Réalisation d'un robot d'assistance pour les personnes en situation de handicap

École Nationale Supérieure de l'Électronique et de ses Applications, Option Mécatronique et Systèmes Complexes

Année 2022 - 2023

Professeurs encadrants:
Alexis MARTIN
Nicolas PAPAZOGLOU

Sommaire

- I Contexte, objectifs et organisation du Projet
 - 1 Contexte et objectifs
 - 2 Diagramme de Gantt
- II Le projet
 - 1 Dimensionnement
 - 2 Modélisation
 - 3 Modèle réel
 - 4 Commande des steppers

III - Conclusion

Contexte du projet

Robot d'assistance

Mise en situation : préhension d'un pot de yaourt

Partenariat avec une clinique

Partage du travail avec un groupe d'étudiant en deuxième année

Objectifs

Manipulation du pot de yaourt sans détérioration

Maintient de la position pendant l'alimentation du patient

Commande au fauteuil

Mémorisation de la position?

Solution retenue

Robot 6 axes anthropomorphe avec différents modèles de pinces

Réduit à 3 axes avec une pince simple au fil du projet

Digramme de Gantt

Digramme de Gantt

Architecture générale

Dimensionnement

Modélisation - Base

Modélisation - Base

Modélisation - Epaule

Modélisation - Epaule

Modélisation - Epaule

Modélisation - Epaule + Bras

Modélisation

Modélisation - Pince

Type de pince	Caractéristiques	
Pince à vide	Puissante, abordable mais sensible à la poussière et pas pour tous les types d'objets	
Pince pneumatique	Abordable, temps de réponse faible et peu d'encombrement mais peu efficace pour les objets à faible volume	
Pince hydraulique	Très grande puissance mais complexe, maintenance élevée et ne convient pas pour des objets fragiles	
Pince électrique	Faciles à contrôler mais moins de force que les autres types de pince. Peu avoir du mal avec les objets mous	
Pince magnétique	Uniquement efficace pour manipuler des matériaux ferromagnétiques	

Modélisation - Pince

Modèle réel

Place à la démonstration

Commande des steppers

Faire tourner un stepper 24V avec précision

Commande des steppers

Solution: microstepping avec le driver TMC2225

4, 8, 16 ou 32 microsteps

TMC2225

2.1 Package Outline TMC2225

VS	4, 11		Motor supply voltage. Provide filtering capacity near pin with shortest possible loop to GND pad.	
	+	+	 	
MS1	25	DI (pd)	Microstep resolution configuration (internal pull-down resistors)	
MS2	26	DI (pd)	MS2, MS1: 00: 1/4, 01: 1/8, 10: 1/16, 11: 1/32	
	-			
DIR	20	DI (pd)	DIR input (internal pull-down resistor)	
ENN	21	DI	Enable not input. The power stage becomes switched off (all motor outputs floating) when this pin becomes driven to a high level.	
•	•	*		
STEP	22	DI (pd)	STEP input (internal pull-down resistor)	
VCC_IO	16		3.3V to 5V IO supply voltage for all digital pins.	

Buck

Convertit le 24V en 5V

```
Buck based on MC34063
 * Input: 14.4V
* Output: 5V

* Frequency switching: 33kHz

* Imax = 0.5A<sub>+24V</sub>
                                             U1
                                                                                                        +57
                                        MC34063AD
                                                                  R3
                                                                           +247
                 C1
                                  6 Vin
                                                                   0.3
                                                                                                               +57
                100u
                                                                                                   +57
                                                                                                               PWR_F
                                                                   TP1 O
                      GND
                                                  5wC
                                                                            L1
                                                                                                             Q TP2
                                                                             100u
                                                  5wE
                                             GND
                                                              √√√
3.6k
                                                                        ™ 5TP50520Z
                               470p
                                                    1.2k
                                                    R1
                                             \Rightarrow
                                            GND
```


Liaison entre les composants

Création du PCB

Création du PCB

CHOICE OF R _{SENSE} AND RESULTING MAX. MOTOR CURRENT					
R _{SENSE} [Ω]	RMS current [A] VREF=2.5V (or open), IRUN=31, vsense=0 (standard)	Fitting motor type (examples)			
1.00	0.22				
0.82	0.27				
0.75	0.29	300mA motor			
0.68	0.32	400mA motor			
0.50	0.43				
470m	0.46	500mA motor			
390m	0.55	600mA motor			
330m	0.64	700mA motor			
270m	0.77	800mA motor			
220m	0.92	1A motor			
180m	1.09	1.2A motor			
150m	1.28				
120m	1.53*)				
100m	1.77*)	1.5A motor			

Figure 1.1 TMC2225 basic application block diagram

Modèle final

Résultats de la commande des steppers

La partie alimentation fonctionne correctement

Le driver ne réagit pas aux PWM

Conclusion

Robot réel non terminé

Pas de stepper fonctionnels

Beaucoup de problèmes à surmonter

Beaucoup d'apprentissage technique

Développement de compétences humaines

Beaucoup de plaisir!

Nous vous remercions pour votre attention

Nous sommes à votre disposition pour répondre à vos questions

