Chapter 12 Review

- 1. Given the points A(1,2,3) and B(5,4,-2).
 - (a) Find both the parametric and symmetric equations of the straight line connecting A and B.

(b) Find the plane perpendicular to this line that goes through the point (1, 2, 4).

(c) Find a plane that this line does not intersect.

- 2. Give examples of the following, or explain why no such example exists.
 - (a) An equation for a cylinder so that the point (1, 2, 3) is on its surface.

(b) A paraboloid that opens downwards in the z direction and intersects the xy-plane in the ellipse $4x^2 + 9y^2 = 36$.

(c) Two parallel lines L_1 and L_2 in the parallel planes x + 2y + 2z = 3 and x + 2y + 2z = 6 so that the distance between L_1 and L_2 is 3.

(d) Two skew lines L_1 and L_2 that sit in parallel planes 2x + 2y + z = 5 and 2x + 2y + z = -4 so that the minimum distance between L_1 and L_2 is 9.

- 3. Given the parameterization $\mathbf{r}(t) = \langle \cos t, \sin t, 3t \rangle$.
 - (a) Find the unit tangent vector at time t.

(b) Find an equation for the line tangent to the curve at $t = \pi$.

(c) Calculate the curvature κ of the curve at $t = \pi$.

(d) Where does this line intersect the plane z = 0.

- 4. For the following parameterization ${\bf r}(t) = \langle t, t^2, t^3 \rangle$
 - (a) Find the velocity and acceleration vectors at time t=1, $\mathbf{v}(1)=\mathbf{r}'(1)$ and $\mathbf{a}(1)=\mathbf{r}''(1)$.

(b) Find the unit tangent vector \mathbf{T} and the unit normal vector \mathbf{N} at time t = 1. [Hint: you can find the normal direction by taking $\mathbf{v} \times \mathbf{a} \times \mathbf{v}$.]

(c) Find the curvature κ at time t=1.

The Gradient

- 5. Given each of the following equations,
 - (a) On the axes on the right, draw level curves of the function f(x, y).
 - (b) Find the gradient of f, $\langle f_x, f_y \rangle$, and draw some gradient vectors on the graph of the level curves. What is true about the gradient and level curves?
 - f(x,y) = x + y + 3

 $f(x,y) = x^2 + y^2$

(c) Show on the graph below that the points where the level curves of f(x,y) = x + y + 3 are tangent to the curve $x^2 + y^2 = 8$ are (2,2) and (-2,-2).

(d) Show that the gradient of f(x,y) = x+y+3 and the gradient of $g(x,y) = x^2+y^2$ are parallel (or antiparallel) at (2,2) and (-2,-2).

(e) Are these two points the maximum and minimum value of f(x,y) = x + y + 3 under the constraint $g(x,y) = x^2 + y^2 = 8$?