

Gaudillat Valentine

Compte Rendu ONL2 :

Instabilite de modulation

Table des matières

1	Introduction	3
2	Évolution du gain linéique en fonction de la fréquence de modulation	4
3	Évolution de la profondeur de modulation	5
4	Évolution temporelle de l'intensité lumineuse	6

Introduction 1

Lorsque une impulsion lumineuse traverse un milieu non linéaire d'ordre 3, un processus de mélange à quatre ondes peut intervenir. Il peut en résulter une instabilité de modulation.

Soit un faisceau incident, monochromatique (ω_p) , à la puissance moyenne P_0 . Le champ est modulé à Ω . On appelle δ la profondeur de modulation.

On le propage dans une fibre optique d'aire effective $A_{eff} = \frac{d_{eff}^2}{2}$, de coefficient non linéaire γ (W⁻¹m⁻¹) et de dispersion de vitesse de groupe β_2 (s²m⁻¹).

On écrit l'enveloppe du champ en z comme :

$$A(z,t) = \sqrt{\frac{P_0}{2n\epsilon_0 c A_{eff}}} (1 + \delta(z)cos(\Omega t))$$
 (1)

Si et seulement si $\Omega < \Omega_c$ tel que :

$$\Omega_c = \sqrt{\frac{4\gamma P_0}{|\beta_2|}}$$

$$\delta(z) = \delta(0)e^{gz}$$

Alors,
$$\delta(z) = \delta(0) e^{gz}.$$
 Avec $g(\Omega, P_0) = \frac{|\beta_2|\Omega}{2} \sqrt{\Omega_c^2 - \Omega^2}$

On prend les valeurs numériques suivantes :

- $-c = 3 * 10^8$ Célérité de la lumière (m s⁻¹)
- $\epsilon_0 = 8.85 * 10^{-12}$: Permittivité du vide (F m⁻¹)
- $-\beta_2 = -2 * 10^{-26}$: Dispersion de vitesse de groupe (s²m⁻¹)
- $\gamma = 2 * 10^{-3}$: Coefficient non linéaire (W⁻¹m⁻¹)
- $d_{eff} = 10 * 10^{-6}$: Diamètre effectif du mode guidé (m)
- $-A_{eff} = \pi * (d_{eff}/2)^2$: Aire effective (m²)
- n = 1.47: Indice de réfraction
- $\lambda_p = 532 * 10^{-9}$: Longueur d'onde du faisceau (m)
- $\delta_0 = 0.02$: Profondeur de modulation initiale

2 Évolution du gain linéique en fonction de la fréquence de modulation

EvolutionGainLineique.m

Cette fonction est ma méthode d'implémentation de l'évolution du gain linéique en fonction de la fréquence de modulation.

Entrées:

- Toutes les constantes liées à la fibre vues dans la section d'introduction.
- P_0 : La Puissance moyenne du champ (W)
- Omega: La plage de fréquence de modulation (Hz) (abscisse)

Sortie:

Le graphique du gain linéique en fonction de la fréquence de modulation normalisée par $\Omega_{max} = \frac{\Omega_p}{15000}$. Les différentes courbes corespondent aux différentes valeurs de P_0.

FIGURE 1 – Évolution du gain linéique en fonction de la fréquence de modulation normalisée

Plus la puissance est grande, plus la fréquence où le maximum du gain est atteint ses rapproche de Ω_{max} .

3 Évolution de la profondeur de modulation

EvolutionProfondeurDeModulation.m

Cette fonction est ma méthode d'implémentation de l'évolution de la profondeur de modulation en fonction de la longueur de fibre étudiée.

Entrées :

- Toutes les constantes liées à la fibre vues dans la section d'introduction.
- P 0 : La Puissance moyenne du champ fixée (W)
- Omega : La plage de fréquence de modulation (Hz) fixée à $\frac{\Omega}{2\pi} = 5$ GHz
- z : La plage d'étude de la fibre (km) (abscisse)

Sortie:

Le graphique de la profondeur de modulation en fonction de la longueur de fibre étudiée.

FIGURE 2 – Évolution de la profondeur de modulation en fonction de la longueur de fibre étudiée

Pour une longueur de fibre de $L_0 = -ln(\delta_0)/(g)$ avec g le gain linéique fixé par la fréquence de modulation étudiée et la puissance fixée, on voit que $\delta(z) = 1$.

Évolution temporelle de l'intensité lumineuse

Evolution Temporelle De La Puissance.m

Cette fonction est ma méthode d'implémentation de l'évolution de la puissance lumineuse en fonction du temps.

Entrées :

- Toutes les constantes liées à la fibre vues dans la section d'introduction.
- P 0 : La Puissance moyenne du champ fixée (W)
- Omega : La plage de fréquence de modulation (Hz) fixée à $\frac{\Omega}{2\pi}=5$ GHz L_0 : La longueur de la fibre étudiée (km) fixée pour que $\delta(z)=1$

Sortie:

Le graphique de l'évolution de la puissance lumineuse en fonction du temps.

FIGURE 3 – Évolution de la puissance lumineuse en fonction du temps

Le calcul numérique confirme que le taux de répétition du train d impulsion est de 5 GHz.

Il me reste un problème à régler car ma puissance crête est de 650 GW se qui est vraiment énorme. Mais je n'ai pas réussi à trouver la source du problème pour l'instant.