

FCC - TEST REPORT

Report Number	:	68.910.16.027.01		Date of Issue:	April 22, 2016
Model	<u>:</u>	Koogeek-S1			_
Product Type	<u>:</u>	Bluetooth wi-fi smar	t healtl	n scale	
Applicant	:	Shenzhen Belter He Co., Ltd.	ealth M	easurement and	l Analysis Technology
Address	<u>:</u>	702, 704, Block C, T	Tsinghu	ua Unis Science	Park, Hi-Tech
		Industrial Park North	h, Nans	shan	
Production Facility	:	Shenzhen Belter He Co., Ltd.	ealth M	easurement and	Analysis Technology
Address	<u>:</u>	702, 704, Block C, T	Tsinghı	ua Unis Science	Park, Hi-Tech
		Industrial Park North	h, Nans	shan	
Test Result	:	■ Positive □ N	Negativ	/e	
Total pages including Appendices	:	26			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1		le of Contents	
2	Deta	ails about the Test Laboratory	3
3		cription of the Equipment Under Test	
4		nmary of Test Standards	
5	Sum	nmary of Test Results	6
6	Gen	eral Remarks	7
7	Test	t Setups	8
8		tems test configuration	
9	Tecl	hnical Requirement	10
9	.1	Conducted peak output power	10
9	.2	Power spectral density	
9	.3	6 dB Bandwidth	
9	.4	Spurious RF conducted emissions	14
9	.5	Band edge testing	
9	.6	Spurious radiated emissions for transmitter	23
10	Test	t Equipment List	25
11	Syst	tem Measurement Uncertainty	26

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District, 518052,

Shenzhen, P.R.C.

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

FCC Registration Number: 502708

3 Description of the Equipment Under Test

Product: Bluetooth wi-fi smart health scale

Model no.: Koogeek-S1

FCC ID: 2AAEEE656

Options and accessories: NIL

Rating: DC6.0V (Supplied by 4xAA batteries)

2412-2462MHz

RF Transmission

Frequency:

No. of Operated Channel: 11

Modulation: GFSK

Antenna Type: PCB

Antenna Gain: 0.9dBi

Description of the EUT: The Equipment Under Test (EUT) is a scale with BLE and 2.4G wifi

function.

4 Summary of Test Standards

Test Standards		
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES	
10-1-2015 Edition Subpart C - Intentional Radiators		

All the test methods were according to FCC KDB 558074 D01 DTS Meas Guidance and ANSI C63.10-2013.

5 Summary of Test Results

	Technical Require	ements		
FCC Part 15 Subpart C				
Test Condition		Pages	Test Site	Test Result
§15.207	Conducted emission AC power port			N/A
§15.247(b)(1)	Conducted peak output power	10	Site 1	Pass
§15.247(e)	Power spectral density	11	Site 1	Pass
§15.247(a)(2)	6dB bandwidth	13	Site 1	Pass
§15.247(a)(1)	20dB bandwidth and 99% Occupied Bandwidth			N/A
§15.247(a)(1)	Carrier frequency separation			N/A
§15.247(a)(1)(iii)	Number of hopping frequencies			N/A
§15.247(a)(1)(iii)	Dwell Time			N/A
§15.247(d)	Spurious RF conducted emissions	14	Site 1	Pass
§15.247(d)	Band edge	18	Site 1	Pass
§15.247(d) & §15.209 &15.205	Spurious radiated emissions for transmitter	23	Site 1	Pass
§15.203	Antenna requirement	See	note 2	Pass

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a permanently PCB antenna, which gain is 0.9dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AAEEE656 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: 15 January, 2016

Testing Start Date: 15 January, 2016

Testing End Date: 15 April, 2016

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by: Prepared by: Tested by:

Felis-L

Felix Li

Phoebe Hu

EMC Project Manager EMC Project Engineer

Leon Zhang EMC Test Engineer

7 Test Setups

7.1 Radiated test setups

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
PC	Lenovo	X220	

The system was configured to low channel, middle channel, and high channel for the test.

Technical Requirement

Conducted peak output power

Test Method

- 1. Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test Result

802.11b		
		Conducted Peak
	Frequency	Output Power
	MHz	dBm
	Low channel 2412MHz	15.54
	Middle channel 2437MHz	15.56
	High channel 2462MHz	15.69
802.11g		
3		Conducted Peak
	Frequency	Output Power
	MHz	dBm
	Low channel 2412MHz	12.21
	Middle channel 2437MHz	12.22
	High channel 2462MHz	12.28
802.11n20		
		Conducted Peak
	Frequency	Output Power
	MHz	dBm
	Low channel 2412MHz	12.71
	Middle channel 2437MHz	12.31
	High channel 2462MHz	12.66
802.11n40		
		Conducted Peak
	Frequency	Output Power
	MHz	dBm
	Low channel 2422MHz	13.53
	Middle channel 2442MHz	13.53
	High channel 2462MHz	14.01

9.2 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. Set analyzer center frequency to DTS channel center frequency.
 RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto,
 Trace= max hold
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed

Limit

Limit [dBm]	
≤8	

Test Result

802.11b test result

002.11b test result		
		Power spectral
	Frequency	density
	MHz	dBm
	Low channel 2412MHz	-12.89
	Middle channel 2437MHz	-14.96
	High channel 2462MHz	-15.02
802.11g test result		
_		Power spectral
	Frequency	density
	MHz	dBm
	Low channel 2412MHz	-17.61
	Middle channel 2437MHz	-18.78
	High channel 2462MHz	-17.09
802.11n20 test result		
		Power spectral
	Frequency	density
	MHz	dBm
	Low channel 2412MHz	-20.13
	Middle channel 2437MHz	-18.53
	High channel 2462MHz	-19.88
802.11n40 test result		

	Power spectral
Frequency	density
MHz	dBm
Low channel 2422MHz	-22.35
Middle channel 2442MHz	-22.40
High channel 2462MHz	-22.51

9.3 6 dB Bandwidth

Test Method

- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]	
≥500	_

802.11b test result

Frequency	6 dB Bandwidth	
MHz	MHz	
Low channel 2412MHz	9.074	_
Middle channel 2437MHz	9.074	
High channel 2462MHz	9.074	

802.11g test result

Frequency	6 dB Bandwidth	
MHz	MHz	
Low channel 2412MHz	16.45	_
Middle channel 2437MHz	16.49	
High channel 2462MHz	16.41	

802.11n20 test result

Frequency	6 dB Bandwidth	
MHz	MHz	
Low channel 2412MHz	17.17	
Middle channel 2437MH	z 17.27	
High channel 2462MHz	17.06	

802.11n40 test result

Frequency	6 dB Bandwidth	
MHz	MHz	
Low channel 2422MHz	36.29	
Middle channel 2442MH	z 36.29	
High channel 2462MHz	36.38	

9.4 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
 RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

802.11b (the worst case)

2412MHz

Date: 23.MAR.2016 15:05:02

Date: 23.MAR.2016 15:03:03

Date: 23.MAR.2016 15:07:39

Date: 23.MAR.2016 15:07:10

2472MHz

Date: 23.MAR.2016 15:09:21

Date: 23.MAR.2016 15:08:55

9.5 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Band edge testing

802.11b

Date: 23.MAR.2016 14:52:52

Date: 23.MAR.2016 14:54:45

802.11g

Date: 23.MAR.2016 14:56:25

Date: 23.MAR.2016 14:58:04

802.11n20

Date: 23.MAR.2016 14:39:19

Date: 23.MAR.2016 14:42:41

802.11n40

Date: 23.MAR.2016 14:36:41

Date: 23.MAR.2016 14:33:18

9.6 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

 Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak,

 Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

802.11b(the worst case) 2412MHz Test Result

resuit					
Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBµV/m		
30-1000		Horizontal		QP	Pass
30-1000		Vertical		QP	Pass
*4804	52.80	Horizontal	74	PK	Pass
*4804	33.51	Horizontal	54	AV	Pass
*4804	56.28	Vertical	74	PK	Pass
*4804	36.27	Vertical	54	AV	Pass

2437MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBµV/m		
*4880	54.34	Horizontal	74	PK	Pass
*4880	35.55	Horizontal	54	AV	Pass
*4880	56.74	Vertical	74	PK	Pass
*4880	44.13	Vertical	74	AV	Pass

2472MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
*4960	56.51	Horizontal	74	PK	Pass
*4960	37.69	Horizontal	54	AV	Pass
*4960	58.75	Vertical	74	PK	Pass
*4960	45.28	Vertical	54	AV	Pass

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
С	Signal Generator	Rohde & Schwarz	SMB100A	108272	2016-7-24
	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2016-7-24
RE	Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2016-7-24
	RF Switch Module	Rohde & Schwarz	OSP120/OS P-B157	101226/10085 1	2016-7-24
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2016-7-24
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2016-8-14
	Horn Antenna	Rohde & Schwarz	HF907	102294	2016-7-24
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2016-7-24
	3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- 20dB bandwidth and 99% Occupied Bandwidth
- Carrier frequency separation
- Number of hopping frequencies
- Dwell Time
- Power spectral density
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Items	Extended Uncertainty
Radiated apurious amission	4.32dB (30MHz-1GHz)
Radiated spurious emission	2.27dB (1GHz -25GHz)
Conducted spurious emission	2.10dB(30MHz-25GHz)
Bandwidth test	1*10 ⁻⁹
Conducted emission	2.4dB