4

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 5月 6日

出 願 番 号 Application Number:

特願2003-128049

[ST. 10/C]:

[JP2003-128049]

出 願 人
Applicant(s):

セイコーエプソン株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 9月 9日

【書類名】 特許願

【提出日】 平成15年 5月 6日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 B41J 2/175

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 橋井 一博

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 品田 聡

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 坂井 康人

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 原田 和政

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 青木 和昭

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100087974

【弁理士】

【氏名又は名称】 木村 勝彦

【先の出願に基づく優先権主張】

【出願番号】

特願2002-341826

【出願日】 平成14年11月26日

【先の出願に基づく優先権主張】

【出願番号】

特願2003-76890

【出願日】

平成15年 3月20日

【先の出願に基づく優先権主張】

【出願番号】

特願2003- 76891

【出願日】

平成15年 3月20日

【手数料の表示】

【予納台帳番号】 199739

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0215606

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 インクカートリッジ、及び記録装置

【特許請求の範囲】

【請求項1】 インク容器を構成する底壁面と、該底壁面と交差する第1側壁と、前記底壁面と交差しかつ前記第1側壁と対向する第2側壁と、前記底壁面の前記第1側壁側に偏した位置に形成されたインク供給口と、

前記第2側壁の前記底壁面寄りに形成され、記録装置に装着された状態で側部 の位置を規制する凸部と、

前記第2側壁に形成され、上面が記録装置の部材により押圧される被押圧部と

前記第1側壁に一端が固定され、他端が自由端として形成されると共に、その途中に前記記録装置の一部と係合する係合部を備えた弾性変形可能な係止部材と

前記インク容器に配設された記憶手段に接続され、かつ前記凸部に形成された 電極群とからなるインクカートリッジ。

【請求項2】 前記被押圧部が、前記記録装置に形成された位置規制用の弾性片により前記底壁側に押圧される請求項1に記載のインクカートリッジ。

【請求項3】 前記被押圧部が、前記記録装置のカートリッジ保持用の装填 レバーにより、前記底壁側に押圧される請求項1に記載のインクカートリッジ。

【請求項4】 インク容器を構成する底壁面の、一方の側に偏した位置に形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前記凸部に形成された電極群とからなるインクカートリッジ。

【請求項5】 前記レバーの下方に前記容器の装填方向に伸びるガイド用凸部が形成されている請求項4に記載のインクカートリッジ。

【請求項6】 前記凸部が形成されている壁面に隣接する他の壁面に、回動

支援用凹部が形成されている請求項4に記載のインクカートリッジ。

【請求項7】 前記インク供給口に付勢手段により常時閉弁状態を維持する 弁体が収容されている請求項4に記載のインクカートリッジ。

【請求項8】 前記記録装置に装着された場合に、前記レバーの上部を外方に強制的に変位させる突起が前記レバーに形成されている請求項4に記載のインクカートリッジ。

【請求項9】 前記突起は、前記レバーの両側面に設けられている請求項8 に記載のインクカートリッジ。

【請求項10】 前記凸部のインクカートリッジの列設方向における幅が、前記インク容器の幅よりも狭く形成されている請求項4に記載のインクカートリッジ。

【請求項11】 前記記録装置に装着された状態における凸部の上面となる領域が平坦面として形成されている請求項4に記載のインクカートリッジ。

【請求項12】 前記電極群は、複数の電極列から構成されており、前記インク供給口の軸方向と平行な線に対して垂直に形成されている請求項4に記載のインクカートリッジ。

【請求項13】 前記凸部の上面が、インクカートリッジの挿入方向に対して前記レバーの係合部よりも奥側に位置するように配置されている請求項4に記載のインクカートリッジ。

【請求項14】 前記レバーが、前記インク容器を前記凸部側に変位させる 弾性力を発現するように構成されている請求項4に記載のインクカートリッジ。

【請求項15】 前記インク供給口に前記記録装置の流路形成部材と係合する弾性シール材が収容されている請求項4に記載のインクカートリッジ。

【請求項16】 前記凸部の上面と前記インク供給口の中心との距離がし、取り外し時の回動角が θ 、前記流路形成部材の進入長さがH、前記弾性シール材の位置ずれ許容範囲を Δ Lとしたとき、

 $L \ge H/\tan\theta + \Delta L$

なる関係を満足する請求項15に記載のインクカートリッジ。

【請求項17】 前記凸部が形成されている壁面に挟持用の凹部または凸部

が形成されている請求項4に記載のインクカートリッジ。

【請求項18】 前記インク供給口が前記凸部と対向する面側に偏して形成され、前記凸部の前記上面を中心に回動して記録装置から外される請求項4に記載のインクカートリッジ。

【請求項19】 インク容器を構成する底壁面の、一方の側に偏した位置に 形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の 壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規 制される凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面か ら間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備え た弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前 記凸部に形成された電極群とからなるインクカートリッジが装着される記録装置 であり、

記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記凸部の両側面に当接する幅方向規制用凸部と、前記凸部の上面に当接する位置規制用の弾性片とを備えたインクジェット記録装置。

【請求項20】 前記弾性片は、前記インクカートリッジの装填時に前記凸部の下部に押されて弾性変形可能で、前記インクカートリッジの装着が完了した時点では元の位置に復帰して前記凸部の上面に当接する請求項19のインクジェット記録装置。

【請求項21】 前記幅方向規制用凸部の前記インクカートリッジに形成された回動支援用凹部に対応する位置に凸部が形成されている請求項19に記載のインクジェット記録装置。

【請求項22】 前記電極群に接触するコンタクト群を有する請求項19に 記載のインクジェット記録装置。

【請求項23】 前記インク容器が容器本体と蓋体とにより構成され、また前記レバーが、その一端を前記容器本体に固定され、その側部に突起を有し、前記突起と係合して前記レバーの上部を外方に回動させるガイド溝を備えた請求項19に記載のインクジェット記録装置。

【請求項24】 前記インクカートリッジの取り外し時の回動中心である前 記凸部の上面と前記インク供給口の中心との距離をL、取り外し時の回動角を θ 、前記流路形成部材の進入長さをH、前記インク供給口に装着された前記弾性シール材の位置ずれ許容範囲を Δ Lとしたとき、

 $L \ge H/\tan \theta + \Delta L$

なる関係を満足する請求項19に記載のインクジェット記録装置。

【請求項25】 インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、両側が記録装置に規制される凸部と、前記インク容器に配設された記憶手段に接続し、前記凸部に形成された電極群と、からなるインクカートリッジ。

【請求項26】 前記レバー受圧部が、前記電極群の形成されている前記凸部と一体に構成されている請求項25に記載のインクカートリッジ。

【請求項27】 前記記録装置に装着された場合に、前記係止部材の上部を外方に強制的に変位させる突起が前記係止部材の側部に形成されている請求項2 5に記載のインクカートリッジ。

【請求項28】 インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、前記インク容器に配設された記憶手段に接続する電極群とからなるインクカートリッジが装着される記録装置であり、

記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記係止部材が正常に係合した状態では、前記レバー受圧部の側を回動支点として前記レバー受圧部を所定位置に押圧して所定位置に係止される前記装填レバーとを備えたインクジェ

ット記録装置。

【請求項29】 前記インクカートリッジが正常に装填されていない状態では、装填レバーが規定の位置への移動が阻止される請求項28に記載のインクジェット記録装置。

【請求項30】 インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、両側が記録装置に規制される凸部と、前記インク容器に配設された記憶手段に接続し、前記凸部に形成された電極群と、前記凸部と前記レバー受圧部との間に形成された誤挿入防止用の識別片からなるインクカートリッジ。

【請求項31】 前記識別片が、ブロックとして構成され、固着手段により前記インク容器に固定されている請求項30に記載のインクカートリッジ。

【請求項32】 前記識別片と前記凸部とが、同一部材となるようにブロックとして構成され、固着手段により前記インク容器に固定されている請求項30に記載のインクカートリッジ。

【請求項33】 前記ブロックの裏面と、前記インク容器の壁面とに、位置 決めする手段が形成されている請求項31に記載のインクカートリッジ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ノズル開口からインク滴を吐出して画像などのデータを印刷する記録へッドを搭載したキャリッジに着脱可能に装着されるインクを供給するインクカートリッジ及びインクジェット記録装置に関する。

[0002]

【従来の技術】

キャリッジに着脱可能に装着されるインクカートリッジは、インク供給針など 記録ヘッドに連通する流路形成部材と確実な液密状態を維持する一方で、交換の

6/

ために容易に着脱できることが求められる。さらにインク情報を記憶した記憶手段が付帯されたカートリッジにあっては、記録装置とのコンタクトを図るため、インクカートリッジには接点が設けられていて、記録装置のコンタクト手段と確実に接触できるようにカートリッジホルダにインクカートリッジを収容する必要がある。

[0003]

このため、たとえば特許文献1に見られるようにインク容器を構成する1つの 壁面にインク供給口を形成するとともに、この壁面を挟むように対向する一方の 壁面には記憶手段、及び接点群を設け、この接点群を挟むように2つの第1の突 起が、また他方の壁面には拡開方向に付勢されたレバーが設けられている。

またインク容器と協働する記録装置のインク容器受けには第1の突起と上面、 及び側部で係合する2つの第2の突起と、レバーと係合する凹部が設けられている。

このような構成により、第1の突起を第2の突起に最初に係合させるように容器を斜めにインク容器受けに装填し、ついで他方の側を押し込む。この過程でインク供給口がインク供給用の流路形成部材に当接し、またレバーが凹部に係合してインクが供給可能な状態でインク容器がインク容器受けに固定される。

インクカートリッジがインク容器受けに固定されている状態では、インク容器 受けに設けられたバネによりインク容器を常時上方に押圧するため、インク容器 の2つの第1の突起とインク容器受けの2つの第2の突起とがそれぞれ上下、左 右の2つの方向で係合して、インク容器は上下、左右の位置を基準位置に規制さ れ、インク容器の接点群がインク容器受けのコンタクト群を確実に接触状態を維 持する。

【特許文献1】

国際公開第01/54910号パンフレット

[0004]

【発明が解決しようとする課題】

しかしながら、インク容器の電極群の両側に位置決め用の2つの凸部が必要となるため、インク容器、及びインク容器受けの構造が複雑化し、また幅が広くな

るという問題がある。

また、レバーが、自身の弾性力により拡開しているため、強い弾性力を発現させることができず、つまり容器側に変形されてコンパクトに箱などに収容した場合には、レバーの係合力が低下するという問題を抱えている。

さらには、インク容器の装着時にインク容器を回動させて移動させる必要上、インク供給口と係合する流路形成部材が長い場合には流路形成部材に大きな曲げ力が作用して流路形成部材の破損や、またインク供給口に装填されているパッキンを損傷するという問題がある。

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、電極群の位置規制のための構造の簡素化と、小型化が可能なインクカート リッジを提供することである。

また、少なくとも装着時にはインク供給口を流路形成部材に平行に移動させて 装着できるインクカートリッジを提供することである。

また、本発明の他の目的は、上記インクカートリッジに適したインクジェット 記録装置を提供することである。

[0005]

【課題を解決するための手段】

このような問題を解消するために請求項1の発明は、インク容器を構成する底壁面と、該底壁面と交差する第1側壁と、前記底壁面と交差しかつ前記第1側壁と対向する第2側壁と、前記底壁面の前記第1側壁側に偏した位置に形成されたインク供給口と、前記第2側壁の前記底壁面寄りに形成され、記録装置に装着された状態で側部の位置を規制する凸部と、前記第2側壁に形成され、上面が記録装置の部材により押圧される被押圧部と、前記第1側壁に一端が固定され、他端が自由端として形成されると共に、その途中に前記記録装置の一部と係合する係合部を備えた弾性変形可能な係止部材と、前記インク容器に配設された記憶手段に接続され、かつ前記凸部に形成された電極群とから構成されている。

これによれば、電極群が配置されている第2側壁の位置を、凸部の側壁で側部 方向、つまり横方向の位置決めを、また凸部の上方で上下方向を規制して、電極 を所定の位置に正確に位置決めすることができる。 請求項4の発明は、インク容器を構成する底壁面の、一方の側に偏した位置に 形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の 壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規 制される凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面か ら間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備え た弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前 記凸部に形成された電極群とから構成されている。

これによれば、凸部の両側、及び上面を規制するため、凸部の幅を小さくしても電極群の位置を所定位置に保持させることができる。

請求項5の発明は、前記レバーの下方に前記容器の装填方向に伸びるガイド用 凸部が形成されている。

これによれば、インクカートリッジの装填時に、インク供給口側を確実に流路 形成部材にガイドでき、また装着が完了した時点ではインクカートリッジの前後 の幅方向の位置を所定位置に確実に保持することができる。

請求項6の発明は、前記凸部が形成されている壁面に隣接する他の壁面に、 回動支援用凹部が形成されている。

これによれば、取り外し時の回動を所定の軌跡にガイドすることができ、横ぶれに起因する流路形成部材への外力を可及的に小さくすることができる。

請求項7の発明は、前記インク供給口に付勢手段により常時閉弁状態を維持する弁体が収容されている。

これによれば、記録装置側に付勢手段を必要とすることなく、インク供給口の 付勢手段によりカートリッジをレバーを介して弾圧的に固定して振動などによる がたつきを防止することができる。

請求項10の発明は、前記凸部のインクカートリッジの列設方向における幅が 、前記インク容器の幅よりも狭く形成されている。

これによれば、インクカートリッジをキャリッジに密着させて収容、つまり隣 り合うカートリッジ間の間隔を可及的に小さくできキャリッジをコンパクトにし つつ、インクカートリッジを確実に位置決めすることができる。

請求項13の発明は、前記凸部の上面が、インクカートリッジの挿入方向に対

して前記レバーの係合部よりも奥側に位置するように配置されている。

これによれば、インクカートリッジの前の下部と奥の上部とで対角に保持して、操作性と装着性とを両立させることができる。

請求項14の発明は、前記レバーが、前記インク容器を前記凸部側に変位させる弾性力を発現するように構成されている。

これによれば、電極群を記録装置に確実にコンタクトさせることができる。

請求項15の発明は、前記インク供給口に前記記録装置の流路形成部材と係合する弾性シール材が収容されている。

これによれば、レバー等による付勢力を弾性シール材で緩和して記録装置の流路形成部材に局所的な力が作用するのを防止して、ダメージを低減することができる。

これによれば、流路形成部材に無理な外力を作用ることなく、回動させて取り 外すことが可能となる。

請求項19の発明は、インク容器を構成する底壁面の、一方の側に偏した位置に形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前記凸部に形成された電極群とからなるインクカートリッジが装着される記録装置であり、

記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記凸部の両側面に当接する幅方向規制用凸部と、前記凸部の上面に当接する位置規制用の弾性片とを備えている。

これによれば、凸部の両側を幅方向規制用凸部により、また上面を弾性片により規制するため、電極群の位置を所定位置に保持できる。

請求項20の発明は、前記弾性片は、前記インクカートリッジの装填時に前記 凸部の下部に押されて弾性変形可能で、前記インクカートリッジの装着が完了し た時点では元の位置に復帰して前記凸部の上面に当接する。

これによれば、インクカートリッジを記録装置の流路形成部材と平行に押し込むことにより装着することもでき、流路形成部材及びインク供給口に無理な外力を作用させることがない。また、弾性片はカートリッジの装着動作に支障を与えることなく、カートリッジの移動に対応して後退し、また装着が完了した時点では、電極群とのコンタクトを確実に維持できる位置に保持する。

請求項21の発明は、前記インクカートリッジに形成された回動支援用凹部と 協働して、前記インクカートリッジの取り外し時に回動を支援する凸部が形成さ れている。

これによれば、取り外し時に凸部により回動を所定の軌跡にガイドすることができ、流路形成部材への外力を可及的に小さくすることができる。

これによれば、流路形成部材に無理な外力を作用させることなく、回動させて 取り外すことが可能となる。

請求項25の発明は、インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、両側が記録装置に規制される凸部と、前記インク容器に配設された記憶手段に接続し、前記凸部に形成された電極群と、を有する。

これによれば、電極群がその位置の幅方向を凸部の両側面により、また直交する方向をレバー受圧部より規制されるため、記録装置と確実なコンタクトを形成できる。また、記録装置の流路形成部材と平行に押し込むことにより装着することができ、流路形成部材及びインク供給口に無理な外力を作用させることがない。また記録装置と係合する係止部材が1つであるため、装着時に1つのクリックを確認して装填レバーを閉めることにより確実に装着することができる。

請求項27の発明は、前記記録装置に装着された場合に、前記係止部材の上部を外方に強制的に変位させる突起が前記係止部材の側部に形成されている。

これによれば、係止部材の弾性を強めて確実に係合でき、また装着時にクリック感を与えることもできる。

請求項28の発明は、インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、前記インク容器に配設された記憶手段に接続する電極群とからなるインクカートリッジが装着される記録装置であり、記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記係止部材が正常に係合した状態では、前記レバー受圧部の側を回動支点として前記レバー受圧部を所定位置に押圧して所定位置に係止される前記装填レバーとを備えている。

これによれば、係止部材により固定されている反対側の面を、装填レバーによ り確実に係止することができる。

また回動支点側でレバー受圧部を押圧するため、装填レバーを係止する際にも 小さな力で確実に装填方向の位置を規制することができる。

請求項29の発明は、前記インクカートリッジが正常に装填されていない状態では、装填レバーが規定の位置への移動が阻止される。

これによれば、カートリッジの抜け出しを確実に知ることができ、再装填を促すことができる。

請求項30の発明は、インク容器を構成する1つの壁面に形成されたインク供給口と、前記壁面と隣接し、かつ対向する2つの壁面の一方の壁面に形成され、記録装置の一部と弾性的に係合する係合部を備えた係止部材と、前記2つの壁面の他方の壁面に形成され、前記記録装置のカートリッジ保持用の装填レバーに押圧されるレバー受圧部と、前記レバー受圧部よりも前記インク供給口の側に形成され、両側が記録装置に規制される凸部と、前記インク容器に配設された記憶手段に接続し、前記凸部に形成された電極群と、前記凸部と前記レバー受圧部との間に形成された誤挿入防止用の識別片から構成されている。

これによれば、電極群がその位置の幅方向を凸部の両側により、また直交する 方向をレバー受圧部より規制されるため、記録装置と確実なコンタクトを形成で きる。外形が同一で、インクの種類が相違する多数のインクカートリッジを収容 する記録装置にあっても、識別片により誤挿入を確実に防止しつつ、識別片をガ イド部材として電極群をより確実に所定位置に位置決めすることができる。

また、記録装置の流路形成部材と平行に押し込むことにより装着することができ、流路形成部材及びインク供給口に無理な外力を作用させることがない。また記録装置と係合する係止部材が1つであるため、装着時に1つのクリックを確認して装填レバーを閉めることにより確実に装着することができる。

請求項31の発明は、前記識別片が、ブロックとして構成され、固着手段により前記インク容器に固定されている。

これによれば、識別片以外を共通の構造とすることができて、インク容器を製造する金型などの設備のコストを下げることができる。

請求項32の発明は、前記識別片と前記凸部とが、同一部材となるようにブロックとして構成され、固着手段により前記インク容器に固定されている。

これによれば、インク容器に比較して自動機械で取り扱いやすいブロックに電 極群を形成することができる。

[0006]

【発明の実施の態様】

そこで以下に本発明の詳細を図示した実施例に基づいて説明する。

図1(イ)、(ロ)は、それぞれ本発明のインクカートリッジの一実施例を示すも

のである。

この実施例ではインクカートリッジ1は、容器本体2aと、蓋体2bとからなる扁平な容器と、容器本体2aの1つの壁面(底面)3に記録ヘッドの流路形成部材を構成するインク供給針と係合してインクを供給するインク供給口4を設けて構成されている。なお、インク供給口4は、カートリッジの長手方向の中央部よりも一側に偏する位置(つまり係止部材であるレバー9が形成された壁面(側壁)の側)に配置されていて、図2に示したようにインク供給口4の先端側に付勢力を発揮するバネ5により常時閉弁状態を維持する弁体6が装着され、その外側、つまり先端側に流路形成部材と係合する環状の弾性シール材6aが装填されている。

[0007]

インク供給口4が形成されている壁面3に略直交し、かつ相対向する2つの壁面(側壁)7、8の、前記インク供給口4に近い側の壁面7には、弾性変形可能な係止部材であるレバー9が、下端を壁面側にまた上部を壁面から離れるように上部の方向に延びるように形成され、その下部にはガイド用凸部10が形成されている。

また他方の壁面8の下部端部には後述する弾性片を支持できる面、たとえば平面12aを有する凸部12が、容器本体2a及び蓋体2bからなるインク容器の幅よりも狭い幅となるように形成され、その上部には親指の平が入る程度の凹部2cが形成されている。壁面8と平行な凸部12の面13には、記録装置の弾性接点部材41とコンタクトを形成する電極14が複数、この実施例では水平方向に複数並ぶように上段に3つの電極が、また下段に4つの電極が、上下で千鳥状となるように形成されている。

上段の中央に位置する電極は、インク供給口4の中心軸を電極14の形成面に 垂直投影した線上に位置し、この中央に位置する電極を中心とするように他の電 極が配置されている。

このような形態の電極の配置によりインクカートリッジの装填時にインク供給口を中心としたがたつきが生じても、電極14の位置ズレを小さくできる。

[0008]

この電極14は、図3(イ)に示したように回路基板15の表面に形成されていて、この回路基板15を凸部12の面13に固定することにより形成されている。なお、回路基板15の裏面には図3(ロ)に示したようにインク容器に収容されているインクの情報を格納したEEPROM等の読み書き可能な半導体記憶素子等の記憶手段18が実装され、電極14に導電的に接続されている。

[0009]

また、凸部12が形成されている側方には、後述するキャリッジの位置決め部材と協働して取り出し時の回動を支援する回動支援用凹部17が形成されている。この回動支援用凹部17には、下方を壁面8の側とし、また上方を他方の壁面7側に後退する斜めの斜面17aが設けられている。

[0010]

レバー9は、下部を支点9aとし、かつ弾性変形可能に容器本体2aの壁面7に設けられていて、支点9aよりも上部にはキャリッジの係合部38に着脱可能な係合部である爪部19が外側に突出するように形成され、支点9aと爪部19との間に、レバー本体から側方に突出するように突起20が、好ましくは両側にそれぞれ形成されている。

[0011]

図4、及び図5は上述のインクカートリッジに適した記録装置の一実施例を、キャリッジの構造で示すものであって、キャリッジ30は、上部から複数のインクカートリッジの挿入が可能なように略箱型に形成されたカートリッジホルダとして構成されていて、その底部近傍の側面に記録装置のフレームなどを平板加工して形成されたガイド部材に係合して移動経路を規制する凹部31と、第2のガイド部材の平面を滑動するガイド面32が形成されている。

[0012]

図6に示すように、キャリッジ30のインクカートリッジ収容部には複数のインクカートリッジ、この実施例では同型に形成されたカラーインクカートリッジを3個と、厚みだけが大きくなるように変更されたブラックインクカートリッジを1個収容するように、カートリッジ間をリブ33と、幅方向規制用部材及び回動支援部材を兼ねるリブ34により区画されている。特にリブ34は、下部は同

一幅として形成されているものの、上部の中央部側にカートリッジ1の回動支援 用凹部17と協働する斜面部34aが形成されている。リブ34がこの様な構造 を有するため、リブ34の下部の側面がカートリッジの位置決め凸部12の側面 に当接して幅方向の位置を規制し、また取り外し時には斜面部34a、回動支援 用凹部17とによりカートリッジの回動軌跡を規制することができる。

[0013]

各インクカートリッジの収容領域には下面に設けられた記録ヘッド35にインクを供給するインク供給口と係合する流路形成部材36、この実施例では先端部が円錐状に形成され、他部が胴部として形成された中空針が植設されている。中空針の円錐状部の円錐面には、メニスカスを保持できる複数の微細貫通孔が穿設されていて、この微細貫通孔から中空針の胴部を経由して記録ヘッドにインクが供給される。

$[0\ 0\ 1\ 4]$

図5に示すように、インクカートリッジ1のレバー9と対向する壁面には突起20と係合する溝37と、爪部19に係合する係合部38、この実施例では凹部が形成されている。溝37には、上部がカートリッジ側に拡開する斜面37aが形成されていて、この斜面37aによりインクカートリッジの装填当初にはレバー9の開き具合に関わり無く広い口で両側の突起20を拾いこみ、また装着状態ではレバー9をキャリッジの壁面の側、つまり外側に強制的に拡開させる作用をする。特に両側に突起20が形成されている場合には、レバーにねじれが生じている場合でも、確実にレバーを正規の位置に誘導することができる。

[0015]

また、溝37の下方には、第2の溝39が形成されている。この溝39は、装填終了間際からインクカートリッジのガイド用の凸部10と係合し、装着完了時にはインクカートリッジの幅方向へのがたつきを防止する。なお、この実施例ではガイド用の凸部10と溝37とをそれぞれインクカートリッジ、及びインクカートリッジ収容部に設け、インクカートリッジの容積を可及的に大きくしているが、溝37をインクカートリッジに、また凸部10をインクカートリッジ収容部に形成してもガイド機能としては同様の効果を奏する。

[0016]

キャリッジ30の他方の面の各カートリッジ収容領域には図5に示したように 上端40aを支点とし、また下端40bが凸部12の平面12aに当接する位置 決め用の弾性片40が形成されている。この弾性片40の下部には、凸部12に 形成されている電極14に導電的に接触する弾性接点41が配置されている。

[0017]

図7(イ)は、キャリッジ30の弾性片40、及び弾性接点41が組み付けられる領域の構造の一実施例を示すもので、インクカートリッジ1に対向する領域には図7(口)に拡大して示すようにリブ34の内側に位置して両側に溝34bを有し、上部が開放された開口34cが形成されている。この開口34cには、その下方側に図8(イ)に示したように両側に弾性変形可能な爪41aを有し、弾性接点41が装着された基板41bからなる接点形成部材42が挿入され、その上部に図8(口)に示した弾性片40を複数個、この実施例では4個を形成した弾性片ユニット50が装着される。弾性片ユニット50は、それぞれの弾性片40の両側に溝34cに係合する凸部51が形成され、爪52により上下方向への移動が阻止されている。それぞれの弾性片40は、接点形成部材42に覆い被さるように配置されているので、接点形成部材42を保護するための機能をも備えている。なお、図中53は、ガイド用の凸部を示す。

[0018]

この実施例において、図9に示したようにインクカートリッジ1をキャリッジ30の所定の領域に位置合わせすると、凸部12が弾性片40に衝突する。この状態でさらにインクカートリッジ1を下方に垂直に押し込むと、図10に示したように弾性片40が凸部12に押されて図中矢印Bで示すように変形するから、インクカートリッジ1が弾性片40を通過してさらに降下する。

[0019]

この過程でインクカートリッジ1のレバー9の両側の突起20が拡開部を形成する斜面37aに拾われ、またガイド用の凸部10が溝39に進入する。さらにカートリッジ1を押し込むと、また、凸部12の両側がリブ34にガイドされ、インク供給針36がインク供給口4に進入して弁体6をバネ5に抗して押し上げ

る。

[0020]

このようにして規定の位置までインクカートリッジ1が押し込まれると、図5に示したようにレバー9は、キャリッジの斜面37aにより外方の所定位置に固定された領域を支点として回動して強い弾性力により爪19が係合部38に落ち込み、強い1回のクリック音を発する。これにより、ユーザはカートリッジがキャリッジに確実に装着されたことが確認できる。

また、ほぼ同時に弾性片40が凸部12による支持力を失って元の状態に復帰するから、弾性片40の下端40bが凸部12の上部の平面12aに当接する。この際に、インクカートリッジ1は弾性接点41が位置する方向に移動するので、電極14と弾性接点41との間にこすれがほとんど無く、電極14及び弾性接点41の磨耗や破損を防止しつつ、電極14と弾性接点41との間での導通をとることができ、また不適切な接触が生じた場合に発生する可能性があるEEPROMの格納データの破損を防止できる。

[0021]

この状態では、インクカートリッジ1は、上下方向については、手前側を凸部 12と弾性片40の下端により、奥側を爪19と係合部38とにより規制され、また水平方向(幅方向)については、手前側を凸部12の両側を幅方向規制用凸部 34、34により、奥側をガイド用の溝39とガイド用の凸部10とにより規制 されるから、電極14が弾性接点41と正常に導電関係を形成する。

[0022]

このように、装着が完了した状態では、インクカートリッジは、手前側の下部 と奥側の上部とで対角に保持されるため、操作性を損なうことなく、所定位置で 装着状態を確実に維持される。

また、レバー9に作用する強い弾性力は、インクカートリッジを弾性接点41の側に移動させるように作用させるから、電極41が確実に導電関係を維持する。なお、インク供給口4の弾性シール材6aは、インク供給針36と気密性を維持しながら若干弾性変形してインク供給針36との局所的な接触を緩和してインク供給針36に局所的な力が作用することによるダメージを防止する。

また、凸部12は、容器本体2aの幅か、これよりも狭い幅となるように形成されているため、図6に示したように複数のインクカートリッジの列設方向の隙間を可及的に小さく、つまり相互が略密着するように収容しても、列設方向の位置を正確に規制することができる。

[0023]

一方、インクカートリッジ1をキャリッジ30から取り外す場合には、例えばレバー9を人差し指、狭持用凹部2cを親指で持ち、レバー9を手前側、つまりカートリッジ側に引き寄せるように変形させると、レバー9が弾性変形して爪19が係合部38から外れる。係合部38による支持を失ったインクカートリッジはインク供給口4のバネ5の付勢力により若干上方に移動して、レバー9の爪19が係合部38の領域外に位置する。

この取り外しの際、インク供給口4は、レバー9が設けられている壁面7の側に偏して配置されているから、図12に模式的に示したように弾性片40の下端との当接点Fを中心とする図中矢印G方向の大きな回動半径Lで流路形成部材であるインク供給針36との係合を解除でき、インク供給針36の筒胴部に弾接する弾性シール材6aによる緩衝作用と相まって、インク供給針36に対する曲げ力の作用を緩和できる。

なお、回動中心を規制する弾性片 40 が当接する当接点 F とインク供給口 40 中心線 C の下端との距離を L 、インク供給針 36 の進入長さの最大値を H 、取り外し時の回動角を θ とすると、インク供給針 36 の中心とインク供給口 4 の中心とのズレ量 ΔL は、

 $\Delta L = L - (H/\tan \theta)$

で表すことができる。

なお、上述の回動角 θ とは、インク供給針 3 6 がインク供給口 4 に係合している状態から、インク供給針 3 6 の先端の中心点がインク供給口 4 から完全に外れた状態となるまでのインクカートリッジの回動角を意味する。

また、上述の最大値Hとは、図12に符号Fで示す当接点Fからインク供給口4の中心線Cの方向に、インクカートリッジの底面に平行な線(中心線Cと直交する線)を引いたときの交点Eと、インク供給口4の下端との長さを、便宜的に

定義したものである。

ところで、現実のインクカートリッジにあっては、インク供給針 36 の装着長さ H が 5 mm、回動半径 L が 28.8 mm、回動角 θ が 10 度程度であるから、インク供給針 36 とインク供給口 4 の中心とのズレ量 Δ L は、 Δ L=0. 4 mm となる。

すなわち、インク供給口36に装填されている弾性シール材6aが、インク供給 36に損傷を与えない程度の力で変形できる変形量をΔLとした場合、回動 半径Lを、

 $L \ge H/\tan\theta + \Delta L$

にすればよい。

また、回動力を凸部12から最も遠方の略対角の位置に存在するレバー9の先端に作用させるため、容易に取り外すことができる。

さらに、この回動により、電極14と弾性接点41との間にこすれがほとんど無く、電極14及び弾性接点41の磨耗や破損を防止しつつ、電極14と弾性接点41との間での導通をとることができ、また不適切な接触が生じた場合に発生する可能性があるEEPROMの格納データの破損を防止できる。

なお、挟持用凹部 2 c に代えて、親指が引っかかりやすい凸部を設けても同様の作用を奏する。

[0024]

一方、インクカートリッジ1の他方側は、凸部12が弾性片40の下端40bに邪魔をされているから、レバー9の側を図4に示したように持ち上げると、凸部12の上面を回動支点とし、かつ幅方向規制用凸部であるリブ34にガイドされて図11の符号Cで示すように回動する。このとき、カートリッジ収容領域を区画するリブ34がインクカートリッジ1の側面の回動支援用凹部17に入り込んで所定角度まで、つまり凸部12の平面12aが弾性片40の下端40bよりも外れた位置まで回動しながら移動するから、この段階でインクカートリッジ1を斜めに持ち上げることにより、キャリッジ30から取り外すことができる。

[0025]

図13は、本発明のインクカートリッジの他の実施例を示すものであって、こ

のインクカートリッジ1'は、容器本体2a'を前述のインクカートリッジ1とはその奥行きDを異にするものの、蓋体2bなど他の構造は同一に構成されている。そして、凸部12は、容器本体2a'の幅方向の一方に偏した位置に形成され、電極群14の幅方向中心は、前述のインクカートリッジ1と同様にインク供給口4'の中心軸Cと平行な線C'に位置するように配置されている。

[0026]

なお、上述の実施例においては、装着操作は、直線移動により行うことを前提としているが、凸部12を最初に装填し、凸部12を支点としてレバー9を回動させて装着した場合にも、弾性片40の下端40bが凸部12の平面12aに当接し、この当接領域を回動中心とし、幅方向を手前側は幅方向規制用凸部34、34により、また奥側をガイド用の溝39により規制されるから、電極14が弾性接点41とほとんど擦れを生じることなく正常に導電関係を形成する。

そして、インク供給口4は、レバー9側、つまり回動支点となる凸部12から離れた位置に存在するため、インク供給針36に可及的に平行に移動し、インク供給口4の弾性シール材6aに無理な変形を強いることが防止される。

[0027]

図14(イ)、(ロ)は、それぞれ本発明のインクカートリッジの第2の実施例を示すものであって、カートリッジ101は、第1の実施例と略同様に構成されている。

すなわち、インクカートリッジ101は、容器本体102aと、蓋体102bとからなる扁平な容器と、容器本体102aの1つの壁面(底面103)に記録ヘッドの流路形成部材を構成するインク供給針と係合してインクを供給するインク供給口104を設けて構成されている。なお、インク供給口104は、カートリッジの長手方向の中央部よりも一側に偏する位置(つまり係止部材であるレバー109が形成された壁面の側)に配置されていて、上述の実施例の図2に示したようにインク供給口104の先端側に付勢力を発揮するバネ5により常時閉弁状態を維持する弁体6が装着され、その外側、つまり先端側に流路形成部材と係合する環状の弾性シール材6aが装填されている。

[0028]

インク供給口104が形成されている壁面103に略直交し、かつ相対向する2つの壁面107、108の、前記インク供給口104に近い側の壁面7には、弾性変形可能な係止部材であるレバー109が形成されている。レバー109は、下部を回動支点109aとし、かつ弾性変形可能に容器本体102aの壁面7に設けられていて、回動支点109aよりも上部にはキャリッジの係合部136に着脱可能な係合部である爪部119が外側に突出するように形成され、回動支点109aと爪部119との間に、レバー本体から側方に突出するように突起120が、好ましくは両側にそれぞれ形成されている。また、レバー109の下方にはガイド機能とカートリッジの幅方向のがたつきを規制する突起110が形成されている。

[0029]

また他方の壁面108には、後述するキャリッジの装填レバーが押圧可能な位置にレバー受圧部、この実施例では凸部111が形成されている。凸部111の下方にはカートリッジの壁面108よりも突出し、両側を記録装置に規制されかつ装填方向に平行となる面113を有する凸部112が形成され、ここに記録装置の弾性接点部材140とコンタクトを形成する電極114が複数、この実施例では水平方向に複数並ぶように上下2段に千鳥状に形成されている。

[0030]

この電極114は、上述した図3(イ)に示した回路基板15、及びこれに形成された電極14と同様に形成されていて、回路基板115を凸部112の面113に固定することにより形成されている。なお、回路基板115の裏面には図3(ロ)に示したようにインク容器に収容されているインクの情報を格納したEEPROM等の読み書き可能な半導体記憶素子等の記憶手段18が実装され、電極114に導電的に接続されている。

[0031]

図15乃至図17は上述のインクカートリッジに適した記録装置の一実施例を、キャリッジの構造で示すものであって、図15は、キャリッジの概観を、また図16、図17はインクカートリッジが正常に装着された状態を示す図である。 キャリッジ130は、上部から複数のインクカートリッジの挿入が可能なよう に略箱型に形成されたカートリッジホルダ本体部131と、装填レバー132とにより構成され、装填レバー132は、上部に窓132aを備えた略枠体構造として構成され、ホルダ本体部131の一端側、この実施例ではカートリッジ101の凸部111と対向する側を下部側とするようにして軸133により回動可能にホルダ本体部131に枢支されている。

[0032]

カートリッジホルダ本体部131は、複数のインクカートリッジを収容するように、リブ134により区画され、インクカートリッジ101のレバー109と対向する壁面にはレバー109の両側の突起120と係合する溝135と、爪部119に係合する係合部136、この実施例では凹部が形成されている。

[0033]

溝135には、上部がカートリッジ側に拡開する斜面135aが形成されていて、この斜面135aによりインクカートリッジの装填当初にはレバー109の開き具合に関わり無く広い口で両側の突起120を拾い込み、また装着状態ではレバー109をキャリッジの壁面の側、つまりインクカートリッジ101の外側に強制的に拡開させる作用をする。特に両側に突起120が形成されている場合には、レバー109にねじれが生じている場合でも、確実にレバー109を正規の位置に誘導することができる。

[0034]

また、溝135の下方には、第2の溝137が形成されている。この溝137は、装填終了間際からインクカートリッジのガイド用の凸部110と係合し、装着完了時にはインクカートリッジの幅方向へのがたつきを防止する。なお、この実施例ではガイド用の凸部110と溝135とをそれぞれインクカートリッジ、及びインクカートリッジ収容部に設け、インクカートリッジの容積を可及的に大きくしているが、溝135をインクカートリッジに、また凸部110をインクカートリッジ収容部に形成してもガイド機能としては同様の効果を奏する。

[0035]

カートリッジホルダの他方の壁面の各カートリッジ収容領域には、装填レバー 132が規定の位置まで閉められたとき、凸部112に固定された回路基板11 5に形成されている電極114に導電的に接触する弾性接点140が配置されている。

[0036]

この実施例において、図18に示したようにインクカートリッジ101をキャリッジ130の所定の領域に位置合せすると、インクカートリッジのインク供給口104が、キャリッジ130のインク供給針138に当接して所定の位置で停止する。

この状態でインクカートリッジ101を垂直に押し込むと、図19に示したようにインクカートリッジ101のレバー109の両側の突起120が拡開部を形成する斜面135aに拾われ、またガイド用の凸部110が溝137に進入する。記録ヘッド139に連通してインク供給部材を構成するインク供給針138がインク供給口104に進入して弁体6をバネ5に抗して押し上げる。

[0037]

このようにして規定の位置までインクカートリッジ101が押し込まれると、レバー109は、キャリッジ130の斜面1.35aにより外方の所定位置に固定された領域を支点として回動して強い弾性力により爪119が係合部136に落ち込む。この状態では、インクカートリッジ101の他方の側、つまり壁108の側は或る程度フリーな状態であるため、爪119と係合部136との接点を支点とし、バネ5に押圧されて若干の角度 Δ 0回動した状態となる。

[0038]

この状態で装填レバー132を回動させて閉めると、この過程で装填レバー132の枢支側が所定位置に降下して凸部111を押圧し、図17に示したように電極114が弾性接点41に正常に導電関係を形成する。同時にこの状態では図16に示したように下方の凸部112がその両側(両側面)をキャリッジに設けられたリブ134に規制され、また直交する方向、この実施例では上下方向を凸部111を介して装填レバー132に規制されるため、複数の電極114と複数の弾性接点140との正確、かつ確実なコンタクトを維持することができる。

[0039]

一方、インクカートリッジ101をキャリッジ130から取り外す場合には、

図19に示したよう装填レバー132を本体部131から開放する。これにより インクカートリッジの他方の側、つまり壁8の凸部111が装填レバー132の 押圧から開放されて上下方向に若干程度フリーな状態となる。

[0040]

この状態で、例えばレバー109に人差し指を当て、狭持用凹部102cに親指を当てて、レバー109をカートリッジ側に引き寄せるように変形させると、レバー109が弾性変形して爪119がホルダ本体部131の係合部136から外れる。係合部136による支持を失ったインクカートリッジは、図20に示したようにインク供給口104のバネ5の付勢力により若干上方に距離 Δ Lだけ移動して、レバー109の爪119が係合部136の領域外に移動する。この段階でインクカートリッジ101を上方に持ち上げることにより、キャリッジ130から取り外すことができる。

[0041]

このように1つのカートリッジの交換に際しても、他のカートリッジが装填レバー132の押圧から開放されるため、図19に示したようにインク供給口104のバネ5に押圧されて若干の角度 $\Delta\theta$ 回動し、また装着が完了した時点では再び装填レバー132により押圧されて逆方向に移動するため、複数の電極114がそれぞれ接点140に擦られてゴミやさびによる接触不良を解消することができる。

[0042]

なお、インクカートリッジの装着が不完全、つまりレバー109の突起119が係合部136に係合していない状態で、装填レバー132を閉めようとすると、図20に示したように装填レバー132がカートリッジ101に衝突するため、装填レバー132を係止可能な位置まで移動させることができない。すなわち、レバー109の突起119が係合部136に係合している場合には、若干の角度 θ を回動させるだけで、装填レバー132はキャリッジに係合できるが、レバー109が外れた状態ではインクカートリッジが Δ Lも上昇しており、この状態で装填レバー132によりインクカートリッジを回動させようとすると、インクカートリッジのキャリッジに対するガタが大きくなり、インクカートリッジの壁

面107、108がキャリッジに当たるため、通常の押圧力では移動が不可能となる。したがって、ユーザはインクカートリッジが正規の位置に装着されていないことを知り、クリックが生じる位置までカートリッジを押し下げて再装着する。

[0043]

また、上述の実施例においては、カートリッジ保持用の装填レバー132に押圧されるレバー受圧部である凸部111を電極形成部の凸部112と別体として構成して、材料の節約と軽量化を図っているが、図21(イ)に示したように電極形成部である凸部112を、その上面111'が装填ホルダにより押圧を受ける位置となるように形成しても構成しても同様の作用を奏する。

この実施例によれば、図21(ロ)に示したように凸部112を上部まで形成することにより、電極114等を形成する面113のサイズを拡大して電極114の配置にゆとりを持たせることができ、インクなどによる短絡や、記録装置の弾性接点部材140とより確実にコンタクトさせることができる。

[0044]

図22(イ)、(ロ)、図23(イ)、(ロ)は、それぞれ本発明のカラーインクカートリッジの第3の実施例を示すものであって、基本的には図14に示した第2の実施例として示したインクカートリッジと同様の構造を採るものであるが、この実施例が特徴とする点は誤装着防止用の識別片60が設けられていることである

言うまでもなく、誤装着防止用の識別片60は、キャリッジのインクカートリッジの挿入口側に形成された溝と呼応して誤挿入を防止するものであるため、誤ったインクカートリッジが装着された場合には、溝に進入することができず、インクカートリッジのインク供給口がインク供給針に到達する位置まで進入することができず、したがって電極114が弾性接点部材140とコンタクトを形成することができない。

[0045]

なお、カラーインクカートリッジとは巾だけを異ならせて形成されたブラック インクカートリッジは、図24、図25に示したように、前述した第1の実施例 におけるブラックインクカートリッジ1'と同様に、容器本体102a'を前述のインクカートリッジ101とはその奥行きDを異にするものの、蓋体102bなど他の構造は同一に構成されている。そして、凸部112は、容器本体102a'の幅方向の一方にΔDだけ偏した位置に形成され、複数の電極114の幅方向中心は、前述のインクカートリッジ101と同様にインク供給口104の中心軸と平行な線に位置するように配置されている。

[0046]

このようにブラックインクカートリッジは、カラーインクカートリッジとは本体の形状が相違するから、本質的には誤挿入防止用の識別片60は不要であるが、識別片60は識別機能だけでなく、突部110と同様にガイド部材としても機能するため、設けておくのが望ましい。

さらに、品質の高い印刷を実現するため、濃インク及び淡インクの2種類のブラックインクを使用する場合には、黒インクの濃度を識別するための部材のために予約しておくことができる。

[0047]

この実施例では、誤装着防止用の識別片60は、前述の回路基板115を固定する面113を形成する凸部112と一体にブロック61として形成されている。

ブロック61は、インクカートリッジ101を構成する容器本体102a、蓋体103、インク供給口104、レバー109、凸部111とは、別部材として形成されていて、カートリッジ保持用の装填レバー132に押圧される凸部111の下部に装着されている。

[0048]

このように、回路基板115を固定する凸部112と識別片61とを、カートリッジとは別の部材としてブロック61で形成することにより、インクカートリッジ101を構成する容器本体102a、蓋体103、インク供給口104、レバー109、凸部111等を同一の金型を使用して射出成形により同一形状として構成しても、インク色に対応したブロック61を用意し、このブロック61を容器本体102aに装着することでインク色に対応したインクカートリッジを構

成することができる。

[0049]

また、別部材として形成されたブロック61に回路基板115を固定する突部が形成されているため、インクカートリッジを構成する容器本体よりも把持しやすいブロック61を自動組み立て装置にセットして回路基板115を自動的に取り付けることができる。

[0050]

図26は、上述したカラーインクカートリッジのブロックの一実施例を示すものであって、ブロック61の一端には、所定の位置、つまりキャリッジの形成されたインク色指定用の溝に対応する位置に識別片60、60が形成され、他端には回路基板15を固定する面を形成する突部62が形成されている。

[0051]

ブロック61の裏面63には、容器本体102aの所定の位置に形成された位置決め凹部に挿入される位置決め用の突部63aが形成されている。また表面には凹部64を形成し、ここに容器本体102aの突起102eが貫通する係合穴64aが設けられている。

[0052]

このような構成により、ブロック61は、その位置決め突部63aを容器本体102aに形成された位置決め凹部2d(図29)に挿入し、貫通孔64aから突出した容器本体102aの突起102eを熱カシメにより固着されている。なお、ブロックの固定は、接着剤や、また突起と凹部との嵌合により固定しても同様の作用を奏する。

[0053]

なお、色を指定する場合には、識別片60の数を色毎に変更したり、また図27に示したように識別片61の数を同一として、その間隔Kを色毎に変更してもよい。

[0054]

なお、ブラックインクカートリッジのブロック61は、図28に示したように その一端に形成される識別片60の数が異なり、かつ識別片60の幅wが図27 に示した識別片60より幅広に形成されている。それ以外の構成は、カラーイン クカートリッジのものと同様に他端に回路基板115を固定する面113を形成 する突部62を、また裏面63に位置決め用の突部63aを、また容器本体10 2aの突起102eが嵌合する貫通孔64aを形成して構成されている。

このように識別片60自体の巾を異ならせたり、配置する数、識別片相互の間隔をインクの種類に対応させて異ならせることにより、識別可能なインクカートリッジの数を増加させることができる。

[0055]

また、上述の実施例においては、回路基板の固着まで考慮してブロックを構成しているが、回路基板が不要なインクカートリッジにあっては、ブロックを識別片だけを備えたものとして構成しても同様の作用を奏することはあきらかである。

【図面の簡単な説明】

- 【図1】 図(イ)、(ロ)は、それぞれ本発明のインクカートリッジの第1の 実施例を示す斜視図である。
- 【図2】 同上インクカートリッジのインク供給口の一実施例を示す断面図である。
- 【図3】 図(イ)、(ロ)は、それぞれ同上インクカートリッジの凸部に形成する電極を構成する回路基板に表裏の構造を示す斜視図である。
- 【図4】 同上インクカートリッジに適した記録装置のキャリッジの一実施 例を示す斜視図である。
- 【図5】 同上インクカートリッジをキャリッジに装着した状態を示す断面 図である。
- 【図6】 同上インクカートリッジをキャリッジに装着した状態を示す平面 図である。
- 【図7】 図(イ)、(ロ)は、それぞれ同上インクカートリッジの接点形成部材と弾性片ユニットの組み付け部の一実施例を示す斜視図、及びリブの上端部を拡大して示す斜視図である。
 - 【図8】 図(イ)、(ロ)は、それぞれ接点形成部材、及び弾性片ユニットの

- 一実施例を示す斜視図である。
- 【図9】 同上インクカートリッジをキャリッジの所定位置に位置合わせした状態を示す説明図である。
- 【図10】 インクカートリッジがその凸部により弾性片を変形させるまで押し込まれた状態を示す説明図である。
 - 【図11】 インクカートリッジの取り外しの工程を示す説明図である。
- 【図12】 インクカートリッジの取り外し時の回動による軌跡を模式的に示す図である。
- 【図13】 本発明の第1の実施例のインクカートリッジの変形例を示す斜視図である。
- 【図14】 図(イ)、(ロ)は、それぞれ本発明のインクカートリッジの第2の実施例を示す斜視図である。
- 【図15】 同上インクカートリッジに適した記録装置のキャリッジの一実施例を示す概観斜視図である。
- 【図16】 同上インクカートリッジをキャリッジに装着した状態を、装填 レバーを取り外して示す平面図である。
- 【図17】 同上インクカートリッジをキャリッジに装着して、装填レバーにより固定された状態を示す断面図である。
- 【図18】 同上インクカートリッジをキャリッジに落とし込んで、インク 供給口がインク供給針に衝突した状態を示す断面図である。
- 【図19】 レバーにより係止される位置まで同上インクカートリッジを押し込まれているものの、装填レバーから開放された状態を示す断面図である。
- 【図2.0】 同上インクカートリッジがインク供給針と係合しているものの 、レバーの係合が外れた状態を示す断面図である。
- 【図21】 図(イ)、(ロ)は、それぞれ第2の実施例の変形例を示す斜視図である。
- 【図22】 図(イ)、(ロ)は、それぞれ本発明のカラーインクカートリッジの第3の実施例を示す斜視図である。
 - 【図23】 図(イ)乃至(ハ)は、それぞれ同上カラーインクカートリッジの

側面図、底面図である。

- 【図24】 図(イ)、(ロ)は、それぞれブラックインクカートリッジの一実施例を示す斜視図である。
- 【図25】 図(イ)乃至(ハ)は、それぞれ同上ブラックインクカートリッジの側面図、底面図である。
- 【図26】 図(イ)乃至(二)は、それぞれ図22、図23に示したカラーインクカートリッジに装着されているブロックの一実施例を示す上面図、正面図、側面図、及び背面図である。
- 【図27】 図(イ)乃至(ニ)は、それぞれ他のカラーインクカートリッジに装着されるブロックの一実施例を示す上面図、正面図、側面図、及び背面図である。
- 【図28】 図(イ)乃至(二)は、それぞれ他のブラックインクカートリッジに装着されるブロックの一実施例を示す上面図、正面図、側面図、及び背面図である。
- 【図29】 図(イ)、(ロ)は、それぞれブロックを固定するためにブラック、及びカラーインクカートリッジの容器本体に形成された固定手段の一実施例を示す斜視図である。

【符号の説明】

- 1 、1' インクカートリッジ 2 a、2 a' 容器本体 2 b 蓋体
- 3 壁面 4 インク供給口 7、8 壁面 9 レバー 10 凸部
- 11 レバー受圧部となる凸部 12 回路基板固定面を形成する凸部
- 12 a 平面 14 電極 17 回動支援用凹部 19 爪部 20
 - 突起 30 キャリッジ 32 装填レバー 34 幅方向規制用凸部
- 37 溝
 38 係合部
 40 弾性片
 41 弾性接点
 60

 誤挿入防止用識別片
 61 ブロック

【書類名】 図面

図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【図29】

【書類名】

要約書

【要約】

【課題】 少なくとも装着時にはインク供給口を流路形成部材に平行に移動させて装着でき、また電極群の位置規制のための構造を簡素化でき、さらにはレバーの付勢力を増幅することができるインクカートリッジを提供することである。

【解決手段】 インク容器本体2 a を構成する1つの壁面3の、一方の側に偏した位置に形成されたインク供給口4と、壁面3と隣接し、かつ対向する2つの壁面の一方の壁面8に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される凸部11 a と、2つの壁面の他方の壁面7に形成され、常時拡開状態を維持し、かつ記録装置に装着された場合に外方に強制的に変位される突起20を有するレバー9と、インク容器のインクの情報を格納した記憶手段に接続され、凸部11 a に形成された電極14とから構成されている。

【選択図】

図 1

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-128049

受付番号

5 0 3 0 0 7 4 2 9 3 1

書類名

特許願

担当官

第二担当上席

0091

作成日

平成15年 5月 9日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000002369

【住所又は居所】

東京都新宿区西新宿2丁目4番1号

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

申請人

【識別番号】

100087974

【住所又は居所】

東京都文京区小石川2丁目1番2号 11山京ビ

ル にしき特許事務所

【氏名又は名称】

木村 勝彦

特願2003-128049

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 [変更理由]

日 1990年 8月20日 日 新規登録

住 所 氏 名 東京都新宿区西新宿2丁目4番1号

セイコーエプソン株式会社