Processus Aléatoires-Partie2

Réalisé par Dr. A. Redjil Département de mathématiques, UBMA, Annaba

May 1, 2020

Abstract

E-mail: a.redjil@univ-annaba.dz

1 Processus aléatoires

1.1 Exemples sur les processus aléatoires

1.1.1 Processus de comptage

Definition 1 Motivation

Les processus de comptage modélisent de nombreux phénoménes. Considèrant le nombre d'accés de clients à un serveur durant une période (0,T), on observe en fait un processus de comptage sur cet intervalle de temps. De même, le nombre de particules détectées par un capteur peuvent être modélisés par des processus de comptage.

Definition 2 Processus de comptage. Un processus aléatoire $\{N_t, t \geq 0\}$ à valeurs entières est un processus de comptage si

- $N_0 = 0$;
- $\forall s \leq t, N_s \leq N_t$.

Remarque Les trajectoires d'un processus de comptage sont des fonctions en escalier dont la taille des marches est aléatoire.

Definition 3 Processus de Poisson. Un processus aléatoire $\{N_t, t \geq 0\}$ à valeurs—entières est un processus de Poisson de paramétre $\lambda > 0$ si

- (N_t) est un processus de comptage à accroissements indépendants et stationnaires, (Voir la suite de cours: Processus aléatoires-Partie2)
- la variable N_t suit la loi de Poisson de paramétre λt

$$\forall n \geq 0$$
, $P(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$.

1.1.2 Mouvement brownien

Motivation

Le processus de Wiener ou mouvement brownien est le plus célèbre des processus à valeurs réelles. Il possède de nombreuses propriétés mathématiques : accroissements indépendants et stationnaires, processus gaussien, martingale, processus de Markov. (voir la suite de cours: Processus aléatoires-Partie 2). Comme une conséquence du théorème de tendance vers la loi normale. Il intervient dans la modélisation de nombreux phénomènes.

Definition 4 Mouvement brownien. Un processus aléatoire $\{B_t; t \geq 0\}$ à valeurs réelles est un processus de Wiener ou mouvement brownien standard si:

(B_t) est un processus à valeurs réelles à accroissements indépendants et stationnaires. (Voir la suite de cours: Processus aléatoires-Partie2)
la variable aléatoire B_t suit la loi normale centrée N(0,t). (Voir le chapitre 1- Rappels sur les probabilités et la théorie de mesure, partie variables aléatoires- Lois de probabilités)

1.1.3 Suite de variables aléatoires indépendantes

On considère les variables aléatoires $(X_n)_{n\in\mathbb{N}}$, à valeurs dans \mathbb{R} ; indépendantes, pas forcément identiquement distribuées.

Les lois marginales du processus sont identifiées par les fonctions de répartition $(F_n)_{n\in\mathbb{N}}$ des vecteurs extraits. Or la fonction de répartition multidimensionnelle d'un vecteur extrait X_{n_1}, \ldots, X_{n_k} , où $\{n_1, \ldots, n_k\}$ est un sous ensemble quelconque de \mathbb{N} , est définie par:

$$F(x_{n_1},....,x_{n_k}) = F_{n_1}(x_{n_1})....F_{n_k}(x_{n_k}).$$

D'après le théorème de Kolmogorov, il existe un processus sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})^{\mathbb{N}}$ ayant les marges qui coïncident avec ce système de lois de dimension finie. (l'exemple sera traité dans la série TD4)

1.1.4 Processus stationnaires.

On considère l'espace des temps T et l'espace d'états E, un processus est dit **stationnaire au sens fort** si pour tout n dans \mathbb{N} et tout $(t_1,, t_n) \in T^n$, on a identité les lois des marges de dimension finie prises aux instants $(t_1,, t_n)$ et $(t_1 + h,, t_n + h)$, pour h > 0, i.e.

$$\forall (B_1,B_2,....,B_n) \in E^n \text{ , on a :} \\ P(\{(X_{t_1},X_{t_2},.....,X_{t_n}) \in B_1 \times \times B_n\}) = \\ P(\{(X_{t_1+h},X_{t_2+h},.....,X_{t_n+h}) \in B_1 \times \times B_n\}).$$

On peut dire que les lois des marges de dimension finie sont invariantes par translation temporelle.

Si on a pour tout t, $X_t \in L^2(\Omega, \mathcal{A}, P)$ autrement dit le processus est du second ordre, on dit qu'il est **stationnaire au sens faible** si sa moyenne est constante et la covariance entre X_t et X_{t+h} , pour t et t+h dans T, ne dépend que de h.

1.1.5 Processus gaussiens.

Definition 5 Un processus d'espace des temps T et d'espace d'états \mathbb{R} est dit processus gaussien réel si toutes ses marges de dimension finie sont des vecteurs gaussiens

Un vecteur gaussien est caractérisé par son espérance et sa matrice de covariance. On peut spécifier un processus gaussien par sa fonction moyenne et sa fonction covariance.

Tout vecteur extrait d'un vecteur gaussien est un vecteur gaussien, la cohérence d'un tel système de loi est vérifiée et on a :

Theorem 6 Soit m une fonction de T vers \mathbb{R} et Γ une fonction symétrique de T^2 vers \mathbb{R} tel que pour toute partie finie $\{t_1,, t_n\}$ de T, la matrice $(\Gamma(t_i, t_j)_{1 \leq i; j \leq n})$ soit définie positive..

Il existe alors un unique processus gaussien, à une équivalence près, dont les marges finies, pour $n \in \mathbb{N}$ et $(t_1,, t_n) \in T^n$ sont un vecteur gaussien d'espérance $(m(t_1),, m(t_n))^T$ et de matrice de covariance $(\Gamma(t_i, t_j)_{1 \le i; j \le n})$. La loi du processus gaussien est caractérisée par les fonctions m et Γ .

1.1.6 Processus à accroissements indépendants.

Definition 7 Soit T un espace des temps inclus dans \mathbb{R} , E un espace polonais et X un processus de (Ω, \mathcal{A}, P) vers $(E; \varepsilon)^T$.

On dit que le processus X est à **accroissements indépendants** (on écrit souvent **PAI**) si pour tout $t_1 < t_2 < \cdots < t_n$ de T, les variables aléatoires

$$X_{t_2} - X_{t_1}; X_{t_3} - X_{t_2},, X_{t_n} - X_{t_{n-1}}$$

sont mutuellement indépendantes. Si l'espace des temps admet un plus petit indice t_0 , on suppose que la famille précédente enrichie de la v.a. X_{t_0} est encore une famille de v.a. indépendantes.

Le processus est dit à accroissements stationnaires si la loi de $X_{t+h} - X_t$ dépend uniquement de h et non de t. Un processus à accroissements indépendants et stationnaires est noté **PAIS**.

Si l'espace des temps est \mathbb{N} (ou éventuellement \mathbb{Z}), on traite l'exemple de la marche aléatoire en considérant les v.a. (\mathbb{Z}_n) définies, par :

$$Z_0 = X_0, Z_1 = X_1 - X_0, Z_2 = X_2 - X_1, ..., Z_n = X_n - X_{n-1}, \text{pour } n > 0.$$

On a:

$$X_n = Z_0 + Z_1 + \dots + Z_n$$

Le pas $Z_n = X_n - X_{n-1}$ effectué au temps n par le processus, est indépendant du passé.

Example 8 La marche aléatoire simple.

Soit X un processus stochastique à espace des temps \mathbb{N} , espace d'états \mathbb{Z} et défini de la manière suivante : $X_0 = 0$ et $Z_n = X_n - X_{n-1}$ est de loi $p\delta_1 + (1-p)\delta_{-1}$ et la famille des v.a. $(\mathbb{Z}_n)_{n \in \mathbb{N}}$ est une famille indépendante.

1.1.7 Martingales.

Soit X un processus défini sur (Ω, \mathcal{A}, P) et à valeurs sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})^{\mathbb{T}}$, où T est soit \mathbb{R}^+ , soit \mathbb{N} . La filtration naturelle associée au processus X est définie par la famille des tribus (\mathcal{F}_t) :

Pour tout t dans T, \mathcal{F}_t est la tribu engendrée par les X_s pour $s \leq t$:

$$\mathcal{F}_t = \sigma(X_s, s < t), s \in T$$

La tribu \mathcal{F}_t représente mathématiquement l'histoire du processus au temps t. On a $\mathcal{F}_t \subset \mathcal{F}_{t'}$, pour tout $t \leq t'$. La famille de tribu (\mathcal{F}_t) est dite filtration naturelle associée au processus X.

Rappel

Pour tout $t \leq t$, on a $\mathcal{F}_t \subset \mathcal{F}_{t'}$.

Definition 9 On dit qu'un processus $(X_t)_{t\in T}$ à valeurs dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ est une martingale par rapport à sa filtration naturelle si l'on a :

$$\mathbb{E}\mid X_t\mid<+\infty,\,\forall t\in T$$

$$\mathbb{E}(X_t/\mathcal{F}_s)=X_s\text{ , pour tout }s\leq t\text{ et }(s;t)\in T^2$$

Le signe $\mathbb{E}(X_t/\mathcal{F}_s)$ signifie l'espérance conditionnelle de X_t relativement à la tribu \mathcal{F}_s .

Les martingales sont utilisées pour modéliser des jeux équitables, si $X_t - X_s$ est le gain du joueur entre les instants s et t, on a dans un jeu équilibré : $\mathbb{E}(X_t - X_s/\mathcal{F}_s) = 0$.

Exemple

La marche aléatoire simple est une martingale à temps discret si elle est symétrique (p = 1/2). (Voir série TD4)

1.1.8 Processus de renouvellement.

Definition 10 Soient $(T_n)_{n\in\mathbb{N}}$ une suite de v.a. sur (Ω, \mathcal{A}, P) , positives, indépendantes et identiquement distribuées de fonction de répartition. Le processus $(S_n)_{n\in\mathbb{N}}$

à valeurs dans $(\mathbb{R}^+, \mathcal{B}_{\mathbb{R}^+})$ défini par

$$S_n = T_1 + \dots + T_n .$$

est dit **processus de renouvellement.** Un processus de renouvellement est un ${\bf PAIS}$.

Exemple (Fiabilité)

Supposons que l'on dispose de matériels identiques (La loi d'attente de la panne est identique) et au comportement indépendant. Plaçons une première unité en marche à l'instant t=0. Dès que celle-ci tombe en panne, on la remplace instantanément par une seconde et ainsi de suite. Le temps où aura lieu le $n^{i\grave{e}me}$ renouvellement est donc $S_n=T_1+\ldots+T_n$, où $(T_i)_{i=1,\ldots,n}$ sont les temps d'attente de la panne pour les différents matériels.

A ce processus de renouvellement on peut associer un processus de comptage du nombre de renouvellements.

Definition 11 Soit $(S_n)_{n\in\mathbb{N}}$ un processus de renouvellement défini par une suite de variables aléatoires $(T_n)_{n\in\mathbb{N}}$ définies sur (Ω, \mathcal{A}, P) et à valeurs dans $(\mathbb{R}^+, \mathcal{B}_{\mathbb{R}^+})$, indépendantes identiquement distribuées (i.i.d) de fonction de répartition F.

On appelle processus de comptage des renouvellements le processus $(N_t)_{t\in\mathbb{R}^+}$ défini sur (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} par :

$$N_t = \sum_{i=1}^{+\infty} 1_{]0,t]}(S_n)$$

= $n \text{ si } S_n \le t < S_{n+1}$

= nombre de renouvellement survenus jusqu'au temps t.

Definition 12 On appelle processus de Poisson de paramètre λ , un processus de comptage de renouvellements associé à un processus de renouvellement où la loi des v.a. $(T_n)_{n\in\mathbb{N}}$ est exponentielle de paramètre λ .

1.1.9 Processus de Markov.

Definition 13 Un processus $(\Omega, \mathcal{A}, P, (X_t)_{t \in T})$ à valeurs dans un espace (E, ε) est dit **processus de Markov** si pour tout $s \leq t$, $(s,t) \in T^2$ et tout $A \in \varepsilon$, on a:

$$P(X_t \in A/\mathcal{F}_s) = P(X_t \in A/X_s).$$

On dit que le futur du processus ne dépend du passé qu'à travers le présent. Ce processus est dit homogène si la loi de X_t sachant X_s ne dépend que de t-s pour s< t.

Si l'espace des temps est discret, on parle de **chaine de Markov**, s'il est continu on parle de processus de Markov.