Université de Paris Saclay Géométrie 2024-2025

DEVOIR NUMÉRO 1: LES NŒUDS DU PROBLÈME

Le but de ce devoir est d'étudier le groupe fondamental et certains revêtements des nœuds toriques.

Le devoir est à rendre pour le vendredi **7 février 2024**. Les *questions étoilées* sont des questions **hors barème et facultatives** pour celles et ceux qui veulent aller plus loin.

NOTATIONS

Dans ce devoir, pour $n \in \mathbb{N}^*$, \mathbb{S}_n désignera la sphère unité de \mathbb{R}^{n+1} et $N = (0, \dots, 0, 1)$ son pôle nord, \mathbb{B}_n le disque unité fermé de \mathbb{R}^n et \mathbb{S}_n le groupe des permutations de l'ensemble $\{1, \dots, n\}$. On considèrera également $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ le tore de dimension 2 muni de sa projection canonique $\pi : \mathbb{R}^2 \to \mathbb{T}^2$. Enfin, pour p et q deux entiers naturels premiers entre eux et non tous deux nuls, on posera $D_{p,q}$ la droite de \mathbb{R}^2 d'équation qy = px ainsi que $C_{p,q} = \pi$ $(D_{p,q})$.

On rappelle pour finir qu'une application $f: U \to V$ avec $U \subseteq \mathbb{R}^n$ et $V \subseteq \mathbb{R}^m$ deux ouverts est une immersion C^{∞} si elle est de classe C^{∞} et si sa différentielle est injective en tout point de U.

QUESTIONS

1. Montrer que l'application

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (x,y) & \longmapsto & \left(\left(\sqrt{2} + \cos(2\pi y) \right) \cos(2\pi x), \left(\sqrt{2} + \cos(2\pi y) \right) \sin(2\pi x), \sin(2\pi y) \right) \end{array} \right.$$

est une immersion C^{∞} qui passe au quotient en une application $\tilde{\varphi}: \mathbb{T}^2 \to \mathbb{R}^3$ qui est un homéomorphisme sur son image. On identifiera ainsi dans la suite $C_{p,q}$ à un sous-ensemble de \mathbb{R}^3 via $\tilde{\varphi}$.

- **2.** Rappeler à quel espace connu est homéomorphe $C_{p,q}$ et tenter d'esquisser $\tilde{\varphi}(C_{1,2})$, $C_{2,3}$ et $\tilde{\varphi}(C_{2,3})$. On parle de nœud de trèfle pour $C_{2,3}$.
- **3.** Montrer que les espaces topologiques $\mathbb{R}^3 \setminus C_{1,q}$ sont tous homéomorphes pour $q \ge 0$.
- **4.** On note $s: \mathbb{R}^3 \to \mathbb{S}_3 \setminus \{N\}$ l'inverse de la projection stéréographique. Montrer que $\mathbb{R}^3 \setminus C_{p,q}$ et $\mathbb{S}_3 \setminus s(C_{1,q})$ sont connexes par arcs et que, pour tout $\mathbf{x} \notin C_{p,q}$, $\pi_1 (\mathbb{R}^3 \setminus C_{p,q}, \mathbf{x}) \cong \pi_1 (\mathbb{S}_3 \setminus s(C_{p,q}), N)$.
- 5. On pose

$$A = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{S}_3 \ : \ x_1^2 + x_2^2 \geqslant \frac{1}{2} \right\} \quad \text{et} \quad B = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{S}_3 \ : \ x_1^2 + x_2^2 \leqslant \frac{1}{2} \right\}.$$

Établir que A est B sont homéomorphes à ${}^1 \mathbb{S}_1 \times \mathbb{B}_2$ et que

$$\mathbb{S}_3 \cong (\mathbb{S}_1 \times \mathbb{B}_2) \bigcup_{\mathbb{S}_1 \times \mathbb{S}_1} (\mathbb{S}_1 \times \mathbb{B}_2), \quad \text{où} \quad (\mathbb{S}_1 \times \mathbb{B}_2) \bigcup_{\mathbb{S}_1 \times \mathbb{S}_1} (\mathbb{S}_1 \times \mathbb{B}_2) = (\mathbb{S}_1 \times \mathbb{B}_2) \bigsqcup_{\mathbb{S}_1 \times \mathbb{S}_2} (\mathbb{S}_1 \times \mathbb{B}_2) / \mathcal{R}$$

avec \mathcal{R} la relation d'équivalence engendrée par $i_1(z_1,z_2) \sim i_2(z_2,z_1)$ pour tous $(z_1,z_2) \in \mathbb{S}_1 \times \mathbb{S}_1$ et où i_j est l'inclusion canonique de $\mathbb{S}_1 \times \mathbb{S}_1$ dans la j-ème copie de $\mathbb{S}_1 \times \mathbb{B}_2$ de la somme disjointe $(\mathbb{S}_1 \times \mathbb{B}_2) \sqcup (\mathbb{S}_1 \times \mathbb{B}_2)$ pour $j \in \{1,2\}$.

- **6.** Calculer π_1 ($\mathbb{T}^2 \setminus C_{p,q}, \mathbf{x}$) pour tous p, q et tout $\mathbf{x} \in \mathbb{T}^2 \setminus C_{p,q}$.
- 7. Déduire des questions précédentes que le groupe fondamental du nœud torique π_1 ($\mathbb{S}_3 \setminus s(C_{p,q}), N$) admet comme présentation $\langle a,b \mid a^pb^{-q}\rangle$. Reconnaître ce groupe lorsque p ou q vaut 1. On notera $G_{p,q}$ ce groupe.
- **8.** (*) Montrer que les sous-groupes $\langle a^p \rangle$ et $\langle b^q \rangle$ de $G_{p,q}$ sont égaux. On notera alors $C = \langle a^p \rangle = \langle b^q \rangle$. Montrer que C est distingué dans $G_{p,q}$ et que $G_{p,q}/C \cong \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$.
- 9. (*) Montrer que l'abélianisé de $\mathbb{Z}/p\mathbb{Z}*\mathbb{Z}/q\mathbb{Z}$ est $\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/q\mathbb{Z}$ puis que l'ordre maximal d'un élément de torsion 2 dans $\mathbb{Z}/p\mathbb{Z}*\mathbb{Z}/q\mathbb{Z}$ est donné par $\max(p,q)$. En déduire que les groupes $G_{p,q}$ avec $1 et <math>\operatorname{pgcd}(p,q) = 1$ sont deux à deux non isomorphes. Qu'en déduisez-vous quant aux espaces topologiques $\mathbb{S}_3 \setminus s(C_{p,q})$ avec $1 et <math>\operatorname{pgcd}(p,q) = 1$?

Soient X un espace topologique connexe par arcs, localement connexe par arcs et semi-localement simplement connexe ayant un groupe fondamental de présentation finie, $x \in X$ et $n \in \mathbb{N}^*$. On note $\operatorname{Hom}_{\operatorname{tr}}(\pi_1(X,x),\mathfrak{S}_n)$ l'ensemble des homomorphismes de groupes $\rho: \pi_1(X,x) \to \mathfrak{S}_n$ tel que le groupe image agisse transitivement sur $\{1,\ldots,n\}$. Cela fournit une action transitive de $\pi_1(X,x)$ sur $\{1,\ldots,n\}$ via $[\alpha] \cdot k = \rho([\alpha])(k)$ pour $[\alpha] \in \pi_1(X,x)$ et $k \in \{1,\ldots,n\}$.

- **10.** Soient $\rho \in \operatorname{Hom}_{\operatorname{tr}}(\pi_1(X,x),\mathfrak{S}_n)$ et H_1 le stabilisateur de 1. Montrer que H_1 est d'indice n dans $\pi_1(X,x)$. Que pouvez-vous en déduire pour le revêtement connexe $p:E\to X$ associé à H_1 ? Préciser notamment le groupe $p_*(\pi_1(E,1))$ en identifiant la fibre $p^{-1}(x)$ avec $\{1,\ldots,n\}$ et quand il est galoisien. Montrer que, réciproquement, à tout revêtement connexe p à n feuillets de X correspond un morphisme $\rho_p\in\operatorname{Hom}_{\operatorname{tr}}(\pi_1(X,x),\mathfrak{S}_n)$.
- 1. On parle de tore plein.
- 2. On pourra commencer par établir par récurrence sur la longueur d'un mot qu'un élément de torsion est conjugué à un élément de torsion de $\mathbb{Z}/p\mathbb{Z}$ ou de $\mathbb{Z}/q\mathbb{Z}$.

- 11. On définit une relation d'équivalence sur $\operatorname{Hom}_{\operatorname{tr}}(\pi_1(X,x),\mathfrak{S}_n)$ par $\rho \sim \rho'$ si, et seulement s'il existe $\sigma \in \mathfrak{S}_n$ tel que pour tout $[\gamma] \in \pi_1(X,x)$, $\rho([\gamma]) = \sigma \rho'([\gamma]) \sigma^{-1}$. Montrer que deux revêtements connexes ρ et ρ' à n feuillets de N sont isomorphes si, et seulement si $\rho_p \sim \rho_{p'}$.
- 12. En déduire l'ensemble des classes d'isomorphismes de revêtements connexes à 3 feuillets du nœud de trèfle $C_{2,3}$, autrement dit de revêtements connexes à 3 feuillets de $\mathbb{S}_3 \setminus s(C_{2,3})$, en précisant lesquels sont galoisiens.