According to Bayes' theorem, the probability of a datapoint having class y given input features X is:

$$P(y|X) = rac{P(X|y)P(y)}{P(X)}$$

where:

- P(y|X) (**Posterior**) describes the prbability of finding y given these input features X
- P(X|y) (**Likelihood**) describes the probability of finding the input features X given a target y
 - in terms of training data, this can be calculated from number of times feature x is found when class is y number of occurances of class y
- P(y) (Prior) is the probability of finding class y
- P(X) (Evidence) is the probability of finding these input features out of the whole dataset

P(X) is written explicitly as $P(x_1, x_2, x_3, ...)$ (probability of x_1 and x_2 and,)

We can factor $P(x_1, \ldots, x_n, |y)P(y)$ using the chain rule (see below) which gives us

$$egin{aligned} P(x_1,\dots,x_n,y) &= P(x_1|x_2,\dots,x_n,y) P(x_2,\dots x_n,y) \ &= P(x_1|x_2,\dots,x_n,y) P(x_2|x_3,\dots,x_n,y) P(x_3,\dots,x_n,y) \ & \dots \ &= P(x_1|x_2,\dots,x_n,y) P(x_2|x_3,\dots,x_n,y) \dots P(x_n|y) p(y) \end{aligned}$$

Here is where the naive assumption comes in

The term $P(x_1|x_2,\ldots,x_n,y)$ could be read as "probability of x_1 given x_2 and ... and x_n and y". If $x_1\ldots,x_n$ are conditionally independent on y, that is knowing about x_2 or x_3 , ... tells you nothing about x_1 , then we can say that $P(x_1|x_2,\ldots,x_n,y)=P(x_1|y)$

So this whole factorization reduces to:

$$P(x_1, \dots, x_n | y) P(y) = P(x_1, \dots, x_n, y) = P(x_1 | y) P(x_2 | y) \dots P(x_n | y) P(y) = P(y) \prod_{i=1}^n P(x_i | y)$$

Plugging this back into Baye's rule:

$$P(y|x_1,\ldots,x_n) = rac{P(y)\prod P(x_i|y)}{P(X)}$$

since P(X) does not change for a given class, we usually leave it out of the calculation:

$$P(y|x_1,\ldots,x_n) \propto P(y) \prod P(x_i|y)$$

So now all we need to do is find y that maximizes this proability and that's our prediction

$$y_{pred} = \mathrm{argmax}_y P(y) \prod_{i=1}^n P(x_i|y)$$

Types of naive bayes

Multinomial

multiple categorical variables

Bernoulli

predictors are boolean values

Gaussian

predictors are continuous - assume they come from a gaussian distribution (This means if you have continuous variables you should normalize them before running the model)

$$P(x_i|y) = rac{1}{\sqrt{2\pi\sigma_y^2}} ext{exp}(-rac{(x_i-\mu_y)^2}{2\sigma_y^2})$$

Advantages

- fast
- easy to implement

Disadvantages

 relies on predictors being independent, this is usually not the case (but sometimes you can get decent performance even if those assumptions are not met)

Chain Rule

$$P(A,B) = P(A|B)P(B)$$

$$P(A,B,C) = P(A|B,C)P(B,C) = P(A|B,C)P(B|C)P(C)$$

Refs

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

https://en.wikipedia.org/wiki/Conditional_independence

https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c