Pokhara University Faculty of Science and Technology

Course Code: MTH 216 (2 – 2 - 0 Credit)

Course Title: Probability and Statistics

Full Marks: 100

Pass Mark: 45

Nature of the Course: Theory

Total Lectures: 30 hours

Level: Bachelor Program: BE

1. Course Description

This course is designed to familiarize students with various statistical methods and techniques for analyzing data. The contents include descriptive statistics, probability, probability distributions, sampling and estimation, hypothesis testing, simple correlation and regression analysis with emphasis on engineering field.

2. General Objectives

The general objectives of this course are;

- To familiarize students with various statistical methods and techniques for analyzing data.
- To impart analytical skills in the students required for the application of statistical methods for analyzing data in the field of engineering.
- To enable students with the skills to use of real data in the practical engineering-based applications.

3. Methods of Instruction

Lecture, Tutorial, Discussion and Readings

4. Contents in Detail

Specific Objectives	Contents
 Identify concepts of statistics and its application in the field of engineering Summarize, present and compute various descriptive statistics 	Unit I: Introduction and Descriptive Statistics (3 hrs) 1.1 Introduction of statistics and its applications in engineering 1.2 Collection and presentation of data (Diagrammatic as well as graphical presentation) 1.3 Measure of central tendency, location and Measures of variability
 Identify basic probability concepts Define conditional probability and use Bayes' theorem to revise probabilities Define random variable and compute expected value and variance of a probability distribution 	Unit II: Probability (5 hrs) 2.1 Basic probability, additive law, multiplicative law and Bayes' theorem 2.2 Random variables (Discrete and Continuous) and probability distribution function, 2.3 Mathematical expectation of random variables

Explain and apply discrete probability	Unit III: Discrete Probability Distributions		
distributions (Binomial, Poisson distribution,	(3 hrs)		
Negative Binomial and Hyper geometric	3.1 Binomial distribution,		
distribution)	3.2 Poisson distribution		
	3.3 Negative Binomial distribution		
	3.4 Hyper geometric distribution		
Explain and apply the Normal distribution and	Unit IV: Continuous Probability		
other continuous probability distributions	Distributions (4 hrs)		
(uniform distribution, Gamma and Beta	4.1 Rectangular or uniform distribution		
distributions, and Exponential distribution)	4.2 Normal distribution		
	4.3 Gamma and Beta distributions		
	4.4 Exponential distribution		
Define the concept of bivariate random	Unit V: Bivariate Random Variables and		
variables and joint probability distribution	Joint Probability Distribution (2 hrs)		
• Explain and calculate joint probability mass,	5.1 Joint probability mass function, marginal		
marginal probability and density function	probability mass function,		
	5.2 Joint probability density function, marginal		
	probability density function		
Define and apply sampling, sampling	Unit VI: Sampling Distribution and		
distribution, and central limit theorem	Estimation (5 hrs)		
Construct and interpret confidence interval	6.1 Review of terms used in sampling		
estimate for the means and proportion	6.2 Probability and non-probability sampling		
	6.3 Sampling distribution of mean and standard		
	error		
	6.4 Central limit theorem		
	6.5 Concept of point and interval estimation		
	6.6 Sample size determination		
	6.7 Confidence interval for single mean and		
	difference of two population means and		
	population proportion		
Describe and apply the procedures	Unit VII: Hypothesis Testing (5 hrs)		
hypothesis testing of various tests.	7.1 Basic concept in hypothesis testing		
71	7.2 One sample test for mean and proportion		
	7.3 Two sample tests for mean and proportions		
	7.4 Paired t – test		
	7.5 Chi-square test of independence		
Define and apply correlation and regression	Unit VIII: Correlation and Regression (3		
in the field of engineering	hrs)		
and the treat of engineering	8.1 Simple correlation and its properties		
	8.2 Simple linear regression		
	0.2 Simple initial regression		

Note: The figures in the parentheses indicate the approximate periods for the respective units.

5. List of Tutorials (30 Hours)

Numerical problems as demanded by the theory of each chapter will be assigned for the students and they are encouraged to solve the problems.

Unit	Unit Name	List of Tutorials	Tutorial
No.			hours
I	Introduction and	1.1 Collection and presentation of data (Diagrammatic as	1 hr.
	Descriptive	well as graphical presentation)	
	Statistics	1.2 Measure of central tendency, location and Measures of variability	1 hr.
II	Probability	2.1 Basic probability, additive law, multiplicative law and	2 hr.
11	11000011119	Bayes' theorem	2 111.
		2.2 Random variables (Discrete and Continuous) and	1 hr.
		probability distribution function,	
		2.3 Mathematical expectation of random variables	1 hr.
III	Discrete	3.5 Binomial distribution,	1 hr.
	Probability	3.6 Poisson distribution	1 hr.
	Distributions	3.7 Negative Binomial distribution	1 hr.
		3.8 Hyper geometric distribution	1 hr.
IV	Continuous	4.1 Rectangular or uniform distribution	1 hr.
	Probability	4.2 Normal distribution	2 hr.
	Distributions	4.3 Gamma and Beta distributions	2 hr.
		4.4 Exponential distribution	2 hr.
V	Bivariate	5.1 Joint probability mass function, Marginal probability	1 hr.
	Random	mass function,	
	Variables and	5.2 Joint probability density function, Marginal	2 hr.
	Joint Probability Distribution	probability density function	
VI	Sampling	6.1 Sampling distribution of mean and standard error	1 hr.
	Distribution and	6.2 Central limit theorem	1 hr.
	Estimation	6.3 Concept of point and interval estimation	1 hr.
		and Sample size determination	
		6.4 Confidence interval for single mean and difference of	1 hr.
		two population means and population proportion	
VII	Hypothesis	7.1 One sample test for mean and proportion	1 hr.
	Testing	7.2 Two sample test for mean and proportions	1 hr.
		7.3 Paired t – test	1 hr.
		7.4 Chi-square test of independence	1 hr.
VIII	Correlation and	8.1 Simple correlation and its properties	1 hr.
	Regression	8.2 Simple linear regression	1 hr.

6. Evaluation system and Students' Responsibilities

Evaluation System

In addition to the formal exam(s), the internal evaluation of a student may consist of quizzes, assignments, project work, class participation, etc. The tabular presentation of the internal evaluation is as follows.

Internal Evaluation	Weight	Marks	External Evaluation	Marks			
Attendance & Class Participation	10%	50	Semester-End Examination	50			
Assignments	20%						
Presentations/Quizzes	10%						
Term Exam	60%						
Total Internal							
Full Marks: $50 + 50 = 100$							

Student's Responsibilities

Each student must secure at least 45% marks separately in internal assessment and practical evaluation with 80% attendance in the class in order to appear in the Semester End Examination. Failing to get such score will be given NOT QUALIFIED (NQ) to appear the Semester-End Examinations. Students are advised to attend all the classes, formal exam, test, etc. and complete all the assignments within the specified time period. Students are required to complete all the requirements defined for the completion of the course.

7. Prescribed Books and References

Prescribed Books

1. Johnson, R. A. (2018). *Probability and Statistics for Engineers*. New Delhi: Pearson Education Limited.

Reference Books

- 1. Devore, J. L.(2010). *Probability and Statistics for Engineering and Sciences*. New Delhi: Cengage learning.
- 2. Sheldom, M. R. (2014). Probability *and Statistics for Engineers and Scientist*. New Delhi: Cengage learning.
- 3. Gupta, S.C & V.K. Kapoor. (2000). *Fundamentals of Mathematical Statistics: A Modern Approach*. Sultan Chand & Sons Educational Publishers.

