A Brief History of Imaging Genetics

A reproducibility perspective

JB Poline

UC Berkeley, McGill

June 25 2017

A short history of imaging genetics - the reproducibility view

- Motivations
- Quick background on genetic variations
- An historical perspective
- Some practical examples: How do I compute . . . ?
- What will we need in the future

Motivations

- Geneticists: understand the genes
- Neuroscientists: understand the brain
- Psychologists: understand the behaviour
- Clinicians:
 - Personalized medicine
 - Predictive medicine
- No great model system for human brain!

Motivations: illustration

Figure 1: Meyer-Lindenberg, 2006

Genetic variations:

Figure 2: Scherer 2007, Credit S. Cichon

Genetic variation: SNP

C-allele: 70% frequency

C = major allele

T-allele: 30% frequency

T = minor allele

Figure 3: Credit S. Cichon

Genetic variation: CNV

Figure 4: Credit S. Cichon

The imaging genetic studies

- One variant, small Ns
- GWAS, small then large Ns
- Genome-wide-Brain-wide
- Multivariate analyses
- [Heritability]
- Networks
- Interpretation

Some first studies: small Ns

• Example of Hariri 2002: In Fig 3, Authors report $m_1 = .28, m_2 = .03, \text{SDM}_1 = 0.08, \text{SDM}_2 = 0.05, N_1 = N_2 = 14$

- How do we compute the effect size ?
 - we know: the means, the standard deviations, and the Ns.

Computing effect size

What is the effect?

$$\mu = \bar{x_1} - \bar{x_2}$$

What is the standardized effect ? (eg Cohen's d)

$$d = \frac{\bar{x_1} - \bar{x_2}}{\sigma} = \frac{\mu}{\sigma}$$

"Z": Effect accounting for the sample size

$$Z = \frac{\mu}{\sigma/\sqrt{n}}$$

- ullet First, compute the standard deviation of the data from the ${
 m SDM}$
 - get σ from SDM : $\sigma = \sqrt{14 1}$ SDM
 - ullet Combine the σ to have one estimation across the groups
 - formula easy to recompute or find
 - $\sigma = \sqrt{(14-1)} {
 m SDM}$, $d = \frac{m_1 m_2}{\sigma} = 1.05$

- ullet First, compute the standard deviation of the data from the ${
 m SDM}$
 - get σ from SDM : $\sigma = \sqrt{14 1}$ SDM
 - ullet Combine the σ to have one estimation across the groups
 - formula easy to recompute or find
 - $\sigma = \sqrt{(14-1)} \text{SDM}$, $d = \frac{m_1 m_2}{\sigma} = 1.05$
 - What is the percentage of variance explained ?

- ullet First, compute the standard deviation of the data from the ${
 m SDM}$
 - get σ from SDM : $\sigma = \sqrt{14 1}$ SDM
 - ullet Combine the σ to have one estimation across the groups
 - formula easy to recompute or find
 - $\sigma = \sqrt{(14-1)} \text{SDM}$, $d = \frac{m_1 m_2}{\sigma} = 1.05$
 - What is the percentage of variance explained?
 - ullet Write the estimated model: $Y=[1\dots 1]^t[m_1-m_2]+\mathrm{residual}$
 - Compute the total sum of square, then the proportion:

- ullet First, compute the standard deviation of the data from the ${
 m SDM}$
 - get σ from SDM : $\sigma = \sqrt{14 1}$ SDM
 - ullet Combine the σ to have one estimation across the groups
 - formula easy to recompute or find

•
$$\sigma = \sqrt{(14-1)}$$
SDM, $d = \frac{m_1 - m_2}{\sigma} = 1.05$

- What is the percentage of variance explained?
- Write the estimated model: $Y = [1 \dots 1]^t [m_1 m_2] + \mathrm{residual}$
- Compute the total sum of square, then the proportion:

•
$$V_e = \frac{(n_1 + n_2)(m_1 - m_2)^2}{n_1 s_1^2 + n_2 s_2^2 + (n_1 + n_2)(m_1 - m_2)^2} > 40\%$$

Multiple hypothesis: the curse of GWAS-wise...

Figure 5: Shen et al., 2010

See also Stein et al., 2010 (SNP X Voxel), Hibar et al., 2011, (Gene X Voxel)

 Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- \bullet N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.
- ullet only APOE gene confirmed, p = 6.63e-10: reaches GWAS significance level of 5.e-8

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.
- ullet only APOE gene confirmed, p = 6.63e-10: reaches GWAS significance level of 5.e-8
- Question: How would you compute the effect size for APOE ?

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.
- ullet only APOE gene confirmed, p = 6.63e-10: reaches GWAS significance level of 5.e-8
- Question: How would you compute the effect size for APOE ?
 - What is the Z score for p = 6.63e-10? : n01.isf(6.63e-10) = 6.064

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.
- only APOE gene confirmed, p = 6.63e-10: reaches GWAS significance level of 5.e-8
- Question: How would you compute the effect size for APOE ?
 - What is the Z score for p = 6.63e-10? : n01.isf(6.63e-10) = 6.064
 - From Z score to Cohen's d? 6.064/sqrt(733) = 0.224

- Example of Shen et al using the ADNI cohort: Association of SNPs and the amount of GM in the hippocampus.
- \bullet N = 733 subjects, considered a large study for imaging, but a very small one for genome wide association.
- only APOE gene confirmed, p = 6.63e-10: reaches GWAS significance level of 5.e-8
- Question: How would you compute the effect size for APOE ?
 - What is the Z score for p = 6.63e-10 ? : n01.isf(6.63e-10) = 6.064
 - From Z score to Cohen's d? 6.064/sqrt(733) = 0.224
- Question: what is the power for p=5.e-8 and d=0.22, N=733?

BDNF and hippocampal volume: genuine effect or winners curse?
 d=0.12, p=0.02, Molendijk (2012)

- BDNF and hippocampal volume: genuine effect or winners curse?
 d=0.12, p=0.02, Molendijk (2012)
- Stein et al, 2012: marker is associated with 0.58% of intracranial volume per risk allele

- BDNF and hippocampal volume: genuine effect or winners curse?
 d=0.12, p=0.02, Molendijk (2012)
- Stein et al, 2012: marker is associated with 0.58% of intracranial volume per risk allele
- Flint 2014: Effect size of intermediate phenotype not much greater than others

- BDNF and hippocampal volume: genuine effect or winners curse?
 d=0.12, p=0.02, Molendijk (2012)
- Stein et al, 2012: marker is associated with 0.58% of intracranial volume per risk allele
- Flint 2014: Effect size of intermediate phenotype not much greater than others
- For psychiatric diseases: mean OR is 1.15, QT: variance explained by 1 locus « 0.5%, 0.1-0.3% for protein or serum concentration

Some example of SNP effect size

Figure 6: Franke et al., 2015

Effect size and reproducibility?

- HTTLPR and amygdala: Hariri 2002: p-value implies that locus explain > 40% of phenotypic variance. d=1.05
- ullet COMT and DLPFC: meta analysis : d = 0.55, most studies N < 62 subjects (Meir, 2010)
- KCTD8 / cortical area: Paus 2012: 21% of phenotypic variance (250 subjects), d=1.03.

Multivariate approaches 1

Why? Effect of several genes - Effect on several regions

Figure 7: J. Liu et al, 2009

• Review: Calhoun et al., 2009. Application to Schizophrenia.

Multivariate approaches 2

Figure 8: Vounou et al., 2010, LeFloch et al., 2012

Multivariate analyses: what do you get

Figure 9: Vounou et al, 2010, LeFloch et al., 2012

 Then: issues of interpretation - and statistics needed to determine which region/voxel and which SNP/gene can be reported

Heritability: more constraints - more interpretable

• Definition (simple): percentage of variance due to genetic

Figure 10: Toro et al, 2014

Networks

Figure 11: Network SNP/Diffusion Chiang et al 2012

• See also Silver et al., 2012, Richiardi 2015

A few specificities of Imaging Genetics

- Combinaison of imaging and of genetics issues (the "AND" problem)
- Large number of subjects is necessary for GWAS and but too costly to scan
- The multiple comparison issues
- The flexibility of analyses / exploration
- The "trendiness" of the field
- The capacity to "rationalize findings"
 - noise in brain images is always interpretable
 - genes are always interpretable

Conclusion 1: loannidis again

- Young fields tend to have less stringent criteria
- Ioannidis 2005: When are results more likely to be false?
 - The smaller the studies . . .
 - The smaller the effect size ...
 - The larger the number of tests . . .
 - The more flexibility in the analyses
 - The more trendy . . .
 - The more financial interest . . .

Conclusion 2: Effect-size = f(years, sample, ...)

Figure 12: Molendijk, 2012, BDNF and hippocampal volume

Figure 13: Mier, 2009, COMT & DLPFC

Conclusion 3: What's next

- Greater interpretability
 - include pathways / biological information
 - heritable phenotypes
 - analyzing other existing databases / datasets (eg ABI)
 - more complex methods (multivariate)
- More documented data needed for
 - power
 - interpretability
- Move from p-values to prediction ?

Acknowledgements

- Berkeley: M. D'Esposito, M. Brett, S. Van der Walt, J.Millman
- Pasteur: R. Toro, G. Dumas, T. Bourgeron, A. Beggiato
- Neurospin: B. Thirion, G. Varauquaux, V. Frouin, others

Thank you for your attention - Questions ?

More material

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:
- What is your likely effect size ?

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:
- What is your likely effect size ?
- Power analyses with the smallest expected effect size (cost does not enter in this calculation)

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:
- What is your likely effect size ?
- Power analyses with the smallest expected effect size (cost does not enter in this calculation)
- Take robust statistical tools

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:
- What is your likely effect size ?
- Power analyses with the smallest expected effect size (cost does not enter in this calculation)
- Take robust statistical tools
- Meta analysis cf Enigma / Replication whenever possible

- Pre-register hypotheses
 - More hypotheses
 - Candidate versus GWAS: cf Flint & Mufano, 2012
- Statistics:
- What is your likely effect size ?
- Power analyses with the smallest expected effect size (cost does not enter in this calculation)
- Take robust statistical tools
- Meta analysis cf Enigma / Replication whenever possible
- Effect size variation estimation (bootstrapping)

What exactly is power?

Figure 14: Power: $W = 1 - \beta$ Here W=77%

Cohen's d and relation with n:

$$d = \frac{\bar{x_1} - \bar{x_2}}{\sigma} = \frac{\mu}{\sigma}$$

$$Z = \frac{\mu\sqrt{n}}{\sigma} = d\sqrt{n}$$

- Studies of low power have low probability of detecting an effect (indeed!)
- Studies of low power have low positive predictive value: PPV = P(H1True|Detection)
- Studies of low power are likely to show inflated effect size

- $PPV = P(H1True|Detection) = \frac{WP_1}{\alpha P_0 + WP_1}$
- If we have 4/5 that H0 is true, and 1/5 that H1 true, with 30% power: PPV = 60%.

P1/P0 =0.25	power=0.10,	alpha=0.05	PPV=0.33
P1/P0 =0.25	power=0.30,	alpha=0.05	PPV=0.60
P1/P0 =0.25	power=0.50,	alpha=0.05	PPV=0.71
P1/P0 = 0.25	power=0.70,	alpha=0.05	PPV=0.78

What happens with more stringent α ?

Figure 15: higher type I error threshold to account for MC

- effect on power: power goes down
- effect on PPV: PPV goes up
- effect on estimated effect size: size bias: goes up

Studies of low power inflate the detected effect (2)

Figure 16: Repeating experiments: estimated effects are above t05 line, leading to a biased estimation compared to true simulated effect.

Studies of low power inflate the detected effect (1)

Figure 17: Button et al. NRN, 2013

What is the estimated power in common meta analyses?

Figure 18: Button et al. NRN, 2013

Power Calculator with

• Purcell et al. "Genetic Power Calculator" Bioinformatics (2003).

Modules	
Case-control for discrete traits	
Case-control for threshold-selected quantitative traits	
QTL association for sibships and singletons	
TDT for discrete traits	Notes
TDT and parenTDT with ascertainment	Notes
TDT for threshold-selected quantitative traits	Notes
Epistasis power calculator	Notes
QTL linkage for sibships	Notes
Probability Function Calculator	Notes

Figure 19: http://pngu.mgh.harvard.edu/~purcell/gpc/

http://www.sph.umich.edu/csg/abecasis/cats/

CaTS-text –additive –risk 1.3 –pisample .95 –pimarkers 1. –frequency .3 –case 1067 –control 1067 –alpha 0.00000001 : yields For a one-stage study 0.314.

Recall-by-Genotype and intermediate phenotype

• Flint et al., Assessing the utility of intermediate phenotype, Trends in Neurosciences, 2014.

Figure 20: Recall by Genotype: Genotypic assignment vs randomisation assignment