CH3 - Black-Scholes-Merton (BSM)

Highlights:

- 1) Won Nobel Prize in 1997 for deriving a closed-form solution to pricing European calls & European puts Kerry Back, ch3
- 2) The only **unknown** in BSM is sigma; everything else is observed Kerry Back, ch4
- BSM prices (C,P) can be accurately approximated w/ the Binomial Model when Δt is small: $\lim_{\Delta t \to 0} (Binomial price) = BSM price Kerry Back, ch 5 **$
- 4) The BSM formulas extend to Foreign Exchange Kerry Back, ch 6-7
- 5) Stopped working after the market crash of 1987 aka "Black Monday" (risky asset returns no longer follow a normal distribution)
- * for this reason, Binomial approximations (and others...) are generally accepted as the true price of exotic options, which do <u>not</u> have closed-form solutions Kerry Back, ch8.

 Closed-form solutions for exotic options are open problems...

BSM for European stock options

$$C(t) \xrightarrow{\text{Black-Scholes}} e^{-q^{\mathsf{T}}} S(t) \mathcal{N}(\frac{\log_{e}(\frac{S(t)}{K}) + (r-q+\frac{1}{2}\sigma^{2})\mathsf{T}}{\sigma\sqrt{\mathsf{T}'}}) - e^{-r^{\mathsf{T}}} \mathcal{N}(\frac{\log_{e}(\frac{S(t)}{K}) + (r-q+\frac{1}{2}\sigma^{2})\mathsf{T}}{\sigma\sqrt{\mathsf{T}'}} - \sigma\sqrt{\mathsf{T}'})$$

$$P(t) \xrightarrow{\text{Black-Scholes}} e^{-rT} K N \left(-\frac{\log_e \left(\frac{\varsigma(t)}{K} \right) + (r-q+\frac{1}{2}\sigma^2)T}{\sigma \sqrt{\tau'}} + \sigma \sqrt{\tau'} \right) - e^{-qT} S(t) N \left(-\frac{\log_e \left(\frac{\varsigma(t)}{K} \right) + (r-q+\frac{1}{2}\sigma^2)T}{\sigma \sqrt{\tau'}} \right)}{-d_1}$$

- N(d1): the option's delta iff S doesn't pay dividends*
- $N(d_2)$: probability that a call (put) option will be ITM (OTM) at expiration
- $e^{-rT}S(t)N(d_1)/N(d_2)$ = expected stock price above strike price at maturity (time T)
- · e-rT: present value/cont. compounding

•
$$d_2 = d_1 - \sigma \sqrt{T}$$

*
$$C(t) = e^{-q^{\mathsf{T}}} S(t) \mathcal{N}(d_1) - e^{-r^{\mathsf{T}}} \mathcal{K} \mathcal{N}(d_2)$$

$$\implies \frac{9e(q)}{9c(q)} = e^{-d} N(q') = N(q')$$

integrates over the standard normal probability density function (total area under the curve must add to 1 or 100%).

KEY BLACK-SCHOLES ASSUMPTIONS

- · no-arbitrage condition / efficient market hypothesis
- normally distributed stock price returns: $\frac{dS}{5} \sim N(\varkappa, \sigma)$ where σ is treated as a constant and \varkappa is a general random process
- · Continuously compounded risk-free interest rate: erT
- · risk-neutrality
- · cannot exercise early (European Options)

Using the Fundamental Theorem if Calculus to explain N(d1)

• d. represents the standardizes natural log of stock price, S(t), relative to the strike price, K, adjusted for volatility, σ — it is essentially a z-score:

- Which means, by the Fundamental Thm. of Calculus, $N(d_1)$ is the **net displacement** of $In(\frac{S(t)}{K})$ from it's expected value, measured in standard deviations. This is because integrating d_1 w.r.t. $In(\frac{S(t)}{K})$ returns the distance function.
- · of course, in our application, net displacement is an accumulation of probability rather than distance & the distance function is a p.d.f.

BSM Greeks for European options

Combinations of E.S.r.a. o which yield large partial derivatives ("large" in absolute value)

		<u>Call</u>				<u>Pu</u> +				
		ac as⊌ DELTA	<u> </u>	əc ə≠ THETA	<u>әс</u> ә r Rно	∂P ∂ S ⊕ DELTA	∂P ∂σ VEGA	ુક ગ્ર± THETA	<u>ЭР</u> Эг RHO	
		δ	٧	Θ	P	8	Υ	Θ	Р	
STOCK PRICE	S	n/a	∞	.0001	n/a	n/a	∞	∞	n/a	
SIGMA (VOLATILITY)	σ	n/a	n/a	n/a	n/a	nja	n/a	n/a	n/a	note that Black Scholes is a closed-form solution
TIME TO MATURITY	Т	.0001	8	,0001	8	.0001	8	.0001	∞	for all but o
RISK-FREE RATE	٢	n/a	n/a	.0001	.0001	n/a	n∫a	.0001	.0001	
DIVIPENDS	9	,0001	.0001	8	n/a	.0001	.0001	8	n/a	

"n/a" stands for "not applicable"

SHOULD NOT BE SURPRISING, GIVEN THE GREEK FORMULA DERIVATIONS

Precursor; Extensions of Black-Scholes (Chapter 7)

- (1) Margrabe's formula: value of an option to exchange two risky assets
 - Since BSM makes no assumption about the currency in which S is denominated, the risky assets may be struck in different currencies
 - · "no real difference between a call and a put" (pg. 130)
- (2) Black's formula: value of options on futres when interest rates are deterministic
 - assumes $\frac{dF}{F} = \mu dt + \sigma dB$ i.e., assumes a constant forward-rate volatility
 - assumes a "discount bond" pays \$1 on T instead of assuming a constant risk-free rate (pg. 133)
- (3) Merton's formula: Sub $F(t) = \frac{e^{-qt}S(t)}{P(t,T)}$ into Black's formula
 - assumes constant forward-rate volatility (inherited from Black's formula)
 - · the result is BSM without a constant risk-free rate

- There is plenty of time-series evidence to show that stock returns are not normally distributed since the crash of 1987
- If asset returns are not normal or log normal, BSM breaks!

a Volatility smirk causes Jump Diffusion (the better est of risky asset returns) to diverge from lognormal:

