Relatório do Projeto

Yan Luca Viana de Araújo Fontenele

1. Apresentação do Projeto

O projeto desenvolvido teve como base explorar os recursos disponíveis na plataforma BitDogLab, desde de dispositivos de entrada, como botões e joystick, até os dipositivos de saída, como matriz de leds, tela Oled e buzzer.

Navegando pelo joystick e selecionando uma opção por um botão, foi disponibilizado um menu de opções, onde o usuário pode escolher entre ver um emoji na matriz de leds, verificar a temperatura lida por um sensor de temperatura, ver a distância até algum objeto calculada pelo sensor de ultrassom ou ouvir uma música através do buzzer.

2. Título do Projeto

Menu de Funcionalidades da BitDogLab

3. Objetivos do Projeto

O objetivo principal deste projeto é desenvolver um sistema interativo utilizando a BitDogLab, explorando sensores, atuadores e uma interface visual para interação do usuário. O projeto demonstra a capacidade da plataforma em lidar com entradas e saídas digitais e analógicas, proporcionando um sistema dinâmico e funcional.

4. Principais Requisitos

- 1. Criar um menu interativo para seleção de funcionalidades.
- 2. Utilizar o joystick para navegar entre as funcionalidades.
- 3. Utilizar um botão para selecionar uma opção.
- 4. Utilizar um botão para voltar ao menu principal.
- 5. Exibir informações no display OLED.
- 6. Utilizar matriz de LED para exibir padrões visuais.
- 7. Implementar leitura de temperatura com o sensor DHT11.
- 8. Implementar leitura de distância com o sensor ultrassônico HC-SR04.
- 9. Reproduzir sons/melodias com o buzzer.

5. Descrição do Funcionamento

O sistema inicia com um menu interativo exibido no display OLED. O joystick é utilizado para navegar entre as opções, e um botão é usado para selecionar a funcionalidade desejada. Dependendo da escolha do usuário, o sistema pode:

- Exibir expressões faciais na matriz de LED.
- Medir temperatura e umidade com o DHT11.
- Medir distância usando o sensor ultrassônico HC-SR04.
- Reproduzir músicas através do buzzer.

6. Justificativa

Este projeto permite explorar múltiplas funcionalidades da BitDogLab, proporcionando uma plataforma didática para aprendizado de sistemas embarcados, interação com sensores e controle de dispositivos.

7. Originalidade

O diferencial deste projeto é a poder explorar vários recursos dentro da mesma aplicação, mostrando o que pode ser feito com o hardware disponível e integrando sensores a placa de desenvolvimento, criando um sistema interativo que pode ser facilmente expandido para outras aplicações.

8. Hardware

8.1 Diagrama em Blocos

8.2 Função de Cada Bloco

- Raspberry Pi Pico W: Unidade central de processamento.
- **Display OLED**: Exibição das informações.
- **Matriz de LED**: Exibição de padrões visuais.
- Joystick: Controle de navegação no menu.
- **Botão**: Confirma seleção de opção.
- **Buzzer**: Emissão de sons.
- **DHT11**: Medida de temperatura e umidade.
- HC-SR04: Medida de distância.

8.3 Lista de Materiais

- BitDogLab (Raspberry Pi Pico W)
- Display OLED
- Matriz de LED
- Joystick
- Botão
- Buzzer
- Sensor DHT11
- Sensor HC-SR04
- Jumpers

8.4 Descrição da Pinagem

- Display OLED
 - SDA GPIO14
 - SCL GPIO15
- Matriz de LED
 - GPIO7
- Joystick
 - GPIO26
- Botão
 - BUTTON_A GPIO5
 - BUTTON_B_GPIO6
- Buzzer
 - GPIO10
- Sensor DHT11
 - GPIO8
- Sensor HC-SR04
 - Trigger 17
 - Echo 18

9. Software

9.1 Blocos Funcionais

9.2 Definição das Variáveis

F unções de Inicialização e Configuração:

pwm_set_freq(uint slice_num, uint16_t freq): Configura a frequência do PWM.

buzzer_init(): Inicializa o buzzer.

hc_sr04_init(): Inicializa o sensor HC-SR04.

npInit(uint pin): Inicializa a matriz de LEDs.

ssd1306_init(): Inicializa o display OLED.

read_from_dht(dht_reading *result): Lê dados do sensor DHT11.

Funções de Controle de LEDs:

npSetLED(const uint index, const uint8_t r, const uint8_t g, const uint8_t b): Define a cor de um LED.

npClear(): Limpa a matriz de LEDs.

npWrite(): Envia os dados para a matriz de LEDs.

drawHeart(): Desenha um coração na matriz de LEDs.

draw1(), draw2(), draw3(), draw4(): Desenham números na matriz de LEDs.

drawRostoFeliz(), drawRostoBravo(), drawRostoTriste(): Desenham emojis na matriz de LEDs.

drawMusic(): Desenha um padrão musical na matriz de LEDs.

exibir_matriz_led(int opcao): Exibe um padrão na matriz de LEDs com base na opção.

exibir_matriz_led_Emojis(int opcao): Exibe emojis na matriz de LEDs.

exibir_matriz_led_Musica(int opcao): Exibe padrões musicais na matriz de LEDs.

limparMatriz(): Limpa a matriz de LEDs.

Funções de Controle de Áudio:

play_note(int frequency, int duration): Toca uma nota no buzzer.

buzzer_init(): Inicializa o buzzer.

Funções de Leitura de Sensores:

hc_sr04_read_distance(): Lê a distância do sensor HC-SR04.

read_from_dht(dht_reading *result): Lê temperatura e umidade do DHT11.

Funções de Exibição no Display OLED:

displayMenu(uint8_t *ssd, struct render_area *frame_area, int menuIndex): Exibe o menu principal no OLED.

displayMenuEmojis(uint8_t *ssd, struct render_area *frame_area, int menuIndex): Exibe o menu de emojis no OLED.

displayMenuTemperatura(uint8_t *ssd, struct render_area *frame_area, float temperatura): Exibe a temperatura no OLED.

displayMenuDistancia(uint8_t *ssd, struct render_area *frame_area, float distancia): Exibe a distância no OLED.

displayMenuMusica(uint8_t *ssd, struct render_area *frame_area, int menuIndex): Exibe o menu de música no OLED.

Funções Auxiliares:

executarOpcao(int opcao): Executa uma opção do menu.

calculate_render_area_buffer_length(struct render_area *frame_area): Calcula o tamanho do buffer para renderização no OLED.

render_on_display(uint8_t *ssd, struct render_area *frame_area): Renderiza o conteúdo no display OLED.

Principais Variáveis

Variáveis de Configuração:

DHT PIN: Pino GPIO conectado ao DHT11.

TRIG PIN, ECHO PIN: Pinos GPIO conectados ao HC-SR04.

JOY_Y, JOY_X: Pinos ADC conectados ao joystick.

BUTTON_A, BUTTON_B: Pinos GPIO conectados aos botões.

LED_COUNT: Número de LEDs na matriz.

LED PIN: Pino GPIO conectado à matriz de LEDs.

BUZZER_PIN: Pino GPIO conectado ao buzzer.

I2C_SDA, I2C_SCL: Pinos I2C conectados ao display OLED.

Variáveis de Estado:

menuIndex: Índice do menu atual.

opcao_atual: Opção selecionada no menu principal.

opcao_atual_emojis: Opção selecionada no menu de emojis.

opcao_atual_musica: Opção selecionada no menu de música.

currentMenu: Menu atualmente exibido.

Variáveis de Dados:

leds[LED_COUNT]: Buffer de pixels da matriz de LEDs.

melody[], melody2[]: Arrays com as notas das melodias.

durations[], durations2[]: Arrays com as durações das notas.

ssd[ssd1306_buffer_length]: Buffer de dados para o display OLED.

frame_area: Área de renderização no display OLED.

Variáveis de Sensores:

dht_reading reading: Estrutura para armazenar leituras do DHT11.

float distance: Distância medida pelo HC-SR04.

Variáveis de Hardware:

np_pio: Instância do PIO para controle da matriz de LEDs.

sm: Máquina de estado do PIO.

adc_y_raw, adc_x_raw: Leituras brutas do joystick.

9.3 Fluxograma

9.4 Inicialização

Deve-se umar o Pico Sdk para compilar o projeto.

Depois colocar a Raspberry Pi Pico W em modo de boot, mantendo pressionado o botão "boot" ao conectá-la ao computador;

Depois, com o comando Run, do Pico Sdk, enviar o programa para a placa.

Ela iniciará automaticamente o programa, o qual já vai aparecer na tela o menu de opções.

10. Execução do Projeto

10.1 Metodologia

O projeto foi desenvolvido através do Pico SDK no vscode, por partes, testando e entendendo o funcionamento de cada recurso para integrar no produto final.

10.2 Testes de Validação

Testes manuais, visualizando o resultado diretamente na placa.

10.3 Discussão dos Resultados

O desempenho foi satisfatório, porém não foi estabelecida corretamente a leitura dos sensores externos.

10.4 Vídeo de 3 Min

Link no github: https://github.com/yan-luca/projetoFinalEmabrcaTech