PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

CLASS: S.E. COMP SUBJECT: DEL

EXPT. NO.: 6 DATE:

TITLE: RIPPLE COUNTER CIRCUIT

OBJECTIVE:

1. Design and Implement 3-bit Asynchronous (Ripple) UP Counter circuit using IC-74LS76

Draw Timing Diagram.

2. Design and Implement 3-bit Asynchronous (Ripple) DOWN Counter circuit using IC-74LS76

Draw Timing Diagram.

3. Design and Implement MOD-N Asynchronous (Ripple) UP Counter circuit using IC-74LS76

Draw Timing Diagram.

APPARATUS :

Digital-Board, GP-4 Patch-Cords, IC-74LS76, IC-74LS32, IC-74LS04/IC-74LS08 and Required Logic gates if any

THEORY :

Counter is a Sequential Logic device which can be use to count the number of pulses given to the circuit. Counter can be classified into two category one is Synchronous and other is Asynchronous (Ripple) In case of Asynchronous counter output of first flip-flop goes to the clock of next and so on, and input of all flip-flop is connected to VCC for IC-

Department of Computer Engineering

74LS76.

All set and reset pin is connected to VCC. Asynchronous counter is easy to design as compared to Synchronous Counter. Synchronous Counter is faster than Asynchronous Counter. IC-74LS76 is Dual M/S-JK filp-flop, which means in one IC there are two M/S-JK filp-flop are contained.

PIN Diagram:

PROCEDURE :

- 1. Make the connections as per the Logic circuit of 3-bit Ripple UP Counter circuit using IC-74LS76 and Verify its Truth Table.
- 2. Make the connections as per the Logic circuit of 3-bit Ripple DOWN Counter circuit using IC-74LS76 and Verify its Truth Table.
- 3. Make the connections as per the Logic circuit of MOD-N Ripple UP Counter circuit using IC-74LS76 and Verify its Truth Table.

P:F-LTL UG/03/R1 6.2

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE-411043

Department of Computer Engineering

Design of 3- bit Asynchronous UP- Counter

ו טמוכ	Diagram:
_09.0	Diagraiii

Observation Table:

		Output		
CLOCK PULSE	QΑ	Qв	Q c	
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Department of Computer Engineering

Design of 3- bit Asynchronous DOWN- Counter

Logic	Diagram:
-------	----------

Observation Table:

	Output		
CLOCK PULSE	QA	Qв	Qc
0	1	1	1
1	1	1	0
2	1	0	1
3	1	0	0
4	0	1	1
5	0	1	0
6	0	0	1
7	0	0	0

Department of Computer Engineering

Design of (MOD - N =)Asynchronous UP-Counter

Dec.Equ.	ОИТРИТ			RESET LOGIC
	QA	Qв	Q c	Y
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

K-MAP for RESET LOGIC

Logic Diagram:

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

Logic Gates / MSI Device required for Implementation:

Sr.No.	Title	Name of the IC	Number of Gates required	IC Required
01	3-bit Ripple Up Counter			
02	3-bit Ripple DOWN Counter			
03	(MOD-N=) UP -Counter			

CONCLUSION:	

REFFRENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH

Subject teacher Sign with Date

Remark