S&P 500 Risk Optimizations Forecast

Contact:

EstebanMqz

Introduction:

Abstract:

Time series modelling is a powerful forecast tool and the stock market tends to be an interesting example because statistical estimators are of special interest.

They are used for general prediction purposes and to make decision-making processes more efficient.

The industries where it can be applied are numerous, but the most common are the following:

- Government
- Banking
- Insurance
- Energy
- Healthcare
- Telecommunications
- Retail
- Education

Since Covid until the present day, data has changed with none to few exceptions, the markets are a good example.

For that reason, from symbols data that integrate the S&P 500 index of the United States, the following processes will be made:

Description:

Detailed Descriptive Statistics techniques from $x_i \in [x_1,x_{500}] \hookrightarrow S\&P500$, in addition to theoretical and

experimental demonstrations with extracted data to establish the usage of $ln(1+r_t)$ in regards to price returns $\frac{Pt+1}{Pt}$ during the period.

Moreover, estimators and resamplings $x_i \in [x_1, x_{n=25}] \hookrightarrow R_{Sortino_{+25}}$ are modelled in order to have insights from their periodiodicity.

Consequently, optimizations $max_{\vec{w_{j\neq i}}}R_{Sortino_{+25}}\models max|min_{\vec{w_{j\neq i}}}R_k$ are performed and analyzed from a big picture perspective

/ With this in mind, new fluctuations can be integrated in the optimization model that best fits the needs by the time and unfavourable conditions can be anticipated by making w_i adjustments that might escape the initially proposed objective functions and constraints from the whole population.

Finally, with what would have been its past behavior, the following simulations are made:

$$\sum_{j
eq i}^{n} x_i \sim X_i \hookrightarrow max_{ec{w_{j
eq i}}} R_{Sortino_{+_{25}}}$$

As conclusion, forecasts $X_{(t_1+t_2+..+t_n)}\hookrightarrow max_{w_{j\neq i}}R_{Sortino_{+25}}$ are obtained in daily basis.

Table of Contents:

It is divided in the following sections:

- 1. Virtual Environment
- 2. Data Extraction and Exploration: $x_i \in [x_1, x_{500}] \hookrightarrow S\&P500$.
- 3. Descriptive Statistics & Analytics:
 - $\bullet \quad x_i \in [x_1, x_{500}] \hookrightarrow S\&P500 \subset x_{j \neq i} \in [x_1, x_{n=25}] \hookrightarrow R_{Sortino_{+os}}$
- 1. Optimizations: $max_{\overrightarrow{v_{j \neq i}}}R_{Sortino_{+25}} \models max|min_{\overrightarrow{v_{i \neq i}}}R_k$.
- 2. Simulations:

$$\sum_{j
eq i}^n x_i \sim X_i \hookrightarrow max_{ec{w_{j
eq i}}} R_{Sortino_{+_{25}}}$$

3. Forecast: $X_{(t_1+t_2+..+t_n)}\hookrightarrow max_{ec{v_{j
eq i}}}R_{Sortino_{+_{25}}}$

0. Virtual Environment:

0.1 Load Dependencies:

```
import functions as fn
import data as dt
import visualizations as vs
```

0.2 Install Libs. & Modules:

Project Creators:

Create requirements.txt file:

fn.get_requirements:

Skip to installation if you are not interested in contributing to the project.

requirements.txt file created in local path: c:\Users\Esteban\Desktop\Projects\Git hub\Repos_To-do\Languages\Python\Fin_Sim\Projects\SP500-Risk-Optimized-Portfolios-ML\requirements.txt

Project Users:

Install packages in created requirements.txt file:

fn.library_install:

```
fn.library_install("requirements.txt")
```

```
andas >= 1.4.4
```

0.3 Load Libraries & Modules:

```
plt.style.use("dark_background")
%matplotlib inline
 mport plotly.graph_objects as go
 mport plotly.express as px
 mport seaborn as sns
 mport scipy
 mport scipy.stats as st
 rom scipy import optimize
 rom scipy.optimize import minimize
 mport sklearn
 rom sklearn.neighbors import KernelDensity
 rom sklearn.model_selection import GridSearchCV
 rom sklearn import metrics
 rom statsmodels.tsa.stattools import pacf
 rom statsmodels.tsa.stattools import acf
 mport statsmodels.api as sm
 rom yahoofinancials import YahooFinancials
 rom tabulate import tabulate
 mport IPython.display as d
 mport IPython.core.display
 mport datetime
 mport time
 rom io import StringIO
 rom fitter import Fitter, get_common_distributions, get_distributions
 mport logging
 mport ast
 mport warnings
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", category=UserWarning)
```

1. Data Extraction and Exploration:

1.1 Data Extraction:

In this section $x_i \in [x_1, x_{500}] \hookrightarrow S\&P500$ quotes are fetched:

Fetching a lot of data from Yahoo Finance by batches is required to avoid host disruptions (other sources could be used).

fn.SP500 tickers:

```
In [4]: tickers = fn.SP500_tickers(50)
    tickers[0][:5], tickers[-1][0:5], sum([len(i) for i in tickers])
Out[4]: (['MMM', 'AOS', 'ABT', 'ABBV', 'ACN'], ['ZBH', 'ZION', 'ZTS'], 503)
```

Note: Skip to 1.1.2 if you prefer using .csv creation date.

 $6_Y \ x_i \in [x_1, x_{500}] \hookrightarrow S\&P500$ Adj. closes are fetched (5min) :

dt.get_historical_price_data:

Adj. closes for S&P500:

```
In [10]: SP_f = dt.get_historical_price_data('^GSPC', 6)
SP_f = SP_f[SP_f.index.isin(SP_Assets_f.index)]
SP_f.shape
Out[10]: (1509, 1)
```

Fetched data is saved in *Data* subdirectory:

• Assets SP500.csv

• SP500_index.csv

```
In []: SP_Assets_f.to_csv("Data/Assets_SP500.csv")
    SP_f.to_csv("Data/SP500.csv")
    SP_f = pd.read_csv("Data/SP500.csv", index_col=0)
    SP_Assets_f = pd
```

Fetched x_i data:

Out[8]:		МММ	AOS	ABT	ABBV	ACN	ATVI	ADM	
	formatted_date								
	2017-05-23	160.652100	48.843098	39.439041	50.427128	111.656731	56.066231	36.417500	139
	2017-05-24	160.457123	48.987476	39.303604	50.496056	111.473907	56.754932	36.002884	14
	2017-05-25	162.122711	49.176952	39.682823	50.794758	112.525116	57.443634	36.062119	142
	2017-05-26	163.040833	48.788952	40.369038	50.595627	112.333145	56.531834	35.918282	141
	2017-05-30	164.478912	49.068672	40.630878	50.564991	113.137566	56.822842	35.630581	142
	2017-05-31	166.128220	49.510818	41.226795	50.564991	113.777443	56.822842	35.182148	141
	2017-06-01	166.030731	49.844673	41.624084	51.093464	114.527000	57.773445	35.385220	14
	2017-06-02	167.940079	50.756020	41.985241	51.507053	114.938332	57.860744	35.723663	11.
			30.730020	+1.505 <u>L</u> +1	31.307033	114.550552	37.000744	33.723003	143
			30.730020	41.505241	31.307033	114.550552	37.000744	33.723003	14;
In [9]:	SP_Assets_f		3636026	71.303241	31.307033	114.530332	37.000744	33.723003	143
In [9]:	SP_Assets_f		AOS	ABT	ABBV				
	SP_Assets_f	.tail(8)							143
		.tail(8)				ACN		ADM	
	formatted_date	.tail(8)	AOS	АВТ	ABBV	ACN 268.890015	ATVI	ADM	2 34
	formatted_date 2023-05-10	.tail(8) MMM 99.389221	AOS 69.220001	ABT 110.690002	ABBV 146.419998	ACN 268.890015 272.269989	ATVI 76.000000	ADM 74.198402 74.456863	34 34
	formatted_date 2023-05-10 2023-05-11	.tail(8) MMM 99.389221 99.271019	AOS 69.220001 68.400002	ABT 110.690002 110.050003	ABBV 146.419998 146.589996	ACN 268.890015 272.269989 277.190002	76.000000 77.040001 77.370003	74.198402 74.456863 74.934021	32 32 32

2023-05-17 98.680000 68.279999 108.820000 143.350006 284.630005 77.889999 73.050003 3!

2023-05-18 99.639999 69.139999 108.470001 143.440002 287.480011 78.190002 72.790001 36

2023-05-19 99.029999 68.419998 108.930000 145.110001 289.910004 78.589996 73.230003 37

1.1.2 Data Read

To skip data fetching if needed, a data reader is made available:

```
In [4]:
SP_r = pd.read_csv("Data/SP500.csv", index_col=0)
SP_Assets_r = pd.read_csv("Data/Assets_SP500.csv", index_col=0)
```

A Data Quality Report for original Data $\mathbf{6}_y$ is shown:

dt.DQR

Out[5]:	Columns	GEHC	CEG	OGN	CARR	OTIS	CTVA	DOW	FOX	FOXA	MRNA	
	Data_Type	float64	1									
	Unique_Values	100	330	472	764	766	960	1009	961	968	1065	
	Missing_Values	1402	1173	1001	710	710	504	458	453	452	389	
	Zero_Values	0	0	0	0	0	0	0	0	0	0	
	Outliers	0	0	0	0	0	0	0	0	0	15	
	Unique_Outliers	0	0	0	0	0	0	0	0	0	15	
	Outliers	0	0	0	0	0	0	0	0	0		15

1.2 Data Exploration

Defining Returns:

Accumulated Simple and Log Returns:

• Multiplicative - Additive:

 R_t are multiplicative because the following is true to calculate their accumulated value by compound interest:

$$R_t = \left[\left(\prod_{t=1}^n \frac{P_{t+1}}{P_t} \right) - 1 \right]$$

 $ln(r_t)$ are additive because of the exponential law: $e^{P_t \times P_{t+1}} = e^{P_t + P_{t+1}}$ which makes the following true:

$$\sum_{t=1}^n ln(r_t) = \mathrm{e}^{\sum ln(r_t)} - 1$$

 $|ln(r_t)\pm R_t| o 1 \ \ \, :: \ \, n o \infty.$

Simple and Log Returns Characteristics are the following:

• Not Symmetric - Symmetric:

 R_t distribution can have \pm skew which makes the Mo, median and μ not centered in f(x).

 $ln(r_t)$ distribution is symmetrical which makes the Mo, median and μ centered in f(x).

• Bounded - Unbounded:

 R_t bounds are inclusive between ± 1 $ln(r_t)$ bounds are $\pm \infty$.

• Not Stationary - Stationary:

 R_t has a trend so they are not stationary, nor *i.i.d* and therefore correlated.

On the other hand $ln(r_t)$ are stationary, so they are *i.i.d* and therefore not correlated.

Not Independent - Independent:

 R_t are not *i.i.d* because they are non stationary, they do have a trend so they are correlated and ultimately multiplicative.

On the other hand $ln(r_t)$ are *i.i.d* because they are stationary, they do not have a trend so they aren't correlated, which makes them additive.

Just because Simple Returns are correlated, they shouldn't be used to generate continous random variable simulations as they need to be i.i.d.

Log Returns are i.i.d so they can be used to generate continuous random variable simulations, it will be proven later on.

Nevertheless, both Returns will be compared $\forall~x_i \in [x_1,x_{500}] \hookrightarrow S\&P500$ in Data Exploration.

And $orall \ x_i \in [x_1, x_{n=25}] \hookrightarrow max | min_{ec{w_{j
eq i}}} R_k$ Descriptive Statistics.

Continous random variables distributions in Scipy for transformed data:

```
continuous = [d for d in dir(st) if isinstance(getattr(st, d),
getattr(st, "rv_continuous"))]
```

```
discrete = [d for d in dir(st) if isinstance(getattr(st, d),
getattr(st, "rv_discrete"))]
pd.DataFrame(continuous).rename(columns={0:"Continuous"}).T
```

Out[6]:

0 1 2 3 4 5

Continuous alpha anglit arcsine argus beta betaprime bradford burr burr12 cauchy chi chi

Discrete random variables distributions in Scipy not considered:

1.2.1 S&P 500 Data:

Start Date modified:

• from $(2017 - 05 - 23) \rightarrow (2020 - 03 - 02)$

Resulting dates:

• from $(2020 - 03 - 02) \rightarrow (2023 - 05 - 19)$

All quotes Adj. Closes were fetched for the last 6_Y in the S&P 500 since its execution date on Data Extraction (1.1).

Since required dates are shorter, they will be modified and general variables for the rest of the project declared:

Define variables:

```
In [34]:
    rf, best, r_jump, start, end = .00169, 25, 0.05, "2020-03-02",
    SP_Assets_r.tail(1).index[0]
    prices_start = SP_Assets_r.loc[start:end]
```

Symbols with missing values are located with a DQR for given dates and shown:

dt.DQR

10

Out[35]: Data_Type Unique_Values Missing_Values Zero_Values Outliers Unique_Outliers Columns

GEHC	float64	100	705	0	0	0
CEG	float64	330	476	0	0	0
OGN	float64	472	304	0	0	0
OTIS	float64	766	13	0	0	0
CARR	float64	764	13	0	0	0

498 columns are left by removing missing values. Prices have a new shape defined by

```
In [37]:
prices_start = prices_start.drop(index_missing, axis=1)
len(prices_start.T), sum([len(i) for i in tickers]),
index_missing.shape[0]
```

Out[37]: (498, 503, 5)

dt.data_describe

(actual_cols = original_cols - missing_cols):

fn.VaR

Prices are statistically described, sorted by Total Change during the period and shown horizontally:

```
prices_stats = dt.data_describe(prices_start, 'prices', .00169, start,
end)
prices_stats = prices_stats.T.sort_values(by = 'Total_Change',
ascending = False).T
prices_stats
```

Out[43]:	Companies	EQT	NVDA	FSLR	PWR	ON	MRNA	STLD
	prices							
	min	5.907153	48.951530	30.200001	23.566006	8.450000	21.299999	14.355667
	25%	15.630560	130.558857	72.129999	70.172993	31.502501	118.462498	35.405653
	50%	20.441086	161.001488	86.075001	106.165596	46.270000	149.470001	60.864223
	75%	33.618181	220.079613	114.434999	132.866112	63.880001	180.697498	80.535147
	max	49.957397	333.350800	231.690002	174.809998	86.879997	484.470001	135.536499
	Mean	24.490194	173.678855	98.593842	100.868067	47.517081	162.176718	61.773341
	Yr_Std	11.099876	63.718614	43.411020	39.672720	20.116571	89.729165	28.529020
	Total_Change	5.113067	3.537687	3.527920	3.466005	3.456418	3.224900	2.840122
	var97.5(-)	47.190206	303.527374	210.131750	166.769331	81.306998	411.051260	121.218307
	var2.5(+)	8.470818	65.837145	38.968752	32.075333	13.730000	30.168249	20.844009
	Price_skew	0.593010	0.399756	1.103449	-0.208555	-0.073823	1.207771	0.369117
	Price_kurtosis	-0.877057	-0.553541	0.623156	-0.987613	-1.117804	1.537299	-0.686932

vs.cmap_bar

Total Price Changes $rac{P_{(2023-05-19)}}{P_{(2020-03-02)}}-1 \quad orall \quad x_i \in [x_1,x_{500}] \hookrightarrow S\&P500$ Statistical Descriptions:

In [216...

```
Stats_Simple, Simple_ret = data_describe(prices_start, 'Simple', rf,
start, end)[:2]
Stats_Simple = Stats_Simple.T.sort_values(by = 'Yr_Return', ascending
= False).T
Stats_Simple
```

Out[216]:

]:	Companies	EQT	MRNA	ENPH	ON	DVN	TSLA	NVD
	Simple							
	min	5.907153	21.299999	23.990000	8.450000	4.407207	24.081333	48.9515
	25%	15.630560	118.462498	127.905001	31.502501	13.488991	149.851662	130.55885
	50%	20.441086	149.470001	170.839996	46.270000	34.782429	218.531662	161.00148
	75%	33.618181	180.697498	209.790001	63.880001	54.485501	270.841675	220.0796
	max	49.957397	484.470001	336.000000	86.879997	74.357452	409.970001	333.35080
	Simple_skew	1.113460	0.432073	-0.024307	0.090499	-0.495730	0.036257	0.09752
	Simple_kurtosis	9.333835	2.401019	4.568806	6.803456	9.519589	2.477457	2.23980
	Accum_Simple	5.113067	3.224900	2.158949	3.456418	2.742981	2.633711	3.53768
	Yr_Return	0.768177	0.759560	0.664292	0.653312	0.650959	0.639953	0.6241!
	Yr_Std	0.648855	0.794246	0.780860	0.613762	0.685338	0.690983	0.55540
	var97.5(-)	0.080761	0.107641	0.099553	0.072557	0.084974	0.092794	0.07148
	var2.5(+)	-0.070200	-0.089703	-0.089126	-0.069417	-0.075386	-0.083101	-0.06788
	Yr_MaxDrawdown	-0.163584	-0.472458	-0.423201	-0.434585	-0.267167	-0.569167	-0.42129
	Sharpe	1.181291	0.954200	0.848553	1.061686	0.947371	0.923703	1.1207
	Sortino	2.072235	1.593368	1.206913	1.566658	1.288222	1.364962	1.76213
	Calmar	4.695920	1.607676	1.569685	1.503301	2.436527	1.124368	1.48152
	Burke	4.685589	1.604099	1.565692	1.499412	2.430202	1.121399	1.4775

Considering Quotes are sorted by Yr_Return, what the following chart shows is basically that even though there are quotes who were highly ranked in terms of Returns, not so much in terms of negative volatility, so people or firms could still have lost.

In [292...

```
df_col, df_index = Stats_Simple.T['Sortino'],
  (Stats_Simple.T['Sortino'].index)
  x_arange, y_arange = np.arange(0,
    Stats_Simple.T['Sortino'].index.shape[0], 10),
  np.arange(round(Stats_Simple.T['Sortino'].min(), 2),
  round(Stats_Simple.T['Sortino'].max(), 2), .10)
  title = (str(Stats_Simple.T['Sortino'].index.name) + " Simple Sortino
  Ratio from " + str(start) + " to " + str(end))
  x_label, y_label = "Datasets $x_i$", "Sortino Ratio"

vs.cmap_bar(df_col, df_index, x_arange, y_arange, title, x_label,
  y_label)
```


As it was stated, not all risks are bad, so in this case the biggest winners had the most uncertainty which caused by rapid fluctuations which ended in a positive way. Tesla's volatility was one of the highest as well as its sucess in the Top 10.

```
In [295...
```

```
df_col, df_index = Stats_Simple.T['Yr_Std'].head(50),
  (Stats_Simple.T['Yr_Std'].head(50).index)
  x_arange, y_arange = np.arange(0,
  Stats_Simple.T['Yr_Std'].head(50).index.shape[0], 1),
  np.arange(round(Stats_Simple.T['Yr_Std'].head(50).min(), 2),
  round(Stats_Simple.T['Yr_Std'].head(50).max(), 2), .05)
  title = (str(Stats_Simple.T['Yr_Std'].head(50).index.name) + " best 50
  $R_t$ with $\sigma_{Yr}$ from" + str(start) + " to " + str(end))
```

```
x_label, y_label = "Datasets $x_i$", "Std. Deviation Yrly."

std_head = vs.cmap_bar(df_col, df_index, x_arange, y_arange, title, x_label, y_label)

df_col, df_index = Stats_Simple.T['Yr_Std'].tail(50),
  (Stats_Simple.T['Yr_Std'].tail(50).index)
  x_arange, y_arange = np.arange(0,
Stats_Simple.T['Yr_Std'].tail(50).index.shape[0], 1),
  np.arange(round(Stats_Simple.T['Yr_Std'].tail(50).min(), 2),
  round(Stats_Simple.T['Yr_Std'].tail(50).index.name) + " worst

50 $R_t$ with $\sigma_{Yr}$ from" + str(start) + " to " + str(end))
  x_label, y_label = "Datasets $x_i$", "Std. Deviation Yrly."

std_tail = vs.cmap_bar(df_col, df_index, x_arange, y_arange, title, x_label, y_label)
```



```
In [296...
Stats_Log = data_describe(prices_start, 'Log_returns', .00169, start,
end)[0]
```

Stats_Log

_		_	_	_		-	
\cap			7	\cap		- 1	
UL	IL.		_	J	\Box	-	

Companies	ммм	AOS	ABT	ABBV	ACN	ATVI	ΑI
Log_returns							
min	96.542496	32.723198	59.583965	55.841316	137.243256	51.156666	27.0683
25%	123.740786	52.131404	101.151182	94.312912	241.498779	75.115717	47.410
50%	141.973701	59.802975	107.947498	109.430599	275.817825	78.394012	62.5612
75%	164.107021	66.729286	115.821287	144.215893	305.763092	82.283163	80.9432
max	189.169373	83.477020	137.809631	167.007950	406.562866	102.699326	96.563!
Logret_skew	-0.334129	0.323583	-0.098539	-0.989990	0.198536	0.936111	-0.491
Logret_kurtosis	6.685976	3.457841	5.973898	10.603032	4.360104	25.525953	4.3258
Accum_Logret	-0.264046	0.772141	0.407254	0.889847	0.601308	0.319729	1.041!
Yr_Return	-0.095265	0.177795	0.106157	0.197777	0.146297	0.086204	0.2217
Yr_Std	0.286134	0.328314	0.292863	0.260644	0.322502	0.329354	0.3107
var97.5(-)	0.033291	0.041606	0.034757	0.030181	0.041690	0.033920	0.0367
var2.5(+)	-0.035820	-0.041890	-0.036062	-0.029419	-0.042779	-0.040538	-0.0459
Yr_MaxDrawdown	-1.358780	-0.564289	-0.770191	-0.529143	-0.681822	-0.830817	-0.4898
Sharpe	-0.338845	0.536391	0.356710	0.752318	0.448391	0.256606	0.7083
Sortino	-0.433156	0.823839	0.485497	0.904933	0.628085	0.334881	0.8898
Calmar	-0.070111	0.315077	0.137832	0.373768	0.214568	0.103758	0.4527
Burke	-0.071355	0.312082	0.135638	0.370574	0.212089	0.101724	0.4493

Simple Returns $x_i \in [x_1, x_{500}] \hookrightarrow S\&P500$ are:

Not symmetric, they are skewed, they are not stationary and they are not i.i.d.

```
In [289...
         fig, ax = plt.subplots(figsize=(20, 10))
         sns.distplot(.T.Yr_Return, bins=50, color = 'blue', label = '$R_t$')
          sns.kdeplot(Stats_Simple.T.Yr_Return, color = 'orange', linestyle="--
         sns.distplot(Stats_Simple.T.Yr_Return, bins=50, color = 'blue', label
          sns.kdeplot(Stats_Simple.T.Yr_Return, color = 'orange', linestyle="--
          plt.show(
```



```
In [55]: Simple_T.Simple_skew.plot(kind="bar", figsize=(20, 5), color="orange",
    alpha=.5, label="Simple Skew")
    Log.T.Logret_skew.plot(kind="bar", figsize=(20, 5), color="yellow",
    alpha=.5, label="Log Skew")
    plt.xticks(rotation=0, fontsize=2)
#Drop x ticks and make new ticks from 0 to 500 with a step of 10
    plt.xticks(np.arange(0, 500, 10))
    plt.xticks(fontsize=0)
#x ticks rotation
    plt.xticks(rotation=70)

plt.xlabel("Assets")
    plt.ylabel("Skew")
    plt.title("Simple Skew")
    plt.legend()
    plt.show()

#Simple.T.Simple_kurtosis.plot(kind="bar", figsize=(20, 5), color="green", alpha=.5, label="Simple Kurtosis")
```

```
Simple Skew

| Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | Simple Skew | S
```

```
In [ ]:
           Dist KDE(dataframe1, dataframe2, dist label1, dist label2
        x_ticks, y_ticks):
           fig, ax = plt.subplots(figsize=(20, 10))
            sns.distplot(dataframe1, bins=50, color = 'red', label =
        dist label1)
            sns.distplot(dataframe2, bins=50, color = 'blue', label =
        dist label2)
            sns.kdeplot(dataframe1, color = 'orange', linestyle="--")
           sns.kdeplot(dataframe2, color = 'teal', linestyle="--")
            plt.title(title, fontsize=15)
           plt.grid(color='gray', linestyle='--')
            plt.xticks(x_ticks, rotation=45, fontsize=9)
            plt.xlabel(x label, fontsize=15), plt.ylabel(y label, fontsize=15)
```

```
ax.xaxis.label.set_color('red'), ax.yaxis.label.set_color('blue')
    ax.tick params(axis='x', colors='white'), ax.tick params(axis='y',
colors='white')
    plt.legend()
   return plt.show()
 ef Yearly_Returns(Simple, Log, color):
   fig, ax = plt.subplots(figsize=(20, 10))
    sns.distplot(Simple.T.Yr_Return, bins=50, color="red",
label="Yearly Simple $R t$")
    sns.distplot(Log.T.Yr_Return, bins=50, color="blue", label="Yearly
    sns.kdeplot(Simple.T.Yr_Return, color="orange", linestyle="--")
   sns.kdeplot(Log.T.Yr Return, color="teal", linestyle="--")
    plt.title("$x i\in [x 1,x {500}]$ in S&P500 Yearly Returns",
size=20).set_color(color)
    plt.xticks(np.arange(round(min(Simple.T.Yr Return), 1)*1.5,
round(max(Simple.T.Yr_Return), 1)*1.5, 0.05))
    plt.xticks(rotation=45)
```

```
plt.xlabel("Yearly Returns")
    plt.ylabel("Frequency")
    ax.xaxis.label.set_color(color), ax.yaxis.label.set_color(color)
    ax.tick_params(axis='x', colors=color), ax.tick_params(axis='y')
colors=color)
    plt.grid(color='gray', linestyle='--')
   plt.legend()
   plt.show()
 ef Stationarity(x, y, n):
   decomposition = seasonal_decompose(y, period = n)
    trend = decomposition.trend
    seasonal = decomposition.seasonal
    residual = decomposition.resid
    fig = make_subplots(rows = 4, cols = 1, shared_xaxes = False,
```

```
subplot_titles = ('Actual', 'Trend',
                        vertical_spacing = 0.15, row_width = [0.25,
   fig.add_trace(go.Scatter(x=x, y=y, mode='lines+markers',
name='Actual',
         line=dict(color='black'), marker=dict(symbol=2,
color='black')))
   fig.add_trace(go.Scatter(x=x, y=trend, mode='lines+markers',
name='Trend',
         line=dict(color='black'), marker=dict(symbol=2,
color='blue')), row = 2, col = 1)
   fig.add_trace(go.Scatter(x=x, y=seasonal, mode='lines+markers',
name='Seasonal',
         line=dict(color='black'), marker=dict(symbol=2,
color='green')), row = 3, col = 1)
   fig.add_trace(go.Scatter(x=x, y=residual, mode='lines+markers',
name='Residuals',
         line=dict(color='black'), marker=dict(symbol=2,
color='gray')), row = 4, col = 1
   fig.show(),fig.show("png")
   return "p-value:", adfuller(y)[1],
 ef qq(index):
```

2. Descriptive Statistics:

Statistical descriptions are the foundation of the knowledge from data and valuable insights can be communicated.

In this case, statistical descriptions establish foundations that can analyze new data at any given time and evaluate for example

if it is more feasible due to reasons that aren't captured by data to include $\vec{w_{i\neq j}}$ or have $\vec{w_i}$ adjusted and/or discarded from $max|min_{\vec{w_i}}R_{j_+}$

For future references, fitted params, estimators $f(\hat{X}_i)$ will be obtained and their relative qualities assesed.

```
vs.selection_data
```

```
x_i \in [x_1, x_{25}] \hookrightarrow R_{Sortino_{+25}}
```

Out[55]: Equiprob. xi mean

log_returns	
Accum_Logret	2.120501
Yr_Return	0.338583
Yr_Std	0.400790
var97.5(-)	0.047787
var2.5(+)	-0.047594
sharpe	0.844401
sortino	1.183682
Yr_MaxDrawdown	-0.570987

```
prices, r_log, summary_log = vs.selection_data(SP_Assets_r, "Log", rf,
best, start, end)
prices, r_simple, summary_simple = vs.selection_data(SP_Assets_r,
"Simple", rf, best, start, end)
```

Log Returns r_t Data Selection from which optimizations will be performed are the following:

```
In [11]: d.Markdown(tabulate(summary_log, headers='keys', tablefmt='pipe'))
```

Out[11]:

	μ_{iyr}	σ_{yr}	R_{Sharpe}	$R_{Sortino}$
LLY	0.389078	0.333508	1.16156	1.83883
PWR	0.465002	0.395741	1.17075	1.62689
MCK	0.309661	0.304455	1.01155	1.49205
EQT	0.56255	0.637027	0.880433	1.44133
FSLR	0.46928	0.542319	0.862205	1.33687
CDNS	0.358509	0.394581	0.904298	1.26689
NVDA	0.46995	0.554642	0.844255	1.25997
SNPS	0.329146	0.381763	0.857747	1.23887
CMG	0.313153	0.391956	0.794637	1.18406
GWW	0.281367	0.32329	0.865097	1.15575
NUE	0.389709	0.462014	0.839842	1.15465
STLD	0.418085	0.500739	0.831562	1.13154
ABC	0.228277	0.293917	0.770924	1.10952
ANET	0.333834	0.424135	0.78311	1.10943
TSCO	0.291765	0.335655	0.864204	1.07846
AAPL	0.271344	0.353806	0.762153	1.06451
IT	0.290663	0.381371	0.757722	1.05999
ORLY	0.287439	0.313096	0.912656	1.03105
GIS	0.19679	0.241113	0.809166	1.02754
ON	0.464334	0.615284	0.75192	1.0257
AZO	0.288956	0.318285	0.902545	1.0184
ORCL	0.235135	0.325226	0.717794	1.01203
UPS	0.219494	0.323335	0.673618	0.985501
FCX	0.390078	0.576151	0.674109	0.971247
LIN	0.210966	0.296352	0.706174	0.970975

vs.BoxHist

```
In [59]:
```

```
def BoxHist(data, output, bins, color, label, title, start, end):
    """Boxplot and Histogram for selected output method for returns
method for data, assuming equiprobable weights.
    Parameters
    -----
    data : DataFrame
        Data to plot.
```

```
plt.style.use("classic")
   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(22, 8))
   data.plot.box(ax=ax1, color=color, vert=False)
   Box_Stats = pd.DataFrame(((dt.data_describe(data, output, .00169)))
start, end).sort_values(by="sortino",
    ascending=False).head(25).T).iloc[7:,
 ]).mean(axis=1)).rename(columns={0:"Equiprob. xi mean"})
    plt.text(0.05, 0.05, data.describe().round(6).to string(),
transform=ax1.transAxes)
    ax1.set xlabel(label)
    sns.histplot(data, bins=bins, kde=True, alpha=0.5,
```

```
ax=ax2).legend().remove()
    for patch in ax2.patches:
        patch.set_facecolor(color)
    ax2.set_yticklabels(["{:.2f}%".format(x/10000) for x in
ax2.get_yticks()])
    ax2.set_ylabel("Probability")
    ax2.set_xlabel(label)
    fig.suptitle(str(label) + title, fontsize=18)
    ax1.grid(color="gray", linestyle="--"),
ax2.grid(color="lightgray", linestyle="--")
#Face color for plots
    ax1.set_facecolor("lightgray"), ax2.set_facecolor("lightgray")
    plt.show()
```

```
In [31]: BoxHist(r_log.mean()*252, 30, 'blue', "$\mu_{Yr}{{r_{t}}(x_i)$", "$\in [x_1,x_{500}]$ $\hookrightarrow$ S&P500")
```



```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(22, 8))
    data.plot.box(ax=ax1, color=color, vert=False)
    stats =
pd.DataFrame(dt.data_describe(data).mean(axis=1).round(6)).iloc[3:].ren
 0:label}).dropna().to_string()
   plt.text(0.05, 0.05, stats, transform=ax1.transAxes)
   ax1.set_xlabel(label)
    sns.histplot(data, bins=bins, kde=True, alpha=0.5,
ax=ax2).legend().remove()
   for patch in ax2.patches:
       patch.set facecolor(color)
    ax2.set_yticklabels(["{:.2f}%".format(x/10000) for x in
ax2.get yticks()])
    ax2.set ylabel("Probability")
   ax2.set_xlabel(label)
   fig.suptitle(str(label) + title, fontsize=18, fontweight="bold")
    ax1.grid(color="gray", linestyle="--"),
ax2.grid(color="lightgray", linestyle="--")
    plt.show()
```

```
pd.DataFrame(dt.data_describe(r_simple.sample(100000,
    replace=True)).mean(axis=1)).iloc[3:].rename(columns=
    {0:"µ(Rt)"}).dropna()
```

```
Out[21]: \mu(Rt)
```

```
Data_Stats
      min
              -0.166529
              -0.011588
     25%
     50%
              0.000660
     75%
              0.013012
     max
              0.165020
  Change
              -1.869931
  return_y
           -248.366857
  var97.5
           -266.737348
   var2.5
            235.923951
   sharpe
              -0.612600
     skew
              -0.041598
  kurtosis
              9.839448
```

```
In [23]: Xi = pd.DataFrame(r_simple.mean(axis=1)).sample(100000, replace=True)
   Xi.sort_index(inplace=True)
   Xi = Xi.groupby(Xi.index).mean()
   Xi.head()
```

Out[23]: 0

formatted_date

```
2020-03-03 -0.024616
2020-03-04 0.038751
2020-03-05 -0.035667
2020-03-06 -0.020621
2020-03-09 -0.088776
```

```
In [24]: dt.data_describe(Xi)
```

Out[24]:

Data_Stats	
count	811.000000
mean	0.000699
std	274.333863
min	-0.127111
25%	-0.006645
50%	0.001083
75%	0.008164
max	0.115792
Change	-0.887854
return_y	-413.901074
var97.5	-160.905304
var2.5	138.287224
sharpe	-1.508749
skew	-0.502610
kurtosis	11.946669

In [135...

```
BoxHistTest(r_simple.mean().to_frame(), 30, 'blue', "$\mu_{R_{t}}
(x_i)$", " Simple Returns $X_i\sim N({\mu}_{R_t}, {\sigma^2}_{R_t})$
in S&P500")
#vs.BoxHist(r_simple.var().to_frame().sample(100000,
replace=True).rename(columns={0:"σ(Rt)"}), 20, 'blue',
"$\sigma^2_{R_{t}}(X_i)$", " Simple Returns Variance Simulations
$X_i\in [X_1,X_{500}]$")
```


Log Returns r_{t_n} :

out[13]:		MMM	AOS	ABT	ABBV	ACN	ATVI	ADM	ΑC
	formatted_date								
	2023-05-10	0.000992	-0.001444	0.003983	-0.002796	0.020325	0.006468	-0.005078	0.0039
	2023-05-11	-0.001190	-0.011917	-0.005799	0.001160	0.012492	0.013591	0.003477	-0.007
	2023-05-12	-0.005073	-0.017105	0.003990	0.003813	0.017909	0.004274	0.006388	-0.018
	2023-05-15	0.002192	0.014176	-0.005900	-0.003813	0.001154	0.012332	0.008981	0.030
	2023-05-16	-0.024989	-0.014622	-0.004105	-0.022769	0.006036	-0.007046	-0.033076	-0.0010

 \therefore Random variables $X_i \sim N(\mu_{r_t}, \sigma_{r_t}^2)$:

```
In [134...
```

```
vs.BoxHist(r_log.mean().to_frame().rename(columns={0:"mu(rt)"}), 20,
'#0998eb', "$\mu_{r_{t}}(X_i)$", " Log Returns Mean
Simulations$_{100k}$ $X_i\in [X_1,X_{500}]$")
#vs.BoxHist(r_log.var().to_frame().sample(100000,
replace=True).rename(columns={0:"σ(Rt)"}), 20, 'lightblue',
"$\sigma^2_{R_{t}}(X_i)$", " Log Returns Variance Simulations $X_i\in [X_1,X_{500}]$")
```


The Simple Returns mean differ from Log Returns just enough for the model not to be modelled correctly.

Nevertheless, compounding effects among other factors make Log Returns best suitable for the model.

2.1.3 Cumulative $\backslash \mathbf{bold}_{R_t}(X_i)$ & Log $\backslash \mathbf{bold}\mu_{r_t}(X_i)$

Simple Returns R_t :

Dut[163]:		MIMIM	AOS	ABI	ABBA	ACN	ATVI	ADM	ADRE
	formatted_date								
	2023-05-10	-0.261376	0.792861	0.429992	0.906908	0.485205	0.276236	0.981963	-0.045132
	2023-05-11	-0.262254	0.771623	0.421724	0.909122	0.503874	0.293701	0.981963	-0.051904
	2023-05-12	-0.265988	0.741578	0.427408	0.916415	0.531050	0.299242	0.981963	-0.068919
	2023-05-15	-0.264377	0.766442	0.419011	0.909122	0.532817	0.315363	0.981963	-0.040552
	2023-05-16	-0.282532	0.740801	0.413197	0.866144	0.542097	0.306127	0.981963	-0.042106

 \therefore Random variables $X_i \sim N(\mu_{R_t}, \sigma_{R_t}^2)$:

```
In [165...
```

```
vs.BoxHist(r_simple_acum.mean().sample(100000,
replace=True).rename(index={0:"Accum_mu(Rt)"}), 30, '#d1423d', "Accum.
$\mu_{R_{t}}(X_i)$", "Simple Returns Mean Simulations$_{100k}$ $X_i\in
[X_1,X_{500}]$")
```


In [190...

```
vs.BoxHist(r_simple_acum.var().sample(100000,
replace=True).rename(index={0:"Accum_s(Rt)"}), 30, '#eb1c15', "Accum.
$\sigma^2_{R_{t}}(X_i)$", "Simple Returns Variance
Simulations$_{100k}$ $X_i\in [X_1,X_{500}]$")
```


Log Returns r_{t_n} :

```
In [181...
r_log_acum = ((1+r_log).cumprod()-1)
r_log_acum.tail()
```

Out[181]:		MMM	AOS	ABT	ABBV	ACN	ATVI	ADM	ADBE
	formatted_date								
	2023-05-10	-0.352609	0.509598	0.245543	0.707755	0.257566	0.073737	0.770212	-0.279678
	2023-05-11	-0.353380	0.491608	0.238320	0.709737	0.273275	0.088331	0.776367	-0.284806
	2023-05-12	-0.356660	0.466095	0.243262	0.716256	0.296078	0.092983	0.787715	-0.297757
	2023-05-15	-0.355250	0.486878	0.235926	0.709712	0.297574	0.106461	0.803769	-0.276682
	2023-05-16	-0.371362	0.465137	0.230852	0.670783	0.305405	0.098664	0.744107	-0.277854

 \therefore Random variables $X_i \sim N(\mu_{R_t}, \sigma_{R_t}^2)$:

```
In [182...
vs.BoxHist(r_log_acum.mean().to_frame().sample(100000,
    replace=True).rename(columns={0:"Accum_mu(rt)"}), 20, '#0e7a04',
    "$\mu_{r_{t}}(X_i)$", " Log Returns Mean Simulations $X_i\in
    [X_1,X_{500}]$")
#vs.BoxHist(r_log.var().to_frame().sample(100000,
    replace=True).rename(columns={0:"\sigma(Rt)"}), 20, 'green',
```

" $$\sigma^2_{R_{t}}(X_i)$ ", " Log Returns Variance Simulations X_i [X_1,X_{500}]\$")

In [187...

```
print("Outliers:", len(r_log_acum.mean(axis=1)

[abs(r_log_acum.mean(axis=1) - np.mean(r_log_acum.mean(axis=1))) < 2 *

np.std(r_log_acum.mean(axis=1))].to_frame())/100000)</pre>
```

Outliers: 0.00769

In [191...

```
vs.BoxHist(r_log_acum.var().to_frame().sample(100000,
replace=True).rename(columns={0:"Accum_s(rt)"}), 20, '#25c716',
"Accum. $\sigma^2_{r_{t}}(X_i)$", " Log Returns Variance Simulations
$X_i\in [X_1,X_{500}]$")
```


Sharpe's Ratio measures the units of risk (σ) per unit of excess returns over a risk-free rate (rf):

• $R_{Sharpe} = \frac{\mu_i - rf}{\sigma_i(r_t)}$.

Sortino's Ratio measures the units of negative risks $[\sigma_i(r_{t\leq 0})]$ per unit of excess returns over a risk-free rate (rf):

```
• R_{Sortino} = rac{\mu_i - rf}{\sigma_i(r_{t \leq 0})}
```

To avoid risks associated to negative returns, Data Selection $orall X_i \in [X_1,X_{500}] o X_{P_{Rmax_i}}$ is based on S&P500 Sortino's Ratio Top 25:

```
In [ ]: fn.retSLog_Selection(SP_Assets_r, rf, best, start, execution_date)
In [ ]: vs.Selection_R_SLog_Plot(SP_Assets_r, rf, best, start, execution_date, r_jump)
```

2.2 Modelling X_i

```
In [ ]:
            Stats(dataframe, Selection, r, P, percentiles, dist, title,
        color):
```

```
Selection =
 dataframe[Selection.index].pct change()).iloc[1:, :].dropna(axis =
       Selection =
np.log(dataframe[Selection.index]).diff().iloc[1:, :].dropna(axis =
       print("Aborted: Please select a valid Return type: 'Simple'
   Selection.index = pd.to datetime(Selection.index)
   Selection_Mo_r = Selection.resample(P).agg(lambda x: x[-1])
   Selection Mo r.plot(kind = "box", figsize = (22, 13), title =
title, color = color, fontsize = 13)
    for i in range(0, len(Selection Mo r.columns)):
       plt.text(x = i + 0.96 , y = Selection_Mo_r.iloc[:, i].mean()
 .0075, s = str("$\mu$ = +") + str(round(Selection Mo r.iloc[:,
i].mean(), 4)), fontsize = 6.5, fontweight = "bold", color =
       plt.text(x = i + 0.98, y = Selection Mo r.iloc[:, i].max() +
 010, s = str("+") + str(round(Selection_Mo_r.iloc[:, i].max(), 3)),
fontsize = 8.5, color = "green")
       plt.text(x = i + 0.98 , y = Selection_Mo_r.iloc[:, i].min() -
 815, s = str(round(Selection_Mo_r.iloc[:, i].min(), 3)), fontsize =
```

```
color = "red")
    describe = Selection Mo r.describe(percentiles)
    describe["mode"] = Selection_Mo_r.mode().iloc[0, :]
    describe["skewness"] = st.skew(Selection Mo r)
    describe["kurtosis"] = st.kurtosis(Selection_Mo_r)
    describe.replace("\n", "")
    dist_fit = np.empty(len(Selection_Mo_r.columns), dtype=object)
    for i in range(0, len(Selection.columns)):
        f = Fitter(pd.DataFrame(Selection Mo r.iloc[:, i]),
distributions = dist, timeout=5)
        f.fit()
        params, AIC, BIC = [StringIO() for i in range(3)]
        (print(f.get_best(), file=params)),
 print(f.get best(method="aic"), file=AIC)),
 print(f.get best(method="bic"), file=BIC))
        params, AIC, BIC = [i.getvalue() for i in [params, AIC, BIC]]
        dist fit[i] = (params + AIC + BIC).replace("\n", ", ")
    plt.title(title, fontsize = 20)
    plt.axhline(0, color = "red", lw = .5, linestyle = "--")
    plt.axhspan(0, Selection_Mo_r.min().min(), facecolor = "red",
alpha = 0.2
    plt.axhspan(0, Selection_Mo_r.max().max(), facecolor = "green",
alpha = 0.2
    plt.xticks(rotation = 45)
    for i, t in enumerate(plt.gca().xaxis.get ticklabels()):
        if (i % 2) != 0:
            t.set color("lightgreen")
            t.set_color("white")
    plt.yticks(np.arange(round(Selection_Mo_r.min().min(), 1),
round(Selection Mo r.max().max(), 1), 0.05))
    plt.grid(alpha = 0.5, linestyle = "--", color = "grey")
```

```
IPython.core.display.clear_output()
            return describe, dist fit, plt.show()
In [ ]:
       Sortino25
In [ ]:
        Selection.tail(
In [ ]:
        (SP_Assets_r.loc[start:today]
         Sortino25[2].index]).pct change().iloc[1:, :].dropna(axis =
         ).tail()
In [ ]: | np.log(SP_Assets_r.loc[start:today]
        Sortino25[2].index]).diff().iloc[1:, :].dropna(axis = 1).tail()
In [ ]:
       SP_Assets_r.loc[start:today], Sortino25
In [ ]:
       dist=([d for d in dir(st) if isinstance(getattr(st, d), getattr(st,
         ef ret(dataframe, selection, r):
                returns = (dataframe[selection.index]).pct_change().iloc[1:,
         l.dropna(axis = 1)
                returns = np.log(dataframe[selection.index]).diff().iloc[1:,
         ].dropna(axis = 1)
                print("Aborted: Please select a valid Return type: 'Simple'
            returns.index = pd.to datetime(returns.index)
            returns_Mo_r = returns.resample("M").agg(lambda x: x[-1])
            returns_Mo_r.plot(kind = "box", figsize = (22, 13), title =
         test", color = "yellow", fontsize = 13)
            return returns, returns_Mo_r.max()
        ret(SP Assets r.loc[start:today], Sortino25[2], "Simple")[1]
```

```
r_{Log}(X_i):
In [ ]:
        Selection = np.log(dataframe[Selection.index]).diff().iloc[1:,
          large.dropna(axis = 1)
In [ ]:
        #Stats(dataframe, Selection, r, P, percentiles, dist, title, color):
        describe_Wk = Stats(SP_Assets_r.loc[start:today],                            Sortino25[2],
          Log", "W", [.025, .25, .5, .75, .95], dist,
          esampling from" + str(start) + "to" + str(today), "lightyellow")
In [ ]:
        describe Wk[0]
In [ ]:
        describe_Mo = vs.Stats(SP_Assets_r.loc["2020-03-02":today],
        Sortino25[2], P[1][0],
          str(P[1][1]) + " basis from ", "2020-03-02", today,
                            [.025, .25, .5, .75, .95], dist, color=color[1])
In [ ]:
        describe Mo
```

```
In [ ]: describe_Qt[0]
```

Estimators Parameters:

```
f(X_i) and AIC \& BIC:
```

Distributions and parameters that best estimate $f(X_i)$ are obtained from 104 distribution classes and instances for continuous random variables in Fitter module (see refs.).

The AIC Akaike & BIC Bayesian Information Criterion models are estimators of relative quality of predictions in the Log-Likelihood for fitted distributions.

Minimum relative values for AIC and BIC are usually preferred and in this case, they are obtained to model X_i resampled data on W, M & Q periods P.

Criterion's goodness of fit is inversely related so they tend to be used together to avoid under/over fitting and they are defined as follows:

- $AIC = 2k 2ln(\hat{L})$
- $BIC = kln(n) 2ln(\hat{L})$

where:

k = Params. in model.

 $n = No^{\circ}$ of observations.

 $\hat{L} = Likelihood_{f_{max.}}$

```
dist_fit=pd.DataFrame([describe_Wk[1], describe_Mo[1],
    describe_Qt[1]]).T
    dist_fit_format = fn.format_table(dist_fit, Sortino25[2])
    dist_fit_format
```

3. Descriptive and Prescriptive Analytics for X_P

3.1 X_P Optimizations Models

Equal weighted datasets are omitted from the analysis for simplicity purposes.

If we have n unequally weighted datasets $X_i=1,2,\ldots,n$, to model X_P we need μ_P & σ_P .

And their weighted average is concluded:

$$\mu_P = rac{\sum_{i=1}^n w_i \mu_{X_i}}{\sum_{i=1}^n w_i}$$

lf

$$\sum_{i=1}^{n} w_i = 1$$

then:

$$\mu_P = \sum_{i=1}^n w_i \mu_{X_i}$$

For the variance σ_P^2 we need to express $X_{i,j}$ as a matrix from the selection in S&P500 (A-Z) quotes where $\sigma_i\sigma_j$ is the product of $X_{i,j}$ units of risk:

$$\sigma_{i,j} = egin{bmatrix} \sigma_1 & \sigma_{1,2} & \cdots & \sigma_{1,500} \ \sigma_{2,1} & \sigma_2 & \cdots & \sigma_{2,500} \ dots & dots & \ddots & dots \ \sigma_{500,1} & \cdots & \cdots & \sigma_{500} \ \end{pmatrix}$$

We also need $X_{i,j}$ correlation coefficients $\rho_{ij} = \frac{Cov(X_i, X_j)}{\sigma_i \sigma_j}$ or units of risk in $X_{i,j}$ that are not shared in their fluctuations directional relationship.

Expressed and substituted as:

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_i \sigma_j
ho_{ij}$$

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j Cov(X_i, X_j)$$

A product of matrices \times vectors:

$$\sigma_{\scriptscriptstyle D}^2 = {ec w}^T imes Cov_{i,j} imes {ec w}$$

Reduced and expressed as the following in its expanded form:

$$\sigma_P^2 = \left[egin{array}{ccccc} w_1 & w_2 & \cdots & w_n \end{array}
ight] \cdot \left[egin{array}{ccccc} 1 &
ho_{1,2} & \cdots &
ho_{1,n} \
ho_{2,1} & 1 & \cdots &
ho_{2,n} \ dots & dots & \ddots & dots \ p_{n,1} & \cdots & \cdots & 1 \end{array}
ight] \cdot \left[egin{array}{c} w_1 \ w_2 \ dots \ w_n \end{array}
ight]$$

Now, the slope can be obtained from X_P and $X_{S\&P500}$ which is expressed as:

$$\beta = \frac{Cov(r_P, r_{S\&P500})}{Var(r_{S\&P500})}$$

To compute some metrics that include units of sensitivities the following are considered:

•
$$R_{Treynor} = \frac{Var(r_{S\&P500})(\mu_P - rf)}{Cov(r_P, r_{S\&P500})}$$

or the *slope* per unit of *P* excess returns over the risk-free.

$$ullet \ R_{Jensen}(r_P, r_{t_{S\&P500}}) = (\mu_P - rf) - rac{Cov(r_P, r_{t_{S\&P500}})}{Var(r_{t_{S\&P500}})} (\mu_{t_{S\&P500}} - rf)$$

or excess returns of P over the risk free minus the *slope* times P excess returns of a benchmark over the risk-free.

Now, the slope can be obtained from X_P and $X_{S\&P500}$ which is expressed as:

$$\beta = \frac{Cov(r_P, r_{S\&P500})}{Var(r_{S\&P500})}$$

To compute some metrics that include units of sensitivities the following are considered:

•
$$R_{Treynor} = \frac{Var(r_{S\&P500})(\mu_P - rf)}{Cov(r_P, r_{S\&P500})}$$

or the *slope* per unit of *P* excess returns over the risk-free.

$$\bullet \ \ R_{Jensen}(r_P, r_{t_{S\&P500}}) = (\mu_P - rf) - \frac{{}^{Cov(r_P, r_{t_{S\&P500}})}}{{}^{Var(r_{t_{S\&P500}})}} (\mu_{t_{S\&P500}} - rf)$$

or excess returns of P over the risk free minus the *slope* times P excess returns of a benchmark over the risk-free.

Optimizations $\forall w_i$ are made with Scipy and validated with Numpy from parameters $X_i \to X_P$ for:

- ullet $R_{Treynor_{Argmax}}$
- ullet $R_{Sharpe_{Arg_{max}}}$
- ullet $R_{Sortino_{Arg_{max}}}$

ullet $\sigma^2_{P_{Arg_{min}}}$

```
In [ ]:
          Optimizer(Assets, index, rf, title)
            Asset_ret = (Assets.pct_change()).iloc[1:, :].dropna(axis = 1)
            index_ret = index.pct_change().iloc[1:, :].dropna(axis = 1)
            index ret = index ret[index ret.index.isin(Asset ret.index)]
            mean_ret = Asset_ret.mean() * 252
            cov = Asset ret.cov() * 252
            N = len(mean ret)
            w0 = np.ones(N) / N
            bnds = ((0, None), ) * N
            cons = {"type" : "eq", "fun" : lambda weights : weights.sum() -
           def Max_Sharpe(weights, Asset_ret, rf, cov):
                rp = np.dot(weights.T, Asset_ret)
                sp = np.sqrt(np.dot(weights.T, np.dot(cov, weights)))
                RS = (rp - rf) / sp
                return -(np.divide(np.subtract(rp, rf), sp))
           def Min_Var(weights, cov):
                return np.dot(weights.T, np.dot(cov, weights))
           def Min Traynor(weights, Asset ret, rf, cov):
                rp = np.dot(weights.T, Asset_ret)
                varp = np.dot(weights.T, np.dot(cov, weights))
                cov
                RT = (rp - rf) / sp
               neturn -(np.divide(np.subtract(rp, rf), sp))
            opt_EMV = optimize.minimize(Max_Sharpe, w0, (mean_ret, rf, cov))
         SLSQP', bounds = bnds
```

```
constraints = cons, options={"tol"
    W EMV = pd.DataFrame(np.round(opt_EMV.x.reshape(1, N), 4),
columns = Asset ret.columns, index = ["Weights"])
    W_EMV[W_EMV \leftarrow 0.0] = np.nan
   W EMV.dropna(axis = 1, inplace = True)
    RAssets =
Asset ret[Asset ret.columns[Asset ret.columns.isin(W EMV.columns)]]
    R EMV = pd.DataFrame((RAssets*W EMV.values).sum(axis = 1),
columns = ["$r {Sharpe {Arg_{max}}}$"])
    index_ret.rename(columns={index_ret.columns[0]: "$r_{mkt}$" },
inplace=True)
    R_EMV.insert(1, index_ret.columns[0], index_ret.values)
    Muopt EMV = np.dot(opt EMV.x.T, mean ret)
    Sopt_EMV = np.sqrt(np.dot(opt_EMV.x.T, np.dot(cov, opt_EMV.x)))
    Beta EMV = np.divide((np.cov(R EMV.iloc[0], R EMV.iloc[1])[0]
 1]), R_EMV.iloc[1].var())
    SR EMV = (Muopt EMV - rf) / Sopt EMV
    opt_MinVar = optimize.minimize(Min_Var, np.ones(N) / N, (cov,),
 SLSQP', bounds = bnds,
                                  constraints = cons, options=
    W MinVar = pd.DataFrame(np.round(opt MinVar.x.reshape(1, N), 4),
columns = Asset_ret.columns, index = ["Weights"])
    W MinVar W MinVar <= 0.0] = np.nan
    W MinVar.dropna(axis = 1, inplace = True)
    RAssets MinVar =
Asset_ret[Asset_ret.columns[Asset_ret.columns.isin(W_MinVar.columns)
```

```
R MinVar =
pd.DataFrame((RAssets_MinVar*W_MinVar.values).sum(axis = 1), columns
    R_EMV.insert(2, R_MinVar.columns[0], R_MinVar.values)
   Muopt_MinVar = np.dot(opt_MinVar.x.T, mean_ret)
   Sopt MinVar = np.sqrt(np.dot(opt MinVar.x.T, np.dot(cov.))
opt_MinVar.x)))
   Beta_MinVar = np.divide((np.cov(R_EMV.iloc[2], R_EMV.iloc[1])[0]
 1]), R_EMV.iloc[1].var())
   SR MinVar = (Muopt_MinVar - rf) / Sopt_MinVar
   Mu, Sigma, Beta, SR = [Muopt EMV, Muopt MinVar], [Sopt EMV,
index = ["$r_{P{Sharpe_{Arg_{max}}}}$", "$r_{Var_{Arg_{min}}}$"]
    Popt = [pd.DataFrame({"$\mu_P$" : Mu[i], "$\sigma_P$" :
Sigma[i], "$\Beta_{P}$": Beta[i], "$r_{Sharpe_{Arg_{max}}}$" :
SR[i]},
                        index = [index[i]]) for i in range(0,
len(Mu))]
   Popt[0].index.name = title
   Popt[1].index.name = title
    R_EMV = R_EMV[[R_EMV.columns[1], R_EMV.columns[2],
R_EMV.columns[0]]]
   accum = R EMV.cumsum()
   Argmax = [d.Markdown(tabulate(Popt[i], headers = "keys",
```

```
tablefmt = "pipe")) for i in range(0, len(Popt))]
    R_EMV = d.Markdown(tabulate(R_EMV, headers = "keys", tablefmt =
"pipe"))
    return Argmax, R_EMV, accum
```

```
In []: bench_md = "$$\&P500_{{20_{03}-23_{05}}}$"
   Argmax, R_EMV, accum = vs.Optimizer(SP_Assets_r.loc["2020-03-02":today], SP_r.loc["2020-03-02":today], 0.0169, bench_md)

Port = display(Argmax[0], Argmax[1])
```

```
In [ ]: d.display(d.Markdown(tabulate(accum[0:10], headers = "keys",
    tablefmt = "pipe")))
```

```
In [ ]: vs.Accum_ts(accum)
```

Metrics:

```
Confusion Matrix:
```

```
egin{bmatrix} TP & FP \ FN & TN \end{bmatrix}
```

Metrics:

- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$ or the ability of the classifier to find + and samples.
- Precision: $\frac{TP}{TP+FP}$ or the ability of the classifier not to label + samples as -.
- Recall: $\frac{TP}{TP+FN}$ or the ability of the classifier to find all + samples.
- F1 Score: $2*\frac{Precision*Recall}{Precision+Recall}$ or Precision and Recall equilibrated score through the harmonic mean.

• ROC AUC: $\frac{TPR}{FPR}$ or the ability of the classifier to find + samples and not - samples. Where a bigger number denotes a better model.

~ Past performance is not a guarantee of future results, the stock market tends to be irrational

Note:

Do not consider the results and/or its proceedures as an investment advice or recommendation.