Variabile dinamice Tipul *referință*

Material didactic pentru Informatică

(În corespondență cu curriculum-ul la Informatică)

Clasa a XI-a

Obiectivele lecției:

- O1 să cunoască noţiunea de variabilă dinamică;
- O2 să creeze și să distrugă variabile dinamice;
- O3 să efectuieze operaţii cu variabile dinamice;
- O4 să poată să utilize tipul de date articol;
- O5 să fie capabil de a elabora programe, în care să utilizeze tipul de date referință.

Structuri dinamice de date

Programarea clasică structurată are la bază celebra ecuație a lui Nikolaus Wirth:

Program = Structuri de date + Algoritmi

MEMORIA CALCULATORULUI

PROGRAM Test; VAR A, B: Integer;

BEGIN

• • •

$$A := 12;$$

$$B := -5;$$

• • •

END.

Declarare variabile

 \boldsymbol{A}

 \boldsymbol{B}

Atribuire valori

 \boldsymbol{A}

B

Variabile statice

- Toate variabilele pentru care în momentul creării programului se poate evalua cantitatea de memorie necesartă stocării acestora se numesc variabile statice;
- Variabilele declararte în program şi notate printr-un identificator (nume) se numesc variabile statice;
- Variabilele care există pe toată durata de execuţie a blocului în care au fost declarate se numesc variabile statice.

Variabile dinamice

Variabilele care sunt create şi distruse pe parcursul execuţiei programului se numesc variabile dinamice.

Variabile dinamice

Tine minte!!!

- 1. Variabilele dinamice nu se declară într-o secțiune VAR deci nu se pot identifica prin nume.
- 2. Nu există pe toată durata de execuţie a programului sau activării blocului în care s-au creat.
- 3. Variabilele dinamice se alocă dinamic într-o zonă specială de memorie, numită memorie HEAP și se distrug la cererea programatorului.
- 4. Accesul la variabilele dinamice se poate face prin intermediul altor variabile speciale, numite variabile REPER, REFERINŢĂ, INDICATOR, ADRESĂ, POINTER.

Variabile dinamice

Variabila REFERINŢĂ

Variabila DINAMICĂ

Variabila referință

Accesul la variabilele dinamice se face prin intermediul variabilelor de tip referință, care se definește printr-o declarație de forma:

Definiri, declarări


```
TYPE Identificator_tip_Referinta = ^ Identificator_tip_de_baza;
```

VAR Identificator_Variabila: Identificator_tip_Referinta;

```
TYPE Identificator_tip_Referinta = \[^Identificator_tip_Utilizator;\]
```

Identificator_tip_Utilizator = ...;

VAR Identificator_Variabila: Identificator_tip_Referinta;

sau

VAR Identificator_Variabila : ^ Identificator_tip_Referinta;

Exemple

```
Type AdresaInteger=^integer;
    AdresaChar= ^char;
var i: AdresaInteger;
    r: ^real;
    c: AdresaChar;
```

Variabilele i, r, c sunt variabile referință, sau variabile reper. Pentru ele se alocă la compilare un spațiu de memorie de 4 bytes (conține adresa de memorie a variabilei dinamice referite).

Exemple

```
TYPE
 SubDomeniu=1..25;
 RefSub=^SubDomeniu;
 Enumerare=(Rosu, Galben, Verde);
 RefEnum=^Enumerare;
 Vector=Array[1..10] of Real;
 RefVec=^Vector;
 RefData=^DataNast;
 DataNast=RECORD
                  Zi: 1..31;
                  Luna: 1..12;
                   An: 1900..2050;
              end;
  RefXXX=POINTER;
```

```
VAR
```

```
p: RefSub;
p1: RefEnum;
p2: RefVec;
p3: RefData;
a: ^Integer;
r: ^Real;
ch: ^Char;
```

Variabilele **p, p1, p2, p3, a, r, ch** sunt *variabile referință*, sau *variabile reper*.

Valorile variabilelor referință

Variabilele referință (reper) pot să primească trei tipuri de valori (să se afle în trei stări):

• să fie neinițializate, nedefinite, nedeterminate (n-au nici o valoare);

• să conțină referința (adresa) la o variabilă dinamică;

• să păstreze valoarea NIL (o constantă predefinită Pascal);

$$p \longrightarrow ?$$

$$p \longrightarrow p^{\wedge}$$

Operații posibile cu variabile reper

M a r i a G u t u

1. ATRIBUIREA

```
TYPE IdTip = ...;
VAR p, q : ^ IdTip;
BEGIN
```

Variabila referință poate primi valoarea unei alte variabile sau funcție de același tip referință cu ea, sau poate fi inițializată cu constanta NIL.

```
p := q;
...
p := NIL;
```

END.

Operații posibile cu variabile reper

2. COMPARATIA

```
VAR R, RR: ^ Real;
Ri, Rc: ^ Integer;
logic: Boolean;
```

Variabilele referință pot să apară în expresii relaționale, singurii operatori relaționali admiși fiind "=" și "<>".

```
BEGIN ...
```

```
logic := Ri <> NIL;
...
If (R=RR) OR (logic) Then ...;
```

END.

3. PARAMETRI

Variabilele referință pot fi parametri ai unor proceduri sau funcții.

Variabile dinamice: CREARE

Variabilele dinamice sunt variabilele de un tip oarecare simplu sau structurat pentru care se poate aloca memorie numai în faza de execuție a programului în funcție de necesitate.

Variabile dinamice: DISTRUGERE

Eliberarea zonelor de memorie, ocupată de variabilele dinamice, create prin execuţia procedurii NEW, pentru a nu deveni "gunoi" se realizează prin execuţia procedurii predefinite DISPOSE.

```
Type RefTip = ^Real;

Var p: RefTip;

Begin

DISPOSE(p);

p:=NIL;

End.
```

1. Declarare

VAR A, B: ^Integer;

$$A \longrightarrow ?$$

 $B \longrightarrow 2$

2. Creare

NEW (A); **NEW** (B);

$$A \longrightarrow A^{\wedge}$$

 $B \longrightarrow B^{\wedge}$

3. Atribuire de valori

$$A^{\wedge} := 8;$$

 $B^{\wedge} := -6;$

$$A \longrightarrow 8 A^{\bullet}$$

$$B \longrightarrow -6 B^{\wedge}$$

4. Copiere valori

$$A^{\wedge} := B^{\wedge};$$

$$\begin{array}{c|c}
A & \longrightarrow & -6 & A^{\wedge} \\
\hline
P & \longrightarrow & D & D^{\wedge}
\end{array}$$

5. Atribuire NIL

$$B := NIL;$$

$$A \longrightarrow -6 A^{\wedge}$$

$$B | \sum$$

6. Atribuire de valori

$$A^{*} := Round(3.14)+2;$$

$$A \longrightarrow 5 A^{\wedge}$$

$$B \boxtimes$$

G

7. Schimb adrese

$$\mathbf{B} := \mathbf{A};$$

$A \longrightarrow 5$ $B \longrightarrow 5$

8. Schimb valori

9. Creare variabile dinamice structurate

```
TYPE Vector=Array[1..4] of Integer;
Var A: \(^Vector\);
Begin
                                           A^{\wedge}[I]
   NEW(A);
                                           A^{[2]}
End.
                                           A^{3}
```

Acces la o componentă în caz general: A^[i]

10. Creare variabile dinamice structurate

```
TYPE Complex=RECORD
                Re, Im: Real;
              end;
VAR C: ^Complex;
Begin
  NEW(C);
End.
   Acces la o componentă în caz general:
              Id_var^.câmp
```

| r | i | a | G | u |

ERORI FRECVENTE

NODURI INACCESIBILE – Structuri dinamice cu referințe la

ele pierdute (lădița încuiată cu cheia pierdută) – apar după utili-zarea procedurii NEW sau instrucțiunii de atribuire.

ERORI FRECVENTE

REFERINȚE SUSPENDATE – Indicatori ce conțin referințe la locații de memorie eliberate cu **DISPOSE**.

Interacțiunea program-memorie

Program p1;
var a: ^integer;
begin
new (a);
a^:=23;
dispose(a);
end.

Interacțiunea program-memorie

```
Program p1;
var a ,b : ^integer;
begin
   new (a);
   new (b);
   a^:=23;
   b^{:=a^{+}17};
   a^:=b^+a^;
   dispose(a);
   dispose(b);
end.
```

Blocul de date			Heap (grămada)
а		010	
b		020	
		030	
		040	
		050	
		060	
		070	
		080	
		090	

Exemplu

```
Program Exemplu;
{Operatii cu variabile dinamice}
Type AdresaInteger=^integer;
Var i,j,k:AdresaInteger;
    r, s, t: real;
Begin
{crearea variabilelor dinamice de tip integer}
new(i); new(j); new(k);
{Operatii cu variabilele create}
i ^:=1; j ^:=2; k ^:=i ^+j ^;
Writeln(k ^);
{Crearea variabilelor dinamice de tip real}
new(r); new(s); new(t);
{Operarii cu variabilele create}
r ^:=1.0; s ^:=2.0; t ^:=r ^/s ^;
Writeln(t ^);
```

```
{Distrugerea variabilelor dinamice}

dispose(i);
dispose(j);
dispose(k);
dispose(r);
dispose(s);
dispose(t);
readln;
end.
```

Ce va afișa acest program?

```
Program test1;
    var m,n,k: ^integer;
        c: ^char; x,y,z: ^real; a:integer;
begin
            new(m); new(n); m^{\circ} := 9; n^{\circ} := 8; k := m;
           k^{\wedge} := 10;
            writeln(m^,' ',n^, ' ',k^);
             k := n; n^:=15; m^:= k^:
            writeln(m^, ' ', n^, ' ', k^);
              \{new(a)\}; a:=6; n^:=a;
            writeln(m^, ' ', n^, ' ', k^);
              new(c); new(x); new(z); x^{:=6.3};
              c^{:='y'}; {x^{:=c^{}}}; y:=z; z^{\circ} :=8.9 ;
              writeln(x^{\wedge}, '', y^{\wedge}, '', z^{\wedge}, '', z^{\wedge});
              readln;
end.
```

Ce va afișa acest program?

```
Program test2;
    var a,b,c : ^integer;
          c1: ^char; x,y,z: ^real; m:integer;
begin
           new(a); new(b); a^{:=3}; b^{:=8}; c:=b; c^{:=20};
           writeln(a^,' ',b^, ' ',c^);
           c := a; b^:=15; m := c^;
           writeln(a^,' ',b^, ' ',c^, ' ',m);
            new(x); new(z); new(c1); x^{\wedge}:=6.3;
            c1^{:='y'}; z^{:=x'}; y:=x; y^{:=18.4};
            writeln(x^{\circ},' ',y^{\circ} , '',z^{\circ},' ',c1^{\circ});
             readln;
end.
```

Ce va afișa acest program?

```
Program test3;
    var a,b,c :^integer;
            x,y,z: ^real; m:longint;
begin
            new(a); new(b); a^{:=3}; b^{:=8}; c:=b;
            c^ :=20;
            writeln(a^,' ',b^, ' ',c^);
            c := a; a^:=15; m := c^+5;
            writeln(a^,' ',b^, ' ',c^, ' ',m);
             new(x); new(z); x^{\cdot}=6.5;
             z^{\wedge};=x^{\wedge}; y:=x; y^{\wedge} :=18;
             writeln(x^:4:0,' ',y^:4:0 , ' ',z^:4:1);
             readln;
end.
```

Concluzie

Alocarea dinamică a memoriei necesită o atenție sporită din partea programatorului care este obligat să asigure crearea, distrugerea și referirea corectă a variabilelor dinamice.

Extindere

- 1. 2.1. de studiat și conspectat.
- 2. De analizat PPT din GitHub.
- 3. Ex. 7 10 (pag. 33).

https://www.slideshare.net/mariamarinela756/variabile-dinamice-tipul-de-date-referin