WHAT IS CLAIMED IS:

l

8.

1	1. A memory array circuit comprising:
2	memory cells;
3	first read bit lines coupled to a first subset of the memory cells; and
4	first NAND gates coupled to the first read bit lines, wherein each of the first
5	NAND gates has two inputs that are coupled to two of the first read bit lines.
l	2. The memory array according to claim 1 further comprising:
2	first transistors, each of the first transistors having an input coupled to an
3	output of one of the first NAND gates; and
4	a first global bit line coupled to each of the first transistors.
1	3. The memory array according to claim 2 further comprising:
2	a second pull up transistor coupled to the first global bit line; and
3	third pull up transistors, wherein each of the third pull up transistors are
4	coupled to one of the first read bit lines, and the first transistors are pull down transistors.
1	4. The memory array according to claim 2 further comprising:
2	second read bit lines coupled to a second subset of the memory cells; and
3	second NAND gates coupled to the second read bit lines, wherein each of the
4	second NAND gates has two inputs that are coupled to two of the second read bit lines.
1	5. The memory array according to claim 4 further comprising:
2	second transistors, each of the second transistors having an input coupled to an
3	output of one of the second NAND gates; and
4	a second global bit line coupled to each of the second transistors.
1	6. The memory array according to claim 5 further comprising:
2	a third NAND gate having a first input coupled to the first global bit line and a
3	second input coupled to the second global bit line.
1	7. The memory array according to claim 5 further comprising:
2	a repeater circuit coupled between the first global bit line and the second
3	global bit line.

The memory array according to claim 7 wherein:

2		the repeater circuit includes an inverter coupled to a third transistor.
1		9. A memory array circuit comprising:
2		memory cells;
3		first local read bit lines coupled to a first subset of the memory cells;
4		first logic gates, each coupled to receive signals on two of the first local read
5	bit lines;	
6		a first global bit line; and
7		first transistors coupled between the first global bit line and the first logic
8	gates.	
1		10. The memory array circuit according to claim 9 further comprising:
2		second local read bit lines coupled to a second subset of the memory cells;
3		second logic gates, each coupled to receive signals on two of the second local
4	bit lines;	
5		a second global bit line; and
6		second transistors coupled between the second global bit line and the second
7	logic gates.	
1		11. The memory array according to claim 10 further comprising:
2		an inverter circuit coupled to the first global bit line; and
3		a third transistor coupled to the inverter circuit and the second global bit line.
1		12. The memory array according to claim 10 wherein:
2		the first logic gates and the second logic gates are NAND gates.
1		13. The memory array according to claim 10 further comprising:
2		a NAND gate having a first input coupled to the first global bit line and a
3	second input of	coupled to the second global bit line.
1		14. The memory array circuit according to claim 9 further comprising:
2		a first pre-charge transistor coupled to the first global bit line; and
3		a plurality of second pre-charge transistors that are each coupled to one of the
4	first local read	l bit lines.

1	15. A method for reading bits from memory cells in a memory array, the
2	method comprising:
3	accessing a first bit from a first memory cell on a first local read bit line;
4	transmitting a signal indicative of the first bit from the first local read bit line
5	to a first global bit line through a first logic gate;
6	accessing a second bit from a second memory cell on a second local read bit
7	line; and
8	transmitting a signal indicative of the second bit from the second local read bi
9	line to the first global bit line through the first logic gate.
1	16. The method according to claim 15 wherein:
2	the first logic gate is a NAND gate.
1	17. The method according to claim 15 wherein transmitting the signals
2	indicative of the first and the second bits further comprises:
3	transmitting the signals indicative of the first and the second bits from the firs
4	logic gate to a transistor that is coupled to the first global bit line.
1	18. The method according to claim 15 further comprising:
2	accessing a third bit from a third memory cell on a third local read bit line;
3	transmitting a signal indicative of the third bit from the third local read bit line
4	to the first global bit line through a second logic gate;
5	accessing a fourth bit from a fourth memory cell on a fourth local read bit line
6	and
7	transmitting a signal indicative of the fourth bit from the fourth local read bit
8	line to the first global bit line through the second logic gate.
1	19. The method according to claim 15 further comprising:
2	accessing a third bit from a third memory cell on a third local read bit line;
3	transmitting a signal indicative of the third bit from the third local read bit line
4	to a second global bit line through a second logic gate;
5	accessing a fourth bit from a fourth memory cell on a fourth local read bit line
6	and
7	transmitting a signal indicative of the fourth bit from the fourth local read bit
8	line to the second global bit line through the second logic gate.

1	20. The method according to claim 19 further comprising:
2	transmitting the signal indicative of the first bit from the first global bit line to
3	the second global bit line through a repeater circuit.
1	21. The method according to claim 20 wherein the repeater circuit
2	comprises an inverter coupled to the gate of a field effect transistor, and the field effect
3	transistor pulls down the voltage on the second global bit line.
1	22. The method according to claim 19 wherein:
2	the first and the second logic gates are NAND gates.
1	23. The method according to claim 19 further comprising:
2	transmitting a signal indicative of the first bit or the second bit from the first
3	global bit line to a third level bit line through a NAND gate; and
4	transmitting a signal indicative of the third bit or the fourth bit from the second
5	global bit line to the third level bit line through the NAND gate.