Chapter 6

Countable Features of Spaces: Size Restrictions

Exercise 6.1 Show that A is dense in X if and ony if every non-empty open set of X contains a point of A.

Solution: First we prove the forward direction. Suppose that A is a dense subset in X. Then by definition, $\overline{A} = X$. Thus every point of X is a limit point of A, which means that for every point $p \in X$ and every open set U which contains p we see that

$$(U - \{p\}) \cap A \neq \emptyset.$$

Since this holds for all $p \in X$, we see that every open set in X must contain points in A, which proves this direction.

Figure 1:

Here we see the set A is a dense subset in X. The sets $U_1, \ldots U_6$ denote arbitrary open sets in X.

Now suppose that every nonempty open set of X contains a point of A. Then this means that for any $p \in X$, any open set U containing p must also contain a point in A. By definition, this is a limit point. Since p was an arbitrary point of x, we must have that every element of X is a limit point of A. Therefore, we must have that $\overline{A} = X$, which finishes the proof in this direction.

Exercise 6.2 Show that \mathbb{R}_{std} is separable. With which of the topologies on \mathbb{R} that you have studied is \mathbb{R} not separable?

Solution: Observe that a countable dense subset in \mathbb{R}_{std} is the set of rationals. This is because every nonempty open set of \mathbb{R} on the standard topology contains points of \mathbb{Q} . By our previous exercise, this allows us to conclude that \mathbb{Q} is dense in \mathbb{R} . Since the rationals

are countable, this in total allows us to conclude that \mathbb{R}_{std} has a countable dense subset, and is therefore separable by definition.

However, this wouldn't hold for the discrete topology on \mathbb{R} , since it does not have a countable dense subset with this topology. The countable complement is also not separable, since every open set in the topology must be uncountable and hence finding a countable but dense subset of X is impossible.

Exercise 6.4 Find a separable space that contains a subspace that is not separable in the subspace topology.

Solution: Lemma. An uncountable set with the discrete topology is not separable.

Proof. For the sake of contradiction suppose that X is uncountable and is separable under the discrete topology. Then there exists a countable dense set A such that $\overline{A} = X$. However, since X has the discrete topology, we know that $A = \overline{A} = X$; a contradiction since A is countable while X is uncountable. Thus X is not separable under the discrete topology.

Now consider a topology on an uncountable set X given by

$$\mathfrak{T} = \{\emptyset\} \cup \{U \subset X\}_{p \in X}$$

where $p \in X$. Observe that $\{p\}$ is dense in this set since every open set in \mathcal{T} contains $\{p\}$ by construction. Since $\{p\}$ is countable and dense, X is separable on this topology.

Consider the subspace $X - \{p\}$. For any $U \subset (X - \{p\})$, we see that $U \cup \{p\} \subset \mathcal{T}$, so that U is open in $X - \{p\}$. Thus every subset of $X - \{p\}$ is open, which implies that this is an uncountable discrete space. However, we know that an uncountable discrete space is not separable, so that $X - \{p\}$ is not separable.

Presented in Class?

Theorem 6.5 If X and Y are separable spaces, then $X \times Y$ is separable.

Proof: Suppose X or Y are separable spaces. Then there exist countable sets A and B such that $\overline{A} = X$ and $\overline{B} = Y$. Using the fact that $\overline{A} \times \overline{B} = \overline{A \times B}$, we see that

$$\overline{A \times B} = \overline{A} \times \overline{B} = X \times Y.$$

Thus $A \times B$ is dense in $X \times Y$. But also observe that $A \times B$ is countable, since we can form a bijection between $A \times B$ and A or B (namely the projection function). Thus $X \times Y$ must be separable because it contains a countable dense subset, which is what we set out to show.

Figure 2: Here in this picture, we see that if A and B are countable dense subsets, then their product forms a countable dense subset.

Theorem 6.6 The space $2^{\mathbb{R}}$ is separable.

Proof: Consider

$$A = \left\{ f \in 2^{\mathbb{R}} : \bigcup_{i=1}^{n} [p_i, q_i] | p_i, q_i \in \mathbb{Q} \middle| \forall x \in [p, q], f(x) = 1, x \notin [p_i, q_i], f(x) = 0 \right\}$$
$$\bigcup \left\{ f \in 2^{\mathbb{R}} : \bigcup_{i=1}^{n} [p_i, q_i] | p_i, q_i \in \mathbb{Q} \middle| \forall x \in [p, q], f(x) = 0, x \notin [p_i, q_i], f(x) = 1 \right\}$$

that is, we only consider intervals [p,q], which have rational endpoints, and finitely union them. To construct the points f in our set, we assign either a 1 or a 0 to f(x) when xlies in any of the finite intervals $[p_i, q_i]$. (This actually doesn't have to be done with \mathbb{Q} , but rather any set dense in \mathbb{R} .) Theorem 2.14 guarantees that this is an at most countable set. Observe that our set is really a subset of all finite subsets of \mathbb{Q} , which itself is a countable set.

Observe that this set is dense in $2^{\mathbb{R}}$. Consider an open set

$$U = \{ f \in 2^{\mathbb{R}} : f(a_1) = \delta_1, \dots, f(a_n) = \delta_n \}$$

where $\delta_1, \ldots, \delta_n \in \{0, 1\}$. Then the point $f \in 2^{\mathbb{R}}$ such that $f(a_i) = \delta_i, f(x) = 0$ otherwise, is a point in U. Call this point y.

Since \mathbb{R} is normal, there exist disjoint closed neighborhoods $[p_i, q_i]$ such that $a_i \in [p_i, q_i]$ Then observe that the set

$$\bigcup_{i=1}^{n} \{ f \in 2^{\mathbb{R}} : f(x) = \delta_i \text{ if } x \in [p_i, q_i], f(x) = 0 \text{ otherwise} \}$$

is (1) a subset of A and (2) contains y. Therefore, A and U have a nonempty intersetion, and since U was an arbitrary open set of $2^{\mathbb{R}}$, we see that A is dense in $2^{\mathbb{R}}$. Since it is also countable, we have that $2^{\mathbb{R}}$ is separable, as desired.

Theorem 6.9 Let X be a 2^{nd} countable space. Then X is separable.

Proof: Let p_i be some point of B_i , $i \in \mathbb{N}$, where B_i is a basic open set from our countable basis. Then for any open set V of X, we know that V will intersect $\{p_i\}_{i\in\mathbb{N}}$ since by definition V must contain some basic open set B_i for which $p_i \in B_i$. Thus by Exercise 6.1, $\{p_i\}$ is dense, and since it's countable we have that X is separable.

Exercise 6.10

- 1. The space \mathbb{R}_{std} is 2^{nd} countable (and hence separable).
- 2. The space \mathbb{R}_{LL} is separable but not 2^{nd} countable.
- 3. The space \mathbb{H}_{bub} is separable but not 2^{nd} countable.

Solution:

1. Consider the open set (a, b). Then observe that

$$\left(\bigcup_{p\in\mathbb{Q},a\leq p}(p,\infty)\right)\cap\left(\bigcup_{q\in\mathbb{Q},q\leq b}(\infty,q)\right)=(a,b).$$

Therefore, we can generate (a, b) by open sets with rational endpoints, which shows that \mathbb{R} has a countable basis. Specifically, the family of open sets $\{(p, q) : p, q \in \mathbb{Q}\}$ forms a countable basis for \mathbb{R}_{std} , so that by definition \mathbb{R}_{std} is 2^{nd} countable.

- 2. By Exercise 6.2, we found that \mathbb{R}_{std} is separable since the rationals form a countable, dense subset in \mathbb{R}_{std} . Thus every set (a,b) contains a rational. However, $(a,b) \subset [a,b)$, which which means that every set [a,b) must also intersect the rationals. By Exercise 6.1, we can then conclude that the rationals are dense in \mathbb{R}_{LL} , and since they are countable this implies that \mathbb{R}_{LL} is separable.
- 3. Observe that the positive rationals \mathbb{Q}^+ form a dense set of $\mathbb{R}^+ \cup 0$. That is, any set with (a,b) with $a,b \geq 0$ must contain a rational. By Theorem 6.5, we can then conclude that $(\mathbb{Q}^+)^2$ is dense in $(\mathbb{R}^+)^2$, and $\mathbb{Q}^+)^2$ is clearly countable. Thus by definition $(\mathbb{R}^+)^2$ is separable.

However, observe that this is not 2^{nd} countable. Observe that if we are to cover this space, we need to cover the x-axis. But every point on the x axis needs an individual sticky bubble to cover it, and since there are an uncountable number of such x, it would be impossible to cover all of them with a countable number of sticky bubbles. Therefore this space is not 2^{nd} countable.

Theorem 6.11 Every uncountable set in a 2nd countable space has a limit point.

Proof: Suppose we have an uncountable set A in X, and for the sake of contradiction suppose that U has no limit points. Then every point of A is an isolated point, which means that there exists an open set U such that $U \cap A = \{p\}$ for all $p \in A$. Note that for every such U there exists a B basic open set such that $B \subset U$. Thus $p \in B \subset U$. However, there are only countably many basic open sets, while an uncountable number of $p \in A$, which is a contradiction since we cannot contain an uncountable number of points with a countable number of basic open sets. Thus A must have a limit point, which is what we set out to show.

Theorem 6.14 Let X be 2^{nd} countable. Then X is 1^{st} countable.

Proof: Let X be a 2nd countable space and $x \in X$. Then X has a countable basis \mathcal{B} . Consider the set \mathcal{B}_x of all $B \in \mathcal{B}$ such that $x \in B$. Since \mathcal{B} is a basis, we know that for any open set U containing x there exists a $B_x \in \mathcal{B}$ such that

$$p \in B_x \subset U$$
.

But $p \in B_x$ so $B_x \in \mathcal{B}_x$. Therefore, \mathcal{B}_x is a neighborhood basis of x. However, $\mathcal{B}_x \subset \mathcal{B}$ so \mathcal{B}_x is countable. Therefore, every point of x as countable neighborhood basis so it is a 1st countable space.

Theorem 6.15 If X is a topological space, $p \in X$, and p has a countable neighborhood basis, then p has a nested countable neighborhood basis.

Proof: Let \mathcal{B} be the countable neighborhood basis for p. Observe that for $B \in \mathcal{B}$, (1) $p \in B$ and (2) B is an open set, so by Theorem 3.3 we must be able to contain p in some neighborhood U such that $p \in U \subset B$. By the defintion of a neighborhood basis, there must exist another $B' \in \mathcal{B}$ such that $p \in B' \subset U$. Hence, for every $B \in \mathcal{B}$, there exists an element $B' \in \mathcal{B}$ such that

$$p \in B' \subset B$$
.

Since \mathcal{B} is countable, we can construct an at most countable set of nested open sets which form a neighborhood basis of p. Thus p has a nested countable neighborhood basis as desired.

Theorem 6.18 Suppose x is a limit point of the set A in a 1st countable space X. Then there is a sequence of points $\{a_i\}_{i\in\mathbb{N}}$ in A that converges to x.

Proof: Since x is a limit point of A, for every open set U such that $x \in U$ we have that $(U - \{x\}) \cap A \neq \emptyset$. Since x is also a point in a first countable space, it has a countable neighborhood basis. By Theorem 6.15, x must therefore also have a nested countable neighborhood basis \mathcal{B} .

Since \mathcal{B} is countable, we can write $\mathcal{B} = \{B_1, B_2, \dots\}$. Let $i \in \mathbb{N}$. Now since each $B_i \in \mathcal{B}$ must contain some point $a_i \in A$, $a_i \neq x$, any open set of x will contain some a_i such that $a_i \in B_i \subset U$. Thus we must have that $\{a_i\}_{i \in \mathbb{N}}$ to be a sequence of points of A which converges to x.