UNIVERSIDAD A DE INGENIERÍA	CONS.		
Nombre	Univ. Lisbeth Cue		
Materia:	Arquitectura de c		
Docente:	Ing. Gustavo A. F	N° Práctica	
Auxiliar:	Univ. Aldrin Roge		
Fecha publicación:	23/09/2024	3	
Fecha de entrega:	07/10/2024		
Grupo:	1	Sede:	Potosí

PARTE TEÓRICA (50 pts)

1) ¿CUÁL ES LA DIFERENCIA FUNDAMENTAL ENTRE UNA MEMORIA RAM Y UNA MEMORIA ROM EN TERMINOS DE ACCESIBILIDAD Y VOLATILIDAD? (2 pts)

La RAM (volátil) es de lectura y escritura, y la información se pierde al apagar el dispositivo, mientras que la memoria ROM (no volátil) solo permite leer datos y los conserva incluso cuando el dispositivo está apagado.

2) ¿QUÉ VENTAJAS Y DESVENTAJAS PRESENTAN LAS MEMORIAS ESTÁTICAS Y DINÁMICAS EN TÉRMINOS DE VELOCIDAD, DENSIDAD Y COSTO? (2 pts)

Ventajas:

- Estáticas: Son rápidas al acceder a los datos, solo necesitan energía para mantener la información y son más fáciles de diseñar.
- Dinámicas: Pueden almacenar más datos en menos espacio, cuestan menos por bit y consumen menos energía.

Desventajas:

- Estáticas: Almacenan menos datos, necesitan más transistores, son más caras por bit y consumen más energía.
- Dinámicas: Son más lentas, necesitan refrescar los datos para no perderlos y su diseño es más complicado.
- 3) ¿POR QUÉ SE UTILIZA LA TECNOLOGÍA DE VIDEO RAM (VRAM) EN LOS CONTROLADORES DE VIDEO DE LAS COMPUTADORAS Y CUÁL ES SU FUNCIÓN PRINCIPAL? (2 pts)
 - La **VRAM** se usa porque puede **leer y escribir a la vez**, lo que permite mantener la imagen fluida en el monitor mientras el procesador gráfico actualiza los datos. Su función principal es mejorar el rendimiento y la calidad de la imagen.
- 4) DIBUJA UN DIAGRAMA QUE REPRESENTE LA JERARQUÍA DE MEMORIA EN UN SISTEMA INFORMÁTICO TÍPICO Y ETIQUETA CADA NIVEL CON EL TIPO CORRESPONDIENTE DE MEMORIA. (2 pts)

5) QUÉ DIFERENCIAS EXISTEN ENTRE LA MEMORIA CACHÉ L1, L2 Y L3 EN TÉRMINOS DE TAMAÑO, VELOCIDAD Y PROXIMIDAD AL PROCESADOR? (2 pts)

Las diferencias entre las memorias caché L1, L2 y L3 son:

- L1: Es la más pequeña, la más rápida y está más cerca del procesador. Almacena pocos datos, pero los accede muy rápido.
- L2: Es más grande que L1, pero más lenta. Está un poco más lejos del procesador.
- L3: Es la más grande, pero también la más lenta. Está más alejada del procesador y es compartida por varios núcleos.

6) RESOLVER EL SIGUIENTE LABORATORIO PASO A PASO CON CAPTURAS PROPIAS <u>MOSTRANDO</u> <u>SU BARRA DE TAREAS DE SU PC</u>. (40 pts)

ANALISIS DE MEMORIA RAM CON VOLATILITY

Objetivo General. - Realizar el análisis de auditoría de una imagen de memoria RAM con el uso de la herramienta Volatility. Se analizará una memoria ya capturada.

PARTE 1

PASO 1:

Descarga el archivo comprimido "practica3" de la plataforma Classroom, descomprimirlo en cualquier lugar de tu equipo, los dos archivos deben estar en un mismo lugar.

PASO 2:

Ingresa hasta la dirección donde están los dos archivos mediante el Símbolo de Sistema (cmd).

PASO 3:

Inserta el siguiente comando: "volatility imageinfo -f memdump.bin".

En la imagen se puede observar las características de la memoria, sobre todo el perfil sugerido "Win8SP0x64", el cual nos permitirá realizar las demás instrucciones.

PASO 4:

Ingrese el siguiente comando: "volatility -f memdump.bin --profile=Win2003SP0x86 pslist".

La imagen nos muestra los nombres de los procesos que se estaban ejecutando además de:

- PID = Identificador del proceso
- PPID= Padre del Proceso
- Start= inicio del Proceso

PASO 5:

Ingrese el siguiente comando: "volatility -f memdump.bin --profile=Win2003SP0x86 pstree".

pstree muestra los procesos de manera más ordenada.

PASO 6:

Ingrese el siguiente comando: "volatility -f memdump.bin --profile=Win2003SP0x86 dlllist".

DIllist Identifica las librerías del sistema que se están utilizando.

PREGUNTAS DE VERIFICACIÓN DEL LABORATORIO

¿QUÉ HORA INICIA EL PROCESO EXPLORER.EXE?

	10000	200	100		190	
0x81c462e8 svchost.exe	1736	488	16	127	0	0 2012-11-03 20:19:27 UTC+0000
0x81c4bd88 explorer.exe	188	1996	11	337	0	0 2012-11-03 21:32:38 UTC+0000
0x81c4ad88 dns.exe	349	488	12	163	Θ	0 2012-11-03 21:41:26 UTC+0000
0v91b49020 wine ove	756	/199	10	21//	6	0 2012-11-0/ 17:02:01 UTC+0000

¿QUÉ HORA INICIA EL PROCESO SVCHOST.EXE?

¿CUÁL ES EL NOMBRE DEL PROCESO PID: 420?

ONOLUCIOLO SINSSTEA		-		3///		0 2012 12 03 20:10:23 01C:0000	
0x82031020 csrss.exe	420	372	11	505	0	0 2012-11-03 20:18:30 UTC+0000	
0x820496c8 winlogon.exe	444	372	19	613	0	0 2012-11-03 20:18:30 UTC+0000	

PARTE PRÁCTICA (50 pts)

1) DETERMINA CUÁNTOS BITS EN TOTAL PUEDE ALMACENAR UNA MEMORIA RAM DE 128K X 4 (5 pts)

2) ¿CUÁNTOS BITS PUEDE ALMACENAR UNA MEMORIA DE 10G X 16? (5 pts)

```
10 * 230 * 16 = 171798691840 bits.
```

3) ¿CUANTAS LOCALIDADES DE MEMORIA SE PUEDE DIRECCIONAR CON 32 LÍNEAS DE DIRECCIÓN? (5 pts)

```
2^{32} = 4294967296 localidades.
```

4) ¿CUÁNTAS LOCALIDADES DE MEMORIA SE PUEDEN DIRECCIONAR CON 1024 LÍNEAS DE DIRECCIÓN? (5 pts)

```
2^{1024} = 1,7976931349 * 10^{308} localidades.
```

5) ¿CUÁNTAS LOCALIDADES DE MEMORIA SE PUEDEN DIRECCIONAR CON 64 LÍNEAS DE DIRECCIÓN? (5 pts)

```
2^{64} = 1,8446744074 \times 10^{19} localidades.
```

¿CUÁNTAS LÍNEAS DE DIRECCIÓN SE NECESITAN PARA UNA MEMORIA ROM DE 512M x 8? (5 pts)

$$n = \frac{\ln(512*1024^2)}{\ln(2)} = 29$$
 lineas de direccion

6) ¿CUÁNTAS LÍNEAS DE DIRECCIÓN SE NECESITAN PARA UNA MEMORIA ROM DE 128M x 128? (5 pts)

```
n = \frac{\ln(128*1024^2)}{\ln(2)} = 27 lineas de direccion
```

7) ¿CUÁNTOS BITS EN TOTAL PUEDE ALMACENAR UNA MEMORIA RAM 128M x 4?, DE ÉL RESULTADO GIGABYTES (5 pts)

```
128 * 1024^2 * 4 = 536870912 / (8 * 230) = 0,0625  gigabytes.
```

8) ¿CUÁNTOS BITS EN TOTAL PUEDE ALMACENAR UNA MEMORIA RAM 64M x 64?, DE ÉL RESULTADO EN TERAS (5 pts)

```
64*\ 1024^{2*}\ 64 = 4294967296 / (8 * 240) = 0,00048828125 terabytes.
```

9) ¿CUÁNTOS BITS EN TOTAL PUEDE ALMACENAR UNA MEMORIA RAM 64M x 64?, DE ÉL RESULTADO EN TERABYTES (5 pts)

```
64*\ 1024^2*\ 64 = 4294967296\ /\ (8*\ 240) = 0,00048828125\ terabytes.
```