Unit: Derivatives (3)

Derivative of Exponential Function

Derivative of e^x	Derivative of $e^{f(x)}$		
$(e^x)' = e^x$ $\frac{d}{dx}e^x = e^x$	$(e^{f(x)})' = e^{f(x)}f'(x)$ $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$		
Ex 1. Differentiate and simplify. a. x^2e^x	b. $e^{\sqrt{x^2+1}}$		
Derivative of b^x , $b > 0$, $b \ne 1$	Derivative of $b^{f(x)}$, $b > 0$, $b \ne 1$		
$(b^{x})' = (\ln b)b^{x}$ $\frac{d}{dx}b^{x} = (\ln b)b^{x}$ Proof: $(b^{x})' = (e^{x\ln b})' = e^{x\ln b}(\ln b) = (\ln b)b^{x}$	$(b^{f(x)})' = (\ln b)b^{f(x)}f'(x)$ $\frac{d}{dx}b^{f(x)} = (\ln b)b^{f(x)}f'(x)$		

Ex 2. Differentiate.

a. 3^x

c. Determine f'(0) for $f(t) = 2e^{3t}$ -5t.

b. 2^{-x^3}

Derivative of Logarithmic Function

Derivative of ln x

$$(\ln x)' = \frac{1}{x}$$
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$y = \ln x \implies x = e^y \implies (x)' = (e^y)' \implies$$

Proof:

$$y = \ln x \implies x = e^y \implies (x)' = (e^y)' \implies$$

 $1 = e^y y' \implies y' = \frac{1}{e^y} \implies y' = \frac{1}{x} \implies \therefore (\ln x)' = \frac{1}{x}$

Derivative of $\ln f(x)$

$$[\ln f(x)]' = \frac{f'(x)}{f(x)}$$

$$[\ln f(x)]' = \frac{f'(x)}{f(x)}$$
$$\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}$$

Ex 3. Differentiate and simplify.

a. $x^2 \ln x$

b. $\frac{\ln x}{x}$

c. $e^x \ln x$	d. If $g(x)=e^{2x-1}\ln(2x-1)$, evaluate $g'(1)$.
Derivative of $\log_a x$	Derivative of $\log_a f(x)$
$(\log_b x)' = \frac{1}{(\ln b)x}$ $\frac{d}{dx} \log_b x = \frac{1}{(\ln b)x}$	$[\log_b f(x)]' = \frac{f'(x)}{(\ln b)f(x)}$ $\frac{d}{dx}\log_b f(x) = \frac{f'(x)}{(\ln b)f(x)}$
Ex 4. Differentiate. a. $\log x$	b. $f(x) = x^2 + 2^x + \log_2 x$

Derivative of Trigonometric Functions

Derivative of sin x	Derivative of cos x	
$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$	
Ex 6. Differentiate. a. $y = x^3 \sin x$	$d. y = \tan x$	

b.	f(x)	=	$\cos \frac{\pi}{\kappa}$
υ.) (1)		x

e. $y = x^{\sin x}$

c.
$$f(x) = \sin^3 x + \sin^3 x$$

Ex 7. Find
$$\frac{dy}{dx}$$
 at x=0 for y = $\frac{x \cos x}{1 + e^x}$.

Ex 8. Find $y'(\frac{\pi}{2})$ for $y = x^{\sin x}$

Ex 9. An object is suspended from the end of a string. Its displacement from the equilibrium position is $s(t) = 8\sin(10\pi t)$. Calculate the velocity and acceleration of the object at any time t.