

方法精讲-数量 4

(笔记)

主讲教师:杜岩

授课时间:2020.10.03

粉笔公考·官方微信

方法精讲-数量4(笔记)

【注意】本节课程的内容比较硬核、记得公式比较复杂,但选的例题比较简单、具有代表性,重点在于学会基础理论,只要能够看懂题目的表述,能想到对应的结论即可。考场上排列组合与概率可做可不做,题目读懂了、问法比较简单、题目设置比较简单就做,但大多数情况下排列组合与概率问题的难度较高,要学会抉择。近几年排列组合与概率越考越简单,尤其是概率问题,很多都是送分题。

第八节 排列组合与概率

- 一、排列组合
- (一) 基础概念

【知识点】分类与分步:

- 1. 分类相加: 要么……要么……。
- 2. 分步相乘: 既……又……。
- 3. 例:
- (1)如国庆节出去旅游,想从北京出发,去上海,结果查行程的时候发现 从北京到上海一共有2趟飞机可供选择,还有3趟高铁可供选择,问所有的交通 方式。要么从2趟飞机中随便订一个、要么从3趟高铁中随便订一个,选择有 2+3=5种。飞机和高铁是并列的关系,分类用加法。做题的时候建议多造句,如 果能用"要么……要么……"造句,则用加法。如本题,要么坐飞机,要么坐高 铁,多者任选其一均可达到目的,这种情况都属于分类,分类之间用加法。
- (2) 如从北京到上海,然后再去广州,从北京到上海有 2 趟高铁 (A、B),从上海到广州有 3 趟高铁 (1、2、3),问从北京到广州的所有选择方式。用乘法计算,列式: 2*3=6 种,前两种高铁和后三种高铁有一一对应的关系,可以是 A →1、A→2、A→3、B→1、B→2、B→3。本题为分步的过程,分步即分成多个步骤,且这些步骤必须同时发生才能达到目的。要想从北京到广州,可以从北京先到上海,然后再从上海到广州,将这个过程拆分成两个步骤,且这两个步骤必须同时发生、缺一不可,为分步的概念,用乘法计算。

【例1】(2019河南司法所)某市从市儿童公园到市科技馆有6种不同路线,从市科技馆到市少年宫有5种不同路线,从市儿童公园到市少年宫有4种不同路线,则从市儿童公园到市少年宫的路线共有:

A. 24 种 B. 36 种

C. 34 种 D. 38 种

【解析】例 1. 要想从儿童公园到少年宫,可以一步到位(直达),共有 4 种方式;如果时间比较多,想要多转一转、玩一玩,也可以选择转乘的方式,即先到科技馆,再从科技馆到少年宫,将整个过程分成两步,有先后、两者同时发生才能达到目的,是"既……又……"的关系,故这两个步骤之间用乘法相连,为6*5=30 种方式。要么直达,要么转乘,多者选其一,用加法计算,列式: 4+30=34种,对应 C 项。【选 C】

【知识点】排列与组合(本质上概念差不多,均可以统一为从 n 个主体中选出 m 个所需的主体):

- 1. 如从 10 个人中选 3 人,大数 (10) 写下面,小数 (3) 写上面,然后分析问法:如果是"出来排队领奖",则排名靠前的领一等奖、排名第二的领二等奖、排名第三的领三等奖,每个人都想领一等奖,设为甲、乙、丙三人,则为甲领一等奖、乙领二等奖、丙领三等奖;如果颠倒顺序,变为丙、乙、甲,人没有变但顺序变了,此时丙领一等奖、乙领二等奖、甲领三等奖。每个人领的奖不一样,结果肯定变了。先将数字写好,然后再讨论顺序,如果人和人之间的顺序变了、结果也变了,说明与顺序有关,用 A 计算。
- 2. 如下课后打扫卫生,从 10 个人中选 3 人做清洁、打扫卫生,写为 10 和 3,如选了易烊千玺、王源和王俊凯三人,他们是 tfboys 这个组合,说明今天的卫生是这个组合的人完成的;如果这三个人的顺序改了,改为王源、王俊凯、易烊千玺去打扫卫生,同样是这三个人,只要这三个人绑定在一起,不管谁前谁后,这三个人永远都是 tfboys 这个组合,且打扫卫生的工作永远都是这三个人做的(不管顺序再怎么变,组合都是这三个人),即调换顺序后结果没有任何变化,故用 C 计算,为 C (10,3)。
 - 3. 排列(A): 与顺序有关, A(n, m)=从n开始往下乘m个数(下面的数决

定从几开始乘,上面的数决定连乘几个数,依次递减)。如 A (10,3) =10*9*8, A (7,4) =7*6*5*4。

- 4. 组合(C): 与顺序无关, C(n, m)=分子 A(n, m)/分母 A(m, m)=从 n 开始往下乘 m 个数/从 m 开始往下乘 m 个数, 是分数形式。如 C(10, 3)=A(10, 3) /A(3, 3)=10*9*8/(3*2*1), C(7, 4)=A(7, 4)/A(4, 4)=7*6*5*4/(4*3*2*1)。
- 5. 判定标准:从已选的主体中任意挑出两个,调换顺序。有差别,与顺序有关(A):无差别,与顺序无关(C)。
 - 6. 引例:
 - (1) 从七个葫芦娃中, 任选两个去救爷爷。
- 答:从7个葫芦娃中选2个,为7和2,葫芦娃救爷爷的结果与顺序无关,如先选大娃再选二娃,这两人救爷爷的结果就是"送人头";如果调换顺序,先选二娃再选大娃,顺序改变结果依然是"送人头",故调换顺序后结果相同,列式:C(7,2)。
 - (2)从七个葫芦娃中,任选两个去救爷爷(第一个去探路,第二个去打架)。
- 答:写成7和2的形式,如果先选大娃再选二娃,则大娃探路、二娃打架,此时打架的会"送人头",探路的可以"苟活";如果颠倒顺序,先选二娃再选大娃,则二娃探路、大娃打架,此时结果有区别。顺序改了,对应的任务变了,最终的结果就不一样了,为A(7,2)。
- 【例 2】(2020 北京)某家电维修公司的职工每人每天最多完成 5 次修理任务。维修工小张上个月工作了 20 天,总计完成修理任务 98 次。则他上个月每天完成的修理任务次数有多少种不同的可能?

A. 190 B. 210

C. 380 D. 400

【解析】例 2. 本题比较怪,每人每天最多修理 5 次,小张上个月一共工作了 20 天,如果小张是满状态,则 20 天一共修理了 5*20=100 次维修任务,而上个月实际共完成 98 次维修任务,即比满状态少了 2 次,故本题的重点在于这 2 次是怎么少的:可能是其中 1 天只完成了 3 次任务,剩余 19 天每天完成 5 次任务;也可能是其中 2 天只完成了 4 次任务,剩余 18 天每天完成 5 次任务。要么

选1天,要么选2天,这二者之间用加法计算。

- (1) 有1天修理3次,剩余19天修理5次:从20天中选1天只修理3次,为C(20,1)=20种。
- (2) 有 2 天修理 4 次,剩余 18 天修理 5 次:从 20 天中选 2 天只修理 4 次,假设选了 1 号和 2 号,为一种情况,先选 2 号再选 1 号和先选 1 号后选 2 号,均为前两天每天完成 4 次任务,即调换顺序后结果不变,无顺序,列式:C(20,2)=A(20,2)/A(2,2)=(20*19)/2=190种情况。

他上个月每天完成的维修任务次数有 20+190=210 种情况,对应 B 项。【选 B】

【注意】从20天中选2天即可,假设选了1号和3号(选5号和7号等同理),先选1号再选3号和先选3号再选1号,结果都是这两天每天做4次任务,故调换顺序结果不变。

【例 3】(2017 吉林)罐中有 12 颗围棋子,其中 8 颗白子,4 颗黑子。从中任取 3 颗棋子,则至少有一颗黑子的情况有:

A. 98 种

B. 164 种

C. 132 种

D. 102 种

【解析】例 3. 方法一:问至少有一颗黑子的情况,一共要取三颗棋子,分以下几种情况:

- (1) 1 颗黑子、2 颗白子: 从 4 颗黑子中选 1 颗,为 C (4,1);从 8 颗白子中选 2 颗,白子和白子是一样的,没有区别,顺序与结果无关,为 C (8,2)。先选 1 颗黑子再选 2 颗白子,两个步骤必须同时发生,用乘法计算,列式: C (8,2)*C (4,1)。
- (2) 2 颗黑子、1 颗白子: 从 4 颗黑子中选 2 颗,为 C (4,2);从 8 颗白子中选 1 颗,为 C (8,1)。分两步,用乘法计算,列式: C (4,2)*C (8,1)。
 - (3) 3 颗黑子: 从 4 颗黑子中选 3 颗, 为 C (4, 3)。

要么情况 1, 要么情况 2, 要么情况 3, 用加法计算, 列式: C(8, 2)*C(4, 1) +C(4, 2)*C(8, 1)+C(4, 3)=8*7/(2*1)*4+4*3/(2*1)*8+4=164 种, 对应 B 项。

方法二:出现"至少一个"的问法,正面分析情况较多(有三种情况),可以用逆向思维求解,列式:总情况数-反面情况数(全部都是白子),反面情况为从8颗白子中选3颗白子,总情况为从12颗棋子中选3颗棋子,列式:C(12,3)-C(8,3),对应B项。【选B】

(二) 经典题型

【知识点】枚举法: 所有的排列组合题中,除了枚举法之外,难度可能都很高。问有多少种可能性、多少种结果,且选项非常小(十位数或个位数),往往暗示这需要枚举,穷举完所有的结果即可。这种排列组合问题一定要做,顶多也就十几种情况,思考一下就可以做出来,之前的题目不让大家枚举是因为要穷尽164种结果,肯定是不现实的。

【例 1】(2019 青海法检)小明计划到商店为自己购买衣服和鞋子,预算不超过800元。已知衣服每套的售价是99元,每双鞋子的售价是67元。如果小明至少要买4套衣服和3双鞋,那么他有多少种不同的购买方式?

A. 5 B. 7 C. 8 D. 4

【解析】例 1. 问有多少种不同的方式、结果,为排列组合问题,选项最多为 8 种方式,故用枚举法求解。一共 800 元,至少要买 4 套衣服和 3 双鞋,共计花费 4*99+3*67=597 元,故剩余 800-597=203 元可自行支配: (1) 2 套衣服、0 双鞋子; (2) 1 套衣服、0 双鞋子; (3) 3 双鞋子、0 套衣服; (4) 2 双鞋子、0 套衣服; (5) 1 双鞋子、0 套衣服; (6) 1 套衣服、1 双鞋子(花费了 99+67=166元,剩余的钱什么都买不了),此时共 6 种情况,无选项对应。注意还少了一种情况(什么都不额外买,如小明是个好孩子,父母让买多少东西就买多少东西,不额外多花钱): (7) 0 套衣服、0 双鞋子,故最终结果为 7 种,对应 B 项。【选 B】

【注意】

1. 一定要穷举完所有的结果,不能重复或遗漏,考场上枚举的题目一定要做。

- 2. 解析中列举的情况都是除了4套衣服、3双鞋外多买的部分。
- 3. 本题考的就是枚举法。

【知识点】捆绑法:相邻。

1. 引例: 甲乙丙丁戊己 6 个老师站成一排照相,要求甲乙丙 3 人必须相邻,有()种不同的站法?

答:要求"必须相邻"、挨着、不能分开,可以用绳子将3个人捆成1个大"胖子",这就是捆绑法的运用,但凡涉及到"相邻"的概念,就用捆绑法解题。本来是6个人排队照相,现在将3个人捆成了1个大"胖子",则剩余4个主体。4个主体排队照相,结果与顺序有关(如果站成一排照相,谁在C位都是不一样的,如甲在最中间或乙在最中间拍出来的效果不同;如果站成一列照相,大家都喜欢站在最后,站在最后的拍出来脸最小、站在最前面的拍出来脸最大,所以站成一列照相也是有讲究的),故照相永远都是顺序问题,但凡涉及到照相、排队的问法,一定要参照最后的顺序。

6个人变成 4 个元素, 4 个元素站在一排, 4 个空放 4 个人,与顺序有关,为 A (4,4); 甲、乙、丙捆成了一个大"胖子",内部需要考虑顺序(如甲乙丙、乙甲丙、丙甲乙等,需要讨论),为 A (3,3)。先捆(先看外部顺序,再看内在顺序)再排,分步用乘法,列式: A (4,4) *A (3,3)。

4个元素对应4个位置,写为4和4,结果与顺序有关则用A,结果与顺序 无关则用C。

2. 方法:

- (1) 先捆: 把必须相邻的元素捆绑起来,注意内部有无顺序。
- (2) 再排:将捆绑后的看成一个元素,进行后续排列。

【例 2】(2019 四川)某场科技论坛有 5G、人工智能、区块链、大数据和云计算 5 个主题,每个主题有 2 位发言嘉宾。如果要求每个主题的嘉宾发言次序必须相邻,则共有多少种不同的发言次序?

A. 120 B. 240

C. 1200 D. 3840

【解析】例 2. "必须相邻"用捆绑法,将 5G 的两个人捆成大"胖子"、将人工智能的两个人捆成大"胖子"、将区块链的两个人捆成大"胖子"、将大数据的两个人捆成大"胖子"、将云计算的两个人捆成大"胖子"。一共 5 个主题,每个主题有 2 个人,则共有 10 个人,两两捆绑后最终变为 5 个元素,其外在顺序为 A (5,5),代表的是 5 个主题谁先谁后;每一个主题都有内部顺序,如甲、乙是 5G 部门的,甲先乙后和乙先甲后的结果不同(人的顺序改了,发言次序就不一样了),故结果与顺序有关,用 A 计算,每个主题的内部顺序均为 A (2,2)。既外又内,全部同时发生,分步用乘法,列式:A (5,5)*A (2,2)*A (2,2)*

【注意】

- 1. 如果只乘一个 A (2,2), 代表了只安排了其中一个主题, 其余主题均未考虑。每个主题的内容顺序都需要考虑, 才能完成最后的结果。
- 2. "5*A(2,2)"代表的是 5 个 A(2,2) 相加; "A(2,2)*A(2,2)*A(2,2)*A(2,2)*A(2,2)"代表的是[A(2,2)]⁵。

【知识点】插空法:不相邻

1. 引例: 甲乙丙丁戊己 6 个老师站成一排照相, 要求甲乙丙 3 人必须不相邻, 有() 种不同的站法?

答:要想将甲、乙、丙三人隔开,如果有空隙,将甲、乙、丙安排在其余人 形成的空隙中即可满足题意。丁、戊、己没有任何要求,故先排丁、戊、己,3 个人一定会形成4个空,将甲、乙、丙安排在这4个空中即可。

要想不相邻,则用插空法。丁、戊、己3个人站3个位置照相,为A(3,3); 3个人形成4个空隙,将甲、乙、丙安排在这4个空隙中,为4和3,排队照相

与顺序有关,为 A (4,3) =4*3*2,如选了第一个空、第二个空、第三个空,可以是甲、乙、丙,也可以是乙、甲、丙,空永远不变,3 个人站的顺序不同,结果就变了,故用 A 计算(甲从 4 个空中任意选 1 个空,剩余 3 个空; 乙从 3 个空中任意选 1 个空,剩余 2 个空; 丙从 2 个空中任意选 1 个空),列式: A (3,3) *A (4,3)。如果顺序变了结果不变,则用 C 计算。

2. 方法:

- (1) 先排: 先安排可以相邻的元素, 形成若干个空位;
- (2) 再插:将不相邻的元素插入到空位中。
- 【例 3】(2018 浙江事业单位)某地组织 9 名政协委员负责调研农民工子弟小学教学情况。调研结束合影前有 3 名委员因紧急工作已经离开,学校决定安排 3 名小学生代表与委员一起坐在前排。现要求每位小学生的两边都坐着政协委员,一共有多少种不同的方式?

A. 7200 B. 29600

C. 43200 D. 362880

【解析】例 3.3 名委员离开后剩余的政协委员数为 9-3=6 人,已知每位小学生的两边都坐着政协委员,说明小学生的左右两边不能是小学生,即小学生之间是完全不能相邻的,用插空法求解。委员可以相邻,先排可以相邻的 6 个委员,6 个人站 6 个位置,为 A (6,6),排队照相的题目默认有顺序; 6 个人形成 7 个空隙,有同学考虑将 3 个学生放在 7 个空隙中,列式: A (7,3),注意题干说明每位小学生的两边都坐着政协委员,如果小学生坐在第一个位置,则左侧没有政协委员,不满足题意,故首尾都不能坐人,只有 5 个空隙满足题意,5 个空隙放3 个人,为 A (5,3)。用乘法计算,列式: A (6,6) *A (5,3) =720*60=43200 种,对应 C 项。【选 C】

【注意】

- 1. 考试不可以带计算器。
- 2. 本题只需要体现剩余的 6 名政协委员和新选出来的 3 个学生的关系即可。 如果纠结 9 名政协委员的排法,则这道题就没法做了;且不清楚学校到底有多少

学生、到底是哪 3 名学生和政协委员坐在一起等,这属于过度脑补,将现有的人进行排序即可。

3. 不建议先排小学生,考场上不要和自己作对,粉笔总结出来的一定是最简单的方法,先排可以相邻的,再插。

二、概率问题

【知识点】概率:较排列组合简单,但思维量更大(不但要考虑总数,还要考虑满足条件的情况数),出题人为了平衡难度,条件设置上会更简单;可以通过概率的基本数据、结果的特殊情况进行秒杀。

- 1. 给情况求概率 (会涉及 A、C 的计算): 概率=满足要求的情况数/总的情况数。如果总情况数为 45,则结果要么为 x/45,要么是 x/45 约分后的结果,若选项为 A. 1/5、B. 1/6、C. 1/7、D. 1/8,答案的分母要么是 45,要么是 45 的因子(约数),45 不可能约分得到 6、7、8,直接选 A 项。
 - 2. 给概率求概率: 涉及加法和乘法原理, 如过马路和比赛。
 - (1) 分类: P=P₁+P₂+······+P_n, 例: 不下雨的概率=晴天概率+阴天概率。
- (2) 分步: P=P₁*P₂*······*P_n,例: 连续两次闯红灯的概率=闯第一个的概率 *闯第二个的概率。如从家里到公司遇到了 3 个红绿灯,遇到红灯的概率为 50%,遇到绿灯的概率为 50%,问从家到公司连续遇到 3 个绿灯的概率,列式: 50%*50%*50%。
- 【例 1】(2020上海)天气预报预测未来 2 天的天气情况如下:第一天晴天50%、下雨 20%、下雪 30%;第二天晴天 80%、下雨 10%、下雪 10%,则未来两天天气状况不同的概率为:

A. 45% B. 50%

C. 55% D. 60%

【解析】例 1. 本题为概率问题,概率问题有两种类型,其一为给情况求概率,根据公式: P=满足要求的情况数/总情况数; 其二为给概率求概率,用加法或乘法原理求解。本题给出了概率,故用加法或乘法原理求解。

方法一:正面求解。"天气状况不同"指第一天和第二天天气一定是不一样

的,(1)第一天晴天,第二天非晴天: $P_1=50\%*20\%$;(2)第一天下雨,第二天非下雨: $P_2=20\%*90\%$;(3)第一天下雪,第二天非下雪: $P_3=30\%*90\%$ 。"要么……要么……"为并列关系,用加法求解,P=10%+18%+27%=55%,对应 C 项。

方法二: 反面求解。未来两天天气状况不同的反面为未来两天天气状况相同,列式: 未来两天天气状况不同的概率=1-未来两天天气状况相同的概率(第一天晴天、第二天晴天,第一天下雨、第二天下雨,第一天下雪、第二天下雪)=1-(50%*80%+20%*10%+30%*10%)=1-(40%+2%+3%)=1-45%=55%,对应 C 项。【选 C】

【注意】

- 1. "未来两天天气状况不同"指的是第一天晴天、第二天非晴天,或第一天雨天、第二天非雨天,亦或第一天雪天、第二天非雪天,多者任选其一,"要么……要么……"用加法计算;两个步骤(第一天和第二天)必须同时发生,用乘法计算。
 - 2. 第一天下雪、第二天晴天包含在"第一天下雪、第二天非下雪"的情况中。
- 【例 2】(2019 河南司法所)某书法兴趣班有学员 12 人,其中男生 5 人,女生 7 人。从中随机选取 2 名学生参加书法比赛,则选到 1 名男生和 1 名女生的概率为:

A. 35/144

B. 35/72

C.35/132

D. 35/66

【解析】例 2. 判定题型,题干没有给出概率,故为给情况求概率,根据公式: P=满足要求的情况数/总情况数,所有的概率公式,永远都是先从分母进行考虑,因为分母最简单,没有任何条件限制。总情况数: 从 12 名学员中随机选 2 名,如果选了甲和乙,调换顺序为乙和甲,顺序不同但结果不变,故顺序不影响结果,为 C (12, 2) =12*11/2=66; 分母不可能越约越大,D 项当选。【选 D】

【注意】

- 1. C(12,2) = A(12,2) / A(2,2) = 12*11/(2*1).
- 2. 满足要求的情况数:从5名男生中选1名,为C(5,1);从7名女生中选

1 名,为 C(7,1),共有 C(5,1)*C(7,1)=5*7=35种情况

【例 3】(2020 浙江)某公司对 10 个创新项目进行评选,选出最优秀的 3 个项目投入运行。小张随机预测 3 个项目将会入选。问他至少猜对 1 个入选项目 的概率在以下哪个范围内?

A. 不到 50%

B. 50%~60%

C. 60%∼70%

D. 超过 70%

【解析】例 3. 判定题型,本题没有给出任何概率值,故需要结合概率公式 求解,根据公式: $P=满足要求的情况数/总情况数。问至少一个入选,要想做得 快,则从对立面进行考虑,列式: <math>1-反面情况=1-全部都没猜对,故 <math>P_{\overline{k}}=2$ 全部都 没猜对的情况数/总情况数。

总情况数:从10个项目中随机选3个,10写在下面、3写在上面。设为甲、乙、丙三个项目投入运营,乙、甲、丙或丙、甲、乙的顺序虽然不同,但永远都是这3个项目投入运营,故顺序改变结果不变,为C(10,3)

反面情况数(全部都没猜对): 从没选的 7 个项目中任意选 3 个(就像大家 买彩票,要想不中奖,则从自己没选的几个号中挑 3 个作为中奖号码),为 C(7,3) 种情况。

 $P=1-C(7,3)/C(10,3)=1-[A(7,3)/A(3,3)]\div[A(10,3)/A(3,3)]=1-7*6*5/(10*9*8)=17/24$,首位商 7,对应 D 项。【选 D】

【例 4】(2018 辽宁)一张纸上画了 5 排共 30 个格子,每排格子数相同。小 王将 1 个红色和 1 个绿色棋子随机放入任意一个格子(2 个棋子不在同一格子), 则 2 个棋子在同一排的概率:

A. 不高于 15%

B. 高于 15%但低于 20%

C. 正好为 20%

D. 高于 20%

【解析】例 4. 方法一: 常规逻辑。5 排共 30 个格子,则每排有 6 个格子,要求 2 个棋子在同一排,根据公式: P=满足要求的情况数/总情况数。

(1) 总情况数: 1 个红色和 1 个绿色棋子随机放入任意 1 个格子 (2 个棋子不在同一格子),需要占据 2 个格子,从 30 个格子中随机选 2 个格子,调换顺序

后结果不同(如下图所示,调换后每个棋子对应的位置都不一样了),如在不同的两排看电影的体验不同,为 A(30,2)。

(2)满足要求的情况数:从5排中任选1排,为C(5,1);假设为第5排,一共6个格子,从中任选2个格子,结果与顺序有关,为C(5,1)*A(6,2)。 P=[C(5,1)*A(6,2)]/A(30,2)=5*6*5/(30*29)=5/29,对应B项。

方法二: "跟屁虫"原理。红色棋子和绿色棋子要在同一排,红色棋子可以 先从30个格子中选1个格子,绿色棋子要想和红色棋子在同一排,剩余30-1=29 个格子,满足同一排的情况为5个格子,P=5/29,对应B项。【选B】

【注意】

- 1. 用 A 或 C 计算虽然不影响本题的答案, 但一定要按照最本质的情况进行分析入手。
- 2. 两个棋子在同一排、两个人在同一列、两个人要在一起,有简便技巧——"跟屁虫"原理。
- 【拓展 1】(2018 国考)某单位的会议室有 5 排共 40 个座位,每排座位数相同。小张和小李随机入座,则他们坐在同一排的概率:

A. 不高于 15%

B. 高于 15% (日低于 20%)

C. 正好为 20%

D. 高于 20%

【解析】拓展 1. 已知 5 排共 40 个座位,故每排有 40/5=8 个座位。小张和小李随机入座,两个人要在一起,一个人先选,另一个人去找他,小张先坐下去,

剩余 40-1=39 个座位; 要想同一排,一排有 8 个座位,从剩余的 7 个座位中选 1 个座位即可, P=7/39,对应 B 项。【选 B】

【注意】两个人要凑一起的概率题,先让一个人随便挑,再让第二个人去找他。

【拓展 2】(2018 联考)某单位工会组织桥牌比赛,共有 8 人报名,随机组成 4 队,每队 2 人。那么,小王和小李恰好被分在同一队的概率是:

A. 1/7

B. 1/14

C. 1/21

D. 1/28

【解析】拓展 2. 已知每队有 2 人,小王先随便选 1 个队伍,小李从剩下的 7 个"坑"中选到挨着小王的"坑"即可,P=1/7,对应 A 项。【选 A】

【拓展 3】(2019 联考)某学校举行迎新篝火晚会,100 名新生随机围坐在篝火四周,其中,小张与小李是同桌,他俩坐在一起的概率为:

A. 2/97

B. 2/98

C.2/99

D. 2/100

【解析】拓展 3. 一共 100 个位置,小张先坐,剩余 99 个位置;要想在一起,小李挨着小张坐,要么坐在左边,要么坐在右边,2 个位置都可以,P=2/99,对应 C 项。【选 C】

【注意】此类题型的辨别方法:在一起、同一队、同一排,即两个人想尽办法在一起。

【注意】排列组合与概率:

- 1. 排列组合:
- (1) 概念:
- ①分类用加法(要么……要么……),分步用乘法(既……又……)。
- ②有序用排列(不可互换), 无序用组合(可以互换)。
- (2) 题型:
- ①必须相邻:捆绑法,先捆再排。
- ②不能相邻:插空法,先排再插。
- (3) 正难反易: 总情况数-反面情况数。
- 2. 概率:
- (1) 给情况求概率:满足要求的情况数/总情况数。

- (2) 给概率求概率: 分类用加法, 分步用乘法。
- (3) 正难反易: 1-反面情况概率。

第九节 容斥原理

【知识点】容斥原理:比较简单,在中学都学过,可以用画图法也可以用常见公式解决,不管题怎么问,大部分容斥题都是送分的。容斥问题和昨天讲的最值、函数题都差不多,有固定结论和套路模板,心态要放轻松,刚开始背公式可能有点麻烦,但做题的时候会比较简单。

- 1. 容斥就是在统计时会遇到重复计算或遗漏的部分,比如某班想吃火锅的有40人,想吃烧烤的有42人,但总人数≠40+42=82人,想吃火锅和想吃烧烤的人一定有交叉重叠。班里还可能有10个什么也不想吃的同学,容斥就是解决去重补漏的问题。
- 2. 两集合公式推导:如下图所示,假设吃火锅为条件 A,吃烧烤为条件 B。A和 B 先相加(最大范围覆盖);然后减去中间重合的部分;最后加上周围都不满足的情况等于总数。

3. 两集合公式: 由上述推导可推出 A+B-A∩B+都不=全→A+B-A∩B=全-都不。

【例1】(2020 联考)学校有300个学生选择参加地理兴趣小组、生物兴趣小组或者两个小组同时参加,如果80%的学生参加地理兴趣小组,50%的学生参加生物兴趣小组。问同时参加地理和生物兴趣小组的学生人数是多少?

A. 240

B. 150

C. 90

D. 60

【解析】例 1. 出现多个条件且有交叉重叠,容斥问题,代入公式计算。根据题意,假设参加地理兴趣小组的为 A,参加生物兴趣小组的为 B,已知 300 个学生要么参加 A 要么参加 B,不存在都不参加的人,问 $A \cap B$,列式: $A+B-A \cap B=$ 总数-都不→240+150- $A \cap B=300-0$ → $A \cap B=90$,对应 C 项。【选 C】

【注意】排列组合问题、概率问题、行程问题都可以放弃,但是容斥问题不可以放弃。

【知识点】画图法: 容斥问题大部分题目可以用公式做, 但有的题目表述很复杂, 可能无法列出公式或者在考场上忘记公式, 考虑画图法。

1. 若条件或问题不便于代入公式计算,则考虑画图。例如:只参加 A;参加 A、B 但不参加 C;或者缺少代公式必要的数据。 $A+B-A\cap B=$ 总数-都不,其中 A 指所有满足 A 的,B 指所有满足 B 的,A \cap B 指中间的重合部分,公式中没有任何部分代表只满足 A 或只满足 B 的(下图蓝色部分),此时代入会不方便。

2. 先画圈,再代数:从里到外,注意去重。

【例 2※】(2018 联考)某试验室通过测评 I 和 II 来核定产品的等级:两项测评都不合格的为次品,仅一项测评合格的为中品,两项测评都合格的为优品。某批产品只有测评 I 合格的产品数是优品数的 2 倍,测评 I 合格和测评 II 合格的产品数之比为 6:5。若该批产品次品率为 10%,则该批产品的优品率为:

A. 10% B. 15%

C. 20% D. 25%

【解析】例 2. 本题属于历史上二集合中考查难度较高的题目,思维量大。 题目没有给出任何具体值,但给出比例关系,考虑赋值。已知"测评两项产品",

Fb 粉笔直播课

所以是两集合容斥问题,题目只给出"某批产品只有测评 I 合格的产品数是优品数的 2 倍······",没有给出只有 I 合格和只有 II 合格的数值,代公式比较麻烦,考虑画图做。如下图所示,赋优品有 1 件,已知"只有测评 I 合格的产品数是优品数的 2 倍",则只有测评 I 合格的有 1*2=2 件,满足测评 I 合格的共有 1+2=3 件;已知"测评 I 合格和测评 II 合格的产品数之比为 6:5",则满足测评 II 合格的有 2.5 件,只有满足测评 II 合格的有 2.5—1=1.5 件;已知"该批产品次品率为 10%",则次品/总数=10%,所以非次品占总体的 1—10%=90%,故总数=(2+1+1.5)/90%=5 件,所求=1/5=20%,对应 C 项。【选 C】

【注意】考场上此类题出现的概率比较低,掌握了这个难度的题,基本所有两集合容斥问题都能解决。

【知识点】

- 1. 二集合是基础类题目, 但考场上考的最多的是三集合。
- 2. 公式推导:如下图所示,先找到总情况,三个条件相加;然后去重,重合地方的椭圆只需要加一次,所以减去每两个条件的交集;中间的部分既属于 A同时也属于 B和 C,相加时加了三次,去重的时候减了三次,所以要加中间的部分;最后用总数减都不等于前面的情况。

3. 三集合公式 (标准型): A+B+C-A∩B-B∩C-C∩A+A∩B∩C=全-都不。

【例 3】(2018 陕西)有关部门对 120 种抽样食品进行化验分析,结果显示,抗氧化剂达标的有 68 种,防腐剂达标的有 77 种,漂白剂达标的有 59 种,抗氧化剂和防腐剂都达标的有 54 种,防腐剂和漂白剂都达标的有 43 种,抗氧化剂和漂白剂都达标的有 35 种,三种食品添加剂都达标的有 30 种,那么三种食品添加剂都不达标的有多少种?

A. 14	B. 15
C. 16	D. 17
E. 18	F. 19
G. 20	Н. 21

【解析】例 3. 题目给出三个条件且有交叉重叠,三集合容斥问题,代入公式计算。根据题意设抗氧化剂达标为 A,防腐剂达标为 B,漂白剂达标为 C,列式: $A+B+C-A\cap B-B\cap C-C\cap A+A\cap B\cap C=$ 全一都不→68+77+59-54-43-35+30=120-都不,选项尾数各不相同,考虑尾数法,尾数 8-尾数 3-尾数 5=0,尾数 7+尾数 9-尾数 4+尾数 0=尾数 2,尾数 0-尾数 8=尾数 2,故答案尾数为 8,对应 E 项。【选 E】

【注意】本题公式和数据都不难,在考场上一定要拿下。

【例 4】(2019 青海法检)一次期末考试,某班同学成绩统计如下表:

数学 90	语文 90	英语 90	数学和	数学和	语文和	三门功
分以上	分以上	分以上	英语 90	语文 90	英语 90	课没有
			分以上	分以上	分以上	一门90
						分以上
23 人	21 人	20人	8人	6人	10 人	5人

求: 这个班最多有多少人?

A. 45 B. 51

C. 53 D. 55

【解析】例 4. 题目给了三个条件、两两交集和都不满足的情况,三集合容斥问题,代公式计算。根据题意设数学为 A,语文为 B,英语为 C,三者都满足的情况 有 x 人,列式: $A+B+C-A\cap B-B\cap C-C\cap A+A\cap B\cap C=$ 总数 - 都 $T \rightarrow 23+21+20-8-6-10+x=$ 总数 $-5 \rightarrow$ 总数-45+x。问最多有多少人,所以要 x 尽可能大,画图分析,两两都满足的有 x 人,人,人,人,所以根据"短板效应",x 不能大于两两都满足的情况,所以 x 《6 人,故 x 最大取 6 人,所求-45+6-51 人,对应 x 图 项。【选 x 图 页。

【注意】容斥问题中没有提及的量不代表为零,所以本题三者都满足的情况设为 x 人。

【知识点】

- 1. 非标准型公式看起来比较短是因为标准型公式去重的情况多, 所以补漏的步骤多, 非标准型公式去重巧妙, 故看起来舒服。
- 2. 推导过程: 所有容斥问题涉及满足两项都指的是只满足两项(只满足 AB、只满足 BC、只满足 AC)。如下图所示, A、B、C 三个条件相加, 然后去重; I、II、III号区域各重复一次, 所以要减去三个区域的整体(只满足两项); 中间区域加了三次, 所以需要减掉两次; 最后右边为总数减去都不满足的情况。

- 3. 容斥问题的公式推导过程要理解,实在理解不了的同学背下来公式也可以做题。
 - 4. 三集合公式(非标准型): A+B+C-满足两项-满足三项*2=全-都不。
 - 5. 标准型公式和非标准型公式的区别:
- (1) 题目出现既 $A \ Z \ B \$ 、既 $B \ Z \ C \$ 、既 $C \ Z \ D \$ 的情况,两两交集给得很繁琐,用标准型公式,比如例 $3 \$ 、例 $4 \$ 。
 - (2) 除(1) 中情况外其他情况全部用非标准型公式,比如例 5。
- 【例 5】(2019 新疆兵团)某机关开展红色教育月活动,三个时间段分别安排了三场讲座。该机关共有 139 人,有 42 人报名参加第一场讲座,51 人报名参加第二场讲座,88 人报名参加第三场讲座,三场讲座都报名的有 12 人,只报名参加两场讲座的有 30 人。问没有报名参加其中任何一场讲座的有多少人

A. 12 B. 14

C. 24 D. 28

【解析】例 5. 已知"只报名参加两场讲座的有 30 人",直接给出满足两项的条件,没有给出"既……又……"的情况,用非标准型公式。根据题意设参加第一场讲座的为 A,参加第二场讲座的为 B,参加第三场讲座的为 C,没有报名参加任何一场的有 x 人,列式:A+B+C-满足两项-满足三项*2=总数-都不→42+51+88-30-2*12=139-x,虽然 B、C 项尾数相同但可以"赌"一把,万一不是 4 即可解出答案,尾数 2+尾数 1+尾数 8-尾数 0-尾数 4=尾数 7,故尾数 9-尾数 2=尾数 7,尾数为 2 的只有 A 项。【选 A】

【注意】如果本题改为"既报名第一场又报名第二场的有 x 人,既报名第二场又报名第三场的有 y 人,既报名第一场又报名第三场的有 z 人",此时用标准型公式,给出"只报名两场讲座的 n 个人",此时用非标准型公式。

【例 6】(2018 联考)联欢会上,有 24 人吃冰激凌、30 人吃蛋糕、38 人吃水果,其中既吃冰激凌又吃蛋糕的有 12 人,既吃冰激凌又吃水果的有 16 人,既吃蛋糕又吃水果的有 18 人,三样都吃的则有 6 人。假设所有人都吃了东西,那么只吃一样东西的人数是多少?

A. 12 B. 18 C. 24 D. 32

【解析】例 6. 题目给出"既······又·····"的条件形式,用标准型公式计算。根据 题 意 假 设 吃 冰 激 凌 、 蛋 糕 、 水 果 的 分 别 为 A 、 B 、 C 。 列 式 : A+B+C-A ∩ B-B ∩ C-A ∩ C+A ∩ B ∩ C=总数-都不,代入数字发现只能算出总数,和题目所问不符,画图标数据做。如下图所示,已知"既吃冰激凌又吃蛋糕的有 12人,既吃冰激凌又吃水果的有 16人,既吃蛋糕又吃水果的有 18人,三样都吃的则有 6人",故只吃冰激凌和蛋糕、只吃蛋糕和水果、只吃冰激凌和水果的分别有 12-6=6人、18-6=12人、16-6=10人;已知"有 24人吃冰激凌、30人吃蛋糕、38人吃水果",故分别只吃冰激凌、只吃蛋糕、只吃水果的有 24-10-6-6=2人、30-6-6-12=6人、38-10-6-12=10人,所求=2+6+10=18人,对应 B 项。【选 B】

【注意】

- 1. 本题也可以用标准公式算出总人数(A+B+C-A∩B-A∩B-B∩C+A∩B∩C=总数-都不),再用非标准公式算出满足两项的人数(A+B+C-满足两项-2*满足三项=总数-都不),最后代入常识公式算出满足一项的人数。
 - 2. 容斥问题如果一个代入一个公式解决不了建议画图做(更简单)。

【知识点】常识公式:满足一项+满足两项+满足三项=全-都不。比如今天晚上聚餐,老师点了三道菜,有的人只吃了三道菜中的一道,有的人吃了三道菜中的两道,有的人三道菜都吃了,有的人都没吃,所以四种人的情况相加等于总数(三种情况相加等于总数减都不的情况)。

【注意】容斥原理:

- 1. 公式:
- (1) 两集合: A+B-A∩B=总数-都不。
- (2) 三集合:
- ①标准型: A+B+C-A∩B-A∩C-B∩C+A∩B∩C=总数-都不。
- ②非标准型: A+B+C-满足两项-满足三项*2=总数-都不。
- ③常识型:满足一项+满足两项+满足三项=总数-都不。
- 2. 画图:
- (1) 画圈圈,标数据。
- (2) 从里到外,注意去重。

【注意】

- 1. 四节课学了三大方法+六大题型,最难的是行程问题、排列组合问题、经济利润问题,其他题型都要基础套路和结论。
- 2. 怎么复习: 复习的时候要发挥长处(精益求精),基础薄弱的地方不需要花大量时间复习,数量关系是锦上添花,心态一定要把握好。
- 3. 怎么练习数量关系:本节课结束后把强化关系书上的题目做完,在听所有的直播课之前要先把题做一遍,后面的课除了方法精讲都是讲练结合,强化练习做完之后再去做真题。所有的方法精讲部分都掌握之后就要正式进入模考练习阶段,方法精讲、真题课、强化课讲的知识点只占了80%,还有其他的知识点都打散到每周的模考中,有条件的一定要跟模考,听模考直播课。强化练习不是《行测思维》,把方法精讲中所有的题型都学会后可以去看《行测思维》,《行测思维》是 100%的考点,但是课上只会讲 70%~80%的高频考点。

- 4. 考场做题优先度: 能用代入排除法的优先做, 题目出现比例、倍数、分数、百分数等都指引做题方向有时也可以秒杀, 工程问题、容斥问题、特有的最值问题都不要放弃, 其他题型都要结合平常练习和考场发挥。
- 5. 溶液问题后期补充课包中会讲,其中包括线段法,线段法可以解决资料分析中的混合增长率,也可以解决数量关系中的溶液混合问题。

【答案汇总】排列组合与概率:基础概念: 1-3: CBB; 经典题型: 1-3: BDC; 概率问题: 1-4: CDDB

容斥原理: 1-5: CCEBA; 6: B

遇见不一样的自己

Be your better self

