

## Pair of Linear Equations in Two varibles Ex 3.5 Q1 Answer:

GIVEN:

x - 3y = 3

3x - 9y = 2

To find: To determine whether the system has a unique solution, no solution or infinitely many

We know that the system of equations

 $\mathbf{a}_1 x + \mathbf{b}_1 y = \mathbf{c}_1$ 

 $\mathbf{a}_2 x + \mathbf{b}_2 y = \mathbf{c}_2$ 

For unique solution

 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 

For no solution

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 

For infinitely many solution

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 

Here,

 $\frac{1}{3}=\frac{3}{9}\neq\frac{3}{2}$ 

 $\boxed{\frac{1}{3} = \frac{1}{3} \neq \frac{3}{2}}$ 

Since  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$  which means  $\boxed{\frac{1}{3} = \frac{1}{3} \neq \frac{3}{2}}$  hence the system of equation has no solution.

Hence the system of equation has no solution

## Pair of Linear Equations in Two varibles Ex 3.5 Q2

Answer:

GIVEN:

2x + y = 5

4x + 2y = 10

To find: To determine whether the system has a unique solution, no solution or infinitely many solutions

We know that the system of equations

 $a_1 x + b_1 y = c_1$ 

 $a_2x + b_2y = c_2$ 

For unique solution

 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 

For no solution

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 

For infinitely many solution

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 

Here,

 $\frac{2}{4} = \frac{1}{2} = \frac{5}{10}$ 

 $\boxed{\frac{1}{2} = \frac{1}{2} = \frac{1}{2}}$ 

Since  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$  which means  $\boxed{\frac{1}{2} = \frac{1}{2} = \frac{1}{2}}$  hence the system of equation has infinitely many

solution.

Hence the system of equation has infinitely many solutions