Proprietatile limbajelor regulate

A si B doua limbaje regulate

```
A \cup B este LR?
```

AB este LR?

A* este LR?

 A^{R} este LR?

 $A \cap B$ este LR ?

 \overline{A} este LR?

A-B este LR?

Minimizarea numarului de stari ale AFD

Minimizarea numarului de stari ale AFD

Exemplu

Minimizarea numarului de stari pentru AFD

Partitionarea starilor:

- Partitionarea starilor in blocuri:
 - stari finale
 - stari nefinale
- Partitionarea fiecarui bloc in functie de starea urmatoare
- Se repeta pana cand nu mai apar blocuri noi
- Starile componente fiecarui bloc sunt stari echivalente --> ele vor fi grupate intr-o singura stare in automatul minim

Partitionarea starilor unui AFD

 $AFD = (\{Q0, Q1, Q2, Q3, Q4, Q5\}, \{0,1\}, m, Q0, \{Q3, Q5\})$

	0	1
Q0 (stare initiala)	Q1	Q3
Q1	Q0	Q3
Q2	Q1	Q4
Q3 (stare finala)	Q5	Q5
Q4	Q3	Q3
Q5 (stare finala)	Q5	Q5

Partitionarea starilor unui AFD

 $AFD = (\{1, 2, 3, 4, 5, 6, 7\}, \{a, b\}, m, 1, \{3, 5, 6, 7\})$

	а	b
1 (stare initiala)	2	4
2	3	5
3 (stare finala)	3	5
4	-	6
5 (stare finala)	7	7
6 (stare finala)	7	-
7 (stare finala)	7	7

Lema de pompare pentru limbaje regulate

Fie L un limbaj regulat, atunci exista o constanta n (dependenta de limbaj) astfel incat orice sir $\mathbf{w} \in \mathbf{L}$ cu $|\mathbf{w}| \ge \mathbf{n}$, poate sa fie scris sub forma $\mathbf{w} = \mathbf{x}\mathbf{y}\mathbf{z}$ cu urmatoarele proprietati:

- y ≠ e
- |xy| ≤ n
- pentru orice i, xy¹z ∈ L.