Árboles de decisión C4.5

Luis Casillas
DCC, CUCEI, UdeG
Julio - Noviembre 2015

Árbol de Decisión

- Es una herramienta de apoyo en las decisiones.
- Tradicionalmente se han venido construyendo a mano.
- Provienen del mundo de la investigación de operaciones.
- Se usan principalmente para definir estrategias que permitan alcanzar metas.

Construcción...

• El algoritmo C4.5 va eligiendo entre los atributos, el dato que tiene la mejor carga de información; para convertirlo en el nodo raíz del subárbol actual...

Construcción...

• La noción de carga de información se refiere a la capacidad de un dato para transmitir un mensaje con la menor pérdida...

Construcción...

• Este dato es entonces usado como un mecanismo para dividir de forma más efectiva las muestras, en subconjuntos enriquecidos que se vinculan a las categorías semánticas de un modelo.

Normalización

- Mecanismo consistente en determinar el nivel de entropía vinculable a los datos del modelo.
- La noción entropía, en el contexto de la Teoría de la Información de Claude Shannon (1948), es el valor promedio esperado de información en cada mensaje recibido.

Normalización

- Se refiere a la ganancia de información, o bien la diferencia en entropía.
- El atributo con más alta **normalización** en la ganancia de información, es el elegido para decidir.
- Luego se recurre a las sublistas más pequeñas.

Entropía

- H(X): H (Eta), la entropía de una variable X que es discreta y aleatoria.
- $H(X) = -\sum (P(X_i) * log_b P(X_i))$
- Para:
 - $i \in \{1, 2, 3, \dots, numMuestras\}$
 - b € {2, e, 10} : b=2 Ent. Shannon, b=e Ent. Natural, b=10 Ent. Hartley

- Sea N un nodo que representa o guarda las tuplas de la partición D.
- El atributo con mayor ganancia de información es elegido para partir N.
- Este atributo minimiza la información necesaria para clasificar las tuplas en particiones.

- La elección del atributo con mejor ganancia, implica:
 - Menor aleatoriedad o "impureza"
 - Minimiza el número de pruebas para clasificar una tupla dada.
 - Garantiza encontrar un árbol simple, aunque no el más simple.

• Primero, la información que se espera para clasificar una tupla en D es dada por:

Info(D) =
$$-\sum (p_i * log_2 p_i)$$

- Donde:
- i ∈ {1, 2, ..., numCasosClase}
- p_i : Prob $\neq 0$ de que una tupla arbitraria pertenezca al caso C_i de la clase. Se estima con $|C_i, D|/|D|$
- Se usa log₂ debido a que la información se codifica como binaria.
- Info(D) es el monto promedio de información para identificar a una tupla en D como miembro de una clase. Info(D) se conoce también como la entropía de D.

- Ahora, se busca particionar D en tuplas, basado en algún atributo A que tiene v valores distintos: {a1, a2, ..., av} a partir de datos de entrenamiento.
- Si A es discreto, el atributo A puede usarse para partir D en v particiones o subconjuntos: {D1, D2, ..., Dv} donde Dj contiene las tuplas en D que entrega como salida aj de A.

- Estas particiones corresponderían a las ramas del nodo N.
- Lo ideal es que cada partición sea pura, pero lo más probable es que serán impuras.
- ¿Cuánta información será necesaria (después del particionado) para alcanzar una clasificación exacta?

• Este monto es medido por:

$$Info_{A}(D) = \sum ((|D_{j}|/|D|) * Info(D_{j}))$$

Donde:

 $j \in \{1, 2, ..., numParticiones\}$

|D_i|/|D|: Peso j-ésima partición

Info_A(D): Información para clasificar una tupla de D en el particionado por A

- En la medida que la información esperada y requerida sea menor, mayor será la pureza de las particiones.
- Así, la Ganancia de Información es definida como la diferencia entre el requerimiento original de información (i.e. basado en la proporción justa de clases) y el nuevo requerimiento (i.e. obtenido luego de particionar respecto de A).

• Esto es:

Ganancia (A) = Info (D) - Info_A (D)

La Ganancia (A) nos indica cuánto se ganaría ramificando respecto de A. Es la reducción esperada en la información requerida, que fue causada por conocer el valor de A.

El atributo A con la más alta ganancia, es el elegido para particionar N.

AllElectronics: Base de Clientes

IdR	Edad	Ingreso	Estudiante	Evaluación Crédito	Clase: Compra Computadora	
1	Joven	Alto	No	Justo	No	
2	Joven	Alto	No	Excelente	No	
3	Media	Alto	No	Justo	Sí	
4	Mayor	Medio	No	Justo	Sí	
5	Mayor	Bajo	Sí	Justo	Sí	
6	Mayor	Bajo	Sí	Excelente	No	
7	Media	Bajo	Sí	Excelente	Sí	
8	Joven	Medio	No	Justo	No	
9	Joven	Bajo	Sí	Justo	Sí	
10	Mayor	Medio	Sí	Justo	Sí	
11	Joven	Medio	Sí	Excelente	Sí	
12	Media	Medio	No	Excelente	Sí	
13	Media	Alto	Sí	Justo	Sí	
14	Mayor	Medio	No	Excelente	No	

• En este ejemplo:

- Cada atributo es evaluado de forma discreta. Los valores continuos han sido generalizados.
- La clase compra computadora tiene dos valores: Sí y No. Es decir, que hay dos clases distintas (i.e. m=2).
- Sea C1=Sí y C2=No.
- Hay nueve tuplas de la clase Sí y cinco de la clase No

- Para encontrar el criterio de partición, debe calcularse la Ganancia de Información de cada atributo.
- Primero se calcula la ganancia necesaria para clasificar una tupla en D.

Info(D) =
$$-(9/14) * \log_2(9/14) - (5/14) * \log_2(5/14)$$

Info(D) = 0.940

- Ahora, se calcula el requerimiento de información esperada para cada atributo.
- Iniciamos con Edad. Se observa la distribución de tuplas Sí y No, para cada categoría de Edad. Para la categoría Joven en Edad, hay dos tuplas Sí y tres No. Para Media en Edad, hay cuatro tuplas Sí y cero No. Para Mayor en Edad, hay tres tuplas Sí y dos No.

Edad / Clase	Joven	Media	Mayor
Clase: Sí	2	4	3
Clase: No	3	0	2
Σ	5	4	5

Ingreso / Clase	Alto	Medio	Bajo
Clase: Sí	2	4	3
Clase: No	2	2	1
Σ	4	6	4

Estudiante / Clase	Sí	No
Clase: Sí	6	3
Clase: No	1	4
Σ	7	7

Eval.Crédito / Clase	Excelente	Justo
Clase: Sí	3	6
Clase: No	3	2
Σ	6	8

• Así, se obtiene:

$$Info_{Edad}(D) = 5/14*$$

$$(-(2/5)*log_{2}(2/5) - (3/5)*log_{2}(3/5)) + 4/14*$$

$$(-(4/4)*log_{2}(4/4)) + 5/14*$$

$$(-(3/5)*log_{2}(3/5) - (2/5)*log_{2}(2/5))$$

$$Info_{Edad}(D) = 0.694 bits$$

• La ganancia de información de tal particionado sería:

Ganancia (Edad) =
$$0.940-0.694$$

= 0.246 bits

• Del mismo modo se calculan:

Ganancia(Ingreso) = 0.029 bits

Ganancia (Estudiante) = 0.151 bits

Ganancia (EvalCrédito) = 0.048 bits

* El atributo **Edad** es el que tiene la mayor ganancia y con éste se realiza el el primer particionado. De forma recurrente se particiona con el resto de atributos.

Árbol J48 Weka

Gracias :)

