§ 9. Связность

Понятие связности есть математически строгое отражение интуитивного представления о целостности геометрической фигуры.

<u>Определение</u> Топологическое пространство X называется **несвязным**, если его можно представить в виде объединения двух непустых непересекающихся открытых (замкнутых) множеств

$$X = \Phi_1 \cup \Phi_2$$

в противном случае пространство называется связным.

 $\underline{3aмечаниe}$ Множества Φ_1, Φ_2 связаны соотношениями $\Phi_1 = X \setminus \Phi_2,$ $\Phi_2 = X \setminus \Phi_1$ поэтому эти множества одновременно и открыты и замкнуты. Все дальнейшие утверждения данного параграфа сформулированные для открытых множеств будут справедливы для замкнутых множеств и наоборот.

Множество М топологического пространства X называется связным, если оно является связным рассматриваемое как подпространство.

<u>Теорема</u> 1 Пусть в топологическом пространстве X даны два непустых непересекающихся замкнутых множества Φ_1 и Φ_2 и непустое связное множество M, содержащееся в объединении множеств $\Phi_1 \cup \Phi_2$ тогда множество M содержится в каком-нибудь одном множестве Φ_1 или Φ_2 .

> Имеем, что $M \subset \Phi_1 \cup \Phi_2$. Представим множество M в виде $M = \big(M \cap \Phi_1\big) \cup \big(M \cap \Phi_2\big) \ .$

Так как Φ_1 и Φ_2 замкнуты, то множества $M \cap \Phi_1$ и $M \cap \Phi_2$ замкнуты в M. Так как множество M связно, то одно из множеств $M \cap \Phi_1$ или $M \cap \Phi_2$ должно быть пустым, откуда и следует утверждение теоремы. \triangleleft

 $\underline{Teopema}$ 2 Если для любых двух точек x и y пространства X можно найти связное множество C_{xy} , содержащее эти точки, тогда все пространство X связно.

⊳ Предположим, что все пространство X несвязно т.е.

$$X = \Phi_1 \cup \Phi_2$$
,

где Φ_1 и Φ_2 непустые непересекающиеся множества. Возьмем $x \in \Phi_1$, а $y \in \Phi_2$. Тогда связное множество C_{xy} , имеющее с множеством Φ_1 общую точку х должно содержаться в этом множестве. С другой стороны $y \in \Phi_2 \cap C_{xy}$ и, следовательно, мно-

жество C_{xy} должно содержаться во множестве Φ_2 . Но множества Φ_1 и Φ_2 не пересекаются. Полученное противоречие и доказывает теорему. \triangleleft

<u>Терема</u> 3 Присоединяя к связному множеству С любое число точек прикосновения, получим связное множество.

⊳ Предположим противное, тогда полученное множество C_0 представимо в виде $C_0 = \Phi_1 \cup \Phi_2$, где Φ_1 и Φ_2 непустые непересекающиеся замкнутые множества. Тогда связное множество $C \subset \Phi_1 \cup \Phi_2$ и по теореме 1 оно должно содержаться в одном из двух множеств, входящих в объединение. Пусть $C \subset \Phi_1$. Тогда, так как Φ_1 - замкнуто, то любая точка прикосновения множества $C \subset \Phi_1$ должна также принадлежать множеству Φ_1 , получили, что $C_0 \subset \Phi_1$, а следовательно $\Phi_2 = \emptyset$. Получили противоречие, которое доказывает теорему. \triangleleft

 $\underline{Teopema}$ 4 Пусть в топологическом пространстве X, дана система (любой мощности) связных множеств M_{α} , причем пересечение всех этих множеств не пусто. Тогда их объединение является связным множеством.

> Предположим, что $M = \bigcup_{\alpha} M_{\alpha}$ не связно, т.е.

$$M=\Phi_1\bigcup\Phi_2\,,$$

тогда связные множества M_{α} должны содержаться либо в Φ_1 , либо в Φ_2 . По условию теоремы существует точка а, принадлежащая всем множествам M_{α} . Пусть $a\in\Phi_1$, тогда все $M_{\alpha}\subset\Phi_1$, а $\Phi_2=\varnothing$. Получили противоречие, доказывающее теорему. \lhd

<u>Определение</u> **Компонентой топологического пространства** называется любое его максимальное связное множество.

Если топологическое пространство связно, то оно является единственной своей компонентой.

<u>Теорема</u> 5 Каждое связное множество топологического пространства содержится в некоторой компоненте. Любая компонента топологического пространства является замкнутым множеством; любые различные компоненты отделены.

- ▶ 1. Пусть М произвольное непустое связное множество. Обозначим через К объединение всех связных множеств, содержащих М. Эти множества пересекаются (по М). По теореме 4 множество К связно. Если некоторое связное множество А содержит К, то А¬М и, значит А¬К. Следовательно А=К. Это означает что, К максимальное связное множество, т.е. компонента, содержащая множество М.
- 2. Пусть К произвольная компонента топологического пространства. По определению компоненты множество К связно. Но замыкание множества К, также связно. Учитывая максимальность компоненты К получаем включение $K \supset \overline{K}$. С учетом обычного включения $K \subset \overline{K}$ получаем $K = \overline{K}$. Последнее равенство означает замкнутость множества К.
- 3. Если K_1 и K_2 две различные не отделенные компоненты. Тогда $K_1 \cup K_2$ связно по теореме 4, причем каждое из множеств K_1 и K_2 и содержится в объединении $K_1 \cup K_2$, что противоречит определению компоненты. Итак две различные компоненты отделены. \triangleleft

<u>Определение</u> Открытое и связное множество топологического пространства называется **областью**.

<u>Определение</u> Топологическое пространство называется **локально связным**, если семейство его областей образует базу топологии.

§ 10. Непрерывные отображения топологических пространств

Представим интерпретацию классического понятия непрерывной функции:

Обобщение этого понятия ведет к понятию непрерывного отображения в метрических пространствах:

Определение Отображение f метрического пространства (X, ρ_1) в метрическое пространство (Y, ρ_2) непрерывно в точке x_0 если для любого положительного числа ε существует такое положительное число δ , что из неравенства $\rho(x,x_0)<\delta$ следует неравенство $\rho(f(x),f(x_0))<\varepsilon$.

Пусть (X,τ) и (Y,μ) - топологические $f:X\to Y$ - отображение из X в Y.

<u>Определение</u> Отображение f называется **непрерывным в точке** $x_0 \in X$, если для любой окрестности v точки $y_0 = f(x_0)$ существует такая окрестность u точки x_0 , что $f(u) \subset v$. Отображение f называется непрерывным на множестве X, если оно непрерывно в каждой точке $x \in X$.

Примеры.

- 1. Для произвольных метрических пространств X и Y постоянное отображение является непрерывным.
- 2. Тождественное отображение топологического пространства самого на себя является непрерывным.
- 3. Непрерывную функцию можно рассматривать как непрерывное отображение из топологического пространства R^1 в топологическое пространство R^1 .

<u>Теорема</u>. Пусть $f: X \to Y$ - отображение топологических пространств, тогда эквивалентны следующие условия:

- 1. f непрерывно на X;
- 2. $f(\overline{A}) \subset \overline{f(A)}$;
- 3. для всякого B замкнутого в Y, $f^{-1}(B)$ замкнуто в X;
- 4. для всякого V открытого в Y, $f^{-1}(V)$ открыто в X.

<u>Доказательство</u>. 1) \Rightarrow 2) т.к. если $x \in \overline{A}$, то пусть W окрестность точки f(x) в Y, тогда существует окрестность U точки x в X, т.ч. $f(U) \subset W$ (т.к. f непрерывно на X) и $U \cap A \neq \emptyset$, т.е. существует

 $y \in U \cap A$, но тогда $f(y) \in W \cap f(A)$, т.е. $f(y) \in \overline{f(A)}$.

2) \Rightarrow 3) Пусть *B* замкнуто в *Y* , положим $A = f^{-1}(B)$, тогда из

(2) следует
$$f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B$$
 , т.о. $f(\overline{A}) \subset B$, но тогда $\overline{A} \subset f^{-1}(B) = A$, следовательно

 $\overline{A} = A \text{ (T.K. } A \subset \overline{A} \text{), T.o. } A \text{ - 3amkhyto.}$

3) \Rightarrow 4) Пусть V открыто в Y, и пусть $U = f^{-1}(V)$, тогда $Y \setminus V$ - замкнуто в Y и $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) = X \setminus U$ - замкнуто. Т.о. U - открыто в X.

4) \Rightarrow 1) Пусть $x \in X$, и V окрестность точки f(x) в Y, тогда (см. определение окрестности) существует открытое множество $W \subset V$, т.ч. $f(x) \in W$, тогда $f^{-1}(W)$ открыто в X и $x \in f^{-1}(W)$, т.е. $f^{-1}(W)$ - окрестность точки x в X. Теорема доказана.

<u>Теорема</u> 2 Отображение f топологического пространства (X, τ) в пространство (Y, μ) непрерывно тогда и только тогда, когда образ замыкания произвольного множества A пространства X содержится в замыкании образа множества, т.е. $f(\overline{A}) \subset \overline{f(A)}$

Данное утверждение примем без доказательства.

<u>Теорема</u> 3. Если f- непрерывное отображение топологического пространства X в топологическое пространство Y, а φ - непрерывное отображение Y в топологическое пространство Z, то композиция $\varphi \circ f$ является непрерывным отображением X в Z.

⊳ Возьмем произвольное открытое множество и пространства Z. В силу непрерывности отображения $\varphi: Y \to Z$, прообраз $\varphi^{-1}(u)$ есть открытое множество топологического пространства Y. Аналогично $f^{-1}(\varphi^{-1}(u))$ при непрерывном отображении $f: X \to Y$ открыт в X. Так как $f^{-1}(\varphi^{-1}(u)) = (\varphi \circ f)^{-1}$, то мы получили, что при отображении $\varphi \circ f$ прообраз открытого множества открыт. Следовательно отображение непрерывно. \triangleleft

Открытые и замкнутые отображения

Выше было доказано, что при непрерывном отображении прообраз непрерывного отображения открыт, а замкнутого замкнут. Для образов при непрерывных отображениях такого рода утверждения не имеют место. Рассмотрим несколько примеров:

Примеры

- 1. Непрерывное отображение $f: R^1 \to R^1$, где f(x) = arctgx отображает бесконечный интервал $f: R^1 \to R^1$ в интервал $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$., т.е. открытое и замкнутое множество в отрытое но не замкнутое множество.
- 2. Непрерывное отображение $f: R^1 \to R^1$, где $f(x) = \frac{1}{1+x^2}$ отображает открытое и замкнутое множество $R = (-\infty; +\infty)$ в полуинтервал (0;1] который не является ни открытым ни замкнутым множеством.

<u>Определение</u> Непрерывное отображение $f: X \to Y$ топологического пространства X в топологическое пространство Y называется **открытым**, если при этом отображении образ открытого множества открыт.

<u>Определение</u> Непрерывное отображение $f: X \to Y$ топологического пространства X в топологическое пространство Y называется **замкнутым**, если при этом отображении образ замкнутого множества замкнут.

Примером одновременно открытого и замкнутого отображения является тождественное отображение.

Отображение вложения $i:A \to X(A \subset X, i(x) = x)$ открыто тогда и только тогда, когда множество A отрыто в X, и замкнуто тогда и только тогда, когда A замкнуто в X.

Очевидно, что композиция отрытых отображений - открытое отображение; композиция замкнутых отображений - замкнутое отображение.

Непрерывные отображения связных пространств.

<u>Теорема</u> Непрерывный образ связного пространства связен

⊳ Пусть отображение $f: X \to Y$ непрерывно и сюръективно, т.е. f(X) = Y. Предположим, что пространство Y несвязно. Тогда его можно представить в виде объединения двух непустых непересекающихся открытых (замкнутых) множеств, т.е. $Y = A \cup B$. Рассмотрим $G_1 = f^{-1}(A)$ и $G_2 = f^{-1}(B)$. В силу непрерывности отображения эти множества открыты (замкнуты), не являются пустыми множествами и $G_1 \cap G_2 = \emptyset$, кроме того, очевидно, что $X = G_1 \cup G_2$. Таким образом получили, что связное пространство X представлено в виде объединения двух непустых непересекающихся открытых (замкнутых) множеств. Полученное противоречие доказывает теорему. ⊲

<u>Следствие</u> Если топологическое пространство связно и непрерывная функция $f: X \to R^1$ принимает в точках X значения a и b, $(a \ne b)$ то в некоторой точке X она принимает любое значение, лежащее между a и b.

(Данное следствие обобщает теорему анализа о промежуточном значении). Пусть X - топологическое пространство. **Путем** в X называется непрерывное отображение отрезка [a;b] числовой прямой в X. Путь $l:[a;b] \to X$ называют соединяющим точки x_1 и x_2 в X, если $l(a) = x_1$, $l(b) = x_2$. Пространство, любые две точки которого можно соединить путем называется линейно связным.

<u>Теорема</u> Всякое линейно связное пространство связно.

ightharpoonup Пусть x_1 и x_2 - произвольные точки линейно связного пространства X. Тогда существует непрерывное отображение $l:[a;b] \to X$, такое что $l(a) = x_1$, $l(b) = x_2$. В топологическом пространстве R^1 - отрезок [a;b] - связен, следовательно при непрерывном отображении его образ также связен. Следовательно по теореме 2 предыдущего параграфа пространство X - связно. \lhd

 $\underline{\mathit{Замечаниe}}$: Обратное утверждение не верно. Например, пространство $X=A_1\bigcup A_2$,

где

$$A_{1} = \left\{ \left(x_{1}, x_{2} \right) \in R^{2} \middle| x_{1} \in \left(0; \frac{1}{\pi} \right], x_{2} = \sin \frac{1}{x_{1}} \right\},$$

$$A_{2} = \left\{ \left(x_{1}, x_{2} \right) \in R^{2}; x_{1} = 0, x_{2} = \left[-1; 1 \right] \right\}$$

с естественной топологией является связным пространством, но не линейно связным.

Гомеоморфизм. Топологически эквивалентные пространства

<u>Определение</u> Взаимно однозначное и взаимно непрерывное отображение одного топологического пространства на другое называется **гомеоморфизмом**.

Если существует гомеоморфное отображение одного пространства на другое, то пространства называются *гомеоморфными*.

Из теорем этого параграфа вытекает утверждение:

- 1. Гомеоморфизм является одновременно открытым и замкнутым отображением;
- 2. Взаимно однозначное открытое (замкнутое) отображение является гомеоморфизмом.
- 3. Взаимно однозначное отображение $f: X \to Y$ является гомеоморфизмом тогда и только тогда, когда для любого множества $A \subset X$ $f(\overline{A}) = \overline{f(A)}$.

Очевидно. что тождественное преобразование - гомеоморфизм, обратное к гомеоморфизму - гомеоморфизм, композиция двух гомеоморфизмов - гомеоморфизм. Следовательно отношение гомеоморфности является отношением эквивалентности.

<u>Определение</u> Два топологических пространства называются топологически эквивалентными или имеющими один топологический тип, если существует гомеоморфизм одного пространства на другое.

У топологически эквивалентных пространств топологии являются образами и прообразами. Поэтому такие пространства обладают одинаковыми топологическими свойствами.

Примеры

- 1. Любое отображение дискретного пространства в топологическое пространство непрерывно. Следовательно два дискретных пространства гомеоморфны, тогда и только тогда, когда существует взаимно однозначное отображение одного пространства на другое.
- 2. Числовая прямая гомеоморфна интервалу (0;1). Гомеоморфизм устанавливает функция $y = \frac{1}{\pi} arctgx + \frac{1}{2} \, .$
- 3. Сфера и поверхность куба в пространстве R^3 гомеоморфны. (На сфере и кубе естественная топология индуцируется топологией пространства R^3). Если совместить центры сферы и куба, то гомеоморфизмом будет отображение проектирования из общего центра.

Свойство топологического пространства, сохраняющееся при гомеоморфизме, называют *топологическим инвариантом* или *топологическим свойством*.

Другими словами, топологический инвариант - это такое свойство топологического пространства, которым обладают все гомеоморфные данному пространства.

Примерами топологических инвариантов являются связность, выполнимость первой или второй аксиом счетности, а также аксиом отделимости. Иногда и саму топологию определяют как науку о топологических инвариантах.