Diseño y fabricación de CNC router de tres ejes

Universidad Nacional de ingeniería

FTI

Ingeniería Mecánica

Monografiantes

Ariel Cisnero
Richard Valverde

Tutora

Mary Triny Gutierrez Mendoza

Objetivo Principal

Establecer los principios básicos de diseño de un router CNC garantizando la confiabilidad de los mecanismos utilizados en la máquina.

Objetivos secundarios

- Plantear un diseño lo suficientemente robusto para lograr elaborar piezas de buena calidad.
- Definir el conjunto de piezas adecuadas dentro del diseño mecánico para que sea posible la fabricación del router CNC, tratando de mantener un balance entre fiabilidad y economía de manufactura.
- Fabricar la maquina (router CNC) lo más fielmente posible a los datos obtenidos en la fase de diseño.

¿Qué es un CNC?

- El control numérico computarizado es el uso de una computadora para controlar y monitorear los movimientos de una máquina herramienta.
- Todas las máquinas CNC comparten una característica en común tienen dos o más direcciones programables de movimiento llamadas ejes

Metodología

"Se podría definir la actividad creativa como un tipo de proceso de aprendizaje en el que el profesor y el alumno se hallan en el mismo individuo."

— Arthur Koestler

Definición del problema

Se diseñará una máquina (CNC) capaz de mecanizar plásticos y maderas en tres ejes con un volumen de maquinado de 25x25x15cm como el que se muestra en la imagen con una tolerancia de 0.5mm dentro del estándar de código G.

Mecánica

Electrónica

Optimización

Presentación

GASTOS FINACIEROS

Aspectos financieros

Gasto total							
Tipo de Gastos	Total C\$	Total \$					
Mecánica	C\$ 27.731,15	\$843,86					
Electrónica	C\$ 15.534,64	\$507,19					
Mano de Obra	C\$ 19.200,00	\$581,82					
Total	C\$ 62.465,80	\$1.932,86					

Manufactura

Planeación

"No se puede medir lo que no se ha planeado"

Nombre de tarea	Duración	Comienzo	Fin		e '19 07 14) '19)4 11 18	mar	'19 11 18 25	abr '19
Actualizacion de piezas CNC	75 días	lun 07/01/19	vie 26/04/19	,					
Eje Y	10 días	lun 07/01/19	vie 18/01/19						
Fabricacion de base	4 días	lun 07/01/19	jue 1 0/0 1 /19						
alineacion de guias lineares	6 días	vie 11/01/1 9	vie 18/01/19						
fabricacion de bancada	2 días	mar 15/01/1	mié 16/01/19		on the second				
Ensamble y ajuste de conjunto bancada ,base y tuerca	2 días	jue 17/01/19	vie 18/01/19		i				
Eje x	10 días	lun 21/01/19	vie 01/02/19		ı				
Eje Z	34 días	vie 01/02/19	mié 20/03/19						
Pintura	8 días	mar 19/03/1	jue 28/03/19						
Ensamblaje final	16 días	vie 29/03/19	vie 26/04/19						

Ejecución

Ejecución

Pruebas operativas

- El objetivo de este apartado verificar la precisión de la maquina mientras se desarrolla un proyecto demostrativo.
- Para optimizar el resultado el proyecto que se realizo ya había sido fabricado anteriormente de manera artesanal esto con el fin de comparar el rendimiento entre procesos.

Pruebas operativas

Pruebas operativas

Resultados

Columna1	Cantidad de piezas	Proceso de manufactura	Tiempo(hrs)	Tolerancia promedio 🔽
V1 Mecanismo Theo jansen artesanal	31	Manual	272	0.65
V2 Mecanismo Theo jansen con CNC	55	CNC	64	0

Variacion del error por pieza

Conclusiones

- En esta ocasión la mejora de la máquina diseñada y fabricada tuvo el alcance deseado y por ende los objetivos planteados para esta monografía fueron realizados de manera satisfactoria.
- La hipótesis planteada al inicio del documento se demuestra porque la fabricación de la máquina proporcionará mejoras en la enseñanza de las diferentes asignaturas relacionadas a este tipo de máquinas, también ayudará a practicar si en un futuro se obtienen máquinas industrializadas de este tipo debido a que se basan en el mismo principio de funcionamiento.

