1 Chapter 1

Exercise 1.1(a)

Let X be the sum of the two number obtained.

Let X_1 be the number obtained on Die 1.

Let X_2 be the number obtained on Die 2.

Thus, $X = X_1 + X_2$, and

$$E_x = \{X = x\} = \{X_1 + X_2 = x\} = \{X_1 = x_1, X_2 = x - x_1 \mid 1 \le x_1, x - x_1 \le 6\}$$

Now,

$$1 \le x - x_1 \le 6 \quad \Longleftrightarrow \quad -1 \ge x_1 - x \ge -6 \quad \Longleftrightarrow \quad x - 1 \ge x_1 \ge x - 6 \quad \Longleftrightarrow \quad x - 6 \le x_1 \le x - 1$$

Hence,

$$E_x = \{X = x\} = \{X_1 + X_2 = x\} = \{X_1 = x_1, X_2 = x - x_1 \mid \max\{1, x - 6\} \le x_1 \le \min\{6, x - 1\}\}$$

$$P(E_x) = \sum_{x_1 = \max\{1, x - 6\}}^{\min\{6, x - 1\}} P(X_1 = x_1, X_2 = x - x_1) = \sum_{x_1 = \max\{1, x - 6\}}^{\min\{6, x - 1\}} \frac{1}{6^2}$$
$$= \frac{1}{6^2} (\min\{6, x - 1\} - \max\{1, x - 6\} + 1)$$

Next, note that

$$\min\{6, x - 1\} = \begin{cases} x - 1, & \text{if } x = 2, 3, \dots, 6 \\ 6, & \text{if } x = 7, 8, \dots, 12 \end{cases} \quad \text{and} \quad \max\{1, x - 6\} = \begin{cases} 1, & \text{if } x = 2, 3, \dots, 6 \\ x - 6, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

Hence,

$$P(E_x) = \frac{1}{6^2} \left(\min\{6, x - 1\} - \max\{1, x - 6\} + 1 \right) = \frac{1}{36} \begin{cases} (x - 1) - 1 + 1, & \text{if } x = 2, 3, \dots, 6 \\ 6 - (x - 6) + 1, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

$$= \frac{1}{36} \begin{cases} x - 1, & \text{if } x = 2, 3, \dots, 6 \\ 13 - x, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

Exercise 1.18

Recapitulation of the rules of craps: Let x be the number obtained on the first roll. If $x \in \{7,11\}$, then the player wins. If $x \in \{2,3,12\}$, then the player loses. If $x \in \{4,5,6,8,9,10\}$, then the player keeps rolling, until either 7 is rolled or x is rolled. If x is rolled first (before 7 is rolled), then the player wins. If 7 is rolled first (before x is rolled), then the player loses.

Let W be the $\{0,1\}$ -valued random variable such that W=1 if the player wins, and W=0 if the player loses. We thus seek to compute P(W=1). Let X be (the random variable of) the sum of the two numbers obtained on the first roll. Note that $\operatorname{Range}(X)=\{2,3,4,\ldots,12\}$. Then,

$$P(W = 1) = \sum_{x=2}^{12} P(W = 1|X = x) \cdot P(X = x)$$

$$= P(W = 1|X = 7) P(X = 7) + P(W = 1|X = 11) P(X = 11) + \sum_{x \in \{4, 5, 6, 8, 9, 10\}} P(W = 1|X = x) \cdot P(X = x)$$

Now, note that P(W = 1|X = 7) = P(W = 1|X = 11) = 1, $P(X = 7) = \frac{6}{36} = \frac{1}{6}$, and $P(X = 11) = \frac{2}{36} = \frac{1}{18}$. From Exercise 1.1(a), we have:

$$P(X = x) = \frac{1}{6^2} (\min\{6, x - 1\} - \max\{1, x - 6\} + 1) = \frac{1}{36} \begin{cases} (x - 1) - 1 + 1, & \text{if } x = 2, 3, \dots, 6 \\ 6 - (x - 6) + 1, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

$$= \frac{1}{36} \begin{cases} x - 1, & \text{if } x = 2, 3, \dots, 6 \\ 13 - x, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

Next, let Y_n be the random variable of the sum of the two numbers obtained on the (n+1)st roll. Then,

$$P(W = 1|X = x) = \sum_{n=1}^{\infty} \left[1 - P(Y_n = 7) - P(Y_n = x)\right]^{n-1} \cdot P(X = x)$$

$$= P(X = x) \cdot \sum_{n=1}^{\infty} \left[1 - P(Y_n = 7) - P(Y_n = x)\right]^{n-1}$$

$$= P(X = x) \cdot \frac{1}{1 - \left[1 - P(Y = 7) - P(Y = x)\right]}$$

$$= \frac{P(X = x)}{P(Y = 7) + P(Y = x)}$$

$$= \frac{P(X = x)}{\frac{1}{6} + P(Y = x)}$$

Hence,

$$\begin{split} P(W=1) &= \sum_{x=2}^{12} P(W=1|X=x) \cdot P(X=x) \\ &= P(W=1|X=7) \, P(X=7) + P(W=1|X=11) \, P(X=11) + \sum_{x \in \{4,5,6,8,9,10\}} P(W=1|X=x) \cdot P(X=x) \\ &= \frac{6}{36} + \frac{2}{36} + \sum_{x \in \{4,5,6,8,9,10\}} \frac{P(X=x)^2}{\frac{1}{6} + P(Y=x)} \\ &= \frac{6}{36} + \frac{2}{36} + \frac{(\frac{4-1}{36})^2}{\frac{1}{6} + \frac{4-1}{36}} + \frac{(\frac{5-1}{36})^2}{\frac{1}{6} + \frac{5-1}{36}} + \frac{(\frac{13-8}{36})^2}{\frac{1}{6} + \frac{13-8}{36}} + \frac{(\frac{13-9}{36})^2}{\frac{1}{6} + \frac{13-10}{36}} \\ &= \frac{6}{36} + \frac{2}{36} + \frac{(1/36)^2}{1/36} \left(\frac{3^2}{6+3} + \frac{4^2}{6+4} + \frac{5^2}{6+5} + \frac{5^2}{6+5} + \frac{4^2}{6+4} + \frac{3^2}{6+3} \right) \\ &= \frac{6}{36} + \frac{2}{36} + \frac{2}{36} \left(\frac{3^2}{6+3} + \frac{4^2}{6+4} + \frac{5^2}{6+5} \right) = \frac{1}{36} \left[6 + 2 + 2 \left(\frac{9}{9} + \frac{16}{10} + \frac{25}{11} \right) \right] \\ &= \frac{1}{36} \left[8 + 2 \left(\frac{536}{110} \right) \right] = \frac{1}{36} \left[\frac{1952}{110} \right] = \frac{1}{2^2 \cdot 3^2} \left[\frac{2^5 \cdot 61}{2 \cdot 5 \cdot 11} \right] \\ &= \frac{2^2 \cdot 61}{3^2 \cdot 5 \cdot 11} \approx 0.4929293 \end{split}$$

Exercise 1.19(a)

Let n be the number of workers in the sample. Let X_i , i = 1, 2, ..., n, be $\{0, 1\}$ -valued random variables defined by:

$$X_i = \begin{cases} 1, & \text{if the } i \text{th subject is highly exposed,} \\ 0, & \text{if the } i \text{th subject is NOT highly exposed} \end{cases}$$

Define

$$S_n := \sum_{i=1}^n X_i$$
, and $S_{n-1} := \sum_{i=1}^{n-1} X_i$.

First, note that

$$\theta_n = P(S_n \text{ is even}), \text{ and } \theta_{n-1} = P(S_{n-1} \text{ is even}).$$

Note also that

$$\theta_n = P(S_n \text{ is even}) = P(X_n = 1)P(S_{n-1} \text{ is odd}) + P(X_n = 0)P(S_{n-1} \text{ is even})$$

= $\pi_h (1 - \theta_{n-1}) + (1 - \pi_h)\theta_{n-1} = \pi_h + (1 - 2\pi_h)\theta_{n-1}$

Thus, the desired difference equation is:

$$\theta_n = \pi_h + (1 - 2\pi_h) \,\theta_{n-1} \tag{1.1}$$

Exercise 1.19(b)

To solve the difference equation (1.1) obtained in Exercise 1.19(a), we assume that θ_n has the following form:

$$\theta_n = \alpha + \beta \gamma^n \tag{1.2}$$

where α , β , and γ are unknown constants to be determined. We first make the following:

Observation: $\beta \neq 0$ and $\gamma \notin \{0, 1\}$.

Indeed, if $\beta = 0$ or $\gamma \in \{0, 1\}$, then θ_n would be constant in n. In that case, define $\theta := \theta_n = \theta_{n-1} = \cdots$. By the difference equation (1.1), we would then have

$$\theta = \pi_h + (1 - 2\pi_h)\theta \implies 0 = \pi_h (1 - 2\theta) \implies \theta = \frac{1}{2} \text{ (since } \pi_h > 0)$$

However, this contradicts the initial condition that $\theta_0 = 1$. Thus, this proves the assertion that $\beta \neq 0$ and $\gamma \notin \{0, 1\}$. (Note that if the sample size is 0, then the number of highly exposed subjects must be 0; hence $\theta_0 = P(S_0 \text{ is even}) = 1$, since we have here adopted the convention that 0 is "even.")

Now, substituting (1.2) into (1.1) yields:

$$\alpha + \beta \gamma^{n} = \theta_{n} = \pi_{h} + (1 - 2\pi_{h}) \theta_{n-1}$$

$$= \pi_{h} + (1 - 2\pi_{h}) (\alpha + \beta \gamma^{n-1})$$

$$= \alpha + \pi_{h} (1 - 2\alpha) + \beta \gamma^{n-1} (1 - 2\pi_{h})$$

Collecting terms involving γ on the right-hand side yields:

$$\pi_h(2\alpha - 1) = \beta \gamma^{n-1} \left(1 - 2\pi_h - \gamma \right)$$

Now, note that the left-hand side of the preceding equation is independent of γ , while the right-hand side is a scalar multiple of the (n-1)th power of γ ; in other words, the right-hand side is a scalar multiple of a power of γ which is constant in n.

Exercises and Solutions in Biostatistical Theory

Kenneth Chu

Kupper-Neelon-O'Brien, Chapman & Hall/CRC Press, 2011

May 29, 2013

This happens if and only if either $\gamma \in \{0, 1\}$, or if the coefficient $\beta(1 - 2\pi_h - \gamma) = 0$. The preceding Observation (i.e. $\beta \neq 0$ and $\gamma \notin \{0, 1\}$) thus implies:

$$\gamma = 1 - 2\pi_h$$

Since $\pi_h > 0$, we furthermore conclude that

$$\alpha = \frac{1}{2}$$

We therefore have:

$$\theta_n = \frac{1}{2} + \beta \left(1 - 2\pi_h\right)^n$$

The initial condition $\theta_0 = 1$ now implies:

$$1 = \theta_0 = \frac{1}{2} + \beta (1 - 2\pi_h)^0 = \frac{1}{2} + \beta \implies \beta = \frac{1}{2}$$

We may now conclude:

$$\theta_n = \frac{1}{2} + \frac{1}{2}(1 - 2\pi_h)^n$$

Lastly, if $\pi_h = 0.05$, then

$$\theta_{50} = \frac{1}{2} + \frac{1}{2}(1 - 2 \times 0.05)^{50} \approx 0.5025769$$

Comment: For $0 < \pi_h < \frac{1}{2}$, the formula $\theta_n = \frac{1}{2} + \frac{1}{2}(1 - 2\pi_h)^n$ implies that $\theta_n > \frac{1}{2}$, for any n = 1, 2, 3, ...; in other words, there is a higher than 50:50 chance that the number of highly exposed subjects in the sample is "even", whenever $0 < \pi_h < \frac{1}{2}$. This apparent asymmetry between odd and even is NOT surprising given the fact that 0 is regarded as "even" here, and that the probability that there are no highly exposed workers in the sample is high if π_h is "small" (e.g. $0 < \pi_h < \frac{1}{2}$).

Exercise 1.20(a)

$$p(D|S,x) = \frac{p(D,S,x)}{p(S,x)} = \frac{p(D,S,x)}{p(D,x)} \frac{p(D,x)}{p(S,x)} = p(S|D,x) \frac{p(D,x)/p(x)}{p(S,x)/p(x)} = p(S|D,x) \frac{p(D|x)}{p(S|x)}$$

Now, we are given that

$$p(S|D, x) = \pi_1$$
, and $p(D|x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)}$

So, we now proceed to compute p(S|x). To this end,

$$p(S|x) = \frac{p(S,x)}{p(x)} = \frac{1}{p(x)} \left(p(S,D,x) + p(S,\overline{D},x) \right) = \frac{1}{p(x)} \left(\frac{p(S,D,x)}{p(D,x)} p(D,x) + \frac{p(S,\overline{D},x)}{p(\overline{D},x)} p(\overline{D},x) \right)$$
$$= p(S|D,x)p(D|x) + p(S|\overline{D},x)p(\overline{D}|x)$$

Hence,

$$\begin{split} p(D|S,x) &= p(S|D,x)\frac{p(D|x)}{p(S|x)} = \frac{p(S|D,x)p(D|x)}{p(S|D,x)p(D|x) + p(S|\overline{D},x)p(\overline{D}|x)} = \frac{\pi_1 \cdot p(D|x)}{\pi_1 \cdot p(D|x) + \pi_0 \cdot p(\overline{D}|x)} \\ &= \frac{\pi_1 \cdot \frac{\exp\left(\beta_0 + \beta^T x\right)}{1 + \exp\left(\beta_0 + \beta^T x\right)}}{\pi_1 \cdot \frac{\exp\left(\beta_0 + \beta^T x\right)}{1 + \exp\left(\beta_0 + \beta^T x\right)} + \pi_0 \cdot \frac{1}{1 + \exp\left(\beta_0 + \beta^T x\right)}} = \frac{\pi_1 \cdot \exp\left(\beta_0 + \beta^T x\right)}{\pi_1 \cdot \exp\left(\beta_0 + \beta^T x\right) + \pi_0} \\ &= \frac{\frac{\pi_1}{\pi_0} \cdot \exp\left(\beta_0 + \beta^T x\right)}{1 + \frac{\pi_1}{\pi_0} \cdot \exp\left(\beta_0 + \beta^T x\right)} = \frac{\exp\left[\log(\pi_1/\pi_0) + \beta_0 + \beta^T x\right]}{1 + \exp\left[\log(\pi_1/\pi_0) + \beta_0 + \beta^T x\right]}, \end{split}$$

as required.

Comment: The above derivations show that, in a case-control study, if one has knowledge (or good estimate) of the ratio π_1/π_0 , one can obtain an estimate for p(D|x), the disease risk associated to covariate value x, from the quantity p(D|S,x), which can be estimated from case-control study data as follows:

$$p(D|S,x) \;\; \approx \;\; \frac{\#(\text{subjects in sample with disease and covariate value }x)}{\#(\text{subjects in sample with covariate value }x)}$$

However, in practice, the ratio π_1/π_0 is rarely, if ever, known. And, without knowledge or estimate of π_1/π_0 , the disease risk p(D|x) associated to covariate value x can NOT be estimated based on data from a case-control study.

Exercise 1.20(b)

First, note that

$$\frac{p(D|x^*)}{p(\overline{D}|x^*)} = \frac{\exp(\beta_0 + \beta^T x^*)/(1 + \exp(\beta_0 + \beta^T x^*))}{1/(1 + \exp(\beta_0 + \beta^T x^*))} = \exp(\beta_0 + \beta^T x^*)$$

Similarly,

$$\frac{p(D|x)}{p(\overline{D}|x)} = \exp(\beta_0 + \beta^T x)$$

Hence,

$$\theta_r = \theta_r(x^*, x) = \frac{p(D|x^*)/p(\overline{D}|x^*)}{p(D|x)/p(\overline{D}|x)} = \frac{\exp(\beta_0 + \beta^T x^*)}{\exp(\beta_0 + \beta^T x)} = \exp[\beta^T (x^* - x)],$$

as required. Next,

$$\theta_c = \theta_c(x^*, x) = \frac{p(D|S, x^*)/p(\overline{D}|S, x^*)}{p(D|S, x)/p(\overline{D}|S, x)} = \frac{\exp\left[\log(\pi_1/\pi_0) + \beta_0 + \beta^T x^*\right]}{\exp\left[\log(\pi_1/\pi_0) + \beta_0 + \beta^T x\right]} = \exp\left[\beta^T (x^* - x)\right],$$

as required.

Comment: Exercise 1.20(a) showed that, without knowledge or estimate of the ratio π_1/π_0 , case-control study data can NOT be used to estimate the disease p(D|x) associated to covariate value x. On the other hand, case-control study data can be readily used to estimate the odds ratio

$$\theta_c = \theta_c(x^*, x) := \frac{p(D|S, x^*)/p(\overline{D}|S, x^*)}{p(D|S, x)/p(\overline{D}|S, x)}$$

Exercise 1.20(b) shows that θ_c is equal to

$$\theta_r = \theta_r(x^*, x) := \frac{p(D|x^*)/p(\overline{D}|x^*)}{p(D|x)/p(\overline{D}|x)}$$

Thus, Exercise 1.20(a) and Exercise 1.20(b) together show that, while case-control study data can NOT be used to estimate disease risk p(D|x) associated to covariate value x, they can be used to estimate the disease odds ratio

$$\theta_r = \theta_r(x^*, x) := \frac{p(D|x^*)/p(\overline{D}|x^*)}{p(D|x)/p(\overline{D}|x)}$$

associated to the covariate value x^* against x.

Exercise 1.21(a)

Let D be the random variable defined by:

$$D := \begin{cases} 1, & \text{if a given individual has IBD,} \\ 0, & \text{otherwise.} \end{cases}$$

Let S_1 be the random variable defined by:

$$S_1 := \begin{cases} 1, & \text{Strategy } \#1 \text{ asserts that a given individual has IBD,} \\ 0, & \text{otherwise.} \end{cases}$$

Let S_2 be the random variable defined by:

$$S_2 := \left\{ \begin{array}{ll} 1, & \text{Strategy } \#2 \text{ asserts that a given individual has IBD,} \\ 0, & \text{otherwise.} \end{array} \right.$$

Note that

$$P(S_1 = D) = P(S_1 = D, D = 1) + P(S_1 = D, D = 0) = P(S_1 = D|D = 1)P(D = 1) + P(S_1 = D|D = 0)P(D = 0)$$

= $P(S_1 = D|D = 1)\theta + P(S_1 = D|D = 0)(1 - \theta)$

Next, note that

$$P(S_1 = D|D = 1) = P(X \ge 2), \text{ where } X \sim \text{Binomial}(n = 3, p = \pi_1)$$

= $\binom{3}{2} \pi_1^2 (1 - \pi_1)^1 + \binom{3}{3} \pi_1^3 (1 - \pi_1)^0$
= $3\pi_1^2 (1 - \pi_1) + \pi_1^3 = \pi_1^2 (3 - 2\pi_1)$

Similarly,

$$P(S_1 = D|D = 0) = \pi_0^2 (3 - 2\pi_0)$$

Therefore,

$$P(S_1 = D) = P(S_1 = D|D = 1)\theta + P(S_1 = D|D = 0)(1 - \theta) = \theta \pi_1^2 (3 - 2\pi_1) + (1 - \theta)\pi_0^2 (3 - 2\pi_0)$$

On the other hand, note that

$$P(S_2 = D|D = 1) = \pi_1$$
 and $P(S_2 = D|D = 0) = \pi_0$

Hence,

$$P(S_2 = D) = P(S_2 = D|D = 1)P(D = 1) + P(S_2 = D|D = 0)P(D = 0)$$

$$= P(S_2 = D|D = 1)\theta + P(S_2 = D|D = 0)(1 - \theta)$$

$$= \theta \pi_1 + (1 - \theta)\pi_0$$

Thus, a sufficent condition for $P(S_1 = D) \ge P(S_2 = D)$ is the following:

$$\pi_1^2 (3 - 2\pi_1) \ge \pi_1$$
 and $\pi_0^2 (3 - 2\pi_0) \ge \pi_0$

Now,

$$\pi_1^2 (3 - 2\pi_1) \ge \pi_1 \iff \pi_1 (3 - 2\pi_1) \ge 1$$

$$\iff 2\pi_1^2 - 3\pi_1 + 1 \le 0$$

$$\iff (2\pi_1 - 1)(\pi_1 - 1) \le 0$$

$$\iff \frac{1}{2} \le \pi_1 \le 1$$

Kupper-Neelon-O'Brien, Chapman & Hall/CRC Press, 2011

May 29, 2013

Similarly,

$$\pi_0^2 (3 - 2\pi_0) \ge \pi_1 \iff \frac{1}{2} \le \pi_0 \le 1$$

We may now conclude that a sufficient condition for $P(S_1 = D) \ge P(S_2 = 0)$ is

$$\frac{1}{2} \le \pi_0 \,, \, \pi_1 \le 1$$

Comment: The above sufficient condition shows that as long as the probability of each doctor giving a correct diagnosis is at least $\frac{1}{2}$ (i.e. $\frac{1}{2} \le \pi_0$, $\pi_1 \le 1$), Strategy #1 will outperform Strategy #2, in the sense that the probability that Strategy #1 giving a correct diagnosis will exceed that of Strategy #2.

Exercise 1.21(b)

Let S_3 be the random variable defined by:

$$S_3 := \begin{cases} 1, & \text{Strategy } \#3 \text{ asserts that a given individual has IBD,} \\ 0, & \text{otherwise.} \end{cases}$$

Then,

$$\begin{split} P(S_3 = D | D = 1) &= P(Z \geq 3) \,, \quad \text{where } Z \sim \text{Binomial}(n = 4, p = \pi_1) \\ &= \begin{pmatrix} 4 \\ 3 \end{pmatrix} \pi_1^3 (1 - \pi_1)^1 + \begin{pmatrix} 4 \\ 4 \end{pmatrix} \pi_1^4 (1 - \pi_1)^0 \\ &= 4\pi_1^3 (1 - \pi_1) + \pi_1^4 \\ &= \pi_1^3 \left(4 - 3\pi_1\right) \end{split}$$

Similarly,

$$P(S_3 = D|D = 0) = \pi_0^3 (4 - 3\pi_0)$$

Hence,

$$P(S_3 = D) = P(S_3 = D, D = 1) + P(S_3 = D, D = 0)$$

$$= P(S_3 = D|D = 1)P(D = 1) + P(S_3 = D|D = 0)P(D = 0)$$

$$= \theta \pi_1^3 (4 - 3\pi_1) + (1 - \theta)\pi_0^3 (4 - 3\pi_0)$$

Now, observe that

$$P(S_{1} = D) - P(S_{3} = D) = \left[\theta\pi_{1}^{2}(3 - 2\pi_{1}) + (1 - \theta)\pi_{0}^{2}(3 - 2\pi_{0})\right] - \left[\theta\pi_{1}^{3}(4 - 3\pi_{1}) + (1 - \theta)\pi_{0}^{3}(4 - 3\pi_{0})\right]$$

$$= \theta\pi_{1}^{2}\left(3 - 2\pi_{1} - 4\pi_{1} + 3\pi_{1}^{2}\right) + (1 - \theta)\pi_{0}^{2}\left(3 - 2\pi_{0} - 4\pi_{0} + 3\pi_{0}^{2}\right)$$

$$= 3\theta\pi_{1}^{2}\left(\pi_{1}^{2} - 2\pi_{1} + 1\right) + 3(1 - \theta)\pi_{0}^{2}\left(\pi_{0}^{2} - 2\pi_{0} + 1\right)$$

$$= 3\theta\pi_{1}^{2}(\pi_{1} - 1)^{2} + 3(1 - \theta)\pi_{0}^{2}(\pi_{0} - 1)^{2}$$

$$> 0$$

Comment: This shows that Strategy #1 is always preferable over Strategy #3, regardless of the values of π_0 and π_1 (despite the latter involving more doctors).

Exercise 1.22

Let

- A be the event that an individual has Alzheimer's Disease.
- D be the event that an individual has diabetes.
- M be the event that an individual is male.

Note that

$$\pi_{1} := P(A|D) = \frac{P(A,D)}{P(D)} = \frac{P(A,D,M) + P(A,D,\overline{M})}{P(D)}
= \frac{P(A,D,M)}{P(D,M)} \frac{P(D,M)}{P(D)} + \frac{P(A,D,\overline{M})}{P(D,\overline{M})} \frac{P(D,\overline{M})}{P(D)}
= P(A|D,M)P(M|D) + P(A|D,\overline{M})P(\overline{M}|D)
= \pi_{11} \cdot P(M|D) + \pi_{10} \cdot P(\overline{M}|D)$$

Similarly,

$$\pi_{0} := P(A|\overline{D}) = \frac{P(A,\overline{D})}{P(\overline{D})} = \frac{P(A,\overline{D},M) + P(A,\overline{D},\overline{M})}{P(\overline{D})}$$

$$= \frac{P(A,\overline{D},M)}{P(\overline{D},M)} \frac{P(\overline{D},M)}{P(\overline{D})} + \frac{P(A,\overline{D},\overline{M})}{P(\overline{D},\overline{M})} \frac{P(\overline{D},\overline{M})}{P(\overline{D})}$$

$$= P(A|\overline{D},M)P(M|\overline{D}) + P(A|\overline{D},\overline{M})P(\overline{M}|\overline{D})$$

$$= \pi_{01} \cdot P(M|\overline{D}) + \pi_{00} \cdot P(\overline{M}|\overline{D})$$

We ASSUME

- $\pi_{00} \neq 0$, $\pi_{01} \neq 0$, and $\pi_0 \neq 0$.
- homogeneity of risk ratio across gender groups, i.e.

$$R_1 = R_0 =: R, \text{ where } R_1 := \frac{\pi_{11}}{\pi_{01}}, R_0 := \frac{\pi_{10}}{\pi_{00}}.$$
 (1.3)

We seek to derive sufficient conditions for

$$R_c = R$$
, where $R_c := \frac{\pi_1}{\pi_0}$. (1.4)

Now, it follows immediately from (1.3) and (1.4) that

$$\pi_{11} = R \cdot \pi_{01}$$
 and $\pi_{10} = R \cdot \pi_{00}$

Hence,

$$\pi_1 = R \cdot (\pi_{01} \cdot P(M|D) + \pi_{00} \cdot P(\overline{M}|D))$$

which in turn implies:

$$\frac{\pi_1}{\pi_0} \ = \ R \cdot \left(\frac{\pi_{01} \ P(M|D) + \pi_{00} \ P(\overline{M}|D)}{\pi_{01} \ P(M|\overline{D}) + \pi_{00} \ P(\overline{M}|\overline{D})} \right)$$

Thus, (1.4) will follow if the following holds:

$$\frac{\pi_{01} P(M|D) + \pi_{00} P(\overline{M}|D)}{\pi_{01} P(M|\overline{D}) + \pi_{00} P(\overline{M}|\overline{D})} = 1$$
(1.5)

Kupper-Neelon-O'Brien, Chapman & Hall/CRC Press, 2011

May 29, 2013

Now, note:

(1.5)
$$\iff \pi_{01} P(M|D) + \pi_{00} P(\overline{M}|D) - \pi_{01} P(M|\overline{D}) - \pi_{00} P(\overline{M}|\overline{D}) = 0$$

 $\iff \pi_{01} \left[P(M|D) - P(M|\overline{D}) \right] + \pi_{00} \left[P(\overline{M}|D) - P(\overline{M}|\overline{D}) \right] = 0$
 $\iff \pi_{01} \left[P(M|D) - P(M|\overline{D}) \right] + \pi_{00} \left[1 - P(M|D) - 1 + P(M|\overline{D}) \right] = 0$
 $\iff \left[\pi_{01} - \pi_{00} \right] \cdot \left[P(M|D) - P(M|\overline{D}) \right] = 0$

Thus, two separate sufficient conditions for (1.4) are:

$$\pi_{01} = \pi_{00}$$
 and $P(M|D) = P(M|\overline{D})$

Furthermore,

$$\begin{array}{ll} \text{independence of } M \text{ and } D, \text{ i.e. } P(M|D) = P(M) \\ \Longrightarrow & \frac{P(M,D)}{P(D)} = P(M,D) + P(M,\overline{D}) \\ \Longrightarrow & P(M,D) = P(M,D)P(D) + P(M,\overline{D})P(D) \\ \Longrightarrow & P(M,D)\left[1 - P(D)\right] = P(M,\overline{D})P(D) \\ \Longrightarrow & \frac{P(M,D)}{P(D)} = \frac{P(M,\overline{D})}{P(\overline{D})} \\ \Longrightarrow & P(M|D) = P(M|\overline{D}) \end{array}$$

Therefore, we may now conclude that two separate sufficient conditions for (1.4) are:

- independence of M and D, i.e. P(M|D) = P(M), and
- $\pi_{01} = \pi_{00}$, i.e. $P(A|\overline{D}, M) = P(A|\overline{D}, \overline{M})$.

References