Bioinformatics CS300

Genome annotation and sequence-based gene prediction

Week10, Deck 2 Fall 2022 Oliver BONHAM-CARTER

Genome Projects

Goals:

- Determine complete genome sequence of an organism
- Annotate protein-coding genes and other important genome-encoded features
 - find
 - identify
 - characterize
 - describe
 - computational predictions later confirmed at the lab bench

Gene Prediction

- Sequence-based find features based on specific sequences
- What does a gene look like?
 - Qualities?
 - Behaviors?
 - Sequence trends?

Gene Prediction

- Two obvious questions:
- Which proteins are available in the genome?
- Would proteins inform us about present genes?

Not all present genes will make a protein ...

What are Land Marks?

Shine-Dalgarno Sequence

- The Shine—Dalgarno (SD) sequence is a ribosomal binding site in bacterial and archaeal messenger RNA, generally located around 8 bases upstream of the start codon AUG
- The RNA sequence helps recruit the ribosome to the messenger RNA (mRNA) to initiate protein synthesis by aligning the ribosome with the start codon.

Genetic Land Marks?

More details:

https://en.wikipedia.org/wiki/Shine%E2%80%93Dalgarno_sequence

Genetic Land Marks?

Depletion of Shine-Dalgarno Sequences Within Bacterial Coding Regions Is Expression Dependent, Chuyue Yang, Adam J. Hockenberry, Michael C. Jewett and Luís A. N. Amaral, https://www.g3journal.org/content/6/11/3467

Genetic Land Marks?

SD sequences within coding sequences may negatively affect translation elongation speed

The Familiar to Find the Unfamiliar

- We look for specific features or land-marks in a sequence that may suggest that there is a gene at play.
 - The Shine-Dalgarno seq. found upstream of a DNA start codon: ATG

Prediction Algorithms

Can you find any sense in the below sequence?

Lo gicwi llg etyo ufro mAt oB. Ima ginat ion wi llge ty oue ve rywh ere.

- How did you find the meaning here?
- How would an algorithm do it?

Prediction Algorithms

 Alignment-based – find genes/features based on conserved sequences is well-studied organisms (database searching)

 Automatic assignment based on sequence similarity (best BLAST hit): gene name, protein name, function

 Quality vs Quantity: How much time do you have to find this gene? Heuristic-based, or exhaustive search

Prediction Algorithms

- Content-based consider overall properties of the sequence when making predictions
- Nucleotide frequency
- Codon frequency/codon bias
- GC content for all V. vulnificus and V.naverensis gene predictions (Figure)
- Most of the genomes contained a high percentage of genes with GC contents between 45-50%.

DISTRIBUTION OF GC CONTENT

- Many stages of analysis to determine genomic artifacts ...
- Probabilistic combination of sequence-based and content-based plus probability
- An analysis by the "annotation pipeline"

NCBI Prokaryotic Annotation Pipeline

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/process/

NCBI Prokaryotic Annotation Pipeline

- 1. Masking
 - Try to identify and ignore noncoding regions
- 2. Alignment-based predictions
 - Ask where we have seen this sequence before (BLAST)
- Sequence/content-based predictions from alignmentbased
- Best selected (probability), named, and released

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/#assemblies

NCBI Eukaryotic Annotation Pipeline

- The best predictions are selected to describe observed artifacts (purple).
- At the end, the annotation products are formatted and deployed to public resources (yellow).

Natural Differences

- Algorithms find and compare differences to find genes
- Find similarities to draw conclusions

"Love" in Chinese, Japanese and Korean

Differences: Prokaryotes

Nucleoid

chromosomal DNA

Circular, double-stranded piece of DNA, not surrounded by a nuclear membrane.

Plasmid

independent DNA molecule

Small circular, independent double-stranded DNA molecule. Plasmids can frequently be transmitted from one bacterium to another.

- A circularchromosome
 - "Genome"
 - Extra DNA in plasmids
 - smaller, self-replicating

Different types of genomes require different approaches to find genetic differences...

Differences: Eukaryotes

- Multiple linear
 Chromosomes
 - "Genome"
 - Extra DNA in Mitochondria or chloroplast

Types of comparisons

Which DNA is it? Comparison of Landmarks

Prokaryotic versus Eukaryotic Genomes

Organism	Amount of DNA (bp)	# of genes	Genes per million bases
Escherichia coli	4,600,000	4,400	950
Saccharomyces cerevisiae	12,000,000	5,800	480
Drosophila melanogaster	180,000,000	13,700	76
Mus musculus	2,600,000,000	25,000	11
Homo sapiens	2,900,000,000	25,000	10

Eukaryotic cells

Prokaryotic cells

Consensus Sequences

Table 9.3 Consensus sequences for gene expression in prokaryotes and eukaryotes.

Sequence	Consensus (5' → 3')	Function		
Prokaryotes				
-10 sequence	TATAAT	RNA polymerase binds to start transcription		
-35 sequence	TTGACA 17±2 from -10	RNA polymerase binds to start transcription		
Shine-Dalgarno	AGGAGG 5±2 from ATG	Ribosome binds to find start codon		
Eukaryotes				
TATA box	TATAWAW	Core promoter; binds TFIID		
<i>Inr</i> sequence	YYCARR	Core promoter; contains +1 sequence (C)		
GC box	GGGCGG	Transcription factor binding site		
CAT box	CAAT	Transcription factor binding site		
Kozak consensus	gccRccATGG	Context of start codon		
5' splice site	MAG GTragt	Bound by spliceosome to remove introns		
3' splice site	cAG G	Bound by spliceosome to remove introns		
intron branch site	CTRAY	3' end of intron binds to mark for degradation		
polyadenylation site	AAUAAA	Cleavage of mRNA for poly(A) tail		

Landmarks!

Open Reading Frame (ORF) Vs Coding Sequences (CDS)

Coding Sequences (CDS) are subsequences (regions in DNA or RNA) of the super-sequence that determine the sequence of amino acids in a protein.

Open Reading Frames (ORF) are series of DNA codons that do not contain STOP codons

Note: All CDS are ORFs, but not all ORFs are CDS.

Open Reading Frame Finders

ORF finders search for open reading frames (ORFs) in the DNA sequence you enter. The program returns the range of each ORF, along with its protein translation. Use ORF finder to search newly sequenced DNA for potential protein encoding segments, verify predicted protein using newly developed SMART BLAST or regular BLASTP.

Open Reading Frame (ORF) Finding

- Online tools:
 - NCBI:
 - https://www.ncbi.nlm.nih.gov/orffinder/
- Sequence Manipulation Suite:
 - http://www.bioinformatics.org/sms2/orf_find.html

```
5'
atgcccaagctgaatagcgtagaggggttttcatcatttgaggacgatgtataa

1 atg ccc aag ctg aat agc gta gag ggg ttt tca tca ttt gag gac gat gta taa
M P K L N S V E G F S S F E D D V *

2 tgc cca agc tga ata gcg tag agg ggt ttt cat cat ttg agg acg atg tat
C P S * I A * R G F H H L R T M Y

3 gcc caa gct gaa tag cgt aga ggg gtt ttc atc att tga gga cga tgt ata
A Q A E * R R G V F I I * G R C I
```


Bring the Tool!

NCBI's ORF Finder Tool

Quick link:

https://www.ncbi.nlm.nih.gov/orffinder/

SIRT1 Accession

Viewing Annotations in NCBI's Open Reading Frame

Cyprinus carpio SIRT1 mRNA, partial cds

GenBank: KF881970.1

FASTA Graphics

Go to: ✓

LOCUS KF881970 375 bp mRNA linear VRT 06-NOV-2014

DEFINITION Cyprinus carpio SIRT1 mRNA, partial cds.

ACCESSION KF881970

VERSION KF881970.1

KEYWORDS

SOURCE Cyprinus carpio (common carp)

ORGANISM <u>Cyprinus carpio</u>

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Actinopterygii; Neopterygii; Teleostei; Ostariophysi;

Cypriniformes; Cyprinidae; Cyprininae; Cyprinus.

Accession Number:

KF881970.1

Enter Query Sequence	
Enter accession number, gi, or nucleotide sequence in FASTA format:	
KF881970.1	
From: To:	
Choose Search Parameters	
Minimal ORF length (nt): 75 V	
Genetic code: 1. Standard	~
ORF start codon to use:	
"ATG" only "ATG" and alternative initiation codons	
O Any sense codon	Click submit
⊌ Ignore nested ORFs: □	
Start Search / Clear	
Submit Clear	

Results

Cyprinus carpio SIRT1 mRNA, partial cds

Protein Locations and Options

Cyprinus carpio SIRT1 mRNA, partial cds

Get more info about the embedded proteins