Sequence Clustering

CS 145 Fall 2015

ApproxMAP

- Sequential Pattern Mining
- Support Framework
- Multiple Alignment Framework
- Evaluation
- Conclusion

Inherent Problems

- Exact match
 - ➤ A pattern gets support from a sequence in the database if and only if the pattern is exactly contained in the sequence
 - > Often may not find general long patterns in the database
 - For example, many customers may share similar buying habits, but few of them follow an exactly same pattern
- Mines complete set: Too many trivial patterns
 - > Given long sequences with noise
 - ***** too expensive and too many patterns
 - > Finding max / closed sequential patterns is non-trivial
 - **❖** In noisy environment, still too many max/close patterns

⇒ Not Summarizing Trend

Multiple Alignment

- line up the sequences to detect the trend
 - > Find common patterns among strings
 - > DNA / bio sequences

P	A	T	T	T	E	R	N
P	A	0	0	T	E	R	M
P	0	0	T	T	0	R	N
O	A	0	T	T	E	R	В
P	0	S	Y	Y	R	T	N
P	A	0	T	T	E	R	N

Edit Distance

- ✓ Pairwise Score = edit distance=dist(S_1, S_2)
 - Minimum # of ops required to change S₁ to S₂
 - Ops = INDEL(a) and/or REPLACE(a,b)

P	A	T	T	T	E	R	N
P	A	0	0	T	E	R	M
		INDEL	INDEL				REPL

Multiple Alignment Score

- $ightharpoonup \sum PS(seq_i, seq_i) \ (\forall \ 1 \le i \le N \ and \ 1 \le j \le N)$
- **➤ Optimal alignment : minimum score**

Weighted Sequence

- Weighted Sequence: profile
 - > Compress a set of aligned sequences into one sequence

seq_1	(A)		(B)	(DE)	
seq_2	(AE)	(H)	(BC)	(E)	
seq_3	(A)		(BCG)	(D)	
Weighted Sequence	(A:3,E:1):3	(H:1): 1	(B:3,C:2, G:1):3	(D:2, E:2):3	3

Consensus Sequence

- strength(i, j) = # of occurrences of item i in position j
 total # of sequences
- Consensus itemset (j)
 - \succ { $i_a \mid \forall i_a \in (I \cup ())$ & strength $(i_a, j) \geq min_strength$ }
- Consensus sequence: min_strength=2
 - > concatenation of the consensus itemsets for all positions excluding any null consensus itemsets

seq_1	(A)		(B)	(DE)	
seq_2	(AE)	(H)	(BC)	(E)	
seq_3	(A)		(BCG)	(D)	
Weighted Sequence	(A:3,E:1):3	(H:1): 1	(B:3,C:2, G:1):3	(D:2, E:2):3	3
Consensus Sequence	(A)		(BC)	(DE)	

Multiple Alignment Pattern Mining

Given

- > N sequences of sets,
- > Op costs (INDEL & REPLACE) for itemsets, and
- > Strength threshold for consensus sequences
 - * can specify different levels for each partition

To

- ➤ (1) partition the N sequences into K sets of sequences such that the sum of the K multiple alignment scores is minimum, and
- > (2) find the optimal multiple alignment for each partition, and
- ➤ (3) find the pattern consensus sequence and the variation consensus sequence for each partition

ApproxMAP (Approximate Multiple Alignment Pattern mining)

- Exact solution: Too expensive!
- Approximation Method

```
ightharpoonup Group: O(kN) + O(N^2L^2I)
```

- **❖**partition by Clustering (k-NN)
- distance metric
- \triangleright Compress : $O(nL^2)$
 - **❖** multiple alignment (greedy)
- \triangleright Summarize : O(1)
 - **❖Pattern and Variation Consensus Sequence**
- \triangleright Time Complexity : $O(N^2L^2I)$

Multiple Alignment: Weighted Sequence

seq ₃	(A)		(B)	(DE)	
seq ₂	(AE)	(H)	(B)	(D)	
WS ₁	(A:2,E:1):2	(H:1):1	(B:2):2	(D:2,E:1):2	2
seq ₄	(A)		(BCG)	(D)	
WS ₂	(A:3,E:1):3	(H:1):1	(B:3,C:1,G:1):3	(D:3,E:1):3	3

Evaluation Method: Criteria & Datasets

Criteria

- **Recoverability:** max patterns
 - ***** degree of the underlying patterns in DB detected
 - $\star \sum E(F_B) \star [\max_{\text{res pat B}}(|B \otimes P|) / E(L_B)]$
 - **\Leftrightarrow** Cutoff so that $0 \le R \le 1$
- > # of spurious patterns
- > # of redundant patterns
- **Degree of extraneous items in the patterns**
 - ❖ total # of extraneous items in P / total # of items in P

Datasets

- **Random data:** Independence between and across itemsets
- > Patterned data: IBM synthetic data (Agrawal and Srikant)
- **Robustness w.r.t. noise : alpha (Yang SIGMOD 2002)**
- **Robustness w.r.t. random sequences (outliers)**

Evaluation: Comparison

	ApproxMAP	Support Framework
Random Data	No patterns with more than 1 item returned	Lots of spurious patterns
Patterned Data 10 patterns embedded into 1000 seqs	k=6 & MinStrgh=30% Recoverability: 92.5% 10 patterns returned 2 redundant patterns 0 spurious patterns 0 extraneous items	MinSup=5% Recoverability: 91.6% 253,924 patterns returned 247,266 redundant patterns 6,648 spurious patterns 93,043=5.2% extraneous items
Noise	Robust	Not Robust Recoverability degrades fast
Outliers	Robust	Robust

Robustness w.r.t. noise

Results: Scalability

Evaluation: Real data

- Successfully applied ApproxMAP to sequence of monthly social welfare services given to clients in North Carolina
- Found interpretable and useful patterns that revealed information from the data

Conclusion: why does it work well?

- Robust on random & weak patterned noise
 - ➤ Noises can almost never be aligned to generate patterns, so they are ignored
 - > If some alignment is possible, the pattern is detected
- Very good at organizing sequences
 - > when there are "enough" sequences with a certain pattern, they are clustered & aligned
 - ➤ When aligning, we start with the sequences with the least noise and add on those with progressively more noise
 - > This builds a center of mass to which those sequences with lots of noise can attach to
- Long sequence data that are not random have unique signatures

Conclusion

- Works very well with market basket data
 - > High dimensional
 - > Sparse
 - > Massive outliers
- Scales reasonably well
 - > Scales very well w.r.t # of patterns
 - \triangleright k : scales very well = O(1)
 - \triangleright DB : scales reasonably well=O(N² L² I)

CLUSEQ

- The primary structures of many biological (macro)molecules are "letter" sequences despite their 3D structures.
 - > Protein has 20 amino acids.
 - > DNA has an alphabet of four bases {A, T, G, C}
 - > RNA has an alphabet {A, U, G, C}
- Text document
- Transaction logs
- Signal streams
- Structural similarities at the sequence level often suggest a high likelihood of being functionally/ semantically related.

Problem Statement

- Clustering based on structural characteristics can serve as a powerful tool to discriminate sequences belonging to different functional categories.
 - The goal is to create a grouping of sequences such that sequences in each group have similar features.
 - ➤ The result can potentially reveal unknown structural and functional categories that may lead to a better understanding of the nature.
- Challenge: how to measure the structural similarity?

Measure of Similarity

• Edit distance:

- > computationally inefficient
- > only captures the optimal global alignment but ignore many other local alignments that often represent important features shared by the pair of sequences.

• q-gram based approach:

ignores sequential relationship (e.g., ordering, correlation, dependency, etc.) among q-grams

Hidden Markov model:

- > capture some low order correlations and statistics
- > vulnerable to noise and erroneous parameter setting
- > computationally inefficient

Measure of Similarity

- Probabilistic Suffix Tree
 - ➤ Effective in capturing significant structural features
 - **Easy to compute and incrementally maintain**
 - Sparse Markov Transducer
 - > Allows wild cards

- CLUSEQ: exploring significant patterns of sequence formation.
 - > Sequences belonging to one group/cluster may subsume to the same probability distribution of symbols (conditioning on the preceding segment of a certain length), while different groups/clusters may follow different underlying probability distributions.
 - ➤ By extracting and maintaining significant patterns characterizing (potential) sequence clusters, one can easily determine whether a sequence should belong to a cluster by calculating the likelihood of (re)producing the sequence under the probability distribution that characterizes the cluster.

Sequence: $\sigma = s_1 s_2 ... s_l$

Cluster S: $P_{S}(\sigma) = P_{S}(s_{1}) \times P_{S}(s_{2} \mid s_{1}) \times \cdots \times P_{S}(s_{l} \mid s_{1} \cdots s_{l-1})$ $= \prod_{i=1}^{l} P_{S}(s_{i} \mid s_{1} \cdots s_{i-1})$

Random for high, we may consider or a member of S process: $= \prod_{i=1}^{l} P^{r}(s_{i})$

If $P_S(\sigma) >> P^r(\sigma)$, we may consider σ a member of S

• Similarity between σ and S

$$sim_{S}(\sigma) = \frac{P_{S}(\sigma)}{P^{r}(\sigma)} = \frac{\prod_{i=1}^{l} P_{S}(s_{i} | s_{1}...s_{i-1})}{\prod_{i=1}^{l} p(s_{i})} = \prod_{i=1}^{l} \left(\frac{P_{S}(s_{i} | s_{1}...s_{i-1})}{p(s_{i})}\right)$$

- Noise may be present.
- Different portions of a (long) sequence may subsume to different conditional probability distributions.

$$SIM_S(\sigma) = \max_{1 \le i \le j \le l} sim_S(s_i ... s_j)$$

• Give a sequence $\sigma = s_1 s_2 ... s_l$ and a cluster S, a dynamic programming method can be used to calculate the similarity $SIM_S(\sigma)$. Via a single scan of σ . Let

$$X_{i} = \frac{P_{S}(s_{i} | s_{1}...s_{i-1})}{p(s_{i})}$$

$$Y_{i} = \max_{1 \le j \le i} sim_{S}(s_{j}...s_{i})$$

$$Z_{i} = \max_{1 \le i, 1 \le i, 2 \le i} sim_{S}(s_{i1}...s_{i2})$$

• Intuitively, X_i , Y_i , and Z_i can be viewed as the similarity contributed by the symbol on the *i*th position of σ (i.e., s_i), the maximum similarity possessed by any segment ending at the *i*th position, and the maximum similarity possessed by any segment ending prior to or on the *i*th position, respectively.

• Then, $SIM_S(\sigma) = Z_I$, which can be obtained by

$$Y_{i} = \max \{Y_{i-1} \times X_{i}, X_{i}\}$$

$$Z_{i} = \max \{Z_{i-1}, Y_{i}\}$$

$$Y_{1} = Z_{1} = X_{1}$$

• For example, $SIM_S(bbaa) = 2.10$ if p(a) = 0.6 and p(b) = 0.4.

Sequence	b	b	a	а
$P_{S}(s_{i} s_{1}s_{i-1})$	0.55	0.418	0.87	0.406
X_i	1.38	1.05	1,45	0.677
Y_{i}	1.38	1.45	2.10	1.42
Z_{i}	1.38	1.45	2.10	2.10

Probabilistic Suffix Tree

- a compact representation to organize the derived CPD for a cluster
- built on the reversed sequences
- Each node corresponds to a segment, σ , and is associated with a counter $C(\sigma)$ and a probability vector $P(s_i | \sigma)$.

Probabilistic Suffix Tree

- Retrieval of a CPD entry $P(s_i|s_1...s_{i-1})$
- The *longest suffix* $s_i...s_{i-1}$
 - > can be located by traversing from the root along the path " $\rightarrow s_{i-1} \rightarrow ... \rightarrow s_2 \rightarrow s_1$ " until we reach either the node labeled with $s_1...s_i$ or a node where no further advance can be made.
 - \triangleright takes $O(\min\{i, h\})$ where h is the height of the tree.
- Example: P(a|bbba)

$P(a|bbba) \approx P(a|bba) = 0.4$

CLUSEQ

- Sequence Cluster: a set of sequences S is a sequence cluster if, for each sequence σ in S, the similarity $SIM_S(\sigma)$ between σ and S is greater than or equal to some similarity threshold t.
- Objective: automatically group a set of sequences into a set of *possibly overlapping* clusters.

Algorithm of CLUSEQ

Unclustered sequences

An iterative process

- > Each cluster is represented by a probabilistic suffix tree.
- ➤ The optimal number of clusters and the number of outliers allowed can be adapted by CLUSEQ automatically
 - new cluster generation, cluster split, and cluster consolidation
 - * adjustment of similarity threshold

New Cluster Generation

• New clusters are generated from *un-clustered* sequences at the beginning of each iteration.

Sequence Re-Clustering

- For each (sequence, cluster) pair
 - **Calculate similarity**
 - > PST update if necessary
 - Only similar portion is used
 - **❖** The update is weighted by the similarity value

Cluster Split

- Check the convergence of each existing cluster
 - ➤ Imprecise probabilities are used for each probability entry in PST
 - > Split non-convergent cluster

Imprecise Probabilities

- Imprecise probabilities uses two values (p_1, p_2) (instead of one) for a probability.
 - $ightharpoonup p_1$ is called <u>lower probability</u> and p_2 is called <u>upper probability</u>.
 - The true probability lies somewhere between p_1 and p_2 .
 - $\triangleright p_2 p_1$ is called <u>imprecision</u>.

Update Imprecise Probabilities

 Assuming the prior knowledge of a (conditional) probability is (p₁, p₂) and the occurrences in the new experiment is a out of b trials.

$$p'_1 = \frac{a + s \times p_1}{b + s} \qquad p'_2 = \frac{a + s \times p_2}{b + s}$$

where s is the learning parameter which controls the weight that each experiment carries.

Properties

- The following two properties are very important.
 - \triangleright If the probability distribution stays static, then p_1 and p_2 will converge to the true probability.
 - For the experiment agrees with the prior assumption, the range of imprecision decreases after applying the new evidence, e.g., $p_2' p_1' < p_2 p_1$.
- The clustering process terminates when the imprecision of all significant nodes is less than a small threshold.

Cluster Consolidation

- Starting from the smallest cluster
- Dismiss clusters that have few sequence not covered by other clusters

Adjustment of Similarity Threshold

• Find the sharpest turn of the similarity distribution function

Algorithm of CLUSEQ

Implementation issues

- **►** Limited memory space
 - **❖** Prune the node with smallest count first.
 - **❖** Prune the node with longest label first.
 - **Prune the node with expected probability vector first.**
- > Probability smoothing
 - **❖**Eliminates zero empirical probability
- > Other considerations
 - **❖Background probabilities**
 - **❖**A priori knowledge
 - **❖**Other structural features

 We have experimented with a protein database of 8000 proteins from 30 families from SWISS-PROT database.

Model	CLUSEQ	Edit Distance	Edit Distance with Block Operations	Hidden Markov Model	Q-gram
Accuracy	92%	23%	90%	91%	75%
Response Time (sec)	144	487	13754	3117	132

Synthetic data

Initial t	1.05	1.5	2	3
Final t	1.99	2.01	2	1.99
Response time	8011	7556	6754	7234
precision	81.3%	83.1%	83.4%	81.9%
recall	82.1%	82.8%	83.6%	82.7%

Synthetic data

Initial cluster number	1	20	100	200
Final cluster number	102	99	101	102
Response time	10112	9023	6754	8976
precision	81.3%	82.1%	82.6%	81%
recall	81.6%	82%	83.4%	81.7%

• CLUSEQ has linear scalability with respect to the number of clusters, number of sequences, and sequence length.

Remarks

• Similarity measure

- Powerful in capturing high order statistics and dependencies
- > Efficient in computation linear complexity
- **Robust to noise**

Clustering algorithm

- > High accuracy
- > High adaptability
- > High scalability
- > High reliability

References

- CLUSEQ: efficient and effective sequence clustering, *Proceedings of the 19th IEEE International Conference on Data Engineering (ICDE)*, 2003.
- A frame work towards efficient and effective protein clustering, *Proceedings of the 1st IEEE CSB*, 2002.