Numerical Algorithms for HPC

Introduction to Fourier Transforms

1

1

Overview

- The Fourier Transform
 - Who, what, why?
 - Fourier Series
 - Mathematical properties of the Fourier Transform
- Discrete Fourier Transform
 - Introduction to first exercise
- Fast Fourier Transform
 - A brief overview
 - Worked example of 4-point DFT

2

Fourier Transfoms

- Jean Baptiste Joseph Fourier (1768-1830) first employed what we now call Fourier Transforms whilst working on the theory of heat
 - The Fourier transform first appeared in "On the Propagation of Heat in Solid Bodies", memoir to Paris Institute, 21 Dec., 1807.
- Linear Transform which takes temporal or spatial information and converts into information which lies in the frequency domain
 - And vice versa
 - Frequency domain also known as Fourier space, Reciprocal space, or G-space -> "Spectral Methods"
- Mathematical tool which alters the problem to one which is more easily solved

3

3

Pictures of Joseph Fourier

4

Who would use Fourier Transforms?

- Physical Sciences
 - Cosmology (P³M N-body solvers)
 - Fluid mechanics
 - Computational Chemistry (See L07-L09)
 - Quantum physics
 - Signal and image processing
 - Antenna studies
 - Optics

Caveat: different disciplines use different notation, normalisation, and sign conventions

- Numerical analysis
 - Linear systems analysis
 - Boundary value problems
 - Large integer multiplication (Prime finding)
- Statistics
 - Random process modelling
 - Probability theory

5

5

Periodic Functions

• A periodic function repeats itself every period *P*:

$$f(x+P) = f(x)$$

• For example, sine (odd) and cosine (even) with $P = 2\pi$.

Fourier's Theorem

- Straightforward to see that any sum of sines and cosines gives a function which is periodic
 - Turns out the converse is true!
- Principle of superposition:
 - If waves (oscillations) meet at a point, the resulting effect is the sum of each of the individual waves
- · Fourier's Theorem:
 - All periodic signals may be represented by an infinite sum of sines and cosines of different periods and amplitudes.
- The cosines and sines are associated with the symmetrical and anti-symmetric information, respectively

7

7

Example: The Top Hat Function

• The top hat function, along with the individual 1st, 2nd and 3rd Fourier components and their sum.

Fourier Transforms

- Fourier Transforms encode this information via Euler formula $e^{i\theta}=\cos\theta+i\sin\theta$
- NB: Any signal may be considered periodic, by replicating the non-zero part to infinity.
- Commonly used as a way of switching from time domain to frequency domain (and vice-versa)
 - E.g. given a signal as a function of time, what frequencies make up that signal
 - Time and frequency are known as a conjugate pair
 - Other examples are
 - · momentum and position
 - · potential and charge

11

11

Mathematics of the Fourier Transform

 The Fourier Transform of a complex function f(x) is given as

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xs} dx$$

• The inverse Fourier Transform is given as

$$f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi xs} ds$$

· The Fourier pair is defined as

$$f(x) \Leftrightarrow F(s)$$

epcc

Discrete Fourier Transform

The Discrete Fourier Transform of N complex points f_k is defined as

$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

The inverse Discrete Fourier Transform, which recovers the set of f_k values exactly from the F_n values is

$$f_k = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{-2\pi i k n/N}$$

Both the input function and its Fourier Transform are periodic

13

13

Example: Cosine function

- FT is generally complex Figure shows real part only
- Peaks of height N at k=3 and k=N-3. This second spike represents the (non-physical) negative frequency k
- For Fourier transforms of real functions, don't worry about the 2nd half.
- The highest frequencies are at the centre, and lowest at the edges.

15

15

Discrete Fourier Transform

• The DFT can be rewritten as

$$F_n = a_0 + \sum_{k=1}^{N-1} \left(a_k \cos\left(2\pi k \frac{n}{N}\right) + b_k i \sin\left(2\pi k \frac{n}{N}\right) \right)$$

- Thus, the DFT essentially returns real number values for a_k and b_k, stored in a complex array
 - a_k and b_k are functions of f_k
 - $-\,$ remaining trigonometric constants (twiddle factors) may be pre-computed for a given $N\,$
- Mathematical properties of the continuous transform also hold for the discrete case.

epcc

Fast Fourier Transform

- What is the computational cost of the DFT?
 - Each of the N points of the DFT is calculated in terms of all the N points in the original function: $\mathcal{O}(N^2)$

$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

– Very expensive to compute, even for moderate N

17

17

Fast Fourier Transform

- In 1965, J.W. Cooley and J.W. Tukey published a DFT algorithm which is of $\mathcal{O}(N \log N)$
 - Fast Fourier Transform (FFT)
 - N is a power of 2
 - FFTs in general are not limited to powers of 2, however, the order may resort to $\mathcal{O}(N^2)$

- Essentially a divide-and-conquer algorithm (details to follow)
- In hind sight, faster than $\mathcal{O}(N^2)$ algorithms were previously, independently discovered
 - Gauss was probably first to use such an algorithm in 1805

Fast Fourier Transform

- FFT is an efficient method for computing the DFT
 - Orders of magnitude faster, even for small values of N

N	N ²	N log ₂ (N)
128	16384	896

- For further reading, implementation details consult:
 - Numerical Recipes. The Art of Scientific Computing, 3rd Edition, 2007, Cambridge University Press (www.nr.com)

19

FFT Implementation
- Algorithm based on Danielson & Lanczos (1942)

$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

$$F_n = \sum_{k=0}^{\frac{N}{2}-1} f_{2k} e^{2\pi i (2k)n/N} + \sum_{k=0}^{\frac{N}{2}-1} f_{2k+1} e^{2\pi i (2k+1)n/N}$$

• Algorithm based on Danielson & Lanczos (1942)
$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

$$F_n = \sum_{k=0}^{\frac{N}{2}-1} f_{2k} e^{2\pi i (2k)n/N} + \sum_{k=0}^{\frac{N}{2}-1} f_{2k+1} e^{2\pi i (2k+1)n/N}$$

$$\text{even } k \qquad \text{odd } k$$

$$F_n = \sum_{k=0}^{\frac{N}{2}-1} f_{2k} e^{2\pi i k n/(N/2)} + e^{2\pi i n/N} \sum_{k=0}^{\frac{N}{2}-1} f_{2k+1} e^{2\pi i k n/(N/2)}$$

$$F_n = F_n^e + W_N^n F_n^o \qquad W_N = e^{2\pi i/N}$$

Can continue to break down into smaller and smaller FFTs
$$F_n = F_n^e + W_N^n F_n^o$$

$$F_n = F_n^{ee} + W_{N/2}^n F_n^{eo} + W_N^n F_n^{oe} + W_{N/2}^n W_N^n F_n^{oo}$$

$$F_n = F_n^{ee} + W_N^{2n} F_n^{eo} + W_N^n F_n^{oe} + W_N^{3n} F_n^{oo}$$

$$F_n = F_n^{ee} + W_N^{2n} F_n^{eo} + W_N^n F_n^{oe} + W_N^{3n} F_n^{oo}$$

• When an F becomes a one-point transform it just equals an f:

$$F_n^{eo} = f_k$$

 \circ For a 4 element DFT (N=4), each of the remaining 1-element DFTs must be one of the f_k we started with – but which ones?

21

FFT Implementation

- Bit reversal
- Set e=0, o=1, and reverse the order in binary to find the k corresponding to the sequence of es and os.

$$F_n^{ee} = f_{00} = f_0$$
 $F_n^{eo} = f_{10} = f_2$ etc.

- · Each split of the data into odd and even was checking the value of the least-significant bit of *n* in binary.
- Swap elements by bit reversal to the order needed in F_n ; the
- ${}^{\circ}$ Now build up the ${\it F}_n$ by combining the reordered ${\it f}_k$ values

- Recall $F_n = F_n^e + W_N^n F_n^o$
- $\, \cdot \,$ i.e. we can find all the components of an N-length DFT via 2 N/2-length DFTs – these are periodic with period N/2 so

$$F_n^e = F_{n-N/2}^e \qquad F_n^o = F_{n-N/2}^o \qquad W_N^n = -W_N^{n-N/2}$$

$$F_{n}^{e} = F_{n-N/2}^{e} \qquad F_{n}^{o} = F_{n-N/2}^{o} \qquad W_{N}^{n} = -W_{N}^{n-N/2}$$

$$F_{n} = \begin{cases} F_{n}^{e} + W_{N}^{n} F_{n}^{o} & \text{if } n < N/2 \\ F_{n-N/2}^{e} - W_{N}^{n-\frac{N}{2}} F_{n-\frac{N}{2}}^{o} & \text{if } n \ge N/2 \end{cases}$$

$$|\mathbf{epcc}| \qquad 23$$

FFT Implementation

 So first combine DFTs pairwise to make two N=2 FFTs, with $W_2 = -1$:

1			
£	£	£	£
10	12	14	12
1 -0	- 2	- 1	- 3

becomes

f_0 + W^0f_2	f_0 - W^0f_2	$f_1 + W^0 f_3$	f_1 - W^0f_3

=

$t_0 + t_2$ $t_0 - t_2$ $t_1 + t_3$ $t_1 - t_3$	f_0 + f_2	f_0 - f_2	$f_1 + f_3$	f_1 - f_3
---	---------------	---------------	-------------	---------------

- Try e.g. taking the transform of (1, 2, 3, 4)
- Gives (10, -2-2i, -2, -2+2i)
- Compare with e.g. FFT Calculator
 - http://www.random-science-tools.com/maths/FFT.htm
 - Or implement your own using FFTW (see later)
- Correct answer, (modulo choice of sign for imaginary part)

27

27

To summarise:

- Input data are the f_k
- Start by reordering via bit reversal
- \bullet Then start to build the full set of transformed F_n at the same time:
- Pairwise add the reordered f_k from the < N/2 subset, and pairwise subtract from the $\ge N/2$ subset (from DFT periodicity).
- Then do the same again, this time multiplying the second operand by W_4^n for < N/2, and by $W_4^{n-\frac{N}{2}}$ for $\ge N/2$.
- For *N*=4, this is complete.

28

- Pseudocode example given in Num. Recipes Ch. 12 (this is also a good resource in general)
- Key Points
 - Log₂(N) steps for each element F_n
 - Each step we update N elements
 - Overall runtime is O(N logN)
 - This is a real pain to implement (either by hand or in code)
 - You don't want to ever do this!
 - Use a library!

29

29

Next few slides

- The following slides have more information.
- Mathematical properties of Fourier transforms:
 - Scaling the original and transformed function
 - Shifting the original and transformed function
 - Convolution and correlation
- Why we saw that second peak in the Fourier transform of the cosine.
- Not examinable!

30

Properties: Scaling

Time scaling

$$f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

Frequency scaling

$$\frac{1}{|b|} f\left(\frac{t}{b}\right) \Leftrightarrow F(bs)$$

31

31

Properties: Shifting

• Time shifting

$$f(t-t_0) \Leftrightarrow F(s)e^{2\pi i s t_0}$$

• Frequency shifting

$$f(t)e^{-2\pi i s_0 t} \Leftrightarrow F(s-s_0)$$

Properties: Convolution Theorem

• Say we have two functions, g(t) and h(t), then the convolution of the two functions is defined as

$$g \otimes h = \int_{-\infty}^{\infty} g(\tau)h(t-\tau)d\tau$$

 The Fourier Transform of the convolution is simply the product of the individual Fourier Transforms

$$g \otimes h \Leftrightarrow G(s)H(s)$$

33

33

Properties: Correlation

· The correlation of the two functions is defined by

$$Corr(g,h) = \int_{-\infty}^{\infty} g(\tau + t)h(\tau)d\tau$$

• The Fourier Transform of the correlation is simply

$$Corr(g,h) \Leftrightarrow G(s)H(-s)$$

Example: Cosine function – 2nd peak

Why do we get second peak? [Not examinable!]

If f is real (i.e. $f_n^* = f_n$) then $F[k]^* = F[-k]$ by definition of F

As F is periodic with period N, then F[-k] = F[-k+N] = F[N-k]

So $F[N-k] = F[k]^*$ or $\operatorname{Re} F[N-k] = \operatorname{Re} F[k]$

i.e. if you get a peak at k then you'll get one at N-k

and graph is symmetrical about the middle

- imaginary part would be anti-symmetrical

This second spike represents the (non-physical) negative frequency – k

For Fourier transforms of real functions, 2nd half can be ignored

- Can be thought of as representing -ve frequencies which don't really have physical meaning

35