Adatbányászat: Adatok

2. fejezet

Tan, Steinbach, Kumar
Bevezetés az adatbányászatba
előadás-fóliák
fordította
Ispány Márton

Az adatelemzés csővezetéke

Az adatbányászat nem az egyetlen lépés a folyamatban

- Előfeldolgozás: a valós adatok zajosak, hiányosak és inkonzisztensek. Adattisztítás is szükséges az adatok megértéshez
 - Módszerek: Mintavétel, Dimenzió csökkentés, Jellemző szelektálás.
 - Piszkos munka de gyakran a legfontosabb lépés az elemzésben.
- Utófeldolgozás: Tegyük az eredményeket hasznossá és cselekvésre ösztönzővé a felhasználó számára
 - A kapott eredmény fontosságának statisztikai vizsgálata
 - Vizualizáció.
- Az elő- és utófeldolgozás gyakran maga is egy adatbányászati feladat

Az adatbányászat módszertana

Többféle (gyártótól is függő) módszertan:

CRISP-DM (SPSS-Clementine) http://www.crisp-dm.org/

SEMMA (SAS) http://www.sas.com/

- Az 5 lépcsős folyamat
 - Mintavétel: az adatok előkészítése az adattárházból.
 - Feltárás: új összefüggések, mintázatok keresése.
 - Módosítás: attribútumok, rekordok, mezők módosítása, kitöltése.
 - Modellezés: analítikus modellek illesztése.
 - Kiértékelés: a modell(ek) jóságának, hasznosságának mérése.

Mit értünk adat alatt?

- Objektumok attribútumainak numerikusan jellemzett összessége.
- Attribútum: egy objektum tulajdonsága, jellemzője.
 - Példák: hajszín, hőmérséklet, stb.
 - Az attribútumot nevezik változónak, jellemzőnek (feature).

Objektumok

- Attribútumok értékeinek egy összessége ír le egy objektumot.
 - Az objektumot nevezik rekordnak, pontnak, esetnek, mintaelemnek, egyednek, entitásnak.

Attribútumok

	1				<u>, , , , , , , , , , , , , , , , , , , </u>
_	Tid	Vissza- térítés	Családi állapot	Jöve- delem	Csalás
	1	Igen	Nőtlen	125K	Nem
	2	Nem	Házas	100K	Nem
	3	Nem	Nőtlen	70K	Nem
	4	Igen	Házas	120K	Nem
	5	Nem	Elvált	95K	Igen
	6	Nem	Házas	60K	Nem
	7	Igen	Elvált	220K	Nem
	8	Nem	Nőtlen	85K	Igen
	9	Nem	Házas	75K	Nem
_	10	Nem	Nőtlen	90K	Igen

Attribútum értékek

- Attribútum értékek alatt az attribútumhoz rendelt számokat vagy szimbólumokat értjük.
- Különbség az attribútumok és az attribútum értékek között:
 - Ugyanazt az attribútumot attribútum értékek különböző tartományaira képezhetjük le.
 - Példa: a magasságot méterben és lábban is mérhetjük.
 - Különböző attribútumokat attribútum értékek ugyanazon tartományára is le képezhetjük.
 - Példa: az ID és KOR változók attribútum értékei egészek.
 - Azonban az attribútum értékek tulajdonságai különfélék lehetnek:
 - ID-re nincs korlát, a KOR-nak van maximuma és minimuma.

Hosszúság mérése

 A mód, ahogy egy attribútumot mérünk részben eltérhet az attribútum tulajdonságaitól.

Attribútumok típusai

- A következő attribútum típusokat különböztetjük meg
 - Névleges (nominális)
 - Példák: ID, szemszín, irányítószám.
 - Sorrendi (ordinális)
 - Példák: rangsorolás (pl. a burgonyaszirom íze egy 1-10 skálán), fokozat, magasság mint {magas, átlagos, alacsony}.
 - Intervallum
 - Példák: dátum, hőmérséklet Celsiusban vagy Fahrenheitben.
 - Hányados
 - Példák: abszolút hőmérséklet (Kelvin), hosszúság, idő.

Attribútum értékek tulajdonságai

 Egy attribútum típusa attól függ, hogy milyen tulajdonságokkal rendelkezik.

```
– Egyezőség, különbözőség: = ≠
```

- Névleges attribútum: egyezőség
- Sorrendi attribútum: egyezőség és rendezés
- Intervallum attribútum: egyezőség, rendezés és összeadás
- Hányados attribútum: mind a 4 tulajdonság

Attribútum értékek tulajdonságai

Attribútum Leírás típusa		Példák	Műveletek	
Névleges (nominális)	Egy névleges attribútum értékei csak különböző nevek, azaz csak ahhoz nyújt elegendő információt, hogy egy objektumot megkülönböztessünk egy másiktól. (=, ≠)	irányítószám, dolgozó azonosító, szemszín, nem: { <i>férfi, nő</i> }	módusz, entropia, kontingencia korreláció, χ ² érték	
Sorrendi (ordinális)	Egy rendezett attribútum értékei ahhoz nyújtanak elegendő információt, hogy rendezzük az objektumokat. (<, >)	ásványok keménysége { <i>jó</i> , <i>jobb</i> , <i>legjobb</i> }, fokozat, házszám	medián, percentilis, rang korreláció, széria próba, előjel ill. előjeles rangösszeg próba	
Intervallum	Egy intervallum attribútumnál az értékek közötti különbségek is jelentéssel bírnak. (+, -)	naptári dátumok, hőmérséklet Celsiusban ill. Fahrenheitben	átlag, szórás, Pearson féle korreláció, <i>t</i> és <i>F</i> próba	
Hányados	Hányados változónál a különbségnek és a hányadosnak egyaránt van értelme. (*,/)	abszolút hőmérséklet, pénzügyi mennyiség, kor, tömeg, hossz, elektromos áram	mértani és harmónikus közép, százalék variáció	

Attribútum értékek tulajdonságai

Attribútum szintje	Transzformáció	Megjegyzés
Névleges (nominális)	Az értékek bármilyen permutációja	Okoz-e bármilyen különb- séget ha az alkalmazottak azonosítóit átrendezzük?
Sorrendi (ordinális)	Az értékek rendezés tartó transzformációja, azaz $új_\acute{e}rt\acute{e}k = f(r\acute{e}gi_\acute{e}rt\acute{e}k)$, ahol f egy monoton függvény.	Egy attribútum melyet a jó, jobb és legjobb fokokkal írhatunk le egyaránt reprezentálható az {1, 2, 3} vagy a {0.5, 1, 10} számokkal.
Intervallum	<i>új_érték =a * régi_érték + b</i> ahol a és b konstansok	Így a Fahrenheit és Celsius skálák abban különböznek hogy hol van a zéró érték és mekkora az egység (fok).
Hányados	új_érték = a * régi_érték	A hosszúság méterben és lábban is mérhető.

Diszkrét és folytonos attribútumok

Diszkrét attribútumok

- Véges vagy megszámlálható végtelen sok értéke lehet.
- Példák: irányítószám, darabszám, szavak száma dokumentumokban.
- Gyakran egész értékű változókkal reprezentáljuk.
- Megjegyzés: a bináris attribútumok a diszkrét attribútumok egy speciális esete.

Folytonos attribútumok

- Az attribútum értékek valós számok.
- Példák: hőmérséklet, magasság, súly.
- Gyakorlatban a valós értékek csak véges sok tizedesjegyig mérhetőek és ábrázolhatóak.
- A folytonos attribútumokat általában lebegőpontos változókkal reprezentáljuk.

Adatállományok típusai

Rekord

- Adatmátrix (adatbázisok)
- Dokumentum mátrix (szövegbányászat)
- Tranzakciós adatok

Gráf

- World Wide Web (webgráf)
- Molekula szerkezetek

Rendezett

- Térbeli adatok
- Időbeli adatok
- Szekvenciális adatok
- Génszekvenciák adatai

Strukturált adatok fontos jellemzői

- Dimenzió
 - Dimenzió probléma

- Ritkaság
 - Csak az előforduló esetek elemezhetőek

- Felbontás
 - A mintázat függ a skálától

Rekordokból álló adatok

 Olyan adatok, amelyek rekordok egy halmazából állnak, ahol mindegyik rekord attribútum értékek egy adott halmazából áll.

Tid	Vissza- térítés	Családi állapot	Jöve- delem	Csalás
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Igen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

Adatmátrix

- Ha az objektumokat leíró adatok numerikus attribútumok egy adott halmazából állnak, akkor gondolhatunk rájuk úgy, mint pontokra a többdimenziós térben, ahol minden egyes dimenzió egy attribútumot reprezentál.
- Az ilyen adatokat egy n x p –es mátrixszal reprezentálhatjuk, amelynek n sora az objektumoknak, p oszlopa pedig az attribútumoknak felel meg.

X vetület	Y vetület	Távolság	Súly	Vastagság
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Dokumentum mátrix

- Minden dokumentumot kifejezések egy vektorával írunk le.
 - Minden kifejezés egy attribútuma a vektornak.
 - Minden attribútum érték annak a száma, hogy az attribútumhoz tartozó kifejezés hányszor fordul elő a dokumentumban.

	csapat	edző	meccs	labda	pont	játék	győzelem	vereség	szezon
1. Doc	3	0	5	0	2	6	0	2	2
2. Doc	0	7	0	2	1	0	0	3	0
3. Doc	0	1	0	0	1	2	2	0	0

Tranzakciós adatok

- Speciális rekord típusú adatok, ahol
 - minden rekord (tranzakció) tételek egy halmazát tartalmazza.
 - PI.: tekintsünk egy élelmiszerboltot. A tranzakció azon árucikkekből áll, amelyeket a vásárló vesz egy vásárlás során, míg a tételek a vásárolt árucikkek.

TID	Tételek
1	Kenyér, Kóla, Tej
2	Sör, Kenyér
3	Sör, Kóla, Pelenka, Tej
4	Sör, Kenyér, Pelenka, Tej
5	Kóla, Pelenka, Tej

Gráf adatok

Példák: általános gráf, HTML linkek


```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers</a>
```

Kémiai adatok

Benzin molekula: C₆H₆

Rendezett adatok

Tranzakciók sorozatai

A sorozat egy eleme

Rendezett adatok

Génszekvenciák

Rendezett adatok

Tér és időbeli adatok

A földrészek és óceánok átlagos havi középhőmérséklete

Adatminőség

- Milyen adatminőségi problémák léphetnek fel?
- Hogyan ismerhetjük fel ezeket a problémákat az adatainkon?
- Hogyan kezelhetjük ezeket a problémákat?

- Példák adatminőségi problémákra:
 - zaj (hiba) és kiugró adatok
 - hiányzó adatok
 - duplikált adatok

Adatminőség

- Példák adatminőségi problémákra:
 - zaj (hiba) és kiugró adatok
 - hiányzó adatok
 - duplikált adatok

Hiba vagy milliomos?

Hiányzó érték (NULL)

Inkonzisztens duplikátumok

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
9	No	Single	90K	No	

Zajos adatok

- Zaj alatt az eredeti (igazi) érték módosulását értjük
 - Példák: az emberi hang torzulása ha rossz telefonon beszélünk, szemcsésedés a képernyőn.

Két szinusz hullám

Két szinusz hullám + Zaj

Kiugró adatok

 A kiugró adatok olyan objektumok adatai, amelynek jellemzői jelentősen eltérnek az adatállományban lévő más objektumok adataitól.

Hiányzó adatok

- Hiányzó adatok okai:
- Az információt nem gyűjtöttük össze (pl. az emberek visszautasították a koruk és súlyuk megadását).
 - Egyes attribútumok nem alkalmazhatóak minden esetben (pl. a gyerekeknek nincs jövedelme).
- Hiányzó adatok kezelése:
 - Objektumok (rekordok) törlése.
 - Hiányzó adatok becslése.
 - A hiányzó értékek figyelmen kívül hagyása az elemzésnél.
 - Helyettesítés az összes lehetséges értékkel (a valószínűségek alapján).

Duplikált adatok

- Az adatállomány tartalmazhat olyan rekordokat, amelyek más rekordok pontos ill. kevésbé pontos ismétlődései.
 - Főként akkor merül fel ha heterogén forrásokból egyesítjük az adatokat.

Példa:

Ugyanaz az ember többféle e-mail vagy lakcímmel.

Adattisztítás

 Az a folyamat, mely során az ismétlődő adatokat kezeljük.

Adatok előfeldolgozása

- Aggregálás
- Mintavétel
- Dimenzió csökkentés
- Jellemzők (features) részhalmazainak szelekciója
- Új jellemzők, attribútumok létrehozása
- Diszkretizáció és binarizálás
- Attribútum transzformáció

Aggregálás

 Kettő vagy több attribútum (objektum) kombinálása egy attribútummá (objektummá).

Cél:

- Adatcsökkentés
 - Csökkentsük az attribútumok vagy az objektumok számát.
- A skála megváltoztatása
 - A városokat régiókba, megyékbe, országokba fogjuk össze.
- Az adatok stabilitásának növelése
 - Az aggregált adatok ingadozása csökken (simítás).

Aggregálás

A csapadék szórása Ausztráliában

Havi átlagos csapadék szórása

Évi átlagos csapadék szórása

Mintavétel

- Az adatszelekció fő módszere
 - Egyaránt használatos az adatok előzetes vizsgálatánál és a végső adatelemzésnél.
- A statisztikusok azért használnak mintavételezést mivel a teljes populáció megfigyelése túl drága vagy túl időigényes.
- Az adatbányászok azért használnak mintavételezést mivel a teljes adatállomány (adattárház) feldolgozása túl drága vagy túl időigényes.

Mintavétel

- A hatékony mintavétel alapelve:
 - A mintával ugyanolyan jól tudunk dolgozni mint a teljes adatállománnyal, amennyiben a minta reprezentatív.
 - A minta akkor reprezentatív ha a számunkra fontos tulajdonságok szempontjából ugyanúgy viselkedik mint a teljes adatállomány.

Mintavételi módok

- Egyszerű véletlen minta
 - Ugyanakkora valószínűséggel választunk ki minden objektumot.
- Visszatevés nélküli mintavétel
 - Ha egy objektumot már kiválasztottunk, akkor azt töröljük az adatállományból.
- Visszatevéses mintavétel
 - Az objektumot nem töröljük az adatállományból akkor sem ha a mintavétel kiválasztotta.
 - Ekkor egy objektumot többször is kiválaszthatunk.
- Rétegzett mintavétel
 - Osszuk fel az adatállományt részekre, majd vegyünk véletlen mintákat minden részből.

Mintanagyság

Mintanagyság

 Mekkora mintanagyság szükséges, hogy 10 csoport mindegyikéből kiválasszunk legalább egy objektumot?

Dimenzió probléma

- Amikor a dimenzió nő a rekordok (pontok) egyre ritkábbak lesznek a térben, ahol elhelyezkednek.
- A rekordok (pontok) közötti távolság és sűrűség, melyek alapvetőek csoportosításnál és kiugró adatok meghatározásánál, fontossága csökken.

- Generáljunk 500 véletlen pontot
- Számítsuk ki az összes pontpár közötti távolság maximuma és minimuma különbségét

Dimenzió csökkentés

Cél:

- Elkerülni a dimenzió problémát.
- Csökkenteni az adatbányászati algoritmusokhoz. szükséges időt és memóriát.
- Segíteni az adatok könnyebb megjelenítését.
- Segíteni a hiba csökkentését és a lényegtelen jellemzők meghatározását majd elhagyását.

Módszerek

- Főkomponens analízis (PCA)
- Szinguláris felbontás (SVD)
- Egyéb felügyelt és nemlineáris módszerek, pl. többdimenziós skálázás (MDS)

Dimenzió csökkentés: PCA

 Célja olyan vetítés (projekció) meghatározása, amely leginkább megőrzi az adatokban lévő variációt, sokszínűséget.

Dimenzió csökkentés: PCA

- Határozzuk meg a kovariancia mátrix sajátvektorait.
- Az új teret (koordinátatengelyeit) ezek a sajátvektorok határozzák meg.

Dimenzió csökkentés: ISOMAP

Tenenbaum, de Silva, Langford (2000) Science

- Állítsuk elő a szomszédsági gráfot.
- A gráf minden pontpárára számoljuk ki a legrövidebb út hosszát – geodetikus távolság.
- Erre a távolság mátrixra alkalmazzuk az MDSt.

Dimenzió csökkentés: PCA

Dimensions = 206

Jellemzők részhalmazainak szelekciója

- A dimenzió csökkentés egy másik útja.
- Felesleges jellemzők
 - Egy vagy több attribútum által hordozott információt részben vagy teljesen megismétel.
 - Példa: egy termék vételára és az utána fizetendő adó.
- Lényegtelen jellemzők
 - Nem tartalmaznak az aktuális adatbányászati feladat számára hasznos információt.
 - Példa: a hallgató NEPTUN kódja többnyire nem befolyásolja a tanulmányi eredményt.

Jellemzők részhalmazainak szelekciója

• Módszerek:

- Nyers erő (brute force) megközelítés
 - Próbáljuk ki a jellemzők összes részhalmazát az adatbányászati algoritmus inputjaként.
- Beágyazott megközelítés
 - A jellemzők szelekciója az adatbányászati feladat szerves részét alkotja.
- Szűrő megközelítés
 - A jellemzőket az adatbányászati algoritmus futása előtt szelektáljuk.
- Borító (wrapper) megközelítés
 - Az adatbányászati algoritmust fekete dobozként használjuk a legjobb attribútum részhalmaz megtalálására.

Új jellemzők (attribútumok) létrehozása

- Olyan új attribútumok létrehozása, amelyek az adatállományban lévő lényeges információkat használhatóbb formában tartalmazzák mint az eredeti attribútumok.
- Három általános módszer
 - Jellemző kinyerés (feature extraction)
 - terület függő (pl. képfeldolgozás, földrajz)
 - Új térre való leképezés
 - Jellemző szerkesztés
 - jellemzők kombinálása

Új térre való leképezés

- Fourier transzformáció
- Wavelet (hullám) transzformáció

Két szinusz hullám

Két szinusz hullám + Zaj

Frekvencia

Felügyelt diszkretizálás

Entrópia alapú megközelítés

Nem-felügyelt diszkretizálás

Attribútumok transzformációja

- Olyan függvény, amely adott attribútum értékeinek halmazát képezi le helyettesítő értékek egy új halmazára úgy, hogy minden régi érték egy új értékkel azonosítható.
 - Elemi függvények: x^k, log(x), e^x, |x|
 - Standardizálás és normalizálás

Hasonlóság és távolság

Hasonlóság

- Két objektum (rekord) hasonlóságát méri.
- Minél nagyobb az értéke annál nagyobb a hasonlóság.
- Általában a [0,1] intervallumban veszi fel az értékeit.

Távolság

- Két objektum (rekord) különbözőségét méri.
- Minél kisebb annál nagyobb a hasonlóság.
- A minimális távolság általában 0.
- A felső korlát változó.
- A szomszédság fogalma egyaránt utalhat hasonlóságra és távolságra.

Hasonlóság/távolság egyszerű attribútumnál

p és q jelöli két objektum attribútum értékét.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d} \text{ or}$ $s = 1 - \frac{d - min - d}{max - d - min - d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euklideszi távolság

Euklideszi távolság:

$$dist (p,q) = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

A képletben n jelöli a dimenziót (attribútumok száma), p_k és q_k pedig a k-adik attribútum értéke (koordinátája) a p és q objektumoknak (rekordoknak).

 Ha a skálák különbözőek, akkor előbb standardizálni kell.

Euklideszi távolság

pont	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Távolság mátrix

Minkowski távolság

Az euklideszi távolság általánosítása

$$dist (p,q) = (\sum_{k=1}^{n} |p_k - q_k|^r)^{\frac{1}{r}}$$

A képletben r paraméter, n a dimenzió (attribútumok száma) p_k és q_k pedig a k-adik attribútum értéke (koordinátája) a p és q objektumoknak (rekordoknak).

Példák Minkowski távolságra

- r = 1: háztömb (Manhattan, taxi, L₁ norma) távolság.
 - Egy ismert példa az ún. Hamming távolság, amely éppen a különböző bitek száma két bináris vektorban.
- r = 2: euklideszi távolság
- $r \to \infty$: ,,szupremum'' (L_{max} norma, L_∞ norma) távolság.
 - Két vektor koordinátái közötti különbségek abszolút értékének maximuma.
- Ne tévesszük össze r és n szerepét, ezek a távolságok minden dimenzió, azaz n mellett értelmezhetőek.

Minkowski távolság

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Távolság mátrix

Mahalanobis távolság

$$s(p,q) = (p-q) \sum_{q=0}^{T} (p-q)^{T}$$

Σ az *X* input adatok kovariancia mátrixa

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

A vörös pontok euklideszi távolsága 14.7, míg a Mahalanobis távolságuk 6.

Mahalanobis távolság

Kovariancia mátrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

A távolság általános jellemzői

- A különböző távolság fogalmak, pl. euklideszi, néhány jól ismert jellemzővel bír.
 - 1. $d(p, q) \ge 0$ minden p és q esetén, továbbá d(p, q) = 0 akkor és csak akkor ha p = q (nemnegativitás),
 - 2. d(p, q) = d(q, p) minden p és q esetén (szimmetria),
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ minden p, q, és r pontra (háromszög egyenlőtlenség),
 - ahol d(p, q) a p és q pontok (objektumok) közötti távolságot jelöli.
- Az olyan távolságot, amely eleget tesz a fenti tulajdonságoknak metrikának nevezzük.

A hasonlóság általános jellemzői

- A hasonlóságoknak szintén van néhány jól ismert tulajdonsága.
 - 1. s(p, q) = 1 (vagy a maximális hasonlóság) akkor és csak akkor ha p = q,
 - 2. s(p, q) = s(q, p) minden p és q esetén (szimmetria),

ahol s(p, q) jelöli a p és q pontok (objektumok) közötti hasonlóságot.

Bináris vektorok hasonlósága

- Gyakran előfordul, hogy objektumoknak, p és q, csak bináris attribútumai vannak.
- Hasonlóságokat a következő mennyiségek révén definiálhatunk:

```
M_{01} = azon attribútumok száma, ahol p=0 és q=1, M_{10} = azon attribútumok száma, ahol p=1 és q=0, M_{00} = azon attribútumok száma, ahol p=0 és q=0, M_{11} = azon attribútumok száma, ahol p=1 és q=1.
```

Egyszerű egyezés és Jaccard együttható:

```
SMC = egyezők száma / attribútumok száma = (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

 $J = az 11 egyezések száma / a nem mindkettő 0 attribútumok száma = <math>(M_{11}) / (M_{01} + M_{10} + M_{11})$

Példa SMC és Jaccard hasonlóságra

$$p = 1000000000$$

$$q = 0000001001$$

$$M_{01} = 2$$
 (azon attribútumok száma, ahol p=0 és q=1)

$$M_{10} = 1$$
 (azon attribútumok száma, ahol p=1 és q=0)

$$M_{00} = 7$$
 (azon attribútumok száma, ahol p=0 és q=0)

$$M_{11} = 0$$
 (azon attribútumok száma, ahol p=1 és q=1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Koszinusz hasonlóság

• Ha d_1 és d_2 két dokumentumot leíró vektor (nemnegatív egész koordinátájúak), akkor

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

ahol ● jelöli a skaláris szorzatot || d || pedig a d vektor hossza.

Példa:

$$d_1 = 3205000200$$

 $d_2 = 100000102$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

A Jaccard együttható általánosítása

- Tanimoto együttható
- A Jaccard együttható módosítása azért, hogy alkalmazható legyen folytonos illetve egész értékű attribútumokra.
 - Bináris attribútumok esetén a Jaccard együtthatót kapjuk vissza

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

Korreláció

- Az objektumok vagy attribútumok közötti lineáris kapcsolat erősségét méri.
- Két objektum (attribútum), p és q, közötti korreláció kiszámításához először standardizáljuk őket, majd skaláris szorzatot veszünk

$$p'_{k} = (p_{k} - \overline{p}) / s(p)$$
 $q'_{k} = (q_{k} - \overline{q}) / s(q)$

$$korreláció$$
 $(p,q) = p' \bullet q'$

ahol p az átlag, s(p) pedig a szórás.

A korreláció szemléltetése

A pontdiagramok szemléltetik a –1-től 1-ig terjedő hasonlóságot.

Hasonlóságok összekapcsolása

- Előfordul, hogy az attribútumok nagyon különböző típusúak viszont egy átfogó hasonlóságra van szükségünk.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:
 - $\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{th} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{th} attribute} \\ & 1 & \text{otherwise} \end{array} \right.$
- 3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

Hasonlóságok összekapcsolása súlyokkal

- Nem mindig akarjuk az összes attribútumot ugyanúgy kezelni.
 - Használjunk w_k súlyokat, melyek 0 és 1 közé esnek úgy, hogy az összegük 1.

$$similarity(p,q) = \frac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^n w_k |p_k - q_k|^r
ight)^{1/r}.$$

Sűrűség

 A sűrűség alapú csoportosításhoz szükséges a sűrűség fogalmának tisztázása.

- Példák:
 - Euklideszi sűrűség
 - Euklideszi sűrűség = egységnyi térfogatba eső pontok száma
 - Valószínűségi sűrűség
 - Gráf alapú sűrűség

Cella alapú euklideszi sűrűség

 Osszuk egyenlő térfogatú téglalap alakú cellákra a tartományt és definiáljuk a sűrűséget úgy, mint amely arányos a cellákba eső pontok számával.

Figure 7.13. Cell-based density.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Table 7.6. Point counts for each grid cell.

Középpont alapú euklideszi sűrűség

 A sűrűség egy pontban arányos a pont körüli adott sugarú környezetbe eső pontok számával.

Figure 7.14. Illustration of center-based density.