Calculating Speed Practice

1 Fill in the table which shows typical speeds in m/s and km/h.

The moving objects are Express train, Truck on motorway, Road Cyclist and Marathon running (but not in that order).

The speeds in m/s are given, but the speeds in km/h will need to be added from the following options: 100 km/h, 12 km/h, 24 km/h and 320 km/h.

Object	Speed (m/s)	Speed (km/h)
	3	
	7	
	27	
	90	

2	C	1-4-	41		equation	
/	Comp	1616	The	word	equatic	ทร
_	COLLID	-		VVOIG	CAGGGG	,,,,,,

$$(b)$$
 Time $=$

Complete these equations using symbols. s is the distance, t is the time taken and v is the speed.

(a)
$$s =$$

(b)
$$v =$$

(c)
$$t =$$

4 Use your understanding of speed, or the formulae, to calculate

- (a) the distance when a runner runs at 6 m/s for 40 s
- (b) the distance when a truck travels at 25 m/s for 8 s
- (c) the time when a jogger runs 900 m at 3 m/s
- (d) the time when a tennis ball travels 18 m at 36 m/s
- (e) the speed when a snail moves 10 cm in 20 s (1 cm = 0.01 m)
- (f) the speed when a trolley moves runs 15 m in 5 s.

5	An athlete sprints at 9 m/s. How far will they run in					
	(a) two seconds (b) 30 s?					
6	A coach on a motorway travels at 100 km/h. How much time does it take to travel (a) 600 km (b) 25 km?					
7	Use your understanding of speed, or the formulae, to calculate					
	(a) the distance if a 7.5 km/s satellite moves for one minute					
	(b) the time taken for a train to travel $60~\mathrm{km}$ at $200~\mathrm{km/h}$					
	(c) the speed if an airliner travels $6000~\mathrm{km}$ in $7.5~\mathrm{hr}$					
	(d) the speed if a warthog runs $4.5~\mathrm{km}$ in $5~\mathrm{min}$. (Hint: how far will it run in one hour?)					
8	A radio controlled car moves forward at $5~\rm m/s$ for $4~\rm s$ then backwards at $10~\rm m/s$ for $3~\rm s$. How far is it from its starting point?					
9	A driver travels at $140\mathrm{km/h}$ for $20\mathrm{min}$ then at $100\mathrm{km/h}$ for $40\mathrm{min}$.					
	(a) How far have they travelled in total?					
	(b) What is the average speed of the driver on this journey?					
10	A 4 km length of road has 'average speed' cameras at both ends. The speed limit is 130 km/h . A motorcycle rider travels the first and fourth kilometres at 120 km/h and the rest of the way at 150 km/h .					
	(a) How much time does it take the rider to travel between the cameras?					
	(b) What is the average speed of the rider?					
	(c) Will the camera operator know that the rider broke the law?					