Oct 27 Notes - Dot Product, Cross Product, and Lines and Planes in Space

Section 12.3: The Dot Product

Definition: Dot Product

The dot product $\mathbf{u} \cdot \mathbf{v}$ of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is the * * * scalar * * *

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Theorem 1 - Angle Between Two Vectors

The angle θ between two nonzero vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is given by

$$\theta = \cos^{-1}\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{|\mathbf{u}| |\mathbf{v}|}\right) = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}\right)$$

Definition: Orthogonal

Vectors \mathbf{u} and \mathbf{v} are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$.

Properties of the Dot Product

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors and c is a scalar, then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 2. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 4. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

3.
$$\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$4 \quad \mathbf{n} \cdot \mathbf{n} = |\mathbf{n}|^2$$

5.
$$\mathbf{0} \cdot \mathbf{u} = 0$$

Vector Projections

The vector projection of \mathbf{u} onto \mathbf{v} is the vector

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$$

The scalar component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$|\mathbf{u}|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|^2} = \mathbf{u}\cdot\frac{\mathbf{v}}{|\mathbf{v}|}$$

Definition: Work

The work done by a constant force **F** acting through a displacement $D = \vec{PQ}$ is

$$W = \mathbf{F} \cdot \mathbf{D}$$

Section 12.4: The Cross Product

Definition: Cross Product

The **cross product** $\mathbf{u} \times \mathbf{v}$ is the * * * vector * * *

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}| |\mathbf{v}| \sin \theta) \mathbf{n}$$

where θ is the angle between **u** and **v**, and **n** is the **unit normal vector** to the plane generated by **u** and **v**, following the right hand rule.

Parallel Vectors

Nonzero vetors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Properties of the Cross Product

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors and r, s scalars, then

1.
$$(r\mathbf{u}) \times (s\mathbf{v}) = (rs)(\mathbf{u} \times \mathbf{v})$$
 2. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$

2.
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

3.
$$\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$$

5. $\mathbf{0} \times \mathbf{u} = \mathbf{0}$

4.
$$(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$$

5.
$$\mathbf{0} \times \mathbf{u} = \mathbf{0}$$

6.
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

Cross Products of the Standard Unit Vectors

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$

 $\mathbf{i} \times \mathbf{i} = -\mathbf{l}$

$$\label{eq:controller} \begin{array}{ll} \mathbf{i} \times \mathbf{j} = \mathbf{k} & \mathbf{j} \times \mathbf{k} = \mathbf{i} & \mathbf{k} \times \mathbf{i} = \mathbf{j} \\ \mathbf{j} \times \mathbf{i} = -\mathbf{k} & \mathbf{k} \times \mathbf{j} = -\mathbf{i} & \mathbf{i} \times \mathbf{k} = -\mathbf{j} \end{array}$$

$$\mathbf{k} \times \mathbf{i} = \mathbf{j}$$

Area of a Parallelogram

The area of the parallelogram determined by \mathbf{u} and \mathbf{v} is

$$A = |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| \ |\mathbf{v}| \sin \theta$$

Calculating the Cross Product as a Determinant

If $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = \langle v_1, v_2, v_3 \rangle$, then

$$\mathbf{u} \times \mathbf{v} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array} \right|$$

2

Triple Scalar or Box Product

The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the **triple scalar product** of \mathbf{u} , \mathbf{v} , and \mathbf{w} (in that order).

Volume of a Parallelepiped

The volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} , and \mathbf{w} is

$$V = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Section 12.5: Lines and Planes in Space

Vector Equation for a Line

A vector equation for line L through $P_0(x_0, y_0, z_0)$ parallel to **v** is

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad -\infty < t < \infty$$

where **r** is the position vector of a point P(x, y, z) on L and **r**₀ is the position vector of $P_0(x_0, y_0, z_0)$.

Parametric Equations for a Line

The standard parametrization of the line through $P_0(x_0, y_0, z_0)$ parallel to $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ is

$$x = x_0 + tv_1$$
, $y = y_0 + tv_2$, $z = z_0 + tv_3$, $-\infty < t < \infty$

Distance from a Point S to a Line P parallel to \mathbf{v}

$$d = \frac{|\vec{PS} \times \mathbf{v}|}{|\mathbf{v}|}$$

Equation for a Plane

The plane through $P_0(x_0, y_0, z_0)$ normal to $\mathbf{n} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ has

Vector Equation: $\mathbf{n} \cdot \vec{P_0 P} = 0$

Component Equation: $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

Component Equation Simplified: Ax + By + Cz = D, where

 $D = Ax_0 + By_0 + Cz_0$

Distance from a Point to a Plane

$$d = \left| \vec{PS} \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right|$$

where $\mathbf{n} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$

Angles between planes

The angle between planes is defined to be the angle between the normal vectors.