

Prof. Thiago Novaes Disciplina: Matemática

Turma: 3º ano

Lista de Exercícios – Matrizes (Parte 1)

- 1) Construa a matriz $A = [a_{ij}]_{2 \times 2'}$ tal que $a_{ij} = 2i+j$.
- 2) Construa a matriz $B = [b_{ij}]_{2 \times 2}$ tal que $b_{ij} = (i j)^2$.
- 3) Construa a matriz $C = [c_{ij}]_{2 \times 3}$, com $c_{ij} = i + j 2$.
- 4) Escreva a matriz Mt, sendo $M = [m_{ii}]_{3 \times 9}$ definida por:

$$m_{ij} = \begin{cases} i + j, \text{ se } i = j \\ i - j, \text{ se } i \neq j \end{cases}$$

- 5) Dadas as matrizes $A = [a_{ij}]_{\mathbf{2} \times \mathbf{2}'}$ sendo $a_{ij} = i^{j}$ $e B = [b_{ij}]_{g \times g}$, sendo $b_{ij} = j^i$, determine:
 - a) $a_{11} + b_{11}$
 - b) $a_{19} b_{91}$
 - c) a₉₁ · b₉₁
 - d) $a_{00} (b_{11} + b_{00})$

6) Determine os números reais x e y em cada caso:

a)
$$\begin{bmatrix} x+1 & 3 \\ 1 & x-y \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 1 & 2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 8 & 3x - 2y \\ x + 3y & 5 \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 4 & 5 \end{bmatrix}$$

c)
$$\begin{bmatrix} \log_x 16 & 10 \\ -9 & 2^y \end{bmatrix} = \begin{bmatrix} 2 & 10 \\ -9 & 64 \end{bmatrix}$$

7) (UN-MA) Num campeonato de basquete verificou-se o seguinte: Anselmo fez 40 lançamentos e 18 cestas, cometendo 10 faltas. Alexandre fez 32 lançamentos e 22 cestas, cometendo 9 faltas. Andréa e Aluísio fizeram, cada um, 20 lançamentos e 10 cestas, cometendo 4 faltas. A matriz transposta da matriz atletas × resultados é:

a)
$$\begin{bmatrix} 40 & 18 & 10 \\ 32 & 22 & 9 \\ 20 & 10 & 4 \\ 20 & 10 & 4 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 40 & 18 & 10 \\ 32 & 22 & 9 \\ 20 & 10 & 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} 40 & 10 & 18 \\ 32 & 9 & 22 \\ 20 & 4 & 10 \\ 20 & 4 & 10 \end{bmatrix} e) \begin{bmatrix} 10 & 18 & 40 \\ 9 & 22 & 32 \\ 4 & 10 & 20 \end{bmatrix}$$

Gabarito:

1)
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 2) $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 3) $C = \begin{bmatrix} 0 & 1 & 9 \\ 1 & 9 & 3 \end{bmatrix}$

4)
$$M^{t} = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 1 \end{bmatrix}_{9 \times 3}$$
 5) a) 2 c) 2 6) a) $x = 6$; $y = 4$ 7) c b) $x = y = 1$

b)
$$x = y = 1$$

c)
$$x = 4$$
; $y = 6$