MEMORY-AWARE SCHEDULING

JULIEN HERRMANN

ENSEEIHT 3SN-B - ALGORITHMES HPC

DECEMBER 7, 2023

OUTLINE

- 1 Memory Usage and Performance on general task graphs
- 2 Tree-shaped task graphs
 - Sequential traversals
 - Parallel traversals
- 3 Backpropagation graphs
 - Single memory
 - Multiple memories
 - Parallel Processing

MEMORY USAGE AND PERFORMANCE **ON GENERAL TASK GRAPHS**

Introduction

- Decompose an application (simulations, scientific computations,...) into tasks
- Data produced and used by tasks create dependencies
- Task graph : Directed Acyclic Graph (DAG)
 - ► nodes : computational tasks
 - edges : data dependencies between tasks
- Task mapping and scheduling done at runtime
- Numerous runtime projects:
 - StarPU (Inria Bordeaux): dynamically schedules tasks on any computing ressource (CPU, GPU, *PU)
 - ▶ DAGUE, ParSEC (ICL Tennessee): task graph expressed in symbolic form for linear algebra
 - StarSs (Barcelona), Xkaapi (Grenoble), and others...

■ Consider a simple task graph

- Consider a simple task graph
- Tasks have duration and memory demands

- Consider a simple task graph
- Tasks have duration and memory demands

- Consider a simple task graph
- Tasks have duration and memory demands

■ Peak Memory : maximum memory usage

- Consider a simple task graph
- Tasks have duration and memory demands

■ Peak Memory: maximum memory usage

- Consider a simple task graph
- Tasks have duration and memory demands

■ Peak Memory: maximum memory usage

- Consider a simple task graph
- Tasks have duration and memory demands

- Peak Memory: maximum memory usage
- Trade-off between Peak Memory and Performance

RESEARCH PROBLEMS

Several interesting questions:

- For sequential processing:
 - Minimum memory to process a graph
 - ► In case of memory shortage, minimum I/Os required
- In case of parallel processing:
 - ► Trade-off between memory and time
 - Makespan minimization under bounded memory

All of these problems are *NP-hard* on **general graphs**. Sometimes restrict on simpler graphs:

- Trees (single output, multiple inputs for each task)
 Arise in sparse linear algebra (sparse direct solvers), with large data to handle: memory is a problem
- Backpropagation graphs

 Arise in automatic differentiation, gradient descent, training of deep neural networks,...

SEQUENTIAL PROBLEM

- Tasks have no execution data
- Output data have a memory size

- Output data are kept in memory until every children is processed
- Even in the sequential case, scheduling influences the peak memory

Substitution : A C B E B E Man Basilian

Exécution: A C B E D F Mem Peak = 5

Exécution: A C B E D F Mem Peak = 5

Exécution : A B C E D F Mem Peak = 6

Exécution: A C B E D F Mem Peak = 5

RESEARCH PROBLEMS

Sequential processing of general DAGs:

- Finding the topological order that minimize peak memory on general DAGs is **NP-complete**
- The problem is still **NP-complete** on **unitary** edges (pebble game)

The problem becomes polynomial when we restrict on some simpler graphs:

- Trees (single output, multiple inputs for each task)
 Arise in sparse linear algebra (sparse direct solvers), with large data to handle: memory is a problem
- Backpropagation graphs
 Arise in automatic differentiation, gradient descent, training of deep neural networks,...

TREE-SHAPED TASK GRAPHS

MOTIVATION

In the multifrontal method, when factorizing a sparse matrix, the order in which variables can be eliminated is expressed with a bottom-up elimination tree.

- Any topological order of the elimination tree leads to a correct factorization
- Parallelism : separate subtrees can be processed in parallel
- Output data have large size (increasing closer to the root)

NOTATIONS

- In-tree of *n* nodes
- \blacksquare Execution data of size m_i
- \blacksquare Output data of size f_i
- Leaf nodes have input data of null size
- Memory usage when executing node *i*:

$$MemReq(i) = \left(\sum_{j \in Children(i)} f_j\right) + m_i + f_i$$

FROM IN-TREES TO OUT-TREES

Theorem

Considering an in-tree \mathcal{T} and a schedule σ_1 of \mathcal{T} , we can build a schedule σ_2 of the out-tree $\overline{\mathcal{T}}$ obtained by reversing all edges, with the same peak memory:

$$\sigma_2 = reverse(\sigma_1)$$

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- \blacksquare f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ P_1 \right\}$$

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- \blacksquare f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ P_1; \, f_1 + P_2; \right.$$

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- \blacksquare f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ P_1; \, f_1 + P_2; \, f_1 + f_2 + P_3; ...; \right.$$

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- \blacksquare f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ P_1; f_1 + P_2; f_1 + f_2 + P_3; ...; \sum_{i < n} f_i + P_n; \right.$$

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ P_1; \, f_1 + P_2; \, f_1 + f_2 + P_3; ...; \, \sum_{i < n} f_i + P_n; \, \sum_{i = 1}^n f_i + m_R + f_R \right\}$$

11 3.

POST-ORDER TRAVERSALS FOR TREE

Post-order: entirely process one subtree after the other (Deep First Search)

For each subtree \mathcal{T}_i :

- \blacksquare P_i : peak memory
- \blacksquare f_i : residual memory

For a given processing order of the subtrees \mathcal{T}_1 , \mathcal{T}_2 ,... \mathcal{T}_n , the peak memory is:

$$\max \left\{ \max_{j=1}^n \left(P_j + \sum_{i=1}^{j-1} f_i \right); \sum_{i=1}^n f_i + m_R + f_R \right\}$$

LIU'S BEST POST-ORDER TRAVERSALS FOR TREES

Theorem (Liu, Best Post-order Traversal)

The best post-order traversal is obtain by processing subtrees in non-increasing order of $P_i - f_i$.

Proof by contradiction.

- Consider an optimal traversal which does not respect the order, that is to say:
 - ▶ subtree \mathcal{T}_i is processed right before subtree \mathcal{T}_k
 - ▶ and $P_k f_k \ge P_j f_j$
- Transform the schedule step by step without increasing the peak memory

Theorem (Post-order Traversals are arbitrary bad in the general case)

There is no constant K such that the best post-order traversal is a K-approximation in the general case.

Minimum post-order peak memory:

$$BPO_1 = M + \epsilon + (b-1)\frac{M}{b}$$

Minimum traversal peak memory:

$$BT_1 = M + \epsilon + (b - 1)\epsilon$$

Theorem (Post-order Traversals are arbitrary bad in the general case)

There is no constant K such that the best post-order traversal is a K-approximation in the general case.

Minimum post-order peak memory:

$$BPO_2 = M + \epsilon + 2(b-1)\frac{M}{b}$$

Minimum traversal peak memory:

$$BT_2 = M + \epsilon + 2(b-1)\epsilon$$

Theorem (Post-order Traversals are arbitrary bad in the general case)

There is no constant K such that the best post-order traversal is a K-approximation in the general case.

Minimum post-order peak memory:

$$BPO_K = M + \epsilon + K(b-1)\frac{M}{b}$$

Minimum traversal peak memory:

$$BT_K = M + \epsilon + K(b-1)\epsilon$$

■ Thus:

$$\frac{BPO_K}{BT_K} > K$$

Theorem (Post-order Traversals are arbitrary bad in the general case)

There is no constant K such that the best post-order traversal is a K-approximation in the general case.

The best post-order is not optimal in the general case but **efficient** in practice:

	actual assembly trees	random trees
Non-optimal traversals	4.2%	61%
Maximum increase compared to optimal	18%	22%
Average increase compared to optimal	1%	12%

MODEL FOR PARALLEL TREE PROCESSING

- P uniform processors
- Shared memory of size M
- Task i has execution times w_i
- Simultaneous processing of nodes induces larger memory
- Trade-off time vs. memory

PARALLEL TREE TRAVERSALS

When processing a tree with multiple processors, there are multiple sources of parallelism:

- Node parallelism: a task node can be processed using multiple processors.
 - ⇒ It does not increase the memory usage but induces a lot of communications between processors.
- Tree parallelism: independent tasks can be processed at the same time by different processors
 - \Rightarrow It increases the memory usage since their data coexists at the same time in the shared memory.

COMPLEXITY RESULTS

For tree-shaped task graph:

- Makespan minimization is NP-complete for general trees
- Makespan minimization is polynomial for unit-weigth task trees
- Memory minimization is polynomial for $w_i = 1$, $m_i = 0$, and $f_i = 1$ (pebble game model)

Theorem

Deciding whether a tree can be scheduled with a bound M on memory and a bound C on makespan is NP-complete

Theorem

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for peak memory minimization when scheduling tree-shaped task graphs

ALL-TO-ALL MAPPING

All-to-all mapping: post-order traversal of the tree, where all the processors work at every node (maximum node parallelism on every node)

- \mathcal{T}_1 , \mathcal{T}_2 ,..., \mathcal{T}_n are processed in the best post-order using a all-to-all mapping scheduling
- Every processor executes root R in parallel
- Optimal memory scalability: same peak memory as the sequential execution
- No tree parallelism
- A lot of communications between processors

PROPORTIONAL MAPPING

Proportional mapping: every subtrees are processed in parallel by a subset of processors proportional to their work load

■ Subtree \mathcal{T}_i is executed by p_i processors where:

$$p_i = P * \frac{W_{\mathcal{T}_i}}{W_{\mathcal{T}}}$$
 and $W_{\mathcal{T}} = \sum_{node \in \mathcal{T}} W_{node}$

- Good work-load balance to exploit tree parallelism
- Memory scalability can be arbitrary bad compared to the sequential execution: $P * M_{max}(P) >> M_{seq}$

MEMORY-AWARE MAPPINGS

Memory-aware mapping: (Agullo et al. [3]): aims at enforcing a given memory bound M_B on the peak memory

- Try to apply proportional mapping
- Check whether enough memory for each tree. If not, serialize them and update M_B:
- Ensures the given memory constraint and provides reliable estimates
- Tends to assign many processors on nodes at the top of the tree ⇒ performance issues on parallel nodes.

SUMMARY

For parallel traversals of tree-shaped tasks graphs:

- Optimizing both memory and makespan is NP-complete
- Optimizing makespan under memory constraint is NP-complete
- No scheduling algorithm can be a constant factor approximation on both memory and time

Use of heuristics:

- All-to-all mapping: full node parallelism, no tree parallelism
- Proportional mapping: tree parallelism needing more memory
- Other memory-aware mappings

BACKPROPAGATION GRAPHS

AUTOMATIC DIFFERENTIATION

Ice-sheet model:

Model Algorithm (single timestep) 1. Evaluate driving stress $\tau_d = \rho g h \nabla s$ 2. Solve for velocities DO i = 1, $max_i ter$ i. Evaluate nonlinear viscosity v_i from iterate u_i iii. Construct stress matrix $A\{v_i\}$ iii. Solve linear system $Au_{i+1} = \tau_d$ iv. (Exit if converged) ENDDO 3. Evolve thickness (continuity eqn) Automatic differentiation (AD) tools generate code

for adjoint of operations

Simpler Version:

```
proc Model Algorithm(x_o)

begin

Do stuff;

for i = o to n do

x_{i+1} = f_i(x_i);
Do stuff;

end

F(u_o) = f_n \circ f_{n-1} \circ \dots \circ f_o(u_o) \times \nabla F(x_o).y;

end
```

A quick reminder about the gradient:

$$F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_1 \circ f_0(u_0)$$

$$\nabla F(u_0) \mathbf{y} = \mathrm{J} f_0(u_0)^\mathsf{T} \cdot \nabla (f_n \circ f_1)(u_1) \cdot \mathbf{y}$$

$$= \mathrm{J} f_0(u_0)^\mathsf{T} \cdot \mathrm{J} f_1(u_1)^\mathsf{T} \cdot \ldots \cdot \mathrm{J} f_{n-1}(u_{n-1})^\mathsf{T} \cdot \mathrm{J} f_n(u_n)^\mathsf{T} \cdot \mathbf{y}$$

$$\mathrm{J} f^\mathsf{T} = \mathrm{Transpose \ Jacobian \ matrix \ of \ } f;$$

$$u_{i+1} = f_i(u_i) = f_i \left(f_{i-1} \circ \ldots \circ f_0(u_0) \right).$$

TASK GRAPH DESCRIPTION

$$F_i(x_i) = x_{i+1}$$
 $i < l$ (Forward Phase)
 $B_i(x_i, y_{i+1}) = y_i$ $i \le l$ (Backward Phase)

TASK GRAPH DESCRIPTION

$$F_i(x_i)=x_{i+1}$$
 $i< l$ (Forward Phase) $\mathbf{B_i}(\mathbf{x_i},\mathbf{y_{i+1}})=\mathbf{y_i}$ $\mathbf{i}\leq \mathbf{l}$ (Backward Phase)

TASK GRAPH DESCRIPTION

$$F_i(x_i) = x_{i+1}$$
 $i < l$ (Forward Phase) $B_i(x_i, y_{i+1}) = y_i$ $i \le l$ (Backward Phase)

RELATION TO DEEP LEARNING

When training a neural network:

- Forward phase: computes predicted output for each layers with respect to model weights
- Loss computation: difference between predicted output and expected output
- Backward phase: updates the model weights to minimize loss function

GoogleNet graph

RELATION TO DEEP LEARNING

When training a neural network:

- Forward phase: computes predicted output for each layers with respect to model weights
- Loss computation: difference between predicted output and expected output
- Backward phase: updates the model weights to minimize loss function

BACKPROPAGATION GRAPHS

- No graph parallelism (linear structure)
- Intermediate data $(x_i \text{ and } y_i)$ have large sizes
- Intermediate data can be useful much later in execution
- Intermediate data can not all fit in memory at the same time
- Initial state : x_0 is stored in memory
- \blacksquare Objective : compute y_0

Memory:	X _O			

Memory:	X _O	<i>X</i> ₁				
---------	----------------	-----------------------	--	--	--	--

Memory:	X _O	<i>X</i> ₁	<i>X</i> ₂				
---------	----------------	-----------------------	-----------------------	--	--	--	--

Memory:	X _O	<i>X</i> ₁	X ₂	<i>X</i> ₃			
---------	----------------	-----------------------	----------------	-----------------------	--	--	--

Memory:	X _O	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	
---------	----------------	-----------------------	-----------------------	-----------------------	-----------------------	--

Memory:	X _O	<i>X</i> ₁	X ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	
---------	----------------	-----------------------	----------------	-----------------------	----------------	-----------------------	--

Memory:	X _O	<i>X</i> ₁	X ₂	y ₃		
---------	----------------	-----------------------	----------------	-----------------------	--	--

Memory:	X _O	<i>X</i> ₁	<i>y</i> ₂				
---------	----------------	-----------------------	-----------------------	--	--	--	--

Memory:	X _O	<i>y</i> ₁		

Memory:	Уo			

MODEL OF EXECUTION

For l = 5 forward steps

Strategy Store all (memory expensive):

- Peak Memory: 6
- Recomputation: o

MODEL OF EXECUTION: RECOMPUTE ALL

Memory: X₀

MODEL OF EXECUTION: RECOMPUTE ALL

2/ 35

MODEL OF EXECUTION

For l = 5 forward steps

Strategy Store all (memory expensive):

■ Peak Memory: 6

Recomputation : o

Strategy Recompute all (compute expensive):

■ Peak Memory: 3

■ Recomputation: 10

MODEL OF EXECUTION

For l = 5 forward steps

Strategy Store all (memory expensive):

- Peak Memory: 6
- Recomputation : 0

Strategy Recompute all (compute expensive):

- Peak Memory: 3
- Recomputation: 10

Strategy Store some / Recompute some (hybrid):

- Peak Memory: 4
- Recomputation: 4

SCHEDULING PROBLEM

Application Parameters:

- l: number of forward steps in the BP graph
- \mathbf{x}_i : memory size of intermediate value i
- wf, wb: computational cost of forward and backward steps

Memory Parameters:

- \blacksquare w_m : writing cost in memory
- \blacksquare r_m : reading cost in memory
- \blacksquare c_m : size of the memory

Question: Which intermediate data should we store in memory and which should we evict and recompute later?

HOMOGENEOUS MODEL + SINGLE FREE MEMORY

Application Parameters:

- l: arbitrary number of steps
- **x**_i = **1**: unitary size of intermediate value
- wf_i = 1, wb_i = 1: homogeneous forward and backward steps

Memory Parameters:

- w_m = o: free writing cost in memory
- r_m = o: free reading cost in memory
- \blacksquare c_m : arbitrary memory size

Griewank and Walther, 2000: Revolve(l, c_m), optimal algorithm with c_m memory slots on homogeneous backpropagation graphs and free memory

HETEROGENEOUS MODEL + K MEMORIES

We consider K different memories with arbitrary reading and writing costs:

Application Parameters:

- *l* : arbitrary number of steps
- \blacksquare x_i : arbitrary memory size of intermediate value
- \blacksquare *wf_i*, *wb_i*: arbitrary computational cost for forward and backward steps

Memory Parameters:

- $\mathbf{w}_{\mathbf{m}}^{(\mathbf{k})}$: writing cost into memory k
- $\mathbf{r}_{\mathbf{m}}^{(\mathbf{k})}$: reading cost from memory k
- $\mathbf{c}_{\mathbf{m}}^{(\mathbf{k})}$: size of memory k

Aupy, Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of storage: cheap bounded memory and costly unbounded disks.

Aupy, Herrmann, 2019: Library of optimal schedules for any number of storage level.

PARALLEL PROCESSING OF BACKPROPAGATION GRAPHS

There are multiple parallelization techniques for Deep Neural Networks:

- Model parallelism: the model is partitioned on the architecture
 - ► Intra-layer parallelism: partition individual layers across workers
 - ► Inter-layer parallelism : pipelining
 - **...**
- Data parallelism: the model is replicated on several workers, and each worker computes a micro-batch
 - ZeroDP
 - ► Fully-shared DP
 - **...**

How do we optimize memory usage in these parallel frameworks to train deeper networks or bigger batches? ⇒ INTERNSHIP

REFRENCES

[1] Liu, J. W.

On the storage requirement in the out-of-core multifrontal method for sparse factorization.

ACM Transactions on Mathematical Software (TOMS), 1986

[2] Liu, J. W.

An application of generalized tree pebbling to sparse matrix factorization.

SIAM Journal on Alaebraic Discrete Methods, 1987

[3] Agullo, E., Guermouche, A., L'Excellent, J. Y.

Reducing the I/O volume in sparse out-of-core multifrontal methods.

SIAM Journal on Scientific Computing, 2010

[4] Griewank, A., Walther, A.

Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation.

ACM Transactions on Mathematical Software (TOMS), 2000

[5] Aupy, G., Herrmann, J., Hovland, P., Robert, Y.

Optimal multistage algorithm for adjoint computation.

SIAM Journal on Scientific Computing, 2016

[6] Aupy G., Herrmann, J.

H-Revolve: a framework for adjoint computation on synchronous hierarchical platforms.

ACM Transactions on Mathematical Software (TOMS), 2020

[7] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., ...

Gpipe: Efficient training of giant neural networks using pipeline parallelism.

Advances in neural information processing systems, 2019