# Effects of fractures on seismic wave-fields in the presence of equant porosity.

Yuriy Ivanov<sup>1\*</sup>, Giorgos Papagiorgiou<sup>1,2</sup>, Alexey Stovas<sup>1</sup>, Mark Chapman<sup>2</sup>

> <sup>1</sup>Norwegian University of Science and Technology <sup>2</sup>The University of Edinburgh



June 4th, 2019 81st EAGE Conference & Exhibition



#### Outline

Introduction

Reflectivity modeling

Rock-physics model

Modelling

Discussion & Conclusions

# Introduction

Dispersion + attenuation + anisotropy

Porosity

Dispersion + attenuation + anisotropy



Combine the full-wavefield anisotropic modelling

Combine the full-wavefield anisotropic modelling

with the rock-physics model of Chapman (2003)

Combine the full-wavefield anisotropic modelling

with the rock-physics model of Chapman (2003)

to study how the **fracture length** affects

the wavefiled

Combine the full-wavefield anisotropic modelling

with the rock-physics model of Chapman (2003)

to study how the **fracture length** affects

the wavefiled

in the presence of **equant porosity**.

# Reflectivity modeling

### Model: unbounded stack of layers



### Equations: P-SV system

Equation of motion in t - x domain:

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_i} + f_i. \tag{1}$$

Consecutive equation (Hooke's law):

$$\sigma_{ij} = \frac{1}{2} c_{ijkl} \left( \frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right). \tag{2}$$

$$F(k,\omega) = \mathscr{F}_{\nu}(f) = \int_{-\infty}^{\infty} dt e^{i\omega t} \int_{0}^{\infty} dr r J_{\nu}(kr) f(r,t), \tag{3}$$

where  $\nu = 0, 1$ .

Wave equation in  $\omega - k$  domain (post Fourier-Hankel transform  $\mathscr{F}$ ):

$$\frac{d\mathbf{b}}{dz} = \omega \begin{bmatrix} 0 & \mathbf{A} \\ \mathbf{B} & 0 \end{bmatrix} \mathbf{b} + \mathbf{F},\tag{4}$$

Modelling

where

$$\mathbf{b} = \left[\omega U_z, -S_r, S_Z, \omega U_r\right]^T,$$

and

$$U_r, S_r = \mathscr{F}_1(u_r, \sigma_{zr}), \quad U_z, S_z = \mathscr{F}_0(u_z, \sigma_{zz})$$

### Equations: P-SV system

Wave equation in  $\omega - k$  domain (post Fourier-Hankel transform  $\mathscr{F}$ ):

$$\frac{d\mathbf{b}}{dz} = \omega \begin{bmatrix} 0 & \mathbf{A} \\ \mathbf{B} & 0 \end{bmatrix} \mathbf{b} \quad , \tag{4}$$

Modelling

where

$$\mathbf{b} = \left[\omega U_z, -S_r, S_Z, \omega U_r\right]^T,$$

and

$$U_r, S_r = \mathscr{F}_1(u_r, \sigma_{zr}), \quad U_z, S_z = \mathscr{F}_0(u_z, \sigma_{zz})$$

### Equations: wavefields separation

Up/down wavefield separation:

$$\mathbf{b} = \mathbf{L} \begin{bmatrix} \mathbf{u} \\ \mathbf{d} \end{bmatrix}, \tag{5}$$

where 
$$\mathbf{L} = \mathbf{L}(p, \omega, \rho, c_{ij})$$
, and  $\mathbf{W} = \begin{vmatrix} \mathbf{u} \\ \mathbf{d} \end{vmatrix}$  is the wave vector.

Reflectivity response of the stack then:

$$\mathbf{R}_{D}(z_{j-1}|z_{N}) = \mathbf{E}_{j} \left\{ \mathbf{R}_{D_{j}} + \mathbf{T}_{U_{j}} \mathbf{R}_{D}(z_{j}|z_{N}) \times \left[ \mathbf{I} + \mathbf{R}_{D_{j}} \mathbf{R}_{D}(z_{j}|z_{N}) \right]^{-1} \mathbf{T}_{D_{j}} \right\} \mathbf{E}_{j},$$
(6)

where  $\mathbf{E}_i = \exp(i\omega \mathbf{q} z_i)$  and  $\mathbf{q} = \operatorname{diag}(q_\alpha, q_\beta)$ .

### Equations: response of a point source

Up-going wavefield at z = 0 (no free surface) (Ursin, 1983):

$$\mathbf{U}(z_0) = \mathbf{R}_D(z_0)\mathbf{S}_2 - \mathbf{S}_1,\tag{7}$$

where

$$\mathbf{S} = \mathbf{Q}(z_0|z_s)\mathbf{\Sigma}(z_s) = \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \end{bmatrix}, \tag{8}$$

and 
$$\mathbf{Q} = \begin{bmatrix} \exp(i\omega\mathbf{q}z_s) \\ \exp(-i\omega\mathbf{q}z_s) \end{bmatrix}$$
.

Source is included as a wave-vector discontinuity (Kennett, 2009):

$$\left[\mathbf{W}(z_s)\right]^{\pm} = \mathbf{\Sigma}(z_s) = \begin{bmatrix} \mathbf{\Sigma}_U(z_s) \\ \mathbf{\Sigma}_D(z_s) \end{bmatrix}. \tag{9}$$

Modelling

Alternatively, a stress-displacement vector discontinuity

$$\mathbf{\Sigma}(z_s) = \mathbf{L}^{-1} \left[ \mathbf{b} \right]^{\pm} = \mathbf{L}^{-1} \mathbf{F}. \tag{10}$$

# Rock-physics model

# Rock-physics model<sup>1</sup>

Rock matrix

# Rock-physics model<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Chapman (2003)

troduction Reflectivity modeling Rock-physics model Modelling Discussion & Conclusions

# Rock-physics model<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Chapman (2003)

# Rock-physics model<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Chapman (2003)

$$\lambda =$$
 10.69 GPa  $\qquad \mu =$  21.97 GPa  $\rho =$  2.15 g/cc

$$\lambda=10.69$$
 GPa  $\mu=21.97$  GPa  $ho=2.15$  g/cc  $\phi=28$  %  $\kappa_f=2.4$  GPa  $au_m=2 imes10^{-5}$  s

$$\lambda=10.69~\mathrm{GPa}$$
  $\mu=21.97~\mathrm{GPa}$   $ho=2.15~\mathrm{g/cc}$   $\phi=28~\%$   $\kappa_f=2.4~\mathrm{GPa}$   $\tau_{pores}=10^{-4}~\mathrm{m}$   $\tau_m=2\times10^{-5}~\mathrm{s}$   $\epsilon=2~\%$   $a_{mc}=10^{-5}$ 

$$\lambda = 10.69 \; {
m GPa}$$
  $\mu = 21.97 \; {
m GPa}$   $ho = 2.15 \; {
m g/cc}$   $\phi = 28 \; \%$   $\kappa_f = 2.4 \; {
m GPa}$   $\tau_{pores} = 10^{-4} \; {
m m}$   $\tau_m = 2 \times 10^{-5} \; {
m s}$   $\varepsilon = 2 \; \%$   $a_{mc} = 10^{-5}$   $\varepsilon_f = 3 \; \%$   $L = \{1, 2, 3\} \times 10^2 \times r_{pores}$ 

### Rock-physics model









## Rock-physics model



## Rock-physics model

#### Attenuation



#### Attenuation



Modelling

### Rock-physics model

#### Attenuation



### Rock-physics model

#### Attenuation



### Rock-physics model

#### Attenuation



# Modelling

### 2-interface model: fractured porous media























#### **CSG** differences



#### **CSG** differences



#### **CSG** differences



#### Traces at x = 1 km



### Fractured porous finely-layered media









#### Thin lamination



### Thin lamination



- ▶ Reflectivity modelling. Practical albeit limited approach for complex models:
  - + Low-symmetry anisotropic frequency-dependent models,
  - + Partial response (e.g., PP-reflection),
  - + Source waveform independent,
  - + Multiple source formulations (e.g., force, moment tensor),
  - Effective models,
  - Flat layers.

- ▶ Reflectivity modelling. Practical albeit limited approach for complex models:
  - + Low-symmetry anisotropic frequency-dependent models,
  - + Partial response (e.g., PP-reflection),
  - + Source waveform independent,
  - + Multiple source formulations (e.g., force, moment tensor),
  - Effective models,
  - Flat layers.
- Rock-physics model. Simple yet realistic:
  - + Multiple-scale inclusions,
  - + Multiple fluids,
  - + Calibrated to real rocks,
  - No fracture interaction.

- Modelling results.
  - + Fracture effects in seismic frequency band,
  - + Phase and amplitude effects,
  - + Can be confused with thin-bedding.
  - Difficult to interpret.

- Modelling results.
  - + Fracture effects in seismic frequency band,
  - + Phase and amplitude effects,
  - + Can be confused with thin-bedding.
  - Difficult to interpret.
- Future research (besides more detailed analysis):
  - → Inversion for fracture parameters,
  - → Vertical fractures,
  - → Multiple fracture sets,
  - $\rightarrow$  Code release.

#### References

Chapman, M., 2003, Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity: Geophysical Prospecting, **51**, 369–379. Kennett, B., 2009, Seismic Wave Propagation in Stratified Media, 1st ed.: ANU Press. Ursin, B., 1983, Review of elastic and electromagnetic wave propagation in horizontally layered media: Geophysics, **48**, 1063–1081.