Architektury systemów komputerowych

Lista zadań nr 0

Na zajęcia 25-26 lutego 2019

W zadaniach odnoszących się do języka C wolno używać **wyłącznie** instrukcji przypisania, operatorów bitowych, dodawania i odejmowania, przesunięć bitowych i stałych! Pętle, rozgałęzienia, operatory mnożenia, dzielenia i reszty z dzielenia są **niedozwolone**! Zakładamy, że liczby są typu «uint32_t» – tj. nie posiadają znaku i mają szerokość 32 bitów. Należy wytłumaczyć czemu rozwiązanie działa!

UWAGA! W trakcie prezentacji rozwiązań należy zdefiniować i wyjaśnić pojęcia, które zostały oznaczone **wytłuszczoną** czcionką.

Zadanie 1. Przekształć każdą z podanych liczb z systemu ósemkowego na system binarny, szesnastkowy i dziesiętny: 42₈, 255₈, 3047₈ i 140336₈.

Zadanie 2. Wykonaj poniższe operacje bez konwersji liczb do systemu dziesiętnego lub binarnego:

- \bullet 22₁₆ + 8₁₆
- $73_{16} + 2C_{16}$
- $7F_{16} + 7F_{16}$
- $C2_{16} + A4_{16}$

Podpowiedź: Użyj tabelki dodawania dla liczb w systemie szesnastkowym.

Zadanie 3. Napisz fragment kodu, który dla zmiennych x i k wykona poniższe operacje:

- wyzeruje k-ty bit zmiennej x,
- ustawi k-ty bit zmiennej x,
- zaneguje k-ty bit zmiennej x.

Zadanie 4. Napisz fragment kodu, który dla zmiennych x i y obliczy poniższe wyrażenia:

- $x*2^y$.
- $\bullet |x/2^y|$,
- $x \bmod 2^y$.
- $\bullet \lceil x/2^y \rceil$.

Zadanie 5. Napisz fragment kodu, który stwierdza czy dana liczba x nie jest potęgą dwójki.

Zadanie 6. Napisz fragment kodu, który skonwertuje zmienną x z formatu **little-endian** do formatu **big-endian**. Należy użyć jak najmniejszej liczby operacji bitowych.

Zadanie 7. Jaką rolę pełnią kody sterujące standardu ASCII o numerach 0, 4, 7, 10 i 12?

Zadanie 8. Jakie ograniczenia standardu ASCII przyczyniły się do powstania **UTF-8**? Wyjaśnij zasadę kodowania znaków do postaci binarnej UTF-8 i zapisz poniższy ciąg znaków w systemie szesnastkowym:

Proszę zapłacić 5€!