

Exec summary

- NLP models are increasingly getting embedded into industrial systems but their memory and power requirements makes deploying them to edge devices a challenging task.
- Model compression techniques are now widely used to deploy models on edge devices as they decreases the resource requirements and make model inference very fast and efficient.
- Their reliability and robustness from a security perspective is another major issue in safety-critical applications.
- Adversarial attacks are like optical illusions for machines and such samples can severely impact the accuracy and reliability of models.
- **Novel Contribution**: Investigate the transferability of adversarial samples across the SOTA NLP models and their compressed versions and infer the effects different compression techniques have on adversarial attacks

Approach

- Effects of compression were tested on two models BERT and Glove + LSTM
- Knowledge Distillation and Pruning was tested on BERT model and 8-bit Quantization and Knowledge Distillation on Glove + LSTM model
- We used 2 types of attacks: White box attack- Universal Adversarial
 Triggers on BERT model and Black box attack- TextFooler on Glove + LSTM model
- We report compression speedups and averaged accuracy before and after multiple universal attacks and textfooler attacks

Results - BERT

BERT Distillation: White Box Attack (Targeted)

Attack Created / Tested	Base model	Distil-bert finetune(2x)	Distilled-bert(3x)
Base model	0.918, 0.113	0.901, 0.202	0.882, 0.162
Distil-bert finetune(2x)	0.918, 0.213	0.901, 0.054	NA
Distilled-bert(3x)	0.918, 0.305	NA	0.882, 0.0033

BERT Pruning: White Box Attack (Targeted)

Attack Created / Tested	Base Model	Pruned Model(3x)
Base model	0.918, 0.113	0.887,0.204
Pruned Model	0.918,0.284	0.887,0.0204

Results - Word2Vec + LSTM Model

Distillation (Born Again network) - White Box Attack(Targeted)

Attack Created / Tested	Base Model	Distilled Model
Base Model	0.827,0.0787	0.834,0.132
Distilled Model	0.827,0.0971	0.834,0.101

powerful, captivating, enhances: 0.0981 a-dress, captivating, true-to-life: 0.0 a-dress, powerful, captivating: 0.10046

Quantization(8bit) - Black Box Attack(Misclass)

Attack Created / Tested	Base Model	Quantized Model
Base Model	0.856, 0.262	0.854, 0.230
Quantized Model	0.856, 0.320	0.854, 0.256

unflinchingly [[baleful]] and [[frenetic]]

Conclusions + Code Link

- Compressed models are often more vulnerable to white/black box attacks
- In pruning: adversarial samples generated from base models are less effective on compressed models
- In Quantization: adversarial samples are transferable between compressed and uncompressed models, but are marginally less effective on transferring attacks from the quantized to the base model.
- Distillation effects vary but are correlated to the performance of the compressed models.
- Separately finetuned DistilBERT model are less affected by attacks created on BERT rather than distilling the finetuned BERT itself.
- While compressed models may provide performance benefits, they do not provide much in way of security.
- https://github.com/95anantsingh/NYU-Attacks-on-Compressed-NLP
- Demo: https://drive.google.com/file/d/1jsp36A Q o9ySBLrUIo T86kVbhqH
 MwW/view?usp=sharing