Université Paris 9 - Dauphine

Processus Aléatoires Discrets

Examen du 24-1-2006

Aucun document n'est autorisé. Durée 2 heures.

1. Soit M un espace fini et $\pi = \{\pi(x), x \in M\}$ une probabilité sur M. On se donne une matrice de transition \mathcal{P} sur M, irréductible et telle que $\mathcal{P}(x,y) > 0 \iff \mathcal{P}(y,x) > 0$. Soit $h: [0,\infty] \to [0,1]$ une fonction vérifiant

$$h(u) = uh\left(\frac{1}{u}\right).$$

Par exemple $h(u) = \inf(u, 1)$ ou bien $h(u) = \frac{u}{1+u}$. Pour $x \neq y$ posons

$$R(x,y) = \begin{cases} h\left(\frac{\pi(y)\mathcal{P}(y,x)}{\pi(x)\mathcal{P}(x,y)}\right) & \text{si } \pi(x)\pi(y)\mathcal{P}(y,x) \neq 0\\ 0 & \text{sinon.} \end{cases}$$
 (1)

On construit alors une probabilité de transition Q définie par

$$\begin{cases}
Q(x,y) &= \mathcal{P}(x,y)R(x,y) & \text{si } x \neq y \\
Q(x,x) &= 1 - \sum_{y \neq x} Q(x,y)
\end{cases}$$
(2)

- (a) Montrer que Q est une matrice de transition bien définie et que π est réversible pour Q.
- (b) Soit $M' = \{x \in M; \pi(x) > 0\}$ le support de π . Montrer que $\{Q(x,y); x, y \in M'\}$ est une matrice de transition irréductible sur M'.
- (c) Montrer que si h(u) < 1 alors Q est apériodique sur M'. En déduire que dans ce cas $Q^n(x,y) \to \pi(y)$ quand $n \to \infty, \forall x \in M'$.
- 2. Soit $\{Y_i\}_{i\geq 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i=1)=1/2=1-\mathbb{P}(Y_i=-1)$. On pose $S_n=\sum_{i=1}^n Y_i, n\geq 1$, et $S_0=0$.
 - (a) Montrer que S_n et $S_n^2 n$ sont des martingales par rapport à la filtration $\{\mathcal{F}_n = \mathcal{F}(Y_1, \ldots, Y_n)\}_n$.
 - (b) Soit τ un temps d'arrêt par rapport à la filtration $\{\mathcal{F}_n\}_n$. On suppose que τ est borné. Montrer que

$$\mathbb{E}\left[\tau\right] = \mathbb{E}\left[S_{\tau}^{2}\right].$$

- (c) Soient a, b des entiers positifs et $\tau = \inf\{n : S_n \in \{-a, b\}\}$. Montrer que $\mathbb{E}(S_\tau) = 0$ et $\mathbb{E}[\tau] = \mathbb{E}[S_\tau^2]$.
- (d) Calculer la probabilité de ruine $r = \mathbb{P}(S_{\tau} = -a)$.
- (e) Calculer $\mathbb{E}[\tau]$ et sa limite lorsque $b \to \infty$. En déduire que $(S_n)_{n \ge 0}$ est une marche aléatoire récurrente nulle.
- 3. N molécules de gaz sont réparties dans un récipient divisé en deux enceintes séparées par une paroi poreuse. Chaque seconde une particule choisie uniformément au hasard change d'enceinte. On note X_n le nombre de particules dans la première enceinte à l'étape n. La suite $(X_n)_{n\geq 0}$ est une chaîne de Markov à valeurs dans $M=\{1,...,N\}$.
 - (a) Calculer sa matrice de transition P.
 - (b) Montrer que P est irréductible.
 - (c) P est-elle fortement irréductible?
 - (d) Calculer sa mesure stationnaire π et montrer qu'elle est réversible.
 - (e) Soit $T_x = \inf\{n > 0 : X_n = x\}$. Calculer $\mathbb{E}_x[T_x]$ pour x = N et x = N/2 (on suppose que N est pair dans ce deuxième cas).