Optimization Model for SCRUM-Based Software Development Planning

Domain Modeling Optimization Team

September 5, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	3
4	4. Conditions	5
5	5. Decision Variables	6

1 1. Sets (Entities)

 \mathcal{P} : Set of Projects, where each $p \in \mathcal{P}$ has attributes: id, name, project_start, project_end, description, budget, status, target_audience, priority.

 \mathcal{T} : Set of Teams, where each $t \in \mathcal{T}$ has attributes: id, name, team_size, team_start, team_status, location, team_type.

W: Set of Workers, where each $w \in W$ has attributes: id, name, first_name, email, start_date, status, availability.

 \mathcal{F} : Set of Features, where each $f \in \mathcal{F}$ has attributes: id, title, description, status, priority, estimated_effort.

S: Set of Skills, where each $s \in S$ has attributes: id, label, description, level, certified, category.

 \mathcal{R} : Set of Roles, where each $r \in \mathcal{R}$ has attributes: id, role_name, description, area_of_responsibility.

 \mathcal{PO} : Set of Product Owners, where each $po \in \mathcal{PO}$ has attributes: id, name, email, availability.

 \mathcal{SM} : Set of Scrum Masters, where each $sm \in \mathcal{SM}$ has attributes: id, name, email, experience.

 \mathcal{PB} : Set of Product Backlogs, where each $pb \in \mathcal{PB}$ has attributes: id, created_on, last_updated, number_of_entries, status.

 \mathcal{SP} : Set of Sprints, where each $sp \in \mathcal{SP}$ has attributes: id, sprint_number, start_date, end_date, status, achievement_of_goal.

 \mathcal{SPP} : Set of Sprint Plannings, where each $spp \in \mathcal{SPP}$ has attributes: id, date, duration_(min), moderation, outcome_documentation.

 \mathcal{DS} : Set of Daily Scrums, where each $ds \in \mathcal{DS}$ has attributes: id, date, time, duration, moderation.

SR: Set of Sprint Reviews, where each $sr \in SR$ has attributes: id, date, duration, feedback_documentation, attendees_count.

 \mathcal{SRE} : Set of Sprint Retrospectives, where each $sre \in \mathcal{SRE}$ has attributes: id, date, duration, improvement_actions, team_satisfaction, moderation.

 \mathcal{SBL} : Set of Sprint Backlogs, where each $sbl \in \mathcal{SBL}$ has attributes: id, number_of_tasks, last_updated, status, total_effort.

 \mathcal{SG} : Set of Sprint Goals, where each $sg \in \mathcal{SG}$ has attributes: id, objective_description, achievement_status, benefit.

 \mathcal{E} : Set of Epics, where each $e \in \mathcal{E}$ has attributes: id, title, description, priority, status, estimated_effort.

 \mathcal{US} : Set of User Stories, where each $us \in \mathcal{US}$ has attributes: id, title, description, acceptance_criteria, priority, story_points, status.

 \mathcal{TSK} : Set of Tasks, where each $tsk \in \mathcal{TSK}$ has attributes: id, title, description, status, effort, type.

 \mathcal{DEV} : Set of Development Snapshots, where each $dev \in \mathcal{DEV}$ has attributes: id, version_number, creation_date, test_status, deployment_target, documentation.

 \mathcal{BL} : Set of Blockers, where each $bl \in \mathcal{BL}$ has attributes: id, title, description, severity, status, detected_on, resolved_on.

 \mathcal{SH} : Set of Stakeholders, where each $sh \in \mathcal{SH}$ has attributes: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature.

VEL: Set of Velocity Records, where each $vel \in VEL$ has attributes: id, number_of_sprints_used, avg._story_points, max_velocity, min_velocity, trend.

 \mathcal{REP} : Set of Release Plans, where each $rep \in \mathcal{REP}$ has attributes: id, version, planned_date, included_features, status.

 \mathcal{RM} : Set of Roadmaps, where each $rm \in \mathcal{RM}$ has attributes: id, start_date, end_date, milestones, objectives, versions.

 \mathcal{SCB} : Set of Scrum Boards, where each $scb \in \mathcal{SCB}$ has attributes: id, board_type, columns_(todo/done...), number_of_cards, last_updated.

 \mathcal{FED} : Set of Feature Documentations, where each $fed \in \mathcal{FED}$ has attributes: id, title, description, creation_date, change_log, linked_requirements, author.

2 2. Indices

 $p \in \mathcal{P}$: Index over projects.

 $t \in \mathcal{T}$: Index over teams.

 $w \in \mathcal{W}$: Index over workers.

 $f \in \mathcal{F}$: Index over features.

 $s \in \mathcal{S}$: Index over skills.

 $r \in \mathcal{R}$: Index over roles.

 $sp \in \mathcal{SP}$: Index over sprints.

 $us \in \mathcal{US}$: Index over user stories.

 $tsk \in \mathcal{TSK}$: Index over tasks.

 $bl \in \mathcal{BL}$: Index over blockers.

 $sh \in \mathcal{SH}$: Index over stakeholders.

 $vel \in \mathcal{VEL}$: Index over velocity records.

 $rep \in \mathcal{REP}$: Index over release plans.

 $rm \in \mathcal{RM}$: Index over roadmaps.

3 3. Goals

Each goal is defined with its identifier, name, and mathematical/logical formulation. Let w_q denote the weight of goal g.

maximize_project_budget: Maximize total project budget.

$$\max \sum_{p \in \mathcal{P}} w_{G0} \cdot \text{budget}(p)$$

maximize_team_size: Maximize total team size.

$$\max \sum_{t \in \mathcal{T}} w_{G1} \cdot \text{team_size}(t)$$

maximize_worker_availability: Maximize sum of worker availability.

$$\max \sum_{w \in \mathcal{W}} w_{G2} \cdot \text{availability}(w)$$

minimize_project_duration: Minimize total project duration.

$$\min \sum_{p \in \mathcal{P}} w_{G3} \cdot (\operatorname{project_end}(p) - \operatorname{project_start}(p))$$

maximize_feature_priority: Maximize sum of feature priorities.

$$\max \sum_{f \in \mathcal{F}} w_{G4} \cdot \operatorname{priority}(f)$$

maximize_story_points: Maximize completed story points.

$$\max \sum_{us \in \mathcal{US}} w_{G5} \cdot \text{story-points}(us)$$

minimize_task_effort: Minimize total task effort.

$$\min \sum_{tsk \in \mathcal{TSK}} w_{G6} \cdot \text{effort}(tsk)$$

maximize_sprint_achievement: Maximize average sprint goal achievement.

$$\max \frac{1}{|\mathcal{SP}|} \sum_{sp \in \mathcal{SP}} w_{G7} \cdot \text{achievement_of_goal}(sp)$$

maximize_velocity_trend: Maximize positive trend in velocity.

$$\max \sum_{vel \in \mathcal{VEL}} w_{G8} \cdot \operatorname{trend}(vel)$$

minimize_blocker_severity: Minimize total blocker severity.

$$\min \sum_{bl \in \mathcal{BL}} w_{G9} \cdot \text{severity}(bl)$$

maximize_stakeholder_influence: Maximize influence of engaged stakeholders.

$$\max \sum_{sh \in SH} w_{G10} \cdot \text{influence_level}(sh)$$

maximize_documentation_coverage: Maximize number of documented features.

$$\max \sum_{fed \in \mathcal{FED}} w_{G11} \cdot \mathbb{I}[\text{linked_requirements}(fed) \neq \emptyset]$$

minimize_sprint_duration: Minimize total sprint duration.

$$\min \sum_{sp \in \mathcal{SP}} w_{G12} \cdot (\text{end_date}(sp) - \text{start_date}(sp))$$

maximize_release_inclusion: Maximize features included in releases.

$$\max \sum_{rep \in \mathcal{REP}} w_{G13} \cdot |\text{included_features}(rep)|$$

maximize_epic_effort_estimate: Maximize estimated effort of epics.

$$\max \sum_{e \in \mathcal{E}} w_{G14} \cdot \text{estimated_effort}(e)$$

4 4. Conditions

Each condition is a constraint with logical formulation. Let c denote the condition ID. require_project_status: Only active or completed projects are valid.

$$\forall p \in \mathcal{P} : \text{status}(p) \in \{\text{active}, \text{completed}\}\$$

require_team_location: Teams must be in allowed locations.

$$\forall t \in \mathcal{T} : \text{location}(t) \in L_{\text{allowed}}$$

where L_{allowed} is a predefined set of acceptable locations.

require_worker_status: Only active workers are eligible.

$$\forall w \in \mathcal{W} : \text{status}(w) = \text{active}$$

require_feature_status: Only approved features can be scheduled.

$$\forall f \in \mathcal{F} : \text{status}(f) = \text{approved}$$

require_task_status: Only todo or in-progress tasks are considered.

$$\forall tsk \in \mathcal{TSK} : \text{status}(tsk) \in \{\text{todo}, \text{in_progress}\}$$

require_role_certification: Only certified roles are assigned.

$$\forall r \in \mathcal{R} : \operatorname{description}(r) \text{ must imply certification}$$

require_user_story_status: Only ready or accepted user stories are valid.

$$\forall us \in \mathcal{US} : \text{status}(us) \in \{\text{ready, accepted}\}\$$

require_sprint_status: Only planned or active sprints are valid.

$$\forall sp \in \mathcal{SP} : \text{status}(sp) \in \{\text{planned, active}\}$$

require_blocker_status: Active blockers must be resolved before sprint end.

$$\forall bl \in \mathcal{BL} : \text{status}(bl) = \text{resolved} \vee \text{resolved_on}(bl) < \text{end_date}(\text{sprint}(bl))$$

require_velocity_min_value: Minimum velocity threshold.

$$\forall vel \in \mathcal{VEL} : \min_{velocity(vel)} \geq V_{\min}$$

where V_{\min} is a given threshold.

require_stakeholder_relevance: Stakeholders must have medium or high relevance.

$$\forall sh \in \mathcal{SH} : \text{relevance_to_feature}(sh) \in \{\text{medium}, \text{high}\}\$$

require_skill_certified: Only certified skills are used.

$$\forall s \in \mathcal{S} : \operatorname{certified}(s) = \operatorname{true}$$

require_documentation_author: Documentation must have an author.

$$\forall fed \in \mathcal{FED} : \operatorname{author}(fed) \neq \operatorname{null}$$

require_scumb_board_type: Only digital scrum boards allowed.

$$\forall scb \in \mathcal{SCB} : board_type(scb) = digital$$

require_development_test_status: Only tested snapshots are deployable.

$$\forall dev \in \mathcal{DEV} : \text{test_status}(dev) = \text{tested}$$

5 5. Decision Variables

 $\omega_p \in \{0.0, 0.5, 1.0, 1.5, 2.0\}$: Project priority weight for $p \in \mathcal{P}$.

 $u_t \in [0.0, 1.0]$: Team t's capacity utilization rate.

 $x_{w,tsk} \in \{0,1\}$: Binary variable indicating if worker w is assigned to task tsk.

 $y_{us} \in \{0,1\}$: Binary variable indicating if user story us is included in current sprint.

 $z_f \in \{0,1\}$: Binary variable indicating if feature f is included in next release.

 $a_w \in [0, 40]$: Weekly availability (hours) of worker w.

 $sp_{us} \in \{1, 2, 3, 5, 8, 13\}$: Estimated story points for user story us.

 $e_{tsk} \in [1, 100]$: Effort (hours) allocated to task tsk.

 $d_{bl} \in [1,30]$: Estimated resolution time (days) for blocker bl.

 $c_{fed} \in [0.0, 1.0]$: Completeness score of feature documentation fed.

 $g_{sp} \in [0.0, 1.0]$: Achievement score of sprint sp's goal.

 $v_{\text{next}} \in [0, 100.0]$: Predicted velocity for next sprint.

 $\delta_r \in [-30, 30]$: Deviation in days from planned release date r.

 $i_{sre} \in [0, 20]$ Number of improvement actions from retrospective sre.

 $col_{tsk} \in \{0, 1, 2, 3\}$: Column index of task tsk on scrum board.