$$HAH^{-1} = \begin{bmatrix} \lambda & b^t \\ 0 & B \end{bmatrix}$$
 con $B \in \mathbb{R}^{n-1 \times n-1}$ y $b \in \mathbb{R}^{n-1}$.

b) Probar que λ' es autovalor de B. ¿Es necesario que $\lambda' \neq \lambda$? Justifique.

c) Sea w el autovector de B asociado a λ' y $\lambda' \neq \lambda$.

Demostrar que
$$v' = H^{-1} \begin{bmatrix} \beta \\ w \end{bmatrix}$$
 con $\beta = \frac{1}{\lambda' - \lambda} b^t w$. ¿Qué sucede con b y w si $\lambda' = \lambda$?

d) Si A es simétrica, probar que b=0.

H ortogonal
$$\Rightarrow$$
 H⁻¹ = H^T
Hv = Re1 \iff V = H^TRe1 = $\times \cdot \text{col}_1(\text{H}^T) = \times \cdot \text{Fila}_1(\text{H})$

Para que H sea ortogonal sus filas y columnas tienen que se ortonormales. Tomamos $\alpha = \|V\|_2$ para poner V normalizado como fila (H).

$$\alpha = \|V\|_{2} \Rightarrow V = \|V\|_{2} \cdot f_{1}|_{a_{1}}(H) \Rightarrow f_{1}|_{\alpha_{1}}(H) = \frac{V}{\|V\|_{2}}$$

Luego tomamos Filas z... n ortonormales con V. Justificar mejor

$$QVQ: HAH^{-1} = \lambda b^{T}$$

$$OB$$

Como no sabemos nada sobre by B, basta ver que $col_1(HAH^{-1}) = \lambda e_1$.

$$HAH^{-1}e_{1} = HA\alpha^{-1}V = \alpha^{-1}HAV = \alpha^{-1}H\lambda V = \lambda\alpha^{-1}HV = \lambda\alpha^{-1}\alpha e_{1} = \lambda e_{1}$$
 $HV = \alpha e_{1} \iff H^{-1}e_{1} = \alpha^{-1}V$

6)	QV	Q:	λ' o	włor	ralo	r de	B							