

Demonstration-Guided Reinforcement Learning with Efficient Exploration for Task Automation of Surgical Robot

Tao Huang, Kai Chen, Bin Li, Yun-Hui Liu, Qi Dou The Chinese University of Hong Kong

- Reinforcement learning faces with exploration challenge in task automation of surgical robot
- Demonstration data can accelerate exploration, but how to make effective use of it remains a open problem

- exploration on expert-alike trajectories
- Guidance propagation to guide exploration at undemonstrated states

Main Results

	Task Description		Reinforcement Learning		Imitation Learning			Demonstration-guided Reinforcement Learning				Ours
	Task	$\mathcal{S}/\mathcal{A}/r$	SAC	DDPG	BC	SQIL	VINN	DDPGBC	AMP	CoL	AWAC	DEX
	Aggregate	-	$0.99 (\pm .03)$	0.99 (±.02)	1.00 (±.00)	$0.24 \ \scriptscriptstyle{(\pm 0.06)}$	$0.58\ (\pm .06)$	1.00 (±.00)	1.00 (±.01)	1.00 (±.00)	0.99 (±.01)	$1.00 (\pm .00)$
ECM	ECMReach	$\mathbb{R}^{12}/\mathbb{R}^3/S$	1.00 (±.06)	1.00 (±.00)	1.00 (±.00)	$0.07_{(\pm.04)}$	$0.49_{(\pm.10)}$	1.00 (±.00)	0.99 (±.02)	1.00 (±.00)	1.00 (±.00)	1.00 (±.00)
	StaticTrack	$\mathbb{R}^{16}/\mathbb{R}^{3}/S$	$0.92 (\pm .14)$	0.98 (±.05)	1.00 $(\pm .00)$	$0.43 \ (\pm .26)$	$0.56 (\pm .10)$	1.00 $(\pm .00)$	0.97 (±.03)	1.00 $(\pm .00)$	1.00 (±.00)	1.00 $(\pm .00)$
	MisOrient	$\mathbb{R}^{11}/\mathbb{R}^{1}/S$	1.00 (±.00)	1.00 $(\pm .00)$	1.00 $(\pm .00)$	$0.56 \ (\pm .10)$	$0.50 \ (\pm .11)$	0.99 (±.02)	0.98 (±.02)	0.99 (±.02)	0.98 (±.03)	$0.99_{(\pm .02)}$
	ActiveTrack	$\mathbb{R}^{10}/\mathbb{R}^3/D$	$0.79 \; (\pm .08)$	$0.67 \; (\pm .08)$	0.95 (±.01)	$0.07 \; (\pm .06)$	$0.92 (\pm .06)$	$0.81 \; (\pm .05)$	0.94 (±.01)	$\textbf{0.96} \; (\pm .01)$	$0.51 \; (\pm .12)$	0.94 (±.01)
Bi-PSM PSM	Aggregate	-	$0.0\ (\pm .00)$	$0.00\ (\pm .00)$	$0.40\ (\pm .05)$	$0.00\ (\pm .00)$	$0.02\ (\pm .02)$	$0.80 \; (\pm .04)$	$0.00\ (\pm .00)$	$0.85\ (\pm .06)$	$0.46\ (\pm .19)$	0.89 (±.03)
		$\mathbb{R}^{13}/\mathbb{R}^5/S$	1.00 (±.00)	1.00 (±.00)	1.00 (±.00)	$0.07_{(\pm .09)}$	$0.89 (\pm .06)$	1.00 (±.00)	0.99 (±.02)	1.00 (±.00)	$0.94\ (\pm .20)$	1.00 (±.00)
	GauzeRetrieve	$\mathbb{R}^{25}/\mathbb{R}^5/S$	$0.00\ (\pm .00)$	$0.00 (\pm .00)$	0.07 (±.05)	$0.00\ (\pm .00)$	$0.01 \ (\pm .02)$	$0.63\ (\pm.11)$	$0.00 (\pm .00)$	0.71 (±.16)	$0.43 \ \scriptscriptstyle{(\pm .43)}$	0.73 (± 12)
	NeedlePick	$\mathbb{R}^{25}/\mathbb{R}^{5}/S$	$0.00 (\pm .00)$	$0.00 (\pm .00)$	$0.21 \ (\pm .06)$	$0.00 (\pm .00)$	$0.02 \ (\pm .02)$	0.91 (±.05)	$0.00 (\pm .00)$	0.96 (±.05)	$0.26\ (\pm .33)$	0.94 (±.05)
	PegTransfer	$\mathbb{R}^{25}/\mathbb{R}^5/S$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.56 \; (\pm .11)$	$0.02 \; (\pm .05)$	$0.05 \ (\pm .04)$	$0.48\ (\pm .22)$	$0.00\ (\pm .00)$	$0.23 \; (\pm .23)$	$0.31 \ (\pm .32)$	0.73 (±.20)
	Aggregate	-	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.08\ (\pm .04)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.00 \ (\pm .00)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	0.39 (±.11)
	NeedleRegrasp	$\mathbb{R}^{41}/\mathbb{R}^{10}/S$	0.00 (±.00)	0.00 (±.00)	0.09 (±.03)	0.01 (±.00)	0.01 (±.02)	0.05 (±.08)	0.00 (±.00)	0.04 (±.07)	0.00 (±.00)	0.63 (±.19)
	BiPegTransfer	$\mathbb{R}^{41}/\mathbb{R}^{10}/S$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.09 \ (\pm .05)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.00\ (\pm .00)$	$0.01 \ (\pm .02)$	$0.00\ (\pm .00)$	0.18 (±.14)
	Overall	-	$0.46\ (\pm .03)$	$0.45 \ \scriptscriptstyle{(\pm .01)}$	$0.68\ (\pm .02)$	$0.02 \; (\pm .02)$	$0.24\ (\pm .03)$	$0.83 \ (\pm .05)$	$0.48 \; (\pm .01)$	$0.87 (\pm .03)$	$0.58\ (\pm .08)$	0.92 (±.02)

Our method significantly outperforms prior RL-based approaches on the surgical robot learning tasks from SurRoL, especially on complex bi-manual tasks

Ablation

Replay

buffer

Expert

demos

Experience collection

Robot Evaluation

Trajectories deployed on real dVRK platform

Robot experiments on real-world tasks

Method	${\bf Gauze Retrieve}$	${\it Needle Pick}$	${\bf PegTransfer}$	${\bf Needle Regrasp}$	${\bf StaticTrack}$
BC	0.00	0.85	0.00	0.40	1.00
DDPGBC	0.75	0.95	0.35	0.65	1.00
DEX (ours)	0.90	0.95	0.75	0.90	1.00