

Redox

Group B: Cynthia Yan, Jenny Yan, Athena Ru

- 1. Matrix Dehydrogenases
- 2. Electron Transport System (ETS)
- 3. ATP Synthesis

Redox

NADH autofluorescence of the mitochondria; an indicator of how well mitochondrial dehyrogenaze enzymes can produce reducing equivalents from a given fuel

Outcome Variables

JO₂ – Oxygen Flux dPsi – Mito Membrane Potential Redox – NADH e⁻¹ Leak – ROS Production

Client's Graphs

Shape of Redox Variable by Genotype Colored by Substrate

Difference Between Genotypes

Table 1: ANOVA Results for Genotype and Substrate Interaction

Term	Df	Sum-Sq	MeanSq	Statistic	P Value
Genotype	1	4.049	4.049	0.0663643	0.797
Substrate	5	11872.874	2374.574810	38.922	< 0.001
Genotype:substrate	5	70.245	14.048978	0.230	0.949
Residuals	347	21170.135	61.009	NA	NA

Modelling by Substrate (6 models)

Substrate: GM PMPcM 100-80-NAD(P)H (% Reduced) 60-PMOc PMPc OcM 100-80-60--14.2 -14.0 -14.0 -14.0 -14.4 -13.8 -14.4 -14.2 -13.8 -14.4 -14.2 -13.8 dose

Interaction Effects Model

```
summary_list <- redox %>%
  drop_na() %>%
  group_by(substrate) %>%
  do(model_summary = {
    fit <- lm(y ~ poly(dose, 2) * geno, data = .)
    summary(fit)$r.squared
})</pre>
```


One-for-All Models

Interaction Effects Model

```
Call:
lm(formula = y ~ substrate * poly(dose, 2) * geno, data = redox)

Residual standard error: 6.497 on 323 degrees of freedom

Multiple R-squared: 0.5883, Adjusted R-squared: 0.5436

F-statistic: 13.19 on 35 and 323 DF, p-value: < 2.2e-16
```

Statistically Significant (p < 0.05) Variables: all substrate main effects (baseline=GM), dose^1, substratePM:dose^1, substratePMPc:dose^1, substrateOcM:dose^1

Model Diagnostics

GAM Model

```
Call:
lm(formula = y \sim substrate + poly(dose, 2) + geno, data = redox)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.2543
                        1.0313 71.999 < 2e-16 ***
substratePM -6.9131 1.3501 -5.121 5.04e-07 ***
substratePcM -14.0843 1.3558 -10.388 < 2e-16 ***
substratePMPc -7.7147 1.3501 -5.714 2.36e-08 ***
substratePMOc -3.2206 1.3501 -2.386 0.0176 *
substrateOcM -16.5495 1.3501 -12.258 < 2e-16 ***
poly(dose, 2)1 -45.5302 7.3998 -6.153 2.08e-09 ***
poly(dose, 2)2 5.6503 7.3983 0.764 0.4455
        0.2375
                        0.7806 0.304 0.7611
genoTg
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 7.395 on 350 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.4221, Adjusted R-squared: 0.4089
F-statistic: 31.96 on 8 and 350 DF, p-value: < 2.2e-16
```

GAM Plots

Model Diagnostics

Visualization Recommendations

Mean Redox % by Genotype and Substrate

Conclusions

- NA Redox response data (1 row) was removed
- We investigated outliers for each substrate in our boxplots
- Batch effects existed on substrates

- The dose response relationship is a quadratic polynomial
- There is no significant difference between the genotypes