

Table of Contents

ist Of tables	2
Table of figures	2
Problem 1: Linear Regression	5
Question 1.1	ε
Answer 1.1	ε
Question 1.2	15
Answer 1.2	15
Question 1.3	16
Answer 1.3	17
Question 1.4	26
Answer 1.4	26
Problem 2: Logistic Regression and LDA	28
Question 2.1	28
Answer 2.1	28
Question 2.2	34
Answer 2.2	34
Question 2.3	36
Answer 2.3	36
Question 2.4	46
Answer 2.4	46

List Of tables

Table 1:Model comparison	26
Table 2:Model comparison	40
Table 3:Model comparison	45
Table of figures	
Figure 1: Dataset Information	6
Figure 2: Dataset Description	θ
Figure 3: Null Values	
Figure 4: Records with Null Values	
Figure 5: Zero Value Records	
Figure 6: Duplicated Records	8
Figure 7: Variable 'depth'	g
Figure 8: Variable 'carat'	g
Figure 9: Variable 'table'	g
Figure 10: Variable 'x'	10
Figure 11: Variable 'y'	10
Figure 12: Variable 'Z'	10
Figure 13: Variable 'Price'	11
Figure 14: Boxplot	11
Figure 15: Boxplot	11
Figure 16: Boxplot	12
Figure 17: Heatmap	12
Figure 18: Pairplot	13
Figure 19: Columns after Label Encoding	14
Figure 20: Boxplot After Outlier Treatment	14
Figure 21: Null Values	15
Figure 22: Null Values after Data Modification	15
Figure 23: Null values After Imputation	16
Figure 24: One Hot Encoding	17
Figure 25: Model 1 Regression Analysis	18
Figure 26: Scatter Plot Between Actual and Predicted Price	19
Figure 27: Variance Inflation Factor	19
Figure 28: Model 2 Regression Analysis	20
Figure 29: Scatter Plot Between Actual and Predicted Price	20
Figure 30: Variance Inflation Factor	21
Figure 31: Model 3 Regression Analysis	22
Figure 32: Scatter Plot Between Actual and Predicted Price	22
Figure 33: Variance Inflation Factor	23
Figure 34: Model 4 Regression Analysis	24

Figure 35: Variance Inflation Factor	24
Figure 36: Modified Columns	25
Figure 37: Model 5 Regression Analysis	25
Figure 38: Linear Regression Equation	26
Figure 39: Dataset Information	28
Figure 40: Dataset Description	29
Figure 41: Null Values	29
Figure 42: Holliday_Package Value Count	29
Figure 43: Foreign Value Count	29
Figure 44: Variable 'Salary'	30
Figure 45: Variable 'Age'	30
Figure 46: Variable 'Educ'	30
Figure 47: Variable 'No_young_children'	31
Figure 48; Variable 'No_older_children'	31
Figure 49: Count plot of Educ	32
Figure 50: Count Plot of no_young_children	32
Figure 51: Count plot of no_older_children	32
Figure 52: Count Plot of foreign	33
Figure 53: Heatmap	33
Figure 54: Pairplot	34
Figure 55: Label Encoding	35
Figure 56:Grid Search CV	35
Figure 57: Best Parameters	35
Figure 58: Linear Discriminant Analysis	36
Figure 59: ROC Curve	36
Figure 60: Classification Report	37
Figure 61: Confusion Matrix	37
Figure 62: ROC Curve	37
Figure 63: Classification Report	38
Figure 64: Confusion Matrix	38
Figure 65: ROC Curve	38
Figure 66: Classification Report	39
Figure 67: Confusion Matrix	39
Figure 68: ROC Curve	39
Figure 69: Classification Report	39
Figure 70: Confusion Matrix	40
Figure 71: Boxplot	41
Figure 72: Grid Search CV	41
Figure 73: Best Parameters	41
Figure 74: ROC Curve	42
Figure 75: Classification Report	42
Figure 76: Confusion Matrix	42

Figure 77: ROC Curve	43
Figure 78: Classification Report	43
Figure 79: Confusion Matrix	43
Figure 80: ROC Curve	44
Figure 81: Classification Report	44
Figure 82: Confusion Matrix	44
Figure 83: ROC Curve	45
Figure 84: Classification Report	45
Figure 85: ConfusionMatrix	45
Figure 86: Coefficients	46

Problem 1: Linear Regression

You are hired by a company Gem Stones co ltd, which is a cubic zirconia manufacturer. You are provided with the dataset containing the prices and other attributes of almost 27,000 cubic zirconia (which is an inexpensive diamond alternative with many of the same qualities as a diamond). The company is earning different profits on different prize slots. You have to help the company in predicting the price for the stone on the bases of the details given in the dataset so it can distinguish between higher profitable stones and lower profitable stones so as to have better profit share. Also, provide them with the best 5 attributes that are most important.

Variable Name	Description
Carat	Carat weight of the cubic zirconia.
Cut	Describe the cut quality of the cubic zirconia. Quality is increasing order Fair, Good, Very Good, Premium, Ideal.
Color	Color of the cubic zirconia. With D being the worst and J the best.
Clarity	Clarity refers to the absence of the Inclusions and Blemishes. (In order from Worst to Best in terms of avg price) IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1
Depth	The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter.
Table	The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.
Price	the Price of the cubic zirconia.
X	Length of the cubic zirconia in mm.
Υ	Width of the cubic zirconia in mm.
Z	Height of the cubic zirconia in mm.

Question 1.1.

Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.

Answer 1.1

The dataset consists of 26967 rows and 11 columns. 3 columns are of datatype object namely cut, clarity and color. All other columns are of continuous nature and datatype as int or float.

Figure 1: Dataset Information

The figure below shows the description of the data. The range of each variable is the min value to the max value. Here it is observed that min values for variables x,y,z is zero which seems to be incorrect as each diamond will have an x,y,z as they are dimensions of the diamond. There seems to be a large difference in 75 percentile and max values which suggests there are outliers in the data. Carat seems to be one of the most important factors affecting the price of the diamond but a lot more analysis is required for that. The price of diamonds varies from 326 to 18818.

	Unnamed: 0	carat	depth	table	x	у	z	price
count	26967.000000	26967.000000	26270.000000	26967.000000	26967.000000	26967.000000	26967.000000	26967.000000
mean	13484.000000	0.798375	61.745147	57.456080	5.729854	5.733569	3.538057	3939.518115
atd	7784.846691	0.477745	1.412860	2.232068	1.128516	1.166058	0.720624	4024.864666
min	1.000000	0.200000	50.800000	49.000000	0.000000	0.000000	0.000000	326.000000
25%	6742.500000	0.400000	61.000000	56.000000	4.710000	4.710000	2.900000	945.000000
50%	13484.000000	0.700000	61.800000	57.000000	5.690000	5.710000	3.520000	2375.000000
75%	20225.500000	1.050000	62.500000	59.000000	6.550000	6.540000	4.040000	5360.000000
max	26967.000000	4.500000	73.600000	79.000000	10.230000	58.900000	31.800000	18818.000000

Figure 2: Dataset Description

There are 697 null values present in the depth column

Figure 3: Null Values

The Unnamed: 0 has been dropped as it is of no importance.

697 rows × 10 columns

Figure 4: Records with Null Values

There are zeroes present in the dataset in variables 'x','y','z' which makes no sense as each diamond will have certain length, breadth and width so these records are not correct and the corresponding mean values of these variables have been imputed to the zeroes.

Figure 5: Zero Value Records

There are 34 duplicate records in the dataset. The below figure shows the 34 duplicated records.

	carat	cut	color	clarity	depth	table	x	у	Z	price
4756	0.35	Premium	J	VS1	62.4	58.0	5.67	5.64	3.53	949
6215	0.71	Good	F	SI2	64.1	60.0	0.00	0.00	0.00	2130
8144	0.33	Ideal	G	VS1	62.1	55.0	4.46	4.43	2.76	854
8919	1.52	Good	E	I1	57.3	58.0	7.53	7.42	4.28	3105
9818	0.35	Ideal	F	VS2	61.4	54.0	4.58	4.54	2.80	906
10473	0.79	Ideal	G	SI1	62.3	57.0	5.90	5.85	3.66	2898
10500	1.00	Premium	F	VVS2	60.6	54.0	6.56	6.52	3.96	8924
12894	1.21	Premium	D	SI2	62.5	57.0	6.79	6.71	4.22	6505
13547	0.43	Ideal	G	VS1	61.9	55.0	4.84	4.86	3.00	943
13783	0.79	Ideal	G	SI1	62.3	57.0	5.90	5.85	3.66	2898
14389	0.60	Premium	D	SI2	62.0	57.0	5.43	5.35	3.34	1196
14410	1.00	Very Good	D	SI1	63.1	56.0	6.34	6.30	3.99	5645
15798	0.90	Very Good	- 1	VS2	58.4	62.0	6.29	6.35	3.69	3334
16852	0.79	Ideal	G	SI1	62.3	57.0	5.90	5.85	3.66	2898
17263	1.04	Premium	- 1	SI2	62.0	57.0	6.53	6.47	4.03	3774
18025	1.51	Good	- 1	SI1	63.8	57.0	7.21	7.18	4.59	6046
18777	0.32	Premium	Н	VS2	60.6	58.0	4.47	4.44	2.70	648
18837	1.01	Premium	Н	VS1	61.2	61.0	6.44	6.41	3.93	5294
19731	0.30	Good	J	VS1	63.4	57.0	4.23	4.26	2.69	394
19877	2.01	Premium	- 1	VS2	60.3	62.0	8.13	8.08	4.89	15939
20301	0.30	Ideal	Н	SI1	62.2	57.0	4.26	4.29	2.66	450
20760	1.80	Ideal	Н	VS1	62.3	56.0	7.79	7.76	4.84	15105
22322	2.05	Premium	- 1	SI2	62.0	58.0	8.13	8.08	5.02	9850
22488	2.42	Premium	J	VS2	61.3	59.0	8.61	8.58	5.27	17168
22583	0.33	Ideal	F	IF	61.2	56.0	4.47	4.49	2.74	1240
23458	2.66	Good	Н	SI2	63.8	57.0	8.71	8.65	5.54	16239
23564	1.50	Premium	F	SI2	58.5	60.0	7.52	7.48	4.39	7644
24351	2.50	Fair	Н	SI2	64.9	58.0	8.46	8.43	5.48	13278
24816	1.50	Good	G	SI2	57.5	63.0	7.53	7.49	4.32	6006
25268	1.20	Premium	- 1	VS2	62.6	58.0	6.77	6.72	4.22	5699
25759	0.30	Ideal	G	IF	62.1	55.0	4.32	4.35	2.69	863
25941	0.51	Premium	F	SI2	58.1	59.0	5.26	5.24	3.05	1052
26191	2.54	Very Good	Н	SI2	63.5	56.0	8.68	8.65	5.50	16353
26530	0.41	Ideal	G	IF	61.7	56.0	4.77	4.80	2.95	1367

Figure 6: Duplicated Records

Univariate Analysis:

Depth

Figure 7: Variable 'depth'

Observation: The boxplot of depth variable shows there are outliers on both sides. The distribution of the depth variable is almost normally distributed.

Carat

Figure 8: Variable 'carat'

Observation: The boxplot of the carat variable shows a lot of outliers. The distribution plot shows that the distribution is right skewed.

Table

Figure 9: Variable 'table'

Observation: The boxplot of the variable table shows that there are outliers on both ends. The distribution shows that table is right skewed.

Χ

Figure 10: Variable 'x'

Observation: The boxplot of the x variable shows that there are some outliers. The distribution plot shows that the distribution is right skewed.

Υ

Figure 11: Variable 'y'

Observation: The boxplot of the y variable shows that there are very few outliers. The distribution plot shows that the distribution is right skewed.

Ζ

Figure 12: Variable 'Z'

Observation: The boxplot of the y variable shows that there are very few outliers. The distribution plot shows that the distribution is right skewed.

Price

Figure 13: Variable 'Price'

Observation: The boxplot of the price variable shows that there are some outliers. The distribution plot shows that the distribution is right skewed.

Bivariate Analysis

Figure 14: Boxplot

Boxplot between clarity and price shows that median for SI1, SI2, I1 is higher than the rest of them.

Figure 15: Boxplot

Boxplot between cut and price show that ideal cut has the least median value which is expected and premium has highest median which suggests premium cut will have high prices and ideal cut will low prices but the price ranges are seen spread out because there are different factors also affecting price.

Figure 16: Boxplot

Boxplot between color and price shows that H, I, J have higher median price than other colors.

Multivariate Analysis

Heatmap

Figure 17: Heatmap

The heatmap shows that there is a strong correlation between these variables:

- Carat and x
- Carat and y
- Carat and z

- Price and carat
- X and y
- Y and z
- X and z

Figure 18: Pairplot

The pairplot also suggests the same as heatmap that there is good linear relation in carat and x,y,z.

To apply linear regression, the datatypes of variables have to be int or float. So, to convert them into numerical values one hot encoding is used and the variables have been increased and all have been converted to numeric variables.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 26933 entries, 0 to 26966
Data columns (total 24 columns):
# Column
                 Non-Null Count Dtype
                  -----
                  26933 non-null float64
Θ
    carat
    depth
                  26236 non-null float64
                  26933 non-null
                  26931 non-null float64
3
4
                  26931 non-null float64
5
                  26925 non-null
                                 float64
    price
                  26933 non-null int64
    cut_Good
                  26933 non-null
                                  uint8
    cut Ideal
8
                  26933 non-null uint8
    cut_Premium
                  26933 non-null
                                  uint8
10
   cut_Very Good 26933 non-null
                                  uint8
11 clarity_IF
                  26933 non-null
12 clarity_SI1
                  26933 non-null
                                  uint8
13
   clarity_SI2
                  26933 non-null
                                  uint8
14 clarity_VS1
                  26933 non-null
                                  uint8
15
   clarity_VS2
                  26933 non-null
16 clarity_VVS1
                  26933 non-null
                                 uint8
    clarity_VVS2
17
                  26933 non-null
                                  uint8
18 color_E
                  26933 non-null
                                  uint8
19
   color_F
                  26933 non-null
20
    color_G
                  26933 non-null
21 color_H
                  26933 non-null uint8
                  26933 non-null uint8
22 color_I
23 color_J
                  26933 non-null uint8
dtypes: float64(6), int64(1), uint8(17)
memory usage: 3.1 MB
```

Figure 19: Columns after Label Encoding

Linear regression is very sensitive to outliers and all these outliers have been treated to the upper and lower whisker of the boxplot. The figure below shows that there are no outliers left in the dataset. However, the linear regression has been applied on the dataset with both the outliers present and without the outliers.

Figure 20: Boxplot After Outlier Treatment

Question 1.2

Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of an ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.

Answer 1.2

There are 697 null values present in depth variable.

Figure 21: Null Values

There are some values which are equal to zero in x,y,z variables. These have been replaced by null values as these values cannot be zero as each diamond would have a length, breadth and height.

```
depth
table
price
cut_Good
cut_Ideal
cut_Premium
cut_Very Good
clarity_IF
clarity_SI1
                 8
clarity_SI2
                 8
clarity_VS1
clarity_VS2
clarity_VVS1
clarity_VVS2
                 8
color_E
color_F
color_G
color_H
                 8
color_I
                 Θ
color_J
dtype: int64
```

Figure 22: Null Values after Data Modification

The null values in depth, x, y, z have been imputed by the mean values of these variables. The below figure shows that there are no null values present in the dataset

```
depth
table
                B
                9
price
cut_Good
cut_Ideal
cut_Premium
cut_Very Good
clarity_IF
clarity_SI1
                Θ
clarity_SI2
clarity_VS1
clarity_VS2
                9
clarity_VVS1
clarity_VVS2
color_E
color_F
color G
color_H
                B
color_I
color_J
dtype: int64
```

Figure 23: Null values After Imputation

Some models have been built in order to increase the performance by combining certain sub levels of variables based on the domain knowledge about diamonds.

- Color D, E, F have been combined to a Colorless level.
- Color G,H,I,J have been combined to a Near Colorless level.
- Clarity I1, SI1, SI2 have been combined to an Impure level.
- Clarity VS1, VS2 have been combined to a Slightly-Impure level.
- Clarity VVS1, VVS2 have been combined to a Very_Slightly_Impure level.
- Clarity IF have been combined to a No_Impurities level.

Same technique of getting dummy variables using one hot encoding has been used to convert categorical variables to numeric variables.

Ouestion 1.3

Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.

Answer 1.3

The data having string values have been encoded using the one hot encoding method. This technique converts the categorical variables into numerical variables by making new columns equal to the levels in each original column and dropping the first column. The below figure shows the new columns that have been created and all the columns have been converted into numerical data types.

Figure 24: One Hot Encoding

The data has been splitted into 70% train and 30% test data. Linear Regression analysis is applied on train data using scikit learn library. For further analysis Linear regression using statsmodel has been applied to get adjusted R squared and other parameters to decide the best model that can be used for the current dataset.

Model 1

The first model is built using all the columns and without dropping any of them.

Using scikit learn library applying Linear Regression Model.

Model score for a regression model is nothing but r squared.

- Score for Training data is 0.940
- Score for Test data is 0.942
- Root mean squared error for training data is 846.94
- Root mean squared error for test data is 836.75

This represents the best fit line. The model is right fit and train and test data are in sync

Using stats modelapplying Linear Regression model as it gives more widened performance metrics. R squared and adjusted r squared value is 0.940 which is very good.

Dep. Variable:	:		price	R-squared	1:		0.940
Model:			OLS	Adj. R-squared:		0.940	
Method:		1	Least Squares	F-statist	tic:	1.289e+04	
ate:		Wed	, 12 Jan 2022	Prob (F-s	statistic):		0.00
ime:			16:33:22	Log-Like	lihood:	-1.	0.00 5385e+05
o. Observatio	ons:		18853			3	.078e+05
F Residuals:			18829	BIC:		3	.079e+05
F Model:			23				
variance Typ			nonrobust				
		coef	std err	t	P> t	[0.025	0.975]
tercept	-3307.	.1169	748.747	-4.417	0.000	-4774.728	-1839.506
rat			77.380				9329.488
pth							24 445
ble	-18	.9513	10.394 3.842	-4.933	0.000	-26.482	-11.421
	-1086	.8989	123.094	-8.830	0.000	-1328.174	
	967	.9215	124.393	7.781	0.000	724.101	1211.742
	-577.	. 3369	124.393 129.075	-4.473	0.000	-830.336	-324.337
Good			44.366				
	698	.0794	43.141	16.181	0.000	613.520	782.639
Premium	659	6221	43.141 41.422	15.925	0.000	578.432	740.812
Very Good	590	4956	42.407	13.924	0.000	507.373	673.618
ity IF	3992	6455	42.407 66.195	60.316	0.000	3862.897	4122.394
rity SI1	2510.	. 2269	56.650	44.311	0.000	2399.188	2621.266
rity VS1	3333	.5315	56.927 57.765	57.709	0.000	3220.308	3446.755
ity VS2	3029.	.8539	56.976	53.178	0.000	2918.176	
rity VVS2	3746	.8059	61.011 59.432	63.043	0.000	3641.734 3630.314	3863.298
or E	-181	. 2250	22.737	-7.971	0.000	-225.791	-136.659
or G	-428	.1865	23.206 22.515	-19.018	0.000	-301.730 -472.318	-384.055
			24.094				
			26.791			-1377.865	
or J	-1929	.0572	33.026	-58.410	0.000		
_							
nibus:			4775.536	Durbin-Wa	atson:		1.983
ob(Omnibus)	:					17	
ew:				Prob(JB):			0.00
rtosis:				Cond. No.			1.04e+04
tes:							
-							

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.04e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Figure 25: Model 1 Regression Analysis

Hypothesis testing for Linear Regression – The null hypothesis states that there is no relation between the dependent variable Price and other independent variables. Looking at the summary table above, all the P values are less than 0.05 or at 95% confidence level we can say that the variables have a direct impact on the price variable except the depth variable which hasp value greater than 0.05. For depth null hypothesis cannot be rejected and it is inferred that depth has no effect on depth variable. Carat and clarity variables seem to impact the price rise positively, surprisingly; color of the stones is reducing the price increase. We can study our model further to see if we can reduce multicollinearity, if present to get the correct coefficients.

The below scatter plot is between actual price on x axis and predicted price on y axis. The scatter plot shows a strong linear relationship between them meaning the model gives out a really good prediction.

Figure 26: Scatter Plot Between Actual and Predicted Price

The below image is variance inflation factor which gives which factor is the reason for multicollinearity in the data. Here it is observed that depth, table, x, y, z are the most contributing factors to multicollinearity and hence further models have to be made such to address this multicollinearity. Multicollinearity affects the coefficients of independent variables and they may not be correct in predicting the target variable so this multicollinearity has tobe reduced to get the correct coefficients.

```
carat ---> 122.83209929169017
depth ---> 1348.5747037839517
table ---> 978.7910961905317
x ---> 11960.44592119137
y ---> 11486.794645087222
z ---> 3179.596094744831
cut_Good ---> 4.4914016280632785
cut_Ideal ---> 18.016728432469563
cut Premium ---> 10.83115735472792
cut_Very Good ---> 10.01637987063325
clarity_IF ---> 3.655387429980751
clarity_SI1 ---> 19.688570072296287
clarity_SI2 ---> 13.82199801875791
clarity_VS1 ---> 12.746420794843807
clarity_VS2 ---> 18.44735046547165
clarity_VVS1 ---> 6.431913987513056
clarity_VVS2 ---> 8.379930444886524
color_E ---> 2.480829824573142
color_F ---> 2.448039716583097
color_G ---> 2.796050687532723
color_H ---> 2.305043749504993
color_I ---> 1.9312909945309655
color_J ---> 1.5142333068255323
```

Figure 27: Variance Inflation Factor

Model 2:

The second model has been built by dropping the Depth Variable as it had a p value greater than 0.05.

First using scikitlearn library Linear Regression Analysis is applied

- Score for Training data is 0.940
- Score for Test data is 0.942
- Root mean squared error for training data is 846.96
- Root mean squared error for test data is 836.81

There seems to no change in the performance metrics from the first model.

Using statsmodel to build the Linear Regression model. Although there is no change in r squared and adjusted r squared the f statistic has improved considerably.

OLS Regression Results										
Dep. Variable:	:		R-square		0.940					
Model:			Adj. R-s			0.940				
Method:		east Squares			1	.347e+04				
Date:	Wed,	12 Jan 2022				0.00				
Time:			Log-Like	lihood:		5385e+05				
No. Observation	ons:	18853	AIC:		_	.077e+05				
Df Residuals:		18830	BIC:		3	.079e+05				
Df Model:		22								
Covariance Typ		nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
Intercept		264.237	-9.776	0.000	-3101.046	-2065.191				
carat	9186.0017	76.974	119.340	0.000	9035.126	9336.877				
table	-19.7726	3.759	-5.260	0.000	-27.140	-12.405				
	-1112.1452			0.000						
У	923.6574	116.786	7.909	0.000	694.746	1152.569				
Z	-470.0193	76.660	-6.131		-620.279	-319.760				
cut_Good	463.4877	44.299	10.463	0.000	376.659	550.317				
	694.1161	42.970	16.154		609.891	778.341				
	655.7942	41.256	15.896	0.000	574.929	736.659				
cut_Very_Good		42.375	13.894	0.000	505.711	671.827				
clarity_IF	3992.6306	66.195	60.316	0.000	3862.882	4122.380				
clarity_SI1	2511.9543	56.625	44.361	0.000	2400.963	2622.945				
clarity_SI2	1676.2228	56.913	29.452	0.000	1564.669	1787.777				
clarity_VS1	3334.3531	57.759	57.729	0.000	3221.140	3447.566				
clarity_VS2	3031.1913	56.961	53.215	0.000	2919.542	3142.841				
clarity_VVS1	3761.8847	61.009	61.662	0.000	3642.302	3881.467				
clarity_VVS2	3747.7677	59.425	63.067	0.000	3631.289	3864.246				
color_E	-181.4035	22.736	-7.979	0.000	-225.968	-136.839				
color_F	-256.2485	23.206	-11.043	0.000	-301.734	-210.763				
color_G	-427.9656	22.514	-19.009	0.000	-472.096	-383.836				
color_H	-855.8721	24.089	-35.530	0.000	-903.089	-808.656				
	-1324.6763	26.783	-49.459	0.000	-1377.174	-1272.178				
color_J	-1928.6259	33.024	-58.401	0.000	-1993.356	-1863.896				
Omnibus:			Durbin-W			1.983				
Prob(Omnibus):	:		Jarque-B		1					
Skew:		1.234	Prob(JB)			0.00				
Kurtosis:		7.068	Cond. No			2.57e+03				

Figure 28: Model 2 Regression Analysis

The scatter plot between actual and predicted price also shows a linear graph which tells model is a good model for predicting price.

Figure 29: Scatter Plot Between Actual and Predicted Price

The Variance inflation factor below shows high value for x, y, z variable which means they are the contributing factors to multicollinearity in the data. X, y, z variables have a very strong relation with carat variable as carat variable increases it is bound that x, y, z will increase as they are the size measures.

```
carat ---> 102,22998573256453
table ---> 343.67178696032374
x ---> 11907.66520065791
y ---> 11068.192853143442
z ---> 1592.6925974471997
cut Good ---> 4.364430991175007
cut_Ideal ---> 16.032354095929502
cut_Premium ---> 10.552785297072413
cut Very Good ---> 9.581139499530757
clarity_IF ---> 3.507794731999077
clarity_SI1 ---> 18.901145707067478
clarity_SI2 ---> 13.307124818568566
clarity_VS1 ---> 12.220903273804456
clarity_VS2 ---> 17.66874831948798
clarity_WS1 ---> 6.149324444822197
clarity_VVS2 ---> 8.015137230464944
color_E ---> 2.478314015891665
color_F ---> 2.4444749919155604
color_G ---> 2.7914199796781376
color_H ---> 2.296962880031655
color_I ---> 1.92588279414264
color J ---> 1.5119985802546922
```

Figure 30: Variance Inflation Factor

Model 3

The next model is built to reduce the multicollinearity in the data by further dropping variables x, y, z

First using scikitlearn library Linear Regression Analysis is applied

- Score for Training data is 0.939
- Score for Test data is 0.940
- Root mean squared error for training data is 853.72
- Root mean squared error for test data is 844.189

RMSE has increased by a little in this model but there is not any significant difference and train and test data are in line with each other.

Using statsmodel to build the Linear Regression model. Although there is no change in r squared and adjusted r squared the f statistic has improved considerably. All the p values are below 0 which shows that all the independent variables in this model have a significant impact on target variable price.

Dep. Variable:	:	price	R-square			0.939				
Model:	del: OL:		Adj. R-s	quared:	0.939					
Method:		Least Squares	F-statis	tic:	1.534e+04					
Date:	Wed	, 12 Jan 2022	Prob (F-	statistic):		0.00				
Time:		19:12:02	Log-Like	lihood:	-1.	5400e+05				
No. Observation	ons:	18853	AIC:		3	.080e+05				
Df Residuals:		18833	BIC:		3	.082e+05				
Df Model:		19								
Covariance Typ		nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
Intercept	-4717.6694	217.998	-21.641	0.000	-5144.965	-4290.373				
carat	8039.2039	15.515	518.159	0.000	8008.793	8069.615				
table	-16.9206	3.550	-4.766	0.000	-23.880	-9.961				
cut_Good	551.9846	43.215	12.773	0.000	467.280	636.689				
cut_Ideal	788.4697	40.630	19.406	0.000	708.831	868.109				
cut_Premium	717.1073	39.820	18.009	0.000	639.057	795.157				
cut_Very_Good	700.3553	40.311	17.374	0.000	621.343	779.368				
clarity_IF	4103.3041	66.308	61.882	0.000	3973.334	4233.274				
clarity_SI1	2549.2986	56.950	44.763	0.000	2437.671	2660.927				
clarity_SI2	1711.2926	57.250	29.892	0.000	1599.077	1823.508				
clarity_VS1	3391.3872	58.031	58.441	0.000	3277.642	3505.133				
clarity_VS2	3086.3556	57.247	53.913	0.000	2974.146	3198.565				
clarity_VVS1	3864.0629	61.159	63.180	0.000	3744.185	3983.941				
clarity_VVS2	3829.7494	59.635	64.220	0.000	3712.859	3946.639				
color_E	-183.4199	22.915	-8.004	0.000	-228.335	-138.504				
color_F	-266.7587	23.379	-11.410	0.000	-312.585	-220.933				
color_G	-438.3437	22.680	-19.327	0.000	-482.799	-393.888				
color_H	-855.5083	24.265	-35.257	0.000	-903.070	-807.947				
color_I	-1312.9075	26.973	-48.676		-1365.776	-1260.039				
color_J	-1913.2713	33.262	-57.520	0.000	-1978.469	-1848.074				
015										
Omnibus:		4285.730 0.000	Durbin-W		1	1.980				
Prob(Omnibus):					1					
Skew:		1.168				0.00				
Kurtosis:		6.367	Cond. No	_		2.07e+03				

Notes:

- Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The condition number is large, 2.07e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.

Figure 31: Model 3 Regression Analysis

The scatter plot between actual and predicted price also shows a linear graph which tells model is a good model for predicting price.

Figure 32: Scatter Plot Between Actual and Predicted Price

The Variance Inflation factor shows only table is the factor remaining which is showing some multicollinearity. All other variables contribute very little to the multicollinearity.

```
carat ---> 5.223684588164773
table ---> 97.56394186616357
cut_Good ---> 4.1312866621866124
cut_Ideal ---> 14.335956924499904
cut_Premium ---> 9.885733103057277
cut_Very Good ---> 8.70333130825681
clarity_IF ---> 3.481310724007501
clarity_SI1 ---> 18.559797736467978
clarity_SI2 ---> 13.097823682775097
clarity_VS1 ---> 12.053613938763373
clarity_VS2 ---> 17.42144406697902
clarity_WS1 ---> 6.101273452791654
clarity_VVS2 ---> 7.9337889552988
color_E ---> 2.4758946280948533
color_F ---> 2.4352303532503305
color G ---> 2.7781168170164494
color_H ---> 2.290612795680401
color_I ---> 1.9225371559098865
color_J ---> 1.509672238133545
```

Figure 33: Variance Inflation Factor

Model 4

This model is built by dropping the table variable further to get rid of the multicollinearity.

First using scikitlearn library Linear Regression Analysis is applied

- Score for Training data is 0.939
- Score for Test data is 0.940
- Root mean squared error for training data is 854.23
- Root mean squared error for test data is 844.833

RMSE has increased by a little in this model but there is not any significant difference. The train and test data are in line.

Using statsmodel to build the Linear Regression model. Although there is no change in r squared and adjusted r squared the f statistic has improved considerably. All the p values are below 0 which shows that all the independent variables in this model have a significant impact on target variable price.

p. Variable:		price	R-squared:			0.939		
del:		OLS east Squares 12 Jan 2022	Adj. R-squa	ered:		0.939		
thod:	L	east Squares	F-statistic	::	1	.618e+04		
te:	Wed,	12 Jan 2022	Prob (F-sta	stistic):		0.00		
me:		19:12:03	Log-Likelih	nood:	-1.	5401e+05		
. Observatio	ins:	18853	AIC:		3	.081e+05		
Residuals:		18834	BIC:		3	.082e+05		
Model:		18						
variance Typ	e:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
		66.430			-5837.453			
at	8032.1135	15.452	519.799	0.000	8001.826	8062.402		
t_Good	552.8581 833.8164	43.239 39.523	12.786	0.000	468.105	637.611		
t_Ideal	833.8164	39.523	21.097	0.000	756.348	911.285		
Premium	717.4752	39.843	18.008	0.000	639.380	795.570		
		40.245						
rity_IF	4107.9141	66.339	61.923	0.000	3977.883	4237.945		
rity_SI1	2551.6955	56.981	44.781	0.000	2440.008	2663.383		
rity_SI2	1712.3615	57.283 58.062	29.893	0.000	1600.082	1824.641		
rity_VS1	3394.0323	58.062	58.456	0.000	3280.226	3507.838		
rity_VS2	3088.7704	57.278	53.926	0.000	2976.501	3201.040		
rity_VVS1	3865.5425	61.194	63.169	0.000	3745.597	3985.488		
rity_VVS2	3830.9495	59.669	64.203	0.000	3713.993	3947.906		
or_E	-185.2647	22.925	-8.081	0.000	-230.200	-140.330		
or_F	-266.4984	22.925	-11.392	0.000	-230.200 -312.351	-220.646		
or_G	-437.3437	22.692	-19.273	0.000	-481.823	-392.864		
		24.276						
		26.988						
or_J	-1913.8403	33.281	-57.505	0.000	-1979.075	-1848.606		
ibus:		4299.918	Durbin-Wats	on:		1.980		
b(Omnibus):				(JB):	13189.906			
W:			Prob(JB):			0.00		
tosis:		6.359	Cond. No.		38.6			

Figure 34: Model 4 Regression Analysis

The problem of multicollinearity is removed as the VIF of this model indicates there is no multicollinearity in the data.

```
carat ---> 4.823963552948521
cut_Good ---> 3.5020910476346123
cut_Ideal ---> 12.444657871405733
cut_Premium ---> 8.172657501145094
cut_Very Good ---> 7.362893118877587
clarity_IF ---> 2.111573704227221
clarity_SI1 ---> 8.582797349957549
clarity_SI2 ---> 6.341835689528017
clarity_VS1 ---> 5.81765676176599
clarity_VS2 ---> 8.132009944538451
clarity_VVS1 ---> 3.2360618789461135
clarity_VVS2 ---> 3.994479451757277
color_E ---> 2.3711536081820666
color_F ---> 2.340035283675498
color_G ---> 2.6842016288544035
color_H ---> 2.221751381261127
color_I ---> 1.8871709780128412
color_J ---> 1.4941185157588375
```

Figure 35: Variance Inflation Factor

Model 5:

This model is built using feature modeling and combining different ordinal sub levels into 1 to check if there is any improvement in the performance metrics. The combined levels have been discussed in the previous question.

Figure 36: Modified Columns

First using scikitlearn library Linear Regression Analysis is applied

- Score for Training data is 0.920
- Score for Test data is 0.920
- Root mean squared error for training data is 979.76
- Root mean squared error for test data is 979.80

RMSE has increased and Rsquared value has dropped which tells this is not a good model.

Figure 37: Model 5 Regression Analysis

Using statsmodel to build the Linear Regression model. R squared and adjusted r squared value has decreased. Depth has p value greater than alpha so there is not enough evidence to reject null hypothesis.

This model is not a good model as compared to the previous models.

For deciding best model in linear regression, r squared value should be high and RMSE should be low as possible. Further the adjusted r squared and other metrics are checked using statsmodel. To get the correct coefficients multicollinearity should be reduced.

Model Comparison:

	Model1	Model1	Model2	Model2	Model3	Model3	Model4	Model4	Model5	Model5
	Train	Test								
R Squared	0.940	0.941	0.940	0.941	0.939	0.940	0.939	0.940	0.920	0.920
RMSE	846.94	836.75	846.96	836.81	853.72	844.18	854.23	844.23	979.76	979.80
Adjusted R	0.94		0.94		0.939		0.939		0.92	
squared										
Multicollinearity	Yes		Yes		Yes		No		Yes	

Table 1:Model comparison

Model 4 has very good r squared and adjusted r squared and it has the highest f statistic. The coefficients can be well explained for this model as there is no multicollinearity present for this model.

Question 1.4

Inference: Basis on these predictions, what are the business insights and recommendations.

Answer 1.4

The 5 most Important factors affecting the price of diamonds are:

Carat, clarity_IF, clarity_VVS1, clarity_VVS2, clarity_VS1 are the 5 attributes that are most important for this dataset.

The final regression equation is:

```
(-5707.24) * Intercept + (8032.11) * carat + (552.86) * cut_Good + (833.82) * cut_Ideal + (717.48) * cut_Premium + (713.13) * c ut_Very_Good + (4107.91) * clarity_IF + (2551.7) * clarity_SI1 + (1712.36) * clarity_SI2 + (3394.03) * clarity_VS1 + (3088.77) * clarity_VS2 + (3865.54) * clarity_VVS1 + (3830.95) * clarity_VVS2 + (-185.26) * color_E + (-266.5) * color_F + (-437.34) * color_G + (-853.85) * color_H + (-1312.34) * color_I + (-1913.84) * color_J +
```

Figure 38: Linear Regression Equation

When carat increases by 1 unit, price increases by 8032.11 units, keeping all other predictors constant. Clarity is a strong predictor as clarity_IF,clarity_SI1, clarity_SI2,clarity_VS1, clarity_VS2, clarity_VVS1, clarity_VVS2 have high coefficients.

There are also some negative co-efficient values, for instance, color has all its coefficients negative. The colorless colors like D,E,F contribute very less negatively comparatively to colors G, H, I, J.

Cut which are of premium and very good quality seem to have a higher positive impact. Although Ideal cut also has a very high coefficient.

Recommendations

- The colors H, I, J of the diamonds should be avoided as they contribute very negatively to the price so colors D, E, F, G should be used.
- The company should focus on clarity and carat of the diamonds so as to increase the price of the diamond.
- Company can introduce a lottery system for people who buy expensive diamonds and give them a chance to receive some gifts.
- The customers will be of different financial backgrounds so all type of diamonds from low range to high range should be available in stock. A further analysis can be done by the company based on the customer's financial backgrounds to understand which diamonds they are likely to buy.

Problem 2: Logistic Regression and LDA

You are hired by a tour and travel agency which deals in selling holiday packages. You are provided details of 872 employees of a company. Among these employees, some opted for the package and some didn't. You have to help the company in predicting whether an employee will opt for the package or not on the basis of the information given in the data set. Also, find out the important factors on the basis of which the company will focus on particular employees to sell their packages.

Variable Name	Description
Holiday_Package	Opted for Holiday Package yes/no?
Salary	Employee salary
age	Age in years
edu	Years of formal education
no_young_children	The number of young children (younger than 7 years)
no_older_children	Number of older children
foreign	foreigner Yes/No

Question 2.1

Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it? Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

Answer 2.1

The dataset consists of 872 rows and 8 columns. 2 columns are of datatype object namely Holliday Package and foreign. All other columns are of continuous nature and datatype as int or float.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 872 entries, 0 to 871
Data columns (total 8 columns):
# Column
                    Non-Null Count Dtype
0 Unnamed: 0 872 non-null int64
   Holliday_Package 872 non-null object
                     872 non-null
                    872 non-null
3
                                    int64
                     872 non-null
                                    int64
   no_young_children 872 non-null
                                    int64
   no_older_children 872 non-null
                                    int64
   foreign
                     872 non-null
                                    object
dtypes: int64(6), object(2)
memory usage: 54.6+ KB
```

Figure 39: Dataset Information

The figure below shows the description of the data. The range of each variable is the min value to the max value. There seems to be a large difference in 75 percentile and max values for Salary,

no_young_children, no_older_children variable which suggests there are outliers in the data. Number of older children varies from 0 to 6 and number of younger children vary from 0 to 3.

	Unnamed: 0	Salary	age	educ	no_young_children	no_older_children
count	872.000000	872.000000	872.000000	872.000000	872.000000	872.000000
mean	438.500000	47729.172018	39.955275	9.307339	0.311927	0.982798
std	251.869014	23418.668531	10.551675	3.038259	0.612870	1.086786
min	1.000000	1322.000000	20.000000	1.000000	0.000000	0.000000
25%	218.750000	35324.000000	32.000000	8.000000	0.000000	0.000000
50%	438.500000	41903.500000	39.000000	9.000000	0.000000	1.000000
75%	654.250000	53469.500000	48.000000	12.000000	0.000000	2.000000
max	872.000000	236961.000000	62.000000	21.000000	3.000000	6.000000

Figure 40: Dataset Description

There are no null values present in the dataset, therefore no imputation is required.

```
Unnamed: 0 0
Holliday_Package 0
Salary 0
age 0
educ 0
no_young_children 0
no_older_children 0
foreign 0
dtype: int64
```

Figure 41: Null Values

There are no duplicates in the data.

The Unnamed: 0 column is of no use and therefore it has been dropped from the dataset.

The percentage of employees who have opted for the package is 45%. The data is a balanced between people who have opted and not opted for the package.

```
no 0.540138
yes 0.459862
Name: Holliday_Package, dtype: float64
```

Figure 42: Holliday_Package Value Count

There are 216 employees out of the total records who are foreigners.

```
no 656
yes 216
Name: foreign, dtype: int64
```

Figure 43: Foreign Value Count

Salary

Figure 44: Variable 'Salary'

The boxplot for salary variable shows that there are a lot of outliers. The distribution plot shows that salary variable is right skewed.

Age

Figure 45: Variable 'Age'

The boxplot for Age variable shows that there are no outliers. The distribution plot shows that age variable is almost normally distributed.

Educ

Figure 46: Variable 'Educ'

The boxplot of Educ variable shows that there are outliers on both ends. The distribution plot shows that it is left skewed. Educ is a discrete numeric variable

No_young_children

Figure 47: Variable 'No_young_children'

The boxplot for no_young_children variable shows that there are a lot of outliers(anything other than value 0 is considered an outlier for this variable) The distribution plot shows that no_young_children variable is right skewed. This no_young_children is a discrete numeric variable.

No_older_children

Figure 48; Variable 'No_older_children'

The boxplot for no_older_children variable shows that there are a few outliers. The distribution plot shows that no_older_children variable is right skewed. This no_older_children is a discrete numeric variable.

Bivariate Analysis

Figure 49: Count plot of Educ

The countplot for educ variable with a hue of Holliday_Package variable shows that it widely distributed and most of the employees have educ between 4 to 13 years and ratio between opted and not opted is almost 60/40.

Figure 50: Count Plot of no_young_children

The countplot for no_young_children shows that people with 0 children have chosen the package more and people with children have hardly chosen the package which is expected as people do not tend to travel with young children.

Figure 51: Count plot of no_older_children

The countplot for no_older_children with hue of Holliday_Package shows how many employees have chosen and not chosen the package. From the plot it seems that proportion that most employees have a smaller number of older children and the proportion between chosen/not chosen improves as the number of children increases which can be due to the reason that older children being independent and the employees can go for holiday.

Figure 52: Count Plot of foreign

The counplot for foreign with hue of Holliday_Package shows that employees who are foreigners have opted for the holiday package more that the employees who are not foreigners.

Figure 53: Heatmap

The heatmap shows there is not any high correlation in any of the variables. However, there is some correlation between no_young_children and age variable.

Figure 54: Pairplot

The pairplot above shows that the data points of opted and not opted overlap which means that none of the variables is a good predictor for the target column Holliday_Package. Foreign variable seems to be able to distinguish between opted and not opted better than most variables through this pairplot. More analysis can be withdrawn after the model building.

Question 2.2

Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

Answer 2.2

Using the Label Encoder from sklearn.preprocessing library the string values of Holliday_package and foreign have been changed to numerical values as Logistic regression and LDA uses only numerical inputs. (Foreign: yes = 1, no = 0), (Holliday_Package: yes=1, no=0)

	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	0	48412	30	8	1	1	0
1	1	37207	45	8	0	1	0
2	0	58022	46	9	0	0	0
3	0	66503	31	11	2	0	0
4	0	66734	44	12	0	2	0

Figure 55: Label Encoding

The data has been splitted into two parts which is one has the independent variables and other has the target variable (Holliday_Package).

Using train_test_split function the data has been splitted into 70% train and 30% test.

Logistic Regression has been applied to the train data to train the model and further the same models are used to predict on the test data.

Logistic Regression

A Grid Search CV has been used to find out the best parameters for logistic regression

Figure 56:Grid Search CV

The best parameters that Grid Search CV keeping the scoring parameter as F1 score gives are in the image below:

```
{'penalty': 'l2', 'solver': 'newton-cg', 'tol': 0.001}
LogisticRegression(max_iter=100000, n_jobs=2, solver='newton-cg', tol=0.001)
```

Figure 57: Best Parameters

Linear Discriminant Analysis:

Similarly, like logistic regression data has been splitted to independent variables and target variable.

After this the data has been splitted into 70% train and 30% test data. Linear Discriminant Analysis has been applied to the train data to train the model and further the same models are used to predict on the test data.

```
clf=LinearDiscriminantAnalysis()
model=clf.fit(X_train,Y_train)
model
```

LinearDiscriminantAnalysis()

Figure 58: Linear Discriminant Analysis

Question 2.3

Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Answer 2.3

Models without treating any outliers:

Logistic Regression:

Train data

The Area under the curve is 0.742 for training dataset. Higher the AOC value better is the model so let's understand all other performance metrics.

Figure 59: ROC Curve

The accuracy is 68% but the recall for 1 is average. The parameters for 1 are more important because it tells us about the employees that have opted for the holiday package.

	precision	recall	f1-score	support
0	0.68	0.77	0.72	326
1	0.69	0.57	0.63	284
accuracy			0.68	610
macro avg	0.68	0.67	0.67	610
weighted avg	0.68	0.68	0.68	610

Figure 60: Classification Report

Confusion matrix cells are populated by the terms:

True Positive(TP)- The values which are predicted as True and are actually True.

True Negative(TN)- The values which are predicted as False and are actually False.

False Positive(FP)- The values which are predicted as True but are actually False.

False Negative(FN)- The values which are predicted as False but are actually True.

The False negatives in this case is high which is the reason for a low recall score of 1.

163 records are the ones predicted correctly for employees who have opted. 121 records are the employees who had opted but the model has predicted it wrong which is not good. 252 records are the employees who have not opted and model also predicted them correctly. 74 records are who have not opted and model has predicted them as opted.

Figure 61: Confusion Matrix

Test Data

The area under the curve score for train data is 0.704 which is almost in line with the training dataset.

Figure 62: ROC Curve

Accuracy, recall, precision and f1 score are almost inline with the training data.

	precision	recall	f1-score	support
0	0.67	0.70	0.69	145
1	0.61	0.57	0.59	117
accuracy			0.65	262
macro avg	0.64	0.64	0.64	262
weighted avg	0.64	0.65	0.64	262

Figure 63: Classification Report

67 records are the ones predicted correctly for employees who have opted. 50 records are the employees who had opted but the model has predicted it wrong which is not good. 102 records are the employees who have not opted and model also predicted them correctly. 43 records are who have not opted and model has predicted them as opted.

Figure 64: Confusion Matrix

LDA:

Train data

The Area under the curve is 0.742 for training dataset. Higher the AOC value better is the model so let's understand all other performance metrics.

Figure 65: ROC Curve

Accuracy for training dataset is 67%. Precision and f1 score also seems to be good. Recall for 1 is little low.

	precision	recall	f1-score	support
0	0.67	0.77	0.72	326
1	0.68	0.56	0.61	284
accuracy			0.67	610
macro avg	0.67	0.66	0.66	610
weighted avg	0.67	0.67	0.67	610

Figure 66: Classification Report

158 records are the ones predicted correctly for employees who have opted. 126 records are the employees who had opted but the model has predicted it wrong which is not good. 252 records are the employees who have not opted and model also predicted them correctly. 74 records are who have not opted and model has predicted them as opted.

Figure 67: Confusion Matrix

Test data

Area under the curve for test data is 0.702. This is inline with the train data.

0.7029177718832891

[<matplotlib.lines.Line2D at 0x1efcee464c0>] 10 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 10

Figure 68: ROC Curve

Accuracy for test data is 64% and other parameters also are in line with the train data.

	precision	recall	f1-score	support
0 1	0.66 0.61	0.71 0.56	0.69 0.58	145 117
accuracy macro avg weighted avg	0.64 0.64	0.63 0.64	0.64 0.63 0.64	262 262 262

Figure 69: Classification Report

65 records are the ones predicted correctly for employees who have opted. 52 records are the employees who had opted but the model has predicted it wrong which is not good. 103 records are the employees who have not opted and model also predicted them correctly. 42 records are who have not opted and model has predicted them as opted.

```
array([[103, 42],
[ 52, 65]], dtype=int64)
```

Figure 70: Confusion Matrix

The LDA model has been trained and tested by changing the threshold from 0.1 to 1 at an interval of 0.1. But the best results are seen at a threshold of 0.5 which is the default threshold. It gives the best combination of accuracy, f1 score, precision and recall

	Logistic Regression		LDA	
	Train	Test	Train	Test
Accuracy	0.68	0.65	0.67	0.64
AUC	0.74	0.70	0.74	0.70
F1 score	0.63	0.59	0.61	0.58
Recall	0.57	0.57	0.56	0.56
Precision	0.69	0.61	0.68	0.61

Table 2:Model comparison

The Recall, Accuracy, F1 score for logistic regression is better than LDA so the chosen model for this dataset is Logistic Regression.

Models after outlier Treatment:

The Salary variable has a lot of outliers whereas educ, no_young_children, no_older_children are discrete variables so the outliers are only treated for the salary variable and the models are applied. The boxplot below shows that there are no more outliers left for salary variable.

Figure 71: Boxplot

Logistic Regression Model:

A Grid Search CV is used to find the best parameters

Figure 72: Grid Search CV

The below image gives the best parameters for Logistic Regression

```
{'penalty': '12', 'solver': 'newton-cg', 'tol': 0.0001}
LogisticRegression(max_iter=100000, n_jobs=2, solver='newton-cg')
```

Figure 73: Best Parameters

Train data:

Area under the curve is 0.74.

Figure 74: ROC Curve

The accuracy of the train data is 67%. Recall for 1 is little less but all other performance metrics are giving good results.

	precision	recall	f1-score	support
0	0.67	0.77	0.72	326
1	0.68	0.56	0.62	284
accuracy			0.67	610
macro avg	0.68	0.67	0.67	610
weighted avg	0.67	0.67	0.67	610

Figure 75: Classification Report

160 records are the ones predicted correctly for employees who have opted. 124 records are the employees who had opted but the model has predicted it wrong which is not good. 251 records are the employees who have not opted and model also predicted them correctly. 75 records are who have not opted and model has predicted them as opted.

```
array([[251, 75],
[124, 160]], dtype=int64)
```

Figure 76: Confusion Matrix

Test data:

Area under the curve for test data is 0.704. This is almost in line with test data.

Figure 77: ROC Curve

The accuracy for train data is 65%. Recall has improved for test data and all metrics are in line with train data which the model is right fit.

	precision	recall	f1-score	support
0	0.67	0.70	0.69	145
1	0.61	0.57	0.59	117
accuracy			0.65	262
macro avg	0.64	0.64	0.64	262
weighted avg	0.64	0.65	0.64	262

Figure 78: Classification Report

67 records are the ones predicted correctly for employees who have opted. 50 records are the employees who had opted but the model has predicted it wrong which is not good. 102 records are the employees who have not opted and model also predicted them correctly. 43 records are who have not opted and model has predicted them as opted.

```
array([[102, 43],
[50, 67]], dtype=int64)
```

Figure 79: Confusion Matrix

Linear Discriminant Analysis:

Train data:

Area under the curveis 0.739

Figure 80: ROC Curve

The accuracy of the train data is 68%. Recall for 1 is a little less suggesting there are more false negatives in the data but all other performance metrics look good.

	precision	recall	f1-score	support
0	0.67	0.78	0.72	326
1	0.69	0.56	0.61	284
accuracy			0.68	610
macro avg	0.68	0.67	0.67	610
weighted avg	0.68	0.68	0.67	610

Figure 81: Classification Report

158 records are the ones predicted correctly for employees who have opted. 126 records are the employees who had opted but the model has predicted it wrong which is not good. 254 records are the employees who have not opted and model also predicted them correctly. 72 records are who have not opted and model has predicted them as opted.

```
array([[254, 72],
[126, 158]], dtype=int64)
```

Figure 82: Confusion Matrix

Test data:

Area under the curve is 0.702

0.7029767167698201 [<matplotlib.lines.Line2D at 0x28d7e22df40>] 10 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 0.8 - 0.0 - 0.8 - 0.0 - 0.8 - 0.0 - 0

Figure 83: ROC Curve

The accuracy of the test data is 64%. Train and test data are in line with each other and model is right fit.

	precision	recall	f1-score	support
Θ	0.66	0.71	0.69	145
1	0.61	0.56	0.58	117
accuracy			0.64	262
macro avg	0.64	0.63	0.63	262
weighted avg	0.64	0.64	0.64	262

Figure 84: Classification Report

65 records are the ones predicted correctly for employees who have opted. 52 records are the employees who had opted but the model has predicted it wrong which is not good. 103 records are the employees who have not opted and model also predicted them correctly. 42 records are who have not opted and model has predicted them as opted.

```
array([[103, 42],
[ 52, 65]], dtype=int64)
```

Figure 85: ConfusionMatrix

	Logistic Regression		LDA	
	Train	Test	Train	Test
Accuracy	0.67	0.65	0.67	0.64
AUC	0.74	0.70	0.73	0.70
F1 score	0.62	0.59	0.61	0.58
Recall	0.56	0.57	0.56	0.56
Precision	0.68	0.61	0.69	0.61

Table 3:Model comparison

The better model is Logistic regression in this case as well. Accuracy, f1 score, recall is better for Logistic Regression and it is a right fit model.

Question 2.4

Inference: Basis on these predictions, what are the insights and recommendations.

Answer 2.4

Logistic Regression is the better model so checking the coefficients for each factor.

```
array([[-1.74320515e-05, -5.29508007e-02, 7.15166689e-02, -1.45899971e+00, -4.63494204e-02, 1.47629800e+00]])
```

Figure 86: Coefficients

1. Coefficient values for Salary is: -1.74320515e-05

2. Coefficient values for age is: -5.29508007e-02

3. Coefficient values for is educ: 7.15166689e-02

4. Coefficient values for is no_young_children: -1.45899971e+00

5. Coefficient values for no_older_children: -4.63494204e-02

6. Coefficient values for foreign: 1.47629800e+00

The most important factors affecting the target variable Holliday_Package are no_young_children and foreign. Salary seemed to be one of the important factors but after model building Salary does not seem to affect the target variable.

No_young_children and foreign have emerged out to be strong predictors. Salary, age, educ and no older children are bad predictors.

No_young_children have negative coefficient which means that more the number of young children employee has it is more unlikely for him to opt for the package.

Foreign has a positive coefficient meaning more foreign employees are opting for the package.

Recommendations:

- 1. Company to should focus on foreign employees to drive more sales.
- 2. Employees with young children do not seem to opt for the package so the company can come up with a package for such employees where they can take their children also for the holiday. Although employees with young children avoid going to trips so the company should not focus more on them but can target employees who do not have any young children.

- 3. Company can plan some marketing and better offers to convert more employees to opt for holiday package.
- 4. They can offer some discounts to employees with less salary.