

Al-Driven Energy Efficiency Monitoring System for Large Buildings

A Conceptual Implementation of Edge-Based AI for Sustainable Operations

Fisayo Jassey Jabarr Adebanke Damola-Fashola

ITAI 3377 - AI at the Edge and IIOT Environments
Professor: Patricia McManus, MMkt, MBA, MScMIS
April 29, 2025

Challenge: Large buildings waste 20-30% of energy due to inefficient systems management

Problem Statement

Impact:

Financial: Unnecessary operational expenses

Environmental: Excessive carbon emissions

Operational:
Suboptimal
occupant comfort

Use Case: Al-powered hybrid edge-cloud architecture for real-time energy monitoring and optimization for large buildings (e.g., campuses, office complexes).

Project Overview

Goal/Value Preposition:

15-22% reduction in energy costs

ROI within 11-14 months

CO₂ reduction of 150-210 tons annually per building

Conceptual System Architecture

Key Feature: Integration with existing Building Management Systems (BMS) via BACnet/IP protocol

Benefits: Real-time responsiveness with minimal latency

Two-Stage Al Model Architecture

Two-Stage Al Model:

- 1. Anomaly Detection: Isolation Forest algorithm (92-95% accuracy)
- 2. Optimization Engine: Proximal Policy Optimization (PPO) reinforcement learning

Why Not GANs? More efficient resource utilization with proven technology.

Hardware Implementation

Hardware Implementation in Building Environment

Nvidia Jetson Nano Multi-Protocol Ga UPS Backup Z Zigbee Sensor

Electrical Closet HVAC System PoE Wiring Zigbee Wireless

Edge Computing Device: Nvidia Jetson Nano (472 GFLOPS, 5- 10W power)

Connectivity: Multi-protocol gateway supporting BACnet, Modbus, LonWorks

Wireless Solution: Zigbee Pro mesh network for robust concrete penetration

Security Implementation

Device Security: X.509 certificate-based mutual TLS authentication

Network Security: Dedicated VLAN with explicit ACLs

Data Protection: AES-256-GCM encryption with 24-hour key rotation

Intrusion Detection: Suricata IDS with custom MQTT traffic analysis

Implementation & Testing Strategy

Theoretical Deployment:

- Deploy agent on Nvidia Jetson
 Nano
- Real-time data from sensors via MQTT
- On-device inference, no cloud dependency

Testing Scenarios:

- Stress test: 1,000 sensor reads/min
- Simulate unauthorized access
- Target: <500ms decision latency,
 10% energy savings

Testing Strategy

Phased Approach:

- Staged deployment (one zone first)
- A/B testing with control zones
- Shadow mode testing (recommendations without execution)

Performance Benchmarks:

- 750ms maximum response time
- < 5% false positive rate for anomalies</p>
- < 40% sustained CPU utilization

Implementation Roadmap

Risk Assessment & Mitigation

Sensor data gaps → Local buffering with auto-sync

Integration delays → Middleware translation layers

Wireless interference → Zigbee Pro mesh networks

Model drift → Regular retraining and human review

Edge device failure → Redundant critical nodes

Model Complexity vs. Edge Capacity:

Lessons Learned & Challenges

GANs and RL models can be heavy for edge devices

Trade-off between accuracy and processing load

Importance of Security & Real-Time Responsiveness

Synthetic Data Risks: Potential bias; addressed with statistical audits

TensorFlow Lite: Suitable for lightweight deployment on Nvidia Jetson Nano

Tools & Frameworks (Conceptual)

SciPy: Bias detection in synthetic datasets

Mosquitto: MQTT broker for edge communication

OpenSSL: Encrypt data transfers

ROI Calculation

Implementation Costs:\$45,000-65,000 per 100,000 sq ft building

Annual Energy Savings: \$35,000-55,000 (15-22% reduction)

Payback Period: 11-14 months

5-Year ROI: 320-410%

Proven Results

Environmental Impacct

Carbon Footprint Reduction

 150-210 tons CO₂ reduction annually per 100,000 sq ft

 Supports ESG reportiing requirements

 Advances corporate sustainability goals

Broader Environmental Benefits

Reduced peak grid demand Lower water consumption in cooling systems

Extended equipment lifespan through optimized operation

Decreased maintenance interventions

Scalability Impact

For 10 buildings: 1,500-2,100 tons

CO₂ reduction annually

For 100 buildings: 15,000-21,000

CO2 reduction annually

Next Steps

Proposed Action Items:

- 1. Approve Phase 1: Site Survey and Pilot Deployment
 - 2. Select pilot building/zone
 - 3. Establish baseline measurement period
 - 4. Review first results in 90 days

Conceptual plan delivers a practical, scalable energy monitoring solution

Closing / Q&A

Focused on autonomous decision-making, low latency, and ethical AI use

Open to questions and discussion