SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

- Qualified for Automotive Applications
- Output Swing Includes Both Supply Rails
- Low Noise . . . 9 nV/√Hz Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Both Single-Supply and Split-Supply Operation
- Common-Mode Input Voltage Range Includes Negative Rail

- High-Gain Bandwidth . . . 2.2 MHz Typ
- High Slew Rate . . . 3.6 V/μs Typ
- Low Input Offset Voltage
 950 μV Max at T_Δ = 25°C
- Macromodel Included
- Performance Upgrades for the TS272, TS274, TLC272, and TLC274

description

The TLC2272 and TLC2274 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC227x family offers 2 MHz of bandwidth and 3 V/ μ s of slew rate for higher speed applications. These devices offer comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLC227x has a noise voltage of 9 nV/ \sqrt{Hz} , two times lower than competitive solutions.

The TLC227x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this family a great choice when interfacing with

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE

analog-to-digital converters (ADCs). For precision applications, the TLC227xA family is available with a maximum input offset voltage of 950 μ V. This family is fully characterized at 5 V and \pm 5 V.

The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

AVAILABLE OPTIONS[†]

	V	PACKAGE	D DEVICES [‡]
T _A	V _{IO} max At	SMALL OUTLINE	TSSOP
	25°C	(D)	(PW)
-40°C to 125°C	950 μV	TLC2272AQDRQ1	TLC2272AQPWRQ1
	2.5 mV	TLC2272QDRQ1	TLC2272QPWRQ1
-40°C to 125°C	950 μV	TLC2274AQDRQ1	TLC2274AQPWRQ1
	2.5 mV	TLC2274QDRQ1	TLC2274QPWRQ1

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

equivalent schematic (each amplifier)

ACTUAL DEVICE COMPONENT COUNT [†]											
COMPONENT TLC2272 TLC2274											
38	76										
26	52										
9	18										
Capacitors 3 6											
	TLC2272 38										

[†] Includes both amplifiers and all ESD, bias, and trim circuitry

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD+} (see Note 1)	8 V
Supply voltage, V _{DD} (see Note 1)	8 V
Differential input voltage, V _{ID} (see Note 2)	±16 V
Input voltage range, V _I (any input, see Note 1) V	$_{\rm DD-}$ – 0.3 V to $\rm V_{\rm DD+}$
Input current, I _I (any input)	±5 mA
Output current, I _O	±50 mA
Total current into V _{DD+}	±50 mA
Total current out of V _{DD}	±50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation See Dissi	ipation Rating Table
Operating free-air temperature range, T _A	40°C to 125°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or PW package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{DD+} and V_{DD-} .

- 2. Differential voltages are at IN+ with respect to IN -. Excessive current will flow if input is brought below V_{DD} 0.3 V.
- 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D-8	725 mW	5.8 mW/°C	464 mW	337 mW	145 mW
D-14	950 mW	7.6 mW/°C	608 mW	494 mW	190 mW
PW-8	525 mW	4.2 mW/°C	336 mW	273 mW	105 mW
PW-14	700 mW	5.6 mW/°C	448 mW	364 mW	_

ELECTROSTATIC DISCHARGE RATING TABLE

				RATING
			Human-Body Model (HBM)	2000 V
	TLC2272	Machine Model (MM)	100 V	
F0D	Electron Action Back and a control		Charged-Device Model (CDM)	1500 V
ESD	Electrostatic discharge rating		Human-Body Model (HBM)	500 V
		TLC2274	Machine Model (MM)	100 V
			Charged-Device Model (CDM)	1000 V

recommended operating conditions

		MIN	MAX	UNIT
$V_{DD\pm}$	Supply voltage	±2.2	±8	V
VI	Input voltage	V_{DD-}	V _{DD+} –1.5	V
V _{IC}	Common-mode input voltage	V_{DD-}	V _{DD+} –1.5	٧
T _A	Operating free-air temperature	-40	125	°C

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2272Q electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	- +	Т	LC2272	Q	TL	.C2272A	.Q	LINIT	
	PARAMETER	l lesi co	NDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V	Input offset voltage			25°C		300	2500		300	950	μV	
V_{IO}	input onset voltage			Full range			3000			1500	μV	
α_{VIO}	Temperature coefficient of input offset voltage			25°C to 125°C		2			2		μV/°C	
	Input offset voltage long- term drift (see Note 4)	$V_{IC} = 0 V,$ $V_{O} = 0 V,$	$V_{DD\pm} = \pm 2.5 \text{ V},$ $R_S = 50 \Omega$	25°C		0.002			0.002		μV/mo	
L	Input offset current	1		25°C		0.5	60		0.5	60	рA	
I _{IO}	input onset current			Full range			800			800	pΑ	
I _{IB}	Input bias current			25°C		1	60		1	60	рA	
פוי	input blue ourrent			Full range			800			800	P	
V_{ICR}	Common-mode input	$R_S = 50 \Omega$	$ V_{IO} \le 5 \text{ mV}$	25°C	0 to 4	-0.3 to 4.2		0 to 4	-0.3 to 4.2		V	
VICR	voltage	ns = 50 12,	v 0 ≥ 3 111v	Full range	0 to 3.5			0 to 3.5			V	
		$I_{OH} = -20 \mu A$		25°C		4.99			4.99			
	LCab laval avdavd	J 000 A		25°C	4.85	4.93		4.85	4.93			
V_{OH}	High-level output voltage	$I_{OH} = -200 \mu\text{A}$		Full range	4.85			4.85			V	
	vollago	I _{OH} = -1 mA		25°C	4.25	4.65		4.25	4.65			
		IOH = - I IIIA		Full range	4.25			4.25				
		$V_{IC} = 2.5 V$,	$I_{OL} = 50 \mu\text{A}$	25°C		0.01			0.01			
		V _{IC} = 2.5 V,	$I_{OL} = 500 \mu\text{A}$	25°C		0.09	0.15		0.09	0.15		
V_{OL}	Low-level output voltage	V ₁ C = 2.5 V,	-10L = 000 μ/τ	Full range			0.15			0.15	V	
		V _{IC} = 2.5 V,	I _{OL} = 5 mA	25°C		0.9	1.5		0.9	1.5		
		10 =:0 1,	.00	Full range			1.5			1.5		
	Large-signal	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega^{\ddagger}$	25°C	10	35		10	35			
A_{VD}	differential voltage	$V_0 = 1 \text{ V to 4 V}$		Full range	10			10			V/mV	
	amplification	Ŭ	$R_L = 1 \text{ m}\Omega^{\ddagger}$	25°C		175			175			
r _{id}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω	
rį	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω	
c _i	Common-mode input capacitance	f = 10 kHz,	P package	25°C		8			8		pF	
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 10	25°C		140			140		Ω	
CMDD	Common-mode rejection	$V_{IC} = 0 \text{ V to } 2.7 \text{ V}$	V,	25°C	70	75		70	75		40	
CMRR	ratio	$V_0 = 2.5 \text{ V},$	$R_S = 50 \Omega$	Full range	70			70			dB	
ka=	Supply-voltage rejection	$V_{DD} = 4.4 \text{ V to 1}$	/ _{DD} = 4.4 V to 16 V,		80	95		80	95		40	
k _{SVR}	ratio $(\Delta V_{DD}/\Delta V_{IO})$	$V_{IC} = V_{DD}/2$,	No load	Full range	80			80			dB	
I	Cumply ourrant	V 2 F V	No lood	25°C		2.2	3		2.2	3	m A	
I_{DD}	Supply current	$V_{O} = 2.5 \text{ V},$	No load	Full range			3			3	mA	

[†] Full range is -40°C to 125°C for Q level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡] Referenced to 2.5 V

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL **OPERATIONAL AMPLIFIERS**SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2272Q operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DAMETER	TEGT CONDITIO	NIO.		-	TLC22720)	Т	LC2272A	Q	UNIT
PA	ARAMETER	TEST CONDITIO	JNS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		V 4.05.V. 0.75.V		25°C	2.3	3.6		2.3	3.6		
SR	Slew rate at unity gain	V_{O} = 1.25 V to 2.75 V, R_{L} = 10 k Ω^{\ddagger} , C_{L} = 100 pF [‡]		Full range	1.7			1.7			V/μs
.,	Equivalent input	f = 10 Hz		25°C		50			50		nV/√ Hz
V _n	noise voltage	f = 1 kHz		25°C		9			9		nv/√Hz
V	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C		1			1		
V _{NPP}	equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		1.4			1.4		μV
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz
	Total harmonic	$V_{O} = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1			0.0013%			0.0013%		
THD + N	distortion plus	f = 20 kHz,	A _V = 10	25°C		0.004%		0.004%			
	noise	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	$A_V = 100$			0.03%			0.03%		
	Gain-bandwidth product	$f = 10 \text{ kHz}, R_L$ $C_L = 100 \text{ pF}^{\ddagger}$	$= 10 \text{ k}\Omega^{\ddagger},$	25°C		2.18			2.18		MHz
B _{OM}	Maximum output- swing bandwidth		v = 1, = 100 pF [‡]	25°C		1			1		MHz
	Cattling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	To 0.1%	25°C		1.5			1.5		:
t _s	Settling time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	25°C		2.6			2.6		μs
φ _m	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}, \qquad C_L$	= 100 pF‡	25°C		50°			50°		
	Gain margin]		25°C		10			10		dB

[†] Full range is -40°C to 125°C for Q level part.

[‡] Referenced to 2.5 V

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2272Q electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = ± 5 V (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	- +	TI	LC22720	2	TL	C2272A	Q	
	PANAWIETEN	1231 00	DINDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage			25°C		300	2500		300	950	μV
VIO	Input onset voltage			Full range			3000			1500	μν
α_{VIO}	Temperature coefficient of input offset voltage			25°C to 125°C		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0 V$, $R_S = 50 \Omega$	$V_O = 0 V$,	25°C		0.002			0.002		μV/mo
l. a	Input offset current			25°C		0.5	60		0.5	60	- 24
I _{IO}	input onset current			Full range			800			800	рA
I _{IB}	Input bias current			25°C		1	60		1	60	pА
чв	input bias current			Full range			800			800	рΑ
V _{ICR}	Common-mode input	$R_S = 50 \Omega$	V _{IO} ≤ 5 mV	25°C	-5 to 4	-5.3 to 4.2		-5 to 4	-5.3 to 4.2		v
VICR	voltage	ns = 30 sz,	14101 ≥ 2 111A	Full range	-5 to 3.5			-5 to 3.5			V
		$I_O = -20 \mu A$		25°C		4.99			4.99		
	Marrian una manistir a manis	I _O = -200 μA		25°C	4.85	4.93		4.85	4.93		
V_{OM+}	Maximum positive peak output voltage	10 = -200 μΑ		Full range	4.85			4.85			V
	output voltage	la = _1 mA		25°C	4.25	4.65		4.25	4.65		
		I _O = –1 mA		Full range	4.25			4.25			
		$V_{IC} = 0 V$,	$I_O = 50 \mu\text{A}$	25°C		-4.99			-4.99		
	Maximum negative peak	V _{IC} = 0 V,	I _O = 500 μA	25°C	-4.85	-4.91		-4.85	-4.91		
V_{OM-}	output voltage	V (C = 0 V,	10 = 000 μ/τ	Full range	-4.85			-4.85			V
		$V_{IC} = 0 V$	$I_O = 5 \text{ mA}$	25°C	-3.5	-4.1		-3.5	-4.1		
		V _{IC} = 0 V,	10 = 0 1131	Full range	-3.5			-3.5			
	Large-signal differential		$R_L = 10 \text{ k}\Omega$	25°C	20	50		20	50		
A_{VD}	voltage amplification	$V_O = \pm 4 V$	_	Full range	20			20			V/mV
			$R_L = 1 \text{ m}\Omega$	25°C		300			300		
r _{id}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
r _i	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Common-mode input capacitance	f = 10 kHz,	P package	25°C		8			8		pF
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 10	25°C		130			130		Ω
OMBE	Common-mode rejection	$V_{IC} = -5 \text{ V to}$	2.7 V,	25°C	75	80		75	80		45
CMRR	ratio	$V_0 = 0 V$,	$R_S = 50 \Omega$	Full range	75			75			dB
le.	Supply-voltage rejection	V _{DD} = ±2.2 V	′ to ±8 V,	25°C	80	95		80	95		<u> ۲</u>
k _{SVR}	ratio $(\Delta V_{DD\pm}/\Delta V_{IO})$	$V_{IC} = 0 V$	No load	Full range	80			80			dB
	0 1 :	v 6-v		25°C		2.4	3		2.4	3	
I _{DD}	Supply current	$V_0 = 2.5 V$,	No load	Full range			3			3	mA

 $^{^{\}dagger}$ Full range is -40° C to 125 $^{\circ}$ C for Q level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL **OPERATIONAL AMPLIFIERS**SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2272Q operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

	DAMETER	TEAT COMPLET	0110	- +	7	TLC2272G	!	Т	LC2272A	Q	UNIT
PA	RAMETER	TEST CONDITI	ONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		., .,,,		25°C	2.3	3.6		2.3	3.6		
SR	Slew rate at unity gain	$V_{O} = \pm 1 \text{ V}, ext{R}_{L} = C_{L} = 100 \text{ pF}$:10 kΩ,	Full range	1.7			1.7			V/μs
.,	Equivalent input	f = 10 Hz		25°C		50			50		nV/√ Hz
V_n	noise voltage	f = 1 kHz		25°C		9			9		nv/√Hz
V	Peak-to-peak equivalent input	f = 0.1 Hz to 1 Hz		25°C		1			1		
V _{NPP}	noise voltage	f = 0.1 Hz to 10 Hz		25°C		1.4			1.4		μV
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz
	Total harmonic	$V_0 = \pm 2.3 \text{ V}$	A _V = 1			0.0011%			0.0011%		
THD + N	distortion plus	$R_L = 10 \text{ k}\Omega$	A _V = 10	25°C		0.004%			0.004%		
	noise	f = 20 kHz	A _V = 100			0.03%			0.03%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 10 \text{ k}\Omega$,	25°C		2.25			2.25		MHz
B _{OM}	Maximum output-swing bandwidth	$V_{O(PP)} = 4.6 \text{ V},$ $R_L = 10 \text{ k}\Omega,$	A _V = 1, C _L = 100 pF	25°C		0.54			0.54		MHz
	Cattling time	$A_V = -1$, Step = -2.3 V to 2.3 V,	To 0.1%	25°C		1.5			1.5		;
t _s	Settling time	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	To 0.01%	25°C		3.2		·	3.2		μ\$
φ _m	Phase margin at unity gain	$R_{l} = 10 \text{ k}\Omega$	C _I = 100 pF	25°C		52°			52°		
	Gain margin		= *	25°C		10			10		dB

[†] Full range is –40°C to 125°C for Q level part.

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2274Q electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	-+	Т	LC22740	Q	TL	.C2274A	Q	
	PANAIVIETEN	TEST CON	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage			25°C		300	2500		300	950	μV
۷IO	input onset voltage			Full range			3000			1500	μν
α_{VIO}	Temperature coefficient of input offset voltage			25°C to 125°C		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0 \text{ V},$	$V_{IC} = 0 V$, $R_S = 50 \Omega$	25°C		0.002			0.002		μV/mo
I _{IO}	Input offset current			25°C		0.5	60		0.5	60	рA
10	input onset current]		Full range			800			800	рΑ
I _{IB}	Input bias current			25°C		1	60		1	60	pА
ıВ	input bias current			Full range			800			800	рΑ
V	Common-mode input	$R_S = 50 \Omega$,	V _{IO} ≤ 5 mV	25°C	0 to 4	-0.3 to 4.2		0 to 4	-0.3 to 4.2		٧
V _{ICR}	voltage	ns = 50 12,	v O ≥ 3111v	Full range	0 to 3.5			0 to 3.5			V
		$I_{OH} = -20 \mu A$		25°C		4.99			4.99		
		J 200 A		25°C	4.85	4.93		4.85	4.93		
V_{OH}	High-level output voltage	$I_{OH} = -200 \mu\text{A}$		Full range	4.85			4.85			V
	vollage	1 4 4		25°C	4.25	4.65		4.25	4.65		
		$I_{OH} = -1 \text{ mA}$		Full range	4.25			4.25			
		$V_{IC} = 2.5 V$,	$I_{OL} = 50 \mu\text{A}$	25°C		0.01			0.01		
	Landanal andres	V _{IC} = 2.5 V,		25°C		0.09	0.15		0.09	0.15	
V_{OL}	Low-level output voltage	$I_{OL} = 500 \mu\text{A}$		Full range			0.15			0.15	V
	voltage	V _{IC} = 2.5 V,	I _{OL} = 5 mA	25°C		0.9	1.5		0.9	1.5	
		V _{IC} = 2.5 V,	10L = 2111A	Full range			1.5			1.5	
	1	.,	D 10 kgt	25°C	10	35		10	35		
A_{VD}	Large-signal differential voltage amplification	$V_{IC} = 2.5 \text{ V},$ $V_{O} = 1 \text{ V to 4 V}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	10			10			V/mV
	voltage amplification	VO = 1 V 10 4 V	$R_L = 1 M\Omega^{\ddagger}$	25°C		175			175		
r _{id}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
rį	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
Ci	Common-mode input capacitance	f = 10 kHz,	N package	25°C		8			8		pF
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 10	25°C		140			140		Ω
OMBE	Common-mode	$V_{IC} = 0 \text{ V to } 2.7 \text{ V}$	/,	25°C	70	75		70	75		45
CMRR	rejection ratio	$V_0 = 2.5 \text{ V},$	$R_S = 50 \Omega$	Full range	70			70			dB
l _k	Supply-voltage rejection	$V_{DD} = 4.4 \text{ V to } 10^{-1}$	6 V,	25°C	80	95		80	95		4D
k _{SVR}	ratio ($\Delta V_{DD}/\Delta V_{IO}$)	$V_{IC} = V_{DD}/2$,	No load	Full range	80			80			dB
_	Cumply ourrent	V = 0.5.V	Nolood	25°C		4.4	6		4.4	6	m ^
I _{DD}	Supply current	$V_{O} = 2.5 V$,	No load	Full range			6			6	mA

[†] Full range is -40°C to 125°C for Q level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡] Referenced to 2.5 V

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL **OPERATIONAL AMPLIFIERS**SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2274Q operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DAMETER	TEGT CONDI	TIONO	- +	1	TLC22740	2	TL	C2274A	Q	UNIT
PA	RAMETER	TEST CONDI	IIONS			MAX	MIN	TYP	MAX	UNII	
	Olassa at such	V 05V4-05V	0 400 - Ft	25°C	2.3	3.6		2.3	3.6		
SR	Slew rate at unity gain	$V_{O} = 0.5 \text{ V to } 2.5 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	C _L = 100 pF [‡]	Full range	1.7			1.7			V/µs
v	Equivalent input	f = 10 Hz		25°C		50			50		/
V _n	noise voltage	f = 1 kHz		25°C		9			9		nV/√Hz
V	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C		1			1		.,
V _{N(PP)}	equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		1.4			1.4		μV
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz
	Total harmonic	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1			0.0013%			0.0013%		
THD + N	distortion plus	f = 20 kHz,	A _V = 10	25°C		0.004%		0.004%			
	noise	$R_L = 10 \text{ k}\Omega^{\ddagger}$	A _V = 100			0.03%			0.03%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		2.18			2.18		MHz
B _{OM}	Maximum out- put-swing band- width	$V_{O(PP)} = 2 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$	$A_V = 1$, $C_L = 100 \text{ pF}^{\ddagger}$	25°C		1			1		MHz
	O a Million at Minner	$A_V = -1$, Step = 0.5 V to 2.5 V,	To 0.1%	0500		1.5			1.5		
t _s	Settling time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	25°C		2.6	_		2.6		μ\$
φ _m	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	C _L = 100 pF [‡]	25°C		50°			50°		
	Gain margin		- •	25°C		10			10		dB

[†] Full range is -40°C to 125°C for Q level part.

[‡] Referenced to 2.5 V

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2274Q electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = ± 5 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS			TLC2274Q			TLC2274AQ			
				T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	loon it offerst valte as			25°C		300	2500		300	950	
V_{IO}	Input offset voltage			Full range			3000			1500	μV
α_{VIO}	Temperature coefficient of input offset voltage			25°C to 125°C		2			2		μV/°C
	Input offset voltage long- term drift (see Note 4)	$V_{IC} = 0 V$, $R_S = 50 \Omega$	$V_O = 0 V$,	25°C		0.002			0.002		μV/mo
	Input offeet ourrent			25°C		0.5	60		0.5	60	20
I _{IO}	Input offset current			Full range			800			800	рA
1	Input hige current]		25°C		1	60		1	60	4
I _{IB}	Input bias current			Full range			800			800	рA
V _{ICR}	Common-mode input	R ₂ = 50.0	V _{IO} ≤ 5 mV	25°C	-5 to 4	-5.3 to 4.2		-5 to 4	-5.3 to 4.2		· v
VICR	voltage	118 = 30 22,	V O ≥ 5 111V	Full range	-5 to 3.5			-5 to 3.5			
		$I_{O} = -20 \mu A$	$_{\text{O}} = -20 \mu\text{A}$ 25°C 4.99				4.99				
	Maximum positive peak output voltage	$I_{O} = -200 \mu\text{A}$		25°C	4.85	4.93		4.85	4.93		٧
V _{OM+}				Full range	4.85			4.85			
		I _O = -1 mA		25°C	4.25	4.65		4.25	4.65		
				Full range	4.25			4.25			
	Maximum negative peak output voltage	$V_{IC} = 0 V$,	$I_O = 50 \mu\text{A}$	25°C		-4.99			-4.99		
		$V_{IC} = 0 V,$ $V_{IC} = 0 V,$	I _O = 500 μA	25°C	-4.85	-4.91		-4.85	-4.91		V
V_{OM-}				Full range	-4.85			-4.85			
	output rollago			25°C	-3.5	-4.1		-3.5	-4.1		
			10 = 2 IIIA	Full range	-3.5			-3.5			
	Large-signal differential voltage amplification		B = 10 kO	25°C	20	50		20	50		
A_{VD}		$V_O = \pm 4 \text{ V}$	$R_L = 10 \text{ k}\Omega$	Full range	20			20			V/mV
			$R_L = 1 M\Omega$	25°C		300			300		
r _{id}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
r _i	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Common-mode input capacitance	f = 10 kHz,	N package	25°C		8			8		pF
Z _O	Closed-loop output impedance	f = 1 MHz,	A _V = 10	25°C		130			130		Ω
01155	Common-mode rejection	$V_{IC} = -5 \text{ V to } 2.7 \text{ V}$		25°C	75	80		75	80		-ID
CMRR	ratio	$V_O = 0 V$,	$R_S = 50 \Omega$	Full range	75			75			dB
	Supply-voltage rejection	$V_{DD\pm} = \pm 2$.	.2 V to ±8 V, No load	25°C	80	95		80	95		-ID
k _{SVR}	ratio $(\Delta V_{DD\pm}/\Delta V_{IO})$	$V_{IC} = 0 V$		Full range	80			80			dB
1	Supply current	V _O = 0 V,	No load	25°C		4.8	6		4.8	6	mA
I _{DD}	очрріу сипепі	ν _O = υ ν,	No load	Full range			6			6	I IIIA

[†] Full range is –40°C to 125°C for Q level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLC227x-Q1, TLC227xA-Q1 Advanced LinCMOS™ RAIL-TO-RAIL **OPERATIONAL AMPLIFIERS**SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

TLC2274Q operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

	ADAMETED	TEST COMPITIONS		+ +	TLC2274Q			TLC2274AQ			UNIT	
PARAMETER		TEST CONDITION	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII		
				25°C	2.3	3.6		2.3	3.6			
SR	Slew rate at unity gain	$V_{O} = \pm 2.3 \text{ V},$ $C_{L} = 100 \text{ pF}$	= 10 kΩ,	Full range	1.7			1.7			V/μs	
V	Equivalent input noise voltage	f = 10 Hz f = 1 kHz		25°C		50			50		nV/√ Hz	
V _n				25°C		9			9			
V	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 1 Hz	25°C		1			1				
V _{N(PP)}		f = 0.1 Hz to 10 Hz	25°C		1.4			1.4		μ V		
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz	
	Total harmonic distortion plus	$V_0 = \pm 2.3 \text{ V},$	$A_V = 1$	25°C		0.0011%			0.0011%			
THD + N		$R_L = 10 \text{ k}\Omega$	A _V = 10			0.004%			0.004%			
	noise	f = 20 kHz	A _V = 100		0.03%			0.03%				
	Gain-bandwidth product	$f = 10 \text{ kHz}, \qquad \qquad R_L$ $C_L = 100 \text{ pF}$	= 10 kΩ,	25°C		2.25			2.25		MHz	
B _{OM}	Maximum output-swing bandwidth	$V_{O(PP)} = 4.6 \text{ V}, \qquad A_V \\ R_L = 10 \text{ k}\Omega, \qquad C_L$	= 1, = 100 pF	25°C		0.54			0.54		MHz	
t _s	Settling time	$A_V = -1$, Step = -2.3 V to 2.3 V, $R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	To 0.1%	25°C		1.5			1.5			
			To 0.01%	25°C		3.2			3.2		μ\$	
φ _m	Phase margin at unit gain	$R_L = 10 \text{ k}\Omega, \qquad C_L$	= 100 pF	25°C		52°			52°			
	Gain margin	<u> </u>	•	25°C		10			10		dB	

[†] Full range is –40°C to 125°C for Q level part.

Table of Graphs

			FIGURE
V_{IO}	Input offset voltage	Distribution vs Common-mode voltage	1 – 4 5, 6
ανιο	Input offset voltage temperature coefficient	Distribution	7 – 10
I _{IB} /I _{IO}	Input bias and input offset current	vs Free-air temperature	11
VI	Input voltage	vs Supply voltage vs Free-air temperature	12 13
V _{OH}	High-level output voltage	vs High-level output current	14
V _{OL}	Low-level output voltage	vs Low-level output current	15, 16
V _{OM+}	Maximum positive peak output voltage	vs Output current	17
V _{OM} _	Maximum negative peak output voltage	vs Output current	18
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	19
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	20 21
Vo	Output voltage	vs Differential input voltage	22, 23
	Large-signal differential voltage amplification	vs Load resistance	24
A _{VD}	Large-signal differential voltage amplification and phase margin	vs Frequency	25, 26
	Large-signal differential voltage amplification	vs Free-air temperature	27, 28
z _o	Output impedance	vs Frequency	29, 30
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	31 32
k _{SVR}	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	33, 34 35
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	36, 37 38, 39
SR	Slew rate	vs Load capacitance vs Free-air temperature	40 41
	Inverting large-signal pulse response		42, 43
.,	Voltage-follower large-signal pulse response		44, 45
V _O	Inverting small-signal pulse response		46, 47
	Voltage-follower small-signal pulse response		48, 49
V _n	Equivalent input noise voltage	vs Frequency	50, 51
	Noise voltage over a 10-second period		52
	Integrated noise voltage	vs Frequency	53
THD + N	Total harmonic distortion plus noise	vs Frequency	54
	Gain-bandwidth product	vs Supply voltage vs Free-air temperature	55 56
φ _m	Phase margin	vs Load capacitance	57
	Gain margin	vs Load capacitance	58

NOTE: For all graphs where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V.

Percentage of Amplifiers - %

DISTRIBUTION OF TLC2272 INPUT OFFSET VOLTAGE

DISTRIBUTION OF TLC2272 INPUT OFFSET VOLTAGE

Figure 2

DISTRIBUTION OF TLC2274 INPUT OFFSET VOLTAGE

Figure 3

DISTRIBUTION OF TLC2274 INPUT OFFSET VOLTAGE

Figure 4

INPUT OFFSET VOLTAGE

TYPICAL CHARACTERISTICS

Figure 5

Figure 6

DISTRIBUTION OF TLC2272 vs INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT†

Figure 7

DISTRIBUTION OF TLC2272 vs INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT†

Figure 8

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

25

2 Wafer Lots $V_{DD} = \pm 2.5 V$ 20 N Package Percentage of Amplifiers - % $T_A = 25^{\circ}C$ to $125^{\circ}C$ 15 10 5 -5

DISTRIBUTION OF TLC2274

INPUT OFFSET VOLTAGE TEMPERATURE

COEFFICIENT[†]

128 Amplifiers From

Figure 9

Figure 10

 α_{VIO} – Temperature Coefficient – $\mu\text{V}/^{\circ}\text{C}$

Figure 11

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 15

Figure 16

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE† **OUTPUT CURRENT** V_{OM+} - Maximum Positive Peak Output Voltage - V $V_{DD}\pm=\pm5~V$ $T_A = -55^{\circ}C$ T_A = 25°C $T_A = 125^{\circ}C$ 0 3 |IO| - Output Current - mA

MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE†

Figure 18

SHORT-CIRCUIT OUTPUT CURRENT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SHORT-CIRCUIT OUTPUT CURRENT† FREE-AIR TEMPERATURE 15 **V**O = 0 **V** $V_{DD} = \pm 5 \text{ V}$ OS - Short-Circuit Output Current - mA $V_{ID} = -100 \text{ mV}$ 11 7 -3 $V_{ID} = 100 \text{ mV}$ -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 21

Figure 22

LARGE-SIGNAL DIFFERENTIAL

VOLTAGE AMPLIFICATION

Figure 24

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

FREQUENCY 80 180° $V_{DD} = 5 V$ $R_L = 10 \text{ k}\Omega$ $C_{L}^{-} = 100 \text{ pF}$ 135° 60 $T_A = 25^{\circ}C$ A_{VD}- Large-Signal Differential Voltage Amplification - dB 40 90° [♦]m - Phase Margin 45° 20 **0**° 0 -20 -45° -90° -40 1 k 10 k 100 k 1 M 10 M

Figure 25

f - Frequency - Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

FREQUENCY 80 180° V_{DD} = $\pm 5~V$ $R_L = 10 \text{ k}\Omega$ $C_{L}^{-} = 100 \text{ pF}$ 135° 60 T_A = 25°C A_{VD}- Large-Signal Differential Voltage Amplification - dB ⁶m − Phase Margin 90° 40 45° 20 **0**° 0 -20 -45° -90° 1 k 10 k 100 k 10 M f - Frequency - Hz

Figure 26

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 29

Figure 30

COMMON-MODE REJECTION RATIO FREQUENCY 100 $T_A = 25^{\circ}C$ CMRR - Common-Mode Rejection Ratio - dB $V_{DD} = \pm 5 V$ 80 $V_{DD} = 5 V$ 60 40 20 10 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz

Figure 31

COMMON-MODE REJECTION RATIO vs

Figure 32

SUPPLY-VOLTAGE REJECTION RATIO

Figure 34

TLC2272

TYPICAL CHARACTERISTICS

Figure 35

Figure 36

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLEW RATE[†] FREE-AIR TEMPERATURE 5 SR -SR – Slew Rate – V/μs SR+ 3 $V_{DD} = 5 V$ $R_L = 10 \text{ k}\Omega$ $C_{L} = 100 pF$ $A_V = 1$ -75 -50 -25 0 25 50 75 100 125 T_A – Free-Air Temperature – $^{\circ}C$

Figure 41

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 43

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

Figure 44

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

Figure 45

INVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 46

INVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 47

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

Figure 48

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

Figure 49

EQUIVALENT INPUT NOISE VOLTAGE

Figure 50

EQUIVALENT INPUT NOISE VOLTAGE

Figure 51

Figure 52

INTEGRATED NOISE VOLTAGE

Figure 53

TOTAL HARMONIC DISTORTION PLUS NOISE

Figure 54

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SGLS007D - FEBRUARY 2003 - REVISED MARCH 2009

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 5) and subcircuit in Figure 59 were generated using the TLC227x typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

Figure 59. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

PACKAGE OPTION ADDENDUM

www.ti.com 7-May-2010

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLC2272AQDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272AQDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272AQPWRG4Q1	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272AQPWRQ1	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272QDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272QPWRG4Q1	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2272QPWRQ1	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274AQDRG4Q1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274AQDRQ1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274AQPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274AQPWRQ1	ACTIVE	TSSOP	PW	14	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
TLC2274QDRG4Q1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274QDRQ1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274QPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC2274QPWRQ1	ACTIVE	TSSOP	PW	14	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 7-May-2010

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1:

- Catalog: TLC2272, TLC2272A, TLC2274, TLC2274A
- Enhanced Product: TLC2272A-EP, TLC2274-EP, TLC2274A-EP
 Military: TLC2272M, TLC2272AM, TLC2274AM

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio		
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive		
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications		
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers		
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps		
Interface	interface.ti.com	Energy	www.ti.com/energy		
Logic	logic.ti.com	Industrial	www.ti.com/industrial		
Power Mgmt	power.ti.com	Medical	www.ti.com/medical		
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security		
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense		
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video		
		Wireless	www.ti.com/wireless-apps		