[2]:	Measures of Center Measures of center are statistics that give us a sense of the "middle" of a numeric variable. In other words, centrality measures give you sense of a typical value you'd expect to see. Common measures of center include the mean, median and mode. mtcars = pd.read csv('data/mtcars.csv') # get an example data set
[2]:	mtcars.head() model mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
[3]:	3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 mtcars.shape
[3]: [4]: [5]:	<pre>mtcars.set_index('model',inplace=True) mtcars</pre>
[5]:	mpd cyl disp hp drat wt qsec vs am gear carb model Mazda RX4 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
	Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
	Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
	Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
	Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
	Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
	Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
	Sample Mean: The mean is simply an average: the sum of the values divided by the total number of records. We can use df.mean() to get the mean of each column in a DataFrame: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} = x_i$
[6]: [6]:	mtcars.mean() # Get the mean of each column
	drat 3.596563 wt 3.217250 qsec 17.848750 vs 0.437500 am 0.406250 gear 3.687500 carb 2.812500 dtype: float64
[9]:	<pre>plt.hist(mtcars['mpg'],color ='g') plt.axvline(mtcars['mpg'].mean() , color='red') plt.title('MPG') plt.show()</pre> MPG
	5 - 4 - 3 - 2 -
	Median The median of a distribution is the value where 50% of the data lies below it and 50% lies above it. In essence, the median splits the data lies below it and 50% lies above it.
10]:	mpg 19.200
	cyl 6.000 disp 196.300 hp 123.000 drat 3.695 wt 3.325 qsec 17.710 vs 0.000 am 0.000 gear 4.000 carb 2.000
L1]:	The median always gives us a value that splits the data into two halves while the mean is a numeric average so extreme values can have significant impact on the mean. So ideally, we report both. Furthermore, if you have data that is purely categorical values represented a numbers or values that do not have a clear numeric relation between values, then the mean is not really meaningful. plt.hist(mtcars['mpg'],color ='g')
	<pre>plt.axvline(mtcars['mpg'].median() , color='red') plt.title('MPG') plt.show()</pre> MPG 6- 5- 1 1 1 1 1 1 1 1 1-
	4 - 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	Mode The mode of a variable is simply the value that appears most frequently. Unlike mean and median, you can take the mode of a categor
12]:	<pre>variable and it is possible to have multiple modes. Find the mode with df.mode(): plt.hist(mtcars['cyl'],color ='g') plt.axvline(mtcars['cyl'].mode().ravel(), color='red') plt.title('Displacement') plt.show()</pre> <pre>Displacement</pre>
	14 - 12 - 10 - 8 - 6 -
	4- 2- 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
13]:	Measures of spread (dispersion) are statistics that describe how data varies. While measures of center give us an idea of the typical value measures of spread give us a sense of how much the data tends to diverge from the typical value. One of the simplest measures of spread is the range. Range is the distance between the maximum and minimum observations:
13]:	max (mtcars ["mpg"]) - min (mtcars ["mpg"]) 23.5 As noted earlier, the median represents the 50th percentile of a data set. A summary of several percentiles can be used to describe a variable's spread. We can extract the minimum value (0th percentile), first quartile (25th percentile), median, third quartile(75th percent and maximum value (100th percentile) using the quantile() function:
L4]:	<pre>five_num = [mtcars["mpg"].quantile(0),</pre>
L4]: L5]:	[10.4, 15.425, 19.2, 22.8, 33.9] Since these values are so commonly used to describe data, they are known as the "five number summary". They are the same percentile values returned by df.describe(): mtcars["mpg"].describe()
L5]:	count 32.000000 mean 20.090625 std 6.026948 min 10.400000 25% 15.425000 50% 19.200000 75% 22.800000 max 33.900000 Name: mpg, dtype: float64
	Interquartile (IQR) range is another common measure of spread. IQR is the distance between the 3rd quartile and the 1st quartile: mtcars["mpg"].quantile(0.75) - mtcars["mpg"].quantile(0.25) 7.375 A usual "boxplot" is a visual representation of the five number summary and IQR:
19]:	return_type='axes', figsize=(5,5)) plt.text(x=0.74, y=22.8, s="3rd Quartile") plt.text(x=0.8, y=19.2, s="Median") plt.text(x=0.75, y=15.4, s="1st Quartile")
19]:	plt.text(x=0.9, y=10.4, s="Min") plt.text(x=0.9, y=33.9, s="Max") plt.text(x=0.7, y=7.35, s="IQR", rotation=90, size=25) Text(0.7, 7.35, 'IQR') Max o Max o
	30
	15 - 1st Quartile 10 - Min
L8] :	# Boxplot with Pandas mtcars["mpg"].plot.box(title='Boxplot with pandas'); Boxplot with pandas O O
	25 - 20 - 15 -
	Sample Variance: Variance and standard deviation are two other common measures of spread. The variance of a distribution is the average of the square deviations (differences) from the mean. Use of variance:
20]:	deviations (differences) from the mean. Use df.var() to check variance: $Var_x = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ $\texttt{mtcars["mpg"].var()}$
20]: 21]:	
	6 - 5 - 4 -
	Sample Standard Deviation: The standard deviation is the square root of the variance. It is used to quantify the amount of variation or dispersion of a set of data valuaround the mean. Standard deviation can be more interpretable than variance, since the standard deviation is expressed in terms of the same units as the variable in question while variance is expressed in terms of units squared. Use df.std() to check the standard deviation
22]:	$Std_x = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2}$ plt.hist(mtcars["mpg"],color = 'g') plt.axvline(mtcars["mpg"].mean() + mtcars["mpg"].std(), color='red') plt.axvline(mtcars["mpg"].mean() - mtcars["mpg"].std(), color='red')
	plt.show() 6- 5- 4-
	Skewness Beyond measures of center and spread, descriptive statistics include measures that give you a sense of the shape of a distribution. Skewness measures the skew or asymmetry of a distribution while kurtosis measures the "peakedness" of a distribution.
	Skewness refers to distortion or asymmetry in a symmetrical bell curve, or normal distribution, in a set of data. If the curve is shifted to t left or to the right, it is said to be skewed. Skewness can be quantified as a representation of the extent to which a given distribution variety from a normal distribution. A normal distribution has a skew of zero. Median Median Median Median Mode Mode Mean Median Median Median Mode
	▲ 1.1
	Positive Symmetrical Negative Skew Distribution Skew

