

BUNDESREPUBLIK **DEUTSCHLAND**

Pat ntschrift DE 195 05 283 C 1

H 05 G 1/64

6) Int. Cl.5:

G 01 N 23/04 H 04 N 5/32 A 81 B 6/00

DEUTSCHES PATENTAMT Aktenzeichen:

195 05 283.8-33

Anmeldetag:

16. 2.95

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 11. 4.98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Siemens AG, 80333 München, DE

(72) Erfinder:

Hassler, Dietrich, Dipl.-Ing., 91080 Uttenreuth, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

04 87 108 A1 »Nucl. Instr. and Methods in Physics Research« A 310 (1991) 460-484;

(54) Röntgenuntersuchungsanlage

Es soll eine Röntgenuntersuchungsanlage mit zwei bildgebenden Systemen geschaffen werden, bei der Bildartefakte durch Streustrahlung weitgehend reduziert sind. Die bildgebenden Systeme weisen a-Si:H-Detektoren auf, welche wechselsweise mit Röntgenpulsen (4) beaufschlagt werden, zwischen denen die Bildauslesung erfolgt, wobei der Röntgenpuls (4) des einen Detektors in der Pause (7) zwischen der Auslesung der beiden Halbbilder des anderen Detektors liegt und der Störanteil durch Differenzbildung zweier Halbbilder ermittelt und vom Gesamtbild abgezogen wird.

Beschreibung

In der Röntgenkardiologie werden zwei gleichzeitig aktive, gekreuzte, bildgebende Systeme (Zweiebenenanlage) betrieben. Die unvermeidliche Streustrahlung aus dem Patienten beim Betrieb des einen Systems erreicht auch den Detektor des anderen Systems und führt dort zu unerwünschten Überlagerungen im Bild. Dies gilt wechselseitig. Eine Zweiebenenanlage ist beispielsweise in EP 0 487 108 A1 beschrieben. Dabei sind CCD- 10 Detektoren vorgesehen. Damit die Streustrahlung nicht zu einer Verfälschung des Bildes führt, wird der CCD-Detektor vor dem Auftreten des Streustrahlungsimpulses in einen für die Bildaufnahme inaktiven Zustand versetzt. In "Nucl. Instr. and Methods in Physics Rese- 15 arch" A310 (1991), S. 460-464 ist die Verwendung von a-Si:H-Detektoren in bildgebenden Systemen beschrieben. Bei dieser Art von Detektoren ist die Unterdrükkung von Streustrahlungsartefakten in der geschilderten Weise nicht möglich.

Der Erfindung liegt die Aufgabe zugrunde, eine Röntgenuntersuchungsanlage mit zwei bildgebenden Systemen mit a-Si:H-Detektoren so auszubilden, daß die durch Streustrahlung erzeugten Artefakte weitgehend

reduziert sind.

Diese Aufgabe ist erfindungsgemäß gelöst durch die Merkmale des Patentanspruchs 1.

Weiterbildungen und Einzelheiten der Erfindung ergeben sich aus dem Unteranspruch.

Die Erfindung ist nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1 Pulsverläufe zur Erläuterung des Erfindungsgedankens,

Fig. 2 eine schematische Darstellung des Detektors eines bildgebenden Systems für eine Röntgenuntersuchungsanlage nach der Erfindung,

Fig. 3 und 4 zwei Varianten zur Erläuterung der erfindungsgemäßen Artefaktreduktion, und

Fig. 5 bis 18 Kurvenverläufe zur erfindungsgemäßen Artefaktreduktion.

In der Fig. 1 sind in der oberen Zeile die Pulse eines ersten bildgebenden Systems dargestellt. Ein Puls 1 vereinigt einen Teilpuls 2 zur Löschung der Restinformation vom vorhergehenden Bild, einen Teilpuls 3 zur Aufladung der Photodioden in dem a-Si:H-Detektor des 45 bildgebenden Systems und einen Röntgenpuls 4. Zwischen zwei Pulsen 1 liegt die Auslesezeit, die für das erste Halbbild mit 5 und das zweite Halbbild mit 6 bezeichnet ist. Dazwischen liegt eine Pause 7.

In der unteren Zeile der Fig. 1 wird gezeigt, daß die 50 Pulse 1 des zweiten bildgebenden Systems zeitlich versetzt gegenüber den Pulsen 1 des ersten bildgebenden Systems sind. Ein Röntgenpuls 4 des zweiten bildgebenden Systems erzeugt eine unerwünschte Streustrahlung, die auf den Detektor des ersten Systems fällt und dort auf die noch nicht ausgelesene Bildinformation addiert wird. Bei ununterbrochenem Betrieb ist diese Störung nicht vermeidbar, kann aber kompensiert werden, wenn folgendes gilt:

 a) Die Streustrahlung allein führt zu einem Bild, das im Vergleich zur Systemgrenze, gegeben durch den Zeilenabstand, nur tiefe vertikale Ortsfrequenzen (max. 1/2 Nyquist-Netzfrequenzband = 1/4 Abtastfrequenz) enthält.

b) Die Systeme werden so synchronisiert, daß die Pulse 1 jeweils nach der Hälfte der Auslesezeit des anderen Systems kommen (Fig. 1). c) Das Bild kann im Zwischenzeilenverfahren (Interlaced Mode) ausgelesen werden, d. h. zum Beispiel zuerst in der ersten Hälfte der Auslesezeit ein Halbbild aus nur den ungeraden Bildzeilen, dann nur den geraden.

d) Während der Strahlungszeit des jeweils anderen Systems, zwischen der Auslesung von zwei Halbbildern, wird eine Pause der Auslesung eingeschaltet

(Fig. 1).

Das erste Halbbild ist von störenden Überlagerungen frei, weil der Puls 1 des anderen Systems noch nicht auftrat. Das zweite Halbbild enthält das Nutzbild mit überlagerter Störung. Die Differenz beider Bilder enthält für tiefe Frequenzen (max. Frequenz < 1/4 y-Abtastfrequenz) den Störanteil allein. Er kann vom Gesamtbild abgezogen werden.

Die Fig. 2 zeigt schematisch den a-Si:H-Detektor 5 eines bildgebenden Systems mit den ungeraden Zeilen 6

und den geraden Zeilen 7.

Den Korrekturprozeß zeigt Fig. 3. In Fig. 3 werden auf der Leitung 8 die den geraden Zeilen 7 entsprechenden Bildsignale und auf der Leitung 9 die den ungeraden Zeilen 6 entsprechenden Bildsignale Tiefpaßfilter 10, 11 zugeführt, deren Ausgangssignale nach Interpolation auf die volle Zeilenzahl in den Interpolatoren 12, 13 einer Subtraktionsstufe 14 zugeführt werden. Deren Ausgangssignal wird zusammen mit den Signalen auf den Leitungen 8, 9 einer Additionsstufe 15 zugeführt, deren Ausgangssignal am Ausgang 16 ein von Streustrahlenartefakten weitgehend freies Bild verkörpert.

Aus den beiden Halbbildern werden durch Tiefpaßfilterung (Sinc-Interpolation) in y-Richtung (zweidimensionale Orts-Tiefpaßfilterung führt zu Ergebnissen, die von Ungleichheiten der Kanäle unabhängiger sind) und Interpolation der fehlenden Zwischenzeilen Bilder der vollen Zeilenzahl erzeugt. Nach Subtraktion liegt das Streubild isoliert vor. Die Nutzinformation, die in beiden Teilbildern gleich ist, wird zu Null subtrahiert, wenn Unsymmetrien der Kanäle vermieden werden. Das Streubild wird dann vom gestörten Vollbild-abgezogen. Lediglich hochfrequente Anteile des Quantenrauschens des Streubildes (jenseits der Tiefpaß-Eckfrequenz) bleiben als Reststörung unkompensiert zurück.

Filterung und Interpolation werden vorzugsweise digital als Faltung mit einem Faltungskern durchgeführt,

der Stützwerte für die volle Zeilenzahl enthält.

Eine vereinfachte Version nach Fig. 4 ist möglich, wenn man Fehler vorzugsweise im Frequenzbereich nahe der Nyquistgrenze der Halbbilder zuläßt. Nach zum Beispiel linearer Interpolation aus Nachbarwerten genügt dann eine einzige Tiefpaßfilterung im Filter 17 im Differenzkanal am Vollbild. Liegt die Eckfrequenz des Filters 17 niedrig, d. h. ≤ 1/4 y-Abtastfrequenz, werden die Fehler unterdrückt.

Tiefe Ortsfrequenzen in y-Richtung müssen in beiden Halbbildern trotz des Zeilenversatzes praktisch gleich wiedergegeben werden. Daß dies angenommen werden

darf, zeigt die folgende Systembetrachtung:

Die Fig. 5 und 6 behandeln zunächst die Signalverarbeitung im normalen Bild voller Zeilenzahl. Dem Ortsraum in Fig. 5 ist immer der Fourier-Raum in Fig. 6 zugeordnet. Eine sinusförmige Helligkeitsverteilung in y-Richtung, quer zu den Zeilen, ist Ausgangspunkt in Zeile a. Sie wird räumlich beschnitten (endliche Detektorgröße; Zeile b), was zum Spektrum in Zeile c (Fig. 6) führt. Die Abtastung an acht Stellen pro Periode im Abstand sp (Zeile d; Abtastfrequenz 1/sp) führt auf das Spektrum in

Zeile e. Die Abtastung führt zu höherfrequenten Spektralanteilen, die zur eindeutigen Rekonstruktion des ursprünglichen Signalverlaufs (Zeile g) mit einem Tiefpaß (Zeile f) höchstens der Eckfrequenz 1/2 sp (Nyquist-Frequenz) weggefiltert werden können. Der Filterung (unendlicher Steilheit) entspricht eine Faltung mit der sinc-Funktion (Faltungskern).

Dieselbe Helligkeitsschwankung niedriger Frequenz wird nun in den Fig. 7 und 8 mit halbierter Zeilenzahl, z. B. mit allen ungeraden Zeilen, abgetastet. Das Prinzip 10 ist unverändert. Nur die Abtast- und Nyquist-Frequenz sind halbiert. Die Rekonstruktion des Originals aus der abgetasteten Funktion durch Tiefpässe ist noch genauso möglich, weil die Spektren sich im Beispiel noch nicht überlappen und die Grenzfrequenz des Tiefpasses eben- 15 gnale in beiden Teilbildern gleichartig erfaßt werden falls halbiert ist, so daß die Trennung der Spektralanteile gelingt. Im Grenzfall unendlich ausgedehnter Eingangsschwingungen ist das Spektrum der Eingangsschwingung unendlich schmal und die rekonstruierbare Frequenz kann bis zur halbierten Nyquist-Grenze reichen. 20 Eine praktische Grenze für die Tiefpaß-Eckfrequenz liegt bei ca. 3/4 dieses theoretischen Grenzwertes.

Die Fig. 9 und 10 zeigen die Abtastung nur mit den geradzahligen Zeilen. Obwohl die Abtastung zu anderen Werten führt (Zeile e), ergibt die Rekonstruktion 25 der Eingangsschwingung durch Tiefpaßfilterung/Faltung dasselbe Ergebnis wie in den Fig. 8 und 9.

Damit ist belegt, daß die tieffrequenten Spektralanteile des Nutzbildes - bis auf Ungleichheiten in den Kanälen - durch die Subtraktion nach Interpolation (Fig. 3) 30 herausfallen und nur der niederfrequente Streuanteil unverfälscht erhalten bleibt, so daß er vom Gesamtbild abgezogen werden kann.

Die höherfrequenten Spektralanteile (Nutzbild und Quantenrauschen des Streubildes) führen aber zu un- 35 vermeidlichen Artefakten. Da der vor dem Detektor 5 liegende Szintillator in seiner Eigenschaft als Anti-Aliasing-Filter des Eingangsbildes auf die volle Zeilenzahl abgestimmt ist, kommen Frequenzen zwischen 1/4 und 1/2 der Abtastfrequenz (1-Pixelabstand) vor und führen 40 zu Doppeldeutigkeiten in den Teilbildern. Dies ist in den Fig. 11 bis 14 dargestellt.

Die Frequenz des Eingangssignals ist im Beispiel 3/4 der Abtastfrequenz der Teilbilder. Dies führt in den Fig. 11 und 12 trotzdem zu gleichen Abtastwerten (Zeile 45 e) wie in den Fig. 7 und 8. In den Fig. 13 und 14 sind die Abtastwerte invertiert. Im Spektrum (Zeile e) werden die hochfrequenten Eingangssignale in tiefe Lagen hinabgemischt (Aliasing). Die Phasenumkehr (Zeile g) führt dazu, daß sich die Beiträge in der Subtraktion nicht 50 auslöschen, sondern sogar addieren.

Eine Minderung dieses unerwünschten Nebeneffektes kann man auf folgende Weise anstreben. Pro Vollbild wird zwischen ungerad- und geradzeiligen Teilbildern für die Auslesezeiten vor/nach dem Störpuls des 55 fremden Systems gewechselt. Damit wechselt die Polarität der Aliasing-Störung von Bild zu Bild. Wegen der Trägheit des Auges wird dies zu einer Kompensation oder Verwischung der Störung führen, wenn die Bildfrequenz hoch genug und die Bewegung des Objektes nicht 60 zu schnell ist. Störanteile aufgrund von Rauschen sind nicht kompensierbar. Sie addieren sich quadratisch unter der Wurzel.

Da der angesprochene Frequenzbereich bei typischen MTFs des Szintillators nur schwach vertreten ist, 65 wird davon ausgegangen, daß die Aliasing-Artefakte bereits ohne den obengenannten Polaritätswechsel weniger störend auffallen als die Streustrahlung vom

Nachbarsystem.

Zur Erklärung der vereinfachten Signalverarbeitung nach Fig. 4 dienen die Fig. 15 bis 18. Hier ist eine noch niedrigere Eingangsfrequenz und ein längerer Aus-5 schnitt angenommen. Die zu trennenden Spektralkomponenten (Zeile e) liegen so weit auseinander, daß sogar ein weniger steiles Tiefpaßfilter ausreicht. Eine einfache Realisierung besteht z. B. in der linearen Interpolation von Zwischenwerten aus den vorhandenen Nachbarwerten. Man erkennt dies auch an den Abtastwerten in Zeile e, die sich bis auf den Phasenunterschied 1/sp kaum unterscheiden.

Bei steigender Eingangsfrequenz werden die Fehler immer größer. Da aber auch hochfrequentere Nutzsimüssen, um sich bei Subtraktion zu kompensieren, dürfen sie nicht zur Korrektur zugelassen werden. Daher muß ein Tiefpaß geringer Eckfrequenz gewählt werden.

Da die Streustrahlungsbilder sehr niederfrequent sind, genügt eine grobere Abtastung. Statt jeder zweiten Zeile genügt es, jede 16. Zeile abzutasten, um das Streustrahlungsbild noch hinreichend gut zu erfassen. Dementsprechend kürzer ist die zugeordnete Auslesezeit. Die Zeilenzahl des Teilbildes ohne Störung ist entsprechend höher und seine Auslesezeit verlängert. Der Röntgenpuls des zweiten Systems rückt damit näher an den nächsten Puls des ersten Systems. Die Gleichzeitigkeit der Röntgenpulse ist besser angenähert.

Patentansprüche

1. Röntgenuntersuchungsanlage mit zwei bildgebenden Systemen mit a-Si:H-Detektoren (5), welche wechselweise mit Röntgenpulsen (4) beaufschlagt werden, zwischen denen die Bildauslesung erfolgt, wobei der Röntgenpuls (4) des einen Detektors (5) in der Pause (7) zwischen der Auslesung der beiden Halbbilder des anderen Detektors (5) liegt und der Störanteil durch Differenzbildung zweier Halbbilder ermittelt und von den Zeilen des Gesamtbilds abgezogen wird, die Streustrahlenanteile enthalten.

2. Röntgenuntersuchungsanlage nach Anspruch 1, bei der aus den beiden Halbbildern durch Tiefpaßfilterung und Interpolation der fehlenden Zwischenzeilen Bilder der vollen Zeilenzahl erzeugt werden, welche voneinander subtrahiert werden.

Hierzu 11 Seite(n) Zeichnungen

DE 195 06 283 C1

40

Nummer: DE 195 05 283
Int. Cl.⁶; H 05 G 1/64
Veröffentlichungstag: 11. April 1996

Nummer: Int. Cl.6;

DE 195 05 283 C1 H 06 G 1/64

Veröff ntlichungstag: 11. April 1996

FIG 2

Nummer: Int. Cl.⁶:

DE 195 06 283 C

H 05 G 1/64

Veröffentlichungstag: 11. April 1996

DE 195 05 283 C1

Int. Cl.⁶: H 05 G 1/64 Veröff ntlichungstag: 11. April 1996

Nummer: Int. Cl.⁸:

DE 195 05 283 C1

Int. Cl.⁶: **H 05 G 1/64** Veröffentlichungstag: 11. April 1996

Nummer: DE 195 05 283
Int. Cl.⁶: H 05 G 1/64
Veröffentlichungstag: 11. April 1996

DE 195 05 283 C1 H 05 G 1/64

DE 195 05 283 C1

Int. Cl.6:

H 05 G 1/64

Veröffentlichungstag: 11. April 1996

DE 195 05 283 C1

Nummer: DE 195 05 283
Int. Cl.⁶: H 05 G 1/64
Veröffentlichungstag: 11. April 1996

DE 195 06 283 C1

Int. Cl.⁶:

H 05 G 1/64

Veröff ntlichungstag: 11. April 1996

DE 195 05 283 C1

Int. Cl.6:

H 05 G 1/64 Veröffentlichungstag: 11. April 1996

Int. Cl.6:

Veröffentlichungstag: 11. April 1998

DE 195 06 283 C1 H 05 G 1/64

FIG 17

1/9/1

DIALOG(R) File 351: Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

Image available 010683741

WPI Acc No: 1996-180697/*199619*

XRPX Acc No: N96-151861

Medical X-ray investigation appts. - applies x-ray pulses during intervals between reading out of two half-images, scintillator in front of detector, and subtracts one half-image from other to remove noise

Patent Assignee: SIEMENS AG (SIEI)

Inventor: HASSLER D

Number of Countries: 001 Number of Patents: 001

Patent Family:

Kind Date Applicat No Date Patent No Kind 19950216 199619 B 19960411 DE 1005283 Α DE 19505283 C1

Priority Applications (No Type Date): DE 1005283 A 19950216

Patent Details:

Filing Notes Patent No Kind Lan Pg Main IPC

14 H05G-001/64 DE 19505283 C1

Abstract (Basic): DE 19505283 C

The x-ray system includes a-Si:H detectors (5) which receive x-ray pulses (4). Images are read out from the detectors, and x-ray pulses are applied during the intervals (7) between the reading out of the two half-images. Noise is removed from the whole image by forming a difference between the two half-images. The half-images are generated by low-pass filtering (10,11) and interpolation of the missing interlaced mode images of the full line number. A scintillator is provided in front of the detector. At low frequency, i.e. max. frequency less than 1/4 of y-sampling frequency, the difference between the two half-images includes only the noise portion.

USE/ADVANTAGE - Two-plane medical X-ray investigation. Reduces artefacts.

Dwg.3/18 Title Terms: MEDICAL; X-RAY; INVESTIGATE; APPARATUS; APPLY; X-RAY; PULSE; INTERVAL; READ; TWO; HALF; IMAGE; SCINTILLATION; FRONT; DETECT; SUBTRACT;

ONE; HALF; IMAGE; REMOVE; NOISE

Derwent Class: P31; S03; W04

International Patent Class (Main): H05G-001/64

International Patent Class (Additional): A61B-006/00; G01N-023/04;

H04N-005/32

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): S03-E06B; S03-E06H5; W04-M01B; W04-M01F1; W04-P01F1