

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07K 14/47		(11) International Publication Number: WO 99/57144																					
		(43) International Publication Date: 11 November 1999 (11.11.99)																					
<p>(21) International Application Number: PCT/US99/09935</p> <p>(22) International Filing Date: 4 May 1999 (04.05.99)</p> <p>(30) Priority Data:</p> <table> <tr> <td>60/084,254</td> <td>5 May 1998 (05.05.98)</td> <td>US</td> </tr> <tr> <td>60/095,827</td> <td>7 August 1998 (07.08.98)</td> <td>US</td> </tr> <tr> <td>60/102,745</td> <td>2 October 1998 (02.10.98)</td> <td>US</td> </tr> </table> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table> <tr> <td>US</td> <td>60/084,254 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>5 May 1998 (05.05.98)</td> </tr> <tr> <td>US</td> <td>60/095,827 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>7 August 1998 (07.08.98)</td> </tr> <tr> <td>US</td> <td>60/102,745 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>2 October 1998 (02.10.98)</td> </tr> </table> <p>(71) Applicant (<i>for all designated States except US</i>): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View,</p> <p>CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). GERSTIN, Edward, H. [US/US]; 1408 38th Avenue, San Francisco, CA 94122 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94547 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US).</p> <p>(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>			60/084,254	5 May 1998 (05.05.98)	US	60/095,827	7 August 1998 (07.08.98)	US	60/102,745	2 October 1998 (02.10.98)	US	US	60/084,254 (CIP)	Filed on	5 May 1998 (05.05.98)	US	60/095,827 (CIP)	Filed on	7 August 1998 (07.08.98)	US	60/102,745 (CIP)	Filed on	2 October 1998 (02.10.98)
60/084,254	5 May 1998 (05.05.98)	US																					
60/095,827	7 August 1998 (07.08.98)	US																					
60/102,745	2 October 1998 (02.10.98)	US																					
US	60/084,254 (CIP)																						
Filed on	5 May 1998 (05.05.98)																						
US	60/095,827 (CIP)																						
Filed on	7 August 1998 (07.08.98)																						
US	60/102,745 (CIP)																						
Filed on	2 October 1998 (02.10.98)																						
<p>(54) Title: HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES</p> <p>(57) Abstract</p> <p>The invention provides human transcriptional regulator molecules (HTRM) and polynucleotides which identify and encode HTRM. The invention also provides expression vectors, host cells, antibodies, agonists and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of HTRM.</p>																							

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES

5

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of human transcriptional regulator molecules and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and immune disorders.

10

BACKGROUND OF THE INVENTION

Differential control of gene expression is essential to the growth and development of all multicellular organisms. Although gene expression can be controlled at many steps along the path from DNA to protein, the major control point for most genes is at the initiation of transcription. This critical step is regulated both positively and negatively by a combination of general and tissue specific transcription factors, the majority of which function to regulate transcription of one or more target genes.

Mutations in transcription factors (TFs) contribute to oncogenesis. This is probably due to the role of transcription factors on the expression of genes involved in cell proliferation. For example, mutations in transcription factors encoded by proto-oncogenes, such as Fos, Jun, Myc, Rel, and Spi-1, may be oncogenic due to increased stimulation of cell proliferation. Conversely, mutations in transcription factors encoded by tumor suppressor genes, such as p53, Rb1, and Wt1, may be oncogenic due to decreased inhibition of cell proliferation. (Latchman, D. (1995) Gene Regulation: A Eukaryotic Perspective, Chapman and Hall, London, UK, pp 242-255.)

Many transcription factors are modular proteins that contain separate domains for DNA binding and transcriptional regulation. The DNA binding domain interacts with specific DNA sequences (control elements) near to or within the promoter region of the gene. This interaction brings the regulatory domain of the TF into a position where it can interact with other proteins to stimulate or repress transcription. Many TFs require dimerization or multimerization to be fully functional. Five different types of transcription factors have been described based on five well characterized structural motifs. These five types are the helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix (HLH) proteins and the steroid-hormone receptors.

The helix-turn-helix motif consists of two α helices held at a fixed angle. The two helices are connected by a short chain of amino acids, which represents the "turn". The more carboxyl-terminal helix is called the recognition helix and fits into the major groove of the DNA double helix. The recognition helix, whose amino acid side chains differ from protein to protein, plays an

important role in recognizing the specific DNA sequence to which the protein binds. All of the helix-turn-helix proteins bind DNA as dimers in which the two copies of the recognition helix are separated by exactly one turn of the DNA helix. Homeodomain proteins are a special class of helix-turn-helix protein. The homeodomain is folded into three α helices which are packed tightly together by hydrophobic interactions. Helices two and three closely resemble the helix-turn-helix motif, with the third helix acting as the recognition helix. Proteins containing homeodomain motifs often function as developmental switches.

5 The zinc finger motif consists of an α helix and antiparallel β sheet held together by a zinc atom. The zinc finger motif is usually repeated in a tandem array within a protein, such that the α 10 helix of each zinc finger in the protein makes contact with the major groove of the DNA double helix. This repeated contact between the protein and the DNA produces a strong and specific DNA-protein interaction. The strength and specificity of the interaction can be regulated by the number of zinc finger motifs within the protein.

15 The leucine zipper motif consists of a single α helix which is involved in both protein dimerization and DNA binding. Two proteins containing leucine zippers can dimerize by interactions between hydrophobic amino acid residues, commonly leucines, that extend from one side of their respective α helices. In this way, the α helices of each protein monomer dimerize to form a short coiled-coil. Just beyond this coiled-coil, the two α helices separate to form a Y-shaped structure which contacts the major groove of the DNA. Leucine zipper proteins may form 20 homodimers, in which the two protein monomers are identical, or heterodimers, in which the two protein monomers are different. The specificity of DNA binding depends on the dimer formed, since each protein monomer has distinct DNA-binding specificities.

25 The helix-loop-helix (HLH) motif consists of a short α helix connected by a loop to a second, longer α helix. The flexible loop allows the two helices to fold back and pack together. As with the leucine zipper, the HLH motif is involved in both protein dimerization and DNA-binding. The dimers can be homodimers or heterodimers, thus increasing the repertoire of DNA-binding sites to which HLH proteins can bind.

30 The steroid-hormone receptors contain a motif composed of two perpendicular α helices. In the absence of ligand the steroid-hormone receptors assume a conformation which sequesters the α helices. Binding of ligand, commonly steroid hormones, thyroid hormones, retinoids, or vitamin D, to the receptor causes a conformational change which exposes the α helices. The first α helix contains about seventy residues and includes eight conserved cysteines. This helix fits into the major groove of the DNA double helix and enables DNA-receptor binding. The second α helix provides for protein dimerization. As with leucine zipper and HLH proteins, both 35 homodimers and heterodimers may be formed by steroid-hormone receptors.

Hundreds of regulatory proteins from a wide variety of organisms have been identified. Most of these proteins have at least one of the common structural motifs described. However, several important regulatory proteins, including the p53 tumor suppressor, have a unique structure not shared with other known regulatory molecules. (Faisst, S. and S. Meyer (1992) *Nucl. Acids Res.* 20:3-26.) Moreover, other domains of the regulatory proteins often form crucial contacts with the DNA, thereby affecting binding specificity. Accessory proteins can also provide important interactions which may convert a particular regulatory protein from an activator to a repressor, from a repressor to an activator, or it may prevent DNA binding by the regulatory protein completely.

10 The discovery of new human transcriptional regulator molecules and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and immune disorders.

SUMMARY OF THE INVENTION

15 The invention features substantially purified polypeptides, human transcriptional regulator molecules, referred to collectively as "HTRM". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of

20 SEQ ID NO:1-65, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID

NO:1-65, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of

25 SEQ ID NO:1-65, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting

30 of

SEQ ID NO:1-65, and fragments thereof.

35 Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino

acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at 5 least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof.

10 The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one 15 aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

20 The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

25 The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

30 The invention also provides a method for treating or preventing a disorder of cell proliferation associated with decreased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof, in conjunction 35 with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder of cell proliferation associated with increased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-5 65, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble 10 full-length sequences encoding HTRM.

Table 2 shows features of each polypeptide sequence including potential motifs, homologous sequences, and methods and algorithms used for identification of HTRM.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, 15 and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HTRM were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTRM.

20

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the 25 purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an 30 antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described 35 herein can be used to practice or test the present invention, the preferred machines, materials and

methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of 5 prior invention.

DEFINITIONS

"HTRM" refers to the amino acid sequences of substantially purified HTRM obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic,

10 semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to HTRM, increases or prolongs the duration of the effect of HTRM. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTRM.

An "allelic variant" is an alternative form of the gene encoding HTRM. Allelic variants 15 may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination 20 with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HTRM include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTRM or a polypeptide with at least one functional characteristic of HTRM. Included within this definition are polymorphisms which may or may not be readily detectable using a particular 25 oligonucleotide probe of the polynucleotide encoding HTRM, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTRM. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTRM. Deliberate amino acid substitutions may be made 30 on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTRM is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, 35 and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and

phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HTRM which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HTRM. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to HTRM, decreases the amount or the duration of the effect of the biological or immunological activity of HTRM. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTRM.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTRM polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form

duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" 5 refers to the capability of the natural, recombinant, or synthetic HTRM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the 10 complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in 15 amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an 20 aqueous solution. Compositions comprising polynucleotide sequences encoding HTRM or fragments of HTRM may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, 25 dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the 30 GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTRM, by northern analysis is indicative of the presence of nucleic acids encoding HTRM in a sample, and 35 thereby correlates with expression of the transcript from the polynucleotide encoding HTRM.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for 5 example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

10 The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined 15 using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions 20 require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

25 The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) 30 Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A 35 and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid

sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) *Methods Enzymol.* 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying 5 hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid 10 sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid 15 sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₆t or R₆t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

20 The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by 25 expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

30 The term "modulate" refers to a change in the activity of HTRM. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTRM.

The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or 35 RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may

represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length 5 polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain 10 genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or 15 microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. 20 PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTRM, or fragments thereof, or HTRM itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic 25 DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the 30 presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt 35 concentration, the concentration of organic solvent, e.g., formamide, temperature, and other

conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are 5 removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

10 "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a 15 recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.

20 The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HTRM polypeptides refers to an amino acid sequence that is altered by one 25 or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted.

30 inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HTRM. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice 35 variant may have significant identity to a reference molecule, but will generally have a greater or

lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A 5 polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10 THE INVENTION

The invention is based on the discovery of new human transcriptional regulator molecules (HTRM), the polynucleotides encoding HTRM, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative and immune disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding 15 HTRM. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HTRM were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA 20 libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HTRM and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the 25 identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTRM. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HTRM as 30 a fraction of total tissue categories expressing HTRM. The third column lists the diseases, disorders, or conditions associated with those tissues expressing HTRM. The fourth column lists the vectors used to subclone the cDNA library.

The following fragments of the nucleotide sequences encoding HTRM are useful in hybridization or amplification technologies to identify SEQ ID NO:110-130 and to distinguish 35 between SEQ ID NO:110-130 and related polynucleotide sequences. The useful fragments are the

fragment of SEQ ID NO:110 from about nucleotide 273 to about nucleotide 317; the fragment of SEQ ID NO:111 from about nucleotide 217 to about nucleotide 261; the fragment of SEQ ID NO:112 from about nucleotide 273 to about nucleotide 308; the fragment of SEQ ID NO:113 from about nucleotide 163 to about nucleotide 207; the fragment of SEQ ID NO:114 from about 5 nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:115 from about nucleotide 597 to about nucleotide 641; the fragment of SEQ ID NO:116 from about nucleotide 111 to about nucleotide 146; the fragment of SEQ ID NO:117 from about nucleotide 217 to about nucleotide 261; the fragment of SEQ ID NO:118 from about nucleotide 867 to about nucleotide 911; the fragment of SEQ ID NO:119 from about nucleotide 1082 to about nucleotide 1126; the fragment 10 of SEQ ID NO:120 from about nucleotide 702 to about nucleotide 748; the fragment of SEQ ID NO:121 from about nucleotide 380 to about nucleotide 424; the fragment of SEQ ID NO:122 from about nucleotide 352 to about nucleotide 396; the fragment of SEQ ID NO:123 from about nucleotide 219 to about nucleotide 263; the fragment of SEQ ID NO:124 from about nucleotide 326 to about nucleotide 370; the fragment of SEQ ID NO:125 from about nucleotide 595 to about 15 nucleotide 639; the fragment of SEQ ID NO:126 from about nucleotide 272 to about nucleotide 316; the fragment of SEQ ID NO:127 from about nucleotide 163 to about nucleotide 207; the fragment of SEQ ID NO:128 from about nucleotide 271 to about nucleotide 315; the fragment of SEQ ID NO:129 from about nucleotide 866 to about nucleotide 910; and the fragment of SEQ ID NO:130 from about nucleotide 487 to about nucleotide 531.

20 The invention also encompasses HTRM variants. A preferred HTRM variant is one which has at least about 80%, more preferably at least about 90%. and most preferably at least about 95% amino acid sequence identity to the HTRM amino acid sequence, and which contains at least one functional or structural characteristic of HTRM.

25 The invention also encompasses polynucleotides which encode HTRM. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:66-130, which encodes HTRM.

The invention also encompasses a variant of a polynucleotide sequence encoding HTRM. In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the 30 polynucleotide sequence encoding HTRM. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID

NO:66-130 which has at least about 70%, more preferably at least about 85%. and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the 35 group consisting of SEQ ID NO:66-130. Any one of the polynucleotide variants described above

can encode an amino acid sequence which contains at least one functional or structural characteristic of HTRM.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTRM, some bearing minimal 5 similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTRM, and all such variations are to be 10 considered as being specifically disclosed.

Although nucleotide sequences which encode HTRM and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HTRM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTRM or its derivatives possessing a substantially different codon usage, 15 e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTRM and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more 20 desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HTRM and HTRM derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell 25 systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTRM or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:66-130 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. 30 and S.L. Berger (1987) *Methods Enzymol.* 152:399-407; Kimmel, A.R. (1987) *Methods Enzymol.* 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while 35 high stringency hybridization can be obtained in the presence of at least about 35% formamide.

and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion 5 of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a 10 most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash 15 stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of 20 at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

25 Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the 30 ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system 35 (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of

algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HTRM may be extended utilizing a partial

- 5 nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent
- 10 directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In
- 15 this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic
- 20 DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

- 25 When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

- 30 Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal
- 35 using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer),

and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof

- 5 which encode HTRM may be cloned in recombinant DNA molecules that direct expression of HTRM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTRM.

- 10 The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTRM-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example,
- 15 oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HTRM may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) *Nucl.*

- 20 *Acids Res. Symp. Ser.* 215-223, and Horn, T. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 225-232.) Alternatively, HTRM itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) *Science* 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of
- 25 HTRM, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) *Methods Enzymol.* 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by

- 30 sequencing. (See, e.g., Creighton, T. (1984) *Proteins, Structures and Molecular Properties*, WH Freeman, New York NY.)

In order to express a biologically active HTRM, the nucleotide sequences encoding HTRM or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted

- 35 coding sequence in a suitable host. These elements include regulatory sequences, such as

enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTRM. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTRM. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTRM and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTRM and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, J. et al. (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) *Current Protocols in Molecular Biology*, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTRM. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTRM. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTRM can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTRM into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these

vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of HTRM are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTRM 5 may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HTRM. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast *Saccharomyces cerevisiae* or *Pichia pastoris*. In addition, such vectors 10 direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) *Methods Enzymol.* 153:516-54; and Scorer, C. A. et al. (1994) *Bio/Technology* 12:181-184.)

Plant systems may also be used for expression of HTRM. Transcription of sequences 15 encoding HTRM may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.* 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) *Science* 224:838-843; and Winter, J. et al. (1991) *Results Probl. Cell 20 Differ.* 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HTRM may be ligated 25 into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HTRM in host cells. (See, e.g., Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci.* 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. 30 SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) *Nat Genet.* 35 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HTRM in cell lines is preferred. For example, sequences encoding HTRM can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) *Cell* 11:223-232; Lowy, I. et al. (1980) *Cell* 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides, neomycin and G-418; and *als* or *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) *Proc. Natl. Acad. Sci.* 77:3567-3570; Colbere-Garapin, F. et al. (1981) *J. Mol. Biol.* 150:1-14.) Additional selectable genes have been described, e.g., *tspB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) *Proc. Natl. Acad. Sci.* 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) *Methods Mol. Biol.* 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTRM is inserted within a marker gene sequence, transformed cells containing sequences encoding HTRM can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTRM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HTRM and that express HTRM may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR

amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HTRM using either 5 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTRM is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. 10 (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN. Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art 15 and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTRM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTRM, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are 20 commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, 25 fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HTRM may be cultured under 30 conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTRM may be designed to contain signal sequences which direct secretion of HTRM through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 35 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation.

phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from 5 the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTRM may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTRM protein 10 containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTRM activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6- 15 His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be 20 engineered to contain a proteolytic cleavage site located between the HTRM encoding sequence and the heterologous protein sequence, so that HTRM may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

25 In a further embodiment of the invention, synthesis of radiolabeled HTRM may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ^{35}S -methionine.

30 Fragments of HTRM may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis 35 may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HTRM may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTRM and human transcriptional regulator molecules. In addition, the expression of HTRM is closely associated with cell proliferation, inflammation, and the immune response. Therefore, HTRM appears to play a role in cell proliferative and immune disorders. In the treatment of disorders associated with increased HTRM expression or activity, it is desirable to decrease the expression or activity of HTRM. In the treatment of disorders associated with decreased HTRM expression or activity, it is desirable to increase the expression or activity of HTRM.

Therefore, in one embodiment, HTRM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing HTRM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HTRM in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those provided above.

5 In still another embodiment, an agonist which modulates the activity of HTRM may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those listed above.

In a further embodiment, an antagonist of HTRM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTRM. Examples of 10 such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HTRM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HTRM.

In an additional embodiment, a vector expressing the complement of the polynucleotide 15 encoding HTRM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTRM including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination 20 therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

25 An antagonist of HTRM may be produced using methods which are generally known in the art. In particular, purified HTRM may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTRM. Antibodies to HTRM may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, 30 and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTRM or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various 35 adjuvants may be used to increase immunological response. Such adjuvants include, but are not

limited to. Freund's. mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides. oil emulsions. KLH. and dinitrophenol.

Among adjuvants used in humans. BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

5 It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTRM have an amino acid sequence consisting of at least about 5 amino acids. and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of

10 HTRM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to HTRM may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-
15 hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate
20 antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTRM-specific single chain antibodies. Antibodies with related specificity, but of distinct
25 idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) *Proc. Natl. Acad. Sci.* 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci.* 86:
30 3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

Antibody fragments which contain specific binding sites for HTRM may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be
35 constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired

specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTRM and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTRM epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTRM. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of HTRM-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTRM epitopes, represents the average affinity, or avidity, of the antibodies for HTRM. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTRM epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the HTRM-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTRM, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HTRM-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available.

30 (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HTRM, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HTRM may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTRM. Thus, complementary molecules

or fragments may be used to modulate HTRM activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTRM.

- 5 Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTRM. (See, e.g., Sambrook, *supra*; Ausubel, 1995, *supra*.)
- 10 Genes encoding HTRM can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HTRM. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a
- 15 month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTRM. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. 20 (1994) in Huber, B.E. and B.I. Carr, *Molecular and Immunologic Approaches*, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the 30 ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTRM.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences:

- 35 GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20

ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

5 Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTRM. Such DNA sequences may be 10 incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' 15 ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by 20 endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers 25 may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) *Nature Biotechnology* 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

30 An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTRM, antibodies to HTRM, and mimetics, agonists, antagonists, or inhibitors of HTRM. The compositions may be administered alone or in combination with at least one other agent, such as a 35 stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical

carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, 5 intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used

10 pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

15 Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, 15 pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

20 Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, 25 mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, 25 agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for 30 product identification or to characterize the quantity of active compound, i.e., dosage.

35 Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty

oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain 5 substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the 10 suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a 15 manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the 20 corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an 25 appropriate container and labeled for treatment of an indicated condition. For administration of HTRM, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the 30 art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes 35 for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HTRM or fragments thereof, antibodies of HTRM, and agonists, antagonists or inhibitors of HTRM, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals.

5 such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The

10 dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of

15 the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance

20 rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their

25 inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HTRM may be used for the diagnosis of disorders characterized by expression of HTRM, or in assays to monitor patients

30 being treated with HTRM or agonists, antagonists, or inhibitors of HTRM. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTRM include methods which utilize the antibody and a label to detect HTRM in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter

35 molecule. A wide variety of reporter molecules, several of which are described above, are known

in the art and may be used.

A variety of protocols for measuring HTRM, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTRM expression. Normal or standard values for HTRM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HTRM under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HTRM expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HTRM may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HTRM may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTRM, and to monitor regulation of HTRM levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTRM or closely related molecules may be used to identify nucleic acid sequences which encode HTRM. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HTRM, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HTRM encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:66-130 or from genomic sequences including promoters, enhancers, and introns of the HTRM gene.

Means for producing specific hybridization probes for DNAs encoding HTRM include the cloning of polynucleotide sequences encoding HTRM or HTRM derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels.

such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HTRM may be used for the diagnosis of disorders associated with expression of HTRM. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis,

- 5 cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas.
- 10 parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes
- 15 mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma.
- 20 Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding HTRM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR
- 25 technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTRM expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HTRM may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The

- 30 nucleotide sequences encoding HTRM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide
- 35 sequences encoding HTRM in the sample indicates the presence of the associated disorder. Such

assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HTRM, a normal or standard profile for expression is established. This may be accomplished by 5 combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTRM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with 10 values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results 15 obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the 20 appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTRM may involve the use of PCR. These oligomers may be chemically synthesized, generated 25 enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTRM, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTRM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

30 Methods which may also be used to quantitate the expression of HTRM include radiolabeling or biotinyling nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format 35 where the oligomer of interest is presented in various dilutions and a spectrophotometric or

colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HTRM may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, *supra*, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HTRM on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been

crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal 5 location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HTRM, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of 10 binding complexes between HTRM and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTRM, or 15 fragments thereof, and washed. Bound HTRM is then detected by methods well known in the art. Purified HTRM can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which 20 neutralizing antibodies capable of binding HTRM specifically compete with a test compound for binding HTRM. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTRM.

In additional embodiments, the nucleotide sequences which encode HTRM may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely 25 on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of 30 the remainder of the disclosure in any way whatsoever.

The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/084,254 (filed May 5, 1998), 60/095,827 (filed August 7, 1998), and 60/102,745 (filed Oct. 2, 1998) are hereby incorporated by reference.

EXAMPLES

35 I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting 5 lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was 10 isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding 15 cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA 20 was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid 25 (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision, using the UNIZAP vector 30 system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water 35 and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) *Anal. Biochem.* 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified

5 fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in

10 combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready
15 reaction kit (Perkin-Elmer). In yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing
20 were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column
25 presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, S. San Francisco CA) and LASERGENE software (DNASTAR).

cDNAs were also compared to sequences in GenBank using a search algorithm developed
30 by Applied Biosystems and incorporated into the INHERIT™ 670 sequence analysis system. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of
35 homology to the query sequence, and the appropriate sequences were scored with an initial value.

Subsequently, these homologous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT- 670

5 sequence analysis system using the methods similar to those used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance matches.

10 The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on
15 BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against
20 databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, PFAM, and Prosite.

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:110-130. Fragments from about 20 to about 4000 nucleotides which are useful in
25 hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7;
30 Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any
35 particular match is categorized as exact or similar. The basis of the search is the product score,

which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported a percentage distribution of libraries in which the transcript encoding HTRM occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease categories included cancer, inflammation/trauma, fetal, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease expression are reported in Table 3.

V. Extension of HTRM Encoding Polynucleotides

The full length nucleic acid sequence of SEQ ID NO:66-130 was produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+

were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) 5 dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were 10 successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) 15 agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 20 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was 25 quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

30 In like manner, the nucleotide sequence of SEQ ID NO:66-130 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:66-130 are employed to screen cDNAs, 35 genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20

base pairs. is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

10 The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film

15 for several hours, hybridization patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using

20 thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the

25 scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the

30 present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) *Science* 270:467-470; Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The

35 substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HTRM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTRM. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTRM. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTRM-encoding transcript.

IX. Expression of HTRM

Expression and purification of HTRM is achieved using bacterial or virus-based expression systems. For expression of HTRM in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *mp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTRM upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HTRM in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTRM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.

Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HTRM is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTRM at specifically engineered sites. FLAG, an 8-amino acid

peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10 and 16). Purified HTRM obtained 5 by these methods can be used directly in the following activity assay.

X. Demonstration of HTRM Activity

HTRM activity is measured by its ability to stimulate transcription of a reporter gene, essentially as described in Liu, H.Y., et al (1997; EMBO J. 16:5289-5298.). The assay entails the use of a well characterized reporter gene construct, LexA_{op}-LacZ, that consists of LexA DNA 10 transcriptional control elements (LexA_{op}) fused to sequences encoding the *E. coli* β -galactosidase enzyme (LacZ). The methods for fusion gene construction, expression, and introduction into cells, and measurement of β -galactosidase enzyme activity, are well known to those skilled in the art. Sequences encoding HTRM are cloned into a plasmid that directs the synthesis of a fusion protein, LexA-HTRM, consisting of HTRM and a DNA binding domain derived from the LexA 15 transcription factor. The plasmid encoding the LexA-HTRM fusion protein is introduced into yeast cells along with the plasmid containing the LexA_{op}-LacZ reporter gene. The amount of β -galactosidase enzyme activity associated with LexA-HTRM transfected cells, relative to control cells, is proportional to the amount of transcription stimulated by the HTRM gene product.

20 XI. Functional Assays

HTRM function is assessed by expressing the sequences encoding HTRM at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 25 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression 30 of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP: Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify 35 transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA

content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) *Flow Cytometry*, Oxford, New York NY.

The influence of HTRM on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTRM and either CD64 or CD64-GFP. 10 CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTRM and other genes of interest can 15 be analyzed by northern analysis or microarray techniques.

XII. Production of HTRM Specific Antibodies

HTRM substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

20 Alternatively, the HTRM amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

25 Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for 30 antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HTRM Using Specific Antibodies

Naturally occurring or recombinant HTRM is substantially purified by immunoaffinity chromatography using antibodies specific for HTRM. An immunoaffinity column is constructed 35 by covalently coupling anti-HTRM antibody to an activated chromatographic resin, such as

CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HTRM are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTRM (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTRM binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTRM is collected.

XIV. Identification of Molecules Which Interact with HTRM

HTRM, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTRM, washed, and any wells with labeled HTRM complex are assayed. Data obtained using different concentrations of HTRM are used to calculate values for the number, affinity, and association of HTRM with the candidate molecules.

15 Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying 20 out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1 66	001106	U937NOT01		001106 (U937NOT01), 1291142 (BRAIN011), 2590425 (LUNGNOT22), 1300570 (BRSTNOT07)
2 67	004586	HMC1NOT01		004586 (HMC1NOT01), 3889843 (BRSTTUT16), 1432988 (BEPIN001), 788995 (PROSTTUT03), 1605475 (LUNGNOT15)
3 68	052927	FIBRNOT01		052927 (FIBRNOT01), 2518848 (BRAITUT21), 3520218 (LUNGNOT03), 086878 (LIVRNOT01)
4 69	082843	HUVESTB01		082843 (HUVESTB01), 4008105 (ENDCNOT04), 2083528 (UTRSNOT08), 2345764 (TESTTUT02), 3771780 (BRSTNOT25), 190782 (CONNTUT01), 2206259 (SPLNFET02), 2509193 (CONUTUT01)
5 70	322349	EOSIHE02		322349 (EOSIHE02), 3686018 (HEAN001), 1853592 (LUNGFET03), 815966 (OVARTUT01), 1505002 (BRAITUT07), 1511883 (LUNGNOT14), 2232826 (PROSN016)
6 71	397663	PITUNOT02		397663 (PITUNOT02), 491141 (HNT2AGT01), 3809879 (CONTTUT01) 3562349 (SKINNOT05), 1518113 (BLADTUT04), 3600151 (DRGNOT01), 2474103 (THPINOT03), 210504 (BRAITUT03), 2187330 (PROSNOT26), 1781572 (PGANNON02), 2056258 (BEPINOT01), 1888065 (BLADTUT07)
7 72	673766	CRBLNOT01		673766 (CRBLNOT01), 2494421 (ADRETUT05), 3267748 (BRAIN020) 2194042 (THRITUT03), 318645 (THYMN004), 1712236 (PROSNOT16) 1844092 (COLNNOT08), 1602283 (BLADNOT03), 0333357 (THPINOB01), 1995828 (BRSTTUT03), 1485594 (CORPNOT02)
8 73	1504753	BRAITUT07		1504753 (BRAITUT07), 633939 (NEUTGMT01), 2741379 (BRSTTUT14), 295961 (ADREN009), 3483904 (KIDNNOT31), 999401 (KIDNTUT01), 1965504 (BRSTNOT04), 588535 (UTRSNOT01)
9 74	1760185	PITUNOT03		1760085 (PITUNOT03), 1914471 (PROSTUT04), 816831 (PROSN007), 729798 (LUNGNOT03), 1290847 (BRAIN011), 1492387 (PROSN001), 1368472 (SCORN002)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
10	75	1805061	SINTNOT13	1805061 (SINTNOT13), 1435949 (BANCNOT08), 086122 (LIVRNTO1), 1482166 (CORPNOT02), 1835310 (BRAINNON01), 1333758 (COLNNOT13), 3521449 (LUNGNON03)
11	76	1850120	LUNGFT03	1850120 (LUNGFT03), 3126350 (LUNGTT12), 786916 (PROSNOT05) 2899740 (DRGCNOT01), 1259221 (MENITUT01), 1334740 (COLNNOT13), 24663350 (THYRNNOT08)
12	77	1852290	LUNGFT03	1852290 (LUNGFT03), 2901081 (DRGCNOT01), 1384842 (BRAITUT08), 1293541 (PGANNNOT03), 1964126 (BRSTNOT04)
13	78	1944530	PITUNOT01	1944530 (PITUNOT01), 2808142 and 2809196 (BLADTUT08), 2961779 (ADRENOT09)
14	79	2019742	CONNNOT01	2019742 (CONNNOT01), 2968014 (SCORNNOT04), 168472 (LIVRNTO1) 1875993 (LEUKNOT02), 1522480 (BLADTUT04), 1418496 (KIDNNNOT09), 149730 (FIBRNGT02)
15	80	2056042	BEPINOT01	2056042 (BEPINOT01), 3097391 (CERVNOT03), 1985203 (LUNGAST01) 1962619 (BRSTNOT04), 1335716 (COLNNOT13)
16	81	2398682	THP1AZT01	2398682 (THP1AZT01), 159706 (ADENINB01), 2443910 (THP1NOT03) 2382189 (ISLTNOT01), 2288661 (BRAINNON01), 1864422 (PROSNOT19)
17	82	2518753	BRAITUT21	2518753 (BRAITUT21), 4001219 (INT2AZS07), 2606361 (LUNGTT07) 449043 (TLYMNNOT02), SAE201390
18	83	2709055	PONSAZT01	2709055 (PONSAZT01), 2309703 (NGANNNOT01), 1661042 (URETTUT01), 2761284 (ESCGTUT02), 2469634 (THP1NOT03), SBLA03183, SBLA00549 SBLA00975
19	84	2724537	LUNGTT10	2724537 (LUNGTT10), 3869323 (BIMARNOT03), 952779 (SCORNNON01), 2049127 (LIVRFET02), 1824284 (GBLATUT01), 1870588 and 1869666 (SKINBIT01), 2626505 (PROSTUT12), SAE203404, SAE201744 SAE201672, SAE201045, SAPA04072, SAPA00149

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragment
20	85	025818	SPLNFET01	025818H1, 025818X12, and 025818X3 (SPLNFET01), 783259H1 (MYOMNOT01), 826162R1 (PROSNOT06)
21	86	438283	THYRNTO1	438283H1 and 438283X29 (THYRNTO1), SAGA01136F1, SAGA01671F1, SAGA02704F1, SAGA03722F1, SZZZ01038R1
22	87	619699	PGANNTO1	619699H1, 619699X11, and 619699X18 (PGANNTO1), 646198T6 (BRSTTUT02), 1322305X20F1 (BLADNOT04), 1724376F6 (PROSNOT14)
23	88	693452	SYNORAT03	118140R1 (MUSCNNOT01), 693452H1 and 693452R6 (SYNORAT03), 2455538F6 and 2455538H1 (ENDANOT01), 4500333H1 (BRAVUTXT02)
24	89	839651	PROSTUT05	729341X12 (LUNGNOT03), 839651CT1, 839651H1, and 839651X55 (PROSTUT05), 839651X60 (PROSTUT05)
25	90	1253545	LUNGFET03	125354H1 and 1254914F6 (LUNGFET03), 1806337X13F1 and 1807402X11F1 (SINTNOT13), 2179882X22F1 (DRGLNOT01), 2592938F6 (LUNGNOT22), 2840018F6
26	91	1425691	BEPINON01	2727135H1 (OVARTUT05), 587126X29R1, 588598X17, and 587126F1 (UTRSNOT01), 1714529F6 (UCMCNOT02), 1381341F6 (BRAUTUT08), 1273513F6 (TESTTUT02), 060265R1 (LUNGNOT01), 1459659F1 (COLNFET02), 043139R1 (TBLYNOT01), 1425691H1 (BEPINON01)

Table 1 cont.

protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
27	92	1484257	CORPNOT02	400685H1, 404702F1, 404702R6, 404702X45C1, 404702X47C1, and 404702X48C1 (TMLR3DT01), 1484257H1 (CORPNOT02), 3396312H1 (UTRSNOT16)
28	93	1732368	BRSTTUT08	920006H1 (RATRNOT02), 1732368F6 and 1732368H1 (BRSTTUT08), 2607269T6 (LUNGUT07), 2654363F6 (THYMNOT04)
29	94	1870914	SKINBIT01	1549551R6 (PROSNOT06), 1575349H1 (LNODNOT03), 1870914H1 (SKINBIT01), 2365851T6 (ADRENNOT07), SBKA00149F1
30	95	1910984	CONNUTU01	859876X12 (BRAITUT03), 1234976H1 and 1241845H1 (LUNGNOT03), 1910984F6 and 1910984H1 (CONNUTU01), 3276505H1 (PROSBPT06)
31	96	1943040	HIPONOT01	824144R1 (PROSNOT06), 930281H1 (CERVNOT01), 1420545H1 (KIDNNOT09), 1784405H1 (BRAINOT10), 1943040H1 and 1943040R6 (HIPONOT01), 2122271H1 (BRSTNOT07), 2729723H1 (OVARTU04)
32	97	2076520	ISLTNOT01	419755R1 (BRSTNOT01), 954937R1 (KIDNNOT05), 1460268H1 (COLNFT02), 1599016H1 (BLADNOT03), 2076520H1 (ISLTNOT01), 2082255F6 (UTRSNOT08), 2184150F6 (SININOT01), 2884394F6 (SINJNOT02), 3726575H1 (BRSTNOT23), 3752466H1 (UTRSNOT18), 3764971H1 (BRSTNOT24), 4412005H1 (MONOTXTO1)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
33	98	2291241	BRAINON01	2291241CT1 and 2291241H1 (BRAINON01), 2500586H1 (ADRETUT05)
34	99	2329692	COLNOT11	158014F1 (ADENINB01), 1519462F1 (BLADTUT04), 1543875R1 (PROSTUT04), 2329692H1, 2331530R6, and 2331530T6 (COLNOT11), 2478291F6 (SMCANOT01)
35	100	2474110	THP1NOT03	863265H1 (BRAITUT03), 1313444F1 (BLADTUT02), 1872631T6 and 1872869F6 (LEUKNOT02), 2061219R6 (OVARNOT03), 2171863H1 (ENDCNOT03), 2474110H1 (THP1NOT03), 2690250H1 (LUNGNOT23), 2812791F6 (OVARNOT10)
36	101	2495790	ADRETUT05	1360349T1 (LUNGNOT12), 1689792H1 (PROSTUT10), 1795321H1 (PROSTUT05), 1905521F6 (OVARNOT07), 1907168F6 (OVARNOT07), 2495790H1 (ADRETUT05), 2587542F6 (BRAITUT22)
37	102	2661254	ADRENOT08	1241850H1 (LUNGNOT03), 1545867R1 (PROSTUT04), 2325561H1 (OVARNOT02), 2661254H1 (ADRENOT08), 2751457H1 (THP1AZS08)
38	103	2674047	KIDNNOT19	489330H1 (HNT2AGT01), 2059316R6 (OVARNOT03), 2059316T6 (OVARNOT03), 2674047F6 and 2674047H1 (KIDNNOT19), 2805474H1 (BLADTUT08), 3076605H1 (BONEUNT01), 3080137T6 (BRAIUNT01)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
39	104	2762174	BRAINOS12	2573448T3 (HIPOA2TC01), 2762174H1 (BRAINOS12), SBNA00508F1, SBNA01683F1, SBNA00674F1, SBNA00857F1
40	105	2765991	BRSTNOT12	082008R6 (HUVESTB01), 2127491T6 (KIDNNNOT05), 2765991F6 and 2765991H1 (BRSTNOT12), 3147681H1 (PENCNOT05), SZAHO1537F1, SZAHO1356F1
41	106	2775157	PANCNOT15	2325410H1 (OVARNOT02), 2506671F6 and 2506671T6 (CONUTUT01), 2775157F6 and 2775157H1 (PANCNOT15), 3376091F6 (PENGNOT01), 3412063H1 (BRSTTUS08)
42	107	2918375	THYMFET03	227782F1 (PANCNOT01), 1225559H1 (COLNTUT02), 1511458T1 (LUNGNOT14), 2918375H1 (THYMFET03)
43	108	3149729	ADRENON04	605315F1 (BRSTTUT01), 3149729CT1 and 3149729H1 (ADRENON04)
44	109	3705895	PENCNOT07	744201R1 (BRAITUT01), 2550322H1 (LUNGUT06), 3705895H1 (PENCNOT07)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
45	110	003256	HMC1NOT01	003256H1, 003256R6, 003256T6, 003256X305F1, 003256X313F, 003256X315F1, and 009404H1 (HMC1NOT01), 43104R1 (TBLYNOT01), 413017F1 (BRSTNOT01)
46	111	156986	THP1PLB02	010084F1 and 012909H1 (THP1PLB01), 156986H1 and 156986R1 (THP1PLB02), 1320255F1 (BLADNOT04), 1512255F1 (LUNGNOT14), 2061923T6 (OVARNOT03), 2398787F6 (THP1AZT01), 2517160H2 (LIVRTUT04)
47	112	319415	EOSIHET02	285773H1, 285773R1, 319415H1, and 319415X19F1 (EOSIHT02), 1231455H1 (BRAITUT01), 1804042F6 (SINTNOT13), 1878858F6 (LEUKNOT02), 635581H1 (NEUTGM01)
48	113	635581	NEUTGM01	635581H1 (NEUTGM01), 3045776F6 (HEAANOT01)
49	114	921803	RATRNNOT02	921803H1 (RATRNNOT02), 1275128T6 (TESTTUT02), 1709959F6 (PROSNOT16), 2416547F6 (HNT3AZT01), 3016146H1 (MUSCNOT07), 3577260H1 (BRONNOT01)
50	115	1250492	LUNGFFET03	691921X14F1 (LUNGUT02), 1250492F6, 1250492H1, and 1252226F2 (LUNGFFET03), 1361644F6 (LUNGNOT12), 3049358F6 (LUNGNOT25), 4044523H1 and 4048275H1 (LUNGNOT35), 4145295H1 (SINITUT04)
51	116	1427838	SINTBS101	1261181H1 (SYNORAT05), 1427838H1 and 1427838T1 (SINTBS101), 1733769T6 (BRSTTUT08), 2551854H1 (LUNGUT06)
52	117	1448258	PLACNOT02	1448258H1 and 1448258R1 (PLACNOT02), 1484126F1 (CORPNOT02), 1856631F6 and 1856631X11F1 (PROSNOT18), 2690070F6 (LUNGNOT23), SAMA00131F1 and SAMA00146F1

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
53	118	1645941	PROSTUT09	831680R6 (PROSTUT04), 1645941F6 and 1645941H1 (PROSTUT09), 1748682F6 (STOMTUT02), 1870831F6 (SKINBIT01), 1877907F6 (LEUKNOT03), 2310427R6 (NGANNNOT01)
54	119	1646005	PROSTUT09	1646005H1, 1646005X3109F1, 1646005X312F1 and 1646883F6 (PROSTUT09), SZAHO2276F1
55	120	1686561	PROSNOT15	1234124H1 (LUNGFEET03), 1299156F6 (BRSTNOT07), 1425185R1 (BEPINON01), 1544751T1 (PROSTUT04), 1686561H1 (PROSNOT15), 2723108H1 (LUNGUT10), 2752156H1 (THP1AZS08), 3335850F6 (BRAIFET01), 3502259H1 (ADRENOT11), 3857461H1 (LNODNOT03), 5069547H1 (PANCNOT23)
56	121	1821233	GBLATUT01	030744H1 (THP1INOB01), 1272043F1 (TESTTUT02), 1419549F1 (KIDNNOT09), 1433773R1 (BEPINON01), 1482848F1 (CORPNOT02), 1821233H1 (GBLATUT01), 1869022H1 (SKINBIT01)
57	122	1877278	LEUKNOT03	1871148F6 (SKINBIT01), 1877278H1 (LEUKNOT03), 2097362T6 (BRAITUT02), 3124246T6 (LNODNOT05), 3450007R6 (UTRSNON03), 4894340H1 (LIVRTUT12), SAEB02108R1
58	123	1880692	LEUKNOT03	1880692H1 (LEUKNOT03), SBAA00446F1, SARA03727F1

Table I cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
59	124	2280456	PROSNON01	1557906F6 (BLADTUT04), 2280456H1 (PROSNON01), 2799446F6 (NPOLNOT01), 3519009H1 (LJUNGNON03)
60	125	2284580	BRAINNON01	783560H1 (MYOMNON01), 1215190T2 (BRSTTUT01), 1458188F1 (COLNFET02), 2284580H1 (BRAINNON01), 2398366F6 (THPPAZT01), 2469268H1 (THP1NOT03)
61	126	2779172	OVARTUT03	487548H1 and 487548R6 (HNT2AGT01), 1421684F1 (KIDNNNOT09), 2172754F6 (ENDCNNOT03), 2672062F6 (ESOGTUT02), 2779172F6 and 2779172H1 (OVARRUT03), 2955502F6 (THYMFET02), 3206879F6 (PENCNOT03)
62	127	3279329	STOMFET02	885282R6 and 885282T1 (PANCNOT05), 901139R1 (BRSTTUT03), 1655530F6 (PROSTUT08), 1818669T6 (PROSNOT20), 2380664F6 (ISLTNOT01), 2921229H1 (SININOT04), 3279329H1 (STOMFET02), 3451425R6 (UTRSNON03)
63	128	3340290	SPLNNNOT10	102935H1 (ADRENOR01), 1363193F6 (LUNGNOT12), 1674514H1 (BLADNOT05), 2271374H1 (PROSNON01), 2827770H1 (TLYMNNOT03), 3340290H1 (SPLNNNOT10), 4556330H1 (KERAUNT01)
64	129	3376404	PENGNOT01	3376404H1, 3376404X300U1, 3376404X310U1, and 3376404X323U1 (PENGNOT01), 3741323X302B1 (MENTNOT01)
65	130	4173111	SINTNOT21	1337315F6 (COLNNNOT13), 2486184F6 (CONUTUT01), 4173111H1 (SINTNOT21), 4750042H1 (SMCRUNT01)

Table 2

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
1 155	S9, S16, T25, S37, S56, S57, S81, S114, T152			G38-I73	Sigma-54 interaction protein	BLOCKS
2 152	S6, T83, S103, T121, S136			H99-R112	LUPUS La protein	PRINTS
3 304	S30, S61, S94, T109, S132, S133, T183, T236, S277, S289	N65, N294	C228-C268 C231-I255		zinc finger/RING finger protein	PFAM, BLOCKS
4 178	T8, S48, S102, Y121, T144			N18-P32	histone H3 protein	PRINTS
5 301	T58, T70, T85, S148, T165, S256, T272, S281	N191	K21-F38		filaggrin structural protein	PRINTS
6 250	S99, S126, S142, S155, T182			F203-V214	maspin/breast tumor suppressor protein	PRINTS
7 371	T25, S46, S96, T123, S128, T144, S163, S167, S205, S221, T350	N203, N222, N307, N348	EQ165-Y185 K152-L192		luman/leucine zipper/CRE protein	BLAST, BLOCKS, PRINTS

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
8	148	T35, S41, S92, S105	N144		TSC-22 transcription factor	BLAST
9	127	T69	N53	M1-E16	Ribosomal protein S6	PFAM
10	383	S22, T34, S53, S140, T155, T183, S225, T263, S273, S300, S308, T369, S375	N127	Q7-K112	PH-domain protein	PFAM
11	254	T57, S62, S92, S143, S148, T166, T176, S180, T187, S191, S194, T221			cyclin-dependent-k inase binding protein	BLAST
12	305	S65, T88, S146, S230, S248, S272	N221	G84-N271	ribosomal protein L2	PFAM, BLOCKS
13	230	T34, T49, S54, S122, T123, T150, S182, T209	N86, N130, N199	C155-C191	zinc finger/RING finger protein	PFAM, BLOCKS, MOTIFS
14	292	S2, T61, T89, T193, S223, S224, S225, S238, S288	N47, N101, N166, N259	A124-I145	FOS transforming protein	PRINTS

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
15 232	T58, S72, S127, S149, T154, S191, S199, T203, T204	N56, N183, N187	E39-F73	tropomyosin	BLOCKS PRINTS	
16 376	T5, T34, S53, T70, S81, T86, S105, S256, T287, T288, T310, S331, S364, S369, T365		Q97-C135	RecA DNA repair protein	BLOCKS BLAST	
17 204	T100, T118, T157, S187, S199		L179-H200	annexin	PRINTS	
18 713	S46, T64, T71, T95, S96, T129, T171, S260, S286, T345, S438, S485, T527, T541, Y567, Y593, S644, T656	N110, N453, N460, N595	L563-L576 L583-1596	RSP-1 /Ras-signaling protein	BLAST, PRINTS	
19 360	S22, T51, S69, T106, S133, S206, T232, S248			Nucleolar protein Surf-6	BLAST	
20 196	S38 S69 T23 T30 S73 S183 S37 T84	N9 N51	E76-L91 R35-K58	Helix-loop-helix protein HES-1	MOTIFS BLOCKS BLAST	

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
21	540	T136 S34 S69 S189 T322 S411 T7 S66 S75 T139 S193 S197 S205 T285 S324 S328 S380 S425	N240 N443	C230-H252, C260-H280, C288-H309, C316-H336, C344-H364, C372-H392, C400-H420, C428-H448, C456-H476, C484-H504, C512-H532	zinc finger protein	MOTIFS BLAST PRINTS
22	549	S123 S22 S182 T319 T465 S161 T205 S208 S332 S392 S459 S534	N167 N335 N422	C214-H234, C242-H262, C270-H290, C298-H318, C326-H346, C354-H374, C382-H402, C410-H430, C438-H458, C466-H486, C494-H514, C522-H542	zinc finger protein ZNF43	MOTIFS BLAST PRINTS
23	361	S244 T254 S8 S58 S180 S193 T269 T283 S284 T26 S45 S174 T254 S314		C139-L163 C227-K263	DNA binding protein	BLOCKS BLAST
24	241	S82 S62 S119 T147 Y111		C52-H75, C83-H105, C113-H133, C141-H161, C172-H193	zinc finger protein PZF	MOTIFS PRINTS BLAST

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature sequence	Identification	Analytical Methods	
25	576	S90 T371 S56 T183 T195 S203 S316 T318 S347 S354 S432 S548 S37 S82 S281 T325 S343 S409 S414 S447 S466 T481 S502 S570 Y123	N42 N312 N339 N498	C507-L543, L168- L189, E262-R278	transcription factor	MOTIFS PRINTS BLOCKS BLAST	
26	408	S74 S197 T226 S247 T289 S328 S338 S353 S386 S394 T14 S199 S234 T388	N245 N253	G164-R175	transcription factor	PRINTS BLAST	
27	810	S392 S113 S155 S185 S225 S262 S283 T298 S342 S413 T449 T665 T695 S728 T756 T801 T79 T190 S377 T438 Y397		C315-H335, C343- H363, C371-H391, C399-H419, C427- H447, C455-H475, C483-H503, C511- H531, C539-H559, C567-H587, C595- H615, C623-H644, C726-H747	zinc finger protein Miz-1	MOTIFS PRINTS BLOCKS	
28	324	S72 T189 S209 T223 S279 S302 S156 T182 S316 Y277	N187	C74-R85	Hormone-binding transcription factor protein	PRINTS BLAST	
29	292	S242 T41 S136 S137 T176 T200 S205 S284 T52 S61	N229	G62-S69	putative nucleotide-binding protein	MOTIFS PRINTS BLAST	

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
30	259	T79 S99 S180 T20 S152 S241		C71-H92, C43-C71	zinc finger protein	MOTIFS BLOCKS BLAST
31	97	S52		C15-L43	DNA-binding protein	MOTIFS BLOCKS BLAST
32	812	T239 T16 S55 T56 T104 S126 S127 T156 S176 T249 S268 T269 S330 T394 S450 T484 S583 S652 S658 S795 S33 S235 T314 S343 T730 S804	N45 N93 N165 N805	E418-S450	cell cycle protein	BLOCKS BLAST
33	392	T22 S30 T43 S55 S108 T140 S156 S318 T320 S343 S120 S270 S311	N277		TRAF family member-associatd NF-kB activator TANK	BLAST
34	60	T49 T30 S50		I2-S55	DNA-binding protein	BLOCKS BLAST
35	209	S21 S57 T93	N67	F160-N179 S151-G185	cellular nucleic acid binding protein	PRINTS BLOCKS BLAST
36	257	T178 S187 S230 T249	N65	Y33-F44 S187-L205	cell-cycle control protein Hst2p	PRINTS BLOCKS BLAST

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
37	138	T106 T13 S27 S46		E108-Q124	nucleic acid-binding protein	BLOCKS BLAST
38	999	T54 S634 S89 S126 S335 S414 S442 S451 T512 T762 T792 T858 S890 T97 T994 T205 S233 T274 T491 S525 S534 T57 T600 S610 S615 S634 S677 T951 S961 Y152 Y458 Y686 Y815	N43 N532 N672 N749 N818 N943	L574-L595 L647-L668	DNA-binding protein	MOTIFS BLAST
39	377	T142 T254 T48 T138 S292 S71 S74 S108 S114 T138 S222 S250 T332 T364		C130-H150, C158-H178, C186-H206, C214-H234, C242-H262, C270-H290, C296-H316, C324-H344, C352-H372	zinc finger protein ZNF132	MOTIFS PRINTS BLOCKS BLAST
40	324	S28 S214 S16 S81 S114 T225 T33 S44 T66 S203 S209 T229	N47	R26-S37 S77-L115	transcription regulatory protein IRLB	PRINTS BLOCKS BLAST
41	270	S16 T123 T141 T199 S9 S52 S90 T128 T175 S194 S214	N22 N109 N192	V218-L242 P250-Q263	MOTIFS BLOCKS PRINTS	

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
42	252	T20 S48 S89 S101 T127 S218 T121 S126 T152	N33 N46 N216 N230	Y9-L18, S68-F88, D159-S168	cell-cycle control protein	PRINTS BLAST
43	228	T50 T107 T2 S42 S201 T31 S51 T52 T103 T107 T134 T143 T206 S210 T215	N132 N141 N165 N197	A38-S51, Q65- P100, S59-K89	Transcriptional Repressor Protein	PRINTS BLOCKS BLAST
44	117	T93 T11		A86-E104	CCAAT-Binding Transcription factor	PRINTS BLAST
45	252	S83 T2 S57 T159 S250 Y102	N197	M1-S29 A85-K123	Ribosomal protein	BLOCKS MOTIFS
46	530	T177 S234 S461 S519 T24 'r238	N217 N227	TM Domains: Y142-A167 Y242-L262 L306-F325 L332-L351 S379-F399 L470-F489	melibiose carrier protein	BLAST MOTIFS HMM

Table 2 cont.

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
47	355	S7 S21 T127 S213 T279 S134 T276 S315 S331 S334 Y193 Y300	N37 N192 N263 N268 N337	I42-E69 W160-E187 G171-G200 N234-I256	Myelin P0 Protein	BLOCKS, PRINTS MOTIFS, HMM
48	136	T109 S130 T5 T69			geminin	BLAST, MOTIFS
49	235	T138 T142 S180 S230 S111 S120 S137 T224	N140 N198	ATP/GTP binding: G9-T16	PTB-associated splicing factor	BLAST MOTIFS
50	70	T2 S64			ninjurin	BLAST MOTIFS
51	169	T128 T26 S96			B locus M Beta chain 1	BLAST, MOTIFS
52	359	S55 S78 T161 S245 T292 T350 T57 T130 T289	N105	E205-S242 E271-V294	ribosomal protein S6 kinase 2	BLOCKS, PRINTS PFAM
53	545	S235 T317 S47 S73 S114 S146 S184 S236 S241 S394 S538 S2 T84 S109 S124 T230 S231 S266 S340 T360 S379 S525	N45 N139 N431 N478 N511	K88-I106 A333-K362	ribosomal protein	MOTIFS BLOCKS PRINTS

Table 2 cont.

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
54	99	T90 T43 T76			ORF E4	BLAST, MOTIFS
55	565	S27 S56 S132 T152 T197 S319 T411 T429 S475 T66 S156 S303 T390 S463 Y549	N2 N55 N165		Sec1 precursor	BLAST, MOTIFS
56	197	S65 T23 S102 S19 T60 T61 S136 S147	N20		Regulatory protein	BLAST, MOTIFS
57	321	S91 S119 T139 S283 S147 T300 Y238	N103 N194		putative ras effector Nore1	BLAST, MOTIFS
58	356	T45 S85 S93 S95 T103 S114 T142 S168 T317 S340 S49 S58 T236 S258 S314 Y12 Y296	N91 N312		weak similarity to S. cerevisiae intracellular transport protein	BLAST MOTIFS
59	299	S273 T81 S116 S120 T122 S146 S86 S151 T210 S225 T268			PI3 Kinase P85 Regulator	MOTIFS, PRINTS
60	293	T34 S218 S247 S290 S291 T240 S79 S145 T156 T199 S204 S283	N152 V47-V71 K86-F93		RNA-binding protein	BLAST, MOTIFS BLOCKS, PFAM

Table 2 cont.

Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
61	777	S81 S128 S141 T230 S315 S342 S352 T519 S564 S576 S684 T699 T758 T205 S213 S236 S294 S397 T417 S470 S515 T560 S640 T746	N228 N281 N319 N453 N481 N636 N682		Zinc finger Helicase	BLAST, MOTIFS
62	97	T83		C20-C28	ferredoxin	MOTIFS
63	308	S15 S81 T97 T102 S103 S135 S200 S238 S28 S131 T154 S171 S186 Y232	N58 N78 N95 N198 N236		ubiquitin- conjugating enzyme	BLAST, MOTIFS
64	290	S121 S165 S167 S248 S17 T188 T207 Y86 Y203	N55 N79	M1-A22 C60-C76 C225-C235 W249-I272	prostasin	BLAST, MOTIFS, BLO CKS, PRINTS PFAM, HMM
65	198	S7 S9 S56 T115 T34 T86	N183		transcriptional regulator	BLAST MOTIFS

TABLE 3

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
66	Nervous (0.256) Reproductive (0.209)	Cancer (0.442), Inflammation (0.279), Proliferative/Fetal (12%)	pBlueScript
67	Reproductive (0.274) Cardiovascular (0.194)	Cancer (0.484), Inflammation (0.145), Proliferative/Fetal (0.194)	pBlueScript
68	Reproductive (0.231) Cardiovascular (0.205)	Cancer (0.385), Inflammation (0.231), Proliferative/Fetal (0.205)	pBlueScript
69	Reproductive (0.215) Hematopoietic/Immune (0.190)	Cancer (0.397), Inflammation (0.314), Proliferative/Fetal (0.215)	pBlueScript
70	Reproductive (0.367) Cardiovascular (0.122)	Cancer (0.489), Inflammation (0.233), Proliferative/Fetal (0.189)	pBlueScript
71	Reproductive (0.292) Nervous (0.142)	Cancer (0.469), Inflammation (0.257), Proliferative/Fetal (0.177)	pSPORT1
72	Reproductive (0.261) Nervous (0.157)	Cancer (0.493), Inflammation (0.194), Trauma (0.142)	pSPORT1
73	Reproductive (0.343) Hematopoietic/Immune (0.200)	Cancer (0.457), Inflammation (0.257), Trauma (0.229)	pINCY
74	Reproductive (0.320) Nervous (0.160)	Cancer (0.507), Inflammation (0.187), Proliferative/Fetal (0.133)	pSPORT1
75	Gastrointestinal (0.300) Nervous (0.250)	Cancer (0.400), Inflammation (0.300)	pINCY
76	Reproductive (0.262) Nervous (0.180)	Cancer (0.443), Inflammation (0.262), Proliferative/Fetal (0.230)	pINCY
77	Reproductive (0.283) Nervous (0.151)	Cancer (0.509), Inflammation (0.208), Trauma (0.132)	pINCY

TABLE 3 cont.

Nucleotide Seq ID No:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
78	Cardiovascular (0.300) Nervous (0.200)	Cancer (0.450), Inflammation (0.200)	pBluescript
79	Reproductive (0.270) Cardiovascular (0.150)	Cancer (0.440), Inflammation (0.180), Proliferative/Fetal (0.150)	PINCY
80	Reproductive (0.271) Cardiovascular (0.153)	Cancer (0.506), Inflammation (0.176), Proliferative/Fetal (0.188)	pSPORT1
81	Hematopoietic/Immune (0.312) Reproductive (0.219)	Cancer (0.344), Inflammation (0.344), Proliferative/Fetal (0.281)	PINCY
82	Nervous (0.250)	Cancer (0.500), Inflammation (0.438), Proliferative/Fetal (0.188)	PINCY
83	Hematopoietic/Immune (0.188) Reproductive (0.276)	Cancer (0.552), Inflammation (0.310)	PINCY
84	Reproductive (0.309) Nervous (0.144)	Cancer (0.526), Inflammation (0.247), Proliferative/Fetal (0.134)	PINCY
85	Reproductive (0.315) Nervous (0.152) Cardiovascular (0.130)	Cancer (0.522) Fetal (0.174) Inflammation (0.141)	pBLUESCRIPT
86	Reproductive (0.545) Hematopoietic/Immune (0.182) Gastrointestinal (0.182)	Cancer (0.636) Fetal (0.273) Inflammation (0.182)	pBLUESCRIPT
87	Reproductive (0.218) Nervous (0.200) Hematopoietic/Immune (0.200)	Cancer (0.509) Inflammation (0.236) Fetal (0.164)	pSPORT1
88	Nervous (0.296) Reproductive (0.185) Hematopoietic/Immune (0.148)	Cancer (0.407) Fetal (0.259) Inflammation (0.222)	pSPORT1

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
89	Reproductive (0.339) Nervous (0.161)	Cancer (0.613) Fetal (0.145)	pSPORT1
	Gastrointestinal (0.145)	Inflammation (0.129)	
	Cardiovascular (0.145)		
90	Cardiovascular (0.278)	Cancer (0.519) Inflammation (0.204)	PINCY
	Gastrointestinal (0.204)	Fetal (0.148)	
91	Reproductive (0.228) Nervous (0.149)	Cancer (0.411) Inflammation (0.343)	pT7T3
	Gastrointestinal (0.146)	Fetal (0.240)	
92	Reproductive (0.240)	Cancer (0.460) Inflammation (0.260)	PINCY
	Hematopoietic/Immune (0.160)	Fetal (0.180)	
93	Reproductive (0.333) Cardiovascular (0.200) Hematopoietic/Immune (0.133)	Inflammation (0.533) Cancer (0.400)	PINCY
	Gastrointestinal (0.230)	Fetal (0.133)	
94	Reproductive (0.164) Cardiovascular (0.115)	Cancer (0.443) Inflammation (0.442)	PINCY
	Hematopoietic/Immune (0.115)	Fetal (0.197)	
95	Reproductive (0.333) Cardiovascular (0.167)	Inflammation (0.750) Cancer (0.250)	PINCY
	Gastrointestinal (0.167)		
96	Reproductive (0.369) Nervous (0.215)	Cancer (0.508) Inflammation (0.231)	pBLUESCRIPT
	Hematopoietic/Immune (0.108)	Fetal (0.108)	
97	Reproductive (0.321) Gastrointestinal (0.108)	Inflammation (0.411) Cancer (0.393)	PINCY
	(0.179) Hematopoietic/Immune (0.161)	Fetal (0.161)	
98	Reproductive (0.205) Nervous (0.192)	Cancer (0.452) Inflammation (0.342)	pSPORT1
	Cardiovascular (0.164)	Fetal (0.178)	

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
99	Gastrointestinal (0.423) Reproductive (0.115)	Cancer (0.385) Fetal (0.173)	pSPORT1
100	Reproductive (0.281) Hematopoietic/Immune (0.234) Nervous (0.141)	Cancer (0.375) Fetal (0.312)	pINCY
101	Reproductive (0.294) Gastrointestinal (0.118)	Cancer (0.529) Fetal (0.255)	pINCY
102	Reproductive (0.217) Nervous (0.196) Cardiovascular (0.141)	Cancer (0.435) Fetal (0.152)	pINCY
103	Reproductive (0.263) Hematopoietic/Immune (0.158) Musculoskeletal (0.158)	Cancer (0.526) Fetal (0.158)	pINCY
104	Nervous (0.400) Reproductive (0.300)	Cancer (0.400) Fetal (0.300)	pSPORT1
105	Reproductive (0.375) Cardiovascular (0.125) Urologic (0.125)	Cancer (0.500) Fetal (0.208)	pINCY
106	Gastrointestinal (0.400) Reproductive (0.400) Developmental (0.100) Hematopoietic/Immune (0.100)	Cancer (0.600) Fetal (0.200)	pINCY
107	Reproductive (0.278) Gastrointestinal (0.152) Nervous (0.139)	Cancer (0.418) Fetal (0.165)	>pINCY
108	Reproductive (0.364) Hematopoietic/Immune (0.182) Nervous (0.167)	Inflammation (0.409) Fetal (0.136)	pSPORT1

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
109	Nervous (0.227) Reproductive (0.205) Cardiovascular (0.136) Urologic (0.136) Gastrointestinal (0.136)	Cancer (0.568) Inflammation (0.182) Fetal (0.136)	pINCY
110	Hematopoietic/Immune (0.400) Urologic (0.400) Reproductive (0.200)	Cell proliferation (0.800) Inflammation (0.800)	pBluescript
111	Gastrointestinal (0.213) Hematopoietic/Immune (0.191) Nervous (0.191)	Cell proliferation (0.744) Inflammation (0.489)	pBluescript
112	Hematopoietic/Immune (0.405) Gastrointestinal (0.167) Cardiovascular (0.119)	Inflammation (0.619) Cell proliferation (0.381)	pBluescript
113	Hematopoietic/Immune (0.667) Cardiovascular (0.333)	Inflammation (1.000)	pSPORT1
114	Cardiovascular (0.412) Nervous (0.235) Musculoskeletal (0.118)	Cell proliferation (0.765) Inflammation (0.353)	pSPORT1
115	Cardiovascular (0.548) Reproductive (0.161) Developmental (0.129)	Cell proliferation (0.806) Inflammation (0.226)	pINCY
116	Reproductive (0.267) Cardiovascular (0.233) Hematopoietic/Immune (0.233)	Cell proliferation (0.467) Inflammation (0.500)	pINCY
117	Reproductive (0.400) Cardiovascular (0.167) Gastrointestinal (0.133)	Cell proliferation (0.600) Inflammation (0.267)	pINCY
118	Nervous (0.205) Reproductive (0.205) Other (0.154)	Cell proliferation (0.461) Inflammation (0.385)	pINCY
119	Reproductive (0.500) Nervous (0.167) Hematopoietic/Immune (0.167)	Cancer (0.500) Inflammation (0.167) Neurological (0.167)	pINCY

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
120	Reproductive (0.396) Cardiovascular (0.125)	Cell proliferation (0.750) Inflammation (0.209)	PINCY
121	Reproductive (0.248) Hematopoietic/Immune (0.194) Gastrointestinal (0.147)	Cell proliferation (0.651) Inflammation (0.380)	PINCY
122	Nervous (0.264) Cardiovascular (0.132)	Cell proliferation (0.547) Inflammation (0.396)	PINCY
123	Reproductive (0.242) Reproductive (0.152) Urologic (0.152)	Cell proliferation (0.788) Inflammation (0.303)	PINCY
124	Nervous (0.333) Cardiovascular (0.167) Hematopoietic/Immune (0.167)	Cell proliferation (0.667) Inflammation (0.500)	PSPORT1
125	Reproductive (0.290) Cardiovascular (0.113)	Cell proliferation (0.709) Inflammation (0.306)	PSPORT1
126	Reproductive (0.360) Nervous (0.120) Urologic (0.100)	Cell proliferation (0.680) Inflammation (0.320)	PINCY
127	Reproductive (0.364) Gastrointestinal (0.145) Nervous (0.145)	Cell proliferation (0.600) Inflammation (0.400)	PINCY
128	Cardiovascular (0.154) Gastrointestinal (0.154) Reproductive (0.154)	Cell proliferation (0.616) Inflammation (0.308)	PINCY
129	Urologic (1.000)	Cancer (1.000)	PINCY
130	Hematopoietic/Immune (0.214) Cardiovascular (0.143) Gastrointestinal (0.143)	Cell proliferation (0.428) Inflammation (0.357)	PINCY

TABLE 4

Protein SEQ ID NO:	Clone ID	Library	Library Comment
1	001106	U937NOT01	U937NOT01 Library was constructed at Stratagene (STR937207) using RNA isolated from U937 monocyte-like cell line (ATCC CRL1593) established from malignant cells obtained from the pleural effusion of a 37-year-old Caucasian male with diffuse histiocytic lymphoma.
2	004586	HMC1NOT01	HMC1NOT01 Library was constructed using RNA isolated from HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia. Family history included atherosclerotic coronary artery disease, a joint disorder involving multiple joints, cerebrovascular disease, and diabetes insipidus.
3	052927	FIBRNOT01	FIBRNOT01 Library was constructed at Stratagene (STR937212) using RNA isolated from the WI38 lung fibroblast cell line derived from a 3-month-old Caucasian female fetus.
4	082843	HUVESTB01	HUVESTB01 Library was constructed using RNA isolated from shear-stressed HUV-EC-C (ATCC CRL 1730), an endothelial cell line derived from the vein of a normal human umbilical.
5	322349	EOSIHET02	EOSIHET02 Library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia.
6	397663	PITUNOT02	PITUNOT02 Library was constructed using RNA (Clontech 6584-1) isolated from the pituitary gland of 87 male and female donors, 15 to 75 years old.
7	673766	CRBLNOT01	CRBLNOT01 Library was constructed using RNA isolated from cerebellum tissue of a 69-year-old Caucasian male, who died from chronic obstructive pulmonary disease. Patient history included heart failure, myocardial infarction, hypertension, osteoarthritis, and tobacco use.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
8	1504753	BRAITUT07	BRAITUT07 Library was constructed using RNA isolated from left frontal lobe tumor tissue removed from the brain of a 32-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated low grade desmoplastic neuronal neoplasm. Family history included low atherosclerotic coronary artery disease.
9	1760185	PITUNOT03	PITUNOT03 Library was constructed using RNA isolated from pituitary tissue of a 46-year-old Caucasian male who died from colon cancer. Patient history included arthritis and peptic ulcer disease.
10	1805061	SINTNOT13	SINTNOT13 Library was constructed using RNA isolated from ileum tissue removed from a 25-year-old Asian female during a partial colectomy and temporary ileostomy. Pathology indicated moderately active chronic ulcerative colitis involving colonic mucosa from the distal margin to the ascending colon. Family history included hyperlipidemia, depressive disorder, malignant cervical neoplasm, and viral hepatitis A.
11	1850120	LUNGFET03	LUNGFET03 Library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
12	1852290	LUNGFET03	The mother was given seven days of erythromycin treatment for bronchitis during the first trimester.
13	1944530	PITUNOT01	PITUNOT01 Library was constructed using RNA (Clontech 6584-2) isolated from the normal pituitary glands of 18 male and female Caucasian donors, 16 to 70 years old, who died from trauma.
14	2019742	CONNNOT01	CONNNOT01 Library was constructed using RNA isolated from mesentery fat tissue removed from a 71-year-old Caucasian male during a partial colectomy and permanent colostomy. Patient history included a cholecystectomy, viral hepatitis, and a hemangioma. Family history included atherosclerotic coronary artery disease, myocardial infarction, and extrinsic asthma.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
15	2056042	BEPINOT01	BEPINOT01 Library was constructed using RNA isolated from a bronchial epithelium (NHBE) primary cell line derived from a 54-year-old Caucasian male.
16	2398682	THP1AZT01	THP1AZT01 Library was constructed using RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
17	2518753	BRAITUT21	BRAITUT21 Library was constructed using RNA isolated from brain tumor tissue removed from the midline frontal lobe of a 61-year-old Caucasian female during excision of a cerebral meningioma with no atypia. Pathology indicated subfrontal meningotheelial meningioma with no atypia. Patient history included depressive disorder; family history included cerebrovascular disease, senile dementia, hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, and congestive heart failure.
18	2709055	PONSAZT01	PONSAZT01 Library was constructed using polyA RNA isolated from diseased pons tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
19	2724537	LUNGUT10	LUNGUT10 Library was constructed using RNA isolated from lung tumor tissue removed from the left upper lobe of a 65-year-old Caucasian female during a segmental lung resection. Pathology indicated a metastatic grade 2 myxoid liposarcoma and metastatic grade 4 liposarcoma. Patient history included soft tissue cancer, breast cancer, and secondary lung cancer. Family history included benign hypertension.
20	025818	SPLNFET01	SPLNFET01 Library was constructed at Stratagene using RNA isolated from a pool of fetal spleen tissue. 2x10 ⁶ primary clones were amplified to stabilize the library for long-term storage. Amplification may significantly skew sequence abundances.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
21	438283	THYRNOT01	THYRNOT01 Library was constructed using RNA isolated from thyroid tissue removed from a 64-year-old Caucasian female who died from congestive heart failure.
22	619699	PGANNNOT01	PGANNNOT01 Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma, clear cell type, which did not penetrate the capsule. Surgical margins were negative for tumor.
23	693452	SYNORAT03	SYNORAT03 Library was constructed using RNA isolated from the wrist synovial membrane tissue of a 56-year-old female with rheumatoid arthritis.
24	839651	PROSTUT05	PROSTUT05 Library was constructed using RNA isolated from prostate tumor tissue removed from a 69-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenocarcinoma (Gleason grade 3+4). Adenofibromatous hyperplasia was also present. Family history included congestive heart failure, multiple myeloma, hyperlipidemia, and rheumatoid arthritis.
25	1253545	LUNGFET03	LUNGFET03 Library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
26	1425691	BEPINON01	BEPINON01 normalized bronchial epithelium library was constructed from 5.12 million independent clones from the BEPINOT01 library. RNA was made from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male. The normalization and hybridization conditions were adapted from Soares et al., PNAS (1994) 91:9228, using a longer (24-hour) reannealing hybridization period.
27	1484257	CORPNOT02	CORPNOT02 Library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
28	1732368	BRSTTUT08	BRSTTUT08 Library was constructed using RNA isolated from breast tumor tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma, ductal type, with 3 of 23 lymph nodes positive for metastatic disease. Greater than 50% of the tumor volume was <i>in situ</i> , both comedo and non-comedo types. Immunostains were positive for estrogen/progesterone receptors, and uninvolved tissue showed proliferative changes. The patient concurrently underwent a total abdominal hysterectomy. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, and rheumatic heart disease. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
29	1870914	SKINBIT01	SKINBIT01 Library was constructed using RNA isolated from diseased skin tissue of the left lower leg. Patient history included erythema nodosum of the left lower leg.
30	1910984	CONNUTU01	CONNUTU01 Library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin.
31	1943040	HIPONOT01	HIPONOT01 Library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis.
32	2076520	ISLTNOT01	ISLTNOT01 Library was constructed using RNA isolated from a pooled collection of pancreatic islet cells.
33	2291241	BRAINON01	BRAINON01 Library was constructed and normalized from 4.88 million independent clones from the BRAINOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
34	2329692	COLNNOT11	COLNNOT11 The COLNNOT11 library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy.
35	2474110	THP1NOT03	THP1NOT03 Library was constructed using RNA isolated from untreated THP-1 cells (ATCC TIB 202), a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
36	2495790	ADRETUT05	ADRETUT05 Library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.
37	2661254	ADRENOT08	ADRENOT08 PINCY Library was constructed using RNA isolated from adrenal tissue removed from a 20-year-old Caucasian male, who died from head trauma.
38	2674047	KIDNNOT19	KIDNNOT19 PINCY Library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included cardiovascular and cerebrovascular disease, and prostate cancer.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
39	2762174	BRAINOS12	BRAINOS12 pSPORT1 Library was constructed from 4.9 million clones from the BRAINor03 library by subtraction of abundantly expressed clone pools. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningial lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.
40	2765991	BRSTNOT12	BRSTNOT12 PINCY Library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocytic disease. Family history included benign hypertension and atherosclerotic coronary artery disease.
41	2775157	PANCNOT15	PANCNOT15 PINCY Library was constructed using RNA isolated from diseased pancreatic tissue removed from a 15-year-old Caucasian male during a exploratory laparotomy with distal pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia. Family history included prostate cancer and cardiovascular disease.
42	2918375	THYMFET03	THYMFET03 Library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus.
43	3149729	ADRENON04	ADRENON04 normalized adrenal gland library was constructed from 1.36 million independent clones from an adrenal tissue library. Starting RNA was made from adrenal gland tissue removed from a 20-year-old Caucasian male who died from head trauma. The library was normalized in two rounds using conditions adapted from Soares et al. (PNAS (1994) 91:9228-9232) and Bonaldo et al. (Genome Res (1996) 6: 791-806) and a significantly longer (48-hours/round) reannealing hybridization period.
44	3705895	PENCNOT07	PENCNOT07 Library was constructed using RNA isolated from penis right corpora cavernosa tissue removed from a male.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
45	003256	HMC1NOT01	HMC1NOT01 library was constructed using RNA isolated from the HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia.
46	156986	THP1PLB02	THP1PLB02 library was constructed by reamplification of THP1PLB01, which was made using RNA isolated from THP-1 cells cultured for 48 hours with 100 ng/ml phorbol ester (PMA), followed by a 4-hour culture in media containing 1 ug/ml LPS. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
47	319415	EOSIHET02	EOSIHET02 library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia. The cell population was determined to be greater than 77% eosinophils by Wright's staining.
48	635581	NEUTGMT01	NEUTGMT01 library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated from buffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for total RNA preparation.
49	921803	RATRNOT02	RATRNOT02 library was constructed using RNA isolated from the right atrium tissue of a 39-year-old Caucasian male, who died from a gunshot wound.
50	1250492	LUNGFET03	LUNGFET03 library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation.
51	1427838	SINTBST01	SINTBST01 library was constructed using RNA isolated from ileum tissue obtained from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
52	1448258	PLACNOT02	PLACNOT02 library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus).
53	1645941	PROSTUT09	PROSTUT09 library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Patient history included lung neoplasm and benign hypertension. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease and lung cancer.
54	1646005	PROSTUT09	PROSTUT09 library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. Patient history included lung neoplasm and benign hypertension. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease and lung cancer.
55	1686561	PROSNOT15	PROSNOT15 library was constructed using RNA isolated from diseased prostate tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 2+3). The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
56	1821233	GBLATUT01	The GBLATUT01 library was constructed using RNA isolated from gallbladder tumor tissue removed from a 78-year-old Caucasian female during a cholecystectomy. Pathology indicated invasive grade 2 squamous cell carcinoma, forming a mass in the gallbladder. Patient history included diverticulitis of the colon, palpitations, benign hypertension, and hyperlipidemia. Family history included a cholecystectomy, atherosclerotic coronary artery disease, atherosclerotic coronary artery disease, atherosclerotic hyperlipidemia, and benign hypertension.
57	1877278	LEUKNOT03	The LEUKNOT03 library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
58	1880692	LEUKNOT03	The LEUKNOT03 library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
59	2280456	PROSNON01	The PROSNON01 library was constructed and normalized from 4.4 Million independent clones from the PROSNOT11 library. RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.
60	2284580	BRAINON01	The BRAINON01 library was constructed and normalized from 4.88 million independent clones from the BRAINOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
61	2779172	OVARTUT03	OVARTUT03 library was constructed using RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma forming a mass in the left ovary. Patient history included breast cancer, chronic peptic ulcer, and joint pain. Family history included colon cancer, cerebrovascular disease, breast cancer, type II diabetes, esophagus cancer, and depressive disorder.
62	3279329	STOMFET02	STOMFET02 library was constructed using RNA isolated from stomach tissue removed from a Hispanic male fetus, who died at 18 weeks' gestation.
63	3340290	SPLNNNOT10	SPLNNNOT10 library was constructed using RNA isolated from spleen tissue removed from a 59-year-old Caucasian male during a total splenectomy and exploratory laparotomy. Pathology for the spleen indicated splenomegaly with congestion. The lymph nodes showed reactive follicular hyperplasia. The liver showed mild, nonspecific steatosis. The patient presented with abdominal pain, bloating of the abdomen, low-grade fever, and diaphoresis. Family history included myocardial infarction, arteriosclerotic cardiovascular disease, primary tuberculous infection, cerebrovascular disease and lymphoma.
64	3376404	PENGNOT01	PENGNOT01 library was constructed using RNA isolated from glans tissue removed from the penis of a 3-year-old Black male. Pathology for the associated tumor tissue indicated invasive grade 4 urothelial carcinoma forming a soft tissue scrotal mass that invaded the cavernous body of the penis and encased both testicles.
65	4173111	SINTNOT21	SINTNOT21 library was constructed using RNA isolated from small intestine tissue obtained from a 8-year-old Black male, who died from anoxia. Serology was negative.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) <i>J. Mol. Biol.</i> 215:403-410; Altschul, S.F. et al. (1997) <i>Nucleic Acids Res.</i> 25: 3389-3402.	<i>ESTs</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
-85- FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, fasti, fastx, and search.	Pearson, W.R. and D.J. Lipman (1988) <i>Proc. Natl. Acad Sci.</i> 85:2444-2448; Pearson, W.R. (1990) <i>Methods Enzymol.</i> 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) <i>Adv. Appl. Math.</i> 2:482-489.	<i>ESTs</i> : <i>fasta</i> E value=1.06E-6 <i>Assembled ESTs</i> : <i>fasta</i> identity= 95% or greater, and Match length=200 bases or greater; <i>fastx</i> E value= 1.0E-8 or less <i>Full Length sequences</i> : <i>fasta</i> score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PfAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, <i>Nucl. Acid Res.</i> , 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) <i>Methods Enzymol.</i> 266:88-105; and Atwood, T.K. et al. (1997) <i>J. Chem. Inf. Comput. Sci.</i> 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PfAM.	Krogh, A. et al. (1994) <i>J. Mol. Biol.</i> , 235: 1501-1531; Sonnhammer, E.L.L. et al. (1998) <i>Nucleic Acids Res.</i> 26:320-322.	Score=10-50 bits for PfAM hits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
Prosite	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183: 146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1987) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audit (1997) CABIOS 12: 431-439.	Score=5 or greater
MotifS	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <u>supra</u> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof.
- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
7. A method for detecting a polynucleotide, the method comprising the steps of:
 - 15 (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
8. The method of claim 7 further comprising amplifying the polynucleotide prior to 20 hybridization.
9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof.
10. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
13. A host cell comprising the expression vector of claim 12.
- 30 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
15. A pharmaceutical composition comprising the polypeptide of claim 1 in 35 conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.
17. A purified agonist of the polypeptide of claim 1.
18. A purified antagonist of the polypeptide of claim 1.
19. A method for treating or preventing a disorder associated with decreased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
20. A method for treating or preventing a disorder associated with increased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
HILLMAN, Jennifer L.
BANDMAN, Olga
LAL, Preeti
YUE, Henry
REDDY, Roopa
TANG, Y. Tom
GERSTIN, Edward H.
PATTERSON, Chandra
BAUGHN, Mariah R.
AZIMZAI, Yalda
LU, Dyung Aina M.

<120> HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES

<130> PF-0509 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/084,254; 60/095,827; 60/102,745
<151> 1998-05-05; 1998-08-07; 1998-10-02

<160> 130

<170> PERL Program

<210> 1
<211> 155
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 001106CD1

<400> 1
Met Val Ala Arg Lys Gly Gln Lys Ser Pro Arg Phe Arg Arg Val
1 5 10 15
Ser Cys Phe Leu Arg Leu Gly Arg Ser Thr Leu Leu Glu Leu Glu
20 25 30
Pro Ala Gly Arg Pro Cys Ser Gly Arg Thr Arg His Arg Ala Leu
35 40 45
His Arg Arg Leu Val Ala Cys Val Thr Val Ser Ser Arg Arg His
50 55 60
Arg Lys Glu Ala Gly Arg Gly Arg Ala Glu Ser Phe Ile Ala Val
65 70 75
Gly Met Ala Ala Pro Ser Met Lys Glu Arg Gln Val Cys Trp Gly
80 85 90
Ala Arg Asp Glu Tyr Trp Lys Cys Leu Asp Glu Asn Leu Glu Asp
95 100 105
Ala Ser Gln Cys Lys Lys Leu Arg Ser Ser Phe Glu Ser Ser Cys
110 115 120
Pro Gln Gln Trp Ile Lys Tyr Phe Asp Lys Arg Arg Asp Tyr Leu
125 130 135
Lys Phe Lys Glu Lys Phe Glu Ala Gly Gln Phe Glu Pro Ser Glu
140 145 150
Thr Thr Ala Lys Ser
155

<210> 2
 <211> 152
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 004586CD1

<400> 2

Met	Leu	Ser	Thr	Leu	Ser	Gln	Cys	Glu	Phe	Ser	Met	Gly	Lys	Thr
1						5				10				15
Leu	Leu	Val	Tyr	Asp	Met	Asn	Leu	Arg	Glu	Met	Glu	Asn	Tyr	Glu
							20			25				30
Lys	Ile	Tyr	Lys	Glu	Ile	Glu	Cys	Ser	Ile	Ala	Gly	Ala	His	Glu
							35			40				45
Lys	Ile	Ala	Glu	Cys	Lys	Lys	Gln	Ile	Leu	Gln	Ala	Lys	Arg	Ile
							50			55				60
Arg	Lys	Asn	Arg	Gln	Glu	Tyr	Asp	Ala	Leu	Ala	Lys	Val	Ile	Gln
							65			70				75
His	His	Pro	Asp	Arg	His	Glu	Thr	Leu	Lys	Glu	Leu	Glu	Ala	Leu
							80			85				90
Gly	Lys	Glu	Leu	Glu	His	Leu	Ser	His	Ile	Lys	Glu	Ser	Val	Glu
							95			100				105
Asp	Lys	Leu	Glu	Leu	Arg	Arg	Lys	Gln	Phe	His	Val	Leu	Leu	Ser
							110			115				120
Thr	Ile	His	Glu	Leu	Gln	Gln	Thr	Leu	Glu	Asn	Asp	Glu	Lys	Leu
							125			130				135
Ser	Glu	Val	Glu	Glu	Ala	Gln	Glu	Ala	Ser	Met	Glu	Thr	Asp	Pro
							140			145				150
Lys	Pro													

<210> 3
 <211> 304
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc-feature
 <223> Incyte clone 052927CD1

<400> 3

Met	Ala	Glu	Ala	Ser	Ala	Ala	Gly	Ala	Asp	Ser	Gly	Ala	Ala	Val
1							5			10				15
Ala	Ala	His	Arg	Phe	Phe	Cys	His	Phe	Cys	Lys	Gly	Glu	Val	Ser
							20			25				30
Pro	Lys	Leu	Pro	Glu	Tyr	Ile	Cys	Pro	Arg	Cys	Glu	Ser	Gly	Phe
							35			40				45
Ile	Glu	Glu	Val	Thr	Asp	Asp	Ser	Ser	Phe	Leu	Gly	Gly	Gly	Gly
							50			55				60
Ser	Arg	Ile	Asp	Asn	Thr	Thr	Thr	Thr	His	Phe	Ala	Glu	Leu	Trp
							65			70				75
Gly	His	Leu	Asp	His	Thr	Met	Phe	Phe	Gln	Asp	Phe	Arg	Pro	Phe
							80			85				90
Leu	Ser	Ser	Ser	Pro	Leu	Asp	Gln	Asp	Asn	Arg	Ala	Asn	Glu	Arg
							95			100				105
Gly	His	Gln	Thr	His	Thr	Asp	Phe	Trp	Gly	Ala	Arg	Pro	Pro	Arg
							110			115				120
Leu	Pro	Leu	Gly	Arg	Arg	Tyr	Arg	Ser	Arg	Gly	Ser	Ser	Arg	Pro
							125			130				135
Asp	Arg	Ser	Pro	Ala	Ile	Glu	Gly	Ile	Leu	Gln	His	Ile	Phe	Ala

140	145	150
Gly Phe Phe Ala Asn Ser Ala Ile Pro	Gly Ser Pro His Pro	Phe
155	160	165
Ser Trp Ser Gly Met Leu His Ser Asn	Pro Gly Asp Tyr Ala	Trp
170	175	180
Gly Gln Thr Gly Leu Asp Ala Ile Val	Thr Gln Leu Leu Gly	Gln
185	190	195
Leu Glu Asn Thr Gly Pro Pro Pro Ala	Asp Lys Glu Lys Ile	Thr
200	205	210
Ser Leu Pro Thr Val Thr Val Thr Gln	Glu Gln Val Asp Met	Gly
215	220	225
Leu Glu Cys Pro Val Cys Lys Glu Asp	Tyr Thr Val Glu Glu	Glu
230	235	240
Val Arg Gln Leu Pro Cys Asn His Phe	Phe His Ser Ser Cys	Ile
245	250	255
Val Pro Trp Leu Glu Leu His Asp Thr	Cys Pro Val Cys Arg	Lys
260	265	270
Ser Leu Asn Gly Glu Asp Ser Thr Arg	Gln Ser Gln Ser Thr	Glu
275	280	285
Ala Ser Ala Ser Asn Arg Phe Ser Asn	Asp Ser Gln Leu His	Asp
290	295	300
Arg Trp Thr Phe		

<210> 4
 <211> 178
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 082843CD1

<400> 4		
Met Pro Lys Ala Lys Gly Lys Thr Arg Arg Gln Lys Phe Gly Tyr		
1 5 10 15		
Ser Val Asn Arg Lys Arg Leu Asn Arg Asn Ala Arg Arg Lys Ala		
20 25 30		
Ala Pro Arg Ile Glu Cys Ser His Ile Arg His Ala Trp Asp His		
35 40 45		
Ala Lys Ser Val Arg Gln Asn Leu Ala Glu Met Gly Leu Ala Val		
50 55 60		
Asp Pro Asn Arg Ala Val Pro Leu Arg Lys Arg Lys Val Lys Ala		
65 70 75		
Met Glu Val Asp Ile Glu Glu Arg Pro Lys Glu Leu Val Arg Lys		
80 85 90		
Pro Tyr Val Leu Asn Asp Leu Glu Ala Glu Ala Ser Leu Pro Glu		
95 100 105		
Lys Lys Gly Asn Thr Leu Ser Arg Asp Leu Ile Asp Tyr Val Arg		
110 115 120		
Tyr Met Val Glu Asn His Gly Glu Asp Tyr Lys Ala Met Ala Arg		
125 130 135		
Asp Glu Lys Asn Tyr Tyr Gln Asp Thr Pro Lys Gln Ile Arg Ser		
140 145 150		
Lys Ile Asn Val Tyr Lys Arg Phe Tyr Pro Ala Glu Trp Gln Asp		
155 160 165		
Phe Leu Asp Ser Leu Gln Lys Arg Lys Met Glu Val Glu		
170 175		

<210> 5
 <211> 301

<212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 322349CD1

<400> 5
 Met Ala Arg His Gly Leu Pro Leu Leu Pro Leu Leu Ser Leu Leu
 1 5 10 15
 Val Gly Ala Trp Leu Lys Leu Gly Asn Gly Gln Ala Thr Ser Met
 20 25 30
 Val Gln Leu Gln Gly Gly Arg Phe Leu Met Gly Thr Asn Ser Pro
 35 40 45
 Asp Ser Arg Asp Gly Glu Gly Pro Val Arg Glu Ala Thr Val Lys
 50 55 60
 Pro Phe Ala Ile Asp Ile Phe Pro Val Thr Asn Lys Asp Phe Arg
 65 70 75
 Asp Phe Val Arg Glu Lys Lys Tyr Arg Thr Glu Ala Glu Met Phe
 80 85 90
 Gly Trp Ser Phe Val Phe Glu Asp Phe Val Ser Asp Glu Leu Arg
 95 100 105
 Asn Lys Ala Thr Gln Pro Met Lys Ser Val Leu Trp Trp Leu Pro
 110 115 120
 Val Glu Lys Ala Phe Trp Arg Gln Pro Ala Gly Pro Gly Ser Gly
 125 130 135
 Ile Arg Glu Arg Leu Glu His Pro Val Leu His Val Ser Trp Asn
 140 145 150
 Asp Ala Arg Ala Tyr Cys Ala Trp Arg Gly Lys Arg Leu Pro Thr
 155 160 165
 Glu Glu Glu Trp Glu Phe Ala Ala Arg Gly Gly Leu Lys Gly Gln
 170 175 180
 Val Tyr Pro Trp Gly Asn Trp Phe Gln Pro Asn Arg Thr Asn Leu
 185 190 195
 Trp Gln Gly Lys Phe Pro Lys Gly Asp Lys Ala Glu Asp Gly Phe
 200 205 210
 His Gly Val Ser Pro Val Asn Ala Phe Pro Ala Gln Asn Asn Tyr
 215 220 225
 Gly Leu Tyr Asp Leu Leu Gly Asn Val Trp Glu Trp Thr Ala Ser
 230 235 240
 Pro Tyr Gln Ala Ala Glu Gln Asp Met Arg Val Leu Arg Gly Ala
 245 250 255
 Ser Trp Ile Asp Thr Ala Asp Gly Ser Ala Asn His Arg Ala Arg
 260 265 270
 Val Thr Thr Arg Met Gly Asn Thr Pro Asp Ser Ala Ser Asp Asn
 275 280 285
 Leu Gly Phe Arg Cys Ala Ala Asp Ala Gly Arg Pro Pro Gly Glu
 290 295 300
 Leu

<210> 6
 <211> 250
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 397663CD1

<400> 6
 Met Glu Val Arg Asn His Gln Gln Gln Lys Leu Arg Pro Arg Asp

1	5	10	15
Trp	Pro	Gln	Lys
20	25	30	
Asn	Ser	Pro	Leu
35	40	45	
Pro	His	Arg	Gln
50	55	60	
Ala	Gly	Gly	Pro
65	70	75	
Leu	Pro	Gln	Arg
80	85	90	
Cys	Ieu	Ieu	Ser
95	100	105	
Gly	Pro	Ala	His
110	115	120	
Gln	Leu	Val	Pro
125	130	135	
Leu	His	His	Gly
140	145	150	
Leu	Arg	Ser	Asn
155	160	165	
Trp	Met	Ala	Met
170	175	180	
Tyr	Thr	Leu	Val
185	190	195	
Ile	Gly	Leu	Lys
200	205	210	
Leu	Leu	Thr	Val
215	220	225	
Ala	Ieu	Ieu	Ile
230	235	240	
Arg	Thr	Arg	Val
245	250		

<210> 7
<211> 371
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 673766CD1

<400> 7

Met	Glu	Leu	Glu	Leu	Asp	Aia	Gly	Asp	Gln	Asp	Ieu	Leu	Aia	Phe
1	5	10	15											
Leu	Leu	Glu	Glu	Ser	Gly	Asp	Leu	Gly	Thr	Ala	Pro	Asp	Glu	Ala
20	25	30												
Val	Arg	Ala	Pro	Leu	Asp	Trp	Ala	Leu	Pro	Leu	Ser	Glu	Val	Pro
35	40	45												
Ser	Asp	Trp	Glu	Val	Asp	Asp	Leu	Leu	Cys	Ser	Leu	Leu	Ser	Pro
50	55	60												
Pro	Ala	Ser	Leu	Asn	Ile	Leu	Ser	Ser	Ser	Asn	Pro	Cys	Leu	Val
65	70	75												
His	His	Asp	His	Thr	Tyr	Ser	Leu	Pro	Arg	Glu	Thr	Val	Ser	Met
80	85	90												
Asp	Leu	Glu	Ser	Glu	Ser	Cys	Arg	Lys	Glu	Gly	Thr	Gln	Met	Thr
95	100	105												
Pro	Gln	His	Met	Glu	Glu	Leu	Ala	Glu	Gln	Glu	Ile	Ala	Arg	Leu
110	115	120												
Val	Ieu	Thr	Asp	Glu	Glu	Lys	Ser	Leu	Glu	Glu	Lys	Glu	Gly	Leu

Ile	Leu	Pro	Glu	Thr	Leu	Pro	Leu	Thr	Lys	Thr	Glu	Glu	Gln	Ile	135
125									140	145				145	150
Leu	Lys	Arg	Val	Arg	Arg	Lys	Ile	Arg	Asn	Lys	Arg	Ser	Ala	Gln	
															155
Glu	Ser	Arg	Arg	Lys	Lys	Lys	Val	Tyr	Val	Gly	Gly	Leu	Glu	Ser	160
															165
Arg	Val	Leu	Lys	Tyr	Thr	Ala	Gln	Asn	Met	Glu	Leu	Gln	Asn	Lys	170
															175
Val	Gln	Leu	Leu	Glu	Glu	Gln	Asn	Leu	Ser	Leu	Leu	Asp	Gln	Leu	185
															190
Arg	Lys	Leu	Gln	Ala	Met	Val	Ile	Glu	Ile	Ser	Asn	Lys	Thr	Ser	200
															205
Pro	Ala	Glu	His	Gly	Val	Leu	Ser	Arg	Gln	Leu	Arg	Ala	Leu	Pro	215
															220
Ser	Ser	Ser	Thr	Cys	Ile	Leu	Val	Leu	Leu	Val	Ser	Phe	Cys	Leu	230
															235
Leu	Leu	Val	Pro	Ala	Met	Tyr	Ser	Ser	Asp	Thr	Arg	Gly	Ser	Leu	240
															245
Pro	Ala	Glu	Asp	Pro	Tyr	Gln	Leu	Glu	Leu	Pro	Ala	Leu	Gln	Ser	250
															255
Ser	Glu	Asp	Pro	Tyr	Gln	Leu	Glu	Leu	Pro	Ala	Leu	Gln	Ser	Glu	260
															265
Val	Pro	Lys	Asp	Ser	Thr	His	Gln	Trp	Leu	Asp	Gly	Ser	Asp	Cys	275
															280
Val	Leu	Gln	Ala	Pro	Gly	Asn	Thr	Ser	Cys	Leu	Leu	His	Tyr	Met	290
															295
Pro	Gln	Ala	Pro	Ser	Ala	Glu	Pro	Pro	Leu	Glu	Trp	Pro	Phe	Pro	305
															310
Asp	Leu	Phe	Ser	Glu	Pro	Leu	Cys	Arg	Gly	Pro	Ile	Leu	Pro	Leu	320
															325
Gln	Ala	Asn	Leu	Thr	Arg	Lys	Gly	Gly	Trp	Leu	Pro	Thr	Gly	Ser	335
															340
Pro	Ser	Val	Ile	Leu	Gln	Asp	Arg	Tyr	Ser	Gly					350
															355
															360
															365
															370

<210> 8
 <211> 148
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1504753CD1

Met	Asn	Ser	Leu	Ala	Thr	Ser	Val	Phe	Ser	Ile	Ala	Ile	Pro	Val	1	5	10	15
Asp	Gly	Asp	Glu	Asp	Arg	Asn	Pro	Ser	Thr	Ala	Phe	Tyr	Gln	Ala	20	25		30
Phe	His	Leu	Asn	Thr	Leu	Lys	Glu	Ser	Lys	Ser	Leu	Trp	Asp	Ser	35	40	45	
Ala	Ser	Gly	Gly	Gly	Val	Val	Ala	Ile	Asp	Asn	Lys	Ile	Glu	Gln	50	55		60
Ala	Met	Asp	Leu	Val	Lys	Ser	His	Leu	Met	Tyr	Ala	Val	Arg	Glu	65	70	75	
Glu	Val	Glu	Val	Leu	Lys	Glu	Gln	Ile	Lys	Glu	Leu	Val	Glu	Arg	80	85		90
Asn	Ser	Leu	Leu	Glu	Arg	Glu	Asn	Ala	Leu	Leu	Lys	Ser	Leu	Ser	95	100	105	
Ser	Asn	Asp	Gln	Leu	Ser	Gln	Leu	Pro	Thr	Gln	Gln	Ala	Asn	Pro	110	115		120
Gly	Ser	Thr	Ser	Gln	Gln	Gln	Ala	Val	Ile	Ala	Gln	Pro	Pro	Gln				

	125		130		135							
Pro	Thr	Gln	Pro	Pro	Gln	Gln	Pro	Asn	Val	Ser	Ser	Ala
												140
												145

<210> 9
 <211> 127
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1760185CD1

<400> 9
 Met Arg Pro Leu Asp Ile Val Glu Leu Ala Glu Pro Glu Glu Val
 1 5 10 15
 Glu Val Leu Glu Pro Glu Glu Asp Phe Glu Gln Phe Leu Leu Pro
 20 25 30
 Val Ile Asn Glu Met Arg Glu Asp Ile Ala Ser Leu Thr Arg Glu
 35 40 45
 His Gly Arg Ala Tyr Leu Arg Asn Arg Ser Lys Leu Trp Glu Met
 50 55 60
 Asp Asn Met Leu Ile Gln Ile Lys Thr Gln Val Glu Ala Ser Glu
 65 70 75
 Glu Ser Ala Leu Asn His Leu Gln Asn Pro Gly Asp Ala Ala Glu
 80 85 90
 Gly Arg Ala Ala Lys Arg Cys Glu Lys Ala Glu Glu Lys Ala Lys
 95 100 105
 Glu Ile Ala Lys Met Ala Glu Met Leu Val Glu Leu Val Arg Arg
 110 115 120
 Ile Glu Lys Ser Glu Ser Ser
 125

<210> 10
 <211> 383
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1805061CD1

<400> 10
 Met Pro Tyr Val Asp Arg Gln Asn Arg Ile Cys Gly Phe Leu Asp
 1 5 10 15
 Ile Glu Glu Asn Glu Asn Ser Gly Lys Phe Leu Arg Arg Tyr Phe
 20 25 30
 Ile Leu Asp Thr Arg Glu Asp Ser Phe Val Trp Tyr Met Asp Asn
 35 40 45
 Pro Gln Asn Leu Pro Ser Gly Ser Ser Arg Val Gly Ala Ile Lys
 50 55 60
 Leu Thr Tyr Ile Ser Lys Val Ser Asp Ala Thr Lys Leu Arg Pro
 65 70 75
 Lys Ala Glu Phe Cys Phe Val Met Asn Ala Gly Met Arg Lys Tyr
 80 85 90
 Phe Leu Gln Ala Asn Asp Gln Gln Asp Leu Val Glu Trp Val Asn
 95 100 105

Val Leu Asn Lys Ala Ile Lys Ile Thr Val Pro Lys Gln Ser Asp
 110 115 120
 Ser Gln Pro Asn Ser Asp Asn Leu Ser Arg His Gly Glu Cys Gly
 125 130 135
 Lys Lys Gln Val Ser Tyr Arg Thr Asp Ile Val Gly Gly Val Pro
 140 145 150
 Ile Ile Thr Pro Thr Gln Lys Glu Glu Val Asn Glu Cys Gly Glu
 155 160 165
 Ser Ile Asp Arg Asn Asn Leu Lys Arg Ser Gln Ser His Leu Pro
 170 175 180
 Tyr Phe Thr Pro Lys Pro Pro Gln Asp Ser Ala Val Ile Lys Ala
 185 190 195
 Gly Tyr Cys Val Lys Gln Gly Ala Val Met Lys Asn Trp Lys Arg
 200 205 210
 Arg Tyr Phe Gln Leu Asp Glu Asn Thr Ile Gly Tyr Phe Lys Ser
 215 220 225
 Glu Leu Glu Lys Glu Pro Leu Arg Val Ile Pro Leu Lys Glu Val
 230 235 240
 His Lys Val Gln Glu Cys Lys Gln Ser Asp Ile Met Met Arg Asp
 245 250 255
 Asn Ieu Phe Glu Ile Val Thr Thr Ser Arg Thr Phe Tyr Val Gln
 260 265 270
 Ala Asp Ser Pro Glu Glu Met His Ser Trp Ile Lys Ala Val Ser
 275 280 285
 Gly Ala Ile Val Ala Gln Arg Gly Pro Gly Arg Ser Ala Ser Ser
 290 295 300
 Met Arg Gln Ala Arg Arg Leu Ser Asn Pro Cys Ile Gln Arg Ser
 305 310 315
 Ile Pro Pro Val Leu Gln Asn Pro Asn Thr Leu Ser Val Leu Pro
 320 325 330
 Thr Gln Pro Pro Pro His Ile Pro Gln Pro Leu Ala Ala Thr
 335 340 345
 Leu Trp Ser Gln Pro Leu Pro Trp Arg Ser Glu Asp Phe Thr Ser
 350 355 360
 Leu Leu Pro Arg Ser Ser Gln Gly Thr Ser Arg Ser Arg Leu Ser
 365 370 375
 Leu Gln Glu Asn Gln Leu Pro Lys
 380

<210> 11
 <211> 254
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte cicne 1850120CD1

<400> 11
 Met Ser Leu Ala Arg Gly His Gly Asp Thr Ala Ala Ser Thr Ala
 1 5 10 15
 Ala Pro Leu Ser Glu Glu Gly Glu Val Thr Ser Gly Leu Gln Ala
 20 25 30
 Leu Ala Val Glu Asp Thr Gly Gly Pro Ser Ala Ser Ala Gly Lys
 35 40 45
 Ala Glu Asp Glu Gly Glu Gly Gly Arg Glu Glu Thr Glu Arg Glu
 50 55 60
 Gly Ser Gly Gly Glu Glu Ala Gln Gly Glu Val Pro Ser Ala Gly
 65 70 75
 Gly Glu Glu Pro Ala Glu Glu Asp Ser Glu Asp Trp Cys Val Pro
 80 85 90
 Cys Ser Asp Glu Glu Val Glu Leu Pro Ala Asp Gly Gln Pro Trp
 95 100 105

Met	Pro	Pro	Pro	Ser	Glu	Ile	Gln	Arg	Leu	Tyr	Glu	Leu	Leu	Ala
110									115					120
Ala	His	Gly	Thr	Leu	Glu	Leu	Gln	Ala	Glu	Ile	Leu	Pro	Arg	Arg
125									130					135
Pro	Pro	Thr	Pro	Glu	Arg	Gln	Ser	Glu	Glu	Glu	Arg	Ser	Asp	Glu
140									145					150
Glu	Pro	Glu	Ala	Lys	Glu	Glu	Glu	Glu	Lys	Pro	His	Met	Pro	
155									160					165
Thr	Glu	Phe	Asp	Phe	Asp	Asp	Glu	Pro	Val	Thr	Pro	Lys	Asp	Ser
170									175					180
Leu	Ile	Asp	Arg	Arg	Arg	Arg	Thr	Pro	Gly	Ser	Ser	Ala	Arg	Ser
185									190					195
Lys	Arg	Glu	Ala	Arg	Leu	Asp	Lys	Val	Leu	Ser	Asp	Met	Lys	Arg
200									205					210
His	Lys	Lys	Leu	Glu	Glu	Gln	Ile	Leu	Arg	Thr	Gly	Arg	Asp	Leu
215									220					225
Phe	Ser	Leu	Asp	Ser	Glu	Asp	Pro	Ser	Pro	Ala	Ser	Pro	Pro	Leu
230									235					240
Arg	Ser	Ser	Gly	Ser	Ser	Leu	Phe	Pro	Arg	Gln	Arg	Lys	Tyr	
245									250					

<210> 12
<211> 305
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1852290CD1

<400> 12

Met	Ala	Leu	Cys	Ala	Leu	Thr	Arg	Ala	Leu	Arg	Ser	Leu	Asn	Leu
1					5				10					15
Ala	Pro	Pro	Thr	Val	Ala	Ala	Pro	Ala	Pro	Ser	Leu	Phe	Pro	Ala
					20				25					30
Ala	Gln	Met	Met	Asn	Asn	Gly	Leu	Leu	Gln	Gln	Pro	Ser	Ala	Leu
					35				40					45
Met	Ile	Leu	Pro	Cys	Arg	Pro	Val	Leu	Thr	Ser	Val	Ala	Leu	Asn
					50				55					60
Ala	Asn	Phe	Val	Ser	Trp	Lys	Ser	Arg	Thr	Lys	Tyr	Thr	Ile	Thr
					65				70					75
Pro	Val	Lys	Met	Arg	Lys	Ser	Gly	Gly	Arg	Asp	His	Thr	Gly	Arg
					80				85					90
Ile	Arg	Val	His	Gly	Ile	Gly	Gly	Gly	His	Lys	Gln	Arg	Tyr	Arg
					95				100					105
Met	Ile	Asp	Phe	Leu	Arg	Phe	Arg	Pro	Glu	Glu	Thr	Lys	Ser	Gly
					110				115					120
Pro	Phe	Glu	Glu	Lys	Val	Ile	Gln	Val	Arg	Tyr	Asp	Pro	Cys	Arg
					125				130					135
Ser	Aia	Asp	Ile	Ala	Leu	Val	Ala	Gly	Gly	Ser	Arg	Lys	Arg	Trp
					140				145					150
Ile	Ile	Ala	Thr	Glu	Asn	Met	Gln	Ala	Gly	Asp	Thr	Ile	Leu	Asn
					155				160					165
Ser	Asn	His	Ile	Gly	Arg	Met	Ala	Val	Ala	Ala	Arg	Glu	Gly	Asp
					170				175					180
Ala	His	Pro	Leu	Gly	Ala	Leu	Pro	Val	Gly	Thr	Leu	Ile	Asn	Asn
					185				190					195
Val	Glu	Ser	Glu	Pro	Gly	Arg	Gly	Ala	Gln	Tyr	Ile	Arg	Ala	Ala
					200				205					210
Gly	Thr	Cys	Gly	Val	Leu	Leu	Arg	Lys	Val	Asn	Gly	Thr	Ala	Ile
					215				220					225

Ile	Gln	Leu	Pro	Ser	Lys	Arg	Gln	Met	Gln	Val	Leu	Glu	Thr	Cys
					230				235				240	
Val	Ala	Thr	Val	Gly	Arg	Val	Ser	Asn	Val	Asp	His	Asn	Lys	Arg
				245					250				255	
Val	Ile	Gly	Lys	Ala	Gly	Arg	Asn	Arg	Trp	Leu	Gly	Lys	Arg	Pro
				260					265				270	
Asn	Ser	Gly	Arg	Trp	His	Arg	Lys	Gly	Gly	Trp	Ala	Gly	Arg	Lys
				275				280				285		
Ile	Arg	Pro	Leu	Pro	Pro	Met	Lys	Ser	Tyr	Val	Lys	Leu	Pro	Ser
				290				295				300		
Ala	Ser	Ala	Gln	Ser										
				305										

<210> 13
 <211> 230
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1944530CD1

<400> 13

Met	Gly	Gln	Gln	Ile	Ser	Asp	Gln	Thr	Gln	Leu	Val	Ile	Asn	Lys
1				5					10				15	
Leu	Pro	Glu	Lys	Val	Ala	Lys	His	Val	Thr	Leu	Val	Arg	Glu	Ser
				20					25				30	
Gly	Ser	Leu	Thr	Tyr	Glu	Glu	Phe	Leu	Gly	Arg	Val	Ala	Glu	Leu
				35				40				45		
Asn	Asp	Val	Thr	Ala	Lys	Val	Ala	Ser	Gly	Gln	Glu	Lys	His	Leu
				50				55				60		
Leu	Phe	Glu	Val	Gln	Pro	Gly	Ser	Asp	Ser	Ser	Ala	Phe	Trp	Lys
				65				70				75		
Val	Val	Val	Arg	Val	Val	Cys	Thr	Lys	Ile	Asn	Lys	Ser	Ser	Gly
				80				85				90		
Ile	Val	Glu	Ala	Ser	Arg	Ile	Met	Asn	Leu	Tyr	Gln	Phe	Ile	Gln
				95				100				105		
Leu	Tyr	Lys	Asp	Ile	Thr	Ser	Gln	Ala	Ala	Gly	Val	Leu	Ala	Gln
				110				115				120		
Ser	Ser	Thr	Ser	Glu	Glu	Pro	Asp	Glu	Asn	Ser	Ser	Ser	Val	Thr
				125				130				135		
Ser	Cys	Gln	Ala	Ser	Leu	Trp	Met	Gly	Arg	Val	Lys	Gln	Leu	Thr
				140				145				150		
Asp	Glu	Glu	Cys	Cys	Ile	Cys	Met	Asp	Gly	Arg	Ala	Asp	Leu	
				155				160				165		
Ile	Leu	Pro	Cys	Ala	His	Ser	Phe	Cys	Gln	Lys	Cys	Ile	Asp	Lys
				170				175				180		
Trp	Ser	Asp	Arg	His	Arg	Asn	Cys	Pro	Ile	Cys	Arg	Leu	Gln	Met
				185				190				195		
Thr	Gly	Ala	Asn	Glu	Ser	Trp	Val	Val	Ser	Asp	Ala	Pro	Thr	Glu
				200				205				210		
Asp	Asp	Met	Ala	Asn	Tyr	Ile	Leu	Asn	Met	Ala	Asp	Glu	Ala	Gly
				215				220				225		
Gln	Pro	His	Arg	Pro										
				230										

<210> 14
 <211> 292
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2019742CB1

<400> 14

Met	Ser	Gly	Met	Glu	Ala	Thr	Val	Thr	Ile	Pro	Ile	Trp	Gln	Asn
1			5						10				15	
Lys	Pro	His	Gly	Ala	Ala	Arg	Ser	Val	Val	Arg	Arg	Ile	Gly	Thr
				20					25				30	
Asn	Leu	Pro	Leu	Lys	Pro	Cys	Ala	Arg	Ala	Ser	Phe	Glu	Thr	Leu
				35					40				45	
Pro	Asn	Ile	Ser	Asp	Leu	Cys	Leu	Arg	Asp	Val	Pro	Pro	Val	Pro
				50					55				60	
Thr	Leu	Ala	Asp	Ile	Ala	Trp	Ile	Ala	Ala	Asp	Glu	Glu	Thr	
				65					70				75	
Tyr	Ala	Arg	Val	Arg	Ser	Asp	Thr	Arg	Pro	Leu	Arg	His	Thr	Trp
				80					85				90	
Lys	Pro	Ser	Pro	Leu	Ile	Val	Met	Gln	Arg	Asn	Ala	Ser	Val	Pro
				95					100				105	
Asn	Leu	Arg	Gly	Ser	Glu	Glu	Arg	Leu	Leu	Ala	Leu	Lys	Lys	Pro
				110					115				120	
Ala	Leu	Pro	Ala	Leu	Ser	Arg	Thr	Thr	Glu	Leu	Gln	Asp	Glu	Leu
				125					130				135	
Ser	His	Leu	Arg	Ser	Gln	Ile	Ala	Lys	Ile	Val	Ala	Ala	Asp	Ala
				140					145				150	
Ala	Ser	Ala	Ser	Leu	Thr	Pro	Asp	Phe	Leu	Ser	Pro	Gly	Ser	Ser
				155					160				165	
Asn	Val	Ser	Ser	Pro	Leu	Pro	Cys	Phe	Gly	Ser	Ser	Phe	His	Ser
				170					175				180	
Thr	Thr	Ser	Phe	Val	Ile	Ser	Asp	Ile	Thr	Glu	Glu	Thr	Glu	Val
				185					190				195	
Glu	Val	Pro	Glu	Leu	Pro	Ser	Val	Pro	Leu	Leu	Cys	Ser	Ala	Ser
				200					205				210	
Pro	Glu	Cys	Cys	Lys	Pro	Glu	His	Lys	Ala	Ala	Cys	Ser	Ser	Ser
				215					220				225	
Glu	Glu	Asp	Asp	Cys	Val	Ser	Leu	Ser	Lys	Ala	Ser	Ser	Phe	Ala
				230					235				240	
Asp	Met	Met	Gly	Ile	Leu	Lys	Asp	Phe	His	Arg	Met	Lys	Gln	Ser
				245					250				255	
Gln	Asp	Leu	Asn	Arg	Ser	Leu	Leu	Lys	Glu	Glu	Asp	Pro	Ala	Val
				260					265				270	
Leu	Ile	Ser	Glu	Val	Leu	Arg	Arg	Lys	Phe	Ala	Leu	Lys	Glu	Glu
				275					280				285	
Asp	Ile	Ser	Arg	Lys	Gly	Asn								
				290										

<210> 15

<211> 232

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2056042CD1

<400> 15

Met	Ala	Ser	Ser	Ala	Ala	Ser	Ser	Glu	His	Phe	Glu	Lys	Leu	His
1				5					10				15	
Glu	Ile	Phe	Arg	Gly	Leu	His	Glu	Asp	Leu	Gln	Gly	Val	Pro	Glu
				20					25				30	
Arg	Leu	Leu	Gly	Thr	Ala	Gly	Thr	Glu	Glu	Lys	Lys	Lys	Leu	Ile
				35					40				45	
Arg	Asp	Phe	Asp	Glu	Lys	Gln	Gln	Glu	Ala	Asn	Glu	Thr	Leu	Ala
				50					55				60	

Glu Met Glu Glu Glu Leu Arg Tyr Ala Pro Leu Ser Phe Arg Asn
 65 70 75
 Pro Met Met Ser Lys Leu Arg Asn Tyr Arg Lys Asp Leu Ala Lys
 80 85 90
 Leu His Arg Glu Val Arg Ser Thr Pro Leu Thr Ala Thr Pro Gly
 95 100 105
 Gly Arg Gly Asp Met Lys Tyr Gly Ile Tyr Ala Val Glu Asn Glu
 110 115 120
 His Met Asn Arg Leu Gln Ser Gln Arg Ala Met Leu Leu Gln Gly
 125 130 135
 Thr Glu Ser Leu Asn Arg Ala Thr Gln Ser Ile Glu Arg Ser His
 140 145 150
 Arg Ile Ala Thr Glu Thr Asp Gln Ile Gly Ser Glu Ile Ile Glu
 155 160 165
 Glu Leu Gly Glu Gln Arg Asp Gln Leu Glu Arg Thr Lys Ser Arg
 170 175 180
 Leu Val Asn Thr Ser Glu Asn Leu Ser Lys Ser Arg Lys Ile Leu
 185 190 195
 Arg Ser Met Ser Arg Lys Val Thr Thr Asn Lys Leu Leu Leu Ser
 200 205 210
 Ile Ile Ile Leu Leu Glu Leu Ala Ile Leu Gly Gly Leu Val Tyr
 215 220 225
 Tyr Lys Phe Phe Arg Ser His
 230

<210> 16
 <211> 376
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2398682CD1

<400> 16
 Met Arg Gly Lys Thr Phe Arg Phe Glu Met Gln Arg Asp Leu Val
 1 5 10 15
 Ser Phe Pro Leu Ser Pro Ala Val Arg Val Lys Leu Val Ser Ala
 20 25 30
 Gly Phe Gln Thr Ala Glu Glu Leu Leu Glu Val Lys Pro Ser Glu
 35 40 45
 Leu Ser Lys Glu Val Gly Ile Ser Lys Ala Glu Ala Leu Glu Thr
 50 55 60
 Leu Gln Ile Ile Arg Arg Glu Cys Leu Thr Asn Lys Pro Arg Tyr
 65 70 75
 Ala Gly Thr Ser Glu Ser His Lys Lys Cys Thr Ala Leu Glu Leu
 80 85 90
 Leu Glu Gln Glu His Thr Gln Gly Phe Ile Ile Thr Phe Cys Ser
 95 100 105
 Ala Leu Asp Asp Ile Leu Gly Gly Val Pro Leu Met Lys Thr
 110 115 120
 Thr Glu Ile Cys Gly Ala Pro Gly Val Gly Lys Thr Gln Leu Cys
 125 130 135
 Met Gln Leu Ala Val Asp Val Gln Ile Pro Glu Cys Phe Gly Gly
 140 145 150
 Val Ala Gly Glu Ala Val Phe Ile Asp Thr Glu Gly Ser Phe Met
 155 160 165
 Val Asp Arg Val Val Asp Leu Ala Thr Ala Cys Ile Gln His Leu
 170 175 180
 Gln Leu Ile Ala Glu Lys His Lys Gly Glu Glu His Arg Lys Ala
 185 190 195

Leu Glu Asp Phe Thr Leu Asp Asn Ile Leu Ser His Ile Tyr Tyr
 200 205 210
 Phe Arg Cys Arg Asp Tyr Thr Glu Leu Leu Ala Gln Val Tyr Leu
 215 220 225
 Leu Pro Asp Phe Leu Ser Glu His Ser Lys Val Arg Leu Val Ile
 230 235 240
 Val Asp Gly Ile Ala Phe Pro Phe Arg His Asp Leu Asp Asp Leu
 245 250 255
 Ser Leu Arg Thr Arg Leu Leu Asn Gly Leu Ala Gln Gln Met Ile
 260 265 270
 Ser Leu Ala Asn Asn His Arg Leu Ala Val Ile Leu Thr Asn Gln
 275 280 285
 Met Thr Thr Lys Ile Asp Arg Asn Gln Ala Leu Leu Val Pro Ala
 290 295 300
 Leu Gly Glu Ser Trp Gly His Ala Ala Thr Ile Arg Leu Ile Phe
 305 310 315
 His Trp Asp Arg Lys Gln Arg Leu Ala Thr Leu Tyr Lys Ser Pro
 320 325 330
 Ser Gln Lys Glu Cys Thr Val Leu Phe Gln Ile Lys Pro Gln Gly
 335 340 345
 Phe Arg Asp Thr Val Val Thr Ser Ala Cys Ser Leu Gln Thr Glu
 350 355 360
 Gly Ser Leu Ser Thr Arg Lys Arg Ser Arg Asp Pro Glu Glu Glu
 365 370 375
 Leu

<210> 17
 <211> 204
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2518753CD1

<400> 17
 Met Ala Lys Val Gln Val Asn Asn Val Val Val Leu Asp Asn Pro
 1 5 10 15
 Ser Pro Phe Tyr Asn Pro Phe Gln Phe Glu Ile Thr Phe Glu Cys
 20 25 30
 Ile Glu Asp Leu Ser Glu Asp Leu Glu Trp Lys Ile Ile Tyr Val
 35 40 45
 Gly Ser Ala Glu Ser Glu Glu Tyr Asp Gln Val Leu Asp Ser Val
 50 55 60
 Leu Val Gly Pro Val Pro Ala Gly Arg His Met Phe Val Phe Gln
 65 70 75
 Ala Asp Ala Pro Asn Pro Gly Leu Ile Pro Asp Ala Asp Ala Val
 80 85 90
 Gly Val Thr Val Val Leu Ile Thr Cys Thr Tyr Arg Gly Gln Glu
 95 100 105
 Phe Ile Arg Val Gly Tyr Tyr Val Asn Asn Glu Tyr Thr Glu Thr
 110 115 120
 Glu Leu Arg Glu Asn Pro Pro Val Lys Pro Asp Phe Ser Lys Leu
 125 130 135
 Gln Arg Asn Ile Leu Ala Ser Asn Pro Arg Val Thr Arg Phe His
 140 145 150
 Ile Asn Trp Glu Asp Asn Thr Glu Lys Leu Glu Asp Ala Glu Ser
 155 160 165
 Ser Asn Pro Asn Leu Gln Ser Leu Leu Ser Thr Asp Ala Leu Pro
 170 175 180
 Ser Ala Ser Lys Gly Trp Ser Thr Ser Glu Asn Ser Leu Asn Val
 185 190 195
 Met Leu Glu Ser His Met Asp Cys Met

<210> 18
 <211> 713
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2709055CD1

<400> 18
 Met Tyr Leu Leu Ile Gln Met Cys Tyr His Leu Ala Leu Pro Trp
 1 5 10 15
 Tyr Ser Lys Tyr Phe Pro Tyr Leu Ala Leu Ile His Thr Ile Ile
 20 25 30
 Leu Met Ala Ser Ser Asn Phe Trp Phe Lys Tyr Pro Lys Thr Cys
 35 40 45
 Ser Lys Val Glu His Ser Val Ser Ile Leu Gly Lys Cys Phe Glu
 50 55 60
 Ser Pro Trp Thr Thr Lys Ala Leu Ser Glu Thr Ala Cys Glu Asp
 65 70 75
 Ser Glu Glu Asn Lys Gln Arg Ile Thr Gly Ala Gln Thr Leu Pro
 80 85 90
 Lys His Val Ser Thr Ser Ser Asp Glu Gly Ser Pro Ser Ala Ser
 95 100 105
 Thr Pro Met Ile Asn Lys Thr Gly Phe Lys Phe Ser Ala Glu Lys
 110 115 120
 Pro Val Ile Glu Val Pro Ser Met Thr Ile Leu Asp Lys Lys Asp
 125 130 135
 Gly Glu Gln Ala Lys Ala Leu Phe Glu Lys Val Arg Lys Phe Arg
 140 145 150
 Ala His Val Glu Asp Ser Asp Leu Ile Tyr Lys Leu Tyr Val Val
 155 160 165
 Gln Thr Val Ile Lys Thr Ala Lys Phe Ile Phe Ile Leu Cys Tyr
 170 175 180
 Thr Ala Asn Phe Val Asn Ala Ile Ser Phe Glu His Val Cys Lys
 185 190 195
 Pro Lys Val Glu His Leu Ile Gly Tyr Glu Val Phe Glu Cys Thr
 200 205 210
 His Asn Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile
 215 220 225
 Ser Ile Ile Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe
 230 235 240
 Trp Ile Phe Arg Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val
 245 250 255
 Arg Glu Glu Ser Ser Phe Ser Asp Ile Pro Asp Val Lys Asn Asp
 260 265 270
 Phe Ala Phe Leu Leu His Met Val Asp Gln Tyr Asp Gln Leu Tyr
 275 280 285
 Ser Lys Arg Phe Gly Val Phe Leu Ser Glu Val Ser Glu Asn Lys
 290 295 300
 Leu Arg Glu Ile Ser Leu Asn His Glu Trp Thr Phe Glu Lys Leu
 305 310 315
 Arg Gln His Ile Ser Arg Asn Ala Gln Asp Lys Gln Glu Leu His
 320 325 330
 Leu Phe Met Leu Ser Gly Val Pro Asp Ala Val Phe Asp Leu Thr
 335 340 345
 Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro Glu Ala Lys Ile
 350 355 360
 Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu Leu His Leu
 365 370 375
 Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser Phe Leu

380	385	390
Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val Ala		
395	400	405
Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu		
410	415	420
Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly		
425	430	435
Leu Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val		
440	445	450
Lys Ser Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala		
455	460	465
Pro His Leu Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu		
470	475	480
Leu Val Leu Asn Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu		
485	490	495
Glu Leu Gln Asn Cys Glu Leu Glu Arg Ile Pro His Ala Ile Phe		
500	505	510
Ser Leu Ser Asn Leu Gln Glu Leu Asp Leu Lys Ser Asn Asn Ile		
515	520	525
Arg Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu Lys Arg Leu		
530	535	540
Thr Cys Leu Lys Leu Trp His Asn Lys Ile Val Thr Ile Pro Pro		
545	550	555
Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn		
560	565	570
Asn Lys Leu Glu Ser Leu Pro Val Ala Val Phe Ser Leu Gln Lys		
575	580	585
Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile Ser Met Ile Pro		
590	595	600
Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu His Ile Thr		
605	610	615
Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys Cys Ile		
620	625	630
Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser Leu		
635	640	645
Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu		
650	655	660
Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys		
665	670	675
Arg Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe		
680	685	690
Asp Thr Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile		
695	700	705
Asn Ile Pro Phe Ala Asn Gly Ile		
710		

<210> 19
<211> 360
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2724537CD1

<400> 19
Met Ala Ser Leu Leu Ala Lys Asp Ala Tyr Leu Gln Ser Leu Ala
1 5 10 15
Lys Lys Ile Cys Ser His Ser Ala Pro Glu Gln Gln Ala Arg Thr
20 25 30
Arg Ala Gly Lys Thr Gln Gly Ser Glu Thr Ala Gly Pro Pro Lys
35 40 45
Lys Lys Arg Lys Lys Thr Gln Lys Phe Arg Lys Arg Glu Glu

50	55	60
Lys Ala Ala Glu His Lys Ala Lys Ser Leu Gly Glu Lys Ser Pro		
65	70	75
Ala Ala Ser Gly Ala Arg Arg Pro Glu Ala Ala Lys Glu Glu Ala		
80	85	90
Ala Trp Ala Ser Ser Ser Ala Gly Asn Pro Ala Asp Gly Leu Ala		
95	100	105
Thr Glu Pro Glu Ser Val Phe Ala Leu Asp Val Leu Arg Gln Arg		
110	115	120
Leu His Glu Lys Ile Gln Glu Ala Arg Gly Gln Gly Ser Ala Lys		
125	130	135
Glu Leu Ser Pro Ala Ala Leu Glu Lys Arg Arg Arg Arg Lys Gln		
140	145	150
Glu Arg Asp Arg Lys Lys Arg Lys Arg Lys Glu Leu Arg Ala Lys		
155	160	165
Glu Lys Ala Arg Lys Ala Glu Glu Ala Thr Glu Ala Gln Glu Val		
170	175	180
Val Glu Ala Thr Pro Glu Gly Ala Cys Thr Glu Pro Arg Glu Pro		
185	190	195
Pro Gly Leu Ile Phe Asn Lys Val Glu Val Ser Glu Asp Glu Pro		
200	205	210
Ala Ser Lys Ala Gln Arg Arg Lys Glu Lys Arg Gln Arg Val Lys		
215	220	225
Gly Asn Leu Thr Pro Leu Thr Gly Arg Asn Tyr Arg Gln Leu Leu		
230	235	240
Glu Arg Leu Gln Ala Arg Gln Ser Arg Leu Asp Glu Leu Arg Gly		
245	250	255
Gln Asp Glu Gly Lys Ala Gln Glu Leu Glu Ala Lys Met Lys Trp		
260	265	270
Thr Asn Leu Leu Tyr Lys Ala Glu Gly Val Lys Ile Arg Asp Asp		
275	280	285
Glu Arg Leu Leu Gln Glu Ala Leu Lys Arg Lys Glu Lys Arg Arg		
290	295	300
Ala Gln Arg Gln Arg Arg Trp Glu Lys Arg Thr Ala Gly Val Val		
305	310	315
Glu Lys Met Gln Gln Arg Gln Asp Arg Arg Arg Gln Asn Leu Arg		
320	325	330
Arg Lys Lys Ala Ala Arg Ala Glu Arg Arg Leu Leu Arg Ala Arg		
335	340	345
Lys Lys Gly Arg Ile Leu Pro Gln Asp Leu Glu Arg Ala Gly Leu		
350	355	360

<210> 20
 <211> 196
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 025818CD1

<400> 20
 Met Pro Ala Asp Ile Met Glu Lys Asn Ser Ser Ser Pro Val Ala
 1 5 10 15
 Ala Thr Pro Ala Ser Val Asn Thr Thr Pro Asp Lys Pro Lys Thr
 20 25 30
 Ala Ser Glu His Arg Lys Ser Ser Lys Pro Ile Met Glu Lys Arg
 35 40 45
 Arg Arg Ala Arg Ile Asn Glu Ser Leu Ser Gln Leu Lys Thr Leu
 50 55 60
 Ile Leu Asp Ala Leu Lys Lys Asp Ser Ser Arg His Ser Lys Leu

Glu	Lys	Ala	Asp	Ile	Leu	Glu	Met	Thr	Val	Lys	His	Leu	Arg	Asn	65	70	75
															80	85	90
Leu	Gln	Arg	Ala	Gln	Met	Thr	Ala	Ala	Leu	Ser	Thr	Asp	Pro	Ser	95	100	105
															110	115	120
Val	Leu	Gly	Lys	Tyr	Arg	Ala	Gly	Phe	Ser	Glu	Cys	Met	Asn	Glu	125	130	135
															140	145	150
Leu	Arg	Arg	Thr	Pro	Cys	Gly	Gly	Arg	Gly	Gly	Thr	Glu	Gly	Ala	155	160	165
															170	175	180
Gln	Ala	Thr	Pro	Pro	Pro	Lys	Leu	Pro	Asn	Pro	Pro	Leu	Phe	Pro	185	190	195
Phe																	

<210> 21
<211> 540
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 438283CD1

<400> 21																		
Met	Leu	Arg	Glu	Glu	Ala	Thr	Lys	Lys	Ser	Lys	Glu	Lys	Glu	Pro	1	5	10	15
Gly	Met	Ala	Leu	Pro	Gln	Gly	Arg	Leu	Ala	Phe	Arg	Asp	Val	Ala	20	25	30	
Ile	Glu	Phe	Ser	Leu	Glu	Glu	Trp	Lys	Cys	Leu	Asn	Pro	Ala	Gln	35	40	45	
Arg	Ala	Leu	Tyr	Arg	Ala	Val	Met	Leu	Glu	Asn	Tyr	Arg	Asn	Leu	50	55	60	
Glu	Phe	Val	Asp	Ser	Ser	Leu	Lys	Ser	Met	Met	Glu	Phe	Ser	Ser	65	70	75	
Thr	Arg	His	Ser	Asn	Thr	Gly	Glu	Val	Ile	His	Thr	Gly	Thr	Leu	80	85	90	
Gln	Arg	His	Lys	Ser	His	His	Ile	Gly	Asp	Phe	Cys	Phe	Pro	Glu	95	100	105	
Met	Lys	Lys	Asp	Ile	His	His	Phe	Glu	Phe	Gln	Trp	Gln	Glu	Val	110	115	120	
Glu	Arg	Asn	Gly	His	Glu	Ala	Pro	Met	Thr	Lys	Ile	Lys	Lys	Leu	125	130	135	
Thr	Gly	Ser	Thr	Asp	Arg	Ser	Asp	His	Arg	His	Ala	Gly	Asn	Lys	140	145	150	
Pro	Ile	Lys	Asp	Gln	Leu	Gly	Leu	Ser	Phe	His	Ser	His	Leu	Pro	155	160	165	
Glu	Ile	His	Met	Phe	Gln	Thr	Lys	Gly	Lys	Ile	Ser	Asn	Gln	Leu	170	175	180	
Asp	Lys	Ser	Ile	Ser	Gly	Ala	Ser	Ser	Ala	Ser	Glu	Ser	Gln	Arg	185	190	195	
Ile	Ser	Cys	Arg	Leu	Lys	Thr	His	Ile	Ser	Asn	Lys	Tyr	Gly	Lys	200	205	210	
Asn	Phe	Leu	His	Ser	Ser	Phe	Thr	Gln	Ile	Gln	Glu	Ile	Cys	Met	215	220	225	
Arg	Glu	Lys	Pro	Cys	Gln	Ser	Asn	Glu	Cys	Gly	Lys	Ala	Phe	Asn	230	235	240	

Tyr Ser Ser Leu Leu Arg Arg His His Ile Thr His Ser Arg Glu
 245 250 255
 Arg Glu Tyr Lys Cys Asp Val Cys Gly Lys Ile Phe Asn Gln Lys
 260 265 270
 Gln Tyr Ile Val Tyr His His Arg Cys His Thr Gly Glu Lys Thr
 275 280 285
 Tyr Lys Cys Asn Glu Cys Gly Lys Thr Phe Thr Gln Met Ser Ser
 290 295 300
 Leu Val Cys His Arg Arg Leu His Thr Gly Glu Lys Pro Tyr Lys
 305 310 315
 Cys Asn Glu Cys Gly Lys Thr Phe Ser Glu Lys Ser Ser Leu Arg
 320 325 330
 Cys His Arg Arg Leu His Thr Gly Glu Lys Pro Tyr Lys Cys Asn
 335 340 345
 Glu Cys Gly Lys Thr Phe Gly Arg Asn Ser Ala Leu Val Ile His
 350 355 360
 Lys Ala Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys
 365 370 375
 Gly Lys Thr Phe Ser Gln Lys Ser Ser Leu Gln Cys His His Ile
 380 385 390
 Leu His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Asp Asn
 395 400 405
 Val Tyr Ile Arg Arg Ser His Leu Glu Arg His Arg Lys Ile His
 410 415 420
 Thr Gly Glu Gly Ser Tyr Lys Cys Lys Val Cys Asp Lys Ala Phe
 425 430 435
 Arg Ser Asp Ser Cys Leu Ala Asn His Thr Arg Val His Thr Gly
 440 445 450
 Glu Lys Pro Tyr Lys Cys Asn Lys Cys Ala Lys Val Phe Asn Gln
 455 460 465
 Lys Gly Ile Leu Ala Gln His Gln Arg Val His Thr Gly Glu Lys
 470 475 480
 Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Asn Gln Lys Ala
 485 490 495
 Ser Leu Ala Lys His Gln Arg Val His Thr Ala Glu Lys Pro Tyr
 500 505 510
 Lys Cys Asn Glu Cys Gly Lys Ala Phe Thr Gly Gln Ser Thr Leu
 515 520 525
 Ile His His Gln Ala Ile His Gly Cys Arg Glu Thr Leu Gln Met
 530 535 540

<210> 22
 <211> 549
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 619699CD1

<400> 22

Met	Leu	Glu	Asn	Tyr	Lys	Asn	Leu	Ala	Thr	Val	Gly	Tyr	Gln	Leu
1				5						10				15
Phe	Lys	Pro	Ser	Leu	Ile	Ser	Trp	Leu	Gly	Gln	Glu	Glu	Ser	Arg
				20				25						30
Thr	Val	Gln	Arg	Gly	Asp	Phe	Gln	Ala	Ser	Glu	Trp	Lys	Val	Gln
				35				40						45
Leu	Lys	Thr	Lys	Glu	Leu	Ala	Leu	Gln	Gln	Asp	Val	Leu	Gly	Glu
				50				55						60
Pro	Thr	Ser	Ser	Gly	Ile	Gln	Met	Ile	Gly	Ser	His	Asn	Gly	Gly
				65				70						75
Glu	Val	Ser	Asp	Val	Lys	Gln	Cys	Gly	Asp	Val	Ser	Ser	Glu	His
				80				85						90

Ser Cys Leu Lys Thr His Val Arg Thr Gln Asn Ser Glu Asn Thr
 95 100 105
 Phe Glu Cys Tyr Leu Tyr Gly Val Asp Phe Leu Thr Leu His Lys
 110 115 120
 Lys Thr Ser Thr Gly Glu Gln Arg Ser Val Phe Ser Gln Cys Gly
 125 130 135
 Lys Ala Phe Ser Leu Asn Pro Asp Val Val Cys Gln Arg Thr Cys
 140 145 150
 Thr Gly Glu Lys Ala Phe Asp Cys Ser Asp Ser Gly Lys Ser Phe
 155 160 165
 Ile Asn His Ser His Leu Gln Gly His Leu Arg Thr His Asn Gly
 170 175 180
 Glu Ser Leu His Glu Trp Lys Glu Cys Gly Arg Gly Phe Ile His
 185 190 195
 Ser Thr Asp Leu Ala Val Arg Ile Gln Thr His Arg Ser Glu Lys
 200 205 210
 Pro Tyr Lys Cys Lys Glu Cys Gly Lys Gly Phe Arg Tyr Ser Ala
 215 220 225
 Tyr Leu Asn Ile His Met Gly Thr His Thr Gly Asp Asn Pro Tyr
 230 235 240
 Glu Cys Lys Glu Cys Gly Lys Ala Phe Thr Arg Ser Cys Gln Leu
 245 250 255
 Thr Gln His Arg Lys Thr His Thr Gly Glu Lys Pro Tyr Lys Cys
 260 265 270
 Lys Asp Cys Gly Arg Ala Phe Thr Val Ser Ser Cys Leu Ser Gln
 275 280 285
 His Met Lys Ile His Val Gly Glu Lys Pro Tyr Glu Cys Lys Glu
 290 295 300
 Cys Gly Ile Ala Phe Thr Arg Ser Ser Gln Leu Thr Glu His Leu
 305 310 315
 Lys Thr His Thr Ala Lys Asp Pro Phe Glu Cys Lys Val Cys Gly
 320 325 330
 Lys Ser Phe Arg Asn Ser Ser Cys Leu Ser Asp His Phe Arg Ile
 335 340 345
 His Thr Gly Ile Lys Pro Tyr Lys Cys Lys Asp Cys Gly Lys Ala
 350 355 360
 Phe Thr Gln Asn Ser Asp Leu Thr Lys His Ala Arg Thr His Ser
 365 370 375
 Gly Glu Arg Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ala Phe Ala
 380 385 390
 Arg Ser Ser Arg Leu Ser Glu His Thr Arg Thr His Thr Gly Glu
 395 400 405
 Lys Pro Phe Glu Cys Val Lys Cys Gly Lys Ala Phe Ala Ile Ser
 410 415 420
 Ser Asn Leu Ser Gly His Leu Arg Ile His Thr Gly Glu Lys Pro
 425 430 435
 Phe Glu Cys Leu Glu Cys Gly Lys Ala Phe Thr His Ser Ser Ser
 440 445 450
 Leu Asn Asn His Met Arg Thr His Ser Ala Lys Lys Pro Phe Thr
 455 460 465
 Cys Met Glu Cys Gly Lys Ala Phe Lys Phe Pro Thr Cys Val Asn
 470 475 480
 Leu His Met Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys
 485 490 495
 Gln Cys Gly Lys Ser Phe Ser Tyr Ser Asn Ser Phe Gln Leu His
 500 505 510
 Glu Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys
 515 520 525
 Gly Lys Ala Phe Ser Ser Ser Ser Phe Arg Asn His Glu Arg
 530 535 540
 Arg His Ala Asp Glu Arg Leu Ser Ala
 545

<210> 23
<211> 361
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 693452CD1

<400> 23

Met	Ala	Asp	Phe	Lys	Val	Leu	Ser	Ser	Gln	Asp	Ile	Lys	Trp	Ala
1				5					10				15	
Leu	His	Glu	Leu	Lys	Gly	His	Tyr	Ala	Ile	Thr	Arg	Lys	Ala	Leu
					20				25				30	
Ser	Asp	Ala	Ile	Lys	Lys	Trp	Gln	Glu	Leu	Ser	Pro	Glu	Thr	Ser
					35				40				45	
Gly	Lys	Arg	Lys	Lys	Arg	Lys	Gln	Met	Asn	Gln	Tyr	Ser	Tyr	Ile
					50				55				60	
Asp	Phe	Lys	Phe	Glu	Gln	Gly	Asp	Ile	Lys	Ile	Glu	Lys	Arg	Met
					65				70				75	
Phe	Phe	Leu	Glu	Asn	Lys	Arg	Arg	His	Cys	Arg	Ser	Tyr	Asp	Arg
					80				85				90	
Arg	Ala	Leu	Leu	Pro	Ala	Val	Gln	Gln	Glu	Gln	Glu	Phe	Tyr	Glu
					95				100				105	
Gln	Lys	Ile	Lys	Glu	Met	Ala	Glu	His	Glu	Asp	Phe	Leu	Leu	Ala
					110				115				120	
Leu	Gln	Met	Asn	Glu	Glu	Gln	Tyr	Gln	Lys	Asp	Gly	Gln	Leu	Ile
					125				130				135	
Glu	Cys	Arg	Cys	Cys	Tyr	Gly	Glu	Phe	Pro	Phe	Glu	Glu	Leu	Thr
					140				145				150	
Gln	Cys	Ala	Asp	Ala	His	Leu	Phe	Cys	Lys	Glu	Cys	Leu	Ile	Arg
					155				160				165	
Tyr	Ala	Gln	Glu	Ala	Val	Phe	Gly	Ser	Gly	Lys	Leu	Glu	Leu	Ser
					170				175				180	
Cys	Met	Glu	Gly	Ser	Cys	Thr	Cys	Ser	Phe	Pro	Thr	Ser	Glu	Leu
					185				190				195	
Glu	Lys	Val	Leu	Pro	Gln	Thr	Ile	Leu	Tyr	Lys	Tyr	Tyr	Glu	Arg
					200				205				210	
Lys	Ala	Glu	Glu	Glu	Val	Ala	Ala	Ala	Tyr	Ala	Asp	Glu	Leu	Val
					215				220				225	
Arg	Cys	Pro	Ser	Cys	Ser	Phe	Pro	Ala	Leu	Leu	Asp	Ser	Asp	Val
					230				235				240	
Lys	Arg	Phe	Ser	Cys	Pro	Asn	Pro	His	Cys	Arg	Lys	Glu	Thr	Cys
					245				250				255	
Arg	Lys	Cys	Gln	Gly	Leu	Trp	Lys	Glu	His	Asn	Gly	Leu	Thr	Cys
					260				265				270	
Glu	Glu	Leu	Ala	Glu	Lys	Asp	Asp	Ile	Lys	Tyr	Arg	Thr	Ser	Ile
					275				280				285	
Glu	Glu	Lys	Met	Thr	Ala	Ala	Arg	Ile	Arg	Lys	Cys	His	Lys	Cys
					290				295				300	
Gly	Thr	Gly	Leu	Ile	Lys	Ser	Glu	Gly	Cys	Asn	Arg	Met	Ser	Cys
					305				310				315	
Arg	Cys	Gly	Ala	Gln	Met	Cys	Tyr	Leu	Cys	Arg	Val	Ser	Ile	Asn
					320				325				330	
Gly	Tyr	Asp	His	Xaa	Cys	Gln	Gln	Ser	Arg	Leu	Thr	Gly	Ala	Pro
					335				340				345	
Phe	Gln	Gly	Val	Phe	Lys	Met	Leu	Ser	Met	Asp	Arg	Leu	Gln	Cys
					350				355				360	
Lys														

<210> 24
 <211> 241
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 839651CD1

<400> 24
 Met Trp Pro Ser Leu Glu Ala Leu Cys Ser Leu Phe Ala Ala Arg
 1 5 10 15
 Ser Thr Gly Ser Gln Ala Gin Ser Ala Pro Thr Pro Ala Trp Asp
 20 25 30
 Glu Asp Thr Ala Gln Ile Gly Pro Lys Arg Ile Arg Lys Ala Ala
 35 40 45
 Lys Arg Glu Leu Met Pro Cys Asp Phe Pro Gly Cys Gly Arg Ile
 50 55 60
 Phe Ser Asn Arg Gln Tyr Leu Asn His His Lys Lys Tyr Gln His
 65 70 75
 Ile His Gln Lys Ser Phe Ser Cys Pro Glu Pro Ala Cys Gly Lys
 80 85 90
 Ser Phe Asn Phe Lys Lys His Leu Lys Glu His Met Lys Leu His
 95 100 105
 Ser Asp Thr Arg Asp Tyr Ile Cys Glu Phe Cys Ala Arg Ser Phe
 110 115 120
 Arg Thr Ser Ser Asn Leu Val Ile His Arg Arg Ile His Thr Gly
 125 130 135
 Glu Lys Pro Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln
 140 145 150
 Lys Ala Ser Leu Asn Trp His Gln Arg Lys His Ala Glu Thr Val
 155 160 165
 Ala Ala Leu Arg Phe Pro Cys Glu Phe Cys Gly Lys Arg Phe Glu
 170 175 180
 Lys Pro Asp Ser Val Ala Ala His Arg Ser Lys Ser His Pro Ala
 185 190 195
 Leu Leu Leu Ala Pro Gln Glu Ser Pro Ser Gly Pro Leu Glu Pro
 200 205 210
 Cys Pro Ser Ile Ser Ala Pro Gly Pro Leu Gly Ser Ser Glu Gly
 215 220 225
 Ser Arg Pro Ser Ala Ser Pro Gln Ala Pro Thr Leu Leu Pro Gln
 230 235 240
 Gln

<210> 25
 <211> 576
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1253545CD1

<400> 25
 Met Ala Lys Ala Gln Glu Thr Gly His Leu Val Met Asp Val Arg
 1 5 10 15
 Arg Tyr Gly Lys Ala Gly Ser Pro Glu Thr Lys Trp Ile Asp Ala
 20 25 30
 Thr Ser Gly Ile Tyr Asn Ser Glu Lys Ser Ser Asn Leu Ser Val
 35 40 45
 Thr Thr Asp Phe Ser Glu Ser Leu Gln Ser Ser Asn Ile Glu Ser

50	55	60												
Lys	Glu	Ile	Asn	Gly	Ile	His	Asp	Glu	Ser	Asn	Ala	Phe	Glu	Ser
65									70					75
Lys	Ala	Ser	Glu	Ser	Ile	Ser	Leu	Lys	Asn	Leu	Lys	Arg	Arg	Ser
80									85					90
Gln	Phe	Phe	Glu	Gln	Gly	Ser	Ser	Asp	Ser	Val	Val	Pro	Asp	Leu
95									100					105
Pro	Val	Pro	Thr	Ile	Ser	Ala	Pro	Ser	Arg	Trp	Val	Trp	Asp	Gln
110									115					120
Glu	Glu	Glu	Arg	Lys	Arg	Gln	Glu	Arg	Trp	Gln	Lys	Glu	Gln	Asp
125									130					135
Arg	Ileu	Leu	Gln	Glu	Lys	Tyr	Gln	Arg	Glu	Gln	Glu	Lys	Leu	Arg
140									145					150
Glu	Glu	Trp	Gln	Arg	Ala	Lys	Gln	Glu	Ala	Glu	Arg	Glu	Asn	Ser
155									160					165
Lys	Tyr	Leu	Asp	Glu	Glu	Leu	Met	Val	Leu	Ser	Ser	Asn	Ser	Met
170									175					180
Ser	Leu	Thr	Thr	Arg	Glu	Pro	Ser	Leu	Ala	Thr	Trp	Glu	Ala	Thr
185									190					195
Trp	Ser	Glu	Gly	Ser	Lys	Ser	Ser	Asp	Arg	Glu	Gly	Thr	Arg	Ala
200									205					210
Gly	Glu	Glu	Glu	Arg	Arg	Gln	Pro	Gln	Glu	Glu	Val	Val	His	Glu
215									220					225
Asp	Gln	Gly	Lys	Lys	Pro	Gln	Asp	Gln	Leu	Val	Ile	Glu	Arg	Glu
230									235					240
Arg	Lys	Trp	Glu	Gln	Gln	Leu	Gln	Glu	Glu	Gln	Glu	Lys	Arg	
245									250					255
Leu	Gln	Ala	Glu	Ala	Glu	Glu	Gln	Lys	Arg	Pro	Ala	Glu	Glu	Gln
260									265					270
Lys	Arg	Gln	Ala	Glu	Ile	Glu	Arg	Glu	Thr	Ser	Val	Arg	Ile	Tyr
275									280					285
Gln	Tyr	Arg	Arg	Pro	Val	Asp	Ser	Tyr	Asp	Ile	Pro	Lys	Thr	Glu
290									295					300
Glu	Ala	Ser	Ser	Gly	Phe	Leu	Pro	Gly	Asp	Arg	Asn	Lys	Ser	Arg
305									310					315
Ser	Thr	Thr	Glu	Leu	Asp	Asp	Tyr	Ser	Thr	Asn	Lys	Asn	Gly	Asn
320									325					330
Asn	Lys	Tyr	Leu	Asp	Gln	Ile	Gly	Asn	Thr	Thr	Ser	Ser	Gln	Arg
335									340					345
Arg	Ser	Lys	Lys	Glu	Gln	Val	Pro	Ser	Gly	Ala	Glu	Leu	Glu	Arg
350									355					360
Gln	Gln	Ile	Leu	Gln	Glu	Met	Arg	Lys	Arg	Thr	Pro	Leu	His	Asn
365									370					375
Asp	Asn	Ser	Trp	Ile	Arg	Gln	Arg	Ser	Ala	Ser	Val	Asn	Lys	Glu
380									385					390
Pro	Val	Ser	Leu	Pro	Gly	Ile	Met	Arg	Arg	Gly	Glu	Ser	Leu	Asp
395									400					405
Asn	Ileu	Asp	Ser	Pro	Arg	Ser	Asn	Ser	Trp	Arg	Gln	Pro	Pro	Trp
410									415					420
Leu	Asn	Gln	Pro	Thr	Gly	Phe	Tyr	Ala	Ser	Ser	Ser	Val	Gln	Asp
425									430					435
Phe	Ser	Arg	Pro	Gln	Pro	Gln	Leu	Val	Ser	Thr	Ser	Asn	Arg	Ala
440									445					450
Tyr	Met	Arg	Asn	Pro	Ser	Ser	Ser	Val	Pro	Pro	Pro	Ser	Ala	Gly
455									460					465
Ser	Val	Lys	Thr	Ser	Thr	Thr	Gly	Val	Ala	Thr	Thr	Gln	Ser	Pro
470									475					480
Thr	Pro	Arg	Ser	His	Ser	Pro	Ser	Ala	Ser	Gln	Ser	Gly	Ser	Gln
485									490					495
Leu	Arg	Asn	Arg	Ser	Val	Ser	Gly	Lys	Arg	Ile	Cys	Ser	Tyr	Cys
500									505					510
Asn	Asn	Ile	Leu	Gly	Lys	Gly	Ala	Ala	Met	Ile	Ile	Glu	Ser	Leu
515									520					525
Gly	Leu	Cys	Tyr	His	Leu	His	Cys	Phe	Lys	Cys	Val	Ala	Cys	Glu

Cys	Asp	Leu	Gly	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Val	Arg	Ile	Arg	530	535	540
				545					550						555		
Asn	His	Gln	Leu	Tyr	Cys	Asn	Asp	Cys	Tyr	Leu	Arg	Phe	Lys	Ser	560	565	570
Gly	Arg	Pro	Thr												575		

<210> 26
<211> 408
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1425691CD1

<400> 26

Met	Pro	Gly	His	Leu	Gln	Glu	Gly	Phe	Gly	Cys	Val	Val	Thr	Asn	1	5	10	15
Arg	Phe	Asp	Gln	Leu	Phe	Asp	Asp	Glu	Ser	Asp	Pro	Phe	Glu	Val	20	25	30	
Leu	Lys	Ala	Ala	Glu	Asn	Lys	Lys	Glu	Ala	Gly	Gly	Gly	Gly	Gly	35	40	45	
Val	Gly	Gly	Pro	Gly	Ala	Lys	Ser	Ala	Ala	Gln	Ala	Ala	Ala	Gln	50	55	60	
Thr	Asn	Ser	Asn	Ala	Ala	Gly	Lys	Gln	Leu	Arg	Lys	Glu	Ser	Gln	65	70	75	
Lys	Asp	Arg	Lys	Asn	Pro	Leu	Pro	Pro	Ser	Val	Gly	Val	Val	Asp	80	85	90	
Lys	Lys	Glu	Glu	Thr	Gln	Pro	Pro	Val	Ala	Leu	Lys	Glu	Gly	Gly	95	100	105	
Ile	Arg	Arg	Val	Gly	Arg	Arg	Pro	Asp	Gln	Gln	Leu	Gln	Gly	Glu	110	115	120	
Gly	Lys	Ile	Ile	Asp	Arg	Arg	Pro	Glu	Arg	Arg	Pro	Pro	Arg	Glu	125	130	135	
Arg	Arg	Phe	Glu	Lys	Pro	Leu	Glu	Glu	Lys	Gly	Glu	Gly	Gly	Glu	140	145	150	
Phe	Ser	Val	Asp	Arg	Pro	Ile	Ile	Asp	Arg	Pro	Ile	Arg	Gly	Arg	155	160	165	
Gly	Gly	Leu	Gly	Arg	Gly	Arg	Gly	Gly	Arg	Gly	Arg	Gly	Met	Gly	170	175	180	
Arg	Gly	Asp	Gly	Phe	Asp	Ser	Arg	Gly	Lys	Arg	Glu	Phe	Asp	Arg	185	190	195	
His	Ser	Gly	Ser	Asp	Arg	Ser	Ser	Phe	Ser	His	Tyr	Ser	Gly	Leu	200	205	210	
Lys	His	Glu	Asp	Lys	Arg	Gly	Gly	Ser	Gly	Ser	His	Asn	Trp	Gly	215	220	225	
Thr	Val	Lys	Asp	Glu	Leu	Thr	Glu	Ser	Pro	Lys	Tyr	Ile	Gln	Lys	230	235	240	
Gln	Ile	Ser	Tyr	Asn	Tyr	Ser	Asp	Leu	Asp	Gln	Ser	Asn	Val	Thr	245	250	255	
Glu	Glu	Thr	Pro	Glu	Gly	Glu	Glu	His	His	Pro	Val	Ala	Asp	Thr	260	265	270	
Glu	Asn	Lys	Glu	Asn	Glu	Val	Glu	Val	Lys	Glu	Glu	Gly	Pro	275	280	285		
Lys	Glu	Met	Thr	Leu	Asp	Glu	Trp	Lys	Ala	Ile	Gln	Asn	Lys	Asp	290	295	300	
Arg	Ala	Lys	Val	Glu	Phe	Asn	Ile	Arg	Lys	Pro	Asn	Glu	Gly	Ala	305	310	315	
Asp	Gly	Gln	Trp	Lys	Lys	Gly	Phe	Val	Leu	His	Lys	Ser	Lys	Ser	320	325	330	
Glu	Glu	Ala	His	Ala	Glu	Asp	Ser	Val	Met	Asp	His	His	Phe	Arg				

	335	340	345
Lys Pro Ala Asn Asp Ile Thr Ser Gln	Leu Glu Ile Asn Phe	Gly	
350	355	360	
Asp Leu Gly Arg Pro Gly Arg Gly Gly	Arg Gly Gly Arg Gly		
365	370	375	
Arg Gly Arg Gly Gly Arg Pro Asn Arg	Gly Ser Arg Thr Asp	Lys	
380	385	390	
Ser Ser Ala Ser Ala Pro Asp Val Asp	Asp Pro Glu Ala Phe	Pro	
395	400	405	

Ala Leu Ala

<210> 27
<211> 810
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1484257CD1

<400> 27

Met Asp Phe Pro Gln His Ser Gln His Val	Leu Glu Gln Leu Asn		
1	5	10	15
Gln Gln Arg Gln Leu Gly Leu Leu Cys	Asp Cys Thr Phe Val Val		
20	25	30	
Asp Gly Val His Phe Lys Ala His Lys Ala	Val Leu Ala Ala Cys		
35	40	45	
Ser Glu Tyr Phe Lys Met Leu Phe Val Asp	Gln Lys Asp Val Val		
50	55	60	
His Leu Asp Ile Ser Asn Ala Ala Gly	Leu Gly Gln Val Leu Glu		
65	70	75	
Phe Met Tyr Thr Ala Lys Leu Ser Leu Ser	Pro Glu Asn Val Asp		
80	85	90	
Asp Val Leu Ala Val Ala Thr Phe Leu Gln	Met Gln Asp Ile Ile		
95	100	105	
Thr Ala Cys His Ala Leu Lys Ser Leu Ala	Glu Pro Ala Thr Ser		
110	115	120	
Pro Gly Gly Asn Ala Glu Ala Leu Ala	Gln Lys Val Cys Pro Val		
125	130	135	
Pro Ser Pro Gly Gly Asp Lys Arg Ala	Lys Glu Glu Lys Val Ala		
140	145	150	
Thr Ser Thr Leu Ser Arg Leu Glu Gln	Ala Gly Arg Ser Thr Pro		
155	160	165	
Ile Gly Pro Ser Arg Asp Leu Lys Glu	Glu Arg Gly Gly Gln Ala		
170	175	180	
Gln Ser Ala Ala Ser Gly Ala Glu Gln	Thr Glu Lys Ala Asp Ala		
185	190	195	
Pro Arg Glu Pro Pro Val Glu Leu Lys	Pro Asp Pro Thr Ser		
200	205	210	
Gly Met Ala Ala Ala Glu Ala Glu Ala	Ala Leu Ser Glu Ser Ser		
215	220	225	
Glu Gln Glu Met Glu Val Glu Pro Ala	Arg Lys Gly Glu Glu Glu		
230	235	240	
Gln Lys Glu Gln Glu Glu Gln Glu Glu	Glu Gly Ala Gly Pro Ala		
245	250	255	
Glu Val Lys Glu Gly Ser Gln Leu Glu	Asn Gly Glu Ala Pro		
260	265	270	
Glu Glu Asn Glu Asn Glu Glu Ser Ala	Gly Thr Asp Ser Gly Gln		
275	280	285	
Glu Leu Gly Ser Glu Ala Arg Gly Leu	Arg Ser Gly Thr Tyr Gly		
290	295	300	
Asp Arg Thr Glu Ser Lys Ala Tyr Gly	Ser Val Ile His Lys Cys		
305	310	315	

Glu Asp Cys Gly Lys Glu Phe Thr His Thr Gly Asn Phe Lys Arg
 320 325 330
 His Ile Arg Ile His Thr Gly Glu Lys Pro Phe Ser Cys Arg Glu
 335 340 345
 Cys Ser Lys Ala Phe Ser Asp Pro Ala Ala Cys Glu Ala His Glu
 350 355 360
 Lys Thr His Ser Pro Leu Lys Pro Tyr Gly Cys Glu Glu Cys Gly
 365 370 375
 Lys Ser Tyr Arg Leu Ile Ser Leu Leu Asn Leu His Lys Lys Arg
 380 385 390
 His Ser Gly Glu Ala Arg Tyr Arg Cys Glu Asp Cys Gly Lys Leu
 395 400 405
 Phe Thr Thr Ser Gly Asn Leu Lys Arg His Gln Leu Val His Ser
 410 415 420
 Gly Glu Lys Pro Tyr Gln Cys Asp Tyr Cys Gly Arg Ser Phe Ser
 425 430 435
 Asp Pro Thr Ser Lys Met Arg His Leu Glu Thr His Asp Thr Asp
 440 445 450
 Lys Glu His Lys Cys Pro His Cys Asp Lys Lys Phe Asn Gln Val
 455 460 465
 Gly Asn Leu Lys Ala His Leu Lys Ile His Ile Ala Asp Gly Pro
 470 475 480
 Leu Lys Cys Arg Glu Cys Gly Lys Gln Phe Thr Thr Ser Gly Asn
 485 490 495
 Leu Lys Arg His Leu Arg Ile His Ser Gly Glu Lys Pro Tyr Val
 500 505 510
 Cys Ile His Cys Gln Arg Gln Phe Ala Asp Pro Gly Ala Leu Gln
 515 520 525
 Arg His Val Arg Ile His Thr Gly Glu Lys Pro Cys Gln Cys Val
 530 535 540
 Met Cys Gly Lys Ala Phe Thr Gln Ala Ser Ser Leu Ile Ala His
 545 550 555
 Val Arg Gln His Thr Gly Glu Lys Pro Tyr Val Cys Glu Arg Cys
 560 565 570
 Gly Lys Arg Phe Val Gln Ser Ser Gln Leu Ala Asn His Ile Arg
 575 580 585
 His His Asp Asn Ile Arg Pro His Lys Cys Ser Val Cys Ser Lys
 590 595 600
 Ala Phe Val Asn Val Gly Asp Leu Ser Lys His Ile Ile Ile His
 605 610 615
 Thr Gly Glu Lys Pro Tyr Leu Cys Asp Lys Cys Gly Arg Gly Phe
 620 625 630
 Asn Arg Val Asp Asn Leu Arg Ser His Val Lys Thr Val His Gln
 635 640 645
 Gly Lys Ala Gly Ile Lys Ile Leu Glu Pro Glu Glu Gly Ser Glu
 650 655 660
 Val Ser Val Val Thr Val Asp Asp Met Val Thr Leu Ala Thr Glu
 665 670 675
 Ala Leu Ala Ala Thr Ala Val Thr Gln Leu Thr Val Val Pro Val
 680 685 690
 Gly Ala Ala Val Thr Ala Asp Glu Thr Glu Val Leu Lys Ala Glu
 695 700 705
 Ile Ser Lys Ala Val Lys Gln Val Gln Glu Glu Asp Pro Asn Thr
 710 715 720
 His Ile Leu Tyr Ala Cys Asp Ser Cys Gly Asp Lys Phe Leu Asp
 725 730 735
 Ala Asn Ser Leu Ala Gln His Val Arg Ile His Thr Ala Gln Ala
 740 745 750
 Leu Val Met Phe Gln Thr Asp Ala Asp Phe Tyr Gln Gln Tyr Gly
 755 760 765
 Pro Gly Gly Thr Trp Pro Ala Gly Gln Val Leu Gln Ala Gly Glu
 770 775 780
 Leu Val Phe Arg Pro Arg Asp Gly Ala Glu Gly Gln Pro Ala Leu
 785 790 795

Ala	Glu	Thr	Ser	Pro	Thr	Ala	Pro	Glu	Cys	Pro	Pro	Pro	Ala	Glu
800								805						810

<210> 28
 <211> 324
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1732368CD1

<400> 28

Met	Asp	Trp	Ser	Glu	Val	Lys	Glu	Glu	Lys	Asp	Asn	Leu	Glu	Ile
1				5			10						15	
Lys	Gln	Glu	Glu	Lys	Phe	Val	Gly	Gln	Cys	Ile	Lys	Glu	Glu	Leu
				20				25					30	
Met	His	Gly	Glu	Cys	Val	Lys	Glu	Glu	Lys	Asp	Phe	Leu	Lys	Lys
				35				40					45	
Glu	Ile	Val	Asp	Asp	Thr	Lys	Val	Lys	Glu	Glu	Pro	Pro	Ile	Asn
				50				55					60	
His	Pro	Val	Gly	Cys	Lys	Arg	Lys	Leu	Ala	Met	Ser	Arg	Cys	Glu
				65				70					75	
Thr	Cys	Gly	Thr	Glu	Glu	Ala	Lys	Tyr	Arg	Cys	Pro	Arg	Cys	Met
				80				85					90	
Arg	Tyr	Ser	Cys	Ser	Leu	Pro	Cys	Val	Lys	Lys	His	Lys	Ala	Glu
				95				100					105	
Leu	Thr	Cys	Asn	Gly	Val	Arg	Asp	Lys	Thr	Ala	Tyr	Ile	Ser	Ile
				110				115					120	
Gln	Gln	Phe	Thr	Glu	Met	Asn	Leu	Leu	Ser	Asp	Tyr	Arg	Phe	Leu
				125				130					135	
Glu	Asp	Val	Ala	Arg	Thr	Ala	Asp	His	Ile	Ser	Arg	Asp	Ala	Phe
				140				145					150	
Leu	Lys	Arg	Pro	Ile	Ser	Asn	Lys	Tyr	Met	Tyr	Phe	Met	Lys	Asn
				155				160					165	
Arg	Ala	Arg	Arg	Gln	Gly	Ile	Asn	Leu	Lys	Leu	Leu	Pro	Asn	Gly
				170				175					180	
Phe	Thr	Lys	Arg	Lys	Glu	Asn	Ser	Thr	Phe	Phe	Asp	Lys	Lys	
				185				190					195	
Gln	Gln	Phe	Cys	Trp	His	Val	Lys	Leu	Gln	Phe	Pro	Gln	Ser	Gln
				200				205					210	
Ala	Glu	Tyr	Ile	Glu	Lys	Arg	Val	Pro	Asp	Asp	Lys	Thr	Ile	Asn
				215				220					225	
Glu	Ile	Leu	Lys	Pro	Tyr	Ile	Asp	Pro	Glu	Lys	Ser	Asp	Pro	Val
				230				235					240	
Ile	Arg	Gln	Arg	Leu	Lys	Ala	Tyr	Ile	Arg	Ser	Gln	Thr	Gly	Val
				245				250					255	
Gln	Ile	Leu	Met	Lys	Ile	Glu	Tyr	Met	Gln	Gln	Asn	Leu	Val	Arg
				260				265					270	
Tyr	Tyr	Glu	Leu	Asp	Pro	Tyr	Lys	Ser	Leu	Leu	Asp	Asn	Leu	Arg
				275				280					285	
Asn	Lys	Val	Ile	Ile	Glu	Tyr	Pro	Thr	Leu	His	Val	Val	Leu	Lys
				290				295					300	
Gly	Ser	Asn	Asn	Asp	Met	Lys	Val	Leu	His	Gln	Val	Lys	Ser	Glu
				305				310					315	
Ser	Thr	Lys	Asn	Val	Gly	Asn	Glu	Asn						
				320										

<210> 29
 <211> 292

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1870914CD1

<400> 29

Met	Glu	Glu	Val	Pro	His	Asp	Cys	Pro	Gly	Ala	Asp	Ser	Ala	Gln
1					5				10					15
Ala	Gly	Arg	Gly	Ala	Ser	Cys	Gln	Gly	Cys	Pro	Asn	Gln	Arg	Leu
					20				25					30
Cys	Ala	Ser	Gly	Ala	Gly	Ala	Thr	Pro	Asp	Thr	Ala	Ile	Glu	Glu
					35				40					45
Ile	Lys	Glu	Lys	Met	Lys	Thr	Val	Lys	His	Lys	Ile	Leu	Val	Leu
					50				55					60
Ser	Gly	Lys	Gly		Val	Gly	Lys	Ser	Thr	Phe	Ser	Ala	His	Leu
					65				70					75
Ala	His	Gly	Leu	Ala	Glu	Asp	Glu	Asn	Thr	Gln	Ile	Ala	Leu	Leu
					80				85					90
Asp	Ile	Asp	Ile	Cys	Gly	Pro	Ser	Ile	Pro	Lys	Ile	Met	Gly	Leu
					95				100					105
Glu	Gly	Glu	Gln	Val	His	Gln	Ser	Gly	Ser	Gly	Trp	Ser	Pro	Val
					110				115					120
Tyr	Val	Glu	Asp	Asn	Leu	Gly	Val	Met	Ser	Val	Gly	Phe	Leu	Leu
					125				130					135
Ser	Ser	Pro	Asp	Asp	Ala	Val	Ile	Trp	Arg	Gly	Pro	Lys	Lys	Asn
					140				145					150
Gly	Met	Ile	Lys	Gln	Phe	Leu	Arg	Asp	Val	Asp	Trp	Gly	Glu	Val
					155				160					165
Asp	Tyr	Leu	Ile	Val	Asp	Thr	Pro	Pro	Gly	Thr	Ser	Asp	Glu	His
					170				175					180
Leu	Ser	Val	Val	Arg	His	Leu	Ala	Thr	Ala	His	Ile	Asp	Gly	Ala
					185				190					195
Val	Ile	Ile	Thr	Thr	Pro	Gln	Glu	Val	Ser	Leu	Gln	Asp	Val	Arg
					200				205					210
Lys	Glu	Ile	Asn	Phe	Cys	Arg	Lys	Val	Lys	Leu	Pro	Ile	Ile	Gly
					215				220					225
Val	Val	Glu	Asn	Met	Ser	Gly	Phe	Ile	Cys	Pro	Lys	Cys	Lys	Lys
					230				235					240
Glu	Ser	Gln	Ile	Phe	Pro	Pro	Thr	Thr	Gly	Gly	Ala	Glu	Leu	Met
					245				250					255
Cys	Gln	Asp	Leu	Glu	Val	Pro	Leu	Leu	Gly	Arg	Val	Pro	Leu	Asp
					260				265					270
Pro	Leu	Ile	Gly	Ile	Gln	Glu	Phe	Cys	Asn	Leu	His	Gln	Ser	Lys
					275				280					285
Glu	Glu	Asn	Leu	Ile	Ser	Ser								
					290									

<210> 30

<211> 259

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1910984CD1

<400> 30

Met	Glu	Cys	His	Leu	Lys	Thr	His	Tyr	Lys	Met	Glu	Tyr	Lys	Cys
1				5				10						15
Arg	Ile	Cys	Gln	Thr	Val	Lys	Ala	Asn	Gln	Leu	Glu	Leu	Glu	Thr
					20				25					30

His Thr Arg Glu His Arg Leu Gly Asn His Tyr Lys Cys Asp Gln
 35 40 45
 Cys Gly Tyr Leu Ser Lys Thr Ala Asn Lys Leu Ile Glu His Val
 50 55 60
 Arg Val His Thr Gly Glu Arg Pro Phe His Cys Asp Gln Cys Ser
 65 70 75
 Tyr Ser Cys Thr Gly Lys Asp Asn Leu Asn Leu His Lys Lys Leu
 80 85 90
 Lys His Ala Pro Arg Gln Thr Phe Ser Cys Glu Glu Cys Leu Phe
 95 100 105
 Lys Thr Thr His Pro Phe Val Phe Ser Arg His Val Lys Lys His
 110 115 120
 Gln Ser Gly Asp Cys Pro Glu Glu Asp Lys Lys Gly Leu Cys Pro
 125 130 135
 Ala Pro Lys Glu Pro Ala Gly Pro Gly Ala Pro Leu Leu Val Val
 140 145 150
 Gly Ser Ser Arg Asn Leu Leu Ser Pro Leu Ser Val Met Ser Ala
 155 160 165
 Ser Gln Ala Leu Gln Thr Val Ala Leu Ser Ala Ala His Gly Ser
 170 175 180
 Ser Ser Glu Pro Asn Leu Ala Leu Lys Ala Leu Ala Phe Asn Gly
 185 190 195
 Ser Pro Leu Arg Phe Asp Lys Tyr Arg Asn Ser Asp Phe Ala His
 200 205 210
 Leu Ile Pro Leu Thr Met Leu Tyr Pro Lys Asn His Leu Asp Leu
 215 220 225
 Thr Phe His Pro Pro Arg Pro Gln Thr Ala Pro Pro Ser Ile Pro
 230 235 240
 Ser Pro Lys His Ser Phe Leu Ala Tyr Leu Gly Leu Arg Glu Arg
 245 250 255
 Ala Glu Thr Val

<210> 31
 <211> 97
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1943040CD1

<400> 31
 Met Glu His His Ser His Gly Gly Arg Lys Arg Tyr Ala Cys
 1 5 10 15
 Gln Gly Cys Trp Lys Thr Phe His Phe Ser Leu Ala Leu Ala Glu
 20 25 30
 His Gln Lys Thr His Glu Lys Glu Lys Ser Tyr Ala Leu Gly Gly
 35 40 45
 Ala Arg Gly Pro Gln Pro Ser Thr Arg Glu Pro Arg Arg Gly Leu
 50 55 60
 Gly Arg Ala Val Pro Gln Arg Ala Trp Arg Ala Arg Leu Pro Pro
 65 70 75
 His Pro Gln Arg Arg Arg Gly Glu Pro Leu Cys Cys Pro Val Pro
 80 85 90
 Glu Gly Pro Leu Cys Arg Pro
 95

<210> 32
 <211> 812
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2076520CD1
 <400> 32
 Met Ile Glu Pro Asp Gln Cys Phe Cys Arg Phe Asp Leu Thr Gly
 1 5 10 15
 Thr Cys Asn Asp Asp Asp Cys Gln Trp Gln His Ile Gln Asp Tyr
 20 25 30
 Thr Leu Ser Arg Lys Gln Leu Phe Gln Asp Ile Leu Ser Tyr Asn
 35 40 45
 Leu Ser Leu Ile Gly Cys Ala Glu Thr Ser Thr Asn Glu Glu Ile
 50 55 60
 Thr Ala Ser Ala Glu Lys Tyr Val Glu Lys Leu Phe Gly Val Asn
 65 70 75
 Lys Asp Arg Met Ser Met Asp Gln Met Ala Val Leu Leu Val Ser
 80 85 90
 Asn Ile Asn Glu Ser Lys Gly His Thr Pro Pro Phe Thr Thr Tyr
 95 100 105
 Lys Asp Lys Arg Lys Trp Lys Pro Lys Phe Trp Arg Lys Pro Ile
 110 115 120
 Ser Asp Asn Ser Phe Ser Ser Asp Glu Glu Gln Ser Thr Gly Pro
 125 130 135
 Ile Lys Tyr Ala Phe Gln Pro Glu Asn Gln Ile Asn Val Pro Ala
 140 145 150
 Leu Asp Thr Val Val Thr Pro Asp Asp Val Arg Tyr Phe Thr Asn
 155 160 165
 Glu Thr Asp Asp Ile Ala Asn Leu Glu Ala Ser Val Leu Glu Asn
 170 175 180
 Pro Ser His Val Gln Leu Trp Leu Lys Leu Ala Tyr Lys Tyr Leu
 185 190 195
 Asn Gln Asn Glu Gly Glu Cys Ser Glu Ser Leu Asp Ser Ala Leu
 200 205 210
 Asn Val Leu Ala Arg Ala Leu Glu Asn Asn Lys Asp Asn Pro Glu
 215 220 225
 Ile Trp Cys His Tyr Leu Arg Leu Phe Ser Lys Arg Gly Thr Lys
 230 235 240
 Asp Glu Val Gln Glu Met Cys Glu Thr Ala Val Glu Tyr Ala Pro
 245 250 255
 Asp Tyr Gln Ser Phe Trp Thr Phe Leu His Leu Glu Ser Thr Phe
 260 265 270
 Glu Glu Lys Asp Tyr Val Cys Glu Arg Met Leu Glu Phe Leu Met
 275 280 285
 Gly Ala Ala Lys Gln Glu Thr Ser Asn Ile Leu Ser Phe Gln Leu
 290 295 300
 Leu Glu Ala Leu Leu Phe Arg Val Gln Leu His Ile Phe Thr Gly
 305 310 315
 Arg Cys Gln Ser Ala Leu Ala Ile Leu Gln Asn Ala Leu Lys Ser
 320 325 330
 Ala Asn Asp Gly Ile Val Ala Glu Tyr Leu Lys Thr Ser Asp Arg
 335 340 345
 Cys Leu Ala Trp Leu Ala Tyr Ile His Leu Ile Glu Phe Asn Ile
 350 355 360
 Leu Pro Ser Lys Phe Tyr Asp Pro Ser Asn Asp Asn Pro Ser Arg
 365 370 375
 Ile Val Asn Thr Glu Ser Phe Val Met Pro Trp Gln Ala Val Gln
 380 385 390
 Asp Val Lys Thr Asn Pro Asp Met Leu Leu Ala Val Phe Glu Asp
 395 400 405
 Ala Val Lys Ala Cys Thr Asp Glu Ser Leu Ala Val Glu Glu Arg
 410 415 420
 Ile Glu Ala Cys Leu Pro Leu Tyr Thr Asn Met Ile Ala Leu His
 425 430 435
 Gln Leu Leu Glu Arg Tyr Glu Ala Ala Met Glu Leu Cys Lys Ser

440	445	450
Leu Ieu Glu Ser Cys Pro Ile Asn Cys Gln	Leu Leu Glu Ala	Leu
455	460	465
Val Ala Leu Tyr Leu Gln Thr Asn Gln His	Asp Lys Ala Arg	Ala
470	475	480
Val Trp Leu Thr Ala Phe Glu Lys Asn Pro	Gln Asn Ala Glu	Val
485	490	495
Phe Tyr His Met Cys Lys Phe Phe Ile Leu	Gln Asn Arg Gly	Asp
500	505	510
Asn Leu Leu Pro Phe Leu Arg Lys Phe Ile Ala	Ser Phe Phe Lys	
515	520	525
Pro Gly Phe Glu Lys Tyr Asn Asn Leu Asp	Leu Phe Arg Tyr	Leu
530	535	540
Leu Asn Ile Pro Gly Pro Ile Asp Ile Pro	Ser Arg Leu Cys	Lys
545	550	555
Gly Asn Phe Asp Asp Asp Met Phe Asn His	Gln Val Pro Tyr	Leu
560	565	570
Trp Leu Ile Tyr Cys Leu Cys His Pro	Leu Gln Ser Ser Ile	Lys
575	580	585
Glu Thr Val Glu Ala Tyr Glu Ala Ala	Leu Gly Val Ala Met	Arg
590	595	600
Cys Asp Ile Val Gln Lys Ile Trp Met Asp	Tyr Leu Val Phe	Ala
605	610	615
Asn Asn Arg Ala Ala Gly Ser Arg Asn Lys	Val Gln Glu Phe	Arg
620	625	630
Phe Phe Thr Asp Leu Val Asn Arg Cys	Leu Val Thr Val Pro	Ala
635	640	645
Arg Tyr Pro Ile Pro Phe Ser Ser Ala Asp	Tyr Trp Ser Asn	Tyr
650	655	660
Glu Phe His Asn Arg Val Ile Phe Phe	Tyr Leu Ser Cys Val	Pro
665	670	675
Lys Thr Gln His Ser Lys Thr Leu Glu Arg	Phe Cys Ser Val	Met
680	685	690
Pro Ala Asn Ser Gly Leu Ala Leu Arg	Leu Leu Gln His Glu	Trp
695	700	705
Glu Glu Ser Asn Val Gln Ile Leu Lys	Leu Gln Ala Lys Met	Phe
710	715	720
Thr Tyr Asn Ile Pro Thr Cys Leu Ala	Thr Trp Lys Ile Ala	Ile
725	730	735
Ala Ala Glu Ile Val Leu Lys Gly Gln Arg	Glu Val His Arg	Leu
740	745	750
Tyr Gln Arg Ala Leu Gln Lys Leu Pro	Leu Cys Ala Ser	Leu Trp
755	760	765
Lys Asp Gln Leu Leu Phe Glu Ala Ser	Glu Gly Gly Lys Thr	Asp
770	775	780
Asn Ieu Arg Lys Leu Val Ser Lys Cys	Gln Glu Ile Gly Val	Ser
785	790	795
Leu Asn Glu Leu Leu Asn Leu Asn Ser Asn	Lys Thr Glu Ser	Lys
800	805	810
Asn His		

<210> 33
 <211> 392
 <212> FRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2291241CD1

<400> 33
 Met Asp Ala Leu Val Glu Asp Asp Ile Cys Ile Leu Asn His Glu

1	5	10	15											
Lys	Ala	His	Lys	Arg	Asp	Thr	Val	Thr	Pro	Val	Ser	Ile	Tyr	Ser
							20			25				30
Gly	Asp	Glu	Ser	Val	Ala	Ser	His	Phe	Ala	Leu	Val	Thr	Ala	Tyr
							35			40				45
Glu	Asp	Ile	Lys	Lys	Arg	Leu	Lys	Asp	Ser	Glu	Lys	Glu	Asn	Ser
							50			55				60
Leu	Leu	Lys	Lys	Arg	Ile	Arg	Phe	Leu	Glu	Glu	Lys	Leu	Ile	Ala
							65			70				75
Arg	Phe	Glu	Glu	Glu	Thr	Ser	Ser	Val	Gly	Arg	Glu	Gln	Val	Asn
							80			85				90
Lys	Ala	Tyr	His	Ala	Tyr	Arg	Glu	Val	Cys	Ile	Asp	Arg	Asp	Asn
							95			100				105
Leu	Lys	Ser	Lys	Leu	Asp	Lys	Met	Asn	Lys	Asp	Asn	Ser	Glu	Ser
							110			115				120
Leu	Lys	Val	Leu	Asn	Glu	Gln	Leu	Gln	Ser	Lys	Glu	Val	Glu	Leu
							125			130				135
Leu	Gln	Leu	Arg	Thr	Glu	Val	Glu	Thr	Gln	Gln	Val	Met	Arg	Asn
							140			145				150
Leu	Asn	Pro	Pro	Ser	Ser	Asn	Trp	Glu	Val	Glu	Lys	Leu	Ser	Cys
							155			160				165
Asp	Leu	Lys	Ile	His	Gly	Leu	Glu	Gln	Glu	Leu	Glu	Leu	Met	Arg
							170			175				180
Lys	Glu	Cys	Ser	Asp	Leu	Lys	Ile	Glu	Leu	Gln	Lys	Ala	Lys	Gln
							185			190				195
Thr	Asp	Pro	Tyr	Gln	Glu	Asp	Asn	Leu	Lys	Ser	Arg	Asp	Leu	Gln
							200			205				210
Lys	Leu	Ser	Ile	Ser	Ser	Asp	Asn	Met	Gln	His	Ala	Tyr	Trp	Glu
							215			220				225
Leu	Lys	Arg	Glu	Met	Ser	Asn	Leu	His	Leu	Val	Thr	Gln	Val	Gln
							230			235				240
Ala	Glu	Leu	Leu	Arg	Lys	Leu	Lys	Thr	Ser	Thr	Ala	Ile	Lys	Lys
							245			250				255
Ala	Cys	Ala	Pro	Val	Gly	Cys	Ser	Glu	Asp	Leu	Gly	Arg	Asp	Ser
							260			265				270
Thr	Lys	Leu	His	Leu	Met	Asn	Phe	Thr	Ala	Thr	Tyr	Thr	Arg	His
							275			280				285
Pro	Pro	Leu	Leu	Pro	Asn	Gly	Lys	Ala	Leu	Cys	His	Thr	Thr	Ser
							290			295				300
Ser	Pro	Leu	Pro	Gly	Asp	Val	Lys	Val	Leu	Ser	Glu	Lys	Ala	Ile
							305			310				315
Leu	Gln	Ser	Trp	Thr	Asp	Asn	Glu	Arg	Ser	Ile	Pro	Asn	Asp	Gly
							320			325				330
Thr	Cys	Phe	Gln	Glu	His	Ser	Ser	Tyr	Gly	Arg	Asn	Ser	Leu	Glu
							335			340				345
Asp	Asn	Ser	Trp	Val	Phe	Pro	Ser	Pro	Pro	Lys	Ser	Ser	Glu	Thr
							350			355				360
Ala	Phe	Gly	Glu	Thr	Lys	Thr	Lys	Thr	Leu	Pro	Leu	Pro	Asn	Leu
							365			370				375
Pro	Pro	Leu	His	Tyr	Leu	Asp	Gln	His	Asn	Gln	Asn	Cys	Leu	Tyr
							380			385				390
Lys Asn														

<210> 34
 <211> 60
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte cione 2329692CD1

<400> 34
 Met Ile Tyr Phe Phe Ile Ile Ile Val Glu Tyr Phe Tyr Gly Lys
 1 5 10 15
 Ile Phe Val Val Leu Ile Ile Pro Ile Lys Ile Met Pro Asn Thr
 20 25 30
 Lys Tyr Glu Phe Tyr Asp Val His Phe Val Leu Gly Ile Lys Arg
 35 40 45
 Lys Lys His Thr Ser Trp Lys Ser Val Ser Cys Phe Leu Leu Leu
 50 55 60

<210> 35
 <211> 209
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2474110CD1

<400> 35
 Met Asp Pro Ser Asp Ile Tyr Ala Val Ile Gln Ile Pro Gly Ser
 1 5 10 15
 Arg Glu Phe Asp Val Ser Phe Arg Ser Ala Glu Lys Leu Ala Leu
 20 25 30
 Phe Leu Arg Val Tyr Glu Glu Lys Arg Glu Gln Glu Asp Cys Trp
 35 40 45
 Glu Asn Phe Val Val Leu Gly Arg Ser Lys Ser Ser Leu Lys Thr
 50 55 60
 Leu Phe Ile Leu Phe Arg Asn Glu Thr Val Asp Val Glu Asp Ile
 65 70 75
 Val Thr Trp Leu Lys Arg His Cys Asp Val Leu Ala Val Pro Val
 80 85 90
 Lys Val Thr Asp Arg Phe Gly Ile Trp Thr Gly Glu Tyr Lys Cys
 95 100 105
 Glu Ile Glu Leu Arg Gln Gly Glu Gly Gly Val Arg His Leu Pro
 110 115 120
 Gly Ala Phe Phe Leu Gly Ala Glu Arg Gly Tyr Ser Trp Tyr Lys
 125 130 135
 Gly Gln Pro Lys Thr Cys Phe Lys Cys Gly Ser Arg Thr His Met
 140 145 150
 Ser Gly Ser Cys Thr Gln Asp Arg Cys Phe Arg Cys Arg Glu Glu
 155 160 165
 Gly His Leu Ser Pro Tyr Cys Arg Lys Gly Ile Val Cys Asn Leu
 170 175 180
 Cys Gly Lys Arg Gly His Ala Phe Ala Gln Cys Pro Lys Ala Val
 185 190 195
 His Asn Ser Val Ala Ala Gln Leu Thr Gly Val Ala Gly His
 200 205

<210> 36
 <211> 257
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2495790CD1

<400> 36
 Met Val Gly Ala Gly Ile Ser Thr Pro Ser Gly Ile Pro Asp Phe
 1 5 10 15

Arg	Ser	Pro	Gly	Ser	Gly	Leu	Tyr	Ser	Asn	Leu	Gln	Gln	Tyr	Asp
						20				25			30	
Leu	Pro	Tyr	Pro	Glu	Ala	Ile	Phe	Glu	Leu	Pro	Phe	Phe	Phe	His
					35				40			45		
Asn	Pro	Lys	Pro	Phe	Phe	Thr	Leu	Ala	Lys	Glu	Leu	Tyr	Pro	Gly
					50				55			60		
Asn	Tyr	Lys	Pro	Asn	Val	Thr	His	Tyr	Phe	Leu	Arg	Leu	Leu	His
					65				70			75		
Asp	Lys	Gly	Leu	Leu	Leu	Arg	Leu	Tyr	Thr	Gln	Asn	Ile	Asp	Gly
					80				85			90		
Leu	Glu	Arg	Val	Ser	Gly	Ile	Pro	Ala	Ser	Lys	Leu	Val	Glu	Ala
					95				100			105		
His	Gly	Thr	Phe	Ala	Ser	Ala	Thr	Cys	Thr	Val	Cys	Gln	Arg	Pro
					110				115			120		
Phe	Pro	Gly	Glu	Asp	Ile	Arg	Ala	Asp	Val	Met	Ala	Asp	Arg	Val
					125				130			135		
Pro	Arg	Cys	Pro	Val	Cys	Thr	Gly	Val	Val	Lys	Pro	Asp	Ile	Val
					140				145			150		
Phe	Phe	Gly	Glu	Pro	Leu	Pro	Gln	Arg	Phe	Leu	Leu	His	Val	Val
					155				160			165		
Asp	Phe	Pro	Met	Ala	Asp	Leu	Leu	Leu	Ile	Leu	Gly	Thr	Ser	Leu
					170				175			180		
Glu	Val	Glu	Pro	Phe	Ala	Ser	Leu	Thr	Glu	Ala	Val	Arg	Ser	Ser
					185				190			195		
Val	Pro	Arg	Leu	Leu	Ile	Asn	Arg	Asp	Leu	Val	Gly	Pro	Leu	Ala
					200				205			210		
Trp	His	Pro	Arg	Ser	Arg	Asp	Val	Ala	Gln	Leu	Gly	Asp	Val	Val
					215				220			225		
His	Gly	Val	Glu	Ser	Leu	Val	Glu	Leu	Leu	Gly	Trp	Thr	Glu	Glu
					230				235			240		
Met	Arg	Asp	Leu	Val	Gln	Arg	Glu	Thr	Gly	Lys	Leu	Asp	Gly	Pro
					245				250			255		
Asp	Lys													

<210> 37

<211> 136

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2661254CD1

<400> 37

Met	Ala	Thr	Lys	Arg	Leu	Phe	Gly	Ala	Thr	Arg	Thr	Trp	Ala	Gly
1					5				10			15		
Trp	Gly	Ala	Trp	Glu	Leu	Leu	Asn	Pro	Ala	Thr	Ser	Gly	Arg	Leu
					20				25			30		
Leu	Ala	Arg	Asp	Tyr	Ala	Lys	Lys	Pro	Val	Met	Lys	Gly	Ala	Lys
					35				40			45		
Ser	Gly	Lys	Gly	Ala	Val	Thr	Ser	Glu	Ala	Leu	Lys	Asp	Pro	Asp
					50				55			60		
Val	Cys	Thr	Asp	Pro	Val	Gln	Leu	Thr	Thr	Tyr	Ala	Met	Gly	Val
					65				70			75		
Asn	Ile	Tyr	Lys	Glu	Gly	Gln	Asp	Val	Pro	Leu	Lys	Pro	Asp	Ala
					80				85			90		
Glu	Tyr	Pro	Glu	Trp	Leu	Phe	Glu	Met	Asn	Leu	Gly	Pro	Pro	Lys
					95				100			105		
Thr	Leu	Glu	Glu	Leu	Asp	Pro	Glu	Ser	Arg	Glu	Tyr	Trp	Arg	Arg
					110				115			120		
Leu	Arg	Lys	Gln	Asn	Ile	Trp	Arg	His	Asn	Arg	Leu	Ser	Lys	Asn
					125				130			135		

Lys Arg Leu

<210> 38
 <211> 999
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2674047CD1

<400> 38
 Met Gly Pro Ser Arg Leu Arg Leu Gly Phe Phe Xaa Lys Arg Gly
 1 5 10 15
 Cys Ser Arg Ala Met Val Glu Ile Glu Leu Phe Arg Ala Ser Gly
 20 25 30
 Asn Leu Val Ile Thr Arg Glu Ile Asp Val Ala Lys Asn Gln Ser
 35 40 45
 Phe Trp Phe Ile Asn Lys Lys Ser Thr Thr Gln Xaa Ile Val Glu
 50 55 60
 Glu Lys Val Ala Ala Leu Asn Ile Gln Val Gly Asn Leu Cys Gln
 65 70 75
 Phe Leu Pro Gln Asp Lys Val Gly Glu Phe Ala Lys Leu Ser Lys
 80 85 90
 Ile Glu Leu Leu Glu Ala Thr Glu Lys Ser Ile Gly Pro Pro Glu
 95 100 105
 Met His Lys Tyr His Cys Glu Leu Lys Asn Leu Arg Glu Lys Glu
 110 115 120
 Lys Gin Leu Glu Thr Ser Cys Lys Glu Lys Thr Glu Tyr Leu Gln
 125 130 135
 Lys Met Val Gln Arg Asn Glu Arg Tyr Lys Gln Asp Val Glu Arg
 140 145 150
 Phe Tyr Glu Arg Lys Arg His Leu Asp Leu Ile Glu Met Leu Glu
 155 160 165
 Ala Lys Arg Pro Trp Val Glu Tyr Glu Asn Val Arg Gln Glu Tyr
 170 175 180
 Glu Glu Val Lys Leu Val Arg Asp Arg Val Lys Glu Glu Val Arg
 185 190 195
 Lys Ile Lys Glu Gly Gln Ile Pro Ile Thr Cys Arg Ile Glu Glu
 200 205 210
 Met Glu Asn Glu Arg His Asn Leu Glu Ala Arg Ile Lys Glu Lys
 215 220 225
 Ala Thr Asp Ile Lys Glu Ala Ser Gln Lys Cys Lys Gln Lys Gln
 230 235 240
 Asp Val Ile Glu Arg Lys Asp Lys His Ile Glu Glu Leu Gln Gln
 245 250 255
 Ala Leu Ile Val Lys Gln Asn Glu Glu Leu Asp Arg Gln Arg Arg
 260 265 270
 Ile Gly Asn Thr Arg Lys Met Ile Glu Asp Leu Gln Asn Glu Leu
 275 280 285
 Lys Thr Thr Glu Asn Cys Glu Asn Leu Gln Pro Gln Ile Asp Ala
 290 295 300
 Ile Thr Asn Asp Leu Arg Arg Ile Gln Asp Glu Lys Ala Leu Cys
 305 310 315
 Glu Gly Glu Ile Ile Asp Lys Arg Arg Glu Arg Glu Thr Leu Glu
 320 325 330
 Lys Glu Lys Lys Ser Val Asp Asp His Ile Val Arg Phe Asp Asn
 335 340 345
 Leu Met Asn Gln Lys Glu Asp Lys Leu Arg Gln Arg Phe Arg Asp
 350 355 360
 Thr Tyr Asp Ala Val Leu Trp Leu Arg Asn Asn Arg Asp Lys Phe
 365 370 375

Lys Gln Arg Val Cys Glu Pro Ile Met Leu Thr Ile Asn Met Lys
 380 385 390
 Asp Asn Lys Asn Ala Lys Tyr Ile Glu Asn His Ile Pro Ser Asn
 395 400 405
 Asp Leu Arg Ala Phe Val Phe Glu Ser Gln Glu Asp Met Glu Val
 410 415 420
 Phe Leu Lys Glu Val Arg Asp Asn Lys Lys Leu Arg Val Asn Ala
 425 430 435
 Val Ile Ala Pro Lys Ser Ser Tyr Ala Asp Lys Ala Pro Ser Arg
 440 445 450
 Ser Leu Asn Glu Leu Lys Gln Tyr Gly Phe Phe Ser Tyr Leu Arg
 455 460 465
 Glu Leu Phe Asp Ala Pro Asp Pro Val Met Ser Tyr Leu Cys Cys
 470 475 480
 Gln Tyr His Ile His Glu Val Pro Val Gly Thr Glu Lys Thr Arg
 485 490 495
 Glu Arg Ile Glu Arg Val Ile Gln Glu Thr Arg Leu Lys Gln Ile
 500 505 510
 Tyr Thr Ala Glu Glu Lys Tyr Val Val Lys Thr Ser Phe Tyr Ser
 515 520 525
 Asn Lys Val Ile Ser Ser Asn Thr Ser Leu Lys Val Ala Gln Phe
 530 535 540
 Leu Thr Val Thr Val Asp Leu Glu Gln Arg Arg His Leu Glu Glu
 545 550 555
 Gln Leu Lys Glu Ile His Arg Lys Leu Gln Ala Val Asp Ser Gly
 560 565 570
 Leu Ile Ala Leu Arg Glu Thr Ser Lys His Leu Glu His Lys Asp
 575 580 585
 Asn Glu Leu Arg Gln Lys Lys Lys Glu Leu Leu Glu Arg Lys Thr
 590 595 600
 Lys Lys Arg Gln Leu Glu Gln Lys Ile Ser Ser Lys Leu Gly Ser
 605 610 615
 Leu Lys Leu Met Glu Gln Asp Thr Cys Asn Leu Glu Glu Glu
 620 625 630
 Arg Lys Ala Ser Thr Lys Ile Lys Glu Ile Asn Val Gln Lys Ala
 635 640 645
 Lys Leu Val Thr Glu Leu Thr Asn Leu Ile Lys Ile Cys Thr Ser
 650 655 660
 Leu His Ile Gln Lys Val Asp Leu Ile Leu Gln Asn Thr Thr Val
 665 670 675
 Ile Ser Glu Lys Asn Lys Leu Glu Ser Asp Tyr Met Ala Ala Ser
 680 685 690
 Ser Gln Leu Arg Leu Thr Glu Gln His Phe Ile Glu Leu Asp Glu
 695 700 705
 Asn Arg Gln Arg Leu Leu Gln Lys Cys Lys Glu Leu Met Lys Arg
 710 715 720
 Ala Arg Gln Val Cys Asn Leu Gly Ala Glu Gln Thr Leu Pro Gln
 725 730 735
 Glu Tyr Gln Thr Gln Val Pro Thr Ile Pro Asn Gly His Asn Ser
 740 745 750
 Ser Leu Pro Met Val Phe Gln Asp Leu Pro Asn Thr Leu Asp Glu
 755 760 765
 Ile Asp Ala Leu Leu Thr Glu Glu Arg Ser Arg Ala Ser Cys Phe
 770 775 780
 Thr Gly Leu Asn Pro Thr Ile Val Gln Glu Tyr Thr Lys Arg Glu
 785 790 795
 Glu Glu Ile Glu Gln Leu Thr Glu Glu Leu Lys Gly Lys Lys Val
 800 805 810
 Glu Leu Asp Gln Tyr Arg Glu Asn Ile Ser Gln Val Lys Glu Arg
 815 820 825
 Trp Leu Asn Pro Leu Lys Glu Leu Val Glu Lys Ile Asn Glu Lys
 830 835 840
 Phe Ser Asn Phe Phe Ser Ser Met Gln Cys Ala Gly Glu Val Asp
 845 850 855

Leu His Thr Glu Asn Glu Glu Asp Tyr Asp Lys Tyr Gly Ile Arg
 860 865 870
 Ile Arg Val Lys Phe Arg Ser Ser Thr Gln Leu His Glu Leu Thr
 875 880 885
 Pro His His Gln Ser Gly Gly Glu Arg Ser Val Ser Thr Met Leu
 890 895 900
 Tyr Ieu Met Ala Leu Gln Glu Leu Asn Arg Cys Pro Phe Arg Val
 905 910 915
 Val Asp Glu Ile Asn Gln Gly Met Asp Pro Ile Asn Glu Arg Arg
 920 925 930
 Val Phe Glu Met Val Val Asn Thr Ala Cys Lys Glu Asn Thr Ser
 935 940 945
 Gln Tyr Phe Phe Ile Thr Pro Lys Leu Leu Gln Asn Leu Pro Tyr
 950 955 960
 Ser Glu Lys Met Thr Val Leu Phe Val Tyr Asn Gly Pro His Met
 965 970 975
 Leu Glu Pro Asn Thr Trp Asn Leu Lys Ala Phe Gln Arg Arg Arg
 980 985 990
 Arg Arg Ile Thr Phe Thr Gln Pro Ser
 995

<210> 39
 <211> 377
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2762174CD1

<400> 39
 Met Ala Glu Leu Glu Ser His Pro Cys Asp Ile Cys Gly Pro Ile
 1 5 10 15
 Leu Lys Asp Thr Leu His Leu Ala Lys Tyr His Gly Gly Lys Ala
 20 25 30
 Arg Gln Lys Pro Tyr Leu Cys Gly Ala Cys Gly Lys Gln Phe Trp
 35 40 45
 Phe Ser Thr Asp Phe Asp Gln His Gln Asn Gln Pro Asn Gly Gly
 50 55 60
 Lys Leu Phe Pro Arg Lys Glu Gly Arg Asp Ser Val Lys Ser Cys
 65 70 75
 Arg Val His Val Pro Glu Lys Thr Leu Thr Cys Gly Lys Gly Arg
 80 85 90
 Arg Asp Phe Ser Ala Thr Ser Gly Leu Leu Gln His Gln Ala Ser
 95 100 105
 Leu Ser Ser Met Lys Pro His Lys Ser Thr Lys Leu Val Ser Gly
 110 115 120
 Phe Leu Met Gly Gln Arg Tyr His Arg Cys Gly Glu Cys Gly Lys
 125 130 135
 Ala Phe Thr Arg Lys Asp Thr Leu Ala Arg His Gln Arg Ile His
 140 145 150
 Thr Gly Glu Arg Pro Tyr Glu Cys Asn Glu Cys Gly Lys Phe Phe
 155 160 165
 Ser Gln Ser Tyr Asp Leu Phe Lys His Gln Thr Val His Thr Gly
 170 175 180
 Glu Arg Pro Tyr Glu Cys Ser Glu Cys Gly Lys Phe Phe Arg Gln
 185 190 195
 Ile Ser Gly Leu Ile Glu His Arg Arg Val His Thr Gly Glu Arg
 200 205 210
 Leu Tyr Gln Cys Gly Lys Cys Gly Lys Phe Phe Ser Ser Lys Ser
 215 220 225
 Asn Leu Ile Arg His Gln Glu Val His Thr Gly Ala Arg Pro Tyr
 230 235 240

Val Cys Ser Glu Cys Gly Lys Glu Phe Ser Arg Lys His Thr Leu
 245 250 255
 Val Leu His Gln Arg Thr His Thr Gly Glu Arg Pro Tyr Glu Cys
 260 265 270
 Ser Glu Cys Gly Lys Ala Phe Ser Gln Ser Ser His Leu Asn Val
 275 280 285
 His Trp Arg Ile His Ser Ser Asp Tyr Glu Cys Ser Arg Cys Gly
 290 295 300
 Lys Ala Phe Ser Cys Ile Ser Lys Leu Ile Gln His Gln Lys Val
 305 310 315
 His Ser Gly Glu Lys Pro Tyr Glu Cys Ser Lys Cys Gly Lys Ala
 320 325 330
 Phe Thr Gln Arg Pro Asn Leu Ile Arg His Trp Lys Val His Thr
 335 340 345
 Gly Glu Arg Pro Tyr Val Cys Ser Glu Cys Gly Arg Glu Phe Ile
 350 355 360
 Arg Lys Gln Thr Leu Val Leu His Gln Arg Val His Ala Gly Glu
 365 370 375
 Lys Leu

<210> 40
<211> 324
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte cione 2765991CD1

<400> 40
 Met Asp Phe Pro Lys His Asn Gln Ile Ile Thr Glu Glu Thr Gly
 1 5 10 15
 Ser Ala Val Glu Pro Ser Asp Glu Ile Lys Arg Ala Ser Gly Asp
 20 25 30
 Val Gln Thr Met Lys Ile Ser Ser Val Pro Asn Ser Leu Ser Lys
 35 40 45
 Arg Asn Val Ser Leu Thr Arg Ser His Ser Val Gly Gly Pro Leu
 50 55 60
 Gln Asn Ile Asp Phe Thr Gln Arg Pro Phe His Gly Ile Ser Thr
 65 70 75
 Val Ser Leu Pro Gly Ser Leu Gln Glu Val Val Asp Pro Leu Gly
 80 85 90
 Lys Arg Pro Asn Pro Pro Pro Val Ser Val Pro Tyr Leu Ser Pro
 95 100 105
 Leu Val Leu Arg Lys Glu Leu Glu Ser Leu Leu Glu Asn Glu Gly
 110 115 120
 Asp Gln Val Ile His Thr Ser Ser Phe Ile Asn Gln His Pro Ile
 125 130 135
 Ile Phe Trp Asn Leu Val Trp Tyr Phe Arg Arg Leu Asp Leu Pro
 140 145 150
 Ser Asn Leu Pro Gly Leu Ile Leu Thr Ser Glu His Cys Asn Glu
 155 160 165
 Gly Val Gln Leu Pro Leu Ser Ser Leu Ser Gln Asp Ser Lys Leu
 170 175 180
 Val Tyr Ile Arg Leu Leu Trp Asp Asn Ile Asn Leu His Gln Glu
 185 190 195
 Pro Arg Glu Pro Leu Tyr Val Ser Trp Arg Asn Phe Asn Ser Glu
 200 205 210
 Lys Lys Ser Ser Leu Leu Ser Glu Glu Gln Gln Glu Thr Ser Thr
 215 220 225
 Leu Val Glu Thr Ile Arg Gln Ser Ile Gln His Asn Asn Val Leu
 230 235 240

Lys	Pro	Ile	Asn	Leu	Leu	Ser	Gln	Gln	Met	Lys	Pro	Gly	Met	Lys
				245					250				255	
Arg	Gln	Arg	Ser	Leu	Tyr	Arg	Glu	Ile	Leu	Phe	Leu	Ser	Leu	Val
				260					265				270	
Ser	Leu	Gly	Arg	Glu	Asn	Ile	Asp	Ile	Glu	Ala	Phe	Asp	Asn	Glu
				275					280				285	
Tyr	Gly	Ile	Ala	Tyr	Asn	Ser	Leu	Ser	Ser	Glu	Ile	Leu	Glu	Arg
				290					295				300	
Leu	Gln	Lys	Ile	Asp	Ala	Pro	Pro	Ser	Ala	Ser	Val	Glu	Trp	Cys
				305					310				315	
Arg	Lys	Cys	Phe	Gly	Ala	Pro	Leu	Ile						
				320										

<210> 41
 <211> 270
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2775157CD1

<400> 41															
Met	Pro	Cys	Pro	Met	Leu	Leu	Pro	Ser	Gly	Lys	Val	Ile	Asp	Gln	
1				5					10				15		
Ser	Thr	Leu	Glu	Lys	Cys	Asn	Arg	Ser	Glu	Ala	Thr	Trp	Gly	Arg	
				20					25				30		
Val	Pro	Ser	Asp	Pro	Phe	Thr	Gly	Val	Ala	Phe	Thr	Pro	His	Ser	
				35					40				45		
Gln	Pro	Leu	Pro	His	Pro	Ser	Leu	Lys	Ala	Arg	Ile	Asp	His	Phe	
				50					55				60		
Leu	Leu	Gln	His	Ser	Ile	Pro	Gly	Cys	His	Leu	Leu	Gly	Arg	Ala	
				65					70				75		
Gln	Thr	Ala	Leu	Ala	Val	Ile	Pro	Ser	Ser	Ile	Val	Leu	Pro	Ser	
				80					85				90		
Gln	Lys	Arg	Lys	Ile	Glu	Gln	Ala	Glu	His	Val	Pro	Asp	Ser	Asn	
				95					100				105		
Phe	Gly	Val	Asn	Ala	Ser	Cys	Phe	Ser	Ala	Thr	Ser	Pro	Leu	Val	
				110					115				120		
Leu	Pro	Thr	Thr	Ser	Glu	His	Thr	Ala	Lys	Lys	Met	Lys	Ala	Thr	
				125					130				135		
Asn	Glu	Pro	Ser	Leu	Thr	His	Met	Asp	Cys	Ser	Thr	Gly	Pro	Leu	
				140					145				150		
Ser	His	Glu	Gln	Lys	Leu	Ser	Gln	Ser	Leu	Glu	Ile	Ala	Leu	Ala	
				155					160				165		
Ser	Thr	Leu	Gly	Ser	Met	Pro	Ser	Phe	Thr	Ala	Arg	Leu	Thr	Arg	
				170					175				180		
Gly	Gln	Leu	Gln	His	Leu	Gly	Thr	Arg	Gly	Ser	Asn	Thr	Ser	Trp	
				185					190				195		
Arg	Pro	Gly	Thr	Gly	Ser	Glu	Gln	Pro	Gly	Ser	Ile	Leu	Gly	Pro	
				200					205				210		
Glu	Cys	Ala	Ser	Cys	Lys	Arg	Val	Phe	Ser	Pro	Tyr	Phe	Lys		
				215					220				225		
Glu	Pro	Val	Tyr	Gln	Leu	Pro	Cys	Gly	His	Leu	Leu	Cys	Arg	Pro	
				230					235				240		
Cys	Leu	Gly	Glu	Lys	Gln	Arg	Ser	Leu	Pro	Met	Thr	Cys	Thr	Ala	
				245					250				255		
Cys	Gln	Arg	Pro	Val	Ala	Ser	Gln	Asp	Val	Leu	Arg	Val	His	Phe	
				260					265				270		

<210> 42
 <211> 252

<212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2918375CD1

<400> 42
 Met Leu Arg Lys Gly Ile Cys Glu Tyr His Glu Lys Asn Tyr Ala
 1 5 10 15
 Ala Ala Leu Glu Thr Phe Thr Glu Gly Gln Lys Leu Asp Ser Ala
 20 25 30
 Asp Ala Asn Phe Ser Val Trp Ile Lys Arg Cys Gln Glu Ala Gln
 35 40 45
 Asn Gly Ser Glu Ser Glu Val Trp Thr His Gln Ser Lys Ile Lys
 50 55 60
 Tyr Asp Trp Tyr Gln Thr Glu Ser Gln Val Val Ile Thr Leu Met
 65 70 75
 Ile Lys Asn Val Gln Lys Asn Asp Val Asn Val Glu Phe Ser Glu
 80 85 90
 Lys Glu Leu Ser Ala Leu Val Lys Leu Pro Ser Gly Glu Asp Tyr
 95 100 105
 Asn Leu Lys Leu Glu Leu Leu His Pro Ile Ile Pro Glu Gln Ser
 110 115 120
 Thr Phe Lys Val Leu Ser Thr Lys Ile Glu Ile Lys Leu Lys Lys
 125 130 135
 Pro Glu Ala Val Arg Trp Glu Lys Leu Glu Gly Gln Gly Asp Val
 140 145 150
 Pro Thr Pro Lys Gln Phe Val Ala Asp Val Lys Asn Leu Tyr Pro
 155 160 165
 Ser Ser Ser Pro Tyr Thr Arg Asn Trp Asp Lys Leu Val Gly Glu
 170 175 180
 Ile Lys Glu Glu Lys Asn Glu Lys Leu Glu Gly Asp Ala Ala
 185 190 195
 Leu Asn Arg Leu Phe Gln Gln Ile Tyr Ser Asp Gly Ser Asp Glu
 200 205 210
 Val Lys Arg Ala Met Asn Lys Ser Phe Met Glu Ser Gly Gly Thr
 215 220 225
 Val Leu Ser Thr Asn Trp Ser Asp Val Gly Lys Arg Lys Val Glu
 230 235 240
 Ile Asn Pro Pro Asp Asp Met Glu Trp Lys Lys Tyr
 245 250

<210> 43
 <211> 228
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3149729CD1

<400> 43
 Met Thr Met Gly Asp Lys Lys Ser Pro Thr Arg Pro Lys Arg Gln
 1 5 10 15
 Ala Lys Pro Ala Ala Asp Glu Gly Phe Trp Asp Cys Ser Val Cys
 20 25 30
 Thr Phe Arg Asn Ser Ala Glu Ala Phe Lys Cys Ser Ile Cys Asp
 35 40 45
 Val Arg Lys Gly Thr Ser Thr Arg Lys Pro Arg Ile Asn Ser Gln
 50 55 60

Leu Val Ala Gln Gln Val Ala Gln Gln Tyr Ala Thr Pro Pro Pro
 65 70 75
 Pro Lys Lys Glu Lys Lys Glu Lys Val Glu Lys Gln Asp Lys Glu
 80 85 90
 Lys Pro Glu Lys Asp Lys Glu Ile Ser Pro Ser Val Thr Lys Lys
 95 100 105
 Asn Thr Asn Lys Lys Thr Lys Pro Lys Ser Asp Ile Leu Lys Asp
 110 115 120
 Pro Pro Ser Glu Ala Asn Ser Ile Gln Ser Ala Asn Ala Thr Thr
 125 130 135
 Lys Thr Ser Glu Thr Asn His Thr Ser Arg Pro Arg Leu Lys Asn
 140 145 150
 Val Asp Arg Ser Thr Ala Gln Gln Leu Ala Val Thr Val Gly Asn
 155 160 165
 Val Thr Val Ile Ile Thr Asp Phe Lys Glu Lys Thr Arg Ser Ser
 170 175 180
 Ser Thr Ser Ser Ser Thr Val Thr Ser Ser Ala Gly Ser Glu Gln
 185 190 195
 Gln Asn Gln Ser Ser Ser Gly Ser Glu Ser Thr Asp Lys Gly Ser
 200 205 210
 Ser Arg Ser Ser Thr Pro Lys Gly Asp Met Ser Ala Val Asn Asp
 215 220 225
 Glu Ser Phe

<210> 44
 <211> 117
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3705895CD1

<400> 44
 Met Ala Ala Ala Ala Ala Ala Gly Ser Gly Thr Pro Arg Glu Glu
 1 5 10 15
 Glu Gly Pro Ala Gly Glu Ala Ala Ala Ser Gln Pro Gln Ala Pro
 20 25 30
 Thr Ser Val Pro Gly Ala Arg Leu Ser Arg Leu Pro Leu Ala Arg
 35 40 45
 Val Lys Ala Leu Val Lys Ala Asp Pro Asp Val Thr Leu Ala Gly
 50 55 60
 Gln Glu Ala Ile Phe Ile Leu Ala Arg Ala Ala Glu Leu Phe Val
 65 70 75
 Glu Thr Ile Ala Lys Asp Ala Tyr Cys Cys Ala Gln Gln Gly Lys
 80 85 90
 Arg Lys Thr Leu Gln Arg Arg Asp Leu Asp Asn Ala Ile Glu Ala
 95 100 105
 Val Asp Glu Phe Ala Phe Leu Glu Gly Thr Leu Asp
 110 115

<210> 45
 <211> 252
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 003256CD1

<400> 45
 Met Thr Pro Lys Leu Gly Arg Gly Val Leu Glu Gly Asp Asp Val
 1 5 10 15
 Leu Phe Tyr Asp Glu Ser Pro Pro Pro Arg Pro Lys Leu Ser Ala
 20 25 30
 Leu Ala Glu Ala Lys Lys Leu Ala Ala Ile Thr Lys Leu Arg Ala
 35 40 45
 Lys Gly Gln Val Leu Thr Lys Thr Asn Pro Asn Ser Ile Lys Lys
 50 55 60
 Lys Gln Lys Asp Pro Gln Asp Ile Leu Glu Val Lys Glu Arg Val
 65 70 75
 Glu Lys Asn Thr Met Phe Ser Ser Gln Ala Glu Asp Glu Leu Glu
 80 85 90
 Pro Ala Arg Lys Lys Arg Arg Glu Gln Leu Ala Tyr Leu Glu Ser
 95 100 105
 Glu Glu Phe Gln Lys Ile Leu Lys Ala Lys Ser Lys His Thr Gly
 110 115 120
 Ile Leu Lys Glu Ala Glu Ala Glu Met Gln Glu Arg Tyr Phe Glu
 125 130 135
 Pro Leu Val Lys Lys Glu Gln Met Glu Glu Lys Met Arg Asn Ile
 140 145 150
 Arg Glu Val Lys Cys Arg Val Val Thr Cys Lys Thr Cys Ala Tyr
 155 160 165
 Thr His Phe Lys Leu Leu Glu Thr Cys Val Ser Glu Gln His Glu
 170 175 180
 Tyr His Trp His Asp Gly Val Lys Arg Phe Phe Lys Cys Pro Cys
 185 190 195
 Gly Asn Arg Ser Ile Ser Leu Asp Arg Leu Pro Asn Lys His Cys
 200 205 210
 Ser Asn Cys Gly Leu Tyr Lys Trp Glu Arg Asp Gly Met Leu Lys
 215 220 225
 Glu Lys Thr Gly Pro Lys Ile Gly Gly Glu Thr Leu Leu Pro Arg
 230 235 240
 Gly Glu Glu His Ala Lys Phe Leu Asn Ser Leu Lys
 245 250

<210> 46
<211> 530
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 156986CD1

<400> 46
 Met Ala Lys Gly Glu Gly Ala Glu Ser Gly Ser Ala Ala Gly Leu
 1 5 10 15
 Leu Pro Thr Ser Ile Leu Gln Ser Thr Glu Arg Pro Ala Gln Val
 20 25 30
 Lys Lys Glu Pro Lys Lys Lys Gln Gln Leu Ser Val Cys Asn
 35 40 45
 Lys Leu Cys Tyr Ala Leu Gly Gly Ala Pro Tyr Gln Val Thr Gly
 50 55 60
 Cys Ala Leu Gly Phe Phe Leu Gln Ile Tyr Leu Leu Asp Val Ala
 65 70 75
 Gln Val Gly Pro Phe Ser Ala Ser Ile Ile Leu Phe Val Gly Arg
 80 85 90
 Ala Trp Asp Ala Ile Thr Asp Pro Leu Val Gly Leu Cys Ile Ser
 95 100 105
 Lys Ser Pro Trp Thr Cys Leu Gly Arg Leu Met Pro Trp Ile Ile
 110 115 120

Phe Ser Thr Pro Leu Ala Val Ile Ala Tyr Phe Leu Ile Trp Phe
 125 130 135
 Val Pro Asp Phe Pro His Gly Gln Thr Tyr Trp Tyr Leu Leu Phe
 140 145 150
 Tyr Cys Leu Phe Glu Thr Met Val Thr Cys Phe His Val Pro Tyr
 155 160 165
 Ser Ala Leu Thr Met Phe Ile Ser Thr Glu Gln Thr Glu Arg Asp
 170 175 180
 Ser Ala Thr Ala Tyr Arg Met Thr Val Glu Val Leu Gly Thr Val
 185 190 195
 Leu Gly Thr Ala Ile Gln Gly Gln Ile Val Gly Gln Ala Asp Thr
 200 205 210
 Pro Cys Phe Gln Asp Leu Asn Ser Ser Thr Val Ala Ser Gln Ser
 215 220 225
 Ala Asn His Thr His Gly Thr Thr Ser His Arg Glu Thr Gln Lys
 230 235 240
 Ala Tyr Leu Leu Ala Ala Gly Val Ile Val Cys Ile Tyr Ile Ile
 245 250 255
 Cys Ala Val Ile Leu Ile Leu Gly Val Arg Glu Gln Arg Glu Pro
 260 265 270
 Tyr Glu Ala Gln Gln Ser Glu Pro Ile Ala Tyr Phe Arg Gly Leu
 275 280 285
 Arg Leu Val Met Ser His Gly Pro Tyr Ile Lys Leu Ile Thr Gly
 290 295 300
 Phe Leu Phe Thr Ser Leu Ala Phe Met Leu Val Glu Gly Asn Phe
 305 310 315
 Val Leu Phe Cys Thr Tyr Thr Leu Gly Phe Arg Asn Glu Phe Gln
 320 325 330
 Asn Leu Leu Leu Ala Ile Met Leu Ser Ala Thr Leu Thr Ile Pro
 335 340 345
 Ile Trp Gln Trp Phe Leu Thr Arg Phe Gly Lys Lys Thr Ala Val
 350 355 360
 Tyr Val Gly Ile Ser Ser Ala Val Pro Phe Leu Ile Leu Val Ala
 365 370 375
 Leu Met Glu Ser Asn Leu Ile Ile Thr Tyr Ala Val Ala Val Ala
 380 385 390
 Ala Gly Ile Ser Val Ala Ala Ala Phe Leu Leu Pro Trp Ser Met
 395 400 405
 Leu Pro Asp Val Ile Asp Asp Phe His Leu Lys Gln Pro His Phe
 410 415 420
 His Gly Thr Glu Pro Ile Phe Phe Ser Phe Tyr Val Phe Phe Thr
 425 430 435
 Lys Phe Ala Ser Gly Val Ser Leu Gly Ile Ser Thr Leu Ser Leu
 440 445 450
 Asp Phe Ala Gly Tyr Gln Thr Arg Gly Cys Ser Gln Pro Glu Arg
 455 460 465
 Val Lys Phe Thr Leu Asn Met Leu Val Thr Met Ala Pro Ile Val
 470 475 480
 Leu Ile Leu Leu Gly Leu Leu Leu Phe Lys Met Tyr Pro Ile Asp
 485 490 495
 Glu Glu Arg Arg Arg Gln Asn Lys Lys Ala Leu Gln Ala Leu Arg
 500 505 510

Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp Ser Thr Glu
 515 520 525
 Leu Ala Ser Ile Leu
 530

<210> 47
 <211> 355
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 319415CD1

<400> 47

Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu	Asp	Lys	Cys	Ile	Phe	Lys
1					5					10				15
Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	His	Ala	Lys	Asp	Glu	Tyr
					20					25				30
Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	Pro	Ile	Gly	Arg	Phe
					35					40				45
Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Ile	Leu	Cys	Asn	Asp	Gly
					50					55				60
Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	Gly	Thr	Tyr
					65					70				75
Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys	Lys
					80					85				90
Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met
					95					100				105
Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser
					110					115				120
Thr	Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	Ile	Phe	Ser	Gly
					125					130				135
Arg	Arg	Ala	Lys	Glu	Glu	Ile	Val	Phe	Arg	Tyr	Tyr	His	Lys	Leu
					140					145				150
Arg	Met	Ser	Val	Glu	Tyr	Ser	Gln	Ser	Trp	Gly	His	Phe	Gln	Asn
					155					160				165
Arg	Val	Asn	Leu	Val	Gly	Asp	Ile	Phe	Arg	Asn	Asp	Gly	Ser	Ile
					170					175				180
Met	Leu	Gln	Gly	Val	Arg	Glu	Ser	Asp	Gly	Gly	Asn	Tyr	Thr	Cys
					185					190				195
Ser	Ile	His	Leu	Gly	Asn	Leu	Val	Phe	Lys	Lys	Thr	Ile	Val	Leu
					200					205				210
His	Val	Ser	Pro	Glu	Glu	Pro	Arg	Thr	Leu	Val	Thr	Pro	Ala	Ala
					215					220				225
Leu	Arg	Pro	Leu	Val	Leu	Gly	Gly	Asn	Gln	Leu	Val	Ile	Ile	Val
					230					235				240
Gly	Ile	Val	Cys	Ala	Thr	Ile	Leu	Leu	Leu	Pro	Val	Leu	Ile	Leu
					245					250				255
Ile	Val	Lys	Lys	Thr	Cys	Gly	Asn	Lys	Ser	Ser	Val	Asn	Ser	Thr
					260					265				270
Val	Leu	Val	Lys	Asn	Thr	Lys	Lys	Thr	Asn	Pro	Glu	Ile	Lys	Glu
					275					280				285
Lys	Pro	Cys	His	Phe	Glu	Arg	Cys	Glu	Gly	Glu	Lys	His	Ile	Tyr
					290					295				300
Ser	Pro	Ile	Ile	Val	Arg	Glu	Val	Ile	Glu	Glu	Glu	Glu	Pro	Ser
					305					310				315
Glu	Lys	Ser	Glu	Ala	Thr	Tyr	Met	Thr	Met	His	Pro	Val	Trp	Pro
					320					325				330
Ser	Leu	Arg	Ser	Asp	Arg	Asn	Asn	Ser	Leu	Glu	Lys	Lys	Ser	Gly
					335					340				345
Gly	Gly	Met	Pro	Lys	Thr	Gln	Gln	Ala	Phe					
					350					355				

<210> 48

<211> 136

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 635581CD1

<400> 48

Met	Val	Gly	Gln	Thr	Glu	Asp	Asp	Thr	Ala	Gln	Gln	Leu	Val	Pro
1					5					10				15
Thr	Cys	Gly	Met	Lys	Gly	Val	Gly	Glu	Arg	Ile	Val	Glu	Tyr	Val
					20					25				30
Ser	Asn	Ile	Pro	Ala	Leu	Gln	Arg	Ala	Thr	Pro	Lys	Gly	Leu	Ala
					35					40				45
Ser	Val	Ser	Pro	Asp	Leu	Glu	His	Arg	Gln	Glu	Trp	Thr	Tyr	Ser
					50					55				60
Lys	Ser	Pro	Leu	Met	Gly	Lys	Gly	Thr	Arg	Leu	Glu	Ala	Ser	Glu
					65					70				75
Asn	Lys	Arg	Ala	Gly	Trp	Leu	Ala	Ala	Pro	Glu	Asn	Leu	Lys	
					80					85				90
Tyr	His	Arg	Gln	Ile	Ala	Gln	Gly	Ala	Lys	Asp	Tyr	Glu	Ile	Leu
					95					100				105
Lys	Lys	Glu	Thr	Asn	Lys	Phe	Ile	Leu	Arg	Ile	Tyr	Thr	His	Trp
					110					115				120
Ser	Arg	Arg	Ser	Ile	Leu	Arg	Lys	Gly	Ser	Lys	Gly	Met	Gln	Asn
					125					130				135
Leu														

<210> 49

<211> 230

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 921803CD1

<400> 49

Met	Lys	Leu	Ile	Val	Gly	Ile	Gly	Gly	Met	Thr	Asn	Gly	Gly	Lys
1					5					10				15
Thr	Thr	Leu	Thr	Asn	Ser	Leu	Leu	Arg	Ala	Leu	Pro	Asn	Cys	Cys
					20					25				30
Val	Ile	His	Gln	Asp	Asp	Phe	Phe	Lys	Pro	Gln	Asp	Gln	Ile	Ala
					35					40				45
Val	Gly	Glu	Asp	Gly	Phe	Lys	Gln	Trp	Asp	Val	Leu	Glu	Ser	Leu
					50					55				60
Asp	Met	Glu	Ala	Met	Leu	Asp	Thr	Val	Gln	Ala	Trp	Leu	Ser	Ser
					65					70				75
Pro	Gln	Lys	Phe	Ala	Arg	Ala	His	Gly	Val	Ser	Val	Gln	Pro	Glu
					80					85				90
Ala	Ser	Asp	Thr	His	Ile	Leu	Leu	Leu	Glu	Gly	Phe	Leu	Leu	Tyr
					95					100				105
Ser	Tyr	Lys	Pro	Leu	Val	Asp	Leu	Tyr	Ser	Arg	Arg	Tyr	Phe	Leu
					110					115				120
Thr	Val	Pro	Tyr	Glu	Glu	Cys	Lys	Trp	Arg	Arg	Ser	Thr	Arg	Asn
					125					130				135
Tyr	Thr	Val	Pro	Asp	Pro	Pro	Gly	Leu	Phe	Asp	Gly	His	Val	Trp
					140					145				150
Pro	Met	Tyr	Gln	Lys	Tyr	Arg	Gln	Glu	Met	Glu	Ala	Asn	Gly	Val
					155					160				165
Glu	Val	Val	Tyr	Leu	Asp	Gly	Met	Lys	Ser	Arg	Glu	Glu	Leu	Phe
					170					175				180
Arg	Glu	Val	Leu	Glu	Asp	Ile	Gln	Asn	Ser	Leu	Leu	Asn	Arg	Ser
					185					190				195
Gln	Glu	Ser	Ala	Pro	Ser	Pro	Ala	Arg	Pro	Ala	Arg	Thr	Gln	Gly
					200					205				210

Pro Gly Arg Gly Cys Gly His Arg Thr Ala Arg Pro Ala Ala Ser
 215 220 225
 Gln Gln Asp Ser Met
 230

<210> 50
 <211> 70
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1250492CD1

<400> 50
 Met Thr Ile Lys Leu Arg Pro Leu Pro Phe Phe Lys Pro Lys Ser
 1 5 10 15
 Gly Asn Gln Glu Gln Gln Leu His Gly Leu Leu Ala Pro Asp Gln
 20 25 30
 Pro Gly Ser Gly Asp Ile Val Ser Leu Phe Gly Asn Cys Arg Pro
 35 40 45
 Gln Gly Val Gly Leu Ser His Phe Leu Val Leu Pro Thr Phe Pro
 50 55 60
 Ile Arg Ala Ser Ser Arg Gly Gln Val Cys
 65 70

<210> 51
 <211> 169
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1427838CD1

<400> 51
 Met Leu Ala Phe Ser Glu Met Pro Pro Asp Tyr Ser Glu
 1 5 10 15
 Leu Ser Asp Ser Leu Thr Leu Ala Val Gly Thr Gly Arg Phe Ser
 20 25 30
 Gly Pro Leu His Arg Ala Trp Arg Met Met Asn Phe Arg Gln Arg
 35 40 45
 Met Gly Trp Ile Gly Val Gly Leu Tyr Leu Leu Ala Ser Ala Ala
 50 55 60
 Ala Phe Tyr Tyr Val Phe Glu Ile Ser Glu Thr Tyr Asn Arg Leu
 65 70 75
 Ala Leu Glu His Ile Gln Gln His Pro Glu Glu Pro Leu Glu Gly
 80 85 90
 Thr Thr Trp Thr His Ser Leu Lys Ala Gln Leu Leu Ser Leu Pro
 95 100 105
 Phe Trp Val Trp Thr Val Ile Phe Leu Val Pro Tyr Leu Gln Met
 110 115 120
 Phe Leu Phe Leu Tyr Ser Cys Thr Arg Ala Asp Pro Lys Thr Val
 125 130 135
 Gly Tyr Cys Ile Ile Pro Ile Cys Leu Ala Val Ile Cys Asn Arg
 140 145 150
 His Gln Ala Phe Val Lys Ala Ser Asn Gln Ile Ser Arg Leu Gln
 155 160 165
 Leu Ile Asp Thr

<210> 52
 <211> 359
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1448258CD1

<400> 52

Met	Gly	Pro	Thr	Lys	Phe	Thr	Gln	Thr	Asn	Ile	Gly	Ile	Ile	Glu
1														15
Asn	Lys	Leu	Leu	Glu	Ala	Pro	Asp	Val	Leu	Cys	Leu	Arg	Leu	Ser
														30
Thr	Glu	Gln	Cys	Gln	Ala	His	Glu	Glu	Lys	Gly	Ile	Glu	Glu	Leu
														45
Ser	Asp	Pro	Ser	Gly	Pro	Lys	Ser	Tyr	Ser	Ile	Thr	Glu	Lys	His
														60
Tyr	Ala	Gln	Glu	Asp	Pro	Arg	Met	Leu	Phe	Val	Ala	Ala	Val	Asp
														75
His	Ser	Ser	Ser	Gly	Asp	Met	Ser	Leu	Leu	Pro	Ser	Ser	Asp	Pro
														90
Lys	Phe	Gln	Gly	Leu	Gly	Val	Val	Glu	Ser	Ala	Val	Thr	Ala	Asn
														105
Asn	Thr	Glu	Glu	Ser	Leu	Phe	Arg	Ile	Cys	Ser	Pro	Leu	Ser	Gly
														120
Ala	Asn	Glu	Tyr	Ile	Ala	Ser	Thr	Asp	Thr	Leu	Lys	Thr	Glu	Glu
														135
Val	Leu	Leu	Phe	Thr	Asp	Gln	Thr	Asp	Asp	Leu	Ala	Lys	Glu	Glu
														150
Pro	Thr	Ser	Leu	Phe	Gln	Arg	Asp	Ser	Glu	Thr	Lys	Gly	Glu	Ser
														165
Gly	Leu	Val	Leu	Glu	Gly	Asp	Lys	Glu	Ile	His	Gln	Ile	Phe	Glu
														180
Asp	Leu	Asp	Lys	Lys	Leu	Ala	Leu	Ala	Ser	Arg	Phe	Tyr	Ile	Pro
														195
Glu	Gly	Cys	Ile	Gln	Arg	Trp	Ala	Ala	Glu	Met	Val	Val	Ala	Leu
														210
Asp	Ala	Leu	His	Arg	Glu	Gly	Ile	Val	Cys	Arg	Asp	Leu	Asn	Pro
														225
Asn	Asn	Ile	Leu	Leu	Asn	Asp	Arg	Gly	His	Ile	Gln	Leu	Thr	Tyr
														240
Phe	Ser	Arg	Trp	Ser	Glu	Val	Glu	Asp	Ser	Cys	Asp	Ser	Asp	Ala
														255
Ile	Glu	Arg	Met	Tyr	Cys	Ala	Pro	Glu	Val	Gly	Ala	Ile	Thr	Glu
														270
Glu	Thr	Glu	Ala	Cys	Asp	Trp	Trp	Ser	Leu	Gly	Ala	Val	Leu	Phe
														285
Glu	Leu	Leu	Thr	Gly	Lys	Thr	Leu	Val	Glu	Cys	His	Pro	Ala	Gly
														300
Ile	Asn	Thr	His	Thr	Thr	Leu	Asn	Met	Pro	Glu	Cys	Val	Ser	Glu
														315
Glu	Ala	Arg	Ser	Leu	Ile	Gln	Gln	Leu	Leu	Gln	Phe	Asn	Pro	Leu
														330
Glu	Arg	Leu	Gly	Ala	Gly	Val	Ala	Gly	Val	Glu	Asp	Ile	Lys	Ser
														345
His	Pro	Phe	Phe	Thr	Pro	Val	Asp	Trp	Ala	Glu	Leu	Met	Arg	
350														355

<210> 53
 <211> 545

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1645941CD1

<400> 53

Met	Ser	Arg	Lys	Gln	Asn	Gln	Lys	Asp	Ser	Ser	Gly	Phe	Ile	Phe
1				5					10				15	
Asp	Leu	Gln	Ser	Asn	Thr	Val	Leu	Ala	Gln	Gly	Gly	Ala	Phe	Glu
					20				25				30	
Asn	Met	Lys	Glu	Lys	Ile	Asn	Ala	Val	Arg	Ala	Ile	Val	Pro	Asn
					35				40				45	
Lys	Ser	Asn	Asn	Glu	Ile	Ile	Leu	Val	Leu	Gln	His	Phe	Asp	Asn
					50				55				60	
Cys	Val	Asp	Lys	Thr	Val	Gln	Ala	Phe	Met	Glu	Gly	Ser	Ala	Ser
					65				70				75	
Glu	Val	Leu	Lys	Glu	Trp	Thr	Val	Thr	Gly	Lys	Lys	Asn	Lys	
					80				85				90	
Lys	Lys	Lys	Asn	Lys	Pro	Lys	Pro	Ala	Ala	Glu	Pro	Ser	Asn	Gly
					95				100				105	
Ile	Pro	Asp	Ser	Ser	Lys	Ser	Val	Ser	Ile	Gln	Glu	Gln	Ser	
					110				115				120	
Ala	Pro	Ser	Ser	Glu	Lys	Gly	Gly	Met	Asn	Gly	Tyr	His	Val	Asn
					125				130				135	
Gly	Ala	Ile	Asn	Asp	Thr	Glu	Ser	Val	Asp	Ser	Leu	Ser	Glu	Gly
					140				145				150	
Leu	Glu	Thr	Leu	Ser	Ile	Asp	Ala	Arg	Glu	Leu	Glu	Asp	Pro	Glu
					155				160				165	
Ser	Ala	Met	Leu	Asp	Thr	Leu	Asp	Arg	Thr	Gly	Ser	Met	Leu	Gln
					170				175				180	
Asn	Gly	Val	Ser	Asp	Phe	Glu	Thr	Lys	Ser	Leu	Thr	Met	His	Ser
					185				190				195	
Ile	His	Asn	Ser	Gln	Gln	Pro	Arg	Asn	Ala	Ala	Lys	Ser	Leu	Ser
					200				205				210	
Arg	Pro	Thr	Thr	Glu	Thr	Gln	Phe	Ser	Asn	Met	Gly	Met	Glu	Asp
					215				220				225	
Val	Pro	Leu	Ala	Thr	Ser	Lys	Lys	Leu	Ser	Ser	Asn	Ile	Glu	Lys
					230				235				240	
Ser	Val	Lys	Asp	Leu	Gln	Arg	Cys	Thr	Val	Ser	Leu	Ala	Arg	Tyr
					245				250				255	
Arg	Val	Val	Val	Lys	Glu	Glu	Met	Asp	Ala	Ser	Ile	Lys	Lys	Met
					260				265				270	
Lys	Gln	Ala	Phe	Ala	Glu	Leu	Glu	Ser	Cys	Leu	Met	Asp	Arg	Glu
					275				280				285	
Val	Ala	Leu	Leu	Ala	Glu	Met	Asp	Lys	Val	Lys	Ala	Glu	Ala	Met
					290				295				300	
Glu	Ile	Leu	Leu	Ser	Arg	Gln	Lys	Lys	Ala	Glu	Leu	Lys	Lys	
					305				310				315	
Met	Thr	His	Val	Ala	Val	Gln	Met	Ser	Glu	Gln	Gln	Leu	Val	Glu
					320				325				330	
Leu	Arg	Ala	Asp	Ile	Lys	His	Phe	Val	Ser	Glu	Arg	Lys	Tyr	Asp
					335				340				345	
Glu	Asp	Leu	Gly	Arg	Val	Ala	Arg	Phe	Thr	Cys	Asp	Val	Glu	Thr
					350				355				360	
Leu	Lys	Lys	Ser	Ile	Asp	Ser	Phe	Gly	Gln	Val	Ser	His	Pro	Lys
					365				370				375	
Asn	Ser	Tyr	Ser	Thr	Arg	Ser	Arg	Cys	Ser	Ser	Val	Thr	Ser	Val
					380				385				390	
Ser	Leu	Ser	Ser	Pro	Ser	Asp	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Thr
					395				400				405	
Cys	Ala	Ser	Pro	Pro	Ser	Leu	Thr	Ser	Ala	Asn	Lys	Lys	Asn	Phe
					410				415				420	

Ala Pro Gly Glu Thr Pro Ala Ala Ile Ala Asn Ser Ser Gly Gln
 425 430 435
 Pro Tyr Gln Pro Leu Arg Glu Val Leu Pro Gly Asn Arg Arg Gly
 440 445 450
 Gly Gln Gly Tyr Arg Pro Gln Gly Gln Lys Ser Asn Asp Pro Met
 455 460 465
 Asn Gln Gly Arg His Asp Ser Met Gly Arg Tyr Arg Asn Ser Ser
 470 475 480
 Trp Tyr Ser Ser Gly Ser Arg Tyr Gln Ser Ala Pro Ser Gln Ala
 485 490 495
 Pro Gly Asn Thr Ile Glu Arg Gly Gln Thr His Ser Ala Gly Thr
 500 505 510
 Asn Gly Thr Gly Val Ser Met Glu Pro Ser Pro Pro Thr Pro Ser
 515 520 525
 Phe Lys Lys Gly Leu Pro Gln Arg Lys Pro Arg Thr Ser Gln Thr
 530 535 540
 Glu Ala Val Asn Ser
 545

<210> 54
 <211> 99
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1646005CD1

<400> 54
 Met Asn Trp Val Ala Val Leu Cys Pro Leu Gly Ile Val Trp Met
 1 5 10 15
 Val Gly Asp Gln Pro Pro Gln Val Leu Ser Gln Ala Ser Ser Leu
 20 25 30
 Ala Val Tyr Leu Arg Ala Ala Pro Tyr Pro Asp Val Thr Ala Lys
 35 40 45
 Lys Leu Arg His Asp Thr Asn Cys Gly Phe Pro Arg Gln Gln Arg
 50 55 60
 Met Ala Arg Gly His Glu Gly Arg Ala Pro Leu Leu Asp Arg Pro
 65 70 75
 Thr Leu Lys Ser Arg Tyr Leu Arg Ala Asn His Lys Ile Asn Thr
 80 85 90
 Phe Glu Glu Ile Thr Ala Met Pro Ser
 95

<210> 55
 <211> 565
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1686561CD1

<400> 55
 Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr
 1 5 10 15
 Pro Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu
 20 25 30
 Glu Ser Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn
 35 40 45
 Ser Leu Ser Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe
 50 55 60

Ser Gln Ala His Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro
 65 70 75
 Val Ser Arg Gln Val Thr Cys Leu Arg Thr Gln Val Leu Glu Asp
 80 85 90
 Ser Glu Asp Ser Phe Cys Arg Arg His Pro Gly Leu Gly Lys Ala
 95 100 105
 Phe Pro Ser Gly Cys Ser Ala Val Ser Glu Pro Ala Ser Glu Ser
 110 115 120
 Val Val Gly Ala Leu Pro Ala Glu His Gln Phe Ser Phe Met Glu
 125 130 135
 Lys Arg Asn Gln Trp Leu Val Ser Gln Leu Ser Ala Ala Ser Pro
 140 145 150
 Asp Thr Gly His Asp Ser Asp Lys Ser Asp Gln Ser Leu Pro Asn
 155 160 165
 Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu Met Val Gln Arg
 170 175 180
 Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu Pro Thr Ile
 185 190 195
 Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly Ile Arg
 200 205 210
 Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro Gln
 215 220 225
 Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu
 230 235 240
 Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu
 245 250 255
 Ser Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser
 260 265 270
 Pro Asp His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala
 275 280 285
 Tyr Gln Gln Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro
 290 295 300
 Gly Ala Ser Val Arg Gly Leu His Pro Val Gln Lys Val Ile Leu
 305 310 315
 Asn Tyr Pro Ser Pro Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg
 320 325 330
 Asp Cys Ser Phe Pro Gly Leu Pro Arg His Gln Asp Gln Pro His
 335 340 345
 His Gln Pro Pro Asn Arg Ala Gly Ala Pro Gly Glu Ser Leu Glu
 350 355 360
 Cys Pro Ala Glu Leu Arg Pro Gln Val Pro Gln Pro Pro Ser Pro
 365 370 375
 Ala Ala Val Pro Arg Pro Pro Ser Asn Pro Pro Ala Arg Gly Thr
 380 385 390
 Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu Arg Lys Val Phe Ile
 395 400 405
 Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val Lys Phe Val Asn
 410 415 420
 Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp Ile Phe Glu
 425 430 435
 Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu Arg Tyr
 440 445 450
 Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro Lys
 455 460 465
 Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp
 470 475 480
 Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile
 485 490 495
 Glu Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val
 500 505 510
 Leu Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln
 515 520 525
 Asn Thr His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu
 530 535 540

Leu	Arg	Leu	Leu	Arg	Glu	Glu	Glu	Tyr	Val	Ala	Pro	Pro	Arg	Gly
				545					550				555	
Pro	Leu	Pro	Thr	Leu	Gln	Val	Val	Pro	Leu					
				560				565						

<210> 56
 <211> 197
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1821233CD1

<400> 56

Met	Thr	Pro	Thr	Ser	Ser	Phe	Val	Ser	Pro	Pro	Pro	Pro	Thr	Ala
1				5				10					15	
Ser	Pro	His	Ser	Asn	Arg	Thr	Thr	Pro	Pro	Glu	Ala	Ala	Gln	Asn
				20				25					30	
Gly	Gln	Ser	Pro	Met	Ala	Ala	Leu	Ile	Leu	Val	Ala	Asp	Asn	Ala
				35				40					45	
Gly	Gly	Ser	His	Ala	Ser	Lys	Asp	Ala	Asn	Gln	Val	His	Ser	Thr
				50				55					60	
Thr	Arg	Arg	Asn	Ser	Asn	Ser	Pro	Pro	Ser	Pro	Ser	Ser	Met	Asn
				65				70					75	
Gln	Arg	Arg	Leu	Gly	Pro	Arg	Glu	Val	Gly	Gly	Gln	Gly	Ala	Gly
				80				85					90	
Asn	Thr	Gly	Gly	Leu	Glu	Pro	Val	His	Pro	Ala	Ser	Leu	Pro	Asp
				95				100					105	
Ser	Ser	Leu	Ala	Thr	Ser	Ala	Pro	Leu	Cys	Cys	Thr	Leu	Cys	His
				110				115					120	
Glu	Arg	Leu	Glu	Asp	Thr	His	Phe	Val	Gln	Cys	Pro	Ser	Val	Pro
				125				130					135	
Ser	His	Lys	Phe	Cys	Phe	Pro	Cys	Ser	Arg	Gln	Ser	Ile	Lys	Gln
				140				145					150	
Gln	Gly	Ala	Ser	Gly	Glu	Val	Tyr	Cys	Pro	Ser	Gly	Glu	Lys	Cys
				155				160					165	
Pro	Leu	Val	Gly	Ser	Asn	Val	Pro	Trp	Ala	Phe	Met	Gln	Gly	Glu
				170				175					180	
Ile	Ala	Thr	Ile	Leu	Ala	Gly	Asp	Val	Lys	Val	Lys	Lys	Glu	Arg
				185				190					195	
Asp	Ser													

<210> 57
 <211> 321
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1877278CD1

<400> 57

Met	Lys	Glu	Asp	Cys	Leu	Pro	Ser	Ser	His	Val	Pro	Ile	Ser	Asp
1				5					10					15
Ser	Lys	Ser	Ile	Gln	Lys	Ser	Glu	Leu	Leu	Gly	Leu	Leu	Lys	Thr
				20				25					30	
Tyr	Asn	Cys	Tyr	His	Glu	Gly	Lys	Ser	Phe	Gln	Leu	Arg	His	Arg
				35				40					45	

Glu Glu Glu Gly Thr Leu Ile Ile Glu Gly Leu Leu Asn Ile Ala
 50 55 60
 Trp Gly Leu Arg Arg Pro Ile Arg Leu Gln Met Gln Asp Asp Arg
 65 70 75
 Glu Gln Val His Leu Pro Ser Thr Ser Trp Met Pro Arg Arg Pro
 80 85 90
 Ser Cys Pro Leu Lys Glu Pro Ser Pro Gln Asn Gly Asn Ile Thr
 95 100 105
 Ala Gln Gly Pro Ser Ile Gln Pro Val His Lys Ala Glu Ser Ser
 110 115 120
 Thr Asp Ser Ser Gly Pro Leu Glu Glu Ala Glu Glu Ala Pro Gln
 125 130 135
 Leu Met Arg Thr Lys Ser Asp Ala Ser Cys Met Ser Gln Arg Arg
 140 145 150
 Pro Lys Cys Arg Ala Pro Gly Glu Ala Gln Arg Ile Arg Arg His
 155 160 165
 Arg Phe Ser Ile Asn Gly His Phe Tyr Asn His Lys Thr Ser Val
 170 175 180
 Phe Thr Pro Ala Tyr Gly Ser Val Thr Asn Val Arg Val Asn Ser
 185 190 195
 Thr Met Thr Thr Leu Gln Val Leu Thr Leu Leu Leu Asn Lys Phe
 200 205 210
 Arg Val Glu Asp Gly Pro Ser Glu Phe Ala Leu Tyr Ile Val His
 215 220 225
 Glu Ser Gly Glu Arg Thr Lys Leu Lys Asp Cys Glu Tyr Pro Leu
 230 235 240
 Ile Ser Arg Ile Leu His Gly Pro Cys Glu Lys Ile Ala Arg Ile
 245 250 255
 Phe Leu Met Glu Ala Asp Leu Gly Val Glu Val Pro His Glu Val
 260 265 270
 Ala Gln Tyr Ile Lys Phe Glu Met Pro Val Leu Asp Ser Phe Val
 275 280 285
 Glu Lys Leu Lys Glu Glu Glu Arg Glu Ile Ile Lys Leu Thr
 290 295 300
 Met Lys Phe Gln Ala Leu Arg Leu Thr Met Leu Gln Arg Leu Glu
 305 310 315
 Gln Leu Val Glu Ala Lys
 320

<210> 58
 <211> 356
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1880692CD1

<400> 58
 Met Glu Trp Leu Lys Ser Thr Asp Tyr Gly Lys Tyr Glu Gly Leu
 1 5 10 15
 Thr Lys Asn Tyr Met Asp Tyr Leu Ser Arg Leu Tyr Glu Arg Glu
 20 25 30
 Ile Lys Asp Phe Phe Glu Val Ala Lys Ile Lys Met Thr Gly Thr
 35 40 45
 Thr Lys Glu Ser Lys Lys Phe Gly Leu His Gly Ser Ser Gly Lys
 50 55 60
 Leu Thr Gly Ser Thr Ser Ser Leu Asn Lys Leu Ser Val Gln Ser
 65 70 75
 Ser Gly Asn Arg Arg Ser Gln Ser Ser Ser Leu Leu Asp Met Gly
 80 85 90
 Asn Met Ser Ala Ser Asp Leu Asp Val Ala Asp Arg Thr Lys Phe
 95 100 105

Asp Lys Ile Phe Glu Gln Val Leu Ser Glu Leu Glu Pro Leu Cys
 110 115 120
 Leu Ala Glu Gln Asp Phe Ile Ser Lys Phe Phe Lys Leu Gln Gln
 125 130 135
 His Gln Ser Met Pro Gly Thr Met Ala Glu Ala Glu Asp Leu Asp
 140 145 150
 Gly Gly Thr Leu Ser Arg Gln His Asn Cys Gly Thr Pro Leu Pro
 155 160 165
 Val Ser Ser Glu Lys Asp Met Ile Arg Gln Met Met Ile Lys Ile
 170 175 180
 Phe Arg Cys Ile Glu Pro Glu Leu Asn Asn Leu Ile Ala Leu Gly
 185 190 195
 Asp Lys Ile Asp Ser Phe Asn Ser Leu Tyr Met Leu Val Lys Met
 200 205 210
 Ser His His Val Trp Thr Ala Gln Asn Val Asp Pro Ala Ser Phe
 215 220 225
 Leu Ser Thr Thr Leu Gly Asn Val Leu Val Thr Val Lys Arg Asn
 230 235 240
 Phe Asp Lys Cys Ile Ser Asn Gln Ile Arg Gln Met Glu Glu Val
 245 250 255
 Lys Ile Ser Lys Lys Ser Lys Val Gly Ile Leu Pro Phe Val Ala
 260 265 270
 Glu Phe Glu Glu Phe Ala Gly Leu Ala Glu Ser Ile Phe Lys Asn
 275 280 285
 Ala Glu Arg Arg Gly Asp Leu Asp Lys Ala Tyr Thr Lys Leu Ile
 290 295 300
 Arg Gly Val Phe Val Asn Val Glu Lys Val Ala Asn Glu Ser Gln
 305 310 315
 Lys Thr Pro Arg Asp Val Val Met Met Glu Asn Phe His His Ile
 320 325 330
 Phe Ala Thr Leu Ser Arg Leu Lys Ile Ser Cys Leu Glu Ala Glu
 335 340 345
 Lys Lys Glu Ala Ala Ile Asn His Lys Phe Phe
 350 355

<210> 59
 <211> 299
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2280456CD1

<400> 59

Met	Glu	Glu	Leu	Leu	Pro	Asp	Gly	Gln	Ile	Trp	Ala	Asn	Met	Asp
1					5				10				15	
Pro	Glu	Glu	Arg	Met	Leu	Ala	Ala	Ala	Thr	Ala	Phe	Thr	His	Ile
				20					25				30	
Cys	Ala	Gly	Gln	Gly	Glu	Gly	Asp	Val	Arg	Arg	Glu	Ala	Gln	Ser
				35					40				45	
Ile	Gln	Tyr	Asp	Pro	Tyr	Ser	Lys	Ala	Ser	Val	Ala	Pro	Gly	Lys
				50					55				60	
Arg	Pro	Ala	Leu	Pro	Val	Gln	Leu	Gln	Tyr	Pro	His	Val	Glu	Ser
				65					70				75	
Asn	Val	Pro	Ser	Glu	Thr	Val	Ser	Glu	Ala	Ser	Gln	Arg	Leu	Arg
				80					85				90	
Lys	Pro	Val	Met	Lys	Arg	Lys	Val	Leu	Arg	Arg	Lys	Pro	Asp	Gly
				95					100				105	
Glu	Val	Leu	Val	Thr	Asp	Glu	Ser	Ile	Ile	Ser	Glu	Ser	Glu	Ser
				110					115				120	
Gly	Thr	Glu	Asn	Asp	Gln	Asp	Leu	Trp	Asp	Leu	Arg	Gln	Arg	Leu
				125					130				135	

Met	Asn	Val	Gln	Phe	Gln	Glu	Asp	Lys	Glu	Ser	Ser	Phe	Asp	Val
				140					145					150
Ser	Gln	Lys	Phe	Asn	Leu	Pro	His	Glu	Tyr	Gln	Gly	Ile	Ser	Gln
					155				160					165
Asp	Gln	Leu	Ile	Cys	Ser	Leu	Gln	Arg	Glu	Gly	Met	Gly	Ser	Pro
				170					175					180
Ala	Tyr	Glu	Gln	Asp	Leu	Ile	Val	Ala	Ser	Arg	Pro	Lys	Ser	Phe
				185					190					195
Ile	Leu	Pro	Lys	Leu	Asp	Gln	Leu	Ser	Arg	Asn	Arg	Gly	Lys	Thr
				200					205					210
Asp	Arg	Val	Ala	Arg	Tyr	Phe	Glu	Tyr	Lys	Arg	Asp	Trp	Asp	Ser
				215					220					225
Ile	Arg	Leu	Pro	Gly	Glu	Asp	His	Arg	Lys	Glu	Leu	Arg	Trp	Gly
				230					235					240
Val	Arg	Glu	Gln	Met	Leu	Cys	Arg	Ala	Glu	Pro	Gln	Ser	Lys	Pro
				245					250					255
Gln	His	Ile	Tyr	Val	Pro	Asn	Asn	Tyr	Leu	Val	Pro	Thr	Glu	Lys
				260					265					270
Lys	Arg	Ser	Ala	Leu	Arg	Trp	Gly	Val	Arg	Cys	Asp	Leu	Ala	Asn
				275					280					285
Gly	Val	Ile	Pro	Arg	Lys	Leu	Pro	Phe	Pro	Leu	Ser	Pro	Ser	
				290										295

<210> 60
<211> 293
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2284580CD1

<400> 60															
Met	Ala	Thr	Phe	Ser	Gly	Pro	Ala	Gly	Pro	Ile	Leu	Ser	Leu	Asn	
						1	5			10				15	
Pro	Gln	Glu	Asp	Val	Glu	Phe	Gln	Lys	Glu	Val	Ala	Gln	Val	Arg	
						20				25				30	
Lys	Arg	Ile	Thr	Gln	Arg	Lys	Lys	Gln	Glu	Gln	Leu	Thr	Pro	Gly	
						35				40				45	
Val	Val	Tyr	Val	Arg	His	Leu	Pro	Asn	Leu	Leu	Asp	Glu	Thr	Gln	
						50				55				60	
Ile	Phe	Ser	Tyr	Phe	Ser	Gln	Phe	Gly	Thr	Val	Thr	Arg	Phe	Arg	
						65				70				75	
Leu	Ser	Arg	Ser	Lys	Arg	Thr	Gly	Asn	Ser	Lys	Gly	Tyr	Ala	Phe	
						80				85				90	
Val	Glu	Phe	Glu	Ser	Glu	Asp	Val	Ala	Lys	Ile	Val	Ala	Glu	Thr	
						95				100				105	
Met	Asn	Asn	Tyr	Leu	Phe	Gly	Glu	Arg	Leu	Leu	Glu	Cys	His	Phe	
						110				115				120	
Met	Pro	Pro	Glu	Lys	Val	His	Lys	Glu	Leu	Phe	Lys	Asp	Trp	Asn	
						125				130				135	
Ile	Pro	Phe	Lys	Gln	Pro	Ser	Tyr	Pro	Ser	Val	Lys	Arg	Tyr	Asn	
				140					145					150	
Arg	Asn	Arg	Thr	Leu	Thr	Gln	Lys	Leu	Arg	Met	Glu	Glu	Arg	Phe	
				155					160					165	
Lys	Lys	Lys	Glu	Arg	Leu	Leu	Arg	Lys	Lys	Leu	Ala	Lys	Lys	Gly	
				170					175					180	
Ile	Asp	Tyr	Asp	Phe	Pro	Ser	Leu	Ile	Leu	Gln	Lys	Thr	Glu	Ser	
				185					190					195	
Ile	Ser	Lys	Thr	Asn	Arg	Gln	Thr	Ser	Thr	Lys	Gly	Gln	Val	Leu	
				200					205					210	

Arg	Lys	Lys	Lys	Lys	Val	Ser	Gly	Thr	Leu	Asp	Thr	Pro	Glu
				215				220					225
Lys	Thr	Val	Asp	Ser	Gln	Gly	Pro	Thr	Pro	Val	Cys	Thr	Pro
				230				235					240
Phe	Leu	Glu	Arg	Arg	Lys	Ser	Gln	Val	Ala	Glu	Leu	Asn	Asp
				245				250					255
Asp	Lys	Asp	Asp	Glu	Ile	Val	Phe	Lys	Gln	Pro	Ile	Ser	Cys
				260				265					270
Lys	Glu	Glu	Ile	Gln	Glu	Thr	Gln	Thr	Pro	Thr	His	Ser	Arg
				275				280					285
Lys	Arg	Arg	Arg	Ser	Ser	Asn	Gln						
				290									

<210> 61
 <211> 777
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2779172CD1

<400> 61													
Met	Val	Leu	Cys	His	Ser	Phe	Leu	Tyr	Arg	Ile	Leu	Thr	Val
						5			10				15
Gln	His	Gly	Phe	Phe	Gly	Phe	Gly	His	Asp	Arg	Arg	Pro	Ala
						20			25				30
Glu	Lys	Gln	Ala	Ala	Thr	His	Val	Ser	Leu	Asp	Gln	Glu	Tyr
						35			40				45
Ser	Glu	Ser	Ser	Gln	Gln	Trp	Arg	Glu	Leu	Glu	Glu	Gln	Val
						50			55				60
Ser	Val	Val	Asn	Lys	Gly	Val	Ile	Pro	Ser	Asn	Phe	His	Pro
						65			70				75
Gln	Tyr	Cys	Leu	Asn	Ser	Tyr	Ser	Asp	Asn	Ser	Arg	Phe	Pro
						80			85				90
Ala	Val	Val	Glu	Glu	Pro	Ile	Thr	Val	Glu	Val	Ala	Phe	Arg
						95			100				105
Pro	Leu	Lys	Val	Leu	Leu	Leu	Leu	Thr	Asp	Leu	Ser	Leu	Trp
						110			115				120
Lys	Phe	His	Pro	Lys	Asp	Phe	Ser	Gly	Lys	Asp	Asn	Glu	Val
						125			130				135
Lys	Gln	Leu	Val	Thr	Ser	Glu	Pro	Glu	Met	Ile	Gly	Ala	Glu
						140			145				150
Ile	Ser	Glu	Phe	Leu	Ile	Asn	Gly	Glu	Glu	Ser	Lys	Val	Ala
						155			160				165
Leu	Lys	Leu	Phe	Pro	His	His	Ile	Gly	Glu	Leu	His	Ile	Gly
						170			175				180
Val	Val	Tyr	Asn	Leu	Gly	Thr	Ile	Gln	Gly	Ser	Met	Thr	Val
						185			190				195
Gly	Ile	Gly	Ala	Leu	Pro	Gly	Cys	His	Thr	Gly	Lys	Tyr	Ser
						200			205				210
Ser	Met	Ser	Val	Arg	Gly	Lys	Gln	Asp	Leu	Glu	Ile	Gln	Gly
						215			220				225
Arg	Leu	Asn	Asn	Thr	Lys	Glu	Glu	Lys	Thr	Ser	Val	Lys	Tyr
						230			235				240
Pro	Asp	Arg	Arg	Leu	Asp	Pro	Ile	Ile	Thr	Glu	Glu	Met	Pro
						245			250				255
Leu	Glu	Val	Phe	Phe	Ile	His	Phe	Pro	Thr	Gly	Leu	Leu	Cys
						260			265				270
Glu	Ile	Arg	Lys	Ala	Tyr	Val	Glu	Phe	Val	Asn	Val	Ser	Lys
						275			280				285

Pro Leu Thr Gly Leu Lys Val Val Ser Lys Arg Pro Glu Phe Phe
 290 295 300
 Thr Phe Gly Gly Asn Thr Ala Val Leu Thr Pro Leu Ser Pro Ser
 305 310 315
 Ala Ser Glu Asn Cys Ser Ala Tyr Lys Thr Val Val Thr Asp Ala
 320 325 330
 Thr Ser Val Cys Thr Ala Leu Ile Ser Ser Ala Ser Ser Val Asp
 335 340 345
 Phe Gly Ile Gly Thr Gly Ser Gln Pro Glu Val Ile Pro Val Pro
 350 355 360
 Leu Pro Asp Thr Val Leu Leu Pro Gly Ala Ser Val Gln Leu Pro
 365 370 375
 Met Trp Leu Arg Gly Pro Asp Glu Glu Gly Val His Glu Ile Asn
 380 385 390
 Phe Leu Phe Tyr Tyr Glu Ser Val Lys Lys Gln Pro Lys Ile Arg
 395 400 405
 His Arg Ile Leu Arg His Thr Ala Ile Ile Cys Thr Ser Arg Ser
 410 415 420
 Leu Asn Val Arg Ala Thr Val Cys Arg Ser Asn Ser Leu Glu Asn
 425 430 435
 Glu Glu Gly Arg Gly Gly Asn Met Leu Val Phe Val Asp Val Glu
 440 445 450
 Asn Thr Asn Thr Ser Glu Ala Gly Val Lys Glu Phe His Ile Val
 455 460 465
 Gln Val Ser Ser Ser Lys His Trp Lys Leu Gln Lys Ser Val
 470 475 480
 Asn Leu Ser Glu Asn Lys Asp Thr Lys Leu Ala Ser Arg Glu Lys
 485 490 495
 Gly Lys Phe Cys Phe Lys Ala Ile Arg Cys Glu Lys Glu Glu Ala
 500 505 510
 Ala Thr Gln Ser Ser Glu Lys Tyr Thr Phe Ala Asp Ile Ile Phe
 515 520 525
 Gly Asn Glu Gln Ile Ile Ser Ser Ala Ser Pro Cys Ala Asp Phe
 530 535 540
 Phe Tyr Arg Ser Leu Ser Ser Glu Leu Lys Lys Pro Gln Ala His
 545 550 555
 Leu Pro Val His Thr Glu Lys Gln Ser Thr Glu Asp Ala Val Arg
 560 565 570
 Leu Ile Gln Lys Cys Ser Glu Val Asp Leu Asn Ile Val Ile Leu
 575 580 585
 Trp Lys Ala Tyr Val Val Glu Asp Ser Lys Gln Leu Ile Leu Glu
 590 595 600
 Gly Gln His His Val Ile Leu Arg Thr Ile Gly Lys Glu Ala Phe
 605 610 615
 Ser Tyr Pro Gln Lys Gln Glu Pro Pro Glu Met Glu Leu Leu Lys
 620 625 630
 Phe Phe Arg Pro Glu Asn Ile Thr Val Ser Ser Arg Pro Ser Val
 635 640 645
 Glu Gln Leu Ser Ser Leu Ile Lys Thr Ser Leu His Tyr Pro Glu
 650 655 660
 Ser Phe Asn His Pro Phe His Gln Lys Ser Leu Cys Leu Val Pro
 665 670 675
 Val Thr Leu Leu Leu Ser Asn Cys Ser Lys Ala Asp Val Asp Val
 680 685 690
 Ile Val Asp Leu Arg His Lys Thr Thr Ser Pro Glu Ala Leu Glu
 695 700 705
 Ile His Gly Ser Phe Thr Trp Leu Gly Gln Thr Gln Tyr Lys Leu
 710 715 720
 Gln Leu Lys Ser Gln Glu Ile His Ser Leu Gln Leu Lys Ala Cys
 725 730 735
 Phe Val His Thr Gly Val Tyr Asn Leu Gly Thr Pro Arg Val Phe
 740 745 750
 Ala Lys Leu Ser Asp Gln Val Thr Val Phe Glu Thr Ser Gln Gln
 755 760 765

Asn Ser Met Pro Ala Leu Ile Ile Ile Ser Asn Val
 770 775

<210> 62
 <211> 97
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3279329CD1

<400> 62
 Met Pro Pro Gly Thr Val Leu Arg Tyr Val Gln Cys Leu Phe Leu
 1 5 10 15
 Asp Leu Cys Ile Cys His Glu Ala Pro Cys Gly Leu Cys Met Lys
 20 25 30
 Leu Leu Leu Cys Phe Trp Val Asn Arg Cys Ala Cys Gln Leu Ala
 35 40 45
 Cys Val Leu Ser Lys Phe His Lys Leu Lys Val Phe Lys Gly Cys
 50 55 60
 Val Val Ser Glu Leu Tyr Val Ser Phe Leu Ser Leu Tyr Leu Gln
 65 70 75
 Arg Val Arg Asn Glu Ile Tyr Thr Ser Lys Val Ser Leu Ile Asn
 80 85 90
 Met Ala Phe Cys Phe Ser Met
 95

<210> 63
 <211> 308
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3340290CD1

<400> 63
 Met Ser Val Ser Gly Leu Lys Ala Glu Leu Lys Phe Leu Ala Ser
 1 5 10 15
 Ile Phe Asp Lys Asn His Glu Arg Phe Arg Ile Val Ser Trp Lys
 20 25 30
 Leu Asp Glu Leu His Cys Gln Phe Leu Val Pro Gln Gln Gly Ser
 35 40 45
 Pro His Ser Leu Pro Pro Pro Leu Thr Leu His Cys Asn Ile Thr
 50 55 60
 Glu Ser Tyr Pro Ser Ser Ser Pro Ile Trp Phe Val Asp Ser Glu
 65 70 75
 Asp Pro Asn Leu Thr Ser Val Leu Glu Arg Leu Glu Asp Thr Lys
 80 85 90
 Asn Asn Asn Leu Asn Gly Thr Thr Glu Glu Val Thr Ser Glu Glu
 95 100 105
 Glu Glu Glu Glu Glu Glu Met Ala Glu Asp Ile Glu Asp Leu Asp
 110 115 120
 His Tyr Glu Met Lys Glu Glu Glu Pro Ile Ser Gly Lys Lys Ser
 125 130 135
 Glu Asp Glu Gly Ile Glu Lys Glu Asn Leu Ala Ile Leu Glu Lys
 140 145 150
 Ile Arg Lys Thr Gln Arg Gln Asp His Leu Asn Gly Ala Val Ser
 155 160 165

Gly Ser Val Gln Ala Ser Asp Arg Leu Met Lys Glu Leu Arg Asp
 170 175 180
 Ile Tyr Arg Ser Gln Ser Tyr Lys Thr Gly Ile Tyr Ser Val Glu
 185 190 195
 Leu Ile Asn Asp Ser Leu Tyr Asp Trp His Val Lys Leu Gln Lys
 200 205 210
 Val Asp Pro Asp Ser Pro Leu His Ser Asp Leu Gln Ile Leu Lys
 215 220 225
 Glu Lys Glu Gly Ile Glu Tyr Ile Leu Leu Asn Phe Ser Phe Lys
 230 235 240
 Asp Asn Phe Pro Phe Asp Pro Pro Phe Val Arg Val Val Leu Pro
 245 250 255
 Val Leu Ser Gly Gly Tyr Val Leu Gly Gly Ala Leu Cys Met
 260 265 270
 Glu Leu Leu Thr Lys Gln Asn Gln Tyr Asn Leu Ala Arg Ala Gln
 275 280 285
 Gln Ser Tyr Asn Ser Ile Val Gln Ile His Glu Lys Asn Gly Trp
 290 295 300
 Tyr Thr Pro Pro Lys Glu Asp Gly
 305

<210> 64
 <211> 290
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3376404CD1

<400> 64

Met	Arg	Arg	Pro	Ala	Ala	Val	Pro	Leu	Leu	Leu	Leu	Cys	Phe	
1						5			10			15		
Gly	Ser	Gln	Arg	Ala	Lys	Ala	Ala	Thr	Ala	Cys	Gly	Arg	Pro	Arg
						20			25			30		
Met	Leu	Asn	Arg	Met	Val	Gly	Gly	Gln	Asp	Thr	Gln	Glu	Gly	Glu
					35				40			45		
Trp	Pro	Trp	Gln	Val	Ser	Ile	Gln	Arg	Asn	Gly	Ser	His	Phe	Cys
					50				55			60		
Gly	Gly	Ser	Leu	Ile	Ala	Glu	Gln	Trp	Val	Leu	Thr	Ala	Ala	His
					65				70			75		
Cys	Phe	Arg	Asn	Thr	Ser	Glu	Thr	Ser	Leu	Tyr	Gln	Val	Leu	Leu
					80				85			90		
Gly	Ala	Arg	Gln	Leu	Val	Gln	Pro	Gly	Pro	His	Ala	Met	Tyr	Ala
					95				100			105		
Arg	Val	Arg	Gln	Val	Glu	Ser	Asn	Pro	Leu	Tyr	Gln	Gly	Thr	Ala
					110				115			120		
Ser	Ser	Ala	Asp	Val	Ala	Leu	Val	Glu	Leu	Glu	Ala	Pro	Val	Pro
					125				130			135		
Phe	Thr	Asn	Tyr	Ile	Leu	Pro	Val	Cys	Leu	Pro	Asp	Pro	Ser	Val
					140				145			150		
Ile	Phe	Glu	Thr	Gly	Met	Asn	Cys	Trp	Val	Thr	Gly	Trp	Gly	Ser
					155				160			165		
Pro	Ser	Glu	Glu	Asp	Leu	Leu	Pro	Glu	Pro	Arg	Ile	Leu	Gln	Lys
					170				175			180		
Leu	Ala	Val	Pro	Ile	Ile	Asp	Thr	Pro	Lys	Cys	Asn	Leu	Tyr	
					185				190			195		
Ser	Lys	Asp	Thr	Glu	Phe	Gly	Tyr	Gln	Pro	Lys	Thr	Ile	Lys	Asn
					200				205			210		
Asp	Met	Leu	Cys	Ala	Gly	Phe	Glu	Glu	Gly	Lys	Lys	Asp	Ala	Cys
					215				220			225		
Lys	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys	Leu	Val	Gly	Gln	Ser
					230				235			240		

Trp	Leu	Gln	Ala	Gly	Val	Ile	Ser	Trp	Gly	Glu	Gly	Cys	Ala	Arg
245								250					255	
Gln	Asn	Arg	Pro	Gly	Val	Tyr	Ile	Arg	Val	Thr	Ala	His	His	Asn
260								265					270	
Trp	Ile	His	Arg	Ile	Ile	Pro	Lys	Leu	Gln	Phe	Gln	Pro	Ala	Arg
275								280					285	
Leu	Gly	Gly	Gln	Lys										
290														

<210> 65
 <211> 198
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 4173111CD1

<400> 65

Met	Glu	Met	Ser	Gly	Leu	Ser	Phe	Ser	Glu	Met	Glu	Gly	Cys	Arg
1									10				15	
Asn	Leu	Leu	Gly	Leu	Leu	Asp	Asn	Asp	Glu	Ile	Met	Ala	Leu	Cys
									20		25		30	
Asp	Thr	Val	Thr	Asn	Arg	Leu	Val	Gln	Pro	Gln	Asp	Arg	Gln	Asp
									35		40		45	
Ala	Val	His	Ala	Ile	Leu	Ala	Tyr	Ser	Gln	Ser	Ala	Glu	Glu	Leu
									50		55		60	
Leu	Arg	Arg	Arg	Lys	Vai	His	Arg	Glu	Val	Ile	Phe	Lys	Tyr	Leu
									65		70		75	
Ala	Thr	Gln	Gly	Ile	Val	Ile	Pro	Pro	Ala	Thr	Glu	Lys	His	Asn
									80		85		90	
Leu	Ile	Gln	His	Ala	Lys	Asp	Tyr	Trp	Gln	Lys	Gln	Pro	Gln	Leu
									95		100		105	
Lys	Leu	Lys	Glu	Thr	Pro	Glu	Pro	Val	Thr	Lys	Thr	Glu	Asp	Ile
									110		115		120	
His	Leu	Phe	Gln	Gln	Gln	Val	Lys	Glu	Asp	Lys	Lys	Ala	Glu	Lys
									125		130		135	
Val	Asp	Phe	Arg	Arg	Leu	Gly	Glu	Glu	Phe	Cys	His	Trp	Phe	Phe
									140		145		150	
Gly	Leu	Leu	Asn	Ser	Gln	Asn	Pro	Phe	Leu	Gly	Pro	Pro	Gln	Asp
									155		160		165	
Glu	Trp	Gly	Pro	Gln	His	Phe	Trp	His	Asp	Val	Lys	Leu	Arg	Phe
									170		175		180	
Tyr	Tyr	Asn	Thr	Ser	Glu	Gln	Asn	Val	Met	Gly	Leu	Thr	Met	Glu
									185		190		195	
Pro	Glu	Ser												

<210> 66
 <211> 789
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 001106CB1

<400> 66

atataatacgatataaccctt cttgcccttg aaggccggaa gtcggcttta cagataaaaag 60
 cggaaacagga agtccccggcc ctctatggaa agttaatggt agctccggaaag ggtcaaaaga 120
 gtcggcggtt tcggcgctgt agttgtttt tgcggctggg gaggtctacg cttcttagagc 180

ttgagccagc ggggcgaccc tgcagtggca ggactcggca ccgcgcctc caccgcgg 240
 tggggccctg cgtgacagt tcctccctc gacatcgaaa ggaagccgga cgtggccgg 300
 cagagagctt catcgagta ggaatggcag cccatctat gaagggaaaga caggtctgt 360
 gggggccctg ggatgagta tggaaagtgtt tagatgagaa ctttagaggat gcttctaat 420
 gcaagaagtt aagaagctt ttcgaatcaa gttgtccca acagtggata aaatattt 480
 ataaaagaag agactactta aaattcaaag aaaaatttga agcaggacaa ttgagcc 540
 cagaaacaaac tgcaaattcc taggtgttc ataaagattt aaagtattct ttctggacat 600
 tgaaaaagct ccactgacta tggaaacagta atagtttcaa tcatagtgaa catcaatact 660
 tgttccctat atacgacact tgataattaa gatgatcaag aaccagaaga tctgtgaaga 720
 aatgaaataa aatggtattt agtaagaaat ctctattttt agaaaaaaag taaaacctgt 780
 tataaacaac 789

<210> 67
 <211> 1117
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 004586CB1

<400> 67
 gccagagcgc ttcggcccttc ccgaccttc cccggagccc cgggcctccc cgctgtttc 60
 cctgagtctt tcctcccttc gccagagccc gagcgcctccc cggagacccct cgctttccc 120
 cgtccgcctt cccggaggca ggcgcggctt ataggacgaa gttatacgga agcgtctct 180
 cattgatgga gatgggtctg gagatgatcg gagaattaat ctgctgtga agagtttcat 240
 taaatggtgc aactctgggt cccaggaaga gggatatacg cgtaccaac gtatgtqag 300
 cacgtgtct caatgtgaat tttcaatggg caaaacttta ctgtatatg atatgaatct 360
 cagagaaatg gaaaattatg aaaaaattta caagggaaata gaatgttagca tagctggagc 420
 acatgaaaaa attgtctgagt gaaaaaaagca aattcttcaa gcaaaacgaa tacgaaaaaa 480
 tcgccaagaa tatgtatgtt tggcaaaagt gattcagcac catccagaca ggcgtgagac 540
 attaaaggaa cttagggctc tggggaaaaga attagagcat ctttccacaca taaaagaaag 600
 tggtaagat aagctggat tgagacggaa acagtttcat gttcttcttta gtaccatcca 660
 tgaacttcag caaacatgg aaaaatgtga aaaaactctca gaggttagaaag aagctcagga 720
 agcaagcatg gaaacagatc ctaagccata gacaggctaa ttgcccacca ctcccaggaa 780
 tattgaaata gctacatgtc cataatgtgt taaaatgtt gtatgttctt gagatattta 840
 aagtttggc agtaaaatc tctgtttta agtataatg tatttcattt atatttccctc 900
 tcacaaagga aatgacttc agtataatg tggggggat taaaatgtt tttatttctt 960
 aagtggtagg aagcaacatc caaaaatgtc taataaaatg ctttaagct gcaaaaaaga 1020

annnaaanga gcantnann ntgggggcnc cnntngtaaa ananaaaggg gnggnccccc 1080
 ggntanntt aancatcn nccccggga tttaattt 1117

<210> 68
 <211> 1628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 052927CB1

<400> 68
 ggcggccggcg acgactgcaag ctcggggagggt agcggcctgg cgagggacgg gccggctgcc 60
 ctctcggacg gccggccgg agggcaaaaaa tggcggaggg ttcggccggcc gggggccgact 120
 cgggcgcggc ttagccccc caccgtttt tctgcccactt ttgcaaggc gagggtcagcc 180
 ccaaactacc ggaatataata tggcccaatgt gtgaatcagg ctttatttga gaagtgcac 240
 atgatccag ttttttaggt ggtggccgca gtcggataga caataccaca acaacacattt 300
 ttgcagagct ttggggccat ttggatcaca cgtatgtttt tcaagatttt agacccttc 360
 taatgtgcag tccactggac caagataata gacccatgt aaggggtcac cagactcaca 420
 ctgacttctg gggagcaaga cctccacgggt tgccattggg tcggagatc acatctcgag 480
 gaagtccctcg tccgtacaga tctccacgtt ttgaagggat actacaacac atctttcgag 540

gatttttgc aaattctgcc attcctggat ctccacaccc ttttcctgg agcgggatgc 600
 tgcactccaa ccctggggac tatgcctgg gtcagacagg gcitgatgcc attgtaaacc 660
 agcttttagg acaactggaa aacacaggcc ctcccccagc tgacaaggaa aagatcacat 720
 ctctccaaac agtgacagta actcaggaac aagttgatat gggtttagag tgcctcgat 780
 gcaaaagaaga ttacacagtt gaagaggaag tccggcagtt accttgcata cacttcttc 840
 acaggagtgt tattgtgccg tggctagaac tgcatgacac atgtcctgtt tgcggatgt 900
 gcttaatgg tgaggactct actcggcaaa gccagagcac tgaggcctct gcaagcaaca 960
 gatttagcaa tgacagtcag ctacatgacc gatggacttt ctgaagctaa agaccacacc 1020
 tgaatttaggg ctgtggtaat catcttacca tagctgtaaa ttgtatcaaa acaaaaaatt 1080
 agtagatggaa tttaggaata tgaagaaac tcaacacata atataaatgc aatgaatgtt 1140
 ttcttctttt aaatttaaag ttagtatactc cagatggaaat tgcataatcaca accaaatgcc 1200
 tcttataccctt gaatttcagag tgataattttt ataagtgtga aacttaatta tgcgggctc 1260
 ccccccgtctg aatagaatta attccttaaa gtctagttag ggtcctgctg tctgtcatgt 1320
 tgccttgcgtaa cggatgttc caccccttc tccaaacctt accccacccat tagtgcattt 1380
 tactataaaa acagtggaaac cacagccctt aagtccctgtt gatataaagt cctttgtct 1440
 taattgtatt taaaaaaaaan nnnnactact ctgtntcaca ttagtgcata ggcgagggtca 1500
 anttcaggtn tctaagacta atgatttttt ttgnnttga tcccccagagn gcanatcaaa 1560
 gnaaaattac agcaagnagg cgaaaagtgg tttnncatng nntngctt ngttattttt 1620
 tnatttta 1628

<210> 69
 <211> 1706
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 082843CB1

<400> 69
 tgatactgaa ttaataataaa gtggatttt agagtttatt aagcagggga gtggagggga 60
 gatgtggcac aaatagaagt atgtaaacatt caaacaacag catctaggat ttttggaaaa 120
 actttcggtt acagttcacaa aaagggtcac ttccctccca ggcacacatg ggcctctcaa 180
 aggaagggag ggagtaagtc ccacggtagg gccagtggtt gtcctctggg ttttggatc 240
 atttctgcgg agcttcaag gccagacccct gggcttaggg tcgagacttc atagcaatgt 300
 cagccaaqacc cagcaagatg gctgcgaccg taaaaccctg ggcggcgtc cgggtgcgca 360
 tcaatqactg agagcgtctgg ctgttgcctt ggtggaaagga gtagaggccg taggtgagg 420
 cggccggccgtt gggccaggca acctatgggtt accaccgggt ttcgcgggtt ctgcgaacg 480
 aacttttctt tgaaactctc tggatccctg taaaacgtgg ggctcagccctt ctcaatgact 540
 ggagggttcg atggttcaaa ggggacccctt ggaatcacag gggccgggatg cgccatgtt 600
 gggccacagc agcaggagaa aatccggactt ccgcacccctt cctccgggtt aaggtcatgt 660
 aaggcccggg gaaacgaata aatttggactt tgcacgtgg ccacatgtt gttgcatttt 720
 gggaggatgtt gtgctcggca cggtagtgc acaaaaggac tacattttcc caaatgccc 780
 caaagccttgc tgcacgcctt ccggaggag tttgttacac gaggtctgag agacagaggc 840
 agccttttgc agctgtgttgc gcccgttgc ggcgcgttgc caaggccaaq ggcggggacc 900
 ggaggccggaa gtttggttac agtgcaccc gaaagcgtctt gacccggat gtcgcacgg 960
 aggccggccgc gcccgttgc tgcctccaca tccgcacatgc ctgggaccac gctaaatcg 1020
 tacggcggaa cctggccggat atgggggttgc ctgtggaccc caacaggccg gtcggcccttcc 1080
 gtaaaggaaaaa ggtgaaggcc atggagggttgc acatagagga gaggcctaaa gagctgtac 1140
 gggaaaccccta tgcgtgttgc gacccgttgc cggccggat gtcgcacgg 1200
 atactttgttgc tcgggacccctt attgactatg tgcgttgc gtttggatgac cacggggagg 1260
 actataaggc catggcccgat gatgagaaga attactatca agataccctt aacacagatc 1320
 ggaggatgttgc caacgttgc ttttgc acccaggccg gtcggccggat ttcctcgatt 1380
 ctggccggaa gaggccggat gacccgttgc gacccgttgc gtcggccggat 1440
 gaggccggcc cccggccggat gacccgttgc gacccgttgc gtcggccggat 1500
 gtcggccggat gacccgttgc gacccgttgc gacccgttgc gtcggccggat 1560
 ccccccgtctg gggaaaggcc tgcgttgc gacccgttgc gacccgttgc gtcggccggat 1620
 cggaaaaggcc agaaccgttgc gtttgc gacccgttgc gacccgttgc gtcggccggat 1680
 aaacaaata tattttactt ctctgtt 1706

<210> 70
 <211> 1864

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 322349CB1

<400> 70

catgcgcacg tggggccgtgg gtgtacgcgg cgcacgcggc agtcctgatg gcccggcatg 60
 gtttaccgcgt gctgcccctg ctgtcgctcc tggtcggcgc gtggctcaag ctaggaaatg 120
 gacaggctac tagcatggtc caactgcagg gtgggagatt cctgatggga acaaattcc 180
 cagacagcag agatggtaa gggcctgtgc gggaggcgc acgtaaaaccc tttgccatg 240
 acatatttcc tgtcaccacaa aaagatttca gggattttgt cagggagaaa aagtatcgga 300
 cagaagctga gatgtttgga tggagcttg tctttgagga cttttgtctt gatgagctga 360
 gaaacaaaagc caccgcacca atgaagtctg tactctgttgcgtt gaaaaggcat 420
 ttggaggca gcctcgaggc cctggctctg gcatccgaga gagactggag caccctgt 480
 tacacgttagt ctggaatgac gcccgtgcct actgtgttttgcggggaaaaa cgactgccc 540
 cggaggaaga gtgggagttt gcccggcag ggggcttggaa gggtaagttt taccatggg 600
 ggaactgggtt ccagccaaac cgcaccaacc tttggcaggaa aaagttcccc aaggggagaca 660
 aagctgagga tggctccat ggagtctccc acgggctcta tgaccccttggaaacgtgtt 720
 ctgagcagga catgcgcgtc ctccggggggg ccaatcaccgcg gggccgggtc accaccagga 780
 acctcggtt ccgtgtgttgcgacacgcggcagg 780
 ggtggtagaca aggagaaaag ccttcttaggg agcgcaatttc aacgttcggc 840
 catccctctg tggcaggcgc ctccaccatgg 840
 ggagaaggggg cccaatgtgttgcgacatgg 900
 aagtatttattt gacacaggat tgcaaaacaca ccatttttta agcattttaa aatctattct 900
 gctgacatttgcgttccatgg 900
 ggaaggagaa tgctttttt gtggcctcat 900
 agtttccact gtgtacacagg cagacatgttgcgttccatgg 900
 agtgcactgg tgatcacggc tcactcttc 900
 acctcagcctt cctgagtagc tggactaca 900
 tgaatttttgcgttccatgg 900
 tcaagcgtatccatgg 900
 gctggggccccc ccttctccatgg 900
 acactgttccatgg 900
 aaaa 900

<210> 71
 <211> 2738
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 397663CB1

<400> 71

aggttaactgc agtaagtccc gcttggccct ggagtccacg cggattttcg aagctgggc 60
 tggcaagagg ccgcgtggaca ccacgcgttca gtcgtcagcc cacttccatg ctgaacacgc 120
 cgaggcggcg gcagcgagcc gggccccacc atggccgcga attattccatg taccatgg 180
 cggagagaac atgtcaaaatg taaaaccacgc tcccagccatg gtttccatg 240
 gagacctcggtt gttggatgtt tggggatgttccatgg 240
 ttccaccaatg agggccgcgc attgaagacgc gcaacctcat tggctgaggg gctctcgctt 300
 gtgggtgttccatgg 300
 ccgcacagcat ccacagtgttgcgttccatgg 360
 atcattggcg ccttacggac atccaaatgtt tttgtctgttccatgg 420
 ccgcgtgtga aactgcggag gcacgtggatgttccatgg 480
 agggagataca ccgcaggatgg gcaggatgttgcgttccatgg 540
 tggaggatcag aaatcatcaatgg 600
 agtgccttccatgg 660
 cagtgaggatgc attcagggca acagccccctt tttgtccaaatgg 720

ttcccttcgt	caggcctcat	cgacaaagtc	gacaacttca	agtccctgag	cctatccaag	780
ctggaggacc	ctcatgtgga	catcatttcgc	cgtggagact	ttttctacca	cagcgaaaaat	840
cccaagttatc	cagagggggg	agacttgcgt	gtctcctttc	ctatgtgga	ctgagcggcg	900
atgaccctga	cctggggcca	gctcacgtgg	tcactgtat	tggccggcag	cggggtgacc	960
agctatgtccc	attttccacc	aagtctgggg	ataccttact	gctcctgcac	cacggggact	1020
tctcajcgaga	ggaggtgttt	catagagaac	taaggagcaa	ctccatgaag	acctggggcc	1080
tgcggcgagc	tggctggatg	gccatgttca	tgggctctaa	cctttagaca	cggatccct	1140
acacccttgtt	ggactgtgtt	cctgtttcc	gagacctggt	caacattggc	ctgaaagcc	1200
ttgccccctgt	tgtggccacc	tcgtgtaccc	tgctgaccgt	ggcggctggc	tggcttctt	1260
accgaccctct	gtggggccctc	ctcatttgcgg	gccttggccct	tgtgcccattc	cttgggtgtc	1320
ggacacgggt	gccaaggaaaa	aagtggagt	gaaaagaccc	tggcaccggc	ccgacacct	1380
cgtgaaacccct	aggatccagg	tcctctctca	cctctgaccc	agctccatgc	cagagcagga	1440
gccccgggtca	attttggact	ctgcacttcc	tctcttctt	agggggccaga	cttgcagca	1500
tgtgcaccag	gttgggttcc	accagctcat	gtctccccc	catctttct	tgccagaatag	1560
cagcttttgtt	gggcagcagc	agctcatgaa	tggcaagctg	acagtttctc	ctgctgtttc	1620
cttccctctt	tggactgagt	gggtacggcc	agccacttag	cccattggca	gctgaaacg	1680
cagacacgtt	ctacggaggc	ctgctgataa	agggctcagc	cttgcctgtt	gctgtttctc	1740
atcaactgcac	acaagtgcct	tgctttggca	ccaccaccaa	gcacatctgt	gatcttgaag	1800
ggccggccgtt	agtcgttact	gctgagttct	gggtcaccag	cagacacact	gggcatggac	1860
ccctttaaagc	aggcacaccc	aaaacacaag	tctgtggcta	gaacctgtat	tgggtttttaa	1920
aagaatggaa	acactgaaga	tgtcctgagg	agaaaagctg	gacatataact	gggcttcaca	1980
cttataatgtt	ggcttggcag	aatcttigt	gtgtgtggg	tctctgaagg	ccctattttaa	2040
gtttttttttc	gttactttgc	tgcttcatgt	gtactttct	accccaagag	gaagtttttt	2100
gaaatggat	ttaaaaacaa	aacaaaaaaa	acacttaata	tttcagactg	ttacaggaaa	2160
cacccttttag	tctgtcagtt	gaatttcagag	cactgaaagg	tgttaaattt	gggtatgtgg	2220
tttgggtttat	aaaaagttac	ctcttcagtt	tttgcgtcac	tgagaagctt	tacaatggat	2280
gctttttggaaa	caagtatcag	aaaaaggatt	tgttttcact	ctggggaggag	agggtggaga	2340
aagcacttgc	tttcatcctc	tggcatcgga	aactccccata	tgcacttga	gatgttttaa	2400
aagatggaaag	aaacgattaa	gagaaaaaggt	tggaaagctt	atactaaatg	ggctcttca	2460
ttgtgtacgcc	ccgtcaaccca	caatcaagaa	ctggggctgt	aggctgggt	tacaatggcc	2520
acgcctggct	ggctgttttc	accttgggagt	gctttcgtat	tggggacactt	gggtttccat	2580
ggctgtttct	gagtggttct	ttcacgtgtt	gtgtccatag	cttttagtctt	cctaaataag	2640
atccaccacac	acctaagtca	cagaattttt	aagtccccca	actacttc	caccctttta	2700
aagataaaagt	atgttgtac	caggatgtct	taaaaaaca			2738

<210> 72

<211> 3685

<212> DNA

<213> *Homo sapiens*

<220>

<221> misc_feature

<223> Incyte clone 673766CB1

<400> 72

```

ctggccaggaa gcgagggtgc ggcgcaatcc ggagaggacg ccaggacgac gcccggatcc 60
ccttttggc tagaactctt ctttttcta gttggggta gaaggcgagg ctagccccg 120
gaaccccccgc ctcgggggtg cgaggcgca gcaggccgt cccctacatt tgcatagccc 180
ctgggacgtg ggcgtgcacc caagccttt ctcagttgga gggactcca agtccccacag 240
tgccacgggg tgggtgcgt cacttcgtc gcgttggagg ctgaggagaa ttgagccctgg 300
gaggcgggtc cggagagggc tatggaaagc cgccggcggtt gaatcccgcc ctagaggga 360
cagtcctatag gtgcccggg cttacagctg gcttggggct cgtgtctggg ttccggacgt 420
tggggccccc tggcccaacc ttccgtagt tgcccaaat ggagctggaa ttggatgtcg 480
gtgaccaaga cctgtggcc ttcgtcttag aggaäägtgg agatttgggg acggccacccg 540
atgaggccgt gaggggccca ctggatggg cgctgcccgt ttctgaggtt ccgagcgact 600
ggaaagttaga tgatttgcgt tgctccctgc tgatgtccccc aacgtctttt aacatctca 660
gctccctccaa cccctgcctt gtccaccatg accacaccta ctccccccca cggaaactg 720
tctctatgga tctagagagt gagagctgtt gaaaagaggg gacccagatg actcccaacgg 780
atatgggaa gctggcagag caggagattt ctaggtctgtt actgacagat gaggagaaga 840
gtctatggg gaaggagggg ttattctgc ctgagacact ttctctcaact aagacaaagg 900
aacaatctt gaaacgtgtg cggaggaaga ttcaataa aagatctgtt caagagagcc 960
gcaggaaaaaa gaagggttat gttgggggtt tagagagcag ggtctgaaa tacacagccc 1020
agaatgttgg gcttcagaac aaagtacagc ttctggagga acagaatttg tccctcttag 1080

```

atcaactgag gaaactccag gccatggta ttgagatatc aaacaaaacc agcagcagca 1140
 gcacccgcat ttggtccta ctgtctcc tctgcctcc ccttgcacct gctatgtact 1200
 cctctgacac aagggggagc ctggcagctg agcatggagt gttgtcccgc cagttcggt 1260
 ccctcccaag tgaggaccct taccagctgg agtgcctgc cctgcagtca gaagtgcga 1320
 aagacagcac acaccagtgg ttggacggct cagactgtgt actccaggcc cctggcaaca 1380
 cttdccgcct gtcgcattac atgcctcagg ctcccagtc agagccccc ctggagtggc 1440
 catccctgta cctttctca gagcctctc gcccggatcc catcctccccc ctgcaggca 1500
 attcacaag gaagggagga tggcttccta ctgttagccc ctctgtcatt ttgcaggaca 1560
 gatactcagg ctagatatga ggatatgtgg ggggtctca gaggagctg gggggctccc 1620
 catctgtgtc caaataaaaa gcggtggca agggctggcc gcaatcctg tgccctgtca 1680
 ggacgactga gggctcaaac acaccacact taatggctt ctgggtctt tatttgcacc 1740
 catgtctg tcacaccatg aatgtacctg gggaaatcaa ctgacccccc tgaacatttc 1800
 acgcagtcag ggaacaggtg aggaaagaaa taaaataatgtt attctaatgc tgcctaggc 1860
 accctcaacc cccatttact ggcacaattt ggtggagaga agggaaagggg tatgattgtc 1920
 ctgatggctc aggggttgcag gaggttcaga ggggaaggag gaaaggccag gctggaggct 1980
 gggctgttag cacttccctc ccacagtca gacggctcac tctggctca ggtttgcatt 2040
 ggcttccctt ggtccaaaca taggcccctgt ctttagtcc tgcctgtt tgacttttgg 2100
 ccaggaggcc tttttgtct gctgctgtt gagggtca gtcatggccc atatgtcag 2160
 tggccgcattg taggcccattg agcggaaacac tcgctgttgg cagtagtccct ctggggctc 2220
 gaaggccaga cccaggccct cccacacccgt acggtagcag cttcagctg tctggaaagcc 2280
 ctcccaagtc agggcccttt ggatcatggt agctgcccgc ccgttagacca caccacacca 2340
 gacttcattca gactgcacac tggatttatac agggacacca tggggctgca tcccaattc 2400
 agcccccatg gcccctctg caaaggccctg gacggttccg tcaaaatgtt tttggagac 2460
 acggaccaca tgggggttag gaaacacccctc agtgcctcc tctccctaggc cacaggccct 2520
 cagaaccac tggccagcac actgttcaga cataacacta cgagactgag gccgagagct 2580
 gctgtcatag ttgtatagc ggcatttcca cagcgttcc tcataaggctt cttggccccg 2640
 gctgaggatc gaagaaaact tatctgttgc gtcctgttgc ccacacagag cagccatctg 2700
 gaccatcaca gccacacgtt ccagccacag ccctccacag taagacttgg ggcctgtgg 2760
 caccatcca tcataggctt ggtctgcata gcctccattt tcaatgtatc catcatggc 2820
 ctgtcaaaac ttcatccatc attccatcac agcttagacac acaggccaca tgcctgttgc 2880
 gaagttttga tcacccgtga ggtatagtc cccgataaaacc tgcagcacca acttcagggt 2940
 caggcccttc caatcagcag tatcatggat taaaatgtca ttgacccggg gccatggtc 3000
 atcatctggg tccccatata catggggat gacggttccctt ctittccacag gtgcctac 3060
 cccactcatc aggtaccgtc gccgtgtcag gtcctccctg agagttggcca gagccatgtc 3120
 atactgttagg ctgagctaa gttggggca gagcatgtt agggccaaagg aagcataaaa 3180
 gtggacatca tatgtgttgtt acatgcgttca tccctggccc tcaaggtagc caaatcgacc 3240
 gtagtccctgt aggggtgggc ggaggtgaca catgtttctg cccagctccctt ctggtaqgg 3300
 gtcccaaga acttccagcc acactgtgcc tccatcagcc aggaagtata gttcattgaa 3360
 cagcgcagat ttgttaccagg caggcgttca tctgttccatc aataccgggc tctgccaagc 3420
 ttagatccctc tcttccatc ctgcgtatcc gacagtgcac tagtggctga gggcagggtgc 3480
 tgcatttcca tccctggccaa agaaaccttgc ataccgccttgc tagtggactt ggcctttagc 3540
 tccaaacatg atccctggca tgccttccaaac cagtggaaac tccaggccgc actggccctc 3600
 aggtgcgaac ttgtgtggaaa cacacacgc tccagcaatg cttactccctt ctgcgttgg 3660
 ggtgtttgg cctgagctg agccg 3685

<210> 73
 <211> 1801
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1504753CB1

<400> 73
 ccgaattccgg anagnncat acgcccagtca gcaggagcag cagcataatc cagcatgtt 60
 ggctgcctt agcgcctaggc acacacagcg caccaacaatc tctaccacag tctgacccaa 120
 gccagtttca aactcagacc cagccctttag tcgggcaagt cgacgataatc agaagaaaat 180
 cagaacccctt acctcaacca ccactttctc tcattgttca aaataagcc tttgtqaad 240
 cgccgttgc agattcccttgc caaaacccccc ttcaatggcc acctatgttgc agtctggcca 300
 cttctgtatt cagcatagctt atccctgttgc atgggtatgttca agacagggat cttcaactg 360

ctttctacca agcgttccat ttgaacacgt taaaggaatc aaagagccctc tggatagtg 420
 catctggggg aggtgtgt a gccattgaca aaaaaataga acaagcaatg gatctggta 480
 aaagccattt gatgtatgca gtaagagaag aagtggaaat tttaaaggaa caaataaaag 540
 aattagttga aagaaactct ttacttgaac gagaaaatgc actgttaaaa tctcttcaa 600
 gcaatgatca attatccaa ctcccaaccc aacaggccaa tcctggtagc acttctcaac 660
 agcaagcagt gatagcacag cctccgcagc caacgcaacc tccacagcag ccgaatgtct 720
 cctcagcata aagcttctt aagccttattt aaaaaaaaaa ctgaaagcaa tctatccttg 780
 tggccactg gtgttcttcc cactttatac gaaagcaagt agccatgtt tgggtgttg 840
 ttggcctt tcagtttagt acaatatttca tacaagagct tttctctctt ctgagatgtc 900
 atgcagcgtt gttgatgtcc agtctatgt catcagtaca caaggagaat aatagatggg 960
 gtttattaa gcgagccaaag tctgcattttt acctggtagc catgagtggg gtcttaaga 1020
 gtttgggtgg ctctccatg ttcccttattt cccatggatt taccctgagc ctccctatca 1080
 cattataaat aacagtcat ctaaagagcc accttcttctt ctgattcagt aacatttgcc 1140
 tacataagtt ttcattttt tgggtttttt ttattacagg gctgttattt tcataatgtt 1200
 catgaacaat gtcacagaac ttttttaattt ttttgaata attataagta tcagtaaagg 1260
 aagtggaaaga caggattgca tttatagat aaaacgttta ggcaataattt gaacaaaaaaga 1320
 atccctggcat atttcttaca ctaatggcaa tttactttagt gtatttattt tcagtagtta 1380
 agacccagct tgaatgtaaa tttgtatag tggtaatgtt aagaacatag tgcaactgtt 1440
 caggttagtca ccagttattt tgatatgata aataatttggg ctattttgtt gaagaaaact 1500
 ttgttcttattt gtttctactt tctaaagagaa attggccacga ttccctctgtt tttcaacatt 1560
 tcgtatgact ttttttcgg gtggaaataa aaagctgtt aatttggtaa cctactttgt 1620
 aacccaaagaa gcaaagctgt gtaatggagt ttggttttt tttgttggg ttttntttt 1680
 gtcttngtt tggttttata angacaanc ntangnatt nttaatttgg gnnttncag 1740
 tcacaanttt cnnnachngnc tagnaaganc cgcaagaccc aaaaacntt aaccaccc 1800
 g 1801

<210> 74

<211> 1578

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1760185CB1

<400> 74

ctcgagccgc gttactctgc gcgttaagtgc cttgtccgtg gcttctctga gaagaaaagt 60
 taaaaaaaggg taaaagttt cagaatattt cgggctcttctt attgtcaagc atagcgatg 120
 tcggttttctt ctctccaaaca gacatcgctt ttgcgggtcc gaggcgttgg gaagagatgc 180
 gcccccttggaa catcgctcgag ctggcggaaac cggaggaatgggggtgttgg gagcccgagg 240
 agatttcga gcagtttctg ctcccggtca tcaacggat ggcggaggac atcgcgtcgc 300
 tgaacgcgcga gcacgggcgg gctgtacctgc ggaaccggag caagctgtgg gagatggaca 360
 atatgtctcat ccagatcaaa acgcagggtgg aggccttggg ggagagcgcc ctcaaccacc 420
 tccagaaccc gggcgacgcg gcccggggcc gggcggccaa gaggtgcgag aaggccgagg 480
 agaaggccaa ggagattgcg aagatggcag agatgttggt ggagctgttgc cggccgatag 540
 agaagagcga gtcgtcgta ggcgggttgcg cgggttccag ccaatggattt ctggtaact 600
 ggtggagatt ggctgacacc ctggagaagc cggatccat gacccatggat tttctctttt 660
 ttccctgtctt atgtctgttca tcaacttaca tcaacgttttgc tgctatgttgc tgggttggat 720
 gacctcaata tggatccga ttgttaacgt tttttgtttt gggaaagtaat tttgtttgaa 780
 aatgtctctca catacaggaa ttggggctta gattgttaagc tcttgcagca gtcacattt 840
 ttcccccggct ttgggtggta ttttaattt tttgagggtgc tttgttattt ctgtgtgac 900
 ctgtatgctc cctggaaactt tgggtctgt tggacacat gacccatggat tttgttggat 960
 tccagctctg gagggtgttca aggatgtca tttttctgg aagacgactc catgcagcaa 1020
 ctactqaaga aaggaccaga ctcaacggg gagggtggat ggggtggatct ggctgggact 1080
 cgtgaatctg gagaagagct ggagaatggaa tagtattgtc tggatggat gactttatc 1140
 tctgtgttggag accaaaggag gagagatgtt ttttgcctaa aatctaaat tttgttggat 1200
 cactatcttca tggtaacctgt ctgttggat tttttggaca accttactca gcttttattt 1260
 acatggaaacc taaaatagaa gataagatct tggatattctg tacaagttga tggtaatacc 1320
 tggatgtttt tagaggactt ggcataaaat gaaagatgg caaaggccct tgaggggctt 1380
 ggggatgaga gtatggact gctgttccat gaccctaaac tggactagaa gaggcatctt 1440
 caaggttcat acgttgcata gctgttggat ttttggatca gcaagacctaa caaatattt 1500
 agtcaaaaac cctaccatgt taaaacaaac aaaaacttac catgttataa aaagtatttca 1560
 ttgttggatcaaaaaaa 1578

<210> 75
 <211> 1624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1805061CB1

<400> 75
 gccgtcgccgg acgcgcgtcc gggcagccga gcctctgtgg gagccggggc cgccggccg 60
 cgggtgcgtcc gggccgaggc cgctgtccgc tcttgcgtat tgaattcctt tggtgca 120
 tagcatgttc ctctgtgttc tgcattcttctt gtagtgtat gttcaagctc agaaatgcct 180
 tatgtggatc gtcagaatcg catttgtgtt tttctagaca ttgaagaaaa taaaacagt 240
 gggaaatttc ttcgaaggtt cttcatactg gataccagag aagatagttt cgtgtggatc 300
 atggataatc cacagaacctt accttcttgc tcatcactgtt ttggagccat taagcttacc 360
 tacatttcaaa aggttagcga tgctactaag ctaaggccaa aaggcggagtt ctgtttgtt 420
 atgaatgcag gaataggaa gtacttcataa caagccatgtt atcagcaggaa cctagtggaa 480
 tggtaaatg tgtaaataaa agtataaaa attacagtac caaaggcgtc agactcacag 540
 cctaattctg ataacctaag tcgcctatgtt gatgtggaa aaaaacagt gtcttacaga 600
 actgatatttgc ttggggcgtt acccatcattt actcccactt agaaaagaaga agtaaatgaa 660
 tgggtgtggaaa gtatttgcacaa aaataatctg aaacggtacaa aagcctatcttccctt 720
 actcctaaac caccatcaga tagtgcgtt atcaaagctg gatattgtt aaaaacaggaa 780
 gcagtgtatgaaaactggaa gagaagatatttcaatttgg atgaaaacac aataggctc 840
 ttcaattctg aactggaaa ggaaccttgc tgcgtatatac cacttaaaga gttcataaa 900
 gtccaggaat gtaagcaag cgacataatg atgaggggaca acctcttgc aattgttaca 960
 acgtctcgaa ctgttatgtt gcaaggctgtt aacccctgtt agatgcacag ttggatttttt 1020
 gcagtctctg ggcgcattgtt aacccctgtt ggcgcgtt gatctgcgtc ttctatgcgg 1080
 caggccagaa ggctgtccaa cccttgcataa cagaggagca tcccccgggtt ccctcagaat 1140
 ccaaacacgc ttccgttcc accaacgcgtt ccgcgcgttcc acagccttc 1200
 gcagcaactc ttgggtctca acctttacca tggagaagcg aggatttttac gatctcttgc 1260
 ccaaggctaa gccaggaaat ttcaagggttcc agactgtctc tccaaagggaa ccagcttcca 1320
 aagtgtatgaaaactggaa ttaagacctt aagtttttttggcccttcag gaaaaagatt 1380
 gtgacctgtt agacttgcgtt gatgcgttgc ttccgggttgc tgacgtgttgc ggcagaagcg 1440
 cacggggcctt gcctgccttcc ggcgttccatc gtttcccttc atgaggcttgc tagccaaaga 1500
 tgataaagggg gggaaatgtt tttagtgcgtt atattataactt gctctttagg tgactctt 1560
 ataagctgtt aaaccaagaa tctaggggatg ggcggaaacta aatataattt cttaaaaaaa 1620
 aaaa 1624

<210> 76
 <211> 1675
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1850120CB1

<400> 76
 cgggtcttag ctccagggtgc gtacggcattc tgacttgacg tggcccacaa ctgaaaggcc 60
 tggggagaag ggcgcgtgtc cgggtgtggaa gagggggcgtc gtggaaagcga gaagagtggc 120
 ccgtccctctt cctccccctt tcccttcttgc gggaaatgtt ttctgcgggg cccggggatc 180
 tcggaggatcc gaaacctcgat ctccggggcg gggcttgc tggggactgtc ggcgccttc 240
 cccggggacgg ggcgtctgtc cgcggacttcc cctgcggggag cgtgattggc tggaaacgg 300
 cccgaacccc cagggggagcc cgtatccctgg gggaccctgg cttcgactc cagttatgtt 360
 cgtcgcaggg tccctgcctt agtggcttat gtccttgc tggggccatc gagactgtc 420
 ggcggactacg ggcggccctc tgcgttgc gggggaaatgtt acctccggcc tccaggctt 480
 ggcggccgttgc gataccggag gcccctctgc ctcggccgtt aaggccggagg acgaggggaa 540
 aggaggccga gaggaggaccg agcgtgagggtt gtcggggggc gaggaggccg aggaggaaatgtt 600
 ccccaaggctt gggggggaaatgtt agcctgcctt gggggggggc gaggacttgc gggactgtt 660
 cagcggccgtt gggggggggc tgcctgcgtt gggggggggc tggatgccttcc ggcggccgtt 720
 aatccagccgg ctctatgttgc ccacggacttgc tggagctgc aagccggatgtt 780

cctgccccgc	cggcctccca	cgccggagcg	ccagagcgaa	gaggagagat	ccgatgagga	840
gccggaggcc	aaagaagagg	aagaggaaaa	accacacatg	cccacggaaat	ttgatttga	900
tgatgagcca	gtgacaccaa	aggactccct	gattgaccgg	agacgcaccc	caggaagctc	960
agcccgagc	cagaaacggg	agggccggct	ggacaaggtg	ctgtcgacca	tgaagagaca	1020
caagaagctg	gaggagcaga	tccttcgtac	cgggagggac	ctctcagcc	tggactcgga	1080
ggaccccgac	cccgcacggc	ccccactccg	atccctccgg	agtatctct	tccctcgca	1140
gcggaaatac	tgattccac	tgctcctgcc	tctaggggtc	agtgtccgta	cctgtcgag	1200
cctggggccct	ccttccccag	cccagacatt	gagaaacttg	ggaagaagag	agaaaacctca	1260
agctcccaaa	cagcacatg	cgggaaagag	gaagagagag	tgtgagtgtg	tgtgtgtgt	1320
ttttctattg	aacacctgta	gagtgtgtgt	gtgtgtttc	tattgaacac	ctatagagag	1380
agtgtgtgt	ttttctattg	aacatctata	tagagagagt	gtgtgagtgt	gtgtttctca	1440
ttgaacacct	attcagagac	ctgactgaa	tttctgagt	ctgaaataaa	agatgcagag	1500
ctatcatctc	ttaaaaggag	gggtgttagc	tgtactcaa	cagttaggcc	ccacttgaag	1560
ggagaggcag	aattgtactc	accaggattg	qaaaatgaaa	gccagatggg	tagaggtgcc	1620
ctcagtttagc	acctgtccca	tctcgccccc	tccaaactcct	cccagtcggc	ctcca	1675

<210> 77

<211> 1319

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1852290CB1

<400> 77

gaaaggaggt	gtgtatccag	cttggggctc	cagttttctg	ccgcctctt	tttacgttat	60
tgcggaggac	ggcgcggac	agtcaacgtc	atctaggagc	accgagcagc	ttggctaaaa	120
gtaagggtgt	cgtgtctatg	gcccgtgcg	cactgaccgg	cgctctgcgc	tctctgaacc	180
tggcgcccc	gaccgtcgcc	gcccctgccc	cgagtctgtt	ccccggccgc	cagatgtatg	240
acaatggcct	cctccaacag	ccctctgcct	tgtatgttgc	ccccctgcccgc	ccagttctta	300
cttctgtggc	ccttaatgcc	aactttgtgt	ccttggaaagag	tcgtaccaag	tacaccattt	360
caccagtgaa	gatgaggaag	tctgggggcc	gagaccacac	aggccgaatc	cgggtgcattg	420
gtattggcgg	gggcccacaag	caacgttattc	aatgtatgtt	cttctgcgt	ttccggcctg	480
aggagaccaa	gtcaggaccc	tttggggaga	aggttatcca	agtccgctat	gatccctgtt	540
ggtcagcaga	catagctctg	gttctgggg	gcagccgaa	acgttggatc	atcgccacag	600
aaaacatgca	ggctggagat	acaatcttgc	actctaaacc	cataaggccga	atggcagttt	660
ctgctcggg	aggggtatgc	cattcttgc	gggtctgcgc	tgtggggacc	ctcatcaaca	720
acgtggaaag	tgagccaggc	cgggggtcccc	aatatatccg	acgtgcaggg	acgtgtgtgt	780
tgtctactgc	gaaggtgtat	ggcacagcca	ttatccagat	gcccctctaaq	aggcagatgc	840
aggtctgttgc	aacgtcgta	gcaacagtag	gccgagttatc	caacgttgc	cataacaaac	900
gggtcatttgg	caaggcagg	cgcaaccgc	ggctggggaa	gaggccatacc	agtgggcgg	960
ggcacccgca	ggggggctgg	gctggccgaa	agattcgcc	actacccccc	atgaagagtt	1020
acgtgaagct	gccttctgtt	tctggccaaa	gctgtatatcc	ctgtactctt	ataaaatgcc	1080
ccccccccccg	ttttatctg	atgggncaaa	angccccctt	tattccaaa	aatgggnccc	1140
ccctaaaaag	gagggaaaaa	tttncanng	ntntttttaa	nggggnnaen	nggnaattgg	1200
nnaggggggtt	ccacaaaaaa	ggggggaaat	tttttgggaa	atggaaannt	ttccccgnnc	1260
tggggaaaaaa	cccccccccgg	ggttttttta	agggtttnca	aggaaaatnn	ncctttggg	1319

<210> 78

<211> 1113

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1944530CB1

<400> 78

gtcacccgca	ggtctgagct	gtgggctgag	gcagcgcacc	gcctgcccga	gggtgcgcga	60
tgccttgaac	ctgggaaact	atgtgaagca	acactctgga	ttttggaaaga	catcttttca	120

tcatgggaca gcaaatttcg gatcagacac agttggttat taacaagtta ccagaaaaag 180
 tagcaaaaaca tgtaacgttg gttcgagaga gtggctccctt aacttatgaa gaatttctcg 240
 ggagagtagc tgagcttaat gatgtAACGG ctaaagtggc ttctggccag gaaaaaacatc 300
 ttctcittga ggtacaacct gggtctgtt cctctgttt ttggaaagtg gttgtacqgg 360
 tggtctgtac caagatAACGG aaaagcagtg gcattgttga ggcacacacgg atcatgaatt 420
 tataccagg tatacaactt tataaagata tcacaagtca agcagcagga gtattggcac 480
 agagccccac ctctqaagaa cctgtatggaa actcatccct tgtaacatct tgcaggcta 540
 gtcttggat gggaaagggtg aagcagctga cccatgggaa ggagtgttgc atctgtatgg 600
 atgggcgggc tgacccatc ctgccttgc ctcacagctt ttgtcagaag tgcattgtata 660
 aatggagtga tcgacacagg aattggccctt tttgtcgctt acagatgact ggagcaatg 720
 aatcttgggt ggtatccat gcacccactg aagatgatggc ggcataactat attcttaaca 780
 tggctatga ggcaggccag cccacaggc catgacctt aagtggaaagt cttctgttgc 840
 tattgtggc tcaaataattt ggtcatgggg gaagaatgtt ggggtgtggc actggcacag 900
 acacaggaaa atccatttc cccactctt tattttgtt attctgtatca ttgtcccccc 960
 ttttaaaat aaacttccc tgccttccat ttgtggtaact aaaatttgct actgttttag 1020
 accatattt ccattattt tgcgttcaat ttgtatnatt acaactataa gccttgaatt 1080
 ctggctaaa ggtacacaggca acacttccag agg 1113

<210> 79

<211> 1963

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2019742CB1

<400> 79

gggtgaggct gggcgccccca aggttggaaagg agggggccgtg aggtgagaga gtccgggagc 60
 cccgacccatcga gatggcctga tatgttggaa tcacgcctcc cgcctccccc agctgcccag 120
 tggctgtccctt gtcccttcaag tgcaggagct ggttcaatgt tcaggatgg aagccactgt 180
 gaccatccccca atctggcaaa acaagccaca tggggctgtc cggaggatgtg taagaagaat 240
 tgggaccacac ctacccttga agccgtgtgc cccggcggtcc tttggacacc tgcccaacat 300
 ctctgacccctg tggttggagat atgtggccccc agtccctacc ctggctgaca tcgcctggat 360
 tgcgtccggat gaagaggaga catatggcccg ggtcaggagt gatacgcgccc ccctgaggca 420
 caccctggaaa cccagccctc tgatgttcat gcagcgcataat gcctctgttc ccaacctcg 480
 tgggtcccgag gagaggccctc tggccctgaa gaagccactg ctgcacccccc taagccgcac 540
 tactgagctg caggacgaccc tgaggccactt cgcgcaggccat attgcaaaaga tagtggcagc 600
 tgcgtccggat tgcgttccat taacgcgaga ttttttatct ccaggaaatg caaatgtctc 660
 ttctccctta cttgttttgc gatcccttcat ccaacttatac acttcccttgc tcattatgt 720
 catcaccggag gagacaaagg tgggggtccc tgatgttca tcagtcccccc tgctttgtt 780
 tgcctccgtt gaatgttgc aaccagaaca caaaagctgcc tgcgttccgt ctgaagggaga 840
 tgcgtccggat tgcgttccat aggccaggccat tttggcagac atgtgggtt tgcgttccat 900
 ctttcacccca atgaaacaga gtcaagatct gaaccggagtt ttattgttggaaagg aggaagacc 960
 tgcgtccggat atctctgagg tgcgttccat gaagtttgc taaaaggaaag aagataatcg 1020
 ttcaatgtctg tgcgttccat cccgcacatgt ttctgcctct taaggatata tgcgttccat 1080
 cagtcgttccat gacaagcttag agtccgttgc gaaagggaaag agtccgttgc tatatttccc 1140
 agacttccaa cccttagcaga agtcaaggct tgcgttccat tgcgttccat tgcgttccat 1200
 taatcggttca gaatgttca tgcgttccat aagggttgc gagaaggatgt tgcgttccat 1260
 tccctccccc tgcgttccat tgcgttccat tgcgttccat tgcgttccat tgcgttccat 1320
 gctgtccgttca caagacactt tgcgttccat tgcgttccat tgcgttccat tgcgttccat 1380
 cagacccgggg ctggggggaa ggggttgc tgcgttccat tgcgttccat tgcgttccat 1440
 aaatctttagt ctgcgttccat tgcgttccat tgcgttccat tgcgttccat tgcgttccat 1500
 ccttcgttccat atgttagggat caggctgttca accacggccaa cacatggccat tgcgttccat 1560
 agcctggggctt ttttttttc taaacacat tttatattac tgcgttccat tgcgttccat 1620
 ccacccggccctt gaggccctt tgcgttccat gatggggggaa ggggttgc tgcgttccat 1680
 agccgggttag gaaagggaaa ggaggagggg gaaagggaaa accatcttcc tgcgttccat 1740
 ttgcgttccat ttttttttc tgcgttccat tgcgttccat tgcgttccat tgcgttccat 1800
 gcccgttccat tgcgttccat tgcgttccat tgcgttccat tgcgttccat tgcgttccat 1860
 tgacattaaa ggaaggactt ggagagagaa tgcaaaaaaaa aaa 1920
 1963

<210> 80
 <211> 1089
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2056042CB1

<400> 80
 agccgcggct ccggaagacc ctgcgtcctgg gcggcggtgg tgcggcggtc gccgttatgg 60
 ccactgggct gggcggtga ccgcggggct agggaaaggc ccaggccccc gaatctcggt 120
 gcccgcgtct ccagcgcggc ctgcgcctatg gcctcctccg cccgcctcctc ggagcatttc 180
 gagaagctgc acgagatctt ccgcggccctc catgaagacc tacaagggtt gcccggcgg 240
 ctgcgtggga cggcggggac cgaagaaaag aagaaaatttga tcaggattt tgatgaaaag 300
 caacaggaag caaatgaaac gctggcagag atggaggagg agctacgtta tgccacccctg 360
 tctttccgaa accccatgtat gtctaagctt cgaaactacc ggaaggacct tgctaaactc 420
 catcggggagg tgagaagcac acctttgaca gcccacacccg gaggccggagg agacatgaaa 480
 tatggcataat atgctgtaga gaatgagcat atgaatcgcc tacagtctca aaggggcaatg 540
 ctctcgagg gcactgaaaag cctgaaccgg gcccacccaaa gtattgaacg ttctctatcg 600
 attgccacag agactgacca gattggctca gaaatcatag aagagctggg ggaacaacgaa 660
 gaccagtttag aacgtaccaa gagtagactg gtaaaacacaa gtgaaaactt gagcaaaatg 720
 cggaaagattc tccgttcaat gtccagaaaaa gtgacaacca acaagctgtt gctttccatt 780
 atcatcttac tggagctcgc catcctggga ggcctgggtt actacaaattt ctttcgcagc 840
 cattgaactt ctatagggaa ggggtttgtgg accagaacctt tgaccttggg aatgcatgtat 900
 gttagggatg tggatataat aagcatattt ctgctgtggg ctgacagttc aaggatgcac 960
 tgtatagcca ggctgtggga ggagggagga aagatgaaaa accacttaaa tgtgaaggaa 1020
 caacagcaac aagaccagta tgatatacca aggtataaaa tgctgtttat gacttcttta 1080
 aaaaaaaaaa 1089

<210> 81
 <211> 1325
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2398682CB1

<400> 81
 gcgaggatgg gctgtccgg ggttagcagg tgagcctgca atgcgcggca agacgttccg 60
 ctttgaaatg cagcgggatt tggtagttt cccgcgtct ccagcgggtgc gggtaaactt 120
 ggtgtctcg gggttccaga ctgcgtgagga actccttagag gtgaaaacctt ccgagctttag 180
 caaagaagtt gggatatacta aagcagaagc ctttagaaactt ctgcaaattt tcagaagaga 240
 atgtcicaca aataaaccaa gatatgctgg tacatctgag tcacacaaga agtgtacagc 300
 actggaaactt cttagggcagg agcataccca gggcttcata atcaccttc gttcaqcaat 360
 agatgatatt cttaggggtt gatgtccctt aatgaaaaca acagaaattt gtgggtgcacc 420
 aggtgttggg aaaacacaaat tatgtatgca gttggcagta gatgtgcaga taccagaatg 480
 ttttggagga gtggcaggtt aagcagttt tattgatata gagggaaatg ttatgggttga 540
 tagagtggta gaccttgcata ctgcctgcatt tcagcacctt cagcttatacg cagaaaaacca 600
 caaggagag gaacacccaa aagtttggg ggttttcactt cttgataata ttctttctca 660
 tattttat tttcgctgtc tgactacac agatttactg gcacaagttt atcttcttca 720
 agattttctt tcagaacactt caaagggttgc actagtata gtggatggta ttgttttttca 780
 atttcgtcat gaccttagatg acctgtctct tcgttactcgg ttatataatg gccttagccca 840
 gcaaatgatc agccttgcata ataatacagat attagctgtt attttaacca atcagatqac 900
 aacaaagattt gatagaatc aggccttgc ttgttctgca tttagggaaa gttggggaca 960
 tgctgttaca atacggctaa tctttcattt ggaccgaaag caaagggttgg caacattgtt 1020
 caagtccaccc agccagaagg aatgcacagt actgtttcaat atcaaaacctc agggattttatg 1080
 agatactgtt gttacttctg catgttcatgg gcaaaacagaa ggttcccttga gcacccggaa 1140
 acgggtcactg gacccagagg aagaattata acccagaaac aaatctcaaa gtgtacaaat 1200
 ttattttatgt tgtaaatca atgtgtacaa gtggacttgt taccttaaaag tataaataaa 1260
 cacaactatgg catgaatgan aannnaannna annnaannna aaaaanaaaan annnagnann 1320
 cnagc 1325

<210> 82
 <211> 1579
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2518753CB1

<400> 82

tgcttcatgg atactggtcc tatcatgctc tttgaggcta ttgaactcat caatacagca 60
 aaggcccgca tctgaagaa ctaatgccc agcctccaa ttccattctc ctgagtc 120
 tacagcagg accgtcagac tttgttctcc gcctttgtcc taatccacac cagcagggtgg 180
 agccgcagg aaagttccg agtccattcc gggagcggga gcccatttg ctggctgccc 240
 aggccctcgc tggaggagga gggtcagaac tcgggtgcag ccaatcgagg gcaacgctgc 300
 tacttatca agcagaatgg gctgtagtt agtgaataa gaaagctgca aaacactgtg 360
 gagtgctccc gtgtaaataa aaagaggaaa aaagttctc aagtgcgcg tgcacgacgt 420
 ctggccggcg ctggagcggg ggtctgcgt ctcccgcg gccgcgcgct ggactttt 480
 gtgcccac cagccccagt tccattgtt tgggtttt tcaaataatg gcaaagggttc 540
 aggtgaacaa tggtaggtt ctggataacc cttccttctt ctacaacccg ttccagttcg 600
 agatcacctt cgagtgcate gaggacctgt ctgaagactt ggaatggaaa attatctatg 660
 tgggcctgtc agaaaagtgaa gaatacgate aagttttaga ctctgttta gtgggtctg 720
 tttccgcagg aaggcatatg ttgttatttc aggctgtatc acctaattcca ggacttcattc 780
 cagatgcaga tgcagtaggc gtaactgtt tgctraattac ttgttacatcg cggaggacaag 840
 aatttatttag agtggctat tatgtaaata atgaatatac tgagacagaa ttaaggggaaa 900
 atccaccagt aaaaccagac ttttctaagc ttcaaaggaa tattttggca tctaattcca 960
 gggtcacaag attccacatt aatttggaaatg ataacacaga aaaactggaa gatgcagaga 1020
 gcagtaatcc aaatctacag tcacttctt caacagatgc attacattca gcatcaaagg 1080
 gatggtccac atcagaaaaac tcactaaatg tcatgtttaga atcccacatg gactgcgt 1140
 gaccacctac catccctta gtacaaatggaaatg aatcacacaga actatttccc 1200
 tggaaattccg taagtacata gtcaaaacac aatgtgaaga atttgtttaa aaacatctg 1260
 tagaaatgtt ataagaaaaac cagtatttga acaaattgtt gaatataat acaactatattt 1320
 ttaagtaatt ttttctctt attcanntag ngagggngttt cnctagangt ggantaaattt 1380
 nnaaggggcg gggnnccnc cagaggggggt tccaaangtct ttcnnnnaag ggnnggcan 1440
 tggcgnngnt ccangagtn ccttngntt ggggggnnan nccntnnng tttgcnnnnn 1500
 ntcnnccggg gccgggtcgg tttntaanch cgnggannnt tggcnggggg ggaaaacccc 1560
 cnggggggtt ncccccctt 1579

<210> 83
 <211> 2641
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2709055CB1

<400> 83

ttcccttggg acatctgctg tgacacctgc acataccctc cagagccaca tatcctcgca 60
 cagatttgcg acttccaaat caggaggca agaaaagagaa gaaagatcca acaggtcgaa 120
 aaacaaactt ggatttcag caatatgtat ttattaattc aaatgrgtta ccatctggcc 180
 cttccgttgtt attctaaatg tttccatac ctatgttta tacatactat tatttctcatg 240
 gccagtagca acttttgggtt caaatatccc aaaacatgtt caaaaatgtt acattctgtt 300
 tcaatatttag gaaaagtgtt tgaatccctt tggacgacaa aagcgttgc tgagacagca 360
 tgcgaagactt cagagggaaa caagcaagaataacaggtt cccagactt accaaagcat 420
 gtttctacca gcatgtatgaa agggggccccc agtgcgtt caccatgtt caataaaactt 480
 ggctttaat tttcagatgtt gaaaggctgtt attgaagtcc ccagcatgtt aatctggat 540
 aaaaaggatg gagagcggc caaaggccctg tttgagaaag tgaggaagt ccgtgcccatt 600
 gtgaaagata gtgacttgcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt 660
 aagttcattt ttattctctg ctatacagcg aactttgtca acgcaatcag ctttgcacac 720
 gtctgcacgc ccaaaggatgtt gcatctgatt ggttatgagg tatttgcattt caccacaaat 780
 atggcttaca ttttgcattt gcttgcattt agtttgcattt ccattttttt ttttgcattt 840

tttatctgcc	tctacactct	cttctggta	ttcaggatac	cttgaaagga	atattctttc	900
gaaaaagtca	gagaagagag	cagttttagt	gacattccag	atgtcaaaaa	cgattttgcg	960
ttcccttc	acatggtaga	ccagtatgac	cagctatatt	ccaagcgtt	tggtgtttc	1020
ttgtcagaag	ttagtaaaaa	taaacttagg	gaaattagtt	tgaaccatga	gtggacattt	1080
gaaaaactca	ggcagcacat	ttcacgcaac	gcccaggaca	agcaggagtt	gcatctgttc	1140
atgcgttcgg	gggtgcccga	tgctgtctt	gacccacag	acctggatgt	gctaaagctt	1200
gaactaattc	cagaagctaa	aattctgtct	aagatttctc	aatgactaa	cctccaagag	1260
ctccacccct	gcccactgccc	tgcaaaaagtt	gaacagactg	cttttagctt	tcttcgcgat	1320
cacttggat	gcccacatgt	gaagttcaact	gatgtggctg	aaattcctgc	ctgggtgtat	1380
ttgcctaaaaa	acccctcgaga	gttgtactta	ataggcaatt	tgaactctga	aaacaataag	1440
atgataggac	ttgaatctct	ccgagagttt	cgccacccca	agattctcca	cgtgaaagagc	1500
aattttgacca	aaggccccctc	caacattaca	gatgtggctc	cacatcttac	aaagtttagtc	1560
attcataatg	acggcactaa	actcttggta	ctgaaacagcc	ttaagaaaat	gatgtatgtc	1620
gctgagctgg	aactccagaa	ctgtgagcta	gagagaatcc	cacatgctat	tttcagcttc	1680
tctaaattac	aggaactgga	tttaaaagtcc	aataacattc	gcacaatttg	ggaaatcatc	1740
agttttccagc	atttaaaaacg	actgactttgt	ttaaaattat	ggcataacaa	aattgttact	1800
attcccccct	ctattaccca	tgtcaaaaac	ttggagtcac	tttatttctc	taacaacaaag	1860
ctcgaatcct	taccagtggc	agtattttag	ttacagaaac	tcagatgttt	agatgtgagc	1920
tacaaacaaca	tttcaatgtat	tccaatagaa	ataggattgc	ttcagaacct	gcagcatttg	1980
cataatcactg	ggaacaaaagt	ggacattctg	ccaaaacaat	tgtttaaatg	cataaaagtgg	2040
aggactttga	atctgggaca	gaactgcatc	acccctactcc	cagagaaaat	tggtcagctc	2100
tccccgtctca	ctcagctgg	gctgaagggg	aactgcttgg	accgcctgcc	agccccagctg	2160
ggcccaagtgtc	ggatgctcaa	aaaaaaaggccc	cttgggtgtgg	aagatcacct	ttttgtatacc	2220
ctggccatctcg	aaatccaaaga	ggcattgaaat	caagacataa	atattccctt	tgcaaatggg	2280
attttaacta	agataatata	tgcacagctg	tgtgcaggaa	caactccctt	gattgcaatgt	2340
gctccacgtac	aaggattttac	aaagataatgc	attttaggag	tagatacatc	ttttaaaata	2400
aaacagagag	gatgcataaga	aggctgtatag	aaagacataac	tgaatgttca	atgtttgttag	2460
ggtttttaagt	cattcatttc	aaatcattt	ttttttttct	tttggggaaa	gggaaggaaaa	2520
aattataatc	actaatcttg	gttcttttta	aattttttgt	aacttggatgt	ctggccgtac	2580
tgaatgttta	caaattgttt	gcctgtctaaa	gtaaatgatt	aaatttgacat	tttcttactat	2640
t						2641

<210> 84
<211> 3963
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2724537CB1

<400> 84	gctccagggt	gagagtgcga	cggcagcggg	gaagggtgtga	gtcgtgaacg	gccccggct	60
ccgcatggc	ctctctactc	gccaaggacg	cctacctgca	gagcctggcc	aagaagatc	120	
gtccccatc	ggccccggaa	cagcaggcgc	gcacgcgggc	tggcaaaact	caaggctca	180	
aaactccagg	gcccccaaaa	aagaaaagga	agaaaacaca	aaagaaaattc	cggaagcqag	240	
aagaqzaaggc	tgcgtgacac	aaggccaagt	ccttggggga	gaaatctcca	gcagcctc	300	
gggccaggag	gcctgaggca	gccaaagagg	aagcagctt	ggcttccagc	tcagcaggga	360	
accctgcaga	tggctggcc	actgagcct	agtctgtctt	tgctctggat	gttctgcqac	420	
agcgactgca	tgagaagatc	caggaggccc	ggggccaqgg	cagtgc当地	gagctgccc	480	
ctgcggcctt	ggagaaaagg	cggcggagaa	agcaggaacg	ggaccggaaag	aagaggaazc	540	
gaaaggagct	gccccggaaa	gagaaggcca	ggaaggctga	ggaggccacg	gaggcccaqg	600	
agggttgtga	ggcaacccca	gaggggggct	gcacggagcc	gccccggcc	cccgggctga	660	
tcttcaataa	ggtggaggt	agcgaagacg	agccggccag	caaggcgcag	cgcagaaazg	720	
agaagaggca	gaggggtgaag	gggaacactca	cggccgtgac	cgggagggaaac	tacccgcagc	780	
tgcgtggagcg	cctgcaggca	cggcagagcc	ggctggacga	gtgcgcggc	caggatgggg	840	
ggaaggcgc	ggagctggag	gcaagatga	agtggaccaa	ccttcctctac	aaggccgggg	900	
gcgtcaagat	ccgtgacgac	gaacgcctgc	tgcaggaggg	cttgaagcgc	aaaggaaazc	960	
gcagggcgc	gcggcagcgc	cggtgggaga	agcgcacggc	cgccgtggtg	gagaagatc	1020	
agcagcgc	ggaccggcg	cggcagaacc	tgcgcaggaa	gaaggccggcc	cgcgcgcqag	1080	
gcccgtgt	cagagcccgc	aagaaggccc	gcattctgca	gcaggacctg	gagcgcgcag	1140	
gcctcgctg	agtctttccc	acctggggcc	gccgtttcc	gtccttaggag	actccaggac	1200	
accctctgag	tccttgacgc	tggctctgtc	ccaggatctc	cacaqacactc	qqccctctcca	1260	

tgtgagcggg	acacagtgg	gtctctgctga	gttgtgaggg	cccgatcac	agatcccat	1320
tgaaaagag	agagtttcag	cgtcatccct	gaacgcagga	tccgggacct	ttagaccag	1380
ggaaagggtg	aggagactg	gggcctggtc	tgcttcccc	ggctgaaag	cttccccgag	1440
gtttgcaggg	tcagggagga	ggaaccggtgg	gggtgggcag	tcactgcctg	ttccccactg	1500
cctgttctcg	caggagccac	gggacagaag	acgggtggct	ctgctgccgg	ggccacgta	1560
gtccgcacgt	caccgcaca	gaggacaacc	ctgaggtgt	gcatatgggc	acctggact	1620
gggagtccgg	ggagcacgtc	caggcgtgt	gcatccctgg	gagaacgcgc	atggctctc	1680
cccgctctct	tggcttcgc	ctgtgggt	ctcatccctt	tctgtcccc	agtgcggcg	1740
ggcggcattt	tactgctcg	aatttgggg	gaggagcag	taccttccc	gagtccacgc	1800
atgtgagttg	ggtcaagtgc	atggaccta	gggaaagaga	aagaaagaat	aaaagctgga	1860
gagagagtga	agtgaatgc	agataacaag	tggatggaa	gaattaaatc	cagagtcc	1920
ggcaatcaaa	atgagtgcag	gttggaaagaa	aacaggtga	tttagtggc	atatggatga	1980
taaagctgta	aataaaattc	ttttgatgaa	actctccgt	tacgagacaa	agactgtac	2040
tgaacaggag	ctgggtgtac	tgttaccaga	cagaggcaac	tgtgaaaaaa	gcccgtgaa	2100
agataggatg	tgggtgagc	atgagcttg	gctgagagac	agacacaaca	gtatctgaaa	2160
agaatacata	ctcttccat	gcataatatgg	aacatggatg	gaaactgacc	acctaattt	2220
tccggaaaan	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	2280
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn
ctacagataa	atagtgcct	ttatacacac	atacgctgt	tgtctgtatt	gtatgtcat	2340
aagaaaaata	agcatgcgc	ttaagttgg	acaactcaa	gtaaatggaa	tttaaagcta	2400
caaaactgac	taaaagtaat	agaaagcctg	agtgttaatc	actgtatgaaa	gaaaaatcc	2460
agtttaagaat	gttcccctag	acggttttac	agggagttc	cacgatata	ttgagtcagt	2520
atccagacg	tagacaaatt	ctaacagaat	caatttgagag	aacacttcat	agaaacaggt	2580
agcttigata	ccaaaactag	gtaagagaaaa	ggaaagttac	caaataac	tcgtgaact	2640
qccacccagg	caccggggca	agagacagag	gacacgagct	gttccagtag	ttggccgcaa	2700
aaaacaazga	tagttatacc	agatataatg	cttagatatg	attatata	aataaaat	2760
atcatttagt	tgtgcaatt	actcttttatt	ccaaatattat	aataatcc	aatatcatta	2820
cataacctag	aaaaaccag	gcccatacaga	gataggagct	gaggggacat	actctacaat	2880
gaccagaaga	caagagtgcg	agcccttctgt	tatgccccga	cagggccacc	agtgggtgt	2940
tttgtcttagc	ggtgacgcca	gcatactgg	agacacctgt	tgccaaagccc	agagggc	3000
agctgtacgc	ttagtgtcaa	gaaaaaacac	ccgtactta	gcaagccagg	accgtggct	3060
taacgtgaga	tcagatgag	gggtggtgagg	tggtgatcag	ggggacccat	aaagggatgt	3120
aggggggttgg	cagaagccag	caaggcttg	ggtttcccc	gttgtggagc	gttctctgtc	3180
agagtgcaga	ggagtgtgag	atgcgtgt	aaatgcaaa	tttgtctcc	ctccaagtt	3240
gctggcattt	ggtgatctc	ttgttaggacc	aggccatgt	tactttttaa	ctggctggag	3300
tcttggaaag	ttcaaaagata	tacaaaatg	gactatgcag	gataatgagc	gttttttat	3360
ttccgcatttc	tgtgtgtaa	ttatcgact	gtggctac	ctacctctcc	ccccacatac	3420
tttgtctcata	tctacccctc	cccccgtacc	ctgcctctgg	gtcattttgc	cctctaccc	3480
aaatgcctat	atcatttatac	ctaaatattc	ctaaacatt	ccactatgt	agcaaatccc	3540
ataaggacgc	ttacaacaca	actgcaat	ctttttgg	nnnnnnnnnn	gctctgaaag	3600
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	3660
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	3720
nnnnnnnnnn	cacacccctt	caaaaattaa	aattccaaatc	atctatagi	nnnnnnnnnn	3780
tcaaatttcc	aattgcctca	taaaaaggat	atttctnaa	cattnngt	tgtatctgt	3840
tttgengnra	agtccacctaa	atatcttctc	ttttgtataa	cttttttagt	gtcgcaat	3900
gtt					cngtaaaata	3960
						3963

<210> 85
<211> 1093
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte cione 025818CB1

```
<400> 85
tgggtctgtat aacagcggaa tcccccgctct acctctctcc ttgggtctcg aacagcgata 60
ctgtatcacca agtagccaca aaatataata aaccctcagc acttgtctcaq tagttttgtg 120
aaagtctcaa gtaaaaagaga cacaaaacaaa aaattcttt tcgtgaagaa ctccaaaaat 180
aaaatttctt agagataaaa aaaaaaaaaa aaaaaaggaa aatgccagct gatataatgg 240
agaaaaaattc ctcgtcccccgtt gttggctgtata cccccagccag tgcgtacacacg acaccggata 300
aaccaaaagac agcatctgag cacagaaaagt catcaaaagcc tattatggag aaaaacqaa 360
```

gagcaagaat	aatgaaaagt	ctgagccagc	tgaaaacact	gatttggat	gctctgaaga	420
aagatagctc	gcggcattcc	aaactggaga	aggcggacat	tctgaaaatg	acagtgaagc	480
acctccggaa	ccrgcagcgg	gcgcagatga	cggctgcgt	gagcacagac	ccaagtgtc	540
tggggaaatg	ccgagccggc	ttagcgagt	gcatgaacga	ggtgaccgc	ttccctgtcat	600
ccccgtctac	accagcaaca	gcggcaccc	cgtggggcccc	aacgcagtgt	caccttccag	660
cgccccctcg	cttacggcgg	actccatgtg	gaggccgtgg	cggaactgag	ggggctcagg	720
ccacccctcc	tcctaaactc	cccaacccac	ctctttccc	tccgactct	aaacaggAAC	780
ttgaaatactg	ggagagaaga	ggacttttt	gattaatgg	ttactttgtg	tttttttaat	840
ttctaagaag	ttacttttt	tagagagac	tgtatataat	gactgaccat	gcactatatt	900
tgtatataatt	ttatatgttc	atattggatt	gccccttgc	attataaaag	ctcagatgac	960
atttcgtttt	ttacacgaga	ttttttttt	atgtgatgcc	aaagatgttt	aaaaatgtc	1020
ttaaaatatc	ttcccttggg	gaagtttatt	tgagaaaaata	taataaaaaga	aaaaatgtaaa	1080
ggcaaaaaaaaa	aaa					1093

<210> 86

<211> 2077

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 438283CB1

<400> 66

atggcgtgg	ctgaaagttg	cacggcggcg	tgtgcgtttc	ctagttgtct	ggtgctccta	60
tataggggggc	gtgggggtccc	cacagacgt	cagggtccgg	ccccctttt	ctcaacccag	120
agcaaattga	aacgtccggg	atttccaaag	actcatgtt	cgtgaggaag	ccaccaagaa	180
gagcaaaagaa	aaggagccag	ggatggctct	tcctcaggga	cgttggctt	tcagggatgt	240
ggctatagag	ttctctttgg	aggagttggaa	atgcctgaac	cctgcacaga	gggctttata	300
caaggctgtg	atgttggaga	actacaggaa	cctggagttt	gtggatagct	ctttaaaatc	360
catgtatggag	ttctcatcaa	ccaggcacag	taatacagga	gaagtgtatcc	acacaggcac	420
gttgc当地	cataaaatgc	atcacattgg	agatttttc	ttcccaaaaa	tgaagaaaaga	480
tattcatcac	ttttagtttc	atgtggcaaga	agttgaaaga	aatggccatg	aagcacccat	540
gacaaaatc	aaaaagtgt	ctggtagtac	agaccgaatg	gatcacaggc	atgctggaaa	600
caaggctatt	aaagatcgc	ttggattaa	cttcatttcg	catctgcctg	aactccacat	660
gtttagact	aaaggaaaa	tttagcaacca	attggacaag	tctatcgtg	gtgcttcc	720
agcttcagaa	tcccaaagaa	ttttttgtg	gctccaaaact	catatttctt	ataagtatgg	780
gaagaatttc	ctccatttt	cattcacaca	aatacagggaa	atatcatgt	gagaaaaacc	840
ttgccaatgt	aatgagttgt	gcaaaagcctt	taattatagc	tcactctttaa	ggagacacca	900
cataacccat	tcaagagaga	gagaatataa	atgtgatgt	tgtggcaaga	tcttaata	960
gaagcaatac	attgtatatac	atcacagatg	tcacactgt	gagaaaaactt	acaagtgtaa	1020
tgagtgtgg	aagaccttc	ctcagatgtc	atcccttgc	tgccatcgta	gacttcatac	1080
tggagaaaa	ccttacaatgt	gtatgtgt	tggcaagacc	ttcagtgt	agtcatccct	1140
tagatgccc	cgttagactt	atactggaga	gaaaccttac	aagtgtatg	agtgtggcaa	1200
gacttttgt	cgaaatttc	cccttgc	tcataaggca	attcatactg	gagagaaacc	1260
ttacaagtgt	aatgagttgt	gcaagacctt	cagtcaaaaa	tcatcccttc	aatgcccata	1320
tatacttcac	actggagaga	aaacctacaa	atgtgaaagaa	tgtgacaatg	tttacatttcg	1380
cagatcacac	cttggaaagac	ataggaaaaat	tcatactgt	gagggtatcat	acaaatgtaa	1440
ggtttgtgac	aaggcttcc	ggagtgtattc	atgccttgc	aaccatatacga	gagttcatac	1500
tggagaaaa	ccttacaatgt	gtatgtatgt	tgcgtgggtt	tttacatcataa	aaggaaatcct	1560
tgcacaacat	cagaggttc	atactggaga	gaaaccttac	aagtgtatg	aatgtggcaa	1620
ggtttttat	caaaaagcaa	gccttgcaaa	acatcagaga	gttcatactg	cagagaaacc	1680
ttacaagtgt	aatgagttgt	gcaaaagcctt	tactggacag	tcaacactta	ttcaccatca	1740
agcaatccat	gggtgttaggg	aaaccttaca	aatgtatgt	ttgtcacaat	gtcttcagta	1800
atgttacaac	cattgcaat	cattacagaa	tccatattgt	agagagatct	acaagtgtaa	1860
taaatgtggc	aaattttca	gacgtcatc	ataacttgc	gttcctcgt	gaactcatac	1920
tggagaaaa	ccttacaatgt	atcatgactg	tgacaaggtc	ttcagtcaag	tttcatcc	1980
tgcaaaaat	agaatgtct	caggagagaa	acctcacaag	tgtgatgatt	gtgggcaagc	2040
tttacttcat	gttcacacccg	tcttagacat	cagagaa			2077

<210> 87

<211> 2358

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 619699CB1

<400> 87

ggactttact ggacccaact cagagaaaacc tctacagaga tttgtatgctg gagaactaca 60
 agaatttgc cacagtagga tatcagctt tcaaaccag tctgtatctt tggctgaaac 120
 aagaagagtc taggacagtg cagagaggtg atttccaagc ttcaaatgg aaagtgcac 180
 ttaaaaccac agagttagcc cttcagcagg atgttttggg ggagccaacc tccagtggg 240
 ttcaaatgtt aggaagccac aacggagggg aggtcagtg ttttaagcaa tttggagatg 300
 ttccatgtt acactatgc cttaaagacac atgtgagaac tcaaaatagt gagaacacat 360
 ttgagtgtt tctgtatgga ttgacttcc caagaaaacc tttactggag 420
 agcaacgtt tttttttttt cttttttttt ttactctgca caagaaaacc tttactggag 480
 ggcagagaac gtgcacagga gagaagctt ttgatttgcg tttactctggg aaatcttca 540
 ttaatcattt acacccatgg gttttttttt tttttttttt tttttttttt tttttttttt 600
 ggaaggaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
 acaggcttcaaaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 780
 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 840
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 900
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 960
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1020
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1140
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1440
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1740
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1800
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2358

<210> 88
<211> 1978
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 693452CB1

<400> 88

gcacggctg ccacggact cttttttttt tttttttttt tttttttttt tttttttttt 60
 aggttgcggca aaccggctgg cttttttttt tttttttttt tttttttttt tttttttttt 120
 gtcacccatgt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 180
 gggaaacaac aatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt 240

ctttgtaatt ttcttcgtga aaacccagat tatccaaaga gagaagacag aatcattata 300
 aatcccagta gcagtctgtc ggcagccaa gatgagacaa agttgcctaa aataagactt 360
 tttgactat tctaaattgt ctccttcgtga ccagcactgc ttcatccaag ctgctgacct 420
 cctcatggcc gacttcaaag tgctcagtag tcagggacatc aagtgggccc tgcacgact 480
 caaaggacac tatgcaatca cccgaaaggc cttgtctgtat gccattaaaa aatggcagga 540
 gctgtcacca gaaaccagtg gaaaaaggaa gaagagaaaa caaatgaacc agtattctt 600
 cattgatttc aagttgaac aagtgcacat aaaaatagaa aagaggatgt tctttctgtga 660
 aaataagcga cgacattgtc ggtcctatgt cgcacgtgtc ttcccaacc agtggagct 720
 agagcaggag ttctatgagc agaaaatcaa agagatggca gagcatgaag actttttgt 780
 tgccttacag atgaatgtaa aacagtatca aaaggatggc cagctgattt agtgcgtc 840
 ctgtatggg gaatttccat tcgaggagct gacgcagtgc gcagatgctc acttgcgtc 900
 caaagagtgt ctcatcagat atggccaaaga ggcagtctt ggatctggaa agttggact 960
 cagctgcgtg gaaggcact gcacgtgtc ttcccaacc agtggagctgg agaagggtgt 1020
 ccccccagacc atccctgtata agtactatga gcgaaaagcc gaggaggagg ttgcggcagc 1080
 ctacggccgac gagttgtca ggtggccgtc ctgtagctt ccggctgtgt tggacagtga 1140
 tggtaagaggg ttcaagctgtc ctaatcctca gggactctgg aaagaacata atggcctcac 1200
 caagtaccgt acctctattt aagaaaaat gactgctgccc cgcattagaa aatgccacaa 1260
 gtgtgggact ggccctcatca aatctgttca ccgtttttttt gtcacccgc atgtcttgc 1320
 ccagatgtgc tacctctgtc gagttctat taatggatataatgat gaccattttt gccaacaatc 1380
 ccggtaaca gggggccctt tccaggagttt gttcaagatg ctttctatgg acagactcca 1440
 atgttaagtag acacatgttgc gcctattttt ttatagggag gaaataggaa tatattttaa 1500
 tgcagatatt ttgataaactt aacataatttgc ctttgagga gatatggaaa tcaaaggctt 1560
 taaccaagga aaaatttggaa acttattaca agtactccaa aggtggtaaa ggagaacgc 1620
 taacaagttt aaggaaaatc cttaaatctc aaggaaaaaaa ccgtttttttt tgggggggg 1680
 gggagaagag gggcttaaaa ggggtgtaaa gctggaaa acatgggtaa atggaaaaat tgaactgggg 1740
 gtatattttt tttgttttta tggcatgaa aggtgatgggg aggtgatggg atttaaaggca tgggtggggag 1800
 aacaacagggt tcttaggaat aggtggatgtt gaaagaaagg ttggggggggg ggggagggaa tgggggggggg 1860
 ttggagataa agctggaggt gaaagaaagg ttggggggggg ggggagggaa tgggggggggg 1920
 ttgggggggggg 1978

<210> 89
 <211> 2084
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 839651CB1

<400> 89
 cgtggggggcg cacagccctc ggtgcacatg gcttcctccc cggcggtgga cgtgtccgtc 60
 aggcggcggg agaagcggcg gcagctggac gcgcgcgc gcaagtgcgg catccgcgtc 120
 ggcggccaca tggagcagtg gtgcctctc aaggagcggc tgggcttctc cctgcactcg 180
 cagctgcgtca agttccctttt ggaccgggtac acttcttcgt qctgtgtctt ctgtgcgtt 240
 agtagggga tggcaggggg tgagagccag agggaaagagg gaccacaggg tgaccacagaa 300
 acaccctctt ttcaaaaggga gcccctgatgta agttttggaa ggggggggtg agttggggag 360
 cacagggtat tttgtatggag gcaacctctg ggtggggaaag ggagcaatgt ctcaggatct 420
 agtgtgtctt ggttctgttca aatgataat tggactgggg ctgagggttgc cctggggttt 480
 gagggaaacag ggctccctgg gtatggctt ccagggttaag aggaggagac ttcccagtgc 540
 agcctgactg ctccccccac ccctccaggt cctgagccctt tgcctccaaa aggtctgcag 600
 tattctgtgtc ttttgtctca tgcccacagc cgaggtgtca gcctgggtgcc cgggcttcgg 660
 gggcctggcg gccaagatgg gggggcttgg tggggtgtt cagcaggccca taccttctcc 720
 tggggaccct ttttgagggcc tacacccatca gggccacca agccgcctt ccttccacat 780
 actactcgga gaagttgggt ttccggggcc acgagttgggc agggacttgc agattttggaa 840
 tctgagcatg atgagaggac tcaagaggcc aggttgcctt gtagtgagcc tgatgcccc 900
 agactactgc ctccccctgt cacccatca cctaaagagg gggagacacc accagcccc 960
 gcagcactct ccagtcctt tgcgtgtccg gccttgcgtt catcccttccat gagttccaga 1020
 gctccctccac ctgcagaatg caggggtgcag ccacagctca gcaggacccc tcaagcgccc 1080
 cagcagactg agggccctggc caggttacccat gatggctgtt acagaaaaggg cagggggcttc 1140
 ctgggatgtg gcccctccctt gagggccctt gctcccttt tgctgcccgtt agcactgggg 1200
 gtcaggccca gtctgtctca accccggccctt gggatgagga cactgcacaa attggcccc 1260
 agagaatttag gaaagctgtcc aaaagagagc tgatgcctt gtagttccctt ggctgtggaa 1320
 ggatcttctc caaccggccag tatttgaatc accacaaaaaa gttaccacacatc accccaccaga 1380

```

agtctttctc ctgcccagag ccagcctgtg ggaagtcttt caacttttaag aaacaccttga 1440
aggagaacat gaagctgcac agtgacaccc gggactacat ctgtgagttc tgcgcggcgt 1500
ctttccgcac tagcagcaac cttgtcatcc acagacgtat ccacactgga gaaaaaccccs 1560
tgcagtgatga gatatgtcggg ttacacctggc gccagaaggc ttccctgttacaccc 1620
gcaaggatgc agagacgggt gctgccttgc gcttccctg tgaattctgc ggcacaggcg 1680
ttgagaagcc agacagtgtt gcagccccacc gtagccaaag tcacccagcc ctgttcttag 1740
cccttcagaaga gtcaccccaat ggtcccccatt agccctgtcc cagcatctct 1800
ctctgggatc cagcqagggg tccaggccct ctgcattctcc tcaggcttcca accctgtt 1860
ctcagcaatg agctttctc cagctttggc tttgggaagc cagactccag ggactaaaaa 1920
ggagcaacaa ggagagggtc tgcttgagaa atgccagatg ctgggtcccc aggaactaaag 1980
gcgcacagatg gcagggtggg ggcaagactg ggctgttaggg gagctggact actttatgtt 2040
tcctaaagga caaaaataaac agtattttat gaaaaaaaaaaa 2084

```

<210> 90
<211> 2024
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1253545CB1

<210> 91
<211> 3518
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1425691CB1

<400> 91

ctctc:cggc ccggccatct tgtgggaaga gctgaagcag ggcgccttgg ctcggcgcgg 60
 cccgc:cgaa tccgtggagg aacgcgcgcg cgagccacca tcatgcctgg gcacttacag 120
 gaaggcttcg gctgcgtgtt caccacccga ttcgaccagt tatttgcga cgaatcgac 180
 cccttcgagg tgctgaaggc agcagagaac aagaaaaaag aagccggcgg gggcggcgtt 240
 gggggccctg gggccaagag cgcaagtcag gccgcggccc agaccaactc caacgcggca 300
 ggcacacagc tgcgaagag gtcccgaaaa gaccgcaaga acccgctgcc ccccagcgtt 360
 ggcgtgggtt acaagaagaaga ggagacgcag ccgcccgtgg cgcttaagaa agaaggaa 420
 agacgagttt gaagaagacc tgataacaaa ttcaagggtt aaggaaaaat aattgtatga 480
 agaccagaaa ggcgaccacc tcgtgaacga agattcgaaa agccacttga agaaaagggt 540
 gaaggaggcg aatttcagt tgatagaccg attattgacc gaccttgcg aggtcgtgtt 600
 ggtcttggaa gaggtcgagg gggccgtgga cgtggatgg gccgaggaga tggatttgat 660
 tctcggtggca aacgtgaatt tgataaggcat agtggaaagt atagatcttc ttttcacat 720
 tacagtggcc tgaagcacga ggacaaacgt ggaggtatcg gatctcacaa ctggggact 780
 gtcaaaagacg aattaacaga gtcccccaaa tacattcaga aacaatatac ttataattac 840
 agtgacttttgg atcaatcaaa tgtgaactgag gaaacacctt aaggtgaaga acatcatcca 900
 gtggcagaca ctgaaaataa ggagaatgaa gttgaagagg taaaagagga gggtccaaa 960
 gagatgactt tggatgagtg gaaggcttatt caaaataagg accgggcaaa agtagaaattt 1020
 aataatccgaa aaccaaataatgaa aggtgtgtat gggcagtgtt agaagggtt tggatgttcat 1080
 aaatcaaaga gtgaagaggc tcatgtgtt gattcggtt tggaccatca tttccggaa 1140
 ccagcaatg atataacatgc tcagctggag atcaatttt gggacttgg ccgcccggaa 1200
 cgtggcggca gggggaggacg aggtggacgt gggcgtgggtt ggcgcggcaaa ccgtggcagc 1260
 aggaccgaca agtcaagtgc ttctgtctt gatgtggat acccgaggc attcccgat 1320
 ctggcttaac tggatgcccattt aagacaaccc tggatgttcat tggatgttcat tggatgttcat 1380
 ctttgcattt ctttgcattt ccaaaacgact aagaaattaa aaaaaaaaaaag actgtcatc 1440
 ataccattca cacctaaaga ctgaaattttt tctgtttttt aatgaaactt ctcccgat 1500
 acagaagtaa caaatatgtt agtcaagtttt gtattttttt aatgtattttt aatgtttttt 1560
 ttttcataat ttttcataat ttttcataat ttttcataat ttttcataat ttttcataat 1620
 atatgcattt ccaaacttgc aatataatgtt tgaacatgtt gtaccatgtt aatgtttca 1680
 ctttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 1740
 atatggaca tactgggtttt aataccgttgc ttgcattttt acacatggc aactggaca 1800
 tggatgttcat tggatgttcat aatgtttttt tggatgttcat aatgtttttt tggatgttcat 1860
 ctttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 1920
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 1980
 ctttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2040
 tacattttca gctatattttt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2100
 agacatgttca ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2160
 agtgaagtag ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2220
 gttgatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2280
 gtatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2340
 attttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2400
 ggggatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2460
 cagcagactt atacatgaaa tataaaccaaa aacccattttt ttttgcattt ttttgcattt 2520
 tgcttattttt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2580
 ctttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2640
 aacacacatc aacatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2700
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2760
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2820
 aatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2880
 atgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 2940
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3000
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3060
 acatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3120
 agacatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3180
 ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3240
 acctgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3300
 gcaatgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3360
 gttgttcat ttttgcattt ttttgcattt ttttgcattt ttttgcattt ttttgcattt 3420

tgAACCTAAC ttTCTCTTAT tggtgggtAA taACTGAAAAA tAAAGATTtA ttticatgtc 3480
cactttttAA aagtcatAAA aacaatcaaA aaaaaaaaa 3518

<210> 92
<211> 2741
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> incyte clone 1484257CB1
```

<400> 92	ttccgccccga	ctctaacatg	gcgggcgcct	ttgtctgctc	tggagtgccg	tcccccgcct	60
tctcgccgccc	gtgtgcacc	tcctctgcg	gtggggtccg	ggacatggca	ggtaatgagc	120	
cggacgagggg	gagccaagct	ggagtttaca	caggcaaaact	gtcagaaaaag	agttagctgg	180	
gctgtctgga	aatctgagcc	atggactttc	cccagcacag	ccagcatgtc	ttggAACAGC	240	
tgaaccagca	gcggcagctg	gggcttctct	gtgactgcac	ctttgtgtt	gacgggtttc	300	
actttaaggc	tcataaaagca	gtgctggcgg	cctgcagcga	gtacttcaag	atgctcttg	360	
tggaccgaa	ggacgtggtq	cacctggaca	tcagtaacgc	ggcaggccct	gggcagggtc	420	
tggagtttat	gtacacggcc	aagctgagcc	tgagccctga	gaacgtggat	gatgtgtctgg	480	
ccgtggccac	tttctccaa	atgcaggaca	tcatcacggc	ctggcatggc	ctcaagtgc	540	
ttgtcagcc	ggctaccaggc	crtggggaa	atgcggagc	cttggcacag	aagggtcgcc	600	
ctgtttccatc	tccaggaggg	gacaagagag	ccaaagagga	gaaggtggcc	accacgaccc	660	
tgagcagagct	ggagcaggca	ggacgcagca	cacccatagg	ccccagcagg	gacctcaagg	720	
aggagcgcgg	cggtcaggcc	cagagtgcgg	ccagcgtgtc	agagcagaca	gagaaaagccg	780	
atgcgccccg	ggagccgccc	cctgtggagc	tciaaggcaga	ccccacgagt	ggcatggctg	840	
ctgcagaagc	tgaggccgt	ttgtccgaga	gttggagaca	agaatggag	gtggagcccg	900	
cccggaaagg	ggaagaggag	aaaaaggagc	aagaggagca	agagggaggag	ggcgcagggc	960	
cagctgaggt	caaggaggag	ggttcccagc	tggagaacgg	agagggccccc	gaggagaacg	1020	
agaatgagga	gtcagcgggc	acagactcgg	ggcaggagct	cggttccgag	gccccggggcc	1080	
tcgctcagg	cacctacggc	gaccgcacgg	agtccaaaggc	ctacggctcc	gtcatccaca	1140	
agtgcgagga	ctgtggaaag	gagttcacgc	acacggggaa	cttcaagcgg	cacatccgc	1200	
ccccacaggc	ggagaagccc	ttctctgtcc	gggagtgcag	caaggcctt	tccgaccggg	1260	
ccgcgtcgca	ggcccatctgag	aagacgcaca	gccctctgaa	gccctacggc	tgcgaggagt	1320	
cggggaagag	ctaccgcctc	atcagcttgc	tgaacctgca	caagaagcgg	caactcgccg	1380	
aggcgcgcta	ccgtcgcgag	gactgcggca	agcttccac	cacctcgggc	aacctcaagc	1440	
ccaccacgt	ggtgacacgc	ggcgagaagc	cctaccatg	cgactactgc	ggccgcctc	1500	
ctccgaccc	cacttccaag	atgcgccacc	tggagaccca	cgacacggac	aaggagcaca	1560	
gtgcccaca	ctgcgacaag	aagttaaacc	aggttagggaa	cctgaaggcc	cacctgaaga	1620	
ccacatcg	tgacgggccc	ctcaagtgcc	gagagtgtgg	gaagcgtt	accacccatc	1680	
gaaccgaa	gcccaccc	cgatccaca	gccccggagaa	gccctacgt	tgcacccat	1740	
ccagcgaca	gtttgcagac	ccccgcgc	tgcagcgca	cgtccgcatt	cacacagggt	1800	
gaagccatg	ccagtgtgt	atgtgcggta	aggccttac	ccagggcagc	tccctcateg	1860	
ccacgtcg	ccagcacacc	ggggagaagc	cctacgtctg	cgagcgctgc	ggcaagagat	1920	
cgtccatgc	cagccatgt	gcaatcata	ttcgcccacca	cgacaacatc	cgccacac	1980	
gtcagcgt	gtgcagcaag	gccttcgtga	acgtggggga	cctgtccaa	cacatcatca	2040	
tcacactgg	agagaagcct	tacctgtgt	ataagtgtgg	gcgtggcttc	aaccgggtag	2100	
caacctcg	ctcccacgt	aagacgcgtc	accaggccaa	ggcaggcatc	aagatccctg	2160	
gccccggaga	gggcagttag	gtcagcgtag	tcactgtgg	tgacatggc	acgctggct	2220	
cgaggcact	ggcagcgaca	gcccgtcactc	agctcacat	ggtggccgt	ggagctgcag	2280	
gacagccga	tgagacggaa	gtcttgcagg	ccgagatcg	caaagctgt	aagcaagtgc	2340	
ggaagaaga	ccccaaacact	cacatcttct	acgcctgt	cttctgtggg	gacaagttt	2400	
ggatgccaa	cagcctggct	cagcatgtgc	gaatccacac	agccaggca	ctggctatgt	2460	
ccagacaga	cgccgacttc	tatcagcagt	atggggcagg	tggcactgt	ggccggcc	2520	
gtgtctgca	ggctggggag	ctgtcttcc	gcccctcgca	cggggctgag	ggccaccccg	2580	
actggcaga	gacccccc	acagctccctg	aatgtcccc	gcctgcccag	ttagctggcg	2640	
cccttctgta	ctgttttattt	aaggatggat	ggcaccctgg	aaccgggaag	ggtggccctgt	2700	
cccttagaga	gaataaaattt	gattattttc	aaaaaaaaaa	a	2741		

<210> 93
<21i> 1305

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1732368CB1

<400> 93

gaggaaatac cgatggacct aacggtagtg aagcagggaaa ttatagactg gccaggtaca 60
 gaaggcagga gacggatagt agtttagtgg taaaagaagc gaaggtgggt gaaccagagg 120
 taaaggaaga gaaggtaaag gaagaggtaa tggactggtc agaagtgaag gaagagaagg 180
 ataacttggaa gataaaacag gaggagaagt ttgttggtca atgcataaaaa gaggaaatga 240
 tgcattggaga gtgtgtaaaa gaagagaagg atttcctgaa gaaagaaatc gtggatgata 300
 caaagggtgaa agaagagcct ccgataaatac accccgtggg ctgcaagcgg aaactggcca 360
 tgcattggtg tgagacttgtt ggtacagaag aagcaaaatc cagatgtcca cgttgtatgc 420
 gataatttctg cagtttgcct tggtaaaaaa aacacaaaagc agaactgaca tggatggag 480
 ttcgagataa aactgcatac atttcaatac aacagtttac tggatggat tccctaagtgc 540
 attatcgatt tttggaaagat gtggcaagaa cagcggacca tatttttaga gatgttttt 600
 tgaagagacc aataagcaat aaatataatgt actttatgaa aaatcggtcc cggaggcaag 660
 gttttttttt aaaaacttcta cccaaatggat tcaccaagag gaaggagaat tcaacccttt 720
 ttgtttttttt aaaaacaacag ttttgggtcc atgttggat ccaggatccaaatgtca 780
 ctgactacat agaaaaaaaga gtaccagatg ataaaaactat taatgaaatc ctaaaacctt 840
 acattgtatcc tggaaatgtt gatccctgtaa ttcgttcaaaat gtttggaaagcc tacattcgct 900
 ctcagactgg gggttccat ttaatgttggat ttgtttttttt gcaatggggat ttagttaatgt 960
 attatgtttttt aaaaatccat tttttttttt tagacaatggat gggatggat gttttttttt 1020
 agtatttttttccat attacatgtt gttttttttt gatccatggat tttttttttt gttttttttt 1080
 aatgttttttttggat ttttttttttggat aaaaatccat ttttttttttggat tttttttttt 1140
 aagaaatgttggat ttttttttttggat aaaaatccat ttttttttttggat tttttttttt 1200
 ttgttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat tttttttttt 1260
 ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat tttttttttt 1300

<210> 94
 <211> 1145
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1870914CB1

<400> 94

cacggaaaggcg qcaaaaggcgta cggaatggag gaggtgcctc acgactgtcc agggggccggac 60
 agcggcccgagg cggggcagagg ggcttcatgt cagggatgccc ccaaccagcg gctgtgcctc 120
 tctggagcggtt gggccactcc qgacacggct atagaggaaa tcaaaagagaa aatgaagact 180
 gtaaaacaca aaatcttggt attgtctggg aaaggcggtt ttggaaaag cacattcaac 240
 gcccaccccttgc cccatggctt agcagaggat gaaaacacac agatgtctt tctagacatc 300
 gataatgttggat ggcacatcgat tcccaagata atgggatggg aaggagagca ggttccac 360
 agtggctcagg gctggctccat agtgcgttggat gaaagacaacc tgggggttgc tgcagtggtt 420
 ttccatgttca gcaatgttggat ttttttttttggat ttttttttttggat ttttttttttggat 480
 atcaaaatgttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 540
 ccaccccttgggtt cgtcggttgc acaccccttcg tgcgttccggc accttggccac agcacacatc 600
 gatggagcgatgtt gtttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 660
 atcaacttccat gcccacggatgtt gaaatgttggat ttttttttttggat ttttttttttggat 720
 ttcatgttgc ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 780
 gagtttttttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 840
 atagggatccat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 900
 tggatgttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 960
 atccacggccatgtt ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 1020
 ggttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 1080
 ctttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 1140
 gtttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat ttttttttttggat 1145

<210> 95
 <211> 1470
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1910984CB1

<400> 95
 accccccgaac agctgctgga gcataagaaa tgccacactg tccccaccgg tgggctcaat 60
 ttatgttcta ggatgaccaa gtagaagaat actttgaaaa aattgataat gccttctggc 120
 tatacagtgc ccattctgca tttattccac caaccgcccc gctgccatgg agtgccacct 180
 caagaccacac tacaagatgg agtacaagtg ccggatctgc cagacggta aggccaacca 240
 gctggagctg gagacgcaca cccgggagca ccgcctggc aaccactaca agtgcgacca 300
 gtgcggctac ctgtccaa ggcggccccc ttccactgtt accagtgcag ctacagctgc acaggcaagg acaatctcaa 360
 cctgcacaag aagctgaagc acggccacg ccagacccatc agctgcaag agtgcctgtt 420
 caagaccaca cacccttcg tcttcaacccg ccacgtcaag aagcaccaga gtggggactg 480
 ccctgagggaa gacaagaagg gcctgtgtcc agccccaag gaaccggccg gcccggggc 540
 cccgcctctg gtggtcgggaa gctcccgaa tctccctgtt cccctgtcag ttatgtctc 600
 ctcccaggct ctgcagaccg tggccctgtc ggcagccac ggcagcactg cagagccca 660
 cctggcactc aaggctttgg ctttcaacgg cttccctttg cgcttgaca agtaccggaa 720
 cttagatttt gcccatttca ttcccttgac aatgttatac cccaaagaacc acttggatct 780
 cacatccac cttcccccac cttagactgc gcctcccaac atcccttcac caaacactc 840
 ctccctggcc tatctcgac tgagagaaag agcagagact gtctgagggc agccatgtt 900
 tgtacccaaa acagagagac aaaagacaaa aaaaaaaaaaa aaaccacaaa acttaaacac 960
 aaccccaagca ggtgtatgtt gtcgaaacac ctacagaccc cgatgggtct ggaacatgt 1020
 tactgtatata ttttagtaag gaatagaaaa ttggctctgt gtgtataacctt attgcattga 1080
 cctgaaagct gctttatcca atcttcagag aggtgaccta ctgcatactt ctaccttcag 1140
 aggca:gcct ccccaagccac ccactccac ttcgcaccc ttcgcgtact tttctctgaa 1200
 aggaatcttgc ttttgcataa ccctaaagag agtgcctta atagcaatca gcacttgtaa 1260
 gcttataatac ttgtgcattt cgggtttctg ttgggtgaa tgcgggtgtt gggcggtt 1320
 ggattctgaa agagaaagcc gtgtgcgtg tgccatgaca ttcttattcc acattcttgg 1380
 tactggcttc tttaacagcg atgaacgtt 1440
 1470

<210> 96
 <211> 1399
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1943040CB1

<400> 96
 ctggaaaggc cccggaccgg caggacccccc aggacgcggg gtcggactct gccaccggat 60
 cgcagaggca gtccgtcatc cagcagcctg ccccgacag gggcacggcg aaactggaa 120
 ccaagaggcc gaccccgag gatggggacg ggcagacgcct cgaggcgct tctagctccg 180
 ggcacagcgc agggctggag gccgggacgg gcccctggggc tgacgacccg ggcttgc 240
 gcgaaaagcc ctatgcctgc ggcgagtgcg gggaggccct cgcgtgcctc tcgcacccg 300
 tggagcacca cagcagccat ggcggccggg agcgcgtacgc ctgtcaggggc tgctggaa 360
 cttccactt cagcctggcc ttagccggac accagaacac ccacggaaag gagaagactt 420
 acgcgttggg gggcccccgg ggcacccaaac cgtccacccg cgaacccagg cgggggttag 480
 ggcggccgt ccccaagaga gctggaggg cgaggctccc cccgcaccc cagaggcgca 540
 gaggtgagcc gctgtgttgc cccgttccgg agggggccgt ttggccggccg tgaatcccg 600
 acgaggcatt gggcctttcc acgccttgg gtggccgtt cctgtgttgc ttgtggacgt 660
 cctctgcctg tggccctgaa ccgcctctgaa ggctaagcgc tcccaacgg aagggtccac 720
 gggaaaggcc cacctctgtt aacacacccctt gggccacggc tgcacatccga ggggagccg 780
 cggatgtgaa agaagactcg gcttccctgc agccatttag tgcgccttca tgcgttagtt 840
 tttgacatttgc tgcgtgttag agttgcctt aagtgcgtga tctgcctgtt cttcttccaa 900
 gtcaccccttgc ccccgatcccttcc tccctgttgc gctcccccagg gttgtcaag tggaaatttt 960
 gtcagctgtt tagccttttc gtacttggcg tgatgtcaac ttcaacttca atctgcacaaa 1020

<210> 97
<211> 3247
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2076520CB1

<210> 98
<211> 2348
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2291241CB1

tgcggcggat	ggccaaacctg	gcttcgtctaa	cgccctccca	gctccctcg	gtctgacttc	60
cggttccctc	gcccgtccct	ggcgcggagc	ccgcgcacag	cgccagcccc	ttttccggct	120
gagagctcat	ccacacttcc	aatcaacttc	cgaggtgtt	ccccctccctc	cgccccgtgc	180
tggccccggac	ggcgggctg	gtctcgcc	gcgtattgt	ggtaacggg	ccttctcccg	240
cgtcgccccc	gccccctctg	cctcggtctcg	tccctcttc	cagaacgtcc	cgggctctcg	300
cggatcaga	agaaatggg	ctccctccgc	gacgtgccc	gagcagctcc	cttcgtctgt	360
gaagcgccgg	tgtcttgc	gaaaccggaa	gcccgtgt	accctggcg	acccgggttg	420
ttttcggtcc	gtttccaaac	actaaggaat	cgaaactcgg	cgcccttggg	ggcggcccta	480
cgtagcctgg	cttctgggt	tcatggatgc	actggtagaa	gatgatatct	gtattctgaa	540
tcatgaaaaa	gccataaga	gagatacagt	gactccagtt	tcaatataatt	caggagatga	600
atctgttgc	tcccatttt	ctttgtcac	tgcataatgaa	gacatcaaaa	aacgacttaa	660
ggattcagag	aaagagaact	cttggtaaa	gaagagaata	agatttttg	aagaaaagct	720
aatagctcg	tttgaagaag	aaacaagtt	cgtgggacga	gaacaagtaa	ataaggccct	780
tcatcgat	cgagagggtt	gcattgtat	agataattt	aaagcacaac	tggacaaaat	840
gaataaaagac	aactctgaat	cttggaaat	attgaatgag	cagctacaat	ctaaaagaat	900
agaactccctc	cagctgagga	cagagggtgg	aactcagcag	gtgatgagga	atttaaatcc	960
cccttcatca	aaatgggg	tggaaaagt	gagctgtgac	ctgaagatcc	atggtttgg	1020
acaagagctg	gaactgtat	ggaaaagaatg	tagcgatctc	aaaatagaac	tacagaaaagc	1080
aaacacaaacg	gatccatatac	agaaagacaa	tctgaagagc	agagatctcc	aaaaactaaag	1140
tatttcaagt	gataatatac	agatcgtat	ctggaaactg	aaagagagaa	tgtctaattt	1200
caatcggtt	actcaagtac	aagctgaaat	actaaagaaaa	ctgaaaaccc	caactgcaat	1260
aagaaaagcc	tgtccccctg	taggatgcag	tgaagaccc	ggaagagaca	gcacaaaact	1320
cacttgat	aattttactg	caacatacac	aagacatccc	cctctcttac	caaatggcaa	1380
gctctttgt	cataccacat	cttccccctt	accaggagat	gtaaagggtt	tatcagadaa	1440
gcaatccctc	caatcatgga	cagacaatga	gagatccatt	cctaataatgt	gtacatgtt	1500
caggacacac	agtctttagt	gcagaaaattc	tctggaagac	aatttcttggg	tatttccaaag	1560
cctccctaaa	tcaagtgaga	cagcattttg	ggaaaactaaa	actaaaactt	tgccttattac	1620
aaaccttcca	ccactgcatt	acttggatca	acataatcag	aactgccttt	ataagaattt	1680
tttggaaaga	gattcaccat	ttcaccatga	ggacacttat	ctcttcaatgt	ggtcctccca	1740
gaaattattt	taacaaactg	aaaggagat	ttgattaaaa	ttttcagag	gtcttcagta	1800
ttatattttg	aacacactgt	acaatagta	aaaaaccaac	atagggtt	ttcttagatg	1860
aaagagcacc	ctctagctcc	atattctaa	aatctgaaat	atgtctactat	actaattaat	1920
gtaaactt	aagggttttta	aaaaactctg	cctcttataat	taatgtaaa	attttgcrc	1980
agaagaat	ggaattggag	atttagacg	tggtttaca	aaatgtaaa	tgtctaaata	2040
tgttccata	aaaataaaaag	gaaaacatgt	ttcttcaat	tgcataatgg	acaaaatggc	2100
tgtgagta	gttacattt	ctttgttat	aatgcgtaaa	gatattgaaa	atataatgaa	2160
aaaagcat	cttaggttat	accatctta	tatgttattt	cgtttcaata	ttaagattt	2220
agtgattt	tttggtcaca	gtgtttgtt	gataaaaattt	ttttagaattt	gaagttgaa	2280
ctaagact	tgaaacaacc	ttatcactga	agccaaactt	ttcccaagcac	attcccttaan	2340
ctaatt						2348

```

<210> 99
<211> 2508
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2329692CB1

<400> 99
catncnggaa accaaaactn gtaccaaacad cactacaact ccccatcgcc agagacacac 60
accncttcc agaaaaagag taaccccaa ggggataac aaccccaagc taanccaaac 120
ctccctnacc gtgtaaagcan ccattccanc cacaattccc anatcctcca aaaccaccaa 180
cctaattttaa aggccctccc cctnctaatt gacctnacag naccccaaga tnaaaaagtt 240
tagggaccac ccctgtttta gaaaaaaagat aatnttgggg gnccnntttg nnttaaccat 300
tgtcagaana ttgggctaaa gagaagacga cgagagtaag gaaaataaagg gaattgcctc 360
tggctagaga qtagtttagt gttataacctt ggttagagatg taagggatatt gacccttcc 420
tctttatgtg ctcaactgagg atctgagggg accctgttag gagagcatatg catcatgtat 480
tattagctgt tcatctgcta ctgggttgat ggacataactt attgtacta ttcatgtat 540
actggtaggc actgtctct gattaaactt ggcctactgg caatggctac tttagattga 600
tctaaggggcc aaagtgcagg gtgggtgaac ttattgtac ttggatttg gttaaacctgt 660
tttcitcaag cctgagggtt cctatgtat aatggaaaaca aacactgcag acttggatt 720
tctcagccctc ctagccaagt ggcattcaga gaacccttgc aactcgagaa gctgttttt 780
cagttcccgta tcaaggctct agtgcctcc catctaacaa ctaaacagga gccatttcaa 840
tttcgttttt gtttgcattt gggggagat attttaaaca cccaaatgt tgggtctgtat ttcaaaactt 900
tactgtatgat tctcacgcta ggcgaattt tccaaacaca tagtgtgtt gttttgtata 960
caactgtatgat ccccacccca aatctttgtt ttgtccacat tctccaacaa taaagcacag 1020
agtgatgttta attaagcaca agggaaagaa gctgaaaatg caaatgttttgcattt ttcaaaactt 1080
tactgtatgat tttttttttt gggggatattt gggggatattt tttttttttt 1140
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1440
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1740
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1800
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2508

```

<210> 100
<211> 2232
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2474110CB1

<400> 100

ttttccaggga	gacggaggcg	cccgccgcac	ccggggacttc	gtggtaggag	cgcttatccc	60
ggcccttatac	ggcaaggacc	cgagcgacat	ctacccggtc	atccagatcc	cgggcagccg	120
cgaatccgac	gtgagcttcc	gctcagcggg	gaagctggcc	ctgtttctac	gcgtctacga	180
ggagaaggcg	gaggcaggagg	actgctggg	gaactttgtg	gtgctggggc	ggagcaagtc	240
cagcttgaag	acgtcttca	tcctcttccg	gaacgagacg	gtggacgtgg	aggacattt	300
gacttggctc	aaggccact	gcgacgrgt	ggccgtccg	gtgaaagtga	ccgacagtt	360
tgggacttgg	accggggagt	acaatcgca	gatcgagctg	cgccagggggg	aggggccggc	420
caggcacttgc	ccaaaggggct	tcttccttgg	ggccggaggg	ggctacagct	ggtacaaggg	480
gcagcccaag	acatcttta	aatgtggttt	ccggacccac	atgagcggca	gctgcacgca	540
ggacaggtgc	ttcagggtgcc	gggaggaggg	gcacctgagc	ccttactgccc	ggaaggccat	600
cgtgtcaac	ctctgtggca	agcgaggaca	cgcccttgc	cagtgtcccc	aagcagtqca	660
caatccgtg	gcagctcagc	taaccggcgt	ggccgggcac	taaacaccccg	cctgcctgcc	720
agggtgaaca	cacagccagc	ttaccctct	taagtgccaa	aactttttt	taaaccattt	780
tttatacgttt	ttgaaggaga	tctttttaaa	acctacaaga	gacatctctc	tatgcctct	840
taaaccgggt	ttactccatt	tcagcctgtt	ctgaatttgt	gactctgtca	ccaataaca	900
ctgcccggaaa	ctgtacgtgt	cagatgtgtt	ccccctccct	tttaaaaattt	tattttcgtt	960
tttccatgtg	gtatgtttt	tgtttcttgt	acttttctc	tctctcccttgc	ccccccctccc	1020
gccttcccccg	ccccatatact	ttttttcccc	tggattttca	ccctttgggc	tgccttgctc	1080
atctttatgc	cccaagacta	ggtagccccgc	ccaaacacgtg	gtaggcactc	catcagtgtt	1140
tgcgtaaattt	aaaacattgt	tgactgtgtc	ttctatcaga	gtgtctaccc	tttgccggcc	1200
ttccccctccc	tcattttatt	tgctgtttt	aatctacgtg	gtctgagaat	tttgaaacc	1260
agtgttgttta	gaagtgtata	taatctgaat	caataacgtc	tgtatggtg	ccaaaggcc	1320
ctcttatggc	acaaagatgc	atggacttca	tgacagctct	tttgggtggc	cagaaggccat	1380
tttttataga	atcattggaaat	ctagaatatt	cctgctggaa	agaacacttgag	agtgggttt	1440
gaccaatcc	ctggttttcc	agcagatgaa	acagggccaa	agaggtttaaa	tgactgggt	1500
aaaatcacat	agctgtctgg	tgcccgagcc	agcctatagt	agagtccccct	gaccctaaac	1560
ccgggtgcctc	tcccaactt	tctcacactt	cacaacaatt	tcccaacac	ttgagggccc	1620
agaaaagtcgt	atcttcccaag	aatgtatcgc	ccagaggaat	gctgagaaat	cacctggagg	1680
agggagcaga	aagagaaggt	ttttaaggaa	gggcttctga	ataacttggga	gatacggaa	1740
ggaccaaggg	ccacacttca	gggtgcattc	gttgccttcc	ggggcaccac	ttctggatta	1800
cagtgtgcctc	ggtccttgg	aggccctacc	ccttccctat	tcattgcac	cagtgagaaa	1860
ttgggggtgccc	cctgtgtaaa	gaaacctacc	aaaggtttac	atttgcacct	tagcttcaat	1920
agctacgaac	cctagagaag	cagctagctg	gagctcatgt	gcaactccctg	attctcgagg	1980
gaaagatgg	tttttaaccctt	aaattatgtag	tgagctgtt	actcttaaat	gtacttggg	2040
gataggccaa	gcgagagggtc	atgggccaac	taagtgttat	ccagtagaaa	agacagtata	2100
ctgtttttt	tttaatgtttt	gtttttccctt	tgctatatgt	tttgcttattt	ccttgcgtt	2160
tagaaatgtaa	aatttgattgt	taaaagtttt	gttctgaata	aatatttatac	ttttgtat	2220
ctaaaaaaaaaa	aa					2232

```
<210> 101
<211> 1620
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2495790CB
```

cagcttgacc gaggccgtgc ggagctcagt tccccgactg ctcatcaacc gggacttgt 900
 gggcccttg gcttggcata ctcgcagcag ggacgtggcc cagctgggg acgtggttca 960
 cggcgtggaa agcctagtgg agcttctggg ctggacagaa gagatgcggg accttgc 1020
 gccggaaact gggaaacttg atggaccaga caaataggat gatggctgcc cccacacaat 1080
 aatatgttaac ataggagaca tccacatccc aattctgaca agacctcatg cctgaagaca 1140
 gcttggcag gtgaaaccag aatatgtgaa ctgagtggac acccgaggct gccactggaa 1200
 tgtcttctca ggcctatggc tgcaatgtact ggtaggctg ttttacatgt cagggccacc 1260
 ccgtcacata tacaaaggag ctgcctgcct gtttgcgtg ttgaactctt cactctgc 1320
 aagctcctaa tggaaaaaagc ttcttctga ctgtgaccct cttgaactga atcagaccaa 1380
 ctggaatccc agaccgagtc tgcttctgt gccttagtga acggcaagct cggcatctgt 1440
 tggtaacaag atccagactt gggccgagcg gtccccagcc ctcttcatgt tccgaagtgt 1500
 agtcttgagg ccctggcgc gcacttcttag catgttgc tcccttagtg gggctatttt 1560
 taatgagaga aatatctgttc ttccagcat gaaatacatt tagctccctc aaaaaaaaaa 1620

<210> 102

<211> 608

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2661254CB1

<400> 102

gcaatacgtt atggcggacca aacgcctttt cggggctacc cggacgtggg ccggctgggg 60
 ggcctggag ctccctaaacc ccgcacttc cggaaagactc ctggcccgaa attatgc 120
 gaaaccatgt atgaaggggg ccaaattcgaa aaaagggtgca gtgaccagcg agggccctcaa 180
 ggaccccgac gtatgcacag atccgtcctt gctcaccaca tatggcatgg gctcaacat 240
 ctacaaggaa gggcaggatg taccctgtaa accggatgtc gatggatctg aatggctgtt 300
 cgagatgaac ttgggtcccc caaagaccct ggaggagctg gaccccgaga gcccggagta 360
 ctggcggcgg ctgcccggaa acgacatctg gcccacaac cggctgagca agaacaagag 420
 gtttagcat ggagggcccg gcatcgctga ccccccacgcc gagggcttgc cgtttcccg 480
 gaggacgtgg acttttgc gacaagaggc ggctcccccag cctgggtttc catgtgaccc 540
 cacagtgggg ctggaccagg gcccctggagg ccaataaaga gctttctggg tagaccctaa 600
 aaaaaaaaaa 608

<210> 103

<211> 3257

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2674047CB1

<400> 103

ggannccant tggAACGGGA aangtcggag ccattgngtg tgnccatttg cccttggat 60
 ttagcctggg aaancctgtt ttcatggac cgagcagatt aaggttgggt ttttttngna 120
 agagaggatg ttcttagagcc atgggtgaaa ttgaatttgtt cagggttctt gaaatctt 180
 taatcaccctg tgaggatgtt gtggcaaaaa atcagtcctt ttgggttcatc aacaaaaat 240
 ctacaaccctt gnaaatagtgtt gaagagaaaaat ttgcagccctt aaatattcaa gtggggaaatc 300
 ttggccaggatgtt tctcccttcag gacaaaggatgtt gagaatttgc taaaactcagc aaaatttgc 360
 tcctcgaagc cacttggatc tcaatttgc ccccaagaaat gcacaaatat cactgtgaac 420
 tcaaaaactt aaggggagaaa gaaaaacagc tcgagacccat atgcaaaagag aaaactgtat 480
 atctacagaa aatgggttcag aggaatgaaa agataaaaaaaca agatgtggag aggttctat 540
 aacggaaagcg acattttagat ttaatttgc gacaaaggccat tgggtggat 600
 atggaaaatgt tcgtcaggaa tatgttggat taaaactatgt tcgttgcggc gtgttggat 660
 aggtcagaaa actttaaagaa gggcagattt ctataacatg tcgttgcggc gaaatggaaa 720
 acgagcgtca caatttggatc gctcgaatca aagaaaaggc aacagatattt aaggaggcat 780
 ctcaaaaatgtt caaacatggaa caagatgttta tagaaaggaa agataaaatc attgtggat 840
 ttcaagcaggc tttaatagta aagcaaaaatg aagagcttgc cccacagagg agaataatgtt 900
 ataccccgcaaa aatgtatagat gatttgc aatgttgc aacttgcgaaa aacttgcgaaa 960

atcttcagcc	ccagattgtat	gccattacaa	atgatctgag	acggattca	gatgaaaagg	1020
cattatgtga	aggcgaata	attgataagc	gaagagagag	ggaaactcta	gagaaggaga	1080
aaaagagtgt	ggacgatcat	attgtacgtt	ttgacaatct	tatgaatca	aaggaagata	1140
actaagaca	gagattccgt	gacacgtatg	atgcgtttt	atggctaaga	aataacagag	1200
acaaatttaa	acaaagagtc	tgtgagccca	taatgctcac	gatcaatatg	aaagataata	1260
aaaatgccaa	atatattgaa	aatcatat	catcaaatga	cttaagagcc	tttgat	1320
aaagtcaaga	agatatggag	gttttcctca	aagaggttcg	tgacaataaa	aaattaagag	1380
taaatgcgt	tattgc	aagagttcat	atgcagacaa	agcacc	agatcttga	1440
atgaactaa	acaatacgg	ttttctct	atttgagatg	attattgtat	gcac	1500
ctgttaatgag	ttac	tgtcagtatc	atattcatga	agttcctgt	gaaactgaaa	1560
agaccagaga	aagaattgaa	cggttata	aagaaacccg	attaaaacag	atttatacag	1620
cagaagaaaa	gtatgtgg	aaaacttctt	tttattcaaa	caaagtatt	tcttagtaaca	1680
catctttaaa	agtagcgcag	tttctcactg	tcactgtgg	cctagagcag	agaagacact	1740
tagaagaaca	gctaaaggaa	attcatagaa	aatttgc	agtggattca	gggttgat	1800
ccttacgtga	aacaagcaaa	catctggagc	acaaagacaa	tgaactttaga	aaaaagaaga	1860
aggagcttct	tgagagaaaa	accaagaaaa	gacaactgg	acaaaaaaatc	agttccaaac	1920
taggaagttt	aaagctgtat	gaacaggata	cttgc	aatct	gagcggaaa	1980
caagtaccaa	aatcaaagaa	ataaaatgtc	aaaaagcgaa	acttgttacc	gaattaacaa	2040
acctaataaa	gatttgtact	tcttgcata	tacaaaaagt	agat	ttaaatt	2100
ctacagtgat	ctctgagaag	aacaaattag	aatcagatta	tatggccgca	tcttcacaa	2160
tccgtctac	agagcaacat	ttcattgaat	tggatgaaaa	tagacagaga	ttatgcaga	2220
aatgtcaagga	acttatgaaa	agagctaggc	aagtatgtaa	cttgggtgca	gagcagact	2280
ttccatcaaga	ataccagaca	caagtaccca	ccatccaa	tggacacaa	tcc	2340
ccatcg	tttccaagac	ccaaacacat	tggatgaaat	tatgtctt	taactgaag	2400
aaagatcaag	agttcctgc	ttcacgggac	tgaatcctac	aattgttca	gaatatacaa	2460
aaagagaaga	agaaatagaa	cagttactg	aggaactaaa	gggaaagaaa	gttgaactag	2520
atcaatacag	ggaaaacatt	tcacaggtaa	aagaaagg	gtttaatcct	ttaaaagagc	2580
tggtagaaaa	aattaatgaa	aaattcagca	at	tttttttag	ttccatgcag	2640
aagtgtatct	ccatacagaa	aatgaggaag	attatgataa	atatggaa	cgaattagag	2700
tcaaaatcgt	aagtagtact	caactgc	aattaactcc	tcatcatcaa	agtggagg	2760
aaagaagtg	ttctaccat	ttatacttga	tggcacttca	ggagctaa	atagtc	2820
tcagagtagt	tgtgaaatc	aatcagggaa	tggacccaa	caatgaa	acgg	2880
aaatgtgt	aaatactgc	tgtaaagaaa	atacatctca	atactttt	agatgttt	2940
agctcctgc	aaatcttct	tattctgaaa	agatgacag	tttgc	tacaatggc	3000
ctcatatgt	ggaacaaac	acatggaa	taaaagg	tttgc	ccggccggt	3060
ttcacatc	tcaac	taataaaat	aaagagaggg	aacttgg	aa	3120
taaattctgt	ttataagtat	ggctcaact	aataaaagga	gattcactaa	aacgaaa	3180
agttat	tttttgg	tttaaaat	aaataggtt	ataatggaaa	ctataatqac	3240
cttccaaaa	tagcagc					3257

<210> 104
<211> 1945
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte clone 2762174CB1

```

<400> 104
caggggactt agacctggtt gttggcatgg agtggaggat gaagaggtat cttctgagca 60
gagcatttt gtagtaggag tgcagaggt caggactctc atggcagagc tggagtcia 120
cccatgtgac atatgtggcc caatattgaa agataccta cacctggcta aataccatgg 180
gggaaagcc aggcagaaac catacttgtg tggggcatgt gaaaagcaat tctggtcag 240
tacagacttt gaccacgacc agaaccaggc caatggaggg aaactttcc caaggaagga 300
gggcagagac tctgtaaaaa gctgcagagt ccatgtgcca gagaagaccc tcacatgtgg 360
gaaaggtagg agagactttt cagccacatc tggccttctt cagcatcagg cctcttcag 420
cagcatgaaag ccccaaaaga gcaactaaggt tttgtatggc ttctctatgg gacagaggta 480
tcacacgtgt ggtqaatgtg gggaaagccctt caccggcaaa gacacacttg ctcggcatca 540
gagaatccac actggagaaa ggccttataga gtgttaacgaa tggggaaat tcttcagcca 600
aagctatgac ctctttaaac accagacagt tcacactgg aaaaaggccat acgagtgcag 660
cgaatgtggg aaattcttta gacaaatctc cggcctgtt gggcacagggc gagttcacac 720
gggtgaaaga ctctatcagt gtggcaatg tggggaaat ttagcagta agtctaattct 780

```

cattcgacac	caggaagttc	acacaggaggc	caggccttat	gtatgcagcg	aatgtggaa	840
agagttcagt	cggaazacaca	cacttgtct	gcaccaacga	actcacactg	gagaaaggcc	900
ttatgagtgc	agtgaatgtg	ggaaggcctt	tagccaaagc	tcccacctta	atgtacatcg	960
gagaattcac	agcagtgatt	atgagtgtag	cagatgtggt	aaagctttca	gctgcacatc	1020
caaactcatt	cagcaccaga	aagttcactc	tggagaaaag	ccttatgagt	gcagacaatg	1080
cgggaaagcc	ttcaactaaa	gacccaacct	catcaggcac	tggaaagtcc	acactgggaa	1140
aaggccttat	gtgtgttagt	agtgcgggag	agaattcatc	cgaaaacaga	caacttgtt	1200
gcaccagagg	gttcatgtg	gagaaaaagct	ttaagagtgt	agcaaatgtg	ggggaaaagtc	1260
tttaggccat	gcccccgact	tactatatgg	tgggaaacta	gcagtagtta	atgagtgcag	1320
cagatgcagg	aaagccttcc	cctggaggt	gaaccttacc	ccgccccatgg	aatttcacac	1380
cggcacacagg	ccttagcagt	ctaagcaatg	tgctgtctct	gttcagccca	acagctcacc	1440
cttagatgg	actctgggag	cagccattgg	gagggaaacca	tcaatggaaa	gtgaaacttc	1500
atacatatgg	acatccccac	tggggagatt	ccctgtgagt	gccaagtgat	tgagatgttt	1560
tcagcagctg	tgttgcactt	ttttatggc	tattggcctt	tgctggggca	ggagccatct	1620
gtctctacca	tctggcagaa	tcatactgcg	tttaccattt	acccccagcat	gcttgtgacg	1680
ggcagacctc	tcttctctcc	ccagccccca	aaaggtgttg	tgatgtgtt	cacagcccac	1740
taggggtctt	aatttctctt	ctttgtatgt	aaatggcatg	gaaataatca	gcctttttca	1800
agaggacaca	gaaggattct	gcaaatagcc	tgcaagact	tacctgtttt	gattgatttc	1860
atatgatgt	cgttatggat	atatccaata	tccaagtcac	ccagctctgg	aactgcctgc	1920
ttcacatgc	tcatgataat	aaagg				1945

<210> 105
<211> 1829
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2765991CB1

<210> 106
 <211> 1353
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2775157CB1

<400> 106
 cccacacgctc cgcccacgcg tccgcccacg cgtccgatgc cttgtccat gctgtgcc 60
 tcaggcaagg tcatcgacca gagcacactg gagaagtgt aaccgcagtga agccacatgg 120
 ggcggagtgc ccagtgaccc tttcacgggg gtagcttta ctccgactc tcagccccctg 180
 cctcaccctt cccctcaaggc ccggattgac catttctgc tccagcactc catccctggc 240
 tgcacccatgc ttgggagagc acagacggca ttggcagtgta tcccttctt cattgttcg 300
 ccctctcaga aaaggaagat agacgaggct gaacatgtc cagacagtaa ctttgggtgt 360
 aatgtttctt gttttctgc cacaagccctt ttggcttac ccactacctc agagcacact 420
 gctaaagaaa taaaaagccac caatgagccc agcctgacac atatggactg ttcgacaggt 480
 ccactgtccc acgagcagaa gctgtcacaa agcttggaaa ttgccttggc atccaccct 540
 ggctctatgc cctccttcac ggcacaggctg accaggggac agctccagca ctttggcaca 600
 agagggagca acacttctg gaggcctggc accggctcg agcagcctgg gaggcatctg 660
 ggccccgaat gtgcctctg caaaagagta ttttctccct acttcaaaaaa ggagccggtg 720
 taccagctgc cctgcggcca cctcctgtgc cggccctgccc tgggtgagaa gcaacgctcc 780
 ctgcccattga cgtgcacagc ctgcacaggc cccgggtgtca gccaagacgt gctgcgggtc 840
 cacttctgag tgactgaccc ccacttggagg agacccattg ctgggaggag ctgaggggga 900
 acaggagcag ggcacacgca cccctgaggct ctggccaggc cccaggcaca gagctgccc 960
 ctccttcccg gggctctct tcatcacctc acggatatagc acattgttcc tgcgtgggt 1020
 gcaataggcc aacaaagcca tagggcagag ggcggggggta tggccctgccc tccctggcac 1080
 ccccaactgccc tgagcccagg acccaactggta gccagcccca cccttaggcag gaagacccct 1140
 gctgagggcc ccccccgtca gtccgcatac cccctgtcc agcaggccac tgggggtggc 1200
 tcaccctaga tttgtggccca gatctcagga gtctctgc tcaagggtcat caaaaatgg 1260
 accttgggag cagttgggggt gtctgtggag tgcatgactc agccccccga ctcgcagcc 1320
 taataaaagcg atgggttgacg tctaaaaaaaaaaa 1353

<210> 107
 <211> 1025
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2918375CB1

<400> 107
 gggccacttc gggtccccgc tgacccgcct tctccccca cggccggaca gggacccagg 60
 ctcttggta tgctgcgtct cagctccgiga gctgactaag gcttggaaac agaaaaccaga 120
 ttagtgcacag tattattgtc aaagagctt aatgtcacatt ctcttggga attactgtgt 180
 tgctgttgcgt gatgcaaaaga agtctctaga actcaatcca aataattcca ctgtatgc 240
 gagaaaaaggaa atatgtaat accatgaaaaa aaactatgt gctgccttag aaactttac 300
 agaaggacaa aaattagata gtgcagatgc taatcttcaatgt gttggattaa aaggtgtca 360
 agaaagctcag aatggctcag aatctggatgt gttggactcat cagtcaaaaaa tcaagtatga 420
 ctgttatcaa acagaatctc aatgtatcat tacactttagt atcaagaatg ttcaagaa 480
 tgatgtaaat gttggatattt cagaaaaaaa gttgtctgtttt gttggataaaat tcccttctgg 540
 agaggatrac aatttgaaac tggacttct tcatccataa ataccagaac agagcacgt 600
 taaagtactt tcaacaagaat ttggaaattaa actggaaaag ccagaggctg tgagatggg 660
 aaagcttagag gggcaaggag atgtgcctac gccaaaacaa ttctgtgcag atgtaaaagaa 720
 cctatatcca tcacatctc cttatataag aaattggat aaattgggtt gttggatcaa 780
 agaagaagaa aagaatgaaa agttggaggg agatgcagct taaaacagat tatttcagca 840
 gatctattca gatgggtctg atgaagtgtaa acgtgccttcc aacaaatccctt tttatggatc 900
 ggggtgtaca gttttggat ccaactggtc tgatgttagt aaaaggaaag ttgaaatcaa 960
 tcctccatgt gatatggaaat ggaaaaagta ctaaataat taatttgctc tcaaaaaaaaaa 1020
 aaaaaa 1025

<210> 108
<211> 3641
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 3149729CB1

<400> 108

ctactcatag	gtctgctaatt	cattcatgcc	aatgttttgg	tttttcagtt	ttgcctccgt	3300
gataaattaa	agaatgggaa	ggggtaagg	aagggaaga	agattgttt	agaacaagt	3360
gcatgaaatt	accatcttg	tagaaaccgc	agctaacagt	gggagttatc	taagcaatc	3420
gatgttacag	ggccagccct	ttagctgtq	tgggttattc	tgtttgggtat	tgaggtatg	3480
ggtaactttat	agacttttaa	ttttggaaat	tgtatgacatc	cctcaggcat	gtattctggg	3540
aatggaaattc	ctgttaacttc	ctgtgtctgc	agtatgcct	acaatttagt	ggcagcgtgt	3600
aaaaacacta	gttagattat	taaaggatata	cattaaaaag	g		3641

<210> 109
<211> 699
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte clone 3705895CB1

<400> 109											
gcccgcgcga	cacgctcaag	gccgggatgg	cgccggcggc	ggccggcagg	agccggaccc						60
cccgagagga	ggagggacct	gctggggagg	cagccgcctc	gcagccccag	gccccaaacga						120
gtgtgcctgg	ggctcgctc	tcgaggttgc	ctctggcgcg	agtgaaggcc	ttggtaagg						180
cgatcccg	cgtgacgcta	gcgggacagg	aaggccatctt	cattctggca	cgagccgcgg						240
aactgttgt	ggagaccatt	gcaaaagatg	cctactgttgc	cgctcagca	ggaaaaagga						300
aaacccttca	gaggagagac	ttggataatg	caatagaagc	tgtggatgaa	tttgctttc						360
tggaggatc	tttagattga	ttggccgagc	gggcagtttt	gtgagcc	atctgaagcc						420
ttcagttcac	ccctctgcac	aggccctcgc	tttgaaaagg	ggagtttttgc	cacttacaca						480
cacttttctt	gttctgcctt	cacctatgcc	gggataagca	gagatctcat	caattagctc						540
ttctctgc	aaatgtttccac	tattttctgtc	tgtcttccat	atcaagcctc	gatgcagctg						600
ctgctgc	tttaaagat	gaagaaaatg	ttctgcataa	gtggcttcc	aatgtatgag						660
gacc	aaataa	aaaggtttttgc	atcaacctca	aaaaaaa	aaatgtatgag						699

<210> 110
<211> 2186
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte clone 003256CB1

```

<400> 110
atccgtaaa ccctgttgc gtatggac tggatgttct taaaagattt ctgcagagct 60
caagtgaagt tgagagccca gctgtgcatt cttcatcaag acagcccccc gctcagcctc 120
cacggacagg atccgagttc cccaggctgg agggagcccc ggccacaatg acgccccaaagc 180
tggggcgagg tggatgttca gggatgtat ttctttttt tgatgagtcg ccaccaccaa 240
gaccaaaact gagtgctta gcagaagccca aaaagtttagc tgctatcacc aaattaaggg 300
caaaaaggcca ggttcttaca aaaacaaacc caaacagcat taagaagaaa caaaaaggacc 360
ctcaggacat cctggagggt aaggaacgtg tagaaaaaaa caccatgtt tcttctcaag 420
ctgaggatga attggagcct gccaggaaaa aaaggagaga acaacttgc tatctggaaat 480
ctgaggaatt tcagaaaatc ctaaaagccaa aatcaaaaca cacaggcatc ctgaaagaggg 540
ccgaggctga gatgcaggag cgctactttg agccacttgtt gaaaaaagaa caaatggaaag 600
aaaagatgag aaacatcaga gaagtgaagt gccgtgtcgt gacatgcaag acgtgcgcct 660
atacccaactt caagctgtg gagacctgcg tcagtgagca gcatgaatac cactggcatg 720
atgggtgtcaa gaggttttc aaatgtccct gtggaaaacag aagcatctcc ttggacagac 780
tccccaaacaa gcactgcagt aactgtggcc tctacaaatg ggaacgggac ggaatgtcaa 840
aggaaaaagac tggtccaaag ataggaggag aaactctgtt accaagagga gaagaacatg 900
cttaatttctt gaacagcctt aaataacccg aacttcagac atttttccac agacttcccg 960
gcctccctgtg actctggaaa gcaaaagggtt ggctgttat tttccattttt gatgttgc 1020
acgcccgtcaaa aaacaaatgc ttgttaagcc cataagcttt gcctgttac tttctgcccatt 1080
tgggttggtt tgataccaca tttaacattt acatttaagt gggaaaacccaa gttatcatgt 1140
tcttttctaa gctcagtgta gatgatttgc ttacttcatt cactgaagt tttggcccaa 1200
aatttggaaagg taaacaaqaga qctatgtttc tggatgtttt ggttataqag tggtttccattt 1260

```

tttatataa caaaattcta gtgttatac gaacacccag aggcaaaaga atttggctt 1320
 atttcactc caggtaagta gcttaacttc tgggcttcag ttttctcatc tggaaaatca 1380
 ggaatggacttgg actaagtgtat cctgaaatgt attttttagc actggatttc tacaataat 1440
 aaaacttcc catctagata atgatgatca catagtctt atgtacggac attaaaagcc 1500
 agatcccttc attcaattctt gttatctctt ttttactctt tggaaattgtat caagccactg 1560
 aatcactttg catttcagtt tataatata gagaagaaaga aggctgtctg ctcttacatt 1620
 atttgaggagc cctgtatagaa aatctcataat tattttttt ttaatttttt 1680
 ttatccctta tgacagggtc tcactatgtc accctggctg gagtgcagta gtgcgatcg 1740
 ggcacactgc agccttgct tccctggct caagcagttcc tcccacccca gtcctcccaa 1800
 tagctaggac tacaggcggtc cgtgaccaag cccagctaat tttgcattt tttgttagaga 1860
 tgggttttgc ccatgttgc caggtggtc tcaaactctt gagcacttagc aatccaccac 1920
 ctcnnttca aaaaagaaaa aaaaaccccg gggggggggcc cggaaactcaa ttggcccaa 1980
 aggccggggcg gaataaaaaat tcagggggcc ggggggggtt aaaaaggcgg aaaaactgggg 2040
 aaacacctt ggggggttacc ccaagttaaa gggcgcctt caggctngt gnccggatgt 2100
 agagggggat gacnnnnnca gtatccctt gggagtaaga ggccgcgagtt gcgtgcagg 2160
 aggacgtgc gagtgagggg agggtt 2186

<210> 111
 <211> 2133
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 156986CB1

<400> 111
 gttcc:cgtc tgccagccgg cttggcttagc gcgcggcgcc cgtggcttaag gctgctacg 60
 agcgagcttgg ggaggagcag cggcctgcgg ggcagaggag catcccgctt accaggccc 120
 aacqccggctg gcccgcgggt catggccaaa ggagaaggcg ccgagagcgg ctccgcggc 180
 qggctgtac ccaccagcat cctccaaagc actgaacgcc cggcccaaggt gaagaaagaa 240
 cccaaaaaga agaaacaaca gttgtctgtt tgcaacaagc tttgtatgc acttggggga 300
 gccccctacc aggtgacggg ctgtgcctt ggttcttcc ttcagatcta cctattggat 360
 gtggctcagg tggggccctt ctctgcctcc atcatcctgt ttgtggggccg agcctggat 420
 gccatcacag accccccttgg gggcccttgc atcagcaaat cccctggac ctgcctgggt 480
 cgccctatgc cctggatcat cttctccacg cccctggccg tcattgccta cttccatc 540
 tggccgtgc ccgacttccc acacggccag accttattgtt acctgtttt ctattgcctc 600
 tttgaaacaa tggtcacgtt ttccatgtt ccctacttgc ctctcaccat gttcatcagc 660
 accgagcaga ctgagcggga ttctgcacc gcctatcgaa tgactgtgga agtgctggc 720
 acagtgcgtgg gcacggcgat ccagggacaa atcgtggggc aagcagacac gccttggtt 780
 cagggaccta atagctctac agtagcttca caaagtgcac accatacaca tggcaccacc 840
 tcacacaggg aaacgcacaaa ggcatacctg ctggcagccg gggtcattgtt ctgtatctt 900
 ataatactgtt ctgtcatctt gatctctggc gtgcgggagc agagagaacc ctatgaagcc 960
 cagcagtctg agccaatcgc ctacttcccg ggcctacccgc tggtcatgag ccacggccca 1020
 tacatzaaac ttattactgg cttcccttcc acctccttgg ctttcatgtt ggtggagggg 1080
 aactttgtct tggggccatca ctacaccccttgc ggttccgcgca atgaattcca gaatctactc 1140
 ctggccatca tgctctccgc cactttaacc attcccacat ggcagtggtt cttgaccgg 1200
 tttggcaaga agacagctgt atatgttggg atctcatcag cagtgcatt tctcatctt 1260
 gtggccctca tggagagataa cctcatcatt acatatcggt tagctgtggc agctggccatc 1320
 agtgtggcag ctgccttcc actaccctgg tccatgttgc ctgtatgtcat tgacgaccc 1380
 cacttgcacgc agccccactt ccatggaaacc gagcccatct tcttccctt ctatgtcttc 1440
 ttccaccaagt ttgcctctgg agtgtcacttgc ggcatttcata ccctcactt ggactttgca 1500
 gggtaccaga cccgtggctg ctgcagccg gaacgtgtca agtttactt gAACATGCTC 1560
 gtgaccatgg cttccatagt tctcatcttgc ctggccctgc tgctttcaaa aatgtacccc 1620
 attgatgagg agaggcgccg gcagaataag aaggccctgc aggcaactgag ggacgaggcc 1680
 agcaagctctg gctgctcaga aacagactcc acagagctgg cttagcatccctt cttagggcc 1740
 ccacgttgc cgaaggccacc atgcagaagg ccacagaagg gatcaggacc tgcctccgg 1800
 cttgcgtgagc agctggactt caggtgttagt gaaaggaaactt gaaagactcaa ggaggtggcc 1860
 cagggacactt gctgtgtca ctgtggggcc ggtctgtctt tggcccttgc cttccctt 1920
 gcctgcctgt gggggccaaacg cctggggctg ccactgtgaa tatgccaagg actgatcg 1980
 cctaaaccccg aacactaaatg tagaaacctt ttttttaca gggcttaattt aataactt 2040
 tgactgtgtatc catagcaatg tgggtgtatg tatatgtctt tgagcttattt atgttattaa 2100
 ttttcataaa agctggaaag caaaaaaaaaaaa aaa 2133

```

<210> 112
<211> 1649
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 319415CB1

<400> 112
cacgtgtttg gtttgctctg agcctaacct agagtgctcg cagcagtctt tcagttgagc 60
ttggggactg cagctgtggg gagatttcag tgcattgcct cccctgggtg ctcttcatct 120
tggattattc cttgggcctg aatgacttga atgtttcccc gcctgagcta acagtcacatg 180
tgggtgattc agctctgtatc ggatgtgtt tccagagcac agaagacaaa tgtatattca 240
agatagactg gactctgtca ccaggagac acgccaagga cgaatatgtg ctatactatt 300
actccaatct cagtggtcct attgggcgtc tccagaaccc cgtagacttgc atgggggaca 360
tctttagccaa ttaggtgtctt ctccgtctcc aagatgtgca agaggctgtac 420
atatctgtga aatccgcctc aaaggggaga gccagggtt caagaaggcg 480
atgtgtttcc agaggagccc aaagagctca tggtccatgt ggggtggattt 540
gatgtgtttt ccagagcaca gaagtgtaaac acgtgaccac ggtagaatgg atattttcac 600
gacggcgcgc aaaggaggag attgtatttc gttactacca caaacttcagg 660
agtacccca gagctgggc cacttccaga atcgtgtgaa cctgggtgggg 720
ccaaatgaccc ttccatcatg ctcaaggag tgagggagtc agatggagga 780
cagatccaa cctagggAAC ctgggtgtca agaaaaaccat tggctgtcat 840
tagggcctcg aacactgttgc accccggcag ccctgaggcc tctggcttgc 900
gttgggtat cattgtgggaa atgtgtgtg ccacaatccct gctgtccct 960
gatcgtgaa gaagacctgt gggaaaataaga gttcgtgtaa ttctacagtc 1020
cacgaagaaa gactaatcca gagataaaaag aaaaacccctg ccattttgaa 1080
ggagaaaaca catttactcc ccaataattt gacggggat gatcgaggaa 1140
tgaaaaatc agaggccacc tacatgacca tgcacccagt ttggcccttc 1200
tcggaaacaa ctcaacttgc aaaaaagtca gttggggaaat gccaaaaacaa 1260
tttggagaaga atggagagtc ctttcatctc agcagcggtg gagactctt 1320
cctggccca ctctaccatg gatttcagac tcccgcttc ccagctgtcc 1380
ttttttgttc aatacactga agatggagaa ttggaggtt ggcagagaga 1440
ttggagggac agggctgtcg aggggagggg agcatggact tggctctgg 1500
ggccctggg aaccaggatcg agctgagtttgc cctcaaaaccc cccgttggat 1560
ttggggcagg gttcttagtgc gatgagttac tgggaagaat cagagataaa 1620
atccatccct ctggcaaaaa aaaaaaaaaa 1649

```

```
<210> 113
<211> 714
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 635581CB
```

cttgcggct	agggtccccag	gagccactga	gaacagaaga	cttgggtctg	ctctagagga	60
cctatgttag	ggcagacaga	ggatgataca	gctcagcgc	ttgtccctac	gtgtggcatg	120
aaagggtttg	gagagagaat	agtggatgt	gtgtccaaca	ttccagcact	tcaagagact	180
acccccaagg	gacttgcctc	tgtttcacct	gacttggagc	acaggcagga	gtggacatc	240
tctaaaagcc	cactgatggg	aaagggcacc	aggttggagg	cctctgaaaa	caagagagct	300
gggtggcttg	cagcagctcc	agagaacctg	aagtaccaca	gacagatagc	acagggagca	360
aaagattatg	agatctgaa	aaaggaaacg	aacaagtta	tcttggaaat	ttatacacac	420
tggtcgagaa	gaagcattct	caggaaaggt	tcaaaaaggca	tgcaagatct	ctagtccaggc	480
cgatcgtga	ggatctttct	ctgtacagag	ccagaccaca	aagacttggga	nggggtgatat	540
ttttcaataat	gcttggatcc	caacatgtat	ttaaaaagaca	caccaagaaaa	taaggaaaca	600
tggcacaatc	aaagagtcaa	aattatccag	gaccctactt	taaggaacc	cagtatctt	660
ccattatcct	cagaaggatt	tccagcctaa	ccaccattaa	acatgttcac	gtgg	714

<210> 114
 <211> 1165
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 921803CB1

<400> 114
 cgtacgagat gcgaggaggagg agtggagaga gggcaggtaa ttcggaggag ggaagaggca 60
 gccccctgccc cggccagctc gtgactaatt taggcaaaag gcagcctgga gctatttcca 120
 ttcggcggcgg ggaacagggtg cccggccctc cgccccatcc ccagggggccg cctccccccg 180
 ggcggcctcc aggctggca gacctaaaaa ggcgcccagggt tttctcaatg aagccggac 240
 gcaactccggaa ggcgactcgcc tggtcgacc ctacccggc tgccttggaa gtcgtccccg 300
 ccgccccctcc gcaccggcat gaagctcatc gtgggcacatcg gaggcatgac caacggcggc 360
 aagaccacgc tgaccaacag cctgctcaga gccctgccca actgtgcgt gatccatcag 420
 gatgacttct tcaagccccca agaccaaata gcagttgggg aagacggctt caaacagtgg 480
 gacgtgctgg agtctctggaa catggaggcc atgctggaca ccgtgcaggc ctggctgagc 540
 agcccgacaga agtttggcccg tgcccacggg gtcagcgtcc agccagaggc ctcggacacc 600
 cacatcctcc tcctggaagg cttectgctc tacagctaca agccctgggt ggacttgcac 660
 agccgcccggt acttcctgac cgtccctgtat gaagagtgc agtggaggag aagtaccgc 720
 aactacacag tccctgatcc ccccgccctc ttcatggcc acgtgtggcc catgtaccag 780
 aagtataggc aggagatgga ggccaacggg gtggaaagtgg tctacctgga cggcatgaag 840
 tcccgagagg agctctcccg tgaagtctcg gaagacattc agaactcgct gctgaaccgc 900
 tcccgagaat cagccccctc cccggctcgc ccagccagga cacagggacc cggacgcggc 960
 tggggccaca gaacggccag gcctgcagcg tcccagcagg acagcatgtg agcgitttccc 1020
 tatgggggtg tctgtacgta ggagagtggg ggccccactc ccagttgggc gtcccgagc 1080
 tcagggactg agcccaaga cgctctgta acctcgctc agcttcagta gtaaaactggg 1140
 tcctgttttataaaaaaaa aaaaa 1165

<210> 115
 <211> 2143
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1250492CB1

<400> 115
 tgcaagcaagt gctgcgagga cttggaggag ggcgaggagg ggcaggatgt ccctgtcaag 60
 gctcctgaga ctttgataaa cataaccatt agcagagagg ctcagggtga ggtccctgcc 120
 tcggactcaa agaccgaatg cacggccttg taggggacgc cccagattgt cagggatggg 180
 gggatggtcc ttgagtttg catgctctcc tccctccac ttctgcaccc ttccaccacc 240
 tcgaggagat ttgctccca ttagcgaatg aaattgtatgc agtccctaccc aactcgattc 300
 cctttggctt ggtggtagg cctgcaggcc acttttattc caaccctgg tcactcaatg 360
 atcttttact ccaggaaggc acaggatgtt acctaagag aattagagaa tgaacctgac 420
 gggacggatg tctaattctg cacatgtcg ggttggtcag tagaacctat ttccagactc 480
 aaaaaccatc ttcaagaaaga aaaggcccag ggaaggaatg tatgagaggc tctcccaatg 540
 gagaaggatg actctctatg actatcaagc tcaggccctc ccctttttt aaaccaaagt 600
 ctggcaacca agagcagcag ctccatggcc ttctggcccc agatcagectt gggtcagggg 660
 acatagtgtc attgtttgg aactgcagcc cacaagggtt gggtctatcc cacttcttag 720
 tgctccccac attccccatc agggcttcct cacgtggaca ggtgtctcg tccaggcagt 780
 tcacttgcag ttcccttgc tctatgttcc ggggatgggg gccacgcctt aactagagg 840
 caggctggat acatgtgtcc acctgtgtctt cttgtcttcc taagagacag agagtggggc 900
 agatggagga gaagaaagtg aggaatgtt agcatagcat tctgcaaaaa gggccccaga 960
 ttcttaattt agcaaactaa gaagcccaat tcaaaagcat tggctaaa gtctaacgtc 1020
 cctcttctgg ttagataaca aaagccctcc ctgttggatc ttgttggaaa aacatgtgca 1080
 gttatccagg ctcgtacgtt gcatgtgtcc accttgaatc ccagggagta tctgcaccc 1140
 gaatagctct ccacccctct ctgccttccctt actttctgtt caagatgact tccctgggtt 1200
 acttccttct ttccatccac ccacccactg gaatctttt ccaaacattt ttccatttc 1260
 ccacagatgg gctttgatata gctgtccctt ctccatgtcc gcaaaagctcc agatttttgg 1320

ggaaagctgt acccaactgg actgcccagt gaactgggat cattgagtagc agtcgagcac 1380
 acgttgtgc atgggtcaaa ggggtgtgtt cttctcatc ctagatgcct tctctgtgcc 1440
 ttccacagcc tcctgcctga ttacaccact gccccccgccc caccctcagc catcccaatt 1500
 cttccctggcc agtgcgctcc agccttatct aggaaaggag gagtgggtgt agccgtgcag 1560
 caagatggg gcctccccc tccagcttc tccaccatcc cagcaagtca ggatatcaga 1620
 cagtctccc ctgaccctcc ccctgtaga tatcaattcc caaacagagc caaatactct 1680
 atatctatacg tcacagccct gtacagcatt tttcataagt tatatgtaa atggctgc 1740
 tgatttgtgc ttctagtgtc ctcatttggaa aatgaggcag gcttcttcta tggaaatgtaa 1800
 agaaagaaac cactttgtat atttttaat accacctctg tggccatgcc tgccccqccc 1860
 actctgtata tatgtaaat 1920
 attttaaaa attgaatctt tgacttgca ttgattgtat aataatttt agaccaggc 1980
 tcgctgtgtt gctcaggctg gtctcaaact cctgagatca agcaatccgc ccacctcagc 2040
 ctcggaaatg gctgagatca caggcgtgag ccaccaccaag gcctgattgt aattttttt 2100
 tttttttt tactggttat gggaaaggag aaataaaatc ata 2143

<210> 116
 <211> 1010
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1427838CB1

<400> 116
 atcactagta gctgggtgctc caggctggcg gcgcctcacct ttctccttagc cgggtgaccc 60
 aggggattta ttttatgttg gctttctctg aaatgccaaa gccacccqat tattcagagc 120
 tgagtactc tttAACGCTT gccgtggaa caggaagatt ttcgggacca ttgcacagag 180
 catggagaat gatgaacttc cgtcagcggg tggatggat tggatggaa ttgtatctgt 240
 tagccagtgc agcagcattt tactatgttt tggaaatca gtagacttac aacaggctgg 300
 ccttggaaaca cattcaacag caccctgagg agccccctgaa aggaaccaca tggacacact 360
 ccttggaaagc tcaattactc tccttgcctt ttgggtgtg gacagttatt tttctgttac 420
 cttaacttaca gatgtttttt ttcctataact cttgtacaag agctgatccc aaaacagtgg 480
 gctactgtat catccctata tgcttggcag ttatgtcaaa tcgcccacca gcatggatca 540
 aggcttctaa tcagatcagc agactacaac tgattgacac gtaaaatca gtcaccgttt 600
 ttccctacga ttacaaaact gccagtccta tatggagtct gatcacaaga ctgcagttc 660
 ttcacagatc tcaggaagtt gtcgtggggc agaggctttt taaaacatcg tgatttagga 720
 gctatcttta tctgataaat aacgaattt tagttaaaac ctgagataga gtactacaaa 780
 atcatgttga tgacttcaga ttggaaatg taaaatcatgt ctgttatttg cattcttttag 840
 aaacttgcact aagtacctga attcatatctt ctattctact gtgcaacata gtgtatgattc 900
 agaaatttt ccttgggaa aaaaatgaa tatgaacatt tccattgtgt taagtgtaaa 960
 aaggccaga catgatcata aaatttaaat ttatatacaat aaaaaaaaaa 1010

<210> 117
 <211> 2059
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1448258CB1

<400> 117
 aggggcttagt atgactcagt gccagttatt tcatttaaag atgctgttt tgatgtatgc 60
 agtggtaactg atgaaggaag acctgatctt cttgtaaatt tacctggta attggagtca 120
 acaaaagagaag ctgcagcaat gggacctact aagtttacac aaactaatat agggataata 180
 gaaaataaaac tcttggaaac ccctgatgtt ttatgcctca ggtttagtac tgaacaatgc 240
 caagcacatcg aggagaaaagg catagaggaa ctgagtgtac cctctgggcc caaatcttat 300
 agtataacag agaaaacacta tgcacaggag gatcccagga tggatggat tggatggat 360
 gatcatagta gttcaggaga tatgtctttt ttaaccctact cagatcctaa gtttcaagga 420
 cttggagtgg ttgagtcagc agtaactgca aacaacacaa aagaagctt attccgtatt 480
 tgtatccac tctcagggtgc taatgatataatttgc aagacacttt aaaaacagaa 540

gaagtattgc	tgttacaga	tcaagactat	gatttggctta	aagaggaacc	aacttcttta	600
ttccagagag	actctgagac	taagggtgtaa	agtgttttag	tgctagaagg	agacaaggaa	660
atacatcaga	ttttgagga	ccttgataaa	aaatttagcac	tagcctccag	gttttacatc	720
ccagagggct	gcattcaaag	atgggcagct	gaaatggtgg	tagcccttga	tgctttacat	780
agagagggaa	ttgtgtgccg	cgatttgaac	ccaaacaaca	tcttattgaa	tgatagagga	840
cacattcagc	taacgttatt	tagcaggtgg	agtgagggtt	aagattccctg	tgacacgcat	900
gccatagaga	gaatgtactg	tgccccagag	gttggagcaa	tcactgaaga	aactgaagcc	960
tgtgatgggt	ggagtttggg	tgctgtccct	tttgaacttc	tcactggcaa	gactctggtt	1020
gaatgccatc	cagcaggaat	aaatactcac	actactttga	acatgccaga	atgtgtctct	1080
gaagaggcgc	gctcactcat	tcaacagctc	ttgcagttca	atcctcttga	acgacttgg	1140
gctggaggtt	ctgggttga	agatatcaaa	tctcatccat	tttttacccc	tgtggattgg	1200
gcagaactga	tgagatgaac	gtaatgcagg	gttatcttca	cacattctga	tcttctctgt	1260
gacaggcattc	tccagcactg	aggcacctt	gactcacagt	tactttatgga	gcacccaaagc	1320
atttggataa	agaccgttat	aggaaatggg	ggggaaatgg	ctaaaagaga	acaattcgtt	1380
tacaattaca	agatattagc	taatttgc	aggggctgtt	atatacatat	atacacaaccc	1440
aagggtgtat	ctgaatttaa	tccacattt	gtgttgcaga	tgagttgtaa	agccaaactga	1500
aagagtccct	tcaagaagtt	cctctgtat	gaagtagaa	gtgttagaa	aagttttact	1560
tgacagaagg	acctttacat	ggcagctaac	agtgttttt	gtgcaccagg	attggtttat	1620
atgattaat	taatatttgc	ttaataatac	actaaaaagta	tatgaacaat	gtcatcaatg	1680
aaacttaaaa	gcgagaaaaa	agaatatac	cataatttct	gacggaaaaac	ctgtaccctg	1740
atgcgtata	atgtatgtt	aatgtggtcc	cagattattt	ctgttggaa	acactccatg	1800
ttgtcagtt	tgtactctt	gttgatactg	cttattttaga	gaagggttca	tataaaact	1860
cactctgtgt	cttcaacacgc	atctttctt	ccccatctt	ctatttctg	caccctctgc	1920
ttgttccctc	atatttctt	cttccgactc	ctgcttaacac	acatgcaaca	aaaaaggaa	1980
gggagtgctt	attttccctt	gtgttaaggac	taagaaaatca	tgatatcaaa	taaacatgg	2040
aaaaacattaa	aaaaaaaaaa					2059

```
<210> 118
<211> 2273
<212> DNA
<213> Homo sapien
```

<220>
<221> misc_feature
<223> Incyte clone 1645941CB1

<400> 118
 ctgagagagc tgggggagga gcgcggcgcc gacggcgccg gtggctctag aaggggaggt 60
 ggaggatct ctttccctt ctcagacccc ggagcgctccg ggacgcggac ccggagctgg 120
 ggcgacgagg cgattgcggg ggcctgggt agctgtctgc taccaatatt ctactttctg 180
 actctatgaa tgtgactacc ctggttacct catataatct ccctggaaaa ggagacatga 240
 atgtcgcga tgatacttcc tgacaagaag ttgatacaag aaaaggaag gagattaaca 300
 gcta~~g~~gagc agaatttcga acagcaggtt ttcgtatccc ttgctccaa ctgcacact 360
 ccgttgcaca cttttaatc agagataacct acactcaaaa cccagacaag gcaaaaggat 420
 actt~~c~~tttg tatattttt gagatcgaag aaacgacaat gtccaggaaa cagaaccaga 480
 aggat~~c~~atc aggattcatt ttgtatttc agtccaatac ctgactggcc cagggaggag 540
 cttr~~g~~agaa catgaaagag aagataaaatg cggtagctgc aatagttctt aataagagca 600
 acaatgaaat tatactgggtt ttgcagact ttgataactg tgtggacaaa acagtacaag 660
 cat~~t~~catgaa aggttagtgc agtgaagtagc tcaaagaatg gacagtaaca ggcaagaaaa 720
 agaaca~~aaaa~~aa gaagaaaaac aaaccgaaac ctgcccgcaga accaagtaac ggcatcccg 780
 atccagtaa atcaattttc attcaagagg aacagtctgc gccttcctca gagaaagggt 840
 gtat~~g~~atgg ctaccatgtc aatggtgc tcaatgacac tgagtctgt gactcactca 900
 gtgaagggtt ggagacacti tcaatagatg ccagagaatt ggaggatccc gagtctgcca 960
 tgctagat~~ac~~ gctggataga acaggatcca tgctgcagaa tggtgtctt gat~~ttt~~gaga 1020
 ccaagtc~~ttt~~ gactatgcac tctattcaca attctcaaca acccaggaaat gctgccaat 1080
 ctctctcaag accttaccaca gaaactcagt tttcaaatat ggggatggaa gatgtcccc 1140
 tcgcccaccag taaaaagcta agttccaata ttgaaaaatc tgaaaagac ctccacgcgt 1200
 gcacagtgtc tcttgcacgg tattcgagtt tagttaaaga agagatggat gcctccattt 1260
 agaaaatgaa acaagc~~ttt~~ gctgaattgg agagctgtt aatggatcga gaagtggcgt 1320
 tgcttgctga aatggacaaa gtgaaagctg aagcaatggaa aat~~ttt~~gctc agccgacaaa 1380
 agaaggctga acttctaaag aagatgactc atgtggctgt tcaa~~at~~gtcga gagcagcaat 1440
 tggttgagct cagagctgat atcaagcaat ttgttagtga acgtaaaatat gatgaggatc 1500
 tgggacgagt agcccggttc acctgtatg tagagaccct aaagaagacg attgattcat 1560

ttggacaagt	gtctcatcca	aagaacagct	attcgaccag	atcccgatgt	agctcaggtta	1620
catctgtgtc	cttgagtagc	ccaaagtatgc	ccctctgtgc	ttccctttcc	acctgtgcct	1680
ctccctccca	ccttacaagt	gctaacaaga	aaaacttgc	accgggagag	actcctgcag	1740
ccatagcaaa	ctccagtggc	cagccctacc	agccacttcg	ggaggatttg	ccagggaa	1800
gacgaggagg	acagggtat	aggccacaag	gccaaaatgc	caatgacccc	atgaaccaag	1860
ggcgccatga	cagtatgggt	cgttacagaa	acagctcg	gtattcatct	ggttccaggt	1920
atcagagtgc	tccatctca	gcaccaggaa	acaccattga	aagaggccag	actcactcg	1980
caagggaccaa	tggaaactgga	gtcagcatgg	agcccagccc	tcccacgcct	tcattcaaaa	2040
aggggctccc	ccagcgcaaa	cccaggacct	ctcagactga	agccgtgaac	tcttgagaga	2100
aaatccagtt	ggcctctc	ctctatccac	acaattcaac	ttgataactg	gacttttagga	2160
aacttacagt	tagatgtaat	aacaaaaaaga	agtttatgcg	tatcactttt	tgtgccatc	2220
taagtat	ttt	tttgcattt	tttgcattt	tttgcattt	tttgcattt	2273

<210> 119
 <211> 1772
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1646005CB1

<400> 119

ccctgctgtc	atcaaataaa	aagctttctg	aagggtggagg	catctgatac	ccagagtgc	60
gctatcagcc	ggcacgtgg	ggcgtgggt	gcaggagcgt	cgagaaggcc	agctcgctc	120
ctatccggga	ttcagaatca	gctatggaa	cttggagac	cttggagaaa	taacttctt	180
cactttaac	tgattcttt	ttcataaga	aaatgtat	ccagccacaa	aatggtaaa	240
aattcagatc	tacaaaagcc	tgtcaggcag	aaactgaccc	cacttaggc	acgccaatga	300
gcaagtcatc	aaagcagcca	agacaggc	tgtggggcc	accatgcac	agggcccaagc	360
ctcgggtcct	aaacccgcct	atgtttccg	ccaccataaa	gaggcccac	tgggtaagac	420
ctgtcccgcc	tgctgtgggg	tattaggca	gatgggtct	gagggtctg	agggtctga	480
gagcagctgg	cagctcaagg	acatccggag	ttggaggatg	gagcaatgc	ggcccttgc	540
gtaaagacag	tcctgcagcc	gcccggcag	ggatgctgc	agtggagtgc	caggcgggt	600
cgagccctg	tgggactgt	gagggtctg	agggaaagca	ggattttggg	gtctctgaga	660
gtttggagaa	ggggaaagaag	attaaagctt	gtttcaaaag	tttctaata	ggtgggcaag	720
gccaagggtg	gctgtgggt	gagacccatg	actcagggt	gcccactgtt	actctattga	780
tttttggggc	ttttttccaa	aattgttat	tcttgcgtaa	tgagacctg	gtccttgact	840
gtcccccttaa	agccacctga	cttgcgttca	gttccactgg	cctgtcg	tgttttctac	900
tcaactccac	tcttgcgtt	cttgcgttcc	tgcctgggc	ccagccagca	gtcagctcaa	960
ggccagatg	aattgggtgg	cttgcgttct	cccaactggc	atcggttga	tgttgggtga	1020
ccagccccc	cagggtctca	gcccggc	aaggcttgc	gtgtacctca	gagcagctc	1080
gtaccctgtat	gtcacagcaa	agaaacttag	acatgacaca	aactgtggct	tcccaaggca	1140
gcaaagaatg	gcccgggtc	atgaggggcc	tgcccactt	ttggacagac	ctactctaa	1200
gtcacgtac	ctgcgtc	aaatcataaaat	caacacttt	gaggagatca	cagctatgc	1260
ttcgtaacac	agcccagtc	gaccagatag	acgggtc	tgacccgaa	aacaagccc	1320
cgccccccca	ccatgtgtgt	gaggcttacc	ttggactgc	cgctgaggga	cgccatggaa	1380
gggacagcaa	ggaggccgaa	gcgtcgt	aggtactcat	tggaggagct	tcccttcagg	1440
agggcgaag	gaatgagta	gagctcccc	tccagaa	ggatgagctg	ccgggtccgg	1500
cccacggggc	cgctggagt	catcaggccc	tatggagca	gcacggagag	gctgacatgg	1560
gtggcccgac	aggcagggtt	ttcaggcacc	aggacaaccc	ctgagccct	cctggatgac	1620
accagcacga	acaggtaag	cttgcgttgg	gtttggggcg	ccaatgggg	atggggccaa	1680
gtggcaaaacc	ctgcgttgg	cggaacaaa	cttgcgttgc	tccgtcg	gaacttggca	1740
aagggttggc	ccttggaaagc	attcaattt	gc			1772

<210> 120
 <211> 2260
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1686561CB1

<400>	120
gagaagggtgg	agggagacga
ctgtccgtgg	tggatctaag
atcagaacca	tacccaagtc
atcagaacca	cctgtccaa
aatgtttcac	aattccctccg
tcaccagcgg	cctgtatccc
tgaagacagt	ttctgcaggaa
tgcagttagc	gagctgcgt
ttcattttagt	gaaaaacgtaa
cactggccat	gactcagacaa
ggcggttagc	caggagatgg
tctgccaacc	atagacacgg
gctggaaagg	ccccctgcccc
cagggtccagg	gagttccctc
gcctcccaat	cttccccac
cgatcaccag	gtgccatatg
gcccggctctg	cctgggcagc
gaaggttatac	ctgaattatc
ctgtcccttt	ccggggcttc
agctgggtct	cctggggagt
gcctccgtcc	ccagctgtcg
aaaaacaacg	aatttgcag
agctatggag	gtgtgttata
tgacatattt	gaggatagaa
tagggataag	accgtgtat
aggcgcttag	tcgcagctgg
aatgtatgcag	attgagttca
cttcccaat	gctaagaagg
ctggcccaag	aataaaaaaa
tcctccacgg	gggctctgc
agatcactga	ggcaggcga
gtcggttagca	ctccgtgtcg
ggaaacctgt	tgtcagacg
agtctgtgac	tgctctgtat
atatgttct	cctgacagtt
ataatgttaag	ggatgtggca
tcaggctact	tttatgtat
tacaataataat	aaaatgttta
gaagccgccc	agagccgact
aaactagaat	gaaccgaagc
atgtgtctgaa	accaatccca
atataagaa	catggcaccc
gagacttttc	tcaagctcac
ggcagggtcac	ctgcctgcgc
gacaccagg	cctgggcaaa
ctgagtcgt	ggttggagcc
atcaatggct	ggatcttcag
aatcagacca	aagtttacat
tgcaacgcgc	ccagcttcac
gatatgattc	ccagccccag
tcacccctcg	gtgttacccc
agtttgaacc	tcagaggtat
atgctccat	gaactatcat
gcatgacta	ccctcgagca
ccctgcctgg	agccagtgtg
ccagccctcg	ggaccaagaa
caaggcacca	ggaccagcca
ccttggagtg	ccctgcagag
tgccttagacc	cccttagcaac
aagaatttgcg	gaaagtcttt
tcgtgaactt	tttgggttata
tcggaggcat	tgatattatt
taatctgtatc	aatggatgg
acgaggatga	aatcagcccc
taaaacaagg	aagcatgaat
agcatgtgcc	cacctggctt
acatcctgtct	gcggctgtcg
ccacccttca	gggtgttccc
tgtttggggc	cttggtctga
gttttttttct	gttccccc
tcttcccccgg	agacatccac
tctctgtctt	aaaaaaaaacc
tgtatgttcc	atttgcaggtg
gcaaatggaa	atgactacaa
agccagatgc	ttgtgtatcc
ctctttgtta	aaaaaaaaaa
	60
	120
	180
	240
	300
	360
	420
	480
	540
	600
	660
	720
	780
	840
	900
	960
	1020
	1080
	1140
	1200
	1260
	1320
	1380
	1440
	1500
	1560
	1620
	1680
	1740
	1800
	1860
	1920
	1980
	2040
	2100
	2160
	2220
	2280

<210> 121
<211> 1602
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte clone 1821233CB1

```

<400> 121
gccccaaagacc gtgcgcgaca cgctgctggc gctgcaccag cacggccact cggggccctt 60
cgagagcaag ttaagaagg agccggccctt gactgcaggc aggttgttgg gtttcgaggc 120
caacggggcc aacgggtcta aagcagttgc aagaacagca aggaaaaggaa agccctctcc 180
agaaccagaa ggtgaagtgc ggccccctaa gatcaacgga gaggcccagc cgtggctgtc 240
cacatccaca gaggggctca aatccccat gactcctaca tcctcttttgc tgcctccggc 300
accacccact gcctcacctc attccaacccg gaccacacccg cctgaagcgg cccagaatgg 360
ccaggtcccccc atggcagcccc tgatcttagt agcagacaat gcagggggcga gtcatgcctc 420
aaaagatgcc aaccagggttc actccactac caggaggaat agcaacagtc cggccctctcc 480
gtccctatg aaccaaaagaa ggctgggtcc cagagaggtgc gggggccagg gagcaggcaa 540
cacaggagga ctggagccag tcgaccctctc cagccctcccg gactcctctcc tggcaaccag 600
tgccccgtgt tgctgcaccc tctggccacca gcggtgggag gacacccatt ttgtgcgtg 660
cccgccgtc ccttcgcaca agttctgtt cccttgctcc agacaaaagca taaaacagca 720
gggagctagt ggagagggtct attgtcccaag tggggaaaaaa tggcccttta tgggtctccaa 780

```

tgtccctatgg gcctttatgc aaggggaaat tgcaaccatc cttgtctggag atgtgaaagt 840
 gaaaaaaagag agagactcgta gactttccg gtttcagaaaa aacccaatga ttacccttaa 900
 ttaaaactgc ttgaattgtatataatctc catatatata tataatccaag acaagggaaa 960
 ttagacttc ataaacatgg ctgtataattt tgatttttt ttaaatacat tttgtttctt 1020
 tattttttt gacgacaaaa ggtatgtact tataaagaca tttttttctt ttgttaacgt 1080
 tatttagcata tctttgtctt ttattatcctt ggtgacagtt accgttctat gtaggctgt 1140
 acttgcgtcg ctttttttaga gcacttggca aatcagaat gcttcttagct gtatttgtat 1200
 gcacttattt taaaagaaaa aaaaagcca aatacattttt ctgacattgt aagattgcct 1260
 tactgtctgt catttcctat tgctggcccc tttctcaggc cggagcgaat gtgggtggaga 1320
 agggaaaggaa atgatcgaaac gggcatgttg tcaagtgggc atgcaactgg gaaataccac 1380
 cagtttaccc taaaacattt tcctcagagg agtaggaaag tggattttga atctctattt 1440
 tgctcaaaag ttcaatgttctt gagatactga tgactgagag tgctgtctgg aaattttcag 1500
 gattgtgtgg tcttttgggg tttttttttt aagacaaagt tgaccgctgt 1560
 tcactgtcca cgtatcaatgttcaatgtcgtca tc 1602

<210> 122
 <211> 1655
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1877278CB1

<400> 122
 gcgggcgcac tccgggtgcaa gcggaggacac gacacatgca gtggcttctg gactgcgcga 60
 tgactggacg caagtaactt ctaggtctgc agacaagagg aagagaagat gaaggaagac 120
 tgctctccga gttctcacgt gccccatcgt gacagcaat ccattcagaa gtcggagctc 180
 ttaggcctgc taaaacacta caactgctac catgaggggca agagcttcca gctgagacac 240
 cgtgaggaag aagggaactt gatcatcgag gggctccca acattgcctg ggggctgagg 300
 cggcccatcc ggctgcagat gcaggatgac cgggagcagg tgcacccccc ctccacccca 360
 tggatgcccac gacggccctag ctgcctcta aaggagccat cgccccagaa cgggaacatc 420
 acagcccaagg ggccaagcat tcagccactg cacaaggctg agagttccac agacagctc 480
 gggccctgg aggaggcaga ggaggcccccc cagctgatgc ggacccaagag cgacgcctgt 540
 tgcatgagcc agaggagcc caatgtccgc gccccccgtg aggcccagcg catccggcga 600
 caccgggttctt ctatcaacgg ccacttctaa aatcataaga cctccgttt tactccagcc 660
 tatggatccg tgaccaatgtt gagggtcaac agcaccatgca caaccctgca ggtgctcacc 720
 ctgctgctga acaaatttag ggtgaaagat ggccccagtg agttcgact ctacatcggt 780
 cacgagtctg gggagcggac aaaattaaaaa gactgcaatgat accccgtat ttccagaatc 840
 ctgcatggcc catgtgagaa gatcgccagg atcttctgca tggaaagctga cttggcgtg 900
 gaagtcccccc atgaagtgc tcagttacatt aagtttggaa tgccgggtctt ggacagttt 960
 gttaaaaat taaaagaaga ggaagaaaaga gaaataatca aactgaccat gaagttccaa 1020
 gcccctcgctc tgacgtatgtt gcagccgtcg gaggcactgg tggaggccaa gtaactggcc 1080
 aacacatgc tcttccaaag tccccagcag tggcagggtt acactgagcc ctgggtgctg 1140
 gccccggccg gtcacatgca ctgtatggca cccgcctgacg aatcgatgtc ctgtgtgtct 1200
 accctctgtg agcctgacca ccatgattcc cacagccacg tcttggctcc aagatgagaca 1260
 cccacagaa gcccacccag gcccgtgggg ccaggaactt gctgggtcag atctgtgtgg 1320
 ccagccctgtt ccacccatgtt ccttcctgc actggagagc agtgcgtggcc cagccctgc 1380
 ggcttaggtt tcatctgtt gcacattggcc tggccggag cccctgtgg tccacaagcc 1440
 cctgtctctt tcttccatat gagattcttgc tctgcccctca tatcacgtc ccccacagga 1500
 atgctgtctgg gaaaagcagg gcctgcccacg aggtatgaga tctagcctgc tttcagccat 1560
 caccctgtcca cagtgtcccc ggcttctaaat caccctgtca gcctcgccaca 1620
 gctcggccccc aacacagagg tgagaccagg aataaa 1655

<210> 123
 <211> 2225
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1880692CB1

<400> 123

ctttagaaan cttggggncn tttgaccang ccccaanatc caangttca ggcccnntna 60
 taanctacnc gatncangnc ggttcangaa acncccnaaa aattggatcn nnttgatcac 120
 atgccaagct gatggagtgg ctaaagagta cagattatgg aaaatatgaa ggactaaca 180
 agaattacat ggattattta tcccgactat atgaaagaga aatcaaagat ttctttgaag 240
 ttgcaaagat caagatgact ggcacaacta aagaaagca gaagtttggt cttcatggaa 300
 gtcggggaa attaactgga tctacttcta gtctaaataa gctcagtgtt cagagttcag 360
 ggaatcgcag atctcagtca tcttccctgt tggatatggg aaacatgtct gcctctgatc 420
 tcgatgttgc tgacaggacc aaatttgata agatcttga acaggtacta agtgaactgg 480
 agccctatg tctggcagaa caggactca taagtaaatt tttcaaacta cagcaacatc 540
 aaagtatgcc tggaaactatg gctgaagcag aggacctgga tggaggaaca ttatcacggc 600
 aacataattg tggcacacca ctgcctgtt catctgagaa agatatgatc cgccaaatga 660
 tgattaaaat attcgcgtc attgagccag agctgaacaa cctaattgca ttaggagaca 720
 aaattgatag cttaactct ctttatatgt tagtcaaaat gagtcatcat gtgtggactg 780
 caaaaatgt ggaccctgt tcttcctaa gtactacatt gggaaatgtt ttgggtactg 840
 tcaaaaggaa ctttgacaaa tgcatttaga accaaataaag gcaaatggaa gaagtaaaga 900
 tctcaaaaaa gagtaaagtt ggaatttctc catttggatc tgaatttggaa gaatttgcg 960
 gacttgcaga atcaatctc aaaaatgctg agcgtcggtt agacctggat aaagcataca 1020
 ccaaacttat cagaggagta ttgttaatg tggagaaagt agcaaatgaa agccagaaga 1080
 cccccaggaa tgggttatg atgaaaaact ttcaccatat ttttgcact ctttctcgat 1140
 tggaaatctc atgtctagaa gcagaaaaaa aagaagccgc tataaaccac aaattctct 1200
 gatgttaata ttattagcct cccactaaag tctacttacc aaaaccatgt gggctttag 1260
 attgccccca agagctccaa atgtataata tacaagagcc tttgcctgac ttgaattac 1320
 accaagtcca gaggcataca gaaagccaag agcagtctgt cccttggag agccttcctc 1380
 agtcagttc tcaaacatct ctctcgctgc ctggatattc tggcaagt aatcaccaaa 1440
 taaaagagca tatgacactc tctccaggc tttggatgg ttcatgcttg ctgcctttg 1500
 gagataccga tatgcttc tttttggct tttcttattg cttcattaa ggattttcat 1560
 tccagttga tacatcattt ctgttccctg catctgcgt ctcttagcag cctcttcctc 1620
 agtttccaaa aagccccact tttcatctgc tttgttagtca tagttgttag cacaccacag 1680
 tctgccatct tccctccat ctgtatgtaca ttcatcatac tccttatcta gaaaaagaaa 1740
 agggaaatggg cagggctccc catgtctgt gccttcaatg gggcttccg 1800
 tactttctt ggcttccat agtccctgtt ttctggattt ggagactcta gaaagctgt 1860
 atcttctgtg acactttccc ccttggctt cttgaggctg tcttcctctt cttgaataga 1920
 ggattctaat tcagatttt ctgaatcaag aaatatttga ccagcaacta ctctgcctgc 1980
 agtagtatgg tcctttactg actcatctga tggcaatgt gtcttggaaat ctaaggatc 2040
 atcctggctg cctcttcat ccgaggacgc cgaggccaag ctcagcagca ccgcacacag 2100
 cagcagcgtc agccctatcc ggaccggcat cctcctctg gggccgggtgc caacccttag 2160
 agctgtcgcc ttgcctctg ccaccacgga ctcagccacc accggccctt cgccgctgt 2220
 ctcc 2225

<210> 124

<211> 1516

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2280456CB1

<400> 124

cggataaaa cctcagcggtt cggcggttaa ccgcaggctc ggcgcgtggg ccggcagtgc 60
 gcctgcgaa gttacgcgaa agctaacaga atctgcggtg ctctgctggc gactggatc 120
 acgcgggtca gagagcgcac ttccgcacg cgggtgttt tttttacttg aatgtaaaata 180
 ccaatcaaga tacattgaaa taagaaggtc ttagtgcata ggggaagcaa tggaaagaact 240
 tctacctgtat ggacaaatat gggctaatat ggatccagaa gaacgaatgt tggcagctgc 300
 tacagttttt accccacatct gtgcaggcga gggtaagaa gatgtcagga gagaagccca 360
 atctatccaa tatgtatccct acagtaaagc ttctgttgc ccaggaaagc gacctgctc 420
 tcctgtgcaa ttagtgcata cacatgtaga aagtaatgtc ctttcagaaaa cagtctctg 480
 ggcctccaa agactccgaa agccagtgtat gaagagaaaat gtgctgcgc gaaagccaga 540
 tggggaaatg ttagtgcata atgatgtatc ttagtgcata ttagtgcata gttacagaaaa 600
 tgatcaggat ctctggact taagacaaatg gctgtatgtat gtacagttcc aggaagacaa 660
 ggaatcttca ttgtatgtt cacaattaaat taacctacca catgaatacc aaggaattt 720
 tcaagatcgat ctcatttgc tctcataaaatg agaaggaatg ggcttcctc gttacgaa 780

```

agacctgatt gttgccagca gaccsaagtc ctttattctc ccaaagctgg accagttaa 840
ccgaaaccgg ggcaagacag accgggtgc cgggtatTTT gagtacaaac gggactggaa 900
ctcaatacgt ttacctgtg aagatcatag aaaggaaatta cgctgggtg tccgagagca 960
gatgcTTgt cgagcagaac cccaaatccaa acctcagcat atatatgtcc caaacaatta 1020
tctagtagcca acagagaaga aaaggctgc acTCCGTTgg ggtgttcgtt gtgacctgc 1080
aaatgggtgc atacccagga agtTCCCTT ccctcttctt ctttcttaaa tctttttaaa 1140
cttcttac aggattgtt gagataacct agctctttat atcttccctt taaaatagaa 1200
acaactgtct tgagaagctc ttcgaaacat tttatggtaa ggacttcacc tatcattgg 1260
ctttcctagc tatataatcac attgttatca gatgatactt ccaaattgcc actcaaattcc 1320
agcaattgca agataaaatca tatcagagaa agaacaacag acctgtctt tctattttgt 1380
caaatttagta cgggcccTTT gagtccgtta actttttta cctatcaata tgagttgctg 1440
tgcttcagtg tggTTTTT aagtgtctgg gcattacact taccattaa agaattttgg 1500
aaattcaaaa aaaaaaa 1516

```

```

<210> 125
<211> 1635
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<223> Incyte clone 2284580CB1

```

```

<400> 125
cgggggagct gggagcccga cgTTTCCGGG agcgccgcgt ggtagcgTC ggcggcttt 60
ggcatggcga ctttttctgg cccgctggg ccaatcctgt cgcttaatcc gcaggaagat 120
gtcgagttc aaaaggaggt ggcgcagggtt cgcaagcgc taaccgcg aaaaaaaacaa 180
gaacaactta ctccctggagt agtctatgtg cgcccacctac ctaactact tgacgaaacc 240
cagatctttt catatTTCTC ccagTTGGC actgtgacac ggTTcaggtt gtccagaagt 300
aaaaggactg gaaaatagcaa aggctatgca ttgtggagt ttgagtctga ggatgttgc 360
aaaatagttg ctgaaacaat gaacaactac ctgtttggg aaagacttgg ggagtgtcat 420
ttttagccac ctgaaaaagt acataaaagaa ctctttaaag actggaaat tccatttaag 480
cagccatcat atccatcatg gaaacggtat aatcggaatc ggacactaacc aaaaaagcta 540
cgatggagg agcgattttaa aaagaaaagaa agattactca ggaagaaaatt agctaaaaaa 600
ggaattgact atgattttcc ttcttgcatt tacagaaaa cggaaagtat ttcaaaaact 660
aatcgtcaga cgtctacaaa aggccagggtt tacgtaaaga agaagaaaaa agtttcagg 720
actcttgaca ctccctgaaaa gactgtggat agccaggccc ccacaccagt ttgtacacca 780
acatTTTGG agaggcggaa atctcaatgt gctgaactga atgatgtatgaa taaagatgat 840
gaaatagttt tcaaaacagcc catatcctgt gtaaaaagaag aaatacaaga gactcaaaca 900
cctacacatt cacggaaaaaa aagacgaaga agcagcaatc agtattttc aatgtattat 960
atttctttg aaaaatataa tattttatg agatggact ttgttattca cttagtacaa 1020
tggataacaa ccttgacaa gatttcaga gaaaaaatac actgtttggt caagttaaagg 1080
aaagcagtgt gtaatTTTGG attgcctgcc cttggctgaa atacagggtt gcataccatc 1140
ttgcagtggc ttggctgaca ttgcctctt gtcctggcct ctatTTTCTT tttgatattt 1200
catagcttc cttagttac tctgcctggaa tagaaagtgtt accactaact gcaggTTaa 1260
gtactaaact gcaaggctttt ctgtcgccag caattaaaga ccaccaatct ttttgcacca 1320
tctacatgtt ttgtcggggaa catttaactc atggagggtc tttagatttc aacatcagat 1380
gggtgaagct ggaagtttaa ttatatgttag agtggagaagg cagttccagt tttagcacag 1440
atttggTTTGT gtttcagat ttaatagag attcaaaaat gactcatttt taccattaaat 1500
gttaaaatTTG ttttggTTGT gctagcatga attaataacc accattttat accagtatca 1560
tcagtgaaga attgttattc aagattcaaa caataaccag caattaaact ttttctaca 1620
atgtaaaaaaa aaaaaaa 1635

```

```

<210> 126
<211> 2673
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<223> Incyte clone 2779172CB1

```

<400>	126					
cagggggctt	tcctcagaga	atatctttat	gtttacaaga	atgttaagtc	gctgtcacca	60
gatggtcctt	tgccacagct	tccttaccg	tatattaaca	gttcagcaac	acgggtttt	120
tttggccat	.gacagacgc	cagcggatgg	tgaaaaacaa	gcagctactc	atgttaagtct	180
tgtcaagaa	tatgattctg	aatcctctca	gcagtgccga	gaacttgagg	aacaagtgt	240
ttctgtggtt	aacaaggag	taattccatc	caattttcat	cccacacaaat	actgtttgaa	300
cagttactca	gataattcaa	gatttccact	tgcagttgta	gaagaaccaa	ttacagtgga	360
agtggcttt	agaaaccctt	tgaaagttct	acttttgtt	actgtattgt	cattgcttig	420
gaagttcatt	cctaaagatt	tcagtgaaaa	ggataatgaa	qaagttaaac	aactagttac	480
aagtgaacct	gaaatgattg	gagctgaagt	tatttcagag	ttcttaatta	atggcgaaga	540
atcaaaagt	gcaagactaa	agcttcttcc	ccatcacata	ggggagctgc	atattctggg	600
agttgtttat	aacttgcga	cttattcaggg	ctctatgaca	gtatgtgca	ttggtgctct	660
tcccgatgt	cacacaggaa	aatattcc	gagtagtca	gtcccgaggga	agcaggatt	720
agaaattcaa	ggtcctcgac	ttaacaacac	aaaagaagag	aaaacatctg	ttaaatatgg	780
ccctgatcga	cgtttagatc	ccataatcac	agaagaatgg	ccactgttgg	aggtgttctt	840
tatacattt	cctacagggc	ttctctgtgg	agaaatccga	aaagcatatg	tagaatttgc	900
caatgtcagc	aaatgtccac	ttacttgggtt	gaagttgtt	tctaaacgtc	cagagttctt	960
tacttcggt	ggttaatactg	ctgttcttaac	accactaagt	ccctcagctt	ctgagaattg	1020
tagtgcttac	aagactgtt	tgacagatgc	tacctctgtg	tgtacagcac	tcatatactc	1080
agcttcttct	gtagacttt	gcattggcac	aggaagtcaa	ccagagggtga	ttccctgttcc	1140
ccttcctgac	actgttcttc	tacccggagc	ctcagtgca	ctgccaatgt	ggttacgtgg	1200
gcctgatgaa	gaaggtgtcc	atgaaattaa	cttttgttt	tactatgaaa	gtgtcaaaaa	1260
gcagccaaaa	atacggcaca	gaatattaag	acacactgca	attatttgtt	ccagtcggtc	1320
tttaaatgta	cgggccactg	tctgcagaag	taattctctt	gaaaatgaaag	aaggcagagg	1380
aggcaatatg	ctagtcttt	tggatgtgga	aaataccat	actagtgaag	cagggcgttta	1440
ggaattccac	atagtgcaag	tatcaagtag	tagcaaacac	tggaaagtac	agaaaatctgt	1500
aaatcttct	gaaaacaaag	ataccaaact	tgccagtagg	gagaagggaa	agttttgtt	1560
taaggcaata	agatgtgaga	aagaagaagc	ggccacacag	tcctctgtaaa	aatatacctt	1620
tgcagatatac	atcttggaa	atgaacagat	ataaatttc	gcaagcccat	gtgcagactt	1680
cttttatcga	agtttatctt	ctgaattgaa	aaaaccacaa	gtctcacttc	ctgtcatac	1740
agaaaaacag	tcaacagagg	atgctgtgag	attgattcaa	aatgcagt	aggttagattt	1800
gaatattgtc	atattatgga	aggcatacgt	tgtgaaagac	agtaaaacagc	ttattttgga	1860
aggtcaacat	catgttattc	ttcgcactat	aggaaaagaa	gcctttcat	atccctagaa	1920
acaggagcca	ccagaaatgg	aactattgaa	attttcagg	ccagaaaaaca	ttacagtttc	1980
ctcaaggcca	tcagtagagc	agcttctag	tctcattaaa	acgagtcttc	actacccaga	2040
atcattaat	catccatttc	atcaaaaaag	ccttgttta	gtaccagtc	ctctttact	2100
ttccaattgt	tctaaggctg	atgtagatgt	catagttgat	cttcggcata	aaacaacaag	2160
tccagaagca	ctgaaatcc	atggatcatt	cacatggctt	ggacaaacac	agtataaaact	2220
tcaacttaaa	agccaggaga	ttcacagtt	gcagctgaaa	gcatgtttt	ttcatacagg	2280
tgttataaac	cttggaaatc	ctagggtat	tgccaaagtta	tcggaccaag	ttacagtgtt	2340
tgaaaacaatg	cagcagaatt	ccatgcctgc	cctgtatcat	atcagtaatg	tgtgacaaact	2400
tggaaaattg	tactgaaatc	cacaataatc	agttttgtct	ggatgggtt	tacagcgtta	2460
tttgatatac	ctaacttgc	atggaggtt	attgatatct	gcacccgtca	aaataacttg	2520
acttgtcatt	ttgttgcata	tgcaaaagcac	gttgactga	gaataacttaa	cattcttct	2580
ctgtatctct	taaaccctgg	gataaaattac	atgcgcacaa	tacagggtat	ccgcatattt	2640
gtgcacccata	ttaagccccca	tcttaagaga	aca			2673

```
<210> 127
<211> 2206
<212> DNA
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte clone 3279329CB1

```
<400> 127
gtctggcctt tgcaactagta gatcattgtc gacataggc agtttagaga cctttctgtg 60
ttaatgcctc ctggtaactgt cttaagatc gtacagtgc tgtttttaga tctatgcata 120
tgtcatgaag ctccttgtgg gctctgcatt aagctgctgc ttgttttttgg ggttaacaga 180
tgtgcctgtc aactagcatg tgtattgtcc aaattccata aacttaagggt ttttaagggc 240
tgtgtggttt ctgagctcta tgtgtcttgc ctatccttgc accttcaaagg ggtgagaaat 300
qagattttata catccaaagt tagtctgata aatatggctt tttqtttctc catgttaacct 360
```

agactgtcaa aaataagtga tggtgataag taggccttga gcctcagctt ctgtaaatct 420
 cattcctaaa attttcttag actcgtgtt gcaaaaacaa atacatgtgg attgtccta 480
 aggcttttaa tcagataacct gtgttctgt tagctgaact gtagtgaagc atcgatccaa 540
 atcggcttc tgaagtatca gttatgttt tgagttttaga aaatacttag gtgttagct 600
 agtctccca ttcatgaatc agtgtatgtc catatcagag agcctcaact tctttttct 660
 tccttttaa aaatgatttt agtgttttga ttttagtgtat actacatagt tcagtattat 720
 tggcttacc agtgttgcata gaaaaatttt aaatctccag ttgcaaacag caatggatta 780
 ggtatggaa ataaaatcat ggtgacatca ctgctgagtt atctaaacc tctgctactt 840
 aattctccat attgaaatgc atactcctcc acatacatgg cttccaagta aaggcaatg 900
 tagaggggco ctgtctatcc cagatgttggt ggattttaaa catatctgtg tttccgttat 960
 tttgggaact gattaatatt tacaatttt tttgtttatg agttatttt atactaagaa 1020
 aagagagaat ctagaacatc ttgcagttga aatacacaatt ttatctttt ggtcttggaa 1080
 gaatttaaagc agtctatgc actcatccaa tggtgagaaa tagccctccg aggttccagt 1140
 aagtttcaag tgaatgttgc acctccccaa gtttcttgc ttgcgttgc ttaacaccca 1200
 gctttaact gagtgttgc tccgtatgtt tagtgagatt ttcatgttgc atcacactgt 1260
 caagtttat tttgtcttt tattccctccg tggatgttgc tttggaaacaa gcacggtaca 1320
 gtaatcctgc ctgatagagt agtctggaa gagaattact ttttgggtga gagagttctc 1380
 catttaatg tttctaaatg ttttcatatg aacttggcat tggaaaaggg aggtaaagaa 1440
 aaaggacgtt tactaaaagc agtgcactt cttcccccgtt gtgagtgtttt attcatggct 1500
 aatgaaaaaa agagaaggac tcttgggtt tggatgttgc tggatgttgc ggagaggat 1560
 gcttgacagc atgctaattt aagccagagc aagtatgtcc ttcatcaggt aatcaggaac 1620
 tcttcagttt aagctgagga actaactgtat tagttgttgc tcataatata attggttaca 1680
 aagtggaaatg gccagcttgc ttaagtaccc aaagaaaaga atgcagcagc ctaacttagt 1740
 gttaccat tttactgtat ttggaaactga ctttttttcc caccctactt cacacaccta 1800
 aaactctttt ctgtcagac caaagagcga aaagaaaaaa aaaataaaaa cactttacca 1860
 atctgtcact caggtaaat tttgtggat gatttttgtc tggatgttgc tttttttttt 1920
 taaggtcct ttctcagcat attattctgc cattgcctt gtctccctt gggcacctca 1980
 gctctggatg ctatccctgg gatatactact gctgttgc tttttttttt 1980
 ccattatagt aagggtctt tggaaaaaaa ttcaaaaaat tttttttttt 2040
 ttatagtctg gctatcgtt tgatatcttgc ctgtcaagta tggatgttgc tttttttttt 2100
 tccatcccat caataaatgtt taatggtaaa acatcaaaa aaaaaaa 2160
 2206

<210> 128
 <211> 1426
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3340290CB1

<400> 128
 gcccaggccg gccccgcggg gcgggtcgccg ccgtgacggc ggctccggc cgggctcccc 60
 ttccnctcnc gnctccctt ccgcgcncct cccgcggag atgaggggaa gatgtccgtt 120
 tcagggtca aggccgagct gaaggcttgc gctgtccatct tcgacaagaa ccacgagcga 180
 ttccgcattcg tcagttggaa gctggacgag ctgcacttgc agtttcttgc gccgcagcag 240
 ggcagccgcg actcgcttgc gcccggactc acgctccact gcaacatcac ggaatccat 300
 ccatcttctt caccgtatg tttgtggat tctgaagacc caaatctgac atcagttctg 360
 gaacgtctag aagatactacta gaacaacaat ttgaatggaa caacagaaga agtgcacttca 420
 gaagaagagg aagaagaaga agagatgttgc gaagatatacg aagacttgc tcaactatgttgc 480
 atgaaggaag aagagccat tagtggaaa aagtcagagg atgaaggaat tgaaaaagaa 540
 aatttggcaat tattagagaa aatttggcaat aactcaaaaggc aagaccatcc aatgggtca 600
 gtgtctgggt cagtgcagtc ttcatgtatgc tttttttttt 660
 tcacagatgtt ataaaaacagg gatttattca gtggacttca taaatgcacatg tttttttttt 720
 tggatgttta aactgcagaa gtttgcattt gatgttgc tttttttttt 780
 tttttttttt aagaaggcat agaatatatt ttgtttaact tttttttttt 840
 ccatttgcattt ctccatttttgc tttttttttt 900
 ggtggaggag cattatgttgc tttttttttt 960
 gcccacaat cctataattt cattgttgc atcatgttgc tttttttttt 1020
 ccaaaaggat atggcttgc atgttgcactt ttgttgcactt ggtttttttt 1080
 aaaaatcttc caacatgcag acaaaaaggctt tgagtgcctt tttttttttt 1140
 tttttttttt tagatattttt agtggataat ctgtcatgtt acatccagta taagttacag 1200
 ccttcgcattt ttgttgcattt tagatattttt ggtttttttt 1260

ttcctgataa atacacatac tggccactcc ttatctctt ttcttggaaa gtgaactttt 1320
 taaagcagcc aagtcaacat caggctactg aagttgaggc ttangggta ctttcctata 1380
 tttagcccat ggggtacag gatttgcata atattggcc attttc 1426

<210> 129
 <211> 1703
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3376404CB1

<400> 129

gcactttcgg caatcacgta tcgggtcgac ccacgcgtcc ggaggtcagg agatcgagac 60
 tagcctggcc aacacggtta aaccccgctt ctactaaaaa tacagaaaat tagccggccg 120
 tggtggcacc tgcctgtat cccagctact caggaggctg aggaggaga atggcttga 180
 cctgggagac ggagcttgca gtgagccgag attgcgtcc acgcgtggc acagagcgg 240
 actctgtctc aaaaaattaa aaaaaaaaaat aataataaca atgaatgaag ctggacggac 300
 ttcgcgtgca cccgcgtcag ctcgggtct gctgggggt ctgggtcagc tcagggtcca 360
 ggaaccgggg ccaacggcac cccgtgtgc gctgggggtga ggggtctgccc 420
 ggggttcagg gcttaggtcag ggaggagtcg gctctggcgc cttccttcct gaggagaga 480
 gctgggcagg ccgggcccgc ggggtgggccc gcatagccgg gcctgtgtcc atctccagca 540
 taaaactcca cttcatggag cctgcaccc tcgtcgtc caacgttct gccacccgccc 600
 accacggccc tgcgcggccag ccaggcctga ggacatgagg cggccggcgg cgggtccgct 660
 cctgcgtctg ctgtgtttt ggtctcagag ggccaaggca gcaacagcct gtggtcgccc 720
 caggatgtcg aaccgaatgg tggggggca ggacacgcag gagggcgagt gcccctggca 780
 agtcagcatc cagcgcaacg gaagccactt ctgcggggc agcctcatcg cggagcagt 840
 ggtcctgacg gtcgcgtact gcttccgca cacctctgag acgtccctgt accaggtct 900
 gctgggggca aggcagctag tgccggggg accacacgt atgtatgccc gggtgaggca 960
 ggtggagagc aaccctctgt accaggcgc ggcctccagc gtcgactgg ccctgggtga 1020
 gctggaggca ccagtgcctt tcaccaatta catcctcccc gtgtccctgc ctgacccctc 1080
 ggtgatcttt gagacgggca tgaactgtg ggtcaactggc tggggcagcc ccagtgagga 1140
 agacctcctg cccgaaccgc ggatcctgca gaaactcgct gtgcccattca tcgacacacc 1200
 caagtgcac acgtctctaca gcaaaagacac cgagtttgc taccaaccca aaaccatcaa 1260
 gaatgacatg ctgtgcggc gcttcgagga gggcaagaag gatgcctgca agggcgactc 1320
 gggcgccccctt ctgtgtgc tcgtgggtca gtcgtggctg cagggggggg tgatcaagctg 1380
 gggtgaggcc tgcgtccccc agaaccggccc aggtgtctac atccgtgtca cggcccaacca 1440
 caactggatc catcgatca tccccaaact gcagttccag ccagcgaggt tgggcggccca 1500
 gaagtggagac ccccgggada aggagccct tgagcagagc tctgcacccca gcctgcccgc 1560
 ccacaccatc ctgctggacc tcccaagcgct gctgttgac ctgtgagccc caccagactc 1620
 atttgtaaat agcgacacta cctcacaat caaataccct tattttatcc atgatctccc 1680
 aataaaacgc cggcagagag aga 1703

<210> 130
 <211> 1118
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 4173111CB1

<400> 130

agctcgccgt gcgcgggggt ggcgggctgc tttccacgca cctgcacccgt cgccgcctcc 60
 aaggcgctct ttggaggag ggacttctt tcggtaacc agctccctt cggatagtc 120
 atgttctcca tataaaacca gcactccct taattgagat acgtggact tcactccgtc 180
 cccagccccc aaccacaagt gaggcactg cgttccctga ttgacctt tggcgattac 240
 ttccgcccag gggcctggaa tactggagcc ctttcgacgg agaacaacaa gaaaggcact 300
 tccgggtctt gttcgccagg cgccggccca gtggggccgtt gggcgacat tggccgtc 360
 gtcttccccc ccccaagtccc ggggatggag atgtcgccgac tcagctttc agagatggag 420
 ggctgcccgtt acctacttgg cctactggac aacgacgaga tcatggccct atgcgacacc 480

gtcaccAACC gcctggcA gcctcaggac cgccaagatg ctgttcatgc aatattagca 540
tacagtcaaa gtgcagaaga acttctgagg cgtagaaaag tccaccgaga agttatattt 600
aagtacttgg caacacaggg gattgtata cctccagcta ctgaaaaaca caatcttatt 660
cagcatgcaa aagattactg gcaaaagcaa ccacaactga aattgaagga aacGCCAGAG 720
ccagttacaa agacagagga catccaccta ttcaacagc aggtgaaaga agataaaaaaa 780
gctgaaaaag ttgatttcg tcgcctagga gaagaattct gtcatgggtt ctggactt 840
cttaattctc agaatccccc tctaggacca cctcaagatg aatggggacc acagcacttc 900
tggcatgatg tgaagcttag gtttattac aacacatcag aacaaaaatgt tatgggacta 960
accatggagc cagaatcgtg agccctcggt tgctgtcaat agtaaaaagaa gaattcttt 1020
tttcagccc caacctagat tcacatggac taaaatgtgc atcttctcct catgggctgg 1080
ctaaggctgg gagtagctgg gactgtccat cgaggaaa 1118

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/12, C07K 14/47, 16/18, C12Q 1/68, A61K 38/17		A3	(11) International Publication Number: WO 99/57144																																				
			(43) International Publication Date: 11 November 1999 (11.11.99)																																				
<p>(21) International Application Number: PCT/US99/09935</p> <p>(22) International Filing Date: 4 May 1999 (04.05.99)</p> <p>(30) Priority Data:</p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">60/084,254</td> <td style="width: 25%;">5 May 1998 (05.05.98)</td> <td style="width: 25%;">US</td> <td style="width: 25%;"></td> </tr> <tr> <td>60/095,827</td> <td>7 August 1998 (07.08.98)</td> <td>US</td> <td></td> </tr> <tr> <td>60/102,745</td> <td>2 October 1998 (02.10.98)</td> <td>US</td> <td></td> </tr> </table> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">US</td> <td style="width: 25%;">60/084,254 (CIP)</td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> <tr> <td>Filed on</td> <td>5 May 1998 (05.05.98)</td> <td></td> <td></td> </tr> <tr> <td>US</td> <td>60/095,827 (CIP)</td> <td></td> <td></td> </tr> <tr> <td>Filed on</td> <td>7 August 1998 (07.08.98)</td> <td></td> <td></td> </tr> <tr> <td>US</td> <td>60/102,745 (CIP)</td> <td></td> <td></td> </tr> <tr> <td>Filed on</td> <td>2 October 1998 (02.10.98)</td> <td></td> <td></td> </tr> </table> <p>(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View,</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 6 April 2000 (06.04.00)</p>				60/084,254	5 May 1998 (05.05.98)	US		60/095,827	7 August 1998 (07.08.98)	US		60/102,745	2 October 1998 (02.10.98)	US		US	60/084,254 (CIP)			Filed on	5 May 1998 (05.05.98)			US	60/095,827 (CIP)			Filed on	7 August 1998 (07.08.98)			US	60/102,745 (CIP)			Filed on	2 October 1998 (02.10.98)		
60/084,254	5 May 1998 (05.05.98)	US																																					
60/095,827	7 August 1998 (07.08.98)	US																																					
60/102,745	2 October 1998 (02.10.98)	US																																					
US	60/084,254 (CIP)																																						
Filed on	5 May 1998 (05.05.98)																																						
US	60/095,827 (CIP)																																						
Filed on	7 August 1998 (07.08.98)																																						
US	60/102,745 (CIP)																																						
Filed on	2 October 1998 (02.10.98)																																						
<p>(54) Title: HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES</p> <p>(57) Abstract</p> <p>The invention provides human transcriptional regulator molecules (HTRM) and polynucleotides which identify and encode HTRM. The invention also provides expression vectors, host cells, antibodies, agonists and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of HTRM.</p>																																							

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/09935

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/12 C07K14/47 C07K16/18 C12Q1/68 A61K38/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HILLIER ET AL.: "WashU-NCI human EST Project" EMBL ACCESSION NO AA190560, 21 January 1997 (1997-01-21), XP002114035 the whole document ---	3-13
A	US 5 739 010 A (SHAH PURVI ET AL) 14 April 1998 (1998-04-14) column 30, line 24 -column 32, line 45 column 1, line 28 -column 2, line 23 ---	1-20
A	FREIMAN ET AL: "Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP" GENES AND DEVELOPMENT, vol. 11, December 1997 (1997-12), pages 3122-3127, XP002114036 figures 1,4 -----	1-20

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

3 September 1999

Date of mailing of the international search report

17. 12. 99

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

van Klompenburg, W

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/09935

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 19 and 20 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

See FURTHER INFORMATION Sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

See additional sheet, Invention 1.

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

The subject-matter of claims 17 and 18 and of claim 20 in so far as it relates to antagonists is insufficiently characterized. A meaningful and complete search could therefore not be performed for said claims.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-20 partially

A substantially purified polypeptide according to SEQ ID NO 1 or a polypeptide with at least 90% identity or a fragment thereof. Methods for producing said polypeptide. Antibodies, antagonists and agonists of the said polypeptide. Methods of treatment using said polypeptides or antagonists. An isolated polynucleotide encoding said polypeptide or an isolated polynucleotide with 70% identity to such a polynucleotide or a polynucleotide according to SEQ ID NO 66 and fragments of said polynucleotides. Methods for detecting said polynucleotides. Expression vectors comprising said polynucleotides and host cells comprising said expression vectors.

Inventions 2 to 65, claims: 1-20 partially

idem for SEQ ID NO 2-65 and the corresponding nucleotide sequences from SEQ ID NO 67-130.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/09935

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5739010 A	14-04-1998	NONE	