

This function enhaces image's edge by the difference method. It uses a 3x3 matrix to determine the current pixel value (by getting the maximum value between the distances of matrix's opposite neighbors

Usage

```
imgDifferenceEdgeDetection(imgdata, bias)
```

Arguments

 $\verb|imgdata| \qquad \qquad The image|$

bias Value to be added to each pixel after method is applied (used to correct some

expected behaviour). This argument is optional (default = 32)

Value

return an imagedata object

See Also

imgHomogeneityEdgeDetection

imgDivide 21

Examples

imgDivide

Divide two images

Description

This function divides two images and returns a new image.

Usage

```
imgDivide(imgdata1, imgdata2)
```

Arguments

imgdata1 The first image
imgdata2 The second image

Value

return an imagedata object

Note

To divide an image by a constant c you can just do: »> imgdata / c.

Examples

imgFreiChen

Frei-Chen Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Frei-Chen method matrices:

22 imgGamma

Usage

```
imgFreiChen(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Examples

imgGamma

Gamma correct an image

Description

This function applies gamma operation to a given image. Each pixel value is taken to the inverse of gamma_value-th exponent.

Usage

```
imgGamma(imgdata, gamma_value)
```

Arguments

```
imgdata The image
gamma_value A non negative value representing operation gamma value
```

Value

return an imagedata object

See Also

```
r_gamma
```

Examples

imgGetRGBFromBands $\it Return~an~RGB~image$

Description

This function returns the RGB image compositing the given bands.

Usage

```
imgGetRGBFromBands(R, G, B)
```

Arguments

R	A one-band image for the Red band
G	A one-band image for the Green band
В	A one-band image for the Blue band

Value

RGB imagedata

24 imgHighPassFilter

imgGreenBand

Return the image green band

Description

This function returns the green band of the imagedata.

Usage

```
imgGreenBand(x)
```

Arguments

Х

The image

Value

grey imagedata

Examples

imgHighPassFilter Sharpens an image

Description

This function sharpens an image by convoluting with the following matrix:

```
-1/9 -1/9 -1/9
-1/9 8/9 -1/9
-1/9 -1/9 -1/9
```

Usage

```
imgHighPassFilter (imgdata)
```

Arguments

imgdata The image

imgHistogram 25

Value

return an imagedata object

Examples

imgHistogram

Return the image histogram

Description

This function returns the image pixel values histogram.

Usage

```
imgHistogram(x, main='Image Histogram', col='Midnight Blue', ...)
```

Arguments

```
    x The image
    main The histogram title
    col The histogram bars color
    ... Same options of hist function
```

Value

histogram object

See Also

hist

```
x \leftarrow readJpeg(system.file("data", "violet.jpg", package="biOps"))
h <- imgHistogram(x)
```

imgHomogeneityEdgeDetection

Enhaces image edges

Description

This funtions enhaces image's edge by the homogeneity method. It uses a 3x3 matrix to determine the current pixel value (by getting the maximum value between the distances of the pixel and its neighbors)

Usage

```
imgHomogeneityEdgeDetection(imgdata, bias)
```

Arguments

imgdata The image

bias Value to be added to each pixel after method is applied (used to correct some

expected behaviour). This argument is optional (default = 32)

Value

return an imagedata object

See Also

imgHomogeneityEdgeDetection

Examples

imgHorizontalMirroring

Horizontal mirror an image

Description

This function flips an image about the y axis.

Usage

```
imgHorizontalMirroring(imgdata)
```

imgIncreaseContrast 27

Arguments

```
imgdata The image
```

Value

return an imagedata object

See Also

```
imgVerticalMirroring
```

Examples

imgIncreaseContrast

Increase contrast

Description

This function increases an image contrast, augmenting pixel values differences between given limits (in a linear fashion).

Usage

```
imgIncreaseContrast(imgdata, min_limit, max_limit)
```

Arguments

Value

return an imagedata object

See Also

```
imgDecreaseContrast r_inc_contrast r_dec_contrast
```

28 imgKirsch

Examples

Description

This function increases an image intensity by a given factor.

Usage

```
imgIncreaseIntensity(imgdata, percentage)
```

Arguments

```
imgdata The image percentage A non negative value representing the intensity percentage to be increased. 1 stands for 100\% (eg. 0.5 = 50\%)
```

Value

return an imagedata object

See Also

```
imgDecreaseIntensity r_inc_intensity r_dec_intensity
```

Examples

imgKirsch

Kirsch Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Kirsch method. Base matrix is:

imgMarrHildreth 29

```
5 -3 -3
5 0 -3
5 -3 -3
```

Usage

```
imgKirsch(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Examples

imgMarrHildreth

Marr-Hildreth Edge Detection Method

Description

This function does edge detection using the Marr-Hildreth algorithm.

Usage

```
imgMarrHildreth(imgdata, sigma)
```

Arguments

imgdata The image

sigma The standard deviation of Gaussian for convolution

Value

return an imagedata object

30 imgMedianShrink

imgMaximum

Calculates image maximum

Description

This function calculates the maximum of the given images and returns a new image.

Usage

```
imgMaximum(imgdata_list)
```

Arguments

```
imgdata_list Animage list
```

Value

return an imagedata object

Examples

imgMedianShrink

Shrink an image

Description

This function shrinks an image using the median and returns a new image.

Usage

```
imgMedianShrink(imgdata, x_scale, y_scale)
```

Arguments

imgdata	The image
x_scale	The horizontal scale factor
v scale	The vertical scale factor

imgMultiply 31

Value

return an imagedata object

Note

The scale factors are expected to be less than 1.

See Also

 $\verb|imgAverageShrinkimgNearestNeighborScaleimgBilinearScaleimgCubicScale|\\$

Examples

Description

This function multiplies two images and returns a new image.

Usage

```
imgMultiply(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image imgdata2 The second image
```

Value

return an imagedata object

Note

To multiply an image by a constant c you can just do: »> imgdata * c.

```
\verb|imgNearestNeighborRotate| \\
```

Rotate an image

Description

This function rotates an image using nearest neighbor interpolation and returns a new image.

Usage

```
imgNearestNeighborRotate(imgdata, angle)
```

Arguments

```
imgdata The image
```

angle The clockwise deg angle to rotate

Value

return an imagedata object

See Also

 $\verb|imgRotate| imgBilinearRotate| imgCubicRotate| imgSplineRotate| imgRotate90Clockwise| imgRotate90CounterClockwise|$

Examples

 $\verb|imgNearestNeighborScale||$

Scale an image

Description

This function scales an image using nearest neighbor interpolation and returns a new image.

Usage

```
imgNearestNeighborScale(imgdata, x_scale, y_scale)
```

imgNegative 33

Arguments

imgdata	The image
x_scale	The horizontal scale factor
y_scale	The vertical scale factor

Value

return an imagedata object

Note

The scale factors are expected to be greater than 1. To reduce an image use the minification functions instead.

See Also

 $\verb|imgScaleimgBilinearScaleimgCubicScaleimgSplineScaleimgMedianShrinkimgAverageShrink|$

Examples

imgNegative

Negate an image

Description

This function negates an image.

Usage

```
imgNegative(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

34 imgNormalize

See Also

```
r_negative r_negative_lut
```

Examples

imgNormalize

Normalization for vector and matrix

Description

This function normalizes image so that the minimum value is 0 and the maximum value is 1.

Usage

```
imgNormalize(x)
```

Arguments

Х

The image

Value

Data of the same type as 'x', in which minimum value is 0 and maximum value is 255.

imgPrewitt 35

imgOR

Or two images

Description

This function does a logic OR between two images and returns a new image.

Usage

```
imgOR(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image
imgdata2 The second image
```

Value

return an imagedata object

See Also

```
imgAND imgXOR
```

Examples

imgPrewitt

Prewitt Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Prewitt method matrices:

H_r				H_c		
1	0	-1	II	-1	-1	-1
1	0	-1		0	0	0
1	0	-1		1	1	1

Usage

```
imgPrewitt(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Examples

imgPrewittCompassGradient

Prewitt Compass Gradient Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Prewitt method. Base matrix is:

1 1 -1 1 -2 -1 1 1 -1

Usage

```
imgPrewittCompassGradient(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

```
## Not run:
    x <- readJpeg(system.file("data", "violet.jpg", package="biOps"))
    y <- imgPrewittCompassGradient(x)</pre>
```

imgRGB2Grey 37

```
## End(Not run)
```

imgRGB2Grey

Convert color imagedata to grey imagedata

Description

This function convert color imagedata to grey imagedata.

Usage

```
imgRGB2Grey(x, coefs=c(0.30, 0.59, 0.11))
```

Arguments

Х

The image

coefs

The coefficients for red, green and blue bands

Value

grey imagedata

Examples

imgRedBand

Return the image red band

Description

This function returns the red band of the imagedata.

Usage

```
imgRedBand(x)
```

Arguments

Х

The image

38 imgRoberts

Value

grey imagedata

Examples

imgRoberts

Roberts Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Roberts method matrices:

H_r				H_c			
0	0	-1	Ш	-1	0	0	
0	1	0	Ш	0	1	0	
0	0	0	Ш	0	0	0	

Usage

```
imgRoberts(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

imgRobinson5Level 39

imgRobinson3Level Robinson 3-level Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Robinson 3-level method. Base matrix is:

1 0 -1 1 0 -1 1 0 -1

Usage

```
imgRobinson3Level(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Examples

imgRobinson5Level Robinson 5-level Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Robinson 5-level method. Base matrix is:

```
1 0 -1
2 0 -2
1 0 -1
```

40 imgRotate

Usage

```
imgRobinson5Level(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Examples

imgRotate

Rotate an image

Description

This function rotates an image using the given interpolation and returns a new image.

Usage

```
imgRotate(imgdata, angle, interpolation)
```

Arguments

imgdata The image
angle The clockwise deg angle to rotate
interpolation

The interpolation method: nearestneighbor | bilinear | cubic | spline

Value

return an imagedata object

See Also

 $\verb|imgNearestNeighborRotate| imgBilinearRotate| imgCubicRotate| imgSplineRotate| imgRotate| 90Clockwise| imgRotate| 90CounterClockwise|$

imgRotate90Clockwise

Examples

Description

This function rotates the image 90 degrees clockwise.

Rotate an image

Usage

```
imgRotate90Clockwise(imgdata)
```

Arguments

```
imgdata The image
```

Value

return an imagedata object

See Also

```
imgRotate90CounterClockwise
```

42 imgScale

Description

This function rotates the image 90 degrees counter-clockwise.

Usage

```
imgRotate90CounterClockwise(imgdata)
```

Arguments

```
imgdata The image
```

Value

return an imagedata object

See Also

```
imgRotate90Clockwise
```

Examples

imgScale

Scale an image

Description

This function scales an image using the given interpolation and returns a new image.

Usage

```
imgScale(imgdata, x_scale, y_scale, interpolation)
```

imgSharpen 43

Arguments

```
imgdata The image
x_scale The horizontal scale factor
y_scale The vertical scale factor
interpolation
```

The interpolation method: nearestneighbor | bilinear | cubic | spline

Value

return an imagedata object

Note

The scale factors are expected to be greater than 1. To reduce an image use the minification functions instead.

See Also

 $\verb|imgNearestNeighborScale| imgBilinearScale| imgCubicScale| imgSplineScale| imgMedianShrink| imgAverageShrink|$

Examples

imgSharpen

Sharpens an image with selected mask

Description

This function sharpens an image by convoluting with one of the following matrices:

Usage

```
imgSharpen (imgdata, mask)
```

44 imgShenCastan

Arguments

imgdata The image
mask The matrix to be used in the convolution. Must be one of 1, 2, 3 (default=1)

Value

return an imagedata object

Examples

Description

This function does edge detection using the Shen-Castan algorithm.

Usage

```
imgShenCastan(imgdata, smooth_factor=0.9, thin_factor=2, adapt_window=7, thresh_rat
```

Arguments

Value

return an imagedata object

imgSplineRotate 45

imgSobel

Sobel Edge Detection Method

Description

This function enhaces image's edges by convoluting with the Sobel method matrices:

	H_r				H_c	
1	0	-1		-1	-2	-1
2	0	-2		0	0	0
1	0	-1	Ш	1	2	1

Usage

```
imgSobel(imgdata)
```

Arguments

imgdata

Value

return an imagedata object

The image

Examples

```
x <- readJpeg(system.file("data", "violet.jpg", package="biOps"))
y <- imgSobel(x)</pre>
```

imgSplineRotate

Rotate an image

Description

This function rotates an image using b-spline interpolation and returns a new image.

Usage

```
imgSplineRotate(imgdata, angle)
```

Arguments

imgdata The image

angle The clockwise deg angle to rotate

46 imgSplineScale

Value

return an imagedata object

See Also

 $\verb|imgRotate| imgNearestNeighborRotate| imgBilinearRotate| imgCubicRotate| imgRotate90Clockwise| imgRotate90CounterClockwise|$

Examples

Description

This function scales an image using b-spline interpolation and returns a new image.

Usage

```
imgSplineScale(imgdata, x_scale, y_scale)
```

Arguments

Value

return an imagedata object

Note

The scale factors are expected to be greater than 1. To reduce an image use the minification functions instead.

See Also

 $\verb|imgScale| imgNearestNeighborScale| imgBilinearScale| imgCubicScale| imgMedianShrink| imgAverageShrink|$

imgStdBlur 47

Examples

imgStdBlur

Blurs an image

Description

This function blurs an image by convoluting with a average square matrix

Usage

```
imgStdBlur(imgdata, dim)
```

Arguments

imgdata The image

dim Square matrix dimension (optional, default = 5)

Value

return an imagedata object

See Also

```
imgBlur
```

48 imgTranslate

imgThreshold

Threshold an image

Description

This function thresholds an image using a given filter.

Usage

```
imgThreshold(imgdata, thr_value)
```

Arguments

imgdata The image

thr_value Filter value for thresholding

Value

return an imagedata object

See Also

```
r_threshold
```

Examples

```
x <- readJpeg(system.file("data", "violet.jpg", package="biOps"))
y <- imgThreshold(x, 80)</pre>
```

imgTranslate

Translate an image block

Description

This function translates an image block and returns a new image.

Usage

```
imgTranslate(imgdata, x_start, y_start, x_end, y_end, t_width, t_height)
```

imgUnsharpen 49

Arguments

imgdata	The image
x_start	Upper left x coordinate of source block
y_start	Upper left y coordinate of source block
x_end	Upper left x coordinate of destination block
y_end	Upper left y coordinate of destination block
t_width	Width of the block to move
t_height	Height of the block to move

Value

return an imagedata object

Examples

imgUnsharpen

Unsharpens an image with selected mask

Description

This function unsharpens an image by convoluting with one of the following matrices:

	1		\parallel		2				3	1
0	-1	0		-1	-1	-1	Ш	1	-2	1
-1	5	-1		-1	9	-1		-2	5	-2
0	-1	0	Ш	-1	-1	-1	Ш	1	-2	1

Performs a difference between original image and sharpen convolved image with the specified mask

Usage

```
imgUnsharpen (imgdata, mask)
```

Arguments

```
imgdata The image

mask The matrix to be used in the convolution. Must be one of 1, 2, 3 (default=1)
```

Value

return an imagedata object

Examples

imgVerticalMirroring

Vertical mirror an image

Description

This function flips an image about the x axis.

Usage

```
imgVerticalMirroring(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

See Also

imgHorizontalMirroring

imgXOR 51

imgXOR

Xor two images

Description

This function does a logic XOR between two images and returns a new image.

Usage

```
imgXOR(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image
imgdata2 The second image
```

Value

return an imagedata object

See Also

```
imgOR imgAND
```

Examples

logo

R logo imagedata

Description

The imagedata object of R logo of the size 101x77.

Usage

```
data(logo)
```

Format

imagedata

52 print.imagedata

Examples

plot.imagedata

Plotting an imagedata object

Description

This function outputs an imagedata object as an image.

Usage

```
plot.imagedata(x, ...)
```

Arguments

x The image

... Plotting options

See Also

imagedata

Examples

print.imagedata

Print information on a given imagedata object

Description

This function outputs information on a given imagedata object.

Usage

```
print.imagedata(x, ...)
```

r_dec_contrast 53

Arguments

```
x The image... Ignored
```

See Also

```
imagedata
```

Examples

r_dec_contrast

Decrease contrast

Description

This function decreases an image contrast, leaving each pixel value between given values.

Usage

```
r_dec_contrast(imgdata, min_desired, max_desired)
```

Arguments

```
imgdata The image
min_desired The min value
max desired The max value
```

Value

return an imagedata object

Note

This is the R implementation of imgDecreaseContrast.

See Also

 $\verb|imgDecreaseContrast| imgIncreaseContrast| r_inc_contrast|$

54 r_dec_intensity

Examples

r_dec_intensity

Decrease intensity

Description

This function decreases an image intensity by a given factor.

Usage

```
r_dec_intensity(imgdata, percentage)
```

Arguments

imqdata The image

percentage A non negative value representing the intensity percentage to be decreased. 1

stands for 100% (eg. 0.5 = 50%).

Value

return an imagedata object

Note

This is the R implementation of imgDecreaseIntensity.

See Also

imgDecreaseIntensity imgIncreaseIntensity r_inc_intensity

r_gamma 55

r_gamma

Gamma correct an image

Description

This function applies gamma operation to a given image. Each pixel value is taken to the inverse of gamma_value-th exponent

Usage

```
r_gamma(imgdata, gamma_value)
```

Arguments

```
imgdata The image
gamma_value A non negative value representing operation gamma value
```

Value

return an imagedata object

Note

This is the R implementation of imgGamma.

See Also

imgGamma

56 r_imgAverage

r_imgAdd

Add two images

Description

This function adds two images and returns a new image.

Usage

```
r_imgAdd(imgdata1, imgdata2)
```

Arguments

```
imgdata1 The first image
imgdata2 The second image
```

Value

return an imagedata object

Note

This is the R implementation of imgAdd.

See Also

imgAdd

Examples

r_imgAverage

Average images

Description

This function calculates the average of the given images and returns a new image.

Usage

```
r_imgAverage(imgdata_list)
```

r_imgDiffer 57

Arguments

```
imgdata_list An image list
```

Value

return an imagedata object

Note

This is the R implementation of imgAverage.

See Also

```
imgAverage
```

Examples

 $r_imgDiffer$

Substract two images

Description

This function substracts two images and returns a new image, imgdata1 - imgdata2.

Usage

```
r_{imgDiffer(imgdata1, imgdata2)}
```

Arguments

```
imgdata1 The first image
imgdata2 The second image
```

Value

return an imagedata object

Note

This is the R implementation of imgDiffer.

58 r_imgMaximum

See Also

```
imgDiffer
```

Examples

r_imgMaximum

Images maximum

Description

This function calculates the maximum of the given images and returns a new image.

Usage

```
r_imgMaximum(imgdata_list)
```

Arguments

```
imgdata_list An image list
```

Value

return an imagedata object

Note

This is the R implementation of imgAverage.

See Also

imgMaximum

r_inc_contrast 59

Description

This function increases an image contrast, augmenting pixel values differences between given limits (in a linear fashion).

Usage

```
r_inc_contrast(imgdata, min_limit, max_limit)
```

Arguments

imgdata	The image
min_limit	The minimum limit to apply lineal modification
max_limit	The maximum limit to apply lineal modification

Value

return an imagedata object

Note

This is the R implementation of imgIncreaseContrast.

See Also

```
\verb|imgIncreaseContrast| imgDecreaseContrast| r\_dec\_contrast|
```

r_inc_intensity

Description

This function increases an image intensity by a given factor.

Usage

```
r_inc_intensity(imgdata, percentage)
```

Arguments

Value

return an imagedata object

Note

This is the R implementation of imgIncreaseIntensity.

See Also

```
imgIncreaseIntensity imgDecreaseIntensity r_dec_intensity
```

r_look_up_table 61

```
r_look_up_table
```

Transforms an image by a given look-up table

Description

This function applies a transformation to an image using a given look-up table.

Usage

```
r_look_up_table(imgdata, table)
```

Arguments

imgdata

The image

table

Look up table which determines the image operation to be applied

Value

return an imagedata object

Examples

r_negative

Negate an image

Description

This function negates an image.

Usage

```
r_negative(imgdata)
```

Arguments

imgdata

The image

Value

return an imagedata object

f_negative_lut

Note

This is the R implementation of imgNegative.

See Also

```
imgNegative r_negative_lut
```

Examples

r_negative_lut

Negate an image

Description

This function negates an image.

Usage

```
r_negative_lut(imgdata)
```

Arguments

imgdata The image

Value

return an imagedata object

Note

This is the R implementation of imgNegative using look up tables.

See Also

```
imgNegative r_negative
```

r_threshold 63

r_threshold

Threshold an image

Description

This function thresholds an image using a given filter.

Usage

```
r_threshold(imgdata, thr_value)
```

Arguments

imgdata

The image

thr_value

Filter value for thresholding

Value

return an imagedata object

Note

This is the R implementation of imgThreshold.

See Also

```
imgThreshold
```

Examples

readJpeg

Read jpeg file

Description

This function reads a jpeg image file and return an imagedata object.

Usage

```
readJpeg(filename)
```

64 readTiff

Arguments

filename of JPEG image

Value

return an imagedata object

See Also

```
imagedata
```

Examples

readTiff

Read tiff file

Description

This function reads a tiff image file and return an imagedata object.

Usage

```
readTiff(filename)
```

Arguments

filename of TIFF image

Value

return an imagedata object

See Also

imagedata

writeJpeg 65

writeJpeg

Write jpeg file

Description

This function writes an imagedata object into a jpeg image file.

Usage

```
writeJpeg(filename, imgdata)
```

Arguments

```
filename of JPEG image imagedata to write
```

See Also

```
readJpeg
```

Examples

writeTiff

Write tiff file

Description

This function writes an imagedata object into a tiff image file.

Usage

```
writeTiff(filename, imgdata)
```

Arguments

```
filename of TIFF image imagedata to write
```

See Also

```
readTiff
```

writeTiff

Index

*Topic IO	imgIncreaseContrast, 25
readJpeg, 61	imgIncreaseIntensity, 26
readTiff, 62	imgKirsch, 26
writeJpeg,63	imgMarrHildreth,27
writeTiff, 63	imgMaximum, 28
*Topic datasets	imgMedianShrink, 28
logo, 49	imgMultiply, 29
*Topic logic	imgNearestNeighborRotate, 30
imgAND, 5	imgNearestNeighborScale, 30
imgNegative, 31	imgPrewitt,33
imgOR, 33	<pre>imgPrewittCompassGradient,34</pre>
imgXOR, 49	imgRoberts, 36
r_negative,59	imgRobinson3Level, 37
r_negative_lut, 60	imgRobinson5Level,37
*Topic math	imgRotate, 38
imgAdd,5	imgRotate90Clockwise,39
imgAverage, 6	imgRotate90CounterClockwise,
imgAverageShrink,7	40
${\it imgBilinearRotate}, 8$	imgScale, 40
imgBilinearScale, 8	imgSharpen,41
imgBlur, 10	imgShenCastan,42
imgBoost, 11	imgSobel, 43
imgCanny, 12	imgSplineRotate,43
imgConvolve, 13	imgSplineScale,44
imgCrop, 14	imgStdBlur,45
imgCubicRotate, 14	imgThreshold,46
imgCubicScale, 15	imgTranslate,46
imgDecreaseContrast, 16	imgUnsharpen,47
imgDecreaseIntensity, 17	imgVerticalMirroring,48
imgDiffer, 17	r_dec_contrast,51
<pre>imgDifferenceEdgeDetection,</pre>	r_dec_intensity,52
18	r_gamma,53
imgDivide, 19	r_imgAdd, 54
imgFreiChen, 19	r_imgAverage,54
imgGamma, 20	r_imgDiffer,55
imgHighPassFilter,22	r_imgMaximum,56
imgHomogeneityEdgeDetection,	r_inc_contrast,57
24	r_inc_intensity, 58
imgHorizontalMirroring,24	r_look_up_table,59

68 INDEX

r_threshold, 61	imgHistogram, 23				
*Topic misc	imgHomogeneityEdgeDetection, 18,				
imagedata,4	24, 24				
imageType, 3	imgHorizontalMirroring, 24,48				
imgBlueBand, 9	imgIncreaseContrast, $16, 25, 51, 57$				
imgGetRGBFromBands, 21	imgIncreaseIntensity, $17, 26, 52, 58$				
imgGreenBand, 22	imgKirsch, 26				
imgHistogram, 23	imgMarrHildreth, 27				
imgNormalize, 32	imgMaximum, 28, 56				
imgRedBand, 35	imgMedianShrink, 7, 9, 15, 28, 31, 41, 44				
imgRGB2Grey, 35	imgMultiply, 29				
plot.imagedata, 50	imgNearestNeighborRotate, 8, 15, 30				
print.imagedata, 50	38, 44				
*Topic package	imgNearestNeighborScale, 7, 9, 15,				
biOps-package, 1	29, 30, 41, 44				
proportionage, r	imgNegative, 31, 60				
biOps(biOps-package), 1	imgNormalize, 32				
biOps-package, 1	imgOR, 5, 33, 49				
ziopo paonago, i	imgPrewitt, 33				
hist, 23	imgPrewittCompassGradient, 34				
, -	imgRedBand, 35				
imagedata, 4, 50, 51, 62					
imageType, 3	imgRGB2Grey, 35				
imgAdd, 5, 54	imgRoberts, 36				
imgAND, 5, 33, 49	imgRobinson3Level, 37				
imgAverage, 6, 55	imgRobinson5Level, 37				
imgAverageShrink, 7, 9, 15, 29, 31, 41,	imgRotate, 8, 15, 30, 38, 44				
44	imgRotate90Clockwise, 8, 15, 30, 38,				
imgBilinearRotate, 8, 15, 30, 38, 44	39, 40, 44				
imgBilinearScale, 7, 8, 15, 29, 31, 41,	imgRotate90CounterClockwise, 8,				
44	15, 30, 38, 39, 40, 44				
imgBlueBand, 9	imgScale, 9, 15, 31, 40, 44				
imgBlur, 10, 45	imgSharpen, 41				
imgBoost, 11	imgShenCastan, 42				
imgCanny, 12	imgSobel, 43				
imgConvolve, 13	imgSplineRotate, 8, 15, 30, 38, 43				
imgCrop, 14	imgSplineScale, 9, 15, 31, 41, 44				
imgCubicRotate, 8, 14, 30, 38, 44	imgStdBlur, 10, 45				
imgCubicScale, 7, 9, 15, 29, 31, 41, 44	imgThreshold, 46, 61				
imgDecreaseContrast, 16, 25, 51, 57	imgTranslate,46				
imgDecreaseIntensity, 17, 26, 52, 58	imgUnsharpen,47				
imgDiffer, 17, 56	imgVerticalMirroring, 25, 48				
imgDifferenceEdgeDetection, 18	imgXOR, 5, 33, 49				
imgDivide, 19	- 40				
imgFreiChen, 19	logo, 49				
-					
imgGamma, 20, 53	plot.imagedata, 4,50				
imgGetRGBFromBands, 21	print.imagedata, $4,50$				
imgGreenBand, 22 imgHighPassFilter, 12, 22	r dec contrast. 16.25.51.57				
INIGHT GUIL GOOF IILEL. 12, 22	I UEC CONLIASE, 10, 23, 31, 3/				

INDEX 69

```
r_dec_intensity, 17, 26, 52, 58
r_gamma, 20, 53
r_imgAdd, 54
r_imgAverage, 54
r_imgDiffer,55
r_{imgMaximum}, 56
r_inc_contrast, 16, 25, 51, 57
r_inc_intensity, 17, 26, 52, 58
r_look_up_table, 59
r_negative, 32, 59, 60
{\tt r\_negative\_lut}, 32, \textcolor{red}{60}, 60
r_threshold, 46,61
readJpeg, 61, 63
readTiff, 62, 63
writeJpeg, 63
writeTiff, 63
```