CS 188: Artificial Intelligence Fall 2011

Advanced Applications: Robotics / Vision / Language

Dan Klein – UC Berkeley

Many slides from Pieter Abbeel, John DeNero

1

So Far: Foundational Methods

Inverse RL: Motivation

How do we specify a task like this?

[demo: hover / autorotate]

Helicopter MDP

- State: $s=(x,y,z,\phi,\theta,\psi,\dot{x},\dot{y},\dot{z},\dot{\psi},\dot{\theta},\dot{\psi})$
- Actions (control inputs):
 - a_{lon}: Main rotor longitudinal cyclic pitch control (affects pitch rate)
 - a_{lat}: Main rotor latitudinal cyclic pitch control (affects roll rate)
 - a_{coll}: Main rotor collective pitch (affects main rotor thrust)
 - a_{rud}: Tail rotor collective pitch (affects tail rotor thrust)
- Transitions (dynamics):
 - $s_{t+1} = f(s_t, a_t) + w_t$ [f encodes helicopter dynamics]
 [w is a probabilistic noise model]

Can we solve the MDP yet?

Problem: What's the Reward?

Rewards for hovering:

[demo: hover / tic-toc]

$$R(s) = -(\alpha_x(x-x^*)^2 + \alpha_y(y-y^*)^2 + \alpha_z(z-z^*)^2 + \alpha_{\dot{x}}(\dot{x}-\dot{x}^*)^2 + \alpha_{\dot{y}}(\dot{y}-\dot{y}^*)^2 + \alpha_{\dot{z}}(\dot{z}-\dot{z}^*)^2)$$

- Rewards for "Tic-Toc"?
 - Problem: what's the target trajectory?
 - Just write it down by hand?

[demo: bad]

. . .

Apprenticeship Learning

- Goal: learn reward function from expert demonstration
- Assume $R(s) = w \cdot f(s)$
- Get expert demonstrations $\mathbf{s} = (s_0, s_1, \dots s_n)$
- Guess initial policy π_0
- Repeat:
 - Find w which make the expert better than $\{\pi_0, \pi_1, \dots, \pi_{i-1}\}$

$$w_i \leftarrow \text{distinguish}(\pi^*, \{\pi_0, \pi_1, \dots, \pi_{i-1}\})$$

• Solve MDP for new weights w:

$$\pi_i \leftarrow \text{solve}\left(MDP(w_i)\right)$$

[demo: pac apprentice]

Pacman Apprenticeship!

Demonstrations are expert games

- Features defined over states s
- Score of a state given by:

$$w \cdot f(s)$$

Learning goal: find weights which explain expert actions

Probabilistic Alignment

- Intended trajectory satisfies dynamics.
- Expert trajectory is a noisy observation of one of the hidden states.
 - But we don't know exactly which one.

Alignment of Samples

• Result: inferred sequence is much cleaner!

15

[demo: alignment]

[demo: airshow]

Final Behavior

16

What is NLP?

- Fundamental goal: analyze and process human language, broadly, robustly, accurately...
- End systems that we want to build:
 - Ambitious: speech recognition, machine translation, information extraction, dialog interfaces, question answering...
 - Modest: spelling correction, text categorization...

Problem: Ambiguities

- Headlines:
 - Enraged Cow Injures Farmer With Ax
 - Hospitals Are Sued by 7 Foot Doctors
 - Ban on Nude Dancing on Governor's Desk
 - Iraqi Head Seeks Arms
 - Local HS Dropouts Cut in Half
 - Juvenile Court to Try Shooting Defendant
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
- Why are these funny?

Parsing as Search

Hershey bars protest

Grammar: PCFGs

- Natural language grammars are very ambiguous!
- PCFGs are a formal probabilistic model of trees
 - Each "rule" has a conditional probability (like an HMM)
 - Tree's probability is the product of all rules used
- Parsing: Given a sentence, find the best tree search!

20

Syntactic Analysis

[demo]

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday packing 135 mph winds and torrential rain and causing panic in Cancun, where frightened tourists squeezed into musty shelters .

Machine Translation

- Translate text from one language to another
- Recombines fragments of example translations
- Challenges:
 - What fragments? [learning to translate]
 - How to make efficient? [fast translation search]

The Problem with Dictionary Look-ups

顶部 /top/roof/ 顶端 /summit/peak/**top**/apex/ 顶头 /coming directly towards one/top/end/ 盖 /lid/top/cover/canopy/build/Gai/ 盖帽 /surpass/top/ 极 /extremely/pole/utmost/top/collect/receive/ 尖峰 /peak/top/ 面 /fade/side/surface/aspect/**top**/face/flour/ /top/topping/ 摘心

Example from Douglas Hofstadter

Learning to Translate

					CLASSIC SOUPS Sm.	Lg.
À	燉	雞	.0	57.	House Chicken Soup (Chicken, Celery,	
					Potato, Onion, Carrot)	2.75
雞	飯		20	58.	Chicken Rice Soup1.85	3.25
雞	交通		\$	59.	Chicken Noodle Soup1.85	
廣	東 (雲	吞	60.	Cantonese(Wonton)Soup1.50	2.75
番	茄	季	3	61.	Tomato Clear Egg Drop Soup	2.95
雪	る		3	62.	Regular (Wonton) Soup1.10	2.10
酸	辣		*	63.	Hot & Sour Soup	2.10
季	iÈ		8	64.	Egg Drop Soup1.10	2.10
雪	Ŧ		3	65.	Egg Drop(Wonton)Mix1.10	2.10
豆	腐	莱	-	66.	Tofu Vegetable SoupNA	3.50
雞	王	米	書	67.	Chicken Corn Cream SoupNA	
24	肉玉	米	*	68.	Crab Meat Corn Cream SoupNA	
海	鲜		*	69.	Seafood SoupNA	

Example from Adam Lopez

