SEGUNDO PARCIAL

ANÁLISIS MATEMÁTICO II

Noviembre 25 de 2015

- P1) Verificar si el campo $\vec{f}(x,y) = (2x + y^2 + 1, 2xy)$ admite función potencial. En caso afirmativo calcular el potencial ϕ tal que $\phi(0,0) = 2$
- P2) Calcular el área de la superfície de ecuación $z = x^2 + y^2$ con $y \le |x|$, $z \le 1$
- P3) Calcular el flujo del campo $\overline{f}(x, y, z) = (6x yz, xz, xy)$ a través de la frontera de la región: $x + y + z \le 2$, $y \le x$, 1° octante.
- P4) Hallar la solución de la ecuación $y'' + y' 2y = \cos x$ tal que y(0) = 0 y y'(0) = 1
- T1) Enunciar la condición necesaria para la existencia de función potencial de un campo vectorial. Indicar hipótesis. Demostrar dicha condición.
- T2) Demostrar que si $y_1(x)$ e $y_2(x)$ son solución de la ecuación $y''(x) + p \cdot y'(x) + q \cdot y(x) = 0$, entonces $y(x) = A \cdot y_1(x) + B \cdot y_2(x)$ es solución general de dicha ecuación. Indicar hipótesis.