Mendota_EpiVolume

Lauren A. Knose, ORISE-EPA

2023-08-25

The purpose of this program is to identify the thermocline depth from temperature profiles and calculate the volume change of the epilimnion for mass balance.

Step 1. Load dependent packages and data:

a. loading dependent packages...

```
library(ggplot2) #needed for plots
## Warning: package 'ggplot2' was built under R version 4.2.3
library(dplyr) #needed for reformatting data
## Warning: package 'dplyr' was built under R version 4.2.3
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(rLakeAnalyzer) #needed to find thermocline depth from temperature profile
## Warning: package 'rLakeAnalyzer' was built under R version 4.2.3
library(reshape2) #needed to reshape data frame from wide to long or long to wide
## Warning: package 'reshape2' was built under R version 4.2.3
library(zoo) #needed to linearly interpolate missing values
```

```
## Warning: package 'zoo' was built under R version 4.2.3

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

Packages loaded.

b. loading dependent data...

```
watertemp<-read.csv(file="Original_data/ntl29_v12_temp.csv") #data from temp string</pre>
```

Data loaded.

Step 2. Define and filter the data:

defining and filtering data...

Water temperature data defined and filtered.

Step 3. View the data available:

Horizontal dashed line indicates epilimnion maximum used for sampling.

Temperature data plotted. Sampling determined to be bimonthly (n = 5 per year). Data frame is in long format.

Step 4. Calculate the thermocline depth for each observation:

Note, rLakeAnalyzer package is required here. Data frame needs to be in wide format with each depth a separate column (add prefix= "wtr_") to match package function dependencies.

a. reshaping the data frame for package...

```
wtr<- watertemp2 %>%
  select(sampledate, Depth_m, watertemp_C) #only include needed columns
wtr<- dcast(wtr, sampledate ~ Depth_m) # reshape data frame from long to wide</pre>
```

Using watertemp_C as value column: use value.var to override.

```
colnames(wtr)<- paste("wtr", colnames(wtr), sep="_") #add wtr_ before depth to
# fit package format dependencies
wtr<- wtr %>%
  mutate(datetime=wtr_sampledate, wtr_sampledate=NULL) #rename column to fit
# package format dependencies
```

Data frame reshaped and ready for input into the package.

b. using ts.thermo.depth function to calculate thermocline depth...

```
\verb|t.d<-ts.thermo.depth| (\verb|wtr|, na.rm=TRUE|)| \textit{\#calculates thermocline depth as time series}
```

Thermocline depth calculated.

c. plotting the thermocline depth by day during CyanoHAB season...

```
plot(x=t.d$datetime, y=t.d$thermo.depth, type="b",
    xlab="Date",
    ylab="Thermocline depth (m)")
```


Thermocline depth calculated and plotted for each date.

Step 5. Calculate the change in volume of epilimnion from change in thermocline

depth:

a. separating data by year, then assigning thermocline depth at t and t-1...

b. reassigning first thermocline depth at t-1 each year (NAs) as thermocline depth at t...

```
\label{total_continuous} t.d2\$Thermo\_depth\_m\_k1[is.na(t.d2\$Thermo\_depth\_m_k1)] <- t.d2\$Thermo\_depth\_m[is.na(t.d2\$Thermo\_depth\_m_k1)] \\ \#replace NAs in t-1 with the t value
```

c. calculating change in thermocline depth between t and t-1 and change in epilimnion volume...

```
A_strat= 25850000 # basin surface area of stratified region in m^2
Vol_epi<- t.d2 %>%
    mutate(Chg_Thermodepth_m = (Thermo_depth_m - Thermo_depth_m_k1),#calculate daily change in dep
th
    Vol_epi_m3 = Chg_Thermodepth_m*A_strat,#calculate daily change in volume
    sampledate=datetime, datetime=NULL, #rename column, remove duplicate
    daynum=as.numeric(format(sampledate, "%j")) #add in daynum
    ) %>%
select(sampledate, Yr, daynum, Vol_epi_m3, Thermo_depth_m)
```

Change in epilimnion volume calculated between observations.

Step 6. Bin observations into same day number each year:

a. defining expected observation frequencies based on sampling regime...

```
Yr<- seq(from=2012, #define year start of study period
to=2018, #define year end of study period
by=1) #creates a sequence every 1 year
Yr #prints the expected years of data
```

```
## [1] 2012 2013 2014 2015 2016 2017 2018
```

```
daynum_bins<- seq(from=196, #define date start of CyanoHAB season
to=255, #define date end of CyanoHAB season
by=14) #creates a sequence every 14 days
daynum_bins #prints the expected observation dates of data
```

```
## [1] 196 210 224 238 252
```

Defined expected observation frequency.

b. binning observed dates into expected dates...

```
Vol_epi2<- Vol_epi %>%
mutate(daynum bin=ifelse(daynum<(daynum bins[2]-7), #if observation is <= bin 2 min</pre>
       daynum_bins[1], #yes returns bin 1
       ifelse(daynum>=(daynum_bins[2]-7)&daynum<(daynum_bins[3]-7),</pre>
              #if observation is > bin 2 min and <= bin 3 min</pre>
              daynum bins[2], #yes returns bin 2
              ifelse(daynum>=(daynum_bins[3]-7)&daynum<(daynum_bins[4]-7),
                      #if observation is > bin 3 min and <= bin 4 min
                      daynum bins[3], #yes returns bin 3
                      ifelse(daynum>=(daynum bins[4]-7)&daynum<(daynum bins[5]-7),
                             #if observation is > bin 4 min and <= bin 5 min
                             daynum bins[4], #yes returns bin 4
                             daynum bins[5])#no returns bin 5
                      )
              )
       )
)
Vol_epi2<- Vol_epi2 %>%
  filter(!duplicated(cbind(Yr, daynum_bin), fromLast = TRUE)) #remove duplicate
```

Observed dates assigned into closest expected dates.

Step 7. Interpolate missing observations:

a. creating new data frame with expected values...

```
Vol_epi3<- data.frame(# makes new data frame
daynum_bin=rep(daynum_bins, times=7), #creates field with
#expected observations (5/yr for 7 years)
Yr=rep(Yr, each= 5)) #creates field with expected yr
```

Table created with expected observation frequency.

b. merging the two data frames...

```
Vol_epi3<- merge(Vol_epi3, Vol_epi2, #two data frames to join
by=c("Yr", "daynum_bin"), #join by year and day number
all.x=TRUE) #keep the predicted observation days
```

Data frames merged.

c. interpolating sample date from day and year...

Missing sample dates interpolated.

d. interpolating change in epi volume between observations...

Missing data interpolated.

Step 8. Save data as new data file.

```
Vol_epi_int <- Vol_epi_int %>% select(date, Vol_epi_m3, Thermo_depth_m)
write.csv(Vol_epi_int, file="Cleaned_data/Mendota_EpiVolume.csv")
```

Data saved as new file in Cleaned_data folder as Mendota_EpiVolume.csv"