FastGCN: Fast Learning with Graph Convolution Networks Via Importance Sampling

Jie Chen, Tengfei Ma, Cao Xiao IBM Research

ICLR 2018

Sanghyeon Lee

26 Aug. 2020

1) Property of Adjacency Matrices (A)

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$A^{2} = AA = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{pmatrix}$$

$$A^{3} = A^{2}A = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 0 & 4 \\ 4 & 0 & 4 & 0 \\ 0 & 4 & 0 & 4 \\ 4 & 0 & 4 & 0 \end{pmatrix}$$

2) Adjacency Matrices and Multi hop

Aggregating feature from connected 1 hop node

Aggeratied node feature = AH

3) GCN

$$H_1^{(l+1)} = \sigma \left(H_1^{(l)} W^{(l)} + H_2^{(l)} W^{(l)} + H_3^{(l)} W^{(l)} + H_4^{(l)} W^{(l)} + b^{(l)} \right)$$

$$H_i^{(l+1)} = \sigma \left(\sum_{j \in N(i)} H_j^{(l)} W^{(l)} + b^{(l)} \right) \qquad H^{(l+1)} = \sigma \left(A H^{(l)} W^{(l)} + b^{(l)} \right)$$

$$H^{(l+1)} = \sigma \left(AH^{(l)}W^{(l)} + b^{(l)} \right)$$

small-world **network**

Problem of GCN:

- 1. For many applications, test graph may be constantly expanding with new nodes
- 2. Very Large Computational Cost

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

(a) 2D Convolution. Analogous to a graph, each pixel in an image is taken as a node where neighbors are determined by the filter size. The 2D convolution takes a weighted average of pixel values of the red node along with its neighbors. The neighbors of a node are ordered and have a fixed size.

(b) Graph Convolution. To get a hidden representation of the red node, one simple solution of graph convolution operation takes the average value of node features of the red node along with its neighbors. Different from image data, the neighbors of a node are unordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

Problem of Batch sampling in GCN:

3. Nodes has high dependency → SGD assumes that all samples are iid

Sampled nodes has dependency

Training and Inference through Sampling

$$\tilde{H}^{(l+1)} = \hat{A}H^{(l)}W^{(l)}, \quad H^{(l+1)} = \sigma(\tilde{H}^{(l+1)}), \quad l = 0, \dots, M-1,$$

Let function h, s.t

$$\tilde{h}^{(l+1)}(v) = \int \hat{A}(v,u)h^{(l)}(u)W^{(l)}dP(u), \quad h^{(l+1)}(v) = \sigma(\tilde{h}^{(l+1)}(v)), \quad l = 0,\dots, M-1,$$

By Monte Carlo Sampling

$$\tilde{h}_{t_{l+1}}^{(l+1)}(v) := \frac{1}{t_l} \sum_{j=1}^{t_l} \hat{A}(v, u_j^{(l)}) h_{t_l}^{(l)}(u_j^{(l)}) W^{(l)}, \quad h_{t_{l+1}}^{(l+1)}(v) := \sigma(\tilde{h}_{t_{l+1}}^{(l+1)}(v)), \quad u \sim P$$

Vertex Sampling

$$H^{(l+1)}(v,:) = \sigma\left(\frac{n}{t_l}\sum_{j=1}^{t_l}\hat{A}(v,u_j^{(l)})H^{(l)}(u_j^{(l)},:)W^{(l)}\right), \quad l = 0,\ldots,M-1.$$

Batch Sampling

$$L_{t_0,t_1,\dots,t_M} := \frac{1}{t_M} \sum_{i=1}^{t_M} g(h_{t_M}^{(M)}(u_i^{(M)}))$$

Integral transform view

• • 0 0 0 0 0

000000

000000

Graph convolution view

They assumes that all embedded nodes follows iid → This assumption is too strong ...

 $h^{(0)}(v)$

* Adaptive Sampling Toward Fast Graph Representation Learning (NIPS 2018)

Vertex Sampling

$$H^{(l+1)}(v,:) = \sigma\left(\frac{n}{t_l}\sum_{j=1}^{t_l}\hat{A}(v,u_j^{(l)})H^{(l)}(u_j^{(l)},:)W^{(l)}\right), \quad l = 0,\dots, M-1.$$

$$pf) \ \sigma(\Sigma_{j}A(v_{i}, u_{j})h(u_{j})W) = \sigma\left(\frac{n}{1} * \frac{1}{n} ...\right) = \sigma\left(n * E_{p(u_{j}|v_{i})}(h(u_{j})W)\right)$$

$$s. \ t \ p(u_{j}|v_{i}) = \frac{A(v_{i}, u_{j})}{n}$$

$$\Rightarrow H = \sigma\left(n * \frac{1}{t_{l}}\Sigma ...\right)$$

Training and Inference through Sampling

Algorithm 1 FastGCN batched training (one epoch)

- 1: for each batch do
- each batch do For each layer l, sample uniformly t_l vertices $u_1^{(l)}, \dots, u_{t_l}^{(l)}
 ightharpoonup \operatorname{Compute}$ batch gradient $\nabla L_{\operatorname{batch}}$ 3:
- 4: If v is sampled in the next layer,

$$\nabla \tilde{H}^{(l+1)}(v,:) \leftarrow \frac{n}{t_l} \sum_{j=1}^{t_l} \hat{A}(v, u_j^{(l)}) \nabla \left\{ H^{(l)}(u_j^{(l)},:) W^{(l)} \right\}$$

- end for 5:
- $W \leftarrow W \eta \nabla L_{\text{batch}}$

⊳ SGD step

7: end for

Variance Reduction by importance sampling

	Function	Samples	Num. samples
Layer $l+1$; random variable v	$\tilde{h}_{t_{l+1}}^{(l+1)}(v) \to y(v)$	$u_i^{(l+1)} \to v_i$	$t_{l+1} \to s$
Layer l ; random variable u	$h_{t_l}^{(l)}(u)W^{(l)} \to x(u)$	$u_j^{(l)} o u_j$	$t_l o t$

Under the joint distribution of v and u, the aforementioned sample average is

$$G := \frac{1}{s} \sum_{i=1}^{s} y(v_i) = \frac{1}{s} \sum_{i=1}^{s} \left(\frac{1}{t} \sum_{j=1}^{t} \hat{A}(v_i, u_j) x(u_j) \right).$$

$$Var\{G\} = R + \frac{1}{st} \iint \hat{A}(v, u)^2 x(u)^2 dP(u) dP(v), \tag{6}$$

where

$$R = \frac{1}{s}\left(1 - \frac{1}{t}\right)\int e(v)^2\,dP(v) - \frac{1}{s}\left(\int e(v)\,dP(v)\right)^2 \quad \text{and} \quad e(v) = \int \hat{A}(v,u)x(u)\,dP(u).$$

Variance Reduction by importance sampling

Importance Sampling :
$$E_p(f(x)) = E_q(\frac{p}{q}f(x))$$

Algorithm 2 FastGCN batched training (one epoch), improved version

- 1: For each vertex u, compute sampling probability $q(u) \propto ||\hat{A}(:,u)||^2$
- 2: for each batch do
- 3: For each layer l, sample t_l vertices $u_1^{(l)}, \ldots, u_{t_l}^{(l)}$ according to distribution q
- 4: **for** each layer l **do** \triangleright Compute batch gradient ∇L_{batch}
- 5: If v is sampled in the next layer,

$$\nabla \tilde{H}^{(l+1)}(v,:) \leftarrow \frac{1}{t_l} \sum_{j=1}^{t_l} \frac{\hat{A}(v, u_j^{(l)})}{q(u_j^{(l)})} \nabla \left\{ H^{(l)}(u_j^{(l)},:) W^{(l)} \right\}$$

- 6: **end for**
- 7: $W \leftarrow W \eta \nabla L_{\text{batch}}$

⊳ SGD step

8: end for

Discussion

Problem of FastGCN

1.

2. Batch sampling has less theorical background

Experiments

- 1Classifying research topics using Cora citation data set
- 2 Categorizing academic papers with the Pubmed database
- 3 Predicting the community structure of a social network modeled with Reddit posts

THE LET WAR AND A SECOND ASSECTION ASSECTION

Table 1: Dataset Statistics

Dataset	Nodes	Edges	Classes	Features	Training/Validation/Test
Cora	2,708	5,429	7	1,433	1,208/500/1,000
Pubmed	19,717	44,338	3	500	18,217/500/1,000
Reddit	232,965	11,606,919	41	602	152,410/23,699/55,334

Experiments

Micro F1 Score				
	Cora	Pubmed	Reddit	
FastGCN	0.850	0.880	0.937	
GraphSAGE-GCN	0.829	0.849	0.923	
GraphSAGE-mean	0.822	0.888	0.946	
GCN (batched)	0.851	0.867	0.930	
GCN (original)	0.865	0.875	NA	

	Sampling		Precompute	
t_1	Time	F1	Time	F1
5	0.737	0.859	0.139	0.849
10	0.755	0.863	0.141	0.870
25	0.760	0.873	0.144	0.879
50	0.774	0.864	0.142	0.880

Thank you