

x Ilma Aliya Fiddien

## Mathematics in Deep Learning

**Backward Pass** 

in Feedforward Neural Network



#### Learning Objective

Understand the essential mathematical concepts to gain a deeper understanding of the underlying algorithm of artificial neural networks (ANN)

#### Outline



Revise: Forward Pass

Weights & biases Tensor operations



Overview: **Backward Pass** 



Differential Calculus

Derivative | Partial Derivatives Gradient | Jacobian Chain Rule Extreme Points



Cost Function

Loss Function Error Function



Gradient Descent

& Stochastic Gradient Descent



Backward Pass



# Revise: Forward Pass

Weights & biases
Tensor operations

#### Forward Pass $\rightarrow$



#### **Tensor Operations**



$$a_1(X^{(n)} \cdot W_1 + b_1) = A_1$$

$$\dim(X^{(4)}) = \dim(W_1) = \dim(b_1) =$$
(1,3) (3,2) (1,2)







$$\mathcal{F}_1$$



$$a_2(A_1 \cdot W_2 + b_2) = A_2 = \hat{y}^{(n)}$$

$$dim(A_1) = dim(W_2) = dim(b_2) =$$
(1,2) (2,1) (1,1)

















# Overview: Backward Pass

#### Backward Pass ←



#### Backward Pass ←



#### Gradient Descent

Parameter Update

$$b_{2} \leftarrow b_{2} - \alpha \frac{\partial}{\partial b_{2}} Cost(\hat{y}, y)$$

$$W_{2} \leftarrow W_{2} - \alpha \frac{\partial}{\partial W_{2}} Cost(\hat{y}, y)$$

$$b_{1} \leftarrow b_{1} - \alpha \frac{\partial}{\partial b_{1}} Cost(\hat{y}, y)$$

$$W_{1} \leftarrow W_{1} - \alpha \frac{\partial}{\partial W_{1}} Cost(\hat{y}, y)$$





## Differential Calculus

Derivative | Partial Derivatives

Gradient | Jacobian

Chain Rule

**Extreme Points** 

#### Turunan (derivative)

Definisi turunan dari f:

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



#### Contoh 1

$$f(x) = x^2 + 2x^4 + 3$$

Turunan orde 1:

$$\frac{df}{dx} = 2x^{2-1} + 8x^{4-1} + 0 = 2x + 8x^3$$

Turunan f di x = 2

$$\frac{d}{dx}f(3) = 2(2) + 8(2)^3 = 68$$

Turunan orde 2:

$$\frac{d^2f}{dx^2} = 2 + 24x^2$$

#### Turunan parsial (partial derivative)



Slope of the surface in the x-direction



Slope of the surface in the y-direction

Calcworkshop.com

#### Contoh 2

$$f(x,y) = x^2 + 3y^4$$

Turunan parsial orde 1: 
$$\frac{\partial f}{\partial x} = 2x \qquad \frac{\partial f}{\partial y} = 12y^3$$

Turunan parsial f terhadap x di (3,1):  $\frac{\partial}{\partial x} f(3,1) = 2(3) = 6$ 

$$\frac{\partial}{\partial x}f(3,1) = 2(3) = 6$$

Turunan parsial f terhadap y di (3, 1):

$$\frac{\partial}{\partial y}f(3,1) = 12(1)^3 = 12$$

Turunan parsial orde 2:  $\frac{\partial^2 f}{\partial x^2} = 2 \qquad \frac{\partial^2 f}{\partial y^2} = 36y^2$ 

$$\frac{f}{2} = 2 \qquad \frac{\partial^2 f}{\partial y^2} = 36y$$

#### Gradient suatu fungsi

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$
$$\nabla f \colon \mathbb{R}^2 \to \mathbb{R}^2$$



$$g: \mathbb{R}^m \to \mathbb{R}$$

$$\nabla g: \mathbb{R}^m \to \mathbb{R}^m$$

Gradient:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Penulisan lain:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath}$$

Gradient:

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x_1} \\ \vdots \\ \frac{\partial g}{\partial x_m} \end{bmatrix}$$

#### Gradient suatu fungsi di suatu titik

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$
$$\nabla f \colon \mathbb{R}^2 \to \mathbb{R}^2$$



$$g: \mathbb{R}^m \to \mathbb{R}$$

$$7g: \mathbb{R}^m \to \mathbb{R}^m$$

Gradient f di titik (x, y):

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{bmatrix}$$

Gradient f di titik p:

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x_1} \\ \vdots \\ \frac{\partial g}{\partial x_m} \end{bmatrix}$$

dengan

$$p = (x_1, \dots, x_m)$$

#### Contoh 3

Gradient  $f(x, y) = x^2 + 3y^4$  di titik (1,2):

$$\nabla f(1,2)$$
= 2(1)î + 12(2)<sup>3</sup>ĵ
$$= \begin{bmatrix} 2(1) \\ 12(2)^{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 96 \end{bmatrix}$$

#### Jacobian suatu fungsi

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$7f \colon \mathbb{R}^2 \to \mathbb{R}^{2 \times 2}$$



$$g: \mathbb{R}^m \to \mathbb{R}^n$$

$$\nabla g: \mathbb{R}^m \to \mathbb{R}^{m \times n}$$

**Gradient:** 

$$\nabla f = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1 & \frac{\partial}{\partial x_1} f_2 \\ \frac{\partial}{\partial x_2} f_1 & \frac{\partial}{\partial x_2} f_2 \end{bmatrix}$$

**Gradient:** 

$$\nabla g = \begin{bmatrix} \frac{\partial}{\partial x_1} g_1 & \cdots & \frac{\partial}{\partial x_1} g_n \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_m} g_1 & \cdots & \frac{\partial}{\partial x_m} g_n \end{bmatrix}$$

#### Jacobian suatu fungsi di suatu titik

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$\nabla f \colon \mathbb{R}^2 \to \mathbb{R}^{2 \times 2}$$



$$g: \mathbb{R}^m \to \mathbb{R}^n$$

$$\nabla g: \mathbb{R}^m \to \mathbb{R}^{m \times n}$$

**Gradient:** 

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(x,y) & \frac{\partial}{\partial x_1} f_2(x,y) \\ \frac{\partial}{\partial x_2} f_1(x,y) & \frac{\partial}{\partial x_2} f_2(x,y) \end{bmatrix}$$

**Gradient:** 

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(x,y) & \frac{\partial}{\partial x_1} f_2(x,y) \\ \frac{\partial}{\partial x_2} f_1(x,y) & \frac{\partial}{\partial x_2} f_2(x,y) \end{bmatrix} \qquad \nabla g(p) = \begin{bmatrix} \frac{\partial}{\partial x_1} g_1(p) & \cdots & \frac{\partial}{\partial x_1} g_n(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_m} g_1(p) & \cdots & \frac{\partial}{\partial x_m} g_n(p) \end{bmatrix}$$

dengan

$$p = (x_1, \dots, x_m)$$

#### Komposisi fungsi

$$g(a,b) = a + 2b$$

$$f(x) = x^3$$

Komposisi fungsi g lalu f:



$$\frac{\partial f}{\partial a} = ? \qquad \qquad \frac{\partial f}{\partial b} = ?$$

#### Aturan rantai (chain rule)

Turunan parsial f terhadap a:

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial x} \frac{dx}{\partial a} = \frac{\partial^2 f}{\partial x \partial a}$$
$$= 3x^2(1) = 3x^2$$



Turunan parsial f terhadap b:

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial x} \frac{dx}{\partial b} = \frac{\partial^2 f}{\partial x \partial b}$$
$$= 3x^2(2) = 6x^2$$

$$x = g(a,b) = a + 2b$$
  $f(x) = x^3$  
$$\frac{\partial x}{\partial a} = 1 \quad \frac{\partial x}{\partial b} = 2$$
 
$$\frac{\partial f}{\partial x} = \frac{df}{dx} = 3x^2$$

#### Extreme points





### Cost Function

Loss Function
Error Function

#### Cost Function vs Evaluation Metrics

#### **Cost Function**

- Mengevaluasi model ketika proses
   "belajar"
- Digunakan untuk mempelajari
   hubungan antara input dan output

#### **Evaluation Metrics**

- Mengevaluasi model di luar proses
   "belajar"
- Digunakan untuk mengevaluasi seberapa baik hubungan antara input dan output yang telah dipelajari

#### Karakteristik Umum Cost Function

- Mengevaluasi model **ketika** proses "belajar"
  - v.s. evaluation metrics: mengevaluasi model di luar proses "belajar"
- Digunakan untuk mempelajari hubungan antara input dan output
  - Hanya melibatkan variabel y dan  $\hat{y}$
- Fungsi yang kontinu secara global\* dan turunannya terdefinisikan

#### Beberapa Contoh Cost Function

- Mean Absolute Error (MAE) atau L1 Loss
- Mean Squared Error (MSE) atau L2 Loss
- Root Mean Squared Error (RMSE)
- Binary Cross-Entropy Loss

#### "Error"

Selisih antara output asli dan output prediksi

$$error = \hat{y} - y$$

Mean Error

$$ME(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y)$$





#### Mean Squared Error (MSE)

- Error negatif dan error positif tidak saling menghabiskan
- Memberikan penalti yang lebih besar untuk data outlier

$$MSE(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

| у   | ŷ   | E    | SE     |  |
|-----|-----|------|--------|--|
| 1   | 0.8 | -0.2 | 0.04   |  |
| 1   | 0.9 | -0.1 | 0.01   |  |
| 1   | 1.1 | 0.1  | 0.01   |  |
| 1   | 1.3 | 0.3  | 0.09   |  |
| MSE |     |      | 0.0375 |  |



#### Cost function surface



Permukaan dengan banyak perubahan kontur (cenderung tidak stabil)

Permukaan dengan sedikit perubahan kontur (lebih stabil)

#### Root Mean Squared Error (RMSE)

- Error negatif dan error positif tidak saling menghabiskan
- Memberikan penalti yang sedikit lebih besar untuk data outlier
- Mengembalikan satuan error ke satuan asli data

| $DMCE( \triangle)$    | $1\sum_{(i)}^{N} (i) \hat{S}(i) \hat{S}(i)$              |
|-----------------------|----------------------------------------------------------|
| $RMSE(y, \dot{y}) = $ | $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$ |

| y    | ŷ   | E    | SE     |
|------|-----|------|--------|
| 1    | 0.8 | -0.2 | 0.04   |
| 1    | 0.9 | -0.1 | 0.01   |
| 1    | 1.1 | 0.1  | 0.01   |
| 1    | 1.3 | 0.09 |        |
| RMSE |     |      | 0.1936 |



#### Mean Absolute Error (MAE)

- Error negatif dan error positif tidak saling menghabiskan
- Tidak memberlakukan penalti yang berbeda pada error yang kecil maupun error yang besar

| $MAE(y, \hat{y})$ | $= \frac{1}{N} \sum_{i=1}^{N}  y^{(i)} - \hat{y}^{(i)} $ | ) |
|-------------------|----------------------------------------------------------|---|
|                   | $\overline{i=1}$                                         |   |

| y   | ŷ   | E    | AE  |  |
|-----|-----|------|-----|--|
| 1   | 0.8 | -0.2 | 0.2 |  |
| 1   | 0.9 | -0.1 | 0.1 |  |
| 1   | 1.1 | 0.1  | 0.1 |  |
| 1   | 1.3 | 0.3  |     |  |
| MAE |     |      | 0.1 |  |



#### Negative Log Likelihood/ Binary Cross Entropy (BCE)

$$BCE(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

 Negatif rata-rata dari log peluangdiperbaiki sebuah data

| у | ŷ   | $\hat{y}_{corrected}$ | $log(\widehat{y})$ | $ylog(\hat{y})$ | $(1-y)log(\hat{y}_{corrected})$ |  |
|---|-----|-----------------------|--------------------|-----------------|---------------------------------|--|
| 1 | 0.8 | 0.8                   | -0.223             | -0.223          |                                 |  |
| 1 | 0.9 | 0.9                   | -0.105             | -0.105          |                                 |  |
| 0 | 0.1 | 0.9                   | -2.303             |                 | -0.105                          |  |
| 0 | 0.3 | 0.7                   | -1.204             |                 | -0.357                          |  |
|   | BCE |                       |                    | 0.1976          |                                 |  |





### Gradient Descent

& Stochastic Gradient Descent

#### Gradient Descent

- Algoritma optimisasi conveks iteratif berorde satu
- Bertujuan untuk mencari
   minimum lokal dari suatu fungsi
   terdiferensiasi
   (cost function)



#### **Cost Function Optimisation**

• Tujuan latihan: Meminimalkan cost

$$\min J(W) \sim \min_{W} Cost(\hat{y}, y)$$

$$W =$$
weights & biases

- Pilih W sedemikian sehingga  $Cost(\hat{y}, y)$  minimum
  - Nilai  $\hat{y}$  semakin mendekati y



## Learning algorithm: Gradient Descent



Perbaruan parameter:  $W := W - \alpha \nabla J(W)$ 

## Learning rate $\alpha$

- $\alpha > 0$
- Mengatur seberapa besar porsi dari gradient  $\nabla J(W)$  yang diambil untuk mengubah parameter W (yang akan digunakan di iterasi latihan selanjutnya)
- Mengatur seberapa cepat model harus berlatih
- Mengatur seberapa sensitif respon parameter model terhadap data yang baru saja ia lihat

Cost function:



Gradient cost function:

## $\nabla J(W)$



 $\alpha$ : learning rate

 $0 \le \alpha \le 1$ 

 $\alpha \nabla J(W)$ 



 $\alpha$ : learning rate

 $0 \le \alpha \le 1$ 

 $\alpha \nabla J(W)$ 



## $W \coloneqq W - \alpha \nabla J(W)$



### Gradient Search

Model: y = mx + b





# Backward Pass

Contoh: Masalah XOR

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 0     | 0     | 0 |
| 1     | 0     | 1 |
| 0     | 1     | 1 |
| 1     | 1     | 0 |



Selesaikan dengan NN:

(notebook di akhir slide)



## Forward pass

#### Input features

•  $A_0 = X$ 

#### Layer 1

- $\bullet \ \ Z_1 = A_0 \cdot W_1 + b_1$
- $A_1 = \sigma_1(Z_1)$

#### Layer 2 - Output

- $Z_2 = A_1 \cdot W_2 + b_2$
- $A_2 = \sigma_2(Z_2) = \hat{y}$

#### **Cost Function**

•  $J(W) = MSE(y, \hat{y})$ 



## Forward pass: XOR problem

#### Input

•  $A_0 = X$ 

#### Layer 1

$$\bullet \ Z_1 = A_0 \cdot W_1 + b_1$$

• 
$$A_1 = \sigma(Z_1)$$

Layer 2 - Output

$$\bullet Z_2 = A_1 \cdot W_2 + b_2$$

$$\bullet \ A_2 = \sigma(Z_2)$$

#### **Cost Function**

•  $C = MSE(y, A_2)$ 



#### Turunan fungsi yang relevan:

$$\sigma(z) = sigmoid(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d\sigma(z)}{dz} = (1 - \sigma(z))\sigma(z)$$

$$MSE(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y)^2$$

$$\frac{dMSE(y,\hat{y})}{d\hat{y}} = \frac{2}{N} \sum_{i=1}^{N} (\hat{y} - y)$$

## Computational Graph

#### Input

$$\bullet A_0 = X$$

Layer 1

$$\bullet Z_1 = A_0 \cdot W_1 + b_1$$

• 
$$A_1 = \sigma(Z_1)$$

Layer 2 - Output

$$\bullet Z_2 = A_1 \cdot W_2 + b_2$$

$$\bullet \ A_2 = \sigma(Z_2)$$

**Cost Function** 

• 
$$C = MSE(y, A_2)$$



## Computational Graph

#### Input

• 
$$A_0 = X$$

Layer 1

$$\bullet Z_1 = A_0 \cdot W_1 + b_1$$

• 
$$A_1 = \sigma(Z_1)$$

Layer 2 - Output

$$\bullet Z_2 = A_1 \cdot W_2 + b_2$$

$$\bullet \ A_2 = \sigma(Z_2)$$

**Cost Function** 

• 
$$C = MSE(y, A_2)$$



#### **Forward Pass**

#### Input

$$\bullet A_0 = X$$

Layer 1

$$\bullet Z_1 = A_0 \cdot W_1 + b_1$$

• 
$$A_1 = \sigma(Z_1)$$

Layer 2 - Output

$$\bullet Z_2 = A_1 \cdot W_2 + b_2$$

• 
$$A_2 = \sigma(Z_2)$$

**Cost Function** 

• 
$$C = MSE(y, A_2)$$

#### Turunan/Turunan Parsial

• 
$$\frac{\partial Z_1}{\partial W_1} = A_0$$
  $\frac{\partial Z_1}{\partial b_1} = 1$ 

$$\bullet \ \frac{dA_1}{dZ_1} = \sigma'(Z_2)$$

• 
$$\frac{\partial Z_2}{\partial A_1} = W_2$$
  $\frac{\partial Z_2}{\partial W_2} = A_1$   $\frac{\partial Z_2}{\partial b_2} = 1$ 

$$\bullet \frac{dA_2}{dZ_2} = \sigma'(Z_2) = (1 - \sigma(Z_2))\sigma(Z_2)$$

$$\bullet \frac{dC(W)}{dA_2} = \frac{2}{N} \sum (A_2 - y)$$



#### **Backward Pass**

#### Layer 2

$$\bullet \ \frac{dC}{dA_2} = \frac{2}{N} \sum (A_2 - y)$$

#### Layer 1

$$\frac{dC}{dA_1} = \frac{dC}{dZ_2} \frac{\partial Z_2}{\partial A_1} = \frac{dC}{dA_2} \frac{\partial A_2}{\partial A_2} \frac{\partial Z_2}{\partial A_1}$$

$$\frac{dC}{dZ_1} = \frac{dC}{dA_1} \frac{dA_1}{dZ_1} = \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{dZ_2}{dA_1} \frac{dA_1}{dZ_1} \qquad \frac{dC(W)}{dA_2} = \frac{2}{N} \sum (A_2 - y)$$

#### Perubahan Parameter

• 
$$\frac{\partial C}{\partial W_2} = \frac{dC}{dZ_2} \frac{\partial Z_2}{\partial W_2}$$
  $\frac{\partial C}{\partial b_1} = \frac{dC}{dZ_2} \frac{\partial Z_2}{\partial b_2}$ 

• 
$$\frac{\partial C}{\partial W_1} = \frac{dC}{dZ_1} \frac{\partial Z_1}{\partial W_1}$$
  $\frac{\partial C}{\partial b_1} = \frac{dC}{dZ_1} \frac{\partial Z_1}{\partial b_1}$ 

#### Turunan/Turunan Parsial

• 
$$\frac{\partial Z_1}{\partial W_1} = A_0$$
  $\frac{\partial Z_1}{\partial b_1} = 1$ 

$$\bullet \ \frac{dA_1}{dZ_1} = \sigma'(Z_2)$$

• 
$$\frac{\partial Z_2}{\partial A_1} = W_2$$
  $\frac{\partial Z_2}{\partial W_2} = A_1$   $\frac{\partial Z_2}{\partial b_2} = 1$ 

• 
$$\frac{dC}{dA_1} = \frac{dC}{dZ_2} \frac{\partial Z_2}{\partial A_1} = \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial A_1}$$
 •  $\frac{dA_2}{dZ_2} = \sigma'(Z_2) = (1 - \sigma(Z_2))\sigma(Z_2)$ 



• 
$$W_2 := W_1 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left( \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial W_2} \right)$$

• 
$$b_2 := b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left( \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial b_2} \right)$$

• 
$$W_1 := W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left( \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial W_1} \right)$$

• 
$$b_1 \coloneqq b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left( \frac{dC}{dA_2} \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial b_1} \right)$$



• 
$$W_2 := W_1 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial W_2}\right)$$

• 
$$b_2 \coloneqq b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial b_2}\right)$$

• 
$$W_1 \coloneqq W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left(\frac{2}{N}\sum (A_2 - y) \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial W_1}\right)$$

• 
$$b_1 \coloneqq b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \frac{dA_2}{dZ_2} \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial b_1}\right)$$

• 
$$W_2 := W_1 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \frac{\partial Z_2}{\partial W_2}\right)$$

• 
$$b_2 \coloneqq b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \frac{\partial Z_2}{\partial b_2}\right)$$

• 
$$W_1 \coloneqq W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left(\frac{2}{N}\sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial W_1}\right)$$

• 
$$b_1 \coloneqq b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \frac{\partial Z_2}{\partial A_1} \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial b_1}\right)$$

• 
$$W_2 \coloneqq W_1 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) A_1\right)$$

• 
$$b_2 \coloneqq b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \mathbf{1}\right)$$

• 
$$W_1 := W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left(\frac{2}{N}\sum (A_2 - y)\left(1 - \sigma(Z_2)\right)\sigma(Z_2)W_2\frac{dA_1}{dZ_1}\frac{\partial Z_1}{\partial W_1}\right)$$

• 
$$b_1 \coloneqq b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) W_2 \frac{dA_1}{dZ_1} \frac{\partial Z_1}{\partial b_1}\right)$$

• 
$$W_2 := W_1 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) A_1\right)$$

• 
$$b_2 \coloneqq b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) 1\right)$$

• 
$$W_1 \coloneqq W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left(\frac{2}{N}\sum (A_2 - y)\left(1 - \sigma(Z_2)\right)\sigma(Z_2)W_2\left(1 - \sigma(Z_1)\right)\sigma(Z_1)\frac{\partial Z_1}{\partial W_1}\right)$$

• 
$$b_1 \coloneqq b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left(\frac{2}{N}\sum (A_2 - y)\left(1 - \sigma(Z_2)\right)\sigma(Z_2)W_2\left(1 - \sigma(Z_1)\right)\sigma(Z_1)\frac{\partial Z_1}{\partial b_1}\right)$$

• 
$$W_2 := W_2 - \alpha \frac{dC}{dW_2} = W_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) A_1\right)$$

• 
$$b_2 \coloneqq b_2 - \alpha \frac{dC}{db_2} = b_2 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) \mathbf{1}\right)$$

• 
$$W_1 := W_1 - \alpha \frac{dC}{dW_1} = W_1 - \alpha \left(\frac{2}{N} \sum (A_2 - y) \left(1 - \sigma(Z_2)\right) \sigma(Z_2) W_2 \left(1 - \sigma(Z_1)\right) \sigma(Z_1) A_0\right)$$

• 
$$b_1 := b_1 - \alpha \frac{dC}{db_1} = b_1 - \alpha \left( \frac{2}{N} \sum (A_2 - y) \left( 1 - \sigma(Z_2) \right) \sigma(Z_2) W_2 \left( 1 - \sigma(Z_1) \right) \sigma(Z_1) 1 \right)$$

## Contoh aplikasi: Masalah XOR



#### Google Colaboratory:

https://drive.google.com/file/d/1BWyxq Hm7K1lb85qavxR2SPs623cXo96/view?usp=sharing

## Futher learning...

• Deep Learning Book (Goodfellow et. al., 2016)

https://www.deeplearningbook.org/

• Dive into Deep Learning:

Appendix: Mathematics for Deep Learning

https://www.d2l.ai/chapter\_appendix-mathematics-for-deep-learning/index.html



## Thank you!

Find me on

LinkedIn: <a href="mailto:linkedin.com/in/fiddien">linkedIn</a>: <a href="mailto:linkedin.com/in/fiddien">linkedin.com/in/fiddien</a>

Website: fiddien.com