3D Object Representation

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Intended Learning Outcomes

- Understand the concept of standard graphics object
- Able to mathematically manipulate and program in OpenGL two types of planar representation: tables and mesh Assignment Project Exam Help
- Distinguish the concepts of parametric and nonparametric equations and white advantage of using the former in computer graphics Add WeChat powcoder
- Able to mathematically manipulate and program in OpenGL quadrics and super-quadrics

Standard Graphics Object

standard graphics object = a set of (planar) polygons

Assignment Project Exam Help

- Complicated objects can be described by using many polygons https://powcoder.com
- Dedicated hardware are designed to speed up rendering of standard graphics objects eChat powcoder

Two methods for storing standard graphics objects

Method 1: use table (vertex, edge, polygon, attribute) Assignment Project Exam Help

Geometric data-table representation for two adjacent polygon surface facets, formed with six edges and five vertices.

V_3 : x_3, y_3, z	V_1 :	x_1, y_1, z_1
T7	V_2 :	x_2, y_2, z_2
V_A : x_A, y_A, z	V_3 :	x_3, y_3, z_3
	V_4 :	x_4, y_4, z_4

E_2 : V_2 ,	
E. V	V_3
E_3 : V_3 ,	V_1
E_4 : V_3 ,	V_4

SUR	FACE-FACET TABLE	
S_1 : S_2 :	$E_1, E_2, E_3 \\ E_3, E_4, E_5, E_6$	

Method 2: Quadrilateral Mesh

- A n x m array of vertex positions (X, Y, Z)
- Represent a surface of (n-1) x (m-1) quadrilaterals
- Each quadrilateral may be further subdivided into two trianglesttps://powcoder.com
- Two ways to obtain data in the mesh
 Add WeChat powcoder
 Way 1: By specifying an equation

 - Way 2: By 3D digitizer

3-D scanner

3D scanner is available in CityU Library:

http://www.cityu.edu.hk/lib/about/facility/3d/index.htm

Glut functions

- glutWire as wireframe
- glutSolid as fill area polygon patches Assignment Project Exam Help

```
glutSolidCube (edgelength);
Add WeChat powcoder
```

 Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Mathematical Concepts for Plane

Plane

- Add WeChat powcoder
 Only 3 parameters define the plane, the fourth can be set to 1 or 0
- = d = 1does not pass through (0, 0, 0)
- pass through (0, 0, 0) = d = 0

Normal

- Important concept in lighting and shading
- Normal vector Project Exam Help

 vector to the plane

 - "Unit vector" https://pwm.isder.com
- Solving for Northal WeChat powcoder
 - \square Normal $\mathbf{n} = (a, b, c)$
 - Select 3 vertices on the plane V1, V2, V3

$$\mathbf{n} = (V2 - V1) \times (V3 - V1)$$

Distinguishing "Inside" from "Outside"

Useful for "collision detection"

```
Assignment Project Exam Help

Use (a, b, c)

aX+bY+cZ+d > 0 //powcoder.com
Outside

Add WeChat powcod Qn the plane

< 0 Inside
```

Use V1, V2, V3
 V1, V2, V3 selected CCW => Outside
 CW => Inside

Inside-Outside Test

- To determine whether a pixel p is inside or outside an object S
- Send a ray p + t v which starts at the pixel, t is a scalar,
 v is an arbitrary direction vector
- Find all non-seigemerate rate rates to the ray and S
- https://powcoder.com

 If the number of intersections is odd (even), **p** is inside (outside) **S**Add WeChat powcoder
- It is not easy to check non-degenerate intersections. One can solve this problem by sending out n rays in random directions and then use majority voting

[†] a degenerate intersection is one which the ray grazes the surface

The yellow object is depicted as a 2D object but the technique can be applied to any n-dimensional object (n > 2)

Superquadrics

2D QUADRICS (conic section)

$$aX^2 + bYAssigNiment/ProjeYt-Extam(Help)$$

https://powcoder.com

 3D QUADRICS Add WeChat powcoder

$$aX^{2} + bY^{2} + cZ^{2} + dXY + eXZ + fYZ + gX + hY + iZ + k = 0$$

In 2D,

Circle

$$X^2 + Y^2 = r^2$$

Ellipse

Parabola

Add WACh powcoder

Hyperbola

$$X^2 - Y^2 = r^2$$

In 3D

Sphere

$$X^2 + Y^2 + Z^2 = r^2$$

- Ellipsoid Assignment Project Exam Help

 https://powcoder.com
- Paraboloid
 Add WeChat powcoder
- Hyperboloid ?(ans. to be discussed in tut.)

"Super"-quadrics

- Introduce to additional parameters s1 and s2
- Allow continuous transformation from "circle" to "square" Addigment Project Exam Help
- Example (2D) https://pc-ellipser.com

$$\left(\frac{X}{a}\right)^{\frac{2}{s}} + \left(\frac{Add_2WeChat powcoder}{b}\right)^{\frac{s}{s}} = 1$$

Assignment Project Exam Help

https://powcoder.com

o.5 Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Superellipses plotted with values for parameter s ranging from 0.5 to 3.0 and with $r_x = r_y$.

Super-ellipsoid

$$\left[\left(\frac{X}{r_x} \right)^{\frac{2}{s_2}} \right]_{\text{Assignment Project Exam Help}}^{\frac{2}{s_2}} = 1$$

$$\text{Add WeChat powcoder}$$

Non-parametric and Parametric forms

- Non-parametric form

 - □ Z = f(X, Y) or f(X, Y, Z) = 0
 □ Used in mathematics

https://powcoder.com

- Parametric farm WeChat powcoder
 - Introduced two additional parameters u, v
 - \Box X = f1 (u, v) Y = f2 (u, v) Z = f3 (u, v)
 - Used in CG

Parametric form of the super-ellipsoid

$$\left[\left(\frac{X}{r_x} \right)^{\frac{2}{s_2}} + \left(\frac{Y}{r_y} \right)^{\frac{2}{s_2}} \right]^{\frac{s_2}{s_1}} + \left(\frac{Z}{r_z} \right)^{\frac{2}{s_1}} = 1$$
 Non-parametric Assignment Project Exam Help

https://powcoder.com

$$X = r_x \cos^{s_1} \phi \cos^{s_2} \theta$$
 $Y = r_y \cos^{s_1} \phi \sin^{s_2} \theta$
 $Y = r_y \sin^{s_1} \phi$
 $Y = r_z \sin^{s_1} \phi$

OpenGL functions

- Does not have superquadrics function
- Can display sphere, cone, cylinder Assignment Project Exam Help
 Quadrilateral mesh
- Quadrilateral mesh https://powcoder.com

glutWireSphere (r, hbb hg) tudes, nLatitudes)

Generation of complicated shapes

- Complicated shapes can be generated using quadrilateral mesh and parametric form
- Two examples are

 Assignment Project Exam Help
 - □ Generalized to Find the wooder.com
 - Generalized Symmetry powcoder

Generalized Cylinder

real life example

Assignment Project Exam Help

(f₄(α), f₅(α), f₆(α)) powcoder.com (f₁(α , β), f₂(α , β), f₃(α , β))

Add WeChat powcoder

cross section

primordial shape

axis is perpendicular to cross section

quadrilateral mesh parameterized by α and β

Generalized Reflectional Symmetry

real life example

Assignment Project Exam Help $b(f_4(\alpha), f_5(\alpha), f_6(\alpha))$

https://powcoder.com

a' - - - - - • $a(f_1(\alpha), f_2(\alpha), f_3(\alpha))$ Add/WeChat powcoder

Reflect a about b to get a'

primordial shape

quadrilateral mesh parameterized by α and

 β , with β varying linearly from a to a'

References

Ex: Practice using the index

For example, text

- OpenGL Assignment Project Exam Help
- SuperquadrictspsSecowt3der1c3r5
- Parametric and non-parametric forms: A-8, A-9