Lecture 2

Rectangle, step functions, signal transformations, periodic, even and odd

Preview of today's lecture

- ◆ Signals, unit—step and rectangle functions
 - → Describe mathematically the unit step and rectangle functions
- ◆ Basic signal transformations
 - → Apply different transformations on continuous-time signals
 - → Create new signals from these transformations
- Signal characteristics: periodic, even, odd, and conjugate symmetric
 - → Distinguish between periodic and aperiodic signals
 - → Compute even and odd parts of an arbitrary signal

Thinking about circuits as a system system input output system

A mathematical description of how the input is transformed into the output

Connections back to ECE 45

Lectures 2 - 4 working with signals

Lectures 5 - 7 LTI systems in the time domain

Lectures 11-12 LTI systems in the frequency domain

Lectures 8 - 10 Fourier series

Lectures 13 - 17 Fourier transform

_	Dat∈	Theme ▼	Topic	Readings v	Out ▼	In 🔻
1	1/7	Signals	Signals, systems, circuits and phasors	1.1	HW1	
2	1/9	Signals	Rectangle, step functions, signal transformations, periodic, even and odd	1.2	HW2	HW1
3	1/14	Signals	Exponential, sinusoids, complex exponentials, phasors	1.3		
4	1/16	Signals	Dirac delta, Kronecker delta, Sha function	1.4	HW3	HW2
5	1/21	LTI in time	Linear and time-invariant systems	2.1		
6	1/23	LTI in time	Convolution, convolution with a sinusoid, connection to phasors	2.2	HW4	HW3
7	1/28	LTI in time	Convolution properties	2.3		
8	1/30	Fourier series	Fourier series	3.1 - 3.3	HW5	HW4
	2/4		Midterm 1			
9	2/6	Fourier series	Fourier series convergence and properties	3.4	HW6	HW5
10	2/11	Fourier series	Fourier series properties	3.5		
11	2/13	LTI in frequency	Frequency response of LTI systems	3.9	HW7	HW6
12	2/18	LTI in frequency	Filters, bode plots	3.10, 6.2.3		
13	2/20	Fourier transform	Fourier transform	4.1-4.2	HW8	HW7
	2/25		Midterm 2			
14	2/27	Fourier transform	Fourier transform properties	4.3	HW9	HW8
15	3/4	Fourier transform	Rectangle and sinc functions	4.3		
16	3/6	Fourier transform	Convolution property	4.4	HW10	
17	3/11	Fourier transform	Multiplication property	4.5		
18	3/13	Sampling	Sampling theorem	7.1		HW10
	3/19		Final exam Tuesday 3-6pm			

Signals, unit-step and rectangle functions

Learning objectives

Describe mathematically the unit step and rectangle functions

What is a "signal"?

ECE 45 focuses on CT signals

- ◆ Representation of a value/info. relative to an independent variable
 - → Often a time variable but could be something else
- Continuous-time (CT) signals x(t)

t E R

Bracket notation used to denote a discrete-time sequence

- lacktriangle Discrete-time (DT) signals x[n]
 - → Often obtained by sampling CT signal
 - → Taken at values nT

sampling period

Complex signals

◆ Signals may take complex values (equivalently they have an amplitude and a phase when in polar form)

$$x(t) = \text{Re}\{x(t)\} + j\text{Im}\{x(t)\}$$
 $x[n] = \text{Re}\{x[n]\} + j\text{Im}\{x[n]\}$

- ◆ Complex signals are found in many practical problems
 - → Most digital signal processors support complex operations
- ◆ Example: "in phase" (real) and "quadrature" (imag) EM signals

Many connections between complex signals, Maxwell's equations, phasors, etc.

Unit step function

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 1 \end{cases}$$

- \bullet At t=0, u(t) may be either 0, I, or $\frac{1}{2}$ depending on the book
 - → The specific choice is only important in a mathematical analysis class

Where have you seen the unit step function?

The voitage signal created from switching in a DC source is written using the unit step function

 $v_S(t) = V_S u(t)$

Rectangle function

$$rect(t) = \begin{cases} 0, & |t| > \frac{1}{2} \\ 1, & |t| \le \frac{1}{2} \end{cases}$$

Also called the box function

May have different notation in other books like $\Pi(t)$

Where will you see the rectangle function?

- ◆ Part of many common convolution examples
- ◆ Used to build a square waves, which is analyzed via Fourier Series

lacktriangle Shows up as part of "windowing," e.g. $x(t) \operatorname{rect}(t)$

Why spend time on these basic signals?

- Unit step functions
 - ★ An important building block signals for other parts of the course
 - → Shows up often when signals "start at zero"
- ◆ Rectangle function
 - ★ Another important building block signal
 - → Used for many examples in convolution and Fourier

Basic signal transformations

Learning objectives

- Apply different transformations on continuous-time signals
- Create new signals from these transformations

Moving mountains (function is over space here)

- Use mountain description to build a map
 - → Where are the mountains located?
 - → What are their size?

Signal transformations are ways to describe and manipulate signals

$$X(6-(-3))$$
 $E_{0}=-3$
 $X(1+3)$

Example: reflection or time reversal

Example: time compression / downsampling

Example: time expansion (upsampling)

Example

• Plot the signal
$$rect(2t-3)$$

(1) Let $a(t) = rect(63)$

(2) $q(2t) = rect(2t-3)$

◆ You may shift then scale, or scale then shift (carefully)

Example

• Plot the signal rect(2t-3) = rect(2(t-36)) 6(t) = rect(2t)5/H C(t) = 5(t-3/1) = sect (2t-3/

◆ You may shift then scale, or scale then shift (carefully)

Signal transformation summary

- ◆ There are different ways to transform a signal
 - + This section focused on transformations of the independent variable
- ◆ Transformations
 - → Time shifting changes the starting point of a signal
 - → Time scaling changes how fast the signal is "played"
 - → Time reversal flips a signal
 - → Compression / expansion change the "speed" of a signal

Signal characteristics: periodic, even, and odd

Learning objectives

- Distinguish between periodic and aperiodic signals
- Compute the period of a periodic signal
- Compute even and odd parts of an arbitrary signal

Periodic signals

Periodic signals satisfy for some finite non-zero T of

$$x(t) = x(t+T)$$

periodic with period T for all t

- Period is the smallest non-zero solution
 - → This is called the fundamental period

$$\chi(t+2T) = \chi(t+T) + T = \chi(t+T) = \chi(t+T) = \chi(t+T)$$

Periodic signals can be treated with special mathematical tools

Examples of periodic signals

Establishing periodicity

- ◆ To prove a CT signal is periodic
 - \rightarrow Direct: find a T>0 such that x(t)=x(t+T) for all t
 - ★ Indirect: show that x(t) is in a known class of periodic signals
- ◆ To prove a CT signal is aperiodic
 - \rightarrow Direct: Show that there is no T>0 such that x(t)=x(t+T) for all t
- ◆ Remember the fundamental period is the smallest non-zero T

Example of direct method

Determine whether or not the following signal is periodic? If it is periodic, determine its fundamental period.

$$x(t) = \sin(2t) + \cos(4t + \pi/2)$$

$$\sin(2\pi)\epsilon) = \frac{1}{4\pi}$$

lacktriangle Want to find T such that x(t) = x(t+T)

$$x(t+T) = \sin(2(t+T)) + \cos(4(t+T) + \pi/2)$$

shifted signal

$$\sin(2(t+T)) = \sin(2t)$$
 for $T = k\pi$ where $k \in \mathbb{Z}$

multiple solutions

$$\cos(4(t+T)+\pi/2) = \cos(4t+\pi/2)$$
 for $T=k\pi/2$ where $k \in \mathbb{Z}$

multiple solutions

$$T=\pi$$

fundamental period

Example of indirect method

◆ Determine whether or not the following signal is periodic? If it is periodic, determine its fundamental period.

$$x(t) = \left[\cos(2t - \pi/3)\right]^2$$

• Recall that $\cos^2(x) = \frac{1}{2} (1 + \cos 2x)$

$$x(t) = [1 + \cos(4t - 2\pi/3)]/2$$
. Periodic, period = $2\pi/(4) = \pi/2$.

◆ By showing this simplifies to a known periodic function, we can also conclude it is period and find the frequency

Even signals (real)

♦ Even signals satisfy

Examples (need not be periodic)

Odd signals (real)

◆ Odd signals satisfy

x(-t)

♦ Examples

Generalization to complex signals

◆ Even becomes conjugate symmetric

$$x^*(-t) = x(t)$$

♦ Odd becomes conjugate antisymmetric

$$x^*(-t) = -x(t)$$

Interesting facts about even and odd functions

◆ Any real function can be written in terms of its even and odd parts

$$e(t) = \frac{1}{2}[f(t) + f(-t)] \quad e(t) = \frac{1}{2}[f(t) - f(-t)] \quad + \frac{1}{2}[f(t) - f(-t)] \quad + \frac{1}{2}[f(-t) + f(t)] = e(t) \quad e(-t) = \frac{1}{2}[f(-t) - f(t)] = -o(t)$$

$$f(t) = e(t) + o(t)$$

Interesting facts about even and odd functions

Integration properties

$$\int_{-\infty}^{\infty} e(t)dt = 2\int_{0}^{\infty} e(t)dt \qquad \text{also } \text{full}$$

$$\int_{-\infty}^{\infty} o(t)dt = 0 = \int_{-T_{0}}^{T_{0}} o(t)dt$$

◆ Multiplications of two odd or two even functions → even function

$$y(t) = o_1(t)o_2(t) = e(t)$$

 $y(t) = e_1(t)e_2(t) = \text{even function}$
 $y(t) = o(t)e(t) = \text{odd function}$

Example

◆ Determine and sketch the even and odd parts of the signal

Sketching the even solution

Similar properties for complex signals

$$E(t)=\frac{1}{2}[f(t)+f^*(-t)] \qquad \text{Conjugate symmetric}$$

$$O(t)=\frac{1}{2}[f(t)-f^*(-t)] \qquad \text{Conjugate antisymmetric}$$

$$E^*(-t)=\frac{1}{2}[f^*(-t)+f(t)]=E(t)$$

$$O^*(-t)=\frac{1}{2}[f^*(-t)-f(t)]=-O(t)$$

$$f(t)=E(t)+O(t)$$

Note: Conjugate symmetric & real is even (why?)

Signal characteristics summary

- ◆ Periodic signals
 - → Special type of signals that repeat
 - → Need to determine if a signal is periodic and its period
- ◆ Even, odd, conjugate symmetric, conjugate antisymmetric
 - → Signals with symmetry about the y axis
 - + Fact used to simplify computations and derive intuition
- ◆ These special signal structures will be used in Fourier analysis