ミクロ経済学I演習 第8回 解答

作成日 | 2017年6月13日

問題 1

(a) ギャンブルの定義より, $p_i \ge 0$ かつ $p_1 + p_2 + p_3 = 1$ である. $p_3 = 1 - p_1 - p_2 \le 1$ でなければならないので,

 $0 \leqslant 1 - p_1 - p_2 \leqslant 1 \iff p_1 - 1 \leqslant -p_2 \leqslant p_1 \iff -p_1 \leqslant p_2 \leqslant 1 - p_1$

 $-p_1 \le p_2$ は $p_1 \ge 0$ と $p_2 \ge 0$ より自動的に満たされる. これらの非負性に加えて $p_2 \le 1-p_1$ を満たす領域を図示すると,図 1 の青色の領域になる.

(b) 図 1 の点がギャンブル $(0.2 \circ a_1, 0.5 \circ a_2, 0.3 \circ a_3)$ である.

図1 ギャンブルの集合

問題 2

各結果が起こる確率は以下の通り.

• 結果 $a_1: 0.2 \times 0.3 + 0.8 \times 0.5 = 0.46$

• 結果 $a_2: 0.2 \times 0.6 + 0.8 \times 0.1 = 0.2$

• 結果 $a_3: 0.2 \times 0.1 + 0.8 \times 0.4 = 0.34$

よってこの合成ギャンブルが導く簡単ギャンブルは $(0.46 \circ a_1, 0.2 \circ 0.2, 0.34 \circ a_3)$.

問題 3

証明. g^1 を確率 1 で結果 1 を実現させるギャンブル, g^n を確率 1 で結果 n を実現させるギャンブルとする. $n \ge 2$ なので $g^1 \ne g^n$ である. また, $g^1, g^n \in \mathcal{G}$ である. 任意に $\alpha \in (0,1)$ を選び, g^α を

$$g^{\alpha} \equiv (\alpha \circ g^1, (1 - \alpha) \circ g^n)$$

と定義する. $\alpha \ge 0$, $1-\alpha \ge 0$ かつ $\alpha+(1-\alpha)=1$ なので $g^{\alpha} \in \mathcal{G}$ である. α の選 び方は (0,1) の間で任意なので, g^{α} の作り方は無数に存在する. よって \mathcal{G} の要素は 無限個である.

問題 4

証明. 背理法の仮定として $\alpha=0$ とすると, $g^{\alpha}\sim a_3$ であるが,これは「 $g\sim g^{\alpha}$ かつ $a_2\succ a_3$ 」に矛盾.よって $\alpha\neq 0$ である.

背理法の仮定として $\alpha=1$ とすると, $g^{\alpha}\sim a_1$ であるが,これは「 $g\sim g^{\alpha}$ かつ $a_1\succ a_2$ 」に矛盾.よって $\alpha\neq 1$ である.

問題 5

証明. 任意に $g \in \mathcal{G}$ を選ぶ. 公理 3 より $\alpha, \beta \in [0,1]$ が存在して,

$$g \sim (\alpha \circ a_1, (1 - \alpha)a_n) \equiv g^{\alpha}$$

 $g \sim (\beta \circ a_1, (1 - \beta)a_n) \equiv g^{\beta}$

のように g^{α} と g^{β} を作ることができる. g^{α} $\gtrsim g$ かつ g $\gtrsim g^{\beta}$ なので公理 2 より g^{α} $\gtrsim g^{\beta}$ であり,また g^{β} $\gtrsim g$ かつ g $\gtrsim g^{\alpha}$ なので公理 2 より g^{β} $\gtrsim g^{\alpha}$ である.する と公理 4 より

$$g^{\alpha} \succsim g^{\beta} \iff (\alpha \circ a_1, (1-\alpha)a_n) \succsim (\beta \circ a_1, (1-\beta)a_n) \iff \alpha \geqslant \beta$$

 $g^{\beta} \succsim g^{\alpha} \iff (\beta \circ a_1, (1-\beta)a_n) \succsim (\alpha \circ a_1, (1-\alpha)a_n) \iff \beta \geqslant \alpha$

が従う. よって $\alpha = \beta$ である.