8° Quiz – 5 - λεπτά

- Δύο πυκνωτές χωρητικότητας C_1 και C_2 είναι συνδεδεμένοι σε σειρά μεταξύ τους στα άκρα μιας μπαταρίας. Ενώ παραμένουν συνδεδεμένοι με την μπαταρία, ένα διηλεκτρικό υλικό εισάγεται ανάμεσα στους οπλισμούς του πυκνωτή C_1 . Τι θα συμβεί στο φορτίο του πυκνωτή C_2 ;
 - (A) Το φορτίο στον πυκνωτή C_2 παραμένει το ίδιο
 - (B) Το φορτίο στον πυκνωτή C_2 ελαττώνεται
 - ((Γ)) Το φορτίο στον πυκνωτή C_2 αυξάνει

Αρχικά το δυναμικό της συνδεσμολογίας είναι: $V_0 = Q_0/C_{o\lambda}$ (1)

όπου:
$$\frac{1}{C_{o\lambda}} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow \frac{1}{C_{o\lambda}} = \frac{C_1 + C_2}{C_1 C_2} \Rightarrow C_{o\lambda} = \frac{C_1 C_2}{C_1 + C_2}$$
 (2)

Όταν εισαχθεί το διηλεκτρικό υλικό στον C_1 η χωρητικότητά του αλλάζει: $C'_1 = \kappa C_1$

Η μπαταρία εξακολουθεί να παραμένει συνδεδεμένη και επομένως το δυναμικό στα άκρα της συνδεσμολογίας παραμένει V_0 ενώ το φορτίο γίνεται Q_0'

Το δυναμικό της συνδεσμολογίας των δύο πυκνωτών θα είναι: $V_0 = Q'_0/C'_{o\lambda}$ (3)

αλλά τώρα:
$$\frac{1}{C'_{o\lambda}} = \frac{\kappa C_1 + C_2}{\kappa C_1 C_2} \Rightarrow C'_{o\lambda} = \frac{\kappa C_1 C_2}{\kappa C_1 + C_2}$$
(4)

Από τις (1) και (3):
$$\frac{Q_0}{C_{o\lambda}} = \frac{{Q'}_0}{{C'}_{o\lambda}} \Rightarrow \frac{{Q'}_0}{Q_o} = \frac{{C'}_{o\lambda}}{C_{o\lambda}} \Rightarrow \frac{{Q'}_0}{Q_o} = \frac{\kappa C_1 C_2/(\kappa C_1 + C_2)}{C_1 C_2/(C_1 + C_2)} = \frac{\kappa (C_1 + C_2)}{\kappa C_1 + C_2} > 1$$