BRAC UNIVERSITY

A

Department of Computer Science and Engineering

Examination: Midterm Exam Duration: 1 hour 15 minutes

Semester: Spring 2023

Full Marks: 30

CSE 423: Computer Graphics

			1
Name: Apoullah	Vien d Sken	ID: 20301065	Section: Oq
Name: Hhawlian	Moradora	ID.	

Answer the following questions. Figures in the right margin indicate marks.

1.		$f(x,y) = \frac{x}{3} - \frac{y}{5} - 2 = 0$	
		Suppose, you have to plot the above line starting from its intersection with the x-axis and ending at that of the y-axis.	
	a. CO1	Identify the Zone (from Zone-0 to Zone-7) of the above line.	2
	b. CO1	Derive starting/initial deviation ('d') and its derivatives (Δs) /decision parameters using mid-point line drawing algorithm.	4
	c. CO1	Using the mid-point line drawing algorithm, compute all the pixels (from start to end) to be colored for the given line segment. Show the present value of \mathbf{d} as well as $\Delta \mathbf{s}$ at each stage.	4
2.	a. CO1	Derive starting/initial deviation ('d') and its derivatives (Δs)/decision parameters for drawing one octant of a circle starting from $(0, r)$ using mid-point circle drawing algorithm.	5
	b. CO1	Calculate all the pixels of one octant of a Circle starting from $(0, r)$ where, $r = 10$, and origin/center of the circle is at $(-2, 3)$, showing the present value of d as well as Δs at each stage.	5
3.	a. CO2	Write an algorithm for making region-outcode of a 3D end-point using Cohen-Sutherland line clipping algorithm (assuming lowest bits for x and highest bits for z)	4
	b. CO3	Suppose, a viewing window from (-200, -150) to (200, 150) is given. (i) Compute the numerical value of 't' for all boundaries for a given line segment starting from (-220, 350) to (350, 120). (ii) Classify them as ' t_E ' or ' t_L '. (iii) Determine the new endpoints using the value of ' t_{Emax} ' and ' t_{Lmin} '	6