Course 9

Model-free reinforcement learning

Christophe Eloy

Exam

- Groups of 1-2 students
- One projet on Machine learning (validated by prof.)
 - Reinforcement learning (e.g., videogames, board games)
 - You can use an existing code/tutorial if you can explain/modify/tune it
- Report to be returned by January 31, 2021
 - ~10 pages
 - How/why you choose the methods you are using?
 - How did you tune the hyper parameters?
 - How/what does it learn? Comparison with alternative methods/benchmarks

Outline

- Summary on MDPs and Bellman equations
- Model-free prediction
 - Monte Carlo
 - Temporal difference
- Model-free control
 - SARSA
 - Q-learning

Markov Decision Process

- Finite set of states $\mathcal S$
- Finite set of actions A
- State transition matrix

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' | S_t = s, A_t = a\right]$$

Reward function

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

• Discount factor: $\gamma \in [0,1]$

Policy and value functions

Stochastic policy

$$\pi(a \mid s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- Return: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right]$$

Action-value function (Q-function)

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$

Bellman equations

Bellman equation for state-value and action-value functions

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \left[\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right]$$

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \sum_{a'} \pi(a'|s') q_{\pi}(s',a')$$

• Bellman optimality equations $(v_*(s) = \max q_*(s, a))$

$$v_*(s) = \max_a \left[\mathscr{R}_s^a + \gamma \sum_{s'} \mathscr{P}_{ss'}^a v_*(s') \right]$$

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \max_{a'} q_*(s',a')$$

Model-free prediction

- Dynamic programming
- Iterative procedure to approach state-value function, given a known policy
- Monte-Carlo algorithm (high variance, no bias)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

• Temporal difference algorithm (lower variance, some bias)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Theorem: MC and TD algorithm converges towards $v_{\pi}(s)$

Model-free control

- Iterative procedure to approach Q-function, given sequences S, A, R, S', A'
- Monte Carlo algorithm (on-policy)

$$Q(S,A) \leftarrow Q(S,A) + \frac{1}{N(S,A)} \left(G - Q(S,A) \right)$$

SARSA algorithm (on-policy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Q-learning algorithm (off-policy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$

Theorem: These algorithms converge towards q*

DP, MC and TD

- Dynamic programming, Monte Carlo, temporal difference
- State-value function

$$V(S) \leftarrow \mathbb{E}\left[R + \gamma V(S') \,|\, S
ight]$$
 DP (iterative policy evalution) $V(S) \leftarrow V(S) + \alpha \left(G - V(S)\right)$ MC $V(S) \leftarrow V(S) + \alpha \left(R + \gamma V(S') - V(S)\right)$ TD

Q-function

$$\begin{split} Q(S,A) \leftarrow \mathbb{E}\left[R + \gamma Q(S',A') \,|\, S,A\right] & \text{DP} \\ Q(S,A) \leftarrow Q(S,A) + \alpha \left(G - Q(S,A)\right) & \text{MC} \\ Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right) & \text{TD (SARSA algorithm)} \end{split}$$