

Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

Jingyang Yuan*^{1,2}, Huazuo Gao¹, Damai Dai¹, Junyu Luo², Liang Zhao¹, Zhengyan Zhang¹, Zhenda Xie¹, Y. X. Wei¹, Lean Wang¹, Zhiping Xiao³, Yuqing Wang¹, Chong Ruan¹, Ming Zhang², Wenfeng Liang¹, Wangding Zeng¹

DeepSeek-AI

2Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking
University, PKU-Anker LLM Lab

3University of Washington
{yuanjy, mzhang_cs}@pku.edu.cn, {zengwangding, wenfeng.liang}@deepseek.com

arXiv preprint 2025

HUMANE Lab 김태균

Background

- The existing attention mechanisms poses challenges in long-context modeling due to high computational costs
- To address this, sparse attention is used
- However, limitations still remain

Limitations of existing sparse attention

- 1. Unable to fully exploit sparse attention
- 2. Inference-only approaches

1. Unable to fully exploit sparse attention

- Phase-restricted sparsity
 - prefilling (e.g. MInference)
 - autoregressive decoding (e.g. H2O)

=> The remaining phases still incur computational costs

1. Unable to fully exploit sparse attention

Incompatibility with advanced attention architecture

2. Inference-only approaches

- Performance degradation
 - Applying sparsity post-hoc forces models to deviate from their pretrained optimization trajectory

=> Efforts to adapt sparse attention for training are demanding

Native Sparsity as an Imperative

 Therefore, sparse attention that can be applied in both computational efficiency and the training process is needed

Native Sparse Attention (NSA)

: Hardware-aligned and natively trainable sparse attention

Overview

$$\mathbf{o}_t^* = \sum_{c \in C} g_t^c \cdot \operatorname{Attn}(\mathbf{q}_t, \tilde{K}_t^c, \tilde{V}_t^c)$$

HUMANE Lab

8

1. Token Compression

- Aggregating sequential blocks of keys or values into block-level representations
 - φ: MLP map keys in a block to a single compressed key
 - I: block length
 - d: sliding stride

$$\tilde{K}_{t}^{\text{cmp}} = f_{K}^{\text{cmp}}(\mathbf{k}_{:t}) = \left\{ \varphi(\mathbf{k}_{id+1:id+l}) \middle| 0 \le i \le \left\lfloor \frac{t-l}{d} \right\rfloor \right\}$$

2. Token Selection

- Divide key, value sequences into selection blocks
- Then assign importance scores to each block
 - case 1: I = I'
 - I': selection block size

$$\mathbf{p}_{t}^{\text{cmp}} = \text{Softmax}\left(\mathbf{q}_{t}^{T} \tilde{K}_{t}^{\text{cmp}}\right)$$
$$\mathbf{p}_{t}^{\text{slc}} = \mathbf{p}_{t}^{\text{cmp}}$$

2. Token Selection

- Divide key, value sequences into selection blocks
- Then assign importance scores to each block
 - case 2 : I ≠ I'
 - | ≤ |', d||, d||'

$$\mathbf{p}_{t}^{\text{cmp}} = \text{Softmax}\left(\mathbf{q}_{t}^{T} \tilde{K}_{t}^{\text{cmp}}\right)$$

$$\mathbf{p}_t^{\text{slc}}[j] = \sum_{m=0}^{\frac{l'}{d}-1} \sum_{n=0}^{\frac{l}{d}-1} \mathbf{p}_t^{\text{cmp}} \left[\frac{l'}{d} j - m - n \right]$$

$$\mathbf{p}_t^{\mathrm{slc'}} = \sum_{h=1}^{H} \mathbf{p}_t^{\mathrm{slc},(h)}$$

2. Token Selection

- Divide key, value sequences into selection blocks
- Then assign importance scores to each block
- Retain tokens within the top-n sparse blocks ranked by block importance scores

$$I_t = \{i \mid \operatorname{rank}(\mathbf{p}_t^{\operatorname{slc}'}[i]) \leq n\}$$

$$\tilde{K}_t^{\operatorname{slc}} = \operatorname{Cat}\left[\{\mathbf{k}_{il'+1:(i+1)l'} | i \in I_t\}\right]$$

3. Sliding Window

Maintain recent tokens in a window to handles local context

$$\tilde{K}_t^{\text{win}} = \mathbf{k}_{t-w:t}, \tilde{V}_t^{\text{win}} = \mathbf{v}_{t-w:t}$$

Overview

$$\mathbf{o}_t^* = \sum_{c \in C} g_t^c \cdot \operatorname{Attn}(\mathbf{q}_t, \tilde{K}_t^c, \tilde{V}_t^c)$$

4. Hardware-aligned sparse attention kernel

- Group-centric data loading
- Shared KV fetching
- Outer loop on grid

- 1. General benchmarks evaluation
- 2. Long-context benchmarks evaluation
- 3. Reasoning performance

HUMANE Lab

16

- 1. General benchmarks evaluation
- => NSA outperforms in most benchmarks

Model	MMLU	MMLU-PRO	CMMLU	BBH	GSM8K	MATH	DROP	MBPP	HumanEval	Δνα
	Acc. 5-shot	Acc. 5-shot	Acc. 5-shot	Acc. 3-shot	Acc. 8-shot	Acc. 4-shot	F1 1-shot	Pass@1 3-shot	Pass@1 0-shot	Avg.
Full Attn	0.567	0.279	0.576	0.497	0.486	0.263	0.503	0.482	0.335	0.443
NSA	0.565	0.286	0.587	0.521	0.520	0.264	0.545	0.466	0.348	0.456

2. Long-context benchmarks evaluation

Model	SQA			MQA				Synthetic		Code	Avg.
	MFQA-en	MFQA-zh	Qasper	HPQ	2Wiki	GovRpt	Dur	PassR-en	PassR-zh	LCC	8
H2O	0.428	0.429	0.308	0.112	0.101	0.231	0.208	0.704	0.421	0.092	0.303
InfLLM	0.474	0.517	0.356	0.306	0.250	0.277	0.257	0.766	0.486	0.143	0.383
Quest	0.495	0.561	0.365	0.295	0.245	0.293	0.257	0.792	0.478	0.135	0.392
Exact-Top	0.502	0.605	0.397	0.321	0.288	0.316	0.291	0.810	0.548	0.156	0.423
Full Attn	0.512	0.623	0.409	0.350	0.305	0.324	0.294	0.830	0.560	<u>0.163</u>	<u>0.437</u>
NSA	0.503	0.624	0.432	0.437	0.356	0.307	0.341	0.905	0.550	0.232	0.469

Figure 5 | Needle-in-a-Haystack retrieval accuracy across context positions with 64k context length. NSA achieves perfect accuracy through its hierarchical sparse attention design.

3. Reasoning performance

Generation Token Limit	8192	16384
Full Attention-R	0.046	0.092
NSA-R	0.121	0.146

Table 3 | AIME Instruction-based Evaluating after supervised fine-tuning. Our NSA-R demonstrates better performance than Full Attention-R at both 8k and 16k sequence lengths

Conclusion

- NSA: A hardware-aligned sparse attention architecture for efficient longcontext modeling
- Integrating hierarchical token compression with blockwise token selection within a trainable architecture
- Achieves accelerated training and inference while maintaining Full Attention performance

Open Question

• Can NSA be applied to multimodal models?