PRAKTIKUM 5 – BERKOMUNIKASI DENGAN ARDUINO

Dengan adanya komunikasi serial dapat memungkinkan terjadinya pertukaran informasi antara papan Arduino dengan komputer, hal ini bermanfaat untuk memantau status proyek-proyek yang sedang diuji langsung melalui komputer

a. Kompunikasi dengan Papan Arduino

Buat koding seperti sketch di bawah ini, simpan dengan nama "KomunikasiArduino"

Sketch di atas digunakan untuk membaca semua karakter yang dikirimkan ke *port* serial (oleh komputer). Untuk memulai komunikasi, Serial.begin perlu dipanggil terlebih dahulu.

```
Serial.begin(9600);
```

Argumen 9600 menentukan kecepatan data baik untuk keperluan pengiriman maupun penerimaan.

Arduino memantau data yang berada di *port* sertial secara terus-menerus berkat perintah :

```
while (Serial.available() != 0)
{
    .....
}
```

Dalam hal ini, Serial.available() akan menghasilkan nol sekiranya tidak ada data di *port* serial. Jika *port* tersebut mengandung karakter, satu karakter akan dibaca melalui:

```
char data = Serial.read();
```

Pernyataan di atas mendeklarasikan variable data sebagai variabel char bertipe (untuk menampung satu karakter). Variabel ini akan menampung karakter yang dibaca dari *port* serial.

Pernyataan:

```
Serial.print(data);
```

Digunakan untuk mengirim isi variabel data ke *port* serial dan implikasinya akan membuat isi data tersebut di penampil informasi *port* serial di komputer.

Untuk menguji hasil sketch tersebut dilakukan dengan cara:

1. Klik TOOLS pada MenuBar > Klik Serial Monitor dan muncul seperti di bawah ini :

2. Cobalah mengetikan string seperti terlihat pada gambar di bawah ini, lalu klik SEND:

b. Mematikan dan Menghidupkan LED melalui Keyboard

Dengan memanfaatkan komputer serial, dimungkinkan untuk mengendalikan LED melalui keyboard. Sebagai contoh, angka 1 digunakan untuk menyalakan LED dan angka 0 digunakan untuk mematikan LED. Buatlah rangkaian seperti di bawah ini


```
const int PIN 12 = 12;
void setup()
 //Atur kecepatan penerimaan dan pengiriman data
Serial.begin(9600);
 //Atur PIN 12 sebagai keluaran
pinMode (PIN 12, OUTPUT);
void loop()
while (Serial.available() !=0)
   //Baca tipe data bilangan integer
   int bilangan = Serial.parseInt();
   //Buang sisanya jika ada
   Serial.flush();
   //atur LED
   if (bilangan == 1)
    digitalWrite(PIN_12, HIGH);
    Serial.println("LED NYALA");
   else
      if (bilangan == 0)
        digitalWrite(PIN 12, LOW);
        Serial.println("LED MATI");
     delay(20); //Tunda sebentar untuk menyiapkan
                //pembacaan berikutnya
 }
```

Pada sketch di atas, pernyataan

```
int bilangan = Serial.parseInt();
```

Digunakan untuk mendeklarasikan variabel bilangan sebagai variabel bertipe int dan memberikan sebuah bilangan bulat yang berada di port serial ke variabel tersebut

Pernyataan:

```
Serial.flush();
```

Digunakan untuk membuang semua data tersisa di port serial. Adapun pernyataan berikut dipakai untuk mengendalikan LED :

```
if (bilangan == 1)
{
    digitalWrite(PIN_12, HIGH);
    Serial.println("LED NYALA");
}
else
    if (bilangan == 0)
    {
        digitalWrite(PIN_12, LOW);
        Serial.println("LED MATI");
}
```

Kode di atas akan membuat LED dihidupkan sekiranya bilangan bernilai 1 dan mematikan LED jika bilangan bernilai 0. Pernyataan di atas juga mengirim informasi ke port serial berupa "LED NYALA" atau "LED MATI". Untuk bilangan selain 0 atau 1 akan diabaikan. Setelah koding diverifikasi dan di*upload* ke dalam Arduino, selanjutnya lakukan pengujian dengan Klik TOOLS pada MenuBar > Klik Serial Monitor > ketik 1 > SEND. Jika LED menyala maka pengujian Anda berhasil. Dan ketik 0 > SEND, maka LED akan padam.

Referensi:

Kodir, Abdul. *From Zero to a Pro Arduino.* 2015. CV. Andi OFFSET: Yogyakarta https://www.arduino.cc/