ANALYSING AND FORECASTING ELECTRICITY CONSUMPTION OF GHANA TIME SERIES

ECF GROUP

Kwame Nkrumah University of Science and Technology

March 2, 2024

1 Names

2 Introduction

3 Description

4 Stationarity

MEMBERS

NAME	INDEX NUMBER		
DARKO ROCKSON	4347020		
APAAH PRINCE	4341520		
AMPONG DORCAS	4340320		
BOATENG ELIZABETH	4346020		
DOTTI LITTO LEIZT (DE III	13 10020		

Ghana has three primarily distribution utilities, two of which are states owned (ECG & NEDCo) and one of which is run privately (EPC).

Ghana has three primarily distribution utilities, two of which are states owned (ECG & NEDCo) and one of which is run privately (EPC).

Energy mix has primarily consisted of hydro and thermal sources. In 2021 hydro accounting for around 34.1% of the total power, with the thermal accounting for 65.3% and renewable accounting for 0.55%

Ghana has three primarily distribution utilities, two of which are states owned (ECG & NEDCo) and one of which is run privately (EPC).

Energy mix has primarily consisted of hydro and thermal sources. In 2021 hydro accounting for around 34.1% of the total power, with the thermal accounting for 65.3% and renewable accounting for 0.55%

Total electricity generation almost doubled from 14,068 GWh in 2011 to 22,051 GWh in 2021, representing an annual average growth rate of 11%.

Ghana has three primarily distribution utilities, two of which are states owned (ECG & NEDCo) and one of which is run privately (EPC).

Energy mix has primarily consisted of hydro and thermal sources. In 2021 hydro accounting for around 34.1% of the total power, with the thermal accounting for 65.3% and renewable accounting for 0.55%

Total electricity generation almost doubled from 14,068 GWh in 2011 to 22,051 GWh in 2021, representing an annual average growth rate of 11%.

Total electricity consumption increased from 13,036 GWh in 2017 to 18,067 GWh in 2021 representing an annual average growth rate of 8% (according to energy commission of Ghana).

Description

Min	1st Quatile	Median	Mean	3rd Quatile	Max	Var
86.27	281.04	328.29	322.29	372.99	523.25	6647.897

We ploted the electricity consumption(KWh per capita) data against time of their collection, Thus from 1971 to 2022 as shown in Figure 6.

PLOT OF THE ELECTRICITY TO TIME

Figure: Plot of Electricity to Time

Testing For Stationarity

There are variety types of stationarity tests but in this paper we are going to use the common ones and they are;

- ADF test with hypothesis H0:the series is not stationary H1:the series is statrionary.
- KPSS test with hypothesis
 H0:the series is stationary
 H1:the series is not statrionary.
- PP test with hypothesis
 H0:the series is not stationary
 H1:the series is statrionary.

Result After Computation

Augmented Dickey-Fuller Test

data: tsd Dickey-Fuller = -1.6073, Lag order = 3, p-value = 0.7324 alternative hypothesis: stationary

KPSS Test for Level Stationarity

data: tsd KPSS Level = 0.24024

Truncation lag parameter = 3, p-value = 0.1

Phillips-Perron Unit Root Test

data: tsd Dickey-Fuller Z(alpha) = -9.3188,

Truncation lag parameter = 3, p-value = 0.5576

alternative hypothesis: stationary

First Difference

Since the series is not stationary we perform 1st differencing in order to achieve stationarity; The figure 4.2 below is a plot after the first differencing.

Plot of First Difference

Stationarity Testing For Differenced Data

Augmented Dickey-Fuller Test

data: diff1 Dickey-Fuller = -4.8579, Lag order = 3, p-value = 0.01 alternative hypothesis: stationary

KPSS Test for Level Stationarity

data: diff1 KPSS Level = 0.14346, Truncation lag parameter = 3, p-value = 0.1

Phillips-Perron Unit Root Test

data: diff1 Dickey-Fuller Z(alpha) = -43.687, Truncation lag parameter = 3, p-value = 0.01 alternative hypothesis: stationary.

