

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

Fig. 1.

Fig.2 (i).

Fig.2 (ii).

Fig.3.

fd - tet
↓
cleave with BstEII
↓
fill in with Klenow
↓
re-ligate
↓
FDT 6 Bst
↓
in vitro mutagenesis (oligo 1)
↓
FDTPs/Bs
↓
in vitro mutagenesis (oligo 2)
↓
FDTPs/Xh

Oligo 1 (1653) ACA ACT TTC AAC AGT TGA GGA GAC GGT AAG CTT CTG CAG TTG GAC CTG AGC
 GGA GTG AGA ATA (1620)

Fig. 4 (i).

Oligo 3 (1704) GTC GTC TTT CCA GAC GTT AGT

GENE III

(1624) A TCT CAC TCC CCT
(1650) GAA ACT GTT GAA AGT

B TCT CAC TCC GCT CAG GTC CAA CAG AAG CTT ACG GTC ACC GTC TCC TCA ACT GTT GAA AGT
PstI BstEII

C TCT CAC TCC GCT CAG GTC CAA CTG CAG GAG CTC GAG ATC AAA CGG GAA ACT GTT GAA AGT
Q V Q L Q L E I K R
PstI XbaI

Fig. 4 (ii).

Fig.5.

rbs M K Y L L P T A A
GCATGCAAATTCTATTTCAGGAGACAGTCATAATGAAATACCTATTGCTACGGCAGCC
 10 20 30 40 50 60
SphI
PelB leader
A G L L L L A A O P A M A Q V V Q L Q E S
GCTGGATTGTATTACTCGCTGCCAACAGCGATGGCCAGGTGCACTGCAGGGAGTCA
 70 80 90 100 110 120
PstI

 G P G L V A P S Q S L S I T C T V S G F
GGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATCACATGCACCGTCTCAGGGTTC
 130 140 150 160 170 180

 S L T G Y G V N W V R Q P P G K G L E W
TCATTAACCGGCTATGGTGTAAACTGGGTTGCCAGCCTCCAGGAAAGGGCTGGAGTGG
 190 200 210 220 230 240

VHD1.3
 L G M I W G D G N T D Y N S A L K S R L
CTGGGAATGATTGGGTGATGGAAACACAGACTATAATTAGCTCTCAAATCCAGACTG
 250 260 270 280 290 300

 S I S K D N S K S Q V F L K M N S L H T
AGCATCAGCAAGGACAACCTCAAGAGCCAAGTTTCTAAAAATGAACAGTCTGCACACT
 310 320 330 340 350 360

 D D T A R Y Y C A R E R D Y R L D Y W G
GATGACACAGCCAGGTACTACTGTGCCAGAGAGAGAGATTATAGGCTTGACTACTGGGC
 370 380 390 400 410 420

Linker Peptide
 Q G T T V T V S S G G G G S G G G G S G
CAAGGCACCACGGTCACCGTCTCCCTCAggtgaggcggttcaggcggaggtggctctggc
 430 440 450 460 470 480
BstEII

 G G G S D I E L T Q S P A S L S A S V G
ggtgaggatcgGACATCGAGCTCACTCAAGTCTCCAGCCTCCCTTCGCGTCTGGGA
 490 500 510 520 530 540
SacI

Fig.5 (Cont).

E T V T I T C R A S G N I H N Y L A W Y
GAAACTGTCACCATCACATGTGAGCAAGTGGAAATATTCAACAATTATTTAGCATGGTAT
550 560 570 580 590 600

Q Q K Q G K S P Q L L V Y Y T T T L A D
CAGCAGAAACAGGGAAAATCTCCTCAGCTCTGGTCTATTATAACAACACCTTAGCAGAT
610 620 630 640 650 660

VKD1.3
G V P S R F S G S G S G T Q Y S L K I N
GGTGTGCCATCAAGGTTCAAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAAC
670 680 690 700 710 720

S L Q P E D F G S Y Y C Q H F W S T P R
AGCCTGCAACCTGAAGATTTGGGAGTTATTACTGTCAACATTTGGAGTACTCCTGG
730 740 750 760 770 780

Myc Tag (TAG1)
T F G G G T K L E I K R E O K L I S E E
ACGTTGGTGGAGGGACCAAGCTGGAGATCAAACGGGAACAAAAACTCATCTCAGAAGAG
790 800 810 820 830 840
XbaI

D L N * *
GATCTGAATTATAATGATCAAACGGTAATAAGGATCCAGCTCGAATT
850 860 870 880
EcoRI

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

M K Y L L P T A A
GCATGC~~AA~~ATTCTATTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACGGCAGCC
10 20 30 40 50 60

A G L L L L A A Q P A M A Q V Q L Q E S
GCTGGATTGTTATTACTGCTGCCAACCAGCGATGGGCCACGGTGCAGCTGCAGGAGTCA
70 80 90 100 110 120

G P G L V A P S Q S L S I T C T V S G F
GGACCTGGCCTGGTGGCGCCTCACAGAGCTGTCCATCACATGCACCGTCTCAGGGTTC
130 140 150 160 170 180

S L T G Y G V N W V R Q P P G K G L E W
TCATTAACCGGCTATGGTGTAAACTGGGTTGCCAGCCTCCAGGAAGGGTCTGGAGTGG
190 200 210 220 230 240

L G M I W G D G N T D Y N S A L K S R L
CTGGGAATGATTGGGTGATGGAAACACAGACTATAATTAGCTCTCAAATCCAGACTG
250 260 270 280 290 300

S I S K D N S K S Q V F L K M N S L H T
AGCATCAGCAAGGACAACTCCAAAGAGCCAGTTTCTTAAATGAACAGTCTGCACACT
310 320 330 340 350 360

D D T A R Y Y C A R E R D Y R L D Y W G
GATGACACAGGCCAGGTACTACTGTGCCAGAGAGAGATTATAGGCTTGACTACTGGGGC
370 380 390 400 410 420

Q G T T V T V S S A S T K G P S V F P L
CAAGGCACCAAGGTACACGGTCTCTCAGCCTCCACCAAGGGCCATAGGTCCTCCCCCTG
430 440 450 460 470 480

A P S S K S T S G G T A A L G C L V K D
GCACCCCTACTCAAGAGCACCTCTGGGGCACAGGGGCCATAGGTCCTCCCCCTG
490 500 510 520 530 540

Fig.10 (Cont 1).

Y F P E P V T V S W N S G A L T S G V H
TACITCCCCGAAACGGTGAOGGIGTGGAACTCAAGGCGCCCTGACCAACCGCGTGCAC
550 560 570 580 590 600

T F P A V L Q S S G L Y S L S S V V T V
ACCTTCCCCGGCTGTCTACAGTCTCAGGACTCTACTCTCAGCAGCGTGGTGAACCGTG
610 620 630 640 650 660

P S S S L G T Q T Y I C N V N H K P S N
CCCTCAGCAGCTTGGCAACAGACCTACATCTGCAACGTGAATACAAGCCAGCAAC
670 680 690 700 710 720

T K V D K K V E P K S S * *
ACCAAGGTGACAAGAAAGTGAACCCAAATCTICATAATAACCCGGAGCTTGCATGCA
730 740 750 760 770 780

M K Y L L P T A A A G L
AATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCCTACGGCAGCGCTGGAT
790 800 810 820 830 840

L L L A A Q P A M A D I E L T Q S P A S
TGTTATTACTCGCTGCCAACCAACAGCGATGGCGACATCGAGCTCACCCAGTCTCCAGCCT
850 860 870 880 890 900

L S A S V G E T V T I T C R A S G N I H
CCCTTCTGCGTCIGTGGGAGAAACIGTACCCATCACATGTCAGCAAGTGGGAATATTC
910 920 930 940 950 960

N Y L A W Y Q Q K Q G K S P Q L L V Y Y
ACAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTCAGCTCTGGCTATT
970 980 990 1000 1010 1020

Fig.10 (Cont 2).

T T T L A D G V P S R F S G S G S G T Q
ATACAACAAACCTTAGCAGATGGTGTGOCATCAAGGTTCAAGTCAGTGGCAGTGGATCAGGAACAC
1030 1040 1050 1060 1070 1080

Y S L K I N S L Q P E D F G S Y Y C Q H
AATATTCTCTCAAGATCAACAGCTGCAAGCTGAAAGATTTGGGAGTTATTACTGTCAAC
1090 1100 1110 1120 1130 1140

F W S T P R T F G G G T K L E I K R T V
ATTTTGGAGTACTCTCGGACGTTGGTGGAGGCACCAAGCTGGAGATCAAACGGACTG
1150 1160 1170 1180 1190 1200

A A P S V F I F P P S D E Q L K S G T A
TGGCTGCACCATCTGCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG
1210 1220 1230 1240 1250 1260

S V V C L L N N F Y P R E A K V Q W K V
CCTCTGTTGCTGCTGTAATACTTCTATCCAGAGAGGCAAAAGTACAGTGGAAAG
1270 1280 1290 1300 1310 1320

D N A L Q S G N S Q E S V T E Q D S K D
TGGATAACGCCCTCCAATGGGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCAAGG
1330 1340 1350 1360 1370 1380

S T Y S L S S T L T L S K A D Y E K H K
ACAGCACCTACAGCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGACTACGAGAAACACA
1390 1400 1410 1420 1430 1440

V Y A C E V T H Q G L S S P V T K S F N
AAGTCTACGCTGCGAAGTCACCCATCAGGGCTGAGCTGCGCGTACAAAGAGCTTCA
1450 1460 1470 1480 1490 1500

R G E S * *
ACCGGGAGAGTCATAGTAAGAATTG
1510 1520

Fig.10 (Cont 3).

Fig.11.

Fig.12a.

Fig.12b.

Fig.13.

Q V Q L Q E S G G G L V Q P G G
 CAG GTG CAG CTG CAG GAG TCA GGA GGA GGC TTG GTA CAG CCT GGG GGT
PstI
 S L R L S C A T S G F T F S N Y
 TCT CTG AGA CTC TCC TGT GCA ACT TCT GGG TTC ACC TTC AGT AAT TAC
 Y M G W V R Q P P G K A L E W L
 TAC ATG GGC TGG GTC CGC CAG CCT CCA GGA AAG GCA CTT GAG TGG TTG
 G S V R N K V N G Y T T E Y S A
 GGT TCT GTT AGA AAC AAA GTT AAT GGT TAC ACA ACA GAG TAC AGT GCA
 S V K G R F T I S R D N F Q S I
 TCT GTG AAG GGG CGG TTC ACC ATC TCC AGA GAT AAT TTC CAA AGC ATC
 L Y L Q I N T L R T E D S A T Y
 CTC TAT CTT CAA ATA AAC ACC CTG AGA ACT GAG GAC AGT GCC ACT TAT
 Y C A R G Y D Y G A W F A Y W G
 TAC TGT GCA AGA GGC TAT GAT TAC GGG GCC TGG TTT GCT TAC TGG GGC
 Q G T L V T V S S g g g g s g g g g s
 CAA GGG ACC CTG GTC ACC gtc tcc tca gg^gggaggcggttcaggcggaggggcct
BstEII
 g g g g s d i E L T Q T P L S L P V
 ggccgtggcggttcggac atc GAG CTC ACC CAA ACT CCA CTC TCC CTG CCT GTC
SacI
 S L G D Q A S I S C R S S Q S I
 AGT CTT GGA GAT CAA GCC TCC ATC TCT TGC AGA TCT AGT CAG AGC ATT
 V H S N G N T Y L E W Y L Q K P
 GTA CAT AGT AAT GGA AAC ACC TAT TTA GAA TGG TAC CTG CAG AAA CCA
PstI
 G Q S P K L L I Y K V S N R F S
 GGC CAG TCT CCA AAG CTC CTG ATC TAC AAA GTT TCC AAC CGA TTT TCT
 G V P D R F S G S G T D F T
 GGG GTC CCA GAC AGG TTC AGT GGC AGT GGA TCG GGG ACA GAT TTC ACA
 L K I S R V E A E D L G V Y Y C
 CTC AAG ATC AGC AGA GTG GAG GCT GAG GAT CTG GGA GTT TAT TAC TGC
 F Q G S H V P Y T F G G G T K L
 TTT CAA GGT TCA CAT GTT CCG TAC ACG TTC GGA GGG GGG ACC AAG CTC
 E I K R
GAG ATC AAA CGG
XbaI

Fig.14.

Fig.15.

5' END
 TCT CAC AGT GCA CAA ACT GTT GAA CGG ACA CCA GAA ATG CCT GTT CTG
 ApaL1

3' END
 K A A L G L K
 AAA GCC GCT CTG GGG CTG AAA GCG GCC GCA GAA ACT GTT GAA AGT etc.
 Not I

Fig.16 (i).

Fig.16 (ii).

A (1834) 5' GAG GGT GGT GGC TCT
 - - - C - -
 - - - C - -
 - - - C - ACT 3' (1839)

B (2284) 5' - GGC GGC GGC TCT
 - GGT GGT GGT -
 - - GGC GGC -
 GAG - - GGC -
 - - - GGT -
 - - - GGC -
 - - - GGT -
 - - - GGC - 3' (2379)

Reverse complement of mutagenic
 oligo G3Bam link

5' GAG GGT GGC GGA TCC

T
 GAG GGT GGC GG 3'

Fig.17.

1) PRIMARY PCR

VH1BACK

VK2BACK

heavy

kappa

2) ASSEMBLY PCR

VH1BACK

linker = (gly · gly · gly · gly · ser)3

3) ADDING RESTRICTION SITES

VHBKAPA10

Fig.18.

Fig.19.

Fig.20.

Fig.21.

Fig.22.

Fig.23(i)

d
M

Fig.23(ii)

M

VH sequences

from combinatorial library:

	CDR1	CDR2	CDR3	
A	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
B	QVQLQSGAEELAKPQASVTHSKCKASCTT	RDYAH	MLKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
C	QVQLQSGPELVKPCASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPYNQDGTKYNEKFKD
D	QVQLQSGPELVKPCASVTHSKCKASCTT	GYFANH	WVKQSGCKSLEMIIG	RINPYNQDFTYNOFKFD
E	QVQLQSGPQLVVAQSOISITCTVBFSLT	SYGVH	WVQRPQGQCLEMIG	VIWAGGSTMYNISALHS
F	QVQLQSGPELVKPCASVTHSKCKASCTT	STLKH	WVKQRPQGQCLWIC	YINPSEGTYTNQKFKD
G	QVQLQSGAEELVPCASVTHSKCKASCTT	RYLPHI	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
H	QVQLQSGPELVKPCASVTHSKCKASCTT	RNTMI	WVKQBHQGKELWIC	YIAFPNGGTTTNQKFKG
I	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYAHH	WVKQSGSKSLEMIIG	VIETYNGCITTYNQKFKD
J	QVQLQSGAEELAKPQASVTHSKCKASCTT	RTYTH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
K	QVQLQSGAEELAKPQASVTHSKCKASCTT	RDYAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
L	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
M	QVQLQSGAEELAKPQASVTHSKCKASCTT	NTYRH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
N	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
O	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
P	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
Q	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
R	QVQLQSGAEELAKPQASVTHSKCKASCTT	TYLRAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
S	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
T	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD
U	QVQLQSGAEELAKPQASVTHSKCKASCTT	RDYAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD

from hierarchical library VH-rep x Vκ-d:

I	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYAHH	WVKQSGSKSLEMIIG	VIETYNGCITTYNQKFKD	YDGYI
J	QVQLQSGAEELAKPQASVTHSKCKASCTT	RTYTH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DRGAY
K	QVQLQSGAEELAKPQASVTHSKCKASCTT	RDYAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGLY
L	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGYI
M	QVQLQSGAEELAKPQASVTHSKCKASCTT	NTYRH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGYF
N	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGYX
O	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
P	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
Q	QVQLQSGAEELAKPQASVTHSKCKASCTT	SYTAAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
R	QVQLQSGAEELAKPQASVTHSKCKASCTT	TYLRAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
S	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
T	QVQLQSGAEELAKPQASVTHSKCKASCTT	STTAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY
U	QVQLQSGAEELAKPQASVTHSKCKASCTT	RDYAH	WVKQRPQGQCLEMIG	YINPSEGTYTNQKFKD	DYGY

Fig.24.

V_k sequences

Fig.24 (Cont).

from combinatorial library	CDR1	CDR2	CDR3
a DIELTQSPSLSAISLGERVSLTC	RASQEISCVLTS	MHQKQPDGSIKRLIY	AASTLES
b DIELTQSPAIMSASPGKVTMTC	RASSSV66SLH	MHQQKSGASPCKMLIY	BTSNLAS
c DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
d DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
e DIELTQSPAIMSASPGEKVITTC	SASSSVNTAH	MHQQKPGTSPKMLIY	STSNLAS
f DIELTQSPAIMSASPGEKVITTC	SASSSVNTAH	MHQQKPGTSPKMLIY	DTKLAS
g DIELTQSPAIMSASPGEKVITTC	SASSSINTMH	MHQQKPGCASPCKMLIY	DTKLAS
from hierarchical library VH-8 x V _k -rep:			
h DIELTQSPAIMSASPGEKVITTC	SASSSVSTH	MHQQKSGTSPKMLIY	DTSKLAS
i DIELTQSPAIMSASPGEKVITTC	SASSSVSTH	MHQQKPGTSPKLLIY	STSNLAS
j DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGTSPKLLIY	RTSNLAS
k DIELTQSPTHAASPGDMITITC	SASSSISSTNLH	MHQQKPGTSPKLLIY	RTSNLAS
l DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
m DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
n DIELTQSPTHAASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
o DIELTQSPAIMSASPGEKITITC	SASSSISSTNLH	MHQQKPGFSPKLLIY	RTSNLAS
p DIELTQSPAIMSASPGEKVITTC	SASSSVSTH	MHQQKSGTSPKMLIY	DTKLAS
q DIELTQSPAIMSAGDKVITTC	SASSSVSTH	MHQQKSGTSPKMLIY	DTKLAS
r DIELTQSPAIMSASPGEKVITTC	SASSSVSTH	MHQQKSGTSPKMLIY	DTKLAS
s DIELTQSPAIMSASPGEKVITTC	RASSSVTS81LN	MHQQKSGASPCKMLIY	STSNLAS
t DIELTQSPAIMSASPGEKVITTC	RASSSV96SLN	MHQQKSGASPCKMLIY	STSNLAS
u DIELTQSPAIMSASPGEKVITTC	RASSSVSSSTLH	MHQQKSGASPCKMLIY	STSNLAS
v DIELTQSPAIMSASPGEKVITTC	RASSSVSSSTLH	MHQQKSGASPCKMLIY	STSNLAS
w DIELTQSPAIMSASPGEKVITTC	SASSSISSTNLH	MHQQKPGTSPKLLIY	RTSNLAS

Fig.25.

HEAVY CHAIN

	A	B	C	D	E	F	G	H
a	2		1					
b		1		1	1			
c		1					1	
d		7	1			1		
e	2			2				
f			1					
g								1

OD_{405nm} in ELISA

0.2-0.9

0.9-2.0

>2.0

Fig.26(a).

Fig.26(b).

Fig.27.

Fig.28.

Fab

VH VK

g3p

scFv

Fig.29.

Fig.30.

Fig.31.

Fig.32.

Fig.33.

Fig.34.

Fig.35A.

a b c

Fig.35B.

a b c d e f

© 1998 John Wiley & Sons, Ltd. *J. Biomol. Screen.* 3: 133-140

Fig.36.

Fig.37.

Fig.38A.

Fig.38B.

Fig.39.

Fig.40.

Fig.41.

Fig.42.

Fig.43.

Fig.44 (i).

Fig. 44 (ii).

640 650 660 670 680 690 700 710 720
 GGAGCAAGGCTGCCCTCACCATCACAGGGCACAGACTGAGGATGAGGCAATATTTCTGTGCTCTATGGG
 CCTCTGTTCCGACGGAGTGGTAGTGTCCCCGTGACTCTACTCCGTTATAAAAGACACGAGATA
 GlyAspLysAlaAlaLeuThrIleThrGlyAlaGlnThrGluAspGluAlaLeuTrpPheCysAlaLeuTrpIleThrGlyAla
 730 740 750 760 770
 TTC[GTTGAGGAA[GAACTGACTGTCTGAGATCAAACGGGGGGGG
 AAGCCACCTCCTGGTTGACTGACAGGGCTAGTTGCCCGGGCG
 PheGlyGlyIleThrValLeuGluIleLeuGluIleLeuGlu

Fig.45.

Fig.46.

Fig.47.

Fig.48(i)

Fig.48(ii)

Fig.48(iii)

3' Human CH1 and hinge

K P S N T K V D K K V E P K S S T K T H T
AACCAGCAACACCAAGGTCACAAGAAAGTTGAGGCCAAATCTCAACTAAGACGCACACA

myc peptide tag

S G G E Q K L I S E E D L N * *

TCAGGAGGTGAACAGAAGCTCATCTCAGAAGAGGATCTGAATTAAAGGGAGCTGGATGCA

pelB leader

M K Y L L P T A A A G L

AATCTTAATTCAAGGAGACAGTCATAATGAAATAACCTATTGCTACGGCAGCCCTGGATGTC

5' V_k

L L P A A Q P A M A D I E L T Q S P

TATTAACCTGCTGCCAACCAACCAGCGATGGCGACATGGAGTTACCCAGTCTCC

Fig.49.

Fig.50(i)

Fig.50(ii)

Fig.51.

Fig.53.

Fig.52.

	CDR 1	CDR 2	CDR 3
D1.3	DIQMTQSPASVASVGETVTITCRASGNIHNLYA	WYQQKQGKSPQLLVYYTTTLAD	
M1F	DIELTQSPSSLASLGERVSLTCRASQDIGSSLN	WLQQEPDGTIKRLLIYATSSLDS	
M21	DIELTQSPALMAASPGEEKVTITCSVSSSISSSNLHWYQQKSETS PKPWIYGTSNLAS		