Assgn4: Notes

November 3, 2012

Notes on GORDIAN

1 Set up C

$$C_{\mu,\mu} = \sum_{\nu \in N(\mu)} \frac{2}{p_{\nu}} (p_{\nu} - 1)$$

$$C_{\mu,\lambda} = \sum_{\nu \in N(\mu) \cap N(\lambda)} -\frac{2}{p_{\nu}}$$

where, μ is a **movable block.** $N(\mu)$ is the set of all nets to which μ is connected.

 p_{ν} is the number of terminals of net ν .

2 Set up d x, d y

$$dx_{\mu} = \sum_{\nu \in N(\mu)} \left[\left(p_{\nu} - 1 \right) \frac{2}{p_{\nu}} XPO\left(\mu, \nu\right) - \sum_{\lambda \in MBCB} \frac{2}{p_{\nu}} XPO\left(\lambda, \nu\right) - \sum_{\lambda \in FBCB} \frac{2}{p_{\nu}} XP\left(\lambda, \nu\right) \right]$$

where, μ is a **movable block**, λ could be a movable/fixed block or a terminal NI. $N(\mu)$ is the set of all nets to which μ is connected.

 p_{ν} is the number of terminals of net ν .

 $XPO\left(\mu,\nu\right)$ is the X Pin Offset of the pin connecting block μ to the net ν . $XP\left(\lambda,\nu\right)$ is the X Pin Position of the pin connecting λ , a fixed block or terminal NI, to the net ν .

MBCB is acronym for "Movable Blocks Connected to Block μ through net ν "

FBCB is acronym for "Fixed Blocks Connected to Block μ through net ν "

Figure 1: Toy example