

GM-R700/ST-K700

Bedienungsanleitung

EverMore Technology Inc.

© EverMore Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of EverMore Technology Inc. Information provided by EverMore Technology Inc. is believed to be accurate and reliable. However, no responsibility is assumed by EverMore Technology Inc. for its use. EverMore Technology Inc. reserves the right to change specification at any time without notice.

<u>Inhalt</u>

Kapitel	Seite
Einleitung	3
Überblick	3
Lieferumfang	3
Start des GPS Empfängers	4
Technische Spezifikationen/ Technische Leistungsmerkmale	5
Hardware Super Mini DIN	6
Weitere Kabelanschlüsse	7
Systematische Darstellung	8
USB Treiber Installation	12
Software Spezifikation	14
Bestellinformationen	20
Kabelsätze für den GPS Kabelempfänger	25

Einleitung

Überlick

- Evermores GPS Empfänger GM-R700/ ST-K700 ist ein hochsensibles GPS System mit niedrigem Stromverbrauch und kompakter Größe, dass durch seinen neusten 16-Kanal Chipsatz außerordentlich gute Datenqualität für Satellitennavigation bietet. Der 16-Kanal Nemerix Chipsatz aus dem Hause Trimble bietet einen sehr gutem Empfang und schnelle Updates. Er eignet sich für Strassennavigation, aber auch andere Navigationseinsätze auf dem Wasser und in der Luft.
- Das Global position system (GPS) ist vom amerikanischen Verteidigungsministerium entwickelt und unter deren Verantwortung. Genauigkeit und Erreichbarkeit ist abhängig vom Ministerium.
- Für ihre Sicherheit sollten sie die Navigationseinheit nicht während der Fahrt bedienen.
- Wenn Sie das Gerät in Gebäuden, Tunnel oder im Schatten großer Gebäude neben ihnen verwenden, so kann es zu Empfangsstörungen kommen.

Überblick

Der GM-R700 GPS Empfänger bietet die folgenden Features

- Integrierter High-Performance NEMERIX Chipsatz.
- Kaltstartzeit in nur 50 Sekunden
- Niedriger Stromverbrauch
- 16 Kanal parallel Satellitensuche
- Unterstützt Standard NMEA-0183 V3.0 Protokoll
- Optimale Fehlerkorrektur
- Eingebaute Patchantenne
- Eingebaute Batterie für langen Datenerhalt und schnellen Warmstart
- Kleine Bauart: 51mm x 42.5mm x 17.3mm (2.01"x1.67"x0.68"), bei einem Gewicht von nur 62 Gramm.

Lieferumfang

Bevor Sie die Anwendung benutzen, sollten sie sich davon überzeugen, dass alle aufgeführten Artikel in der Packung enthalten sind:

- GPS Kabelempfänger
- · CD mit Bedienungsanleitung Englisch/ Deutsch
- Kabelsatz für KfZ oder Laptop

Start des GPS Empfängers

	Beschreibung
Start	
Kalt Start	Der Kaltstart benötigt beim ersten Start die längste Zeit. Bei der Erstinstallation sollten sie den GPS Empfänger auf jeden Fall im freien Gelände zum Einsatz bringen und für die Erstkonfiguration der 3-dimensionalen Position und Kalender Up-Dates bis zu 15 - 20 Minuten rechnen. Wenn sie (a) das System zum ersten Mal starten, (b) der Empfänger mehr als 3 Monate nicht im Gebrauch war oder er sich mehr als 500 KM entfernt vom letzten Einsatzort befindet oder (c) der interne Batteriespeicher eine Fehlfunktion hatte, verlängert sich die Set-up Zeit.
Warm Start	Warm Start bedeutet, dass der Empfänger Datums, Zeit und Positionsdaten von der letzten Anwendung noch im Speicher hat, er war zwischen 1 Woche und 2 Tagen nicht mehr im Betrieb. Die Zeit aktuelle Position zu fixieren ist weitaus kürzer als im Kaltstartbetrieb.
Heißstart	In diesem Szenario war der Empfänger weniger als 2 Stunden nicht mehr im Betrieb und frischt nur die Satellitenposition auf um zügige Navigation zu gewährleisten.
Reaktion	Reaktion bedeutet, die Zeit in der der Empfänger nach Störung durch z.B. ein Gebäude/ Straßenschlucht wieder Satelliten empfängt.

Technische Spezifikationen/ Technische Leistungsmerkmale

16 Kanal GPS Empfänger, Hersteller, Evermore Technology, Chipsatz Nemerix / Trimble

Generell L1 1575.42MHz, C/A code 1.023 MHz chip rate

Empfang: 16 Kanal (max), parallel

Empfindlichkeit -152 dBm

Genauigkeit 3,25m CEP (50%), 9m (90%) A

Geschwindigkeit 0.1 m/sec without S/A

Zeit ± 100ns synchronized to GPS time

Daten Akquisition

- Kaltstart- Warmstart- Warmstart- 38 Sek (typisch)

- Heißstart < 17 Seek

Reaktionszeit 1sek

Betriebsumgebung:

Höhe 18.000 Meter maximal

Geschwindigkeit

- Horizontal 300km/Std- Vertikal 36km/Std max

Beschleunigung 2g Max

Protokol NMEA-0183, version 3.0 @ 9600 baud, 8-None-1, 9600 Baud

Datumsformat WGS-84, andere können programmiert werden NMEA Messages GGA, GSA, GSV, RMC und VTG. 9600 baud rate

8 bits data, 1 start, 1 stop, no parity. (Optionale baud rate:

4800,19200, 38400)

Strom $5V \pm 0.5Vp-p$ DC input

Stromaufnahme 33 mAh

Betriebstemperatur von -40oC bis +80oC Lagertemperatur von -50oC bis +90oC

Luftfeuchtigkeit 5% bis 90%

Interface Anschluß Mini Din 6 Pin, USB

Abmessungen 51mm x 42mm x 17.3mm

Gewicht 78g

Kfz Kabelsatz Input voltage: DC12V bis 24V, Output: 5V/2A

Hardware

Auslieferunszustand Super Mini Din 6 Pin Kabel:

SP6P Connector (Female)

	,			
Pin	Color	Function	Input/Output	Level
1	Yellow	TXD	Output	3.3V, LVTTL
2	Red	VCC	Power Supply	5V
3	White	RX	Input	12V, RS232
4	Black	GND		0V, Ground
5	Green	TX	Output	12V, RS232
6	Blue	RXD	Input	3.3V, LVTTL

Stecker PIN Belegung

Weitere mögliche Kabel PS/2, weibl. Anschlusse

GM-R700 Real Picture

PS/2 Female Connector Pin Assignment

	3		
Pin	Function	Input/Output	Level
1	VCC	Power Supply	5V
2	GND		
3	RX	Input	12V, RS232
4	RXD	Input	3.3V, LVTTL
5	TXD	Output	3.3V, LVTTL
6	TX	Output	12V, RS232

Systematische Darstellung bei PS/2 Interface

GM-R700 Link to Host Device Diagram

Am Beispiel mit Multstecker

GM-R700 Link to PDA Diagram

Weitere mögliche GM-R700 Kabel

9 Pins Female and PS/2 Male Connector

DB9 Connector (Female)

Pin	Function	Input/Output	Level
1	NC		
2	TX	Output	RS232
3	RX	Input	RS232
4	NC		
5	GND	Ground	0V
6	NC		
7	NC		
8	NC		
9	NC		

Connector Pin Assignment

PS/2 Connector (Male)

Pin	Function	Pin	Function	Pin	Function
1	NC	3	GND	5	NC
2	NC	4	VCC	6	NC

USB Connector

Pin	Function	Color
1	VCC, 5V	Red
2	D-	White
3	D+	Green
4	GND	Black

Connector Pin Assignment

GM-R700 Dimension

Technische Darstellung

USB Treiber Installation

USB Treiberinstallation – auf der beigelegten CD finden die den "GPS USB Driver Setup.pdf".

Step 1: Copy entire USB driver folder from CD to hard disk

Step 2: Double click the "Setup.exe" icon

Step 3: Press "Install" button

- Step 4: Press "OK" button
- Step 5: Restart PC system
- Step 6: Plug-in GPS to PC USB port
- Step 7 Check enable COM port number

Betrieb und Test

Sie können das Dtaenprotokoll und die Kommunikation, Baudrate ändern. Die Software und das Manual stehen zum Download von unserer Seite bereit.

Below list GM-R700 software tools

For example double click 700_SeriesGPSTest.exe to test GM-R700

Software Specification

GM-R700 NMEA Protocol

The GM-R700 software is capable of supporting the following NMEA message formats

NMEA Message Prefix	Format	Direction
\$GPGGA(1)*	GPS fix data.	Out
\$GPGLL	Geographic position Latitude / Longitude.	Out
\$GPGSA(3)*	GNSS DOP and actives satellites	Out
\$GPGSV(3)*	Satellites in view.	Out
\$GPRMC(1)*	Recommended minimum specific GNSS data.	Out
\$GPVTG(1)*	Velocity and track over ground.	Out
\$GPZDA	Date and time.	Out

^{*: (1): 1}sec output 1msg , (3): 3sec output 1msg , 9600 baud rate (Standard output)

General NMEA Format

The general NMEA format consists of an ASCII string commencing with a '\$' character and terminating with a <CR><LF> sequence. NMEA standard messages commence with 'GP' then a 3-letter message identifier. The message header is followed by a comma delimited list of fields optionally terminated with a checksum consisting of an asterix '*' and a 2 digit hex value representing the checksum. There is no comma preceding the checksum field. When present, the checksum is calculated as a bitwise exclusive of the characters between the '\$' and '*'. As an ASCII representation, the number of digits in each number will vary depending on the number and precision, hence the record length will vary. Certain fields may be omitted if they are not used, in which case the field position is reserved using commas to ensure correct interpretation of subsequent fields.

The tables below indicate the maximum and minimum widths of the fields to allow for buffer size allocation.

\$GPGGA

This message transfers global positioning system fix data. The \$GPGGA message structure is shown below:

Field	Format	Min	Max	Notes
		chars	chars	
Message	\$GPGGA	6	6	GGA protocol header.
ID				
UTC Time	hhmmss.sss	2,2,2.3	2,2,2.3	Fix time to 1ms accuracy.
Latitude	float	3,2.4	3,2.4	Degrees * 100 + minutes.
N/S	char	1	1	N=north or S=south
Indicator				
Longitude	float	3,2.4	3,2.4	Degree * 100 + minutes.
E/W	Char	1	1	E=east or W=west
indicator				
Position Fix	Int	1	1	0: Fix not available or invalid.
Indictor				1: GPS SPS mode. Fix available.
Satellites	Int	2	2	Number of satellites used to calculate fix.
Used				
HDOP	Float	1.1	3.1	Horizontal Dilution of Precision.
MSL	Float	1.1	5.1	Altitude above mean seal level
Altitude				
Units	Char	1	1	M Stands for "meters".
Geoid	Int	(0) 1	4	Separation from Geoids can be blank.
Separation		, ,		'
Units	Char	1	1	M Stands for "meters".
Age of	int	(0) 1	5	Age in seconds Blank (Null) fields when DGPS
Differential				is not used.
Corrections				
Diff	int	4	4	0000.
Reference				
Corrections				
Checksum	*xx	(0) 3	3	2 digits.
Message	<cr> <lf></lf></cr>	2	2	ASCII 13, ASCII 10.
terminator				· ·

\$GPGLL

This message transfers Geographic position, Latitude, Longitude, and time. The \$GPGLL message structure is shown below:

Field	Format	Min	Max	Notes
		chars	chars	
Message ID	\$GPGLL	6	6	GLL protocol header.
Latitude	Float	1,2.1	3,2.4	Degree * 100 + minutes.
N/S Indicator	Char	1	1	N=north or S=south.
Longitude	Float	1,2.1	3,2.4	Degree * 100 + minutes.
E/W indicator	Character	1	1	E=east or W=west.
UTC Time	hhmmss.sss	1,2,2.1	2,2,2.3	Fix time to 1ms accuracy.
Status	Char	1	1	A Data Valid.
				V Data invalid.
Mode Indicator	Char	1	1	A Autonomous
Checksum	*xx	(0) 3	3	2 digits.
Message terminator	<cr><lf></lf></cr>	2	2	ASCII 13, ASCII 10.

\$GPGSA

This message transfers DOP and active satellites information. The \$GPGSA message structure is shown below:

Field	Format	Min	Max	Notes
		chars	chars	
Message ID	\$GPGSA	6	6	GSA protocol header.
Mode	Char	1	1	M→ Manual, forced to operate in
				selected mode.
				A→ Automatic switching between
				modes.
Mode	Int	1	1	1→.Fix not available.
				2→2D position fix.
				3→3D position fix.
Satellites Used	Int	2	2	SV on channel 1.
Satellites Used	Int	2	2	SV on channel 2.
Satellites Used	Int	2	2	SV on channel 12.
PDOP	Float	1.1	3.1	
HDOP	Float	1.1	3.1	
VDOP	Float	1.1	3.1	
Checksum	*xx	0	3	2 digits
Message	<cr> <lf></lf></cr>	2	2	ASCII 13, ASCII 10
terminator				

\$GPGSV

This message transfers information about satellites in view. The \$GPGSV message structure is shown below. Each record contains the information for up to 4 channels, allowing up to 12 satellites in view. In the final record of the sequence the unused channel fields are left blank with commas to indicate that a field has been omitted.

Field	Format	Min	Max	Notes
		chars	chars	
Message ID	\$GPGSV	6	6	GSA protocol header.
Number of	Int	1	1	Number of messages in the message
messages				sequence from 1 to 3.
Message number	Int	1	1	Sequence number of this message in
				current sequence, form 1 to 3.
Satellites in view	Int	1	2	Number of satellites currently in view.
Satellite Id	Int	2	2	Satellite vehicle 1.
Elevation	Int	1	3	Elevation of satellite in degrees.
Azimuth	Int	1	3	Azimuth of satellite in degrees.
SNR	Int	(0) 1	2	Signal to noise ration in dBHz, null if the sv
				is not in tracking.
Satellite Id	Int	2	2	Satellite vehicle 2.
Elevation	Int	1	3	Elevation of satellite in degrees.
Azimuth	Int	1	3	Azimuth of satellite in degrees.
SNR	Int	(0) 1	2	Signal to noise ration in dBHz, null if the sv
				is not in tracking.
Satellite Id	Int	2	2	Satellite vehicle 3.
Elevation	Int	1	3	Elevation of satellite in degrees.
Azimuth	Int	1	3	Azimuth of satellite in degrees.
SNR	Int	(0) 1	2	Signal to noise ration in dBHz, null if the sv
				is not in tracking.
Satellite Id	Int	2	2	Satellite vehicle 4.
Elevation	Int	1	3	Elevation of satellite in degrees.
Azimuth	Int	1	3	Azimuth of satellite in degrees.
SNR	Int	(0) 1	2	Signal to noise ration in dBHz, null if the sv
				is not in tracking.
Checksum	*xx	(0) 3	3	2 digits.
Message	<cr> <lf></lf></cr>	2	2	ASCII 13, ASCII 10.
terminator				

\$GPRMC

This message transfers recommended minimum specific GNSS data. The \$GPRMC message format is shown below.

Field	Format	Min	Max	Notes
		chars	chars	
Message ID	\$GPRMC	6	6	RMC protocol header.
UTC Time	hhmmss.sss	1,2,2.1	2,2,2.3	Fix time to 1ms accuracy.
Status	char	1	1	A Data Valid.
				V Data invalid.
Latitude	Float	1,2.1	3,2.4	Degrees * 100 + minutes.
N/S Indicator	Char	1	1	N=north or S=south.
Longitude	Float	1,2.1	3,2.4	Degrees * 100 + minutes.
E/W indicator	Char	1	1	E=east or W=west.
Speed over	Float	1,1	5.3	Speed over ground in knots.
ground				
Course over	Float	1.1	3.2	Course over ground in degrees.
ground				
Date	ddmmyy	2,2,2	2,2,2	Current date.
Magnetic variation	Blank	(0)	(0)	Not used.
E/W indicator	Blank	(0)	(0)	Not used.
Mode	Char	1	1	A Autonomous
Checksum	*xx	(0) 3	3	2 digits.
Message	<cr> <lf></lf></cr>	2	2	ASCII 13, ASCII 10.
terminator				

\$GPVTG

This message transfers Velocity, course over ground, and ground speed. The \$GPVTG message format is shown below.

Field	Format	Min	Max	Notes
		chars	chars	
Message ID	\$GPVTG	6	6	VTG protocol header.
Course (true)	Float	1.1	3.2	Measured heading in degrees.
Reference	Char	1	1	T = true heading.
Course	Float	1.1	3.2	Measured heading (blank).
(magnetic)				
Reference	Char	1	1	M = magnetic heading.
Speed	Float	1.1	4.2	Speed in knots.
Units	Char	1	1	N = knots.
Speed	Float	1.1	4.2	Speed
units	Char	1	1	K = Km/h.
Mode	Char	1	1	A Autonomous
Checksum	*xx	(0) 3	3	2 digits.
Message	<cr></cr>	2	2	ASCII 13, ASCII 10.
terminator	<lf></lf>			

\$GPZDA

This message transfers UTC Time and Date. Since the latency of preparing and transferring the message is variable, and the time does not refer to a particular position fix, the second precision is reduced to 2 decimal places. The \$GPZGA message format is shown below.

Field	Format	Min chars	Max chars	Notes
Message ID	\$GPZDA	6	6	ZDA protocol header.
UTC time	hhmmss.SS	2,2,2.2	2,2,2.2	00000000.00 to 235959.99
UTC day	dd	2	2	01 to 31, day of month.
UTC month	mm	2	2	01 to 12.
UTC Year	уууу	4	4	1989-9999.
Local zone hours	Int	(-)2	(-)2	Offset of local time zone (-13) to 13.
Local zone minutes	Unsigned	2	2	
Checksum	*xx	(0) 3	3	2 digits.
Message terminator	<cr> <lf></lf></cr>	2	2	ASCII 13, ASCII 10.

Limited Warranty

The GM-R700 is warranted to be free from defects in material and functions for one year from the date of purchase. Any failure of this product within this period under normal conditions will be replaced at no charge to the customers

Bestellinformationen

Standard Type Cable (Female PS/2)

PS/2 Female Connector Pin Assignment

Pin	Function	Input/Output	Level
1	VCC	Power Supply	5V
2	GND		
3	RX	Input	12V, RS232
4	RXD	Input	3.3V, LVTTL
5	TXD	Output	3.3V, LVTTL
6	TX	Output	12V, RS232

Female PS/2 Connectors Pin Assignment

Optional Kabeltypen

Male PS/2 Cable

For all kind definition

PS/2 Connector (Male)

Pin	Function	Input/Output	Level
1	GND	Ground	0V
2	VCC	Power Supply	5V
3	RXD	Input	3.3V, LVTTL
4	RX	Input	RS232
5	TX	Output	RS232
6	TXD	Output	3.3V, LVTTL

Male PS/2 Connectors Pin Assignment

RS-232 Cable (DB9 9 Pins Female + PS/2 Male)

For all kind definition

DB9 Connector (Female)

Pin	Function	Input/Output	Level
1	NC		
2	TX	Output	RS232
3	RX	Input	RS232
4	NC		
5	GND	Ground	0V
6	NC		
7	NC		
8	NC		
9	NC		

Connector Pin Assignment

PS/2 Connector (Male)

Pin	Function	Pin	Function	Pin	Function
1	NC	3	GND	5	NC
2	NC	4	VCC	6	NC

USB Cable (With USB Bridge Controller IC)

Pin	Function	Color
1	VCC, 5V	Red
2	D-	White
3	D+	Green
4	GND	Black

Connector Pin Assignment

Mögliche Kabelsätze für den GPS Kabelempfänger

Input voltage: DC12V~24V, Output: 5V/2A

ITEM	Description
1	Car charger for ACER N20
2	Car charger for ACER S60
3	Car charger for ASUS A600
4	Car charger for ASUS A620 / A620BT
5	Car charger for CASIO E115
6	Car charger for CASIO E125/EM500
7	Car charger for CASIO E200
8	Car charger for DELL AXIM X3
9	Car charger for DELL AXIM X5
10	Car charger for Eten P300 / M500
11	Car charger for HP Jonada
12	Car charger for IPAQ iPAQ 38xx/39xx/22xx/4x/5x/Rx/RZ/Hx serial
13	Car charger for IPAQ 36XX/37XX
14	Car charger for Mitac Mio 338/528/558
15	Car charger for NEC
16	Car charger for PALM 500/505/T3
17	Car charger for PALM Vx
18	Car charger for Siemens Loox
19	Car charger for SONY Nxx Series
20	Car charger for SONY Txx
21	Car charger for Toshiba E330/E740
22	Car charger for Toshiba E400
23	Car charger for Toshiba E570
24	Car charger for Toshiba E800
25	Car charger for XDA/T-Mobile MDA
26	Car charger for XDA-II/T-Mobile MDA
27	Car charger for Yakumo Delta 300
28	Car charger for Yakumo Omnikron
29	Car charger for Anex TEK SP230
30	Car charger for Acer N30/N35/N50
31	Car charger for Dell Axim X50V/X50
32	Car charger for ASUS A716 / A730 / A730W / P505
33	Car charger for Palm T5 / Treo 650/Tungsten E2