Statistica I

Unità C: Indici di posizione

Tommaso Rigon

Università Milano-Bicocca

Anno Accademico 2020-2021

Unità C

Argomenti affrontati

- Media aritmetica
- Mediana, quartili e percentili
- Diagramma a scatola con baffi (boxplot)
- Medie di Bonferroni, di Chisini e di Wald

Riferimenti al libro di testo

- §4.1 §4.4
- §4.6
- §4.9
- Nota. La moda verrà presentata nell'unità I, i boxplot verranno nuovamente affrontati nell'unità G.

Misure (indici) di posizione

- Nell'unità precedente abbiamo visto che la distribuzioni parto prematuro / parto non prematuro differiscono soprattutto per la diversa posizione.
- Possiamo quantificare di quanto è più basso il DDE tra le donne con parto non prematuro?
- Vogliamo quindi sintetizzare le singole distribuzioni in un unico numero che indichi dove la distribuzione stessa è posizionata.
- Il confronto di questi indici consente di rispondere alla domanda del punto precedente
- Gli indici di posizione più "famosi" sono la media aritmetica, la mediana ed i quantili.
- In questo corso ne presenteremo anche altri: la moda (discussa nelle unità successive), la media geometrica, la media armonica, etc.

La media aritmetica

- Supponiamo di aver rilevato un certo fenomeno (esprimibile numericamente) su n unità statistiche diverse.
- Come fatto in precedenza, indichiamo con x_1, \ldots, x_n i valori osservati (ovvero i dati).
- Media aritmetica. La media aritmetica dei dati x_1, \ldots, x_n è

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i.$$

- Nonostante esistano altri tipi di "medie", quella aritmetica è senza dubbio quella più utilizzata.
- Per questa ragione, viene comunemente indicata come la media, senza ulteriore aggettivazione.

La media aritmetica

Proprietà della media: rappresentatività

- Se i dati sono tutti uguali ad un valore a allora, anche la media è uguale ad a.
- Infatti, se

$$x_1=x_2=\cdots=x_n=a,$$

allora

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (a + \cdots + a) = \frac{na}{n} = a,$$

dato che lo stesso numero a viene sommato n volte.

- Questa proprietà della media viene chiamata, a volte, rappresentatività.
- La quasi totalità degli indici di posizione possiede questa proprietà.

Proprietà della media: internalità

- La media è sempre compresa tra il più piccolo e il più grande dei valori osservati.
- In simboli, si ha che

$$x_{(1)} \leq \bar{x} \leq x_{(n)},$$

dove

$$x_{(1)} = \min\{x_1, \dots, x_n\}, \qquad x_{(n)} = \max\{x_1, \dots, x_n\}.$$

■ Infatti, per quanto riguarda la prima disuguaglianza, si ha che

$$x_{(1)} = \frac{x_{(1)} + \dots + x_{(1)}}{n} \le \frac{x_1 + \dots + x_n}{n} = \bar{x}.$$

- Questa proprietà della media viene chiamata, a volte, internalità.
- Anche in questo caso, la maggior parte degli indici di posizione possiede questa proprietà.

Proprietà della media: associatività

- La media rimane invariata se un sotto-insieme di dati viene rimpiazzato con la loro media parziale.
- In simboli, si ha che la media \bar{x} dei dati

$$X_1, \ldots, X_k, X_{k+1}, \ldots, X_n$$

coincide con la media di

$$m, \ldots, m, x_{k+1}, \ldots, x_n,$$

dove m è la media del sotto-insieme x_1, \ldots, x_k .

Infatti, basta notare che

$$\frac{m + \dots + m + x_k + \dots + x_n}{n} = \frac{1}{n} \left(k \times \frac{1}{k} \sum_{i=1}^k x_i + \sum_{i=k+1}^n x_i \right) = \frac{1}{n} \sum_{i=1}^n x_i.$$

• Questa proprietà della media viene chiamata, a volte, associatività.

Proprietà della media: trasformazione lineare

- La media di una trasformazione lineare dei dati coincide con la trasformazione lineare della media.
- In altri termini, se consideriamo i dati trasformati y_1, \ldots, y_n , tali che

$$y_i = a + bx_i, \qquad i = 1, \ldots, n,$$

dove $a,b\in\mathbb{R}$ sono due numeri qualsiasi, allora

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = a + b\bar{x}.$$

- La relazione precedente permette di calcolare agevolmente la media delle y_i senza dover calcolare le y_i stesse.
- La dimostrazione è anche in questo caso immediata

$$\bar{y} = \frac{(a+bx_1)+\cdots+(a+bx_n)}{n} = \frac{a+\cdots+a}{n} + b\frac{x_1+\cdots+x_n}{n} = a+b\bar{x}$$

Proprietà della media: baricentro

- La somma, e dunque la media, delle differenze dei dati dalla loro media, detti scarti, è sempre pari a 0.
- In altri termini,

$$\sum_{i=1}^{n} (x_i - \bar{x}) = (x_1 - \bar{x}) + \cdots + (x_n - \bar{x}) = 0.$$

Si tratta di una conseguenza delle proprietà precedente, con $a=-\bar{x}, b=1$. Oppure, basta notare che

$$\sum_{i=1}^{n}(x_i-\bar{x})=\left(\sum_{i=1}^{n}x_i\right)-n\bar{x}=n\bar{x}-n\bar{x}=0.$$

- Questo risultato mostra che la media costituisce il baricentro della distribuzione di frequenza.
- Infatti, alcuni scarti $(x_i \bar{x})$ saranno positivi, altri negativi, ed alcuni (a volte) nulli. Tali scarti si compensano esattamente.

Proprietà della media: scarti quadratici

Lemma A

lacksquare Sia $a\in\mathbb{R}$ un numero qualsiasi, allora

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - a)^2.$$

Infatti:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - a + \bar{x} - \bar{x})^2 = \sum_{i=1}^{n} [(x_i - \bar{x}) + (\bar{x} - a)]^2$$

$$= \sum_{i=1}^{n} [(x_i - \bar{x})^2 + (\bar{x} - a)^2 + 2(x_i - \bar{x})(\bar{x} - a)]$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - a)^2 + 2(\bar{x} - a) \sum_{i=1}^{n} (x_i - \bar{x})$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - a)^2.$$

Proprietà della media: scarti quadratici

- Il Lemma appena descritto ha una importante conseguenza.
- La somma degli scarti quadratici da una costante è minima se e solo se la costante è posta uguale alla media.
- In simboli, si ha che

$$\bar{x} = \arg\min_{a \in \mathbb{R}} \sum_{i=1}^{n} (x_i - a)^2.$$

Infatti

$$\sum_{i=1}^{n} (x_i - a)^2 > \sum_{i=1}^{n} (x_i - \bar{x})^2, \quad \text{se } a \neq \bar{x},$$

poiché il secondo termine che compare nel Lemma A è strettamente positivo.

Esercizio. Si dimostri questo risultato studiando la funzione $\ell(a) = \sum_{i=1}^{n} (x_i - a)^2$, ovvero considerando derivata prima e seconda di $\ell(a)$.

Proprietà della media: calcolo ricorsivo

- Si indichi con \bar{x}_n la media aritmetica dei valori x_1, \ldots, x_n .
- Si supponga che un nuovo dato x_{n+1} diventi disponibile e si indichi con \bar{x}_{n+1} la media aritmetica dei dati x_1, \ldots, x_n . Allora

$$\bar{x}_{n+1} = \frac{n}{n+1}\bar{x}_n + \frac{1}{n+1}x_{n+1}.$$

Infatti, si noti che

$$\bar{x}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{n}{n+1} \frac{1}{n} \left(\sum_{i=1}^{n} x_i + x_{n+1} \right) = \frac{n}{n+1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) + \frac{1}{n+1} x_{n+1}$$

- Tale relazione è detta ricorsiva perché permette di aggiornare la media aritmetica \bar{x}_{n+1} in termini di \bar{x}_n e del nuovo dato x_{n+1} , senza dover rifare tutti i calcoli.
- **Esercizio**. Sapendo che $\bar{x}_9 = 26$ e che $x_{10} = 30$, si calcoli la media \bar{x}_{10} .

Una non-proprietà della media

- La media di una trasformazione non lineare dei dati non coincide con la trasformazione della media.
- In altri termini, se consideriamo i dati trasformati y_1, \ldots, y_n , tali che

$$y_i = f(x_i), \qquad i = 1, \ldots, n,$$

dove f(x) è una funzione non lineare qualsiasi, allora in generale

$$\bar{y} = \frac{1}{n} \sum_{i=1}^n f(x_i) \neq f\left(\frac{1}{n} \sum_{i=1}^n x_i\right) = f(\bar{x}).$$

Esempio. Se $f(x) = x^2$, allora in generale non è vero che

$$\frac{1}{n}\sum_{i=1}^{n}x_i^2\neq\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right)^2,$$

ovvero la media dei quadrati non è pari al quadrato della media.

Esercizio. Si verifichi la precedente affermazione ponendo $x_1 = 0$, $x_2 = 1$ e $x_3 = 2$.

Disuguaglianza di Jensen

- La precedente non-proprietà può essere resa più precisa quando f(x) è una funzione convessa oppure concava.
- Se la derivata seconda f''(x) esiste, allora una funzione è convessa in (a,b) quando $f''(x) \ge 0$ per ogni $x \in (a,b)$. Viceversa è concava se $f''(x) \le 0$.
- Sia f(x) una funzione convessa nell'intervallo (a, b) e siano x_1, \ldots, x_n dei dati contenuti in tale intervallo. Allora

$$\frac{1}{n}\sum_{i=1}^n f(x_i) \geq f\left(\frac{1}{n}\sum_{i=1}^n x_i\right)$$

- Il verso della disuguaglianza è invertito quando f(x) è una funzione concava.
- **Esempio.** Se $f(x) = \log x$, allora f(x) è concava per ogni x > 0 e vale che

$$\frac{1}{n}\sum_{i=1}^n\log x_i\leq\log\left(\frac{1}{n}\sum_{i=1}^nx_i\right).$$

Un difetto della media

- Alcuni insiemi di dati possono contenere una frazione di osservazioni anomale o atipiche.
- Si tratta di osservazioni che sembrano provenire da una popolazione diversa o essere state generate da un meccanismo differente.
- Nel caso più banale, potrebbe perfino trattarsi di errori di trascrizione.
- In una situazione del tipo descritto, bisogna tenere presente che la media aritmetica è molto sensibile alla presenza di osservazioni anomale e può fornire risultati fuorvianti.
- Come è facile capire dalla definizione stessa, una sola osservazione molto grande o molto piccola può dominare il valore assunto dalla media.

Un difetto della media

- **E**sercizio. Si supponga di avere n = 10.000 osservazioni x_1, \ldots, x_n tali che $x_i \in (0, 1)$ per ogni $i = 2, \ldots, 10.000$.
- In altri termini, tutte le osservazioni eccetto la prima sono comprese tra 0 e 1.
- Si mostri che

$$\lim_{x_1\to-\infty}\frac{1}{n}\sum_{i=1}^nx_i=-\infty.$$

■ Si commenti il risultato.

La media aritmetica ponderata

- Nella definizione di media aritmetica, le unità statistiche concorrono "alla pari" nella determinazione della media.
- Esistono tuttavia delle situazioni in cui tale approccio non è adeguato.
- Ad esempio, la media dei voti universitari è pesata tramite i crediti formativi (CFU).
- Se a ciascuna unità statistica x_i è associato un peso numerico w_i , allora si può usare la media aritmetica ponderata.
- Media aritmetica ponderata. La media aritmetica dei dati x_1, \ldots, x_n con pesi w_1, \ldots, w_n è

$$\bar{x}_{w} = \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i'=1}^{n} w_{i'}} = \frac{w_{1} x_{1} + w_{2} x_{2} + \dots + w_{n} x_{n}}{w_{1} + w_{2} + \dots + w_{n}} = \sum_{i=1}^{n} \tilde{w}_{i} x_{i},$$

dove $\tilde{w}_i = w_i / \sum_{i'=1}^n w_{i'}$ sono i pesi standardizzati.

Dati raggruppati: approssimazione della media

Classi	$(a_0, a_1]$	$(a_1, a_2]$	$(a_2, a_3]$	 $(a_{k-1},a_k]$
Frequenze assolute	n_1	n_2	<i>n</i> ₃	 n_k

- Supponiamo di non conoscere i dati individuali ma solo una distribuzione di frequenza per intervalli, come nell'esempio sopra.
- La media non si può calcolare esattamente.
- Un'approssimazione che viene spesso usata in questi casi è

$$\bar{\mathbf{x}} \approx \frac{1}{n} \sum_{j=1}^k n_j m_j = \sum_{j=1}^k f_j m_j, \qquad f_j = n_j/n,$$

dove m_i è il punto centrale dell'intervallo j-esimo, ovvero

$$m_j=\frac{a_{j-1}+a_j}{2}, \qquad j=1,\ldots,k.$$

Questa approssimazione è una media aritmetica ponderata, con pesi $w_i = n_i$.

Dati raggruppati: proprietà della media

- Esercizio. Si dica quale delle due seguenti affermazioni è ragionevolmente corretta
 - Più gli intervalli sono grandi (lunghi) più l'approssimazione è accurata.
 - Più gli intervalli sono piccoli (corti) più l'approssimazione è accurata.
- Esercizio proprietà. Si dimostri che l'approssimazione del punto precedente coincide con la media aritmetica, ovvero

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} n_j m_j = \sum_{j=1}^{k} f_j m_j, \qquad f_j = n_j / n,$$

quando tutte le osservazioni nell'intervallo j-esimo sono uguali a m_j (variabili discrete).

Esercizio - proprietà. Più in generale, si dimostri che l'identità $\bar{x} = 1/n \sum_{j=1}^k n_j m_j$ vale anche nel caso in cui m_j sia pari alla media aritmetica delle osservazioni contenute nell'intervallo j-esimo, ovvero se

$$m_j = \frac{1}{n_j} \sum_{i: x_i \in (a_{j-1}, a_j]} x_i, \qquad j = 1, \ldots, k.$$

La mediana

- L'idea alla base della mediana è trovare quel numero che sia più grande di circa il 50% delle osservazioni e più piccolo della restante parte.
- Nel grafico seguente, le osservazioni x_1, \ldots, x_{13} corrispondono ai punti disegnati con un cerchio. La mediana invece è stata contrassegnata con una croce.
- La mediana lascia sia a sinistra che a destra 6 osservazioni.

La mediana

■ Mediana. Siano $x_1, ..., x_n$ un insieme di dati e siano $x_{(1)}, ..., x_{(n)}$ le osservazioni ordinate. La mediana è quindi pari a

$$\mathsf{Me} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ è dispari,} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2, & \text{se } n \text{ è pari.} \end{cases}$$

- La mediana è quindi il valore centrale dei dati ordinati se questi sono in numero dispari, mentre è la media dei due valori centrali quando i dati sono in numero pari.
- Ricordando la definizione della funzione di ripartizione empirica, si nota che la mediana è un valore tale per cui

$$F(\mathsf{Me}) pprox rac{1}{2}.$$

■ Nota. Quando n è pari, la media dei due valori centrali è una scelta convenzionale, anche se largamente condivisa. In realtà, qualsiasi valore compreso nell'intervallo $[x_{(n/2)}, x_{(n/2+1)}]$ sarebbe accettabile (ci torniamo poi!).

La mediana

	Parto non prematuro	Parto prematuro	
Media di DDE (mg/L)	29.14	36.20	
Mediana di $DDE (mg/L)$	24.04	29.46	

- Dati x_1, \ldots, x_5 : 1, 4, 2, 9, 3.
- Dati ordinati $x_{(1)}, \ldots, x_{(5)}$: 1, 2, 3, 4, 9.
- In questo caso n = 5 è dispari. Secondo la definizione di mediana data in precedenza si ottiene:

$$Me = x_{(3)} = 3.$$

■ Tuttavia, non esiste un numero che lascia esattamente il 50% delle osservazioni alla sua sinistra. Infatti, in questo caso si ha che

$$F(3) = \frac{3}{5} = 0.6,$$

ricordando che F(x) è la funzione di ripartizione empirica.

- Dati x_1, \ldots, x_4 : 1, 2, 1, 5.
- **Dati ordinati** $x_{(1)}, \ldots, x_{(4)}$: 1, 1, 2, 5.
- Poiché *n* = 4 è pari, otteniamo

Me =
$$\frac{1}{2} (x_{(2)} + x_{(3)}) = (1+2)/2 = 1.5.$$

In questo caso, la mediana lascia esattamente il 50% delle osservazioni alla sua sinistra. Infatti

$$F(1.5) = \frac{2}{4} = 0.5.$$

- Tuttavia, qualsiasi numero compreso tra 1 e 2 godrebbe della stessa proprietà, ad esempio F(1.7) = 0.5.
- Il valore 1.7 è una "mediana alternativa" rispetto a quella convenzionalmente usata. Ad ogni modo, le differenze tra la mediana "canonica" e quelle alternative sono spesso trascurabili in pratica.

- Dati x_1, \ldots, x_{10} : 4, 3, 2, 2, 5, 2, 6, 5, 1, 3.
- Dati ordinati $x_{(1)}, \ldots, x_{(10)}$: 1, 2, 2, 2, 3, 3, 4, 5, 5, 6.
- Poiché n=10 è pari, otteniamo

Me =
$$\frac{1}{2} (x_{(5)} + x_{(6)}) = (3+3)/2 = 3.$$

- In questo caso non ci sono ambiguità: il valore 3 è l'unico ammissibile.
- Tuttavia, il valore 3 non lascia esattamente il 50% delle osservazioni alla sua sinistra.
 Infatti

$$F(3) = \frac{6}{10} = 0.6.$$

Tommaso Rigon (Milano-Bicocca)

Supponiamo ora di avere i seguenti dati raggruppati

Classi	(0, 1]	(1, 2]	(2, 3]	(3, 4]	(4, 5]
Frequenze assolute	1	4	4	2	1

 \blacksquare In totale abbiamo n=12 osservazioni, pertanto la mediana dovrebbe essere pari a

$$Me = \frac{x_{(6)} + x_{(7)}}{2}.$$

- Dalla tabella è chiaro che entrambi i valori $x_{(6)}$ e $x_{(7)}$ appartengono all'intervallo (2, 3], quindi necessariamente anche la mediana appartiene a questo intervallo.
- Tuttavia, il calcolo preciso della mediana è impossibile.
- In pratica, potrebbe essere conveniente scegliere un valore preciso compreso tra 2 e 3, ma questo sarebbe necessariamente una scelta arbitraria.

Dati raggruppati: approssimazione della mediana

Classi	$(a_0, a_1]$	$(a_1, a_2]$	$(a_2, a_3]$	 $(a_{k-1},a_k]$
Frequenze assolute	n_1	n_2	<i>n</i> ₃	 n_k

 Sebbene il calcolo preciso della mediana non sia possibile in caso di dati raggruppati, una scelta ragionevole è la seguente approssimazione lineare

$$\mathsf{Me} pprox a_{j-1} + (a_j - a_{j-1}) rac{1/2 - F(a_{j-1})}{F(a_j) - F(a_{j-1})},$$

in cui a_{j-1} e a_j sono gli estremi dell'intervallo a cui la mediana appartiene ed F(x) è la funzione di ripartizione.

■ Tale formula si ottiene considerando la retta y = ax + b passante per i punti $(a_{j-1}, F(a_{j-1}))$ e $(a_j, F(a_j))$. L'approssimazione della mediana sarà quel valore per cui

$$rac{1}{2}pprox a imes {\sf Me}+b, \qquad {\sf ovvero} \qquad {\sf Me}pprox rac{1}{a}(1/2-b).$$

Esercizio. Calcolare esplicitamente i valori di a e di b e verificare la formula.

■ Supponiamo di avere i seguenti dati raggruppati

Classi	(0, 1]	(1, 2]	(2, 3]	(3, 4]	(4, 5]
Frequenze assolute	1	4	4	2	1

- Dalla tabella è chiaro che la mediana appartiene all'intervallo (2,3], ovvero $a_{j-1}=2$ e $a_j=3$.
- Inoltre, si verifichi che

$$F(2) = \frac{5}{12} = 0.42 < 0.5,$$
 $F(3) = \frac{9}{12} = 0.75 > 0.5.$

Utilizzando l'approssimazione lineare per la mediana, si ottiene che

$$\mathsf{Me} \approx a_{j-1} + (a_j - a_{j-1}) \frac{1/2 - F(a_{j-1})}{F(a_j) - F(a_{j-1})} = 2 + (3-2) \frac{1/2 - 5/12}{9/12 - 5/12} = 2.25.$$

Tommaso Rigon (Milano-Bicocca)

Proprietà della mediana

- **E** semplice mostrare che anche la mediana soddisfa il criterio di rappresentatività, ovvero se i dati sono tutti uguali a una costante a, allora Me = a.
- Inoltre, la mediana soddisfa il criterio di internalità, ovvero è sempre compresa tra il valore minimo ed il valore massimo. Questo fatto è piuttosto ovvio dalla definizione.
- La mediana è particolarmente apprezzata soprattutto perché è poco sensibile alla presenza di valori anomali.
- Per questa ragione, si dice che la mediana è resistente.
- **Esercizio**. Come mai questo succede? Supponendo che x_1, \ldots, x_n siano tutti compresi tra 0 e 1, con n = 10.000. Cosa succederebbe alla mediana se sostituissi al posto del valore di x_1 sostituissi $x_1 = 10^{2020}$? Cosa succederebbe invece alla media aritmetica?

Proprietà della mediana

- La somma degli scarti in valore assoluto da una costante è minima se (ma non solo se) tale costante è posta uguale alla mediana.
- In simboli, si ha che

$$\sum_{i=1}^{n} |x_i - \mathsf{Me}| = \min_{a \in \mathbb{R}} \sum_{i=1}^{n} |x_i - a|$$

- Attenzione ai dettagli. Quando *n* è pari, infatti, esistono infiniti valori che rendono minimi gli scarti in valore assoluto. In altri termini, esistono delle "mediane alternative".
- In particolare, qualsiasi costante a compresa nell'intervallo $[x_{(n/2)}, x_{(n/2+1)}]$ minimizza $\sum_{i=1}^{n} |x_i a|$. Infatti, la somma degli scarti assoluti è sempre la stessa.
- Quando n è dispari, invece, esiste un unico valore che minimizza $\sum_{i=1}^{n} |x_i a|$, ovvero il valore in posizione centrale dei dati ordinati.

Dimostrazione per n=2

- A fini illustrativi, dimostriamo questa proprietà nel caso n = 2. Supponiamo quindi di avere due osservazioni tali che $x_2 > x_1$. La dimostrazione nel caso $x_1 = x_2$ è ovvia.
- **Caso 1**. Si noti che per qualsiasi valore $a \in [x_1, x_2]$ allora

$$\sum_{i=1}^{2} |x_i - a| = (a - x_1) + (x_2 - a) = x_2 - x_1.$$

Caso 2. Viceversa, se $a < x_1$ allora

$$\sum_{i=1}^{2} |x_i - a| = (x_1 - a) + (x_2 - a) = x_1 + x_2 - 2a > x_1 + x_2 - 2x_1 = x_2 - x_1.$$

Caso 3. Infine, se $a > x_2$ allora

$$\sum_{i=1}^{2} |x_i - a| = (a - x_1) + (a - x_2) = 2a - x_1 - x_2 > 2x_2 - x_1 - x_2 = x_2 - x_1.$$

Proprietà della mediana: trasformazione monotona

- La mediana di una trasformazione che preserva l'ordinamento dei dati, detta trasformazione monotona crescente, coincide con la trasformazione della mediana.
- In simboli, se f(x) è una trasformazione monotona e poniamo

$$y_i = f(x_i), \qquad i = 1, \ldots, n,$$

allora la mediana di y_1, \ldots, y_n coincide con $f(\text{"mediana di } x_1, \ldots, x_n")$.

- **Esemplo 1**. Alcune trasformazioni lineari f(x) = a + bx sono trasformazioni monotone crescenti, ovvero quelle in cui $b \ge 0$.
- **Esempio 2**. Se $f(x) = x^2$ e i dati sono non-negativi, allora f(x) è una trasformazione monotona crescente e la mediana di y_1, \ldots, y_n coincide con f("mediana di x_1, \ldots, x_n ").
- **E**sercizio. Si verifichi la precedente affermazione ponendo $x_1 = 0$, $x_2 = 3$ e $x_3 = 5$.

I quantili

- I quantili generalizzano la mediana.
- L'idea alla base di un quantile-p, dove $p \in (0,1)$, è trovare quel numero che sia più grande di circa il $100 \times p\%$ delle osservazioni e più piccolo della restante parte.
- Ad esempio, un quantile-0.1 è il valore che lascia a sinistra circa il 10% delle osservazioni.
- I quantili con *p* uguale a 0.25, 0.5, 0.75 vengono spesso chiamati, rispettivamente, il primo, il secondo ed il terzo quartile. Dividono la popolazione in quattro parti uguali.
- Nota. Il secondo quartile coincide con la mediana.
- I quantili con p = 0.1, ..., 0.9 si chiamano decili mentre quelli con p = 0.1, ..., 0.99 si chiamano percentili.

I quantili

■ Quantile-p. Siano x_1, \ldots, x_n un insieme di dati, sia $p \in (0,1)$ e sia F(x) la funzione di ripartizione empirica. Il quantile-p è quindi pari a

$$Q_p = \inf\{x : F(x) \ge p\}.$$

- In altri termini, il quantile-p è il più piccolo valore che è più grande di almeno il 100 × p% dei dati.
- Per definizione, si ha che $F(Q_p) \ge p$, anche se spesso in pratica vale che

$$F(Q_p) \approx p$$
.

■ Esercizio: ambiguità dei quantili. Si verifichi che

$$Q_{0.5} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ è dispari,} \\ x_{\left(\frac{n}{2}\right)}, & \text{se } n \text{ è pari.} \end{cases}$$

Si confronti $Q_{0.5}$ con la mediana Me e si commenti.

Ambiguità nel calcolo dei quantili

- Nota. Esattamente come per la mediana, questa definizione di quantili-p è una scelta convenzionale.
- Differenti software e libri di testo usano diverse convenzioni! Ad esempio, il nostro libro di testo non usa la nostra stessa definizione.
- Ci sono infatti delle ambiguità nel calcolo dei quantili, dovute ad esempio al fatto che esistono infiniti valori più grandi del $100 \times p\%$ dei dati.
- Purtroppo, diversamente dalla mediana, non esiste una definizione di quantile-p "canonica" e largamente accettata da tutti.
- Esistono definizioni alternative per i quantili-p tali che la mediana è sempre pari al secondo quartile.
- Nonostante esistano numerose alternative, le differenze diventano sostanzialmente trascurabili quando *n* è sufficientemente grande, perché i dati diventano più addensati.

Quartili di DDE

	Parto non prematuro	Parto prematuro
Primo quartile di DDE (mg/L)	16.73	19.94
Secondo quartile di DDE (mg/L)	24.04	29.46
Terzo quartile di DDE (mg/L)	35.45	45.30

Quartili di DDE

Definizione alternativa I (default nel software R)

	Parto non prematuro	Parto prematuro	
Primo quartile di DDE (mg/L)	16.735	19.94	
Secondo quartile di DDE (mg/L)	24.040	29.46	
Terzo quartile di DDE (mg/L)	35.400	45.30	

Definizione alternativa II (default nel software SAS)

	Parto non prematuro	Parto prematuro	
Primo quartile di $DDE (mg/L)$	16.73	19.94	
Secondo quartile di $DDE(mg/L)$	24.04	29.31	
Terzo quartile di $DDE(mg/L)$	35.35	45.30	

Esempi di calcolo dei quantili

- Dati ordinati: 6.4, 6.7, 6.8, 7.0, 7.3, 7.5, 7.6, 7.7, 7.9, 8.1.
- Il primo quartile è il più piccolo valore che sia più grande di almeno il 25% dei dati.
 Pertanto, abbiamo

$$Q_{0.25} = x_{(3)} = 6.8,$$

dato che F(6.8) = 0.3 > 0.25. Questo è effettivamente il valore più piccolo possibile, infatti ad esempio F(6.75) = 0.2 < 0.25.

■ Ambiguità dei quantili. Le mediana Me in questo caso è il valore medio tra 7.3 e 7.5, ovvero Me = 7.4. Tuttavia, il secondo quartile è leggermente diverso:

$$Q_{0.5} = x_{(5)} = 7.3.$$

Questa differenza è tuttavia abbastanza trascurabile ai fini pratici.

Esempi di calcolo dei quantili

- Dati x_1, \ldots, x_{10} : 4, 3, 2, 2, 5, 2, 6, 5, 1, 3.
- Dati ordinati $x_{(1)}, \ldots, x_{(10)}$: 1, 2, 2, 2, 3, 3, 4, 5, 5, 6.
- Poiché n = 10, allora il terzo quartile, ovvero il quantile-0.75, è pari a

$$Q_{0.75} = x_{(8)} = 5.$$

- Infatti, F(5) = 0.9 > 0.75. Tuttavia ad esempio F(4.9) = 0.7 < 0.75. In altri termini, il valore 5 è il più piccolo valore più grande di almeno il 75% dei dati.
- Ambiguità dei quantili. In questo caso particolare, il secondo quartile $Q_{0.5} = 3 = Me$ coincide con la mediana Me . Questo accade perché i due valori centrali $x_{(5)}$ e $x_{(6)}$ sono uguali.

Dati raggruppati: approssimazione dei quantili

Classi	$(a_0, a_1]$	$(a_1, a_2]$	$(a_2, a_3]$	 $(a_{k-1},a_k]$
Frequenze assolute	n_1	n_2	<i>n</i> ₃	 n_k

 Sebbene il calcolo preciso dei quantili non sia possibile in caso di dati raggruppati, una scelta ragionevole è la seguente approssimazione lineare

$$Q_p \approx a_{j-1} + (a_j - a_{j-1}) \frac{p - F(a_{j-1})}{F(a_j) - F(a_{j-1})},$$

in cui a_{j-1} e a_j sono gli estremi dell'intervallo a cui il quantile-p appartiene ed F(x) è la funzione di ripartizione.

■ Tale formula si ottiene considerando la retta y = ax + b passante per i punti $(a_{j-1}, F(a_{j-1}))$ e $(a_j, F(a_j))$. L'approssimazione del quantile-p sarà quel valore per cui

$$p pprox a imes \mathcal{Q}_p + b,$$
 ovvero $\mathcal{Q}_p pprox rac{1}{a}(p-b).$

Esempi di calcolo dei quantili

■ Supponiamo di avere i seguenti dati raggruppati

Classi	(0, 1]	(1, 2]	(2, 3]	(3, 4]	(4, 5]
Frequenze assolute	1	4	4	2	1

- Dalla tabella è chiaro che il quantile-0.25, ovvero $Q_{0.25}$, appartiene all'intervallo (1, 2], cioè $a_{j-1}=1$ e $a_j=2$.
- Inoltre, si verifichi che

$$F(1) = \frac{1}{12} = 0.09 < 0.25,$$
 $F(2) = \frac{5}{12} = 0.45 > 0.25.$

Utilizzando l'approssimazione lineare per i quantili, si ottiene che

$$Q_{0.25} \approx a_{j-1} + (a_j - a_{j-1}) \frac{1/4 - F(a_{j-1})}{F(a_j) - F(a_{j-1})} = 1 + (2-1) \frac{1/4 - 1/12}{5/12 - 1/12} = 1.5.$$

Un inciso: indici per dati raggruppati

Classi	$(a_0, a_1]$	$(a_1, a_2]$	$(a_2, a_3]$	 $(a_{k-1},a_k]$
Frequenze assolute	n_1	n_2	<i>n</i> ₃	 n_k

- Abbiamo fornito fino ad ora delle possibili approssimazioni per media, mediana e quantili in presenza di dati raggruppati, ovvero rappresentati come in tabella.
- Una strategia generale consiste nel supporre che i dati appartenenti alla classe $(a_{j-1}, a_j]$ siano pari al valore centrale $m_j = (a_{j-1} + a_j)/2$ e poi procedere normalmente.
- Per evitare di presentare ogni indice due volte (definizione & approssimazione), ci asterremo dal presentare le approssimazioni dei futuri indici che considereremo.
- Tuttavia, nelle applicazioni statistiche moderne, sono rari (anche se ne esistono!) i contesti in cui i dati sono forniti allo statistico già raggruppati in classi. Viceversa, è spesso lo statistico stesso a creare un raggruppamento per poterli meglio descrivere.
- Se i dati originali sono disponibili, gli indici possono essere calcolati esattamente, senza dover ricorrere ad approssimazioni.

I boxplot

I diagrammi a scatola con baffi, chiamati boxplot, sono una sorta di istogramma semplificato basato sui quantili.

Le medie di Bonferroni

- Un terzo indicatore di posizione molto utilizzato è la moda, che discuteremo più avanti.
- Sebbene media, mediana e quantili siano gli indicatori più diffusi, esistono molte altre definizioni di media.
- Presentiamo nel seguito una generalizzazione della media aritmetica, introdotta da Bonferroni, e in seguito studiate da Nagumo, Kolomogorov e de Finetti.
- Medie di Bonferroni. Sia f(x) una funzione continua e strettamente monotona nell'intervallo [a, b] e siano x_1, \ldots, x_n dei dati contenuti in tale intervallo. Allora, una media $\mathbb M$ dei dati x_1, \ldots, x_n è pari a

$$\mathbb{M} = f^{-1}\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right),\,$$

dove $f^{-1}(x)$ è la funzione inversa di f(x).

■ La media aritmetica è una media di Bonferroni, ponendo f(x) = x.

La media geometrica

- Uno esempio notevole di media di Bonferroni si ottiene ponendo $f(x) = \log x$.
- Media geometrica. La media geometrica dei dati strettamente positivi x_1, \ldots, x_n è

$$\mathbb{G} = \sqrt[n]{x_1 x_2 \cdots x_n} = \left(\prod_{i=1}^n x_i \right)^{1/n} = \exp \left\{ \frac{1}{n} \sum_{i=1}^n \log x_i \right\}.$$

■ Per dati strettamente positivi $x_1, ..., x_n$ vale che

$$\mathbb{G} \leq \bar{x}$$
,

ovvero la media geometrica è sempre minore o uguale della media aritmetica.

 Esercizio. Dimostrare la disuguaglianza precedente. Suggerimento: si veda la slide sulla disuguaglianza di Jensen.

La media armonica

- Uno secondo esempio di media di Bonferroni si ottiene ponendo f(x) = 1/x.
- Media armonica. La media armonica dei dati strettamente positivi x_1, \ldots, x_n è

$$\mathbb{A} = \frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}} = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right)^{-1}.$$

■ Per dati strettamente positivi $x_1, ..., x_n$ vale che

$$\mathbb{A} \leq \mathbb{G} \leq \bar{x}$$
,

ovvero la media geometrica è sempre minore o uguale della media geometrica.

Proprietà delle medie di Bonferroni: rappresentatività

- Se i dati sono tutti uguali ad un valore a allora, anche la media di Bonferroni è uguale ad a.
- Infatti, se

$$x_1 = x_2 = \cdots = x_n = a$$
,

allora

$$\mathbb{M} = f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}f(x_i)\right) = f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}f(a)\right) = f^{-1}\left(\frac{nf(a)}{n}\right) = a,$$

dato che per definizione $f^{-1}(f(x)) = x$.

■ Pertanto, tutte le medie di Bonferroni rispettano il criterio della rappresentatività.

Proprietà della medie di Bonferroni: internalità

- La media di Bonferroni è sempre compresa tra il più piccolo e il più grande dei valori osservati.
- In simboli, si ha che

$$x_{(1)} \leq \mathbb{M} \leq x_{(n)}$$
.

■ Infatti, per quanto riguarda la prima disuguaglianza, si noti che

$$\frac{f(x_{(1)})+\cdots+f(x_{(1)})}{n}\leq \frac{f(x_1)+\cdots+f(x_n)}{n},$$

dato che f(x) è una funzione monotona. Poiché anche $f^{-1}(x)$ è una funzione monotona, possiamo scrivere

$$x_{(1)} = f^{-1}\left(\frac{f(x_{(1)}) + \cdots + f(x_{(1)})}{n}\right) \leq f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}f(x_i)\right) = \mathbb{M}.$$

Pertanto, tutte le medie di Bonferroni rispettano il criterio di internalità.

Proprietà delle medie di Bonferroni: associatività

- La media di Bonferroni rimane invariata se un sotto-insieme di dati viene rimpiazzato con la loro media parziale.
- In simboli, si ha che la media di Bonferroni M dei dati

$$X_1, \ldots, X_k, X_{k+1}, \ldots, X_n$$

coincide con la media di Bonferroni di

$$m, \ldots, m, x_{k+1}, \ldots, x_n,$$

dove m è la media di Bonferroni del sotto-insieme x_1, \ldots, x_k .

- La dimostrazione è sostanzialmente identica a quella della media aritmetica.
- Pertanto, tutte le medie di Bonferroni rispettano il criterio di associatività.

Le medie di Bonferroni ponderate

- Se alle osservazioni sono associate dei pesi w_1, \ldots, w_n , esiste una naturale estensione delle medie di Bonferroni.
- Medie di Bonferroni ponderate. Sia f(x) una funzione continua e strettamente monotona nell'intervallo [a,b] e siano x_1,\ldots,x_n dei dati contenuti in tale intervallo. Allora, una media ponderata \mathbb{M}_w dei dati x_1,\ldots,x_n con pesi w_1,\ldots,w_n è pari a

$$\mathbb{M}_{w} = f^{-1}\left(\frac{\sum_{i=1}^{n} w_{i} f(x_{i})}{\sum_{i'=1}^{n} w_{i'}}\right) = f^{-1}\left(\sum_{i=1}^{n} \tilde{w}_{i} f(x_{i})\right),$$

dove $\tilde{w}_i = w_i / \sum_{i'=1}^n w_{i'}$ sono i pesi standardizzati

La media aritmetica ponderata è una media di Bonferroni ponderata, ponendo f(x) = x.

Le medie di Chisini

- Esistono anche altri criteri per definire una media M. Uno in particolare è descritto da Chisini, basato sull'idea di trasferibilità.
- Medie di Chisini. Sia $g(x_1,...,x_n)$ una funzione dei dati $x_1,...,x_n$. Una media $\mathbb M$ dei dati $x_1,...,x_n$ secondo Chisini è pari a quel valore compreso tra $x_{(1)}$ e $x_{(n)}$ tale che

$$g(x_1,\ldots,x_n)=g(\mathbb{M},\ldots,\mathbb{M}).$$

- La media secondo Chisini è quel valore che non altera il valore della funzione di sintesi $g(\cdot)$ quando si sostituisce alle osservazioni il valore costante \mathbb{M} .
- Le medie di Bonferroni sono medie secondo Chisini, in cui $g(x_1, ..., x_n) = \sum_{i=1}^n f(x_i)$.
- Nel caso della media aritmetica la funzione aggregatrice è $g(x_1, \dots, x_n) = \sum_{i=1}^n x_i$.
- In altri termini, la media aritmetica è quel singolo valore che sostituito alle osservazioni ne lascia inalterata la somma.

Le medie di Wald

- Una media secondo Wald è quel valore \mathbb{M} che minimizza una funzione di perdita complessiva che si ottiene quando alle singole osservazioni x_1, \ldots, x_n sostituiamo \mathbb{M} .
- Medie di Wald. Sia $\ell_i = \ell(x_i, a)$ la perdita o costo che subiamo nel sostituire a al valore x_i e sia $g(\ell_1, \dots, \ell_n)$ una funzione che sintetizza tali perdite. Una media $\mathbb M$ dei dati x_1, \dots, x_n secondo Wald è pari a quel valore $\mathbb M$ tale che la perdita complessiva

$$g(\ell(x_1, \mathbb{M}), \ldots, \ell(x_n, \mathbb{M}))$$

è minima.

■ In altri termini, se tale valore è unico la media secondo Wald è pari a

$$\mathbb{M} = \arg\min_{a} g(\ell(x_1, a), \dots, \ell(x_n, a)).$$

Nel caso della media aritmetica si ha che $g(\ell_1,\ldots,\ell_n)=\sum_{i=1}^n\ell_i$ e che $\ell_i=(x_i-a)^2$. Quindi

$$\bar{x} = \arg\min_{a} g(\ell(x_1, a), \dots, \ell(x_n, a)) = \arg\min_{a} \sum_{i=1}^{n} (x_i - a)^2.$$