Stochastic process, Brownian motion, timeseries and all

Some formal defintion

- A stochastic process is a collection of random variables indexed by time or space (or more generally, by some index set), representing the evolution of some random quantity over that index.
- A stochastic process \${X_t}_{t \in \mathbb{Z}}\$ is weakly/covariant stationary if:
 - 1. $\frac{E}{X_t} = \mu, a constant (mean is time-invariant),$
 - 2. $\frac{Var}{X_t} = \mathbb{E}[(X_t \mu)^2] < \inf\{y \in \mathbb{E}[(X_t \mu)^2] < \inf\{y \in$
 - 3. $\text{Cov}(X_t, X_{t+h}) = \gamma(h)$ depends only on the lag h, not on time t.
- Definition of Brownian Motion

A **Brownian motion** (also called **Wiener process**) is a continuous-time stochastic process $\{B_t\}_{t \neq 0}$ that satisfies the following properties:

1. Initial condition:

\$ B_0 = 0 \quad \text{(almost surely)} \$\$

2. Independent increments: For any $0 \leq t_1 < t_2 < dots < t_n$, the increments

$$$$$
 B_{t_1} - B_{t_0},\ B_{t_2} - B_{t_1},\ \dots,\ B_{t_n} - B_{t_{n-1}} \$\$

are independent random variables.

3. Stationary increments: For \$s < t\$, the increment \$B t - B s\$ has a normal distribution:

```
$ B_t - B_s \sim \mathcal{N}(0, t - s) $$
```

4. **Continuity**: The sample paths \$t \mapsto B_t(\omega)\$ are **almost surely continuous** functions of \$t\$.

Notation:

A standard Brownian motion is often written as:

\$ B t \sim \mathcal{N}(0, t), \quad \text{with } B 0 = 0 \$\$

- \$\mathbb{E}[B_t] = 0\$
- \$\text{Var}(B t) = t\$
- \$B t\$ has nowhere differentiable paths (almost surely)

Example

Consider a Black-Scholes price below, \$\$\frac{d S_t} {S_t} = \mu dt + \sigma dW_t\$\$

The distribution of \$dS_t\$ is a normal distribution \$\mathcal{N}(\mu dt, \sigma^2 dt)\$ as the first component gives deterministic drift and the second component is a random noise with zero mean, of variance \$\sigma^2 dt\$. Now let's try to digrace this. What does it mean in real life.

• Suppose you have a price (time) series \$S_t = {1.20, 1.32, 1.94, 1.50, 1.76.....}\$. The equation is saying if we plot the \$d\log{S_T}\$ then that will be a normal distribution.

\$T\$	\$S_T\$	\$dS_T\$
\$t_0\$	1.20	-
\$2t_0\$	1.32	0.12
\$3t_0\$	1.94	0.62
\$4t_0\$	1.50	-0.44
\$5t_0\$	1.76	0.26

Below I have plotted the log(price) and log(return) for

- Upper (\$T=30,\text{day}\$, \$\Delta t = 1,\text{hr}\$)
- Middle (\$T=30,\text{day}\$, \$\Delta t = 4,\text{hr}\$)
- Lower (\$T=90,\text{day}\$, \$\Delta t = 1,\text{hr}\$)

Notice,

- The third plot has higher \$T\$, which makes the sampling distribution more like population distribution.
- The sigma for \$\Delta t = 4,\text{hr}\$ is 2x that of \$\Delta t = 1,\text{hr}\$

Now what is the mean and sigma of this distribution?

• Here \$dt \rightarrow t_0\$ and hence normal distribution: $\pi^2 t_0$ \$

Is the $d\log{S_T}$ or log-return is (covariant) stationary process?

• The mean and sigma of the distribution is time independent. Since each time-step is independent (property of brownian motion) the auto-covariance is also zero. Hence it is a covariant stationary process.

- There may arise confustion that they are depending on \$t_0\$ then how it is time independent?
 - We are looking for a log(return) of a stock price for a fixed time frame say $t_0 = 1 \cdot \frac{hr}{s}$, now with this $t_0 = 1 \cdot \frac{hr}{s}$ timeframe data we can make distribution with 1 year or 20 year of data, the normal distribution will resembles population distribution ($T = 1 \cdot T = 1$) \to T = 20, \text{yr} \equiv \text{sampling distribution} \to \text{Population distribution}\$
- Then what about the claim volatality scales with \$\sim \sqrt{t}\\$?
 - To avoid any confustion we can make it \$\sim \sqrt{\Delta t}\$, and with \${\Delta t}\$ we mean
 the timeframe, not absolute time (total duration of data T = 20 year say)
 - When we check log-return of \$\Delta t = 1, \text{yr}\$ timeframe, and plot distribution of multiple (successive / simulated) years \$(T)\$ then the distribution will also will not change (of course if other condition does not change) over the year and will make the sampling distribution towards the Population distribution.
 - But the distribution \$\sigma_{\text{1,\text{yr}}} = \sqrt{252} \sigma_{\text{1,\text{day}}}\$, so
 the log(return) is stationary process and mean/width/auto-covariance does not change over
 time but they depend on the timeframe overwhich these are calculated, 1hr / 1 day/ 1 yr.
- Is the log(return) a \$I(0)\$ process?
 - By defintion stationary process itself is \$1(0)\$ process.
- How we can model log(return) with discrete timeseries model in ARIMA?
 - The log (return) of a Black-Scholes price is a white noise ARIMA(0,0,0).

Discrete vs continuous

Discrete	Continuous
Random walk, ARIMA(1, 1, 0), \$X_t= X_{t-1} + \epsilon_t\$	Brownian motion \$W_t\$
White noise (Stationary) ARIMA(0, 0, 0), \$Y_t = dX_t= \epsilon_t\$	Stationary increment of Brownian motion \$Y_t = dW_t\$

Random Walk and its first difference

- Random walk \$X_t = \sum_{i=1}^t \epsilon_i\$ is total sum of all the steps of white noise process. So at time \$t\$ it bags all the stationary increment which makes it dependent on t, \$\text{Var}(X_t) = t \text{Var}(\epsilon_0)=t \sigma^2\$. Since this depend on time, it's not-stationary process.
- However Y_t does not bag all the increment, but only increment of that particular time, $\t Y_t$ = \sigma^2\$

Brownian motion and its first difference

- According to defition normalized brownian motion's variance \$\text{Var}(W_t) = t\$. The behaviour is same as discrete one. Since this depend on time, it's not-stationary process.
- As an example we can consider price series, and if we are to make a histogram of the log(price) series it will not give you a normal distribution. \$\$E[\log S_t] = \log S_0 + (\mu -\sigma^2/2) t = \Mu_t\$\$
 \$\$\text{Var}[\log S_t] = \sigma^2 t = \Sigma_t\$\$

• Suppose $\hat{N}(Mu_{t_0}, \sigma_{t_0}) = f(t_0)$ is a random variable then So for a price series, the mean and variance depends on $\hat{t_0}$ and $\hat{t_0}$

$$\frac{5}{\log S_t} = \{ f(t_0), f(2t_0), f(3t_0), f(4t_0), f(5t_0), f(6t_0).... f(T) \}$$

• But for \$dW_t\$, all are i.i.d. and hence it will give fixed variance, does not depend on \$T\$

$$\$$
 \(\log (S_t/S_0) = \{ f(t_0), f(t_0), f(t_0), f(t_0), f(t_0), f(t_0), f(t_0)\} \

Cointegration and statistical arbitrage spread

If we consider the distribution of S_t series for a timeframe $\Delta t = 1,\$ ys $\Delta t = 4,\$ the width of latter will be 2x that of former?

- NO
- Because in earlier case we made \$I(1)\$ series out of \$I(0)\$ series by taking the first difference. That
 caused the difference timeframe \$\Delta t\$, as important parameter, deciding the width of the \$I(0)\$
 series.
- But here \$\Delta t\$ has no role, by construction the spread is an \$I(0)\$ process.