sufficiently small we conclude that $\,n_{\mbox{t}\,'}^{}=0\,\,$ for some $\,$ t' $^>$ 0 , i.e. $\xi\,=\,\mu_{\mbox{t}\,'}^{}+\,\lambda_{\mbox{t}\,'}^{}$.

" \supset ": Choose $\mu \in \sigma(A_1)$, $\lambda \in \sigma(A_2)$. For every t > 0 there exist $n_t \in \sigma(A)$, $m_t \in \mathbb{Z}$ such that $\mu + \lambda = n_t + 2\pi i m_t / t$. Since Re μ + Re λ = Re n_t and $\{\text{ Im } n_t \colon t > 0 \}$ is bounded $-T = (T_1(t) \otimes T_2(t))_{t \geq 0}$ is eventually norm continuous - it follows that $m_{t'} = 0$ for some t' > 0.

7. WEAK SPECTRAL MAPPING THEOREMS

In the previous section we showed under which hypotheses a spectral mapping theorem of the form

$$\sigma(T(t)) \setminus \{0\} = e^{t \cdot \sigma(A)}, t \ge 0,$$

is valid for the generator A of a strongly continuous semigroup $(\mathbf{T(t)})_{+\geq 0}$.

Among the various examples showing that (7.1) does not hold in general we recall the following.

Take the Banach space $E=c_0$, the multiplication operator $A(x_n)_{n\in\mathbb{N}}=(inx_n)_{n\in\mathbb{N}}$ with maximal domain and the corresponding semigroup $T(t)(x_n)_{n\in\mathbb{N}}=(e^{int}x_n)_{n\in\mathbb{N}}$. Then $\sigma(A)=\{in:n\in\mathbb{N}\}$ and the spectral mapping theorem is valid only in the following weak form:

(7.2)
$$\sigma(T(t)) = \overline{\exp(t \cdot \sigma(A))}, t \ge 0.$$

In this section we prove similar weak spectral mapping theorems. We start with a generalization of the above example.

Consider the Banach space $E=C_O(X,\mathbb{C}^n)$ of all continuous \mathbb{C}^n -valued functions vanishing at infinity on some locally compact space X. In analogy to A-I,2.3 we associate to every continuous function $q:X\to M(n)$, where M(n) denotes the space of all complex $n\times n$ -matrices, a "multiplication operator"

 $\texttt{M}_q: \texttt{f} + \texttt{q} \cdot \texttt{f} \text{ such that } (\texttt{q} \cdot \texttt{f}) (\texttt{x}) = \texttt{q}(\texttt{x}) \cdot \texttt{f}(\texttt{x}) \text{ , } \texttt{x} \in \texttt{X} \text{ ,}$ on the maximal domain $\texttt{D}(\texttt{M}_q) = \{\texttt{f} \in \texttt{E} : \texttt{q} \cdot \texttt{f} \in \texttt{E}\}$. If $\|\texttt{e}^{\texttt{tq}(\texttt{x})}\|$ is uniformly bounded for $0 \le \texttt{t} \le 1$ and $\texttt{x} \in \texttt{X}$ it follows that \texttt{M}_q generates the multiplication semigroup

$$(T(t)f)(x) = e^{tq(x)}(f(x)), f \in E, x \in X, t \ge 0.$$

Since M_q has a bounded inverse if and only if $q(x)^{-1}$ exists and is uniformly bounded for $x \in X$ it follows that the eigenvalues of each matrix q(x) are always contained in $\sigma(M_q)$. In fact, much more can be said in case the function is bounded.