

1

SEQUENCE LISTING
#140

100230
<110> Takatsujii, Hiroshi
Nakagawa, Hitoshi
Director General of National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries

<120> Method for Shortening Internode of Inflorescence by Introducing Gene for Petunia Transcription Factor PetSPL2

<130> 085761-000400US

<140> US 09/156,580
<141> 1998-09-18

<150> JP 10-224852
<151> 1998-08-07

<160> 18

<170> PatentIn Ver. 2.0

<210> 1
<211> 997
<212> DNA
<213> Petunia hybrida var. Mitchell

<220>
<221> CDS
<222> (190)..(810)
<223> PetSPL2 transcription factor

<400> 1
cccagtgccta tttttctct ctagtcaagc tctctatatac atcatcacta ttcccttgcc 60
tgcagtaaca ctcctattta accctcacaa aaaaattacc agagggcagc aaaaaatgct 120
tgaacataat tattatactt actattaagc tagatttcct cttgatcttg cttagtttga 180
ctggagaaa atg gca ggc atg gat aga aac agt ttc aac agt aag tac ttc 231
Met Ala Gly Met Asp Arg Asn Ser Phe Asn Ser Lys Tyr Phe
1 5 10

aaa aac aaa agc atc atg gca aga cag atg gag tac ttg aat aac aac 279
Lys Asn Lys Ser Ile Met Ala Arg Gln Met Glu Tyr Leu Asn Asn Asn
15 20 25 30

aat ggc gac aat aac aac aat aat gtt aca agc tca tta cga gat 327
Asn Gly Asp Asn Asn Asn Asn Asn Val Thr Ser Ser Leu Arg Asp
35 40 45

aat tat gga aat gaa gat cat tta ctt ggt gga cta ttc tct tgg cct 375
Asn Tyr Gly Asn Glu Asp His Leu Leu Gly Gly Leu Phe Ser Trp Pro
50 55 60

cca aga tct tat aca tgt agc ttt tgt aaa agg gaa ttt aga tct gct 423
Pro Arg Ser Tyr Thr Cys Ser Phe Cys Lys Arg Glu Phe Arg Ser Ala
65 70 75

23

caa gct ctt ggt gga cac atg aat gtt cat aga aga gat aga gcc att 471
 Gln Ala Leu Gly Gly His Met Asn Val His Arg Arg Asp Arg Ala Ile
 80 85 90

 ttg aga caa tca cca cct aga gat att aat agg tat tct ctt cta aac 519
 Leu Arg Gln Ser Pro Pro Arg Asp Ile Asn Arg Tyr Ser Leu Leu Asn
 95 100 105 110

 ctt aat ctt gaa cca aac cct aac ttt tac cct agt cat aac cct agt 567
 Leu Asn Leu Glu Pro Asn Pro Phe Tyr Pro Ser His Asn Pro Ser
 115 120 125

 ttt tca aga aaa ttc cca cct ttt gaa atg agg aaa tta gga aaa gga 615
 Phe Ser Arg Lys Phe Pro Pro Phe Glu Met Arg Lys Leu Gly Lys Gly
 130 135 140

 gtt gtt cca aac aat cac ttg aaa agt gcc aga ggg cgt ttt gga gtt 663
 Val Val Pro Asn Asn His Leu Lys Ser Ala Arg Gly Arg Phe Gly Val
 145 150 155

 gag aaa att gac tct ttc atg caa gaa aaa gaa tgt act act aca gtg 711
 Glu Lys Ile Asp Ser Phe Met Gln Glu Lys Glu Cys Thr Thr Thr Val
 160 165 170

 atc aag aag tcc gag ttt cta aga ttg gac ttg gga att ggg ttg atc 759
 Ile Lys Lys Ser Glu Phe Leu Arg Leu Asp Leu Gly Ile Gly Leu Ile
 175 180 185 190

 agt gaa tca aag gaa gat tta gat ctt gaa ctt cga ctg gga tcc act 807
 Ser Glu Ser Lys Glu Asp Leu Asp Leu Glu Leu Arg Leu Gly Ser Thr
 195 200 205

 taactatac taattttac ggcattaagg tttgtaaatt gagtcgacag cttagtcaaa 867
 actacttag cacttaata tggcttcttg tgctatattt atttatttta catggctgta 927
 tctaggtttg catttaaga ttttagtacct tgtcagatta aaagaaaacg aaagttaaat 987
 taaaaaaaaa 997

<210> 2
 <211> 206
 <212> PRT
 <213> Petunia sp.

<400> 2
 Met Ala Gly Met Asp Arg Asn Ser Phe Asn Ser Lys Tyr Phe Lys Asn
 1 5 10 15

 Lys Ser Ile Met Ala Arg Gln Met Glu Tyr Leu Asn Asn Asn Gly
 20 25 30

 Asp Asn Asn Asn Asn Asn Val Thr Ser Ser Leu Arg Asp Asn Tyr
 35 40 45

 Gly Asn Glu Asp His Leu Leu Gly Gly Leu Phe Ser Trp Pro Pro Arg
 50 55 60

 Ser Tyr Thr Cys Ser Phe Cys Lys Arg Glu Phe Arg Ser Ala Gln Ala
 65 70 75 80

24

Leu Gly Gly His Met Asn Val His Arg Arg Asp Arg Ala Ile Leu Arg
 85 90 95

Gln Ser Pro Pro Arg Asp Ile Asn Arg Tyr Ser Leu Leu Asn Leu Asn
 100 105 110

Leu Glu Pro Asn Pro Asn Phe Tyr Pro Ser His Asn Pro Ser Phe Ser
 115 120 125

Arg Lys Phe Pro Pro Phe Glu Met Arg Lys Leu Gly Lys Gly Val Val
 130 135 140

Pro Asn Asn His Leu Lys Ser Ala Arg Gly Arg Phe Gly Val Glu Lys
 145 150 155 160

Ile Asp Ser Phe Met Gln Glu Lys Glu Cys Thr Thr Thr Val Ile Lys
 165 170 175

Lys Ser Glu Phe Leu Arg Leu Asp Leu Gly Ile Gly Leu Ile Ser Glu
 180 185 190

Ser Lys Glu Asp Leu Asp Leu Glu Leu Arg Leu Gly Ser Thr
 195 200 205

<210> 3

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:degenerate
 primer 1

<220>

<221> modified_base

<222> (6)

<223> i

<220>

<221> modified_base

<222> (9)

<223> i

<220>

<221> modified_base

<222> (12)

<223> i

<220>

<221> modified_base

<222> (15)

<223> i

<400> 3

cargcnytng gnggncay

```
<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:degenerate
      primer 2

<220>
<221> modified_base
<222> (3)
<223> i

<220>
<221> modified_base
<222> (6)
<223> i

<220>
<221> modified_base
<222> (9)
<223> i

<400> 4
ytngggnc ayatgaay
```

18

```
<210> 5
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:degenerate
      primer 3

<220>
<221> modified_base
<222> (3)
<223> i

<220>
<221> modified_base
<222> (6)
<223> i

<220>
<221> modified_base
<222> (12)
<223> i

<400> 5
arncknaryt cnarrtc
```

17

```
<210> 6
<211> 6
<212> PRT
<213> Artificial Sequence
```

26

<220>

<223> Description of Artificial Sequence:amino acids
present in both SUPERMAN gene of Arabidopsis
thaliana and GmN479 gene of soy bean root nodules

<400> 6

Gln Ala Leu Gly Gly His
1 5

<210> 7

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:amino acids
present in both SUPERMAN gene of Arabidopsis
thaliana and GmN479 gene of soy bean root nodules

<400> 7

Leu Gly Gly His Met Asn
1 5

<210> 8

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:amino acids
present in both SUPERMAN gene of Arabidopsis
thaliana and GmN479 gene of soy bean root nodules

<400> 8

Asp Leu Glu Leu Arg Leu
1 5

<210> 9

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:SUPERMAN zinc
finger motif

<400> 9

Ser Tyr Thr Cys Ser Phe Cys Lys Arg Glu Phe Arg Ser Ala Gln Ala
1 5 10 15

Leu Gly Gly His Met Asn Val His Arg Arg Asp Arg Ala Arg Leu Arg
20 25 30

Leu Gln Gln Ser Pro Ser Ser Ser Thr Pro
35 40

27

<210> 10
<211> 42
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PetSPL1 zinc finger motif

<400> 10
Ser Tyr Thr Cys Ser Phe Cys Lys Arg Glu Phe Arg Ser Ala Gln Ala
1 5 10 15

Leu Gly Gly His Met Asn Val His Arg Arg Asp Arg Ala Arg Leu Arg
20 25 30

Leu Gln Ser Pro Pro Arg Glu Asn Gly Thr
35 40

<210> 11
<211> 41
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PetSPL2 zinc finger motif

<400> 11
Ser Tyr Thr Cys Ser Phe Cys Lys Arg Glu Phe Arg Ser Ala Gln Ala
1 5 10 15

Leu Gly Gly His Met Asn Val His Arg Arg Asp Arg Ala Ile Leu Arg
20 25 30

Gln Ser Pro Pro Arg Asp Ile Asn Arg
35 40

<210> 12
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PetSPL3 zinc finger motif

<400> 12
Ser Tyr Glu Cys Asn Phe Cys Lys Arg Gly Phe Ser Asn Ala Gln Ala
1 5 10 15

Leu Gly Gly His Met Asn Ile His Arg Lys Asp Lys Ala Lys Leu Lys
20 25 30

Lys Gln Lys Gln His Gln Arg Gln Gln Lys Pro
35 40

<210> 13
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PetSPL4 zinc finger motif

<400> 13
Phe Tyr Arg Cys Ser Phe Cys Lys Arg Gly Phe Ser Asn Ala Gln Ala
1 5 10 15
Leu Gly Gly His Met Asn Ile His Arg Lys Asp Arg Ala Lys Leu Arg
20 25 30
Glu Ile Ser Thr Asp Asn Leu Asn Ile Asp Gln
35 40

<210> 14
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:SUPERMAN
C-terminal hydrophobic region

<400> 14
Ile Leu Arg Asn Asp Glu Ile Ile Ser Leu Glu Leu Glu Ile Gly Leu
1 5 10 15
Ile Asn Glu Ser Glu Gln Asp Leu Asp Leu Glu Leu Arg Leu Gly Phe
20 25 30

Ala

<210> 15
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PetSPL1
C-terminal hydrophobic region

<400> 15
Leu Met Lys Arg Ser Glu Phe Leu Arg Leu Glu Leu Gly Ile Gly Met
1 5 10 15
Ile Asn Glu Ser Lys Glu Asp Leu Asp Leu Glu Leu Arg Leu Gly Tyr
20 25 30

Thr

29

<210> 16
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Pet SPL2
C-terminal hydrophobic region

<400> 16
Val Ile Lys Lys Ser Glu Phe Leu Arg Leu Asp Leu Gly Ile Gly Leu
1 5 10 15
Ile Ser Glu Ser Lys Glu Asp Leu Asp Leu Glu Leu Arg Leu Gly Ser
20 25 30

Thr

<210> 17
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PetSPL3
C-terminal hydrophobic region

<400> 17
Gly Ser Val Asp Ser Arg Glu Asn Arg Leu Pro Ala Arg Asn Gln Glu
1 5 10 15
Thr Thr Pro Phe Tyr Ala Glu Leu Asp Leu Glu Leu Arg Leu Gly His
20 25 30

Glu

<210> 18
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PetSPL4
C-terminal hydrophobic region

<400> 18
Cys Gly Thr Leu Asp Glu Lys Pro Lys Arg Gln Ala Glu Asn Asn Asp
1 5 10 15
Met Gln Gln Asp Asp Ser Lys Leu Asp Leu Glu Leu Arg Leu Gly Pro
20 25 30

Asp

30