Векторы в физике

Содержание

1	Пот	нятие вектора	2
2 Равенство вект		венство векторов	3
3	Ум	ножение вектора на число	Ę
4	Сложение векторов		7
	4.1	Правило треугольника	7
	4.2	Правило параллелограмма	8
5	Вы	читание векторов	ę
6	Mo	дуль суммы векторов. 4 случая	10
	6.1	Векторы сонаправлены	10
	6.2	Векторы противоположно направлены	11
	6.3	Векторы перпендикулярны	11
	6.4	Векторы направлены под произвольным углом	12
		6.4.1 Острый угол между векторами	13
		6.4.2 Тупой угол между векторами	14
7	Зак	коны сложения векторов и умножения векторов на число	15
8	Koo	ординаты (проекции) векторов	16
	8.1	Связь между координатами вектора и координатами его начала и конца	16
	8.2	Связь между координатами вектора, его модулем и углом между вектором и	
		одной из осей координат	17
		8.2.1 Вектор параллелен или перпендикулярен оси координат	17
		8.2.2 Вектор направлен под произвольным углом к оси координат	18
	8.3	Проекция суммы векторов и произведения вектора на скаляр	22
	8.4	Вычисление длины вектора по его координатам	23
9	Раз	вложение вектора на компоненты	2 4

1 Понятие вектора

Точки, которые являются концами произвольного отрезка, называют **граничными точ**ками отрезка.

Вектор — отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом.

Векторы обозначают двумя заглавными буквами со стрелкой над ними, например \overrightarrow{AB} . Первая буква обозначает начало вектора, вторая — конец. Векторы часто обозначают одной строчной буквой со стрелкой над ней, например, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} . В книгах векторы обозначаются жирным прямым шрифтом: \mathbf{a} , \mathbf{b} , \mathbf{c} .

Рис. 1: Вектор.

Любая точка плоскости также является вектором. В этом случае вектор называется **нулевым**. Начало нулевого вектора совпадает с его концом, на рисунке такой вектор изображается точкой. Обозначается нулевой вектор так: \overrightarrow{MM} или $\overrightarrow{0}$.

Длиной или **модулем** ненулевого **вектора** \overrightarrow{AB} называется длина отрезка AB. Длина вектора обозначается так: $|\overrightarrow{AB}|$, $|\overrightarrow{a}|$ или просто буквой без стрелки a. Длина нулевого вектора равна нулю: $|\overrightarrow{0}| = 0$.

В физике в отличие от геометрии модули величин имеют **размерность**. Например, модуль скорости измеряется в метрах в секунду (M/c), модуль силы — в ньютонах (H), модуль напряжённости электрического поля — в вольтах на метр (B/M), модуль индукции магнитного поля — в теслах (Tл) и т.д.

2 Равенство векторов

Ненулевые векторы называются **коллинеарными**, если они лежат или на одной прямой, или на параллельных прямых. Нулевой вектор считается коллинеарным любому вектору.

На рисунке векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} и \overrightarrow{d} коллинеарны, а вектор \overrightarrow{e} не коллинеарен ни одному из векторов.

Если два ненулевых вектора коллинеарны, то они могут быть направлены или одинаково, или противоположно. В первом случае векторы называются **сонаправленными**, а во втором — **противоположно направленными**.

На рисунке 2 векторы \vec{a} и \vec{b} сонаправлены $(\vec{a}\uparrow\uparrow\vec{b})$, а векторы \vec{c} и \vec{d} противоположно направлены $(\vec{c}\uparrow\downarrow\vec{d})$.

Векторы называются **противоположными**, если они противоположно направлены и их длины равны. Вектор, противоположный вектору \vec{a} обозначается $-\vec{a}$.

Векторы называются равными, если они сонаправлены и их длины равны.

Таким образом, векторы \vec{a} и \vec{b} равны, если $\vec{a} \uparrow \uparrow \vec{b}$ и $|\vec{a}| = |\vec{b}|$. Равенство векторов обозначается так: $\vec{a} = \vec{b}$.

Рис. 2: Коллинеарные и неколлинеарные векторы.

Если точка A — начало вектора \overrightarrow{a} , то говорят, что вектор \overrightarrow{a} **отложен от точки** A. Верно следующее утверждение: от любой точки M можно отложить вектор, равный данному, и при только один.

Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой. Иногда говорят, что это один и тот же вектор, отложенный от разных точек.

Рисунок 3 иллюстрирует направление скоростей автомобилей, когда их скорости сонаправлены, противоположно направлены, равны и противоположны.

Рис. 3: Сонаправленные, противоположно направленные, равные и противоположные скорости автомобилей.

3 Умножение вектора на число

Произведением ненулевого вектора \vec{a} на число k называется такой вектор \vec{b} , длина которого равна $|k|\cdot |\vec{a}|$, причём векторы \vec{a} и \vec{b} сонаправлены при $k\geqslant 0$ и противоположно направлены при k<0.

Произведением нулевого вектора на любое число считается нулевой вектор.

Рис. 4: Умножение вектора на число.

На рисунке 4 изображён вектор \vec{a} и векторы:

- $\overrightarrow{b} = k \cdot \overrightarrow{a}$, где k > 1. В таком случае вектор \overrightarrow{a} удлиняется и сохраняет прежнее направление,
- $\vec{c} = l \cdot \vec{a}$, где 1 > l > 0. В этом случае вектор \vec{a} укорачивается и также сохраняет прежнее направление,
- ullet $\overrightarrow{d}=m\cdot\overrightarrow{a}$, где m<0. Вектор \overrightarrow{a} меняет направление на противоположное.

Приведём **конкретные примеры**. На рисунке 5 изображён вектор \overrightarrow{a} длиной 2 клетки (2 единицы измерения отрезков). А также изображены векторы:

- ullet $\overrightarrow{b}=2\overrightarrow{a}$ (удлинённый в 2 раза вектор \overrightarrow{a}),
- ullet $\overrightarrow{c}=1/2\overrightarrow{a}$ (укороченный в 2 раза вектор \overrightarrow{a}),
- ullet $\vec{d} = -1/2\vec{a}$ (укороченный в 2 раза вектор \vec{a} и противоположно направленный),
- $\vec{e} = -\vec{a}$ (равный по модулю вектору \vec{a} и противоположно направленный),
- ullet $\overrightarrow{f}=-3\overrightarrow{a}$ (удлинённый в 3 раза вектор \overrightarrow{a} и противоположно направленный).

Рис. 5: Умножение вектора на число, примеры.

4 Сложение векторов

4.1 Правило треугольника

Пусть \overrightarrow{a} и \overrightarrow{b} — два вектора. Отметим произвольную точку A и отложим от этой точки вектор \overrightarrow{AB} , равный \overrightarrow{a} . Затем от точки B (конец вектора \overrightarrow{AB}) отложим вектор \overrightarrow{BC} , равный \overrightarrow{b} . Вектор $\overrightarrow{AC} = \overrightarrow{c}$ называется **суммой векторов** \overrightarrow{a} и \overrightarrow{b} .

Таким образом, при построении суммы двух векторов начало второго вектора примыкает с концу первого, и сумма замыкает образуемый ими треугольник.

Рис. 6: Сложение векторов по правилу треугольника.

По правилу треугольника **удобно складывать** последовательные или одновременные **перемещения**.

Рис. 7: Сложение перемещений по правилу треугольника.

4.2 Правило параллелограмма

Для построения суммы двух векторов \vec{a} и \vec{b} по правилу параллелограмма отметим произвольную точку A и отложим от этой точки вектор \overrightarrow{AB} , равный \vec{a} . Затем от этой же точки отложим вектор \overrightarrow{AD} , равный \vec{b} . Вектор $\overrightarrow{AC} = \vec{c}$ называется **суммой векторов** \vec{a} и \vec{b} .

Таким образом, при построении суммы двух векторов \vec{a} и \vec{b} начала векторов совмещаются, и на них как на сторонах строится параллелограмм. Диагональ этого параллелограмма, проведённая из общего начала складываемых векторов, называется их суммой.

Рис. 8: Сложение векторов по правилу параллелограмма.

По правилу параллелограмма удобно складывать приложенные к телу силы.

Рис. 9: Сложение сил по правилу параллелограмма.

5 Вычитание векторов

Разностью векторов \vec{a} и \vec{b} называется такой вектор \vec{c} , сумма которого с вектором \vec{b} равна вектору \vec{a} . Разность векторов обозначается так: $\vec{c} = \vec{a} - \vec{b}$.

Для построения разности (см. рисунок 10) двух векторов \vec{a} и \vec{b} отметим на плоскости произвольную точку O. Отложим от этой точки вектор \overrightarrow{OA} , равный \vec{a} . Затем от точки A отложим вектор \overrightarrow{AB} , равный $-\vec{b}$ (то есть противоположный вектору \vec{b}). Сумма векторов \vec{a} и $-\vec{b}$ является разностью векторов \vec{a} и \vec{b} . Построим её по правилу треугольника. Таким образом, вектор \overrightarrow{OB} будет искомой разностью векторов \vec{a} и \vec{b} .

Рис. 10: Разность векторов.

6 Модуль суммы векторов. 4 случая

Нахождение модуля (длины) вектора, как правило, начинается с **построения самого вектора**. Вектор, чей модуль надо найти, в буквальном смысле нужно увидеть, и только потом из геометрических соображений искать его длину.

Например, чтобы найти модуль суммы векторов, надо **сначала построить** сумму векторов и только **потом искать** её модуль.

6.1 Векторы сонаправлены

Пусть \overrightarrow{a} и \overrightarrow{b} — сонаправленные векторы. Сложим их по правилу треугольника. Для этого совместим начало вектора \overrightarrow{b} и конец вектора \overrightarrow{a} . Вектор \overrightarrow{c} , проведённый из начала \overrightarrow{a} в конец \overrightarrow{b} , является их суммой.

Рис. 11: Сложение сонаправленных векторов.

Как видно из рисунка, модуль суммы сонаправленных векторов равен сумме их модулей:

$$c = a + b. (1)$$

6.2 Векторы противоположно направлены

Пусть \vec{a} и \vec{b} — противоположно направленные векторы. Сложим их также по правилу треугольника. Для этого совместим начало вектора \vec{b} и конец вектора \vec{a} . Вектор \vec{c} , проведённый из начала \vec{a} в конец \vec{b} , является их суммой.

Рис. 12: Сложение противоположно направленных векторов.

Как видно из рисунка, модуль суммы противоположно направленных векторов равен разности их модулей:

$$c = a - b. (2)$$

6.3 Векторы перпендикулярны

Сложим перпендикулярные векторы \vec{a} и \vec{b} по правилу треугольника. Для этого совместим начало вектора \vec{b} и конец вектора \vec{a} . Вектор \vec{c} , проведённый из начала \vec{a} в конец \vec{b} , является их суммой.

Рис. 13: Сложение перпендикулярных векторов.

Векторы \vec{a} , \vec{b} и \vec{c} образуют прямоугольный треугольник, в котором катеты равны a и b, а гипотенуза — c. Тогда модуль суммы найдём **по теореме Пифагора**:

$$c = \sqrt{a^2 + b^2}. (3)$$

6.4 Векторы направлены под произвольным углом

Перед тем как говорить о нахождении модуля суммы векторов, направленных под произвольным углом, уточним понятие **угла между векторами**.

Приведём произвольные векторы \vec{a} и \vec{b} к общему началу. В качестве угла между векторами можно взять любой из двух указанных на рисунке 14 углов α_1 и α_2 . Из двух углов α_1 и α_2 один не превосходит $\pi = 180^\circ$. На рисунке это угол α_1 . В дальнейшем **углом между** векторами будем называть тот угол, который не превосходит π .

Таким образом, если векторы \overrightarrow{a} и \overrightarrow{b} привести к общему началу, то углом между ними называется **наименьший из двух углов**.

Рис. 14: Угол между векторами.

6.4.1 Острый угол между векторами

Пусть \overrightarrow{a} и \overrightarrow{b} — два вектора, модули которых известны. Совместим векторы началами, острый угол между ними известен и равен α . Найдём модуль суммы этих векторов.

Рис. 15: Острый угол между векторами.

Для этого построим сумму векторов по правилу параллелограмма. В построенном параллелограмме ABCD на рисунке 16 необходимо найти длину диагонали c=AC. Рассмотрим треугольник ABC, в котором две стороны a и b известны, а угол между ними будет равен $(\pi - \alpha)$, так как сумма углов в параллелограмме, прилежащих к одной стороне, равна π .

Рис. 16: Сумма векторов с острым углом между ними.

Таким образом в треугольнике ABC известны две стороны и угол между ними. Третью сторону найдём по теореме косинусов:

$$c = \sqrt{a^2 + b^2 - 2ab\cos(\pi - \alpha)}.$$
 (4)

Так как $\cos(\pi-\alpha)=-\cos\alpha$, то окончательно:

$$c = \sqrt{a^2 + b^2 + 2ab\cos\alpha}.$$
 (5)

6.4.2 Тупой угол между векторами

Аналогично построим сумму векторов с тупым углом между ними и найдём её модуль.

Рис. 17: Тупой угол между векторами.

В построенном параллелограмме ABCD на рисунке 18 рассмотрим треугольник ABC, в котором известны две стороны a, b и угол между ними $(\pi - \alpha)$.

Рис. 18: Сумма векторов с тупым углом между ними.

Так же как в и случае с острым углом третью сторону найдём по теореме косинусов:

$$c = \sqrt{a^2 + b^2 - 2ab\cos(\pi - \alpha)}.$$
 (6)

Заметим, что угол $(\pi-\alpha)$ является острым (так как α — тупой), поэтому уместно переобозначить $(\pi-\alpha)=\beta$ и применить теорему косинусов именно для этого угла:

$$c = \sqrt{a^2 + b^2 - 2ab\cos\beta}. (7)$$

7 Законы сложения векторов и умножения векторов на число

Для любых векторов \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} справедливы равенства:

$$\bullet \ \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}.$$

$$\bullet \ (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}).$$

$$\bullet \ \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b}).$$

Для любых чисел $k,\,l$ и любых векторов $\overrightarrow{a},\,\overrightarrow{b}$ справедливы равенства:

•
$$(kl)\vec{a} = k(l\vec{a}).$$

•
$$(k+l)\vec{a} = k\vec{a} + l\vec{a}$$
.

•
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$
.

8 Координаты (проекции) векторов

8.1 Связь между координатами вектора и координатами его начала и конца

Рассмотрим произвольный вектор \vec{a} в прямоугольной системе координат. Опустив перпендикуляры из начала и конца вектора на оси системы координат, получим координаты начала и конца вектора: (x_1, y_1) и (x_2, y_2) соответственно.

Говорят, что каждая координата вектора равна разности соответствующих координат его конца и начала. Вектор \vec{a} имеет координаты $\{x_2-x_1;y_2-y_1\}$.

Координаты вектора обозначают той же буквой, что и сам вектор, но без стрелки над ней и с нижним индексом, указывающим ось координат. Координаты вектора \overrightarrow{a} можно записать как $\{a_x; a_y\}$.

На рисунке 19 определим координаты вектора \vec{a} :

$$a_x = x_2 - x_1 = 7 - 1 = 6,$$

$$a_y = y_2 - y_1 = 4 - 1 = 3.$$

To есть координаты вектора \overrightarrow{a} {6; 3}.

Рис. 19: Координаты вектора.

В физике координаты векторных величин называют проекциями.

Например, v_x — проекция вектора скорости \overrightarrow{v} на ось Ox.

Значения проекций векторов могут быть отрицательными, положительными или равными нулю.

8.2 Связь между координатами вектора, его модулем и углом между вектором и одной из осей координат

На практике **при решении задач по физике** возможно определить координаты начала и конца лишь для вектора перемещения. Во всех остальных случаях очень удобно опрелять проекции векторов, зная их модуль и угол, который вектор составляет с одной из осей координат.

8.2.1 Вектор параллелен или перпендикулярен оси координат

Рассмотрим векторы \vec{a} и \vec{g} , длины которых известны и равны a и g соответственно, в прямоугольной системе координат (рисунок 20). Пусть вектор \vec{a} параллелен оси Ox и его направление совпадает с направлением оси Ox, вектор \vec{g} параллелен оси Oy и его направление противоположно направлению оси Oy.

Рис. 20: Определение проекций векторов, параллельного и перпендикулярного оси координат.

Для определения координат вектора \vec{a} опустим перпендикуляры из начала и конца вектора на оси координат и определим разности координат начала и конца вектора. Обратим внимание, что разность координат x_2-x_1 по оси Ox в точности равна длине a вектора. А разность координат по оси Oy равна нулю, так как координаты начала и конца вектора \vec{a} по этой оси совпадают. Итак:

$$a_x = a$$

$$a_y = 0.$$

Аналогично для определения координат вектора \overrightarrow{g} опустим перпендикуляры из начала и конца вектора на оси координат и определим разности координат начала и конца вектора.

Модуль разности координат $|y_2 - y_1|$ по оси Oy в точности равна длине g вектора. У вектора \overrightarrow{g} координата конца меньше, чем координата начала $y_2 < y_1$, поэтому координата $g_y = y_2 - y_1$ меньше нуля. А разность координат по оси Ox равна нулю, так как координаты начала и конца вектора \overrightarrow{g} по этой оси совпадают. Получаем:

$$g_x = 0$$
,

$$g_y = -g$$
.

Сделаем **важный вывод**: если направление вектора и оси координат совпадают, то его координата (проекция) на эту ось равна модулю вектора ($a_x = a$). Если же направление вектора и оси координат противоположны, то его координата на эту ось равна модулю вектора, взятому со знаком минус ($g_y = -g$). Если вектор перпендикулярен данной оси координат, то его проекция на эту равна 0.

Запишем 2 шага по определению значения проекции вектора:

- определяем знак проекции. Если начало вектора расположено ближе к началу координат, проекция больше нуля. Если наоборот, то меньше нуля.
- определяем модуль проекции.

8.2.2 Вектор направлен под произвольным углом к оси координат

1 Положительные проеции

Рассмотрим вектор \vec{a} , длина которого известна и равна a, в прямоугольной системе координат (рисунок 21). Пусть угол между вектором \vec{a} и горизонталью известен и равен α . Под таким углом вектор направлен к оси Ox, а также к любой другой прямой, параллельной оси Ox.

Для определения его координат опустим перпендикуляры из начала и конца вектора на оси координат. Продлим перпендикуляр из начала вектора на ось Oy до его пересечения с перпендикуляром из конца на ось Ox в точке B.

В получившимся прямоугольном треугольнике ABC гипотенуза AC = a, а угол $\angle A = \alpha$. Обратим внимание на катеты в этом треугольнике. Катет AB в точности равен разности координат на ось Ox конца и начала вектора \overrightarrow{a} , то есть $AB = a_x = x_2 - x_1$. А катет BC равен разности координат конца и начала вектора на ось Oy: $BC = a_y = y_2 - y_1$.

Вспомним соотношения в прямоугольном треугольнике:

- синус отношение противолежащего к углу катета к гипотенузе,
- косинус отношение прилежащего к углу катета к гипотенузе,
- тангенс отношение противолежащего к углу катета к прилежащему.

Puc. 21: Определение проекций вектора по его модулю и углу к одной из осей координат. Вектор с положительными проекциями по обеим осям координат.

В нашем примере:

$$\sin \alpha = \frac{a_y}{a}, \quad \cos \alpha = \frac{a_x}{a}, \quad \operatorname{tg} \alpha = \frac{a_y}{a_x}.$$
 (8)

Таким образом, координаты вектора \vec{a} выражаются через его модуль и угол между вектором \vec{a} и горизонталью через отношения в прямоугольном треугольнике:

$$a_x = a \cos \alpha \,, \tag{9}$$

$$a_y = a \sin \alpha \,. \tag{10}$$

Обратим внимание, что проекции на обе оси координат положительны, так как начало вектора расположено ближе к началу координат для обеих осей.

2 Отрицательные проеции

Рассмотрим случай, при котором координата начала вектора расположена дальше от начала координат, чем координата конца, и по оси Ox, и по оси Oy (рисунок 22). В этом случае, обе проекции вектора будут отрицательны. А их модули можно снова определить из прямоугольного треугольника через синус и косинус угла, под которым вектор направлен к горизонтали:

$$a_x = -a\cos\alpha,\tag{11}$$

$$a_y = -a\sin\alpha. \tag{12}$$

Рис. 22: Вектор с отрицательными проекциями по обеим осям координат.

3 Проекции разных знаков

На рисунке 23 изображён вектор с проекциями разных знаков: с отрицательной проекцией по оси Ox и положительной по оси Oy. Кроме того, в данном случае задан угол между вектором и вертикалью, поэтому в данном случае проекции вектора \overrightarrow{a} будут следующие:

$$a_x = -a\sin\alpha,\tag{13}$$

$$a_y = a\cos\alpha. \tag{14}$$

Рис. 23: Вектор с отрицательной проекцией по оси Ox и положительной по оси Oy.

8.3 Проекция суммы векторов и произведения вектора на скаляр

Часто в задачах по физике встречаются векторные уравнения, в которые входят суммы векторов: закон сложения скоростей, второй закон Ньютона, закон сохранения импульса и так далее. Отметим важные свойства проекций векторов, которые используются в таких задачах.

Проекция суммы векторов равна сумме проекций

Рассмотрим два вектора \vec{a} и \vec{b} в прямоугольной системе координат (рисунок 24). Сложим их по правилу треугольника и проведём сумму $\vec{c} = \vec{a} + \vec{b}$. Покажем, что проекция вектора \vec{c} на ось Ox равна сумме проекций векторов \vec{a} и \vec{b} на эту ось.

Действительно, по определению проекция вектора \vec{c} равна $c_x = x_3 - x_1$. Добавим в правую часть этого равенства число 0, равенство от этого не изменится. Представим этот ноль в таком виде $0 = x_2 - x_2$. Затем перегруппируем слагаемые:

$$c_x = x_3 - x_1 = x_3 + (x_2 - x_2) - x_1 = (x_3 - x_2) + (x_2 - x_1).$$
(15)

Выражения в скобках и есть проекции векторов \overrightarrow{a} и \overrightarrow{b} . Итак

$$c_x = a_x + b_x. (16)$$

Рис. 24: Проекция суммы векторов.

8.4 Проекция произведения вектора на скаляр

Покажем, что проекция вектора, умноженного на скаляр, равна

8.5 Вычисление длины вектора по его координатам

Важнейшим следствием связи координат вектора и его модуля является возможность выполнить обратную операцию: вычислить длину вектора по его координатам.

Длину вектора \vec{a} , координаты которого в выбранной прямоугольной системе координат равны $\{a_x; a_y\}$, можно найти **по теореме Пифагора** (рисунок 25):

$$a = \sqrt{a_x^2 + a_y^2} \,. \tag{17}$$

Так как проеции вектора равны разности координат его конца и начала $a_x=x_2-x_1,$ $a_y=y_2-y_1,$ то:

$$a = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \,. \tag{18}$$

Рис. 25: Вычисление длины вектора по его координатам.

9 Разложение вектора на компоненты

Введём в прямоугольной системе координат векторы единичной длины \overrightarrow{i} , \overrightarrow{j} , то есть такие, что их длины равны единице:

$$|\overrightarrow{i}| = 1, \quad |\overrightarrow{j}| = 1. \tag{19}$$

Их называют **координатными векторами**. Направляют их так, чтобы направление вектора \overrightarrow{i} совпало с направлением оси Ox, а направление вектора \overrightarrow{j} — с направлением оси Oy (рисунок 26).

Рассмотрим произвольный вектор \vec{a} , координаты которого в выбранной прямоугольной системе координат равны $\{a_x; a_y\}$.

Тогда вектор \vec{a} можно представить в виде суммы двух векторов:

$$\vec{a} = \vec{a_x} + \vec{a_y}. \tag{20}$$

Векторы $\overrightarrow{a_x}$ и $\overrightarrow{a_y}$ называют компонентами вектора \overrightarrow{a} :

$$\overrightarrow{a_x} = a_x \cdot \overrightarrow{i}, \tag{21}$$

$$\overrightarrow{a_y} = a_y \cdot \overrightarrow{j}. \tag{22}$$

Действительно, сложим компоненты вектора \vec{a} по правилу параллелограмма. Для этого совместим их началами, достроим на них как на сторонах параллелограмм (в данном случае он будет являться прямоугольником). Диагональ в этом прямоугольнике совпадает с вектором \vec{a} .

Рис. 26: Координатные векторы и разложение вектора на компоненты.