Instructor: Ann Clifton

Answer the following questions. You must show your work to receive full credit. Be sure to make reasonable simplifications. Give exact answers. Indicate your final answer with a box.
1. State the Quadratic Formula.
2. State the formula for the amount of money after t years if P dollars is invested at a rate of t compounded t times per year.
3. State the formula for the amount of money after t years if P dollars is invested at a rate of t compounded continuously.
4. State the definition of the logarithmic function.
5. State the Change of Base Formula.

Name: _____

6.	A function is one-to-one if different inputs produce You can tell from the graph that a function is one-to-one by using the Test.
7.	For a function to have an inverse, it must be
8.	Let $f(x)$ be a function and assume it has an inverse, $f^{-1}(x)$. Then $f(f^{-1}(x)) = f^{-1}(f(x)) = $ the function.
9.	State the General Form of a quadratic function: State the Standard Form of a quadratic function:
10.	The bacteria population is a certain culture grows exponentially. (a) Find the one-hour growth rate if the 20-minute growth rate is 0.08. (b) Find the 10-minute growth rate if the 20-minute growth rate is 0.08. Give an exact answer. Do not use your calculator to approximate.
11.	If $$10,000$ is invested at an interest rate of 8% per year, compounded monthly, find the value of the investment after 4 years. Give an exact answer.
12.	Find the function $f(x)=Ca^x$ given the following two points on the graph: $(2,\frac{13}{4})$ and $(0,13)$.

- 13. Evaluate the logarithm:
 - (a) $\log_8 64$
 - (b) $\log_2 2$
 - (c) log 1
 - (d) $3^{\log_3 x}$
 - (e) $\ln e^5$
- 14. Solve for x: $\log_4 x = 3$

15. Solve for x: $\log_x 9 + \log_x 3 + 1 = 4$

16. Use the Laws/Properties of Logarithms to expand the given expression:

$$\log\left(\frac{x^3\sqrt{y}}{z^4}\right)$$

17. Use the Laws/Properties of Logarithms to combine the given expression (Be sure to simplify your answer completely!:

$$\frac{1}{3}\log x + \log(x^2 - 4) - \log(x + 2)$$

18. Find a model for the amount A(t) after t years if \$5,000 is invested at a rate of 5% compounded continuously. Give an exact answer.

19. Find $f^{-1}(x)$ if $f(x) = \ln x + 6$. Check to make sure your answer is correct (evaluate $f(f^{-1}(x))$) and $f^{-1}(f(x))$).

20.	Let	f(x)	$=2x^2$	-4x	+ 2
20.	LCU	J(x)	-2x	$\mathbf{T}u$	1 4

(a) Write the function in Standard Form by completing the square.

(b) What is the vertex of the parabola?

(c) Does the function have a maximum or a minimum value? What is the maximum/minimum value?

(d) Calculate the discriminant. How many x-intercepts does the function have?

(e)) Find the x -	- and u -	intercepts.	If there	are none.	write	NONE.
()	, I ma one w	and 9	micer copies.	II UIICI C	are mone,	WIIOC	TIOTIE.

(e) Find the x- and y-intercepts x-intercepts: ______y-intercept: ______

(f) Using parts (a)-(e), sketch a graph of the function. Be sure to label the vertex and intercept(s).

