

Contrôle continu de cinématique

1- Système mécanique à 3 solides rigides

Un système mécanique , constitué par 3 solides rigides S_1 , S_2 , S_3 est contenu dans le plan (xOy) d'un repère de référence R (O, \vec{x} , \vec{y} , \vec{z}) . Le solide S_1 , auquel est lié le repère R_1 (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$) est constitué par une tige OO_1 , de longueur L_1 ; sa position par rapport à R (O, \vec{x} , \vec{y} , \vec{z}) est repérée par l'angle ϕ_1 = (\overrightarrow{Ox} , $\overrightarrow{x_1}$). En O_1 est articulée une tige O_1C de longueur L_2 ; elle constitue le solide S_2 qui est assujeti à rester parallèle à Ox, on lui associe le repère R_2 (O_1 , $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$). Enfin S3 est un disque de rayon r , de centre C et la position d'un point P de sa circonférence est notée ϕ_3 = (\overrightarrow{Ox} , \overrightarrow{CP})., on lui associe le repère R_3 (C, $\overrightarrow{x_3}$, $\overrightarrow{y_3}$, $\overrightarrow{z_3}$). On choisit R_1 comme repère de projection.

Questions

- 1)
- a) Représenter sur des schémas plans la position des différents repères utilisés par rapport à R (
- O, \vec{x} , \vec{y} , \vec{z})
- b) Calculer \vec{V} (C/R)
- c) Déterminer le torseur $\{v_{S_3/R}\,\}$
- d) Calculer $\overrightarrow{V}(P/R)$ par la formule de transport des vecteurs vitesses de S₃
- e) Calculer $\overrightarrow{V}(P/R)$ par la composition des mouvements (R_1 : repère relatif)
- 2) Exprimer le vecteur accélération $\overrightarrow{ec{ec{\Gamma}}}\left(P/R
 ight)$

Etude d'un pendule double

La figure ci-dessous représente un pendule double constitué de deux tiges OA et AB

La tige OA est en liaison pivot d'axe (O, \vec{z}) avec le bâti.

La tige AB est en liaison pivot d'axe (A, \vec{z}) avec la tige OA

Soient trois repères : R (O, \vec{x} , \vec{y} , \vec{z}) lié au bâti, R₁(O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, \vec{z}) lié à la tige OA , R₂(A, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, \vec{z}) lié à la tige AB tels que :

$$\overrightarrow{OA} = a.\overrightarrow{x_1}$$
 (a>0)
 $\overrightarrow{AB} = b.\overrightarrow{x_2}$ (b>0)
 $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$
 $\beta = (\overrightarrow{x}, \overrightarrow{x_2})$

- 1) Déterminer le vecteur vitesse du point B par rapport au repère R : $\overrightarrow{V}(B/R)$
- 2) Déterminer le vecteur vitesse du point B par rapport au repère $R_1: \overrightarrow{V}\left(B/R_1\right)$
- 3) Déterminer le vecteur vitesse du point B appartenant au repère R_1 par rapport au repère $R: \overrightarrow{V} \ (B \in R_1/R)$
- 4) Déterminer le vecteur accélération du point B par rapport au repère R : $\vec{\Gamma}$ (B/R)
- 5) Déterminer le vecteur accélération du point B par rapport au repère $R_1: \overrightarrow{ec{\Gamma}} \ (B/R_1)$
- 6) déterminer le vecteur accélération du point B appartenant au repère R1 par rapport au repère R: $:\overrightarrow{\Gamma}(B\in R_1/R)$