8. Internal Forced Convection

8.1. General Procedure

- 1. Find fluid properties from Appendix 1 at bulk mean temperature $T_b = (T_i + T_e)/2$
 - ρ , μ , k, c_p , Pr, ν
- 2. Determine mean velocity V_{avg}
- 3. Determine the type of flow (laminar or turbulent)
 - Laminar: Re < 2300
 - Turbulent: Re > 4000
- 4. Determine the Nusselt number, Nu, using the appropriate correlation
 - Check if $l_{h,\text{laminar}}$ and $l_{t,\text{laminar}}$ is less than L. If so, use Table 1
 - Else, use empirical correlations
- 5. Determine the heat transfer coefficient h using Nu, k, and A_s

8.2. Variable Definitions

- Nu: Nusselt number
- Re: Reynolds number
- Pr: Prandtl number
- μ : Dynamic viscosity
- ν : Kinematic viscosity
- k: Thermal conductivity
- h: Convection heat transfer coefficient
- D_h : Hydraulic diameter
- A_s : Surface area
- A_c : Cross-sectional area
- V_{avg}: Average velocity
- T_b : Bulk mean temperature
- T_i : Inlet temperature
- T_e : Exit temperature
- \dot{m} : Mass flow rate
- \dot{q} : Heat flux
- $\Delta T_{\rm lm}$: Log mean temperature difference

8.3. Formulas

$$\begin{split} \dot{m} &= \rho V_{\text{avg}} A_c \\ \text{Re} &= \frac{\rho V_{\text{avg}} D_h}{\mu} = \frac{V_{\text{avg}} D_h}{\nu} \\ D_h &= \frac{4A_c}{\text{Perimeter}} = D|_{\text{circular}} = a|_{\text{square}} \\ &= \frac{2ab}{a+b} \bigg|_{\text{rectangular}} = \frac{4ab}{a+b} \bigg|_{\text{channel}} \\ \text{Nu} &= \frac{hD_h}{k} \\ A_s &= \pi DL|_{\text{circular}} = 4ab|_{\text{rectangular}} \\ A_c &= \pi \frac{D^2}{4}|_{\text{circular}} = ab|_{\text{rectangular}} \\ l_{h,\text{laminar}} &= 0.05 \text{Re} D_h \\ l_{t,\text{laminar}} &= 0.05 \text{Re} \text{Pr} D_h = \text{Pr} l_{h,\text{laminar}} \\ l_{h,\text{turbulent}} &\approx l_{t,\text{turbulent}} = 10D_h \end{split}$$

Constant \dot{q} :

$$T_e = T_i + rac{\dot{q}}{\dot{m}c_p}$$
 $\dot{q} = h(T_s - T_b)$

Constant
$$T_s$$
:
$$T_e = T_s - (T_s - T_i) \exp\left(-\frac{hA_s}{\dot{m}c_p}\right)$$

$$T_s = \frac{T_e - T_i \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}{1 - \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}$$

$$\dot{Q} = hA_s \Delta T_{\rm lm}$$

$$T_{\rm lm} = \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]}$$

For fully developed laminar flow, use Table 1.

For entry region in a circular tube where $T_s = \text{constant}$, use: (Edwards et al., 1979) Nu = $3.66 + \frac{0.0658(D/L)\text{RePr}}{1 + 0.04[(D/L)\text{RePr}]^{2/3}}$

For entry region in a circular tube where the difference between T_s and T_b is large, use:

(Sieder and Tate, 1936) Nu =
$$1.86 \left(\frac{\text{RePr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$

 $0.6 < \text{Pr} < 5, \quad 0.0044 < \frac{\mu_b}{\mu_s} < 9.75$

All properties for Sieder and Tate should be evaluated at T_b except μ_s which should be evaluated at T_s .

For entry region between two isothermal parallel plates, use:

(Edwards et al., 1979) Nu =
$$7.54 + \frac{0.03(D_h/L)\text{RePr}}{1 + 0.016[(D_h/L)\text{RePr}]^{2/3}}$$

Re ≤ 2800

For turbulent flow in a circular tube, use: (Dittus-Boelter, 1930) Nu = 0.023Re^{0.8}Prⁿ n = 0.4 (Heating), n = 0.3 (Cooling)

Tables

Table 1: Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections $(D_h = 4A_c/P, Re = V_{avg}D_h/\nu, \text{ and Nu} = hD_h/k)$ (Table 8-1 in textbook)

		Nu		
Tube Geometry	a/b or θ°	$T_s = \text{constant}$	$\dot{q}_s = {\rm constant}$	f
Circle		4.36	3.66	64/Re
	a/b			
Rectangle	1	2.98	3.61	$56.92/\mathrm{Re}$
	2	3.39	4.12	62.20/Re
	$\frac{2}{3}$	3.96	4.79	$68.36/\mathrm{Re}$
$b\uparrow$	4	4.44	5.33	$72.92/\mathrm{Re}$
	6	5.14	6.05	$78.80/\mathrm{Re}$
$ \leftarrow a \rightarrow $	8	5.60	6.49	$82.32/\mathrm{Re}$
	∞	7.54	8.24	$96.00/\mathrm{Re}$
	a/b			
Ellipse	1	3.66	4.36	$64.00/\mathrm{Re}$
	2	3.74	4.56	$67.28/\mathrm{Re}$
	4	3.79	4.88	$72.96/\mathrm{Re}$
	8	3.72	5.09	$76.60/\mathrm{Re}$
$ \leftarrow a \rightarrow $	16	3.65	5.18	$78.16/\mathrm{Re}$
	$\underline{\theta^{\circ}}$			
Isosceles triangle	10	1.61	2.45	$50.80/\mathrm{Re}$
	30	2.26	2.91	$52.28/\mathrm{Re}$
	60	2.47	3.11	$53.32/\mathrm{Re}$
θ	90	2.34	2.98	$52.60/\mathrm{Re}$
	120	2.00	2.68	$50.96/{ m Re}$