A Recipe for Computing the Second-Order Møller-Plesset Perturbation Theory Energy

T. Daniel Crawford, Virginia Tech

1. Obtain the list of two-electron repulsion integrals in the (real) atomic-orbital (AO) basis:

$$(\mu \mathbf{v}|\lambda \mathbf{\sigma}) \equiv \int \phi_{\mu}(\mathbf{r}_1) \phi_{\mathbf{v}}(\mathbf{r}_1) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_2) \phi_{\mathbf{\sigma}}(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

- 2. Obtain the molecular orbital (MO) coefficients, C_{μ}^{p} .
- 3. Obtain the MO energies, ε_p .
- 4. Transform the AO integrals to the MO basis:

$$(pq|rs) = \sum_{\mu} \sum_{\nu} \sum_{\lambda} \sum_{\sigma} C^{p}_{\mu} C^{q}_{\nu} (\mu \nu | \lambda \sigma) C^{r}_{\lambda} C^{s}_{\sigma}$$

This transformation may be carried out using the above $O(N^8)$ expression or using a series of $O(N^5)$ single-index transforms.¹

5. Compute the closed-shell MP2 energy:^{2,3}

$$E_{\text{MP2}} = \sum_{ab} \sum_{rs} \frac{(ar|bs) \left[2(ar|bs) - (as|br) \right]}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s},$$

where a and b refer to occupied MO's and r and s refer to unoccupied MO's.

References

- [1] S. Wilson, in *Electron correlation in atoms and molecules*, Vol. 1 of *Methods in Computational Chemistry*, edited by S. Wilson (Plenum Press, New York, 1987), Chap. 3, pp. 251–309.
- [2] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
- [3] A. Szabo and N. S. Ostlund, *Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory*, 1st ed. (McGraw-Hill, New York, 1989).