# Une approche d'optimisation discrète pour la classification associative

Zacharie ALES (zacharie.ales@ensta-paristech.fr)

- RODM
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet
  - Présentation du sujet
  - Julia

# Sommaire

- 1 RODM
- 2 Introduction au machine learning
- ORC Règles ordonnées pour la classification
- 4 Projet

#### Intervenants

- Axel Parmentier (2 séances)
   Machine learning, génération de colonnes
- Fabien Tarissan(2 séances + 2 pour masters)
   Statistiques, grands graphes
- Zacharie Ales (2 séances)
   PLNE, classification

| Planning |       |             |    |    |        |  |  |  |
|----------|-------|-------------|----|----|--------|--|--|--|
|          | Date  | Intervenant | CM | TP | Examen |  |  |  |
|          | 17/01 | Z. A.       | Х  | Х  |        |  |  |  |
|          | 24/01 | F. T.       | Х  |    |        |  |  |  |
|          | 31/01 | A. P.       | Х  |    |        |  |  |  |
|          | 7/02  | A. P.       | Х  |    |        |  |  |  |
|          | 14/02 | F. T.       | Х  | Х  |        |  |  |  |
|          | 21/02 | Z. A.       |    | Х  | Х      |  |  |  |
|          | 7/03  | F. T.       | Х  | Х  |        |  |  |  |
|          | 21/03 | F. T.       |    | Х  |        |  |  |  |

### Évaluation

En fonction de l'intervenant

- A. P.: examen
- Z. A. : projet

# Sommaire

- 2 Introduction au machine learning

# Vidéo introductive

# The 7 Steps of Machine Learning



- Lien youtube
- Chaîne: Google Cloud
- Intervenant : Yufeng Guo

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

#### Définition - Classification

Conception et analyse d'algorithmes visant à étiqueter individuellement des données Associer une classe à chaque donnée en fonction de ses caractéristiques

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

#### Définition - Classification

Conception et analyse d'algorithmes visant à étiqueter individuellement des données Associer une classe à chaque donnée en fonction de ses caractéristiques

#### Exemple - Classe

- Vin, bière
- Chat, chien, oiseaux, ...
- Reconnaissance de chiffres manuscrits

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

#### Définition - Classification

Conception et analyse d'algorithmes visant à étiqueter individuellement des données Associer une classe à chaque donnée en fonction de ses caractéristiques

#### Exemple - Classe

- Vin, bière
- Chat, chien, oiseaux, ...
- Reconnaissance de chiffres manuscrits

#### Exemple - Caractéristiques

- taux d'alcool, couleur
- ratio hauteur/longueur, forme, ...

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

#### Définition - Classification

Conception et analyse d'algorithmes visant à étiqueter individuellement des données Associer une classe à chaque donnée en fonction de ses caractéristiques

#### Exemple - Classe

- Vin, bière
- Chat, chien, oiseaux, ...
- Reconnaissance de chiffres manuscrits

#### Exemple - Caractéristiques

- taux d'alcool, couleur
- ratio hauteur/longueur, forme, ...

Intelligence artificielle ⊂ Machine learning ⊂ Classification

Conception et analyse d'algorithmes capable d'apprendre à partir d'exemples

#### Définition - Classification

Conception et analyse d'algorithmes visant à étiqueter individuellement des données Associer une classe à chaque donnée en fonction de ses caractéristiques

#### Exemple - Classe

- Vin, bière
- Chat, chien, oiseaux, ...
- Reconnaissance de chiffres manuscrits

#### Exemple - Caractéristiques

- taux d'alcool, couleur
- ratio hauteur/longueur, forme, ...

Intelligence artificielle ⊂ Machine learning ⊂ Classification

#### Définition - Classifieur

Algorithme de classification Appelé "model" dans la vidéo

# Points importants pour la suite

### Partage des données

- apprentissage ("train") : données utilisées pour définir le classifieur
- 2 test : données utilisées pour évaluer les performances du classifieur

# Points importants pour la suite

### Partage des données

- apprentissage ("train") : données utilisées pour définir le classifieur
- test : données utilisées pour évaluer les performances du classifieur

#### Définition - Précision

Pourcentage de données de test correctement classifiées

# Définition - Rappel

Pourcentage de données d'apprentissage correctement classifiées

#### Classifieur - Arbres de décision

#### Arbre dont

- les noeuds internes sont des choix
- les feuilles sont des classes

### Exemple - Le client a-t-il des chances d'acheter un ordinateur?



#### Classifieur - Forêts d'arbres décisionnels

- Apprentissage de multiples arbres aléatoires sur des sous-ensembles de données légèrement différents
- Prédiction : vote majoritaire des arbres

Aussi appelées forêts aléatoires ("random forest classifier" en anglais)



Image inspirée de kdnuggets.com





#### Classifieur - Réseaux de neurones



Neurone artificiel



#### Images issues de



- Lien youtube
- Chaîne : ScienceEtonnante
- Intervenant : David Louapre

# Sommaire

- 1 RODN
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet

ORC - Règles ordonnées pour la classification

# Sommaire

- 1 RODN
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- 4 Proje
  - Présentation du sujet
  - Julia

# Exemple - Règle d'association

Si quelqu'un achète

X = {avocat, piment}

il a des chances d'acheter également :

Y = {oignon}

# Définition - Règle d'association

$$X \rightarrow Y$$

avec

- $I = \{i_1, ..., i_m\}$  : ensemble d'items
- $X, Y \subseteq I$

ORC - Règles ordonnées pour la classification

# Exemple - Règle d'association

Si quelqu'un achète

X = {avocat, piment}

il a des chances d'acheter également :

• *Y* = {oignon}

# Définition - Règle d'association

$$X \rightarrow Y$$

avec

- $I = \{i_1, ..., i_m\}$  : ensemble d'items
- $X, Y \subset I$

### Définition - Classification associative

• Classifieur basé sur des régles d'association

Dans ce contexte :

- X correspond à des caractéristiques
- Y correspond à une classe

### Classifieur associatif de type liste de décision

La classe d'une donnée sera celle de la 1ère règle qu'elle vérifie dans une liste ordonnée de règles



Allison Chang, Dimitris Bertsimas, and Cynthia Rudin.

An integer optimization approach to associative classification.

In Advances in neural information processing systems, pages 269–277, 2012.

Classifieur associatif de type liste de décision

La classe d'une donnée sera celle de la 1ère règle qu'elle vérifie dans une liste ordonnée de règles



Allison Chang, Dimitris Bertsimas, and Cynthia Rudin.

An integer optimization approach to associative classification.

In Advances in neural information processing systems, pages 269–277, 2012.

# **Avantages**

- performances comparables à celles des méthodes de l'état de l'art
- simple
- interprétable

Classifieur associatif de type liste de décision

La classe d'une donnée sera celle de la 1ère règle qu'elle vérifie dans une liste ordonnée de règles



Allison Chang, Dimitris Bertsimas, and Cynthia Rudin.

An integer optimization approach to associative classification.

In Advances in neural information processing systems, pages 269–277, 2012.

# **Avantages**

- performances comparables à celles des méthodes de l'état de l'art
- simple
- interprétable

### Définition - Interprétabilité d'un classifieur

Capacité à comprendre les décisions prises par un classifieur

Classifieur associatif de type liste de décision

La classe d'une donnée sera celle de la 1ère règle qu'elle vérifie dans une liste ordonnée de règles



Allison Chang, Dimitris Bertsimas, and Cynthia Rudin.

An integer optimization approach to associative classification.

In Advances in neural information processing systems, pages 269–277, 2012.

# **Avantages**

- performances comparables à celles des méthodes de l'état de l'art
- simple
- interprétable

## Définition - Interprétabilité d'un classifieur

Capacité à comprendre les décisions prises par un classifieur

#### Dichotomie dans les modèles de classification

- Réseaux de neurones : efficaces mais peu interprétables
- Arbres de décision : interprétables mais peu efficaces

| ( | Cara | Classe |   |       |   |
|---|------|--------|---|-------|---|
| 1 | 0    | 0      | 1 | <br>0 | 1 |
| 0 | 0    | 1      | 1 | <br>1 | 1 |
| : | ÷    | ÷      | : | <br>÷ | : |
| : | :    | :      | : | <br>: | : |
| 0 | 1    | 0      | 1 | <br>0 | 2 |

|                         | _    | Caractéristiques |   |   |  |   | Classe |          |
|-------------------------|------|------------------|---|---|--|---|--------|----------|
| 1                       | 1    | 0                | 0 | 1 |  | 0 |        | 1        |
| Données d'apprentissage | 0    | 0                | 1 | 1 |  | 1 |        | 1        |
| Į.                      | , 📋  | :                | : | : |  | : |        | $\vdots$ |
| Données de test         | · [: | :                | ; | : |  | : |        |          |
|                         | 0    | 1                | 0 | 1 |  | 0 |        | 2        |

Extraction de règles associatives



- Extraction de règles associatives
- Classement optimal des règles



- Extraction de règles associatives
- Classement optimal des règles



- Extraction de règles associatives
- Classement optimal des règles

# Trouver et ordonner optimalement des règles sont des problèmes combinatoires

Spécialité de la programmation mixte en nombres entiers



ORC - Règles ordonnées pour la classification

# Sommaire

- **RODM**
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet
  - Présentation du sujet
  - Julia

# Exemple introductif - Jeu de morpion

# Principe

- 2 joueurs (x et o)
- Tour par tour
- x joue en 1er
- Le 1er joueur alignant 3 de ses symboles gagne

| Х | 0 |   |
|---|---|---|
| 0 | Х |   |
|   |   | Х |

# Problème de classification

Étant donnée une grille, déterminer si le joueur x a gagné ou non

# 2 classes

- x a gagné
- x n'a pas gagné

# Représentation des données

### Définition - Transaction

Vecteur binaire représentant une donnée

# Morpion - Transaction

1 transaction = contenu d'1 grille

# Notations

- d : nombre de caractéristiques
- $t \in \{0, 1\}^d$ : transaction

#### **Notations**

- *d* : nombre de caractéristiques
- $t \in \{0, 1\}^d$ : transaction

# Morpion - Caractéristiques

- 9 cases3 valeurs possibles : {x, o, ∅}
- ⇒ 27 caractéristiques

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### **Notations**

- *d* : nombre de caractéristiques
- $t \in \{0, 1\}^d$ : transaction

# Morpion - Caractéristiques

- 9 cases
- 3 valeurs possibles :  $\{x, o, \emptyset\}$
- ⇒ 27 caractéristiques

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Morpion - Exemple de transaction

Grille

| 0 | х |   |
|---|---|---|
| Х | 0 |   |
| 0 |   | Х |

Transaction associée

|   | Transaction associee |   |   |   |   |   |   |   |   |  |  |  |  |
|---|----------------------|---|---|---|---|---|---|---|---|--|--|--|--|
|   | - 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| 0 | 1                    | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |  |  |  |  |
| X | 0                    | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |  |  |  |  |
| Ø | 0                    | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |  |  |  |  |

#### **Notations**

- *d* : nombre de caractéristiques
- $t \in \{0, 1\}^d$ : transaction

# Morpion - Caractéristiques

- 9 cases
- 3 valeurs possibles :  $\{x, o, \emptyset\}$
- ⇒ 27 caractéristiques

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Morpion - Exemple de transaction

## Grille

| 0 | Х |   |
|---|---|---|
| Х | 0 |   |
| 0 |   | Х |

#### Transaction associée

|   | Transaction associee |   |   |   |   |   |   |   |   |  |  |  |  |
|---|----------------------|---|---|---|---|---|---|---|---|--|--|--|--|
|   | 1                    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| 0 | 1                    |   |   |   | 1 |   | 1 |   |   |  |  |  |  |
| X |                      | 1 |   | 1 |   |   |   |   | 1 |  |  |  |  |
| Ø |                      |   | 1 |   |   | 1 |   | 1 |   |  |  |  |  |

# Définition - Règle

Vecteur binaire de taille d

# Morpion - Exemple de règle

La règle

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 0 |   |   |   |   | 1 |   |   |   |   |
| X |   | 1 |   |   |   |   |   |   |   |
| Ø |   |   |   |   |   |   |   |   |   |

- Signifie :
  - la case 2 contient x et
  - la case 5 contient o

# Définition - Application

Une règle  $b \in \{0, 1\}^d$  s'applique à une transaction  $t \in \{0, 1\}^d$  si

# Morpion - Exemple d'application

La règle



|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 0 |   |   |   |   | 1 |   |   |   |   |
| х |   | 1 |   |   |   |   |   |   |   |

• S'applique à la grille

| 0 | Х | Х |
|---|---|---|
|   | 0 |   |
|   |   | 0 |

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 |   |   |   | 1 |   |   |   | 1 |
| X |   | 1 | 1 |   |   |   |   |   |   |
| Ø |   |   |   | 1 |   | 1 | 1 | 1 |   |

# Objectif

Trouver une règle b qui s'applique

- à beaucoup de transactions d'une classe donnée
- a peu de transactions des autres classes

#### Notation

- y : classe de la règle b
- n : nombre de transactions dans les données d'apprentissage

• 
$$x_i = \begin{cases} 1 & \text{si } b \text{ s'applique à } t_i \\ 0 & \text{sinon} \end{cases} \forall i \in \{1, ..., n\}$$

S : ensemble des transactions de classe v

## Définition - Couverture d'une règle

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

Pourcentage de transactions auxquelles s'applique b

#### **Notation**

- y : classe de la règle b
- n : nombre de transactions dans les données d'apprentissage

• 
$$x_i = \begin{cases} 1 & \text{si } b \text{ s'applique à } t_i \\ 0 & \text{sinon} \end{cases} \forall i \in \{1, ..., n\}$$

• S : ensemble des transactions de classe y

# Définition - Couverture d'une règle

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

Pourcentage de transactions auxquelles s'applique b

## Définition - Support d'une règle

$$s = \frac{1}{n} \sum_{i \in S} x_i$$

Pourcentage de transactions de classe y auxquelles s'applique b

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

Pourcentage de transactions auxquelles s'applique b

# Définition - Support

$$s = \frac{1}{n} \sum_{i \in S} x_i$$

Pourcentage de transactions de classe y auxquelles s'applique b

#### Objectif

Trouver des règles qui s'appliquent

• à beaucoup de transactions de classe y

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

Pourcentage de transactions auxquelles s'applique b

## Définition - Support

$$s = \frac{1}{n} \sum_{i \in S} x_i$$

Pourcentage de transactions de classe y auxquelles s'applique b

#### Objectif

Trouver des règles qui s'appliquent

 à beaucoup de transactions de classe y Maximiser le support

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

ORC - Règles ordonnées pour la classification

Pourcentage de transactions auxquelles s'applique b

## Définition - Support

$$s = \frac{1}{n} \sum_{i \in S} x_i$$

Pourcentage de transactions de classe y auxquelles s'applique b

#### Objectif

Trouver des règles qui s'appliquent

- à beaucoup de transactions de classe y Maximiser le support
- a peu de transactions des autres classes

$$s_X = \frac{1}{n} \sum_{i=1}^n x_i$$

ORC - Règles ordonnées pour la classification

Pourcentage de transactions auxquelles s'applique b

## Définition - Support

$$s = \frac{1}{n} \sum_{i \in S} x_i$$

Pourcentage de transactions de classe y auxquelles s'applique b

#### Objectif

Trouver des règles qui s'appliquent

- à beaucoup de transactions de classe y Maximiser le support
- a peu de transactions des autres classes
   Minimiser la couverture

#### Objectif

Trouver des règles qui s'appliquent :

- à beaucoup de transactions d'une classe donnée Maximiser le support
- a peu de transactions des autres classes Minimiser la couverture

#### Option 1

- Maximiser le support
- Mettre une borne supérieure sur la couverture

Qu'on fera varier

#### Objectif

Trouver des règles qui s'appliquent :

- à beaucoup de transactions d'une classe donnée Maximiser le support
- a peu de transactions des autres classes Minimiser la couverture

#### Option 1

- Maximiser le support
- Mettre une borne supérieure sur la couverture

Qu'on fera varier

#### Option 2

Résoudre un problème bi-objectif

Question d'ouverture du projet

#### Option 1

Maximiser le support

$$\max_{b,x} \sum_{i \in S} x_i$$

• Mettre une borne supérieure  $\overline{s}_X$  sur la couverture

Qu'on fera varier

$$\sum_{i=1}^n x_i \leq \overline{s}_X$$

#### Fonction objectif complète

$$\max_{b,x} \sum_{i \in S} x_i - R_{genX} \sum_{i=1}^{n} x_i - R_{genB} \sum_{j=1}^{d} b_j$$

•  $-R_{qenX} \sum_{i=1}^{n} x_i$ : faible couverture

•  $-R_{genB}\sum_{i=1}^{d} b_i$ : parcimonie

•  $R_{genX} < \frac{1}{n}$ 

•  $R_{genB} < \frac{R_{genX}}{d}$ 

# Génération d'une règle b

#### **Paramètres**

- R<sub>genX</sub>
- R<sub>genB</sub>

#### Variables

- $x_i$ : la règle s'applique à la transaction i
- $b_i$  : la règle contient la caractéristique j

$$P_{\overline{s}_{X}} = \begin{cases} \max_{b,x} & \sum_{i \in \mathcal{S}} x_{i} - R_{genX} \sum_{i=1}^{n} x_{i} - R_{genB} \sum_{j=1}^{d} b_{j} \\ \text{tel que} & \sum_{i=1}^{n} x_{i} \leq \overline{s}_{X} \\ & x_{i} \leq 1 + (t_{ij} - 1)b_{j} & \forall i \in \{1, ..., n\} \ \forall j \in \{1, ..., d\} \\ & x_{i} \geq 1 + \sum_{j=1}^{d} (t_{ij} - 1)b_{j} & \forall i \in \{1, ..., n\} \ \forall j \in \{1, ..., d\} \\ & b_{j} \in \{0, 1\} & \forall j \in \{1, ..., d\} \\ & x_{i} \in [0, 1] & \forall i \in \{1, ..., n\} \end{cases}$$

Résoudre  $P_{\overline{S}_X}$  pour toutes valeurs de  $\overline{s}_X$  pertinente

# Solutions équivalentes

Il peut exister plusieurs règles b maximisant l'expression

$$\sum_{i \in S} x_i - R_{genX} \sum_{i=1}^n x_i - R_{genB} \sum_{j=1}^d b_j$$

On souhaite toutes les obtenir

## Solutions équivalentes

Il peut exister plusieurs règles b maximisant l'expression

$$\sum_{i \in \mathcal{S}} x_i - R_{genX} \sum_{i=1}^n x_i - R_{genB} \sum_{j=1}^d b_j$$

On souhaite toutes les obtenir

#### Solution choisie

# Répéter

- Résoudre P<sub>s</sub> pour obtenir
  - la règle b\*
  - l'objectif s̄

## Solutions équivalentes

Il peut exister plusieurs règles b maximisant l'expression

$$\sum_{i \in S} x_i - R_{genX} \sum_{i=1}^n x_i - R_{genB} \sum_{j=1}^d b_j$$

On souhaite toutes les obtenir

#### Solution choisie

## Répéter

- Résoudre  $P_{\overline{s}_{x}}$  pour obtenir
  - la règle b\*
  - l'objectif s̄
- Ajouter la contrainte

$$\sum_{j:b_j^*=0} b_j + \sum_{j:b_j^*=1} (1-b_j) \ge 1 \qquad (*)$$

Jusqu'à ce que l'objectif soit  $< \overline{s}$ 

# **Paramètres**

- mincov : valeur minimale de  $\overline{s}_X$
- iter lim: nombre maximum de règles générées par Psy

#### **Notations**

- s̄: valeur de l'objectif du dernier P<sub>s̄,</sub>
   résolu
- R<sub>Y</sub>: ensemble des règles générées

# Entrées: mincov, iter lim

retourner  $\mathcal{R}_{Y}$ : ensemble de règles

ORC - Règles ordonnées pour la classification

# Sommaire

- 1 RODN
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet
  - Présentation du sujet
  - Julia

#### Comment classifier une donnée/transaction?

- Ordonner les L règles générées
- 2 Attribuer à chaque transaction la classe de la 1ère règle qu'elle vérifie

#### Objectif

Trouver l'ordre qui maximise la reconnaissance des données d'apprentissage

- Problème combinatoire (L! possibilités)
- Résolution par PLNE appropriée

# Règles nulles

# Ajout des règles :

- ∅ ⇒ 1
- $\bullet$   $\varnothing \Rightarrow -1$

#### Règles nulles

Ajout des règles :

- $\bullet \varnothing \Rightarrow 1$
- ∅ ⇒ −1

#### Données

•  $u_{il} = \begin{cases} 1 & \text{si la règle } l \text{ est la plus haute s'appliquant à } t_i \\ 0 & \text{sinon} \end{cases}$ 

•  $p_{il} = \begin{cases} 0 & \text{si la règle } l \text{ ne s'applique pas à } t_i \\ 1 & \text{si la règle } l \text{ classifie correctement } t_i \\ -1 & \text{si la règle } l \text{ ne classifie pas correcte} \end{cases}$ si la règle I ne classifie pas correctement  $t_i$ 

 $\bullet$   $v_{il} = |p_{il}|$ 

# Variables

- $r_I$ : rang de la règle  $I \ \forall I \in \{1, ..., L\}$
- r<sub>\*</sub> : rang de la plus haute règle nulle

#### Paramètre

•  $R_{rank} \leq \frac{1}{L}$ 

#### Objectif

$$\max_{r,r_*,u} \sum_{i=1}^{n} \sum_{l=1}^{L} p_{il} u_{il} + R_{rank} r_*$$

- $\sum_{i=1}^{n} \sum_{l=1}^{L} p_{il} u_{il}$ : transactions bien classifiées transactions mal classifiées
- R<sub>rank</sub> r<sub>\*</sub>: rang de la plus haute règle nulle Parcimonie

# Fixation de $u_{il}$

#### **Variables**

g<sub>i</sub>: rang de la plus haute règle satisfaisant t<sub>i</sub>

#### Contraintes

$$\begin{split} & \sum_{i=1}^{L} u_{il} = 1 & \forall l \in \{1, ..., L\} \\ & g_{i} \geq v_{il} r_{l} & \forall i \in \{1, ..., n\} \ \forall l \in \{1, ..., L\} \\ & g_{i} \leq v_{il} r_{l} + L(1 - u_{il}) & \forall i \in \{1, ..., n\} \ \forall l \in \{1, ..., L\} \\ & u_{il} \in \{0, 1\} & \forall i \in \{1, ..., L\} \ \forall l \in \{1, ..., L\} \end{split}$$

# Fixation de $r_l$

## Variables

• 
$$s_{lk} = \begin{cases} 1 & \text{si la règle } l \text{ a le rang } k \\ 0 & \text{sinon} \end{cases}$$

#### Contraintes

$$\Sigma_{k=1}^{L} s_{lk} = 1 \qquad \forall l \in \{1, ..., L\} 
\Sigma_{l=1}^{L} s_{lk} = 1 \qquad \forall k \in \{1, ..., L\} 
r_{l} = \Sigma_{k=1}^{L} k s_{lk} \qquad \forall l \in \{1, ..., L\} 
r_{l} \in \{1, ..., L\} 
s_{lk} \in \{0, 1\}$$

## Fixation de $r_*$

## Variables

- $r_A$ : rang de  $\emptyset \Rightarrow -1$
- $r_B$ : rang de  $\emptyset \Rightarrow 1$

$$\bullet \ \alpha = \begin{cases} 1 & \text{si } r_* = r_b \\ 0 & \text{sinon} \end{cases}$$

$$\beta = \begin{cases} 1 & \text{si } r_* = r_a \\ 0 & \text{sinon} \end{cases}$$

#### Contraintes

$$r_A = r_{L-1}$$

$$r_B = r_L$$

$$r_* \ge r_A$$
  
 $r_* \ge r_B$ 

$$r_* - r_A \leq (L-1)\alpha$$

$$r_* - r_B \le (L - 1)\beta$$

$$r_A - r_* \leq (L - 1)\alpha$$

$$r_B - r_* \leq (L - 1)\beta$$

$$\alpha + \beta = 1$$

$$\alpha \in \{0, 1\}$$

$$\beta \in [0, 1]$$

ORC - Règles ordonnées pour la classification

## Renforcement de formulation

#### Contraintes supplémentaires

$$\begin{aligned} u_{il} &\geq 1 - g_i + v_{il} + r_l & \forall i \in \{1, ..., n\} \ \forall l \in \{1, ..., L\} \\ u_{il} &\leq v_{il} & \forall i \in \{1, ..., n\} \ \forall l \in \{1, ..., L\} \\ u_{il} &\leq 1 - \frac{r_* - r_l}{L - 1} & \forall i \in \{1, ..., n\} \ \forall l \in \{1, ..., L\} \end{aligned}$$

ORC - Règles ordonnées pour la classification

# Sommaire

- 1 RODN
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet
  - Présentation du sujet
  - Julia

# Temps de calcul

| Données   | n    | d  | #Règles        | Génération (sec) | Classement (sec) |
|-----------|------|----|----------------|------------------|------------------|
| B.Cancer  | 683  | 27 | 198.3 ± 16.2   | 616.3 ± 57.8     | 12959.3 ± 1341.9 |
| CarEval   | 1728 | 21 | 58.0           | 706.3 ± 177.3    | 7335.3 ± 2083.7  |
| Crime1    | 426  | 41 | 100.7 ± 15.3   | $496.0 \pm 88.6$ | 12364.0 ± 7100.6 |
| Crime2    | 436  | 16 | $27.3 \pm 2.9$ | 59.3 ± 30.4      | 2546.0 ± 3450.6  |
| Haberman  | 306  | 10 | 15.3 ± 0.6     | 14.7 ± 4.0       | $6.3 \pm 2.3$    |
| Mammo     | 830  | 25 | 58.3 ± 1.2     | 670.7 ± 34.5     | 3753.3 ± 3229.5  |
| MONK2     | 432  | 17 | $45.3 \pm 4.0$ | 124.0 ± 11.5     | 5314.3 ± 2873.9  |
| SPECT     | 267  | 22 | 145.3 ± 7.2    | 71.7 ± 9.1       | 8862.0 ± 2292.2  |
| TicTacToe | 958  | 27 | 53.3 ± 3.1     | 1241.3 ± 38.1    | 4031.3 ± 3233.0  |
| Titanic   | 2201 | 8  | 24.0 ± 1.0     | 92.0 ± 15.1      | 1491.0 ± 1088.0  |
|           |      |    |                |                  |                  |

# Résultat du jeu de morpion

# 9 règles

| 1 | 1 |
|---|---|
|   | Х |
|   | Х |
|   | х |

1 - x a gagné



4 - x a gagné



7 - x a gagné



2 - x a gagné



5 - x a gagné



8 - x a gagné

x x x

3 - x a gagné



6 - x a gagné



9 - x n'a pas gagné

# Performances

| Jeu de données |       | LR   | SVM  | CART | C4.5 | RF   | ADA  | ORC  |
|----------------|-------|------|------|------|------|------|------|------|
| B.Cancer       | train | 0.97 | 0.98 | 0.95 | 0.96 | 0.98 | 0.96 | 0.97 |
|                | test  | 0.95 | 0.96 | 0.94 | 0.95 | 0.95 | 0.96 | 0.95 |
| CarEval        | train | 0.95 | 0.98 | 0.96 | 0.99 | 0.99 | 0.99 | 0.95 |
|                | test  | 0.94 | 0.97 | 0.96 | 0.98 | 0.98 | 0.98 | 0.95 |
| Crime1         | train | 0.84 | 0.84 | 0.83 | 0.89 | 0.99 | 0.88 | 0.88 |
|                | test  | 0.73 | 0.73 | 0.74 | 0.74 | 0.76 | 0.77 | 0.78 |
| Crime2         | train | 0.68 | 0.74 | 0.68 | 0.74 | 0.82 | 0.71 | 0.71 |
|                | test  | 0.67 | 0.63 | 0.61 | 0.59 | 0.62 | 0.66 | 0.66 |
| Haberman       | train | 0.77 | 0.78 | 0.76 | 0.77 | 0.78 | 0.77 | 0.76 |
|                | test  | 0.75 | 0.73 | 0.74 | 0.73 | 0.73 | 0.73 | 0.75 |
| Mammo          | train | 0.84 | 0.86 | 0.84 | 0.85 | 0.88 | 0.85 | 0.85 |
|                | test  | 0.83 | 0.82 | 0.83 | 0.83 | 0.82 | 0.84 | 0.83 |
| MONK2          | train | 0.64 | 0.67 | 0.75 | 0.93 | 0.99 | 0.79 | 0.82 |
|                | test  | 0.60 | 0.67 | 0.66 | 0.88 | 0.65 | 0.63 | 0.73 |
| SPECT          | train | 0.87 | 0.86 | 0.83 | 0.88 | 0.93 | 0.88 | 0.89 |
|                | test  | 0.79 | 0.84 | 0.78 | 0.79 | 0.80 | 0.80 | 0.77 |
| TicTacToe      | train | 0.98 | 0.94 | 0.93 | 0.97 | 1.00 | 0.99 | 1.00 |
|                | test  | 0.98 | 0.91 | 0.88 | 0.92 | 0.97 | 0.97 | 1.00 |
| Titanic        | train | 0.77 | 0.79 | 0.78 | 0.79 | 0.79 | 0.78 | 0.79 |
|                | test  | 0.77 | 0.78 | 0.78 | 0.79 | 0.78 | 0.77 | 0.79 |
|                |       |      |      |      |      |      |      |      |

# Sommaire

- RODM
- 2 Introduction au machine learning
- 3 ORC Règles ordonnées pour la classification
- Projet
  - Présentation du sujet
  - Julia

# Sommaire

- - Exemple introductif
  - Étape 1 Génération de règles

  - Résultats
- **Projet** 
  - Présentation du sujet
  - Julia

## Informations générales

#### Groupe

• seul ou en binôme

#### Langage

libre (Julia conseillé)

#### Calendrier

• 17/01: 2h15 de TP

• 21/02 : 2h15 de TP (présentation de l'avancement)

• 04/03 : date limite de rendu

#### Données

306 patients opérés du cancer du sein dont on connaît :

- l'âge
- l'année d'opération
- le nombre de nodules
- s'il a survécu durant les 5 années suivant l'opération (classe du patient)

## Objectif

- Utiliser la méthode ORC sur 204 patients pour obtenir un classifieur
- Évaluer ses performances sur les 102 patients restants

|     | caractéris | classe  |           |  |
|-----|------------|---------|-----------|--|
| Âge | Année      | Nodules | A survécu |  |
| 30  | 64         | 1       | 1         |  |
| 30  | 62         | 3       | 1         |  |
| 30  | 65         | 0       | 1         |  |
| :   | :          | :       | :         |  |
| 83  | 58         | 2       | 2         |  |

|                          |     | caractéris | classe  |           |
|--------------------------|-----|------------|---------|-----------|
|                          | Âge | Année      | Nodules | A survécu |
| Ŷ                        | 30  | 64         | 1       | 1         |
|                          | 30  | 62         | 3       | 1         |
| Données initiales<br>306 | 30  | 65         | 0       | 1         |
| 306                      |     | :          |         |           |
| Ţ                        | 83  | 58         | 2       | 2         |
|                          |     |            |         |           |

|                          | _   | caracteris | ciasse  |           |
|--------------------------|-----|------------|---------|-----------|
|                          | Âge | Année      | Nodules | A survécu |
| Î                        | 30  | 64         | 1       | 1         |
| B                        | 30  | 62         | 3       | 1         |
| Données initiales<br>306 | 30  | 65         | 0       | 1         |
| 306                      | :   | :          | :       | :         |
| Ţ                        | 83  | 58         | 2       | 2         |

caractóristiques

 Caractéristiques
 A survécu

 1
 0
 0
 1
 ...
 0
 1

 0
 0
 1
 ...
 1
 1

 :
 :
 :
 :
 ...
 :

 :
 :
 :
 ...
 :
 ...

 0
 1
 0
 1
 ...
 0
 2

Reformulation des caractéristiques en vecteurs binaires

|                         | caractéristiques |                    |       |  | _ ,      | classe                  |               |   |
|-------------------------|------------------|--------------------|-------|--|----------|-------------------------|---------------|---|
|                         | Âge              | An                 | Année |  | Nodules  |                         | survéci       | 1 |
| Ŷ                       | 30               | 6                  | 64    |  | 1        |                         | 1             |   |
| Données initiales       | 30               | 6                  | 62    |  | 3        |                         | 1             |   |
| 306                     | 30               | 6                  | 65    |  | 0        |                         | 1             |   |
| 300                     | :                | :                  | :     |  | ÷        |                         | :             |   |
| ţ                       | 83               | 5                  | 8 2   |  | 2        | 2                       |               |   |
|                         |                  |                    |       |  |          | on des cara<br>binaires | actéristiques |   |
|                         | Ca               | Caractéristiques A |       |  |          | A sur                   | vécu          |   |
| Données d'apprentissage | 1 (              |                    | 1     |  | 0        | 1                       |               |   |
| n = 204                 | 0 (              | ) 1                | 1     |  | 1        | 1                       |               |   |
| ţ                       |                  | :                  | :     |  | :        | 1                       | J             |   |
| Données de test 1       | : :              | :                  | :     |  | :        | :                       |               |   |
| 102                     | 0 1              |                    | 1     |  | 0        | 2                       |               |   |
|                         | <b>—</b>         |                    |       |  | <b>→</b> |                         |               |   |
| d                       |                  |                    |       |  |          |                         |               |   |









Étape 5 - Questions d'ouverture

# Structure de votre projet

```
NOM1-NOM2

data (fichiers de données)

doc (documents de cours et rapport au format pdf)

res (règles produites)

src (code)
```

### Rendu

- Vos fichiers
  - fichiers de données, code, résultats
- Votre rapport
  - Représentation binaire
  - Règles ordonnées du classifieur
  - Résultats
    - temps, nombre de règles obtenues, performances de votre classifieur, ...
  - Questions d'ouverture

# Sommaire

- 1 RODM
- 2 Introduction au machine learning
- ORC Règles ordonnées pour la classification
  - Exemple introductif
  - Étape 1 Génération de règles
  - Étape 2 Classement des règles générées
  - Résultats
- Projet
  - Présentation du sujet
  - Julia

# Langage Julia

## Avantages

- performant comparable au C++
- syntaxe simple et efficace
- de plus en plus répandu surtout dans la communauté académique
- facilité de développement et d'utilisation de packages

# Package JuMP

Package de Julia permettant de résoudre des problèmes d'optimisation

- mêmes avantages que Julia performant, syntaxe aisée
- indépendant du solveur simple de passer de l'un à l'autre

#### Déclarer une variable

```
n = 10 # entier
b = "Hello world" # chaîne de caractères
v = [1 2 3 4] # vecteur
m = [1 2; 3 4] # matrice 2x2
v = 1:n # vecteur de 1 à n
```

#### Inclure un fichier contenant des variables

```
include("monFichier.dat")
```

#### Affichage

```
println("Afficher du texte")
println("Afficher une variable $a")
println("ou ", a)
```

#### Écrire dans un fichier

```
fout = open("monFichierDeSortie.dat", "a")
print(fout, v)
# Remarque :
# Remplacer "a" par "w" pour écraser l'ancien contenu du fichier
```

## Conditionnelle

```
if v[1] == 1
  # contenu du if
else
  # contenu du else
end
```

## Boucle for

```
for i in 1:10 # ou i = 1:10
  print(i)
end
```

## Boucle while

```
while(v[1] == 1)
    # contenu de la boucle
end
```

## Déclarer un problème d'optimisation avec CPLEX

```
using JuMP
using CPLEX
m = Model(solver = CplexSolver())
```

### Déclarer des variables d'un problème d'optimisation

```
# Variable continue
@variable(m, 0 <= x1 <= 1)
# Variable binaire
@variable(m, x2, Bin)
# Tableau n*1
@variable(m, 0 <= y[i in 1:n] <= 1)
# Tableau n*4
@variable(m, 0 <= t[i in 1:n, j in 1:4] <= 1)</pre>
```

#### Définir des contraintes

```
# x_1 + x_2 = 1

@constraint(m, x1 + x2 == 1)

# y_i + x_1 \le 1 \ \forall i \in \{1,...,n\}

@constraint(m, [i = 1:n], y[i] + x1 <= 1)

# t_{ij} + x_1 \ge 1 \ \forall i \in \{1,...,n\} \ \forall j \in \{1,...,4\}

@constraint(m, [i = 1:n, j = 1:4], t[i, j] + x1 >= 1)

# \sum_{i=1}^n y_i \ge 3

@constraint(m, y[i] >= 3 for i in 1:n)
```

### Définir l'objectif

```
@objective(m, Max, sum(y[i] for i = 1:n))
# objectif avec condition
@objective(m, Max, sum(y[i] for i = 1:n if v[i] == 2)
```

## Résoudre un problème

solve(m)

#### Obtenir la valeur d'une variable

```
vx1 = getvalue(x1)
vx1Int = round(Int, getvalue(x1))
```

#### Modifier le second membre d'une contrainte

```
@constraint(m, nomDeLaContrainte, x1 + x2 == 1)
JuMP.setRHS(nomDeLaContrainte, 2)
```

### Masquer les sorties de CPLEX

```
m = Model(solver=CplexSolver(CPX_PARAM_SCRIND=0))
```

n = 6

# Problème de sac à dos

#### Fichier donnees.dat

```
K = 2.3
w = [1 \ 2 \ 4 \ 5 \ 7 \ 10]
p = [1 \ 3 \ 5 \ 7 \ 9 \ 11]
```

#### Éxecuter ce fichier à l'ENSTA

- Ouvrir une console : Alt + F2, puis entrer "xterm"
- Pixer les chemins : usediam ro Éxecuter le programme : julia knapsack.jl

#### Fichier knapsack.jl

```
using JuMP
using CPLEX
include ("donnees.dat")
m = Model(solver = CplexSolver())
@variable(m, x[i in 1:n], Bin)
@constraint(m, sum(x[i] * w[i] for i = 1:n) \le K)
@objective(m, Max, sum(x[i] * p[i] for i in 1:n))
solve(m)
```