8-1、椭圆规尺 AB 由曲柄 OC 带动,曲柄以角速度 ω 。绕 O 轴转动,如图所示。如 OC=BC=AC=r,并取 C 为基点,求椭圆规尺 AB 的平面运动方程。

8-2、图示曲柄连杆机构中,已知曲柄 OA=0.2m,AB=1m,OA 以匀角速度 $\omega=10$ rad/s 绕 O 轴转动。求在图示位置滑块 B 的速度及连杆 AB 的角速度。

班级 学号 姓名

8-3、图示四连杆机构 $OABO_1$,其中 $OA=O_1B=0.5AB=b$,曲柄 OA 以角速度 $\omega=3$ rad/s 转动,求当 $\varphi=90$ °,而曲柄 O_1B 重合于 OO_1 的延长线时,连杆 AB 的角速度、曲柄 O_1B 的角速度和角加速度。

8-4、在图示机构中,曲柄 OA 长为 r,绕 O 轴以等角速度 ω_o 转动,AB=6r, $BC=3\sqrt{3}$ r。求图示位置时,滑块 C 的速度和加速度。

8-5 曲柄 OA 以恒定的角速度 ω =2 rad/s 绕轴 O 转动,并借助连杆 AB 驱动半径为 r 的轮子在半径为 R 的圆弧槽中作无滑动的滚动。设 OA=AB=R=2r=1m,求图示瞬时点 B 和点 D 的速度与加速度。

8-6、如图机构,尺寸如图所示,圆盘以等角速度 ω_0 顺时针转动。试求在图示瞬时,AB 杆和 BC 杆的角速度和角加速度。

班级 学号 姓名

8-7、如图所示,轮 O 在水平面上滚动而不滑动,轮心以匀速 $v_0=0.2m/s$ 运动。轮缘上固连销钉 B,此销钉在摇杆 O_1A 的槽内滑动,并带动摇杆绕 O_1 轴转动。已知:轮的半径 R=0.5m,在图示位置时, AO_1 是轮的切线,摇杆与水平面间的交角为 60°。求摇杆在该瞬时的角速度和角加速度。

8-8、已知图示机构中滑块 A 的速度为常值, $v_A=0.2m/s$,AB=0.4m。求当 AC=CB, $\theta=30$ 时杆 CD 的速度和加速度。

