DMVA4

Question 1:

Question 1.				
((base) romericodavid@Romericos-Air ~ % netstat -r				
Routing tables				
modeling cobies				
Internet:				
Destination	Gateway	Flags	Netif	Expire
default	fios_quantum_gatew		en0	LAPILO
127	localhost	UCS	100	
localhost	localhost	UH	100	
169.254	link#12	UCS	en0	
192.168.1	link#12	UCS	en0	i
192.168.1.1/32	link#12	UCS	en0	
	18:78:d4:64:62:d9	UHLWIir	en0	1192
	cc:75:e2:a8:3b:f5	UHLWIi	en0	502
basement.fios-rout		UHLWIi	en0	984
50rokuselectseries		UHLWIi	en0	956
iphone.fios-router		UHLWI	en0	706
levoit-purifier.fi		UHLWI	en0	1178
192.168.1.212	32:4a:a:4c:6e:95	UHLWI	en0	385
192.168.1.215	22:2c:b6:4a:70:fd	UHLWI	en0	492
192.168.1.231	4a:83:c0:a3:49:a8	UHLWI	en0	423
192.168.1.242	ca:ba:99:71:b2:49	UHLWI	en0	636
ipad.fios-router.h	16:9a:c2:59:7d:e9	UHLWI	en0	1155
192.168.1.254/32	link#12	UCS	en0	1
192.168.1.255	ff:ff:ff:ff:ff	UHLWbI	en0	i
224.0.0/4	link#12	UmCS	en0	i
mdns.mcast.net	1:0:5e:0:0:fb	UHmLWI	en0	
239.255.255.250	1:0:5e:7f:ff:fa	UHmLWI	en0	
255.255.255.255/32	link#12	UCS	en0	!
Internet6:				
Destination	Gateway	Flags	Netif	Expire
default	fe80::%utun0	UGcIg	utun0	
default	fe80::%utun1	UGcIg	utun1	
default	fe80::%utun2	UGcIg	utun2	

a) The IPv4 address of the router (default gateway) is **192.168.1.1**. This can be inferred from the fact that the default route (default) points to fios_quantum_gatew, and by convention in most home networks, the router is assigned .1 in the subnet (e.g., 192.168.1.1). Regarding the network prefix, most home networks use a standard subnet mask of

255.255.255.0, which corresponds to a /24 prefix length. This means the first 24 bits are the network portion, and the last 8 bits are for host addresses. So for 192.168.1.1, the network prefix is 24 bits.

Explanation:

- A typical home network address, such as 192.168.1.x, usually falls under the private Class C range. By default, Class C networks have a subnet mask of 255.255.255.0 (or /24).
- b) An example of a multicast IPv4 address from the table is 239.255.255.250.

How we know it's multicast:

IPv4 multicast addresses are defined in the range 224.0.0.0 through 239.255.255.255. Any address in that range (referred to as Class D addresses) is reserved for multicast. Since 239.255.250 falls within this range, it is recognized as a multicast address.

Question 2:

a) No, the AP is not the ultimate receiver of this frame. In an IEEE 802.11 data frame, the "To DS" and "From DS" flags indicate the direction the frame is traveling relative to the Distribution System (DS, typically the wired network). Here, the flags show it is a frame "from DS to a STA via AP," meaning the AP received the frame from the wired network (the DS) and is now sending it

out over wireless to a specific station (STA). The AP is acting as a forwarding device, not the final destination. The ultimate receiver is the station (the wireless client) identified by the Receiver/Destination address fields.

b) The IP header shows:

• Version: 4

• Header Length: 20 bytes (indicated by "Header Length: 20 bytes")

• Total Length: 493 bytes

The "Total Length" field in the IP header includes both the IP header and the IP payload. To find the payload size, we can subtract the IP header length from the total length:

IP Payload Length = Total Length – IP Header Length IP Payload Length = 493 bytes – 20 bytes = 473 bytes.

c) The TCP flags set are: FIN, PSH, ACK.

The purpose of the FIN (Finish) flag in TCP is to indicate that the sender has finished sending data and wants to initiate a graceful closure of the connection. When a FIN is received, it tells the other side that no more data will be sent from that endpoint, though it can still receive data until the other side also sends a FIN.