Shasa Antao

shasaantao@gmail.com | (857) 354-9800 | linkedin.com/in/ShasaAntao | shasaantao.github.io/

EDUCATION

CARNEGIE MELLON UNIVERSITY - SCHOOL OF COMPUTER SCIENCE

MASTER OF SCIENCE IN ROBOTIC SYSTEMS DEVELOPMENT

PITTSBURGH, PA Aug 2019 - May 2021

SELECTED COURSEWORK

Computer Vision, Geometric methods in Vision, SLAM, Machine Learning, Visual Learning & Recognition, Computer Graphics

WORK EXPERIENCE

ONWARD ROBOTICS

SENIOR PERCEPTION ENGINEER

PITTSBURGH, PA Aug 2023 - Present

- Leading the design and implementation of a Simultaneous Localization and Mapping (SLAM) system using LiDAR, camera, & IMU sensors, based on LVI-SAM, deployable on an NVIDIA Orin NX, for an Autonomous Mobile Robot (AMR) in warehouses
- Altering LVI-SAM's visual odometry subsystem by substituting VINS-MONO to better utilize a stereo camera and to improve fusion of camera key frames and IMU pre-integration values
- Conducting technical program management activities such as formulating engineering requirements, establishing a program roadmap, lifecycle analysis, & risk management for the proposed localization system
- Architecting software framework for the flow and fusion of multi sensor data into the localization subsystem of the robot
- Selected sensors through a requirements driven process involving software and hardware prototyping & benchmarking
- Constructed a pipeline to convert a pre-generated KISS-ICP 3D map from an Ouster OSO into a bird's eye 2D map of a warehouse by fusing bounding boxes and contours of point cloud clusters

THORDRIVE INC

SENIOR PERCEPTION ENGINEER

CINCINNATI, OH Aug 2021 - Mar 2023

- Designed, deployed & drove requirements engg. for perception algorithms in autonomous driving for airport baggage tugs
- Innovated a Deep Learning based 3D object detection pipeline for LiDAR data for the airfield based on PointPillars with a DLA-34 backbone which resulted in stable bounding boxes and a 72.67 3D mAP score on a custom dataset
- Integrated NDT LiDAR scan match localization with RTK INS using an Extended Kalman Filter to increase position accuracy by 28 % to within 7 cm of ground truth and prevent loss of localization in sparse point areas
- Prototyped Visual Inertial Odometry (VIO) techniques for localization robustness & proposed SLAM architecture based on factor graphs using GTSAM and g2o frameworks to transition from use of pre-maps and LiDAR scan matching
- Led transition to new object detection module (CenterNet) for RGB & thermal cameras resulting in higher mAP score and increased performance by 45 %. Constructed a training pipeline and ONNX-TensorRT inference scripts for the same
- Worked with lower level TensorRT 7 & 8 APIs and modified plugin architecture for transition from CUDA 10 to CUDA 11
- Supervised collaboration with a data annotation company by continually tracking requirements and creating annotation guidelines for object detection and segmentation tasks for RGB & Thermal cameras and LiDAR data

ALERT INNOVATION

MACHINE VISION INTERN

North Billerica, MA Jun 2020 - Aug 2020

- Developed a "Product Dimensioning" algorithm in Python using point cloud information from a Time-of-Flight camera for an automated warehousing application. Product dimensions are calculated with millimeter precision and a max error of 15%
- Created approach that trims the point cloud to a specific region of interest, uses RANSAC to calculate the base plane equation of the tote, and uses Principal Component Analysis (PCA) to establish the axes of measurement

ROBERT BOSCH

PRODUCT DEVELOPMENT ENGINEER

Bangalore, India Sep 2017 - Jun 2019

PROJECTS

OBJECT DETECTION WITH ONE SHOT LEARNING ON 3D DATA (LINK)

CMU | FEB 2021 - MAY 2021

- Changed the architecture of VoxelRCNN that takes in point cloud data, to be able to perform one shot learning
- Novel use of non-local feature map generation by performing block matching on query and target 2D feature maps

DEPTH ESTIMATION-AIDED MONOCULAR SLAM

CMU | FEB 2021 - MAY 2021

- Integrated VNL, a depth estimation CNN, with ORB SLAM3 to boost accuracy of monocular SLAM systems
- Increased trajectory tracking accuracy by 23% over traditional RGB SLAM, when tested on TUM- RGBD dataset

AUTONOMOUS DRIVING FOR ADVERSE PERCEIVED TERRAIN (LINK)

CMU | Oct 2019 - Dec 2020

- Augmented a $1/5^{th}$ scaled vehicle with a custom built enclosure that can perceive wet road conditions, localize itself, and autonomously plan and navigate extreme traversals in real-time
- Implemented geometry-based puddle detection algorithm using polarization filters on a ZED stereo camera obtaining image features from disparity map and a Gaussian Mixture Model (GMM) classifier
- Setup working compute environment on NVIDIA Jetson Xavier, on-board computer for the autonomous vehicle

SKILLS

Programming: C++ • Python • OpenCV • Open3D • Pytorch • scikit-learn • TensorRT • CUDA • ONNX • ROS **Project Management & Version Control:** Jira • Confluence • GitHub • Bitbucket