SoC Lab January 4, 2024

Final Project Presentation Workload Optimized SoC

Group 6

Name: 劉冠亨、張力元、謝言鼎

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

Block Diagram

Configuration Register Address Map

Module	Base Address	Offset	Description
		0x00	Uart rx port
LIADT	0 2000 0000	0x04	Uart tx port
UART	0x3000_0000	0x08	Status of UART IP
		0x0C	Baudrate config
		0x00	Status of MatMul Engine
MatMul	0x3000_0100	0x80	Matrix A input
IVIativiui		0x84	Matrix B input
		0x8C	Matrix R output
	0x3000_0200	0x00	Status of Qsort Engine
Qsort		0x80	Input data
		0x84	Output data
	0x3000_0300	0x00	Status of FIR engine
FIR		0x10 - 0x13	Data length
		0x40 - 0x7F	Tap coefficients
		0x80 - 0x83	Input x[n]
		0x84 - 0x87	Output y[n]
SDRAM	0x3800_0000		Execution memory that stores firmware code

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

Matrix Multiplication Engine

Sorting Engine

- Use the optimal sorting network
- 5 comparators, 7 cycles

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

Pipelined Execution Memory with Prefetch Controller

Use index to choose the corresponding block in the prefetch buffer

In the case of a prefetch miss (i.e., non-matching tags), initiate a burst of 8 pipelined

requests into the FIFO

Pipelined Execution Memory with Prefetch Controller

- Based on observations, the CPU usually reads 8 instructions consecutively from the execution memory
- With prefetching, the latency of reading 8 instructions can be reduced from 80 cycles to 21 cycles

Pipelined Execution Memory with Prefetch Controller

 With a pipelined execution memory and prefetch controller, the overall latency decreases from 3696 cycles to 2496 cycles, resulting in a reduction of 1200 cycles

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

SDRAM Device with Read-burst Mode

Burst length = 8

SDRAM with Prefetch Controller

Origin SDRAM access diagram

Optimized SDRAM access diagram (with burst mode SDRAM device)

Read Phase: 6 T

Data Throughput: 8/13

SDRAM with Prefetch Controller

• With prefetch scheme and burst mode SDRAM, the latency of reading 8 instructions can be reduced from 80 cycles to 16 cycles

SDRAM with Prefetch Controller

 With a burst mode SDRAM and prefetch controller, the overall latency decreases from 3696 cycles to 2384 cycles, resulting in a reduction of 1312 cycles

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

FIFO on Rx/Tx

- FIFO depth: 8
- Change baud rate to 115200
- UART sends IRQ signal to CPU when RX FIFO is full
- ISR finishes after writing TX data to TX FIFO

FIFO on Rx/Tx

Baseline:

- One interrupt per data
- Rx/Tx no overlap
- \circ (Data transmission time * 2) + ISR time = 4147*2 + 12175 = 20509 cycles per data

FIFO:

- One interrupt per 8 data
- Rx/Tx overlap
- o ((Data transmission time * 8) + ISR time)/8 = (4147*8 + 17847)/8 = 6378 cycles per data

3x time improvement

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

Compilation Flag

- Compile with -O3 flag
 - Retain loops in the instruction cache

Revised FIR Firmware

- Execute instructions in the following order
 - Read y from FIR engine to CPU (lw)
 - Write x to FIR engine (sw)
 - Store y into user memory (sw)

```
int fir_output;
FIR_X = 1;
for(int i = 2; i <= SEQ_LEN; i = i + 1) {
    fir_output = FIR_Y;
    FIR_X = i;
    outputsignal[i-2] = fir_output;
}
outputsignal[SEQ_LEN-1] = FIR_Y;
counter_la_all.out</pre>
```


Revised FIR Firmware

- Execute instructions in the following order
 - Read y from FIR engine to CPU (lw)
 - Write x to FIR engine (sw)
 - Store y into user memory (sw)

- System Overview
- Hardware Accelerator
- Pipelined Execution Memory with Prefetch Controller
- SDRAM with Prefetch Controller
- UART with I/O FIFO
- Firmware Optimization
- FPGA Implementation

Timing and utilization report

Setup time and hold time slack (40MHz)

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	1.339 ns	Worst Hold Slack (WHS):	0.032 ns	Worst Pulse Width Slack (WPWS):	11.250 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	22179	Total Number of Endpoints:	22179	Total Number of Endpoints:	8542	

All user specified timing constraints are met.

Utilization report including FF, LUT and BRAM

Baseline (Lab6)

Site Type		Used	Fixed	Prohibite	d Available	Util%
Slice LUTs LUT as Logic LUT as Memory LUT as Distributed RAM		5364 5176 188 18	0 0	 - -	0 53200 0 53200 0 17400	9.73
LUT as Shift Regi Slice Registers Register as Flip Fl Register as Latch F7 Muxes F8 Muxes	į	170 6195 6195 0 169 47	0 0 0		0 106400 0 106400 0 106400 0 26600 0 23300	0.00
Site Type	Used	Fix	+ ed Pr	ohibited	Available	Util%
Block RAM Tile RAMB36/FIFO* RAMB36El only RAMB18 RAMB18El only	8 5 5 6	 	0 0 0 0	0 0 0	140 140 	5.71 3.57

Our work

Site Type	i	Used	Fixed	Prohib	ited	Available	Util%
Slice LUTs	+ 	8743	+ I 0	·+	+ 0 I	53200	16.43
LUT as Logic	i	8491	i 0	i	o i	53200	15.96
LUT as Memory	i	252	j 0	i	0 j	17400	1.45
LUT as Distribute	d RAM	82	j 0	İ	į		İ
LUT as Shift Regi:	ster	170	0	I	- 1		1
Slice Registers	- 1	9702	0	1	0	106400	9.12
Register as Flip Flo	op	9350	0	1	0	106400	8.79
Register as Latch	I	352	0	I	0	106400	0.33
F7 Muxes	- 1	204	0	I	0	26600	0.77
F8 Muxes	- 1	74	0	I	0	13300	0.56
	+ +	-+	+		+ +	+	+
Site Type	Used	Fix	ed Pr	ohibite	d į A	vailable	Util%
Block RAM Tile	14	-+ 	0	(+ 9	140	10.00
RAMB36/FIFO*	11	i	0 i	(эi	140 İ	7.86
RAMB36E1 only	11	i	i		i		
RAMB18	6	1	0	(9 j	280	2.14
RAMB18E1 only	6	i	i		i	i	

Jupyter notebook

FPGA prototyping

```
In [21]: asyncio.run(async main())
         Start Caravel Soc
         matrix multiplication start
         0x3e
         0x44
         0x4a
         0x50
         matrix multiplication done, time: 0.0008633136749267578 seconds
         quick sort start
         0x28
         0x37d
         0x9ed
         0xa6d
         0xca1
         0x10ab
         0x120e
         0x1631
         0x1787
         0x2371
         quick sort done, time: 0.0005624294281005859 seconds
         fir start
         0x0
         0xfff6
         0xffe3
         0xffe7
         0x23
         0x9e
         0x151
         0x2dc
         0x393
         0x44a
         fir done, time: 0.0011889934539794922 seconds
         uart start
         uart done, time: 4.863739013671875e-05 seconds
         Waitting for interrupt
         hello
```

Quality of Result (QoS)

Workload latency

*FIR data length = 64

Number of cycles	Baseline	Our work	Improvement
Qsort	26185	241	108.6X
MatMul	74458	467	159.4X
FIR	148821	1063	140.0X
Total	249464	1771	140.8X

- UART latency (512 characters)
 - Number of cycles = 408,367
 - Baud rate = 115,200
 - QoR metric = 408,367 * 25ns 512 * (1 / baud rate) = 5.764 ms

	Latency (cycles*period)	Metric (ms)	Improvement
UART	1313138*25ns	28.384	4 02V
UART w/ FIFO	408367*25ns	5.764	4.92X