武汉大学数学与统计学院

2008—2009 第一学期《微积分 A1》期末考试试题 (信息 216 学时)

一、 $(6\times7')$ 试解下列各题:

1、计算
$$\lim_{n\to\infty} \left[n - \frac{n^3 - 1}{n(n+2)}\right]$$

2、计算
$$\lim_{x\to 0} \frac{(\sin x) \cdot \ln(1+2x)}{1-\cos 2x}$$

2、计算
$$\lim_{x\to 0} \frac{(\sin x) \cdot \ln(1+2x)}{1-\cos 2x}$$

3、设 $\begin{cases} x = t + \sin t \\ y = f(x-t) \end{cases}$, f 二阶可导, 求 $\frac{d^2 y}{dx^2}$

4、计算
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x(x+\cos x) dx$$

5、设
$$f'(\ln x) = \begin{cases} 1 & , 0 < x \le 1 \\ x & , x > 1 \end{cases}$$
 且 $f(0) = 0$,求 $f(x)$

6、设
$$y = \sin^a x + a^{\sin x} + x^{\sin x}$$
 (a 为正常数), 求 y'

- 二、(15 分) 已知函数 $y = \frac{(x-1)^3}{(x+1)^2}$,求:
 - 1、函数 f(x) 的单调增加、单调减少区间,极大、极小值;
 - 2、函数图形的凸性区间、拐点、渐近线。

三、(12) 设
$$f(x) = \begin{cases} e^{2x} + b, & x \le 0 \\ \sin ax, & x > 0 \end{cases}$$

问: (1) a,b 为何值时, f(x) 在 x = 0 处可导;

(2) 若另有F(x)在x = 0处可导,证明F[f(x)]在x = 0处可导;

- 四、(12)一铅直倒立在水(水的比重为1)中的等腰三角形水闸门,其底为6米,高为3米,且底与水面 相齐,求:
 - 1、水闸所受的压力。
 - 2、作一水平线将此闸门分为上下两部分,使两部分所受的压力相等。
- 五、(12 分)设函数 y(x) 具有连续的二阶导数,且 y'(0) = -1

1、试由方程
$$y(x) = 1 - \frac{1}{2} \int_{0}^{x} [y''(t) + y(t) - e^{-t}] dt$$
 确定函数 $y(x)$;

2、计算反常积分
$$\int_{0}^{+\infty} y(x) dx$$
.

六、(7 分) 设 f(x), g(x) 在区间[0,1]上连续,在(0,1) 内可导,且 f(0) = f(1) = 0,证明:对于任意正常

数 k , 在 (0,1) 内至少存在一点 ξ 使

$$f'(\xi) - k f(\xi)g'(\xi) = 0$$

武汉大学数学与统计学院

2008-2009 第一学期《高等数学 A1》期末考试试题参考答案

一、试解下列各题: (6×7')

1.
$$\text{MF:} \lim_{n\to\infty} \left[n - \frac{n^3 - 1}{n(n+2)}\right] = \lim_{n\to\infty} \frac{n^3 + 2n^2 - n^3 + 1}{n(n+1)} = \lim_{n\to\infty} \frac{2n^2 + 1}{n(n+1)} = 2$$

2.
$$\Re: \lim_{x\to 0} \frac{\sin x \cdot \ln(1+2x)}{1-\cos 2x} = \lim_{x\to 0} \frac{2x^2}{2x^2} = 1$$

4.
$$\Re : \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x (x + \cos x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x \sin x + \sin x \cos x) dx = 2 \int_{0}^{\frac{\pi}{2}} x \sin x dx = 2$$

5.
$$\#: f'(x) = \begin{cases} 1 & x \in (-\infty, 0] \\ e^x & x \in (0, +\infty) \end{cases}$$

$$\int f'(x)dx = \begin{cases} x + c_1 & x \in (-\infty, 0] \\ e^x + c_2 & x \in (0, +\infty) \end{cases}$$

当
$$x = 0$$
 时,原函数连续,得 $c_2 = c_1 - 1$ 即 $f(x) = \begin{cases} x + c_1 & x \in (-\infty, 0] \\ e^x + c_1 - 1 & x \in (0, +\infty) \end{cases}$

又
$$f(0) = 0$$
 得 $c_1 = 0$ 故得 $f(x) = \begin{cases} x & x \in (-\infty, 0] \\ e^x - 1 & x \in (0, +\infty) \end{cases}$

6.
$$M: y' = a \sin^{a-1} x \cos x + a^{\sin x} \cos x \ln a + x^{\sin x} (\frac{\sin x}{x} + \cos x \ln x)$$

二、(15 分)解: 定义域为: $(-\infty,-1)$ $\bigcup (-1,+\infty)$

$$y' = \frac{(x-1)^2(x+5)}{(x+1)^3}$$
 \Leftrightarrow $y' = 0 \Rightarrow$ $\stackrel{\text{def}}{=} x = 1, -5$ $y'' = \frac{24(x-1)}{(x+1)^4}$ \Leftrightarrow $y'' = 0 \Rightarrow x = 1$

				()			
X	$(-\infty, -5)$	-5	(-5,-1)	-1	(-1,1)	1	(1,+∞)
y'	+	0	_		+	0	+
y"	_	_	_		_	0	+
У	单增	极大 值点	单减		单增		单增
y = f(x)	上凸		上凸		上凸	拐点 (1,0)	凸

1)故单调增加区间为:
$$(-\infty, -5)$$
、 $(-1, +\infty)$ 单调减少区间为: $(-5, -1)$ 极大值为: $f(-5) = -\frac{27}{2}$,无极小值。

拐点为: (1,0) 由 $\lim_{x\to -1} \frac{(x-1)^3}{(x+1)^2} = \infty$, 故 x = -1 为函数图形的铅直渐近线。

故 y = x - 5 为函数图形的斜渐近线。

三、(12 分)解: 1、由
$$f(x)$$
 在 $x = 0$ 处可导,故 $f(x)$ 在 $x = 0$ 处连续,则 $f_{-}(0) = f_{+}(0)$ 有 $b+1 \Rightarrow b=-1$ 故有 $f(0)=0$ $f(x)$ 在 $x=0$ 处可导,所以 $f'_{-}(0)=f'_{-}(0)$ 即

$$f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} = 2$$

$$f'(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sin ax}{x} = a \quad \text{for } a = 2 \text{ to } f'(0) = 2$$

$$2, \quad F'[f(0)] = \lim_{x \to 0} \frac{F[f(x)] - F[f(0)]}{x - 0}$$

$$= \lim_{x \to 0} \frac{F[f(x)] - F[f(0)]}{f(x) - f(0)} \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = F'(0)f'(0) = 2F'(0)$$

四、(12分)解:1、

如图所示: $\frac{x}{3} = \frac{3-y}{3} \Rightarrow x = 3-y$ 取一在面积元 ds = 2xdy 此面积所受的压力: dF = pds = p2xdy p 为 ds 上的压强, 因为水的比重为 1,所以 p = y 故 dF = pds = 2xydy = 2y(3-y)dy

$$\iiint F = 2 \int_{0}^{3} y(3-y) dy = 3y^{2} \Big|_{0}^{3} - \frac{2}{3}y^{3} \Big|_{0}^{3} = 3^{3} \times \frac{1}{3} = 9$$

2、作一水平线 y = b 使得闸门上下两部分所受的压力相等。即:

$$2\int_{0}^{b} y(3-y)dy = \frac{9}{2} \qquad \text{即}\int_{0}^{b} y(3-y)dy = \frac{9}{4} \, \text{而}\int_{0}^{b} y(3-y)dy = \frac{3}{2}b^{2} - \frac{1}{3}b^{3} \quad \text{故有}$$
$$\frac{9}{4} = b^{2}(\frac{3}{2} - \frac{1}{3}b) \Rightarrow b = \frac{3}{2} \, \text{时}, \quad \text{即等要三角形水闸的中位线的上、下两部分所受的压力相等。}$$

五、(12 分)解: 1、由
$$y(x) = 1 - \frac{1}{2} \int_{0}^{x} [y''(t) + y(t) - e^{-t}] dt \Rightarrow y'(x) = -\frac{1}{2} [y''(x) + y(x) - e^{-x}]$$

$$y*(x) = Ax^2e^{-x}, y*'(x) = 2Axe^{-x} - Ax^2e^{-x}, y*''(x) = 2Ae^{-x} - 4Axe^{-x} + Ax^2e^{-x}$$

$$2Ae^{-x} = e^{-x} \Rightarrow A = \frac{1}{2} \qquad \text{if } y(x) = (c_1 + c_2 x)e^{-x} + \frac{1}{2}x^2 e^{-x}$$

由
$$y'(0) = -1 \Rightarrow c_2 = 0$$
 所以有 $y(x) = (1 + \frac{1}{2}x^2)e^{-x}$

$$2 \cdot \int_{0}^{+\infty} y(x) dx = \int_{0}^{+\infty} (1 + \frac{1}{2}x^{2})e^{-x} dx = -\int_{0}^{+\infty} (1 + \frac{1}{2}x^{2})e^{-x} d(-x) = -\int_{0}^{+\infty} (1 + \frac{1}{2}x^{2}) d(e^{-x})$$

$$= -[(1 + \frac{1}{2}x^{2})e^{-x}]_{0}^{+\infty} - \int_{0}^{+\infty} e^{-x} d(1 + \frac{1}{2}x^{2})] = -[-1 + \int_{0}^{+\infty} x d(e^{-x})] = -[-1 + e^{-x}]_{0}^{+\infty} = 2$$

六、(7分)解: 令
$$F(x) = f(x)e^{-kg(x)}$$
 则有: $F(0) = 0$, $F(1) = 0 \Rightarrow F'(\xi) = 0$ $\xi \in (0,1)$ 而 $F'(x) = -ke^{-kg(x)}g'(x)f(x) + e^{-kg(x)}f'(x)$ 所以有: $f'(\xi) - kf(\xi)g'(\xi) = 0$