UNIT 8: Limit theorems and classical statistics — Summary

• Markov inequality: If $X \ge 0$ and a > 0, then $\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$

• Chebyshev inequality: If c>0, then $\mathbf{P}\big(|X-\mathbf{E}[X]|\geq c\big)\leq \frac{\mathsf{var}(X)}{c^2}$

• Convergence in probability: For every $\epsilon > 0$, $\mathbf{P} \big(|X_n - a| \ge \epsilon \big) \to 0$

• Weak law of large numbers: X_i : i.i.d.: $M_n = \frac{X_1 + \cdots + X_n}{n} \to \mathbf{E}[X]$

• Central limit theorem, X_i : i.i.d.:

CDF of
$$\frac{X_1 + \dots + X_n - n\mathbf{E}[X]}{\sqrt{n}\,\sigma_X} o \mathrm{standard}$$
 normal CDF

- pretend $X_1 + \cdots + X_n$ is normal
- "1/2-correction" for integer r.v.'s

UNIT 8: Limit theorems and classical statistics — Summary

- Unknown constant θ not a r.v.; model $p_X(x;\theta)$, $f_X(x;\theta)$
- Use sample means to estimate expectations:

- If
$$\theta = E[X]$$
, $\widehat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$

- If
$$\theta = \mathbb{E}[g(X)]$$
, $\widehat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$

- Confidence interval $[\widehat{\Theta}^-, \widehat{\Theta}^+]$: $P(\widehat{\Theta}^- \le \theta \le \widehat{\Theta}^+) \ge 0.95$ (or 0.99, etc.)
 - often need the variance of estimator: estimated using "sample variance"
- Maximum Likelihood: $\max_{\theta} p_X(x; \theta)$