TRRT Final Hand-In (PQ3)

Mario L. Gutierrez Abed

December 1, 2017

Mathematical Physics
The University of Edinburgh
2017

Some Lie Algebra Cohomology

Let L be a Lie algebra and V an L-module. Recall that this means that we have a bilinear map $L \times V \to V$, sending $(x,v) \mapsto x \cdot v$, satisfying

$$x \cdot (y \cdot v) - y \cdot (x \cdot v) = [x, y] \cdot v. \tag{*}$$

We define vector spaces $C^p(L;V)$, for p=0,1,2,3, by declaring $C^0(L;V)=V$ and

$$\begin{split} C^1(L;V) &= \{ \text{linear}\, L \to V \} \\ C^2(L;V) &= \{ \text{alternating bilinear}\, L \times L \to V \} \\ C^3(L;V) &= \{ \text{alternating trilinear}\, L \times L \times L \to V \}. \end{split}$$

(One can continue in the obvious way, but we will not need to go beyond trilinear maps in this question.) In particular, this means that if $\varphi \in C^2(L;V)$, then for all $x,y \in L$, $\varphi(x,y) = -\varphi(y,x) \in V$. Similarly if $\psi \in C^3(L;V)$, then for all $x,y,z \in L$, we have $\psi(x,y,z) = -\psi(x,z,y) = -\psi(y,x,z) \in V$.

We define linear maps $\partial_p\colon C^p(L;V)\to C^{p+1}(L;V)$ for p=0,1,2 as follows:

$$\begin{split} (\partial_0 v)(x) &= x \cdot v \\ (\partial_1 \zeta)(x,y) &= x \cdot \zeta(y) - y \cdot \zeta(x) - \zeta([x,y]) \\ (\partial_2 \varphi)(x,y,z) &= -x \cdot \varphi(y,z) - \varphi(x,[y,z]) + \operatorname{cyclic\,in} x,y,z, \end{split}$$

for all $x,y,z\in L$, $v\in V$, $\zeta\in C^1(L;V)$ and $\varphi\in C^2(L;V)$.

Problem 1. *Prove the following:*

a)
$$\partial_1 \circ \partial_0 = 0$$
.

b)
$$\partial_2 \circ \partial_1 = 0$$
.

Proof of a). We have

$$C^{0}(L;V) = V \xrightarrow{\partial_{0}} C^{1}(L;V) \xrightarrow{\partial_{1}} C^{2}(L;V),$$

where

$$v \xrightarrow{\partial_0} \partial_0 v \xrightarrow{\partial_1} \partial_1(\partial_0 v).$$

Then, for $x, y \in L$, we get

$$\partial_{1}(\partial_{0}v)(x,y) = x \cdot (\partial_{0}v)(y) - y \cdot (\partial_{0}v)(x) - (\partial_{0}v)([x,y])$$

$$= x \cdot (y \cdot v) - y \cdot (x \cdot v) - [x,y] \cdot v$$

$$= 0.$$
(By (*))

Victoria!

Proof of b). This time we have

$$C^1(L;V) \xrightarrow{\partial_1} C^2(L;V) \xrightarrow{\partial_2} C^3(L;V),$$

where

$$\zeta \stackrel{\partial_1}{\longmapsto} \partial_1 \zeta \stackrel{\partial_2}{\longmapsto} \partial_2 (\partial_1 \zeta).$$

Then, for $x, y, z \in L$, we get the following mess:

$$\begin{split} \partial_2(\partial_1\zeta)(x,y,z) &= -x \cdot (\partial_1\zeta)(y,z) - (\partial_1\zeta)(x,[y,z]) \dots \\ &\cdots - y \cdot (\partial_1\zeta)(z,x) - (\partial_1\zeta)(y,[z,x]) \dots \\ &\cdots - z \cdot (\partial_1\zeta)(x,y) - (\partial_1\zeta)(z,[x,y]) \\ &= -x \cdot \{y \cdot \zeta(z) - z \cdot \zeta(y) - \zeta([y,z])\} \dots \\ &\cdots - \{x \cdot \zeta([y,z]) - [y,z] \cdot \zeta(x) - \zeta([x,[y,z]]\} \dots \\ &\cdots + \operatorname{cyclic\ mumbo\ jumbo} \\ &= -x \cdot y \cdot \zeta(z) + x \cdot z \cdot \zeta(y) + \underbrace{x \cdot \zeta([y,z]) - x \cdot \zeta([y,z])}_{=0} \dots \\ &\cdots + [y,z] \cdot \zeta(x) + \underbrace{\zeta([x,[y,z]])}_{\text{i}_1} \dots \\ &\cdots - y \cdot z \cdot \zeta(x) + y \cdot x \cdot \zeta(z) + \underbrace{y \cdot \zeta([z,x]) - y \cdot \zeta([z,x])}_{=0} \dots \\ &\cdots + [z,x] \cdot \zeta(y) + \underbrace{\zeta([y,[z,x]])}_{\text{i}_2} \dots \\ &\cdots - z \cdot x \cdot \zeta(y) + z \cdot y \cdot \zeta(x) + \underbrace{z \cdot \zeta([x,y]) - z \cdot \zeta([x,y])}_{=0} \dots \\ &\cdots + [x,y] \cdot \zeta(z) + \underbrace{\zeta([z,[x,y]])}_{\text{i}_3} \dots \end{split}$$

Note that the sum $j_1 + j_2 + j_3$ (as I labeled on the above messy equation) vanishes, since ζ is linear and thus

$$\begin{split} \zeta([x,[y,z]]) + \zeta([y,[z,x]]) + \zeta([z,[x,y]]) &= \zeta([x,[y,z]] + [y,[z,x]] + [z,[x,y]]) \\ &= \zeta(0) \qquad \text{(By the Jacobi identity of the bracket)} \\ &= 0. \end{split}$$

Hence we are left with

$$\begin{split} \partial_2(\partial_1\zeta)(x,y,z) &= -x\cdot y\cdot \zeta(z) + x\cdot z\cdot \zeta(y) + [y,z]\cdot \zeta(x)\dots \\ & \cdots - y\cdot z\cdot \zeta(x) + y\cdot x\cdot \zeta(z) + [z,x]\cdot \zeta(y)\dots \\ & \cdots - z\cdot x\cdot \zeta(y) + z\cdot y\cdot \zeta(x) + [x,y]\cdot \zeta(z) \\ &= 0 + 0 + 0 \\ &= 0. \end{split} \tag{By (*)}$$

Let p=0,1,2 and define the subspaces $Z^p(L;V)=\ker\partial_p$, $B^0(L;V)=0$, and $B^p(L;V)=\lim\partial_{p-1}$ for p=1,2. By Q1,we have $B^p(L;V)\subset Z^p(L;V)$. Define $H^p(L;V)=Z^p(L;V)/B^p(L;V)$.

Problem 2. Take $V = \mathbb{C}$ to be the trivial module. Prove that

- a) $H^0(L;\mathbb{C}) \cong \mathbb{C}$.
- b) $H^1(L;\mathbb{C})\cong (L/L')^*$, where L'=[L,L] is the derived ideal and * denotes the dual vector space.

Proof of a). We have

$$H^{0}(L; \mathbb{C}) = Z^{0}(L; \mathbb{C})/B^{0}(L; \mathbb{C})$$
$$= \ker \partial_{0}/0$$
$$\cong \ker \partial_{0},$$

where

$$\ker \partial_0 = \{ v \in \mathbb{C} | x \cdot v = 0 \ \forall x \in L \}.$$

But since we are using the trivial representation, $x \cdot v = 0$ not only for all $x \in L$, but also for all $v \in V = \mathbb{C}$. Thus we have that $\ker \partial_0 = \mathbb{C}$, and this proves the statement. Victoria!

Proof of b). We have

$$H^{1}(L; \mathbb{C}) = Z^{1}(L; \mathbb{C})/B^{1}(L; \mathbb{C})$$

= $\ker \partial_{1}/\operatorname{im} \partial_{0}$.

But $\operatorname{im} \partial_0 = \{x \cdot v\}$ vanishes for all $x \in L$ and $v \in \mathbb{C}$, since we are using the trivial representation. Meanwhile the kernel of ∂_1 consists of all $\zeta \in C^1$ satisfying, for all $x, y \in L$,

$$x \cdot \zeta(y) - y \cdot \zeta(x) - \zeta([x, y]) = 0.$$

In the trivial representation $V=\mathbb{C}$, we have $\zeta\colon L\to\mathbb{C}$, i.e., $\zeta\in L^*$. Whence we have

$$\underbrace{x\cdot\zeta(y)-y\cdot\zeta(x)}_{x\cdot\zeta(-)-y\cdot\zeta(-)=\text{linear combination}\,\in\,L^*}\qquad - \underbrace{\zeta([x,y])}_{\zeta\in L'^*}.$$

Thus $\ker \partial_1$ consists of elements of the form $\xi + L'^*$, with $\xi \in L^*$, and so we have

$$H^1(L; \mathbb{C}) = \ker \partial_1 / \operatorname{im} \partial_0$$

 $= (L^*/L'^*)/0$
 $\cong (L/L')^*/0$
 $\cong (L/L')^*.$ Victoria!

A *central extension* of a Lie algebra L is a Lie algebra on the vector space $\widehat{L} = L \oplus \operatorname{Span}\{Z\}$ with bracket

$$[x, y] = [x, y]_L + \omega(x, y)Z$$
 and $[Z, x] = 0,$ (1)

for all $x,y\in L$, and where $[-,-]_L$ denotes the bracket of L and $\omega\in C^2(L;\mathbb{C})$ (the quotient Lie algebra $\widehat{L}/\mathrm{Span}\{Z\}$ is isomorphic to L). A central extension \widehat{L} of L is said to be *trivial* if $\widehat{L}=L\oplus\mathbb{C}$ as Lie algebras.

Problem 3. Show that $H^2(L;\mathbb{C})$ classifies isomorphism classes of central extensions of L as follows:

- a) Show that $\omega \in C^2(L;\mathbb{C})$ defines a central extension as in (1) if and only if $\omega \in Z^2(L;\mathbb{C})$.
- **b)** Show that if $\omega_1, \omega_2 \in Z^2(L;\mathbb{C})$ are such that $\omega_1 \omega_2 = \partial_1 \zeta$ for some $\zeta \in C^1(L;\mathbb{C})$, then the central extensions defined by ω_1 and ω_2 are isomorphic. (Hint: use $\zeta: L \to \mathbb{C}$ to build the isomorphism.)

Proof of a). If $\omega \in Z^2(L;\mathbb{C}) = \ker \partial_2$, then we have, for $x,y,z \in L$,

$$0 = (\partial_2 \omega)(x, y, z) = \underbrace{-x \cdot \omega(y, z)}_{=0} -\omega(x, [y, z]_L) \dots$$

$$\dots \underbrace{-y \cdot \omega(z, x)}_{=0} -\omega(y, [z, x]_L) \dots$$

$$\dots \underbrace{-z \cdot \omega(x, y)}_{=0} -\omega(z, [x, y]_L),$$

where the vanishing terms are due to the fact that we are using the trivial representation $V=\mathbb{C}$, so that the L-action acts as an annihilator. Thus we are left with

$$0 = -\omega(x, [y, z]_L) - \omega(y, [z, x]_L) - \omega(z, [x, y]_L),$$

or equivalently,

$$\omega(x, [y, z]_L) + \omega(y, [z, x]_L) + \omega(z, [x, y]_L) = 0,$$

which is the co-cycle condition that needs to be satisfied for any one-dimensional central extension of L. It is also clear that if ω defines the central extension as in (1), then by applying

the Jacobi identity to both sides of (1) we get that ω satisfies the co-cycle condition and therefore that it's an element of $Z^2(L;\mathbb{C})$. Thus the biconditional statement is satisfied.

Victoria!

Proof of b). Let \widehat{L}_{ω_1} and \widehat{L}_{ω_2} denote the central extensions defined by ω_1 and ω_2 , respectively. Then we have a map

$$\psi \colon \widehat{L}_{\omega_1} \longrightarrow \widehat{L}_{\omega_2}$$

 $(x, y) \longmapsto (x, y + \zeta(x)),$

for all $x, y \in L$ with both y and $y + \zeta(x)$ lying in $\mathrm{Span}\{Z\}$. This map is clearly a vector space isomorphism, so we merely need to check that it respects the Lie bracket:

Consider two elements $(x,y),(x',y')\in \widehat{L}_{\omega_1}$. Then

$$\psi([(x,y),(x',y')]) = \psi([x,x']_L, x \cdot y' - x' \cdot y + \omega_1(x,x'))$$

= $([x,x']_L, x \cdot y' - x' \cdot y + \omega_1(x,x') + \zeta([x,x'])),$

while

$$[\psi(x,y),\psi(x',y')] = ([x,x']_L, x \cdot (y' + \zeta(x')) - x' \cdot (y + \zeta(x)) + \omega_2(x,x'))$$

= $([x,x']_L, x \cdot y' - x' \cdot y + x \cdot \zeta(x') - x' \cdot \zeta(x) + \omega_2(x,x')).$

Note that these two expressions are equal precisely when $\omega_1-\omega_2=\partial_1\zeta$. Thus, under this condition, we have that ψ is indeed a Lie isomorphism between \widehat{L}_{ω_1} and \widehat{L}_{ω_2} , which is the result we wanted.

Now take V=L, the L-module corresponding to the adjoint representation.

Problem 4. Show that $H^0(L; L) = Z(L)$, the centre of L.

Proof. We have

$$H^{0}(L; L) = Z^{0}(L; L)/B^{0}(L; L)$$
$$= \ker \partial_{0}/0$$
$$\cong \ker \partial_{0}.$$

Now,

$$\partial_0 \colon C^0(L;L) = L \longrightarrow C^1(L;L)$$

 $x \longmapsto \partial_0 x,$

¹Note that I'm using slightly different notation for this exercise because I find the bracket defined in (1) a bit confusing for computational purposes.

where

$$(\partial_0 x)(y) = y \cdot x$$
 $= [y, x]$ (Since the L -action is now given by the adjoint map)

Thus,

$$\ker \partial_0 = \{ x \in L | [y, x] = 0 \ \forall y \in L \} = Z(L).$$

This proves the result.

Victoria!

A linear map $D: L \to L$ is a derivation if D[x, y] = [Dx, y] + [x, Dy] for all $x, y \in L$.

Problem 5. Show the following:

- a) The set Der(L) of derivations of L is a Lie subalgebra of $\mathfrak{gl}(L)$;
- b) The image $\operatorname{ad}(L)$ of the adjoint representation $\operatorname{ad}:L\to \mathfrak{gl}(L)$ is an ideal of $\operatorname{Der}(L)$;
- c) $H^1(L; L) = Der(L)/ad(L)$.

Proof of a). First of all, to see that $\mathrm{Der}(L)$ is a subspace of $\mathfrak{gl}(L)$, note that the derivations of L are those maps $D\in\mathfrak{gl}(L)$ which satisfy D[x,y]-[Dx,y]-[x,Dy]=0 for all $x,y\in L$. For fixed x and y, the left hand side of this equation is linear in D, so that the set of endomorphisms satisfying the equation is a subspace. The set of derivations is the intersection over all $x,y\in L$ of these subspaces, which is itself a subspace.

Thus to show that $\mathrm{Der}(L)$ is a subalgebra of $\mathfrak{gl}(L)$, the only thing left to check is that the bracket of two derivations is also a derivation. Let $x,y\in L$ and $D_1,D_2\in\mathrm{Der}(L)$. Then,

$$\begin{split} [D_1,D_2]([x,y]) &= D_1(D_2([x,y])) - D_2(D_1([x,y])) \\ &= D_1([D_2(x),y] + [x,D_2(y)]) - D_2([D_1(x),y] + [x,D_1(y)]) \\ &= D_1([D_2(x),y]) + D_1([x,D_2(y)]) - D_2([D_1(x),y]) - D_2([x,D_1(y)]) \\ &= [D_1(D_2(x)),y] + \underbrace{[D_2(x),D_1(y)]}_{\mathfrak{d}_1} + \underbrace{[D_1(x),D_2(y)]}_{\mathfrak{d}_2} + [x,D_1(D_2(y))] \dots \\ &\cdots - [D_2(D_1(x)),y] - \underbrace{[D_1(x),D_2(y)]}_{-\mathfrak{d}_2} - \underbrace{[D_2(x),D_1(y)]}_{-\mathfrak{d}_1} - [x,D_2(D_1(y))] \\ &= [D_1(D_2(x)),y] - [D_2(D_1(x)),y] + [x,D_1(D_2(y))] - [x,D_2(D_1(y))] \\ &= [[D_1,D_2](x),y] + [x,[D_1,D_2](y)]. \end{split}$$

Proof of b). First of all, note that by the Jacobi identity

$$[x, [y, z]] = [[x, y], z] + [y, [x, z]],$$
 where $x, y, z \in L$,

it is clear that ad(x) is a derivation of L; i.e., ad(L) is a subspace of Der(L). Now to prove it is also an ideal, let $x \in L$ and $D \in Der(L)$. We want to show that $[D, ad(x)] \in ad(L)$.

Take $z \in L$, and apply the bracket:

$$\begin{split} [D,\operatorname{ad}(x)](z) &= D(\operatorname{ad}(x)(z)) - \operatorname{ad}(x)(D(z)) \\ &= D([x,z]) - [x,D(z)] \\ &= [D(x),z] \qquad \qquad \text{(Since D is a derivation)} \\ &= \operatorname{ad}(D(x))(z). \end{split}$$

This shows that

$$[D, \operatorname{ad}(x)] = \operatorname{ad}(D(x)) \quad \forall D \in \operatorname{Der}(L), \ \forall x \in L,$$

and thus ad(L) is an ideal of Der(L), as desired.

Victoria!

Proof of c). We have

$$H^{1}(L;L) = Z^{1}(L;L)/B^{1}(L;L)$$
$$= \ker \partial_{1}/\operatorname{im} \partial_{0}.$$

Now, $\ker \partial_1$ consists of all $\zeta \in C^1(L; L)$ that satisfy

$$[x, \zeta(y)] - [y, \zeta(x)] - \zeta([x, y]) = 0,$$

or, equivalently,

$$\zeta([x,y]) = -[y,\zeta(x)] + [x,\zeta(y)]$$

$$= [\zeta(x),y] + [x,\zeta(y)]$$
 (By property of the Lie bracket).

This shows that ζ is in fact a derivation; i.e., $\zeta \in \operatorname{Der}(L)$. The other inclusion is straightforward: every derivation $D \in \operatorname{Der}(L)$ by definition satisfies D[x,y] = [Dx,y] + [x,Dy] for all $x,y \in L$. Then working our calculation above backwards we get that D must satisfy [x,D(y)]-[y,D(x)]-D([x,y])=0, which says precisely that $D \in \ker \partial_1$. Thus we conclude that $\operatorname{Der}(L)=\ker \partial_1$.

Now, with regards to im ∂_0 , note that, for $x, y \in L$, we have

$$(\partial_0 y)(x) = [x, y],$$

which shows that ∂_0 is actually the adjoint map, and thus $\operatorname{im}(\partial_0)=\operatorname{ad}(L)$. Thus we have that $H^1(L;L)=\operatorname{Der}(L)/\operatorname{ad}(L)$, as desired.

From Q5(c), $H^1(L;L)$ is a Lie algebra. Let L be the 3-dimensional Lie algebra with basis p,q,r and only nonzero bracket [p,q]=r. (In particular, r is central.)

Problem 6. Show that $H^1(L;L) \cong \mathfrak{gl}_2$ as Lie algebras.

Proof. For an arbitrary $D \in \text{Der}L$, we have

$$D(p) = d_1p + d_2q + d_3r$$

$$D(q) = d_4p + d_5q + d_6r$$

$$D(r) = d_1r + d_5r,$$

for arbitrary constants $d_i \in \mathbb{C}$ ($i = \{1, \dots, 5\}$).

To see this, note

$$D(r) = D([p,q])$$

$$= [Dp,q] + [p,Dq]$$

$$= [d_1p + d_2q + d_3r,q] + [p,d_4p + d_5q + d_6r]$$

$$= [d_1p,q] + [p,d_5q]$$

$$= d_1[p,q] + d_5[p,q]$$

$$= d_1r + d_5r.$$

So, all outer derivations of L are linear maps of the form

$$D = \begin{pmatrix} d_1 & d_4 & 0 \\ d_2 & d_5 & 0 \\ d_3 & d_6 & d_1 + d_5 \end{pmatrix}.$$

Now we define a projection $\pi \colon \mathrm{Der}(L) \to \mathfrak{gl}_2$ by

$$\begin{pmatrix} d_1 & d_4 & 0 \\ d_2 & d_5 & 0 \\ d_3 & d_6 & d_1 + d_5 \end{pmatrix} \longmapsto \begin{pmatrix} d_1 & d_4 \\ d_2 & d_5 \end{pmatrix}.$$

Now, since [p,q]=-[q,p]=r and [p,r]=[q,r]=0 (and obviously [p,p]=[q,q]=[r,r]=0 by properties of the bracket), we have that all the inner derivations $\mathrm{ad}(x)$ (for $x\in L$ and with ordered basis $\{p,q,r\}$) are linear combinations of

$$\mathrm{ad}(p) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathrm{ad}(q) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad \mathrm{ad}(r) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

Note that the kernel of π consists precisely of linear combinations of these inner derivations; i.e. $\ker \pi = \operatorname{ad}(L)$. Therefore, since the projection π is clearly a surjective map, by the *First Isomorphism Theorem* and the result from Q5c) we have

$$H^1(L;L) = \operatorname{Der}(L)/\operatorname{ad}(L) \cong_{\pi} \mathfrak{gl}_2.$$
 Victoria!