Computational Analysis of Sound and Music

Sound Perception

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- Auditory Scene
- Sound Intensity & Loudness
- Frequency & Pitch & Chroma
- Timbre
 - Harmonics / Transients / Noise
 - Mel Frequency Cepstral Coefficients (MFCC)

Everything a listener perceives in a particular acoustic environment

Own

- Everything a listener perceives in a particular acoustic environment
- Type & spatial alignment of sound sources

Own

- Everything a listener perceives in a particular acoustic environment
- Type & spatial alignment of sound sources
- Physical characteristics of acoustic environment (sound transmission)

- Everything a listener perceives in a particular acoustic environment
- Type & spatial alignment of sound sources
- Physical characteristics of acoustic environment (sound transmission)
 - Room shape & size
 - Ambient noise
 - Reflective & absorbent surfaces & objects

- Perceptual organization (listener)
 - Spatial hearing for sound localization
 - Auditory streaming (grouping sounds into separate streams)
- Soundscape → qualitative, cultural, and aesthetic relationship between listeners and their acoustic environment

Outline

- Auditory Scene
- Sound Intensity & Loudness
- Frequency & Pitch & Chroma
- Timbre
 - Harmonics / Transients / Noise
 - Mel Frequency Cepstral Coefficients (MFCC)

Sound Intensity & Loudness

Intensity

- Sound pressure p (PA)
 - How much the air pressure is changed by a sound wave
- Sound power P (W)
 - Amount of energy emitted by sound source per time
- Sound Intensity I (W/m²)
 - Ratio between the power of an acoustic wave and the area it traverses
 - Example: Omnidirectional sound source (spherical wave)

$$I \coloneqq \frac{P}{4\pi r^2}$$

Sound Intensity & Loudness

Sound Pressure Level (SPL)

- Level (in dB)
 - Logarithm of the ratio of a physical quantity to a reference value
- Sound pressure level (SPL)

•
$$L_p := 10 \cdot \log_{10} \left(\frac{p}{p_0}\right)^2 = 20 \cdot \log_{10} \left(\frac{p}{p_0}\right)$$

- Human hearing threshold: $p_0 = 20 \mu Pa$
- Sound pressure doubles → SPL increases by 6 dB
- Range: barely audible sounds (0 dB) → very loud sounds (120 dB)

Sound Intensity & Loudness

Loudness

- Loudness → Magnitude of auditory sensation
- Loudness level
 - Linear scale (sone) \rightarrow 1 sone = sinusoidal signal (1 kHz, 40 dB SPL)
 - Logarithmic scale (phon) \rightarrow 1 phon = sinusoidal signal (1 kHz, 50 dB SPL)
- Frequency dependent → Equal-loudness curves

Original ISO standard shown (blue) for 40-phons

Fig-A3-2

Outline

- Auditory Scene
- Sound Intensity & Loudness
- Frequency & Pitch & Chroma
- Timbre
 - Harmonics / Transients / Noise
 - Mel Frequency Cepstral Coefficients (MFCC)

- Frequency ranges
 - Audible frequencies (20 Hz $\leq f <$ 20 kHz)
 - Human voice, musical instruments, everyday sounds
 - Most animal vocalizations

- Frequency ranges
 - Infrasonic (f < 20 Hz)
 - Climate & seismic events
 - Perceivable by elephants & whales
 - Ultrasonic ($f \ge 20 \text{ kHz}$)
 - Medicine (sonography), navigation (radar)
 - Bioacoustic (e.g. bat echolocation)

Periodic Signals

- Sum of pure tones (partials)
 - Fundamental frequency f_0
 - Harmonic frequencies f_k ≈ $(k+1)f_0$

Own

Pitch

- Perceptual property (sort sounds from low to high pitch)
- Closely related to frequency
 - MIDI pitch p o Frequency (Hz): $f = 440 \cdot 2^{\frac{p-69}{12}}$

Pitch Intervals

- Depends on frequency ratio
- Example

Note	Pitch $oldsymbol{p}$	Frequency <i>f</i>	
A3	57	220 Hz	Octave intervals
A4	69	440 Hz	$f(A4) = 2 \cdot f(A3)$ $f(A5) = 2 \cdot f(A4)$
A5	81	880 Hz	$\int f(A5) = 2 \cdot f(A4)$

Pitch Intervals

- Consonant intervals
 - Shared partial frequencies

Chroma

- Human pitch perception is periodic
 - 2 pitches one octave apart are perceived as similar
 - Pitch = chroma + tone height (octave number)
- Chroma → C, C#, D, D#, ..., B (12)

Figure 3.3a from [Müller, FMP, Springer 2015]

Chromagram

- Chromagram → Energy per pitch-class over time
 - Similar to CQT (semi-tone resolution) without octaves

Outline

- Auditory Scene
- Sound Intensity & Loudness
- Frequency & Pitch & Chroma
- Timbre
 - Harmonics / Transients / Noise
 - Mel Frequency Cepstral Coefficients (MFCC)

- Multi-dimensional perceptual attribute
- Timbre = Difference between musical tones of same pitch & loudness

(Subjective) perceptual attributes

(Objective) sound characteristics

- Temporal / spectral envelope
- Tonal / noise-like components
- Partial (frequency) energies ...

Harmonics / Transients / Noise

- "Building blocks" of sounds
- Harmonics → horizontal lines in spectrogram (see "Pitch" section)
- Transients → vertical lines in spectrogram
 - High amplitude
 - Short duration
 - Wide-band energy distribution

Harmonics / Transients / Noise

Harmonics / Transients / Noise

- Noise
- Non-periodic, texture-like
- Random fluctuations of air pressure
- Examples
 - Consonants (speech)
 - Wind (random aerodynamic turbulences)
 - Waves (ocean)

Temporal Envelope

- Smooth curve outlining the signal extreme points
- ADSR envelope model (also used for audio synthesis)
 - Attack, Decay, Sustain, Release

Fig-A3-5

Mel-Frequency Cepstral Coefficients (MFCCs)

Compact representation of spectral envelope

Programming session

Fig-A2-13

References

Images

Fig-A3-1: Iain at English Wikipedia, "Ear-anatomy-text-small-en.svg," Website https://en.m.wikipedia.org/wiki/File:Ear-anatomy-text-small-en.svg, CC BY-SA 3.0 licence, 2013.

Fig-A3-2: By Lindosland at en.wikipedia - This drawing was created with LibreOffice Draw., Public Domain, https://commons.wikimedia.org/w/index.php?curid=16477782

Fig-A3-3: https://pressbooks.pub/app/uploads/sites/140/2022/07/Piano_to_F.jpg

Fig-A3-4: : M. Müller (2015): Fundamentals of Music Processing (FMP), Springer, 2015, Fig. 3.3a

Fig-A3-5: M. Müller (2015): Fundamentals of Music Processing (FMP), Springer, 2015, Fig. 1.22b & Fig. 1.23

References

Audio

Aud-A3-1: xserra, "piano-phrase.wav," Website https://freesound.org/people/xserra/sounds/196765/, CC BY 4.0 licence, 2013.

Aud-A3-2: IliasFlou, "bat house.wav,", Website https://freesound.org/people/IliasFlou/sounds/498058/, CC0 licence, 2019.

Aud-A3-3: Daniel Lucas, "Drum beat loop 3," Website https://freesound.org/people/danlucaz/sounds/517860/, CC0 1.0 licence, 2020.

Aud-A3-4: IENBA, "Seashore", Website https://freesound.org/people/IENBA/sounds/489398/, CCO licence, 2019.

