Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models

Jean-Jacques Forneron, Boston University October 2022

• GMM estimation is an important part of the empirical toolkit:

$$\text{find } \hat{\theta}_n \text{ s.t. } \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself... In finite samples, the objective function can be:

$$\text{find } \hat{\theta}_n \text{ s.t. } \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself... In finite samples, the objective function can be:
 - noisy: sampling uncertainty

$$\text{find } \hat{\theta}_n \text{ s.t. } \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...
 In finite samples, the objective function can be:
 - noisy: sampling uncertainty
 - 2 non-smooth: simulated method of moments, robust estimation, ...

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...
 In finite samples, the objective function can be:
 - 1 noisy: sampling uncertainty
 - 2 non-smooth: simulated method of moments, robust estimation, ...
 - non-convex: common in structural work

GMM estimation is an important part of the empirical toolkit:

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...

In finite samples, the objective function can be:

- noisy: sampling uncertainty
- 2 non-smooth: simulated method of moments, robust estimation, ...
- 3 non-convex: common in structural work
- This paper:

smoothed Gauss-Newton (sgn) method for non-smooth GMM

GMM estimation is an important part of the empirical toolkit:

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...
 In finite samples, the objective function can be:
 - 1 noisy: sampling uncertainty
 - 2 non-smooth: simulated method of moments, robust estimation, ...
 - 3 non-convex: common in structural work
- This paper:

smoothed Gauss-Newton (sgn) method for non-smooth GMM

non-asymptotic analysis: optimization and statistical properties

• GMM estimation is an important part of the empirical toolkit:

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself...

In finite samples, the objective function can be:

- noisy: sampling uncertainty
- 2 non-smooth: simulated method of moments, robust estimation, ...
- 3 non-convex: common in structural work
- This paper:

smoothed Gauss-Newton (sgn) method for non-smooth GMM

- non-asymptotic analysis: optimization and statistical properties
- local/global convergence using only econometric assumptions

GMM estimation is an important part of the empirical toolkit:

$$\text{find } \widehat{\theta}_n \text{ s.t. } \|\overline{g}_n(\widehat{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\overline{g}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

- asymptotics well understood (e.g. Newey and McFadden, 1994)
- The challenge is the estimation itself. . .

In finite samples, the objective function can be:

- noisy: sampling uncertainty
- 2 non-smooth: simulated method of moments, robust estimation, ...
- non-convex: common in structural work
- This paper:

smoothed Gauss-Newton (sgn) method for non-smooth GMM

- non-asymptotic analysis: optimization and statistical properties
- local/global convergence using only econometric assumptions
- after a finite number of iterations, converges exponentially fast

• **Optimization:** we want after $b \ge 1$ iterations:

$$\|\theta_b - \hat{\theta}_n\| \le \text{err},$$

How large does b have to be? Depends on the objective function:

• **Optimization:** we want after $b \ge 1$ iterations:

$$\|\theta_b - \hat{\theta}_n\| \le \text{err},$$

How large does b have to be? Depends on the objective function:

Smooth + Strongly Convex: b = O(|log(err)|) using gradient-descent, (quasi)-Newton, etc.

• **Optimization:** we want after $b \ge 1$ iterations:

$$\|\theta_b - \hat{\theta}_n\| \le \text{err},$$

How large does *b* have to be? Depends on the objective function:

- Smooth + Strongly Convex: b = O(|log(err)|) using gradient-descent, (quasi)-Newton, etc.
- Smooth + Non Convex: $b = O(err^{-d/s})$ $s = \text{smoothness}, d = \dim(\theta)$: curse of dimensionality

• **Optimization:** we want after $b \ge 1$ iterations:

$$\|\theta_b - \hat{\theta}_n\| \le \text{err},$$

How large does *b* have to be? Depends on the objective function:

- Smooth + Strongly Convex: b = O(|log(err)|) using gradient-descent, (quasi)-Newton, etc.
- Smooth + Non Convex: $b = O(err^{-d/s})$ $s = \text{smoothness}, d = \dim(\theta)$: curse of dimensionality
- Global optimizers:
 - heuristic (no guarantees), e.g. genetic algorithms
 - ② or slow, e.g. simulated annealing $b = O(\exp[err^{-2}])$, grid search

• **Optimization:** we want after $b \ge 1$ iterations:

$$\|\theta_b - \hat{\theta}_n\| \le \text{err},$$

How large does *b* have to be? Depends on the objective function:

- Smooth + Strongly Convex: b = O(|log(err)|) using gradient-descent, (quasi)-Newton, etc.
- Smooth + Non Convex: $b = O(err^{-d/s})$ $s = \text{smoothness}, d = \dim(\theta)$: curse of dimensionality
- Global optimizers:
 - heuristic (no guarantees), e.g. genetic algorithms
 - ② or slow, e.g. simulated annealing $b = O(\exp[err^{-2}])$, grid search
- Smoothing the objective:

(e.g. McFadden, 1989; Nesterov and Spokoiny, 2017; Bruins et al., 2018)

- helps with local optimization
- introduces estimation bias, requires undersmoothing

- Two-step approach: (Robinson, 1988; Andrews, 1997)
 - find consistent estimate $\tilde{\theta}_n$,
 - $oldsymbol{2}$ one Newton-Raphson iteration from $\widetilde{ heta}_n$

Problem: $\tilde{\theta}_n$ is difficult to compute

- Two-step approach: (Robinson, 1988; Andrews, 1997)
 - find consistent estimate $\tilde{\theta}_n$,
 - extstyle ext

Problem: $\tilde{\theta}_n$ is difficult to compute

- quasi-Bayesian: (Chernozhukov and Hong, 2003) use MCMC to
 - **1** compute posterior mean $\overline{\theta}_n = \hat{\theta}_n + o_p(n^{-1/2})$
 - compute SEs, Cls

rate of cv. for MCMC mostly requires log-concave posteriors (Mengersen and Tweedie, 1996; Brooks, 1998; Belloni and Chernozhukov, 2009)

Overview of the Problem

- This paper Econometric assumptions imply:
 - **1** Local convexity (local identification, $n = \infty$)
 - **2** Separation of the global minimum (global identification, $n = \infty$)
 - **3** Concentration of the sample moments (uniform cv., $n < \infty$)

Overview of the Problem

- This paper Econometric assumptions imply:
 - **1** Local convexity (local identification, $n = \infty$)
 - **2** Separation of the global minimum (global identification, $n = \infty$)
 - **3** Concentration of the sample moments (uniform cv., $n < \infty$)
- The plan:
 - Algorithm, Intuition, Illustration
 - ② Local/global cv. with $n = \infty$
 - **3** Local cv. with $n < \infty$, extensions
 - Empirical Application

The Algorithm

● Inputs (a) a learning rate $\gamma \in (0,1)$, (b) a smoothing parameter $\varepsilon > 0$, (c) a weighting matrix W_n , and (d) a sequence $(\theta^b)_{b\geq 0}$ covering the parameter space Θ

- **Inputs** (a) a learning rate $\gamma \in (0,1)$, (b) a smoothing parameter $\varepsilon > 0$, (c) a weighting matrix W_n , and (d) a sequence $(\theta^b)_{b\geq 0}$ covering the parameter space Θ
- 2 Iterations:

set b = 0, $\theta_0 = \theta^0$, repeat:

- Local step:

$$\theta_{b+1} = \theta_b - \gamma \Big[G_{n,\varepsilon}(\theta_b)' W_n G_{n,\varepsilon}(\theta_b) \Big]^{-1} G_{n,\varepsilon}(\theta_b)' W_n \overline{g}_n(\theta_b)$$

- **Inputs** (a) a learning rate $\gamma \in (0,1)$, (b) a smoothing parameter $\varepsilon > 0$, (c) a weighting matrix W_n , and (d) a sequence $(\theta^b)_{b\geq 0}$ covering the parameter space Θ
- Iterations:

set
$$b = 0$$
, $\theta_0 = \theta^0$, repeat:

- Local step:

$$\theta_{b+1} = \theta_b - \gamma \Big[G_{n,\varepsilon}(\theta_b)' W_n G_{n,\varepsilon}(\theta_b) \Big]^{-1} G_{n,\varepsilon}(\theta_b)' W_n \overline{g}_n(\theta_b)$$

- Global step:

if
$$\|\overline{\mathbf{g}}_n(\theta^{b+1})\|_{W_n} < \|\overline{\mathbf{g}}_n(\theta_{b+1})\|_{W_n}$$
, set $\theta_{b+1} = \theta^{b+1}$

- **Inputs** (a) a learning rate $\gamma \in (0,1)$, (b) a smoothing parameter $\varepsilon > 0$, (c) a weighting matrix W_n , and (d) a sequence $(\theta^b)_{b\geq 0}$ covering the parameter space Θ
- Iterations:

set
$$b = 0$$
, $\theta_0 = \theta^0$, repeat:

- Local step:

$$\theta_{b+1} = \theta_b - \gamma \Big[G_{n,\varepsilon}(\theta_b)' W_n G_{n,\varepsilon}(\theta_b) \Big]^{-1} G_{n,\varepsilon}(\theta_b)' W_n \overline{g}_n(\theta_b)$$

- Global step:

if
$$\|\overline{g}_{n}(\theta^{b+1})\|_{W_{n}} < \|\overline{g}_{n}(\theta_{b+1})\|_{W_{n}}$$
, set $\theta_{b+1} = \theta^{b+1}$

- Increment b := b + 1, until a stopping critera is met

- **Inputs** (a) a learning rate $\gamma \in (0,1)$, (b) a smoothing parameter $\varepsilon > 0$, (c) a weighting matrix W_n , and (d) a sequence $(\theta^b)_{b\geq 0}$ covering the parameter space Θ
- Iterations:

set
$$b = 0$$
, $\theta_0 = \theta^0$, repeat:

- Local step:

$$\theta_{b+1} = \theta_b - \gamma \Big[G_{n,\varepsilon}(\theta_b)' W_n G_{n,\varepsilon}(\theta_b) \Big]^{-1} G_{n,\varepsilon}(\theta_b)' W_n \overline{g}_n(\theta_b)$$

- Global step:

if
$$\|\overline{g}_{n}(\theta^{b+1})\|_{W_{n}} < \|\overline{g}_{n}(\theta_{b+1})\|_{W_{n}}$$
, set $\theta_{b+1} = \theta^{b+1}$

- Increment b := b + 1, until a stopping critera is met
- Output

$$\widetilde{\theta}_n = \operatorname{argmin}_{0 \leq j \leq b_{\max}} \| \overline{\overline{g}}_n(\theta_j) \|_{W_n}$$

Algorithm, continued

• Jacobian computed by convolution smoothing:

$$\overline{g}_{n,\varepsilon}(\theta) = \mathbb{E}_{\sim Z}[\overline{g}_n(\theta + \varepsilon Z)], \quad G_{n,\varepsilon}(\theta) = \partial_{\theta}\overline{g}_{n,\varepsilon}(\theta), \quad Z \sim \mathcal{N}(0,I)$$

Unbiased Monte Carlo estimate:

$$\hat{G}_{n,\varepsilon}(\theta) = \frac{1}{\varepsilon L} \sum_{\ell=0}^{L-1} [\overline{g}_n(\theta + \varepsilon Z_\ell) - \overline{g}_n(\theta)] Z'_\ell,$$

In the paper: quasi-Newton Monte Carlo approach

Algorithm, continued

• Jacobian computed by convolution smoothing:

$$\overline{g}_{n,\varepsilon}(\theta) = \mathbb{E}_{\sim Z}[\overline{g}_n(\theta + \varepsilon Z)], \quad G_{n,\varepsilon}(\theta) = \partial_{\theta}\overline{g}_{n,\varepsilon}(\theta), \quad Z \sim \mathcal{N}(0,I)$$

Unbiased Monte Carlo estimate:

$$\hat{G}_{n,\varepsilon}(\theta) = \frac{1}{\varepsilon L} \sum_{\ell=0}^{L-1} [\overline{g}_n(\theta + \varepsilon Z_\ell) - \overline{g}_n(\theta)] Z'_\ell,$$

In the paper: quasi-Newton Monte Carlo approach

- Smoothing only Jacobian implies:
 - ullet if $\overline{g}_n(\hat{ heta}_n)=0$ then $heta_b=\hat{ heta}_n\Rightarrow heta_{b+j}=\hat{ heta}_n,\, orall j\geq 0$ (no bias)
 - ullet allows for 'large bandwidth' $arepsilon = \mathcal{O}(n^{-1/4})$, optimal for optimization

Intuition: moments \overline{g}_n vs. objective Q_n

Stylized example: optimizers evaluate Q (left), Gauss-Newton relies on moments (middle/right), global step relies on Q (left)

Illustration: Dynamic Discrete Choice model (d = 15 pars)

DGP: $y_{it} = \mathbb{1}\{x'_{it}\beta + u_{it} > 0\}$, $u_{it} = \rho u_{it-1} + e_{it}$, $e_{it} \sim \mathcal{N}(0,1)$, $\theta = (\beta, \rho)$, n = 250, T = 10. DGP and benchmark based on Bruins et al. (2018). BFGS = smoothed moments (generalized indirect inference)

Properties of the Algorithm

Gauss-Newton (GN) iterations:

$$\theta_{b+1} = \theta_b - \gamma \left[G(\theta_b)' W G(\theta_b) \right]^{-1} G(\theta_b)' W g(\theta_b)$$

- Take θ^{\dagger} s.t. $g(\theta^{\dagger}) = 0$.
- Suppose G is Lipschitz continuous, and

$$\|\theta - \theta^{\dagger}\| \le R_{\mathcal{G}} \Rightarrow \sigma_{\min}[\mathcal{G}(\theta)] \ge \underline{\sigma} > 0.$$

• Then for any $\gamma \in (0,1)$, $\overline{\gamma} \in (0,\gamma)$ and

$$\|\theta_0 - \theta^{\dagger}\| \leq \min(R_G, \underline{\sigma}[\gamma - \overline{\gamma}][\gamma L_G \sqrt{\kappa_W}]^{-1}) := R$$

we have:

$$\|\theta_b - \theta^{\dagger}\| \le (1 - \overline{\gamma})^b \|\theta_0 - \theta^{\dagger}\|, \quad \forall b \ge 1$$

• Local convergence implied by local identification and smoothness

• Quick proof:

$$egin{aligned} heta_{b+1} - heta^\dagger &= (1 - \gamma)(heta_b - heta^\dagger) \ &- \gamma \left[G(heta_b)'WG(heta_b)
ight]^{-1} G(heta_b)'W[g(heta_b) - g(heta^\dagger) - G(heta_b)(heta_b - heta^\dagger)] \end{aligned}$$
 since $g(heta^\dagger) = 0$.

• Quick proof:

$$\begin{split} \theta_{b+1} - \theta^\dagger &= (1 - \gamma)(\theta_b - \theta^\dagger) \\ &- \gamma \left[G(\theta_b)'WG(\theta_b) \right]^{-1} G(\theta_b)'W[g(\theta_b) - g(\theta^\dagger) - G(\theta_b)(\theta_b - \theta^\dagger)] \\ \text{since } g(\theta^\dagger) &= 0. \end{split}$$

• Now, if $\|\theta_b - \theta^{\dagger}\| < R_G$

$$\| \left[G(\theta_b)'WG(\theta_b) \right]^{-1} G(\theta_b)'W \| \leq \underline{\sigma}^{-1} \sqrt{\kappa_W}$$

and
$$\|g(\theta_b) - g(\theta^\dagger) - G(\theta_b)(\theta_b - \theta^\dagger)\| \le L_G \|\theta_b - \theta^\dagger\|^2$$

• Quick proof:

$$\begin{aligned} \theta_{b+1} - \theta^{\dagger} &= (1 - \gamma)(\theta_b - \theta^{\dagger}) \\ &- \gamma \left[G(\theta_b)' W G(\theta_b) \right]^{-1} G(\theta_b)' W [g(\theta_b) - g(\theta^{\dagger}) - G(\theta_b)(\theta_b - \theta^{\dagger})] \\ \text{since } g(\theta^{\dagger}) &= 0. \end{aligned}$$

• Now, if $\|\theta_b - \theta^{\dagger}\| \leq R_G$

$$\| \left[G(\theta_b)' W G(\theta_b) \right]^{-1} G(\theta_b)' W \| \leq \underline{\sigma}^{-1} \sqrt{\kappa_W}$$

and
$$\|g(\theta_b) - g(\theta^{\dagger}) - G(\theta_b)(\theta_b - \theta^{\dagger})\| \le L_G \|\theta_b - \theta^{\dagger}\|^2$$

• By recursion for $\|\theta_0 - \theta^{\dagger}\| \leq R$:

$$\begin{aligned} \|\theta_1 - \theta^{\dagger}\| &\leq (1 - \overline{\gamma}) \|\theta_0 - \theta^{\dagger}\| \leq R \\ &\vdots \\ \|\theta_{b+1} - \theta^{\dagger}\| &\leq (1 - \overline{\gamma}) \|\theta_b - \theta^{\dagger}\| \leq R \end{aligned}$$

Local \rightarrow **Global Convergence**, $n = \infty$

- So far: local convergence, need $\|\theta_0 \theta^{\dagger}\| \leq R$
- Global convergence not guaranteed otherwise
- Add Global Step:

$$\theta_{b+1} = \theta_b - \gamma \left[G(\theta_b)' W G(\theta_b) \right]^{-1} G(\theta_b)' W g(\theta_b)$$
if $\|g(\theta^{b+1})\|_W < \|g(\theta_{b+1})\|_W$ set $\theta_{b+1} = \theta^{b+1}$

• Three ingredients, rely on a different norm $\|\cdot\|_{G'WG}$:

$$\|g(\theta_{b+1})\|_W \leq (1-\overline{\gamma})\|g(\theta_b)\|_W$$

- Three ingredients, rely on a different norm $\|\cdot\|_{G'WG}$:
 - $\exists \overline{r}_g > 0 \text{ s.t. for } \|\theta_b \theta^{\dagger}\|_{G'WG} \leq \overline{r}_g, \ G = G(\theta^{\dagger})$ $\|g(\theta_{b+1})\|_W \leq (1 \overline{\gamma})\|g(\theta_b)\|_W$
 - **and for any** $\|\theta \theta^{\dagger}\|_{G'WG} \leq \overline{r}_g$:

$$(1 - \overline{\gamma}/2)\|\theta - \theta^{\dagger}\|_{G'WG} \le \|g(\theta)\|_{W} \le (1 + \overline{\gamma}/2)\|\theta - \theta^{\dagger}\|_{G'WG}$$

- Three ingredients, rely on a different norm $\|\cdot\|_{G'WG}$:
 - $lack {f 0} \ \exists \overline{r}_{g} > 0 \ {
 m s.t.} \ {
 m for} \ \| heta_{b} heta^{\dagger}\|_{G'WG} \leq \overline{r}_{g}, \ G = G(heta^{\dagger})$

$$\|g(\theta_{b+1})\|_{W} \leq (1-\overline{\gamma})\|g(\theta_{b})\|_{W}$$

 $oldsymbol{2}$ and for any $\|\theta-\theta^{\dagger}\|_{G'WG}\leq \overline{r}_g$:

$$(1-\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG} \leq \|g(\theta)\|_{W} \leq (1+\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG}$$

3 under global identification, $\exists \underline{r}_g \in (0, \overline{r}_g)$:

$$\inf_{\|\theta-\theta^{\dagger}\|_{G'WG} \geq \overline{r}_g} \|g(\theta)\|_W \geq (1+\overline{\gamma}/2)(1-\overline{\gamma})\underline{r_g}$$

- Three ingredients, rely on a different norm $\|\cdot\|_{G'WG}$:
 - $\blacksquare \exists \overline{r}_g > 0 \text{ s.t. for } \|\theta_b \theta^{\dagger}\|_{G'WG} \leq \overline{r}_g, \ G = G(\theta^{\dagger})$

$$\|g(\theta_{b+1})\|_W \leq (1-\overline{\gamma})\|g(\theta_b)\|_W$$

$$(1-\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG} \leq \|g(\theta)\|_{W} \leq (1+\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG}$$

3 under global identification, $\exists \underline{r}_g \in (0, \overline{r}_g)$:

$$\inf_{\|\theta-\theta^{\dagger}\|_{G'WG}\geq \overline{r}_{g}}\|g(\theta)\|_{W}\geq (1+\overline{\gamma}/2)(1-\overline{\gamma})\underline{r_{g}}$$

- Combine to get global convergence:
 - Take b=k+j, with k s.t. $\sup_{\theta\in\Theta}\left(\inf_{0\leq\ell\leq k}\|\theta-\theta^\ell\|_{G'WG}\right)\leq\underline{r}_g$,
 - then for any $j \ge 0$:

$$\| heta_b - heta^{\dagger}\|_{\mathcal{G}'WG} \leq (1 + \overline{\gamma}/2)(1 - \overline{\gamma})^{j}\underline{r}_{g}$$

- Three ingredients, rely on a different norm $\|\cdot\|_{G'WG}$:
 - $lackbox{1}{\ }\exists \overline{r}_{g}>0 \ \text{s.t. for} \ \| heta_{b}- heta^{\dagger}\|_{G'WG}\leq \overline{r}_{g}, \ G=G(heta^{\dagger})$

$$\|g(\theta_{b+1})\|_W \leq (1-\overline{\gamma})\|g(\theta_b)\|_W$$

2 and for any $\|\theta - \theta^{\dagger}\|_{G'WG} \leq \overline{r}_g$:

$$(1-\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG} \leq \|g(\theta)\|_{W} \leq (1+\overline{\gamma}/2)\|\theta-\theta^{\dagger}\|_{G'WG}$$

3 under global identification, $\exists \underline{r}_g \in (0, \overline{r}_g)$:

$$\inf_{\|\theta-\theta^{\dagger}\|_{G'WG}\geq \overline{r}_{g}}\|g(\theta)\|_{W}\geq (1+\overline{\gamma}/2)(1-\overline{\gamma})\underline{r_{g}}$$

- Combine to get global convergence:
 - Take b = k + j, with k s.t. $\sup_{\theta \in \Theta} \left(\inf_{0 \le \ell \le k} \|\theta \theta^{\ell}\|_{G'WG} \right) \le \underline{r}_{\sigma}$,
 - then for any $j \ge 0$:

$$\| heta_b - heta^{\dagger}\|_{\mathcal{G}'WG} \leq (1 + \overline{\gamma}/2)(1 - \overline{\gamma})^{j}\underline{r}_{g}$$

• Fast convergence after *k* iterations

Choice of covering sequence $(\theta^{\ell})_{\ell \geq 0}$

- For simplicity suppose $\Theta = [0, 1]^d$.
- Take r > 0, we want

$$D_k = \sup_{\theta \in \Theta} [\inf_{0 \le \ell \le k-1} \|\theta - \theta^{\ell}\|] \le r$$

• Covering number arguments give a lower bound:

$$k \ge r^{-d} \frac{\operatorname{vol}(\Theta)}{\operatorname{vol}(\mathcal{B})}, \quad \mathcal{B} = \text{ unit ball},$$

i.e.
$$D_k = O(k^{-1/d})$$

Choice of covering sequence $(\theta^{\ell})_{\ell \geq 0}$

- For simplicity suppose $\Theta = [0,1]^d$.
- Take r > 0, we want

$$D_k = \sup_{\theta \in \Theta} [\inf_{0 \le \ell \le k-1} \|\theta - \theta^{\ell}\|] \le r$$

Covering number arguments give a lower bound:

$$k \ge r^{-d} \frac{\operatorname{vol}(\Theta)}{\operatorname{vol}(\mathcal{B})}, \quad \mathcal{B} = \text{ unit ball},$$

i.e.
$$D_k = O(k^{-1/d})$$

• Niederreiter (1983, Th3) implies for Sobol/Halton sequence:

$$D_k \le O(\sqrt{d}\log[k]k^{-1/d}),$$

close in rate, up to logs

Choice of covering sequence $(\theta^{\ell})_{\ell \geq 0}$

- For simplicity suppose $\Theta = [0,1]^d$.
- Take r > 0, we want

$$D_k = \sup_{\theta \in \Theta} [\inf_{0 \le \ell \le k-1} \|\theta - \theta^{\ell}\|] \le r$$

• Covering number arguments give a lower bound:

$$k \ge r^{-d} \frac{\operatorname{vol}(\Theta)}{\operatorname{vol}(\mathcal{B})}, \quad \mathcal{B} = \text{ unit ball},$$

i.e.
$$D_k = O(k^{-1/d})$$

• Niederreiter (1983, Th3) implies for Sobol/Halton sequence:

$$D_k \le O(\sqrt{d}\log[k]k^{-1/d}),$$

close in rate, up to logs

• Compare with $\theta^{\ell} \stackrel{iid}{\sim} \mathcal{U}_{\Theta}$:

$$D_k = O_p(k^{-1/2d})$$

ullet Curse of dimensionality only appears through k

- \bullet Curse of dimensionality only appears through k
- Can we do better, without convexity?

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \ge \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions:

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \ge \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent?

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \ge \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? **Yes.**

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \geq \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? **Yes.** For over-identified models?

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \geq \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? **Yes**. For over-identified models? **Yes**.

- \bullet Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose σ_{min}[G_n(θ)] ≥ σ > 0, ∀θ ∈ Θ. Questions:
 Can GN alone be globally convergent? Yes. For over-identified models? Yes. Allowing for misspecification?

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose σ_{min}[G_n(θ)] ≥ σ > 0, ∀θ ∈ Θ. Questions:
 Can GN alone be globally convergent? Yes. For over-identified models? Yes. Allowing for misspecification? Yes.*

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \geq \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? **Yes.** For over-identified models? **Yes.** Allowing for misspecification? **Yes.*** (Zhong and Forneron, 2022)

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \geq \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? Yes. For over-identified models? Yes. Allowing for misspecification? Yes.* (Zhong and Forneron, 2022)
 - Convexity not required
 - Rank condition excludes local optima (JI), not always satisfied
 - Restrictions on tuning parameter $\boldsymbol{\gamma}$

- Curse of dimensionality only appears through k
- Can we do better, without convexity?
- Finite n: now, suppose $\sigma_{\min}[G_n(\theta)] \geq \underline{\sigma} > 0$, $\forall \theta \in \Theta$. Questions: Can GN alone be globally convergent? Yes. For over-identified models? Yes. Allowing for misspecification? Yes.* (Zhong and Forneron, 2022)
 - Convexity not required
 - Rank condition excludes local optima (JI), not always satisfied
 - Restrictions on tuning parameter $\boldsymbol{\gamma}$

Finite Samples

• Allow for discontinuous moments, assume:

$$[\mathbb{E}(\sup_{\|\theta_1 - \theta_2\| \le \delta} \|g(\theta_1; x_i) - g(\theta_2; x_i)\|^2)]^{1/2} \le L_g \delta^{\psi}, \quad \psi \in (0, 1]$$

and x_i are iid \Rightarrow probability bounds for sample/smoothed moments

• Allow for discontinuous moments, assume:

$$\left[\mathbb{E}(\sup_{\|\theta_{1}-\theta_{2}\|<\delta}\|g(\theta_{1};x_{i})-g(\theta_{2};x_{i})\|^{2})\right]^{1/2}\leq L_{g}\delta^{\psi},\quad \psi\in(0,1]$$

and x_i are iid \Rightarrow probability bounds for sample/smoothed moments

ullet e.g. for any $c_n \geq 1$

$$\begin{split} \|[\overline{g}_n(\theta_1) - g(\theta_1)] - [\overline{g}_n(\theta_2) - g(\theta_2)]\| &\leq c_n n^{-1/2} C_{\Theta} L_g \|\theta_1 - \theta_2\|^{\psi}, \\ \|[G_{n,\varepsilon}(\theta_1) - G_{\varepsilon}(\theta_1)] - [G_{n,\varepsilon}(\theta_2) - G_{\varepsilon}(\theta_2)]\| &\leq c_n \varepsilon^{-1} n^{-1/2} C_{\Theta} M_Z L_g \|\theta_1 - \theta_2\|^{\psi}, \\ \text{unif. in } \theta_1, \theta_2, \text{ and } \varepsilon > 0 \text{ with prob. } 1 - C/c_n \end{split}$$

• Allow for discontinuous moments, assume:

$$\left[\mathbb{E}(\sup_{\|\theta_{1}-\theta_{2}\|<\delta}\|g(\theta_{1};x_{i})-g(\theta_{2};x_{i})\|^{2})\right]^{1/2}\leq L_{g}\delta^{\psi},\quad \psi\in(0,1]$$

and x_i are iid \Rightarrow probability bounds for sample/smoothed moments

ullet e.g. for any $c_n \geq 1$

$$\begin{split} \|[\overline{g}_n(\theta_1) - g(\theta_1)] - [\overline{g}_n(\theta_2) - g(\theta_2)]\| &\leq c_n n^{-1/2} C_{\Theta} L_g \|\theta_1 - \theta_2\|^{\psi}, \\ \|[G_{n,\varepsilon}(\theta_1) - G_{\varepsilon}(\theta_1)] - [G_{n,\varepsilon}(\theta_2) - G_{\varepsilon}(\theta_2)]\| &\leq c_n \varepsilon^{-1} n^{-1/2} C_{\Theta} M_Z L_g \|\theta_1 - \theta_2\|^{\psi}, \\ \text{unif. in } \theta_1, \theta_2, \text{ and } \varepsilon > 0 \text{ with prob. } 1 - C/c_n \end{split}$$

• use these bounds in the local cv. proof

Let

$$\hat{\theta}_n=\theta^\dagger-(G'W_nG)^{-1}G'W_n\overline{g}_n(\theta^\dagger),$$
 where $G=G(\theta^\dagger)$

Let

$$\hat{\theta}_n = \theta^\dagger - (G'W_nG)^{-1}G'W_n\overline{g}_n(\theta^\dagger),$$
 where $G = G(\theta^\dagger)$

• Take $G_b = G_{n,\varepsilon}(\theta_b)$ and re-arrange terms to get:

$$\theta_{b+1} - \hat{\theta}_n = (1 - \gamma)(\theta_b - \hat{\theta}_n)$$
$$- \gamma (G_b' W_n G_n)^{-1} W_n G_b' [\overline{g}_n(\theta_b) - G_b(\theta_b - \hat{\theta}_n)]$$

Let

$$\hat{\theta}_n = \theta^\dagger - (G'W_nG)^{-1}G'W_n\overline{g}_n(\theta^\dagger),$$
 where $G = G(\theta^\dagger)$

• Take $G_b = G_{n,\varepsilon}(\theta_b)$ and re-arrange terms to get:

$$\theta_{b+1} - \hat{\theta}_n = (1 - \gamma)(\theta_b - \hat{\theta}_n) - \gamma (G_b' W_n G_n)^{-1} W_n G_b' [\overline{g}_n(\theta_b) - G_b(\theta_b - \hat{\theta}_n)]$$

• Then focus on $\overline{g}_n(\theta_b) - G_{n,\varepsilon}(\theta_b)(\theta_b - \hat{\theta}_n)$ using the unif. bounds

Let

$$\hat{\theta}_n = \theta^{\dagger} - (G'W_nG)^{-1}G'W_n\overline{g}_n(\theta^{\dagger}),$$

where $G = G(\theta^{\dagger})$

• Take $G_b = G_{n,\varepsilon}(\theta_b)$ and re-arrange terms to get:

$$\theta_{b+1} - \hat{\theta}_n = (1 - \gamma)(\theta_b - \hat{\theta}_n) - \gamma (G_b' W_n G_n)^{-1} W_n G_b' [\overline{g}_n(\theta_b) - G_b(\theta_b - \hat{\theta}_n)]$$

- Then focus on $\overline{g}_n(\theta_b) G_{n,\varepsilon}(\theta_b)(\theta_b \hat{\theta}_n)$ using the unif. bounds
- Key term:

$$\|G_{n,\varepsilon}(\hat{\theta}_n)'W_n\overline{g}_n(\hat{\theta}_n)\| \leq C_1(c_nn^{-1/2})^{1+\psi}\left(1+\frac{c_nn^{-1/2}}{\varepsilon}+\frac{\varepsilon}{(c_nn^{-1/2})^{\psi}}\right)$$
$$:=\Gamma_{n,\varepsilon}$$

mesures stability of Gauss-Newton at $\theta = \hat{\theta}_n$

• Pick $c_n \ge 1$. Uniformly in $\|\theta_b - \hat{\theta}_n\| \le R_n = R - O(\varepsilon + c_n n^{-1/2} \varepsilon^{-1})$:

$$\|\theta_{b+1} - \hat{\theta}_n\| \leq (1 - \overline{\gamma})\|\theta_b - \hat{\theta}_n\| + \gamma \Delta_{n,\epsilon}(\|\theta_b - \hat{\theta}_n\|),$$

with probability $1-(1+C)/c_n$,

• Pick $c_n \ge 1$. Uniformly in $\|\theta_b - \hat{\theta}_n\| \le R_n = R - O(\varepsilon + c_n n^{-1/2} \varepsilon^{-1})$:

$$\|\theta_{b+1} - \hat{\theta}_n\| \leq (1 - \overline{\gamma})\|\theta_b - \hat{\theta}_n\| + \gamma \Delta_{n,\varepsilon}(\|\theta_b - \hat{\theta}_n\|),$$

with probability $1 - (1 + C)/c_n$,

• where:

$$\Delta_{n,\varepsilon}(x) = \frac{C_2}{\underline{\sigma}_{n,\varepsilon}} \left(\Gamma_{n,\varepsilon} + \frac{[c_n n^{-1/2}]^2}{\varepsilon} x^{\psi} + \frac{c_n n^{-1/2}}{\varepsilon} x \right)$$

with
$$\sqrt{n}\Gamma_{n,\varepsilon}=o(1)$$
 if $\varepsilon=o(1)$, $\sqrt{n}\varepsilon\to\infty$

• Pick $c_n \ge 1$. Uniformly in $\|\theta_b - \hat{\theta}_n\| \le R_n = R - O(\varepsilon + c_n n^{-1/2} \varepsilon^{-1})$:

$$\|\theta_{b+1} - \hat{\theta}_n\| \leq (1 - \overline{\gamma})\|\theta_b - \hat{\theta}_n\| + \gamma \Delta_{n,\varepsilon}(\|\theta_b - \hat{\theta}_n\|),$$

with probability $1 - (1 + C)/c_n$,

• where:

$$\Delta_{n,\varepsilon}(x) = \frac{C_2}{\underline{\sigma}_{n,\varepsilon}} \left(\Gamma_{n,\varepsilon} + \frac{[c_n n^{-1/2}]^2}{\varepsilon} x^{\psi} + \frac{c_n n^{-1/2}}{\varepsilon} x \right)$$

with
$$\sqrt{n}\Gamma_{n,\varepsilon}=o(1)$$
 if $\varepsilon=o(1),\,\sqrt{n}\varepsilon\to\infty$

• For any $\tau \in (0,1)$, *n* large enough, ε small enough:

$$\|\theta_b - \hat{\theta}_n\| \leq (1 - \overline{\gamma} + \tau \overline{\gamma})^b \|\theta_0 - \hat{\theta}_n\| + \frac{\gamma}{\overline{\gamma}(1 - \tau)} R_n,$$

• Pick $c_n \ge 1$. Uniformly in $\|\theta_b - \hat{\theta}_n\| \le R_n = R - O(\varepsilon + c_n n^{-1/2} \varepsilon^{-1})$:

$$\|\theta_{b+1} - \hat{\theta}_n\| \leq (1 - \overline{\gamma}) \|\theta_b - \hat{\theta}_n\| + \gamma \Delta_{n,\varepsilon} (\|\theta_b - \hat{\theta}_n\|),$$

with probability $1 - (1 + C)/c_n$,

• where:

$$\Delta_{n,\varepsilon}(x) = \frac{C_2}{\underline{\sigma}_{n,\varepsilon}} \left(\Gamma_{n,\varepsilon} + \frac{[c_n n^{-1/2}]^2}{\varepsilon} x^{\psi} + \frac{c_n n^{-1/2}}{\varepsilon} x \right)$$

with
$$\sqrt{n}\Gamma_{n,\varepsilon}=o(1)$$
 if $\varepsilon=o(1)$, $\sqrt{n}\varepsilon\to\infty$

• For any $\tau \in (0,1)$, n large enough, ε small enough:

$$\|\theta_b - \hat{\theta}_n\| \le (1 - \overline{\gamma} + \tau \overline{\gamma})^b \|\theta_0 - \hat{\theta}_n\| + \frac{\gamma}{\overline{\gamma}(1 - \tau)} R_n,$$

• with probability $1 - (1 + C)/c_n$, where $R_n = O(\Gamma_{n,\varepsilon})$, and then: $\sqrt{n}(\theta_b - \hat{\theta}_n) = O_p(\sqrt{n}\Gamma_{n,\varepsilon}) = o_p(1)$ if $b = O(\log[n])$

- Global convergence similar to $n = \infty$, main differences:
 - norm equivalence now involves $\|\overline{g}_n(\theta) \overline{g}_n(\hat{\theta}_n)\|_{W_n}$
 - need n large enough for tight enough equivalence
- ullet Global rate of cv. slightly slower than $n=\infty$

ullet Optimal choice of bandwidth: $arepsilon symp \sqrt{c_n} n^{-1/4}$

- Optimal choice of bandwidth: $\varepsilon \asymp \sqrt{c_n} n^{-1/4}$
- ullet Tradeoff: convergence rate $(1-\overline{\gamma})$ vs. sampling noise $\gamma\Delta_{n,arepsilon}$

- Optimal choice of bandwidth: $\varepsilon \simeq \sqrt{c_n} n^{-1/4}$
- ullet Tradeoff: convergence rate $(1-\overline{\gamma})$ vs. sampling noise $\gamma\Delta_{n,arepsilon}$
- Extension 1.: heavy-ball (Polyak, 1964)

$$\theta_{b+1} = \theta_b - \gamma (G_b' W_n G_b)^{-1} G_b' W_n \overline{g}_n(\theta_b) + \alpha (\theta_b - \theta_{b-1}),$$

allows for $\overline{\gamma}(\alpha) > \gamma$, optimal $\alpha(\gamma)$ tabulated

Non-smooth moments, $n < \infty$

- Optimal choice of bandwidth: $\varepsilon \asymp \sqrt{c_n} n^{-1/4}$
- ullet Tradeoff: convergence rate $(1-\overline{\gamma})$ vs. sampling noise $\gamma\Delta_{n,arepsilon}$
- Extension 1.: heavy-ball (Polyak, 1964)

$$\theta_{b+1} = \theta_b - \gamma (G_b' W_n G_b)^{-1} G_b' W_n \overline{g}_n(\theta_b) + \alpha (\theta_b - \theta_{b-1}),$$

allows for $\overline{\gamma}(\alpha) > \gamma$, optimal $\alpha(\gamma)$ tabulated

ullet Extension 2.: quasi-Newton Monte Carlo estimator of $G_{n,\varepsilon}$

of an Aiyagari model

Simulated Example: Estimation

SMM estimation of an Aiyagari model

- Optimal consumption choice with borrowing constraint
- Non-smooth: discretize GDP, value function iterations
- Moments = sample quantiles
- Computationally demanding, compare with global & local optimizers
- Set n = 10000, T = 2
- \bullet Estimate $\theta = (\beta, \gamma, \mu, \rho, \sigma)$, preferences and log-income process

Results vs. optimizers (one sample)

Legend: n=10000, T=2. $\gamma=0.1$, $\alpha=0.47$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

Range of optimization parameters (one sample)

Legend: n=10000, T=2. $\varepsilon=0.1$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

2x smoothing parameter (one sample)

Legend: n=10000, T=2. $\gamma=0.1$, $\alpha=0.47$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

5x smoothing parameter (one sample)

Legend: n=10000, T=2. $\gamma=0.1$, $\alpha=0.47$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

Joint Retirement Decision

Empirical Application:

Empirical Application: Interdependent Durations

- Replication of Honoré and de Paula (2018, HP)
- Model of joint retirement decision (husband + wife)
- Likelihood intractable: indirect inference, discrete outcomes
- Estimation is difficult, HP use a 'loop of procedures':
 - (a) particle swarm
 - (b) Powell's conjugate direction method
 - (c) downhill simplex (fminsearch)
 - (d) pattern search
 - (e) particle swarm focusing on specific parameters
- with fairly good starting values

Empirical Application: Interdependent Durations

	(Coefficient	s for Wives	5	Coefficients for Husbands				
	HP		sgn		Н	Р	SGN		
δ	1.052	1.064	1.060	1.064	1.052	1.064	1.060	1.064	
0	(0.039)	(0.042)	(0.039)	(0.037)	(0.039)	P so	(0.037)		
θ_1	1.244	1.244	1.241	1.233	1.169	1.218	1.181	1.192	
	(0.054)	(0.054)	(0.055)	(0.050)	(0.043)	(0.058)	(0.043)	(0.040)	
≥ 62 yrs-old	10.640	13.446	10.203	12.254	31.532	39.824	33.330	35.371	
	(5.916)	(5.694)	(7.818)	(5.692)	(11.356)	(11.372)	(8.131)	(7.672)	
\geq 65 yrs-old	10.036	12.326	10.480	11.974	25.696	29.254	25.203	26.240	
	(11.555)	(7.495)	(10.067)	(10.897)	(9.497)	(11.229)	(13.215)	(14.289)	
	:	:	÷	:	i i	:	:	:	
$Q_n(\theta_0)$	93.70	89.77	2.10 ⁴	5.10^4	-	-	-	-	
$Q_n(\hat{ heta}_n)$	0.470	0.758	0.271	0.342	-	-	-	-	
$dim(\theta)$	12	30	12	30	-	-	-	-	
Time	3h25m	5h34m	11min	11min	-	-	-	-	

HP = Honoré and de Paula (2018), Paper: also compare with MCMC

sGN: random starting values, 250 iterations

Conclusion

- Global optimization is slow, difficult
- Econometric assumptions: faster rates possible
- Algorithm:
 - does not require undersmoothing (more robust)
 - automatic transition from global to local cv.
- Most applications: smoothing not tractable
 - quasi-Newton Monte Carlo approach
 - derive exponential bounds
 - computationally attractive (cf. empirical application)
- Beyond GMM:
 - global step extends to other M-estimations (e.g. MLE)
 - local step requires some structure

References

- Andrews, D. W. (1997). A stopping rule for the computation of generalized method of moments estimators. *Econometrica: Journal of the Econometric Society*, pages 913–931.
- Belloni, A. and Chernozhukov, V. (2009). On the computational complexity of mcmc-based estimators in large samples. The Annals of Statistics, 37(4):2011–2055.
- Brooks, S. P. (1998). Mcmc convergence diagnosis via multivariate bounds on log-concave densities. The Annals of Statistics, 26(1):398–433.
- Bruins, M., Duffy, J. A., Keane, M. P., and Smith Jr, A. A. (2018). Generalized indirect inference for discrete choice models. *Journal of econometrics*, 205(1):177–203.
- Chernozhukov, V. and Hong, H. (2003). An mcmc approach to classical estimation. Journal of Econometrics, 115(2):293–346.
- Honoré, B. E. and de Paula, Á. (2018). A new model for interdependent durations. Quantitative Economics, 9(3):1299–1333.
- McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. *Econometrica: Journal of the Econometric Society*, pages 995–1026.
- Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the hastings and metropolis algorithms. *The annals of Statistics*, 24(1):101–121.

References ii

- Nesterov, Y. and Spokoiny, V. (2017). Random gradient-free minimization of convex functions. Foundations of Computational Mathematics, 17(2):527–566.
- Newey, W. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In *Handbook of Econometrics*, volume 36:4, pages 2111–2234. North Holland.
- Niederreiter, H. (1983). A quasi-monte carlo method for the approximate computation of the extreme values of a function. In *Studies in pure mathematics*, pages 523–529. Springer.
- Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr computational mathematics and mathematical physics, 4(5):1–17.
- Robinson, P. M. (1988). The stochastic difference between econometric statistics. *Econometrica: Journal of the Econometric Society*, pages 531–548.
- van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer New York, New York, NY.
- Zhong, L. and Forneron, J.-J. (2022). Convexity not required: Estimation of smooth moment condition models. *Manuscript in preparation*.

Convexity Not Required

- Zhong and Forneron (2022): suppose G_n has full rank everywhere on Θ
- for $\gamma \in (0,1)$ small enough, $\exists \overline{\gamma} \in (0,1)$, $0 < \underline{\gamma}, \overline{\gamma}, C$ and $C_n = O_p(1)$:

$$\begin{split} \|\theta_{k+1} - \hat{\theta}_n\|^2 &\leq (1 - \overline{\gamma})^{2(k+1)} \frac{\overline{\lambda} + C \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}}{\underline{\lambda} - C \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}} \|\theta_0 - \hat{\theta}_n\|^2 \\ &+ C_n \|\overline{g}_n(\hat{\theta}_n)\|_{W_n}^2 \end{split}$$

• Rank condition is sufficient for cv., $\|\overline{g}_n(\cdot)\|_{W_n}^2$ can be non-convex

- ullet Example: $y_t = e_t \theta e_{t-1}$, $e_t \stackrel{iid}{\sim} (0,1)$, $|\theta| < 1$.
- Indirect inference: $y_t = \beta_1 y_{t-1} + \cdots + \beta_p y_{t-p} + u_t$
- Minimize $\|\hat{\beta}_n \hat{\beta}_n^S(\theta)\|$.
- For p=1, $\lim_{n\to\infty}\hat{\beta}_n=-\theta/(1+\theta^2)$

- For p = 1, $Q_n(\theta) = [\hat{\beta}_n + \theta/(1 + \theta^2)]^2$ is non-convex
- However:

$$F_n(\theta) = \int_{\vartheta=0}^{\theta} [\hat{\beta}_n + \vartheta/(1 + \vartheta^2)] d\vartheta = \theta \hat{\beta}_1 + \frac{1}{2} \log(1 + \theta^2)$$

is convex on (-1,1)

- Q_n and F_n have the same minimizer but:
 Minimizing Q_n is difficult, minimizing F_n is not
- Gauss-Newton is minimizing F_n (implicitly)

k	0	1	2	3	4	5	6	7	8		99
	p=1										
NR	-0.600	-0.689	-0.722	-0.749	-0.772	-0.793	-0.811	-0.828	-0.843		-0.993
GN	-0.600	-0.560	-0.529	-0.504	-0.484	-0.466	-0.451	-0.438	-0.427		-0.338
BFGS	-0.600	-0.505	4.425	-0.307	-0.359	-0.338	-0.337	-0.337	-0.337		-0.337
L-BFGS-B	-0.600	-0.505	1.000	-0.455	-0.375	-0.318	-0.341	-0.339	-0.338		-0.338
BFGS*	-0.600	-0.462	-0.286	-0.345	-0.340	-0.338	-0.338	-0.338	-0.338		-0.338
$\text{L-BFGS-B}^{\bigstar}$	-0.600	-0.462	-0.286	-0.345	-0.339	-0.338	-0.338	-0.338	-0.338		-0.338
	p = 12										
NR	0.950	0.956	0.961	0.965	0.968	0.972	0.974	0.977	0.979		0.999
GN	0.950	0.881	0.849	0.821	0.795	0.769	0.744	0.718	0.691		-0.660
BFGS	0.950	-9.048	-9.039	-9.029	-9.020	-9.010	-9.000	-8.990	-8.981		-7.994
L-BFGS-B	0.950	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000		-1.000
	<u> </u>					1 /0		-1			

Legend: simulated sample of size n=200, $\theta_0=-1/2$. For p=1, $\overline{g}_n(\theta)=\hat{\beta}_1-\theta/(1+\theta^2)$. For p=12, $\overline{g}_n(\theta)=\hat{\beta}_n-\hat{\beta}_n^S(\theta)$ with $\hat{\beta}_n^S$ computed using S=5 simulated samples (Indirect Inference). $W_n=I_d$. The solutions are $\hat{\theta}_n=-0.339$ (p=1) and $\hat{\theta}_n=-0.660$ (p=12). NR = Newton-Raphson, GN = Gauss-Newton. The learning rate is $\gamma=0.1$ for NR and GN. BFGS = R's optim, L-BFGS-B = R's optim with bound constraints $\theta\in[-1,1]$. BFGS* and L-BFGS-B* apply the same optimizers to F_n instead of Q_n .

Local Convergence

Local Convergence $(n = \infty)$

- Take R > 0, such that $\sigma_{\min}[G(\theta)] \ge \underline{\sigma} > 0$ if $\|\theta \theta^{\dagger}\| \le R_G$ (exists under local identification + continuity of G)
- Now, let $G_b = G(\theta_b)$:

$$\theta_{b+1} - \theta^{\dagger} = (1 - \gamma)(\theta_b - \theta^{\dagger})$$
$$- \gamma (G_b'WG_b)^{-1}G_b'W[g(\theta_b) - g(\theta^{\dagger}) - G_b(\theta_b - \theta^{\dagger})]$$

where $g(\theta^{\dagger}) = 0$

• If G is Lipschitz, when $\|\theta_b - \theta^{\dagger}\| \leq R_G$:

$$\|\theta_{b+1} - \theta^{\dagger}\| \le (1 - \gamma + \gamma \frac{L_G \sqrt{\kappa_W}}{\underline{\sigma}} \|\theta_b - \theta^{\dagger}\|) \|\theta_b - \theta^{\dagger}\|$$

$$\le (1 - \overline{\gamma}) \|\theta_b - \theta^{\dagger}\|$$

if
$$\|\theta_b - \theta^{\dagger}\| \leq [\gamma - \overline{\gamma}] \frac{\underline{\sigma}}{\gamma L_G \sqrt{\kappa_W}} := R$$

• Take $\|\theta_0 - \theta^{\dagger}\| \leq \min(R, R_G)$ and iterate

Local Convergence $(n < \infty)$

• Similar steps, additional terms, let $H_b = (G_b'W_nG_b)^{-1}G_b'W_n$:

$$\theta_{b+1} - \hat{\theta}_n = (1 - \gamma)(\theta_b - \hat{\theta}_n)$$

$$- \gamma H_b[\overline{g}_n(\theta_b) - \overline{g}_n(\hat{\theta}_n) - G(\theta_b)(\theta_b - \hat{\theta}_n)]$$

$$- \gamma H_b[G(\theta_b) - G_{\varepsilon}(\theta_b)](\theta_b - \hat{\theta}_n)$$

$$- \gamma H_b[G_{\varepsilon}(\theta_b) - G_{n,\varepsilon}(\theta_b)](\theta_b - \hat{\theta}_n)$$

$$(4)$$

$$-\gamma (G_b'W_nG_b)^{-1}[G_{n,\varepsilon}(\theta_b)-G_{n,\varepsilon}(\hat{\theta}_n)]'W_n\overline{g}_n(\hat{\theta}_n)$$
 (5)

$$-\gamma (G_b'W_nG_b)^{-1}G_{n,\varepsilon}(\hat{\theta}_n)'W_n\overline{g}_n(\hat{\theta}_n)$$
 (6)

- (1): deterministic, (2): tail bounds (van der Vaart and Wellner, 1996, Ch2.14) + smoothness of $g(\cdot)$, (3): bounds with smoothing, (4): tail bounds with smoothing, (5): Lipschitz + stochastic bounds, (6): stochastic bounds
- ullet Uniform bounds: holds for all heta with the same probability level
- $\Gamma_{n,\varepsilon} = (c_n n^{-1/2})^{1+\psi} (1 + \varepsilon^{-1} c_n n^{-1/2} + \varepsilon (c_n n^{-1/2})^{-\psi})$ comes from (6) and gives the smoothing bias, others give $\overline{\gamma}$ and $\Delta_{n,\varepsilon}$

Global Convergence

Quasi-Newton Monte Carlo

Jacobian Update

quasi-Newton Monte Carlo algorithm

- ullet If $G_{n,arepsilon}$ not available in closed form, it can be approximated
- 1) Input $L \ge d$
- 2.0) Initialization (b = 0)
 - draw $Z_{-\ell} \sim \mathcal{N}(0, I), \ \ell = 0, \dots, L-1$
 - compute $Y_{-\ell} = \varepsilon^{-1} [\overline{g}_n(\theta_0 + \varepsilon Z_{-\ell}) \overline{g}_n(\theta_0)]$
- 2.1) **Update** (b > 0)
 - draw $Z_b \sim \mathcal{N}(0, I)$
 - compute $Y_b = \varepsilon^{-1} [\overline{g}_n (\theta_b + \varepsilon Z_b) \overline{g}_n (\theta_b)]$
- 3) Approximate
 - de-mean $ilde{Z}_{b-\ell} = Z_{b-\ell} \sum_{\ell=0}^{L-1} Z_{b-\ell}/L$
 - compute $\hat{G}_L(\theta_b) = \sum_{\ell=0}^{L-1} Y_{b-\ell} \tilde{Z}_{b-\ell} (\sum_{\ell=0}^{L-1} \tilde{Z}_{b-\ell} \tilde{Z}_{b-\ell})^{-1}$
- ullet Use \hat{G}_L in the main algorithm

Acceleration

Acceleration

• Local convergence with $n < \infty$ looks like:

$$\|\theta_{b+1} - \hat{\theta}_n\| \leq (1 - \overline{\gamma})\|\theta_b - \hat{\theta}_n\| + \frac{\gamma}{2}\Delta_{n,\varepsilon}(\|\theta_b - \hat{\theta}_n\|)$$

- ullet Ideally $\overline{\gamma}$ is large and γ is small
- \bullet But we have $\overline{\gamma}<\gamma :$ faster convergence implies more sensitive to sampling uncertainty
- Solution: accelerate:

$$\theta_{b+1} = \theta_b - \gamma (G_b'WG_b)^{-1}G_b'W\overline{g}_n(\theta_b) + \alpha(\theta_b - \theta_{b-1})$$

• derive VAR(1)-type representation, well-chosen α implies $\overline{\gamma} > \gamma$: faster convergence without noise sensitivity

Acceleration: Optimal choice of α

Table 1: Values of γ and optimal choice of α

$\frac{\gamma}{\alpha^{\star}}$ $\gamma(\alpha^{\star})$ $\gamma/\gamma(\alpha^{\star})$	0.01	0.05	0.1	0.2	0.3	0.4	0.6	8.0
α^{\star}	0.81	0.60	0.47	0.31	0.21	0.14	0.05	0.01
$\gamma(\alpha^{\star})$	0.10	0.22	0.32	0.45	0.54	0.63	0.77	0.89
$\gamma/\gamma(\alpha^*)$	0.10	0.22	0.32	0.45	0.55	0.63	0.78	0.90

Simulated Example

SMM estimation of an Aiyagari model

- panel data, log-AR(1) income process, optimal consumption choice with borrowing constraint
- non-smooth: discretize GDP, value function iterations, moments = sample quantiles
- computationally demanding, compare with global & local optimizers
- set n = 10,000, T = 2 (large/short panel)

Results vs. optimizers (one sample)

Figure 1: Aiyagari Model: local, global optimizers and sGN $(\varepsilon=0.1)$

Legend: n=10000, T=2. $\gamma=0.1$, $\alpha=0.47$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

Results range of tuning parameters (one sample)

Figure 2: Aiyagari Model: sGN with different choices of tuning parameters $(\varepsilon=0.1)$

Legend: n=10000, T=2. $\gamma=0.1$, $\alpha=0.47$. sGN (black): Algorithm 1. Simulated-Annealing (dashed blue): 5000 iterations from θ_0 . Simulated-Annealing + Nelder-Mead (dashed green): run Nelder-Mead after 5000 Simulated-Annealing iterations.

Empirical Example

Comparison with MCMC, distant starting value

Figure 3: Interdependent Duration Estimates: MCMC and sGN

Legend: sgn: $\varepsilon=10^{-2}$, $\gamma=0.1$, $\alpha=0.47$, B=350 iterations in total. MCMC: 100000 iterations, same starting value, random-walk tuned to target $\approx 38\%$ acceptance rate around the solution $\hat{\theta}_n$.