第13章 平稳时间序列

"时间序列数据"分为"平稳序列"(stationary)与"非平稳序列"(non-stationary)两大类,需使用不同的计量方法。

本章介绍平稳序列,下一章介绍非平稳序列。

13.1 时间序列的自相关

时间序列指同一个体在不同时点上的观测数据。比如,在1978-2013年期间,中国每年的国内生产总值。

对于离散时间 $\{1, 2, \dots, T\}$,可将时间序列写为 $\{y_1, y_2, \dots, y_T\}$,其中每个 y_t 都是随机变量。

时间序列的最大特点是存在自相关,不同期的观测值之间存在相关性。

定义 时间序列 $\{y_t\}$ 的 k 阶自协方差(autocovariance of order k)为

$$\gamma_k \equiv \text{Cov}(y_t, y_{t+k}) = \text{E}[(y_t - \mu)(y_{t+k} - \mu)]$$
 (13.1)

其中, $\mu \equiv E(y)$ 为总体均值。

 γ_k 反映同一变量(y)相隔k期之间的自相关程度。

对 γ_k 的估计值为**样本自协方差**:

$$\hat{\gamma}_k = \frac{1}{T - k} \sum_{t=1}^{T - k} (y_t - \overline{y})(y_{t+k} - \overline{y}) \quad (13.2)$$

其中, $\overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$ 为样本均值。

自协方差受变量单位的影响。为此,将其标准化。

定义 时间序列 $\{y_t\}$ 的 k 阶自相关系数(autocorrelation of order k) 为

$$\rho_k \equiv \operatorname{Corr}(y_t, y_{t+k}) \equiv \frac{\operatorname{Cov}(y_t, y_{t+k})}{\operatorname{Var}(y_t)} \quad (13.3)$$

自相关系数 ρ_k 将自协方差 γ_k 标准化为介于[-1,1]之间的量。

对于严格平稳过程, ρ_k 不依赖于具体时间,仅是滞后阶数k的函数,称为"自相关函数"(Autocorrelation Function,简记 ACF)。

将 (k, ρ_k) 画成图,即为"自相关图"(correlogram)。

对 ρ_k 的估计值为**样本自相关系数**:

$$\hat{\rho}_k \equiv \hat{\gamma}_k / \hat{\gamma}_0$$
 (13.4)
其中,
$$\hat{\gamma}_0 \equiv \frac{1}{T - 1} \sum_{t=1}^T (y_t - \overline{y})^2$$
 为样本方差。

这些数字特征是时间序列固有的特征,不依赖于模型设定。

在设定模型时,应尽可能与这些数字特征一致。

例 使用数据集 gdp_china.dta 考察 1978-2013 年,中国国内生产总值(1978 年不变价格,亿元),记为 y。

定义时间变量后,看 GDP 的时间趋势(参见图 13.1)。

- . use gdp_china.dta,clear
- . tsset year
- . tsline y,xlabel(1980(10)2010)

其中,"tsline"表示画时间趋势图,在此等价于命令"line gdp year" (year 为时间变量)。"xlabel(1980(10)2010)"表示在横轴 1980-2010 期间,每隔 10 年做个标注(label)。

图 13.1 GDP 的指数增长趋势(1978-2013)

GDP 存在指数增长(exponential growth)的趋势。通常的处理方法是,将GDP 取对数,把指数趋势变为线性趋势。

计算 GDP 对数,再次画时间趋势图(参见图 13.2)。

- . gen lny=log(y)
- . tsline lny,xlabel(1980(10)2010)

图 13.2 GDP 对数的线性增长趋势(1978-2013)

GDP 对数存在线性趋势,但依然不平稳(期望值不断增长)。

将GDP对数进行一阶差分,然后画时间趋势图。

- . gen dlny=d.lny
- . tsline dlny,xlabel(1980(10)2010)

图 13.3 GDP 对数差分的时间趋势(1978-2013)

Δln y_t不存在明显的时间趋势,可大致视为平稳序列。

之所以考察 GDP 对数差分,因为它约等于 GDP 的增长率:

$$\Delta \ln y_t \equiv \ln y_t - \ln y_{t-1} = \ln \left(\frac{y_t}{y_{t-1}}\right)$$

$$= \ln \left(\frac{y_{t-1} + \Delta y_t}{y_{t-1}}\right) = \ln \left(1 + \frac{\Delta y_t}{y_{t-1}}\right) \approx \frac{\Delta y_t}{y_{t-1}}$$
(13.5)

其中,根据泰勒展开的一阶近似,当 $x \approx 0$ 时, $\ln(1+x) \approx x$ 。

有时直接将 $\Delta \ln y_t$ 视为 y_t 的增长率。如增长率较高,则误差较大。

直接计算 GDP 的增长率(记为 g), 并与 GDP 对数差分进行画图比较(参见图 13.4)。

- . gen g=(y-1.y)/1.y
- (1 missing value generated)
- . tsline dlny g,xlabel(1980(10)2010)
 lpattern(dash)

图 13.4 GDP 增长率的两种计算方法(1978-2013)

通过自相关图,考察 GDP 对数差分的各阶自相关系数。

. corrgram dlny

其中,"corrgram"表示correlogram,即画自相关图。

					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
 1	0.5360	0.5454	10.943	0.0009	<u> </u>	<u> </u>
2	-0.0298	-0.4515	10.978	0.0041		
3	-0.2579	0.0205	13.669	0.0034		
4	-0.3405	-0.3311	18.514	0.0010		
5	-0.4687	-0.3671	27.998	0.0000		
6	-0.4371	-0.3092	36.531	0.0000		
7	-0.1425	-0.0790	37.47	0.0000	_	
3	0.1774	-0.0418	38.98	0.0000	_	
)	0.3220	-0.1600	44.143	0.0000		_
10	0.2768	-0.0670	48.113	0.0000		
11	0.1179	-0.1722	48.863	0.0000		_
12	0.0341	-0.0569	48.928	0.0000		
13	-0.0123	-0.2000	48.937	0.0000		_
L4	-0.0322	-0.0378	49.001	0.0000		
15	-0.0743	-0.0851	49.359	0.0000		

使用画自相关图的另一命令。

. ac dlny, lags(20)

其中, "ac" 表示 autocorrelation;

选择项"lags(20)"表示画 1-20 阶的自相关图;

默认所画的最高阶数为 $\min\{floor(n/2)-2, 40\}$,其中floor(n/2)为不超过n/2的最大整数。参见图 13.5。

图 13.5 GDP 对数差分的自相关图

一阶与五阶自相关系数显著不为0,其他阶不显著。

13.2 一阶自回归

此前均强调以回归模型推断因果关系。

从客户角度仅关心某变量(比如股价)的未来值,可用该变量的过去值来预测其未来值(因为时间序列一般存在自相关)。

这种模型称为"单变量时间序列" (univariate time series)。

此时可不必理会因果关系,只考虑相关关系即可。

比如,看到街上有人带伞,可预测今天下雨,但行人带伞并不 导致下雨。 最简单的预测方法为,使用过去值预测当前值,即一阶自回归模型(AR(1)):

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t \quad (t = 2, \dots, T)$$
 (13.6)

其中, 扰动项 ε_t 为白噪声, 故 $Cov(\varepsilon_t, \varepsilon_s) = 0$, $\forall t \neq s$.

假设自回归系数 $|\beta_1|$ <1,则 $\{y_t\}$ 为渐近独立的平稳过程。

由于 y_{t-1} 依赖于 $\{\varepsilon_{t-1},\dots,\varepsilon_1\}$,而扰动项 ε_t 与 $\{\varepsilon_{t-1},\dots,\varepsilon_1\}$ 不相关,故 y_{t-1} 为前定变量,与 ε_t 不相关,故 OLS 一致。

使用 OLS 将损失一个样本容量。

为提高估计效率,可使用 MLE (须假设扰动项服从正态分布)。

继续上例,以OLS 估计 $\Delta \ln y_t$ 的一阶自回归模型。

仅使用 2013 年前的数据回归, 然后预测 2013 年的 GDP。

. reg dlny 1.dlny if year<2013,r

由于假设扰动项 ε_t 无自相关,故使用异方差稳健的标准误即可,不必使用异方差自相关稳健的 HAC 标准误。

Linear regres	sion				Number of obs F(1, 31) Prob > F R-squared Root MSE	= 12.99 = 0.0011 = 0.2879
dlny	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dlny L1.	.5362727	.1487888	3.60	0.001	.2328159	.8397295
_cons	.0437698	.0144049	3.04	0.005	.0143908	.0731488

可得如下回归方程(常数项与斜率均在1%水平上显著):

$$\widehat{\Delta \ln y_t} = 0.0437698 + 0.5362727 \,\Delta \ln y_{t-1} \qquad (13.7)$$

计算回归方程的拟合值,即 $\widehat{\Delta \ln y_t}$, 并记为 dlny1。

- . predict dlny1
 (option xb assumed; fitted values)
 (2 missing values generated)
- . list dlny1 if year==2013

因此,
$$\widehat{\Delta \ln y_{2013}} = 0.083309$$
。

由于
$$\widehat{\ln y_{2013}} = \ln y_{2012} + \widehat{\Delta \ln y_{2013}}$$
, 故 2013 年 GDP 的预测值为

$$\widehat{y_{2013}} = \exp\left(\ln y_{2012} + \widehat{\Delta \ln y_{2013}}\right)_{\circ}$$

在 Stata 中,使用 "x[n]" 表示变量x的第n个观测值,故可计算如下:

. dis exp(lny[35]+dlny1[36])

95985.114

其中, "lny[35]"表示变量 lny 的第 35 个观测值(即 2012 年), 而 "dlny1[36]"表示变量 dlny1 的第 36 个观测值(即 2013 年), 因为样本容量为 36。

根据 AR(1)模型,2013 年 GDP 的预测值为 95,985.114 亿元(1978 年不变价格)。

对比 2013 年的实际 GDP, 并计算预测误差, 即 $(y_{2013} - \widehat{y_{2013}})$:

. dis y[36]

95089.211

. dis y[36]-exp(lny[35]+dlny1[36])

-895.90347

预测误差为-895.90347亿元, 高估了895.90347亿元。

13.3 高阶自回归

在 AR(1)模型中, 假设扰动项无自相关, 故 OLS 一致。

如模型为 AR(2),被误设为 AR(1),则二阶滞后项 $\beta_2 y_{t-2}$ 被纳入扰动项:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + (\beta_{2} y_{t-2} + \varepsilon_{t})$$
 (13.8)

由于扰动项为($\beta_2 y_{t-2} + \varepsilon_t$),故与 y_{t-1} 相关,OLS 不一致;须引入 $\beta_2 y_{t-2}$ 才能得到一致估计。

从预测的角度, 高阶滞后项可能包含有用信息。

考虑P阶自回归模型,记为AR(p):

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \dots + \beta_{p} y_{t-p} + \varepsilon_{t}$$
 (13.9)

其中,扰动项 ε_t 为白噪声(无自相关),故 OLS 一致。

通常不知道滯后期P。如何估计 \hat{p} ?

方法一:

设最大滞后期 p_{max} ,令 $\hat{p} = p_{\text{max}}$ 进行估计,对最后一个滞后期系数的显著性进行t检验。

如接受该系数为 0,令 $\hat{p} = p_{\text{max}} - 1$,重新估计,再对(新的)最后一个滞后期的系数进行t 检验,如显著,则停止;否则,令 $\hat{p} = p_{\text{max}} - 2$;以此类推。

此准则称为"由大到小的序贯t规则"(general-to-specific sequential t rule)。

方法二:

使用信息准则,选择 \hat{p} 使 AIC 或 BIC 最小化,分别记为 \hat{p}_{AIC} 与 \hat{p}_{BIC} 。比如,

$$\min_{p} AIC \equiv \ln\left(\frac{SSR}{T}\right) + \frac{2}{T}(p+1) \qquad (13.10)$$

其中,SSR 为残差平方和。

 \hat{p}_{BIC} 是真实滞后阶数p的一致估计, \hat{p}_{AIC} 在大样本中可能高估p。

在小样本中,这两种信息准则难分优劣,都很常用。

实践中,可结合以上两种方法来确定 \hat{p} 。

如二者结果不一致,为了保守起见(尽量避免遗漏变量偏差),可 取二者滞后阶数的大者。

还可检验模型的残差是否存在自相关(比如,使用 Q 检验);如果残差存在自相关,则须扩大滞后阶数。

回到上节 GDP 对数差分的例子。

首先,使用信息准则确定滞后阶数P。

- . quietly reg dlny 1.dlny if year<2013,r
- . estat ic

Akaike's info	rmation cr	riterion and	Bayesian inf	ormatio	n criterion	
Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	33	75.35938	80.96115	2	-157.9223	-154.9293
	Note: N	N=Obs used ir	calculating	BIC; s	ee [R] BIC no	ote

AR(1)的 AIC 为-157.9223,BIC 为-154.9293。

估计 AR(2)模型,并计算信息准则。

. reg dlny l(1/2).dlny if year<2013,r

其中, "1(1/2).dlny"表示变量 dlny的 1-2 阶滞后。

inear regres	sion				Number of obs	32
					F(2, 29)	= 17.51
					Prob > F	= 0.0000
					R-squared	= 0.4234
					Root MSE	= .01979
	T					
		Robust				
dlny	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dlny						
L1.	.7711595	.1304462	5.91	0.000	.5043671	1.037952
L2.	4487175	.1530057	-2.93	0.007	7616494	1357857
_cons	.0641134	.0128498	4.99	0.000	.0378326	.0903943

dlny 的二阶滞后 L2.dlny 依然在 1%水平上显著,故根据序贯 t规则,滞后阶数 p应至少大于或等于 2。

. estat ic

Akaike's info	rmation c	riterion and	Bayesian inf	ormatio	n criterion	
Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	32	72.88943	81.69936	3	-157.3987	-153.0015
	Note: 1	N=Obs used in	n calculating	BIC; s	ee [R] BIC no	ote

AR(2)的 AIC 为-157.3987, BIC 为-153.0015; 均比 AR(1)略有上升。故根据信息准则,应选择p=1,即 AR(1)模型。

进一步估计 AR(3)模型。

. reg dlny l(1/3).dlny if year<2013,r

ion				Number of obs	s = 31	•
				F(3, 27)	= 12.82	
				Prob > F	= 0.0000	
				R-squared	= 0.4459	
				Root MSE	= .01907	
	Robust					
Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
.7557034	.1261359	5.99	0.000	.4968939	1.014513	
4943798	.1785691	-2.77	0.010	8607733	1279864	
.0204783	.1711994	0.12	0.906	3307938	.3717504	
.0692315	.0154137	4.49	0.000	.0376052	.1008579	
	Coef. .7557034 4943798 .0204783	Robust Coef. Std. Err. .7557034 .12613594943798 .1785691 .0204783 .1711994	Robust Coef. Std. Err. t .7557034 .1261359 5.994943798 .1785691 -2.77 .0204783 .1711994 0.12	Robust Coef. Std. Err. t P> t .7557034 .1261359 5.99 0.0004943798 .1785691 -2.77 0.010 .0204783 .1711994 0.12 0.906	F(3, 27) Prob > F R-squared Root MSE Robust Coef. Std. Err. t P> t [95% Conf. .7557034 .1261359 5.99 0.000 .49689394943798 .1785691 -2.77 0.0108607733 .0204783 .1711994 0.12 0.9063307938	F(3, 27) = 12.82 Prob > F = 0.0000 R-squared = 0.4459 Root MSE = .01907 Robust Coef. Std. Err. t P> t [95% Conf. Interval] .7557034 .1261359 5.99 0.000 .4968939 1.0145134943798 .1785691 -2.77 0.01086077331279864 .0204783 .1711994 0.12 0.9063307938 .3717504

dlny 的三阶滞后很不显著,根据序贯t规则,应选择p=2。

综合以上结果,为避免遗漏变量偏差,应按照序贯*t*规则选择 AR(2)模型。

使用命令 corrgram 对残差进行 Q 检验也表明,AR(1)的残差 存在自相关,而 AR(2)的残差无自相关(参见习题)。

使用 AR(2)模型预测 GDP, 并与 AR(1)的预测效果对比。

- . $\underline{quietly}$ reg dlny 1(1/2).dlny if year<2013,r
- . predict dlny2
 (option xb assumed; fitted values)
 (3 missing values generated)
- . dis exp(lny[35]+dlny2[36]) 95769.998
- . dis y[36]-exp(lny[35]+dlny2[36]) -680.78688

对于 2013 年的 GDP, AR(2)模型的预测误差为-680.78688 亿元, 即高估了 680.78688 亿元;

AR(1)模型则高估了895.90347亿元。

AR(2)的预测效果优于 AR(1), 因为二阶滞后仍包含有用信息。

13.4 自回归分布滞后模型

在 AR(p)模型中,为了提高预测力,也可引入其他解释变量,构成"自回归分布滞后模型"(Autoregressive Distributed Lag Model,简记 ADL(p,q)或 ARDL(p,q):

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \dots + \beta_{p} y_{t-p} + \gamma_{1} x_{t-1} + \dots + \gamma_{q} x_{t-q} + \varepsilon_{t}$$
 (13.11)

P为y的自回归阶数,而q为x的滞后阶数。

假定扰动项 ε ,为白噪声,则 OLS 一致。

对于滞后阶数(p,q)的选择,可使用信息准则(AIC 或 BIC),或进行序贯检验,即使用t或F检验来检验最后一阶系数的显著性。

在 ADL 模型中,也可引入更多的解释变量;比如,变量z的r阶滞后(z_{t-1}, \dots, z_{t-r})。

对于 ADL 模型(13.11),解释变量 x_{t-1} 对于 y_t 的边际效应为 γ_1 ,但这并非长期效应。

由于 $\{y_t\}$ 与 $\{x_t\}$ 为平稳序列,故均值不随时间而变,分别记为 y^* 与 x^* 。

将方程(13.11)两边同时求期望:

$$y^* = \beta_0 + \beta_1 y^* + \dots + \beta_p y^* + \gamma_1 x^* + \dots + \gamma_q x^*$$
 (13.12)

整理可得

$$(1 - \beta_1 - \dots - \beta_p) y^* = \beta_0 + (\gamma_1 + \dots + \gamma_q) x^*$$
 (13.13)

 x^* 增加一单位对 y^* 的边际效应为

$$\frac{dy^*}{dx^*} = \frac{\gamma_1 + \dots + \gamma_q}{1 - \beta_1 - \dots - \beta_p}$$
 (13.14)

这就是x永久性增加一单位对y的长期效应,也称"长期乘数" (long-run multiplier)。

例 Chen(2015)研究中原王朝与北方游牧民族边界纬度(border)的决定因素。

时间序列数据集 border.dta 以每十年作为观测单位(时间变量为 decade),从公元前 221 年秦朝建立至 1911 年清朝灭亡,共有 213 个观测值。

主要解释变量:中原王朝早于游牧政权建立的年数(diff),中国北方在十年中发生旱灾的年数比例(drought)。

其他控制变量:中原王朝的绝对年龄(age),游牧对手数目(rival),中原是否在长城的有效保护之下(wall),中国是否统一(unified)。

信息准则与序贯规则均支持 ADL(2, 1)模型:

$$border_{t} = \beta_{0} + \beta_{1}border_{t-1} + \beta_{2}border_{t-2} + \gamma_{1}drought_{t-1} + \gamma_{2}diff_{t} + \gamma_{3}age_{t} + \gamma_{4}rival_{t} + \gamma_{5}wall_{t} + \gamma_{6}unified_{t} + \varepsilon_{t}$$

$$(13.15)$$

其中,变量 diff, age, rival, wall 与 unified 被认为只有当期作用,而气候变量 drought 则存在滞后效应。

- . use border.dta, clear
- . tsset decade
- . reg border l(1/2).border l.drought diff age rival wall unified,r

r regress	sion				Number of obs	= 211
					F(8, 202)	= 2040.71
					Prob > F	= 0.0000
					R-squared	= 0.9854
					Root MSE	= 1.0889
		Robust				
border	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
border						
L1.	1.518284	.133108	11.41	0.000	1.255825	1.780744
L2.	5586965	.1278243	-4.37	0.000	8107376	3066555
drought						
L1.	6333046	.3009855	-2.10	0.037	-1.226781	0398281
diff	0069699	.0028159	-2.48	0.014	0125222	0014175
age	0264399	.0123658	-2.14	0.034	0508224	0020573
rival	.34148	.1455019	2.35	0.020	.0545827	.6283772
wall	.7339998	.2203202	3.33	0.001	.2995774	1.168422
unified	.4078538	.2230656	1.83	0.069	0319819	.8476894
_cons	.8189595	.472603	1.73	0.085	1129085	1.750827

被解释变量 border 的两阶滞后均在 1%水平上显著。

变量 L1.drought 在 5%水平上显著为负,说明气候越干旱,则游牧民族越会为了生存而进攻中原王朝,从而将游牧边界推向南方。

变量 diff 也在 5%水平上显著为负,说明中原王朝越早于游牧政权建立(根据王朝周期假说,中原相对更弱),则北方边界纬度越低。

计算气候冲击对游牧边界的长期效应: 假如 drought 永久性增加一单位,即从 0 增加到 1(从年年无灾到年年旱灾),则中国北方边界纬度将变化[$\gamma_1/(1-\beta_1-\beta_2)$]度。

代入相应系数估计值可得:

- . dis -.6333046/(1-1.518284+.5586965)
- -15.671008

气候冲击对游牧边界的长期效应为 15.67 度,这是一个很大的效应(从北京到海口的纬度差距约为 20 度)。

13.5 误差修正模型

从经济理论而言,相关的变量之间可能存在长期的均衡关系,而变量的短期变动则是向着长期均衡关系的部分调整。

"误差修正模型"(Error Correction Model, ECM)体现这一思想。

考虑最简单的 ADL(1,1)模型:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \gamma_{1} x_{t-1} + \varepsilon_{t}$$
 (13.16)

其中, $|\beta_1|$ <1,故为平稳过程。

假设经济理论认为(y,x)之间存在长期均衡关系:

$$y = \phi + \theta x \tag{13.17}$$

其中, ϕ 与 θ 为待定参数。

对方程 (13.16) 两边求期望,并令 $y^* = E(y_t) = E(y_{t-1})$, $x^* = E(x_t) = E(x_{t-1})$,可得

$$y^* = \beta_0 + \beta_1 y^* + \gamma_1 x^* \tag{13.18}$$

整理可得

$$y^* = \frac{\beta_0}{(1 - \beta_1)} + \frac{\gamma_1}{(1 - \beta_1)} x^*$$
 (13.19)

曲此可知,
$$\phi = \frac{\beta_0}{1-\beta_1}$$
, $\theta = \frac{\gamma_1}{1-\beta_1}$ 。

其中, $\theta = \frac{\gamma_1}{1-\beta_1}$ 为长期乘数,衡量当x永久性变化一单位时,将导致y的永久性变化幅度。

显然, $\beta_0 = (1 - \beta_1)\phi$, $\gamma_1 = (1 - \beta_1)\theta$ 。

在方程(13.16)两边同减 y_{t-1} :

$$\Delta y_{t} = \beta_{0} - (1 - \beta_{1}) y_{t-1} + \gamma_{1} x_{t-1} + \varepsilon_{t} \qquad (13.20)$$

代入 $\beta_0 = (1 - \beta_1)\phi$ 以及 $\gamma_1 = (1 - \beta_1)\theta$:

$$\Delta y_{t} = (1 - \beta_{1})\phi - (1 - \beta_{1})y_{t-1} + (1 - \beta_{1})\theta x_{t-1} + \varepsilon_{t}$$
 (13.21)

整理可得

$$\Delta y_t = \underbrace{(\beta_1 - 1)(y_{t-1} - \phi - \theta x_{t-1})}_{\text{error correction}} + \varepsilon_t \qquad (13.22)$$

 $(y_{t-1} - \phi - \theta x_{t-1})$ 衡量上一期对均衡条件 " $y = \phi + \theta x$ " 的偏离(误差),而 $(\beta_1 - 1)(y_{t-1} - \phi - \theta x_{t-1})$ 为根据上期的误差所作的反向修正,称为 "误差修正项" (error correction term)。

如果 $(y_{t-1}-\phi-\theta x_{t-1})>0$,即 y_{t-1} 高于其均衡值,则 $(\beta_1-1)(y_{t-1}-\phi-\theta x_{t-1})<0$,故平均而言 $\Delta y_t<0$,使下一期更靠近均衡条件。

一般的 ADL 模型都可转换成 ECM 模型。

误差修正模型的经济含义明确,可分别考察长期效应(长期均衡

关系)与短期效应(误差修正效应)。

13.6 移动平均与 ARMA 模型

另一类时间序列模型为"移动平均过程"(Moving Average Process, 简记 MA)。

记一阶移动平均过程为 MA(1):

$$y_{t} = \mu + \varepsilon_{t} + \theta \varepsilon_{t-1}$$
 (13.23)

其中, $\{\varepsilon_t\}$ 为白噪声,而 ε_t 的系数被标准化为 1。

由于y_t可被看成是白噪声的移动平均,故名。

考虑q阶移动平均过程,记为MA(q):

$$y_{t} = \mu + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$
 (13.24)

假设 $\{\varepsilon_t\}$ 为 iid 且服从正态分布,可进行 MLE 估计。

将 AR(p)与 MA(q)结合起来,可得 ARMA(p,q)模型:

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \dots + \beta_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q}$$
 (13.25)
其中, $\{\varepsilon_{t}\}$ 为白噪声。

对于 ARMA(p,q)模型,也可进行 MLE 估计。

对于 MA(q), 如果 $q \to \infty$, 可得无穷阶移动平均过程,记为 $MA(\infty)$:

$$y_{t} = \mu + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots = \mu + \sum_{j=0}^{\infty} \theta_{j}\varepsilon_{t-j} \quad (13.26)$$

其中, $\theta_0 = 1$ (标准化为 1)。

 $MA(\infty)$ 相当于将 y_t 的决定因素追溯到无穷远的过去。

无穷多个随机变量之和,能否收敛到某个随机变量?

常用的充分条件是,序列 $\{\theta_j\}_{j=0}^{\infty}$ 为"绝对值可加总"(Absolutely Summable,简记 AS),即 $\sum_{j=0}^{\infty} |\theta_j| < \infty$ (有限)。

在 AS 的条件下, MA(∞)有定义。

虽然样本容量T通常有限,无法追溯到无穷远的过去,但 $MA(\infty)$ 在理论上有重要意义,因为 AR(p)与 ARMA(p,q)都可写为 $MA(\infty)$ 的形式(参见下文)。

13.7 脉冲响应函数

命题 对于 $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$, 假设 $|\beta_1| < 1$, 则此 AR(1) 是 MA(∞)。

证明: 反复使用迭代法可得

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \varepsilon_{t}$$

$$= \beta_{0} + \beta_{1}(\beta_{0} + \beta_{1}y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= (\beta_{0} + \beta_{0}\beta_{1}) + \beta_{1}^{2}y_{t-2} + \beta_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= (\beta_{0} + \beta_{0}\beta_{1}) + \beta_{1}^{2}(\beta_{0} + \beta_{1}y_{t-3} + \varepsilon_{t-2}) + \beta_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= (\beta_{0} + \beta_{1}\beta_{1}) + \beta_{1}^{2}(\beta_{0} + \beta_{1}y_{t-3} + \varepsilon_{t-2}) + \beta_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= \beta_{0}(1 + \beta_{1} + \beta_{1}^{2}) + \beta_{1}^{3}y_{t-3} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= \cdots$$

$$= \beta_{0}(1 + \beta_{1} + \beta_{1}^{2} + \cdots) + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

$$= \frac{\beta_{0}}{1 - \beta_{1}} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \beta_{1}^{3}\varepsilon_{t-3} + \cdots$$

其中, 无穷等比级数之和 $(1+\beta_1+\beta_1^2+\cdots)$ 等于 $1/(1-\beta_1)$ 。

上式为 MA(∞)的形式。

可将平稳的 AR(1)看成是过去所有扰动项的总效应之和, 离现 在越远的扰动项其影响力呈几何级数递减。

从 AR(1)的MA(∞)表达式可知:

$$IRF(j) \equiv \frac{\partial y_{t+j}}{\partial \varepsilon_t} = \beta_1^j$$
 (13.28)

 $(\partial y_{t+j}/\partial \varepsilon_t)$ 表示,当第 t 期的扰动项 ε_t 变化 1 单位时(而其他期的扰动项均不变),对相隔 j 期的 y_{t+j} 的影响,称为"动态乘子"(dynamic multiplier)。

动态乘子与绝对时间t无关,是时间间隔j的函数。

将 $(\partial y_{t+j}/\partial \varepsilon_t)$ 视为 j 的函数,称为"脉冲响应函数"(Impulse Response Function,简记 IRF)。

它刻画的是 y_{t+j} 对 ε_t 的 1 单位脉冲(impulse)的响应(response)。

将 $(j, \partial y_{t+j}/\partial \varepsilon_t)$ 画图,即可得到对 IRF 的直观认识,称为"脉冲响应图"。

类似地,AR(p)也是 $MA(\infty)$ 。

更一般地,ARMA(p,q)也是 MA (∞) 。

例 以数据集 gdp_china.dta 为例,考察 GDP 对数差分(dlny)的自回归模型。

为计算脉冲响应函数(IRF),将 AR(p)视为一维的向量自回归 (Vector Autoregression,简记 VAR,参见下节),使用以下命令:

varbasic x y z,lags(numlist) irf

其中, "varbasic"为估计 VAR 模型的便捷命令,而"x y z" 为 VAR 模型所包含的变量(此例中只有一个变量)。

选择项 "lags(numlist)"表示滞后阶数,默认为 "lags(12)"或 "lags(1/2)",即滞后二阶。

选择项"irf"表示画脉冲响应图。

首先,估计 dlny 的 AR(1)模型(为与上文一致,不包括 2013 年的观测值),并画脉冲响应图(参见图 13.6)。

. varbasic dlny if year<2013,lags(1) irf

Vector autoregres	sion					
Sample: 1980 - 2	012			No. o	f obs	= 33
Log likelihood =				AIC		= -4.785524
_	.0004889			HQIC		= -4.755008
Det(Sigma_ml) =	.0004331			SBIC		= -4.694827
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
dlny	2	.021471	0.2879	13.34017	0.0003	
dlny	Coef.	Std. Err.	z	P> z	[95% Coi	nf. Interval]
dlny						
dlny						
L1.	.5362727	.1468267	3.65	0.000	.2484976	6 .8240478
_cons	.0437698	.0143197	3.06	0.002	.015703	7 .071836

使用命令 varbasic 的估计系数与命令 "reg dlngdp l.dlngdp" 完全相同,只是命令 varbasic 不提供异方差稳健标准误的选择项(时间序列一般不存在异方差问题)。

图 13.6 AR(1)模型的脉冲响应函数

AR(1)模型的脉冲响应函数呈指数衰减,从当期的一单位冲击逐渐衰减为 0,与方程(13.28)的 IRF 表达式一致。

其次,估计 dlny 的 AR(2)模型,画 IRF 图(参见图 13.7)。 . varbasic dlny if year<2013,irf

Vector autoreg	ression						
Sample: 1981 - 2012				No. of obs		= 32 = -4.91871	
Log likelihood = 81.69936 FPE = .0004282 Det(Sigma_ml) = .0003548				HQIC SBIC		= -4.873162	
						= -4.781298	
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
dlny	3	.019785	0.4234	23.49854	0.0000		
dlny	Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]	
dlny							
dlny							
L1.	.7711595	.1593746	4.84	0.000	.458791	1.083528	
L2.	4487175	.157661	-2.85	0.004	7577275	1397076	
_cons	.0641134	.0148348	4.32	0.000	.0350377	.0931892	

图 13.7 AR(2)模型的脉冲响应函数

AR(2)模型的脉冲响应函数不再单调递减,更具动态特征,先下降,变为负数后再反弹上升,又下降并趋于0。

13.8 向量自回归过程

常同时关心几个变量的预测,如 GDP 增长率与失业率。

一种方法是用单变量时间序列对每个变量分别作预测。

另一方法将这些变量放在一起,作为一个系统来预测,使得预测相互自洽(mutually consistent),称为"多变量时间序列"(multivariate time series)。

Sims(1980)提倡的"向量自回归"(Vector Autoregression,简记VAR)正是这样的方法。

假设有两个时间序列 $\{y_{1t}, y_{2t}\}$,分别作为两个回归方程的被解释变量。

解释变量为这两个变量的P阶滞后值,构成二元的VAR(p)系统:

$$\begin{cases} y_{1t} = \beta_{10} + \beta_{11} y_{1,t-1} + \dots + \beta_{1p} y_{1,t-p} + \gamma_{11} y_{2,t-1} + \dots + \gamma_{1p} y_{2,t-p} + \varepsilon_{1t} \\ y_{2t} = \beta_{20} + \beta_{21} y_{1,t-1} + \dots + \beta_{2p} y_{1,t-p} + \gamma_{21} y_{2,t-1} + \dots + \gamma_{2p} y_{2,t-p} + \varepsilon_{2t} \end{cases}$$

$$(13.29)$$

其中, $\{\varepsilon_{1t}\}$ 与 $\{\varepsilon_{2t}\}$ 均为白噪声(无自相关),但允许两个方程的扰动项之间存在"同期相关性"(contemporaneous correlation):

$$Cov(\varepsilon_{1t}, \varepsilon_{2s}) = \begin{cases} \sigma_{12} & \text{若}t = s \\ 0 & \text{其他} \end{cases}$$
 (13.30)

VAR 的两个方程,其解释变量完全相同。

可以更简洁地写在一起:

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \beta_{10} \\ \beta_{20} \end{pmatrix} + \begin{pmatrix} \beta_{11} \\ \beta_{21} \end{pmatrix} y_{1,t-1} + \dots + \begin{pmatrix} \beta_{1p} \\ \beta_{2p} \end{pmatrix} y_{1,t-p}
+ \begin{pmatrix} \gamma_{11} \\ \gamma_{21} \end{pmatrix} y_{2,t-1} + \dots + \begin{pmatrix} \gamma_{1p} \\ \gamma_{2p} \end{pmatrix} y_{2,t-p} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$
(13.31)

将同期变量合成列向量,把相应系数合并为矩阵可得

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \beta_{10} \\ \beta_{20} \end{pmatrix} + \begin{pmatrix} \beta_{11} & \gamma_{11} \\ \beta_{21} & \gamma_{21} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \dots + \begin{pmatrix} \beta_{1p} & \gamma_{1p} \\ \beta_{2p} & \gamma_{2p} \end{pmatrix} \begin{pmatrix} y_{1,t-p} \\ y_{2,t-p} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

$$(13.32)$$

记
$$\mathbf{y}_{t} \equiv \begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix}$$
, $\boldsymbol{\varepsilon}_{t} \equiv \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$, 则有

$$\mathbf{y}_{t} = \underbrace{\begin{pmatrix} \beta_{10} \\ \beta_{20} \end{pmatrix}}_{\Gamma_{0}} + \underbrace{\begin{pmatrix} \beta_{11} & \gamma_{11} \\ \beta_{21} & \gamma_{21} \end{pmatrix}}_{\Gamma_{1}} \mathbf{y}_{t-1} + \dots + \underbrace{\begin{pmatrix} \beta_{1p} & \gamma_{1p} \\ \beta_{2p} & \gamma_{2p} \end{pmatrix}}_{\Gamma_{p}} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t}$$
(13.33)

定义相应的系数矩阵为 $\Gamma_0, \Gamma_1, \cdots, \Gamma_p$,可得

$$\mathbf{y}_{t} = \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{1} \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t} \qquad (13.34)$$

此形式与 AR(p)相似,故名 "VAR(p)"。

其中, $\{\boldsymbol{\varepsilon}_t\}$ 是白噪声的推广,称为"向量白噪声过程"(vector white noise process),或"新息过程"(innovation process)。

由于 VAR(p) 系 统 中 的 解 释 变 量 $\{y_{t-1}, \dots, y_{t-p}\}$ 依 赖 于 $\{\varepsilon_{t-1}, \varepsilon_{t-2}, \dots\}$,而 ε_t 与 $\{\varepsilon_{t-1}, \varepsilon_{t-2}, \dots\}$ 不相关,故可视所有解释变量为前定变量,与当期扰动项 ε_t 不相关,故可用 OLS 对每个方程分别进行一致估计。

在VAR建模时,需确定变量的滞后阶数,及包含几个变量。

滞后阶数的选择

方法一、使用信息准则,比如 AIC 或 BIC。

方法二、检验最后一阶系数的显著性(由大到小的序贯规则)。在上例中,假设要确定使用 VAR(p)还是 VAR(p-1),可检验原假设" $H_0: \beta_{1p} = \beta_{2p} = \gamma_{1p} = \gamma_{2p} = 0$ "。

方法三、检验 VAR 模型的残差是否为白噪声(是否有自相关)。

如果真实模型为 VAR(p),但被错误设置为 Var(p-1),则解释变量的最后一阶滞后 y_{t-p} 被纳入扰动项 ε_t ,导致扰动项出现自相关。

由于 $\{y_t\}$ 的相关性,包含 y_{t-p} 的扰动项 ε_t 将与解释变量 $\{y_{t-1}, ..., y_{t-p+1}\}$ 相关,导致OLS估计不一致。

需检验 VAR 模型的残差是否存在自相关。

如果存在自相关,应加入更高阶的滞后变量。

VAR 变量个数的选择

VAR系统包含的变量个数越多,需要估计的系数越多。

假设有 5 个变量,滞后 4 期,则每个方程中共有 21 个待估系数 (含截距项),整个 VAR 系统共有 105 个待估系数!

待估系数过多使有效样本容量过小,增大估计误差,降低预测精度。故 VAR 模型通常仅包含少数几个变量。

在设定 VAR 模型时,应根据经济理论确定哪些变量在 VAR 模型中。

比如,经济理论告诉我们,通货膨胀率、失业率、短期利息率 互相关联,可构成三变量的 VAR 模型。 也可在 VAR 系统中引入其他外生解释变量,比如 $\{w_{1t}, w_{2t}, ..., w_{Kt}\}$,与扰动项不相关。

13.9 VAR 的脉冲响应函数

VAR 模型包含许多参数,其经济意义很难解释,故常将注意力集中于脉冲响应函数。

考虑n元 VAR(p)系统:

$$\mathbf{y}_{t} = \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{1} \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t} \qquad (13.35)$$

其中, y_t 包含n个变量。

正如 AR(p)可写为 $MA(\infty)$,此 VAR(p)系统也可写成"向量移动平均过程"(Vector Moving Average Process) $VMA(\infty)$ 的形式:

$$\mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{t} + \boldsymbol{\psi}_{1}\boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\psi}_{2}\boldsymbol{\varepsilon}_{t-2} + \dots = \boldsymbol{\alpha} + \sum_{i=0}^{\infty} \boldsymbol{\psi}_{i}\boldsymbol{\varepsilon}_{t-i}$$
 (13.36)

其中, $\psi_0 \equiv I_n$, 而 ψ_j 为n维方阵。

直观来看, ε_{t-1} 对 y_t 的"边际效应"为 ψ_1 。可以证明,

$$\frac{\partial \mathbf{y}_{t+s}}{\partial \boldsymbol{\varepsilon}_t'} = \boldsymbol{\psi}_s \tag{13.37}$$

其中, $(\partial \mathbf{y}_{t+s}/\partial \boldsymbol{\varepsilon}_{t}')$ 为n维列向量 \mathbf{y}_{t+s} 对n维行向量 $\boldsymbol{\varepsilon}_{t}'$ 求偏导数,故得到 $n \times n$ 矩阵 $\boldsymbol{\psi}_{s}$ 。

假设n=2,则

$$\frac{\partial \mathbf{y}_{t+s}}{\partial \boldsymbol{\varepsilon}_{t}'} = \boldsymbol{\psi}_{s} = \begin{pmatrix} \frac{\partial y_{1,\,t+s}}{\partial \boldsymbol{\varepsilon}_{1t}} & \frac{\partial y_{1,\,t+s}}{\partial \boldsymbol{\varepsilon}_{2t}} \\ \frac{\partial y_{2,\,t+s}}{\partial \boldsymbol{\varepsilon}_{1t}} & \frac{\partial y_{2,\,t+s}}{\partial \boldsymbol{\varepsilon}_{2t}} \end{pmatrix}$$
(13.38)

矩阵 ψ_s 是一维情形下相隔s期的动态乘子(dynamic multiplier)向多维的推广,其第i行、第j列元素等于 $(\partial y_{i,t+s}/\partial \varepsilon_{jt})$ 。

它表示, 当第j个变量在第t期的扰动项 ε_{jt} 增加 1 单位时(而其他变量与其他期的扰动项均不变),对第i个变量在第(t+s)期的取值 $y_{i,t+s}$ 的影响。

将 $(\partial y_{i,t+s}/\partial \varepsilon_{jt})$ 视为时间间隔s的函数,即"脉冲响应函数"(IRF)。

脉冲响应函数的缺点是,它假定在计算 $(\partial y_{i,t+s}/\partial \varepsilon_{jt})$ 时,只让 ε_{jt} 变动,而所有其他同期扰动项均不变。

此假定只有当扰动项不存在"同期相关"(contemporaneous correlation)时才成立。但现实中,同期相关普遍存在。

为此,从扰动项 ε_t 中分离出相互正交的部分,记为 v_t 。

新扰动项v_t的各分量正交(不相关),且方差均被标准化为 1(故变化一单位,就是变化一个标准差)。

然后计算当 v_t 中的某分量变动时,对各变量在不同时期的影响,称为"正交化的脉冲响应函数" (Orthogonalized Impulse Response Function,简记 OIRF)。

但 OIRF 依然有缺点。

首先,正交化冲击(orthogonalized shocks) v_t 的经济含义不易解释 (v_t 为 ε_t 中各分量的线性组合)。

其次,OIRF 依赖于变量的次序(order of variables);如果改变变量次序,可能得到很不相同的结果。

OIRF 虽使得因果关系更清楚,但代价是需对变量起作用的次序作较强的先验假设,而经济理论通常无法对变量次序给出明确的指南。

在实践中,可借助借助格兰杰因果检验确定两个变量之间的排序(参见下文)。

在难以确定变量次序的情况下,可进行稳健性检验,即对于不同的变量排序,分别画正交化脉冲响应图,然后进行比较。

13.10 格兰杰因果检验

经济学中常需确定因果关系究竟是从*x*到*y*,还是从*y*到*x*,抑或 双向因果关系。

格兰杰[Granger(1969)]提出了以下检验思想。

首先,原因必然发生于结果之前。

其次,原因包含有关结果的独特信息,对结果具有解释力或预测力。

因此,如果*x*是*y*的因,但*y*不是*x*的因,则*x*的过去值可帮助预测*y*的未来值,而*y*的过去值却不能帮助预测*x*的未来值。

考虑 ADL(p, p)模型:

$$y_{t} = \gamma + \sum_{m=1}^{p} \alpha_{m} y_{t-m} + \sum_{m=1}^{p} \beta_{m} x_{t-m} + \varepsilon_{t}$$
 (13.39)

滯后阶数P可根据"信息准则"或"由大到小的序贯规则"确定。

估计此模型后,检验原假设" $H_0:\beta_1=\cdots=\beta_p=0$ ",即x的过去值对预测y的未来值有无帮助。

如拒绝 H_0 , 称x是y的"格兰杰因"(Granger cause)。

将回归模型中x与y的位置互换,可检验y是否为x的格兰杰因。

实际操作中,常将(x,y)构成二元 VAR 系统,使用 Stata 命令 vargranger 进行格兰杰因果检验。

格兰杰因果关系并非真正意义上的因果关系。

充其量只是动态相关关系,表明一个变量是否对另一变量有"预测能力"(predictability)。

在某种意义上,它顶多是因果关系的必要条件,而且格兰杰因果关系也可能由第三个变量所引起。

另外,格兰杰因果检验仅适用于平稳序列,或者有协整关系的单位根过程(详见第 14 章)。

对于不存在协整关系的单位根变量,则只能先差分,得到平稳序列后再进行格兰杰因果检验。

13.11 VAR 的 Stata 命令及实例

与 VAR 相关的 Stata 命令包括(假设变量为x, y, z)

varsoc x y z, maxlag(#)

此命令用来计算不同滞后期的信息准则,其中"soc"表示 selection-order criteria, "maxlag(#)"表示最大滞后期,默认值为4。

varbasic x y z,lags(numlist) irf

这是估计 VAR 模型的便捷命令。选择项"lags(numlist)"表示滞后阶数,默认为"lags(1 2)"或"lags(1/2)",即滞后二阶。"irf"表示画(未正交化)脉冲响应图,默认为"oirf"(画正交化脉冲响应图)。

估计 VAR 的正式命令为

var x y z, lags(numlist) exog(w1 w2)

其中,选择项"lags(numlist)"表示滞后阶数,默认为"lags(1/2)",即滞后二阶。

如果要滯后三阶,可使用选择项"lags(1/3)"。

选择项 "<u>ex</u>og(w1 w2)"表示在 VAR 模型中引入外生变量 w1,w2。

varlmar

估计 VAR 后,对残差是否存在自相关进行LM 检验。

varstable, graph

估计 VAR 后,通过特征值检验该 VAR 系统是否为平稳过程。如果所有特征值都在单位圆内部,则为平稳过程(参见第 14 章)。选择项 "graph"表示画出特征值的几何分布图。

varwle

估计 VAR 后,对每个方程以及所有方程的各阶系数的联合显著性进行沃尔德检验,其中"wle"表示 Wald lag-exclusion statistics。

vargranger

估计 VAR 后,进行格兰杰因果检验。

irf create irfname, set(filename) step(#)
replace order(varlist)

估计 VAR 后,将有关脉冲响应的结果存为"irfname"(可自行命名)。

选择项 "set(filename)"表示建立脉冲文件 "filename", 使之成为当前的脉冲文件(make filename active), 并将脉冲结果 "irfname" 存入此脉冲文件 "filename" (若未使用选择项 "set(filename)"指定脉冲文件,则将脉冲响应结果存入当前的脉冲文件);

"step(#)"表示考察截止#期的脉冲响应函数,默认为"step(8)"; "replace"表示替代已有的同名脉冲响应结果irfname(如果有)。

一个脉冲文件"filename"可存储多个脉冲响应结果"irfname"。

选择项 "order(varlist)"指定变量排序,默认使用估计 VAR 时的变量排序计算正交化 IRF。

irf graph irf,impulse(varname) response(varname)

画脉冲响应图(未正交化)。选择项 "<u>i</u>mpulse(varname)"用于指定脉冲变量,"<u>r</u>esponse(varname)"用来指定反应变量;默认画出所有变量的脉冲响应图。

irf graph oirf, impulse(varname)
response(varname)

画正交化的脉冲响应图, 选择项含义同上。

如将以上命令中的"irf graph"改为"irf table",则将相应信息列表而非画图。

fcast compute prefix,step(#)

估计 VAR 后, 计算被解释变量未来#期的预测值, 并把预测值 赋予被解释变量加上前缀 "prefix" (自行确定)的变量名。

fcast graph varlist, observed

运行命令 "fcast compute"后,将变量 "varlist"的预测值画图,其中选择项 "observed"表示与实际观测值相比较。

以数据集 macro_swatson.dta 为例,进行 VAR 估计。

该数据集包含美国 1960 年第 2 季至 2002 年第 1 季的宏观经济季度变量: inf 为通货膨胀率, dinf 为通货膨胀率的一阶差分, unem 为失业率, quarter 为季度(时间变量)。

由于通胀率 inf 可能不平稳(参见第 14 章), 考虑其一阶差分 dinf 与失业率 unem 构成的二元 VAR 系统。

首先, 打开数据集, 看二者的时间趋势(参见图 13.8)。

- . use macro_swatson.dta,clear
- . tsline dinf unem, lpattern(solid dash)

图 13.8 通胀差分与失业率的时间趋势图

其次,根据信息准则,估计此 VAR 系统的阶数。

. varsoc dinf unem

Selection-order criteria Sample: 1961q4 - 2002q1 Number of obs 162 lag LLLR df FPE AIC HQIC SBIC р 0 881.581 6.6e-08 $-10.859 \quad -10.8435 \quad -10.8209$ 1141.4 519.63 4 0.000 2.8e-09 -14.0172 -13.9708 -13.9029 1213.86 144.93* 4 0.000 1.2e-09* -14.8625* -14.7851* -14.6719* 2 3 1217.32 6.9224 4 0.140 1.2e-09 -14.8558 -14.7475 -14.5894 1219.45 4.2537 4 0.373 1.2e-09 -14.8327 -14.6934 -14.4896 dinf unem Endogenous: Exogenous: _cons

当p=2时(上表打星号"*"者), AIC 与 BIC 信息准则最小化。

估计二阶向量自回归模型:

. var dinf unem, lags(1/2)

Vector autore	gression					
Sample: 1961 Log likelihoo FPE Det(Sigma_ml)	d = 1224.456 = 1.27e-09			No. o AIC HQIC SBIC		= 164 = -14.81044 = -14.73371 = -14.62143
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
dinf unem	5 5	.013815	0.3621 0.9731	93.11047 5926.554	0.0000	
	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
dinf			1 1 1 1 1 1			
dinf L1.	4709436	.0676118	-6.97	0.000	6034603	338427
L2.	401031	.0654944	-6.12	0.000	5293976	2726644
unem						
L1.	-2.24205	.3371897	-6.65	0.000	-2.90293	
L2.	2.03417	.3356694	6.06	0.000	1.37627	2.69207
_cons	.0123764	.0045265	2.73	0.006	.0035047	.0212482
unem						
dinf						
L1.	.0305223	.0122746	2.49		.0064645	
L2.	0113172	.0118902	-0.95	0.341	0346216	.0119871
unem						
L1.	1.638031	.0612152	26.76	0.000	1.518051	1.75801
L2.	6725807	.0609392	-11.04	0.000	7920194	5531421
_cons	.0020139	.0008218	2.45	0.014	.0004032	.0036245

大多数系数均很显著。下面检验各阶系数的联合显著性。

. varwle

796.2418

187.9991

lag	chi2	df	Prob > chi2
1	72.72164	2	0.000
2	72.9294	2	0.000
Equati	ion: unem		
Equati	ion: unem		
	<u></u>		
lag	chi2	df	Prob > chi2
lag 1	chi2	df 2	Prob > chi2
		2	
1	741.8916	2	0.000
1 2	741.8916	2	0.000

无论单一方程,还是两个方程作为整体,各阶系数均高度显著。

0.000

0.000

检验残差是否为白噪声,即残差是否存在自相关。

. varlmar

ag	chi2	df	Prob > chi2
1	7.3130	4	0.12024
2	5.0645	4	0.28074

可接受残差"无自相关"的原假设。

检验 VAR 系统是否为平稳过程,并画图(参见图 13.9)。

. varstable, graph

Eigenvalue stability condition

Eigenvalue	Modulus			
.82182	.82182			
.7970223	.797022			
2258777 + .6292178i	.668533			
22587776292178 <i>i</i>	.668533			

All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.

所有特征值均在单位圆之内,故 VAR 模型满足平稳性条件。

图 13.9 VAR 系统稳定性的判别图

考察变量 dinf 与 unem 之间的格兰杰因果关系。

. vargranger

Equation	Excluded	chi2	df P	rob > chi2
dinf	unem	48.123	2	0.000
dinf	ALL	48.123	2	0.000
unem	dinf	9.009	2	0.011
unem	ALL	9.009	2	0.011

无论以 dinf 还是 unem 为被解释变量,p值均远小于 0.05。故二者互为格兰杰原因。格兰杰因果检验无法提供变量排序的信息。

考察正交化脉冲响应函数,将脉冲文件命名为"macro",并将脉冲结果命名为"iu"(表示变量排序为dinf, unem)。

```
. irf create iu, set(macro)
(file macro.irf created)
(file macro.irf now active)
(file macro.irf updated)
```

此命令建立了脉冲文件"macro.irf",并将脉冲结果 iu 存入此脉冲文件。

根据此脉冲结果, 画正交化的脉冲响应图(结果参见图 13.10)。

. irf graph oirf,yline(0)

其中,选择项"yline(0)"表示在纵轴 y=0 处画一条水平线。

图 13.10 正交化的脉冲响应图

最后一行"Graphs by irfname, impluse variable, and response variable"表明,四个小图的标题命名顺序为"脉冲名称、冲击变量、响应变量"。

比如,左下小图标题为"iu,unem,dinf",表明此图为根据脉冲结果 iu,冲击变量 unem,响应变量 dinf 所画的脉冲响应图。

它表明,失业率 unem 的一个标准差的正向冲击,将使未来一期的 dinf 下降(根据菲利普斯曲线,失业率上升可缓解通胀压力),但未来二期的 dinf 即反弹,然后此影响逐渐消失归于 0。

变换变量次序,考察正交化脉冲响应函数的稳健性。

. irf create ui, order(unem dinf)
 (file macro.irf updated)

选择项"order(unem dinf)"表示变量 unem 排在 dinf 之前。此命令将脉冲结果记为 ui。

以上两个脉冲结果 iu 与 ui,都已存储在当前脉冲文件 macro.irf中;故可直接画图,比较在两种变量排序下,dinf 对于 unem 冲击的脉冲响应(参见图 13.11)。

. irf graph oirf, i(unem) r(dinf) yline(0)

图 13.11 比较两种变量排序下的脉冲响应图(unem→ dinf)

在不同变量排序下,变量 dinf 对于 unem 冲击的脉冲响应差别不大,只是在反应幅度上略有不同。

比较在两种变量排序下,变量 unem 对于 dinf 冲击的脉冲响应(参见图 13.12)。

. irf graph oirf, i(dinf) r(unem) yline(0)

图 13.12 比较两种变量排序下的脉冲响应图(dinf→unem)

变量排序对于从 dinf 至 unem 的脉冲响应幅度有较大影响, 但变动方向上依然类似。 估计 VAR 模型后,可用它进行预测。

假设仅用 1999 年以前的数据估计 VAR 模型, 然后预测 1999 年 1 季度-2002 年 1 季度的 10 个季度, 并与实际观测值比较。

. varbasic dinf unem if
quarter<tq(1999q1),lags(1/2) nograph</pre>

其中,"tq(1999q1)"表示季度数据格式;选择项"nograph"表示不画脉冲响应图。

Vector autore	gression					
Sample: 19610 Log likelihood FPE Det(Sigma_ml)	d = 1118.534 = 1.44e-09			No. o AIC HQIC SBIC	=	= 151 = -14.68256 = -14.60139 = -14.48274
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
dinf unem	5 5	.014258	0.3673 0.9705	87.65165 4971.522	0.0000	
	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
dinf						
dinf	4510005	000010	6 80	0.000	6004005	2242064
L1. L2.	4718995 4066509	.0682215	-6.72 -5.96	0.000	6094925 5403626	3343064 2729393
unem						
L1.	-2.279801	.3502631	-6.51	0.000	-2.966304	-1.593298
L2.	2.050438	.3471149	5.91	0.000	1.370105	2.730771
_cons	.0139506	.005028	2.77	0.006	.0040959	.0238053
unem				1 1 1 1 1 1 1 1 1 1 1 1		
dinf						
L1.	.0302607	.012728	2.38		.0053143	
L2.	0120022	.012369	-0.97	0.332	0362449	.0122405
unem						
L1.	1.636296	.0635048		0.000	1.511829	1.760763
L2.	6760615	.062934	-10.74	0.000	7994099	5527131
_cons	.0023965	.0009116	2.63	0.009	.0006098	.0041832

子样本的样本容量减少为 151。

预测未来 10 个季度的变量取值,分别记为"f_dinf"与"f_unem"。

. fcast compute f_,step(10)

此命令将生成两个新变量,"f_dinf"与"f_unem",分别为对 dinf 与 unem 的预测值。

这两个预测变量的标准误与置信区间也作为新变量出现在变量窗口。

将dinf与unem的预测值画图,并与实际观测值比较。

. fcast graph f_dinf f_unem, observed lpattern(dash)

选择项"observed"表示显示变量的实际观测值。

选择项"<u>lp</u>attern(dash)"表示以虚线来画变量的预测值(以便区别于实际观测值)。

图 13.13 对未来 10 个季度的预测

对通胀率变动的预测准确度优于对失业率的预测。

预测的时期越长,则预测的精确度越低。

13.12 时间趋势项

时间序列常包含某种时间趋势,比如 GDP 的指数增长趋势,或 GDP 对数的线性增长趋势。

如果时间序列 $\{y_t\}$ 包含时间趋势,则不是平稳过程 (期望随时间而变)。

一种处理方法为做差分(或者先取对数,再差分),将其变为平稳过程。

如果想直接对原变量 y_t 建模,可在回归方程中引入"线性时间趋势项" (linear time trend):

$$y_t = \alpha + \beta t + \varepsilon_t \tag{13.40}$$

其中, $t=1,2,\dots,T$ 为时间趋势项(T为样本容量)。

如果 $\{y_t\}$ 存在指数增长趋势,可对其对数建模:

$$\ln y_t = \alpha + \beta t + \varepsilon_t \tag{13.41}$$

其中,系数 β 的经济含义为y的每期增长率,即

$$\beta = \frac{d \ln y}{dt} = \frac{dy/y}{dt} \tag{13.42}$$

如 y_t 的增长率并非常数,可考虑加入时间趋势的平方项:

$$\ln y_t = \alpha + \beta t + \gamma t^2 + \varepsilon_t \qquad (13.43)$$

此时,yt的增长率为

$$\frac{dy/y}{dt} = \frac{d\ln y}{dt} = \beta + 2\gamma t \qquad (13.44)$$

是否引入时间趋势的平方项,可检验" $H_0: \gamma = 0$ "。

但引入时间趋势的平方项,可能导致多重共线性。

假设样本容量为 100,可在 Stata 中计算时间趋势t 及其平方项 t^2 的相关系数如下。

- . set obs 100
- \cdot gen t=_n

- . gen t2=t^2
- . corr t t2

	t	t2
	1 0000	
t	1.0000	
t2	0.9689	1.0000

t与 t^2 的相关系数接近 0.97,存在严重的多重共线性。

常见的做法是仅包含线性趋势项,以避免多重共线性。

如果{y_t}包含时间趋势,但被遗漏,可能导致遗漏变量偏差。

考虑以下简单模型:

$$y_{t} = \alpha + \beta x_{t} + \varepsilon_{t} \tag{13.45}$$

其中,变量 y_t 包含时间趋势 γt (但被遗漏),故可将上式的扰动项写为

$$\varepsilon_t = \gamma t + u_t \tag{13.46}$$

其中, u, 为不含时间趋势的扰动项。

假设变量 x_t 包含时间趋势 δt ,并可写为

$$x_t = x_t^* + \delta t \tag{13.47}$$

其中, x*, 为x, 中不包含时间趋势的部分。

将表达式(13.46)与(13.47)代入原模型(13.45):

$$y_{t} = \alpha + \beta(\underbrace{x_{t}^{*} + \delta t}) + (\underbrace{\gamma t + u_{t}}) \quad (13.48)$$

解释变量 x_t 与扰动项 ε_t 相关,故 OLS 不一致。

由于宏观经济变量通常都有时间趋势,比如 y_t 与 x_t 都有时间趋势,故简单地将 y_t 对 x_t 进行回归将发现二者存在显著关系,而事实上只是因为共同的时间趋势所驱动。

这种现象是"伪回归"(spurious regression)的一种表现。

只要将遗漏的时间趋势加入回归方程(13.45),即可消除此伪回

归现象:

$$y_t = \alpha + \beta x_t + \gamma t + u_t \tag{13.49}$$

扰动项 u_t 不再包含时间趋势,不会与 x_t 相关,故 OLS 一致。

以数据集 gdp_china.dta 为例。直接对 GDP 对数(lny)建模,即估计 lny 的 AR(2)模型,并加上时间趋势项。

- . use gdp_china.dta,clear
- $. gen t=_n$
- . reg lny l(1/2).lny t if year<2013,r

sion				Number of obs	s = 33
				F(3, 29)	=38047.85
				Prob > F	= 0.0000
				R-squared	= 0.9997
				Root MSE	= .01627
	Robust		1 2 3 1 1 1 1		1 1 1 1 1 1 1 1 1
Coof		+	D> +	[QE% Conf	Intorvall
COEI.	Stu. EII.		P/ C	[95% COIII .	
1.302829	.1150665	11.32	0.000	1.067491	1.538166
7357654	.0967217	-7.61	0.000	9335835	5379473
.0411649	.0092175	4.47	0.000	.022313	.0600168
3.473641	.7552359	4.60	0.000	1.929011	5.018272
	Coef. 1.302829 7357654 .0411649	Robust Coef. Std. Err. 1.302829 .11506657357654 .0967217 .0411649 .0092175	Robust Coef. Std. Err. t 1.302829 .1150665 11.327357654 .0967217 -7.61 .0411649 .0092175 4.47	Robust Coef. Std. Err. t P> t 1.302829 .1150665 11.32 0.0007357654 .0967217 -7.61 0.000 .0411649 .0092175 4.47 0.000	F(3, 29) Prob > F R-squared Root MSE Robust Coef. Std. Err. t P> t [95% Conf. 1.302829 .1150665 11.32 0.000 1.0674917357654 .0967217 -7.61 0.0009335835 .0411649 .0092175 4.47 0.000 .022313

lny的两阶滞后以及时间趋势项都高度显著。

预测 GDP 对数,并记为 lny3,然后计算 2013 年的预测误差。

. predict lny3
(option xb assumed; fitted values)
(2 missing values generated)

- . dis exp(lny3[36]) 95597.887
- . dis y[36]-exp(lny3[36])-508.67625
- "AR(2)+时间趋势项"模型的预测误差为-508.67625 亿元,即高估了508.67625 亿元。

dlny的 AR(2)模型的预测高估了 680.78688 亿元(参见上文)。

在此例,直接对 GDP 对数(lny)建模并引入时间趋势项,其预测能力优于对 GDP 对数差分(dlny)的平稳过程建模。

13.13 季节调整

1.季节效应

对于月度或季度时间序列,常需进行"季节调整"(seasonal adjustment),去掉"季节效应"后才能使用。

例 考察中国的季度 GDP 数据。由于第一季度包含春节,故通常第一季度的 GDP 偏低。

如果直接以第二季度 GDP 除以第一季度 GDP 来计算环比增长率,则会高估第二季度的 GDP 增长率;将第一季度 GDP 除以上年第四季度 GDP 则会低估第一季度的 GDP 增长率。

包含季节效应的时间序列不能直接计算环比增长率。

如不进行季节调整,只能计算同比增长率,即与去年同一季(月)相比。

对于年度数据,则不需要进行季节调整。

可能导致季节效应的因素包括:

- (1) 天气因素:比如,在冬季由于取暖而增加能源消耗。
- (2) 行政因素:比如,学校开学与放假对交通的影响。

- (3) 固定假日:比如,十一国庆节对旅游与交通的影响。
- (4) 移动假日(moving holiday): 比如,春节期间,铁路运输量增加而 GDP 下降。
- (5) 日历因素: 比如, 闰年与闰月的影响。
- (6) 交易日效应:比如,五金店销售额在有五个周末的月份高于只有四个周末的月份。

所有这些季节因素共同构成一个时间序列的"季节要素" (seasonal component)。

该时间序列的长期走势与中期周期称为"趋势循环要素"(trend cycle component), 简称"趋势要素"(trend component)。

其他不可预测的随机扰动为该序列的"不规则要素"(irregular component)。

2. 季节调整的原理

季节调整通过估计"季节因子"(seasonal factor)来进行。

根据季节因子起作用的方式,季节因子分为两种,即"加法季节因子"(additive seasonal factor)与"乘法季节因子"(multiplicative seasonal factor)。

"加法季节因子"意味着对所有第 1 月(或第 1 季)都加上相同的季节因子,以此类推。

"加法模型" (additive model)的数学表达式如下:

$$Y_{t} = TC_{t} + S_{t} + I_{t} {13.50}$$

其中, Y_t 为原序列, TC_t 为趋势循环要素, S_t 为季节要素,而 I_t 为不规则要素。

"乘法季节因子"意味着对所有第 1 月(或第 1 季)都乘以相同的季节因子,以此类推。

"乘法模型" (multiplicative model)的数学表达式如下:

$$Y_t = TC_t \times S_t \times I_t \tag{13.51}$$

使用乘法模型要求 Y_t 序列中不包含零或负数。对方程两边取对数:

$$\ln Y_{t} = \ln TC_{t} + \ln S_{t} + \ln I_{t} \qquad (13.52)$$

方程(13.52)在形式上与加法模型相同,称为"对数加法模型"。

季节调整的目标是将原序列 Y_t 分解为趋势循环要素、季节要素与不规则要素,然后去掉季节要素 S_t ,得到季节调整序列 (seasonally adjusted series),即趋势循环要素与不规则要素之和。

季节调整的方法有多种,使用不同方法,会得到不同的季节调整序列,带有一定的主观性;这是季节调整的局限性。

下面介绍最为简便的回归法。

3. 回归法

首先生成月度(或季度)虚拟变量,然后把时间序列对这些虚拟变量进行 OLS 回归,所得残差就是经季节调整后的序列。

以 airpassengers.dta 为例,该数据集包括 1949-1960 年国际航空 旅客人数的月度数据(airpassengers)与时间变量(time)。

打开数据集后,看 airpassengers 的时间趋势图。

- . use airpassengers.dta,clear
- . tsset time

time variable: month, 1949ml to 1960ml2

delta: 1 month

. tsline airpassengers

图 13.14 国际航空旅客人数的季节波动

国际航空旅客人数存在明显的季节波动,在夏季(七、八两月)达到高峰。

为生成月度虚拟变量,首先从时间变量 time 提取月度信息,记为变量 month。

. gen month=month((dofm(time)))

此命令将生成变量 month,取值为 1, 2, ...,12,对应于一年中的 12 个月。

其次,使用命令 tab 生成月度虚拟变量。

. tab month,gen(m)

其中,选择项"gen(m)"表示,根据变量 month 的不同取值,生成相应的虚拟变量,记为 m1, m2,..., m12,分别对应于 12 个月。

month	Freq.	Percent	Cum.
1	12	8.33	8.33
2	12	8.33	16.67
3	12	8.33	25.00
4	12	8.33	33.33
5	12	8.33	41.67
6	12	8.33	50.00
7	12	8.33	58.33
8	12	8.33	66.67
9	12	8.33	75.00
10	12	8.33	83.33
11	12	8.33	91.67
12	12	8.33	100.00
Total	144	100.00	· · · · · · · · · · · · · · · · · · ·

以 1 月份为参照值,把变量 airpassengers 对第 2-12 月的月度虚拟变量进行回归。

. reg airpassengers m2-m12

Source	SS	df	MS		Number of obs	= 144
					F(11, 132)	= 1.42
Model	218382.243	11 1985	2.9312		Prob > F	= 0.1690
Residual	1839661.92	132 1393	6.8327		R-squared	= 0.1061
					Adj R-squared	= 0.0316
Total	2058044.16	143 1439	1.9172		Root MSE	= 118.05
	l					
	G	QL 1 P		n. l. l	[050 05	T
airpasseng~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
m2	-6.75	48.19549	-0.14	0.889	-102.0854	88.58545
m3	28.41667	48.19549	0.59	0.556	-66.91878	123.7521
m4	25.33333	48.19549	0.53	0.600	-70.00211	120.6688
m5	30.08333	48.19549	0.62	0.534	-65.25211	125.4188
mб	69.91667	48.19549	1.45	0.149	-25.41878	165.2521
m7	109.5833	48.19549	2.27	0.025	14.24789	204.9188
m8	109.3333	48.19549	2.27	0.025	13.99789	204.6688
m9	60.66667	48.19549	1.26	0.210	-34.66878	156.0021
m10	24.83333	48.19549	0.52	0.607	-70.50211	120.1688
m11	-8.916667	48.19549	-0.19	0.854	-104.2521	86.41878
m12	20.08333	48.19549	0.42	0.678	-75.25211	115.4188
_cons	241.75	34.07936	7.09	0.000	174.3377	309.1623

七、八两月的虚拟变量(m7与 m8)均在 5%水平上显著为正; 其他月份的虚拟变量不显著。

为得到经季度调整的序列,使用命令 predict 计算上述回归的残差项(记为 air_sa)。

. predict air_sa,r

但OLS 残差项的平均值一定为0,故需把原序列的均值加回去, 并记季节调整序列为 airpassengers_sa。

. sum airpassengers

Variable	Obs	Mean	Std. Dev.	Min	Max
airpasseng~s	144	280.2986	119.9663	104	622

. gen airpassengers_sa = air_sa+r(mean)

将回归法的季节调整序列与原序列画图,参见图 13.15。

. tsline airpassengers_sa
airpassengers,lpattern(dash)

图 13.15 季节调整序列与原序列

13.14 日期数据的导入

如果时间序列为年度数据,将时间数据导入Stata并无特殊之处,只要使用命令"tsset year"将变量 year 设为时间变量即可(假设时间变量为 year)。

对于日度、月度及季度数据,导入方法略为复杂。

如果数据中含有格式为"1949-10-01"或"1949/10/01"的时间变量,在导入Stata后,可能被视为"字符串"(string),而非"数字型"(numeric),无法直接对其进行运算(比如,滞后一期)。

对于日度数据(daily data),可使用如下命令转换为"整数日期变量"(integer date variable):

gen newvar=date(varname, "YMD")

其中,函数 "date"表示转换为日期变量; "varname"为原来的时间变量, "newvar"为新定义的时间变量。

"YMD"告诉 Stata, 原始数据的格式为"年-月-日"。如数据格式为"月-日-年",则应为"MDY",以此类推。

如此定义后,新的时间变量 newvar 将以"整数日期"的形式显示。

在 Stata 内部,所有日期变量的存储格式均为"elapsed dates" (Stata 称为 Stata Internal Format, 简记 SIF),即从 1960 年 1 月 1 日以来过了多少天。

为让新的时间变量 newvar 仍以通常的日期格式(Human Readable Format, 简记 HRF)在 Stata 中显示,可输入命令:

format newvar %td

其中, "%td"中的"d"即表示"date"。

对于月度数据(monthly data),可使用如下命令进行转换

gen newvar=monthly(varname, "YM")

其中,函数"monthly"表示转换为月度变量; "YM"告诉 Stata, 原始数据的格式为"年-月"。

对于新定义的时间变量 newvar, Stata 内部的月度变量存储格式为 "elapsed months",即从 1960年1月以来过了多少月。

如仍想以日期格式在Stata 中显示,可输入命令:

format newvar %tm

其中, "%tm"中的"m"即表示"month"。

对于季度数据(quarterly data),可使用以下命令进行转换

gen newvar=quarterly(varname, "YQ")

其中,函数 "quarterly"表示转换为季度变量; "YQ"告诉 Stata,原始数据的格式为"年-季"。

对于新定义的时间变量 newvar, Stata 内部的季度变量存储格式为 "elapsed quarters",即从 1960 年第 1 季以来过了多少季度。

如仍想以日期格式在 Stata 中显示,可输入命令:

format newvar %tq

其中, "%tq"中的"q"即表示"quarter"。

如在原始数据中,年、月、日分别以数字型(numeric)变量"Y, M, D"来表示,可使用以下命令将其合成单一的日期变量:

gen newvar=mdy(M,D,Y)

有关日期数据的更多更多说明,参见"help date"。