

planetmath.org

Math for the people, by the people.

semigroup of transformations

Canonical name SemigroupOfTransformations

Date of creation 2013-03-22 13:07:36 Last modified on 2013-03-22 13:07:36

Owner mclase (549) Last modified by mclase (549)

Numerical id 6

Author mclase (549) Entry type Definition Classification msc 20M20

Synonym transformation semigroup
Defines full transformation semigroup

Let X be a set. A transformation of X is a function from X to X.

If α and β are transformations on X, then their product $\alpha\beta$ is defined (writing functions on the right) by $(x)(\alpha\beta) = ((x)\alpha)\beta$.

With this definition, the set of all transformations on X becomes a semi-group, the full semigroup of transformations on X, denoted \mathcal{T}_X .

More generally, a *semigroup of transformations* is any subsemigroup of a full set of transformations.

When X is finite, say $X = \{x_1, x_2, \dots, x_n\}$, then the transformation α which maps x_i to y_i (with $y_i \in X$, of course) is often written:

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix}$$

With this notation it is quite easy to products. For example, if $X = \{1, 2, 3, 4\}$, then

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 3 \end{pmatrix}$$

When X is infinite, say $X = \{1, 2, 3, ...\}$, then this notation is still useful for illustration in cases where the transformation pattern is apparent. For example, if $\alpha \in \mathcal{T}_X$ is given by $\alpha \colon n \mapsto n+1$, we can write

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots \\ 2 & 3 & 4 & 5 & \dots \end{pmatrix}$$