

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 4

- 1 Use Zorn's lemma to show the following statements:
 - a) Any vector space has a Hamel basis.
 - b) Any Hilbert space has an orthonormal basis.
- 2 Let X be a vector space and p, q sublinear functionals on X. If a linear functional φ on X satisfies

$$\varphi(x) \le p(x) + q(x)$$
 for all $x \in X$.

Then there exist linear functionals φ_1 and φ_2 on X such that $\varphi = \varphi_1 + \varphi_2$ satisfying

$$\varphi_1(x) \le p(x)$$
 and $\varphi_2(x) \le q(x)$

for all $x \in X$.

Hint: Relate the sublinear functional p+q and the assumption on φ with the diagonal $\Delta = \{(x,x): x \in X\}$ in $X \times X$.

- 3 Let X be $(\mathbb{R}^2, \|.\|_p)$ and $Y = \{x \in \mathbb{R}^2 : x_1 2x_2 = 0\}$ a subspace of \mathbb{R}^2 . Define the linear functional φ on Y by $\varphi(x_1, x_2) = x_1$.
 - a) Compute the norm of φ .
 - **b)** Determine the norm-preserving linear functionals that extend to $(\mathbb{R}^2, \|.\|_p)$ for $p = 1, 2, \infty$