Google Hash Code

Self-driving rides

Hash Code 2018, Online Qualification Round

Self-driving rides Hash Code 2018 Online Qualification Round

Énoncé

Représentation du problème

- R, C nombre de lignes et de colonnes de la grille
- F véhicules
- N courses
 - $\forall r \in [1, N], s_r, f_r$: le point de début et le point d'arrivée de la course
 - $\forall r \in [1, N], e_r, l_r$: le temps au plus tôt de début et le temps au plus tard de fin de la course
- B bonus par course commençant à l'heure
- T horizon de temps
- Score d'une course : distance de la course plus un éventuel bonus si elle est commencée à l'heure au plus tôt

Objectif : Maximiser le score de toutes les courses effectuées

Énoncé

Exemple

Self-driving rides Hash Code 2018 Online Qualification Round 2 / 10 Self-driving rides Hash Code 2018 Online Qualification Round 3 /

Exemple

Exemple

- Grille de 3 lignes et 4 colonnes
- 2 véhicules
- 3 courses
 - $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
 - $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, I_2 = 14$
- Bonus de 2
- Horizon de 15 pas de temps

Self-driving ride

Hash Code 2018

Online Qualification Round

3 / 10

Self-driving ride

Hash Code 2018

Online Qualification Round

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant de l'améliorer
 - en espérant obtenir un résultat optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Solution initiale

- Solution "vide"
- Solution aléatoire
- Solution d'un algorithme glouton

Énoncé

Les variables ?

- Les courses affectées aux véhicules
 - $\forall v \in [0, F-1], L_v$: la liste des courses affectées au véhicule v

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant de l'améliorer
 - en espérant obtenir un résultat optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Modifications

- Ajout d'une course à un véhicule
- Suppression d'une course à un véhicule
- Échange de courses pour un véhicule
- Échange de courses entre 2 véhicules

elf-driving rides Hash Code 2018 Online Qualification Round 5/10 Self-driving rides Hash Code 2018 Online Qualification Round 5/10

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant de l'améliorer
 - en espérant obtenir un résultat optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Amélioration du score

Il faut une fonction qui calcule le score

Self-driving rides

Hash Code 2018

Online Qualification Round

5 / 10

Recherche locale

Voisinage

Pour une solution, l'ensemble des solutions à une modification près

Exemple

- Grille de 3 lignes et 4 colonnes
- 2 véhicules
- 3 courses
 - $s_0 = (0,2), f_0 = (2,2), e_0 = 2, l_0 = 14$
 - $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, f_2 = 14$
- Bonus de 2
- Horizon de 15 pas de temps

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant de l'améliorer
 - en espérant obtenir un résultat optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse
- Marche aléatoire
- Algorithme de la descente
- Recherche Tabou

Self-driving rides

Hash Code 2018

Online Qualification Round

F / 10

Recherche locale

Voisinage

Pour une solution, l'ensemble des solutions à une modification près

Exemple

```
• s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14
```

•
$$s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$$

•
$$s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$$

Self-driving rides Hash Code 2018 Online Qualification Round 6/10 Self-driving rides Hash Code 2018 Online Qualification Round 6/10

Recherche locale

Voisinage

Pour une solution, l'ensemble des solutions à une modification près

Exemple

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

$L_0=[0],L_1$	_ = []		score: 4
$L_0 = []$	(0, (0, 0))	$L_1 = [] (0, (0, 0))$	score: 0
$L_0 = []$	(0, (0, 0))	$L_1 = [0] (4, (2, 2))$	score: 4
$L_0 = [0, 1]$	(7, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 6
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1] (6, (0, 1))$	score: 8
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [] (0, (0, 0))$	score: 8
$L_0=[0]$	(4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Self-driving rides Hash Code 2018 Online Qualification Round 6 / 10

Recherche locale

Restarts

- Solution aléatoire
- Solution "vide", dans laquelle on fixe un certain pourcentage de courses comme dans la meilleure solution trouvée jusqu'ici
 - 5%, 10%, 20%

Pas d'amélioration

- On se déplace vers une solution du voisinage sans améliorer l'objectif
 - Il ne faut pas être un poisson rouge

Recherche locale

Quel voisin choisir?

- le meilleur
- un parmi ceux améliorant

Algorithme de la descente

- On part d'une solution
- On se déplace vers une solution du voisinage améliorant strictement l'objectif
- On peut rester bloquer dans des minimum locaux
- ⇒ On recommence à partir d'une autre solution

Self-driving rides Hash Code 2018 Online Qualification Round 7 / 10

Recherche Tabou

Principe

- On part d'une solution s
- On se déplace vers la meilleure solution du voisinage qui ne soit pas interdite
- ullet On ajoute s aux solutions interdites pour les m itérations suivantes

Mémoire

- Interdire des solutions peut être coûteux en mémoire
- À la place on interdit des mouvements
 - Si *m* trop faible, tabou peu efficace
 - Si *m* trop grand, risque de rater des solutions

Self-driving rides Hash Code 2018 Online Qualification Round 8/10 Self-driving rides Hash Code 2018 Online Qualification Round 9/3

Recherche Tabou

Self-driving rides

m = 3

Hash Code 2018

Online Qualification Round

Recherche Tabou

m = 3

$L_0 = [0](4, (2, 2)), L_1$	score: 8	
t = [sup 0, sup 2]		
$L_0 = []$ (0, (0, 0))	$L_1 = [0] (4, (2, 2))$	score: 4
$L_0 = [0,1] (7, (0, 1))$	$L_1 = [] (0, (0, 0))$	score: 6
$L_0 = [0]$ (4, (2, 2))	$L_1 = [1] (6, (0, 1))$	score: 8
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Self-driving rides Hash Code 2018 Online Qualification Round 10/10