International IOR Rectifier

IRLMS6702

HEXFET® Power MOSFET

- Generation V Technology
- Micro6 Package Style
- Ultra Low R_{DS(on)}
- P-Channel MOSFET

Description

Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}$ 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, VGS @ -4.5V	-2.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-1.9	Α
I _{DM}	Pulsed Drain Current ①	-13	1
P _D @T _A = 25°C	Power Dissipation	1.7	W
	Linear Derating Factor	13	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance Ratings

	Parameter	Min.	Тур.	Max	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④			75	°C/W

International IOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Ondidotoriotico (g 1) 20 0					· · · · · · · · · · · · · · · · · · ·
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.005		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.200	Ω	$V_{GS} = -4.5V, I_D = -1.6A$ ③
TOS(on)				0.375		V_{GS} = -2.7V, I_{D} = -0.80A ③
V _{GS(th)}	Gate Threshold Voltage	-0.70			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	1.5			S	$V_{DS} = -10V, I_{D} = -0.80A$
I	Drain-to-Source Leakage Current			-1.0		V _{DS} = -16V, V _{GS} = 0V
I _{DSS}	Dialit-to-Source Leakage Current			-25	μA	$V_{DS} = -16V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
lass	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100		V _{GS} = 12V
Qg	Total Gate Charge		5.8	8.8		I _D = -1.6A
Q _{gs}	Gate-to-Source Charge		1.8	2.6	nC	$V_{DS} = -16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.1	3.1		V_{GS} = -4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = -10V
t _r	Rise Time		20		ns	$I_D = -1.6A$
t _{d(off)}	Turn-Off Delay Time		21		115	$R_G = 6.0\Omega$
t _f	Fall Time		18			R_D = 6.1 Ω , See Fig. 10 \Im
C _{iss}	Input Capacitance		210			V _{GS} = 0V
Coss	Output Capacitance		130		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		73			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			-1.7	4.7		MOSFET symbol		
	(Body Diode)				A	showing the			
I _{SM}	Pulsed Source Current						-13		integral reverse
	(Body Diode) ①					-13		p-n junction diode.	
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25$ °C, $I_S = -1.6$ A, $V_{GS} = 0$ V ③			
t _{rr}	Reverse Recovery Time		25	37	ns	T _J = 25°C, I _F = -1.6A			
Q _{rr}	Reverse RecoveryCharge		15	22	nC	di/dt = -100A/µs ③			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- T_J≤150°C
- $\textcircled{2} \ \ I_{SD} \leq \text{-1.6A, di/dt} \leq \text{-100A/}\mu\text{s, } \ V_{DD} \leq V_{(BR)DSS}, \qquad \textcircled{4} \ \ \ \text{Surface mounted on FR-4 board, } \ \ t \leq \ 5\text{sec.}$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLMS6702

Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

Fig 9b. Gate Charge Test Circuit

Fig 10b. Switching Time Waveforms

5

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International Rectifier

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

Fig 12. For P-channel HEXFET® power MOSFETs

International

TOR Rectifier

IRLMS6702

Package Outline

Micro6™

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION : MILLIMETER.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

Part Marking Information

Micro6™

Notes: This part marking information applies to devices produced after 02/26/2001

W = |1-26| IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR 2001 2002 2003 2004 2005 1996 1997 1998 1999 2000 日日日 AYW LC UU TOP PART NUMBER CODE REFERENCE: <u>A</u> = IRLM \$1902 W = |27-52| IF PRECEDED BY A LETTER B = IRLM \$1503 $\underline{D} = 1 \text{HLM } \1503 $\underline{C} = 1 \text{RLM } \6702 $\underline{D} = 1 \text{RLM } \5703 WORK WEEK YEAR E = IRLM S68022001 2002 2003 2004 2005 1996 1997 1998 1999 2000 E = IBI MS 4502 G = IRLM\$2002 $\underline{H} = IRLM S 6803$ Note: A line above the work week (as shown here) indicates Lead-Free

Tape & Reel Information

Micro6™

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- CONTROLLING DIMENSION: MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.