6

(a) The grid shows the graph of $y = a + bx^2$.

The graph passes through the points with coordinates (0, 4) and (1, 1).

(i) Find the value of a and the value of b.

a =

 $b = \dots$ [2

© UCLES 2021 0580/42/F/M/21

						9					
	(ii)	W	rite dowr	n the equa	tion of th	to the gra	aph at (0,	4).			
(iii) The equation of the tangent to the graph at $x = -1$ is $y = 6x + 7$. Find the equation of the tangent to the graph at $x = 1$.											[1]
(b)	The	tab	ole shows	some val	ues for	$v = 1 + \frac{3}{3}$	$\frac{5}{-x}$ for	$-2 \leqslant x \leqslant$			[2]
	X	;	-2	-1.5	-1	-0.5	0	0.5	1	1.5	
	y	,	2	2.11		2.43		3		4.33	
(i) Complete the table.											[3]
	(ii) On the grid, draw the graph of $y = 1 + \frac{5}{3-x}$ for $-2 \le x \le 1.5$.										[4]
(c)	(i) Write down the values of x where the two graphs intersect.										
	$x = \dots \text{ or } x = \dots$										
	(ii) The answers to $part(c)(i)$ are two solutions of a cubic equation in terms of x .										
	Find this equation in the form $ax^3 + bx^2 + cx + d = 0$, where a, b, c and d are integers.										