

### slido



### Join at slido.com #5239092

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.





Reminder to start the Zoom recording!



Lots of demo code today. Get ready to type!

**LECTURE 5** 

### Data Wrangling and EDA

Exploratory Data Analysis and its role in the data science lifecycle.

Data 100/Data 200, Spring 2025 @ UC Berkeley

Narges Norouzi and Josh Grossman

Acknowledgments



### Plan for Next Few Weeks





(Weeks 1 and 2)

Exploring and Cleaning Tabular Data From datascience to pandas



(Week 3)

Data Science in Practice

**EDA, Data Cleaning**, Text processing (regular expressions)







### EDA is unboxing for data!

### **Exploratory Data Analysis (EDA)**



From Lecture 1



### The Data Science Lifecycle is a Cycle



In practice, EDA informs whether you need more data to address your research question.









### **Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

### Key Data Properties to Consider in EDA



### **Rectangular Data**

5239092

We often prefer **rectangular data** for data analysis

- Easy to manipulate and analyze
- Big part of data cleaning: Reshape to be more rectangular
- Example: dataset of spam emails → table of word counts

Two kinds of rectangular data: **Tables** and **Matrices**.

# Fields/Attributes/ Features/Columns

### **Tables** (DataFrames in R/Python)

- Named columns with different types
- Manipulated w/ data transformation functions (group by, join, filter ...)

### **Matrices**

- **Numeric** data of the **same** type (float, int, etc.)
- Manipulated w/ linear algebra
- Faster computation, but less flexible



### Other Illnesses During the COVID-19 Pandemic





Source: New York Times



### Other Illnesses During the COVID-19 Pandemic



| TB incidence <sup>†</sup> |      |      |  |
|---------------------------|------|------|--|
| 2019                      | 2020 | 2021 |  |
| 2.71                      | 2.16 | 2.37 |  |

You're an analyst at the CDC.

How do you calculate these values?

**TB**: Tuberculosis

**Incidence**: # cases per 100,000 people

Source: <u>CDC (Centers for Disease Control and Prevention)</u>

U.S. TB incidence  $\rightarrow$  Need U.S. TB case counts and U.S. population

U.S. TB case counts → **State-level TB case counts** 

State-level TB case counts → Hospital-level TB case counts



### **CSV: Comma-Separated Values**

5239092

TB data from CDC (source)

CSV is a very common tabular file format.

- Records (rows) are delimited by a newline: '\n'
- Fields (columns) are delimited by commas: ', '

Pandas: <a href="mailto:pd.read\_csv">pd.read\_csv</a> (header=...)

### **Demo Slides**

lec05-part-1-eda-tuberculosis.ipynb

### Fields/Attributes/Features/Columns

| ds/Rows |   | U.S. jurisdiction | TB cases 2019 |  |
|---------|---|-------------------|---------------|--|
| ords/   | 0 | Total             | 8,900         |  |
| Reco    | 1 | Alabama           | 87            |  |



### (we'll come back to this!)



**Structure** -- the "shape" of a data file



**Granularity** -- how fine/coarse is each datum → a single "piece" of data

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

### Key Data Properties to Consider in EDA



### **An Important Conundrum in Data Science**



| Singular "data"                     | "The data show <b>s</b> " |
|-------------------------------------|---------------------------|
| Plural "data" ( <del>datums</del> ) | "The data show"           |

Either is fine 🙂



### **Granularity: How Fine/Coarse Is Each Datum?**





What does each **record** (row) represent?

- Examples: a single purchase, a single person, a group of users
- Some data will include summaries (aka rollups) as records.

If the data are **coarse**, how were the records aggregated?

Summing, averaging, or something else?



### **Granularity of TB data**



What does each row of the TB data represent?

Do all rows have the same granularity?

Image source: NPR

### **Demo Slides**

lec05-part-1-eda-tuberculosis.ipynb







File Format Variable Type



**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

### Key Data Properties to Consider in EDA



### **Joining Multiple Files**



Incidence = Case Count / Population

TB case counts → CDC data

U.S. population → Census data

It's time to merge!

### **Demo Slides**

lec05-part-1-eda-tuberculosis.ipynb







### 2-minute stretch break!





Multiple Files **File Format**Variable Type



**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

### Key Data Properties to Consider in EDA



### **TSV: Tab Separated Values**

5239092

Another common table file format.

- **Fields** are delimited by '\t' (tab)
- Like a CSV with tabs instead of commas

pd.read\_csv: Need to specify
delimiter='\t'

### **Demo Slides**

lec05-part-2-eda-structure.ipynb







### JSON: JavaScript Object Notation

CA Senators+Reps data (congress.gov API)52390

Very similar to Python dictionaries

• **Self-documenting**: Metadata (data about the data) + records in the same file

pd.read\_json()

pd.DataFrame(json\_dict)

JSON is **non-rectangular**, so good to inspect the file before importing.

- Nested tables
- Inconsistent fields across records

### **Demo Slides**

lec05-part-2-eda-structure.ipynb





Multiple Files
File Format
Variable Type



**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

### Key Data Properties to Consider in EDA



### **Variable Feature Types**







(assigned, not measured!)

### **Variable Types**



What is the feature type of each variable?

| Q | Variable                        | Feature Type                       |
|---|---------------------------------|------------------------------------|
| 1 | CO <sub>2</sub> level (ppm)     | Quantitative                       |
| 2 | Income bracket (low, med, high) | <b>Qualitative Ordinal</b>         |
| 3 | Race/Ethnicity                  | <b>Qualitative Nominal</b>         |
| 4 | Political party                 | Qualitative Ordinal / Nominal      |
| 5 | Year                            | Quantitative / Qualitative Ordinal |
| 6 | GPA                             | Quantitative / Qualitative Ordinal |
| 7 | Date and time                   | Slido!                             |



The distinction between categories is sometimes murky. Context matters!





### slido



# What type of variable is a datetime (e.g., 01/01/2025 3:30pm)?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.





**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

# Key Data Properties to Consider in EDA



### **Efficiently Storing Datetimes**



As humans, we write datetimes as strings: **01/01/2025 3:30pm** 

There are 13 characters in the string **010120250330p** 

Datetime column with 1 billion entries  $\rightarrow \sim 13$  billion characters  $\rightarrow 13$  GB column  $\bigcirc$ 

What if we stored datetimes as **integers**?

1 billion integers  $\rightarrow \sim$ 4 billion bytes  $\rightarrow$  4 GB column  $\rightleftharpoons$ 



### Temporality: Unix / POSIX Time



Datetimes measured in seconds since January 1st 1970 UTC (Coordinated Universal Time)

Feb 4, 2025 5:00pm PDT  $\rightarrow$  **1738674000** (1,738,674,000 seconds)

Feb 4,  $1950 \ 5:00 pm \ PDT \rightarrow \textbf{-628167600}$  (-628,167,600 seconds)

Another bonus of numeric representation: We can do math!

For example, we can calculate # days between dates using subtraction and division.



### Unix / POSIX Time



Berkeley PD calls for service data

```
pd.to_datetime()
```

```
pd.series.dt.date()
pd.series.dt.dayofweek()
pd.series.dt.hour()
...
```

### **Demo Slides**

lec05-part-2-eda-structure.ipynb





### Lecture 5 ended here!

We will cover the rest in Lecture 6





**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"

# Key Data Properties to Consider in EDA







### What are some potential issues with this dataset?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.



### What are Some Potential Issues with this Dataset?

|    |     | F   |    |
|----|-----|-----|----|
| Ğ  |     | į   | Ť. |
| 52 | 239 | 909 | 92 |

|    |          |       |          | _      |           |  |
|----|----------|-------|----------|--------|-----------|--|
| ID | Category | State | Location | Device | Purchased |  |
| 0  | Shoes    | CA    | CA       | 1      | 1         |  |
| 1  | Socks    | NM    | NM       | 1      | 0         |  |
| 2  | Socks    | XY    | XY       | 1      | 0         |  |
| 3  | Shirts   | NY    | NY       | 1      | NA        |  |
| 4  | Shoes    | FL    | FL       | 1      | 0         |  |
| 4  | Shoes    | FL    | FL       | 1      | 0         |  |
| 5  | Shirts   | CA    | CA       | 1      | 0         |  |
| 6  | Pnts     | TX    | TX       | 1      | 1         |  |
| 7  | Hats     | CA    | CA       | 1      | -1        |  |
|    |          |       |          |        |           |  |



### Faithfulness: Do I trust this data?



### **Fully Duplicated Records or Fields**

Identify and ignore/drop.

### **Labeling or Spelling Errors**

Apply corrections. Only ignore if you have to.

### Missing data

Need to think carefully about **why** the data is missing.



" "

1970, 2000

**0**, -1

NaN

999, 12345 Null

NaN: "Not a Number"

Real zero or NaN placeholder? Sometimes both!

See footnote 12 in onlinelibrary.wiley.com/doi/abs/10.1111/jels.12343



### **Missing Data: Approaches**



### A. Keep as NaN

- A good default.
- If qualitative/categorical → Create a "Missing" category.

### **B. Drop records** with missing values

- Typically a <u>bad</u> default!
- Temperature probe went offline for a minute  $\rightarrow$  Likely **missing at random**  $\rightarrow$  OK to drop
- Police officer never records outcomes of vehicle stops → Likely <u>not</u> missing at random

### **C. Imputation/Interpolation**: Infer missing values

- **Mean/median imputation**: replace NaN with mean/median
- Hot deck imputation: use a random non-NaN value
- Regression imputation: use a model to predict value
- Multiple imputation: multiple random values + check sensitivity

(beyond this course)



### **Missing Values**



Berkeley PD calls for service data

### Approaches:

- Keep missing values as NaN
- Drop missing values
- Impute

pd.series.isna()

pd.DataFrame.info()

### **Demo Slides**

lec05-part-2-eda-structure.ipynb







We did it!

**Structure** -- the "shape" of a data file

**Granularity** -- how fine/coarse is each datum

**Temporality** -- how is the data situated in time

**Faithfulness** -- how well does the data capture "reality"





**LECTURE 5** 

### Data Wrangling and EDA

Content credit: <u>Acknowledgments</u>

