

Business Model Canvas

Key Partners	Key Activities	Value Propositions	Customer Relationships	Customer Segments
 Agro-Based Companies. Domain & hosting provider 	 Best performance improve of our system Add as much as possible information of the plants disease and solution to the database. Get feedback from the field officers and farmers. 	 Detect diseases of different kinds of plants and tell how to prevent it. Farmers can post image of the infected plant in our website to identify the disease. Monitor the infected plant and get a detailed analysis of the disease and gives 	 Long-term Personal assistance Channels Website Application 	 Agro-Based Companies. Farmers and people who wants to know the name of disease that their plants are infected with and prevention method of it.
Cost Structure	Key Resources	recommendation for the best pesticide in the	Revenue Streams	Subscription
 Development cost Engineers Server cost Advertisement 	Efficient algorithm ML engineers	market to prevent the disease.	AdSense / Affiliate products commission from Agro-Based Companies.	- Agro-Based Companies

Background

- Detecting tomato leaf diseases is a challenge in computer vision.
- Researchers has created automated methods to identify tomato leaf diseases.
- ➤ Deep learning algorithms have improved tomato leaf disease detection.
- Creating systems that are accurate, efficient, and accessible to farmers.

ToLeD: Tomato leaf disease detection using convolution neural network.

Agarwal, M., Singh, A., Arjaria, S., Sinha, A., & Gupta, S. (2020). ToLeD: Tomato leaf disease detection using convolution neural network. *Procedia Computer Science*, 167, 293-301.

- Ø The paper discusses a deep learning-based approach using a Convolutional Neural Network for accurate disease detection and classification in tomato crops.
- Dataset of this paper was collected PlantVillage and the size is 12,206.
- Ø The disease was detected with the accuracy of 91.2%

Tomato leaf disease detection using convolutional neural network with data augmentation

Kaushik, M., Prakash, P., Ajay, R., & Veni, S. (2020, June). Tomato leaf disease detection using convolutional neural network with data augmentation. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 1125-1132). IEEE.

- This paper presents a deep learning-based approach using Convolutional Neural Networks (CNNs) for detecting six prevalent diseases in tomato leaves, using data augmentation and transfer learning with a ResNet-50 pre-trained model.
- Ø Dataset of this paper was collected PlantVillage and the size is 54,306
- ➤ The disease was detected with the accuracy of 97%.

Deep Convolutional Neural Networks for image-based tomato leaf disease detection.

Anandhakrishnan, T., & Jaisakthi, S. M. (2022). Deep Convolutional Neural Networks for image-based tomato leaf disease detection. *Sustainable Chemistry and Pharmacy*, *30*, 100793. .

- Ø This paper proposes an automatic system for identifying tomato leaf diseases at an early stage using Deep Convolutional Neural Network (CNN)
- Ø Dataset of this paper was collected PlantVillage and the size is 18,160.
- Ø The disease was detected with the accuracy of 98.4%.

Research Questions (2)

- 1. How will the proposed system benefit our farmers?
- 1. How it would be possible to detect tomato leaf diseases in the early stage and prevent it?
- 1. How can automated disease detection systems be used to improve disease management strategies, such as through targeted application of pesticides or other treatments?

Web-based System

Web-based System

Web-based System

Diagrams

Use Case Diagram

Activity Diagram (Swimlane)

Diagrams

Class Diagram

Diagrams ____

Component Diagram

systemfeatures User Admin **ImageDetails** GiveInformation showuserinfo **Upload Image** System Predictdisease

Sequence Diagram

Diagrams

Data Flow Diagram

Deployment Diagram

PLANNED METHODOLOGY - 3

Custom CNN

DESIGNS

VGG-16

VGG-19

Xception

DESIGNS QUE

ResNet-50

Random Forest

VGG-16 and RF

VGG-16 and SVC

VGG-16 and RF

VGG-16 and SVC

VGG-19 and RF

VGG-19 and SVC

Xception and RF

Xception and SVC

Obtained Results Model Name

Model Name	Avg. P (%)	Avg. R (%)	Avg. F1-Score (%)	Test Loss	Test Accuracy
Custom CNN	93	93	93	0.3096	93%
Xception	99	99	99	0.0045	99%
ResNet-50	97	97	97	0.0102	97%
Random Forest	61	61	61	0.3838	61%
Xception and Random Forest	58	58	58	0.4288	58%
VGG 16 and Random Forest	74	74	74	0.2245	74%
VGG 19 and Random Forest	74	74	74	0.2631	74%
VGG 16 and SVC	82	82	82	0.1799	82%
VGG 19 and SVC	82	82	82	0.1801	82%
Xception and	65	65	65	0.3304	65%

Result Analysis (Confusion Matrix)

				onf	usic	n M	latri	×		
Bacterial spot	1173	1	1	4	11	2	4	0	2	3
Early blight	19	1073	6	23	15	17	18	4	21	4
Late blight	8	55	1041	40	22	9	3	6	11	5
및 Leaf Mold	8	2	3	1155	5	4	4	1	21	2
Leaf Mold Septoria leaf spot	13	14	7	9	1118	4	17	0	9	3 4 5 2 9 4
	1		0	5	-3.	1139	24	6	14	4
Spider_mites Two-spotted_spider_mite Target_Spot	7	8	2	13	13	73	103	9	16	22
Tomato Yellow Leaf Curl Virus	6	2	0	6	1	14	4	1162	5	0
Tomato_mosaic_virus	0	0		8	1	4	2	0	118	0
healthy	0	3	2	6	9	32		2	47	1060
	-	Early_blight wo∾∞w	Late_blight № o	Leaf Mold o w	Septoria_leaf_spot_o		Target_Spot 😸	LO	50	
	8	5	6	0	8	=	8.	. =	.2	healthy
	S,	-0	-0	\geq		-	9	>	>,	(D)
	. ro	>	au'	res .	(0)	a	a)	=	- 12	=
	ai.	7	THE ST	9		- 6	5	J.	SS	1,000
	Bacterial spot	ü	_		-100	spider mite	10	Tomato_Yellow_Leaf_Curl_Virus	mosaic_virus	
	ä				豆	0		- aŭ	0	
					8	E		_1	Tomato	
					S	8		8	8	
						S		<u>a</u>	10	
						8		200		
						1		23		
						SS		100		
						=		.8		
						=		-		
						Spider_mites Two-spotted				
Cuctom CNN						골				
Custom CNN										
·				Prec	dicte	ed L	abe	1		

Result Analysis (Confusion Matrix)

Result Analysis (Confusion Matrix)

Result Analysis (Accuracy and Loss)

Custom CNN

Xception

Cost Analysis

Here is a cost analysis calculation for automating tomato leaf disease classification using COCOMO:

Project size: 10,000 ESLOC

Project complexity: 3

Cost =

K

*

E

*

(ESLOC)^F

where:

- K is a constant that depends on the development team experience
- E is a constant that depends on the project complexity
- ESLOC is the estimated source lines of code
- F is a constant that depends on the project complexity
- Sample calculation:

Using the following values:

- K = 2.8
- \bullet E = 3
- ESLOC = 10,000
- F = 1.12

The cost of the project can be calculated as follows:

Cost

=

2.8

*

*

(10,000)

^1.12

= \$300,000

References (

- 1. Agarwal, M., Singh, A., Arjaria, S., Sinha, A., & Gupta, S. (2020). ToLeD: Tomato leaf disease detection using convolution neural network. *Procedia Computer Science*, *167*, 293-301.
- 2. Ashok, S., Kishore, G., Rajesh, V., Suchitra, S., Sophia, S. G., & Pavithra, B. (2020, June). Tomato leaf disease detection using deep learning techniques. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 979-983). IEEE.
- 3. Ahmad, I., Hamid, M., Yousaf, S., Shah, S. T., & Ahmad, M. O. (2020). Optimizing pretrained convolutional neural networks for tomato leaf disease detection. *Complexity*, *2020*, 1-6.
- 4. Kibriya, H., Rafique, R., Ahmad, W., & Adnan, S. M. (2021, January). Tomato leaf disease detection using convolution neural network. In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) (pp. 346-351). IEEE.
- 5. Tarek, H., Aly, H., Eisa, S., & Abul-Soud, M. (2022). Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment. *Electronics*, *11*(1), 140.
- 6. Kaushik, M., Prakash, P., Ajay, R., & Veni, S. (2020, June). Tomato leaf disease detection using convolutional neural network with data augmentation. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 1125-1132). IEEE.
- 7. Huang, X., Chen, A., Zhou, G., Zhang, X., Wang, J., Peng, N., ... & Jiang, C. (2023). Tomato leaf disease detection system based on FC-SNDPN. *Multimedia Tools and Applications*, 82(2), 2121-2144.
- 8. Anandhakrishnan, T., & Jaisakthi, S. M. (2022). Deep Convolutional Neural Networks for image-based tomato leaf disease detection. Sustainable Chemistry and Pharmacy, 30, 100793.

Appendix [3]

<u>CO</u>	Knowledge Profiles ,K	<u>PO</u>	Complex Engineering Problem , EP
CO1	K1: knowledge of plant	PO1	EP1: Through K3 and K4
Integrate new and	diseases, images, light, rgb		
previously acquired	colors, pixels which falls in	Domain	EP2: for conflicting issues like
knowledge for	different natural sciences.	Knowledge	training time vs dataset size
identifying a real-			
life complex	K2: Mathematic and statistic		EP3: Difficult and work in progress
engineering	for deep learning Concepts		
problem as the	K3: System design and		EP4: System requirements for
capstone project	requirement engineering		understanding plant diseases and
			necessary pesticides, business idea
	K4: IDE, Frameworks,		are about of familiar domain.
	Programming		
			EP5: No standardized method is
			available for the plant disease
			recognition.

Appendix

CO	Knowledge Profiles ,K	<u>PO</u>	Complex Engineering Problem, EP
Examine various problem domains(literature review), define the problems, and formulate the objectives for the capstone project.	K8: Study of related paper for in depth problem Understanding and Solution mechanism	PO4 Inves tigati on	EP1: Theory based knowledge of plant pathology and engineering EP6: Different User, farmer, agrocompanies EP7: Project involves a number of interdependent components like plant disease recognition, pesticides recommendation.

<u>CO</u>	<u>Details</u>	Knowledge Profiles, K	Engineering Problem, EP
CO3	Analyze various aspects of the objectives for designing a solution for the capstone project.	 i) Problem Analysis [K1, K2, K3, K4] K1: Studying tomato leaf disease, identifying processes, policies, problems, and solutions. K2: Tomato leaf disease prediction requires different deep learning techniques and mathematics for processing tomato leaf data. K3: Project utilizes deep learning with different types of models for prediction of tomato leaf diseases. K4: Deep learning enhances security practice by utilizing various models for optimal output. 	(i) Problem Analysis [EP1, EP2, EP3, EP6, EP7] EP1: Studying Bangladeshi tomato leaf diseases and gathering knowledge EP2: Some literature utilized structured and built-in functions. EP3: Analyze subject, topic, and solution for tomato plant disease prediction project using abstract reasoning and research. EP6: Interviewed plant scientists and disease researchers to study their systems, identifying requirements not found in reviewed papers, setting project objectives. EP7: Data processing challenges in predicting tomato leaf disease.

CO	<u>Details</u>	Knowledge Profiles, K	Engineering Problem, EP
CO4	Design and develop solutions for the capstone project that meets public health and safety, cultural, societal, and environmental considerations.	(i) Design and Implementation [K5] K5: We acquired knowledge for predicting disease, data preprocessing, and deep learning models through analysis of YouTube videos and academic courses. We explored various approaches, including CNN and deep learning models, and designed a project for tomato leaf. Our project involved detecting diseases, data pre-processing, data augmentation, statistical analysis, and deep learning model prediction.	(i) Design and Implementation [EP1, EP2, EP4, EP5, EP7] EP1: Utilizing engineering knowledge at K3 through K8 levels, a fundamental-based analytical method is applied to predict tomato leaf disease index. EP2: Disease detection project utilized deep learning models and pre-processing, which were conflicting with engineering design. EP4: We made an effort to include issues that aren't commonly encountered in disease prediction. EP5: Our project aims to be understandable and maintain professional engineering standards for easy tomato leaf disease prediction. EP7: Preprocess and integrate data on tomato leaf disease over past three-4 years

CO	<u>Details</u>	Knowledge Profiles, K	Engineering Problem, EP
CO5	Identify and apply modern engineering and IT tools for the design and development of the capstone project	(i) Materials and Devices [K6] K6: Deep learning algorithms are needed for disease prediction in tomato leaf disease detection and risk assessment. Researchers have proposed algorithms and reviewed them, using Convolutional Neural Networks (CNN) and utilizing the latest tools. Teamwork and distributed workload are crucial.	(i) Materials and Devices [EP1, EP2, EP4, EP5] EP1: Utilizing engineering knowledge at K3 through K8, we develop a fundamental-based analytical method for disease prediction using our extensive skills. EP2: Tomato leaf disease prediction project utilized deep learning models and preprocessing, which were conflicting with engineering design. EP4: We made an effort to include issues that aren't commonly encountered in tomato leaf disease prediction. EP5: Our system aims to be user-friendly and maintain professional engineering standards, covering outside issues for easy disease prediction.

<u>CO</u>	<u>Details</u>	Knowledge Profiles, K	Engineering Problem, EP
CO6	Assess and resolve social, health, safety, legal, and cultural issues associated to the capstone project's execution, taking into account applicable professional and engineering practices and	(i) Social and Environmental Impact of Engineering [K7] K7: Our project used sustainable technology without prohibited terms or software, ensuring social and environmental engineering benefits. We used accurate, trustworthy information with supporting documentation, ensuring a secure system for identifying tomato leaf illness. The system is safe for laboratory, testing, and experimental	(i) Social and Environmental Impact of Engineering [EP2, EP5, EP6] EP2: Disease detection project utilized deep learning models and pre-processing, which were conflicting with engineering design. EP5: Our system aims to be user-friendly and maintain professional engineering standards, covering outside issues for easy disease prediction. EP6: Contacted plant experts to identify criteria not found in publications, focusing
	solutions.	operations.	on specific specifications for the project's goal.

Appendix

CO	<u>Details</u>	Knowledge Profiles, K	Engineering Problem, EP
CO7	Environmental protection should be	Our project is aimed at	EP2: Range of conflicting requirements:
	the top priority when starting any	addressing a disease of	Farmers may not operate the
	project, and our capstone project is in	tomato leaves. By providing	website due to lack of familiarity with technology.
	line with this principle. Since our	a simple and efficient way	rammanty with teemiology.
	program is computer-based, there is no	to detect diseases, our	EP5: Extent of applicable codes:
	risk of harmful substance release or	system can help to save time	We have taken steps to
	negative environmental impact. All	and resources for healthy	ensure data safety and
	the tools and equipment required,	tomato leaves, simplify the	integrity for the users.
	including the camera, PC, and	process of identifying	EP6: Extent of stakeholder
	software, are not hazardous to the	diseases for tomato leaf, and	involvement and conflicting requirements:
	environment.	provide a reliable method	The project has been
		for recovering the diseases.	developed in accordance with the requirements of the
			stakeholders.

Appendix

<u>CO</u>	<u>Details</u>	Knowledge Profiles,K	Engineering Problem,EP
CO8	Since our project required many tomato leaf photographs to train our model, we used two separate datasets. One dataset, consisting of 630 images of different tomato leaves in various lighting conditions, was manually collected by tomato leaf nursery and collected virtually from some reviewed papers and authentic websites. We made sure that the datasets contained both clear and fuzzy images of tomato leaves, and we took care to consider the ethical implications of our data collection.	Throughout the entire project, we have placed a strong emphasis on ethics and public safety. Our data collection process was carried out with the appropriate consent, and we have taken measures to ensure that our project has no negative impact on society.	EP2: Range of conflicting requirements: While implementing, we faced uncommon issues in obtaining the proper result. EP5: Extent of applicable codes: Modern tools have been used to develop this project. EP6: Extent of stakeholder involvement and conflicting requirements: Therefore, in this capstone project program, we aim to create a system that covers all types of users and allows them to save time and receive significant results.

