Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

Лабораторная работа №1.1

Измерение стационарных случайных величин и статистическая обработка результатов измерений

Руководитель: Старший преподаватель Яцких А. А. Работу выполнил: Высоцкий М. Ю. гр. 24301

1 Теоретическое введение

Цель работы: Ознакомление с методами обработки и представления результатов измерений случайных величин на примере исследования интенсивности излучения α -частиц при радиоактивном распаде ядер. В данной лабораторной работе исследуется интенсивность изотопного источника α -частиц (измеряется количество п α -частиц, испускаемых источником за фиксированный промежуток времени τ).

Оборудование: Оборудование представлено на рисунке снизу.

 $Puc.\ 1.$ Общий вид (a) и блок-схема (δ) экспериментальной установки: 1- изотопный источник α -частиц; $2-\Phi$ ЭУ; 3- блок питания Φ ЭУ; 4- пересчетное устройство; 5- блок питания пересчетного устройства; 6- электронный блок компьютера; 7- монитор компьютера; 8- принтер

Рис. 1: Установка

2 Ход работы

2.1 Задание 1. Счетная характеристика детектора

В данном задании требуется провести серию экспериментов с источником α -излучения и без него (для определения вклада теневого тока). Производится серия измерений от 1,2 кВ до 2,5 кВ с шагом в 0,1 кВ, снимается показание \overline{x} и S_n . Берём интервал измерений Δ T = 200 мсек и число измерений N=50 шт. Данные приведены ниже.

U, B	\overline{x}	S_n
1,20	11,20	3,150
1,30	10,42	2,984
1,40	10,22	3,340
1,50	210,58	13,720
1,60	275,96	16,536
1,70	290,78	19,632
1,80	297,86	17,778
1,90	328,98	18,230
2,00	449,86	23,762
2,10	915,06	36,335
2,20	1808,14	66,223
2,30	2650,10	105,052
2,40	3384,02	125,086
2,50	4055,26	236,540

Таблица 1: Данные с источником α -излучения.

2
1
1
0
9
1

Таблица 2: Данные без источника α -излучения.

Графики $\overline{x}(U)$ и $\overline{x_{\scriptscriptstyle \mathrm{T}}}(U)$ приведены далее.

Рис. 2: Зависимость $\overline{x}(U)$

Рис. 3: Зависимость $\overline{x_{\scriptscriptstyle \mathrm{T}}}(U)$

Для оценки систематической погрешности воспользуемся формулой:

$$\frac{\overline{x}_{\mathrm{T}}}{\overline{x}} * 100\% \tag{1}$$

Получаем следующие значения:

U, кВ	\overline{x}	$\overline{x_{ ext{ iny T}}}$	$\overline{x_{\scriptscriptstyle \mathrm{T}}}/\overline{x},\%$
1,2	11,20	0,00	0
1,3	10,42	0,02	0,19
1,4	10,22	0,02	0,2
1,5	210,58	0,04	0,02
1,6	275,96	0,48	0,17
1,7	290,78	1,06	0,36
1,8	297,86	4,78	1,6
1,9	328,98	27,04	8,22
2,0	449,86	166,74	37,06
2,1	915,06	523,32	57,19
2,2	1808,14	905,58	50,08
2,3	2650,10	1253,58	47,3
2,4	3384,02	1811,92	53,54
2,5	4055,26	2029,56	50,05

Таблица 3: Отношение $\overline{x_{\scriptscriptstyle \mathrm{T}}}/\overline{x}$

Из таблицы (3) можно сделать вывод о том, что теневой ток Φ ЭУ оказывает малое влияение на показания в диапазоне от 1,2 кВ до 1,8 кВ. Далее влияение растёт вплоть до $\approx 57\%$.

2.2 Задание 2. Влияние числа измерений и интервала счета на точность определения среднего

В данном задании нужно провести измерения при разных интервалах и проследить изменение СОС, СКО в зависимости от числа измерений.

Зависимость СОС от количества измерений (Т=2мс)

Рис. 4: Зависимость СОС от количества измерений при Δ T =2 мс

Зависимость СОС от количества измерений (Т=20мс)

Рис. 5: Зависимость СОС от количества измерений при Δ T = 20 мс

Зависимость СОС от количества измерений (Т=200мс)

Рис. 6: Зависимость СОС от количества измерений при Δ T = 200 мс

Переведя значения в pacnadu в ceкунdu, найдя средние значения и погрешности, мы получаем:

Для 2 мс:

$$1443 \pm 46 \pm 5 \text{ pacn/c}$$
 (2)

Для 20 мс:

$$1512 \pm 16 \pm 5 \text{ pacn/c}$$
 (3)

Для 200 мс:

$$1506 \pm 5 \pm 5 \text{ pacn/c}$$
 (4)

2.3 Вывод по заданию

Здесь я делаю вывод, что при большем интервале измерений мы получаем меньшую статистическую погрешность (что видно и из графиков), потому мы получаем очевидный критерий: больше интервал измерений - меньше стат. погрешность.

Также из графиков видно оптимальное количество измерений, когда СКО выравнивается:

Для 2 мс: 150-175 измерений. Для 20 мс: 75-100 измерений. Для 200 мс: 75-100 измерений.

2.4 Задание 3. Идентификация аналитической модели закона распределения

Смотрим фоточки