Model Evaluation

Chantri Polprasert

CPDSAI

Objectives

- Understand ML model evaluation for classification and regression problems
- Able to explain some characteristics of each evaluation model
- Appropriately apply evaluation model to different problems
- Apply evaluation model concept using Sklearn library

Topics to cover

- Evaluation metrics for classification
 - Accuracy
 - Confusion matrix and its primary and secondary metrics
 - Precision and Recall relationship
- Evaluation metrics for regression
 - Python commands

Evaluation metrics for classifier

- Accuracy
- Confusion matrix
- Classification error
- Precision-recall
- Specificity
- F-1 score
- Let's first consider a binary response in which two types of errors can be made.

Accuracy

Binary classification revisit

- There are only two possible classes or outcomes to predict (e.g. yes or no)
- Class 1: positive class, class of interest (depend on our definition)
- Class 0: negative class, not interested
- Some examples of Binary Classification are:
 - Predicting whether a customer will default his mortgage repayments,
 - Predicting whether a person will exit his internet plan upon expiry of his contract
 - Predicting whether a credit-card transaction is normal or the result of card theft

Example

- Malignant classification (binary classification)
 - Breast cancer dataset
 - From 269 samples, 203 of them are malignant and 66 are benign tumors
 - Assume that our binary classification model performance is presented in the following confusion matrix:
 - What's the accuracy of this classification model?

		Predicted		
		Malignant	Benign	Total
A =4=1	Malignant	201	2	203
Actual	Benign	5	61	66
	Total	63	206	269

Confusion matrix: a specific table layout that allows visualization of the performance of an algorithm

Classification accuracy vs misclassification rate

	Predicted Yes	Predicted No
Actual Yes	<i>a</i> = True Positive	<i>b</i> = False Negative
Actual No	c = False Positive	d = True Negative

$$\text{Classification Accuracy} = \frac{a+d}{a+b+c+d} = \frac{a+d}{n}$$

$$ext{Misclassification Rate} = rac{b+c}{a+b+c+d} = rac{b+c}{n}$$

Is accuracy enough to evaluate classification performance?

• What's the **recall** of the fortune teller (classification model) which predicts that Halley's comet will not be visible every year for 80 years?

Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–79 years.

https://en.wikipedia.org/wiki/Halley%27s_ Comet 9

Unbalanced Example

Is a model that provides 0.9 classification accuracy good?

	Predicted		
	Yes	No	
Actual Yes	87	1	
Actual	10	2	
No			

- Only 2 of the 12 that were classified to the 'no' group were correct.
- The 'no error rate' is 10/12 or 83%.

Classification accuracy = 89/100.

Problems with accuracy: Example 1

- For unbalanced (imbalanced) classes, high classification accuracy (equivalently, low misclassification rates) can be deceiving.
- While these measures are easily extended to multi-class scenarios, the problem with unbalanced classes remains.
- Is 98% classification accuracy better that those with 0.82?

	Classifier 1 Predicted			Classifier 2 Predicted	
	Yes	No		Yes	No
Actual Yes	87	1	Actual Yes	79	9
Actual No	1	11	Actual No	9	3

Problems with accuracy: Example 2

• Is 98% classification accuracy better than those with 0.82?

	Classifier	1	Classifier 2		
	Predicted			Predict	ed
_	Yes	No		Yes	No
Actual Yes	88	0	Actual Yes	70	18
Actual No	2	10	Actual No	1	12

Example 2

- If it's very important to correctly classify NOs we may prefer Classifier 2 over Classifier 1 (e.g. trying to identify email as spam)
- If it's very important to correctly classify YESs we may prefer Classifier 1 over Classifier 2 (eg identifying people who has a deadly disease that requires treatment)
- What about regression? What's wrong if we focus on minimizing the MSE (RSS)?

Issues with accuracy

- We may consider weighted metrics wherein the classes are weighted differently in order to emphasize more "cost" to misclassification of one group over the other.
- Another common approach is to consider metrics that may provide more insight than simply accuracy and misclassification rates alone.

LogisticRegression

```
class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False,
tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver='lbfgs', max_iter=100, multi_class='deprecated', verbose=0,
warm_start=False, n_jobs=None, l1_ratio=None)
[source]
```

Sklearn uses .score()

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
logreg = LogisticRegression(solver = 'liblinear').fit(X_train, y_train)
print(f"Training set score: {logreg.score(X_train, y_train):.3f}")
print(f"Test set score: {logreg.score(X_test, y_test):.3f}")
```

Training set score: 0.953

Test set score: 0.958

Primary Measures

Confusion matrix

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Problem: find benign or malignant tumors

https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg

retrieved elements

• TP: True Positive

FP: False Positive (Type I error)

TN: True Negative

FN: False Negative (Type II error)

Confusion matrix

https://en.wikipedia.org/wiki/P

recision_and_recall#/media/F

ile:Precisionrecall.svg

Problem: find benign or

		Predicted		
		Malignant	Benign	Total
A (1	Malignant	201 (TP)	2 (FN)	203
Actual	Benign	5 (FP)	61 (TN)	66
	Total	206	63	269

retrieved elements

relevant elements

Precision (Positive Predicted Value (PPV))

- How many retrieved items are relevant?
- A ratio of predicted "Yes" that are actually "Yes"
- Higher precision suggests that the model is good at avoiding false positives. It focuses on making accurate positive predictions (i.e. the cost of false positives are relatively low or manageable.)

		Pre	edicted
		Malignant	Benign
	Malignant	201 (TP)	2 (FN)
Actual	Benign	5 (FP)	61 (TN)

$$Precision = \frac{TP}{TP + FP} = \frac{\blacksquare}{\blacksquare}$$

What's the precision?

Recall (Sensitivity, coverage, True positive rate (TPR))

- How many relevant items are retrieved?
- The proportion of actual "Yes"s that were predicted "Yes".
- Only interested in positive population
- Higher recall suggests that the model is good at avoiding false negatives.

- What's the recall of this classification model?
- What kind of problems that we are concern with recall?

Specificity, True Negative Rate (TNR),

- The proportion of actual "No"s that were predicted "No"
- Specificity focuses on avoiding false positives, and is concerned with correctly identifying all negative instances.

		Predicted	
		Malignant	Benign
A atual	Malignant	201 (TP)	2 (FN)
Actual	Benign	5 (FP)	61 (TN)

$${\tt Specificity} = \frac{{\tt TN}}{{\tt TN} + {\tt FP}}$$

Is recall enough to evaluate classification performance?

• What's the **recall** of the fortune teller (classification model) which predicts that Halley's comet will **not** be visible every year for 80 years?

Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–79 years.

https://en.wikipedia.org/wiki/Halley%27s_ Comet 22

Is recall enough to evaluate classification performance?

• What's the **recall and precision** of the fortune teller (classification model) which predicts that Halley's comet will be visible every year for 80 years?

Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–79 years.

https://en.wikipedia.org/wiki/Halley%27s_ Comet 23

Exercise

- Assume that there are 50 stones and 4 diamonds in the urn. Your job is to find the classifier that can accurately find the diamonds. What's the precision and recall of the classifier when
 - The classifier always predicts the diamond.
 - The classifier is very selective in predicting the diamond.
 - Less strict?

Relationship between precision and recall

Feature 1

Feature 2

FN = 2; TP=22; FP=3;

$$Precision = \frac{TP}{TP + FP} = \frac{22}{22 + 3} = 0.88$$

$$Recall = \frac{TP}{TP + FN} = \frac{22}{22 + 2} = 0.92$$

- True positive
- True negative
- False positive
- △ False negative

Increase threshold to improve precision

$$FN = 4$$
; $TP=20$; $FP=0$;

$$Precision = \frac{TP}{TP + FP} = \frac{20}{20 + 0} = 1$$

$$Recall = \frac{TP}{TP + FN} = \frac{20}{20 + 4} = 0.83$$

- True positive
- True negative
- False positive
- △ False negative

High precision and low recall

- High FP causes low precision since more negative samples are selected
- Low FN causes high recall since most positive samples are retrieved
- The decision is selected to achieve high precision.
 - True positive
 - True negative
 - False positive
 - False negative

Feature 2

Feature 1

Decrease threshold to improve recall

$$FN = 0$$
; $TP=24$; $FP=11$;

$$Precision = \frac{TP}{TP + FP} = \frac{24}{24 + 11} = 0.68$$

$$Recall = \frac{TP}{TP + FN} = \frac{24}{24 + 0} = 1$$

- True positive
- True negative
- False positive
 - False negative

Low precision and high recall

- High FP causes low precision since more negative samples are selected
- Low FN causes high recall since most positive samples are retrieved
- The boundary is selected to achieve high recall
 - True positive
 - True negative
 - False positive
 - False negative

Feature 2

Low threshold to improve recall

```
Breast Cancer Wisconsin
(Diagnostic) Data Set
```

```
Logistic regression (threshold=15%)
Logistic regression (threshold=50%)
                                                          precision
                                                                        recall
               precision
                             recall
                                                  not 1
                                                              0.98
                                                                         0.89
       not 1
                              9.98
                    0.91
                                                              0.94
                                                                         0.99
                    0.99
                              0.94
```

High threshold to improve precision

not 1

```
lr predicted = lr.predict(X test)
print('Logistic regression (threshold=50%)\n',
      classification_report(y_test, lr_predicted, target_names = ['not 1', '1']))
y predicted = y proba lr[:, 1] > .85
print('Logistic regression (threshold=15%)\n',
      classification report(y test, y predicted, target names = ['not 1', '1']))
   Logistic regression (threshold=50%)
                                         Logistic regression (threshold=85%)
                  precision
                               recall
                                                       precision
                                                                    recall
```

not 1

Precision vs Recall tradeoff

- Jobs that require high recall: (To retrieve many relevant samples while allowing some non-relevant samples)
 - Search and information extraction in legal discovery
 - Malignant tumor detection
 - Used with experts to filter out FP
- Jobs that require high precision: (To obtain relevant samples while minimize non-relevant samples)
 - Search engine
 - Spam detection

Exercise

Given (P0,R0) and (P1, R1), the precision and recall of class 0 and class 1 at threshold A.

- What's the relationship between (P0,R0) and (P1, R1) at threshold B compared to (P0,R0) and (P1, R1) at threshold A?
- What's the relationship between (P0,R0) and (P1, R1) at threshold C compared to (P0,R0) and (P1, R1) at threshold A?

		Predicted condition		Sources: [4][5][6][7][8][9][10][11][12] view·talk·edii		
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = √TPR×FPR−FPR TPR−FPR	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = $\frac{TP}{P}$ = 1 - FNR	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$	
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$	
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP/PP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

The zoo

Secondary Measures

F1-score

- Harmonic means of precision and recall
- Balance between precision and recall

$$F_1 = 2 \cdot \frac{Precision \times Recall}{Precision + Recall} = \frac{2 \cdot TP}{2 \cdot TP + FN + FP}$$

$$F_{\beta} = (1 + \beta^2) \cdot \frac{Precision \times Recall}{(\beta^2 \cdot Precision) + Recall} = \frac{(1 + \beta^2) \cdot TP}{(1 + \beta^2) \cdot TP + \beta \cdot FN + FP}$$

The Fbeta-measure is a generalization of the F-measure that adds a configuration parameter called beta

- Large beta (> 1) gives more weight to recall
- Small beta (< 1) gives more weight to precision

F1-score vs Precision-Recall

```
lr predicted = lr.predict(X test)
print('Logistic regression (threshold=50%)\n',
      classification report(y test, lr predicted, target names = ['not 1', '1']))
y predicted = y proba lr[:, 1] > .85
print('Logistic regression (threshold=85%)\n',
      classification_report(y_test, y_predicted, target_names = ['not 1', '1']))
Logistic regression (threshold=50%)
               precision recall f1-score
                                               support
                                                             F1-score tends to be in the
                   0.91
                             0.98
                                       0.95
                                                   53
       not 1
                                                             middle between P &R
                             0.94
                                       0.97
                                                   90
                                                                                 37
```

Precision-Recall (PR) curve

- X-axis: Recall
- Y-axis: Precision

Top right corner:

- The "ideal" point
- Precision = 1.0
- Recall = 1.0
- F1 score is considered at one threshold.
- PR curve considers for every threshold value.

Comparing Random Forest (RF) and Support Vector Classifier (SVC)

Which one is better?
Say you want a model with 70% recall.

Average Precision (AP)

- AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight.
- Related to area under the precision-recall curve (with step interpolation)

ROC Curves (Receiver Operating Characteristic Curve)

- X-axis: False Positive Rate
- Y-axis: True Positive Rate (Recall)
- Top left corner:
 - The "ideal" point
 - False positive rate of zero
 - True positive rate of one
- "Steepness" of ROC curves is important:
 - Maximize the true positive rate
 - while minimizing the false positive rate

ROC Curves (Receiver Operating Characteristic Curve)

ROC Curves (Receiver Operating Characteristic Curve)

https://en.wikipedia.org/wiki/File:ROCcurves.svg

Summarizing an ROC curve in one number: Area Under the Curve (AUC)

- AUC = 0 (worst) AUC = 1 (best) AUC = 0.5 (random)
- AUC can be interpreted as:
 - 1. The total area under the ROC curve.
 - 2. The probability that the classifier will assign a higher score to a randomly chosen positive example than to a randomly chosen negative example.

Advantages:

- Gives a single number for easy comparison.
- O Does not require specifying a decision threshold.

Drawbacks:

- As with other single-number metrics, AUC loses information, e.g. about tradeoffs and the shape of the ROC curve.
- This may be a factor to consider when e.g. wanting to compare the performance of classifiers with overlapping ROC curves

Classification model summary

- Accuracy > Ratio of correct decision
- Precision Correct positive decision
- -Tug of war with threshold Recall
- F1-score
- Precision-Recall Curve ROC Curve

Multiclass classification

Multi-Class Confusion Matrix


```
svm = SVC(kernel = 'linear').fit(X_train_mc, y_train_mc)
svm_predicted_mc = svm.predict(X_test_mc)
confusion_mc = confusion_matrix(y_test_mc, svm_predicted_mc)
```

Classification Report: One-vs-Rest

	precision	recall	f1-score	support
0	1.00	0.65	0.79	37
1	1.00	0.23	0.38	43
2	1.00	0.39	0.56	44
3	1.00	0.93	0.97	45
4	0.14	1.00	0.25	38
5	1.00	0.33	0.50	48
6	1.00	0.54	0.70	52
7	1.00	0.35	0.52	48
8	1.00	0.02	0.04	48
9	1.00	0.55	0.71	47
accuracy			0.49	450
macro avg	0.91	0.50	0.54	450
weighted avg	0.93	0.49	0.54	450

Macro Average

- The arithmetic mean of the individual class related to precision, memory, and f1 score
- All classes are treated equally
 - Compute metric within each class
 - Average resulting metrics across classes

Class	Recall
orange	1/5 = 0.20
lemon	1/2 = 0.50
apple	2/2 = 1.00

Macro-average Recall (0.20 + 0.50 + 1.00) / 3 = 0.57

Macro =	$\frac{1}{ L } \sum_{l \in L} R(y, \widehat{y})$
	$l \in L$

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Weighted Average

- Each class is weighted by the number of instances in that class
- Mean per-class metric, weighted by support.

Class
 Recall

 orange

$$1/5 = 0.20$$

 lemon
 $1/2 = 0.50$

 apple
 $2/2 = 1.00$

Weighted-average:

$$= (0.2 * 5 + 0.5 * 2 + 1.0 * 2) / 9$$

= 0.44

Weighted = $\frac{1}{n} \sum_{l \in L} n_l R(y, \widehat{y})$

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Metrics for regression model

Metrics for regression model

Sum of Squared Error

$$SSE = \sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2$$

Total Sum of Squares

$$TSS = \sum_{i=1}^{\infty} (y_i - \bar{y})^2$$

The coefficient of determination

$$R^2 = 1 - \frac{\text{SSE}}{\text{TSS}}$$

Metrics for regression model

• Mean Square Error (MSE) $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- Mean Absolute Error (MAE) $ext{MAE} = rac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
- Mean absolute percentage error (MAPE) MAPE $=\frac{100}{n}\sum_{i=1}^{\infty}\left|\frac{y_i-y_i}{y_i}\right|$

MSE vs MAE

MAE

- Preserves the same units of measurement as the data under analysis and gives all individual errors the same weights (as compared to squared error).
- This distance is easily interpretable and when aggregated over a dataset using arithmetic mean has a meaning of the average error.

MSE

- In MSE since the error being squared, any prediction error is being heavily penalized.
- Due to the square, large errors are emphasized and have a relatively greater effect on the value of the performance metric.
- The effect of relatively small errors will be even smaller.
- Penalizing extreme errors or being susceptible to outliers.

Summary

- Evaluation metrics for classification
 - Confusion matrix
 - Accuracy
 - Precision-Recall
 - F1score
 - Precision-Recall curve
 - o ROC
- Evaluation metrics for regression
 - o **R2**
 - MSE
 - MAE
 - MAPE

References

- Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. O'Reilly Media; 1st edition.
- Andreas C. Müller, COMS W4995 Applied Machine Learning, Columbia University, Spring 2019.
- ML501 Machine Learning, Intel Al Academy, 2017
- https://en.wikipedia.org/wiki/Precision_and_recall