Chapitre 4 : Trigonométrie

1 Cercle trigonométrique et radian

1.1 Cercle trigonométrique

Définition 1 (Cercle trigonométrique)

Dans un repère orthonormé (O; I, J), le **cercle trigonométrique** C est le cercle de centre O et de rayon 1, orienté dans le sens inverse des aiguilles d'une montre, appelé **sens direct** ou encore **sens trigonométrique**.

1.2 Enroulement de la droite numérique

On place la droite numérique perpendiculaire à (OI) telle que le 0 de la droite numérique coïncide avec le point I et on l'oriente dans le sens de O vers J (vers le haut). On enroule la demi-droite des réels positifs sur le cercle C dans le sens trigonométrique et la demi-droite des réels négatifs sur le cercle C dans le sens indirect.

Définition 2 (Point image)

À chaque nombre réel $x \in \mathbb{R}$ de la droite numérique, on associe un unique point M du cercle trigonométrique que l'on appelle **point** image.

Propriété 1

Deux nombres réels x et x' de la droite numérique ont le même point image sur C si et seulement si

$$x = x' + k \times 2\pi$$

avec $k \in \mathbb{Z}$.

Exemple 1

En remarquant que

$$\pi = 3\pi - 1 \times 2\pi = -5\pi + 3 \times 2\pi$$

on en déduit que π , 3π et -5π ont le même point image sur le cercle trigonométrique : le point de coordonnées (-1;0).

Application 2

Relier les nombres qui ont le même point image.

 $(1) \frac{-3\pi}{2}$

(a) 2π

 $(2) -\frac{\pi}{4}$

(b) $\frac{\pi}{2}$

(3) 0

(c) π

 $(4) -\pi$

(d) $\frac{7\pi}{4}$

Application 3

Placer les points associés aux réels suivants :

0	
$\frac{\pi}{2}$	
$\frac{3\pi}{4}$	-
$\frac{2\pi}{3}$	-
_	$\frac{\pi}{6}$

$$\begin{array}{ccc}
2\pi \\
\frac{\pi}{2} & \frac{\pi}{4} \\
\frac{\pi}{4} & \frac{\pi}{3} \\
\frac{\pi}{6} & \frac{\pi}{6}
\end{array}$$

1.3 Angle en radian

Définition 3 (Mesure en radian)

Soit M un point du cercle trigonométrique. On appelle **mesure en radian de l'angle orienté** $(\overrightarrow{OI}, \overrightarrow{OM})$ tout nombre réel $x \in \mathbb{R}$ associé au point M.

Propriété 2

Les mesures, en degrés ou en radians, d'un angle géométrique, sont **proportionnelles.** On a ainsi le tableau de proportionnalité ci-contre. On a donc $\pi d = 180\alpha$ ou $\frac{\alpha}{\pi} = \frac{d}{180}$.

Mesure en degrés	180	d
Mesure en radians	π	α

Application 4

Compléter le tableau suivant.

Mesure en degrés	0	30	45	60	90	180	270	360
Mesure en radians						π		

Application 5

- 1. Exprimer, en radians, une mesure de 50° .
- 2. Exprimer, en degrés, une mesure de $\frac{7\pi}{16}$ radians.

$\mathbf{2}$ Cosinus et sinus

2.1Généralités

Définition 4 (Cosinus et sinus)

On considère un réel $x \in \mathbb{R}$ ayant pout image le point M sur le cercle trigonométrique.

- L'abscisse du point M est appelée **cosinus** de x. On la note $\cos(x)$.
- L'ordonnée du point M est appelée sinus de x. On la note $\sin(x)$.

Les coordonnées du point M sont donc $M(\cos(x); \sin(x))$.

Propriété 3

Pour tout nombre réel $x \in \mathbb{R}$, on a :

$$\bullet -1 \le \cos(x) \le 1$$

$$\bullet$$
 $-1 \le \sin(x) \le 1$

•
$$-1 \le \sin(x) \le 1$$
 • $\cos^2(x) + \sin^2(x) = 1$.

Et pour tout entier relatif $k \in \mathbb{Z}$, on a

$$\bullet \cos(x + 2k\pi) = \cos(x)$$

$$\bullet \sin(x + 2k\pi) = \sin(x)$$

2.2Valeurs remarquables

Certaines valeurs du cosinus et du sinus sont à connaître par cœur \heartsuit .

Angle	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

Angle	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\cos(x)$	0	-1	0	1
$\sin(x)$	1	0	-1	0

Application 6

- 1. Donner les coordonnées du point image associé au réel $\frac{3\pi}{4}$.
- 2. Donner les coordonnées du point image associé au réel $\frac{5\pi}{6}$.
- 3. Donner les coordonnées du point image associé au réel $-\frac{\pi}{2}$.