Preuve d'une conjecture de Frenkel-Gaitsgory-Kazhdan-Vilonen

This is a personal note of the paper [4], which proves a conjecture of Frenkel-Gaitsgory-Kazhdan-Vilonen on some exponential sums related to the geometric Langlands correspondence. The main ingredients are the resolution of Lusztig scheme of lattices introduced by Laumon and the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber.

1. L'énconcé

Let $k = \mathbb{F}_q$. $\mathcal{O} := k[[\varpi]], K := k[[\varpi]][\frac{1}{\varpi}]$ the field of formal power series in one variable over the field of fractions. Let d and n be two natural numbers. Following [3]:

• Fix the lattice \mathcal{O}^n .

$$X := \{ \text{lattice } L \subset \mathcal{O}[1/\varpi]^n = K^n : L \text{ is contained in } \mathcal{O}^n \}$$

• X_d be the scheme of finite type over k whose set of k points consists of the rings $\mathcal{R} \hookrightarrow \mathcal{O}^n$ st.

$$\dim_k(\mathcal{O}^n/\mathcal{R}) = d$$

Observe that $GL(\mathcal{O}^n) \circlearrowleft X_d$ and we have the further identification

$$X_d(k) \simeq \left\{ \text{codim-}d \text{ subspace } \bar{\mathcal{R}} \text{ in } \mathcal{O}^n/\varpi^{nd}\mathcal{O}^n \right\}$$

$$\mathcal{R} \hookrightarrow \bar{\mathcal{R}}$$

1

Example

For instance, consider the lattice given by

$$\mathcal{R} := \varpi \mathcal{O} imes \varpi \mathcal{O} imes \cdots \varpi \mathcal{O} imes \mathcal{O} imes \cdots imes \mathcal{O}$$

with d copies of $\varpi \mathcal{O}$. Then $\dim_k(\mathcal{O}^n/\mathcal{R}) = d$.

$$\varpi^{d_1}\mathcal{O}\times\cdots\times\varpi^{d_n}\mathcal{O}$$

Then $0 \le d_i \le d$ for all $1 \le i \le n$ and that $\sum d_i = i$.

 $^{^{1}}$ That the map is indeed surjective can be as follows: wlog suppose the lattice is of the form

The action of $\operatorname{GL}_n(\mathcal{O})$ can be regarded as the action of an algebraic group G_d with $G_d(k) \simeq \operatorname{GL}_n(\mathcal{O}/\varpi^d\mathcal{O})$, over X_d . The orbits of this action are given by a finite number. For each n-partition λ of d, i.e. $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n \geq 0)$ with $|\lambda| = \sum_{i=1}^n \lambda_i = d$, we denote $\operatorname{Gr}^{\lambda}$ the orbit of G_d acting on the lattice $\varpi^{\lambda}\mathcal{O}^n$ where ϖ^{λ} is the diagonal matrix $\operatorname{dia}(\varpi^{\lambda_1}, \ldots, \varpi^{\lambda_n})$. We have a stratification by locally closed subsets

$$X \simeq \bigcup_{|\lambda|=n} \operatorname{Gr}^{\lambda}$$

which is reflected by the Cartan decomposition

$$\operatorname{GL}_n(F) \simeq \bigsqcup_{\lambda_1 \ge \dots \ge \lambda_n} \operatorname{GL}_n(\mathcal{O}) \varpi^{\lambda} \operatorname{GL}_n(\mathcal{O})$$

Indeed, we have ²

$$\operatorname{Gr}^{\lambda}(k) \simeq \operatorname{GL}_{n}(\mathcal{O}) \varpi^{\lambda} a \operatorname{GL}_{n}(\mathcal{O}) / \operatorname{GL}_{n}(\mathcal{O})$$

For each λ , let $\overline{\mathrm{Gr}^{\lambda}}$ denote the closure of orbit Gr^{λ} in X_d . Recall that $\mathrm{Gr}^{\mu} \hookrightarrow \overline{\mathrm{Gr}^{\lambda}}$ iff $\mu \leq \lambda$, where the partial order is given by the natural order on $\{n \text{ partitions of } d\}$

$$\mu \le d \text{ iff } \sum_{j=1}^{i} \mu_j \le \sum_{j=1}^{i} \lambda_j \text{ for } i-1,\dots,n-1.$$

Fix a prime l distinct to characteristic p of k. Let $\overline{\mathbb{Q}}_l$ be algebriac closure of \mathbb{Q}_l . Let \mathcal{A}_{λ} denote the l-adic intersection complex of $\overline{\mathrm{Gr}^{\lambda}}$.

For each $\alpha \in \mathbb{N}^n$ st. $|\alpha| = d$. Let S_{α} be the locally closed subset of X_d whose set of k points is the ring $\mathcal{R} \hookrightarrow \mathcal{O}^n$ st. for all i.

$$(1) \qquad \left(\mathcal{R}\cap\bigoplus_{j=1}^{i}e_{j}\mathcal{O}\right)\bigg/\left(\mathcal{R}\cap\bigoplus_{j=1}^{i-1}e_{j}\mathcal{O}\right)\simeq\left(\bigoplus_{j=1}^{i-1}e_{j}\mathcal{O}+\varpi^{\alpha_{i}}e_{i}\mathcal{O}\right)\bigg/\left(\bigoplus_{j=1}^{i-1}e_{j}\mathcal{O}\right)$$

The point of this moduli description: is that it is N(F) invariant.

²Though, λ s more generally for Grassmanian are allowed to be nonnegative.

Example

• Consider the \mathcal{O} -submodule of \mathcal{O}^2 spanned by

$$\mathcal{R} := (\varpi^2 e_1, \varpi e_1 + \varpi e_2)$$

This corresponds to standard lattice acted by the matrice.

$$\begin{pmatrix} \varpi^2 & \varpi \\ 0 & \varpi \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varpi^2 & 0 \\ 0 & \varpi \end{pmatrix}$$

If I left multiply this matrix by any unipotent natrx $N \in N(F)$, then the resulting induced lattice also satisfies, 1.

• More generally,

$$\mathcal{R} = arpi^{lpha_1} e_1 \mathcal{O} \oplus \left(arpi^{eta} e_1 + arpi^{lpha_2} e_2\right) \mathcal{O}$$

as \mathcal{O} -basis. We can depict this as matrix

$$\begin{pmatrix} 1 & \varpi^{\beta-\alpha_2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varpi^{\alpha_1} & 0 \\ 0 & \varpi^{\alpha_2} \end{pmatrix} = \begin{pmatrix} \varpi^{\alpha_1} & \varpi^{\beta} \\ & \varpi^{\alpha_2} \end{pmatrix}$$

where (e_i) is the standard basis of \mathcal{O}^n . The stratification

$$X_d := \bigcup_{|\alpha| = d} S_{\alpha}$$

is reflected from the decomposition

$$\operatorname{GL}_n(F) \simeq \bigsqcup_{\alpha \in \Lambda} N(F) \varpi^{\alpha} \operatorname{GL}_n(\mathcal{O})$$

where N is the subgroup of upper triangular matrices in GL_n . Indeed

$$S_{\alpha}(k) \simeq N(F) \varpi^{\alpha} GL_n(\mathcal{O})/GL_n(\mathcal{O})$$

The Frobenius trace of \mathcal{A}_{λ} is naturally identified with the function A_{λ} with compact support in $\mathrm{GL}_n(F)$ which is bi $\mathrm{GL}_n(\mathcal{O})$ invariant. Fix a nontrivial additive character $\psi: k \to \bar{\mathbb{Q}}_l^{\times}$, and denote $\theta: N(F) \to \bar{\mathbb{Q}}_l^{\times}$.

$$\theta(n) := \psi\left(\sum_{i=1}^{n-1} \operatorname{res}(n_{i,i+1}d\varpi)\right)$$

Consider the integral

$$I(\varpi^{\alpha}, \mathcal{A}_{\lambda}) := \int_{N(F)} A_{\lambda}(n\varpi^{\alpha})\theta(n) dn$$

where the Haar measure is normalized on dn of N(F) is defined so that $N(\mathcal{O})$ has measure 1.

Note that one considered such integral more classically in the context of Satake isomorphism: there is a Satake transform map

$$\mathcal{S}:\mathcal{H}_G\to\mathcal{H}_T\otimes_{\mathbb{Z}}\mathbb{Z}[q^{\pm 1/2}]$$

$$S(f) := t \mapsto \delta_{B(F)}(t)^{1/2} \int_{N(F)} f(tn) \, dn \quad t \in T(F)$$

Then one can analyze $S(c_{\lambda})$, with $\{c_{\lambda}\}_{{\lambda}\in X_{\bullet,+}}\in \mathcal{H}_{G}$ are the naïve basis, via intersection of orbits $N(F)\varpi^{\mu}\cap G(\mathcal{O})\varpi^{\lambda}G(\mathcal{O})$, [5, 4.3]. In [2], they proved

Theorem 1.1. If $\alpha \neq \lambda$,

$$I(\varpi^{\alpha}, A_{\lambda}) = 0$$

If $\alpha = \lambda$, then

$$I(\varpi^{\lambda}, A_{\lambda}) = q^{\langle \lambda, \delta \rangle}$$

where

$$\delta = \frac{1}{2}(n-1, n-3, \dots, 1-n)$$

is the half sum of positive roots. Thus,

$$(\lambda, \delta) = \sum_{i=1}^{n} \lambda_i \delta_i$$

In the case when $\alpha = (\alpha_1, \dots, \alpha_n)$, is nondecreasing, we can find $n' \in N(F) \cap \varpi^{\alpha} GL_n(\mathcal{O})\varpi^{-\alpha}$ st. $\theta(n') \neq 1$. As A_{λ} is $GL_n(\mathcal{O})$ bi-invariant we have

$$\int_{N(F)} A_{\lambda}(n\varpi^{\alpha})\theta(n) dn = \int_{N(F)} A_{\lambda}(nn'\varpi^{\alpha})\theta(n) dn$$
$$= \theta(n')^{-1} \int_{N(F)} A_{\lambda}(n\varpi^{\alpha})\theta(n) dn$$

thus $I(\varpi^{\alpha}, A_{\lambda}) = 0$. The interesting case is therefore when

$$N(F) \cap \varpi^{\alpha} GL(n, \mathcal{O}) \varpi^{-\alpha} \hookrightarrow N(\mathcal{O})$$

in this case, the character

$$h: N(F) \to k \quad n \mapsto \sum_{i=1}^{n-1} \operatorname{res}(n_{i,i+1} d\varpi)$$

induces a morphism

$$h_{\alpha}: S_{\alpha} \to \mathbb{G}_a$$

3

$$N(F)\varpi^{\alpha}\mathrm{GL}_{n}(\mathcal{O})/\mathrm{GL}_{n}(\mathcal{O}) \to \mathbb{G}_{a}(k)$$

 $n\varpi^{\alpha}g \mapsto h(n)$

we need to show this is well defined. Suppose we have two representatives

$$n\varpi^{\alpha} = n'\varpi^{\alpha}g' \quad g' \in GL_n(\mathcal{O})$$

Then

$$(n')^{-1}n=\varpi^{\alpha}g'\varpi^{-\alpha}\in N(\mathcal{O})\subset \ker(N(F)\xrightarrow{h}k)$$

Alternatively we can think of h as a map on $N(F)\varpi^{\alpha}G(\mathcal{O})/G(\mathcal{O}) \to k$, which factors the stabilizer of the action $N(F) \circlearrowleft \varpi^{\alpha}G(\mathcal{O})/G(\mathcal{O})$.

³Indeed, consider the map

Theorem 1.2. If $\alpha \neq \lambda$

$$R\Gamma_c(S_\alpha \otimes_k \bar{k}, \mathcal{A}_\lambda \otimes h_\alpha^* \mathcal{L}_\psi) = 0$$

If $\alpha = \lambda$ we have

$$R\Gamma_c(S_\alpha \otimes_k \bar{k}, \mathcal{A}_\lambda \otimes h_\alpha^* \mathcal{L}_\psi) = \bar{\mathbb{Q}}_l[-2\langle \lambda, \delta \rangle] (-\langle \lambda, \delta \rangle)$$

Here \bar{k} is an algebraic closure of k and \mathcal{L}_{ψ} is the Artin Schrier sheaf of $\mathbb{G}_{a,k}$ associated to a character ψ .

We can deduce this theorem from Grothendieck trace formula. Here are the main steps of theorem, [4, 2]. We consider the easy case when $\alpha = \lambda$. We prove that if $\mu < \lambda$, the intersection $S_{\lambda} \cap \operatorname{Gr}^{\mu}$ is empty, so that the support oif \mathcal{A}_{λ} lies in $\operatorname{Gr}^{\lambda}$. We also prove that $S_{\lambda} \cap \operatorname{Gr}^{\lambda}$ is an affine space such that the homomorphism h_{α} restricted to $S_{\lambda} \cap \operatorname{Gr}^{\lambda}$ is constant with value 0, which gives the result in the case when $\alpha = \lambda$. This is the content of 2.

To prove the asserstion in the case $\alpha \neq \lambda$, we utilize the resolution of the scheme X_d . This is resolution is introduced by Laumon in a slightly different context. Let \tilde{X}_d , be the scheme of finite type who set of k points consists of flags of lattices

$$\mathcal{O}^n = \mathcal{R}_0 \supset \mathcal{R}_1 \supset \cdots \mathcal{R}_d = \mathcal{R}$$

st. $\dim(\mathcal{R}_{i-1}/\mathcal{R}_i) = 1$. The morphism

$$\pi: \tilde{X}_d \to X_d$$

$$(\mathcal{R}_0 \supset \cdots \mathcal{R}_n) \mapsto \mathcal{R}_n$$

is a semismall⁴ resolution in the sense of Goresky and MacPherson. Furthermore this is equivariant wrt to the action of G_d , so we have

$$\pi_* \bar{\mathbb{Q}}_l[\dim(X_d)] \left(\frac{1}{2} \dim X_d\right) = \bigoplus_{\lambda} \mathcal{A}_{\lambda} \boxtimes V_{\lambda}$$

where the V_{λ} are $\bar{\mathbb{Q}}_l$ vs, thanks to the decomposition theorem and the subgroup of stabilizers in G_d are geometrically connected.

By comparison with the construction of Lusztig in Springer correspondence, we see that V_{λ} is the space of representation of the symmetric group \mathfrak{S}_d corresponding to the young partion λ of d, [3]. We will use only the fact that the dimension of V_{λ} is equal to the number of standard λ -tables. It suffices to show

$$R\Gamma_c(S_{\lambda} \otimes_k \bar{k}, R\pi_* \bar{\mathbb{Q}}_l \otimes h_{\lambda}^* \mathcal{L}_{\psi}) = V_{\lambda}[-2 \langle \lambda, \delta \rangle - d(n-1)][-\langle \lambda, \delta \rangle - \frac{1}{2}d(n-1)]$$

For this, we study the geometry of $\tilde{S}_{\lambda} = S_{\lambda} \times_{X_d} \tilde{X}_d$. We have

$$R\Gamma_c(S_{\lambda} \otimes_k \bar{k}, R\pi_* \bar{\mathbb{Q}}_l \otimes h_{\lambda}^* \mathcal{L}_{\psi}) = R\Gamma_c(\tilde{S}_{\lambda} \otimes_k \bar{k}, \tilde{h}_{\lambda}^* \mathcal{L}_{\psi})$$

where \tilde{h}_{λ} is the composition $h_{\lambda} \circ \left(\pi \Big|_{\tilde{S}_{\lambda}}\right)$.

We prove that \tilde{S}_{λ} is a disjoint union of locally closed subsets \tilde{S}_{τ} which are affine of the same dimension

$$\langle \lambda, \delta \rangle + \frac{1}{2}d(n-1) = \langle \lambda, (n-1, \dots, 1,) \rangle$$

where τ consists of the set of elements $(\alpha^i)_{i=1}^d$, with $\alpha^i = (\alpha^i_i)_{i=1}^n \in \mathbb{N}^n$ satisfying

- $\alpha_j^{i-1} \le \alpha_j^i$. $\sum_{j=1}^n \alpha_j^i = i$. $\alpha^d = \lambda$.

If the sequence α^i is nonincreasing we show (as in the case with λ is nonincreadsing) that

$$R\Gamma_c(S_\tau \otimes_k \bar{k}, \tilde{h}_\lambda^* \mathcal{L}_\psi) = 0$$

Thoe τ whose α^i has decreasing subscripts, corresponds bijectively to standard Young λ -tables, see 3

2. Etude de S_{α}

For $\alpha \in \mathbb{N}^n$, S_{α} is isomorphic to an affine space whose coordinates can be explicitly constructed using the uniformizer ϖ . We denote $\bar{\mathcal{O}} := \mathcal{O} \otimes_k \bar{k}$ and $\bar{F} := F \otimes_k \bar{k}$.

Proposition 2.1. For each $\mathcal{R} \in S_{\alpha}(\bar{k})$. There exists a unique upper triangular matrix of the form

$$x = \begin{pmatrix} \varpi^{\alpha_1} & x_{1,2} & \cdots & x_{1,n} \\ & \varpi^{\alpha_2} & \cdots & x_{2,n} \\ & & \ddots & \vdots \\ & & \varpi^{\alpha_n} \end{pmatrix}$$

where the $x_{i,j}$ are polynomials in ϖ with coefficients in \bar{k} of degree strictly smaller thann α_i , st. $\mathcal{R} = x\bar{\mathcal{O}}^n$.

PROOF. Let $\mathcal{R} \in S_{\alpha}(\bar{k})$, it decomposes as

$$\mathcal{R} = \mathcal{R}' \oplus (\varpi^{\alpha_n} e_n + y) \,\bar{\mathcal{O}}$$

where

$$\mathcal{R}' := \mathcal{R} \cap \bigoplus_{j=1}^{n-1} e_j \bar{\mathcal{O}} \in S_{\alpha'}(\bar{k})$$

⁵ where $\alpha' = (\alpha_1, \dots, \alpha_{n-1})$ and $y \in \bigoplus_{j=1}^{n-1} e_j \bar{\mathcal{O}}$. The proof should be done - see footnote.

As a corollary

Proposition 2.2. S_{α} is an affine space of dimension

$$\langle \alpha, (n-1,\ldots,0) \rangle$$

⁵I am not so clear of the original proof. Aren't we done from here? By induction. For any choice of $y' \in \{y + r', r' \in \mathcal{R}'\}$, we get the same lattice \mathcal{R} . We also know that r' = $\varpi^{\alpha_{n-1}}e_{n-1}\mathcal{O}+y'$. In otherwords, we can guarantee $x_{n-1,n}$ has degree $<\alpha_{n-1}$ in ϖ .

Our next goal is to undersand

$$S_{\lambda} \cap \overline{\operatorname{Gr}^{\lambda}}$$

Proposition 2.3. (1) Let μ and λ be partition of d st. $\mu < \lambda$ we have

$$S_{\lambda} \cap \operatorname{Gr}^{\mu} = \emptyset$$

- (2) The intersection $S_{\lambda} \cap \operatorname{Gr}^{\lambda}$ is an affine space of dimension $2\langle \lambda, \delta \rangle$.
- (3) The restriction of h_{λ} to $S_{\lambda} \cap \operatorname{Gr}^{\lambda}$ is constant of value 0.

PROOF. (1) Let $\mathcal{R} = x\bar{\mathcal{O}}^n \in S_\lambda \cap \operatorname{Gr}^\mu(\bar{k})$ where x is a matrix as in ??. For all minors⁶ of order $i \geq 1$ of x are divisible by $\varpi^{\mu_{n-i+1}+\cdots+\mu_n}$. 7 If we consider submatrices of the last i colomns, we obtain inequality we obtain that

$$\lambda_{n-i+1} + \cdots + \lambda_n > \mu_{n-i+1} + \cdots + \mu_n$$

Thus $\lambda \geq \mu$.

(2) Suppose now that $\mu = \lambda$. Consider the $(i+1) \times (i+1)$ submatrix inncluding the coefficient $x_{j,n-i}$ with j < n-i and includes the last i If the coefficients $x_{j,k}$ are divisible by ϖ^{λ_k} for all j < k... It follows that $S_{\lambda} \cap \operatorname{Gr}^{\lambda}$ is isomorphic of dimension

$$\langle \lambda, (n-1, \dots, 0) \rangle - \langle \lambda, (0, \dots, n-1) \rangle$$

= $\langle \lambda, (n-1, n-3, \dots, 1-n) \rangle$

(3) We have shown that

$$S_{\lambda} \cap \operatorname{Gr}^{\lambda}(\bar{k})$$

Proposition 2.4. We have an isomorphism

$$R\Gamma_c(S_\lambda \otimes_k \bar{k}, \mathcal{A}_\lambda \otimes h_\lambda^* \mathcal{L}_\psi) \simeq \bar{\mathbb{Q}}_l[-2\langle \lambda, \delta \rangle](-\langle \lambda, \delta \rangle)$$

PROOF. We have shown in 2.3 that

$$S_{\lambda} \cap \overline{\operatorname{Gr}^{\lambda}} = S_{\lambda} \cap \operatorname{Gr}^{\lambda}$$

By definition, $\mathcal{A}_{\lambda}\Big|_{S_{\lambda}} \simeq \bar{\mathbb{Q}}_{l}[2\langle\lambda,\delta\rangle](\langle\lambda,\delta\rangle)$ is supported on the affine space $S_{\lambda}\cap \mathrm{Gr}^{\lambda}$ of dimension $2\langle\lambda,\delta\rangle$. As mentioned after 1.2, h_{λ} is the zero map, hence the pullback of \mathcal{L}_{ψ} is the constant sheaf.

⁶The determinant of $i \times i$ submatrix.

⁷Indeed, one can see this by considering a general element $GL_n(\mathcal{O})\varpi^{\mu}GL_n(\mathcal{O})$

3. Etude de S_{λ}

Denote $\tilde{S}_{\lambda} := S_{\lambda} \times_{X_d} \tilde{X}_d$. The set of \bar{k} points of \tilde{S}_{λ} is the flag of lattices

$$\bar{\mathcal{O}}^n = \mathcal{R}_0 \supset \mathcal{R}_1 \supset \cdots \supset \mathcal{R}_d = \mathcal{R}$$

where $\dim_{\bar{k}}(\mathcal{R}_{i-1}/\mathcal{R}_i) = 1$ and $\mathcal{R} \in S_{\lambda}(\bar{k})$. For a fixed flag, for each $i = 0, \ldots, d$ there exists $\alpha^i \in \mathbb{N}^n$ with $|\alpha^i| = i$ such that $\mathcal{R}_i \in S_{\alpha_i}(\bar{k})$. The scheme \tilde{S}_{α} is thus straified with respect to the matrix

$$\tau := (\alpha_j^i)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq n}}^{0 \leq i \leq d} \in \mathbb{N}^{(d+1)n}$$

such that

- (1) $\alpha_j^{i-1} \le \alpha_j^i$. 8 (2) $\sum_{j=1}^n \alpha_j^i = i$. 9 (3) $\alpha^d = \lambda$.

Let S_{τ} denote the corresponding stratification. Denote by \tilde{h}_{λ} the restriction of h_{λ} \circ $\pi_{\tilde{S}_{\lambda}}$ to S_{τ} .

Proposition 3.1. If exists a d' with $1 \leq d' \leq d-1$ such that the $(\alpha_j^{d'})_{1 \leq j \leq n}^{0 \leq i \leq d'}$ is non decreasing then we have

$$R\Gamma_c(S_\tau \otimes_k \bar{k}, \tilde{h}_\lambda^* \mathcal{L}_\psi) = 0$$

Proposition 3.2. If $\alpha^{d'}$ is non decreasing, for all $\mathcal{R}' \in S_{\alpha^{d'}}(\bar{k})$ there exists a subgroup $\mathbb{G}_{a,\bar{k}} \hookrightarrow \mathrm{GL}(\mathcal{R}') \cap N(\bar{F})$ such that the reduction $N(\bar{F}) \to \mathbb{G}_{a,\bar{k}}$ defined by

$$n \mapsto \operatorname{res}\left(\sum_{i=1}^{n-1} n_{i,i+1} d\varpi\right)$$

is the identity on inclusion of $\mathbb{G}_{a,\bar{k}}$.

Proof of 3.1: Denote $Z := \pi^{'-1}(\mathcal{R}_{\bullet})$ and h the restriction of \tilde{h}_{λ} to Z. The proposition then follows from a general formula in [1].

$$\mathcal{R}_{i-1} \left(\begin{array}{ccc} \ddots & & & \\ & \varpi^{lpha_j^{i-1}} & & \\ & & \ddots \end{array} \right) \supset \left(\begin{array}{ccc} \ddots & & & \\ & \varpi^{lpha_j^{i}} & & \\ & & \ddots \end{array} \right) = \mathcal{R}_{i}$$

⁹This is forced by the condition $\dim_{\bar{k}}(\mathcal{R}_{i-1}/\mathcal{R}_i) = 1$. Thus, a 2 chain condition is given by

$$\mathcal{R}_0 = \bar{\mathcal{O}}^2 \supset \begin{pmatrix} \varpi & \\ & \bar{\mathcal{O}} \end{pmatrix} \supset \begin{pmatrix} \varpi & \\ & \varpi \end{pmatrix} = \mathcal{R}_2$$

where d=2.

⁸This is depicted in the inclusion

Proposition 3.3. Let Z be a scheme of finite type 10 over \bar{k} , provided ewith ana ction $\xi: \mathbb{G}_a \times Z \to Z$. Let F be a complex on Z provided with an isomorphism $\xi^* F = \mathcal{L}_{\psi} \boxtimes F$, then $R\Gamma_c(Z, F)$.

Proposition 3.4. If for all i = 0, ..., d, α^i is non decreasing then we have an isomorphism

$$R\Gamma_c(S_{\tau} \otimes_k \bar{k}, \tilde{h}_{\lambda}^* \mathcal{L}_{\psi})) \simeq \bar{\mathbb{Q}}_l[-2\langle \lambda, (n-1,\ldots,1,0)\rangle](-1\langle \lambda, (n-1,\ldots,0)\rangle)$$

Final proof of theorem [2, 2]: For finishing the proof, it suffices to show that the matrices τ satisfying

- $\bullet \quad \alpha_j^{i-1} \leq \alpha_j^i.$ $\bullet \quad \sum_{j=1}^n \alpha_j^i = i.$ $\bullet \quad \alpha^d = \lambda.$
- $\alpha_{i-1}^i \geq \alpha_i^i$.

are in one to correspondence with standard 11 λ -tablues. We see that τ satisfying the first three conditions but not the fourth are maps

$$\tau: \{1, \dots, d\} \to \{1, \dots, n\}$$

such that for all j, $|\tau^{-1}(j)| = \lambda_j$. Given such a map, we can succesively writein $1, \ldots, d$ in the λ -Young diagram. The number i is assigned into the first empty cell in ¹² the $j = \tau(i)$ th line. ¹³ s Such a table is standard if and only if

$$\alpha_{j-1}^i \ge \alpha_j^i \quad \forall i = 1, \dots, d, j = 1, \dots, n$$

We can also reason more directly as follows. The space V_{λ} admits a basis indexed by the components of the fiber of $\pi: \tilde{X}_d \to X_d$ over a geometric point, which are irreducible and of maximal dimension. For example $\varpi^{\lambda} \bar{\mathcal{O}}_n \in \operatorname{Gr}^{\lambda}(\bar{k})$. Using 3.2...

¹⁰Ths is the geometrization of the classical statement discussed in ??

¹¹If entries of each row and each column in the young diagram are increasing.

¹²Note totally sure what this is meant

¹³For example:

Bibliography

- [1] Pierre Deligne, Application de la formule des traces aux sommes trigonomètriques. (1977).
- [2] Frenkel, D Gaitsgory, D Kazhdan, and K Vilonen, Geometric Realization of Whittaker Functions and the Langlands Conjecture (1998).
- [3] G Lusztig, Green Polynomials and Singularities of Unipotent Classes (1981).
- [4] Ngô, Preuve d'une conjecture de Frenkel-Gaitsgory-Kazhdan-Vilonen (1998).
- [5] Emilen Zabeth, Definition of the dual group and the Satake isomorphism.