

APPLICATION FRAMEWORKS

NVIDIA AI

NVIDIA OMNIVERSE

SYSTEM SOFTWARE

RTX

UCF

DOCA

CUDA-X

PHYSX

Full Stack. Data Center Scale 2,700 Accelerated Applications 450 SDKs, AI Models

HARDWARE

30 Million CUDA Downloads
3 Million Developers

- NVIDIA Hopper GPU
- NVIDIA Grace Hopper Superchip / Grace Superchip

NEXT WAVE OF AI REQUIRES PERFORMANCE AND SCALABILITY

ANNOUNCING NVIDIA HOPPER

The New Engine for the World's Al Infrastructure

World's Most Advanced Chip

Transformer Engine

2nd Gen MIG

Confidential Computing

4th Gen NVLink

DPX Instructions

Custom 4N TSMC Process | 80 billion transistors

SPEEDS AND FEEDS SUMMARY

		A100-80G SXM	H100 SXM	Ratio
	# of SMs	108	132	1.2x
Scalar	FP64 TF FP32 TF	9.7 19.5	30 60	3x
Tensor	INT8 TOPS FP16 TF BF16 TF TF32 TF FP64 TF	624 312 312 156 19.5	2,000 1,000 1,000 500 60	3x
New FP8 TF		-	2,000	6x vs A100 16b
Me	mory Capacity	80 GB	80 GB	1x
	DRAM BW	2 TB/s	3 TB/s	1.5x
	NVLink BW	600 GB/s	900 GB/s	1.5x
N	VLink Domain	8	256	32x
	PCIe BW	64 GB/s	128 GB/s	2 x

H100 COMPUTE IMPROVEMENTS SUMMARY

6x throughput for the world's most compute-hungry workloads

TRANSFORMER ENGINE

Tensor Core Optimized for Transformer Models

- 6X Faster Training and Inference of Transformer Models
- NVIDIA Tuned Adaptive Range Optimization Across 16-bit and 8-bit Math
- Configurable Macro Blocks Deliver Performance Without Accuracy Loss

Statistics and Adaptive Range Tracking

16-bit

HOPPER TECHNOLOGICAL BREAKTHROUGHS

INSIDE 8-BIT FLOATING POINT (FP8)

E5M2

Encoding for: Infs, NaNs, zeros

Dynamic range: 32 powers of 2

Precision: 4 samples between powers of two

E4M3

Encoding for: NaNs, zeros

No Infs: instead we extend the dynamic range

Dynamic range: 18 powers of 2

Precision: 8 samples between powers of two

Both types support

Denormals

Saturating conversions from wider types

Values exceeding max representable fp8 value x get saturated to x

Allocate 1 bit to either range or precision

NVLINK SWITCH SYSTEM

Enabling Multi-Node NVLink Up to 256 GPUs

4th GEN NVLINK

900 GB/s from 18x25GB/sec bi-directional ports GPU-2-GPU connectivity across nodes

3rd GEN NVSWITCH

All-to-all NVLink switching for 8-256 GPUs Accelerate collectives - multicast and SHARP

NVLINK SWITCH

128 port cross-connect based on NVSwitch

H100 CLUSTER (1 SCALABLE UNIT)

57,600 GB/s all-to-all bandwidth
32 servers | 18 NVLink switches | 1,152 NVLink optical cables

SCALE-UP WITH NVLINK NETWORK

	A100 SuperPod		H100 SuperPod			Speedup		
	Dense PFLOP/s	Bisection [GB/s]		Dense PFLOP/s	Bisection [GB/s]	Reduce [GB/s]	Bisection	Reduce
1 DGX / 8 GPUs	2.5	2,400	150	16	3,600	450	1.5x	3x
32 DGXs / 256 GPUs	80	6,400	100	512	57,600	450	9x	4.5x

ANNOUNCING NVIDIA EOS SUPERCOMPUTER

The World's Most Advanced AI Infrastructure

NVIDIA Eos		
DGX SuperPOD Powered by 57 500 Quantum-2 IB Switches		
FP8	18 EFLOPS	6X
FP16	9 EFLOPS	3X
FP64	275 PFLOPS	3X
In-Network Compute	3.7 PFLOPS	36X
Bisection Bandwidth	230 TB/s	2X
NVLINK Domain	256 GPUs	32X

Blueprint for OEM and Cloud Partner Offerings

Cloud Native | Performance Isolation | Multi-Tenant

H100 ENABLES NEXT-GENERATION AI AND HPC BREAKTHROUGHS

All performance numbers are preliminary based on current expectations and subject to change in shipping products. A100 cluster: HDR IB network. H100 cluster: NDR IB network with NVLink Switch System where indicated.

GPUs: Climate Modeling 1K, LQCD 1K, Genomics 8, 3D-FFT 256, MT-NLG 32 (batch sizes: 4 for A100, 60 for H100 at 1 sec, 8 for A100 and 64 for H100 at 1.5 and 2sec), MRCNN 8 (batch 32), GPT-3 16B 512 (batch 256), DLRM 128 (batch 64K), GPT-3 16K (batch 512), MoE 8K (batch 512, one expert per GPU)

NVIDIA H100 PCIE

Unprecedented Performance, Scalability, and Security for Mainstream Servers

HIGHEST AI AND HPC MAINSTREAM PERFORMANCE

3.2PF FP8 (5X) | 1.6PF FP16 (2.5X) | 800TF TF32 (2.5X) | 48TF FP64 (2.5X) 6X faster Dynamic Programming with DPX Instructions 2TB/s , 80GB HBM2e memory

HIGHEST COMPUTE ENERGY EFFICIENCY

Configurable TDP - 150W to 350W 2 Slot FHFL mainstream form factor

HIGHEST UTILIZATION EFFICIENCY AND SECURITY

7 Fully isolated & secured instances, guaranteed QoS 2nd Gen MIG | Confidential Computing

HIGHEST PERFORMING SERVER CONNECTIVITY

128GB/s PCI Gen5 600 GB/s GPU-2-GPU connectivity (5X PCIe Gen5) up to 2 GPUs with NVLink Bridge

ANNOUNCING H100 CNX CONVERGED ACCELERATOR

Delivering High-Speed GPU-Network I/O to Mainstream Servers

Traditional Server

Optimized for Accelerated Computing

350W | 80GB | 400 Gb/s Eth or IB PCIe Gen 5 within board and to host 2-Slot FHFL | NVLink

ANNOUNCING GRACE HOPPER

CPU+GPU Designed for Giant Scale AI and HPC

600GB Memory GPU for Giant Models

New 900 GB/s Coherent Interface

30X Higher System Memory B/W to GPU In A Server

Runs Nvidia Computing Stacks

Available 1H 2023

ANNOUNCING GRACE CPU SUPERCHIP

The Full Power of the Grace

HIGHEST CPU PERFORMANCE

Superchip Design with 144 high-performance Armv9 Cores Estimated Specrate2017_int_base of over 740

HIGHEST MEMORY BANDWIDTH

World's first LPDDR5x memory with ECC, 1TB/s Memory Bandwidth

HIGHEST ENERGY EFFICIENCY

2X Perf/Watt, CPU Cores + Memory in 500W

2X PACKING DENSITY

2x density of DIMM based designs

RUNS FULL NVIDIA COMPUTING STACKS

RTX, HPC, AI, Omniverse

AVAILABLE 1H 2023

NVLINK C2C

