Texture and Glyphs

John Keyser

Goal For Last Week and This

- Understand display and perception
 - What the human visual system can perceive
 - In terms of color, patterns, etc.
 - Based on the structure of the eye and the processing within the brain
 - What is possible to display/see/understand
 - Can influence how we design visualizations
 - Today we will discuss texture and glyphs
- Much of the material drawn from Ware chapters 2-6.

Eye Motion

- Eye generally moves quickly between fixation points as you look at something
 - Motions are called saccades
 - 2-5 saccades per second (200-500ms per fixation point)
 - Fixation points can vary e.g. move left to right as you read
 - Typically about 2 degrees (e.g. reading) to 5 degrees (e.g. scanning a scene)
 - Keeping key display close limits motion time, which allows better viewing

Vision and Visual Search

- Eye will tend to move to "next" thing (typically in near periphery from fovea) to match some pattern.
- Early visual system tends to identify certain common visual features – directional contours, blobs of sizes, colors, etc.
- Cognitive processes seem to give higher "weight" to the thing being visually sought
 - Give more or less response to certain low-level features in how they affect higher level features
 - And can adapt to different types of scenes allow "getting used to" a particular visualization

Visual System

- Retina: Cones feed into Ganglion cells that form receptive fields
 - Concentric fields with on/off in center/surrounding
 - Also split color into Red-Green, Blue-Yellow, Black-White information
- Signals from optic nerve (about 2 million) arrive in Visual Area 1 (V1); V1 processes and sends to Visual Area 2 (V2)
 - V1 + V2: Billions of neurons, over 40% of visual processing

Visual System

- V1 and V2 process entire visual field in parallel
- They identify key local features of form
 - Orientation
 - Size
 - Color
 - Depth
 - Motion
- Channel theory states that these different low-level processing systems allow targeting of different visual "channels"
 - There are also auditory channels

Visual Channels

- 3 main channels, subdivided into smaller channels
 - Color
 - Luminance (also is key to the 2 other main channels)
 - Red-Green
 - Blue-Yellow
 - Form and Texture
 - Spatial Frequency
 - Orientation
 - Motion
 - Direction
 - Phase
- Information on different channels can be processed separately
 - Can concentrate on one or the other
 - But, info on same channel can be fused, but not really separated

Texture

- Form and texture: can perceive differences in spatial frequency and orientation
 - About 4 spatial frequency channels (i.e. the scale of a texture pattern)
 - Orientations need to vary by 30 degrees or more for low level processing
 - Higher level processing can resolve finer differences in orientation (as well as other channels)
 - Could allow different information to be transmitted even across differing textures, though they are not fully independent
- Note: receptive fields seem to follow a Gabor function, and there is significant work on how this perception allows detection of various features

Spatial Frequency

 Encode different information at different frequencies, or it won't be very visible

Glyph

- Ware: "a graphical object designed to represent some entity and convey one or numerical attributes of that entity"
- For maximum visibility, separate different glyphs from each other and from background
 - Frequency
 - Orientation
 - Color

Distinguishing Glyphs

Preattention

- Visual system processes certain signals at an earlier stage
 - Prior to concentration/cognition
 - Called preattentive
- Using these factors allows recognition of unique glyphs faster/easier
 - Picking out glyphs that meet a particular criterion vs. others (distractors)
- Stronger preattentive signals
 - Color, orientation, size, contrast, motion/blink

Preattentive (and not) signals

Asymmetry

- Even preattentive cues can vary in effectiveness based on other factors
 - e.g. color based on saturation
- Several factors are more effective if used to identify the points of interest
 - Adding features better than removing (e.g. underline key word rather than underline all but the key word)
 - Such asymmetry can be used for highlighting
- To highlight, use channel least used elsewhere in the visualization

Combining Signals

- Redundant coding (using more than one channel for same effect) makes things stand out more
 - e.g. use both shape and color
- Should not try to combine preattentive signals (conjunction search); it is hard to separate these
 - There are some exceptions, though

Combining Signals

 Finding red squares is harder than just red or just squares

Good Preattentive Conjunctions

- Spatial grouping with others including color
- Stereoscopic depth and color or movement
- Luminance polarity and shape
- Convexity and color
- Motion (with most others)

Separable and Integral Dimensions

- Channels that are separable are perceived as different; can encode two variables more easily
 - e.g. shape, color, and size
- Integral factors target the same channel and are difficult to distinguish
 - e.g. width and height both perceived just as shape
 - Not good to use these to code more information

Texture

- Texture is used to define regions of space
- Perceptually, we can segment space based on textures
- Textures can vary, but there are 3 main ways they can be characterized
 - Orientation
 - Scale (spatial frequency)
 - Contrast
- Best to vary textures in all three ways
- It's possible to distinguish 12-24 different textures

Texture Variation

 Textures should vary in spatial frequency and orientation

Texture Use

- Typically in a map environment, but occasionally on a more abstract 2D plane
- Textures can sometimes overlap
 - To show all areas where the texture applies
 - "Laciness" of texture: how well it can be seen through
- Textures have been used to encode continuous numerical data
 - Can vary element size, spacing, or orientation based on some data value
 - If ordinal values, don't use for more than 5 values

Using Texture to Encode Variable

Color is one variable, texture element size is the other

Use of Texture

- Some have tried to encode multiple values in texture
 - But, there are severe limitations and tradeoffs, including obscuring other channels
- Textures are limited in perceptual precision (e.g. comparing to a key of values) and placement boundary without contours
 - Need to have clear order of textures, and discrete steps if you want to match numeric values

Final-ish Words on Perception

- Perception is a neural process. Some of this is at a level below conscious attention.
 - It is helpful to understand this, in terms of what is possible to perceive
- Image processing by deep learning: networks tend to converge to similar operations to what has been known for human visual system
 - Lends support to the learned models, and vice-versa

Neural Processing

In the brain

From a deep learning neural net

Ware, p. 225, figure 6.56