CST301 FORMAL LANGUAGES AND AUTOMATA THEORY

MODULE 1

			T
Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Define E-closure of a state? Explain with example.	3	DEC 22
2	Construct a DFA for strings in which first and last letters do not match. $\sum = \{a, b\}$	3	DEC 22
3	Prove that, if L is accepted by an ordinary NFA, there exist an equivalent ϵ -NFA that also accepts L	7	DEC 22
4	Design an NFA (without ε -moves) for strings having substring 'bab'. Convert it into equivalent DFA. $\Sigma = \{a, b\}$	7	DEC 22
5	Construct an ϵ -NFA for the language $L = \{0^n \ 1^m \ 2^p / n, m, p \ge 0\}$ and convert it into equivalent NFA without ϵ -transitions	7	DEC 22
6	Design an NFA (without E-moves) for strings with either consecutive zeros or consecutive ones. Obtain its corresponding DFA	7	DEC 22
7	Draw the state transition diagram showing a DFA for recognizing the language. L over the alphabet set $\Sigma = \{a, b\}$: $L = \{x \mid x \in \Sigma^* \text{ and the number of a in } x \text{ is divisible by 2 or 3} \}.$	3	DEC 21
8	Write a Regular Grammar G for the language: $L = \{0^n \ 1^m : n, m >= 1\}$	3	DEC 21
9	Draw the state-transition diagram showing a DFA for recognizing the language: $L = \{x \in \{a,b\}^* \mid \text{every block of five consecutive symbols in } x \text{ contains two consecutive a's.} \}$	6	DEC 21
10	Draw the state-transition diagram showing an NFA N for the following language L. Obtain the DFA D equivalent to N by applying the subset construction algorithm. $L = \{x \in \{a, b\} * x \text{ contains 'bab' as a substring}\}$	8	DEC 21

11	Define Regular Grammar and write Regular Grammar G for the following language : $L = \{x \in \{a, b\} * x \text{ does not ends with 'bb' } \}$	7	DEC 21
12	Obtain the DFA over the alphabet set $\Sigma = \{a, b\}$, equivalent to the regular grammar G with start symbol S and productions: $S \rightarrow aA \mid bS$, $A \rightarrow aB \mid bS \mid a$ and B $\rightarrow aB \mid bS \mid a$	7	DEC 21
13	Formally define extended delta for an NFA. Show the processing of input $w = 0101$ for the following NFA.	3	SEP 20
14	Differentiate between the transition function in DFA, NFA and ε-NFA	3	SEP 20
15	Prove that "A language L is accepted by some ϵ -NFA if and only if L is accepted by some NFA".	4	SEP 20

	MODULE 2		
Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Generate regular expression for strings in which number of a's is a multiple of three. $\Sigma = \{a, b\}$	3	DEC 22
2	Explain any 3 closure properties of regular languages	3	DEC 22
3	Using pumping lemma, show that $L = \{ a^n b^n / n > 0 \}$ is not regular	7	DEC 22
4	Develop equivalent automata for the Regular Expression $(a+b)^*aabb(a^*+bb)^*$	7	DEC 22
5	Prove that for every Regular Expression 'R', there is an ϵ -NFA 'M'	7	DEC 22
6	List out the rules for writing regular expressions. Convert the following DFA to its equivalent Regular Expression	7	DEC 22
7	Using homomorphism on Regular Languages, Prove that the language $L=\{a^nb^nc^{2n}\mid n>=0\} \text{ is not regular. Given that the language } \{a^n\ b^n: n>=1\} \text{ is not regular.}$	3	DEC 21
8	Construct an ε-NFA for the regular expression (a+b)*ab(a+b)*	3	DEC 21
9	State and explain any three closure properties of Regular Languages.	6	DEC 21
10	Find the equivalent Regular Expression using Kleene's construction for the language represented by the following DFA.	8	DEC 21

11	Using pumping lemma for Regular Languages, prove that the language $L = \{0^n \mid n \text{ is a perfect square}\} \text{ is not Regular}.$	7	DEC 21
12	Obtain the minimum state DFA for the following DFA. a b 0 1 2 1 4 5 2 0 3 3 5 2 4 1 0 5 4 3	7	DEC 21
	Give a regular expression for the set of all strings not containing 101 as a substring	3	SEP 20
14	State pumping lemma for regular languages. Prove that the language $L = \{a^{n^2} n > 0\}$ is not regular.	5	SEP 20
15	Write regular expression for the language L={1n 0 m n>=1, m>=0}	3	SEP 20

		MODULE	3			
Sl no		Questions			Marks	KTU/KU Month/Year
1	With suitable example, ex	xplain about ambiguous	s grammar		3	DEC 22
2	State Myhill - Nerode Th	eorem			3	DEC 22
3	What is Greibach Normal $S \rightarrow AA / a$	Form (GNF)? Convert $\mathbf{A} \rightarrow \mathbf{SS} / \mathbf{b}$	the following CF	G to GNF	7	DEC 22
4	(ii) S	Fing languages Palindromes over $\{a, b\}$ Stings with more than $2(0+1)*(01)*(0+1)*$			7	DEC 22
5	Minimize the following I	DFA using Myhill – Ne	rode theorem		7	DEC 22
		a	b			
	→q0	q1	q2			
	q1	q1	q3			
	q2	q1	q2			
	q3	q1	*q4			
	*q4	q1	q2			
6	What is Chomsky Normal CNF.	Form (CNF)? Conver $S \rightarrow aSa / bSb / SS /$		roductions to	7	DEC 22
7	State Myhill-Nerode The	orem.			3	DEC 21

8	Write a Context-Free Grammar for the language $L = \{wcw^r \mid w \in \{a,b\}^* \}$, w^r represents the reverse of w .	3	DEC 21
9	Show the equivalence classes of Canonical Myhill-Nerode relation for the language of binary string which starts with 1 and ends with 0.	7	DEC 21
10	Consider the following productions: S → aB bA A → aS bAA a B → bS aBB b For the string 'baaabbba' find i) The leftmost derivation ii) The rightmost derivation iii) The parse tree	7	DEC 21
11	Construct the Grammars in Chomsky Normal Form generating the set of all strings over {a,b} consisting of equal number of a's and b's.	7	DEC 21
12	Find the Greibach Normal Form for the following Context Free Grammar $S \rightarrow XA \mid BB$, $B \rightarrow b \mid SB$, $X \rightarrow b$, $A \rightarrow a$	7	DEC 21
13	State Myhill-Nerode theorem, Minimize the following DFA. B a,b E A B A B A B A B A B A B A B B	5	SEP 20

14	Define context free grammar. Consider the following CFG	3	SEP 20
	$S \rightarrow aS \mid Sb \mid a \mid b$		
	Prove by induction on the string length that no string in L(G) has ba as		
	substring.		
15	Convert the following grammar into Chomsky normal form	4	SEP 20
	$S \to ASB \mid \in$, $A \to aAS \mid a$, $B \to SbS \mid A \mid bb$		

	MODULE 4		
Sl no	Questions	Marks	KTU/KU Month/Year
1	Whether DPDA and NPDA are equivalent? Justify your answer	3	DEC 22
2	Explain how CFGs can be converted to Chomsky Normal Form	3	DEC 22
3	Prove that for every PDA accepted by final state, there exists an equivalent PDA accepted by empty stack.	7	DEC 22
4	Design PDA for set of even length palindromes over {a, b}. Illustrate the working with suitable example	7	DEC 22
5	Design PDA for $L = \{x \in \{a, b\}^* / \#_a(x) = \#_b(x)\}$. Here $\#_p(x)$ represents the number of occurrences of the symbol p in the string x	7	DEC 22
6	Using pumping lemma for CFLs, show that $L = \{ ww/w \in \{a, b\}^* \}$ is not context free.	7	DEC 22
7	Write the transition functions of PDA with acceptance by Final State for the language $L = \{a^n \ b^n : n >= 0\}$.	3	DEC 21
8	State Pumping Lemma for Context Free Languages.	3	DEC 21
9	Design a PDA for the language $L = \{ww^r \mid w \in \{a,b\}^* \}$. Also illustrate the computation of the PDA on the string 'aabbaa'.	7	DEC 21
10	Construct a CFG to generate L(M) where $M = (\{p, q\}, \{0, 1\}, \{X, Z_0\}, \delta, q, Z_0)$	7	DEC 21
	, \emptyset } where δ is defined as follows:		
	$\delta(q, 0, Z_0) = (q, XZ_0)$		
	$\delta(q, 0, X) = (q, XX)$		
	$\delta(q, 1, X) = (p, \varepsilon)$		
	$\delta(p, 1, X) = (p, \varepsilon)$		
	$\delta(p, \varepsilon, X) = (p, \varepsilon)$		
	$\delta (p, \varepsilon, Z_0) = (p, \varepsilon)$		

11	Using pumping lemma for Context free languages, prove that the language $L = \{ \ a^n \ b^n \ c^n \ \ n > = 1 \ \}.$	7	DEC 21
12	Prove that CFLs are closed under Union, Concatenation and Homomorphism.	7	DEC 21
13	Prove the equivalence of acceptance of a PDA by final state and empty stack.	6	SEP 20
14	Define a deterministic PDA. How a DPDA differs from a non-deterministic PDA?	3	SEP 20
15	Write the conditions for a pushdown automaton to be considered as deterministic.	3	DEC 19

	MODULE 5		
Sl no	Questions	Marks	KTU/KU Month/Year
1	Define Turing Machine	3	DEC 22
2	Differentiate between Recursive and Recursively Enumerable languages	3	DEC 22
3	Design TM for $L = \{a^nb^ma^n / m, n > 0\}$. Illustrate the working with suitable example	7	DEC 22
4	Explain Chomsky hierarchy for formal languages and evaluate various types	7	DEC 22
5	Design a TM to copy a string of a's and b's to the right side, leaving one blank symbol (b) in between. Assume that initially the input tape contains \mathbf{bxb} and TM halts with \mathbf{bxbxb} as the tape content. $\mathbf{x} \in \{\mathbf{a}, \mathbf{b}\}^*$	7	DEC 22
6	Prove that TM halting problem is undecidable	7	DEC 22
7	Write the formal definition of Context Sensitive Grammar and write the CSG for the language $L = \{ a^n b^n c^n \mid n > = 1 \}$.	3	DEC 21
8	Explain Chomsky hierarchy of languages.	3	DEC 21
9	Design Linear Bounded Automata for the language $L = \{ a^n b^n c^n n \ge 1 \}$.	7	DEC 21
10	Design a Turing Machine for the language $L = \{ a^n b^{2n} \mid n > = 1 \}$. Illustrate the computation of TM on the input 'aaabbbbb'.	7	DEC 21
11	Design a Turing Machine to obtain the product of two natural numbers a and b 7 both represented in unary on the alphabet 0. For example, number 5 is represented as 00000 ie 0 ⁵ . Assume that initially the input tape contains 0 ^a 10 ^b and Turing machine should halt with 0 ^{a*b} as the tape content.	7	DEC 21
12	Prove that 'Turing Machine halting problem' is undecidable.	7	DEC 21
13	Design a TM to compute the 2's complement of a binary string.	5	SEP 20
14	Define formally Type 0, Type 1, Type 2 and Type 3 grammar. Show the corresponding automata for each class	5	SEP 20
15	Define a Universal Turing Machine (UTM). With the help of suitable arguments show the simulation of other Turing machines by a UTM.	6	SEP 20