3.2.4 Conducted Spurious Emissions

- Procedure:

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

- Measurement Data: Comply

Note 1: According to power measurements, this test item was performed at worst ca mode of each modulation type.

Note 2: See next pages for actual measured spectrum plots.

- Minimum Standard:

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 55 + 10log(P) dB. The limit of emission equal to -25 dBm

TRF-RF-217(00)111207 Page 36 / 61

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & PUSC Zone & 64QAM5/6 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & PUSC Zone & 64QAM5/6 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & PUSC Zone & 64QAM6/5 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & PUSC Zone & 64QAM5/6 & Main Antenna

Conducted Spurious Emissions OBW: 10MHz & Middle Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Middle Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Middle Frequency & PUSC Zone & 64QAM5/6 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & PUSC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & PUSC Zone & 16QAM1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & PUSC Zone & 64QAM6/5 & Main Antenna

3.2.5 Frequency Stability

- Procedure:

The frequency stability of the transmitter is measured by:

a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.

b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature.(20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

- Measurement Data: Comply

Note 1: See next pages for measurement data.

- Minimum Standard:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

TRF-RF-217(00)111207 Page 55 / 61

Measurement Data:

BANDWIDTH : 5 MHZ

ZONE MODE : PUSC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,600,000,013 Hz

REFERENCE VOLTAGE : 3.7 V $_{DC}$

VOLTAGE (%)	POWER (VDC)	TEMP (℃)	FREQ (Hz)	Deviation (ppm)
100%	3.7	+20(Ref)	2,600,000,013	0.000
100%		-30	2,599,999,991	-0.008
100%		-20	2,600,000,007	-0.002
100%		-10	2,599,999,985	-0.011
100%		0	2,600,000,008	-0.002
100%		+10 2,599,999,988		-0.010
100%		+20 2,599,999,984		-0.011
100%		+30	+30 2,600,000,013	
100%		+40	2,600,000,017	0.002
100%		+50	2,599,999,991	-0.008
85%	3.145	+20 N/A		N/A
115%	4.255	+20	2,600,000,006	-0.003
BATT.ENDPOINT	3.400	+20	2,599,999,989 -0.009	

Measurement Data:

BANDWIDTH : 10 MHZ

ZONE MODE : PUSC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,599,999,994 Hz

REFERENCE VOLTAGE : 3.7 V DC

VOLTAGE (%)	POWER (VDC)	TEMP (℃)	FREQ (Hz)	Deviation (ppm)
100%	3.7	+20(Ref)	2,599,999,994	0.000
100%		-30	2,599,999,982	-0.005
100%		-20	2,600,000,010	0.006
100%		-10	2,599,999,992	-0.001
100%		0	2,599,999,980	-0.005
100%		+10 2,599,999,985		-0.003
100%		+20 2,600,000,012		0.007
100%		+30	2,599,999,994	0.000
100%		+40	2,600,000,017	0.009
100%		+50	2,599,999,990	-0.002
85%	3.145	+20 N/A		N/A
115%	4.255	+20	2,600,000,014	0.008
BATT.ENDPOINT	3.400	+20	2,599,999,989	-0.002

3.2.6 Radiated Spurious Emissions

- Procedure:

Spurious and harmonic emissions between the lowest frequency generated in this device and up to 10th harmonic of the highest generated in this device are measured at semi-anechoic chamber. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna.

This test is based on the use of spectrum analyzer employing a RBW/VBW = 5MHz(OBW: 5MHz) and 10MHz(OBW: 10MHz) and peak detector mode.

The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A antenna is substituted in place of the EUT. This antenna is driven by a vector signal generator for spurious emissions. The level of the signal generator is adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna is measured and this conducted power is corrected with antenna gain in dBi. This spurious level was recorded.

Note: Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004

- Measurement Data: Comply

Note 1: According to power measurements, this test item was performed at worst ca mode of each modulation type. Note 2: See next pages for worst case measurement data.

- Minimum Standard:

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 55 + 10log(P) dB. The limit of emission equal to -25 dBm

Measurement Data:

- OBW: 5MHz & Main Antenna

Tested	Mod. Type	Frequency (MHz)	EUT Position	TEST CONDITIONS				
Freq.				level (dBm)	Pol. (H/V)	Ant Gain (dBi)	Result (dBm)	Limit (dBm)
	QPSK1/2	4997.38	Z	-47.16	Н	10.61	-33.61	-25.00
		7496.62	Z	-45.71	Н	11.36	-27.84	-25.00
Lowoot	16OAM1/2	4998.44	Z	-46.95	Н	10.61	-33.40	-25.00
Lowest	16QAM1/2	7498.60	Z	-46.01	Н	11.36	-28.14	-25.00
	64QAM1/2	4997.60	Z	-46.96	Н	10.61	-33.41	-25.00
		7497.54	Z	-45.92	Н	11.36	-28.05	-25.00
	QPSK1/2	5199.74	Z	-46.21	Н	10.80	-32.89	-25.00
Middle		7799.42	Z	-45.74	Н	11.32	-28.67	-25.00
	16QAM1/2	5200.04	Z	-46.22	Н	10.80	-32.90	-25.00
		7800.66	Z	-45.77	Н	11.32	-28.70	-25.00
	64QAM1/2	5200.28	Z	-46.20	Н	10.80	-32.88	-25.00
		7799.26	Z	-45.89	Н	11.32	-28.82	-25.00
	QPSK1/2	5373.78	Z	-44.12	Н	10.96	-30.44	-25.00
Highest		8060.11	Z	-45.78	Н	11.29	-28.29	-25.00
	16QAM1/2	5373.94	Z	-44.23	Н	10.96	-30.55	-25.00
		8059.99	Z	-45.50	Н	11.29	-28.01	-25.00
	64QAM1/2	5373.90	Z	-44.19	Н	10.96	-30.51	-25.00
		8060.51	Z	-45.22	Н	11.29	-27.73	-25.00

- OBW: 10MHz & Main Antenna

Tested	Mod. Type	Frequency (MHz)	EUT	TEST CONDITIONS				
Freq.			Position	level (dBm)	Pol. (H/V)	Ant Gain (dBi)	Result (dBm)	Limit (dBm)
	QPSK1/2	5016.82	Z	-49.27	Н	10.63	-36.09	-25.00
		7527.04	Z	-47.94	Н	11.35	-30.08	-25.00
Lowest	16QAM1/2	5017.38	Z	-49.13	Н	10.63	-35.95	-25.00
Lowest	TOQAWITZ	7525.50	Z	-48.24	Н	11.35	-30.38	-25.00
	64QAM1/2	5016.84	Z	-49.36	Н	10.63	-36.18	-25.00
		7524.42	Z	-48.10	Н	11.35	-30.24	-25.00
	QPSK1/2	5200.06	Z	-47.67	Н	10.80	-34.35	-25.00
		7800.26	Z	-46.74	Н	11.32	-29.67	-25.00
NAC at att a	16QAM1/2	5199.10	Z	-47.66	Н	10.80	-34.34	-25.00
Middle		7799.54	Z	-46.67	Н	11.32	-29.60	-25.00
	64QAM1/2	5199.96	Z	-47.49	Н	10.80	-34.17	-25.00
		7800.12	Z	-46.86	Н	11.32	-29.79	-25.00
Highest	QPSK1/2	5366.38	Z	-46.03	Н	10.95	-32.36	-25.00
		8050.76	Z	-46.48	Н	11.29	-28.99	-25.00
	16QAM1/2	5366.90	Z	-45.99	Н	10.95	-32.32	-25.00
		8050.94	Z	-46.57	Н	11.29	-29.08	-25.00
	64QAM1/2	5367.02	Z	-45.95	Н	10.95	-32.28	-25.00
		8051.18	Z	-46.64	Н	11.29	-29.15	-25.00

APPENDIX

TEST EQUIPMENT FOR TESTS

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent	E4440A	12/09/18	13/09/18	MY45304199
Spectrum Analyzer	Agilent	E4440A	12/01/03	13/01/03	MY44033778
Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
Harmonic Mixer	OML	M28HWD	12/02/06	13/02/06	Ka100224-1
Power Splitter	Anritsu	K241B	12/09/17	13/09/17	020611
TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	12/09/17	13/09/17	30604493/021031
Digital Multimeter	H.P	34401A	12/03/05	13/03/05	3146A13475, US36122178
Signal Generator	Rohde Schwarz	SMR20	12/03/05	13/03/05	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
Vector Signal Generator	Rohde Schwarz	SMBV100A	12/01/09	13/01/11	255571
Thermo hygrometer	BODYCOM	BJ5478	12/01/13	13/01/13	090205-2
DC Power Supply	HP	6633A	12/03/05	13/03/05	3524A06634
High-pass filter	Wainwright	WHNX3.0	12/09/17	13/09/17	9
HORN ANT	ETS	3115	11/09/06	13/09/06	21097
HORN ANT	ETS	3115	12/02/20	14/02/20	6419
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	155
Dipole Antenna	Schwarzbeck	VHA9103	12/03/12	14/03/12	2116
Dipole Antenna	Schwarzbeck	VHA9103	11/11/22	13/11/22	2117
Dipole Antenna	Schwarzbeck	UHA9105	12/03/12	14/03/12	2261
Dipole Antenna	Schwarzbeck	UHA9105	11/11/22	13/11/22	2262
Attenuator (3dB)	WEINSCHEL	56-3	12/09/17	13/09/17	Y2342
Attenuator (3dB)	WEINSCHEL	56-3	12/09/17	13/09/17	Y2370
Amplifier (30dB)	H.P	8449B	12/03/05	13/03/05	3008A00370
Amplifier	EMPOWER	BBS3Q7ELU	12/09/18	13/09/18	1020
BILOG ANTENNA	SCHAFFNER	CBL 6112D	10/12/21	12/12/21	22609
Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865