Topological Properties like Separation Axioms Satisfying Properly Hereditary Property

Omar Al-Odat, Adnan Al-Bsoul*

Department of Mathematics, Yarmouk University, Irbid - Jordan *Corresponding author email: bsoul@yu.edu.jo

Abstract: In this paper we shall improve the definition of "properly hereditary property" which raised previously [1] and we shall prove that the topological properties: Functionally Hausdorff, $T_{1\frac{2}{3}}$, completely regular, normal, perfectly normal, S_2 , S_{∞} , locally connected, locally strongly connected, totally disconnected and Riesz separation axiom: T_R are properly hereditary properties.

Keywords: hereditary property, proper subspace, completely regular, functionally Hausdorff, Riesz's separation, strongly connected.

1. Introduction

In 1996, Arenas [1] introduced a definition of properly hereditary property as: A property *P* of a space *X* is *properly hereditary property* if every proper subspace *A* of *X* has the property *P*, then the whole space *X* has the property *P*. The property *P* is *properly* (*closed*, *open*, *etc. respectively*) hereditary property if every (closed, open, etc. respectively) proper subspace has the property *P*, hence the whole space *X* has the property *P*. If the property *P* is hereditary and properly hereditary property, then it is called a *strongly properly hereditary property*.

All proper subspaces of the trivial topology on $X = \{a, b\}$ are T_i and the whole space is not T_i for $i=0, \frac{1}{4}, \frac{1}{2}, 1, 1\frac{1}{3}, 1\frac{2}{3}, 2, 2\frac{1}{2}, 3, 3\frac{1}{2}, 4, 5, 6$. Also, Al-Bsoul [2, Example 2.1] introduced a topological space where every proper subspace is $T_{\frac{1}{4}}$ and the whole space is not $T_{\frac{1}{4}}$. So, we shall rewrite the definition of proper hereditary property as the next definition.

Definition 1.1. A property P is properly hereditary property denoted by PHP if there exists a cardinal number μ such that given any topological space X with $|X| \ge \mu$ and all proper subspaces have the property P, then the whole space has the property P.

In this paper, |A| denotes the cardinal number of the set A and I denotes the topological space ([0,1], τ_u).

2. Properties Looks like Separation Axioms

Arenas [1] proved that T_i for all i=0, 1, 2, 3 are properly hereditary properties. In 2003, Al-Bsoul [2] showed that some of non-familiar separation axioms: $T_{\frac{1}{4}}$, $T_{\frac{1}{2}}$, $TT_{\frac{1}{3}}$, $T_{\frac{1}{2}}$ are properly hereditary properties. In this section, we shall show

that the topological properties: Functionally Hausdorff, $T_{1\frac{2}{3}}$, completely regular, normal, perfectly normal and R_{θ} are PHPs.

Definition 2.1. [3] A topological space X is *functionally Hausdorff* if for any two distinct points a and b in X, there is a continuous function $f: X \to I$ such that f(a) = 0 and f(b) = 1.

Theorem 2.1. Functionally Hausdorff is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and all proper subspaces are functionally Hausdorff. Since, all proper subspaces are functionally Hausdorff, then all proper subspaces are T_I , so X is T_I . Assume that x and y are distinct points in X, since $|X| \ge 3$, so there is $z \in X - \{x, y\}$. Hence, $X - \{z\}$ and $X - \{y\}$ are functionally Hausdorff proper subspaces, then there are continuous functions $f_y : X - \{y\} \to I$ and $f_z : X - \{z\} \to I$ such that $f_y(x) = f_z(x) = 1$ and $f_y(z) = f_z(y) = 0$.

Define $f: X \to I$ by $f(t) = f_y(t)f_z(t)$ for all $t \notin \{y, z\}$ and f(t) = 0 otherwise. Since f is a multiplication of two continuous functions on $X - \{y, z\}$, so f is a continuous function on $X - \{y, z\}$, hence we shall show that f is a continuous function on $\{y, z\}$. Let $\varepsilon > 0$.

Case 1: t = y, so there is an open set U in $X - \{z\}$ containing y such that $f_z(U) \subseteq [0, \varepsilon)$, since X is T_1 , then $\{z\}$ is a closed set in X, moreover $X - \{z\}$ is an open set in X, so U is open in X, also $f(u) = f_y(u)f_z(u) < f_z(u) < \varepsilon$ for any $u \neq y$ and $f(y) = 0 < \varepsilon$, then $f(U) \subseteq [0, \varepsilon)$.

Case 2: t = z, so similarly for t = y.

Thus, f is a continuous function satisfy f(x) = 1 and f(y) = 0, therefore X is functionally Hausdorff.

Definition 2.2. [4] A space X is R_0 -space if any open set is a union of closed sets.

It is easy to see that X is R_0 -space if for each open set U in X and α in U, there is a closed set A such that $\alpha \in A \subseteq U$.

Theorem 2.2. R_0 -space is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and all proper subspaces are R_0 . Given an open set U in X.

Case 1: U = X, we are done.

Case 2: $U \subset X$, then there is $x \notin U$. Let $p \in U$. Since, $|X| \ge 3$, then there is $y \in X - \{x, p\}$

1. $y \in U$. Since, $X - \{y\}$ is a proper R_0 -subspace, hence there is a closed set F_y in $X - \{y\}$ such that $p \in F_y \subseteq U - \{y\}$, so there is a closed set $F \subseteq X$ such

- that $F_y = F \cap X \{y\}$, then $p \in F \subseteq F_y \cup \{y\} \subseteq (U \{y\}) \cup \{y\} \subseteq U$.
- 2. $y \notin U$, since $X \{x\}$ and $X \{y\}$ are proper subspaces, then there are closed sets F_x and F_y in $X \{x\}$ and $X \{y\}$, respectively, such that $p \in F_x \subseteq U$ and $p \in F_y \subseteq U$. Moreover, there are closed sets F_1 and F_2 in X such that $F_x = F_1 \cap X \{x\}$ and $F_y = F_2 \cap X \{y\}$. Define $F = F_1 \cap F_2$, so $p \in F = F_1 \cap F_2 \subseteq (F_x \cup \{x\}) \cap (F_y \cup \{y\}) = F_x \cap F_y \subseteq U$.

Therefore, the whole space X is R_0 -space.

Definition 2.3. A space *X* is $T_{1\frac{2}{3}}$ if every compact subset of *X* is closed.

Definition 2.4. [2] A space X is $T_{1\frac{1}{3}}$ if every convergent sequence converges to unique limit point.

It is easy to show that every $T_{1\frac{2}{3}}$ is $T_{1\frac{1}{3}}$. Last idea will help us to show that $T_{1\frac{2}{3}}$ is properly hereditary property.

Theorem 2.3. $T_{1\frac{2}{3}}$ is PHP.

Proof. Let X be a topological space with $|X| \ge 3$. Assume that all proper subspaces of X are $T_{1\frac{2}{3}}$, then each proper subspaces are $T_{1\frac{1}{3}}$, hence X is $T_{1\frac{1}{3}}$. Suppose that F is a nonclosed compact set in X, then there exists $p \notin F$ and $p \in Bd(F)$, so there is a net (x_{λ}) in F such that $x_{\lambda} \to p$, since (x_{λ}) is a net in compact subspace F, then (x_{λ}) has a convergent subnet $(x_{\lambda_{\beta}})$ in F to $q \in F$, also X is $T_{1\frac{1}{3}}$, then p = q, implies F is closed, therefore X is $T_{1\frac{2}{3}}$.

Theorem 2.4. The completely regular is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ such that all proper subspaces are completely regular. Assume that A be a closed set in X and $a \notin A$

Case 1: $A^o \neq \emptyset$, then there is $p \in A$ such that p has a neighborhood $U_o \subseteq A$. Since, $X - \{p\}$ is completely regular, hence there is a continuous function $g: X - \{p\} \to I$ such that $g(A - \{p\}) = 0$ and g(a) = 1. Define $f: X \to I$ by f(t) = g(t) at $t \neq p$ and f(p) = 0. For each $\varepsilon > 0$, then $f^{-1}((\varepsilon, 1]) = g^{-1}((\varepsilon, 1])$ and $f^{-1}([0, \varepsilon)) = g^{-1}([0, \varepsilon)) \cup \{p\}$ are open sets in X.

Case 2: $A^o = \emptyset$, since X is regular, there are two disjoint open sets U and V such that $a \in U$ and $A \subseteq V$, thus U^c is closed, $a \neq U^c$ and $U^{co} \neq \emptyset$, then apply Case 1, there is a continuous function $f: X \to I$ such that $f(U^c) = 0$ and f(a) = 1, hence f(A) = 0 and f(a) = 1, therefore X is completely regular.

The last result shows that $T_{3\frac{1}{2}}$ and all the equivalent properties to $T_{3\frac{1}{2}}$ like gauge space [5] are PHP.

Based on Al-Bsoul [2] T_D is PHP without proof. Next, we will show that T_D is PHP.

A set A is locally closed if $\overline{A} - A$ is closed. A topological space X is T_D if each singleton point is locally closed. \square

Theorem 2.5. T_D is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ such that all proper subspaces are T_D . Assume that $x \in X$.

Case 1: If $\overline{\{x\}} = X$, since $|X| \ge 3$, so there are $a, b \in \overline{\{x\}} - \{x\}$. So, $X - \{a\}$ and $X - \{b\}$ are proper T_D subspaces, then $\overline{\{x\}} - \{a, x\}$ and $\overline{\{x\}} - \{b, x\}$ are closed sets in $\overline{\{x\}} - \{a\}$ and $\overline{\{x\}} - \{b\}$ respectively. Hence, there are closed sets of F_a and F_b in X such that $X - \{x, a\} = F_a \cap (X - \{a\})$ and $X - \{x, b\} = F_b \cap X - \{b\}$

- 1. If $a \in F_a$ or $b \in F_b$, then $F_a = X \{x\} = \overline{\{x\}} \{x\}$ or $F_b = X \{x\} = \overline{\{x\}} \{x\}$, so $\overline{\{x\}} \{x\}$ is closed in X.
- 2. If $a \notin F_a$ and $b \notin F_b$, then $F_a = X \{a, x\}$ and $F_b = X \{b, x\}$, thus $F_a \cup F_b = X \{a, x\} \cup X \{b, x\} = X (\{a, x\} \cap \{b, x\}) = X \{x\}$, so $\overline{\{x\}} \{x\}$ is closed in X.

Case 2: If $\overline{\{x\}} \neq X$, then $\overline{\{x\}}$ is a proper subspace, so $\overline{\{x\}} - \{x\}$ is closed in $\overline{\{x\}}$, thus it is closed in X.

Definition 2.5. [3] A space X is *perfectly normal* if for each pair of disjoint closed sets A and B in X there is a continuous function $f: X \to I$ such that $A = f^{-1}(0)$ and $B = f^{-1}(1)$. A space X is T_6 if X is a T_1 perfectly normal space.

Al-Bsoul proved that T_4 , T_5 and T_6 are properly hereditary properties. Next Theorems show that normal, completely normal and perfectly normal are properly hereditary properties.

Theorem 2.6. Normality is PHP.

Proof. Let X be a topological space with $|X| \ge 4$ and all proper subspaces are normal space. Assume that A and B are disjoint closed sets in X

Case 1: $X = A \cup B$, thus A and B are clopen sets, hence X is normal.

Case 2: There are at least two points p and q in $X - (A \cup B)$, since $X - \{p\}$ is a normal proper subspace, so there are two disjoint open sets U_A^p and U_B^p in $X - \{p\}$, thus there are two open sets U_A and U_B in X such that $U_A^p = U_A \cup X - \{p\}$ and $U_B^p = U_B \cap X - \{p\}$ containing A and B, respectively, furthermore $U_A \cap U_B \subseteq (U_A^p \cap U_B^p) \cup \{p\} \subseteq \{p\}$. Similarly, there are two open sets V_A and V_B in V_B such that $V_A \cap V_B \subseteq (V_A^q \cap V_B^q) \cup \{q\} \subseteq \{q\}$. Now, $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ and $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ and $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ and $V_B \cap V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets containing $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ and $V_B \cap V_B$ are disjoint open sets V_B

Case 3: There is exactly one point p in $X - (A \cup B)$. Since, $|X| \ge 4$, then one of the two sets has at least two distinct points x and y. Without loss of generality, assume that $\{x,y\} \subseteq A$. Since, $X - \{x\}$ is a normal proper subspace, thus there are two disjoint open sets U_A^x and U_B^x in $X - \{x\}$ containing $A - \{x\}$ and B, respectively. Moreover, there exist U_A and U_B open in X such that $U_A^x = U_A \cap X - \{x\}$ and $U_B = U_B^x \cap X - \{x\}$, also $U_A \cap U_B \subseteq (U_A^x \cap U_B^x) \cup \{x\} \subseteq \{x\}$. Similarly, there are two disjoint open sets V_A and V_B in $X - \{x\}$ similarly, there are two disjoint open sets V_A and V_B in $X - \{x\}$.

 $\{y\}$ such that $V_A^{\mathcal{Y}} = V_A \cap X - \{y\}$ and $V_B^{\mathcal{Y}} = V_B \cap X - \{y\}$, so $V_A \cap V_B \subseteq (V_A^{\mathcal{Y}} \cap V_B^{\mathcal{Y}}) \cup \{y\} \subseteq \{y\}$. Now, $H = U_A \cup V_A$ and $G = U_B \cap V_B$ are disjoint open sets in X containing A and B, respectively. Therefore, X is normal.

Corollary 2.7. Completely normal is PHP.

Theorem 2.8. Perfectly normal is PHP.

Proof. Let X be a topological space with $|X| \ge 4$ and let all proper subspaces are perfectly normal. Assume that A and B are disjoint closed sets in X.

Case 1: $A^o \neq \emptyset$ or $B^o \neq \emptyset$. Without loss of generality, assume that $A^o \neq \emptyset$, then there is $p \in A$ has a neighborhood $U_0 \subseteq A$. Since, $X - \{p\}$ is perfectly normal, hence there is a continuous function $g: X - \{p\} \to I$ such that $g^{-1}(0) = A - \{p\}$ and $g^{-1}(1) = B$. Define $f: X \to I$ by f(t) = g(t) for all $x \neq p$ and f(p) = 0. For each $\varepsilon > 0$, then $f^{-1}((\varepsilon, 1]) = g^{-1}([\varepsilon, 1])$ and $f^{-1}([0, \varepsilon)) = g^{-1}([0, \varepsilon)) \cup \{p\}$ are open sets in X.

Case 2: $A^o = \emptyset$ and $B^o = \emptyset$, since X is normal, there are two disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$, thus U^c is closed with $U^{c^o} \neq \emptyset$ and $A \cap U^c = \emptyset$, then apply Case 1, there are continuous functions $f_1, f_2 : X \to I$ such that $f_1^{-1}(0) = U^c$, $f_1^{-1}(1) = A$, $f_2^{-1}(0) = B$ and $f_2^{-1}(1) = V^c$, hence there is a continuous function $f: X \to I$ defined by $f(t) = (f_1(t) + f_2(t)/2)$ such that $f^{-1}(1) = A$ and $f^{-1}(0) = B$, therefore X is perfectly normal.

3. Riesz's Separation Axiom and Related Axioms

Császár [6] introduced Riesz separation axiom and some related Axioms. In this section, we shall show that these separation axioms are properly hereditary properties.

Definition 3.1. [6]

A topological space *X* is said to be

- 1. T_R if it is a T_1 -space and for a subset A of X, with p and q different elements in A', there is a subset B of A such that $p \in B'$ and $q \notin B'$.
- 2. S_1 if $p \notin \overline{q}$ implies $q \notin \overline{p}$ for all p, q in X.
- 3. S_2 if $p \notin \{q\}$ implies that p and q have disjoint neighborhoods for all p, q in X.
- 4. P_R if given any two distinct points p and q satisfy $p \notin \overline{\{q\}}$ and $p \in \overline{A}$ for any subset $A \subseteq X$, there is a subset $B \subseteq A$ such that $p \in \overline{B}$ and $q \notin \overline{B}$.
- 5. Q_R if given any two distinct points p and q satisfy $q \notin \overline{\{p\}}$ and $p \in \overline{A}$ for any subset $A \subseteq X$, there is a subset $B \subseteq A$ such that $p \in \overline{B}$ and $q \notin \overline{B}$.
- 6. S_{∞} if for any $p \in \overline{A}$ where A is a subset of X and \overline{A} is not compact there is a subset $B \subseteq A$ such that $p \notin \overline{B}$ and \overline{B} is not compact.

Lemma 3.1. [6] Let X be a topological space. X is T_R if given any set $A \subseteq X$ and two distinct points $p, q \in \overline{A}$, there is $B \subseteq A$ such that $p \in \overline{B}$ and $q \notin \overline{B}$.

Theorem 3.2. T_R -space is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and all proper subspaces are T_R . Let $A \subseteq X$ and p, q are two distinct points in \overline{A} . Since $|X| \ge 3$, so there is $x \in X - \{p, q\}$. Moreover, $X - \{x\}$ is a T_R proper subspace, then there is $B \subseteq A$ such that $p \in \overline{B}^{X - \{x\}}$ and $q \notin \overline{B}^{X - \{x\}}$, thus $p \in \overline{B}$ and $q \notin \overline{B}$

It is easy to see that S_1 is PHP. The next Theorem show that S_2 is PHP. \Box

Theorem 3.3. S_2 is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ such that all proper subspaces are S_2 . Assume that $p \ne q$ in X with $p \notin \overline{\{q\}}$, since $|X| \ge 3$, then there is $x \in X - \{p, q\}$.

Case 1: $x \notin \overline{\{q\}}$, hence there are disjoint open sets U_p and U_q in $X-\{x\}$ containing p and q, respectively. Also, there are disjoint open sets V_x and V_q in $X-\{p\}$ containing x and q, respectively. Thus, there are open sets U_1, U_2, V_1 and V_2 in X such that $U_p = U_1 \cap X - \{x\}$, $U_q = U_2 \cap X - \{x\}$, $V_x = V_1 \cap X - \{x\}$ and $V_q = V_2 \cap X - \{x\}$. Now, $U = U_1$ and $V = U_2 \cap V_2$ are disjoint open sets containing p and q, respectively.

Case 2: $x \in \overline{\{q\}}$, then $p \notin \overline{\{x\}}$, since $X - \{x\}$ and $X - \{q\}$ are proper S_2 -subspaces, then there are disjoint open sets U_p and U_q in $X - \{x\}$ containing p and q, respectively, and disjoint open sets V_p and V_x in $X - \{q\}$ containing p and x, respectively. Hence, there are open sets U_1 , U_2 , V_1 and V_2 in X such that $U_p = U_1 \cap X - \{x\}$, $U_q = U_2 \cap X - \{x\}$, $V_p = V_1 \cap X - \{x\}$ and $V_x = V_2 \cap X - \{x\}$. Now, $U = U_1 \cap V_1$ and $V = U_2$ are disjoint open sets containing p, q, respectively. \square

Theorem 3.4. P_R -space is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and all proper subspaces are P_R . Let $A \subseteq X$ and p, q be two distinct points in A such that $p \in \overline{A} - \overline{\{q\}}$. Since $|X| \ge 3$, so there is $x \in X - \{p,q\}$. Since $X - \{x\}$ is a proper P_R -subspace, so there is $B_x \subseteq A - \{x\}$ such that $p \in \overline{B_x}^{X - \{x\}}$ and $q \notin \overline{B_x}^{X - \{x\}}$, thus there is a closed set $B \subseteq X$ such that $\overline{B_x} = B \cap X - \{x\}$ and $B \subseteq \overline{B_x} \cup \{x\}$, moreover $q \notin \overline{B_x} \cup \{x\}$, implies $q \notin B$. \square

Theorem 3.4. Q_R -space is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and all proper subspaces are Q_R . Let $A \subseteq X$ and $p \ne q$ be distinct points in \overline{A} such that $p \in \overline{A}$ and $q \notin \overline{\{p\}}$. Since $|X| \ge 3$, so there is $x \in X - \{p, q\}$. Since, $X - \{x\}$ is a proper Q_R -space, so there is $B_x \subseteq A - \{x\}$ such that $p \in \overline{B_x}^{X - \{x\}}$ and $q \in \overline{B_x}^{X - \{x\}}$, thus there is a closed set $B \subseteq X$ such that $\overline{B_x} = B \cap X - \{x\}$ and $B \subseteq \overline{B_x} \cup \{x\}$, moreover $q \notin \overline{B_x} \cup \{x\}$, implies $q \notin B$.

To prove the next result we shall give our next observation.

Lemma 3.6. A space X is compact if there exists a point p in X such that each member in the class $\{U^c: U \text{ is an open set containing } p\}$ is compact.

Proof. Let \mathcal{U} be an open cover of X. Then, there is $U_p \in \mathcal{U}$ containing p, thus U_p^c is compact and $\mathcal{V} = \mathcal{U} - \{U_p\}$ covering U_p^c , so there is finite subcover $\{V_1, V_2, ..., V_n\}$ of \mathcal{V} , so the class $\{V_1, V_2, ..., V_n\} \cup \{U_p\}$ covering X, therefore X is compact. \square

A similar observation is valid for Lindelöf and countably compact.

Theorem 3.7. S_{∞} -space is PHP.

Proof. Let X be a topological space such that all proper subspaces are S_{∞} . Assume that $A \subseteq X$ such that \overline{A} is not compact and $p \in \overline{A}$. In each of the two Cases: $\overline{A} = X$ and $\overline{A} \neq X$, there is B in A such that $p \notin B$ and \overline{B} is not compact according to Lemma (3.6).

4. Connected Spaces

In this section we shall show the properties of: locally connected, pathwise-connected, strongly connected, locally strongly connected and totally disconnected are PHP.

Definition 4.1. [7] A space *X* is *locally connected* if *X* has base consisting of a connected set.

Lemma 4.1. Let *X* be a topological space and *A* be a subspace of *X*. If *B* is a connected set in *A*, then *B* is connected in *X*.

Arenas showed that local connectedness T_1 is properly open hereditary property. Next, we will show that local connected is properly hereditary property.

Theorem 4.2. Locally connected is PHP.

Proof. Let (X, τ) be a topological space with $|X| \ge 2$ such that every proper subspace is locally connected. Assume that $a \in X$ and U is an open set in X containing a, then there is $b \ne a$, and since $X - \{b\}$ is proper subspace, thus there is an open connected set B in $X - \{b\}$ containing a such that $a \in B \subseteq U - \{b\}$. It implies that B is an open connected set in X according to Lemma (4.1).

Theorem 4.3. Pathwise connected is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ such that all proper subspaces are pathwise connected. Assume that x and y are two distinct points in X, since $|X| \ge 3$, there is $a \in X - \{x, y\}$, as $X - \{a\}$ is a proper pathwise connected subspace, hence there is a continuous function $g: I \to X - \{a\}$ such that g(0) = x and g(1) = y, thus the function $f: I \to X$ defined by f(t) = g(t) for all $t \in I$ is continuous. Therefore, X is pathwise connected.

Definition 4.2. [8] A space X is *strongly connected* if any continuous function $f: X \to (\mathbb{Z}, \tau_{cof})$ is constant. A subset A of X is strongly connected if A is a strongly connected subspace.

Theorem 4.4. Strongly connected is PHP.

Proof. Let *X* be a topological space with $|X| \ge 3$ such that all proper subspaces are strongly connected. Suppose that $f: X \to (\mathbb{Z}, \tau_{cof})$ be a continuous function which is not

constant, so there exist a and b in X such that $f(a) \neq f(b)$, hence the restriction function on the proper subspace $\{a,b\}$ is a non-constant continuous function, hence the proper subspace $\{a,b\}$ is not strongly connected, contradiction. Therefore, X is strongly connected.

Definition 4.3 [8] Space *X* is *locally strongly connected* if it has a basis consisting of strongly connected open sets.

Lemma (4.1) showed a feature for a connected set. It is easy to see that the strongly connected set has the same feature.

Theorem 4.5. Locally strongly connected is PHP.

Proof. Let (X, τ) be a topological space with $|X| \ge 2$ such that every proper subspace is local strongly connected. Assume that $a \in X$ and U be open in X containing a, then there is $q \ne a$, since $X - \{q\}$ is a proper subspace, thus there is an open strongly connected set B containing a and $a \in B \subseteq U - \{q\}$, implies B is strongly connected open in X.

Definition 4.4. [3] X is *totally disconnected* if the only nonempty connected subsets of X are the one point sets. In other words, X is totally disconnected if all subspaces A with |A| > 1 of X are disconnected.

Theorem 4.6. Totally disconnected is PHP.

Proof. Let X be a topological space with $|X| \ge 3$ and each proper subspace is totally disconnected. Thus, each proper subspace A with |A| > 1 is disconnected, then there exists $a \in X$ such that $X - \{a\}$ is disconnected, so there are two open sets U_1 and U_2 in X such that $U_1 \cap U_2 \subseteq \{a\}$

Case 1: $a \notin (U_1 \cap U_2)$, then $A = U_1 \cup \{a\}$ is a proper disconnected subspace, so there are two disjoint open sets V_1 and V_2 in A such that $V_1 \cup V_2 = A$, hence $a \in V_1$ or $a \in V_2$. Without loss of generality, assume that $a \in V_2$, thus V_1 is an open set in U_1 , then U_1 is an open set in U_2 , then U_3 is an open set U_4 is an open set in U_4 in U

Case 2: $a \in U_1 \cap U_2$, thus $|U_i| > 1$ for every i = 1,2, then U_1 is disconnected, equivalently there are two open sets V_1 and V_2 in U_1 such that $V_1 \cup V_2 = U_1$ and $V_1 \cap V_2 = \emptyset$. Since, U_1 is an open set in X, then V_1 and V_2 are open sets in X. Without loss of generality, Assume that $a \in V_2$, implies V_1 and $V_2 \cup U_2$ are open sets in X such that $V_1 \cap (V_2 \cup U_2) = \emptyset$ and $V_1 \cap (V_2 \cup U_2) = X$. So, X is disconnected, therefore X is totally disconnected.

References

- [1] F. Arenas, "Topological Properties Preserved by Proper Subspace", *Q and A in General Topology*, vol. 14, pp. 53-57, 1996.
- [2] A. AL-Bsoul, "Some Separation Axioms and Covering Properties Preserved by Proper Subspaces", *Q and A in General Topology*, vol. 21, pp. 171-175, 2003.
- [3] S. Willard, General Topology, Addison-Wesley, 1970.

- [4] A. AL-Bsoul, N. Tahat, "Some Types of Cleavability", *Al-Manarah*, vol. 4, no. 2, 1999.
- [5] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1966.
- [6] K. Császár, "On F. Riesz' Separation Axiom, topics in topology", *Colloquia Mathematics Societatis J'anos Bolyai* 8, Keszthely, pp. 173-180, 1972.
- P. E. Long, An Introduction to General Topology, Charles
 E. Merrill Publishing Company, Jordan Book Center Company Limited, 1986.
- [8] Y. Wang, "A Stronger Notion of Connectedness", National University of Singapore, 2010.