Support vector machines (SVMs) Lecture 5

David Sontag
New York University

Soft margin SVM

Support vectors:

Data points for which the constraints are binding

Soft margin SVM

argmin
$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i$$

s.t. $\forall i, y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 1 - \xi_i$

More "natural" form:

 $\underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w})$

where:

Equivalent if
$$C = \frac{1}{m}$$

$$f(\mathbf{w}) \stackrel{\text{def}}{=} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Regularization term

Empirical loss

Subgradient (for non-differentiable functions)

(Sub)gradient descent of SVM objective

$$f(\mathbf{w}) \stackrel{\text{def}}{=} \frac{\lambda}{2} ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Step size:

$$\eta_t = \frac{1}{t\lambda}$$

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η_t

Choose a direction, p_t

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, t=0For iter = 1,2,...,20 For j=1,2,..., | data | t = t+1 $\eta_t = 1/(t\lambda)$ If $y_j(w_t x_j) < 1$ $w_{t+1} = (1-\eta_t \lambda) w_t + \eta_t y_j x_j$ Else $w_{t+1} = (1-\eta_t \lambda) w_t$

Output: wt+1

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η_t

Choose a direction, p_t

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, t=0For iter = 1,2,...,20 For j=1,2,..., | data | t = t+1 $\eta_t = 1/(t\lambda)$ If $y_j(w_t x_j) < 1$ $w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)$ Else $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: wt+1

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1Choose a stepsize, η_t Choose a direction, p_t Go! Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

```
Initialize: w_1 = 0, t=0

For iter = 1,2,...,20

For j=1,2,..., | data | t = t+1

\eta_t = 1/(t\lambda)

If y_j(w_t x_j) < 1

w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)

Else

w_{t+1} = w_t - \eta_t \lambda w_t

Output: wt+1
```

Convergence choice: Fixed number of iterations

T=20* | data |

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η_t

Choose a direction, p_t

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)
Initialize: w = 0 t=0

Initialize: $w_1 = 0$, t=0For iter = 1,2,...,20 For j=1,2,..., | data | t = t+1 $\eta_t = 1/(t\lambda)$ If $y_j(w_t x_j) < 1$ $w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)$ Else $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: wt+1

Stepsize choice: - Initialize with 1/λ - Decays with 1/t

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η_t

Choose a direction, p_t

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, t=0For iter = 1,2,...,20 For j=1,2,..., | data | t = t+1 $\eta_t = 1/(t\lambda)$ If $y_j(w_t x_j) < 1$ $w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)$ Else $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: wt+1

Direction choice: Stochastic approx to the subgradient

Objective:
$$\frac{\lambda}{2}||w||^2 + \frac{1}{m}\sum_{i} \max\{0, 1 - y_i w \cdot x_i\}$$

Stochastic Approx:
$$\frac{\lambda}{2}||w||^2 + \max\{0, 1 - y_i w \cdot x_i\}$$

For a randomly chosen data point i

(in the assignment the choice of i is **not random -** easier to debug and compare between students).

Objective:
$$\frac{\lambda}{2}||w||^2 + \frac{1}{m}\sum_{i} \max\{0, 1 - y_i w \cdot x_i\}$$

Stochastic Approx:
$$\frac{\lambda}{2}||w||^2 + \max\{0, 1 - y_i w \cdot x_i\}$$

$$\lambda ||w|| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\}$$

Objective:

$$\frac{\lambda}{2}||w||^2$$

Stochastic Approx:

$$\frac{\lambda}{2}||$$

 $y_i w \cdot x_i$

$$\lambda ||w|| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\}$$

$$\downarrow^{y_i w \cdot x_i}$$

$$\downarrow^{-u_i x_i}$$

Objective:

$$\frac{\lambda}{2}||w||^2$$

Stochastic Approx:

$$\frac{\lambda}{2}||$$

$$\lambda ||w|| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\}$$

$$\downarrow^{y_i w \cdot x_i}$$

$$\downarrow^{-y_i x_i}$$

$$0$$

Objective:
$$\frac{\lambda}{2}||w||^2 + \frac{1}{m}\sum_{i} \max\{0, 1 - y_i w \cdot x_i\}$$

Stochastic Approx:
$$\frac{\lambda}{2}||w||^2 + \max\{0, 1 - y_i w \cdot x_i\}$$

if
$$y_i w \cdot x_i < 1$$
 $\lambda w - y_i x_i$ else $\lambda w + 0$

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η₊

Choose a direction, p,

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, t=0**For** iter = 1,2,...,20 For **i=1,2,...,** | data | t = t + 1 $\eta_t = 1/(t\lambda)$ If $y_i(w_t x_i) < 1$ $\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{\eta}_t (\lambda \mathbf{w}_t - \mathbf{y}_i \mathbf{x}_i)$

 $W_{t+1} = W_t - \eta_t (\lambda wt + 0)$

Output: wt+1

Else

Direction choice: Stochastic approx to the subgradient

if
$$y_i w \cdot x_i < 1$$
 $\lambda w - y_i x_i$

$$\lambda w - y_i x_i$$

else

$$\lambda w + 0$$

General framework

Initialize: $w_1 = 0$, t=0

While not converged

t = t+1

Choose a stepsize, η_t

Choose a direction, p_t

Go!

Test for convergence

Output: wt+1

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, t=0For iter = 1,2,...,20 For j=1,2,..., | data | t = t+1 $\eta_t = 1/(t\lambda)$ If $y_j(w_t x_j) < 1$ $w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)$ Else $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: wt+1

Go: update $w_{t+1} = w_t - \eta_t p_t$

Why is this algorithm interesting?

- Simple to implement, state of the art results.
 - Notice similarity to Perceptron algorithm!
 Algorithmic differences: updates if insufficient margin, scales weight vector, and has a learning rate.
- Since based on *stochastic* gradient descent, its running time guarantees are probabilistic.
- Highlights interesting tradeoffs between running time and data.

Much faster than previous methods

- 3 datasets (provided by Joachims)
 - Reuters CCAT (800K examples, 47k features)
 - Physics ArXiv (62k examples, 100k features)
 - Covertype (581k examples, 54 features)

Training Time (in seconds):

	Pegasos	SVM-Perf	SVM-Light
Reuters	2	77	20,075
Covertype	6	85	25,514
Astro-Physics	2	5	80

Approximate algorithms

- Approximation error:
 - Best error achievable by large-margin predictor
 - Error of population minimizer $w_0 = \operatorname{argmin} E[f(w)] = \operatorname{argmin} \lambda |w|^2 + E_{x,y}[\operatorname{loss}(\langle w, x \rangle; y)]$
- Estimation error:
 - Extra error due to replacing E[loss] with empirical loss
 w* = arg min f_n(w)
- Optimization error:
 - Extra error due to only optimizing to within finite precision

From ICML'08 presentation (available here)

Approximate algorithms

- Approximation error:
 - Best error achievable by large-marg
 - Error of population minimizer $w_0 = \operatorname{argmin} E[f(w)] = \operatorname{argmin} \lambda |w|^2$
- Estimation error:
 - Extra error due to replacing E[loss]
 w* = arg min f_n(w)
- Optimization error:
 - Extra error due to only optimizing to

Pegasos Guarantees

After
$$T = \tilde{O}\left(\frac{1}{\delta\lambda\epsilon}\right)$$
 updates:

$$\operatorname{err}(\mathbf{w}_{\mathsf{T}}) < \operatorname{err}(\mathbf{w}_{\mathsf{0}}) + \epsilon$$

With probability 1- δ

Approximate algorithms

Running time does **NOT** depend on:

-# training examples!

It **DOES** depend on:

- Dimensionality d (why?)
- Approximation ϵ and δ
- Difficulty of problem $\,\lambda\,$

Pegasos Guarantees

After
$$T = \tilde{O}\left(\frac{1}{\delta\lambda\epsilon}\right)$$
 updates:

$$err(w_T) < err(w_0) + \epsilon$$

With probability 1- δ

But how is that possible?

As the dataset grows, our approximations can be worse to get the same error!