Parallelism in Hardware

Minsoo Ryu

Department of Computer Science and Engineering Hanyang University

Outline

- 1 Advent of Multicore Hardware
- 2 Multicore Processors
- 3 Amdahl's Law
- Parallelism in Hardware
- 5 Q&A

Moore's Law

➤ The number of transistors on integrated circuits doubles approximately every two years

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Gordon Earle Moore (1929 ~)

End of Frequency Scaling

- > Frequency scaling ended in 2004
 - Intel cancelled the Tejas and Jayhawk projects that aimed at 7 GHz or higher

Power Consumption and Heat

- ➤ Heat problems due to the extreme power consumption of the core (power wall)
 - P (power) = $C \times V^2 \times F$

Slow-Down of Performance Gain

SPEC Benchmark Performance (from Hennessy and Patterson, footer added)

Source: Computer Architecture, A Quantitative Approach by Hennessy and Patterson

Apple A5x with 4 CPU cores

AMD Athlon II x4 Quad-core Processor

NVIDIA GeForce GTX 280

- > ARM big.LITTLE architecture
 - Two clusters on one chip
 - Cortex-A7 for power efficiency
 - Cortex-A15 for high performance

> Why heterogeneity?

- > Tilera Tile-Gx 72-core processor
 - Tilera founded by prof. Anant Agarwal at MIT in 2004

- Tiled architecture
- Mesh network
- Each core has
 - a processor
 - cache
 - switch

Reasons for Multicore in Cars

- > More computing power and less power dissipation
 - Similar die size, same or lower CPU clock frequency, parallel processing
 - Lower CPU clock frequency, computing power on demand, i.e. sleep modes for unused cores
- Separation of Applications
 - Specialized cores (FPP, DSP)
 - Various operating systems on the same ECU, e.g. OSEK and Linux
 - Legal reasons, e.g. software originating from multiple suppliers
- > Functional Safety
 - Avoidance of mutual interference → running application software components on separated cores
 - Redundancy → identical application running on 2 cores (lockstep mode)

Amdahl's Law

$$\geqslant$$
 Speedup = $\frac{1}{(1-p)+p/n}$

p: parallel portion, n: # of CPUs

Amdahl's Law

> Example

•
$$p = 0.5, n = 4 \rightarrow \frac{1}{(1-0.5)+0.5/4} = \frac{1}{0.625} = 1.6$$

Concurrency and Parallelism

- > Concurrency is not (only) parallelism
- > Interleaved Concurrency
 - Logically simultaneous processing
 - Interleaved execution on a single processor
- Parallelism
 - Physically simultaneous processing
 - Requires a multiprocessor system or multicore system

Types of Parallelism

- Parallelism in hardware
 - Pipelining
 - Superscalar, VLIW
 - SIMD processing
 - HW multithreading

- instruction level parallelism (ILP)
- } data level parallelism (DLP)
- thread level parallelism (TLP)

Parallelism in HW: Pipelining

- ➤ The basic instruction cycle is broken up into a series called a pipeline
- ➤ Each instruction is split up into a sequence of steps and executed in parallel (at the same time)

Inst r No.	Pipeline Stage							
1	IF	ID	EX	MEM	WB			
2		IF	ID	EX	MEM	WB		
3			IF	ID	EX	МЕМ	WB	
4				IF	ID	EX	МЕМ	
5					IF	ID	EX	
Clock Cycle	1	2	3	4	5	6	7	

Parallelism in HW: Superscalar

- ➤ A superscalar processor executes more than one instruction during a clock cycle
 - Using an execution resource within a single CPU such as an arithmetic logic unit, a bit shifter, or a multiplier

	IF	ID	EX	MEM	WB				
	IF	ID	EX	MEM	WB				
i		IF	ID	EX	MEM	WB			
t		IF	ID	EX	MEM	WB			
_			IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB
					IF	ID	EX	MEM	WB

Parallelism in HW: VLIW

> VLIW (Very Long Instruction Word)

Parallelism in HW: SIMD Processing

- Scalar processing
 - One operation produces one result
- > SIMD processing
 - One operation produces multiple results

Parallelism in HW: HW Multithreading

> The goal of hardware multithreading is to allow quick switching between threads

- Hardware registers need to be replicated such as the program counter
- Switching from one thread to another thread means the hardware switches from using one register set to another
- SMT exploits parallelism available across multiple threads to decrease the waste associated with unused issue slots

