Cours 4

Jean-Baptiste Bertrand

19 janvier 2022

Rappel

- Une courbe est régulière $(\alpha'(t) \neq 0 \iff)$ elle peut être oaramétrisé pr longeur d'arc $(||\tilde{\alpha}(s)|| \equiv 1)$
- Repère de Frenet de α paramétré par longeur d'arc

$$T = \alpha'(s), \ N = \frac{T'(s)}{||T'(s)||} (||T'(s) = k(s)||), \ B = T \times N$$

- Courbe birrégulière $\rightarrow k(s) \neq 0$
- Équations de Frenet-Serret

$$\begin{array}{lll} T' = & kN \\ N' = & -kT & +\tau B \\ B' = & -\tau N \end{array}$$

$$-N'(s) \cdot B(s) = \tau(s)$$

La torsion (τ) mesure à quel point on sort d'un plan. La courbure (k) mesure à quel point on dévie d'une droite.

Exemple: Hélice

$$\alpha(s) = \left(a\cos\left(\frac{s}{c}\right), a\sin\left(\frac{s}{c}\right), b\frac{s}{c}\right)$$

où
$$c = \sqrt{a^2 + b^2}$$

est paramétrisé par longueure d'arc

$$T(s) = \alpha'(s) = \left(-\frac{q}{c}\sin\left(\frac{s}{c}\right), \frac{a}{c}\cos\left(\frac{s}{c}\right), \frac{b}{c}\right)$$

$$T'(s) = \left(-\frac{a}{c^2}\cos\left(\frac{s}{c}\right), -\frac{a}{c^2}\sin\frac{s}{c}, 0\right)$$

$$\kappa(s) = \|T'(s)\| \, \frac{a}{c^2}$$

$$N = \left(-\cos\left(\frac{s}{c}\right), -\sin\left(\frac{s}{c}\right), 0\right)$$

$$B = T \times N = \left(\frac{b}{c}\sin\left(\frac{s}{c}\right), -\frac{b}{c}\cos\left(\frac{s}{c}\right), \frac{a}{c}\right)$$

$$N'(s) = \left(\frac{1}{c}\sin\Bigl(\frac{s}{c}\Bigr), -\frac{1}{c}\cos\Bigl(\frac{s}{c}\Bigr), 0\right)$$

$$\tau(s) = N' \cdot B = \frac{b}{c^2} \sin^2(\frac{s}{c}) + \frac{b}{c^2} \cos^2(\frac{s}{c}) + 0 = \frac{b}{c^2}$$

Remarque

La courbure d<u
ne coubre de \mathbb{R}^3 est <u>toujours positive</u> (C'est une nrome) mais la torsion <u>a un signe</u>. La torsion renseigne sur la chiralité.

$$T' = \kappa N \checkmark$$

. . .

Courbes non-paramétrées pas longueur d'arc

Soit α une courbe birrégulière. On note s(t) la reparamétrisation par longueur d'arc.

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{\mathrm{d}\alpha(s(t))}{\mathrm{d}t} = \frac{\mathrm{d}\alpha(s(t))}{\mathrm{d}s} \frac{\mathrm{d}s}{\mathrm{d}t} \tag{*}$$

$$\left\| \frac{\mathrm{d}\alpha}{\mathrm{d}t} \right\| = 1 \left| \frac{\mathrm{d}s}{\mathrm{d}t} \right|$$

la fonction $\frac{\mathrm{d}s}{\mathrm{d}t}=v(t)$ est la vitesse de α

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = T(s(t))v(t)$$

Pour calculer N

$$\frac{\mathrm{d}T(s(t))}{\mathrm{d}t} = \frac{\mathrm{d}T(s(t))}{\mathrm{d}s} \frac{\mathrm{d}s}{\mathrm{d}t} = \kappa(s(t))N(s(t))v(t)$$

$$\implies N(s(t)) = \frac{1}{v(t)} \frac{\mathrm{d}T(s(t))}{\mathrm{d}t}$$

On peut ensuite calculer B et τ

Exemple

$$\alpha(t) = (3t - t^3, 3t^3, 3t + t^3)$$

$$\alpha'(t) = (3 - 3t^2, 6t, 3 + 3t^2) = 3(1 - t^2, 2t, 1 + t^2)$$

$$v(t) = \|\alpha'(t)\| = \dots = 3\sqrt{2}(1 + t^2)$$

$$T = \frac{\alpha'}{v} = \frac{1}{\sqrt{2}(1 + t^2)} (1 - t^2, 2t, 1 + t^2)$$

$$\kappa N(t) = \frac{1}{v(t)} T'(t) = \dots = \frac{1}{6} \left(\frac{-4t}{1 + t^2}, \frac{2 - 2t^2}{(1 + t^2)^2} \right)$$

$$\kappa(t) = \|k(t)N(t)\| = \frac{1}{3(1 + t^2)^2}$$

On calcul B, pas le temps de retranscrire