

Art of Problem Solving

2006 Romania National Olympiad

Romania National Olympiad 2006

_	Grade level 7
_	April 17th
1	Let ABC be a triangle and the points M and N on the sides AB respectively BC , such that $2 \cdot \frac{CN}{BC} = \frac{AM}{AB}$. Let P be a point on the line AC . Prove that the lines MN and NP are perpendicular if and only if PN is the interior angle bisector of $\angle MPC$.
2	A square of side n is formed from n^2 unit squares, each colored in red, yellow or green. Find minimal n , such that for each coloring, there exists a line and a column with at least 3 unit squares of the same color (on the same line or column).
3	In the acute-angle triangle ABC we have $\angle ACB = 45^{\circ}$. The points A_1 and B_1 are the feet of the altitudes from A and B , and H is the orthocenter of the triangle. We consider the points D and E on the segments AA_1 and BC such that $A_1D = A_1E = A_1B_1$. Prove that
	a) $A_1B_1 = \sqrt{\frac{A_1B^2 + A_1C^2}{2}};$
	b) $CH = DE$.
4	Let A be a set of positive integers with at least 2 elements. It is given that for any numbers $a > b$, $a, b \in A$ we have $\frac{[a,b]}{a-b} \in A$, where by $[a,b]$ we have denoted the least common multiple of a and b . Prove that the set A has exactly two elements.
	Marius Gherghu, Slatina
_	Grade level 8
_	April 17th
1	We consider a prism with 6 faces, 5 of which are circumscriptible quadrilaterals. Prove that all the faces of the prism are circumscriptible quadrilaterals.

Art of Problem Solving

2006 Romania National Olympiad

Let n be a positive integer. Prove that there exists an integer $k, k \geq 2$, and numbers $a_i \in \{-1, 1\}$, such that

$$n = \sum_{1 \le i < j \le k} a_i a_j.$$

Let $ABCDA_1B_1C_1D_1$ be a cube and P a variable point on the side [AB]. The perpendicular plane on AB which passes through P intersects the line AC' in Q. Let M and N be the midpoints of the segments A'P and BQ respectively.

a) Prove that the lines MN and BC' are perpendicular if and only if P is the midpoint of AB.

b) Find the minimal value of the angle between the lines MN and BC'.

4 Let $a, b, c \in \left[\frac{1}{2}, 1\right]$. Prove that

$$2 \le \frac{a+b}{1+c} + \frac{b+c}{1+a} + \frac{c+a}{1+b} \le 3.$$

selected by Mircea Lascu

– Grade level 9

– April 17th

1 Find the maximal value of

$$\left(x^3+1\right)\left(y^3+1\right),\,$$

where $x, y \in \mathbb{R}, x + y = 1$.

 $Dan\ Schwarz$

Let ABC and DBC be isosceles triangle with the base BC. We know that $\angle ABD = \frac{\pi}{2}$. Let M be the midpoint of BC. The points E, F, P are chosen such that $E \in (AB), P \in (MC), C \in (AF),$ and $\angle BDE = \angle ADP = \angle CDF$. Prove that P is the midpoint of EF and $DP \perp EF$.

Art of Problem Solving 2006 Romania National Olympiad

3	We have a quadrilateral $ABCD$ inscribed in a circle of radius r , for which there is a point P on CD such that $CB = BP = PA = AB$.
	(a) Prove that there are points A,B,C,D,P which fulfill the above conditions.
	(b) Prove that $PD = r$.
	Virgil Nicula
4	$2n$ students ($n \geq 5$) participated at table tennis contest, which took 4 days. In every day, every student played a match. (It is possible that the same pair meets twice or more times, in different days) Prove that it is possible that the contest ends like this:
	- there is only one winner;
	- there are 3 students on the second place;
	- no student lost all 4 matches.
	How many students won only a single match and how many won exactly 2 matches? (In the above conditions)
_	Grade level 10
_	April 17th
1	Let M be a set composed of n elements and let $\mathcal{P}(M)$ be its power set. Find all functions $f:\mathcal{P}(M)\to\{0,1,2,\ldots,n\}$ that have the properties
	(a) $f(A) \neq 0$, for $A \neq \phi$;
	(b) $f(A \cup B) = f(A \cap B) + f(A\Delta B)$, for all $A, B \in \mathcal{P}(M)$, where $A\Delta B = (A \cup B) \setminus (A \cap B)$.
2	Prove that for all $a, b \in \left(0, \frac{\pi}{4}\right)$ and $n \in \mathbb{N}^*$ we have
	$\frac{\sin^n a + \sin^n b}{(\sin a + \sin b)^n} \ge \frac{\sin^n 2a + \sin^n 2b}{(\sin 2a + \sin 2b)^n}.$

Art of Problem Solving 2006 Romania National Olympiad

3	Prove that among the elements of the sequence $(\lfloor n\sqrt{2}\rfloor + \lfloor n\sqrt{3}\rfloor)_{n\geq 0}$ are an infinity of even numbers and an infinity of odd numbers.
4	Let $n \in \mathbb{N}$, $n \geq 2$. Determine n sets A_i , $1 \leq i \leq n$, from the plane, pairwise disjoint, such that:
	(a) for every circle \mathcal{C} from the plane and for every $i \in \{1, 2,, n\}$ we have $A_i \cap \operatorname{Int}(\mathcal{C}) \neq \phi$;
	(b) for all lines d from the plane and every $i \in \{1, 2,, n\}$, the projection of A_i on d is not d .
_	Grade level 11
_	April 17th
1	Let A be a $n \times n$ matrix with complex elements and let A^* be the classical adjoint of A . Prove that if there exists a positive integer m such that $(A^*)^m = 0_n$ then $(A^*)^2 = 0_n$.
	Marian Ionescu, Pitesti
2	We define a pseudo-inverse $B \in \mathcal{M}_n(\mathbb{C})$ of a matrix $A \in \mathcal{M}_n(\mathbb{C})$ a matrix which fulfills the relations
	A = ABA and $B = BAB$.
	a) Prove that any square matrix has at least a pseudo-inverse.
	b) For which matrix A is the pseudo-inverse unique?
	Marius Cavachi
3	We have in the plane the system of points A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n , which have different centers of mass. Prove that there is a point P such that
	$PA_1 + PA_2 + \ldots + PA_n = PB_1 + PB_2 + \ldots + PB_n.$

Art of Problem Solving 2006 Romania National Olympiad

4	Let $f:[0,\infty)\to\mathbb{R}$ be a function such that for any $x>0$ the sequence $\{f(nx)\}_{n\geq 0}$ is increasing.
	a) If the function is also continuous on $[0,1]$ is it true that f is increasing?
	b) The same question if the function is continuous on $\mathbb{Q} \cap [0, \infty)$.
_	Grade level 12
_	April 17th
1	Let \mathcal{K} be a finite field. Prove that the following statements are equivalent:
	(a) $1 + 1 = 0$;
	(b) for all $f \in \mathcal{K}[X]$ with $\deg f \geq 1$, $f(X^2)$ is reducible.
2	Prove that $\lim_{n\to\infty} n\left(\frac{\pi}{4} - n\int_0^1 \frac{x^n}{1+x^{2n}} dx\right) = \int_0^1 f(x) dx,$
	where $f(x) = \frac{\arctan x}{x}$ if $x \in (0,1]$ and $f(0) = 1$.
	Dorin Andrica, Mihai Piticari
3	Let G be a finite group of n elements $(n \ge 2)$ and p be the smallest prime factor of n . If G has only a subgroup H with p elements, then prove that H is in the center of G .
	<i>Note.</i> The center of G is the set $Z(G) = \{a \in G ax = xa, \forall x \in G\}.$
4	Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that
	$\int_0^1 f(x)dx = 0.$
	Prove that there is $c \in (0,1)$ such that
	$\int_0^c x f(x) dx = 0.$
	Cezar Lupu, Tudorel Lupu