問題1 C言語は文脈自由型の文法によって規定されている。if文は以下の生成規則にとって規定されている。

以下の文法記述で使用されている、終端記号 Σ 、非終端記号 N、生成規則 P、開始記号 S を記述せよ。さらに、次の if 文を用いて if 文のあいまい性について説明せよ (構文木を作成して説明せよ)。つぎに、このあいまい性をなくすための文法の修正法を提案せ ょ。

if 文→if (条件式) 文;

if 文→if (条件式) 文 else 文 ;

分類	内容
非終端記号 N	· 计文 条件式 文
終端記号 Σ	if () else j
生成規則 P	if文→ if (条件式) 文 i if文→ if (条件式) 文 else 文 i
開始記号 S	计文

あいまい性を検討する対象の if 文→ if (条件式) if (条件式) 文1 else 文2 ;

あいまい性を生じる理由:

け(条件表)対の軽了が決まらない。

問題 2 以下の正則文法 $G=(N,\Sigma,P,S)$ と等価な ϵ ・動作を持つ有限オートマトン $M=(Q,\Sigma,\delta,q_0,F)$ を作成したい。 はじめに、有限オートマトンの状態推移関数 δ を計算し、有限オートマトン M(状態推移図)を求めよ。

```
正則文法 G 非終端記号 N=\{S,A,B\} 終端記号 \Sigma=\{O,1\} 開始記号 S=\{S\} 生成規則 P=\{S\to OA,S\to 1B,S\to \epsilon,A\to OB,A\to 1S,A\to 1,B\to OB,B\to 1B\}
```

分類	内容				
状態 Q	35. A, B 3U 3863				
入力信号 Σ	10,13				
状態推移関数 δ	S→0A S→1B S→ E A→0B A→1S A→1 B→0B B→1B	$S(S,0) = \{A\}$ $S(S,1) = \{B\}$ $S(S,E) = \{B\}$ $S(A,0) = \{B\}$ $S(A,1) = \{S\}$ $S(A,1) = \{B\}$ $S(B,0) = \{B\}$ $S(B,1) = \{B\}$			
初期状態 qo	S				
最終状態 F	8 .f				

問題3 加算(+)と積算(*)からなる式を表現する文法(G)をチョムスキー標準形で記述せよ。

```
G = (N, \Sigma, P, S)
N = \{ E, T, F \} \qquad \Sigma = \{ a, +, *, (, ) \} \qquad S = \{ E \}
P = \{
E \rightarrow E + T, \quad E \rightarrow T * F, \quad E \rightarrow ( E ), \quad E \rightarrow a, 
T \rightarrow T * F, \quad T \rightarrow ( E ), \quad T \rightarrow a, 
F \rightarrow ( E ), \quad F \rightarrow a \}
```

分類	内容			
非終端記号 N	E,T,F,<+T>,<*F>, <e)>,</e)>			
	<+>, <*>, <(>, <) >			
終端記号 Σ	a,+,*,(,)			
生成規則 P	E→ E<+T> E→ T<*F> E→ ⟨() <e)> E→ α <+T>→ <+>T</e)>	T→T <*F> T→<(} <e)></e)>	F→<((> <e)> F→a</e)>	
	<*F>→<*>F <e)>→ E<)></e)>			
	<+>>+ <*>>+ <(>>+ <(>>+ <)>>+			
開始記号 S	E			

問題4 次の文脈自由文法Gの生成規則から無効記号を削除し、ε-生成規則を削除し、単位生成規則を削除せよ。削除の過程も記述せよ。

G= (N,
$$\Sigma$$
, P, S)
N= { A, B, C, X, Y, Z, S } Σ = { a, b, c } S= { S }
P= {
S \to XY, S \to Y, X \to S, Y \to A b X, Y \to B, Y \to b,
Z \to CZ, Z \to \epsilon, A \to a, B \to b B, B \to \epsilon }

]	単位生成規則の除去	
S→8 S→0	A >a	B→b B→bB	$Y \rightarrow A$ $Y \rightarrow b$ $Y \rightarrow X$ $Y \rightarrow Ab$ $Y \rightarrow bX$ $Y \rightarrow Ab X$ $Y \rightarrow bB$
	,		

問題5.任意の言語Lにおいて x ∈ L であるならば、xを「真の接頭辞」とする他の記号列 w = xy (y ≠ ε) に対して、 w L であるならば Lは接頭辞性質を持つという。

以下の言語が接頭辞性質を持つか、持たないか判定せよ。理由を示し判定結果を示せ。

(1) 単純決定性言語(L)

理由: 単純沢定性言語で"1ま XEL のとま、 父の後につごく記号は 読めない。したがって 父の後に イがフブツマも 父子は 受理されてるい、あなわち 父午上、

判定結果: 接頭辞性質を持つ

(2) $\exists EL = \{x, yx, yzx, yy, zx, zy\}$ $\Sigma = \{x, y, z\}$

理由: エモレ について 兄がなる言語はない 後し、冬日であるので

おXEL について なといなる言意はない

マンチン (1) マンチン (1)

、接頭辞性質を持つ

(3) 言語 $L=\{w\in\{x\,,\,y\,,\,z\}\,$ * $\mid\,w$ は奇数個の x と奇数個の y と奇数個の z を含む $\}$ $\Sigma=\{x\,,\,y\,,\,z\}$

理由:

xyz € L 1=747. xyz x²y²z² € L

^{判定結果:} 接頭辞性はない

(4) 言語 $L = \{xy^m \mid m \ge 1\}$ $\Sigma = \{x, y, z\}$

理由:

xy €L xyy €L

接頭辞性はない