# Linear and Generalized Linear Models (4433LGLM6Y)

Overview problems in linear models

Meeting 6

Vahe Avagyan

Biometris, Wageningen University and Research



# Overview problems in linear models, diagnostics

- Errors in predictors
- Testing for lack of fit: regression vs ANOVA
- Leverages and hat matrix
- Outliers: residuals, standardized and studentized residuals

# Overview problems in linear models, diagnostics

- Errors in predictors
- Testing for lack of fit: regression vs ANOVA
- Leverages and hat matrix
- Outliers: residuals, standardized and studentized residuals

#### Problems in Linear models: what can go wrong?

- What can go wrong?
- Recall the linear model:

$$y = X\beta + \epsilon$$

- Potential problems (According to Faraway):
  - Data
    - Unusual observations
  - Systematic part
    - May not be correct
  - Random part
    - We do not have constant variance, uncorrelatedness, normal distribution.

#### Problems in Linear models

#### 1. Data

- Biased sample from population of interest.
- Important predictors may have been missed.
- Predictors may have been measured with error.
- Observational data make causal conclusion problematic.
- Range of data may limit predictions.
- Data may contain unusual observations.

#### Problems in Linear models: what can go wrong?

$$y = X\beta + \epsilon$$

2. Systematic (structural) part:  $E(y) = X\beta$ 

- The model may be incorrect.
  - "All models are wrong, but some are useful". George Box:
- A linear model represents an approximation to a complex reality.
  - We hope that it is fair representation of reality.

#### Problems in Linear models: what can go wrong?

$$y = X\beta + \epsilon$$

- 3. Error component. Recall:  $\epsilon \sim N_n(0, \sigma^2 \mathbf{I}_n)$ .
  - Errors may be heterogeneous (i.e., unequal variance).
  - Errors may be correlated. 有機
  - Errors may not be normally distributed.
    - In larger datasets this is not a big issue
      - E.g.,  $\hat{\beta}$ 's are approximately normal due to CLT.

#### **Diagnostics**

- We will study most of the mentioned topics (but not all).
- Assumptions are checked using regression diagnostics.
- Diagnostic techniques can be graphical or numerical.
- Regression diagnostics may suggest improvements.
- Model building is iterative and interactive.

#### Errors in predictors: Simulated Example

```
> n <- 50; x <- 10* runif(n)
> eps <- rnorm(n)
> y < -0 + x + eps
> # First model, without any
> # noise in the regressor
> model <- lm(y \sim x); coef(model)
(Intercept)
 0.09974288 0.94938496
> # Add some noise to the regressor
> x1 <- x + rnorm(n)
> model1 <- lm(y \sim x1); coef(model1)
(Intercept)
                     x1
  0.5371055 0.8646413
> # Add more noise
> x2 <- x + 5*rnorm(n)
> model2 <- lm(y \sim x2); coef(model2)
(Intercept)
  3.8310088 0.2470816
> matplot(cbind(x, x1, x2), y,
          xlab = "x", ylab = "y")
> abline(model)
> abline(model1, lty = 2)
> abline(model2, lty=3)
```



$$y = 10. \, \text{ruteps}$$
  
 $x_2 = 10. \, \text{rut} \, \text{sxru} = |\text{sru}|$ 

# Overview problems in linear models, diagnostics

- Errors in predictors
- Testing for lack of fit: regression vs ANOVA
- Leverages and hat matrix
- Outliers: residuals, standardized and studentized residuals

#### Testing for Lack of fit

- How to tell if a model fits the data?
  - Model is correct:  $\hat{\sigma}^2_{\epsilon}$  is an unbiased estimate of  $\sigma^2_{\epsilon}$
  - model is too simple,  $\hat{\sigma}_{\epsilon}^2$  will overestimate  $\sigma_{\epsilon}^2$ .
  - is too complex,  $\hat{\sigma}_{\epsilon}^2$  may underestimate  $\sigma_{\epsilon}^2$ .
- So, for testing the lack of fit, we could compare  $\hat{\sigma}^2_{\epsilon}$  with  $\hat{\epsilon}^2_{\epsilon}$ .
- Test of lack of fit: if  $\sigma_{\epsilon}^2$  is known, then

$$\frac{(n-p)\widehat{\sigma}_{\epsilon}^2}{\sigma_{\epsilon}^2} \sim \chi_{n-p}^2$$

- Realistically,  $\sigma_{\epsilon}^2$  is unknown.
  - We need a model-free estimate of  $\sigma_{\epsilon}^2$ .



#### Pure error variance

- Use repeated (independent) measurements
  - repeated values of y for one or more fixed x

Pure error variance estimate:

$$\hat{\sigma}_{PE}^2 = SS_{PE}/df_{PE} = \sum_{j} \sum_{i} (y_{ij} - \bar{y}_j)^2 /df_{PE}$$

- Here,  $df_{PE} = \sum_{j} (\text{number of replicates } -1) = n \text{nr groups}.$
- $SS_{PE}$  can be seen as the within groups sum of squares from one-way ANOVA in which regressor X is treated as factor.

### Testing for Lack of fit

• Hypothesis test:

 $H_0$ : model fits adequately

 $H_a$ : model does not fit adequately

• Lack of fit test is a comparison of regression models with ANOVA model.

|   |             | df            | SS              | MS                                                 | F             |
|---|-------------|---------------|-----------------|----------------------------------------------------|---------------|
|   | Lack of fit | $n-p-df_{PE}$ | $RSS - SS_{PE}$ | RSS — SS <sub>PE</sub><br>n — p — df <sub>PE</sub> | Ratio of MS's |
|   | Pure Error  | $df_{PE}$     | $SS_{PE}$       | $SS_{PE}/df_{PE}$                                  |               |
| , | Residual    | n — р         | RSS             |                                                    |               |

• Note: Not rejecting  $H_0$  does not necessarily mean that  $H_0$  is true.

#### Testing for Lack of fit: Example

Iron corrosion

```
> # Linear regression model
> g <- lm(loss ~ Fe, data = corrosion)
> summary(g)
                                                       Assume, Fe is numerical,
Call:
lm(formula = loss ~ Fe, data = corrosion)
                                                       not a factor
Residuals:
   Min
            10 Median
                                   Max
-3.7980 -1.9464 0.2971 0.9924 5.7429
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 129.787
                         1.403 92.52 < 2e-16 ***
                         1.280 -18.77 1.06e-09 ***
            -24.020
Fe
Signif. codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1 () 1
Residual standard error: 3.058 on 11 degrees of freedom
Multiple R-squared: 0.9697, Adjusted R-squared: 0.967
F-statistic: 352.3 on 1 and 11 DF, p-value: 1.055e-09
> (rss <- sum((summary(g)$residuals)^2))</pre>
[1] 102.8502
> #An easier way of getting rss
> deviance(g)
[1] 102.8502
```

#### Testing for Lack of fit: Example

```
> plot(corrosion$Fe,corrosion$loss,
+ xlab="Iron content",ylab="Weight loss")
> abline(g$coef)
```



```
> #ANOVA model with Fe factor.
> ga <- lm(loss ~ as.factor(Fe), data = corrosion)</pre>
> # RSS of the ANOVA model
> deviance(ga)
[1] 11.78167
> #Pure error variance estimate
> deviance(ga)/ga$df.residual
[1] 1.963611
> anova(g, ga)
Analysis of Variance Table
Model 1: loss ~ Fe
Model 2: loss ~ as.factor(Fe)
  Res.Df
             RSS Df Sum of Sq
                                   F Pr(>F)
      11 102.850
       6 11.782 5
                      91.069 9.2756 0.008623 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We must conclude that there is a lack of fit.

Pure error sd is estimate: 
$$\sqrt{\hat{\sigma}_{PE}^2} = \sqrt{\frac{11.78}{6}} = \sqrt{1.96} = 1.4 > 3.06$$

# Overview problems in linear models, diagnostics

- Errors in predictors
- Testing for lack of fit: regression vs ANOVA
- Leverages and hat matrix
- Outliers: residuals, standardized and studentized residuals

#### Outliers, Leverage, and Influence

- Unusual data are problematic in linear model's fit by least squares
- Regression outlier is an observation whose response-variable value is conditionally unusual given value
  of explanatory variable(s).
- An observation has high leverage if its regressor values are extreme so that it potentially has strong leverage (influence) on regression coefficients.
- An observation has high influence if it has both discrepancy (i.e., "outlyingness") and high leverage.

Influence on coefficients = Leverage × Discrepancy

#### Examples on simple linear regression

- a) Low leverage, but regression outlier
  - Deletion of observation hardly has impact on slope, slightly affects the intercept.
- b) High leverage, and regression outlier
  - Deletion of observation will affect the slope and the intercept.
- c) High leverage, but not a regression outlier
  - Deletion will not change slope and intercept substantially.





## Example on simple linear regression

• Example for Davis's data on reported and measured weight for women (F) and men (M).





### Assessing Leverage: Hat-values

Recall

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

The fitted values are

$$\hat{y} = Xb = X((X'X)^{-1}X'y) = (X(X'X)^{-1}X')y,$$

• Define the **H** matrix as:

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

• H depends only on the regressors, not on y.

- H transforms y into  $\hat{y}$ , i.e.,  $\hat{y} = Hy$ .
- Fitted values are :  $\hat{Y}_j = h_{1j}Y_1 + h_{2j}Y_2 + \cdots + h_{jj}Y_j + \ldots + h_{nj}Y_n$ .

#### Assessing Leverage: Hat-values

- Hat-values:  $h_i \equiv h_{ii}$  is a measure of leverage in regression.
- Properties of **H** matrix:
  - Symmetric, i.e.,  $\mathbf{H}' = \mathbf{H}$
  - Idempotent, i.e.,  $\mathbf{H}^2 = \mathbf{H}$
  - $0 < h_i \le 1$ .
  - trace(**H**) =  $\sum h_i = k + 1$  (for regression model with k regressors). Or  $\bar{h} = (k + 1)/n$ .

• Common cut-offs: Hat values higher than  $2 \times \bar{h}$  or  $3 \times \bar{h}$  should be considered as high leverage:

#### Assessing Leverage: Example (Davis data)

• Davis data: n = 183, and k = 3 regressors. What is the average leverage?

```
> g1 <- lm(repwt ~ weight + factor(sex) + weight:factor(sex), dat
a=Davis)
> lev <- lm.influence(g1)$hat
> sort(lev,decreasing=T)[1:10] # 10 largest leverages
                                                     30
0.71418565 0.16684054 0.07320771 0.06877588 0.06451113
       156
                              82
                                         118
                                                    169
0.05254010 0.04912301 0.04895185 0.04569369 0.04569369
> # Alternative way of getting leverages
> X <- model.matrix(g1)</pre>
> lev2 <- hat(X)
> sort(lev2,decreasing=T)[1:10]
 [1] 0.71418565 0.16684054 0.07320771 0.06877588 0.06451113
 [6] 0.05254010 0.04912301 0.04895185 0.04569369 0.04569369
```



# Overview problems in linear models, diagnostics

- Errors in predictors
- Testing for lack of fit: regression vs ANOVA
- Leverages and hat matrix
- Outliers: residuals, standardized and studentized residuals

#### **Detecting Outliers: Residuals**

Remember the least square residuals

ember the least square residuals 
$$\chi'(\vec{y} - \vec{z}) = \vec{0} \Rightarrow \chi''(\vec{y} - \vec{x} \vec{\beta}) = \vec{0} \Rightarrow \chi$$

• The residuals do not have equal variance and are not uncorrelated (**e** vs  $\epsilon$ ).

$$E(\mathbf{e}) = \mathbf{0} \text{ and } V(\mathbf{e}) = \sigma_{\epsilon}^2 (\mathbf{I}_n - \mathbf{H})$$

Single residual:

$$V(E_i) = \sigma_{\epsilon}^2 (1 - h_i),$$

A large leverage will make the variance of residual small.

#### **Detecting Outliers: Standardized Residuals**

Standardized residuals (Fox) or (internally) studentized residuals (Faraway).

$$E_i' \equiv \frac{E_i}{S_E \sqrt{1 - h_i}}$$

- These have variance 1 and give us some idea about the "outlyingness" of an observation.
- Rule of thumb: Values larger than 3 or smaller than -3 are unlikely to occur.
- $E'_i$  does not follow t-distribution.
- Alternative, Externally studentized (jackknife) residuals:

$$E_i^* = E_i' \sqrt{\frac{n - k - 2}{n - k - 1 - E_i'^2}}$$

• Rule of thumb: Values larger than 2 or smaller than -2 are unlikely to occur.

## Problems with Standardized Residuals $E'_i$

- Outliers can conceal themselves.
- Example: 2 high leverage observations: ▲ and
  - Solid line: including but excluding •.
  - dashed line: including ●, excluding ▲;
  - dotted line: both excluded.
- This problem can not be solved with  $E'_i$  and  $E_i$ .
- Outlier tests can be done using  $E_i^*$  (see outlierTest())
- If the model is correct:

$$E_i^* \sim t_{n-1-(k+1)}$$



#### **Detecting Outliers: Example**

```
> g <- lm(sr ~ pop15 + pop75 +dpi + ddpi, data=savings)
> plot(g$res, ylab="Residuals", main="Index plot of residuals")
> plot(rstandard(g), ylab="Standardized residuals", main="Index plot of standardized residuals")
> plot(rstudent(g), ylab="Jackknife residuals", main="Index plot of jackknife residuals")
> plot(lm.influence(g)$hat, ylab="Leverages", main="Index plot of leverages")
```

#### Index plot of residuals Index plot of standardized residual Index plot of leverages Index plot of jackknife residuals Standardized residuals 0.5 Jackknife residuals 7 -everages Residuals 50 50 Index Index Index Index

#### Some further remarks about outliers

- General remarks:
  - Two or more outliers next to each other can hide each other.
  - Outlier in one model may not be outlier in another when variables have been changed or transformed.
  - Error distribution may be non-normal, so that larger residuals may be expected.
  - Individual outliers much less of a problem in larger datasets: single point will not have leverage to affect the fit considerably. However, clusters of outliers may.

#### Some further remarks about outliers

- What to do about outliers?
  - Check the data-entry errors first.
  - Examine the physical context: what did happen? Discovery of outlier may be of great interest.
  - Exclude point from analysis, try reinclude later, compare results. Report honestly about the existence of outliers, even if not included in your model.
  - Robust regression may be preferred if outliers exist, which cannot be identified as mistakes or aberrations.
  - Don't exclude outliers in automated way.

#### Influential observations

• Influential point is one whose removal from dataset would cause large change in the fit.

Measure of the influence: Cook's distance:

$$D_i = \frac{E_i'^2}{(k+1)} \times \frac{h_i}{1 - h_i}$$

• Recall the formula: Influence on coefficients = Discrepancy  $\times$  Leverage

• Numerical cutoff:  $D_i > \frac{4}{n-k-1}$ .

#### Influential observations: Example

```
> g <- lm(sr ~ pop15 + pop75 +dpi + ddpi, data=savings)
> cook <- cooks.distance(g)
> range(cook)
[1] 4.736572e-05 2.680704e-01
```

- We can identify the largest three values.
- The cut-off here is 0.0888.

