More than a mole?

Digging into classification of skin lesions Using Spark

Goal of project

- Deployment of neural networks to featurize images for machine learning. we explored the ability of using PySpark's deep learning, and Tensorflow's deep convolutional neural networks, especially ResNet50, to featurize dermatoscopic images of common pigment skin lesions.
- Using spark to develop a pipeline for efficient machine learning for image classification

We tried 3 Spark ML algorithms (Logistic Regress, Random Forest, Gradient Boosted Trees) to examine multi-class image classification on the Spark cluster.

Dataset

Skin Lesion classifications(7 class)

- -melanocytic nevi (nv)
- -benign keratosis-like lesions (bkl)
- -Bowen's disease (akiec)
- -basal cell carcinoma (bcc)
- -dermatofibroma (df)
- -melanoma (mel)
- -vascular lesions (vasc)

EDA

Total image number: 10015
After removing null and unknown
Total image number: 9948

Benign and malignant skin lesions
-imbalanced
-mostly benign

EDA (patient information)

Procedure

→ Image format standardisation

Workflow

Challenges

Reducing dimension? PCA, TL Transfer Learning (image → vector)? Which models?

Transfer Learning Model Architecture

Layer (type)	Output	Shape	Param #
input_3 (InputLayer)	[(None	, 224, 224, 3)]	0
sequential (Sequential)	(None,	224, 224, 3)	0
resnet50 (Functional)	(None,	7, 7, 2048)	23587712
global_average_pooling2d (Gl	(None,	2048)	0
dropout (Dropout)	(None,	2048)	0
dense_1 (Dense)	(None,	7)	14343
Total params: 23,602,055 Trainable params: 14,343 Non-trainable params: 23,587	,712		

20 epochs

50 epochs

Model Performance

Logistic Regression, overall accuracy: 84% Melanoma recall: .44

Gradient Boosted Trees Overall accuracy: 80% Melanoma Recall .58

Reducing the feature set

overall accuracy: 79% Melanoma recall: .42

Balanced multiclass accuracy: 58.7%

Model Performance

Overall Accuracy: 84.7%

Balanced Multiclass Accuracy: 69%

Melanoma Recall: .44

Overall Accuracy: 69.9%

Balanced Multiclass Accuracy 68.1%

Melanoma Recall: .58

Conclusions:

Comparable to these fine fellows:

30	Biolmaging-KHU Biolmaging-KHU	Deep Learning with Adapted InceptionResNetV2	Ê	💋 No	0.705	~
31	Dominiks AI team Dominiks AI team	Above dermatologist-level classification of malignant melanomas with deep neural	Ê	Yes	0.703	~
32	Mammoth Mammoth	Old fashion	Ê	💋 No	0.703	~
33	Redha Ali, Russell C. Hardie, Manawaduge Supun De Silva, and Temesguen Messay Ke Redha Ali, Russell C. Hardie, Manawaduge Supun De Silva, and Temesguen Messay Ke	Combining Deep and Handcrafted Image Features for Skin Cancer Classification	Ê	Ø No	0.701	~
34	CNR-ISASI_Lecce CNR-ISASI_Lecce	Deep Convolutional Neural Network with Stochastic Gradient Descent Optimization	Ê	💋 No	0.699	~
35	Hosei University, Iyatomi lab Hosei University, Iyatomi lab	SEResNet101 w/ mean_teacher + SEResNet152 w/o mean_teacher	Ê	💋 No	0.695	~
36	Manu Goyal Manu Goyal	DeeplabV3+ with Priority strategy based on benign/maligant and number of imag	Ê	💋 No	0.695	~
37	PA_Tech PA_Tech	deep convolutional neural network with transfer learning	Ê	💋 No	0.692	~
38	Opsins Opsins	Transfer learning based CNN	Ê	🜠 No	0.691	~
39	UNIST_BMIPL UNIST_BMIPL	Multiscale Lesion Segmentation and Application to Skin Cancer Classification	Ê	💋 No	0.687	~
40	Nitwit Al Nitwit Al	Inception V3	Ê	Ø No	0.685	~

Prakash S. Prasad et al, 2020

Follow Up

- Cluster Bottlenecks
 - Multi GPU clusters
 - Single consumer GPU vs 6 CPU workers offers ~10X speedup

-Changes in technology:

From spark_tensorflow_distributor to Horovod Runner in spark 3.1

-Spark Level data augmentation:

-implement a useable upsample function

Questions?

