杭州电子科技大学学生考试(模拟)

- 一、填空题(每空格2分)
- 1. 设事件 A, B 相互独立, P(A) = 0.4 , P(B) = 0.6 ,则概率 $P(A \cup B) =$
- 2. 袋内装有6个白球,4个黑球。从中任取三个,取出的三个球都是白球的概率=_____
- 3. 设 $X \sim N(10, \sigma^2)$, $P\{10 < X < 20\} = 0.3$,则 $P\{0 < X < 10\}$ 的值为_____。
- 4. 设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y=X^2$ 在(0,4)上概率密度 $f_Y(y)=$
- 5. 设随机变量 X 服从二项分布 b(10,0.3) ,随机变量 Y 服从正态分布 N(2,4) ,且 X ,Y 相互独立,则 E(X-2Y)= , D(X-2Y)= 。
- 二、试解下列各题
- 1. (8%) 设随机变量 X 的分布律为:

X	-1	2	3
概率	0. 3	0. 5	0. 2

求 (1) X 的分布函数 F(x); (2) 概率 $P\{X \le 0.25\}$, $P\{X > 2\}$; (3) E(X), D(X)

2、(16%) 设二维随机变量(
$$X,Y$$
)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 < 1 \\ 0, 其它 \end{cases}$

试问: (1) X,Y 是否相互独立? (2) X,Y 是否相关? (3) 求概率 $P\{Y > X\}$ 。

三、(10%) 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} (\theta+1)x^{\theta}, 0 \le x \le 1 \\ 0, else \end{cases}$,其中 $\theta > -1$ 是未知参数,

 x_1, x_2, Λ, x_n 是 X 的一个样本 X_1, X_2, Λ, X_n 的观察值,试求参数 θ 的矩估计量和最大似然估计值。

四、(8%) 有一大批糖果,现从中随机地抽取 16 袋,计算得平均重量x=502.5 (以克计),样本方差为 $S^2=4.2$,求总体方差 σ^2 的置信水平为 0.95 的置信区间。(设袋装糖果的重量近似地服从正态分布)

五、(8%) 某种电子元件的寿命 X (以小时计) 服从正态分布 $N(\mu,\sigma^2)$, μ,σ^2 均未知,

现测 16 只元件,计算得平均寿命x=231.5,标准差为s=92.6,问是否有理由认为元件的平均寿命是 225 (小时) (取 $\alpha=0.05$)。

六. (6%) 设随机变量 X 的概率密度 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x - 1}$, $-\infty < x < +\infty$,求: E(X) , D(X) 。

七、(8%) 设从均值为 μ ,方差为 σ^2 的总体中,分别抽取容量为 n_1,n_2 的两独立样本。 $\overline{X_1}$, $\overline{X_2}$ 分别是两样本的均值。试证,对于任意常数 $a,b(a+b=1),Y=a\overline{X_1}+b\overline{X_2}$ 都是 μ 的无偏估计,并确定常数a,b 使 D(Y) 达到最小。

八、(8%) 设产品为废品的概率为 0 .2, 求 400 件产品中废品件数不大于 60 的概率的近似值。(结果可用标准正态分布函数 $\Phi(x)$ 表示)

九、(8%) 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,Λ , X_n 是 X 的一个样本,试确定常数 C, 使 $C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2\ \,$ 为 σ^2 的无偏估计。

十、(8%) 设总体 $X \sim N(0,1)$, X_1, X_2, Λ , X_{16} 是 X 的一个样本,

$$Y = (\sum_{i=1}^4 X_i)^2 + (\sum_{i=5}^8 X_i)^2 + (\sum_{i=9}^{12} X_i)^2 + (\sum_{i=13}^{16} X_i)^2$$
,试确定常数 C ,使 CY 服从 χ^2 分布。

十一、(8%) 设随机变量(X,Y) 的概率分布律为:

X	-1	0	1
0	0. 2	0. 1	0. 2
1	0. 1	0. 3	0. 1

求: (1) 关于 X 的边缘分布律; (2) 关于 $Z = X^2$ 的分布律; (3) 数学期望 $E(X^2)$, E(XY)。

- 十二、(8%)将两信息分别编码为 A 和 B 传递出去,接收站收到时,A 被误收作 B 的概率为 0.02,而 B 被误收作 A 的概率为 0.01,信息 A 和信息 B 传送的频率程度为 1: 2,问:
 - (1)接收站收到信息 A的概率是多少?
 - (2) 若接收站收到的信息是 A,则原发信息是 A的概率是多少?