AFS

Generated by Doxygen 1.8.6

Fri Mar 6 2015 11:22:10

Contents

1	Mod	ule Ind		1
	1.1	Module		1
2	Hier	archica	ndex	3
	2.1	Class	erarchy	3
3	Clas	s Index		5
	3.1	Class	st	5
4	Mod	ule Dod	mentation	7
	4.1	CUDA	PRIMALDUAL_OPTIMIZATION	7
		4.1.1	Detailed Description	7
		4.1.2	Function Documentation	7
			4.1.2.1cudaSafeCall	7
			4.1.2.2 call_binarization	8
			4.1.2.3 call_segmentation	8
			4.1.2.4 kernel_binarize_u	9
			4.1.2.5 kernel_grad_ascent	9
			4.1.2.6 kernel_grad_descent	9
5	Clas	s Docu	entation	11
	5.1	ColorF	atures Class Reference	11
		5.1.1	Detailed Description	12
		5.1.2	Constructor & Destructor Documentation	12
			5.1.2.1 ColorFeatures	12
		5.1.3	Member Function Documentation	13
			5.1.3.1 extractFeatures	13
	5.2	Corel	ass Reference	13
		5.2.1	Detailed Description	14
		5.2.2	Member Function Documentation	14
			5.2.2.1 Label2RGB	15
			5.2.2.2 RGB2Label	16
	5.3	CvRTr	sMultiClass Class Reference	16

iv CONTENTS

	5.3.1	Detailed	Description	17
	5.3.2	Member	Function Documentation	17
		5.3.2.1	predict_multi_class	17
5.4	Datase	et Class Re	eference	18
	5.4.1	Detailed	Description	21
	5.4.2	Member	Function Documentation	22
		5.4.2.1	clearDir	22
		5.4.2.2	createDir	22
		5.4.2.3	findImage	22
		5.4.2.4	getDatasetImages	23
		5.4.2.5	getFullFeatureDim	24
		5.4.2.6	Label2RGB	25
		5.4.2.7	readImgsInDir	25
		5.4.2.8	readSplitsToVectors	26
		5.4.2.9	RGB2Label	27
5.5	Dense	UnaryPixe	elPotential Class Reference	27
	5.5.1	Detailed	Description	28
	5.5.2	Construc	ctor & Destructor Documentation	28
		5.5.2.1	DenseUnaryPixelPotential	28
	5.5.3	Member	Function Documentation	29
		5.5.3.1	Evaluate	29
		5.5.3.2	Train	30
5.6	DepthF	eatures C	Class Reference	31
	5.6.1	Detailed	Description	32
	5.6.2	Construc	ctor & Destructor Documentation	32
		5.6.2.1	DepthFeatures	33
	5.6.3	Member	Function Documentation	34
		5.6.3.1	extractFeatures	34
5.7	eTrims	Class Ref	ference	34
	5.7.1	Detailed	Description	35
	5.7.2	Member	Function Documentation	35
		5.7.2.1	Label2RGB	36
		5.7.2.2	RGB2Label	37
5.8	Feature	e Class Re	eference	37
	5.8.1	Detailed	Description	39
	5.8.2	Member	Function Documentation	39
		5.8.2.1	extractFeatures	39
		5.8.2.2	getFeatureDim	40
		5.8.2.3	getFullDim	40
		5.8.2.4	getSubSample	40

CONTENTS

		5.8.2.5	loadFeature	41
		5.8.2.6	saveFeature	41
		5.8.2.7	setFeatureDim	42
		5.8.2.8	setRectSize	42
		5.8.2.9	setSubSample	43
5.9	HaarLik	keFeatures	s Class Reference	44
	5.9.1	Detailed	Description	45
	5.9.2	Construc	tor & Destructor Documentation	46
		5.9.2.1	HaarLikeFeatures	46
	5.9.3	Member	Function Documentation	47
		5.9.3.1	centerSurround	47
		5.9.3.2	extractFeatures	47
		5.9.3.3	fourSquare	48
		5.9.3.4	horizontalEdge	49
		5.9.3.5	horizontalLine	49
		5.9.3.6	verticalEdge	50
		5.9.3.7	verticalLine	50
5.10	Image	Class Refe	erence	50
	5.10.1	Detailed	Description	51
	5.10.2	Construc	tor & Destructor Documentation	51
		5.10.2.1	Image	51
	5.10.3	Member	Function Documentation	52
		5.10.3.1	getHeight	52
		5.10.3.2	getImage	53
		5.10.3.3	getRGB	53
		5.10.3.4	getWidth	53
		5.10.3.5	isEmpty	54
5.11	ImageF	Proc Class	Reference	55
	5.11.1	Detailed	Description	55
	5.11.2	Member	Function Documentation	55
		5.11.2.1	convertColor	55
		5.11.2.2	getChannel	56
		5.11.2.3	getEdgeImage	56
		5.11.2.4	getIntegralImage	57
		5.11.2.5	getPaddedImg	58
5.12	Learnin	ng Class R	Reference	59
	5.12.1	Detailed	Description	60
	5.12.2	Member	Function Documentation	60
		5.12.2.1	Evaluate	60
		5.12.2.2	getTrainTime	61

vi CONTENTS

		5.12.2.3 Train	61
5.13	Locatio	nFeatures Class Reference	61
	5.13.1	Detailed Description	62
	5.13.2	Constructor & Destructor Documentation	62
		5.13.2.1 LocationFeatures	63
	5.13.3	Member Function Documentation	64
		5.13.3.1 extractFeatures	64
5.14	Model	Class Reference	64
	5.14.1	Detailed Description	65
	5.14.2	Member Function Documentation	65
		5.14.2.1 ActivateFastComputation	65
		5.14.2.2 Confusion	65
		5.14.2.3 EvaluateFeatures	66
		5.14.2.4 EvaluatePotentials	67
		5.14.2.5 FindOptimalLambda	68
		5.14.2.6 getPERFORMANCE	68
		5.14.2.7 RankFeatures	69
		5.14.2.8 SavePotentialMap	70
		5.14.2.9 SelectFeatures	70
		5.14.2.10 SetStructure	70
		5.14.2.11 Solve	71
		5.14.2.12 TrainPotentials	71
5.15	MSRC	Class Reference	72
	5.15.1	Detailed Description	73
	5.15.2	Member Function Documentation	73
		5.15.2.1 Label2RGB	73
		5.15.2.2 RGB2Label	73
5.16	NYUv1	Class Reference	74
	5.16.1	Detailed Description	75
	5.16.2	Member Function Documentation	75
		5.16.2.1 Label2RGB	75
		5.16.2.2 RGB2Label	75
5.17	NYUv2	Class Reference	75
	5.17.1	Detailed Description	76
	5.17.2	Member Function Documentation	76
		5.17.2.1 Label2RGB	77
		5.17.2.2 RGB2Label	78
5.18	Optimiz	zation Class Reference	78
	5.18.1	Detailed Description	78
	5.18.2	Member Function Documentation	79

CONTENTS vii

		5.18.2.1 Solve	79
5.19	Pedest	ianParsing Class Reference	80
	5.19.1	Detailed Description	81
	5.19.2	Member Function Documentation	81
		5.19.2.1 Label2RGB	81
		5.19.2.2 RGB2Label	81
5.20	Perforn	nance Class Reference	82
	5.20.1	Detailed Description	82
	5.20.2	Constructor & Destructor Documentation	82
		5.20.2.1 Performance	82
	5.20.3	Member Function Documentation	83
		5.20.3.1 operator+=	83
		5.20.3.2 operator/=	83
		5.20.3.3 operator=	83
		5.20.3.4 set	83
5.21	Potenti	al Class Reference	84
	5.21.1	Detailed Description	86
	5.21.2	Member Function Documentation	86
		5.21.2.1 Evaluate	86
		5.21.2.2 loadPotential	86
		5.21.2.3 savePotential	87
		5.21.2.4 Train	87
5.22	Randor	nForest Class Reference	88
	5.22.1	Detailed Description	89
	5.22.2	Constructor & Destructor Documentation	89
		5.22.2.1 RandomForest	89
	5.22.3	Member Function Documentation	90
		5.22.3.1 Evaluate	90
		5.22.3.2 Train	90
5.23		y Class Reference	91
	5.23.1	Detailed Description	92
5.24	Test Cla	ass Reference	92
	5.24.1	Detailed Description	93
5.25		Features Class Reference	94
		Detailed Description	95
	5.25.2	Constructor & Destructor Documentation	95
		5.25.2.1 TextonFeatures	95
	5.25.3	Member Function Documentation	95
	_	5.25.3.1 extractFeatures	95
5.26	Timer (Class Reference	95

viii CONTENTS

.26.1	Detailed I	Description	on																				96
.26.2	Member I	Function	Docum	nentat	ion																		96
	5.26.2.1	formatte	d_time	e																			96
	5.26.2.2	msg .																					96
	5.26.2.3	num_dig	jits																				97
	5.26.2.4	parse_fo	ormatte	ed_tim	ne .																		97
	5.26.2.5	stop .																					97
	5.26.2.6	to_string	j																				98
ariatio	nalOptimi	zation Cla	ass Re	feren	ce .																		98
.27.1	Detailed I	Description	n .																				99
.27.2	Member I	Function	Docum	nentat	ion																		99
	5.27.2.1	Solve .																					99
OC20	12 Class F	Reference	·																				100
.28.1	Detailed I	Description	n .																				101
.28.2	Member I	Function	Docum	nentat	ion																		101
	5.28.2.1	Label2F	GB.																				102
	5.28.2.2	RGB2La	abel																				103
																							104
	26.2 ariatio .27.1 .27.2 OC20 .28.1	26.2 Member 5.26.2.1 5.26.2.2 5.26.2.3 5.26.2.4 5.26.2.5 5.26.2.6 ariationalOptimi. 27.1 Detailed 27.2 Member 5.27.2.1 OC2012 Class 228.1 Detailed 28.2 Member 5.28.2.1	26.2 Member Function 5.26.2.1 formatte 5.26.2.2 msg 5.26.2.3 num_dig 5.26.2.4 parse_fo 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Cla 27.1 Detailed Description 5.27.2.1 Solve CC2012 Class Reference 28.1 Detailed Description 5.28.2.1 Label2R	26.2 Member Function Docum 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatte 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Re 27.1 Detailed Description 27.2 Member Function Docum 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Docum 5.28.1 Label2RGB	26.2 Member Function Documental 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_tin 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documental 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documental 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description 28.2 Member Function Documentation 5.28.2.1 Label2RGB	26.2 Member Function Documentation 5.26.2.1 formatted_time 5.26.2.2 msg 5.26.2.3 num_digits 5.26.2.4 parse_formatted_time 5.26.2.5 stop 5.26.2.6 to_string ariationalOptimization Class Reference 27.1 Detailed Description 27.2 Member Function Documentation 5.27.2.1 Solve OC2012 Class Reference 28.1 Detailed Description

Chapter 1

Module Index

1.1	Modules
Here i	s a list of all modules:
CI	IDA PRIMALDIJAL OPTIMIZATION

2 **Module Index**

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CVRIrees
CvRTreesMultiClass
Dataset
Corel
eTrims
MSRC
NYUv1
NYUv2
PedestrianParsing
Sowerby
Test
VOC2012
Feature
ColorFeatures
DepthFeatures
HaarLikeFeatures
LocationFeatures
TextonFeatures
Image
ImageProc
Learning
RandomForest
Model
Optimization
VariationalOptimization
Performance
Potential
DenseUnaryPixelPotential
Timer

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ColorFea	atures	
	The ColorFeatures class	11
Corel		
	The Corel class	13
CvRTree	esMultiClass	
	The CvRTreesMultiClass class This class has been taken from the following link: http-	
	://stackoverflow.com/questions/10358964/using-opencv-random-fores	ts-is-there-an
	This function estimates the class probabilities given a feature vector. Each tree votes for one	
	class label	16
Dataset		
	The Dataset class	18
DenseU	naryPixelPotential	
	The DenseUnaryPixelPotential class	27
DepthFe	eatures	
	The DepthFeatures class	31
eTrims		
	The eTrims class	34
Feature		
	The Feature class	37
HaarLike	eFeatures eFeatures	
	The HaarLikeFeatures class	44
Image		
	The Image class	50
ImagePr	70C	
	The Image Processing class	55
Learning		
	Virtual Class for Learning Algorithms	59
Location	Features	
	The LocationFeatures class	61
Model		
	The Model class	64
MSRC		
	The MSRC class	72
NYUv1		
	The NYUv1 class	74
NYUv2		
	The NYUv2 class	75

6 Class Index

ptimization		
The Optimization class	7	8
edestrianParsing edestrian Parsing edestrian Par		
The PedestrianParsing class	8	0
erformance		
The Performance class	8	2
ptential		
The Potential class	8	4
andomForest		
The RandomForest class	8	8
owerby		
The Sowerby class	9	1
est		
The Test class	9	2
extonFeatures		
The TextonFeatures class	9	4
mer		
The Timer class	9	5
ariationalOptimization		
The VariationalOptimization class	9	8
OC2012		
The VOC2012 class	10	0

Chapter 4

Module Documentation

4.1 CUDA_PRIMALDUAL_OPTIMIZATION

Functions

• __global__ void kernel_binarize_u (float *u, unsigned char *u_binary, int width, int height, int n, int pitch, int pitchUChar)

CUDA kernel function to binarize the relaxed solution u.

• void call_binarization (float *u, unsigned char *u_binary, int width, int height, int n)

call function to binarize the solution on CUDA

void cudaSafeCall (cudaError err, const char *file, const int line)

call function to print out CUDA errors

• __global__ void kernel_grad_ascent (float *u_bar, float *xi, float *psi, float *sum_u, float *g, int width, int height, int n, float lambda, int pitch)

CUDA kernel function for gradient ascent.

• __global__ void kernel_grad_descent (float *dataterm, float *u, float *u_bar, float *xi, float *psi, float *sum-_u, int width, int height, int n, int pitch)

CUDA kernel function for gradient descent.

 void call_segmentation (float *dataterm, float *g, float *u, int width, int height, int n, float lambda, int &max-Steps, double &time_segm)

call function to run segmentation on gpu

4.1.1 Detailed Description

This group consists of CUDA kernel and c-call functions for primal-dual algorithm

4.1.2 Function Documentation

4.1.2.1 void __cudaSafeCall (cudaError err, const char * file, const int line) [inline]

call function to print out CUDA errors

Parameters

err CUDA error

8 Module Documentation

file	output file
line	output line

4.1.2.2 void call_binarization (float *u, unsigned char *u_binary, int width, int height, int n)

call function to binarize the solution on CUDA

Parameters

и	relaxed optimized solution
u_binary	binary solution
width	width of image
height	height of image
n	number of regions(classes)

Here is the caller graph for this function:

4.1.2.3 void call_segmentation (float * dataterm, float * g, float * u, int width, int height, int n, float lambda, int & maxSteps, double & time_segm)

call function to run segmentation on gpu

Parameters

dataterm	dataterm
g	edge detection function
и	region indicator variable
width	width of the image
height	height of the image
n	number of labels(classes)
lambda	weighting parameter
maxSteps	(maximum) number of iterations
time_segm	measures the runtime

Here is the caller graph for this function:

4.1.2.4 __global__ void kernel_binarize_u (float *u, unsigned char *u_binary, int width, int height, int n, int pitch, int pitchUChar)

CUDA kernel function to binarize the relaxed solution u.

Parameters 4 8 1

и	relaxed optimized solution
u_binary	binary solution
width	width of image
height	height of image
n	number of regions(classes)
pitch	CUDA memory management
pitchUChar	CUDA memory management

4.1.2.5 __global__ void kernel_grad_ascent (float $*u_bar$, float *xi, float *

CUDA kernel function for gradient ascent.

Parameters

u_bar	overrelaxation of u
xi	dual variable
psi	Lagrange multiplier for simplex constraint
sum_u	variable for the simplex constraint
g	edge detection function
width	width of the image
height	height of the image
n	number of labels(classes)
lambda	weighting parameter
pitch	CUDA memory management

4.1.2.6 __global__ void kernel_grad_descent (float * dataterm, float * u, float * u, float * u, float * xi, float * xi, float * sum_u, int width, int height, int n, int pitch)

CUDA kernel function for gradient descent.

Parameters

dataterm	dataterm
и	region indicator variable
u_bar	overrelaxation of u
xi	dual variable
psi	Lagrange multiplier for simplex constraint
sum_u	variable for the simplex constraint
width	width of the image
height	height of the image
n	number of labels(classes)
pitch	CUDA memory management

10 Module Documentation

Chapter 5

Class Documentation

5.1 ColorFeatures Class Reference

The ColorFeatures class.

#include <Feature.hpp>

Inheritance diagram for ColorFeatures:

Collaboration diagram for ColorFeatures:

Public Member Functions

- ColorFeatures (vector < Size > &all_patches, string colorFolder, string ext, int numSubSample)
 Class Constructor.
- void extractFeatures (Image *im, Mat &features) Extract features.

Public Attributes

- vector< Point2d > rndLocs
 relative pixel positions
- vector< Point2d > rndRelatives
 relative pixel positions
- vector< Rect > rndPatches
 relative patch positions

Additional Inherited Members

5.1.1 Detailed Description

The ColorFeatures class.

5.1.2 Constructor & Destructor Documentation

 $5.1.2.1 \quad \text{ColorFeatures::ColorFeatures (vector} < \text{Size} > \& \textit{all_patches, string colorFolder, string ext, int } \textit{numSubSample)}$

Class Constructor.

5.2 Corel Class Reference 13

Parameters

all_pato	ches	set of all patches
colorFo	older	folder to store features
	ext	extension of feature files
numSubSan	nple	sub sample size

5.1.3 Member Function Documentation

5.1.3.1 void ColorFeatures::extractFeatures (Image * im, Mat & features) [virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implements Feature.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.2 Corel Class Reference

The Corel class.

#include <Dataset.hpp>

Inheritance diagram for Corel:

Collaboration diagram for Corel:

Public Member Functions

• Corel ()

Class Constructor.

• void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.2.1 Detailed Description

The Corel class.

5.2.2 Member Function Documentation

5.2 Corel Class Reference 15

5.2.2.1 void Corel::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.2.2.2 void Corel::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.3 CvRTreesMultiClass Class Reference

This function estimates the class probabilities given a feature vector. Each tree votes for one class label.

#include <Learning.hpp>

Inheritance diagram for CvRTreesMultiClass:

Collaboration diagram for CvRTreesMultiClass:

Public Member Functions

• int predict_multi_class (const CvMat *sample, int out_votes[], const CvMat *missing=0) const Predict unnormalized class probability for one test sample.

5.3.1 Detailed Description

This function estimates the class probabilities given a feature vector. Each tree votes for one class label.

5.3.2 Member Function Documentation

5.3.2.1 int CvRTreesMultiClass::predict_multi_class (const CvMat * sample, int out_votes[], const CvMat * missing = 0) const [inline]

Predict unnormalized class probability for one test sample.

Parameters

sample	Test sample
out_votes	Unnormalized class probabilities for a given test sample
missing	Optional missing measurement mask of the sample (OpenCV doc)

Returns

Total number of trees in the forest

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

• /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Learning.hpp

5.4 Dataset Class Reference

The Dataset class.

#include <Dataset.hpp>

Inheritance diagram for Dataset:

Collaboration diagram for Dataset:

Public Member Functions

• Dataset ()

Class Constructor.

virtual ∼Dataset ()

Class Deconstructor.

· virtual void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

· virtual void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

virtual void getDatasetImages (int trainCount, int testCount)

Split Dataset.

virtual void readImgsInDir (vector< string > &imgs, string folder, string ext)

Read Dataset.

virtual bool readSplitsToVectors ()

Read pre-splitted train/validation/test images.

• virtual void writeSplitsToFile ()

Write train/validation/test splits to files.

virtual int createDir (string dirName)

Create directory.

virtual int clearDir (string dirName)

Remove all file in directory.

• virtual int findImage (string name)

Find image index in testImgs.

• virtual void createResultFolders ()

Create Folders for Results.

virtual int getFullFeatureDim ()

Get size of full feature set.

· virtual void removeUnlabeledImages ()

Remove Unlabeled Images from Dataset.

Public Attributes

vector< string > allImages

list of all images in dataset

vector< string > trainImgs

list of training images

vector< string > testImgs

list of test images

vector< string > validationImgs

list of validation images

vector< int > selectedFeatures

vector stores indices of selected features

bool isSplitDataset

flag to split dataset randomly

· bool savePotentials

flag to save potentials

bool saveDetections

flag to save detection results (argmax of potential for each pixel on image)

bool showEntropy

flag to visualize entropy map of the image

· int trainCount

size of the training set

· int testCount

size of the test test

double trainEntropy

entopy of the training data (balance of the classes in training set)

double testEntropy

entropy of the test set (how certain the detection is)

· string name_

name of the dataset

string resultDir

folder to store the segmentation outputs

· string trainFolder

folder to store classifiers

· string resultFolder

folder to store results. (e.g. mainFolder + '/Result')

string mainFolder

main folder of dataset

string imageFolder

folder where RGB image files are

string imageFileExt

extension of RGB image files

· string grFolder

folder where ground truth files are

string grFileExt

extension of ground truth files

· string depthFolder

folder to store depth features

· string depthFileExt

extension of depth feature files

· string haarFolder

folder to store haar-like features

· string haarFeatureExt

extension of haar-like feature files

string colorFolder

folder to store color features

· string colorFeatureExt

extension of color feature files

string locationFolder

folder to store location features

string locationFeatureExt

extension of location feature files

string textonFolder

folder to store texton features

string textonFeatureExt

extension of texton feature files

• string depthFeatureFolder

folder to store depth features

string depthFeatureExt

extension of depth feature files

• string potentialFolder

folder to stor potentials

string potentialExt

extension of potential files

string detectionFolder

folder to store detection results

string pMapFolder

folder to store potential maps

• int numFeatureDims

total size of current feature set

• int fcount_

Number of features in the current(selected) feature set.

int n

maximum number of regions (== numClasses)

· int maxSteps

maximum iteration number for VariationalOptimization

float lambda

smoothing parameter lambda for VariationalOptimization

· int subSample

sub sample size

· double textonBandWidth

bandwidth of kernels for TextonFeautures

• unsigned int numClasses

total number of classes in Dataset

HaarLikeFeatures * haarFeatures

instance of HaarLikeFeatures

• ColorFeatures * colorFeatures

instance of ColorFeatures

• LocationFeatures * locationFeatures

instance of LocationFeatures

• TextonFeatures * textonFeatures

instance of TextonFeatures

• DepthFeatures * depthFeatures

instance of DepthFeatures

const float * class_weights

Weights of each class to balance the training error.

• CvRTParams RFParams

Structure to store parameteres for Random Forest.

• CvTermCriteria RFterm_crit

termination criteria for Random Forests training

• int RFmax_num_of_trees_in_the_forest

maximum number of trees in the forest

float RFforest_accuracy

sufficient accuracy, OOB error (OpenCV docs)

int totalFeatureType

total number of feature types

• int numPotentials

number of potentails

Feature ** features

pointer to the list of features

Potential ** potentials

pointer to the list of potentials

• Optimization * optimizer

pointer to the optimizer

Protected Attributes

• int index

variable to store index

5.4.1 Detailed Description

The Dataset class.

5.4.2 Member Function Documentation

5.4.2.1 int Dataset::clearDir(string dirName) [virtual]

Remove all file in directory.

Parameters

dirNomo	directory to be elegand
dirName	directory to be cleared

Returns

1 if all files succesfully removed

5.4.2.2 int Dataset::createDir(string dirName) [virtual]

Create directory.

Parameters

dirName	name of directory

Returns

1 if directory exist

Here is the caller graph for this function:

5.4.2.3 int Dataset::findImage (string name) [virtual]

Find image index in testImgs.

Parameters

name	name of the image
------	-------------------

Returns

index of the image in testImgs

 $\textbf{5.4.2.4} \quad \textbf{void Dataset::getDatasetImages (int \textit{trainCount,} int \textit{testCount})} \quad \texttt{[virtual]}$

Split Dataset.

Parameters

trainCount	number of training samples, either a number or a proportion
testCount	number of test samples, either a number or a proportion

Here is the call graph for this function:

Here is the caller graph for this function:

5.4.2.5 int Dataset::getFullFeatureDim() [virtual]

Get size of full feature set.

Returns

size of full feature set

Here is the call graph for this function:

Here is the caller graph for this function:

5.4.2.6 void Dataset::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented in PedestrianParsing, VOC2012, NYUv2, NYUv1, Corel, MSRC, and eTrims.

Here is the caller graph for this function:

5.4.2.7 void Dataset::readImgsInDir (vector < string > & imgs, string folder, string ext) [virtual]

Read Dataset.

Parameters

imgs	vector of image names
folder	folder to read images from
ext	extension of image files

Here is the caller graph for this function:

5.4.2.8 bool Dataset::readSplitsToVectors() [virtual]

Read pre-splitted train/validation/test images.

Returns

true if split files exist

Here is the caller graph for this function:

5.4.2.9 void Dataset::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented in PedestrianParsing, VOC2012, NYUv2, NYUv1, Corel, MSRC, and eTrims.

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.5 DenseUnaryPixelPotential Class Reference

The DenseUnaryPixelPotential class.

#include <Potential.hpp>

Inheritance diagram for DenseUnaryPixelPotential:

Collaboration diagram for DenseUnaryPixelPotential:

Public Member Functions

- DenseUnaryPixelPotential (string dir, string fileExt)
 Class Constructior.
- int Train (Dataset *dataset, vector< string > &imageList, int from, int to, bool FAST_COMPUTATION=false)

 Train potential.
- int Evaluate (Dataset *dataset, vector< string > &imageList, int from, int to, bool FAST_COMPUTATION=false)

Evaluate potentials.

Additional Inherited Members

5.5.1 Detailed Description

The DenseUnaryPixelPotential class.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 DenseUnaryPixelPotential::DenseUnaryPixelPotential (string dir, string fileExt)

Class Constructior.

Parameters

dir	Output directory
fileExt	file extension

5.5.3 Member Function Documentation

5.5.3.1 int DenseUnaryPixelPotential::Evaluate (Dataset * dataset, vector < string > & imageList, int from, int to, bool FAST_COMPUTATION = false) [virtual]

Evaluate potentials.

Parameters

dataset	pointer to the current dataset
imageList	list of images
from	start index
to	stop index, set to -1 to process all images startin from "from"
FAST_COMPU-	flag to activate fast computation
TATION	

Returns

estimated time per image in miliseconds

Implements Potential.

Here is the call graph for this function:

5.5.3.2 int DenseUnaryPixelPotential::Train (Dataset * dataset, vector < string > & imageList, int from, int to, bool FAST_COMPUTATION = false) [virtual]

Train potential.

Parameters

dataset	pointer to the current dataset
imageList	list of images
from	start index
to	stop index, set to -1 to process all images startin from "from"
FAST_COMPU-	flag to activate fast computation
TATION	

Returns

estimated training time in miliseconds

Implements Potential.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Potential.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Potential.cpp

5.6 DepthFeatures Class Reference

The DepthFeatures class.

#include <Feature.hpp>

Inheritance diagram for DepthFeatures:

Collaboration diagram for DepthFeatures:

Public Member Functions

- DepthFeatures (vector < Size > &all_patches, string depthFolder, string ext, int numSubSample)
 Class Constructor.
- void extractFeatures (Image *im, Mat &features) Extract features.

Additional Inherited Members

5.6.1 Detailed Description

The DepthFeatures class.

5.6.2 Constructor & Destructor Documentation

5.6 DepthFeatures Class Reference 33 $5.6.2.1 \quad \text{DepthFeatures::DepthFeatures (vector} < \text{Size} > \& \textit{ all_patches, string depthFolder, string ext, int } \textit{numSubSample)}$ Class Constructor.

Parameters

	all_patches	set of all patches
ſ	depthFolder	folder to store features
ſ	ext	extension of feature files
ĺ	numSubSample	sub sample size

5.6.3 Member Function Documentation

5.6.3.1 void DepthFeatures::extractFeatures (Image * im, Mat & features) [virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implements Feature.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.7 eTrims Class Reference

The eTrims class.

#include <Dataset.hpp>

5.7 eTrims Class Reference 35

Inheritance diagram for eTrims:

Collaboration diagram for eTrims:

Public Member Functions

• eTrims ()

eTrims

void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.7.1 Detailed Description

The eTrims class.

5.7.2 Member Function Documentation

5.7.2.1 void eTrims::Label2RGB (Mat *labels*, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.7.2.2 void eTrims::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.8 Feature Class Reference

The Feature class.

#include <Feature.hpp>

Inheritance diagram for Feature:

Collaboration diagram for Feature:

Public Member Functions

• Feature ()

Class Constructor.

virtual ∼Feature ()

Class Deconstructor.

void saveFeature (string imName, Mat &features)

Save features.

void loadFeature (string imName, Mat &features)

Load feature.

• virtual void extractFeatures (Image *im, Mat &features)=0

Extract features.

void setSubSample (int ss)

Set sub sample size.

• int getSubSample ()

Get sub sample size.

• int getFeatureDim ()

Get size of feature set.

• int getFullDim ()

Get size of full feature set.

void setFeatureDim (int dim)

Set size of feature set.

Public Attributes

• string name_

name of the feature

• Mat isComputeFeature

matrix to store feature indices indicate which features to be computed

Protected Member Functions

• void setRectSize (int height, int width)

Set rectangle size.

Protected Attributes

FILE * foperator

File operator.

· string ftFolder

folder to store feature

string ext_

feature file extension

• int subSample

size of sub sample

• int featureSize

size of feature

• int featureDim

size of selected feature set

int rHeight

patch height

• int rWidth

patch width

· int halfHeight

half size of patch height

· int halfWidth

half size of patch width

· int sixthOfHeight

sixth of patch height

· int sixthOfWidth

sixth of patch width

· int fourthOfHeight

fourth of patch height

· int fourthOfWidth

fourth of patch width

• float weight0

weight of black region (Haar-like features)

• float weight1

weight of white region (Haar-like features)

vector < Size > allPatches

vector of all patches

· Timer timer

timer to estimate the time

5.8.1 Detailed Description

The Feature class.

5.8.2 Member Function Documentation

5.8.2.1 virtual void Feature::extractFeatures (Image * im, Mat & features) [pure virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implemented in TextonFeatures, DepthFeatures, LocationFeatures, ColorFeatures, and HaarLikeFeatures.

Here is the caller graph for this function:

5.8.2.2 int Feature::getFeatureDim()

Get size of feature set.

Returns

size of feature set

Here is the caller graph for this function:

5.8.2.3 int Feature::getFullDim()

Get size of full feature set.

Returns

size of full feature set

Here is the caller graph for this function:

5.8.2.4 int Feature::getSubSample ()

Get sub sample size.

Returns

size of sub sample

Here is the caller graph for this function:

5.8.2.5 void Feature::loadFeature (string imName, Mat & features)

Load feature.

Parameters

imName	image name
features	feature matrix

Here is the caller graph for this function:

5.8.2.6 void Feature::saveFeature (string imName, Mat & features)

Save features.

Parameters

imName	image name
features	feature matrix

Here is the caller graph for this function:

5.8.2.7 void Feature::setFeatureDim (int dim)

Set size of feature set.

Parameters

dim	size
-----	------

Here is the caller graph for this function:

5.8.2.8 void Feature::setRectSize (int height, int width) [protected]

Set rectangle size.

Parameters

height	height of new rectangle
width	width of new rectangle

Here is the caller graph for this function:

5.8.2.9 void Feature::setSubSample (int ss)

Set sub sample size.

Parameters

SS	sub sample size
----	-----------------

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.9 HaarLikeFeatures Class Reference

The HaarLikeFeatures class.

#include <Feature.hpp>

Inheritance diagram for HaarLikeFeatures:

Collaboration diagram for HaarLikeFeatures:

Public Member Functions

- HaarLikeFeatures (vector < Size > &all_patches, string haarFolder, string ext, int numSubSample)
 Class Constructor.
- void extractFeatures (Image *im, Mat &features)
 Extract features.

Protected Member Functions

- void horizontalEdge (Mat &im, int r, int c, float &fValue)
 Horizontal Edge Feature.
- void verticalEdge (Mat &im, int r, int c, float &fValue)
 Vertical Edge Feature.
- void horizontalLine (Mat &im, int r, int c, float &fValue)
- void verticalLine (Mat &im, int r, int c, float &fValue)
- Vertical Edge Feature.
- void centerSurround (Mat &im, int r, int c, float &fValue)
 Center Surround Feature.
- void fourSquare (Mat &im, int r, int c, float &fValue)

Four Square Feature.

Horizontal Line Feature.

Additional Inherited Members

5.9.1 Detailed Description

The HaarLikeFeatures class.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 HaarLikeFeatures::HaarLikeFeatures (vector< Size > & all_patches, string haarFolder, string ext, int numSubSample)

Class Constructor.

Parameters

all_patches	set of all patches
haarFolder	folder to store features
ext	extension of feature files
numSubSample	sub sample size

5.9.3 Member Function Documentation

5.9.3.1 void HaarLikeFeatures::centerSurround (Mat & im, int r, int c, float & fValue) [protected]

Center Surround Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

5.9.3.2 void HaarLikeFeatures::extractFeatures (Image * im, Mat & features) [virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implements Feature.

Here is the call graph for this function:

5.9.3.3 void HaarLikeFeatures::fourSquare (Mat & im, int r, int c, float & fValue) [protected]

Four Square Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

5.9.3.4 void HaarLikeFeatures::horizontalEdge (Mat & im, int r, int c, float & fValue) [protected]

Horizontal Edge Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

5.9.3.5 void HaarLikeFeatures::horizontalLine (Mat & im, int r, int c, float & fValue) [protected]

Horizontal Line Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

5.9.3.6 void HaarLikeFeatures::verticalEdge (Mat & im, int r, int c, float & fValue) [protected]

Vertical Edge Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

5.9.3.7 void HaarLikeFeatures::verticalLine (Mat & im, int r, int c, float & fValue) [protected]

Vertical Edge Feature.

Parameters

im	image
r	row of pixel at which the feature will be computed
С	column of pixel at which the feature will be computed
fValue	feature value

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- $\bullet \ / usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp$
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.10 Image Class Reference

The Image class.

#include <Image.hpp>

Public Member Functions

```
    Image (string impath, string depthpath="")
        Class Constructor.
    ~Image ()
        Class DeConstructor.
    int getWidth ()
        get image width
    int getHeight ()
        get image height
    Mat getImage ()
        get image
    Mat getRGB ()
        get RGB image
    bool isEmpty ()
```

Public Attributes

```
• string imName
```

image path

is image empty?

• Mat BGRImage_

BGR image.

• Mat LABImage_

Lab image.

Mat L

L channel.

Mat L8U

L channel, unsigned 8 bit.

Mat a

a channel

Mat b

b channel

Mat depth

depth image

5.10.1 Detailed Description

The Image class.

5.10.2 Constructor & Destructor Documentation

```
5.10.2.1 Image::Image ( string impath, string depthpath = " " )
```

Class Constructor.

Parameters

impath	Path to the image
depthpath	Path to the depth image

Here is the call graph for this function:

5.10.3 Member Function Documentation

5.10.3.1 int Image::getHeight ()

get image height

Returns

image height

Here is the caller graph for this function:

5.10.3.2 Mat Image::getImage ()

get image

Returns

image

5.10.3.3 Mat Image::getRGB ()

get RGB image

Returns

RGB image

Here is the call graph for this function:

Here is the caller graph for this function:

5.10.3.4 int Image::getWidth()

get image width

Returns

image width

Here is the caller graph for this function:

5.10.3.5 bool Image::isEmpty ()

is image empty?

Returns

true or false

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Image.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Image.cpp

5.11 ImageProc Class Reference

The Image Processing class.

#include <ImageProc.hpp>

Public Member Functions

• ImageProc ()

Class Constructor.

Static Public Member Functions

• static Mat getEdgeImage (Mat input)

compute image edges

• static Mat getIntegralImage (Mat input)

compute integral image

• static Mat getPaddedImg (Mat input, int extTopRows, int extBotRows, int extLeftCols, int extRightCols)

zero pad to the image

• static Mat convertColor (Mat input, int code)

convert image color space

• static Mat getChannel (Mat input, unsigned char channel)

get specific channel of image

5.11.1 Detailed Description

The Image Processing class.

5.11.2 Member Function Documentation

5.11.2.1 Mat ImageProc::convertColor (Mat input, int code) [static]

convert image color space

Parameters

input	image
code	OpenCV color conversion code

Returns

color converted image

Here is the caller graph for this function:

5.11.2.2 Mat ImageProc::getChannel (Mat input, unsigned char channel = 0) [static]

get specific channel of image

Parameters

input	image
channel	channel to return

Returns

image channel

Here is the caller graph for this function:

5.11.2.3 Mat ImageProc::getEdgeImage (Mat input) [static]

compute image edges

Parameters

input	RGB image

Returns

edge image

5.11.2.4 Mat ImageProc::getIntegralImage (Mat input) [static]

compute integral image

Parameters

input	RGB Image
-------	-----------

Returns

integral image

Here is the caller graph for this function:

5.11.2.5 Mat ImageProc::getPaddedImg (Mat input, int extTopRows, int extBotRows, int extLeftCols, int extRightCols) [static]

zero pad to the image

Parameters

input	image
extTopRows	number of top rows to pad zero
extBotRows	number of bot rows to pad zero
extLeftCols	number of left cols to pad zero
extRightCols	number of right cols to pad zero

Returns

zero padded image

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/ImageProc.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/ImageProc.cpp

5.12 Learning Class Reference

Virtual Class for Learning Algorithms.

#include <Learning.hpp>

Inheritance diagram for Learning:

Collaboration diagram for Learning:

Public Member Functions

· Learning ()

Class Constructor.

virtual ~Learning ()

Class Deconstructor.

virtual void Train (Mat &trainData, const Mat &labels=Mat())=0

Train Classifier.

• virtual void Evaluate (Mat &testData, Mat &possibleLabels, Mat &labelProbs)=0

Predict class probabilities.

• virtual void SaveClassifier ()=0

Save Classifier.

• virtual void LoadClassifier ()=0

Load Classifier.

• virtual void ClearClassifier ()=0

Clear classifier object.

• int getTrainTime ()

Return estimated training time.

Public Attributes

• string trainFile

Path to the classifier file.

• string name_

Name of the classifier.

Protected Attributes

• uint nClass

Total number of classes.

· Timer timer

Timer to estimate the time.

· int train time

Training time in miliseconds.

5.12.1 Detailed Description

Virtual Class for Learning Algorithms.

5.12.2 Member Function Documentation

5.12.2.1 virtual void Learning::Evaluate (Mat & testData, Mat & possibleLabels, Mat & labelProbs) [pure virtual]

Predict class probabilities.

Parameters

	testData	Test data, size of {number of samples x number of features}
р	ossibleLabels	argmax< class probabilities> for each test sample
	labelProbs	Class probabilities for each test sample

Implemented in RandomForest.

Here is the caller graph for this function:

5.12.2.2 int Learning::getTrainTime ()

Return estimated training time.

Returns

Estimated time in miliseconds

Here is the caller graph for this function:

5.12.2.3 virtual void Learning::Train (Mat & trainData, const Mat & labels = Mat ()) [pure virtual]

Train Classifier.

Parameters

trainData	Training data, size of {number of samples x number of features}
labels	Ground truth class labels, size of {1 x number of samples}

Implemented in RandomForest.

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Learning.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Learning.cpp

5.13 LocationFeatures Class Reference

The LocationFeatures class.

#include <Feature.hpp>

Inheritance diagram for LocationFeatures:

Collaboration diagram for LocationFeatures:

Public Member Functions

• LocationFeatures (string LocFolder, string ext, int numSubSample)

Class Constructor.

• void extractFeatures (Image *im, Mat &features)

Extract features.

Additional Inherited Members

5.13.1 Detailed Description

The LocationFeatures class.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 LocationFeatures::LocationFeatures (string LocFolder, string ext, int numSubSample)

Class Constructor.

Parameters

LocFolder	folder to store features
ext	extension of feature files
numSubSample	sub sample size

5.13.3 Member Function Documentation

5.13.3.1 void LocationFeatures::extractFeatures (Image * im, Mat & features) [virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implements Feature.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.14 Model Class Reference

The Model class.

#include <Model.hpp>

Public Member Functions

• Model ()

Class Constructor.

• void SetStructure (Dataset *dataset)

Set model structure.

- void EvaluateFeatures (vector< string > &imageList, int from=0, int to=-1, int &eval_ftr_time=DummyTime)

 Evaluate features.
- void TrainPotentials (vector < string > &imageList, int from=0, int to=-1, int &train_pt_time=DummyTime)
 Train potentials.

- void EvaluatePotentials (vector< string > &imageList, int from=0, int to=-1, int &eval_pt_time=DummyTime)

 Evaluate potentials.
- void Confusion (vector< string > &imageList, string folder, string confFileName, int from=0, int to=-1)
 Compute confusion matrix.
- void Solve (vector < string > &imageList, int from=0, int to=-1, int &solving_time=DummyTime)
 Solve optimization.
- void RankFeatures (vector < string > &imageList, int from=0, int to=-1, bool isRank=true, int &ranking_-time=DummyTime)

Rank features with mrmr.

void AnalyseFeatures ()

Analyse features.

• int SelectFeatures (float alpha, float beta)

Select features.

void FindOptimalLambda (vector< string > &imageList, int from=0, int to=-1)

Find optimal lambda for VariationalOptimization.

void SavePotentialMap (vector < string > &imageList, int from=0, int to=-1)

Save potential map for images.

void ActivateFastComputation (bool isFast=true)

Activate fast computation Load features instead of computing on the fly.

void PrintDatasetInfo ()

Print dataset info.

• Performance getPERFORMANCE ()

get current performance

5.14.1 Detailed Description

The Model class.

5.14.2 Member Function Documentation

5.14.2.1 void Model::ActivateFastComputation (bool isFast = true)

Activate fast computation Load features instead of computing on the fly.

Activate the loading only relevant features from pre-computed feature files.

Parameters

isFast	flag to activate fast computation

5.14.2.2 void Model::Confusion (vector < string > & imageList, string folder, string confFileName, int from = 0, int to = -1)

Compute confusion matrix.

imageList	list of images
folder	path to the folder to save confusion matrix
confFileName	file name for confusion matrix

from	start index
to	stop index, set to -1 to segment all images starting from "from"

Here is the call graph for this function:

Here is the caller graph for this function:

5.14.2.3 void Model::EvaluateFeatures (vector < string > & imageList, int from = 0, int to = -1, int & eval_ftr_time = DummyTime)

Evaluate features.

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"
eval_ftr_time	estimated time per image in miliseconds

67

Here is the call graph for this function:

Here is the caller graph for this function:

5.14.2.4 void Model::EvaluatePotentials (vector < string > & imageList, int from = 0, int to = -1, int & eval_pt_time = DummyTime)

Evaluate potentials.

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"

eval pt time	estimated time per image in miliseconds
evai_pi_iiiie	estimated time per image in miniseconds

Here is the call graph for this function:

Here is the caller graph for this function:

5.14.2.5 void Model::FindOptimalLambda (vector < string > & imageList, int from = 0, int to = -1)

Find optimal lambda for VariationalOptimization.

Parameters

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"

Here is the call graph for this function:

5.14.2.6 Performance Model::getPERFORMANCE()

get current performance

Returns

current performance

Here is the caller graph for this function:

5.14.2.7 void Model::RankFeatures (vector< string > & imageList, int from = 0, int to = -1, bool isRank = true, int & ranking_time = DummyTime)

Rank features with mrmr.

Parameters

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"
isRank	flag to rank features
ranking_time	estimated time to rank features

Here is the call graph for this function:

Here is the caller graph for this function:

5.14.2.8 void Model::SavePotentialMap (vector < string > & imageList, int from = 0, int to = -1)

Save potential map for images.

Parameters

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"

Here is the call graph for this function:

5.14.2.9 int Model::SelectFeatures (float alpha, float beta)

Select features.

Parameters

alpha	alpha
beta	beta

Returns

number of selected features

5.14.2.10 void Model::SetStructure (Dataset * dataset)

Set model structure.

Parameters

dataset	pointer to the dataset
---------	------------------------

5.14.2.11 void Model::Solve (vector < string > & imageList, int from = 0, int to = -1, int & solving_time = DummyTime)

Solve optimization.

Parameters

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"
solving_time	estimated time per image in miliseconds

Here is the call graph for this function:

Here is the caller graph for this function:

5.14.2.12 void Model::TrainPotentials (vector< string > & imageList, int from = 0, int to = -1, int & train_pt_time = DummyTime)

Train potentials.

imageList	list of images
from	start index
to	stop index, set to -1 to segment all images starting from "from"
train_pt_time	estimated time in miliseconds

Here is the call graph for this function:

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Model.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Model.cpp

5.15 MSRC Class Reference

The MSRC class.

#include <Dataset.hpp>

Inheritance diagram for MSRC:

Collaboration diagram for MSRC:

Public Member Functions

• MSRC ()

MSRC.

• void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.15.1 Detailed Description

The MSRC class.

5.15.2 Member Function Documentation

5.15.2.1 void MSRC::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.15.2.2 void MSRC::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.16 NYUv1 Class Reference

The NYUv1 class.

#include <Dataset.hpp>

Inheritance diagram for NYUv1:

Collaboration diagram for NYUv1:

Public Member Functions

• NYUv1 ()

Class Constructor.

void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.16.1 Detailed Description

The NYUv1 class.

5.16.2 Member Function Documentation

5.16.2.1 void NYUv1::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.16.2.2 void NYUv1::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.17 NYUv2 Class Reference

The NYUv2 class.

#include <Dataset.hpp>

Inheritance diagram for NYUv2:

Collaboration diagram for NYUv2:

Public Member Functions

• NYUv2 ()

Class Constructor.

• void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.17.1 Detailed Description

The NYUv2 class.

5.17.2 Member Function Documentation

5.17 NYUv2 Class Reference 77

5.17.2.1 void NYUv2::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.17.2.2 void NYUv2::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.18 Optimization Class Reference

The Optimization class.

#include <Optimization.hpp>

Inheritance diagram for Optimization:

Public Member Functions

virtual int Solve (Dataset *dataset, vector< string > &imageList, int from, int to, bool printTime=true)=0
 optimize solution

5.18.1 Detailed Description

The Optimization class.

5.18.2 Member Function Documentation

5.18.2.1 virtual int Optimization::Solve (Dataset * dataset, vector < string > & imageList, int from, int to, bool printTime = true) [pure virtual]

optimize solution

Parameters

dataset	pointer to the current dataset
imageList	list of images to segment
from	start index
to	stop index, set to -1 to segment all images starting from "from"
printTime	flag to print out the estiamted time on output

Returns

estimated time per image in miliseconds

Implemented in VariationalOptimization.

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

 $\bullet \ / usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Optimization.hpp$

5.19 PedestrianParsing Class Reference

The PedestrianParsing class.

#include <Dataset.hpp>

Inheritance diagram for PedestrianParsing:

Collaboration diagram for PedestrianParsing:

Public Member Functions

· PedestrianParsing ()

Class Constructor.

void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.19.1 Detailed Description

The PedestrianParsing class.

5.19.2 Member Function Documentation

5.19.2.1 void PedestrianParsing::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.19.2.2 void PedestrianParsing::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.20 Performance Class Reference

```
The Performance class.
```

```
#include <common.hpp>
```

Public Member Functions

• Performance (double init=0)

Class Constructor.

• void set (Performance perf)

set performance

• Performance & operator= (const Performance &p)

operator =

• Performance & operator+= (const Performance &p)

operator +=

Performance & operator/= (const int &t)

operator /=

Public Attributes

· double overall

overall score

• double average

average score

· double waverage

weighted average score

5.20.1 Detailed Description

The Performance class.

5.20.2 Constructor & Destructor Documentation

5.20.2.1 Performance::Performance (double init = 0) [inline]

Class Constructor.

Parameters

init | initial performance score

5.20.3 Member Function Documentation

5.20.3.1 Performance& Performance::operator+= (const Performance & p) [inline]

operator +=

Parameters

p pointer to performance

Returns

new performance

5.20.3.2 Performance& Performance::operator/=(const int & t) [inline]

operator /=

Parameters

t number

Returns

new performance

5.20.3.3 Performance& Performance::operator=(const Performance & p) [inline]

operator =

Parameters

p pointer to performance

Returns

new performance

5.20.3.4 void Performance::set (Performance perf) [inline]

set performance

Parameters

perf performance

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

• /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/common.hpp

5.21 Potential Class Reference

The Potential class.

#include <Potential.hpp>

Inheritance diagram for Potential:

Collaboration diagram for Potential:

Public Member Functions

• Potential ()

Class Constructor.

virtual ∼Potential ()

Class Deconstructor.

 virtual int Train (Dataset *dataset, vector< string > &imageList, int from, int to, bool FAST_COMPUTATIO-N)=0

Train potential.

virtual int Evaluate (Dataset *dataset, vector< string > &imageList, int from, int to, bool FAST_COMPUTAT-ION)=0

Evaluate potentials.

• void savePotential (string imName, Mat &potentials, int classNo)

Save potential.

• void loadPotential (string imName, Mat &potentials)

Load Potential.

Public Attributes

• string name_

Potential name.

• Learning * learning

pointer to the learning algorithm

Protected Attributes

• FILE * foperator

file operator

• string folder

potential output folder

• string ext

potential extension

· Timer timer

timer to estimate the time

5.21.1 Detailed Description

The Potential class.

5.21.2 Member Function Documentation

5.21.2.1 virtual int Potential::Evaluate (Dataset * dataset, vector< string > & imageList, int from, int to, bool FAST_COMPUTATION) [pure virtual]

Evaluate potentials.

Parameters

dataset	pointer to the current dataset
imageList	list of images
from	start index
to	stop index, set to -1 to process all images startin from "from"
FAST_COMPU-	flag to activate fast computation
TATION	

Returns

estimated time per image in miliseconds

Implemented in DenseUnaryPixelPotential.

Here is the caller graph for this function:

5.21.2.2 void Potential::loadPotential (string imName, Mat & potentials)

Load Potential.

imName	path to the image
potentials	potentials

Here is the caller graph for this function:

5.21.2.3 void Potential::savePotential (string imName, Mat & potentials, int classNo)

Save potential.

Parameters

imName	path to the image
potentials	potentials
classNo	total number of classes

Here is the caller graph for this function:

5.21.2.4 virtual int Potential::Train (Dataset * dataset, vector < string > & imageList, int from, int to, bool FAST_COMPUTATION) [pure virtual]

Train potential.

dataset	pointer to the current dataset
imageList	list of images
from	start index
to	stop index, set to -1 to process all images startin from "from"
FAST_COMPU-	flag to activate fast computation
TATION	

Returns

estimated training time in miliseconds

Implemented in DenseUnaryPixelPotential.

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Potential.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Potential.cpp

5.22 RandomForest Class Reference

The RandomForest class.

#include <Learning.hpp>

Inheritance diagram for RandomForest:

Collaboration diagram for RandomForest:

Public Member Functions

• RandomForest (string clsFile, CvRTParams params, unsigned int numClasses)

Class Constructor.

void Train (Mat &trainData, const Mat &labels=Mat())

Train Classifier.

• void Evaluate (Mat &testData, Mat &possibleLabels, Mat &labelProbs)

Predict class probabilities.

• void SaveClassifier ()

Save Classifier.

• void LoadClassifier ()

Load Classifier.

• void ClearClassifier ()

Clear classifier object.

Additional Inherited Members

5.22.1 Detailed Description

The RandomForest class.

5.22.2 Constructor & Destructor Documentation

5.22.2.1 RandomForest::RandomForest (string clsFile, CvRTParams params, unsigned int numClasses)

Class Constructor.

Parameters

cls	File	Path to the cassifier file
para	ams	Structure for classifier parameters
numClas	ses	Total number of classes

5.22.3 Member Function Documentation

5.22.3.1 void RandomForest::Evaluate (Mat & testData, Mat & possibleLabels, Mat & labelProbs) [virtual]

Predict class probabilities.

Parameters

testData	Test data, size of {number of samples x number of features}
possibleLabels	argmax< class probabilities> for each test sample
labelProbs	Class probabilities for each test sample

Implements Learning.

Here is the call graph for this function:

5.22.3.2 void RandomForest::Train (Mat & trainData, const Mat & labels = Mat ()) [virtual]

Train Classifier.

Parameters

trainData	Training data, size of {number of samples x number of features}
labels	Ground truth class labels, size of {1 x number of samples}

Implements Learning.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Learning.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Learning.cpp

5.23 Sowerby Class Reference

The Sowerby class.

#include <Dataset.hpp>

Inheritance diagram for Sowerby:

Collaboration diagram for Sowerby:

Public Member Functions

• Sowerby ()

Class Constructor.

Additional Inherited Members

5.23.1 Detailed Description

The Sowerby class.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.24 Test Class Reference

The Test class.

#include <Dataset.hpp>

5.24 Test Class Reference 93

Inheritance diagram for Test:

Collaboration diagram for Test:

Public Member Functions

• Test ()

Class Constructor.

Additional Inherited Members

5.24.1 Detailed Description

The Test class.

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Dataset.cpp

5.25 TextonFeatures Class Reference

The TextonFeatures class.

#include <Feature.hpp>

Inheritance diagram for TextonFeatures:

Collaboration diagram for TextonFeatures:

Public Member Functions

• TextonFeatures (string TextonFolder, string ext, int numSubSample, double bandWidth)

Class Constructor.

void extractFeatures (Image *im, Mat &filterResponses)

Extract features.

Additional Inherited Members

5.26 Timer Class Reference 95

5.25.1 Detailed Description

The TextonFeatures class.

5.25.2 Constructor & Destructor Documentation

5.25.2.1 TextonFeatures::TextonFeatures (string TextonFolder, string ext, int numSubSample, double bandWidth)

Class Constructor.

Parameters

TextonFolder	folder to store features
ext	extension of feature files
numSubSample	sub sample size
bandWidth	bandwidth of texton kernels

5.25.3 Member Function Documentation

5.25.3.1 void TextonFeatures::extractFeatures (Image * im, Mat & features) [virtual]

Extract features.

Parameters

im	image
features	feature matrix

Implements Feature.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Feature.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Feature.cpp

5.26 Timer Class Reference

The Timer class.

#include <common.hpp>

Public Member Functions

· void start ()

start clock

• int stop (string msg="")

stop clock

• void msg (int msecs, string msg)

print out message

Static Public Member Functions

• static string formatted_time (int msecs)

format time

• static int parse_formatted_time (string time_stream)

parse formatted time

• static int num_digits (int num)

number of digits

• static string to_string (int num)

convert number to string

5.26.1 Detailed Description

The Timer class.

5.26.2 Member Function Documentation

5.26.2.1 static string Timer::formatted_time (int *msecs*) [inline], [static]

format time

Parameters

msecs miliseconds

Returns

formatted time

Here is the caller graph for this function:

5.26.2.2 void Timer::msg (int msecs, string msg) [inline]

print out message

Parameters

msecs	miliseconds
msg	message

Here is the caller graph for this function:

5.26.2.3 static int Timer::num_digits (int num) [inline], [static]

number of digits

Parameters

num	number

Returns

total number of digits

5.26.2.4 static int Timer::parse_formatted_time (string time_stream) [inline], [static]

parse formatted time

Parameters

time_stream	time stream

Returns

time in miliseconds

5.26.2.5 int Timer::stop (string msg = " ") [inline]

stop clock

msg	message to print out

Returns

time in miliseconds

Here is the caller graph for this function:

5.26.2.6 static string Timer::to_string (int *num* **)** [inline],[static]

convert number to string

Parameters

|--|

Returns

string

The documentation for this class was generated from the following file:

• /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/common.hpp

5.27 VariationalOptimization Class Reference

The VariationalOptimization class.

#include <Optimization.hpp>

Inheritance diagram for VariationalOptimization:

Collaboration diagram for VariationalOptimization:

Public Member Functions

- VariationalOptimization ()
 - Class Constructor.
- int Solve (Dataset *dataset, vector< string > &imageList, int from, int to, bool printTime=true)
 optimize solution

5.27.1 Detailed Description

The VariationalOptimization class.

5.27.2 Member Function Documentation

5.27.2.1 int VariationalOptimization::Solve (Dataset * dataset, vector < string > & imageList, int from, int to, bool printTime = true) [virtual]

optimize solution

Parameters

dataset	pointer to the current dataset
imageList	list of images to segment
from	start index
to	stop index, set to -1 to segment all images starting from "from"
printTime	flag to print out the estiamted time on output

Returns

estimated time per image in miliseconds

Implements Optimization.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Optimization.hpp
- /usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/src/Optimization.cpp

5.28 VOC2012 Class Reference

The VOC2012 class.

#include <Dataset.hpp>

Inheritance diagram for VOC2012:

Collaboration diagram for VOC2012:

Public Member Functions

• VOC2012 ()

Class Constructor.

• void RGB2Label (Mat rgb, Mat &labels)

Convert from RGB to Label.

• void Label2RGB (Mat labels, Mat &rgb)

Convert from label to RGB.

Additional Inherited Members

5.28.1 Detailed Description

The VOC2012 class.

5.28.2 Member Function Documentation

5.28.2.1 void VOC2012::Label2RGB (Mat labels, Mat & rgb) [virtual]

Convert from label to RGB.

Parameters

labels	label matrix
rgb	RGB image

Reimplemented from Dataset.

5.28.2.2 void VOC2012::RGB2Label (Mat rgb, Mat & labels) [virtual]

Convert from RGB to Label.

Parameters

rgb	RGB image
labels	label matrix to store labels for each pixel

Reimplemented from Dataset.

The documentation for this class was generated from the following file:

 $\bullet \ / usr/wiss/hazirbas/Work/Projects/thesis-hazibas/AFS/include/Dataset.hpp$

Index

cudaSafeCall	Label2RGB, 35
CUDA_PRIMALDUAL_OPTIMIZATION, 7	RGB2Label, 37
	Evaluate
ActivateFastComputation	DenseUnaryPixelPotential, 29
Model, 65	Learning, 60
cell hiparization	Potential, 86
call_binarization	RandomForest, 90
CUDA_PRIMALDUAL_OPTIMIZATION, 8	EvaluateFeatures
call_segmentation	Model, 66
CUDA_PRIMALDUAL_OPTIMIZATION, 8	EvaluatePotentials
centerSurround	Model, 67
HaarLikeFeatures, 47	extractFeatures
clearDir	ColorFeatures, 13
Dataset, 22	DepthFeatures, 34
ColorFeatures, 11	Feature, 39
ColorFeatures, 12	HaarLikeFeatures, 47
ColorFeatures, 12	LocationFeatures, 64
extractFeatures, 13	TextonFeatures, 95
Confusion	
Model, 65	Feature, 37
convertColor	extractFeatures, 39
ImageProc, 55	getFeatureDim, 39
Corel, 13	getFullDim, 40
Label2RGB, 14	getSubSample, 40
RGB2Label, 16	loadFeature, 41
createDir	saveFeature, 41
Dataset, 22	setFeatureDim, 42
CvRTreesMultiClass, 16	setRectSize, 42
predict_multi_class, 17	setSubSample, 42
Datacet 19	findImage
Dataset, 18 clearDir, 22	Dataset, 22
	FindOptimalLambda
createDir, 22	Model, 68
findImage, 22	formatted_time
getDatasetImages, 23	Timer, 96
getFullFeatureDim, 24	fourSquare
Label2RGB, 25	HaarLikeFeatures, 48
RGB2Label, 26	ridarEnter catares, 40
readImgsInDir, 25	getChannel
readSplitsToVectors, 26	ImageProc, 56
DenseUnaryPixelPotential, 27	getDatasetImages
DenseUnaryPixelPotential, 28	Dataset, 23
DenseUnaryPixelPotential, 28	getEdgeImage
Evaluate, 29	ImageProc, 56
Train, 30	getFeatureDim
DepthFeatures, 31	Feature, 39
DepthFeatures, 32	
DepthFeatures, 32	getFullDim
extractFeatures, 34	Feature, 40
aTrima 04	getFullFeatureDim
eTrims, 34	Dataset, 24

INDEX 105

getHeight	Dataset, 25
Image, 52	eTrims, 35
getlmage	MSRC, 73
Image, 52	NYUv1, 75
getIntegralImage	NYUv2, 76
ImageProc, 56	PedestrianParsing, 81
getPERFORMANCE	VOC2012, 101
Model, 68	Learning, 59
getPaddedImg	Evaluate, 60
ImageProc, 58	getTrainTime, 60
getRGB	Train, 61
Image, 53	loadFeature
getSubSample	Feature, 41
Feature, 40	IoadPotential
getTrainTime	Potential, 86
Learning, 60	LocationFeatures, 61
getWidth	extractFeatures, 64
Image, 53	LocationFeatures, 62
	LocationFeatures, 62
HaarLikeFeatures, 44	
centerSurround, 47	MSRC, 72
extractFeatures, 47	Label2RGB, 73
fourSquare, 48	RGB2Label, 73
HaarLikeFeatures, 46	Model, 64
HaarLikeFeatures, 46	ActivateFastComputation, 65
horizontalEdge, 49	Confusion, 65
horizontalLine, 49	EvaluateFeatures, 66
verticalEdge, 49	EvaluatePotentials, 67
verticalLine, 50	FindOptimalLambda, 68
horizontalEdge	getPERFORMANCE, 68
HaarLikeFeatures, 49	RankFeatures, 69
horizontalLine	SavePotentialMap, 70
HaarLikeFeatures, 49	SelectFeatures, 70
	SetStructure, 70
Image, 50	Solve, 71
getHeight, 52	TrainPotentials, 71
getImage, 52	msg
getRGB, 53	Timer, 96
getWidth, 53	
Image, 51	NYUv1, 74
isEmpty, 54	Label2RGB, 75
ImageProc, 55	RGB2Label, 75
convertColor, 55	NYUv2, 75
getChannel, 56	Label2RGB, 76
getEdgelmage, 56	RGB2Label, 78
getIntegralImage, 56	num_digits
getPaddedImg, 58	Timer, 97
isEmpty	
Image, 54	operator+=
	Performance, 83
kernel_binarize_u	operator/=
CUDA PRIMALDUAL OPTIMIZATION, 9	Performance, 83
kernel grad ascent	operator=
CUDA PRIMALDUAL OPTIMIZATION, 9	Performance, 83
kernel_grad_descent	Optimization, 78
CUDA PRIMALDUAL OPTIMIZATION, 9	Solve, 79
,	, · •
Label2RGB	parse_formatted_time
Corel, 14	Timer, 97
	•

106 INDEX

PedestrianParsing, 80	VariationalOptimization, 99
Label2RGB, 81	Sowerby, 91
RGB2Label, 81	stop
Performance, 82	Timer, 97
operator+=, 83	
operator/=, 83	Test, 92
operator=, 83	TextonFeatures, 94
Performance, 82	extractFeatures, 95
set, 83	TextonFeatures, 95
Potential, 84	TextonFeatures, 95
Evaluate, 86	Timer, 95
loadPotential, 86	formatted_time, 96
savePotential, 87	msg, <mark>96</mark>
Train, 87	num_digits, 97
predict_multi_class	parse_formatted_time, 97
CvRTreesMultiClass, 17	stop, 97
	to_string, 98
RGB2Label	to_string
Corel, 16	Timer, 98
Dataset, 26	Train
eTrims, 37	DenseUnaryPixelPotential, 30
MSRC, 73	Learning, 61
NYUv1, 75	Potential, 87
NYUv2, 78	RandomForest, 90
PedestrianParsing, 81	TrainPotentials
VOC2012, 103	Model, 71
RandomForest, 88	
Evaluate, 90	VOC2012, 100
RandomForest, 89	Label2RGB, 101
RandomForest, 89	RGB2Label, 103
Train, 90	VariationalOptimization, 98
RankFeatures	Solve, 99
Model, 69	verticalEdge
readImgsInDir	HaarLikeFeatures, 49
Dataset, 25	verticalLine
readSplitsToVectors	HaarLikeFeatures, 50
Dataset, 26	
saveFeature	
Feature, 41	
savePotential	
Potential, 87	
SavePotentialMap	
Model, 70	
SelectFeatures	
Model, 70	
set	
Performance, 83	
setFeatureDim	
Feature, 42	
setRectSize	
Feature, 42	
SetStructure	
Model, 70	
•	
setSubSample	
Feature, 42 Solve	
Model, 71	
Optimization, 79	