# **Testing Psicologico**

Filippo Gambarota 10/25/2021 Le strutture dati

### Strutture dati in R

qui una slide riassuntiva delle strutture dati

- organizzare dati con dei vincoli
- metodi per accedere/modificare/aggiungere dati in modo chiaro
- metodi per far interagire la struttura dati con specifiche funzioni

### Esempio - il foglio Excel

il foglio excel è una struttura dati che sicuramente conoscete

- righe e colonne formano un "rettangolo" di dati
- la prima riga sono i nomi delle colonne
- ogni colonna deve contenere lo stesso tipo di dati ma le colonne possono essere di diversa tipologia

# Esempio - il foglio Excel

|    | Α  | В         | С   | D          | Е       | F              | G |
|----|----|-----------|-----|------------|---------|----------------|---|
| 1  | id | nome      | eta | facolta    | altezza | regione        |   |
| 2  | 1  | Filippo   | 23  | psicologia | 155     | veneto         |   |
| 3  | 2  | Andrea    | 22  | psicologia | 165     | puglia         |   |
| 4  | 3  | Anna      | 20  | filosofia  | 167     | sicilia        |   |
| 5  | 4  | Daria     | 21  | sociologia | 170     | emilia romagna |   |
| 6  | 5  | Francesco | 26  | psicologia | 180     | piemonte       |   |
| 7  | 6  | Elettra   | 23  | matematica | 190     | Iombardia      |   |
| 8  | 7  | Anna      | 22  | fisica     | 155     | lombardia      |   |
| 9  | 8  | Carlotta  | 22  | chimica    | 160     | veneto         |   |
| 10 | 9  | Mattia    | 24  | filosofia  | 160     | sicilia        |   |
| 11 |    |           |     |            |         |                |   |
| 12 |    |           |     |            |         |                |   |
| 13 |    |           |     |            |         |                |   |

# Vettori e matrici

#### Esercizi

1) Usare seq per creare il vettore

$$v1 = (4, 8, 10, 12)$$

2) Usare rep per creare

$$v2 = (a, a, a, b, b, c, c, c, c)$$

3) Costruire la matrice

$$M = \begin{pmatrix} -3 & 4 & 0.1 \\ 2 & 9 & -5 \end{pmatrix}$$

- 4) Controllare la struttare di M ed estrarne le dimensioni
- 5) Estrarre la seconda riga di  ${\it M}$

5

### Soluzioni

```
# 1) Usare seg per creare il vettore v1
v1 <- seq(from=4, to=12, by=2)
# 2) Usare rep per creare il vettore v2
v2 \leftarrow rep(x=c("a","b","c"), times=c(3,2,4))
# 3) Costruire la matrice M
M \leftarrow matrix(c(-3,2,4,9,0.1, -5), ncol=3)
# 4) Controllare la struttare di M ed estrarne le dimensioni
str(M)
## num [1:2, 1:3] -3 2 4 9 0.1 -5
ncol(M)
## [1] 3
nrow(M)
## [1] 2
# 5) Estrarre la seconda riga di M
M[2,]
```

## [1] 2 9 -5

# Liste

### Creazione di liste

Una lista è un contenitore di oggetti di qualsiasi tipo.

```
Si crea con il comando list().
```

```
# creaiamo una lista contentente i due vettori v1 e v2 e la matrice M
L <- list("v_seq"=v1, "v_rep"=v2, "matrice"=M)</pre>
L
## $v_seq
## [1] 4 6 8 10 12
##
## $v_rep
## [1] "a" "a" "a" "b" "b" "c" "c" "c" "c"
##
## $matrice
## [,1] [,2] [,3]
## [1,] -3 4 0.1
## [2,] 2 9 -5.0
# nomi degli elementi di L
names(L)
```

## [1] "v\_seq" "v\_rep" "matrice"

### Estrazione di elementi

```
# un elemento si può estrarre con l'indice o con il nome
# per estrarre il secondo elemento, sono equivalenti:
L[[2]]
## [1] "a" "a" "a" "b" "b" "c" "c" "c" "c"
L$v_rep
## [1] "a" "a" "a" "b" "b" "c" "c" "c" "c"
# salviamo tutto in un file chiamato prova.rda
save.image(file="prova.rda")
# pulizia
rm(list=ls())
```

Dataframe

#### **Dati SWISS**

Studieremo un dataframe contenuto nel pacchetto datasets.

I dati contengono una misura di fertilità e indicatori socio-economici per 47 province svizzere.

```
# installiamo (solo la prima volta) e richiamiamo il pacchetto
# install.packages("datasets")
library(datasets)
# richiamiamo il dataset di interesse, chiamato swiss
data("swiss")
# osserviamo il contenuto
1s()
# help per la descrizione
?swiss
# cambiamento nome da swiss a d
d <- swiss
rm(swiss)
```

### Struttura dei dati

# Prime righe del dataframe

### head(d)

| ## |                      | Fertility  | Agriculture | Examination | Education | Catholic |
|----|----------------------|------------|-------------|-------------|-----------|----------|
| ## | Courtelary           | 80.2       | 17.0        | 15          | 12        | 9.96     |
| ## | Delemont             | 83.1       | 45.1        | 6           | 9         | 84.84    |
| ## | ${\tt Franches-Mnt}$ | 92.5       | 39.7        | 5           | 5         | 93.40    |
| ## | Moutier              | 85.8       | 36.5        | 12          | 7         | 33.77    |
| ## | Neuveville           | 76.9       | 43.5        | 17          | 15        | 5.16     |
| ## | Porrentruy           | 76.1       | 35.3        | 9           | 7         | 90.57    |
| ## |                      | Infant.Mon | rtality     |             |           |          |
| ## | Courtelary           |            | 22.2        |             |           |          |
| ## | Delemont             |            | 22.2        |             |           |          |
| ## | ${\tt Franches-Mnt}$ |            | 20.2        |             |           |          |
| ## | Moutier              | 20.3       |             |             |           |          |
| ## | Neuveville           | 20.6       |             |             |           |          |
| ## | Porrentruy           |            | 26.6        |             |           |          |
|    |                      |            |             |             |           |          |

### Caratteristiche

```
# numero di colonne (variabili)
ncol(d)
## [1] 6
# numero di righe (osservazioni)
nrow(d)
## [1] 47
# nomi delle variabili
names(d)
## [1] "Fertility"
                        "Agriculture" "Examination"
                                                             "Education"
## [5] "Catholic"
                        "Infant.Mortality"
# nomi delle osservazioni (stampo solo i primi 10)
rownames(d)[1:10]
## [1] "Courtelary"
                      "Delemont"
                                    "Franches-Mnt" "Moutier"
                                                                 "Neuveville
##
   [6] "Porrentruy"
                      "Broye"
                                    "Glane"
                                                  "Gruyere"
                                                                 "Sarine"
```

```
# ultime 3 righe del dataset
sel <- d[(45:47),]

# colonna relativa all'istruzione (due modi equivalenti)
ed <- d[,4]
ed <- d$Education

# province con fertilità maggiore o uguale a 80
sel <- d[d$Fertility >= 80,]

# istruzione delle province con mortalità infantile maggiore di 22
selEd <- d[d$Infant.Mortality > 22,]$Education
```

#### Esercizi

#### Selezionare:

- 1) dataframe tranne le prime 10 righe
- 2) dataframe escludendo le colonne Agriculture e Catholic
- 3) solo le righe 10, 20 e 30, e solo le colonna 1 e 2
- 4) province con mortalità infantile minore di 18
- 5) province con perc. di cattolici superiore a 90% e indice di istruzione uguale a 7
- 6) province con fertilità inferiore a 50 oppure superiore a 90
- 7) fertilità delle province con Examination diverso da 14

```
# 1) dataframe tranne le prime 10 righe
sel \leftarrow d[-(1:10),]
# 2) dataframe escludendo le colonne Agriculture e Catholic
sel \leftarrow d[,-c(2,5)]
# 3) solo le righe 10, 20 e 30, e solo le colonna 1 e 2
sel \leftarrow d[c(10,20,30), c(1,2)]
# 4) province con mortalità infantile minore di 18
sel <- d[d$Infant.Mortality < 18,]
# 5) province con perc. di cattolici superiore a 90
# e indice di istruzione uquale a 7
sel <- d[(d$Catholic > 90) & (d$Education==7),]
# 6) province con fertilità inferiore a 50 oppure superiore a 90
sel <- d[(d$Fertility < 50) | (d$Fertility > 90),]
# 7) fertilità delle province con Examination diverso da 14
selFert <- d[d$Examination != 14,]$Fertility
```

### Aggiunta di variabili

## 20 12 15

```
# nuova colonna che numera le osservazioni
d$id <- 1:nrow(d)
# nuova colonna Catholic2:
# 0 se la perc. di cattolici è bassa (perc. <= 10)
# 1 se è media (10 < perc. < 90)
# 2 se è alta (perc. >= 90)
d$Catholic2 <- 1
d[d$Catholic <= 10,]$Catholic2 <- 0</pre>
d[d$Catholic >= 90,]$Catholic2 <- 2
# variabile categoriale: la trasformo in fattore
d$Catholic2 <- factor(d$Catholic2)
summary(d$Catholic2)
## 0 1 2
```

### Istogramma

```
hist(d$Fertility,
```

```
xlab="fertilità", ylab="frequenze assolute", col="lightblue", main="")
```



## **Boxplot**



fertilità

18

## **Boxplot** condizionato



# Grafico a dispersione

