I Questions de cours

- 1 Exercice 20 banque CCINP:
- a) Donner la définition du rayon de convergence d'une série entière de la variable complexe.
 - b) Déterminer le rayon de convergence de chacune des séries entières suivantes :

$$\sum_{n>0} \frac{(n!)^2}{(2n)!} z^{2n+1}, \sum_{n>0} n^{(-1)^n} z^n \text{ et } \sum_{n>0} \cos(n) z^n$$

2 - Exercice 23 banque CCINP :

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe telle que la suite $\left(\frac{|a_{n+1}|}{|a_n|}\right)_{n\in\mathbb{N}}$ admet une limite.

- a) Démontrer que les séries entières $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 1} (n+1)a_{n+1}x^n$ ont le même rayon de convergence que l'on notera R.
 - b) Démontrer que la fonction $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe \mathcal{C}^1 sur l'intervalle]-R; R[.
 - 3 Exercice 24 banque CCINP :
 - a) Déterminer le rayon de convergence de la série entière $\sum_{n\geq 0} \frac{x^n}{(2n)!}$.

On pose $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} \text{ sur }] - R; R[.$

- b) Rappeler, sans démonstration, le développement en série entière en 0 de la fonction $x \mapsto \operatorname{ch}(x)$ et préciser le rayon de convergence.
 - c) Déterminer S(x) pour $x \in]-R; R[$.
 - d) On considère la fonction f définie sur $\mathbb R$ par :

$$f(0) = 1$$
, $f(x) = \text{ch}(\sqrt{x})$ si $x > 0$ et $f(x) = \cos(-\sqrt{x})$ si $x < 0$

Démontrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

II Exercices

Exercice 1:

Déterminer le rayon de convergence de $\sum_{n\geq 0}\operatorname{ch}(n)x^{3n+1}$ et calculer sa somme.

Exercice 2.

1 - Déterminer deux réels a et b tels que pour tout $x \in \mathbb{R} \setminus \left\{1; \frac{1}{2}\right\}$:

$$\frac{1}{2x^2 - 3x + 1} = \frac{a}{1 - x} + \frac{b}{1 - 2x}$$

2 - En déduire que $x \mapsto \frac{1}{2x^2 - 3x + 1}$ est développable en série entière au voisinage de l'origine, préciser les coefficients et le rayon de convergence de la série entière obtenue.

Exercice 3:

Pour tout $n \in \mathbb{N}$, on note $a_n = \sum_{k=0}^n \frac{1}{k!}$.

- 1 Préciser le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$ et déterminer, selon la valeur du réel x, la nature de la série $\sum_{n\geq 0} a_n x^n$.
- 2 En cas de convergence, on note $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Calculer (1-x)f(x) et en déduire f(x).

Exercice 4:

Pour $x \in \mathbb{R}$, on note sous réserve de convergence :

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}$$

- 1 Montrer que f est définie sur \mathbb{R} .
- 2 Pour $x \in \mathbb{R}$, calculer f''(x) + f'(x) + f(x).
- 3 En déduire f(x) en fonction de x.

Exercice 5:

Pour $x \in [-1; 1]$, on pose $f(x) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} x^n$.

- 1 Montrer que f est continue sur [-1; 1].
- 2 Montrer que f est dérivable sur] 1; 1[et préciser f'(x) pour $x \in]-1; 1[$. En déduire f(x) pour $x \in]-1; 1[$.
- 3 En déduire les valeurs de $\sum_{n=2}^{+\infty} \frac{1}{n(n-1)}$ et de $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)}$.
- 4 Retrouver la valeur de $\sum_{n=2}^{+\infty} \frac{1}{n(n-1)}$ par un calcul direct.

Exercice 6:

On considère $f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$.

- 1 Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} \frac{x^n}{n^2}$ et montrer que f est continue sur [-1;1].
- 2 Montrer que $x \mapsto f(x) + f(1-x) + \ln(x) \ln(1-x)$ est constante sur]0;1[.
- 3 En admettant que $f(1) = \frac{\pi^2}{6}$, donner la valeur de $\sum_{n=1}^{+\infty} \frac{1}{2^n n^2}$.

Exercice 7:

Soient α un réel strictement positif et $(a_n)_{n\in\mathbb{N}}$ la suite réelle vérifiant $a_0=1$ et :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{2n + \alpha}{n+1} a_n$$

- 1 Déterminer le rayon de convergence R de la série entière $\sum_{n\geq 0} a_n x^n$.
- 2 On note f la somme de cette série entière.

Montrer que f est solution sur]-R;R[d'une équation différentielle linéaire d'ordre 1.

3 - En déduire f(x) en fonction de $x \in]-R;R[$.