Interactions in Logistic Regression

Andy Grogan-Kaylor

2025-06-26

Table of contents

1	Background	1
2	Get The Data	3
3	Describe The Data	3
4	Estimate Logistic Regression	4
5	Margins	5
6	Plotting Margins	6
7	Rerun margins, posting Results	7
8	margins with coeflegend	8
9	Testing Margins Against Each Other	9
Re	eferences	11

1 Background

The purpose of this tutorial is to illustrate the idea that in *logistic regression*, the β parameter for an interaction term may not accurately characterize the underlying interactive relationships.

This idea may be easier to describe if we recall the formula for a logistic regression:

$$\ln\left(\frac{P(y)}{1 - P(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 \times x_2 \tag{1}$$

Warning

In the above formula, the sign, and statistical significance, of β_3 may not accurately characterize the underlying relationship.

Figure 1: Demonstration of Interactive Relationships

Yey Idea

In a linear model, a single parameter can capture the difference in slopes between the two groups. In a non-linear model, no single parameter can capture the difference in slopes between the two groups.

Some Calculus (Not Essential To The Discussion)

Imagine a linear model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 \times x_2 + e_i$$

Here (following (Ai and Norton 2003)):

$$\frac{\partial y}{\partial x_1 \partial x_2} = \beta_3$$

We use logit to describe:

$$\ln\left(\frac{P(y)}{1 - P(y)}\right)$$

In the logistic model, the quantity:

$$\frac{\partial \mathrm{logit}(y)}{\partial x_1 \partial x_2}$$

does not have such a straightforward solution, and–importantly for this discussion–is not simply equal to β_3 .

2 Get The Data

We start by obtaining *simulated data* from StataCorp.

```
clear all
graph close _all
use http://www.stata-press.com/data/r15/margex, clear
set linesize 96 // more width for output
```

(Artificial data for margins)

3 Describe The Data

The variables are as follows:

```
describe
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

Contains data from http://www.stata-press.com/data/r15/margex.dta

Observation Variable		3,000		Artificial data for margins 27 Nov 2016 14:27			
Variable name	Storage type	- 0	Value label	Variable label			
У	float	%6.1f					
outcome	byte	%2.0f					
sex	byte	%6.0f	sexlbl				
group	byte	%2.0f					
age	float	%3.0f					
distance	float	%6.2f					
ycn	float	%6.1f					
ус	float	%6.1f					
treatment	byte	%2.0f					
agegroup	byte	%8.0g	agelab				
arm	byte	%8.0g					

Sorted by: group

4 Estimate Logistic Regression

We then run a logistic regression model in which outcome is the dependent variable. sex, age and group are the independent variables. We estimate an interaction of sex and age.

We note that the regression coefficient for the interaction term is not statistically significant.

```
logit outcome sex##c.age i.group
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

```
Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1118.129
Iteration 2: Log likelihood = -1070.8227
Iteration 3: Log likelihood = -1068.0102
```

Iteration 4: Log likelihood = -1067.99
Iteration 5: Log likelihood = -1067.99

Logistic regression Number of obs = 3,000

LR chi2(5) = 596.16 Prob > chi2 = 0.0000 Pseudo R2 = 0.2182

Log likelihood = -1067.99

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
sex						
female	.5565025	.6488407	0.86	0.391	7152019	1.828207
age 	.0910807	.0113215	8.04	0.000	.0688909	.1132704
sex#c.age						
female 	001211	.0134012	-0.09	0.928	0274769	.025055
group						
2	5854237	.1349791	-4.34	0.000	8499779	3208696
3	-1.355227	.2965301	-4.57	0.000	-1.936416	7740391
_cons	-5.592272	.5583131	-10.02	0.000	-6.686545	-4.497998

5 Margins

We use the margins command to estimate predicted probabilities at different values of sex and age.

```
margins sex, at(age = (20 30 40 50 60))
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

Predictive margins Model VCE: OIM

Number of obs = 3,000

```
Expression: Pr(outcome), predict()
```

1._at: age = 20 2._at: age = 30 3._at: age = 40 4._at: age = 50 5._at: age = 60

	I	I	Delta-method				
	1	Margin	std. err.	z	P> z	[95% conf.	interval]
_at#sex	-+- 						
1#male	1	.0150645	.0047348	3.18	0.001	.0057846	.0243445
1#female		.025333	.0055508	4.56	0.000	.0144536	.0362124
2#male		.0364848	.0075444	4.84	0.000	.0216981	.0512714
2#female		.0596255	.0086074	6.93	0.000	.0427552	.0764958
3#male		.0852689	.0099016	8.61	0.000	.0658622	.1046757
3#female		.1329912	.0108127	12.30	0.000	.1117987	.1541838
4#male		.1849367	.0163684	11.30	0.000	.1528551	.2170182
4#female		.267774	.0156218	17.14	0.000	.2371558	.2983921
5#male		.3518378	.0408522	8.61	0.000	.271769	.4319066
5#female		.4614446	.0314754	14.66	0.000	.3997539	.5231353

6 Plotting Margins

margins provides a lot of results, which can be difficult to understand. Therefore, we use marginsplot to plot these margins results.

There certainly seems to be some kind of interaction of sex and age.

```
marginsplot
graph export mymarginsplot.png, width(1000) replace
```


Figure 2: Margins Plot

7 Rerun margins, posting Results

We again employ the margins command, this time using the post option so that the results of the margins command are *posted* as an estimation result. This will allow us to employ the test command to statistically test different margins against each other.

```
margins sex, at(age = (20 30 40 50 60)) post
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

```
Predictive margins

Model VCE: OIM

Expression: Pr(outcome), predict()
```

1._at: age = 20 2._at: age = 30 3._at: age = 40 4._at: age = 50 5._at: age = 60

	I]	Delta-method	l			
	-	Margin	std. err.	z	P> z	[95% conf.	interval]
_at#sex	-+- 						
1#male	-	.0150645	.0047348	3.18	0.001	.0057846	.0243445
1#female	-	.025333	.0055508	4.56	0.000	.0144536	.0362124
2#male		.0364848	.0075444	4.84	0.000	.0216981	.0512714
2#female		.0596255	.0086074	6.93	0.000	.0427552	.0764958
3#male		.0852689	.0099016	8.61	0.000	.0658622	.1046757
3#female		.1329912	.0108127	12.30	0.000	.1117987	.1541838
4#male		.1849367	.0163684	11.30	0.000	.1528551	.2170182
4#female		. 267774	.0156218	17.14	0.000	.2371558	.2983921
5#male		.3518378	.0408522	8.61	0.000	.271769	.4319066
5#female		.4614446	.0314754	14.66	0.000	.3997539	.5231353

8 margins with coeflegend

We follow up by using the margins command with the coeflegend option to see the way in which Stata has labeled the different margins.

```
margins, coeflegend
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

```
Predictive margins Number of obs = 3,000 Model VCE: OIM
```

Expression: Pr(outcome), predict()

1._at: age = 20 2._at: age = 30 3._at: age = 40 4._at: age = 50 5._at: age = 60

```
Margin
                          Legend
  at#sex
                        _b[1bn._at#0bn.sex]
  1#male
              .0150645
                        _b[1bn._at#1.sex]
1#female
               .025333
  2#male
              .0364848
                        _b[2._at#0bn.sex]
2#female
                        _b[2._at#1.sex]
              .0596255
  3#male
              .0852689
                        _b[3._at#0bn.sex]
                        _b[3._at#1.sex]
3#female
              .1329912
  4#male
                        _b[4._at#0bn.sex]
              .1849367
                        _b[4._at#1.sex]
4#female
               .267774
                        _b[5._at#0bn.sex]
  5#male
              .3518378
                        _b[5._at#1.sex]
5#female
               .4614446
```

9 Testing Margins Against Each Other

Lastly, we test the margins at age 20 for men and women, and again at ages 50 and 60 for men and women.

We note that the original regression parameter for the interaction term was not statistically significant. Indeed, the margins at age 20 are not statistically significantly different by sex. However, at ages 50 & 60, there is a statistically significant difference by sex.

```
test _b[1bn._at#0bn.sex] = _b[1bn._at#1.sex] // male and female at age 20

test _b[4._at#0bn.sex] = _b[4._at#1.sex] // male and female at age 50

test _b[5._at#0bn.sex] = _b[5._at#1.sex] // male and female at age 60
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

```
( 1) 1bn._at#0bn.sex - 1bn._at#1.sex = 0
```

```
chi2(1) = 1.99
Prob > chi2 = 0.1583
```

(1) 4._at#0bn.sex - 4._at#1.sex = 0

```
chi2(1) = 13.03
Prob > chi2 = 0.0003
```

(1) 5._at#0bn.sex - 5._at#1.sex = 0

```
chi2(1) = 5.16
Prob > chi2 = 0.0232
```

There is some suggestion that the difference of the differences is statistically significant. This statistical significance is only marginal [pun intended] at age 60, but truly statistically significant at age 50.

```
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[5._at#1.sex] - _b[5._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] = _b[4._at#1.sex] - _b[4._at#0bn.sex] // test ent
test _b[1bn._at#1.sex] - _b[1bn._at#0bn.sex] // test ent
test _b[1bn._at#0bn.sex] // test
```

Running /Users/agrogan/Desktop/GitHub/newstuff/categorical/logistic-interactions-2/pr > ofile.do ...

```
(1) - 1bn._at#0bn.sex + 1bn._at#1.sex + 5._at#0bn.sex - 5._at#1.sex = 0
```

$$chi2(1) = 3.62$$

Prob > $chi2 = 0.0572$

$$(1) - 1bn._at#0bn.sex + 1bn._at#1.sex + 4._at#0bn.sex - 4._at#1.sex = 0$$

$$chi2(1) = 9.77$$

Prob > $chi2 = 0.0018$

References

Ai, Chunrong, and Edward C. Norton. 2003. "Interaction Terms in Logit and Probit Models." $Economics\ Letters.\ https://doi.org/10.1016/S0165-1765(03)00032-6.$

Karaca-Mandic, Pinar, Edward C. Norton, and Bryan Dowd. 2012. "Interaction Terms in Nonlinear Models." *Health Services Research*. https://doi.org/10.1111/j.1475-6773.2011. 01314.x.