Original document

METHOD AND APPARATUS FOR PROTECTING FILE CALL SECRET

Patent number:

JP59169000

Also published:

US458899

GB213617 FR254247

DE340764

Publication date:

1984-09-22

MAACHIN EMU ATARA

Inventor:
Applicant:

ATARI CORP

Classification:

- international:

G06F1/00; G06F12/14; G06F21/00; G06F1/00; G06F12/14; G06F21/00;

(IPC1-7): G06F13/00; G11C29/00

- european:

Application number: JP19840042796 19840306 Priority number(s): US19830472609 19830307

View INPADOC patent family

Report a data eri

Abstract not available for JP59169000 Abstract of corresponding document: US4588991

An improved file access security technique and associated apparatus accesses data which is stored in encrypted form under one encryption key and re-stores the data re-encrypted under another encryption key, and produces a record of each access and data re-encryption both as the control source of encryption keys for access and re-entry of encrypted data and as a secured audit record of users that had access to each file.

Data supplied from the esp@cenet database - Worldwide

Description of corresponding document: US4588991

BACKGROUND OF THE INVENTION

Many known computer-controlled operations on secured data files require verification of the identity of an individual seaccess a file before the data (usually in encrypted form) can be accessed (see, for example, U.S. Pat. Nos. 3,938,091, 3,5 3,611,293 and 4,198,619). In addition, many known record-securing schemes including those associated with credit card require verification of both the authority of the using individual and the authenticity of the data in the record, to protect ε unauthorized users and against counterfeit or duplicate records. Schemes of this type are disclosed in U.S. Pat. Nos. 4,30 4,328,414 and 4,357,429.

One disadvantage associated with computer-controlled security schemes of these types is that there is typically no indica on file of which secured record was accessed, or by whom.

BEST AVAILABLE COPY

JP59169000 2/4 ページ

SUMMARY OF THE INVENTION

In accordance with the preferred embodiment of the present invention, a dynamic record of encryption control keys used access initially and at all subsequent occasions to secured encrypted files is generated both as an active element of the ac scheme and as a-secured, historic record-for-audit-purposes-of-all-accesses-to encrypted files. In-addition, substitutions of-outdated files are prevented once a file is accessed, even merely for display without alteration, so that a file once accesse therefore with its security compromised, can be re-secured against duplication, substitution, and re-use. Schemes of this particularly useful in banking and funds-transfer operations where proper access initially to an account file, for example, effect a withdrawal of funds, must thereafter be carefully controlled to avoid such disastrous practices as multiple replicates same operation coupled with substitution of the original balance back into the file. Further, the historic record of acceptations produced by the present invention constitutes an audit record in encrypted form of such accesses.

DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a pictorial block diagram showing one application of the apparatus of the present invention;
- FIG. 2 is a flow chart illustrating the operation of the apparatus of FIG. 1;
- FIG. 3 is a block diagram of the illustrated embodiment of the present invention; and
- FIG. 4 is a chart illustrating the formation and operation of the key usage control file according to the present invention,

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 1, there is shown a pictorial block diagram of the present invention illustrating the addition of an securing module 9 to a typical computer system comprising a central-processing unit 11, keyboard controller 13, and me means 15, 17 for storing files. The memory means 15, 17 may use any conventional form of storage technology such as semiconductor memory, magnetic memory in core, crystal, disc, drum, or tape form, and any combinations thereof, to st data 17 to which access is to be controlled, and to store access authorization information 15 about individuals and entitie may access the stored data 17. Keyboard 13 provides manual-entry access to the computer system in conventional mann representative of other computer-accessing schemes such as by another computer system, and the like.

In accordance with the present invention, such a typical computer system is modified to include access-securing module operates with the computer system to progressively reencrypt the data in storage in memory means 17 each time a file is accessed, and optionally to update the access authorization information in storage in memory means 15 in response to authorizations granted, and to generate historic files in encrypted form of the encryption keys used to decrypt and reencr file accessed from memory means 17. In addition, the module 9 operates in a controlled reinitialization mode to restore a in memory means 17 to a new, standard encryption key after numerous accesses of files in storage 17 have been authorized number of accesses before requiring reinitialization is determined by the memory capacity in the module 9.

Referring now to FIGS. 2 and 3 in addition to FIG. 1, there are shown a flow chart and a block diagram, respectively, ill the operation of the system of FIG. 1 under control of a central processing unit 11. In operation, a person or entity, R, reaccess to a particular file may enter personal identification numbers, information about the particular file, and the like, v. keyboard 13. Optionally, a personal-identity verification routine 21 may be performed in conventional manner (as discloexample, in U. S. Pat. No. 3,938,091 or 4,198,619) and the access-authorization files 15 may be searched for authorization access the requested file. All such files in memory means 17 are initially encrypted with an initial key code, K0, in a conventional manner (for example, using the Data Encryption Standard module available from the National Bureau of Standards) by encrypting the file data in encryption module 21 with key code, K0, from key code generator 23.

With authorization established 25, the particular file #X may be accessed, but decrypting the file #X requires the correct code. For this purpose, the key-usage control file 19, later described herein in detail, is searched to determine if the file # previously accessed. The conditions of prior access, namely, that it was, or it was not previously accessed, are possible. I not, then file #X will not appear in the key-usage control file, an indication that it appears in storage 17 encrypted with the key code, K0. Key generator 23 is capable of generating a sequence of different key codes K0, K1, K2, K3... Kn and is supply key code K0 to the decryption

27 (which, of course, may be the same type of DES module, or may be the same module, as encryption module 21). The requested file #X may therefore be decrypted in conventional manner using key code K0 to provide the accessed data 29 text. The data is then returned to storage, either without or with new data modifications 31 that reflect a data-oriented tra such as sale, deposit, withdrawal, or the like, and is re-stored in encrypted form using new key code K1. This is accompl resetting 38 the key code generator 23 to supply key code K1 to the encryption module 21 and returning the data 33 with without modifications for encryption in module 21 with the key code K1. In addition, the key-usage control file 19 is up reflect that file #X was accessed and now resides in storage newly-encrypted with the new key code K1 in the sequence, the access-authorization files 15 may be updated optionally to inhibit further access to file #X by user R, for example, to

BEST AVAILABLE COPY

3/4 ページ

R's further access until a "new date", or until accessed by another user, or the like. Subsequent access to file #X by user I continuously authorized, or by any other user must be via decryption with key code K11.

If file #X was previously accessed, then the key-usage control file 19 will contain the entry of file #X having been previously accessed and returned to storage encrypted with a new-key code K1, K2...Kn, depending upon the number of previous accesses to file #X. Thus, with reference to the chart of FIG. 4 which illustrates the typical entries in the key-usage contr 19, if file #X is file #00100, then the previous accesses to this file resulted in its being re-stored encrypted with key code entry 37). The search of the key-usage control file 19 thus indicates that file #00100 was previously accessed twice and 1 requires decryption with key code K2. If authorization of the requesting user is still valid 39, then the key code generator set to supply the key code K2 to decryption module 27 in order to furnish the data in this file in clear text 29. Re-storing from this file in modified or unmodified form is accomplished by resetting 38 the key code generator 23 to supply key co (entry 41 in FIG. 4) to the encryption module 17 for encryption therein of the returned data with the new key code K3. A retrievals of data in storage 17 may be by destructive read of information in the addressed file so that data for restoring tl may be written in the newlyencrypted form. After numerous accesses to files in storage 17, the key-usage control file 19 typically include entries as illustrated in FIG. 4. Such file optionally may also include codes to identify the particular use gained access to each file. The file 19 thus provides an audit record of the accesses to the files in storage 17. In addition, usage control file 19 is in encrypted form since it neither reveals the data in storage 17 nor the actual key codes K1 . . . K generated by generator 23) required to decrypt the data in storage 17. Further, the key codes K0...Kn which serve as fi protect codes can be generated internally in conventional manner, for example, by a random-number generator 23 and th need not be known to anyone.

After numerous accesses to the data in storage 17 which approaches the limit of the sequence of key codes for any partic file, or on a periodic basis, the entire collection of files in storage 17 may be re-encrypted with a new initial key code KC sequence of new key codes KO', K1'... Kn' using the apparatus illustrated in FIG. 3 under control of the central proces unit 11. However, since the files in storage 17 are encrypted with different key codes, the key-usage control file 19 must consulted to determine which key code to use to decrypt the data in each file for re-encryption with a new initial key code. After completion of this reinitialization mode of operation, the key-usage control file 19 for the sequence of key codes K Kn may be retired to serve as an historic record of access to the data in storage 17 without compromising the security of system or of the data in storage 17 under new encryption codes.

Data supplied from the esp@cenet database - Worldwide

Claims of corresponding document: US4588991

I claim:

- 1. Method of securing data files in storage against unauthorized access, comprising the steps of: encrypting file data as a logical combination thereof with an initial one of a plurality of encryption key codes to produce file data in encrypted for storage at selected file address locations; establishing a record of accesses to each selected file address location and the c the plurality of encryption key codes with which the file data at the address location is encrypted; processing a request for the file data at a selected file address location by determining from the record the number of prior accesses thereof and the encryption key code associated therewith; decrypting file data at the selected file address location using said associated encryption key code; re-encrypting file data for said selected file address location using a new one of said plurality of en key codes in said selected logical combination; storing the newly re-encrypted file data at the accessed file address location and the new encryption key codes associated therewith.
- 2. Method of securing data files according to claim 1 wherein in the step of decrypting, file data at a selected file address location is decrypted using said initial encryption key code in response to determination from the record that said selecte address location was not previously accessed.
- 3. Method of securing data files according to claim 1 comprising the additional steps of establishing a file of user access authorizations; and prior to accessing a selected file address location determining the authorization status of a user to gai to the selected file address location.
- 4. Method of securing data files according to claim 3 comprising the additional step of selectively altering the access authorization of a user to gain subsequent access to the selected file address location in response to re-encryption of the 1 for storage at the selected file address location.
- 5. Method of securing data files according to claim 1 comprising the steps of: reinitializing all the file data by decrypting data at each selected file address location using the encryption key code therefor determined from the record; and re-enc the file data at each such file address location using a new initial one of a plurality of key codes.
- 6. Method of securing data files according to claim 5 wherein in the reinitialization step the file data at any file address le

BEST AVAILABLE COPY

which is not indicated in the record to have been accessed previously is decrypted using the initial encryption key code.

- 7. Apparatus for securing data files in storage against unauthorized access, comprising: storage means for storing file date encrypted form at selectable file address locations; encryption means for supplying encrypted file data to a selected file a location as the logical encoding-combination of file data and an encryption key signal applied thereto; generator means for applying selected encryption key signals to the encryption means; record means for producing indication of selected file locations and key code signals associated with encryption of file data stored therein; circuit means responsive to identific a selected file address location for determining from said record means the encryption key signal associated therewith for the generator means to supply the associated encryption key signal; decryption means disposed to receive encryption key from the generator means and encrypted file data from the storage means and operable in accordance with said logical er combination to decrypt the file data at said selected file address location; and means operable upon the decrypted file data altering the generator means to supply a new encryption key signal for restoring the file data at the selected file address location with a new encryption key signal, said means altering the record means to produce an indication of the encryption key signal associated with file data in the selected file address location.
- 8. Apparatus as in claim 7 wherein said circuit means is responsive to the indication in said record means that a selected address location was not previously accessed for setting said generator means to supply the initial encryption key signal decryption means.
- 9. Apparatus according to claim 7 comprising: access record means for storing data representative of the authorization of to selectively access file data in said storage means; and means disposed to receive identification data from a user, and co to said circuit means for inhibiting the generator means from supplying an encryption key signal to said decryption mear unauthorized, identified user.
- 10. Apparatus as in claim 9 comprising means responsive to re-storing of file data at the selected file address location ne encrypted with a new encryption key signal for altering the identified user's authorization in said access record means to said selected file address location.
- 11. Apparatus as in claim 7 comprising initializing means coupled to said generator means, said encryption means and decryption means and to said record means for setting the generator means to selectively decrypt file data in each file ad location using the encryption key signals from said generator means established from the record means for each such file address location, and for re-encrypting the decrypted file data for each file address location using a new initial encryption signal for re-storage at the respective file address location.
- 12. Apparatus as in claim 11 wherein said initializing means responds to indication from said record means of no previor access to a selected file address location for decrypting file data therein in using an initial encryption key signal and for a encrypting the decrypted file data using a new initial encryption key signal to re-store the newly encrypted file data at the respective file address location.
- 13. A file access record produced by the process comprising the steps of: storing at selected file address locations file date encrypted as the logical combination of file data and selected ones of a plurality of encryption key signals; decrypting fil a selected file address location using the encryption key signal associated therewith in accordance with said logical combined re-encrypting the decrypted file data as a logical combination thereof and a new encryption key signal for restoring at the corresponding file address location; and producing said file access record as the compilation at least of the number of tin selected file address location was decrypted and information indicative of the encryption key signals with which the file each selected file address location was re-encrypted and re-stored therein.

Data supplied from the esp@cenet database - Worldwide

REST AVAILABLE COPY