Реєстраційний номер	396970					
Назва олімпіади	Всеукраїнська учнівська інтернет-олімпіада з фізики					
Прізвище, ім'я та по батькові учасника	Шумаєв Олександр Ігорович					
Рік народження	1999					
Область	Харківська					
Місто	Харків					
Повна назва навчального закладу	Фізико-математичний ліцей № 27 Харківської міської					
	ради Харківської області					
Клас, до якого перейшов учень	10					
Клас, за який виконується конкурсне завдання	11					
Статус	учень					
Електронна адреса учасника	sashashumaev@rambler.ru					

<u>Условие</u>: Миномет установлен у основания некоторой горы под углом $\alpha=1,5$ радиана к горизонту. Минометный расчет ведет записи о том, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

$v_0, { m m/c}$	10	14	18	22	26	30	34	38	42	46
<i>l</i> , м	0,710576	1,611942	2,85057	4,45474	6,48101	8,9838	12,0195	15,6393	19,879	24,7493
$v_0, { m m/c}$	50	54	58	62	66	70	74	78	82	
<i>l</i> , м	30,2305	36,2765	42,8294	49,8405	57,2941	65,2363	73,8201	83,4179	95,0382	

Решение: Сопротивлением воздуха при решении задачи пренебрегаем. Введем систему координат, как на рис. 1.1. Рассмотрим движение снаряда, выпущенного из начала координат со скоростью v_0 под углом α к горизонту. Его координаты при таком движении зависят от времени по законам $x(t) = v_0 t \cos \alpha$ и $y(t) = v_0 t \sin \alpha - g t^2/2$ соответственно. Выразив t из первого уравнения и подставив во второе, получим уравнение траектории:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (1.1)

Перейдем к полярным координатам (l,φ) . Будем искать полярные углы φ точек падения снарядов. Координаты точек падения снаряда $x=l\cos\varphi$ и $y=l\sin\varphi$. Подставим их в уравнение (1.1) и разделим обе его части на x:

$$tg \varphi = tg \alpha - \frac{gl \cos \varphi}{2v_0^2 \cos^2 \alpha},$$

откуда, с использованием тождества $\lg \alpha - \lg \varphi = \frac{\sin(\alpha - \varphi)}{\cos \alpha \cos \varphi}$ получим

$$\sin(\alpha - \varphi) = \frac{gl\cos^2\varphi}{2v_0^2\cos\alpha}.$$
(1.2)

Попробуем тогда найти приближенное решение. Элементарными преобразованиями уравнение (1.2) приводится к виду

$$\frac{\sin(\alpha - \varphi)}{\cos^2 \varphi} = \frac{gl}{2v_0^2 \cos \alpha}.$$

График зависимости левой части $f(\varphi)$ этого уравнения от переменной φ изображен на рис. 1.2. Так как для всех 19 пар данных $\{l_i,v_{0i}\}$ из условия левая часть $\varepsilon_i=gl_i/(2v_{0i}^2\cos\alpha)$ меньше, чем $f(0)=\sin\alpha$, то уравнение имеет единственный корень, близкий к $\pi/2$ (он соответствует пересечению изображенного графика с прямой $g(\varphi)=\varepsilon_i$, а функция, изображенная на графике, очень быстро убывает при φ , близком к α). Так как и угол α близок к $\pi/2$, то будем считать углы α и φ близкими между собой. А именно, применим приближения $\sin(\alpha-\varphi)\approx\alpha-\varphi$ и $\cos\varphi=\sin(\pi/2-\varphi)\approx\pi/2-\varphi$. Уравнение (1.2) примет вид

Рис. 1.1. Схема установки, описываемой в

задаче. Миномет расположен в начале ко-

Рис. 1.2. График $f(\varphi)=\sin(\alpha-\varphi)/\cos^2\varphi$, где $\alpha=1.5$ рад. Зеленым цветом изображены прямые $g(\varphi)=\varepsilon_i$.

$$\alpha - \varphi = \frac{gl}{2v_0^2\cos\alpha} \left(\frac{\pi}{2} - \varphi\right)^2,$$

которое легко привести к виду

решением.

$$q\varphi^2 - \varphi (q\pi - 1) + \left(\frac{q\pi^2}{4} - \alpha\right) = 0, \quad q = \frac{gl}{2v_0^2 \cos \alpha}.$$

Получили квадратное уравнение, корни которого

$$\varphi_{1,2} = \frac{1}{2q} \left(q\pi - 1 \pm \sqrt{(q\pi-1)^2 - q\pi^2 + 4\alpha} \right).$$

Во всех случаях искомый корень — с плюсом перед радикалом (второй корень не подходит, так как он не соответствует примененным приближениям). В таблице представлены решения этого уравнения для всех случаев, представленных в условии, в порядке их перечисления. Как далее выяснится, ошибка по сравнению с точным решением $\Delta \varphi = 0.001^{\circ}$.

$\varphi, ^{\circ}$	85,7915	85,7645	85,7517	85,7419	85,7326	85,7229	85,7126	85,7018	85,6907
85,6797	85,6695	85,6604	85,6528	85,6466	85,6416	85,6373	85,6328	85,6266	85,6151

По полученным данным полярные углы φ всех точек близки, то есть форма горы близка к линейной. Однако с точностью, заданной в условии, можно утверждать, что гора выпукла вверх. Форму этой кривой можно аппроксимировать прямой с углом наклона, равным среднему полученных величин φ : $\overline{\varphi}=85,69^\circ$. Высота горы $H=l_{19}\sin\varphi_{19}=94,7601$ м.

Сравним полученный приближенный результат с точным. Уравнение (1.2) решили с помощью программы $Mathematica^1$. Полученные данные иллюстрирует следующая таблица:

$\varphi,^{\circ}$	85,7918	85,7648	85,7521	85,7423	85,7330	85,7234	85,7131	85,7023	85,6912
85,6803	85,6701	85,6610	85,6534	85,6472	85,6423	85,6380	85,6335	85,6273	85,6159

Как видим, отличие от приближенного решения в четвертом знаке после запятой.

<u>Ответ</u>: Высота H=94,7601 м, форма — кривая с выпуклостью вверх, которую можно аппроксимировать наклонной плоскостью, образующей угол $\varphi=85,69^{\circ}$ с горизонтом.

 $^{^{1}}$ Имеется в виду программа компании Wolfram Research, Inc., см. www.wolfram.com/mathematica

<u>Условие</u>: Шар массой 2m бросают вертикально вверх со скоростью v_0 . К шару привязана легкая абсолютно жесткая нить длиной $l < v_0^2/2g$, к другому концу которой привязан шар массой m. Через какое время t и на какой высоте h шары столкнутся?

<u>Решение</u>: Рассмотрим движение шаров до столкновения. Вначале первый (тяжелый) шар движется вверх равнозамедленно, а второй (легкий) покоится. Когда тяжелый шар достигнет высоты l, нить натянется, и произойдет "удар" через нить (то, что он достигнет этой высоты, следует из неравенства в условии). Непосредственно перед этим его скорость $u_0 = \sqrt{v_0^2 - 2gl}$. Дальнейшее сильно зависит от свойств нити и шаров, например от жесткости и упругости нити и модуля Юнга вещества шаров. Разберем два крайних случая: абсолютно упругого и абсолютно неупругого удара.

1. Абсолютно упругий удар. В этом случае в результате удара сохраняются и импульс, и механическая энергия. Скорости u_1 и u_2 шаров (см. рис. 2.1) непосредственно после него определяются соответствующими законами сохранения:

$$\begin{cases} 2mu_0 = 2mu_1 + mu_2, \\ mu_0^2 = mu_1^2 + \frac{mu_2^2}{2}. \end{cases}$$

Эти уравнения легко привести к виду:

$$2(u_0 - u_1) = u_2, (2.1)$$

$$2(u_0^2 - u_1^2) = u_2^2. (2.2)$$

Разделив уравнение (2.2) на (2.1) с учетом условия $u_0 \neq u_1$, получим

$$u_0 + u_1 = u_2. (2.3)$$

Решая систему линейных уравнений (2.1) и (2.3), получим $u_1 = u_0/3$ и $u_2 = 4u_0/3$.

Рис. 2.1. Слева изображен момент до "удара". Справа — момент непосредственно после него.

 \vec{u}_2

 \vec{v}

2m

После такого перераспределения скоростей оба шара будут двигаться с ускорением g, мент непосредственно после него. направленным вниз. Перейдем в систему отсчета, связанную с легким шаром. В этой системе отсчета тяжелый шар движется равномерно со скоростью $u_2' = u_1 - u_2 = -u_0$ (вниз). Так как начальное расстояние между шарами l, то время между моментом максимального расстояния между шарами и моментом столкновения $t_2 = l/u_0$.

Найдем время t_1 между началом движения и моментом максимального расстояния между шарами. По формуле равноускоренного движения

$$v_0 - u_0 = gt_1,$$

откуда

$$t_1 = \frac{v_0 - u_0}{g}. (2.4)$$

Заметим, что эта формула верна и во втором случае (абсолютно неупругого удара через нить). Искомое время

$$t = t_1 + t_2 = \frac{v_0 - u_0}{g} + \frac{l}{u_0} = \frac{v_0 - \sqrt{v_0^2 - 2gl}}{g} + \frac{l}{\sqrt{v_0^2 - 2gl}} = \frac{v_0}{g} \left(1 - \sqrt{1 - k} + \frac{k}{2\sqrt{1 - k}} \right), \tag{2.5}$$

где

$$k = \frac{2gl}{v_0^2}, \quad 0 < k < 1.$$

Найдем высоту, на которой произошло столкновение, при помощи уравнения движения легкого шара. Этот шар двигался вверх равнозамедленно с ускорением g и начальной скоростью $u_2 = 4u_0/3$ в течение времени t_2 . По формуле равноускоренного движения

$$h = u_2 t_2 - \frac{g t_2^2}{2} = \frac{4l}{3} - \frac{g l^2}{2 \left(v_0^2 - 2g l\right)} = l \left(\frac{4}{3} - \frac{k}{4(1-k)}\right) = l \cdot \frac{16 - 19k}{12(1-k)}.$$
 (2.6)

Выражение, определяемое формулой (2.6), в принципе может быть меньше нуля (а именно, при k>16/19). Это соответствует случаю, когда легкий шар столкнется с опорой перед столкновением с тяжелым шаром. Будем считать это столкновение абсолютно неупругим. Тогда после этого легкий шар останется лежать на опоре, а столкновение шаров произойдет, когда тяжелый шар упадет на опору. Соответственно h=0. Найдем время t_2 падения тяжелого шара. Его скорость непосредственно перед столкновением $u_3=\sqrt{u_1^2+2gl}=v_0\sqrt{1+8k}/3$. Тогда из формулы равноускоренного движения

$$t_2 = \frac{u_1 + u_3}{a} = \frac{v_0}{3a} \left(\sqrt{1 - k} + \sqrt{1 + 8k} \right). \tag{2.7}$$

Полное время с учетом формул (2.4) и (2.7) получим

$$t = t_1 + t_2 = \frac{v_0}{a} \left(1 - \frac{2}{3} \sqrt{1 - k} + \frac{1}{3} \sqrt{1 + 8k} \right). \tag{2.8}$$

2. Абсолютно неупругий удар. В этом случае сохраняется импульс, но не механическая энергия. Скорости же шаров уравниваются: $u_1 = u_2$. С учетом уравнения (2.1) получим $u_1 = u_2 = 2u_0/3$.

Проанализируем далее движение шаров, как в предыдущем случае. Особенность этого случая в том, что легкий шар неизбежно столкнется с опорой перед столкновением с тяжелым шаром. Считая это столкновение абсолютно неупругим, приходим к выводу: h=0. Соответственно, столкновение между шарами произойдет, когда тяжелый шар упадет на опору. Скорость тяжелого шара в этот момент

$$u_3 = \sqrt{u_1^2 + 2gl} = \frac{2v_0}{3}\sqrt{1 + \frac{5k}{4}}.$$

Тогда по формуле равноускоренного движения время полета тяжелого шара до падения на опору

$$t_2 = \frac{u_1 + u_3}{g} = \frac{2v_0}{3g} \left(\sqrt{1 - k} + \sqrt{1 + \frac{5k}{4}} \right). \tag{2.9}$$

Полное время с учетом формул (2.4) и (2.9)

$$t = t_1 + t_2 = \frac{v_0}{g} \left(1 - \frac{1}{3}\sqrt{1 - k} + \frac{2}{3}\sqrt{1 + \frac{5k}{4}} \right).$$

Ответ: (здесь $k = 2gl/v_0^2$)

1. При абсолютно упругом ударе (через нить)

а. при
$$0 < k \leqslant 16/19$$
: $t = \frac{v_0}{g} \left(1 - \sqrt{1-k} + \frac{k}{2\sqrt{1-k}} \right)$ и $h = l \cdot \frac{16-19k}{12(1-k)}$

6. при
$$16/19 < k < 1$$
: $t = \frac{v_0}{a} \left(1 - \frac{2}{3} \sqrt{1-k} + \frac{1}{3} \sqrt{1+8k} \right)$ и $h = 0$.

2. При абсолютно неупругом ударе
$$t=\frac{v_0}{g}\left(1-\frac{1}{3}\sqrt{1-k}+\frac{2}{3}\sqrt{1+\frac{5k}{4}}\right)$$
 и $h=0.$

<u>Условие</u>: Подъемник поднимается и опускается в шахте, глубина которой L=400 м, за $t_0=40$ с. Сначала он разгоняется с постоянным ускорением, а затем с тем же по модулю ускорением замедляется. На сколько отстанут за сутки маятниковые часы подъемника по сравнению с неподвижными часами? Подъемник находится в движении в течение T=5,0 ч ежедневно.

Решение: Рассмотрим движение подъемника в шахте. Считаем, что в течение одного цикла разгона-остановки он движется ускоренно ровно половину пути (соответственно, половину времени), а остальную половину движется замедленно. Найдем его ускорение a при таком движении. Подъемник проходит путь L/2 за время $t_0/4$, при этом его начальная или конечная скорость равна нулю. По формуле равноускоренного движения

$$\frac{L}{2} = \frac{a\left(\frac{t_0}{4}\right)^2}{2},$$

откуда

$$a = \frac{16L}{t_0^2}.$$

В отсутствие перегрузок период колебаний маятника $T_0=2\pi\sqrt{l/g}$. Чтобы показать правильное время, за время t_0 маятник должен совершить $n_0=t_0/T_0$ колебаний. При движении лифта с ускорением удобно перейти в неинерциальную систему отсчета, т.е. произвести замену $g\to g\pm a$. Соответственно, периоды колебаний маятника при двух направлениях ускорения равны

$$T_1 = 2\pi \sqrt{\frac{l}{g+a}} = T_0 \left(1 + \frac{a}{g}\right)^{-1/2} \quad \text{if} \quad T_2 = 2\pi \sqrt{\frac{l}{g-a}} = T_0 \left(1 - \frac{a}{g}\right)^{-1/2}.$$

Тогда количество колебаний, совершенных маятником за эти промежутки времени, равны соответственно

$$n_1 = \frac{t_0}{2T_1} = \frac{n_0}{2} \sqrt{1 + \frac{a}{g}} \quad \text{if} \quad n_2 = \frac{t_0}{2T_2} = \frac{n_0}{2} \sqrt{1 - \frac{a}{g}}.$$

Найдем отставание ΔT часов за один день. Относительное отставание (отношение абсолютного отставания к промежутку времени, измеренному неподвижным наблюдателем) равно

$$\eta = \frac{n_0 - n_1 - n_2}{n_0} = 1 - \frac{1}{2} \left(\sqrt{1 + \frac{a}{g}} + \sqrt{1 - \frac{a}{g}} \right).$$

Тогда отставание часов в течение одного дня (считаем, что за день произошло целое количество циклов разгона-остановки)

$$\Delta T = \eta T = T \left(1 - \frac{1}{2} \left[\sqrt{1 + \frac{16L}{gt_0^2}} + \sqrt{1 - \frac{16L}{gt_0^2}} \right] \right).$$

Проверим размерность:

$$[\Delta T] = \mathbf{c} \cdot \left(1 - \frac{1}{2} \left[\sqrt{1 + \frac{\mathbf{M}}{\frac{\mathbf{M}}{\mathbf{c}^2} \cdot \mathbf{c}^2}} + \sqrt{1 - \frac{\mathbf{M}}{\frac{\mathbf{M}}{\mathbf{c}^2} \cdot \mathbf{c}^2}} \right] \right) = \mathbf{c}.$$

Найдем численное значение:

$$\{\Delta T\} = 5 \cdot 3600 \left(1 - \frac{1}{2} \left[\sqrt{1 + \frac{16 \cdot 400}{9,8 \cdot 40^2}} + \sqrt{1 + \frac{16 \cdot 400}{9,8 \cdot 40^2}} \right] \right) = 396; \qquad \Delta T = 396 \,\mathrm{c}.$$

$$\underline{ \text{Otbet:} } \ \Delta T = T \left(1 - \frac{1}{2} \left[\sqrt{1 + \frac{16L}{gt_0^2}} + \sqrt{1 - \frac{16L}{gt_0^2}} \ \right] \right) = 396 \, \mathrm{c}.$$

 $\underline{\mathbf{y}}$ словие: Какой минимальный заряд q нужно закрепить в нижней точке сферической полости радиуса R, чтобы в поле тяжести небольшой шарик массы m и заряда Q находился в верхней точке полости в положении устойчивого равновесия?

Решение: При решении задачи будем пренебрегать размером шарика. Шарик может находиться в верхней точке полости благодаря электростатическому отталкиванию от заряда внизу. Так как расстояние между зарядами l=2R, то по закону Кулона сила электрического взаимодействия зарядов

$$F_{\rm el} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{l^2} = \frac{Qq}{16\pi\varepsilon_0 R^2},$$

где ε_0 — электрическая постоянная. Равновесие должно быть устойчиво по отношению к малому смещению шарика в любом направлении. Достаточно рассмотреть смещения в двух направлениях: вниз и по касательной к поверхности полости. Для равновесия в первом направлении электростатическая сила должна быть не менее силы тяжести. При минимально возможном q эти силы равны: $F_{\rm el}=mg$, откуда

$$q = \frac{16\pi\varepsilon_0 mgR^2}{Q}. (4.1)$$

Найдем минимальный заряд q, необходимый для того, чтобы при отклонении по касательной шарик вернулся в исходную точку. Пусть он отклонился от равновесия на малый угол φ (см. рис. 4.1). Рассмотрим движение шарика вдоль оси Ox, направленной перпендикулярно радиусу, проведенному из центра полости к шарику. Так как длина хорды окружности радиуса R с

Рис. 4.1.

центральным углом φ равна асимптотически $R\varphi$, то новое расстояние между зарядами $l'=\sqrt{l^2-R^2\varphi^2}\approx l^2-R^2\varphi^2/2$. Изменение расстояния квадратично по φ , им пренебрежем. Соответственно, при небольшом смещении шарика электрическая сила не изменится по модулю. Для устойчивости достаточно равенство нулю проекции результирующей сил, действующих на шарик 1 . Проекция силы реакции опоры $N_x=0$, силы тяжести $mg_x=-mg\sin\varphi\approx-mg\varphi$, электрической силы $F_{\rm elx}=F_{\rm el}\sin(\varphi/2)\approx F_{\rm el}\varphi/2$. Тогда из условия устойчивости получим

$$mg = \frac{F_{\rm el}}{2} = \frac{Qq}{32\pi\varepsilon_0 R^2},$$

откуда

$$q = \frac{32\pi\varepsilon_0 mgR^2}{Q}.$$

В этом случае ответ в два раза больше, чем по формуле (4.1). Соответственно, второе требование сильнее, оно и является определяющим.

Ответ:
$$q = \frac{32\pi\varepsilon_0 mgR^2}{Q}$$
.

¹ На самом деле равнодействующая должна быть ненулевой и направленной противоположно отклонению шарика. При ее стремлению к нулю приходим к уравнению, как в решении.

<u>Условие</u>: Изучите и опишите зависимость скорости вытекания жидкости из высокого цилиндрического сосуда от диаметра отверстия в дне цилиндра, сделанного с помощью швейной иглы.

Цель эксперимента: определить зависимость скорости истечения жидкости из круглого отверстия от его радиуса.

Оборудование: вода, труба пластмассовая "сотка" диаметром $\overline{110}$ мм и длиной около 1,2 м, трансмиссия от трубы "редукция" $\overline{110}$ мм — 50 мм, крепление трубы, пластмассовые бутылки и крышки от них, пластиковые стаканчики, металлическая пластина толщиной 0,1 мм, оптический проектор-увеличитель "TV-microscope", весы электронные, секундомер (на телефоне), набор иголок различных диаметров, игла от шприца диаметром 0,8 мм, клей силиконовый, клеевой пистолет, паяльник, ножницы, линейка (см. рис. 5.1).

Теоретические сведения: В первом приближении, если считать воду идеальной жидкостью, скорость ее истечения из маленького отверстия не зависит от его радиуса и равна $v=\sqrt{2gh}$, где h- высота сосуда. В действительности же из-за диссипации энергии скорость должна уменьшиться. Точный расчет этого уменьшения сложен, его мы проводить не будем. Вообще говоря, скорость воды в отверстии ввиду вязкости будет разной по сечению: вблизи краев отверстия близка к нулю, а в его центре — максимальна.

Оценим по порядку величины поправку $\delta v \ll v$ к скорости за счет вязкого трения вблизи отверстия, отбрасывая численные коэффициенты порядка единицы. Считаем, что диссипация происходит в области длиной порядка радиуса R отверстия. Рассмотрим малый цилиндрический слой жидкости длины $h \sim R$ (значок \sim означает равенство по порядку), радиуса r и толщины Δr . В качестве его скорости возьмем среднюю скорость истечения (оценочный расчет!). Его масса $\Delta m \sim \rho R r \Delta r$. За время Δt через выделенный объем пространства пройдет жидкость массой $\delta m \sim \rho R v \Delta r \Delta t$. Так как поток стационарный, можно считать, что кинетическую энергию теряет именно вытекшая из выделенного объема жид-

Рис. 5.1. Оборудование: 1- паяльник, 2- ножницы, 3- игла от шприца, 4- пластиковый стаканчик, 5- алюминиевая пластинка, 6- линейка, 7- пластиковая бутылка с водой, 8- набор иголок, 9- весы, 10- проектор-увеличитель, 11- клеевой пистолет, заряженный клеем.

кость. Ее скорость изменилась за счет диссипации на малую величину δv , а энергия — на $\delta W \sim \delta m v \delta v \sim \rho R v^2 \Delta r \Delta t \delta v$. Суммируя по слоям, получим полное изменение энергии:

$$W \sim \rho v^2 R^2 \Delta t \delta v. \tag{5.1}$$

Эта работа совершается против сил вязкого трения. Сила вязкого трения, действующая на выделенный элемент жидкости, $\delta F_{\rm TP} \sim \eta r h \Delta v / \Delta r \sim \eta R r \Delta v / \Delta r$, где Δv — разность скорости выделенного элемента и соседнего, η — вязкость жидкости. Выделившаяся на одном слое малая теплота $\delta Q \sim F_{\rm TP} \Delta v \Delta t \sim \eta R r \Delta v^2 \Delta t / \Delta r$. Применяя приближение $\Delta v / \Delta r \sim v / R$, получим $\delta Q \sim \eta r v \Delta v \Delta t$. Просуммировав по слоям, получим выделившуюся теплоту:

$$Q \sim \eta R v \Delta t. \tag{5.2}$$

Сравнивая выражения (5.1) и (5.2), получим:

$$\delta v \sim \frac{\eta}{\rho R}.$$

Относительное изменение скорости $\delta v/v$ есть не что иное, как обратное число Рейнольдса. При подстановке вполне жизненных значений $\eta=10^{-3}$ Па·с, $\rho=1000$ кг/м³, $R=10^{-3}$ м и v=1 м/с получим $\delta v/v=10^{-3}$, что при любой грубости приближений пренебрежимо мало. Для того, чтобы относительное изменение скорости достигло 10%, радиус отверстия должен быть порядка $R=10^{-5}$ м. Для дырок, сделанных швейной иглой, эффектом вязкости можно пренебречь.

Остается сделать вывод, что основную роль при формировании струи будут играть турбулентные образования и мелкие неровности вблизи отверстия.

Постановка эксперимента: В качестве цилиндрического сосуда в эксперименте использовали пластмассовую трубу диаметром D=100 мм и толщиной d=3 мм, так что потерями на вязкость в самой трубе можно пренебречь. Снизу к ней присоединили редукцию на 50 мм, в которую затем вставили наконечник пластиковой бутылки с резьбой (см. рис. 5.2). На его надевались съемные заглушки с отверстиями. Заглушка представляет собой крышку с проделанной в ней дыркой, в которую вставлена металлическая пластинка с отверстием. Все щели были наглухо залиты силиконовым клеем. Размер проделанного отверстия измеряли предварительно при помощи проектора, на который вместе с пластинкой была для сравнения помещена игла от шприца. Согласно стандарту эта игла имеет диаметр x=0.8 мм. При помощи линейки измеряли размеры изображений объектов на экране. Если на экране диаметр отверстия d', а диаметр иглы x', то истинный диаметр отверстия

$$d = \frac{d'x}{x'}. (5.3)$$

Соответственно, площадь отверстия $S=\pi d^2/4$. Погрешность при измерении линейкой $\Delta x'=\Delta d'=0,5$ мм. Тогда погрешность в диаметре определяется по формуле

$$\Delta d = d\sqrt{\left(\frac{\Delta x'}{x'}\right)^2 + \left(\frac{\Delta d'}{d'}\right)^2}.$$
 (5.4)

Погрешность в площади определяется по формуле

$$\Delta S = \frac{1}{2}\pi d\Delta d = \frac{1}{2}\pi d^2 \sqrt{\left(\frac{\Delta x'}{x'}\right)^2 + \left(\frac{\Delta d'}{d'}\right)^2}.$$
 (5.5)

Измерения скорости истечения проводили так. Вначале в трубу заливали воду и далее поддерживали ее уровень постоянным. Затем под струю на некоторое время подставляли пластиковый стаканчик. Перед экспериментом измеряли массу m_0 пустого стаканчика, после эксперимента — массу m стаканчика с водой. Время t, в течение которого струя попадала в стаканчик, измеряли при помощи секундомера на телефоне. Зная эти величины, определяли скорость по формуле

$$v = \frac{Q}{S} = \frac{m - m_0}{\rho St},\tag{5.6}$$

где ρ — плотность воды. Измеренная таким образом скорость является усредненной по сечению. Так как в середине скорость близка к $\sqrt{2gh}$, а вблизи краев равна нулю, то ответ может отличаться от $\sqrt{2gh}$ на несколько десятков про-

Рис. 5.2. В верхнем левом углу изображены некоторые заглушки, в левом нижнем — измерение диаметра отверстия при помощи микроскопа. Справа изображена установка для измерения скорости истечения.

центов. Погрешность в измерении массы $\Delta m=0.01$ г соответствует классу точности весов, а погрешность в измерении времени определяется скоростью реакции человека и равна примерно $\Delta t=0.3$ с. Тогда погрешность скорости определяется по формуле

$$\Delta v = v \sqrt{2 \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta S}{S}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} = v \sqrt{2 \left(\frac{\Delta m}{m}\right)^2 + 4 \left(\frac{\Delta x'}{x'}\right)^2 + 4 \left(\frac{\Delta d'}{d'}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}.$$
 (5.7)

Результаты эксперимента: При калибровке проектора был сделан замер размера изображения иголки от шприца, он составил x' = 2.9 см. Для измерения скорости отобрали 8 значений диаметра, причем для каждого значения измерения проводили трижды. При измерении скорости истечения жидкости были получены следующие результаты:

d', cm		1,7			2,1			2,5			2,7	
$\Delta d'$, cm	0,05											
d, mm	0,47			0,58			0,69			0,74		
Δd , mm	C					0,02						
S , mm^2	0,17			0,26			0,37			0,44		
ΔS , mm ²		0,01			0,02							
m , Γ	20,19	20,49	20,25	29,93	30,45	30,27	41,76	42,39	41,61	49,76	49,76	50,40
<i>v</i> , м/с	3,5	3,6	3,5	3,5	3,6	3,6	3,6	3,6	3,5	3,7	3,7	3,7
d', см	3,0 3,4					3,7 4,0						
$\Delta d'$, cm						(0,05					
d, mm	0,83 0,94					1,02 1,10						
Δd , mm						(0,02					
S, mm ²	0,54 0,69					0,82 0,96						
ΔS , mm ²	0,03					0,04				•		
m, г	59,77	58,60	59,02	78,40	77,75	76,99	91,70	90,60	88,78	102,59	105,64	105,78
<i>v</i> , м/с	3,6	3,5	3,5	3,7	3,7	3,6	3,7	3,6	3,5	3,5	3,6	3,6

Величины d' и m были получены из эксперимента, остальные же были вычислены при помощи формул (5.3), (5.4), (5.6) и (5.7). Во всех случаях измерения проводили в течение времени t=30 с. Погрешность скорости $\Delta v=0,2$ м/с. По полученным данным построен график (см. рис. 5.3). Можно сделать вывод, что скорость истечения не зависит от размеров отверстия.

Выводы: Для нескольких значений диаметров круглых отверстий были найдены соответствующие значения скорости истечения воды. Эти величины равны с точностью до погрешности, что дает основания предполагать, что скорость не зависит от диаметра сечения в миллиметровом диапазоне. Таким образом, эксперимент не опроверг теоретическое предположение, что вязкость внесет вклад в скорость истечения. Однако во время проведения эксперимента были обнаружены действия неровностей в отверстиях. Иногда струя воды внезапно изменяла свое направление, а скорость истечения при этом уменьшалась в разы. Потом выяснилось, что в отверстие попадали микрочастицы и частично его загораживали. Результаты таких измерений отбрасывали.

Рис. 5.3. График зависимости скорости истечения от диаметра отверстия.