Kombinatorika

Antonín Slavík

MATEMATICKO-FYZIKÁLNÍ FAKULTA UK

Poslední aktualizace: 21. března 2025

Obsah

1	Základy kombinatoriky											
	1.1	Kombinatorická pravidla součtu a součinu	7									
	1.2	Variace, permutace a kombinace	8									
	1.3	Cvičení	10									
2	Pri	ncip inkluze a exkluze	13									
	2.1	Dvě varianty principu inkluze a exkluze	13									
	2.2	Příklady										
	2.3	Permutace bez pevných bodů a související úlohy										
	2.4	Cvičení	17									
3	Věž	žové polynomy a permutace s omezujícími podmínkami	19									
	3.1	Věžové polynomy	19									
	3.2	Permutace s omezujícími podmínkami	24									
	3.3	B Příklady										
	3.4	4 Úloha o hostech kolem kulatého stolu										
	3.5	Cvičení	30									
4	Roz	Rozmisťovací úlohy										
	4.1	.1 Přihrádky rozlišitelné										
		4.1.1 Předměty rozlišitelné	31									
		4.1.2 Předměty nerozlišitelné	32									
	4.2	Přihrádky nerozlišitelné	33									
		4.2.1 Předměty rozlišitelné	33									
		4.2.2 Předměty nerozlišitelné	35									
	4.3	Cvičení	37									
5	Úlo	Úlohy vedoucí na rekurentní rovnice										
	5.1	Hanojské věže	39									
	5.2	Přímky v rovině	40									
	5.3	Úloha o zajatcích	41									

4	OBSAH
---	-------

	5.4	Cvičení	43
6	Fibo	onacciho čísla	45
	6.1	Úloha o králících a definice Fibonacciho čísel	45
	6.2	Další úlohy vedoucí na Fibonacciho čísla	46
		6.2.1 Úloha o dlaždicích, 1. varianta	46
		6.2.2 Úloha o dlaždicích, 2. varianta	47
		6.2.3 Úloha o schodišti	47
		6.2.4 Házení mincí	48
	6.3	Vlastnosti Fibonacciho čísel	48
	6.4	Cvičení	51
7	Cata	alanova čísla	53
	7.1	Úloha o frontě před pokladnou	53
	7.2	Hlasovací problém	55
	7.3	Catalanova čísla	56
	7.4	Cvičení	59
8	Gen	erující funkce	61
	8.1	Mocninné řady a generující funkce	61
	8.2	Operace s posloupnostmi a jejich generujícími funkcemi	62
	8.3	Příklady	63
	8.4	Cvičení	66
9	Line	eární homogenní rekurentní rovnice	67
	9.1	Pomocné tvrzení o polynomech	67
	9.2	Lineární rekurentní rovnice	68
	9.3	Příklady	70
	9.4	Cvičení	71
10	Dal	ší typy rekurentních rovnic	73
	10.1	Lineární nehomogenní rovnice	73
	10.2	Soustavy rekurentních rovnic	74
	10.3	Cvičení	78
11	Poly	vnomy a řady v kombinatorice	79
	11.1	O počtu řešení jisté rovnice	79
	11.2	Příklady	80
	11.3	Cvičení	83
12	Kon	nbinatorické identity	85

OBSAH

12.1 Vlastnosti kombinačních čísel	5
12.2 Součty kombinačních čísel	7
12.3 Další identity	9
12.4 Cvičení	1
3 Stirlingova a Bellova čísla 9	3
13.1 Stirlingova čísla 1. druhu	3
13.2 Sestupné a vzestupné mocniny	5
13.3 Rozbíjení cyklů a šatnářka podruhé	8
13.4 Bellova čísla	9
13.5 Cvičení	0
4 Diskrétní kalkulus	1
14.1 Diference	1
14.2 Antidiference a konečné součty	3
14.3 Sumace per partes	5
14.4 Diference vyšších řádů a interpolace	6
14.5 Cvičení	8
5 Výsledky cvičení 10	9

6 OBSAH

Kapitola 1

Základy kombinatoriky

V této úvodní kapitole zopakujeme nejdůležitější pojmy a výsledky ze středoškolské kombinatoriky.

1.1 Kombinatorická pravidla součtu a součinu

Pravidla součtu a součinu jsou dva jednoduché, avšak nepostradatelné principy. Při řešení kombinatorických úloh je často používáme automaticky, aniž bychom se na ně explicitně odvolávali.

Kombinatorické pravidlo součinu. Počet uspořádaných k-tic, jejichž i-tý člen lze vybrat n_i způsoby, je roven součinu $n_1 \cdot n_2 \cdots n_k$.

Následující dvě úlohy ilustrují použití tohoto pravidla.

Úloha 1.1.1. Kolik čtyřciferných přirozených čísel lze sestavit z cifer 0, 1, 2, 3, 4, 5, jestliže a) cifry se mohou opakovat, b) cifry se nesmí opakovat?

Řešení. Abychom dostali čtyřciferné číslo, nesmí být na první pozici nula.

Pokud se cifry mohou opakovat, pak sestavujeme uspořádanou čtveřici cifer, přičemž pro výběr cifry na první pozici máme 5 možností (1, 2, 3, 4, 5) a na dalších pozicích 6 možností (0, 1, 2, 3, 4, 5). Z kombinatorického pravidla součinu plyne, že máme celkem

$$5 \cdot 6 \cdot 6 \cdot 6 = 1080$$
 možností.

Pokud se cifry nesmí opakovat, pak sestavujeme uspořádanou čtveřici cifer, přičemž pro výběr cifry na první pozici máme 5 možností (nesmí být nula), na druhé pozici 5 možností (nesmí být stejná cifra jako na první pozici), na třetí pozici 4 možnosti (nesmí být stejná cifra jako na prvních dvou pozicích) a na čtvrté pozici 3 možnosti (nesmí být stejná cifra jako na prvních třech pozicích). Z kombinatorického pravidla součinu plyne, že máme celkem

$$5 \cdot 5 \cdot 4 \cdot 3 = 300 \text{ možností}$$
.

Úloha 1.1.2. Kolik kladných dělitelů má číslo 2880?

Řešení. Najdeme prvočíselný rozklad zadaného čísla:

$$2880 = 10 \cdot 288 = 2^{2} \cdot 5 \cdot 144 = 2^{2} \cdot 5 \cdot 12^{2} = 2^{2} \cdot 5 \cdot 2^{4} \cdot 3^{2} = 2^{6} \cdot 3^{2} \cdot 5.$$

Všichni kladní dělitelé čísla 2880 tedy mají tvar

$$2^i \cdot 3^j \cdot 5^k, \text{ kde } i \in \{0, 1, \dots, 6\}, \ j \in \{0, 1, 2\}, \ k \in \{0, 1\}.$$

Každý dělitel je jednoznačně určen trojicí i, j, k. Počet způsobů, jak ji zvolit, je podle kombinatorického pravidla součinu roven $7 \cdot 3 \cdot 2 = 42$.

Je zřejmé, že podobným způsobem jako v předchozí úloze lze vypočítat počet kladných dělitelů libovolného čísla $n \in \mathbb{N}$, pokud ovšem dokážeme najít jeho prvočíselný rozklad (což může být u velkých čísel obtížné).

Obraťme nyní pozornost k pravidlu součtu. Je-li X konečná množina, pak symbolem |X| značíme její velikost (počet prvků).

Kombinatorické pravidlo součtu. Jsou-li A_1, \ldots, A_n konečné množiny a každé dvě jsou disjunktní, pak platí $|A_1 \cup \cdots \cup A_n| = |A_1| + \cdots + |A_n|$.

V mnoha kombinatorických úlohách máme za úkol zjistit počet prvků jisté množiny (např. počet jistých konfigurací). Pokud úlohu neumíme vyřešit přímo, můžeme si pomoci rozdělením zadané množiny na podmnožiny, jejichž velikosti už dokážeme zjistit. Takovou situaci ilustruje následující varianta úlohy 1.1.1.

Úloha 1.1.3. Kolik sudých čtyřciferných přirozených čísel lze sestavit z cifer 0, 1, 2, 3, 4, 5, jestliže se cifry nesmí opakovat?

Řešení. Abychom dostali čtyřciferné číslo, nesmí být na první pozici nula. Abychom dostali sudé číslo, musí být na čtvrté pozici nula, dvojka, nebo čtyřka. Vyšetříme každý z těchto příkladů zvlášť.

Nechť A_1 je množina všech přípustných čtyřciferných čísel, které končí nulou. Pak z kombinatorického pravidla součinu plyne

$$|A_1| = 5 \cdot 4 \cdot 3 = 60.$$

Nechť A_2 , resp. A_3 , je množina všech přípustných čtyřciferných čísel, které končí dvojkou, resp. čtyřkou. Pak z kombinatorického pravidla součinu plyne

$$|A_2| = |A_3| = 4 \cdot 4 \cdot 3 = 48.$$

Množina všech přípustných čtyřciferných čísel je sjednocením $A_1 \cup A_2 \cup A_3$ a podle kombinatorického pravidla součtu dostáváme

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| = 156.$$

Poznámka 1.1.4. Pravidla součtu a součinu jsou v kombinatorice většinou považována za axiomy; jde o intuitivně zřejmá tvrzení, která se nedokazují. Je však možný i alternativní přístup, kdy budujeme matematiku na základě teorie množin a z ní pak odvodíme obě kombinatorická pravidla.

Chceme-li např. z teorie množin dokázat pravidlo součtu pro dvě neprázdné disjunktní množiny A_1, A_2 , pak postupujeme následovně: Předpokládáme, že existuje bijekce mezi A_1 a množinou $\{1,\ldots,n_1\}$, kde $n_1 \in \mathbb{N}$, a dále bijekce mezi A_2 a množinou $\{1,\ldots,n_2\}$, kde $n_2 \in \mathbb{N}$. Poté ukážeme, že existuje bijekce mezi $A_1 \cup A_2$ a množinou $\{1,\ldots,n_1+n_2\}$. V případě více množin postupujeme podobně.

Formulace kombinatorického pravidla součinu v řeči teorie množin je obtížnější. Někdy bývá zapisováno ve tvaru $|A_1 \times \cdots \times A_k| = |A_1| \cdots |A_k|$, kde A_1, \ldots, A_k jsou konečné množiny, z jejichž prvků sestavujeme uspořádané k-tice. Pravidlo součinu je však ve skutečnosti obecnější, protože např. množina, ze které vybíráme prvky na druhé pozici k-tice, není dopředu fixována, ale závisí na výběru prvku na první pozici k-tice (viz např. úlohu 1.1.1b). Dostatečně obecnou verzi pravidla součinu zapsaného v jazyce teorie množin lze najít např. v knize [13] (viz Theorem 2.3.6).

1.2 Variace, permutace a kombinace

Variace, permutace a kombinace jsou k-tice sestavené z prvků dané n-prvkové množiny

$$A = \{a_1, \dots, a_n\}.$$

Rozlišujeme mezi tzv. uspořádanými k-ticemi, ve kterých záleží na pořadí vybraných prvků, a neuspořádanými k-ticemi, kde na pořadí nezáleží. Dále je potřeba specifikovat, zda se prvky ve výběru nesmí, či mohou opakovat. Začneme prvním případem.

Věta 1.2.1 (variace bez opakování). Počet uspořádaných k-tic sestavených z prvků množiny A tak, že se každý prvek ve výběru vyskytne nejvýše jednou, je roven $n(n-1)\cdots(n-k+1)$.

 $D\mathring{u}kaz$. Tvrzení plyne z kombinatorického pravidla součinu: Při sestavování k-tice máme pro první člen n možností, pro druhý člen n-1 možností, . . . , pro k-tý člen n-k+1 možností.

Věta 1.2.2 (permutace bez opakování). Počet uspořádaných n-tic sestavených z prvků množiny A tak, že se každý prvek ve výběru vyskytne právě jednou, je roven $n! = n \cdot (n-1) \cdots 1$.

 $D\mathring{u}kaz$. Tvrzení je speciálním případem předchozí věty pro k=n.

Věta 1.2.3 (kombinace bez opakování). Počet neuspořádaných k-tic sestavených z prvků množiny A tak, že se každý prvek ve výběru vyskytne nejvýše jednou, je roven

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

Důkaz. Pro počty uspořádaných a neuspořádaných k-tic sestavených z prvků množiny A platí

počet uspořádaných k-tic = (počet neuspořádaných k-tic) · (počet způsobů, jak uspořádat jednu k-tici).

Počet uspořádaných k-tic je $n(n-1)\cdots(n-k+1)$ (jde o variace bez opakování) a počet způsobů, jak uspořádat jednu k-tici, je k! (jde o permutace). Dosazením do předchozí rovnosti vidíme, že počet neuspořádaných k-tic je $n(n-1)\cdots(n-k+1)/k!$.

U variací a kombinací bez opakování se běžně předpokládá, že $k \le n$, neboť pro k > n nelze vybrat k-tici prvků z n-prvkové množiny bez opakování. I v tomto případě však platí tvrzení vět 1.2.1 a 1.2.3, neboť v tomto případě je součin $n(n-1)\cdots(n-k+1)$ roven nule.

Pokud se omezíme na $k \le n$, pak hodnotu kombinačního čísla lze počítat též ze vztahu

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

neboť z definice faktoriálu plyne $n!/(n-k)! = n(n-1)\cdots(n-k+1)$. Připomeňme, že definujeme 0! = 1, tudíž předchozí vztah dává správný počet kombinací i v případě k = n.

Neuspořádané k-tice sestavené z prvků množiny A bez opakování nejsou nic jiného než k-prvkové podmnožiny množiny A. Ukázali jsme tedy, že počet k-prvkových podmnožin n-prvkové množiny je $\binom{n}{k}$.

Dalším vlastnostem kombinačních čísel se budeme věnovat v kapitole 12. Nyní se zaměříme na k-tice s opakováním.

Věta 1.2.4 (variace s opakováním). Počet uspořádaných k-tic sestavených z prvků množiny A je roven n^k .

 $D\mathring{u}kaz$. Tvrzení plyne z kombinatorického pravidla součinu, neboť při sestavování k-tice máme pro každý člen n možností.

Věta 1.2.5 (permutace s opakováním). Nechť jsou dána čísla $k_1, \ldots, k_n \in \mathbb{N}_0$ taková, že $k_1 + \cdots + k_n = k$. Pak počet uspořádaných k-tic sestavených z prvků množiny A tak, že prvek a_i se v k-tici vyskytne k_i -krát, je roven

$$\frac{k!}{k_1!\cdots k_n!}. (1.2.1)$$

Pro zajímavost ukážeme dva možné důkazy.

Důkaz 1. Ptáme se, kolika způsoby lze sestavit uspořádanou k-tici z k symbolů

$$\underbrace{a_1, \dots, a_1}_{k_1 \text{-krát}}, \underbrace{a_2, \dots, a_2}_{k_2 \text{-krát}}, \dots, \underbrace{a_n, \dots, a_n}_{k_n \text{-krát}}.$$
(1.2.2)

Jelikož se nejedná o navzájem různé prvky, nemůžeme zatím použít vzorec pro permutace bez opakování. Zkusme tedy stejné prvky rozlišit doplněním horních indexů:

$$a_1^1, \dots, a_1^{k_1}, a_2^1, \dots, a_2^{k_2}, \dots, a_n^1, \dots, a_n^{k_n}.$$
 (1.2.3)

Jaký je vztah mezi uspořádanými k-ticemi sestavenými z prvků (1.2.2) a uspořádanými k-ticemi sestavenými z prvků (1.2.3)? Platí

počet k-tic s indexy = (počet k-tic bez indexů) · (počet způsobů, jak k libovolné k-tici doplnit indexy).

Počet k-tic s indexy je k! (permutace bez opakování) a počet způsobů, jak k libovolné k-tici bez indexů doplnit indexy, je $k_1! \cdots k_n!$ (k prvkům a_1 lze doplnit indexy $k_1!$ způsoby, k prvkům a_2 je lze doplnit $k_2!$ způsoby, atd.). Dosazením do předchozí rovnosti vidíme, že počet k-tic bez indexů je roven číslu (1.2.1). \square

 $D\mathring{u}kaz$ 2. Představme si, že máme k prázdných pozic, které chceme zaplnit symboly (1.2.2). Počet způsobů, jak vybrat k_1 pozic pro prvky a_1 , je roven $\binom{k}{k_1}$. Počet způsobů, jak následně vybrat k_2 pozic pro prvky a_2 , je roven $\binom{k-k_1}{k_2}$. Pokračujeme-li stejným způsobem dále, dojdeme k tomu, že počet způsobů, jak zaplnit všechny volné pozice, je

$$\binom{k}{k_1} \binom{k-k_1}{k_2} \binom{k-k_1-k_2}{k_3} \cdots \binom{k-k_1-\cdots-k_{n-1}}{k_n} = \binom{k}{k_1} \binom{k-k_1}{k_2} \binom{k-k_1-k_2}{k_3} \cdots \binom{k_n}{k_n} = \frac{k\cdots(k-k_1+1)}{k_1!} \frac{(k-k_1)\cdots(k-k_1-k_2+1)}{k_2!} \frac{(k-k_1-k_2)\cdots(k-k_1-k_2-k_3+1)}{k_3!} \cdots \frac{k_n\cdots 1}{k_n!},$$

což je jen jiný zápis čísla (1.2.1).

Věta 1.2.6 (kombinace s opakováním). Počet neuspořádaných k-tic sestavených z prvků množiny A je roven $\binom{n+k-1}{k}$.

Důkaz. Neuspořádaná k-tice sestavená z prvků A je jednoznačně určena tím, kolik obsahuje prvků a_1 , prvků a_2 , atd. Nechť jsou tyto počty dány čísly $k_1, \ldots, k_n \in \mathbb{N}_0$, kde $k_1 + \cdots + k_n = k$. Znázorníme tyto počty pomocí koleček a oddělovačů: Začneme s k_1 kolečky, následuje oddělovač, poté k_2 koleček, oddělovač, atd.; na konci bude k_n koleček. Je-li např. n=4 a k=6, pak šestici a_1,a_1,a_1,a_2,a_4,a_4 bychom znázornili schématem $\circ \circ \circ | \circ | | \circ \circ$. Obecně půjde o schéma sestavené z k koleček a k=1 oddělovačů. Každá permutace těchto symbolů jednoznačně určuje jistou k-tici sestavenou z prvků množiny k=1. Počet těchto permutací je roven k=1, neboť stačí vybrat k0 pozic z k=1, na které umístíme kolečka.

1.3 Cvičení

Cvičení 1.3.1. V jisté loterii je každý týden taženo 6 různých čísel ze 49. Jaká je pravděpodobnost, že ve dvou po sobě jdoucích týdnech budou tažena různá čísla?

Cvičení 1.3.2. V cukrárně prodávají 10 druhů zákusků. Kolika způsoby lze zakoupit 30 zákusků, jestliže od každého druhu chceme aspoň 2 zákusky?

Cvičení 1.3.3. V jedné řadě je 9 volných míst. Kolika způsoby na ně můžeme rozesadit 6 studentů a 3 profesory tak, aby každý profesor seděl mezi dvěma studenty? (Studenti musejí sedět hned vedle profesora.)

 $^{^{1}}$ Ke stejnému výsledku lze dojít i použitím vzorce pro permutace s opakováním, podle nějž je hledaný počet roven $\frac{(k+n-1)!}{k!(n-1)!}$, což je jen jiný zápis kombinačního čísla $\binom{n+k-1}{k}$.

1.3. CVIČENÍ

Cvičení 1.3.4. Přirozené číslo d nazveme vzestupné, pokud jeho ciferný zápis má tvar $d_m d_{m-1} \dots d_2 d_1$, kde $d_m \leq d_{m-1} \leq \dots \leq d_2 \leq d_1$. (Např. číslo 11334 je vzestupné.) Kolik existuje vzestupných přirozených čísel menších než 10^{100} ?

Cvičení 1.3.5 (narozeninový paradox). Jaká je pravděpodobnost, že mezi n náhodně vybranými osobami budou alespoň dva lidé, kteří mají narozeniny ve stejný den? Jak velké musí být n, aby tato pravděpodobnost přesáhla 1/2? Předpokládejte, že všechna data narození jsou stejně pravděpodobná. K zodpovězení druhé otázky použijte počítač.

Kapitola 2

Princip inkluze a exkluze

Jedním ze základních výsledků kombinatoriky je princip inkluze a exkluze. Vyjadřuje velikost sjednocení konečných množin, které nemusejí být disjunktní (jde tedy o zobecnění kombinatorického pravidla součtu).

Pro sjednocení dvou konečných množin platí

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

Poslední člen na pravé straně zohledňuje skutečnost, že společné prvky množin A_1 , A_2 jsme v součtu $|A_1| + |A_2|$ započítali dvakrát.

Pro sjednocení tří konečných množin platí

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Čtvrtý, pátý a šestý člen na pravé straně opět zohledňují prvky ležící v průniku dvou množin, které jsme v součtu $|A_1| + |A_2| + |A_3|$ započítali dvakrát. Prvky ležící v průniku všech tří množin jsme na pravé straně nejprve třikrát započítali a poté třikrát odečetli, na závěr tedy musíme jejich počet opět přičíst.

Není těžké uhodnout, že pro sjednocení n konečných množin bude platit

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|,$$

neboli zkráceně

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 \le \dots \le i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|.$$
 (2.0.1)

Naším cílem je dokázat tuto obecnou verzi principu inkluze a exkluze.

2.1 Dvě varianty principu inkluze a exkluze

Princip inkluze a exkluze je možné dokázat matematickou indukcí, o něco přehlednější je však následující důkaz založený na použití charakteristických funkcí. Nechť je pevně zvolena konečná množina A. Charakteristická funkce její libovolné podmnožiny M je funkce $\chi_M: A \to \{0,1\}$ definovaná předpisem

$$\chi_M(a) = \begin{cases} 1 & \text{ pokud } a \in M, \\ 0 & \text{ pokud } a \notin M. \end{cases}$$

Z této definice ihned plynou následující tři vlastnosti charakteristických funkcí, kde symbolem \overline{M} značíme množinový doplněk, tj. $\overline{M} = A \setminus M$ (důkazy přenecháváme čtenáři):

- (i) Pokud $M\subset A$, pak platí $\chi_{\overline{M}}(a)=1-\chi_M(a)$ pro každé $a\in A$.
- (ii) Pokud $M,N\subset A$, pak platí $\chi_{M\cap N}(a)=\chi_M(a)\cdot\chi_N(a)$ pro každé $a\in A.$
- (iii) Pokud $M \subset A$, pak $|M| = \sum_{a \in A} \chi_M(a)$.

Nyní již můžeme přistoupit k důkazu principu inkluze a exkluze. Kromě vzorce (2.0.1) dokážeme ještě ekvivalentní podobu, která je velmi užitečná při řešení kombinatorických úloh.

Věta 2.1.1 (princip inkluze a exkluze). Pokud A je konečná množina a $A_1, \ldots, A_n \subset A$, pak platí

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|, \tag{2.1.1}$$

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = |A| - \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|.$$
 (2.1.2)

Důkaz. Uvědomme si, že platí

$$\bigcap_{i=1}^{n} \overline{A_i} = A \setminus \left(\bigcup_{i=1}^{n} A_i\right),\,$$

a proto

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = |A| - \left| \bigcup_{i=1}^{n} A_i \right|.$$

Tato rovnost ukazuje, že vzorce (2.1.1) a (2.1.2) jsou ekvivalentní – dokážeme-li jeden z nich, získáme okamžitě i druhý. Dokážeme vzorec (2.1.2) pomocí výše uvedených pravidel pro počítání s charakteristickými funkcemi:

$$\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right| \stackrel{\text{(iii)}}{=} \sum_{a \in A} \chi_{\overline{A_{1}} \cap \dots \cap \overline{A_{n}}}(a) \stackrel{\text{(ii)}}{=} \sum_{a \in A} \chi_{\overline{A_{1}}}(a) \dots \chi_{\overline{A_{n}}}(a) \stackrel{\text{(i)}}{=} \sum_{a \in A} (1 - \chi_{A_{1}}(a)) \dots (1 - \chi_{A_{n}}(a)) =$$

$$= \sum_{a \in A} 1 + \sum_{a \in A} \sum_{k=1}^{n} \sum_{1 \le i_{1} < \dots < i_{k} \le n} (-\chi_{A_{i_{1}}}(a)) \dots (-\chi_{A_{i_{k}}}(a)) =$$

$$\stackrel{\text{(ii)}}{=} |A| + \sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} \sum_{a \in A} (-1)^k \chi_{A_{i_1} \cap \dots \cap A_{i_k}}(a) \stackrel{\text{(iii)}}{=} |A| - \sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} (-1)^{k-1} |A_{i_1} \cap \dots \cap A_{i_k}|.$$

2.2 Příklady

Úloha 2.2.1. Kolik existuje přirozených čísel menších než 100, která jsou násobky tří nebo čtyř?

 $\check{R}e\check{s}en\acute{i}$. Nechť $A=\{1,\ldots,99\}$ je množina přirozených čísel menších než 100, $A_1=\{3,\ldots,99\}$ její podmnožina obsahující všechny násobky tří a $A_2=\{4,\ldots,96\}$ podmnožina obsahující všechny násobky čtyř. Chceme vypočítat $|A_1\cup A_2|$. Použijeme princip inkluze a exkluze:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

Platí $|A_1| = \lfloor 99/3 \rfloor = 33$, $|A_2| = \lfloor 99/4 \rfloor = 24$. Množina $A_1 \cap A_2$ obsahuje všechny násobky dvanácti menší než 100, tedy $|A_1 \cap A_2| = \lfloor 99/12 \rfloor = 8$. Dosazením velikostí všech tří množin do předchozího vztahu dostáváme $|A_1 \cup A_2| = 33 + 24 - 8 = 49$.

Úloha 2.2.2. Kolika způsoby lze sestavit řadu ze tří Finů, tří Norů a tří Švédů tak, aby vedle sebe nestály tři osoby téže národnosti?

 $\dot{R}e\check{s}en\acute{\iota}$. Nechť A je množina všech seřazení zmíněných devíti osob. Uvažujme její následující podmnožiny:

- A₁ je množina všech seřazení, kde tři Finové stojí vedle sebe,
- A₂ je množina všech seřazení, kde tři Norové stojí vedle sebe,
- A₃ je množina všech seřazení, kde tři Švédové stojí vedle sebe.

Volba A_1 , A_2 , A_3 může být na první pohled překvapivá, neboť nás zajímají rozmístění, kde vedle sebe nestojí tři osoby téže národnosti. Hledáme tedy seřazení, která nepatří do A_1 , A_2 ani A_3 , neboli patří do průniku jejich doplňků. Výhoda naší volby spočívá v tom, že velikost průniku doplňků umíme vyjádřit pomocí vztahu (2.1.2). Pro n=3 dostáváme

$$|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = |A| - |A_1| - |A_2| - |A_3| + |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|.$$

Je zřejmé, že |A| = 9!, neboť jde o permutace 9 osob. Další členy na pravé straně udávají počty permutací, kde jedna, dvě, nebo tři trojice osob stejné národnosti stojí vedle sebe. Takové permutace lze získat tak, že požadovanou trojici osob "slepíme do jedné osoby", poté permutujeme nově vytvořenou množinu osob, na závěr trojici opět "rozlepíme" a seřadíme příslušné 3 osoby, což lze provést 3! způsoby. Tímto způsobem získáváme

$$|A_1| = |A_2| = |A_3| = 7! \cdot 3!, \quad |A_1 \cap A_2| = |A_1 \cap A_3| = |A_2 \cap A_3| = 5!(3!)^2, \quad |A_1 \cap A_2 \cap A_3| = (3!)^4.$$

Po dosazení do předchozího vzorce vypočteme $|\overline{A_1}\cap\overline{A_2}\cap\overline{A_3}|=283\,824.$

Poznámka 2.2.3. Předchozí úloha představuje typické použití druhé varianty principu inkluze a exkluze. Máme-li vypočítat počet konfigurací splňujících jistých n podmínek, můžeme za A_i vzít množinu konfigurací porušujících i-tou podmínku a následně počítat $|\overline{A_1} \cap \cdots \cap \overline{A_n}|$. S tímto obecným postupem se ještě několikrát setkáme.

2.3 Permutace bez pevných bodů a související úlohy

Úloha 2.3.1. Kolika způsoby lze z n manželských párů vytvořit taneční dvojice tak, aby žádní manželé netančili spolu?

 \check{R} ešení. Hledaný počet závisí na volbě $n \in \mathbb{N}$; označme jej D_n . Zřejmě platí $D_1 = 0$, $D_2 = 1$ (výměna manželek). V obecném případě lze každé rozdělení do tanečních párů znázornit tabulkou. Očíslujeme muže a ženy čísly $\{1,\ldots,n\}$ tak, že osoby se stejným číslem jsou manželé. Každý sloupec tabulky pak odpovídá jednomu páru. Pro n=3 dostáváme následující dvě možnosti (tj. $D_3=2$):

Bez újmy na obecnosti lze sloupce tabulky vždy uspořádat tak, aby v prvním řádku byla posloupnost $1, \ldots, n$ (v tomto pořadí). Druhý řádek pak představuje jistou permutaci čísel $1, \ldots, n$, přičemž v jednom sloupci nesmí být dvě stejná čísla. Celou úlohu tedy můžeme přeformulovat následujícím způsobem:

Zajímají nás jisté permutace množiny $\{1,\ldots,n\}$, neboli bijekce $f:\{1,\ldots,n\} \to \{1,\ldots,n\}$. Řekneme, že $i\in\{1,\ldots,n\}$ je pevným bodem permutace, pokud f(i)=i. Číslo D_n odpovídá počtu všech permutací množiny $\{1,\ldots,n\}$ bez pevných bodů. Naším cílem je vypočítat hodnotu D_n pomocí principu inkluze a exkluze. Množina A bude tvořena všemi permutacemi množiny $\{1,\ldots,n\}$. Podle návodu z poznámky 2.2.3 pro každé $i\in\{1,\ldots,n\}$ vezmeme za A_i množinu všech permutací, pro něž je i pevným bodem. Pak dostáváme

$$D_n = \left| \bigcap_{i=1}^n \overline{A_i} \right| = |A| - \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|$$

a potřebujeme zjistit velikosti množin na pravé straně. Platí |A|=n! a $|A_{i_1}\cap\cdots\cap A_{i_k}|=(n-k)!$, neboť $A_{i_1}\cap\cdots\cap A_{i_k}$ obsahuje permutace s pevnými body i_1,\ldots,i_k a zbývajících n-k čísel lze permutovat libovolným způsobem. Dosazením získáme

$$D_n = n! - \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} (n-k)!.$$

Dále využijeme skutečnosti, že vnitřní suma je tvořena $\binom{n}{k}$ sčítanci (to je počet způsobů, jak zvolit indexy $1 \le i_1 < \dots < i_k \le n$), jejichž hodnoty nezávisí na volbě i_1, \dots, i_k . Tím dostaneme

$$D_n = n! - \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} (n-k)! = n! + \sum_{k=1}^n (-1)^k \frac{n!}{k!} = \sum_{k=0}^n (-1)^k \frac{n!}{k!}.$$

Shrňme ještě jednou výsledek získaný v předchozí úloze: Počet permutací n-prvkové množiny bez pevných bodů je roven

$$D_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$
 (2.3.1)

Následující tabulka ukazuje čísla D_n pro nízké hodnoty n.

Všimněme si ještě, že platí

$$D_n = n! \sum_{k=0}^{n-1} \frac{(-1)^k}{k!} + n! \frac{(-1)^n}{n!} = nD_{n-1} + (-1)^n, \quad n \ge 2.$$

Pokud bychom chtěli pokračovat v sestavování tabulky, může být tento rekurentní vzorec výhodnější než přímé dosazování do (2.3.1).

Následující úloha je známa pod názvem "úloha o šatnářce" (hat-check problem).

Úloha 2.3.2. Uvažujme n pánů, kteří si jdou do šatny vyzvednout klobouky. Jestliže šatnářka vydává klobouky náhodně, jaká je pravděpodobnost, že žádný pán nedostane svůj klobouk?

 \check{R} ešení. Očíslujme pány i klobouky čísly $1,\ldots,n$ tak, že pán i je vlastníkem i-tého klobouku. Proces, kdy šatnářka přiděluje pánům kloubouky, odpovídá permutaci $f:\{1,\ldots,n\}\to\{1,\ldots,n\}$; pán i dostane kloubouk f(i). Počet všech takových permutací je n!. Z hlediska úlohy jsou příznivé případy, kdy nikdo nedostane svůj kloubouk, což nastává, právě když f je permutace bez pevných bodů. Hledaná pravděpodobnost je tedy

$$P_n = \frac{D_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

Následující tabulka ukazuje numerické hodnoty P_n pro malá n s přesností na dvě desetinná místa.

I kdybychom pokračovali dále, hodnoty ve druhém řádku se již nebudou měnit. Platí totiž

$$\lim_{n \to \infty} P_n = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!}$$

a tato řada (která je speciálním případem rozvoje $e^x = \sum_{k=0}^{\infty} x^k/k!$) velmi rychle konverguje k hodnotě $e^{-1} \doteq 0.37$.

2.4. CVIČENÍ 17

Poznámka 2.3.3. Kořeny úlohy o permutacích bez pevných bodů sahají k francouzskému matematikovi Pierru Rémondu de Montmortovi, který se roku 1708 zabýval následující úlohou: Máme 13 karet různých hodnot: eso (1), devět číselných hodnot (2, 3, 4, 5, 6, 7, 8, 9, 10), kluk (11), královna (12), král (13). Pokud tyto karty zamícháme, jaká je pravděpodobnost, že na některé pozici $i \in \{1, ..., 13\}$ se ocitne karta s hodnotou i?

Hledaná pravděpodobnost je samozřejmě

$$1 - P_{13} = 1 - \frac{D_{13}}{13!} = \sum_{k=1}^{13} \frac{(-1)^k}{k!}$$

a ke stejnému výsledku došel i Montmort. Dále uvedl, že pro n karet je pravděpodobnost rovna

$$\sum_{k=1}^{n} \frac{(-1)^k}{k!}$$

a v limitě pro $n\to\infty$ se blíží k $1-\mathrm{e}^{-1}\doteq0.63$. Není zcela jasné, jak Montmort k těmto výsledkům došel. Korektní odvození popsal Mikuláš I. Bernoulli v roce 1711.

2.4 Cvičení

Cvičení 2.4.1. Balíček karet obsahuje 52 karet s hodnotami 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, přičemž každá hodnota se vyskytuje ve čtyřech různých barvách. Jestliže náhodně vybereme šest karet, jaká je pravděpodobnost, že od každé barvy budeme mít aspoň jednu kartu?

Cvičení 2.4.2. Uvažujme cesty po hranách čtvercové sítě o rozměrech 10×5 z levého dolního rohu O do pravého horního rohu P. Každá přípustná cesta se skládá pouze z kroků vedoucích vpravo nebo nahoru. Kolik existuje přípustných cest, jejichž součástí nejsou úsečky AB, CD, EF, GH znázorněné na obr. 2.1?

Obrázek 2.1: Čtvercová síť ze cvičení 2.4.2

Cvičení 2.4.3. Kolika způsoby lze rozestavit n manželských párů do jedné řady tak, aby nikdo nestál vedle svého partnera?

Cvičení 2.4.4. Jistý výrobce prodává kolekce fotografií fotbalistů. Celkem existuje N různých fotografií, každá kolekce obsahuje n < N náhodně vybraných různých fotografií. Zakoupíme-li celkem $k \ge N/n$ kolekcí, jaká je pravděpodobnost, že nasbíráme všech N různých fotografií?

Kapitola 3

Věžové polynomy a permutace s omezujícími podmínkami

V první části této kapitoly se budeme věnovat úlohám o rozmísťování šachových figur. Nejedná se pouze o úlohy rekreační matematiky – v další části ukážeme, že toto téma ve skutečnosti úzce souvisí se studiem permutací.

3.1 Věžové polynomy

Definice 3.1.1. Nechť je dán čtverec o rozměrech $n \times n$ rozdělený na n^2 jednotkových políček. Libovolná množina těchto políček se nazývá síť.

Sítě budeme popisovat pomocí obrázků, viz např. obr. 3.1, který znázorňuje síť tvořenou šesti políčky (jsou vyznačena šrafováním) ve čtverci 4×4 . Pokud bychom chtěli být formálnější, mohli bychom síť popsat souřadnicemi příslušných políček, např. síť z obr. 3.1 bychom vyjádřili jako

$$S = \{[1, 2], [1, 3], [2, 1], [2, 4], [3, 2], [4, 3]\}.$$

Obrázek 3.1: Příklad sítě ve čtverci 4×4

Definice 3.1.2. Je-li dána síť S, pak pro každé $k \in \mathbb{N}$ definujeme číslo $v_k(S)$ jako počet způsobů, jak rozmístit k neohrožujících se věží na políčka sítě S (dvě věže se ohrožují, pokud jsou ve stejném řádku nebo sloupci). Dále definujeme $v_0(S) = 1$. Polynom

$$v(x,S) = \sum_{k \ge 0} v_k(S) x^k$$

se nazývá věžovým polynomem sítě S.

¹Uvažujeme pouze věže jedné barvy, tj. věže, které jsou navzájem nerozlišitelné.

Pro každou síť S platí, že $v_k(S) = 0$ pro všechna dostatečně velká $k \in \mathbb{N}$ (lze si např. uvědomit, že na žádnou síť nelze umístit více věží, než kolik má políček). Věžový polynom zavedený v předchozí definici je tedy skutečně polynomem, neboť nekonečný součet má jen konečně mnoho nenulových sčítanců.

Zatímco čísla $v_k(S)$ mají jasnou kombinatorickou interpretaci, pojem věžového polynomu se může zdát poněkud umělý. Později uvidíme, proč je užitečný. Začneme však několika příklady.

Úloha 3.1.3. Síť S ve čtverci $n \times n$ je tvořena jedním řádkem a jedním sloupcem, viz obr. 3.2. Najděte její věžový polynom.

Obrázek 3.2: Síť ve čtverci $n \times n$ tvořená jedním řádkem a jedním sloupcem

 \check{R} ešení. Podle definice platí $v_0(S)=1$. Jednu věž lze umístit na libovolné z 2n-1 políček sítě, tedy $v_1(S)=2n-1$. Chceme-li na políčka sítě umístit dvě neohrožující se věže, nesmíme obsadit políčko tvořící průsečík daného řádku a sloupce. Jinak můžeme jednu věž umístit na kterékoliv z n-1 políček daného řádku a druhou věž na jakékoliv z n-1 políček v daném sloupci. Odtud plyne $v_2(S)=(n-1)^2$. Více než dvě neohrožující se věže nelze na danou síť umístit (dvě z nich by nutně musely ležet ve stejném řádku nebo sloupci), tudíž $v_k(S)=0$ pro každé k>2. Podle definice věžového polynomu máme

$$v(x,S) = 1 + (2n-1)x + (n-1)^2x^2.$$

Úloha 3.1.4. Síť S ve čtverci $n \times n$ je tvořena všemi diagonálními políčky, viz obr. 3.3. Najděte její věžový polynom.

Obrázek 3.3: Síť ve čtverci $n \times n$ tvořená všemi diagonálními políčky

 \check{R} ešení. Podle definice platí $v_0(S)=1$. Pro každé $k\in\{1,\ldots,n\}$ můžeme vzít k věží a umístit je na libovolných k z n diagonálních políček – věže se nikdy nebudou ohrožovat. Více než n věží nelze na políčka sítě S umístit. Tudíž platí $v_k(S)=\binom{n}{k}$ pro každé $k\in\{1,\ldots,n\}$ a $v_k(S)=0$ pro každé k>n. Z definice věžového polynomu plyne

$$v(x,S) = 1 + \sum_{k=1}^{n} {n \choose k} x^k = \sum_{k=0}^{n} {n \choose k} x^k = (1+x)^n.$$

Úloha 3.1.5. Síť S je tvořena všemi políčky ve čtverci $n \times n$, viz obr. 3.4. Najděte její věžový polynom.

Obrázek 3.4: Síť tvořená všemi políčky ve čtverci $n \times n$

 \check{R} ešení. S ohledem na rozměry sítě je zřejmé, že $v_k(S)=0$ pro všechna k>n. Kolika způsoby lze rozmístit k neohrožujících se věží, pokud $k\leq n$? Těchto k věží bude v jistých k řádcích, které lze vybrat $\binom{n}{k}$ způsoby, a v jistých k sloupcích, které lze vybrat také $\binom{n}{k}$ způsoby. Dále se můžeme soustředit jen na políčka nacházející se v průniku vybraných řádků a sloupců; jde o $k\times k$ políček, všechna ostatní jsou již nepodstatná. Počet možností, jak umístit věž do prvního vybraného řádku, je k. Počet možností, jak umístit věž do druhého vybraného řádku tak, aby neohrožovala první věž, je k-1. Pokračujeme-li tímto způsobem dále, zjistíme, že k věží lze rozmístit k! způsoby. Celkem tedy platí

$$v_k(S) = \binom{n}{k}^2 k!, \quad k \in \{0, \dots, n\},$$

a věžový polynom má tvar

$$v(x,S) = \sum_{k=0}^{n} \binom{n}{k}^2 k! x^k.$$

Definice 3.1.6. Dvě sítě S_1 , S_2 ve čtverci $n \times n$ se nazývají nezávislé, pokud každá dvě políčka $p_1 \in S_1$, $p_2 \in S_2$ leží v různých řádcích i sloupcích.

Terminologie vychází ze skutečnosti, že pokud jsou S_1 , S_2 nezávislé sítě, pak věž umístěná na S_1 nemůže ohrožovat věž umístěnou na S_2 a naopak. To znamená, že věže na S_1 a S_2 lze rozmísťovat nezávisle. Toto pozorování vede k důkazu následující věty.

Věta 3.1.7. Jsou-li S_1 , S_2 nezávislé sítě, pak platí

$$v(x, S_1 \cup S_2) = v(x, S_1) \cdot v(x, S_2). \tag{3.1.1}$$

Důkaz. Každé rozmístění k neohrožujících se věží na políčka sítě $S_1 \cup S_2$ vznikne tak, že jistých $i \in \{0,\ldots,k\}$ neohrožujících se věží umístíme na S_1 a zbývajících k-i neohrožujících se věží umístíme na S_2 . To lze provést $v_i(S_1)v_{k-i}(S_2)$ způsoby, protože rozmístění věží v S_1 je nezávislé na rozmístění věží v S_2 . Nasčítáním přes všechna možná $i \in \{0,\ldots,k\}$ získáme

$$v_k(S_1 \cup S_2) = \sum_{i=0}^k v_i(S_1)v_{k-i}(S_2). \tag{3.1.2}$$

Z definice věžového polynomu pak plyne

$$v(x, S_1) \cdot v(x, S_2) = \left(\sum_{l \ge 0} v_l(S_1) x^l\right) \left(\sum_{m \ge 0} v_m(S_2) x^m\right) =$$

$$= \sum_{k \ge 0} \left(\sum_{i=0}^k v_i(S_1) v_{k-i}(S_2)\right) x^k = \sum_{k \ge 0} v_k(S_1 \cup S_2) x^k = v(x, S_1 \cup S_2). \quad \Box$$

Použití věty ilustruje následující úloha.

Úloha 3.1.8. Najděte věžový polynom sítě z obr. 3.5.

Obrázek 3.5: Síť složená ze dvou nezávislých sítí

 $\mathring{R}e\check{s}en\acute{i}$. Zadanou síť lze rozložit na dvě nezávislé sítě S_1 a S_2 , které jsou v obrázku vyznačeny odlišným šrafováním. Věžový polynom sítě S_1 , která je blíže k levému hornímu rohu, je

$$v(x, S_1) = 1 + 5x + 4x^2$$
.

Věžový polynom sítě S_2 , která je blíže k pravému dolnímu rohu, je

$$v(x, S_2) = 1 + 4x + 2x^2.$$

Věžový polynom celé sítě je podle věty 3.1.7 roven

$$v(x,S) = v(x,S_1) \cdot v(x,S_2) = (1+5x+4x^2) \cdot (1+4x+2x^2) = 1+9x+26x^2+26x^3+8x^4.$$

Nyní již chápeme, k čemu jsou užitečné věžové polynomy: Mohou nám usnadnit počítání koeficientů $v_k(S)$, které nás zajímají v první řadě. Čtenář může namítnout, že bychom místo věty 3.1.7 vystačili i se vztahem (3.1.2), který je formulován přímo v řeči zmíněných koeficientů. Použití vztahů (3.1.1) a (3.1.2) je sice algoritmicky stejně pracné, avšak násobení polynomů je přehlednější a lze je svěřit některému snadno dostupnému počítačovému programu, např. Wolfram Alpha (https://www.wolframalpha.com/).

Větu 3.1.7 lze snadno (indukcí) rozšířit ze dvou na libovolný počet nezávislých sítí. Vrátíme-li se např. k síti z obr. 3.3 tvořené n diagonálními políčky, můžeme ji považovat za sjednocení n nezávislých sítí tvořených jedním políčkem. Každá z těchto nezávislých sítí má věžový polynom 1 + x, tudíž věžový polynom celé sítě je $(1 + x)^n$, což je v souladu s výsledkem úlohy 3.1.4.

Co dělat v situaci, kdy máme zadánu velkou síť, kterou nelze rozložit na nezávislé sítě? Podle následující věty lze úlohu převést na výpočet věžových polynomů dvou menších sítí.

Věta 3.1.9. Nechť je dána síť S a políčko $w \in S$. Jestliže S_w značí síť $S \setminus \{w\}$ a S'_w značí síť vzniklou ze sítě S odstraněním všech políček ležících ve stejném řádku nebo sloupci jako w, pak platí

$$v(x,S) = v(x,S_w) + x \cdot v(x,S_w').$$

 $D\mathring{u}kaz$. Při rozmísťování k neohrožujících se věží na políčka sítě S mohou nastat dvě možnosti:

- a) Na w nebude žádná věž, všechny věže tedy umístíme na S_w ; to lze udělat $v_k(S_w)$ způsoby.
- b) Jednu věž umístíme na w, zbývajících k-1 věží pak musíme umísít na S'_w ; to lze udělat $v_{k-1}(S'_w)$ způsoby.

Pro každé $k \ge 1$ tedy platí $v_k(S) = v_k(S_w) + v_{k-1}(S_w')$. Přechodem k věžovým polynomům dostáváme

$$\begin{split} v(x,S) &= \sum_{k \geq 0} v_k(S) x^k = 1 + \sum_{k \geq 1} v_k(S) x^k = 1 + \sum_{k \geq 1} \left(v_k(S_w) + v_{k-1}(S_w') \right) x^k = \\ &= 1 + \sum_{k \geq 1} v_k(S_w) x^k + \sum_{k \geq 1} v_{k-1}(S_w') x^k = \sum_{k \geq 0} v_k(S_w) x^k + x \cdot \sum_{k \geq 1} v_{k-1}(S_w') x^{k-1} = v(x,S_w) + x \cdot v(x,S_w'). \end{split}$$

Použití věty ilustruje následující úloha.

Úloha 3.1.10. Najděte věžový polynom sítě z obr. 3.6.

Obrázek 3.6: Příklad na využití věty 3.1.9, políčko w je orámováno

 $\check{R}e\check{s}en\acute{i}$. Chceme-li využít větu 3.1.9, potřebujeme vybrat políčko $w\in S$. Při výběru je dobré se zamyslet, jak budou vypadat sítě S_w a S_w' – měly by být co nejjednodušší. Zvolíme-li za w prostřední (černě orámované) políčko, získáme sítě S_w a S_w' znázorněné na obr. 3.7.

Obrázek 3.7: Sítě S_w (vlevo) a S_w' (vpravo)

Každou z nich lze rozložit na dvě nezávislé sítě (jsou vyznačeny odlišným šrafováním). Jejich věžové polynomy už snadno najdeme a poté stačí použít větu 3.1.7. Dostaneme

$$v(x, S'_w) = (1 + 3x + x^2)(1 + 4x + 2x^2),$$

$$v(x, S_w) = (1 + 4x + 3x^2)(1 + 5x + 4x^2),$$

a proto

$$v(x,S) = v(x,S_w) + x \cdot v(x,S_w') = (1+4x+3x^2)(1+5x+4x^2) + x(1+3x+x^2)(1+4x+2x^2) = 1+10x+34x^2+46x^3+22x^4+2x^5$$

(poslední rovnost se nejsnáze ověří pomocí počítače).

3.2 Permutace s omezujícími podmínkami

Věnujme se následující úloze: Nechť je dáno číslo $n \in \mathbb{N}$ a množiny $X_1, \ldots, X_n \subset \{1, \ldots, n\}$. Kolik existuje permutací $f: \{1, \ldots, n\} \to \{1, \ldots, n\}$ takových, že pro každé $i \in \{1, \ldots, n\}$ platí $f(i) \notin X_i$? Každá množina X_i tedy představuje seznam "zakázaných" hodnot, na které se číslo i nesmí zobrazit. Hovoříme o permutacích s omezujícími podmínkami. Všimněme si, že pokud bychom např. volili $X_i = \{i\}$ pro každé $i \in \{1, \ldots, n\}$, pak permutace vyhovující těmto podmínkám se shodují s permutacemi bez pevných bodů, které jsme studovali v části 2.3. Zde však řešíme podstatně obecnější úlohu.

Jaká je souvislost mezi permutacemi s omezujícími podmínkami a rozmísťováním věží? Omezující podmínky můžeme znázornit pomocí sítě S ve čtverci $n \times n$: V i-tém řádku vyšrafujeme políčka ve sloupcích odpovídajících hodnotám z X_i . Např. pro n=4 a $X_1=\{2,3\},~X_2=\{1,4\},~X_3=\{2\},~X_4=\{3\}$ dostaneme síť S znázorněnou na obr. 3.8. Každou permutaci, která vyhovuje omezujícím podmínkám, můžeme znázornit tak, že v i-tém řádku nakreslíme kolečko do sloupce f(i). Situaci opět ilustruje obr. 3.8, kde je znázorněna permutace f(1)=4,~f(2)=2,~f(3)=3,~f(4)=1.

Obrázek 3.8: Znázornění omezujících podmínek a permutace, která jim vyhovuje

Právě popsaným způsobem získáme obrázek, kde v každém řádku i v každém sloupci je právě jedno kolečko (to plyne ze skutečnosti, že zobrazení f je prosté a na). Kolečka jsou umístěna vně sítě S (na nevyšrafovaných pozicích), neboť jde o permutaci vyhovující omezujícím podmínkám. Pokud budeme kolečka chápat jako věže, vidíme, že každá permutace vyhovující omezujícím podmínkám odpovídá rozmístění n neohrožujících se věží na políčka vně sítě S. Kolik takových rozmístění existuje? Zkusíme jejich počet vyjádřit pomocí principu inkluze a exkluze.

Za množinu A zvolíme množinu všech rozmístění n neohrožujících se věží ve čtverci $n \times n$. V souladu s poznámkou 2.2.3 pro každé $i \in \{1, \ldots, n\}$ definujeme A_i jako množinu všech rozmístění, kde věž v i-tém řádku stojí na políčku sítě S (tj. na vyšrafovaném políčku). Naším úkolem je vypočítat $|\overline{A_1} \cap \cdots \cap \overline{A_n}|$. Využijeme vztah (2.1.2):

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = |A| + \sum_{k=1}^{n} (-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|.$$

Zřejmě platí |A|=n!. Číslo $|A_{i_1}\cap\cdots\cap A_{i_k}|$ určuje počet rozmístění n neohrožujících se věží, kde věže v řádcích i_1,\ldots,i_k stojí na síti S. Na chvíli předpokládejme, že místo nerozlišitelných věží máme věže dvou barev: k černých a n-k bílých. Černé věže budou v řádcích i_1,\ldots,i_k , ostatní budou bílé. Počet takových rozmístění je stále dán číslem $|A_{i_1}\cap\cdots\cap A_{i_k}|$, neboť barva věže je automaticky určena řádkem, kde věž stojí. Pokud tyto počty nasčítáme přes $1\leq i_1<\cdots< i_k\leq n$, dostaneme počet všech rozmístění n neohrožujících se věží, kde černé věže stojí na S a bílé mohou stát kdekoliv. Tento počet je ovšem roven $v_k(S)(n-k)!$ (umístíme k neohrožujících se černých věží na S a ve zbývajících n-k řádcích pak doplníme bílé věže tak, aby neležely v některém z již obsazených n-k sloupců). Dostáváme tedy

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = n! + \sum_{k=1}^{n} (-1)^k v_k(S)(n-k)! = \sum_{k=0}^{n} (-1)^k v_k(S)(n-k)!.$$
 (3.2.1)

Shrňme, k čemu jsme dospěli: Omezující podmínky umíme reprezentovat sítí S ve čtverci $n \times n$. Pokud dokážeme vypočítat čísla $v_k(S)$, pak dosazením do vztahu (3.2.1) získáme počet permutací vyhovujících zadaným podmínkám.

3.3. PŘÍKLADY 25

Poznámka 3.2.1. Čtenář se může ptát, proč jsme raději nevyšrafovali políčka odpovídající doplňkům množin X_i . Tím bychom získali doplňkovou síť \overline{S} a následně bychom umísťovali věže na její (vyšrafovaná) políčka tak, jako v předchozím textu. Počet jejich rozmístění bychom získali jako $v_n(\overline{S})$, což se zdá mnohem jednodušší, než použití vztahu (3.2.1). Tato úvaha je správná, avšak v konkrétních příkladech bývá síť S obvykle malá (omezujících podmínek nebývá mnoho) a její doplněk \overline{S} je naopak velký. Pak může být obtížné vypočítat $v_n(\overline{S})$, zatímco výpočet $v_k(S)$ a dosazení do vzorce (3.2.1) bývá jednodušší.

3.3 Příklady

Následující tři úlohy ilustrují použití právě odvozeného vzorce (3.2.1).

Úloha 3.3.1. Pět vrtošivých dam se rozhodlo pořídit společnou fotografii. Kolika způsoby se mohou postavit vedle sebe, jestliže první dáma nechce stát přesně uprostřed, třetí nechce stát na kraji a pátá naopak chce být na kraji?

Řešení. Očíslujeme-li dámy čísly $1, \ldots, 5$, pak je zřejmé, že v úloze jde o zjištění počtu permutací množiny $\{1, \ldots, 5\}$ vyhovujících omezujícím podmínkám $X_1 = \{3\}$, $X_2 = \emptyset$, $X_3 = \{1, 5\}$, $X_4 = \emptyset$, $X_5 = \{2, 3, 4\}$. Tyto omezující podmínky znázorníme sítí S na obr. 3.9.

Obrázek 3.9: Síť odpovídající omezujícím podmínkám z úlohy 3.3.1

K použití vzorce (3.2.1) potřebujeme znát čísla $v_k(S)$ nebo ekvivalentně věžový polynom v(x, S). Všimneme si, že síť S je sjednocením dvou nezávislých sítí, které jsou na obrázku vyznačeny odlišným šrafováním. Jejich věžové polynomy jsou

$$v(x, S_1) = 1 + 2x, \quad v(x, S_2) = 1 + 4x + 2x^2,$$

a tudíž podle věty 3.1.7 platí

$$v(x, S) = (1 + 2x)(1 + 4x + 2x^{2}) = 1 + 6x + 10x^{2} + 4x^{3}.$$

Dosazením n = 5 a čísel $v_k(S)$ do vztahu (3.2.1) dostaneme výsledek

$$5! \cdot 1 - 4! \cdot 6 + 3! \cdot 10 - 2! \cdot 4 = 28.$$

Ukažme si ještě, co by se stalo, kdybychom úlohu řešili alternativním způsobem popsaným v poznámce 3.2.1. V tomto případě bychom uvažovali doplňkovou síť znázorněnou na obr. 3.10.

Potřebovali bychom zjistit, kolika způsoby lze na \overline{S} rozmístit pět neohrožujících se věží, tj. vypočítat $v_5(\overline{S})$. Bohužel se jedná o obtížný úkol, neboť tato síť je mnohem větší než S. Svěříme-li výpočet počítači², získáme věžový polynom

$$v(x, \overline{S}) = 1 + 19x + 114x^2 + 254x^3 + 188x^4 + 28x^5.$$

Dojít k výsledku "ručně" by bylo velmi pracné. Vidíme však, že $v_5(\overline{S}) = 28$, což je v souladu s předchozím způsobem řešení.

²Použili jsme Wolfram Mathematica a program pro výpočet věžových polynomů z článku [3].

Obrázek 3.10: Doplňková síť \overline{S} k síti z obr. 3.9

Vraťme se k úloze o permutacích bez pevných bodů, kterou jsme vyřešili v části 2.3, a ukažme si jiný způsob, jak dospět ke stejnému výsledku.

Úloha 3.3.2. Kolik existuje permutací $f:\{1,\ldots,n\}\to\{1,\ldots,n\}$ takových, že $f(i)\neq i$ pro všechna $i\in\{1,\ldots,n\}$?

 $\check{R}e\check{s}en\acute{i}$. Jde o speciální případ úlohy o permutacích s omezujícími podmínkami, kde $X_i = \{i\}$ pro všechna $i \in \{1, \ldots, n\}$. Příslušná síť ve čtverci $n \times n$ je tvořena n diagonálními políčky, viz obr. 3.3. Z úlohy 3.1.4 víme, že platí $v_k(S) = \binom{n}{k}$ pro všechna $k \in \{0, \ldots, n\}$. Dosazením do vzorce (3.2.1) dostáváme

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)! = \sum_{k=0}^{n} (-1)^k \frac{n!}{k!},$$

což souhlasí s výsledkem získaným v části 2.3.

Úloha 3.3.3. Máme sedm jezevčíků J_1, \ldots, J_7 a sedm obojků: červený, žlutý, zelený, modrý, bílý, fialový a hnědý. Kolika způsoby lze jezevčíkům přiřadit tyto obojky, jestliže J_1 nechce bílý ani hnědý, J_2 modrý, J_3 bílý ani zelený, J_4 červený, J_5 hnědý, J_6 zelený a J_7 modrý?

Řešení. Přiřazení lze chápat jako permutaci obojků. Omezující podmínky ze zadání vyjádříme sítí na obr. 3.11.

Obrázek 3.11: Síť odpovídající omezujícím podmínkám z úlohy 3.3.3

Při pečlivém zkoumání zjistíme, že síť je sjednocením dvou nezávislých sítí, které jsou vyznačeny odlišným šrafováním. Tato skutečnost lépe vynikne, když permutujeme řádky a sloupce tak, aby se stejně šrafovaná políčka ocitla u sebe, viz obr. 3.12. Permutace nemůže ovlivnit výsledek úlohy, neboť ten zjevně nezávisí na tom, v jakém pořadí zapíšeme jezevčíky do řádků a barvy obojků do sloupců.

Obrázek 3.12: Permutace řádků a sloupců ve čtverci z obr. 3.11

Na obr. 3.12 již snadno rozpoznáme dvě nezávislé sítě a po chvíli experimentování s rozmísťováním věží určíme jejich věžové polynomy:

$$v(x, S_1) = 1 + 3x + 2x^2$$
, $v(x, S_2) = 1 + 6x + 10x^2 + 4x^3$.

Věžový polynom celé sítě je podle věty 3.1.7 roven

$$v(x, S) = (1 + 3x + 2x^{2})(1 + 6x + 10x^{2} + 4x^{3}) = 1 + 9x + 30x^{2} + 46x^{3} + 32x^{4} + 8x^{5}.$$

Dosazením čísel $v_k(S)$ do vztahu (3.2.1) zjistíme, že počet způsobů, jak přidělit jezevčíkům obojky, je

$$7! \cdot 1 - 6! \cdot 9 + 5! \cdot 30 - 4! \cdot 46 + 3! \cdot 32 - 2! \cdot 8 = 1232.$$

3.4 Úloha o hostech kolem kulatého stolu

Na závěr této kapitoly vyřešíme jednu složitější klasickou úlohu.

Poznámka 3.4.1. Při řešení úlohy 3.4.2 budeme potřebovat následující dva pomocné výsledky:

- Počet způsobů, jak vybrat neuspořádnou k-tici nesousedních číseť z množiny $\{1,\ldots,n\}$, je $\binom{n-k+1}{k}$. Každou přípustnou k-tici totiž můžeme znázornit pomocí n-k koleček a k oddělovačů, přičemž oddělovače odpovídají vybraným číslům. Je-li např. n=7 a k=3, pak zápis $\circ|\circ|\circ\circ|$ znamená, že jsme vybrali čísla 2, 4, 7. Přípustná jsou pouze schémata, kde mezi každými dvěma oddělovači je aspoň jedno kolečko. Uvažujeme-li n-k koleček zapsaných vedle sebe, existuje celkem n-k+1 pozic, na které můžeme doplnit oddělovače tak, aby vzniklo přípustné schéma. Počet způsobů, jak umístit k oddělovačů, je $\binom{n-k+1}{k}$.
- Pro všechna $n, k \in \mathbb{N}$, $k \le n$, platí $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$. Tento vzorec se nazývá absorpční identita a plyne snadno z definice kombinačního čísla. Čtenář si jej může samostatně dokázat nebo nahlédnout do části 12.1, kde je uveden i s důkazem (viz větu 12.1.3).

Úloha 3.4.2. Mějme n manželských párů, kde $n \ge 2$. Kolika způsoby můžeme všechny osoby rozesadit ke kulatému stolu s 2n židlemi tak, aby se muži a ženy střídali a aby manželé nikdy neseděli vedle sebe? Rozesazení lišící se otočením kolem stolu považujeme a) za různá, b) za ekvivalentní.

 $^{^3}$ Termín "nesousední čísla" znamená, že každá dvě vybraná čísla se liší aspoň o 2. Jde o tzv. kombinace s nesousedními členy.

 $\check{R}e\check{s}en\acute{i}$. Zaměříme se na variantu a), kde rozesazení lišící se otočením považujeme za různá. K vyřešení varianty b) pak stačí získaný výsledek vydělit číslem 2n, což je počet rozesazení ekvivalentních s libovolným pevně zvoleným rozesazením.

Začneme tím, že rozesadíme ženy. To lze provést 2n! způsoby: Nejprve rozhodneme, zda ženy obsadí lichá či sudá místa, a poté je rozesadíme na příslušných n židlí. Označme nyní ženy v pořadí, ve kterém sedí, symboly $\check{Z}_1, \ldots \check{Z}_n$. Jejich manžele označme M_1, \ldots, M_n .

Aktuální situaci znázorňuje obr. 3.13.

Obrázek 3.13: Ženy sedící kolem kulatého stolu

Chceme zjistit, kolika způsoby lze na volná místa označená čísly $1, \ldots, n$ rozmístit všechny muže tak, aby M_i a \check{Z}_i neseděli vedle sebe pro žádné $i \in \{1, \ldots, n\}$. To znamená, že M_1 nesmí být na pozicích 1 a 2, M_2 nesmí být na pozicích 2 a 3, atd., až konečně M_n nesmí být na pozicích n a 1. Omezující podmínky v podobě sítě S znázorňuje obr. 3.14.

Obrázek 3.14: Omezující podmínky v úloze o hostech kolem kulatého stolu

K výpočtu koeficientů $v_k(S)$ použijeme větu 3.1.9, kde za w zvolíme políčko sítě S v levém dolním rohu. Příslušné sítě S_w a S_w' pak znázorňuje obr. 3.15.

Síť S_w je tvořena 2n-1 políčky. Dvě věže na S_w se ohrožují právě tehdy, když stojí na sousedních políčkách. Na S_w lze umístit nejvýše n neohrožujících se věží. Máme-li rozmístit $k \in \{0,\dots,n\}$ věží, stačí vybrat k nesousedních políček z 2n-1, což lze (viz poznámku 3.4.1) udělat $\binom{2n-k}{k}$ způsoby. Tudíž

$$v(x, S_w) = \sum_{k=0}^{n} \binom{2n-k}{k} x^k.$$

Síť S_w' je tvořena 2n-3 políčky a lze na ni umístit nejvýše n-1 neohrožujících se věží. Pro $k \in \{0,\ldots,n-1\}$ věží stačí vybrat k nesousedních políček z 2n-3, což lze (viz poznámku 3.4.1) udělat $\binom{2n-2-k}{k}$ způsoby.

Obrázek 3.15: Sítě S_w (vlevo) a S_w' (vpravo)

Tudíž

$$v(x, S'_w) = \sum_{k=0}^{n-1} \binom{2n-2-k}{k} x^k.$$

Z věty 3.1.9 dostáváme

$$v(x,S) = v(x,S_w) + x \cdot v(x,S_w') = \sum_{k=0}^{n} \binom{2n-k}{k} x^k + x \cdot \sum_{k=0}^{n-1} \binom{2n-2-k}{k} x^k = 1 + \sum_{k=1}^{n} \binom{2n-k}{k} x^k + \sum_{k=0}^{n-1} \binom{2n-2-k}{k} x^{k+1} = 1 + \sum_{k=1}^{n} \binom{2n-k}{k} + \binom{2n-k-1}{k-1} x^k.$$

Z absorpční identity (viz poznámku 3.4.1) plyne $\binom{2n-k}{k}=\frac{2n-k}{k}\binom{2n-k-1}{k-1},$ a proto

$$v(x,S) = 1 + \sum_{k=1}^{n} \left(\frac{2n-k}{k} + 1\right) \binom{2n-k-1}{k-1} x^{k} = 1 + \sum_{k=1}^{n} \frac{2n}{k} \binom{2n-k-1}{k-1} x^{k} = 1 + \sum_{k=1}^{n} \frac{2n}{2n-k} \frac{2n-k}{k} \binom{2n-k-1}{k-1} x^{k} = 1 + \sum_{k=1}^{n} \frac{2n}{2n-k} \binom{2n-k}{k} x^{k} = \sum_{k=0}^{n} \frac{2n}{2n-k} \binom{2n-k}{k} x^{k},$$

kde předposlední rovnost je opět důsledkem absorpční identity.

Vidíme, že platí $v_k(S) = \frac{2n}{2n-k} {2n-k \choose k}$ pro $k \in \{0, \dots, n\}$. Dosazením do vzorce (3.2.1) dostáváme, že počet způsobů, jak rozesadit muže, je roven

$$\sum_{k=0}^{n} (-1)^k (n-k)! \frac{2n}{2n-k} \binom{2n-k}{k}.$$

Počet způsobů, jak rozesadit všech 2n osob, je tedy roven

$$2n! \cdot \sum_{k=0}^{n} \frac{(-1)^{k} (n-k)! \cdot 2n}{2n-k} {2n-k \choose k}.$$

Tím jsme vyřešili variantu a), kde rozesazení lišící se otočením považujeme za různá. Řešení varianty b) získáme vydělením 2n:

$$2n! \cdot \sum_{k=0}^{n} \frac{(-1)^k (n-k)!}{2n-k} {2n-k \choose k}.$$

Následující tabulka ukazuje výsledky pro $n \in \{2, ..., 9\}$.

n	2	3	4	5	6	7	8	9
varianta a)	0	12	96	3 120	115200	5836320	382072320	31 488 549 120
varianta b)	0	2	12	312	9 600	416 880	23879520	1749363840

3.5 Cvičení

Cvičení 3.5.1. Najděte věžový polynom sítě znázorněné na obr. 3.16. Kolika způsoby lze na políčka sítě umístit tři neohrožující se věže?

Obrázek 3.16: Síť ke cvičení 3.5.1

Cvičení 3.5.2. Najděte věžový polynom sítě znázorněné na obr. 3.17. Kolika způsoby lze na nevyšrafovaná políčka umístit pět neohrožujících se věží?

Obrázek 3.17: Síť ke cvičení 3.5.2

Cvičení 3.5.3. Na zábavě se sešlo pět manželských párů, muži M_1, \ldots, M_5 a ženy $\check{Z}_1, \ldots, \check{Z}_5$ (M_i a \check{Z}_i jsou manželé). Kolika způsoby z nich lze sestavit smíšené taneční dvojice, jestliže chceme, aby manželé nikdy netančili spolu a dále víme, že \check{Z}_2 nechce tančit s M_1 , \check{Z}_3 nechce tančit s M_2 a \check{Z}_4 nechce tančit s M_3 ?

Cvičení 3.5.4. V rozích šachovnice o rozměrech 8×8 jsou umístěny čtyři figury střelců. Střelec se smí pohybovat pouze diagonálně o libovolné množství polí. Kolika způsoby lze na šachovnici umístit šest věží tak, aby se žádné dvě neohrožovaly, aby nebyly ohrožovány střelci a aby žádná věž neohrožovala žádného střelce?

Cvičení 3.5.5. Určete počet všech trojúhelníků, jejichž vrcholy leží ve vrcholech pravidelného n-úhelníku a jejichž každá strana je úhlopříčkou tohoto n-úhelníku (tj. spojuje dva nesousední vrcholy).

Kapitola 4

Rozmisťovací úlohy

V této kapitole se budeme zabývat úlohami typu kolika způsoby lze rozmístit n předmětů do r přihrádek?. Aby byla úloha jednoznačně zadána, je třeba doplnit následující informace:

- Jsou přihrádky rozlišitelné, nebo nerozlišitelné?
- Jsou předměty rozlišitelné, nebo nerozlišitelné?
- Záleží na pořadí předmětů v každé přihrádce?
- Mohou být některé přihrádky prázdné?

Zdá se tedy, že dostáváme celkem 16 variant úlohy, avšak pokud jsou předměty nerozlišitelné, nemůže záležet na jejich pořadí v přihrádkách. 4 varianty úlohy tedy nedávají smysl a zbývá nám 12 variant, které nyní rozebereme.

4.1 Přihrádky rozlišitelné

4.1.1 Předměty rozlišitelné

4.1.1.1 Nezáleží na pořadí předmětů v přihrádkách

Příklad úlohy: Kolika způsoby lze rozdělit n různých zákusků r osobám? (zákusky = předměty, osoby = přihrádky)

Rozlišíme dvě varianty úlohy.

- a) Přihrádky mohou být prázdné (některé osoby nemusejí dostat žádný zákusek): Počet možností je r^n (pro každý předmět máme na výběr z r přihrádek).
- b) Přihrádky nesmí být prázdné (každá osoba musí dostat aspoň jeden zákusek):

Použijeme princip inkluze a exkluze. Nechť A je množina všech rozmístění n předmětů do r přihrádek (připouštějí se zde i prázdné přihrádky). V souladu s poznámkou 2.2.3 pro každé $i \in \{1, \ldots, r\}$ definujeme A_i jako množinu všech rozmístění n předmětů do r přihrádek, kde i-tá přihrádka musí být prázdná.

Nyní stačí vypočítat $|\overline{A_1} \cap \cdots \cap \overline{A_r}|$ podle vzorce (2.1.2):

$$|\overline{A_1} \cap \dots \cap \overline{A_r}| = |A| - \sum_{k=1}^r (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le r} |A_{i_1} \cap \dots \cap A_{i_k}| =$$

$$= r^n - \sum_{k=1}^r (-1)^{k-1} \sum_{1 < i_1 < \dots < i_k < r} (r-k)^n = r^n + \sum_{k=1}^r (-1)^k \binom{r}{k} (r-k)^n = \sum_{k=0}^r (-1)^k \binom{r}{k} (r-k)^n.$$

4.1.1.2 Záleží na pořadí předmětů v přihrádkách

Příklad úlohy: Kolika způsoby lze rozestavit n osob do front před r pokladnami? (osoby = předměty, fronty = přihrádky; ve frontě záleží na pořadí osob a fronty jsou rozlišitelné, neboť u každé pokladny sedí jiný prodavač)

Pokud osobám přidělíme čísla $1, \ldots, n$, můžeme jejich rozestavení do front znázornit schématem, kde oddělovače signalizují začátek nové fronty. Mějme např. n=10 a r=3. Pokud u 1. pokladny stojí osoby 2, 1, 7, 4 (v tomto pořadí), u 2. pokladny osoby 10, 3, 5 a u 3. pokladny osoby 8, 9, 6, pak příslušné schéma bude vypadat takto: $2174 \mid 1035 \mid 896$.

V obecném případě lze rozdělení n různých předmětů do r rozlišitelných přihrádek znázornit schématem sestaveným z čísel $1, \ldots, n$ a r-1 oddělovačů. Každé takové schéma lze obráceně interpretovat jako rozdělení n předmětů do r přihrádek. Schémata, kdy některé přihrádky jsou prázdné, poznáme tak, že oddělovač stojí hned na začátku (první přihrádka je pak prázdná), úplně na konci (poslední přihrádka je prázdná), případně dva oddělovače stojí těsně vedle sebe.

Rozlišíme dvě varianty úlohy.

a) Přihrádky mohou být prázdné (u některých pokladen nemusejí stát žádné osoby):

Hledáme počet všech schémat sestavených z čísel $1, \ldots, n$ a r-1 oddělovačů. Jde o permutace s opakováním a jejich počet je

$$\frac{(n+r-1)!}{(r-1)!}$$
.

b) Přihrádky nesmí být prázdné (u každé pokladny stojí aspoň jedna osoba):

Hledáme počet všech schémat sestavených z čísel $1,\ldots,n$ a r-1 oddělovačů, přičemž žádný oddělovač nestojí na začátku ani na konci a dva oddělovače nesmí být těsně vedle sebe. Každé takové schéma můžeme získat tak, že napíšeme libovolnou permutaci čísel $1,\ldots,n$ a poté vybereme r-1 různých mezer mezi nimi, do kterých vložíme oddělovače. Počet možností, jak to provést, je

$$n! \binom{n-1}{r-1}$$
.

Ke stejnému výsledku lze dojít i jinak: Nejprve vybereme první prvky všech r přihrádek; to lze udělat $n(n-1)\cdots(n-r+1)$ způsoby. Zbývajících n-r prvků pak rozdělíme do přihrádek libovolným způsobem tak, jako v části a). Počet možností je tedy

$$n(n-1)\cdots(n-r+1)\frac{(n-r+r-1)!}{(r-1)!} = n(n-1)\cdots(n-r+1)\frac{(n-r)!}{(n-r)!}\frac{(n-1)!}{(r-1)!} = n!\binom{n-1}{r-1}.$$

4.1.2 Předměty nerozlišitelné

Víme, že v tomto případě nezáleží na pořadí předmětů v přihrádkách.

Příklad úlohy: Kolika způsoby lze rozdělit n stejných zákusků r osobám? (zákusky = předměty, osoby = přihrádky)

Každé rozdělení lze znázornit schématem, kde kolečka reprezentují zákusky a oddělovače signalizují, že na daném místě začínají zákusky pro další osobu. Mějme např. n=11 a r=4. Pokud 1. osoba dostane

3 zákusky, 2. osoba 5 zákusků, 3. osoba 2 zákusky a 4. osoba 1 zákusek, pak příslušné schéma bude vypadat takto: \circ \circ \circ | \circ \circ \circ | \circ \circ | \circ | \circ .

V obecném případě lze rozdělení n stejných předmětů do r rozlišitelných přihrádek znázornit schématem sestaveným z n koleček a r-1 oddělovačů. Každé takové schéma lze obráceně interpretovat jako rozdělení n předmětů do r přihrádek. Schémata, kdy některé přihrádky jsou prázdné, poznáme tak, že oddělovač stojí hned na začátku (první přihrádka je pak prázdná), úplně na konci (poslední přihrádka je prázdná), případně dva oddělovače stojí těsně vedle sebe.

Rozlišíme dvě varianty úlohy.

a) Přihrádky mohou být prázdné (některé osoby nemusejí dostat žádný zákusek):

Hledáme počet všech schémat sestavených z n koleček a r-1 oddělovačů. Jde o permutace s opakováním a jejich počet je¹

 $\frac{(n+r-1)!}{n!(r-1)!} = \binom{n+r-1}{n}.$

b) Přihrádky nesmí být prázdné (každá osoba musí dostat aspoň jeden zákusek):

Hledáme počet všech schémat sestavených z n koleček a r-1 oddělovačů, přičemž žádný oddělovač nestojí na začátku ani na konci a dva oddělovače nesmí být těsně vedle sebe. Každé takové schéma můžeme získat tím, že nakreslíme n koleček a poté vybereme r-1 různých mezer mezi nimi, do kterých vložíme oddělovače. Počet možností, jak to provést, je

$$\binom{n-1}{r-1}$$
.

Ke stejnému výsledku lze dojít i jinak: Do každé z r přihrádek vložíme jeden předmět. Zbývajících n-r předmětů pak rozdělíme do přihrádek libovolným způsobem tak, jako v části a). Počet možností je tedy

 $\binom{n-r+r-1}{n} = \binom{n-1}{n-r} = \binom{n-1}{r-1}.$

4.2 Přihrádky nerozlišitelné

4.2.1 Předměty rozlišitelné

4.2.1.1 Nezáleží na pořadí předmětů v přihrádkách

Ekvivalentní problém: Kolika způsoby lze rozdělit prvky n-prvkové množiny do r podmnožin? (prvky = předměty, podmnožiny = přihrádky)

Příklad úlohy: Kolika způsoby lze rozdělit n různých zákusků na r stejných talířů? (zákusky = předměty, talíře = přihrádky; uspořádání zákusků na talíři není podstatné)

Rozlišíme dvě varianty úlohy.

a) Přihrádky nesmí být prázdné (na každém talíři musí být aspoň jeden zákusek):

Pro rozlišitelné předměty a neprázdné přihrádky platí:

počet rozdělení do r rozlišitelných přihrádek = $r! \cdot (\text{počet rozdělení do } r \text{ nerozlišitelných přihrádek})$

V řeči zákusků: počet rozdělení zákusků r osobám = $r! \cdot (počet rozdělení zákusků na <math>r$ talířů)

 $^{^{1}}$ Není náhoda, že výsledek vypadá stejně jako vzorec pro kombinace s opakováním. Rozdělování n stejných zákusků r osobám si totiž můžeme představit též jako výběr neuspořádané n-tice z r osob s opakováním (kolikrát osobu vybereme, tolik dostane zákusků).

Jakmile totiž rozdělíme zákusky na talíře, máme r! možností, jak je přidělit r osobám.

S využitím části 4.1.1.1 b) tedy dostáváme výsledek, který označíme symbolem $\binom{n}{r}$:

$${n \brace r} = \frac{1}{r!} \sum_{k=0}^{r} (-1)^k {r \choose k} (r-k)^n.$$
 (4.2.1)

Těmto číslům se říká Stirlingova čísla 2. druhu. Udávají počet způsobů, jak rozdělit prvky n-prvkové množiny do r neprázdných podmnožin.

Např. pro r=2, resp. r=3, dostáváme

$$\begin{cases} n \\ 2 \end{cases} = \frac{1}{2!} \left(\binom{2}{0} 2^n - \binom{2}{1} 1^n \right) = \frac{1}{2} (2^n - 2) = 2^{n-1} - 1,$$

$$\begin{cases} n \\ 3 \end{cases} = \frac{1}{3!} \left(\binom{3}{0} 3^n - \binom{3}{1} 2^n + \binom{3}{2} 1^n \right) = \frac{1}{2} \left(3^{n-1} - 2^n + 1 \right).$$

První vzorec plyne i z jednoduché kombinatorické úvahy: Rozdělujeme-li n rozlišitelných předmětů do 2 rozlišitelných přihrádek, pak pro každý předmět máme 2 možnosti, což dává celkem 2^n možností. Jestliže nechceme, aby některá přihrádka zůstala prázdná, je potřeba vyloučit 2 možnosti. A pokud jsou přihrádky nerozlišitelné, dělíme předchozí výsledek dvěma (výměna přihrádek dává stejnou konfiguraci).

Kombinatorickými úvahami lze získat i další vztahy, např.

$$\binom{n}{n-1} = \binom{n}{2}$$

(při rozdělování n různých předmětů do n-1 nerozlišitelných neprázdných přihrádek stačí vybrat dvojici předmětů, které budou spolu v jedné přihrádce).

Stirlingova čísla $\binom{n}{r}$ lze uspořádat do tabulky, jejíchž prvních pět řádků a sloupců vypadá následovně:

$n \backslash r$	1	2	3	4	5
1	1	0	0	0	0
2	1	1	0	0	0
3	1	3	1	0	0
4	1	7	6	1	0
5	1	15	25	10	1

Např. $\binom{3}{2} = 3$, neboť existují 3 způsoby, jak rozdělit množinu $\{1,2,3\}$ do dvou neprázdných podmnožin: $\{1,2\},\{3\};\{1,3\},\{2\};\{1\},\{2,3\}.$

Čísla v tabulce lze snadno počítat i bez použití explicitního vzorce (4.2.1), pokud si všimneme, že pro každé $n \in \mathbb{N}$ platí:

- (i) $\binom{n}{1} = 1$ (počet rozdělení n předmětů do 1 neprázdné přihrádky je 1).
- (ii) ${n \brace n} = 1$ (počet rozdělení n předmětů do n neprázdných přihrádek je 1).
- (iii) Pokud r > n, pak $\binom{n}{r} = 0$ (počet neprázdných přihrádek nemůže být větší než počet předmětů).
- (iv) Pokud $n\geq 2$ a $r\geq 2,$ pak

$$\binom{n}{r} = \binom{n-1}{r-1} + r \cdot \binom{n-1}{r}.$$

Skutečně, chceme-li rozdělit n různých předmětů do r neprázdných přihrádek, pak jsou dvě možnosti: n-tý předmět je buď sám v jedné přihrádce a zbylých n-1 předmětů v r-1 přihrádkách, nebo n-tý předmět není sám; tyto případy dostaneme tak, že rozdělíme prvních n-1 předmětů do r přihrádek a n-tý předmět pak přidáme do některé z nich.

²Pokud bychom připustili prázdné talíře nebo pokud by zákusky byly nerozlišitelné, pak analogické tvrzení neplatí, protože např. výměna dvou talířů nemusí dát odlišnou konfiguraci.

Pravidla (i) a (ii) říkají, že v prvním sloupci a na diagonále tabulky jsou samé jedničky. Pravidlo (iii) říká, že vpravo od diagonály jsou nuly. Pravidlo (iv) říká, že čísla v n-tém řádku lze počítat pomocí čísel v (n-1)-ním řádku, např. ${3 \brace 2} = {2 \brack 1} + 2 \cdot {2 \brack 2} = 1 + 2 = 3$.

b) Přihrádky mohou být prázdné (některé talíře mohou zůstat prázdné):

Rozdělení předmětů do r ne nutně neprázdných přihrádek je totéž, jako rozdělení předmětů do k neprázdných přihrádek, kde k je libovolné číslo mezi 1 a r. Využitím výsledku z části a) tedy dostáváme, že hledaný počet je roven

$$\sum_{k=1}^{r} {n \brace k}.$$

4.2.1.2 Záleží na pořadí předmětů v přihrádkách

Příklad úlohy: Kolika způsoby lze rozestavit n osob do r zástupů? (osoby = předměty, zástupy = přihrádky; nezáleží na pořadí zástupů, pouze na tom, kdo je s kým v zástupu a na jaké pozici)

Rozlišíme dvě varianty úlohy.

a) Přihrádky nesmí být prázdné (v každém zástupu je aspoň jedna osoba):

Pro rozlišitelné předměty a neprázdné přihrádky platí:

počet rozdělení do r rozlišitelných přihrádek = $r! \cdot (\text{počet rozdělení do } r \text{ nerozlišitelných přihrádek})$

V řeči osob: počet rozestavení do r front u pokladen = $r! \cdot (\text{počet rozestavení do } r \text{ zástupů})$

Jakmile totiž rozdělíme osoby do zástupů, máme r! možností, jak tyto zástupy rozmístit k r pokladnám.

S využitím výsledku z části 4.1.1.2 b) tedy dostáváme výsledek⁴

$$\frac{n!}{r!} \binom{n-1}{r-1}$$
.

b) Přihrádky mohou být prázdné (připouštíme i prázdné "zástupy"):

Rozdělení předmětů do r ne nutně neprázdných přihrádek je totéž, jako rozdělení předmětů do k neprázdných přihrádek, kde k je libovolné číslo mezi 1 a r. Využitím výsledku z části a) tedy dostáváme, že hledaný počet je roven

$$\sum_{k=1}^{r} \frac{n!}{k!} \binom{n-1}{k-1}.$$

4.2.2 Předměty nerozlišitelné

Víme, že v tomto případě nezáleží na pořadí předmětů v přihrádkách.

Příklad úlohy: Kolika způsoby lze rozdělit n stejných zákusků na r stejných talířů? (zákusky = předměty, talíře = přihrádky)

Rozlišíme dvě varianty úlohy.

a) Přihrádky nesmí být prázdné (na každém talíři je aspoň jeden zákusek): Označme hledaný počet symbolem p(n,r). Následující tabulka obsahuje hodnoty p(n,r) pro $n,r \in \{1,\ldots,5\}$:

 $^{^3 \}mbox{Pokud}$ bychom připustili prázdné zástupy/fronty, pak analogické tvrzení neplatí.

⁴Tato čísla se vyskytují i v jiných matematických úlohách. Nazývají se Lahova čísla, viz https://en.wikipedia.org/wiki/Lah_number.

$n \backslash r$	1	2	3	4	5
1	1	0	0	0	0
2	1	1	0	0	0
3	1	1	1	0	0
$oldsymbol{4}$	1	2	1	1	0
5	1	2	2	1	1

K získání hodnot si stačí uvědomit, že pro každé $n \in \mathbb{N}$ platí:

- (i) p(n,1) = 1 (počet rozdělení n předmětů do 1 neprázdné přihrádky je 1).
- (ii) p(n,n) = 1 (počet rozdělení n předmětů do n neprázdných přihrádek je 1).
- (iii) Pokud r>n, pak p(n,r)=0 (počet neprázdných přihrádek nemůže být větší než počet předmětů).
- (iv) Pokud n>r, pak p(n,r)=p(n-1,r-1)+p(n-r,r). První sčítanec odpovídá počtu možností, kdy v některé přihrádce je pouze jeden předmět a zbylých n-1 předmětů je v dalších r-1 přihrádkách. Druhý sčítanec je počet možností, kdy v každé přihrádce jsou aspoň dva předměty do každé přihrádky vložíme jeden a zbývajících n-r předmětů pak umístíme libovolně.

Pravidla (i) a (ii) říkají, že v prvním sloupci a na diagonále tabulky jsou samé jedničky. Pravidlo (iii) říká, že vpravo od diagonály jsou nuly. Pravidlo (iv) říká, že čísla v n-tém řádku lze počítat pomocí čísel v předchozích řádcích, např.

$$p(3,2) = p(2,1) + p(1,2) = 1 + 0 = 1,$$

 $p(4,2) = p(3,1) + p(2,2) = 1 + 1 = 2,$

atd. Každou hodnotu p(n,r) lze tedy vypočítat tak, že sestavíme prvních n řádků tabulky pomocí výše uvedených pravidel. Není znám žádný jednoduchý explicitní vzorec umožňující efektivnější výpočet.⁵

b) Přihrádky mohou být prázdné (některé talíře mohou zůstat prázdné):

Rozdělení předmětů do r ne nutně neprázdných přihrádek je totéž, jako rozdělení předmětů do k neprázdných přihrádek, kde k je libovolné číslo mezi 1 a r. Využitím výsledku z části a) tedy dostáváme, že hledaný počet je roven

$$\sum_{k=1}^{r} p(n,k).$$

Poznámka 4.2.1. Kolika způsoby lze libovolné číslo $n \in \mathbb{N}$ rozložit na součet r přirozených sčítanců, přičemž nezáleží na jejich pořadí? Je to stejná úloha jako rozdělování n jednotek do r nerozlišitelných neprázdných přihrádek. Počet rozkladů n tvořených r sčítanci je tedy roven p(n,r). Číslo

$$p(n) = \sum_{k=1}^{n} p(n, k),$$

což je součet čísel v n-tém řádku výše uvedené tabulky, lze interpretovat jako počet všech rozkladů čísla n s libovolným počtem sčítanců (zřejmě jejich počet je aspoň 1 a nejvýše n). Není znám žádný jednoduchý explicitní vzorec pro p(n), tato čísla jsou však předmětem výzkumu v teorii čísel a existují např. asymptotické odhady p(n) pro velká n. Viz např. https://en.wikipedia.org/wiki/Partition_(number_theory).

 $[\]overline{}^5$ Pro n>r platí též rekurentní vzorec $p(n,r)=\sum_{k=1}^r p(n-r,k)$ (do každé přihrádky musíme dát aspoň 1 předmět a zbylých n-r předmětů pak rozdělíme do prvních k přihrádek, kde k je libovolné číslo mezi 1 a r), který je však pro výpočty méně vhodný.

4.3. CVIČENÍ

4.3 Cvičení

Cvičení 4.3.1. Kolika způsoby lze rozdělit 10 stejných bonbónů mezi 5 dětí, jestliže a) některé děti nemusejí dostat nic, b) každé dítě musí dostat aspoň jeden bonbón?

Cvičení 4.3.2. Kolika způsoby lze $m \cdot n$ osob rozdělit do n skupin o velikosti m, jestliže a) ve skupinách záleží na pořadí osob, b) ve skupinách nezáleží na pořadí osob?

Cvičení 4.3.3. Kolika způsoby lze rozložit množinu $\{1, 2, ..., 12\}$ na tři neprázdné podmnožiny? (Podmnožiny nejsou pojmenované, tj. nezáleží na jejich pořadí v rozkladu.)

Cvičení 4.3.4. a) Kolika způsoby lze číslo 30 030 rozložit na součin tří přirozených čísel větších než 1? Na pořadí čísel v součinu nezáleží. b) Jak se změní odpověď na předchozí otázku, pokud budeme uvažovat součiny tří přirozených čísel včetně 1?

Návod: Použijte rozklad $30\,030 = 2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13$.

Kapitola 5

Úlohy vedoucí na rekurentní rovnice

V kombinatorice (i v jiných oblastech matematiky) se stává, že zadanou úlohu neumíme vyřešit přímo, ale dokážeme ji převést na úlohu stejného typu a "menšího rozsahu". Takové úlohy často vedou na rekurentní rovnice. Ukážeme si tři klasické úlohy tohoto druhu.

5.1 Hanojské věže

Úloha 5.1.1. Ve hře známé pod názvem "hanojské věže" máme k dispozici 3 kolíky a 8 kotoučů různých velikostí. Na začátku hry jsou všechny kotouče na levém kolíku, úkolem hráče je přenést kotouče na pravý kolík. V každém kroku je povoleno přemístit jeden kotouč z jednoho kolíku na jiný, a to tak, že větší kotouč nikdy nesmí ležet na menším. Jaký je nejmenší počet kroků potřebných k dosažení cíle?

Obrázek 5.1: Počáteční stav v hlavolamu hanojské věže se třemi kolíky a osmi kotouči (převzato z Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg)

 $\check{R}e\check{s}en\acute{i}$. Na první pohled není zřejmé, zda je úloha vůbec řešitelná. Budeme uvažovat obecnější verzi s n kotouči a 3 kolíky. Ukážeme, že úloha je řešitelná pro každé $n\in\mathbb{N}$ a najdeme minimální počet kroků a_n potřebných k přenesení n kotoučů z jednoho kolíku na jiný (počet kroků nezáleží na tom, který kolík je startovní a který cílový – známe-li postup pro přenesení věže z levého na pravý kolík, snadno jej upravíme např. na postup pro přenesení věže z levého na prostřední kolík).

Platí $a_1 = 1$ (přenášíme jediný kotouč) a $a_2 = 3$ (menší kotouč přeneseme z levého na prostřední kolík, následně větší kotouč z levého na pravý kolík a nakonec menší kotouč z prostředního na pravý kolík).

V obecném případě je klíčové následující pozorování: Pokud umíme vyřešit úlohu s n-1 kotouči, umíme též vyřešit úlohu s n kotouči. K tomu, abychom se vůbec dostali k největšímu kotouči a mohli jej přenést z levého kolíku na pravý, musíme nejprve přemístit vrchních n-1 kotoučů na prostřední kolík (k tomu je potřeba a_{n-1} kroků). Poté přeneseme největší kotouč z levého kolíku na pravý (1 krok) a zbývá přemístit

n-1 kotoučů z prostředního kolíku na pravý (opět a_{n-1} kroků). De zřejmé, že žádný jednodušší způsob řešení neexistuje. Předchozí úvaha tedy dokazuje, že $a_n = a_{n-1} + 1 + a_{n-1}$, neboli

$$a_n = 2a_{n-1} + 1. (5.1.1)$$

Pomocí této rekurentní rovnice sestavíme následující tabulku.

Vidíme, že k vyřešení úlohy s 8 kotouči je zapotřebí 255 kroků.

Nabízí se otázka, zda k výpočtu a_n pro velké hodnoty n je skutečně zapotřebí počítat všechny členy a_1, \ldots, a_n , nebo existuje jednodušší postup. Ve druhém řádku tabulky vidíme mocniny dvojky zmenšené o 1, zdá se tedy, že by obecně mohlo platit

$$a_n = 2^n - 1, \quad n \in \mathbb{N}. \tag{5.1.2}$$

Dokážeme vzorec matematickou indukcí: Pro n=1 vychází $2^1-1=1$, což se rovná a_1 . Indukční krok: Platí-li $a_{n-1}=2^{n-1}-1$, pak z rekurentní rovnice (5.1.1) plyne

$$a_n = 2a_{n-1} + 1 = 2 \cdot (2^{n-1} - 1) + 1 = 2^n - 2 + 1 = 2^n - 1$$

čímž je důkaz hotov.

Ke vzorci (5.1.2) lze dospět i jiným způsobem, aniž bychom jej uhodli. Přičteme-li k oběma stranám vztahu (5.1.1) jedničku, dostaneme

$$a_n + 1 = 2a_{n-1} + 2 = 2(a_{n-1} + 1).$$

Provedeme-li substituci $b_n = a_n + 1$ pro každé $n \in \mathbb{N}$, získáme

$$b_n = 2b_{n-1}.$$

Tedy $\{b_n\}_{n=1}^{\infty}$ je geometrická posloupnost s kvocientem 2. Její první člen je $b_1 = a_1 + 1 = 2$, tudíž platí $b_n = 2^n$ a následně $a_n = b_n - 1 = 2^n - 1$.

Vzorec (5.1.2) ukazuje, že počet kroků potřebných k vyřešení úlohy roste exponenciálně s počtem disků. 🗆

Poznámka 5.1.2. Hlavolam hanojské věže pochází z roku 1883 a je dodnes populární. V návodu, který se nacházel v krabičce, byl za jeho autora označen profesor N. Claus; jde o přesmyčku jména skutečného autora, francouzského matematika Édouarda Lucase. Existují různé verze hlavolamu, z nichž asi nejznámější je varianta se čtyřmi kolíky a n disky. Nejmenší počet kroků potřebných k vyřešení této úlohy lze vypočítat pomocí tzv. Frame-Stewartova algoritmu; ten je znám od roku 1941, avšak jeho správnost dokázal až francouzský matematik Thierry Bousch v roce 2014. Další informace o hanojských věžích jsou k dispozici na webu https://en.wikipedia.org/wiki/Tower_of_Hanoi a v rozsáhlé knize [5].

5.2 Přímky v rovině

Úloha 5.2.1. Jaký maximální počet oblastí může vzniknout, jestliže pomocí n přímek rozdělíme rovinu?

 $^{^{1}}$ Při přesouvání n-1 kotoučů nezáleží na tom, kde právě leží n-tý kotouč; je totiž největší a lze na něj položit libovolný jiný kotouč.

 $\check{R}e\check{s}en\acute{i}$. Nechť L_n je maximální počet oblastí roviny při sestrojení n přímek. Zřejmě platí $L_1=2$ (jedna přímka rozdělí rovinu na 2 oblasti) a $L_2=4$ (dvě různoběžky rozdělí rovinu na 4 oblasti, zatímco dvě rovnoběžky dají pouze 3 oblasti).

Představme si situaci, kdy v rovině je již nakresleno n-1 přímek. Pak n-tá přímka protne nejvýše n-1 dříve sestrojených přímek (může jich být méně, pokud je nová přímka rovnoběžná s některou dříve sestrojenou). Příslušné průsečíky vymezují na n-té přímce nejvýše n úseků (může jich být méně, pokud jsou některé průsečíky totožné) a každý takový úsek rozdělí některou stávající oblast roviny na dvě podoblasti. Při sestrojení n-té přímky tedy může vzniknout maximálně n nových oblastí; bude jich právě n, pokud přímky volíme tak, aby každé dvě byly různoběžné a žádné tři neměly společný bod.

Obrázek 5.2: Dvě různoběžky dělí rovinu na 4 oblasti, tedy $L_2 = 4$ (vlevo). Třetí přímka protíná první i druhou; dva průsečíky na ní vymezují tři úseky. Každý úsek dělí některou stávající oblast roviny na dvě části, tudíž $L_3 = L_2 + 3 = 4 + 3 = 7$ (vpravo).

Předchozí úvaha dokazuje, že pro $n \ge 2$ platí

$$L_n = L_{n-1} + n. (5.2.1)$$

Zkusme najít vzorec pro n-tý člen této rekurentně zadané posloupnosti. Uhodnout vzorec na základě hodnot z tabulky je tentokrát obtížnější, proto budeme postupovat jinak. Opakovaným použitím vztahu (5.2.1) dostaneme

$$L_n = L_{n-1} + n$$

$$= L_{n-2} + (n-1) + n$$

$$= L_{n-3} + (n-2) + (n-1) + n$$

$$\cdots$$

$$= L_1 + 2 + 3 + \dots + n$$

$$= 2 + 2 + 3 + \dots + n$$

$$= \frac{n(n+1)}{2} + 1,$$

čímž je úloha vyřešena.

Poznámka 5.2.2. Úlohu o přímkách v rovině poprvé vyřešil roku 1826 švýcarský matematik Jakob Steiner. Ekvivalentní formulace zní: Na jaký největší počet částí můžeme rozdělit pizzu nebo koláč pomocí n řezů? Souvislost s předchozí úlohou o přímkách je zřejmá: Stačí do obrázku zakreslit kružnici (znázorňující pizzu nebo koláč) tak, aby uvnitř ní ležely průsečíky všech přímek.

Alternativní řešení založená na Eulerově větě, resp. vhodném číslování oblastí, lze najít v příspěvku [12], který se věnuje i jiným variantám úlohy (včetně trojrozměrných).

5.3 Úloha o zajatcích

Úloha 5.3.1. n zajatcům čekajícím na popravu bylo nařízeno, aby se rozestavili do kruhu. Postupně bude popravován každý druhý zajatec tak dlouho, dokud nezůstane naživu poslední; tomu bude udělena milost. Zjistěte, který zajatec zůstane naživu.

 $\check{R}e\check{s}en\acute{i}$. Předpokládejme, že zajatci jsou očíslováni čísly $1,\ldots,n$ v tom pořadí, ve kterém stojí v kruhu vedle sebe. Nechť j(n) je číslo zajatce, který zůstane naživu.

Příklad (nakreslete si situaci v kruhu a vyškrtávejte popravované zajatce): Pro n = 10 jsou postupně popraveni zajatci s čísly 2, 4, 6, 8, 10, 3, 7, 1, 9 a přežije zajatec 5, tedy j(10) = 5.

Zřejmě platí j(1) = j(2) = 1. Pro j(n), kde $n \ge 3$, odvodíme rekurentní rovnici.

• Je-li n = 2k sudé, pak po provedení k poprav zbývá k zajatců s čísly $1, 3, \ldots, 2k - 1$. Převedli jsme tedy problém na úlohu stejného typu, ale menšího rozsahu. Ze zbylých k zajatců přežije ten na pozici j(k); zajatci však nyní nejsou číslováni po sobě jdoucími přirozenými čísly, ale pouze lichými čísly. Číslo přeživšího zajatce je tedy 2j(k) - 1. Ukázali jsme, že platí

$$j(2k) = 2j(k) - 1. (5.3.1)$$

• Podobně vyšetříme případ, kdy n = 2k + 1 je liché. Po provedení k + 1 poprav zbývá k zajatců s čísly $3, \ldots, 2k - 1, 2k + 1$. Naživu zůstane j(k)-tý z nich a jeho číslo je 2j(k) + 1. Platí tedy

$$j(2k+1) = 2j(k) + 1. (5.3.2)$$

Pomocí rekurentních vztahů (5.3.1) a (5.3.2) lze postupně počítat hodnoty j(n) pro všechna $n \in \mathbb{N}$; prvních deset hodnot ukazuje následující tabulka.

Další hodnoty znázorňuje obrázek 5.3.

Obrázek 5.3: Hodnoty j(n) pro $n \in \{1, \ldots, 50\}$

Pokud bychom chtěli znát např. j(100), je výpočet pomocí rekurentních vzorců zdlouhavý (a než bychom se dobrali k výsledku, může být na záchranu života pozdě). Zkusme tedy najít explicitní vzorec pro j(n).

Z tabulky i z obrázku se zdá, že pokud n je mocninou dvojky, pak j(n) = 1.5 Dále vidíme, že s každým zvýšením n o 1 vzroste j(n) o 2, a to tak dlouho, dokud nenarazíme na další mocninu dvojky. Naše hypotéza tedy zní: Je-li $n = 2^m + l$, kde $l \in \{0, \ldots, 2^m - 1\}$, pak j(n) = 2l + 1.

²Protože *i*-tý prvek posloupnosti $1, 3, \dots, 2k-1$ je 2i-1.

 $^{^3}$ Pokud bychom provedli pouze k poprav, zbylo by k+1 zajatců s čísly $1,3,\ldots,2k-1,2k+1$. Tím bychom problém převedli na úlohu menšího rozsahu, ale nikoliv stejného typu jako na začátku, protože popravování dále pokračuje zajatcem na první, nikoliv na druhé pozici.

⁴Protože *i*-tý prvek posloupnosti $3, \ldots, 2k+1$ je 2i+1.

 $^{^5}$ To lze snadno zdůvodnit. V každém kole jsou popravováni zajatci na sudých pozicích, první zajatec tedy zůstane naživu až do konce.

5.4. CVIČENÍ 43

Tvrzení dokážeme matematickou indukcí:

Pro n=1 tvrzení platí: $1=2^0+0$, tedy m=0, l=0 a 2l+1=1, což se shoduje s hodnotou j(1). Předpokládejme, že hypotéza platí pro $1, \ldots, n-1$, a dokažme, že platí pro n.

• Nechť $n = 2^m + l$ je sudé, tj. n = 2k. Pak ze vztahu (5.3.1) a z indukčního předpokladu plyne $j(n) = j(2k) = 2j(k) - 1 = 2j(n/2) - 1 = 2j(2^{m-1} + l/2) - 1 = 2 \cdot (2 \cdot (l/2) + 1) - 1 = 2l + 1.$

• Nechť $n=2^m+l$ je liché, tj. n=2k+1. Pak ze vztahu (5.3.2) a z indukčního předpokladu plyne

$$j(n) = j(2k+1) = 2j(k) + 1 = 2j((n-1)/2) + 1 = 2j(2^{m-1} + (l-1)/2) + 1 = 2 \cdot (2 \cdot (l-1)/2 + 1) + 1 = 2l + 1.$$

Důkaz indukcí je hotov.

Zkusme vypočítat
$$j(100)$$
. Platí $100 = 64 + 36 = 2^6 + 36$, tedy $m = 6$, $l = 36$ a $j(100) = 2 \cdot 36 + 1 = 73$.

Poznámka 5.3.2. Úloha o zajatcích se v anglicky psané literatuře vyskytuje pod názvem "Josephus problem" na počest učence Josefa Flavia, autora Židovské války, kde je vylíčen následující příběh: Roku 67 n. l. se Flavius se svými 40 židovskými spolubojovníky ocitl v obklíčení Římany. Když poznali, že nemají šanci vyváznout, rozhodli se raději pozabíjet. Flavius spolu s jedním dalším mužem ale měli štěstí, zůstali naživu jako poslední a zachránili si život tím, že se vzdali Římanům. Je nepravděpodobné, že by se Židé navzájem zabíjeli podle pravidel úlohy o zajatcích; sám Flavius píše, že o jeho záchraně rozhodl los. Zdá se, že teprve autoři středověkých a novověkých sbírek úloh spojili Flaviův příběh s matematickým problémem, aby jej učinili atraktivnějším. Další informace o této úloze a jejích variantách lze najít např. na webu https://en.wikipedia.org/wiki/Josephus_problem a v článcích [4, 9].

5.4 Cvičení

Cvičení 5.4.1. Uvažujme následující variantu hlavolamu hanojské věže: Jsou dány 3 kolíky; na prvním z nich je postavena věž z n kotoučů seřazených podle velikostí (největší je vespod), ostatní jsou prázdné. V každém kroku lze přenést jeden kotouč mezi prvním a druhým kolíkem, nebo mezi druhým a třetím kolíkem, a to tak, že větší kotouč nikdy nesmí ležet na menším. Jaký je nejmenší počet kroků potřebný k přenesení věže z prvního na třetí kolík?

Cvičení 5.4.2. Uvažujme následující variantu úlohy o zajatcích: Nechť $n \in \mathbb{N}$. Zajatci s čísly $1, \ldots, n$ stojí vedle sebe v řadě. Věznitel kolem nich prochází zleva doprava, přitom nechává popravit každého druhého zajatce (tj. zajatce $2, 4, 6, \ldots$). Poté se vrací zpět zprava doleva, všímá si pouze zbývajících živých zajatců a opět nechává naživu každého druhého (pokud je počet zajatců lichý, tak poslední je počítán pouze jednou, tedy přežije). Na začátku řady se opět obrátí a takto pokračuje až do okamžiku, než zůstane naživu poslední zajatec; tomu bude udělena milost. Nechť w(n) značí číslo zajatce, který dostane milost (zřejmě w(1) = 1). Najděte rekurentní vztahy pro w(n) a použijte je k sestavení tabulky hodnot $w(1), \ldots, w(8)$.

Cvičení 5.4.3. V rovině je nakresleno n + k přímek, z nichž žádné tři nemají společný bod, k přímek je navzájem rovnoběžných a žádné jiné dvě nejsou rovnoběžné. Nechť a(n,k) je počet oblastí, na které je rovina těmito přímkami rozdělena. Najděte rekurentní rovnici pro a(n,k) a vyřešte ji.

Cvičení 5.4.4. Kruh je rozdělen na n shodných výsečí očíslovaných čísly $1, \ldots, n$. Kolika způsoby je můžeme obarvit pomocí $k \geq 3$ barev tak, aby sousední výseče měly vždy různé barvy? Obarvení lišící se otočením považujeme za různá. Najděte rekurentní rovnici pro hledaný počet a vyřešte ji.

Obrázek 5.4: Ilustrace k zadání cvičení 5.4.4

Kapitola 6

Fibonacciho čísla

Fibonacciho čísla jsou patrně nejznámější číselnou posloupností v kombinatorice i v celé matematice. Ukážeme si několik úloh vedoucích na Fibonacciho čísla a poté prostudujeme některé jejich vlastnosti.

6.1 Úloha o králících a definice Fibonacciho čísel

Fibonacciho čísla jsou pojmenována na počest Leonarda Pisánského (zvaného Fibonacci). V jeho učebnici aritmetiky *Liber Abaci* z roku 1202 se vyskytuje následující úloha.

Úloha 6.1.1. Máme pár čerstvě narozených králíků. Kolik párů budeme mít po dvanácti měsících, jestliže

- každý pár dospívá za jeden měsíc,
- každému dospělému páru se každý měsíc narodí další pár,
- králíci nehynou?

 $\check{R}e\check{s}en\acute{i}$. V úloze nejsou podstatní jednotliví králíci, ale páry. Nechť F_n je počet párů po n měsících; chceme vypočítat F_{12} . Následující obrázek a tabulka ukazují vývoj králičí populace během prvních pěti měsíců.

n	0	1	2	3	4	5
párů po n měsících (F_n)	1	1	2	3	5	8
dospělých párů po n měsících		1	1	2	3	5

Třetí řádek tabulky je jen posunutou verzí druhého řádku, neboť počet dospělých párů po n měsících je roven počtu všech párů po n-1 měsících. Jak vznikají čísla F_n ve druhém řádku? Počet párů po n měsících (F_n) je součtem počtu párů po n-1 měsících (F_{n-1}) a počtu nově narozených párů. Ten je dán počtem dospělých párů po n-1 měsících, nebo ekvivalentně počtem všech párů po n-2 měsících. Platí tedy $F_n = F_{n-1} + F_{n-2}$, neboli každý člen posloupnosti $\{F_n\}_{n=0}^{\infty}$ s výjimkou prvních dvou je součtem předchozích dvou členů. Na základě této informace vypočteme další členy posloupnosti:

$$F_6 = 13$$
, $F_7 = 21$, $F_8 = 34$, $F_9 = 55$, $F_{10} = 89$, $F_{11} = 144$, $F_{12} = 233$.

Definice 6.1.2. Posloupnost čísel $\{F_n\}_{n=0}^{\infty}$ definovaná počátečními členy $F_0 = F_1 = 1$ a rekurentním vztahem $F_n = F_{n-1} + F_{n-2}$ pro $n \ge 2$ se nazývá Fibonacciho posloupnost.

Poznámka 6.1.3. V literatuře i na internetu se lze setkat s mírně odlišnou definicí, kde první dva členy posloupnosti jsou $F_0 = 0$ a $F_1 = 1$, čímž dojde k posunutí celé posloupnosti o jeden člen. Při studiu zdrojů věnovaných Fibonacciho číslům je tedy nutné mít na paměti, s jakou definicí autor pracuje.

Obrázek 6.1: Ilustrace k Fibonacciho úloze o králících (převzato z Wikimedia Commons, https://commons.wikimedia.org/wiki/File:FibonacciRabbit.svg)

6.2 Další úlohy vedoucí na Fibonacciho čísla

Kromě úlohy o králících existuje velké množství dalších úloh vedoucích na Fibonacciho čísla; představíme si některé z nich.

6.2.1 Úloha o dlaždicích, 1. varianta

Úloha 6.2.1. Kolika způsoby lze pomocí dlaždic o rozměrech 1×1 a 1×2 vyplnit obdélník o rozměrech $1 \times n$?

 $\mathring{R}e\check{s}en\acute{i}$. Jak je v kombinatorice obvyklé, budeme dlaždice 1×2 zkráceně nazývat domina a dlaždice 1×1 budou monomina. Nechť p_n značí hledaný počet způsobů, jak pomocí monomin a domin vyplnit obdélník $1\times n$.

Snadno zjistíme p_n pro nízké hodnoty $n \in \mathbb{N}$: $p_1 = 1$ (1 monomino), $p_2 = 2$ (jedno domino nebo dvě monomina), $p_3 = 3$ (monomino a domino, nebo domino a monomino, nebo tři monomina). Úloha dává smysl i pro n = 0, kdy je rozumné položit $p_0 = 1$, neboť obdélník s nulovým obsahem lze vyplnit jediným způsobem – nevezmeme žádnou dlaždici.

Předchozí hodnoty se shodují s Fibonacciho čísly, což napovídá, že by mohlo platit $p_n = F_n$ pro každé $n \in \mathbb{N}_0$. Ukažme, že členy posloupnosti $\{p_n\}_{n=0}^{\infty}$ splňují stejnou rekurentní rovnici, jako Fibonacciho čísla.

Obdélník $1 \times n$, kde $n \ge 2$, lze vyplnit p_n způsoby a jsou dvě možnosti, jak začít: buď monominem, nebo dominem (viz obrázek 6.2). V prvním případě zbývá vyplnit obdélník $1 \times (n-1)$, což lze učinit p_{n-1} způsoby. Ve druhém případě zbývá vyplnit obdélník $1 \times (n-2)$, což lze učinit p_{n-2} způsoby.

Z předchozí úvahy vyplývá, že pro každé $n \geq 2$ platí $p_n = p_{n-1} + p_{n-2}$. Jelikož $p_0 = 1$ a $p_1 = 1$, vidíme, že musí platit $p_n = F_n$ pro každé $n \in \mathbb{N}_0$.

Obrázek 6.2: Dva způsoby, jak začít vyplňovat obdélník $1 \times n$ pomocí monomin a domin

6.2.2 Úloha o dlaždicích, 2. varianta

Úloha 6.2.2. Kolika způsoby lze pomocí dlaždic o rozměrech 1×2 vyplnit obdélník o rozměrech $2 \times n$?

 $\check{R}e\check{s}en\acute{i}$. Nechť q_n je hledaný počet způsobů. V porovnání s předchozí úlohou máme pouze domina, pomocí kterých vyplňujeme obdélník $2 \times n$, jinak je ale řešení velmi podobné.

Jsou dvě možnosti, jak začít vyplňovat obdélník $2 \times n$: buď jedním svislým dominem, nebo dvojicí vodorovných domin (viz obrázek 6.3). V prvním případě zbývá vyplnit obdélník $2 \times (n-1)$, což lze učinit q_{n-1} způsoby. Ve druhém případě zbývá vyplnit obdélník $2 \times (n-2)$, což lze učinit q_{n-2} způsoby.

Obrázek 6.3: Dva způsoby, jak začít vyplňovat obdélník $2 \times n$ pomocí domin

Z předchozí úvahy vyplývá, že pro každé $n \geq 2$ platí $q_n = q_{n-1} + q_{n-2}$. Jelikož $q_0 = 1$ (nepoužijeme žádné domino) a $q_1 = 1$ (jedno svislé domino), vidíme, že musí platit $q_n = F_n$ pro každé $n \in \mathbb{N}_0$.

Poznámka 6.2.3. Mezi oběma variantami úlohy o dlaždicích je jednoduchý vztah. Dláždění ve druhé variantě úlohy jsou vždy souměrná podle vodorovné osy obdélníku. Jinými slovy, v dláždění se mohou objevit pouze svislá domina a dvojice vodorovných domin, která mají společnou delší stranu. Rozpůlením takového dláždění podél vodorovné osy získáme dvě identická dláždění obdélníku $1 \times n$ složená z monomin a domin. Tuto konstrukci lze obrátit a z libovolného dláždění obdélníku $1 \times n$ složeného z monomin a domin vyrobit dláždění obdélníku $2 \times n$ pomocí domin (z monomin se stanou svislá domina, z domin vzniknou dvojice vodorovných domin). Je tedy zřejmé, že obě úlohy jsou vlastně totožné a platí $p_n = q_n$.

6.2.3 Úloha o schodišti

Úloha 6.2.4. Kolika způsoby lze vystoupat po schodišti o n schodech, jestliže v každém kroku můžeme vynechat nejvýše 1 schod?

Řešení. Tato úloha není zadána zcela jednoznačně, je třeba ji chápat následujícím způsobem: Na každý schod, na který vstoupíme, šlápneme levou i pravou nohou a nezáleží na tom, v jakém pořadí to učiníme.

Existuje např. pouze jeden způsob, jak zdolat 1 schod, a dva způsoby, jak vystoupat po 2 schodech (první schod buď vynecháme, nebo nevynecháme); viz obrázek 6.4.

Nechť r_n značí hledaný počet způsobů. Již víme, že platí $r_1 = 1$ a $r_2 = 2$. Dalším rozborem případů se dá zjistit, že $r_3 = 3$, $r_4 = 5$ atd. Zdá se tedy, že by mohlo platit $r_n = F_n$.

Obrázek 6.4: Způsoby, jak zdolat schodiště s jedním schodem (nahoře) a dvěma schody (dole)

n schodů lze zdolat r_n způsoby a existují dvě možnosti, jak začít:

- Šlápneme na 1. schod; pak zbývá n-1 schodů, které lze zdolat r_{n-1} způsoby.
- Vynecháme 1. schod a šlápneme na 2. schod; pak zbývá n-2 schodů, které lze zdolat r_{n-2} způsoby.

Tento rozbor případů ukazuje, že pro $n \geq 3$ platí $r_n = r_{n-1} + r_{n-2}$. Jde o stejnou rekurentní rovnici jako u Fibonacciho čísel, shodují se i členy $r_1 = F_1$ a $r_2 = F_2$. Platí tedy $r_n = F_n$ pro každé $n \in \mathbb{N}$.

6.2.4 Házení mincí

Úloha 6.2.5. Hodíme-li *n*-krát mincí, jaká je pravděpodobnost, že nikdy nepadne dvakrát po sobě rub?

 $\check{R}e\check{s}en\acute{i}$. Každou posloupnost hodů můžeme zapsat jako uspořádanou n-tici sestavenou z písmen R a L značících rub a líc.

Hledaná pravděpodobnost je dána zlomkem, v jehož jmenovateli je celkový počet možností, čili 2^n . Zbývá určit počet příznivých případů, tj. uspořádaných n-tic neobsahujících dvě písmena R těsně vedle sebe. Nechť a_n je počet takových n-tic. Pak $a_1 = 2$ (R a L), $a_2 = 3$ (RL, LR, LL), $a_3 = 5$ (RLR, RLL, LRL, LLL, LLR). Zdá se tedy, že by mohlo platit $a_n = F_{n+1}$.

Všechny přípustné n-tice písmen R a L lze rozdělit do dvou skupin:

- n-tice začíná písmenem L, po němž následuje libovolná přípustná (n-1)-tice.
- n-tice začíná písmenem R. Po něm nutně musí následovat L a poté libovolná přípustná (n-2)-tice.

Počet n-tic prvního druhu je a_{n-1} a počet n-tic druhého druhu je a_{n-2} , z čehož plyne $a_n = a_{n-1} + a_{n-2}$ pro každé $n \ge 3$.

Jelikož $a_1 = 2 = F_2$, $a_2 = 3 = F_3$ a každý další člen posloupnosti $\{a_n\}_{n=1}^{\infty}$ je součtem předchozích dvou, dostáváme opět Fibonacciho čísla, konkrétně $a_n = F_{n+1}$.

Hledaná pravděpodobnost je $P = F_{n+1}/2^n$.

6.3 Vlastnosti Fibonacciho čísel

Výpočet Fibonacciho čísel pomocí rekurentního vzorce je zdlouhavý, např. pro výpočet F_{100} musíme nejprve určit F_0, \ldots, F_{99} . Ukážeme si efektivnější způsoby výpočtu Fibonacciho čísel.

Věta 6.3.1. Pro každou dvojici čísel $m, n \in \mathbb{N}$ platí $F_{n+m} = F_n F_m + F_{n-1} F_{m-1}$.

 $D\mathring{u}kaz$. K důkazu využijeme kombinatorickou interpretaci Fibonacciho čísel z 1. varianty úlohy o dlaždicích. Na levé straně dokazovaného vztahu stojí F_{n+m} , což je počet způsobů, jak vyplnit obdélník $1 \times (n+m)$

pomocí monomin a domin. Všechna taková dláždění lze rozdělit do dvou skupin podle toho, jaká situace nastává ve vzdálenosti n od levého okraje obdélníku (viz obrázek 6.5):

- V daném místě se dotýkají dvě dlaždice. Každé takové dláždění vzniká spojením dláždění obdélníku $1 \times n$ a dláždění obdélníku $1 \times m$.
- V daném místě se nachází střed domina. Každé takové dláždění vzniká spojením dláždění obdélníku $1 \times (n-1)$, domina a dláždění obdélníku $1 \times (m-1)$.

Počet dláždění prvního druhu je F_nF_m a počet dláždění druhého druhu je $F_{n-1}F_{m-1}$, čímž je důkaz dokončen.

Obrázek 6.5: Dvě možnosti pro dláždění obdélníku $1 \times (n+m)$ pomocí monomin a domin v závislosti na tom, zda ve vzdálenosti n od levého okraje leží či neleží střed domina

Je-li m = n, pak z přechozí věty plyne

$$F_{2n} = F_n^2 + F_{n-1}^2. (6.3.1)$$

Pro m = n + 1 z přechozí věty a ze vztahu $F_n = F_{n+1} - F_{n-1}$ obdržíme

$$F_{2n+1} = F_n F_{n+1} + F_{n-1} F_n = F_n (F_{n+1} + F_{n-1}) = (F_{n+1} - F_{n-1})(F_{n+1} + F_{n-1}) = F_{n+1}^2 - F_{n-1}^2.$$
 (6.3.2)

Vzorec (6.3.1) lze využít k výpočtu Fibonacciho čísel se sudými indexy a vzorec (6.3.2) pro liché indexy. V obou případech převádíme výpočet Fibonacciho čísla na výpočet dvou Fibonacciho čísel s přibližně polovičními indexy.

Máme-li např. vypočítat F_{100} , pak z prvního vzorce (n = 50) plyne

$$F_{100} = F_{50}^2 + F_{49}^2$$
.

Následným použitím prvního (n=25) a druhého (n=24) vzorce dostaneme

$$F_{50} = F_{25}^2 + F_{24}^2, \quad F_{49} = F_{25}^2 - F_{23}^2.$$

Tím jsme výpočet hodnot F_0, \ldots, F_{100} zredukovali zhruba na čtvrtinu: stačí najít F_0, \ldots, F_{25} a poté dopočítat F_{49}, F_{50}, F_{100} . Pokud je pro nás sestavování tabulky F_0, \ldots, F_{25} stále příliš pracné, můžeme pokračovat rozložením F_{23}, F_{24} a F_{25} pomocí vzorců (6.3.1) a (6.3.2).

Přechozí postup ukazuje, jak urychlit počítání Fibonacciho čísel, má však stále rekurentní charakter (převádíme výpočet jednoho Fibonacciho čísla na výpočet jiných čísel). Bylo by možné se rekurentním postupům vyhnout a najít explicitní vzorec pro F_n ? Takový vzorec je uveden v následující větě, kterou dokážeme matematickou indukcí. Otázku, jak na vzorec přijít, zatím ponecháme otevřenou a v kapitole 8 se k ní vrátíme.

Věta 6.3.2. Pro každé $n \in \mathbb{N}_0$ platí

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right). \tag{6.3.3}$$

 $D\mathring{u}kaz.$ Pro n=0je na pravé straně dokazovaného vzorce (6.3.3) číslo

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} \right) = 1$$

a pro n=1 číslo

$$\frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right) = \frac{1}{\sqrt{5}} \left(\frac{6+2\sqrt{5}}{4} - \frac{6-2\sqrt{5}}{4} \right) = 1,$$

což souhlasí s hodnotami F_0 a F_1 .

Předpokládejme, že dokazované tvrzení platí pro n-1 a n-2; ověříme, že pak platí pro n, čímž bude důkaz hotov.

Z definice Fibonacciho čísel a z indukčního předpokladu obdržíme

$$F_n = F_{n-1} + F_{n-2} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n + \left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \right]$$

Z prvního a třetího členu v hranatých závorkách lze vytknout $\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$, z druhého a čtvrtého členu vytkneme $\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}$. Tím získáme

$$F_{n} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} \left(\frac{1 + \sqrt{5}}{2} + 1 \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \left(\frac{1 - \sqrt{5}}{2} + 1 \right) \right] =$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} \left(\frac{3 + \sqrt{5}}{2} \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \left(\frac{3 - \sqrt{5}}{2} \right) \right] =$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} \left(\frac{6 + 2\sqrt{5}}{4} \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \left(\frac{6 - 2\sqrt{5}}{4} \right) \right] =$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} \left(\frac{1 + \sqrt{5}}{2} \right)^{2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \left(\frac{1 - \sqrt{5}}{2} \right)^{2} \right] =$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right],$$

což jsme chtěli dokázat.

Poznámka 6.3.3. Vztah (6.3.3) bývá někdy nazýván Binetův vzorec podle francouzského matematika Jacquesa Philippa Marie Bineta, který jej odvodil roku 1843. Ve skutečnosti však byl znám už dříve, dospěli k němu již v 18. století Abraham de Moivre a Daniel Bernoulli. S ohledem na odmocniny, které ve vzorci vystupují, není příliš vhodný pro praktické výpočty. Přesto se jedná o důležitý výsledek. Číslo $\frac{1-\sqrt{5}}{2}$ je v absolutní hodnotě menší než 1. Sčítanec $\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$ ve vzorci (6.3.3) tedy představuje geometrickou posloupnost, která velmi rychle konverguje k nule. Fibonacciho čísla lze proto velmi dobře aproximovat vztahem

$$F_n \doteq \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1}.$$

6.4. CVIČENÍ 51

Fibonacciho posloupnost tedy roste přibližně stejně rychle jako geometrická posloupnost s kvocientem $\frac{1+\sqrt{5}}{2}$. Tuto skutečnost též vyjadřuje vztah

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\frac{1+\sqrt{5}}{2},$$

který lze dokázat s využitím vzorce (6.3.3).

6.4 Cvičení

Cvičení 6.4.1. Kolika způsoby lze přirozené číslo n vyjádřit ve tvaru součtu lichých čísel, jestliže záleží na pořadí sčítanců? (Např. číslo 5 lze vyjádřit pěti způsoby: 5, 1+1+3, 1+3+1, 3+1+1, 1+1+1+1+1.)

Cvičení 6.4.2. Nechť n je přirozené číslo. Kolik existuje permutací p množiny $\{1, \ldots, n\}$ takových, že $|p(i) - i| \le 1$ pro každé $i \in \{1, \ldots, n\}$?

Cvičení 6.4.3. Kolika způsoby můžeme vystoupat po schodišti s 10 schody, jestliže při každém kroku vynecháme nejvýše dva schody?

Cvičení 6.4.4. Nechť $a_k(n)$ značí počet způsobů, jak pomocí dlaždic o rozměrech $1 \times k$ vyplnit obdélník $k \times n$. a) Předpokládejme, že k je pevně zvoleno. Najděte hodnoty $a_k(1), a_k(2), \ldots, a_k(k)$ a rekurentní rovnici pro výpočet $a_k(n)$. b) Pomocí výsledku předchozí části vypočítejte $a_3(10)$.

Cvičení 6.4.5. Jaká je limita pravděpodobností vypočtených v úloze 6.2.5 pro $n \to \infty$?

Kapitola 7

Catalanova čísla

Catalanova čísla jsou po Fibonacciho číslech patrně druhou nejznámější posloupností čísel v kombinatorice, se kterou se setkáme v mnoha úlohách. Začneme dvěma úlohami, které nás dovedou k definici Catalanových čísel.

7.1 Úloha o frontě před pokladnou

Úloha 7.1.1. U pokladny, kde se prodávají vstupenky v hodnotě 50 Kč, stojí ve frontě n+m osob; n z nich má padesátikorunu, zatímco zbylých m má pouze stokorunu. Jestliže pořadí osob je náhodné a pokladník má počáteční zásobu a padesátikorun, jaká je pravděpodobnost, že bude moci vrátit peníze každé osobě se stokorunou?

 $\check{R}e\check{s}en\acute{i}$. Pokud pokladník bude moci vrátit peníze všem osobám se stokorunou, budeme zkráceně říkat, že fronta projde. Stačí se omezit na případ, kdy $a+n\geq m$, jinak je jasné, že fronta neprojde (protože celkový počet padesátikorun bude menší než počet stokorun).

Ve frontě není podstatné pořadí osob, záleží pouze na tom, kdo má padesátikorunu a kdo stokorunu. Frontu si tedy můžeme představit jako uspořádanou (n+m)-tici sestavenou ze symbolů 50 a 100. Počet všech front je $\binom{n+m}{n}$, neboť fronta je jednoznačně určena výběrem n pozic pro padesátikoruny; toto číslo bude ve jmenovateli hledané pravděpodobnosti.

Zbývá vypočítat počet příznivých případů, tj. front, které projdou. Ve skutečnosti je jednodušší určit počet front, které neprojdou. Každou frontu (bez ohledu na to, zda projde, či neprojde) můžeme znázornit lomenou čarou tak, jak ukazuje obr. 7.1. Lomená čára znázorňuje vývoj pokladníkovy zásoby padesátikorun. Začíná tedy v bodě A[0,a], každá osoba s padesátikorunou způsobí zvýšení zásoby o 1 a naopak každá osoba se stokorunou způsobí snížení zásoby o 1. Lomená čára tedy končí v bodě B[n+m,a+n-m].

Na obrázku je příklad fronty, která neprojde. Počet všech takových front je roven počtu lomených čar z A do B, které v nějakém okamžiku klesnou pod osu x. Nyní přichází klíčová myšlenka řešení: Najdeme první okamžik, kdy čára klesne pod osu x, tj. dostane se do bodu s y-ovou souřadnicí -1. Od tohoto okamžiku začneme cestu zrcadlit podél přímky y = -1, viz obr. 7.2.

Takto získaná cesta skončí v bodě C, který je zrcadlovým obrazem B vzhledem k přímce y=-1. Jelikož bod B leží ve výšce a+n-m+1 nad touto přímkou, bod C má y-ovou souřadnici -1-(a+n-m+1)=m-n-a-2. Naopak je zřejmé, že každá lomená čára z A do C někde protíná přímku y=-1 a zrcadlením příslušného úseku získáme cestu z A do B. Tudíž počet všech lomených čar z A do B, které klesnou pod osu x, je roven počtu všech lomených čar z A do C. Abychom zjistili počet těchto cest, potřebujeme znát počty stoupání a klesání na cestě z A do C.

 $^{^{1}\}text{Lze též použít vzorec pro permutace s opakováním: Počet permutací } n \text{ padesátikorun a } m \text{ stokorun je } \frac{(n+m)!}{n! \cdot m!} = \binom{n+m}{n}.$

Obrázek 7.1: Grafické znázornění fronty 50, 100, 100, 100, 50, 100, 100, 50, 50, 50. Ve frontě je m=5 osob se stokorunou a n=5 osob s padesátikorunou, pokladník má na začátku a=1 padesátikorunu.

Obrázek 7.2: V okamžiku, kdy lomená čára poprvé protne přímku y=-1 (čárkovaně), ji podél této přímky začínáme zrcadlit (červený úsek).

Uvažujme cestu z A do B, která v nějakém okamžiku protne přímku y=-1. Část cesty před tímto okamžikem nazývejme 1. úsek a další část pak 2. úsek. Nechť ℓ je počet stoupání na 1. úseku cesty. Protože 1. úsek začíná ve výšce a a končí ve výšce -1, musí být počet klesání roven číslu $a+\ell+1$. Jelikož celkové počty stoupání a klesání jsou n a m, musí být na 2. úseku $n-\ell$ klesání a $m-a-\ell-1$ stoupání. Získané počty shrnuje následující tabulka.

	stoupání	klesání
1. úsek	ℓ	$a+\ell+1$
2. úsek	$n-\ell$	$m-a-\ell-1$

Odpovídající cesta z A do C vznikne zrcadlením 2. úseku, počty stoupání a klesání ve druhém řádku tabulky se tedy vymění:

	stoupání	klesání
1. úsek	ℓ	$a+\ell+1$
2. úsek	$m-a-\ell-1$	$n-\ell$

Celkový počet stoupání na cestě z A do C je proto $\ell+m-a-\ell-1=m-a-1$ a celkový počet klesání je $a+\ell+1+n-\ell=a+n+1$. To znamená, že počet všech cest z A do C je roven

$$\binom{n+m}{a+n+1}$$
.

Toto číslo udává počet všech front, které neprojdou. Počet front, které projdou, je

$$\binom{n+m}{n} - \binom{n+m}{a+n+1}$$

a hledaná pravděpodobnost je

$$P = \frac{\binom{n+m}{n} - \binom{n+m}{a+n+1}}{\binom{n+m}{n}}.$$
 (7.1.1)

Uvažujme pro ilustraci frontu se 100 osobami, z nichž polovina má padesátikorunu a polovina stokorunu, tj. m=n=50. Pokud by pokladník chtěl mít jistotu, že fronta projde, musí si připravit 50 padesátikorun. Kolik padesátikorun by mu stačilo, kdyby se spokojil s 95% pravděpodobností, že fronta projde? Hledáme nejmenší $a \in \mathbb{N}_0$ takové, aby platilo $P \geq 0.95$. Postupným dosazováním $a=0,1,2,\ldots,50$ do vztahu (7.1.1) získáme hodnoty znázorněné na obr. 7.3, ze kterého je vidět, že k dosažení pravděpodobnosti 95 % stačí vzít $a \geq 12$ padesátikorun.

Obrázek 7.3: Pravděpodobnost, že fronta prom=n=50 projde v závislosti na volbě $a\in\{0,\dots,50\}$

7.2 Hlasovací problém

Úloha 7.2.1. Ve volbách soupeří dva kandidáti M a N. Kandidát M získal m hlasů a kandidát N obdržel n hlasů, přičemž $n \geq m$. Jestliže pořadí sčítání hlasů bylo náhodné, jaká je pravděpodobnost, že v průběhu sčítání měl N vždy aspoň tolik hlasů jako M?

 $\check{R}e\check{s}en\acute{i}$. Každý průběh sčítání můžeme znázornit lomenou čarou tak, jak ukazuje obr. 7.4. Lomená čára znázorňuje vývoj náskoku kandidáta N nad jeho soupeřem M. Začíná tedy v bodě [0,0], každý hlas pro N zvýší náskok o 1 a naopak každý hlas pro M sníží náskok o 1. Lomená čára tedy končí v bodě [n+m,n-m].

Obrázek 7.4: Grafické znázornění sčítání pro posloupnost hlasů $N,\,N,\,M,\,M,\,N,\,M,\,N,\,N$

Skutečnost, že v průběhu sčítání měl N vždy aspoň tolik hlasů jako M, poznáme tak, že lomená čára nikdy neklesne pod osu x.

Vidíme, že hlasovací problém je totožný se speciálním případem úlohy o frontě před pokladnou, kde pokladník nemá na začátku žádné padesátikoruny. Hledanou pravděpodobnost tedy získáme dosazením a=0 do vztahu (7.1.1):

$$P = \frac{\binom{n+m}{n} - \binom{n+m}{n+1}}{\binom{n+m}{n}}.$$

Rozepsáním kombinačních čísel lze výsledek zjednodušit:

$$P = 1 - \frac{\frac{(n+m)\cdots m}{(n+1)!}}{\frac{(n+m)\cdots (m+1)}{n!}} = 1 - \frac{m}{n+1} = \frac{n+1-m}{n+1}.$$

Pro kontrolu prozkoumejme, co nastane ve dvou speciálních případech:

- Pokud hlasování skončilo remízou, tj. m=n, pak $P=\frac{1}{n+1}$. Pro velká n je tedy pravděpodobnost, že jeden z kandidátů měl vždy aspoň tolik hlasů jako druhý, velmi malá.
- Pokud kandidát N zvítězil s velkou převahou, tj. $n \gg m$, pak pravděpodobnost $P = 1 \frac{m}{n+1}$ je blízká k jedné. Je tudíž velmi pravděpodobné, že vítěz měl v průběhu sčítání vždy aspoň tolik hlasů jako poražený.

Poznámka 7.2.2. Hlasovací problém nezávisle na sobě zformulovali a vyřešili W. A. Whitworth (1878) a J. L. F. Bertrand (1887); zabývali se variantou, kdy n > m a zajímá nás pravděpodobnost, že kandidát N měl v průběhu sčítání vždy ostře více hlasů než M (viz cvičení 7.4.3). Úlohu lze řešit mnoha způsoby, viz např. https://en.wikipedia.org/wiki/Bertrand's_ballot_theorem. Řešení založené na zrcadlení cest, které klesnou pod osu x, bývá nazýváno Andrého metoda zrcadlení. Z historického hlediska není tento název zcela přesný; D. André sice v roce 1887 popsal elegantní řešení založené na počítání špatných cest pomocí bijekce, nejednalo se však o zrcadlení. Podrobnosti lze najít v článku [11].

7.3 Catalanova čísla

Z předchozích oddílů víme, že

- $\bullet\,$ počet front sn padesátikorunami a n stokorunami, které projdou, pokud pokladník nemá na začátku žádnou padesátikorunu
- ullet nebo počet pořadí sčítání hlasů ve volbách, kde oba kandidáti získali shodně n hlasů, přičemž kandidát N měl v průběhu sčítání vždy aspoň tolik hlasů jako kandidát M

je roven číslu

$$\binom{2n}{n} - \binom{2n}{n+1}$$
.

Rozepsáním kombinačních čísel obdržíme

$$\binom{2n}{n}-\binom{2n}{n+1}=\frac{2n\cdots(n+1)}{n!}-\frac{2n\cdots n}{(n+1)!}=\frac{2n\cdots(n+1)}{n!}\left(1-\frac{n}{n+1}\right)=\binom{2n}{n}\frac{1}{n+1}.$$

Definice 7.3.1. Čísla $C_n = \frac{1}{n+1} \binom{2n}{n}, n \in \mathbb{N}_0$, se nazývají Catalanova čísla.

Následující tabulka ukazuje Catalanova čísla C_n pro nízké hodnoty n.

Patrně nejjednodušší kombinatorická interpretace Catalanových čísel je následující: Mějme čtverec $n \times n$ rozdělený úsečkami na n^2 jednotkových čtverečků. Uvažujme cesty vedoucí po hranách této mříže, a to z levého dolního do pravého horního rohu, přičemž každý krok vede buď vpravo, nebo nahoru. Pak počet cest, které nikdy nesestoupí pod diagonálu vedoucí z levého dolního do pravého horního rohu, je C_n .

Proč platí toto tvrzení? Obrázek 7.5 ukazuje příklad přípustné cesty. Otočíme-li tento obrázek o 45 stupňů ve směru pohybu hodinových ručiček, dostáváme lomenou čáru stejného typu, jako v hlasovacím problému, kde oba kandidáti získali n hlasů. Obě úlohy jsou tedy ekvivalentní a počet přípustných cest je skutečně C_n .

Obrázek 7.5: Příklad cesty ve čtverci 4×4 , která nikdy nesestoupí pod diagonálu

Ze symetrie je zřejmé, že číslo C_n udává rovněž počet cest, které nikdy nevystoupí nad diagonálu, viz obr. 7.6.

Obrázek 7.6: Cesty ve čtverci 4 × 4, které nikdy nevystoupí nad diagonálu (Wikimedia Commons, en.wikipedia.org/wiki/Catalan_number#/media/File:Catalan_number_4x4_grid_example.svg)

Interpretace Catalanových čísel pomocí cest v čtvercové síti nám umožní odvodit následující rekurentní vzorec pro C_n .

Věta 7.3.2. Pro každé $n \in \mathbb{N}$ platí

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + C_2 C_{n-3} + \dots + C_{n-1} C_0 = \sum_{i=1}^n C_{i-1} C_{n-i}.$$
 (7.3.1)

Důkaz. Víme, že C_n udává počet cest ve čtverci $n \times n$ vedoucích z levého dolního rohu [0,0] do pravého horního rohu [n,n], které nikdy nesestoupí pod diagonálu. Pokud si odmyslíme počáteční bod [0,0], musí vždy nastat ještě další okamžik, kdy se cesta dotkne diagonály (nejpozději v bodě [n,n]). Nechť první takový okamžik nastane v bodě [i,i], kde $i \in \{1,\ldots,n\}$, viz obr. 7.7.

První krok cesty musel vést z bodu [0,0] do bodu [0,1] a do bodu [i,i] se cesta nutně musela dostat z bodu [i-1,i]. Mezi body [0,1] a [i-1,i] nemohla sestoupit pod úsečku spojující tyto dva body (jinak by se dotkla diagonály dříve než v [i,i]). Počet způsobů, jak se cesta mohla dostat z [0,1] do [i-1,i], je C_{i-1} , neboť jde vlastně o cestu ve čtverci o straně i-1, která nesmí sestoupit pod diagonálu. Podobně počet způsobů, jak se cesta mohla dostat z bodu [i,i] do bodu [n,n], je C_{n-i} . Vidíme, že počet cest z bodu

Obrázek 7.7: Cesta z bodu [0,0] do bodu [n,n], která se poprvé dotkne diagonály v bodě [i,i]

[0,0] do bodu [n,n], které se poprvé dotknou diagonály v bodě [i,i], je roven $C_{i-1}C_{n-i}$. Nasčítáním přes všechna možná $i \in \{1,\ldots,n\}$ dostaneme celkový počet cest C_n , čímž je věta dokázána.

Vztah (7.3.1) umožňuje vypočítat C_n ze znalosti C_0, \ldots, C_{n-1} . Společně s podmínkou $C_0 = 1$ tedy jednoznačně určuje Catalanova čísla. K výpočtu C_n se lépe hodí explicitní vzorec z definice 7.3.1, přesto je však rekurentní vzorec užitečný. V úlohách vedoucích na Catalanova čísla může být obtížné přímo ověřit, že uvažovaná posloupnost čísel je popsána vzorcem $\frac{1}{n+1}\binom{2n}{n}$; často je mnohem jednodušší ukázat, že posloupnost splňuje stejný rekurentní vztah jako C_n . Následující úloha ilustruje tuto skutečnost.

Úloha 7.3.3. Kolika způsoby lze rozdělit konvexní mnohoúhelník pomocí neprotínajících se úhlopříček na trojúhelníky?

 $\check{R}e\check{s}en\acute{i}$. Připomeňme, že úhlopříčkou se rozumí úsečka spojující nesousední vrcholy. Pro trojúhelník je pouze 1 možnost (nekreslíme žádnou úhlopříčku), pro čtyřúhelník jsou 2 možnosti, pro pětiúhelník 5 možností (nakreslete si obrázek) a pro šestiúhelník 14 možností (viz obr. 7.8).

Obrázek 7.8: Dělení šestiúhelníku pomocí neprotínajících se úhlopříček na trojúhelníky (Wikimedia Commons, en.wikipedia.org/wiki/Catalan_number#/media/File:Catalan-Hexagons-example.svg)

Zdá se tedy, že pro každé $n \in \mathbb{N}$ udává C_n počet triangulací pro (n+2)-úhelník. Označíme tento počet T_n , dále položíme $T_0 = 1$ a ukážeme, že $T_n = C_n$ pro každé $n \in \mathbb{N}_0$.

Uvažujme libovolný konvexní (n+2)-úhelník a vyberme si jeho libovolnou stranu XY. Bez újmy na obecnosti můžeme předpokládat, že vrcholy X, Y jdou po sobě proti směru pohybu hodinových ručiček (jinak zaměníme jejich označení). V každé triangulaci musí být strana XY součástí nějakého trojúhelníku XYZ. Jdeme-li po obvodu mnohoúhelníku z bodu Y do bodu Z proti směru pohybu hodinových ručiček, projdeme přitom i stran mnohoúhelníku, kde $i \in \{1, \ldots, n\}$. Tato část obvodu společně s úsečkou ZY ohraničuje (i+1)-úhelník, který je možné triangulovat T_{i-1} způsoby. Cesta z bodu Z do bodu X (opět proti směru pohybu hodinových ručiček) obsahuje n+1-i stran mnohoúhelníku. Společně s úsečkou XZ ohraničuje

7.4. CVIČENÍ 59

(n+2-i)-úhelník, který je možné triangulovat T_{n-i} způsoby. Pro pevné Z tedy existuje celkem $T_{i-1}T_{n-i}$ triangulací obsahujících trojúhelník XYZ. Nasčítáme-li tyto počty přes všechny možné volby Z, tj. přes všechna možná $i \in \{1, \ldots, n\}$, dostaneme celkový počet triangulací (n+2)-úhelníku:

$$T_n = \sum_{i=1}^n T_{i-1} T_{n-i}. (7.3.2)$$

Posloupnost $\{T_n\}_{n=0}^{\infty}$ tedy splňuje stejnou rekurentní rovnici jako Catalanova čísla, a protože $T_0=C_0=1$, musí nutně platit $T_n=C_n$ pro každé $n\in\mathbb{N}_0$.

Poznámka 7.3.4. Počítáním triangulací se zabýval Leonhard Euler. V roce 1751 na základě hodnot T_1, \ldots, T_8 uhodl obecný vzorec, neuměl jej však dokázat. V roce 1758 ukázal Johann Andreas von Segner, že pro počet triangulací platí rekurentní vztah (7.3.2). Odtud již nebylo daleko k důkazu, že Eulerův výsledek je správný (Segner jej však neznal a počítal hodnoty pomocí rekurentního vztahu, přičemž se dopustil početní chyby pro n = 13).

Catalanova čísla jsou pojmenována na počest belgického matematika Eugèna Charlese Catalana, který roku 1838 řešil následující úlohu: Kolika způsoby lze uzávorkovat součin $a_0a_1 \cdots a_n$ tak, aby pořadí násobení bylo jednoznačně určeno? Např. pro n=3 existuje pět $způsobů: (a_0a_1)(a_2a_3), ((a_0a_1)a_2)a_3, a_0(a_1(a_2a_3)),$ $a_0((a_1a_2)a_3), (a_0(a_1a_2))a_3$. K vyřešení obecné úlohy označíme počet uzávorkování jako C_n a uvědomíme si, že pro $n \geq 2$ v uvažovaném součinu existuje právě jedno násobení, které se nachází vně všech závorek. Pokud se toto násobení nachází mezi činiteli a_{k-1} a a_k , pak součin $a_0 \cdots a_{k-1}$ lze uzávorkovat C_{k-1} způsoby a součin $a_k \cdots a_n$ lze uzávorkovat C_{n-k} způsoby, což dává rekurentní vztah (7.3.1).

O historii Catalanových čísel podrobně pojednává text [8].

7.4 Cvičení

Cvičení 7.4.1. Přípustnou cestou v mříži $n \times n$ rozumíme cestu po hranách mříže, která začíná v levém dolním rohu [0,0], v každém kroku pokračuje vpravo nebo nahoru a končí v pravém horním rohu [n,n]. a) Určete počet přípustných cest v mříži 9×9 , které procházejí bodem [3,3] a zároveň neprocházejí bodem [6,6]. b) Jak se změní výsledek, jestliže se omezíme pouze na cesty, které nikdy neklesnou pod diagonálu?

Cvičení 7.4.2. Házíme opakovaně mincí a zaznamenáváme si, kolikrát padla která strana. Jaká je pravděpodobnost, že po 2n hodech poprvé napočítáme stejně rubů i líců?

Cvičení 7.4.3. Ve volbách soupeří dva kandidáti, M a N. Pro M hlasovalo m voličů a pro N hlasovalo n voličů, přičemž n > m. Jestliže pořadí sčítání hlasů je náhodné, jaká je pravděpodobnost, že v průběhu sčítání měl N vždy ostře více hlasů než M?

Cvičení 7.4.4. Uvažujme cesty po hranách čtvercové sítě o rozměrech 8×5 z levého dolního rohu O = [0, 0] do pravého horního rohu P = [8, 5]. Každá přípustná cesta se skládá pouze z kroků vedoucích vpravo nebo nahoru.

- a) Kolik existuje přípustných cest, které nikdy nevystoupí nad přímku y=x a dotýkají se jí právě v bodech O a Q=[4,4]?
- b) Kolik existuje přípustných cest, které nikdy nevystoupí nad přímku y=x a dotýkají se jí právě v bodě O?

 $^{^2\}mathrm{Díky}$ volbě $T_0=1$ je toto tvrzení pravdivé i proi=1 a i=n.

³Místo násobení bychom mohli uvažovat nějakou jinou binární operaci, která nemusí být asociativní. Výsledek pak bude záviset na uzávorkování a zajímá nás, jaký maximální počet různých výsledků můžeme dostat.

Obrázek 7.9: Ilustrace k zadání cvičení 7.4.4

Kapitola 8

Generující funkce

V předchozích kapitolách jsme se setkali s různými úlohami vedoucími na rekurentní rovnice. Pomocí rekurentního vztahu lze počítat členy posloupnosti jeden po druhém, je však výhodnější mít k dispozici explicitní vzorec pro n-tý člen posloupnosti. V řadě úloh (hanojské věže, úloha o zajatcích) je možné takový vzorec uhodnout a poté dokázat matematickou indukcí, jindy to může být obtížné. Příkladem je Fibonacciho posloupnost, pro kterou jsme sice dokázali platnost vzorce pro n-tý člen, ale nevysvětlili jsme, jak na něj přijít.

V této kapitole představíme metodu generujících funkcí, která propojuje kombinatoriku s matematickou analýzou a je (kromě jiného) velmi užitečným nástrojem pro řešení rekurentních rovnic.

8.1 Mocninné řady a generující funkce

V matematické analýze se studují mocninné řady, tj. řady ve tvaru $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, kde a_n jsou reálné nebo komplexní koeficienty, reálné nebo komplexní číslo z_0 se nazývá střed mocninné řady a z je reálná nebo komplexní proměnná. Dále se omezíme pouze na řady se středem v nule, tj. $z_0 = 0$. Jedním z nejjednodušších příkladů je geometrická řada

$$1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n,$$

která v případě |z| < 1 konverguje k součtu $\frac{1}{1-z}$. Obráceně můžeme říct, že zlomek $\frac{1}{1-z}$ lze rozvinout do geometrické řady. Tento poznatek zobecňuje následující věta, kterou budeme často používat.

Věta 8.1.1. Pro každé $k \in \mathbb{N}$ platí

$$\frac{1}{(1-z)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} z^n, \quad |z| < 1.$$

 $D\mathring{u}kaz$. Větu dokážeme indukcí podle k. Pro k=1 tvrzení platí, neboť $\binom{n+k-1}{k-1}=\binom{n}{0}=1$ a věta se redukuje na vzorec pro součet geometrické řady. Předpokládejme, že tvrzení platí pro jisté číslo $k\in\mathbb{N}$, tj.

$$\frac{1}{(1-z)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} z^n.$$

Zderivujeme obě strany podle proměnné z a využijeme toho, že mocninné řady lze derivovat člen po členu:

$$\frac{k}{(1-z)^{k+1}} = \sum_{n=1}^{\infty} \binom{n+k-1}{k-1} nz^{n-1}$$

 $^{^1}$ Při práci s mocninnými řadami přisuzujeme členu $(z-z_0)^0$ vždy hodnotu 1 včetně případu, kdy $z=z_0$.

(dolní mez pro n v sumě na pravé straně je nyní 1, neboť konstantní nultý člen derivováním vypadl). Rovnici vydělíme číslem k, rozepíšeme kombinační číslo a upravíme:

$$\frac{1}{(1-z)^{k+1}} = \sum_{n=1}^{\infty} \frac{(n+k-1)\cdots(n+1)}{(k-1)!} \frac{n}{k} z^{n-1} = \sum_{n=1}^{\infty} \binom{n+k-1}{k} z^{n-1} = \sum_{n=0}^{\infty} \binom{n+k}{k} z^n$$

Tím jsme dokázali, že tvrzení platí pro číslo k + 1, a důkaz indukcí je hotov.

Nyní zavedeme klíčový pojem této kapitoly.

Definice 8.1.2. Je-li dána reálná nebo komplexní posloupnost $\{a_n\}_{n=0}^{\infty}$, pak mocninná řada $\sum_{n=0}^{\infty} a_n z^n$ se nazývá generující funkcí zadané posloupnosti.

Zatím není jasné, k čemu jsou generující funkce užitečné. Jde o jakýsi formální proces, kdy ze zadané posloupnosti vyrobíme mocninnou řadu. V tuto chvíli prosíme čtenáře o trpělivost; použití generujících funkcí k řešení rekurentních rovnic si ukážeme ve třetím oddíle tohoto textu.

Poznámka 8.1.3. V definici generující funkce se nepředpokládá nic o konvergenci příslušné mocninné řady; může se stát, že konverguje pouze pro z=0. Místo "generující funkce" se někdy používá počeštěný termín "vytvořující funkce".

Následující tabulka ukazuje několik příkladů posloupností a jejich generujících funkcí. V prvních dvou příkladech příslušná mocninná řada obsahuje pouze jednoho nenulového sčítance. V dalších dvou příkladech se jedná o geometrickou řadu, v posledním řádku používáme k nalezení součtu větu 8.1.1 pro k=2.

$\{a_n\}_{n=0}^{\infty}$	$\sum_{n=0}^{\infty} a_n z^n$
$(1,0,0,0,\ldots)$	1
$(\underbrace{0,\ldots,0}_{m\text{-krát}},1,0,\ldots)$	z^m
$(1, 1, 1, 1, \ldots)$	$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$
$(1, 2, 4, 8, \ldots)$	$\sum_{n=0}^{\infty} 2^n z^n = \frac{1}{1-2z}$
$(1,2,3,4,\ldots)$	$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2}$

8.2 Operace s posloupnostmi a jejich generujícími funkcemi

Jestliže posloupnost $\{a_n\}_{n=0}^{\infty}$ má generující funkci $A(z)=\sum_{n=0}^{\infty}a_nz^n$ a posloupnost $\{b_n\}_{n=0}^{\infty}$ má generující funkci $B(z)=\sum_{n=0}^{\infty}b_nz^n$, pak součet obou posloupností $\{a_n+b_n\}_{n=0}^{\infty}$ má generující funkci

$$\sum_{n=0}^{\infty} (a_n + b_n) z^n = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n = A(z) + B(z).$$

Dále pro každé reálné nebo komplexní číslo c platí, že generující funkce posloupnosti $\{ca_n\}_{n=0}^{\infty}$ je

$$\sum_{n=0}^{\infty} ca_n z^n = c \sum_{n=0}^{\infty} a_n z^n = cA(z).$$

Zkusme ještě zjistit, co se stane s generující funkcí, jestliže členy posloupnosti posuneme o jistý počet pozic doprava nebo doleva.

8.3. PŘÍKLADY 63

Mějme libovolné $m \in \mathbb{N}$ a uvažujme posloupnost

$$(\underbrace{0,\ldots,0}_{m\text{-krát}},a_0,a_1,a_2,\ldots),$$

kterou označíme $\{a_{n-m}\}_{n=0}^{\infty}$ (tím jsme vlastně dodefinovali $a_{-1} = \cdots = a_{-m} = 0$). Generující funkce této posloupnosti je

$$a_0 z^m + a_1 z^{m+1} + a_2 z^{m+2} + \dots = z^m (a_0 + a_1 z + a_2 z^2 + \dots) = z^m A(z).$$

Vidíme, že při posunu posloupnosti o m pozic doprava musíme generující funkci vynásobit z^m .

Pro zajímavost se ještě podívejme, co se děje při posouvání posloupnosti doleva (i když to v dalším výkladu nebudeme potřebovat): Posloupnost, která vznikne posunem o m pozic doleva (přičemž prvních m členů zmizí) je

$$\{a_{n+m}\}_{n=0}^{\infty} = (a_m, a_{m+1}, a_{m+2}, \ldots)$$

a má generující funkci

$$a_m + a_{m+1}z + a_{m+2}z^2 + \dots = \frac{1}{z^m} \left(a_m z^m + a_{m+1} z^{m+1} + a_{m+2} z^{m+2} + \dots \right) =$$

$$= \frac{1}{z^m} \left(A(z) - a_0 - a_1 z - \dots - a_{m-1} z^{m-1} \right)$$

(první a druhá rovnost platí pro $z \neq 0$, jinak je hodnota generující funkce a_m). Vidíme, že při posunu posloupnosti o m pozic doleva dělíme generující funkci z^m , ještě předtím však odečítáme korekční členy odpovídající tomu, že jsme během posunu eliminovali prvních m členů posloupnosti.

8.3 Příklady

Úloha 8.3.1. Najděte vzorec pro n-tý člen posloupnosti zadané počátečními členy $F_0=1,\ F_1=1$ a rekurentním vzorcem $F_n=F_{n-2}+F_{n-1},\ n\geq 2$ (Fibonacciho čísla).

 $\check{R}e\check{s}en\acute{i}$. Pokusíme se nejprve najít generující funkci $F(z)=\sum_{n=0}^{\infty}F_nz^n$, tu pak rozvineme do mocninné řady a zjistíme koeficient u z^n , čímž získáme hledaný vzorec pro F_n .

Platí

$$\{F_n\}_{n=0}^{\infty} = (1, 1, F_0 + F_1, F_1 + F_2, \dots) = (0, 0, F_0, F_1, \dots) + (0, 1, F_1, F_2, \dots) + (1, 0, 0, 0, \dots) = (0, 0, F_0, F_1, \dots) + (0, F_0, F_1, F_2, \dots) + (1, 0, 0, 0, \dots) = \{F_{n-2}\}_{n=0}^{\infty} + \{F_{n-1}\}_{n=0}^{\infty} + (1, 0, 0, 0, \dots).$$

Pravou stranu jsme rozložili na posloupnosti, jejichž generující funkce umíme vyjádřit: $\{F_{n-2}\}_{n=0}^{\infty}$ má generující funkci $z^2F(z)$, $\{F_{n-1}\}_{n=0}^{\infty}$ má generující funkci zF(z) a $(1,0,0,0,\ldots)$ má generující funkci 1. Přechodem od posloupností k jejich generujícím funkcím tedy dostáváme rovnici

$$F(z) = z^2 F(z) + zF(z) + 1,$$

ze které vypočteme F(z):

$$F(z)(1-z-z^2) = 1$$

$$F(z) = \frac{1}{1-z-z^2} = \frac{-1}{z^2+z-1}$$

Vidíme, že generující funkce posloupnosti $\{F_n\}_{n=0}^{\infty}$ je racionální funkce. Abychom ji dokázali rozvinout do mocninné řady, rozložíme ji nejprve na parciální zlomky. Použijeme standardní algoritmus z 1. ročníku matematické analýzy: Polynom $z^2 + z - 1$ ve jmenovateli má kořeny

$$z_{1,2} = \frac{-1 \pm \sqrt{5}}{2},$$

platí tedy

$$z^2 + z - 1 = (z - z_1)(z - z_2)$$

a rozklad F na parciální zlomky hledáme ve tvaru

$$\frac{-1}{z^2 + z - 1} = \frac{a}{z - z_1} + \frac{b}{z - z_2}.$$

(Hodnoty z_1, z_2 známe, ale pro přehlednost je nevypisujeme.) Vynásobíme-li předchozí rovnost výrazem $(z-z_1)(z-z_2)$, obdržíme

$$-1 = a(z - z_2) + b(z - z_1) = (a + b)z - az_2 - bz_1.$$

Porovnáním koeficientů u lineárního a absolutního členu získáme soustavu rovnic

$$a+b=0, \quad az_2+bz_1=1$$

pro neznámé a, b. Z první rovnice plyne b=-a, dosazení do druhé rovnice dá $a(z_2-z_1)=1,$ čili

$$a = \frac{1}{z_2 - z_1} = \frac{1}{\frac{-1 - \sqrt{5}}{2} - \frac{-1 + \sqrt{5}}{2}} = -\frac{1}{\sqrt{5}}, \quad b = -a = \frac{1}{\sqrt{5}}.$$

Tím jsme získali rozklad

$$F(z) = -\frac{1}{\sqrt{5}} \frac{1}{z - z_1} + \frac{1}{\sqrt{5}} \frac{1}{z - z_2}.$$

Vytknutím hodnot $-z_1$, resp. $-z_2$ ve jmenovatelích převedeme parciální zlomky do tvaru $\frac{1}{1-y}$, který pak rozvineme do geometrické řady:

$$F(z) = \frac{1}{\sqrt{5}z_1} \frac{1}{1 - z/z_1} - \frac{1}{\sqrt{5}z_2} \frac{1}{1 - z/z_2} = \frac{1}{\sqrt{5}z_1} \sum_{n=0}^{\infty} \left(\frac{z}{z_1}\right)^n - \frac{1}{\sqrt{5}z_2} \sum_{n=0}^{\infty} \left(\frac{z}{z_2}\right)^n = \sum_{n=0}^{\infty} z^n \left(\frac{1}{\sqrt{5}z_1^{n+1}} - \frac{1}{\sqrt{5}z_2^{n+1}}\right)$$

Koeficient u z^n v generující funkci představuje hledaný vzorec pro F_n . Můžeme jej ještě zjednodušit tím, že využijeme rovnosti $z_1z_2 = -1$, která plyne z Viétových vztahů:

$$F_n = \frac{1}{\sqrt{5}z_1^{n+1}} - \frac{1}{\sqrt{5}z_2^{n+1}} = \frac{(-z_2)^{n+1}}{\sqrt{5}} - \frac{(-z_1)^{n+1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$$

Tím jsme dospěli ke vzorci, který známe z kapitoly 6 (viz větu 6.3.2).

Zobecníme-li postup z předchozího příkladu, získáme algoritmus pro řešení rekurentních rovnic metodou generujících funkcí:

- (i) Pomocí rekurentní rovnice pro $\{a_n\}_{n=0}^{\infty}$ najdi rovnici pro generující funkci $A(z) = \sum_{n=0}^{\infty} a_n z^n$.
- (ii) Vypočítej z této rovnice A(z).
- (iii) Rozviň A(z) do mocninné řady, vzorec pro a_n je dán koeficientem u z^n .

Celý postup ještě jednou ilustrujeme na dalším příkladu.

Úloha 8.3.2. Najděte vzorec pro n-tý člen posloupnosti zadané počátečními členy $a_0 = 3$, $a_1 = 4$ a rekurentním vzorcem $a_n = 4a_{n-1} - 4a_{n-2}$, $n \ge 2$.

8.3. PŘÍKLADY 65

 $\check{R}e\check{s}en\acute{\iota}$. Najdeme rovnici pro generující funkci $A(z)=\sum_{n=0}^{\infty}a_nz^n$ zadané posloupnosti. Platí

$$\{a_n\}_{n=0}^{\infty} = (3, 4, 4a_1 - 4a_0, 4a_2 - 4a_1, \ldots) = 4(0, 0, a_1, a_2, \ldots) - 4(0, 0, a_0, a_1, \ldots) + (3, 4, 0, 0, \ldots) = 4(0, a_0, a_1, a_2, \ldots) - 4(0, 0, a_0, a_1, \ldots) + (3, -8, 0, 0, \ldots) = 4\{a_{n-1}\}_{n=0}^{\infty} - 4\{a_{n-2}\}_{n=0}^{\infty} + (3, -8, 0, 0, \ldots).$$

Pravou stranu jsme rozložili na posloupnosti, jejichž generující funkce umíme vyjádřit: $\{a_{n-1}\}_{n=0}^{\infty}$ má generující funkci zA(z), $\{a_{n-2}\}_{n=0}^{\infty}$ má generující funkci $z^2A(z)$ a (3, -8, 0, 0, ...) má generující funkci 3-8z. Přechodem od posloupností k jejich generujícím funkcím tedy dostáváme rovnici

$$A(z) = 4zA(z) - 4z^2A(z) + 3 - 8z.$$

ze které vypočteme A(z):

$$A(z)(1 - 4z + 4z^{2}) = 3 - 8z$$
$$A(z) = \frac{-8z + 3}{4z^{2} - 4z + 1}$$

Generující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$ je racionální funkce. Abychom ji dokázali rozvinout do mocninné řady, rozložíme ji na parciální zlomky. Polynom $4z^2-4z+1$ ve jmenovateli má dvojnásobný kořen $z=\frac{1}{2}$, platí tedy

$$4z^{2} - 4z + 1 = 4\left(z - \frac{1}{2}\right)^{2} = (2z - 1)^{2}.$$

Rozklad na parciální zlomky bude mít tvar

$$A(z) = \frac{a}{2z - 1} + \frac{b}{(2z - 1)^2}.$$

K nalezení konstant a, b bychom mohli použít standardní algoritmus jako v předchozím příkladu, můžeme se mu ale vyhnout následujícím trikem, kdy v čitateli přičteme a odečteme jedničku:

$$A(z) = \frac{-8z+3}{(2z-1)^2} = \frac{-8z+4}{(2z-1)^2} - \frac{1}{(2z-1)^2} = \frac{-4(2z-1)}{(2z-1)^2} - \frac{1}{(2z-1)^2} = \frac{4}{1-2z} - \frac{1}{(1-2z)^2}$$

Parciální zlomky rozvineme do mocninných řad pomocí vzorců $\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n$ a $\frac{1}{(1-y)^2} = \sum_{n=0}^{\infty} (n+1)y^n$ (viz větu 8.1.1 pro k=2):

$$A(z) = 4\sum_{n=0}^{\infty} (2z)^n - \sum_{n=0}^{\infty} (n+1)(2z)^n = \sum_{n=0}^{\infty} (4 - (n+1))2^n z^n = \sum_{n=0}^{\infty} (3-n)2^n z^n$$

Odtud dostáváme výsledek

$$a_n = (3-n)2^n.$$

Poznámka 8.3.3. Pozornému čtenáři jistě neuniklo, že jsme v tomto oddíle zacházeli poněkud benevolentně s mocninnými řadami a nestarali se o to, pro jaká z konvergují. Informaci o konvergenci by bylo možné doplnit, není to však nutné. Metoda generujících funkcí totiž vždy vede ke správným výsledkům bez ohledu na obory konvergence použitých řad. S mocninnými řadami totiž v celém výpočtu pracujeme jako s formálními řadami. Např. součin dvou mocninných řad $\sum_{n=0}^{\infty} a_n z^n$ a $\sum_{n=0}^{\infty} b_n z^n$ lze definovat jako mocninnou řadu $\sum_{n=0}^{\infty} c_n z^n$, kde $c_n = \sum_{j=0}^n a_j b_{n-j}$. Vztah z věty 8.1.1 pak můžeme chápat jako jiný zápis rovnosti $(1-z)^k \cdot \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} z^n = 1$, která formálně platí pro každé $z \in \mathbb{C}$ bez ohledu na to, že nekonečná řada konverguje pouze pro |z| < 1.

Nedůvěřivý čtenář, který s tímto vysvětlením není spokojen, může řešení rekurentních rovnic nalezená pomocí generujících funkcí vždy zkontrolovat matematickou indukcí.

8.4 Cvičení

Cvičení 8.4.1. Posloupnost $\{a_n\}_{n=0}^{\infty}$ je zadána počátečním členem $a_0 = 1$ a rekurentním vztahem $a_n = 2a_{n-1} + n - 1$, $n \ge 1$. Najděte její generující funkci a vzorec pro n-tý člen.

Cvičení 8.4.2. Najděte vzorec pro n-tý člen posloupnosti, která je zadána počátečními členy $a_0 = -1/2$, $a_1 = 1$ a rekurentním vztahem $a_n = a_{n-1} + 2a_{n-2} + 1$, $n \ge 2$.

Cvičení 8.4.3. Najděte vzorec pro n-tý člen posloupnosti, která je zadána počátečním členem $a_0 = 0$ a rekurentním vztahem $a_n = 3a_{n-1} + 3 \cdot 2^n - 4n, n \ge 1$.

Cvičení 8.4.4. a) Nechť A(z) je generující funkce jisté posloupnosti $\{a_n\}_{n=0}^{\infty}$. Jak vypadá posloupnost, jejíž generující funkce je A(z)/(1-z)? b) Použijte řešení předchozí části k nalezení vzorce pro n-tý člen rekurentně zadané posloupnosti $a_0=1,\ a_n=a_{n-1}+a_{n-2}+\cdots+a_1+a_0$.

Kapitola 9

Lineární homogenní rekurentní rovnice s konstantními koeficienty

V předchozí kapitole jsme se seznámili s řešením rekurentních rovnic metodou generujících funkcí. Jde o elegantní metodu, její použití ale může být poněkud pracné. V tomto textu pomocí generujících funkcí odvodíme mnohem jednodušší algoritmus použitelný pro poměrně širokou třídu rekurentních rovnic.

9.1 Pomocné tvrzení o polynomech

Začneme tvrzením z algebry, které zdánlivě nijak nesouvisí s rekurentními rovnicemi. Využijeme je v dalším oddíle, je však zajímavé i samo o sobě.

Máme-li libovolný polynom, jak se změní jeho kořeny, pokud koeficienty polynomu napíšeme v obráceném pořadí? Následující věta říká, že kořeny nového polynomu jsou převrácenými hodnotami kořenů původního polynomu. Pro jednoduchost předpokládáme, že původní polynom nemá nulový kořen (tomu odpovídá požadavek $\alpha_m \neq 0$).

Věta 9.1.1. Mějme polynomy

$$Q(z) = \alpha_0 z^m + \alpha_1 z^{m-1} + \dots + \alpha_m,$$

$$Q^*(z) = \alpha_m z^m + \alpha_{m-1} z^{m-1} + \dots + \alpha_0,$$

 $kde \ \alpha_0, \ldots, \alpha_m \in \mathbb{C} \ a \ \alpha_0, \ \alpha_m \neq 0.$

Pokud má Q kořeny (ne nutně různé) z_1, \ldots, z_m , pak Q^* má kořeny $\frac{1}{z_1}, \ldots, \frac{1}{z_m}$ (každý kořen je uveden tolikrát, kolik je jeho násobnost).

 $D\mathring{u}kaz$. Rozklad polynomu Q na kořenové činitele je $Q(z)=\alpha_0(z-z_1)\cdots(z-z_m)$. Pro $z\neq 0$ platí

$$Q^*(z) = z^m (\alpha_m + \alpha_{m-1}/z + \dots + \alpha_0/z^m) = z^m Q(1/z) = z^m \alpha_0 (1/z - z_1) \cdots (1/z - z_m) = \alpha_0 (1 - z z_1) \cdots (1 - z z_m) = \alpha_0 z_1 \cdots z_m (1/z_1 - z) \cdots (1/z_m - z).$$

Získaný vztah $Q^*(z) = \alpha_0 z_1 \cdots z_m (1/z_1 - z) \cdots (1/z_m - z)$ ovšem platí i v případě z = 0, kdy se obě strany rovnají α_0 . Dostali jsme tedy rozklad Q^* na kořenové činitele, ze kterého vidíme, že Q^* má kořeny $\frac{1}{z_1}, \dots, \frac{1}{z_m}$.

Poznámka 9.1.2. Co se stane v případě, kdy Q má nulový kořen? Čtenář si může zkusit dokázat následující tvrzení (nebudeme je ovšem potřebovat): Pokud má Q nulový kořen násobnosti l a další

 $^{^1}$ Stále bez újmy na obecnosti předpokládáme, že $\alpha_0 \neq 0$ (v opačném případě je možné člen s nulovým koeficientem vynechat).

nenulové (ne nutně různé) kořeny z_1, \ldots, z_k , pak Q^* je polynom stupně m-l=k, jehož kořeny jsou $\frac{1}{z_1}, \ldots, \frac{1}{z_k}$.

9.2 Lineární rekurentní rovnice

V minulé kapitole jsme pomocí metody generujících funkcí vyřešili rekurentní rovnice $F_n = F_{n-1} + F_{n-2}$ a $a_n = 4a_{n-1} - 4a_{n-2}$. V obou případech byl n-tý člen lineární kombinací předchozích dvou členů. Obecněji můžeme uvažovat případ, kdy n-tý člen je lineární kombinací předchozích k členů:

$$a_n = \alpha_1 a_{n-1} + \dots + \alpha_k a_{n-k}, \quad n \ge k. \tag{9.2.1}$$

Aby byla posloupnost $\{a_n\}_{n=0}^{\infty}$ určena jednoznačně, je třeba zadat ještě počáteční členy a_0,\ldots,a_{k-1} . Koeficienty α_1,\ldots,α_k i počáteční členy mohou být reálná nebo komplexní čísla. Bez újmy na obecnosti lze předpokládat $\alpha_k \neq 0$, jinak by bylo možné poslední sčítanec (a případné další nulové sčítance) v rovnici (9.2.1) vynechat.

Rovnice (9.2.1) se označuje jako lineární homogenní rekurentní rovnice s konstantními koeficienty. Slovo "lineární" vyjadřuje skutečnost, že na pravé straně rovnice vystupuje lineární kombinace. Kromě rovnice (9.2.1) se studují i obecnější rovnice

$$a_n = \alpha_1 a_{n-1} + \dots + \alpha_k a_{n-k} + b,$$

kterým se říká nehomogenní, a dále rovnice s nekonstantními koeficienty, kde $\alpha_1, \ldots, \alpha_k$ nejsou konstanty, ale funkce proměnné n (terminologie je podobná jako u obyčejných diferenciálních rovnic).

Naším cílem je vyřešit rovnici (9.2.1), tj. najít explicitní vzorec pro n-tý člen posloupnosti $\{a_n\}_{n=0}^{\infty}$. Použijeme k tomu metodu generujících funkcí, označíme tedy $A(z) = \sum_{n=0}^{\infty} a_n z^n$ a budeme postupovat podle "tříkrokového" algoritmu z minulé kapitoly.

Z informace o počátečních členech a z rekurentní rovnice (9.2.1) plyne

$$\{a_n\}_{n=0}^{\infty} = (a_0,\ldots,a_{k-1},\alpha_1a_{k-1}+\cdots+\alpha_ka_0,\alpha_1a_k+\cdots+\alpha_ka_1,\ldots) = \\ = (a_0,\ldots,a_{k-1},0,\ldots) + \alpha_1(\underbrace{0,\ldots,0}_{k\text{-krát}},a_{k-1},a_k,\ldots) + \cdots + \alpha_k(\underbrace{0,\ldots,0}_{k\text{-krát}},a_0,a_1,\ldots).$$

Na pravé straně se snažíme získat posloupnosti, jejichž generující funkce umíme vyjádřit pomocí A(z). Všimneme si, že druhý sčítanec se téměř shoduje s α_1 -násobkem posloupnosti $\{a_n\}_{n=0}^{\infty}$ posunuté o jednu pozici doprava, další sčítanec je téměř α_2 -násobkem posloupnosti $\{a_n\}_{n=0}^{\infty}$ posunuté o dvě pozice doprava, atd. Přičtením a odečtením vhodných konstant získáme

$$\{a_n\}_{n=0}^{\infty} = \alpha_1(0, a_0, a_1, \ldots) + \cdots + \alpha_k(\underbrace{0, \ldots, 0}_{k-\text{krát}}, a_0, a_1, \ldots) + (b_0, b_1, \ldots, b_{k-1}, 0, \ldots),$$

kde b_0, b_1, \dots, b_{k-1} jsou vhodná čísla (jejich hodnoty lze vypočítat, např. $b_0 = a_0, b_1 = a_1 - \alpha_1 a_0$, atd., ale nebudeme je potřebovat). Přechodem od posloupností k jejich generujícím funkcím obdržíme

$$A(z) = \alpha_1 z A(z) + \alpha_2 z^2 A(z) + \dots + \alpha_k z^k A(z) + b_0 + b_1 z + \dots + b_{k-1} z^{k-1}.$$

Úpravou pak získáme předpis pro generující funkci:

$$A(z) = \frac{b_0 + b_1 z + \dots + b_{k-1} z^{k-1}}{1 - \alpha_1 z - \alpha_2 z^2 - \dots - \alpha_k z^k}$$

V dalším kroku najdeme rozvoj generující funkce do mocninné řady. Protože se jedná o racionální funkci, postupujeme stejně jako v předchozí kapitole a rozložíme ji na parciální zlomky. Předpokládejme, že polynom ve jmenovateli má rozklad na kořenové činitele

$$1 - \alpha_1 z - \alpha_2 z^2 - \dots - \alpha_k z^k = -\alpha_k (z - z_1)^{n_1} \dots (z - z_l)^{n_l},$$

tj. z_1, \ldots, z_l jsou navzájem různé kořeny s násobnostmi n_1, \ldots, n_l , kde $n_1 + \cdots + n_l = k$. Všimněme si, že všechny kořeny jsou nenulové, neboť hodnota polynomu na levé straně v nule je 1. Rozklad na parciální zlomky tedy bude mít tvar

$$A(z) = \frac{c_{1,1}}{z - z_1} + \dots + \frac{c_{1,n_1}}{(z - z_1)^{n_1}} + \dots + \frac{c_{l,1}}{z - z_l} + \dots + \frac{c_{l,n_l}}{(z - z_l)^{n_l}} =$$

$$= \frac{d_{1,1}}{1 - z/z_1} + \dots + \frac{d_{1,n_1}}{(1 - z/z_1)^{n_1}} + \dots + \frac{d_{l,1}}{1 - z/z_l} + \dots + \frac{d_{l,n_l}}{(1 - z/z_l)^{n_l}},$$

kde $d_{i,j} = c_{i,j}/(-z_i)^j$. Koeficienty $c_{i,j}$ (a tím pádem i $d_{i,j}$) neznáme, ale nebudeme je potřebovat.

Pomocí vzorce $\frac{1}{(1-y)^k} = \sum_{n=0}^{\infty} {n+k-1 \choose k-1} y^n$ (viz větu 8.1.1) rozvineme všechny zlomky do mocninných řad:

$$A(z) = \sum_{n=0}^{\infty} d_{1,1} \left(\frac{z}{z_1}\right)^n + \dots + \sum_{n=0}^{\infty} d_{1,n_1} \binom{n+n_1-1}{n_1-1} \left(\frac{z}{z_1}\right)^n + \dots + \sum_{n=0}^{\infty} d_{l,1} \left(\frac{z}{z_l}\right)^n + \dots + \sum_{n=0}^{\infty} d_{l,n_l} \binom{n+n_l-1}{n_l-1} \left(\frac{z}{z_l}\right)^n = \sum_{n=0}^{\infty} P_1(n) \left(\frac{z}{z_1}\right)^n + \dots + \sum_{n=0}^{\infty} P_l(n) \left(\frac{z}{z_l}\right)^n,$$

kde jsme zavedli označení $P_i(n) = d_{i,1} + \dots + d_{i,n_i} \binom{n+n_i-1}{n_i-1}$ pro každé $i \in \{1,\dots,l\}$. Pokud se na kombinační číslo

$$\binom{n}{k} = \frac{n \cdots (n-k+1)}{k!}$$

díváme jako na funkci proměnné n, pak se jedná o polynom stupně k. Tedy pro každé $i \in \{1, \ldots, l\}$ je $P_i(n)$ polynom stupně nejvýše $n_i - 1$ (stupeň může být nižší, neboť koeficient d_{i,n_i} může být nulový).

Hledaný vzorec pro a_n získáme jako koeficient u z^n v A(z), tedy

$$a_n = \frac{P_1(n)}{z_1^n} + \dots + \frac{P_l(n)}{z_l^n},$$

kde z_1, \ldots, z_l jsou kořeny polynomu $1 - \alpha_1 z - \alpha_2 z^2 - \cdots - \alpha_k z^k$ s násobnostmi n_1, \ldots, n_l a pro každé $i \in \{1, \ldots, l\}$ je P_i polynom stupně nejvýše $n_i - 1$.

Tento výsledek můžeme ještě zjednodušit, když si všimneme, že ve vzorci vystupují převrácené hodnoty kořenů z_1, \ldots, z_l . Podle věty 9.1.1 představují tyto převrácené hodnoty kořeny polynomu, který má koeficienty zapsané v obráceném pořadí, tj. polynomu $z^k - \alpha_1 z^{k-1} - \alpha_2 z^{k-2} - \cdots - \alpha_k$. Dokázali jsme tak následující větu.

Věta 9.2.1. Každé řešení rovnice

$$a_n = \alpha_1 a_{n-1} + \dots + \alpha_k a_{n-k}$$

má tvar

$$a_n = P_1(n)w_1^n + \dots + P_l(n)w_l^n,$$
 (9.2.2)

 $kde \ w_1, \ldots, w_l \ jsou \ v\check{s}echny \ ko\check{r}eny \ polynomu$

$$w^{k} - \alpha_1 w^{k-1} - \alpha_2 w^{k-2} - \dots - \alpha_k, \tag{9.2.3}$$

jejichž násobnosti jsou n_1, \ldots, n_l , a pro každé $i \in \{1, \ldots, l\}$ je P_i polynom stupně nejvýše $n_i - 1$.

9.3 Příklady

Na první pohled se může zdát, že věta 9.2.1 nedává dost informací k vyřešení rekurentní rovnice, neboť neznáme polynomy P_1, \ldots, P_l . Ve skutečnosti je však dokážeme najít díky znalosti počátečních členů a_0, \ldots, a_{k-1} .

Ukážeme si celý postup na příkladech.

Úloha 9.3.1. Najděte vzorec pro n-tý člen posloupnosti zadané počátečními členy $a_0 = 3$, $a_1 = 4$ a rekurentním vzorcem $a_n = 4a_{n-1} - 4a_{n-2}$, $n \ge 2$.

 $\check{R}e\check{s}en\acute{i}$. Rekurentní rovnice říká, že každý člen závisí na předchozích dvou členech, tedy k=2. Kořeny polynomu (9.2.3) získáme řešením rovnice

$$w^2 - 4w + 4 = 0.$$

Rovnici lze přepsat do tvaru $(w-2)^2=0$, ze kterého je zřejmé, že má dvojnásobný kořen 2, tj.

$$w_1 = 2, \quad n_1 = 2.$$

Polynom P_1 má stupeň nejvýše $n_1 - 1 = 1$, lze jej tedy vyjádřit ve tvaru $P_1(n) = bn + c$, kde b, c jsou zatím neznámé koeficienty. Podle vzorce (9.2.2) má obecné řešení zadané rekurentní rovnice tvar

$$a_n = (bn + c)2^n, \quad n \in \mathbb{N}_0.$$

K nalezení koeficientů b, c využijeme počáteční členy $a_0 = 3$, $a_1 = 4$. Pro n = 0 má tedy platit

$$3 = (b \cdot 0 + c)2^0 = c$$

a pro n=1 dostáváme

$$4 = (b \cdot 1 + c)2^1 = 2(b + c).$$

Řešení této soustavy lineárních rovnic je c=3, b=-1. Řešení rekurentní rovnice je tedy

$$a_n = (-n+3)2^n.$$

To je stejný výsledek jako v přechozí kapitole, avšak odvozený jednodušším postupem (generující funkce jsou skryty v důkazu věty 9.2.1).

Úloha 9.3.2. Najděte vzorec pro n-tý člen posloupnosti zadané počátečními členy $a_0 = 2$, $a_1 = 6$, $a_2 = 0$ a rekurentním vzorcem $a_n = -2a_{n-1} + 4a_{n-2} + 8a_{n-3}$, $n \ge 3$.

 $\check{R}e\check{s}en\acute{i}$. Rekurentní rovnice říká, že každý člen závisí na předchozích třech členech, tedy k=3. Kořeny polynomu (9.2.3) získáme řešením rovnice

$$w^3 + 2w^2 - 4w - 8 = 0.$$

Rovnici lze upravit následujícím způsobem:

$$w^{2}(w+2) - 4(w+2) = 0$$
$$(w+2)(w^{2} - 4) = 0$$
$$(w+2)^{2}(w-2) = 0$$

Vidíme, že polynom má dvojnásobný kořen -2 a jednoduchý kořen 2, tj.

$$w_1 = -2$$
, $n_1 = 2$, $w_2 = 2$, $n_2 = 1$.

9.4. CVIČENÍ 71

Polynom P_1 má stupeň nejvýše $n_1-1=1$ a polynom P_2 má stupeň nejvýše $n_2-1=0$, tedy $P_1(n)=bn+c$, $P_2(n)=d$, kde b, c, d jsou zatím neznámé koeficienty. Podle vzorce (9.2.2) má obecné řešení zadané rekurentní rovnice tvar

$$a_n = (bn + c)(-2)^n + d2^n, \quad n \in \mathbb{N}_0.$$

K nalezení koeficientů b, c, d využijeme počáteční členy $a_0 = 2$, $a_1 = 6$, $a_2 = 0$. Pro n = 0, n = 1 a n = 2 dostáváme postupně rovnice 2 = c + d, 6 = (b + c)(-2) + 2d, 0 = (2b + c)4 + 4d, neboli po úpravě

$$2 = c + d,$$

 $3 = d - b - c,$
 $0 = 2b + c + d.$

Odečtením první rovnice od třetí získáme b=-1 a dosazením této hodnoty do druhé rovnice máme 2=d-c. Z této a první rovnice plyne d=2, c=0.

Řešení rekurentní rovnice je tedy

$$a_n = -n(-2)^n + 2^{n+1}.$$

Úloha 9.3.3. Najděte vzorec pro n-tý člen posloupnosti zadané počátečními členy $a_0 = 1$, $a_1 = 0$ a rekurentním vzorcem $a_n = -a_{n-2}$, $n \ge 2$.

 $\check{R}e\check{s}en\acute{i}$. V tomto příkladu máme k=2; je vhodné si rekurentní rovnici představit ve tvaru $a_n=0$ $a_{n-1}-a_{n-2}$.

Řešíme tedy rovnici

$$w^2 + 1 = 0,$$

která má dva jednoduché komplexní kořeny i a -i, tj.

$$w_1 = i$$
, $n_1 = 1$, $w_2 = -i$, $n_2 = 1$.

Polynomy P_1 , P_2 mají stupeň nejvýše 0, tedy $P_1(n) = b$, $P_2(n) = c$, kde b, c jsou zatím neznámé koeficienty. Podle vzorce (9.2.2) má obecné řešení naší rekurentní rovnice tvar

$$a_n = bi^n + c(-i)^n, \quad n \in \mathbb{N}_0.$$

K nalezení koeficientů b, c využijeme počáteční členy $a_0 = 1, a_1 = 0$. Dostaneme tak soustavu rovnic

$$1 = b + c,$$
$$0 = b\mathbf{i} - c\mathbf{i}.$$

Z druhé rovnice plyne 0=b-c, což společně s první rovnicí dává $b=1/2,\,c=1/2.$

Řešení rekurentní rovnice je tedy

$$a_n = \frac{1}{2}i^n + \frac{1}{2}(-i)^n.$$

Vidíme, že rekurentní rovnice s reálnými koeficienty může mít komplexní řešení.

9.4 Cvičení

Cvičení 9.4.1. Použijte větu 9.2.1 k nalezení vzorce pro n-tý člen Fibonacciho posloupnosti $F_0=1$, $F_1=1$, $F_n=F_{n-2}+F_{n-1}$ pro $n\geq 2$.

Cvičení 9.4.2. Posloupnost $\{a_n\}_{n=0}^{\infty}$ je zadána počátečními členy $a_0 = -4$, $a_1 = 5$, $a_2 = -5$ a rekurentním vztahem $a_n = 4a_{n-1} + 11a_{n-2} - 30a_{n-3}$, $n \ge 3$. Najděte vzorec pro n-tý člen.

Cvičení 9.4.3. Kolika způsoby lze vyplnit obdélník o rozměrech $1 \times n$ pomocí domin (dlaždice 1×2) a modrých a zelených monomin (dlaždice 1×1)? Odvoď te rekurentní rovnici pro hledaný počet a vyřešte ji, tj. najděte vzorec pro n-tý člen.

Cvičení 9.4.4. Kolik existuje posloupností délky n sestavených ze znaků A, B, C, 1, 2, 3, 4, ve kterých dvě písmena nikdy nejsou vedle sebe? Najděte rekurentní rovnici pro hledaný počet a vyřešte ji.

Kapitola 10

Další typy rekurentních rovnic řešitelných pomocí generujících funkcí

V předchozí kapitole jsme odvodili snadno použitelný postup pro řešení homogenních lineárních rekurentních rovnic s konstantními koeficienty. To ovšem neznamená, že by pro nás metoda generujících funkcí ztratila význam. Na příkladech si ukážeme dva typy úloh, na které se nevztahuje věta 9.2.1, dokážeme je však řešit pomocí generujících funkcí.

10.1 Lineární nehomogenní rovnice

Nejjednodušší lineární nehomogenní rekurentní rovnice s konstantními koeficienty má tvar

$$a_n = \alpha \cdot a_{n-1} + \beta, \quad n \ge 1, \tag{10.1.1}$$

kde koeficienty α, β a počáteční člen a_0 jsou reálná nebo komplexní čísla.

Uveď me pro ilustraci několik jednoduchých úloh, které vedou na rovnici (10.1.1):

- Hanojské věže: Při řešení úlohy o hanojských věžích (úloha 5.1.1) jsme ukázali, že počet kroků a_n potřebných k vyřešení úlohy s n kotouči splňuje rekurentní rovnici $a_n = 2a_{n-1} + 1$, $n \ge 1$.
- Spořicí účet: Banka nabízí spořicí účet s roční úrokovou sazbou vyjádřenou desetinným číslem u, přičemž úroky jsou připisovány měsíčně. Za vedení účtu si banka strhává poplatek p korun měsíčně. Jestliže na účet vložíme částku a_0 korun, jaký bude zůstatek na účtu po n měsících? Označíme-li jej a_n , pak ze zadaných údajů vyplývá rekurentní rovnice

$$a_n = \left(1 + \frac{u}{12}\right) a_{n-1} - p, \quad n \ge 1.$$

• Splácení půjčky: Banka nám půjčila částku a_0 korun s roční úrokovou sazbou vyjádřenou desetinným číslem u, přičemž zbývající dluh se úročí vždy jednou měsíčně. Jestliže měsíční splátka činí s korun, jaká bude výše dluhu po n měsících? Označíme-li ji a_n , pak ze zadaných údajů vyplývá rekurentní rovnice

 $a_n = \left(1 + \frac{u}{12}\right) a_{n-1} - s, \quad n \ge 1.$

Pokud známe hodnoty a_0 , u a stanovíme si délku splácení na n měsíců, pak chceme vypočítat měsíční splátku s. Toho lze dosáhnout tak, že použijeme vzorec pro n-tý člen posloupnosti (který vzápětí odvodíme), položíme jej rovný nule a z rovnice vypočteme s.

Rovnici (10.1.1) vyřešíme metodou generujících funkcí, tj. pomocí "tříkrokového" algoritmu z části 8.3. Budeme předpokládat, že $\alpha \neq 1$ (tento případ je triviální – $\{a_n\}_{n=0}^{\infty}$ je aritmetická posloupnost s diferencí β a platí $a_n = a_0 + n\beta$).

Nechť $A(z) = \sum_{n=0}^{\infty} a_n z^n$ je generující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$. Platí

$$\{a_n\}_{n=0}^{\infty} = (a_0, \alpha a_0 + \beta, \alpha a_1 + \beta, \ldots) = \alpha(0, a_0, a_1, \ldots) + \beta(1, 1, 1, \ldots) + (a_0 - \beta, 0, 0, \ldots).$$

Na pravé straně máme posloupnosti, jejichž generující funkce umíme vyjádřit: První posloupnost má generující funkci $\alpha z A(z)$, druhá $\beta \sum_{n=0}^{\infty} z^n = \beta/(1-z)$ a třetí $a_0 - \beta$. Platí tedy

$$A(z) = \alpha z A(z) + \frac{\beta}{1-z} + a_0 - \beta.$$

Odtud vypočteme

$$A(z) = \frac{\frac{\beta}{1-z} + a_0 - \beta}{1 - \alpha z} = \frac{\beta}{(1-z)(1-\alpha z)} + \frac{a_0 - \beta}{1 - \alpha z}.$$

Vidíme, že se jedná o racionální funkci. Uhodnutím nebo pomocí standardního algoritmu pro rozklad na parciální zlomky zjistíme, že¹

$$\frac{1}{(1-z)(1-\alpha z)} = \frac{1}{1-\alpha} \left(\frac{1}{1-z} - \frac{\alpha}{1-\alpha z} \right),$$

a tudíž

$$A(z) = \frac{\beta}{1-\alpha} \left(\frac{1}{1-z} - \frac{\alpha}{1-\alpha z} \right) + \frac{a_0 - \beta}{1-\alpha z} = \frac{\beta}{1-\alpha} \frac{1}{1-z} + \left(a_0 - \beta - \frac{\alpha \beta}{1-\alpha} \right) \frac{1}{1-\alpha z} =$$

$$= \frac{\beta}{1-\alpha} \sum_{n=0}^{\infty} z^n + \left(a_0 - \beta \left(1 + \frac{\alpha}{1-\alpha} \right) \right) \sum_{n=0}^{\infty} \alpha^n z^n = \sum_{n=0}^{\infty} z^n \left(\frac{\beta}{1-\alpha} + \left(a_0 + \frac{\beta}{\alpha - 1} \right) \alpha^n \right).$$

Vzorec pro n-tý člen posloupnosti $\{a_n\}_{n=0}^{\infty}$ je dán koeficientem u z^n v A(z), tedy

$$a_n = \frac{\beta}{1-\alpha} + \left(a_0 + \frac{\beta}{\alpha - 1}\right) \alpha^n, \quad n \in \mathbb{N}_0.$$

Můžeme si všimnout, že ve speciálním případě $\beta=0$, kdy je rekurentní rovnice homogenní, dostáváme geometrickou posloupnost $a_n=a_0\alpha^n$.

10.2 Soustavy rekurentních rovnic

Metoda generujících funkcí se dá použít i na soustavy rekurentních rovnic. Místo obecné teorie si ukážeme konkrétní příklad. Jde o těžší variantu úlohy 6.2.2.

Úloha 10.2.1. Kolika způsoby lze pomocí domin, tj. dlaždic o rozměrech 1×2 , vyplnit obdélník o rozměrech $3 \times n$?

 \check{R} ešení. Nechť U_n značí hledaný počet způsobů. Je zřejmé, že pro lichá n je obsah obdélníku $3 \times n$ liché číslo, tudíž obdélník nelze pokrýt dominy a platí $U_1 = U_3 = \cdots = 0$. Pro n=2 existují tři možnosti (tři vodorovná domina, jedno vodorovné pod dvěma svislými, jedno vodorovné nad dvěma svislými), tj. $U_2 = 3$.

Dále budeme postupovat podobně jako v úloze 6.2.2 – zkusíme odvodit rekurentní rovnici pro U_n tak, že rozebereme případy, jak může dláždění začínat. Situaci znázorňuje obrázek 10.1.

Začneme-li třemi vodorovnými dominy, zbývá vyplnit obdélník $3 \times (n-2)$, což lze učinit U_{n-2} způsoby. Začneme-li svislým dominem položeným na vodorovném dominu, pak zbývá vyplnit obdélník $3 \times (n-1)$

 $^{^1{\}rm V}$ tomto kroku využíváme skutečnost, že $\alpha \neq 1.$

Obrázek 10.1: Tři způsoby, jak začít vyplňovat obdélník $3 \times n$ pomocí domin

bez jednoho rohového políčka a nelze říct, jak bude dláždění pokračovat. Situace je symetrická, pokud začneme vodorovným dominem položeným na svislém dominu. Pokud zavedeme označení V_n pro počet způsobů, jak pomocí domin vyplnit obdélník $3 \times n$ bez rohového políčka (zřejmě nezáleží na tom, o který roh se jedná), pak z obrázku vidíme, že pro $n \geq 3$ platí

$$U_n = U_{n-2} + 2V_{n-1}. (10.2.1)$$

Potřebujeme zjistit, jak počítat čísla V_n . Je zřejmé, že $V_1 = 1$ a dále $V_2 = V_4 = \cdots = 0$, protože pro sudé n je obsah obdélníku $3 \times n$ bez rohového políčka liché číslo. Rozborem případů zkusíme odvodit rekurentní rovnici pro V_n . Situaci tentokrát znázorňuje obrázek 10.2.

Obrázek 10.2: Dva způsoby, jak začít vyplňovat obdélník $3 \times n$ bez rohového políčka pomocí domin

Začneme-li jedním svislým dominem, pak zbývá vyplnit obdélník $3 \times (n-1)$, což lze učinit U_{n-1} způsoby. Jediná další možnost je, že začneme dvěma vodorovnými dominy, pod kterými pak nutně musí ležet třetí vodorovné domino. Poté zbývá vyplnit obdélník $3 \times (n-2)$ bez rohového políčka, což lze učinit V_{n-2} způsoby. Pro $n \geq 3$ tedy platí

$$V_n = U_{n-1} + V_{n-2}. (10.2.2)$$

Dospěli jsme k soustavě rekurentních rovnic pro U_n a V_n , pomocí kterých lze postupně počítat jednotlivé členy těchto posloupností. Naším cílem je však najít explicitní vzorec pro U_n .

Protože chceme použít metodu generujících funkcí, musíme dodefinovat U_0 a V_0 . Lze to udělat libovolným způsobem, nejjednodušší je však položit $U_0 = 1$ a $V_0 = 0$, čímž dosáhneme toho, že rekurentní rovnice (10.2.1) a (10.2.2) budou platit pro každé $n \ge 2.$

Nyní můžeme definovat generující funkce $U(z) = \sum_{n=0}^{\infty} U_n z^n$ a $V(z) = \sum_{n=0}^{\infty} V_n z^n$.

 $^{^2}$ Při jiné volbě U_0 a V_0 bychom sice v další fázi výpočtu dostali jiné (složitější) generující funkce, ale změnily by se pouze koeficienty u z^0 , což nemá žádný vliv na výsledný vzorec pro U_n , kde $n \ge 1$.

Víme, že platí

$$\{U_n\}_{n=0}^{\infty} = (1, 0, U_0 + 2V_1, U_1 + 2V_2, \ldots) = (0, 0, U_0, U_1, \ldots) + 2(0, V_0, V_1, \ldots) + (1, 0, 0, \ldots),$$

$$\{V_n\}_{n=0}^{\infty} = (0, 1, U_1 + V_0, U_2 + V_1, \ldots) = (0, U_0, U_1, \ldots) + (0, 0, V_0, V_1, \ldots).$$

Přechodem od posloupností k jejich generujícím funkcím obdržíme

$$U(z) = z^2 U(z) + 2zV(z) + 1,$$

 $V(z) = zU(z) + z^2 V(z).$

Z druhé rovnice vyjádříme

$$V(z) = \frac{zU(z)}{1 - z^2}$$

a dosazením do první rovnice získáme

$$U(z) = z^{2}U(z) + \frac{2z^{2}}{1 - z^{2}}U(z) + 1.$$

Tím jsme eliminovali V(z) a můžeme vypočítat U(z):

$$U(z)\left(1-z^2-\frac{2z^2}{1-z^2}\right)=1,$$

$$U(z)\frac{(1-z^2)^2-2z^2}{1-z^2}=1,$$

$$U(z)=\frac{1-z^2}{1-4z^2+z^4}.$$

Nyní potřebujeme rozvinout U do mocninné řady. Můžeme si ušetřit práci: Místo toho, abychom racionální funkci U rozkládali na parciální zlomky (což je pracné, neboť polynom ve jmenovateli má stupeň 4), všimneme si, že v jejím předpisu vystupují pouze sudé mocniny z. Konkrétně platí $U(z) = W(z^2)$, kde

$$W(z) = \frac{1 - z}{1 - 4z + z^2}.$$

Proto stačí, když do mocninné řady rozvineme funkci W, a následně místo z dosadíme z^2 .

Kvadratický polynom ve jmenovateli W má diskriminant 12 a kořeny

$$z_{1,2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}.$$

Rozklad W na parciální zlomky tedy má tvar

$$W(z) = \frac{1-z}{(z-z_1)(z-z_2)} = \frac{a}{z-z_1} + \frac{b}{z-z_2}$$

a potřebujeme najít koeficienty $a,\,b.$ Má platit

$$1-z=a(z-z_2)+b(z-z_1).$$

Porovnáním koeficientů u z^1 a z^0 na levé a na pravé straně dostaneme soustavu rovnic

$$-1 = a + b,$$

$$1 = -az_2 - bz_1.$$

Z první rovnice vyjádříme b=-1-a a dosadíme do druhé rovnice, odkud vypočteme a a poté zpětným dosazením b:

$$1 = -az_2 + z_1 + az_1,$$

$$a = \frac{1 - z_1}{z_1 - z_2} = -\frac{1 + \sqrt{3}}{2\sqrt{3}},$$

$$b = -1 + \frac{1 + \sqrt{3}}{2\sqrt{3}} = \frac{1 - \sqrt{3}}{2\sqrt{3}}.$$

Rozvineme W do mocninné řady:

$$W(z) = -\frac{a}{z_1} \frac{1}{1 - z/z_1} - \frac{b}{z_2} \frac{1}{1 - z/z_2} = -\frac{a}{z_1} \sum_{n=0}^{\infty} \left(\frac{z}{z_1}\right)^n - \frac{b}{z_2} \sum_{n=0}^{\infty} \left(\frac{z}{z_2}\right)^n = \sum_{n=0}^{\infty} z^n \left(-\frac{a}{z_1^{n+1}} - \frac{b}{z_2^{n+1}}\right).$$

Koeficient u z^n můžeme ještě zjednodušit tím, že využijeme rovnosti $z_1z_2=1$, která plyne z Viétových vztahů:

$$W(z) = \sum_{n=0}^{\infty} z^n \left(-az_2^{n+1} - bz_1^{n+1} \right).$$

Nyní se vrátíme k původní generující funkci U:

$$U(z) = W(z^2) = \sum_{n=0}^{\infty} z^{2n} \left(-az_2^{n+1} - bz_1^{n+1} \right).$$

Hledaný vzorec pro U_n získáme jako koeficient u z^n . Koeficienty u lichých mocnin z jsou nulové a tudíž $U_1 = U_3 = \cdots = 0$, což jsme vypozorovali již na začátku. Z koeficientů u sudých mocnin z zjistíme, že

$$U_{2n} = -az_2^{n+1} - bz_1^{n+1} = \frac{1+\sqrt{3}}{2\sqrt{3}}(2-\sqrt{3})^{n+1} - \frac{1-\sqrt{3}}{2\sqrt{3}}(2+\sqrt{3})^{n+1},$$

čímž je úloha vyřešena.

Poznámka 10.2.2. Viděli jsme, že řešení úlohy o vyplňování obdélníku $3 \times n$ bylo podstatně složitější, než v případě obdélníku $2 \times n$. Pro zajímavost uveďme, že v roce 1961 byl objeven obecný vzorec

$$\prod_{i=1}^{m} \prod_{j=1}^{n} \left(4\cos^2 \frac{i\pi}{m+1} + 4\cos^2 \frac{j\pi}{n+1} \right)^{1/4}$$

udávající počet způsobů, jak pomocí domin vyplnit obdélník $m \times n$. Odvození je značně netriviální a kromě kombinatoriky využívá i poznatků z lineární algebry. Následující tabulka udává příslušné hodnoty pro $m, n \in \{1, \dots, 8\}$.

	1	2	3	4	5	6	7	8
1	0	1	0	1	0	1	0	1
2	1	2	3	5	8	13	21	34
3	0	3	0	11	0	41	0	153
4	1	5	11	36	95	281	781	2245
5	0	8	0	95	0	1183	0	14824
6	1	13	41	281	1183	6728	31529	167089
7	0	21	0	781	0	31529	0	1292697
8	1	34	153	2245	14824	167089	1292697	12988816

Je zřejmé, že obdélník $m \times n$ lze dominy pokrýt aspoň jedním způsobem, právě když aspoň jedno z čísel m, n je sudé.

Poznámka 10.2.3. Úloha o dlaždicích ukazuje obecný postup řešení soustav rekurentních rovnic. Každou rekurentní rovnici převedeme na rovnici pro generující funkce. Z takto získané soustavy rovnic vypočteme jednotlivé generující funkce a rozvineme je do mocninných řad. V úloze o dlaždicích jsme z dvojice generujících funkcí U, V vypočítali a rozvinuli pouze U, což nám stačilo k vyřešení zadané úlohy. Pokud bychom dopočítali a rozvinuli i funkci V, získali bychom vzorec pro počet způsobů V_n , jak pomocí domin pokrýt obdélník $3 \times n$ bez rohového políčka.

10.3 Cvičení

Cvičení 10.3.1. Posloupnost $\{a_n\}_{n=0}^{\infty}$ je zadána počátečním členem $a_0 = 1$ a rekurentním vztahem $a_n = 10a_{n-1} - 1$ pro $n \ge 1$. Najděte vzorec pro n-tý člen této posloupnosti dvěma způsoby: a) Odvoď te vzorec metodou generujících funkcí. b) Využijte obecný výsledek získaný v části 10.1.

Cvičení 10.3.2. Dvě posloupnosti $\{Q_n\}_{n=0}^{\infty}$ a $\{R_n\}_{n=0}^{\infty}$ jsou definovány rekurentními vztahy

$$Q_0 = 0$$
, $Q_n = 2R_{n-1} + 1$, $R_0 = 0$, $R_n = Q_n + Q_{n-1} + 1$.

Najděte generující funkci posloupnosti $\{Q_n\}_{n=0}^{\infty}$.

Cvičení 10.3.3. Pro libovolné přirozené číslo n označme U_n počet způsobů, kterými lze vydláždit obdélník $2 \times n$ pomocí domin a monomin, tj. dlaždic 2×1 a 1×1 . Dále položme $U_0 = 1$. Najděte generující funkci posloupnosti $\{U_n\}_{n=0}^{\infty}$.

Cvičení 10.3.4. Posloupnosti $\{x_n\}_{n=0}^{\infty}$ a $\{y_n\}_{n=0}^{\infty}$ jsou zadány počátečními členy $x_0=0, y_0=1$ a soustavou rekurentních rovnic

$$x_n = x_{n-1} + 2y_{n-1}, \quad y_n = 2x_{n-1} + 2y_{n-1}.$$

Najděte vzorec pro x_n .

Kapitola 11

Polynomy a řady v kombinatorice

O užitečnosti polynomů a nekonečných řad v kombinatorice jsme se již přesvědčili v kapitolách věnovaných věžovým polynomům a generujícím funkcím.

V této kapitole ukážeme, že některé kombinatorické úlohy související např. s rozmísťováním nebo vybíráním předmětů lze chápat jako hledání počtu řešení vhodné rovnice. Tento problém lze následně převést na násobení polynomů nebo mocninných řad.

11.1 O počtu řešení jisté rovnice

Předpokládejme, že jsou dána čísla $k \in \mathbb{N}$ a $n \in \mathbb{N}_0$. Kolik řešení má rovnice

$$n_1 + \dots + n_k = n \tag{11.1.1}$$

s neznámými n_1, \ldots, n_k , které mohou nabývat pouze hodnot z oboru nezáporných celých čísel? S touto úlohou jsme se již setkali, avšak v jiné podobě: Kolika způsoby lze rozmístit n stejných předmětů do k rozlišitelných přihrádek? V části 4.1.2 jsme ukázali, že počet rozmístění je roven $\binom{n+k-1}{k-1}$. Souvislost s řešením rovnice (11.1.1) je jednoduchá, stačí interpretovat čísla n_1, \ldots, n_k jako počty předmětů v jednotlivých přihrádkách. Toto pozorování tvoří první část následující poznámky.

Poznámka 11.1.1. Každé řešení rovnice (11.1.1), kde $n_1, \ldots, n_k \in \mathbb{N}_0$, lze chápat jako:

- Rozmístění n stejných předmětů do k rozlišitelných přihrádek (do i-té přihrádky dáme n_i předmětů).
- Výběr n předmětů z k druhů předmětů, při kterém nezáleží na pořadí a předměty stejného druhu jsou nerozlišitelné (od i-tého druhu vezmeme n_i předmětů).

Úlohy popsané v předchozí poznámce lze tedy převést na hledání počtu řešení rovnice (11.1.1). Uvažujme ještě obecnější situaci, kdy n_1, \ldots, n_k nejsou libovolná nezáporná celá čísla, ale mohou nabývat pouze hodnot z jistých předepsaných množin $I_1, \ldots, I_k \subset \mathbb{N}_0$. Zajímá nás počet řešení rovnice (11.1.1) za těchto podmínek. Následující věta říká, že problém lze převést na násobení polynomů nebo mocninných řad (podle toho, zda množiny I_1, \ldots, I_k jsou konečné nebo nekonečné).

Věta 11.1.2. Nechť jsou dány množiny $I_1, \ldots, I_k \subset \mathbb{N}_0$ a číslo $n \in \mathbb{N}$. Pak počet řešení rovnice

$$n_1 + \cdots + n_k = n, \quad n_1 \in I_1, \ldots, n_k \in I_k,$$

je roven koeficientu u x^n v součinu

$$\left(\sum_{n_1\in I_1} x^{n_1}\right)\cdots\left(\sum_{n_k\in I_k} x^{n_k}\right).$$

Důkaz. Roznásobením součinu dostaneme

$$\sum_{n_1 \in I_1, \dots, n_k \in I_k} x^{n_1} \cdots x^{n_k} = \sum_{n_1 \in I_1, \dots, n_k \in I_k} x^{n_1 + \dots + n_k}.$$

Sčítanec x^n se v sumě objeví tolikrát, kolikrát lze zvolit $n_1 \in I_1, \dots, n_k \in I_k$ splňující $n_1 + \dots + n_k = n$. \square

Zkusme větu pro kontrolu použít nejdříve na případ $I_1 = \cdots = I_k = \mathbb{N}_0$, kdy již známe řešení. Věta říká, že počet řešení rovnice (11.1.1) je roven koeficientu u x^n v součinu

$$(x^0 + x^1 + x^2 + \cdots)^k$$
.

Použijeme vzorec pro součet geometrické řady a následně vzorec $\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} {n+k-1 \choose k-1} x^n$ z věty 8.1.1:

$$(x^0 + x^1 + x^2 + \cdots)^k = \frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} {n+k-1 \choose k-1} x^n.$$

Koeficient u x^n je $\binom{n+k-1}{k-1}$, což souhlasí s dříve získaným výsledkem.

11.2 Příklady

Použití věty 11.1.2 nyní ilustrujeme na dalších příkladech.

Úloha 11.2.1. V cukrárně prodávají tři druhy zákusků – větrníky, kremrole a punčové dortíky. Kolika způsoby lze koupit 12 zákusků tak, abychom od každého druhu měli aspoň dva zákusky a přitom koupili nejvýše tři kremrole?

 $\check{R}e\check{s}en\acute{i}$. Nechť n_1 je počet zakoupených větrníků, n_2 počet kremrolí a n_3 počet punčových dortíků. Ze zadání je jasné, že počet větrníků nemůže přesáhnout 8 a totéž platí pro počet punčových dortíků.

Hledáme tedy počet řešení rovnice

$$n_1 + n_2 + n_3 = 12$$
, $n_1 \in \{2, 3, \dots, 8\}$, $n_2 \in \{2, 3\}$, $n_3 \in \{2, 3, \dots, 8\}$.

Získáme jej jako koeficient u x^{12} v součinu

$$(x^2 + x^3 + \dots + x^8)(x^2 + x^3)(x^2 + x^3 + \dots + x^8).$$
 (11.2.1)

Z první a třetí závorky vytkneme x^2 , poté použijeme vzorec pro součet konečné geometrické řady a upravujeme:

$$(x^{6} + x^{7})(1 + x + x^{2} + \dots + x^{6})^{2} = (x^{6} + x^{7})\frac{(1 - x^{7})^{2}}{(1 - x)^{2}} = \frac{(x^{6} + x^{7})(1 - 2x^{7} + x^{14})}{(1 - x)^{2}} =$$

$$= \frac{x^{6} + x^{7} - 2x^{13} - 2x^{14} + x^{20} + x^{21}}{(1 - x)^{2}} = (x^{6} + x^{7} - 2x^{13} - 2x^{14} + x^{20} + x^{21})\sum_{n=0}^{\infty} {n+1 \choose 1} x^{n}.$$

Vidíme, že koeficient u x^{12} v získaném výrazu je

$$\binom{6+1}{1} + \binom{5+1}{1} = 7+6 = 13.$$

Existuje tedy 13 způsobů, jak zakoupit zákusky.

Ukážeme si ještě jednodušší způsob řešení:

¹Vzorec budeme používat i v následujících příkladech, aniž bychom na to explicitně upozorňovali.

11.2. PŘÍKLADY 81

Můžeme hledat počet řešení rovnice

$$n_1 + n_2 + n_3 = 12$$
, $n_1 \in \{2, 3, ...\}$, $n_2 \in \{2, 3\}$, $n_3 \in \{2, 3, ...\}$,

kde jsme pro n_1 a n_3 formálně povolili hodnoty vyšší než 8. To nijak neovlivní počet řešení úlohy, protože pro n_1 nebo n_3 větší než 8 nemůže být rovnice splněna (při respektování oborů hodnot pro n_1 , n_2 , n_3).

Počet řešení rovnice nyní získáme jako koeficient u x^{12} v součinu

$$(x^2 + x^3 + \cdots)(x^2 + x^3)(x^2 + x^3 + \cdots).$$
 (11.2.2)

Upravujeme jej podobně jako výše, jen místo vzorce pro součet konečné geometrické řady použijeme vzorce pro součet nekonečné řady:

$$(x^6 + x^7)(1 + x + x^2 + \dots)^2 = \frac{x^6 + x^7}{(1 - x)^2} = (x^6 + x^7) \sum_{n=0}^{\infty} {n+1 \choose 1} x^n.$$

Vidíme, že koeficient u x^{12} je opět

$$\binom{6+1}{1} + \binom{5+1}{1} = 7+6 = 13.$$

Pokud si dobře prohlédneme součiny (11.2.1) a (11.2.2), pak je i bez počítání zřejmé, že koeficient u x^{12} musel v obou případech vyjít stejně. Součin (11.2.2) totiž v porovnání s (11.2.1) obsahuje v první a ve třetí závorce navíc deváté a vyšší mocniny x. Po roznásobení se z nich stanou třinácté a vyšší mocniny x, tudíž nemohou ovlivnit koeficient u x^{12} .

Druhé řešení bylo jednodušší, protože vzorec pro součet nekonečné geometrické řady je jednodušší než vzorec pro součet konečné řady. Je dobré to mít na paměti – pokud máme na výběr, upřednostníme nekonečné geometrické řady před konečnými. Pokud bychom ovšem chtěli úlohu řešit na počítači, je naopak výhodnější vyjít z prvního způsobu řešení. Stačí mít k dispozici program, který umí násobit polynomy, nechat roznásobit součin (11.2.1) a podívat se na koeficient u x^{12} .

Úloha 11.2.2. Kolika způsoby lze rozdělit 25 stejných zákusků 7 osobám tak, aby každá dostala aspoň jeden a první osoba nejvýše deset zákusků? (Osoby jsou rozlišitelné.)

 $\check{R}e\check{s}en\acute{i}$. Nechť n_1,\ldots,n_7 značí počty zákusků přidělených jednotlivým osobám. Hledáme počet řešení rovnice

$$n_1 + \cdots + n_7 = 25$$
, $n_1 \in \{1, \dots, 10\}$, $n_2, \dots, n_7 \in \{1, 2, \dots\}$.

Získáme jej jako koeficient u x^{25} v součinu

$$(x^{1} + \dots + x^{10})(x^{1} + x^{2} + \dots)^{6} = x^{7}(1 + \dots + x^{9})(1 + x + \dots)^{6} =$$

$$= x^{7} \frac{1 - x^{10}}{1 - x} \frac{1}{(1 - x)^{6}} = \frac{x^{7} - x^{17}}{(1 - x)^{7}} = (x^{7} - x^{17}) \sum_{n=0}^{\infty} {n+6 \choose 6} x^{n}.$$

Hledaný koeficient u x^{25} je roven

$$\binom{18+6}{6} - \binom{8+6}{6} = 131593.$$

Existuje tedy 131 593 způsobů, jak rozdělit zákusky.

Úloha 11.2.3. Jaká je pravděpodobnost, že při 12 hodech klasickou hrací kostkou získáme součet 30?

²Jde vlastně o druhou situaci popsanou v poznámce 11.1.1, přičemž osoby představují přihrádky.

 $\check{R}e\check{s}en\acute{i}$. Nechť n_1,\ldots,n_{12} jsou výsledky jednotlivých hodů. Abychom vypočítali počet příznivých případů, stačí najít počet řešení rovnice

$$n_1 + \dots + n_{12} = 30, \quad n_1, \dots, n_{12} \in \{1, \dots, 6\}.$$

Získáme jej jako koeficient u x^{30} v součinu

$$(x^1 + \dots + x^6)^{12}$$
.

Nejsnazší by bylo úlohu vyřešit na počítači, můžeme ale zkusit počítat "ručně":

$$(x^{1} + \dots + x^{6})^{12} = x^{12}(1 + x + \dots + x^{5})^{12} = x^{12}\frac{(1 - x^{6})^{12}}{(1 - x)^{12}} = x^{12}(1 - x^{6})^{12}\sum_{n=0}^{\infty} \binom{n+11}{11}x^{n}.$$

Výraz $(1-x^6)^{12}$ umocníme podle binomické věty; stačí nám mocniny x nepřevyšující 18, neboť vyšší mocniny po vynásobení členem x^{12} nemohou ovlivnit koeficient u x^{30} :

$$x^{12} \left(\binom{12}{0} - \binom{12}{1} x^6 + \binom{12}{2} x^{12} - \binom{12}{3} x^{18} + \cdots \right) \sum_{n=0}^{\infty} \binom{n+11}{11} x^n$$

Hledaný koeficient u x^{30} je roven

$$\binom{12}{0}\binom{18+11}{11} - \binom{12}{1}\binom{12+11}{11} + \binom{12}{2}\binom{6+11}{11} - \binom{12}{3}\binom{11}{11} = 19188950.$$

Počet všech případů, které mohou nastat při 12 hodech kostkou, je 6¹². Hledaná pravděpodobnost je tedy

$$P = \frac{19188950}{6^{12}} \doteq 0,009.$$

Úloha 11.2.4. Kolika způsoby lze stokorunu rozměnit na pětikoruny, desetikoruny a dvacetikoruny?

 $\check{R}e\check{s}en\acute{i}$. Tuto úlohu je poněkud obtížnější převést na hledání počtu řešení vhodné rovnice. Pokud bychom za n_1, n_2, n_3 vzali počty pětikorun, desetikorun a dvacetikorun, pak hledáme počet řešení rovnice

$$5n_1 + 10n_2 + 20n_3 = 100, \quad n_1, n_2, n_3 \in \{0, 1, \ldots\}.$$

Věta 11.1.2 se na tuto rovnici se nevztahuje, substitucí $m_1 = 5n_1$, $m_2 = 10n_2$, $m_3 = 20n_3$ ji však můžeme převést na rovnici

$$m_1 + m_2 + m_3 = 100$$
, $m_1 \in \{0, 5, 10, \ldots\}$, $m_2 \in \{0, 10, 20, \ldots\}$, $m_3 \in \{0, 20, 40, \ldots\}$,

jejíž počet řešení již dokážeme určit. Čísla m_1 , m_2 , m_3 mají navíc jednoduchou interpretaci – jde o částky získané z pětikorun, desetikorun, resp. dvacetikorun. Rovnici jsme tedy mohli napsat již na začátku a vyhnout se substituci.

Počet řešení je roven koeficientu u x^{100} v součinu

$$(1+x^5+x^{10}+\cdots)(1+x^{10}+x^{20}+\cdots)(1+x^{20}+x^{40}+\cdots) = \frac{1}{1-x^5}\frac{1}{1-x^{10}}\frac{1}{1-x^{20}}.$$
 (11.2.3)

Získali jsme racionální funkci, kterou potřebujeme rozvinout do mocninné řady. Rozklad na parciální zlomky by byl velmi pracný, neboť ve jmenovateli máme polynom vysokého stupně. Lepší je povšimnout si, že

$$1 - x^{10} = (1 - x^5)(1 + x^5),$$

$$1 - x^{20} = (1 - x^{10})(1 + x^{10}) = (1 - x^5)(1 + x^5)(1 + x^{10}).$$

11.3. CVIČENÍ 83

Zlomky v (11.2.3) tedy můžeme rozšířit tak, aby měly stejného jmenovatele $1-x^{20}$:

$$\frac{1}{1-x^5} \frac{1}{1-x^{10}} \frac{1}{1-x^{20}} = \frac{(1+x^5)(1+x^{10})}{1-x^{20}} \frac{1+x^{10}}{1-x^{20}} \frac{1}{1-x^{20}} = \frac{(1+x^5)(1+x^{10})^2}{(1-x^{20})^3} =$$

$$= \frac{(1+x^5)(1+2x^{10}+x^{20})}{(1-x^{20})^3} = (1+x^5+2x^{10}+2x^{15}+x^{20}+x^{25}) \sum_{n=0}^{\infty} \binom{n+2}{2} x^{20n}.$$

Hledaný koeficient u x^{100} je roven

$$\binom{5+2}{2} + \binom{4+2}{2} = \binom{7}{2} + \binom{6}{2} = 36.$$

Existuje tedy 36 způsobů, jak rozměnit stokorunu.

Pokud bychom úlohu chtěli řešit pomocí počítače, pak je vhodné nekonečné řady nahradit konečnými, roznásobit součin

$$(1+x^5+x^{10}+\cdots+x^{100})(1+x^{10}+x^{20}+\cdots+x^{100})(1+x^{20}+x^{40}+\cdots+x^{100})$$

a podívat se na koeficient u x^{100} .

Ukážeme si ještě jednodušší "ruční" způsob řešení:

Všimneme si, že počet použitých pětikorun nemůže být lichý. Hledáme tedy počet řešení rovnice

$$m_1 + m_2 + m_3 = 100, \quad m_1, m_2 \in \{0, 10, 20, \ldots\}, \quad m_3 \in \{0, 20, 40, \ldots\}.$$

Získáme jej jako koeficient u x^{100} v součinu

$$(1+x^{10}+x^{20}+\cdots)^2(1+x^{20}+x^{40}+\cdots) = \frac{1}{(1-x^{10})^2} \frac{1}{1-x^{20}} = \frac{(1+x^{10})^2}{(1-x^{20})^3} =$$
$$= (1+2x^{10}+x^{20}) \sum_{n=0}^{\infty} \binom{n+2}{2} x^{20n}.$$

Hledaný koeficient u x^{100} je opět roven

$$\binom{5+2}{2} + \binom{4+2}{2} = \binom{7}{2} + \binom{6}{2} = 36.$$

Poznámka 11.2.5. Předchozí úlohu lze přirozeným způsobem zobecnit: Mohli bychom se ptát, kolika způsoby lze rozměnit k stokorun na pětikoruny, desetikoruny a dvacetikoruny. Postup by byl stejný, hledali bychom však koeficient u x^{100k} . Čtenář si může ověřit, že vyjde

$$\binom{5k+2}{2} + \binom{5k+1}{2} = (5k+1)^2.$$

Je pozoruhodné, že ke stejnému výsledku lze dospět i zcela odlišným způsobem. Úlohu je možné přeformulovat v řeči geometrie a převést ji na počítání tzv. mřížových bodů v trojúhelníku, k čemuž lze využít tzv. Pickův vzorec (viz článek [6]).

11.3 Cvičení

Cvičení 11.3.1. V cukrárně prodávají 10 druhů zákusků. Kolika způsoby lze zakoupit 30 zákusků, jestliže od každého druhu chceme aspoň 2 zákusky a nejvýše 5 zákusků?

Cvičení 11.3.2. Kolik existuje sedmiciferných přirozených čísel, jejichž ciferný součet je 19?

Cvičení 11.3.3. V oboru celých čísel najděte počet řešení rovnice $x_1 + x_2 + x_3 + x_4 = 0$ takových, že pro každé $i \in \{1, 2, 3, 4\}$ platí $-4 \le x_i \le 4$.

Cvičení 11.3.4. Kolik řešení v oboru nezáporných celých čísel má rovnice x + 2y + 4z = 1000?

Cvičení 11.3.5. V jisté loterii se prodávají stírací losy. Po setření losu se objeví šestice desítkových cifer (na začátku může být i nula), která je vyhrávající právě tehdy, když první tři cifry mají stejný součet jako poslední tři. Kolik takových šestic existuje?

Kapitola 12

Kombinatorické identity

12.1 Vlastnosti kombinačních čísel

Jako kombinatorické identity se označují nejrůznější vztahy obsahující kombinační čísla. Připomeňme, že pro všechna $n, k \in \mathbb{N}_0$ splňující $k \leq n$ platí

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
 (12.1.1)

Tuto definici nyní zobecníme a budeme uvažovat i případ k>n, kdy definujeme $\binom{n}{k}=0$. Tím je zachován kombinatorický význam kombinačního čísla: Je-li k>n, pak počet způsobů, jak z n-prvkové množiny vybrat neuspořádanou k-tici prvků bez opakování (neboli k-prvkovou podmnožinu), je 0. Dále si můžeme všimnout, že pro k>n stále platí první rovnost v (12.1.1), neboť v tomto případě se mezi čísly v čitateli objeví nula. Druhá rovnost v (12.1.1) ovšem neplatí, neboť faktoriál záporného čísla n-k není definován. To je nutné mít na paměti při dokazování kombinatorických identit se zobecněnými kombinačními čísly a vyhnout se používání vzorce $\frac{n!}{k!(n-k)!}$.

Ze zobecněných kombinačních čísel $\binom{n}{k}$, kde $n, k \in \mathbb{N}_0$, můžeme sestavit schéma ve tvaru nekonečné matice, jejíž část znázorňuje následující tabulka:

$n \backslash k$	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1

Čísla pod diagonálou a na ní odpovídají Pascalovu trojúhelníku, zatímco vpravo od diagonály jsou nuly.

V následující větě jsou zformulovány dvě základní vlastnosti kombinačních čísel; první identita platí pro všechna zobecněná kombinační čísla, zatímco druhá dává smysl jen pro klasická kombinační čísla z Pascalova trojúhelníku.

Věta 12.1.1. Pro $n, k \in \mathbb{N}_0$ platí následující tvrzení:

- $\bullet \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$
- Pokud $k \le n$, pak $\binom{n}{k} = \binom{n}{n-k}$.

Důkaz. Obě tvrzení lze dokázat výpočtem: Platí

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n(n-1)\cdots(n-k+1)}{k!} + \frac{n(n-1)\cdots(n-k)}{(k+1)!} =$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} \left(1 + \frac{n-k}{k+1}\right) = \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{n+1}{k+1} = \binom{n+1}{k+1}$$

a pokud $k \leq n$, pak

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}.$$

Elegantněji lze postupovat s využitím kombinatorické interpretace: $\binom{n+1}{k+1}$ je počet (k+1)-prvkových podmnožin množiny $\{1,\ldots,n+1\}$. Přitom počet (k+1)-prvkových podmnožin, které obsahují prvek n+1, je $\binom{n}{k}$, a podmnožin, které neobsahují n+1, je $\binom{n}{k+1}$. Tím je zdůvodněna platnost prvního tvrzení. Druhé tvrzení můžeme kombinatoricky interpretovat tak, že počet k-prvkových podmnožin množiny $\{1,\ldots,n\}$ je stejný jako počet jejích (n-k)-prvkových podmnožin. To je zřejmé, neboť výběr k prvků je ekvivalentní s vyškrtáním n-k prvků.

Poznámka 12.1.2. Pojmenování Pascalův trojúhelník pochází od Pierra Remonda de Montmorta a Abrahama de Moivra, kteří se odvolávali na trojúhelník v Pascalově práci Traité du triangle arithmétique vydané posmrtně roku 1665. Italský matematik Niccolò Tartaglia trojúhelník popsal roku 1556, proto se v Itálii dodnes používá název Tartagliův trojúhelník (viz https://en.wikipedia.org/wiki/Pascal's_triangle). Ve skutečnosti byl však objeven podstatně dříve, znal jej již čínský matematik Jia Xian v 1. polovině 11. století, jehož dílo Podrobné postupy k matematickým metodám Devíti kapitol Žlutého císaře se sice nedochovalo, ve 2. polovině 13. století však na ně navázal čínský matematik Yang Hui. Známé je vyobrazení trojúhelníku v díle Nefritové zrcadlo čtyř počátků dalšího čínského matematika Zhu Shijie z roku 1303. (Podrobněji o čínské matematice viz [7].) Čísla v trojúhelníku byla zprvu chápána pouze algebraicky jako koeficienty v binomické větě, jejich kombinatorický význam byl objeven až později.

Obrázek 12.1: Pascalův aritmetický trojúhelník z *Traité du triangle arithmétique*, 1665 (Wikimedia Commons, https://en.wikipedia.org/wiki/File:TrianguloPascal.jpg)

V části 3.4 jsme již používali absorpční identitu, kterou zde dokážeme a všimneme si, že zůstává v platnosti i pro zobecněná kombinační čísla.

Obrázek 12.2: Číselný trojúhelník v Nefritovém zrcadle čtyř počátků Zhu Shijie, 1303 (Wikimedia Commons, https://en.wikipedia.org/wiki/Pascal's_triangle#/media/File:Yanghui_triangle.gif)

Věta 12.1.3 (absorpční identita). *Pro všechna* $n, k \in \mathbb{N}$ *platí* $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.

Důkaz. Platí

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n}{k} \frac{(n-1)\cdots(n-k+1)}{(k-1)!} = \frac{n}{k} \binom{n-1}{k-1}.$$

12.2 Součty kombinačních čísel

Další věta je vzorec pro součet konečného počtu kombinačních čísel ležících pod sebou v jednom sloupci.

Věta 12.2.1 (součet ve sloupci). *Pro všechna* $n, k \in \mathbb{N}_0$ platí

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1},$$

$$\binom{0}{k} + \binom{1}{k} + \binom{2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

 $D\mathring{u}kaz$. Oba vzorce jsou ekvivalentní – na levé straně druhého vzorce jsou navíc kombinační čísla nacházející se nad diagonálou, která jsou nulová. Stačí tedy dokázat první vzorec.

Uvědomíme si, že $\binom{k}{k}=1=\binom{k+1}{k+1}$, a poté opakovaně používáme první tvrzení z věty 12.1.1:

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{k+1}{k+1} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} =$$

$$= \binom{k+2}{k+1} + \binom{k+2}{k} + \binom{k+3}{k} + \dots + \binom{n}{k} =$$

$$= \binom{k+3}{k+1} + \binom{k+3}{k} + \binom{k+4}{k} + \dots + \binom{n}{k} =$$

$$= \binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}.$$

Ukažme si ještě kombinatorický důkaz: $\binom{n+1}{k+1}$ je počet (k+1)-prvkových podmnožin množiny $\{0,\ldots,n\}$. Přitom (k+1)-prvkových podmnožin, jejichž největší prvek je $i\in\{k,\ldots,n\}$, je $\binom{i}{k}$. Nasčítáním těchto kombinačních čísel přes $i\in\{k,\ldots,n\}$ musíme dostat celkový počet $\binom{n+1}{k+1}$, což dává první vztah ze znění věty.

Použití věty 12.2.1 ilustruje následující schéma, kde součtem žlutě podbarvených kombinačních čísel je zeleně podbarvené kombinační číslo nacházející se o jeden řádek níže a o jeden sloupec vpravo od posledního sčítance.

$n \backslash k$	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	$\overline{4}$	6	4	1

Následující identita udává součet kombinačních čísel ležících na úsečce rovnoběžné s diagonálou.

Věta 12.2.2 (součet rovnoběžně s diagonálou). *Pro všechna* $n, k \in \mathbb{N}_0$ platí

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k}{k} = \binom{n+k+1}{k}.$$

Důkaz. Použitím druhého tvrzení z věty 12.1.1 a následně věty 12.2.1 obdržíme

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k}{k} =$$

$$= \binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \dots + \binom{n+k}{n} = \binom{n+k+1}{n+1} = \binom{n+k+1}{k}.$$

Můžeme postupovat i kombinatoricky: $\binom{n+k+1}{k} = \binom{n+k+1}{n+1}$ je počet rozdělení k nerozlišitelných předmětů do n+2 rozlišitelných přihrádek (viz část 4.1.2). Každé rozdělení vznikne tak, že jistých i předmětů dáme do prvních n+1 přihrádek, což lze provést $\binom{n+i}{n} = \binom{n+i}{i}$ způsoby, a zbývající předměty uložíme do poslední přihrádky. Nasčítáním čísel $\binom{n+i}{i}$ přes všechna $i \in \{0,\dots,k\}$ musíme dostat celkový počet $\binom{n+k+1}{k}$, což dává dokazované tvrzení.

Použití věty 12.2.2 ilustruje následující schéma, kde součtem žlutě podbarvených kombinačních čísel je zeleně podbarvené kombinační číslo nacházející se těsně pod posledním sčítancem.

$n \backslash k$	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1

Zkusme dále hledat součty kombinačních čísel ležících na úsečkách kolmých k diagonále. V následujícím schématu tedy sčítáme vždy stejně podbarvená čísla.

12.3. DALŠÍ IDENTITY 89

$n \backslash k$	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1

Dostáváme postupně součty 1, 1, 2, 3, 5, atd. – zdá se, že jde o Fibonacciho čísla!

Věta 12.2.3 (součet kolmo k diagonále). *Pro všechna* $n \in \mathbb{N}_0$ platí

$$\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots + \binom{0}{n} = F_n.$$

Důkaz. Víme, že F_n udává počet způsobů, jak vyplnit obdélník o rozměrech $1 \times n$ pomocí monomin a domin (viz úlohu 6.2.2). Přitom počet dláždění obsahujících právě k domin, a tedy n-2k monomin, je roven $\binom{n-k}{k}$, neboť z n-k po sobě jdoucích dlaždic vybíráme pozice, kde budou domina. Nasčítáním kombinačních čísel $\binom{n-k}{k}$ přes všechny možné hodnoty $k \in \{0,\ldots,n\}$ musíme získat celkový počet dláždění F_n , čímž je věta dokázána. \square

12.3 Další identity

Existuje mnoho identit, v nichž vystupují nejen součty, ale i součiny kombinačních čísel. Nejdůležitější z nich je Vandermondova identita.²

Věta 12.3.1 (Vandermondova identita). Pro všechna $p, q, n \in \mathbb{N}_0$ platí

$$\sum_{l=0}^{n} \binom{p}{l} \binom{q}{n-l} = \binom{p+q}{n}.$$

 $D\mathring{u}kaz$. Mějme p+q osob, z toho p mužů a q žen. Pak $\binom{p+q}{n}$ je počet způsobů, jak vybrat n osob. Přitom počet výběrů s právě l muži, a tedy n-l ženami, je $\binom{p}{l}\binom{q}{n-l}$. Nasčítáním těchto čísel přes všechna možná $l \in \{0,\ldots,n\}$ musíme dostat celkový počet možností $\binom{p+q}{n}$.

Všimněme si, že znění věty 12.3.1 je elegantní díky tomu, že pracujeme se zobecněnými kombinačními čísly – jinak bychom museli zaručit, že jsou splněny podmínky $l \le p$ a $n - l \le q$.

Vandermondova identita se často používá v důkazech jiných identit. Snadno lze získat např. hodnotu součtu druhých mocnin kombinačních čísel ležících v jednom řádku.

Důsledek 12.3.2. Pro každé $n \in \mathbb{N}_0$ platí

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}.$$

Důkaz. Použijeme Vandermondovu identitu sp = q = n a druhé tvrzení věty 12.1.1:

$$\binom{2n}{n} = \sum_{l=0}^{n} \binom{n}{l} \binom{n}{n-l} = \sum_{l=0}^{n} \binom{n}{l} \binom{n}{l} = \sum_{l=0}^{n} \binom{n}{l}^{2}.$$

¹Pokud k > n - k, pak žádné dláždění s k dominy neexistuje (počet domin by převýšil celkový počet dlaždic). V takové situaci je ovšem zobecněné kombinační číslo $\binom{n-k}{k}$ nulové, takže můžeme bez obav sčítat přes všechna $k \in \{0, \dots, n\}$.

²Historicky správnější název je Zhuova-Vandermondova identita, neboť čínský matematik Zhu Shijie ji objevil již roku 1303, zatímco francouzský matematik Alexandre-Théophile Vandermonde až roku 1772.

Jaký je součet prvních mocnin kombinačních čísel ležících v jednom řádku? K výsledku lze dospět např. pomocí binomické věty, která říká, že pro každé $n \in \mathbb{N}_0$ a libovolná reálná nebo komplexní čísla a, b platí

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Věta 12.3.3. Pro každé $n \in \mathbb{N}_0$ platí

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n.$$

 $D\mathring{u}kaz$. Tvrzení plyne z binomické věty po dosazení a=b=1.

Vztah lze zdůvodnit i kombinatoricky: $\binom{n}{k}$ je počet k-prvkových podmnožin n-prvkové množiny. Na levé straně tedy sčítáme počet 0-prvkových, 1-prvkových, ..., n-prvkových podmnožin n-prvkové množiny. Tím získáme celkový počet všech jejích podmnožin, který je roven 2^n . Podmnožinu lze totiž vybrat tak, že u každého z n prvků rozhodneme, zda jej do podmnožiny zařadíme, nebo nezařadíme.

Věta 12.3.4. Pro každé $n \in \mathbb{N}$ platí

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0.$$

 $D\mathring{u}kaz$. Tvrzení plyne z binomické věty po dosazení $a=1,\,b=-1$.

Vztah lze zdůvodnit i kombinatoricky, pokud jej přepíšeme v následující podobě:

$$\binom{n}{0} + \binom{n}{2} + \dots = \binom{n}{1} + \binom{n}{3} + \dots$$

Na levé straně je počet podmnožin množiny $\{1,\ldots,n\}$ se sudým počtem prvků, na pravé straně počet podmnožin s lichým počtem prvků. Proč se tyto počty rovnají? Uvažujme následující operaci: Dostanemeli podmnožinu neobsahující jedničku, pak do ní jedničku přidáme. Dostaneme-li podmnožinu obsahující jedničku, pak z ní jedničku odebereme. Tato operace vždy změní počet prvků o 1 a jde o bijekci mezi množinami se sudým počtem prvků a množinami s lichým počtem prvků.

Z vět 12.3.3 a 12.3.4 dostáváme následující důsledek.

Důsledek 12.3.5. Pro každé $n \in \mathbb{N}$ platí

$$\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=2^{n-1},\qquad \binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots=2^{n-1}.$$

Následující věta říká, co se stane, když v součtech na levé straně budeme střídat znaménka. Důkaz je pěknou aplikací binomické věty v komplexním oboru.

Věta 12.3.6. Pro každé $n \in \mathbb{N}$ platí

$$\binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \dots = (\sqrt{2})^n \cos \frac{n\pi}{4}, \qquad \binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \dots = (\sqrt{2})^n \sin \frac{n\pi}{4}.$$

 $D\mathring{u}kaz$. Do binomické věty dosadíme $a=1, b=\mathrm{i}$:

$$(1+i)^{n} = \binom{n}{0} + i\binom{n}{1} + i^{2}\binom{n}{2} + i^{3}\binom{n}{3} + i^{4}\binom{n}{4} + \cdots$$
$$= \binom{n}{0} + i\binom{n}{1} - \binom{n}{2} - i\binom{n}{3} + \binom{n}{4} + \cdots$$

12.4. CVIČENÍ 91

Hodnotu $(1+i)^n$ můžeme počítat i jiným způsobem: Převedeme 1+i do goniometrického tvaru a použijeme Moivreovu větu:

$$(1+\mathrm{i})^n = \left(\sqrt{2}\left(\cos\frac{\pi}{4} + \mathrm{i}\sin\frac{\pi}{4}\right)\right)^n = (\sqrt{2})^n \left(\cos\frac{n\pi}{4} + \mathrm{i}\sin\frac{n\pi}{4}\right)$$

Porovnáním reálných a imaginárních částí v předchozích dvou vyjádřeních $(1+i)^n$ dostaneme tvrzení věty.

Na tomto místě výklad o kombinatorických identitách ukončíme. Existují jich stovky a bylo by možné ještě dlouho pokračovat. Ve druhé polovině 20. století se objevily algoritmy vhodné pro počítačové odvozování a dokazování identit, jako je např. Gosperův algoritmus (1978) nebo Wilfův-Zeilbergerův algoritmus (1990).

Navíc existují metody, jak dokázat, že některé součty, jako např. $\sum_{k=0}^{n} {n \choose k}^3$, nelze vyjádřit v uzavřeném tvaru (zhruba řečeno, pomocí elementárních funkcí a bez použití sumy). Jde o podobnou situaci jako v matematické analýze, kde jsou známy spojité funkce, jejichž primitivní funkce nelze vyjádřit pomocí elementárních funkcí.

O těchto a dalších algoritmech a metodách se lze dočíst například v knize s vtipným názvem A=B [10].

Přestože lze nyní dokazování kombinatorických identit svěřit v mnoha případech počítači, znalost identit uvedených v této kapitole patří k základnímu matematickému vzdělání. Obzvlášť cenné jsou kombinatorické důkazy, které na rozdíl od formálního výpočtu umožňují lépe porozumět tomu, proč vlastně identita platí. Kombinatorickým důkazům je věnována vynikající kniha [1].

12.4 Cvičení

Cvičení 12.4.1. Nechť n je přirozené číslo. Kolik existuje podmnožin množiny $\{1, \ldots, n\}$, které neobsahují žádné sousední prvky? $(x, y \in \{1, \ldots, n\}$ jsou sousední, pokud se liší o 1.) Vyjádřete výsledek v co nejjednodušším tvaru.

Cvičení 12.4.2. Nechť n > 1 je liché číslo. Dokažte, že posloupnost kombinačních čísel

$$\binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{\frac{n-1}{2}}$$

obsahuje lichý počet lichých čísel.

Cvičení 12.4.3. Najděte hodnoty součtů $\sum_{k=0}^{n} {k \choose m} (k+1)$ a $\sum_{k=0}^{n} {k \choose m} k$, kde m, n jsou přirozená čísla.

Cvičení 12.4.4. Nechť n je přirozené číslo. Najděte hodnotu součtu $\sum_{k=0}^{n} {2n \choose k}^2$.

Kapitola 13

Stirlingova a Bellova čísla

V kapitole 4 jsme zjistili, že počet způsobů, jak rozdělit prvky n-prvkové množiny do r neprázdných podmnožin, je roven

$${n \brace r} = \frac{1}{r!} \sum_{k=0}^{r} (-1)^k {r \choose k} (r-k)^n.$$

Tato čísla jsme nazvali Stirlingova čísla 2. druhu a odvodili jsme rekurentní vzorec

$${n \brace r} = {n-1 \brace r-1} + r \cdot {n-1 \brack r}.$$
 (13.0.1)

V této kapitole se seznámíme se Stirlingovými čísly 1. druhu a vyřešíme některé úlohy související s oběma druhy čísel.

13.1 Stirlingova čísla 1. druhu

Každou permutaci konečné množiny lze rozložit na nezávislé cykly. Uvažujme například permutaci f na osmiprvkové množině $\{1, 2, 3, 4, 5, 6, 7, 8\}$, která je popsána následující tabulkou:

Tato permutace je složena ze 3 nezávislých cyklů (1,2,4), (3) a (5,6,8,7); viz obr. 13.1.

Obrázek 13.1: Rozklad permutace na nezávislé cykly

Zápis cyklů není jednoznačný, např. cyklus (1,2,4) lze zapsat i jako (2,4,1) nebo (4,1,2).

Stirlingova čísla 1. druhu, která značíme $\begin{bmatrix} n \\ r \end{bmatrix}$, udávají počet permutací množiny $\{1, \ldots, n\}$ tvořených právě r cykly.

Platí např.

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = \frac{n!}{n} = (n-1)!,$$

protože n prvků lze do jednoho cyklu do uspořádat n!/n způsoby: Napíšeme čísla $1, \ldots, n$ v libovolném pořadí a uvědomíme si, že cyklické posuny odpovídají stále stejnému cyklu.

Podobně jednoduché je nahlédnout, že platí

$$\binom{n}{n-1} = \binom{n}{2}.$$

Stačí vybrat dva prvky, které budou tvořit dvojcyklus; všechny ostatní cykly budou jednoprvkové.

Zkusme ještě vypočítat $\binom{n}{2}$. Potřebujeme sestavit 2 cykly délek $k, l \in \mathbb{N}$, kde k+l=n. Počet způsobů, jak sestavit cyklus délky k, je $\binom{n}{k}(k-1)!$. Počet způsobů, jak ze zbylých l=n-k prvků sestavit druhý cyklus, je (n-k-1)!. Celkem tedy dostáváme

$$\binom{n}{k}(k-1)!(n-k-1)! = \frac{n!}{k(n-k)} = \frac{n!}{n}\left(\frac{1}{k} + \frac{1}{n-k}\right) = (n-1)!\left(\frac{1}{k} + \frac{1}{n-k}\right).$$

Sčítáním přes všechny možné hodnoty k získáme

$$(n-1)! \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k} \right) = (n-1)! \cdot 2 \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n-1} \right).$$

V tomto výsledku je ovšem každá permutace započítána dvakrát, protože pořadí cyklů je nepodstatné. Finální výsledek je tedy

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)! \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n-1} \right).$$

Stejně jako u Stirlingových čísel 2. druhu lze i čísla 1. druhu $\binom{n}{r}$ uspořádat do tabulky. Jejích prvních pět řádků a sloupců vypadá následovně:

$n \backslash r$	1	2	3	4	5
1	1	0	0	0	0
2	1	1	0	0	0
3	2	3	1	0	0
4	6	11	6	1	0
5	24	50	35	10	1

Všimneme si opět některých obecných zákonitostí platných pro každé $n \in \mathbb{N}$:

- (i) $\binom{n}{n} = 1$ (existuje jediná permutace *n*-prvkové množiny tvořená *n* cykly, totiž identita).
- (ii) Pokud r > n, pak $\binom{n}{r} = 0$ (počet cyklů nemůže být větší než počet prvků, které permutujeme).
- (iii) Pokud $n \ge 2$ a $r \ge 2$, pak

Na levé straně je počet permutací množiny $\{1,\ldots,n\}$ tvořených r cykly. První sčítanec na pravé straně odpovídá počtu permutací, kde prvek n tvoří samostatný cyklus délky 1. Všechny ostatní permutace vzniknou tak, že vezmeme permutaci množiny $\{1,\ldots,n-1\}$ s r cykly a do některého z nich vložíme prvek n. Toto vložení lze provést n-1 způsoby: Představíme si cykly jako řádkové vektory, které mají celkem n-1 složek. Prvek n vkládáme za libovolnou z nich (vložení na začátek vektoru je totiž ekvivalentní s vložením na konec).

Pravidlo (iii) říká, že čísla v n-tém řádku lze počítat pomocí čísel v (n-1)-ním řádku, např. $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 3 \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 2 + 3 \cdot 3 = 11$. Vzhledem k tomu, že známe hodnoty v prvním řádku a sloupci, dokážeme pomocí rekurentního vzorce počítat stále další řádky tabulky.

Učiníme ještě dvě jednoduchá pozorování:

- Pro všechna $n, r \in \mathbb{N}$ platí $\binom{n}{r} \ge \binom{n}{r}$. Z každého rozkladu permutace n-prvkové množiny na r cyklů totiž můžeme získat rozklad n-prvkové množiny na r neprázdných podmnožin stačí z cyklů udělat podmnožiny tím, že zapomeneme na pořadí prvků. Tímto postupem získáme všechny rozklady na podmnožiny (některé dokonce vícekrát).
- Pro všechna $n \in \mathbb{N}$ platí

$$\sum_{r=1}^{n} {n \brack r} = n!,$$

protože obě strany udávají celkový počet permutací n-prvkové množiny.

13.2 Sestupné a vzestupné mocniny

V různých oblastech matematiky se vyskytují tzv. sestupné a vzestupné k-té mocniny, které jsou pro každé $k \in \mathbb{N}$ a $x \in \mathbb{R}$ definovány vztahy

$$x^{\underline{k}} = x(x-1)\cdots(x-k+1),$$

$$x^{\overline{k}} = x(x+1)\cdots(x+k-1).$$

Kromě toho definujeme ještě $x^{\overline{0}} = x^{\overline{0}} = 1$.

Například známý vzorec pro variace bez opakování, tj. uspořádáné k-tice sestavené z prvků n-prvkové množiny, lze stručně psát ve tvaru $n^{\underline{k}}$.

Z následujícího lemmatu plyne, že počítání sestupných mocnin lze změnou znaménka převést na výpočet vzestupných mocnin (a naopak).

Lemma 13.2.1. Pro každé $x \in \mathbb{R}$ a $k \in \mathbb{N}$ platí $x^{\underline{k}} = (-1)^k (-x)^{\overline{k}}$.

$$D\mathring{u}kaz$$
. Platí $(-1)^k(-x)^{\overline{k}} = (-1)^k(-x)(-x+1)\cdots(-x+k-1) = x(x-1)\cdots(x-k+1) = x^{\underline{k}}$.

Z definice je zřejmé, že $x^{\overline{k}}$ i $x^{\underline{k}}$ jsou polynomy stupně k v proměnné x. Jaké jsou jejich koeficienty? Roznásobením můžeme získat

$$\begin{split} x^{\overline{1}} &= x, \\ x^{\overline{2}} &= x(x+1) = x + x^2, \\ x^{\overline{3}} &= x(x+1)(x+2) = 2x + 3x^2 + x^3, \\ x^{\overline{4}} &= x(x+1)(x+2)(x+3) = 6x + 11x^2 + 6x^3 + x^4, \end{split}$$

atd. Pozorný čtenář si všimne, že koeficienty se shodují se Stirlingovými čísly 1. druhu. Nejedná se o náhodu, platí totiž následující tvrzení.

Věta 13.2.2. Pro každé $x \in \mathbb{R}$ a $n \in \mathbb{N}$ platí

$$x^{\overline{n}} = \sum_{r=1}^{n} \begin{bmatrix} n \\ r \end{bmatrix} x^{r}.$$

 $D\mathring{u}kaz$. Použijeme matematickou indukci. Pro n=1 je tvrzení zřejmé. Předpokládejme, že tvrzení platí pro n-1, a počítejme s využitím rekurentního vztahu (13.1.1):

$$x^{\overline{n}} = (x+n-1)x^{\overline{n-1}} = (x+n-1)\sum_{r=1}^{n-1} {n-1 \brack r} x^r = \sum_{r=1}^{n-1} {n-1 \brack r} x^{r+1} + \sum_{r=1}^{n-1} (n-1) {n-1 \brack r} x^r$$

$$= \sum_{r=2}^{n} {n-1 \brack r-1} x^r + \sum_{r=1}^{n-1} (n-1) {n-1 \brack r} x^r =$$

$$= (n-1) {n-1 \brack 1} x + \sum_{r=2}^{n-1} \left({n-1 \brack r-1} + (n-1) {n-1 \brack r} \right) x^r + {n-1 \brack n-1} x^n$$

$$= (n-1)!x + \sum_{r=2}^{n-1} {n \brack r} x^r + x^n = \sum_{r=1}^{n} {n \brack r} x^r.$$

U sestupných mocnin je situace obdobná; jde o polynomy, jejichž koeficienty jsou Stirlingova čísla 1. druhu se střídajícími se znaménky.

Důsledek 13.2.3. Pro každé $x \in \mathbb{R}$ a $n \in \mathbb{N}$ platí

$$x^{\underline{n}} = \sum_{r=1}^{n} (-1)^{n+r} \begin{bmatrix} n \\ r \end{bmatrix} x^{r}.$$

 $D\mathring{u}kaz$. Z lemmatu 13.2.1 a z věty 13.2.2 plyne

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (-1)^n \sum_{r=1}^n {n \brack r} (-x)^r = \sum_{r=1}^n (-1)^{n+r} {n \brack r} x^r.$$

Následující důsledek získáme z věty 13.2.2 dosazením x = -1.

Důsledek 13.2.4. Pro každé přirozené číslo $n \ge 2$ platí $\sum_{r=1}^{n} {n \brack r} (-1)^r$.

Abychom pochopili kombinatorický význam této identity, přepíšeme ji do tvaru

$$\begin{bmatrix} n \\ 1 \end{bmatrix} + \begin{bmatrix} n \\ 3 \end{bmatrix} + \dots = \begin{bmatrix} n \\ 2 \end{bmatrix} + \begin{bmatrix} n \\ 4 \end{bmatrix} + \dots.$$

Identita tedy říká, že počet permutací s lichým počtem cyklů je totožný s počtem permutací se sudým počtem cyklů. Toto tvrzení lze dokázat i jednoduchou úvahou: Mějme libovolnou permutaci množiny $\{1,\ldots,n\}$, kde $n\geq 2$, rozloženou na nezávislé cykly, které zapíšeme jako řádkové vektory. S permutací provedeme následující operaci:

- Nechť jsou prvky 1 a 2 v různých cyklech. Bez újmy na obecnosti předpokládejme, že 1 a 2 jsou na začátcích příslušných vektorů, které v rozkladu permutace následují hned po sobě. V takovém případě cykly spojíme. Pokud by např. byla dána permutace (1,7,3,6)(2,5,9), upravíme ji na (1,7,3,6,2,5,9).
- Nechť jsou prvky 1 a 2 ve stejném cyklu. Bez újmy na obecnosti předpokládejme, že 1 je na začátku příslušného vektor. V takovém případě cyklus rozdělíme na dva cykly začínající prvky 1, resp. 2. Pokud by např. byla dána permutace (1, 4, 3, 2, 5), upravíme ji na (1, 4, 3)(2, 5).

Není těžké si rozmyslet, že právě popsaná operace je bijekce na množině všech permutací (je sama k sobě inverzí). Zároveň má tu vlastnost, že počet cyklů vždy změní o 1. Převádí tedy permutace se sudým počtem cyklů na permutace s lichým počtem cyklů a naopak.

Pomocí věty 13.2.2 a důsledku 13.2.3 dokážeme vzestupné i sestupné mocniny snadno vyjádřit ve tvaru polynomů, tj. jako lineární kombinace obyčejných mocnin. Je možné postupovat obráceně a vyjádřit obyčejné mocniny jako lineární kombinace vzestupných, resp. sestupných mocnin? Odpověď snadno plyne z lineární algebry: Každá z množin

$$\{x^{\overline{0}}, x^{\overline{1}}, \dots, x^{\overline{n}}\}, \quad \{x^{\underline{0}}, x^{\underline{1}}, \dots, x^{\underline{n}}\}$$

představuje bázi vektorového prostoru všech polynomů stupně nejvýše n, neboť se jedná o n+1 lineárně nezávislých funkcí a dimenze prostoru je n+1 (nejjednodušší bází tohoto prostoru je $\{x^0, x^1, \ldots, x^n\}$). Každý polynom stupně n, tudíž i obyčejnou mocninu stupně nejvýše n, musí být možné zapsat jako lineární kombinaci vzestupných, resp. sestupných mocnin stupně nejvýše n. Z následující věty plyne, že koeficienty v takových lineárních kombinacích jsou Stirlingova čísla 2. druhu.

Věta 13.2.5. Pro každé $x \in \mathbb{R}$ a $n \in \mathbb{N}$ platí

$$x^n = \sum_{r=1}^n \binom{n}{r} x^{\underline{r}}.$$

 $D\mathring{u}kaz$. Použijeme matematickou indukci. Pro n=1 je tvrzení zřejmé. Předpokládejme, že tvrzení platí pro n-1, a počítejme s využitím rekurentního vztahu (13.0.1):

$$\begin{split} x^n &= x \cdot x^{n-1} = x \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r}} = \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r}} (x-r) + \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r}} r \\ &= \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r+1}} + \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r}} r = \sum_{r=2}^{n} \binom{n-1}{r-1} x^{\underline{r}} + \sum_{r=1}^{n-1} \binom{n-1}{r} x^{\underline{r}} r \\ &= x^{\underline{n}} + \sum_{r=2}^{n-1} \left(\binom{n-1}{r-1} + \binom{n-1}{r-1} r \right) x^{\underline{r}} + x^{\underline{1}} = x^{\underline{n}} + \sum_{r=2}^{n-1} \binom{n}{r} x^{\underline{r}} + x^{\underline{1}}. \end{split}$$

Analogický vztah se vzestupnými mocninami opět získáme použitím lemmatu 13.2.1.

Důsledek 13.2.6. Pro každé $x \in \mathbb{R}$ a $n \in \mathbb{N}$ platí

$$x^n = \sum_{r=1}^n (-1)^{n+r} \begin{Bmatrix} n \\ r \end{Bmatrix} x^{\overline{r}}.$$

 $\label{eq:discrete_def} \textit{Důkaz.} \ \text{Platí} \ (-x)^n = \sum_{r=1}^n {n \brace r} (-x)^{\underline{r}} = \sum_{r=1}^n {n \brack r} (-1)^r x^{\overline{r}} \ \text{a tuto rovnost stačí vynásobit } (-1)^n. \qquad \square$

Obrázek 13.2: Stirlingovy trojúhelníky z Methodus differentialis, 1730 (obrázky převzaty z [2])

Poznámka 13.2.7. Skotský matematik James Stirling (1692–1770) objevil oba druhy čísel, které jsou po něm pojmenovány, právě při zkoumání vztahů mezi vzestupnými, sestupnými a obyčejnými mocninami; popsal je ve své učebnici diferenciálního počtu z roku 1730. Sestupné a vzestupné mocniny hrají důležitou roli v diskrétním kalkulu a objevují se v Newtonově interpolačním vzorci (viz kapitolu 14); to byl i důvod, proč se jimi Stirling zabýval. Další podrobnosti lze najít v [2]. Kombinatorická interpretace Stirlingových čísel související s rozklady množin, resp. permutací na cykly, byla objevena až později.

13.3 Rozbíjení cyklů a šatnářka podruhé

Představme si, že máme jistou permutaci n-prvkové množiny. Jaký nejmenší počet transpozic je potřeba provést, abychom získali identickou permutaci? Odpověď na tuto otázku je překvapivě jednoduchá, pokud si uvědomíme, co se při provedení transpozice děje s nezávislými cykly dané permutace. Řekněme, že chceme provést transpozici prvků i a j.

- \bullet Cykly permutace neobsahující i ani j zůstanou beze změny.
- \bullet Pokud jsou i a j obsaženy ve stejném cyklu, pak dojde k rozdělení cyklu na dva.
- ullet Pokud jsou i a j v různých cyklech, pak dojde k jejich spojení do jednoho cyklu.

Obrázek 13.3: Cyklus vlevo se po provedení transpozice (a, c) rozpadne na dva cykly vpravo.

Obrázek 13.4: Dva cykly vlevo se po provedení transpozice (a, d) spojí do cyklu vpravo.

Vidíme, že při každé transpozici se počet cyklů zvýší maximálně o 1. Pokud má původní permutace k cyklů, pak nejmenší počet transpozic potřebných k získání identické permutace (která má n cyklů) je n-k (stačí v každém kroku provést transpozici prvků ze stejného cyklu).

Tyto úvahy nám umožní vyřešit následující variantu úlohy 2.3.2.

Úloha 13.3.1. Uvažujme 10 pánů, kteří si jdou do šatny vyzvednout klobouky. Šatnářka vydává klobouky náhodně. Pánové, kteří nedostali své klobouky, si je začnou vyměňovat.

13.4. BELLOVA ČÍSLA 99

a) Jaká je pravděpodobnost, že nebude nutné provést více než 3 výměny k tomu, aby každý pán získal svůj klobouk?

b) Jaká bude střední hodnota počtu výměn?

 $\check{R}e\check{s}eni$. Očíslujeme pány a klobouky tak, že klobouk i patří pánovi i. Přiřazení klobouků pánům pak můžeme chápat jako permutaci množiny $\{1,\ldots,10\}$.

a) Maximálně 3 výměny budou stačit v případech, kdy daná permutace obsahuje aspoň 7 nezávislých cyklů. Pravděpodobnost, že takový případ nastane, je

$$P = \frac{{\binom{10}{7}} + {\binom{10}{8}} + {\binom{10}{9}} + {\binom{10}{10}}}{10!} \doteq 0,003.$$

b) Pravděpodobnost, že bude zapotřebí právě i výměn, se shoduje se pravděpodobností, že daná permutace má 10-i cyklů:

$$p_i = \frac{\binom{10}{10-i}}{10!}$$

Střední hodnota počtu výměn je tedy

$$\sum_{i=0}^{9} i \cdot p_i = \frac{1}{10!} \sum_{i=0}^{9} \begin{bmatrix} 10 \\ 10 - i \end{bmatrix} \doteq 7,07.$$

Poznámka 13.3.2. Úloha 13.3.1 je převzata z práce [14], kde lze najít řadu dalších pěkných úloh o permutacích.

13.4 Bellova čísla

Zastavíme se ještě krátce u tzv. Bellových čísel definovaných vztahem

$$B_n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix}, \quad n \in \mathbb{N}.$$

S ohledem na kombinatorický význam Stirlingových čísel 2. druhu je zřejmé, že B_n udává počet rozkladů n-prvkové množiny na libovolný počet neprázdných podmnožin. Je tedy přirozené položit ještě $B_0 = 1$.

Hodnoty některých Bellových čísel B_n udává následující tabulka.

Bellova čísla lze počítat i bez znalosti Stirlingových čísel pomocí následujícího rekurentního vzorce.

Věta 13.4.1. Pro každé
$$n \in \mathbb{N}_0$$
 platí $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.

Důkaz. B_{n+1} udává počet rozkladů množiny $\{1, \ldots, n+1\}$ na libovolný počet neprázdných podmnožin. Zaměříme se na podmnožinu obsahující číslo 1. V této podmnožině může být $l \in \{0, \ldots, n\}$ dalších prvků a lze je vybrat $\binom{n}{l}$ způsoby. Poté zbývá rozdělit do podmnožin n-l prvků, což lze udělat B_{n-l} způsoby. Platí tedy

$$B_{n+1} = \sum_{l=0}^{n} \binom{n}{l} B_{n-l} = \sum_{l=0}^{n} \binom{n}{n-l} B_{n-l} = \sum_{k=0}^{n} \binom{n}{k} B_{k}.$$

Následující věta ukazuje, že Bellova čísla se objevují v rozvoji jisté exponenciální funkce do mocninné řady.

Věta 13.4.2. Pro každé $x \in \mathbb{R}$ platí

$$e^{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n.$$

Důkaz. Označme¹

$$B(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n.$$

S využitím věty 13.4.1 vypočteme

$$B'(x) = \sum_{n=1}^{\infty} \frac{B_n}{(n-1)!} x^{n-1} = \sum_{n=0}^{\infty} \frac{B_{n+1}}{n!} x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \binom{n}{k} B_k \frac{x^n}{n!} \right) = \sum_{n=0}^{\infty} \left(\sum_{l=0}^n \binom{n}{l} B_{n-l} \frac{x^n}{n!} \right) = \sum_{n=0}^{\infty} \left(\sum_{l=0}^n \frac{B_{n-l}}{(n-l)!} x^{n-l} \frac{x^l}{l!} \right) = \left(\sum_{j=0}^{\infty} \frac{B_j}{j!} x^j \right) \left(\sum_{k=0}^{\infty} \frac{x^k}{k!} \right) = B(x) e^x.$$

Funkce B je tedy řešením diferenciální rovnice $B'(x) = B(x)e^x$. Všechna řešení této rovnice mají tvar $C \cdot e^{e^x}$, kde $C \in \mathbb{R}$. Navíc platí $B(0) = B_0 = 1$, odkud plyne $C = e^{-1}$, a tedy $B(x) = e^{-1} \cdot e^{e^x} = e^{e^x - 1}$. \square

Poznámka 13.4.3. Americký matematik skotského původu Eric Temple Bell (1883–1960), na jehož počest jsou Bellova čísla pojmenována, se v článku *Exponential numbers* (1934) zabýval Taylorovými řadami funkcí ve tvaru $e^{f(x)-f(0)}$ za předpokladu, že známe Taylorův rozvoj f. Jedním ze vztahů, které objevil, je věta 13.4.2. Jako kuriozitu zmíníme skutečnost, že Bella k tomuto problému dovedla chyba v rozvoji funkce $e^{\sin x}$ v tabulkách vzorců *Sammlung von Formeln der reinen und angewandten Mathematik* (1888) pražského matematika a fyzika Václava Lásky.

13.5 Cvičení

Cvičení 13.5.1. Každou permutaci množiny $\{1, ..., n\}$ lze získat složením transpozic. Jaký maximální počet transpozic k tomu potřebujeme?

Cvičení 13.5.2. Kolik existuje permutací množiny $\{1, \ldots, n\}$, jejichž nezávislé cykly mají pouze délky 1 nebo 2?

 $^{^1}$ Mocninná řada má kladný poloměr konvergence, neboť platí odhad $B_n = \sum_{k=1}^n {n \brace k} \leq \sum_{k=1}^n {n \brack k} = n!.$

Kapitola 14

Diskrétní kalkulus

Diskrétní kalkulus je analogie klasického diferenciálního a integrálního počtu. Základními objekty ovšem nejsou funkce, ale posloupnosti. Roli derivací a primitivních funkcí přebírají tzv. diference a antidiference.

V celé kapitole budeme pracovat s nekonečnými posloupnosti, jejichž definičním oborem je obvykle \mathbb{N}_0 nebo \mathbb{Z} . Místo klasického značení $\{a_n\}_{n\in\mathbb{N}_0}$ nebo $\{a_n\}_{n\in\mathbb{Z}}$ bude výhodnější zapisovat posloupnosti jako funkce $f:X\to\mathbb{R}$, kde $X=\mathbb{N}_0$ nebo $X=\mathbb{Z}$; tento zápis je přehlednější, pokud do argumentu f dosazujeme složitější výrazy.

14.1 Diference

Diferencí posloupnosti $f:X\to\mathbb{R}$ rozumíme posloupnost Δf definovanou předpisem

$$\Delta f(x) = f(x+1) - f(x), \quad x \in X.$$

Například diference posloupnosti $f(x) = x, x \in \mathbb{Z}$, je

$$\Delta f(x) = (x+1) - x = 1, \quad x \in \mathbb{Z}.$$

Diference posloupnosti $f(x) = x^2, x \in \mathbb{Z}$, je

$$\Delta f(x) = (x+1)^2 - x^2 = 2x + 1, \quad x \in \mathbb{Z}.$$

Následující věta shrnuje základní pravidla pro počítání s diferencemi. Vztahy pro diferenci součinu a podílu připomínají známá pravidla pro derivování, nejsou však zcela totožná.

Věta 14.1.1. Pro libovolné posloupnosti $f, g: X \to \mathbb{R}$ platí:

- 1. $\Delta(f+g)(x) = \Delta f(x) + \Delta g(x)$.
- 2. Je-li $a \in \mathbb{R}$, pak $\Delta(af)(x) = a\Delta f(x)$.
- 3. $\Delta(fg)(x) = \Delta f(x)g(x) + f(x+1)\Delta g(x) = \Delta f(x)g(x+1) + f(x)\Delta g(x)$
- 4. Je-li g nenulová posloupnost, pak

$$\Delta\left(\frac{f}{g}\right)(x) = \frac{\Delta f(x)g(x) - f(x)\Delta g(x)}{g(x)g(x+1)}.$$

Důkaz. Tvrzení 1 a 2 jsou zřejmá. První část tvrzení 3 vyplývá z rovnosti

$$\Delta(fg)(x) = f(x+1)g(x+1) - f(x)g(x) = f(x+1)g(x+1) - f(x+1)g(x) + f(x+1)g(x) - f(x)g(x)$$

a druhá z rovnosti

$$\Delta(fg)(x) = f(x+1)g(x+1) - f(x)g(x) = f(x+1)g(x+1) - f(x)g(x+1) + f(x)g(x+1) - f(x)g(x).$$

Tvrzení 4 plyne z rovnosti

$$\Delta\left(\frac{f}{g}\right)(x) = \frac{f(x+1)}{g(x+1)} - \frac{f(x)}{g(x)} = \frac{f(x+1)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+1)}{g(x+1)g(x)}. \qquad \Box$$

Pro ilustraci vypočítejme např. diferenci posloupnosti h(x) = 1/x podle tvrzení 4, kde vezmeme f(x) = 1, g(x) = x:

$$\Delta h(x) = \frac{\Delta 1 \cdot x - 1 \cdot \Delta x}{x(x+1)} = -\frac{1}{x(x+1)}$$

(tentýž výsledek lze samozřejmě získat přímo z definice diference).

Každý student zná vzorce pro derivace elementárních funkcí, z nichž nejjednodušší je $(x^n)' = nx^{n-1}$, $n \in \mathbb{N}$. Pro diference mocnin nemáme srovnatelně hezký vzorec; již víme, že platí např. $\Delta x^2 = 2x + 1$. Situace se dá zachránit tím, že místo obyčejných mocnin vezmeme sestupné mocniny zavedené v kapitole 13.

Věta 14.1.2. Pro každé $n \in \mathbb{N}$ platí $\Delta x^{\underline{n}} = nx^{\underline{n-1}}$.

$$D\mathring{u}kaz$$
. Z definice sestupné mocniny plyne $\Delta x^{\underline{n}} = (x+1)^{\underline{n}} - x^{\underline{n}} = (x+1)x^{\underline{n-1}} - x^{\underline{n-1}}(x-n+1) = nx^{\underline{n-1}}$.

Obyčejné mocniny ovšem umíme vyjádřit jako lineární kombinace sestupných mocnin (viz větu 13.2.5). Není tedy obtížné vyjádřit diferenci jakékoliv obyčejné mocniny (resp. polynomu).

Klasický vzorec $(x^n)' = nx^{n-1}$ platí i pro záporné exponenty n; dala by se podobným způsobem zobecnit věta 14.1.2? K tomu je potřeba rozšířit definici sestupné mocniny i na záporné celočíselné exponenty. Všimněme si, že pro každé $n \in \mathbb{N}$ platí

$$x^{\underline{n}} = x^{\underline{n-1}}(x - n + 1),$$

neboli

$$x^{\underline{n-1}} = \frac{x^{\underline{n}}}{x - n + 1}.$$

Nabízí se požadovat, aby tyto vztahy platit nejen pro přirozená, ale pro všechna celá čísla n. Mělo by tedy platit

$$x^{-1} = \frac{x^{0}}{x+1} = \frac{1}{x+1},$$

$$x^{-2} = \frac{x^{-1}}{x+2} = \frac{1}{(x+1)(x+2)},$$

$$x^{-3} = \frac{x^{-2}}{x+3} = \frac{1}{(x+1)(x+2)(x+3)},$$

atd. Obecně tedy můžeme definovat sestupnou mocninu se záporným exponentem pomocí vztahu

$$x^{-n} = \frac{1}{(x+1)\cdots(x+n)}$$

pro všechna $x \in \mathbb{R}$, kdy má pravá strana smysl.

Nyní můžeme rozšířit větu 14.1.2 i na sestupné mocniny se zápornými exponenty.

Věta 14.1.3. Pro každé $n \in \mathbb{N}$ platí $\Delta x^{-n} = -nx^{-n-1}$.

Důkaz. Platí

$$\Delta x^{-n} = (x+1)^{-n} - x^{-n} = \frac{1}{(x+2)\cdots(x+n+1)} - \frac{1}{(x+1)\cdots(x+n)} = \frac{(x+1) - (x+n+1)}{(x+1)\cdots(x+n+1)} = -nx^{-n-1}.$$

Tím jsme dokázali, že vztah $\Delta x^{\underline{n}} = nx^{\underline{n-1}}$ platí pro všechna nenulová celá čísla n.

Zkusme ještě vypočítat diferenci geometrické posloupnosti s kvocientem c: Platí

$$\Delta c^x = c^{x+1} - c^x = c^x(c-1).$$

Speciálně pro c=2 dostáváme $\Delta 2^x=2^x$, tj. posloupnost 2^x se shoduje se svou diferencí; jedná se tedy o diskrétní analogii exponenciální funkce.

14.2 Antidiference a konečné součty

Inverzní operací k derivování je hledání primitivní funkce. I v diskrétním světě zavádíme podobný pojem: Posloupnost $F: X \to \mathbb{R}$ se nazývá antidiferencí k posloupnosti $f: X \to \mathbb{R}$, pokud pro každé $x \in X$ platí $\Delta F(x) = f(x)$. K vyjádření této skutečnosti používáme symbolický zápis $F(x) = \sum f(x)$ (analogie klasického značení $F(x) = \int f(x) \, \mathrm{d}x$).

Z výpočtů v části 14.1 např. vyplývají vzorce

$$\sum c^x = \frac{c^x}{c-1} \tag{14.2.1}$$

pro každé $c \in \mathbb{R} \setminus \{1\}$ a dále

$$\sum x^{\underline{n}} = \frac{x^{\underline{n+1}}}{n+1} \tag{14.2.2}$$

pro každé $n \in \mathbb{Z} \setminus \{-1\}$.

Antidiferenci k libovolnému polynomu najdeme tak, že vyjádříme obyčejné mocniny pomocí sestupných a použijeme vztah (14.2.2). Například

$$\sum x^2 = \sum (x^{\underline{2}} + x^{\underline{1}}) = \frac{x^{\underline{3}}}{3} + \frac{x^{\underline{2}}}{2}.$$

Je zřejmé, že pokud F je antidiference k f, pak F+c je rovněž antidiference k f. Na první pohled nemusí být jasné, zda existují i nějaké jiné antidiference k f, a zda každá posloupnost f vůbec má nějakou antidiferenci. Odpověď podává následující věta, kde se pro jednoduchost omezíme na $X=\mathbb{N}_0$.

Věta 14.2.1. Pro libovolnou posloupnost $f: \mathbb{N}_0 \to \mathbb{R}$ platí:

- 1. Posloupnost daná vztahem $F(x) = \sum_{k=0}^{x-1} f(k)$ pro $x \in \mathbb{N}$ a F(0) = 0 je antidiference k f.
- 2. Každé dvě antidiference k f se liší o konstantu.

 $D\mathring{u}kaz$. Pro funkci F ze znění věty platí $\Delta F(x) = F(x+1) - F(x) = f(x)$, jde tedy o antidiferenci k f. Jsou-li F_1, F_2 dvě antidiference k f, pak pro každé $x \in \mathbb{N}_0$ platí $\Delta F_1(x) = f(x) = \Delta F_2(x)$, a tedy $\Delta (F_1 - F_2)(x) = 0$. Posloupnost, jejíž diference je identicky nulová, je ovšem konstantní.

Ne vždy je možné vyjádřit antidiferenci v uzavřeném tvaru, tj. bez použití sumy. Z předchozí věty např. plyne, že antidiference k posloupnosti x^{-1} je

$$F(x) = \sum_{k=0}^{x-1} k^{-1} = \sum_{k=0}^{x-1} \frac{1}{k+1} = \frac{1}{1} + \dots + \frac{1}{x}$$

pro $x \in \mathbb{N}$ a F(0) = 0. Součet na pravé straně ovšem neumíme vyjádřit v uzavřeném tvaru. Zavádíme proto značení

 $H_x = \begin{cases} \frac{1}{1} + \dots + \frac{1}{x} & \text{pro } x \in \mathbb{N}, \\ 0 & \text{pro } x = 0. \end{cases}$

Tato čísla se nazývají harmonická čísla (protože jde o částečné součty harmonické řady). Posloupnost H_x je antidiferencí k x^{-1} , a proto bývá považována za diskrétní analogii přirozeného logaritmu (který je primitivní funkcí k x^{-1}).

Proč je užitečné umět počítat antidiference? Jedním důvodem je následující věta, která představuje diskrétní verzi Newtonova-Leibnizova vzorce.

Věta 14.2.2. Je-li $F: X \to \mathbb{R}$ antidiference $k \ f: X \to \mathbb{R}$, pak pro každou dvojici čísel $a, b \in X$, kde $a \le b$, platí

$$\sum_{x=a}^{b} f(x) = [F(x)]_{x=a}^{b+1} = F(b+1) - F(a).$$

Důkaz. Platí
$$\sum_{x=a}^{b} f(x) = \sum_{x=a}^{b} (F(x+1) - F(x)) = F(b+1) - F(a)$$
.

Význam věty spočívá v tom, že umožňuje snadno počítat konečné součty, pokud dokážeme najít příslušnou antidiferenci. (Opět se nabízí analogie: Výpočet $\int_a^b f$ je snadný, pokud umíme najít primitivní funkci k f.) Ilustrujme použití věty na několika příkladech:

• Ze vztahu (14.2.1) snadno plyne vzorec pro součet konečné geometrické řady. Skutečně, pokud $c \neq 1$, pak podle věty 14.2.2 platí

$$\sum_{x=0}^{n} c^{x} = \left[\frac{c^{x}}{c-1} \right]_{x=0}^{n+1} = \frac{c^{n+1} - 1}{c-1}.$$

• Pro součty r-tých sestupných mocnin dostáváme vztah

$$\sum_{r=1}^{n} x^{\underline{r}} = \left[\frac{x^{\underline{r+1}}}{r+1} \right]_{x=0}^{n+1} = \frac{(n+1)^{\underline{r+1}}}{r+1}.$$

Vzorce pro součty obyčejných mocnin lze získat tak, že je převedeme na součty sestupných mocnin.
 Např. známý vztah pro součet druhých mocnin přirozených čísel odvodíme takto:

$$\sum_{x=1}^{n} x^2 = \sum_{x=1}^{n} x^2 + \sum_{x=1}^{n} x^1 = \left[\frac{x^3}{3}\right]_{x=0}^{n+1} + \left[\frac{x^2}{2}\right]_{x=0}^{n+1} =$$

$$= \frac{(n+1)^3}{3} + \frac{(n+1)^2}{2} = \frac{2(n+1)n(n-1) + 3(n+1)n}{6} = \frac{(n+1)n(2n+1)}{6}$$

• Diference Fibonacciho posloupnosti je $\Delta F_x = F_{x+1} - F_x = F_{x-1}$, tudíž antidiference k F_x je F_{x+1} . Pro součet Fibonacciho čísel tedy dostáváme vztah

$$\sum_{x=0}^{n} F_x = [F_{x+1}]_{x=0}^{n+1} = F_{n+2} - F_1 = F_{n+2} - 1.$$

 $\bullet\,$ Diference posloupnosti kombinačních čísel ležících v k-tém sloupci Pascalova trojúhelníku je

$$\Delta \begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x+1 \\ k \end{pmatrix} - \begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x \\ k-1 \end{pmatrix} + \begin{pmatrix} x \\ k \end{pmatrix} - \begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x \\ k-1 \end{pmatrix},$$

tudíž antidiference k $\binom{x}{k}$ je $\binom{x}{k+1}$. Dostáváme tak alternativní odvození vzorce pro součet kombinačních čísel z věty 12.2.1:

$$\sum_{k=0}^{n} {x \choose k} = \left[{x \choose k+1} \right]_{x=0}^{n+1} = {n+1 \choose k+1} - {0 \choose k+1} = {n+1 \choose k+1}.$$

• Diference posloupnosti faktoriálů je $\Delta x! = (x+1)! - x! = x!x$, odkud plyne vztah

$$\sum_{x=1}^{n} x! x = [x!]_{x=1}^{n+1} = (n+1)! - 1.$$

14.3 Sumace per partes

Integrace per partes je jednou ze základních technik pro výpočet integrálů. Analogické tvrzení pro výpočet konečných součtů metodou per partes je zformulováno v následující větě (v české literatuře se často používá termín "parciální sumace").

Věta 14.3.1. Pro libovolné posloupnosti $f, g: X \to \mathbb{R}$ platí

$$\sum_{x=a}^{b} \Delta f(x)g(x) = [f(x)g(x)]_{x=a}^{b+1} - \sum_{x=a}^{b} f(x+1)\Delta g(x).$$

Důkaz. Podle věty 14.1.1 platí

$$\Delta(fg)(x) = \Delta f(x)g(x) + f(x+1)\Delta g(x), \quad x \in X.$$

Sečtením těchto vztahů pro $x \in \{a, ..., b\}$ získáme

$$[f(x)g(x)]_{x=a}^{b+1} = \sum_{r=a}^{b} \Delta(fg)(x) = \sum_{r=a}^{b} \Delta f(x)g(x) + \sum_{r=a}^{b} f(x+1)\Delta g(x).$$

Použití věty ilustrují následující úlohy.

Úloha 14.3.2. Vypočítejte $\sum_{x=0}^{n} x2^{x}$.

Řešení. Použijeme sumaci per partes, přičemž x budeme diferencovat a 2^x antidiferencovat. Diference x je 1, antidiference 2^x je 2^x . Podle věty 14.3.1, kde volíme $f(x) = 2^x$ a g(x) = x, platí

$$\sum_{x=0}^{n} x 2^{x} = \left[x 2^{x}\right]_{x=0}^{n+1} - \sum_{x=0}^{n} 2^{x+1} = (n+1)2^{n+1} - 2 \cdot (2^{n+1} - 1) = (n-1)2^{n+1} + 2.$$

Již víme, že diskrétní analogií přirozeného logaritmu je posloupnost harmonických čísel. Následující úloha připomíná známý výpočet $\int \ln x \, dx$: Představíme si, že integrand je násoben jedničkou, a integrujeme per partes.

Úloha 14.3.3. Vypočítejte $\sum_{x=0}^{n-1} H_x$.

 $\check{R}e\check{s}en\acute{i}$. Zapíšeme H_x ve tvaru $H_x\cdot 1$. Použijeme sumaci per partes, přičemž H_x budeme diferencovat a 1 antidiferencovat. Dostaneme

$$\sum_{x=0}^{n-1} H_x \cdot 1 = [H_x \cdot x]_{x=0}^n - \sum_{x=0}^{n-1} x^{-1}(x+1) = H_n \cdot n - \sum_{x=0}^{n-1} \frac{x+1}{x+1} = H_n \cdot n - n.$$

Poznámka 14.3.4. V matematické analýze se sumace per partes standardně využívá k důkazu Abelova kritéria pro konvergenci nekonečných řad. Technika pochází z Abelovy práce *Untersuchungen über die Reihe* $1 + \frac{m}{1}x + \frac{m\cdot(m-1)}{1\cdot 2} \cdot x^2 + \frac{m\cdot(m-1)\cdot(m-2)}{1\cdot 2\cdot 3} \cdot x^3 + \cdots$ z roku 1826, která je věnována binomické řadě. Sumace per partes se zde objevuje ve tvaru vzorce

$$\varepsilon_0 p_0 + \varepsilon_1 (p_1 - p_0) + \varepsilon_2 (p_2 - p_1) + \dots + \varepsilon_m (p_m - p_{m-1})$$

= $p_0(\varepsilon_0 - \varepsilon_1) + p_1(\varepsilon_1 - \varepsilon_2) + \dots + p_{m-1}(\varepsilon_{m-1} - \varepsilon_m) + p_m \varepsilon_m$,

který se snadno ověří; čtenář si může rozmyslet, že vztah je ekvivalentní s větou 14.3.1.

14.4 Diference vyšších řádů a interpolace

Každou posloupnost $f:X\to\mathbb{R}$ můžeme opakovaně diferenc
ovat. Vznikají tak diference vyšších řádů. Postupně dostáváme

$$\Delta f(x) = f(x+1) - f(x),$$

$$\Delta^2 f(x) = \Delta f(x+1) - \Delta f(x) = f(x+2) - 2f(x+1) + f(x),$$

$$\Delta^3 f(x) = \Delta^2 f(x+1) - \Delta^2 f(x) = f(x+3) - 3f(x+2) + 3f(x+1) - f(x),$$

atd. Následující věta potvrzuje, že $\Delta^k f(x)$ je lineární kombinace hodnot $f(x), \ldots, f(x+k)$, přičemž koeficienty jsou kombinační čísla se střídajícími se znaménky.

Věta 14.4.1. Pro každou posloupnost $f: X \to \mathbb{R}$ a každé $k \in \mathbb{N}$ platí

$$\Delta^{k} f(x) = \sum_{j=0}^{k} {k \choose j} (-1)^{k-j} f(x+j).$$

 $D\mathring{u}kaz$. Tvrzení dokážeme matematickou indukcí. Pro k=1 se součet na pravé straně redukuje na

$$\sum_{j=0}^{1} {1 \choose j} (-1)^{1-j} f(x+j) = -f(x) + f(x+1),$$

což se shoduje s $\Delta f(x)$. Dále ukážeme, že platnost tvrzení pro k-1 implikuje platnost pro k:

$$\Delta^{k} f(x) = \Delta(\Delta^{k-1} f(x)) = \Delta \left(\sum_{j=0}^{k-1} \binom{k-1}{j} (-1)^{k-1-j} f(x+j) \right) =$$

$$= \sum_{j=0}^{k-1} \binom{k-1}{j} (-1)^{k-1-j} f(x+1+j) - \sum_{j=0}^{k-1} \binom{k-1}{j} (-1)^{k-1-j} f(x+j) =$$

$$= \sum_{j=1}^{k} \binom{k-1}{j-1} (-1)^{k-j} f(x+j) - \sum_{j=0}^{k-1} \binom{k-1}{j} (-1)^{k-1-j} f(x+j) =$$

$$= \binom{k-1}{k-1} f(x+k) + \sum_{j=1}^{k-1} \binom{k-1}{j-1} + \binom{k-1}{j} (-1)^{k-j} f(x+j) - \binom{k-1}{0} (-1)^{k-1} f(x) =$$

$$\binom{k}{k} f(x+k) + \sum_{j=1}^{k-1} \binom{k}{j} (-1)^{k-j} f(x+j) + \binom{k}{0} (-1)^{k} f(x).$$

Diference vyšších řádů se objevují např. v tzv. Newtonově interpolačním vzorci. Představme si, že je dána funkce $f: \mathbb{R} \to \mathbb{R}$ a hledáme polynom stupně n, která má v po sobě jdoucích celočíselných bodech $a, \ldots, a+n$ stejné hodnoty jako f. Ukážeme, že tímto polynomem je Newtonův interpolační polynom

$$p(x) = \sum_{k=0}^{n} \frac{\Delta^k f(a)}{k!} (x - a)^{\underline{k}}.$$
 (14.4.1)

Polynom je zkonstruován tak, aby měl v bodě a stejné diference jako daná funkce f, a to až do řádu n; jedná se o diskrétní verzi Taylorova polynomu.

Lemma 14.4.2. Pro každé $i \in \{0, ..., n\}$ platí $\Delta^i p(a) = \Delta^i f(a)$.

Důkaz. Pro diference sestupných mocnin, které se objevují v Newtonově interpolačním polynomu, platí

$$\Delta^{i}(x-a)^{\underline{k}} = \begin{cases} k(k-1)\cdots(k-i+1)(x-a)^{\underline{k-i}} & \text{pro } i \in \{0,\dots,k\}, \\ 0 & \text{pro } i > k. \end{cases}$$

V bodě x=a je tedy i-tá diference nenulová jedině pro i=k, a v tomto případě má hodnotu k!. Odtud již plyne dokazované tvrzení.

Nyní již snadno dokážeme, že Newtonův interpolační polynom se shoduje s funkcí f v n+1 po sobě jdoucích celočíselných bodech.

Věta 14.4.3. Je-li $f: X \to \mathbb{R}$ libovolná posloupnost a polynom p je definován vztahem (14.4.1), pak pro každé $x \in \{a, \ldots, a+n\}$ platí p(x) = f(x).

 $D\mathring{u}kaz$. Dosazením x=a do definice p zjistíme, že p(a)=f(a). Dále předpokládejme, že pro jisté $k\in\{1,\ldots,n\}$ máme dokázáno p(x)=f(x) pro $x\in\{a,\ldots,a+k-1\}$. Dokážeme, že p(a+k)=f(a+k). Z věty 14.4.1 plyne

$$\Delta^{k} f(a) = \sum_{j=0}^{k-1} {k \choose j} (-1)^{k-j} f(a+j) + f(a+k),$$
$$\Delta^{k} p(a) = \sum_{j=0}^{k-1} {k \choose j} (-1)^{k-j} p(a+j) + p(a+k).$$

Odtud s využitím lemmatu 14.4.2 dostaneme

$$p(a+k) = \Delta^k p(a) - \sum_{j=0}^{k-1} \binom{k}{j} (-1)^{k-j} p(a+j) =$$

$$= \Delta^k f(a) - \sum_{j=0}^{k-1} \binom{k}{j} (-1)^{k-j} f(a+j) = f(a+k).$$

Podívejme se, jak vypadá Newtonův interpolační polynom pro funkci $f(x) = x^n$, $n \in \mathbb{N}$, v bodě a = 0. Diference f vyjádříme pomocí věty 14.4.1:

$$\Delta^k f(0) = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} f(j) = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} j^n = \sum_{l=0}^k \binom{k}{l} (-1)^l (k-l)^n,$$

kde v posledním kroku jsme provedli substituci l=k-j. Newtonův interpolační polynom v bodě a=0 je tedy

$$p(x) = \sum_{k=0}^{n} \frac{\Delta^{k} f(0)}{k!} x^{\underline{k}} = \sum_{k=0}^{n} \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{l} (k-l)^{n} x^{\underline{k}} = \sum_{k=0}^{n} \binom{n}{k} x^{\underline{k}}$$

(využili jsme vzorec pro Stirlingova čísla 2. druhu).

Podle věty 14.4.3 platí f(x) = p(x) pro všechna $x \in \{0, ..., n\}$. Na levé i na pravé straně této rovnosti jsou však polynomy stupně n; pokud se shodují v n + 1 bodech, pak jsou identické. Platí tedy

$$x^n = \sum_{k=0}^n {n \brace k} x^{\underline{k}}, \quad x \in \mathbb{R},$$

čímž jsme znovu dokázali větu 13.2.5 o vyjádření obyčejných mocnin pomocí sestupných mocnin.

Poznámka 14.4.4. V celé kapitole jsme pracovali s diferencemi ve tvaru $\Delta f(x) = f(x+1) - f(x)$, kterým se říká dopředné. Existují i zpětné diference $\nabla f(x) = f(x) - f(x-1)$, pro které je možné vybudovat analogickou teorii. Roli obyčejných mocnin pak nepřebírají sestupné, ale vzestupné mocniny; platí např. vztah $\nabla x^{\overline{n}} = nx^{\overline{n-1}}$. Newtonův interpolační polynom má tvar

$$p(x) = \sum_{k=0}^{n} \frac{\nabla^{k} f(a)}{k!} (x - a)^{\overline{k}}$$

a shoduje se s funkcí f v bodech $a-n,\ldots,a$.

14.5 Cvičení

Cvičení 14.5.1. Najděte diference posloupností F_{2x} a F_{2x-1} . Použijte získané výsledky k výpočtu součtů $\sum_{x=1}^{n} F_{2x}$ a $\sum_{x=1}^{n} F_{2x-1}$.

Cvičení 14.5.2. Ověřte, že $F_{x-1}F_x$ je antidiference k F_x^2 . Vypočítejte $\sum_{x=1}^n F_x^2$.

Cvičení 14.5.3. Pomocí sumace per partes vypočítejte $\sum_{x=1}^{n} x F_x$.

Cvičení 14.5.4. Pomocí sumace per partes vypočítejte $\sum_{x=0}^{n} c^{x} F_{x}$, kde $c \in \mathbb{R}$ je libovolné číslo splňující $c^{2} + c - 1 \neq 0$.

Kapitola 15

Výsledky cvičení

```
1.3.1 \binom{43}{6} / \binom{49}{6} \doteq 0.436.
```

1.3.2
$$\binom{19}{10} = 92378.$$

1.3.3
$$6! \cdot 5 \cdot 4 \cdot 3 = 43200$$
.

1.3.4
$$\binom{109}{9} - 1$$
.

1.3.5 Pravděpodobnost je $P=1-366\cdot 365\cdots (367-n)/366^n$ a přesáhne 1/2 pro $n\geq 23$.

2.4.1
$$P = \left(\binom{52}{6} - 4 \binom{39}{6} + 6 \binom{26}{6} - 4 \binom{13}{6} \right) / \binom{52}{6} = 8682544/20358520.$$

2.4.2 Počet přípustných cest je $\binom{15}{5} - \binom{4}{2} \binom{10}{3} - \binom{6}{2} \binom{8}{3} - \binom{8}{2} \binom{6}{2} - \binom{9}{2} \binom{5}{5} + \binom{4}{2} \binom{8}{3} + \binom{4}{2} \binom{6}{2} + \binom{4}{2} \binom{5}{5} + \binom{6}{2} \binom{5}{2} + \binom{4}{2} \binom{6}{5} - \binom{4}{5} \binom{6}{5} - \binom{6}{5} \binom{6}{5} \binom{6}{5} \binom{6}{5} - \binom{6}{5} \binom{6}{5} \binom{6}{5} - \binom{6}{5} \binom{6}{5} \binom{6}{5} \binom{6}{5} \binom{6}{5} \binom{6}{5}$

2.4.3
$$\sum_{k=0}^{n} {n \choose k} (-1)^k (2n-k)! 2^k$$
.

2.4.4
$$P = \left(\sum_{l=0}^{N} (-1)^{l} {N \choose l} {N-l \choose n}^{k}\right) / {N \choose n}^{k}.$$

- **3.5.1** $v(x, S) = 1 + 8x + 22x^2 + 25x^3 + 12x^4 + 2x^5$, tři věže lze rozmístit 25 způsoby.
- **3.5.2** $v(x,S) = 1 + 7x + 17x^2 + 17x^3 + 6x^4$, počet rozmístění je 26.
- 3.5.3 Existuje 20 možností.
- 3.5.4 Existuje 80 možností.
- **3.5.5** Počet trojúhelníků je $\frac{n}{3}\binom{n-4}{2}$. K výsledku lze dospět pomocí vzorce pro počet kombinací s nesousedními členy: Volíme libovolný z n vrcholů a poté dva nesousední vrcholy z n-3 vrcholů, které nesousedí s prvním vrcholem. Celkový počet dělíme třemi, neboť každý trojúhelník získáme tímto způsobem třikrát. Jiné řešení: Počet všech trojúhelníků s vrcholy ve vrcholech n-úhelníku je $\binom{n}{3}$. Počet těch, jejichž jedna strana není úhlopříčkou, je n(n-4). Počet těch, jejichž dvě strany nejsou úhlopříčkami (tedy jde o sousední strany n-úhelníku), je n. Počet hledaných trojúhelníků je proto $\binom{n}{3} n(n-4) n = \frac{n(n-4)(n-5)}{6}$.
- **4.3.1** a) $\binom{14}{4} = 1001$, b) $\binom{9}{4} = 126$.
- **4.3.2** a) (mn)!/n!, b) $(mn)!/(n!(m!)^n)$.
- **4.3.3** ${12 \choose 3} = 86526.$
- **4.3.4** a) $\binom{6}{3} = 90$, b) $\binom{6}{3} + \binom{6}{2} + \binom{6}{1} = 122$.
- **5.4.1** $3^n 1$.
- **5.4.2** w(2k) = 2k + 1 2w(k), w(2k + 1) = 2k + 3 2w(k + 1). Prvních 8 hodnot je 1, 1, 3, 3, 1, 1, 3, 3. Explicitní vzorec pro w(n) lze najít v článku [4].
- 5.4.3 Lze zapsat rekurentní rovnici vzhledem k proměnné k, nebo vzhledem k proměnné n. V prvním

případě dostáváme a(n,k) = a(n,k-1) + n + 1, $a(n,0) = L_n = n(n+1)/2 + 1$, ve druhém případě a(n,k) = a(n-1,k) + n + k, a(0,k) = k+1. Obě rovnice vedou ke stejném řešení a(n,k) = n(n+1)/2 + 1 + k(n+1).

- **5.4.4** Rekurentní rovnice vzhledem k proměnné n je $a_n = k(k-1)^{n-1} a_{n-1}$ pro $n \ge 3$, $a_2 = k(k-1)$. Počet způsobů je $a_n = (k-1)^n + (-1)^n(k-1)$ pro $n \ge 2$.
- **6.4.1** F_{n-1} způsoby.
- **6.4.2** F_n permutací.
- **6.4.3** 274 způsoby.
- **6.4.4** a) $a_k(1) = \cdots = a_k(k-1) = 1$, $a_k(k) = 2$, $a_k(n) = a_k(n-1) + a_k(n-k)$ pro n > k. b) $a_3(10) = 28$.
- 6.4.5 Pomocí vzorce z věty 6.3.2 lze dokázat, že limita je nulová.

7.4.1 a)
$$\binom{6}{3} \left(\binom{12}{6} - \binom{6}{3}^2 \right) = 10480$$
, b) $C_3(C_6 - C_3^2) = 535$.

7.4.2
$$P = 2C_{n-1}/2^{2n} = 2\binom{2n-2}{n-1}/(n2^{2n}).$$

- **7.4.3** P = (n m)/(n + m).
- **7.4.4** a) $C_3\binom{3}{2} = 15$, b) $\binom{13}{5} \binom{12}{4} \sum_{i=1}^{5} C_{i-1}\binom{13-2i}{5-i} = 297$.
- **8.4.1** $A(z) = \frac{z^2}{((1-z)^2(1-2z))} + \frac{1}{(1-2z)} = -\frac{1}{(1-z)^2} + \frac{2}{(1-2z)}, a_n = 2^{n+1} n 1.$
- **8.4.2** $a_n = 2^{n-1} ((-1)^n + 1)/2$.
- **8.4.3** $a_n = 2n + 3 6 \cdot 2^n + 3^{n+1}$.
- **8.4.4** a) Jde o generující funkci posloupnosti $(a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots)$. b) Pro $n \ge 1$ platí $a_n = 2^{n-1}$.
- **9.4.1** Viz vzorec ve větě 6.3.2.
- **9.4.2** $a_n = -2 \cdot (-3)^n 3 \cdot 2^n + 5^n$.
- **9.4.3** $a_n = 2a_{n-1} + a_{n-2}$ pro $n \ge 2$, $a_0 = 1$, $a_1 = 2$; $a_n = \left((1 + \sqrt{2})^{n+1} (1 \sqrt{2})^{n+1} \right) / (2\sqrt{2})$.
- **9.4.4** $a_n = 12a_{n-2} + 4a_{n-1}, a_1 = 7, a_2 = 40; a_n = \frac{9}{8} \cdot 6^n \frac{1}{8} \cdot (-2)^n.$
- **10.3.1** $a_n = (8 \cdot 10^n + 1)/9.$
- **10.3.2** $Q(z) = (2z^2 + z)/((1-z)(1-2z-2z^2)).$
- **10.3.3** $U(z) = (1-z)/(1-3z-z^2+z^3).$
- **10.3.4** $x_n = ((3 + \sqrt{17})^n (3 \sqrt{17})^n)/(2^{n-1}\sqrt{17}).$
- **11.3.1** $\binom{19}{9} 10\binom{15}{9} + 45\binom{11}{9} = 44\,803.$
- **11.3.2** $\binom{24}{6} 6\binom{14}{6} \binom{15}{6} = 111573.$
- **11.3.3** 489.
- **11.3.4** $\binom{252}{2} + \binom{251}{2} = 63001.$
- **11.3.5** Šestic $x_1x_2x_3x_4x_5x_6$, kde $x_1+x_2+x_3=x_4+x_5+x_6$, je stejně jako šestic $x_1x_2x_3y_4y_5y_6$, kde $x_1+x_2+x_3+y_4+y_5+y_6=27$ (stačí volit $y_i=9-x_i$). Takových šestic je $\binom{32}{5}-6\binom{22}{5}+15\binom{12}{5}=55$ 252.
- **12.4.1** Podle části 3.4 je počet k-prvkových podmnožin s nesousedními prvky roven $\binom{n-k+1}{k}$. Počet všech podmnožin bez ohledu na počet prvků je $\binom{n+1}{0} + \binom{n}{1} + \cdots = F_{n+1}$.
- **12.4.2** Součet zadaných čísel je $2^{n-1} 1$, což je liché číslo.
- **12.4.3** $\sum_{k=0}^{n} {k \choose m} (k+1) = (m+1) {n+2 \choose m+2}, \sum_{k=0}^{n} {k \choose m} k = (m+1) {n+2 \choose m+2} {n+1 \choose m+1}.$
- **12.4.4** $\binom{4n}{2n} + \binom{2n}{n}^2 / 2$.
- **13.5.1** K získání permutace, která má $c \in \{1, ..., n\}$ nezávislých cyklů, potřebujeme n c transpozic (stačí obrátit postup ze sekce 13.3). Toto číslo je maximální pro c = 1, kdy potřebujeme n 1 transpozic.

- **13.5.2** $\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \frac{(2k)!}{2^k k!}$.
- **14.5.1** $\Delta F_{2x} = F_{2x+1}, \ \Delta F_{2x-1} = F_{2x}, \ \sum_{x=1}^{n} F_{2x} = F_{2n+1} 1, \ \sum_{x=1}^{n} F_{2x-1} = F_{2n} 1.$
- **14.5.2** $\sum_{x=1}^{n} F_x^2 = F_n F_{n+1} 1$.
- **14.5.3** $\sum_{x=1}^{n} x F_x = (n+1)F_{n+2} F_{n+4} + 2.$
- **14.5.4** $\sum_{x=0}^{n} c^x F_x = (F_n c^{n+2} + F_{n+1} c^{n+1} 1)/(c^2 + c 1).$

Literatura

- [1] A. T. Benjamin, J. J. Quinn, *Proofs that really count. The art of combinatorial proof*, Mathematical Association of America, 2003.
- [2] K. Boyadzhiev, Close encounters with the Stirling numbers of the second kind, Mathematics Magazine 85 (2012), 252–266.
- [3] D. C. Fielder, A generator of rook polynomials, The Mathematica Journal 9 (2004), 371–375, https://library.wolfram.com/infocenter/Articles/5432/
- [4] C. Groër, The mathematics of survival: from antiquity to the playground, American Mathematical Monthly 110 (2003), 812–825. https://doi.org/10.2307/3647800
- [5] A. M. Hinz, S. Klavžar, C. Petr, *The Tower of Hanoi myths and maths*, 2nd edition, Birkhäuser/Springer, 2018.
- [6] M. Holíková: O Pickově vzorci a rozměňování peněz, Pokroky matematiky, fyziky a astronomie 61 (2016), 312–322, https://dml.cz/handle/10338.dmlcz/145978
- [7] J. Hudeček: Matematika v devíti kapitolách, Matfyzpress, 2008. https://dml.cz/handle/10338.dmlcz/400831
- [8] I. Pak, History of Catalan numbers, https://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm.
- [9] P. Pavlíková, O Josephově problému, Pokroky matematiky, fyziky a astronomie 57 (2012), 274–284. https://dml.cz/handle/10338.dmlcz/143212
- [10] M. Petkovšek, H. Wilf, D. Zeilberger, A=B, A K Peters, 1996. https://www.math.upenn.edu/~wilf/ AeqB.html
- [11] M. Renault, Lost (and found) in translation: André's actual method and its application to the generalized ballot problem, American Mathematical Monthly 115 (2008), 358–363. https://doi.org/10.1080/00029890.2008.11920537
- [12] A. Slavík, Krájení koláče a jiné úlohy. In J. Hromadová, A. Slavík: Cesty k matematice IV, Matfyzpress, Praha, 2021, 70-79. https://kdm.karlin.mff.cuni.cz/konference2020/sbornik.pdf
- [13] C. G. Wagner: A first course in enumerative combinatorics, American Mathematical Society, 2020.
- [14] M. Wolfová, Kombinatorické úlohy o permutacích, diplomová práce, MFF UK, 2019. https://dspace.cuni.cz/handle/20.500.11956/109144