Introduction to Deep learning

- Deep Learning is a subset of machine learning
 - It uses multi-layered neural networks to model and understand complex patterns in data.

Deep learning vs Traditional Machine learning

- Feature engineering had a key role in ML
 - Hand-crafted features (e.g., word co-occurrence, term frequency)

Data driven features

• Deep neural network (DNN) as feature/representation learner

A Simple Neural Network (NN)

$$Y = f\left(\sum_{i} W_{i} X_{i} + b_{i}\right)$$

Activation function

Why Activation functions?

Why Activation functions?

• They introduce **non-linearity** into the network!

Activation functions

Which one to use?

- Relu & LeakyRelu are most used activation functions.
- Dying Relu problem!
- LeakyRelu is better!

 $\max(ax, x)$

A Simple Neural Network (NN)

$$Y = f\left(\sum_{i} W_{i} X_{i} + \mathbf{b}_{i}\right)$$

Backpropagation

Using optimizers

NN Optimizers

- Optimizers adjust weights of NN to minimize the loss during training
 - **✓ Adam** (Adaptive Moment Estimation)
 - ✓SGD (Stochastic Gradient Descent)

→ Selection depends on model complexity, dataset size, and convergence behavior.

Deep Neural Network (DNN)

Autoencoders (AE)

Adversarial Autoencoders (AAE)

Generative adversarial networks (GANs)

Convolution in Image Processing

- Convolution: Transforming an image by applying a kernel over each pixel and its local neighbors across the entire image.
- Live examples: https://setosa.io/ev/image-kernels/

7	2	3	3	8							61	
4	5	3	8	4		1	0	-1		6		
3	3	2	8	4	*	1	0	-1	=			
2	8	7	2	7		1	0	-1				
5	4	4	5	4	7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6							

Convolutional Neural Networks (CNNs)

- Convolution filters as feature extractors!
- https://poloclub.github.io/cnn-explainer/

Relu

Max Pooling

Relu

Max Pooling

Why CNN for Image?

- Some patterns are much smaller than the whole image
 - **✓** A neuron does not have to see the whole image to discover the pattern.

Why CNN for Image?

• The same patterns appear in different regions.

Why CNN for Image?

• Subsampling the pixels will not change the object

bird

- We can subsample the pixels to make image smaller
- Less parameters for the network to process the image

Convolutional Neural Networks (CNNs)

Convolution filters as <u>feature extractors!</u>

- Some patterns are much smaller than the whole image
- The same patterns appear in different regions.

• Subsampling the pixels will not change the object

Transfer Learning

Training a huge model on a large dataset for a very long time!

 $x_4 \circ$

