An Introduction to Database Systems

chapter 2. Database System Architecture

2.1 Introduction

□ 3-levels of data representation

2.2 The Three Levels of the Architecture

□ 3-levels of data representation

- purpose : data independence
 - conceptual schema를 효율성과 응용 데이타 요구사항에 관계없이 상대적으로 앇정된 것으로 유지

사용자가 보는 view와 데이타가 저장되는 방법에서의 flexibility와 adaptability

external (PL/I)		IPP, IP# CHAR(6), L FIXED BIN(31);	01 EMPC 02 EMPNO PIC X(6) 02 DEPTNO PIC X(4)	external (COBOL)	
conceptual	EMPLOYEE NUMBER CHARACTER (6)				
		_ ` '			
		ARTMENT_NUMBEI	` ,		
	SAL	ARY	NUMERIC (5)		
internal	STORED_EMP PRE	LENGTH=20	() OFFSFT-0		
			TYPE=BYTE(6), OFFSET=0		
	EMP	•	TYPE=BYTE(6), OFFSET=6, INDEX=EMPX		
	DEP	Γ# TYPE=BYTE(4	4), OFFSET=12		
	PAY	TYPE=FULLV	VORD, OFFSET=16		

2.2 The Three Levels of the Architecture DBMS Architecture

2.3 External Level

□ External Level - USER

- application programmer
 - **□ PL/I**, C++, Java + **DSL**
 - □ 전문적인 language (4GL)
- end-user (on-line terminal user)
 - query language
 - forms- or menu-based
- DBA

host language

local variable computational op. control structure(if,for..)

data sublanguage

database access

2.3External level

- □ data language
 - sublanguage
 - DDL(Data Definition/Description Language)
 - + definition or description of database objects
 - + schema, subschema, mapping
 - DML(Data Manipulation Language)
 - + manipulation or processing of those objects
- **□** external view
 - contents of database as perceived by a certain user
 - multiple occurrence of multiple types of external record (DML retrieve an external record)
 - defined by external schema

2.4-5 Conceptual and Internal Level

- **□** Conceptual level
 - a representation of the entire information content of the database
 - conceptual view
 - multiple occurrence of multiple types of conceptual record
 - security and integrity checks
- **□** Internal level
 - internal schema
 - define the various types of stored records
 - specify
 - + what indexes exist
 - + how stored fields are represented
 - + what physical sequence the stored record are in
 - internal view
 - multiple occurrence of multiple types of internal (stored) record

2.6 Mapping

- □ Conceptual/Internal mapping
 - defines the correspondence between the conceptual view and the stored database
 - how conceptual records and fields are represented at the internal level
 - If the structure of the stored database is changed, then the conceptual/internal mapping must be changed accordingly
- **□** External/Conceptual mapping
 - defines the correspondence between a particular external view and the conceptual view
- □ External/External mapping
 - definition of one external view to be expressed in terms of others

2.7 DBA(Database Administrator) : responsibilities

- □ deciding the information content of the database
 - what information \rightarrow entities, relationships
 - conceptual schema(using conceptual DDL)
 - object form : used by DBMS
 - source form : reference document for the users
- □ deciding the storage structure and access strategy
 - how the data is to be represented in database \rightarrow storage structure definition
 - associated mapping between the internal/conceptual schema
- □ Liaising with Users
 - external schema
 - associated mapping between external schema and the conceptual schema
- □ defining security and integrity checks
- □ defining a strategy for backup and recovery
- **□** monitoring performance and responding to changing requirement

2.7 DBA(Database Administrator): utilities

- □ load routines
 - to create the initial version of database
- **□** dump/restore routines
 - recovery
- **□** reorganization routines
 - to rearrange the data in the database for various performance reasons (cluster, data reclaim space)
- **□** statistics routine
 - to compute various performance statistics(file size, data value distribution)
- **□** analysis routines

- **□** Database Management System(DBMS)
 - software that handles all access to the database
 - A user issues an access request using SQL
 - DBMS intercepts that request and analyzes it
 - DBMS inspects the external schema for that user
 - + external/conceptual mapping \rightarrow the conceptual schema \rightarrow conceptual/internal mapping \rightarrow storage structure definition
 - DBMS executes the necessary operations on the stored database
 - the entire process is interpretive (poor performance)
 - the process is done at execution time
 - In practice, access requests is compiled in advance of execution time (ex, DB2)

✓ Major DBMS functions and components

□ the functions of DBMS

- data definition
 - to accept data definitions(external schemas, the conceptual schema, the internal schema, and all associated mappings) in source form and to convert them to the appropriate object form
 - language processor for DDLs
- data manipulation
 - to handle requests from the user to retrieve, update, or delete existing data in the database or to add new data to the database
 - DML language processor
 - DML requests
 - + a planned request (operational or production application)
 - + an unplanned request(decision support application)
 ad hoc query
- Optimization and execution
 - Determine an efficient way of implementing the request
 - Executed under the control of the runtime manager

- □ functions of DBMS(cont'd)
 - data security and integrity
 - monitor user requests and reject any attempts to violate the security and integrity rules defined by DBA
 - data recovery and concurrency
 - transaction manager or TP monitor to enforce recovery and concurrency control
 - data dictionary (system catalog)
 - system database to contain metadata(data about the data) definitions of other objects in the systems(not raw data)
 - all schemas and mappings
 - cross-reference information
 - integrated into the database(possible to query itself)
 - performance
 - ★ provide user interface to DBMS

2.9 Data Communications Manager

- database requests from an end user (transmitted in the form of communication messages)
- data communications manager(DC manager)
- □ DB/DC system

2.10 Client/Server Architecture

2.10 Client/Server Architecture

□ Applications

- user-written applications
 - regular application programs written in C or COBOL + DSL
- vendor-provided applications
 - tools to assist in the process of creating and executing other applications
 - query language processors for ad hoc queries
 - report writers
 - business graphics subsystems
 - spreadsheets
 - natural language processors
 - statistical packages
 - copy management tools
 - application generators(including "4GL" processors)
 - other application development tools, including CASE products
- client server
 - different machines; distributed processing

2.11 Utilities

to help the DBA with various administration tasks

- load routines
 - to create the initial version of the database from one or more nondatabase files
- unload/reload routines
 - to backup storage for recovery purposes
- reorganization routines
 - to rearrange the data in the database for various reasons
- statistical routines
 - to compute various performance statistics such as file sizes or data value distributions or I/O counts, etc.
- analysis routines
 - to analyze the statistics just mentioned

□ It means that distinct machines can be connected together into a communications network such that a single data processing task can span several machines in the network. (cf. Parallel Processing)

- **□** arguments we prefer to Client/Server architecture
 - clients/server : parallel processing
 - response time, throughput
 - server machine: "a database machine"
 - DBMS performance
 - client machine
 - tailored to the needs of the end-users
 - better interfaces, high availability, fast responses, improved ease of use
 - several different client machines one server
 - It is common for a single enterprise to operate many computers

□ several different client machines - one server

□ Each machine is both client and server

- **□** Each machine is both client and server The Bank Example
 - A single client machine might be able to access several different server machines
 - A given client might be able to access any number of servers, but only one at a time (i.e., each individual database request must be directed to just one server)
 - + impossible to combine data from two or more servers
 - + the user has to know which machines hold which pieces of data
 - The client might be able to access many servers simultaneously(i.e., a single database request might be able to combine data from several servers)
 - + the servers look to the client as if they were really a single server
 - + Distributed Database System

"Transparency"