

(19) BUNDESREPUBLIK **DEUTSCHLAND**

PATENTAMT

Patentschrift DE 197 22 317 C 1

(2) Aktenzeichen:

197 22 317.6-41

② Anmeldetag:

28. 5.97

(3) Offenlegungstag:

Veröffentlichungstag

der Patenterteilung:

8. 10. 98

⑤ Int. Cl.6:

C 07 K 14/435 A 61 K 38/17

A 61 K 31/70 C 12 N 15/11 C 07 H 21/04 C 12 N 15/63 A 61 K 48/00

C 12 Q 1/68 G 01 N 33/53

// (A61K 38/17,31:70

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Boehringer Ingelheim International GmbH, 55218 Ingelheim, DE

(72) Erfinder:

Hakamata, Yasuhiro, Dr., Jyohoku, Shizuoka, JP; Nishimura, Seiichiro, Dr., Mino, Osaka, JP; Barsoumian, Edward L., Dr., Toyonaka, Osaka, JP

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

FEBS Lett. 394, S. 76-82, 1996; Genomics 18 (1), S. 163-5, 1993;

Das Protein des humanen Ryanodinrezeptors vom Typ 3 sowie dafür kodierende DNA-Moleküle

Der Gegenstand der Erfindung umfaßt Nukleinsäuren und Protein des humanen Ryanodinrezeptors vom Typ 3 (hRyR3), chimäre Ryanodinrezeptoren mit Anteilen des menschlichen Rezeptors sowie Verfahren zur Herstellung dieser Proteine. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft den Nachweis von Ryanodinrezeptoren in menschlichen Geweben zur Diagnose pathologischer Zustände und Verfahren zur Identifizierung von Aktivatoren oder Inhibitoren des hRyR3.

BEST AVAILABLE COPY

Beschreibung

Der Gegenstand der Erfindung umfaßt Nukleinsäuren und Protein des humanen Ryanodinrezeptors vom Typ 3 (hRyR3), chimäre Ryanodinrezeptoren mit Anteilen des menschlichen Rezeptors sowie Verfahren zur Herstellung dieser Proteine. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft den Nachweis von Ryanodinrezeptoren in menschlichen Geweben zur Diagnose pathologischer Zustände und Verfahren zur Identifizierung von Aktivatoren oder Inhibitoren des hRyR3.

Zytoplasmatisches Kalzium spielt eine wichtige Rolle in der Zellaktivierung, Neurotransmitterfreisetzung, Muskelkontraktion und anderen biologischen Prozessen. Es wird durch den Einfluß extrazellulären Kalziums durch spannungsaktivierte und andere Ionenkanäle und über die Kalziumfreisetzung intrazellulärer Vorräte erhöht. Zur Zeit sind zwei intrazelluläre Kalziumfreisetzungskanäle bekannt, die Inositol 1,4,5-trisphosphatrezeptoren (IP3R) und die Ryanodinrezeptoren (RyR). Bei der Kalziumfreisetzung durch IP3R wird von einem ubiquitären Mechanismus ausgegangen, der für viele Zellen beschrieben wurde. Dagegen werden drei Typen von RyR-mRNA, RyR1, RyR2 und RyR3 gewebespezifisch exprimiert; RyR1 hauptsächlich in Skelettmuskel, RyR2 in Herzmuskel und Gehirn und RyR3 in Gehirn und glatter Muskulatur. Im Gehirn wird der RyR3 nur in sehr begrenzten Bereichen stark exprimiert, wie z. B. Hippocampus, Nucleus caudatus, Corpus callosum und Thalamus. Der RyR3 wird auch in nicht-erregbaren Zellen wie menschlichen T-Lymphozyten exprimiert. Eine Rolle des RyR3 in der Zellproliferation wird postuliert (Hakamata, Y. et al. FEBS Lett., 352 (1994), 206–210). Für RyR1 und RyR2 wurde gezeigt, daß bei der Erregungs-Kontraktions-Kopplung von Skelett- und Herzmuskel spannungsaktivierte Kalziumkanäle direkt den RyR1 in Skelettmuskel und wahrscheinlich auch in Neuronen aktivieren, während das Kalzium der spannungsaktivierten Kanäle ein Auslöser zur Öffnung von RyR2 in Herzmuskel ist (kalziuminduzierte Kalziumfreisetzung).

Die Funktion des RyR3 ist Gegenstand einer Reihe von Spekulationen. Obwohl Kalzium ein wichtiger physiologischer Ligand von RyR3 zu sein scheint, spricht einiges dafür, daß die kalziuminduzierte Kalziumfreisetzung sich von derjenigen anderer RyR unterscheidet. Es wird angenommen, daß ein endogener RyR3 für die wesentlich geringere Kalziumempfindlichkeit der restlichen Kalziumfreisetzungsaktivität von RyR1-defizienten Mausmuskelzellen verantwortlich ist. RyR3 ist nachweislich in einigen Fällen gegenüber Koffein unempfindlich, der hauptsächlich zur RyR-Aktivierung verwendeten Substanz. Da RyR3 in nicht-erregbaren Zellen exprimiert wird, die praktisch über keine spannungsaktivierten Kalziumkanäle verfügen, scheint es möglich, daß RyR3 durch andere Mechanismen reguliert wird als die übrigen RyR. RyR3-defiziente Mausmutanten weisen eine erhöhte lokomotorische Aktivität auf.

Die cDNA-Sequenzen von RyR1, RyR2 und für den Kaninchen-RyR3 (Hakamata et al. (1992) FEBS Lett. 312, 229–235) (rRyR3) sind bereits bekannt, während die Nukleinsäuresequenz des RyR3 im Menschen (hRyR3) noch nicht untersucht wurde.

Trotz vielfältiger Teilinformationen über den RyR3 sind seine molekularphysiologischen Eigenschaften, seine Bedeutung in pathologischen Zuständen sowie Verfahren zur Beurteilung möglicher Inhibitoren und Aktivatoren seiner Aktivität weitgehend oder sogar völlig unbekannt. Auch geht die Übertragung zur Zeit vorhandener Informationen aus Untersuchungen mit isolierten RyR3 nichthumanen Ursprungs auf den Menschen mit einer nicht unerheblichen Unsicherheit einher.

Aufgabe der vorliegenden Erfindung war die Bereitstellung der Nukleinsäuresequenz des humanen Ryanodinrezeptors vom Typ 3, seine Aminosäuresequenz sowie die Feststellung struktureller und physiologischer Besonderheiten, die den hRyR3 von allen anderen RyR unterscheiden.

Die Aufgabe konnte mit der vorliegenden Erfindung im Rahmen der Beschreibung und der Patentansprüche gelöst werden, indem Polypeptide zur Verfügung gestellt werden, die dadurch gekennzeichnet sind, daß sie mindestens 96% Aminosäuresequenzidentität mit dem humanen Ryanodin-Rezeptor vom Typ 3 (hRyR3) mit der Aminosäuresequenz gemäß Fig. 7 aufweist.

In einer speziellen Ausführungsform umfasst die vorliegende Erfindung den humanen Ryanodinrezeptor vom Typ 3 (hRyR3) mit der Aminosäuresequenz gemäß Fig. 7.

Die bereitgestellten Polypeptide und funktionellen Derivate des hRyR3 ermöglichen es nun erstmals, den humanen RyR3 mit RyR-Typen anderer Spezies zu vergleichen und Unterschiede aufzuzeigen.

Die bereitgestellten erfindungsgemäßen Polypeptide umfassen den humanen RyR3 sowie seine "funktionellen Derivate", die dadurch gekennzeichnet sind, daß sie aus einem erfindungsgemäßen Polypeptid als Fragment, Variante oder chemisches Derivat abgeleitet sind unter Erhalt der wesentlichen biologischen Aktivität des nativen humanen Ryanodinrezeptors vom Typ 3 (hRyR3) mit der Λminosäuresequenz gemäß Fig. 7.

Unter dem der vorliegenden Erfindung zugrundeliegenden Begriff "funktionelles Derivat" ist im Rahmen der Erfindung eine Komponente mit der biologischen Aktivität, die im wesentlichen ähnlich der biologischen Aktivität des nativen hRyR3 ist, gemeint. Die biologische Fähigkeit bezieht sich sowohl auf das Bindungsvermögen von Inhibitoren und Aktivatoren wie Koffein als auch von weiteren physiologischen Liganden des nativen Rezeptors sowie die Freisetzung von intrazellulärem Kalzium. Ein "funktionelles Derivat" umfasst aber auch Teile der hRyR, dessen biologische Eigenschaften durch Fragmente anderer Proteine wie z. B. anderer RyR verändert wurden. In einer besonderen Ausführungsform sei hier auf das Beispiel eines chimären Rezeptors aus hRyR3 und rRyR2 verwiesen. Der Ausdruck "funktionelle Derivate" soll "Fragmente", Varianten" und "chemische Derivate" umfassen.

Der Ausdruck "Fragment" bezieht sich auf jedes Polypeptid, das gemessen am nativen Rezeptor, eine verkleinerte Form darstellt und mindestens eine Bindungsstelle für einen Liganden des hRyR aufweist.

Eine "Variante" umfasst Moleküle, die im wesentlichen in Funktion und Struktur vom nativen hRyR3 abgeleitet sind, wie z.B. allele Formen. Demnach beinhaltet der Ausdruck "Variante" z.B. die Moleküle, die eine ähnliche Aktivität, aber z.B. eine veränderte Aminosäuresequenz haben.

Ein chemisches Derivat schließt zusätzliche chemische Gruppen ein, die normalerweise nicht Teil des Moleküls sind. Diese Gruppen können z. B. die biologische Aktivität des Moleküls verstärken oder abschwächen.

Ein Aspekt der vorliegenden Erfindung betrifft chimäre Polypeptide, die dadurch gekennzeichnet sind, daß sie neben

mindestens einem Fragment des humanen Ryanodinrezeptors vom Typ 3 (hRyR3) mindestens ein weiteres Fragment eines anderen Polypeptids enthalten.

In einer besonderen Ausführungsform betrifft die vorliegende Erfindung chimäre Polypeptide, die dadurch gekennzeichnet sind, daß sie neben einem Fragment des hRyR3 mindestens ein weiteres Fragment aus der Familie der nicht humanen Ryanodinrezeptoren enthalten.

5

10

30

In einer speziellen Ausführungsform betrifft die vorliegende Erfindung chimäre Polypeptide, die dadurch gekennzeichnet sind, daß sie neben einem Fragment des hRyR3 mindestens ein Fragment des Kaninchen-Ryanodin-Rezeptors Typ 2 (rRyR2) enthalten.

În einer weiteren besonderen Ausführungsform betrifft die vorliegende Erfindung ein chimäres Polypeptid, daß dadurch gekennzeichnet ist, daß es im Bereich der Aminosäure 1300 des hRyR3 ein Fragment des rRyR2 enthält, welches hohe Kalzium- bzw. Koffeinempfindlichkeit verleiht.

Aufgrund der im Vergleich zu den anderen RyR-Typen geringeren Kalziumfreisetzungsaktivität des RyR3 ist die Messung der Kalziumfreisetzung durch bekannte Aktivatoren wie z. B. Koffein ungenau oder sogar nicht möglich. Dies hat große Bedeutung für die Identifizierung möglicher Inhibitoren oder Aktivatoren der biologischen Wirkung des RyR3. Es wurde nun überraschenderweise gefunden, daß ein chimäres Polypeptid, das über eine erhöhte Kalziumbzw. Koffeinempfindlichkeit verfügt, aus einem Fragment des RyR vom Typ 3 und einem anderen Protein hergestellt werden kann. In einer besonderen Ausführungsform wird ein chimäres Polypeptid aus einem Anteil hRyR3 und einem nichthumanen Anteil, wie z. B. einem Fragment des Kaninchen-rRyR2, vorgestellt. Überraschenderweise wurde gefunden, daß das Ersetzen des hRyR3 im Bereich der Aminosäure 1300 durch einen Teil des rRyR2 eine erhöhte Koffeinbzw. Kalziumempfindlichkeit vermittelt. Diese erhöhte Kalziumbzw. Koffeinempfindlichkeit ermöglicht nun dem Fachmann in hochsensiblen Testsystemen, z. B. in vivo Zellsystemen, Aktivatoren und Inhibitoren durch ihren Einfluß auf den intrazellulären Kalziumgehalt zu bestimmen.

Ein weiterer Aspekt der vorliegenden Erfindung umfasst Nukleinsäuren, die für die erfindungsgemäßen Polypeptide mit der biologischen Aktivität des nativen hRyR3 kodieren. Nukleinsäuren umfassen DNA sowie auch RNA. Alle erfindungsgemäßen Nukleinsäuren zeichnen sich dadurch aus, daß Sie mit einer Nukleinsäure entsprechend der erfindungsgemäßen Polypeptidsequenzen unter stringenten Bedingungen hybridisieren. Unter stringenten Bedingungen hybridisieren DNA-Sequenzen mit mehr als 85% Homologie und bevorzugt mit einer Homologie von mehr als 90%. Unter stringenten Bedingungen versteht der Fachmann auf dem Gebiet der Molekularbiologie Hybridisierungsbedingungen wie sie z. B. in "Molecular Cloning, A Laboratory Manual, 2nd. Ed., Sambrook, Fritsch, Maniatis; Cold Spring Harbor Press, 1989" und "Haymes, B. D. et al., Nucleic Acid Hybridisation, a Practical Approach, IRL Press, Washington, DC (1985)" beschrieben werden.

In einer weiteren bevorzugten Ausführungsform kodieren diese DNA-Moleküle für chimäre Polypeptide, die neben einem Anteil hRyR3 mindestens ein weiteres DNA-Fragment enthalten, das z. B. aus der Familie der Ryanodinrezeptoren stammen kann. In einer besonderen Ausführungsform wird eine Nukleinsäure für ein chimäres Polypeptid aus einem Fragment des hRyR3 zur Verfügung gestellt, dessen Bereich um die Aminosäure 1300 durch ein Fragment des Kaninchen RyR2 ersetzt wurde.

In einer weiteren besonderen Ausführungsform umfasst die Erfindung alle zur rekombinanten Darstellung der erfindungsgemäßen Polypeptide notwendigen Nukleinssäuresequenzen. Die Sequenzen schließen somit alle zusätzlichen Sequenzen ein, die zur rekombinanten Herstellung der Polypeptide notwendig sind, wie z. B. Vektor- und Wirtsnukleinsäuren.

In einem zusätzlichen Aspekt wird von der vorliegenden Erfindung ein Verfahren zur Herstellung der erfindungsgemäßen Polypeptide bereitgestellt, daß dadurch gekennzeichnet ist, daß eine erfindungsgemäße Nukleinsäure in eine Zelle oder ein zellfreies In-Vitro-Translations-System eingebracht wird. Ferner ist das Verfahren dadurch gekennzeichnet, daß die Nukleinsäure Bestandteil eines Expressionsvektors sein kann. Entsprechende verwendbare Expressionsvektoren, Zellen, zellfreie In-Vitro-Translations-Systeme sowie die notwendigen Methoden zur Herstellung der Polypeptide sind dem Fachmann auf dem Gebiet der Molekularbiologie geläufig.

Ein noch weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Polypeptide und/oder Nukleinsäuren als Pharmazeutikum oder als Bestandteil eines Pharmazeutikums, bzw. die Verwendung der Polypeptide und/oder zur Behandlung von hRyR3 assoziierten Erkrankungen.

Ferner umfasst die Erfindung jedoch auch Nukleinsäuren als Pharmazeutikum oder als Bestandteil eines Pharmazeutikums, die der Nukleinsäure eines der erfindungsgemäßen Proteine komplementär ist. Solche komplementären Nukleinsäuren sind dem Fachmann unter dem Namen "Antisense"-Nukleinsäuren bekannt und ihre therapeutische Bedeutung ist dem Fachmann geläufig.

Ein zusätzlicher Aspekt der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Polypeptide sowie deren Nukleinsäuren zum Nachweis der erfindungsgemäßen Polypeptide sowie deren Nukleinsäuren.

Die erfindungsgemäßen Polypeptide ermöglichen nun erstmals die Bereitstellung hochspezifischer immunologischer Methoden, diese Polypeptide in geringen Konzentrationen nachzuweisen.

In einer besonderen Ausführungsform betrifft die Erfindung die Verwendung eines erfindungsgemäßen Polypeptids zur Herstellung monoklonaler oder polyklonaler Antikörper zum Nachweis eines erfindungsgemäßen Polypeptids.

Immunologische Methoden, wie z. B. die Herstellung, Reinigung und Anwendung monoklonaler und polyklonaler Antikörper zum quantitativen und qualitativen hochspezifischen Nachweis von Peptiden sind dem Fachmann aus dem Stand der Technik bekannt. Ferner umfasst die Erfindung in einer weiteren besonderen Ausführungsform auch den molekularbiologischen Nachweis der für die Polypeptide kodierenden Nukleinsäure. Molekularbiologische Nachweise sind dem Fachmann auf dem Gebiet der Molekularbiologie bestens bekannt und umfassen u. a. Hybridisierungs- und PCR-(Polymerase Chain Reaction) Methoden.

In einer besonderen Ausführungsform ist die Verwendung einer erfindungsgemäßen Nukleinsäure oder eines Teils einer erfindungsgemäßen Nukleinsäure zum Nachweis einer erfindungsgemäßen Nukleinsäure dadurch gekennzeichnet, daß eine zu dieser Nukleinsäure oder zu einem Teil dieser Nukleinsäure komplementäre Nukleinsäure zur Hybridisie-

rung eingesetzt wird.

Ein weiterer Aspekt der vorliegenden Erfindung umfasst die Verwendung der bereitgestellten Polypeptide und/oder Nukleinsäuren zur Bestimmung möglicher Inhibitoren und Aktivatoren des hRyR3.

Demzufolge umfasst die vorliegende Erfindung auch die Verwendung der erfindungsgemäßen Nukleinsäuren zur in vitro- und/oder in vivo-Identifizierung von Aktivatoren und/oder Inhibitoren des hRyR3, die dadurch gekennzeichnet ist, daß eine erfindungsgemäße Nukleinsäure in eine Zelle oder ein zellfreies System eingebracht und exprimiert wird, das Expressionsprodukt einem potentiellen Inhibitor oder Aktivator ausgesetzt wird und der durch das Expressionsprodukt vermittelte Ionenfluß gemessen wird.

Der Begriff in vitro bezieht sich auf zellfreie, der Begriff in vivo auf Zellsysteme. In einer besonderen Ausführungsform werden Aktivatoren und/oder Inhibitoren in membranumschlossene zellfreie Systeme eingebracht, die die erfindungsgemäßen Polypeptide exprimieren und nach Zusatz potentieller Aktivatoren und Inhibitoren die Änderung der Ionenkonzentration im membranumschlossenen Raum bestimmt. In einer ganz besonderen Ausführungsform stellt die vorliegende Erfindung erstmals durch die Expression der erfindungsgemäßen Polypeptide in RyR-defizienten Zellen ein System in vivo zur Verfügung, daß es ermöglicht, Aktivatoren und Inhibitoren des hRyR3 in isolierten Zellen zu bestimmen. Methoden zur Expression von Polypeptiden in Zellen und zellfreien Systemen unter Verwendung der entsprechenden Nukleinsäure sind dem Fachmann aus dem Stand der Technik bekannt. Neben der Expression der erfindungsgemäßen Polypeptide in Zellen oder zellfreien Systemen umfasst die Erfindung in einer ganz besonderen Ausführungsform auch die Injektion der Polypeptide in diese Zellen und Systeme zur Identifikation von Inhibitoren und/oder Aktivatoren nach den oben beschriebenen Methoden. Die Identifizierung von potentiellen Inhibitoren und Aktivatoren erfolgt durch Nachweis des veränderten Einflusses des Expressionsprodukts auf die Zelle. Der veränderte Einfluss des Peptids bzw. Expressionsprodukts ist durch den vermittelten Ionenfluss meßbar bzw. durch die Veränderung der Ionenkonzentration im membranumschlossenen Raum. Im allgemeinen wird die Konzentration intrazellulärer Kalziumionen gemessen. Ein beispielhafter Versuchsaufbau eines solchen Verfahrens zur Bestimmung von Aktivatoren oder Inhibitoren besteht z. B. aus einem hRyR3 exprimierenden Zellsystem oder zellfreien System, das über keinerlei oder nur geringe endogene Ryanodinrezeptoraktivität verfügt, wobei nach dem Zusatz von potentiellen Inhibitoren oder Aktivatoren eine meßbare Änderung der Ionenkonzentration innerhalb des Zellsystems oder des membranumschlossenen Raums bestimmt wird. Für den RyR1 und RyR2 sind Systeme zur Bestimmung von Aktivatoren und Inhibitoren bereits bekannt.

In einem weitereren zusätzlichen Aspekt umfasst die vorliegende Erfindung den Nachweis der erfindungsgemäßen Polypeptide und/oder des hRyR3, zur Diagnose von pathologisch veränderten Geweben.

In einem weiteren Aspekt der vorliegenden Erfindung können die erfindungsgemäßen Polypeptide und/oder Nukleinsäuren zur Herstellung eines Diagnostikums verwendet werden, welches deren Verwendung zur Diagnose von pathologischen Zuständen, wie z. B. die Überexpression oder der Mangel an hRyR3 in Geweben, ermöglicht, die dadurch gekennzeichnet ist, daß das Vorhandensein, die Überexpression oder der Mangel eines der erfindungsgemäßen Polypeptide nachgewiesen wird. Eine ganz besondere Ausführungsform der vorliegenden Erfindung betrifft die Verwendung von Antikörpern zur Diagnose pathologischer Zustände durch den immunologischen Nachweis der erfindungsgemäßen Polypeptide durch Antikörperbindung.

Unter einem pathologischen Zustand eines Gewebes versteht der Fachmann jegliche Abweichung der physiologischen Normalverhältnisse wie sie bei der Mehrheit eindeutig gesunder Gewebe ausgeprägt sind. Die Feststellung der Überexpression oder des Mangels der erfindungsgemäßen Polypeptide in Geweben und Zellen kann sowohl durch immunologische Methoden als auch durch den molekularbiologischen Nachweis der für die Polypeptide kodierenden Nukleinsäure erfolgen.

In einer weiteren besonderen Ausführungsform umfasst die vorliegende Erfindung die Verwendung einer erfindungsgemäßen Nukleinsäure zur Diagnose pathologischer Zustände, die dadurch gekennzeichnet sind, daß die für das erfindungsgemäße Polypeptid kodierende Nukleinsäure nachgewiesen wird.

Entsprechende molekularbiologische Nachweise sind dem Fachmann auf dem Gebiet der Molekularbiologie bestens bekannt und umfassen u. a. Hybridisierungsmethoden und PCR-(Polymerase Chain Reaction) Methoden. Ferner erlaubt die vorliegende Erfindung durch Bereitstellung der Nukleinsäuresequenz des hRyR3 dem Fachmann erstmals die Darstellung hochspezifischer hRyR3-Hybridierungssonden, mit denen die Gegenwart oder der Mangel an Nukleinsäuren des hRyR3 in Geweben nachgewiesen werden kann. Auch können nun hochspezifische Sonden zum Nachweis des hRyR3 durch PCR ("Polymerase Chain Reaction") entwickelt werden. Dadurch können erfindungsgemäß pathologische Zustände in Geweben durch molekularbiologische Methoden nachgewiesen werden.

In einer bevorzugten Ausführungsform wird im folgenden die Sequenz und molekularphysiologische Charakterisierung der cDNA-Sequenz des erfindungsgemäßen nativen Peptids des hRyR3 offenbart. Die cDNA Sequenz wurde durch dem Fachmann bekannte molekularbiologische Hybridisierungsmethoden und anschließendes Sequenzieren mehrerer überlappender cDNA-Klone identifiziert und charakterisiert. (Siehe Beispiel 1). Die Primärstruktur des erfindungsgemäßen nativen Polypeptids ist durch den Vergleich des korrespondierenden Leserasters der Aminosäuresequenz des Kaninchen-RyR3 bestimmt worden (Hakamata, Y. et al. FEBS Lett. 312 (1992), 229-235). Die Aminosäuresequenz des nativen Polypeptids ist 4866 Aminosäuren lang und entspricht einem Molekulargewicht von 551046 Da. Fig. 1 zeigt die aus der cDNA abgeleitete Aminosäuresequenz des hRyR3. Die Nukleotidsequenz GAGCCATGG im Bereich um das translationale Initiationskodon stimmt gut mit der Konsensusinitationssequenz CCA(G)CCATGG überein (Kozack M. Nucleic. Acids. Res. 12 (1984), 857-872). Die 3'-nichtkodierende Region ist 873 Nukleotide lang (ohne den poly (da)-Bereich); das Polyadenylierungssignal AATAAA (Goeddel, D. V. et al. Nature 290 (1981), 20-26) befindet sich 21 Nukleotide oberhalb des poly (da)-Bereichs. Der Aminosäuresequenzvergleich weist jeweils über 90% (ca. 96%) Identität zwischen hRyR3/rRyR3 auf, bzw. über 60% Identität zwischen hRyR3/rRyR2 (ca. 69%) sowie hRyR3/RyR1 (ca. 67%). Das Hydropathizitätsprofil des hRyR3 ist vergleichbar mit denen von Kaninchen-rRyR3, rRyR2, rRyR1 sowie humanem RyR1 insoweit, daß keine hydrophobe aminoterminale Sequenz, die eine Signalsequenz anzeigt, vorhanden ist und, daß die restlichen Bereiche hauptsächlich hydrophil sind sowie, daß sich vier stark hydrophobe Segmente (benannt als M1, M2, M3 und M4) im carboxy-terminalen Ende befinden. Besonders gut konserviert in allen RyR ist die carboxyterminale

Region im Bereich der M3- und M4-Segmente. Es sind auch deutliche Unterschiede vorhanden. So fehlt z. B. sowohl in hRyR3 als auch in rRyR3 in der Nähe der Aminosäure 1300 ein Bereich von etwa 100 Aminosäuren; RyR2 hat in dieser Region eine EF-Hand-Konsensussequenz (Moncrief, N. D. J. Mol. Evol. 30 (1990), 522-562) (im Bereich der Aminosäuren 1336-1347) und eine Nukleotidbindungskonsensussequenz GXGXXG (Wierenga, R. K. Nature 302 (1983), 842-844) (Aminosäurereste 1324-1329) (Nakai, J. et al. FEBS Lett. 271 (1990), 169-177). Desweiteren unterscheidet sich die Region direkt vor dem M1-Segment, in der eine Divergenz zwischen hRyR3 und rRyR3 besteht. Der hRyR3 verfügt über vier sich wiederholende Sequenzen in zwei Tandempaaren (Aminosäurereste 841-954, 955-1070, 2600-2711 und 2712-2791). Potentielle Ligandenbindungsstellen sind über vorgeschlagene Konsensusaminosäuresequenzen bestimmbar. Eine dem Motif der EF-Hand (Moncrief, N. D. J. Mol. Evol. 30 (1990), 522-562) ähnliche Sequenz ist bei Aminosäureresten 3928-3939 erkennbar, eine Region, die auch in rRyR3, RyR2 und RyR1 relativ gut konserviert ist. Desweiteren ist eine potentielle Calmodulin-Bindungsstelle (Aminosäuren 3465-3476), bestehend aus einer amphipathischen Helix mit zwei Gruppen positiver Ladungen, die durch eine hydrophobe Region getrennt sind (Blumenthal, D. K. Proc. Natl. Acad. Sci. U. S. A. 82 (1985), 3187-3191), besonders gut in rRyR3, rRyR2 und rRyR1 konserviert. Das Molekül weist vier Kopien der Nukleotidbindungskonsensussequenz GXGXXG (Wierenga, R. K. Nature 302 (1983), 842-844) (Aminosäurereste 697-702, 699-704, 1135-1140, 2235-2240 und 2524-2529) auf, von denen die Aminosäuren 2235–2240 in rRyR3, rRyR2 und rRyR3 gut konserviert sind. Durch Verwendung der Konsensussequenz RXXS/T, ergeben sich 21 potentielle Posphorylierungsstellen für Ca2+/Calmodulin-abhängige Proteinkinasen, von denen vier (Serinrest 2707 und die Threoninreste 130, 290, und 4150) in rRyR3, rRyR2 und rRyR3 konserviert sind. Es sind zwei potentielle cAMP-abhängige Phosphorylierungsstellen (Threoninreste 1244 und 4158), definiert als KRXXS/T oder RRXS/T (Keinp, B. E. and Pearson R. B. Trends. Biochem. Sci. 15 (1990), 342-346), vorhanden, die jedoch nicht in rRyR konserviert sind. All diese potentiellen Bindungsstellen sind auf der wahrscheinlich zytoplasmatischen Seite, entsprechend des Transmembrantopologiemodels (Takeshima, H. et al. Nature 339 (1989), 439-445), angeordnet. Argininrest 613 oder 614, dessen Ersatz durch Cystein in RyR1 mit maligner Hyperthermie (MH) in Schwein und Mensch assoziiert ist, ist in allen drei Typen von RyR konserviert. Es ist nun möglich, durch Vergleich der Primärstruktur des hRyR3 mit anderen Ryanodinrezeptoren, quantitative und qualitative Aussagen über seine molekularen Eigenschaften zu machen. Dem Fachmann auf dem Gebiet der Proteinchemie bietet die Primärstruktur des nativen Proteins desweiteren die Möglichkeit, Struktur- und Bindungsmodelle, die bei der Aufklärung der physiologischen Funktion und der Bestimmung möglicher Inhibitoren und Aktivatoren dieses Rezeptors hilfreich sind, zu entwerfen.

Die funktionelle Untersuchung des RyR3 hat bis jetzt noch keinen direkten Nachweis seiner Funktion als Kalziumfreisetzungskanal zeigen können. In einer besonderen Ausführungsform der vorliegenden Erfindung wurde nun erstmals die funktionelle rekombinante Expression des des hRyR3 durch Myotuben aus Mäusen ohne die Skelettmuskelisoform des RyR (Nakai, J. et al. Nature 380 (1996), 72–75) gezeigt. Die Expression des Wildtyp-hRyR3 in Myotuben aus RyR1-defizienten (dyspedischen) Mäusen durch Injektion der cDNA in die Kerne ist möglich, aber bedingt durch eine endogene Koffeinreaktion der dyspedischen Myotuben durch Koffein schlecht nachweisbar, da der Unterschied zwischen der Koffeinreaktion von nicht-injizierten Myotuben und mit RyR3-cDNA injizierten Myotuben nur undeutlich ist (10 mM Koffein). Dieses Ergebnis war nicht unerwartet, da hRyR3 in humanen T-Lymphozyten auch keine Koffeinreaktion aufzeigen (Hakamata, Y. et al. Febbs Lett. 352 (1994), 206-210). Es wird angenommen, daß Koffein durch die Verstärkung der Kalziumempfindlichkeit auf den RyR wirkt. Deshab wurde in erfinderischer Weise die Aufgabe gelöst, eine erhöhte Kalziumempfindlichkeit in den RyR3 einzubringen. Ausgehend von der Annahme, daß die fehlende Region um den Aminosäurerest 1300 die kalziumempfindlichkeitsbestimmende Region enthält, ist es möglich, ein chimäres RyR-Molekül herzustellen, in dem die fehlende Region durch eine Sequenz des RyR2 ersetzt wird, welcher eine hohe Kalziumempfindlichkeit aufweist. Ein solches chimäres Molekül des RyR kann z. B. zu einem Drittel aus der rRyR2-Aminosäuresequenz im N-Terminus und zu zwei Dritteln aus der hRyR3-Sequenz im C-Terminus bestehen (Fig. 2A). Fig. 2B zeigt eine Koffeinreaktion des in dyspedischen Myotuben exprimierten chimären RyR. Der chimäre RyR reagiert auf 1 mM Koffein (Fig. 2B, n = 5 von 20). Dagegen zeigen nicht-injizierte dyspedische Myotuben keinerlei Reaktion auf 1 mM Koffein (Fig. 2B, n = 0 von 20). Dadurch wird erstmals gezeigt, daß chimäre RyR intrazelluläre Kalziumkanäle ausbilden können, die auf Koffein reagieren. Basierend auf der Strukturvorhersage der RyR-Aminosäuresequenz liegt die kanalbildende Region des RyR im C-terminalen Zehntel der RyR-Moleküle (Takeshima, H. et al. Nature 339 (1989), 439-445; Nakai, J. et al. FEBS Lett. 271 (1990), 169-177; Hakamata, Y. et al. FEBS Lett. 312 (1992), 229-235; Zorzato, F. et al. J. Biol. Chem. 265 (1990), 2244-2256). Es ist davon auszugehen, daß die C-terminalen zwei Drittel des hRyR3 die Kalziumfreisetzungskanalaktivität beinhalten und, daß das N-terminale Drittel der RyR-Sequenz die Region, die die Koffein und/oder Kalziumempfindlichkeit bestimmt, enthält.

Eine ganz besonderen Ausführungsform der vorliegenden Erfindung betrifft den Nachweis von hRyR3 in Geweben. Dieses ist mit hRyR3-spezifischen Sonden und der Northern-Blot-Analyse von mRNA aus diversen menschlichen Gewehen möglich. Es kann gezeigt werden, daß, obwohl in Gesamtgehirn nur ein schwaches Signal für RNA beobachtet werden kann, ein ca. 16 kb großes RNA-Stück mit hRyR-cDNA-Proben in relativ großer Menge in begrenzten Gehirnbereichen wie Nucleus caudatus, Amygdala und Hippocampus sowie in etwas geringeren Mengen in Corpus callosum, Substantia nigra und Thalamus (Fig. 3) hybridisiert. Die begrenzte Verteilung von RyR3 im menschlichen Gehirn ermöglicht die folgenden Annahmen. Es ist bekannt, daß der RyR auch im Gehirn direkt an L-Typ-Kalziumkanäle gekoppelt ist. Während P-Typ und andere Typen von Kalziumkanälen im ganzen Gehirn exprimiert werden, wird der R-Typ-Kalziumkanal nur in den sehr begrenzten Regionen des Gehirns, wie im Nucleus caudatus und Hippocampus exprimiert (Niidome, T. et al. FEBS Lett. 308 (1992), 7–13). Bei einer ähnlichen Verteilung von R-Typ-Kalziumkanal und RyR3 ist es wahrscheinlich, daß der RyR3 direkt mit dem R-Typ-Kalziumkanal in diesen Regionen wechselwirken kann. Da die Regionen der RyR3-Expression auch grob mit den Gebieten korrespondieren, in denen der "verzögerte neuronale Tot" nach Hypoxie im Gehirn stattfindet, ist es wahrscheinlich, daß dieser Typ des RyR eine wichtige Rolle in pathologischen Zuständen spielt. Die erhöhte lokomotorische Aktivität von RyR3-defizienten Mäusen reflektiert diese Verteilung des RyR3.

In einem weiteren Ausführungsbeispiel kann gezeigt werden, daß auch außerhalb des Gehirns in Skelettmuskel der

Nachweis einer RNA-Spezies gelingt, die mit hRyR3-cDNA-Proben hybridisiert (Fig. 4). Die Größe der RNA-Spezies dieser Gewebe von ca. 16 kb entspricht der Spezies im Gehirn. Ein schwaches Signal legt die Existenz von RyR3-mRNA in Herzgewebe nahe. Die Verteilung von mRNA außerhalb des Gehirns unterscheidet sich vom Kaninchen, da die RyR3-Expression in Kaninchenskelettmuskel nicht nachweisbar ist. Bedingt durch den großen Gehalt an RyR1-mRNA in Skelettmuskel ist ein geringer Beitrag durch Kreuzhybridisierung von RyR3-Proben mit RyR1-mRNA nicht ausgeschlossen. Allerdings führte mRNA aus Herz zu einem wesentlich geringeren Hybridisierungsignal, trotz der höheren Homologie von RyR3 mit RyR2 im Vergleich zu RyR1. Dieses, zusammen mit der Isolierung von RyR3-cDNA aus einer cDNA-Bibliothek aus Skelettmuskel, deutet daraufhin, daß RyR3 tatsächlich in Herzmuskel exprimiert wird. Zudem ist RyR3 in Skelettmuskel anderer Spezies wie z. B. Maus, Vogel und Frosch nachweisbar.

In einem weiteren Ausführungsbeispiel zum Nachweis des hRyR3 wird gezeigt, daß die RyR3-Expression zwischen den Spezies variiert und, daß die RyR3-Expression in humanem Skelettmuskel stärker ausgeprägt ist als in anderen Spezies. Es ist bekannt, daß eine akute Erhöhung von intrazellulärem Kalzium in menschlichem Skelettmuskel maligne Hyperthermie (MH) auslöst (MacLennan, D. H. and Philips, M. S. Science 256 (1992), 789–794). Obwohl MH mit Mutationen von RyR1 assoziiert wird (Gillard, E. F. et al. Genomics 11 (1991), 751–755), weisen nur 5% der MH-Fälle eine Mutation in Position 614 des RyR1-Gens durch Arg zu Cys Substitution auf. Die reichliche Expression von RyR3 in menschlichem Skelettmuskel macht eine Beteiligung des RyR3 an varianten Formen von MH sehr wahrscheinlich. Zudem besteht die Möglichkeit, daß der RyR3 auch an anderen Störungen der intrazellulären Kalziumregulation beteiligt sein könnte.

In einer weiteren ganz besonderen Ausführungsform wurde deshalb festgestellt, daß der hRyR3 bei pathologischen Zuständen im Menschen vorhanden ist und in pathologisch veränderten Geweben nachgewiesen werden kann. Zu diesem Zweck wurde an Zellinien, abgeleitet aus humanen Gehirntumoren, gezeigt, daß die gewebespezifische Verteilung des RyR3 in menschlichem Gehirn in Zusammenhang mit der zellspezifischen Kalziumregulation bei der Proliferation steht. RyR3-mRNA wird in mehreren menschlichen Zellinien exprimiert (Fig. 5). Eine reichliche Expression ist in U373 feststellbar, einer Zelle aus malignem Astrozytoma, eine schwache Expression in IMR-32 aus malignen Neuroblastomazellen sowie einer noch geringeren Expression in H4 aus malignen Neurogliomazellen. Trotz der RyR2-Expression in IMR-32 sind keine weiteren RyR-Typen in U373 oder H4 feststellbar. RyR3-Expression in den neuronalen Zellen SK-N-MC oder SK-N-SH konnte trotz ihrer Malignität nicht nachgewiesen werden. U373 und H4 reagierten auf Ryanodin, nicht jedoch auf Koffein mit einer Erhöhung des intrazellulären Kalziums, während eine Koffeinreaktion unter gleichen Bedingungen in RyR2-exprimierenden CHO-Kaninchenzellen nachweisbar ist (Fig. 6). Die Ryanodin- und Koffeinreaktionen von U373 und H4 ist auch in T-Lymphozyten zu beobachten, ein typisches Merkmal für RyR3 (Hakamata, Y. FEBS Lett. 352 (1994), 206–210).

Beispiele

1. Klonierung der cDNA

Es wurden Oligo (dT)- und Zufalls-Primer- cDNA-Bibiotheken aus menschlichem Gehirn (Nucleus caudatus) der Firma Clontech (USA) verwendet, die aus poly(A)*RNA isoliert und in λgt10 Phagen einkloniert wurden. Das Durchsuchen der cDNA-Bibliotheken (~ 3,0 × 10⁵ Plaques) mit dem Fragment Pstl(9790)/EcoRl(11834) aus dem Kaninchen RyR3 cDNA-Klon pBRR74 (9) führte zu λhBRR79. Die Schnittstellen der Restriktionsendonukleasen werden durch Zahlen (in Klammern) gekennzeichnet, die das aus der Spaltung hervorgehende 5'-terminale Nukleotid beschreiben: die Nukleotidreste sind in 5'-3'-Richtung nummeriert, angefangen mit dem ersten Rest des ATG-Triplets, das das wahrscheinlich initiierende Methionin kodiert. Das Subklonieren des cDNA-Inserts von λhBRR79 in die EcoRI Schnittstelle von pBluescript SK(-) (Stratagene) führte zu phBRR79. Die Bibliothek wurde neun mal mit verschiedenen Proben durchsucht:

35

50

55

60

65

Verwendetes Fragment:	Ergebnis: (positive Klone)	
2,4-kb (Kilobasen) EcoRI(Vector)/	λhBRR22, λhBRR61, λhBRR112] 5
Dral(2395) aus pBRR331	·]
1,2-kb PmaCl(4750)/Apal(5912) aus	λhBRR51, λhBRR52, λhBRR53	1
pBRR133 (9)	·	
1,3-kb EcoRl(Vector)/HindII(14656) aus	λhBRR91, λhBRR93	10
pBRR110 (9)		
1,3-kb Kpnl(6249)/HindIII(7523) aus	λhBRR140, λhBRR141, λhBRR411	1
pBRR121 (9) und 1,1-kb Xbal(8405)/		15
Pstl(9494) aus pBRR92 (9)	``	
1,0-kb EcoRi(Vector)/EcoRi(13335) aus	λhBRR161]
λhBRR93 und 0,8-kb Spel(10569)/		20
EcoRI(11408) aus λhBRR79		
0,8-kb EcoRl(Vector)/(EcoRl(11815) aus	λhBRR407	
λhBRR161		25

Desweiteren wurden zwei zusätzliche Klone durch RT-PCR gewonnen. 1 µg poly(A)*RNA (Clontech) aus menschlichem Gehirn wurde zusammen mit RNase H'Reverse Transkriptase aus Moloney's murinem Leukemievirus (Gibco BRL) mit Zufallsprimer inkubiert. Der erste synthetisierte cDNA-Strang wurde entsprechend der Herstellerangaben (Ta-KaRa LA PCR Kit) mit Hilfe eines DNA Thermal Cycler's (Perkin-Elmer Corp.) amplifiziert. Nach einem Heißstart (1 min, 94°C) wurden die Proben 30 Zyklen von 20 s bei 98°C und 5 min bei 68°C ausgesetzt. Primerpaare für phBRR501 waren jeweils synthetische 25-Nukleotidoligomere der Basen 2949–2973 (oberer Primer, AGTGGATAA-ACTTGCAGAAAATGCA) und 3495–3519 (unterer Primer, TGGGGAGCTGCTGATCACCAATAAA) der phBRR61-und der phBRR51-Klone. Primerpaare für phBRR502 waren jeweils synthetische 20-Nukleotidoligomere der Basen 11369–11388 (oberer Primer, TTGATGATGAATCTGGACAGCAC) und 12353–12372 (unterer Primer, ACGTGT-TAGAAATTGCGGGGT) der phBRR79- und der phBRR91-Klone.

Die cDNA-Klone zur Nukleotidsequenzanalyse waren: phBRR22 (mit den Nukleotiden -86 bis 1263), phBRR61 (991-3103), phBRR501 (2949-3519), phBRR51 (3435-5253), phBRR53 (4444-7346), phBRR411 (7330-9900), phBRR79 (8358-11408), phBRR502 (11369-12372) und phBRR91 (11468- 15486). Alle cDNA-Einschübe außer phBRR501 und phBRR502 wurden in die EcoRI-Schnittstelle von pBluescript SK(-) subkloniert. Das 0,6-kb Hindlll (2956)/-Bcll (3506) Fragment von phBRR501 wurde in die BamHl/Hindlll Schnittstelle und das 0,5-kb Apal (11451)/Accl (11930) Fragment von phBRR502 in die Accl/Apal Schnittstelle von pBluescript SK(-) subkloniert.

Beide Stränge der resultierenden eDNA und die PCR-Produkte der Reversen Transkriptase wurden über die Dideoxy-Ketten-Terminations-Methode sequenziert (Sanger, F. et al., Proc. NatlAcad. S ci. U. S. A., 74, (1977), 5463-5467).

45

65

2. Physiologische Charakterisierung

Die gesamte proteinkodierende Sequenz des humanen RyR3 wurde in die EcoRI/Notl-Schnittstelle von pCl-neo (Promega) einkloniert und resultierte in hNRR9. Das cDNA-Insert wurde aus den folgenden Fragmenten konstruiert: EcoRl (Vector)/Mrol (1232) erhalten aus IhBRR22, Mrol (1232)/Hindlll (2956) aus IhBRR61, Hindlll (2956)/Bcll (3506) aus IhBRR501, Bcll (3506)/PmaCl (4750) aus IhBRR51, PmaCl (4750)/Pstl (7339) aus IhBRR53, Pstl (7339)/Clal (9559) aus IhBRR411, Clal (9559)/Spel(10569) aus IhBRR79, Spel (10569)/Apal (11451) aus IhBRR407, Apal (11451)/EcoRl (11815) aus IhBRR502, EcoRl (11815)/EcoRl (14861) aus IhBRR91. Das Expressionsplasmid der chimären Ryanodine ReceptorcDNA aus humanem RyR3 und dem Kaninchen-RyR2 wurde wie folgt konstruiert: Das Sall (vector)/PmaCl (5038) Fragment aus der Kaninchen-RyR2 cDNA (Nakai, J. et al FEBS Lett. 271 (1990), 169–177) und das PmaCl (4750)/Notl (vector) Fragment aus der humanen RyR3-cDNA wurde in die Sall/Notl-Schnittstelle von pCl-neo ligiert. Kulturen von Myotuben aus RyR1-defizienten (dyspedischen) Mäusen und cDNA-Injektion sind bereits bekannt (Nakai, J. et al., Nature 380, (1996), 72–75). Fluoreszenzänderungen (dimensionslose willkürliche Einheiten) wurden nach der Beladung der Myotuben mit Fluo-3 AM gemessen (Garcia, J., und Beam, K. G., J. Gen. Physiol. 103, (1994), 107–123). Koffein wurde durch lokale Injektion mit Hilfe einer "wide-tipped"-Pipette (10–50 mm Durchmesser) appliziert. Als Waschlösung wurde normale Nager-Ringer-Lösung der folgenden Zusammensetzung verwendet (mM): 145 NaCl, 5 KCl, 2 CaCl₂, 1 MgCl₂, 10 HEPES, pH 7,4 mit NaOH eingestellt. Die Temperatur betrug 20– 22°C.

3. Northern Blot Analyse

Zur Northern-Blotanalyse von humanem Gehirn und anderen Geweben wurden käufliche Multiple Tissue Northern (MTN) Blots (Clontech) verwendet. Jede Bahn der MTN-Blots enthält ungefähr 2 µg poly(A)⁺RNA aus den folgenden

Himregionen: Amygdala, Nukleus caudatus, Corpus callosum, Hippocampus, Gesamtgehirn, Substantia nigra, subthalamischen Nucleus and Thalamus. Jede Bahn des anderen MTN-Blots enthält ungefähr 2 mg poly(A)⁺RNA der folgenden humanen Gewebe: Herz, Gehirn, Placenta, Lunge, Leber, Skeletmuskel, Niere und Pankreas. Jede Bahn des dritten Blots enthält ungefähr 20 mg Gesamt-RNA der folgenden humanen Zellinien (Hakamata Y., et al. FEBS Lett. 312 (1992), 229–235): SK-N-MC (abgeleitet aus ursprünglichen Neuroblastoma), IMR-32 (Neuroblastoma), HEL-299 (Lungenfibroblast), H4 (Neuroglioma), SK-N-SH (Neuroblastoma), HEK-293 (embryonale Nierenzelle) und U373 (Astrocytoma). Da die aus cDNA-Teilen des humanen Ryanodin-Rezeptors gewonnenen Sonden nur schwache Signale ermöglichten, wurde für die Northern Blot Analyse das 14,9-kb Nall(Vector)/Notl(Vector) Fragment aus phNRR9 verwendet. Die Probe wurde mit dem Klenow-Fragment der DNA-Polymerase und [³²P] dCTP (Feinberg, A. P. & Vogelstein, B. Anal. Biochem. 132 (1983), 6–13) durch Zufallsoligonukleotidprimer hergestellt. Der Blot wurde bei 42°C hybridisiert und drei mal mit 0,3 × SSC, 0,1% SDS bei 50°C gewaschen.

4. Lumineszenz-Bestimmung

Die Lumineszenz-Bestimmung wurde wie erst kürzlich veröffentlicht durchgeführt (Maeda, A. et al., Anal. Biochem. 242, (1996), 58–66). Dazu wurden die Zellen (1 × 10⁵ Zellen/Gefäß) in die Lösung des Kalzium-Assays mit der folgenden Zusammensetzung transferiert (mM): 140 NaCl, 5 KCI, 1,5 MgCl₂, 2,5 CaCl₂, 5 Glukose und 10 HEPES, PH 7,4 mit NaOH eingestellt, einschließlich 2,5 mM Coelenterazin, das intermediäre Substrat von Aequorin, und bei 37°C für 6 h inkubiert. Das System zur Lumineszenz-Messung bestand aus dem Spektroflucrometer CAF-110 (Jasco) (Hakamata Y. et al., FEBS Lett. 352, (1994), 206–210), das mit einer Lumineszenz-Einheit PL-03 (Jasco) verbunden ist. Die Mobilisierung intrazellulären Kalziums wurde durch Injection von Koffein in einer Endkonzentration von 10 mM und Ryanodinrezeptor von 100 mM induziert. Die Gesamtmenge der Aequorin-Aktivität wurde nach der Permeabilisierung der Zellen mit Digitonin in einer Endkonzentration von 200 mg/ml gemessen. Die Ethanolkonzentration betrug 0,5% oder weniger, da es unter diesen Bedingungen nicht zu einer Kalziumfreisetzung kommt.

Legenden zu den Figuren

25

65

Fig. 1 vergleicht die Aminosäuresequenzen der RyR-Isoformen, durch Ausrichtung der abgeleiten Aminosäuresequenz des humanen RyR3 (oben), mit dem Kaninchen-RyR3 (obere Mitte), dem Kaninchen-RyR2 (untere Mitte) und dem Kaninchen-RyR1 (unten). Vier identische Reste in der gleichen Position sind durch durchgezogene Linien eingerahmt, während Folgen von vier identischen oder konservierten Resten mit gestrichelten Linien umrahmt sind. Die Aminosäurereste sind, angefangen am initiierenden Methionin, nummeriert. Die mutmaßlichen Transmembransegmente M1 bis M4 sind gekennzeichnet; die Enden eines jeden Segments sind durch den Vergleich mit dem Kaninchen-RyR3 bestimmt worden. Vier sich wiederholende Sequenzen, die in Tandempaaren vorkommen sind durch Pfeile gekennzeichnet,

Fig. 2 zeigt die Reaktion des chimären humanen RyR3 in dyspedischen Myotuben aus RyR1-defizienten (despedischen) Mäusen auf Koffein. A, Schematische Darstellung der Struktur des chimären RyR aus Kaninchen-RyR2 (offenes Rechteck) und humanem RyR3 (gefülltes Rechteck).

B, Intrazelluläres Kalziumsignal als Reaktion auf Koffein in dyspedischen Myotuben, die den chimären humann RyR3 exprimieren. (a) Nicht-injizierte dyspedische Myotuben reagieren nicht auf 1 mM Koffein (n = 20). (b) Dyspedische Myotuben, in die chimäre humane RyR3-cDNA injiziert wurde, reagieren auf 1 mM Koffein (n = 5 von 20). Der Verlauf der Basislinie wurde möglicherweise durch das Ausbleichen des Farbstoffs hervorgerufen.

Fig. 3 zeigt die Verteilung des humanen RyR3 in humanem Gehirn durch die Northern-Blot-Analyse verschiedener Regionen des Gehirns mit eDNA-Proben für humane RyR3-mRNAs. Es wurden jeweils 2 mg poly(A)*RNA verwendet. Die Autoradiographie wurde bei -70°C über 7 Tage mit einem intensivierenden Schirm durchgeführt.

Fig. 4 zeigt die Exprimierung von humanem RyR3 durch die Northern-Blot-Analyse verschiedener humaner Gewebe mit cDNA-Proben für humane RyR3-mRNAs. Es wurden jeweils 2 mg poly (A)⁺ RNA verwendet. Die Autoradiographie wurde bei -70°C über 7 Tage mit einem intensivierenden Schirm durchgeführt.

Fig. 5 zeigt die Verteilung des humanen RyR3 in humanen Zellinien durch die Northern-Blot-Analyse der humanen RyR-mRNA Expression in Kaninchenskelettmuskel, Kaninchenherz, Kaninchengesamtgehirn und humanen Zellinien wie Neuroblastoma (SK-N-MC, IMR-32), Lungenfibroblasten (HEL-299), Neuroglioma (H4), Neuroblastoma (SK-N-SH), embryonale Nierenzellen (HEK293) und Λstrocytoma (U373) mit cDNΛ-Sonden für humane RyR3- mRNΛs. Es wurden jeweils 20 mg Gesamt-RNA verwendet. Die Autoradiographie wurde bei -70°C über 4 Tage mit einem intensivierenden Schirm durchgeführt.

Fig. 6 zeigt die Zunahme von intrazellulärem Kalzium in U373-Zellen nach Zugabe von Koffein und Ryanodin. A: CHO-Zellen transfiziert mit Kaninchen RyR2-cDNA; (Maeda, A. et al., Anal. Biochem. 242, (1996), 58–66) zeigen einen klaren Anstieg des intracellulären Kalzium als Reaktion auf Koffein (n = 11 von 11). B: Koffein führt zu keinem Effekt in U373-Zellen (n = 7). C: Ryanodin löst vorübergehende Kalziumschwankungen aus (n = 2 out of 4). Einige Zellen reagieren nicht auf die Ryanodin-Zugabe (n = 2 out of 4). Die uneinheitliche Reaktion ist wahrscheinlich nicht darauf zurückzuführen, daß der Ryanodin-Rezeptor den Wirkort nicht erreicht, wie kürzlich beschrieben (Penner, R. et al., FEBS Lett. 259, (1989), 217–221). Der Zeitpunkt der Zugabe von Koffein und Ryanodin-Rezeptor ist durch kleine Balken markiert

Fig. 7 zeigt die aus der DNA-Sequenz abgeleitete Aminosäuresequenz der humanen Ryanodinrezeptors. Fig. 8 zeigt die DNA-Sequenz des humanen Ryanodinrezeptors.

Patentansprüche

1. Polypeptid, dadurch gekennzeichnet, daß es mindestens 96% Aminosäuresequenzidentität mit dem humanen

Ryanodinrezeptor vom Typ 3 (hRyR3) mit der Aminosäuresequenz gemäß Fig. 7 aufweist, wobei Fig. 7 Bestandteil dieses Anspruchs ist.

- 2. Polypeptid, gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um den humanen Ryanodinrezeptor vom Typ 3 (hRyR3) mit der Aminosäuresequenz gemäß Fig. 7 handelt, wobei Fig. 7 Bestandteil dieses Anspruchs ist.

 3. Ein funktionelles Derivat, dadurch gekennzeichnet, daß es aus einem Polypeptid gemäß Anspruch 1 oder 2 als Fragment, Variante oder chemisches Derivat abgeleitet ist unter Erhalt der wesentlichen biologischen Aktivität des nativen humanen Ryanodinrezeptors vom Typ 3 (hRyR3) mit der Aminosäuresequenz gemäß Fig. 7, wobei Fig. 7 Bestandteil dieses Anspruchs ist.
- 4. Chimäres Polypeptid dadurch gekennzeichnet, daß es mindestens ein Fragment des Polypeptids gemäß einem der Ansprüche 1 bis 3 und mindestens ein weiteres Fragment eines anderen Polypeptids enthält.
- 5. Chimäres Polypeptid gemäß Anspruch 4 dadurch gekennzeichnet, daß das andere Protein aus der Familie der nicht humanen Ryanodinrezeptoren ausgewählt ist.
- Chimäres Polypeptid gemäß Anspruch 4 oder 5 dadurch gekennzeichnet, daß das Fragment des anderen Proteins vom Kaninchen-Ryanodin-Rezeptor Typ 2 (rRyR2) stammt.
- 7. Chimäres Polypeptid gemäß einem der Ansprüche 4 bis 6 dadurch gekennzeichnet, daß es im Bereich der Aminosäure 1300 des hRyR3 ein Fragment des rRyR2 enthält, welches hohe Kalzium- bzw. Koffeinempfindlichkeit verleiht
- 8. Nukleinsäure kodierend für ein Polypeptid gemäß einem der Ansprüche 1 bis 7.
- 9. Nukleinsäure dadurch gekennzeichnet, daß sie unter stringenten Bedingungen mit einer Nukleinsäure gemäß Anspruch 8 hybridisiert.
- 10. Verfahren zur Herstellung eines Polypeptids, dadurch gekennzeichnet, daß eine Nukleinsäure gemäß Anspruch 8 oder 9 in eine Zelle oder ein zellfreies In-Vitro-Translations-System eingebracht wird.
- 11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, daß die Nukleinsäure Bestandteil eines Expressionsvektors ist.
- 12. Pharmazeutikum, dadurch gekennzeichnet, daß es ein Polypeptid gemäß einem der Ansprüche 1 bis 7 und/oder eine Nukleinsäure gemäß Ansprüch 8 oder 9 enthält.
- 13. Pharmazeutikum, dadurch gekennzeichnet, daß es eine Nukleinsäure die einer Nukleinsäure gemäß Anspruch 8 oder 9 komplementär ist enthält.
- 14. Verwendung einer Nukleinsäure oder eines Teils einer Nukleinsäure gemäß Anspruch 8 oder 9 zum Nachweis einer Nukleinsäure gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, daß eine zu der nachzuweisenden Nukleinsäure komplementäre Nukleinsäure zur Hybridisierung eingesetzt wird.
- 15. Verwendung eines Polypeptids gemäß einem der Ansprüche 1 bis 7 zur Herstellung monoklonaler oder polyklonaler Antikörper zum Nachweis eines Polypeptids gemäß einem der Ansprüche 1 bis 7.
- 16. Verwendung der Polypeptide gemäß einem der Ansprüche 1 bis 7 oder der Nukleinsäuren gemäß Ansprüch 8 oder 9 zur Identifizierung von Aktivatoren und/oder Inhibitoren des hRyR3.
- 17. Verwendung einer Nukleinsäure gemäß Anspruch 10 zur Identifizierung von Aktivatoren und/oder Inhibitoren des hRyR3, dadurch gekennzeichnet, daß eine Nukleinsäure gemäß Anspruch 10 in eine Zelle oder ein zellfreies System eingebracht und exprimiert wird, das Expressionsprodukt einem potentiellen Inhibitor oder Aktivator ausgesetzt wird und der durch das Expressionsprodukt vermittelte Ionenfluß gemessen wird.
- 18. Verwendung einer Nukleinsäure gemäß Anspruch 10 zur Identifizierung von Aktivatoren und/oder Inhibitoren des hRyR3, dadurch gekennzeichnet, daß eine Nukleinsäure gemäß Anspruch 10 in eine Zelle oder ein membranumschlossenes zellfreies System eingebracht und exprimiert wird, ein potentieller Inhibitor oder Aktivator zugesetzt wird und die Ionenkonzentration im membranumschlossenen Raum bestimmt wird.
- 19. Verwendung eines Antikörpers gemäß Anspruch 15 zur Diagnose von pathologischen Zuständen in Geweben, dadurch gekennzeichnet, daß das Vorhandensein, die Überexpression oder der Mangel eines Polypeptids gemäß einem der Ansprüche 1 bis 7 nachgewiesen wird.
- 20. Verwendung einer Nukleinsäure gemäß Anspruch 14 zur Diagnose von pathologischen Zuständen in Geweben, dadurch gekennzeichnet, daß das Vorhandensein, die Überexpression oder der Mangel eines einer Nukleinsäure gemäß einem der Ansprüche 8 oder 9 nachgewiesen wird.
- 21. Verwendung der Polypeptide gemäß einem der Ansprüche 1 bis 7 und/oder Nukleinsäuren gemäß einem der Ansprüche 8 bis 9 zur Behandlung von hRyR3 assoziierten Erkrankungen.

Hierzu 18 Seite(n) Zeichnungen

60

55

45

10

65

- Leerseite -

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 1a

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 1b

Nummer: Int. CI.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 2

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 3

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 4

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 7a

MAEGGEGED	EIQFLRTEDE	VVLQCIATIH	KEQRKFCLAA	EGLGNRLCFL	EPTSEAKYIP	60
PDLCVCNFVL	EQSLSVRALQ	EMLANTGENG	GEGAAQGGGH	RTLLYGHAVL	LRHSFSGMYL	120
TCLTTSRSQT	DKLAFDVGLR	EHATGEACWW	TIHPASKQRS	EGEKVRIGDD	LILVSVSSER	180
YLHLSVSNGN	IQVDASFMQT	LWNVHPTCSG	SSIEEGYLLG	GHVVRLFHGH	DECLTIPSTD	240
QNDSQHRRIF	YEAGGAGTRA	RSLWRVEPLR	ISWSGSNIRW	GQAFRLRHLT	TGHYLALTED	300
QGLILQDRAK	SDTKSTAFSF	RASKELKEKL	DSSHKRDIEG	MGVPEIKYGD	SVCFVQHIAS	360
GLWVTYKAQD	AKTSRLGPLK	RKVILHQEGH	MDDGLTLQRC	QREESQAARI	IRNTTALFSQ	420
FVSGNNRTAA	PITLPIEEVL	QTLQDLIAYF	QPPEEEMRHE	DKQNKLRSLK	NRQNLFKEEG	480
MLALVLNCID	RLINVYNSVAH	FAGIAREESG	MAWKEILNLL	YKLLAALIRG	nrnncaqfsn	540
NLDWLISKLD	RLESSSGILE	VLHCILTESP	EALNLIAEGH	IKSIISLLDK	HGRNHKVLDI	600
LCSLCLCNGV	AVRANQNLIC	DNLLPRRNLL	LQTRLINDVT	SIRPNIFLGV	AEGSAQYKKW	660
YFELIIDQVD	PFLTAEPTHL	RVGWASSSGY	APYPGGGEGW	GGNGVGDDLY	SYGFDGLHLW	720
SGRIPRAVAS	INQHLLRSDD	VGKLLPGPRG	CPASHSASMG	SPCRGCLENF	NTDGLFFPVM	780
SFSAGVKVRF	LMGGRHGEFK	FLPPSGYAPC	YEALLPKEKM	RLEPVKEYKR	DADGIRDLLG	840
TTQFLSQASF	IPCPVDTSQV	ILPPHLEKIR	DRLAENTHEL	WGMNKIELGW	TFGKIRDDNK	900
ROHPCLVEFS	KLPETEKNYN	LQMSTETLKT	LLTLGCHIAH	VNPAAEEDLK	KVKLPKNYMM	960
SNGYKPAPLD	LSDVKLLPPQ	EILVDKLAEN	AHNVWAKDRI	KQGWTYGIQQ	DLKNKRNPRL	1020
VPYALLDERT	KKSNRDSLRE	AVRTFVGYGY	NIEPSDQELA	DSAVEKVSID	KIRFFRVERS	1080
YPVRSGKWYF	EFEVVTGGDM	RVGWARPGCR	PDVELGADDQ	AFVFEGNRGQ	RWHQGSGYFG	1140
RTWQPGDVVG	CMINLDDASM	IFTLNGELLI	TNKGSELAFA	DYEIENGFVP	ICCLGLSQIG	1200
RMNLGTDAST	FKFYIMCGLQ	EGFEPFAVNM	NRDVAMWFSK	RLPTFVNVPK	DHPHIEVMRI	1260
DGTMDSPPCL	KVTHKTFGTQ	NSNADMIYCR	LSMPVECHSS	FSHSPCLDSE	AFQKRKQMQE	1320
ILSHTTTQCY	YAIRIFGGQD	PSCVWVGWVT	PDYHLYSEKF	DLNKNCTVTV	TLGDERGRVH	1380
ESVKRSNCYM	VWGGDIVASS	QRSNRSNVDL	EIGCLVDLAM	GMLSFSANGK	ELGTCYQVEP	1440
NTKVFPAVFL	QPTSTSLFQF	ELCKLKNAMP	LSAAIFRSEE	ENPVPQCPPR	LDVQTIQPVL	1500
WSRMPNSFLK	VETERVSERH	GWVVQCLEPL	QMMALHIPEE	NRCVDILELC	EQEDLMRFHY	1560
HTLRLYSAVC	ALGNSRVAYA	LCSHVDLSQL	FYAIDNKYLP	GLLRSGFYDL	LISIHLASAK	1620
ERKLMMKNEY	IIPITSTTRN	ICLFPDESKR	HGLPGVGLRT	CLKPGFRFST	PCFVVTGEDH	1680
QKQSPEIPLE	SLRTKALSML	TEAVQCSGAH	IRDPVGGSVE	FQFVPVLKLI	GTLLVMGVFD	1740
DDDVRQILLL	IDPSVFGEHS	AGTEEGAEKE	EVTQVEEKAV	EAGEKAGKEA	PVKGLLQTRL	1800
PESVKLQMCE	LLSYLCDCEL	QHRVEATVAF	GDIYVSKLQA	NOKFRYNELM	QALNMSAALT	1860
ARKTKEFRSP	PQEQINMLLN	FQLGENCPCP	EEIREELYDF	HEDLLLHCGV	PLEEEEEEE	1920

ZEICHNUNGEN SEITE 9

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 7h

			_			
DISWIGKLCA	LVYKIKGPPK	PEKEQPTEEE	ERCPTTLKEL	ISQTMICWAQ	EDQIQDSELV	1980
RMMFNLLRRQ	YDSIGELLQA	LRKTYTISHT	SVSDTINLLA	ALGQIRSLLS	VRMGKEEELL	2040
MINGLGDIMN	NKVFYQHPNL	MRVLGMHETV	MEVMVNVLGT	EKSQIAFPKM	VASCCRFLCY	2100
FCRISRQNQK	AMFEHLSYLL	ENSSVGLASP	SMRGSTPLDV	AASSVMDNNE	LALSLEEPDL	2160
EKVVIYLAGC	GLQSCPMLLA	KGYPDVGWNP	IEGERYLSFL	RFAVFVNSES	VEENASVVVK	2220
LLIRRPECFG	PALRGEGGNG	LLAAMQGAIK	ISENPALDLP	SQGYKREVST	EDDEEEEEIV	2280
HMGNAIMSFY	SALIDLLGRC	APEMHLIQTG	KGEAIRIRSI	LRSLVPTEDL	VGIISIPLKL	2340
PSLNKDGSVS	EPDMAGNFCP	DHKAPMVLFL	DRVYGIKDQT	FLLHILLEVGF	LPDLRASASL	2400
DTVSLSTTEA	ALALNRYICS	AVLPLLTRCA	PLFGGTEHCT	SLIDSTLQTI	YRLSKGRSLT	2460
KAQRDTIEEC	LLAICNHLRP	SMLQQLLRRL	VFDVPQLNEY	CKMPLKLL/IN	HYBQCWKYYC	2520
LPSGWGSYGL	AVEEELHL/TE	KLFWGIIDSL	SHKKYDPDLF	RMALPCLSAI	AGALPPDYLD	2580
SRITATLEKQ	ISVDADGNFD	PKPINTMNFS	LPEKLEYIVT	KYAEHSHDKW	ACDKSQSGWK	2640
YGISLDENVK	THPLIRPFKT	LTEKEKEIYR	WPARESLKTM	LAVGWIVERT	KEGEALVQQR	2700
ENEKLRSVSQ	ANQGNSYSPA	PLDLSNVVLS	RELQGMVEVV	AENYHNIWAK	KKKLELESKG	2760
GGSHPLLVPY	DTLTAKEKFK	DREKAQDLFK	FLQVNGIIVS	RGMKDMELDA	SSMEKRFGYK	2820
FLKKILKYVD	SAQEFIAHLE	AIVSSGKTEK	SPRDQEIKFF	AKVLLPLVDQ	YFTSHCLYFL	2880
SSPLKPLSSS	GYASHKEKEM	VAGLECKLAA	LVRHRISLFG	SDSTTMVSCL	HILAQTLDIR	2940 -
TVMKSGSELV	KAGLRAFFEN	AAEDLEKTSE	NLKLGKFTHS	RTQIKGVSQN	INYTTVALLP	3000-
ILTSIFEHVT	QHQFGMDLLL	GDVQISCYHI	LCSLYSLGTG	KNIYVERQRP	ALGECLASLA	3060
AAIPVAFLEP	TLNRYNPLSV	FNTKTPRERS	ILGMPDIVED	MCPDIPQLEG	LMKEINDLAE	3120
SGARYTEMPH	VIEVILPMLC	NYLSYWWERG	PENLPPSTGP	CCTKVTSEHL	SLILGNILKI	3180
INNNLGIDEA	SWMKRIAVYA	QPIISKARPD	LLRSHFIPTL	EKLKKKAVKT	VQEEEQLKAD	3240
GKGDTQEÄEL	LILDEFAVLC	RDLYAFYPML	IRYVDNINRSIN	WLKSPDADSD	QLFRMVAEVF	3300
ILWCKSHNFK	REEQNFVIQN	EINNLAFLIG	DSKSRMSKSG	GQDQERKKTK	RRGDLYSIQT	3360
SLIVAALKKM	LPIGLNMCTP	GDQELISLAK	SRYSHRDTDE	EVREHLRNNL	HLQEKSDDPA	3420
AKMÖTNIT AKD	VLKSEEPFNP	EKTVERVQRI	SAAVFHLEQV	EQPLRSKKAV	WHKLLSKORK	3480
RAVVACFRMA	PLYNLPRHRS	INLFLHGYQR	FWIETEEYSF	EEKLVQDLAK	SPKVEEEEEE	3540
ETEKQPDPLH	QIILYFSRNA	LTERSKLEDD	PLYTSYSSMM	AKSCQSGEDE	EEDEDKEKTF	3600
EEKEMEKQKT	LYQQARLHER	GAAEMVLQMI	SASKGEMSPM	VVETLKLGIA	ILNGGNAGVQ	3660
ÖKMIDÄIKEK	KDAGFFQSLP	GLMQSCSVLD	LNASERONKA	EGLGMVTEEG	TLIVRERGEK	3720
VLQNDEFTRD	LFRFLQLLCE	GHNSDFQNFL	RTOMGNITTV	NVIISTVDYL	LRLQESISDF	3780
YWYYSGKDII	DESGQHNFSK	ALAVTKQIFN	SLTEYIQGPC	IGNQQSLAHS	RLWDAVVGFL	3840
HVFANMQMKL	SQDSSQIELL	KELLDLLQDM	VVMLLSLLEG	NVVNGTIGKQ	MVDTLVESST	3900
NVEMILKEFD	MFLKLKDLTS	SDTFKEYDPD	GKGIISKKEF	QKAMEGQKQY	TQSEIDFLLS	3960

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 7c.

CAEADENDMF	NYVDFVDRFH	EPAKDIGFNV	AVLLTNLSEH	MPNDSRLKCL	LDPAESVLNY	4020
FGPYLGRIEI	MGGAKKIERV	YFEISESSRT	QWEKPQVKES	KRQFIFDVVN	EGGEQEKMGL	4080
FVNFCEDTIF	EMQLASQISE	SDSADRPEEE	EEDEDSSYVL	EIAGEEEEDG	SLEPASAFAM	4140
ACASVKRNVT	DFLKRATLKN	LRKQYRNVKK	MTAKELVKVL	FSFFWMLFVG	LFQLLFTILG	4200
GIFQILWSTV	FGGGLVEGAK	NIRVTKILGD	MPDPTQFGIH	DDIMEAERAE	VMEPGITTEL	4260
VHFIKGEKGD	TDIMSDLFGL	HPKKEGSLKH	GPEVGLGDLS	EIIGKDEPPT	LESTVQKKRK	4320
AQAAEMKAAN	EAEGKVESEK	ADMEDGEKED	KDKEEEQAEY	LWTEVTKKKK	RRCGQKVEKP	4380
EAFTANFFKG	LEIYQTKLLH	YLARNFYNLR	FLALFVAFAI	NFILLFYKVT	EEPLEEETED	4440
VANLWNSFND	EEEEEAMVFF	VLQESTGYMA	PTLRALAIIH	TIISLVCVVG	YYCLKVPLVV	4500
FKREKEIARK	LEFDGLYITE	QPSEDDIKGQ	WDPLVINTPS	FPNNYWDKFV	KRKVINKYGD	4560
LYGAERIAEL	LGLDKNALDF	SPVEETKAEA	ASLVSWLSSL	DMKYHIWKLG	VVFTDNSFLY	4620
LAWYTIMSVL	GHYNNFFFAA	HLLDIAMGFK	TLRTILSSVT	HNGKQLVLTV	GLLAVVVYLY	4680
TVVAFNFFRK	FYNKSEDDDE	PDMKCDDMMT	CYLFHMYVGV	RAGGGIGDEI	EDPAGDPYEM	4740
YRIVFDITFF	FFVIVILLAI	IQGLIIDAFG	ELRDQQEQVR	EDMETKCFIC	GIGNDYFDTT	4800
PHGFETHTLQ	EHNLANYLFF	LMYLINKDET	EHTGQESYVW	KMYQERCWDF	FPAGDCFRKQ	4860
YEDQLG						

Nummer: Int. Cl.6: Veröffentlichungstag: 8. Oktober 1998

DE 197 22 317 C1 C 07 K 14/435

Fig. 8a

GGGCAGCAGC	AGTCAGCGCA	CGCCGAGCGG	CTGCCGGGGG	AAGCAGAGGC	GCCGGAGGCT	60
GGGGCACCGC	CGACGCCTCG	GGAGCCATGG	CCGAAGGGGG	AGAAGGAGGC	GAGGACGAGA	120
TCCAGTTTCT	GAGGACTGAG	GATGAAGTGG	TACTCCAGTG	CATCGCCACC	ATTCATAAGG	180
AGCAGAGGAA	GTICTGCCTG	GCAGCCGAGG	GACTTGGGAA	TCGCCTGTGC	TTCTTGGAAC	240
CCACTTCAGA	AGCCAAGTAC	ATTCCTCCAG	ATCTCTGCGT	CTGCAATTTT	GTGCTGGAAC	300
AGTCCCTATC	TGTCAGAGCC	CTGCAGGAAA	TGCTTGCCAA	CACAGGTGAA	AATGGCGGCG	360
AAGGGGCAGC	ACAAGGAGGT	GGCCACAGGA	CCCTGTTATA	CGGCCATGCA	GTTCTCCTGA	420
GGCACTCTTT	CAGCGGAATG	TATCTAACAT	GCTTGACTAC	ATCAAGATCC	CAGACAGACA	480
AACTTGCCTT	TGATGTAGGT	CTACGGGAAC	ATGCCACAGG	AGAAGCCTGT	TGGTGGACTA	540
TACATCCTGC	TTCCAAACAG	AGGTCCGAAG	GAGAGAAAGT	TCGAATTGGC	GATGACCTCA	600
TCCTCGTCAG	CCTCTCCTCT	GAAAGATACC	TTCATCTCTC	AGTATCAAAT	GGTAACATAC	660
AAGTGGATGC	CTCCTTTATG	CAAACACTCT	GGAATGTACA	TCCTACGTGC	TCAGGAAGTA	72 0:
GCATCGAAGA	AGGATACCTA	CTTGGTGGGC	ATGTAGTACG	TCTTTTCCAT	GGTCATGATG	780:
AATGTTTGAC	GATACCATCT	ACAGACCAGA	ATGATTCCCA	GCACAGGAGG	ATATTCTACG	840
AAGCTGGGGG	AGCTGGGACT	CGAGCCAGGT	CTCTTTGGAG	AGTGGAACCC	CTTCGGATAA	900
GCTGGAGTGG	CAGTAACATC	AGATGGGGCC	AGGCTTTCCG	ACTCCGGCAT	CTCACCACAG	960
GCCACTACCT	GGCCTTGACA	GAAGACCAAG	GCCTTATACT	GCAAGACCGG	GCAAAGTCAG	1020
ACACCAAGTC	CACAGCTTTC	TCTTTCCGGG	CATCAAAGGA	ACTCAAGGAG	AAATTAGACT	1080
CCAGTCACAA	GCGAGACATA	GAAGGCATGG	GAGTTCCAGA	AATCAAGTAT	GGAGATTCTG	1140
TCTGCTTTGT	GCAGCATATA	GCCAGTGGTC	TGTGGGTGAC	CTACAAAGCA	CAAGACGCCA	1200
AAACTTCCCG	CCTGGGACCT	CTAAAAAGAA	AGGTCATACT	CCATCAGGAA	GGCCACATGG	1260
ATGATGGATT	AACACTGCAG	AGATGCCAAC	GTGAGGAGTC	CCAGGCTGCT	CGGATCATCC	1320
GGAACACTAC	AGCCTTATTC	AGCCAGTTTG	TCAGTGGAAA	CAATCGCACA	GCTGCCCCCA	1380
TCACCCTGCC	TATAGAAGAA	GTCCTGCAGA	CCCTACAGGA	CTTGATCGCC	TACTTCCAGC	1440
CCCCAGAGGA	GGAGATGCGA	CATGAAGACA	AGCAGAACAA	GCTCCGCTCA	CTCAAAAAACA	1500
GACAAAATCT	TTTCAAGGAA	GAGGGAATGT	TGGCCCTTGT	CTTAAATTGC	ATTGACCGCT	1560
TAAATGTCTA	CAATAGCGTA	GCACACTTTG	CAGGGATTGC	AAGGGAAGAG	AGTGGCATGG	1620
CCTGGAAAGA	AATTCTGAAC	CTCCTCTACA	AATTGCTGGC	TGCTCTCATT	CGCGGAAACA	1680
GAAACAATTG	CGCTCAATTC	TCCAATAACC	TTGATTGGCT	CATCAGTAAA	TTGGACAGAC	1740
TAGAATCTTC	CTCAGGTATC	TTGGAAGTTT	TGCACTGCAT	CTTAACTGAA	AGCCCAGAAG	1800
CCTTAAATCT	GATAGCGGAG	GGCCACATCA	AGTCGATCAT	CTCCCTGTTG	GATAAGCACG	1860
GGCGGAATCA	CAAGGTTCTG	GATATCCTGT	GCTCCCTCTG	TCTCTGCAAT	GGGGTTGCAG	1920

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 8b.

TGAGAGCCAA CCAGAATCTG ATCTGTGACA ACTTGCTGCC CCGGAGAAAC CTACTCCTGC	1980
AGACACGACT GATTAACGAT GTAACCAGTA TCCGGCCAAA CATCTTCCTG GGAGTCGCGG	2040
AGGGCTCAGC CCAGTACAAG AAGTGGTACT TCGAGCTGAT TATCGACCAG GTGGACCCCT	2100
TCCTAACAGC AGAGCCCACA CATCTGCGGG TGGGCTGGGC	2160
CATACCCAGG AGGTGGAGAA GGATGGGGAG GCAATGGTGT TGGTGACGAC CTGTACTCCT	2220
ATGGCTTTGA TGGACTTCAC CTTTGGTCAG GCCGGATACC CAGAGCTGTG GCTTCCATCA	2280
ACCAGCACCT CCTGAGATCG GATGACGTGG GTAAGCTGCT GCCTGGACCT CGGGGGTGCC	2340
CAGCATCTCA TICCGCATCA ATGGGCAGCC CGTGCAGGGG ATGTTTGGAG AACTTCAACA	2400
CAGACGGCT CTTCTTCCCT GTGATGAGCT TTTCAGCAGG TGTCAAAGTA CGTTTCCTGA	2460
TGGGTGGACG TCATGGAGAG TTTAAGTTCC TGCCTCCCTC TGGCTATGCC CCTTGCTATG	2520
AAGCCTTACT TCCAAAAGAG AAGATGAGAT TGGAGCCTGT CAAAGAATAT AAACGTGATG	2580
CIGATGGCAT TAGAGATCTC TTGGGTACCA CCCAGTTCCT CTCCCAAGCC TCTTTCATCC	2640
CATGCCCCGT AGACACCAGT CAGGTTATTT TGCCACCTCA CCTAGAAAAG ATCCGAGACA	2700
GACTAGCTGA AAACATCCAT GAGCTTTGGG GAATGAATAA AATAGAACTT GGCTGGACTT	2760
TCGGCAAGAT ACGAGATGAC AATAAAAGAC AACACCCTTG CCTTGTGGAG TTTTCAAAGC	2820
TCCCAGAAAC TGAGAAGAAC TATAACCTGC AAATGTCAAC TGAAACCTTA AAAACCCTCT	2880
TGACCCTGGG TTGCCACATT GCTCATGTTA ACCCAGCTGC TGAGGAGGAT CTCAAGAAGG	2940
TCAAACTGCC CAAAAACTAT ATGATGTCCA ACGGCTATAA GCCAGCCCCT TIGGATTTGT	3000
CTGATGTGAA GCTGTTACCT CCTCAAGAAA TTTTAGTGGA TAAGCTTGCA GAAAATGCAC	3060
ACAATGTTTG GGCAAAAGAC AGAATAAAAC AAGGATGGAC CTATGGCATC CAACAGGATT	3120
TGAAGAACAA AAGAAATCCC CGTCTGGTGC CATATGCATT ACTGGATGAG CGTACCAAGA	3180
AGTCAAACAG GGACAGCCTG CGGGAAGCTG TGCGCACTTT TGTTGGTTAC GGGTATAACA	3240
TTGAGCCATC AGACCAAGAA CTAGCTGACT CGGCTGTGGA GAAGGTCAGC ATAGACAAGA	3300
TCCGATTTTT CCGGGTAGAG CGATCTTATC CAGTGAGATC TGGAAAGTGG TATTTTGAGT	3360
TTGAAGTGGT GACTGGAGGA GACATGCGAG TCGGCTGGGC GAGGCCAGGC TGTCGACCTG	3420
ATGTCGAGCT GGGGGCCGAT GACCAAGCCT TTGTGTTTGA AGGCAACAGG GGCCAGCGTT	3480
GGCATCAAGG AAGTGGGTAT TTTGGGCGTA CCTGGCAGCC AGGGGATGTG GTCGGATGTA	3540
TGATTAACCT GGATGATGCT TCAATGATCT TCACACTGAA TGGGGAGCTG CTGATCACCA	3600
ACAAAGGCTC TGAACTTGCC TTCGCTGACT ACGAGATTGA GAATGGCTTC GTGCCCATCT	3660
GCTGTCTGGG TCTATCTCAG ATCGGCCGCA TGAATCTCGG GACAGATGCC AGTACCTTCA	3720
AGTTTTATAC CATGTGCGGT CTCCAAGAGG GCTTTGAGCC TTTTGCTGTC AACATGAACA	3780
GAGATGTTGC TATGTGGTTC AGCAAGCGCC TCCCGACGTT TGTCAACGTG CCAAAGGATC	3840
ATCCACACAT AGAGGTCATG AGGATTGATG GCACCATGGA CAGCCCTCCG TGTCTCAAGG	3900
TGACGCATAA GACATTTGGC ACACAGAATA GCAATGCCGA CATGATCTAT TGCCGCTTGA	3960

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 8c

	•					
GCATGCCTGT	CGAGTGCCAC	TCCTCCTTCA	GTCACAGCCC	CTGTCTGGAC	AGTGAAGCTT	4020
TCCAGAAAAG	GAAACAGATG	CAAGAAATAC	TCTCTCATAC	AACAACACAG	TGCTACTACG	4080
CCATCCGCAT	CTTTGGTGGA	CAGGATCCAT	CCTGTGTCTG	GGTCGGATGG	GTGACTCCAG	4140
ACTATCACTT	GTACAGTGAA	AAGTTTGACC	TGAATAAAAA	CTGCACAGTG	ACTGTCACCC	4200
TAGGGGATGA	AAGAGGCCGG	GTCCATGAAA	GTGTGAAACG	CAGCAACTGC	TACATGGTCT	4260
GGGGTGGAGA	CATTGTAGCC	AGTTCCCAGA	GATCAAATCG	GAGCAACGTG	GACCTGGAGA	4320
TCGGCTGTCT	CGTGGATCTG	GCCATGGGCA	TGTTGTCCTT	CTCAGCCAAT	GGAAAGGAAC	4380
TGGGCACCTG	CTACCAGGTG	GAGCCTAATA	CCAAAGTGTT	TCCAGCAGTC	TTCCTGCAGC	4440
CTACAAGTAC	TICTTIGTT	CAGTTTGAAC	TTGGAAAGCT	GAAGAACGCA	ATGCCCCTGT	4500
CAGCGGCCAT	ATTCAGGAGT	GAAGAGGAGA	ACCCAGTCCC	ACAGTGTCCA	CCTCGGCTGG	4560
ACGTCCAAAC	CATCCAGCCC	GTGCTCTGGA	GCCGCATGCC	CAACAGCTTC	CTGAAGGTGG	4620
AGACCGAGCG	TGTGAGCGAG	CGCCACGGCT	GGGTGGTGCA	GTGCCTGGAG	CCCCTGCAGA	4680
TGATGGCGCT	CCACATCCCC	GAGGAGAACA	GGTGTGTGGA	TATCCTGGAG	CTCTGTGAGC	4740 ·
AGGAGGACCT	GATGCCGTTC	CATTACCACA	CGCTGAGGCT	CTACAGCGCG	GTGTGCGCCC	4800 ``
TGGGAAACAG	CCGCGTGGCC	TACGCCCTGT	GCAGCCACGT	GGACCTCTCC	CAGCTCTTCT	4860
ATGCCATTGA	CAACAAGTAC	CTCCCCGGCC	TCCTTCGATC	TGGTTTCTAT	GACCTGCTCA	4920
TCAGCATCCA	CCTGGCCAGC	GCCAAGGAGA	GGAAGCTGAT	GATGAAGAAC	GAGTACATCA	4980
TCCCCATTAC	CAGCACCACC	AGGAATATCT	GCCTCTTCCC	GGACGAGTCC	AAGAGGCATG	5040 🕮
GACTGCCTGG	GGTGGGCCTG	AGAACATGTC	TCAAGCCCGG	GTTCAGGTTC	TCCACCCCTT	5100
GCTTTGTTGT	GACTGGTGAG	GATCACCAAA	AGCAGAGCCC	CGAGATTCCC	TTGGAGAGTC	5160
TCAGGACGAA	GGCTCTGAGT	ATGCTGACAG	AGGCAGTGCA	GTGCAGCGGG	GCCCACATCC	5220
GAGACCCTGT	AGGGGGGTCT	GTGGAGTTCC	AGTTTGTGCC	TGTGCTGAAA	CTCATTGGAA	5280
CCCTGCTGGT	CATGGGCGTG	TTTGATGATG	ATGATGTTCG	GCAGATCCTC	CTCCTGATTG	5340
ATCCCTCTGT	GTTTGGGGAG	CATAGTGCGG	GGACAGAGGA	GGGAGCAGAA	AAGGAGGAAG	5400
TGACCCAGGT	GGAGGAGAAG	GCTGTGGAGG	CTGGGGAGAA	GGCCGGCAAG	GAGGCTCCTG	5460
TCAAAGGCTT	GTTGCAGACT	CGATTACCCG	AATCCGTCAA	GCTGCAGATG	TGTGAGCTCC	5520
TCAGCTATCT	CTGCGACTGT	GAGCTGCAGC	ACCGAGTGGA	GCCATTGTG	GCATTIGGTG	5580
ACATTTATGT	CTCCAAGCTG	CAGGCAAATC	AGAAGTTCCG	CTACAATGAG	CTCATGCAGG	5640
CCCTGAACAT	GTCTGCGGCC	CTGACTGCCC	GGAAGACCAA	GGAGTTCCGC	TCACCCCCAC	5700
AGGAGCAGAT	CAACATGCTG	CTTAACTTTC	AACTGGGAGA	GAACTGCCCC	TGCCCAGAGG	5760
AGATTCGGGA	GGAGCTGTAT	GATTTCCATG	AGGACCTTCT	CCTTCACTGT	GGGGTTCCTT	5820
TGGAAGAAGA	GGAAGAGGAG	GAGGAGGACA	CCTCCTGGAC	AGGAAAACTC	TCTCCCTTCC	5880
TTTACAAAAT	CAAAGGCCCA	CCCAAGCCAG	AGAAGGAGCA	GCCGACGGAG	GAGGAGGAGA	5940

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 8d.

GATGCCCCAC AACATTGAAG GAACTCATCT CACAGACGAT GATCTGCTGG GCCCAGGAG	G 6000
ACCAGATCCA GGATTCAGAG CTGGTCCGAA TGATGTTCAA CCTCCTCCGG AGGCAGTAT	G 6060
ACAGCATTGG GGAGCTGCTG CAGGCGCTGC GGAAGACCTA CACCATCAGC CACACCTCTV	G 6120
TAAGCGACAC CATCAACCTG CTGGCTGCCC TGGGCCAAAT CCGCTCCCTC CTCAGTGTC	A 6180
GGATGGGCAA GGAAGAGGAG TTGCTCATGA TCAATGGGCT GGGAGACATA ATGAACAACA	A 6240
AGGTGTTTTA CCAGCATCCC AACCTCATGA GAGTCCTGGG CATGCACGAG ACGGTGATGC	G 6300
AGGTGATGGT GAACGTGTTG GGTACAGAGA AATCTCAGAT TGCATTTCCA AAGATGGTTC	6360
CTAGCTGCTG CCGTTTCCTT TGCTATTTCT GTCGAATTAG CCGGCAAAAT CAGAAGGCCA	A 6420
TGTTTGAGCA TCTGAGTTAT CTTCTGGAGA ATAGCAGTGT TGGCCTAGCC TCCCCGTCGA	4 6480
TGAGGGGATC CACCCCGCTG GATGTGGCAG CTTCCTCTGT GATGGACAAC AATGAGTTAG	6540
CGCTGAGCTT AGAGGAACCA GACCTCGAGA AGGTGGTGAC CTACTTGGCA GGCTGTGGCC	6600
TACAGAGCTG CCCCATGCTT CTGGCCAAAG GATACCCTGA TGTCGGCTGG AACCCCATTG	6660
AAGGGGAACG CTACCTGTCC TTCCTGAGGT TTGCTGTCTT CGTGAACAGT GAGAGTGTGG	6720
AAGAAAACGC CAGCGTTGTG GTCAAGCTGC TCATCAGACG CCCAGAGTGC TTCGGCCCGG	6780
CCCTGCGGG TGAGGGGGGA AACGGACTCT TGGCAGCCAT GCAGGGTGCC ATTAAGATCT	6840
CTGAGAACCC AGCGCTCGAC CTCCCCTCTC AAGGATACAA AAGAGAAGTC AGCACGGAGG	6900
ACGATGAAGA GGAAGAAGAA ATCGTGCATA TGGGCAATGC AATTATGTCA TTTTATTCGG	6960
CCCTTATAGA TCTACTGGGC CGCTGTGCTC CTGAAATGCA CCTCATCCAG ACAGGAAAGG	7020
GGGAAGCCAT CCGCATCAGG TCCATCCTGC GCTCCCTGGT CCCCACAGAA GACCTGGTTG	7080
GGATCATCAG CATCCCCTTG AAACTGCCCT CCCTCAACAA AGATGGGTCG GTCAGTGAGC	7140
CAGATATGCC GGGCAATTTC TGCCCTGACC ACAAGGCACC TATGGTGCTG TTCTTGGACC	7200
GCGTTTATGG CATTAAGGAT CAAACTTTTC TGCTCCACTT GCTGGAGGTT GGATTTTTAC	7260
CTGACCTAAG AGCTTCTGCC TCTCTAGATA CAGTTTCCCT AAGCACCACA GAGGCTGCGC	7320
TTGCACTAAA TAGGTATATA TGTTCTGCTG TGCTCCCGCT CCTCACAAGA TGTGCCCCTC	7380
TCTTTGGCGG AACAGAACAC TGCACCTCTC TGATTGATTC CACACTGCAG ACAATATACA	7440
GGCTATCCAA GGGACGTTCC CTCACCAAAG CACAAAGGGA CACTATAGAA GAATGTTTGC	7500
TTGCCATTIG CAATCACTIG AGGCCTTCCA TGTTACAGCA ACTCCTGCGA CGCCTCGTTT	7560
TTGATGTGCC GCAACTCAAT GAATACTGCA AAATGCCTCT CAAGCTTCTG ACGAATCACT	7620
ATGAACAGTG TIGGAAGTAT TACTGCCTGC CTTCAGGATG GGGGAGCTAC GGGCTAGCTG	7680
TGGAAGAAGA GCTGCACCTA ACGGAGAAGC TTTTCTGGGG GATTATTGAC TCGCTCTCCC	7740
ATAAGAAATA TGACCCAGAT CTTTTCCGAA TGGCCCTGCC TTGTCTCAGT GCTATAGCTG	7800
GGGCCTTGCC ACCAGATTAT TTAGATTCCA GAATCACAGC CACGTTGGAG AAACAGATCT	7860
CAGTGGATGC GGATGGCAAC TTTGACCCAA AACCTATTAA CACCATGAAT TTTTCCTTGC	7920
CTGAAAAATT GGAATACATC GTCACCAAGT ATGCTGAGCA TTCACATGAT AAATGGGCCT	7980

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 8e

GTGACAAGAG	TCAGAGTGGA	TGGAAATATG	GGATTTCCCT	GGATGAAAAT	GTGAAGACCC	8040
ACCCACTGAT	AAGGCCTTTC	AAGACATTAA	CGGAGAAGGA	GAAGGAAATT	TATCGCTGGC	8100
CTGCGCGAGA	GTCCCTGAAA	ACCATGCTGG	CTGTGGGCTG	GACTOTGGAG	AGGACCAAAG	8160
AGGGAGAAGC	TTTGGTTCAA	CAGCGGGAAA	ATGAGAAGCT	TCGAAGTGTG	TCCCAGGCCA	8220
ACCAGGGCAA	CAGCTACAGT	CCTGCTCCCC	TCGACCTCTC	AAACGTTGTG	CTCTCCAGAG	8280
AGCTCCAGGG	AATGGTGGAG	GTCGTGGCTG	AGAACTATCA	CAATATCTGG	GCCAAGAAGA	8340
AGAAGCTGGA	GCTGGAGAGC	AAAGGTGGTG	GCAGCCACCC	TCTTCTGGTA	CCATATGACA	8400
CCTTGACTGC	CAAGGAAAAG	TTCAAGGACC	GGGAGAAGGC	ACAGGACCTG	TTTAAGTTCC	8460
TCCAAGTGAA	TGGCATCATA	GTTTCCAGGG	GTATGAAGGA	TATGGAGCTG	GATGCCTCCT	8520
CCATGGAGAA	GAGGTTTGGC	TATAAGTTCT	TGAAGAAGAT	CCTGAAATAC	GTTGATTCTG	8580
CTCAAGAATT	TATTGCCCAT	TTAGAAGCCA	TTGTCAGCAG	TGGGAAAACT	GAAAAGTCTC	8640
CCCGTGACCA	GGAGATCAAA	TTCTTTGCCA	AAGTTCTCCT	CCCGCTGGTT	GACCAGTACT	8700
TCACCAGTCA	TIGCCTCTAC	TICTIGICAT	CCCCTCTGAA	GCCCCTTAGC	AGCAGCGGAT	8760.
ATGCCTCCCA	TAAGGAGAAA	GAAATGGTGG	CCGGCCTGTT	CTGCAAACTT	GCCGCTCTCG	8820 ,.
TTAGACACAG	AATTTCCCTC	TTTGGTAGTG	ATTCTACTAC	AATGGTGAGC	TGTCTTCACA	8880
TCTTAGCTCA	GACACTTGAC	ACAAGGACTG	TCATGAAGTC	AGGCTCAGAG	CTGGTGAAGG	8940
CTGGGTTACG	AGCATTCTTT	GAAAATGCTG	CAGAAGATTT	GGAGAAGACT	TCAGAAAACC	9000
TGAAACTTGG	GAAGTTCACC	CATTCCCGAA	CGCAGATTAA	AGGCGTTTCT	CAGAATATTA	9060.
ACTACACTAC	AGTGGCTCTG	CTCCCCATCC	TGACGTCCAT	CTTTGAGCAC	GTCACTCAGC	9120
ATCAGTTTGG	AATGGATCTA	CTCTTGGGTG	ATGTGCAGAT	TTCATGCTAC	CACATACTGT	9180
GCAGCCTCTA	CTCCCTTGGG	ACGGGAAAGA	ACATTTATGT	TGAAAGGCAA	CGCCCTGCCC	9240
TTGGAGAATG	TCTGGCCTCG	CTGGCAGCTG	CCATACCAGT	GGCATTCCTG	GAGCCCACCC	9300
TTAATCGCTA	CAATCCACTC	TCGGTCTTCA	ACACCAAAAC	CCCCAGGGAG	AGGTCTATTC	9360
TGGGGATGCC	AGACACGGTA	GAAGACATGT	GTCCTGACAT	CCCCCAGCTG	GAAGGCCTGA	9420
TGAAGGAAAT	CAACGACCTG	GCCGAGTCAG	GGGCCCGGTA	CACAGAGATG	CCCCATGTCA	9480
TCGAGGTGAT	CTTACCCATG	CTCTGCAACT	ACTTGTCCTA	CTGGTGGGAG	CGGGGTCCIG	9540
AGAACCTGCC	CCCCAGCACA	GGGCCATGCT	GCACCAAGGT	CACCTCTGAA	CACCTCAGTC	9600
TCATCCTGGG	CAACATTCTG	AAAATCATCA	ACAACAACCT	GGGCATCGAT	GAGGCCTCCT	9660
GGATGAAGCG	CATTGCAGTG	TATGCACAGC	CCATCATCAG	CAAAGCCAGG	CCCGACCTGC	9720
TGAGAAGCCA	CTTCATCCCA	ACTCTGGAGA	AGCTGAAGAA	AAAGGCTGTC	AAGACGGTGC	9780
AGGAGGAGGA	GCAGTTGAAA	GCCGATGGCA	AAGGGGACAC	CCAGGAGGCA	GAACTCCTCA	9840
TCCTGGACGA	GTTCGCGGTC	CTCTGCAGAG	ATCTCTATGC	CTTCTACCCC	ATGCTGATCC	9900
GCTACGTGGA	CAACAACAGA	TCTAACTGGC	TGAAAAGTCC	TGATGCTGAT	TCTGACCAGC	9960

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 8f.

• • • • • • • • • • • • • • • • • • • •	
TCTTCCGCAT GGTGGCAGAA GTCTTCATTC TGTGGTGTAA ATCTCATAAC TTCAAGAGAG	10020
AAGAGCAAAA TTTTGTGATT CAGAATGAAA TTAATAATTT GGCATTTTTA ACTGGAGACA	10080
GCAAAAGCAA GATGTCAAAA TCTGGAGGAC AAGACCAGGA GCGGAAGAAG ACAAAGCGGC	10140
GGGGAGACTT GTATTCCATC CAGACCTCCC TCATCGTGGC TGCACTCAAG AAAATGCTGC	10200
CCATTGGTTT GAATATGTGT ACTCCAGGCG ACCAGGAGCT GATCTCCCTC GCAAAATCGC	10260
GATACAGCCA TAGGGACACA GATGAAGAGG TCAGAGAACA TCTGCGGAAC AACTTGCACT	10320
TGCAGGAAAA GTCTGATGAC CCAGCTGTAA AATGGCAACT GAACCTCTAC AAGGATGTTC	10380
TGAAGAGTGA AGAACCTTTC AATCCGGAAA AGACAGTGGA GCGTGTGCAG AGAATTTCAG	10440
CAGCTGTCTT CCACCTGGAA CAGGTGGAAC AGCCTTTGAG GTCCAAGAAG GCCGTCTGGC	10500
ACAAACTGTT ATCAAAGCAA CGGAAACGGG CAGTGGTGGC CTGTTTCAGG ATGGCCCCTC 1	10 560
TCTACAACCT GCCCAGGCAC CGCTCTATTA ACCTCTTCCT CCATGGCTAT CAGAGATTTT 1	10620
GGATAGAAAC AGAGGAGTAT TCCTTTGAAG AGAAACTAGT ACAGGATTTG GCTAAATCTC 1	L0680
CAAAGGTGGA AGAGGAGGAG GAGGAAGAGA CAGAAAAACA ACCTGACCCA CTACATCAGA 1	L0740
TCATTCTCTA TTTTAGCCGC AACGCTCTCA CGGAGAGGAG CAAATTGGAA GACGACCCTT 1	10800
TGTACACCTC CTATTCCAGC ATGATGGCCA AGAGTTGTCA AAGTGGTGAG GATGAAGAAG 1	.0860
AAGATGAAGA CAAGGAAAAA ACATTGAAG AGAAAGAGAT GGAGAAGCAA AAAACCCTCT 1	.0920
ATCAGCAAGC TCGGCTGCAT GAGCGTGGTG CTGCAGAGAT GGTCCTTCAG ATGATAAGCG 1	.0980
CTAGCAAAGG TGAGATGAGC CCCATGGTGG TTGAGACGCT GAAGCTGGGG ATCGCCATTC 1	.1040
TGAACGGAGG CAATGCTGGT GTGCAACAGA AAATGCTAGA TTACCTAAAG GAGAAAAAAGG 1	.1100
ATGCTGGATT CTTTCAAAGC CTTCCTGGTC TTATGCAGTC TTGCAGCGTC CTTGATTTGA 1	.1160
ATGCATCTGA GAGGCAGAAT AAAGCTGAAG GCCTGGGGAT GGTGACTGAA GAAGGAACAC 1	1220
TCATTGTTCG GGAACGTGGT GAAAAAGTAC TCCAGAATGA CGAGTTCACG CGTGATCTCT 1	1280
TTAGATTCCT ACAGTTACTT TGTGAGGGAC ATAACAGTGA CTTTCAGAAC TTCCTGCGGA 1.	1340
CTCAGATGGG CAACACCACC ACCGTGAATG TCATCATCAG CACTGTGGAC TACCTTCTGC 1.	1400
GTCTGCAGGA ATCAATCAGT GATTTCTACT GGTATTATTC AGGGAAGGAC ATCATTGATG 1	1460
A AMONDON CO. CO. CO. AMONDON CO.	1520
TTACAGAATA CATCCAGGGC CCTTGCATTG GTAATCAACA GAGCCTGGCT CACAGCAGGC 1:	1580
TGTGGGACGC AGTGGTTGGC TTCCTCCATG TCTTTGCTAA TATGCAGATG AAACTCTCTC 1:	1640
AGGATTCCAG TCAGATCGAG CTGCTGAAGG AACTCTTGGA TCTCCTTCAG GACATGGTGG 1:	1700
TGATGCTTCT GTCCCTCCTG GAAGGGAATG TGGTAAATGG CACCATTGGC AAGCAGATGG 1:	1760
TTGACACACT GGTAGAATCA TCTACCAATG TAGAAATGAT CTTGAAATTC TTTGACATGT 1:	1820
TCTTGAAACT TAAAGACTTA ACCAGCTCAG ACACCTTCAA AGAATATGAC CCAGATGGTA 13	1880
AAGGAATTAT CTCCAAAAAA GAATTCCAGA AGGCCATGGA AGGGCAAAAA CAGTACACGC 13	1940
AGTCAGAGAT TGACTTTCTC CTGTCGTGTG CAGAAGCTGA TGAGAATGAC ATGTTTAATT 12	2000

Nummer: Int. Cl.⁶: Veröffentlichungsteg:

DE 197 22 317 C1 C 07 K 14/435 8. Oktober 1998

Fig. 8g

ACGTTGATTT	TGTAGACCGG	TTCCATGAGC	CAGCCAAGGA	CATAGGGTTT	AATGTGGCTG	12060
TGTTATTGAC	AAATCTTTCT	GAACACATGC	CAAACGATTC	CCGCCTGAAG	TGTCTGTTGG	12120
ACCCAGCAGA	AAGTGTGCTA	AATTACTTCG	GACCCTACCT	AGGACGCATC	GAGATCATGG	12180
GTGGGGCCAA	GAAGATTGAG	CGTGTTTATT	TTGAGATCAG	TGAATCCAGT	CGCACTCAGT	12240
GGGAGAAGCC	CCAGGTGAAG	GAATCTAAGC	GACAGTTCAT	TTTTGATGTT	GTCAATGAAG	12300
GTGGGGAGCA	GGAAAAGATG	GGGCTGTTTG	TGAACTTCTG	TGAGGACACC	ATCTTTGAAA	12360
TGCAGTTAGC	ATCTCAGATC	TCTGAATCCG	ATTCAGCTGA	CAGGCCAGAA	GAGGAGGAAG	1.2420
AAGATGAAGA	TTCTTCTTAC	GTGTTAGAAA	TTGCGGGTGA	AGAGGAAGAA	GACGGGTCTC	12480
TTGAGCCGGC	CTCTGCATTT	GCTATGGCCT	GTGCCTCTGT	GAAGAGGAAT	GTCACCGACT	12540
TCCTGAAGAG	AGCAACCCTG	AAGAACCTCA	GGAAGCAGTA	CAGGAACGTG	AAAAAGATGA	12600
CTGCGAAGGA	GCTGGTGAAG	GIGCICITCI	CCTTTTTCTG	GATGCTGTTC	GTGGGGCTAT	12660
TCCAGTTGCT	CTTCACCATC	CTGGGAGGAA	TCTTTCAGAT	CCTCTGGAGC	ACAGTGTTTG	12720
GAGGGGGCCT	GGTAGAAGGG	GCAAAGAACA	TCAGAGTGAC	CAAGATCCTG	GGTGACATGC	12780
CTGACCCAAC	CCAATTTGGT	ATCCATGATG	ACACTATGGA	GGCTGAGAGG	GCAGAGGTGA	12840 -
TGGAGCCAGG	TATCACCACT	GAACTAGTAC	ACTTCATAAA	GGGGGAGAAG	GGAGATACAG	12900
ATATCATGTC	AGACCTCTTT	GGACTCCACC	CAAAGAAAGA	GGGCAGCTTA	AAGCATGGGC	12960.
CTGAAGTGGG	TTTGGGTGAC	CTCTCAGAAA	TTATTGGCAA	GGATGAACCC	CCTACATTAG	13020 _
AGAGTACTGT	ACAGAAGAAG	AGGAAAGCTC	AGGCAGCAGA	AATGAAAGCA	GCAAATGAAG	13080
CAGAAGGAAA	AGTAGAATCC	GAGAAGGCAG	ACATGGAAGA	TGGAGAGAAG	GAAGACAAAG	13140
ACAAAGAAGA	GGAGCAAGCT	GAGTACCTGT	GGACAGAAGT	GACAAAAAAG	AAGAAGCGGC	13200
GGTGTGGTCA	GAAGGTTGAG	AAGCCGGAAG	CTTTCACAGC	CAATTICTIT	AAAGGGCTGG	13260
AAATCTATCA	GACCAAGTTA	CTGCATTACC	TGGCCAGGAA	TTTCTACAAC	CTGAGGTTCC	13320
TIGCTCIGIT	TGTAGCCTTC	GCTATCAACT	TCATCCTGCT	TTTTTTATAAG	GTCACTGAAG	13380
AACCTTTAGA	AGAAGAGACA	GAGGATGTTG	CAAACCTATG	GAATTCCTTT	AATGACGAGG	13440
AAGAGGAAGA	AGCGATGGTA	TTCTTTGTCC	TTCAGGAGAG	CACCGGGTAT	ATGGCACCAA	13500
CCCTGCGTGC	CCTGGCCATC	ATCCATACCA	TCATCTCTCT	AGTCTGTGTG	GTGGGCTACT	13560
ACTGCCTGAA	GGTGCCTTTG	GTGGTTTTCA	AAAGGGAAAA	AGAAATCGCC	AGGAAGCTGG	13620
AGTTTGATGG	CCTATATATC	ACCGAACAGC	CATCTGAAGA	TGACATCAAG	GGGCAGTGGG	13680
ACCCCTTGGT	GATCAACACA	CCATCTTTTC	CTAATAACTA	CTGGGACAAG	TTTGTAAAGA	13740
GAAAGGTGAT	CAACAAGTAT	GGAGATCTCT	ACGGAGCAGA	ACCCATTCCT	GAACTTCTGG	13800
GTTTGGACAA	AAATGCTCTT	GACTTTAGCC	CAGTAGAAGA	GACCAAAGCA	GAAGCGGCTT	13860
CICIGGIGIC	ATGGCTAAGT	TCCTTAGACA	TGAAGTACCA	TATCTGGAAG	CTTGGAGTTG	13920
TTTTTACTGA	CAACTCCTTT	CTCTACCTTG	CCTGGTATAC	AACCATGTCA	GTCCTGGGCC	13980

DE 197 22 317 C1 C 07 K 14/4358. Oktober 1998

Fig. 8h

ACTACAATAA	CTTCTTCTTT	GCTGCTCACC	TATTGGACAT	CGCAATGGGC	TTCAAGACAC	14040
TGAGGACCAT	TCTGTCATCT	GTAACTCACA	ATGGCAAACA	GTTGGTTCTG	ACTGTCGGTC	14100
TCCTGGCCGT	GGTGGTTTAT	CTCTATACTG	TGGTGGCTTT	CAACTTCTTC	CGCAAGTTCT	14160
ACAACAAAA	CGAAGACGAT	GACGAGCCCG	ATATGAAGTG	CGACGACATG	ATGACGTGTT	14220
ACCTTTTCCA	CATGTACGTG	GGAGTGAGAG	CAGGAGGTGG	CATTGGTGAT	GAAATTGAAG	14280
ACCCTGCTGG	TGATCCTTAT	GAAATGTATC	GCATTGTCTT	TGACATTACC	TTTTTCTTCT	14340
TCGTCATTGT	CATCTTGCTG	GCCATCATTC	AAGGTCTTAT	TATTGATGCT	TTCGGAGAGC	14400
TAAGAGACCA	GCAGGAACAA	GTACGAGAAG	ATATGGAGAC	TAAATGTTTC	ATCTGTGGGA	14460
TTGGCAATGA	CTACTTTGAC	ACAACCCCTC	ATGGTTTTGA	AACACATACA	TTACAAGAGC	14520
ACAACTTAGC	CAACTACTIG	TTCTTTCTGA	TGTATTTGAT	TAATAAAGAT	GAAACAGAGC	14580
ACACGGGTCA	GGAATCTTAT	GTCTGGAAGA	TGTACCAAGA	AAGGTGTTGG	GATTTCTTCC	14640
CAGCCGGTGA	CTGCTTTCGT	AAACAATATG	AAGATCAGCT	TGGATAAATC	TGAATCAAAG	14700
AAGCGCGACA	ATTCTGGACA	GTCAACTTCC	CATGAAATAA	AGTCCCCTTT	TTACAGTTCT	14760
GCAACATATC	TGAAATGTGA	CATTTTCTAA	ATGCCTCCCT	TAAAAAAAA	ACTGCTGAAA	14820
ATCTGTGCTA	TTTTGAAATT	GATTTGGCTT	TTTGTGCCTA	ATGGACATAC	ACTGTGGGAG	14880
AGAACCTGTC	AAAATGTCGA	AGAAGGAAGG	CGAAGAATCA	AGTAATCTCT	AGGCAAATGC	14940
CTTCAAGTTT	TCCAGTTCTG	AGGTAACTAG	TTCAGTTTGT	TGGGATGGAA	GCATGAAGGA	15000
AAGGGCTAGA	GAAGTATGAA	ATCTCGAATG	TGTAATACCT	GAAAATTTAA	ACACTTGAAT	15060
GTCATCATGG	TATCCAACTT	GTGACTCATA	GGGTCTGAAC	TCCAAAAGAT	AATAACTGCA	15120
GTCTAATTTT	TCCCATGGTA	CTTGCTAGTG	ACTGTATCCA	GAAAAGCTTT	AAGCAGTTAA	15180
AGAAACAGAA	AAAAACCGAC	ACTTTGTCGA	CACTGAAATA	TCGATTAAGT	GCCTTAAAAC	15240
CTCTTTAGAC	ATAGCTATGC	AAGTTTTTTA	TGTTTGTGTT	CCAGAAGGAC	AGTTCCATTC	15300
ATTAGTTGTG	ATCTTCCGTC	TTACTTTATG	AAACTGCACT	TGAAGGTTAT	TCATACAAGT	15360
TTTTTTAGTA	ACAGCTGTCA	GTCAACTGCT	GTTATTAGAA	GAAAAGTACT	GTACTGAAAA	15420
TICAAAAAAA	AATCTCAACC	TTATGCCAAA	ATGGAGTAAT	GCTTTATGGT	CCCTTGTAAG	15480
TAGTGGAGCT	GCTCTGTTTA	GGTGAATCTC	CTCAAATACA	GTGAAGTGCC	CACTGCAATA	15540
AAGTAATACG	TGCCAATAAA .	ААААААААА	AA			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)