Boletín de Ejercicios Básicos en Java

Programación Universidad Carlos III de Madrid

Curso 2015-2016

Dr. Jose María Alvarez Rodríguez

Octubre 2015

Índice general

1.	Introducción	1
2.	Ejemplos básicos en Java	3
3.	Ejemplos de sentencias condicionales y bucles en Java	13
4.	Eiemplos de bucles anidados en Java	31

Listings

2.1.	Detectar si un año es bisiesto	3
2.2.	Convertir coordenadas cartesianas a polares	4
2.3.	Calcular el número de día de la semana dada una fecha	4
2.4.	Calcular la distancia euclídea entre dos puntos	5
2.5.	Ejemplos de uso de Math API	6
2.6.	Converstir grados Celsius a Fahrenheit	6
2.7.	Intercambiar el valor de dos variables	7
2.8.	Calcular el valor mayor de dos números reales	8
2.9.	Calcular el valor mayor de tres números enteros	9
2.10.	Calcular el valor mayor de tres números reales	9
2.11.	Calcular la media de dos números	10
2.12.	Calcular la sensación térmica	11
2.13.	Calcular la suma de dos números	12
3.1.	Contar los divisores de un número	13
3.2.	Contar números impares hasta un número determinado	14
3.3.	Calcular el cubo de los primeros veinte números naturales uti-	
	lizando Math API de Java	16
3.4.	Calcular el factorial de un número	17
3.5.	Mostrar la secuencia de Fibonacci	17
3.6.	Calcular la potencia de a^b	18
3.7.	Mostrar los números pares hasta un número determinado uti-	
	lizando diferentes tipos de bucles	19
3.8.	Mostrar los números naturales hasta un número determinado	
	utilizando diferentes tipos de bucles	20
3.9.	Mostrar los números naturales de forma descendente utilizan-	
	do diferentes tipos de bucles	21
	Detectar si un número natural es un número de Armstrong	22
3.11.	Calcular el número combinatorio	23
	Detectar si un número natural es un palíndromo	25
	Detectar si un número natural es número perfecto	26
3.14.	Detectar si un número natural es número primo	26

VI LISTINGS

3.15.	Sumar n números enteros	27
3.16.	Sumar los primeros 20 n números naturales	28
4.1.	Dibujar un árbol de navidad con *	31
4.2.	Dibujar una cruz con *	32
4.3.	Dibujar la diagonal inferior de una matriz ficticia con *	33
4.4.	Dibujar la diagonal superior de una matriz ficticia con *	34
4.5.	Dibujar un diamante de radio N con *	35
4.6.	Mostrar la tabla de multiplicar del 1 al 10	36
4.7.	Mostrar los primeros 100 números primos	37
4.8.	Mostrar la tabla de divisores para un determinado número	38
4.9.	Mostrar la siguiente figura (Wedge of Stars)	39

Introducción

En este documento se recopilan ejemplos de Programación en Java para su posible impresión.

Es importante resaltar que se deberían seguir los siguientes pasos para abordar los problemas.

- 1. Analizar y entender el problema. ¿Existe algún modelo formal?
- 2. Diseñar una solución al problema.
- 3. Implementar el diseño propuesto.
- 4. Test: verificar y validar los resultados. Traza y depuración.
- 5. Documentar la solución.
- 6. Refinar, refactor" del código fuente ("mejora").

También es importante destacar:

- 1. Todos los ejemplos están disponibles en el repositorio: https://github.com/chemaar/java-programming-course/.
- 2. Se presenta una solución al problema planteado pero no es única.
- 3. Este documento se actualizará a medida que se impartan más conceptos.

Ejemplos básicos en Java

A continuación se dispone de una serie de ejemplos básicos en Java (ordenados alfabéticamente) para trabajar con:

- Declaración de variables.
- Operaciones simples.

```
Listing 2.1: Detectar si un año es bisiesto.

package es.uc3m.programacion.basico;

import java.util.Scanner;

/**

* Escribir un programa para detectar si un año es bisiesto

.

*

* @author chema

*

*/

public class AnyoBisiesto {

public static void main(String [] args) {

    Scanner mc = new Scanner(System.in);

    int year = 0;

    year = mc.nextInt();

    // divisible by 4

boolean isLeapYear = (year %4 == 0);

// divisible by 4 and not 100

isLeapYear = isLeapYear && (year %100 != 0);
```

```
// divisible by 4 and not 100 unless divisible by
    400
isLeapYear = isLeapYear || (year % 400 == 0);
System.out.println(isLeapYear);
}
}
```

```
Listing 2.2: Convertir coordenadas cartesianas a polares.
package es.uc3m.programacion.basico;
 * Escribir un programa que calcule los valores de: r y
    theta, necesarios para transformar unas coordenadas
 * cartesianas (x,y) a polares.
 * @author chema
 */
public class CartesianoAPolar {
         public static void main(String[] args) {
                double x = 2.0;
                double y = 3.0;
                double r = Math.sqrt(x*x + y*y);
                double theta = Math.atan2(y, x);
                System.out.println("r = " + r);
                System.out.println("theta = " + theta);
            }
}
```

```
Listing 2.3: Calcular el número de día de la semana dada una fecha.

package es.uc3m.programacion.basico;

/**

* Escribir un programa que dado un mes (m), día (d) y año
(y) muestre por pantalla
```

```
* el número de día de la semana.
 * Los meses comienzan en 1 hasta 12.
 * Los días comienzan en 0 (domingo).
  Se debería aplicar la siguiente fórmula:
          y0 = y - (14 - m) / 12
          x = y0 + y0/4 - y0/100 + y0/400
          m0 = m + 12 * ((14 - m) / 12) - 2
          d = (d + x + (31*m0)/12) \mod 7
 * @author chema
 */
public class DiaDeLaSemana {
         public static void main(String[] args) {
                int m = 10;
                int d = 5;
                int y = 2015;
                int y0 = y - (14 - m) / 12;
                int x = y0 + y0/4 - y0/100 + y0/400;
                int m0 = m + 12 * ((14 - m) / 12) - 2;
                int d0 = (d + x + (31*m0)/12) \% 7;
                System.out.println(d0);
            }
}
```

```
Listing 2.4: Calcular la distancia euclídea entre dos puntos.

package es.uc3m.programacion.basico;

/**

* Escribir un programa que calcule la distancia entre dos puntos.

*

* @author chema

*

*/
public class DistanciaEuclidea {

public static void main(String [] args){
```

```
Listing 2.5: Ejemplos de uso de Math API.

package es.uc3m.programacion.basico;

import java.util.Scanner;

public class EjemplosMathAPI {

    public static void main(String [] args){
        Scanner mc = new Scanner(System.in);
        //Max
        System.out.println(Math.max(2, 3));
        //Min
        System.out.println(Math.min(2, 3));
        //Abs
        System.out.println(Math.abs(-2));
        //Pow
        System.out.println(Math.pow(2, 3));
        //Sqrt
        System.out.println(Math.sqrt(144));
    }
}
```

Listing 2.6: Converstir grados Celsius a Fahrenheit.

```
package es.uc3m.programacion.basico;
/**
 * Escribir un programa que transforme una temperatura
    expresada en grados Fahrenheit a Celsius.
 * Se debería aplicar la siguiente fórmula:
* T(C) = (T(F) - 32) * 5/9
* Qauthor chema
 */
public class FahrenheitACelsius {
        public static void main(String[] args) {
                 double temperatura = 3.0;
                 temperatura = ((temperatura - 32)*5)/9;
                 System.out.println("Temperatura en Celsius
                     = " + temperatura);
        }
}
```

```
Listing 2.7: Intercambiar el valor de dos variables.

package es.uc3m.programacion.basico;

import java.util.Scanner;

public class IntercambiarVariables {

    public static void main(String [] args) {
        Scanner mc = new Scanner(System.in);
        int a,b;
        int temp;
        a = mc.nextInt();
        b = mc.nextInt();
        System.out.println("Los valores (antes de intercambiar) son: "+a+", "+b);
        temp = a;
        a = b;
        b = temp;
```

```
System.out.println("Los valores (después de intercambiar) son: "+a+", "+b);
}
```

```
Listing 2.8: Calcular el valor mayor de dos números reales.
package es.uc3m.programacion.basico;
import java.util.Scanner;
 * Escribir un programa para mostrar por pantalla para
    mostrar el mayor valor de 2 números reales.
   Qauthor chema
public class MayorDeDosReales {
        public static void main(String [] args){
                 Scanner mc = new Scanner(System.in);
                 float op1, op2;
                 op1 = mc.nextFloat();
                 op2 = mc.nextFloat();
                 Returns:
                         the value 0 if f1 is numerically
   equal to f2; a value less than 0 if f1 is numerically
   less than f2;
                      and a value greater than 0 if f1 is
   numerically greater than f2.
                 int compare = Float.compare(op1, op2);
                 if (compare = 0)
                         System.out.println("Los valores son
                              iguales.");
                 }else if(compare < 0){</pre>
                         {\sf System.out.println} \ (\, {\it "El valor mayor} \,
                             es: "+op2);
                 }else {
                         System.out.println("El valor mayor
                             es: "+op1);
                }
        }
```

```
}
```

```
Listing 2.9: Calcular el valor mayor de tres números enteros.
package es.uc3m.programacion.basico;
import java.util.Scanner;
 * Escribir un programa para mostrar por pantalla para
    mostrar el mayor valor de 3 números enteros.
 * Qauthor chema
 */
public class MayorDeTresEnteros {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int op1, op2, op3;
                op1 = mc.nextInt();
                op2 = mc.nextInt();
                op3 = mc.nextInt();
                if (op1 > op2 \&\& op1 > op3){
                         System.out.println("El valor mayor
                              es: "+op1);
                 else if (op2 > op1 && op2 > op3){
                         System.out.println("El valor mayor
                              es: "+op2);
                 }else{
                         System.out.println("El valor mayor
                              es: "+op3);
                 }
        }
}
```

Listing 2.10: Calcular el valor mayor de tres números reales.

```
package es.uc3m.programacion.basico;
import java.util.Scanner;
  Escribir un programa para mostrar por pantalla para
    mostrar el mayor valor de 3 números reales.
   Qauthor chema
public class MayorDeTresReales {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                float op1, op2, op3;
                op1 = mc.nextFloat();
                op2 = mc.nextFloat();
                op3 = mc.nextFloat();
                if (Float.compare(op1, op2)>0 && Float.
                    compare(op1, op3)>0){
                         System.out.println("El valor mayor
                              es: "+op1);
                 }else if (Float.compare(op2, op3)>0 &&
                     Float.compare(op2, op3)>0){
                         System.out.println("El valor mayor
                              es: "+op2);
                 }else{
                         System.out.println("El valor mayor
                              es: "+op3);
                 }
        }
}
```

```
Listing 2.11: Calcular la media de dos números.

package es.uc3m.programacion.basico;

import java.util.Scanner;
```

```
/**
 * Escribir un programa que realice la media de dos números
     reales solicitados al usuario.
   @author chema
 */
public class MediaDosNumeros {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                float op1, op2;
                float average;
                op1 = mc.nextFloat();
                op2 = mc.nextFloat();
                average = (op1 + op2) / 2;
                System.out.println("La media es: "+average)
        }
}
```

```
Listing 2.13: Calcular la suma de dos números.
package es.uc3m.programacion.basico;
import java.util.Scanner;
 * Escribir un programa que sume dos números enteros y
    muestre el resultado por pantalla.
  @author chema
 */
public class SumaDosNumeros {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int op1, op2, result;
                op1 = mc.nextInt();
                op2 = mc.nextInt();
                result = op1 + op2;
                System.out.println("El resultado es: "+
                    result);
        }
}
```

Ejemplos de sentencias condicionales y bucles en Java

A continuación se dispone de una serie de ejemplos básicos en Java (ordenados alfabéticamente) para trabajar con:

- Sentencias condicionales simples.
- Bucles simples.

```
Listing 3.1: Contar los divisores de un número.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para calcular un número máximo de divisores de un número introducido por el usuario.

*

* @author chema

*

*/

public class ContarDivisores {
    public static void main(String []args){
        Scanner mc = new Scanner(System.in);
        int MAX_TESTED = 10000000;
        int n;
        int testDivisor;
        int divisorCount;
        int numberTested;
```

```
Listing 3.2: Contar números impares hasta un número determinado.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para contar los números impares en los primeros 20 naturales utilizando diferentes bucles.

* @author chema

* */

public class ContarNumerosImpares {

public static void main(String [] args) {

int top = 20;

int i = 0;

int counter = 0;

Scanner mc = new Scanner(System.in);

do {
```

```
if (i %2 != 0) {
                         counter++;
                i = i + 1; //i++
        } while ( i <= top );
        System.out.println("Encontrados "+counter+"
             números impares.");
        counter = 0;
        for(int j = 0; j \le top; j++){
                if (j %2 != 0){
                         counter++;
                }
        System.out.println("Encontrados "+counter+"
            números impares.");
        int k = 0;
        counter = 0;
        while (k<=top){
                if (k\%2 = 0){
                        counter++;
                k = k+1; //k++
        System.out.println("Encontrados "+counter+"
            números impares.");
        k = 0;
        counter = 0;
        while (k++<=top)
                if (k\%2!=0){
                         counter++;
                }
        System.out.println("Encontrados "+counter+"
             números impares.");
}
```

```
}
```

```
Listing 3.3: Calcular el cubo de los primeros veinte números
naturales utilizando Math API de Java.
 package es.uc3m.programacion.bucles;
 import java.util.Scanner;
  * Escribir un programa calcular el cubo de los primeros 20
      números naturales utilizando diferentes bucles
     y el API de Java Math.
    Qauthor chema
 public class CuboNumerosMathAPI {
         public static void main(String [] args){
                  int top = 20;
                  int i = 0;
                  Scanner mc = new Scanner(System.in);
                 do{
                          System.out.println(Math.pow(i, 3));
                          i = i + 1; //i++
                  } while ( i <= top );
                  for(int j = 0; j \le top; j++)
                          System.out.println(Math.pow(j, 3));
                  int k = 0;
                  while (k<=top){
                          System.out.println(Math.pow(k, 3));
                          k = k+1; //k++
                 }
         }
 }
```

```
Listing 3.4: Calcular el factorial de un número.
package es.uc3m.programacion.bucles;
import java.util.Scanner;
/**
 * Escribir un programa para implementar la función
    factorial de un número introducido por el usuario.
 * Qauthor chema
 *
 */
public class Factorial {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int op1;
                int fact = 1;
                op1 = mc.nextInt();
                //fact(n) = n * fact(n-1);
                if (op1 < 0){
                         System.out.println("No existe el
                            factorial de: "+op1);
                }else{
                         for (int i = 1; i <= op1; i++){
                                 fact = fact * i;
                         System.out.println("El factorial de
                            : "+op1+" es "+fact);
                }
        }
}
```

```
Listing 3.5: Mostrar la secuencia de Fibonacci.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**
```

```
* Escribir un programa para generar la secuencia de
    Fibonacci para un número n.
   Qauthor chema
 */
public class Fibonacci {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int numbersToGenerate;
                int fn1, fn2, fcurrent, temp;
                //fibonacci(n) =
                                                  fibonacci
                   (0) = 0
                                                  fibonacci
                    (1) = 1
                                                  fibonacci (
                    n) = fibonacci(n-1) + fibonacci(n-2)
                numbersToGenerate = mc.nextInt();
                fn2 = 0;
                fn1 = 1;
                System.out.println(fn2);
                System.out.println(fn1);
                for (int i = 2; i < numbersToGenerate; i++)
                         fcurrent = fn1 + fn2;
                         temp = fn1;
                         fn1 = fcurrent;
                         fn2 = temp;
                         System.out.println(fcurrent);
                }
        }
}
```

```
Listing 3.6: Calcular la potencia de a^b.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para implementar la función potencia.
```

```
* Qauthor chema
 */
public class MiPotencia {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                double base = 0;
                int exponent = 0;
                double value = 1;
                base = mc.nextDouble();
                exponent = mc.nextInt();
                for (int i = 0; i < exponent; i++)
                        value = value * base;
                System.out.println("La potencia de "+base+"
                     elevado a "+exponent+" es: "+value);
                System.out.println("Using the Java API: "+
                    Math.pow(base, exponent));
        }
}
```

```
Listing 3.7: Mostrar los números pares hasta un número determinado utilizando diferentes tipos de bucles.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para mostrar los números pares en los primeros 20 naturales utilizando diferentes bucles.

*

* @author chema

*

*/
public class MostrarNumerosPares {

public static void main(String []args){
    int top = 20;
    int i = 0;
```

```
Scanner mc = new Scanner(System.in);
        do{
                 if (i\%2 = 0){
                          System.out.println(i);
                 i = i + 1; //i++
        } while ( i <= top );
        for(int j = 0; j \le top; j++){
                 if (j\%2 = 0){
                          System.out.println(j);
                 }
        int k = 0;
        while (k<=top){
                  if (k\%2 = 0){
                          System.out.println(k);
                 \dot{k} = k+1; //k++
        }
        while (k++ < = top)
                 if (k\%2 = 0){
                          System.out.println(k);
                 }
        }
}
}
```

```
Listing 3.8: Mostrar los números naturales hasta un número determinado utilizando diferentes tipos de bucles.

package es.uc3m.programacion.bucles;

import java.util.Scanner;
```

```
/**
 * Escribir un programa para mostrar los primeros 20 nú
     meros naturales con distintos bucles.
 * Qauthor chema
 */
public class MostrarVeinteNaturales {
         public static void main(String [] args){
                  int top = 20;
                   int i = 0;
                   {\tt Scanner} \ {\tt mc} = {\tt new} \ {\tt Scanner} (\, {\tt System.in} \, ) \, ;
                   do{
                            System.out.println(i);
                            i = i + 1; //i++
                   } while ( i <= top );
                   for (int j = 0; j <= top; j++){
                            System.out.println(j);
                   int k = 0:
                   while (k<=top){</pre>
                            System.out.println(k);
                            k = k+1; //k++
                   }
         }
}
```

```
Listing 3.9: Mostrar los números naturales de forma descendente utilizando diferentes tipos de bucles.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para mostrar los primeros 20 números naturales con distintos bucles en forma descendente.

*

* @author chema

*
```

```
*/
public class MostrarVeinteNaturalesDescendente {
        public static void main(String [] args){
                 Scanner mc = new Scanner(System.in);
                 int i = 20;
                do{
                         System.out.println(i);
                         i = i-1; //i—
                 \} while (i >= 0);
                 for (int j = 20; j >= 0; j --){
                         System.out.println(j);
                 int k = 20;
                 while (k>=0){
                         System.out.println(k);
                         k = k-1; //k—
                 }
        }
}
```

```
Listing 3.10: Detectar si un número natural es un número de Armstrong.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa que detecte si un número entero es un número de Armstrong.

*

* "An Armstrong number of three digit is a number whose sum of cubes of its digit is equal * to its number."
```

```
* 153 = 1^3+5^3+3^3 o 1+125+27=153
 * http://en.wikipedia.org/wiki/Narcissistic_number
 * Qauthor Chema
public class NumeroArmstrong {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int numero = 0;
                int resultado , numero_inicial , resto;
                numero = mc.nextInt();
                numero_inicial = numero;
                //FIXME: Chequear que el número este entre
                    [100 - 999]
                resultado = 0;
                while (numero != 0) {
            resto = numero \%10;
            resultado = resultado + resto*resto;
            numero = numero / 10;
        }
                System.out.println("El número "+numero+" es
                    un número de Armstrong: "+(
                    numero_inicial=resultado));
        }
}
```

```
Listing 3.11: Calcular el número combinatorio.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

import java.util.Scanner;

/**

* Escribir un programa calcule un número combinatorio.

*
```

```
* Ver definición: http://en.wikipedia.org/wiki/
    Combinatorial_number_system
  @author chema
public class NumeroCombinatorio {
        //
        public static void main(String[] args) {
                Scanner mc = new Scanner(System.in);
                int m = mc.nextInt();
                int n = mc.nextInt();
                int factorialm n = 1, factorial n = 1,
                    factorialm = 1;
                if (m < n) {
                         System.out.println("M must be >= n"
                         System . exit(0);
                //Fact(m)
                for (int i = m; i > 0; i--) {
                         if (m = 0 \mid \mid m = 1) {
                                 factorialm = 1;
                                 break;
                         factorialm = i * factorialm;
                }
                //Fact(n)
                for (int i = n; i > 0; i--) {
                         if (n = 0 | | n = 1) {
                                 factorialn = 1;
                                 break;
                         factorialn = i * factorialn;
                }
                //Fact(m-n)
                for (int i = m - n; i > 0; i--) {
                         if (m - n = 0 \mid \mid m - n = 1) {
                                 factorialmn = 1;
                         factorialmn = i * factorialmn;
                }
```

```
System.out.println("El resultado es: "+ (
factorialm / (factorialn * factorialmn))
);
}
```

```
Listing 3.12: Detectar si un número natural es un palíndromo.
package es.uc3m.programacion.bucles;
import java.util.Scanner;
 * Escribir un programa para detectar si un número entero
    es un palíndromo (capícua).
 * Qauthor chema
public class NumeroPalindromo {
        public static void main(String [] args){
                Scanner mc = new Scanner(System.in);
                int number;
                int palindrome, reverse;
                number = mc.nextInt();
                palindrome = number;
                reverse = 0;
                while (palindrome != 0) {
                        int remainder = palindrome % 10;
                        reverse = reverse * 10 + remainder;
                        palindrome = palindrome / 10;
                System.out.println("El número "+number+" es
                     palindromo: "+(number==reverse));
                }
}
```

```
Listing 3.13: Detectar si un número natural es número perfecto.
package es.uc3m.programacion.bucles;
/**
 * Escribir un programa que dado un número entero detecte
     si es un número perfecto.
 * Un número perfecto es aquel que es igual a la suma de
     todos sus divisores propios positivos.
 * 6 es un número perfecto: 6=3+2+1
 * Qauthor chema
 */
public class NumeroPerfecto {
        public static void main(String [] args){
                 int N = 6;
                 int i = 1;
                 int divisor;
                 int calculado = 0;
                 while (i < N) {
                         if(N\% = 0){
                                  calculado = calculado + i;
                         i++;
                 System.out.println("El número "+N+" es
                    perfecto: "+(calculado ==N));
        }
}
```

```
Listing 3.14: Detectar si un número natural es número primo.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**
```

```
* Escribir un programa para detectar si un número entero
    es primo.
 * @author chema
 */
public class NumeroPrimo {
        public static void main (String [] args){
                Scanner mc = new Scanner(System.in);
                int number = 0;
                boolean isPrime = true;
                number = mc.nextInt();
                //FIXME: Chequear > 0
                int i = 2;
                while(isPrime && i!=number){
                         if (number \% = 0) {
                                 isPrime = false;
                         i++;
                System.out.println("El número "+number+" es
                    primo: "+isPrime);
        }
}
```

```
Listing 3.15: Sumar n números enteros.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa que sume hasta n números enteros solicitados al usuario.

*

* @author chema

*

*/

public class SumarNEnteros {
```

```
public static void main(String [] args){
                 Scanner mc = new Scanner(System.in);
                 int numberToRead = 0;
                 numberToRead = mc.nextInt();
                 if (numberToRead > 0) {
                         int value = 0;
                         int sum = 0;
                         for (int i = 0; i < number To Read; i++){
                                  System.out.println("
                                      Introduza un número...")
                                  value = mc.nextInt();
                                  sum = sum + value;
                         System.out.println("La suma es: "+
                             sum);
                 }
        }
}
```

```
Listing 3.16: Sumar los primeros 20 n números naturales.

package es.uc3m.programacion.bucles;

import java.util.Scanner;

/**

* Escribir un programa para sumar los primeros 20 números naturales

*

* @author chema

*

*/

public class SumarVeinteNaturales {

public static void main(String []args){
    int top = 20;
    int i = 0;
    int sum = 0;
    Scanner mc = new Scanner(System.in);

sum = 0;
```

```
do{
                         sum = sum + i;
                         i = i + 1; //i++
                } while (i<=top);
                System.out.println("Suma: "+sum);
                sum=0;
                for(int j = 0; j \le top; j++){
                         sum = sum + j;
                System.out.println("Suma: "+sum);
                int k = 0;
                sum = 0;
                while (k<=top){
                         sum = sum + k;
                         k = k+1; //k++
                System.out.println("Suma: "+sum);
        }
}
```

30CAPÍTULO 3. EJEMPLOS DE SENTENCIAS CONDICIONALES Y BUCLES EN JAVA

Ejemplos de bucles anidados en Java

A continuación se dispone de una serie de ejemplos básicos en Java (ordenados alfabéticamente) para trabajar con:

Bucles anidados.

```
***
 */
public class ArbolNavidad {
         public static void main(String [] args) throws
            IOException {
                 Scanner mc = new Scanner(System.in);
                 int baseStars = 15;
                 int halfBlankSpaces = 0;
                 for (int i = 1; i < baseStars; i=i+2){
                          halfBlankSpaces = (baseStars-i)/2;
                          for(int j=0; j<halfBlankSpaces;j++)</pre>
                                   System.out.print("");
                          for (int k = 0; k < i; k++){
                                   System.out.print("*");
                          for (int j=0; j<halfBlankSpaces; <math>j++)
                                   System.out.print(" ");
                          System.out.println("");
                 }
                 halfBlankSpaces = (baseStars/2)-1;
                 for (int i = 0; i < 3; i++){
                          for(int j=0; j<halfBlankSpaces;j++)</pre>
                                   System.out.print(" ");
                          for (int k=0; k<3; k++)
                                   System.out.print("*");
                          for(int j=0; j<halfBlankSpaces;j++)</pre>
                                   System.out.print(" ");
                          System.out.println("");
                 }
        }
}
```

Listing 4.2: Dibujar una cruz con *.

```
package es.uc3m.programacion.bucles.anidados;
 * Diseñar y codificar un programa en Java que muestre por
    pantalla una X de radio N.
 * Qauthor chema
*/
public class Cruz {
        public static void main(String [] args){
                int N = 9;
                 for(int i = 0; i < N; i++){
                         for (int j=0; j<N; j++){
                                  if(i==j || (N-i-1==j)){
                                          System.out.print("
                                              *");
                                 }else{
                                          System.out.print("
                                              . ");
                                  }
                         System.out.println();
                }
        }
}
```

```
Listing 4.3: Dibujar la diagonal inferior de una matriz ficticia con *.

package es.uc3m.programacion.bucles.anidados;

/**

* Diseñar y codificar un programa Java que muestra por pantalla el siguiente patrón de un

* triángulo en una tabla implícita NxN. Por ejemplo para N = 3 la salida sería.

*

* * * *

* . . *

* . . *

* @author chema

*
```

```
*/
public class DiagonalInferior {
         public static void main(String [] args){
                  int N = 3;
                  for (int i = 1; i <= N; i++){
                           for (int j = 1; j \le N; j++){
                                    if(i>=j){
                                             System . out . print ( "*
                                                 ");
                                    }else{
                                             System.out.print(".
                                                 ");
                           System.out.println("");
                 }
         }
}
```

```
Listing 4.4: Dibujar la diagonal superior de una matriz ficticia con *.

package es.uc3m.programacion.bucles.anidados;

/**

* Diseñar y codificar un programa Java que muestra por pantalla el siguiente patrón de un

* triángulo en una tabla implícita NxN. Por ejemplo para N =3 la salida sería.

*

* * . .

* * * .

* * * * .

* public class DiagonalSuperior {
    public static void main(String [] args) {
        int N = 3;
        for(int i =1; i<=N; i++) {
            for(int j =1; j<=N; j++) {
                 if(i<=j) {
```

```
Listing 4.5: Dibujar un diamante de radio N con *.
package es.uc3m.programacion.bucles.anidados;
/**
* Diseñar y codificar un programa en Java que muestre por
    pantalla una diamante de radio N.
 * @author chema
*/
public class Diamante {
        public static void main(String [] args){
                 int n = 7;
                 int mid = n/2;
                 int lmin=0;
                 int rmax=0;
                 if (n \%2!=0){
                         for (int i = 0; i < n; i++){
                                  if(i \le mid)
                                          Imin=mid-i;
                                           rmax=mid+i;
                                  }else{
                                           Imin=mid-(n-i)+1;
                                          rmax=mid+(n-i)-1;
                                  for (int j=0; j< n; j++){
                                           if(j)=|min \&\& j<=
                                              rmax){
```

```
System.out.

print("

*");

}else{

System.out.

print("

.");

}

System.out.println();

}

System.out.println();

}

System.out.println();

}

else{

System.err.println("Introduzca un n

úmero impar.");

}
```

```
Listing 4.6: Mostrar la tabla de multiplicar del 1 al 10.
package es.uc3m.programacion.bucles.anidados;
/**
 * Escribir un programa para mostrar la tabla de
    multiplicar del 1 al 10.
   Qauthor chema
 */
public class MultiplicationTable {
        public static void main(String[] args) {
                for (int i = 1; i \le 10; i++) {
                         for (int j = 1; j <= 10; j++) {
                                 System.out.print( i * j );
                                 System.out.print("\t");
                         System.out.println();
                }
        }
}
```

```
Listing 4.7: Mostrar los primeros 100 números primos.
package es.uc3m.programacion.bucles.anidados;
import java.util.Scanner;
/**
 * Escribir un programa para mostrar por pantalla los 100
    primeros números primos.
 * Qauthor chema
 *
 */
public class Primeros100Primos {
        public static void main (String [] args){
                 Scanner mc = new Scanner(System.in);
                 int nprimes = 100;
                 int matches = 1; //1 es primo
                 int number = 2; //... empezamos en 2...
                 boolean isPrime = true;
                 int i = 2;
                 while (matches<nprimes){</pre>
                         isPrime = true;
                         i = 2;
                         while(isPrime && i!=number){
                                  if (number \% = 0) {
                                          isPrime = false;
                                 i++;
                         if (isPrime){
                                 System.out.println(number);
                                 matches++;
                         }
                         number++;
                }
        }
}
```

```
Listing 4.8: Mostrar la tabla de divisores para un determinado
número.
 package es.uc3m.programacion.bucles.anidados;
  * 1-Diseñar y codificar un programa en Java que muestre
      por pantalla una tabla de
  * dimensión (1..N) en la cual la celda (i, j) contendrá '*
       ' si i es divisor j o j es divisor
  * de i, de otra forma mostrará '. ' . Por ejemplo para N
     =10 la salida sería:
                       3
                       5
                       6
                       8
                       9
                     * 10
  * @author chema
  */
 public class TablaDivisores {
          public static void main(String [] args){
                  int N = 10;
                  for (int i = 1; i <= N; i++){
                           \label{eq:formula} \mbox{for(int $j$ ==1; $j<=N; $j++)} \{
                                    if(i\% = 0 \mid | j\% = 0){
                                             System.out.print("*
                                                ");
                                    }else{
                                             System.out.print("
                                                 ");
                           System.out.print(" "+i);
```

```
System.out.println("");
}
}
```

```
Listing 4.9: Mostrar la siguiente figura (Wedge of Stars).
package es.uc3m.programacion.bucles.anidados;
import java.util.Scanner;
/**
 * Escribir un programa que muestre por pantalla la
    siguiente figura:
        *****
        ****
public class WedgeOfStars {
        public static void main(String args[]){
                Scanner mc = new Scanner(System.in);
                int numberOfStars = 0;
                numberOfStars = mc.nextInt();
                for (int i = numberOfStars; i>0; i--){
                         for (int j = 0; j < i; j++){
                                 System.out.print("*");
                         System.out.println("");
                }
        }
}
```