WO 00/50577 PCT/SE00/00384

DRUG DESIGN BASED ON THE STRUCTURE OF LTA₄ HYDROLASE 1. BACKGROUND

1.1 Technical field

The present invention relates to methods of design or identification of biologically active compounds, which methods are based on the first definition ever of a three-dimensional structure of a protein involved in the leukotriene cascade. Further, the invention relates to novel compounds obtained by said methods, to advantageous uses of such compounds as well as to processes for the preparation thereof.

1.2 Prior art

Leukotriene A4 (LTA₄) hydrolase is a pivotal enzyme in the biosynthesis of leukotrienes, a family of paracrine hormones implicated in the pathophysiology of inflammatory and allergic disorders, in particular bronchial asthma (Samuelsson, B. Science 220, 568-75 (1983); and Lewis, R.A., Austen, K.F. & Soberman, R.J. N Engl J Med 323, 645-55 (1990)). Leukotrienes are formed by immunocompetent cells including neutrophils, eosinophils, basophils, mast cells, and macrophages, in response to a variety of immunological as well as non-immunological stimuli. These lipid mediators are divided into two major classes exemplified by the chemotaxin LTB4, and the spasmogenic cysteinyl-leukotrienes (LTC4, LTD4, and LTE4). Leukotriene biosynthesis is initiated by the enzyme 5-lipoxygenase which converts arachidonic acid into the unstable epoxide LTA4, a central intermediate in the leukotriene cascade. LTA4 may in turn be hydrolyzed into LTB4 by the enzyme LTA4 hydrolase, or conjugated with GSH to form LTC4, a reaction catalyzed by a specific LTC4 synthase. During cellular activation, all key enzymes in leukotriene biosynthesis, except LTA4 hydrolase, form a biosynthetic complex assembled at the nuclear membrane, suggesting that leukotrienes may have unknown intranuclear functions related to gene regulation or cell growth (Serhan, C.N., Haeggstrom, J.Z. & Leslie, C.C. Faseb J 10, 1147-58 (1996)).

Leukotriene B4, the natural product of LTA4 hydrolase, is one of the most powerful chemotactic agents known to date and triggers leukocyte adherence and ag-

5

l.

25

5

gregation at only nM concentrations (Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E. & Smith, M.J.H. Nature 286, 264-265 (1980)). Hence, this molecule is regarded as a key mediator of inflammation, and has been implicated in a number of diseases, including arthritis, psoriasis, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD). Furthermore, the role of LTB4 in inflammation has been well corroborated by the anti-inflammatory properties of LTA4 hydrolase inhibitors, particularly in combination with a cyclooxygenase inhibitor, and specific LTB4 receptor antagonists, as well as the reduced inflammatory reactions observed in several animal models of leukotriene deficiency (Tsuji, F., Miyake, Y., Enomoto, H., Horiuchi, M., Mita, S. Eur. J. Pharmacol. 346, 81-85, (1998); Chen, X.S., Sheller, J.R., Johnson, E.N. & Funk, C.D. Nature 372, 179-182 (1994); Griffiths, R.J., et al. Proc Natl Acad Sci USA 92, 517-21 (1995); and Griffiths, R.J., et al. J Exp Med 185, 1123-9 (1997)). In addition, LTB4 modulates the immune response, e.g., by interference with specific subsets of lymphocytes, production of cytokines, as well as liberation of immunoglobulins from B-lymphocytes (Payan, D.G., Missirian-Bastian, A. & Goetzl, E.J. Proc Natl Acad Sci USA 81, 3501-5 (1984); Rola-Pleszczynski, M. & Lemaire, I. J Immunol 135, 3958-61 (1985); and Yamaoka, K.A., Claesson, H.E. & Rosen, A. J Immunol 143, 1996-2000 (1989)). Recent data also indicate that LTB4 stimulates, and thus has a crucial role in the regulation of, cell proliferation and cell survival in HL-60 cells, suggesting that LTA4 hydrolase inhibitors may have an anti-proliferative effect. (Dittman, K.H., Mayer, C., Rodemann, H.P., Petrides, P.E., and Denzlinger, C. Leuk. Res. 22, 49-53 (1998)). The cell surface receptor for LTB4 (BLTR) was recently cloned and found to be abundantly expressed in the immune system, including lymphocytes, spleen and thymus (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimuzu, T. Nature 387, 620-624 (1997)). BLTR belongs to a family of chemokine receptors and, interestingly, together with CD4 it was found to be an efficient coreceptor for HIV-1 infection (Owman, C., et al. Proc Natl Acad Sci USA 95, 9530-4 (1998)). Moreover, LTB4 is also a natural ligand to the nuclear orphan receptor PPARa.

25

5

suggesting that LTB4 may have intranuclear functions possibly related to lipid homeostasis (Devchand, P.R., et al. Nature 384, 39-43 (1996)).

LTA4 hydrolase is a cytosolic 69 kDa enzyme without any similarity to other soluble or membrane bound xenobiotic epoxide hydrolases (Funk, C.D., et al. Proc Natl Acad Sci U S A 84, 6677-81 (1987)). The enzyme's epoxide hydrolase activity, which generates LTB4, is highly substrate selective accepting only LTA4 and to a small extent the double bond isomers LTA3 and LTA5. Typically, LTA4 hydrolase undergoes suicide inactivation and covalent modification when exposed to LTA4 (Evans, J.F., Nathaniel, D.J., Zamboni, R.J. & Ford-Hutchinson, A.W. J. Biol. Chem. 260, 10966-10970 (1985)). During this process, LTA4 apparently binds to Tyr-378, a residue which also seems to play a role for the formation of the critical cis-trans-trans geometry in the conjugated triene structure of LTB4 (Mueller, M.J., et al. Proc Natl Acad Sci U S A 93, 5931-5935 (1996); and Mueller, M., Andberg, M., Samuelsson, B. & Haeggstrom, J. Z. J. Biol. Chem. 271, 24345-24348 (1996)).

From sequence comparisons with certain metalloproteases and aminopeptidases, a zinc binding motif (HEXXH-X18-E) was unexpectedly found in LTA4 hydrolase (Vallee, B.L. & Auld, D.S. Proc. Natl. Acad. Sci. USA 87, 220-224 (1990)). Further studies demonstrated that the enzyme indeed contains one catalytic zinc atom complexed to His295, His299, and Glu318 (Medina, J.F., et al. Proc. Natl. Acad. Sci. USA 88, 7620-7624 (1991)). In addition, a previously unknown peptide cleaving activity was discovered which requires the presence of anions, particularly chloride (Haeggström, J.Z., Wetterholm, A., Medina, J.F. & Samuelsson, B. J Lipid Mediator 6, 1-13 (1993)). Although the endogenous physiological peptidase substrate(s) has not yet been identified, LTA4 hydrolase cleaves certain arginyl di- and tripeptides with very high efficiency (Örning, L., Gierse, J.K. & Fitzpatrick, F.A. J. Biol. Chem. 269, 11269-11273 (1994)). Hence, LTA4 hydrolase can be described as a bifunctional zinc metalloenzyme with the unique ability to accept both lipid and peptide substrates. Using site-directed mutagenesis, Glu296 and Tyr383 were found to be critical for the peptidase reaction, presumably as a general base and proton donor, respectively (Blomster, M., Wetterholm, A., Mueller, M.J. & Haeggström

25

5

J.Z. Eur. J. Biochem. 231, 528-534 (1995); and Wetterholm, A., et al. Proc Natl Acad Sci U SA 89, 9141-9145 (1992)). Since the enzyme's ability to convert LTA4 into LTB4 was not affected by the mutations, the two enzyme activities of LTA4 hydrolase are exerted via non-identical but overlapping active sites. Notably, unlike other enzymes in the leukotriene cascade, LTA4 hydrolase is ubiquitous in mammalian cells and tissues suggesting that it may have other functions presumably related to its peptide cleaving activity.

As a consequence of the identification of LTA₄ hydrolase as a zinc metalloenzyme with a peptidase activity, it was observed that LTA₄ hydrolase is inhibited by bestatin, a general aminopeptidase inhibitor, and captopril, an inhibitor of angiotensin converting enzyme (Örning, L., et al. J. Biol. Chem. 266, 16507-16511 (1991)).

Tsuge et al., (J. Mol. Biol. 238,854-856 (1994)), have described the crystallization of LTA₄ hydrolase. However, despite the well recognized need thereof, the three-dimensional structure of LTA₄ hydrolase has not yet been disclosed. More specifically, the problems that need to be overcome in order to provide such a determination may in brief be explained as follows. There are two major difficulties in obtaining a three-dimensional structure of a protein molecule. The first one is to grow crystals of good quality that are reproducible and diffract to atomic resolution (beyond 2.5Å). This means a thorough and cumbersome investigation of parameters that influence the crystal growth such as pH, temperature, nature of buffers, nature of precipitant, just to mention a few. The addition of ligands such as substrate analogues or inhibitors or the addition of other molecules can be important for obtaining good crystals. There is only little understanding of the physical background of the crystallisation process which means that the search for suitable crystallisation conditions for a certain protein is unique, requires creativity and intuition, and is governed by trial and error procedures. The purity of the protein is also a crucial parameter in the crystallisation and a suitable degree of purity can be hard, or even imposible, to achieve. The second major difficulty is associated with overcoming the phase-problem which is inherent to X-ray diffraction methods. To be able to overcome this problem it is necessary to substitute the protein with suitable heavy

5

atom substance such as e.g. mercury, gold or platinum compounds. Crystals often cannot withstand the treatment with these compounds and the search for suitable substitutions is not straight forward and may become very exhaustive. Another option is to substitute all methionines by seleno-methionine (Se-Met) residues. This method requires production of recombinant protein in special strains of E. coli under non-standard conditions, followed by a new purification and recrystallisation of the Se-Met containing protein. Although Tsuge et al reported the crystallisation of LTA4 hydrolase, their crystals only diffracted to medium resolution and the phaseproblem was not solved. Thus, as a reliable definition of the three-dimensional structure of LTA₄ hydrolase would enable e.g. a display in visual form on a computer screen of the shape of the molecule, then, could the above mentioned problems be solved, a whole range of possibilities would be opened, such as rational structure-based drug design, e.g. in combination with combinatorial chemistry, aimed at production of novel medicaments useful in disorders associated with the leukotriene cascade, as well as protein-engineering to create novel variants of the enzyme with altered, but yet useful, catalytic properties.

As LTA4 hydrolase is a recognized important drug target, some inhibitors thereof have been synthesized (Wetterholm, A., et al. J Pharmacol Exp Ther 275, 31-7 (1995); and Yuan, W., Wong, C., Haeggstrom, J. Z., Wetterholm, A. & Samuelsson, B. J. Am. Chem. Soc., 114, 6552-6553 (1992)). Interestingly, certain inhibitors of LTA4 hydrolase were reported to act also as LTB4 receptor antagonists (Labaudinière R, Hilboll G, Leon-Lomeli A, Terlain B, Cavy F, Parnham M, Kuhl P, and Dereu N. J. Med. Chem. 35, 3170-3179 (1992)). Due to the absence of any available information regarding the three-dimensional structure of LTA4 hydrolase, as discussed above, none of the previously described inhibitors have been designed based on the exact structure thereof. Accordingly, there is a need within this field of determining the three-dimensional structure of LTA4 hydrolase in order to design more potent and selective inhibitors of LTA4 hydrolase as well as modified structures exhibiting even more advantageous pharmaceutical properties.

2. THE PRESENT INVENTION

2.4.8 (a) Method

30

2.4.8. (b) Novel specifically designed proteins

2.4.8. (c) Use of genetically modified LTA₄ hydrolase

As the following chapter includes a substantial amount of text, it has herein been divided into separate sections, each one of which disclose separate aspects of the present invention.

5	Index Chapter 2
	2.1 Summary of the invention
	2.2 Brief description of the drawings
	2.3 Definitions
10	2.4 Detailed description of the invention
	2.4.1 LTA ₄ hydrolase, subsequences and analogues thereof
	2.4.2 Compounds complementary to LTA ₄ hydrolase
	2.4.3 A complex of LTA ₄ hydrolase and acomplementary compound
	2.4.4 Advantageous uses of LTA ₄ hydrolase, complementery compounds and
15	complexes thereof
	2.4.5 Screening for LTA ₄ hydrolase analogues
	2.4.5 (a) Method
	2.4.5 (b) Analogues obtainable by the present screening method
	2.4.5 (c) Mutated forms of LTA ₄ hydrolase obtainable by the present screening
20	method
	2.4.5 (d) Nucleic acids encoding the novel compounds
	2.4.6 (a) Production and purification of genetically modified forms of LTA ₄
	hydrolase
	2.4.6 (b) Purified LTA ₄ hydrolase
25	2.4.7 Identification of LTA ₄ hydrolase binding compounds
	2.4.7 (a) Method
	2.4.7 (b) Identified binding compounds
	2.4.8 Protein engineering

- 2.4.9 Pharmaceutical applications of the present invention
- 2.4.9 (a) First medical indication
- 2.4.9 (b) Second medical indication and pharmaceutical methods
- 2.4.9.(c) Methods of treatment
- 5 2.5 Production of the novel molecules
 - 2.6 Detailed description of the drawings

2.1 Summary of the invention

The object of the present invention is to fulfill the above defined need. This has been achieved by the crystallization and determination of the three-dimensional structure of LTA4 hydrolase complexed with the competitive inhibitor bestatin and subsequent structure determination of complexes between LTA4 hydrolase and two specific inhibitors. It is the first three-dimensional structure of any protein component of the leukotriene cascade and enables a description of the structural basis and molecular mechanisms of various enzyme functions, such as the two catalytic activities of LTA4 hydrolase. In addition, the structural information will now make possible rational design of enzyme inhibitors, which may be developed into clinically useful anti-inflammatory drugs.

2.2 Brief description of the drawings

Figure 1 shows the key enzymes and intermediates in leukotriene biosynthesis.

Figure 2 shows 2Fo-Fc density contoured at 1.1 s. Part of the active site in the neighborhood of the bestatin molecules is shown.

Figure 3 is a ribbon diagram of the tertiary structure of leukotriene A4 hydrolase.

Figure 4 shows ribbon diagrams of the N-terminal domains of . LTA₄ hydrolase.

Figure 5 shows ribbon diagrams of the catalytic domain of LTA₄ hydrolase and therolysin.

Figure 6 shows the structure of the C-terminal domain.

Figure 7 illustrates zinc binding ligands in LTA4 hydrolase.

Figure 8 (a) is a Ball-and-Stick presentation of the binding of bestatin in LTA4 hydrolase, while Figure 8 (b) is a schematic overview of bestatin binding in LTA4 hydrolase, while Figure 8 (b) is a schematic overview of bestatin binding in LTA4 hydrolase.

rolase.

Figure 9 (a) is a wire representation of the central cavity found in LTA4 hydrolase (shown as $C\alpha$ -trace).

Figure 9 (b) is a schematic presentation for the proposed binding of LTA4 into the cavity.

Figure 10 is a schematic representation for the proposed reaction mechanism of the epoxide hydrolase.

2.3 Definitions

In the present context, the term "the three-dimensional form adopted thereof in nature" is to be understood as the conformational structure, defined by the parameters x, y and z in a conventional coordinate system, that a naturally occurring molecule adapt under conditions where it is capable of exerting its biological activities.

The specific conditions during which the herein presented data were collected are detailed in the section "Experimental".

The term "isolated" and variations thereof when used in connection with a molecule, such as protein, a polypeptide or a nucleic acid, means that said molecule is isolated from other substances, such as other proteins, DNA etc normally accompanying it in its natural environment.

The term "leukotriene A₄ (LTA₄) hydrolase" as used herein is to be understood to include any mammalian or other LTA₄ hydrolase which comprises the same backbone as the human form specifically disclosed in the present application, irrespective of source. The amino acid sequences of mammalian LTA₄ hydrolase have been shown to be identical to about 90%. Thus, the three-dimensional structures thereof may be suspected to be identical to approximately the same extent.

"Thiolamine" and "hydroxamic acid" are used herein to denote the compounds examplified in the Experimental section of the present specification.

A "complementary compound" means any compound, the structure of which enables a binding thereof to a specified protein, i.e a compound having a conformation or structure enabling such a suitable fit as to provide an energetically favorable interaction between protein-complementary compound.

20

5

"Analogue" means, as used herein, a chemically altered molecule which shares the backbone with, or at least structurally resembles, a "parent molecule". In the present specification, such a "parent molecule" may be LTA₄ hydrolase or an inhibitor thereof.

In the present application, the term "active site" is to be understood to include any region capable of binding a substrate and converting it into product.

The term "nucleic acid" refers to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogs of nucleotides, that can function in a similar manner as naturally occurring nucleotides.

The phrase "hybridising specifically to" refers to the binding, duplexing, or hybridising of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) of DNA or RNA. The term "stringent conditions" refers to conditions under which a probe will hybridise to its target subsequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridise specifically at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point Tm for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridise to the target sequence at equilibrium. (As the target sequences are generally present in excess, at Tm, 50% of the probes are occupies at equilibrium). Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

"Essentially pure" means herein a purity of at least about 80%, especially at least about 90% and preferably at least about 95%, such as 98-99%. The purity of

10

15

20

25

30

LTA₄ hydrolase, an analogue or inhibitor thereof is according to the present invention preferably determined by general biochemical and biophysical methods well-known to the skilled in this field. For proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE) with Coomassie and silver staining or amino acid sequence analysis can be used, whereas high-pressure liquid chromatography (HPLC), gas chromatography coupled to mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) are suitable methods for small organic molecules (peptides, lipids, or carbohydrates, or combinations of these classes of substances).

2.4 Detailed description of the invention

2.4.1 LTA₄ hydrolase, subsequences and analogues thereof

In a first aspect, the present invention relates to an isolated protein comprising at least a subsequence of the amino acid sequence of leukotriene A₄ (LTA₄) hydrolase, which subsequence has the corresponding three-dimensional form adopted thereof in nature. The protein according to invention as discussed below and elsewhere in this application is also understood to encompass any other functionally equivalent part, derivative or conformational analogue thereof. More specifically, the invention relates to the above disclosed protein which comprises a subsequence of the amino acid sequence of leukotriene A₄ (LTA₄) hydrolase, which is able to participate in, and influence, e.g. by providing enzymatic activity, the leukotriene cascade. Most preferably, the protein according to the invention is capable of controling said cascade by exerting an enzymatic activity and thus regulate the production of leukotriene B₄ (LTB₄). In a particular embodiment, the protein is comprised of essentially all of the amino acid sequence of leukotriene A₄ (LTA₄) hydrolase as disclosed in SEQ ID NO 1, or a functionally equivalent part, derivative or conformational analogue thereof.

Thus, the present invention relates to an isolated LTA₄ hydrolase in its naturally ocurring three-dimensional form. More specifically, the present application provides a listing illustrating, for the first time, the coordinates defining human LTA₄ hydrolase complexed to an inhibitor thereof. Thus, the coordinates defining the conformation of LTA₄ hydrolase have been determined by the present inventors as com-

25

5

plexed with bestatin, thiolamine and hydroxamic acid, respectively. Bestatin is a universal inhibitor of amino peptidase activity (see e.g. Mathé, G. Biochem. Pharmacol. 45, 49-54 (1991)), while the last mentioned two are specific inhibitors of LTA₄ hydrolase. Based on these different activities, said inhibitors may be used as models in the design of novel molecules having desired properties. Methods for such design will be discussed in further detail below as a further advantageous aspect of the invention. For reasons of convenience for the reader of the present specification, the data collection comprising the novel coordinates according to the invention is included in the present description as a separate section denoted "X-ray data", as Table 9, immediately preceding the claims. In said table, atom no 1 to atom no 4876 define the LTA₄ hydrolase part of the complex. (protein part), atom no 4877 refers to Zn, atom nos. 4878-4880 refer to Yb, atom nos. 4881-4885 refer to imidazole, atom nos. 4886-4889 refer to acetate, atom nos 4890-4908 refer to thiolamine while atom nos. 4909-5160 refer to water. Thus, the intervening atoms relate to the metals that bind in LTA₄ hydrolase, i.e. the active site Zn atom and the Yb atoms that were crucial for the present structure determination. The conditions prevailing at the determination thereof will be described in detail in the Experimental section below. As the skilled in this field realises, such coordinates usually exhibit a certain degree of variation, due to e.g. thermal motion and slight differences in crystal packing. Thus, any references herein to Table 9 in connection with the proteins and other molecules are merely intended to illustrate an average value for each of the coordinates defining the conformation of the molecules under identical conditions, as determined by use of the same apparatus and method. Accordingly, this embodiment of the invention is not limited to a molecule having exactly the specified coordinates, but rather to molecules capable of adopting such a structure. For example, a human LTA₄ hydrolase according to the invention will exhibit a strong bit a conformational similarity with the coordinates presented by atom nos 1 -4876 of Table 9, wherein a variation of about 1%, or 0.5 Å, may be expected. Accordingly, any such variants are within the scope of the present invention.

As regards amino acid sequence, in a specific embodiment, the protein according to the invention is identical, by direct sequence comparison, to at least about

10

50%, more specifically, at least about 70%, such as at least about 90%, to the LTA₄ hydrolase as defined by SEQ ID NO. 1 while in the three-dimensional form adopted thereof in nature. In this context, it is noted that the amino acid sequence of LTA₄ hydrolase also appears from the data of Table 9, but is also included as a separate sequence listing for reasons of clarity. The protein of this embodiment of the invention are e.g. variants originating from any species, preferably mammals, such as humans, mice or other rodents, etc. Alternatively, the variants including subsequences of the human sequence are mutated forms, resulting from either spontaneous mutations or deliberately produced mutations, as discussed in more detail below.

One preferred embodiment of the present invention is a protein which comprises at least one of the regions defined below in Tables 1-3 below as active sites.

Table 1: Residues lining the big cavity from outsite to insite

	Left wall	Right wall
1		Lys608, Asp606, Lys605,
	•	Lys354, Thr355
2	Phe356, Phe362	Gln544, Asp573, Lys572, Arg568
3	Val376	Lys565, Arg540, Leu507
4	Ser380, Ser352, Glu348	Pro569
5	Tyr378, Glu348	Arg563, Glu533, Phe536,
		Arg537, Tyr267
6	Tyr383, Phe314, Glu318, Glu384,	
	Arg326	·
7	Gly268, Gly269, Met270	His295, Asn341, Phe340
8	Ser288, His497	Glu325, Asn291

In Table 1, Lys565, Ser380, Pro569, Glu533, Tyr383, Phe314, Glu318, Glu384, Arg326, Gly268, Gly269, Met270, His295, Phe340, Ser288, and Glu325 are strictly conserved amino acids, while Lys608, Phe356, Phe362, Lys572, Arg568, Tyr378, Phe536, Tyr 267, and Asn291 are conserved in nature.

Table 2: Amino-acids in the bestatin binding site ("basic" amino-peptidase site)

The binding of bestatin to LTA₄ hydrolase may also be described by way of coordinates. Below follows the specific amino acids involved in the binding of bestatin and similar structures, as defined according to the invention.

5

Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Glu318; Tyr378; Tyr383; Arg563; Lys565.

Table 3: Amino acids in the leukotriene binding site

The present amino acids define the site binding leukotriene-based inhibitors, such as thiolamine and hydroxamic acid, as shown in Table 9 for thiolamine.

Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Trp315; Glu318; Val322; Phe362; Val367; Leu369; Pro374; Asp375; Ile372; Ala377; Pro382; Tyr378; Tyr383; Arg563; Lys565.

In Tables 1-3 above, the enumeration of the amino acid sequence of LTA₄ hydrolase begin without the initial Met. Thus, compared to SEQ ID NO 1, which includes the initial Met, the amino acid enumeration above is lowered by one. Accordingly, Gln136 above corresponds to Gln 137 of SED ID NO 1, Ala137 above corresponds to Ala 138 of SEQ ID NO 1, etc.

Table 4: General catalytic domain for the M1 class of enzymes Amino acids no. 210-450.

25

30

20

The present region will provide a basis for the development of enzyme inhibitors useful in the control other biological pathways than the leukotriene cascade.

Thus, as regards the above defined region of aminopeptidase activity of LTA₄ hydrolase, the present inventors have surprisingly observed, that said region is in fact universal for all enzymes belonging to the metallohydrolase family denoted M1.

25

30

5

Thus, this specific subsequence of LTA₄ hydrolase is encompassed by the present invention as a novel protein *per se*. In addition to the various advantageous uses of subsequences of LTA₄ hydrolase described herein in connection with the leukotriene cascade, this region, which is shared between all M1 enzymes, will find several further applications in connection with other enzymatic pathways. For example, the present region, herein denoted the "M1 region" in order to clarify that it is shared between the M1 enzymes, may advantageously be used to produce synthetic inhibitors, or identify natural inhibitors, of any one of the other M1 enzymes. Such M1 inhibitors will be discussed below when compounds complementary to LTA₄ hydrolase are disclosed.

The above disclosed proteins and peptides comprising subunits of LTA₄ hydrolase are advantageously used e.g. as enzymes or more preferably in methods wherein novel inhibitors of enzymatic activities are identified and/or designed.

2.4.2 Compounds complementary to LTA₄ hydrolase

In a second aspect, the present invention relates to a novel compound defined by a structure substantially complementary to the above described protein, preferably identified by use of the novel LTA₄ hydrolase conformation according to the present invention. The complementary compound is a naturally occurring or synthetic protein, peptide, lipid, carbohydrate or any other organic or inorganic compound. In relation to naturally occurring compounds, it is to be understood that the present invention relates to such compounds as isolated from their natural environment, preferably identifiable by aid of the novel coordinates defining structures according to the invention, as examplified by the complementary compounds used in the complexes shown in Table 9.

In a first embodiment, the present complementary compound is substantially complementary to an enzymatically active site of the protein and is advantageously capable of specifically inhibiting an enzymatic activity of said protein. Thus, in one embodiment, the present compound is substantially complementary to parts, or all, of the "basic" aminopeptidase binding site defined in Table 2 above. Thus, the pres-

5

ent compound is an inhibitor capable of specifically inhibiting an aminopeptidase activity of an enzyme, preferably of LTA₄ hydrolase. In an alternative embodiment, the present compound is substantially complementary to parts, or all, of the leukotriene binding site as defined in Table 3 above. Thus, the present compound is an inhibitor capable of specifically inhibiting an epoxide hydrolase activity of an enzyme, preferably of LTA₄ hydrolase. (The inhibition of both aminopeptidase and epoxidase hydrolase is discussed in detail below in the experimental section.) As the present two binding sites of LTA₄ hydrolase overlap in part, a further embodiment is a compound which is complementary to essential parts of both of the above discussed two binding sites, in part or partially, which thus preferably is an inhibitor of both the discussed activities.

As already mentioned above, one compound which is complementary to an enzymatically active site of LTA₄ hydrolase is a compound complementary to the M1 region thereof and thus capable of partial or total inhibition of the enzymatic activity of LTA₄ hydrolase or any other metallohydrolase belonging to the M1 family. In the present application, such inhibitors will be denoted M1 inhibitors.

As the skilled in this field will realise, the present inhibitors disclosed above need not be compound that inhibit a biological activity completely, but may be capable of exerting a partially inhibiting activity, i.e, lowering the enzymatic activity.

In another embodiment, the present complementary compound is a compound which is also capable of binding to the receptor for the product of an LTA₄ hydrolase, i.e. an LTB₄ receptor, e.g. on a cell, such as a polymorphonuclear leukocyte. Thus, such a compound may be useful as an LTB₄ antagonist whereby the biological effect of LTA₄ hydrolase activity may be regulated. Accordingly, any such LTB₄ antagonist designed and/or identified using the coordinates of LTA₄ hydrolase as presented herein are also encompassed by the present invention.

In another embodiment, the present complementary compound is a compound which, apart from being capable of binding to an active site of LTA4 hydrolase, is also capable of binding to an active site of LTC4 synthase which binds the same substrate as LTA4 hydrolase, i.e. LTA4, and turns it over into LTC4 (cf. Fig 1) and

25

5

is thus expected to share important structural features with the active site of LTA4 hydrolase. Such a compound may be useful as an inhibitor of LTC4 biosynthesis, whereby the production thereof may be regulated. Accordingly, any such LTC4 synthase inhibitor, designed and/or identified using the coordinates of LTA4 hydrolase, are also encompassed by the present invention.

The specific properties and advantageous uses of the present compounds as well as the design and production of novel LTA₄ hydrolase inhibitors will be described in further detail below in relation to the various methods.

2.4.3 A complex of LTA₄ hydrolase and a complementary compound

In a third aspect, the present invention relates to an isolated complex comprised of a protein as described above and a compound complementary to said protein. Said complementary compound may thus be an inhibitor of one or more of the protein's enzymatic activities, such as an aminopeptidase and/or epoxide hydrolase activity, such as bestatin, hydroxamic acid or thiolamine, or leukotriene B₄ or any analogue thereof, or LTC₄ or any analogue thereof. Examples of complementary compounds are bestatin, thiolamine or hydroxamic acid. In the present context, it is to be understood that the invention also relates to specific regions of said inhibitors, that have never been specifically disclosed for the present purpose, as well as novel inhibitors identified by aid of the present invention. In specific embodiments, the complex according to the invention is composed of LTA₄ hydrolase complexed with bestatin, thiolamine or hydroxamic acid, respectively, wherein the LTA₄ hydrolase is as defined by the coordinates presented in Table 9, or any functional fragment, derivative or analogue thereof. As bestatin is aminopeptidase based, further similar and advantageous inhibitors may be developped based on the structural information for LTA₄ hydrolase complexed with bestatin, preferably combined with the specification of the binding site of Table 2. Further, as both thiolamine is leukotriene based, the information provided in Table 9, preferably combined with the specification of binding site of Table 3, will prove to be an advantageous tool in order to gain more information about such enzymatic binding and thus the development of further novel inhibitors, the same principles applying to hydroxamic acid, which is also leukotriene based.

5

The state of the s

¥ ka

15

20

25

10

Accordingly, the present invention presents for the first time the coordinates defining the three-dimensional structure of a complex of LTA₄ hydrolase and an inhibitor thereof as determined by X-ray crystallography, e.g. as illustrated in Table 9. In fact, this is the first time ever to disclose the exact parameters defining the three-dimensional structure of a protein component of the leukotriene cascade. Due to these novel reliable parameters, the complex as well as the components thereof are readily distinguished from the prior art. Together with biochemical and mutagenetic data, the novel structures will provide the basis for understanding the molecular mechanisms of the aminopeptidase and epoxide hydrolase activities, as well as the enzyme's suicide inhibition. Accordingly, the present invention will open a whole range of new possibilities as regards e.g. identification and/or design of novel biologically active molecules and methods of controlling said cascade, *in vivo* or *in vitro*. Consequently, novel advantageous drugs, such as medicaments for the treatment and/or prevention of inflammatory and/or allergic diseases, may be designed, as will be discussed in further detail below.

In the present context, it is to be understood that proteins according to the invention include the naturally occurring three dimensional forms thereof, separated and isolated from its natural environments, as well as any such protein, wherein deletions, additions and/or substitutions of the amino acid sequence have been made, provided that the three dimensional structure is substantially maintained, as the exerted biological activity is critically dependent upon the particular three-dimensional folding of the protein. The present invention also encompasses any derivative or conformational analogue of the above disclosed proteins, which has a three-dimensional structure essentially as disclosed above, or an effective part thereof having the biological activities discussed in detail below.

2.4.4 Advantageous uses of LTA₄ hydrolase, complementary compounds and complexes thereof

A fourth aspect of the present invention is the use of a protein, a complementary compound or a complex according to to the invention in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry. Such methods will be disclosed in detail below. The drugs designed using the above mentioned compounds may be suitable for the treatment and/or prevention of disorders involving acute and chronic inflammatory symtoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS). Further, such a drug may be useed for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer. Alternatively, a drug may be designed which is effective for the treatment and/or prevention of an inflammatory and/or allergic disorders caused by the lethal factor of Bacillus anthracis, e.g. anthrax. However, the above mentioned diseases are exemplary and other diseases or conditions not mentioned herein may also be contemplated.

In a further aspect, the present invention relates to the use of a protein having a structure substantially as defined for the LTA₄ hydrolase of the invention, or a part, analogue or derivative thereof, for screening a compound for possible medicinal activity. In the pharmaceutical industry, new or known compounds are routinely screened for new uses employing a variety of known *in vitro* or *in vivo* screens. Often such screens involve complex natural substances and are consequently expensive to carry out, and the results may be difficult to interpret. However, the knowledge of the three-dimensional protein structure according to the invention allows a preliminary screening to be carried out on the basis of the three-dimensional structure of a region thereof, and the structural similarity of a molecule which is being screened. Such screening can conveniently be carried out using computer modelling techniques, which match the three-dimensional structure of the protein or part thereof with the structure of the molecule being screened. Potential agonist or inhibitor activity may be predicted. As a result, the production efficiency, bioavail-

20

ability, immunogenicity, stability etc. may be favourably changed with respect to their therapeutic application.

As regards the above disclosed M1 inhibitors, these compounds will presumably find a broader field of application than the other novel inhibitors according to the invention. Thus, the novel general M1 inhibitors are advantageously used e.g. in models to disclose in further detail other enzymatic pathways. Further, they may also be used in the above mentioned type of methods of drug design etc.

2.4.5 Screening for LTA₄ hydrolase analogues

2.4.5 (a) Method

Accordingly, in another aspect, the invention relates to a method for screening LTA₄ hydrolase analogues that mimic at least a part of the three dimensional structure of LTA₄ hydrolase, which comprises the steps of

- (a) producing a multiplicity of analogue structures of the LTA₄ hydrolase
- (b) selecting an analogue structure represented by a three-dimensional representation wherein the three-dimensional configuration and spatial arrangement of specific regions, preferably involved in ligand binding of said LTA₄ hydrolase, remain substantially preserved.

The coordinates used are general for LTA₄ hydrolase are essentially as illustrated in Table 9, as defined by atom nos. 1-4876.

More specifically, analogue structures of LTA4 hydrolase may be screened by their ability to catalyze a particular reaction which may be monitored by chemical physical or immunological means. Furthermore, the analogue structure may be selected from its ability to produce receptor ligands or inhibitors of secondary reactions, which may be monitored directly, as examplified above, via binding assays, enzyme assays, chemical assays, or functional bioassays.

Thus, in one embodiment, the invention relates to a method of screening, wherein one or more analogues exhibiting epoxide hydrolase activity, are screened for. Thus, such a method may be based on the data of Table 9, wherein the binding of thiolamine to LTA₄ hydrolase is shown, preferably combined with the information of Table 3 regarding the active site of LTA₄ hydrolase. In one embodiment, the

30

10

15

20

25

invention relates to a method of screening, wherein one or more analogues exhibiting epoxide hydrolase activity, are screened for. In an alternative embodiment, the present method is used to screen for analogues exhibiting aminopeptidase activity, which method e.g. is based data concerning the binding of bestatin to LTA₄ hydrolase is used, preferably combined with the information of Table 2 regarding the active site of LTA₄ hydrolase. Thus, the present analogues will comprise a region which is essentially analogue with the regions of LTA₄ hydrolase exhibiting aminopeptidase activity, and/or analogues exhibiting epoxide hydrolase activity are selected.

In an advantageous embodiment of the screening method according to the invention, one or more analogues comprising one or more genetic modifications, as compared to the naturally occurring form of LTA₄ hydrolase, are selected.

2.4.5 (b) Analogues obtainable by the present screening method

Further, the invention also relates to a novel analogue obtainable by the method according to the invention, such as an analogue exhibiting an increased or improved or otherwise modified catalytic activity when compared to the naturally occurring form of LTA₄ hydrolase. Preferably, said catalytic activity is an epoxide hydrolase and/or aminopeptidase activity. Further, the invention relates to an analogue obtainable by the present method and capable of acting as a metallohydrolase, preferably belonging to the M1 class of metallohydrolases.

2.4.5 (c) Mutated forms of LTA₄ hydrolase obtainable by the present screening method

In one advantageous embodiment, the present invention relates to a specified analogue which is a mutated form of LTA₄ hydrolase, which analogue comprises one or more of the mutations defined in the following Tables 5-7, wherein amino acids are given in single letter code. Thus,

Q134G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W indicates that residue glutamine 134, using the LTA4 hydrolase numbering scheme, is modified to an alanine, valine, a leucine and so forth.

Table 5: Mutations in the active site

	Q134G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W	5(1)
	Q136G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W	5(2)
5	A137G/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(3)
	Y267G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W	5(4)
	G268A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(5)
	G269A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	56)
•	M270G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/F/Y/W	5(7)
10	E271G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W	5(8)
	V292G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(9)
	H295/G/A/V/L/I/S/T/D/E/N/Q/R/K/P/C/M/F/Y/W	5(10)
	E296/G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W	5(11)
	H299G/A/V/L/I/S/T/D/E/N/Q/R/K/P/C/M/F/Y/W	5(12)
15	W311G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y	5(13)
ļ:h	F314G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/Y/W	5(14)
	W315G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y	5(15)
	E318G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W	5(16)
1-4 -	V322G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(17)
20	F362G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/Y/W	5(18)
 - 4	V367G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(19)
	L369G/A/V/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(20)
	1372G/A/V/L/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(21)
	P374G/A/V/L/I/S/T/D/E/N/Q/R/H/K/C/M/F/Y/W	5(22)
25	D375G/A/V/L/I/S/T/E/N/Q/R/H/K/P/C/M/F/Y/W	5(23)
	A377G/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W	5(24)
	Y378G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W	5(25)
	P382G/A/V/L/I/S/T/D/E/N/Q/R/H/K/C/M/F/Y/W	5(26)
	Y383G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W	5(27)
30	R563G/A/V/L/I/S/T/D/E/N/Q/H/K/P/C/M/F/Y/W	5(28)

40

More specifically, this embodiment relates to an analogue comprising any combination of at least two mutated amino acids, or any one of the above mentioned sequences of mutations, or any separate one amino acid mutation selected from the group consisting of sequences nos 1-9, 13-15, 17-24, 26 and 28, which are all novel mutations that have never been published before the present application. As two specific embodiments of the present mutations according to the invention, E271Q and D375N are mentioned, which have shown to be especially advantageous. However, the other sequences not specified above are novel in the present context and thus such specific uses thereof are within the scope of the present invention.

Table 6: Mutations of the curved outside of the N-terminal domain R17 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W 6(1) K19 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W 6(2) H20 G/A/V/L/I/S/T/D/N/E/Q/R/K/P/C/M/F/Y/W 6(3) 5 H22 G/A/V/L/I/S/T/D/N/E/Q/R/K/P/C/M/F/Y/W 6(4) R24 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W 6(5)D28 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W 6(6)T33 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(7)T35 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(8) 10 G36/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(9) T37 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(10)A39 G/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(11)T41 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(12)n O43 G/A/V/L/I/S/T/D/N/E/R/H/K/P/C/M/F/Y/W 6(13)41 15 K63 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W 6(14)Ü V65 G/A/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(15)j. N67 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W 6(16)N97 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W 6(17)E99 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 6(18)V101 G/A/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 20 6(19) E103 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 6(20)**].** £. S105 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W T. 6(21)N E107 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 6(22)K153 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W 6(23)T155 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(24)T157 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(25)E159 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 6(26)S161 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(27)D175 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W 6(28)30 E177 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 6(29)T178 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(30)D180 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W 6(31)R186 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W 6(32)I188 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(33) K190 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W 35 6(34) I192 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 6(35)K194 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W 6(36) Table 7: Mutations at the proline rich region T359 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W 40 7(1) E358 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W 7(2) D443 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W 7(3) A446 G/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W 7(4) Y449 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/W 7(5)45 S450 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W

7(6)

	P451 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W	7(7)
	G452 /A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W	7(8)
	L453 G/A/V/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W	7(9)
	P454 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W	7(10)
5	P455 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W	7(11)
	I456 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W	7(12)
	K457 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W	7(13)
	P458 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W	7(14)
	N459 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W	7(15)
10	Y460 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/W	7(16)
	D461 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W	7(17)

2.4.5 (d) Nucleic acids encoding the novel compounds

Further, the invention also relates to an isolated nucleic acid encoding a novel analogue as defined above, that is, including a combination of any at least two of said mutations or one of the novel mutations, as well as a nucleic acid capable of specifically hybridising to a such a nucleic acid. The conditions of specific hybridisation are defined above in the section "Definitions". Further, the invention also relates to any vector or carrier comprising such a nucleotide, such as plasmids, viral vectors, e.g. retrovirus, oligonucleotides etc. Thus, any cell including such a nucleic acid or vector are also within the scope of the present invention and may e.g. be a mammalian cell, such as a human cell, or any other eucaryotic cell, or a procaryotic cell, such as a bacterium. The above mentioned elements may be used in the design of model systems useful in the study of the diseases discussed elsewhere in this application, which systems may be cell cultures, animal models, such as mice, etc.

2.4.6 (a) Production and purification of genetically modified forms of LTA₄ hydrolase

Yet another aspect of the present invention is a process for the production of a novel genetically modified form of LTA₄ hydrolase identified or designed according to the present invention. Thus, the present process involves, after conventional steps of insertion a gene encoding the desired product in a host cell and expression thereof, a purification procedure, which includes a hydroxyapatite-based chromatography and a subsequent anion exchange chromatography. These last two steps have been shown to be especially advantageous, in fact, even crucial, for obtaining a

WO 00/50577

10

15

20

25

satisfying purity of the novel LTA₄ hydrolase forms according to the invention. The preceding steps are conventional as disclosed in literature and are easily performed by the skilled in this field.

Thus, in more detail, the invention relates to a method for purification of LTA4 hydrolase comprised of (i) precipitation with ammonium sulphate, followed by (ii) separations on FPLC using anion exchange, hydrophobic interaction, and chromatofocusing resins, essentially as described (Wetterholm A., Medina J.F., Rådmark O., Shapiro R., Haeggström J.Z., Vallee B.L., Samuelsson B. *Biochim. Biophys. Acta.* 1080, 96-102 (1991)). To achieve a purity suitable for crystallography, we used (iii) chromatography on hydroxyapatite, e.g., on a TSKgel HA-1000, Tosohaas, followed by (iv) a step of anion-exchange chromatography on e.g., Mono-Q HR5/5.

Further, example 4 below describes in detail a purification of LTA₄ hydrolase according to the invention. Said example may be generalised to describe further the purification according to the invention.

2.4.6 (b) Purified LTA₄ hydrolase

Further, the invention also relates to an essentially pure form of LTA₄ hydrolase obtained by the process described above.

2.4.7 Identification of LTA₄ hydrolase binding compounds

2.4.7 (a) Method

In yet a further aspect, the present invention relates to a method for screening LTA₄ hydrolase binding compounds complementary to a region, preferably an enzymatically active site, e.g. as defined in Tables 1-3, of the LTA₄ hydrolase molecule, which comprises the steps of

- (a) producing a multiplicity of possible complementary structures and
- (b) selecting a structure represented by a three-dimensional representation, wherein the three-dimensional configuration and spatial arrangement of regions of LTA₄ hydrolase involved in binding remain substantially preserved, which selection is based on the three-dimensional structure of LTA₄ hydrolase and/or LTA₄ hydrolase complexed to an inhibitor thereof, e.g. as defined by the coordinates of Table

25

30

5

More specifically, the method according to the invention will advantageously be used to select compounds capable of inhibiting epoxide hydrolase activity and/or aminopeptidase activity, LTB₄ receptor antagonists or inhibitors of LTC₄ synthases or inhibitors of any member of the M1 class of metallohydrolases. In one preferred embodiment, general enzyme inhibitors are screened for, which inhibitors are useful in the control of any one of a plurality of enzymatic pathways, wherein a metallohydrolase of the M1 type is participating. These general metallohydrolase inhibitors are herein denoted M1 inhibitors.

Structure-based design of inhibitors

In a further embodiment, the present invention relates to a method of structure-based design of LTA₄ hydrolase inhibitors. Such methods are based on the use of the present coordinates, or preferably the coordinates defining a selected region, as templates in order to synthesize advantageous inhibitors with strong and specific binding properties. More specifically, said method first uses a conventional organic synthesis, alone or combined with combinatorial chemistry, wherein the structure of the product of the synthesis is then further refined by cycles of crystallisation of enzyme and inhibitor, followed by another chemical synthesis, the product of which is again refined, etc.

Example 2 describes such a design, wherein it is noted noted that the removal of an extra carbon atom could yield a compound, which is a better inhibitor than this hydroxamic acid compound. Thus, similar conclusions will be drawn from the present method and result in inhibitors with superior properties compared to any prior art inhibitors.

2.4.7 (b) Identified binding compounds

Further, the present invention also relates to any novel compounds identifiable by the present method. Advantageous and desired properties as well as other features of such compounds, e.g. as inhibitors, is discussed above in relation to complementary compounds, analogues etc. In one preferred embodiment of the invention, such an identified compound is an inhibitor of another M1 enzyme than LTA4 hydrolase, such as . The medicinal aspects of the present compounds will be discussed below.

25

£1

5

Protein engineering

2.4.8 (a) Method

In a further aspect, the present invention relates to a method of engineering a protein, which method comprises the steps of

- -identification of a suitable set of mutation sites based on the structure of LTA₄ hydrolase according to the invention,
- -generation of a library of genes which contains the suitable sequence variations;
- -selection of clones encoding a LTA4 analogue with a desired activity;

wherein said desired activity is the capability of efficiently producing organic compounds of interest.

The present method is based on recent techniques available for generating large libraries of mutated genes (>1 billion variants) which can be attributed to a selection process of individual genes in the laboratory. Such directed evolution schemes have enormous potential for the design of new proteins, including new substrate specificity for enzymes as well as improving enzyme activities.

Directed evolution, or combinatorial engineering schemes have been successfully applied in evolving RNA molecules with improved binding and catalytic activities (Lorsch and Szostak, 1994). Also binding proteins (and peptides) with good affinities can now routinely be evolved based on a range of different protein folds (Nord et al, 1997). The present methods may be used to perform such a directed evolution of advantageous enzyme activity and specificity and may be performed by someone skilled in this field with reference to the literature, see e.g. O. Kuchner and F. H. Arnold (1997); A. Crameri, S.A. Raillard, E. Bermudez and W.P.C.

Stemmer (1998).) In this context, see also the descriptions provided in US patent no 5 873 082, Noguchi, wherein a list processing system for managing and processing lists of data is disclosed; US patent no 5 869 295, LaBean et al., disclosing methods and materials for producing gene libraries; and US patent no 5 856 928, disclosing a process for gene and protein representation, characterization and interpretation thereof.

In general, major difficulties in this kind of process are to search the sequence space: find the suitable sequence variations for a large but limited number of muta-

25

5

tions (for the same protein fold an immense number of variations can be made e.g. 10 resides protein, 20¹⁰⁰ variants are in theory possible). It is therefor very important to identify the residues in the protein structure which could effect the activity the most, i.e. the residues near the active site area. Thus, in order to enable a successful performance of a method for engineering proteins with properties relevant in the present field, the data discosed above, more specifically, in Tables 2-4, is crucial.

Further references which are relevent in the context of protein engineering are K. Nord, E. Gunneriusson, J. Ringdahl, S. Stahl, M. Uhlen, P.A. Nygren (1997): "Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain", Nature Biotechnology ,15, 772-777 (1997); R. Lorsch and J.W. Szostak (1994): "In vitro evolution of new ribozymes with polynucleotide kinase activity", Nature, 371, 31-36; A. Crameri, S.A. Raillard, E. Bermudez and W.P.C. Stemmer (1998): "DNA shuffling of a family of genes from diverse species accelerates directed evolution", Nature, 391, 288-291; and O. Kuchner and F. H. Arnold (1997): "Directed evolution of enzyme catalysts", Trends in Biotechnology, 15, 523-530.

In an advantageous embodiment, the present method is used to engineer LTA₄ hydrolase inhibitors and/or analogues. In a specific embodiment of said method, a compound capable of mimicking the suicidal mode of LTA₄ hydrolase catalysis, thus acting as a mechanism-based suicide inhibitor, or otherwise capable of regulating the production of LTB₄ is engineered. In an alternative embodiment, an inhibitor of LTC₄ synthase or an LTB₄ receptor antagonist is designed.

2.4.8 (b) Novel specifically designed proteins

Further, the present invention also relates to any novel protein designed by use of the above described method. Once specified, such proteins may be produced by any conventional method well known to the skilled in this field, some of which are examplified below. In Example 2 below, the binding of hydroxamic acid to LTA4 hydrolase is discussed. Thus, such a modified hydroxamic is one example of a novel inhibitor specifically designed according to the invention, and the resoning in the

25

5

example may be used as a basis for the way of reasoning that is used in the present design.

Accordingly, novel enzymes may be produced, which are capable of any different chemical activity. For example, enzymes capable of novel catalytic properties, enzymes that in turn produce enzymes, etc., may be produced according to the present invention.

2.4.8 (c) Use of genetically modified LTA₄ hydrolase

The invention also encompasses the use of a genetically modified LTA4 hydrolase, obtained by any method according to the invention, with altered catalytic properties, e.g., increased ability to synthesize LTB4. The modified enzyme may thus be used for production of LTB4, or any analogues substances, a biomedical reagent which in turn may be used in, e.g., studies of leukotriene metabolism, induction of chemotaxis, as a reference compound in analysis of leukotrienes etc.

2.4.9 Pharmaceutical applications of the present invention

2.4.9 (a) First medical indication

Further, the invention also encompasses a compound obtainable by the method of screening LTA₄ hydrolase binding compounds, structure-based drug design, or the protein engineering methods described above, and more preferably, said compound for use as a medicament. One specifically advantageous embodiment is the herein disclosed novel M1 inhibitor for use as a medicament.

In an advantageous embodiment, the present compounds are used in the manufacture of a medicament for the treatment and/or prevention of acute and chronic inflammatory disorders, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis and chronic obstructive pulmonary disease (COPD); neoplasias and/or cancer; or disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax. Alternatively, the use may relate to the manufacture of a medicament for the treatment and/or prevention of an inflammatory and/or allergenic disorder, such as bronchial asthma, allergic rhinitis, conjunctivitis etc. Yet an alternative use is in the manufacture of a medicament for the treatment and/or prevention of infection caused be human immunodeficiency virus

25

30

5

(HIV). The novel M1 inhibitor are preferably used in medicaments for the treatment and/or prevention of such various diseases as cancer and/or endochrinological disturbances.

2.4.9 (b) Second medical indication and pharmaceutical methods

Thus, the present invention relates to the above mentioned molecules prepared by the method according to the invention for use in the manufacture of various medicaments for the above defined conditions. The invention also encompasses pharmaceutical preparations containing these molecules together with pharmaceutically acceptable carriers. Methods for the preparation of pharmaceutical preparations are e.g. found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, PA, 17th ed. (1985). For a review of drug delivery, see Langer, Science 249:1527-1533 (1990). As those skilled in this field easily realise, the form of such a pharmaceutical preparation, the mode of administration thereof as well as suitable dosages will depend on the specific disease to be treated, the nature of the active substance used, the patient's age, body weight etc.

2.4.9 c) Methods of treatment

The present invention also encompasses any method of treatment for the above defined purposes. Exact details regarding such methods are determined by the practitioner depending on the specific circumstances from case to case.

2.5 Production of novel proteinaeous compounds

The compounds, which may be proteins, polypeptides, peptides or any other organic molecules, prepared according to the methods according to the invention may be synthesized chemically by methods well known to those of skill in this field or they may be prepared by use of recombinant DNA technology by any suitable method well known to those of skill in this field. General methods of synthesis are e.g. found in Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, vol. 152, Academic Press, Inc., San Diego, CA; Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Ed., vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; and Current Protocols in Molecular Biology, F.M. Ausbel et al., Current Protocols (1994). Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art,

15

20

see e.g. Debinski et al., J. Biol. Chem., 268: 14065-14070 (1993); Kreitman and Pastan, Bioconjug. Chem., 4: 581-585 (1993); and Buchner et al., Anal. Biochem., 205: 263-270 (1992).

2. 6 Detailed description of the drawings

5 Figure 1 shows key enzymes and intermediates in leukotriene biosynthesis.

Figure 2 shows 2Fo-Fc density contoured at 1.1 σ. Part of the active site in the neighborhood of the bestatin molecules is shown. Figures are created using a modified version of Molscript48,49.

Figure 3 is a ribbon diagram of the tertiary structure of LTA4 hydrolase. The N-terminal domain at the top of the diagram is rich in β -strands and connects to the catalytic domain to the left in the figure which is more α -helical and extends into the central part of the molecule. The C-terminal domain, illustrated at the bottom of the ribbon diagram, extends towards the right side of the catalytic domain.

Figure 4 (a) is a ribbon diagram of the N-terminal domain with its layers of β -strands, while (b) is a superimposition of the C α trace of the N-terminal domain on the C α trace of bacteriochlorophyll a. The N-terminal domain covers approx. half of the bacteriochlorophyll a structure (the right and bottom part of the diagram).

Figure 5 (a) is a ribbon diagram of the catalytic domain. In the center of the diagram, the three zinc binding ligands, His295, His299, and Glu318, as well as the inhibitor bestatin are depicted in ball and stick representation. The zinc ion is shown as a CPK model. The diagram in (b) shows the structure of thermolysin in the same orientation as the catalytic domain of LTA4 hydrolase. The three zinc ligands, His142, His146, and Glu166, as well as the inhibitor Cbz-GlyP-(O)-Leu-Leu50 are depicted in ball-and stick representation. The zinc ion is shown as a CPK model.

Figure 6 shows the structure of the C-terminal domain.

Figure 7 shows the zinc binding ligands in LTA4 hydrolase, His295, His299, and Glu318, superimposed on those in thermolysin, His142, His146, and Glu-166. Other catalytic or neighboring residues in the two enzymes are Tyr383, Glu325, Glu296, Thr302, and Asn317 in LTA4 hydrolase which correspond to His231, Asp170, Glu143, Asn165, and Tyr157 in thermolysin.

Figure 8 (a) is a Ball-and-Stick presentation of the binding of bestatin in LTA4 hydrolase.

Figure 8 (b) is a schematic overview of bestatin binding in LTA4 hydrolase.

Figure 9 (a) is a wire representation of the cavity found in LTA4 hydrolase (shown as $C\alpha$ -trace).

Figure 9 (b) is a schematic presentation for the proposed binding of LTA4 into the cavity.

Figure 10 is a schematic representation for the proposed epoxide hydrolase reaction mechanism. The catalytic zinc acts as a Lewis acid and activates the epoxide to form a carbocation intermediate according to an SN1 reaction. Water is added at C12 in a stereospecific manner, presumably directed by Asp375. The double bond geometry is controlled by the binding conformation of LTA4. Further details are given elsewhere in the present description.

3. EXPERIMENTAL

5

LL LI

T. 15

20

25

The following examples are intended for illustrating purposes only and should not in any way be used to construe the scope of the protection of the present invention as defined by the appended claims. All the references given below, and previously in this specification, are hereby included herein by reference.

3.1 Examples

Example 1: Binding of the thiol-compound (I)

The thiol group of the compound is ligated to the Zn²⁺ ion, that has a tetra-hedral configuration. Both the phenyl-groups are making extensive hydrophobic interactions. The first one makes aromatic stacking interactions with Phe314 and Trp311. Further hydrophobic interactions are made with Pro374 and Leu369. The other phenyl ring is making stacking interactions with Tyr267 and Tyr378. Met270 and Gln136 provide additional hydrophobic interactions. The ether-oxygen in the linker between the two phenyl rings makes a hydrogen bond to the backbone nitrogen of

10

15

20

5

Ala137 and also with a water molecule which is linked to Asp375. The amine group makes interactions to the Oɛ1 of Gln136 and the Oɛ1 of Glu271.

Formula (I)

Example 2: Binding of the hydroxamic acid compound (II)

The binding of this compound is very similar to the binding of the thiol compound described above. The manner in which the phenyl-moieties, the linker region and the amine group are bound is identical. The manner in which the hydroxamic acid part is bound is different in comparison with other complexes such as thermolysin-HA complexes and LTA₄-hydrolase-bestatin complex. Instead of a double interaction of the hydroxyl and carbonyl oxygens and the Zn ion resulting in a pentavalent co-ordination, here only one of the oxygens (the hydroxyl) is making an interaction with the Zn ion giving a tetrahedral co-ordination. The other oxygens make an interaction to Asp296 and the backbone nitrogen of Gly268. This difference is probably due to the tight binding of the phenyl rings and the amine group. The linkage between the amine group and the hydroxamic acid group contains one more carbon atom than in a normal or modified peptide-linkage. Since the binding site for substrates is rather narrow near the Zn ion, the conformation of compounds which bind in this area is rather restricted. Therefore one of the otherwise binding oxygens is pushed out and can no longer make an interaction with the Zn²⁺ ion. Removal of this extra

20

carbon atom could yield a compound which is a better inhibitor than this hydroxamic acid compound. The acid group at the other end of the compound is fixed by making a double interaction with the NE and the Nh2 of Arg563.

Formula (II)

Example 3: Structure determination of two specific inhibitor-LTA₄ hydrolase complexes

Crystals, grown as described above, were soaked in 1 mM solution of thiolamine (Yuan et al., 1993) or 0.5 mM solution of hydroxamic acid (Hogg et al., 1995) in 15% PEG8000, 50 mM Imidazol pH 6.7, 25 mM acetate and 2.5 mM YbCl3. After at least 24 hours, the crystals were transferred to a solution that contained a cryo-protectant (see above) and subsequently flash frozen in liquid nitrogen. The data for the crystal soaked with thiolamine was obtained at BM14B at the EMBL-outstation in DESY, Hamburg. The data for the hydroxamic acid was collected at beamline 7/11 at MAX-lab, Lund. Statistics from the data collections are shown in the table. The data were processed using MOSFLM, merging and other manipulations were performed by programs from CCP4 and the BIOMOL packages. The refinement procedures for both datasets were very similar. First rigid body refinement using TNT was performed. As a starting model for refinement and model building the structure of LTA4 hydrolase complexed with bestatin was used. The bestatin molecule and all water molecules were deleted from the model. After this initial refine-

10

15

20

ment it was possible to build the inhibitors into the protein. For evaluation of the density maps and model-building the program QUANTA (Molecular Simulations Inc., Burlington, MA) was used. The refinement was continued using TNT and was combined with sessions of model-building. In all rounds no sigma cut-offs were used and the resolution was slowly increased during the procedure. Water molecules were identified and incorporated into the models. During these procedures the Rfree was carefully monitored. When refinement had converged, it was finished with one round in which all reflections, including those who were used for the calculations of the Rfree, were incorporated. Statistics about refinement and quality of the models can be found in Table 5.

Table 8: Statistics of refinement and quality of the model

	Thiolamine (Thiol)	Hydroxamic acid (HA)
Resolution	15-2.5Å	15-1.8Å
Rfactor	17.8%	24.2%
Rfree	24.4	29.7%
Bond Lengths	0.011Å	0.012Å
Angles	1.9°	2.0°
Trigonal groups	0.005Å	0.006Å
Planar groups	0.009Å	0.010Å
Contacts	0.026Å	0.041Å
No. of waters	252	127

Example 4: Purification of LTA4 hydrolase.

For adsorption chromatography on hydroxyapatite, a TSKgel HA-1000 column (Tosohaas) was equilibrated in 10 mM potassium phosphate buffer, pH 7.1, supplemented with 0.2 mM CaCl₂. The enzyme sample was applied and a linear gradient of increasing phosphate (10 - 400 mM) was developed by mixing the starting buffer with 400 mM potassium phosphate buffer, pH 6.8, supplemented with 10 µM CaCl₂. Active fractions containing LTA4 hydrolase were eluted between 150 - 190 mM potassium phosphate.

Anion exchange chromatography was performed on a Mono-Q HR 5/5 column (Pharmacia Biotech) equilibrated with the loading buffer 10 mM Tris-Cl, pH 8. The pure protein was eluted using a linear gradient of KCl (0 - 500 mM) and was recovered at 110 - 140 mM KCl.

5

Example 5: Enzyme engineering

The present inventors have shown, that when Tyr-378 in LTA4 hydrolase was exchanged for a Phe residue, the resulting mutated enzyme was no longer suicide inhibited by LTA4 and exhibited a substantially increased catalytic efficiency. Furthermore, the mutated enzyme was capable of converting LTA4 not only into the natural product LTB4, but also into a novel metabolite, 6-trans-8-cis-LTB4. (Mueller, M.J., et al. Proc Natl Acad Sci USA 93, 5931-5935 (1996)).

Example 6: Enzyme-engineering

Tyr-383 in mouse LTA4 hydrolase was exchanged for Gln residue, which resulted in a mutated enzyme capable of forming the unnatural product 5S, 6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid from LTA4 (Andberg, M., Hamberg, M. & Haeggstrom, J.Z. J. Biol. Chem. 272, 23057-23063 (1997)).

Example 7: Crystallisation of LTA₄ hydrolase

LTA₄ hydrolase was crystallised using YbCl₃ as an additive, 15% PEG and 50 mM Na-acetate as precipitant and 50 mM imidazole, pH 6.7, as buffer. Liquid-liquid-diffusion in capillaries were used as crystallisation set-ups.

3.2 Materials and Methods

25

Enzyme purification. Human recombinant LTA4 hydrolase was expressed in E. coli and purified to homogeneity in four chromatographic steps on FPLC using anion exchange, hydrophobic interaction, chromatofocusing, and hydroxyapatite resins, essentially as described (Wetterholm A., Medina J.F., Rådmark O., Shapiro R., Haeggström J.Z., Vallee B.L., Samuelsson B. Recombinant mouse leukotriene A4 hyd-

Ì

20

25

5

rolase: a zinc metalloenzyme with dual enzymatic activities. *Biochim. Biophys. Acta.* 1080, 96-102 (1991)).

Crystallization conditions. The chemicals used for the crystallization experiments were purchased from Merck and were of highest purity available. The sparse matrix kit was obtained from Hampton Research. Crystallization conditions for the protein were initially sought by using the sparse matrix approach (Jancarik, J. & Kim, S.-H. J. Appl. Crystallogr. 24, 409-411 (1991)) in hanging drop vapor diffusion set-ups in cell culture plates at room temperature. Under condition 28, (30% PEG8000, 0.2 M sodium-acetate, 0.1 M cacodylate buffer, pH 6.5) needles grew. They were subsequently reproduced and optimized using a finer grid search, different temperatures for the equilibration and testing of additives. Crystals were only obtained when the inhibitor bestatin was present in the crystallization set-ups. Using YbCl3 as an additive and switching to liquid-liquid diffusion in capillaries, allowed plate-like crystals to grow. Thus, 5 µl 28% PEG8000, 0.1 mM Na-acetate, 0.1 mM imidazole buffer, pH 6.8, 5 mM YbCl3 is injected into the bottom of a melting point capillary and an equal volume of LTA4 hydrolase (5 mg/ml) in 10 mM Tris-Cl, pH 8, supplemented with 1 mM bestatin, is layered on top. Finally, the capillary is closed and stored at 22°C. Crystals with an average size of 0.6 x 0.4 x 0.05 mm³ appear in 3 to 4 weeks.

<u>Crystal properties</u>. The plate-like crystals diffract beyond 2Å using synchrotron radiation. They belong to space-group P21212 with cell dimensions a = 67.59 Å, b = 133.51 Å, c = 83.40 Å, $a = b = g = 90 ^{\circ}$ at 100K. As a cryo-solution, a mixture of 15%PEG 8000, 50 mM Na-acetate, 50 mM imidazole buffer, pH 6.8, 2.5 mM YbCl3, and 25% glycerol was used. Assuming one molecule per asymmetric unit the solvent content of the crystals is 48%.

Structure determination. The structure was determined by using multiple anomalous dispersion measurements on the LIII edge of Ytterbium ($\lambda = 1.3862$ Å) at beam line BM14 at the European Synchrotron Radiation Facility (ESRF), Grenoble. Three datasets, peak (PK), point of inflection (PI) and remote (RM), were collected to 2.5Å resolution from the same crystal. The crystal was aligned such that Bijvoet

5

equivalent reflections could be collected in one pass of 90° for each wavelength. For RM a subsequent dataset to 2.15Å was collected. A second crystal was used for obtaining a dataset to 1.95Å. (For statistics on data-collection and quality, see table 1). Data were integrated using the program Denzo, scaled to each other using Scalepack (Otwinowski, Z. Data collection and Processing. Proceedings of the ccp4 study weekend. SERC Daresbury Laboratory, Warrington, UK., 56-62 (1993)) and further analyzed using programs from the CCP4 package (Collaborative Computing Project Number 4. Acta Crystallogr. Sect. D 50, 760-763 (1994)).

From Patterson functions one major and one minor Yb position could readily be identified, a third position was identified during heavy atom refinement in difference Fourier maps. The heavy atom parameters were refined using MLPHARE (Otwinowski, Z. Isomorphous replacement anomalous scattering. Proceedings of the CCP4 study weekend. SERC Daresbury Laboratory, Warrington, UK., 80-85 (1991)) and SHARP (de La Fortelle, E. & Bricogne, G. Met. Enzymol. 276, 472-494 (1997)). The final figures of merit was 0.57 to 2.15Å. Phase information was further improved to 2.15Å by solvent flattening using SOLOMON (Abrahams, J.P. & Leslie, A.G.W. Acta Crystallographica D52, 30-42 (1996)) with a solvent content of 43%. The quality of the maps was very good and the entire protein molecule (residue 1-610) could be traced unambiguously. All model building was performed using OUANTA (Molecular simulations). Refinement was started by a run of slowcooling molecular dynamics in XPLOR (Brünger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458-460 (1987)) using the RM dataset to 2.7Å. The three Yb ions were included into the refinement with full occupancy for the first Yb and half occupancy for the two other ions. All subsequent refinement was performed with TNT (Tronrud, D.E., ten Eyk, L.F. & Matthews, B.W. Acta Crystallogr. Sect. A 43, 481-501 (1987)). The same set of reflections (4% of total amount from 25-1.95Å) for the calculation of Rfee (Brünger, A.T. Nature 355, 472-475 (1992)) was maintained throughout all refinement procedures. The resolution was slowly improved by alternating sessions of model-building and refinement. The data for the second crystal to 1.95Å were used for further refinement during which a Zn ion, bestatin, an acetate

10

15

20

25

and an imidazole molecule were identified. Judged from the B-factors these molecules are all fully occupied. 540 water molecules were added to the coordinates. The Rfree was 24.7% and the working R-factor was 18.8% for all data between 25-1.95 Å. In a final round of refinement all data between 25-1.95 Å were included, yielding a final R-factor of 18.5 % for residues 1-610, 3 Yb ions, 1 Zn, 1 bestatin, 1 imidazole, 1 acetate and 540 water molecules. Most of the model is in good density (Fig. 2) except a loop encompassing residues 179 to 184 for which only poor density was obtained. The model has good stereo-chemical parameters (r.m.s bonds =0.010Å, r.m.s angles = 2.2°) and 91.7% of the residues lie in the most favored part of the Ramachandran plot.

4. RESULTS AND DISCUSSION

4.1 Overall structure and domain organization

The leukotriene A4 hydrolase molecule is folded into three domains; an N-terminal domain, a catalytic domain and a C-terminal domain which together form a flat triangular arrangement with approximate dimensions of $85 \times 65 \times 50 \text{ Å}^3$. The overall structure of the enzyme is depicted in figure 3. Although the three domains pack closely and make contact with each other, a deep cleft is formed in between.

4.2 The N-terminal domain is structurally related to bacteriochlorophyll a

The N-terminal domain (residue 1-209) is composed of one 7 stranded mixed b-sheet, one 4 and one 3 stranded antiparallel β -sheet. Strands from the larger β -sheet continue into the two smaller β -sheets that pack on the edges of the same side of the larger sheet so that a kind of envelope is formed (Fig. 4a & b). The two small β -sheets are turned towards the inside of the whole protein while the larger β -sheet is exposed to solvent and forms a large concave surface area. Loops connecting the other strands and hydrophobic residues fill the core of this domain. The N-terminal domain of LTA4 hydrolase shares important structural features with the chlorophyll-containing enzyme bacteriochlorophyll (Bchl) α (Matthews, B., Fenna, R., Bolognesi, M., Schmid, M. & Olson, J. β . β . β . β . β . Thus, 111 C α positions have equivalent positions in the two proteins despite the absence

5

of any sequence identity (Fig. 4b). The domain is about half the size of Bchl a which has a single domain structure without major extensions. Like Bchl a, the shape of the N-terminal domain resembles an envelope (or Taco) with a hollow inside and in Bchl a, 7 bacteriochlorophylls are buried in this cavity. However, the domain is not as hollow as BChl a since loop 135-155, which contains a small helical segment, is turned inwards and fills up the core. In BChl a the equivalent loop (290-305) is positioned more towards the exterior of the protein, thereby leaving space for some of the tertrapyrroles of the bacteriochlorophylls. The large sheet (17) strands) of Bchl a is truncated to only 7 strands in LTA4 hydrolase. Especially the region between residue 35 and 263 of Bchl a has been replaced by a much shorter region in LTA4 hydrolase (res. 45 to 98) that forms the 3 stranded small β-sheet and the edge strand of the larger 7 stranded β-sheet. The structure of the other half of the molecule is almost completely conserved, except the insertion of two extra strands instead of loops in LTA4 hydrolase. The structural homology between Bchl a, a protein involved in light harvesting, and LTA4 hydrolase was certainly unexpected. In LTA4 hydrolase, the function of the N-terminal domain is not yet known, but one may speculate that it participates in binding to hydrophobic molecules or surfaces with a possible regulatory function. In mammalian 15-lipoxygenase, a similar function was proposed for an N-terminal \beta-barrel domain with structural homology to a corresponding C-terminal domain in mammalian lipases (Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M.F. Nature Struc. Biol. 4. 1003-1009 (1997)).

The connection from the N-terminal to the catalytic domain is very short, a strand from the 4 stranded β-sheet connects into a strand of a 5-stranded antiparallel β-sheet of the catalytic domain. The two sheets are closely packed and the interface is mainly hydrophobic in character with 14 hydrophobic residues contributing from the N-terminal domain and 11 from the catalytic domain. Hydrogen bonds occur between Gln116 and Ser264, Ser124 and Gln226, the backbone of Ser124 and Glu223, the backbone of Ser151 and Lys309, Lys153 and the backbone of Leu305 and indirectly through a water molecule between Tyr130 and the back-

25

5

bone of Val260. Two salt-bridges between His139 and Asp375 and between Arg174 and Asp257 complete the interactions made in this interface.

4.3 The catalytic domain contains the zinc binding site and is structurally similar to thermolysin

The structure of the catalytic domain (res. 210-450) is surprisingly similar to the structure of thermolysin (Fig. 5a & b) (Holmes, M. & Matthews, B. J. Mol. Biol. 160, 623-639 (1982)). When the amino acid sequence in this domain was compared with that of thermolysin, the sequence identity was found to be very low (essentially confined to the zinc binding motifs). However, the structural homology stretches out over the whole domain. Thus, no less than 146 Ca positions overlap with an r.m.s. deviation of 1.946 Å. Like thermolysin, the catalytic domain consists of two lobes, one mainly a-helical and one mixed a/b lobe. The a-lobe consists of 6 major helices interconnected by long loops containing smaller helical segments, while the a/b lobe has a 5 stranded mixed β-sheet lined with 3 helices on one side. The zinc binding site is found in between the two lobes. Since this domain contains only 245 amino acids and thermolysin contains 314 residues, some truncations have taken place, especially in the a/b lobe in which the N-terminal extended b structure is truncated and only a mixed 5 stranded β-sheet remains. The changes in the a-lobe are smaller. Here the long meandering loop 181 to 221 has been replaced by a long a-helix and the b-hairpin from 245 to 258 has been deleted.

A loop in extended conformation on the surface of the protein from 451 to 463 connects the catalytic domain with the C-terminal domain. Interestingly, this segment contains a highly conserved proline rich motif P451-G-f-P-P-x-K-P-x-Y460 which bears some resemblance to an SH3 domain recognition sequence. However, the canonical arginine residue is not present on either side of the proline motif. Nevertheless, since this stretch of amino acids is exposed on the surface of the protein, it is still possible that it could serve as an anchoring site for protein-protein interactions.

The C-terminal domain (464-610) is composed of 9 a-helices that form an unusual coil of helices reminiscent of the ones found in lytic transglycosylase⁴⁰ and

recently in the armadillo repeat region of b-catenin (Huber, A.H., Nelson, W.J. & Weis, W.I. Cell 90, 871-882 (1997)) (Fig. 6). The helices pack into two layers of parallel helices (5 inner and 4 outer helices) and in an anti-parallel manner between the two layers. The arrangements found in the two other proteins are much larger and form super-helical structures. In the C-terminal domain of LTA4 hydrolase, the arrangement is more straight and has a very compact shape. One of the helices is deformed and one of the interconnecting loops is long and contains a small 310 helix. The domain makes contacts with both the a-lobe of the catalytic domain and one of the edges of the N-terminal domain. It is positioned in a way such that the helices lie perpendicular to the 7 stranded b-sheet of the N-terminal domain and to most of the helices in the catalytic domain. The helices are amphipatic in character, with the hydrophobic sides towards the middle of the domain and hydrophilic residues pointing towards the solvent and into the deep cleft in the middle of the whole molecule. This side of the cleft is highly polar; 10 Arg and Lys residues and 4 Asp and Glu residues are positioned on this side.

4.4 Zinc coordination

The immediate surroundings of the active site Zn²⁺ ion are very similar in thermolysin and LTA4 hydrolase. The Zn²⁺ is bound between the two lobes and is coordinated by His295, His299, one carboxylic oxygen of Glu318 and the carbonyl and hydroxyl oxygens of the inhibitor bestatin so that a square based pyramid is formed. The two histidines originate from a long a-helix and the glutamate from a neighboring a-helix, all in the a-lobe. Glu296 and Tyr383, two residues implicated in the reaction mechanism for the peptide cleaving activity, are located near the Zn ion. Glu296, the putative general base, is positioned next to the metal ligand His295 and bends over the bestatin molecule and Tyr383, which was described as a proton donor, also makes contact with the bestatin molecule (Figure 8a).

Interestingly, the second layer around the Zn ion shows differences between thermolysin and LTA4 hydrolase. In both enzymes the orientation of the zinc binding ligands is fixed by hydrogen bonds, however the hydrogen bond acceptors are positioned differently. In thermolysin, the Nd1 of His142 is hydrogen bonded to the

20

Od2 of Asp170, while in LTA4 hydrolase the Nd1 of His295 is hydrogen bonded to the Oe1 of Glu325. This residue comes from a structural equivalent to the helix carrying Asp170 in thermolysin, but is shifted half a turn outwards. The Nd1 of His146 in thermolysin is hydrogen bonded to the Od1 of Asn165. This residue is part of the zinc binding signature and is conserved between the two enzymes. However, in LTA4 hydrolase the helix in which this conserved residue is placed has been rotated slightly and Asn317 is no longer making a hydrogen bond to His299. The orientation of His299 is now fixed by a hydrogen bond from the Nd1 to the carbonyl backbone oxygen of Thr302. The Od1 of Asn317 makes instead a hydrogen bond to the backbone amide of Asn381 while the Nd2 makes a hydrogen bond to the hydroxyl group of Tyr200. The last protein-ligand, Glu166 is in thermolysin hydrogen bonded to Tyr157 and a water molecule, in LTA4 hydrolase, Glu318 is only hydrogen bonded to a water molecule (Fig. 7).

4.5 Bestatin binding

Although the zinc binding site is formed by residues only from the catalytic domain and most catalytic residues also come from this domain, the active site itself is surrounded by loops from all three domains. The binding of bestatin reflects this, since it makes interactions with residues from all three domains. The main interactions of bestatin are made through the carbonyl and hydroxyl oxygens to the Zn atom. Hydrophobic interactions are made between the phenyl moiety and the phenyl rings of Tyr267, Phe316, Tyr378 and Tyr383. Also, Met270 and Gln136 are involved (Fig. 8a). The other end of the inhibitor is pointing towards the solvent, the leucine moiety makes interactions with Val292 and His295, while the carboxylic oxygens make interactions with Arg563 and Lys565 through water molecules as well as hydrogen bonds to the backbone nitrogen atoms of Gly268 and Gly269. Hydrogen bonds are formed between the peptidyl N of bestatin and Oe2 of Glu296 and between the terminal NH2 and the Oe1 of Glu271 and Oe1 of Gln136. The hydroxyl oxygen makes apart from the interaction with the Zn ion also an interaction to the OH of Tyr383. (For schematic overview see Fig. 8b). Tyr378 which gets modified during suicide inactivation sits slightly further away, but makes a hydro-

25

25

5

gen bond to Tyr383 and some hydrophobic interactions with the phenyl ring of the inhibitor. These two tyrosine are both found on the same stretch of amino-acids that in thermolysin form a long a helix, however in leukotriene hydrolase this helix is interrupted and two turns of the helix are replaced by three residues (378-380) in an extended conformation. The binding of bestatin is quite different as was found in the complex between bestatin and bovine lens leucine amino-peptidase (blLAP) (Burley, S., David, P., Sweet, R., Taylor, A. & Lipscomb, W. J. Mol. Biol. 224, 113-140 (1992)). In that complex, bestatin was bound to the Zn by both the terminal nitrogen and the nonproteinaceous P1 hydroxyl oxygen, while in LTA4 hydrolase the bestatin is bound by the hydroxyl and carbonyl oxygens. The terminal nitrogen is involved in hydrogen bonding to Glu271 and Gln136. These differences could stem from the fact the blLAP is a bimetal protein with a different reaction mechanism. Moreover the binding of bestatin as seen in LTA4 hydrolase is similar with the complexes formed between thermolysin and hydroxamates which also act as bidentate ligands by the hydroxyl and carbonyl oxygens (Holmes, M. & Matthews, B. Biochemistry 20 (1981)).

Behind the pocket in which the phenyl ring of bestatin binds, there is a cavity that stretches 15 Å deeper into the protein and is approximately 6 to 7 Å wide. In the present structure this cavity is filled with water molecules. It has however a very hydrophobic nature and is lined with Trp311, Phe314, Trp315 Phe362, Leu365, Val367, Leu369, Pro374, Ala377, Tyr378, and Pro382. Most of these residues are strictly conserved or conserved in nature in all LTA4 hydrolase sequences known up until now, with the exception of Val367, which is replaced by a Gln in the yeast and *C. elegans* sequences. Interestingly space for this cavity is partly created by the interruption by the extended conformation in the stretch where Tyr378 and Tyr383 are found. One patch of this binding site is quite hydrophilic with Asn134, Asp375 and the OH of Tyr267 clustering together. This bigger cavity could be a binding site for the LTA4 substrate molecule. If the epoxide moiety would bind in a similar way as the carbonyl oxygen of bestatin to the Zn ion, then the hydrophobic tail would fit snugly into the binding site now occupied by the phenyl group of bestatin and

25

5

would continue into the deeper hydrophobic cavity (Fig. 9a). The other tail would sit in the pocket that is now occupied by the carboxy group of bestatin and it would be long enough for the carboxylic acid to make direct electrostatic interactions with the conserved Arg563 and Lys565.

The replacement of Val367 by Gln as seen in the enzyme from yeast would make the hydrophobic channel shorter and this might be one of the reasons why the yeast enzyme has a poor leukotriene A4 epoxide hydrolase activity. The manner in which the leukotriene molecule would bind is similar as what is proposed for binding of arachidonic acid in 15-lipoxygenase (Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M.F. *Nature Struc. Biol.* 4, 1003-1009 (1997)) with the hydrophobic end buried inside the protein and the carboxylic acid more towards the surface making interactions with Arg and Lys residues.

The binding of bestatin acts also as a guide for the binding of peptide substrate molecules. From systematic binding studies with tri-peptides it was shown that the enzyme has a strong preference for an arginine residue as the N-terminal residue and for several tri-peptides the enzyme has a kcat/Km ratio 10-fold the kcat/Km for LTA4 (Örning, L., Gierse, J.K. & Fitzpatrick, F.A. J. Biol. Chem. 269, 11269-11273 (1994). If we roughly model a peptide in the active site with an N-terminal Arg with the carbonyl oxygen sitting on the place of the hydroxyl group of bestatin, then the Arg side-chain of this residue would sit in the same place as the phenyl group of the bestatin with the guanidinium headgroup interacting with the conserved Asp375 and the OH of Tyr267 and the more hydrophobic Cb, Cd and Cg atoms making similar interactions as the phenyl ring. The terminal aminogroup could make the same electrostatic interaction as the terminal aminogroup of bestatin with Asp271 and Gln136. This mode of binding of bestatin is in contrast with the mode proposed by Örning, since the phenyl ring seems to occupy the S1 pocket. We also propose that the LTA4 substrate molecule is occupying all three pockets, S1, S'1 and S'2.

If the binding mode of peptides in LTA4 hydrolase is compared with the one described for thermolysin, a number of differences are observed. In thermolysin, the

5

peptide molecule is held in place by many interactions to the main chain atoms provided by Asn112, Ala203, Arg203 and Trp115. None of these residues or equivalent residues can be found in the binding site in LTA4 hydrolase. Furthermore, although binding pockets S1 and S'1 are at similar positions as in thermolysin, site S'2 has to be different since its space is occupied by Tyr378 in LTA4 hydrolase. Glu271 and Gln136 and the N-terminal domain are filling up the space into which in thermolysin the upstream peptide binds contributing to the exo-peptidase function instead of an endo-peptidase function as in thermolysin.

4.6 Putative Phosphorylation site

Recently specific phosphorylation by a yet unknown specific kinase of Ser415 has been described as means of regulation of LTA4 hydrolase activity in endothelial cells (Rybina, I.V., Liu, H., Gor, Y. & Feinmark, S.J. *J Biol Chem* 272, 31865-71 (1997)). This residue is conserved in all mammalian LTA4 hydrolases and is embedded in a highly homologous stretch of residues. Phosphorylation of this residue seems to inhibit the epoxide hydrolase activity but not the amino-peptidase activity. In the structure this residue is located in a loop connecting two a-helices that lie on the surface of the molecule. The loop itself is located at the back of the enzyme.

4.7 Aminopeptidase activity

The amino-peptidase activity catalyzed by this enzyme has been well studied and many of the important residues have been target for site-directed mutagenesis work. This lead to a proposal in which Glu296 would act as a general base (Wetterholm, A., et al. Proc Natl Acad Sci U S A 89, 9141-9145 (1992)) and Tyr383 as a putative proton donor (Blomster, M., Wetterholm, A., Mueller, M.J. & Haeggström, J.Z. Eur. J. Biochem. 231, 528-534 (1995)). In the current complex, these residues are involved in hydrogen bonds with the bestatin molecule. If bestatin binding is seen as a rough analog for the transition state binding, then the interaction of Glu296 with the hydroxyl oxygen of bestatin indicates that this residue could indeed activate a water-molecule for the nucleophilic attack. The role of Tyr383 cannot so easily be confirmed, however its position strongly suggest the role of proton donor. In thermolysin the proton donor is His231 and although the Ca position of this resi-

PCT/SE00/00384

5

due is 4.1Å removed from the Ca position of Tyr383 in LTA4 hydrolase, the Nd1 is only 1 Å removed from the OH position of Tyr383. The conserved Glu271 could be involved in the exo-protease activity of the protein. Recently, the analogous Glu350 in aminopeptidase N and Glu352 in aminopeptidase A were subject to site-directed mutagenesis work (Luciani, N., et al. Biochemistry 37, 686-692 (1998); and Vazeux, G., Iturrioz, X., Corvol, P. & Llorenz-Cortez, C. Biochem. J. 334, 407-413 (1998)) and it was observed that mutations of this residue lead to large decreases in the activity in the case of substitutions by conserved amino-acids such as aspartate and glutamine and absence of activity in substitution by alanine. It was concluded that Glu350 belonged to the anionic binding site in that protein. A mechanism based on thermolysin was proposed for aminopeptidase N with a pentavalent transition state with an additional interaction between the free a-aminogroup and Glu350. In this structure we can observe such an interaction between Glu271 and the free aminogroup of bestatin. Furthermore the penta-valent coordination of Zn by the His295, His 299, Glu 318 and the carbonyl and hydroxyl groups of bestatin indicates that this is an equivalent transition state analog complex as determined previously for thermolysin.

From careful sequence alignments and structural insight we can conclude that the enzymes in the M1 family of proteases will share a highly conserved catalytic domain that includes part of the N-terminal domain as we see it in LTA4 hydrolase and the thermolysin-like domain. There is no homology for residues in the Cterminal domain and we believe that this domain is unique for LTA4 hydrolases. According to the present invention, it is suggested that all proteases belonging to class M1 with the signature HExxH and a Glu 18 residues downstream will function in a similar way to thermolysin.

4.8 Epoxide hydrolase activity

Concerning the epoxide hydrolase activity, much less is known about the functional elements and mechanisms of catalysis. In fact, the prosthetic zinc is the only critical component identified thus far and may potentially assist in the introduction of a water molecule at C12 or in the activation of the epoxide. Although Tyr378 and

25

20

25

5

Tyr383 are important active side residues, none of them is essential for catalysis. A mutation of Tyr378 to Phe protects the enzyme against suicide inhibition, however the specificity of the double bond configuration is partly lost (Mueller, M., Andberg, M., Samuelsson, B. & Haeggstrom, J. J. Biol. Chem. 271, 24345-24348 (1996)) since a novel metabolite with a cis-trans-cis conjugated system can be detected. Thus, Tyr378 is a major binding site for LTA4 during suicide inactivation and seems to play a role for the formation of the correct double bond geometry in the product LTB4. Mutations of Tyr383 abolish the amino-peptidase activity where it has a role as potential proton donor (vide supra) but the epoxide hydrolase activity is only decreased compared to wild-type. It is however implicated in the stereospecific introduction of water during the hydrolysis of LTA4 to LTB4 since these mutants convert LTA4 in both LTB4 and 5 [S],6 [S]-DHETE (Andberg, M., Hamberg, M. & Haeggstrom, J. J. Biol. Chem. 272, 23057-23063 (1997)). Moreover careful analysis of the catalytic properties of enzymes mutated in pos. 383, viz [Y383F], [Y383H] and [Y383Q]LTA4 hydrolase have indicated that the epoxide hydrolase reaction follows an SN1 mechanism.

If one considers the chemistry carried out by LTA4 hydrolase, the enzyme has two major tasks during the hydrolysis of LTA4 to LTB4. First introduction of a water molecule stereospecific at C12 and second to generate a cis-double bond Æ6 in the resulting conjugated triene system [cf. Fig. 1]. If LTA4 is modeled into the putative substrate binding pocket as indicated in figure 9b, the catalytic zinc gets close to the epoxide and not C12 of the substrate. Therefore the most likely role of the Zn ion is to act directly as a Lewis acid to activate and open the epoxide ring. This would generate a carbocation, whose charge will be delocalised over the conjugated triene system from C7 to C12. Since this intermediate has an sp2 hydridized planar configuration at C12, it is in principle open for nucleophilic attack from either side of the molecule. The conserved Asp375 is positioned in such a way that a water molecule bound to it is in "attacking" distance of C12 of a modeled LTA4 molecule, the position into which a hydroxyl group is inserted during the reaction. droxyl-group at C12 in R configuration.

This will account for the proper stereo-chemical and positional insertion of the hy-

PCT/SE00/00384

The shape and curvature of the LTA4 binding pocket also gives a clue as to how the enzyme creates the cis double bond at Æ6. Since there is free rotation between the c6 and c7 of LTA4, this bond may be kept in a "pro-cis" configuration in the transition state, which in turn would facilitate the formation of a Æ6-cis double bond form the carbocation intermediate. If LTA4 is modeled in this way, the entire molecule adopts a bent shape, fitting very well with the architecture of the binding pocket (Fig. 9b). Hence, the critical double bond geometry at Æ6 of LTB4 is probably guaranteed by the exact binding conformation of LTA4 at the active side which in turn is governed by all the structural elements participating in substrate binding. including the carboxylate recognition sites, Arg56 and Lys565, the catalytic zinc and the hydrophobic residues lining the pocket. The putative binding cleft for the leukotriene molecule is narrow and bend and thereby favoring LTA4 over other epoxides. The two tyrosines are positioned such that they are in contact with the triple double bond configuration of a modeled LTA4 molecule at the bent of the putative binding pocket and they are hydrogen-bonded to each other. Therefore their position is ideal for guidance in stereo-specificity of the double bond configuration. The loss of specificity for the hydroxyl-incorporation at the C12 position in case of the Tyr383 position can be explained that mutations at this position would possibly create extra space for a water molecule that could attack at the C6 position and thereby form 5 [S],6 [S]-DHETE.

The position of Tyr378 is such that it is in contact with the C6 atom of the modeled LTA4 molecule. If after opening of the epoxide ring the hydroxyl group of Tyr378 instead of a water molecule would attack the carbon-cation at the C6 position, a covalently attached molecule is formed which forms the suicide inhibited complex. In order to check this hypothesis and to obtain more information about the binding-site for leukotriene A4, the structure of this inhibited species would be essential.

5

10

15

20

WO 00/50577 49 PCT/SE00/00384

In order to exclude the possibility that residues near the active site might have further catalytic roles in the epoxide hydrolase reaction, a thorough investigation of these residues, such as Glu271 and Gln136 has to be started. Furthermore the proposed role of Asp375 in activating a water molecule for the stereospecific attack at C12 has to be investigated.

Accordingly, the present invention has solved the first specific leukotriene converting enzyme, which for the first time reveals the binding mode for leukotriene molecules. Furthermore, insight is provided in a unique active site that harbours two activities using different amino-acids to catalyze different reactions.

5. CONFORMATIONAL DATA

Table 9: Structure coordinates of LTA₄ hydrolase-thiolamine complex

	7	able	9: Str	uctu	re o	coordinate	s of LTA	\ ₄ hydrola	se-thiolar	mine complex
	CRYST	68.	560	132	.15	0 83.2	70 90.0	90.00	90.00	P21212
UT.	SCALE1			1459		0.00000	0.0000		0.00000	
15	SCALE2			0000		0.00757	0.0000		0.00000	
#	SCALE3			0000		0.00000	0.0120		0.00000	
								-	0.00000	
la Nj			Atom	res	. c	hain No.	x	У	z	occ B-factor
2 0	7 TOM	- 1	17	D.D.O.		-	0.500			
	ATOM	1 2	N	PRO		1	-0.593	16.387	63.494	1.00 97.99
**************************************	ATOM	3	CA	PRO		1	-1.890	16.918	63.874	1.00 97.22
	ATOM		C	PRO		1	-2.210	18.371	63.525	1.00100.00
	ATOM	4	0	PRO		1	-2.402	18.667	62.342	1.00100.00
25	ATOM	5 6	CB	PRO		1	-2.130	16.551	65.332	1.00 97.81
23	ATOM	7	CG	PRO		1	-1.221	15.355	65.583	1.00100.00
	ATOM		CD	PRO		1	-0.290	15.233	64.369	1.00 97.05
	ATOM	8	N	GLU		2	-2.216	19.272	64.556	1.00 96.95
	ATOM	9	CA	GLU		2	-2.569	20.678	64.314	1.00 95.71
30	ATOM	10	С	GLU		2	-2.188	21.701	65.386	1.00 94.33
30	MOTA	11	0	GLU		2	-2.512	21.542	66.562	1.00 93.21
	ATOM	12	CB	GLU		2	-4.105	20.768	64.214	1.00 97.26
	ATOM	13	CG	GLU		2	-4.587	21.732	63.125	1.00100.00
	ATOM	14	CD	GLU		2	-4.351	21.139	61.767	1.00100.00
35	ATOM	15		GLU		2	-3.301	21.261	61.152	1.00100.00
33	MOTA	16		GLU		2	-5.361	20.398	61.368	1.00100.00
	ATOM	17	N	ILE		3	-1.550	22.799	64.944	1.00 86.29
	ATOM	18	CA	ILE		3	-1.148	23.905	65.820	1.00 81.53
	ATOM	19	C	ILE		3	-2.006	25.154	65.661	1.00 75.68
40	ATOM	20	0	ILE		3	-2.835	25.288	64.763	1.00 76.97
40	ATOM	21	CB	ILE		3	0.308	24.324	65.707	1.00 83.45
	ATOM	22		ILE		3	0.452	25.521	64.759	1.00 83.63
	ATOM	23		ILE		3	1.198	23.160	65.300	1.00 84.76
	ATOM	24		ILE		3	-0.184	25.361	63.375	1.00 91.36
A.E	ATOM	25	N	VAL		4	-1.725	26.099	66.523	1.00 61.54
45	ATOM	26	CA	VAL		4	-2.477	27.303	66.482	1.00 56.32
	MOTA	27	С	VAL		4	-1.658	28.552	66.623	1.00 50.98
	ATOM	28	0	VAL		4	-0.803	28.694	67.512	1.00 47.84
	ATOM	29	CB	VAL		4	-3.514	27.318	67.595	1.00 58.99
50	ATOM	30		VAL		4	-3.735	28.754	68.047	1.00 58.40
50	ATOM	31		VAL		4	-4.819	26.691	67.131	1.00 58.56
	ATOM	32	N	ASP		5	-2.012	29.486	65.732	1.00 39.38
	ATOM	33	CA	ASP	A	5	-1.403	30.782	65.763	1.00 32.64

		ATOM	34	С	ASP A	5	-2.308	31.596	66.634	1.00 36.35
		ATOM	35	0	ASP A	5	-3.343	32.051	66.171	1.00 38.30
		ATOM	36	СВ	ASP A	5	-1.252	31.492	64.400	1.00 30.79
		ATOM	37	CG	ASP A	5	-0.251	32.581	64.563	1.00 29.96
	5	ATOM	.38		ASP A	5	-0.069	33.123	65.635	1.00 35.01
	•	ATOM	39		ASP A	5	0.457	32.831	63.493	1.00 29.81
		ATOM	40	N	THR A	6	-1.931	31.745	67.903	1.00 32.32
		ATOM	41	CA	THR A	6	-2.710	32.507	68.842	1.00 32.32
		ATOM	42	c	THR A	6	-2.701	34.011	68.557	1.00 32.00
	10	ATOM	43	ŏ	THR A	6	-3.484	34.759	69.132	1.00 40.63
	10	ATOM	44	СВ	THR A	6	-2.357	32.171	70.295	1.00 46.88
		ATOM	45	OG1		6	-0.967	32.322	70.505	1.00 44.71
		MOTA	46	CG2		6	-2.789	30.741	70.503	
		ATOM	47	N	CYS A	7				1.00 35.79
	15		48	CA	CYS A	7	-1.842	34.480	67.656	1.00 32.51
	15	MOTA	49	C			-1.797	35.923	67.335	1.00 28.92
		MOTA			CYS A	7	-2.627	36.329	66.129	1.00 31.49
		ATOM	50	0	CYS A	7	-2.780	37.523	65.875	1.00 25.42
		ATOM	51	CB	CYS A	7	-0.362	36.410	67.107	1.00 27.38
	20	ATOM	52	SG	CYS A	7	0.686	35.944	68.518	1.00 32.02
	20	MOTA	53	N	SER A	8	-3.140	35.315	65.383	1.00 34.03
		ATOM	54	CA	SER A	8	-3.940	35.508	64.158	1.00 32.97
		MOTA	55	С	SER A	8	-5.410	35.136	64.264	1.00 33.52
		ATOM	56	0	SER A	8	-5.744	34.137	64.866	1.00 32.89
		ATOM	57	CB	SER A	8	-3.363	34.754	62.980	1.00 34.07
	25	ATOM	58	OG	SER A	8	-4.017	35.182	61.798	1.00 36.65
		ATOM	59	N	LEU A	9	-6.289	35.921	63.635	1.00 30.79
		ATOM	60	CA	LEU A	9	-7.724	35.649	63.672	1.00 31.91
		ATOM	61	С	LEU A	9	-8.198	35.009	62.377	1.00 36.07
		ATOM	62	0	LEU A	9	-9.359	34.626	62.216	1.00 38.61
	30	ATOM	63	CB	LEU A	9	-8.514	36.958	63.874	1.00 32.47
		ATOM	64	CG	LEU A	9	-8.306	37.688	65.212	1.00 35.39
		MOTA	65	CD1	LEU A	9	-9.113	38.983	65.193	1.00 32.27
		ATOM	66∙	CD2	LEU A	9	-8.746	36.816	66.397	1.00 33.25
		ATOM	67	N	ALA A	10	-7.273	34.933	61.443	1.00 28.63
-	35	MOTA	68	CA	ALA A	10	-7.545	34.408	60.147	1.00 27.14
		ATOM	69	С	ALA A	10	-7.643	32.921	60.090	1.00 34.34
		ATOM	70	0	ALA A	10	-7.296	32.173	61.005	1.00 37.34
		ATOM	71	СВ	ALA A	10	-6.551	34.936	59.100	1.00 27.72
		ATOM	72	N	SER A	11	-8.130	32.503	58.959	1.00 32.08
	40	ATOM	73	CA	SER A	11	-8.256	31.115	58.708	1.00 32.03
		ATOM	74	С	SER A	11	-6.838	30.519	58.656	1.00 32.67
		ATOM	75	Ō	SER A	11	-5.927	31.028	57.986	1.00 29.29
		ATOM	76	СВ	SER A	11	-9.013	30.934	57.401	1.00 38.42
		ATOM	77	OG	SER A	11	-10.391	30.728	57.648	1.00 30.42
	45	ATOM	78 ·		PRO A	12	-6.651	29.440	59.387	1.00 44.17
	••	ATOM	79	CA	PRO A	12	-5.370	28.786	59.476	1.00 25.14
		ATOM	80	C	PRO A	12	-4.935	28.176	58.173	1.00 20.63
		ATOM	81	Ö	PRO A	12	-5.737	28.007	57.284	1.00 32.04
		ATOM	82	СВ	PRO A	12	-5.544	27.698	60.540	1.00 33.89
	50	ATOM	83	CG	PRO A	12	-7.029	27.571		
	50	ATOM	84	CD	PRO A	12	-7.731	28.587	60.843	1.00 32.92
		ATOM	85	N	ALA A	13	-3.645		59.952	1.00 30.42
								27.836	58.063	1.00 30.63
		ATOM	86 87	CA	ALA A	13	-3.066	27.236	56.855	1.00 28.36
	55	ATOM	87	С	ALA A	13	-3.644	25.852	56.576	1.00 33.99
	در	ATOM	88	0	ALA A	13	-3.455	25.240	55.528	1.00 31.60
		ATOM	89	CB	ALA A	13	-1.561	27.133	57.050	1.00 27.68
		ATOM	90	N	SER A	14	-4.338	25.352	57.571	1.00 31.10
		ATOM	91	CA	SER A	14	-4.919	24.069	57.469	1.00 30.66
	<i>(</i> 0	ATOM	92	С	SER A	14	-6.242	24.133	56.753	1.00 37.86
	60	ATOM	93	0	SER A	14	-6.768	23.118	56.328	1.00 45.79
		ATOM	94	СВ	SER A	14	-5.005	23.386	58.825	1.00 34.33
		ATOM	95	OG	SER A	14	-6.006	23.978	59.621	1.00 41.01
		ATOM	96	N	VAL A	15	-6.785	25.327	56.630	1.00 32.80
		ATOM	97	CA	VAL A	15	-8.036	25.529	55.917	1.00 31.81

	ATOM	98	С	VAL A	15	-7.777	26.107	54.507	1.00 34.70
	ATOM	99	0	VAL A	15	-8.241	25.576	53.494	1.00 31.96
	ATOM	100	CB	VAL A	15	-9.033	26.336	56.720	1.00 33.07
_	MOTA	101		VAL A	15	-10.272	26.638	55.861	1.00 33.31
5	MOTA	102		VAL A	15	-9.412	25.538	57.949	1.00 30.32
	ATOM	103	N	CYS A	16	-6.990	27.183	54.453	1.00 33.85
	ATOM	104	CA	CYS A	16	-6.602	27.826	53.189	1.00 38.27
	ATOM	105	C	CYS A	16	-5.206	28.388	53.265	1.00 37.14
10	ATOM	106	0	CYS A	16	-4.616	28.534	54.322	1.00 39.70
10	ATOM	107	CB	CYS A	16	-7.589	28.870	52.581	1.00 42.09
	ATOM	108 109	SG N	CYS A ARG A	16 17	~7.844	30.418	53.540	1.00 47.38
	ATOM ATOM	110	CA	ARG A	17	-4.679 -3.349	28.722 29.262	52.132 52.101	1.00 32.10
	ATOM	111	C	ARG A	17	-3.210	30.307	51.005	1.00 32.54 1.00 34.56
15	ATOM	112	Õ	ARG A	17	-3.511	30.065	49.842	1.00 34.30
	ATOM	113	СВ	ARG A	17	-2.371	28.152	51.758	1.00 36.83
	ATOM	114	CG	ARG A	17	-1.779	27.391	52.915	1.00 40.61
	ATOM	115	CD	ARG A	17	-1.472	25.970	52.503	1.00 27.18
	ATOM	116	NE	ARG A	17	-1.963	25.026	53.501	1.00 52.41
20	ATOM	117	CZ	ARG A	17	-1.244	24.036	54.035	1.00 69.41
	ATOM	118	NH1	ARG A	17	0.020	23.812	53.683	1.00 54.86
	MOTA	119	NH2	ARG A	17	-1.810	23.246	54.952	1.00 49.68
e da	ATOM	120	N	THR A	18	-2.711	31.454	51.378	1.00 27.06
	ATOM	121	CA	THR A	18	-2.489	32.477	50.428	1.00 26.12
25	ATOM	122	С	THR A	18	-1.250	32.110	49.653	1.00 30.83
	ATOM	123	0	THR A	18	-0.174	31.964	50.194	1.00 29.06
!	MOTA	124	CB	THR A	18	-2.276	33.810	51.134	1.00 34.27
	ATOM	125	OG1		18	-3.481	34.261	51.738	1.00 32.95
	ATOM ATOM	126 127	CG2 N	THR A LYS A	18 19	-1.730 -1.408	34.839	50.156	1.00 35.91
30 □	ATOM	128	CA	LYS A	19	-0.298	31.955 31.615	48.365 47.511	1.00 31.55 1.00 31.74
T.	ATOM	129	C	LYS A	19	0.359	32.848	46.906	1.00 31.74
==== :==	ATOM	130	Õ	LYS A	19	1.513	32.834	46.520	1.00 33.90
	ATOM	- 131	СВ	LYS A	19	-0.795	30.697	46.398	1.00 36.08
135 L	ATOM	132	CG	LYS A	19	-1.332	29.368	46.924	1.00 62.54
ist.	ATOM	133	CD	LYS A	19	-0.281	28.257	47.057	1.00 82.23
	ATOM	134	CE	LYS A	19	0.093	27.880	48.496	1.00 77.50
	ATOM	135	NZ	LYS A	19	1.553	27.849	48.745	1.00 55.63
40	ATOM	136	N	HIS A	20	-0.387	33.928	46.810	1.00 31.40
40	MOTA	137	CA	HIS A	20	0.160	35.122	46.198	1.00 29.22
	MOTA	138	C	HIS A	20	-0.655	36.345	46.517	1.00 34.68
	ATOM	139	O	HIS A	20	-1.833	36.239	46.846	1.00 35.34
	ATOM	140	CB CG	HIS A	20 20	0.123	34.956	44.666	1.00 26.47
45	MOTA MOTA	141 142		HIS A	20	0.865 2.249	36.022 36.046	43.970 43.980	1.00 26.77
73	ATOM	143		HIS A	20	0.415	37.091	43.280	1.00 28.92 1.00 27.43
	ATOM	144		HIS A	20	2.622	37.126	43.301	1.00 27.43
	ATOM	145		HIS A	20	1.536	37.781	42.865	1.00 28.18
	ATOM	146	N	LEU A	21	0.000	37.492	46.390	1.00 30.14
50	ATOM	147	CA	LEU A	21	-0.596	38.782	46.610	1.00 31.02
	ATOM	148	С	LEU A	21	-0.134	39.786	45.562	1.00 38.34
	ATOM	149	0	LEU A	21	1.073	39.952	45.312	1.00 37.30
	MOTA	150	CB	LEU A	21	-0.342	39.363	47.999	1.00 31.30
~ -	ATOM	151	CG	LEU A	21	-0.611	40.880	48.047	1.00 32.33
55	MOTA	152		LEU A	21	-2.088	41.192	48.324	1.00 27.10
	ATOM	153		LEU A	21	0.277	41.522	49.100	1.00 32.86
	ATOM	154	N	HIS A	22	-1.127	40.442	44.951	1.00 35.47
	ATOM	155	CA	HIS A	22	-0.895	41.452	43.920	1.00 34.24
60	ATOM	156	С	HIS A	22	-1.249	42.742	44.550	1.00 33.99
OU	ATOM ATOM	157 158	O CB	HIS A	22	-2.402 -1.720	42.957	44.905	1.00 35.72
	ATOM	159	CG	HIS A	22 22	-1.720 -1.350	41.244 42.256	42.624 41.615	1.00 33.38 1.00 35.97
	ATOM	160		HIS A	22	-0.030	42.236	41.384	1.00 35.97
	ATOM	161		HIS A	22	-2.125	43.043	40.830	1.00 38.81
				A	22	2.123	.0.045		±.00 09.07

	MOTA	162	CE1	HIS A	22	-0.019	43.534	40.462	1.00 38.66
	ATOM	163	NE2	HIS A	22	-1.262	43.829	40.103	1.00 39.13
	ATOM	164	N	LEU A	23	-0.235	43.539	44.757	1.00 30.17
_	ATOM	165	CA	LEU A	23	-0.416	44.793	45.405	1.00 33.32
5	ATOM	166	С	LEU A	23	-0.203	45.949	44.440	1.00 44.46
	ATOM	167	0	LEU A	23	0.828	46.068	43.761	1.00 44.06
	ATOM	168	CB	LEU A	23	0.446	44.882	46.680	1.00 33.72
	MOTA	169	CG	LEU A	23	-0.141	45.682	47.871	1.00 33.15
	ATOM	170	CD1	LEU A	23	0.780	46.835	48.172	1.00 26.07
10	ATOM	171		LEU A	23	-1.539	46.213	47.609	1.00 35.39
	MOTA	172	N	ARG A	24	-1.256	46.765	44.395	1.00 42.83
	MOTA	173	CA	ARG A	24	-1.406	47.964	43.596	1.00 41.79
	ATOM	174	С	ARG A	24	-1.930	49.005	44.562	1.00 39.15
1.5	ATOM	175	0	ARG A	24	-3.025	48.859	45.107	1.00 39.85
15	MOTA	176	СВ	ARG A	24	-2.458	47.716	42.504	1.00 46.35
	MOTA	177	CG	ARG A	24	-2.054	46.750	41.382	1.00 50.50
	MOTA	178	CD	ARG A	24	-2.754	47.058	40.043	1.00 80.27
go en,	ATOM	179	NE	ARG A	24	-4.200	46.798	40.062	1.00 95.12
20	ATOM	180	CZ	ARG A	24	-5.152	47.703	39.826	1.00100.00
j 20	ATOM	181	NH1	ARG A	24	-4.863	48.973	39.483	1.00100.00
42	ATOM	182		ARG A	24	-6.432	47.326	39.865	1.00100.00
i.	ATOM	183	N	CYS A	25	-1.164	50.028	44.844	1.00 32.39
	ATOM	184	CA	CYS A	25	-1.698	50.969	45.813	1.00 33.30
25	ATOM	185	С	CYS A	25	-1.061	52.325	45.724	1.00 34.82
	ATOM	186 187	O CB	CYS A	25	-0.012	52.514	45.076	1.00 31.03
72 H 2	ATOM ATOM	188	CB SG	CYS A	25 25	-1.503 0.231	50.440 50.529	47.257 47.798	1.00 34.67
	ATOM	189	N	SER A	26	-1.711	53.257	46.418	1.00 38.07
3 .	ATOM	190	CA	SER A	26	-1.196	54.601	46.437	1.00 34.39 1.00 36.77
30	ATOM	191	C	SER A	26	-0.963	55.133	47.821	1.00 30.77
	ATOM	192	ō	SER A	26	-1.738	54.853	48.757	1.00 37.56
NJ.	ATOM	193	СB	SER A	26	-1.889	55.600	45.530	1.00 42.70
	ATOM	194	OG	SER A	26	-0.899	56.330	44.824	1.00 61.74
[] 4 35	ATOM	195	N	VAL A	27	0.133	55.897	47.886	1.00 39.43
1 35	ATOM	196	CA	VAL A	27	0.624	56.583	49.081	1.00 41.31
2	ATOM	197	С	VAL A	27	0.209	58.043	49.082	1.00 44.32
	ATOM	198	0	VAL A	27	0.562	58.799	48.187	1.00 45.24
	ATOM	199	CB	VAL A	27	2.135	56.531	49.207	1.00 46.35
	ATOM	200	CG1	VAL A	27	2.524	57.207	50.522	1.00 45.62
40	ATOM	201	CG2	VAL A	27	2.592	55.079	49.178	1.00 47.20
	ATOM	202	N	ASP A	28	-0.553	58.417	50.093	1.00 37.94
	ATOM	203	CA	ASP A	28	-1.040	59.764	50.237	1.00 35.28
	ATOM	204	С	ASP A	28	-0.595	60.366	51.538	1.00 33.85
4.5	ATOM	205	0	ASP A	28	-1.181	60.099	52.598	1.00 28.52
45	ATOM	206	CB	ASP A	28	-2.559	59.807	50.189	1.00 37.09
	ATOM	207	CG	ASP A	28	-3.055	61.205	50.095	1.00 55.20
	ATOM	208		ASP A	28	-2.611	62.119	50.767	1.00.59.17
	ATOM	209		ASP A	28	-3.993	61.335	49.192	1.00 61.41
50	ATOM	210	N	PHE A	29	0.436	61.174	51.405	1.00 36.42
50	ATOM	211	CA	PHE A	29	1.044	61.888	52.512	1.00 43.07
	ATOM	212	C	PHE A	29	0.105		53.077	1.00 51.14
	ATOM	213	0	PHE A	29	0.161	63.279	54.257	1.00 51.35
	ATOM	214	CB	PHE A	29	2.410	62.517	52.143	1.00 47.77
55	ATOM	215	CG	PHE A	29	3.519	61.485	52.079	1.00 50.86
))	ATOM	216		PHE A	29	4.066		53.247	1.00 52.08
	ATOM ATOM	217 218		PHE A	29	3.996 5.075		50.863	1.00 53.94
	ATOM	218			29 29	5.075		53.215	1.00 52.83
	ATOM	220	CE2	PHE A	29 29	5.013		50.813	1.00 56.46
60	ATOM	221	N	THR A	30	5.559 -0.766		51.992	1.00 53.39
0 0	ATOM	222	CA	THR A	30			52.220	1.00 47.10
	ATOM	223	C	THR A	30	-1.718 -2.788		52.654 53.509	1.00 45.48
	ATOM	224	0	THR A	30	-3.045		54.649	1.00 48.41 1.00 48.64
	ATOM	225	СВ	THR A	30	-2.283		51.434	1.00 48.64
	.11.014	223	25	****	50	-2.203	03.031	21.424	1.00 34.00

WO 00/50577 PCT/SE00/00384

	ATOM	226	001	THR A	30	_1 429	66 106	E1 107	1 00 50 60
						-1.428	66.186	51.107	1.00 50.68
	ATOM	227	CG2	THR A	30	-3.697	65.568	51.745	1.00 60.28
	ATOM	228	N	ARG A	31	-3.392	62.683	52.978	1.00 46.66
	ATOM	229	CA	ARG A	31	-4.404	61.987	53.734	
5									1.00 47.88
3	MOTA	230	С	ARG A	31	-3.826	60.999	54.750	1.00 45.46
	ATOM	231	0	ARG A	31	-4.590	60.468	55.551	1.00 41.52
	MOTA	232	CB	ARG A	31				
						-5.335	61.214	52.805	1.00 56.73
	ATOM	233	CG	ARG A	31	-5.950	62.065	51.700	1.00 84.16
	ATOM	234	CD	ARG A	31	-7.338	61.568	51.284	1.00100.00
10	ATOM	235	NE						
10				ARG A	31	-7.344	60.450	50.327	1.00100.00
	ATOM	236	CZ	ARG A	31	-8.148	60.371	49.251	1.00100.00
	ATOM	237	NH1	ARG A	31	-9.034	61.324	48.944	1.00100.00
		238		ARG A					
	ATOM				31	-8.062	59.298	48.460	1.00100.00
	ATOM	239	N	ARG A	32	-2.489	60.752	54.683	1.00 39.71
15	ATOM	240	CA	ARG A	32	-1.751	59.798	55.531	1.00 39.09
		241	C						
	MOTA			ARG A	32	-2.324	58.411	55.379	1.00 39.62
	MOTA	242	0	ARG A	32	-2.495	57.655	56.337	1.00 33.10
	ATOM	243	CB	ARG A	32	-1.523	60.115	57.022	
****									1.00 37.14
E2 20	ATOM	244	CG	ARG A	32	-1.197	61.569	57.337	1.00 71.25
20	MOTA	245	CD	ARG A	32	0.277	61.834	57.686	1.00100.00
72 m	ATOM	246	NE	ARG A	32	0.703			
4.1							61.299	58.986	1.00100.00
]=4;	ATOM	247	CZ	ARG A	32	1.284	62.005	59.961	1.00 79.51
	MOTA	248	NH1	ARG A	32	1.522	63.308	59.831	1.00 55.73
and the	ATOM	249		ARG A	32	1.626	61.387		
1 O 5								61.098	1.00 44.96
4 25	MOTA	250	N	THR A	33	-2.612	58.068	54.139	1.00 39.83
	ATOM	251	CA	THR A	33	-3.162	56.752	53.902	1.00 39.31
9 4	ATOM	252	С	THR A	33				
1						-2.543	56.010	52.760	1.00 41.13
æ	ATOM	253	0	THR A	33	-1.853	56.574	51.926	1.00 42.93
	ATOM	254	CB	THR A	33	-4.635	56.835	53.641	1.00 43.44
30	ATOM	255	OG1	THR A	33				
ΠĮ						-4.798	57.636	52.468	1.00 40.17
H Tank	ATOM	256	CG2	THR A	33	-5.245	57.468	54.880	1.00 38.71
7.1	ATOM	257	N	LEU A	34	-2.822	54.717	52.762	1.00 35.26
gran,		258	CA						
	ATOM			LEU A	34	-2.372	53.799	51.745	1.00 35.20
2 35	ATOM	259	С	LEU A	34	-3.632	53.293	51.098	1.00 32.49
35	ATOM	260	0	LEU A	34	-4.474	52.670	51.751	1.00 30.96
ije ik. T									
	ATOM	261	CB	LEU A	34	-1.522	52.651	52.322	1.00 37.07
	ATOM	262	CG	LEU A	34	-0.149	52.571	51.685	1.00 42.99
	ATOM	263	CD1	LEU A	34	0.648	51.425	52.285	1.00 40.58
40	MOTA	264	CD2	LEU A	34	-0.360	52.302	50.208	1.00 50.83
40	ATOM	265	N	THR A	35	-3.800	53.632	49.838	1.00 28.72
	ATOM	266	CA	THR A	35	-5.017	53.228	49.198	
	MOTA	267	С	THR A	35	-4.838	52.329	48.013	1.00 36.54
	ATOM	268	0	THR A	35	-3.940	52.546	47.187	1.00 34.70
	ATOM	269	CB	THR A	35	-5.877	54.427	48.813	1.00 44.88
45									
73	ATOM	270	OG1	THR A	35	-5.484	55.549	49.579	1.00 58.59
	ATOM	271	CG2	THR A	35	-7.324	54.094	49.109	1.00 49.42
	ATOM	272	N	GLY A	36	-5.726	51.329	47.950	1.00 32.57
		273							
	ATOM		CA	GLY A	36	-5.696	50.405	46.837	1.00 33.89
	ATOM	274	С	GLY A	36	-6.418	49.074	46.993	1.00 34.50
50	ATOM	275	0	GLY A	36	-7.441	48.919	47.678	1.00 31.78
	ATOM	276	N	THR A	37	-5.836	48.103	46.293	1.00 35.93
	ATOM	277	CA	THR A	37	-6.327	46.723	46.281	1.00 36.12
	ATOM	278	С	THR A	37	-5.268	45.696	46.473	1.00 35.67
E	ATOM	279	0	THR A	37	-4.155	45.795	45.964	1.00 33.86
55	MOTA	280	CB	THR A	37	-7.119	46.306	45.050	1.00 42.21
	ATOM	281	OG1		37	-6.507	46.804	43.870	
									1.00 30.98
	ATOM	282		THR A	37	-8.547	46.793	45.229	1.00 50.03
	MOTA	283	N	ALA A	38	-5.687	44.705	47.220	1.00 32.95
	ATOM	284	CA	ALA A	38				
						-4.886	43.570	47.533	1.00 33.45
<i>[</i>]		285	С	ALA A	38	-5.481	42.374	46.824	1.00 35.47
60	ATOM					C 500			
60	ATOM ATOM	286	0		38	-6.580	41.906	47.151	
60	ATOM	286	0	ALA A	38 38	-6.580 -4.845	41.906	47.151	1.00 32.91
60	ATOM ATOM	286 287	O CB	ALA A ALA A	38	-4.845	43.341	49.044	1.00 32.91 1.00 33.72
60	ATOM ATOM ATOM	286	0	ALA A ALA A ALA A					1.00 32.91
60	ATOM ATOM	286 287	O CB	ALA A ALA A	38	-4.845	43.341	49.044	1.00 32.91 1.00 33.72

	ATOM	290	С	ALA A	39	-4.692	39.464	45.770	1.00 32.11
	MOTA	291	0	ALA A	39	-3.514	39.147	45.608	1.00 32.46
	ATOM	292	CB	ALA A	39	-4.934	40.729	43.662	1.00 32.13
	ATOM	293	N	LEU A	40	-5.505	38.774	46.508	1.00 27.06
5	ATOM	294	CA	LEU A	40	-5.001	37.593	47.155	1.00 29.04
	ATOM	295	С	LEU A	40	-5.331	36.322	46.364	1.00 36.88
	ATOM	296	0	LEU A	40	-6.485	36.100	45.963	1.00 28.89
	ATOM	297	CB	LEU A	40	-5.587	37.451	48.600	1.00 29.39
	ATOM	298	CG	LEU A	40	-5.303	38.598	49.559	1.00 31.39
10	MOTA	299	CD1	LEU A	40	-5.435	38.063	50.970	1.00 32.62
	ATOM	300	CD2	LEU A	40	-3.879	39.019	49.355	1.00 32.02
	ATOM	301	N	THR A	41	-4.310	35.470	46.165	1.00 42.40
	ATOM	302	CA	THR A	41	-4.523	34.210	45.488	1.00 42.40
	ATOM	303	C C	THR A	41	-4.548	33.155	46.552	1.00 43.95
15	ATOM	304	Ö	THR A	41	-3.510	32.827	47.115	1.00 45.73
13	ATOM	305	СВ	THR A	41	-3.511	33.892	44.402	
	ATOM	306	OG1	THR A	41	-3.604	34.885	43.418	1.00 55.44
	MOTA	307	CG2	THR A	41	-3.872	32.544		1.00 55.57
er er.	ATOM	308	N	VAL A	42	-5.755		43.802	1.00 47.78
20	ATOM	309	CA	VAL A	42		32.688	46.848	1.00 33.25
11 20	ATOM	310	C	VAL A	42	-5.946	31.720 30.312	47.893	1.00 32.21
41						-6.166		47.380	1.00 40.56
<u>_</u>	ATOM	311	0	VAL A	42	-6.827	30.105	46.376	1.00 42.56
im ajm	ATOM	312	CB	VAL A	42	-7.017	32.153	48.920	1.00 36.45
25	ATOM	313	CG1	VAL A	42	-6.817	31.451	50.266	1.00 36.89
<u>i</u> 25	ATOM	314	CG2	VAL A	42	-6.963	33.665	49.170	1.00 36.10
	ATOM	315	N	GLN A	43	-5.590	29.357	48.117	1.00 35.91
} ≠£:	ATOM	316	CA	GLN A	43	-5.678	27.945	47.838	1.00 31.59
com com	ATOM	317	C	GLN A	43	-6.346	27.244	48.988	1.00 38.98
30	ATOM	318	0	GLN A	43	-5.916	27.317	50.144	1.00 40.92
30	ATOM	319	CB	GLN A	43	-4.305	27.319	47.568	1.00 30.50
를 '리다 설득 등	ATOM	320	CG	GLN A	43	-4.362	25.800	47.259	1.00 53.80
	ATOM	321	CD	GLN A	43	-2.986	25.177	47.099	1.00 62.47
	ATOM	322	OE1	GLN A	43	-2.569	24.842	45.978	1.00 57.34
35	MOTA	323	NE2	GLN A	43	-2.274	25.037	48.224	1.00 43.72
<u></u>	ATOM	324	N	SER A	44	-7.423	26.555	48.664	1.00 33.83
*	ATOM	325	CA	SER A	44	-8.166	25.839	49.678	1.00 31.38
	MOTA	326	С	SER A	44	-7.495	24.557	50.117	1.00 42.10
	ATOM	327	0	SER A	44	-6.955	23.814	49.292	1.00 42.78
40	ATOM	328	CB	SER A	44	-9.576	25.530	49.226	1.00 28.60
40	ATOM	329	OG	SER A	44	-10.234	24.785	50.224	1.00 34.57
	ATOM	330	N	GLN A	45	-7.579	24.286	51.423	1.00 38.84
	MOTA	331	CA	GLN A	45	-7.007	23.082	51.994	1.00 37.05
	ATOM	332	С	GLN A	45	-8.082	22.050	52.269	1.00 47.57
4.5	MOTA	333	0	GLN A	45	-7.801	20.917	52.678	1.00 42.94
45	MOTA	334	CB	GLN A	45	-6.247	23.411	53.280	1.00 36.10
	ATOM	335	CG	GLN A	45	-5.246	24.539	53.034	1.00 54.73
	ATOM	336	CD	GLN A	45	-4.323	24.206	51.888	1.00 45.43
	MOTA	337		GLN A	45	-4.257	24.888	50.833	1.00 39.23
60	ATOM	338	NE2	GLN A	45	-3.621	23.121	52.092	1.00 29.80
50	MOTA	339	N	GLU A	46	-9.330	22.459	52.048	1.00 50.54
	ATOM	340	CA	GLU A	46	-10.454	21.573	52.283	1.00 50.99
	MOTA	341	С	GLU A	46	-11.496	21.583	51.179	1.00 54.49
	MOTA	342	0	GLU A	46	-11.518	22.406	50.261	1.00 54.00
	ATOM	343	CB	GLU A	46	-11.139	21.793	53.657	1.00 51.61
55	ATOM	344	CG	GLU A	46	-10.581	22.979	54.454	1.00 55.93
	ATOM	345	CD	GLU A	46	-11.427	23.329	55.646	1.00 78.67
	ATOM	346	OE1	GLU A	46	-12.563	23.765	55.543	1.00 69.56
	ATOM	347		GLU A	46	-10.814	23.129	56.796	1.00 75.10
	MOTA	348	N	ASP A	47	-12.387	20.630	51.300	1.00 48.90
60	ATOM	349	CA	ASP A	47	-13.450	20.549	50.362	1.00 49.03
	MOTA	350	С	ASP A	47	-14.591	21.425	50.846	1.00 55.15
	ATOM	351	0	ASP A	47	-14.760	21.631	52.044	1.00 56.66
	ATOM	352	CB	ASP A	47	-13.913	19.099	50.227	1.00 50.20
	ATOM	353	CG	ASP A	47	-13.083	18.376	49.218	1.00 66.88

	ATOM	354		ASP A	47	-12.340	18.945	48.434	1.00 66.27
	ATOM ATOM	355 356	N	ASP A ASN A	47 48	-13.235 -15.301	17.081	49.284	1.00 76.37
	ATOM	357	CA	ASN A	48	-15.391 -16.519	21.941 22.755	49.929 50.339	1.00 50.25
5	ATOM	358	C.	ASN A	48	-16.115	24.000	51.115	1.00 48.45 1.00 43.07
	ATOM	359	Ō	ASN A	48	-16.699	24.351	52.138	1.00 39.78
	MOTA	360	CB	ASN A	48	-17.559	21.909	51.117	1.00 51.19
	ATOM	361	CG	ASN A	48	-18.985	22.417	51.005	1.00 76.39
10	ATOM	362		ASN A	48	-19.594	22.348	49.929	1.00 85.15
10	ATOM	363		ASN A	48	-19.515	22.928	52.115	1.00 68.29
	ATOM ATOM	364 365	N CA	LEU A	49	-15.113	24.688	50.628	1.00 35.36
	ATOM	366	C	LEU A	49 49	-14.728 -15.601	25.874 27.009	51.335 50.851	1.00 34.40
	ATOM	367	Ö	LEU A	49	-15.421	27.515	49.734	1.00 47.38 1.00 45.47
15	ATOM	368	СВ	LEU A	49	-13.239	26.152	51.173	1.00 31.04
	ATOM	369	CG	LEU A	49	-12.781	27.394	51.885	1.00 29.82
	MOTA	370		LEU A	49	-12.725	27.137	53.385	1.00 28.15
	ATOM	371		LEU A	49	-11.394	27.753	51.368	1.00 30.24
20	ATOM	372	N	ARG A	50	-16.568	27.363	51.699	1.00 50.49
20	ATOM	373	CA	ARG A	50	-17.560	28.392	51.401	1.00 52.83
1	ATOM	374 375	С 0	ARG A	50	-17.169	29.838	51.702	1.00 55.57
<u>-</u> L	ATOM ATOM	376	CB	ARG A	50 50	-17.627 -18.928	30.760 28.028	51.011	1.00 53.89
I.	ATOM	377	CG	ARG A	50	-19.863	27.354	51.986 50.980	1.00 58.35 1.00 74.76
25	ATOM	378	CD	ARG A	50	-20.438	26.024	51.462	1.00 74.76
	ATOM	379	NE	ARG A	50	-21.214	25.355	50.415	1.00 94.37
14 t	ATOM	380	CZ	ARG A	50	-22.465	24.888	50.538	1.00100.00
	ATOM	381		ARG A	50	-23.151	24.990	51.687	1.00100.00
∌ ⊪ : 2∩	MOTA	382		ARG A	50	-23.046	24.297	49.471	1.00 74.34
30	ATOM	383	N	SER A	51	-16.331	30.006	52.743	1.00 54.71
	ATOM ATOM	384 385	CA C	SER A	51 51	-15.823	31.297	53.224	1.00 53.49
	ATOM	386	0	SER A	51	-14.495 -14.146	31.156 30.062	53.955 54.420	1.00 53.57
	ATOM	387	СВ	SER A	51	-16.788	31.900	54.232	1.00 52.93 1.00 54.03
35	MOTA	388	OG	SER A	51	-16.871	31.048	55.373	1.00 45.15
<u> </u>	ATOM	389	N	LEU A	52	-13.796	32.298	54.067	1.00 47.19
	ATOM	390	CA	LEU A	52	-12.519	32.422	54.762	1.00 45.66
	MOTA	391	C	LEU A	52	-12.415	33.671	55.640	1.00 50.43
40	MOTA	392	0	LEU A	52	-13.145	34.633	55.471	1.00 52.64
40	ATOM ATOM	393 394	CB CG	LEU A LEU A	52 52	-11.235	32.117	53.923	1.00 44.20
	MOTA	395		LEU A	52	-10.896 -11.739	33.044 32.687	52.745 51.554	1.00 43.98 1.00 42.82
	ATOM	396		LEU A	52	-11.128	34.501	53.094	1.00 42.82
	MOTA	397	N	VAL A	53	-11.483	33.658	56.579	1.00 44.97
45	ATOM	398	CA	VAL A	53	-11.271	34.781	57.455	1.00 41.69
	MOTA	399	С	VAL A	53	-9.859	35.309	57.339	1.00 44.25
	ATOM	400	0	VAL A	53	-8.866	34.551	57.302	1.00 45.42
	ATOM ATOM	401 402	CB CC1	VAL A	53 53	-11.565	34.420	58.906	1.00 45.48
50	ATOM	403		VAL A	53	-11.223 -13.030	35.554 34.073	59.853 59.050	1.00 44.94
	ATOM	404	N	LEU A	54	-9.796	36.627	57.166	1.00 45.79 1.00 35.12
	ATOM	405	CA	LEU A	54	-8.555	37.333	57.080	1.00 33.12
	MOTA	406	С	LEU A	54	-8.377	38.207	58.326	1.00 38.92
	ATOM	407	0	LEU A	54	-9.281	38.457	59.108	1.00 37.45
55	ATOM	408	CB	LEU A	54	-8.461	38.216	55.831	1.00 34.73
	ATOM	409	CG	LEU A		-8.539	37.469	54.510	1.00 40.25
	ATOM	410		LEU A	54	-8.416	38.488	53.374	1.00 40.69
	MOTA MOTA	411 412	N N	LEU A ASP A	54 55	-7.424 -7.192	36.428	54.415	1.00 39.64
60	ATOM	413	CA	ASP A	55	-7.192 -6.918	38.674 39.526	58.524 59.627	1.00 35.02 1.00 31.65
	ATOM	414	C	ASP A	55	-6.956	40.941	59.078	1.00 31.65
	ATOM	415	ō	ASP A	55	-6.754	41.151	57.886	1.00 40.38
	ATOM	416	CB	ASP A	55	-5.494	39.232	60.075	1.00 30.92
	ATOM	417	CG	ASP A	55	-5.397	38.103	61.037	1.00 35.96

PCT/SE00/00384

ATOM

MOTA

480

481

CB

CG

LYS A

LYS A

63

63

-15.818

-14.789

46.830

46.959

47.428

46.321

1.00 40.46

1.00 20.53

	MOTA	482	CD	LYS A	63	-15.367	47.555	45.054	1.00 28.36
	MOTA	483	CE	LYS A	63	-14.315	48.158	44.139	1.00 40.61
	MOTA	484	NZ	LYS A	63	-14.588	47.938	42.711	1.00 54.71
E	MOTA	485	N	VAL A	64	-14.862	44.116	48.441	1.00 45.57
5	ATOM	486	CA	VAL A	64	-14.190	42.844	48.171	1.00 44.90
	ATOM	487	С	VAL A	64	-14.666	42.263	46.841	1.00 46.44
	ATOM ATOM	488 489	O CB	VAL A	64 64	-15.826 -14.505	41.917	46.700	1.00 45.81
	ATOM	490		VAL A	64	-14.303	41.748 40.471	49.192 48.669	1.00 46.24 1.00 44.81
10	ATOM	491		VAL A	64	-14.040	42.048	50.627	1.00 44.81
	ATOM	492	N	VAL A	65	-13.793	42.099	45.875	1.00 43.10
	ATOM	493	CA	VAL A	65	-14.240	41.537	44.604	1.00 41.42
	ATOM	494	С	VAL A	65	-13.707	40.156	44.282	1.00 42.13
	ATOM	495	0	VAL A	65	-12.605	39.787	44.660	1.00 42.64
15	ATOM	496	CB	VAL A	65	-13.856	42.462	43.484	1.00 44.58
	ATOM	497		VAL A	65	-14.520	42.037	42.189	1.00 42.79
	ATOM	498		VAL A	65	-14.264	43.874	43.883	1.00 45.05
	ATOM	499	N	ILE A	66	-14.515	39.402	43.556	1.00 38.68
₽ 20	ATOM	500	CA	ILE A	66	-14.179	38.053	43.113	1.00 39.98
20 13	ATOM ATOM	501 502	С 0	ILE A	66 66	-14.899	37.774	41.802	1.00 44.86
120	ATOM	503	CB	ILE A	66	-16.136 -14.520	37.735 36.947	41.729 44.113	1.00 42.69
la K	ATOM	504	CG1		66	-14.320	37.127	44.113	1.00 44.28
#### #################################	ATOM	505	CG2		66	-14.141	35.578	43.443	1.00 47.27 1.00 42.84
25	ATOM	506		ILE A	66	-14.352	36.169	46.514	1.00 38.79
in the second	MOTA	507	N	ASN A	67	-14.120	37.549	40.759	1.00 42.94
To the	ATOM	508	CA	ASN A	67	-14.715	37.266	39.472	1.00 44.24
	MOTA	509	С	ASN A	67	-15.541	38.444	39.008	1.00 54.25
E	ATOM	510	0	ASN A	67	-16.743	38.344	38.768	1.00 57.56
14 30	ATOM	511	CB	ASN A	67	-15.595	36.007	39.507	1.00 40.72
ī.	ATOM	512	CG	ASN A	67	-14.788	34.759	39.745	1.00 57.39
T.	ATOM	513		ASN A	67	-13.581	34.711	39.454	1.00 52.63
	ATOM	514		ASN A	67	-15.446	33.760	40.317	1.00 44.54
35	ATOM	515	N	GLY A	68	-14.876	39.574	38.899	1.00 50.43
	ATOM ATOM	516 517	CA C	GLY A	68 68	-15.517 -16.807	40.796 41.115	38.462 39.194	1.00 48.89
4 - 1/2	ATOM	518	Ö	GLY A	68	-17.523	42.018	38.803	1.00 48.77 1.00 51.39
	ATOM	519	N	GLN A	69	-17.129	40.385	40.244	1.00 40.06
	ATOM	520	CA	GLN A	69	-18.348	40.716	40.928	1.00 40.02
40	ATOM	521	С	GLN A	69	-18.031	41.059	42.364	1.00 50.45
	ATOM	522	0	GLN A	69	-16.943	40.748	42.855	1.00 50.53
	ATOM	523	CB	GLN A		-19.415	39.602	40.829	1.00 40.78
	ATOM	524	CG	GLN A		-19.966	39.367	39.414	1.00 23.77
45	ATOM	525	CD	GLN A		-20.513	40.646	38.831	1.00 56.53
45	MOTA	526		GLN A	69	-19.974	41.198	37.859	1.00 55.28
	MOTA MOTA	527 528	NEZ N	GLN A GLU A	69 7 0	-21.588 -18.975	41.134 41.718	39.437 43.028	1.00 62.26
	ATOM	529	CA	GLU A		-18.766	42.094	43.028	1.00 49.43 1.00 50.67
	ATOM	530	c	GLU A		-19.296	40.996	45.288	1.00 57.90
50	ATOM	531	Ō	GLU A	70	-20.272	40.367	44.909	1.00 63.90
	ATOM	532	СВ	GLU A		-19.449	43.434	44.732	1.00 52.26
	ATOM	533	CG	GLU A	70	-18.824	44.624	43.970	1.00 64.80
	ATOM	534	CD	GLU A		-19.181	45.967	44.555	1.00 91.82
	MOTA	535		GLU A		-19.749	46.108	45.629	1.00100.00
55	ATOM	536		GLU A		-18.814	46.963	43.785	1.00 76.01
	ATOM	537	N	VAL A	71	-18.655	40.742	46.433	1.00 47.28
	ATOM	538 530	CA	VAL A		-19.119	39.685	47.335	1.00 43.84
	ATOM ATOM	539 540	C 0	VAL A		-19.434	40.153 41.206	48.768	1.00 41.62
60	ATOM	541	CB	VAL A		-18.983 -18.308	38.361	49.254 47.273	1.00 35.70 1.00 46.05
	ATOM	542		VAL A	71	-18.062	37.923	45.827	1.00 45.05
	MOTA	543		VAL A		-16.979	38.460	48.017	1.00 45.19
	ATOM	544	N	LYS A		-20.239	39.343	49.431	1.00 39.34
	MOTA	545	CA	LYS A		-20.610	39.594	50.792	1.00 42.40
									- ·

PCT/SE00/00384

	ATOM	546	С	LYS A	72	-19.347	39.466	51.668	1.00 56.92
	ATOM	547	0	LYS A	72	-18.399	38.729	51.334	1.00 59.27
	ATOM	548	СВ	LYS A	72	-21.719	38.629	51.211	1.00 45.76
5	ATOM	549	CG	LYS A	72	-22.378	38.960	52.557	1.00 86.98
3	ATOM	550 551	CD	LYS A	72	-23.898	38.767	52.606	1.00100.00
	MOTA	551 552	CE NZ	LYS A LYS A	72 72	-24.656	40.012	53.077	1.00100.00
	ATOM ATOM	553	N	TYR A	73	-26.011	39.730	53.592	1.00100.00
	ATOM	554	CA	TYR A	73	-19.332 -18.236	40.210 40.226	52.780 53.747	1.00 55.45 1.00 53.31
10	ATOM	555	C	TYR A	73	-18.636	40.884	55.068	1.00 50.87
	ATOM	556	ō	TYR A	73	-19.552	41.703	55.139	1.00 30.87
	ATOM	557	СВ	TYR A	73	-16.891	40.741	53.214	1.00 52.73
	ATOM	558	CG	TYR A	73	-16.765	42.244	53.227	1.00 51.76
	ATOM	559	CD1	TYR A	73	-16.539	42.946	54.416	1.00 52.82
15	ATOM	560	CD2	TYR A	73	-16.927	42.967	52.039	1.00 53.30
	MOTA	561	CE1		73	-16.439	44.340	54.422	1.00 52.71
	MOTA	562	CE2	TYR A	73	-16.804	44.359	52.026	1.00 55.39
	ATOM	563	CZ	TYR A	73	-16.592	45.044	53.229	1.00 63.45
C 20	ATOM	564	ОН	TYR A	73	-16.471	46.404	53.215	1.00 69.53
□ 20 √3	ATOM	565	N	ALA A	74	-17.927	40.494	56.112	1.00 45.37
	ATOM ATOM	566 567	CA C	ALA A ALA A	74 74	-18.180	40.999	57.433	1.00 42.62
ų".	ATOM	568	0	ALA A	74	-16.892	41.265	58.222	1.00 47.81
<u></u>	ATOM	569	СВ	ALA A	74	-15.894 -19.111	40.554 40.035	58.133 58.170	1.00 45.50 1.00 40.75
25	ATOM	570	N	LEU A	75	-16.930	42.323	59.005	1.00 40.75
4	ATOM	571	CA	LEU A	75	-15.829	42.693	59.869	1.00 48.85
LT.	ATOM	572	С	LEU A	75	-16.319	42.464	61.281	1.00 47.18
l-A	ATOM	573	0	LEU A	75	-17.309	43.021	61.687	1.00 44.35
	ATOM	574	CB	LEU A	75	-15.332	44.136	59.675	1.00 49.64
<u>⊧</u> ⊾ 30	ATOM	575	CG	LEU A	75	-14.789	44.357	58.270	1.00 58.09
	ATOM	576	CD1		75	-14.524	45.841	58.023	1.00 61.34
	ATOM	577		LEU A	75	-13.512	43.565	58.069	1.00 62.34
	ATOM	578	N	GLY A	76	-15.647	41.592	62.004	1.00 47.67
D 35	MOTA	579 580	CA	GLY A	76	-16.034	41.281	63.359	1.00 46.79
ha JJ	MOTA MOTA	581	С 0	GLY A GLY A	76 76	-15.495	42.337	64.279	1.00 47.74
ile m	ATOM	582	N	GLU A	77	-14.656 -15.988	43.171 42.311	63.882 65.502	1.00 42.87
	ATOM	583	CA	GLU A	77	-15.526	43.300	66.431	1.00 48.32 1.00 52.14
•	ATOM	584	C	GLU A	77	-14.029	43.195	66.679	1.00 56.71
40	ATOM	585	0	GLU A	77	-13.418	42.120	66.591	1.00 55.78
	ATOM	586	CB	GLU A	77	-16.357	43.341	67.732	1.00 55.55
	ATOM	587	CG	GLU A	77	-17.198	42.063	67.969	1.00 79.57
	MOTA	588	CD	GLU A	77	-17.440	41.739	69.427	1.00100.00
45	ATOM	589		GLU A	77	-16.537	41.435	70.211	1.00100.00
45	MOTA	590		GLU A	77	-18.712	41.799	69.770	1.00100.00
	MOTA	591 592	N	ARG A	78	-13.452	44.344	67.000	1.00 54.17
	ATOM ATOM	593	CA C	ARG A ARG A	78 78	-12.041 -11.627	44.433 43.656	67.298 68.579	1.00 53.38
	ATOM	594	o	ARG A	78	-12.247	43.767	69.635	1.00 58.88 1.00 61.35
50	ATOM	595	СВ	ARG A	78	-11.571	45.891	67.367	1.00 41.96
	ATOM	596	CG	ARG A	78	-10.050	46.006	67.326	1.00 38.20
	ATOM	597	CD	ARG A	78	-9.537	47.411	67.551	1.00 44.73
	ATOM	598	NE	ARG A	78	-8.294	47.648	66.842	1.00 66.47
	MOTA	599	CZ	ARG A	78	-7.250	48.247	67.389	1.00 97.61
55	MOTA	600		ARG A	78	-7.276	48.692	68.645	1.00100.00
	ATOM	601		ARG A	78	-6.151	48.413	66.663	1.00 80.10
	ATOM	602	N	GLN A	79	-10.557	42.857	68.463	1.00 49.54
	ATOM	603	CA	GLN A	79	-9.995	42.115	69.566	1.00 47.71
60	ATOM	604	C	GLN A	79 70	-8.664	42.789	69.865	1.00 49.77
UU	ATOM	605 606	O CB	GLN A	79 70	-7.626	42.421	69.333	1.00 52.63
	ATOM ATOM	606 607	CG	GLN A GLN A	79 79	-9.803 -11.109	40.613 39.794	69.240	1.00 49.05
	ATOM	608	CD	GLN A	79 79	-11.109	39.794	69.339 68.656	1.00 57.32 1.00 69.51
	ATOM	609		GLN A	79	-10.400	37.480	69.152	1.00 49.72
	- +••						2	55,102	1.00 30.12

	MOTA	610	NE2	GLN A	79	-11.727	38.340	67.517	1.00 62.60
	MOTA	611	N	SER A	80	-8.699	43.826	70.683	1.00 41.74
	MOTA	612	CA	SER A	80	-7.490	44.543	71.022	1.00 37.90
_	MOTA	613	С	SER A	80	-6.437	44.559	69.920	1.00 35.98
5	ATOM	614	0	SER A	80	-6.736	44.939	68.801	1.00 34.52
	MOTA	615	CB	SER A	80	-6.910	44.144	72.372	1.00 39.07
	MOTA	616	OG	SER A	80	-7.255	42.803	72.684	1.00 61.32
	MOTA	617	N	TYR A	81	-5.206	44.154	70.289	1.00 29.92
10	ATOM	618	CA	TYR A	81	-4.027	44.114	69.430	1.00 26.45
10	ATOM	619	C	TYR A	81	-4.163	43.116	68.285	1.00 30.82
	ATOM	620	0	TYR A	81	-3.480	43.215	67.269	1.00 34.48
	ATOM	621	CB	TYR A	81	-2.727	43.893	70.257	1.00 25.19
	ATOM	622	CG	TYR A	81	-2.713	42.491	70.839	1.00 24.57
15	MOTA	623	CD1	TYR A	81	-3.327	42.247	72.066	1.00 27.27
13	ATOM	624 625	CE1		81	-2.165	41.410	70.148	1.00 21.82
	ATOM	626	CE2	TYR A	81 81	-3.380	40.975	72.632	1.00 26.49
	ATOM ATOM	627	CZ	TYR A	81	-2.230 -2.827	40.122 39.908	70.682 71.930	1.00 23.48
	ATOM	628	OH	TYR A	81	-2.889	38.653	72.493	1.00 38.28
20	MOTA	629	N	LYS A	82	-5.038	42.136	68.415	1.00 42.17 1.00 26.97
	MOTA	630	CA	LYS A	82	-5.170	41.229	67.293	
41	ATOM	631	C	LYS A	82	-5.867	41.898	66.072	1.00 27.99 1.00 38.90
-	ATOM	632	Ö	LYS A	82	-5.614	41.541	64.900	1.00 38.90
i=	ATOM	633	СВ	LYS A	82	-5.785	39.918	67.708	1.00 37.13
25	ATOM	634	CG	LYS A	82	-5.169	39.451	69.008	1.00 27.39
	ATOM	635	CD	LYS A	82	-5.435	37.993	69.350	1.00 35.00
ļ.	ATOM	636	CE	LYS A	82	-6.414	37.819	70.492	1.00 59.84
* #	MOTA	637	NZ	LYS A	82	-7.097	36.523	70.452	1.00 63.48
	ATOM	638	N	GLY A	83	-6.738	42.894	66.367	1.00 35.64
30	ATOM	639	CA	GLY A	83	-7.512	43.620	65.368	1.00 33.65
1.3	ATOM	640	С	GLY A	83	-8.866	42.925	65.111	1.00 32.95
	ATOM	641	0	GLY A	83	-9.297	42.063	65.870	1.00 28.28
Z)	ATOM	642	N	SER A	84	-9.535	43.300	64.026	1.00 34.51
135 1435	MOTA	643	CA	SER A	84	-10.839	42.742	63.673	1.00 36.13
ել 35	MOTA	644	С	SER A	84	-10.796	41.724	62.549	1.00 40.65
•	MOTA	645	0	SER A	84	-10.173	41.893	61.501	1.00 39.77
	ATOM	646	CB	SER A	84	-11.883	43.808	63.383	1.00 37.68
	ATOM	647	OG	SER A	84	-11.812	44.832	64.352	1.00 45.14
40	ATOM	648	N	PRO A	85	-11.491	40.656	62.791	1.00 37.01
40	ATOM	649	CA	PRO A	85	-11.573	39.559	61.863	1.00 34.91
	MOTA	650	С	PRO A	85	-12.459	39.946	60.712	1.00 35.92
	ATOM	651	0	PRO A	85	-13.514	40.522	60.941	1.00 35.30
	ATOM	652	CB	PRO A	85	-12.227	38.406	62.647	1.00 37.00
45	ATOM	653	CG	PRO A	85	-12.714	38.981	63.974	1.00 44.97
43	ATOM	654 655	CD	PRO A	85	-12.325	40.462	64.004	1.00 40.72
	ATOM	656	N CA	MET A	86 86	-12.018 -12.756	39.642 39.960	59.487	1.00 30.47
	MOTA MOTA	657	C	MET A	86 86	-13.165		58.275 57.552	1.00 28.55
	ATOM	658	Ö	MET A	86	-13.103 -12.338	38.683 38.015	56.954	1.00 40.49 1.00 39.69
50	ATOM	659	СВ	MET A	86	-11.921	40.829	57.337	1.00 39.09
50	ATOM	660	CG	MET A	86	-12.750	41.242	56.136	1.00 29.31
	ATOM	66 1 °	SD	MET A	86	-11.816	41.878	54.701	1.00 47.84
	ATOM	662	CE	MET A	86	-13.244	42.527	53.805	1.00 46.52
	ATOM	663	N	GLU A	87	-14.441	38.324	57.610	1.00 44.34
55	MOTA	664	CA	GLU A	87	-14.912	37.107	56.950	1.00 47.21
	ATOM	665	C	GLU A	87	-15.495	37.352	55.560	1.00 51.53
	ATOM	666	ō	GLU A	87	-16.425	38.129	55.424	1.00 53.92
	ATOM	667	СВ	GLU A	87	-15.942	36.390	57.813	1.00 49.46
	ATOM	668	CG	GLU A	87	-16.144	34.937	57.389	1.00 56.39
60	ATOM	669	CD	GLU A	87	-17.300	34.316	58.104	1.00 80.78
	ATOM	670		GLU A	87	-18.439	34.738	57.994	1.00 86.69
	MOTA	671		GLU A	87	-16.943	33.301	58.868	1.00 68.69
•	ATOM	672	N	ILE A	88	-14.942	36.659	54.544	1.00 43.84
	ATOM	673	CA	ILE A	88	-15.332	36.765	53.145	1.00 40.15

	ATOM	674	С	ILE A	88	-16.	145	35.610	52.613	1.00 46.72
	ATOM	675	0	ILE A	88	-15.	725	34.460	52.656	1.00 48.10
	ATOM	676	CB	ILE A	88	-14.	107	36.891	52.292	1.00 39.13
_	ATOM	677	CG1		88	-13.3		38.146	52.696	1.00 38.40
5	MOTA	678		ILE A	88	-14.		36.932	50.839	1.00 28.13
	ATOM	679		ILE A	88	-11.9		38.200	52.051	1.00 30.07
	MOTA	680	N	SER A	89	-17.3		35.931	52.077	1.00 45.16
	ATOM	681	CA	SER A	89	-18.		34.893	51.559	1.00 44.76
10	ATOM	682	C	SER A	89	-17.9		34.531	50.131	1.00 46.01
10	ATOM	683	0	SER A	89	-18.0		35.347	49.243	1.00 44.34
	ATOM	684	CB	SER A	89	-19.0		35.121	51.827	1.00 51.87
	ATOM	685	OG	SER A	89	-19.9		34.834	53.198	1.00 69.07
	ATOM	686	N	LEU A	90	-17.4		33.279	49.914	1.00 46.43
15	ATOM	687	CA	LEU A	90	-17.2		32.804	48.575	1.00 46.93
13	ATOM	688	C	LEU A	90	-18.4		32.235	47.935	1.00 55.26
	ATOM	689	O	LEU A	90	-19.2		31.476	48.556	1.00 54.94
	MOTA MOTA	690 691	CB CG	LEU A	90 90	-16.0 -15.2		31.750	48.521	1.00 46.14
	ATOM	692		LEU A	90	-14.5		31.607 30.261	49.792 49.806	1.00 50.78
20	ATOM	693		LEU A	90	-14.		32.708	49.863	1.00 50.27 1.00 55.52
1	ATOM	694	N	PRO A	91	-14.2		32.700	46.683	1.00 54.81
	ATOM	695	CA	PRO A	91	-19.		32.183	45.870	1.00 54.81
\$ ====.	ATOM	696	C	PRO A	91	-19.		30.782	45.254	1.00 58.45
	ATOM	697	Ö	PRO A	91	-20.		30.752	44.623	1.00 67.78
25	ATOM	698	СВ	PRO A	91	-19.		33.213	44.738	1.00 59.70
	ATOM	699	CG	PRO A	91	-18.		33.952	44.711	1.00 61.25
<u>.</u> .	ATOM	700	CD	PRO A	91	-17.		33.539	45.961	1.00 54.16
==	ATOM	701	N	ILE A	92	-18.4		30.177	45.416	1.00 64.82
} ≠4:	ATOM	702	CA	ILE A	92	-18.2		28.863	44.850	1.00 65.03
30	ATOM	703	С	ILE A	92	-17.		27.948	45.801	1.00 66.34
	ATOM	704	0	ILE A	92	-16.3		27.984	45.865	1.00 70.20
27 E	ATOM	705	CB	ILE A	92	-17.		28.927	43.547	1.00 69.56
12 m 12 m 13 m	ATOM	706	CG1	ILE A	92	-18.2		29.495	42.430	1.00 70.02
2	ATOM	707	CG2	ILE A	92	-16.9		27.517	43.171	1.00 71.86
35	MOTA	708	CD1	ILE A	92	-17.	528	29.672	41.121	1.00 80.63
	ATOM	709	N	ALA A	93	-18.2	219	27.115	46.534	1.00 54.40
	ATOM	710	CA	ALA A	93	-17.		26.247	47.452	1.00 51.74
	ATOM	711	С	ALA A	93	-16.2		25.750	46.804	1.00 52.66
40	ATOM	712	0	ALA A	93	-16.2		25.319	45.662	1.00 49.87
40	MOTA	713	CB	ALA A	93	-18.		25.101	47.968	1.00 52.76
	ATOM	714		LEU A	94	-15.		25.861	47.544	1.00 48.18
	ATOM	715	CA	LEU A	94	-13.		25.425	47.067	1.00 43.27
	ATOM	716	C	LEU A	94	-13.		24.066	47.581	1.00 43.98
45	ATOM ATOM	717 718	O CB	LEU A	94 94	-14.0 -12.		23.633	48.601	1.00 44.63
43	ATOM	719	CG	LEU A	94	-12.		26.344 27.638	47.509 46.739	1.00 41.05
	ATOM	720		LEU A	94	-11.		28.200	46.751	1.00 40.03 1.00 36.88
	ATOM	721		LEU A	94	-13.		27.343	45.311	1.00 36.88
	ATOM	722	N	SER A	95	-12.		23.406	46.875	1.00 43.26
50	ATOM	723	CA	SER A	95	-12.		22.074	47.256	1.00 43.76
	ATOM	724	С	SER A	95	-10.		21.991	47.344	1.00 38.58
	ATOM	725	0	SER A	95	-10.		22.944	46.975	1.00 36.78
	ATOM	726	CB	SER A	95	-12.	902	21.092	46.256	1.00 51.55
	ATOM	727	OG	SER A	95	-14.3		21.305	46.156	1.00 62.74
55	ATOM	728	N	LYS A	96	-10.	321	20.863	47.830	1.00 31.10
	ATOM	729	CA	LYS A	96	-8.		20.723	47.958	1.00 34.92
	ATOM	730	С	LYS A	96	-8.	058	21.238	46.777	1.00 45.63
	ATOM	731	0	LYS A	96	-8.	400	21.063	45.612	1.00 49.35
	MOTA	732	CB	LYS A	96	-8.		19.366	48.451	1.00 38.53
60	MOTA	733	CG	LYS A	96	-9.		18.871	49.651	1.00 68.97
	ATOM	734	CD	LYS A	96	-8.		17.549	50.221	1.00 80.86
	ATOM	735	CE	LYS A	96	-9.		17.011	51.330	1.00 92.53
	ATOM	736	NZ	LYS A	96	-9.		15.833	52.029	1.00100.00
	ATOM	737	N	ASN A	97	-6.	944	21.873	47.108	1.00 41.92

WO 00/50577 PCT/SE00/00384

	MOTA	738	CA	ASN A	97		-6.009	22.403	46.139	1.00	40.91
	MOTA	739	С	ASN A			-6.606	23.348	45.088	1.00	42.64
	MOTA	740	0	ASN A			~5.963	23.681	44.068	1.00	38.69
_	ATOM	741	CB	ASN A			-5.084	21.304	45.583	1.00	28.16
5	MOTA	742	CG	ASN A			-4.327	20.568	46.677		52.21
	ATOM	743		ASN A			-3.089	20.627	46.744		55.30
	ATOM	744		ASN A		,	-5.060	19.858	47.533	1.00	53.87
	ATOM	745	N	GLN A			-7.833	23.791	45.382		36.59
10	ATOM	746	CA	GLN A			-8.557	24.718	44.536		38.44
10	ATOM	747	С	GLN A			-8.288	26.181	44.951		43.30
	ATOM	748	0	GLN A			-8.248	26.526	46.138		43.40
	MOTA	749	CB	GLN A			-10.064	24.395	44.575		42.26
	ATOM	750	CG	GLN A			-10.553	23.538	43.385		68.24
1.5	MOTA	751	CD	GLN A			-12.008	23.778	43.010		95.57
15	ATOM	752		GLN A			-12.890	22.935	43.278		86.92
	ATOM	753	NE2	GLN A			-12.271	24.935	42.393		95.48
	ATOM	754	N	GLU A			-8.089	27.062	43.973		39.70
	ATOM	755	CA	GLU A			-7.817	28.468	44.280		40.49
20	ATOM	756	С	GLU A			-8.750	29.536	43.683		47.84
1,20	ATOM	757	0	GLU A			-9.330	29.394	42.606		46.85
1- H.	ATOM	758	CB	GLU A			-6.361	28.866	43.951		40.24
	ATOM	759	CG	GLU A			-5.608	27.861	43.080		44.16
ž tar	MOTA	760	CD	GLU A			-4.120	28.119	42.990		
धर्म सः	ATOM	761	OE1				-3.636	29.062	42.376		73.95
25	ATOM	762	OE2	GLU A			-3.395	27.210	43.614		55.99
}= A.	ATOM	763	N	ILE A			-8.848	30.643	44.418		43.55
#	ATOM	764	CA	ILE A			-9.595	31.800	44.005		43.46
}= i.	ATOM	765	C	ILE A			-8.701	32.992	44.238		53.31
1.30	ATOM	766	O	ILE A			-7.725	32.927	45.004		55.16
	ATOM	767 769	CB CG1	ILE A			-10.881	32.068	44.773		46.65
1 '43' ##	ATOM	768 769	CG2	ILE A			-10.762	31.640	46.227		50.76
	MOTA MOTA	770	CD1				-12.111 -9.959	31.486 32.620	44.106 47.087		46.76 64.36
	MOTA	771	N	VALA			-9.060	34.076	43.580		
**35	ATOM	772	CA	VAL A			-8.382	35.329	43.760		48.20 45.63
22	MOTA	773	C	VAL A			-9.383	36.351	44.295		48.59
	ATOM	774	Ö	VAL A			-10.331	36.722	43.623		51.29
	ATOM	775	СВ	VAL A			-7.461	35.793	42.633		45.06
	ATOM	776		VAL A			-7.693	35.000	41.378		43.25
40	ATOM	777		VAL A			-7.609	37.289	42.395		45.02
• •	MOTA	778	N	ILE A			-9.182	36.738	45.546		41.15
	ATOM	779	CA	ILE P			-10.023	37.690	46.238		39.43
	MOTA	780	С	ILE A			-9.439	39.062	46.170		49.35
	ATOM	781	0	ILE A			-8.331	39.274	46.659		53.80
45	MOTA	782	CB	ILE A			-10.097	37.319	47.694		39.19
	MOTA	783	CG1	ILE A			-10.180	35.800	47.809		35.28
	ATOM	784	CG2	ILE A	102		-11.300	37.992	48.341		35.25
	ATOM	785	CD1	ILE A	102		-10.962	35.392	49.044		47.09
	ATOM	786	N	GLU A	103		-10.192	39.984	45.572		43.20
50	MOTA	787	CA	GLU A			-9.748	41.362	45.433	1.00	39.88
	ATOM	788	С	GLU A	103		-10.378	42.299	46.425	1.00	44.03
	MOTA	789	0	GLU A	103		-11.580	42.558	46.385	1.00	41.34
	ATOM	790	CB	GLU A	103		-9.950	41.930	44.047	1.00	39.11
	MOTA	791	CG	GLU A	103		-9.017	43.112	43.863	1.00	36.18
55	MOTA	792	CD	GLU A			-9.150	43.666	42.485		61.93
	MOTA	793	OE1				-10.157	44.234	42.100		69.89
	MOTA	794	OE2	GLU A			-8.087	43.457	41.744		76.18
	ATOM	795	N	ILE A			-9.534	42.797	47.322	1.00	42.69
	ATOM	796	CA	ILE A			-9.969	43.718	48.346	1.00	40.72
60	MOTA	797	С	ILE A			-9.522	45.167	48.099	1.00	46.21
	MOTA	798	0	ILE A			-8.346	45.478	47.866		42.68
	ATOM	799	CB	ILE A			-9.578	43.283	49.754		41.75
	MOTA	800	CG1	ILE A			-10.006	41.855	50.032	1.00	39.85
	እመለነ	001	~~~	TT TO 3	104		70 000	4 4 000	E 0 7 C 0	1 00	43 56

801 CG2 ILE A 104 -10.225 44.222 50.768 1.00 41.53

ATOM

	ATOM	802	CD1	ILE A	L04	-8.839	40.995	50.485	1.00 34.17
	MOTA	803	N	SER A		-10.506	46.056	48.173	1.00 47.94
	ATOM	804	CA	SER A		-10.278	47.481	48.046	1.00 48.05
~	ATOM	805	С	SER A		-10.184	47.977	49.482	1.00 42.39
5	ATOM	806	0	SER A		-11.134	47.879	50.263	1.00 39.69
	ATOM	807	CB	SER A		-11.399	48.180	47.290	1.00 53.77
	ATOM	808	OG	SER A		-11.399	47.789	45.930	1.00 60.69
	ATOM	809	N	PHE A		-9.020	48.445	49.857	1.00 35.07
10	ATOM	810	CA	PHE A		-8.844	48.890	51.223	1.00 34.98
10	ATOM	811 812	C O	PHE A 1		-8.177	50.238	51.262	1.00 39.26
	ATOM	813	CB	PHE A		-7.607	50.730	50.265	1.00 34.24
	MOTA MOTA	814	CG	PHE A		-8.015 -6.581	47.864 47.815	52.060 51.556	1.00 36.05 1.00 37.24
	ATOM	815		PHE A		-6.251	47.073	50.422	1.00 37.24
15	ATOM	816		PHE A		-5.579	48.579	52.161	1.00 39.71
13	ATOM	817		PHE A		-4.950	47.086	49.920	1.00 30.44
	MOTA	818		PHE A		-4.273	48.609	51.672	1.00 41.48
.s2 to.	ATOM	819	CZ	PHE A		-3.961	47.856	50.540	1.00 37.91
2	ATOM	820	N	GLU A		-8.284	50.794	52.453	1.00 37.91
20	ATOM	821	CA	GLU A		-7.711	52.064	52.848	1.00 43.81
41	ATOM	822	C	GLU A		-7.206	51.869	54.284	1.00 43.82
l-L	MOTA	823	Ō	GLU A		-7.933	51.303	55.121	1.00 38.38
	ATOM	824	СВ	GLU A		-8.737	53.234	52.753	1.00 46.93
2 222	ATOM	825	CG	GLU A		-8.107	54.637	52.467	1.00 67.21
25	ATOM	826	CD	GLU A		-9.086	55.715	52.042	1.00100.00
j-A	ATOM	827	OE1			-10.208	55.504	51.599	1.00100.00
	ATOM	828	OE2			-8.631	56.938	52.221	1.00 93.72
E	ATOM	829	N	THR A		-5.963	52.294	54.551	1.00 39.12
	ATOM	830	CA	THR A	108	-5.345	52.175	55.873	1.00 39.69
1.30	ATOM	831	С	THR A	108	-5.564	53.427	56.724	1.00 49.82
T.I	ATOM	832	0	THR A	108	-5.565	54.552	56.177	1.00 50.94
# 3	MOTA	833	CB	THR A		-3.810	52.095	55.722	1.00 40.40
	ATOM	834	OG1	THR A		-3.360	53.226	54.981	1.00 32.22
he ac	ATOM	835	CG2			-3.371	50.802	55.042	1.00 46.43
^{- -} 35	ATOM	836	N	SER A		-5.698	53.217	58.065	1.00 42.02
	ATOM	837	CA	SER A		-5.848	54.294	59.038	1.00 38.13
	ATOM	838	C	SER A		-4.555	55.101	59.082	1.00 38.47
	ATOM	839	0	SER A		-3.460	54.583	58.921	1.00 33.60
40	ATOM	840	CB	SER A		-6.166	53.759	60.437	1.00 41.44
40	MOTA	841 842	OG	SER A C		-6.205	54.812	61.404	1.00 47.63
	ATOM ATOM	843	N CA	PRO A		-4.655 -3.419	56.392	59.308 59.393	1.00 41.64 1.00 40.75
	ATOM	844	C	PRO A		-2.803	57.116 56.749	60.725	1.00 40.75
	ATOM	845	Ö	PRO A		-1.676	57.080	61.009	1.00 42.30
45	ATOM	846	СВ	PRO A		-3.721	58.605	59.298	1.00 42.30
	ATOM	847	CG	PRO A		-5.224	58.719	59.132	1.00 48.77
	ATOM	848	CD	PRO A		-5.811	57.318	59.269	1.00 44.58
	ATOM	849	N	LYS A		-3.578	56.017	61.518	1.00 36.35
	MOTA	850	CA	LYS A		-3.167	55.535	62.819	1.00 36.74
50	MOTA	851	С	LYS A		-2.669	54.083	62.720	1.00 40.19
	ATOM	852	0	LYS A	111	-2.733	53.319	63.678	1.00 40.53
	MOTA	853	CB	LYS A	111	-4.341	55.606	63.807	1.00 41.91
	ATOM	854	CG	LYS A	111	-4.362	56.838	64.708	1.00 71.21
	MOTA	855	CD	LYS A	111	-5.421	57.854	64.309	1.00 97.95
55	MOTA	856	CE	LYS A	111	-6.839	57.394	64.611	1.00100.00
	ATOM	857	NZ	LYS A		-7.853	58.120	63.819	1.00100.00
	ATOM	858	N	SER A		-2.184	53.670	61.550	1.00 36.84
	MOTA	859	CA	SER A		-1.714	52.296	61.358	1.00 34.35
	MOTA	860	С	SER A		-0.518	51.917	62.225	1.00 35.57
60	ATOM	861	0	SER A		0.533	52.548	62.166	1.00 32.49
	ATOM	862	CB	SER A		-1.449	51.995	59.883	1.00 35.16
	ATOM	863	OG	SER A		-0.682	50.814	59.762	1.00 31.94
	ATOM	864	N	SER A		-0.666	50.872	63.033	1.00 31.84
	MOTA	865	CA	SER A	113	0.445	50.460	63.866	1.00 29.27

	ATOM	866	С	SER	А	113		1.601	49.927	63.040	1.00 33.3	٦7
	ATOM	867	0	SER				2.715	49.792	63.497	1.00 32.9	
	ATOM	868	CB	SER	Α	113		0.052	49.498	64.945	1.00 29.4	
_	ATOM	869	OG	SER				0.045	48.169	64.462	1.00 34.2	27
5	ATOM	870	N	ALA				1.357	49.628	61.797	1.00 33.6	59
	ATOM	871	CA	ALA				2.437	49.134	60.981	1.00 34.0	
	ATOM	872	C	ALA			•	3.239	50.287	60.388	1.00 37.8	
	ATOM	873	0	ALA				4.411	50.149	60.033	1.00 37.7	
10	ATOM	874	CB	ALA				1.845	48.292	59.852	1.00 34.5	
10	ATOM ATOM	875 876	N CA	LEU LEU				2.580	51.432	60.259	1.00 32.1	
	ATOM	877	C	LEU				3.201	52.595	59.662	1.00 30.4	
	ATOM	878	0	LEU				3.509 2.902	53.745	60.565	1.00 35.3	
	ATOM	879	СВ	LEU				2.358	54.012 53.156	61.604 58.507	1.00 35.2 1.00 30.5	
15	ATOM	880	CG	LEU				1.787	52.064	57.602	1.00 30.3	
	ATOM	881		LEU				0.812	52.710	56.637	1.00 35.1	
	ATOM	882	CD2					2.903	51.387	56.821	1.00 33.8	
.53 m.	ATOM	883	N	GLN				4.490	54.457	60.096	1.00 34.0	
i.	ATOM	884	CA	GLN				4.926	55.656	60.737	1.00 32.5	
20	ATOM	885	С	GLN	Α	116		5.066	56.689	59.645	1.00 31.3	
i i	ATOM	886	0	GLN	Α	116		5.880	56.552	58.729	1.00 28.2	
} 4	ATOM	887	CB	GLN				6.232	55.540	61.496	1.00 32.6	
## ##	ATOM	888	CG	GLN				6.419	56.813	62.322	1.00 41.2	
2 122	ATOM	889	CD	GLN				7.777	56.897	62.952	1.00 50.0	
25	ATOM	890	OE1	GLN				8.515	55.905	63.017	1.00 55.3	16
	MOTA	891	NE2	GLN				8.090	58.081	63.438	1.00 38.2	:3
2	ATOM	892	N	TRP				4.210	57.680	59.748	1.00 26.6	
<u> </u>	ATOM	893	CA	TRP				4.148	58.785	58.827	1.00 26.0	
	ATOM	894	C	TRP				4.912	59.978	59.375	1.00 34.5	
	ATOM ATOM	895 896	O CB	TRP TRP				4.467	60.589	60.364	1.00 36.8	
	ATOM	897	CG	TRP				2.669	59.188	58.630	1.00 23.1	
	ATOM	898		TRP				1.826 1.052	58.209	57.863	1.00 23.0	
	ATOM	899		TRP				1.640	57.224. 58.135	58.397 56.433	1.00 26.3	
35	ATOM	900	NE1					0.395	56.534	57.393	1.00 21.0 1.00 26.4	
	ATOM	901	CE2	TRP				0.735	57.087	56.184	1.00 20.4	
	ATOM	902		TRP				2.121	58.872	55.361	1.00 20.9	
	ATOM	903		TRP				0.352	56.753	54.886	1.00 28.2	
40	MOTA	904		TRP				1.750	58.560	54.079	1.00 22.4	
40	ATOM	905		TRP				0.872	57.512	53.847	1.00 24.2	
	ATOM	906								58.756	1.00 31.4	4
	ATOM	907	CA	LEU				6.745	61.506	59.276	1.00 36.6	
	ATOM	908	С	LEU				6.584	62.774	58.432	1.00 46.9	
45	ATOM	909	0	LEU				6.434	62.705	57.210	1.00 51.1	
43	ATOM ATOM	910 911	CB CG	LEU .				8.250	61.327	59.577	1.00 38.8	
	ATOM	912		LEU LEU				8.881	59.939	59.398	1.00 44.3	
	ATOM	913		LEU				10.392 8.351	60.065	59.569	1.00 42.1	
	ATOM	914	N	THR				6.524	58.950 63.939	60.426 59.109	1.00 49.9	
50	ATOM	915	CA	THR				6.449	65.260	58.468	1.00 41.3 1.00 38.8	
	ATOM	916	C	THR				7.847	65.633	58.034	1.00 38.8	
	ATOM	917	0	THR				8.841	65.165	58.605	1.00 40.1	
	ATOM	918	СВ	THR				5.932	66.300	59.467	1.00 42.6	
	ATOM	919	OG1	THR				6.994	66.605	60.362	1.00 50.0	
55	ATOM	920		THR				4.769	65.668	60.224	1.00 36.7	
	MOTA	921	N	PRO .	A	120		7.963	66.440	57.020	1.00 33.4	
	MOTA	922	CA	PRO .				9.275	66.781	56.517	1.00 33.1	
	MOTA	923	С	PRO .				10.260	67.209	57.599	1.00 38.2	
(0	ATOM	924	0	PRO .				11.433	66.829	57.566	1.00 34.4	
60	ATOM	925	CB	PRO				9.068	67.840	55.416	1.00 33.5	4
	ATOM	926	CG	PRO				7.582	67.823	55.097	1.00 34.8	
	ATOM	927	CD	PRO				6.891	67.180	56.300	1.00 30.8	
	ATOM	928	N	GLU .				9.751	67.982	58.563	1.00 38.0	
	ATOM	929	CA	GLU	A	121		10.534	68.474	59.681	1.00 41.0	3

	ATOM	930	С	GLU A		11.21	2 67.361	60.411	1.00 50.88
	ATOM	931	0	GLU A		12.27		60.977	1.00 54.97
	ATOM	932	СВ	GLU A		9.74		60.699	1.00 43.28
_	ATOM	933	CG	GLU A		8.22		60.702	1.00 64.72
5	ATOM	934	CD	GLU A		7.39		59.988	1.00 86.07
	ATOM	935	OE1	GLU A		7.00		60.538	1.00100.00
	ATOM	936	OE2	GLU A		7.10		58.739	1.00 59.72
	ATOM	937	N	GLN A		10.56		60.394	1.00 44.09
10	ATOM ATOM	938 939	CA C	GLN A		11.08		61.041	1.00 40.20
10	ATOM	940	0	GLN A		12.17 12.71		60.232	1.00 47.73
	ATOM	941	СВ	GLN A		9.96		60.643 61.224	1.00 53.29 1.00 39.31
	ATOM	942	CG	GLN A		9.05		62.361	
	ATOM	943	CD	GLN A		7.75		62.438	1.00 30.23 1.00 38.25
15	ATOM	944	OE1	GLN A		6.89		61.548	1.00 58.25
	ATOM	945	NE2	GLN A		7.59		63.521	1.00 33.34
	ATOM	946	N	THR A		12.48		59.074	1.00 10.90
4* Fig.	ATOM	947	CA	THR A		13.49		58.229	1.00 36.00
	ATOM	948	С	THR A		14.75		58.264	1.00 35.30
20	ATOM	949	0	THR A		14.84		58.875	1.00 33.30
13.	ATOM	950	CB	THR A		13.06		56.759	1.00 38.25
!- £:	ATOM	951	OG1	THR A		13.14		56.046	1.00 43.75
e de la companya de l	ATOM	952	CG2	THR A		11.64		56.725	1.00 40.72
	ATOM	953	N	SER A		15.69		57.557	1.00 32.18
25	ATOM	954	CA	SER A	124	17.02		57.442	1.00 33.71
1-4	MOTA	955	С	SER A	124	17.00		56.553	1.00 39.04
	ATOM	956	0	SER A	124	17.53	7 67.268	56.883	1.00 39.07
# 1 a	MOTA	957	CB	SER A	124	18.02	3 63.992	56.859	1.00 37.73
-4 = : • •	ATOM	958	OG	SER A	124	18.35	9 62.978	57.796	1.00 36.28
1. 30	ATOM	959	N	GLY A		16.38		55.414	1.00 38.59
	ATOM	960	CA	GLY A		16.28		54.396	1.00 39.90
	ATOM	961	С	GLY A		15.29		54.749	1.00 46.83
	ATOM	962	0	GLY A		15.34		54.172	1.00 49.78
¹ 35	ATOM	963	N	LYS A		14.39		55.678	1.00 41.09
· 33	ATOM	964	CA	LYS A		13.39		56.126	1.00 41.26
	ATOM	965 066	C	LYS A		12.49		55.020	1.00 47.42
•	ATOM ATOM	966 967	O CB	LYS A		11.61		55.279	1.00 48.94
	ATOM	968	CG	LYS A		14.02 15.09		56.894	1.00 41.98
40	ATOM	969	CD	LYS A		14.53		57.913	1.00 45.84
-10	ATOM	970	CE	LYS A		15.61		59.135	1.00 58.74
	ATOM	971	NZ	LYS A		15.39		60.151 60.839	1.00 72.12 1.00 88.38
•	ATOM	972	N	GLU A		12.72		53.792	1.00 68.36
	ATOM	973	CA	GLU A		11.92		52.708	1.00 41.02
45	MOTA	974	C	GLU A		10.89		52.239	1.00 45.14
	ATOM	975	0	GLU A		9.99		51.496	1.00 46.95
	ATOM	976	СВ	GLU A		12.72		51.543	1.00 44.39
	ATOM	977	CG	GLU A		13.19		51.820	1.00 57.99
	ATOM	978	CD	GLU A	127	12.33		51.301	1.00100.00
50	ATOM	979	OE1	GLU A	127	11.65	2 72.611	50.286	1.00100.00
	ATOM	980	OE2	GLU A	127	12.38	7 73.758	52.054	1.00100.00
	ATOM	981	N	HIS A		11.02		52.653	1.00 39.18
	ATOM	982	CA	HIS A		10.06		52.210	1.00 39.43
	ATOM	983	С	HIS A		9.63		53.316	1.00 42.09
55	ATOM	984	0	HIS A		10.36		54.281	1.00 45.34
	ATOM	985	CB	HIS A		10.62		51.097	1.00 42.16
	ATOM	986	CG	HIS A		10.94		49.854	1.00 47.24
	ATOM	987		HIS A		9.94		49.029	1.00 49.12
60	ATOM	988		HIS A		12.15		49.322	1.00 51.13
UU	ATOM	989		HIS A		10.55		48.026	1.00 49.97
	ATOM	990 991		HIS A		11.88		48.166	1.00 50.87
	ATOM ATOM	991	N CA	PRO A		8.44 7.96		53.171	1.00 32.55
	ATOM	993	CA	PRO A		8.63		54.163 53.900	1.00 31.15
	4 14 VII	,,,	Ü	INO A	163	0.03	02.320	55.300	1.00 34.90

	ATOM	994	0	PRO A		9.481	62.214	53.021	1.00 35.46
	ATOM	995	CB	PRO A		6.466	63.490	53.986	1.00 31.94
	MOTA	996	CG	PRO A		6.133	64.104	52.649	1.00 36.83
_	ATOM	997	CD	PRO A		7.384	64.850	52.185	1.00 32.71
5	ATOM	998	N	TYR A		8.248	61.342	54.659	1.00 29.47
	ATOM	999	CA	TYR A		8.826	60.025	54.548	1.00 29.35
	MOTA	1000	C	TYR A		7.856	59.046	55.156	1.00 31.83
	MOTA	1001	0	TYR A		7.138	59.375	56.093	1.00 29.84
10	MOTA	1002	СВ	TYR A		10.098	60.029	55.433	1.00 30.54
10	ATOM	1003	CG	TYR A		11.083	58.886	55.285	1.00 29.76
	ATOM	1004		TYR A		10.845	57.630	55.845	1.00 26.16
	ATOM	1005		TYR A		12.290	59.110	54.619	1.00 30.28
	MOTA	1006	CE1	TYR A		11.795	56.621	55.721	1.00 17.87
	MOTA	1007	CE2	TYR A		13.253	58.114	54.479	1.00 27.75
15	MOTA	1008	CZ	TYR A		12.983	56.866	55.031	1.00 25.76
	ATOM	1009	ОН	TYR A		13.899	55.864	54.894	1.00 40.52
	MOTA	1010	N	LEU A		7.832	57.842	54.647	1.00 31.12
, res 6 m	MOTA	1011	CA	LEU A	131	6.994	56.868	55.303	1.00 30.43
	ATOM	1012	С	LEU A	131	7.691	55.568	55.289	1.00 33.91
20	MOTA	1013	0	LEU A	131	8.398	55.257	54.397	1.00 33.68
Ting.	ATOM	1014	CB	LEU A	131	5.679	56.761	54.530	1.00 26.16
14	MOTA	1015	CG	LEU A	131	5.065	55.367	54.600	1.00 21.68
1m	ATOM	1016	CD1	LEU A	131	4.163	55.206	55.797	1.00 17.56
in in	ATOM	1017	CD2	LEU A	131	4.222	55.008	53.380	1.00 13.86
25	ATOM	1018	N	PHE A		7.533	54.828	56.348	1.00 29.24
LT.	ATOM	1019	CA	PHE A		8.129	53.527	56.323	1.00 33.44
	ATOM	1020	С	PHE A		7.299	52.519	57.157	1.00 41.08
197	ATOM	1021	0	PHE A		6.344	52.889	57.837	1.00 46.05
L.L.	ATOM	1022	CB	PHE A		9.621	53.670	56.791	1.00 36.40
30	ATOM	1023	CG	PHE A		9.763	53.895	58.256	1.00 38.11
	ATOM	1024	CD1	PHE A		9.601	52.821	59.053	1.00 37.18
	ATOM	1025		PHE A		10.123	55.158	58.803	1.00 43.89
	ATOM	1026		PHE A		9.771	52.936	60.422	1.00 41.04
	ATOM	1027		PHE A		10.289	55.258	60.174	1.00 47.72
35	ATOM	1028	CZ	PHE A		10.131	54.143	60.986	1.00 44.34
4	ATOM	1029	N	SER A		7.612	51.221	57.002	1.00 33.47
	ATOM	1030	CA	SER A		6.744	50.228	57.629	1.00 29.86
	ATOM	1031	С	SER A		7.499	49.221	58.504	1.00 31.53
	ATOM	1032	0	SER A		8.724	49.146	58.531	1.00 33.16
40	ATOM	1033	СВ	SER A		5.942	49.481	56.535	1.00 33.19
	ATOM	1034	OG	SER A		6.757	48.480	55.926	1.00 50.66
	ATOM	1035	N	GLN A		6.703	48.466	59.294	1.00 24.61
	ATOM	1036	CA	GLN A		7.283	47.422	60.134	1.00 22.55
	ATOM	1037	С	GLN A		6.268	46.321	60.398	1.00 27.28
45	ATOM	1038	Ō	GLN A		5.161	46.566	60.809	1.00 25.09
	ATOM	1039	CB	GLN A		7.711	48.041	61.464	1.00 23.29
	ATOM	1040	CG	GLN A		8.218	46.987	62.454	1.00 25.96
	ATOM	1041	CD	GLN A		9.423	46.290	61.872	1.00 25.65
	ATOM	1042		GLN A		10.296	46.876	61.263	1.00 26.36
50	ATOM	1043		GLN A		9.445	44.965	62.095	1.00 21.75
	ATOM	1044	N	CYS A		6.435	45.124	59.820	1.00 29.60
	ATOM	1045	CA	CYS A		5.291	44.220	59.755	1.00 23.00
	ATOM	1046	C	CYS A		5.442	43.006	60.662	1.00 32.50
	ATOM	1047	ō	CYS A		4.597	42.144	60.739	1.00 40.94
55	ATOM	1048	СB	CYS A		5.098	43.794	58.320	1.00 35.40
	ATOM	1049	SG	CYS A		3.976	44.922	57.445	1.00 33.40
	ATOM	1050	N	GLN A		6.582	42.949	61.345	
	ATOM	1050	CA	GLN A		6.715	41.982		1.00 37.37
	ATOM	1051	C	GLN A				62.417	1.00 35.71
60	ATOM	1052	0	GLN A		6.589	42.645	63.797	1.00 31.90
UU	ATOM	1053	CB	GLN A		6.878	43.803	63.981	1.00 30.54
	ATOM	1054	CG	GLN A		8.077	41.311	62.295	1.00 37.24
	ATOM	1055	CD			8.076 9.483	39.878	62.847	1.00 29.70
	ATOM	1056		GLN A GLN A			39.511	63.235	1.00 36.48
	AION	1007	OEI	сти Н	120	10.366	40.328	63.356	1.00 24.49

	ATOM	1058	NE2	GLN A	136	9.665	38.201	63.443	1.00 22.19
	ATOM	1059	N	ALA A		5.850	41.899	64.648	1.00 28.56
	ATOM	1060	CA	ALA A		5.235	40.581	64.351	1.00 28.89
	ATOM	1061	С	ALA A		3.860	40.503	63.630	1.00 31.83
5	MOTA	1062	0	ALA A		3.679	39.688	62.738	1.00 29.67
	ATOM	1063	СВ	ALA A		5.091	39.742	65.625	1.00 28.91
	ATOM	1064	N	ILE A		2.863	41.285	64.070	1.00 27.07
	ATOM	1065	CA	ILE A		1.553	41.176	63.445	1.00 23.90
	ATOM	1066	С	ILE A		0.960	42.492	63.053	1.00 28.69
10	ATOM	1067	0	ILE A	138	-0.144	42.822	63.426	1.00 31.92
	MOTA	1068	CB	ILE A		0.641	40.357	64.339	1.00 25.41
	ATOM	1069	CG1	ILE A		0.871	40.811	65.801	1.00 27.32
	MOTA	1070	CG2			1.162	38.938	64.191	1.00 16.34
	ATOM	1071	CD1	ILE A	138	-0.275	40.615	66.826	1.00 20.22
15	MOTA	1072	N	HIS A		1.718	43.223	62.265	1.00 24.05
	ATOM	1073	CA	HIS A		1.322	44.511	61.824	1.00 24.05
	ATOM	1074	С	HIS A		0.982	44.579	60.351	1.00 34.40
	MOTA	1075	0	HIS A		0.539	45.625	59.888	1.00 35.89
au.	ATOM	1076	CB	HIS A		2.439	45.519	62.173	1.00 24.63
2 0	ATOM	1077	CG	HIS A		2.689	45.619	63.657	1.00 27.97
1	ATOM	1078	ND1	HIS A		1.679	45.970	64.571	1.00 27.75
ad.	ATOM	1079		HIS A		3.835	45.437	64.356	1.00 28.42
i.	ATOM	1080		HIS A		2.222	45.983	65.770	1.00 26.19
5 \$500	ATOM	1081		HIS A		3.517	45.668	65.671	1.00 27.42
25	ATOM	1082	N	CYS A		1.181	43.490	59.598	1.00 30.28
	ATOM	1083	CA	CYS A		0.832	43.517	58.181	1.00 28.08
=Ē;	ATOM	1084	С	CYS A		-0.671	43.765	58.011	1.00 28.98
Ē	ATOM	1085	0	CYS A		-1.111	44.449	57.066	1.00 30.00
-£	ATOM	1086	СВ	CYS A		1.181	42.213	57.447	1.00 28.82
∄ 30	ATOM	1087	SG	CYS A		1.330	42.483	55.661	1.00 34.37
F 9	ATOM	1088	N	ARG A		-1.440	43.168	58.949	1.00 20.78
's: 	ATOM	1089	CA	ARG A		-2.884	43.252	58.996	1.00 20.33
	ATOM	1090	С	ARG A		-3.286	44.684	59.003	1.00 32.37
	ATOM	1091	0	ARG A		-4.355	45.032	58.510	1.00 35.81
- 35	ATOM	1092	СВ	ARG A		-3.557	42.498	60.156	1.00 14.60
•	ATOM	1093	CG	ARG A		-3.081	42.891	61.568	1.00 20.94
	ATOM	1094	CD	ARG A	141	-3.576	41.978	62.715	1.00 19.99
	ATOM	1095	NE	ARG A	141	-2.911	40.690	62.786	1.00 18.24
	MOTA	1096	CZ	ARG A		-3.140	39.707	63.648	1.00 18.77
40	ATOM	1097	NH1	ARG A		-4.029	39.739	64.634	1.00 20.76
	ATOM	1098	NH2	ARG A	141	-2.415	38.640	63.508	1.00 24.20
	ATOM	1099	N	ALA A		-2.408	45.511	59.580	1.00 28.35
	ATOM	1100	CA	ALA A		-2.668	46.940	59.657	1.00 27.60
	ATOM	1101	С	ALA A		-2.369	47.652	58.345	1.00 34.33
45	MOTA	1102	0	ALA A	142	-2.620	48.835	58.203	1.00 34.36
	MOTA	1103	CB	ALA A	142	-1.994	47.616	60.843	1.00 27.67
	MOTA	1104	N	ILE A	143	-1.824	46.922	57.382	1.00 32.39
	ATOM	1105	CA	ILE A	143	-1.537	47.499	56.099	1.00 30.38
	ATOM	1106	С	ILE A	143	-2.520	46.994	55.067	1.00 37.79
50	ATOM	1107	0	ILE A	143	-2.885	47.709	54.152	1.00 42.65
	ATOM	1108	CB	ILE A	143	-0.142	47.228	55.613	1.00 32.06
	ATOM	1109	CG1	ILE A	143	0.827	48.062	56.414	1.00 31.71
	ATOM	1110	CG2	ILE A	143	-0.074	47.654	54.143	1.00 34.02
	MOTA	1111	CD1	ILE A	143	2.258	47.774	55.988	1.00 42.10
55	ATOM	1112	N	LEU A	144	-2.939	45.749	55.218	1.00 32.50
	ATOM	1113	CA	LEU A	144	-3.873	45.142	54.291	1.00 32.36
	ATOM	1114	С	LEU A		-4.435	43.838	54.849	1.00 40.36
	MOTA	1115	0	LEU A		-3.959	43.278	55.852	1.00 33.27
	ATOM	1116	СВ	LEU A		-3.250	44.936	52.894	1.00 31.58
60	ATOM	1117	CG	LEU A		-1.923	44.170	52.917	1.00 33.31
	ATOM	1118		LEU A		-2.147	42.770	52.352	1.00 32.07
	ATOM	1119		LEU A		-0.836	44.897	52.110	1.00 28.67
	ATOM	1120	N	PRO A		-5.490	43.347	54.213	1.00 40.02
	ATOM	1121	CA	PRO A		-6.080	42.129	54.715	1.00 37.86

	ATOM	1122	С	PRO A 145	-5.264	40.941	54.286	1.00 37.87
	MOTA	1123	0	PRO A 145	-4.819	40.831	53.144	1.00 35.27
	MOTA	1124	CB	PRO A 145	-7.530	42.080	54.220	1.00 38.81
_	ATOM	1125	CG	PRO A 145	-7.778	43.393	53.492	1.00 41.34
5	ATOM	1126	CD	PRO A 145	-6.432	44.093	53.341	1.00 36.69
	ATOM	1127	N	CYS A 146	-5.041	40.056	55.233	1.00 36.18
	ATOM	1128	CA	CYS A 146	-4.250	38.882	54.958	1.00 35.60
	MOTA	1129	С	CYS A 146	-4.358	37.859	56.069	1.00 33.04
10	MOTA	1130	0	CYS A 146	-5.067	38.062	57.050	1.00 30.78
10	MOTA	1131	СВ	CYS A 146	-2.761	39.287	54.813	1.00 36.08
	ATOM	1132	SG	CYS A 146	-2.087	40.108	56.302	1.00 39.43
	ATOM	1133	N	GLN A 147	-3.637	36.755	55.883	1.00 29.33
	ATOM	1134	CA	GLN A 147	-3.517	35.703	56.875	1.00 29.71
15	ATOM	1135	C	GLN A 147	-2.254	36.131	57.628	1.00 38.75
15	ATOM	1136	0	GLN A 147	-1.141	35.926	57.135	1.00 40.79
	MOTA	1137	CB	GLN A 147	-3.322	34.352	56.206	1.00 28.99
unit to.	ATOM	1138	CG	GLN A 147	-4.672	33.707	55.894	1.00 25.73
	ATOM	1139	CD	GLN A 147	-4.562	32.532	54.960	1.00 39.92
20	MOTA	1140		GLN A 147	-4.217	32.668	53.775	1.00 43.89
<u>.</u> 20	MOTA	1141		GLN A 147	-4.828	31.368	55.499	1.00 26.36
	MOTA	1142	N	ASP A 148	-2.425	36.834	58.765	1.00 32.68
122 CA1	ATOM	1143	CA	ASP A 148	-1.287	37.362	59.474	1.00 33.50
1 1 L	ATOM	1144 1145	С	ASP A 148	-0.629	36.377	60.371	1.00 33.13
25	MOTA MOTA	1145	O CB	ASP A 148 ASP A 148	-0.622	36.563	61.584	1.00 31.30
	ATOM	1147	CG	ASP A 148	-1.633	38.642	60.253	1.00 37.78
l a	MOTA	1148		ASP A 148	-0.535	39.666	60.332	1.00 45.10
3	ATOM	1149		ASP A 148	0.564	39.540	59.836	1.00 47.89
j-A	ATOM	1150	N	THR A 149	-0.913 -0.080	40.737	60.952	1.00 48.63
1430	ATOM	1151	CA	THR A 149	0.584	35.345 34.251	59.742 60.422	1.00 29.15
fil.	ATOM	1152	c.	THR A 149	1.805	33.831	59.625	1.00 28.25 1.00 34.92
	ATOM	1153	Ö	THR A 149	1.757	33.764	58.410	1.00 34.92
	ATOM	1154	СВ	THR A 149	-0.403	33.704	60.674	1.00 34.47
केंद्र इसी से . स	ATOM	1155	OG1		0.241	32.059	61.352	1.00 24.79
35	ATOM	1156		THR A 149	-0.905	32.527	59.345	1.00 26.56
	ATOM	1157	N	PRO A 150	2.910	33.575	60.323	1.00 20.50
	ATOM	1158	CA 6	PRO A 150	4.142	33.217	59.659	1.00 31.06
	ATOM	1159	С	PRO A 150	4.087	31.813	59.131	1.00 36.66
	ATOM	1160	0	PRO A 150	4.995	31.356	58.450	1.00 36.37
40	ATOM	1161	CB	PRO A 150	5.245	33.327	60.712	1.00 31.18
	ATOM	1162	CG	PRO A 150	4.570	33.471	62.077	1.00 36.95
	ATOM	1163	CD	PRO A 150	3.078	33.589	61.823	1.00 34.62
	ATOM	1164	N	SER A 151	2.992	31.150	59.452	1.00 31.62
	MOTA	1165	CA	SER A 151	2.778	29.791	59.029	1.00 27.35
45	ATOM	1166	С	SER A 151	2.357	29.738	57.564	1.00 32.97
	MOTA	1167	0	SER A 151	2.344	28.703	56.928	1.00 34.25
	ATOM	1168	СВ	SER A 151	1.714	29.203	59.905	1.00 25.95
	ATOM	1169	OG	SER A 151	0.483	29.685	59.439	1.00 49.35
~ ^	ATOM	1170	N	VAL A 152	1.997	30.887	57.024	1.00 34.36
50	ATOM	1171	CA	VAL A 152	1.595	31.015	55.623	1.00 33.74
	MOTA	1172	С	VAL A 152	2.705	31.764	54.847	1.00 37.45
	ATOM	1173	0	VAL A 152	3.295	32.761	55.313	1.00 37.63
	MOTA	1174	CB	VAL A 152	0.203	31.697	55.427	1.00 32.61
EE	ATOM	1175		VAL A 152	-0.184	31.767	53.963	1.00 31.50
55	ATOM	1176		VAL A 152	-0.915	30.975	56.149	1.00 31.29
	ATOM	1177	N	LYS A 153	2.999	31.289	53.654	1.00 26.98
	ATOM	1178	CA	LYS A 153	4.002	31.927	52.866	1.00 25.81
	ATOM	1179	С	LYS A 153	3.469	32.141	51.473	1.00 33.94
60	ATOM	1180	0	LYS A 153	2.826	31.251	50.936	1.00 32.91
UU	ATOM	1181	CB	LYS A 153	5.252	31.091	52.841	1.00 24.70
	ATOM	1182	CG	LYS A 153	6.383	31.760	53.583	1.00 34.68
	ATOM ATOM	1183 1184	CD	LYS A 153	7.641	30.893	53.616	1.00 39.37
	ATOM	1184	NZ	LYS A 153 LYS A 153	8.121	30.506	55.015	1.00 29.09
	AION	1100	14 21	712 W 123	9.556	30.152	55.112	1.00 26.03

		ATOM	1186	Ν.	LEU A	154		3.732	33.321	50.896	1.00 32.13
		ATOM	1187	CA	LEU A			3.285	33.639	49.544	1.00 30.67
		ATOM	1188	С	LEU A			4.279	34.475	48.789	1.00 40.67
	_	ATOM	1189	0	LEU A			5.264	35.000	49.344	1.00 42.56
	5	ATOM	1190	CB	LEU A			1.966	34.432	49.515	1.00 30.10
		ATOM	1191	CG	LEU A			2.084	35.793	50.207	1.00 35.20
		ATOM	1192		LEU A			0.989	36.716	49.690	1.00 37.21
		ATOM ATOM	1193 1194	CD2 N	LEU A			1.934 3.963	35.608	51.715 47.499	1.00 33.07
	10	ATOM	1194	CA	THR A			4.728	34.610 35.449	47.499	1.00 37.82
	10	ATOM	1196	C	THR A			3.934	36.730	46.389	1.00 38.44 1.00 41.52
		ATOM	1197	Õ	THR A			2.738	36.775	46.674	1.00 41.32
		ATOM	1198	СВ	THR A			5.041	34.814	45.230	1.00 36.99
		ATOM	1199	OG1				3.886	34.281	44.584	1.00 30.55
	15	ATOM	1200	CG2	THR A			6.133	33.790	45.404	1.00 18.24
		ATOM	1201	N	TYR A			4.563	37.768	45.892	1.00 33.87
		ATOM	1202	CA	TYR A		,	3.835	39.003	45.683	1.00 32.49
[]		ATOM	1203	С	TYR A	156		4.509	39.922	44.717	1.00 37.91
11		ATOM	1204	0	TYR A	156		5.725	39.940	44.562	1.00 39.04
THE THE	20	ATOM	1205	CB	TYR A	156		3.534	39 .7 95	46.983	1.00 31.16
þ.		ATOM	1206	CG	TYR A			4.642	40.731	47.471	1.00 28.94
150		ATOM	1207	CD1				4.817	42.021	46.969	1.00 30.33
		ATOM	1208	CD2				5.525	40.303	48.465	1.00 30.43
### 	25	MOTA	1209	CE1	TYR A			5.829	42.853	47.459	1.00 36.89
U1	25	ATOM	1210	CE2	TYR A			6.553	41.104	48.960	1.00 31.47
ļ4		ATOM	1211	CZ	TYR A			6.690	42.396	48.462	1.00 43.34
#		ATOM	1212	OH	TYR A			7.701	43.180	48.956	1.00 36.86
 -		MOTA	1213	N	THR A			3.657	40.689	44.101	1.00 36.75
	30	ATOM	1214	CA	THR A			4.036	41.691	43.171	1.00 38.49
Ħ.j	30	ATOM	1215	С	THR A			3.346	42.942	43.611	1.00 42.61
22 cd		ATOM ATOM	1216 1217	O CB	THR A			2.228 3.631	42.913 41.316	44.143	1.00 38.45
424		ATOM	1217	OG1				2.380	40.655	41.751 41.803	1.00 39.73 1.00 55.71
l-A		ATOM	1219	CG2				4.680	40.370	41.212	1.00 35.71
Ę	35	ATOM	1220	N	ALA A			4.037	44.025	43.404	1.00 41.36
		ATOM	1221	CA	ALA A			3.488	45.273	43.789	1.00 41.08
		ATOM	1222	C	ALA A			3.869	46.401	42.839	1.00 50.77
		ATOM	1223	0	ALA A			4.919	46.390	42.179	1.00 53.47
		ATOM	1224	CB	ALA A	158		3.910	45.570	45.212	1.00 39.87
	40	MOTA	1225	N	GLU A			2.974	47.376	42.788	1.00 43.90
		MOTA	1226	CA	GLU A			3.107	48.604	42.023	1.00 42.27
		ATOM	1227	С	GLU A			2.451	49.705	42.843	1.00 42.17
		ATOM	1228	0	GLU A			1.257	49.630	43.227	1.00 41.00
	15	MOTA	1229	CB	GLU A			2.641	48.521	40.571	1.00 43.72
	45	ATOM	1230	CG	GLU A			1.943	47.197	40.255	1.00 62.90
		ATOM	1231	CD	GLU A			1.502	47.156	38.835	1.00 91.28
		ATOM	1232 1233		GLU A			2.202	46.696	37.955	1.00 77.84
		ATOM ATOM	1233	N N	GLU A			0.322 3.263	47.707 50.686	38.644 43.197	1.00100.00 1.00 34.67
	50	ATOM	1235	CA	VAL A			2.738	51.717	44.044	1.00 34.67
	50	ATOM	1236	C	VAL A			3.024	53.091	43.533	1.00 38.37
		ATOM	1237	o	VAL A			4.121	53.380	43.050	1.00 43.02
		ATOM	1238	СВ	VAL A			3.180	51.530	45.500	1.00 40.73
		ATOM	1239		VAL A			3.988	50.239	45.644	1.00 38.56
	55	MOTA	1240		VAL A			4.006	52.728	45.963	1.00 40.46
		ATOM	1241	N	SER A			2.002	53.922	43.653	1.00 41.79
		ATOM	1242	CA	SER A			2.076	55.292	43.185	1.00 42.07
		ATOM	1243	С	SER A			2.532	56.204	44.270	1.00 44.28
		ATOM	1244	0	SER A			2.047	56.121	45.403	1.00 43.60
	60	MOTA	1245	CB	SER A			0.751	55.801	42.635	1.00 43.32
		MOTA	1246	OG	SER A			0.971	56.850	41.726	1.00 49.40
		MOTA	1247	N	VAL A			3.447	57.080	43.896	1.00 36.49
		ATOM	1248	CA	VAL A			3.979	58.019	44.838	1.00 34.99
		ATOM	1249	С	VAL A	162		4.273	59.319	44.148	1.00 42.57

	ATOM	1250	0	.VAL A 162	4.47	70 59.354	42.932	1.00 44.41
	ATOM	1251	СВ	VAL A 162			45.402	1.00 35.97
•	ATOM	1252	CG1	VAL A 162			46.188	1.00 36.12
	ATOM	1253		VAL A 162			44.239	1.00 35.42
5	ATOM	1254	N	PRO A 163			44.942	1.00 32.95
_	ATOM	1255	CA	PRO A 163			44.400	1.00 31.07
	ATOM	1256	C	PRO A 163			43.652	1.00 31.07
	ATOM	1257	ō	PRO A 163			44.142	1.00 42.78
	ATOM	1258	СВ	PRO A 163			45.618	1.00 42.78
10	ATOM	1259	CG	PRO A 163			46.714	1.00 31.02
10	ATOM	1260	CD	PRO A 163			46.259	
		1261	N	LYS A 164				1.00 28.53
	ATOM	1262	CA				42.436	1.00 38.52
	ATOM			LYS A 164			41.539	1.00 39.97
15	ATOM	1263	С	LYS A 164			42.088	1.00 42.75
13	ATOM	1264	0	LYS A 164			41.593	1.00 44.47
	ATOM	1265	CB	LYS A 164			40.177	1.00 44.67
	ATOM	1266	CG	LYS A 164			40.257	1.00 78.05
= 	MOTA	1267	CD	LYS A 164			39.497	1.00100.00
20	MOTA	1268	CE	LYS A 164			39.772	1.00100.00
20	ATOM	1269	NZ	LYS A 164			40.835	1.00100.00
3 E.	ATOM	1270	N	GLU A 165			43.082	1.00 37.25
.	MOTA	1271	CA	GLU A 165			43.665	1.00 39.56
25	MOTA	1272	С	GLU A 165		33 62.462	44.677	1.00 46.39
IR	MOTA	1273	0	GLU A 169		62.318	44.927	1.00 48.93
j 25	MOTA	1274	CB	GLU A 165		64.902	44.297	1.00 42.10
= #5	MOTA	1275	CG	GLU A 165	8.60	65.156	45.257	1.00 58.16
	ATOM	1276	CD	GLU A 165	7.21	4 64.970	44.664	1.00 88.01
.	ATOM	1277	OE1	GLU A 165	6.99	64.757	43.475	1.00 79.46
= #.	MOTA	1278	OE2	GLU A 165			45.575	1.00 70.27
30	MOTA	1279	N	LEU A 166	9.39		45.265	1.00 40.39
	ATOM	1280	CA	LEU A 166			46.254	1.00 36.56
	ATOM	1281	С	LEU A 166			45.640	1.00 47.57
	ATOM	1282	0	LEU A 166			44.581	1.00 52.86
io ell	ATOM	1283	СВ	LEU A 166			47.250	1.00 31.92
±±35	ATOM	1284	CG	LEU A 166			48.057	1.00 29.18
	ATOM	1285	CD1	LEU A 166			49.189	1.00 25.96
	ATOM	1286		LEU A 166			48.622	1.00 23.78
	ATOM	1287	N	VAL A 167			46.328	1.00 34.75
	ATOM	1288	CA	VAL A 16			45.908	1.00 30.00
40	ATOM	1289	С	VAL A 16			46.771	1.00 38.80
	ATOM	1290	0	VAL A 16			47.879	1.00 40.91
	ATOM	1291	СВ	VAL A 16			46.048	1.00 31.28
	ATOM	1292		VAL A 16			45.329	1.00 28.20
	ATOM	1293		VAL A 16			45.565	1.00 20.20
45	ATOM	1294	N	ALA A 168			46.257	1.00 36.46
	ATOM	1295	CA	ALA A 168			46.979	1.00 35.14
	ATOM	1296	C	ALA A 168			46.836	1.00 43.27
	ATOM	1297	Ö	ALA A 160			45.733	
	ATOM	1298	СВ	ALA A 168			46.550	1.00 44.74
50	ATOM	1299	N	LEU A 169			47.975	1.00 34.20
50	ATOM	1300	CA	LEU A 169				1.00 35.27
		1300					48.069	1.00 29.39
	ATOM		C	LEU A 169			48.797	1.00 33.87
	ATOM	1302	0	LEU A 169			49.613	1.00 31.21
55	ATOM	1303	CB	LEU A 169			48.656	1.00 28.62
33	ATOM	1304	CG	LEU A 169			47.891	1.00 35.90
	ATOM	1305		LEU A 169			48.558	1.00 39.38
	ATOM	1306		LEU A 169			46.432	1.00 37.35
	ATOM	1307	N	MET A 170			48.479	1.00 34.23
<i>(</i> 0	ATOM	1308	CA	MET A 170			49.069	1.00 31.07
60	ATOM	1309	С	MET A 170			49.287	1.00 34.13
	ATOM	1310	0	MET A 170			48.775	1.00 35.20
	ATOM	1311	CB	MET A 170			48.154	1.00 31.95
	ATOM	1312	CG	MET A 170	7.75	51 47.934	48.116	1.00 33.13
	ATOM	1313	SD	MET A 170			47.815	1.00 34.54

		MOTA	1314	CE	MET A		5.820	46.349	49.363	1.00 32.25
		MOTA	1315	N	SER A		10.332	45.165	50.057	1.00 28.20
		MOTA	1316	CA	SER A		11.064	43.953	50.297	1.00 28.47
	5	MOTA	1317	C	SER A		10.929	43.054	49.049	1.00 32.01
	3	ATOM	1318	0	SER A		10.396	41.958	49.089	1.00 30.93
		ATOM	1319 1320	CB OG	SER A		10.662 9.297	43.265 42.920	51.606 51.581	1.00 30.93
		ATOM ATOM	1321	N	ALA A		11.401	42.520	47.912	1.00 32.90 1.00 28.84
		MOTA	1322	CA	ALA A		11.286	42.773	46.691	1.00 28.84
	10	ATOM	1323	C	ALA A		12.241	43.258	45.644	1.00 23.48
	•	ATOM	1324	Ö	ALA A		13.060	44.147	45.881	1.00 37.03
		ATOM	1325	СВ	ALA A		9.884	42.969	46.120	1.00 29.48
		ATOM	1326	N	ILE A		12.104	42.686	44.452	1.00 39.49
		ATOM	1327	CA	ILE A		12.966	43.120	43.382	1.00 38.64
	15	ATOM	1328	С	ILE A	173	12.418	44.343	42.648	1.00 44.83
		ATOM	1329	0	ILE A	173	11.269	44.394	42.193	1.00 40.97
		MOTA	1330	СВ	ILE A	173	13.549	42.027	42.479	1.00 38.79
		MOTA	1331	CG1	ILE A		14.258	40.970	43.302	1.00 37.40
u]		ATOM	1332		ILE A		14.606	42.621	41.570	1.00 38.88
E. C.	20	MOTA	1333		ILE A		15.770	41.069	43.193	1.00 25.93
 - 4		MOTA	1334	N	ARG A		13.286	45.345	42.584	1.00 43.21
15		MOTA	1335	CA	ARG A		12.997	46.567	41.917	1.00 42.34
		ATOM	1336	С	ARG A		12.630	46.173	40.516	1.00 47.54
	25	ATOM	1337	0	ARG A		13.478	45.667	39.770	1.00 42.08
	25	ATOM	1338	CB	ARG A		14.254	47.422	41.937	1.00 42.47
		ATOM	1339	CG	ARG A		14.231	48.450	43.075	1.00 53.40
#		ATOM	1340	CD	ARG A		15.617	48.917	43.515	1.00 33.80
 - 4		ATOM	1341 1342	NE CZ	ARG A		16.036	50.083	42.756	1.00 53.32
ħ	30	ATOM ATOM	1342		ARG A		17.221 18.132	50.208 49.243	42.181 42.266	1.00 97.11 1.00100.00
T.	50	ATOM	1344		ARG A		17.503	51.321	41.489	1.00100.00
		ATOM	1345	N	ASP A		11.356	46.356	40.195	1.00100.00
C.		ATOM	1346	CA	ASP A		10.858	45.981	38.882	1.00 53.89
L.		ATOM	1347	C	ASP A		10.778	47.128	37.885	1.00 58.32
=	35	ATOM	1348	Ō	ASP A		10.455	46.901	36.727	1.00 56.00
		ATOM	1349	СВ	ASP A		9.533	45.186	38.948	1.00 57.16
		ATOM	1350	CG	ASP A		9.196	44.446	37.675	1.00 81.25
		ATOM	1351	OD1	ASP A	175	10.034	44.118	36.851	1.00 83.53
		ATOM	1352	OD2	ASP A	175	7.910	44.176	37.558	1.00 92.45
	40	MOTA	1353	N	GLY A	176	11.062	48.356	38.331	1.00 58.24
		ATOM	1354	CA	GLY A		11.021	49.498	37.438	1.00 57.71
		MOTA	1355	С	GLY A		9.969	50.546	37.773	1.00 58.98
		MOTA	1356	0	GLY A		9.090	50.371	38.620	1.00 52.04
	15	ATOM	1357	N	GLU A		10.110	51.649	37.050	1.00 63.72
	45	MOTA	1358	CA	GLU A		9.267	52.812	37.172	1.00 67.79
		ATOM ATOM	1359 1360	C O	GLU A GLU A		8.874	53.388	35.817	1.00 86.22
		ATOM	1361	СВ	GLU A		9.614 9.986	53.364 53.902	34.830 38.006	1.00 91.14 1.00 68.25
		ATOM	1362	CG	GLU A		11.432	54.145	37.519	1.00 00.23
	50	ATOM	1363	CD	GLU A		12.183	55.088	38.404	1.00 85.08
		ATOM	1364		GLU A		13.045	54.733	39.198	1.00100.00
		ATOM	1365		GLU A		11.765	56.316	38.264	1.00 56.71
		ATOM	1366	N	THR A		7.671	53.924	35.835	1.00 84.76
		ATOM	1367	CA	THR A		6.684	54.686	35.042	1.00 84.81
	55	ATOM	1368	С	THR A		6.024	55.810	35.855	1.00 90.37
		ATOM	1369	0	THR A		5.664	55.655	36.996	1.00 91.10
		ATOM	1370	СВ	THR A		5.618	53.713	34.561	1.00 89.82
		ATOM	1371	OG1			5.283	52.830	35.636	1.00 80.25
		ATOM	1372	CG2	THR A		6.161	52.898	33.396	1.00 93.46
	60	MOTA	1373	N	PRO A	179	5.921	56.984	35.217	1.00 87.05
		ATOM	1374	CA	PRO A		5.365	58.187	35.845	1.00 86.61
		ATOM	1375	С	PRO A		3.857	58.419	35.531	1.00 89.04
		ATOM	1376	0	PRO A		3.444	59.516	35.140	1.00 91.15
		MOTA	1377	СВ	PRO A	179	6.176	59.345	35.301	1.00 88.63

	MOTA	1378	CG	PRO A	179	6.657	58.947	33.895	1.00 92.62
	ATOM	1379	CD	PRO A		6.426	57.345	33.902	1.00 87.63
	ATOM	1380	N	ASP A		3.020	57.347	35.694	1.00 82.31
-	ATOM	1381	CA	ASP A		1.616	57.568	35.310	1.00 81.19
5	MOTA	1382	C	ASP A		0.629	56.743	36.166	1.00 90.72
	ATOM	1383	0	ASP A		0.533	55.519	36.072	1.00 91.13
	ATOM	1384	CB	ASP A		1.458	57.196	33.827	1.00 82.12
	ATOM ATOM	1385 1386	CG OD1	ASP A		0.087	57.651	33.327	1.00 95.94
10	ATOM	1387		ASP A		-0.155 -0.714	58.858 56.801	33.337 32.946	1.00100.00
10	ATOM	1388	N	PRO A		-0.060	57.456	37.086	1.00 94.36 1.00 92.45
	ATOM	1389	CA	PRO A		-1.212	56.934	37.795	1.00 92.43
	ATOM	1390	C	PRO A		-2.519	57.566	37.733	1.00100.00
	ATOM	1391	ō	PRO A		-2.605	58.114	36.192	1.00100.00
15	ATOM	1392	СВ	PRO A		-1.014	57.340	39.210	1.00 92.48
	MOTA	1393	CG	PRO A		-0.362	58.734	39.152	1.00 98.39
	MOTA	1394	CD	PRO A		0.268	58.736	37.663	1.00 94.17
	ATOM	1395	N	GLU A	182	-3.567	57.456	38.141	1.00100.00
hai .:•	MOTA	1396	CA	GLU A	182	-4.822	58.161	37.876	1.00 98.21
1 20	ATOM	1397	С	GLU A		-5.359	58.856	39.154	1.00100.00
4.	MOTA	1398	0	GLU A		-6.404	59.497	39.167	1.00 99.44
	ATOM	1399	СВ	GLU A		-5.854	57.142	37.356	1.00 98.57
	ATOM	1400	CG	GLU A		-5.880	57.077	35.816	1.00100.00
25	MOTA	1401	CD	GLU A		-7.013	57.938	35.300	1.00100.00
25	ATOM	1402	OE1	GLU A		-7.817	58.385	36.105	1.00100.00
la de	ATOM	1403	OE2			-7.084	58.153	34.091	1.00100.00
II	ATOM	1404	N	ASP A		-4.607	58.672	40.265	1.00 98.63
<u> </u>	ATOM	1405	CA	ASP A		-5.021	59.257	41.552	1.00 97.49
1 30	ATOM ATOM	1406 1407	С 0	ASP A		-4.126	60.472	41.932	1.00100.00
Hai Ju	ATOM	1407	СВ	ASP A		-3.464 -4.946	61.061	41.079	1.00100.00
ī.	ATOM	1409	CG	ASP A		-3.612	58.144 57.409	42.619 42.547	1.00 98.36 1.00100.00
	ATOM	1410		ASP A		-3.471	56.556	41.668	1.00100.00
	ATOM	1411		ASP A		-2.741	57.688	43.364	1.00100.00
₽4 3 5	ATOM	1412	N	PRO A		-4.187	60.906	43.237	1.00 97.96
	ATOM	1413	CA	PRO A		-3.311	61.985	43.738	1.00 97.92
	ATOM	1414	С	PRO A		-1.865	61.528	44.071	1.00 97.89
	ATOM	1415	0	PRO A		-1.348	61.748	45.159	1.00100.00
	ATOM	1416	CB	PRO A	184	-3.973	62.561	44.992	1.00 98.86
40	ATOM	1417	CG	PRO A	184	-5.262	61.777	45.284	1.00100.00
	ATOM	1418	CD	PRO A		-5.122	60.532	44.284	1.00 97.20
	MOTA	1419	N	SER A		-1.249	60.840	43.071	1.00 82.40
	ATOM	1420	CA	SER A		0.196	60.496	43.086	1.00 75.26
45	ATOM	1421	C	SER A		0.748	60.563	41.623	1.00 71.84
43	ATOM	1422	0	SER A		-0.006	60.525	40.670	1.00 77.97
	ATOM	1423	CB	SER A		0.337	59.068	43.636	1.00 73.41
	ATOM ATOM	1424 1425	og N	SER A ARG A		0.672 2.107	59.109 60.704	45.027 41.461	1.00 63.60 1.00 57.89
	ATOM	1425	CA	ARG A		2.650	60.704		
50	ATOM	1427	C	ARG A		3.725	59.943	40.088 39.633	1.00 56.00 1.00 59.64
	ATOM	1428	Ö	ARG A		4.473	60.157	38.688	1.00 60.30
	ATOM	1429	СВ	ARG A		3.258	62.393	40.064	1.00 63.74
	MOTA	1430	CG	ARG A		2.339	63.457	40.677	1.00 80.44
	ATOM	1431	CD	ARG A		1.188	63.874	39.736	1.00 71.31
55	ATOM	1432	NE	ARG A		1.316	63.215	38.436	1.00 79.64
	ATOM	1433	CZ	ARG A		0.185	62.862	37.784	1.00 95.30
	ATOM	1434	NH1	ARG A		-0.999	63.109	38.312	1.00 56.25
	ATOM	1435	NH2	ARG A		0.276	62.232	36.603	1.00 89.98
	MOTA	1436	N	LYS A		3.892	58.778	40.265	1.00 54.50
60	ATOM	1437	CA	LYS A		4.891	57.805	39.851	1.00 51.93
	ATOM	1438	С	LYS A		4.506	56.436	40.276	1.00 52.96
	ATOM	1439	0	LYS A		3.971	56.236	41.368	1.00 53.58
	ATOM	1440	CB	LYS A		6.247	58.047	40.470	1.00 53.78
	ATOM	1441	CG	LYS A	187	7.427	57.714	39.574	1.00 43.05

	ATOM	1442	CD	LYS A	187		8.517	58.761	39.762	1.00 53.36
	MOTA	1443	CE	LYS A			9.870	58.468	39.146	1.00 39.68
	MOTA	1444	NZ	LYS A			10.795	59.601	39.341	1.00 40.19
_	ATOM	1445	N	ILE A			4.819	55.502	39.403	1.00 46.36
5	ATOM	1446	CA	ILE A			4.565	54.128	39.700	1.00 43.57
	ATOM	1447 1448	С 0	ILE A			5.824	53.311	39.851	1.00 42,64
	ATOM ATOM	1449	СВ	ILE A		•	6.647 3.579	53.189 53.425	38.937	1.00 41.55
	ATOM	1450	CG1				2.193	54.021	38.826 39.047	1.00 45.64 1.00 45.82
10	ATOM	1451	CG2	ILE A			3.590	51.969	39.273	1.00 43.82
	ATOM	1452	CD1				1.448	53.505	40.276	1.00 62.08
•	ATOM	1453	N	TYR A			5.950	52.757	41.042	1.00 35.58
	ATOM	1454	CA	TYR A			7.079	51.933	41.356	1.00 37.57
	ATOM	1455	С	TYR A			6.652	50.465	41.359	1.00 44.89
15	MOTA	1456	0	TYR A			5.656	50.092	41.999	1.00 44.33
	ATOM	1457	CB	TYR A			7.752	52.392	42.661	1.00 37.85
	MOTA	1458	CG	TYR A			8.692	53.563	42.456	1.00 34.49
<u> </u>	ATOM	1459		TYR A			9.968	53.375	41.930	1.00 35.93
. (T)	MOTA	1460		TYR A			8.310	54.859	42.813	1.00 32.44
20	ATOM	1461	CE1	TYR A			10.843	54.449	41.753	1.00 36.88
	ATOM	1462	CE2	TYR A			9.170	55.945	42.647	1.00 31.63
€## #\$##: €##:	ATOM	1463 1464	CZ OH	TYR A			10.441	55.734	42.113	1.00 44.54
	ATOM ATOM	1465	N	LYS A			11.296 7.413	56.788 49.651	41.929 40.608	1.00 57.77
25	ATOM	1466	CA	LYS A			7.413	48.210	40.420	1.00 42.91 1.00 42.22
⊌ (2 0 L&	ATOM	1467	C	LYS A			8.152	47.262	41.143	1.00 42.22
#	ATOM	1468	Ō	LYS A			9.398	47.400	41.093	1.00 40.73
≡ : -	ATOM	1469	СВ	LYS A			7.007	47.839	38.944	1.00 45.87
l-i	ATOM	1470	CG	LYS A			5.735	48.403	38.306	1.00 71.08
30	ATOM	1471	CD	LYS A	190		5.758	48.384	36.779	1.00 84.62
IJ	ATOM	1472	CE	LYS A			4.386	48.157	36.147	1.00100.00
	ATOM	1473	NZ	LYS A			4.299	46.930	35.329	1.00100.00
E.	ATOM	1474	N	PHE A			7.539	46.264	41.812	1.00 35.01
35	ATOM	1475	CA	PHE A			8.276	45.304	42.592	1.00 31.57
33	ATOM	1476 1477	c o	PHE A			7.792	43.871	42.465	1.00 30.89
	ATOM ATOM	1477	CB	PHE A			6.603 8.217	43.584 45.734	42.377 44.080	1.00 25.06 1.00 32.11
	ATOM	1479	CG	PHE A			8.570	47.190	44.372	1.00 32.11
	ATOM	1480	CD1				9.895	47.593	44.539	1.00 23.24
40	ATOM	1481		PHE A			7.565	48.147	44.508	1.00 30.17
	ATOM	1482		PHE A					44.805	1.00 34.10
	ATOM	1483		PHE A			7.866	49.483	44.776	1.00 33.69
	MOTA	1484	CZ	PHE A			9.201	49.860	44.928	1.00 33.32
	MOTA	1485	N	ILE A			8.764	42.961	42.505	1.00 35.75
45	ATOM	1486	CA	ILE A			8.525	41.520	42.415	1.00 37.02
	MOTA	1487	C	ILE A			9.255	40.653	43.469	1.00 33.05
	ATOM	1488	0	ILE A			10.489	40.672	43.593	1.00 30.73
	ATOM ATOM	1489 1490	CB	ILE A			8.850	40.970	41.025	1.00 42.45
50	ATOM	1491		ILE A			8.289 8.251	41.914 39.567	39.981	1.00 46.39
20	ATOM	1492		ILE A			7.609	41.231	40.859 38.798	1.00 44.02 1.00 69.61
	MOTA	1493	N	GLN A			8.459	39.864	44.195	1.00 03.01
	ATOM	1494	CA	GLN A			8.954	38.908	45.177	1.00 32.05
	MOTA	1495	С	GLN A			8.626	37.488	44.757	1.00 44.32
55	MOTA	1496	0	GLN A			7.583	36.926	45.120	1.00 43.11
	MOTA	1497	CB	GLN A	193		8.502	39.100	46.638	1.00 33.44
	MOTA	1498	CG	GLN A			9.285	38.203	47.632	1.00 22.34
	MOTA	1499	CD	GLN A			10.824	38.337	47.636	1.00 48.52
60	MOTA	1500		GLN A			11.557	37.537	47.016	1.00 45.24
60	ATOM	1501	NE2				11.326	39.330	48.373	1.00 24.82
	ATOM	1502	N	LYS A			9.543	36.908	43.993	1.00 46.91
	ATOM	1503	CA	LYS A			9.384	35.540	43.529	1.00 47.56
	ATOM ATOM	1504	C	LYS A			9.456	34.524	44.666	1.00 49.56
	MOTA	1505	0	LYS A	194		8.777	33.520	44.598	1.00 50.85

	ATOM	1506	CB	LYS A 194	10.385	35.159	42.439	1.00 48.11
	MOTA	1507	CG	LYS A 194	9.884	35.443	41.031	1.00 55.70
	ATOM	1508	CD	LYS A 194	10.895	36.200	40.179	1.00 67.67
_	ATOM	1509	CE	LYS A 194	10.614	36.122	38.682	1.00 81.92
5	ATOM	1510	NZ	LYS A 194	11.284	37.185	37.910	1.00 88.34
	ATOM	1511	N	VAL A 195	10.308	34.753	45.689	1.00 39.55
	MOTA	1512	CA	VAL A 195	10.422	33.780	46.764	1.00 33.56
	MOTA	1513	С	VAL A 195	9.261	33.862	47.698	1.00 35.67
10	ATOM	1514	0	VAL A 195	8.804	34.945	48.034	1.00 38.69
10	ATOM	1515	CB	VAL A 195	11.716	33.844	47.560	1.00 32.62
	ATOM	1516	CG1		11.849	32.539	48.310	1.00 32.40
	ATOM	1517		VAL A 195	12.933	34.029	46.667	1.00 30.55
	ATOM .	1518	N	PRO A 196	8.770	32.717	48.126	1.00 27.75
15	ATOM	1519	CA	PRO A 196	7.653	32.757	49.038	1.00 26.18
15	ATOM	1520	С	PRO A 196	8.132	33.236	50.410	1.00 35.86
	ATOM	1521	0	PRO A 196	9.185	32.809	50.899	1.00 35.43
	ATOM	1522	CB	PRO A 196	7.022	31.359	49.044	1.00 26.04
	ATOM	1523	CG	PRO A 196	7.856	30.472	48.113	1.00 27.79
20	ATOM	1524	CD	PRO A 196	8.964	31.352	47.546	1.00 25.40
-20	MOTA	1525	N	ILE A 197	7.388	34.171	51.009	1.00 29.92
	ATOM	1526	CA	ILE A 197	7.772	34.697	52.284	1.00 26.98
Taur La	ATOM	1527	C	ILE A 197	6.544	34.809	53.128	1.00 34.88
1111	ATOM	1528	0	ILE A 197	5.444	34.788	52.606	1.00 29.68
2 5	ATOM	1529	CB	ILE A 197	8.334	36.100	52.094	1.00 27.90
<u> </u>	ATOM	1530	CG1	ILE A 197	7.342	36.867	51.254	1.00 27.78
¥1	ATOM	1531	CG2		9.659	36.091	51.337	1.00 28.12
ļ-£	ATOM	1532	CD1		7.494	38.378	51.438	1.00 19.03
£	ATOM	1533	N	PRO A 198	6.743	34.936	54.447	1.00 36.02
-30	ATOM	1534	CA	PRO A 198	5.647	35.110	55.410	1.00 31.31
	MOTA	1535 1536	С 0	PRO A 198	5.299	36.583	55.308	1.00 28.27
	ATOM ATOM	1537	CB	PRO A 198	6.212	37.391	55.115	1.00 22.70
Ŋ	ATOM	1537	CG	PRO A 198	6.252	34.849	56.794	1.00 31.17
71	ATOM	1539	CD	PRO A 198	7.768	34.768	56.615	1.00 34.94
35	ATOM	1540	N	PRO A 198 CYS A 199	8.057	34.706	55.122	1.00 32.99
h#	ATOM	1541	CA	CYS A 199	4.011	36.939	55.405	1.00 27.60
	ATOM	1542	C	CYS A 199	3.555 4.255	38.360	55.289	1.00 27.66
	ATOM	1543	Ö	CYS A 199	4.294	39.390 40.596	56.187 55.895	1.00 30.13
	ATOM	1544	СВ	CYS A 199	2.025	38.534	55.242	1.00 29.50
40	ATOM	1545	SG	CYS A 199	1.232	38.279	56.841	1.00 27.18 1.00 30.85
	ATOM	1546	N	TYR A 200	4.847	38.903		
	ATOM	1547	CA	TYR A 200	5.538	39.798	57.270 58.123	1.00 26.15 1.00 28.28
	ATOM	1548	С	TYR A 200	6.760	40.395	57.483	1.00 20.20
	ATOM	1549	ō	TYR A 200	7.359	41.286	58.036	1.00 32.29
45	ATOM	1550	СВ	TYR A 200	5.844	39.215	59.489	1.00 31.50
	ATOM	1551	CG	TYR A 200	6.989	38.272	59.568	1.00 28.28
	ATOM	1552	CD1		8.288	38.733	59.689	1.00 20.20
	ATOM	1553		TYR A 200	6.756	36.903	59.475	1.00 27.55
	ATOM	1554		TYR A 200	9.377	37.862	59.825	1.00 21.42
50	MOTA	1555	CE2		7.838	36.015	59.595	1.00 27.41
	ATOM	1556	CZ	TYR A 200	9.144	36.488	59.737	1.00 25.11
	ATOM	1557	OH	TYR A 200	10.215	35.614	59.880	1.00 27.62
	ATOM	1558	N	LEU A 201	7.113	39.897	56.313	1.00 31.66
	ATOM	1559	CA	LEU A 201	8.278	40.378	55.579	1.00 29.49
55	MOTA	1560	С	LEU A 201	7.914	41.343	54.484	1.00 33.65
	ATOM	1561	0	LEU A 201	8.767	41.737	53.686	1.00 35.31
	MOTA	1562	CB	LEU A 201	9.225	39.275	55.035	1.00 27.04
	MOTA	1563	CG	LEU A 201	9.697	38.271	56.071	1.00 27.42
	ATOM	1564	CD1	LEU A 201	10.254	37.030	55.390	1.00 23.71
60	ATOM	1565		LEU A 201	10.764	38.913	56.957	1.00 30.55
	ATOM	1566	N	ILE A 202	6.648	41.710	54.438	1.00 28.66
	MOTA	1567	CA	ILE A 202	6.249	42.674	53.433	1.00 29.57
	MOTA	1568	С	ILE A 202	6.636	44.074	53.951	1.00 40.28
	ATOM	1569	0	ILE A 202	6.192	44.493	55.027	1.00 40.75

	ATOM	1570	СВ	ILE A 202	4.733	42.651	53.182	1.00 31.18
	ATOM	1571	CG1	ILE A 202	4.250		52.405	1.00 28.21
	ATOM	1572		ILE A 202	4.259		52.521	1.00 29.23
	ATOM	1573	CD1	ILE A 202	2.724		52.449	1.00 23.01
5	ATOM	1574	N	ALA A 203	7.445	44.813	53.197	1.00 39.14
	ATOM	1575	CA	ALA A 203	7.840		53.611	1.00 37.03
	ATOM	1576	С	ALA A 203	7.819		52.482	1.00 34.32
	ATOM	1577	0	ALA A 203	8.060		51.311	1.00 30.63
	ATOM	1578	СВ	ALA A 203	9.180		54.309	1.00 38.22
10	MOTA	1579	N	LEU A 204	7.514		52.910	1.00 33.64
	ATOM	1580	CA	LEU A 204	7.388		52.102	1.00 32.56
	ATOM	1581	С	LEU A 204	7.993		52.812	1.00 37.69
	ATOM	1582	0	LEU A 204	7.854		54.034	1.00 32.66
	ATOM	1583	СВ	LEU A 204	5.906		51.718	1.00 29.74
15	ATOM	1584	CG	LEU A 204	5.706		50.855	1.00 29.64
	ATOM	1585		LEU A 204	6.263		49.445	1.00 29.47
	ATOM	1586		LEU A 204	4.222		50.750	1.00 33.50
•	ATOM	1587	N	VAL A 205	8.670		51.991	1.00 36.87
=	ATOM	1588	CA	VAL A 205	9.305		52.415	1.00 35.15
20	ATOM	1589	С	VAL A 205	9.224		51.284	1.00 38.41
	ATOM	1590	0	VAL A 205	9.575		50.148	1.00 39.50
1	ATOM	1591	СВ	VAL A 205	10.769		52.804	1.00 36.06
·&	ATOM	1592		VAL A 205	11.466		51.757	1.00 35.08
	ATOM	1593		VAL A 205	11.432		52.833	1.00 35.00
₽ 25	ATOM	1594	N	VAL A 206	8.750		51.623	1.00 33.54
	ATOM	1595	CA	VAL A 206	8.623		50.687	1.00 33.34
= E	ATOM	1596	c	VAL A 206	9.300		51.249	1.00 31.61
	ATOM	1597	Ö	VAL A 206	9.076		52.406	1.00 31.02
ŧ	ATOM	1598	СВ	VAL A 206	7.179		50.305	1.00 34.01
30	ATOM	1599		VAL A 206			49.029	1.00 33.33
	ATOM	1600		VAL A 206	6.452		50.109	1.00 33.44
T.i	ATOM	1601	N	GLY A 207	10.130		50.431	1.00 31.98
	ATOM	1602	CA	GLY A 207	10.807		50.861	1.00 27.25
ka sii p= xi,	ATOM	1603	c	GLY A 207	11.802		49.838	1.00 27.23
35	ATOM	1604	Ö	GLY A 207	12.046		48.840	1.00 30.01
pé.	ATOM	1605	N	ALA A 208	12.375		50.113	1.00 33.02
	ATOM	1606	CA	ALA A 208	13.370		49.233	1.00 42.72
	ATOM	1607	C	ALA A 208	14.660		49.356	1.00 49.10
	ATOM	1608	Ö	ALA A 208	15.651		49.957	1.00 43.10
40	ATOM	1609	CB	ALA A 208	13.605		49.589	1.00 31.30
	ATOM	1610	N	LEU A 209	14.623		48.773	1.00 40.92
	ATOM	1611	CA	LEU A 209	15.739		48.825	1.00 39.55
	ATOM	1612	С	LEU A 209	16.756		47.743	1.00 47.96
	ATOM	1613	ō	LEU A 209	16.420		46.597	1.00 49.44
45	MOTA	1614	CB	LEU A 209	15.269		48.894	1.00 37.97
	ATOM	1615	CG	LEU A 209	14.420		50.129	1.00 40.46
	ATOM	1616		LEU A 209	13.713		50.075	1.00 36.99
	ATOM	1617		LEU A 209	15.283		51.387	1.00 43.31
	ATOM	1618	N	GLU A 210	17.999		48.182	1.00 42.68
50	ATOM	1619	CA	GLU A 210	19.205		47.381	1.00 40.30
	ATOM	1620	C	GLU A 210	19.965		47.693	1.00 47.51
	ATOM	1621	Ō	GLU A 210	19.708		48.721	1.00 47.89
	ATOM	1622	СВ	GLU A 210	20.084		47.613	1.00 47.03
	ATOM	1623	CG	GLU A 210	19.699		46.697	1.00 58.26
55	ATOM	1624	CD	GLU A 210	20.524		46.897	1.00100.00
	ATOM	1625		GLU A 210	21.629		47.451	1.00100.00
	ATOM	1626		GLU A 210	19.935		46.486	1.00 93.26
	ATOM	1627	N	SER A 211	20.895		46.805	1.00100.00
	ATOM	1628	CA	SER A 211	21.661		47.013	1.00 43.01
60	ATOM	1629	C	SER A 211	23.143		46.667	1.00 42.25
50	ATOM	1630	0	SER A 211	23.649			
	ATOM	1631	СВ	SER A 211	21.025		46.086	1.00 46.43
	ATOM	1632	OG	SER A 211	21.023		46.346 44.934	1.00 44.33
	MOTA	1633	N	ARG A 211	23.829		47.053	1.00 54.15 1.00 34.85
		1000	••	A 212	25.023	54.43/	71.000	1.00 34.03

	ATOM	1634	CA	ARG A 21	2	25.229	54.328	46.791	1.00	35.41
	ATOM	1635	С	ARG A 212	2	25.430	52.838	46.567	1.00	45.39
	ATOM	1636	0	ARG A 212	2	24.840	52.027	47.276	1.00	48.85
_	ATOM	1637	CB	ARG A 212		26.101	54.846	47.915		37.25
5	ATOM	1638	CG	ARG A 212		27.151	55 .827	47.402	1.00	68.10
	MOTA	1639	CD	ARG A 212		26.532	56.962	46.587		76.55
	MOTA	1640	NE	ARG A 212		26.695	58.307	47.148		55.19
	ATOM	1641	CZ	ARG A 212		25.845	59.301	46.867		70.87
10	ATOM	1642	NH1	ARG A 212		24.806	59.105	46.059		35.71
10	ATOM	1643		ARG A 212		26.032	60.516	47.392		73.35
	ATOM	1644	N	GLN A 213		26.210	52.442	45.567		40.74
	ATOM	1645	CA	GLN A 213		26.408	51.021	45.331		39.90
	ATOM	1646	C	GLN A 213		27.646	50.537	46.050		46.34
1.5	ATOM	1647	0	GLN A 213		28.740	50.981	45.741		53.77
15	ATOM	1648	CB	GLN A 213		26.545	50.741	43.846		40.99
	ATOM	1649	CG	GLN A 21:		26.976	49.296	43.532		55.79
	ATOM	1650	CD	GLN A 213		26.292	48.743	42.301		76.04
	ATOM	1651	OE1			26.275	47.523	42.102		86.66
	ATOM	1652	NE2	GLN A 213		25.700	49.618	41.489		55.45
20	ATOM	1653	N	ILE A 214		27.495	49.649	47.013		33.12
15	ATOM	1654	CA	ILE A 214		28.663	49.206	47.743		32.55
sh.	ATOM	1655	С	ILE A 214		28.911	47.765	47.536		39.29
2201: 2201:	ATOM	1656	0	ILE A 214		29.726	47.162	48.230		42.41
25	ATOM	1657	CB	ILE A 214		28.546	49.428	49.250		35.72
23	ATOM	1658	CG1	ILE A 214		27.395	48.573	49.791		36.13
<u>l</u> 1	MOTA	1659		ILE A 21		28.344	50.911	49.598		35.79
]- 4.	ATOM	1660		ILE A 214		27.067	48.841	51.260		46.69
	ATOM	1661	N	GLY A 215		28.199	47.197	46.598		35.02
-30	ATOM	1662	CA	GLY A 215		28.638	45.855	46.234		34.88
	ATOM	1663	С	GLY A 215		27.970	45.405	44.950		41.09
	ATOM	1664 1665	O N	GLY A 219		27.083	46.048	44.425		44.25
n.	ATOM			PRO A 216		28.448	44.262	44.410		39.62
# THE	ATOM	1666	CA	PRO A 210		27.890	43.720	43.197		39.69
35	ATOM ATOM	1667 1668	C O	PRO A 210		26.369	43.661	43.253		41.56
	ATOM	1669	СВ	PRO A 216		25.655 28.448	43.817	42.240		44.35
	ATOM	1670	CG	PRO A 216		29.377	42.311 41.993	42.996 44.164		39.91
	ATOM	1671	CD	PRO A 216		29.514	43.411	44.104		41.54
	ATOM	1672	N	ARG A 21		25.846	43.411	44.477		37.70
40	ATOM	1673	CA	ARG A 21		24.421	43.328	44.652		31.04 29.22
	ATOM	1674	c	ARG A 21		23.928	44.109	45.872		38.24
	ATOM	1675	Ŏ	ARG A 21		22.861	43.885	46.368		40.69
	ATOM	1676	СВ	ARG A 21		24.012	41.844	44.790		22.75
	ATOM	1677	CG	ARG A 21		25.221	40.963	45.109		40.77
45	MOTA	1678	CD	ARG A 21		24.828	39.774	45.985		34.08
	ATOM	1679	NE	ARG A 21		26.020	39.183	46.581		45.20
	ATOM	1680	CZ	ARG A 21'		25.955	37.894	46.911		65.13
	ATOM	1681	NH1	ARG A 21	7	24.832	37.220	46.716		42.40
	ATOM	1682		ARG A 21		26.997	37.300	47.472		48.08
50	ATOM	1683	N	THR A 218	3	24.784	45.022	46.404		31.00
	ATOM	1684	CA	THR A 218	3	24.309	45.886	47.487		31.00
	MOTA	1685	С	THR A 218	3	24.128	47.319	47.021		43.60
	ATOM	1686	0	THR A 218	3	25.065	47.930	46.512		48.42
	ATOM	1687	CB	THR A 218	3	25.315	45.845	48.640		36.95
55	ATOM	1688	OG1	THR A 218	3	25.430	44.517	49.139		45.66
	ATOM	1689	CG2	THR A 218	3	24.826	46.751	49.766		34.17
	ATOM	1690	N	LEU A 219	9	23.099	48.018	47.431		39.19
	ATOM	1691	CA	LEU A 219		23.055	49.452	47.315		38.18
	ATOM	1692	С	LEU A 219	9	22.713	50.000	48.695		42.32
60	ATOM	1693	0	LEU A 219		22.108	49.289	49.498		43.67
	MOTA	1694	CB	LEU A 219		21.927	49.841	46.356		37.05
	ATOM	1695	CG	LEU A 219		22.386	50.657	45.168	1.00	39.31
	ATOM	1696		LEU A 219		23.670	50.064	44.613		40.57
	MOTA	1697	CD2	LEU A 219	9	21.283	50.619	44.131	1.00	29.39

	MOTA	1698	N	VAL A	220	23.066	51.241	48.976	1.00 35.01
	MOTA	1699	CA	VAL A		22.741	51.830	50.253	1.00 36.98
	MOTA	1700	С	VAL A		21.736	52.923	50.043	1.00 44.08
~	MOTA	1701	0	VAL A		21.959	53.835	49.256	1.00 46.60
5	ATOM	1702	CB	VAL A		23.965	52.346	51.028	1.00 44.95
	ATOM	1703		VAL A		23.675	52.428	52.516	1.00 43.16
	MOTA	1704		VAL A		25.138	51.382	50.828	1.00 47.70
	ATOM	1705	N	TRP A		20.622	52.818	50.731	1.00 41.98
10	ATOM	1706	CA C	TRP A		19.605	53.828	50.602	1.00 41.64
10	ATOM	1707 1708	0	TRP A		19.464	54.612	51.872	1.00 42.40
	MOTA ATOM	1709	СВ	TRP A		19.461 18.256	54.060 53.245	52.960 50.186	1.00 45.56 1.00 41.24
	MOTA	1710	CG	TRP A		18.353	52.459	48.918	1.00 41.24
	MOTA	1711	CD1			18.888	51.225	48.793	1.00 42.39
15	ATOM	1712		TRP A		17.949	52.873	47.590	1.00 41.62
10	ATOM	1713		TRP A		18.826	50.832	47.478	1.00 44.74
	ATOM	1714		TRP A		18.243	51.821	46.720	1.00 45.31
	ATOM	1715		TRP A		17.345	54.009	47.061	1.00 41.17
	MOTA	1716		TRP A		17.958	51.902	45.346	1.00 42.60
20	MOTA	1717		TRP A		17.054	54.083	45.710	1.00 39.08
	ATOM	1718	CH2			17.360	53.040	44.864	1.00 38.48
±.	ATOM	1719	N	SER A	222	19.271	55.896	51.688	1.00 37.01
#11 #11	ATOM	1720	CA	SER A	222	19.017	56.846	52.748	1.00 38.05
#Fig	ATOM	1721	С	SER A	222	18.853	58.251	52.205	1.00 45.28
25	MOTA	1722	0	SER A	222	19.005	58.503	51.008	1.00 44.02
	ATOM	1723	CB	SER A	222	20.098	56.816	53.820	1.00 39.07
£.	MOTA	1724	OG	SER A	222	21.322	57.149	53.229	1.00 42.36
	ATOM	1725	N	GLU A		18.586	59.190	53.088	1.00 40.91
	MOTA	1726	CA	GLU A		18.465	60.527	52.584	1.00 41.97
30	ATOM	1727	C	GLU A		19.843	61.042	52.234	1.00 50.17
1 8	ATOM	1728	0	GLU A		20.829	60.701	52.863	1.00 52.02
* 1115 T 1175	ATOM	1729	CB	GLU A		17.856	61.483	53.597	1.00 43.06
= ±1 ² = ¥1 ₂	ATOM	1730	CG	GLU A		16.364	61.262	53.861	1.00 51.71
	ATOM	1731	CD	GLU A		15.799	62.478	54.545	1.00 84.51
zë, JJ	ATOM ATOM	1732 1733		GLU A		15.905 15.244	63.610 62.222	54.085 55.705	1.00 56.82 1.00 88.87
	ATOM	1734	N N	LYS A		19.892	61.875	51.229	1.00 47.39
	MOTA	1735	CA	LYS A		21.139	62.456	50.792	1.00 47.33
	ATOM	1736	C C	LYS A		22.163	62.683	51.930	1.00 50.90
40	ATOM	1737	ō	LYS A		23.382	62.569	51.736	1.00 51.55
	ATOM	1738	CB	LYS A		20.843	63.736	49.986	1.00 51.58
	ATOM	1739	CG	LYS A		22.039	64.648	49.723	1.00 81.16
	ATOM	1740	CD	LYS A		21.954	65.397	48.392	1.00 97.82
	ATOM	1741	CE	LYS A	224	21.646	66.891	48.530	1.00100.00
45	ATOM	1742	NZ	LYS A	224	22.056	67.700	47.362	1.00100.00
	ATOM	1743	N	GLU A	225	21.683	63.011	53.123	1.00 45.77
	MOTA	1744	CA	GLU A		22.607	63.309	54.199	1.00 46.00
	ATOM	1745	С	GLU A		23.227	62.150	54.902	1.00 47.99
50	ATOM	1746	0	GLU A		24.107	62.354	55.732	1.00 47.21
50	ATOM	1747	CB	GLU A		22.057	64.296	55.210	1.00 47.71
	ATOM	1748	CG	GLU A		20.530	64.296	55.182	1.00 63.24
	ATOM	1749	CD	GLU A		19.931	65.219	54.150	1.00 75.13
	ATOM	1750	OE1			20.187	66.420	54.046	1.00 54.64
55	ATOM	1751		GLU A		19.039	64.578	53.420	1.00 49.64
33	MOTA MOTA	1752 1753	N CA	GLN A		22.798	60.949	54.564	1.00 43.92
	ATOM	1754	CA	GLN A		23.340	59.772 58.756	55.224	1.00 43.91
	ATOM	1755	0	GLN A		24.036 24.756	57.871	54.322 54.806	1.00 45.86 1.00 45.70
	ATOM	1756	СВ	GLN A		24.756	59.084	56.063	1.00 45.70
60	ATOM	1757	CG	GLN A		22.252	59.790	57.400	1.00 45.27
	ATOM	1758	CD	GLN A		21.297	61.155	57.302	1.00 31.17
	ATOM	1759		GLN A		21.823	62.149	57.820	1.00 37.36
	ATOM	1760		GLN A		20.115	61.202	56.696	1.00 37.30
	ATOM	1761	N	VAL A		23.814	58.871	53.021	1.00 41.20

	MOTA	1762	CA	VAL A	227	24.406	57.947	52.071	1.00 43.13
	ATOM	1763	С	VAL A		25.884	57.670	52.261	1.00 50.55
		1764							
	MOTA		0	VAL A		26.298	56.518	52.480	1.00 53.01
_	MOTA	1765	CB	VAL A		24.155	58.293	50.604	1.00 49.39
5	MOTA	1766		VAL A		24.319	57.029	49.771	1.00 48.89
	MOTA	1767	CG2	VAL A	227	22.752	58.851	50.421	1.00 50.47
	ATOM	1768	N	GLU A		26.696	58.718	52.170	1.00 44.08
	ATOM	1769	CA	GLU A		28.123	58.542	52.310	
									1.00 41.71
10	ATOM	1770	С	GLU A		28.514	57.871	53.583	1.00 44.20
10	MOTA	1771	0	GLU A		29.227	56.868	53.589	1.00 44.88
	ATOM	1772	CB	GLU A	228	28.935	59.824	52.102	1.00 43.08
	ATOM	1773	CG	GLU A	228	29.153	60.161	50.611	1.00 64.74
	ATOM	1774	CD	GLU A		29.114	58.965	49.701	
									1.00 84.29
1.5	ATOM	1775		GLU A		29.975	58.107	49.685	1.00 84.36
15	ATOM	1776	OE2	GLU A		28.064	58.951	48.917	1.00 73.81
	ATOM	1777	N	LYS A	229	28.066	58.423	54.685	1.00 39.79
	ATOM	1778	CA	LYS A	229	28.449	57.796	55.922	1.00 39.04
	ATOM	1779	С	LYS A		27.949	56.375	55.930	1.00 40.38
d** ***,									
20	ATOM	1780	0	LYS A		28.639	55.433	56.346	1.00 43.63
⊎]20	ATOM	1781	CB	LYS A		28.129	58.585	57.187	1.00 39.79
4D	ATOM	1782	CG	LYS A	229	28.903	58.072	58.394	1.00 63.75
Tales	MOTA	1783	CD	LYS A	229	28.498	58.763	59.685	1.00 77.46
þ.e.	ATOM	1784	CE	LYS A		29.677	59.084	60.593	1.00 94.73
	ATOM	1785	NZ	LYS A					
25						30.344	60.353	60.256	1.00100.00
4m23	ATOM	1786	N	SER A		26.741	56.220	55.428	1.00 28.48
<u>l</u>	MOTA	1787	CA	SER A	230	26.174	54.891	55.377	1.00 25.93
14	ATOM	1788	С	SER A	230	27.089	53.988	54.587	1.00 30.26
	MOTA	1789	0	SER A	230	27.469	52.855	54.955	1.00 28.48
E	ATOM	1790	CB	SER A		24.824	54.927	54.694	
-,30									1.00 30.08
30	ATOM	1791	OG	SER A		23.822	55.293	55.605	1.00 41.60
34 1	ATOM	1792	N	ALA A		27.436	54.536	53.459	1.00 31.13
n.	ATOM	1793	CA	ALA A	231	28.288	53.820	52.593	1.00 36.66
	MOTA	1794	С	ALA A	231	29.597	53.383	53.270	1.00 47.68
FF FE	ATOM	1795	0	ALA A		30.003	52.238	53.103	1.00 54.59
[]35	ATOM	1796	CB	ALA A		28.406	54.518		
								51.257	1.00 38.49
	ATOM	1797	N	TYR A		30.256	54.246	54.060	1.00 40.77
	ATOM	1798	CA	TYR A		31.500	53.830	54.730	1.00 38.40
	ATOM	1799	С	TYR A	232	31.265	52.721	55.753	1.00 39.70
	ATOM	1800	0	TYR A	232	32.041	51.772	55.862	1.00 36.46
40	ATOM	1801	СВ	TYR A		32.311	54.981	55.414	1.00 38.27
	ATOM	1802	CG	TYR A					
						33.497	54.525	56.303	1.00 42.36
	ATOM	1803		TYR A		34.755	54.238	55.753	1.00 46.41
	ATOM	1804	CD2	TYR A	232	33.373	54.394	57.691	1.00 40.99
	MOTA	1805	CE1	TYR A	232	35.835	53.815	56.534	1.00 47.23
45	ATOM	1806		TYR A		34.441	53.979	58.496	1.00 40.10
	ATOM	1807	CZ	TYR A		35.680	53.695	57.916	1.00 48.59
	MOTA	1808	ОН	TYR A		36.734	53.282	58.698	1.00 51.92
	ATOM	1809	N	GLU A		30.191	52.883	56.519	1.00 35.75
	ATOM	1810	CA	GLU A	233	29.835	51.984	57.606	1.00 34.55
50	ATOM	1811	C	GLU A	233	29.633	50.498	57.252	1.00 38.39
	ATOM	1812	0	GLU A		30.152	49.576	57.892	1.00 38.55
	ATOM	1813	СВ	GLU A		28.673			
							52.623	58.414	1.00 34.48
	MOTA	1814	CG	GLU A		28.666	52.262	59.912	1.00 24.95
	MOTA	1815	CD	GLU A		29.463	53.183	60.787	1.00 37.55
55	ATOM	1816	OE1	GLU A	233	29.408	54.410	60.741	1.00 55.33
	ATOM	1817		GLU A		30.216	52.518	61.619	1.00 40.65
	ATOM	1818	N	PHE A		28.867	50.282	56.202	
									1.00 33.02
	ATOM	1819	CA	PHE A		28.493	48.974	55.719	1.00 29.90
	ATOM	1820	С	PHE A		29.341	48.398	54.592	1.00 34.69
60	MOTA	1821	0	PHE A	234	28.883	47.521	53.823	1.00 34.21
	ATOM	1822	СВ	PHE A		27.020	49.081	55.293	1.00 30.23
	ATOM	1823	CG	PHE A		26.215	49.752	56.394	1.00 30.23
	ATOM	1824		PHE A		26.518	49.521	57.739	1.00 31.50
	MOTA	1825	CD2	PHE A	234	25.151	50.605	56.102	1.00 28.66

PCT/SE00/00384

	ATOM	1826	CE1	PHE	A	234	25.780	50.103	58.772	1 00	30.43
	ATOM	1827		PHE			24.407	51.203	57.121		29.60
	ATOM	1828	CZ	PHE			24.725	50.959	58.458		27.47
	ATOM	1829	N	SER	Α	235	30.571	48.874	54.476		29.55
5	ATOM	1830	CA			235	31.428	48.366	53.412	1.00	28.64
	ATOM	1831	С	SER	Α	235	31.387	46.858	53.338	1.00	30.38
	ATOM	1832	0			235	31.166	46.252	52.282	1.00	32.37
	MOTA	1833	CB			235	32.861	48.787	53.604	1.00	31.15
10	ATOM	1834	OG			235	33.028	49.368	54.873		39.32
10	ATOM	1835	N			236	31.698	46.299	54.504		22.49
	ATOM	1836	CA			236	31.815	44.873	54.737		23.79
	ATOM	1837	С			236	30.627	43.992	54.380		32.37
	ATOM	1838	0			236	30.697	42.772	54.545		29.91
15	ATOM	1839	CB			236	32.305	44.529	56.134		24.06
15	ATOM	1840	CG			236	33.491	45.403	56.585		22.96
	ATOM	1841	CD			236	33.600	45.492	58.090		66.18
	ATOM	1842 1843	OE1	GLU		236	32.633	45.482	58.849		37.01
in the	MOTA MOTA	1844	N N			237	34.848	45.518	58.494		78.68
20		1845	CA			237	29.560	44.593	53.891		34.11
42 524	ATOM ATOM	1846	C			237	28.384	43.823	53.539		33.69
	MOTA	1847	0			237	28.644	42.609	52.644		33.33
}- &:	ATOM	1848	CB			237	28.517 27.218	41.451	53.048		31.09
44 m	ATOM	1849	OG1			237	26.899	44.710 45.675	53.057 54.048		37.99
25	ATOM	1850	CG2			237	25.995	43.862	52.744		33.49 25.66
11	ATOM	1851	N			238	29.020	42.854	51.409		29.69
	ATOM	1852	CA			238	29.267	41.734	50.520		27.05
	ATOM	1853	C			238	30.071	40.638	51.146		33.17
5	ATOM	1854	Ö			238	29.660	39.497	51.055		38.50
} 30	ATOM	1855	СВ			238	29.851	42.080	49.161		27.50
	ATOM	1856	CG			238	30.116	40.813	48.320		18.83
n.	ATOM	1857	CD			238	28.902	40.297	47.596		41.67
42 th	ATOM	1858	OE1			238	27.848	40.909	47.464		33.59
4 5	ATOM	1859	OE2			238	29.085	39.089	47.138		46.30
[] [] []35	ATOM	1860	N	SER	Α	239	31.203	40.973	51.772		24.44
	ATOM	1861	CA	SER	Α	239	32.045	39.957	52.387		24.60
	MOTA	1862	С	SER	Α	239	31.245	39.060	53.344	1.00	35.72
	ATOM	1863	0			239	31.379	37.830	53.360	1.00	35.25
40	ATOM	1864	CB			239	33.231	40.601	53.074	1.00	29.14
40	ATOM	1865	OG			239	32.747	41.590	53.961		54.60
	ATOM	1866	N			240	30.382	39.703	54.154		
	MOTA	1867	CA			240	29.529	38.993	55.091		28.55
	ATOM	1868	С			240	28.603		54.325		35.65
45	ATOM	1869	0			240	28.435	36.926	54.689		35.99
43	ATOM	1870	CB			240	28.736		55.993		26.50
	ATOM	1871	CG			240	29.691	40.675	56.910		27.57
	ATOM	1872	SD			240	28.871	41.986	57.833		32.91
	ATOM	1873	CE			240	30.040		59.183		28.47
50	ATOM ATOM	1874 1875	N CA			241 241	28.019		53.243		32.77
50	ATOM	1876	CA			241	27.120		52.381		29.87
	ATOM	1877	0			241	27.848 27.302	36.615 35.509	51.878		36.76
	ATOM	1878	СВ			241	26.715		51.858		36.97
	ATOM	1879	CG			241	25.283	39.289	51.196 51.237		29.71 37.68
55	ATOM	1880		LEU			25.274	40.552	50.389		35.76
	ATOM	1881		LEU			24.309	38.257	50.673		45.60
	ATOM	1882	N N			242	29.114	36.806	51.468		34.76
	ATOM	1883	CA			242	29.908	35.702	50.972		33.62
	ATOM	1884	C			242	30.072	34.690	52.039		32.18
60	ATOM	1885	Ö			242	29.887	33.512	51.795		32.16
	ATOM	1886	СВ			242	31.292				38.43
	ATOM	1887	CG			242	31.406		48.961		49.23
	ATOM	1888	CD			242	31.160				88.36
	ATOM	1889							17 943		

32.371 38.456 47.943 1.00100.00

1889 CE LYS A 242

	ATOM	1890	NZ	LYS A 242	32.033	39.411	46.862	1.00100.00
	ATOM	1891	N	ILE A 243	30.428	35.154	53.227	1.00 30.87
	MOTA	1892	CA	ILE A 243	30.627	34.229	54.359	1.00 31.70
_	MOTA	1893	С	ILE A 243	29.381	33.458	54.764	1.00 36.50
5	ATOM	1894	0	ILE A 243	29.458	32.303	55.119	1.00 39.33
	ATOM	1895	CB	ILE A 243	31.227	34.886	55.579	1.00 32.36
	MOTA	1896	CG1	ILE A 243	32.630	35.337	55.222	1.00 32.09
	ATOM	1897	CG2	ILE A 243	31.243	33.891	56.718	1.00 28.26
10	ATOM	1898		· ·	33.035	36.578	55.981	1.00 20.09
10	ATOM	1899	N	ALA A 244	28.237	34.120	54.708	1.00 32.10
	ATOM	1900	CA	ALA A 244	26.968	33.519	55.066	1.00 32.95
	ATOM ATOM	1901 1902	С 0	ALA A 244 ALA A 244	26.600 26.074	32.392	54.127	1.00 36.35
	ATOM	1902	СВ	ALA A 244	25.858	31.358 34.576	54.546 55.123	1.00 36.88
15	ATOM	1904	N	GLU A 245	26.890	32.617	52.846	1.00 34.02 1.00 31.20
10	ATOM	1905	CA	GLU A 245	26.614	31.635	51.818	1.00 31.20
	ATOM	1906	C	GLU A 245	27.360	30.354	52.092	1.00 25.20
	ATOM	1907	O	GLU A 245	26.849	29.276	51.800	1.00 36.21
	ATOM	1908	СВ	GLU A 245	26.908	32.177	50.421	1.00 30.22
11 20	MOTA	1909	CG	GLU A 245	25.701	32.938	49.842	1.00 39.79
41	ATOM	1910	CD	GLU A 245	26.026	33.564	48.529	1.00 51.91
41	ATOM	1911	OE1	GLU A 245	26.945	34.351	48.358	1.00 34.19
1.2.	ATOM	1912	OE2	GLU A 245	25.246	33.142	47.585	1.00 47.48
	ATOM	1913	N	ASP A 246	28.570	30.484	52.680	1.00 32.29
25	ATOM	1914	CA	ASP A 246	29.417	29.350	53.033	1.00 30.70
	MOTA	1915	С	ASP A 246	28.848	28.645	54.230	1.00 35.47
¥1	ATOM	1916	0	ASP A 246	28.881	27.417	54.347	1.00 37.08
} £	ATOM	1917	СВ	ASP A 246	30.873	29.717	53.355	1.00 33.17
[#] 20	ATOM	1918	CG	ASP A 246	31.709	28.473	53.413	1.00 64.49
30	ATOM	1919		ASP A 246	31.934	27.789	52.437	1.00 67.15
	ATOM ATOM	1920 1921	N	ASP A 246 LEU A 247	32.118 28.323	28.167	54.622	1.00 79.01
71	ATOM	1922	CA	LEU A 247	27.731	29.434 28.868	55.134 56.334	1.00 33.59
f ^{ru} i	ATOM	1923	C	LEU A 247	26.355	28.208	56.083	1.00 36.70 1.00 35.92
135	ATOM	1924	ŏ	LEU A 247	26.060	27.110	56.551	1.00 33.32
ha.	ATOM	1925	СВ	LEU A 247	27.562	29.954	57.435	1.00 38.34
=	ATOM	1926	CG	LEU A 247	28.732	30.100	58.394	1.00 44.30
	MOTA	1927	CD1	LEU A 247	29.341	28.738	58.641	1.00 48.20
	MOTA	1928	CD2	LEU A 247	29.779	31.013	57.815	1.00 35.25
40	ATOM	1929	N	GLY A 248	25.471	28.887	55.353	1.00 34.97
	MOTA	1930	CA	GLY A 248	24.160	28.315	55.181	1.00 36.00
	ATOM	1931	С	GLY A 248	23.754	27.976	53.778	1.00 37.99
	ATOM	1932	0	GLY A 248	22.637	27.524	53.526	1.00 38.13
45	ATOM	1933	N	GLY A 249	24.637	28.158	52.849	1.00 30.74
43	ATOM	1934	CA	GLY A 249	24.203	27.852	51.526	1.00 30.15
	ATOM ATOM	1935 1936	С	GLY A 249	23.918	29.131	50.759	1.00 38.91
	ATOM	1930	O N	GLY A 249 PRO A 250	24.126 23.453	30.240 28.946	51.238	1.00 41.32
	ATOM	1938	CA	PRO A 250	23.173	30.021	49.547 48.639	1.00 38.93
50	ATOM	1939	C	PRO A 250	22.203	31.078	49.096	1.00 38.03 1.00 42.17
30	ATOM	1940	ŏ	PRO A 250	21.258	30.823	49.840	1.00 42.17
	ATOM	1941	СВ	PRO A 250	22.663	29.357	47.352	1.00 43.20
	MOTA	1942	CG	PRO A 250	22.952	27.864	47.436	1.00 41.01
	ATOM	1943	CD	PRO A 250	23.396	27.610	48.865	1.00 38.57
55	ATOM	1944	N	TYR A 251	22.486	32.275	48.600	1.00 35.37
	ATOM	1945	CA	TYR A 251	21.692	33.461	48.817	1.00 34.87
	ATOM	1946	С	TYR A 251	20.740	33.479	47.649	1.00 39.55
	MOTA	1947	0	TYR A 251	21.125	33.794	46.535	1.00 42.57
	ATOM	1948	CB	TYR A 251	22.540	34.759	48.790	1.00 35.07
60	MOTA	1949	CG	TYR A 251	21.711	35.980	49.119	1.00 35.25
	ATOM	1950		TYR A 251	21.341	36.229	50.441	1.00 33.14
	ATOM	1951		TYR A 251	21.260	36.846	48.121	1.00 37.98
	ATOM	1952		TYR A 251	20.575	37.341	50.781	1.00 28.05
	MOTA	1953	CE2	TYR A 251	20.492	37.967	48.443	1.00 40.05

	MOTA	1954	CZ	TYR A	251	20.160	38.213	49.777	1.00 42.84
			OH	TYR A		19.409	39.307	50.112	
	ATOM	1955							1.00 39.70
	ATOM	1956	И	VAL A		19.510	33.102	47.914	1.00 32.21
	ATOM	1957	CA	VAL A	252	18.495	33.003	46.899	1.00 30.05
5	ATOM	1958	С	VAL A	252	17.708	34.279	46.631	1.00 38.47
_	ATOM	1959	o	VAL A		17.000	34.340	45.640	
									1.00 40.65
	ATOM	1960	CB	VAL A		17.560	31.845	47.253	1.00 31.27
	ATOM	1961	CG1	VAL A	252	18.378	30.605	47.643	1.00 28.15
	ATOM	1962	CG2	VAL A	252	16.614	32.234	48.405	1.00 30.93
10		1963		TRP A					
10	ATOM		N			17.800	35.292	47.504	1.00 32.44
	ATOM	1964	CA	TRP A		17.041	36.509	47.309	1.00 30.93
	ATOM	1965	С	TRP A	253	17.468	37.341	46.119	1.00 43.56
	ATOM	1966	0	TRP A	253	16.690	38.119	45.568	1.00 46.70
			СВ	TRP A					
1.5	ATOM	1967				16.898	37.302	48.606	1.00 29.65
15	ATOM	1968	CG	TRP A	253	16.364	36.369	49.625	1.00 30.19
	ATOM	1969	CD1	TRP A	253	17.086	35.546	50.413	1.00 32.81
	ATOM	1970	CD2	TRP A	253	14.989	36.110	49.913	1.00 29.63
	ATOM	1971		TRP A		16.251	34.794	51.194	1.00 30.69
11	ATOM	1972	CE2	TRP A	253	14.955	35.128	50.912	1.00 31.50
20	ATOM	1973	CE3	TRP A	253	13.789	36.637	49.450	1.00 30.18
20 11	ATOM	1974		TRP A		13.746	34.657	51.433	1.00 30.31
j"									
	MOTA	1975				12.600	36.164	49.958	1.00 31.14
f = 51	MOTA	1976	CH2	TRP A	253	12.579	35.176	50.946	1.00 31.37
	MOTA	1977	N	GLY A	254	18.697	37.182	45.675	1.00 42.35
25	ATOM	1978	CA	GLY A		19.101	37.944	44.509	1.00 41.34
<u>u</u>	ATOM	1979	С	GLY A		19.875	39.192	44.858	1.00 45.47
} 4	ATOM	1980	0	GLY A	254	21.079	39.236	44.671	1.00 45.89
1	ATOM	1981	N	GLN A	255	19.160	40.210	45.351	1.00 41.86
iii	ATOM	1982	CA	GLN A		19.746	41.488	45.675	•
130									1.00 38.67
: 3U	ATOM	1983	С	GLN A		19.576	41.776	47.153	1.00 40.18
1.5	ATOM	1984	0	GLN A	255	18.494	41.811	47.659	1.00 38.67
T.	ATOM	1985	CB	GLN A	255	19.023	42.552	44.836	1.00 37.82
	ATOM	1986	CG	GLN A		19.455	43.979		
E= adi								45.169	1.00 50.17
[] - 35	ATOM	1987	CD	GLN A		20.618	44.368	44.283	1.00 62.88
iii 35	ATOM	1988	OE1	GLN A	255	21.104	43.612	43.463	1.00 55.76
in and	ATOM	1989	NE2	GLN A	255	21.057	45.625	44.479	1.00 34.97
	ATOM	1990	N	TYR A		20.716	41.900	47.866	
									1.00 33.01
	ATOM	1991	CA	TYR A		20.651	42.361	49.258	1.00 28.69
	ATOM	1992	С	TYR A	256	20.891	43.854	49.329	1.00 26.72
40	MOTA	1993	0	TYR A	256	21.963	44.321	49.225	1.00 24.22
	ATOM	1994	СВ	TYR A			41.629		1.00 29.99
	ATOM	1995	CG	TYR A		21.567	41.867	51.556	1.00 35.47
	MOTA	1996	CD1	TYR A	256	20.582	41.200	52.250	1.00 35.76
	ATOM	1997	CD2	TYR A	256	22.405	42.746	52.239	1.00 37.52
45	ATOM	1998		TYR A		20.436	41.396	53.599	1.00 25.80
	ATOM	1999		TYR A		22.255	42.946	53.588	1.00 39.10
	ATOM	2000	CZ	TYR A	256	21.283	42.275	54.268	1.00 31.78
	MOTA	2001	OH	TYR A	256	21.153	42.433	55.631	1.00 37.35
	ATOM	2002	N	ASP A		19.834	44.613	49.463	
50									1.00 23.26
50	ATOM	2003	CA	ASP A		20.077	46.027	49.621	1.00 23.47
	ATOM	2004	С	ASP A	257	19.977	46.444	51.071	1.00 35.90
	ATOM	2005	0	ASP A	257	19.729	45.661	51.967	1.00 39.48
	ATOM	2006	СВ	ASP A		19.073			
							46.803	48.758	1.00 24.13
~ ~	MOTA	2007	CG	ASP A		19.689	47.030	47.388	1.00 38.50
55	ATOM	2008	OD1	ASP A	257	20.843	46.675	47.220	1.00 42.61
	ATOM	2009		ASP A		19.020	47.555	46.517	1.00 29.02
	ATOM	2010	N	LEU A		20.370	47.661	51.386	1.00 30.86
	ATOM	2011	CA	LEU A	258	20.306	48.159	52.735	1.00 27.50
	ATOM	2012	С	LEU A	258	19.526	49.466	52.765	1.00 36.37
60	MOTA	2013	0	LEU A		19.620	50.302	51.840	1.00 37.98
-									
	ATOM	2014	CB	LEU A		21.727	48.442	53.274	1.00 24.71
	ATOM	2015	CG	LEU A		22.552	47.191	53.491	1.00 31.13
	ATOM	2016	CD1	LEU A	258	23.913	47.567	54.043	1.00 30.89
	ATOM	2017		LEU A		21.854	46.282	54.500	1.00 33.65
				11	200			54.500	2.00 00.00

	ATOM	2018	N	LEU A	259	18.762	49.632	53.838	1.00 29.87
		2019	CA						
	ATOM			LEU A		18.006	50.849	54.052	1.00 28.43
	ATOM	2020	С	LEU A		18.283	51.453	55.446	1.00 31.30
_	ATOM	2021	0	LEU A	259	18.055	50.819	56.477	1.00 31.19
5	ATOM	2022	СВ	LEU A	259	16.500	50.809	53.693	1.00 27.63
	ATOM	2023	CG	LEU A	259	15.706	51.980	54.298	1.00 31.51
	ATOM	2024		LEU A	259	16.026	53.300	53.605	1.00 32.32
		2025		LEU A		14.212			
	ATOM						51.731	54.253	1.00 26.87
10	ATOM	2026	N	VAL A		18.807	52.683	55.447	1.00 25.88
10	ATOM	2027	CA	VAL A		19.105	53.435	56.638	1.00 25.99
	MOTA	2028	С	VAL A	260	17.896	54.336	56.796	1.00 34.83
	ATOM	2029	0	VAL A		17.647	55.187	55.959	1.00 41.92
	ATOM	2030	СВ	VAL A		20.390	54.234	56.408	
									1.00 29.97
15	ATOM	2031		VAL A		20.701	55.179	57.592	1.00 32.08
15	ATOM	2032		VAL A		21.563	53.295	56.130	1.00 26.15
	ATOM	2033	N	LEU A	261	17.098	54.120	57.815	1.00 28.41
	ATOM	2034	CA	LEU A	261	15.865	54.878	58.024	1.00 25.52
	ATOM	2035	С	LEU A		16.016	56.054	58.948	1.00 29.42
	ATOM	2036	ō	LEU A		17.090			
							56.300	59.489	1.00 29.96
20	ATOM	2037	СВ	LEU A		14.874	53.921	58.706	1.00 25.70
41	ATOM	2038	CG	LEU A		14.387	52.877	57.740	1.00 33.14
 - &	ATOM	2039	CD1	LEU A	261	15.161	51.571	57.929	1.00 32.73
#T-11	ATOM	2040	CD2	LEU A		12.900	52.686	57.935	1.00 43.74
	ATOM	2041	N	PRO A		14.903	56.758	59.142	
25									1.00 28.52
25	ATOM	2042	CA	PRO A		14.894	57.870	60.047	1.00 28.50
#±# E	ATOM	2043	С	PRO A		15.152	57.294	61.432	1.00 35.36
1-4	MOTA	2044	0	PRO A	262	14.866	56.124	61.683	1.00 34.52
#	ATOM	2045	CB	PRO A	262	13.512	58.512	59.971	1.00 29.19
L.E.	ATOM	2046	CG	PRO A		12.707	57.719	58.964	1.00 34.34
30	ATOM	2047	CD	PRO A		13.581	56.575	58.492	
}≟30 ∏30									1.00 30.63
fi.i	ATOM	2048	N	PRO A		15.706	58.105	62.327	1.00 31.50
	ATOM	2049	CA	PRO A		16.060	57.657	63.673	1.00 28.77
in the	ATOM	2050	С	PRO A	263	14.966	57.021	64.493	1.00 29.15
	ATOM	2051	0	PRO A	263	15.256	56.335	65.434	1.00 26.36
L 35	ATOM	2052	СВ	PRO A		16.652	58.867	64.392	1.00 29.16
:	ATOM	2053	CG	PRO A		16.851	59.954	63.335	
		2054		PRO A					1.00 31.55
	ATOM		CD			15.994	59.558	62.138	1.00 29.17
	MOTA	2055	N	SER A		13.712	57.258	64.143	1.00 33.87
	ATOM	2056	CA	SER A	264	12.578	56.703	64.864	1.00 33.81
40	ATOM	2057	С	SER A	264	12.403	55.223	64.604	1.00 37.36
	ATOM	2058	0	SER A	264	11.529	54.570	65.201	1.00 39.61
	ATOM	2059	CB	SER A		11.280	57.423	64.576	1.00 35.61
	ATOM	2060	OG	SER A		10.955	57.276		
								63.201	1.00 53.45
AE	ATOM	2061	N	PHE A		13.213	54.684	63.710	1.00 29.00
45	ATOM	2062	CA	PHE A		13.136	53.256	63.453	1.00 28.56
	ATOM	2063	С	PHE A	265	13.260	52.491	64.787	1.00 28.49
	ATOM	2064	0	PHE A	265	14.208	52.675	65.533	1.00 27.36
	ATOM	2065	СВ	PHE A	265	14.200	52.833	62.454	1.00 31.40
	ATOM	2066	CG	PHE A		13.875	51.458	62.028	
50									1.00 34.51
50	ATOM	2067		PHE A		12.601	51.174	61.543	1.00 35.11
	ATOM	2068		PHE A		14.814	50.435	62.156	1.00 38.94
	ATOM	2069	CE1	PHE A	265	12.282	49.876	61.154	1.00 37.42
	ATOM	2070	CE2	PHE A	265	14.511	49.131	61.772	1.00 42.65
	ATOM	2071	CZ	PHE A		13.236	48.860	61.274	1.00 40.14
55	ATOM	2072	N	PRO A					
22						12.272	51.650	65.128	1.00 24.06
	ATOM	2073	CA	PRO A		12.249	50.945	66.419	1.00 20.62
	ATOM	2074	C	PRO A		13.231	49.794	66.701	1.00 29.34
	MOTA	2075	0	PRO A	266	13.343	49.364	67.847	1.00 28.17
	ATOM	2076	СВ	PRO A		10.808	50.463	66.593	1.00 19.16
60	ATOM	2077	CG	PRO A					
00						10.076	50.686	65.281	1.00 21.07
	MOTA	2078	CD	PRO A		11.046	51.355	64.325	1.00 19.44
	ATOM	2079	N	TYR A		13.922	49.280	65.676	1.00 27.23
	ATOM	2080	CA	TYR A	267	14.849	48.160	65.817	1.00 25.74
	MOTA	2081	С	TYR A	267	16.181	48.454	65.189	1.00 32.57

			_					
	ATOM	2082	0	TYR A 267	16.281	49.316	64.324	1.00 32.48
	ATOM	2083	CB	TYR A 267	14.298	46.903	65.121	1.00 25.07
	ATOM	2084	CG	TYR A 267	12.968	46.502	65.674	1.00 24.45
5	ATOM ATOM	2085 2086		TYR A 267 TYR A 267	12.915 11.776	45.765	66.856	1.00 27.05
,	ATOM	2087		TYR A 267	11.776	46.851 45.387	65.037	1.00 22.15
	ATOM	2088	CE2	TYR A 267	10.548	46.496	67.419 65.596	1.00 25.01
	ATOM	2089	CZ	TYR A 267	10.510	45.767	66.786	1.00 19.09 1.00 17.98
	ATOM	2090	ОН	TYR A 267	9.302	45.416	67.353	1.00 17.30
10	ATOM	2091	N	GLY A 268	17.196	47.698	65.627	1.00 30.22
	ATOM	2092	CA	GLY A 268	18.547	47.826	65.114	1.00 27.29
	ATOM	2093	С	GLY A 268	18.485	47.620	63.614	1.00 29.82
	ATOM	2094	0	GLY A 268	19.136	48.297	62.836	1.00 32.99
	ATOM	2095	N	GLY A 269	17.637	46.676	63.228	1.00 23.19
15	MOTA	2096	CA	GLY A 269	17.393	46.320	61.853	1.00 21.62
	ATOM	2097	С	GLY A 269	16.187	45.402	61.777	1.00 27.53
	ATOM.	2098	0	GLY A 269	15.681	44.948	62.820	1.00 20.14
	ATOM	2099	И	MET A 270	15.735	45.154	60.528	1.00 27.81
20	ATOM	2100	CA	MET A 270	14.615	44.267	60.176	1.00 25.61
20 1	ATOM	2101	С	MET A 270	14.956	43.585	58 .874	1.00 33.56
	ATOM	2102	0	MET A 270	15.221	44.247	57.867	1.00 34.67
[#1	ATOM	2103	CB	MET A 270	13.247	44.936	60.028	1.00 26.07
tal najan tari	ATOM	2104	CG	MET A 270	12.195	43.937	59.602	1.00 28.81
25	ATOM	2105 2106	SD	MET A 270	11.875	42.742	60.929	1.00 37.39
23	ATOM ATOM	2100	CE N	MET A 270 GLU A 271	10.720 14.995	41.621	60.082	1.00 35.30
j-4:	ATOM	2107	CA	GLU A 271	15.393	42.263	58.904	1.00 32.20
2	ATOM	2109	C.	GLU A 271	14.419	41.459	57.753 56.567	1.00 33.32 1.00 40.86
l-A	ATOM	2110	Ö	GLU A 271	14.087	40.285	56.107	1.00 40.86
30	ATOM	2111	СВ	GLU A 271	15.802	40.054	58.230	1.00 42.02
	ATOM	2112	CG	GLU A 271	14.607	39.218	58.760	1.00 33.55
	ATOM	2113	CD	GLU A 271	14.291	39.428	60.219	1.00 25.52
Paris Francis	ATOM	2114	OE1		14.586	40.436	60.844	1.00 37.23
[]	ATOM	2115	OE2	GLU A 271	13.699	38.393	60.757	1.00 25.86
35	ATOM	2116	N	ASN A 272	13.978	42.535	56.052	1.00 35.34
	MOTA	2117	CA	ASN A 272	13.057	42.544	54.928	1.00 33.26
	ATOM	2118	C	ASN A 272	13.787	42.048	53.702	1.00 34.47
	ATOM	2119	0	ASN A 272	14.811	42.613	53.351	1.00 33.64
40	ATOM	2120	CB	ASN A 272	12.441	43.947	54.719	1.00 30.65
40	ATOM	2121	CG	ASN A 272	11.667	44.453	55.935	1.00 42.50
	ATOM	2122		ASN A 272		45.554	56.475	1.00 47.09
	ATOM	2123		ASN A 272	10.716	43.661	56.371	1.00 24.31
	ATOM ATOM	2124 2125	N CA	PRO A 273 PRO A 273	13.281	40.983	53.078	1.00 29.63
45	ATOM	2126	CA	PRO A 273	13.935 14.303	40.373 41.345	51.910 50.819	1.00 28.47 1.00 30.43
••	ATOM	2127	ŏ	PRO A 273	13.457	42.089	50.372	1.00 30.43
	ATOM	2128	СВ	PRO A 273	12.991	39.305	51.381	1.00 31.65
	ATOM	2129	CG	PRO A 273	11.829	39.237	52.365	1.00 36.65
	MOTA	2130	CD	PRO A 273	11.927	40.440	53.310	1.00 30.84
50	ATOM	2131	N	CYS A 274	15.571	41.333	50.431	1.00 27.40
	ATOM	2132	CA	CYS A 274	16.069	42.206	49.373	1.00 28.17
	ATOM	2133	С	CYS A 274	16.327	43.604	49.860	1.00 27.35
	ATOM	2134	0	CYS A 274	17.114	44.345	49.248	1.00 28.53
	ATOM	2135	CB	CYS A 274	15.121	42.347	48.145	1.00 32.00
55	ATOM	2136	SG	CYS A 274	14.659	40.798	47.340	1.00 38.42
	ATOM	2137	N	LEU A 275	15.658	43.972	50.947	1.00 26.20
	ATOM	2138	CA	LEU A 275	15.789	45.315	51.535	1.00 29.54
	ATOM	2139	C	LEU A 275	15.857	45.279	53.059	1.00 32.52
60	ATOM	2140	0	LEU A 275	14.859	45.250	53.772	1.00 32.44
OU	ATOM	2141	CB	LEU A 275	14.657	46.253	51.005	1.00 28.58
	ATOM	2142	CG CD1	LEU A 275	14.847	47.735	51.239	1.00 26.78
	ATOM ATOM	2143 2144		LEU A 275 LEU A 275	16.191 13.712	48.183 48.478	50.698 50.554	1.00 21.90
	ATOM	2144	N	THR A 276	17.062	48.478	53.570	1.00 31.48
	111011	2147	••	A 210	17.002	33.244	33.370	1.00 29.67

	ATOM	2146	CA	THR A 2	76	17.225	45.198	54.996	1.00 3	0 47
	ATOM	2147	С	THR A 2		17.120	46.624	55.597	1.00 3	
	ATOM	2148	ŏ	THR A 2		17.766	47.588	55.129	1.00 3	
	ATOM	2149	CB	THR A 2		18.508	44.397	55.387	1.00 3	
5	ATOM	2150	OG1			18.224	43.030	55.512	1.00 4	
,			CG2							
	MOTA	2151		THR A 2		19.124	44.835	56.694	1.00 2	
	ATOM	2152	N	PHE A 2		16.280	46.759	56.622	1.00 2	
	ATOM	2153	CA	PHE A 2		16.164	48.034	57.274	1.00 2	
10	ATOM	2154	С	PHE A 2		17.184	48.065	58.403	1.00 3	6.07
10	MOTA	2155	0	PHE A 2		17.337	47.088	59.131	1.00 3	
	MO'FA	2156	CB	PHE A 2	77	14.791	48.265	57.901	1.00 3	0.17
	ATOM	2157	CG	PHE A 2	77	13.774	48.458	56.848	1.00 3	0.72
	MOTA	2158	CD1	PHE A 2	:77	14.011	47.966	55.568	1.00 3	0.73
	ATOM	2159	CD2	PHE A 2	77	12.573	49.114	57.105	1.00 3	
15	ATOM	2160		PHE A 2		13.072	48.135	54.552	1.00 2	
	ATOM	2161	CE2	PHE A 2		11.619	49.276	56.101	1.00 3	
	ATOM	2162	CZ	PHE A 2		11.862	48.772	54.824	1.00 3	
	ATOM	2163	N	VAL A 2		17.864				
		2164		VAL A 2			49.186	58.562	1.00 3	
20	ATOM		CA			18.839	49.338	59.614	1.00 3	
20	ATOM	2165	C	VAL A 2		18.696	50.698	60.248	1.00 3	
	ATOM	2166	0	VAL A 2		18.251	51.635	59.599	1.00 3	
- ii.	ATOM	2167	CB	VAL A 2		20.246	49.088	59.109	1.00 3	6.51
# #	MOTA	2168		VAL A 2		20.173	47.967	58.086	1.00 3	7.40
Im	ATOM	2169	CG2	VAL A 2	78	20.791	50.356	58.444	1.00 3	4.87
25	ATOM	2170	N	THR A 2	79	19.066	50.778	61.515	1.00 3	2.36
	ATOM	2171	CA	THR A 2	79	18.948	51.994	62.264	1.00 3	
±Åi,	MOTA	2172	С	THR A 2	79	20.121	52.883	62.035	1.00 3	
1	ATOM	2173	0	THR A 2		21.243	52.397	61.920	1.00 3	
≖ #5.	ATOM	2174	CB	THR A 2		18.885	51.695	63.759	1.00 3	
30	ATOM	2175	OG1			19.110	52.895	64.472	1.00 3	
	ATOM	2176	CG2			19.989	50.706	64.083	1.00 3	
	ATOM	2177	N	PRO A 2		19.845	54.187	62.000		
				PRO A 2					1.00 3	
= m = ===	ATOM	2178	CA			20.903	55.132	61.802	1.00 2	
··· 35	ATOM	2179	С	PRO A 2		21.823	55.110	63.005	1.00 3	
33	ATOM	2180	0	PRO A 2		22.951	55.588	62.934	1.00 3	
	ATOM	2181	CB	PRO A 2		20.249	56.497	61.601	1.00 2	
	ATOM	2182	CG	PRO A 2		18.769	56.337	61.889	1.00 2	
	ATOM	2183	CD	PRO A 2		18.499	54.848	61.984	1.00 2	6.11
4.0	ATOM	2184	N	THR A 2		21.348	54.509	64.112	1.00 2	7.82
40	ATOM	2185	CA	THR A 2		22.199	54.426	65.302	1.00 2	7.48
	ATOM	2186	С	THR A 2	81	23.372	53.523	65.073	1.00 3	1.37
	ATOM	2187	0	THR A 2	81	24.226	53.385	65.944	1.00 3	1.93
	ATOM	2188	CB	THR A 2	81	21.499	54.016	66.601	1.00 2	
	ATOM	2189	OG1	THR A 2		21.021	52.681	66.524	1.00 3	
45	ATOM	2190		THR A 2		20.388	54.994	66.874		9.89
	ATOM	2191	N	LEU A 2		23.378	52.881	63.913	1.00 2	
	ATOM	2192	CA	LEU A 2		24.473	51.993	63.586	1.00 2	
	ATOM	2193	C	LEU A 2		25.682	52.790	63.049	1.00 3	
	ATOM	2194	ō	LEU A 2		26.787	52.730	62.884		
50	ATOM	2195	СВ	LEU A 2					1.00 3	
50						24.063	51.038	62.464	1.00 2	
	ATOM	2196	CG	LEU A 2		23.104	49.916	62.819	1.00 2	
	ATOM	2197		LEU A 2		23.312	48.809	61.791	1.00 2	
	ATOM	2198		LEU A 2		23.322	49.404	64.249	1.00 2	
	ATOM	2199	N	LEU A 2		25.465	54.063	62.744	1.00 3	2.05
55	MOTA	2200	CA	LEU A 2	:83	26.501	54.903	62.159	1.00 3	1.43
	MOTA	2201	С	LEU A 2	83	27.659	55.324	63.055	1.00 4	1.94
	ATOM	2202	0	LEU A 2	83	27.907	56.525	63.196	1.00 4	9.19
	ATOM	2203	CB	LEU A 2		25.861	56.117	61.418	1.00 2	
	ATOM	2204	CG	LEU A 2		24.720	55.661	60.488	1.00 3	
60	ATOM	2205		LEU A 2		23.933	56.811	59.869	1.00 3	
	ATOM	2206		LEU A 2		25.232	54.716	59.409	1.00 3	
	ATOM	2207	N N	ALA A 2		28.387	54.710	63.638		
	ATOM		CA	ALA A 2					1.00 3	
		2208				29.488	54.728	64.532	1.00 3	
	MOTA	2209	С	ALA A 2	.04	30.655	55.492	63.922	1.00 3	1.97

	ATOM	2210	0	ALA A		31.411	56.165	64.642	1.00 31.40
	ATOM	2211	CB	ALA A	284	29.973	53.544	65.336	1.00 29.60
	ATOM	2212	N	GLY A		30.801	55.371	62.605	1.00 27.10
		2213	CA	GLY A		31.882	56.018	61.867	1.00 29.77
_	MOTA								
5	ATOM	2214	С	GLY A	285	33.174	55.194	61.910	1.00 39.25
	ATOM	2215	0	GLY A	285	34.264	55.649	61.544	1.00 41.21
	MOTA	2216	N	ASP A	286	33.022	53.951	62.363	1.00 34.57
		2217	CA	ASP A			53.057	62.473	1.00 32.57
	ATOM					34.144			
	MOTA	2218	С	ASP A		33.805	51.625	62.130	1.00 31.59
10	MOTA	2219	0	ASP A	286	34.609	50.743	62.325	1.00 29.27
	ATOM	2220	CB	ASP A	286	34.812	53.163	63.860	1.00 34.65
		2221	CG	ASP A			52.447	64.945	
	ATOM					34.081			1.00 41.93
	ATOM	2222		ASP A		33.008	51.893	64.765	1.00 45.21
	ATOM	2223	OD2	ASP A	286	34.714	52.492	66.087	1.00 35.67
15	ATOM	2224	N	LYS A	287	32.590	51.395	61.641	1.00 29.46
10		2225	CA	LYS A		32.199	50.038	61.272	
	MOTA								1.00 31.62
	ATOM	2226	С	LYS A		31.976	49.060	62.437	1.00 37.91
	MOTA	2227	0	LYS A	287	31.761	47.879	62.240	1.00 37.91
	ATOM	2228	CB	LYS A	287	33.215	49.447	60.304	1.00 32.17
20		2229	CG	LYS A		33.510	50.358	59.119	
20	ATOM								1.00 51.60
	ATOM	2230	CD	LYS A		33.960	49.601	57.877	1.00 50.74
E.	ATOM	2231	CE	LYS A	287	35.290	50.105	57.328	1.00 63.80
	ATOM	2232	NZ	LYS A	287	35.167	50.866	56.069	1.00 71.91
===									
25	ATOM	2233	N	SER A		32.168	49.575	63.647	1.00 31.58
25	MOTA	2234	CA	SER A		32.079	48.737	64.810	1.00 27.15
e En	ATOM	2235	С	SER A	288	30.742	48.137	65.142	1.00 36.08
	ATOM	2236	0	SER A	288	30.676	47.318	66.057	1.00 37.87
l .	ATOM	2237	СВ	SER A		32.618	49.463	66.005	
r Ša									1.00 16.31
	ATOM	2238	OG	SER A		31.659	50.443	66.312	1.00 29.71
30	ATOM	2239	N	LEU A	289	29.669	48.529	64.460	1.00 29.34
	MOTA	2240	CA	LEU A	289	28.351	47.979	64.794	1.00 24.70
***	ATOM	2241	С	LEU A		27.792	47.105	63.686	1.00 32.97
# #F									
= 11	MOTA	2242	0	LEU A		26.591	46.766	63.648	1.00 30.35
:	ATOM	2243	CB	LEU A	289	27.385	49.090	65.191	1.00 21.45
** 3 <i>5</i>	ATOM	2244	CG	LEU A	289	27.954	49.887	66.347	1.00 22.99
	ATOM	2245		LEU A		26.881	50.769	66.950	1.00 20.66
	ATOM	2246		LEU A		28.381	48.881	67.394	1.00 29.65
	ATOM	2247	N	SER A	290	28.723	46.753	62.801	1.00 31.21
	ATOM	2248	CA	SER A	290	28.453	45.941	61.645	1.00 29.89
40	ATOM	2249	С	SER A		27.861	44.582	62.006	1.00 30.57
10			Ö						
	ATOM	2250		SER A		27.299	43.872	61.153	1.00 29.73
	MOTA	2251	CB	SER A		29.704	45.800	60.783	1.00 29.27
	ATOM	2252	OG	SER A	290	30.470	44.725	61.266	1.00 38.77
	ATOM	2253	N	ASN A		27.980	44.207	63.282	1.00 26.55
45		2254	CA	ASN A			42.909	63.706	
73	ATOM					27.449			1.00 25.78
	ATOM	2255	С	ASN A		26.006	42.773	63.355	1.00 30.89
	ATOM	2256	0	ASN A	291	25.576	41.702	62.975	1.00 29.73
	ATOM	2257	CB	ASN A	291	27.725	42.503	65.157	1.00 28.48
	ATOM	2258	CG	ASN A		26.910	43.313	66.119	1.00 33.33
50									
50	MOTA	2259		ASN A		27.065	44.529	66.198	1.00 34.48
	ATOM	2260	ND2	ASN A	291	26.001	42.653	66.818	1.00 28.96
	ATOM	2261	N	VAL A	292	25.277	43.885	63.476	1.00 30.68
	ATOM	2262	CA	VAL A		23.865	43.924	63.142	1.00 30.27
	ATOM	2263	С	VAL A	292	23.667	43.619	61.669	1.00 32.61
55	ATOM	2264	0	VAL A	292	22.644	43.082	61.255	1.00 33.31
	MOTA	2265	CB	VAL A	292	23.288	45.289	63.505	1.00 35.13
		2266		VAL A		21.877		62.946	
	ATOM						45.486		1.00 33.48
	ATOM	2267	CG2	VAL A		23.328	45.478	65.014	1.00 35.02
	ATOM	2268	N	ILE A	293	24.653	43.975	60.861	1.00 27.92
60	ATOM	2269	CA	ILE A		24.527	43.685	59.461	1.00 28.71
	ATOM	2270	C.	ILE A		24.658	42.159	59.296	1.00 35.03
	MOTA	2271	0	ILE A		23.860	41.475	58.624	1.00 38.34
	ATOM	2272	CB	ILE A	293	25.554	44.438	58.606	1.00 33.84
	ATOM	2273	CG1	ILE A		25.608	45.952	58.898	1.00 34.55
				••					

PCT/SE00/00384

	ATOM	2274	CG2	ILE A	293	25.305	44.186	57.121	1.00 36.50
	ATOM	2275	CD1			24.265	46.680	58.808	1.00 30.49
	ATOM	2276	N	ALA A		25.668	41.584	59.934	1.00 23.76
	ATOM	2277	CA	ALA A		25.836	40.138	59.809	
5	ATOM	2278	C	ALA A		24.559			1.00 19.95
,	ATOM	2279					39.409	60.165	1.00 27.33
			O	ALA A		24.183	38.422	59.505	1.00 25.48
	ATOM	2280	CB	ALA A		26.984	39.644	60.688	1.00 19.24
	ATOM	2281	N	HIS A		23.917	39.934	61.244	1.00 27.63
10	ATOM	2282	CA	HIS A		22.666	39.414	61.797	1.00 26.83
10	ATOM	2283	С	HIS A		21.611	39.383	60.734	1.00 28.61
	MOTA	2284	0	HIS A	295	21.169	38.301	60.348	1.00 25.72
	ATOM	2285	CB	HIS A	295	22.148	40.175	63.028	1.00 27.98
	ATOM	2286	CG	HIS A	295	20.937	39.534	63.657	1.00 31.62
	MOTA	2287	ND1	HIS A	295	21.047	38.675	64.763	1.00 32.66
15	ATOM	2288	CD2	HIS A	295	19.602	39.643	63.338	1.00 30.92
	ATOM	2289		HIS A		19.802	38.298	65.088	1.00 30.14
	ATOM	2290		HIS A		18.916	38.860	64.254	1.00 30.14
sa ta'	ATOM	2291	N	GLU A		21.257	40.590	60.251	1.00 30.24
5	ATOM	2292	CA	GLU A		20.266	40.749		
20	ATOM	2293	C	GLU A				59.195	1.00 25.98
20						20.533	39.790	58.056	1.00 32.73
L.	ATOM	2294	0	GLU A		19.628	39.081	57.561	1.00 31.88
1 TE	ATOM	2295	CB	GLU A		20.046	42.203	58.728	1.00 24.55
right.	ATOM	2296	CG	GLU A		19.892	43.148	59.936	1.00 23.16
₩,,	MOTA	2297	CD	GLU A		18.939	42.632	60.991	1.00 53.50
 25	ATOM	2298		GLU A		17.964	41.956	60.700	1.00 23.99
ļ.	ATOM	2299	OE2	GLU A	296	19.237	43.006	62.233	1.00 32.77
	ATOM	2300	N	ILE A	297	21.803	39.745	57.675	1.00 25.37
#	ATOM	2301	CA	ILE A	297	22.195	38.870	56.599	1.00 22.64
 -	ATOM	2302	С	ILE A		21.812	37.445	56.859	1.00 27.47
30	ATOM	2303	0	ILE A		21.175	36.799	56.048	1.00 26.25
M.	ATOM	2304	CB	ILE A		23.672	38.963	56.302	1.00 24.19
	ATOM	2305		ILE A		23.920	40.140	55.355	1.00 25.28
Transition.	ATOM	2306		ILE A		24.079	37.686	55.626	
	ATOM	2307	CD1						1.00 20.77
35	ATOM	2308	N	SER A		25.325	40.705	55.435	1.00 16.26
33						22.226	36.947	58.012	1.00 28.23
	ATOM	2309	CA.			21.939	35.569	58.377	1.00 25.04
	ATOM	2310	C ·	SER A		20.467	35.235	58.298	1.00 26.21
	ATOM	2311	0	SER A		20.118	34.097	58.000	1.00 26.30
40	ATOM	2312	СВ	SER A		22.520	35.209	59.714	1.00 27.82
40	MOTA	2313	OG	SER A		23.890	35.552	59.714	1.00 35.98
	ATOM	2314	N	HIS A		19.599	36.230	58.562	1.00 22.17
	MOTA	2315	CA	HIS A		18.205	36.092	58.719	1.00 22.77
	MOTA	2316	С	HIS A		17.614	35.710	57.387	1.00 29.10
	ATOM	2317	0	HIS A	299	16.553	35.162	57.290	1.00 31.50
45	ATOM	2318	CB	HIS A	299	17.662	37.432	59.200	1.00 24.67
	MOTA	2319	CG	HIS A	299	17.053	37.338	60.602	1.00 29.10
	ATOM	2320	ND1	HIS A	299	16.190	36.368	60.975	1.00 30.70
	ATOM	2321		HIS A		17.196	38.233	61.667	1.00 32.39
	ATOM	2322		HIS A		15.811	36.675	62.233	1.00 30.41
50	ATOM	2323		HIS A		16.397	37.783	62.674	1.00 30.41
	ATOM	2324	N	SER A		18.356	36.048	56.315	1.00 31.74
	ATOM	2325	CA	SER A		17.942			
	ATOM	2326	C	SER A			35.581	55.010	1.00 24.24
						17.879	34.050	54.977	1.00 34.13
55	ATOM	2327	0	SER A		17.075	33.463	54.305	1.00 33.28
25	ATOM	2328	CB	SER A		18.941	36.092	53.965	1.00 27.31
	MOTA	2329	OG	SER A		18.947	37.519	53.962	1.00 49.96
	MOTA	2330	N	TRP A		18.773	33.411	55.752	1.00 33.09
	ATOM	2331	CA	TRP A		18.702	31.969	55.829	1.00 31.84
	ATOM	2332	С	TRP A	301	17.740	31.511	56.895	1.00 32.15
60	MOTA	2333	0	TRP A	301	16.764	30.876	56.620	1.00 27.05
	ATOM	2334	CB	TRP A		20.095	31.429	56.082	1.00 30.16
	ATOM	2335	CG	TRP A		20.791	31.421	54.801	1.00 32.02
	ATOM	2336		TRP A		20.787	30.393	53.859	1.00 35.05
	ATOM	2337		TRP A		21.496	32.520	54.202	1.00 30.84
							22.020		2.00 00.04

	ATOM	2338	NE1	TRP A	301	21.415	30.732	52.722	1.00 33.29
	MOTA	2339	CE2			21.886	32.112	52.921	1.00 33.44
	ATOM	2340	CE3	TRP A	301	21.811	33.790	54.631	1.00 32.65
	MOTA	2341	CZ2	TRP A	301	22.577	32.970	52.108	1.00 32.21
5	ATOM	2342	CZ3	TRP A		22.503	34.652	53.812	1.00 36.10
	MOTA	2343	CH2	TRP A		22.888	34.239	52.544	1.00 36.83
	ATOM	2344	N	THR A		18.042	31.864	58.146	1.00 31.77
	ATOM	2345	CA	THR A	302	17.125	31.488	59.215	1.00 33.55
	MOTA	2346	С	THR A	302	16.276	32.690	59.695	1.00 36.35
10	MOTA	2347	0	THR A		16.759	33.590	60.330	1.00 36.56
	MOTA	2348	CB	THR A		17.963	30.920	60.366	1.00 31.04
	MOTA	2349	OG1			19.047	31.807	60.639	1.00 38.50
	MOTA	2350	CG2			18.544	29.555	59.967	1.00 17.10
	MOTA	2351	N	GLY A		15.053	32.418	59.250	1.00 25.28
15	MOTA	2352	CA	GLY A		13.908	33.236	59.483	1.00 21.59
	MOTA	2353	С	GLY A		13.202	33.382	58.163	1.00 26.99
	MOTA	2354	0	GLY A		12.040	33.040	57.994	1.00 26.18
_	ATOM	2355	N	ASN A		13.936	33.891	57.195	1.00 28.05
	MOTA	2356	CA	ASN A		13.363	34.101	55.875	1.00 28.17
20	MOTA	2357	С	ASN A		13.141	32.839	55.056	1.00 28.99
E.	MOTA	2358	0	ASN A		12.118	32.715	54.415	1.00 24.87
· E ;	MOTA	2359	CB	ASN A		14.091	35.176	55.047	1.00 23.55
m m	MOTA	2360	CG	ASN A		14.133	36.499	55.757	1.00 37.80
	ATOM	2361	OD1	ASN A	304	13.630	36.613	56.892	1.00 20.66
25	ATOM	2362	ND2	ASN A		14.752	37.488	55.093	1.00 24.17
	ATOM	2363	N	LEU A		14.110	31.919	55.055	1.00 27.24
· L i	MOTA	2364	CA	LEU A		13.987	30.677	54.306	1.00 27.34
:	MOTA	2365	С	LEU A		13.218	29.665	55.121	1.00 31.29
ek aa	ATOM	2366	0	LEU A		12.235	29.051	54.678	1.00 29.23
្ន 30	ATOM	2367	CB	LEU A		15.371	30.119	53.967	1.00 27.62
·== {	ATOM	2368	CG	LEU A		15.805	30.593	52.603	1.00 32.23
7 11 11 21 2 11 2 11	MOTA	2369		LEU A		17.289	30.293	52.412	1.00 28.91
	ATOM	2370		LEU A		14.951	29.887	51.549	1.00 41.51
	MOTA	2371	N	VAL A		13.711	29.528	56.347	1.00 27.75
.£ 35	MOTA	2372	CA	VAL A		13.134	28.652	57.327	1.00 29.99
	MOTA	2373	С	VAL A		12.578	29.527	58.403	1.00 31.78
	ATOM	2374	0	VAL A		13.306	30.217	59.110	1.00 28.32
	ATOM	2375	СВ	VAL A		14.092	27.593	57.827	1.00 37.24
40	ATOM	2376		VAL A		15.479	28.180	57.969	1.00 38.36
40	ATOM	2377		VAL A		13.602	27.107	59.164	1.00 37.56
	ATOM	2378	N	THR A		11.259	29.517	58.440	1.00 29.40
	ATOM	2379	CA	THR A		10.499	30.358	59.320	1.00 28.14
	ATOM	2380	C	THR A		9.729	29.712	60.446	1.00 34.06
45	ATOM	2381	0	THR A		9.029	28.706	60.277	1.00 36.72
43	ATOM	2382	CB	THR A		9.474	31.115	58.460	1.00 23.03
	ATOM	2383		THR A		10.124	31.811	57.422	1.00 28.56
	ATOM	2384		THR A		8.665	32.068	59.336	1.00 12.55
	ATOM	2385 2386	N			9.802	30.347	61.608	1.00 29.29
50	ATOM	2387	CA C	ASN A		9.042	29.862	62.724	1.00 27.82
50	ATOM	2388		ASN A		7.576	29.716	62.234	1.00 31.42
	ATOM ATOM	2389	O CB	ASN A		7.072 9.194	30.535 30.790	61.450	1.00 32.96
	ATOM	2399	CG	ASN A		8.935		63.972	1.00 23.57
	ATOM	2391		ASN A		9.505	32.298	63.745	1.00 30.38
55	ATOM	2392		ASN A			33.190	64.400	1.00 23.70
55	ATOM	2392	ND2	LYS A		8.056	32.608	62.818	1.00 41.34
	ATOM	2394	CA	LYS A		6.890 5.502	28.658 28.433	62.640 62.230	1.00 24.10
	ATOM	2395	CA	LYS A		4.514	29.380	62.230	1.00 23.40
	ATOM	2396	0	LYS A		3.430	29.756		1.00 28.17 1.00 22.88
60	ATOM	2390	СВ	LYS A		5.151	26.975	62.474 62.459	1.00 22.88
50	ATOM	2398	CG	LYS A		4.036	26.478	61.555	1.00 24.26
	ATOM	2399	CD	LYS A		3.543	25.075	61.924	1.00 28.37
	ATOM	2400	CE	LYS A		3.475	24.112	60.739	1.00 38.23
	ATOM	2401	NZ	LYS A		4.389	22.953	60.849	1.00 78.39
		~		A			22.733	00.047	1.00 50.22

	ATOM	2402	N	THR A	310	4.917	29.744	64.179	1.00 23.46
	ATOM	2403	CA	THR A	310	4.179	30.616	65.037	1.00 22.98
	ATOM	2404	С	THR A	310	5.142	31.336	65.922	1.00 31.43
	ATOM	2405	0	THR A	310	6.223	30.836	66.230	1.00 31.51
5	ATOM	2406	CB	THR A		3.104	29.917	65.871	1.00 34.01
	ATOM	2407	OG1			3.684	29.148	66.945	1.00 27.97
	MOTA	2408		THR A		2.174	29.114	64.956	1.00 24.58
	ATOM	2409	N	TRP A		4.733	32.527	66.299	1.00 29.82
	MOTA	2410	CA	TRP A		5.559	33.371	67.120	1.00 23.02
10	ATOM	2411	C	TRP A		6.044	32.692	68.381	1.00 30.49
10		2412	0	TRP A					
	ATOM	2412	СВ	TRP A		7.015	33.101	68.971	1.00 25.15
	ATOM					4.933	34.768	67.320	1.00 30.34
	ATOM	2414	CG	TRP A		4.706	35.412	66.001	1.00 30.63
1.5	ATOM	2415	CD1			3.514	35.785	65.490	1.00 32.07
15	MOTA	2416		TRP A		5.705	35.723	65.008	1.00 31.31
	MOTA	2417		TRP A		3.703	36.335	64.250	1.00 29.97
	MOTA	2418		TRP A		5.033	36.317	63.931	1.00 32.88
fa iii	ATOM	2419	CE3	TRP A		7.099	35.586	64.943	1.00 31.44
	MOTA	2420	CZ2	TRP A	311	5.721	36.771	62.804	1.00 31.56
20	ATOM	2421	CZ3	TRP A	311	7.779	36.059	63.848	1.00 30.39
u.	ATOM	2422	CH2	TRP A	311	7.089	36.639	62.789	1.00 30.58
<u>1</u> -4.	ATOM	2423	N	ASP A		5.366	31.632	68.770	1.00 27.36
म इस्तः प्रमुख्याः	ATOM	2424	CA	ASP A		5.757	30.868	69.950	1.00 27.38
5 20:	ATOM	2425	С	ASP A		7.149	30.213	69.757	1.00 27.30
25	ATOM	2426	ō	ASP A		7.826	29.802	70.718	1.00 31.23
uT.	ATOM	2427	СВ	ASP A		4.697	29.750	70.710	
ļ ₌ā.	ATOM	2428	CG	ASP A					1.00 25.96
E		2429		ASP A		3.432	30.230	70.872	1.00 27.42
	ATOM					3.197	31.396	71.102	1.00 28.97
= 20	ATOM	2430		ASP A		2.623	29.265	71.208	1.00 29.33
∃30	ATOM	2431	N	HIS A		7.562	30.089	68.487	1.00 25.04
T.	ATOM	2432	CA	HIS A		8.820	29.454	68.164	1.00 23.48
	ATOM	2433	С	HIS A		9.864	30.452	67.737	1.00 25.38
12 to	ATOM	2434	0	HIS A		10.929	30.139	67.214	1.00 29.97
	MOTA	2435	CB	HIS A		8.588	28.245	67.209	1.00 25.00
-35	ATOM	2436	CG	HIS A		7.641	27.230	67.837	1.00 29.77
	ATOM	2437		HIS A		8.087	26.183	68.635	1.00 31.37
	MOTA	2438		HIS A		6.279	27.152	67.808	1.00 31.31
	MOTA	2439	CE1	HIS A	313	7.015	25.509	69.039	1.00 28.91
	MOTA	2440	NE2	HIS A	313	5.913	26.066	68.559	1.00 29.40
40	ATOM	2441	N	PHE A	314	9.521	31.682	68.005	1.00 17.43
	MOTA	2442	CA	PHE A	314	10.345	32.810	67.701	1.00 17.16
	ATOM	2443	С	PHE A		11.852	32.523	67.812	1.00 26.01
	ATOM	2444	0	PHE A		12.669	32.922	66.963	1.00 30.40
	ATOM	2445	СВ	PHE A		9.908	34.056	68.517	1.00 18.63
45	ATOM	2446	CG	PHE A		10.592	35.351	68.113	1.00 20.10
•••	ATOM	2447		PHE A		10.712	35.697	66.768	1.00 21.80
	ATOM	2448		PHE A		11.129	36.214	69.070	1.00 21.00
	ATOM	2449		PHE A		11.337	36.890	66.400	1.00 22.00
	ATOM	2450		PHE A		11.750	37.416	68.716	1.00 27.24
50	ATOM	2451	CZ	PHE A					
50						11.857	37.756	67.368	1.00 24.97
	ATOM	2452	N	TRP A		12.235	31.828	68.861	1.00 19.66
	ATOM	2453	CA	TRP A		13.639	31.541	69.068	1.00 17.87
	MOTA	2454	C	TRP A		14.292	30.775	67.953	1.00 28.55
	ATOM	2455	0	TRP A		15.518	30.769	67.830	1.00 29.23
55	ATOM	2456	СВ	TRP A		13.860	30.842	70.362	1.00 16.03
	ATOM	2457	CG	TRP A	315	13.613	29.408	70.161	1.00 19.64
	MOTA	2458	CD1	TRP A	315	12.428	28.787	70.247	1.00 22.39
	MOTA	2459	CD2	TRP A	315	14.599	28.430	69.876	1.00 21.70
	MOTA	2460		TRP A		12.597	27.457	70.033	1.00 24.22
60	ATOM	2461		TRP A		13.934	27.205	69.801	1.00 27.96
	ATOM	2462		TRP A		15.976	28.481	69.681	1.00 22.89
	ATOM	2463		TRP A		14.631	26.018	69.547	1.00 27.76
	ATOM	2464		TRP A		16.651	27.321	69.421	1.00 23.16
	ATOM	2465		TRP A		15.991	26.108	69.341	1.00 23.16
		2400	V.12	**** 77		10.991	20.100	02.341	1.00 23.94

							•		
	ATOM	2466	N	LEU A	316	13.488	30.114	67.144	1.00 26.33
	MOTA	2467	CA	LEU A	316	14.092	29.400	66.067	1.00 25.44
	MOTA	2468	С	LEU A	316	14.666	30.443	65.129	1.00 33.21
	ATOM	2469	0	LEU A	316	15.737	30.252	64.530	1.00 37.80
5	ATOM	2470	CB	LEU A	316	13.050	28.567	65.311	1.00 24.82
	ATOM	2471	CG	LEU A		12.663	27.242	65.956	1.00 27.62
	ATOM	2472	CD1	LEU A	316	11.574	26.552	65.106	1.00 22.30
	ATOM	2473	CD2	LEU A	316	13.897	26.344	66.097	1.00 27.03
	MOTA	2474	N	ASN A	317	13.931	31.555	64.997	1.00 20.55
10	ATOM	2475	CA	ASN A	317	14.354	32.624	64.115	1.00 19.34
	ATOM	2476	С	ASN A	317	15.603	33.333	64.531	1.00 30.38
	ATOM	2477	0	ASN A	317	16.553	33.425	63.766	1.00 32.04
	ATOM	2478	CB	ASN A	317	13.273	33.682	63.838	1.00 14.82
	MOTA	2479	CG	ASN A	317	12.330	33.177	62.793	1.00 31.14
15	ATOM	2480	OD1	ASN A	317	12.151	31.966	62.657	1.00 38.42
	ATOM	2481	ND2	ASN A	317	11.724	34.074	62.049	1.00 17.34
	ATOM	2482	N	GLU A	318	15.562	33.870	65.750	1.00 26.15
	ATOM	2483	CA	GLU A	318	16.624	34.648	66.358	1.00 20.23
Ph	ATOM	2484	С	GLU A	318	17.860	33.884	66.816	1.00 23.53
20	ATOM	2485	0	GLU A	318	19.006	34.273	66.554	1.00 26.34
	MOTA	2486	CB	GLU A	318	15.998	35.484	67.456	1.00 19.11
# A	ATOM	2487	CG	GLU A	318	14.999	36.480	66.800	1.00 24.06
##: ##:	ATOM	2488	CD	GLU A	318	15.615	37.391	65.758	1.00 40.32
man,	ATOM	2489	OE1	GLU A	318	16.833	37.559	65.612	1.00 21.24
₹ 25	ATOM	2490	OE2	GLU A	318	14.703	38.025	65.062	1.00 24.23
Ti.	ATOM	2491	N	GLY A	319	17.621	32.782	67.494	1.00 17.17
L.	ATOM	2492	CA	GLY A	319	18.681	31.955	68.016	1.00 15.31
	ATOM	2493	С	GLY A	319	19.673	31.601	66.953	1.00 24.07
.4.	ATOM	2494	0	GLY A	319	20.860	31.897	67.080	1.00 28.47
30	ATOM	2495	N	HIS A	320	19.165	30.956	65.907	1.00 20.24
	ATOM	2496	CA	HIS A	320	19.977	30.556	64.790	1.00 20.13
Ļ	ATOM	2497	С	HIS A	320	20.678	31.759	64.142	1.00 24.97
: m.	ATOM	2498	0	HIS A	320	21.855	31.700	63.739	1.00 23.54
	ATOM	2499	CB	HIS A	320	19.143	29.737	63.791	1.00 20.57
35	ATOM	2500	CG	HIS A	320	18.662	28.426	64.349	1.00 22.57
•	ATOM	2501	ND1	HIS A	320	17.471	28.332	65.058	1.00 22.98
	ATOM	2502	CD2	HIS A	320	19.217	27.176	64.286	1.00 19.52
	MOTA	2503	CE1	HIS A	320	17.336	27.046	65.385	1.00 19.18
	ATOM	2504	NE2	HIS A		18.368	26.329	64.952	1.00 18.12
40	ATOM	2505	N	THR A		19.958	32.875	64.053	1.00 21.61
	ATOM		CA	THR A		20.543	34.056	63.478	1.00 22.16
	ATOM	2507	С	THR A		21.697	34.552	64.342	1.00 27.47
	MOTA	2508	0	THR A		22.789	34.825	63.836	1.00 26.64
	MOTA	2509	CB	THR A		19.470	35.097	63.113	1.00 27.88
45	ATOM	2510		THR A		18.403	34.392	62.523	1.00 27.92
	MOTA	2511		THR A		19.999	36.088	62.087	1.00 18.05
	ATOM	2512	N	VAL A		21.496	34.634	65.659	1.00 21.90
	ATOM	2513	CA	VAL A		22.610	35.054	66.470	1.00 19.44
50	ATOM	2514	C	VAL A		23.762	34.071	66.285	1.00 24.43
50	ATOM	2515	0	VAL A		24.926	34.414	66.188	1.00 21.48
	MOTA	2516	CB	VAL A		22.218	35.185	67.928	1.00 20.92
	ATOM	2517		VAL A		23.406	35.644	68.772	1.00 18.37
	ATOM	2518		VAL A		21.093	36.200	68.048	1.00 20.01
~ ~	MOTA	2519	N	TYR A		23.427	32.811	66.197	1.00 27.08
55	ATOM	2520	CA	TYR A		24.446	31.803	66.013	1.00 26.26
	ATOM	2521	С	TYR A		25.222	32.036	64.728	1.00 28.26
	MOTA	2522	0	TYR A		26.431	31.894	64.643	1.00 27.51
	ATOM	2523	CB	TYR A		23.804	30.407	66.020	1.00 25.74
	MOTA	2524	CG	TYR A		24.867	29.341	65.987	1.00 26.66
60	MOTA	2525		TYR A		25.539	28.957	67.150	1.00 29.09
	MOTA	2526		TYR A		25.199	28.713	64.789	1.00 24.52
	MOTA	2527		TYR A		26.530	27.974	67.157	1.00 22.56
	MOTA	2528	CE2	TYR A	323	26.178	27.722	64.770	1.00 25.31
	ATOM	2529	CZ	TYR A	323	26.846	27.370	65.944	1.00 29.19

PCT/SE00/00384

	ATOM	2530	ОН	TYR A 32	3 27	.823	26.434	65.895	1.00 27.51	
	ATOM	2531	N	LEU A 32		. 497	32.408	63.702	1.00 24.82	
	ATOM	2532	CA	LEU A 32		.135	32.638	62.439	1.00 26.04	
~	ATOM	2533	С	LEU A 32		.832	33.952	62.417	1.00 30.92	
5	ATOM	2534	0	LEU A 32		.903	34.045	61.851	1.00 33.76	
	ATOM	2535	CB	LEU A 32		.176	32.537	61.235	1.00 26.21	
	MOTA	2536	CG	LEU A 32		.916	31.112	60.778	1.00 28.46	
	ATOM	2537		LEU A 32		.752	31.109	59.791	1.00 28.95	
10	ATOM ATOM	2538 2539	N N	LEU A 32 GLU A 32		.169 .234	30.508 34.976	60.151	1.00 26.54	
10	ATOM	2540	CA	GLU A 32		.870	36.303	63.033 63.064	1.00 27.04 1.00 22.88	
	MOTA	2541	C	GLU A 32		.282	36.210	63.624	1.00 22.66	
	ATOM	2542	0	GLU A 32		.250	36.722	63.026	1.00 26.24	
	ATOM	2543	CB	GLU A 32		.016	37.365	63.759	1.00 22.01	
15	ATOM	2544	CG	GLU A 32		.827	38.411	64.524	1.00 41.55	
	ATOM	2545	CD	GLU A 32		.035	39.040	65.646	1.00 72.11	
	MOTA	2546	OE1	GLU A 32		. 866	38.764	65.862	1.00 41.88	
	ATOM	2547	OE2	GLU A 32		.719	39.922	66.350	1.00 67.15	
ar	ATOM	2548	N	ARG A 32	6 27	.349	35.479	64.755	1.00 27.84	
20 	ATOM	2549	CA	ARG A 32		.551	35.213	65.511	1.00 28.10	
Hail IN	ATOM	2550	С	ARG A 32		.604	34.457	64.771	1.00 30.90	
	ATOM	2551	0	ARG A 32		.763	34.747	64.976	1.00 33.93	
a the	MOTA	2552	СВ	ARG A 32		.334	34.761	66.947	1.00 31.52	
	ATOM	2553	CG	ARG A 32		.645	35.864	67.726	1.00 22.20	
25	ATOM	2554	CD	ARG A 32		. 462	35.572	69.203	1.00 28.71	
UT	ATOM	2555	NE	ARG A 32		.727	36.673	69.830	1.00 23.82	
}= £1.	ATOM	2556	CZ	ARG A 32		.805	36.556	70.780	1.00 26.09	
Œ	ATOM	2557		ARG A 32		.443	35.388	71.305	1.00 23.16	
	ATOM	2558		ARG A 32		.220	37.655	71.222	1.00 24.77	
⊨430 [↓	ATOM ATOM	2559 2560	N CA	HIS A 32 HIS A 32		.221 .207	33.511 32.777	63.918	1.00 29.85	
7 T	ATOM	2561	C	HIS A 32		.778	33.738	63.120 62.085	1.00 30.52 1.00 35.50	
	ATOM	2562	Ö	HIS A 32		.966	33.777	61.822	1.00 35.30	
is pi	ATOM	2563	СВ	HIS A 32		.591	31.555	62.407	1.00 30.74	
135	MOTA	2564	CG	HIS A 32		.764	30.259	63.176	1.00 34.51	
}- &	ATOM	2565		HIS A 32		.963	29.913	63.788	1.00 36.17	
	ATOM	2566		HIS A 32		.875	29.263	63.432	1.00 35.58	
	MOTA	2567.	CE1	HIS A 32	7 30	.778	28.740	64.384	1.00 35.27	
4.0	MOTA	2568	NE2	HIS A 32	29	.532	28.322	64.191	1.00 35.56	
40	MOTA	2569	N	ILE A 32		.902	34.549	61.511	1.00 31.10	
	ATOM	2570	CA	ILE A 32		.328	35.517	60.528	1.00 31.66	
	ATOM	2571	С	ILE A 32		.416	36.407	61.086	1.00 40.12	
	ATOM	2572	0	ILE A 32		.451	36.615	60.465	1.00 40.81	
45	ATOM	2573	CB	ILE A 32		.175	36.379	59.998	1.00 32.94	
43	MOTA	2574 2575		ILE A 32		.220	35.570	59.114	1.00 29.53	
	ATOM ATOM	2576		ILE A 32		.694 .119	37.591 36.463	59.201 58.535	1.00 30.91	
	ATOM	2577	N	CYS A 3		.179	36.948	62.266	1.00 32.98 1.00 37.88	
	ATOM	2578	CA	CYS A 32		.170	37.810	62.851	1.00 37.88	
50	ATOM	2579	c c	CYS A 3		.475	37.092	63.157	1.00 39.34	
	ATOM	2580	ŏ	CYS A 3		.567	37.642	62.971	1.00 38.44	
	ATOM	2581	СВ	CYS A 3		.607	38.509	64.083	1.00 42.61	
	ATOM	2582	SG	CYS A 3		.241	39.595	63.619	1.00 48.14	
	ATOM	2583	N	GLY A 3		.332	35.852	63.632	1.00 34.74	
55	ATOM	2584	CA	GLY A 3		.471	35.030	63.980	1.00 35.20	
	ATOM	2585	С	GLY A 3	35	.359	34.854	62.778	1.00 43.66	
	ATOM	2586	0	GLY A 3	36	.581	34.857	62.891	1.00 46.79	
	MOTA	2587	N	ARG A 3		.709	34.725	61.622	1.00 34.99	
(0	ATOM	2588	CA	ARG A 3		.416	34.562	60.392	1.00 33.19	
60		2589	С	ARG A 3:		.086	35.863	60.017	1.00 40.63	
	ATOM									
	ATOM	2590	0	ARG A 3		.238	35.914	59.586	1.00 44.40	
	ATOM ATOM	2590 2591	O CB	ARG A 3:	34	.494	34.101	59.269	1.00 44.40 1.00 31.29	
	ATOM	2590	0	ARG A 3	31 34 31 33				1.00 44.40	

	MOTA	2594	NE	ARG A	331	34.461	31.851	57.221	1.00 80.25
	MOTA	2595	CZ	ARG A	331	33.615	31.023	56.628	1.00100.00
	MOTA	2596	NH1	ARG A	331	33.055	29.999	57.279	1.00 79.12
_	MOTA	2597	NH2	ARG A		33.334	31.216	55.341	1.00 89.33
5	ATOM	2598	N	LEU A		35.342	36.926	60.172	1.00 32.14
	MOTA	2599	CA	LEU A		35.885	38.198	59.820	1.00 30.02
	ATOM	2600	С	LEU A		37.013	38.612	60.761	1.00 40.33
	MOTA	2601	0	LEU A		38.084	38.972	60.286	1.00 40.10
10	MOTA	2602	CB	LEU A		34.772	39.262	59.822	1.00 28.20
10	MOTA	2603	CG	LEU A		34.451	39.896	58.469	1.00 28.82
	ATOM	2604	CD1	LEU A		35.007	39.063	57.341	1.00 23.73
	ATOM	2605		LEU A		32.947	40.114	58.306	1.00 29.76
	MOTA	2606	N	PHE A		36.744	38.557	62.091	1.00 37.69
1.5	ATOM	2607	CA	PHE A		37.657	38.997	63.143	1.00 34.12
15	ATOM	2608	C	PHE A		38.251	37.956	64.035	1.00 37.99
	MOTA	2609	0	PHE A		39.015	38.293	64.925	1.00 41.67
	ATOM	2610	CB	PHE A		36.970	40.058	64.024	1.00 35.62
	ATOM	2611	CG	PHE A		36.209	41.003	63.138	1.00 39.09
20	ATOM	2612		PHE A		36.887	41.923	62.332	1.00 43.22
20	ATOM	2613		PHE A		34.818	40.941	63.045	1.00 42.78
1	ATOM	2614		PHE A		36.205	42.781	61.464	1.00 44.14
4.	ATOM	2615		PHE A		34.123	41.806	62.194	1.00 46.56
103	ATOM	2616	CZ	PHE A		34.814	42.716	61.389	1.00 43.20
= 25	ATOM	2617	N	GLY A		37.908	36.706	63.865	1.00 34.36
25	ATOM	2618	CA	GLY A		38.507	35.705	64.763	1.00 32.89
	ATOM	2619		GLY A		37.582	34.985	65.767	1.00 32.67
. .	ATOM	2620	0	GLY A		36.641	35.540	66.340	1.00 33.48
	ATOM	2621	N	GLU A		37.908	33.726	66.003	1.00 23.52
30	ATOM	2622	CA	GLU A		37.196	32.875	66.931	1.00 18.13
30	ATOM	2623 2624	C O	GLU A		37.278	33.384	68.346	1.00 29.15
	ATOM ATOM	2625	СВ	GLU A		36.357 37.782	33.124	69.112	1.00 34.14
iadi F#L	ATOM	2626	CG	GLU A		37.762	31.488 30.591	66.929 67.929	1.00 17.35
	ATOM	2627	CD	GLU A		35.642	30.391	67.473	1.00 32.97 1.00 46.14
35	ATOM	2628	OE1	GLU A		35.093	30.944	66.588	
i.i.	ATOM	2629	OE2	GLU A		35.080	29.317	68.132	1.00 39.31 1.00 32.80
	ATOM	2630	N	LYS A		38.370	34.077	68.706	1.00 32.00
	ATOM	2631	CA	LYS A		38.468	34.609	70.061	1.00 25.38
	ATOM	2632	C	LYS A		37.445	35.726	70.169	1.00 35.32
40	ATOM	2633	Ö	LYS A		36.908	36.004	71.233	1.00 38.14
	ATOM	2634	СВ	LYS A		39.820	35.199	70.421	1.00 25.45
	ATOM	2635	CG	LYS A		40.871	34.188	70.825	1.00 25.43
	ATOM	2636	CD	LYS A		42.207	34.846	71.189	1.00 47.10
	ATOM	2637	CE	LYS A		43.325	34.600	70.172	1.00 68.74
45	ATOM	2638	NZ	LYS A		44.566	34.072	70.767	1.00 77.62
	ATOM	2639	N	PHE A	337	37.174	36.364	69.029	1.00 31.52
	ATOM	2640	CA	PHE A	337	36.186	37.442	68.967	1.00 29.34
	ATOM	2641	С	PHE A	337	34.783	36.869	69.083	1.00 31.73
	ATOM	2642	0	PHE A	337	33.908	37.424	69.742	1.00 35.53
50	ATOM	2643	CB	PHE A	337	36.304	38.336	67.709	1.00 30.04
	ATOM	2644	CG	PHE A	337	35.435	39.589	67.747	1.00 35.16
	ATOM	2645		PHE A		35.468	40.459	68.843	1.00 43.88
	MOTA	2646		PHE A		34.550	39.893	66.709	1.00 40.16
~ ~	ATOM	2647		PHE A		34.688	41.617	68.913	1.00 46.53
55	MOTA	2648		PHE A		33.753	41.040	66.760	1.00 45.62
	MOTA	2649	CZ	PHE A		33.830	41.908	67.852	1.00 45.57
	ATOM	2650	N	ARG A		34.566	35.733	68.452	1.00 25.52
	ATOM	2651	CA	ARG A		33.266	35.119	68.508	1.00 25.23
60	MOTA	2652	С	ARG A		32.944	34.759	69.922	1.00 29.77
60	ATOM	2653	0	ARG A		31.854	35.025	70.415	1.00 31.81
	ATOM	2654	CB	ARG A		33.186	33.920	67.606	1.00 24.04
	ATOM	2655	CG	ARG A		31.839	33.228	67.623	1.00 21.31
	ATOM	2656	CD	ARG A		31.807	32.086	66.599	1.00 30.62
	ATOM	2657	NE	ARG A	338	32.518	30.892	67.040	1.00 29.87

	ATOM	2658	CZ	ARG A		31.919	29.781	67.466	1.00 26.37
	MOTA	2659		ARG A		30.616	29.687	67.518	1.00 20.26
	MOTA	2660		ARG A		32.632	28.737	67.864	1.00 18.57
_	ATOM	2661	N	HIS A		33.934	34.190	70.577	1.00 25.88
5	ATOM	2662	CA	HIS A		33.813	33.797	71.982	1.00 25.59
	ATOM	2663	С	HIS A		33.455	34.972	72.892	1.00 27.61
	ATOM	2664	0	HIS A		32.615	34.912	73.793	1.00 25.27
	ATOM	2665	CB	HIS A		35.065	33.045	72.462	1.00 25.06
10	ATOM	2666 2667	CG ND1	HIS A		34.923	31.587	72.155	1.00 28.13
10	ATOM ATOM	2668		HIS A		35.049	30.612	73.127	1.00 30.52
	ATOM	2669		HIS A		34.586 34.843	30.970 29.442	70.981	1.00 30.89
	ATOM	2670		HIS A		34.546	29.442	72.535	1.00 30.89
	ATOM	2671	N	PHE A		34.103	36.065	71.245 72.608	1.00 31.36
15	ATOM	2672	CA	PHE A		33.892	37.278	73.334	1.00 24.54
10	ATOM	2673	C	PHE A		32.452	37.762	73.334	1.00 25.36
	ATOM	2674	0	PHE A		31.822	38.222	74.190	1.00 32.47 1.00 32.78
	ATOM	2675	СВ	PHE A		34.876	38.309	72.801	1.00 32.78
.	ATOM	2676	CG	PHE A		34.654	39.671	73.346	1.00 26.03
20	ATOM	2677		PHE A		35.238	40.047	74.559	1.00 20.47
EF.	ATOM	2678	CD2			33.902	40.592	72.616	1.00 28.22
u,	ATOM	2679		PHE A		35.063	41.330	75.072	1.00 21.58
: 1 .	ATOM	2680	CE2	PHE A		33.715	41.879	73.115	1.00 29.13
1 12	ATOM	2681	CZ	PHE A		34.280	42.225	74.345	1.00 25.28
25	MOTA	2682	N	ASN A		31.944	37.663	72.004	1.00 28.41
	ATOM	2683	CA	ASN A	341	30.600	38.084	71.728	1.00 29.60
 . Å.	ATOM	2684	С	ASN A		29.665	37.110	72.379	1.00 38.52
	ATOM	2685	0	ASN A	341	28.699	37.511	73.029	1.00 42.88
	ATOM	2686	CB	ASN A	341	30.322	38.274	70.224	1.00 30.01
30	ATOM	2687	CG	ASN A		31.159	39.374	69.587	1.00 52.80
	ATOM	2688	OD1	ASN A		31.528	39.284	68.404	1.00 60.88
	MOTA	2689		ASN A		31.442	40.427	70.359	1.00 41.02
35	ATOM	2690	N	ALA A		29.994	35.826	72.239	1.00 28.24
25	ATOM	2691	CA	ALA A		29.195	34.800	72.877	1.00 26.95
≝ 35 ■	ATOM	2692	С	ALA A		29.013	35.134	74.393	1.00 35.98
	ATOM	2693	0	ALA A		27.877	35.261	74.897	1.00 35.09
	ATOM	2694	CB	ALA A		29.837	33.422	72.671	1.00 25.45
	ATOM ATOM	2695 2696	n CA	LEU A		30.153	35.304	75.122	1.00 29.16
40	ATOM	2697	C	LEU A		30.162	35.633	76.560	1.00 22.58
40	ATOM	2698	o		_	29.310	36.854	76.831	1.00 27.48
	ATOM	2699	CB	LEU A		28.452 31.583	36.821 35.786	77.696 77.147	1.00 32.73
	ATOM	2700	CG	LEU A		31.647	35.693	78.671	1.00 18.70 1.00 20.08
	ATOM	2701		LEU A		30.842	34.510	79.204	1.00 20.08
45	ATOM	2702		LEU A		33.091	35.522	79.111	1.00 17.76
	ATOM	2703	N	GLY A		29.512	37.936	76.080	1.00 22.60
	ATOM	2704	CA	GLY A		28.670	39.146	76.278	1.00 24.15
	ATOM	2705	С	GLY A		27.157	38.824	76.136	1.00 31.38
	MOTA	2706	0	GLY A		26.339	39.260	76.943	1.00 32.44
50	ATOM	2707	N	GLY A		26.806	38.017	75.094	1.00 22.79
	ATOM	2708	CA	GLY A		25.451	37.587	74.801	1.00 19.88
	MOTA	2709	С	GLY A	345	24.787	36.994	76.034	1.00 28.37
	ATOM	2710	0	GLY A	345	23.632	37.294	76.325	1.00 27.56
	ATOM	2711	N	TRP A	346	25.547	36.153	76.765	1.00 25.41
55	ATOM	2712	CA	TRP A	346	25.082	35.520	77.994	1.00 23.90
	ATOM	2713	С	TRP A	346	24.825	36.541	79.071	1.00 31.54
	ATOM	2714	0	TRP A		23.957	36.379	79.924	1.00 29.57
	ATOM	2715	CB	TRP A		26.122	34.556	78.562	1.00 21.53
C A	ATOM	2716	CG	TRP A		25.680	33.880	79.837	1.00 21.92
60	ATOM	2717	CD1			25.933	34.335	81.079	1.00 24.36
	ATOM	2718		TRP A		25.004	32.597	80.010	1.00 20.97
	ATOM	2719		TRP A		25.450	33.453	82.008	1.00 23.95
	ATOM	2720		TRP A		24.859	32.388	81.391	1.00 24.13
	ATOM	2721	CE3	TRP A	346	24.488	31.611	79.144	1.00 21.46

#

ATOM

ATOM

2785

N

THR A 355

43.133

41.108

15.608

89.657

84.962

1.00 63.77

1.00 32.63

	ATOM	2786	CA	THR A			42.025	84.610	1.00 34.03
	ATOM	2787	С	THR A			41.422	84.578	1.00 42.11
	ATOM	2788	0	THR A			42.006	85.154	1.00 40.96
4	ATOM	2789	CB	THR A			42.736	83.308	1.00 41.11
-		2790 2791	CG2	THR A			43.615	83.542	1.00 29.85
	MOTA MOTA	2792	N	THR A			43.438	82.656	1.00 45.50
	ATOM	2793	CA	PHE A			40.273 39.729	83.908 83.860	1.00 33.89
	ATOM	2794	c c	PHE A			39.729	85.147	1.00 29.29 1.00 31.93
10) ATOM	2795	Ö	PHE A			39.152	85.642	1.00 31.93
	ATOM	2796	CB	PHE A			38.645	82.785	1.00 33.30
	ATOM	2797	CG	PHE A			39.196	81.416	1.00 36.54
	MOTA	2798		PHE A			40.054	81.224	1.00 42.38
	ATOM	2799		PHE A		11.985	38.858	80.320	1.00 38.62
15	MOTA	2800	CE1	PHE A	356	9.831	40.596	79.968	1.00 44.75
	ATOM	2801		PHE A			39.384	79.055	1.00 43.46
	ATOM	2802	CZ	PHE A			40.261	78.890	1.00 43.86
ST 15.	ATOM	2803	N	GLY A			38.386	85.661	1.00 30.41
D	ATOM	2804	CA	GLY A			37.564	86.864	1.00 29.17
1 20		2805	C	GLY A			36.100	86.438	1.00 28.92
4I	ATOM	2806	0	GLY A			35.642	85.372	1.00 27.33
j-E.	ATOM	2807	N	GLU A			35.382	87.243	1.00 21.27
	ATOM ATOM	2808 2809	CA C	GLU A		13.590	34.040	86.898	1.00 23.10
25	ATOM MOTA	2810	0	GLU A		12.424 12.581	33.104	86.747	1.00 31.53
	ATOM	2811	СВ	GLU A		14.596	31.972 33.473	86.294 87.880	1.00 30.92
]= A.	ATOM	2812	CG	GLU A			33.475	89.301	1.00 25.36 1.00 38.73
	ATOM	2813	CD	GLU A		15.011	33.430	90.345	1.00 56.34
# 7 #	ATOM	2814	OE1	GLU A		16.026	32.446	90.071	1.00 50.55
F# 30) ATOM	2815		GLU A		14.678	33.403	91.564	1.00 75.65
# # H	ATOM	2816	N	THR A			33.542	87.139	1.00 27.87
n.	ATOM	2817	CA	THR A	359		32.625	86.970	1.00 25.66
C	ATOM	2818	С	THR A		9.236	33.152	85.906	1.00 25.96
	ATOM	2819	0	THR A			32.528	85.533	1.00 25.58
1 35		2820	CB	THR A			32.341	88.253	1.00 25.00
	ATOM	2821	OG1	THR A			33.565	88.692	1.00 33.10
	ATOM	2822	CG2	THR A		10.406	31.785	89.273	1.00 14.43
	ATOM ATOM	2823 2824	n Ca	HIS A			34.310	85.407	1.00 20.75
40) ATOM	2825	C	HIS A		8.837 8.823	34.902 34.034	84.363 83.130	1.00 22.77
	ATOM	2826	Õ	HIS A		9.858	33.611	82.620	1.00 35.30 1.00 37.42
	ATOM	2827	СВ	HIS A		9.294	36.291	83.982	1.00 37.42
	ATOM	2828	CG	HIS A			36.908	83.219	1.00 23.10
	ATOM	2829		HIS A		7.532	38.009	83.691	1.00 29.34
45	ATOM	2830		HIS A		7.651	36.545	82.059	1.00 29.91
	ATOM	2831	CEl	HIS A	360	6.596	38.315	82.806	1.00 27.94
	ATOM	2832	NE2	HIS A		6.651	37.440	81.812	1.00 29.60
	MOTA	2833	N	PRO A		7.606	33.817	82.666	1.00 32.40
E (ATOM	2834	CA	PRO A		7.301	32.999	81.519	1.00 29.46
50		2835	С	PRO A		7.862	33.478	80.224	1.00 30.59
	ATOM	2836	0	PRO A		7.907	32.737	79.248	1.00 33.00
	ATOM	2837	CB	PRO A		5.770	32.963	81.478	1.00 30.74
	ATOM ATOM	2838 2839	CG CD	PRO A		5.311	33.172	82.927	1.00 34.96
55	ATOM	2840	И	PRO A		6.463	33.869	83.627	1.00 31.82
	ATOM	2841	CA	PHE A		8.289 8.823	34.712 35.173	80.179 78.933	1.00 26.32
	ATOM	2842	C	PHE A		10.261	34.781	78.829	1.00 25.68 1.00 29.73
	ATOM	2843	Ö	PHE A		10.201	35.131	77.870	1.00 29.73
	ATOM	2844	СВ	PHE A		8.643	36.677	78.723	1.00 32.02
60	MOTA (2845	CG	PHE A		7.194	37.105	78.629	1.00 30.03
	ATOM	2846		PHE A		6.204	36.276	78.098	1.00 30.92
	ATOM	2847	CD2	PHE A	362	6.804	38.372	79.051	1.00 32.04
	ATOM	2848		PHE A		4.864	36.655	77.998	1.00 26.59
	ATOM	2849	CE2	PHE A	362	5.470	38.773	78.952	1.00 32.40

	ATOM	2914	C	ASP A	371	-2.557	37.636	75.255	1.00	40.92
	MOTA	2915	0	ASP A	371	-2.784	38.625	75.933		41.63
	MOTA	2916	СВ	ASP A	371	-4.519	36.375	76.245	1.00	39.88
_	ATOM	2917	CG	ASP A		-5.805	35.733	75.798	1.00	51.30
5	ATOM	2918		ASP A		-6.373	36.072	74.761	1.00	50.39
	ATOM	2919		ASP A		-6.206	34.754	76.583	1.00	48.61
	MOTA	2920	N	ILE A		-1.387	37.398	74.664	1.00	36.37
	MOTA	2921	CA	ILE A		-0.259	38.283	74.817	1.00	34.61
10	MOTA	2922	С	ILE A		0.203	39.018	73.555	1.00	35.46
10	MOTA	2923	0	ILE A		0.545	38.400	72.548	1.00	36.69
	ATOM	2924	CB	ILE A		0.920	37.511	75.381	1.00	36.51
	ATOM	2925	CG1			0.658	37.195	76.842		37.01
	ATOM	2926	CG2			2.121	38.441	75.281	1.00	35.52
1.5	ATOM	2927		ILE A		1.268	38.261	77.747		54.33
15	ATOM	2928	N	ASP A		0.254	40.345	73.601		25.92
	ATOM	2929	CA	ASP A		0.747	41.053	72.450		23.77
	ATOM	2930	C	ASP A		2.263	40.781	72.360		31.40
	ATOM	2931	0	ASP A		3.040	41.002	73.305	1.00	32.80
20	ATOM	2932	CB	ASP A		0.408	42.543	72.519	1.00	25.08
20	ATOM	2933	CG	ASP A		1.064	43.356	71.418	1.00	43.24
	ATOM	2934		ASP A		1.861	42.894	70.616		45.30
	ATOM	2935		ASP A		0.668	44.610	71.395		38.59
	MOTA	2936	N	PRO A		2.709	40.267	71.225		29.51
25	ATOM	2937	CA	PRO A		4.123	39.943	71.132	1.00	28.52
25	ATOM	2938	С	PRO A		5.029	41.090	71.506		32.54
	MOTA	2939	0	PRO A		6.019	40.905	72.217		29.62
	ATOM	2940	CB	PRO A		4.390	39.421	69.714		28.88
	ATOM	2941	CG	PRO A		3.028	39.278	69.032		32.27
30	ATOM	2942	CD	PRO A		1.966	39.786	70.008		28.84
30	ATOM	2943	N	ASP A		4.660	42.257	70.981		26.85
	ATOM	2944	CA	ASP A		5.357	43.511	71.154		24.25
	ATOM	2945	С	ASP A		5.695	43.783	72.628		33.10
	ATOM	2946	0	ASP A		6.648	44.494	72.988		30.67
35	ATOM	2947	CB	ASP A		4.507	44.617	70.509		24.46
33	MOTA	2948	CG	ASP A		4.753	44.836	69.033		30.08
	ATOM ATOM	2949		ASP A		5.703	44.393	68.411		33.47
		2950 2951		ASP A		3.852	45.609	68.491		38.41
	MOTA MOTA	2952	N CA	VAL A		4.885	43.161	73.477		30.21
40	ATOM	2953	C	VAL A		5.001 5.879	43.232	74.904		25.40
40	ATOM	2954	Ö	VAL A		6.599	42.106	75.431		37.27
	ATOM	2955	СВ	VAL A		3.638	42.299 43.099	76.394		42.46
	ATOM	2956		VAL A		3.799	42.533	75.550 76.975		22.48
	ATOM	2957		VAL A		2.926	44.440	75.547		21.25
45	ATOM	2958	N	ALA A		5.811	40.905	74.831		18.29 30.48
	ATOM	2959	CA	ALA A		6.671	39.793	75.288		27.04
	ATOM	2960	C	ALA A		8.149	39.911	74.797		28.15
	ATOM	2961	Ō	ALA A		9.077	39.325	75.312		27.36
	ATOM	2962	СВ	ALA A		6.091	38.433	74.891		26.74
50	ATOM	2963	N	TYR A		8.376	40.692	73.768		25.81
	ATOM	2964	CA	TYR A		9.683	40.876	73.161		25.43
	ATOM	2965	С	TYR A		10.862	41.194	74.057		30.49
	ATOM	2966	0	TYR A		10.873	42.204	74.747		32.35
	ATOM	2967	CB	TYR A		9.549	41.924	72.068		26.20
55	ATOM	2968	CG	TYR A		10.804	42.168	71.327		19.90
	ATOM	2969	CD1			11.256	41.231	70.406		18.53
	ATOM	2970		TYR A		11.536	43.331	71.543		18.47
	MOTA	2971		TYR A		12.444	41.436	69.716		15.98
	ATOM	2972		TYR A		12.719	43.555	70.840		18.77
60	ATOM	2973	CZ	TYR A		13.161	42.609	69.920		16.37
•	ATOM	2974	OH	TYR A		14.309	42.811	69.212		32.30
	ATOM	2975	N	SER A		11.879	40.317	73.977		23.03
•	ATOM	2976	CA	SER A		13.115	40.430	74.725		18.13
	ATOM	2977	С	SER A		14.267	39.777	73.970		20.60
					= =	• • •			2.00	~0.00

	MOTA	2850	CZ	PHE A 3	362	4.495	37.920	78.435	1.00	26.37
	ATOM	2851	N	THR A 3		10.730	34.049	79.843		27.22
	MOTA	2852	CA	THR A 3	363	12.102	33.575	79.943		27.52
	MOTA	2853	С	THR A 3	363	12.251	32.132	79.504		29.28
5	ATOM	2854	0	THR A 3	363	13.331	31.560	79.524		29.42
	ATOM	2855	CB	THR A 3	363	12.697	33.777	81.360		31.67
	MOTA	2856	OG1	THR A 3		12.279	32.745	82.218		26.17
	MOTA	2857	CG2			12.278	35.118	81.930	1.00	
	ATOM	2858	N	LYS A 3		11.148	31.530	79.113	1.00	23.08
10	MOTA	2859	CA	LYS A 3		11.174	30.160	78.664	1.00	20.50
	ATOM	2860	С	LYS A 3		11.556	30.270	77.217	1.00	28.83
	MOTA	2861	0	LYS A 3		11.139	31.239	76.570	1.00	29.80
	ATOM	2862	CB	LYS A 3		9.766	29.584	78.667	1.00	23.55
1.5	ATOM	2863	CG	LYS A 3		9.252	29.134	80.022		40.85
15	MOTA	2864	CD	LYS A 3		7.761	29.369	80.162	1.00	44.83
	MOTA	2865	CE	LYS A 3		7.131	28.492	81.224		66.38
	MOTA	2866	NZ	LYS A 3		6.063	27.638	80.691	1.00	91.70
	ATOM	2867	N	LEU A 3		12.332	29.328	76.698	1.00	23.57
•	ATOM	2868	CA	LEU A 3		12.699	29.420	75.312	1.00	23.95
20	ATOM	2869	С	LEU A 3		11.414	29.419	74.445	1.00	35.57
	ATOM	2870	0	LEU A 3		11.166	30.369	73.708	1.00	34.58
	ATOM	2871	СВ	LEU A 3		13.702	28.303	75.021		25.08
	MOTA	2872	CG	LEU A 3		14.456	28.372	73.702		31.15
25	ATOM	2873	CD1	LEU A 3		14.987	29.778	73.466	1.00	33.16
25	MOTA	2874	CD2	LEU A 3		15.609	27.353	73.781	1.00	30.62
	ATOM	2875	N	VAL A 3		10.572	28.360	74.564		35.62
	MOTA	2876	CA	VAL A 3		9.294	28.232	73.840	1.00	
	ATOM	2877	С	VAL A 3		8.211	28.911	74.694		33.14
20	ATOM	2878	0	VAL A 3		7.982	28.470	75.808		34.20
30	ATOM	2879	CB	VAL A 3		8.936	26.739	73.568		34.73
	ATOM	2880		VAL A 3		7.558	26.605	72.933	1.00	34.88
	ATOM	2881		VAL A 3		9.922	26.012	72.649		32.65
	ATOM	2882	N	VAL A 3		7.562	29.990	74.211		28.76
35	ATOM	2883	CA	VAL A 3		6.532	30.700	74.987		28.27
33	ATOM	2884	С	VAL A 3		5.161	30.613	74.420		30.62
	ATOM	2885 2886	O	VAL A 3		4.994	30.509	73.235	1.00	34.30
	ATOM ATOM	2887	CB	VAL A 3 VAL A 3		6.773	32.185	75.061	1.00	
	ATOM	2888		VAL A 3		8.178	32.478	75.565	1.00	33.03
40	ATOM	2889	N	ASP A 3		6.498 4.168	32.804 30.722	73.693 75.290		33.18
-10	ATOM	2890	CA	ASP A 3		2.764	30.722	74.984		29.27
	ATOM	2891	Ç.	ASP A 3		2.315	32.207	74.862		27.67
	ATOM	2892	ō	ASP A 3		2.283	32.975	75.830		26.94 23.11
	ATOM	2893	CB	ASP A 3		1.990	30.073	76.100		26.80
45	ATOM	2894	CG	ASP A 3		0.572	29.781	75.613		37.90
	ATOM	2895		ASP A 3		0.276	30.123	74.481		38.93
	ATOM	2896		ASP A 3		-0.215	29.217	76.380		38.59
	ATOM	2897	N	LEU A 3		2.027	32.588	73.622		26.55
	ATOM	2898	CA	LEU A 3		1.643	33.953	73.373		27.39
50	ATOM	2899	С	LEU A 3		0.138	34.105	73.301		30.74
	ATOM	2900	0	LEU A 3		-0.372	34.979	72.648		30.68
	ATOM	2901	CB	LEU A 3		2.281	34.395	72.064		26.06
	ATOM	2902	CG	LEU A 3		3.759	34.760	72.229		26.80
	ATOM	2903	CD1	LEU A 3	69	4.343	35.415	70.994		24.30
55	ATOM	2904	CD2	LEU A 3	69	4.014	35.728	73.384		21.81
	MOTA	2905	N	THR A 3		-0.577	33.154	73.953		30.26
	MOTA	2906	CA	THR A 3		-2.022	33.306	74.093		31.38
	ATOM	2907	С	THR A 3	70	-2.355	34.519	74.941		38.62
	ATOM	2908	0	THR A 3	70	-1.821	34.714	76.027		38.84
60	MOTA	2909	CB	THR A 3		-2.601	32.056	74.750		34.04
	ATOM	2910		THR A 3		-2.472	30.949	73.873		29.99
	MOTA	2911		THR A 3		-4.091	32.266	75.052	1.00	26.40
	ATOM	2912	N	ASP A 3		-3.173	35.387	74.363	1.00	37.89
	ATOM	2913	CA	ASP A 3	71	-3.641	36.612	75.012		37.85

	ATOM	2978	0	SER A 3	79	14.100	39.334	72.843	1.00 18.46
	ATOM	2979	CB	SER A 3		12.976	39.740	76.067	1.00 23.56
	ATOM	2980	OG	SER A 3	79	12.805	38.329	75.883	1.00 37.26
_	ATOM	2981	N	SER A 3		15.424	39.697	74.651	1.00 23.65
5	ATOM	2982	CA	SER A 3		16.701	39.084	74.222	1.00 26.09
	ATOM	2983	C	SER A 3		16.669	37.571	74.457	1.00 28.37
	ATOM	2984	0	SER A 3		17.480	36.785	73.975	1.00 30.81
	MOTA	2985	CB	SER A 3		17.889	39.588	75.062	1.00 31.60
10	ATOM	2986	OG	SER A 3		18.036	41.000	75.033	1.00 42.48
10	ATOM	2987	N	VAL A 3		15.718	37.188	75.260	1.00 18.04
	ATOM	2988	CA	VAL A 3		15.595	35.812	75.598	1.00 14.91
	ATOM	2989	C	VAL A 3		15.708	34.897	74.419	1.00 20.31
	ATOM	2990 2991	O CB	VAL A 3		16.620	34.091	74.330	1.00 27.64
15	ATOM ATOM	2992	CG1			14.408 14.284	35.546	76.501	1.00 16.34
13	ATOM	2993		VAL A 3		14.284	34.062 36.204	76.734 77.829	1.00 17.26
	ATOM	2994	N	PRO A 3		14.797	35.005	73.489	1.00 13.94 1.00 16.53
	ATOM	2995	CA	PRO A 3		14.886	34.139	72.324	1.00 10.33
	ATOM	2996	С	PRO A 3		16.222	34.230	71.634	1.00 17.21
20	ATOM	2997	ō	PRO A 3		16.709	33.192	71.207	1.00 27.79
	ATOM	2998	CB	PRO A 3		13.777	34.514	71.351	1.00 17.20
	ATOM	2999	CG	PRO A 3		13.003	35.618	72.033	1.00 18.32
	ATOM	3000	CD	PRO A 3		13.627	35.873	73.399	1.00 12.12
	ATOM	3001	N	TYR A 3		16.809	35.447	71.542	1.00 19.33
25	ATOM	3002	CA	TYR A 3	83	18.112	35.648	70.902	1.00 19.70
	ATOM	3003	С	TYR A 3	83	19.246	34.953	71.651	1.00 28.79
	ATOM	3004	0	TYR A 3		19.980	34.117	71.104	1.00 31.38
	ATOM	3005	CB	TYR A 3		18.468	37.135	70.894	1.00 21.02
20	MOTA	3006	CG	TYR A 3		17.593	37.968	70.011	1.00 23.86
30	ATOM	3007	CD1			16.290	38.277	70.404	1.00 28.36
	ATOM	3008	CD2			18.067	38.450	68.784	1.00 20.93
	ATOM	3009	CE1			15.473	39.054	69.576	1.00 30.88
	ATOM	3010	CE2	TYR A 3		17.272	39.244	67.957	1.00 18.71
35	ATOM	3011 3012	CZ OH	TYR A 3		15.967	39.533	68.358	1.00 25.95
33	ATOM ATOM	3012	N	TYR A 3		15.171 19.389	40.294 35.333	67.556	1.00 30.84
	ATOM	3013	CA	GLU A 3		20.419	34.857	72.921 73.803	1.00 20.17 1.00 17.57
	ATOM	3015	C	GLU A 3		20.188	33.506	74.405	1.00 17.37
	ATOM	3016	Ö	GLU A 3		21.151	32.775	74.669	1.00 25.65
40	ATOM	3017	СВ	GLU A 3		20.833	35.973	74.773	1.00 20.44
	ATOM	3018	CG	GLU A 3		21.263	37.202	73.944	1.00 15.21
	ATOM	3019	CD	GLU A 3		22.539	36.937	73.184	1.00 26.58
	ATOM	3020	OE1	GLU A 3		23.185	35.915	73.293	1.00 17.84
	ATOM	3021	OE2	GLU A 3	84	22.887	37.915	72.400	1.00 21.88
45	MOTA	3022	N	LYS A 3		18.935	33.116	74.610	1.00 20.33
	MOTA	3023	CA	LYS A 3		18.736	31.767	75.146	1.00 20.05
	ATOM	3024	С	LYS A 3		18.865	30.716	74.028	1.00 27.19
	ATOM	3025	0	LYS A 3		19.420	29.621	74.219	1.00 31.66
50	ATOM	3026	CB	LYS A 3		17.507	31.577	76.014	1.00 21.51
50	ATOM	3027	CG	LYS A 3		17.676	30.384	76.953	1.00 22.29
	ATOM	3028 3029	CD	LYS A 3		16.386	29.820	77.518	1.00 19.87
	ATOM ATOM	3030	CE NZ	LYS A 3		16.049	30.277	78.937	1.00 31.60
	ATOM	3031	N	GLY A 3		14.783	29.694	79.441	1.00 30.38
55	ATOM	3032	CA	GLY A 3		18.364 18.453	31.084	72.832	1.00 20.72
55	ATOM	3033	C	GLY A 3		19.924	30.248 30.106	71.637 71.298	1.00 17.41
	ATOM	3034	Õ	GLY A 3		20.396	29.001	71.235	1.00 20.81
	ATOM	3035	N	PHE A 3		20.596	31.228	71.223	1.00 22.50 1.00 20.30
	ATOM	3036	CA	PHE A 3		22.137	31.158	70.900	1.00 20.30
60	ATOM	3037	C	PHE A 3		22.840	30.263	70.900	1.00 19.92
	ATOM	3038	Õ	PHE A 3		23.685	29.478	71.530	1.00 23.03
	ATOM	3039	СВ	PHE A 3		22.852	32.519	70.955	1.00 20.07
	MOTA	3040	CG	PHE A 3		24.344	32.358	70.872	1.00 19.41
	ATOM	3041		PHE A 3		24.949	32.163	69.631	1.00 19.67
				_					

WO 00/50577

	ATOM	3042	CD2	PHE A 387	25.157	32.373	72.007	1.00 25.27
	ATOM	3043	CE1	PHE A 387		31.977	69.525	1.00 20.88
	ATOM	3044	CE2	PHE A 387	26.542	32.202	71.916	1.00 28.83
_	ATOM	3045	CZ	PHE A 387		31.981	70.668	1.00 23.24
5	ATOM	3046	N	ALA A 388		30.381	73.203	1.00 25.48
	MOTA	3047	CA	ALA A 388		29.556	74.242	1.00 23.14
	ATOM	3048	С	ALA A 388		28.108	74.055	1.00 32.10
	ATOM	3049	0	ALA A 388		27.282	74.258	1.00 37.82
10	ATOM	3050	CB	ALA A 388		29.932	75.633	1.00 23.02
10	ATOM	3051	N,	LEU A 389		27.793	73.691	1.00 26.31
	MOTA MOTA	3052 3053	CA C	LEU A 389		26.405	73.460	1.00 21.42
	ATOM	3054	0	LEU A 389		25.906 24.900	72.372 72.532	1.00 27.91
	ATOM	3055	СВ	LEU A 389		26.300	72.937	1.00 29.25 1.00 19.24
15	ATOM	3056	CG	LEU A 389		24.868	72.632	1.00 19.24
	ATOM	3057	CD1	LEU A 389		24.017	73.844	1.00 17.17
	ATOM	3058		LEU A 389		24.808	72.328	1.00 10.16
	ATOM	3059	N	LEU A 390		26.659	71.262	1.00 24.49
	ATOM	3060	CA	LEU A 390		26.340	70.107	1.00 25.05
20	ATOM	3061	С	LEU A 390		26.256	70.383	1.00 32.31
	MOTA	3062	0	LEU A 390		25.301	69.932	1.00 33.60
	ATOM	3063	CB	LEU A 390		27.152	68.844	1.00 23.33
	MOTA	3064	CG	LEU A 390		27.026	68.442	1.00 23.38
~ -	ATOM	3065	CD1	LEU A 390		28.025	67.334	1.00 20.84
25	ATOM	3066	CD2			25.591	68.017	1.00 18.86
	MOTA	3067	N	PHE A 391		27.231	71.127	1.00 28.52
	ATOM	3068	CA	PHE A 391		27.236	71.494	1.00 27.82
	ATOM	3069	С	PHE A 391		25.992	72.312	1.00 28.67
30	ATOM	3070	0	PHE A 391		25.331	72.148	1.00 26.96
30	ATOM	3071	CB	PHE A 391		28.455	72.341	1.00 28.60
	ATOM	3072 3073	CG	PHE A 391 PHE A 391		28.786	72.283	1.00 30.53
	ATOM ATOM	3073		PHE A 391		28.816 29.063	71.064	1.00 35.08
	ATOM	3075		PHE A 391		29.063	73.440 70.983	1.00 36.52
35	ATOM	3076	CE2	PHE A 391		29.383	73.382	1.00 37.61 1.00 40.61
ν,	ATOM	3077	CZ	PHE A 391		29.432	72.148	1.00 40.61
	ATOM	3078	N	TYR A 392		25.699	73.225	1.00 24.90
	MOTA	3079	CA	TYR A 392		24.550	74.065	1.00 24.66
	MOTA	3080	С	TYR A 392		23.298	73.186	1.00 34.30
40	MOTA	3081	0	TYR A 392	27.058	22.558	73.268	1.00 37.51
	ATOM	3082	CB	TYR A 392		24.501	74.967	1.00 26.39
	MOTA	3083	CG	TYR A 392		23.181	75.678	1.00 31.99
	MOTA	3084		TYR A 392		22.715	76.625	1.00 35.17
15	ATOM	3085		TYR A 392		22.397	75.432	1.00 32.49
45	MOTA	3086		TYR A 392		21.512	77.306	1.00 39.01
	ATOM	3087		TYR A 392		21.184	76.094	1.00 31.50
	MOTA MOTA	3088 3089	CZ	TYR A 392		20.743	77.035	1.00 34.08
	ATOM	3099	OH N	TYR A 392 LEU A 393		19.564	77.683	1.00 36.46
50	ATOM	3091	CA	LEU A 393		23.067 21.889	72.310 71.410	1.00 31.02
30	ATOM	3092	C	LEU A 393		21.616	70.507	1.00 29.65 1.00 32.03
	ATOM	3093	Ö	LEU A 393		20.468	70.267	1.00 32.03
	ATOM	3094	CB	LEU A 393		21.905	70.552	1.00 28.85
	ATOM	3095	CG	LEU A 393		21.688	71.375	1.00 30.33
55	ATOM	3096		LEU A 393		22.047	70.559	1.00 27.38
	ATOM	3097		LEU A 393		20.246	71.865	1.00 29.76
	ATOM	3098	N	GLU A 394		22.701	69.980	1.00 30.84
	ATOM	3099	CA	GLU A 394	28.000	22.727	69.118	1.00 30.05
	ATOM	3100	С	GLU A 394	29.210	22.214	69.868	1.00 39.16
60	ATOM	3101	0	GLU A 394	30.089	21.595	69.299	1.00 42.14
	MOTA	3102	CB	GLU A 394		24.204	68.756	1.00 31.03
	ATOM	3103	CG	GLU A 394		24.406	68.376	1.00 37.11
	ATOM	3104	CD OD1	GLU A 394		25.830	68.208	1.00 45.20
	MOTA	3105	OET	GLU A 394	29.614	26.609	67.471	1.00 56.77

	ATOM	3106	OE2	GLU A	394	31.229	26.133	68.927	1.00 39.77
	ATOM	3107	N	GLN A	395	29.256	22.534	71.160	1.00 34.20
	ATOM	3108	CA	GLN A	395	30.342	22.139	72.029	1.00 32.86
_	MOTA	3109	С	GLN A	395	30.143	20.690	72.435	1.00 38.65
5	ATOM	3110	0	GLN A	395	31.066	19.899	72.507	1.00 38.67
	ATOM	3111	CB	GLN A		30.474	23.051	73.287	1.00 33.17
	ATOM	3112	CG	GLN A		30.831	24.540	72.996	1.00 13.79
	MOTA	3113	CD	GLN A		31.176	25.354	74.247	1.00 37.45
10	ATOM	3114	OE1	GLN A		30.909	24.959	75.407	1.00 26.89
10	ATOM	3115		GLN A		31.758	26.523	74.010	1.00 31.99
	ATOM	3116	14	LEU A		28.903	20.352	72.682	1.00 38.68
	ATOM	3117	CA	LEU A		28.514	19.015	73.083	1.00 38.49
	ATOM	3118	C	LEU A		28.633	18.017	71.924	1.00 39.28
1.5	ATOM	3119	0	LEU A		29.012	16.871	72.100	1.00 42.17
15	ATOM	3120	CB	LEU A		27.055	19.072	73.628	1.00 37.93
	ATOM	3121	CG	LEU A		26.389	17.732	73.946	1.00 42.72
	MOTA	3122		LEU A		26.436	17.489	75.445	1.00 45.42
	ATOM	3123		LEU A		24.917	17.709	73.527	1.00 43.81
20	ATOM	3124	N	LEU A		28.303	18.456	70.730	1.00 28.48
20	ATOM	3125	CA	LEU A		28.337	17.595	69.589	1.00 25.49
	MOTA	3126	С	LEU A		29.620	17.609	68.771	1.00 36.86
	ATOM	3127 3128	O CB	LEU A		29.596	17.220	67.599	1.00 39.85
	ATOM ATOM	3129	CG	LEU A		27.156	17.924	68.686	1.00 23.73
25	ATOM	3130		LEU A		25.843	17.773 18.559	69.401	1.00 25.82
23	ATOM	3131		LEU A		24.740 25.525	16.272	68.669 69.452	1.00 22.99
	ATOM	3132	N	GLY A		30.731	18.069	69.342	1.00 27.30 1.00 33.98
	ATOM	3133	CA	GLY A		31.993	18.038	68.617	1.00 33.98
	ATOM	3134	c c	GLY A		32.547	19.260	67.889	1.00 34.14
30	ATOM	3135	ō	GLY A		33.502	19.097	67.115	1.00 39.98
	ATOM	3136	N	GLY A		32.001	20.457	68.105	1.00 33.01
	ATOM	3137	CA	GLY A		32.543	21.650	67.440	1.00 30.35
	ATOM	3138	С	GLY A		31.713	22.336	66.365	1.00 31.72
	ATOM	3139	0	GLY A	399	30.800	21.823	65.762	1.00 34.57
35	ATOM	3140	N	PRO A	400	32.076	23.550	66.124	1.00 33.01
	MOTA	3141	CA	PRO A	400	31.429	24.406	65.151	1.00 35.02
	ATOM	3142	С	PRO A	400	31.379	23.794	63.750	1.00 43.93
	ATOM	3143	0	PRO A		30.360	23.838	63.045	1.00 40.14
40	ATOM	3144	CB	PRO A		32.293	25.672	65.111	1.00 35.73
40	ATOM	3145	CG	PRO A		33.539	25.411	65.948	1.00 38.03
	ATOM	3146	CD	PRO A		33.423	24.010	66.517	1.00 33.92
	ATOM	3147	N	GLU A		32.512	23.237	63.345	1.00 43.85
	ATOM	3148	CA	GLU A		32.597	22.620	62.042	1.00 42.92
45	ATOM	3149	С	GLU A		31.491	21.587	61.878	1.00 37.92
43	ATOM	3150 3151	O CB	GLU A		30.810	21.588	60.866	1.00 33.79
	ATOM ATOM	3152	CG	GLU A GLU A		33.996	22.034	61.789	1.00 45.93
	ATOM	3153	CD	GLU A		34.578 35.603	22.372	60.398	1.00 69.62
	ATOM	3154		GLU A		36.702	21.373 21.236	59.911	1.00100.00
50	ATOM	3155		GLU A		35.195	20.689	60.427 58.865	1.00100.00 1.00 93.16
50	ATOM	3156	N	ILE A		31.317	20.720	62.902	1.00 34.58
	ATOM	3157	CA	ILE A		30.281	19.681	62.922	1.00 33.20
	ATOM	3158	c	ILE A		28.898	20.291	62.938	1.00 39.09
	ATOM	3159	ō	ILE A		28.065	19.896	62.133	1.00 41.43
55	ATOM	3160	CB	ILE A		30.391	18.673	64.078	1.00 33.82
	ATOM	3161		ILE A		31.490	17.661	63.811	1.00 34.70
	MOTA	3162		ILE A		29.080	17.900	64.287	1.00 23.32
	ATOM	3163		ILE A		31.878	16.896	65.080	1.00 49.20
	ATOM	3164	N	PHE A		28.668	21.246	63.868	1.00 32.73
60	ATOM	3165	CA	PHE A		27.390	21.952	64.044	1.00 29.52
	MOTA	3166	С	PHE A		27.032	22.816	62.836	1.00 33.94
	ATOM	3167	0	PHE A	403	25.866	23.022	62.469	1.00 34.15
	MOTA	3168	CB	PHE A		27.319	22.719	65.381	1.00 29.03
	ATOM	3169	CG	PHE A	403	25.917	22.783	65.929	1.00 28.54

		ATOM	3170		PHE A		25.323	21.643	66.484	1.00 29.91
		MOTA	3171		PHE A		25.176	23.964	65.873	1.00 27.62
		ATOM	3172		PHE A		24.021	21.667	66.990	1.00 27.38
	_	ATOM	3173		PHE A		23.881	24.017	66.393	1.00 28.82
	5	ATOM	3174	CZ	PHE A		23.304	22.863	66.932	1.00 25.72
		ATOM	3175	N	LEU A		28.040	23.327	62.165	1.00 31.31
		ATOM	3176	CA	LEU A		27.687	24.080	60.983	1.00 32.95
		ATOM ATOM	3177 3178	c o	LEU A		27.068	23.099	59.952	1.00 32.89
	10	ATOM	3179	СВ	LEU A		26.050 28.798	23.361 25.045	59.315 60.464	1.00 37.36
	10	ATOM	3180	CG	LEU A		29.029	26.208	61.444	1.00 33.15 1.00 36.96
		ATOM	3181		LEU A		30.454	26.717	61.353	1.00 36.96
		ATOM	3182		LEU A		28.083	27.362	61.163	1.00 37.13
		ATOM	3183	N	GLY A		27.670	21.921	59.826	1.00 22.02
	15	MOTA	3184	CA	GLY A		27.167	20.908	58.928	1.00 22.77
		ATOM	3185	С	GLY A		25.698	20.676	59.206	1.00 31.85
		ATOM	3186	0	GLY A	405	24.885	20.438	58.297	1.00 33.01
.53 tG.		ATOM	3187	N	PHE A	406	25.364	20.747	60.493	1.00 26.28
	••	ATOM	3188	CA	PHE A		23.992	20.565	60.863	1.00 25.27
J	20	MOTA	3189	С	PHE A		23.188	21.757	60.365	1.00 34.80
i]		ATOM	3190	0	PHE A		22.195	21.629	59.638	1.00 36.22
ja£.		ATOM	3191	СВ	PHE A		23.798	20.268	62.351	1.00 24.52
44 m;		ATOM	3192	CG	PHE A		22.388	20.525	62.798	1.00 24.82
	25	ATOM	3193		PHE A		21.328	19.734	62.353	1.00 28.50
Úl	23	ATOM	3194		PHE A		22.107	21.579	63.669	1.00 30.12
þ.		ATOM	3195		PHE A		20.025	19.977	62.793	1.00 31.40
		ATOM	3196 3197	CE2	PHE A		20.810	21.862	64.105	1.00 32.57
æ ≞.a		ATOM ATOM	3198	N N	PHE A		19.771 23.661	21.037	63.669	1.00 31.88
	30	ATOM	3199	CA	LEU A		22.972	22.934 24.132	60.708 60.269	1.00 32.11
		ATOM	3200	C	LEU A		22.706	24.132	58.767	1.00 33.11 1.00 34.74
		MOTA	3201	Ö	LEU A		21.635	24.615	58.341	1.00 35.21
12 th		ATOM	3202	СВ	LEU A		23.589	25.420	60.840	1.00 35.36
47		ATOM	3203	CG	LEU A		22.597	26.577	60.855	1.00 41.79
ļ-A.	35	ATOM	3204	CD1	LEU A	407	23.048	27.626	61.833	1.00 40.45
		ATOM	3205	CD2	LEU A	407	22.513	27.197	59.461	1.00 49.57
		ATOM	3206	N	LYS A		23.667	23.804	57 . 948	1.00 34.92
		ATOM	3207	CA	LYS Å		23.476	23.826	56.490	1.00 36.29
	40	ATOM	3208	С	LYS A		22.378	22.876	56.037	1.00 38.15
	40	ATOM	3209	0	LYS A		21.568	23.191	55.160	1.00 35.09
		ATOM	3210	CB	LYS A		24.747	23.517	55.707	1.00 40.54
		ATOM ATOM	3211 3212	CG CD	LYS A		24.633	23.873	54.214	1.00 43.41
		ATOM	3212	CE	LYS A		25.950 26.808	23.796	53.422	1.00 49.26
	45	ATOM	3213	NZ	LYS A		28.014	25.059 24.994	53.459 52.606	1.00 61.45
	••	ATOM	3215	N	ALA A		22.352	21.690	56.655	1.00 73.78 1.00 35.34
		ATOM	3216	CA	ALA A		21.333	20.698	56.298	1.00 35.34
		ATOM	3217	С	ALA A		19.927	21.041	56.814	1.00 38.45
		ATOM	3218	0	ALA A		18.913	20.821	56.134	1.00 37.39
	50	ATOM	3219	CB	ALA A	409	21.762	19.273	56.626	1.00 36.66
		MOTA	3220	N	TYR A	410	19.902	21.597	58.030	1.00 33.14
		MOTA	3221	CA	TYR A	410	18.693	22.059	58.682	1.00 29.65
		ATOM	3222	С	TYR A		18.028	23.051	57.730	1.00 35.55
	<i>E E</i>	ATOM	3223	0	TYR A		16.855	22.976	57.399	1.00 37.26
	55	ATOM	3224	CB	TYR A		19.117	22.762	59.970	1.00 24.67
		ATOM	3225	CG	TYR A		18.069	23.643	60.541	1.00 26.95
		ATOM	3226		TYR A		16.861	23.112	60.990	1.00 28.10
		ATOM	3227		TYR A		18.288	25.015	60.663	1.00 29.66
	60	ATOM	3228		TYR A		15.883	23.924	61.571	1.00 26.98
	00	ATOM	3229		TYR A		17.316	25.839	61.230	1.00 31.84
		ATOM ATOM	3230 3231	CZ OH	TYR A		16.112 15.156	25.294	61.685	1.00 37.49
		ATOM	3231	N N	VAL A		18.848	26.110 23.961	62.241 57.262	1.00 33.48
		ATOM	3233	CA	VAL A		18.457	24.984	56.341	1.00 28.75 1.00 29.23
			2233	٠.,			10.101	24.704	50.541	1.00 43.23

	ATOM	3234	С	VAL A	411	:	18.0	13	24.469	54.992	1.00 34.00
	MOTA	3235	0	VAL A			17.0		24.982	54.401	1.00 30.00
	ATOM	3236	CB	VAL A	411		19.6	517	25.922	56.139	1.00 32.22
_	MOTA	3237		VAL A			19.3		26.821	54.950	1.00 29.86
5	ATOM	3238	CG2	VAL A			19.8		26.708	57.431	1.00 31.69
	ATOM	3239	N	GLU A			18.7		23.479	54.488	1.00 33.14
	ATOM	3240	CA	GLU A			18.4		22.900	53.217	1.00 31.91
	ATOM	3241	С	GLU A			17.0		22.163	53.355	1.00 30.32
10	MOTA	3242	0	GLU A			16.1		22.225	52.531	1.00 31.89
10	ATOM	3243	CB	GLU A			19.5		21.883	52.932	1.00 36.48
	ATOM	3244 3245	CG CD	GLU A			20.4		22.174 21.699	51.737	1.00 67.01
	ATOM	3245	OE1	GLU A			21.8 22.1		20.782	51.962 52.716	1.00100.00
	ATOM ATOM	3247	OE2	GLU A			22.7		20.762	51.277	1.00100.00 1.00 94.73
15	ATOM	3248	N	LYS A			16.9		21.444	54.444	1.00 94.73
10	ATOM	3249	CA	LYS A			15.7		20.692	54.714	1.00 22.18
	ATOM	3250	c	LYS A			14.4		21.486	54.855	1.00 23.75
	ATOM	3251	ō	LYS A			13.4		20.978	54.503	1.00 25.92
	ATOM	3252	СВ	LYS A			15.8		19.911	55.988	1.00 15.65
20	ATOM	3253	CG	LYS A			14.5		19.422	56.503	1.00 38.69
	ATOM	3254	CD	LYS A			14.1		18.089	55.903	1.00 58.11
	MOTA	3255	CE	LYS A			13.6		17.099	56.937	1.00 64.98
	ATOM	3256	NZ	LYS A			13.4		15.751	56.381	1.00 73.89
	ATOM	3257	N	PHE A	414	:	14.5	530	22.688	55.424	1.00 25.40
25	MOTA	3258	CA	PHE A	414	;	13.3	316	23.479	55.640	1.00 27.80
	ATOM	3259	С	PHE A	414		13.1		24.748	54.821	1.00 35.82
	ATOM	3260	0	PHE A			12.2		25.557	55.122	1.00 35.17
	ATOM	3261	CB	PHE A			13.0		23.791	57.118	1.00 30.46
20	ATOM	3262	CG	PHE A			12.9		22.553	57.964	1.00 33.88
30	ATOM	3263	CD1				11.		21.826	57.996	1.00 35.94
	ATOM	3264		PHE A			14.(22.110	58.742	1.00 37.75
	ATOM	3265		PHE A			11.6		20.664	58.761	1.00 37.77
	ATOM	3266	CE2				13.8		20.962	59.526	1.00 42.23
35	ATOM	· 3267 3268	CZ N	PHE A			12.6		20.231	59.542	1.00 39.10
55	MOTA MOTA	3269	CA	SER A SER A			13.9 13.8		24.933 26.115	53.795 52.945	1.00 36.12 1.00 36.36
	ATOM	3270	C	SER A			12.4		26.295	52.510	1.00 38.36
	ATOM	3271	Ö	SER A			11.		25.315	52.243	1.00 38.99
	ATOM	3272	СВ	SER A			14.7		26.008	51.736	1.00 37.43
40	ATOM	3273	OG	SER A			16.0		26.566	52.046	1.00 46.73
	ATOM	3274	N	TYR A			11.9		27.537	52.475	1.00 33.40
	MOTA	3275	CA	TYR A			10.5		27.832	52.072	1.00 30.88
	ATOM	3276	С	TYR A				153	27.183	52.947	1.00 33.62
	ATOM	3277	0	TYR A			8.2	295	27.095	52.546	1.00 33.44
45	ATOM	3278	CB	TYR A	416		10.2	292	27.479	50.584	1.00 28.42
	MOTA	3279	CG	TYR A			11.4	196	27.782	49.723	1.00 24.76
	ATOM	3280		TYR A			11.		29.087	49.338	1.00 26.55
	ATOM	3281		TYR A			12.3		26.778	49.335	1.00 21.68
50	ATOM	3282		TYR A			12.		29.384	48.570	1.00 25.16
50	ATOM	3283		TYR A			13.		27.052	48.572	1.00 20.15
	ATOM	3284	CZ	TYR A			13.		28.360	48.189	1.00 30.62
	ATOM	3285	ОН	TYR A			14.		28.616	47.399	1.00 35.15
	ATOM	3286	N	LYS A				823	26.713	54.122	1.00 27.67
55	MOTA	3287	CA	LYS A				889	26.065	55.008	1.00 28.02
55	ATOM	3288	С	LYS A				733	26.830	56.317	1.00 31.36
	ATOM	3289 3290	O CB	LYS A				547	27.671	56.682	1.00 33.15
	ATOM ATOM	3290	CB CG	LYS A				335	24.615	55.252	1.00 33.86
	ATOM	3291	CD	LYS A				449 742	23.792	56.201	1.00 86.28
60	ATOM	3292	CE	LYS A LYS A				742 924	22.275 21.471	56.232 57.265	1.00100.00
50	ATOM	3294	NZ	LYS A				280	20.033	57.323	1.00 72.28 1.00 41.88
	ATOM	3295	N Z	SER A				668	26.557	57.033	1.00 41.88
	ATOM	3296	CA	SER A				455	27.195	58.335	1.00 20.00
	ATOM	3297	C	SER A				425	26.064	59.332	1.00 34.09
				//			•				

The first that the Tree first that the test

		ATOM	3298	0	SER A	١	418	6.614	25.145	59.193	1.00 31.54
		ATOM	3299	CB	SER A			6.261	28.126	58.410	1.00 31.46
		MOTA	3300	OG	SER A			6.417	29.106	57.399	1.00 35.01
	_	ATOM	3301	N	ILE A			8.356	26.077	60.281	1.00 28.50
	5	ATOM	3302	CA	ILE A			8.446	24.971	61.205	1.00 23.86
		ATOM	3303 3304	С 0	ILE A			8.272	25.342	62.641	1.00 25.06
		ATOM ATOM	3304	СВ	ILE A			8.122 9.803	26.500 24.314	63.002 61.026	1.00 21.64 1.00 25.02
		ATOM	3306	CG1	ILE A			10.863	25.325	61.399	1.00 23.02
	10	ATOM	3307	CG2	ILE A			10.051	23.937	59.565	1.00 23.03
		ATOM	3308	CD1	ILE A			12.236	24.688	61.253	1.00 23.48
		ATOM	3309	N	THR A			8.321	24.302	63.455	1.00 24.71
		ATOM	3310	CA	THR A			8.201	24.417	64.895	1.00 24.36
	1.5	ATOM	3311	С	THR A			9.416	23.795	65.538	1.00 28.90
	15	ATOM	3312	0	THR A			10.190	23.112	64.863	1.00 23.38
		ATOM	3313	CB	THR A			6.979	23.691	65.448	1.00 24.92
		ATOM ATOM	3314 3315	OG1 CG2	THR A			7.190 5.728	22.313 24.082	65.291	1.00 26.43
Ą		ATOM	3316	N	THR A			9.542	24.082	64.694 66.855	1.00 31.57 1.00 29.30
1,11 1,14 1,14 1,14	20	ATOM	3317	CA	THR A			10.610	23.549	67.709	1.00 29.30
#		ATOM	3318	C	THR A			10.831	22.035	67.585	1.00 27.78
		ATOM	3319	0	THR A			11.975	21.594	67.489	1.00 33.28
4. =		ATOM	3320	CB	THR A			10.394	23.969	69.166	1.00 21.94
#		ATOM	3321	OG1	THR A	1	421	10.567	25.369	69.263	1.00 24.52
em ===	25	ATOM	3322	CG2	THR A			11.399	23.221	70.045	1.00 20.12
Film.		ATOM	3323	N	ASP A			9.721	21.272	67.575	1.00 21.94
i ii		ATOM	3324	CA	ASP A			9.706	19.823	67.430	1.00 21.08
		ATOM	3325	C	ASP A			10.323	19.401	66.104	1.00 31.16
d.	30	ATOM	3326	O	ASP A			11.110	18.427	66.027	1.00 31.95
lj,	30	ATOM ATOM	3327 3328	CB CG	ASP A			8.276 8.236	19.278	67.561	1.00 19.49
		ATOM	3329	OD1	ASP A			9.130	17.802 17.040	67.298 67.654	1.00 31.85 1.00 29.73
		ATOM	3330		ASP A			7.197	17.415	66.598	1.00 56.60
•		ATOM	3331	N	ASP A			9.957	20.146	65.049	1.00 26.75
an.	35	ATOM	3332	CA	ASP A			10.505	19.876	63.729	1.00 26.01
		ATOM	3333	С	ASP A			12.027	19.957	63.830	1.00 40.09
		ATOM	3334	0	ASP A			12.753	19.020	63.500	1.00 47.09
		ATOM	3335	СВ	ASP A			10.000	20.833	62.631	1.00 24.86
	40	ATOM	3336	CG	ASP A			8.538	20.722	62.343	1.00 39.90
	40	ATOM	3337 3338		ASP A			7.968	19.649	62.299	1.00 45.03
		ATOM ATOM	3339	N	ASP A			7.943	21.887	62.113	1.00 40.43
		ATOM	3340	CA	TRP A			12.493 13.903	21.099 21.372	64.320 64.495	1.00 31.92 1.00 29.69
		ATOM	3341	c .	TRP A			14.611	20.271	65.282	1.00 23.89
	45	ATOM	3342	0	TRP A			15.537	19.616	64.824	1.00 35.87
		ATOM	3343	CB	TRP A			14.056	22.711	65.239	1.00 26.11
		ATOM	3344	CG	TRP A	¥.	424	15.431	22.869	65.786	1.00 27.05
		ATOM	3345		TRP A			16.518	23.302	65.101	1.00 29.65
	50	ATOM	3346		TRP A			15.885	22.587	67.119	1.00 26.62
	50	ATOM	3347		TRP A			17.612	23.321	65.922	1.00 27.83
		ATOM	3348		TRP A			17.257	22.891	67.163	1.00 28.62
		ATOM ATOM	3349 3350		TRP A			15.260	22.138	68.269	1.00 29.69
		ATOM	3351		TRP A			18.010 16.000	22.758 21.993	68.319 69.429	1.00 29.28
	55	ATOM	3352		TRP A			17.362	22.317	69.459	1.00 33.50 1.00 33.93
		ATOM	3353	N	LYS A			14.156	20.090	66.497	1.00 33.93
		ATOM	3354	CA	LYS A			14.723	19.105	67.373	1.00 20.73
		ATOM	3355	С	LYS A			14.697	17.691	66.808	1.00 29.49
		ATOM	3356	0	LYS A	¥.	425	15.627	16.928	67.030	1.00 27.65
	60	ATOM	3357	CB	LYS A			14.078	19.171	68.744	1.00 29.70
		ATOM	3358	CG	LYS A			14.860	18.414	69.787	1.00 28.11
		ATOM	3359	CD	LYS A			14.161	18.409	71.132	1.00 23.57
		ATOM	3360	CE	LYS A			14.300	17.063	71.815	1.00 36.16
		MOTA	3361	NZ	LYS A	1	425	13.042	16.302	71.768	1.00 58.08

	ATOM	3362	N	ASP A	426	13.606	17.361	66.107	1.00 19.05
	ATOM	3363	CA	ASP A	426	13.417	16.070	65.516	1.00 18.43
	ATOM	3364	С	ASP A	426	14.453	15.879	64.387	1.00 28.33
_	ATOM	3365	0	ASP A	426	15.070	14.832	64.232	1.00 31.25
5	ATOM	3366	CB	ASP A	426	11.920	15.840	65.098	1.00 19.79
	ATOM	3367	CG	ASP A	426	10.998	15.575	66.274	1.00 25.54
	ATOM	3368	OD1	ASP A	426 ·	11.341	15.466	67.409	1.00 29.73
	ATOM	3369	OD2	ASP A	426	9.804	15.611	65.938	1.00 20.67
	ATOM	3370	N	PHE A	427	14.674	16.926	63.612	1.00 25.09
10	ATOM	3371	CA	PHE A	427	15.654	16.899	62.540	1.00 25.81
	ATOM	3372	С	PHE A	427	17.066	16.718	63.159	1.00 34.01
	ATOM	3373	0	PHE A	427	17.843	15.851	62.773	1.00 36.25
	ATOM	3374	CB	PHE A		15.589	18.197	61.704	1.00 26.35
	ATOM	3375	CG	PHE A		16.698	18.202	60.702	1.00 27.40
15	ATOM	3376		PHE A		16.714	17.247	59.686	1.00 29.97
	ATOM	3377		PHE A		17.773	19.084	60.805	1.00 28.71
	ATOM	3378		PHE A		17.730	17.194	58.733	1.00 27.72
	ATOM	3379		PHE A		18.806	19.046	59.867	1.00 30.37
	ATOM	3380	CZ	PHE A		18.780	18.104	58.837	1.00 26.34
20	ATOM	3381	N	LEU A		17.369	17.544	64.160	1.00 28.94
_ •	ATOM	3382	CA	LEU A		18.622	17.496	64.924	1.00 27.74
	ATOM	3383	c	LEU A		18.989	16.047	65.303	1.00 27.74
	ATOM	3384	Õ	LEU A		20.145	15.647	65.209	1.00 32.08
	ATOM	3385	СВ	LEU A		18.510	18.362	66.223	1.00 36.38
25	ATOM	3386	CG	LEU A		19.778	18.377	67.079	
20	ATOM	3387		LEU A		20.855	19.278	66.467	1.00 24.30
	ATOM	3388		LEU A		19.446	18.856		1.00 23.00
	MOTA	3389	N N	TYR A		17.991	15.271	68.481	1.00 16.41
	ATOM	3390	CA	TYR A				65.735	1.00 23.71
30	ATOM	3391	C	TYR A		18.148	13.896	66.144	1.00 23.18
50	ATOM	3392	o	TYR A		18.311	12.967	64.976	1.00 26.62
	ATOM	3393	CB	TYR A		18.911	11.910	65.076	1.00 28.43
	ATOM	3394	CG	TYR A		16.921	13.453	66.914	1.00 25.59
		3395	CD1			17.069	13.526	68.414	1.00 29.53
35	ATOM ATOM	3396		TYR A		16.823	14.714	69.114	1.00 31.11
55	ATOM	3397	CE1			17.361	12.383	69,156	1.00 32.70
	ATOM	3398	CE2	TYR A		16.916	14.769 12.420	70.510	1.00 32.23
	ATOM	3399	CZ	TYR À		17.485 17.251	13.623	70.551 71.231	1.00 35.30 1.00 41.02
	ATOM	3400	OH	TYR A		17.231	13.679	72.609	1.00 41.02
40	ATOM	3401	N	SER A		17.748	13.342	63.854	1.00 30.02
10	ATOM	3402	CA	SER A		17.748	12.469	62.730	1.00 21.68
	MOTA	3403	C	SER A		19.264			
	ATOM	3404	Ö	SER A		19.879	12.722	62.050	1.00 32.87
	MOTA	3405	CB	SER A			11.819	61.467	1.00 35.11
45	ATOM	3406	OG	SER A		16.756	12.541	61.773	1.00 28.79
43	MOTA	3407	N	TYR A		17.089 19.748	13.475	60.777	1.00 49.56
	ATOM	3408	CA				13.955	62.132	1.00 27.18
	ATOM	3409	C	TYR A		21.017	14.296	61.537	1.00 27.14
	MOTA	3410	0			22.152	13.702	62.316	1.00 32.52
50	MOTA	3411	СВ	TYR A		23.155	13.242	61.771	1.00 33.64
50	ATOM	3412	CG			21.216 22.566	15.818	61.385	1.00 31.07
		3413		TYR A			16.265	60.812	1.00 35.63
	ATOM			TYR A		23.663	16.492	61.650	1.00 36.88
	ATOM	3414		TYR A		22.735	16.496	59.444	1.00 36.92
55	ATOM	3415		TYR A		24.894	16.924	61.157	1.00 33.78
	ATOM	3416		TYR A		23.964	16.916	58.924	1.00 37.86
	ATOM	3417	CZ	TYR A		25.038	17.143	59.786	1.00 46.01
	ATOM	3418	ОН	TYR A		26.247	17.573	59.294	1.00 51.28
	MOTA	3419	N	PHE A		21.964	13.728	63.606	1.00 29.66
40	ATOM	3420	CA	PHE A		22.939	13.215	64.526	1.00 29.12
60	ATOM	3421	C	PHE A		22.522	11.865	65.007	1.00 42.64
	MOTA	3422	0	PHE A		22.499	11.593	66.197	1.00 46.77
	ATOM	3423	CB	PHE A		23.063	14.157	65.719	1.00 30.24
	MOTA	3424	CG	PHE A		23.962	15.327	65.401	1.00 33.03
	MOTA	3425	CDI	PHE A	432	25.336	15.113	65.277	1.00 37.22

The All Man Alm "H" (Co. 15"). 1" |

ļ.

The thin that the season is

	MOTA	3426	CD2	PHE A	432	23.470	16.624	65.232	1.00 30.70
	MOTA	3427		PHE A		26.223	16.153	64.999	1.00 34.27
	ATOM	3428	CE2			24.349	17.667	64.938	1.00 31.71
	MOTA	3429	CZ	PHE A	432	25.722	17.438	64.823	1.00 27.82
5	ATOM	3430	N	LYS A	433	22.174	11.029	64.063	1.00 42.50
	ATOM	3431	CA	LYS A	433	21.669	9.670	64.270	1.00 40.87
	ATOM	3432	С	LYS A	433	22.718	8.751	64.908	1.00 46.17
	ATOM	3433	0	LYS A	433	22.405	7.734	65.513	1.00 48.48
	ATOM	3434	CB	LYS A	433	21.245	9.106	62.917	1.00 39.25
10	ATOM	3435	CG	LYS A	433	19.988	8.241	63.017	1.00 84.17
	MOTA	3436	CD	LYS A		18.925	8.660	62.000	1.00100.00
	MOTA	3437	CE	LYS A		17.523	8.172	62.384	1.00100.00
	MOTA	3438	NZ	LYS A	433	16.525	9.119	61.884	1.00100.00
	MOTA	3439	N	ASP A	434	24.002	9.112	64.697	1.00 45.20
15	MOTA	3440	CA	ASP A		25.083	8.349	65.321	1.00 47.80
	MOTA ·	3441	С	ASP A		25.201	8.684	66.802	1.00 50.78
	ATOM	3442	0	ASP A	434	25.474	7.845	67.653	1.00 55.76
 .	MOTA	3443	CB	ASP A	434	26.405	8.567	64.562	1.00 53.91
	MOTA	3444	CG	ASP A		26.123	8.474	63.069	1.00 93.32
20	ATOM	3445		ASP A		25.744	7.573	62.325	1.00 96.22
41	ATOM	3446		ASP A		26.119	9.664	62.753	1.00100.00
L .	MOTA	3447	N	LYS A		25.015	9.978	67.085	1.00 38.82
1 Hit.	MOTA	3448	CA	LYS A		24.974	10.404	68.468	1.00 34.57
25	MOTA	3449	С	LYS A		23.549	10.749	68.881	1.00 39.87
25	MOTA	3450	0	LYS A		23.070	11.840	68.693	1.00 40.34
	MOTA	3451	CB	LYS A		25.864	11.631	68.615	1.00 34.69
j. L	ATOM	3452	CG	LYS A		27.064	11.595	67.679	1.00 40.86
	ATOM	3453	CD	LYS A		27.703	12.975	67.532	1.00 51.04
30	ATOM	3454	CE	LYS A		29.242	12.904	67.557	1.00 24.08
30	ATOM	3455	NZ	LYS A		29.822	13.990	66.760	1.00 45.26
	MOTA	3456	N	VAL A		22.843	9.728	69.414	1.00 38.07
	ATOM	3457	CA	VAL A		21.601	10.036	70.111	1.00 36.86
tani 	ATOM	3458	С	VAL A		21.846	10.129	71.608	1.00 44.88
	ATOM	3459	0	VAL A		21.289	10.948	72.300	1.00 46.42
≱ ₄35	ATOM	3460	CB	VAL A		20.567	8.923	69.816	1.00 37.37
	ATOM	3461	CG1			19.944	9.143	68.446	1.00 36.24
	ATOM	3462		VAL A		21.227	7.556	69.854	1.00 36.80
	ATOM	3463	N	ASP A		22.718	9.232	72.099	1.00 43.61
40	ATOM	3464	CA	ASP A		23.044	9.222	73.522	1.00 41.43
40	ATOM	3465	C	ASP A		23.657	10.546	73.958	1.00 45.71
	ATOM	3466	0 CD	ASP A		23.554	10.956	75.107	1.00 49.89
	ATOM	3467	CB	ASP A		24.022	8.082	73.776	1.00 43.84
	ATOM	3468	CG OD1	ASP A		23.281	6.752	73.691	1.00 72.47
45	ATOM	3469 3470		ASP A		22.062	6.769 5.730	73.823 73.481	1.00 74.64
43	ATOM ATOM	3471	N	VAL A		23.933 24.333	11.324	73.401	1.00 86.09 1.00 40.21
	ATOM	3472	CA	VAL A		24.807	12.624	73.122	1.00 40.21
	ATOM	3473	C	VAL A		23.621	13.582	73.668	1.00 40.97
	ATOM	3474	0	VAL A		23.368	14.276	74.657	1.00 39.95
50	ATOM	3475	СВ	VAL A		25.875	13.165	72.615	1.00 33.33
50	ATOM	3476		VAL A		26.438	14.523	73.051	1.00 47.51
	ATOM	3477		VAL A		26.996	12.149	72.440	1.00 47.51
	ATOM	3478	N	LEU A		22.876	13.595	72.585	1.00 37.91
	ATOM	3479	CA	LEU A		21.729	14.442	72.507	1.00 36.21
55	ATOM	3480	C	LEU A		20.850	14.190	73.695	1.00 40.03
-	ATOM	3481	ō	LEU A		20.214	15.064	74.255	1.00 42.22
	ATOM	3482	CB	LEU A		20.949	14.180	71.210	1.00 33.84
	ATOM	3483	CG	LEU A		21.552	14.939	70.039	1.00 33.04
	ATOM	3484		LEU A		20.813	14.538	68.775	1.00 32.00
60	ATOM	3485		LEU A		21.435	16.434	70.258	1.00 23.80
	ATOM	3486	N	ASN A		20.810	12.953	74.076	1.00 23.00
	ATOM	3487	CA	ASN A		19.971	12.603	75.187	1.00 34.00
	ATOM	3488	c	ASN A		20.494	13.093	76.532	1.00 40.95
	ATOM	3489	Ö	ASN A		19.816	12.995	77.544	1.00 42.09
			-						

is all
J)
ų.
L£
da H
4
UT
- E.
7
ļ.
Ŋ
ħ
1.1

	MOTA	3490	СВ	ASN	Α	440	19.68	31	11.095	75.178	1.00	24.89
	MOTA	3491	CG	ASN	Α	440	18.79	90	10.635	74.028		46.52
	MOTA	3492		ASN			19.00	05	9.537	73.480	1.00	58.82
_	MOTA	3493	ND2	ASN			17.76	69	11.440	73.680	1.00	31.11
5	ATOM	3494	N	GLN			21.70	07	13.623	76.531	1.00	36.98
	MOTA	3495	CA	GLN			22.33		14.095	77.744		35.47
	MOTA	3496	С	GLN			21.87		15.478	78.067	1.00	36.00
	ATOM	3497	0	GLN			22.13		16.029	79.142		34.96
10	MOTA	3498	СВ	GLN			23.8		14.109	77.581		38.10
10	ATOM	3499	CG	GLN			24.50		12.692	77.422		52.06
	ATOM	3500	CD	GLN			25.95		12.730	76.955		81.69
	ATOM	3501	OE1	GLN			26.47		13.796	76.609		74.46
	MOTA	3502 3503	NE2	GLN VAL			26.61		11.574	76.972		91.09
15	MOTA MOTA	3504	N CA	VAL			21.19		16.067	77.112		31.86
13	ATOM	3505	C	VAL			20.75 19.35		17.411 17.468	77.384		32.78
	ATOM	3506	Õ	VAL			18.46		16.700	77.970 77.588		38.24 42.83
	ATOM	3507	СВ	VAL			20.84		18.277	76.159		34.84
	ATOM	3508		VAL			21.43		17.435	75.020		34.65
20	ATOM	3509		VAL			19.44		18.705	75.811		33.21
	ATOM	3510	N	ASP			19.17		18.388	78.908		25.60
	ATOM	3511	CA	ASP			17.93		18.634	79.616		24.57
	ATOM	3512	С	ASP			16.99		19.533	78.791		32.14
	ATOM	3513	0	ASP			16.74		20.732	79.073		34.77
25	ATOM	3514	CB.	ASP	Α	443	18.33		19.272	80.957		27.11
	MOTA	3515	CG	ASP	Α	443	17.23		19.413	81.901		39.99
	ATOM	3516		ASP			16.06	53	19.234	81.573		44.78
	ATOM	3517	OD2	ASP	Α	443	17.63	31	19.753	83.094		56.66
••	MOTA	3518	N	TRP			16.52	25	18.914	77.722		28.30
30	MOTA	3519	CA	TRP			15.61		19.507	76.757	1.00	26.27
	ATOM	3520	С	TRP			14.46		20.296	77.416		31.52
	ATOM	3521	0	TRP			14.10		21.409	76.988		34.63
	ATOM	3522	CB	TRP			15.06		18.398	75.799		21.47
35	ATOM	3523	CG	TRP			16.09		17.951	74.806		22.03
33	ATOM	3524	CD1	TRP			16.67		16.718	74.736		25.16
	ATOM	3525 3526	CD2	TRP			16.73		18.738	73.776		20.36
	ATOM ATOM	3527	NE1 CE2	TRP TRP			17.62		16.677	73.738		23.97
	ATOM	3528	CE3	TRP			17.68 16.59		17.906 20.045	73.138 73.342		24.71
40	ATOM	3529	CZ2				18.44		18.345	72.060		20.86 24.51
• •	ATOM	3530	CZ3	TRP			17.35		20.471	72.264		22.88
	MOTA	3531		TRP			18.28			71.643		23.48
	ATOM	3532	N	ASN			13.85		19.711	78.457		24.92
	ATOM	3533	CA	ASN	Α	445	12.72		20.326	79.113		26.30
45	MOTA	3534	С	ASN	Α	445	13.04	10	21.677	79.729		30.17
	ATOM	3535	0	ASN			12.29	91	22.660	79.547	1.00	31.86
	ATOM	3536	CB	ASN	Α	445	11.98		19.382	80.094	1.00	40.83
	MOTA	3537	CG	ASN			10.94		20.033	81.020		87.07
50	MOTA	3538		ASN			11.27		20.635	82.065		86.38
50	ATOM	3539		ASN			9.67		19.848	80.688		71.65
	MOTA	3540	N	ALA			14.14		21.687	80.436		22.70
	MOTA	3541	CA	ALA			14.58		22.886	81.073		24.45
	ATOM	3542 3543	C	ALA			14.88		23.896	79.990		30.52
55	ATOM	3544	O CP	ALA			14.32		25.001	79.936		33.92
55	ATOM ATOM	3545	CB N	ALA TRP			15.81 15.71		22.543	81.900		25.68
	MOTA	3546	CA	TRP			16.16		23.494 24.384	79.102 78.034		25.24
	ATOM	3547	C	TRP			14.98		24.384	77.223		26.83 31.32
	MOTA	3548	o	TRP			14.9		26.089	76.875		30.48
60	ATOM	3549	СВ	TRP			17.16		23.725	77.062		25.78
	ATOM	3550	CG	TRP			18.62		23.815	77.421		26.60
	ATOM	3551		TRP			19.34		22.840	78.046		28.89
	MOTA	3552		TRP			19.55		24.896	77.165		26.16
	ATOM	3553		TRP			20.69		23.217	78.197		27.23

	ATOM	3554	CE2	TRP A	447	20.822	24.476	77.660	1.00 29.00
	ATOM	3555	CE3	TRP A	447	19.435	26.162	76.607	1.00 27.56
	MOTA	3556	CZ2	TRP A	447	21.954	25.290	77.583	1.00 27.95
_	MOTA	3557	CZ3	TRP A	447	20.554	26.966	76.538	1.00 29.93
5	MOTA	3558	CH2			21.792	26.539	77.035	1.00 30.16
	MOTA	3559	N	LEU A		14.029	24.034	76.893	1.00 26.54
	MOTA	3560	CA	LEU A			24.421	76.052	1.00 26.92
	MOTA	3561	С	LEU A		11.734	25.064	76.779	1.00 36.15
10	ATOM	3562	0	LEU A		11.089	26.031	76.304	1.00 31.19
10	ATOM	3563	CB	LEU A		12.338	23.197	75.307	1.00 25.26
	ATOM	3564	CG	LEU A		13.311	22.545	74.332	1.00 28.29
	ATOM	3565		LEU A		12.597	21.455	73.530	1.00 30.49
	ATOM	3566		LEU A		13.879	23.576	73.375	1.00 21.94
15	ATOM	3567	N	TYR A		11.472	24.455	77.924	1.00 33.14
15	ATOM	3568	CA	TYR A		10.373	24.835	78.747	1.00 30.64
	ATOM	3569	C	TYR A		10.646	25.525	80.041	1.00 34.31
	ATOM	3570	0	TYR A		9.750	26.191	80.529	1.00 41.98
	ATOM	3571	CB	TYR A		9.400	23.674	78.916	1.00 29.14
20	ATOM	3572	CG	TYR A		9.212	23.089	77.556	1.00 26.50
20	ATOM	3573	CD1			8.762	23.869	76.485	1.00 24.36
	ATOM	3574 3575	CD2			9.560	21.762	77.325	1.00 28.48
	ATOM	3576	CE1	TYR A		8.626	23.331	75.202	1.00 17.56
	ATOM	3577	CE2			9.427	21.205	76.054	1.00 29.93
25	ATOM ATOM	3578	CZ OH	TYR A		8.959	21.988	74.998	1.00 33.65
23	ATOM	3579	N	SER A		8.840	21.415	73.762	1.00 39.47
	ATOM	3580	CA	SER A		11.806 11.902	25.413	80.644	1.00 22.72
	ATOM	3581	C	SER A		12.278	26.149 27.625	81.900	1.00 21.21
	ATOM	3582	o	SER A		12.966	28.035	81.749 80.810	1.00 23.98
30	ATOM	3583	СВ	SER A		12.666	25.436	83.010	1.00 27.17 1.00 24.83
	ATOM	3584	OG	SER A		12.540	24.046	82.871	1.00 24.83
	ATOM	3585	N	PRO A		11.806	28.430	82.689	1.00 30.29
	ATOM	3586	CA	PRO A		12.111	29.840	82.669	1.00 18.20
	ATOM	3587	С	PRO A		13.461	29.988	83.271	1.00 21.72
35	ATOM	3588	0	PRO A		14.022	29.015	83.742	1.00 24.34
	ATOM	3589	СВ	PRO A		11.185	30.485	83.695	1.00 18.85
	ATOM	3590	CG	PRO A	451	10.836	29.390	84.677	1.00 23.13
	ATOM	3591	CD	PRO A	451	11.002	28.078	83.900	1.00 19.61
	ATOM	3592	N	GLY A	452	13.959	31.212	83.307	1.00 18.97
40	ATOM	3593	CA	GLY A	452	15.241	31.444	83.922	1.00 19.09
	ATOM	3594	С	GLY A	452	16.382	31.107	83.016	1.00 26.20
	MOTA	3595	0	GLY A		16.191	30.916	81.819	1.00 27.37
	ATOM	3596	N	LEU A		17.557	31.057	83.650	1.00 25.48
4.0	MOTA	3597	CA	LEU A		18.843	30.750	83.029	1.00 25.32
45	ATOM	3598	С	LEU A		18.906	29.322	82.629	1.00 26.21
	ATOM	3599	0	LEU A		18.400	28.458	83.322	1.00 25.04
	ATOM	3600	CB	LEU A		20.042	31.119	83.938	1.00 25.46
	ATOM	3601	CG	LEU A		20.280	32.632	83.904	1.00 31.82
50	ATOM	3602		LEU A		21.019	33.087	85.119	1.00 31.78
50	ATOM	3603		LEU A		21.046	33.056	82.651	1.00 41.50
	ATOM	3604	N	PRO A		19.510	29.082	81.489	1.00 22.97
	ATOM	3605	CA	PRO A		19.585	27.747	81.003	1.00 21.60
	MOTA	3606	С	PRO A		20.145	26.890	82.075	1.00 26.94
55	ATOM	3607	O	PRO A		20.923	27.359	82.893	1.00 29.09
<i>JJ</i>	ATOM	3608	CB	PRO A		20.489	27.780	79.768	1.00 22.34
	ATOM ATOM	3609 3610	CG CD	PRO A		20.777	29.232	79.470	1.00 23.69
	ATOM	3611	N N	PRO A		20.136	30.054	80.556	1.00 20.82
	ATOM	3612	CA	PRO A		19.721	25.648	82.067	1.00 25.61
60	ATOM	3613	CA	PRO A		20.167	24.683	83.031	1.00 24.27
	ATOM	3614	0	PRO A		21.661 22.225	24.568	82.991	1.00 30.95
	ATOM	3615	CB	PRO A		19.631	24.062 23.320	83.920 82.592	1.00 33.47
	ATOM	3616	CG	PRO A		19.149	23.320	81.162	1.00 25.04 1.00 33.02
	ATOM	3617	CD	PRO A		19.111	25.005	80.888	1.00 33.02
	011	J 01 /	20	F		17.111	23.003	00.000	1.00 20.49

	ATOM	3618	N	ILE A	456	22.305	25.002	81.911	1.00 27.91
	ATOM	3619	CA	ILE A		23.764		81.821	1.00 27.82
	ATOM	3620	С	ILE A		24.395		81.077	1.00 34.73
_	MOTA	3621	0	ILE A		23.737		80.293	1.00 37.01
5	MOTA	3622	СВ	ILE A		24.228		81.259	1.00 31.34
	ATOM	3623	CG1	ILE A		25.721		81.417	1.00 29.78
	ATOM	3624	CG2			23.865		79.788	1.00 32.96
	MOTA	3625 3626	CD1 N	ILE A LYS A		26.054		81.116 81.334	1.00 23.94
10	ATOM ATOM	3627	CA	LYS A		25.680 26.405		80.707	1.00 30.52 1.00 30.21
10	ATOM	3628	C	LYS A		27.515		79.835	1.00 30.21
	ATOM	3629	ŏ	LYS A		28.328		80.273	1.00 32.14
	ATOM	3630	СВ	LYS A		26.953		81.749	1.00 32.38
	MOTA	3631	CG	LYS A	457	27.818		81.121	1.00 34.64
15	MOTA	3632	CD	LYS A		28.288	30.306	82.166	1.00 13.41
	MOTA	3633	CE	LYS A	457	28.803	31.596	81.565	1.00 18.04
	MOTA	3634	NZ	LYS A		28.974		82.595	1.00 26.77
	MOTA	3635	N	PRO A		27.567		78.589	1.00 27.50
20	ATOM	3636	CA	PRO A		28.630		77.737	1.00 26.85
20	ATOM	3637	С	PRO A		29.994		78.185	1.00 26.89
	ATOM	3638	O CB	PRO A		30.128		79.167	1.00 24.86
	MOTA MOTA	3639 3640	CG	PRO A		28.335 26.952		76.316 76.375	1.00 29.41
	ATOM	3641	CD	PRO A		26.574		77.848	1.00 33.24 1.00 26.12
25	ATOM	3642	N	ASN A		31.005		77.440	1.00 20.12
	ATOM	3643	CA	ASN A		32.359		77.735	1.00 22.29
	ATOM	3644	C	ASN A		32.751		76.820	1.00 30.27
	ATOM	3645	0	ASN A	459	32.451		75.617	1.00 32.89
	ATOM	3646	CB	ASN A		33.315		77.494	1.00 25.03
30	ATOM	3647	CG	ASN A		32.766		78.155	1.00 49.54
	MOTA	3648		ASN A		32.618		79.383	1.00 50.09
	ATOM	3649		ASN A		32.411		77.332	1.00 38.39
	ATOM	3650 3651	N CA	TYR A		33.448 33.851		77.380	1.00 25.58
35	ATOM ATOM	3652	C	TYR A		35.298		76.625 76.745	1.00 23.89 1.00 34.20
<i>33</i>	ATOM	3653	Ö	TYR A		35.849		77.839	1.00 34.20
	ATOM	3654	СВ	TYR A		33.120		77.171	1.00 24.38
	ATOM	3655	CG	TYR A		31.636		77.024	1.00 26.98
	ATOM	3656	CD1	TYR A	460	31.029	32.011	75.829	1.00 30.69
40	MOTA	3657	CD2	TYR A		30.838		78.064	1.00 25.70
	ATOM	3658		TYR A		29.644		75.684	1.00 28.77
	ATOM	3659	CE2	TYR A		29.453		77.938	1.00 25.24
	ATOM	3660	CZ	TYR A		28.863		76.741	1.00 24.49
45	ATOM ATOM	3661 3662	OH N	TYR A ASP A		27.519 35.893		76.587 75.616	1.00 28.39
70	ATOM	3663	CA	ASP A		37.268		75.654	1.00 30.58 1.00 27.51
	ATOM	3664	c	ASP A		37.319		76.464	1.00 27.51
	ATOM	3665	Ö	ASP A		36.377		76.396	1.00 26.62
	ATOM	3666	СВ	ASP A		37.821		74.218	1.00 27.30
50	ATOM	3667	CG	ASP A	461	39.137		74.260	1.00 32.53
	MOTA	3668		ASP A		39.262		74.334	1.00 39.66
	ATOM	3669		ASP A		40.130		74.306	1.00 44.34
	ATOM	3670	N	MET A		38.375		77.224	1.00 17.26
55	MOTA	3671	CA	MET A		38.396		78.008	1.00 18.66
55	ATOM	3672	C	MET A		39.299		77.485	1.00 24.02
	ATOM ATOM	3673 3674	O CB	MET A		39.336 38.818		78.011 79.431	1.00 24.56 1.00 22.99
	ATOM	3675	CG	MET A		37.808		80.025	1.00 22.99
	ATOM	3676	SD	MET A		36.166		79.951	1.00 20.30
60	ATOM	3677	CE	MET A		36.420		81.153	1.00 27.89
	ATOM	3678	N	THR A		40.067	35.348	76.461	1.00 22.57
	MOTA	3679	CA	THR A		41.015		75.911	1.00 22.64
	MOTA	3680	С	THR A	463	40.690		75.961	1.00 33.12
	3 max	7607	_	mirro a	467	4 7 77 7	30 400	7/ /40	3 00 00 00

3681 O THR A 463 41.372 38.493 76.640 1.00 35.27

l-L

	ATOM	3682	СВ	THR A	463	41.574	35.929	74.536	1.00 29.80
	ATOM	3683	OG1			41.939	34.576	74.509	1.00 26.74
	ATOM	3684		THR A		42.797	36.793	74.224	1.00 18.79
	ATOM	3685	N	LEU A		39.700	38.141	75.177	1.00 30.50
5	ATOM	3686	CA	LEU A	464	39.293	39.533	75.061	1.00 29.15
	MOTA	3687	С	LEU A		38.490	40.067	76.216	1.00 34.24
	MOTA	3688	0	LEU A		38.439	41.270	76.422	1.00 37.12
	ATOM	3689	СВ	LEU A		38.537	39.767	73.743	1.00 29.20
10	ATOM	3690	CG	LEU A		39.393	39.394	72.527	1.00 33.73
10	ATOM	3691		LEU A		38.609	39.565	71.217	1.00 32.72
	MOTA	3692	CD2			40.648	40.261	72.499	1.00 26.22
	ATOM	3693	N C7	THR A		37.855	39.167	76.964	1.00 30.71
	ATOM	3694	CA	THR A		37.005	39.496	78.103	1.00 28.58
15	MOTA	3695 3696	С	THR A		37.800	39.893	79.324	1.00 30.69
13	ATOM ATOM	3697	O CB	THR A		37.530	40.865	80.030	1.00 31.27
	ATOM	3698	OG1	THR A		36.016	38.328	78.372	1.00 35.85
	ATOM	3699	CG2			35.101 35.255	38.212 38.451	77.296 79.690	1.00 50.93
-	ATOM	3700	N	ASN A		38.802	39.111	79.568	1.00 26.34
20	ATOM	3701	CA	ASN A		39.635	39.375	80.688	1.00 24.40 1.00 23.11
1	ATOM	3702	C	ASN A		39.899	40.856	80.967	1.00 23.11
4	ATOM	3703	ō	ASN A		39.763	41.270	82.120	1.00 20.37
EC:	ATOM	3704	СВ	ASN A		40.921	38.543	80.629	1.00 27.03
==:	ATOM	3705	CG	ASN A		40.709	37.145	81.155	1.00 20.30
25	ATOM	3706		ASN A		41.384	36.191	80.723	1.00 32.20
<u>.</u>	ATOM	3707		ASN A		39.775	37.015	82.111	1.00 28.19
- 44 4	MOTA	3708	N	ALA A		40.306	41.666	79.967	1.00 27.97
	ATOM	3709	CA	ALA A		40.587	43.079	80.295	1.00 26.66
4.	ATOM	3710	С	ALA A		39.352	43.827	80.720	1.00 31.78
30	MOTA	3711	0	ALA A	467	39.406	44.845	81.393	1.00 31.71
	ATOM	3712	CB	ALA A	467	41.365	43.837	79.256	1.00 25.99
1	MOTA	3713	N	CYS A		38.217	43.277	80.336	1.00 28.06
T	ATOM	3714	CA	CYS A		36.942	43.862	80.693	1.00 25.80
	MOTA	3715	С	CYS A		36.668	43.619	82.165	1.00 26.47
* 35	MOTA	3716	0	CYS A		36.469	44.517	82.963	1.00 27.99
	ATOM	3717	СВ	CYS A		35.882	43.376	79.696	1.00 24.56
	ATOM	3718	SG	CYS A		36.455	43.873	78.049	1.00 27.76
	ATOM	3719	N	ILE A		36.752	42.384	82.540	1.00 24.34
40	ATOM	3720 3721	CA C	ILE A		36.599	42.052	83.921	1.00 25.23
40	MOTA ATOM	3722	0	ILE A		37.560 37.175	42.800	84.876	1.00 28.13
	ATOM	3723	СВ	ILE A		36.858	43.220 40.574	85.950	1.00 29.54
	ATOM	3724		ILE A		35.956	39.801	84.068 83.112	1.00 27.23 1.00 26.94
	ATOM	3725		ILE A		36.537	40.208	85.496	1.00 25.56
45	ATOM	3726		ILE A		36.247	38.298	83.085	1.00 25.50
	ATOM	3727	N	ALA A		38.830	42.960	84.534	1.00 43.30
	ATOM	3728	CA	ALA A		39.749	43.621	85.461	1.00 23.20
	ATOM	3729	С	ALA A		39.392	45.038	85.808	1.00 30.29
	ATOM	3730	0	ALA A		39.474	45.451	86.986	1.00 32.82
50	MOTA	3731	СВ	ALA A		41.218	43.502	85.074	1.00 21.98
	ATOM	3732	N	LEU A		39.007	45.760	84.759	1.00 23.53
	ATOM	3733	CA	LEU A		38.643	47.173	84.834	1.00 18.39
	ATOM	3734	С	LEU A	471	37.333	47.373	85.569	1.00 26.57
	ATOM	3735	0	LEU A		37.210	48.208	86.462	1.00 30.48
55	ATOM	3736	CB	LEU A		38.676	47.827	83.444	1.00 15.51
	MOTA	3737	CG	LEU A		38.671	49.325	83.539	1.00 24.20
	ATOM	3738		LEU A		39.754	49.795	84.513	1.00 24.86
	MOTA	3739		LEU A		38.876	49.941	82.156	1.00 26.35
/ 0	ATOM	3740	N	SER A		36.351	46.570	85.222	1.00 25.31
60	ATOM	3741	CA	SER A		35.080	46.674	85.901	1.00 27.56
	ATOM	3742	С	SER A		35.260	46.477	87.396	1.00 33.46
	ATOM	3743	0	SER A		34.800	47.292	88.214	1.00 32.85
	ATOM	3744	CB	SER A		33.989	45.714	85.393	1.00 32.06
	ATOM	3745	OG	SER A	412	34.492	44.774	84.470	1.00 48.56

	ATOM	3746	Ν.	GLN A	473	35.911	45.350	87.736	1.00 27.52
	ATOM	3747	CA	GLN A		36.170	44.971	89.108	1.00 24.10
	MOTA	3748	С	GLN A		36.866	46.096	89.836	1.00 25.18
_	ATOM	3749	0	GLN A		36.534	46.458	90.969	1.00 21.62
5	ATOM	3750	CB	GLN A		36.994	43.671	89.148	1.00 25.86
	ATOM	3751	CG	GLN A		36.128	42.402	89.118	1.00 32.72
	ATOM	3752	CD	GLN A		34.970	42.504	90.090	1.00 46.08
	ATOM	3753	OE1	GLN A		35.165	42.422	91.308	1.00 40.73
10	ATOM	3754		GLN A		33.761	42.692	89.559	1.00 28.28
10	ATOM	3755	N	ARG A		37.855	46.656	89.161	1.00 24.00
	ATOM	3756	CA	ARG A		38.562	47.765	89.779	1.00 24.46
	MOTA	3757 3758	С 0	ARG A		37.609	48.893	90.141	1.00 29.31
	ATOM ATOM	3759	СВ	ARG A		37.620 39.682	49.447 48.290	91.242 88.898	1.00 33.13
15	ATOM	37 <i>59</i> 3760	CG	ARG A		40.866	47.352	88.831	1.00 20.19 1.00 28.48
13	ATOM	3761	CD	ARG A		41.871	47.869	87.832	1.00 28.48
	ATOM	3762	NE	ARG A		42.258	49.245	88.093	1.00 34.41
	ATOM	3763	CZ	ARG A		42.927	49.938	87.185	1.00 51.25
	ATOM	3764		ARG A		43.220	49.376	86.019	1.00 31.23
20	ATOM	3765		ARG A		43.316	51.199	87.444	1.00 20.43
	ATOM	3766	N	TRP A		36.791	49.259	89.178	1.00 25.32
	ATOM	3767	CA	TRP A		35.862	50.332	89.400	1.00 26.77
	ATOM	3768	С	TRP A		34.881	49.962	90.474	1.00 27.52
	ATOM	3769	0	TRP A		34.749	50.633	91.475	1.00 29.64
25	ATOM	3770	CB	TRP A	475	35.199	50.804	88.093	1.00 27.95
	ATOM	3771	CG	TRP A	475	36.047	51.819	87.361	1.00 32.11
	MOTA	3772	CD1	TRP A	475	36.873	51.592	86.298	1.00 35.65
	MOTA	3773	CD2	TRP A	475	36.161	53.217	87.648	1.00 31.62
	ATOM	3774	NE1	TRP A	475	37.484	52.748	85.904	1.00 34.92
30	MOTA	3775		TRP A		37.054	53.763	86.707	1.00 36.16
	MOTA	3776	CE3	TRP A		35.588	54.040	88.606	1.00 32.63
	ATOM	3777		TRP A		37.372	55.112	86.719	1.00 36.24
	MOTA	3778		TRP A		35.897	55.375	88.616	1.00 34.74
25	MOTA	3779		TRP A		36.777	55.901	87.685	1.00 35.77
35	ATOM	3780	N	ILE A		34.234	48.847	90.279	1.00 26.36
	ATOM	3781	CA	ILE A		33.268	48.386	91.235	1.00 28.33
	ATOM	3782	C.	ILE A		33.771	48.315	92.681	1.00 34.20
	ATOM	3783 3784	O CB	ILE A		33.056	48.595	93.637	1.00 36.89 1.00 32.23
40	ATOM ATOM	3785	CG1			32.722 31.993	47.070 47.308	90.761 89.443	
40	ATOM	3785 3786		ILE A		31.864	46.376	91.851	1.00 30.49 1.00 34.86
	ATOM	3787		ILE A		31.595	46.005	88.756	1.00 34.86
	ATOM	3788	N	THR A		35.010	47.934	92.860	1.00 33.04
	ATOM	3789	CA	THR A		35.558	47.846	94.194	1.00 24.15
45	ATOM	3790	C	THR A		36.416	49.052	94.523	1.00 27.30
	ATOM	3791	ō	THR A		37.120	49.065	95.519	1.00 27.36
	ATOM	3792	СВ	THR A		36.402	46.578	94.257	1.00 32.13
	ATOM	3793		THR A		37.593	46.848	93.557	1.00 29.48
	ATOM	3794		THR A		35.634	45.470	93.530	1.00 16.94
50	ATOM	3795	N	ALA A		36.371	50.097	93.695	1.00 22.33
	ATOM	3796	CA	ALA A	478	37.164	51.260	93.988	1.00 20.44
	ATOM	3797	С	ALA A	478	36.890	51.843	95.390	1.00 32.94
	ATOM	3798	0	ALA A	478	35.786	51.756	95.922	1.00 34.38
	ATOM	3799	CB	ALA A	478	36.938	52.343	92.942	1.00 19.26
55	ATOM	3800	N	LYS A		37.931	52.469	95.970	1.00 29.65
	ATOM	3801	CA	LYS A		37.899	53.168	97.243	1.00 27.30
	MOTA	3802	С	LYS A		38.575	54.512	97.051	1.00 36.54
	ATOM	3803	0	LYS A		39.378	54.692	96.118	1.00 34.13
CO	ATOM	3804	CB	LYS A		38.457	52.410	98.417	1.00 28.01
60	ATOM	3805	CG	LYS A		37.696	51.116	98.631	1.00 51.38
	MOTA	3806	CD	LYS A		37.115	50.880	100.021	1.00 67.24
	ATOM	3807	CE	LYS A		35.804	50.103	99.931	1.00 87.12
	ATOM	3808	NZ	LYS A		35.711	48.948	100.841	1.00 85.55
	ATOM	3809	N	GLU A	480	38.241	55.477	97.900	1.00 36.30

		ATOM	3810	CA	GLU			38.843	56.793	97.751	1.00 34.79
		MOTA	3811	С	GLU			40.261	56.707	97.220	1.00 34.79
		ATOM	3812	0	GLU			40.613	57.332	96.234	1.00 34.10
	_	ATOM	3813	CB	GLU			38.899	57.565	99.078	1.00 36.21
	5	ATOM	3814	CG	GLU			37.709	58.500	99.303	1.00 63.85
		ATOM	3815	CD	GLU			37.601	59.511	98.214	1.00100.00
		ATOM	3816	OE1			480	38.457	59.648	97.357	1.00100.00
		ATOM	3817	OE2	GLU			36.491	60.209	98.288	1.00100.00
	10	ATOM ATOM	3818 3819	N CA	ASP ASP			41.080	55.946	97.904	1.00 24.69
	10	ATOM	3820	C	ASP			42.451 42.771	55.860	97.519	1.00 23.87
		ATOM	3821	Õ	ASP			43.925	55.314 55.312	96.132	1.00 34.51
		ATOM	3822	СВ	ASP			43.262	55.155	95.721 98.611	1.00 39.44
		ATOM	3823	CG	ASP			43.072	53.668	98.575	1.00 25.29 1.00 39.58
	15	ATOM	3824	OD1	ASP			42.471	53.029	97.708	1.00 39.38
		ATOM	3825		ASP			43.698	53.107	99.567	1.00 40.00
		ATOM	3826	N	ASP			41.788	54.881	95.373	1.00 30.70
		ATOM	3827	CA	ASP			42.098	54.379	94.024	1.00 31.73
		ATOM	3828	С	ASP			41.725	55.307	92.859	1.00 34.17
	20	ATOM	3829	0	ASP	Α	482	42.158	55.150	91.717	1.00 35.45
		ATOM	3830	CB	ASP	Α	482	41.399	53.022	93.756	1.00 33.31
,		MOTA	3831	CG	ASP			41.686	51.970	94.779	1.00 38.90
2		ATOM	3832		ASP			42.810	51.514	94.992	1.00 42.45
:: ::	0.5	ATOM	3833		ASP			40.606	51.625	95.440	1.00 40.17
#. #	25	ATOM	3834	N	LEU			40.863	56.246	93.146	1.00 29.93
		ATOM	3835	CA	LEU			40.352	57.159	92.160	1.00 27.80
ů;		ATOM	3836	C	LEU			41.434	57.943	91.410	1.00 40.70
		ATOM	3837	0	LEU			41.386	58.102	90.180	1.00 40.76
2	30	ATOM	3838	CB	LEU			39.265	58.049	92.819	1.00 22.54
that that then ton	30	ATOM ATOM	3839 3840	CG CD1	LEU LEU			38.148	57.240	93.488	1.00 20.75
100		ATOM	3841		LEU			37.170	58.165	94.197	1.00 19.29
i.		ATOM	3842	N	ASN			37.389 42.410	56.467	92.414	1.00 21.46
r L		ATOM -	3843	CA	ASN			43.459	58.446 59.225	92.162 91.571	1.00 36.15
i i	35	ATOM	3844	C	ASN			44.168	58.524	90.429	1.00 34.08 1.00 39.51
Ε.	• •	ATOM	3845	ō	ASN			44.456	59.091	89.359	1.00 39.51
		ATOM	3846	СВ	ASN			44.495	59.602	92.618	1.00 34.26
		ATOM	3847	CG	ASN			45.807	59.955	91.941	1.00100.00
		ATOM	3848	OD1	ASN	Α	484	45.878	60.940	91.171	1.00100.00
	40	ATOM	3849	ND2	ASN	Α	484	46.836	59.134	92.186	1.00100.00
		MOTA	3850	N	SER	Α	485	44.472	57.268	90.698	1.00 35.37
		MOTA	3851	CA	SER			45.202	56.417	89.791	1.00 32.79
		ATOM	3852	С	SER			44.522	56.140	88.484	1.00 32.26
	45	ATOM	3853	0	SER			45.159	55.925	87.463	1.00 32.44
	45	ATOM	3854	CB	SER			45.565	55.132	90.477	1.00 38.65
		ATOM	3855	OG	SER			46.040	55.437	91.777	1.00 62.66
		ATOM	3856	N	PHE			43.222	56.110	88.491	1.00 27.13
		ATOM ATOM	3857 3858	CA C	PHE			42.631	55.809	87.233	1.00 28.26
	50	ATOM	3859	0	PHE PHE			43.193	56.772	86.264	1.00 32.12
	50	ATOM	3860	СВ	PHE			43.423	57.910	86.604	1.00 32.02
		ATOM	3861	CG	PHE			41.101 40.471	55.819	87.198	1.00 31.01
		ATOM	3862		PHE			40.504	54.807 53.425	88.132 87.911	1.00 27.04
		ATOM	3863		PHE			39.805	55.293	89.253	1.00 22.43 1.00 21.40
	55	ATOM	3864		PHE			39.896	52.538	88.804	1.00 21.40
		ATOM	3865		PHE			39.224	54.426	90.174	1.00 19.09
		ATOM	3866	CZ	PHE			39.245	53.051	89.927	1.00 19.20
		ATOM	3867	N	ASN			43.455	56.279	85.089	1.00 13.13
		ATOM	3868	CA	ASN			44.032	57.092	84.070	1.00 34.97
	60	ATOM	3869	C	ASN			43.491	56.622	82.758	1.00 33.00
		ATOM	3870	0	ASN			42.951	55.537	82.604	1.00 46.30
		ATOM	3871	СВ	ASN	Α	487	45.591	57.038	84.085	1.00 43.93
		ATOM	3872	CG	ASN	Α	487	46.196	58.169	83.302	1.00 56.10
		ATOM	3873	OD1	ASN	A	487	46.057	58.189	82.077	1.00 42.12
											

	ATOM	3874	ND2	ASN A	487	46.829	59.112	84.007	1.00 65.62
	ATOM	3875	N	ALA A		43.662	57.435	81.781	1.00 39.34
	MOTA	3876	CA	ALA A		43.201	57.055	80.472	1.00 38.25
	ATOM	3877	С	ALA A		44.024	55.900	79.809	1.00 43.58
5	MOTA	3878	0	ALA A		43.596	55.317	78.834	1.00 44.11
	ATOM	3879	СВ	ALA A		43.153	58.314	79.621	1.00 37.54
	ATOM	3880	N	THR A		45.207	55.555	80.314	1.00 37.34
	ATOM	3881	CA	THR A		45.996	54.499	79.715	1.00 36.16
	ATOM	3882	C	THR A		45.270	53.181	79.792	1.00 45.74
10	ATOM	3883	ō	THR A		45.476	52.233	79.057	1.00 47.78
- 4	ATOM	3884	СВ	THR A		47.296	54.458	80.503	1.00 31.01
	ATOM	3885	OG1	THR A		46.961	54.457	81.872	1.00 35.33
	ATOM	3886	CG2	THR A		47.993	55.771	80.229	1.00 33.33
	ATOM	3887	N	ASP A		44.337	53.182	80.708	1.00 26.28
15	ATOM	3888	CA	ASP A		43.560	52.018	80.972	1.00 40.73
	ATOM	3889	C	ASP A		42.759	51.515	79.786	1.00 51.49
	ATOM	3890	Ö	ASP A		42.396	50.342	79.651	1.00 52.21
	ATOM	3891	СВ	ASP A		42.676	52.345	82.184	1.00 54.75
	ATOM	3892	CG	ASP A		43.413	52.884	83.380	
20	ATOM	3893	OD1	ASP A		44.621	52.777		1.00 53.83
240	ATOM	3894		ASP A		42.565	53.446	83.616	1.00 62.93
	ATOM	3895	N	LEU A		42.486	52.450	84.165	1.00 35.66
	ATOM	3896		LEU A		41.752	52.450	78.938	1.00 42.42
	ATOM	3897	C	LEU A				77.723	1.00 43.54
25	ATOM	3898	Ö	LEU A		42.712	51.977	76.585	1.00 43.97
25	ATOM	3899	СВ	LEU A		42.340	51.438	75.588	1.00 42.53
	ATOM	3900	CG	LEU A		40.984	53.528	77.421	1.00 44.89
	ATOM	3901	CD1			39.794	53.747	78.338	1.00 48.31
		3902	CD2			38.558	54.171	77.552	1.00 49.16
30	ATOM	3902	N			39.377	52.494	79.125	1.00 39.24
30	MOTA	3904		LYS A		43.958	52.403	76.754	1.00 42.32
	ATOM	3904	CA C	LYS A		44.999	52.320	75.696	1.00 44.57
	ATOM	3906	o	LYS A		44.826	51.165	74.680	1.00 49.08
	ATOM	3907	СВ	LYS A		44.810	51.343	73.473	1.00 49.66
35	ATOM	3908		LYS A		46.359	52.177	76.401	1.00 48.47
55	MOTA	3909	CG CD	LYS A		47.487	52.883	75.629	1.00 88.73
	ATOM ATOM	3910	CE	LYS A		48.852	52.537	76.197	1.00100.00
	ATOM	3911	NZ	LYS A		48.786	51.460	77.300	1.00100.00
	ATOM	3912	N Z	ASP A		50.103	50.896	77.541	1.00100.00
40	ATOM	3913	CA	ASP A		44.711	49.917	75.227	1.00 41.86
40		3914	_			44.664	48.740	74.372	1.00 40.17
	ATOM ATOM	3915	0	ASP A		43.220	48.162	74.215	1.00 44.29
	ATOM	3916	СВ	ASP A		43.031	46.973	73.889	1.00 42.00
	ATOM	3917	CG	ASP A		45.560	47.699	75.015	1.00 41.52
45	ATOM	3918		ASP A		47.021	48.130	74.956	1.00 67.01
73	ATOM	3919		ASP A		47.467	48.451	73.856	1.00 77.10
	ATOM	3920	N	LEU A		47.678	48.131	75.984	1.00 57.19
	ATOM	3921	CA	LEU A		42.193	49.005	74.475	1.00 40.69
		3922				40.789	48.512	74.526	1.00 36.32
50	ATOM		C	LEU A		39.992	48.877	73.245	1.00 37.76
50	ATOM ATOM	3923 3924	O	LEU A		39.897	50.029	72.863	1.00 38.93
		3925	CB	LEU A		40.098	49.125	75.733	1.00 32.52
	ATOM		CG	LEU A		40.376	48.433	77.063	1.00 30.66
	ATOM	3926		LEU A		39.229	48.580	78.052	1.00 30.39
55	ATOM	3927		LEU A		40.611	46.925	76.918	1.00 23.54
<i>J</i>	ATOM	3928	N	SER A		39.477	47.825	72.631	1.00 25.56
	ATOM	3929	CA	SER A		38.674	48.017	71.457	1.00 22.23
	MOTA	3930	C	SER A		37.344	48.670	71.856	1.00 31.27
	ATOM	3931	0	SER A		36.968	48.706	73.038	1.00 31.21
60	ATOM	3932	CB	SER A		38.380	46.705	70.795	1.00 20.88
υυ	ATOM	3933	OG	SER A		37.192	46.143	71.317	1.00 33.60
	ATOM	3934	N	SER A		36.627	49.184	70.865	1.00 29.48
	MOTA	3935	CA	SER A		35.363	49.821	71.139	1.00 26.67
	ATOM	3936	C	SER A		34.495	48.747	71.744	1.00 29.54
	MOTA	3937	0	SER A	496	33.744	48.960	72.697	1.00 24.80

The Committee also were then the time of

		ATOM	3938	СВ	SER	Α	496	34.760	50.441	69.894	1.00 24.67
		ATOM	3939	OG	SER			33.749	49.597	69.397	1.00 48.80
		ATOM	3940	N	HIS			34.674	47.547	71.219	1.00 26.61
	•	ATOM	3941	CA	HIS			33.949	46.383	71.750	1.00 29.22
	5	MOTA	3942	С	HIS			34.156	46.148	73.275	1.00 37.24
		ATOM	3943	0	HIS			33.238	45.863	74.041	1.00 38.21
		ATOM	3944	CB	HIS			34.364	45.106	70.978	1.00 30.69
		ATOM	3945	CG	HIS HIS			34.182	45.348	69.545	1.00 34.29
	10	ATOM ATOM	3946 3947		HIS			32.943	45.204	68.962	1.00 35.42
	10	ATOM	3948		HIS			35.054 33.075	45.833	68.622	1.00 36.68
		ATOM	3949		HIS			34.330	45.531 45.932	67.702	1.00 35.05
		ATOM	3950	N	GLN			35.406	46.243	67.462 73.715	1.00 35.88 1.00 33.56
		ATOM	3951	CA	GLN			35.737	46.008	75.713	1.00 33.36
	15	ATOM	3952	С	GLN			35.263	47.122	75.965	1.00 27.11
		ATOM	3953	0	GLN			34.842	46.930	77.089	1.00 23.92
		ATOM	3954	CB	GLN			37.221	45.659	75.248	1.00 29.95
≠# _B		ATOM	3955	CG	GLN	Α	498	37.582	44.317	74.544	1.00 25.78
eri M		ATOM	3956	CD	GLN	Α	498	39.074	44.084	74.535	1.00 28.64
	20	ATOM	3957	OE1	GLN			39.796	44.891	73.960	1.00 26.62
12: 14:		ATOM	3958		GLN			39.561	43.049	75.218	1.00 20.96
		ATOM	3959	N	LEU			35.289	48.301	75.431	1.00 27.13
4 m		ATOM	3960	CA	LEU			34.819	49.396	76.229	1.00 29.32
i.	25	ATOM	3961	С	LEU			33.351	49.162	76.632	1.00 28.39
	25	ATOM	3962	0	LEU			32.893	49.361	77.780	1.00 29.41
= fin		ATOM	3963	СВ	LEU			34.991	50.709	75.436	1.00 31.70
Ē		ATOM	3964	CG	LEU			36.242	51.512	75.788	1.00 39.76
= Eq		ATOM	3965		LEU			37.335	50.572	76.278	1.00 42.91
١	30	ATOM ATOM	3966 3967	CD2 N	LEU ASN			36.718	52.268	74.555	1.00 39.08
nj.	30	ATOM	3968	CA	ASN			32.606 31.213	48.737	75.642	1.00 15.23
12 mg 12 mg 12 mg		ATOM	3969	C	ASN			30.919	48.508 47.455	75.828 76.864	1.00 13.44
12 E.).		ATOM	3970	ō	ASN			29.997	47.602	77.705	1.00 18.98 1.00 19.01
au au		ATOM	3971	СВ	ASN			30.604	48.129	74.476	1.00 13.01
- 4	35	ATOM	3972	CG	ASN			29.093	48.214	74.426	1.00 12.21
		ATOM	3973		ASN			28.433	49.151	74.930	1.00 36.17
		ATOM	3974		ASN			28.542	47.218	73.787	1.00 18.34
		MOTA	3975	N	GLU	Α	501	31.699	46.366	76.743	1.00 14.20
	4.0	ATOM	3976	CA	GLU			31.626	45.224	77.625	1.00 13.27
	40	ATOM	3977	С	GLU			31.948	45.676	79.063	1.00 21.59
		MOTA	3978	0	GLU			31.175	45.463	80.009	1.00 25.02
		ATOM	3979	CB	GLU			32.446	44.057	77.053	1.00 14.95
		ATOM	3980	CG	GLU			32.371	42.827	77.989	1.00 30.40
	45	ATOM	3981	CD	GLU			30.946	42.399	78.199	1.00 39.28
	43	ATOM	3982		GLU			30.050	42.672	77.413	1.00 76.70
		ATOM ATOM	3983 3984	N	GLU			30.780	41.694	79.292	1.00 46.10
		ATOM	3985	CA	PHE PHE			33.059 33.395	46.400	79.226	1.00 18.07
		ATOM	3986	C	PHE			32.179	46.952 47.679	80.530 81.125	1.00 21.54
	50	ATOM	3987	ō	PHE			31.786	47.491	82.301	1.00 23.38 1.00 21.47
		ATOM	3988	CB	PHE			34.507	48.012	80.327	1.00 21.47
		ATOM	3989	CG	PHE			34.590	49.082	81.393	1.00 20.03
		ATOM	3990		PHE			35.085	48.781	82.662	1.00 29.68
		ATOM	3991		PHE			34.211	50.402	81.132	1.00 39.16
	55	ATOM	3992		PHE			35.183	49.773	83.638	1.00 31.12
		ATOM	3993	CE2	PHE	Α	502	34.305	51.414	82.096	1.00 40.46
		ATOM	3994	CZ	PHE	Α	502	34.812	51.090	83.352	1.00 35.41
		ATOM	3995	N	LEU	Α	503	31.613	48.557	80.288	1.00 18.39
	C O	ATOM	3996	CA	LEU			30.487	49.343	80.692	1.00 22.78
	60	ATOM	3997	С	LEU			29.337	48.491	81.178	1.00 31.04
		ATOM	3998	0	LEU			28.768	48.784	82.243	1.00 29.23
		ATOM	3999	CB	LEU			30.002	50.325	79.619	1.00 24.68
		ATOM	4000	CG	LEU			30.888	51.571	79.465	1.00 27.47
		ATOM	4001	CDI	LEU	A	503	30.415	52.376	78.259	1.00 24.86

		ATOM	4002	CD2	LEU A	503	30.860	52.420	80.733	1.00 20.54
		ATOM	4003	N	ALA A	504	29.012	47.444	80.378	1.00 27.79
		ATOM	4004	CA	ALA A		27.911	46.474	80.643	1.00 24.63
	5	ATOM	4005	С	ALA A		28.140	45.752	81.939	1.00 27.71
	3	ATOM	4006 4007	O CB	ALA A		27.265	45.577	82.817	1.00 28.62
		ATOM ATOM	4007	И	GLN A		27.762 29.382	45.482 45.344	79.496 82.066	1.00 23.87 1.00 22.16
		ATOM	4009	CA	GLN A		29.738	44.710	83.299	1.00 22.16
		ATOM	4010	C	GLN A		29.489	45.737	84.423	1.00 31.26
	10	ATOM	4011	0	GLN A		28.787	45.507	85.413	1.00 32.31
		ATOM	4012	CB	GLN A	505	31.202	44.209	83.270	1.00 18.95
		ATOM	4013	CG	GLN A		31.367	42.881	82.495	1.00 13.72
		ATOM	4014	CD	GLN A		32.806	42.549	82.136	1.00 31.75
	15	ATOM	4015	OE1			33.796	42.969	82.768	1.00 43.14
	15	ATOM	4016	NE2	GLN A		32.923	41.781	81.085	1.00 39.34
		ATOM ATOM	4017 4018	N CA	THR A		30.056 29.855	46.918 47.864	84.263 85.302	1.00 25.95
ær.		ATOM	4019	C	THR A		28.411	48.101	85.579	1.00 23.64 1.00 23.89
4.5		ATOM	4020	Õ	THR A		27.923	47.999	86.696	1.00 23.89
44	20	ATOM	4021	СВ	THR A		30.600	49.130	85.008	1.00 22.73
41		ATOM	4022	OG1	THR A		31.938	48.749	84.742	1.00 27.18
ij=£:		ATOM	4023	CG2	THR A		30.502	49.961	86.260	1.00 11.12
# P		ATOM	4024	N	LEU A		27.727	48.408	84.518	1.00 17.92
### ### ###		ATOM	4025	CA	LEU A	507	26.334	48.683	84.604	1.00 17.22
L"	25	ATOM	4026	С	LEU A		25.618	47.683	85.442	1.00 25.65
B= A.		ATOM	4027	0	LEU A		24.816	48.073	86.266	1.00 27.85
\$		ATOM	4028	СВ	LEU A		25.693	48.686	83.224	1.00 17.85
∯≖ db.		ATOM	4029	CG	LEU A		24.207	48.930	83.336	1.00 21.02
n,	30	ATOM	4030 4031	CD1	LEU A		23.974	50.290	83.970	1.00 22.48
ħ.	30	ATOM ATOM	4031	N	GLN A		23.599 25.878	48.919 46.395	81.949 85.194	1.00 15.25
124		ATOM	4033	CA	GLN A		25.215	45.333	85.979	1.00 21.35 1.00 18.08
		ATOM	4034	c c	GLN A		25.386	45.561	87.508	1.00 34.24
		ATOM	4035	O	GLN A		24.653	45.017	88.343	1.00 34.04
	35	ATOM	4036	СВ	GLN A		25.713	43.917	85.608	1.00 10.94
		MOTA	4037	CG	GLN A		25.366	43.446	84.191	1.00 26.42
		ATOM	4038	CD.	GLN A		25.635	41.944	84.002	1.00 52.93
		ATOM	4039	OE1	GLN A		26.550	41.396	84.628	1.00 32.89
	40	ATOM	4040	NE2	GLN A		24.864	41.252	83.147	1.00 34.36
	40	MOTA	4041	N	ARG A		26.380	46.361	87.901	1.00 33.73
		ATOM ATOM	4042 4043	CA C	ARG A		26.600 26.153	46.614 48.016	89.328 89.727	1.00 32.53 1.00 33.63
		ATOM	4043	o	ARG A		26.509	48.522	90.777	1.00 33.63
		ATOM	4045	СВ	ARG A		28.055	46.440	89.760	1.00 31.00
	45	ATOM	4046	CG	ARG A		28.553	45.014	89.733	1.00 29.78
		ATOM	4047	CD	ARG A		27.744	44.054	90.609	1.00 30.86
		ATOM	4048	NE	ARG A		28.533	43.602	91.756	1.00 82.23
		MOTA	4049	CZ	ARG A		29.842	43.274	91.726	1.00100.00
	50	ATOM	4050		ARG A		30.579	43.315	90.613	1.00 92.85
	50	MOTA	4051		ARG A		30.430	42.881	92.855	1.00 91.85
		ATOM	4052	N	ALA A		25.384	48.659	88.880	1.00 32.59
		ATOM ATOM	4053 4054	CA C	ALA A		24.952 24.151	49.985 49.845	89.215 90.479	1.00 32.51 1.00 34.97
		ATOM	4055	Ö	ALA A		23.601	48.785	90.693	1.00 34.97
	55	ATOM	4056	СВ	ALA A		24.189	50.622	88.063	1.00 37.37
		ATOM	4057	N	PRO A		24.174	50.856	91.334	1.00 32.31
		ATOM	4058	CA	PRO A		24.867	52.102	91.052	1.00 21.00
		ATOM	4059	С	PRO A		26.217	52.178	91.694	1.00 29.23
		ATOM	4060	0	PRO A		26.445	51.601	92.723	1.00 28.16
	60	MOTA	4061	СВ	PRO A	511	24.102	53.169	91.818	1.00 21.55
		ATOM	4062	CG	PRO A		23.316	52.432	92.886	1.00 28.68
		ATOM	4063	CD	PRO A		23.169	50.995	92.407	1.00 25.16
		MOTA	4064	N	LEU A		27.094	52.968	91.109	1.00 32.95
		ATOM	4065	CA	LEU A	312	28.394	53.188	91.686	1.00 33.42

*	ATOM	4066	С	LEU A	512	28.287	54.512	92.397	1.00 38.65
	ATOM	4067	Ö	LEU A		27.388	55.305	92.114	1.00 40.69
	ATOM	4068	СВ	LEU A		29.453	53.350	90.587	1.00 34.40
	ATOM	4069	CG	LEU A		30.178	52.049	90.216	1.00 40.13
5	ATOM	4070		LEU A		29.222	51.086	89.508	1.00 39.04
	ATOM	4071		LEU A		31.322	52.385	89.273	1.00 44.61
	ATOM	4072	N	PRO A		29.196	54.781	93.312	1.00 31.05
	ATOM	4073	CA	PRO A		29.167	56.058	94.008	1.00 27.16
	ATOM	4074	C	PRO A		29.296	57.203	93.019	1.00 23.76
10	ATOM	4075	Ō	PRO A		30.121	57.182	92.118	1.00 27.17
	ATOM	4076	СВ	PRO A		30.387	56.013	94.948	1.00 25.59
	ATOM	4077	CG	PRO A		30.702	54.542	95.149	1.00 27.14
	ATOM	4078	CD	PRO A		30.030	53.779	94.032	1.00 25.00
	ATOM	4079	N	LEU A		28.478	58.203	93.185	1.00 22.92
15	ATOM	4080	CA	LEU A		28.516	59.350	92.279	1.00 27.55
	ATOM	4081	C	LEU A		29.930	59.766	91.940	1.00 31.95
	ATOM	4082	Ō	LEU A		30.287	59.908	90.765	1.00 37.11
ee.	ATOM	4083	СB	LEU A		27.673	60.564	92.741	1.00 30.03
	ATOM	4084	CG	LEU A		27.428	61.626	91.648	1.00 32.87
<u></u> 20	ATOM	4085		LEU A		26.648	61.082	90.440	1.00 28.48
	ATOM	4086	CD2			26.699	62.780	92.272	1.00 31.16
LA:	ATOM	4087	N	GLY A		30.731	59.989	92.979	1.00 31.10
	ATOM	4088	CA	GLY A		32.131	60.384	92.811	1.00 24.42
[m:	ATOM	4089	C	GLY A		32.902	59.472	91.835	1.00 23.33
	ATOM	4090	Õ	GLY A		33.746	59.914	91.035	1.00 35.67
	ATOM	4091	N	HIS A		32.602	58.180	91.891	1.00 35.07
j. fix	ATOM	4092	CA	HIS A		33.257	57.255	90.998	1.00 25.86
5	ATOM	4093	C	HIS A		32.911	57.578	89.560	1.00 23.60
1-4	ATOM	4094	Ö	HIS A		33.786	57.596	88.695	1.00 27.02
30	ATOM	4095	СВ	HIS A		32.826	55.814	91.282	1.00 25.39
i j	ATOM	4096	CG	HIS A		33.452	55.283	92.505	1.00 23.39
# 1±# #= #3,	ATOM	4097		HIS A		33.635	56.092	93.602	1.00 27.30
	ATOM	4098		HIS A		33.929	54.037	92.791	1.00 30.14
	ATOM	4099		HIS A		34.205	55.336	94.534	1.00 27.73
¹ 35	ATOM	4100		HIS A		34.390	54.099	94.085	1.00 27.02
55	ATOM	4101	N	ILE A		31.617	57.815	89.315	1.00 27.02
	ATOM	4102	CA	ILE A		31.137	58.107	87.973	1.00 22.75
	ATOM	4103	C	ILE A		31.706	59.424	87.462	1.00 22.73
	ATOM	4104	Ö	ILE A		32.246	59.558	86.352	1.00 28.78
40	ATOM	4105	СВ	ILE A		29.601	58.024	87.930	1.00 27.12
	ATOM	4106		ILE A		29.225	56.610	88.312	1.00 29.40
	ATOM	4107		ILE A		29.013	58.285	86.536	1.00 25.49
	ATOM	4108		ILE A		29.305	55.665	87.105	1.00 34.77
	ATOM	4109	N	LYS A		31.589	60.416	88.308	1.00 27.28
45	ATOM	4110	CA	LYS A		32.108	61.690	87.955	1.00 23.77
	ATOM	4111	С	LYS A		33.558	61.482	87.485	1.00 24.03
	ATOM	4112	ō	LYS A		33.982	61.831	86.391	1.00 26.08
	ATOM	4113	СВ	LYS A		32.038	62.557	89.210	1.00 24.00
	ATOM	4114	CG	LYS A		30.641	63.060	89.591	1.00 19.24
50	ATOM	4115	CD	LYS A		30.721	64.276	90.537	1.00 27.93
	ATOM	4116	CE	LYS A		29.379	64.877	90.962	1.00 37.11
	ATOM	4117	NZ	LYS A		28.924	65.988	90.104	1.00 52.30
	ATOM	4118	N	ARG A		34.322	60.899	88.361	1.00 17.90
	ATOM	4119	CA	ARG A		35.703	60.636	88.098	1.00 20.80
55	ATOM	4120	C	ARG A		35.862	59.874	86.802	1.00 28.98
	ATOM	4121	Ö	ARG A		36.812	60.084	86.051	1.00 29.86
	ATOM	4122	СВ	ARG A		36.313	59.844	89.276	1.00 20.56
	ATOM	4123	CG	ARG A		37.721	59.308	89.036	1.00 20.30
	ATOM	4124	CD	ARG A		38.668	60.320	88.404	1.00 23.02
60	ATOM	4125	NE	ARG A		40.086	60.008	88.616	1.00 59.84
	ATOM	4126	CZ	ARG A		41.076	60.858	88.349	1.00 50.77
	ATOM	4127		ARG A		40.838	62.073	87.880	1.00 30.77
	ATOM	4128		ARG A		42.329	60.486	88.543	1.00 31.21
	ATOM	4129	N	MET A		34.937	58.956	86.565	1.00 25.08
				11	J_ •	0557	20.330		2.00 20.00

	ATOM	4130	CA	MET A	520	34.979	58.121	85.379	1.00 24.56
	ATOM	4131	c ·	MET A	520	34.906	58.918	84.086	1.00 29.37
	ATOM	4132	0	MET A		35.651	58.687	83.114	1.00 27.92
	ATOM	4133	СВ	MET A		33.905	57.007	85.442	
5	ATOM	4134	CG	MET A				84.399	1.00 26.98
9						34.082	55.902		1.00 28.02
	ATOM	4135	SD	MET A		32.830	54.591	84.479	1.00 27.87
	ATOM	4136	CE	MET A		33.246	53.825	86.070	1.00 22.09
	MOTA	4137	N	GLN A		33.982	59.864	84.067	1.00 28.32
	ATOM	4138	CA	GLN A	521	33.838	60.672	82.886	1.00 28.34
10	ATOM	4139	С	GLN A	521	35.067	61.540	82.785	1.00 36.52
	MOTA	4140	0	GLN A	521	35.514	61.879	81.707	1.00 35.87
	ATOM	4141	СВ	GLN A		32.514	61.451	82.863	1.00 28.34
	ATOM	4142	CG	GLN A		32.564	62.774	82.079	
	ATOM	4143	CD	GLN A		32.890	62.572		1.00 9.68
15		4144	OE1					80.616	1.00 27.55
13	ATOM					33.382	63.491	79.924	1.00 28.25
	ATOM	4145	NE2			32.657	61.368	80.142	1.00 25.70
	MOTA	4146	N	GLU A		35.626	61.827	83.963	1.00 36.19
	ATOM	4147	CA	GLU A	522	36.818	62.648	84.171	1.00 36.13
	ATOM	4148	С	GLU A	522	38.136	62.046	83.662	1.00 42.48
20	ATOM	4149	0	GLU A	522	39.099	62.735	83.335	1.00 42.40
	ATOM	4150	CB	GLU A		36.857	63.035	85.641	1.00 37.79
	ATOM	4151	CG	GLU A		38.233	63.196	86.273	
	MOTA	4152	CD	GLU A		38.046	64.040		1.00 58.85
		4153	OE1					87.493	1.00 73.64
25	ATOM					37.006	64.641	87.709	1.00 45.66
23	ATOM	4154	OE2			39.081	64.037	88.289	1.00 47.91
	ATOM	4155	N	VAL A		38.188	60.739	83.552	1.00 40.13
	ATOM	4156	CA	VAL A		39.401	60.136	83.058	1.00 37.49
	MOTA	4157	С	VAL A	523	39.205	59.351	81.778	1.00 38.88
	ATOM	4158	0	VAL A	523	40.195	59.016	81.138	1.00 40.21
30	ATOM	4159	CB	VAL A	523	40.184	59.370	84.102	1.00 40.01
	ATOM	4160	CG1	VAL A	523	40.231	60.165	85.413	1.00 39.12
	ATOM	4161	CG2			39.534	58.017	84.320	1.00 39.82
	ATOM	4162	N	TYR A		37.952	59.048	81.379	1.00 30.35
	ATOM	4163	CA	TYR A		37.801	58.330		
35	ATOM	4164	C	TYR A				80.114	1.00 28.11
55	ATOM					37.061	59.144	79.074	1.00 33.14
		4165	0	TYR A		37.076	58.802	77.908	1.00 35.84
	ATOM	4166	CB	TYR A		37.281	56.878	80.119	1.00 25.56
	ATOM	4167	CG	TYR A		37.941	55.960	81.111	1.00 20.87
40	ATOM	4168	CD1			39.324	55.938	81.258	1.00 21.59
40	MOTA	4169		TYR A		37.170	55.083	81.879	1.00 19.80
	ATOM	4170	CE1	TYR A	524	39.905	55.063	82.176	1.00 25.64
	MOTA	4171	CE2	TYR A	524	37.731	54.227	82.827	1.00 18.61
	ATOM	4172	CZ	TYR A	524	39.116	54.231	82.969	1.00 19.81
	ATOM	4173	ОН	TYR A	524	39.706	53.402	83.863	1.00 23.92
45	ATOM	4174	N	ASN A		36.416	60.221	79.496	1.00 25.98
	ATOM	4175	CA	ASN A		35.687	61.088	78.588	1.00 25.01
	ATOM	4176	C	ASN A		34.661	60.354	77.735	
	ATOM	4177	Õ	ASN A					1.00 29.86
		4178				34.533	60.535	76.499	1.00 29.39
50	ATOM		CB	ASN A		36.637	61.922	77.739	1.00 29.55
50	ATOM	4179	CG	ASN A		35.949	62.980	76.894	1.00 30.32
	MOTA	4180		ASN A		36.460	63.332	75.850	1.00 32.77
	MOTA	4181	ND2	ASN A		34.822	63.527	77.344	1.00 13.80
	MOTA	4182	N	PHE A	526	33.924	59.512	78.436	1.00 24.21
	ATOM	4183	CA	PHE A	526	32.900	58.745	77.807	1.00 25.14
55	ATOM	4184	Ç	PHE A	526	31.846	59.631	77.214	1.00 31.74
	ATOM	4185	Ō	PHE A		31.161	59.241	76.272	1.00 31.74
	ATOM	4186	СВ	PHE A		32.256	57.732	78.781	
	ATOM	4187	CG	PHE A					1.00 26.60
						33.115	56.499	78.978	1.00 23.82
60	ATOM	4188		PHE A		34.017	56.080	78.000	1.00 25.00
ΨU	ATOM	4189		PHE A		33.031	55.767	80.159	1.00 21.74
	ATOM	4190		PHE A		34.783	54.927	78.173	1.00 27.63
	ATOM	4191		PHE A		33.817	54.634	80.370	1.00 25.42
	MOTA	4192	CZ	PHE A		34.683	54.202	79.364	1.00 25.28
	ATOM	4193	N	ASN A		31.689	60.815	77.760	1.00 28.22
						-	_		

	ATOM	4194	CA	ASN A 52	7 30.657	61.688	77.214	1.00 31.18
	ATOM	4195	C	ASN A 52	7 30.884		75.744	1.00 33.17
	ATOM	4196	0	ASN A 52	7 29.965		74.999	1.00 30.80
_	MOTA	4197	CB	ASN A 52	7 30.479	62.967	78.052	1.00 36.41
5	ATOM	4198	CG	ASN A 52		62.752	79.292	1.00 46.99
	MOTA	4199		ASN A 52		63.571	80.209	1.00 36.82
	MOTA	4200		ASN A 52		61.636	79.338	1.00 43.55
	ATOM	4201	N	ALA A 52			75.348	1.00 27.46
. 10	ATOM	4202	CA	ALA A 52			74.005	1.00 26.48
10	ATOM	4203	С	ALA A 52			72.950	1.00 32.09
	ATOM	4204	0	ALA A 52			71.753	1.00 32.09
	ATOM	4205	CB	ALA A 52			74.105	1.00 26.04
	ATOM	4206	N	ILE A 52			73.402	1.00 31.35
1.5	ATOM	4207	CA	ILE A 52			72.529	1.00 28.47
15	ATOM	4208	С	ILE A 52			71.887	1.00 35.96
	ATOM	4209	0	ILE A 52			72.578	1.00 38.79
	ATOM	4210	CB	ILE A 52			73.264	1.00 30.17
	ATOM	4211	CG1		-		73.392	1.00 31.37
20	ATOM	4212		ILE A 52			72.489	1.00 27.63
20	MOTA	4213		ILE A 52			74.635	1.00 33.41
	ATOM	4214	N	ASN A 53			70.559	1.00 34.86
	ATOM	4215	CA	ASN A 53			69.852	1.00 36.44
	ATOM	4216	C	ASN A 53			69.473	1.00 39.90
25	ATOM	4217	0	ASN A 53			69.043	1.00 41.37
25	ATOM	4218	CB	ASN A 53			68.928	1.00 51.44
	ATOM	4219	CG	ASN A 53			69.732	1.00100.00
	ATOM	4220		ASN A 53			70.665	1.00100.00
	ATOM	4221		ASN A 53			69.392	1.00 91.39
30	ATOM	4222	N	ASN A 53			69.688	1.00 30.37
30	ATOM	4223	CA	ASN A 53			69.446	1.00 28.14
	ATOM	4224	С	ASN A 53			70.360	1.00 32.80
	MOTA	4225	O	ASN A 53			71.611	1.00 36.74
	ATOM	4226 4227	CB	ASN A 53			69.690	1.00 24.31
35	ATOM	4227	CG OD1	ASN A 53			69.730	1.00 34.44
55	ATOM ATOM	4229		ASN A 53			70.359	1.00 36.49
	ATOM	4230	NDZ N	SER A 53			69.099	1.00 30.57
	ATOM	4231	CA	SER A 53	_		69.734	1.00 22.02
	ATOM	4232	C	SER A 53			70.459	1.00 19.67
40	ATOM	4233	Ö	SER A 53		53.208 53.475	71.627 72.680	1.00 26.15
	ATOM	4234	СВ	SER A 53			69.582	1.00 26.64
	ATOM	4235	OG	SER A 53			68.452	1.00 26.92
	ATOM	4236	N	GLU A 53			71.423	1.00 23.59
	ATOM	4237	CA	GLU A 53			72.420	1.00 22.68 1.00 22.97
45	ATOM	4238	C	GLU A 53			73.635	1.00 22.97
	ATOM	4239	ō	GLU A 53			74.749	1.00 30.40
	ATOM	4240	СВ	GLU A 53:			71.850	1.00 23.96
	ATOM	4241	CG	GLU A 53			70.733	1.00 23.96
	ATOM	4242	CD	GLU A 53:			71.276	1.00 40.65
50	ATOM	4243		GLU A 53:			72.476	1.00 36.25
	ATOM	4244		GLU A 53			70.339	1.00 25.87
	ATOM	4245	N	ILE A 53			73.392	1.00 26.20
	ATOM	4246	CA	ILE A 53			74.484	1.00 26.32
	ATOM	4247	С	ILE A 53			75.121	1.00 27.83
55	ATOM	4248	0	ILE A 53			76.326	1.00 26.54
	ATOM	4249	CB	ILE A 53		53.022	74.102	1.00 29.16
	ATOM	4250	CG1	ILE A 53	4 30.738	51.808	73.479	1.00 29.47
	MOTA	4251		ILE A 53			75.353	1.00 28.28
	MOTA	4252		ILE A 53			72.765	1.00 34.99
60	ATOM	4253	N	ARG A 53			74.320	1.00 24.30
	ATOM	4254	CA	ARG A 53	5 26.804		74.949	1.00 22.51
	ATOM	4255	С	ARG A 53	5 25.573		75.701	1.00 28.19
	ATOM	4256	0	ARG A 53			76.791	1.00 32.61
	ATOM	4257	CB	ARG A 53			73.913	1.00 24.83

1-4.

	ATOM	4258	CG	ARG A	535		25.970	58.229	74.541	1.00 21.49
	ATOM	4259	CD	ARG A	535		25.327	59.183	73.554	1.00 13.79
	ATOM	4260	NE	ARG A			25.194	60.457	74.213	1.00 31.38
_	MOTA	4261	CZ	ARG A			26.256	61.140	74.554	1.00 29.41
5	ATOM	4262		ARG A			27.463	60.677	74.259	1.00 26.45
	ATOM	4263		ARG A			26.110	62.302	75.195	1.00 19.99
	ATOM	4264	N	PHE A			24.911	54.466	75.126	1.00 23.44
	ATOM	4265 4266	CA C	PHE A			23.740	53.980	75.770	1.00 22.05
10	ATOM ATOM	4267	0	PHE A			23.976 23.349	53.555 54.113	77.199 78.105	1.00 22.74
10	ATOM	4268	CB	PHE A			23.117	52.865	74.919	1.00 22.06 1.00 23.17
	ATOM	4269	CG	PHE A			22.040	52.153	75.658	1.00 23.17
	ATOM	4270	CD1				20.933	52.845	76.150	1.00 22.66
	ATOM	4271		PHE A			22.145	50.783	75.882	1.00 23.25
15	ATOM	4272		PHE A			19.926	52.181	76.847	1.00 21.23
	ATOM	4273	CE2	PHE A			21.147	50.101	76.576	1.00 24.70
	ATOM	4274	CZ	PHE A	536		20.047	50.811	77.065	1.00 20.57
	ATOM	4275	N	ARG A	537		24.863	52.560	77.364	1.00 18.22
	ATOM	4276	CA	ARG A			25.239	51.995	78.665	1.00 19.20
20	ATOM	4277	С	ARG A		·	25.932	52.963	79.618	1.00 27.62
	ATOM	4278	0	ARG A			25.803	52.845	80.837	1.00 26.73
	MOTA	4279	CB	ARG A			26.035	50.709	78.556	1.00 18.91
	MOTA	4280	CG	ARG A			25.318	49.656	77.708	1.00 16.55
25	ATOM	4281	CD	ARG A			26.181	48.426	77.387	1.00 21.58
25	ATOM	4282	NE	ARG A			25.341	47.357	76.886	1.00 28.42
	ATOM	4283	CZ	ARG A			25.060	47.206	75.609	1.00 18.29
	ATOM ATOM	4284 4285		ARG A			25.569 24.240	48.004 46.236	74.703 75.224	1.00 22.46
	ATOM	4286	NIIZ	TRP A			26.668	53.930	79.064	1.00 25.22 1.00 24.21
30	ATOM	4287	CA	TRP A			27.337	54.918	79.867	1.00 24.21
50	ATOM	4288	C	TRP A			26.274	55.719	80.550	1.00 28.09
	ATOM	4289	Ö	TRP A			26.320	55.951	81.741	1.00 27.39
	ATOM	4290	СВ	TRP A			28.064	55.888	78.949	1.00 20.48
	ATOM	4291	CG	TRP A			28.606	57.157	79.580	1.00 21.29
35	ATOM	4292	CD1	TRP A	538		28.641	58.345	78.968	1.00 22.86
	ATOM	4293	CD2	TRP A	538		29.286	57.352	80.845	1.00 21.79
	ATOM	4294	NE1	TRP A			29.228	59.270	79.769	1.00 22.70
	ATOM	4295	CE2	TRP A			29.643	58.696	80.911	1.00 24.79
40	ATOM	4296		TRP A			29.574	56.535	81.946	1.00 23.35
40	ATOM	4297	CZ2	TRP A			30.280	59.248	82.025	1.00 25.89
	ATOM	4298		TRP A			30.203	57.056	83.046	1.00 23.35
	MOTA MOTA	4299 4300	CH2 N	TRP A LEU A			30.562 25.303	58.405 56.161	83.081 79.758	1.00 24.89
	ATOM	4300	CA	LEU A			24.229	56.974	80.306	1.00 27.31 1.00 27.18
45	ATOM	4302	C	LEU A			23.369	56.245	81.332	1.00 27.18
	ATOM	4303	Ö	LEU A			22.857	56.822	82.266	1.00 27.19
	MOTA	4304	CB	LEU A			23.428	57.812	79.262	1.00 26.37
	ATOM	4305	CG	LEU A			24.269	58.682	78.279	1.00 25.71
	ATOM	4306		LEU A			23.369	59.424	77.290	1.00 21.79
50	ATOM	4307	CD2	LEU A	539		25.146	59.680	79.011	1.00 23.51
	ATOM	4308	N	ARG A			23.199	54.960	81.188	1.00 27.56
	ATOM	4309	CA	ARG A			22.390	54.283	82.170	1.00 26.88
	MOTA	4310	С	ARG A			23.145	54.229	83.453	1.00 31.82
E E	ATOM	4311	0	ARG A			22.618	54.448	84.539	1.00 32.72
55	ATOM	4312	CB	ARG A			22.034	52.888	81.732	1.00 24.48
	MOTA	4313	CG	ARG A			21.447	52.885	80.331	1.00 32.96
	ATOM ATOM	4314 4315	CD	ARG A			20.695	51.597	80.090	1.00 33.19
	ATOM	4315	NE CZ	ARG A			19.660 19.151	51.414 50.242	81.085 81.409	1.00 33.95
60	ATOM	4316		ARG A			19.151	49.132	80.849	1.00 30.83 1.00 25.37
50	ATOM	4317		ARG A			18.186	50.186	82.317	1.00 25.37
	ATOM	4319	N	LEU A			24.414	53.948	83.318	1.00 30.30
	ATOM	4320	CA	LEU A			25.239	53.895	84.505	1.00 26.36
	ATOM	4321	С	LEU A			25.036	55.210	85.277	1.00 31.00

		ATOM	4322	0	LEU A			24.632	55.246	86.439	1.00 31.62
		ATOM	4323	CB	LEU A			26.702	53.586	84.094	1.00 23.61
		ATOM	4324	CG	LEU A			27.730	53.533	85.212	1.00 24.67
	_	ATOM	4325		LEU A			27.387	52.411	86.190	1.00 25.02
	5	MOTA	4326	CD2	LEU A			29.098	53.245	84.621	1.00 19.31
		ATOM	4327	N	CYS A			25.254	56.307	84.570	1.00 30.52
		ATOM	4328	CA	CYS A		•	25.115	57.661	85.105	1.00 31.76
		ATOM ATOM	4329 4330	С 0	CYS A			23.808	57.996	85.805	1.00 32.71
	10	ATOM	4331	СВ	CYS A			23.801	58.536	86.914	1.00 33.97
	10	ATOM	4332	SG	CYS A			25.461 27.085	58.744 58.488	84.073	1.00 31.30
		ATOM	4333	N	ILE A			22.711	57.708	83.347 85.125	1.00 34.39
		ATOM	4334	CA	ILE A			21.382	57.700	85.643	1.00 25.61 1.00 23.12
		ATOM	4335	C	ILE A			21.199	57.161	86.885	1.00 23.12
	15	ATOM	4336	0	ILE A			20.900	57.645	87.972	1.00 30.13
		ATOM	4337	СВ	ILE A			20.340	57.627	84.585	1.00 23.75
		ATOM	4338	CG1	ILE A			20.369	58.664	83.468	1.00 24.09
		ATOM	4339	CG2	ILE A			18.955	57.572	85.182	1.00 22.99
11		ATOM	4340	CD1	ILE A			20.386	60.109	83.982	1.00 27.34
41	20	MOTA	4341	N	GLN A	544		21.440	55.884	86.695	1.00 27.99
u.		ATOM	4342	CA	GLN A			21.320	54.929	87.756	1.00 25.72
-4		ATOM	4343	С	GLN A			22.243	55.269	88.901	1.00 26.34
1		MOTA	4344	0	GLN A			22.029	54.826	90.014	1.00 26.24
	25	ATOM	4345	СВ	GLN A			21.562	53.512	87.210	1.00 26.76
	25	MOTA	4346	CG	GLN A			20.355	52.955	86.432	1.00 17.74
		MOTA	4347	CD	GLN A			20.598	51.604	85.743	1.00 32.62
 - 4		MOTA	4348	OE1	GLN A			20.326	51.432	84.551	1.00 38.66
36		ATOM	4349	NE2	GLN A			21.063	50.627	86.494	1.00 14.93
<u> </u>	30	ATOM	4350	N	SER A			23.286	56.033	88.625	1.00 21.73
	30	ATOM ATOM	4351 4352	CA C	SER A			24.187	56.392	89.685	1.00 22.42
n.		ATOM	4353	0	SER A			23.819 24.567	57.726	90.287	1.00 33.67
		ATOM	4354	СВ	SER A			25.646	58.257 56.322	91.133 89.338	1.00 37.22
		ATOM	4355	OG	SER A				² 54.968	89.163	1.00 21.57 1.00 31.72
la L	35	ATOM	4356	N	LYS A			22.662	58.251	89.841	1.00 31.72
2		ATOM	4357	CA	LYS A			22.135	59.490	90.356	1.00 20.79
		ATOM	4358	С	LYS A			22.887	60.738	89.961	1.00 27.55
		ATOM	4359	0	LYS A			23.001	61.655	90.771	1.00 27.95
		ATOM	4360	CB	LYS A	546		22.126	59.449	91.881	1.00 21.71
	40	ATOM	4361	CG	LYS A	546		21.498	58.195	92.484	1.00 15.90
		MOTA	4362	CD	LYS A			20.245	57.814	91.731	1.00 39.84
		MOTA	4363	CE	LYS A			19.355	56.850	92.498	1.00 45.16
		ATOM	4364	NZ	LYS A			18.197	56.399	91.704	1.00 40.14
	45	MOTA	4365	N	TRP A			23.414	60.776	88.753	1.00 23.26
	43	ATOM	4366	CA	TRP A			24.141	61.931	88.289	1.00 21.90
		ATOM	4367	C	TRP A			23.221	62.901	87.570	1.00 29.82
		ATOM ATOM	4368 4369	O CB	TRP A			22.808	62.679	86.432	1.00 34.91
		ATOM	4309	CG	TRP A			25.262	61.500	87.361	1.00 21.04
	50	ATOM	4371	CD1				26.254 26.224	62.591 63.769	87.206	1.00 22.57
		ATOM	4372		TRP A			27.437	62.588	87.844 86.417	1.00 25.87 1.00 23.40
		ATOM	4373		TRP A			27.316	64.511	87.517	1.00 25.40
		ATOM	4374		TRP A			28.081	63.819	86.635	1.00 25.64
		ATOM	4375		TRP A			28.014	61.668	85.547	1.00 26.21
	55	ATOM	4376		TRP A			29.279	64.162	85.995	1.00 27.44
		ATOM	4377		TRP A			29.195	62.009	84.923	1.00 28.70
		MOTA	4378		TRP A			29.822	63.236	85.138	1.00 28.41
		MOTA	4379	N	GLU A			22.888	63.995	88.227	1.00 22.95
		MOTA	4380	CA	GLU A			21.979	64.970	87.649	1.00 20.70
	60	ATOM	4381	С	GLU A			22.419	65.473	86.305	1.00 28.32
		MOTA	4382	0	GLU A			21.598	65.735	85.391	1.00 29.41
		ATOM	4383	CB	GLU A			21.635	66.144	88.607	1.00 22.45
		ATOM	4384	CG	GLU A			20.884	65.709	89.919	1.00 30.56
		MOTA	4385	CD	GLU A	548		20.337	66.848	90.765	1.00 59.35

	ATOM	4386	OE1	GLU A	548	20.336	68.021	90.413	1.00 81.52
	MOTA	4387	OE2	GLU A	548	19.888	66.450	91.925	1.00 57.05
	ATOM	4388	N	ASP A	549	23.728	65.661	86.201	1.00 24.72
_	MOTA	4389	CA	ASP A		24.276	66.190	84.981	1.00 21.48
5	ATOM	4390	С	ASP A		23.914	65.359	83.795	1.00 30.08
	MOTA	4391	0	ASP A		23.760	65.869	82.697	1.00 32.05
	MOTA	4392	CB	ASP A		25.775	66.480	85.048	1.00 21.28
	MOTA	4393	CG	ASP A		26.076	67.463	86.130	1.00 37.74
10	MOTA	4394		ASP A		25.432	68.479	86.297	1.00 48.21
10	MOTA	4395		ASP A		27.076	67.115	86.882	1.00 46.51
	ATOM	4396	И	ALA A		23.766	64.073	84.032	1.00 27.68
	ATOM	4397	CA	ALA A		23.445	63.133	82.965	1.00 26.74
	ATOM	4398	С	ALA A		22.019	63.171	82.431	1.00 32.35
15	ATOM	4399	0	ALA A		21.745	62.615	81.361	1.00 31.95
15	ATOM	4400	СВ	ALA A		23.812	61.713	83.372	1.00 25.48
	ATOM	4401	N	ILE A		21.123	63.795	83.192	1.00 28.71
	MOTA	4402 4403	CA C	ILE A		19.716	63.882	82.832	1.00 28.20
	ATOM	4403	0	ILE A		19.461 18.833	64.355 63.679	81.411	1.00 32.04
20	ATOM ATOM	4404	СВ	ILE A		18.876	64.641	80.619 83.868	1.00 31.75
20	ATOM	4405	CG1			19.038	63.985	85.226	1.00 30.29 1.00 31.50
	ATOM	4407	CG2	ILE A		17.391	64.661	83.475	1.00 31.50
	ATOM	4408	CD1	ILE A		18.072	64.561	86.253	1.00 24.75
	ATOM	4409	N	PRO A		19.969	65.529	81.099	1.00 31.02
25	ATOM	4410	CA	PRO A		19.793	66.121	79.796	1.00 33.73
	ATOM	4411	c	PRO A		20.240	65.224	78.669	1.00 32.00
	ATOM	4412	ō	PRO A		19.583	65.119	77.622	1.00 27.23
	ATOM	4413	СВ	PRO A		20.659	67.383	79.787	1.00 34.45
	ATOM	4414	CG	PRO A		21.348	67.500	81.139	1.00 38.39
30	ATOM	4415	CD	PRO A		20.934	66.296	81.950	1.00 34.48
	ATOM	4416	N	LEU A		21.391	64.616	78.891	1.00 23.74
	MOTA	4417	CA	LEU A		21.997	63.727	77.931	1.00 22.72
	MOTA	4418	С	LEU A	553	21.138	62.522	77.670	1.00 32.68
	ATOM	4419	0	LEU A	553	21.015	62.087	76.523	1.00 35.70
35	ATOM	4420	CB	LEU A		23.362	63.281	78.439	1.00 21.57
	ATOM	4421	CG	LEU A		24.196	64.496	78.818	1.00 24.02
	ATOM	4422		LEU A		25.608	64.071	79.174	1.00 19.59
	ATOM	4423		LEU A		24.188	65.479	77.630	1.00 18.60
40	MOTA	4424	N	ALA A		20.563	61.973	78.754	1.00 30.05
40	ATOM	4425	CA	ALA A		19.726	60.779	78.669	1.00 27.72
	ATOM	4426	C	ALA A		18.432	61.107	77.988	1.00 36.03
	ATOM	4427	O	ALA A		17.944	60.332	77.163	1.00 37.08
	ATOM	4428	CB	ALA A		19.475 17.898	60.165	80.017	1.00 26.78
45	MOTA ATOM	4429 4430	N CA	LEU A		16.644	62.283 62.724	78.320 77.720	1.00 29.70 1.00 28.32
43	ATOM	4431	C	LEU A		16.803	62.724	76.229	1.00 28.32
	ATOM	4432	o	LEU A		15.970	62.506	75.385	1.00 25.13
	ATOM	4433	СВ	LEU A		16.110	64.027	78.342	1.00 28.26
	ATOM	4434	CG	LEU A		15.371	63.814	79.666	1.00 32.76
50	ATOM	4435		LEU A		15.360	65.118	80.464	1.00 34.66
	ATOM	4436		LEU A		13.938	63.334	79.427	1.00 27.50
	ATOM	4437	N	LYS A		17.922	63.524	75.950	1.00 28.45
	ATOM	4438	CA	LYS A		18.325	63.839	74.615	1.00 28.76
	ATOM	4439	C	LYS A		18.369	62.591	73.800	1.00 35.11
55	MOTA	4440	0	LYS A		17.670	62.491	72.796	1.00 41.80
	ATOM	4441	CB	LYS A		19.645	64.592	74.599	1.00 31.79
	ATOM	4442	CG	LYS A		20.101	65.139	73.250	1.00 63.55
	ATOM	4443	CD	LYS A		21.585	65.518	73.254	1.00 81.77
	ATOM	4444	CE	LYS A	556	22.046	66.270	72.011	1.00 79.68
60	ATOM	4445	NZ	LYS A		23.239	65.661	71.401	1.00 73.00
	ATOM	4446	N	MET A		19.154	61.623	74.248	1.00 26.96
	ATOM	4447	CA	MET A		19.305	60.364	73.514	1.00 23.97
	ATOM	4448	C	MET A		18.033	59.553	73.287	1.00 30.96
	ATOM	4449	0	MET A	557	17.811	58.907	72.263	1.00 23.24

The first state of the first sta

		MOTA	4450	CB	MET A	557	20.401	59.488	74.104	1.00 24.89
		MOTA	4451	CG	MET A	557	20.533	58.163	73.368	1.00 29.37
		ATOM	4452	SD	MET A	557	22.029	57.276	73.864	1.00 33.21
		ATOM	4453	CE	MET A	557	21.939	55.812	72.793	1.00 30.16
	5	ATOM	4454	N	ALA A	558	17.203	59.568	74.287	1.00 33.42
		ATOM	4455	CA	ALA A	558	16.000	58.816	74.194	1.00 33.03
		ATOM	4456	С	ALA A	558	15.042	59.345	73.163	1.00 38.12
		ATOM	4457	0	ALA A	558	14.349	58.568	72.543	1.00 37.09
		ATOM	4458	CB	ALA A	558	15.317	58.780	75.553	1.00 32.89
	10	ATOM	4459	N	THR A	559	14.994	60.665	73.032	1.00 36.76
		ATOM	4460	CA	THR A	559	14.067	61.326	72.144	1.00 36.43
		ATOM	4461	С	THR A	559	14.588	61.590	70.794	1.00 41.71
		ATOM	4462	0	THR A	559	13.788	61.768	69.891	1.00 44.66
	0.2	ATOM	4463	CB	THR A	559	13.615	62.705	72.694	1.00 43.70
	15	ATOM	4464	OG1	THR A	559	14.728	63.545	72.957	1.00 38.88
		MOTA	4465	CG2	THR A	559	12.764	62.549	73.942	1.00 44.95
		ATOM	4466	N	GLU A	560	15.897	61.695	70.674	1.00 37.38
		ATOM	4467	CA	GLU A	560	16.495	62.018	69.395	1.00 36.51
C)		ATOM	4468	С	GLU A	560	16.652	60.846	68.448	1.00 40.11
41	20	MOTA	4469	0	GLU A	560	17.003	61.052	67.300	1.00 43.23
		MOTA	4470	CB	GLU A	560	17.799	62.820	69.519	1.00 38.13
l-A		ATOM	4471	CG	GLU A	560	17.653	64.142	70.292	1.00 54.29
		ATOM	4472	CD	GLU A	560	18.857	65.043	70.127	1.00 78.42
हु स्था सम्बुद्धाः		ATOM	4473	OE1	GLU A	560	19.960	64.639	69.812	1.00 32.69
######################################	25	ATOM	4474	OE2	GLU A	560	18.593	66.303	70.380	1.00 85.90
4		ATOM	4475	N	GLN A		16.425	59.627	68.955	1.00 30.45
1		ATOM	4476	CA	GLN A		16.467	58.356	68.230	1.00 22.57
E		ATOM	4477	С	GLN A		15.398	57.523	68.878	1.00 26.95
		ATOM	4478	0	GLN A	561	14.978	57.814	69.975	1.00 27.79
	30	ATOM	4479	СВ	GLN A		17.829	57.661	68.128	1.00 20.64
# 1 m 1		ATOM	4480	CG	GLN A	561	18.470	57.290	69.491	1.00 22.59
n.		MOTA	4481	CD	GLN A	561	17.802	56.121	70.184	1.00 28.22
		MOTA	4482	OE1	GLN A	561	17.524	56.156	71.400	1.00 37.44
		ATOM	4483	NE2	GLN A	561	17.556	55.069	69.419	1.00 31.92
]= £.	35	ATOM	4484	N	GLY A	562	14.888	56.535	68.209	1.00 26.16
		ATOM	4485	CA	GLY A	562	13.801	55.810	68.858	1.00 27.83
		ATOM	4486	С	GLY A	562	13.932	54.320	68.761	1.00 41.56
		MOTA	4487	0	GLY A	562	12.936	53.614	68.677	1.00 45.37
		ATOM	4488	N	ARG A		15.171	53.864	68.742	1.00 37.40
	40	ATOM	4489	CA	ARG A	563	15.457	52.453	68.689	1.00 34.41
		ATOM	4490	С	ARG A	563	15.121	51.939	70.109	1.00 39.48
		ATOM	4491	0	ARG A	563	15.832	52.221	71.087	1.00 40.29
		ATOM	4492	CB	ARG A	563	16.932	52.231	68.284	1.00 18.23
		ATOM	4493	CG	ARG A		17.309	50.755	68.169	1.00 20.07
	45	MOTA	4494	CD	ARG A		18.779	50.514	68.512	1.00 25.07
		MOTA	4495	NE	ARG A		19.234	49.139	68.320	1.00 25.66
		MOTA	4496	CZ	ARG A		20.425	48.891	67.821	1.00 26.35
		ATOM	4497		AŖG A		21.257	49.860	67.430	1.00 12.96
	50	ATOM	4498		ARG A		20.804	47.636	67.656	1.00 30.31
	50	ATOM	4499	N	MET A		13.989	51.228	70.239	1.00 33.12
		ATOM	4500	CA	MET A		13.487	50.695	71.526	1.00 31.84
		ATOM	4501	С	MET A		14.565	50.247	72.532	1.00 31.42
		ATOM	4502	0	MET A		14.494	50.501	73.744	1.00 25.72
	<i></i>	MOTA	4503	CB	MET A		12.323	49.682	71.365	1.00 32.45
	55	ATOM	4504	CG	MET A		11.196	50.225	70.487	1.00 35.78
		ATOM	4505	SD	MET A		9.695	49.205	70.533	1.00 40.85
		ATOM	4506	CE	MET A		10.177	47.892	69.382	1.00 35.87
		ATOM	4507	N	LYS A		15.562	49.581	71.966	1.00 31.68
	.	ATOM	4508	CA	LYS A		16.699	49.041	72.668	1.00 29.04
	60	MOTA	4509	С	LYS A		17.281	50.089	73.562	1.00 26.36
		MOTA	4510	0	LYS A		17.648	49.782	74.673	1.00 21.19
		MOTA	4511	СВ	LYS A		17.747	48.494	71.697	1.00 29.06
		ATOM	4512	CG	LYS A		18.864	47.715	72.359	1.00 23.89
		MOTA	4513	CD	LYS A	565	19.982	47.355	71.392	1.00 35.75

	ATOM	4514	CE	LYS A	565	20.796	46.153	71.842	1.00 36.31
	ATOM	4515	NZ	LYS A		22.233	46.311	71.577	1.00 30.31
	ATOM	4516	N	PHE A		17.321	51.321	73.073	
	ATOM	4517	CA	PHE A		17.866	52.423		1.00 22.91
5	ATOM	4518	C	PHE A			53.253	73.833	1.00 24.36
<i>J</i>	ATOM	4519	Õ	PHE A		16.814		74.571	1.00 30.37
		4520	СВ			16.882	53.540	75.758	1.00 30.52
	ATOM			PHE A		18.622	53.355	72.857	1.00 25.26
	ATOM	4521	CG	PHE A		19.738	52.677	72.088	1.00 24.09
10	ATOM	4522		PHE A		20.392	51.559	72.609	1.00 23.51
10	ATOM	4523		PHE A		20.165	53.187	70.858	1.00 24.48
	ATOM	4524		PHE A		21.432	50.958	71.900	1.00 23.73
	MOTA	4525	CE2			21.211	52.620	70.129	1.00 24.75
	MOTA	4526	CZ	PHE A	566	21.828	51.491	70.668	1.00 25.20
	MOTA	4527	N	THR A	567	15.860	53.679	73.801	1.00 31.17
15	ATOM	4528	CA	THR A	567	14.783	54.533	74.239	1.00 31.74
	MOTA	4529	С	THR A	567	13.985	54.037	75.458	1.00 33.79
	MOTA	4530	0	THR A		13.657	54.818	76.373	1.00 26.01
	ATOM	4531	СВ	THR A		13.895	54.892	73.017	
	ATOM	4532	OG1			14.527	55.844	72.138	1.00 36.51
20	ATOM	4533	CG2	THR A		12.522	55.361		1.00 24.12
20	ATOM	4534	N	ARG A				73.473	1.00 34.94
						13.663	52.726	75.469	1.00 30.74
	ATOM	4535	CA	ARG A		12.864	52.166	76.545	1.00 26.30
	ATOM	4536	С	ARG A		13.486	52.226	77.882	1.00 28.61
25	MOTA	4537	0	ARG A		12.876	52.667	78.832	1.00 30.84
25	ATOM	4538	CB	ARG A		12.315	50.798	76.251	1.00 18.11
	MOTA	4539	CG	ARG A		11.342	50.919	75.088	1.00 29.19
	MOTA	4540	CD	ARG A		10.550	49.660	74.799	1.00 19.19
	MOTA	4541	NE	ARG A	568	9.707	49.343	75.917	1.00 28.72
	ATOM	4542	CZ	ARG A	568	9.254	48.138	76.133	1.00 32.39
30	ATOM	4543	NH1	ARG A	568	9.528	47.144	75.291	1.00 29.79
	ATOM	4544	NH2	ARG A	568	8.507	47.930	77.208	1.00 16.44
	ATOM	4545	N	PRO A	569	14.705	51.774	77.925	1.00 28.41
	ATOM	4546	CA	PRO A		15.447	51.709	79.154	1.00 28.01
	ATOM	4547	C .	PRO A		15.890	53.042	79.663	1.00 32.18
35	MOTA	4548	0	PRO A		15.974	53.256	80.869	1.00 29.25
	ATOM	4549	CB	PRO A		16.607	50.732		1.00 28.83
	ATOM	4550	CG	PRO A		16.330	50.034	77.592	1.00 20.03
	ATOM	4551	CD	PRO A		15.234	50.829	76.893	1.00 32.42
	ATOM	4552	N	LEU A		16.143	53.949		
40	ATOM	4553	CA	LEU A		16.560		78.741	1.00 31.95
••	ATOM	4554	C	LEU A			55.270	79.160	1.00 35.11
		4555				15.407	55.962	79.897	1.00 36.24
	ATOM			LEU A		15.532	56.506	81.028	1.00 34.02
	ATOM	4556	CB	LEU A		17.021	56.110	77.932	1.00 37.06
45	ATOM	4557	CG	LEU A		18.387	55.701	77.343	1.00 41.39
43	ATOM	4558		LEU A		18.678	56.462	76.050	1.00 41.06
	ATOM	4559		LEU A		19.497	55.984	78.353	1.00 37.42
	ATOM	4560	N	PHE A		14.262	55.944	79.211	1.00 30.06
	ATOM	4561	CA	PHE A	571	13.084	56.541	79.758	1.00 27.27
	ATOM	4562	С	PHE A		12.813	55.899	81.095	1.00 25.94
50	ATOM	4563	0	PHE A	571	12.399	56.536	82.030	1.00 27.16
	ATOM	4564	CB	PHE A	571	11.888	56.375	78.828	1.00 27.60
	MOTA	4565	CG	PHE A	571	11.546	57.616	78.042	1.00 27.70
	ATOM	4566	CD1	PHE A		11.193	58.820	78.651	1.00 29.97
	ATOM	4567		PHE A		11.557	57.570	76.651	1.00 28.87
55	ATOM	4568		PHE A		10.861	59.953	77.910	1.00 28.24
	ATOM	4569		PHE A		11.233	58.684	75.886	1.00 28.24
	ATOM	4570	CZ	PHE A					
	ATOM	4571	N	LYS A		10.877	59.875	76.520	1.00 29.55
	ATOM	4572	CA			13.089	54.618	81.196	1.00 22.77
60				LYS A		12.845	53.946	82.468	1.00 25.43
UU	ATOM	4573	C	LYS A		13.783	54.425	83.561	1.00 34.48
	ATOM	4574	O	LYS A		13.351	54.920	84.602	1.00 35.11
	ATOM	4575	CB	LYS A		12.736	52.428	82.392	1.00 26.89
	ATOM	4576	CG	LYS A		11.303	51.911	82.326	1.00 44.03
	MOTA	4577	CD	LYS A	572	11.219	50.426	81.922	1.00 57.87

		ATOM	4578	CE	LYS A	572	10.975	50.204	80.422	1.00 65.25
		ATOM	4579	NZ	LYS A		11.535	48.954	79.850	1.00 61.06
		MOTA	4580	N	ASP A		15.074	54.292	83.319	1.00 31.94
	5	ATOM	4581	CA	ASP A		16.032	54.751	84.291	1.00 30.55
	3	MOTA	4582	С	ASP A		15.684	56.166	84.712	1.00 32.26
		MOTA MOTA	4583 4584	O CB	ASP A		15.693	56.453	85.895	1.00 31.85
		ATOM	4585	CG	ASP A	573 ·	17.453	54.788	83.718	1.00 32.87
		MOTA	4586		ASP A		18.051 17.517	53.443 52.422	83.487	1.00 33.43
	10	ATOM	4587		ASP A		19.206	53.501	83.853 82.864	1.00 29.11 1.00 35.22
		ATOM	4588	N	LEU A		15.387	57.071	83.745	1.00 33.22
		ATOM	4589	CA	LEU A		15.062	58.461	84.109	1.00 27.65
		ATOM	4590	С	LEU A		13.887	58.577	85.075	1.00 32.88
	. <u>.</u>	MOTA	4591	0	LEU A	574	13.864	59.411	85.962	1.00 31.04
	15	ATOM	4592	CB	LEU A	574	14.844	59.385	82.909	1.00 26.24
		ATOM	4593	CG	LEU A		16.068	59.567	82.027	1.00 30.41
		ATOM	4594		LEU A		15.644	59.922	80.582	1.00 28.47
er e		ATOM	4595		LEU A		16.974	60.659	82.604	1.00 27.06
	20	ATOM	4596	N	ALA A		12.895	57.723	84.874	1.00 32.80
42	20	ATOM	4597	CA	ALA A		11.709	57.713	85.711	1.00 31.11
43		MOTA	4598	C	ALA A		12.002	57.140	87.083	1.00 35.71
1-4		ATOM ATOM	4599 4600	O CB	ALA A		11.309	57.362	88.055	1.00 39.91
		ATOM	4601	N	ALA A		10.631	56.890 56.364	85.024	1.00 30.56
	25	ATOM	4602	CA	ALA A		13.049 13.390	55.778	87.170	1.00 28.55
Lī		MOTA	4603	C	ALA A		14.258	56.724	88.448 89.266	1.00 22.80
1-1		ATOM	4604	Ö	ALA A		14.230	56.591	90.461	1.00 26.93 1.00 30.45
=		ATOM	4605	СВ	ALA A		14.023	54.415	88.245	1.00 30.43
		ATOM	4606	N	PHE A		14.787	57.686	88.584	1.00 22.86
r.	30	ATOM	4607	CA	PHE A	577	15.604	58.673	89.194	1.00 22.71
n.		ATOM	4608	С	PHE A	577	14.651	59.751	89.673	1.00 32.25
		ATOM	4609	0	PHE A		13.930	60.334	88.863	1.00 34.17
‡au8 ,≠a		ATOM	4610	CB	PHE A		16.640	59.188	88.154	1.00 22.89
	25		4611	CG	PHE A		17.704	60.076	88.741	1.00 23.16
is in	35	MOTA	4612		PHE A		17.847	60.231	90.120	1.00 26.60
		ATOM ATOM	4613 4614	CE1	PHE A		18.561	60.806	87.914	1.00 23.46
		ATOM	4615		PHE A		18.818 19.543	61.082 61.657	90.661	1.00 27.55
		MOTA	4616	CZ	PHE A		19.669	61.791	88.431 89.813	1.00 23.88 1.00 23.59
,	40	ATOM	4617	N	ASP A		14.625	60.008	90.990	1.00 23.39
		ATOM	4618	CA	ASP A		13.717	61.018	91.533	1.00 28.65
		ATOM	4619	С	ASP A		13.862	62.357	90.881	1.00 28.55
		ATOM	4620	0	ASP A		12.877	63.004	90.599	1.00 32.65
	4.5	ATOM	4621	CB	ASP A		13.804	61.192	93.055	1.00 32.60
	45	ATOM	4622	CG	ASP A		15.153	61.647	93.550	1.00 53.21
		MOTA	4623		ASP A		16.175	61.594	92.872	1.00 51.81
		MOTA	4624		ASP A		15.104	62.072	94.796	1.00 64.93
		ATOM ATOM	4625	N	LYS A		15.104	62.750	90.674	1.00 20.12
	50	ATOM	4626 4627	CA C	LYS A		15.470	64.012	90.084	1.00 21.01
	50	ATOM	4628	0	LYS A		14.934 14.620	64.270 65.413	88.697 88.368	1.00 30.25
		MOTA	4629	СВ	LYS A		16.982	64.223	90.104	1.00 35.12 1.00 24.11
		ATOM	4630	CG	LYS A		17.552	64.202	91.512	1.00 24.11
		ATOM	4631	CD	LYS A		17.252	65.488	92.286	1.00 76.92
	55	ATOM	4632	CE	LYS A		16.495	65.258	93.588	1.00 87.93
		ATOM	4633	NZ	LYS A		17.282	64.550	94.611	1.00 89.56
		ATOM	4634	N	SER A	580	14.838	63.244	87.857	1.00 28.66
		MOTA	4635	CA	SER A		14.368	63.437	86.459	1.00 28.56
	60	MOTA	4636	С	SER A		13.007	62.829	86.129	1.00 32.95
	60	ATOM	4637	0	SER A		12.561	62.870	84.992	1.00 35.30
		MOTA	4638	CB	SER A		15.337	62.774	85.517	1.00 25.69
		MOTA	4639	OG N	SER A		15.476	61.424	85.969	1.00 25.12
		MOTA MOTA	4640 4641	n Ca	HIS A		12.364	62.230	87.098	1.00 26.81
		111 OM	7041	ω λ	nro A	201	11.100	61.595	86.850	1.00 28.26

	ATOM	4642	С	HIS A	581	10.067	62.399	86.042	1.00 36.50
	ATOM	4643	0	HIS A		9.644	62.031	84.927	1.00 34.71
	ATOM	4644	СВ	HIS A		10.553	61.047	88.152	1.00 29.76
	ATOM	4645	CG	HIS A		9.148	60.588	87.968	1.00 35.31
5	ATOM	4646	ND1	HIS A	581	8.111	61.494	87.899	1.00 38.92
	MOTA	4647	CD2	HIS A	581	8.634	59.338	87.891	1.00 36.84
	ATOM	4648	CE1	HIS A	581	6.999	60.783	87.817	1.00 38.85
	MOTA	4649	NE2	HIS A	581	7.280	59.488	87.734	1.00 38.13
	MOTA	4650	N	ASP A	582	9.656	63.502	86.639	1.00 35.79
10	MOTA	4651	CA	ASP A	582	8.680	64.388	86.064	1.00 34.39
	ATOM	4652	С	ASP A	582	9.035	64.807	84.659	1.00 37.82
	MOTA	4653	0	ASP A	582	8.220	64.704	83.735	1.00 37.01
	ATOM	4654	CB	ASP A	582	8.428	65.552	87.001	1.00 36.57
	ATOM	4655	CG	ASP A	582	7.597	65.110	88.167	1.00 58.09
15	ATOM	4656	OD1	ASP A	582	6.708	64.289	88.070	1.00 63.17
	ATOM	4657	OD2	ASP A	582	7.920	65.708	89.279	1.00 73.96
	MOTA	4658	N	GLN A	583	10.272	65.255	84.488	1.00 32.88
	ATOM	4659	CA	GLN A	583	10.750	65.648	83.169	1.00 29.92
	MOTA	4660	С	GLN A	583	10.690	64.464	82.168	1.00 37.12
20	MOTA	4661	0	GLN A		10.362	64.624	80.990	1.00 37.42
	ATOM	4662	CB	GLN A	583	12.172	66.182	83.287	1.00 28.54
. <u>4.</u>	ATOM	4663	CG	GLN A	583	12.704	66.648	81.929	1.00 48.12
#: #:	ATOM	4664	CD	GLN A	583	13.957	67.475	82.081	1.00 64.09
##	ATOM	4665	OE1	GLN A		14.736	67.248	83.015	1.00 59.43
25	ATOM	4666	NE2	GLN A	583	14.130	68.461	81.201	1.00 55.34
så.	ATOM	4667	N	ALA A	584	11.009	63.250	82.638	1.00 33.22
	ATOM	4668	CA	ALA A	584	10.964	62.062	81.780	1.00 32.22
_ 8	ATOM	4669	С	ALA A	584	9.557	61.841	81.315	1.00 37.45
:L	MOTA	4670	0	ALA A	584	9.319	61.526	80.152	1.00 40.05
30	ATOM	4671	CB	ALA A		11.389	60.793	82.504	1.00 31.62
Į.	MOTA	4672	N	VAL A		8.622	61.995	82.261	1.00 30.42
	MOTA	4673	CA	VAL A		7.217	61.806	81.946	1.00 29.16
- 11. - 11.	MOTA	4674	С	VAL A	585	6.647	62.909	81.024	1.00 36.53
	ATOM	4675	0	VAL A		5.933	62.690	80.052	1.00 36.22
35	ATOM	4676	CB	VAL A		6.408	61.567	83.209	1.00 29.78
	MOTA	4677	CG1	VAL A		4.959	61.947	82.955	1.00 30.03
	MOTA	4678		VAL A		6.464	60.085	83.539	1.00 27.82
	ATOM	4679	N	ARG A		7.000	64.123	81.333	1.00 35.76
40	MOTA	4680	CA	ARG A		6.574	65.242	80.562	1.00 36.20
40	ATOM	4681	С	ARG A		7.146	65.125	79.180	1.00 44.65
	ATOM	4682	0	ARG A		6.459	65.355	78.197	1.00 48.32
	ATOM	4683	CB	ARG A		7.116	66.498	81.208	1.00 38.13
	ATOM	4684	CG	ARG A		6.744	67.799	80.518	1.00 61.01
45	ATOM	4685	CD	ARG A		7.077	69.029	81.354	1.00 73.03
73	ATOM	4686 4687	NE C7	ARG A		8.491	69.128	81.711	1.00 86.05
	ATOM	4688	CZ	ARG A		8.961	69.001	82.957	1.00 98.46
	ATOM ATOM	4689		ARG A		8.167 10.268	68.741	84.004 83.159	1.00 79.75 1.00 77.55
		4690	NAZ N	THR A			69.103		
50	ATOM ATOM	4691	CA	THR A		8.426 9.099	64.769	79.110 77.822	1.00 39.49
50	ATOM	4692	C	THR A		8.387	64.646 63.690	76.869	1.00 36.80 1.00 37.11
	ATOM	4693	Ö	THR A		8.229	63.931	75.678	1.00 37.11
	ATOM	4694	СВ	THR A		10.634	64.384	77.917	1.00 30.91
	ATOM	4695		THR A		11.303	65.334	78.717	1.00 39.40
55	ATOM	4696		THR A		11.233	64.460	76.529	1.00 40.27
	ATOM	4697	N	TYR A		7.934	62.587	77.393	1.00 32.00
	MOTA	4698	CA	TYR A		7.252	61.639	76.555	1.00 33.33
	ATOM	4699	C	TYR A		5.890	62.146	76.090	1.00 33.94
	ATOM	4700	Ö	TYR A		5.428	61.880	74.988	1.00 37.02
60	ATOM	4701	СВ	TYR A		7.042	60.383	77.396	1.00 41.33
	ATOM	4702	CG	TYR A		6.017	59.440	76.851	1.00 33.98
	ATOM	4703		TYR A		6.331	58.640	75.754	1.00 35.64
	ATOM	4704		TYR A		4.758	59.288	77.437	1.00 33.04
	ATOM	4705		TYR A		5.424	57.703	75.251	1.00 34.36
				2		0	5,05		2.00 04.00

								_	
	MOTA	4706	CE2	TYR A		3.822		76.932	1.00 34.05
	ATOM	4707	CZ	TYR A	588	4.162	2 57.581	75.834	1.00 33.89
	ATOM	4708	OH	TYR A	588	3.27	5 56.674	75.322	1.00 23.43
	ATOM	4709	N	GLN A	589	5.21		76.959	1.00 25.04
5	ATOM	4710	CA	GLN A		3.91		76.612	
,									1.00 21.41
	ATOM	4711	С	GLN A		3.992		75.481	1.00 28.78
	MOTA	4712	0	GLN A	589	3.099	9 64.410	74.678	1.00 31.24
	ATOM	4713	CB	GLN A	589	3.24	1 63.935	77.832	1.00 21.73
	ATOM	4714	CG	GLN A	589	2.87		78.827	1.00 22.30
10	ATOM	4715	CD	GLN A		1.69		78.293	
10									1.00 52.83
	ATOM	4716	OE1			1.51		77.075	1.00 60.15
	ATOM	4717	NE2	GLN A		0.86		79.182	1.00 53.04
	ATOM	4718	N	GLU A	590	5.099	9 65.001	75.409	1.00 28.36
	ATOM	4719	CA	GLU A	590	5.27		74.355	1.00 26.87
15	ATOM	4720	С	GLU A		5.840		73.140	1.00 35.10
	ATOM	4721	Ö.	GLU A					
						6.09		72.171	1.00 40.28
<u> </u>	ATOM	4722	CB	GLU A		6.32		74.747	1.00 27.61
4D	ATOM	4723	CG	GLU A		5.84	67.954	75.847	1.00 44.11
	ATOM	4724	CD	GLU A	590	6.98	1 68.759	76.388	1.00 75.35
20	ATOM	4725	OE1	GLU A	590	8.120		75.925	1.00 54.78
i da	ATOM	4726	OE2	GLU A		6.609		77.403	
									1.00 59.46
	ATOM	4727	N	HIS A		6.09		73.207	1.00 27.57
4	MOTA	4728	CA	HIS A		6.713		72.086	1.00 25.58
ia_	ATOM	4729	С	HIS A	591	5.928	8 62.249	71.578	1.00 32.34
2 5	ATOM	4730	0	HIS A	591	6.18	4 61.751	70.496	1.00 38.53
L 2 3	ATOM	4731	CB	HIS A		8.094		72.487	1.00 26.32
I	ATOM	4732	CG	HIS A		9.219		72.268	
ļ.		4733							1.00 31.06
## B	ATOM		ND1			9.630		73.255	1.00 32.65
30	ATOM	4734		HIS A		9.998		71.169	1.00 34.91
- 30	ATOM	4735	CE1			10.63	5 65.404	72.756	1.00 32.01
	ATOM	4736	NE2	HIS A	591	10.884	4 65.037	71.508	1.00 33.36
Paranii em en	ATOM	4737	N	LYS A		4.978		72.337	1.00 28.34
	ATOM	4738	CA	LYS A					
j. 4.						4.25		71.849	1.00 29.96
•	ATOM	4739	С	LYS A		3.65		70.432	1.00 33.41
35	ATOM	4740	0	LYS A		3.819	9 59.769	69.592	1.00 29.05
	ATOM	4741	CB	LYS A-	592	3.362	2 59.983	72.888	1.00 32.83
	ATOM	4742	CG	LYS A	592	2.43		73.615	1.00 31.14
	ATOM	4743	CD	LYS A		1.67		74.704	1.00 38.97
	ATOM	4744	CE	LYS A		0.25			
40								74.890	1.00 25.02
40	ATOM	4745	NZ	LYS A		-0.15		76.302	1.00 45.83
	ATOM	4746	N	ALA A	593	2.93	4 61.782	70.187	1.00 30.97
	ATOM	4747	CA	ALA A	593	2,260	0 62.026	68.917	1.00 28.47
	ATOM	4748	С	ALA A	593	3.169	9 61.943	67.703	1.00 32.66
	ATOM	4749	0	ALA A		2.77		66.639	1.00 36.77
45	ATOM	4750	СВ	ALA A		1.57		68.954	1.00 27.35
	ATOM			SER A					
		4751	N			4.38		67.869	1.00 27.08
	ATOM	4752	CA	SER A		5.34		66.794	1.00 30.04
	ATOM	4753	С	SER A	594	6.18	5 61.169	66.760	1.00 36.80
	ATOM	4754	0	SER A	594	6.99		65.848	1.00 37.94
50	ATOM	4755	СВ	SER A		6.29		66.977	1.00 37.69
	ATOM	4756	OG	SER A		7.19			
								68.043	1.00 54.55
	ATOM	4757	N	MET A		6.01		67.776	1.00 33.12
	MOTA	4758	CA	MET A	595	6.79	4 59.115	67.898	1.00 33.96
	ATOM	4759	С	MET A	595	6.20	0 57.936	67.125	1.00 40.91
55	MOTA	4760	0	MET A	595	5.01		66.809	1.00 50.82
	ATOM	4761	СВ	MET A		6.71			
								69.382	1.00 34.22
	ATOM	4762	CG	MET A		7.62		70.399	1.00 34.61
	ATOM	4763.	SD	MET A		7.60		71.962	1.00 39.24
	ATOM	4764	CE	MET A	595	7.14	5 59.779	73.084	1.00 36.72
60	ATOM	4765	N	HIS A		6.98		66.886	1.00 26.19
	ATOM	4766	CA	HIS A		6.49		66.246	1.00 23.19
	ATOM	4767	C						
				HIS A		5.43		67.120	1.00 25.21
	MOTA	4768	0	HIS A		5.62		68.311	1.00 22.59
	ATOM	4769	CB	HIS A	596	7.65	7 54.655	66.077	1.00 24.41

	ATOM	4770	CG	HIS A	596		7.222	53.366	65.493	1.00	30.13
	ATOM	4771		HIS A			7.606	52.995	64.214		32.86
	ATOM	4772	CD2	HIS A	596		6.421	52.385	66.005		30.90
_	MOTA	4773	CEl	HIS A	596		7.047	51.824	63.974	1.00	30.05
5	MOTA	4774	NE2	HIS A	596		6.325	51.441	65.031	1.00	30.20
	MOTA	4775	N	PRO A			4.334	54.587	66.512	1.00	27.08
	MOTA	4776	CA	PRO A		•	3.217	53.912	67.173	1.00	26.35
	ATOM	4777	С	PRO A			3.513	52.851	68.248		37.51
10	MOTA	4778	0	PRO A			2.979	52.900	69.348		41.16
10	ATOM	4779	CB	PRO A			2.334	53.307	66.076		26.17
	P.TOM	4780	CG	PRO A			3.140	53.426	64.792		34.56
	MOTA	4781	CD	PRO A			4.285	54.418	65.050		30.06
	ATOM	4782 4783	N CA	VAL A			4.311	51.850	67.939		33.08
15	MOTA MOTA	4784	C	VAL A			4.585 5.444	50.802 51.307	68.911		28.39
13	ATOM	4785	0	VAL A			5.168	51.096	70.029 71.217		29.32 29.13
	ATOM	4786	СВ	VAL A	•		5.196	49.599	68.210		27.99
	ATOM	4787		VAL A			5.806	48.608	69.187		26.98
att.	ATOM	4788		VAL A			4.144	48.944	67.296		26.13
20	ATOM	4789	N	THR A			6.480	52.021	69.635		26.13
	ATOM	4790	CA	THR A			7.370	52.573	70.631		26.95
	ATOM	4791	C	THR A			6.650	53.404	71.669		30.81
<u></u>	ATOM	4792	0	THR A			6.863	53.327	72.871		31.33
E0:	ATOM	4793	СВ	THR A			8.413	53.455	69.975		26.67
25	ATOM	4794		THR A			9.092	52.725	68.958		27.92
	ATOM	4795		THR A			9.358	53.884	71.092		20.69
. s .k	ATOM	4796	N	ALA A			5.801	54.218	71.135		26.41
****	ATOM	4797	CA	ALA A			4.997	55.111	71.878		26.39
	MOTA	4798	С	ALA A			4.176	54.339	72.860		32.00
30 1	ATOM	4799	0	ALA A	600		4.162	54.597	74.057		35.37
	MOTA	4800	CB	ALA A	600		4.090	55.774	70.856		27.56
	ATOM	4801	N	MET A	601		3.470	53.380	72.332		26.26
	MOTA	4802	CA	MET A			2.627	52.585	73.167	1.00	26.60
= m ₂	MOTA	-4803	С	MET A			3.439	51.909	74.225	1.00	25.73
35	ATOM	4804	0	MET A			3.099	51.964	75.381		25.77
	ATOM	4805	CB	MET A			1.752	51.625	72.353		30.49
	MOTA	4806	CG	MET A			1.024	50.594	73.176		36.00
	ATOM	4807	SD	MET A			2.043	49.146	73.554		42.41
40	ATOM	4808	CE	MET A			1.693	48.128	72.111		37.75
40	ATOM	4809	N	LEU A			4.538	51.310	73.848		21.64
	ATOM	4810	CA	LEU A		•	5.339	50.671	74.873		22.59
	MOTA	4811 4812	С	LEU A			6.010	51.650	75.870		29.61
	ATOM ATOM	4813	O CB	LEU A			6.137	51.346	77.039		27.62
45	ATOM	4814	CG	LEU A			6.418 5.916	49.760	74.294		22.14
-15	ATOM	4815		LEU A			7.021	48.529 48.087	73.575 72.609		25.78 26.02
	ATOM	4816		LEU A			5.651	47.445	74.613		21.01
	ATOM	4817	N	VAL A			6.508	52.805	75.445		27.15
	ATOM	4818	CA	VAL A			7.145	53.684	76.413		26.39
50	ATOM	4819	c	VAL A			6.121	54.157	77.438		32.60
	ATOM	4820	0	VAL A			6.436	54.235	78.621		35.31
	ATOM	4821	СВ	VAL A			7.917	54.832	75.760		27.78
	ATOM	4822		VAL A			8.286	55.887	76.774		24.54
	ATOM	4823		VAL A			9.172	54.286	75.094		27.29
55	ATOM	4824	N	GLY A			4.878	54.434	76.976		27.44
	ATOM	4825	CA	GLY A			3.759	54.856	77.819		27.58
	MOTA	4826	С	GLY A			3.418	53.797	78.905		37.00
	ATOM	4827	0	GLY A			3.088	54.102	80.072		36.56
	MOTA	4828	N	LYS A			3.511	52.522	78.520		32.54
60	ATOM	4829	CA	LYS A			3.250	51.415	79.459		32.17
	ATOM	4830	С	LYS A	605		4.312	51.405	80.539		35.15
	MOTA	4831	0	LYS A			4.040	51.347	81.734	1.00	33.77
	ATOM	4832	CB	LYS A			3.231	50.034	78.782		33.59
	ATOM	4833	CG	LYS A	605		1.837	49.438	78.576	1.00	42.45

	ATOM	4834	CD.	LYS	Α	605	1.846	48.115	77.815	1.00 60.83
	ATOM	4835	CE	LYS			1.223	46.946	78.578	1.00 86.38
	ATOM	4836	NZ	LYS	Α	605	2.188	46.179	79.385	1.00 93.05
	ATOM	4837	N	ASP	Α	606	5.544	51.470	80.056	1.00 32.91
5	ATOM	4838	CA	ASP	Α	606	6.715	51.510	80.878	1.00 31.82
	ATOM	4839	С	ASP	Α	606	6.549	52.667	81.833	1.00 36.24
	ATOM	4840	0	ASP	Α	606	6.652	52.503	83.045	1.00 35.19
	ATOM	4841	СВ	ASP			7.983	51.702	80.027	1.00 32.52
	ATOM	4842	CG	ASP			8.302	50.525	79.134	1.00 40.01
10	ATOM	4843	OD1	ASP			7.934	49.378	79.344	1.00 40.49
	ATOM	4844		ASP			9.038	50.869	78.111	1.00 41.73
	ATOM	4845	N	LEU			6.240	53.833	81.266	1.00 34.45
	ATOM	4846	CA	LEU			6.152	54.972	82.185	1.00 36.03
	ATOM	4847	С	LEU			4.814	55.018	82.968	1.00 42.35
15	ATOM	4848	0	LEU			4.600	55.872	83.824	1.00 41.57
	ATOM	4849	СВ	LEU			6.321	56.250	81.364	1.00 36.90
	ATOM	4850	CG	LEU			7.779	56.490	80.974	1.00 38.75
	ATOM	4851		LEU			7.954	57.746	80.132	1.00 34.34
-0	ATOM	4852		LEU			8.695	56.653	82.183	1.00 34.34
20	ATOM	4853	N	LYS			3.895	54.062	82.586	1.00 41.97
## 20	ATOM	4854	CA	LYS			2.576	53.874	83.264	
i.	ATOM	4855	C	LYS			1.625	55.088	83.181	1.00 46.99
ļaš;	ATOM	4856	Ö	LYS			0.988	55.467		1.00 51.31
	ATOM	4857	СВ	LYS			2.813	53.510	84.151	1.00 51.35
25		4858	CG	LYS					84.750	1.00 50.83
	ATOM ATOM	4859	CD	LYS			3.331	52.093	84.949	1.00 63.57
= : ====		4860	CE				4.405	52.019	86.031	1.00 77.03
	ATOM	4861	NZ	LYS LYS			5.341	50.825	85.858	1.00 96.40
	ATOM	4862	N N	VAL			6.034	50.554	87.117	1.00100.00
30 1	MOTA						1.560	55.724	81.991	1.00 50.28
	ATOM	4863	CA	VAL			0.688	56.901	81.852	1.00 50.89
T.i	ATOM	4864	C	VAL			-0.494	56.660	80.897	1.00 60.23
	ATOM	4865	0	VAL			-1.640	56.952	81.194	1.00 63.02
tani	ATOM	4866	CB	VAL			1.533	58.091	81.364	1.00 54.72
[]]_ 35	ATOM	4867		VAL			1.996	58.926	82.551	1.00 54.87
## JJ	ATOM	4868		VAL			2.744	57.607	80.605	1.00 54.46
	ATOM	4869	N	ASP			-0.177	56.152	79.687	1.00 58.84
	MOTA	4870	CA	ASP			-1.238	55.949	78.699	1.00 99.84
	ATOM	4871	C	ASP			-2.062	54.695	79.001	1.00100.00
40	ATOM	4872	0	ASP			-3.247	54.615	78.711	1.00 69.75
40	ATOM	4873	CB	ASP			-0.594	55.818	77.316	1.00100.00
	ATOM	4874	CG OD1				-0.637	57.161	76.610	
	ATOM	4875		ASP			-1.449	57.999	77.018	1.00 90.49
	ATOM	4876		ASP			0.134	57.355	75.670	1.00 89.29
45	ATOM		ZN2+		Z	1	17.003	38.803	64.180	1.00 28.37
43	ATOM		YB3+		Y	1	43.011	51.068	98.864	1.00 34.70
	ATOM		YB3+		Y	2	-13.786	56.771	52.040	0.50 57.25
	ATOM		YB3+		Y	3	-10.537	57.860	52.381	0.50 36.57
	ATOM	4881	CG	IMD		1	26.249	42.039	80.754	1.00 28.44
50	ATOM	4882		IMD		1	26.057	42.254	79.400	1.00 28.35
30	ATOM	4883		IMD		1	27.562	41.726	80.902	1.00 17.99
	ATOM	4884		IMD		1	27.201	42.063	78.760	1.00 29.77
	ATOM	4885		IMD		1	28.130	41.745	79.647	1.00 35.02
	ATOM	4886	CB	ACE		1	13.616	12.333	68.475	1.00 59.33
55	ATOM	4887	CG	ACE		1	12.871	13.331	69.306	1.00 42.98
23	ATOM	4888		ACE		1	12.958	14.536	69.146	1.00 39.66
	ATOM	4889		ACE		1.	12.142	12.759	70.236	1.00 47.21
	ATOM	4890	C6	INH		1	7.422	38.514	70.154	1.00 38.70
	ATOM	4891	C5	INH		1	7.571	39.820	69.689	1.00 37.05
60	ATOM	4892	C4	INH		1	7.901	40.062	68.354	1.00 31.41
60	ATOM	4893	C3	INH		1	8.091	38.967	67.505	1.00 35.48
	ATOM	4894	C2	INH		1	7.944	37.650	67.949	1.00 31.90
	ATOM	4895	C1	INH		1	7.611	37.434	69.286	1.00 36.93
	ATOM	4896	С7	INH		1	8.071	41.463	67.833	1.00 32.28
	MOTA	4897	01	INH	V	1	8.288	41.443	66.485	1.00.37.06

PCT/SE00/00384

	ATOM	4898	C8	INH	v	1	9.584	41.740	66.129	1.00 32.34
	ATOM	4899	C9	INH		1	9.825	42.911	65.416	1.00 31.03
	ATOM	4900		INH		1	11.127	43.216	65.023	1.00 33.64
5	ATOM	4901		INH		1	12.194	42.381	65.339	1.00 31.88
5	ATOM	4902		INH		1	11.928	41.198	66.028	1.00 31.07
	ATOM ATOM	4903 4904	C14	INH		1 1	10.630 13.587	40.858 42.710	66.412	1.00 28.70
	MOTA	4905	C15	INH		1	14.260	42.710	64.882 64.121	1.00 32.51
	ATOM	4906	C16	INH		1	15.683	41.849	63.754	1.00 34.69 1.00 28.88
10	ATOM	4907	S1	INH		ī	16.605	40.755	64.790	1.00 20.08
	ATOM	4908	N1	INH		1	13.497	40.805	63.099	1.00 30.69
	ATOM	4909	0	НОН		1	44.463	49.888	77.523	1.00 46.91
	ATOM	4910	0	HOH	W	2	13.469	27.803	78.018	1.00 20.07
	MOTA	4911	0	нон		3	4.225	69.721	58.393	1.00 27.76
15	ATOM	4912	0	HOH		4	15.603	28.826	61.823	1.00 22.81
	ATOM	4913	0	НОН		5	22.862	26.624	42.874	1.00 53.05
	ATOM	4914	0	нон		6	8.423	46.452	57.584	1.00 32.22
==	ATOM	4915	0	НОН		7	17.904	46.550	68.524	1.00 31.91
	ATOM	4916	0	HOH		8	22.979	45.895	83.716	1.00 39.37
20	ATOM	4917 4918	0	нон Нон		9 10	17.707	39.158	55.643	1.00 25.27
= #L	ATOM ATOM	4918	0	НОН		11	12.439 17.367	36.303 62.730	59.209	1.00 31.46
in In	ATOM	4920	Ö	нон		12	42.823	52.642	50.320 90.552	1.00 37.74
} ==: } ==:	ATOM	4921	Ö	нон		13	34.337	45.508	97.419	1.00 53.80 1.00 57.99
25	ATOM	4922	ō	НОН		14	6.726	27.119	48.459	1.00 57.33
# 8 =#k	ATOM	4923	0	нон		15	-0.093	30.159	71.746	1.00 29.96
	ATOM	4924	0	нон		16	-19.673	44.016	58.682	1.00 58.64
	ATOM	4925	0	HOH	W	17	16.563	26.790	80.837	1.00 38.62
*E	ATOM	4926	0	нон		18	10.281	35.677	88.518	1.00 26.01
30	ATOM	4927	0	нон		19	20.973	35.691	44.774	1.00 49.50
.	ATOM	4928	0	нон		20	0.996	19.571	53.713	1.00 67.39
= ta_ = = 1	ATOM	4929	0	HOH		21	20.424	37.014	85.845	1.00 39.54
*n,	ATOM	4930	0	HOH		22	-2.498	35.905	53.781	1.00 51.70
- 35	ATOM ATOM	4931 4932	0	HOH HOH		23 24	39.807 16.431	49.718	92.595 93.127	1.00 37.39
33	ATOM	4933	0	нон		25	6.935	58.267 45.104	66.012	1.00 47.45 1.00 18.12
	MOTA	4934	0.	нон		26	40.479	54.713	100.253	1.00 18.12
	ATOM	4935	ō	нон	_	27	22.369	40.324	67.919	1.00 46.36
	ATOM	4936	0	нон		28	37.289	49.457	68.016	1.00 61.37
40	ATOM	4937	0	HOH		29	2.611	35.015	55.709	1.00 24.45
	ATOM	4938	0	HOH		30	41.088	62.590	98.644	1.00 65.38
	MOTA	4939	0	HOH		31	17.369	55.024	87.465	1.00 24.22
	ATOM	4940	0	НОН		32	25.433	20.198	55.692	1.00 44.61
45	ATOM	4941	0	НОН		33	3.890	42.770	66.651	1.00 22.34
43	ATOM ATOM	4942 4943	0	HOH HOH		34 35	3.934	63.391	62.592	1.00 60.69
	ATOM	4944	0	нон		36	22.280 22.631	41.610 46.401	86.289 90.078	1.00 74.20 1.00 47.44
	ATOM	4945	o	нон		37	33.442	20.227	64.569	1.00 47.44
	ATOM	4946	Ö	нон		38	39.834	28.974	75.602	1.00 33.41
50	ATOM	4947	0	НОН		39	35.232	47.140	54.186	1.00 37.08
	ATOM	4948	0	НОН		40	36.003	57.784	57.893	1.00 43.05
	ATOM	4949	0	HOH	W	41	37.216	27.438	74.564	1.00 50.79
	ATOM	4950	0	HOH		42	17.770	67.012	77.183	1.00 45.78
5.5	ATOM	4951	0	НОН		43	5.341	31.286	78.127	1.00 25.34
55	ATOM	4952	0	НОН		44	33.535	32.503	52.063	1.00 56.13
	ATOM	4953	0	НОН		45	25.477	33.146	44.610	1.00 65.43
	ATOM	4954	0	HOH		46	16.235	37.438	52.628	1.00 32.10
	ATOM ATOM	4955 4956	0	HOH HOH		47 48	28.791	14.101	63.316	1.00 46.67
60	ATOM	4956	0	НОН		49	10.230 30.821	24.992	86.967	1.00 38.63
00	ATOM	4957	0	НОН		50	12.621	38.856 37.226	79.630 62.944	1.00 40.44 1.00 26.70
	ATOM	4959	Ö	НОН		51	27.987	30.609	66.612	1.00 28.70
	ATOM	4960	Ö	нон		52	34.459	28.696	64.242	1.00 51.01
	ATOM	4961	Ō	НОН		53	34.969	62.270	91.179	1.00 68.20
				·		•				

	ATOM	4962	0	HOH W	54		33.631	30.717	62.396	1.00 41.64
	ATOM	4963	0	HOH W	55		43.987	48.530	91.269	1.00 50.99
	MOTA	4964	0	HOH W	56		23.412	28.584	85.186	1.00 69.23
_	ATOM	4965	0	HOH W	57		39.834	28.057	72.257	1.00 81.00
5	MOTA	4966	0	HOH W	58		2.892	25.685	69.907	1.00 38.96
	MOTA	4967	0	HOH W	59		10.284	47.120	72.671	1.00 40.28
	ATOM	4968	0	HOH W	60	•	32.645	39.037	76.746	1.00 21.71
	ATOM	4969	0	HOH W	61		43.535	48.019	95.228	1.00 37.69
10	ATOM	4970	0	HOH W	62		11.991	51.053	43.479	1.00 41.05
10	ATOM	4971	0	HOH W	63		18.329	56.527	89.388	1.00 28.51
	ATOM	4972	Ó	HOH W	64		16.555	9.309 44.759	68.875	1.00 89.05
	ATOM	4973 4974	0	HOH W	65 66		23.741 19.093	53.805	73.150 41.239	1.00 38.43
	ATOM ATOM	4974	0	HOH W	67		31.750	60.369	56.933	1.00 55.25 1.00 92.26
15	ATOM	4976	0	HOH W	68		24.836	68.428	80.926	1.00 59.25
13	ATOM	4977	Ö	HOH W	69		-21.014	19.446	48.342	1.00 59.25
	MOTA	4978	Ö	HOH W	70		11.318	68.028	86.566	1.00 32.24
	ATOM	4979	Ö	HOH W	71		5.312	60.076	63.511	1.00 77.81
5 .	ATOM	4980	ō	HOH W	72		7.689	20.219	84.680	1.00 30.03
2 0	ATOM	4981	ō	HOH W	73		34.988	44.708	64.746	1.00 40.73
47	ATOM	4982	ō	HOH W	74		10.614	49.644	41.337	1.00 38.90
1-1	ATOM	4983	o	HOH W	75		19.349	42.973	64.739	1.00 54.53
	ATOM	4984	0	HOH W	76		35.916	30.862	80.753	1.00 55.38
	MOTA	4985	0	HOH W	77		9.666	26.046	46.603	1.00 40.09
25	ATOM	4986	0	HOH W	78		-10.171	46.751	60.237	1.00 29.78
H	MOTA	4987	0	HOH W	79		46.751	58.883	86.875	1.00 35.92
] -4	ATOM	4988	0	HOH W	80		19.320	32.528	51.000	1.00 33.36
	ATOM	4989	0	HOH W	81		28.815	39.568	66.176	1.00 59.19
l=6.	ATOM	4990	0	HOH W	82		38.207	35.773	73.585	1.00 17.81
7. 30	ATOM	4991	0	HOH W	83		23.802	33.925	75.175	1.00 25.19
n.i	MOTA	4992	0	HOH W	84		42.241	51.290	99.896	1.00 15.88
	ATOM	4993	0	HOH W	85		3.751	36.678	58.842	1.00 24.97
	ATOM	4994	0	HOH W	86		-7.009	40.341	62.580	1.00 25.39
	MOTA	4995	0	HOH W	87		11.735	58.910	68.155	1.00 39.70
 35	ATOM	4996	0	HOH W	88		13.986	52.835	42.224	1.00 50.91
	ATOM	4997	0	HOH W	89		1.452	46.541	69.459	1.00 35.03
	ATOM	4998	0	HOH W	90		-1.938	55.310	56.971	1.00 28.10
	ATOM	4999	0	HOH W	91		13.801	66.947	52.600	1.00 38.65
40	ATOM	5000	0	HOH W	92		21.594	47.218	79.203	1.00 30.31
40	ATOM	5001	0	HOH W	93		10.639	58.632	90.827	1.00 43.78
	ATOM ATOM	5002 5003	0	HOH W	94 95		33.335 -1.984	53.550 28.738	68.086 60.212	1.00 37.04 1.00 31.56
	ATOM	5003	0	HOH W	96		-4.958	51.055	59.250	1.00 31.30
	ATOM	5005	ŏ	HOH W	97		17.610	39.701	51.503	1.00 34.00
45	ATOM	5006	ō	HOH W	98		10.686	54.166	67.565	1.00 20.27
	ATOM	5007	ŏ	HOH W	99		20.567	43.859	78.621	1.00 41.57
	ATOM	5008	O	HOH W			7.013	22.332	69.109	1.00 28.72
	ATOM	5009	0	HOH W			10.097	53.225	78.477	1.00 35.68
	MOTA	5010	0	HOH W			10.849	31.404	53.014	1.00 32.22
50	MOTA	5011	0	HOH W			42.381	59.035	94.728	1.00 36.00
	ATOM	5012	0	HOH W	104		17.234	41.111	54.082	1.00 33.65
	ATOM	5013	0	HOH W	105		26.902	62.025	81.989	1.00 34.70
	ATOM	5014	0	HOH W	106		-14.313	49.559	56.204	1.00 54.36
22	ATOM	5015	0	HOH W	107		41.646	57.501	101.015	1.00 68.12
55	ATOM	5016	0	HOH W	108		26.759	43.000	47.219	1.00 32.69
	MOTA	5017	0	HOH W			16.624	48.119	46.545	1.00 38.64
	MOTA	5018	0	HOH W			26.159	32.793	75.230	1.00 24.77
	MOTA	5019	0	HOH W			2.101	33.468	67.006	1.00 31.50
60	ATOM	5020	0	HOH W			38.114	36.374	87.451	1.00 44.06
60	MOTA	5021	0	HOH W			13.211	29.810	61.356	1.00 33.81
	ATOM	5022	0	HOH W			-3.064	37.863	40.673	1.00 37.92
	ATOM	5023	0	HOH W			15.007	47.948	69.488	1.00 28.23
	ATOM	5024	0	HOH W			27.101	66.633	80.518	1.00 41.24
	MOTA	5025	0	HOH W	117		11.870	38.304	43.174	1.00 40.85

	ATOM	5026 O	HOH W 118	-13.844	25.597	58.258	1.00 53.75
	ATOM	5027 O	HOH W 119	2.929	41.135	59.858	1.00 36.49
	ATOM	5028 O	HOH W 120	24.890	45.490	82.167	1.00 41.65
_	MOTA	5029 O	HOH W 121	36.062	59.335	75.090	1.00 38.82
5	ATOM	5030 O	HOH W 122	-10.715	32.037	61.699	1.00 78.82
	ATOM	5031 0	HOH W 123	-2.646	25.492	60.812	1.00 48.40
	ATOM	5032 0	HOH W 124	-8.948	46.831	63.556	1.00 48.06
	MOTA	5033 0	HOH W 125	-17.843	39.367	36.020	1.00 35.80
10	ATOM	5034 0	HOH W 126	2.218	57.766	62.253	1.00 44.61
10	ATOM	5035 0	HOH W 127	10.736	62.766	64.366	1.00 55.84
	A'TOM A'TOM	5036 O 5037 O	HOH W 128 HOH W 129	0.884	35.562	63.963	1.00 44.14
	ATOM ATOM	5037 O 5038 O	HOH W 130	19.165 1.546	59.557 27.875	60.644	1.00 47.82
	ATOM	5039 0	HOH W 131	5.497	26.285	68.443 76.668	1.00 39.69 1.00 44.47
15	ATOM	5040 0	HOH W 132	14.505	36.538	88.996	1.00 44.47
10	ATOM	5041 0	HOH W 133	8.534	28.713	88.519	1.00 46.55
	MOTA	5042 0	HOH W 134	6.125	45.267	77.959	1.00 45.57
	ATOM	5043 O	HOH W 135	26.016	18.543	78.878	1.00 51.65
- A - A	ATOM	5044 O	HOH W 136	33.880	23.025	70.739	1.00 46.95
20	· ATOM	5045 , O	HOH W 137	19.230	26.073	49.998	1.00 51.97
43 -	MOTA	5046 O	HOH W 138	41.563	41.085	77.326	1.00 43.14
·	ATOM	5047 O	HOH W 139	39.187	63.067	75.380	1.00 56.52
	ATOM	5048 0	HOH W 140	26.878	54.491	67.203	1.00 42.14
	ATOM	5049 O	HOH W 141	22.988	62.189	74.174	1.00 48.31
25	MOTA	5050 O	HOH W 142	25.190	62.803	71.067	1.00 67.16
¥ ii Is	ATOM	5051 0	HOH W 143	18.598	45.126	81.949	1.00 53.80
±£.	ATOM	5052 0	HOH W 144	19.782	53.129	90.556	1.00 48.73
£	ATOM	5053 0	HOH W 145	21.735	48.367	86.454	1.00 40.39
30	ATOM	5054 O 5055 O	HOH W 146 HOH W 147	25.707	57.012	93.476	1.00 53.61
7.1 30 7.1	ATOM ATOM	5056 O	HOH W 148	22.832 25.725	62.085 67.203	93.149	1.00 46.02
T.	ATOM	5057 0	HOH W 149	10.773	53.653	89.990 85.697	1.00 75.23
	ATOM	5057 O	HOH W 150	4.221	58.449	86.608	1.00 50.65 1.00 49.23
	ATOM	5059 0	HOH W 151	7.790	72.096	84.410	1.00 49.23
35	ATOM	5060 O	HOH W 152	2.387	58.282	67.835	1.00 31.10
	ATOM	5061 0	HOH W 153	0.921	49.551	69.095	1.00 59.60
	ATOM	5062 O	HOH W 154	8.722	45.171	71.561	1.00 46.56
	ATOM	5063 O	HOH W 155	6.422	47.947	81.081	1.00 57.56
4.0	ATOM	5064 O	HOH W 156	15.936	56.908	55.129	1.00 43.33
40	ATOM	5065 O	HOH W 157	3.032	19.635	62.453	1.00 80.38
	ATOM	5066 O	HOH W 158	-4.228	58.058	47.057	1.00 39.66
	ATOM	5067 0	HOH W 159	1.197	41.002	78.942	1.00 57.22
	ATOM	5068 0	HOH W 160	1.259	43.651	68.100	1.00 37.94
45	ATOM	5069 O 5070 O	HOH W 161	25.799	64.833	56.690	1.00 38.96
43	ATOM ATOM	5070 O 5071 O	HOH W 162 HOH W 163	-11.853 40.159	45.054	45.070	1.00 38.38
	ATOM	5072 0	HOH W 164	21.477	31.033 20.377	78.548 79.349	1.00 75.36
	ATOM	5073 0	HOH W 165	26.347	44.558	72.803	1.00 35.96 1.00 42.21
	ATOM	5074 0	HOH W 166	16.446	61.207	59.687	1.00 42.21
50	ATOM	5075 O	HOH W 167	27.695	64.216	82.410	1.00 44.71
	ATOM	5076 O	HOH W 168	-2.998	57.511	34.738	1.00 45.35
	ATOM	5077 O	HOH W 169	6.608	51.527	60.826	1.00 39.48
	ATOM	5078 O	HOH W 170	31.104	28.934	81.337	1.00 43.19
	ATOM	5079 O	HOH W 171	10.135	28.233	45.533	1.00 41.24
55	MOTA	5080 O	HOH W 172	8.201	43.960	75.322	1.00 37.71
	ATOM	5081 O	HOH W 173	13.799	66.601	85.597	1.00 34.74
	ATOM	5082 0	HOH W 174	16.664	53.670	65.006	1.00 43.69
	MOTA	5083 0	HOH W 175	18.301	47.296	43.793	1.00 45.84
<i>6</i> 0	ATOM	5084 0	HOH W 176	11.717	61.868	52.648	1.00 34.93
60	ATOM	5085 0	HOH W 177	29.516	23.822	76.838	1.00 51.50
	ATOM	5086 0	HOH W 178	39.940	60.509	78.535	1.00 46.33
	MOTA	5087 0	HOH W 179	-1.803	44.974	37.278	1.00 52.56
	MOTA MOTA	5088 O 5089 O	HOH W 180 HOH W 181	7.343 17.912	47.305	65.468	1.00 47.27
	ATOM	3003 U	11011 M 101	17.912	15.338	81.793	1.00 50.08

	ATOM	5090	0	HOH W 182	-4.631	55.917	82.183	1.00 65.36
	ATOM	5091	0	HOH W 183	32.973	42.656	86.667	1.00 43.97
	ATOM	5092	Ō	HOH W 184	-1.834	36.784	71.040	1.00 45.10
	ATOM	5093	ō	HOH W 185				
5					-4.519	34.633	71.838	1.00 43.99
3	ATOM	5094	0	HOH W 186	4.518	68.554	71.661	1.00 46.99
	ATOM	5095	0	HOH W 187	2.774	37.503	61.490	1.00 45.81
	ATOM	5096	0	HOH W 188	31.770	43.526	51.410	1.00 58.02
	ATOM	5097	0	HOH W 189	5.471	43.861	38.891	1.00 49.43
	ATOM	5098	0	HOH W 190	11.934	58.219	70.811	1.00 49.96
10	ATOM	5099	0	HOH W 191	33.112	26.203	70.484	1.00 60.03
	ATOM	5100	ō	HOH W 192	30.914	43.017		
		5101	Ö	HOH W 193			70,613	1.00 73.23
	MOTA				0.400	39.300	39.714	1.00 65.37
	MOTA	5102	0	HOH W 194	48.247	56.159	86.370	1.00 60.09
	ATOM	5103	0	HOH W 195	12.359	59.992	62.698	1.00 53.57
15	ATOM	5104	0	HOH W 196	11.149	17.504	78.264	1.00 54.43
	ATOM	5105	0	HOH W 197	-4.284	31.953	60.991	1.00 47.12
	ATOM	5106	0	HOH W 198	29.888	35.624	82.772	1.00 52.16
	ATOM	5107	ō	HOH W 199	14.388	39.115	89.656	
4		5108		HOH W 200				1.00 47.93
20	ATOM		0		-8.529	51.475	47.745	1.00 61.00
20	MOTA	5109	0	HOH W 201	-15.572	53.338	52.008	1.00 72.42
	ATOM	5110	0	HOH W 202	24.319	38.590	87.128	1.00 50.03
}=&;	ATOM	5111	Ο.	HOH W 203	25.366	70.670	82.839	1.00 49.01
	ATOM	5112	0	HOH W 204	18.531	27.749	86.236	1.00 48.64
### [EL-	ATOM	5113	0	HOH W 205	21.694	20.030	81.796	1.00 49.04
25	ATOM	5114	ō	HOH W 206	23.953	47.993	67.580	
UT.	ATOM	5115	Ö	HOH W 207				1.00 40.39
*** ** *					22.012	40.217	90.228	1.00 42.29
i si	ATOM	5116	0	HOH W 208	16.197	45.094	43.427	1.00 48.00
æ	ATOM	5117	0	HOH W 209	21.019	68.985	84.382	1.00 56.50
30	ATOM	5118	0	HOH W 210	-7.134	33.015	71.591	1.00 56.31
₌ 30	ATOM	5119	0	HOH W 211	40.843	44.050	89.284	1.00 43.07
	ATOM	5120	0	HOH W 212	20.374	14.856	56.642	1.00 50.07
NJ	ATOM	5121	0	HOH W 213	12.723	46.277	73.748	1.00 59.15
	ATOM	5122	ō	HOH W 214	8.956			
** ## ## ## ## ## ## ## ## ## ## ## ## #						43.704	58.706	1.00 45.56
<u>[]</u> _35	ATOM	5123	0	HOH W 215	-2.433	36.012	80.232	1.00 54.12
#133	ATOM	5124	0	HOH W 216	5.257	25.271	55.914	1.00 53.23
	MOTA	5125	0	HOH W 217	13.354	64.403	53.862	1.00 47.27
	ATOM	5126	0	HOH W 218	30.477	42.517	67.472	1.00 48.17
	ATOM	5127	0	HOH W 219	14.139	47.479	76.123	1.00 79.04
	ATOM	5128	0	HOH W 220	0.829	29.563	50.769	1.00 48.10
40	ATOM	5129	0	HOH W 221	32.979	51.667	96.624	1.00 51.30
• • •	ATOM	5130	Ö	HOH W 222		45.948		
					14.677		71.756	1.00 52.31
	ATOM	5131	0	HOH W 223	33.890	24.505	58.094	1.00 43.65
	ATOM	5132	0	HOH W 224	17.853	9.519	65.560	1.00 55.94
4.5	ATOM	5133	0	HOH W 225	37.794	31.473	62.305	1.00 50.38
45	ATOM	5134	0	HOH W 226	29.206	50.335	62.673	1.00 45.43
	ATOM	5135	0.	HOH W 227	4.932	48.808	63.354	1.00 42.45
	ATOM	5136	0	HOH W 228	18.933	59.070	55.899	1.00 50.29
	ATOM	5137	Ō	HOH W 229	13.849	18.833	83.641	1.00 55.89
	ATOM	5138	ō	HOH W 230	25.919	46.022	68.076	
50		5139	ŏ					1.00 35.63
50	ATOM			HOH W 231	27.565	65.098	75.153	1.00 73.11
	ATOM	5140	0	HOH W 232	27.128	39.012	68.497	1.00 40.77
	ATOM	5141	0	HOH W 233	40.706	52.468	74.641	1.00 51.60
	MOTA	5142	0	HOH W 234	21.689	65.312	58.080	1.00 66.72
	ATOM	5143	0	HOH W 235	9.121	17.615	59.271	1.00 51.98
55	ATOM	5144	0	HOH W 236	17.931	36.565	88.091	1.00 54.77
	ATOM	5145	O	HOH W 237	33.843	36.707	52.576	
	ATOM	5146						1.00 61.60
			0	HOH W 238	-3.693	50.074	63.986	1.00 43.64
	MOTA	5147	0	HOH W 239	44.272	44.279	81.461	1.00 69.21
C 0	ATOM	5148	0	HOH W 240	2.092	28.868	52.894	1.00 54.01
60	MOTA	5149	0	HOH W 241	8.309	33.518	71.442	1.00 68.05
	ATOM	5150	0	HOH W 242	1.051	31.947	69.204	1.00 52.88
	ATOM	5151	0	HOH W 243	44.255	51.162	96.650	1.00 20.00
	ATOM	5152	0	HOH W 244	16.173	45.408	46.636	1.00 20.00
			_	** ** 4 3	TO 110	10.100	20.000	1. VV 20.00
	ATOM	5153	0	HOH W 245	41.130	50.734	97.991	1.00 20.00

ATOM	5154	0	HOH W	246	36.912	36.263	75.911	1.00	20.00
ATOM	5155	0	HOH W	247	-17.107	27.146	54.728	1.00	20.00
MOTA	5156	0	HOH W	248	24.078	46.307	79.123	1.00	20.00
ATOM	5157	0	HOH W	249	-12.250	47.964	61.593	1.00	20.00
MOTA	5158	0	HOH W	250	35.804	51.343	51.682	1.00	20.00
MOTA	5159	0	HOH W	251	25.537	59.940	69.750	1.00	20.00
ATOM	5160	0	HOH W	252	0.539	55.427	62.088	1.00	20.00
END									

5