TAKE-HOME CLASS QUIZ: DUE OCTOBER 8: INTERPLAY OF CONTINUOUS AND DISCRETE

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
ONLY ENTER ANSWER CHOICES THAT YOU PERSONALLY ENDORSE
(1) Consider a function f defined on all real numbers. Consider also the sequence $a_n = f(n)$ defined for
n a natural number. Which of the following is true? (A) $\lim_{x \to a} f(x)$ is finite if and only if $\lim_{x \to a} a$ is finite, and if so, both limits are equal.
(A) $\lim_{x\to\infty} f(x)$ is finite if and only if $\lim_{n\to\infty} a_n$ is finite, and if so, both limits are equal.
(B) $\lim_{x\to\infty} f(x)$ is finite if and only if $\lim_{n\to\infty} a_n$ is finite, but the limits need not be equal.
(C) If $\lim_{x\to\infty} f(x)$ is finite, then $\lim_{n\to\infty} a_n$ is finite, but the converse is not true. Moreover, if both limits
are finite, they must be equal. (D) If $\lim_{x \to \infty} a_x$ is finite then $\lim_{x \to \infty} f(x)$ is finite but the converse is not true. Moreover, if both limits
(D) If $\lim_{n\to\infty} a_n$ is finite, then $\lim_{x\to\infty} f(x)$ is finite, but the converse is not true. Moreover, if both limits are finite, they must be equal.
(E) It is possible for either of the limits $\lim_{x\to\infty} f(x)$ and $\lim_{n\to\infty} a_n$ to be finite, but for the other one
not to be finite. Moreover, even if both limits exist, they need not be equal.
Your answer:
 (2) Consider a function f: R→ R. Restricting the domain of f to the natural numbers, obtain a sequence whose nth member a_n is defined as f(n). Which of the following statements is false about the relationship between f and the sequence (a_n)? (A) If f is an increasing function, then (a_n) form an increasing sequence. (B) If f is a decreasing function, then (a_n) form a decreasing sequence. (C) If f is a bounded function, (i.e., its range is a bounded set) then (a_n) form a bounded sequence. (D) If f is a periodic function, then (a_n) form a periodic sequence. (E) If f has a limit at infinity, then (a_n) is a convergent sequence.
Your answer:
 (3) We are given a sequence a₁, a₂,, a_n, of real numbers. The goal is to find a continuous function f on all of ℝ such that f(n) = a_n for all n ∈ ℕ. Which of the following is true? (A) There is a unique choice of f that works. (B) There exist infinitely many different choices of f that work. (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero, one, or infinite. (D) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero or one. It can never be infinite. (E) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.
Your answer:

(A) There is a unique choice of f that works.

(4) We are given a sequence $a_1, a_2, \ldots, a_n, \ldots$ of real numbers. The goal is to find an *infinitely dif*ferentiable function f on all of \mathbb{R} such that $f(n) = a_n$ for all $n \in \mathbb{N}$. Which of the following is

(B)	There exist	infinitely	many	different	choices	of.	f that v	vork.
-----	-------------	------------	------	-----------	---------	-----	----------	-------

- (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero, one, or infinite.
- (D) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero or one. It can never be infinite.

	(E) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.
	Your answer:
(5)	 We are given a sequence a₁, a₂,, a_n, of real numbers. The goal is to find a polynomial function f on all of ℝ such that f(n) = a_n for all n ∈ ℕ. Which of the following is true? (A) There is a unique choice of f that works. (B) There exist infinitely many different choices of f that work. (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.
	Your answer:
(6)	For the remaining questions: For a function $f: \mathbb{N} \to \mathbb{R}$, define Δf as the function $n \mapsto f(n+1) - f(n)$. Denote by $\Delta^k f$ the function obtained by applying Δ k times to f . If $f(n) = n^2$, what is $(\Delta f)(n)$? (A) 1 (B) n (C) $2n - 1$ (D) $2n$ (E) $2n + 1$
	Your answer:
(7)	If f is expressible as a polynomial function of degree $d>0$, what is the smallest k for which $\Delta^k f$ is identically the zero function? Hint: Think of the analogous question using continuous derivatives. Although Δ differs from the continuous derivative, much of the qualitative behavior is the same. (A) $d-2$ (B) $d-1$ (C) d (D) $d+1$ (E) $d+2$
	Your answer:
(8)	If f is a function such that $\Delta f = af$ for some positive constant a , and $f(1)$ is positive, which of the following best describes the nature of growth of f ? Hint: This is qualitatively similar to the analogous differential equation using continuous derivatives. (A) f grows like a sublinear function of n . (B) f grows like a linear function of n .

- (C) f grows like a superlinear but subexponential function of n.
- (D) f grows like an exponential function of n.
- (E) f grows like a superexponential function of n.

Your	answer:	