

ABSTRACT

This is the protocol to prepare Primer ID MiSeq sequencing library. Viral RNA was first extracted using QIAamp viral RNA extraction kit. The block of random nucleotides (Ns) in the cDNA primers served as the Primer ID. The Superscript III kit was used for the cDNA synthesis. We used two rounds of PCR to amplify the cDNA and incorporate Illumina indexed adapters with KAPA2G Robust and KAPA HiFi PCR kits, respectively.

amplicon
protocol_v1.6.docx

GUIDELINES

Viral RNA extraction using QIAamp vRNA mini kit.

Primers (NOTE: HIV-1 ENV REGION AS AN EXAMPLE, SUBSTITUTE THE BLUE Sequences in the forward primer and cDNA primer)

	GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNNTTATGGGATC
V1F(forward) 5'-3'	AAAGCCTAAAGCCATGTGTA
BV3R Uni (cDNA	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNCAGTCCATTT
Primer) 5'-3'	TGCTCTACTAATGTTACAATGTGC
	AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAGAGATGT
Universal Adapter	G
	CAAGCAGAAGACGGCATACGAGAT NNNNNNGTGACTGGAGTTCAGACGTGT
Indexed Adapter	GCTC
ADPT_2a	GTGACTGGAGTTCAGACGTGTGCTC

Note: Primer ID primer and forward primer use random bases. Indexed primers have 24 fixed barcodes.

Table of Indexed Primers

		Index	
Indexed Primer	Index	Sequence	Sequence
PCR Primer, Index 1	1	ATCACGA	CAAGCAGAAGACGCCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 2	2	CGATGTA	CAAGCAGAAGACGCCATACGAGAT <mark>ACATCG</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 3	3	TTAGGCA	CAAGCAGAAGACGGCATACGAGAT <mark>GCCTAA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 4	4	TGACCAA	CAAGCAGAAGACGGCATACGAGAT <mark>TGGTCA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 5	5	ACAGTGA	CAAGCAGAAGACGGCATACGAGAT <mark>CACTGT</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 6	6	GCCAATA	CAAGCAGAAGACGGCATACGAGAT ATTGGC GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 7	7	CAGATCA	${\tt CAAGCAGAAGACGGCATACGAGAT} {\tt GATCTG} {\tt GTGACTGGAGTTCAGACGTGTGCTC}$
PCR Primer, Index 8	8	ACTTGAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\bf TCAAGT}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}}$
PCR Primer, Index 9	9	GATCAGA	CAAGCAGAAGACGGCATACGAGAT <mark>CTGATC</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 10	10	TAGCTTA	CAAGCAGAAGACGGCATACGAGAT <mark>AAGCTA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 11	11	GGCTACA	CAAGCAGAAGACGCATACGAGAT <mark>GTAGCC</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 12	12	CTTGTAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{TACAAG}{GTGACTGGAGTTCAGACGTGTGCTC}}}$
PCR Primer, Index 13	13	TCCATAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\bf TATGGA}}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}$
PCR Primer, Index 14	14	GTACTAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\textbf{TAGTAC}}} GTGACTGGAGTTCAGACGTGTGCTC}$
PCR Primer, Index 15	15	ACAGTAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{T}ACTGT}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}$
PCR Primer, Index 16	16	CTCATGA	CAAGCAGAAGACGCATACGAGAT <mark>CATGAG</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 17	17	ACGATAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\bf TATCGT}}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}$
PCR Primer, Index 18	18	TGCAGAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\bf TCTGCA}}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}$
PCR Primer, Index 19	19	TTCATAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{\bf TATGAA}}{\tt GTGACTGGAGTTCAGACGTGTGCTC}}$
PCR Primer, Index 20	20	TGCTGTA	CAAGCAGAAGACGGCATACGAGAT <mark>ACAGCA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 21	21	TATCACA	CAAGCAGAAGACGGCATACGAGAT <mark>GTGATA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 22	22	TGGATAA	CAAGCAGAAGACGGCATACGAGAT <mark>TATCCA</mark> GTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 23	23	CGCATTA	CAAGCAGAAGACGGCATACGAGATAATGCGGTGACTGGAGTTCAGACGTGTGCTC
PCR Primer, Index 24	24	GCCTTAA	${\tt CAAGCAGAAGACGGCATACGAGAT{\color{red}{TAAGGC}} GTGACTGGAGTTCAGACGTGTGCTC}$

MATERIALS

NAME VENDOR VEND

NAME Y	CATALOG #	VENDOR ~
Agencourt RNAClean XP	A63987	Beckman Coulter
70% ethanol		
DNase-free water		
AmpureXP PCR cleanup kits	A63880	Beckman Coulter
QIAquick gel extraction kit	28704	Qiagen
Qubit dsDNA BR Assay kit	Q32850	Invitrogen - Thermo Fisher

Prepare Primer Mix (Optional, only for multiplexed Primer ID library prep)

1 For multiplexing sequencing, first, prepare Primer Mix. Example (For HIV drug resistance pipeline).

Regions	DR cDNA primer	DR F primer
PR	R2614_PID	F2163AD
RT	R3284_PID11	F2620_AD
IN	R4752_PID11	F4383_AD
V3	R7209_PID11	V1F_AD

Make 10 μ M primer mix: mix 10 μ L of each primer in one set and 60 μ L of dH₂O.

Primer Tables

primer	sequence (5'-3')
R2614_PID	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN
	NNNCAGTTTAACTTTTGGGCCATCCATTCC
R3284_PID11	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN
	NNNNNCAGTCACTATAGGCTGTACTGTCCATTTATC
R4752_PID11	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN
	NNNNNATCGAATACTGCCATTTGTACTGC
R7209_PID11	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN
	NNNNNCAGTCCATTTTGCTYTAYTRABVTTACAATRTGC
F2163AD	GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNN
	NTCAGAGCAGACCAACAGCCCCA
F2620_AD	GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNN
	NGGCCATTGACAGAAGAAAAATAAAAGC
F4383_AD	GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNN
	NAAAAGGAGAAGCCATGCATG
V1F_AD	GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNN
	NTTATGGGATCAAAGCCTAAAGCCATGTGTA

[&]quot;N" in this Primer table is a random nucleotide.

P1	AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCG CCATCAGAGATGTG
Indexed Adapter	CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGA
	GTTCAGACGTGTGCTC
ADPT_2a	GTGACTGGAGTTCAGACGTGTGCTC

The 6 "N"s are not random nucleotides. They are a set of 24 pre-designed indexed sequences.

Mix well.

cDNA synthesis

3 Pipette the following components into a 0.5 ml RNase-free tube:

μl/tube		[stock]	[final]	[mastermix]
2.0	dNTP Mix	10 mM each	0.5	
1.0	cDNA primer	10 μΜ	0.25 μΜ	
23.0*	RNA template			
26.00	Total volume			

^{*} The input volume of vRNA depends on the viral loads. We recommend 1,000 to 20,000 copies, but it can work with samples as little as 200 copies. If copy number unknown, use the maximum volume of 23 ul.

■2 µl dNTPMix

■1 µl cDNA primer

■23 µl RNA template

4 Place tube in 65°C heat block for 3-5'.

© 00:05:00 65°C heat block

5 Place the tube on ice for 1'.

© 00:01:00 on ice

6 Add the following components:

μl/tube		[stock]	[final]	[mastermix]
8.0	5x buffer	5x	1x	
2.0	DTT	100 mM	5	
2.0	RNaseOUT	40 u/μl	2	
2.0	SSIII RT	200 u/μl	10	
14.0	Per tube			

■8 µl 5x buffer

■2 μl DTT

■2 µl RNaseOUT

■2 µl SSII RT

7 Mix and incubate at 50°C for 1 hr.

© 01:00:00 Incubation at 50°C

R Increase to 55°C and incubate for 1 hr.

© 01:00:00 Incubation at 55°C

9 Inactivate SSIII RT by heating at 70°C for 15'.

© 00:15:00 Heating at 70°C

10 To each tube, add 1 μl RNase H, incubate at 37°C for 20'.

■0.5 µl RNase H

© 00:20:00 Incubation at 37°C

Purification

11 Purify cDNA using Agencourt RNAClean XP.

Resuspend the beads and take an aliquot out. Keep at room temperature for at least 30 minutes before use. (Should be in 1ml aliquots)

© 00:30:00 Room temperature

- 17 Transfer the cDNA reactions into 1.7 mL RNase-free tubes.
- 13 Resuspend the beads (Vortex). Add 28 µl of beads to 40 µl cDNA Agencourt RNAClean XP beads to each cDNA reaction.

28 µl beads

⊒40 µl cDNA

14 Mix the Agencourt RNAClean XP and sample thoroughly by pipette mixing 15 times. No vortexing. Let the tube incubate at room temperature for 20 minutes before proceeding to the next step.

७00:20:00 Room temperature

- Place the tube onto the magnetic tube rack for **5 minutes** to separate the beads from solution.
 - © 00:05:00 Magnetic tube rack
- 16 Slowly aspirate the cleared solution from the tube and discard. This step should be performed while the tube is situated on the rack. Do not disturb the magnetic beads, which have formed a spot on the side of the tube.
- 17 Dispense 400 μL of 70% ethanol into the tube and incubate for **30 seconds** at room temperature. Aspirate out the ethanol and discard. (1/3)

It is important to perform this step with the tube situated **on the rack**. **Do not disturb the separated magnetic beads**. Be sure to remove all of the ethanol from the bottom of the well as it may contain residual contaminants.

18 Dispense 400 μL of 70% ethanol into the tube and incubate for **30 seconds** at room temperature. Aspirate out the ethanol and discard. (2/3)

It is important to perform this step with the tube situated **on the rack**. **Do not disturb the separated magnetic beads**. Be sure to remove all of the ethanol from the bottom of the well as it may contain residual contaminants.

© 00:00:30 Incubation at room temperature

Let the reaction tube air-dry **10 minutes** on the rack with the cap open. The tube(s) should air-dry until the last visible traces of ethanol evaporate. Over drying the sample may result in a lower recovery.

© 00:10:00 Air-drying

20 Remove the tube from the rack and resuspend beads in 40 µl DNase-free water by pipetting up and down, Place tube back on the rack and leave for 3 minutes.

⊒40 µl DNase-free water

© 00:03:00 Magnetic rack

- Pipette the eluant from the tube while it is situated **on the magnetic tube rack**. Transfer the eluant into the tube with 28 μl of RNAcleanup XP beads.
- Remove the tube from the rack and resuspend beads in 24 µl DNase-free water by pipetting up and down. Place tube back on the rack and leave for **3 minutes**.

■24 µl DNase-free water

© 00:03:00 Magnetic rack

23 Pipette the eluant from the tube while it is situated on the magnetic tube rack.

PCR 1

24 Complete thaw and vortex KAPA reagents (except for enzyme) before use.

25

μl/tube		[stock]	[final]	[mastermix]
10.0	5x Buffer A	5x	1x	
10.0	Enhancer	5x	1x	
1.0	dNTPs	10 mM	0.2 mM	
2.5	Forward primer	10 μΜ	0.5 μΜ	
2.5	ADPT_2a	10 μΜ	0.5 μΜ	
0.5	KAPA Robust polymerase	5 U/μΙ	2.5 U	
23.5	Template cDNA			

Prepare mastermix in cold box and use repeater pipette to add to each tube in the cold box. Add template cDNA to each tube and pipette up and down to mix.

■10 µl 5x Buffer A

■10 µl Enhancer

■1 µl dNTPs

■2.5 µl Forward primer

■2.5 µl ADPT_2a

■0.5 µl KAPA Robust polymerase

■23.5 µl Template cDNA

26 Cycle

95°C	1 min
95°C	15 s
58°C	1 min
72°C	30 s
15-25 cycles	
72°C	3 min
4°C	On hold

- 27 Purify PCR products using AmpureXP PCR cleanup kits.
 - Vortex the 1 ml aliquot and remove the needed volume. Keep at room temperature for at least 30 minutes before use.
 - © 00:30:00 Room temperature
- 28 Transfer the PCR1 reactions into 1.7 mL RNase-free tubes.
- 29 Resuspend the beads. Add 40 μl (Ratio: 0.6 0.8: 1, 36μl 48μl) Ampure XP beads to each cDNA reaction.
 - ■40 µl Ampure XP beads
- 30 Mix the Ampure XP and sample thoroughly by vortexing. Let the tube incubate at room temperature for 5 minutes before proceeding to the next step (incube off the rack).
 - © 00:05:00 Incubation at room temperature
- 31 Place the tube onto the magnetic tube rack for 5 minutes to separate the beads from solution.
 - **७** 00:05:00 Incubation magnetic rack
- 32 Slowly aspirate the cleared solution from the tube and discard. This step should be performed while the tube is situated on the rack. Do not disturb the magnetic beads, which have formed a spot on the side of the tube.
- 33 Dispense 500 μL of 70% ethanol into the tube and incubate for **30 seconds** at room temperature. Aspirate out the ethanol and discard. (1/2)
 - ß

It is important to perform this step with the tube situated **on the rack**. **Do not disturb the separated magnetic beads**. Be sure to remove all of the ethanol from the bottom of the well as it may contain residual contaminants.

- **■500 μl 70% ethanol**
- © 00:00:30 Incubation at room temperature
- Dispense 500 μL of 70% ethanol into the tube and incubate for **30 seconds** at room temperature. Aspirate out the ethanol and discard. (2/2)

It is important to perform this step with the tube situated **on the rack**. **Do not disturb the separated magnetic beads**. Be sure to remove all of the ethanol from the bottom of the well as it may contain residual contaminants.

- **■500 μl 70% ethanol**
- © 00:00:30 Incubation at room temperature
- Let the reaction tube air-dry **10 minutes** on the rack with the cap open. The tube(s) should air-dry until the last visible traces of ethanol evaporate. Over drying the sample may result in a lower recovery.
 - **© 00:10:00** Air-drying

- Remove the tube from the rack and resuspend beads in 50 µl DNase-free water by pipetting up and down. Place tube back on the rack and leave for 3 minutes.
 - **□50** µl DNase-free water
 - © 00:03:00 Magnetic rack
- 37 Pipette the $45 \,\mu$ l eluant from the tube while it is situated on the magnetic tube rack.

PCR 2

 ${\it 38} \quad \hbox{\it Complete thaw and vortex KAPA reagents (except for enzyme) before use.}$

39

μl/tube		[stock]	[final]	[mastermix]
5.0	5x KAPA HiFi Fidelity Buffer	5x	1x	
1.0	dNTP Mix	10 mM	0.4 mM	
1.0	Uni Adapter (ADPT_P1)	10 μΜ	0.4 μΜ	
0.5	KAPA HiFI polymerase	1 U/µl	0.5 U	
1.0	Indexed Adapter	10 μΜ	0.4 μΜ	
2.0	Purified template DNA			
14.5	Water			

Prepare mastermix in cold box and use repeater pipette to add to each tube in the cold box. Add Indexed Adapter to each tube.

- **■5** μl 5x KAPA HiFi Fidelity Buffer
- ■1 µl dNTP Mix
- □1 µl Uni Adapter (ADPT_P1)
- ■0.5 µl KAPA HiFI polymerase
- □1 µl Indexed Adapter
- ■2 µl Purified template DNA
- ■14.5 µl Water
- 40 Cycle (PCR machine #5 SZ -> ILM2):

95°C	2 min
98°C	20 s
63°C	15 s
72°C	30 s
25 - 35 cycles	
72°C	3 min
4°C	On hold

Gel Purification and quantification

41 Before gel purification, run 2 μ l products on 1% agarose gel to check the bands.

Gel purification. (Qiagen QIAquick gel extraction kit) 42 Run 2nd round PCR products on 1.2% agarose gel. E = 4 V/cm, T = 60 min. 43 Excise DNA fragment. 44 Weight the gel; add 3 volume of Buffer QG to 1 volume of gel. Incubate at 50 °C for 10 minutes to completing dissolve. Vortex every 2-3 minutes to help dissolve. 45 © 00:10:00 Incubation at 50 °C **© 00:02:30 Vortex** Check the color of gel solution (should be yellow, otherwise add 10 µl 3M sodium acetate). 46 Place **MinElute** column, apply the sample to the column and centrifuge for **1 minute**. 47 © 00:01:00 Centrifugation Add 500 µl buffer QG and centrifuge for 1 minute. 48 **■500** μl Buffer QG © 00:01:00 Centrifugation Add 0.75 ml buffer PE, incubate for 5 minutes at room temperature, centrifuge for 1 minute. 49 © 00:05:00 Incubation at room temperature **७** 00:01:00 Centrifugation Discard the fluid, centrifuge for additional 3 minutes. 50 © 00:03:00 Centrifugation Put the column in a new 1.7 ml tube, add 10 µl buffer EB. Stand for 4 minutes, centrifuge for 2 minutes. 51 Quantification using Invitrogen Qubit dsDNA BR Assay kit. See Qubit dsDNA BR assay protocol. Don't use Nanodrop to quantify! 52 After quantification, pool libraries in equal amount. Use AMPure XP beads to purify pooled libraries (2:3, two washes), elute in 20 to 30 µL 53 Elution Buffer. Quantify the pooled library using Qubit dsDNA BR assay kit. Check the quality of the library by Agilent Bioanalyzer or Bio-rad Experion. Repeat 54

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

purification if primer dimmer is present (~200bp).