1. 三角関数 · 指数関数 · 対数関数

1

関数 $f(x) = a\sin^2 x + b\cos^2 x + c\sin x\cos x$ の最大値が 2,最小値が -1 となる。このような a, b, c をすべて求めよ。ただし, a は整数, b, c は実数とする。

(お茶の水女子大)

2

次の方程式を解け。

 $\sin 3x = \sin 2x \ (0 \le x < \pi)$

・勝者は決して諦めない。なぜなら、諦める人は決して勝利しないから。

 $\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}=a$, $\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\cos\frac{6\pi}{7}=b$ とする。a と b の値を求めたい。以下の問いに答えよ。

- (1) 角 θ (ラジアン)が $\cos 3\theta = \cos 4\theta$ ……① を満たすとき、解の1つが $\cos \theta$ であるような4次方程式を求めよ。
- (2) $\theta = \frac{2\pi}{7}$ のとき, $\cos \theta$ が解の1つであるような3次方程式を求めよ。
- (3) (2) の結果を用いて, a および b の値を求めよ。

(東京慈恵会医科大)

4

次の問いに答えよ。

- (1) $\cos 5\theta = f(\cos \theta)$ を満たす多項式 f(x) を求めよ。
- (2) $\cos\frac{\pi}{10}\cos\frac{3\pi}{10}\cos\frac{7\pi}{10}\cos\frac{9\pi}{10} = \frac{5}{16}$ を示せ。

(京都大)

・ベストを尽くすコツは、学問そのものを楽しむことである。

f(x), g(t)を

$$f(x) = x^3 - x^2 - 2x + 1$$

$$g(t) = \cos 3t - \cos 2t + \cos t$$

とおく。

- (1) $2g(t)-1=f(2\cos t)$ が成り立つことを示せ。
- (2) $\theta = \frac{\pi}{7}$ のとき, $2g(\theta)\cos\theta = 1 + \cos\theta 2g(\theta)$ が成り立つことを示せ。
- (3) $2\cos\frac{\pi}{7}$ は3次方程式 f(x)=0 の解であることを示せ。

(筑波大)

6

数列 $\{a_n\}$ が

$$a_1 = \sqrt{2}$$
, $a_{n+1} = \sqrt{a_n + 2}$ $(n = 1, 2, 3, \cdots)$

によって定められている。

 $a_n = 2\sin\theta_n$, $0 < \theta_n < \frac{\pi}{2}$ をみたす実数 θ_n を求めよ。

(東京大)

・競争相手には、常に尊敬の念を忘れないこと。 相手も、勝ちたいという気持ちは君と同じなんだよ。

- (1) $a^3 + b^3 + c^3 3abc$ を因数分解せよ。
- (2) (1) の結果を用いて x>0, y>0, z>0 のとき $\frac{x+y+z}{3} \ge \sqrt[3]{xyz}$ を証明せよ。
- (3) α , β , γ は α >0, β >0, γ >0, α + β + γ = π を満たすものとする。このとき、 $\sin \alpha \sin \beta \sin \gamma$ の最大値を求めよ。

(京都大)

8

三角形 ABC において、 $\angle A=60^{\circ}$ であるとする。

- (1) $\sin B + \sin C$ の取り得る値の範囲を求めよ。
- (2) sin B sin C の取り得る値の範囲を求めよ。

(一橋大)

・自信がなければ、自分を洗脳すればよい。

角 α , β , γ が $\alpha+\beta+\gamma=180^\circ$, $\alpha\geq0^\circ$, $\beta\geq0^\circ$, $\gamma\geq0^\circ$ を満たすとき, $\cos\alpha+\cos\beta+\cos\gamma\geq1$ を示せ。

(京都大)

10

xy 平面において, O を原点, A を定点 (1,0) とする。また, P, Q は円周 $x^2 + y^2 = 1$ の上を動く 2 点であって, 線分 OA から正の向きにまわって線分 OP にいたる角と, 線分 OP から正の向きにまわって線分 OQ にいたる角が等しいという関係が成り立っているものとする。

点 P を通り x 軸に垂直な直線と x 軸との交点を R,点 Q を通り x 軸に垂直な直線と x 軸 との交点を S とする。実数 $l \ge 0$ を与えたとき,線分 RS の長さが l と等しくなるような点 P, Q の位置は何通りあるか。

(東京大)

・挑戦することをやめない限り、完全に負けることなんて絶対ない。

 $\boxed{11}$ $A=9^{100}$ について、A の桁数は \boxed{P} 桁。A の 1 の位の数は \boxed{I} 。A の最高位の数は \boxed{D} 。 9^n ($n=1,2,\cdots,100$) において、最高位の数が 9 となるのは、 9^1 も含めて \boxed{I} 個である。ただし、 $\log_{10}3=0.4771$, $\log_{10}2=0.3010$ である。

12

(早稲田大)

・次,生まれ変わったらこうしたい、とか言う人がいるが、次などない。

x, yは $x \ge 1, y \ge 1$ をみたす正の数で、不等式

 $\log_x y + \log_y x > 2 + (\log_x 2)(\log_y 2)$

をみたすとする。このとき x, y の組 (x, y) の範囲を座標平面上に図示せよ。

(京都大)

14

p,qを正の実数とする。xの方程式

 $\log_{10}(px) \cdot \log_{10}(qx) + 1 = 0$

が 1 より大きい解をもつとき, 点 $(\log_{10} p, \log_{10} q)$ の存在する範囲を座標平面上に図示せよ。

(筑波大)

・どんな目標を持つかによって、あなたがどんな人間になるか決まる。