UCLRL Lecture 2 Notes

August 15, 2018

1 Markov Decision Processes

1.1 Markov Reward Processes

Definition 1. A Mariv Process is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$

For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' | S_t = s\right]$$

and we can characterize the transition from all states by the transition matrix \mathcal{P} where

$$\mathcal{P} = egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

Definition 2. A Markov reward process is a Markov process but with a tuple $\langle S, P, R, \gamma \rangle$ such that

- \mathcal{R} is a reward function such that $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
- γ is a discount factor with $\gamma \in [0,1]$

Definition 3. The **return** G_t is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Definition 4 (State Value Function). The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t | S_t = s\right]$$

The value function be decomposed into

- immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E} [G_t | S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1}]$$

$$= \mathbb{E} [R_{t+1} + \gamma v(S_{t+1})]$$

Definition 5 (Bellman Equation for MRP).

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}|S_t = s)\right]$$

which can be rewritten as

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} P_{ss'} v(s')$$

or in matrix notation

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

Bellman equation can be solved directly as

$$v = \mathcal{R} + \gamma \mathcal{P}v$$
$$= (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

1.2 Markov Decision Process

Definition 6 (Markov Decision Process). A Markov Decision Process is a Markov Reward Process with a finite set of actions A. Thus, the Markov Decision process is a tuple $\langle S, A, \mathcal{P}, \mathcal{R}, \gamma \rangle$ such that

- 1. A is a finite set of actions
- 2. $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- 3. \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a\right]$

Definition 7 (Policy). A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a|S_t = s\right]$$

Definition 8 (State Value Function). The state value function $v_{\pi}(s)$ of an MMDFP is the expected return starting from state s and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right]$$

Definition 9 (Action Value Function). The action value function $q_{\pi}(s, a)$ is the expected return staring from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$

Definition 10 (Bellman Expectation Equation). Bellman expectation equation be expressed for the Markov reward process as

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$

which gives us the solution after solving for v_{π} ,

$$v_{\pi} = \left(I - \gamma \mathcal{P}^{\pi}\right)^{-1} \mathcal{R}^{\pi}$$

Definition 11. The optimal state value function $v_o(s)$ is the maximum value function over all policies

$$v_{\star}(s) = \max_{\pi} v_{\pi}(s)$$

Definition 12. The optimal action-value function $q_o(s, a)$ is the maximum action-value function over all policies

$$q_{\star}(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Definition 13 (Partial Ordering of Policies).

$$\pi \ge \pi' v_{\pi}(s) \ge v'_{\pi}(s), \forall s$$

Theorem 1. For any Markov decision process

- 1. There exists an optimal policy π_{\star} that is better than or equal to all other policies $\pi_{\star} \geq \pi, \forall \pi$
- 2. All optimal policies achieve the optimal value function

$$v_{\pi_{\star}}(s) = v_{\star}(s)$$

3. All optimal policies achive the optimal action-value function

$$q_{\pi_{\star}}(s,a) = q_{\star}(s,a)$$

An optimal policy can be found by maximizing over $q_{\star}(s, a)$,

$$\pi_{\star}(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} q_{\star}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

2 Bellman Equations

For v_{\star} we look at the action that gives us the most value,

$$v_{\star}(s) = \max_{a} q_{\star}(s, a)$$

and for q_{\star} , we have the immediate reward and the average of all the states and their values,

$$q_{\star}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s'in\mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\star}(s')$$

and combining them together,

$$v_{\star}(s) = \max_{a} \left[\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} v_{\star}(s') \right]$$

and similarly for q_{\star} ,

$$q_{\star}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s'in\mathcal{S}} \mathcal{P}_{ss'}^{a} \max_{a'} q_{\star}(s', a')$$