Mer Markov Inequality - relate deviation to mean. (State 18 X is any non-negative r.v., then The P(X>a) & E[X]	of here: 5) pgs O.G.) 17 141. Apr 18/25
Proof: $\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x) dx$	
$= \int_{0}^{\infty} x p(x) dx \text{of } X > 0$	
> Soc poor dec. for any a≥0	
> 5° a p cx > dx : x > a in the inlega	celed regime
$= a \cdot P(X > a).$ $P(X > a) \leq E[X] \& a > 0.$	See
$P(X>a) \leqslant E[X] \delta w a>0.$	Por Posty in
The Chebysher Inequality: - relates deviation to vo	ariance.
If X is any rv & Finile variance (and so me then for any k>0,	an),
$P(X-E[x] \ge k\sigma) \le \frac{L}{k^2}$	
Proof: define Y=(X-E[X])?. relet b= ko	
· Y is non-negative (20.) [P(IX-E[X]] > k	20) ≤ 1/k 2
$P(Y > b^2) \le E[Y]$	
·but E[Y] = 02	
$- > P(X - \mathbb{E}[x] > b) \leq \frac{\sigma^2}{b^2}$	(VI)