

Aula 02: Linguagens Regulares e Autômatos Finitos Determinísticos

2/37 Linguagens Regulares

Linguagens Regulares

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

Linguagens Regulares

- Linguagens Regulares: são as linguagens descritas e reconhecidas por autômatos finitos;
- Autômato Finito: possui um conjunto finito de estados e seu controle se desloca de estado para estado em resposta à entradas externas;
- Autômato Finito Determinístico (DFA): o controle é determinístico, ou seja, sempre está em um único estado em qualquer instante;
- Autômato Finito Não-Determinístico (NFA): o controle pode estar em mais de um estado em qualquer instante.

Linguagens Regulares Autômatos Finitos Determinísticos

Linguagens Regulares Autômatos Finitos Determinísticos

- A adição do não-determinismo não permite a definição de quaisquer linguagens que não sejam reconhecidas por DFAs;
- O não-determinismo permite "programar" soluções para problemas usando uma linguagem de alto nível, que depois podem ser "compiladas" em DFAs que, por sua vez, podem então ser executados em computadores convencionais;
- Trocando em miúdos, o não-determinismo nos dá mais ferramentas para descrever o autômato finito, facilitando sua definição e então podemos convertê-lo, usando um algoritmo que estudaremos, para um DFA;
- Em relação à terminologia, chamaremos um Autômato Finito Determinístico de DFA ou simplesmente de Autômato Finito.

Autômatos Finitos Determinísticos

Definição formal:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- A: autômato finito, uma quíntupla (tupla de 5 elementos), onde:
 - Q: conjunto finito de estados;
 - \triangleright Σ : conjunto finito de símbolos de entrada (alfabeto);
 - lacksquare δ : função de transição, na forma $\delta(q,a) \to p$, tal que $\delta: Q \times \Sigma \to Q$
 - q_0 : estado inicial, tal que $q_0 \in Q$
 - ightharpoonup F: conjunto de estados finais ou de aceitação, tal que $F \subseteq Q$
- lacktriangle Obs: alguns autores chamam os autômatos de M (máquina)

Para:

```
L = \{ w \mid w \text{ \'e da forma } x01y \text{ para algumas strings } \}
      x e y que consistem em somente 0's e 1's }
```

 $L = \{ x01y \mid x \text{ e } y \text{ são quaisquer strings de 0's e 1's } \}$

- Strings da linguagem: 01, 11010 e 100011, ...
- ightharpoonup Strings que não são da linguagem: ε , 0, 111000, ...
- Como definir o DFA que reconhece essa linguagem?

Diagrama de transições:

- $A = (Q, \Sigma, \delta, q_0, F)$, onde:
- $Q = \{ q_0, q_1, q_2 \}$
- $\Sigma = \{ 0, 1 \}$
- $F = \{q_2\}$
- lacksquare δ corresponde à tabela de transições:

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q ₂	q_2	q_2

Para:

$$L = \{ 0^i \lor 1^j \mid i > 0 \text{ e par e } j > 0 \text{ e impar } \}$$

- Strings da linguagem: 00, 0000, 000000, 1, 111, 111111, ...
- Strings que não são da linguagem: ε, 0, 000, 11, 1111, 0101, 1010, ...

- $A = (Q, \Sigma, \delta, q_0, F)$, onde:
- $Q = \{ q_0, q_1, q_2, q_3, q_4, q_5 \}$
- $\Sigma = \{0, 1\}$
- $F = \{q_2, q_4\}$
- lacksquare δ corresponde à tabela de transições:

	0	1
$\rightarrow q_0$	q_1	q_4
q_1	q_2	Ø
$*q_2$	q_3	Ø
q_3	q_2	Ø
$*q_4$	Ø	q_5
$\overline{q_5}$	Ø	q_4

- Necessária para tornar exata a noção da linguagem de um DFA;
- lacktriangle Se δ é a função de transição, $\hat{\delta}$ (delta chapéu) é a função de transição estendida;
- Definição:

Base: $\hat{\delta}(q, \varepsilon) = q$

Se estamos em q e não lemos nada, ficamos em q

■ Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$

 $\hat{\delta}(q,x)$ é o estado em que o autômato se encontra após processar tudo, exceto o último símbolo de w. Se esse estado for p, ou seja, $\hat{\delta}(q,x)=p$, então $\hat{\delta}(q,w)$ é o que obtemos ao fazer uma transição de p sobre a entrada a, o último símbolo de w. Isto é $\hat{\delta}(q,x) = \delta(p,a)$.

Obs: convencionaremos que letras do início do alfabeto (a, b, c, ...) indicam símbolos, enquanto letras do fim do alfabeto indicam strings (w, x, y, z)

- Necessária para tornar exata a noção da linguage
- lacktriangle Se δ é a função de transição, $\hat{\delta}$ (delta chapéu) é a fun estendida;

Não se desespere! Por enquanto... 🕮 🚳 😁

- Definição:
 - **Base:** $\hat{\delta}(q, \varepsilon) = q$

Se estamos em q e não lemos nada, ficamos em q

■ Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$

 $\hat{\delta}(q,x)$ é o estado em que o autômato se encontra após processar tudo, exceto o último símbolo de w. Se esse estado for p, ou seja, $\hat{\delta}(q,x) = p$, então $\hat{\delta}(q,w)$ é o que obtemos ao fazer uma transição de p sobre a entrada a, o último símbolo de w. Isto é $\hat{\delta}(q,x) = \delta(p,a)$.

Obs: convencionaremos que letras do início do alfabeto (a, b, c, ...) indicam símbolos, enquanto letras do fim do alfabeto indicam strings (w, x, y, z)

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- **Exemplo:** Para $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, realizar a computação de $\hat{\delta}(q_0, w)$ para cada prefixo w de 110010, começando em δ e aumentando o tamanho:
 - $\hat{\delta}(q_0, \varepsilon) = q_0$
 - $\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$
 - $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$
 - $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$
 - $\hat{\delta}(q_0, 1100) = \delta(\hat{\delta}(q_0, 110), 0) = \delta(q_1, 0) = q_1$
 - $\hat{\delta}(q_0, 11001) = \delta(\hat{\delta}(q_0, 1100), 1) = \delta(q_1, 1) = q_2$
 - $\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0) = \delta(q_2, 0) = q_2$

δ			
	0	1	
$\rightarrow q_0$	q_1	q_0	
q_1	q_1	q_2	
$*q_2$	q_2	q_2	

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- **Exemplo:** Para $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, realizar a computação de $\hat{\delta}(q_0, w)$ para cada prefixo w de 110010, começando em δ e aumentando o tamanho:
 - $\hat{\delta}(q_0, \varepsilon) = q_0$
 - $\hat{\delta}(q_0, \varepsilon 1) = \delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$
 - $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$
 - $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$
 - $\hat{\delta}(q_0, 1100) = \delta(\hat{\delta}(q_0, 110), 0) = \delta(q_1, 0) = q_1$
 - $\hat{\delta}(q_0, 11001) = \delta(\hat{\delta}(q_0, 1100), 1) = \delta(q_1, 1) = q_2$
 - $\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0) = \delta(q_2, 0) = q_2$

δ			
	0	1	
$\rightarrow q_0$	q_1	q_0	
q_1	q_1	q_2	
$*q_2$	q_2	q_2	

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010: $\hat{\delta}(q_0, 110010)$

	δ	
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q ₂	q_2	q_2
	_	

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

δ		
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
$* q_2$	q_2	q_2

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

 $\delta(\hat{\delta}(q_0, 1100), 1)$

	δ	
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q ₂	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$$\delta(\hat{\delta}(q_0, 1100), 1)$$

$$\delta(\hat{\delta}(q_0, 110), 0)$$

	δ	
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
$*q_2$	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$$\delta(\hat{\delta}(q_0, 1100), 1)$$

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

δ			
		0	1
\rightarrow	q_0	q_1	q_0
	71	q_1	q_2
*	q_2	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$$\delta(\hat{\delta}(q_0, 1100), 1)$$

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

$$\delta(\hat{\delta}(q_0,1),1)$$

	δ	
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q ₂	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$\delta(\hat{\delta}(q_0, 1100), 1$.)
-------------------------------------	----

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

$$\delta(\hat{\delta}(q_0,1),1)$$

$$\delta(\hat{\delta}(q_0,\varepsilon),1)$$

δ		
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q2	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$\delta(\hat{\delta}(q_0,$	1100),	1)
----------------------------	--------	----

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

$$\delta(\hat{\delta}(q_0,1),1)$$

$$\delta(\hat{\delta}(q_0,\varepsilon),1)$$

	δ	
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
q_2	q_2	q_2
	n	<u></u>

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$\delta(\hat{\delta}(q_0))$	1100), 1)
-----------------------------	----------	---

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

$$\delta(\hat{\delta}(q_0,1),1)$$

$$\delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_0$$

δ		
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q2	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$\delta(\hat{\delta}(q_0,$	1100),	1)
----------------------------	--------	----

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0,11),0)$$

$$\delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$$

$$\delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$$

δ		
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q ₂	q_2	q_2

- Base: $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$\delta(\hat{\delta}(q_0, 1100), 1)$

$$\delta(\hat{\delta}(q_0, 110), 0)$$

$$\delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$$

$$\delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$$

δ		
	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q2	q_2	q_2

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$$\delta(\hat{\delta}(q_0, 1100), 1)$$

 q_0

$$\delta(\hat{\delta}(q_0, 110), 0) = \delta(q_1, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$$

$$\delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$$

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0)$$

$$\delta(\hat{\delta}(q_0, 1100), 1) = \delta(q_1, 1) = q_2$$

$$\delta(\hat{\delta}(q_0, 110), 0) = \delta(q_1, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$$

$$\delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_0$$

 q_0

- **Base:** $\hat{\delta}(q, \varepsilon) = q$
- Indução: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
- Outra forma de enxergar a computação de 110010:

$$\hat{\delta}(q_0, 110010) = \delta(\hat{\delta}(q_0, 11001), 0) = \delta(q_2, 0) = q_2$$

 q_0

$$\delta(\hat{\delta}(q_0, 1100), 1) = \delta(q_1, 1) = q_2$$

$$\delta(\hat{\delta}(q_0, 110), 0) = \delta(q_1, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_1$$

$$\delta(\hat{\delta}(q_0, 1), 1) = \delta(q_0, 1) = q_0$$

$$\delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_0$$

30/37 Autômatos Finitos Determinísticos Definição de Linguagem de um DFA

■ Dado um DFA $A = \{Q, \Sigma, \delta, q_0, F\}$, sua linguagem L(A) é definida por:

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \text{ está em } F \}$$

Isto é, a linguagem de A é o conjunto de strings w que levam o estado inicial q_0 até um dos estados de aceitação. Se L é L(A) para algum DFA A, dizemos que Lé uma linguagem regular.

Autômatos Finitos Determinísticos **Exercícios Escritos**

Exercício e2.1: Para cada linguagem abaixo, todas sobre o alfabeto { 0, 1 }, defina formalmente o seu respectivo DFA, apresentando a tabela e o diagrama de transições:

```
a) L = \{ w \mid w \text{ termina em } 00 \}
    L = \{ w \mid w \text{ começa com } 1 \text{ e termina com } 0 \}
c) L = \{ w \mid w \text{ possui três } 0'\text{s consecutivos } \}
    \mathcal{L} = \{ w \mid w \text{ contém a subcadeia } 0101, \text{ isto } \acute{e}, w = x0101y \text{ para algum } x \text{ e algum } y \}
     L = \{ w \mid w \text{ começa com } 0 \text{ e tem comprimento impar, ou começa com } 1 \text{ e tem comprimento par } \}
     L = \{ w \mid w \text{ possui um ou mais blocos de cinco símbolos consecutivos que contém pelo menos dois 0's} \}
    L = \{ w \mid \text{o comprimento de } w \text{ \'e no m\'aximo 5} \}
h) L = \Sigma^*
```


32/37 Autômatos Finitos Determinísticos **Exercícios Escritos**

Exercício e2.1: Para cada linguagem abaixo, todas sobre o alfabeto { 0, 1 }, defina formalmente o seu respectivo DFA, apresentando a tabela e o diagrama de transições:

a) $L = \{ w \mid w \text{ termina em } 00 \}$

$$\begin{cases}
A = (Q_{1} \leq 1, \delta_{1}, q_{0}) \\
Q = \{q_{0}, q_{1}, q_{0}\} \\
S = \{0, 1\} \\
F = \{F\}
\end{cases}$$

$$\begin{cases}
q_{0} \neq 1, q_{0} \\
q_{1} \neq 2, q_{0} \\
q_{1} \neq 3, q_{0} \\
q_{2} \neq 3, q_{1} \neq 3, q_{1} \\
q_{2} \neq 3, q_{3} \neq 3, q_{3} \\
q_{3} \neq 3, q_{3} \neq 3, q_{3} \\
q_{4} \neq 3, q_{5} \neq 3, q_{5} \\
q_{5} \neq 3, q_{5} \neq 3, q_{5} \neq 3, q_{5} \\
q_{5} \neq 3, q_{5} \neq 3, q_{5} \neq 3, q_{5} \\
q_{5} \neq 3, q_{5} \neq 3, q_{5} \neq 3, q_{5} \\
q_{5} \neq 3, q_{5} \neq 3, q_{5} \neq 3, q_{5} \neq 3, q_{5} \\
q_{5} \neq 3, q_{5} \neq 3,$$

33/37 Autômatos Finitos Determinísticos **Exercícios Escritos**

Exercício e2.1: Para cada linguagem abaixo, todas sobre o alfabeto { 0, 1 }, defina formalmente o seu respectivo DFA, apresentando a tabela e o diagrama de transições:

b) $L = \{ w \mid w \text{ começa com } 1 \text{ e termina com } 0 \}$

A = (Q, E, 8	5,90,	F)
$Q = \langle$	90,91,	9 al	
£ _ 4	(0,1)		
F= 1	fay	. ~	
8:		Ø	
U.	-> Q0	Ø	9,
	91	92	9,
	v <i>O</i> .		

34/37 Autômatos Finitos Determinísticos Exercícios Escritos

Exercício e2.2: Para cada string abaixo, compute a função de transição estendida.

- 1100, usando o DFA do item a) do exercício e2.1.
- 1100, usando o DFA do item b) do exercício e2.1.
- 10001, usando o DFA do item c) do exercício e2.1.
- 11,010100, usando o DFA do item d) do exercício e2.1.
- /0101, usando o DFA do item e) do exercício e2.1.
- 11001, usando o DFA do item f) do exercício e2.1.
- 001, usando o DFA do item g) do exercício e2.1.
- 10101, usando o DFA do item h) do exercício e2.1.

35/37 Autômatos Finitos Determinísticos Exercícios de Implementação

Exercício i2.1: Em uma classe pública denominada DFA (arquivo DFA. java), que representa um autômato finito determinístico, implemente o método public boolean accepts (String string) throws IllegalStateException que, ao ser invocado, deve ser capaz de retornar true caso o argumento do parâmetro string represente uma string reconhecida pela linguagem do DFA, ou false caso contrário.

Observação: No projeto Aula02 do NetBeans, disponibilizado no material desta aula, há a implémentação parcial da classe requisita, chamada **DFAEsqueleto**, contida no arquivo DFÆsqueleto. java. Nessa implementação toda a infraestrutura já se encontra escrita, permitindo que essa estrutura de dados seja capaz de representar um autômato finito determinístico. No arquivo TestesDFA. java, que contém a classe TestesDFA, há a implementação do método main que usa a classe DFA para construir os dois DFAs de exemplo, apresentados nos slides, e para testar as strings apresentadas como pertencentes ou não às suas respectivas linguagens. Atenção: você não precisa modificar nada na classe, somente implementar o corpo do método accepts, e sua implementação deve ser capaz de resolver o problema de pertinência de uma string em uma linguagem, para qualquer DFA construído, sobre qualquer alfabeto possível.

36/37 Autômatos Finitos Determinísticos Exercícios de Implementação

Saídas caso o método accepts esteja implementado corretamente.

```
L = { x01y | x e y são quaisquer strings de 0's e 1's
A = \{ Q, \Sigma, \delta, q0, F \}
         11010 \in L(A)
         100011 \in L(A)
         ε ∉ L(A)
         0 ∉ L(A)
         111000 ∉ L(A)
```

```
L = \{ 0^i \ V \ 1^j \mid i > 0 \ e \ par \ e \ j > 0 \ e \ impar
A = \{ Q, \Sigma, \delta, q0, F \}
Q = \{ q0, q1, q2, q3, q4, q5 \}
\Sigma = \{ '0', '1' \}
->q0
Verificações:
         00 ∉ L(A)
         0000 ∉ L(A)
         0000000 ∉ L(A)
         1 ∉ L(A)
         111 ∉ L(A)
         11111 ∉ L(A)
         ε ∉ L(A)
         0 ∉ L(A)
         000 ∉ L(A)
         11 ∉ L(A)
         1111 ∉ L(A)
         0101 ∉ L(A)
         1010 ∉ L(A)
         11111a ∉ L(A)
```


Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

