

Towards A General Solution for Robotics

Pieter Abbeel
UC Berkeley & Covariant

PR-1

Open-ended Environments

- Vision:
 - Pre-train on ImageNet -> finetune for other tasks
- NLP (GPT-x,BERT):
 - Pre-train on internet text -> finetune for other tasks
- Robotics:

An Attempt at a Complete Picture

An Attempt at a Complete Picture

RL-from-pixels?

State-based D4PG (blue) vs pixel-based D4PG (green)

[Tassa et al., 2018] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.D.L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq, A. and Lillicrap, T <u>DeepMind Control Suite</u>, arxiv:1801.00690, 2018.

LeCake (Yann LeCun)

Contrastive learning: SOTA in computer vision

CPCv2 **top-5** ImageNet accuracy as function of labels

[Henaff, Srinivas et al., 2019]

[Henaff et al., 2019] Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, Aaron van den Oord <u>Data-Efficient Image Recognition with Contrastive Coding</u> arxiv:1905.09272, 2019.

[Chen et al., 2020] Chen, T., Kornblith, S., Norouzi, M. and Hinton, G.

A Simple Framework for Contrastive Learning of Visual Representations arxiv:2002.05709, 2020.

SimCLR / MoCo Main Idea

Original 1

Original 2

duplicate

+ semantically invariant transforms

Contrastive + RL

CURL

Need to define:

- 1. query / key pairs
- 2. similarity measure
- 3. architecture

Observations are stacked frames

1. Query / key pairs: random crop

2. Bilinear inner product with learned weight matrix

3. Keys encoded with momentum

CURL from pixels matches state-based SAC

GRAY: SAC State

RED: CURL

[CURL: A Srinivas*, M Laskin*, P Abbeel, 2020]

CURL Comparison: DeepMind Control Suite

CURL Comparison: DeepMind Control Suite

CURL Comparison: Atari 100K

GAME	HUMAN	RANDOM	RAINBOW	SIMPLE	OTRAINBOW	EFF. RAINBOW	CURL
ALIEN	7127,7	227.8	318,7	616.9	824.7	739.9	558.2
AMIDAR	1719.5	5.8	32.5	88.0	82.8	188.6	142.1
ASSAULT	742.0	222.4	231	527.2	351.9	431.2	600.6
ASTERIX	8503.3	210.0	243.6	1128.3	628.5	470.8	734.5
BANK HEIST	753.1	14.2	15.55	34.2	182.1	51.0	131.6
BATTLE ZONE	37187.5	2360.0	2360.0	5184.4	4060.6	10124.6	14870.0
BOXING	12.1	0.1	-24.8	9.1	2.5	0.2	1.2
BREAKOUT	30.5	1.7	1.2	16.4	9.84	1.9	4.9
CHOPPER COMMAND	7387.8	811.0	120.0	1246.9	1033.33	861.8	1058.5
CRAZY CLIMBER	35829.4	10780.5	2254.5	62583.6	21327.8	16185.3	12146.5
DEMON_ATTACK	1971.0	152.1	163.6	208.1	711.8	508.0	817.6
FREEWAY	29.6	0.0	0.0	20.3	25.0	27.9	26.7
FROSTBITE	4334.7	65.2	60.2	254.7	231.6	866.8	1181.3
GOPHER	2412.5	257.6	431.2	771.0	778.0	349.5	669.3
HERO	30826.4	1027.0	487	2656.6	6458.8	6857.0	6279.3
JAMESBOND	302.8	29.0	47.4	125.3	112.3	301.6	471.0
KANGAROO	3035.0	52.0	0.0	323.1	605.4	779.3	872.5
KRULL	2665.5	1598.0	1468	4539.9	3277.9	2851.5	4229.6
KUNG FU MASTER	22736.3	258.5	0.	17257.2	5722.2	14346.1	14307.8
MS_PACMAN	6951.6	307.3	67	1480.0	941.9	1204.1	1465.5
Pong	14.6	-20.7	~20.6	12.8	1.3	-19.3	-16.5
PRIVATE EYE	69571.3	24.9	D	58.3	100.0	97.8	218.4
OBERT	13455.0	163.9	123.46	1288.8	509.3	1152.9	1042.4
ROAD RUNNER	7845.0	11.5	1588.46	5640.6	2696.7	9600.0	5661.0
SEAQUEST	42054.7	68.4	131.69	683.3	286.92	354.1	384.5
UP_N_DOWN	11693.2	533.4	504.6	3350.3	2847.6	2877.4	2955.2

[CURL: A Srinivas*, M Laskin*, P Abbeel, 2020]

Predicting state from pixels

Can CURL learn representations w/o reward?

- Detached CURL performs slightly worse than CURL
- 2. However, promising for learning representations independent of reward

Framework for Efficient Robotic Manipulation

(i) Collect 10 human demonstrations

(ii) Initialize CNN encoder with contrastive pre-training

(iii) Continue training with data-augmented RL

Takes ~10 mins

Takes ~1 min

Takes ~30 mins

Task: Pull

Demonstrations	First Success	Optimal Policy	Evaluation		
10 ep ≈ 10:00 min	5 ep ≈ 5:12 min	45 ep ≈ 29:10 min	28/30 Success		
00:00.34	04:49.72	29:09			

Results

- 1. Learns <u>6 diverse tasks</u> with sparse reward, entirely from pixels, within an hour.
- 2. Uses the **same hyperparameters** across all tasks

	Reach	Pickup	Move	Pull	Light Switch	Drawer Open	
Task Description + Difficulty	Reach a block	Pickup a block	Move a block to a given location	Pull a large object to itself	Flip on the Light Switch	Open the drawer	
First Success	3:05	15:00	33:00	05:12	05:01	5:56	
Optimal	15:00	26:00	46:00	29:10	16:05	20:21	
Evaluation	100%	100%	86.7%	93.3%	100%	100%	

Related Work

- Auto-encoder representation
 - SAC+AE Yarats, Zhang, Kostrikov, Amos, Pineau, Fergus, 2019
 - SLAC Lee, Nagabandi, Abbeel, levine, 2019
- Augmentation can go a long way
 - RAD Laskin, lee, Stooke, Pinto, Abbeel, Srinivas, 2020
 - DrQ Kostrikov, Yarats, Fergus, 2020
 - SPR Schwarzer, Anand, Goel, Hjelm, Courville, Bachman, 2020
- Decoupling representation learning from RL with augmented temporal contrast
 - ATC Stooke, Lee, Abbeel, Laskin, 2020
 - Deep InfoMax RL Mazoure, des Combes, Doan, Bachman, Hjelm, 2020 (temporal, not always decoupled)
- Application to real robot
 - FERM Zhan, Zhao, Pinto, Abbeel, Laskin, 2020

An Attempt at a Complete Picture

Intrinsic Reward for Unsupervised Pre-Training

- Incentivizing exploration by introducing intrinsic rewards based on a measure of state novelty
- State entropy as intrinsic reward

$$r^{\text{intrinsic}} = \mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$$

Maximizing state entropy ~= good state coverage

Intrinsic Reward for Unsupervised Pre-Training

- Incentivizing exploration by introducing intrinsic rewards based on a measure of state novelty
- State entropy as intrinsic reward

$$r^{\text{intrinsic}} = \mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$$

Maximizing state entropy ~= good state coverage

Measuring state entropy is intractable to compute in most setting

K-Nearest-Neighbor Entropy Estimator

• *K*-nearest entropy estimator

$$\mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$$

$$\widehat{\mathcal{H}}(\mathbf{s}) \propto \sum_{i} \log(||\mathbf{s}_{i} - \mathbf{s}_{i}^{k}||)$$

- Distribution → Store N number of visited states
- Compute the distance between each state and its K-NN

APT: Active Pre-Training


```
Algorithm 1: Training APT
Randomly Initialize f encoder
Randomly Initialize \pi and Q networks
for e := 1, \infty do
     for t := 1. T do
          Receive observation s_t from environment
          Take action a_t \sim \pi(\cdot|s_t), receive observation s_{t+1} and \gamma_t from environment
          \mathcal{D} \leftarrow \mathcal{D} \cup (s_t, a_t, \gamma_t, s_t')
          \{(s_i, a_i, \kappa_i, s_i')\}_{i=1}^N \sim \mathcal{D}
                                                                                         // sample a mini batch
         Train neural encoder f on mini batch
                                                                                   // representation learning
          for each i = 1...N do
              a_i' \sim \pi(\cdot|s_i')
              \hat{Q}_i = Q_{\theta'}(s_i', a_i')
              Compute r_{APT} with equation (5)
                                                                          // particle-based entropy reward
              y_i \leftarrow \tau_{APT} + \gamma \hat{Q}_i
         loss_Q = \sum_i (Q(s_i, a_i) - y_i)^2
          Gradient descent step on Q and \pi
                                                                                         // standard Q-learning
     end
end
```

Experiments: DM Control Suite

Experiments: Atari

Game	Random	Human	SimPLe	DER	CURL	DrQ	SPR	VISR	APT (ours
Alien	227.8	7127.7	616,9	739.9	558.2	771.2	801.5	364.4	2614.8
Amidar	5.8	1719.5	88.0	188.6	142.1	102.8	176.3	186.0	211.5
Assault	222.4	742.0	527.2	431.2	600.6	452.4	571.0	12091.1	891.5
Asterix	210.0	8503.3	1128.3	470.8	734.5	603.5	977.8	6216.7	185.5
Bank Heist	14.2	753.1	34.2	51.0	131.6	168.9	380.9	71.3	416.7
BattleZone	2360.0	37187.5	5184.4	10124.6	14870.0	12954.0	16651.0	7072.7	7065.1
Boxing	0.1	12.1	9.1	0.2	1.2	6.0	35.8	13.4	21.3
Breakout	1.7	30.5	16.4	1.9	4.9	16.1	17.1	17.9	10.9
ChopperCommand	811.0	7387.8	1246.9	861.8	1058.5	780.3	974.8	800.8	317.0
Crazy Climber	10780.5	23829.4	62583.6	16185.2	12146.5	20516.5	42923.6	49373.9	44128.0
Demon Attack	107805	35829.4	62583.6	16185.3	12146.5	20516.5	42923.6	8994.9	5071.8
Freeway	0.0	29.6	20.3	27.9	26.7	9.8	24.4	-12.1	29.9
Frostbite	65.2	4334.7	254.7	866.8	1181.3	331.1	1821.5	230.9	1796.1
Gopher	257.6	2412.5	771.0	349.5	669.3	636.3	715.2	498.6	2590.4
Hero	1027.0	30826.4	2656.6	6857.0	6279.3	3736.3	7019.2	663.5	6789.1
Jamesbond	29.0	302.8	125.3	301.6	471.0	236.0	365.4	484.4	356.1
Kangaroo	52.0	3035.0	323.1	779.3	872.5	940.6	3276.4	1761.9	412.0
Krull	1598.0	2665.5	4539.9	2851.5	4229.6	4018.1	2688.9	3142.5	2312.0
Kung Fu Master	258.5	22736.3	17257.2	14346.1	14307.8	9111.0	13192.7	16754.9	17357.0
Ms Pacman	307.3	6951.6	1480.0	1204.1	1465.5	960.5	1313.2	558.5	2827.1
Pong	-20.7	14.6	12.8	-19.3	-16.5	-8.5	-5.9	-26.2	-8.0
Private Eye	24.9	69571.3	58.3	97.8	218.4	-13.6	124.0	98.3	96.1
Obert	163.9	13455.0	1288.8	1152.9	1042.4	854.4	669.1	666.3	17671.2
Road Runner	11.5	7845.0	5640.6	9600.0	5661.0	8895.1	14220.5	6146.7	4782.1
Seaquest	68.4	42054.7	683.3	354.1	384.5	301.2	583.1	706.6	2116.7
Up N Down	533,4	11693.2	3350.3	2877.4	2955.2	3180.8	28138.5	10037.6	8289.4
Mean HNS	0.000	1.000	44.3	28.5	38.1	35.7	70.4	64.31	69.55
Median HNS	0.000	1.000	14.4	16.1	17.5	26.8	41.5	12.36	47.50
# Superhuman	0	N/A	2	2	2	2	7	6	7

How about size of replay buffer for entropy estimates?

→ Keep around cluster representatives for entropy estimation

How about "skills"?

VIC: Variational Intrinsic Control – Gregor et al, 2016
 DIAYN: Diversity is all you need – Eysenbach, Gupta, Ibarz, Levine, 2018
 Valor: Variational Option Discovery Algorithms – Achiam, Edwards, Amodei, Abbeel, 2018
 VISR: Fast Task Inference with Variational Intrinsic Successor Features – Hansen et al, 2020

They all optimize (up to some details):

$$MI(z; s_{0:H}) = H(z) - H(z | s_{0:H})$$

APS Active Pretraining with Successor Features:

```
    -- optimize H(s_{0:H}) - H(s_{0:H} | z)
    using the particle entropy and feature learning as in APT
    --from image inputs
```

Closely related: EDL: Explore, Discover and Learn – Campos et al, 2020

APS on Atari

Game	Random	Human	SimPLe	DER	CURL	DrQ	SPR	VISR	APT	APS (ours)
Alien	227.8	7127.7	616,9	739.9	558.2	771.2	801.5	364.4	2614.8	934.9
Amidar	5.8	1719.5	88.0	188.6	142.1	102.8	176.3	186.0	211.5	178.4
Assault	222.4	742.0	527.2	431.2	600.6	452.4	571.0	12091.1	891.5	413.3
Asterix	210.0	8503.3	1128.3	470.8	734.5	603.5	977.8	6216.7	185.5	1159.7
Bank Heist	14.2	753.1	34.2	51.0	131.6	168.9	380.9	71.3	416.7	262.7
BattleZone	2360.0	37187.5	5184.4	10124.6	14870.0	12954.0	16651.0	7072.7	7065.1	26920.1
Boxing	0.1	12.1	9.1	0.2	1.2	6.0	35.8	13.4	21.3	36.3
Breakout	1.7	30.5	16.4	1.9	4.9	16.1	17.1	17.9	10.9	19.1
ChopperCommand	811.0	7387.8	1246,9	861.8	1058.5	780.3	974.8	800.8	317.0	2517.0
Crazy Climber	10780.5	23829.4	62583.6	16185.2	12146.5	20516.5	42923.6	49373.9	44128.0	67328.1
Demon Attack	107805	35829.4	62583,6	16185.3	12146.5	20516.5	42923.6	8994.9	5071.8	7989.0
Freeway	0.0	29.6	20.3	27.9	26.7	9.8	24.4	-12.1	29.9	27.1
Frostbite	65.2	4334.7	254.7	866.8	1181.3	331.1	1821.5	230.9	1796.1	496.5
Gopher	257.6	2412.5	771.0	349.5	669.3	636.3	715.2	498.6	2590.4	2386.5
Hero	1027.0	30826.4	2656.6	6857.0	6279.3	3736.3	7019.2	663.5	6789.1	12189.3
Jamesbond	29.0	302.8	125.3	301.6	471.0	236.0	365.4	484.4	356.1	622.3
Kangaroo	52.0	3035.0	323.1	779.3	872.5	940.6	3276.4	1761.9	412.0	5280.1
Krull	1598.0	2665.5	4539.9	2851.5	4229.6	4018.1	2688.9	3142.5	2312.0	4496.0
Kung Fu Master	258.5	22736.3	17257.2	14346.1	14307.8	9111.0	13192.7	16754.9	17357.0	22412.0
Ms Pacman	307.3	6951.6	1480.0	1204.1	1465.5	960.5	1313.2	558.5	2827.1	2092.3
Pong	-20.7	14.6	12.8	-19.3	-16.5	-8.5	-5.9	-26.2	-8.0	12.5
Private Eye	24.9	69571.3	58.3	97.8	218.4	-13.6	124.0	98.3	96.1	117.9
Qbert	163.9	13455.0	1288.8	1152.9	1042.4	854.4	669.1	666.3	17671.2	19271.4
Road Runner	11.5	7845.0	5640.6	9600.0	5661.0	8895.1	14220.5	6146.7	4782.1	5919.0
Seaguest	68.4	42054.7	683.3	354.1	384.5	301.2	583.1	706.6	2116.7	4209.7
Up N Down	533.4	11693.2	3350.3	2877.4	2955.2	3180.8	28138.5	10037.6	8289.4	4911.9
Mean Human-Norm'd	0.000	1.000	44.3	28.5	38.1	35.7	70.4	64.31	69.55	99.04
Median Human-Norm'd	0.000	1.000	14.4	16.1	17.5	26.8	41.5	12.36	47.50	58.80
# Superhuman	0	N/A	2	2	2	2	7	6	7	8

Active Pre-Training: References

- VIC: Variational Intrinsic Control Gregor et al, 2016
 - **DIAYN**: Diversity is all you need Evsenbach, Gupta, Ibarz, Levine, 2018
- Valor: Variational Option Discovery Algorithms Achiam, Edwards, Amodei, Abbeel, 2018
- VISR: Fast Task Inference with Variational Intrinsic Successor Features
 Hansen et al, 2020
- MEPOL: Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate Mirco Mutti. Lorenzo Pratissoli. Marcello Restelli. 2020
- EDL: Explore, Discover and Learn Campos et al, 2020
- APT: Behavior From the Void: Unsupervised Active Pre-Training Hao Liu & Pieter Abbeel, 2020
- CPT: Coverage as a Principle for Discovering Transferable Behavior in Reinforcement Learning Campos et al, 2021
- ProtoRL: Reinforcement Learning with Prototypical Representations Yarats, Fergus, Lazarus, Pinto, 2021
- RE3: State Entropy Maximization with Random Encoders for Efficient Exploration Seo*, Chen*, Shin, Lee, Abbeel, Lee, 2021
- APS: See the Future through the Void: Active Pre-Training with Successor Features
 Hao Liu & Pieter Abbeel, 2021
- ASP: Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play Sukhbaatar, Lin, Kostrikov, Synnaeve, Szlam, Fergus, 2017
- Asymmetric Self-Play for Automatic Goal Discovery in Robotic Manipulation OpenAI, 2021

Also related: Exploration Bonuses, Curiosity, Surprise, VIME, Planning2Expore, GoExplore

An Attempt at a Complete Picture

Challenge: Designing Suitable Reward

Consequences (observations, rewards)

$$\hat{x}_t - 0.1||a_t||_2^2 - 3.0 \times (z_t - 1.3)^2$$

Challenge: Designing Suitable Reward

$$\hat{x}_t - 0.1||a_t||_2^2$$

$$-3.0 \times (z_t - 1.3)^2$$

Hard tasks to define a reward (e.g. cooking)

Challenge: Designing Suitable Reward

Decision (actions)

Consequences (observations, rewards)

$$\hat{x}_t - 0.1||a_t||_2^2 - 3.0 \times (z_t - 1.3)^2$$

Hard tasks to define a reward (e.g. cooking)

Reward exploitation

https://openai.com/blog/faulty-reward-functions

What is an Alternative Solution?

What is an Alternative Solution?

Putting (non-expert) humans into the agent learning loop!

What is an Alternative Solution?

Putting (non-expert) humans into the agent learning loop!

• Step 1. Collect samples via interactions with environment

- Step 1. Collect samples via interactions with environment
- Step 2. Collect human preferences

- Step 1. Collect samples via interactions with environment
- Step 2. Collect human preferences
- Step 3. Optimize a reward model using cross entropy loss

Learning Reward from Preferences

- Fitting a reward model [1]
 - Main idea: formulate this problem as a binary classification!
 - By following the Bradley-Terry model [2], we can model a preference predictor as follows:

$$P_{\psi}[\sigma^1 \succ \sigma^0] = \frac{\exp \sum_t \widehat{r}(\mathbf{s}_t^1, \mathbf{a}_t^1)}{\sum_{i \in \{0,1\}} \exp \sum_t \widehat{r}(\mathbf{s}_t^i, \mathbf{a}_t^i)}$$

- Step 1. Collect samples via interactions with environment
- Step 2. Collect human preferences
- Step 3. Optimize a reward model using cross entropy loss
- Step 4. Optimize a policy using off-policy algorithms

- Step 1. Collect samples via interactions with environment
- Step 2. Collect human preferences
- Step 3. Optimize a reward model using cross entropy loss
- Step 4. Optimize a policy using off-policy algorithms

Unsupervised Pre-training: APT

- Obtaining a good initial state space coverage is important!
 - Human can't convey much meaningful information to the agent

Unsupervised Pre-training: APT

- Obtaining a good initial state space coverage is important!
 - Human can't convey much meaningful information to the agent

Behavior from random exploration policy

Behavior from pre-trained policy

• 40 queries in less than 5 mins

Counter clockwise

• 200 queries in less than 30 mins

Waving left front leg

Waving right front leg

• 50 queries

Can We Avoid Reward Exploitation?

Can We Avoid Reward Exploitation?

SAC with task reward on walker, walk (use one leg even if score ~=1000)

Can We Avoid Reward Exploitation?

150 queries in less than 20 mins

SAC with task reward on walker, walk (use one leg even if score ~=1000)

SAC trained with human feedback (use both legs)

Benchmarking

• We generate preferences using a scripted teacher [1, 2]:

$$\sigma^{0} = \{(s_{t}^{0}, a_{t}^{0}), \cdots, (s_{t+H}^{0}, a_{t+H}^{0})\} \Rightarrow \psi \Rightarrow y = 1 \quad \text{if } \sum_{t} r^{*}(\mathbf{s}_{t}^{1}, \mathbf{a}_{t}^{1}) \\ \sigma^{1} = \{(s_{t}^{1}, a_{t}^{1}), \cdots, (s_{t+H}^{1}, a_{t+H}^{1})\} \Rightarrow \psi \Rightarrow y = 1 \quad \text{if } \sum_{t} r^{*}(\mathbf{s}_{t}^{1}, \mathbf{a}_{t}^{1}) \\ > \sum_{t} r^{*}(\mathbf{s}_{t}^{0}, \mathbf{a}_{t}^{0}) \\ > \sum_{t} r^{*}(\mathbf{s}_{t}^{0}, \mathbf{$$

True task rewar

Preferences are immediately generated

→ more rapid experiments

We can evaluate the agent quantitatively by measuring the true average return

Comparison: Locomotion Tasks

Learning curves (10 random seeds)

* Asymptotic performance of PPO and Preference PPO is indicated by dotted lines of the corresponding color

Quadruped

Cheetah

Walker

References

Preference-based RL

--- PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training

Kimin Lee*, Laura Smith*, Pieter Abbeel, 2021

-- DRL from Human Preferences

Paul Christano, J Leike, T Brown, M Martic, S Legg, D Amodei, 2017

-- Reward Learning from Human Preferences and Demonstrations

Ibarz, Leike, Pohlen, Irving, Legg, Amodei 2018

Binary-feedback RL

-- COACH: Interactive Learning from Policy-Dependent Human Feedback

MacGlashan, Ho, Loftin, Peng, Wang, Roberts, Taylor, Littman, 2017

-- Deep Coach: Deep Reinforcement Learning from Policy-Dependent Human Feedback

Arumugam, Lee, Saskin, Littman, 2019

-- TAMER: Interactively Shaping Agents via Human Reinforcement: The TAMER Framework Knox, Stone, 2009

-- Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces

Warnell, Waytowich, Lawhern, Stone, 2018

An Attempt at a Complete Picture

Few Shot Imitation Learning

One-Shot Imitation Learning, Duan et al, NeurIPS 2017

- One-Shot Visual Imitation Learning via Meta-Learning, Finn et al, CoRL 2017
- Transformers for One-Shot Visual Imitation, Dasari & Gupta, Corl 2020

Few Shot Imitation Learning -- Limitation

- Single task family
 - E.g.

Summary (so far)

Language Models (e.g. OpenAl's GPT-2)

<u>Prompt:</u> A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

GPT-2: The incident occurred on the downtown train line, which runs from Covington and Ashland stations. In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.

'The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation,' said Tom Hicks, the U.S. Energy Secretary, in a statement. 'Our top priority is to secure the theft and ensure it doesn't happen again.'

The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information. According to the release, the U.S. Department of Energy's Office of Nuclear Material Safety and Security is leading that team's investigation. 'The safety of people, the environment and the nation's nuclear stockpile is our highest priority,' Hicks said. 'We will get to the bottom of this and make no excuses.'

OpenAl built a text generator so good, it's considered too wanger and TechCrunch -17 Feb 2019 OpenAl built a text generator so good, it's considered too dangerous to release ... Text Generation s GPT-2)

OpenAl built a text generator so good, it's considered too dangerous to release
OpenAl said its new natural language model, GPT-2, was trained to ... said, it's only releasing a smaller version of the language model, citing its ... Scientists Developed an Al So Advanced They Say It's Too Dangerous
Scientists Developed an Al So Advanced They Say It's Too Dangerous
Science Alert - 18 Feb 2019

Al text writing technology too dangerous to release, creators claim
The Drum 17 Fab 2010 The Drum - 17 Feb 2019

This technology could 'absolutely devastate' the internet as we know it.

NEWS.com.au - 17 Feb 2019

This Al in an added of the land the devastate in the internet as we know it.

NEWS.com.au - 17 Feb 2019

This Al is so good at writing that its creators won't let you use it in-Depth - CNN - 18 Feb 2019

In-Depth - CNN - 18 Feb 2019

Lord of The Rings, Celebrity Gossip: This Al Is So Good at Writing That ...

In-Depth - News18 - 18 Feb 2019

View all

When Is Technology Too Dangerous to Release to the Public? Slate Magazine - 22 Feb 2019

If your knowledge of the model, called GPT-2, came solely on headlines ... Luking the model of the model If your knowledge of the model, called GPT-2, came solely on headlines ... u.K. had trained a read, "Elon Musk-Founded OpenAl Builds Artificial Intelligence So ... had trained a read, EIDR MUSK-Founded UpenAI Builds Artificial Intelligence St.

language model using text from 8 million webpages to predict. Al Weekly: Experts say OpenAl's controversial model is a potential

In-Depth - VentureBeat - 22 Feb 2019

View all

OpenAl's Text Model so Disruptive it's Deemed Too Dangerous To Computer Business Review - 15 Feb 2019

OpenAl's Text Model so Disruptive it's Deemed Too Dangerous To Release

Note: Text Model so Disruptive it's Deemed Too Dangerous To Release

Note: Text Model so Disruptive it's Deemed Too Dangerous To Release OpenAl's Text Model so Disruptive it's Deemed Too Dangerous To Release
We've
OpenAl has declined to release the full research due to concerns over Computer Business Review - 15 Feb 2019 trained an unsupervised language model that can generate ... New Al fake text generator may be too dangerous to release, say ...
Highly Cited - The Guardian - 14 Feb 2019

View all

[Radford et al, 2019]

Benchmarks – GPT-2

DATASET	METRIC	OUR RESULT	PREVIOUS RECORD	HUMAN
Winograd Schema Challenge	accuracy (+)	70.70%	63.7%	92%+
LAMBADA	accuracy (+)	63.24%	59.23%	95%+
LAMBADA	perplexity (-)	8.6	99	~1-2
Children's Book Test Common Nouns (validation accuracy)	accuracy (+)	93.30%	85.7%	96%
Children's Book Test Named Entities (validation accuracy)	accuracy (+)	89.05%	82.3%	92%
Penn Tree Bank	perplexity (-)	35.76	46.54	unknown
WikiText-2	perplexity (-)	18.34	39.14	unknown

Benchmarks -- BERT

01				
		N2	12	ılts
	. •	1/6	, 3 U	1113

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Might these pre-trained transformers

be *even* more general?

Pretrained Transformers As Universal Computation Engines

Kevin Lu

UC Berkeley kzl@berkeley.edu

Pieter Abbeel

UC Berkeley pabbeel@cs.berkeley.edu Aditya Grover

Facebook AI Research adityagrover@fb.com

Igor Mordatch

Google Brain imordatch@google.com

Pre-Trained Model + .1% finetune

- Pre-train: language corpus next-token prediction
- Minimally fine-tune:
 - Bit memory
 - Bit XOR
 - ListOps

- MNIST
- CIFAR-10 and CIFAR-10 LRA
- Remote homology detection

Can pretrained LMs transfer to new modalities?

What's the importance of the pretraining modality?

Model	Bit Memory	XOR	ListOps	MNIST	C10	C10 LRA	Homology
FPT	100%	100%	38.4%	98.0%	68.2%	38.6%	12.7%
Random	75.8%	100%	34.3%	91.7%	61.7%	36.1%	9.3%
Bit	100%	100%	35.4%	97.8%	62.6%	36.7%	7.8%
ViT	100%	100%	37.4%	97.8%	72.5%	43.0%	7.5%

Table 2: Test accuracy of language-pretrained (FPT) vs randomly initialized (Random) vs Bit Memory pretraining (Bit) vs pretrained Vision Transformer (ViT) models. The transformer is frozen.

Summary

Thank you! pabbeel@cs.berkeley.edu