

Lesson G:
I. Exponential Coordinates of Rigid Motion (cont'd)
A. Exponential Map from se (3) to SE(3)
B. Surjectivity of exponential map onto SE(3)
II. Chasles' Theorem (if time permits)
I. Exponential Coordinates of Rigid Motion (cont'd)
· Last time we showed how the exponential of
a twist can represent pure rotation/translation
about some axis.
· Now want to show that any RBT E SE(3) can
be represented as the exponential of some
$+\omega$ ist $\hat{\xi} \in se(3)$.
i.e Exponentials of arbitrary tuists are in SE(3)
- Every g & SE(3) can be "generated" by
some $\xi \in \mathfrak{sc}(3)$.
A. Exponential Map France Sc(3) to SE(3)
Prop 2.8: Given twist $\hat{\xi} \in se(3)$ and $O \in \mathbb{R}$, the
matrix exp. of §0 is an element of SE(3)
main exp. of some element of section

Proof: (brute force)

(ase I (
$$\omega = 0$$
, translation)

$$\hat{\xi} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \hat{\xi}^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \hat{\xi}^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

exp($\hat{\xi} = 0$) = I + $\hat{\xi} = 0$ + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ 0 \(\frac{1}{2} \) = \(\begin{align*} \text{I \quad \text{V} \quad \text{Q} \\ \text{Q} & \text{I} \quad \text{Q} \\ \text{Q} & \text{I} \quad \text{Q} \\ \text{Q} & \text{Q} \\ \text{Q

use identity
$$\exp(\hat{\xi}\phi) = \exp(g \hat{\xi}'g^{-1}\phi)$$

stantisting = $g \exp(\hat{\xi}'\phi)g^{-1}$
 \Rightarrow It suffices to calculate $\exp(\hat{\xi}'\phi)$ then transform back.

• Step 1: Calculate $\exp(\hat{\xi}'\phi)$
 $\begin{cases} \hat{\xi}' = \hat{\xi}' \\ 0 \end{cases} \Rightarrow \exp(\hat{\xi}'\phi) = \hat{\xi}' \Rightarrow \exp(\hat{\xi}'\phi)$

• Step 2: Transform back

 $\exp(\hat{\xi}'\phi) = g \exp(\hat{\xi}'\phi)g^{-1}$

• Step 2: Transform back

 $\exp(\hat{\xi}\phi) = g \exp(\hat{\xi}'\phi)g^{-1}$
 $\exp(\hat{\xi}\phi) = g \exp(\hat{\xi}'\phi)g^{-1}$
 $\exp(\hat{\xi}\phi) = g \exp(\hat{\xi}'\phi)g^{-1}$

B. Surjectivity of the exp. map anto
$$SE(3)$$

Prop 29: Given $g \in SE(3)$, $\exists \hat{g} \in Se(3)$ and $O \in \mathbb{R}$
 $S.6. \ \bar{g} = \exp(\hat{g} \otimes)$.

Proof: (By construction)

• Let $g = (\mathbb{R}, p) \in SE(3)$ where $\mathbb{R} \in SC(3)$, $p \in \mathbb{R}^3$

• Ignore singular case $(\mathbb{I}, 0)$, solved by $O = 0$ and arbitrary \hat{g}

• Case 1: $\mathbb{R} = \mathbb{I}$ w/translation $(p \neq 0)$

Set $\hat{g} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix}$, where $V = \frac{P}{|P|}$ and $O = ||P||$

Then, $\exp(\hat{g}) = \begin{bmatrix} \mathbb{I} & vO \\ 0 & \mathbb{I} \end{bmatrix} = \begin{bmatrix} \mathbb{I} & P \\ 0 & \mathbb{I} \end{bmatrix} = \bar{g}$

• Case 2: $\mathbb{R} \neq \mathbb{I}$ (pure rotation or combination)

Find $\hat{g} = (v, \omega)$ by equating $e^{\hat{g}} = g$

	F	ivst	Ş	ماره	2	eĥ	6	= [·	ے ۔	=>	وان	tai	n	w,	0	by	
											, ,			_		1	y o4
											exp	V	مل)	UNIC	د ر	0(3)	<i>)</i>
	Fiv	mlly	S	ء ارد	2 .	fer	V	•									
		Let							\ \(\overline{\psi}\)	+	w	wT	0	, H	nen	Ą۷	/=P
														1			\
	-	=>	V	=	A	f.	>										
					1												
														0			
														ace		ha	v @
							1		-			(00)	SP				Ţ
7			Æ	c ID	3				0 .		C	O.	c S1	3(2)			
	ecal ow				•		exp							2(3) (3)			
												2					
• No	rte:	1 1								•				_			
		beco	χυς	e	exp): S	o(3)	→ >	SO(3)	was	> m	on	/- tc	-or	e.	