第二章

组合逻辑电路

特点:

$$F = f(X_1, X_2, \dots, X_n)$$

- 各种门电路组合而成;
- 无记忆元件;

不具有记忆保持功能。

- 无反馈通路;
- 输出只与当前输入有关,与电路前一时刻的状态无关。

§2.1 组合逻辑的分析

§ 2.1.1 分析方法:

已知逻辑电路,找出输出函数与输入变量间的逻辑关系。 分析步骤:

例1 分析图示电路的功能

解:

1: 逐级向后写出输出级的函数表达式并化简

$$C = AB$$

$$S = \overline{AB} \bullet \overline{AB}$$

$$= AB + \overline{AB} = A \oplus B$$

	-1	4		1
2:	め川	自力	佰	去
4 •	ノリ	ナ	EL	ハ

0 0 0 0 1 0 1 1 1	A	В	С	S
1 0 0 1	0	0	0	0
	0	1	0	1
1 1 1 0	1	0	0	1
	1	1	1	0

3: 逻辑功能

是一位半加器

运算器基本部件

A	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

例2 分析图示电路的逻辑功能

$$F = \overline{ABC} A + \overline{ABC} B + \overline{ABC} C$$

$$= \overline{ABC}(A + B + C)$$

$$= ABC + \overline{ABC}$$

判一致电路

可用于判断三个输入端的状态是否一致

ABC	F
000	1
001	0
010	0
011	0
100	0
101	0
110	0
111	1

例3 分析图示电路的逻辑功能

ABC	Y
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

$$Y = \overline{Y_1 Y_2 Y_3} = \overline{\overline{AB}} \overline{\overline{BC}} \overline{\overline{AC}}$$
$$= AB + BC + AC$$

三人表决电路

例4 S3、S2、S1、S0为控制输入端, 说明F的逻辑功能

$$F_1 = A + BS_0 + \overline{B}S_1$$

$$F_2 = \overline{ABS_2 + A\,\overline{B}S_3}$$

有控制端时:写出控制信号与F(表达式)的真值表。

$$F = F_1 F_2 = A + BS_0 + \overline{B}S_1 \bullet ABS_2 + A\overline{B}S_3$$

由S1、S0控制输出

$$F = F_1 F_2$$

$$= \overline{\mathbf{A} + BS_0 + \overline{\mathbf{B}}S_1} \bullet \overline{ABS_2 + A\overline{B}S_3}$$

$S_3S_2S_1S_0$	F	$S_3S_2S_1S_0$	F
0000	$F = \overline{A}$	1000	$F = \overline{A}$
0001	$F = \overline{A} \overline{B}$	1001	$F = \overline{A} \; \overline{B}$
0010	$F = \overline{A}B$	1010	$F = \overline{A}B$
0011	F = 0	1011	F = 0
0100	$F = \overline{A}$	1100	$F = \overline{A}$
0101	$F = \overline{A} \overline{B}$	1101	$F = \overline{A} \; \overline{B}$
0110	$F = \overline{A}B$	1110	$F = \overline{A}B$
0111	F = 0	1111	F = 0

只允许一个输入端为1

编码器

decimal-to-BCD encoder

987654321	$A_3A_2A_1A_0$
000000001	0001
000000010	0010
000000100	0011
010000000	1000
100000000	1001

$$A_0 = i1 + i3 + i5 + i7 + i9$$

$$A_1 = i2 + i3 + i6 + i7$$

$$A_2 = i4 + i5 + i6 + i7$$

$$A_3 = i8 + i9$$

分析如下电路的功能,列出真值表。

$$F = Y_0 + Y_1 + Y_2 + Y_3$$

$$F = (\overline{A}_1 \overline{A}_0)D_0 + (\overline{A}_1 A_0)D_1 + (A_1 \overline{A}_0)D_2 + (A_1 A_0)D_3$$

§ 2.2 组合逻辑的设计

根据对电路逻辑功能的要求,设计出满足该逻辑功能的电路,这一过程为逻辑设计或逻辑综合。

设计步骤:

1. 分析;

1) 分析因果关系,

起因一一輸入变量,结果——輸出函数

- 2) 逻辑规定,用 0, 1 表示两种不同状态
- - 列真值表法(4变量及以下)
 - 简化真值表(4变量以上)
 - 直接写表达式

2. 由真值表写逻辑函数表达式;

据真值表得到<u>卡诺图</u>,再<u>化简</u>可得。

3. 画逻辑图;

* 列完整真值表

例1 设计一位全加器。

1)列真值表

输入3个:加数A、加数B、低位来的进位 C_i 。

输出:和数S、向高位进位C_{i+1}。

2) 化简得输出函数表达式

S的卡诺图

$$S_{i} = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$
$$= \overline{A(B \oplus C)} + \overline{A(B \oplus C)} = A \oplus B \oplus C$$

A _i	B _i	C _i	C _{i+1}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C_{i+1}的卡诺图

$$C_{i+1} = A_i C_i + B_i C_i + A_i B_i$$
$$= \overline{\overline{A_i C_i} \cdot \overline{B_i C_i} \cdot \overline{A_i B_i}}$$

A _i	B _i	C_{i}	C_{i+1}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

3) 据逻辑函数式画逻辑图

例2 与非门设计电路,将8421码转换为余3码。

1) 列真值表

a) 输入: 8421码用四个变量 (A,B,C,D) 表示,

输出: 余3码(X, Y, Z, W);

b) 真值表

ABCD	XYZW
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0

ABCD	XYZW
1000	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	XXXX
1 0 1 1	XXXX
1 1 0 0	XXXX
1 1 0 1	XXXX
1 1 1 0	XXXX
1 1 1 1	XXXX

2) 画卡诺图得函数表达式:

ABCD

00

01

11

10

00

X

01

X

11

X

10

$$X = A + BC + BD$$

$$Y = B\overline{C}\ \overline{D} + \overline{B}D + \overline{B}C$$

$$Z = \overline{CD} + CD$$

$$W = \overline{D}$$

3) 由器件类型,变换函数表达式:

$$X = \overline{\overline{A} \cdot \overline{BC} \cdot \overline{BD}}$$

$$Y = \overline{BC} \, \overline{\overline{D}} \cdot \overline{\overline{B}D} \cdot \overline{\overline{B}C}$$

$$Z = \overline{\overline{\overline{C}} \, \overline{\overline{D}} \cdot \overline{CD}}$$

$$W = \overline{D}$$

M3 有一水箱由大、小两台泵 M_L 和Ms供水。水箱中设置了3个水位检测元件A、B、C。水面低于检测元件时,检测元件给出高电平;水面高于检测元件给出低电平。要求水位高于C点时水泵停止工作;水位低于C点而高于B点时Ms单独工作;水位低于B点而高于A点时 M_L 单独工作;水位低于A点时 M_L 和Ms同时工作。试用门电路设计一个控制两台水泵的逻辑电路,要求电路尽量简单。

1)列真值表

A	В	C	M _L M _s
0	0	0	0 0
0	0	1	0 1
0	1	0	\times \times
0	1	1	1 0
1	0	0	\times \times
1	0	1	××
1	1	0	\times \times
1	1	1	1 1

输入变量有三个:

A,B,C, 0表示被淹没 输出变量二个:

1表示接通水泵工作

2)由真值表得卡诺图,再化简得输出函数表达式

A	В	C	M _L M _s
0	0	0	0 0
0	0	1	0 1
0	1	0	\times \times
0	1	1	1 0
1	0	0	××
1	0	1	××
1	1	0	××
1	1	1	1 1

ML = B

ML 的卡诺图

$$Ms = A + \bar{B}C$$

3) 据逻辑函数式画逻辑图

Ms 的卡诺图

* 压缩变量的真值表 - - 编码法

例1 有四种血型, O,A,B,AB,输血、受血关系如:

用逻辑门电路实现血型关系检测电路, 血型相配, 指示灯亮。与非门实现。

1) 确定输入量、输出量、真值表:

输入:可用A,B的组合代替输血型,C,D的组合代替受血型。

输出: F=1 表示血型相配。

A	В	C D	F
0	0	0 0	1
0	0	0 1	1
0	0	1 0	1
0	0	1 1	1
0 0 0 0	1	0 0	0
0	1	0 1	1
0	1	1 0	0
0	1	1 1	1
1	0	0 0	0
1	0	0 1	0
1	0	1 0	1
1	0	1 1	1
1	1	0 0	0
1	1	0 1	0
1	1	1 0	0
1_	1	1 1	11

2) 画卡诺图得F表达式:

$$F = \overline{AB} + CD + \overline{AD} + \overline{BC}$$

$$= \overline{\overline{AB} \bullet \overline{CD} \bullet \overline{AD} \bullet \overline{BC}}$$

3) 画逻辑图

* 直接列出逻辑表达式法

例1 一个带有4个控制开关的防盗报警系统,每个开关产生逻辑1。

开关A: 保密开关关闭;

开关B: 保险箱在储藏室的正常位置;

开关C: 时钟在10:00和17:00小时之间;

开关D: 储藏室门处于关闭状态。

命题:根据下列条件写出报警的控制逻辑表达式 保险箱被移动且保密开关关闭 或者 在银行下班后储藏室门被打开 或者 保密控制开关打开且储藏室门被打开。

$$F = A\overline{B} + \overline{C}\overline{D} + \overline{A}\overline{D}$$

例2 某公司将对符合以下条件之一的职员实行一项新政策: (1)25岁以上(含25岁)的已婚妇女; (2)25岁以下的未婚妇女; (3)25岁以下没有事故记录的未婚男子; (4)25岁以上(含25岁)的没有事故记录的已婚男子。试写出符合该政策条件的人的最简表达式。

输入: A--年龄, A=1 (25岁含以上), A=0 (25岁以下); M--婚姻, M=1 (已婚), M=0 (未婚); S--性别, S=1 (男), S=0 (女); W--事故记录, W=1 (有事故记录);

输出:

F--F=1(符合政策); 根据题意可写出表达式:

$$F = AM\overline{S} + \overline{A}\overline{M}\overline{S} + \overline{A}\overline{M}S\overline{W} + AMS\overline{W}$$
$$F = AM\overline{S} + \overline{A}\overline{M}\overline{S} + \overline{A}\overline{M}\overline{W} + AM\overline{W}$$

A	В	C	C_{i+1} S
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	1 0
1	1	0	1 0
1	1	1	1 1