

ETC3555

Statistical Machine Learning

(Stochastic) gradient descent

14 August 2018

Outline

1 Gradient descent

2 Stochastic gradient descent

Introduction Gradient descent 2/22

How to minimize E_{in}

How to minimize $E_{\rm in}$

For logistic regression,

$$E_{\mathrm{in}}(\mathbf{w}) \ = \ \frac{1}{N} \ \sum_{n=1}^{N} \ \ln \left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n} \right) \qquad \ \ \longleftarrow \text{ iterative } \text{solution}$$

Compare to linear regression:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - y_n)^2 \longleftrightarrow \text{closed-form solution}$$

C Treator: Yaser Abu-Mostafa - LFD Lecture 9

18/24

Introduction Gradient descent 3/22

Gradient descent

Iterative method: gradient descent

General method for nonlinear optimization

Start at $\mathbf{w}(0)$; take a step along steepest slope

Fixed step size:
$$\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$$

What is the direction $\hat{\mathbf{v}}$?

C Treator: Yaser Abu-Mostafa - LFD Lecture 9

19/24

$$\hat{m v}$$
 is a unit vector, i.e. $\|\hat{m v}\|=1$ and $\eta>0$

Introduction Gradient descent 4/22

We want to minimize

$$E_{\mathsf{in}}(\boldsymbol{w}(1)) - E_{\mathsf{in}}(\boldsymbol{w}(0)) = E_{\mathsf{in}}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) - E_{\mathsf{in}}(\boldsymbol{w}(0)).$$

The Taylor expansion of $E_{\rm in}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$ is given by

$$E_{in}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) = E_{in}(\boldsymbol{w}(0)) + \eta \nabla E_{in}(\boldsymbol{w}(0))^{\mathsf{T}} \hat{\boldsymbol{v}} + O(\eta^2),$$

where $\nabla E_{\text{in}}(\mathbf{w}) = (\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_1}, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_d})^T$ is the gradient.

We can write

$$E_{in}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) - E_{in}(\mathbf{w}(0))$$

$$= \underbrace{E_{in}(\mathbf{w}(0)) + \eta \nabla E_{in}(\mathbf{w}(0))^{T} \hat{\mathbf{v}} + O(\eta^{2})}_{\text{Taylor approximation}} - E_{in}(\mathbf{w}(0))$$

Introduction Gradient descent 5/22

We want to minimize

$$E_{\mathsf{in}}(\boldsymbol{w}(1)) - E_{\mathsf{in}}(\boldsymbol{w}(0)) = E_{\mathsf{in}}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) - E_{\mathsf{in}}(\boldsymbol{w}(0)).$$

The Taylor expansion of $E_{in}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$ is given by

$$E_{\text{in}}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) = E_{\text{in}}(\boldsymbol{w}(0)) + \eta \nabla E_{\text{in}}(\boldsymbol{w}(0))^{T} \hat{\boldsymbol{v}} + O(\eta^{2}),$$

where
$$\nabla E_{\text{in}}(\mathbf{w}) = (\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_1}, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_d})^T$$
 is the gradient.

We can write

$$E_{in}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) - E_{in}(\boldsymbol{w}(0))$$

$$= \underbrace{E_{in}(\boldsymbol{w}(0)) + \eta \nabla E_{in}(\boldsymbol{w}(0))^{T} \hat{\boldsymbol{v}} + O(\eta^{2})}_{\text{Taylor approximation}} - E_{in}(\boldsymbol{w}(0))$$

 $pprox \eta \nabla E_{\text{in}}(\mathbf{w}(0))^T \hat{\mathbf{v}}.$

Introduction Gradient descent 5/22

We want to minimize

$$E_{\mathsf{in}}(\boldsymbol{w}(1)) - E_{\mathsf{in}}(\boldsymbol{w}(0)) = E_{\mathsf{in}}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) - E_{\mathsf{in}}(\boldsymbol{w}(0)).$$

The Taylor expansion of $E_{in}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$ is given by

$$E_{\text{in}}(\boldsymbol{w}(0) + \eta \hat{\boldsymbol{v}}) = E_{\text{in}}(\boldsymbol{w}(0)) + \eta \nabla E_{\text{in}}(\boldsymbol{w}(0))^T \hat{\boldsymbol{v}} + O(\eta^2),$$

where
$$\nabla E_{\text{in}}(\mathbf{w}) = (\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_1}, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_d})^T$$
 is the gradient.

We can write

$$E_{in}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) - E_{in}(\mathbf{w}(0))$$

$$= \underbrace{E_{in}(\mathbf{w}(0)) + \eta \nabla E_{in}(\mathbf{w}(0))^{\mathsf{T}} \hat{\mathbf{v}} + O(\eta^{2})}_{-E_{in}(\mathbf{w}(0))} - E_{in}(\mathbf{w}(0))$$

Taylor approximation

$$\approx \eta \nabla E_{\rm in}(\mathbf{w}(0))^T \hat{\mathbf{v}}.$$

Introduction Gradient descent 5/22

$$\underset{\hat{\boldsymbol{v}},\|\hat{\boldsymbol{v}}\|=1}{\text{minimize}} \ \eta \nabla E_{\text{in}}(\boldsymbol{w}(0))^T \hat{\boldsymbol{v}} = \|\nabla E_{\text{in}}(\boldsymbol{w}(0))\| \, \|\hat{\boldsymbol{v}}\| \cos(\theta)$$

where θ is the angle between $\nabla E_{in}(\mathbf{w}(0))$ and $\hat{\mathbf{v}}$.

$$\equiv \underset{\hat{\boldsymbol{v}}}{\text{minimize}} \ \|\nabla E_{\text{in}}(\boldsymbol{w}(0))\| \cos(\theta) \equiv \underset{\hat{\boldsymbol{v}}}{\text{minimize}} \ \cos(\theta)$$

This quantity is minimized with $\theta=180^\circ$ (cos(θ) = -1), i.e. $\hat{\mathbf{v}}$ is pointing in the opposite direction of the gradient. Since $\hat{\mathbf{v}}$ is a unit vector, we have $\hat{\mathbf{v}}=-\frac{\nabla E_{\mathrm{in}}(\mathbf{w}(0))}{\|\nabla E_{\mathrm{in}}(\mathbf{w}(0))\|}$.

In other words, we update the weights as follows

$$\mathbf{w}(1) = \mathbf{w}(0) - \frac{\nabla E_{\mathsf{in}}(\mathbf{w}(0))}{\|\nabla E_{\mathsf{in}}(\mathbf{w}(0))\|}.$$

Introduction Gradient descent 6/22

Which step size?

How η affects the algorithm:

 η should increase with the slope

Creator: Yaser Abu-Mostafa - LFD Lecture 9

21/24

 η should be proportional to the length of the gradient

Introduction Gradient descent 7/22

From step size to learning rate

Easy implementation

Instead of

$$\begin{split} \Delta \mathbf{w} &= \frac{\eta}{\mathbf{\hat{v}}} \\ &= -\frac{\eta}{\|\nabla E_{in}(\mathbf{w}(0))\|} \end{split}$$

Have

$$\Delta \mathbf{w} = - \boldsymbol{\eta} \nabla E_{\text{in}}(\mathbf{w}(0))$$

Fixed learning rate η

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 9

22/24

Introduction Gradient descent 8/22

Gradient descent algorithm

Fixed learning rate gradient descent:

- 1: Initialize the weights at time step t = 0 to $\mathbf{w}(0)$.
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Compute the gradient $\mathbf{g}_t = \nabla E_{\text{in}}(\mathbf{w}(t))$.
- 4: Set the direction to move, $\mathbf{v}_t = -\mathbf{g}_t$.
- 5: Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t$.
- 6: Iterate to the next step until it is time to stop.
- 7: Return the final weights.

Introduction Gradient descent 9/22

Exercise

Exercise 3.7

For logistic regression, show that

$$\nabla E_{\text{in}}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}}$$
$$= \frac{1}{N} \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n).$$

Argue that a 'misclassified' example contributes more to the gradient than a correctly classified one.

Introduction Gradient descent 10/22

Logistic regression algorithm

Logistic regression algorithm

- 1. Initialize the weights at t = 0 to $\mathbf{w}(0)$
- $_{2}$ for $t=0,1,2,\ldots$ do
- 3: Compute the gradient

$$abla E_{ ext{in}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) \eta \nabla E_{\text{in}}$
- 5: Iterate to the next step until it is time to stop
- 6: Return the final weights w

(c) RP Greator: Yaser Abu-Wostafa - LFD Lecture 9

Stopping criterion

Typically the initial point $\mathbf{w}(0)$ is picked randomly, or we use prior knowledge about the problem. But when to stop the algorithm?

Some common choices (ϵ is a small prescribed threshold):

$$\blacksquare \| \nabla E_{\mathsf{in}}(\mathbf{w}(t)) \| < \epsilon$$

$$lacksquare$$
 $|E_{\mathsf{in}}(oldsymbol{w}(t+1)) - E_{\mathsf{in}}(oldsymbol{w}(t))| < \epsilon$

$$lacksquare \|\mathbf{w}(t+1) - \mathbf{w}(t)\| < \epsilon$$

$$\qquad \qquad \frac{|E_{\text{in}}(\boldsymbol{w}(t+1)) - E_{\text{in}}(\boldsymbol{w}(t))|}{\max\{1, |E_{\text{in}}(\boldsymbol{w}(t))|\}} < \epsilon$$

t > T

Introduction Gradient descent 12/22

Choosing the learning rate

- The size of the step taken in gradient descent, $-\eta \nabla E_{\text{in}}$, is proportional to the learning rate η .
- The optimal step size/learning rate depends on how wide or narrow the error surface is near the minimum.
- Wider surface \implies we can take larger steps without overshooting. Since $\|\nabla E_{in}\|$ is small, we need a large η .

Introduction Gradient descent 13/22

Choosing the learning rate

Variable Learning Rate Gradient Descent:

- 1: Initialize $\mathbf{w}(0)$, and η_0 at t = 0. Set $\alpha > 1$ and $\beta < 1$.
- 2: while stopping criterion has not been met do
- 3: Let $\mathbf{g}(t) = \nabla E_{\text{in}}(\mathbf{w}(t))$, and set $\mathbf{v}(t) = -\mathbf{g}(t)$.
- 4: if $E_{\text{in}}(\mathbf{w}(t) + \eta_t \mathbf{v}(t)) < E_{\text{in}}(\mathbf{w}(t))$ then
- 5: accept: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \mathbf{v}(t); \ \eta_{t+1} = \alpha \eta_t.$
- 6: **else**
- 7: reject: $\mathbf{w}(t+1) = \mathbf{w}(t); \, \eta_{t+1} = \beta \eta_t.$
- 8: Iterate to the next step, $t \leftarrow t + 1$.

Steepest Descent (Gradient Descent + Line Search):

- 1: Initialize $\mathbf{w}(0)$ and set t = 0;
- 2: while stopping criterion has not been met do
- 3: Let $\mathbf{g}(t) = \nabla E_{\text{in}}(\mathbf{w}(t))$, and set $\mathbf{v}(t) = -\mathbf{g}(t)$.
- 4: Let $\eta^* = \operatorname{argmin}_{\eta} E_{\text{in}}(\mathbf{w}(t) + \eta \mathbf{v}(t))$.
- 5: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta^* \mathbf{v}(t)$.
- 6: Iterate to the next step, $t \leftarrow t + 1$.

Introduction Gradient descent 14/22

Other optimization methods

- Momentum, Nesterov Momentum, ...
- Adaptive learning rates: AdaGrad, RMSProp, RMS Prop, Adam
- Newtow's Method, Conjugate gradient, BFGS, L-BFGS

Introduction Gradient descent 15/22

Outline

1 Gradient descent

2 Stochastic gradient descent

About gradient descent

- Computing the full gradient is slow for big data
- Stuck at stationary points

Stochastic gradient descent

Stochastic gradient descent

GD minimizes:

$$E_{\mathrm{in}}(\mathbf{w}) \ = \frac{1}{N} \ \sum_{n=1}^{N} \underbrace{ \mathbf{e} \left(h(\mathbf{x}_n), y_n \right)}_{\ln \left(1 + e^{-y_{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_n} \right)} \ \longleftarrow \text{in logistic regression}$$

by iterative steps along $-\nabla E_{\rm in}$:

$$\Delta \mathbf{w} = -\eta \nabla E_{\text{in}}(\mathbf{w})$$

 $\nabla E_{\rm in}$ is based on all examples (\mathbf{x}_n, y_n)

©

☐ Creator: Yaser Abu-HVostafa - LFD Lecture 10

The stochastic aspect

The stochastic aspect

Pick one (\mathbf{x}_n, y_n) at a time. Apply GD to $\mathbf{e}(h(\mathbf{x}_n), y_n)$

"Average" direction:
$$\mathbb{E}_{\mathbf{n}}\left[-\nabla \mathbf{e}\left(h(\mathbf{x}_n),y_n\right)\right] = \frac{1}{N} \sum_{n=1}^{N} -\nabla \mathbf{e}\left(h(\mathbf{x}_n),y_n\right)$$
$$= -\nabla E_{\mathrm{in}}$$

randomized version of GD

 ${\bf stochastic} \; {\bf gradient} \; {\bf descent} \; ({\bf SGD})$

Benefits of SGD

Benefits of SGD

- 1. cheaper computation
- 2. randomization
- 3. simple

Rule of thumb:

$$\eta = 0.1$$
 works

randomization helps

(c) M Creator: Yaser Abu-Mostafa - LFD Lecture 10

Exercise

Exercise 3.10

(a) Define an error for a single data point (\mathbf{x}_n, y_n) to be

$$e_n(\mathbf{w}) = \max(0, -y_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n).$$

Argue that PLA can be viewed as SGD using e_{n+}

(b) For logistic regression with a very large w, argue that minimizing $E_{\rm in}$ using SGD is similar to PLA. This is another indication that the logistic regression weights can be used as a good approximation for classification.

Mini-batch gradient descent

Compute the gradient using $1 \le b \le N$ samples.

- **1** Pick *b* examples $(1 \le b \le N)$
- 2 Apply batch GD to these *b* examples

Note: we can also shuffle the data and pick the mini-batches sequentially.

- \blacksquare b = N is GD and b = 1 is SGD
- Bias and variance tradeoff
- A single pass through the entire training data is called an *epoch*. With mini-batches of size b, we update the parameters N/b times per epoch.
- We often need multiple epochs to obtain a good training accuracy.