Two Pages on the EM Algorithm

Mathias Winther Madsen

April 1, 2021

Suppose we observe a realization of the random variable X drawn from some distributions P_{θ} with an unknown parameter θ ; we then want to solve the maximum likelihood problem

$$\max_{\theta} \quad \log P_{\theta}(X).$$

Such a problem can be complicated by the presence of an unobserved nuisance variable Z whose joint distribution with X depends on θ :

Examples of such nuisance variables include:

- the syntactic tree Z that generated an observed sentence X
- \bullet the chain of hidden states Z that generated a sequence of observations X
- the identities Z of the mixture components that generated the observations in a sample X from a mixture model

We can marginalize the nuisance variable out of the model by integrating the joint probabilities $P_{\theta}(X \mid Z) P_{\theta}(Z)$ over Z, i.e., taking the expectation of $P_{\theta}(X \mid Z)$ with respect to the marginal distribution $P_{\theta}(Z)$. We can therefore formulate the maximum likelihood problem with a nuisance variable as

$$\max_{\theta} \quad \log E_{Z \sim P_{\theta}} \left[P_{\theta}(X \mid Z) \right].$$

Unfortunately, the only way of computing the expectation $E_{Z \sim P_{\theta}}[P_{\theta}(X \mid Z)]$ is usually to enumerate all possible values of Z, and this is often prohibitively expensive. We therefore introduce the surrogate reward function

$$R(\theta, Q) = E_{Z \sim Q} \left[\log \frac{P_{\theta}(X, Z)}{Q(Z)} \right].$$

Since this is the expectation of a logarithm, we can often break it up into a sum of expectations whose terms are easier to evaluate. We can then use the

equation E[A+B] = E[A] + E[B], which is valid for dependent random variables too, to add up those simpler terms.

By Jensen's inequality, Kullback-Leibler divergences are positive,

$$E_Q\left[\log\frac{Q}{P}\right] \ge 0,$$

with equality if and only if P = Q. Hence

$$R(\theta, Q) = \log P_{\theta}(X) - \underbrace{E_{Z \sim Q} \left[\log \frac{Q(Z)}{P_{\theta}(Z \mid X)} \right]}_{\text{KL divergence}} \le \log P_{\theta}(X).$$

The surrogate reward is therefore a lower bound on the true reward. This bound holds with equality if and only if Q is the conditional distribution of Z given X and θ .

In fact, the gap between $R(\theta,Q)$ and $\log P_{\theta}(X)$ is exactly the Kullback-Leibler divergence from Q(Z) to $P_{\theta}(Z \mid X)$. For a fixed θ , there is thus a unique distribution Q_{θ} that maximizes $R(\theta,Q)$, namely the conditional distribution

$$Q_{\theta}(Z) = P_{\theta}(Z \mid X).$$

All maxima of $R(\theta, Q)$ therefore occur at points of the form (θ, Q_{θ}) . At such points, the KL divergence vanishes, and the surrogate reward is equal to the true reward. Consequently, if a pair (θ^*, Q^*) maximizes the surrogate reward, then θ^* maximizes the true reward.

We can solve the surrogate problem by coordinate ascent. This involves picking an arbitrary initial value (θ_0, Q_0) and then repeating the steps

$$\begin{array}{cccc} Q_{i+1} & \longleftarrow & \max\limits_{Q} \ R(\theta_i,Q) \\ \\ \theta_{i+1} & \longleftarrow & \max\limits_{\theta} \ R(\theta,Q_{i+1}) \end{array}$$

until improvement slows down. Since both of these steps are maximizations, they cannot decrease the value of the surrogate reward; the process either has to get stuck or converge to a local maximum.

We have seen that the optimal value of Q_{i+1} given θ_i is the conditional distribution of Z given X. As for the optimal θ_{i+1} given Q_{i+1} , we can write

$$R(\theta, Q) = E_{Z \sim Q} [\log P_{\theta}(X, Z)] - \underbrace{E_{Z \sim Q} [\log Q(Z)]}_{\text{entropy of } Q}.$$

Since the entropy of Q is independent of θ , we can compute θ_{i+1} by solving

$$\max_{\theta} E_{Z \sim Q_{i+1}} \left[\log P_{\theta}(X, Z) \right].$$

For the reasons mentioned above, this expectation can frequently be broken up into a sum of differentiable terms which are reasonably easy to optimize.