

Immune receptor repertoires in SC technologies

Anna Lorenc (Ania) al16@sanger.ac.uk





Target cells (e.g., cancer cells)

B-cell receptor(BCR)

T-cell receptor(TCR)

Antibody

T-cell (bacteria, viruses)

- Present on all T cells
- Reacts to a molecule (usually a short peptide) in HLA (MHC) context
- · Results in the cell activation
- Depending on the type of the T cell: ↑
   or ↓ immune response

- Present on all B cells
- React to a molecule
- When secreted antibody
- Isotypes
- Many immune cells react to the external 'handle' of the antibody





Somatic recombination

Somatic recombination: stochastic combinations of V, (D) and J gene rearrangements and imprecise joining contribute to the diversity of the TCR repertoire.

|   | V  | J  | D | V<br>del | J<br>del | Ins | combinations           |  |
|---|----|----|---|----------|----------|-----|------------------------|--|
| α | 43 | 58 | - | 15       | 12       | 15  | 4.3 x 10 <sup>14</sup> |  |
| β | 42 | 13 | 3 | 10       | 12       | 18  | 5.1 x 10 <sup>15</sup> |  |

$$\alpha\beta = 10^{30}$$

At any given time:  $5 \times 10^{11} \text{ T cells}$ ,  $100g^*$ ;  $10^8 \text{ receptors}$ All possible  $10^{21}g = 10^{18} \text{ kg}$ 

+ genetic diversity: alleles of every V, D, J gene → under-researched, most software rely on "known" germline variants

### What the data tell us

What can we get from the single cell data?

DNA TCR/BCR sequence unique to one cell\*

If a cell multiplies (eg infection), more cells with identical receptor

- → We have a barcode for cells of the same origin
- → We can guess that a receptor is involved in something when many cells have the same receptor
- → We might detect an ongoing infection/inflammation
- → We might already know what receptor is against

### **Constraints**

- → Limited knowledge about TCR-antigen-(HLA)
- → \*Not really unique
- → BCRs undergo the additional process of the somatic hypermutation
- → Very few TCRs/BCRs captured

### What the data tell us







### What the data tell us



- R = richness number of unique clonotypes (each might be present in more than 1 cell)
- p<sub>i</sub> = relative abundance of clonotype i (0-1)
- q = order of diversity
- N = total number of receptors (cells)

### Hill diversity

$$^qD = (\sum_{i=1}^R p_i^q)^{1/(1-q)} = exp(\frac{1}{1-q}ln(\sum_{i=1}^R p_i^q)) = exp(^qH)$$

#### Renyi entropy

$$H = \frac{1}{1-q}ln(\sum_{i=1}^{R} p_i^q) = ln(D^q)$$

# Clonality $C = 1 - \frac{H}{lnR}$

### Shannon entropy

$$H = -\sum_{i=1}^{R} p_i \ln p_i = \ln(D^1)$$

Within one barcode:



Cell assignment is from GEX





Other technologies similar approach

### How the data is produced

Per identified chain info Alignments to the reference Per clonotype info Per cell info

Clonotype = all cells with identical receptor

cellranger...09d1a52ff

count

vdj\_t

metrics\_summary.csv

web\_summary.html



# questions





| - NCBI                              | Gene Expression Omnibus                                                                                                                                                                                                              |            |                        |                        |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|------------------------|
| HOME   SEARCH   SITE MA             |                                                                                                                                                                                                                                      | Email GEO  |                        |                        |
| NCBI > GEO > Acces                  |                                                                                                                                                                                                                                      | ed in   Lo | GSM4339769             | BALF, C141 (scRNA-seq) |
| Scope: Self                         | screen elements for information.  Format: HTML ✓ Amount: Quick ✓ GEO accession: GSE145926 GO                                                                                                                                         | GSM4339770 | BALF, C142 (scRNA-seq) |                        |
| ocoper oc.                          | Tomat mile 7 Amount Quick 7 DEG decession OSEE 19720                                                                                                                                                                                 |            |                        | D. 1. 5 . 4 . 5        |
| Series GSE1459                      | <b>C</b> ,                                                                                                                                                                                                                           |            | GSM4339771             | BALF, C143 (scRNA-seq) |
| Status<br>Title                     | Public on Apr 22, 2020 Single-cell landscape of bronchoalveolar immune cells in COVID-19 patients                                                                                                                                    |            | GSM4339772             | BALF, C144 (scRNA-seq) |
| Organism                            | Homo sapiens                                                                                                                                                                                                                         |            |                        | 27.227 02 (30 304)     |
| Experiment type                     | Expression profiling by high throughput sequencing<br>Other                                                                                                                                                                          |            | GSM4339773             | BALF, C145 (scRNA-seq) |
| Summary                             | Immune characteristics associated with Coronavirus Disease-2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid (BALF) immune cells from patients with varying severity of COVID-19 disease | GSM4339774 | BALF, C146 (scRNA-seq) |                        |
|                                     | and from healthy subjects using single-cell RNA-sequencing. Proinflammatory monocyte-derived macrophages were abundant in the BALF from severe                                                                                       |            | GSM4385990             | BALF, C141 (TCR-seq)   |
|                                     | COVID-9 patients. Moderate cases were characterized by the presence of highly clonally expanded tissue-resident CD8+ T cells. This atlas of the bronchoalveolar immune-microenvironment suggests potential mechanisms                |            | GSM4385991             | BALF, C142 (TCR-seq)   |
|                                     | underlying pathogenesis and recovery in COVID-19.                                                                                                                                                                                    |            | GSM4385992             | BALF, C143 (TCR-seq)   |
| Overall design                      | Using 10x genomics to measure single-cell RNA sequence (scRNA-seq)/TCR-<br>seq to comprehensively characterize the lung immune microenvironment in the<br>bronchoalveolar lavage fluid (BALF) from 6 severe and 3 moderate COVID-19  |            | GSM4385993             | BALF, C144 (TCR-seq)   |
|                                     | patients and 3 healthy control.                                                                                                                                                                                                      |            | GSM4385994             | BALF, C145 (TCR-seq)   |
| Contributor(s)                      | Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang S, Zhang Z                                                                                                                           |            | GSM4385995             | BALF, C146 (TCR-seq)   |
| Citation(s)                         | Liao M, Liu Y, Yuan J, Wen Y et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. <i>Nat Med</i> 2020 Jun;26(6):842-844. PMID: 32398875                                                           |            | GSM4475048             | C51 (scRNA-seq)        |
|                                     | Zhang Z, Zhang L, Wang K, Xie T et al. Single-cell landscape of bronchoalveolar immune cells in patients with immune checkpoint inhibitor-related pneumonitis. <i>NPJ Precis Oncol</i> 2024 Oct 5;8(1):226. PMID: 39369126           |            | GSM4475049             | C52 (scRNA-seq)        |
|                                     | medRxiv: https://doi.org/10.1101/2020.02.23.20026690                                                                                                                                                                                 |            | GSM4475050             | C100 (scRNA-seq)       |
| Submission date<br>Last update date | Feb 25, 2020<br>Nov 05, 2024                                                                                                                                                                                                         |            | GSM4475051             | C148 (scRNA-seq)       |
| Contact name                        | Zheng Zhang                                                                                                                                                                                                                          |            |                        | ,                      |
| Street address                      | e Shenzhen 3rd People's Hospital<br>No. 29, Bulan Road                                                                                                                                                                               |            | GSM4475052             | C149 (scRNA-seq)       |
| City<br>State/province              | Shenzhen<br>Guangdong                                                                                                                                                                                                                |            | GSM4475053             | C152 (scRNA-seq)       |
| ZIP/Postal code<br>Country          | 454171<br>China                                                                                                                                                                                                                      |            | GSM4475054             | C148 (TCR-seq)         |
| Platforms (1)                       | GPL23227 BGISEQ-500 (Homo sapiens)                                                                                                                                                                                                   |            | GSM4475055             | C149 (TCR-seq)         |
| Samples (21)                        | GSM4339769 BALF, C141 (scRNA-seq)                                                                                                                                                                                                    |            | CCMAATEREE             | C152 (TCR-seg)         |
| ≝ More                              | GSM4339770 BALF, C142 (scRNA-seq)                                                                                                                                                                                                    |            | G3M44/3030             | C132 (TCR-Seq)         |
|                                     |                                                                                                                                                                                                                                      |            |                        |                        |

| barcode            | is_cell | contig_id     | high_confide | length | chain | v_gene   | d_gene | j_gene  | c_gene | full_length | productive | cdr3       | cdr3_nt   | reads | umis | raw_clonotype_id | l raw_ |
|--------------------|---------|---------------|--------------|--------|-------|----------|--------|---------|--------|-------------|------------|------------|-----------|-------|------|------------------|--------|
| AAACCTGCATGGTCAT-1 | TRUE    | AAACCTGCATGGT | TRUE         | 492    | TRA   | TRAV13-2 | None   | TRAJ10  | TRAC   | TRUE        | TRUE       | CAEKSSGGG  | TGTGCAGAG | 37974 | 11   | 1 clonotype129   | clon   |
| AAACCTGCATGGTCAT-1 | TRUE    | AAACCTGCATGGT | TRUE         | 501    | TRB   | TRBV6-6  | None   | TRBJ2-5 | TRBC2  | TRUE        | TRUE       | CASSYGTTG  | TGTGCCAGC | 12806 | 7    | 7 clonotype129   | clon   |
| AAACCTGCATGGTCAT-1 | TRUE    | AAACCTGCATGGT | TRUE         | 509    | TRA   | TRAV6    | None   | TRAJ40  | TRAC   | TRUE        | TRUE       | CALRSGTYKY | TGTGCTCTA | 17114 | 5    | clonotype129     | clon   |
| AAACCTGCATGGTCAT-1 | TRUE    | AAACCTGCATGGT | TRUE         | 318    | TRA   | None     | None   | TRAJ5   | TRAC   | FALSE       | FALSE      | None       | None      | 6288  | 2    | 2 clonotype129   | None   |
| AAACCTGGTTTAGCTG-1 | TRUE    | AAACCTGGTTTAG | TRUE         | 494    | TRB   | TRBV7-6  | None   | TRBJ2-3 | TRBC2  | TRUE        | TRUE       | CASRSIEADT | TGTGCCAGC | 57140 | 6    | clonotype130     | clon   |
| AAACCTGGTTTAGCTG-1 | TRUE    | AAACCTGGTTTAG | TRUE         | 497    | TRA   | TRAV17   | None   | TRAJ21  | TRAC   | TRUE        | TRUE       | CATDGDNFN  | TGTGCTACG | 8332  | 4    | 4 clonotype130   | clon   |
| AAACCTGTCAATCACG-1 | TRUE    | AAACCTGTCAATC | TRUE         | 471    | TRB   | TRBV29-1 | None   | TRBJ2-7 | TRBC2  | TRUE        | TRUE       | CSVEGTATYE | TGCAGCGTT | 39068 | 10   | clonotype131     | clon   |
| AAACCTGTCAATCACG-1 | TRUE    | AAACCTGTCAATC | TRUE         | 576    | TRA   | TRAV8-4  | None   | TRAJ32  | TRAC   | TRUE        | TRUE       | CAVSDGFGG  | TGTGCTGTG | 30316 | 11   | 1 clonotype131   | clon   |
| AAACGGGAGAACTCGG-1 | TRUE    | AAACGGGAGAACT | TRUE         | 634    | TRA   | TRAV8-2  | None   | TRAJ41  | TRAC   | TRUE        | TRUE       | CVGNSGYAL  | TGTGTTGGG | 6840  | 4    | 1 clonotype25    | clon   |
| AAACGGGAGAACTCGG-1 | TRUE    | AAACGGGAGAACT | TRUE         | 471    | TRB   | TRBV10-2 | None   | TRBJ2-3 | TRBC2  | TRUE        | TRUE       | CASNLAGPTI | TGCGCCAGC | 38840 | 17   | 7 clonotype25    | clon   |
| AAACGGGAGAACTCGG-1 | TRUE    | AAACGGGAGAACT | TRUE         | 387    | TRB   | None     | None   | TRBJ1-5 | TRBC1  | FALSE       | FALSE      | None       | None      | 16520 | 5    | clonotype25      | None   |
| AAACGGGAGAACTCGG-1 | TRUE    | AAACGGGAGAACT | TRUE         | 607    | TRB   | None     | None   | TRBJ1-5 | TRBC1  | FALSE       | FALSE      | None       | None      | 11888 | 3    | 3 clonotype25    | None   |
| AAACGGGAGAACTCGG-1 | TRUE    | AAACGGGAGAACT | TRUE         | 510    | TRA   | TRAV1-2  | None   | TRAI6   | TRAC   | TRUF        | FALSE      | CAVPHOFFA  | TGTGCTGTC | 3442  | 3    | 3 clonotyne25    | None   |



# Most variable parts - **C**omplementarity **D**etermining **R**egions – interact with pMHC complex







Final CDR3 length: 7-40 aminoacids Median 13





# IMGT – source of references

References www.IMGT.org

| <b>TDD</b> 1/    |                   |     |                     |                  | Confirmed                  |                                                       |
|------------------|-------------------|-----|---------------------|------------------|----------------------------|-------------------------------------------------------|
| TRBV<br>subgroup | TRBV<br>gene name | Fct | TRBV<br>allele name | Accession number | by genetics<br>and/or data |                                                       |
| 2                |                   | F   | V2*01               | L36092/U66059    | +                          | g65 ,R22  a237                                        |
| _                | 2                 | (F) | V2*02               | M62379           |                            | g65>a,R22>H                                           |
|                  |                   | (F) | V2*03               | M64351           |                            | a237>g                                                |
| 3                | <u>3-1</u>        | F   | V3-1*01             | <u>U07977</u>    | +                          | t174  c181 ,L61  c225  c256 ,c258 ,H86                |
|                  |                   | (F) | V3-1*02             | <u>L06889</u>    |                            | t174>c c181>a,L61>I c225>a c256>a,c258>a,H86>K        |
| 4                | 4-1               | F   | V4-1*01             | <u>U07977</u>    | +                          | t93                                                   |
|                  |                   | (F) | V4-1*02             | M13855           |                            | t93>a                                                 |
|                  | 4-2               | F   | V4-2*01             | <u>U07975</u>    | +                          | t263 ,F88                                             |
|                  |                   | (F) | V4-2*02             | X58811           |                            | t263>g,F88>C                                          |
|                  | 4-3               | F   | V4-3*01             | <u>U07978</u>    | +                          | t84  g183  t263 ,F88                                  |
|                  |                   | (F) | V4-3*02             | X58812           |                            | t263>c,F88>S                                          |
|                  |                   | (F) | V4-3*03             | <u>L06888</u>    |                            | g183>t                                                |
|                  |                   | (F) | V4-3*04             | <u>X57616</u>    |                            | t84>g                                                 |
| 5                | <u>5-1</u>        | F   | V5-1*01             | L36092/U66059    | +                          | a2 ,K1  a9  t28 ,Y10  a64 ,S22  c137 ,P46  c          |
|                  |                   | (F) | V5-1*02             | M14271           |                            | a2>g,K1>R a9>g t28>c,Y10>H a64>g,S22>G c137>t,P46>L c |
|                  | <u>5-3</u>        | ORF | V5-3*01             | X61439           | +                          | g254 ,C85                                             |
|                  |                   | ORF | V5-3*02             | AF009660         | +                          | g254>a,C85>Y                                          |
|                  | <u>5-4</u>        | F   | V5-4*01             | L36092/U66060    | +                          | t60  t212 ,71F  g257 ,86S                             |
|                  |                   | (F) | V5-4*02             | <u>X57615</u>    |                            | g257>a,86S>N                                          |
|                  |                   | (F) | V5-4*03             | <u>S50547</u>    |                            | t60>a                                                 |
|                  |                   | /E\ | V/5_//*0/           | VESSUA           |                            | I+212- c 715-CI                                       |

Practicalities: not always possible/necessary, different references! Underrepresentation of Non-Europeans



### **DNA** level





Nonproductive sequences

Bulk methods do not see it!

- Allelic exclusion is leaky: ~7% of cells with 2x TCR $\beta$  (1% both expr), 7-30% with 2xTCR $\alpha$
- Final length: few to ~40 aas, majority 13aa

# Some practical hints

The same VDJ – different CDR3 Different VDJ – the same CDR3 Convergence:

aa1==aa2 nuc1!= nuc2

HLA-dependence

Functional comparison: aminoacid level

"Tag" analysis: DNA level

Not always full TRB reconstruction possible

Sampling issues:

- Size of the repertoire
- Cell-type dependency
- Tisssue dependency
- Clonotypes of importance might be rare

The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes <a href="https://doi.org/10.7554/eLife.49900">https://doi.org/10.7554/eLife.49900</a>

Known TCR sequences: selection bias



# Differences in recombination of TRA and TRB



- Both alleles recombine at the same time
- Rescue mechanism
- 1-2 recombined alleles (2 in 7-30% of cells)
- Positive/negative selection



- Has to interact with MHC in the thymus
- If recombination unsuccessful, another round
- Single product, leakiness <1%</li>

### Very very very wasteful

- Recombination products Out of frame and with stop codons (non-productive sequences)
- Negative/positive selection

----

Both together: LOWER estimate of selection factor is 99.9%



# We can estimate probability of a recombination-derived TCR



Select a V gene



 $P1(V=V_i)$ 

Select a J gene



 $P2(J=J_i)$ 

Select number of V deletions



P3(m=1,2,3....n)

Select number of J deletions



P4(m=1,2,3,...)

Select no. of nucleotide additions

Murugan et al. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6.

Sethna et al. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics. 2019 Sep 1;35(17):2974-2981

$$\begin{split} P_{\text{recomb}}(E) &= P(V)P(D,J) \\ &\times P(\text{del}V|V)P(\text{del}J|J)P(\text{del5}\,{}'D,\text{del3}\,{}'D|D) \\ &\times P(\text{ins}VD) \prod_{i=1}^{\text{ins}VD} p_{VD}^{(2)}(x_i|x_{i-1})P(\text{ins}DJ) \prod_{i=1}^{\text{ins}DJ} p_{DJ}^{(2)}(y_i|y_{i-1}). \end{split}$$

Probabilities to obtain from non-productive sequences

p5,p6 ....



P4(Nt=A,T,C,G)



# We can estimate probability of a recombination-derived TCR



A nucleotide sequence with low probability of generation and shared between individuals

An aminoacid sequence with low probability of generation, coded by many nucleotides

putatively selected sequences



Pogorelyy, Elife 2018



# Databases and repositories

### VDJdb



**ImmuneACCESS** 

#### McPass-TCR



FASTQ: NCBI SRA



DATA AT A GLANCE

7,186
719
674,780,085
83
18
Tessanch areas
See at 15

A Not Secure | ireceptor.irmacs.sfu.ca/repositories

III A public database of memory and naive B-cell receptor sequences

provid ... See all 3

BROWSE OR SEARCH DATA

The vast diversity of Braid receptors (BCR) and secreted antitiodes enables the recognition of, and response to, a wide range of epitopes, but this diversity has also invited our understanding of humans invitation. We present a public

than any existing resource, together with a set of prime tools designed to facilitate the visualization and analysis of the announced data. We estimate the clonal diversity of the naive and memory 6-cell repersons of healthy individuals, and

database of more than 37 million unique BCR sequences from three healthy adult donors that is many field deeper

IV ADDED

No. ARE expression controls the periphenal solection of autoreactive B cells and the periphenal solection of autoreactive B cells and the periphenal solection of a few dominant CDE clames in a TLAP-dependent autoimmune moises model to CDE clames in a TLAP-dependent autoimmune moises model to CDE clames in a TLAP-dependent autoimmune moises model to CDE clames in a TLAP-dependent autoimmune moises model to CDE clames in a TLAP-dependent autoimmune power in a Unique Data Receptor Spreading Lymphophyte from Type 1 Students Periods in Proceeding Andreasonigen Advances Gold Accessing to the CDE clames and the CDE clames and the CDE clames are periods and actes and accessing the communication of Accessing the CDE clames and accessing the communication of CDE clames and accessing powerful and accessing the communication of CDE clames and accessing powerful accessing power





+ ADD PROJECT

COMMUNITY DATA DOCUMENTATION

1 Create a new VDJServer project.

**Project Name** 

Project Name