CLAIMS

1	1. A method for correcting non-uniformity in luminance of an image generated by
2	a projector and displayed obliquely on a surface, wherein the projector has a plurality of
3	pixels for use in generating images and each projector pixel subtends to a corresponding
4	projected area on the screen, the method comprising the steps of:
5	identifying the projector pixel that subtends to the largest projected area on the
6	screen;
7	determining a ratio between the projected area of each pixel and the largest pro-
8	jected area;
9	organizing the ratio determined for each pixel into an attenuation array;
10	modifying luminance information of an input image received by the projector by
11	the ratios of the attenuation array; and
12	utilizing the modified luminance information to drive the projector such that the
13	image produced on the screen is uniform in luminance.
1	2. The method of claim 1 further comprising the step of generating a homography
2	that maps between a first coordinate system relative to the projector, and a second coor-
3	dinate system relative to the surface, and wherein the step of identifying is based on the
4	first projector to surface homography.
1	3. The method of claim 2 wherein
2	the first coordinate system includes an x_p coordinate and a y_p coordinate;
3	the projector to surface homography includes parameters h ₇ , h ₈ and h ₉ ;
4	the step of identifying comprises the step of calculating a value, w, for each pixel
5	represented by coordinates x_p , y_p wherein w is equal to $ h_7x_p + h_8y_p + h_9 $ and determin-
6	ing which projector pixel has the smallest calculated value of w.

4. The method of claim 2 wherein the step of generating the projector to surface

3	capturing one or more images produced by the projector on the screen with a
4	camera;
5	determining the coordinates of each of the at least four projector pixels in the first
6	coordinate system, which is relative to the projector, and in a third coordinate system that
7	is relative to the camera; and
8	processing the coordinates of the at least four projector pixels in both the first and
9	third coordinate systems to generate the projector to surface homography.
1	5. The method of claim 4 wherein the camera has an optical axis that is perpen-
2	dicular with the surface in all planes, and the step of generating the projector to surface
3	homography comprises the steps of:
4	generating a projector to camera homography based upon the determination of the
5	coordinates of the at least four projector pixels in both the first and third coordinate sys-
6	tems; and
7	equating the projector to camera homography with the projector to surface homo-
8	graphy.