Anti-DreamBooth: Protecting users from personalized text-to-image synthesis

ICCV 2023

[paper] [project]

Thanh Van Le*1, Hao Phung*1, Thuan Hoang Nguyen*1, Quan Dao*1, Ngoc N. Tran^{†2}, Anh Tran¹
¹VinAI Research
²Vanderbilt University

v.{thanhlv19, haopt12, thuannh5, quandm7, anhtt152}@vinai.io, ngoc.n.tran@vanderbilt.edu

2024.02.07

Mijin Koo

Contents

- Introduction
- Adversarial attack
- User protection with image cloaking
- Anti-DreamBooth
 - Background
 - Method
 - Experiments
 - Ablation Study
 - Discussion

Introduction

Motivation

- DreamBooth, if misused, can issue harmful images targeting specific individuals.
- The threat from DreamBooth, compared to GAN-based DeepFakes, is less known but potentially more dreadful when it occurs.
- Our motivation is to prevent such scenarios by processing the subject's images before online release.

Proactive Defense Strategy

- Proposes a proactive defense mechanism named Anti-DreamBooth.
- Suggests injecting subtle adversarial noise into users' images before publishing to the DreamBooth threat.

Introduction

Contributions

- Discusses the potential negative impact of personalized text-to-image synthesis.
- Defines a new task of defending users from the critical risk posed by DreamBooth.
- Proposes a proactive defense approach involving adversarial noise addition.
- Extensively evaluates the proposed methods on two facial benchmarks under different configurations.
- Demonstrates the effectiveness of the best defense in both convenient and adverse settings.

Adversarial attack

Introduction of FGSM and Adversarial Vulnerability

- Fast Gradient Sign Method (FGSM) marks the introduction of adversarial vulnerability in machine learning.
- Adversarial attacks aim to generate model inputs inducing misclassification while remaining visually indistinguishable from clean inputs.

Explaining and Harnessing Adversarial Examples (ICLR, 2015)

Adversarial attack

- Types and varieties of adversarial attacks
 - Adversarial attacks are broadly categorized based on two criteria
 - Prior knowledge of the model you want to attack: White-box/Black-box
 - Target presence: Targeted/Untargeted

User protection with image cloaking

AI Model Misuse Risk and Image Cloaking

- The misuse risk of AI models, particularly exploiting public images for malicious purposes, prompts the need for proactive prevention strategies.
- "Image cloaking" involves adding subtle noise to users' images before publishing to disrupt attempts at exploitation.

Applications of Image Cloaking

- Privacy Protection
- Face Recognition Disruption
- Preventing GAN-based Image Manipulation
- Preventing personalization

Anti-Dreambooth | Background

Adversarial attack

- [Goal] To find an imperceptible perturbation of an input image to mislead the behavior of given models
- The minimal visual difference is enforced by $\|x' x\|_p < \eta$, objective is denoted $\Delta = \{\delta : \|\delta\|_p < \eta\}$
- Find the optimal perturbation δ to maximize the classification loss in the untargeted version:

$$\delta_{\text{adv}} = \operatorname*{arg\,max}_{\delta \in \Delta} \mathcal{L}(f(x+\delta), y_{\text{true}})$$

DreamBooth

- [Goal] To personalize text-to-image diffusion models for instance of interest
- Training loss combines two objectives, reconstruction loss and prior preservation loss

Problem Definition

• [Goal] Craft imperceptible perturbations for each user's image, disrupting DreamBooth models.

Defense settings

- Convenient Setting
 - Considered "white-box."
 - Prior knowledge about pretrained text-to-image generator, training term, and training prompt used by the attacker.
- Adverse Settings
 - Considered "gray-box."
 - Unknown information about pretrained generator, term, or prompt used by the adversary.
 - Potential use of a surrogate component for defense.
- Uncontrolled Setting
 - Advanced setting where some user's clean images are leaked.
 - Adversary can collect mix of perturbed and clean images X'db = X'adv \cup Xcl.
 - Challenging as the DreamBooth model can learn from unperturbed photos.

Problem Formalization

- Objective is to optimize the adversarial noise $\Delta^*_{db} = \{\delta\}$ that minimizes the personalized generation ability of that DreamBooth model
- ϵ_{θ^*} is DreamBooth model, $A(\epsilon_{\theta^*}, X)$ is personalization evaluation function
 - Defense criteria could include awful quality, none or unrecognizable human subjects, and mismatched subject identity
 - However, it's hard to define a all-in-one evaluation function A

$$\Delta_{db}^* = rg \min_{\Delta_{db}} \mathcal{A}(\epsilon_{ heta^*}, \mathcal{X}),$$
s.t. $\theta^* = rg \min_{\theta} \sum_{i=1}^{N_{db}} \mathcal{L}_{db}(\theta, x^{(i)} + \delta^{(i)}),$
and $\|\delta^{(i)}\|_p \leq \eta \quad \forall i \in \{1, 2, ..., N_{db}\},$

Proposed method

Instead, we use simpler objective functions to achieve the same goal

$$\delta^{*(i)} = \underset{\delta^{(i)}}{\operatorname{arg\,max}} \mathcal{L}_{cond}(\theta^*, x^{(i)}), \forall i \in \{1, ..., N_{db}\},$$
s.t.
$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{N_{db}} \mathcal{L}_{db}(\theta, x^{(i)} + \delta^{(i)}),$$
and
$$\|\delta^{(i)}\|_p \leq \eta \quad \forall i \in \{1, ..., N_{db}\},$$

Algorithms

- Fully-trained Surrogate Model Guidance (FSMG)
 - Use a surrogate DreamBooth model with hyperparameters θ_{clean} , fully finetuned from a small subset of samples $X_A \subseteq X$.
 - Surrogate model can be trained once, and we can use θ_{clean} as the guidance to find optimal noise for each target image

$$\delta^{*(i)} = \arg\max_{\delta^{(i)}} \mathcal{L}_{cond}(\theta_{\text{clean}}, x^{(i)} + \delta^{(i)})$$

Algorithms

- Alternating Surrogate and Perturbation Learning (ASPL)
 - Recognizing limitations of using a fully-trained surrogate model, proposes an alternating approach inspired by literature.
 - Involves incorporating surrogate DreamBooth model training with perturbation learning in an alternating manner.

$$\theta' \leftarrow \theta.\text{clone}()$$

$$\theta' \leftarrow \underset{\theta'}{\operatorname{arg\,min}} \sum_{x \in \mathcal{X}_A} \mathcal{L}_{db}(\theta', x)$$

$$\delta^{(i)} \leftarrow \underset{\delta^{(i)}}{\operatorname{arg\,max}} \mathcal{L}_{cond}(\theta', x^{(i)} + \delta^{(i)})$$

$$\theta \leftarrow \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{N_{db}} \mathcal{L}_{db}(\theta, x^{(i)} + \delta^{(i)}).$$

Experimental Setup

- Selected Datasets
 - CelebA-HQ
 - VGGFace2
- Training Configurations
 - DreamBooth Model Training
 - Default pretrained generator: Stable Diffusion (v2.1).
 - Training instance prompt: "a photo of sks person."
 - Prior prompt: "a photo of person."
 - Training time: 15 minutes on an NVIDIA A100 GPU 40GB.
 - Adversarial Noise Optimization
 - FSMG and ASPL use untargeted PGD scheme.
 - 100 PGD iterations for FSMG, 50 iterations for ASPL.
 - default noise budget $\eta = 0.05$.
 - Optimization time: 2 minutes for FSMG, 5 minutes for ASPL on an NVIDIA A100 GPU 40GB.

Evaluation

- 1. Face Detection Failure Rate (FDFR)
 - Measures the rate of images with no detectable face.
 - Detected using RetinaFace detector.
- 2. Identity Score Matching (ISM)
 - Computes cosine distance between detected face embedding and average face embedding of the entire user's clean image set.
 - Uses ArcFace recognizer.
- 3. Image Quality Assessment Metrics
 - SER-FQA: Advanced metric dedicated to facial images.
 - BRISQUE: Classical metric popular for assessing images in general.
- Evaluation Proces
 - 30 images generated for each trained DreamBooth model and testing prompt.
 - Comprehensive evaluation using the mentioned metrics.

Convenient Setting

• Two image generation prompts used: one from training ("a photo of sks person") and one unseen prompt ("a DSLR portrait of sks person").

Results

- Untargeted defenses significantly increase face detection failure rates and decrease identity matching scores, countering the DreamBooth threat.
- ASPL performs better than FSMG, mimicking DreamBooth model training better at test time.
- Targeted methods show poor performance, suggesting suboptimal and ineffective noise generation.
- ASPL chosen for follow-up experiments due to superior performance.

Dataset	Method	"a photo of sks person"				"a dslr portrait of sks person"			
Dataset	Method	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
	No Defense	0.07	0.63	0.73	15.61	0.21	0.48	0.71	9.64
	FSMG	0.56	0.33	0.31	36.61	0.62	0.29	0.37	38.22
VGGFace2	ASPL	0.63	0.33	0.31	36.42	0.76	0.28	0.30	39.00
	T-FSMG	0.07	0.58	0.74	15.49	0.28	0.44	0.71	17.29
	T-ASPL	0.07	0.57	0.72	15.36	0.39	0.44	0.70	20.06
	No Defense	0.10	0.68	0.72	17.06	0.26	0.44	0.72	7.30
CelebA-HQ	FSMG	0.34	0.48	0.56	36.13	0.35	0.36	0.66	33.60
	ASPL	0.31	0.50	0.55	38.57	0.34	0.39	0.63	34.89
	T-FSMG	0.06	0.64	0.73	25.75	0.24	0.45	0.73	8.04
	T-ASPL	0.06	0.64	0.73	20.58	0.26	0.46	0.72	5.36

Table 1: Comparing the defense performance of the proposed methods in a convenient setting on different datasets.

Adverse Setting

- Model Mismatching
 - Example: Transferring adversarial noise trained on SD v1.4 to defend DreamBooth models trained from v2.1 and v2.0.
 - Ensemble approach (E-ASPL) further improves defense.
- Term Mismatching
 - Example: Changing from default term ("sks") to another ("t@t").
 - Term mismatch has a moderate effect; key scores like ISM remain good.
- Prompt Mismatching
 - Malicious user uses a different DreamBooth training prompt.
 - ASPL provides low ISM scores, indicating effectiveness.

	Train	Test		to of sks pers	son''	"a dslr portrait of sks person"				
	ITalli	1681	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
Model	v1.4	v2.1	0.62	0.31	0.28	36.00	0.70	0.31	0.35	38.39
mismatch		v2.0	0.70	0.27	0.23	36.83	0.61	0.26	0.31	37.28
Encamble	v1.4, 1.5, 2.1 v2.0		0.79	0.24	0.18	37.96	0.71	0.23	0.23	38.99
Ensemble	v1.4, 1.5, 2.1	v2.1	0.70	0.27	0.28	36.71	0.75	0.29	0.33	39.23
Term/	Germ/ DreamBooth prompt			oto of S_* pers	on"	"a dslr portrait of S_* person"				
Prompt	Dicambo	oui prompt	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
mismatch	"sks" -	" sks " \rightarrow " $t@t$ "			0.48	36.67	0.34	0.28	0.52	28.17
mismatch	"a dslr portrai	t of sks person"	0.07	0.15	0.69	17.34	0.49	0.37	0.36	38.42

Adverse Setting

- Image Preprocessing
 - Robustness evaluation under common image
 - Gaussian blur or JPEG compression slightly weakens defense.
 - Defense maintains reasonable robustness against these techniques.
- Real-world Test
 - ASPL successfully disrupts personalized images generated by Astria, a black-box commercial service (see Appendix B).

	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
ASPL	0.63	0.33	0.31	36.42
Gaussian Blur K=3	0.48	0.42	0.39	42.05
Gaussian Blur K=5	0.19	0.51	0.62	42.46
Gaussian Blur K=7	0.10	0.56	0.68	43.72
Gaussian Blur K=9	0.07	0.59	0.71	40.67
JPEG Comp. Q=10	0.09	0.58	0.71	43.93
JPEG Comp. Q=30	0.08	0.59	0.73	32.56
JPEG Comp. Q=50	0.11	0.56	0.70	30.29
JPEG Comp. Q=70	0.19	0.49	0.56	37.04
No def., no preproc.	0.07	0.63	0.73	15.61

Uncontrolled Setting

- Considers cases of combining clean and perturbed images for training
- Defense effectiveness decreases with more clean images

Perturbed Clean $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BRISQUE↑ 39.00
4 0 0.63 0.33 0.31 36.42 0.76 0.28 0.30	39.00
0 000 000 000	
3 1 0.50 0.43 0.41 35.53 0.52 0.35 0.51	34.01
2 2 0.29 0.53 0.61 28.99 0.40 0.37 0.62	26.13
1 3 0.08 0.61 0.73 18.92 0.27 0.45 0.70	15.55
0 4 0.07 0.63 0.73 15.61 0.21 0.48 0.71	9.64

Figure 13: Qualitivative results of ASPL in uncontrolled setting on VGGFace2. We denote the perturbed examples and the leaked clean examples in red and green, respectively.

Anti-Dreambooth | Ablation Study

Ablation Study

- 1. Text-to-Image Generator Version:
 - Versions Tested: Stable Diffusion (SD) v1.4, v1.5, and v2.1.
 - Results (Table 2): ASPL shows consistent defense effectiveness across different versions.
- 2. Noise Budget (η) :
 - Impact on ASPL Attack Using SD v2.1:
 - Larger noise budget improves defense performance at the cost of perturbation's stealthiness (Table 3).

Version D	Defense?		to of sks pers	on"	"a dslr portrait of sks person"				
	Defense:	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
1 4	Х	0.05	0.46	0.65	21.06	0.08	0.43	0.64	10.05
v1.4	✓	0.80	0.18	0.12	26.76	0.17	0.28	0.55	13.07
v1.5	Х	0.07	0.49	0.65	18.53	0.07	0.45	0.64	10.57
V1.5	✓	0.71	0.20	0.20	22.98	0.11	0.26	0.57	16.10

Table 2: Defense performance of ASPL with different generator versions on VGGFace2 in a convenient setting.

	Quality			"a pho	a photo of sks person"			"a dslr portrait of sks person"			
η	PSNR↑	LPIPS↓	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑	
0	-	-	0.07	0.63	0.73	15.61	0.21	0.48	0.71	9.64	
0.01	48.74	0.01	0.08	0.58	0.72	33.03	0.28	0.45	0.72	17.14	
0.03	38.42	0.12	0.44	0.38	0.38	36.45	0.55	0.32	0.43	37.86	
0.05^{*}	34.56	0.21	0.63	0.33	0.31	36.42	0.76	0.28	0.30	39.00	
0.10	28.77	0.40	0.76	0.21	0.22	37.33	0.86	0.23	0.26	40.92	
0.15	25.97	0.50	0.80	0.15	0.15	37.07	0.91	0.17	0.14	41.18	

Table 3: Quality of protected images and defense performance of ASPL with different noise budgets on VGGFace2 in a convenient setting. "*" is default.

Anti-Dreambooth | Ablation Study

Ablation Study

- 3. Inference Text Prompt:
 - Tested Against ASPL-Disturbed DreamBooth Models:
 - ASPL well-disturbs images generated with unseen text prompts ("a DSLR portrait of sks person").
 - Similar results obtained with different inference text prompts (Fig. 3b).
- 4. Comparison with Other Techniques:
 - Tested Against Textual Inversion and DreamBooth with LoRA:
 - ASPL successfully defends against both methods, demonstrating effectiveness against other personalization techniques (Table 7).

	Def.?	FDFR↑	ISM↓	SER-FQA↓	BRISQUE↑
TI	X	0.06	0.50	0.67	7.79
TI	✓	0.43	0.12	0.59	36.79
LoRA	X	0.06	0.52	0.69	17.25
LoRA	✓	0.64	0.23	0.27	42.07

Table 7: ASPL's performance against Textual Inversion and LoRA DreamBooth, the prompt is "A photo of sks person".

Anti-Dreambooth | Disucussion

Limitations

- Generalization to unseen prompts and models
- Optimization complexity Excessive computational cost, especially in GPU memory
- Targeted- method failure cases

Discussion

- Transferability of adversarial attacks
- Tradeoff between sophistication and generality
- A battle of sword and shield

Thank you!