Week 3

- 1) Let *p*: Ram likes ice cream or Sudha likes toffee Negation of the statement *p* is?
 - A. Ram does not like ice cream and Sudha does not like ice-cream
 - B. Ram does not like ice cream or Sudha does not like ice-cream
 - C. Ram does not like ice cream and Sudha likes ice-cream
 - D. Ram does not like ice cream or Sudha likes ice-cream

Correct Answer: A

Solution: Check using truthtable Lecture 74: Negation Truthtable

- 2) Which of the following statement(s) is/are true?
 - I. The sentence, "Rajesh is a hardworking man" is a statement
 - II. 9 is not a prime number
 - III. Cardinality of $A \cup B$ is 5, where, $A = \{1,2,3\}$ $B = \{2,7,8\}$
 - A. I and III
 - B. I II and III
 - C. II and III
 - D. Only II

Correct Answer: C

Solution: The statement I is false because it is opinion-based and not fact-based Lecture 70:- Introduction to Statements

- 3) If A is any statement, then which of the following is a tautology?
 - A. AVF
 - B. $A \lor \neg A$
 - C. A ^ F
 - D. A \wedge T

Correct Answer: B

Solution: A $\vee \neg A$ is always true.

Lecture 95: Tautology, contradiction-part 1

- 4) "It is not that I don't like travelling", said Reena, what does Reena mean?
 - A. Reena likes travelling less frequently
 - B. Reena does not likes travelling
 - C. Reena likes travelling
 - D. Reena does not likes travelling sometimes

Correct Answer: C

Solution: Not is used twice in the statement.

Lecture 75: Examples of negation

- 5) $(p \rightarrow r) V (q \rightarrow r)$ is logically equivalent to
 - A. $(p \land q) \lor r$
 - B. $(p \lor q) \rightarrow r$
 - C. $(p \rightarrow q) \rightarrow r$
 - D. $(p \land q) \rightarrow r$

Correct Answer: D

Solution: $((p \to r) \lor (q \to r)) \leftrightarrow ((p \land q) \to r)$ is tautology, use truthtable

Lecture 78: Truthtable for OR operator

- 6) $(\neg p \lor q) \lor (\neg q \land \neg p)$ is equivalent to
 - $A. \ \, \neg q \ \, \wedge \neg p$
 - B. ¬q ⊻¬p
 - C. ¬p ⊻ q
 - $D. \ \, \neg q \ \, \mathsf{V} \neg p$

Correct Answer: C

Solution: By truthtable

Lecture 93: XOR operator-part 3

- 7) If the truth value of **s** is True, where **s** is $\neg((\neg q \land \neg p) \rightarrow p)$ then the truth value of p and q are respectively?
 - A. FF
 - B. TT
 - C. TF
 - D. FT

Correct Answer: A

Solution: By truthtable of implication and negation

Lecture 85: Examples of implication-part 1

- 8) $\neg (p \lor q) \lor (\neg p \land \neg q)$ is logically equivalent to
 - A. $\neg p \land \neg q$
 - В. ¬q
 - $C.\ p \lor q$
 - $D. \ \, \neg p \land \neg q$

Correct Answer: D

Solution: By truthtable

Lecture 100: logical equivalence-part 1

- 9) What can we infer from the below statement?
 - *q*: Gautam will go for a long drive to Mahabaleshwar or he will play cards *r*: Gautam did not go to Mahabaleshwar
 - A. Gautam will not play cards
 - B. Gautam will play cards
 - C. Gautam maynot play cards
 - D. None of the above

Correct Answer: B

Solution: $((q^0 \lor r^1) \land (\neg q)^1) = r^1$, hence $((q \lor r) \land \neg q) = r$ Lecture 114: rules of inferences part-5

- 10) If $(\neg p \Rightarrow \neg q)$ is false then what is the truth value of p and q?
 - A. TT
 - B. TF
 - C. FT
 - D. FF

Correct Answer: C

Solution: By truthtable

Lecture 74: Negation truthtable