MICRO LOGIC CORP.	
,	
HACKENSACK, NJ	

LSD-

3

0 1 2

BCS

rel

CPY

BNF CMP

rel

CPX #n SBC (n,X)

BEQ rel SBC (n),Y

> 0 1 2

B-

D-

E-

F-

LDA

(n).Y

CMP

(n,X)

LDA

(n)

CMP

(n)

SBC

(n)

6502 (65X

REFERENCE CARD MICROPROCESSOR INSTANT

MICRO® CHART

100002	a liberation			940.83	KOMBU	72.00				100				
١	Hex to Instruction Conversion 65SC02 65C02													
4	5	6	7	8	9	A	В	C	D	E	F			
TRB n	ORA	ASL	RMB0 n	PHP	ORA #n	ASL		TRB nn	ORA	ASL	BBR0 n,rel	0-		
TSB n	ORA n,X	ASL n,X	RMB1	CLC	ORA nn,Y	INC A		TSB nn	ORA nn,X	ASL nn,X	BBR1 n,rel	1-		
BIT	AND	ROL	RMB2	PLP	AND	ROL		BIT	AND	ROL	BBR2	2-		

0-	BRK (*)	ORA (n,X)		n	ORA	ASL	n RMB0	PHP	ORA #n	ASL	TRB nn	ORA	ASL	BBR0 n,rel	0-
1-	BPL rel	ORA (n),Y	ORA (n)	TSB n	ORA n,X	ASL n,X	RMB1 n	CLC	ORA nn,Y	INC A	TSB nn	ORA nn,X	ASL nn,X	BBR1 n,rel	1-
2-	JSR nn	AND (n,X)		BIT	AND	ROL	RMB2 n	PLP	AND #n	ROL	BIT	AND	ROL	BBR2 n,rel	2-
3-	BMI rel	AND (n),Y	AND (n)	BIT n,x	AND n,X	ROL n,X	RMB3 n	SEC	AND nn,Y	DEC A	BIT nn,x	AND nn,X	ROL nn,X	BBR3 n,rel	3-
4-	RTI	EOR (n,X)			EOR	LSR	RMB4 n	РНА	EOR #n	LSR A	JMP nn	EOR	LSR	BBR4 n,rel	4-
5-	BVC rel	EOR (n),Y	EOR (n)		EOR n,X	LSR n,X	RMB5 n	CLI	EOR nn,Y	PHY		EOR nn,X	LSR nn,X	BBR5 n,rel	5-
6-	RTS	ADC (n,X)		STZ n	ADC	ROR	RMB6 n	PLA	ADC #n	ROR	JMP (nn)	ADC	ROR	BBR6 n,rel	6-
7-	BVS rel	ADC (n),Y	ADC (n)	STZ n,x	ADC n,X	ROR n,X	RMB7 n	SEI	ADC nn,Y	PLY	JMP nn,x	ADC nn,X	ROR nn,X	BBR7 n,rel	7-
8-	BRA rel	STA (n,X)		STY	STA	STX	SMB0 n	DEY	BIT #n	TXA	STY	STA	STX	BBS0 n,rel	8-
9-	BCC rel	STA (n),Y	STA (n)	STY n,X	STA n,X	STX n,Y	SMB1 n	TYA	STA nn,Y	TXS	STZ nn	STA nn,X	STZ nn,X	BBS1 n,rel	9-
A -	LDY #n	LDA (n,X)	LDX #n	LDY	LDA	LDX	SMB2 n	TAY	LDA #n	TAX	LDY	LDA	LDX nn	BBS2 n,rel	A-

n

SMB4

SMB5

n

SMB7 SED

SMB3 CLV

INY CMP

CLD

INX

8 9 A

LDA

nn,

#n

CMP

SBC NOP

SBC nn, Y

TSX

DEX

PHX STP

PLX

WAI

Memory Map

0000
00FF
0100
01FF
0200
FFF9
FFFA&B
FFFC&D

'In systems with < 512 bytes of RAM the hardware can ignore signal AB8, moving stack into page zero.

FFFE&F

IRQ VECTOR

Status Flags

П	MSB LSB
ı	NV-BDIZC
ı	N=negative result
١	V=overflow
ı	B=BRK instruction
	D=decimal mode

I=IRQ disable Z=zero result C=carry=borrow

Note: above is true when flag = 1.

Overflow normally signifies signed arithmetic result is out of range.

When D=1, only ADC and SBC use decimal (BCD) arithmetic.

Interrupts

IRQ is low level sensitive.

NMI is falling edge sensitive.

Reset sets I=1.

- errupts are processed by:

 1. Push PC of unexecuted instruction.
- Push P.
- Jump via appropriate vector

Effect on Flags

NV - BDIZC

	П	ADC	N	٧	-	-	-	-	Z	C	1
		AND	N	-	-	-	-	-	Z	-	
		ASL	N	-	-	_	-	-	Z	C	
		BIT	N	٧	-	-	-		Z	-	2
		BRK	-		-	1	-	1	-	-	(4)
ĺ		CLC	-	-	-	-	-	-	-	0	
ĺ		CLD	-	-	-	-	0	-	-	-	
ĺ.		CLI	-	-	-	-	-	0	-	-	
		CLV	-	0	-	-	-	-	-	-	
ĺ.		CMP	N	-	-	-	-	-	Z	C	
Ī.		CPX	N	-	-	-	-	-	Z	C	
		CPY	N	-	-	-	-			C	
Ī.	П	DEC	N	-	-	-	-	-	Z	•	
	П	DEX	N	-	-	-		-	Z	-	
Ī.		DEY	N	-	-	-	-	-	Z	-	
ľ		EOR	N	-	-	-	-	-	Z	-	
	П	INC	N	-	-	-	-	-	Z	-	
		INX	N	-	-	-	-	-	Z	-	
ľ		INY	N	-	-	-	-	-	Z	-	
ľ		LDA	N	۱ -	-	-	-	-	Z	-	
Ī.		LDX	N	-	-	-	-		Z	-	
	П	LDY	N	-	-	-	-	-	Z	-	
	П	LSR	0	-		-		-	Z	C	
	П	ORA	N	-	-	-	-	-	Z	-	
ſ	П	PLA	N	-	-	-	-	-	Z	-	
	П	PLP	N	IV	-	B	D	1		C	
	П	ROL	N	-	-	-	-	-		C	
	П	ROR	N	-	-	-	-	-	Z	C	
		RTI	N	IV	-	B	D	1			-
	П	SBC	N	IV	-	-	-	-	Z	C	3
	П	SEC	-	-	-	-	-	-	-	1	
	П	SED	-	-	-	-	1	-	-	-	
ĺ.	П	SEI	-	-	-	-	-	1		-	
	П	TAX	N	-	-	-	-	-	Z		
	П	TAY	N	-	-	-	-	-	Z		
l	П	TSX	N	-	-	-	-	-	Z	-	
	П	TXA	N	١-		-	-	-	Z	-	
	П	TYA	N	-	-	-	-	-	Z	-	
ı	П										

- 1) If in decimal mode Z flag is invalid.
- N = data bit 7 V = data bit 6 Z = AND result $\overline{3}$ $\overline{C} = borrow$

Note: unlisted instructions have no effect on flags (4)BRK on 65

> Registers A ACCUMULATOR

Y INDEX REG

X X INDEX REG

S STACK PNTR

FLAGS

A. Y. X. S. P - 1 byte. Only PC is 2 bytes.

Unsigned

PROGRAM COUNTER

Miscellaneous

S points to next free byte of stack.

Stack push decrements S.

In pushing PC, high byte is pushed first.

Pre 6/76 chips have no ROR instruction.

65XX is a totally software compatible family.

This card is based on specifications from MOS Technology, Inc.

Abbreviations number of Bytes C = number of Cycles. also Carry.

= 1 byte quantity = 2 byte quantity

IRQ = Interrupt ReQuest = Non Maskable Interrupt = RESet eXclusive OR XOR (00>0 01>1 10>1 11>0)

A,P,S,X,Y,PC=see "Registers" N,V,B,D,I,Z,C = see "Status Flags" .#\$@%'(); = see "Assembler Symbols"

Comparisons

PC

example: CMP # n									
A < n	BCC YES								
A = n	BEQ YES								
A > n	BCC NO BNE YES								
A≥n	BCS YES								
A≠n	BNE YES								
A≼n	BCC YES								

YES represents label YES represents label for code to be executed if condition is true. For > & \le , test requires both instructions.

Internally, A-n is computed to determine N,Z,C flags.

Addressing Modes

LDY

n,X

CPY

LDA

n,X

CMP

CMP DEC

SBC

SBC n,X

LDX

DEC

INC SMB6

INC n,X

Note: Full 2 byte addresses in code , stack, and data areas are stored low byte followed by high byte. Thus, in hex, JMP \$1234 is: 4C 34 12.

3 4 5 6 7

FORM	ADDRESSING	DESCRIPTION
nn	Absolute	Location nn holds data.
nn,X	Absolute X	Location nn+X holds data.
nn,Y	Absolute Y	Location nn+Y holds data.
A (***)	Accumulator	Accumulator holds data.
#n	Immediate	n is data.
(n,X)	Ind X	Location n+X and next of page 0 hold address of data.*,**
(n), Y	Ind Y	Address of data is Y + address held by location n and next of page 0.**
(nn)	Indirect	Location nn and next hold adddress to jump to.*
rel	Relative	Address to jump to is n + address of next instruction, with n treated as a signed number.
n	Zero Page	Location n of page 0 holds data.
n,X	Zero Page X	Location n+X of page 0 holds data.
n,Y	Zero Page Y	Location n+Y of page 0 holds data.

*n+X is computed discarding any carry.
**2 bytes must not cross page boundary.
*** A as addressing mode can be omitted.

Hex and Decimal Conversion

	LSI	\rightarrow					_	•		-			•				
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0
1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1
2	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	2
3	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	3
4	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	4
5	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	5
6	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	6
7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	7
8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	8
9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	9
Α	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	Α
В	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	В
C	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	С
D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	D
Ε	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	E
F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	F
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	

ASCII Character Set MSD 0 1 2 3 4 5 6 7

LDY nn,X

CPY CMP

nn nn nn

CPX SBC INC

C D E F

LDA nn,X

CMP

nn,X

SBC nn,X INC nn,X BBS

n.rel

BBS4

BBS5

n,rel

BBS6

n,rel

BBS7

n.rel

B-

C-

D-

E-

F-

LDX nn, Y

DEC

DEC

П		MSD	U	,	~	3	4	0	0	,	П
	LSI		000	001	010	011	100	101	110	111	
ı	0	0000	NUL	DLE	SP	0	@	P	,	р	
	1	0001	SOH	DC1	1	1	Α	Q	a	q	
	2	0010	STX	DC2	"	2	В	R	b	r	
	3	0011	ETX	DC3	#	3	C	S	С	S	
	4	0100	EOT	DC4	\$	4	D	Т	d	t	
	5	0101	ENQ	NAK	%	5	E	U	е	u	
	6	0110	ACK	SYN	&	6	F	٧	f	V	
	7	0111	BEL	ETB	,	7	G	W	g	w	
	8	1000	BS	CAN	(8	Н	X	h	X	
	9	1001	HT	EM)	9	1	Y	i	У	
	Α	1010	LF	SUB		:	J	Z	j	Z	
	В	1011	VT	ESC	+	-;	K	[k	1	
	C	1100	FF	FS	,	<	L	1	1	1	
	D	1101	CR	GS	-	=	М]	m	}	
	E	1110	SO	RS		>	N	1	n	~	
	F	1111	SI	US	1	?	0	-	0	DEL	

6502 Pins

Vss		1	40	Þ	RES
RDY		2	39	\vdash	Ø2(OUT)
Ø1(OUT)		3	38	\vdash	S.O.
IRQ		4	37	\vdash	Ø0(IN)
NC		5	36	\vdash	NC
NMI	\Box	6	35	\vdash	NC
SYNC		7	34		R/W
Vcc		8	33	\vdash	DB0
AB0		9	32		DB1
AB1		10	31	\vdash	DB2
AB2		11	30	E	DB3
AB3	\Box	12	29	Þ	DB4
AB4	\Box	13	28	Þ	DB5
AB5		14	27	\vdash	DB6
AB6		15	26	Þ	DB7
AB7		16	25	\vdash	AB15
AB8		17	24	Þ	AB14
AB9		18	23	Þ	AB13
AB10		19	22	Þ	AB12
AB11		20	21		Vss

6502 (65XX)

MICROPROCESSOR INSTANT REFERENCE CARD

MICRO® CHART

> DO NOT PLACE ON HOT SURFACES

Copyrighted and published by Micro Logic Corp. POB 174, Hackensack, NJ 07802. Dealer, school, catalogue, club, premium, and OEM inquiries welcome. End user comments invited. Printed in U.S.A. World copyrighted. All rights reserved.

WHILE PREPARED WITH EXTREME CARE.
THERE ARE NO WARRANTIES EXPRESS
OR IMPLIED AS TO MERCHANTABILITY
OR FITNESS FOR PURPOSE.

AUTHOR: JAMES D. LEV

#101B

INSTRU	ICTIC	JAI C	ET
IIADIU		כ עוכ	

	INSTRUCTION SET												
	INSTRUCTION	OP	C	В	DESCRIPTION	ADDRESSING		INSTRUCTION	OP	C	В	DESCRIPTION	ADDRESSING
	ADC #n ADC nn ADC n ADC (n,X) ADC (n),Y ADC n,X ADC nn,X ADC nn,Y	69 6D 65 61 71 75 7D 79	2 4 3 6 5+ 4+ 4+	2 3 2 2 2 2 3 3	Add with carry to A	Immediate Absolute Zero Page Ind X Ind Y Zero Page X Absolute X		LDA #n LDA nn LDA n LDA (n,X) LDA (n),Y LDA nn,X LDA nn,X	A9 AD A5 A1 B1 B5 BD B9	2 4 3 6 5+ 4 4+ 4+	2 3 2 2 2 3 3	Load A Load A Load A Load A Load A Load A Load A	Immediate Absolute Zero Page Ind X Ind Y Zero Page X Absolute X Absolute Y Immediate
A	AND #n AND nn AND (n,X) AND (n),Y AND n,X AND nn,X	29 2D 25 21 31 35 3D	2 4 3 6 5+ 4 4+	2 3 2 2 2 2 3	AND to A	Immediate Absolute Zero Page Ind X Ind Y Zero Page X Absolute X	L	LDX #n LDX nn LDX n LDX nn,Y LDX n,Y	AE A6 BE B6	2 4 3 4+ 4	2 3 2 3 2	Load X Load X Load X Load X Load X	Absolute Zero Page Absolute Y Zero Page Y Immediate Absolute
	AND nn,Y ASL nn ASL n ASL A	39 0E 06 0A	4+ 6 5 2 6	3 2 1	AND to A Arithmetic shift left Arithmetic shift left Arithmetic shift left	Absolute Y Absolute Zero Page Accumulator		LDY nn LDY n LDY n,X LDY nn,X	AC A4 B4 BC	4 3 4 4+ 6	3 2 3 3	Load Y Load Y Load Y Load Y Load Y Logical shift right	Zero Page Zero Page X Absolute X
	ASL n,X ASL nn,X BCC n BCS n BEQ n	16 1E 90 B0 F0	2+ 2+ 2+ 2+	2 2 2 2	Arithmetic shift left Arithmetic shift left Branch if carry clear (C=0) Branch if carry set (C=1) Branch if equal (Z=1)	Zero Page X Absolute X Relative Relative Relative	N	LSR n LSR A LSR n,X LSR nn,X	46 4A 56 5E	5 2 6 7	2 1 2 3	Logical shift right Logical shift right Logical shift right Logical shift right No operation	Zero Page Accumulator Zero Page X Absolute X None
В	BNE n BMI n BPL n BVC n BVS n	D0 30 10 50 70	2+ 2+ 2+ 2+ 2+	2 2 2 2 2	Branch if not equal (Z=0) Branch if minus (N=1) Branch if plus (N=0) Branch if ovfl clear (V=0) Branch if ovfl set (V=1)	Relative Relative Relative Relative Relative	0	ORA #n ORA nn ORA n ORA (n,X) ORA (n),Y	09 0D 05 01 11	2 4 3 6 5+	2 3 2 2 2	OR to A	Immediate Absolute Zero Page Ind X Ind Y
	BIT nn BIT n	2C 24	3	3 2	AND with A (A unchanged) AND with A (A unchanged)	Absolute Zero Page		ORA n,X ORA nn,X ORA nn,Y	15 1D 19	4 4+ 4+	3	OR to A OR to A OR to A	Zero Page X Absolute X Absolute Y
	BRK(*) CLC CLD CLI CLV	00 18 D8 58 B8	7 2 2 2 2 2	1 1 1 1 1 1	Break (force interrupt) Clear carry Clear decimal mode Clear IRQ disable	None None	Р	PHA PHP PLA PLP	48 08 68 28	3 3 4 4	1 1 1 1	Push A onto stack Push P onto stack Pull (pop) A from stack Pull (pop) P from stack	None None None
	CMP #n CMP nn CMP n CMP (n,X)	C9 CD C5 C1	2 4 3 6	2 3 2 2	Clear overflow Compare with A Compare with A Compare with A Compare with A	None Immediate Absolute Zero Page Ind X		ROL nn ROL n ROL A ROL n,X ROL nn,X	2E 26 2A 36 3E	6 5 2 6 7	3 2 1 2 3	Rotate left through carry	Absolute Zero Page Accumulator Zero Page X Absolute X
С	CMP (n),Y CMP n,X CMP nn,X CMP nn,Y	D1 D5 DD D9	5+ 4 4+ 4+ 4+	2 2 3 3	Compare with A Compare with A Compare with A Compare with A Compare with X	Ind Y Zero Page X Absolute X Absolute Y	R	ROR nn ROR n ROR A ROR n,X ROR nn,X	6E 66 6A 76 7E	6 5 2 6 7	3 2 1 2 3	Rotate right through carry Rotate right through carry Rotate right through carry Rotate right through carry Rotate right through carry	Absolute Zero Page Accumulator Zero Page X Absolute X
	CPX nn CPX n	EC E4	4 3	3 2	Compare with X Compare with X	Absolute Zero Page		RTI RTS	40 60	6	1	Return from interrupt Return from subroutine	None None
	CPY #n CPY nn CPY n	CO CC C4	2 4 3	2 3 2	Compare with Y Compare with Y Compare with Y	Immediate Absolute Zero Page		SBC #n SBC nn SBC n SBC (n,X)	E9 ED E5 E1	2 4 3 6 5+	2 3 2 2 2	Subtract with borrow from A	Immediate Absolute Zero Page Ind X Ind Y
D	DEC nn DEC n DEC n,X DEC nn,X	CE C6 D6 DE	6 5 6 7	3 2 2 3	Decrement by one Decrement by one Decrement by one Decrement by one	Absolute Zero Page Zero Page X Absolute X		SBC (n),Y SBC n,X SBC nn,X SBC nn,Y	F5 FD F9	3+ 4 4+ 4+ 2	2 3 3	Subtract with borrow from A Subtract with borrow from A Subtract with borrow from A	Zero Page X Absolute X Absolute Y
	DEX DEY	CA 88	2 2	1	Decrement X by one Decrement Y by one	None None		SEC SED SEI	F8 78	2	1	Set carry Set decimal mode Set IRQ disable	None None
E	EOR #n EOR nn EOR n EOR (n,X) EOR (n),Y EOR n,X EOR nn,X EOR nn,X	49 4D 45 41 51 55 5D 59	2 4 3 6 5+ 4 4+ 4+	2 3 2 2 2 3 3	XOR to A	Immediate Absolute Zero Page Ind X Ind Y Zero Page X Absolute X Absolute Y	S	STA nn STA n STA (n,X) STA (n),Y STA n,X STA nn,X STA nn,Y	8D 85 81 91 95 9D 99	4 3 6 6 4 5 5	3 2 2 2 2 3 3	Store A Store A Store A Store A Store A Store A	Absolute Zero Page Ind X Ind Y Zero Page X Absolute X Absolute Y Absolute
1	INC nn INC n INC n,X INC nn,X	EE E6 F6 FE	6 5 6 7	3 2 2 3	Increment by one	Absolute Zero Page Zero Page X Absolute X		STX n STX n,Y STY nn STY n STY n,X	86 96 8C 84	3 4 4 3 4	3 2 2	Store X Store X Store Y Store Y Store Y	Zero Page Zero Page Y Absolute Zero Page Zero Page X
	INX INY	E8 C8	2 2	1	Increment X by one Increment Y by one	None None		TAX TAY	AA A8	2	1	Transfer A to X Transfer A to Y	None None
J	JMP nn JMP (nn)	4C 6C	3 5	3	Jump to new location Jump to new location	Absolute Indirect	Т	TSX TXA TXS	8A 8A	2 2 2 2	1 1 1	Transfer S to X Transfer X to A Transfer X to S	None None None
	JSR nn	20	6	3	Jump to subroutine	Absolute		TYA	98	2	1	Transfer Y to A	None
Instruction Notes					Chift Instructions Added Cycle		Timo	1 1	-		blor Symbols (*) On Atari I	vny BRK has 2 hytest	

Instruction Notes

ADC	A+DATA+C→A				
BRK	Ignore I flag, Set B=1 Push return address+1 Push P Jump to IRQ vector				
JSR	Push return address-1 Jump absolute				
RTI	Pop P, Pop PC				
RTS	Pop PC, Increment PC				
SBC	A-DATA-C →A				

Shift Instructions

	MSB	LSB
ASL	C ←	← 0
LSR [→ C 0→	
ROL [_c +	□
ROR [→ C → TT	

Added Cycle Time

A (+) in the (C) column for branch instructions means: Add 0 if branch not taken. Add 1 if taken within page. Add 2 if taken across pages.

A (+) in the (C) column for other instructions means: Add 1 if indexing across page boundary.

Assembler Symbols

- Assembler directive# Immediate addressingHex number prefix
- Octal number prefix
 Binary number prefix
 ASCII character prefix
- () Indirect addressing; In col 1 for comment

(*) On Atari Lynx, BRK has 2 bytes!