Sea G=(V,E) un grafo, con |V|=n. Sea P(n):= Si un grafo tiene más de $\frac{(n-1)\cdot(n-2)}{2}$ aristas \to es conexo.

Caso Base: P(1) = Tenemos 1 vértice, con 0 aristas: Se falsea el antecedente, luego P(1) es verdadero.

Paso inductivo: **H.I**: Supongamos que existe un n_0 tal que para todo Grafo con n_0 vértices que tenga más de $\frac{(n_0-1)\cdot(n_0-2)}{2}$ aristas -> es conexo.

Q.V.Q:
$$P(n_0) - > P(n_0 + 1)$$

Tenemos un grafo G con n_0+1 vértices, queremos probar que si tiene más de $\frac{n_0\cdot(n_0-1)}{2}$ aristas -> es conexo.

- Si tiene menor o igual a la cantidad de aristas pedida, entonces se falsea el antecedente, haciendo verdadera a la propiedad:
- Si hay un nodo v de a lo sumo grado 1, podemos considerar el grafo G-v. G-v tiene n_0 nodos y $\frac{n_0\cdot(n_0-1)}{2}-1$ aristas. Observemos que:

$$\frac{n_0 \cdot (n_0 - 1)}{2} - 1 > \frac{(n_0 - 1) \cdot (n_0 - 2)}{2}$$

Luego tenemos un grafo que cumple la H.I., entonces es verdadero $P(n_0 + 1)$.

• ¿Hasta qué grado de nodo podemos remover, tal que siga valiendo la desigualdad de la H.I.? Plantemos la desigualdad. Sea a el grado mayor del nodo que podemos sacar.

$$\begin{split} &\frac{n_0\cdot (n_0-1)}{2}-a>\frac{(n_0-1)\cdot (n_0-2)}{2}\\ &\leftrightarrow \left(\frac{n_0^2}{2}-\frac{n_0}{2}-a\right)>\left(\frac{n_0^2}{2}-\frac{2n_0}{2}-\frac{n_0}{2}+\frac{2}{2}\right)\\ &\leftrightarrow -\frac{n_0}{2}-a>-\frac{3}{2}n_0+1\\ &\leftrightarrow n_0-a>1\\ &\leftrightarrow n_0-1>a \end{split}$$

Luego podemos sacar nodos de hasta grado $n_0 - 2$, y generarnos un Grafo de n_0 vertices que cumpla la desigualdad, haciendo valer la H.I.

• ¿Pero qué pasa si todos los nodos tienen grado n-1? ¡Fácil! Si todos los nodos tienen grado n-1, entonces el grafo es conexo por definición, ya que es completo (todos están conectados con todos).

Luego vimos que $P(n_0 + 1)$ vale para todos los casos.

Por lo tanto P(n) vale $\forall n \geq 0$.