On Congruent Numbers and Their Generalizations over Number Fields

Shamik Das

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
GUWAHATI-781039

Nov 06, 2020

Table of Contents

- 1 Preliminaries
 - Congruent number
 - Elliptic Curves
 - θ-Congruent Number
 - Complete 2-descent
- 2 Our work
 - Families of non-congruent numbers
 - Criterion of θ -congruent number over number field
- 3 Publication
- 4 References

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

■ A natural number $n \in \mathbb{N}$ is called a *congruent number* if it occurs as the area of a rational right triangle, i.e., there exist rational numbers a, b and c such that

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

■ For example, 6 is a congruent number given by the Pythagorean triple (3, 4, 5).

$$a^2 + b^2 = c^2$$
, $ab = 2n$. (1)

- For example, 6 is a congruent number given by the Pythagorean triple (3, 4, 5).
- The classical problem of determining whether a given natural number is congruent or not is known as the *congruent number problem*.

■ It seems that the congruent number problem was first discussed systematically by Arab scholars of tenth century.

- It seems that the congruent number problem was first discussed systematically by Arab scholars of tenth century.
- Euler was the first mathematician to show that n = 7 is a congruent number.

- It seems that the congruent number problem was first discussed systematically by Arab scholars of tenth century.
- Euler was the first mathematician to show that n = 7 is a congruent number. Fermat showed that n = 1 is not; this result is essentially equivalent to Fermat's Last Theorem for the exponent 4.

- It seems that the congruent number problem was first discussed systematically by Arab scholars of tenth century.
- Euler was the first mathematician to show that n = 7 is a congruent number. Fermat showed that n = 1 is not; this result is essentially equivalent to Fermat's Last Theorem for the exponent 4.
- Nowadays, the Congruent Number Problem can be thought of as the oldest manifestation of a famous conjecture known as the Birch and Swinnerton-Dyer (BSD) Conjecture.

Elliptic Curve

■ Elliptic curve appeared first in the book "Arithmetica" by the Greek mathematician Diophantus in the third century A.D..

Elliptic Curve

- Elliptic curve appeared first in the book "Arithmetica" by the Greek mathematician Diophantus in the third century A.D..
- An elliptic curve over a *field K* is a 'non-singular curve' defined by an equation of the form

$$y^2 = x^3 + ax + b$$
, $a, b \in K$.

Elliptic Curve

- Elliptic curve appeared first in the book "Arithmetica" by the Greek mathematician Diophantus in the third century A.D..
- An elliptic curve over a *field K* is a 'non-singular curve' defined by an equation of the form

$$y^2 = x^3 + ax + b$$
, $a, b \in K$.

■ In our case, we take K as number field.

■ A non-vertical line will have three real points of intersection or one real and two complex points of intersection, which is also clear form the substitution y = mx + c in $y^2 = x^3 + ax + b$.

- A non-vertical line will have three real points of intersection or one real and two complex points of intersection, which is also clear form the substitution y = mx + c in $y^2 = x^3 + ax + b$.
- However, the vertical lines $x = x_0$ will have either two real or two complex points of intersection.

- A non-vertical line will have three real points of intersection or one real and two complex points of intersection, which is also clear form the substitution y = mx + c in $y^2 = x^3 + ax + b$.
- However, the vertical lines $x = x_0$ will have either two real or two complex points of intersection. For a consistent theory, we need a third point of intersection. We adjoin an additional 'point at infinity' to the curve.

- A non-vertical line will have three real points of intersection or one real and two complex points of intersection, which is also clear form the substitution y = mx + c in $y^2 = x^3 + ax + b$.
- However, the vertical lines $x = x_0$ will have either two real or two complex points of intersection. For a consistent theory, we need a third point of intersection. We adjoin an additional 'point at infinity' to the curve.
- This point can be visualized as lying on the top (and the bottom) of the *xy*-plane at infinity.

- A non-vertical line will have three real points of intersection or one real and two complex points of intersection, which is also clear form the substitution y = mx + c in $y^2 = x^3 + ax + b$.
- However, the vertical lines $x = x_0$ will have either two real or two complex points of intersection. For a consistent theory, we need a third point of intersection. We adjoin an additional 'point at infinity' to the curve.
- This point can be visualized as lying on the top (and the bottom) of the *xy*-plane at infinity.
- Any two vertical lines intersect at the point at infinity, which we denote by *O*.

$$y^{2}=x^{3}+ax+b$$

$$\Rightarrow (mx+c)^{2}=x^{3}+ax+b$$

$$\Rightarrow x_{1}+x_{2}+x_{3}=m^{2}$$

$$y^2 = x^3 + ax + b$$

$$\Rightarrow (mx + c)^2 = x^3 + ax + b$$

$$\Rightarrow x_1 + x_2 + x_3 = m^2$$

$$\Rightarrow x_3 = m^2 - x_1 - x_2.$$

o: the point at infinity

$$y^2 = x^3 + ax + b$$

$$\Rightarrow (mx + c)^2 = x^3 + ax + b$$

$$\Rightarrow x_1 + x_2 + x_3 = m^2$$

$$\Rightarrow x_3 = m^2 - x_1 - x_2.$$

Any two points P and Q on E can be added to obtain a third point $P \oplus Q$ on E.

- Any two points P and Q on E can be added to obtain a third point $P \oplus Q$ on E.
- For this addition of points, we have
- an identity, which is O,

- Any two points P and Q on E can be added to obtain a third point $P \oplus Q$ on E.
- For this addition of points, we have
- an identity, which is *O*,
- an inverse for each point,

- Any two points P and Q on E can be added to obtain a third point $P \oplus Q$ on E.
- For this addition of points, we have
- an identity, which is *O*,
- an inverse for each point,
- associativity and

- Any two points P and Q on E can be added to obtain a third point $P \oplus Q$ on E.
- For this addition of points, we have
- an identity, which is *O*,
- an inverse for each point,
- associativity and
- commutativity.

is the Identity

■ The point *O* serves as the identity for addition on elliptic curve.

■ The additive inverse of the point $P = (x_1, y_1)$ is given by $\Theta P = (x_1, -y_1)$.

The Mordell-Weil Theorem

E is elliptic curve defined over a number field K, then the group E(K) of K-rational point of E, is a finitely generated abelian group.

The Mordell-Weil Theorem

E is elliptic curve defined over a number field K, then the group E(K) of K-rational point of E, is a finitely generated abelian group.

Structure theorem says that

$$E(K) \cong \mathbb{Z}^r \times E(K)_{tors}$$

where *r* is known as rank of *E* over *K* and $E(K)_{tors}$ is torsion part of E(K).

$$E_n: y^2 = x(x^2 - n^2). (2)$$

$$E_n: y^2 = x(x^2 - n^2). (2)$$

Here, E_n is called the *congruent number elliptic curve*.

$$E_n: y^2 = x(x^2 - n^2). (2)$$

Here, E_n is called the *congruent number elliptic curve*.

Now here,

$$E_n(\mathbb{Q})_{tors} = E_n(\mathbb{Q})[2] = \{O, (0, 0), (\pm n, 0)\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Consider the two sets

$$S = \left\{ (a, b, c) \in \mathbb{Q}^3 : 0 < a < b < c, \quad ab = 2n, \quad a^2 + b^2 = c^2 \right\},\$$

and

$$T = \big\{ (x, y) \in 2E_n(\mathbb{Q}) \setminus \{O\} : y \ge 0 \big\}.$$

Consider the two sets

$$S = \left\{ (a, b, c) \in \mathbb{Q}^3 : 0 < a < b < c, \quad ab = 2n, \quad a^2 + b^2 = c^2 \right\},$$

and

$$T = \big\{ (x, y) \in 2E_n(\mathbb{Q}) \setminus \{O\} : y \ge 0 \big\}.$$

Define

$$\phi: S \to T, \qquad (a, b, c) \mapsto \left(\frac{c^2}{4}, \frac{c(b^2 - a^2)}{8}\right),$$

$$\psi: T \to S \qquad (x, y) \mapsto (\sqrt{x + n} - \sqrt{x - n}, \sqrt{x + n} + \sqrt{x - n}, 2\sqrt{x}).$$

Consider the two sets

$$S = \left\{ (a,b,c) \in \mathbb{Q}^3 : 0 < a < b < c, \quad ab = 2n, \quad a^2 + b^2 = c^2 \right\},$$

and

$$T = \Big\{ (x, y) \in 2E_n(\mathbb{Q}) \setminus \{O\} : y \ge 0 \Big\}.$$

Define

$$\begin{split} \phi: S \to T, & (a,b,c) \mapsto \left(\frac{c^2}{4}, \frac{c(b^2-a^2)}{8}\right), \\ \psi: T \to S & (x,y) \mapsto (\sqrt{x+n} - \sqrt{x-n}, \ \sqrt{x+n} + \sqrt{x-n}, \ 2\sqrt{x}). \end{split}$$

Proposition 1

Let E be an elliptic curve over a field k (of characteristic \neq 2, 3) given by

$$E: y^2 = (x - a_1)(x - a_2)(x - a_3)$$
 with $a_1, a_2, a_3 \in k$.

Let (x_0, y_0) be a k-rational point of $E \setminus \{O\}$. Then there exists a k-rational point (x_1, y_1) of E with $2(x_1, y_1) = (x_0, y_0)$ if and only if $x_0 - a_1$, $x_0 - a_2$ and $x_0 - a_3$ are squares in k.

Consider the two sets

$$S = \left\{ (a,b,c) \in \mathbb{Q}^3 : 0 < a < b < c, \quad ab = 2n, \quad a^2 + b^2 = c^2 \right\},$$

and

$$T = \big\{ (x,y) \in 2E_n(\mathbb{Q}) \setminus \{O\} : y \ge 0 \big\}.$$

Define

$$\begin{split} \phi: S \to T, & (a,b,c) \mapsto \left(\frac{c^2}{4}, \frac{c(b^2-a^2)}{8}\right), \\ \psi: T \to S & (x,y) \mapsto (\sqrt{x+n}-\sqrt{x-n}, \ \sqrt{x+n}+\sqrt{x-n}, \ 2\sqrt{x}). \end{split}$$

Proposition 1

Let E be an elliptic curve over a field k (of characteristic $\neq 2,3$) given by

$$E: y^2 = (x - a_1)(x - a_2)(x - a_3)$$
 with $a_1, a_2, a_3 \in k$.

Let (x_0, y_0) be a k-rational point of $E \setminus \{0\}$. Then there exists a k-rational point (x_1, y_1) of E with $2(x_1, y_1) = (x_0, y_0)$ if and only if $x_0 - a_1$, $x_0 - a_2$ and $x_0 - a_3$ are squares in k.

Using Proposition 1 it is easy to observe that the maps ϕ and ψ are well defined and inverses to each other.

Criterion 1

A positive integer n is a congruent number if and only if $E_n(\mathbb{Q})$ has a point of infinite order.

A positive integer n is called a congruent number over a number field K (or in short, a K-congruent number) if there exist a, b, $c \in K$ such that (1) holds.

A positive integer n is called a congruent number over a number field K (or in short, a K-congruent number) if there exist a, b, $c \in K$ such that (1) holds.

Definition 2

Let $0 < \theta < \pi$ be an angle with rational cosine $cos(\theta) = \frac{s}{r}$ with 0 < |s| < r and gcd(r, s) = 1. Let $(u, v, w)_{\theta}$ denote a triangle with an angle θ between the sides u and v. A positive integer n is called a θ -congruent number if there exists a triangle $(u, v, w)_{\theta}$ with sides in \mathbb{Q} having area $n\alpha_{\theta}$, where $\alpha_{\theta} = \sqrt{r^2 - s^2}$. In other words, n is a θ -congruent number if it satisfies

$$2rn = uv, \quad w^2 = u^2 + v^2 - 2uv \cdot \frac{s}{r}.$$
 (3)

A positive integer n is called a congruent number over a number field K (or in short, a K-congruent number) if there exist a, b, $c \in K$ such that (1) holds.

Definition 2

Let $0 < \theta < \pi$ be an angle with rational cosine $cos(\theta) = \frac{s}{r}$ with 0 < |s| < r and gcd(r, s) = 1. Let $(u, v, w)_{\theta}$ denote a triangle with an angle θ between the sides u and v. A positive integer n is called a θ -congruent number if there exists a triangle $(u, v, w)_{\theta}$ with sides in \mathbb{Q} having area $n\alpha_{\theta}$, where $\alpha_{\theta} = \sqrt{r^2 - s^2}$. In other words, n is a θ -congruent number if it satisfies

$$2rn = uv, \quad w^2 = u^2 + v^2 - 2uv \cdot \frac{s}{r}.$$
 (3)

 θ -congruent number elliptic curve given by

$$E_{n,\theta}: y^2 = x(x + (r+s)n)(x - (r-s)n), \tag{4}$$

A positive integer n is called a congruent number over a number field K (or in short, a K-congruent number) if there exist a, b, $c \in K$ such that (1) holds.

Definition 2

Let $0 < \theta < \pi$ be an angle with rational cosine $cos(\theta) = \frac{s}{r}$ with 0 < |s| < r and gcd(r, s) = 1. Let $(u, v, w)_{\theta}$ denote a triangle with an angle θ between the sides u and v. A positive integer n is called a θ -congruent number if there exists a triangle $(u, v, w)_{\theta}$ with sides in \mathbb{Q} having area $n\alpha_{\theta}$, where $\alpha_{\theta} = \sqrt{r^2 - s^2}$. In other words, n is a θ -congruent number if it satisfies

$$2rn = uv, \quad w^2 = u^2 + v^2 - 2uv \cdot \frac{s}{r}.$$
 (3)

 θ -congruent number elliptic curve given by

$$E_{n,\theta}: y^2 = x(x + (r+s)n)(x - (r-s)n), \tag{4}$$

Criterion 3

Let $\theta \in (0, \pi)$ be an angle such that $\cos \theta$ is rational.

- 1. A positive integer n is θ -congruent if and only if $E_{n,\theta}$ has a point of order greater than 2;
- 2. If $n \neq 1, 2, 3, 6$, then n is θ -congruent if and only if $E_{n,\theta}$ has positive rank.

■ Tunnel ([28]), Monsky ([18]) and Tian ([27]) are some of the eminent mathematicians who have made significant contribution toward identifying congruent numbers.

- Tunnel ([28]), Monsky ([18]) and Tian ([27]) are some of the eminent mathematicians who have made significant contribution toward identifying congruent numbers.
- For the known results on the construction of non-congruent numbers with arbitrarily many prime factors of the form 8k + 3, one can refer to [10] and [22] for instance.

- Tunnel ([28]), Monsky ([18]) and Tian ([27]) are some of the eminent mathematicians who have made significant contribution toward identifying congruent numbers.
- For the known results on the construction of non-congruent numbers with arbitrarily many prime factors of the form 8k + 3, one can refer to [10] and [22] for instance.
- Study of congruent number problem over algebraic extensions dates back at least to Tada ([26]) who considered real quadratic fields.

- Tunnel ([28]), Monsky ([18]) and Tian ([27]) are some of the eminent mathematicians who have made significant contribution toward identifying congruent numbers.
- For the known results on the construction of non-congruent numbers with arbitrarily many prime factors of the form 8k + 3, one can refer to [10] and [22] for instance.
- Study of congruent number problem over algebraic extensions dates back at least to Tada ([26]) who considered real quadratic fields. Some results were given by Jędrzejak in [13] for congruent number over certain other real number fields.

Let E/K is an elliptic curve given by a Weierstrass equation

$$y^2 = (x - e_1)(x - e_2)(x - e_3)$$
 with $e_1, e_2, e_3 \in K$,

where K is a number field.

Let E/K is an elliptic curve given by a Weierstrass equation

$$y^2 = (x - e_1)(x - e_2)(x - e_3)$$
 with $e_1, e_2, e_3 \in K$,

where *K* is a number field.

Let S be a finite set of places of K includes all archimedean places, all places dividing 2, and all places at which E has bad reduction.

Let E/K is an elliptic curve given by a Weierstrass equation

$$y^2 = (x - e_1)(x - e_2)(x - e_3)$$
 with $e_1, e_2, e_3 \in K$,

where K is a number field.

Let S be a finite set of places of K includes all archimedean places, all places dividing 2, and all places at which E has bad reduction.

Further let,

$$K(S,2) := \{c \in K^*/(K^*)^2 \mid ord_v(c) \equiv 0 \pmod{2} \quad \forall v \in M_K \setminus S\},$$

where $ord_v(c)$ is the *v*-adic valuation of *c*.

Proposition 2 (Complete 2-Descent)

There exists an injective homomorphism

$$b: E(K)/2E(K) \longrightarrow K(S,2) \times K(S,2) \tag{5}$$

defined by

Proposition 2 (Complete 2-Descent)

There exists an injective homomorphism

$$b: E(K)/2E(K) \hookrightarrow K(S,2) \times K(S,2)$$
 (5)

defined by

$$P = (x,y) \longmapsto \begin{cases} (1,1), & \text{if } P = O \\ \left(\frac{e_1 - e_3}{e_1 - e_2}, e_1 - e_2\right), & \text{if } P = (e_1,0) \\ (e_2 - e_1, \frac{e_2 - e_3}{e_2 - e_1}), & \text{if } P = (e_2,0) \\ (x - e_1, x - e_2), & \text{if } P \neq O, (e_1,0), (e_2,0). \end{cases}$$

Proposition 2 (Complete 2-Descent)

There exists an injective homomorphism

$$b: E(K)/2E(K) \hookrightarrow K(S,2) \times K(S,2)$$
 (5)

defined by

$$P = (x,y) \longmapsto \begin{cases} (1,1), & \text{if } P = O \\ \left(\frac{e_1 - e_3}{e_1 - e_2}, e_1 - e_2\right), & \text{if } P = (e_1,0) \\ (e_2 - e_1, \frac{e_2 - e_3}{e_2 - e_1}), & \text{if } P = (e_2,0) \\ (x - e_1, x - e_2), & \text{if } P \neq O, (e_1,0), (e_2,0). \end{cases}$$

Let $(b_1, b_2) \in K(S, 2) \times K(S, 2)$ be a pair that is not the image of one of three points O, $(e_1, 0)$, $(e_2, 0)$. Then (b_1, b_2) is the image of a point

$$P = (x, y) \in E(K)/2E(K)$$

if and only if the equations

$$b_1 z_1^2 - b_2 z_2^2 = e_2 - e_1, (6)$$

$$b_1 z_1^2 - b_1 b_2 z_3^2 = e_3 - e_1. (7)$$

have a solution $(z_1, z_2, z_3) \in K^* \times K^* \times K$.

Proposition 2 (Complete 2-Descent)

There exists an injective homomorphism

$$b: E(K)/2E(K) \hookrightarrow K(S,2) \times K(S,2)$$
 (5)

defined by

$$P = (x,y) \longmapsto \begin{cases} (1,1), & \text{if } P = O \\ \left(\frac{e_1 - e_3}{e_1 - e_2}, e_1 - e_2\right), & \text{if } P = (e_1,0) \\ (e_2 - e_1, \frac{e_2 - e_3}{e_2 - e_1}), & \text{if } P = (e_2,0) \\ (x - e_1, x - e_2), & \text{if } P \neq O, (e_1,0), (e_2,0). \end{cases}$$

Let $(b_1, b_2) \in K(S, 2) \times K(S, 2)$ be a pair that is not the image of one of three points O, $(e_1, 0)$, $(e_2, 0)$. Then (b_1, b_2) is the image of a point

$$P = (x, y) \in E(K)/2E(K)$$

if and only if the equations

$$b_1 z_1^2 - b_2 z_2^2 = e_2 - e_1, (6)$$

$$b_1 z_1^2 - b_1 b_2 z_3^2 = e_3 - e_1. (7)$$

have a solution $(z_1, z_2, z_3) \in K^* \times K^* \times K$. If such a solution exists,

$$P = (x, y) = (b_1 z_1^2 + e_1, b_1 b_2 z_1 z_2 z_3).$$

Families of non-congruent numbers

Theorem 4

Let t be a positive integer. Suppose $p_1, p_2, ..., p_t$ and $q_1, q_2, ..., q_t$ are distinct primes such that all pairs (p_j, q_j) are equivalent either to (1, 3) or to (5, 7) modulo 8. Suppose

where (denotes the Legendre symbol. Then

$$n = (p_1q_1)(p_2q_2)\cdots(p_tq_t)$$

is a non-congruent number.

Theorem 4

Let t be a positive integer. Suppose $p_1, p_2, ..., p_t$ and $q_1, q_2, ..., q_t$ are distinct primes such that all pairs (p_j, q_j) are equivalent either to (1, 3) or to (5, 7) modulo 8. Suppose

where () denotes the Legendre symbol. Then

$$n = (p_1q_1)(p_2q_2)\cdots(p_tq_t)$$

is a non-congruent number.

Example. Consider n = (17.3)(409.19)(3697.859) where each pair of prime factors is equivalent to (1, 3) modulo 8, and satisfy the hypotheses (8). Using MAGMA ([1]), we verify that the rank of the elliptic curve $v^2 = x^3 - n^2x$ is 0, hence n is non-congruent.

Remark 5

For n, defined in Theorem 4, a system of representatives of classes in $\mathbb{Q}(S,2)$ is given by

$$R = \{\pm 2^{\epsilon} p_1^{\epsilon_1} \dots p_t^{\epsilon_t} q_1^{\mu_1} \dots q_t^{\mu_t} \mid \epsilon, \epsilon_1, \dots, \epsilon_t, \mu_1, \dots, \mu_t \in \{0, 1\}\}.$$

Remark 5

For n, defined in Theorem 4, a system of representatives of classes in $\mathbb{Q}(S,2)$ is given by

$$R = \{\pm 2^{\epsilon} p_1^{\epsilon_1} \dots p_t^{\epsilon_t} q_1^{\mu_1} \dots q_t^{\mu_t} \mid \epsilon, \epsilon_1, \dots, \epsilon_t, \mu_1, \dots, \mu_t \in \{0, 1\}\}.$$

Let r be the rank of the Mordell-weil group $E_n(\mathbb{Q})$ of rational points on the elliptic curve E_n . Then $E_n(\mathbb{Q})$ is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}'$, and consequently,

$$E_n(\mathbb{Q})/2E_n(\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^{r+2}.$$

Remark 5

For n, defined in Theorem 4, a system of representatives of classes in $\mathbb{Q}(S,2)$ is given by

$$R = \{\pm 2^{\epsilon} p_1^{\epsilon_1} \dots p_t^{\epsilon_t} q_1^{\mu_1} \dots q_t^{\mu_t} \mid \epsilon, \epsilon_1, \dots, \epsilon_t, \mu_1, \dots, \mu_t \in \{0, 1\}\}.$$

Let r be the rank of the Mordell-weil group $E_n(\mathbb{Q})$ of rational points on the elliptic curve E_n . Then $E_n(\mathbb{Q})$ is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_1$, and consequently,

$$E_n(\mathbb{Q})/2E_n(\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^{r+2}.$$

For n to be a non-congruent number, we require that r = 0. In other words, we need to show that the system of equations given by

$$b_1 z_1^2 - b_2 z_2^2 = n, (9)$$

$$b_1 z_1^2 - b_1 b_2 z_3^2 = -n. (10)$$

does not have a solution for any pair

$$(b_1, b_2) \in R \times R \setminus \{(1, 1), (-1, -n), (n, 2), (-n, -2n)\},\tag{11}$$

where $(z_1, z_2, z_3) \in \mathbb{Q}^* \times \mathbb{Q}^* \times \mathbb{Q}^*$.

Proposition 3 (Unsolvability Condition)

Let

$$n=2^{\epsilon}r_1r_2\cdots r_k$$

be a square-free positive integer where $\epsilon \in \{0, 1\}$, k is a natural number and r_1, r_2, \ldots, r_k are odd primes. Let $(b_1, b_2) \in R \times R$, where

$$R = \{(-1)^{\alpha} 2^{\beta} r_1^{\epsilon_1} \cdots r_k^{\epsilon_k} \mid \alpha, \beta, \epsilon_1, \ldots, \epsilon_k = 0 \text{ or } 1\}.$$

The system of equations given by (9) and (10) has no solution $(z_1, z_2, z_3) \in \mathbb{Q}^* \times \mathbb{Q}^* \times \mathbb{Q}^*$ in the following cases:

- (a) $b_1b_2 < 0$ or
- (b) $2 \nmid n \text{ and } 2 \mid b_1$.

Proposition 3 (Unsolvability Condition)

Let

$$n=2^{\epsilon}r_1r_2\cdots r_k$$

be a square-free positive integer where $\epsilon \in \{0, 1\}$, k is a natural number and r_1, r_2, \ldots, r_k are odd primes. Let $(b_1, b_2) \in R \times R$, where

$$R = \{(-1)^{\alpha} 2^{\beta} r_1^{\epsilon_1} \cdots r_k^{\epsilon_k} \mid \alpha, \beta, \epsilon_1, \ldots, \epsilon_k = 0 \text{ or } 1\}.$$

The system of equations given by (9) and (10) has no solution $(z_1, z_2, z_3) \in \mathbb{Q}^* \times \mathbb{Q}^* \times \mathbb{Q}^*$ in the following cases:

- (a) $b_1b_2 < 0$ or
- (b) $2 \nmid n \text{ and } 2 \mid b_1$.

Lemma 6

Let $(b_1, b_2) \in D$ represent an element in the image of the map b given by (5). Then, there is a pair (b_1^*, b_2^*) in D representing an element in Im(b) such that b_2^* is positive and odd.

Lemma 7

Let (b_1,b_2) be an element of $R \times R$ such that b_2 is odd and positive. If $(b_1,b_2) \in Im(b)$, then q_j does not divide b_1b_2 for $j=1, 2, \cdots, t$.

Lemma 7

Let (b_1, b_2) be an element of $R \times R$ such that b_2 is odd and positive. If $(b_1, b_2) \in Im(b)$, then q_j does not divide b_1b_2 for $j = 1, 2, \dots, t$.

Lemma 8

Let (b_1, b_2) be an element of $R \times R$ such that b_2 is odd and positive. If $(b_1, b_2) \in Im(b)$, then p_j does not divide b_1b_2 for $j = 1, 2, \dots, t$.

Lemma 7

Let (b_1, b_2) be an element of $R \times R$ such that b_2 is odd and positive. If $(b_1, b_2) \in Im(b)$, then q_j does not divide b_1b_2 for $j = 1, 2, \dots, t$.

Lemma 8

Let (b_1,b_2) be an element of $R \times R$ such that b_2 is odd and positive. If $(b_1,b_2) \in Im(b)$, then p_j does not divide b_1b_2 for $j=1, 2, \dots, t$.

Theorem 9

Let H_t denote the collection of positive integers with prime factorization $(p_1q_1)(p_2q_2)\cdots(p_tq_t)$, where all the pairs (p_j,q_j) are equivalent to (1,3) modulo 8 and satisfy the conditions (8). For any natural number t, the set H_t is contains infinitely many elements. The analogous statement for pairs $(p_j,q_j) \equiv (5,7) \pmod{8}$ holds as well.

Criterion of θ -congruent number over number field

<mark>heta</mark>-congruent number

Theorem 10

Consider the number field $K_{2,d} = \mathbb{Q}(\sqrt{m_1}, \dots, \sqrt{m_d})$ of type $(2, \dots, 2)$. Assume that

- 1. n and $Sqf(nm_i)$ do not divide 6 for all $i \in \{1, 2, ..., d\}$;
- 2. 2r(r-s) is not a square in $K_{2,d}$.

Then n is θ -congruent number over $K_{2,d}$ if and only if $E_{n,\theta}(K_{2,d})$ has a point of infinite order.

theta-congruent number

Theorem 10

Consider the number field $K_{2,d} = \mathbb{Q}(\sqrt{m_1}, \dots, \sqrt{m_d})$ of type $(2, \dots, 2)$. Assume that

- 1. n and $Sqf(nm_i)$ do not divide 6 for all $i \in \{1, 2, ..., d\}$;
- 2. 2r(r-s) is not a square in $K_{2,d}$.

Then n is θ -congruent number over $K_{2,d}$ if and only if $E_{n,\theta}(K_{2,d})$ has a point of infinite order.

Proposition 4

The θ -congruent number elliptic curve $E_{n,\theta}$ does not have complex multiplication for $\theta \neq \frac{\pi}{2}$.

theta-congruent number

Theorem 10

Consider the number field $K_{2,d} = \mathbb{Q}(\sqrt{m_1}, \dots, \sqrt{m_d})$ of type $(2, \dots, 2)$. Assume that

- 1. n and $Sqf(nm_i)$ do not divide 6 for all $i \in \{1, 2, ..., d\}$;
- 2. 2r(r-s) is not a square in $K_{2,d}$.

Then n is θ -congruent number over $K_{2,d}$ if and only if $E_{n,\theta}(K_{2,d})$ has a point of infinite order.

Proposition 4

The θ -congruent number elliptic curve $E_{n,\theta}$ does not have complex multiplication for $\theta \neq \frac{\pi}{2}$.

Theorem 11

Suppose n is a square free natural number other than 1, 2, 3 or 6. Let K be a real number field such that $[K:\mathbb{Q}]$ is coprime to 6 and not divisible by 55. Then n is a θ -congruent number over K if and only if $E_{n,\theta}(K)$ has a point of infinite order.

Let B be a positive integer. Let E/\mathbb{Q} be an elliptic curves and K/\mathbb{Q} a number field of degree d, where the smallest prime divisor of d is $\geq B$. Let $E(K)[p^{\infty}]$ denote the p-primary torsion subgroup of $E(K)_{tors}$, that is, the p-Sylow subgroup of E(K). Then

(i) If $B \ge 11$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes. In particular, $E(K)_{tors} = E(\mathbb{Q})_{tors}$.

Let B be a positive integer. Let E/\mathbb{Q} be an elliptic curves and K/\mathbb{Q} a number field of degree d, where the smallest prime divisor of d is $\geq B$. Let $E(K)[p^{\infty}]$ denote the p-primary torsion subgroup of $E(K)_{tors}$, that is, the p-Sylow subgroup of E(K). Then

- (i) If $B \ge 11$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes. In particular, $E(K)_{tors} = E(\mathbb{Q})_{tors}$.
- (ii) If $B \ge 7$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 7$.

Let B be a positive integer. Let E/\mathbb{Q} be an elliptic curves and K/\mathbb{Q} a number field of degree d, where the smallest prime divisor of d is $\geq B$. Let $E(K)[p^{\infty}]$ denote the p-primary torsion subgroup of $E(K)_{tors}$, that is, the p-Sylow subgroup of E(K). Then

- (i) If $B \ge 11$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes. In particular, $E(K)_{tors} = E(\mathbb{Q})_{tors}$.
- (ii) If $B \ge 7$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 7$.
- (iii) If $B \ge 5$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 5, 7, 11$.

Let B be a positive integer. Let E/\mathbb{Q} be an elliptic curves and K/\mathbb{Q} a number field of degree d, where the smallest prime divisor of d is $\geq B$. Let $E(K)[p^{\infty}]$ denote the p-primary torsion subgroup of $E(K)_{tors}$, that is, the p-Sylow subgroup of E(K). Then

- (i) If $B \ge 11$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes. In particular, $E(K)_{tors} = E(\mathbb{Q})_{tors}$.
- (ii) If $B \ge 7$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 7$.
- (iii) If $B \ge 5$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 5, 7, 11$.
- (iv) If B > 2, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \neq 2, 3, 5, 7, 11, 13, 19, 43, 67, 163$.

Let B be a positive integer. Let E/\mathbb{Q} be an elliptic curves and K/\mathbb{Q} a number field of degree d, where the smallest prime divisor of d is $\geq B$. Let $E(K)[p^{\infty}]$ denote the p-primary torsion subgroup of $E(K)_{tors}$, that is, the p-Sylow subgroup of E(K). Then

- (i) If $B \ge 11$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes. In particular, $E(K)_{tors} = E(\mathbb{Q})_{tors}$.
- (ii) If $B \ge 7$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 7$.
- (iii) If $B \ge 5$, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \ne 5, 7, 11$.
- (iv) If B > 2, then $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ for all primes $p \neq 2, 3, 5, 7, 11, 13, 19, 43, 67, 163$.

Theorem 12

Suppose n is a square free natural number other than 1, 2, 3 or 6. Let K be a real cubic number field. Suppose s is divisible by 5 or $(r,s) \equiv (\pm 2,\pm 1)$ or $\equiv (\pm 1,\pm 2)$ mod 5. Then n is a θ -congruent number over K if and only if $E_{n,\theta}(K)$ has a point of infinite order.

Example

To illustrate the theorem above, let us take $\cos \theta = \frac{5}{6}$ where r = 6 and $s = 5 \equiv 0$ (mod 5). The corresponding θ -congruent number curve with n = 7 is

$$E_{7,\theta}: y^2 = x^3 + 70x^2 - 539x.$$

Example

To illustrate the theorem above, let us take $\cos \theta = \frac{5}{6}$ where r = 6 and $s = 5 \equiv 0$ (mod 5). The corresponding θ -congruent number curve with n = 7 is

$$E_{7,\theta}: y^2 = x^3 + 70x^2 - 539x.$$

We can verify by using MAGMA that the rank of $E_{7,\theta}(\mathbb{Q})$ is 0, therefore 7 is not a θ -congruent number over \mathbb{Q} .

Example

To illustrate the theorem above, let us take $\cos \theta = \frac{5}{6}$ where r = 6 and $s = 5 \equiv 0$ (mod 5). The corresponding θ -congruent number curve with n = 7 is

$$E_{7.\theta}: y^2 = x^3 + 70x^2 - 539x.$$

We can verify by using MAGMA that the rank of $E_{7,\theta}(\mathbb{Q})$ is 0, therefore 7 is not a θ -congruent number over \mathbb{Q} .

Consider the polynomial $x^3 + 70x^2 - 539x - 1$. We denote the largest real root by α , then $K = \mathbb{Q}(\alpha)$ is a real cubic field. The point $(\alpha, 1) \in E_{7,\theta}(K)$ is clearly not a 2-torsion point, and hence 7 is θ -congruent over K.

Publication

- Das, S., Saikia, A.: Families of non-congruent numbers with arbitrarily many pairs of prime factors, to appear in Integers.
- Das, S., Saikia, A.: On θ -congruent numbers over real number fields, to appear in Bulletin of the Autralian Mathematical Society.

References I

- W. Bosma, J. Cannon, and C. Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput., 24 (1997), pp. 235–265.
- J. E. Cremona and P. Serf, Computing the rank of elliptic curves over real quadratic number fields of class number 1, Math. Comp., 68 (1999), pp. 1187–1200.
- H. B. Daniels and E. González-Jiménez, On the torsion of rational elliptic curves over sextic fields, arXiv e-prints, (2018), p. arXiv:1808.02887.
- M. Fujiwara, *θ-congruent numbers*, in Number theory (Eger, 1996), de Gruyter, Berlin, 1998, pp. 235–241.
- V. Girard, M. N. Lalín, and S. C. Nair, Families of non-θ-congruent numbers with arbitrarily many prime factors, Colloq. Math., 152 (2018), pp. 255–271.
- E. Girondo, G. González-Diez, E. González-Jiménez, R. Steuding, and J. Steuding, *Right triangles with algebraic sides and elliptic curves over number fields*, Math. Slovaca, 59 (2009), pp. 299–306.

References II

- E. González-Jiménez and F. Najman, *Growth of torsion groups of elliptic curves upon base change*, arXiv e-prints, (2016), p. arXiv:1609.02515.
- E. González-Jiménez, F. Najman, and J. M. Tornero, *Torsion of rational elliptic curves over cubic fields*, Rocky Mountain J. Math., 46 (2016), pp. 1899–1917.
- B. Iskra, Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), pp. 168–169.
- A. S. Janfada and S. Salami, On θ -congruent numbers on real quadratic number fields, Kodai Math. J., 38 (2015), pp. 352–364.
- A. S. Janfada, S. Salami, A. Dujella, and J. C. Peral, On high rank $\pi/3$ and $2\pi/3$ -congruent number elliptic curves, Rocky Mountain J. Math., 44 (2014), pp. 1867–1880.

References III

- T. Jędrzejak, Congruent numbers over real number fields, Colloq. Math., 128 (2012), pp. 179–186.
- M. Kan, θ-congruent numbers and elliptic curves, Acta Arith., 94 (2000), pp. 153–160.
- A. W. KNAPP, *Elliptic curves*, vol. 40 of Mathematical Notes, Princeton University Press, Princeton, NJ, 1992.
- N. Koblitz, *Introduction to elliptic curves and modular forms*, vol. 97 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1984.
- J. Lagrange, *Nombres congruents et courbes elliptiques*, in Séminaire Delange-Pisot-Poitou (16e année: 1974/75), Théorie des nombres, Fasc. 1, Exp. No. 16, 1975, p. 17.
- P. Monsky, *Mock Heegner points and congruent numbers*, Math. Z., 204 (1990), pp. 45–67.

References IV

- D. Prasad and C. S. Yogananda, *Bounding the torsion in CM elliptic curves*, C. R. Math. Acad. Sci. Soc. R. Can., 23 (2001), pp. 1–5.
- D. QIU AND X. ZHANG, Elliptic curves and their torsion subgroups over number fields of type (2, 2, ..., 2), Sci. China Ser. A, 44 (2001), pp. 159–167.
- L. Reinholz, B. K. Spearman, and Q. Yang, Families of even non-congruent numbers with prime factors in each odd congruence class modulo eight, Int. J. Number Theory, 14 (2018), pp. 669–692.
- P. Serf, *Congruent numbers and elliptic curves*, in Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 227–238.
- A. Silverberg, *Points of finite order on abelian varieties*, in *p*-adic methods in number theory and algebraic geometry, vol. 133 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992, pp. 175–193.

References V

- J. H. Silverman, *The arithmetic of elliptic curves*, vol. 106 of Graduate Texts in Mathematics, Springer, Dordrecht, second ed., 2009.
- M. Tada, Congruent numbers over real quadratic fields, Hiroshima Math. J., 31 (2001), pp. 331–343.
- Y. Tian, Congruent numbers and Heegner points, Camb. J. Math., 2 (2014), pp. 117–161.
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), pp. 323–334.

THANK YOU