Math2033 TA note 10

Yang Yunfei, Chen Yipei, Liu Ping April 13, 2019

1 MEAN VALUE THEOREM

Example 1. Calculate $\lim_{x\to\infty}\frac{x^n}{e^x}$, where $n\in\mathbb{N}$.

Solution: We show that $\lim_{x\to\infty} \frac{x^n}{e^x} = 0$ by induction. For n = 1, $\lim_{x\to\infty} \frac{x^n}{e^x} = \lim_{x\to\infty} \frac{1}{e^x} = 0$. Suppose $\lim_{x\to\infty} \frac{x^k}{e^x} = 0$, then

For
$$n = 1$$
, $\lim_{x \to \infty} \frac{x^n}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$.

$$\lim_{x \to \infty} \frac{x^{k+1}}{e^x} = \lim_{x \to \infty} \frac{(x^{k+1})'}{e^x} = \lim_{x \to \infty} \frac{(k+1)x^k}{e^x} = 0.$$

Example 2. Let $f:[1,2] \to \mathbb{R}$ be continuous. If f is differentiable on (1,2), prove that there exists $\theta \in (1,2)$ such that $f(2) - f(1) = \frac{1}{2}\theta^2 f'(\theta)$.

Remark 3. Mean value theorem only gives $f(2) - f(1) = f'(\theta_0)(2-1) = f'(\theta_0)$ for some $\theta_0 \in (1,2)$.

Solution: Let $g(\theta) = -\frac{1}{\theta}$, then for all $\theta \in (1,2)$,

$$\theta^2 f'(\theta) = \frac{f'(\theta)}{1/\theta^2} = \frac{f'(\theta)}{g'(\theta)}.$$

By generalized mean value theorem, there exists $\theta \in (1,2)$ such that

$$\frac{f(2) - f(1)}{g(2) - g(1)} = \frac{f'(\theta)}{g'(\theta)} = \theta^2 f'(\theta).$$

Since $f(2) - f(1) = \frac{1}{2}$, we have $f(2) - f(1) = \frac{1}{2}\theta^2 f'(\theta)$.

Example 4. Let f be twice differentiable on [0,2]. For any $x \in [0,2], |f(x)| \le 1, |f''(x)| \le 1$, prove that $\forall x \in [0,2], |f'(x)| \le 2$.

Solution: By Taylor's theorem, let $x \in [0,2]$, $a \in [0,2]$

$$f(a) = f(x) + f'(x)(a-x) + \frac{f''(\theta_a)}{2}(a-x)^2$$

for some θ_a between a and x. Setting a = 0, 2.

$$f(0) = f(x) - f'(x)x + \frac{f''(\theta_0)}{2}x^2$$

$$f(2) = f(x) + f'(x)(2 - x) + \frac{f''(\theta_2)}{2}(2 - x)^2$$

Subtracting these, we get

$$f(2) - f(0) = 2f'(x) + \frac{f''(\theta_2)}{2}(2 - x)^2 - \frac{f''(\theta_0)}{2}x^2$$

Solving for f'(x), we see

$$|f'(x)| = \frac{1}{2}|f(2) - f(0) + \frac{f''(\theta_0)}{2}x^2 - \frac{f''(\theta_2)}{2}(2 - x)^2|$$

$$\leq \frac{1}{2}(1 + 1 + \frac{1}{2}x^2 + \frac{1}{2}(2 - x)^2)$$

$$= \frac{1}{2}(x^2 - 2x + 4)$$

$$\leq \frac{1}{2}((x - 1)^2 + 3)$$

$$\leq \frac{1}{2}(1 + 3) = 2$$

$$(1.1)$$

Example 5. For a > b > 0, prove $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$.

Solution: $f(x) = \ln x$, $f'(x) = \frac{1}{x}$. Using mean value theorem in [b, a], there exists $\xi \in (b, a)$ such that

$$\ln a - \ln b = \frac{1}{\xi}(a - b).$$

That is

$$\ln \frac{a}{b} = \frac{1}{\xi}(a-b).$$

Because $b < \xi < a$,

$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$$

Interesting exercises:

1:for
$$x > 0$$
, prove $\frac{x}{1+x} < \ln(1+x) < x$
2:for $a > b > 0$, $n > 1$, prove $nb^{n-1}(a-b) < a^n - b^n < na^{n-1}(a-b)$