ANALIZA MATEMATYCZNA 2.3A

dr Joanna Jureczko

Politechnika Wrocławska Wydział Elektroniki Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu.

WYKŁAD 4

Ciągi liczbowe o wyrazach zespolonych. Pochodna i całka funkcji zespolonej.

NIEZBĘDNIK INŻYNIERA

Przykładowe zastosowania ciągów o wyrazach zespolonych oraz pochodnych i całek funkcji zespolonych

- w fizyce: w mechanice kwantowej, w kwantowej teorii pola, w hydrodynamice, w termodynamice;
- w teorii fraktali;
- w mechanice;
- w elektronice;
- w lotnictwie

Ciągiem o wyrazach zespolonych nazywamy ciąg $\{z_n\}$, gdzie $z_n = x_n + y_n i$.

Mówimy, że liczba $z_0 = x_0 + y_0 i$ jest **granicą ciągu** $\{z_n\}$, co zapisujemy

$$\lim_{n\to\infty}z_n=z_0,$$

jeżeli dla każdej liczby $\varepsilon>0$ istnieje taka liczba n_0 , że nierówność $n\geqslant n_0$ pociąga za sobą nierówność $|z_n-z_0|<\varepsilon$. Ciąg mający granicę skończoną nazywamy **ciągiem zbieżnym**.

ciąg $\{z_n\}$ o wyrazach zespolonych $z_n = x_n + y_n i$ był zbieżny do

granicy $z_0 = x_0 + y_0 i$ jest by ciągi rzeczywiste $\{x_n\}$ oraz $\{y_n\}$ były jednocześnie zbieżne odpowiednio do granic x_0 oraz y_0 .

Twierdzenie 4.1. Warunkiem koniecznym i dostatecznym, aby

Jeżeli każdej liczbie rzeczywistej t należącej do pewnego przedziału $\alpha \leqslant t \leqslant \beta$ przyporządkowujemy liczbę zespolona

przedziału
$$\alpha\leqslant t\leqslant eta$$
 przyporządkowujemy liczbę zespoloną

z = z(t) = x(t) + y(t)i

to mówimy, że w przedziale $[\alpha, \beta]$ została określona *funkcja* zespolona z = z(t) zmiennej rzeczywistej.

Granicę i ciągłość funkcji z=z(t) określamy podobnie jak dla funkcji rzeczywistych.

Pochodną funkcji z = z(t) określamy wzorem

$$z'(t) = x'(t) + v'(t)i.$$

Twierdzenie 4.1. Funkcja zespolona z = z(t) zmiennej rzeczywistej t

- (1) ma w punkcie t_0 granicę $z(t_0) = x(t_0) + y(t_0)i$,
- (2) jest ciągła w punkcie t₀,
- (3) ma w punkcie t_0 pochodną z'(t) = x'(t) + y'(t)i,
- (4) jest całkowalna w przedziale $[\alpha, \beta]$, przy czym

$$\int_{lpha}^{eta} z(t) dt = \int_{lpha}^{eta} x(t) dt + i \int_{lpha}^{eta} y(t) dt$$

wtedy i tylko wtedy, gdy obie funkcje rzeczywiste x(t)oraz y(t) spełniają warunki

- (1') mają w punkcie t_0 odpowiednie granice $x(t_0)$ oraz $y(t_0)$
- (2') są ciągłe w punkcie t_0
- (3') mają w punkcie t_0 odpowiednie pochodne $x'(t_0)$ oraz $y'(t_0)$ (4') są całkowalne w przedziale $[\alpha, \beta]$.

Wniosek 4.1. Jeżeli funkcja z(t) = x(t) + y(t)i jesy ciągła w przedziale $[\alpha, \beta]$, to funkcja $G(\tau)$ określona wzorem

$$G(\tau) = \int_{0}^{\tau} z(t)dt \, dla \, \alpha \leqslant \tau \leqslant \beta$$

jest funkcją pierwotną funkcji z(t) w rozważanym przedziale.

Wniosek 4.2. Jeżeli G(t) jest dowolną funkcją pierwotną funkcji z(t) = x(t) + y(t)i w przedziale $[\alpha, \beta]$, czyli G'(t) = z(t), to

$$\int_{\alpha}^{\beta} z(t)dt = G(\beta) - G(\alpha).$$

Ponadto $|\int_{\alpha}^{\beta} z(t)dt| \leq \int_{\alpha}^{\beta} |z(t)|dt$.

Otoczeniem punktu $z_0 = x_0 + y_0 i$ nazywamy zbiór wszystkich liczb zespolonych z spełniających nierówność

$$|z - z_0| < r \text{ gdzie } r > 0.$$

Jeżeli każdej liczbie zespolonej z z pewnego zbioru (obszaru) E przyporządkujemy pewną liczbę zespoloną w = f(z), to mówimy, że w zbiorze E została określona **funkcja zespolona** f(z) **zmiennej zespolonej** z. Zbiór E nazywamy wtedy **dziedziną (polem) funkcji**, zaś zbiór E_1 składający się ze wszystkich wartości funkcji f nazywamy **przeciwdziedziną (zakresem) funkcji**.

Niech z_0 będzie punktem skupienia zbioru E, w którym określona jest funkcja f(z). Mówimy, że funkcja f(z) ma \boldsymbol{w} $\boldsymbol{punkcie}\ z_0\ \boldsymbol{granice}\ g$, jeżeli dla każdego ciągu punktow $\{z_n\}$ zbioru E różnych od z_0 relacją $z_n \to z_0$ pociąga za sobą relację

 $f(z) \rightarrow g$. Zapisujemy to w następujący sposób

$$\lim_{z\to z_0}f(z)=g.$$

Twierdzenie 4.2. Jeżeli funkcja w = f(z) = u(x,y) + v(x,y)i ma granicę $g = g_1 + g_2i$ w punkcie $z_0 = x_0 + y_0i$, to u(x,y) oraz v(x,y) mają odpowiednio w punkcie (x_0,y_0) granicę g_1 oraz g_2 i odwrotnie.

Twierdzenie 4.3. Jeżeli funkcja w = f(z) = u(x,y) + v(x,y)i jest ciągła w punkcie $z_0 = x_0 + y_0i$, to u(x,y) oraz v(x,y) są ciągłe odpowiednio w punkcie (x_0, y_0) i odwrotnie.

Pochodną funkcji w = f(z) **w punkcie** z_0 nazywamy granicę

skończoną
$$\lim_{\delta z \to 0} \frac{f(z_0 + \delta z) - f(z_0)}{\delta z}$$

i oznaczamy $f'(z_0)$.

Twierdzenie 4.4 (warunek konieczny). Jeśli funkcja f(z) = u(x,y) + v(x,y)i ma w punkcie z = x + yi pochodną, to (1.) istnieją w tym punkcie pochodne cząstkowe funkcji u(x,y) oraz v(x,y), (2.) pochodne te spełniają w tym punkcie równania

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Równania powyższe nazywamy **równaniami Cauchy'ego - Riemanna**.

Augustin Louis Cauchy (1789 - 1857) francuski matematyk, sprecyzował podstawy analizy matematycznej, opierając je na **pojęciach** granicy i ciagłości, jako pierwszy podał precyzyjny dowód twierdzenia Taylora. Prowadził też badania nad teoria liczb i liczb zespolonych, teoria grup, teoria funkcji, zagadnieniami równań różniczkowych i wyznaczników. Zawdzięczamy mu również kilka ważnych twierdzeń z analizy zespolonej oraz zapoczątkowanie studiów nad grupami

permutacji. Zajmował się też badaniami w dziedzinie mechaniki i optyki.

Georg Friedrich Bernhard Riemann (1826 - 1866) niemiecki matematyk, zajmujący się również fizyka teoretyczna i eksperymentalna oraz filozofia przyrody, profesor Uniwersytetu w Getyndze, członek korespondent Berlińskiej Akademii Nauk (1859) i Royal Society (1866). Jego wielowymiarowa "geometria Riemanna" dała matematyczne podstawy ogólnej teorii względności. Zapoczątkował systematykę **geometrii nieeuklidesowych**. Jego prace z teorii liczb i teorii funkcji analitycznych wywarły duży wpływ na rozwój matematyki. Był autorem pracy o szeregach trygonometrycznych i teorii całki, w której wprowadził całkę nazywaną dziś całką Riemanna.

Twierdzenie 4.5 (warunek dostateczny). Jeżeli części u(x, y) oraz v(x,y) funkcji f(x+yi) = u(x,y) + v(x,y)i spełniają

równania Cauchy'ego - Riemanna w pewnym obszarze D i jeżeli ponadto pochodne czastkowe tych funkcji są ciągłe w tym obszarze, to funkcja f(z) ma w każdym punkcie z = x + yi tego obszaru pochodna

$$f'(z) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}i = \frac{1}{i}(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}i).$$

Mówimy, że funkcja f(z) jest **funkcją holomorficzną w**

punkcie z₀, jeżeli jest w tym punkcie i w pewnym jego

Mówimy, że funkcja f(z) jest **holomorficzna w obszarze** D, ieżeli iest holomorficzna w każdym punkcie tego obszaru.

otoczeniu różniczkowalna.

Funkcję rzeczywistą dwóch zmiennych rzeczywistych u(x,y), określoną w pewnym obszarze D, nazywamy **funkcją harmoniczną w tym obszarze**, jeżeli ma ciągłe pochodne cząstkowe rzędu pierwszego i drugiego i spełnia w tym obszarze D równanie różniczkowe Laplace'a

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Funkcję u(x,y) nazywamy *harmoniczną w punkcie* (x_0,y_0) , jeżeli jest harmoniczna w pewnym otoczeniu tego punktu.

Twierdzenie 4.6. Część rzeczywista u(x,y) oraz część urojona v(x,y) funkcji holomorficznej w pewnym obszarze są funkcjami harmonicznymi w tym obszarze.

Dwie funkcje harmoniczne u(x,y) oraz v(x,y), które spełniają

równanie Cauchy'ego-Riemanna, nazywamy funkcjami harmonicznymi sprzężonymi.

sprzężonymi.

Z twierdzeni 4.6 wynika więc, że części: rzeczywista oraz

Z twierdzeni 4.6 wynika więc, ze częsci: rzeczywista oraz urojona funkcji holomorficznej są funkcjami harmonicznymi

Niech f będzie funkcją zmiennej zespolonej określoną wzdłuż krzywej regularnej C danej równaniem z=z(t), gdzie $\alpha\leqslant t\leqslant \beta$. Dzielimy krzywą C w dowolny sposób na łuki punktami $a=z_0,z_1,...,z_n=b$ i tworzymy sumę "słupków" pod krzywą

$$S_n = \sum_{k=1}^n f(\zeta_k) \delta z_k$$
.

Jeżeli istnieje granica ciągu sum częściowych przy zalożeniu, że liczba łuków dąży do nieskończoności, a ich długości do zera i jeżeli granica ta nie zależy od sposobu podziału krzywej C na łuki i od wyboru punktow ζ_k , to granicę tę nazywamy całką krzywoliniową funkcji f wzdłuż krzywej C i oznaczamy symbolem

$$\int_{C} f(z) dz$$
.

Twierdzenie 4.7. Jeżeli funkcja f(z) = u + vi jest ciągła wzdłuż krzywej regularnej C, to całka $\int_C f(z)dz$ istnieje i daje się

krzywej regularnej
$$C$$
, to całka $\int_C f(z)dz$ istnieje i daje się wyrazić wzorem

 $\int_{C} f(z)dz = \int_{C} (u(x,y)dx - v(x,y)dy) + i \int_{C} (v(x,y)dx + u(x,y)dy).$

Korzystanie z powyższego wzoru przy obliczaniu całek funkcji zmiennej zespolonej wzdłuż krzywej *C* jest niewygodne. W zastosowaniach zamiast tego wzoru korzysta się z następującego wzoru

$$\int_{C} f(z)dz = \int_{\alpha}^{\beta} f[z(t)]z'(t)dt,$$

gdzie $z = z(t), \alpha \leqslant t \leqslant \beta$ jest równaniem krzywej całkowania C.

Całka (krzywoliniowa) funkcji zmiennej zespolonej zachowuje wszystkie własności całki (krzywoliniowej) funkcji rzeczywistej:

wszystkie własności całki (krzywoliniowej) funkcji rzeczywistej
$$\int_C [f_1(z)\pm f_2(z)]dz = \int_C f_1(z)dz\pm \int_C f_2(z)dz$$

$$\int_C [f_1(z) \pm f_2(z)] dz = \int_C f_1(z) dz \pm \int_C f_2(z) dz$$

 $\int_C [kf(z)]dz = k \int_C f(z)dz$

 $\int_{C} f(z)dz = -\int_{C} f(z)dz$

 $\int_{C_1+C_2} f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$

Twierdzenie 4.8. Jeżeli funkcja f jest ciągła w obszarze

jednospójnym D i ma w tym obszarze funkcję pierwotną F(z), to całka krzywoliniowa [cf(z)dz wzdłuż dowolnej drogi regularnej C zawartej w D o początku z1 i końcu z2 nie zależy

regularnej
$$C$$
 zawartej w D o początku z_1 i końcu z_2 nie zależy od drogi całkowania i wyraża się wzorem

 $\int_C f(z)dz = F(z_2) - F(z_1).$