TW364: Applied Fourier Analysis

Dr Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 1

Module information

- Lecturer: Dr Willie Brink (wbrink@sun.ac.za)
- ▶ Web presence: http://learn.sun.ac.za
- ▶ Book: Zill, Differential Equations with Boundary-Value Problems, 8th or 9th ed.
- Module content:
 - ▶ chapter 11: Fourier series on a finite interval
 - chapter 12: solving PDEs using Fourier series
 - chapter 13: other coordinate systems
 - chapter 14: Fourier integrals and the Fourier transform
 - additional: the discrete Fourier transform
 - additional: applications of the DFT in signal processing
 - ▶ additional: the fast Fourier transform

Module information

- ► Tutorials:
 - traditional pen-and-paper tut in A407, followed by tut-test or
 - work on computer assignment in Narga B, submit one week later
- How your final mark will be calculated:
 - ▶ 30%: tutorial tests and computer assignments
 - ▶ **35%**: test A1, on the work covered in Term 3
 - ▶ 35%: test A2, on the work covered in Term 4
 - optional test A3, on all the work, replaces the lowest of A1 and A2
 - no sick tests (if you miss A1 or A2, you have to write A3)

Module information

- Test dates and times:
 - ▶ test A1: 6 Sep at 14:00 (in a tut period; not 3 Oct)
 - ▶ test A2: 3 Nov at 14:00 (as scheduled by the exams office)
 - test A3: 27 Nov at 14:00 (as suggested by the exams office)
- If I receive no legitimate problems with these dates by next Monday (30 July), these will be the dates!

11.1 Orthogonal functions

Recall...

The inner product of vectors

$$(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i, \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if $(\mathbf{u}, \mathbf{v}) = 0$.

The norm of **u** is defined as $\sqrt{(\mathbf{u}, \mathbf{u})}$.

Inner product of functions

The inner product of two functions f_1 and f_2 on an interval [a, b] is defined as

is defined as
$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx.$$

Properties (easily proved)

- $(f_1, f_2) = (f_2, f_1)$
- $(kf_1, f_2) = k(f_1, f_2)$ with k a constant
- (f, f) = 0 if f is the zero function
- (f, f) > 0 if f is not the zero function

Two functions f_1 and f_2 are orthogonal on [a, b] if $(f_1, f_2) = 0$.

Examples

- (a) Are $f(x) = x^2$ and $g(x) = x^3$ orthogonal on [-1, 1]?
- (b) Are $f(x) = x^2$ and $h(x) = x^4$ orthogonal on [-1, 1]?

- (a) yes
- (b) no

Orthogonal set of functions

An infinite set of functions $\{\phi_0(x), \phi_1(x), \phi_2(x), \ldots\}$ is orthogonal on [a, b] if $(\phi_m, \phi_n) = 0$ for $m \neq n$.

Orthonormal set

The norm of a function
$$f$$
 on $[a,b]$ is $\sqrt{(f,f)} = \sqrt{\int_a^b [f(x)]^2} dx$.

An orthogonal set $\{\phi_0(x), \phi_1(x), \phi_2(x), \ldots\}$ with the property that $\sqrt{(\phi_n, \phi_n)} = 1$ for $n = 0, 1, 2, \ldots$, is said to be orthonormal.

Example

Consider the set $\{1, \cos(x), \cos(2x), \cos(3x), \ldots\}$ on the interval $[-\pi, \pi]$. Is the set orthogonal?

Let
$$\phi_0(x) = 1$$
, $\phi_1(x) = \cos(x)$, $\phi_2(x) = \cos(2x)$, etc.

$$(\phi_0, \phi_n) = \int_{-\pi}^{\pi} \cos(nx) dx = 0, \quad n \neq 0$$

$$(\phi_m, \phi_n) = \int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = 0, \quad m \neq n$$

.. yes, the set is indeed orthogonal

Question: how can we scale each function so that the set becomes orthonormal?