Théorie des Jeux

Jeux, Stratégies et Information

Marc Plantevit

marc.plantevit@univ-lyon1.fr

Objectif de ce Cours

Concepts clés étudiés :

- jeux en forme normale;
- jeux sous forme extensive;
- les ensembles d'information;
- l'information parfaite/imparfaite;
- l'information complète / incomplète;
- les stratégies pures et mixtes pour la forme normale;
- les stratégies pures, mixtes, locales et comportementales pour la forme extensive;
- les stratégies équivalentes;
- l'élimination des stratégies strictement dominées.

Situations d'interaction ≡ Jeux

- → Représentation sous forme de jeu.
- → Analyse des interactions et de leurs conséquences

Plan

- Définition et représentation des situations d'interaction
- Représentation de l'information
- Offinition des stratégies
- Solution et Équilibre de Jeu

Jeux Non-Coopératifs

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

 $D\acute{e}cisions\ simultan\acute{e}es
ightarrow matrice\ de\ jeu\ (jeux\ en\ forme\ normale)$ $D\acute{e}cisions\ s\acute{e}quentielles
ightarrow$ arbre de jeu (jeux\ en\ forme\ extensive).

La Forme Normale d'un Jeu

La définition d'un jeu en forme normale doit répondre aux trois questions suivantes :

- Qui joue?
- Quelles sont les actions disponibles pour chaque joueur?
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu?

Jeu en Formale Normale : Définition

Definition

Un jeu en forme normale est décrit par les éléments suivants :

- Un ensemble de *n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur i, $i \in I$, un **ensemble de stratégies** $S_i \equiv$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i.
 - Par conséquent, $S_i = \left\{ s_i^{\ 1}, s_i^{\ 2}, \dots, s_i^{\ k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie $s_i \rightarrow$ le résultat (ou profil de stratégies) : $s \equiv (s_1, s_2, \dots, s_n)$.
- Pour chaque joueur i, une fonction de gain, u_i (les préférences (VNM) du joueur i):

$$u_i: S = \times_{i \in I} S_i \to \mathbb{R}$$

$$s \equiv (s_1, s_2, \ldots, s_n) \mapsto u_i(s)$$

Exemple : le Dilemme du Prisonnier

Deux individus (Bonnie et Clyde) sont arrêtés par la police suite à un vol à main armée et ils sont enfermées dans deux cellules séparées *sans possibilité de communiquer*.

Chaque individu est interrogé *séparément* et il a le choix de **nier** d'avoir commis le vol ou **dénoncer** son complice comme seul responsable.

Exemple : le Dilemme du Prisonnier

Deux individus (Bonnie et Clyde) sont arrêtés par la police suite à un vol à main armée et ils sont enfermées dans deux cellules séparées *sans possibilité de communiquer*.

Chaque individu est interrogé *séparément* et il a le choix de **nier** d'avoir commis le vol ou **dénoncer** son complice comme seul responsable.

Formalisation : jeu non coopératif

$$n = 2$$
 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}.$

• L'ensemble des stratégies de chaque joueur est : $S_1 = S_2 = \{N, D\}$.

Exemple : le Dilemme du Prisonnier

Deux individus (Bonnie et Clyde) sont arrêtés par la police suite à un vol à main armée et ils sont enfermées dans deux cellules séparées sans possibilité de communiquer.

Chaque individu est interrogé *séparément* et il a le choix de **nier** d'avoir commis le vol ou **dénoncer** son complice comme seul responsable.

Formalisation : jeu non coopératif

- n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}.$
 - L'ensemble des stratégies de chaque joueur est : $S_1 = S_2 = \{N, D\}$.
 - ullet \Rightarrow 4 résultats possibles :

$$S = \left\{ \begin{array}{cc} (s_1 = N, s_2 = N), & (N, D), \\ (D, D), & (D, N) \end{array} \right\}$$

Gains des individus (connus par eux) \equiv années de prisons (relation négative) :

• Si Bonnie et Clyde *dénoncent tous les deux*, ils sont condamnés à 8 ans de prison.

Gains des individus (connus par eux) \equiv années de prisons (relation négative) :

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils *nient tous les deux*, ils auront 1 année de prison du fait de l'absence de preuves accablantes.

Gains des individus (connus par eux) \equiv années de prisons (relation négative) :

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils *nient tous les deux*, ils auront 1 année de prison du fait de l'absence de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

Gains des individus (connus par eux) \equiv années de prisons (relation négative) :

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils nient tous les deux, ils auront 1 année de prison du fait de l'absence de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

Gains (symétriques)

$$u_1(N, N) = u_2(N, N) = -1,$$

 $u_1(N, D) = u_2(D, N) = -10,$
 $u_1(D, N) = u_2(N, D) = 0,$
 $u_1(D, D) = u_2(D, D) = -8.$

Matrice de Jeu

Matrice où : Stratégies de Bonnie \rightarrow lignes, Stratégies de Clyde \rightarrow colonnes.

	Clyde	
	N	D
N	(-1, -1)	(-10,0)
Bonnie	(0 10)	(2 2)
D	(0, -10)	(-8, -8)

Le vecteur de gains (-1, -1) correspond à $(u_1(N, N), u_2(N, N))$.

Remarques / Warnings

- Ne pas confondre la stratégie d'un joueur individuel s_i et le résultat s qui est une combinaison particulière des stratégies de tous les joueurs.
- En économie les stratégies sont souvent continues (alors les S_i contient une infinité de stratégies)
- Les gains sont des utilités ordinales et non des sommes monétaires (en organisation industrielle, les gains des firmes ≡ leurs profits).

Jeu en Forme Extensive

Definition

Un **jeu en forme extensive** est donné par un *arbre de jeu* contenant un nœud initial, des nœuds de décisions, des nœuds terminaux et des branches reliant chaque nœud à ceux qui lui succèdent.

- Un ensemble de n 1 joueurs, indexés par i = 1, 2, ..., n.
- Pour chaque nœud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce nœud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque nœud où il est susceptible de prendre une décision.
- La spécification des gains de chaque joueur à chaque nœud terminal.

Exemple

Exemple : Le Problème de l'Entrant Potentiel

Le problème d'entrée d'une firme sur le marché d'un monopole

- L'entrant (E) doit choisir entre Entrer ou Ne pas entrer
- S'il entre, la firme installée (I) a deux choix :
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Nous pouvons représenter ce jeu sous la forme d'un arbre où les gains sont :

$$u_E(\text{Entrer}, \text{Coopérer}) = 40$$
 $u_I(\text{Entrer}, \text{Coopérer}) = 50$ $u_E(\text{Entrer}, \text{Combattre}) = -10$ $u_I(\text{Entrer}, \text{Combattre}) = 0$ $u_I(\text{Non}) = 300$

Forme extensive vue pendant le cours.

Plan

- Définition et représentation des situations d'interaction
- 2 Représentation de l'information
- Définition des stratégies
- Solution et Équilibre de Jeu

Information Imparfaite

Parfois, un joueur qui doit prendre une décision ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

→ Il ne connaît pas parfaitement le nœud auquel il se situe!

Information Imparfaite

Parfois, un joueur qui doit prendre une décision ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

→ Il ne connaît pas parfaitement le nœud auquel il se situe!

Si à un moment donné, un joueur ne peut distinguer deux nœuds, nous dirons que ces deux nœuds appartiennent au même **ensemble d'information**.

Definition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les nœuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose.

Definition

À chaque étape d'un jeu en forme extensive, on appelle un ensemble **d'information** (h_i) la collection de tous les nœuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose.

• Chaque nœud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles.

Definition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les nœuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose.

- Chaque nœud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles.
- On note par H_i l'ensemble des ensembles d'information du joueur i.

Definition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les nœuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose.

- Chaque nœud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles.
- ullet On note par H_i l'ensemble des ensembles d'information du joueur i.

Représentation :

un ensemble d'information \Rightarrow une **courbe en pointillée** reliant les nœuds qui appartiennent à cet ensemble.

Exemple

Dilemme du prisonnier : représentation sous forme extensive en utilisant les ensembles d'information.

 $C=\{C_1,C_2\}$ est l'ensemble $B=\{B_1,B_2\}$ est l'ensemble d'information de Clyde. d'information de Bonnie. Chacun ne peut dire s'il doit faire face à une dénonciation par l'autre ou non.

⇒ Jeu en information imparfaite.

Definition

Un jeu en forme extensive est

- un jeu avec information imparfaite si au moins un ensemble d'information contient plus d'un nœud;
- ② un jeu avec **information parfaite** si chaque ensemble d'information est réduit à un seul nœud.

Pour pouvoir analyser les jeux en information imparfaite :

Nous devons:

 adapter le concept de stratégie pour tenir compte de l'incapacité des joueurs à distinguer les nœuds d'un même ensemble d'information.

Pour pouvoir analyser les jeux en information imparfaite :

Nous devons:

 adapter le concept de stratégie pour tenir compte de l'incapacité des joueurs à distinguer les nœuds d'un même ensemble d'information.

Definition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Pour pouvoir analyser les jeux en information imparfaite :

Nous devons:

 adapter le concept de stratégie pour tenir compte de l'incapacité des joueurs à distinguer les nœuds d'un même ensemble d'information.

Definition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

- Jeux avec information parfaite : on retrouve la définition initiale de la stratégie car :
 - Chaque ensemble d'information = un nœud de décision du joueur.

Information Incomplète

L'information imparfaite n'est pas le seul cas d'information partielle pour les joueurs.

Information Incomplète

L'information imparfaite n'est pas le seul cas d'information partielle pour les joueurs.

Definition

Un jeu est à **information incomplète** si au moins un des joueurs ne connaît pas parfaitement la structure du jeu. Dans le cas contraire, il est à information complète.

Nous reviendrons sur les problèmes liés à l'information incomplète de certains joueurs.

Remarque

L'exemple du dilemme du prisonnier nous montre que :

 Plusieurs représentations en forme extensive peuvent correspondre au même jeu en forme normale.

Nous devons maintenant définir un des concepts clés de la théorie des jeux : la stratégie.

Plan

- Définition et représentation des situations d'interaction
- Représentation de l'information
- 3 Définition des stratégies
- Solution et Équilibre de Jeu

Jusqu'à maintenant :

- Nous avons délibérément confondu les stratégies des agents avec leurs actions propres : dénoncer, combattre, etc.
- Cela est souvent vrai pour les jeux très simple mais la théorie des jeux est basée sur une représentation plus fine des stratégies des joueurs en fonction de la situation d'interaction et de la représentation retenue du jeu.

• **Une stratégie d'un joueur** : spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer.

- Une stratégie d'un joueur : spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer.
- S'il joue plusieurs tours de jeu ⇒ une action pour chacun des tours.

- Une stratégie d'un joueur : spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer.
- S'il joue plusieurs tours de jeu ⇒ une action pour chacun des tours.
- Un profil de stratégies (résultat): spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

- Une stratégie d'un joueur : spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer.
- S'il joue plusieurs tours de jeu ⇒ une action pour chacun des tours.
- Un profil de stratégies (résultat) : spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Donc : les stratégies des joueurs doivent nous permettre de dérouler complètement le jeu quand on les combine (un profil de stratégies).

Exemple : le Jeu de l'Entrée II

Il s'agit d'une analyse plus fine des interactions concernant le problème d'entrée sur un marché.

Est-ce que {Non} peut constituer une stratégie de E?

• Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

- Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .
- Or, chaque stratégie d'un joueur doit préciser une action chaque fois que le joueur est susceptible de jouer.

- Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .
- Or, chaque stratégie d'un joueur doit préciser une action chaque fois que le joueur est susceptible de jouer.
- Pour E: en E_0 mais aussi en E_1 .

- Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .
- Or, chaque stratégie d'un joueur doit préciser une action chaque fois que le joueur est susceptible de jouer.
- Pour E: en E_0 mais aussi en E_1 .
- Exemple : (Non /E0, Produire /E1);

- Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .
- Or, chaque stratégie d'un joueur doit préciser une action chaque fois que le joueur est susceptible de jouer.
- Pour E: en E_0 mais aussi en E_1 .
- Exemple : (Non /E0, Produire /E1);
- Exemple de profil de stratégies :

$$(\underbrace{(Non/E_0, Produire/E_1)}, \underbrace{Non/I})$$

Pour quoi préciser Produire/E1 et Non/I tandis que le jeu s'arrête a près Non/E0 ?

Deux raisons:

Pourquoi préciser Produire/E1 et Non/I tandis que le jeu s'arrête après Non/E0?

Deux raisons:

Couvrir les possibilités d'erreur (de la firme E en E₀): pour évaluer ses choix, I aura besoin de connaître ce qui pourrait se passer si E choisissait en E₀, par erreur, Installer au lieu de Non et donner l'occasion de jouer à I. Pour déterminer sa stratégie, I aura donc besoin de connaître ce que fera E en E₁.

Pourquoi préciser Produire/E1 et Non/I tandis que le jeu s'arrête après Non/E0?

Deux raisons:

- Couvrir les possibilités d'erreur (de la firme E en E₀): pour évaluer ses choix, I aura besoin de connaître ce qui pourrait se passer si E choisissait en E₀, par erreur, Installer au lieu de Non et donner l'occasion de jouer à I. Pour déterminer sa stratégie, I aura donc besoin de connaître ce que fera E en E₁.
- Permettre le test de l'optimalité des actions : l'optimalité de Non/ E_0 dépendra du résultat qu'on pourrait obtenir avec Installer/ E_0 et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Pourquoi préciser Produire/E1 et Non/I tandis que le jeu s'arrête après Non/E0?

Deux raisons:

- Couvrir les possibilités d'erreur (de la firme E en E₀): pour évaluer ses choix, I aura besoin de connaître ce qui pourrait se passer si E choisissait en E₀, par erreur, Installer au lieu de Non et donner l'occasion de jouer à I. Pour déterminer sa stratégie, I aura donc besoin de connaître ce que fera E en E₁.
- Permettre le test de l'optimalité des actions : l'optimalité de Non/E_0 dépendra du résultat qu'on pourrait obtenir avec Installer/ E_0 et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque:

- Ensemble E_1 : une seule action pour E, même s'il joue à deux sommets.
- car il ne peut distinguer ces deux sommets.

Profil ((Non/ E_0 , Produire/ E_1), Non/I)

- Un tel profil de stratégies nous permet de dérouler complètement le jeu,
- i.e, déboucher au nœud final où les gains des joueurs sont : (0,100).

Profil ((Non/ E_0 , Produire/ E_1), Non/I)

- Un tel profil de stratégies nous permet de dérouler complètement le jeu,
- i.e, déboucher au nœud final où les gains des joueurs sont : (0, 100).

Mais:

- les stratégies ne sont pas toujours composées d'actions pures (stratégies pures).
- Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

Ex.: Au tennis, 60% de coups droits, 40% de revers.

On parle alors de stratégies mixtes.

Definition

Une **stratégie pure** du joueur *i* est un *plan d'actions* qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer.

Definition

Une **stratégie pure** du joueur *i* est un *plan d'actions* qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer.

• On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Definition

Une **stratégie pure** du joueur *i* est un *plan d'actions* qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer.

• On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Definition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i.

Definition

Une **stratégie pure** du joueur *i* est un *plan d'actions* qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer.

• On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Definition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i.

• On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Definition

Une **stratégie pure** du joueur *i* est un *plan d'actions* qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer.

• On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Definition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i.

- On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.
- Dans les jeux en forme extensive, nous pouvons utiliser l'information dont nous disposons sur le déroulement du jeu pour construire des concepts de stratégies encore plus fins.

Stratégies dans un jeu en forme extensive - I

Stratégies dans un jeu en forme extensive :

Definition

Une stratégie pure du joueur i est une application s_i qui attribue à chaque ensemble d'information du joueur i une action qu'il est susceptible de choisir dans cet ensemble d'information.

• S_i représente l'ensemble des stratégies pures du joueur i.

Stratégies dans un jeu en forme extensive - II

Definition

Une **stratégie locale** du joueur i est similaire à une stratégie mixte, sauf qu'elle est définie au niveau d'un ensemble d'information, au lieu du jeu global.

Stratégies dans un jeu en forme extensive - II

Definition

Une **stratégie locale** du joueur i est similaire à une stratégie mixte, sauf qu'elle est définie au niveau d'un ensemble d''information, au lieu du jeu global.

 Pour un joueur i, elle définit par conséquent, pour chaque ensemble d'information h, une mesure de probabilités sur l'ensemble des actions disponibles en cet ensemble d'information.

Stratégies dans un jeu en forme extensive - II

Definition

Une **stratégie locale** du joueur i est similaire à une stratégie mixte, sauf qu'elle est définie au niveau d'un ensemble d'information, au lieu du jeu global.

- Pour un joueur i, elle définit par conséquent, pour chaque ensemble d'information h, une mesure de probabilités sur l'ensemble des actions disponibles en cet ensemble d'information.
- On la note par π_{ih} (la stratégie locale du joueur i à son ensemble d'information h) et Π_{ih} est l'ensemble des stratégies locales de ipour l'ensemble d'information h.

Stratégies dans un jeu en forme extensive - III

Definition

Une **stratégie comportementale** du joueur *i* est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur.

Stratégies dans un jeu en forme extensive - III

Definition

Une **stratégie comportementale** du joueur *i* est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur.

• On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

Stratégies dans un jeu en forme extensive - III

Definition

Une **stratégie comportementale** du joueur *i* est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur.

• On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

Les stratégies mixtes sont définies de la même manière que la pour la précédente définition, une fois qu'on tient compte de la nouvelle définition de S_i .

Nous avons maintenant une batterie de concepts de stratégies pour décrire les différents types de jeu et les différents stades d'un jeu :

- stratégies pures (tout jeu);
- stratégies mixtes (tout jeu);
- stratégies locales (forme extensive);
- stratégies comportementales (forme extensive).

Retour à l'exemple

Joueur E

• Deux ensembles d'information : E_0 et E_1 .

Joueur E

- Deux ensembles d'information : E_0 et E_1 .
- Chacune de ses stratégies pures doit préciser une action en E_0 et une autre en E_1 . $S_E = \{ (Installer/E_0, Produire/E_1), (Installer/E_0, Non/E_1), (Non/E_0, Produire/E_1), (Non/E_0, Non/E_1) \}$

Joueur E

- Deux ensembles d'information : E_0 et E_1 .
- Chacune de ses stratégies pures doit préciser une action en E_0 et une autre en E_1 . $S_E = \{ (Installer/E_0, Produire/E_1), (Installer/E_0, Non/E_1), (Non/E_0, Produire/E_1), (Non/E_0, Non/E_1) \}$

Joueur 1

 Un seul ensemble d'information (I) et 2 actions à cet ensemble d'information :

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Nous pouvons utiliser ces stratégies pour représenter la forme normale de ce jeu :

		<u>l</u>	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	$(Non/E_0, Produire/E_1)$	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

Les gains (-50,40) correspondent donc à $u_E((Installer, Produire), Augmenter) = -50$ pour l'entrant potentiel et $u_I((Installer, Produire), Augmenter) = 40$ pour la firme installée. Cet exemple montre qu'on peut représenter sous forme normal tout jeu sous forme extensive et cela grâce à une définition précise des stratégies.

Une **stratégie mixte** du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec :

$$\sum_{s \in S_E} p_E(s) = 1$$

Une **stratégie mixte** du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec :

$$\sum_{s\in S_E}p_E(s)=1$$

Un exemple de stratégie mixte, p_E est :

- $p_E(Installer/E_0, Produire/E_1) = \frac{1}{5}$,
- $p_E(\operatorname{Installer}/E_0, \operatorname{Non}/E_1) = \frac{3}{5}$,
- $p_E(\text{Non}/E_0, \text{Produire}/E_1) = \frac{1}{5}$,
- $p_E(\text{Non}/E_0, \text{Non}/E_1) = 0.$

Un autre exemple de stratégie mixte p_E est :

$$p_E(\text{Installer}/E_0, \text{Produire}/E_1) = \frac{1}{5}$$

qui correspond à la stratégie pure (Installer/ E_0 , Produire/ E_1) puisque les autres stratégies ont une probabilité nulle d'être jouées.

On dit souvent que les stratégies pures sont des stratégies mixtes **dégénérées**.

Jouer une stratégie mixte, c'est :

• tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,

Jouer une stratégie mixte, c'est :

- tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives.

Jouer une stratégie mixte, c'est :

- tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives.
- ce dé étant pipé de manière à respecter les probabilités de la stratégie mixte utilisée).

ENFIN UN PEU DE CLARTÉ!
CHAQUE PHRASE EST SOIT
LA VÉRITÉ PURE ET DURE,
SOIT UN SOMBRE MENSONGE
ÉHONTE! SOIT L'UN, SOIT
L'AUTRE! RIEN ENTRE LES
DEUX!

Stratégies locales du joueur i à l'ensemble d'information

 $h:\pi_{ih}(s_i)\in[0,1]$ avec

$$\sum_{s_i \in h} \pi_{ih}(s_i) = 1$$

Stratégies locales du joueur i à l'ensemble d'information

 $h:\pi_{ih}(s_i)\in[0,1]$ avec

$$\sum_{s_i \in h} \pi_{ih}(s_i) = 1$$

Pour le joueur E, le profil de stratégies locales suivant forme un exemple de **stratégie comportementale** :

• en E_0 : $\pi_{EE_0}(\mathsf{Installer}) = \frac{1}{2}$, $\pi_{EE_0}(\mathsf{Non}) = \frac{1}{2}$

• en $E_1 : \pi_{EE_1}(Produire) = \frac{1}{4}, \pi_{EE_1}(Non) = \frac{3}{4}$

• **Stratégie comportementale** contient donc une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.

- Stratégie comportementale contient donc une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.
- Les probabilités portent sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

- Stratégie comportementale contient donc une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.
- Les probabilités portent sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.
- \$\neq\$ Stratégie mixte: une unique distribution sur l'ensemble des stratégies pures du joueurs et donc sur le déroulement total du jeu pour ce joueur.

- Stratégie comportementale contient donc une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.
- Les probabilités portent sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.
- Jouer une stratégie mixte revient à jouer une seule fois (quand chaque joueur fait son tirage au sort, au début du jeu).

- Stratégie comportementale contient donc une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.
- Les probabilités portent sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.
- Jouer une stratégie mixte revient à jouer une seule fois (quand chaque joueur fait son tirage au sort, au début du jeu).
- Jouer une stratégie comportementale permet de suivre le déroulement temporel du jeu. ⇒ Un tirage au sort à chacun des ensembles d'information, une fois que cet ensemble est atteint.

 Généralisation des stratégies pures : les stratégies pures deviennent alors des stratégies mixtes dégénérées car les stratégies mixtes couvrent un ensemble de possibilités plus large pour les stratégies.

- Généralisation des stratégies pures : les stratégies pures deviennent alors des stratégies mixtes dégénérées car les stratégies mixtes couvrent un ensemble de possibilités plus large pour les stratégies.
- Adaptation à certaines situations: où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine (si vous jouez au tennis avec un partenaire dont la faiblesse est son revers vous n'avez pas intérêt à jouer systématiquement sur son revers);

- Généralisation des stratégies pures : les stratégies pures deviennent alors des stratégies mixtes dégénérées car les stratégies mixtes couvrent un ensemble de possibilités plus large pour les stratégies.
- Adaptation à certaines situations: où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine (si vous jouez au tennis avec un partenaire dont la faiblesse est son revers vous n'avez pas intérêt à jouer systématiquement sur son revers);
- Qualités techniques : convexité et compacité des ensembles de stratégies.

- Généralisation des stratégies pures : les stratégies pures deviennent alors des stratégies mixtes dégénérées car les stratégies mixtes couvrent un ensemble de possibilités plus large pour les stratégies.
- Adaptation à certaines situations: où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine (si vous jouez au tennis avec un partenaire dont la faiblesse est son revers vous n'avez pas intérêt à jouer systématiquement sur son revers);
- Qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact). Leur construction comme une combinaison convexe garantit la convexité. \Rightarrow Importance quand on s'intéressera à l'**existence des solutions** pour les jeux.

Plan

- Définition et représentation des situations d'interaction
- Représentation de l'information
- Offinition des stratégies
- 4 Solution et Équilibre de Jeu

 Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.

- Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.
- Nous pouvons alors prédire les situations auxquelles ce jeu pourrait conduire une fois que tous les ajustements entre les stratégies des joueurs rationnels ont eu lieu.

- Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.
- Nous pouvons alors prédire les situations auxquelles ce jeu pourrait conduire une fois que tous les ajustements entre les stratégies des joueurs rationnels ont eu lieu.
- La solution idéale correspondrait à un équilibre unique.

- Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.
- Nous pouvons alors prédire les situations auxquelles ce jeu pourrait conduire une fois que tous les ajustements entre les stratégies des joueurs rationnels ont eu lieu.
- La solution idéale correspondrait à un équilibre unique.
- Dans ce cas, nous pouvons parfaitement prédire la solution de cette situation conflictuelle.

- Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.
- Nous pouvons alors prédire les situations auxquelles ce jeu pourrait conduire une fois que tous les ajustements entre les stratégies des joueurs rationnels ont eu lieu.
- La solution idéale correspondrait à un équilibre unique.
- Dans ce cas, nous pouvons parfaitement prédire la solution de cette situation conflictuelle.
- Néanmoins, on a souvent des équilibres multiples.

- Parmi l'ensemble des résultats possibles nous devons déterminer ceux auxquels le jeu peut aboutir : les résultats d'équilibre.
- Nous pouvons alors prédire les situations auxquelles ce jeu pourrait conduire une fois que tous les ajustements entre les stratégies des joueurs rationnels ont eu lieu.
- La solution idéale correspondrait à un équilibre unique.
- Dans ce cas, nous pouvons parfaitement prédire la solution de cette situation conflictuelle.
- Néanmoins, on a souvent des équilibres multiples.
- Parfois, il n'existe même pas d'équilibre.

Notation

Considérons le profil des stratégies qui contient les stratégies de tous les joueurs **sauf** le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \times_{j \neq i} S_j$$

Le profil de stratégies complet s correspond alors à $s = (s_i, s_{-i})$.

Avant de chercher les équilibres d'un jeu (partie suivante) :

- on peut essayer de simplifier ce jeu en éliminant des stratégies redondantes et/ou des stratégies ouvertement inférieures à d'autres.
- → Simplification du jeu, voire sa résolution.
- Mais, réduction de l'information qu'on représente dans le jeu

Avant de chercher les équilibres d'un jeu (partie suivante) :

- on peut essayer de simplifier ce jeu en éliminant des stratégies redondantes et/ou des stratégies ouvertement inférieures à d'autres.
- → Simplification du jeu, voire sa résolution.
- Mais, réduction de l'information qu'on représente dans le jeu
- L'élimination qu'on élimine peut être sans importance avec certains concepts de solution.
- Mais elle peut aussi jouer un rôle important dans la détermination d'autres types de solution.
- ⇒ l'élimination des stratégies doit donc être effectuée avec réflexion et soin.

Élimination des stratégies équivalentes

Première idée : éliminer certaines des stratégies qui semblent redondantes → *Stratégies équivalentes*.

Élimination des stratégies équivalentes

Première idée : éliminer certaines des stratégies qui semblent redondantes \rightarrow *Stratégies équivalentes*.

Definition

Deux stratégies s_i et s_i' sont équivalentes si et seulement si, pour tout profil de stratégies donné des autres joueurs, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, u_j(s_i, s_{-i}) = u_j(s_i', s_{-i}).$$

Toutes les stratégies équivalentes à une stratégie s_i forment une classe d'équivalence.

Definition

La **forme normale réduite** d'un jeu s'obtient à partir de la forme normale initiale en remplaçant toutes les stratégies d'une classe d'équivalence par une seule stratégie.

Reprise de l'Exemple

		I	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes. Toutes ces stratégies terminent le jeu et donc le choix de E_1 n'a plus vraiment d'importance sur les gains.

Reprise de l'Exemple

		l	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes. Toutes ces stratégies terminent le jeu et donc le choix de E_1 n'a plus vraiment d'importance sur les gains.

Remplacer (Non/ E_0 , Produire/ E_1) et (Non/ E_0 , Non/ E_1) par (Non/ E_0) \Rightarrow la forme normale réduite du jeu.

		I	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
Ε	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
	(Non/E_0)	(0,100)	(0,100)

Mais

Sans oublier le fait que **nous perdons par cette élimination les choix possibles du joueur** E en E_1 , entre *produire* et *Non*, et des erreurs qui peuvent accompagner ces choix (qui pourraient indiquer par exemple que E n'est pas très rationnel).

Une autre simplification possible du jeu peut être basée sur **une évaluation des stratégies**.

Stratégie Dominée

- Certaines stratégies sont globalement plus mauvaises que d'autres.
- On pourrait s'attendre à ce que ces stratégies ne soient jamais choisies par des joueurs rationnels.
- On peut alors choisir des les éliminer d'emblée du jeu.

Definition

La stratégie p_i du joueur i est **strictement dominée** par la stratégie p_i' si et seulement si, **quelque soit le comportement des autres joueurs**, le joueur i obtient avec p_i une utilité strictement inférieure à celle obtenue avec p_i'

$$\forall p_{-i} \in P_{-i}, u_i(p_i, p_{-i}) < u_i(p_i', p_{-i})$$

Definition

La stratégie p_i du joueur i est **strictement dominé**e par la stratégie p_i' si et seulement si, **quelque soit le comportement des autres joueurs**, le joueur i obtient avec p_i une utilité strictement inférieure à celle obtenue avec p_i'

$$\forall p_{-i} \in P_{-i}, u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

La stratégie p_i est **faiblement dominée** par p_i' si l'inégalité est faible pour toutes les stratégies des autres joueurs et qu'il existe au moins un profil de stratégies des autres joueurs pour lequel l'utilité avec p_i est strictement inférieure à celle avec p_i'

$$\forall p_{-i} \in P_{-i}, u_i(p_i, p_{-i}) \leq u_i(p'_i, p_{-i})$$

$$\mathsf{et} \exists p_{-i} \in P_{-i} | u_i(p_i, p_{-i}) < u_i(p_i', p_{-i})$$

		1	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

		1	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

• La stratégie (Installer/ E_0 , Non/ E_1) est strictement dominée par (Non/ E_0 , Produire/ E_1) et par (Non/ E_0 , Non/ E_1).

		1	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

- La stratégie (Installer/ E_0 , Non/ E_1) est strictement dominée par (Non/ E_0 , Produire/ E_1) et par (Non/ E_0 , Non/ E_1).
- E ne devrait jamais choisir la stratégie (Installer/ E_0 , Non/ E_1) en présence des stratégies (Non/ E_0 , Produire/ E_1) et (Non/ E_0 , Non/ E_1).

		I	
		Augmenter	Non
	(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
	(Installer/ E_0 , Non/ E_1)	(-10,120)	(-10,100)
Е	(Non/ E_0 , Produire/ E_1)	(0,100)	(0,100)
	$(Non/E_0, Non/E_1)$	(0,100)	(0,100)

- La stratégie (Installer/ E_0 , Non/ E_1) est strictement dominée par (Non/ E_0 , Produire/ E_1) et par (Non/ E_0 , Non/ E_1).
- E ne devrait jamais choisir la stratégie (Installer/ E_0 , Non/ E_1) en présence des stratégies (Non/ E_0 , Produire/ E_1) et (Non/ E_0 , Non/ E_1).
- On peut donc éliminer (Installer/ E_0 , Non/ E_1) \Rightarrow jeu réduit.

En cumulant les deux types d'élimination :

	I	
	Augmenter	Non
(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
(Non/E_0)	(0,100)	(0,100)

En cumulant les deux types d'élimination :

	ı	
	Augmenter	Non
(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
(Non/E_0)	(0,100)	(0,100)

 Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie Augmenter de I n'est que faiblement dominée par sa stratégie Non (égalité si E joue (Non/E₀))

En cumulant les deux types d'élimination :

	ı	
	Augmenter	Non
(Installer/ E_0 , Produire/ E_1)	(-50,40)	(50,60)
(Non/E_0)	(0,100)	(0,100)

- Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie Augmenter de I n'est que faiblement dominée par sa stratégie Non (égalité si E joue (Non/E₀))
- on ne peut être sûr que I choisira Non en présence de Augmenter
- Pour aller plus loin dans la résolution du jeu, nous devons introduire des concepts de solutions constructif qui ne se contentent pas d'éliminer des stratégies (prochains cours).

Retour sur le Dilemme du Prisonnier

		Clyde	
		N	D
	N	(-1, -1)	(-10,0)
Bonnie	D	(0, -10)	(-8, -8)

Par rapport au questionnaire :

Vous avez répondu :

- N à 55%
- D à 45%

En êtes vous toujours aussi sûrs?

	Clyde		
	N	D	
N Bonnie	(-1, -1)	(-10, 0)	
D	(0,-10)	(-8,-8)	

	Clyde	
	N	D
N Bonnie	(-1, -1)	(-10, 0)
D	(0,-10)	(-8,-8)

• N est strictement dominé par D pour les deux joueurs.

	Clyde	
	N	D
N Bonnie	(-1, -1)	(-10, 0)
D	(0,-10)	(-8,-8)

- *N* est strictement dominé par *D* pour les deux joueurs.
- L'élimination des stratégies dominées nous conduit donc à la solution (D, D).

	Clyde	
	N	D
N Bonnie	(-1, -1)	(-10, 0)
D	(0,-10)	(-8,-8)

- N est strictement dominé par D pour les deux joueurs.
- L'élimination des stratégies dominées nous conduit donc à la solution (D, D).
- Quand ce type de solution existe et est unique

 une prédiction assez claire et intuitive sur le résultat possible du jeu (assez proche de la manière dont les acteurs économiques interagissent dans le monde réel).

	Clyde	
	N	D
N Bonnie	(-1, -1)	(-10, 0)
	(0, -10)	(-8,-8)

- N est strictement dominé par D pour les deux joueurs.
- L'élimination des stratégies dominées nous conduit donc à la solution (D, D).
- Quand ce type de solution existe et est unique

 une prédiction assez claire et intuitive sur le résultat possible du jeu (assez proche de la manière dont les acteurs économiques interagissent dans le monde réel).
- Ce type d'équilibre n'existe que pour très peu de jeux.

• Paul et Jacqueline doivent décider comment organiser leur soirée.

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),
 - Aller à l'opéra (O).

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),
 - Aller à l'opéra (O).
- Pour les deux, ce qui compte avant tout c'est d'être ensemble.

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),
 - Aller à l'opéra (O).
- Pour les deux, ce qui compte avant tout c'est d'être ensemble.
- Mais :

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),
 - Aller à l'opéra (O).
- Pour les deux, ce qui compte avant tout c'est d'être ensemble.
- Mais:
 - Jacqueline a une préférence pour le football,
 - Paul pour l'opéra.

- Paul et Jacqueline doivent décider comment organiser leur soirée.
- Ils ont le choix entre :
 - Aller à un match de Football (F),
 - Aller à l'opéra (O).
- Pour les deux, ce qui compte avant tout c'est d'être ensemble.
- Mais:
 - Jacqueline a une préférence pour le football,
 - Paul pour l'opéra.
- Quelle est la forme normale de ce jeu?

		Jacqueline	
		Ο	F
(0	(2,1)	(0,0)
Paul			
	F	(0,0)	(1, 2)

		Jacqueline	
		Ο	F
Paul)	(2, 1)	(0,0)
F	:	(0,0)	(1, 2)

- Un jeu de coordination.
- Absence de stratégies dominées.
- Nécessité d'introduire d'autres concepts d'équilibre.

