

# Introduction to Classification







# Apa itu classification mengapa kita pelajari di data science?









### APA YANG AKAN KITA PELAJARI



#### **Classification and applications**

- What is Classification
- Classification Intuition
- Classification Algorithm
- Applications of Classification
- Classification Cases





# Categorical



# **Type of Data**









### **Classification Use Case**









Customer Churn Analysis



**Object Detection** 





## **Classification Use Case**



- 1. Credit Scoring Predict Default, Propensity
- 2. Sentiment Analysis (Positif, Negatif, Netral)
- **3.**





# Classification Type



- 1. Binary Classification (Cancer prediction, Customer Churn)
- Multiclass Classification (Object classification)
- Multilabel Classification (Weather classification)

Binary & Multiclass Classification : setiap data only belong to one class

Multilabel: setiap data bisa terkategori di 2 class





#### MultiLabel

| nama  | usia | casa   | kredit | punya<br>CC? |     | Beli<br>produk A? | Beli<br>produk B? | Beli<br>produk C? |
|-------|------|--------|--------|--------------|-----|-------------------|-------------------|-------------------|
| Adi   | 34   | \$3500 | \$500  | Ya           |     | 1                 | 1                 | 0                 |
| Budi  | 25   | \$1200 | \$100  | Tidak        |     | 0                 | 1                 | 0                 |
| Citra | 17   | \$500  | \$300  | Ya           |     | 1                 | 1                 | 1                 |
| Doni  | 45   | \$2000 | \$1000 | Tidak        |     | 1                 | 0                 | 1                 |
| Eka   | 15   | \$700  | \$20   | Ya           |     | 1                 | 0                 | 0                 |
| Feri  | 30   | \$1575 | \$1000 | Tidak        |     | 0                 | 0                 | 0                 |
|       |      |        |        |              |     |                   |                   |                   |
| Andi  | 50   | \$1000 | \$5000 | \$2000       | ••• | ?                 | ?                 | ?                 |





# Classification Algorithm



- 1. KNN
- 2. SVM
- 3. Logistic Regression
- 4. Decision Tree
- 5. Random Forest
- 6. XGBoost







# KNN

melihat (k) neighbon tendekat

K=5

Supaya hasilnya bagus, data harus di-transform

Kekurangannya: outlier mempengaruh



Selougar





































# **SVM**

membuat pennisah data yang berbeda class dengan sebuah hyperplane (garis untak 2D, bidang untuk 3D)

dengan mary in young besar

Challenge: Bagaiman Kalau ada outlier? Solution: Tuning parameter C (penalty) Twown kan Cuntule abakan oullier





(6) memiliki margin terbesar





















































# **Training & Testing**





# **Tree-Based**

Talking: Room 6











































bendistanbusi tidah normal, imputing dengan nilai mean mengubah distanbus Hata





# **Logistic Regression**





# **Supervised Learning Process**







# Logistic Regression Intuition







# A Glance on Classification Data Example



| # Age | = | # Smokes = | # AreaQ = | # Alkhol = | # Result |
|-------|---|------------|-----------|------------|----------|
| 35    |   | 3          | 5         | 4          | 1        |
| 27    |   | 20         | 2         | 5          | 1        |
| 30    |   | 0          | 5         | 2          | 0        |
| 28    |   | 0          | 8         | 1          | 0        |
| 68    |   | 4          | 5         | 6          | 1        |

#### X(Independent):

- Age
- Smokes
- AreaQ
- Alcohol
- ..

#### y(Dependent):

- Result





# Why Logistic Regression







# **Logistic Function**











# **Maximum Likelihood**









# Classification Evaluation



#### **Metrics for Classification:**

- 1. Confusion Matrix
- True Positive Rate (Sensitivity)
- 3. True Negative Rate (Specificity)
- False Positive Rate (Fall-Out)
- 5. False Negative Rate (Miss-Rate)





# **Confusion Matrix**



# **Confusion Matrix**

|                           | Actually<br>Positive (1)    | Actually<br>Negative (0)    |
|---------------------------|-----------------------------|-----------------------------|
| Predicted<br>Positive (1) | True<br>Positives<br>(TPs)  | False<br>Positives<br>(FPs) |
| Predicted<br>Negative (0) | False<br>Negatives<br>(FNs) | True<br>Negatives<br>(TNs)  |





## **Accuracy**

Setelah melakukan training model, kita dapat mengevaluasi performansi model dengan mempertimbangkan beberapa metrik, yang mana salah satunya adalah **akurasi**.

- Metrik akurasi merupakan metrik yang paling mudah diterapkan untuk mengukur hasil prediksi suatu model klasifikasi, dimana akurasi merupakan perbandingan antara jumlah hasil prediksi tepat dengan jumlah total data yang ada.
- Contoh di samping merupakan **label** dan **hasil prediksi** suatu model klasifikasi. Dari 6 sampel yang ada, model berhasil memprediksi 5 sampel data dengan benar sehingga akurasinya adalah 5/6 atau sekitar 83%.

| spam? | prediksi           |
|-------|--------------------|
| ya    | ya                 |
| tidak | <mark>tidak</mark> |
| ya    | ya                 |
| tidak | ya                 |
| tidak | <mark>tidak</mark> |
| tidak | <mark>tidak</mark> |





### **Confusion Matrix**

Selain itu, terdapat **confusion matrix** yang merupakan matriks yang berisikan 4 semua kemungkinan hasil prediksi model, diantaranya

- True Positive (TP) : sampel memiliki label True dan berhasil diprediksi model sebagai True
- True Negative (TN): sampel memiliki label False dan berhasil diprediksi model sebagai False
- False Positive (FP) : sampel sebenarnya memiliki label False namun diprediksi model sebagai True
- False Negative (FN): sampel sebenarnya memiliki label True namun diprediksi model sebagai False

Untuk mempermudah dalam memahaminya, *confusion matrix* biasanya divisualisasikan sebagai berikut.

|          |       | Pred  | diksi |
|----------|-------|-------|-------|
|          |       | False | True  |
| <b>T</b> | False | TN    | FP    |
| Target   | True  | FN    | TP    |





## <u>Accuracy</u>

Dari confusion matrix tersebut, kita dapat menghitung ulang akurasi dengan rumus berikut.

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Selain akurasi, kita juga dapat menghitung beberapa metrik lainnya diantaranya sebagai berikut.

- True Positive Rate (TPR)
- 2. True Negative Rate (TNR)
- 3. False Negative Rate (FNR)
- 4. False Positive Rate (FPR)

## Precision, Recall dan F1-Score

Dengan menggunakan beberapa nilai dari confusion matrix, kita juga dapat menghitung metrik **precision**, **recall**, dan **F1-score** dengan rumus berikut.

$$precision = \frac{TP}{TP + FP} \qquad \qquad recall = \frac{TP}{TP + FN} \qquad \qquad F1 \, Score = 2 \times \frac{precison \times recall}{precison + recall}$$

Ketiga metrik ini sering dipakai jika fitur label pada data tidak seimbang (imbalance label) dimana :

- 1. **Precision** merupakan rasio antara prediksi benar positif dibandingkan dengan keseluruhan yang diprediksi positif.
  - Sebagai contoh, precision dapat menjawab pertanyaan seperti
  - "Berapa persen email yang benar-benar spam dari keseluruhan email yang diprediksi sebagai spam?".
- 2. **Recall (sensitivity**) merupakan rasio antara benar positif dibandingkan dengan keseluruhan data yang benar positif.
  - Jika diambil contoh, metrik ini dapat menjawab pertanyaan seperti "Berapa persen email yang diprediksi spam dibandingkan dengan keseluruhan email yang sebenarnya adalah spam?"
- 3. **F1 Score** merupakan nilai harmonik antara recall dan precision.





## Precision, Recall dan F1-Score

Dengan menggunakan beberapa nilai dari confusion matrix, kita juga dapat menghitung metrik **precision**, **recall**, dan **F1-score** dengan rumus berikut.

$$precision = \frac{TP}{TP + FP} \qquad \qquad recall = \frac{TP}{TP + FN} \qquad \qquad F1 \, Score = 2 \times \frac{precison \times recall}{precison + recall}$$

Accuracy = 90%

Prediksi (customer potensial, customer tidak potensial)

100

900

Precision = 40%





## Precision, Recall dan F1-Score

Dengan menggunakan beberapa nilai dari confusion matrix, kita juga dapat menghitung metrik **precision**, **recall**, dan **F1-score** dengan rumus berikut.

$$precision = \frac{TP}{TP + FP} \qquad \qquad recall = \frac{TP}{TP + FN} \qquad \qquad F1\,Score = 2 \times \frac{precison \times recall}{precison + recall}$$

Accuracy = 90%
Prediksi (pasien yang covid, **pasien yang tidak covid**)
100
900

Recall = 50%

## Contoh (1)

| covid | prediksi |
|-------|----------|
| ya    | ya       |
| tidak | tidak    |
| ya    | ya       |
| tidak | ya       |
| tidak | tidak    |
| tidak | tidak    |

- True Positive (TP) : sampel memiliki label True dan berhasil diprediksi model sebagai True
- True Negative (TN): sampel memiliki label False dan berhasil diprediksi model sebagai False
- False Positive (FP) : sampel sebenarnya memiliki label False namun diprediksi model sebagai True
- False Negative (FN): sampel sebenarnya memiliki label True namun diprediksi model sebagai False
- TP = 2
- TN = 3
- FP = 1
- FN = 0
- Accuracy = (TP+TN)/(TP+TN+FP+FN) = 5/6
- Precision = TP/(TP+1)=2/(2)=0.63
- Recall = TP/(TP+FN)=2/(2+0)=1 (penyakit)
- F1-Score =

# Contoh (1)

| Default<br>debitur | prediksi |
|--------------------|----------|
| ya                 | ya       |
| tidak              | tidak    |
| ya                 | ya       |
| tidak              | ya       |
| tidak              | tidak    |
| tidak              | tidak    |

- True Positive (TP) : sampel memiliki label True dan berhasil diprediksi model sebagai True
- True Negative (TN): sampel memiliki label False dan berhasil diprediksi model sebagai False
- False Positive (FP) : sampel sebenarnya memiliki label False namun diprediksi model sebagai True
- False Negative (FN): sampel sebenarnya memiliki label True namun diprediksi model sebagai False
- TP = 2
- TN = 3
- FP = 1
- FN = 0
- Accuracy = (TP+TN)/(TP+TN+FP+FN) = 5/6
- Precision = TP/(TP+1)=2/(2)=0.63
- Recall = TP/(TP+FN)=2/(2+0)=1 (penyakit)
- F1-Score =





# Contoh (2)

| spam  | prediksi        |
|-------|-----------------|
| tidak | <mark>ya</mark> |
| ya    | <mark>ya</mark> |
| ya    | <mark>ya</mark> |
| ya    | tidak           |
| ya    | ya              |
| tidak | tidak           |

- True Positive (TP) : sampel memiliki label True dan berhasil diprediksi model sebagai True
- True Negative (TN): sampel memiliki label False dan berhasil diprediksi model sebagai False
- False Positive (FP) : sampel sebenarnya memiliki label False namun diprediksi model sebagai True
- False Negative (FN): sampel sebenarnya memiliki label True namun diprediksi model sebagai False
- TP = 2
- TN = 1
- FP =
- FN =
- Accuracy =
- Precision =
- Recall =
- F1-Score =