Question 1: You toss a coin 10,000 times. How many heads do you see?

Question 2: Coupon collector problem. Have N coupons and we need to collect them all. How many coupons do we need to sample to get all N?

Question 3: Largest common subsequence problem: have sequences X_1, \ldots, X_n and Y_1, \ldots, Y_n of iid Bern(1/2) random variables. What is the largest k such that there exist $i_1 < i_2 < \ldots < i_k$ and $j_1 < j_2 < \ldots, < j_k$ such that $X_{i_1} = Y_{j_1}, \ldots, X_{i_k} = Y_{j_k}$?

Question 1: we have various possible answers:

- 5,000. Indeed if we let X_i be the indicator of the event that we see heads on the ith toss, the number of heads is $S = \sum_{i=1}^{10000} X_i$ and $\mathbb{E}S = 5000$. But $\mathbb{P}(S = 5000) = \binom{10000}{5000} 2^{-1000} \approx 0.008$.
- Weak Law of Large Numbers: let $(X_i)_{i\geq 1}$ be iid with finite expectation μ and finite second moments. Then for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\varepsilon\right)\xrightarrow{n\to\infty}0.$$

Therefore for large enough n, the number of heads lies in $[n(1/2-\varepsilon), n(1/2+\varepsilon)]$ with high probability. The main problem is that this is an asymptotic result - we don't know how large n should be.

• Central Limit Theorem: let $(X_i)_{i\geq 1}$ be iid with finite mean μ and finite second moment $\sigma^2 + \mu^2$. Then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu)\stackrel{d}{\to}\mathcal{N}(0,1).$$

Therefore $\sum_{i=1}^{n} (X_i - \mu)$ has deviations of the order $\sqrt{n}\sigma$. Suppose we pretend 10000 is big: then

$$S = \sum_{i=1}^{10000} X_i \in [5000 - Q^{-1}(0.005)\sqrt{100}/2, 5000 + Q^{-1}(0.005)\sqrt{100}/2]$$

$$\approx [5000 \pm 128]$$

with probability 0.99, where $Q(x) = \mathbb{P}(Z \ge x)$ for $Z \sim \mathcal{N}(0,1)$. However we have the same issue again - is n = 10000 large enough?

We can however give some non-asymptotic answers to Question 1:

Proposition (Chebyshev's inequality). Let X be any random variable with mean μ and variance σ^2 . Then

$$\mathbb{P}(|X - \mu| > t) \le \frac{\sigma^2}{t^2}.$$

With this, we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{10000} X_i - 5000\right| > t\right) \le \frac{10000 \times \frac{1}{4}}{t^2} = \frac{2500}{t^2}.$$

So in particular, if t=500 the RHS is 0.01. So we have $S\in[4500,5500]$ with probability 0.99. However note that this is a weaker result than what the Central Limit Theorem gives.

Question 2: the number of samples S is equal to $\sum_{i=1}^{N} X_i$ where $X_i \sim \text{Geo}(i/N)$. Thus $\mathbb{E}S = \sum_{i=1}^{N} \frac{N}{i} = N \sum_{i=1}^{N} \frac{1}{i} \approx N \log N$.

Question 3: we have a function $f(X_1, ..., X_n, Y_1, ..., Y_n)$ which gives the longest common subsequence. It turns out this function is "smooth" in a certain sense, for which we can use "Talagrand's Principle".

Chernoff-Crámer method

Theorem (Markov's inequality). Let Y be a non-negative random variable with finite expectation. Then for any t > 0 we have

$$\mathbb{P}(Y \ge t) \le \frac{\mathbb{E}Y}{t}.$$

Proof. Note $t\mathbb{1}(Y \geq t) \leq Y$ and integrate.

Corollary. Let Y be a random variable. Suppose $\phi : \mathbb{R} \to \mathbb{R}_+$ is increasing and such that $\mathbb{E}|\phi(Y)| < \infty$. Then

$$\mathbb{P}(Y \geq t) \leq \mathbb{P}(\phi(Y) \geq \phi(t)) \leq \frac{\mathbb{E}\phi(Y)}{\phi(t)}.$$

Note that for a random variable Z, letting $Y = |Z - \mathbb{E}Z|$ and $\phi: t \mapsto t^2$ gives Chebyshev's inequality $\mathbb{P}(|Z - \mathbb{E}Z| \geq t) \leq \frac{\operatorname{Var}(Z)}{t^2}$.

Could also take $\phi: t \mapsto t^q$ for any q > 0 to conclude $\mathbb{P}(|Z - \mathbb{E}Z| \ge t) \le \frac{\mathbb{E}|Z - \mathbb{E}|^q}{t^q}$.

Consider instead $\phi: t \mapsto e^{\lambda t}$ for $\lambda > 0$. Then we get

$$\mathbb{P}(Z \ge t) \le \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda t}}.$$

Define $F(\lambda) = \mathbb{E}e^{\lambda Z}$, the moment generating function of Z. Define $\psi_Z(\lambda) = \log \mathbb{E}[e^{\lambda Z}]$. If X_1, \ldots, X_n are independent and $Z = \sum_{i=1}^n X_i$ then it is clear that $\psi_Z(\lambda) = \sum_{i=1}^n \psi_{X_i}(\lambda)$. So we have

$$\mathbb{P}(Z \ge t) \le \inf_{\lambda \ge 0} e^{\psi_Z(\lambda) - \lambda t}.$$

Now define $\psi_Z^*(t) = \sup_{\lambda \geq 0} (\lambda t - \psi_Z(\lambda))$ and write $\mathbb{P}(\lambda \geq t) \leq e^{-\psi_Z^*(t)}$. This is known as the *Chernoff bound*, and ψ_Z^* is known as the *Chernoff-Crámer transform*.

Properties of ψ_Z and ψ_Z^*

1. ψ_Z is convex and infinitely differentiable on (0,b) where $b=\sup\{\lambda: \psi_Z(\lambda)<\infty\}$. Indeed

$$F(\theta x + (1 - \theta)y)$$

$$= \mathbb{E}[e^{\theta xZ}e^{(1 - \theta)yZ}]$$

$$\leq \mathbb{E}[e^{xZ}]^{\theta}\mathbb{E}[e^{yZ}]^{1 - \theta}.$$
 (Hölder with $1/p = \theta, 1/q = 1 - \theta$)

2. $\psi_Z^* \geq 0$ and it is convex (follows from the definition).

3. Suppose $t\geq \mathbb{Z}$. Then $\psi_Z^*(t)=\sup_{\lambda}(\lambda t-\psi_Z(\lambda))$. Indeed we'll show $\lambda t-\psi_Z(\lambda)\leq 0$ whenever $\lambda<0$. We have

$$\mathbb{E}[e^{\lambda Z}] \ge e^{\lambda \mathbb{E}Z} \tag{Jensen}$$

$$\implies \psi_Z(\lambda) \ge \lambda \mathbb{E}Z$$

$$\implies \lambda t - \psi_Z(\lambda) \le \lambda t - \lambda \mathbb{E}Z = \lambda (t - \mathbb{E}Z) \le 0.$$

Example. Let $Z \sim \mathcal{N}(0, v)$. We want to upper bound $\mathbb{P}(Z \geq t)$ fir t > 0. We have

$$\mathbb{E}[e^{\lambda Z}] = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi v}} e^{-\frac{t^2}{2v}} e^{\lambda t} dt$$
$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi v}} e^{-\frac{(t-\lambda v)^2}{2v}} e^{\frac{v^2 \lambda^2}{2v}} dt$$
$$= e^{\frac{v\lambda^2}{2}}.$$

Hence $\psi_Z^*(t) = \sup_{\lambda} \left(\lambda t - \frac{\lambda^2 v}{2}\right)$ (for $t > 0 = \mathbb{E}Z$). Differentiating we see the optimal value is $\lambda = t/v$. Plugging this in gives $\psi_Z^*(t) = \frac{t^2}{2v}$. Thus

$$\mathbb{P}(Z \le t) \le e^{-\frac{t^2}{2v}}.$$

Sub-Gaussian random variables

Definition. A random variable Y with $\mathbb{E}Y = 0$ is sub-Gaussian with variance parameter v if

$$\psi_Y(\lambda) < \frac{\lambda^2 v}{2} \ \forall \lambda \in \mathbb{R}.$$

The set of sub-Gaussian random variables with variance parameter v is denoted $\mathcal{G}(v)$.

- 1. It is clear from the above that if $Y \in \mathcal{G}(v)$ then $\mathbb{P}(Y \geq t) \leq e^{-t^2/2v}$ and $\mathbb{P}(Y < -t) < e^{-t^2/2v}$.
- 2. If $Y_i \in \mathcal{G}(v_i)$ for i = 1, ..., n are independent then $\sum_{i=1}^n Y_i \in \mathcal{G}(\sum_{i=1}^n \nu_i)$ (immediate by additivity of $\psi_i(t)$).
- 3. If $Y \in \mathcal{G}(v)$ then $Var(Y) \leq v$ (see Example Sheet).

Theorem. The following are equivalent for suitable v, b, c, d

- 1. $Y \in \mathcal{G}(v)$;
- 2. $\max\{\mathbb{P}(Y \ge t), \mathbb{P}(Y \le -t)\} \le e^{-\frac{t^2}{2b}} \text{ for all } t > 0;$
- 3. $\mathbb{E}Y^{2q} \leq q!c^q$ for all $q \geq 1$;
- 4. $\mathbb{E}[e^{dY^2}] \le 2$.

Proof. Not given.

Lemma (Hoeffding's lemma). Let Y be supported on [a,b] and suppose $\mathbb{E}Y = 0$. Then $\psi_Y''(\lambda) \leq \frac{(b-a)^2}{4}$, and so $Y \in \mathcal{G}\left(\frac{(b-a)^2}{4}\right)$.

Proof. We have

$$\psi_Y'(\lambda) = \frac{\mathbb{E}[Ye^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]} \implies \psi_Y''(\lambda) = \frac{\mathbb{E}[e^{\lambda Y}]\mathbb{E}[Y^2e^{\lambda Y}] - (\mathbb{E}[Ye^{\lambda Y}])^2}{\mathbb{E}[e^{\lambda Y}]^2}.$$

So

$$\psi_Y''(\lambda) = \int_{\mathbb{R}} y^2 \underbrace{\frac{e^{\lambda y}}{\mathbb{E}[e^{\lambda Y}]} d\mu_Y(y)}_{:=dQ(y)} - \left(\int_{\mathbb{R}} y \frac{e^{\lambda y}}{\mathbb{E}[e^{\lambda Y}]} d\mu_Y(y) \right)$$
$$= \operatorname{Var}_{Y \sim Q}(Y) \ge 0$$

noting that Q is supported on [a,b]. If $Y \in [a,b]$ almost-surely then note

$$\operatorname{Var}(Y) = \operatorname{Var}\left(Y - \frac{a+b}{2}\right) \le \mathbb{E}\left[\left(Y - \frac{a+b}{2}\right)^2\right] \le \frac{(b-a)^2}{4}.$$

To finish, observe that $\psi_Y(\lambda) = \psi_Y(0) + \lambda \psi_Y'(0) + \frac{\lambda^2}{2} \psi_Y''(\theta)$ for some $\theta \in [0, \lambda]$.

Theorem (Hoeffding's inequality). Let Y_1, \ldots, Y_n be independent random variables with Y_i having support on $[a_i, b_i]$. Then

$$\mathbb{P}\left(\sum_{i=1}^{n} (Y_i - \mathbb{E}Y_i) \ge t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$

Proof. Trivial by Hoeffding's lemma and additivity of the variance parameters.

Theorem (Bennett's inequality). For $1 \le i \le n$, let X_i be independent random variables satisfying $\mathbb{E}X_i = 0$, $Var(X_i) = \sigma_i^2$ and let $v = \sum_{i=1}^n \sigma_i^2$. Further assume the X_i are bounded by some C > 0 almost-surely. Then

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{v}{C^2} h_1\left(\frac{Ct}{v}\right)\right)$$

where $h_1(x) = (1+x)\log(1+x) - x$ for x > 0. Furthermore, using the inequality $h_1(x) \ge \frac{x^2}{2(1+x/3)}$ we obtain

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{t^2}{2(v + Ct/3)}\right).$$

Example. Suppose $X_i \sim \text{Bern}(p_n)$ are independent for $1 \le i \le n$. Then

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{2t^2}{n}\right) \tag{Hoeffding}$$

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{t^2}{np_n(1-p_n) + t/3}\right). \tag{Bennett}$$

Note that if $p_n \ll q$, e.g $p_n = 1/\sqrt{n}$, Hoeffding will stay the same, i.e of order $e^{-\frac{2t^2}{n}}$ (only depends on support, not variance). However, Bennet will be of the order $e^{-\frac{t^2}{\sqrt{n}+t/3}}$.

Proof. We have

$$\begin{split} \mathbb{E}[e^{\lambda X_i}] &= \sum_{k \geq 0} \frac{\lambda^k}{k!} \mathbb{E}[X_i^k] \\ &\leq 1 + \sum_{k \geq 2} \frac{\lambda^k}{k!} \mathbb{E}[C^{k-2} X_i^2] \\ &= 1 + \sum_{k \geq 2} \frac{\lambda^k C^{k-2} \sigma_i^2}{k!} \\ &= 1 + \frac{\sigma_i^2}{C^2} (e^{\lambda C} - \lambda C - 1) \\ &\leq \exp\left(\frac{\sigma_i^2}{C^2} (e^{\lambda C} - \lambda C - 1)\right). \end{split} \tag{(1+x) \leq e^x)}$$

This implies

$$\mathbb{E}^{\lambda S} \le \exp\left(\frac{v}{C^2}(e^{\lambda C} - \lambda C - 1)\right)$$

and so

$$\psi_S(\lambda) \le \underbrace{\frac{v}{C^2} (e^{\lambda C} - \lambda C - 1)}_{:=\tilde{\psi}(\lambda)}.$$

This means that

$$\psi_S^*(t) \ge \tilde{\psi}^*(t)$$

and

$$\mathbb{P}(S \ge t) \le \exp(-\psi_S^*(t)) \le \exp(-\tilde{\psi}^*(t)) = \exp\left(-\frac{v}{C^2}h_1\left(\frac{Ct}{v}\right)\right)$$

where the last equality is by a result from Example Sheet 1.

Efron-Stein Inequality

We want to bound $\operatorname{Var}(Z)$ where $Z = f(X_1, \dots, X_n)$ for independent X_i 's (or even just uncorrelated). If $Z - \mathbb{E}Z = \sum_{i=1}^n \Delta_i$ for $\Delta_1, \dots, \Delta_n$ uncorrelated and with 0 mean we have $\operatorname{Var}(Z) = \sum_{i=1}^n \mathbb{E}[\Delta_i^2]$. Define $\mathbb{E}_i Z = \mathbb{E}[Z|X_{1:i}]^1$ where $X_{1:i} = (X_1, \dots, X_i)$.

Set $\Delta_i = \mathbb{E}_i Z - \mathbb{E}_{i-1} Z$. Then $Z - \mathbb{E} Z = \sum_{i=1}^n \Delta_i$. Also $\mathbb{E} \Delta_i = 0$ by the tower property of conditional expectation. Suppose i < j so

$$\mathbb{E}[\Delta_i \Delta_j] = \mathbb{E}\left[\mathbb{E}[\Delta_i \Delta_j | X_{1:i}]\right]$$
$$= \mathbb{E}[\Delta_i \mathbb{E}[\Delta_j | X_{1:i}]].$$

Note that $\mathbb{E}[\Delta_j|X_{1:i}] = \mathbb{E}[\mathbb{E}_j Z|X_{1:i}] - \mathbb{E}[\mathbb{E}_{j-1} Z|X_{1:i}] = \mathbb{E}_i Z - \mathbb{E}_i Z = 0$. Thus $\mathbb{E}[\Delta_i \Delta_j] = 0$ and so the Δ_i 's are uncorrelated.

Thus $\operatorname{Var}(Z) = \sum_{i=1}^n \mathbb{E}[\Delta_i^2]$ regardless of the correlation between the X_i (though we still assume independence of the X_i going forward).

Define $\mathbb{E}^{(i)}Z = \mathbb{E}[Z|X_{1:i-1},X_{i+1:n}]$. Then $\Delta_i = \mathbb{E}_iZ - \mathbb{E}_{i-1}Z = \mathbb{E}_i(Z - \mathbb{E}^{(i)}Z)$. Indeed we have $\mathbb{E}_i[\mathbb{E}^{(i)}Z] = \mathbb{E}[\mathbb{E}[Z|X^{(i)}]|X_{1:i}] = \mathbb{E}[\mathbb{E}[Z|X^{(i)}]|X_{1:i-1}]$ by independence and $\mathbb{E}[\mathbb{E}[Z|X^{(i)}]|X_{1:i-1}] = \mathbb{E}[Z|X_{1:i-1}]$ since $\sigma(X_{1:i-1}) \subseteq \sigma(X^{(i)})$.

Therefore

$$\Delta_i^2 = (\mathbb{E}_i(Z - \mathbb{E}^{(i)}Z))^2 \le \mathbb{E}_i[(Z - \mathbb{E}^{(i)}Z)^2]$$

almost-surely by conditional Jensen.

Hence we have

$$\operatorname{Var}(Z) = \sum_{i=1}^{n} \mathbb{E}[\Delta_{i}^{2}]$$

$$\leq \sum_{i=1}^{n} \mathbb{E}[(Z - \mathbb{E}^{(i)}Z)^{2}]$$

$$= \sum_{i=1}^{n} \mathbb{E}[\mathbb{E}[(Z - \mathbb{E}^{(i)}Z)^{2}]|X^{(i)}]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Var}^{(i)}(Z)\right].$$

This is called the *Efron-Stein inequality*.

 $^{^1}$ For a rigorous definition of this conditional expectation see Part III Advanced Probability

To summarise:

Theorem (Efron-Stein Inequality). Let X_1, \ldots, X_n be independent random variables and let $Z = f(X_1, \ldots, X_n)$ be a square integrable function of $X = X_{1:n}$. Then

$$Var(Z) \le \sum_{i=1}^{n} \mathbb{E}[(Z - \mathbb{E}^{(i)}Z)^{2}] = \underbrace{\sum_{i=1}^{n} Var^{(i)}(Z)}_{:=v}.$$

Proposition. Define X'_1, \ldots, X'_n to be independent copies of X_1, \ldots, X_n respectively. Set $Z'_i = f(X^{(i)}, X'_i)$. Then

$$v = \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i')_+^2] = \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i')_-^2] = \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i')^2].$$

Also

$$v = \inf_{Z_1, \dots, Z_n} \sum_{i=1}^n \mathbb{E}[(Z - Z_i)^2]$$

where Z_i is some function of $X^{(i)}$.

Proof. Note that if X, Y are iid then

$$Var(X) = \frac{1}{2}\mathbb{E}[(X - Y)^2] = \mathbb{E}[(X - Y)^2_+] = \mathbb{E}[(X - Y)^2_-]$$

since $(X-Y)_+$, $(X-Y)_-$ have the same distribution. For the final expression, note $\operatorname{Var}(X) = \inf_a \mathbb{E}[(X-a)^2]$. Then $\operatorname{Var}^{(i)}(Z) = \inf_{Z_i} \mathbb{E}[(Z-Z_i)^2|X^{(i)}]$ where Z_i is $X^{(i)}$ -measurable.

Functions with bounded-differences property

We say f satisfies the bounded differences property with constants c_1, \ldots, c_n if

$$\sup_{x_1,\ldots,x_n,x_i'} |f(x_1,\ldots,x_n) - f(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)| \le c_i.$$

If $Z = f(X_1, ..., X_n)$ where the X_i are independent and f satisfying bounded differences, we'll show that $\operatorname{Var}(Z) \leq \sum_{i=1}^n \frac{c_i^2}{4}$. To see this, set

$$Z_i = \frac{1}{2} \left(\inf_{x_i} f(X^{(i)}, x_i) + \sup_{x_i} f(X^{(i)}, x_i) \right).$$

Then

$$v \le \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i)^2] \le \sum_{i=1}^{n} \frac{c_i^2}{4}.$$

Example. Let X_1, \ldots, X_n be independent and supported on [0,1]. Define $f(X_{1:n})$ to be the smallest number of size 1 bins needed to "pack" X_1, \ldots, X_n . Note f satisfies the bounded differences property with $c_i = 1$ for all i. Therefore $\operatorname{Var}(Z) \leq \frac{n}{4}$. Suppose now the X_i are iid uniform on [0,1]. Then $\mathbb{E}f(X_1, \ldots, X_n) \approx Cn$ while the standard deviation is of order at most \sqrt{n} , giving tight confidence intervals for large n.

Example. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be iid Bernouilli with parameter 1/2. Let $f(X_{1:n}, Y_{1:n})$ be the longest common subsequence between $X_{1:n}$ and $Y_{1:n}$. Then f satisfies boudned differences with $c_i = 1$ for all i. Thus $Var(Z) \leq n/2$. It is known that $\mathbb{E}[Z] \sim [0.75n, 0.837n]$. So again Z is very concentrated about its mean for large n.

Example. The chromatic number $\chi(G)$ of a graph G is the smallest number of colours needed to colour vertices of G such that no two neighbouring vertices have the same colour. Let X_{ij} be iid Bernouilli of parameter p for $1 \le i < j \le n$. We construct a random graph G on vertex set $\{1,\ldots,n\}$ by saying $\{i,j\} \in E$ iff $X_{ij} = 1$. Take f such that $f(\{X_{ij}\}_{1 \le i < j \le n}) = \chi(G)$. Then f again satisfies bounded differences with $c_{ij} = 1$ for all $1 \le i < j \le n$. Hence $\text{Var}(\chi(G)) \le \frac{1}{4}\binom{n}{2}$. It is known that $\mathbb{E}[\chi(G)] \approx n/\log n$. This gives a poor confidence interval.

However, we can fix this bound by considering $Y_i=(X_{1,i+1},\ldots,X_{i,i+1})$. Observe that Y_1,\ldots,Y_{n-1} are independent and $\chi(G)$ is some function \hat{f} of Y_1,\ldots,Y_{n-1} . It can be shown that we still have bounded differences with $c_1=\ldots=c_{n-1}=1$. This gives $\mathrm{Var}(\chi(G))\leq \frac{n-1}{4}$ and thus we have a good confidence interval now.

Theorem (Convex Poincaré Inequality). Let X_1, \ldots, X_n be independent and supported on [0,1]. Let f be a separately convex function (i.e convex in each variable) over $[0,1]^n$ which has partial derivatives. Then

$$Var(f(X)) \le \mathbb{E}[\|\nabla f(X)\|^2].$$

Remark. Jointly convex functions are separately convex so this inequality holds for such functions too.

Proof. We have

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i)^2]$$

where Z_i is $X^{(i)}$ -measurable. Let $Z_i = \inf_x f(X^{(i)}, x)$. Then

$$Z-Z_i = f(X_1, \dots, X_n) - f(X_1, \dots, X_{i-1}, x^*, x_{i+1}, \dots, X_n) = f(X^{(i)}, X_i) - f(X^{(i)}, x^*) \ge 0$$

where x^* achieves the infimum of $f(X^{(i)}, x)$ over x. If g is convex then $g(y) \ge g(x) + g'(x)(y-x)$. Hence

$$f(X^{(i)}, X_i) - f(X^{(i)}, x^*) \le \frac{\partial f}{\partial x_i}(X) \cdot (x^* - X_i).$$

Squaring gives

$$(Z - Z_i)^2 \le \left[\frac{\partial f}{\partial x_i}(X)(x^* - X_i)\right]^2 \le \left[\frac{\partial f}{\partial x_i}(X)\right]^2.$$

Example. Let $X \in \mathbb{R}^{n \times d}$ with $\mathbb{E}X_{ij} = 0$ for all i, j and with all entries independent and supported on [-1, 1]. Let

$$\sigma_1(X) = \max_{\|v\|_2 = 1} \|Xv\|_1 = \max_{\|U\|_2 = 1, \|v\|_2 = 1} U^T X v.$$

Can show the triangle inequality holds so

$$|\sigma_1(A) - \sigma_1(B)| \le \sigma_1(A - B).$$

Can also show by Cauchy-Schwarz that

$$\sigma_1(A)^2 \le \sum_{\substack{1 \le i \le n \\ 1 \le j \le d}} A_{ij}^2 = ||A||_F^2.$$

Thus

$$|\sigma_1(A) - \sigma_1(B)| \le ||A - B||_F.$$

Therefore σ_1 is Frobenius-1-Lipschitz. This means (assuming derivatives exist) $\|\nabla \sigma_1(X)\| \le 1$. So using the convex Poincaré inequality, $\operatorname{Var}(\sigma_1(X)) \le 4$.

Theorem (Gaussian Poincaré inequality). Let X_1, \ldots, X_n be iid $\mathcal{N}(0,1)$. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then $Var(f(X)) \leq \mathbb{E}[\|\nabla f(X)\|^2]$.

Proof. It is enough to show the n=1 case. Indeed if the n=1 case is true we have

$$\operatorname{Var}(f(X_1, \dots, X_n)) \le \sum_{i=1}^n \mathbb{E}[\operatorname{Var}^{(i)}(Z)]$$

by Efron-Stein. Also

$$\operatorname{Var}^{(i)}(Z) = \mathbb{E}[(Z - \mathbb{E}^{(i)}Z)^2 | X^{(i)}] \le \mathbb{E}\left[\left(\frac{\partial f}{\partial x_i}(X)\right)^2 | X^{(i)}\right]$$

by the n = 1 case, so we get the general case.

Now we prove the n=1 case. Let X_1, \ldots, X_n be iid (Rademacher) symmetric Ber(1/2) (i.e takes values ± 1 with probabilities 1/2). Define $S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ so $S_n \stackrel{d}{\to} \mathcal{N}(0,1)$ by the CLT. Then

$$\operatorname{Var}(f(S_n)) \leq \sum_{i=1}^n \mathbb{E}[\operatorname{Var}^{(i)}(f(S_n))]$$

$$= \sum_{i=1}^n \mathbb{E}\left[\frac{1}{4}\left(f(S_n - \frac{X_i}{\sqrt{n}} + \frac{1}{\sqrt{n}}) - f(S_n - \frac{X_i}{\sqrt{n}} - \frac{1}{\sqrt{n}})\right)^2\right].$$

For the rest of the proof we assume f is twice-continuously differentiable on a bounded domain. Then

$$f(S_n - \frac{X_i}{\sqrt{n}} + \frac{1}{\sqrt{n}}) = f(S_n) + f'(S_n) \frac{1 - X_i}{\sqrt{n}} + f''(\theta_1) \frac{(1 - X_i)^2}{2n}$$
$$f(S_n - \frac{X_i}{\sqrt{n}} - \frac{1}{\sqrt{n}}) = f(S_n) - f'(S_n) \frac{1 + X_i}{\sqrt{n}} + f''(\theta_2) \frac{(1 + X_i)^2}{2n}$$

SC

$$|f(S_n - \frac{X_i}{\sqrt{n}} + \frac{1}{\sqrt{n}}) - f(S_n - \frac{X_i}{\sqrt{n}} - \frac{1}{\sqrt{n}})| \le |f'(S_n)| \frac{2}{\sqrt{n}} + ||f''||_{\infty} \frac{2}{n}.$$

Hence

$$|f(S_n - \frac{X_i}{\sqrt{n}} + \frac{1}{\sqrt{n}}) - f(S_n - \frac{X_i}{\sqrt{n}} - \frac{1}{\sqrt{n}})|^2$$

$$\leq |f'(S_n)|^2 \frac{4}{n} + \frac{4||f''||_{\infty}^2}{n^2} + \frac{8|f'(S_n)|||f''||_{\infty}}{n^{3/2}}$$

and summing over $\{1, \ldots, n\}$ we get

$$Var(f(S_n)) \le \mathbb{E}[f'(S_n)^2] + \frac{\|f''\|_{\infty}^2}{n} + \frac{8\mathbb{E}[|f'(S_n)|]\|f''\|_{\infty}}{n^{1/2}}$$

so taking $n \to \infty$ gives the result.

Entropy

Definition. For a random variable taking values on a discrete set \mathcal{X} with PMF P_X , the Shannon entropy is defined as $H(X) = H(P_X) = \mathbb{E}[-\log P_X(X)]$.

Definition. Given two probability measures P, Q on a discrete set \mathcal{X} , define the relative entropy or Kullback-Leibler divergence $D(Q||P) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$ where p, q are the PMF's of P, Q respectively.

Some basic properties of relative entropy are

- 1. $D(Q||P) \ge 0$ with equality iff Q = P;
- 2. D(Q||P) is jointly convex, i.e

$$D(\lambda Q_1 + (1 - \lambda)Q_2 \|\lambda P_1 + (1 - \lambda)P_2) \le \lambda D(Q_1 \|P_1) + (1 - \lambda)D(Q_2 \|P_2).$$

Suppose $|\mathcal{X}| < \infty$, then

$$D(Q||U) = \log|X| - H(Q)$$

where $U \sim \text{Uniform}(\mathcal{X})$.

Definition. We define the conditional entropy H(Y|X) by

$$\begin{split} H(Y|X) &= \mathbb{E}[-\log P_{Y|X}(Y|X)] \\ &= -\sum_{x,y} P_{X,Y}(x,y) \log P_{Y|X}(y|x) \\ &= \sum_{x} H(Y|X=x) P_{X}(x) = \sum_{x} H(P_{Y|X=x}) P_{X}(x). \end{split}$$

Note $H(Y|X) \leq H(Y)$ by concavity of H together with Jensen. We define the joint entropy H(X,Y) by

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) = \mathbb{E}[-\log P_{X,Y}(X,Y)].$$

Theorem (Chain rule). $H(X_1,\ldots,X_n)=\sum_{i=1}^n H(X_i|X_{1:i-1})$.

Proof. We have

$$H(X_1, \dots, X_n) = \mathbb{E}[-\log P_{X_{1:n}}(X_{1:n})]$$

$$= \mathbb{E}\left[-\log \prod_{i=1}^n P_{X_i|X_{1:i-1}}(X_i|X_{1:i-1})\right]$$

$$= \sum_{i=1}^n H(X_i|X_{1:i-1}).$$

Theorem (Chain rule for KL-divergence). Let P, Q be measures on \mathcal{X}^n . Then

$$D(Q||P) = D(Q||P) = \sum_{i=1}^{n} D(Q_{X_i|X_{1:i-1}}||P_{X_i|X_{1:i-1}}||Q_{X_{1:i-1}}|).$$

Proof. We have

$$D(Q||P) = \sum_{x_{1:n}} q(x_{1:n}) \log \frac{q(x_{1:n})}{p(x_{1:n})}$$

$$= \mathbb{E}_Q \left[\log \frac{q(X_{1:n})}{p(X_{1:n})} \right]$$

$$= \mathbb{E}_Q \left[\log \prod_{i=1}^n \frac{q(X_i|X_{1:i-1})}{p(X_i|X_{1:i-1})} \right]$$

$$= \sum_{i=1}^n \mathbb{E}_Q \left[\log \frac{q(X_i|X_{1:i-1})}{p(X_i|X_{1:i-1})} \right].$$

Note that

$$\begin{split} \sum_{i=1}^n \mathbb{E}_Q \left[\log \frac{q(X_i|X_{1:i-1})}{p(X_i|X_{1:i-1})} \right] &= \sum_{x_{1:i}} q(x_{1:i}) \log \frac{q(x_i|x_{1:i-1})}{p(x_i|x_{1:i-1})} \\ &= \sum_{x_{1:i-1}} q(x_{1:i-1}) \left[\sum_{x_i} q(x_i|x_{i-1}) \log \frac{q(x_i|x_{1:i-1})}{p(x_i|x_{1:i-1})} \right] \\ &= \mathbb{E}_{QX_{1:i-1}} \left[D(Q_{X_i|X_{1:i-1}} \| P_{X_i|X_{1:i-1}}) \right] \\ &:= D(Q_{X_i|X_{1:i-1}} \| P_{X_i|X_{1:i-1}} \| Q_{X_{1:i-1}}). \end{split}$$

Hence

$$D(Q||P) = \sum_{i=1}^{n} D(Q_{X_i|X_{1:i-1}}||P_{X_i|X_{1:i-1}}||Q_{X_{1:i-1}}).$$

Usually we'll have $P = P_1 \otimes P_2 \otimes \ldots \otimes P_n$, which simplifies this expression. If $Q = Q_1 \otimes Q_2 \otimes \ldots \otimes Q_n$ then it simplifies further to

$$D(Q||P) = \sum_{i=1}^{n} D(Q_i||P_i).$$

Theorem (Han's inequality for Shannon entropy). We have

$$H(X_{1:n}) \le \frac{\sum_{i=1}^{n} H(X^{(i)})}{n-1}.$$

Example. Let $X_{1:n}$ be sampled iid from the uniform distribution on $A \subseteq \mathbb{Z}^n$. Then $H(X_{1:n}) = \log |A|$. Then Han's inequality implies

$$\log |A| \le \frac{\log |A^{(i)}|}{n-1} \implies |A| \le \left(\prod_{i=1}^{n} |A^{(i)}|\right)^{1/(n-1)}$$

which is called the Loomis-Whitney inequality.

Lemma. We have

$$H(X|Y,Z) \le H(X|Y).$$

Proof. We have

$$\begin{split} H(X|Y,Z) &= \sum_{y,z} H(P_{X|Y=y,Z=z}) P_{YZ}(y,z) \\ &= \sum_{y} P_{Y}(y) \left[\sum_{z} P_{Z|Y}(z|y) H(P_{X|Y=y,Z=z}) \right] \\ &\leq \sum_{y} P_{Y}(y) H\left(\sum_{z} P_{Z|Y}(z|y) P_{X|Y=y,Z=z} \right) \quad \text{(concavity of } H) \\ &= \sum_{y} P_{Y}(y) H(P_{X|Y=y}) \\ &= H(X|Y). \end{split}$$

Now we prove:

Theorem (Han's inequality for Shannon entropy). We have

$$H(X_{1:n}) \le \frac{\sum_{i=1}^{n} H(X^{(i)})}{n-1}.$$

Proof. We have

$$H(X_{1:n}) = H(X^{(i)}) + H(X_i|X^{(i)})$$

$$\leq H(X^{(i)}) + H(X_i|X_{1:i-1})$$

by the previous lemma. Now summing over i and applying the chain rule gives

$$nH(X_{1:n}) \le \sum_{i=1}^{n} H(X^{(i)}) + H(X_{1:n}).$$

Theorem (Han's inequality for KL-divergence). Let \mathcal{X} be a countable set and let P, Q be measures on \mathcal{X}^n where $P = P_1 \otimes P_2 \otimes \ldots \otimes P_n$. Then

$$D(Q\|P) \ge \frac{1}{n-1} \sum_{i=1}^{n} D(Q_{X^{(i)}} \| P_{X^{(i)}})$$

or equivalently,

$$D(Q||P) \le \sum_{i=1}^{n} D(Q_{X_i|X^{(i)}}||P_{X_i}|Q_{X^{(i)}}).$$

Remark.

$$D(Q||P) = D(Q_{X^{(i)}}||P_{X^{(i)}}) + D(Q_{X_i|X^{(i)}}||\underbrace{P_{X_i|X^{(i)}}}_{P_{X_i}}|Q_{X^{(i)}})$$

Remark. If \mathcal{X} is finite and P_1, \ldots, P_n are uniform over \mathcal{X} then we get Han's inequality for Shannon entropy.

Lemma. Let P, Q be measures on a discrete set $\mathcal{X} \times \mathcal{Y} \times \mathcal{Y}$. Then

$$D(Q_{Y|XZ}||P_Y|Q_{XZ}) \ge D(Q_{Y|X}||P_Y|Q_X).$$

Proof. We have

$$\begin{split} D(Q_{Y|XZ}\|P_{Y}|Q_{XZ}) &= \sum_{x,z} Q_{XZ}(x,z) D(Q_{Y|X=x,Z=z}\|P_{Y}) \\ &= \sum_{x} Q_{X}(x) \left[\sum_{z} Q_{Z|X}(z|x) D(Q_{Y|X=x,Z=z}\|P_{Y}) \right] \\ &= \sum_{z} Q_{X}(x) D\left(\sum_{z} Q_{Z|X}(z|x) Q_{Y|X=x,Z=z}\|P_{Y} \right) \\ &= \sum_{z} Q_{X}(x) D(Q_{Y|X=x}\|P_{Y}) \\ &= D(Q_{Y|X}\|P_{Y}|Q_{X}). \end{split}$$
 (convexity of D)

Proof of Han's inequality for KL-divergence. We have

$$\begin{split} D(Q\|P) &= D(Q_{X^{(i)}}\|P_{X^{(i)}}) + D(Q_{X_i|X^{(i)}}\|P_{X_i}|Q_{X^{(i)}}) \\ &\geq D(Q_{X^{(i)}}\|P_{X^{(i)}}) + D(Q_{X_i|X_{1:i-1}}\|P_{X_i}|Q_{X_{1:i-1}}) \end{split}$$

by the previous lemma, so summing over i gives

$$nD(Q||P) \ge \sum_{i=1}^{n} D(Q_{X^{(i)}}|P_{X^{(i)}}) + D(Q||P).$$

We have that $\operatorname{Var}(Z) = \mathbb{E} Z^2 - [\mathbb{E} Z]^2 = \mathbb{E}[\phi(Z)] - \phi(\mathbb{E} Z)$ where $\phi(x) = x^2$.

Define $\operatorname{Ent}(Z) := \mathbb{E}[Z \log Z] - \mathbb{E}[Z] \log \mathbb{E}[Z]$ for $Z \geq 0$, i.e take $\phi(x) = x \log x$. Since ϕ is convex, $\operatorname{Ent}(Z) \geq 0$.

Suppose $Z = \frac{Q(X)}{P(X)}$ where $X \sim P$. Then $\mathbb{E}Z = 1$. Also

$$\operatorname{Ent}(Z) = \mathbb{E}\left[\frac{Q(X)}{P(X)}\log\frac{Q(X)}{P(X)}\right] - 1\log 1 = D(Q\|P).$$

Theorem (Han's inequality for Ent/Tensorisation of Ent). Let X_1, \ldots, X_n be independent random variables over \mathcal{X} (not necessarily discrete) and let $f: \mathcal{X}^n \to [0,\infty)$. Let $Z = f(X_{1:n})$. Then

$$\operatorname{Ent}(Z) \leq \sum_{i=1}^{n} \mathbb{E}[\operatorname{Ent}^{(i)}(Z)]$$

where $\operatorname{Ent}^{(i)}(Z) = \mathbb{E}^{(i)}[Z \log Z] - \mathbb{E}^{(i)}Z \log \mathbb{E}^{(i)}Z, \ \mathbb{E}^{(i)}Z = \mathbb{E}[Z|X^{(i)}].$

Proof sketch. The case $Z \equiv 0$ is trivial so assume $Z \not\equiv 0$. WLOG we may also assume $\mathbb{E}Z = 1$. It is easy to check $\mathrm{Ent}(aZ) = a\mathrm{Ent}(Z)$ for a > 0. Since $\mathbb{E}Z = 1$ we have

$$\sum_{x_1, \dots, x_n} f(x_1, \dots, x_n) P_{X_{1:n}}(x_1, \dots, x_n) = 1.$$

Define $q(x_1, ..., x_n) = f(x_{1:n}) P_{X_{1:n}}(x_{1:n})$. Then $\operatorname{Ent}(Z) = D(Q \| P)$. By Han's inequality for KL-divergence we have

$$\operatorname{Ent}(Z) = D(Q||P) \le \sum_{i=1}^{n} D(Q_{X_i|X^{(i)}}||P_{X_i}|Q_{X^{(i)}})$$

and by a result on the examples sheet we have $D(Q_{X_i|X^{(i)}}\|P_{X_i}|Q_{X^{(i)}}) = \mathbb{E}[\operatorname{Ent}^{(i)}(Z)].$

Theorem (Herbst's argument). Let Z be an integrable random variable such that for some v > 0 we have

$$\operatorname{Ent}(e^{\lambda Z}) \le \frac{\lambda^2 v}{2} \mathbb{E}[e^{\lambda Z}]$$

for all $\lambda > 0$. Then $\Psi_{Z-\mathbb{E}Z}(\lambda) = \log \mathbb{E}[e^{\lambda(Z-\mathbb{E}Z)}] \leq \frac{\lambda^2 v}{2}$ for all $\lambda > 0$.

Proof. We have

$$\begin{split} &\Psi_{Z-\mathbb{E}Z}(\lambda) = \log \mathbb{E}[e^{\lambda Z}] - \lambda \mathbb{E}Z \\ &\Psi'_{Z-\mathbb{E}Z}(\lambda) = \frac{\mathbb{E}[Ze^{\lambda Z}]}{\mathbb{E}[e^{\lambda Z}]} - \mathbb{E}Z \\ &\operatorname{Ent}(e^{\lambda Z}) = \mathbb{E}[e^{\lambda Z}\lambda Z] - \mathbb{E}[e^{\lambda Z}]\log \mathbb{E}[e^{\lambda Z}] = \mathbb{E}[e^{\lambda Z}](\lambda \Psi'(\lambda) - \Psi(\lambda)). \end{split}$$

We have

$$\frac{\mathrm{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} = \lambda \Psi'(\lambda) - \Psi(\lambda) \le \frac{\lambda^2 v}{2} \text{ for } \lambda > 0.$$

Thus $\frac{\Psi'(\lambda)}{\lambda} - \frac{\Psi(\lambda)}{\lambda^2} = \left(\frac{\Psi(\lambda)}{\lambda}\right)' \leq v/2$. Hence integrating from 0 to λ gives

$$\frac{\Psi(\lambda)}{\lambda} \leq \frac{\lambda v}{2} \implies \Psi(\lambda) \leq \frac{\lambda^2 v}{2}.$$

Theorem. Let $f: \mathcal{X}^n \to \mathbb{R}$ satisfy the bounded differences property with c_1, \ldots, c_n . Let X_1, \ldots, X_n be independent and $Z = f(X_{1:n})$. Then for $t \geq 0$,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le e^{-\frac{t^2}{2v}} \text{ where } v = \frac{\sum_{i=1}^n c_i^2}{4} \text{ and}$$

$$\mathbb{P}(Z - \mathbb{E}Z < -t) \le e^{-\frac{t^2}{2v}}.$$

Proof. By tensorisation

$$\operatorname{Ent}(e^{\lambda Z}) \leq \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(e^{\lambda Z})\right].$$

Assume the following lemma for now.

Lemma. Let Y be bounded on [a,b]. Then

$$\operatorname{Ent}(e^{\lambda Y}) \le \mathbb{E}(e^{\lambda Y}) \frac{(b-a)^2 \lambda^2}{8}.$$

Supposing the lemma is true we get

$$\operatorname{Ent}^{(i)}(e^{\lambda Z}) \le \mathbb{E}^{(i)}(e^{\lambda Z}) \frac{c_i^2 \lambda^2}{8}$$

and so

$$\operatorname{Ent}(e^{\lambda Z}) \le \mathbb{E}[e^{\lambda Z}] \frac{\lambda^2 v}{2}$$

then Herbst's argument shows $\Psi_{Z-\mathbb{E}Z}(\lambda) \leq \frac{\lambda^2 v}{2}$ and we use the Chernoff bound to get the result.

Proof of lemma. Recall that

$$\frac{\operatorname{Ent}(e^{\lambda Y})}{\mathbb{E}[e^{\lambda Y}]} = \lambda \Psi'(\lambda) - \Psi(\lambda) = \int_0^{\lambda} t \psi''(t) dt$$

where $\Psi(\lambda) = \log \mathbb{E}[e^{\lambda(Y - \mathbb{E}Y)}]$. Then by Hoeffding's lemma, $\Psi''(\lambda) \leq \frac{(b-a)^2}{4}$.

$$\int_{0}^{\lambda} t \Psi''(t) dt \le \int_{0}^{\lambda} t \frac{(b-a)^{2}}{4} dt = \frac{(b-a)^{2} \lambda^{2}}{8}.$$

Log-Sobolev Inequalities

We want an analogue to the Poincaré inequality for entropy. Let X_1, \ldots, X_n be independent symmetric Bernouilli random variables and let $f : \{-1, 1\}^n \to \mathbb{R}$. Then by Efron-Stein

$$Var(f(X)) \le \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i')^2]$$

where Z = f(X) and $Z'_i = f(X^{(i)}, X'_i)$ for X'_i an iid copy of X_i , independent of all of X_1, \ldots, X_n . Hence

$$\operatorname{Var}(f(X)) \le \frac{1}{4} \sum_{i=1}^{n} \mathbb{E}[(f(X) - f(\bar{X}^{(i)}))^{2}]$$
$$= \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}[(f(X) - f(\bar{X}^{(i)}))^{2}_{+}]$$

where $\bar{X}^{(i)} = f(X_1, \dots, X_{i-1}, X'_i, X_{i+1}, \dots, X_n)$. So define

$$\frac{1}{4} \sum_{i=1}^{n} \mathbb{E}[(f(X) - f(\bar{X}^{(i)}))^{2}] =: \mathcal{E}(f).$$

We think of $\mathcal{E}(f)$ as the expectation of a discrete derivative.

Theorem (Log-Sobolev inequality for symmetric Bernouilli).

$$\operatorname{Ent}(f(X)^2) \le 2\mathcal{E}(f).$$

Proof. Using tensorisation of Ent we have

$$\operatorname{Ent}(Z^2) \le \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(Z^2)\right]$$

where $\operatorname{Ent}^{(i)}(Z^2) = \mathbb{E}^{(i)}[Z^2 \log Z^2] - \mathbb{E}^{(i)}[Z^2] \log \mathbb{E}^{(i)}[Z^2]$. So if the inequality is true for n = 1, we have

$$\operatorname{Ent}^{(i)}(Z^2) \le \frac{(f(X) - f(\bar{X}^{(i)}))^2}{2}$$

almost-surely, so by summing over $1 \le i \le n$ and taking expectations we get the general result.

Now to show the inequality for n = 1, we will need to show it holds for f(-1) = a, f(1) = b. Indeed in this case

$$\operatorname{Ent}(Z^2) = \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{a^2 + b^2}{2} \log \left(\frac{a^2 + b^2}{2}\right)$$

and $2\mathcal{E}(f) = \frac{(b-a)^2}{2}$. So we need to show

$$\frac{1}{2}a^2\log a^2 + \frac{1}{2}b^2\log b^2 - \frac{a^2 + b^2}{2}\log\left(\frac{a^2 + b^2}{2}\right) \le \frac{(b - a)^2}{2}.$$

WLOG $0 \le b \le a$. For fixed b consider $h:[b,\infty) \to \mathbb{R}$ defined by

$$h(a) = \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{a^2 + b^2}{2} \log \left(\frac{a^2 + b^2}{2}\right) - \frac{(b - a)^2}{2}.$$

We have

$$h'(a) = a \log \frac{2a^2}{a^2 + b^2} - (a - b)$$

$$h''(a) = 1 + \log \frac{2a^2}{a^2 + b^2} - \frac{2a^2}{a^2 + b^2} \le 0 \qquad (\log x - x \le -1)$$

so h(b) = h'(b) = 0 and $h''(a) \le 0$ for all $a \in [b, \infty)$, which implies $h(a) \le 0$ for all $a \in [b, \infty)$.

Theorem (Log-Sobolev inequality for Gaussians). Let X_1, \ldots, X_n be iid $\mathcal{N}(0,1)$, let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. Then

$$\operatorname{Ent}(f^2) \le 2\mathbb{E}[\|\nabla f(X)\|^2].$$

Proof sketch. Go through the following steps

- 1. Reduce it to the n = 1 case by tensorisation;
- 2. Introduce X_1, \ldots, X_n iid symmetric Bernouilli's and consider $f\left(\frac{X_1+\ldots+X_n}{\sqrt{n}}\right)$ and use the log-Sobolev inequality for symmetric Bernouilli's;
- 3. Take $n \to \infty$ and use the CLT.

[Details of proof on Example Sheet]

Theorem (Gaussian concentration inequality). Let X_1, \ldots, X_n be iid $\mathcal{N}(0,1)$. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-Lipschitz function. Then $Z = f(X_{1:n})$ us sub-Gaussian with variance parameter L^2 .

Proof. Apply the Gaussian log-Sobolev inequality to $e^{\lambda Z/2}$ to get

$$\operatorname{Ent}(e^{\lambda Z}) \le 2\mathbb{E}[\|e^{\lambda Z/2} \frac{\lambda}{2} \nabla f(X)\|^2] \le \frac{\lambda^2}{2} L^2 \mathbb{E}[e^{\lambda Z}]$$

implying

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}(e^{\lambda Z})} \leq \frac{\lambda^2 L^2}{2} \implies Z \in \mathcal{G}(L^2).$$

Theorem. Let $f: \{-1,1\}^n \to \mathbb{R}$ and let X_i be iid symmetric Bernouilli. Let $Z = f(X_{1:n})$ and let

$$v = \max_{x \in \{-1,1\}^n} \sum_{i=1}^n (f(x) - f(\bar{x}^{(i)}))_+^2.$$

Then Z has a sub-Gaussian right tail with parameter v/2, i.e

$$\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-\frac{t^2}{2}}.$$

Remarks.

- 1. $Var(Z) \leq \mathcal{E}(f) \leq \frac{v}{2}$;
- 2. If $v = \max_{x \in \{-1,1\}^n} \sum_{i=1}^n (f(x) f(\bar{x}^{(i)}))_-^2$, get left tail bounds that are $\mathcal{G}(v/2)$;
- 3. If $v = \max_{x \in \{-1,1\}^n} \sum_{i=1}^n (f(x) f(\bar{x}^{(i)}))^2$, get right and left tail which are $\mathcal{G}(v/2)$. More refined analysis shows it can actually be made $\mathcal{G}(v/4)$;
- 4. If f satisfies bounded differences with c_i such that $\sum_{i=1}^n c_i^2 \leq v$ then bounded differences gives $Z \in \mathcal{G}(v/4)$. The bound above also gives $Z \in \mathcal{G}(v/4)$, but is applicable more generally.

Proof. Let $\lambda > 0$. Use log-Sobolev inequality for $e^{\lambda Z/2}$ to get

$$\operatorname{Ent}(e^{\lambda Z}) \le \mathbb{E}\left[\sum_{i=1}^{n} \left(e^{\lambda f(X)/2} - e^{\lambda f(\bar{X}^{(i)})/2}\right)_{+}^{2}\right].$$

Since $x \mapsto e^{x/2}$ is convex and so if z > y we have $e^{z/2} - e^{y/2} \le (z - y) \frac{e^{z/2}}{2}$. Therefore

$$\mathbb{E}\left[\sum_{i=1}^{n} \left(e^{\lambda f(X)/2} - e^{\lambda f(\bar{X}^{(i)})/2}\right)_{+}^{2}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} \left(\lambda f(X) - \lambda f(\bar{X}^{(i)})\right)_{+}^{2} \frac{e^{\lambda f(X)}}{4}\right]$$

$$\leq \mathbb{E}\left[\frac{e^{\lambda f(X)}\lambda^{2}}{4}v\right]$$

$$= \mathbb{E}[e^{\lambda Z}]\frac{\lambda^{2}(v/2)}{2}.$$

Use Herbst's argument to get the right tail bound.

Theorem (Modified log-Sobolev inequality). Let X_1, \ldots, X_n be independent, $f: \mathcal{X}^n \to \mathbb{R}, \ Z = f(X_{1:n})$. For $1 \le i \le n$ let $Z_i = f_i(X^{(i)})$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$

$$\operatorname{Ent}(e^{\lambda Z}) \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda Z}\phi(-\lambda(Z-Z_i))\right].$$

Remark. If $x \ge 0$ then $\phi(-x) \le \frac{x^2}{2}$. Say $\lambda > 0$, we choose Z_i so that $Z - Z_i \ge 0$.

$$\phi(-\lambda(Z-Z_i)) \le \frac{\lambda^2}{2}(Z-Z_i)^2$$

so the RHS of the inequality becomes $\mathbb{E}\left[e^{\lambda Z}\frac{\lambda^2}{2}\sum_{i=1}^n(Z-Z_i)^2\right]$.

Before we prove the theorem, we will need the following lemma.

Lemma (Variational formula for Ent). Let Y > 0 almost-surely. Then Ent(Y) = $\inf_{u>0} \mathbb{E}[Y \log(Y/u) - (Y-u)].$

Remark. $Var(Y) = \inf_{u} \mathbb{E}[(Y - u)^2]$. In general

$$\mathbb{E}[\phi(Y)] - \Phi(\mathbb{E}[Y]) = \inf_{u} \mathbb{E}[\underbrace{\Phi(Y) - \Phi(u) - \Phi'(u)(Y - u)}_{\text{Bregman divergence}}].$$

In particular taking $\phi(x) = x^2$ gives variance, and taking $\phi(x) = x \log x$ gives

Proof. Taking $u = \mathbb{E}Y$ gives $\mathbb{E}[Y \log(Y/u) - (Y - u)] = \text{Ent}(Y)$. Suppose $\mathbb{E}Y = m$, fix some u > 0. We want to show

$$\mathbb{E}[Y \log(Y/y) - (Y - u)] \ge \mathbb{E}[Y \log Y] - m \log m$$

$$\iff -m \log u - (m - u) \ge -m \log m$$

$$\iff \log(m/u) \ge 1 - \frac{u}{m}$$

which is true since $-\log(x) \ge 1 - x$.

Now we prove the theorem.

Proof of modified log-Sobolev inequality. Let $Y = e^{\lambda Z}$, $Y_i = e^{\lambda Z_i}$. Then

$$\operatorname{Ent}(Y) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(Y)\right]$$

$$\leq \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{E}^{(i)}[e^{\lambda Z}\lambda(Z - Z_{i}) - (e^{\lambda Z} - e^{\lambda Z_{i}})]\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}[e^{\lambda Z}\phi(-\lambda(Z - Z_{i}))].$$

Theorem. Let $Z = f(X_{1:n})$ for independent X_1, \ldots, X_n . Define $Z_i = \inf_{x_i} f(X^{(i)}, x_i)$. Suppose $\sum_{i=1}^n (Z - Z_i)^2 \leq v$. Then for all t > 0,

$$\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-\frac{t^2}{2v}}.$$

Proof. By the modified log-Sovolev inequality

$$\operatorname{Ent}(e^{\lambda Z}) \leq \mathbb{E}\left[\sum_{i=1}^{n} e^{\lambda Z} \phi(-\lambda (Z - Z_{i}))\right]$$

$$\leq \mathbb{E}\left[\sum_{i=1}^{n} e^{\lambda Z} \frac{\lambda^{2} (Z - Z_{i})^{2}}{2}\right]$$

$$\leq \frac{\lambda^{2} v}{2} \mathbb{E}[e^{\lambda Z}].$$

So use Herbst's argument.

Theorem. Let f be a separately convex function on $[0,1]^n$. Let X_1, \ldots, X_n be independent and supported on [0,1]. Let $Z=f(X_{1:n})$. Assume that f is 1-Lipschitz. Then $\mathbb{P}(Z-\mathbb{E}Z\geq t)\leq e^{-t^2/2}$ for t>0.

Remark. $Var(Z) \leq 1$ by the convex Poincáre inequality.

Proof. Set $Z_i = \inf_{X_i'} f(X^{(i)}, x_i')$. Let x_i^* be such that $Z_i = f(X^{(i)}, x_i^*)$. Then

$$Z_{i} \geq Z + \frac{\partial f}{\partial x_{i}}(X) \cdot (x_{i}^{*} - X_{i})$$

$$\implies 0 \leq Z - Z_{i} \leq \frac{\partial f}{\partial x_{i}}(X) \cdot (X_{i} - x_{i}^{*})$$

$$\implies (Z - Z_{i})^{2} \leq \left(\frac{\partial f}{\partial x_{i}}(X)\right)^{2}.$$

Summing up we get $\sum_{i=1}^{n} (Z - Z_i)^2 \le ||\nabla f(X)||^2 \le 1$. Using the previous theorem we get $\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-t^2/2}$.

Transport Method

We consider two sets of nodes $(x_i)_{i\in I}$ and $(y_j)_{j\in J}$ and we want to 'transport' materials from the (x_i) to the (y_j) . Each x_i has a production level and each y_j has a capacity. Furthermore each pair (x_i, y_j) has an associated transport cost $c(x_i, y_j)$. Our problem is to transport all the production from the x_i to the y_j , while minimising the total cost.

П

Definition. A transport plan is a function $\Pi(x_i, y_j)$ for $i \in I$, $j \in J$, where $\Pi(x_i, y_j)$ represents the amount transported from x_i to y_j . We define

$$\sum_{y} \pi(x_i, y) =: p(x_i)$$
$$\sum_{x} \pi(x, y_j) =: q(y_j)$$

and the optimal cost is

$$\min_{\Pi} \sum_{i,j} c(x_i, y_j) \Pi(x_i, y_j).$$

Theorem (Variational formulas for log-MGF and KL-divergence). Let Z be a real valued random variable on a probability space (Ω, \mathcal{F}, P) . Then

$$\log \mathbb{E}_P e^Z = \sup_{Q \ll P} [\mathbb{E}_Q Z - D(Q || P)].$$

Conversely, if P and Q are two measures then

$$D(Q||P) = \sup_{Z} [\mathbb{E}_{Q}Z - \log \mathbb{E}_{P}e^{Z}].$$

Remark. If Z is replaced by $\lambda(Z - \mathbb{E}_P Z)$ then

$$\log \mathbb{E}_P e^{\lambda(Z - \mathbb{E}_P Z)} = \sup_{Q \ll P} [\lambda(\mathbb{E}_Q Z - \mathbb{E}_P Z) - D(Q \| P)].$$

Proof. We assume Ω is discrete. Set $Q^*(\omega) = \frac{e^{Z(\omega)}P(\omega)}{\mathbb{E}_P e^Z}$. We have

$$0 \le D(Q||Q^*) \le \sum_{\omega \in \Omega} Q(\omega) \log \frac{Q(\omega)}{Q^*(\omega)}$$
$$= \sum_{\omega \in \Omega} Q(\omega) \log \left(\frac{Q(\omega)}{P(\omega)} \times \frac{P(\omega)}{Q^*(\omega)} \right)$$
$$= D(Q||P) + \sum_{\omega \in \Omega} Q(\omega) \log \frac{\mathbb{E}_P e^Z}{e^{Z(\omega)}}$$
$$= D(Q||P) + \log \mathbb{E}_P e^Z - \mathbb{E}_Q Z.$$

Thus $\log \mathbb{E}_P e^Z \geq \mathbb{E}_Q Z - D(Q||P)$. Furthermore Q^* achieves equality and $Q^* \ll P$, so we have shown the first part.

Conversely, by the above

$$D(Q||P) > \mathbb{E}_{Q}Z - \log \mathbb{E}_{P}e^{Z}$$

and $Z(\omega) = \frac{Q(\omega)}{P(\omega)}$ gives equality.

Suppose that we have a relationship of the form

$$\mathbb{E}_{Q}Z - \mathbb{E}_{P}Z \le \sqrt{2vD(Q\|P)}$$

for all $Q \ll P$. Then by the above

$$\log \mathbb{E}_P e^{\lambda(Z - \mathbb{E}_P Z)} = \sup_{Q \ll P} [\lambda(\mathbb{E}_Q Z - \mathbb{E}_P Z) - D(Q \| P)]$$

$$\leq \sup_{Q \ll P} [\lambda \sqrt{2vD(Q \| P)} - D(Q \| P)]$$

$$= \sup_{t \geq 0} \lambda \sqrt{2vt} - t$$

$$= \frac{\lambda^2 v}{2}.$$

Theorem (Marton's argument). Suppose that for some v > 0, the following holds for all $Q \ll P$:

$$\mathbb{E}_{Q}Z - \mathbb{E}_{P}Z \le \sqrt{2vD(Q||P)}.$$

Then for all $\lambda > 0$

$$\log \mathbb{E}e^{\lambda(Z - \mathbb{E}_P Z)} \le \frac{\lambda^2 v}{2}$$

and $\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-\frac{t^2}{2v}}$.

Conversely, if $\log \mathbb{E}_P e^{\lambda(Z - \mathbb{E}_P Z)} \leq \frac{\lambda^2 v}{2}$ for all $\lambda > 0$, then $\mathbb{E}_Q Z - \mathbb{E}_P Z \leq \sqrt{2vD(Q\|P)}$ for all $Q \ll P$.

Proof. We have

$$\log \mathbb{E}_{P} e^{\lambda(Z - \mathbb{E}_{P} Z)} = \sup_{Q \ll P} \left[\lambda (\mathbb{E}_{Q} Z - \mathbb{E}_{P} Z) - D(Q \| P) \right]$$

$$\leq \sup_{Q \ll P} \left[\lambda \sqrt{2vD(Q \| P)} - D(Q \| P) \right] \qquad (\lambda > 0)$$

$$\leq \sup_{t \geq 0} \left[\lambda \sqrt{2nt} - t \right]$$

$$= \frac{\lambda^{2} v}{2}.$$

For the converse, assume $\mathbb{E}_{Q}Z - \mathbb{E}_{P}Z > 0$ (otherwise the result is trivial). We have (by taking $\lambda(Z - \mathbb{E}_{P}Z)$ in our variational formula for D(Q||P))

$$D(Q||P) \ge \lambda (\mathbb{E}_{Q}Z - \mathbb{E}_{P}Z) \log \mathbb{E}_{P}e^{\lambda(Z - \mathbb{E}_{P}Z)}$$

$$\ge \lambda \lambda (\mathbb{E}_{Q}Z - \mathbb{E}_{P}Z) - \frac{\lambda^{2}v}{2}$$

so by maximising over λ , giving $\lambda = \frac{\mathbb{E}_Q Z - \mathbb{E}_P Z}{v}$ we get

$$D(Q||P) \ge \frac{(\mathbb{E}_Q Z - \mathbb{E}_P Z)^2}{2v} \implies \mathbb{E}_Q Z - \mathbb{E}_P Z \le \sqrt{2vD(Q||P)}.$$

Suppose $X_{1:n} \sim P = P_{X_1} \otimes \ldots \otimes P_{X_n}$, $Z = f(X_{1:n})$. Suppose further

$$f(y) - f(x) \le \sum_{i=1}^{n} d(x_i, y_i)c_i$$

for some metric d (note that $d(x_i, y_i) := \mathbb{1}\{x_i \neq y_i\}$ gives bounded differences). Let $Y_{1:n} \sim Q$ (not necessarily a product distribution). Then

$$\mathbb{E}f(Y_{1:n}) - \mathbb{E}f(X_{1:n}) = \mathbb{E}_{\Pi}[f(Y_{1:n}) - f(X_{1:n})]$$

where the expectation on the RHS is taken with respect to a *coupling measure* Π between $X_{1:n}$ and $Y_{1:n}$, such that Π has $X_{1:n}$ -marginal P and $Y_{1:n}$ -marginal Q. Then

$$\mathbb{E}_{\Pi}[f(Y_{1:n}) - f(X_{1:n})] \leq \mathbb{E}_{\Pi} \left[\sum_{i=1}^{n} d(X_{i}, Y_{i}) c_{i} \right]$$

$$= \sum_{i=1}^{n} c_{i} \mathbb{E}[d(X_{i}, Y_{i})]$$

$$\leq \left(\sum_{i=1}^{n} c_{i}^{2} \right)^{1/2} \left(\sum_{i=1}^{n} [\mathbb{E}_{\Pi}[d(X_{i}, Y_{i})]]^{2} \right)^{1/2}$$

now note we can actually optimise over couplings Π to get

$$\mathbb{E}[f(Y_{1:n})] - \mathbb{E}[f(X_{1:n})] \le \left(\sum_{i=1}^{n} c_i^2\right)^{1/2} \left(\inf_{\Pi \in \Pi(P,Q)} \sum_{i=1}^{n} \left[\mathbb{E}_{\Pi}[d(X_i, Y_i)]\right]^2\right)^{1/2}$$

where $\Pi(P,Q)$ denotes the set of all couplings between P and Q. Suppose we show

$$\inf_{\Pi \in \Pi(P,Q)} \sum_{i=1}^{n} [\mathbb{E}_{\Pi}[d(X_i, Y_i)]]^2 \le 2CD(Q||P)$$

then we would have

$$\mathbb{E}[f(Y_{1:n})] - \mathbb{E}[f(X_{1:n})] \le \sqrt{2vD(Q||P)}$$

where $v = C \sum_{i=1}^{n} c_i^2$.

Therefore, to run Marton's argument for such functions f it is enough to prove

$$\inf_{\Pi} \sum_{i=1}^{n} \mathbb{E}_{\Pi}[d(X_i, Y_i)]^2 \le 2CD(Q||P) \text{ for some } C > 0.$$

Bounded differences inequality via the transport method

We want to show

$$\inf_{\Pi} \sum_{i=1}^{n} \mathbb{E}_{\Pi} [\mathbb{1}(X_i \neq Y_u)]^2 = \inf_{\Pi} \sum_{i=1}^{n} \mathbb{P}_{\Pi} (X_i \neq Y_u)^2$$

$$\leq \frac{1}{2} D(Q \| P)$$

which will then give us the bounded differences inequality we had before.

Theorem (Marton's transport cost inequality). Let $P = P_{X_1} \otimes ... \otimes P_{X_n}$ and Q be an arbitrary measure over the same measurable space such that $Q \ll P$. Then

$$\inf_{\Pi \in \Pi(P,Q)} \sum_{i=1}^{n} \mathbb{P}_{\Pi}(X_i \neq Y_u)^2 \le \frac{1}{2} D(Q \| P).$$

Remark. For n=1 we would have $\inf_{\Pi} \mathbb{P}(X_1 \neq Y_1) \leq \sqrt{D(Q\|P)/2}$.

Lemma. Let P, Q be probability measures on the same measurable space (Ω, \mathcal{F}) . Then

$$\inf_{(X,Y) \sim \Pi \in \Pi(P,Q)} \mathbb{P}(X \neq Y) = d_{TV}(P,Q)$$

where $d_{TV}(P,Q)$ is the total variation distance between P and Q, defined by

$$d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|.$$

Remark. We can also write

$$d_{TV}(P,Q) = \frac{1}{2} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)|$$
$$= \sum_{\omega \in \Omega} (P(\omega) - Q(\omega))_{+}$$
$$= 1 - \sum_{\omega \in \Omega} \min\{P(\omega), Q(\omega)\}.$$

Proof. For any $A \in \mathcal{F}$ we have

$$|P(A) - Q(A)| = |\mathbb{E}_{\Pi}[\mathbb{1}(X \in A)] - \mathbb{E}_{\Pi}[\mathbb{1}(Y \in A)]|$$

$$\leq \mathbb{E}_{\Pi}[\mathbb{1}(X \neq Y)]$$

$$= \mathbb{P}_{\Pi}(X \neq Y)$$

so taking suprema over $A \in \mathcal{F}$ and infima over Π we get

$$d_{TV}(P,Q) \le \inf_{\Pi} \mathbb{P}(X \ne Y).$$

So it remains to find $\Pi \in \Pi(P,Q)$ such that $\mathbb{P}(X \neq Y) = d_{TV}(P,Q)$. Let $A = \{\omega : P(\omega) \geq Q(\omega)\}$. Consider the coupling

$$\Pi(\omega_1, \omega_2) = \begin{cases} Q(\omega) & \omega_1 = \omega_2 \in A \\ P(\omega) & \omega_1 = \omega_2 \in A^c \\ 0 & (\omega_1, \omega_2) \in A^c \times A \\ \frac{(P(\omega_1) - Q(\omega_1))(Q(\omega_2) - P(\omega_2))}{d_{TV}(P, Q)} & (\omega_1, \omega_2) \in A \times A^c \end{cases}$$

Then we have $\mathbb{P}_{\Pi}(X=Y)=\sum_{\omega}\min\{P(\omega),Q(\omega)\}=1-d_{TV}(P,Q)$ which implies $\mathbb{P}(X\neq Y)=d_{TV}(P,Q)$.

Lemma (Pinsker's inequality). We have

$$d_{TV}(P,Q)^2 \le \frac{1}{2}D(Q||P).$$

Proof. Example Sheet 2.

Proof of Marton's transport cost inequality. The above lemmas prove Marton's TCI for n=1. Assue that it holds for all $n \leq k$ and we prove it for n=k+1. Let $(X_1,\ldots,X_{k+1}) \sim P_{X_1} \otimes \ldots \otimes P_{X_{k+1}}$ and $(Y_1,\ldots,Y_{k+1}) \sim Q_{Y_{1:k+1}}$. We want to show

$$\inf_{\Pi \in \Pi(P_{X_{1:k+1}}, Q_{Y_{1:k+1}})} \sum_{i=1}^{k+1} \mathbb{P}(X_i \neq Y_i)^2 \le \frac{1}{2} D(Q_{Y_{1:k+1}} \| P_{X_{1:k+1}}).$$

We know there exists $\Pi_k \in \Pi(P_{X_{1:k}}, Q_{Y_{1:k}})$ such that

$$\sum_{i=1}^{k} \mathbb{P}(X_i \neq Y_i)^2 \le \frac{1}{2} D(Q_{Y_{1:k}} || P_{X_{1:k}}).$$

Define $\Pi \in \Pi(P_{X_{1:k+1}}, Q_{Y_{1:k+1}})$ as

$$\Pi(X_{1:k+1} = x_{1:k+1}, Y_{1:k+1} = y_{1:k+1})$$

$$= \Pi_k(X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k})\Pi_{y_{1:k}}(X_{k+1} = x_{k+1}, Y_{k+1} = y_{k+1})$$

where $\Pi_{y_{1:k}}$ is the optimal TV-coupling between $P_{X_{k+1}}$ and $Q_{Y_{k+1}|Y_{1:k}=y_{1:k}}$. Under Π ,

$$\mathbb{P}(X_{1:k+1} = x_{1:k+1}, Y_{1:k+1} = y_{1:k+1})$$

$$= \mathbb{P}(X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k}) \times \mathbb{P}(X_{k+1} = x_{k+1}) \mathbb{P}(Y_{k+1} = y_{k+1} | Y_{1:k} = y_{1:k}, X_{k+1} = x_{k+1}).$$

Under Π we have

$$\sum_{i=1}^{k} \mathbb{P}(X_i \neq Y_i)^2 + \mathbb{P}(X_{k+1} \neq Y_{k+1})^2 \leq \frac{1}{2} D(Q_{Y_{1:k}} || P_{X_{1:k}}) + \mathbb{P}(X_{k+1} \neq Y_{k+1})^2.$$

Observe that

$$\begin{split} \mathbb{P}_{\Pi}(X_{k+1} \neq Y_{k+1} | X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k}) &= \mathbb{P}_{\Pi}(X_{k+1} \neq Y_{k+1} | Y_{1:k} = y_{1:k}) \\ &= d_{TV}(P_{X_{k+1}}, Q_{Y_{k+1} | Y_{1:k} = y_{1:k}}) \\ &\leq \sqrt{\frac{1}{2} D(Q_{Y_{k+1} | Y_{1:k} = y_{1:k}} \| P_{X_{k+1}})} \end{split}$$

so integrate with respect to Π_k to see

$$\mathbb{P}(X_{k+1} \neq Y_{k+1}) \leq \mathbb{E}_{\Pi_k} \left[\sqrt{\frac{1}{2} D(Q_{Y_{k+1}|Y_{1:k} = y_{1:k}} || P_{X_{k+1}})} \right]$$

so squaring and applying Jensen,

$$\begin{split} \mathbb{P}(X_{k+1} \neq Y_{k+1}) &\leq \frac{1}{2} \mathbb{E}_{\Pi_k} D(Q_{Y_{k+1}|Y_{1:k} = y_{1:k}} \| P_{X_{k+1}}) \\ &= \frac{1}{2} \mathbb{E}_{Q_{Y_{1:k}}} D(Q_{Y_{k+1}|Y_{1:k} = y_{1:k}} \| P_{X_{k+1}}) \\ &= \frac{1}{2} D(Q_{Y_{k+1}|Y_{1:k}} \| P_{X_{k+1}} | Q_{Y_{1:k}}). \end{split}$$

Therefore

$$\begin{split} &\sum_{i=1}^{k} \mathbb{P}_{\Pi}(X_{i} \neq Y_{i})^{2} + \mathbb{P}(X_{k+1} \neq Y_{k+1})^{2} \\ &\leq \frac{1}{2} D(Q_{Y_{1:k}} \| P_{X_{1:k}}) + \frac{1}{2} D(Q_{Y_{k+1}|Y_{1:k}} \| P_{X_{k+1}} | Q_{Y_{1:k}}) \\ &= \frac{1}{2} D(Q_{Y_{1:k+1}} \| P_{X_{1:k=1}}). \end{split}$$
 (chain rule)

Definition. A function $f: \mathcal{X}^n \to \mathbb{R}$ satisfies a one-sided bounded differences property with functions c_1, \ldots, c_n from \mathcal{X}^n to \mathbb{R} if for all $x, y \in \mathcal{X}^n$ we have

$$f(y) - f(x) \le \sum_{i=1}^{n} c_i(x) \mathbb{1}\{x_i \ne y_i\}.$$

Theorem (Talagrand's one-sided bounded differences inequality). Let X_1, \ldots, X_n be independent and let f satisfy one-sided bounded differences with $c_1, \ldots, c_n : \mathcal{X}^n \to \mathbb{R}$. Define $v = \mathbb{E}\left[\sum_{i=1}^n c_i(X)^2\right]$ and $Z = f(X_{1:n})$. Then for $\lambda > 0$

$$\psi_{Z-\mathbb{E}Z}(\lambda) \le \frac{\lambda^2 v}{2}$$

and so for t > 0, $\mathbb{P}(Z - \mathbb{E}Z \ge t) \le e^{-\frac{t^2}{2v}}$.

Remark. If $v_{\infty} := \sup_{x} \sum_{i=1}^{n} c_i(x)^2$ and $Z_i = \sup_{x_i} f(X^{(i)}, x_i)$, one-sided bounded differences gives

$$0 \le Z_i - Z \le c_i(X) \implies \sum_{i=1}^n (Z_i - Z)^2 \le v_{\infty}$$

so we get a left tail with parameter v_{∞} .

Proof. Let $P = P_{X_1} \otimes \ldots \otimes P_{X_n}$ and let $Y_{1:n} \sim Q$. We have $f: \mathcal{X}^n \to \mathbb{R}$ and we want to bound

$$\mathbb{E}f(Y_{1:n}) - \mathbb{E}f(X_{1:n}) = \mathbb{E}_{\pi}[f(Y_{1:n}) - f(X_{1:n})]$$

for $\pi \in \Pi(P,Q)$. We have

$$\mathbb{E}_{\Pi}[f(Y_{1:n}) - f(X_{1:n})] \leq \mathbb{E}_{\pi} \left[\sum_{i=1}^{n} c_{i}(X_{1:n}) \mathbb{1}\{X_{i} \neq Y_{i}\} \right]$$

$$= \mathbb{E}_{\pi} \left[\mathbb{E}_{\pi} \left[\sum_{i=1}^{n} c_{i}(X_{1:n}) \mathbb{1}\{X_{i} \neq Y_{i}\} | X_{1:n} \right] \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=1}^{n} c_{i}(X_{1:n}) \mathbb{P}(X_{i} \neq Y_{i} | X_{1:n}) \right]$$

$$\leq \mathbb{E}_{\pi} \left[\left(\sum_{i=1}^{n} c_{i}(X_{1:n})^{2} \right)^{1/2} \left(\sum_{i=1}^{n} \mathbb{P}(X_{i} \neq Y_{i} | X_{1:n}) \right)^{1/2} \right]$$

$$\leq \sqrt{\mathbb{E}_{\pi} \left[\sum_{i=1}^{n} c_{i}(X_{1:n})^{2} \right]} \sqrt{\mathbb{E}_{\pi} \left[\sum_{i=1}^{n} \mathbb{P}(X_{i} \neq Y_{i} | X_{1:n}) \right]}$$

$$= \sqrt{v} \left(\sum_{i=1}^{n} \mathbb{E}_{\pi} [\mathbb{P}(X_{i} \neq Y_{i} | X_{1:n})^{2}] \right)^{1/2}.$$

Therefore it is enough to show that

$$\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \mathbb{E}_{\pi}[\mathbb{P}(X_i \neq Y_i | X_{1:n})^2] \le 2D(Q \| P).$$

Claim (Marton's conditional transport cost inequality). We have

$$\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \mathbb{E}_{\pi}[\mathbb{P}(X_i \neq Y_i | X_{1:n})^2] \leq 2D(Q \| P).$$

We first show the n = 1 case:

Lemma. Let P, Q be probability measures on a measurable space. Then

$$\inf_{\pi \in \Pi(P,Q)} \mathbb{E}[\mathbb{P}(X \neq Y|X)^2] = d_2^2(Q,P)$$

where $d_2^2(Q, P)$ is Marton's divergence and is defined by

$$d_2^2(Q, P) = \sum_{\omega: P(\omega) > 0} \frac{(P(\omega) - Q(\omega))_+^2}{P(\omega)}.$$

Proof. Let π be any coupling. Observe that

$$\mathbb{P}(X = Y | X = x) = \frac{\mathbb{P}(X = x, Y = x)}{\mathbb{P}(X = x)} \le \frac{\mathbb{P}(Y = x)}{\mathbb{P}(X = x)} = \frac{Q(x)}{P(x)}$$

so

$$\mathbb{P}(X \neq Y | X = x) \ge \left(1 - \frac{Q(x)}{P(x)}\right)_{+}.$$

Squaring this and taking expectations

$$\mathbb{E}_{\pi}[\mathbb{P}(X \neq Y|X)^{2}] \geq \sum_{x} P(x) \frac{(P(x) - Q(x))_{+}^{2}}{P(x)^{2}} = d_{2}^{2}(Q, P).$$

The existence of a coupling giving equality is on the example sheet.

Lemma. We have

$$d_2^2(Q, P) \le 2D(Q||P)$$

Proof. Omitted and non-examinable.

The above lemma implies Marton's conditional transport cost inequality for n=1. We will use induction. Assume the result is true for $n\leq k$. Then we want to show

$$\inf_{\pi} \mathbb{E}_{\pi} |left[\sum_{i=1}^{k+1} \mathbb{P}(X_i \neq Y_i | X_{1:k+1})^2] \leq D(Q_{Y_{1:k+1}} || P_{X_{1:k+1}}).$$

We know there exists a coupling $\pi_k \in \Pi(P_{X_{1:k}}, Q_{Y_{1:k}})$ such that

$$\mathbb{E}_{\pi_k} \left[\sum_{i=1}^k \mathbb{P}(X_i \neq Y_i | X_{1:k})^2 \right] \leq 2D(Q_{Y_{1:k}} || P_{X_{1:k}}).$$

Define

$$\pi(X_{1:k+1} = x_{1:k+1}, Y_{1:k+1})$$

$$= \pi_k(X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k})\pi_{y_{1:k}}(X_{k+1} = x_{k+1}, Y_{k+1} = y_{k+1})$$

where $\pi_{y_{1:k}}$ is the optimal TV coupling between $P_{X_{k+1}}$ and $Q_{Y_{k+1}|Y_{1:k}=y_{1:k}}$. Then π has the following nice properties:

- π has marginal π_k on $(X_{1:k}, Y_{1:k})$;
- (X_{k+1}, Y_{k+1}) depend on $(X_{1:k}, Y_{1:k})$ only through $Y_{1:k}$;
- X_{k+1} is independent of $(X_{1:k}, Y_{1:k})$.