867002105_HW10

Charles Dotson November 28, 2022 We start by showing two partial simplifications for $q_{\pi}(s, a)$ and $v_{\pi}(s)$.

$$\begin{split} q_{\pi}(s,a) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a] \\ &= \sum_{s'} \sum_{r} \Pr(s',r|s,a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s',S_{t} = s,A_{t} = a]] \\ v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} \Pr(s',r|s,a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']] \end{split}$$

Since the state value function v_{π} is not a function of a, we include the other two conditions, $S_t = s$ and $A_t = a$, as being apart of the conditional expection to arrive at,

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} \Pr(s',r|s,a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s',S_{t} = s,A_{t} = a]]$$

substituting in $q_{\pi}(s, a)$ by definition we arrive at,

$$v_{\pi}(s) = \sum_{a \in A(s)} \pi(a|s) q_{\pi}(s,a)$$

 $\pi(a|s)$ being in the final summation is due to the fact that it is a leftover from starting at $v_{\pi}(s)$ where it must be included due to the fact that $v_{\pi}(s)$ is not a function of a.

3.

The cumulative return for starting at u going left to $w=R_1^{(1)}=1$.

The cumulative return for starting at u and going right to $v, z = R_1^{(2)} + \gamma R_2 = -1 + 10\gamma$.

To make going to left have a higher discounted return as compared to going right, we find the upper bound for γ by the following inequality.

$$R_1^{(1)} > R_1^{(2)} + \gamma R_2$$

$$1 > -1 + 10\gamma$$

$$\gamma < \frac{1}{5}$$

4.

From problem 1. we proved that

$$v_\pi(s) = \sum_{a \in A(s)} \pi(a|s) q_\pi(s,a)$$

We now continue our simplification of $q_{\pi}(s, a)$

$$\begin{split} q_{\pi}(s,a) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2}R_{t+3} + \dots | S_{t} = s, A_{t} = a] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a] \\ &= \sum_{s'} \sum_{r} \Pr(s',r|s,a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s', S_{t} = s, A_{t} = a]] \\ &= \sum_{s'} \sum_{r} \Pr(s',r|s,a)[r + \gamma \sum_{a'} \pi(a'|s')q_{\pi}(s',a')] \end{split}$$

By definition, we substitute $v_{\pi}(s')$, and arrive at

$$q_{\pi}(s, a) = \sum_{s'} \sum_{r} \Pr(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

We now move to the second part of the question. Using the above formulation we solve for the optimal action for state s=5 on the k=2 iteration using our formulation for $q_{\pi}(s,a)$ after $v_{\pi}(s)$ has been solved for all s. Note we are excluding the probabilties which would result in 0.

$$\begin{split} q_\pi(5,\text{up}) &= \Pr(1,-1|5,\text{up})[-1+v_\pi(1)] = -2.7 \\ q_\pi(5,\text{down}) &= \Pr(9,-1|5,\text{down})[-1+v_\pi(9)] = -3 \\ q_\pi(5,\text{right}) &= \Pr(6,-1|5,\text{right})[-1+v_\pi(6)] = -3 \\ q_\pi(5,\text{left}) &= \Pr(4,-1|5,\text{left})[-1+v_\pi(4)] = -2.7 \end{split}$$

Since at k = 2 iterations the optimal action is solved for at states s = 1 and s = 4, we can say, that from state s = 5, the 2 best actions in either order are Up and Left.