CALCULUS AND PROBABILITY BASED STATISTICS

MARK ANDREW GERADS

1. Finite statistics

1.1. Introduction. The purpose of this text is to have statistics built on a solid foundation of probability and calculus.

Definition 1.1. A is a repeatable event.

Definition 1.2. p is the probability that A will happen when A is given a chance to happen. For simplicity, we assume that p is the same every time A is given a chance to happen.

Definition 1.3. $n \in \mathbb{W}$ is the number of times A had a chance to happen.

Definition 1.4. $k \in \mathbb{W}$ is the number of times A actually happened.

Remark 1.5. $k \leq n$.

Definition 1.6. f_p is the probability is the probability distribution for p.

Remark 1.7. $1 = \int_0^1 f_p dp$

Definition 1.8. m is the maximum value of f_p .

Definition 1.9. (a, b) is the prediction interval of p such that b - a is minimized.

Definition 1.10. c is the desired certainty for the prediction interval of p.

Remark 1.11. $0 \le c = \int_a^b f_p dp \le 1$

Remark 1.12. $0 \le a \le b \le 1$

Now that we have the definitions, here is the problem: n, k, c are known, and we must solve for a, b.

Remark 1.13. The probability of k events given n chances is $\binom{n}{k} p^k (1-p)^{n-k}$, but we must scale it to satisfy 1.7:

$$(1.1) f_p = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\int\limits_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp} = \frac{p^k (1-p)^{n-k}}{\int\limits_0^1 p^k (1-p)^{n-k} dp} = (n+1) \binom{n}{k} p^k (1-p)^{n-k}$$

1.2. The 4 cases of finding the interval.

1.2.1. Case n = k = 0. This case is self-symmetrical.

Remark 1.14. We have

(1.2)
$$(a,b) = \left(\frac{1-c}{2}, \frac{1+c}{2}\right)$$

 $Date \colon \text{February 22, 2016}.$

1.2.2. Case n > k = 0. This case is symmetrical to case 1.2.3.

Remark 1.15. We can solve

(1.3)
$$\int_0^b (n+1)(1-p)^n dp = c = 1 - (1-b)^{n+1}$$

Remark 1.16. We have

(1.4)
$$(a,b) = \left(0, 1 - (1-c)^{\frac{1}{n+1}}\right)$$

Example 1.17. Now we can analyze the old saying "Third time's the charm." n=2.

$$(1.5) c = 0.5 \Rightarrow b \approx 0.2062994740, c = 0.95 \Rightarrow b \approx 0.6315968501$$

We can now see that if you fail at something twice, then success before the 8th try is worth approximately a coin flip.

Example 1.18. Suppose we were repeatedly trying a difficult task. How many times of trying without success must there be for us to conclude with c = 0.99 that b < 0.01?

(1.6)
$$n = \frac{2\log(3) + \log(11)}{2\log(2) - 2\log(3) + 2\log(5) - \log(11)} \approx 457.2105766$$

We can see "If at first you don't succeed, try, try again." is sensible for things that we want to be certain are probable before giving up.

1.2.3. Case n = k > 0. This case is symmetrical to case 1.2.2.

Remark 1.19. We can solve

(1.7)
$$\int_{a}^{1} (k+1)p^{k} dp = c = 1 - a^{k+1}$$

Remark 1.20. We have

(1.8)
$$(a,b) = \left((1-c)^{\frac{1}{k+1}}, 1 \right)$$

1.2.4. Case n > k > 0. This case is self-symmetrical.

Remark 1.21. We desire to solve

$$\int_{a}^{b} (n+1) \binom{n}{k} p^{k} (1-p)^{n-k} dp = c = (n+1) \binom{n}{k} \left(B_{b}(k+1, -k+n+1) - B_{a}(k+1, -k+n+1) \right)$$

where B is the incomplete beta function.

Remark 1.22. We can use the hints

(1.10)
$$a^{k}(1-a)^{n-k} = b^{k}(1-b)^{n-k}$$

Remark 1.23. By solving

$$\frac{\partial f_p}{\partial p} = 0$$

, we get

$$\lim_{c \to 0} (a, b) = \left(\frac{k}{n}, \frac{k}{n}\right), m = (n+1) \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}$$

1.3. Table of small trial half probability intervals. Table:

1.5. Table of small trial half probability intervals. Table.				
	k=0	k=1	k=2	
n=0	a = 0.25000000000, b = 0.75000000000			
n=1	a = 0.0000000000, b = 0.2928932188	a = 0.7071067812, b = 1.0000000000		
n=2	a = 0.0000000000, b = 0.2062994740	a = 0.326351822, b = 0.673648178	a = 0.7937005260, b = 1.0000000000	
n=3	a = 0.0000000000, b = 0.1591035847	a = 0.1966713241, b = 0.4921993002	a = 0.507800700, b = 0.803328676	
n=4	a = 0.0000000000, b = 0.1294494367	a = 0.1387754454, b = 0.3894044243	a = 0.3594361648, b = 0.640563835	
n=5	a = 0.0000000000, b = 0.1091012819	a = 0.1065967785, b = 0.3226910840	a = 0.2770309506, b = 0.532125995	
n=6	a = 0.0000000000, b = 0.09427633574	a = 0.0862905298, b = 0.2757178692	a = 0.2249291772, b = 0.4551185682	
n=7	a = 0.0000000000, b = 0.08299595680	a = 0.07237321411, b = 0.2407853463	a = 0.1891248358, b = 0.3976355162	
n=8	a = 0.0000000000, b = 0.07412528771	a = 0.06226629927, b = 0.2137614499	a = 0.1630534052, b = 0.3530822174	-

318 Thomas Drive, Marshalltown, Iowa, 50158 $E{-}mail\ address\colon$ MGerads11@winona.edu, nazgand@gmail.com