Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Si \otimes denota el conector disyunción excluyente, \leftrightarrow denota el conector bicondicional, y p y q son dos proposiciones cualesquiera, entonces son equivalentes:

a)
$$\neg p \otimes \neg q \ y \ p \leftrightarrow q$$

b)
$$\neg (p \otimes q)$$
 y $\neg p \otimes q$

$$c) \neg p \otimes \neg q \ y \ \neg (p \otimes q)$$

Ejercicio 2

Sean A, B, C y D cuatro conjuntos cualesquiera tales que $C \subset A$ y $D \subset B$. Sea una aplicación arbitraria $f: A \to B$ y sea f^{-1} la relación inversa de f. Se consideran las dos inclusiones:

i)
$$C \subset f^{-1}(f(C))$$

ii) $D \subset f(f^{-1}(D))$

- a) Las dos inclusiones son siempre verdaderas.
- b) Las dos inclusiones son siempre falsas.
- c) Ninguna de las otras dos opciones.

Ejercicio 3 En el conjunto ordenado $(\mathbb{N}^*, |)$, siendo | la relación "divide", se considera el conjunto $A = \{2, 3, 4, 5, 6, 8\}$. Se satisface:

- a) 8 es el máximo de A.
- b) No existe ningún elemento que sea a la vez maximal y minimal de A.
- c) Ninguna de las otras dos opciones.

Ejercicio 4 Sean $a, b \in \mathbb{N}^*$ primos entre sí y sean u = 2a + 5b y v = 5a + 13b. El valor de $\operatorname{mcd}(u, v)$ es:

- a) 1.
- b) 5.
- c) Ninguna de las otras dos opciones.

Ejercicio 5 Sean un conjunto E y una operación interna \circ , definida sobre E, asociativa, conmutativa y tal que para todo $a \in E$ se satisface la igualdad $a \circ a = a$. Se define en E la relación $\mathcal R$ mediante: Para todo $a,b \in E$

$$a\Re b$$
 si y sólo si $a \circ b = b$.

Se puede asegurar que:

- a) R es una relación de equivalencia.
- b) R es una relación de orden.
- c) Ninguna de las otras dos opciones.

Ejercicio 1

Construimos la tabla de verdad con las proposiciones implicadas

p	q	$\neg p$	$\neg q$	$p\otimes q$	$\neg(p\otimes q)$	$\neg p \otimes \neg q$	$p \leftrightarrow q$	$\neg p \otimes q$
0	0	1	1	0	1	0	1	1
0	1	1	0	1	0	1	0	0
1	0	0	1	1	0	1	0	0
1	1	0	0	0	1	0	1	1

A la vista de la tabla se observa que las columnas de $\neg(p \otimes q)$ y $\neg p \otimes q$ coinciden mientras que las columnas de $\neg p \otimes \neg q$ y $p \leftrightarrow q$ no coinciden y tampoco las de $\neg p \otimes \neg q$ y $\neg(p \otimes q)$. La opción correcta es la b).

Ejercicio 2

La opción correcta es la c). En efecto, veamos que la inclusión de i) es siempre verdadera mientras que la inclusión de ii) puede ser falsa.

i) Para todo x, si $x \in C$ entonces $f(x) \in f(C)$. (*)

Ahora bien si $a \in A$ y $H \subset B$, $a \in f^{-1}(H)$ si y sólo si $f(a) \in H$, luego aplicando esto a a = x y a H = f(C) resulta que $x \in f^{-1}(f(C))$ si y sólo si $f(x) \in f(C)$. Combinando este resultado con (*), se obtiene que para todo x, si $x \in C$ entonces $x \in f^{-1}(f(C))$, es decir $C \subset f^{-1}(f(C))$.

ii) Tomamos $A = B = \{1, 2, 3, 4, 5\}$ y $f: A \to B$ la aplicación tal que f(1) = 3, f(2) = f(3) = f(4) = f(5) = 1 y sea el conjunto $D = \{1, 2\}$. En este caso $f^{-1}(D) = \{2, 3, 4, 5\}$ y $f(f^{-1}(D)) = \{1\}$ y por tanto no se verifica que $D \subset f(f^{-1}(D))$.

Ejercicio 3

La opción correcta es la c).

En efecto, 8 no es máximo de A pues no es cota superior de todos los elementos de A. En concreto, 6, 3 ó 5 no dividen a 8.

El elemento 5 es a la vez maximal y minimal de A pues no existe en A ningún múltiplo de 5 ni ningún divisor de 5.

Ejercicio 4

Sea $d \in \mathbb{N}^*$ un divisor común de u y v. Entonces existen u' y $v' \in \mathbb{N}^*$ tales que $\begin{cases} u &= du' \\ v &= dv' \end{cases}$. Sustituyendo se obtiene

 $\begin{cases} 2a+5b &= du' \\ 5a+13b &= dv' \end{cases}$. Si multiplicamos la primera igualdad por 5 y restamos la segunda igualdad multiplicada por

2 se obtiene -b = d(5u' - 2v') y en consecuencia d es un divisor de b. Análogamente si multiplicamos la primera igualdad por 13 y restamos la segunda igualdad multiplicada por 5 se obtiene a = d(13u' - 5v') y en consecuencia d es también divisor de a. Como a y b son primos entre sí, resulta que mcd(u, v) = 1.

Ejercicio 5

Veamos que \mathcal{R} es una relación de orden:

Reflexiva: Para todo $a \in E$ a $\Re a$ pues se satisface la igualdad $a \circ a = a$.

Antisimétrica: Para todo $a, b \in E$, si $a\Re b$ y $b\Re a$, entonces $a \circ b = b$ y $b \circ a = a$. Pero \circ es conmutativa y en consecuencia, $a \circ b = b \circ a$. Por tanto, a = b.

Transitiva : Para todo $a,b,c \in E$, si $a\mathcal{R}b$ y $b\mathcal{R}c$, entonces $a \circ b = b$ y $b \circ c = c$. Pero \circ es asociativa y en consecuencia, $a \circ c = a \circ (b \circ c) = (a \circ b) \circ c = b \circ c = c$. Por tanto, $a\mathcal{R}c$. La relación no es en general simétrica pues si $a \neq b$ y $a\mathcal{R}b$ entonces $a \circ b = b$ y como la operación \circ es conmutativa resulta que $b \circ a = b \neq a$. Por tanto, no es cierto que $b\mathcal{R}a$.

Nota: Operaciones conocidas que sean asociativas, conmutativas y tales que para todo $a \in E$ se satisface la igualdad $a \circ a = a$, son por ejemplo, la unión o intersección en el conjunto $E = \mathcal{P}(A)$ de las partes de un conjunto $E = \mathcal{$

Para todo $a, b \in E$

$$a\Re b$$
 si y sólo si $\operatorname{mcd}(a,b) = b$, si y sólo si b es un divisor de a .

Claramente $4\Re 2$ y sin embargo no es cierto que $2\Re 4$ pues $\operatorname{mcd}(2,4) \neq 4$.