

Faculty of Engineering & Technology Electrical and Computer Engineering Department Communication Laboratory - ENEE4113 Prelab Exp4 FM Modulation

Prepared by:

Arwa Doha

1190324

Instructor:

Dr. Ashraf Al-Rimawi

Assistant:

Eng.Mohammed Battat

Section: 6

Date: Nov 10, 2023

Software Prelab:

Consider the frequency modulated signal:

 $s(t) = \cos(2\pi(20k)t + 6\sin(1000\pi t))$

Build a Simulink model in a MATLAB Simulink that [Take plots in time and frequency domains]:

1. Extract the message signal m(t) from s(t). [by hand solution].

Fig1: Extract m(t) from s(t) by hand solution.

2. Plot 5 cycle from message signal m(t) and s(t) versus t. [by simulink].

Fig2: Block diagram of 5 cycle from m(t) and s(t).

In the time-domain waveform results for message Signal m(t) and Modulated Signal S(t):

Fig3: m(t) & s(t) in time domin

In the freq-domain waveform results for message Signal m(t) and Modulated Signal S(t) For <u>5 cycles</u>, but the high frequency of the modulated signal makes it challenging to discern in this representation.:

Fig4: m(t) & s(t) for 5 cycles in time domin

In the freq-domain waveform results for message Signal: $M(F) = 5\delta(f-500) + 5\delta(f+500)$

Fig5: Message Signal m(t) in Frequency Domain

In the freq-domain waveform for Modulated Signal S(F):

Fig6: Modulated Signal S(t) in Frequency Domain

3. Differentiate s(t) with respect to t and plot ds(t)/dt. Notice how this operation transforms an FM waveform into an AM waveform. Write your observation and conclusions. [by hand then use Simulink to observe your result].

Fig8: Simulink block diagram of "FM to AM Transformation"

In the time-domain waveform for derived S(t) modulated signal:

Fig9: Simulink block diagram in time domain of derived S(t)

In the frequency-domain waveform for derived S(t) modulated signal:

Fig10: Simulink block diagram in freq domain of derived S(t).

Analytical Solution by Hand: Differentiation of S(t)

5(t) = Accos(271fct + 211 kg \m(t) dt) S(t) = Accos(271fct + Bs; n(217 fmt)) Wet (4)	Arwa 6
Slt) = Accos(wet + O(4))	1140324
$\frac{\partial S(U)}{\partial t} = -Ac\left(wc + \frac{\partial G}{\partial t}\right)Sin\left(wct + G(t)\right)$	· · · · · · · · · · · · · · · · · · ·
$\Theta(t) = 2\pi f_k \int_{\infty} m(t) dt \Rightarrow \frac{\partial \theta}{\partial t} = 2\pi f_k \int_{\infty} m(t)$	6
a s(t) = -Ac (we + 2Tkg m(t)) Sin (wet + 01	
This is similar to the Norman AM	
where S (t) = Ac [1+ kam(t)] cos (2# fct)	<u> </u>

Fig7: Differentiate s(t) by hand solution

Observation & Result:

As observed in the waveform, when we differentiate S(t) (FM), we obtain a wave that looks like an AM waveform. As observed in the figures previously, deriving S(t) returns a negative sine wave, but if we overlook the negative sign in the calculations, we have a result =

$$Acwc[1 + \frac{2\pi k fm(t)}{wc}\sin(wct + \theta)]$$

Inside In this scenario, we multiply the carrier angular frequency (wc) by the carrier amplitude (Ac), and within the parentheses, there is an addition of 1 to a sensitivity constant multiplied by the message signal (m(t)).

The coefficient in this signal closely resembles that of Amplitude Modulation (AM), expressed as Ac [1 + Ka*m(t)] *cos(wct). When the Frequency Modulation (FM) modulation is differentiated with respect to time, it transforms into Amplitude Modulation.

Apply ds(t)/dt to an ideal envelope detector, subtract the dc term and show that the detector's
output is linearly proportional to m(t). Write your observation and conclusions. [by hand solution].

Fig11: Apply ds(t)/dt to an ideal envelope detector

Observation & Result:

Applying the derivative of S(t) to an envelope detector yields an output representing the amplitude of the sine function, given by:

$$AcW_c[1 + \frac{2\pi k f m(t)}{W_c}].$$

When graphed, this results in a cosine wave elevated by the DC value Ac*Wc. Subsequently passing this signal through a capacitor eliminates the DC component, resulting in an output of [Ac * 2π * kf * m(t)]

Notably, this output is directly proportional to the message signal, with the amplitude of the message signal multiplied by [Ac * 2π * kf]. Consequently, through this demodulation technique utilizing an envelope detector, the original message signal can be successfully recovered.

5. Extract message signal by using phase-locked loop (PLL).

Fig12: Simulink block diagram of m(t) by using (PLL)

6. Extract the message signal by using the envelop detector.

Fig13: Simulink block diagram of m(t) by envelop detector

Demodulated Signal in Time Domain (zoomed in when signal is stable)

Fig13: Demodulated Signal in Time Domain

Demodulated Signal in Frequency Domain (fm=500hz)

Fig14: Demodulated Signal in Frequency Domain.