Math 357 Short quiz 11

2024-03-20 (W)

Your name:	

(a) Define the minimal polynomial of a field element. Briefly but clearly introduce any hypotheses and auxiliary objects that you use in your definition.

Solution: Let $K: K_0$ be a field extension, and let $\alpha \in K$ be algebraic over K_0 . The **minimal polynomial** of α over K_0 is the (unique) monic, irreducible polynomial $p \in K_0[t]$ such that $p(\alpha) = 0.1$ We will denote this minimal polynomial by $\mathfrak{m}_{\alpha,K_0}$.

Note that the hypothesis that α be algebraic over K_0 is important. If α is transcendental (not algebraic) over K_0 , then by definition there is no polynomial $p \in K_0[t]$ such that $p(\alpha) = 0$, let alone a monic, irreducible one.

(b) Let $\alpha = \sqrt{-\sqrt{2}} \in \mathbf{C}$. State the minimal polynomial of α over \mathbf{Q} , over \mathbf{R} , and over \mathbf{C} .

Solution: We may manipulate the defining equation for α in an attempt to get a "polynomial" relation involving powers of α and coefficients in the desired base field. If we are successful, then we may replace α with t to get a polynomial with α as a zero. (We still must certify that the polynomial is monic and irreducible.) Playing this game, we get candidates

All these polynomials are monic. As for irreducibility, note that

- 1. $\mathfrak{m}_{\alpha,Q}$ is irreducible in Q[t] by the Eisenstein–Schönemann criterion with $\mathfrak{p}=2$ and Gauß's lemma.²
- 2. $m_{\alpha,\mathbf{R}}$ is irreducible in $\mathbf{R}[t]$ because, if it factored, it would do so into two degree-1 factors, which would imply that $\alpha = \sqrt{-2}$ is in \mathbf{R} , a contradiction.³
- 3. $m_{\alpha,C}$ is irreducible in C[t] because all degree-1 polynomials over a field are irreducible.

¹We may view the ring (field) operations + and \times used to evaluate p at α as being those of K.

²See DF3e, Proposition 9.13, p 309 and Proposition 9.5, p 303, respectively.

³See DF3e, Proposition 9.10, p 308.

⁴Note that the hypothesis that the ring of coefficients is a field is important. For example, the degree-1 polynomial 2t - 2 is reducible in $\mathbf{Z}[t]$ (why?).