Normalizing Flows (Part 1)

Dr. Alireza Aghamohammadi

Modeling 1D with Normalizing Flows

Normalizing flows transform a simple distribution into a more complex one using a deep network to learn a probability model.

To model a 1D distribution $P_r(x)$:

- \diamond Start with a simple base distribution $P_r(z)$ over a latent variable z.
- Apply a function $x=f\left[z,\phi\right]$, where ϕ are parameters chosen to ensure $P_r(x)$ matches the desired distribution.

Generating a new example x^* :

- Draw z^* from the base distribution.
- Pass z^* through the function: $x^* = f[z^*, \phi]$.

Measuring Probability of Data Point *x*

Measuring the probability of a data point \boldsymbol{x} can be challenging.

Consider applying a function $f[z, \phi]$ to a random variable z with known density $P_r(z)$.

The probability of data \boldsymbol{x} under the transformed distribution is given by:

$$P_r(x \mid \phi) = \left| \frac{\partial f[z, \phi]}{\partial z} \right|^{-1} \cdot P_r(z)$$

where $z = f^{-1}[x, \phi]$ is the latent variable that generated x.

Proof: To conserve density volume so that the distribution sums to one:

$$P_r(x \mid \phi) |dx| = P_r(z) |dz|$$

$$P_r(x \mid \phi) = P_r(z) \left| \frac{dz}{dx} \right|$$

$$P_r(x \mid \phi) = P_r(z) \left| \frac{\partial z}{\partial f[z, \phi]} \right|$$

$$P_r(x \mid \phi) = P_r(z) \cdot \left| \frac{\partial f[z, \phi]}{\partial z} \right|^{-1}$$

Normalizing Flows

Normalizing flows transform data in both directions.

- ❖ Forward Mapping: Also known as the generation direction.
- ❖ Base Density: Typically chosen as a standard normal distribution.
- Inverse Mapping: Known as the normalizing direction, it transforms the complex distribution over x into a normal distribution.

Learning Parameters

To learn the distribution, we find parameters ϕ that maximize the likelihood of the training data.

$$\begin{split} \hat{\phi} &= \operatorname*{argmax} \left[\prod_{i=1}^{I} P_r(x_i \mid \phi) \right] \\ &= \operatorname*{argmin} \left[-\sum_{i=1}^{I} \log \left[P_r(x_i \mid \phi) \right] \right] \\ &= \operatorname*{argmin} \left[\sum_{i=1}^{I} \log \left| \frac{\partial f[z_i, \phi]}{\partial z_i} \right| - \log \left[P_r(z_i) \right] \right] \end{split}$$