

Quality Attribute Scenarios

Software Architecture 3rd Year – Semester 1 Lecture 12

Quality Attribute Scenarios (QAS)

- A universal and formal way to express Quality Attributes.
- The goal of a QAS is to capture unambiguous and testable quality requirements in the same way as use case scenarios do for functional requirements.

General Vs. Concrete Quality Attribute Scenarios

- A general scenario is system independent and can, potentially, pertain to any system.
- A concrete scenario is specific to the particular system under consideration.
- Concrete scenarios are needed to make the quality requirements operational.
- A collection of concrete scenarios can be used as the quality attribute requirements for a system.

Template for QAS

- 1. SOURCE: identifies the originator of the event or action: it can be a user or another system [who]
- 2. STIMULUS: describes the action or the external event that arrives at the system [action]
- 3. ENVIRONMENT: describes the external circumstances under which the quality requirement needs to be met [when]
- **4. ARTIFACT:** indicates the part of the system to which the quality requirement applies [what]
- RESPONSE: tells us how the system reacts to the stimulus [result]
- **6. RESPONSE MEASURE:** provides metrics and quantifies the quality attribute [measurement]

Availability (QAS)

- Concerned with system failure and it's consequences
- Faults and failures
 - Using the wrong algorithm for computation
 - Miscalculation / incorrect output
- Concerns on failure
 - Frequency
 - Results
 - Non-operative time
 - Prevention
 - Notifications
- The availability of a system is the probability that it will be operational when it is needed

α = mean time to failure mean time to failure + mean time to repair

Availability General Scenario

Artifact

System's processors

Communication channels

Persistent storage

Source

Internal to system

External to system

Stimulus

Crash

Omission

Timing

No response

Incorrect response

Environment

Normal operation

Startup

Shutdown

Repair mode

Degraded (failsafe) mode

Overloaded operation

Response

Prevent the failure

Log the failure

Notify users / operators

Disable source of failure

Temporarily unavailable

Continue (normal / degraded)

Measure

Time interval available

Availability %

Detection time

Repair time

Degraded mode time interval

Unavailability time interval

Availability General Scenario

Portion of Scenario	Possible Values
Source	Internal to the system; external to the system
Stimulus	Fault: omission, crash, timing, response
Artifact	System's processors, communication channels, persistent storage, processes
Environment	Normal operation;
Environment	degraded mode (i.e., fewer features, a fall back solution)
	System should detect event and do one or more of the following:
	record it
	notify appropriate parties, including the user and other systems
Response	disable sources of events that cause fault or failure according to defined rules
	be unavailable for a prespecified interval, where interval depends on criticality of
	system
	continue to operate in normal or degraded mode
Response Measure	Time interval when the system must be available
	Availability time
	Time interval in which system can be in degraded mode
	Repair time

Availability Concrete Scenario

E.g. An unanticipated external message is received by a process during normal operation. The process informs the operator of the receipt of the message and continues to operate with no downtime.

Exercise: Availability Concrete Scenario

Q: Write a Concrete Quality Attribute Scenario for Word Application.

A: Kill Signal is received from the Windows OS to Ms. Word Application during process Not Responding state and the application saves unsaved work in a temp file and process terminates without any data loss.

Element	Value
Source	Windows Operating System
Stimulus	Kill Signal sent to the Word process
Environment	During normal usage, but app is in "Not Responding" state
Artifact	Microsoft Word Application
Response	Save unsaved work in a temporary file, then terminate process
Response Measure	No data loss; Recovery possible on next app launch; Recovery time < 5 seconds

Modifiability (QAS)

- Modifiability is about the cost of change.
- It brings up two concerns:
 - What can change (the artifact)?
 - Functions, Platform, Environnent, Protocol, Qualities, Capacity
 - When is the change made and who makes it (the environment)?
 - A developer, an end user, or a system administrator.
 - At Implementation, Compilation, Build, Configuration, Execution

Modifiability General Scenario

Source

End-user

Developer

Systemadministrator

Stimulus

Add / delete / modify functionality, quality attribute, capacity or technology

Environment

Runtime

Compile time

Build time

Initiation time

Design time

Response

Make modification

Test modification

Deploy modification

Measure

Cost in effort

Cost in money

Cost in time

Cost in number, size, complexity of affected artifacts

Extent affects other system functions or qualities

11

New defects introduced

Modifiability General Scenario

Portion of Scenario	Possible Values
Source	End user, developer, system administrator
Stimulus	Wishes to add/delete/modify/vary functionality, quality attribute, capacity
Artifact	System user interface, platform, environment; system that interoperates with target
Artifact	system
Environment	At runtime, compile time, build time, design time
Response	Locates places in architecture to be modified; makes modification without affecting
	other functionality; tests modification; deploys modification
Response Measure	Cost in terms of number of elements affected, effort, money; extent to which this
-	affects other functions or quality attributes

Modifiability Concrete Scenario

E.g. A developer wishes to change the user interface to make a screen's background color blue. This change will be made to the code at design time. It will take less than three hours to make and test the change and no side effect changes will occur in the behavior.

Exercise: Modifiability Concrete Scenario

Q: Write a Concrete Quality Attribute Scenario for updating database Password on a 3 Tier application.

A: System Administrator wishes to change the password of the database configuration file on the Data Tier at the System Maintenance Time; the activity takes 2 minutes and the application is able to connect to the Database without any issues.

QAS Element	Details
Source	System Administrator
Stimulus	Wishes to change the password in the database configuration file
Artifact	Database configuration file on the Data Tier
Environment	During scheduled system maintenance time
Response	Password is updated; application reconnects successfully without any issues
Response Measure	Update completed within 2 minutes with zero downtime or side effects

Performance (QAS)

- Performance is about timing. Events (interrupts, messages, requests from users, or the passage of time) occur, and the system must respond to them.
- There are a variety of characterizations of event arrival and the response but basically performance is concerned with how long it takes the system to respond when an event occurs

Performance General Scenario

Source

Internal to the system

External to the system

Stimulus

Periodic events

Sporadic events

Bursty events

Stochastic events

Environment

Normal mode

Overload mode

Reduced capacity mode

Emergency mode

Peak mode

Response

Process events

Change level of service

Measure

Latency

Deadline

Throughput

Jitter

Miss rate

Data loss

Performance General Scenario

Portion of Scenario	Possible Values
Source	One of a number of independent sources, possibly from within system
Stimulus	Periodic events arrive; sporadic events arrive; stochastic events arrive
Artifact	System
Environment	Normal mode; overload mode
Response	Processes stimuli; changes level of service
Response Measure	Latency, deadline, throughput, jitter, miss rate, data loss

Performance Concrete Scenario

E.g. Users initiate 1,000 transactions per minute randomly under normal operations, and these transactions are processed with an average latency of two seconds.

Exercise: Performance Concrete Scenario

Q: Write a Concrete Quality Attribute Scenario for A banking application for a Weekly Transaction Report.

A: The Finance Analyst schedules weekly report of the Banking Application during Normal Operational Time (8am-5pm), the process starts to execute at the Off-Peak Time (between 10pm-2am) and the Report Excel File generates successfully within 30 minutes.

QAS Element	Details	ð
Source	Finance Analyst	
Stimulus	Requests/schedules weekly transaction report generation	
Artifact	Report generation module of the Banking Application	
Environment	Normal operation at scheduling time; Off-peak time at execution (10pm-2	am)
Response	System generates the Excel report successfully within expected time	
Response Measure	Latency = Max 18 hours (from 8am to 2am) Deadline = 18 hrs + 30 mins (including generation time)	

Security (QAS)

- Security is a measure of the system's ability to resist unauthorized usage while still providing its services to legitimate users.
- An attempt to breach security is called an attack and have many forms;
 - Unauthorized attempt to access data
 - Modify data
 - Intended to deny services to legitimate users.
- Characterization
 - Nonrepudiation: Transaction cannot be denied by any of the parties
 - Confidentiality: Data or services are protected from unauthorized access.
 - Integrity: Data or services are being delivered as intended.
 - Assurance or authenticity: The parties to a transaction are who they purport to be
 - Availability (no denial of service): The system will be available for legitimate use
 - Auditing: The system tracks activities

Security General Scenario

Source

Identified user

Unknown user

Hacker from outside the organization

Hacker from inside the organization

Stimulus

Attempt to display data

Attempt to modify data

Attempt to delete data

Access system services

Change system's behavior

Reduce availability

Environment

Online or Offline

Connected or Disconnected

Firewalled or Open

Response

User Authentication Identification

Allow/Blocks Access

Grant/Withdraw Permission

Data Readability

Measure

Time/Effort/ Resources

Probability of Success

Probability of Detection

Percentage of Accesibility

Security General Scenario

Portion of Scenario	Possible Values
	Individual or system that is correctly identified, identified incorrectly, of unknown
Source	identity who is internal/external, authorized/not authorized with access to limited
	resources, vast resources
Stimulus	Tries to display data, change/delete data, access system services, reduce availability
Otimura 0	to system services
Artifact	System services; data within system
Environment	Either online or offline, connected or disconnected, firewalled or open
	Authenticates user; hides identity of the user; blocks access to data and/or services;
	allows access to data and/or services; grants or withdraws permission to access data
Pasnonsa	and/or services; records access/modifications or attempts to access/modify
Response	data/services by identity; stores data in an unreadable format; recognizes an
	unexplainable high demand for services, and informs a user or another system, and
	restricts availability of services
Response Measure	Time/effort/resources required to circumvent security measures with probability of
-	success; probability of detecting attack; probability of identifying individual responsible
	for attack or access/modification of data and/or services; percentage of services still
	available under denial-of-services attack; restore data/services; extent to which
	data/services damaged and/or legitimate access denied

Security Concrete Scenario

E.g. A correctly identified individual tries to modify system data from an external site; system maintains an audit trail and the correct data is restored within one day.

SE 3030 (SLIIT) by Chathura R De Silva 23

Testability (QAS)

- Software testability refers to the ease with which software can be made to demonstrate its faults through (typically execution-based) testing.
 - At least 40% of the cost of developing well-engineered systems is taken up by testing.
- For a system to be properly testable, it must be possible to control each component's internal state and inputs and then to observe its outputs

Testability General Scenario

Source

Unit tester

Integration tester

System tester

Acceptance tester

End user

Automated testing tools

Stimulus

Execution of tests due to completion of code increment

Environment

Design time

Development time

Compile time

Integration time

Deployment time

Run time

Response

Execute test suite & capture results

Capture cause of fault

Control & monitor state of the system

Measure

Effort to find fault

Effort to achieve coverage %

Probability of fault being revealed by next test

Time to perform tests

Effort to detect faults

Length of longest dependency chain

Time to prepare test environment

Reduction in risk exposure

Testability General Scenario

Portion of Scenario	Possible Values
Source	Unit developer; Increment integrator; System verifier; Client acceptance tester;
Jource	System user
Stimulus	Analysis, architecture, design, class, subsystem integration completed; system
	delivered
Artifact	Piece of design, piece of code, complete application
Environment	At design time, at development time, at compile time, at deployment time
Response	Provides access to state values; provides computed values; prepares test
	environment
Response Measure	Percentage of the statements executed; Probability of failure if fault exists; Time to
	perform tests; Length of longest dependency chain in a test Length of time to prepare
	test environment

Testability Concrete Scenario

E.g. A unit tester performs a unit test on a completed system component that provides an interface for controlling its behavior and observing its output; 85% path coverage is achieved within three hours.

Usability (QAS)

- How easy it is to learn the features of the system
- How efficiently the user can use the system
- How well the system handles user errors
- How well the system adapts to user needs
- To what degree the system gives the user confidence in the correctness of its actions.

Usability General Scenario

Source

End user (possibly special role)

Stimulus

Use the system efficiently

Learn to use the system

Minimize impact of errors

Adapt the system

Configure the system

Environment

Runtime

Configuration time

Response

Provide features needed

Anticipate the user's needs

Measure

Task time

Number of errors

Number of tasks accomplished

User satisfaction

Gain of user knowledge

Ratio of successful operations to total operations

Amount of time / data lost when error occurs

Usability General Scenario

Portion of Scenario	Possible Values	
Source	End user is always the source (can be broken down to user roles/actors)	
Stimulus	Wants to learn system features; use system efficiently; minimize impact of errors;	
Juliuus	adapt system; feel comfortable	
Artifact	System (or a part of the system the user is interacting)	
Environment	At runtime or configure time	
	System provides one or more of:	
	 To support learn system features 	
Response	 To support use system efficiently 	
Response	 To minimize impact of errors 	
	 To adapt system: customizability; internationalization 	
	 To feel comfortable: display system state; work at the user's pace 	
Response Measure	Task time, number of errors, number of problems solved, user satisfaction, gain of	
	user knowledge, ratio of successful operations to total operations, amount of time/data	
	lost	

Usability Concrete Scenario

E.g. A user, wanting to minimize the impact of an error, wishes to cancel a system operation at runtime; cancellation takes place in less than one second.

Exercise (offline)

- Refer a few existing software systems (e.g. your Group Case Study) and identify 2-3 quality attribute scenarios for the Main Quality Attribute(s) Under consideration
- Check with the actual Software System documentation / agreements / guides if the above identified Quality Attribute response measures are stated
- Propose new Quality Attribute Scenarios for your system under considerations

Tactics

 An architectural tactic is a means of satisfying a quality attribute response measure by manipulating some aspect of a quality attribute model through architectural decisions

NEXT LECTURE:

Ways to improve Quality Attributes

Tactics Framework

References

- http://www.ece.ubc.ca/~matei/EECE417/BASS/ch04lev1sec4.html
- http://etutorials.org/Programming/Software+architecture+in+practic e,+second+edition/Part+Two+Creating+an+Architecture/Chapter+4.+ Understanding+Quality+Attributes/4.4+Quality+Attribute+Scenarios+i n+Practice/