GGCATCTGCCCGAGGAGACCACGCTCCTGGAGCTCTGCTGTCTTCTCAGGGAGACTCTGAGG CTCTGTTGAGAATC**ATG**CTTTGGAGGCAGCTCATCTATTGGCAACTGCTGGCTTTGTTTTTC CTCCCTTTTTGCCTGTGTCAAGATGAATACATGGAGTCTCCACAAACCGGAGGACTACCCCC AGACTGCAGTAAGTGTTGTCATGGAGACTACAGCTTTCGAGGCTACCAAGGCCCCCCTGGGC CACCGGGCCCTCCTGGCATTCCAGGAAACCATGGAAACAATGGCAACAATGGAGCCACTGGT CATGAAGGAGCCAAAGGTGAGAAGGGCGACAAAGGTGACCTGGGGCCTCGAGGGGAGCGGG GCAGCATGGCCCCAAAGGAGAGAGGGCTACCCGGGGATTCCACCAGAACTTCAGATTGCAT TCATGGCTTCTCTGGCAACCCACTTCAGCAATCAGAACAGTGGGATTATCTTCAGCAGTGTT GAGACCAACATTGGAAACTTCTTTGATGTCATGACTGGTAGATTTGGGGCCCCCAGTATCAGG TGTGTATTTCTTCACCTTCAGCATGATGAAGCATGAGGATGTTGAGGAAGTGTATGTGTACC TTATGCACAATGGCAACACAGTCTTCAGCATGTACAGCTATGAAATGAAGGGCAAATCAGAT ACATCCAGCAATCATGCTGTGCTGAAGCTAGCCAAAGGGGATGAGGTTTGGCTGCGAATGGG CAATGGCGCTCTCCATGGGGACCACCAACGCTTCTCCACCTTTGCAGGATTCCTGCTCTTTG AAACTAAG**TAA**ATATATGACTAGAATAGCTCCACTTTGGGGAAGACTTGTAGCTGAGCTGAT TTGTTACGATCTGAGGAACATTAAAGTTGAGGGTTTTACATTGCTGTATTCAAAAAATTATT GGTTGCAATGTTGTTCACGCTACAGGTACACCAATAATGTTGGACAATTCAGGGGCTCAGAA GAATCAACCACAAAATAGTCTTCTCAGATGACCTTGACTAATATACTCAGCATCTTTATCAC CACAGAAGTCATTTGCAAAGAATTTTGACTACTCTGCTTTTAATTTAATACCAGTTTTCAGG AACCCCTGAAGTTTTAAGTTCATTATTCTTTATAACATTTGAGAGAATCGGATGTAGTGATA TGACAGGGCTGGGGCAAGAACAGGGGCACTAGCTGCCTTATTAGCTAATTTAGTGCCCTCCG TGTTCAGCTTAGCCTTTGACCCTTTCCTTTTGATCCACAAAATACATTAAAACTCTGAATTC ACATACAATGCTATTTTAAAGTCAATAGATTTTAGCTATAAAGTGCTTGACCAGTAATGTGG TTGTAATTTTGTGTATGTTCCCCCACATCGCCCCCAACTTCGGATGTGGGGTCAGGAGGTTG AGGTTCACTATTAACAATGTCATAAATATCTCATAGAGGTACAGTGCCAATAGATATTCAA AGAGAAAGATTTTGACCTGGCTTTAGATAAAACTGTGGCAAGAAAAATGTAATGAGCAATAT ATGGAAATAAACACACCTTTGTTAAAGATAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44686

><subunit 1 of 1, 246 aa, 1 stop

><MW: 26994, pI: 6.43, NX(S/T): 0

MLWRQLIYWQLLALFFLPFCLCQDEYMESPQTGGLPPDCSKCCHGDYSFRGYQGPPGPPGPPGPPGPPGPHGNHGNNGNNGATGHEGAKGEKGDKGDLGPRGERGQHGPKGEKGYPGIPPELQIAFMASLATHFSNQNSGIIFSSVETNIGNFFDVMTGRFGAPVSGVYFFTFSMMKHEDVEEVYVYLMHNGNTVFSMYSYEMKGKSDTSSNHAVLKLAKGDEVWLRMGNGALHGDHQRFSTFAGFLLFETK

# Important features of the protein:

Signal peptide:

amino acids 1-22

Motif name: Clq domain signature.

amino acids 137-167

### Clq domain proteins.

amino acids 135-169, 202-221, 235-244, 57-91, 60-94, 54-88, 81-114, 78-111, 63-96, 51-84, 45-78, 48-81, 33-66, 66-99 and 42-75

GAGAGAATAGCTACAGATTCTCCATCCTCAGTCTTTGCAAGGCGACAGCTGTGCCAGCCGGG  $\tt CTCTGGCAGCTCCTGGCAGC \\ \underline{\textbf{ATG}} \texttt{GCAGTGAAGCTTGGGACCCTCCTGCTGGCCCTTGCCCT}$ GGGCCTGGCCCAGCCAGCCTCTGCCCGCCGGAAGCTGCTGGTGTTTCTGCTGGATGGTTTTC GCTCAGACTACATCAGTGATGAGGCGCTGGAGTCATTGCCTGGTTTCAAAGAGATTGTGAGC AGGGGAGTAAAAGTGGATTACTTGACTCCAGACTTCCCTAGTCTCTCGTATCCCAATTATTA TACCCTAATGACTGGCCGCCATTGTGAAGTCCATCAGATGATCGGGAACTACATGTGGGACC CCACCACCAACAAGTCCTTTGACATTGGCGTCAACAAAGACAGCCTAATGCCTCTCTGGTGG CTGGCCAGGCTGTGAGGTTGAGATTCTGGGTGTCAGACCCACCTACTGCCTAGAATATAAAA ATGTCCCAACGGATATCAATTTTGCCAATGCAGTCAGCGATGCTCTTGACTCCTTCAAGAGT GGCCGGGCCGACCTGGCAGCCATATACCATGAGCGCATTGACGTGGAAGGCCACCACTACGG GCCTGCATCTCCGCAGAGGAAAGATGCCCTCAAGGCTGTAGACACTGTCCTGAAGTACATGA CCAAGTGGATCCAGGAGCGGGCCTGCAGGACCGCCTGAACGTCATTATTTTCTCGGATCAC GGAATGACCGACATTTTCTGGATGGACAAAGTGATTGAGCTGAATAAGTACATCAGCCTGAA ATCCCAAGCAGGTTCTATTACAAGAAAGGAAAGTTTGTCTCTCCTTTGACTTTAGTGGCTGA TGAAGGCTGGTTCATAACTGAGAATCGAGAGATGCTTCCGTTTTGGATGAACAGCACCGGCA GGCGGGAAGGTTGGCAGCGTGGATGGCACGGCTACGACAACGAGCTCATGGACATGCGGGGC ATCTTCCTGGCCTTCGGACCTGATTTCAAATCCAACTTCAGAGCTGCTCCTATCAGGTCGGT GGACGTCTACAATGTCATGTGCAATGTGGTGGGCATCACCCCGCTGCCCAACAACGGATCCT GGTCCAGGGTGATGTGCATGCTGAAGGGCCGCCGCCGCCTGTCTGGCCCAGC  $\texttt{CACTGTGCCCTGGCACTGATTCTTCTCTTCTTGCTTGCA} \underline{\textbf{TAA}} \texttt{CTGATCATATTGCTTGTCTC}$ AGAAAAAAACACCATCAGCAAAGTGGGCCTCCAAAGCCAGATGATTTTCATTTTATGTGTGA ATAATAGCTTCATTAACACAATCAAGACCATGCACATTGTAAATACATTATTCTTGGATAAT TCTATACATAAAAGTTCCTACTTGTTAAA

MAVKLGTLLLALALGLAQPASARRKLLVFLLDGFRSDYISDEALESLPGFKEIVSRGVKVDY
LTPDFPSLSYPNYYTLMTGRHCEVHQMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLW
VTLTKAKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSDALDSFKSGRADLAA
IYHERIDVEGHHYGPASPQRKDALKAVDTVLKYMTKWIQERGLQDRLNVIIFSDHGMTDIFW
MDKVIELNKYISLNDLQQVKDRGPVVSLWPAPGKHSEIYNKLSTVEHMTVYEKEAIPSRFYY
KKGKFVSPLTLVADEGWFITENREMLPFWMNSTGRREGWQRGWHGYDNELMDMRGIFLAFGP
DFKSNFRAAPIRSVDVYNVMCNVVGITPLPNNGSWSRVMCMLKGRAGTAPPVWPSHCALALI
LLFLLA

### Important features of the protein:

#### Signal peptide:

amino acids 1-22

#### N-glycosylation sites.

amino acids 100-104, 118-122, 341-345, 404-408

### N-myristoylation sites.

amino acids 148-154, 365-371

### Amidation site.

amino acids 343-347

GCCAGGTGTGCAGGCCGCTCCAAGCCCAGCCTGCCCGCTGCCGCCACCATGACGCTCCTCC GGGCACCCCACAGTCACGGTACCCCACACTGCTACTCGGCTGAGGAACTGCCCCTCGGCCA GGCCCCCCACACCTGCTGGCTCGAGGTGCCAAGTGGGGGCAGGCTTTGCCTGTAGCCCTGG TGTCCAGCCTGGAGGCAGCCACAGGGGGGAGGCACGAGAGGCCCTCAGCTACGACCCAG CTGGAGATACCGTGTGGACACGGATGAGGACCGCTATCCACAGAAGCTGGCCTTCGCCGAGT GCCTGTGCAGAGGCTGTATCGATGCACGGACGGCCGCGAGACAGCTGCGCTCAACTCCGTG CGGCTGCTCCAGAGCCTGCTGGTGCTGCGCCGCCGCCTGCTCCCGCGACGGCTCGGGGCT CCCCACACCTGGGGCCTTTGCCTTCCACACCGAGTTCATCCACGTCCCCGTCGGCTGCACCT GCGTGCTGCCCCGTTCAGTG**TGA**CCGCCGAGGCCGTGGGGCCCCTAGACTGGACACGTGTGC ACCCTTGGGGTCTGGGCATTCCCCGTGTCTGGAGGACAGCCCCCCACTGTTCTCCTCATCTC CAGCCTCAGTAGTTGGGGGTAGAAGGAGCTCAGCACCTCTTCCAGCCCTTAAAGCTGCAGAA AAGGTGTCACACGGCTGCCTGTACCTTGGCTCCCTGTCCCGGCTTCCCTTACCCTA TCACTGGCCTCAGGCCCCGCAGGCTGCCTCTTCCCAACCTCCTTGGAAGTACCCCTGTTTCT TAAACAATTATTTAAGTGTACGTGTATTATTAAACTGATGAACACATCCCCAAAA

MTLLPGLLFLTWLHTCLAHHDPSLRGHPHSHGTPHCYSAEELPLGQAPPHLLARGAKWGQAL PVALVSSLEAASHRGRHERPSATTQCPVLRPEEVLEADTHQRSISPWRYRVDTDEDRYPQKL AFAECLCRGCIDARTGRETAALNSVRLLQSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVP VGCTCVLPRSV

### Important features:

Signal peptide:

amino acids 1-18

Tyrosine kinase phosphorylation site.

amino acids 112-121

N-myristoylation sites.

amino acids 32-38, 55-61, 133-139

Leucine zipper pattern.

amino acids 3-25

Homologous region to IL-17.

amino acids 99-195

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77623

><subunit 1 of 1, 97 aa, 1 stop

><MW: 10160, pI: 6.56, NX(S/T): 0

 ${\tt MQLGTGLLLAAVLSLQLAAAEAIWCHQCTGFGGCSHGSRCLRDSTHCVTTATRVLSNTEDLP}\\ {\tt LVTKMCHIGCPDIPSLGLGPYVSIACCQTSLCNHD}$ 

# Important features of the protein:

Signal peptide:

amino acids 1-20

N-myristoylation sites.

amino acids 6-11 and 33-38

Prokaryotic membrane lipoprotein lipid attachment sites.

amino acids 24-34 and 78-88

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAG CGCAACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCT AACTTCAGTCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCG CGGCACAGGCGCGGCAGGCCGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAG  $\mathtt{CTGGGCTCGGGCGGGGGGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTC}$ GCGGGCTGCGCCTGGGCAGAGGCCGCCCTCGCTCCACGCAACACCTGCTGCTGCCACCGCG CCGCGATGAGCCGCGTGGTCTCGCTGCTGCTGGGCGCCGCTGCTCTGCGGCCACGGAGCC TTCTGCCGCCGCGTGGTCAGCGGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTA CAAAATGGCCTACTTCCATGAACTGTCCAGCCGAGTGAGCTTTCAGGAGGCACGCCTGGCTT GTGAGAGTGAGGGAGGAGTCCTCCTCAGCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAG AGCATGTTGCAAAACCTGACAAAACCCGGGACAGGGATTTCTGATGGTGATTTCTGGATAGG ATGGAAGCAATTCCCAGTACCGAAACTGGTACACAGATGAACCTTCCTGCGGAAGTGAAAAG TGTGTTGTGATGTATCACCAACCAACTGCCAATCCTGGCCTTGGGGGTCCCTACCTTTACCA GTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTGCAAGTATGAACCAGAGATTA ATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAGGAGACACCCATCAGAAT GTGGTTGTTACTGAAGCAGGTATAATTCCCAATCTAATTTATGTTGTTATACCAACAATACC CCTGCTCTTACTGATACTGGTTGCTTTTTGGAACCTGTTGTTTCCAGATGCTGCATAAAAGTA AAGGAAGAACAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTACCAGAAAA GAAAGTGGCATGGAAGTA**TAA**TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCTGGATC TGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGCAA GATGAACTGTAAGCTCCCCCTTGAGGCAAATATTAAAGTAATTTTATATGTCTATTATTTTC ATTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCAC CCAAACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTC GGGAGTATGTGTTAGAAGCAATTCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTA GTCAATGTAATGTATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAA GTGTTTGATAAAAATGAACTGTTCTAATATTTATTTTTTATGGCATCTCATTTTTCAATACAT TACCATAGAAAAAGTTTGTTTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTTGGTCA ATGTCTAGGAAATCTCTTCAGAAATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTC AAACATTTTACTTAGAGGCAAGGATTGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAA TTATTTTTAGCTTAAAATTAAACAGATTTTGTAATAATGTAACTTTGTTAATAGGTGCATAA ACACTAATGCAGTCAATTTGAACAAAAGAAGTGACATACACAATATAAATCATATGTCTTCA CACGTTGCCTATATAATGAGAAGCAGCTCTCTGAGGGTTCTGAAATCAATGTGGTCCCTCTC TTGCCCACTAAACAAGATGGTTGTTCGGGGTTTGGGATTGACACTGGAGGCAGATAGTTGC AAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTGACTATATTAGTATACAAAGAGG TCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAGACAAGCACAGACCACAGAC ATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGGAACCCATCAGTGATCG CATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTTCTGTCTTATCTCC TAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCTCTGGTCTTCA AAAAAAAAAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA79230

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30431, pI: 6.79, NX(S/T): 3

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACE SEGGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDG SNSQYRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINP TAPVEKPYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKG RTKTSPNQSTLWISKSTRKESGMEV

## Important features of the protein:

### Signal peptide:

amino acids 1-21

### Transmembrane domain:

amino acids 214-235

## N-glycosylation sites.

amino acids 86-89 and 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 266-269

### N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145 and 212-217

CCACAGCCACTGGGCCCGAAGTTGCTCAGCCTGAAGTAGACACCACCCTGGGTCGTGTGCGAGGCCGGCAGGTGG GCGTGAAGGGCACAGACCGCCTTGTGAATGTCTTTCTGGGCATTCCATTTGCCCAGCCGCCACTGGGCCCTGACC GGTTCTCAGCCCCACACCCCAGCACAGCCCTGGGAGGGTGTGCGGGATGCCAGCACTGCGCCCCCAATGTGCCTAC AAGACGTGGAGAGCATGAACAGCAGCAGATTTGTCCTCAACGGAAAACAGCAGATCTTCTCCGTTTCAGAGGACT GCCTGGTCCTCAACGTCTATAGCCCAGCTGAGGTCCCCGCAGGGTCCGGTAGGCCGGTCATGGTATGGGTCCATG GAGGCGCTCTGATAACTGGCGCTGCCACCTCCTACGATGGATCAGCTCTGGCTGCCTATGGGGATGTGGTCGTGG TTACAGTCCAGTACCGCCTTGGGTCCTTGGCTTCTTCAGCACTGGAGATGAGCATGCACCTGGCAACCAGGGCT TCCTAGATGTGGTAGCTGCTTTGCGCTGGGTGCAAGAAACATCGCCCCCTTCGGGGGTGACCTCAACTGTGTCA ACAGAGCCATCACAGAGTGGGGTCATCACCACCCCAGGGATCATCGACTCTCACCCTTGGCCCCTAGCTCAGA GCCCCAAGGAACTCCTGAAGGAGAAGCCCTTCCACTCTGTGCCCTTCCTCATGGGTGTCAACAACCATGAGTTCA GCTGGCTCATCCCCAGGGGCTGGGGTCTCCTGGATACAATGGAGCAGATGAGCCGGGAGGACATGCTGGCCATCT CAACACCCGTCTTGACCAGTCTGGATGTGCCCCCTGAGATGATGCCCACCGTCATAGATGAATACCTAGGAAGCA ACTCGGACGCACAAGCCAAATGCCAGGCGTTCCAGGAATTCATGGGTGACGTATTCATCAATGTTCCCACCGTCA GTTTTTCAAGATACCTTCGAGATTCTGGAAGCCCTGTCTTTTTCTATGAGTTCCAGCATCGACCCAGTTCTTTTG  $\tt CGAAGATCAAACCTGCCTGGGTGAAGGCTGATCATGGGGCCGAGGGTGCTTTTGTGTTCGGAGGTCCCTTCCTCA$ AGTGGACCCACTTTGCCCGGACAGGGGACCCCAATAGCAAGGCTCTGCCTCCTTGGCCCCAATTCAACCAGGCGG AACAATATCTGGAGATCAACCCAGTGCCACGGGCCGGACAGAAGTTCAGGGAGGCCTGGATGCAGTTCTGGTCAG AGACGCTCCCCAGCAAGATACAACAGTGGCACCAGAAGCAGAAGAACAGGAAGGCCCAGGAGGACCTC<u>TGA</u>GGCC AGGCCTGAACCTTCTTGGCTGGGGCAAACCACTCTTCAAGTGGTGGCAGAGTCCCAGCACGGCAGCCCGCCTCTC CCCCTGCTGAGACTTTAATCTCCACCAGCCCTTAAAGTGTCGGCCGCTCTGTGACTGGAGTTATGCTCTTTTGAA ATGTCACAAGGCCGCCTCCCACCTCTGGGGCATTGTACAAGTTCTTCCCTCTCCCTGAAGTGCCTTTCCTGCTTT AATGGCAGAGACCTGGGATGGGAGAAGTCCTGGGGCCCCAGGGGATCCAGCCTAGAGCAGACCTTAGCCCCTGAC TAAGGCCTCAGACTAGGGCGGGAGGGGTCTCCTCCTCTCTGCTGCCCAGTCCTGGCCCCTGCACAAGACAACAGA ATCCATCAGGGCCATGAGTGTCACCCAGACCTGACCCTCACCAATTCCAGCCCCTGACCCTCAGGACGCTGGATG CCAGCTCCCAGCCCCAGTGCCGGGTCCTCCCTCCCTTCCTGGCTTGGGGAGACCAGTTTCTGGGGAGCTTCCAAG AGCACCCACCAAGACACAGCAGGACAGGCCAGGGGAGGGCATCTGGACCAGGGCATCCGTCGGGCTATTGTCACA GAGAAAAGAAGAGACCCACCCACTCGGGCTGCAAAAGGTGAAAAGCACCAAGAGGTTTTCAGATGGAAGTGAGAG GTGACAGTGTGCTGGCAGCCCTCACAGCCCTCGCTTGCTCTCCCTGCCGCCTCTGCCTGGGCTCCCACTTTGGCA GCACTTGAGGAGCCCTTCAACCCGCCGCTGCACTGTAGGAGCCCCTTTCTGGGCTGGCCAAGGCCGGAGCCAGCT CCCTCAGCTTGCGGGGAGGTGCGGAGGAGAGGGGCGGGGAGGAACCGGGGCTGCGCGCAGCGCTTGCGGGCCAG TAGCACCTGGGCCAGCAGCTGCTGTGCTCGATTTCTCGCTGGGCCTTAGCTGCCTCCCCGCGGGGCAGGGCTCGG GACCTGCAGCCCTCCATGCCTGACCCTCCCCCACCCCCGTGGGCTCCTGTGCGGCCGGAGCCTCCCCAAGGAG GGACTTGGAGAACCTTTATGTCTAGCTAAGGGATTGTAAATACACCGATGGGCACTCTGTATCTAGCTCAAGGTT TGTAAACACACCAATCAGCACCCTGTGTCTAGCTCAGTGTTTGTGAATGCACCAATCCACACTCTGTATCTGGCT ACTCTGGTGGGGACTTGGAGAACCTTTGTGTCCACACTCTGTATCTAGCTAATCTAGTGGGGATGTGGAGAACCT TTGTGTCTAGCTCAGGGATCGTAAACGCACCAATCAGCACCCTGTCAAAACAGACCACTTGACTCTCTGTAAAAT GGACCAATCAGCAGGATGTGGGTGGGGCGAGACAAGAGAATAAAAGCAGGCTGCCTGAGCCAGCAGTGACAACCC CCCTCGGGTCCCCTCCCACGCCGTGGAAGCTTTGTTCTTTCGCTCTTTGCAATAAATCTTGCTACTGCCCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA79862

><subunit 1 of 1, 571 aa, 1 stop

><MW: 62282, pI: 5.56, NX(S/T): 1

MERAVRVESGVLVGVVCLLLACPATATGPEVAQPEVDTTLGRVRGRQVGVKGTDRLVNVFLG

IPFAQPPLGPDRFSAPHPAQPWEGVRDASTAPPMCLQDVESMNSSRFVLNGKQQIFSVSEDC

LVLNVYSPAEVPAGSGRPVMVWVHGGALITGAATSYDGSALAAYGDVVVVTVQYRLGVLGFF

STGDEHAPGNQGFLDVVAALRWVQENIAPFGGDLNCVTVFGGSAGGSIISGLVLSPVAAGLF

HRAITQSGVITTPGIIDSHPWPLAQKIANTLACSSSSPAEMVQCLQQKEGEELVLSKKLKNT

IYPLTVDGTVFPKSPKELLKEKPFHSVPFLMGVNNHEFSWLIPRGWGLLDTMEQMSREDMLA

ISTPVLTSLDVPPEMMPTVIDEYLGSNSDAQAKCQAFQEFMGDVFINVPTVSFSRYLRDSGS

PVFFYEFQHRPSSFAKIKPAWVKADHGAEGAFVFGGPFLMDESSRLAFPEATEEEKQLSLTM

MAQWTHFARTGDPNSKALPPWPQFNQAEQYLEINPVPRAGQKFREAWMQFWSETLPSKIQQW

HQKQKNRKAQEDL

### Important features of the protein:

#### Signal peptide:

amino acids 1-27

### Transmembrane domain:

amino acids 226-245

### N-glycosylation site.

amino acids 105-109

### N-myristoylation sites.

amino acids 10-16, 49-55, 62-68, 86-92, 150-156, 155-161, 162-168, 217-223, 227-233, 228-234, 232-238, 262-268, 357-363, 461-467

# Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 12-23

## Carboxylesterases type-B serine active site.

amino acids 216-232

C**ATG**GAGCCTCTTGCAGCTTACCCGCTAAAATGTTCCGGGCCCAGAGCAAAGGTATTTGCAGTTTTGCTGTCTATAGTTCTATGCACAGTAACGCTATTTCTTCTACAACTAAAATTCCTCAAA CCTAAAATCAACAGCTTTTATGCCTTTGAAGTGAAGGATGCAAAAGGAAGAACTGTTTCTCT GGAAAAGTATAAAGGCAAAGTTTCACTAGTTGTAAACGTGGCCAGTGACTGCCAACTCACAG ACAGAAATTACTTAGGGCTGAAGGAACTGCACAAAGAGTTTGGACCATCCCACTTCAGCGTG TTTTGCAAGAAAAACTACGGAGTAACTTTCCCCATCTTCCACAAGATTAAGATTCTAGGAT CTGAAGGAGAACCTGCATTTAGATTTCTTGTTGATTCTTCAAAGAAGGAACCAAGGTGGAAT TTTTGGAAGTATCTTGTCAACCCTGAGGGTCAAGTTGTGAAGTTCTGGAGGCCAGAGGAGCC AGGATCTA**TGA**GAATGCCATTGCGTTTCTAATAGAACAGAGAAATGTCTCCATGAGGGTTTG GTCTCATTTTAAACATTTTTTTTTTGGAGACAGTGTCTCACTCTGTCACCCAGGCTGGAGTG CAGTAGTGCGTTCTCAGCTCATTGCAACCTCTGCCTTTTTAAACATGCTATTAAATGTGGCA GATGTTACCCAAAGCAAAAATCAAGAGTAGCCAAAGAATCAACATGAAATATATTAACTACT TCCTCTGACCATACTAAAGAATTCAGAATACACAGTGACCAATGTGCCTCAATATCTTATTG TTCAACTTGACATTTTCTAGGACTGTACTTGATGAAAATGCCAACACACTAGACCACTCTTT GGATTCAAGAGCACTGTGTATGACTGAAATTTCTGGAATAACTGTAAATGGTTATGTTAATG GAATAAAACACAAATGTTGAAAAATGTAAAATATATATACATAGATTCAAATCCTTATATAT ACTATAACTGTCACTATGTATGTAACTGACATATATAAATAGTCATTTATAAATGACCGTAT 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA80136

><subunit 1 of 1, 209 aa, 1 stop

><MW: 23909, pI: 9.68, NX(S/T): 0

MEPLAAYPLKCSGPRAKVFAVLLSIVLCTVTLFLLQLKFLKPKINSFYAFEVKDAKGRTVSL EKYKGKVSLVVNVASDCQLTDRNYLGLKELHKEFGPSHFSVLAFPCNQFGESEPRPSKEVES FARKNYGVTFPIFHKIKILGSEGEPAFRFLVDSSKKEPRWNFWKYLVNPEGQVVKFWRPEEP IEVIRPDIAALVRQVIIKKKEDL

Important features of the protein:

Signal peptide:

amino acids 1-31

Glutathione peroxidases signature 2.

amino acids 104-112

Glutathione peroxidases.

amino acids 57-82

CTGGGGGGCCCCACGGCCTCTTTCCTGAGGAGCCGCCGCCGCTTAGCGTGGCCCCCAGGGACTACCTGAACCAC TATCCCGTGTTTGTGGGCAGCGGGCCCGGACGCCTGACCCCCGCAGAAGGTGCTGACGACCTCAACATCCAGCGA GTCCTGCGGGTCAACAGGACGCTGTTCATTGGGGACAGGGACAACCTCTACCGCGTAGAGCTGGAGCCCCCCACG TCCACGGAGCTGCGGTACCAGAGGAAGCTGACCTGGAGATCTAACCCCAGCGACATAAACGTGTGTCGGATGAAG GGCAAACAGGAGGGCGAGTGTCGAAACTTCGTAAAGGTGCTGCTCCTTCGGGACGAGTCCACGCTCTTTGTGTGC GGTTCCAACGCCTTCAACCCGGTGTGCGCCAACTACAGCATAGACACCCTGCAGCCCGTCGGAGACAACATCAGC GGTATGGCCCGCTGCCCGTACGACCCCAAGCACGCÇAATGTTGCCCTCTTCTCTGACGGGATGCTCTTCACAGCT ACTGTTACCGACTTCCTAGCCATTGATGCTGTCATCTACCGCAGCCTCGGGGACAGGCCCACCCTGCGCACCGTG  $\tt CCCGGAGACTCCCATTTCTACTTCAACGTGCTGCAGGCTGTCACGGGGCGTGGTCAGCCTCGGGGGCCCGTG$ GTCCTGGCCGTTTTTTCCACGCCCAGCAACAGCATCCCTGGCTCGGCTGTCTGCGCCTTTGACCTGACACAGGTG GCAGCTGTGTTTGAAGGCCGCTTCCGAGAGCAGAAGTCCCCCGAGTCCATCTGGACGCCGGTGCCGGAGGATCAG GTGCCTCGACCCCGGCTGCTGCGCAGCCCCCGGGATGCAGTACAATGCCTCCAGCGCCTTGCCGGATGAC ATCCTCAACTTTGTCAAGACCCACCCTCTGATGGACGAGGCGGTGCCCTCGCTGGGCCCATGCGCCCTGGATCCTG  $\tt CGGACCCTGATGAGGCACCAGCTGACTCGAGTGGCTGTGGACGTGGGAGCCGGCCCCTGGGGCAACCAGACCGTT$ GTCTTCCTGGGTTCTGAGGCGGGGACGGTCCTCAAGTTCCTCGTCCGGCCCAATGCCAGCACCTCAGGGACGTCT  $\tt CGAGTGCCTGTGGCTGCCAGCAGTACTCGGGGTGTATGAAGAACTGTATCGGCAGTCAGGACCCCTACTGC$ GGGTGGGCCCCCGACGCTCCTGCATCTTCCTCAGCCCGGGCACCAGAGCCGCCTTTGAGCAGGACGTGTCCGGG GCCAGCACCTCAGGCTTAGGGGACTGCACAGGACTCCTGCGGGCCAGCCTCTCCGAGGACCGCGGGGGCTGGTG TGGTTCGTGGGCCTCCGTGAGCGGCGGAGCTGGCCCGGCGCAAGGACAAGGAGGCCATCCTGGCGCACGGGGCG GGCGAGGCGGTGCTGAGCCTCAGCCGCCTGGGCGAGCGCAGGGCGCAGGGTCCCGGGGGCCGGGGCGGAGGCGGT GGCGGTGGCGCCGGGGTTCCCCCGGAGGCCCTGCTGGCGCCCCTGATGCAGAACGGCTGGGCCAAGGCCACGCTG CTGCAGGGCGGGCCCCACGACCTGGACTCGGGGCTGCTGCCCACGCCCGAGCAGCCGCTGCCGCAGAAGCGC CTGCCCACTCCGCACCCCCACGCCCTGGGCCCCCGCGCCTGGGACCACGGCCACCCCTGCTCCCGGCC TCCGCTTCATCCTCCTCCTGCTGCTGCCCCCGCCCCGGGCCCCCGAGCAGCCCCCCGCGCCTGGGGAGCCGACC CCCGACGCCCCTCTATGCTGCCCGGCCCGGCCGCCCCCCACGCGACTTCCCGCTCACCCCCCACGCCAGC GACTTGGCCCACCTCCTCCCCTATGGGGGGGCGGACAGGACTGCGCCCCCGTGCCC<u>TAG</u>GCCGGGGGCCCCCCG  ${\tt ATGCCTTGGCAGTGCCAGCCACGGGAACCAGGAGCGAGAGACGCTGCCAGAACGCCGGGGCCCGGGGCAACTCCGCAGAACGCCGGGGCCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAGAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGCAGAACGCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCGGGGCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCCAACTCAACTCCAACTCAACTCCAACTCAACTCCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTC$ AGTGGGTGCTCAAGTCCCCCCCGCGACCCACCCGCGGAGTGGGGGGCCCCCTCCGCCACAAGGAAGCACAACCAG AATTGCACAACTCCGTTCTCGGGGTGGCGGCAGGCAGGGGAGGCTTGGACGCCGGTGGGGAATGGGGGGCCACAG ATACGGCCCCAGGGTGGTGAGAGAGTCCCATGCCACCCGTCCCCTTGTGACCTCCCCCCTATGACCTCCAGCTGA  ${\tt CCATGCATGCCACGTGGCTGGGTCCTCTGCCCTCTTTGGAGTTTGCCTCCCCAGCCCCCTCCCCATCAAT}$ 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA80145

><subunit 1 of 1, 888 aa, 1 stop

><MW: 95285, pI: 8.89, NX(S/T): 8

MQTPRASPPRPALLLLLLLGGAHGLFPEEPPPLSVAPRDYLNHYPVFVGSGPGRLTPAEGA
DDLNIQRVLRVNRTLFIGDRDNLYRVELEPPTSTELRYQRKLTWRSNPSDINVCRMKGKQEG
ECRNFVKVLLLRDESTLFVCGSNAFNPVCANYSIDTLQPVGDNISGMARCPYDPKHANVALF
SDGMLFTATVTDFLAIDAVIYRSLGDRPTLRTVKHDSKWFKEPYFVHAVEWGSHVYFFFREI
AMEFNYLEKVVVSRVARVCKNDVGGSPRVLEKQWTSFLKARLNCSVPGDSHFYFNVLQAVTG
VVSLGGRPVVLAVFSTPSNSIPGSAVCAFDLTQVAAVFEGRFREQKSPESIWTPVPEDQVPR
PRPGCCAAPGMQYNASSALPDDILNFVKTHPLMDEAVPSLGHAPWILRTLMRHQLTRVAVDV
GAGPWGNQTVVFLGSEAGTVLKFLVRPNASTSGTSGLSVFLEEFETYRPDRCGRPGGGETGQ
RLLSLELDAASGGLLAAFPRCVVRVPVARCQQYSGCMKNCIGSQDPYCGWAPDGSCIFLSPG
TRAAFEQDVSGASTSGLGDCTGLLRASLSEDRAGLVSVNLLVTSSVAAFVVGAVVSGFSVGW
FVGLRERRELARRKDKEAILAHGAGEAVLSVSRLGERRAQGPGGRGGGGGGGGAGVPPEALLA
PLMQNGWAKATLLQGGPHDLDSGLLPTPEQTPLPQKRLPTPHPHPHALGPRAWDHGHPLLPA
SASSSLLLLAPARAPEQPPAPGEPTPDGRLYAARPGRASHGDFPLTPHASPDRRRVVSAPTG
PLDPASAADGLPRPWSPPPTGSLRRPLGPHAPPAATLRRTHTFNSGEARPGDRHRGCHARPG
TDLAHLLPYGGADRTAPPVP

### Important features of the protein:

#### Signal peptide:

amino acids 1-25

#### Transmembrane domains:

amino acids 318-339, 598-617

### N-glycosylation sites.

amino acids 74-78, 155-159, 167-171, 291-295, 386-390, 441-445, 462-466

#### Glycosaminoglycan attachment sites.

amino acids 51-55, 573-577

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 102-106

#### N-myristoylation sites.

amino acids 21-27, 50-56, 189-195, 333-339, 382-388, 448-454, 490-496, 491-497, 508-514, 509-515, 531-537, 558-564, 569-575, 574-580, 580-586, 610-616, 643-649, 663-669, 666-672, 667-673, 668-674, 669-675, 670-676, 868-874, 879-885

AGCAACTCAAGTTCATCATTGTCCTGAGAGAGAGGAGCAGCGCGGTTCTCGGCCGGGACAGC AGAACGCCAGGGGACCCTCACCTGGGCGCGCGCGGGCACGGGCTTTGATTGTCCTGGGGTCG CGGAGACCCGCGCGCCTGCCCTGCACGCCGGGCGCAACCTTTGCAGTCGCGTTGGCTGCTG CGATCGGCCGGCGGTCCCTGCCGAAGGCTCGGCTGCTTCTGTCCACCTCTTACACTTCTTC ATTTATCGGTGGATCATTTCGAGAGTCCGTCTTGTAAATGTTTGGCACTTTGCTACTTTATT GCTTCTTTCTGGCGACAGTTCCAGCACTCGCCGAGACCGGCGGAGAAAGGCAGCTGAGCCCG CTATATTCAGGCAGTGGATACATCAGGGAATAAATTCACATCTTCTCCAGGCGAAAAGGTCT TCCAGGTGAAAGTCTCAGCACCAGAGGAGCAATTCACTAGAGTTGGAGTCCAGGTTTTAGAC CGAAAAGATGGGTCCTTCATAGTAAGATACAGAATGTATGCAAGCTACAAAAATCTGAAGGT GGAAATTAAATTCCAAGGGCAACATGTGGCCAAATCCCCATATATTTTAAAAGGGCCGGTTT ACCATGAGAACTGTGACTGTCCTCTGCAAGATAGTGCAGCCTGGCTACGGGAGATGAACTGC CCTGAAACCATTGCTCAGATTCAGAGAGATCTGGCACATTTCCCTGCTGTGGATCCAGAAAA GATTGCAGTAGAAATCCCAAAAAGATTTGGACAGAGGCAGAGCCTATGTCACTACACCTTAA AGGATAACAAGGTTTATATCAAGACTCATGGTGAACATGTAGGTTTTAGAATTTTCATGGAT GCCATACTACTTTCTTTGACTAGAAAGGTGAAGATGCCAGATGTGGAGCTCTTTGTTAATTT GAAACCATGGGCCGGGTAAGTCTGGATATGATGTCCGTGCAAGCTAACACGGGTCCTCCCTG GGAAAGCAAAAATTCCACTGCCGTCTGGAGAGGGCGAGACAGCCGCAAAGAGAGACTCGAGC TGGTTAAACTCAGTAGAAAACACCCAGAACTCATAGACGCTGCTTTCACCAACTTTTTCTTC TTTAAACACGATGAAAACCTGTATGGTCCCATTGTGAAACATATTTCATTTTTTGATTTCTT CAAGCATAAGTATCAAATAAATATCGATGGCACTGTAGCAGCTTATCGCCTGCCATATTTGC TAGTTGGTGACAGTGTTGTGCTGAAGCAGGATTCCATCTACTATGAACATTTTTACAATGAG CTGCAGCCCTGGAAACACTACATTCCAGTTAAGAGCAACCTGAGCGATCTGCTAGAAAAACT TAAATGGGCGAAAGATCACGATGAAGAGGCCAAAAAGATAGCAAAAGCAGGACAAGAATTTG CAAGAAATAATCTCATGGGCGATGACATATTCTGTTATTATTTCAAACTTTTCCAGGAATAT GCCAATTTACAAGTGAGTGAGCCCCAAATCCGAGAGGGCATGAAAAGGGTAGAACCACAGAC CAAAATAACTTCTATTAGAATAATGGTGCTCTGAAGACTCTTCTTAACTAAAAAAGAAGAATT TTTTTAAGTATTAATTCCATGGACAATATAAAATCTGTGTGATTGTTTGCAGTATGAAGACA CATTTCTACTTATGCAGTATTCTCATGACTGTACTTTAAAGTACATTTTTAGAATTTTATAA TAAAACCACCTTTATTTTAAAGGAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA84917

><subunit 1 of 1, 502 aa, 1 stop

><MW: 58043, pI: 7.94, NX(S/T): 2

MFGTLLLYCFFLATVPALAETGGERQLSPEKSEIWGPGLKADVVLPARYFYIQAVDTSGNKF
TSSPGEKVFQVKVSAPEEQFTRVGVQVLDRKDGSFIVRYRMYASYKNLKVEIKFQGQHVAKS
PYILKGPVYHENCDCPLQDSAAWLREMNCPETIAQIQRDLAHFPAVDPEKIAVEIPKRFGQR
QSLCHYTLKDNKVYIKTHGEHVGFRIFMDAILLSLTRKVKMPDVELFVNLGDWPLEKKKSNS
NIHPIFSWCGSTDSKDIVMPTYDLTDSVLETMGRVSLDMMSVQANTGPPWESKNSTAVWRGR
DSRKERLELVKLSRKHPELIDAAFTNFFFFKHDENLYGPIVKHISFFDFFKHKYQINIDGTV
AAYRLPYLLVGDSVVLKQDSIYYEHFYNELQPWKHYIPVKSNLSDLLEKLKWAKDHDEEAKK
IAKAGQEFARNNLMGDDIFCYYFKLFQEYANLQVSEPQIREGMKRVEPQTEDDLFPCTCHRK
KTKDEL

### Important features of the protein:

Signal peptide:

amino acids 1-17

N-glycosylation sites.

amino acids 302-306, 414-418

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 243-247, 495-499

Tyrosine kinase phosphorylation site.

amino acids 341-348

N-myristoylation sites.

amino acids 59-65, 118-124, 184-190, 258-264, 370-376, 439-445

Endoplasmic reticulum targeting sequence.

amino acids 499-504

 $\tt CCTGGAGCCGGAAGCGCGGCTGCAGCAGGCGAGGCTCCAGGTGGGGTCGGTTCCGCATCCAGGTGGAGCCGGAGGCTCGGAGGCTCCAGGTGGGGTCGGTTCCGCATCCAGGTGGAGGCTCGGAGGCTCGGAGGCTCCAGGTGGGGTTCCGCATCCAGGTGGAGGCTCCAGGTGGGGTTCCGCATCCAGGTGGAGGCTCCAGGTGGGGTTCCGCATCCAGGTGGAGGCTCCAGGTGGGGTTCCGCATCCAGGTGGAGGCTCCAGGTGGGGTTCCGCATCCAGGTGGAGGCTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCCAGGTTCAGGTTCCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGTTCAGGT$  $\texttt{GCCTAGCGTGTCCACG} \underline{\textbf{ATG}} \texttt{CGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCGATCG}$ AGAGCGGAACACGGAGCCGCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTG GACCACGCTGCCACCACCTCTTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAG ATGATTTTGTGTTTTGGGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAA AAAGGAGCATCTCACAGTTTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAAT CAAGGCATTGATGACGGGGAGCCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTC CTGCACTGCTGGAAGACAGTGTGATAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTT TATGGAGATGAAACCTGGGTTAAATTATTCCCAAAGCATTTTGTGGAATATGATGGAACAAC CTCATTTTTCGTGTCAGATTACACAGAGGTGGATAATAATGTCACGAGGCATTTGGATAAAG TATTAAAAAGAGGAGATTGGGACATATTAATCCTCCACTACCTGGGGCTGGACCACATTGGC CACATTTCAGGGCCCAACAGCCCCCTGATTGGGCAGAAGCTGAGCGAGATGGACAGCGTGCT TTCTTTGTGGTGACCATGGCATGTCTGAAACAGGAAGTCACGGGGCCTCCTCCACCGAGGAG GTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAACCCGGTGATATCCGACA TCCAAAGCACGTCCAA<u>TAG</u>ACGGATGTGGCTGCGACACTGGCGATAGCACTTGGCTTACCGA CAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAGAATGTGCC GTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGGGAACT GGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGGTT  $\tt CTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAAGTGGCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCAAGTGGCCCCCAAGTGCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCAAGTGCCCCCCCAAGTCCAAGTGCCCCCCAAGTGCCCCCAAGTCCCCCCAAGTCCCCCAAGTGCCCCCAAGTCCCCCAAGTGCCCCCAAGTGCCCCCAAGTGCCCCA$ GTTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGT CCCACTGTCATCTCCTGGGTTTTCTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCG TTCACGTCATTGTGTGCACCTCAGCTGAAAGTTCGTGCTACTTCTGTGGCCTCTCGTGGCTG GCGGCAGGCTGCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTGCCAAGTGCTGG CAGTGCCCTGGACAGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGG TGTCCCGACACAGGTGTTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCT AGGTTCCTGCGACTGTTACCAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCC CCCAGCTGAGGGGGTGTGTGAATCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGA GGGAAGAAGAGACAATCGGCCTGGACACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACCAC CGTTTTCTGTTGGAATTCTTAGTCCTTGGCCTCGGACACCTTCATTCGTTAGCTGGGGAGTG GTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCACACTCAGATCCACAGAGCCCAGGATCAAG GGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCCACCCCAACCCTGCACAGCCCTCATC  $\tt CCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGTCTGACCGAGACACTCACAGCTT$ TGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTGCCACGCTTGCACCTCGGGC CCATCTGGGCTCATGCTCTCTCTCTGCTATTGAATTAGTACCTAGCTGCACACAGTATGTA GTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA84920

><subunit 1 of 1, 310 aa, 1 stop

><MW: 33875, pI: 7.08, NX(S/T): 2

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPP PLFSKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMT GSLPGFVDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVS DYTEVDNNVTRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHT SLQSKERETPLPNLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

## Important features of the protein:

#### Signal peptide:

amino acids 1-34

#### Transmembrane domain:

amino acids 58-76

### N-glycosylation sites.

amino acids 56-60, 194-198

#### N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

#### Amidation site.

amino acids 154-158

#### Cell attachment sequence.

amino acids 205-208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA86576

><subunit 1 of 1, 251 aa, 1 stop

><MW: 26935, pI: 7.42, NX(S/T): 2

MAMGVPRVILLCLFGAALCLTGSQALQCYSFEHTYFGPFDLRAMKLPSISCPHECFEAILSL DTGYRAPVTLVRKGCWTGPPAGQTQSNPDALPPDYSVVRGCTTDKCNAHLMTHDALPNLSQA PDPPTLSGAECYACIGVHQDDCAIGRSRRVQCHQDQTACFQGSGRMTVGNFSVPVYIRTCHR PSCTTEGTTSPWTAIDLQGSCCEGYLCNRKSMTQPFTSASATTPPRALQVLALLLPVLLLVGLSA

### Important features of the protein:

Signal peptide:

amino acids 1-19

## Transmembrane domain:

amino acids 233-251

### N-glycosylation sites.

amino acids 120-124, 174-178

### N-myristoylation sites.

amino acids 15-21, 84-90

CCCACGCGTCCGGGACAGATGAACTTAAAAGAGAAGCTTTAGCTGCCAAAGATTGGGAAAGG GAAAGGACAAAAAAGACCCCTGGGCTACACGGCGTAGGTGCAGGGTTTCCTACTGCTGTTCT  $\verb"TTTATGCTGGGAGCTGTGGCTGTAACCAACTAGGAAATAACGTATGCAGCAGCT" \\ \underline{\textbf{ATG}} \texttt{GCTGT}$ CCTTGGCAGGTTCTGGGTTTTGGACGTTATTCGGTGACTGAGGAAACAGAGAAAGGATCCTTT GGTGGTTTCCGATGATAACAAACAATACCTGCTCCTGGATTCACATACCGGGAATTTGCTCA CAAATGAGAAACTGGACCGAGAGAAGCTGTGTGGCCCTAAAGAGCCCTGTATGCTGTATTTC CAAATTTTAATGGATGATCCCTTTCAGATTTACCGGGCTGAGCTGAGAGTCAGGGATATAAA TGATCACGCGCCAGTATTTCAGGACAAAGAAACAGTCTTAAAAAATATCAGAAAATACAGCTG AAGGGACAGCATTTAGACTAGAAAGAGCACAGGATCCAGATGGAGGACTTAACGGTATCCAA AACTACACGATCAGCCCCAACTCTTTTTTCCATATTAACATTAGTGGCGGTGATGAAGGCAT GATATATCCAGAGCTAGTGTTGGACAAAGCACTGGATCGGGAGGAGCAGGGAGAGCTCAGCT TAACCCTCACAGCGCTGGATGGTGGGTCTCCATCCAGGTCTGGGACCTCTACTGTACGCATC GTTGTCTTGGACGTCAATGACAATGCCCCACAGTTTGCCCAGGCTCTGTATGAGACCCAGGC TCCAGAAAACAGCCCCATTGGGTTCCTTATTGTTAAGGTATGGGCAGAAGATGTAGACTCTG GAGTCAACGCGGAAGTATCCTATTCATTTTTTGATGCCTCAGAAAATATTCGAACGACCTTT CAAATCAATCCTTTTTCTGGGGAAATCTTTCTCAGAGAATTGCTTGATTATGAGTTAGTAAA TTCTTACAAAATAAATATACAGGCAATGGACGGTGGAGGCCTTTCTGCAAGATGTAGGGTTT TAGTGGAAGTATTGGACACCAATGACAATCCCCCTGAACTGATCGTATCATCATTTTCCAAC TCTGTTGCTGAGAATTCTCCTGAGACGCCGCTGGCTGTTTTTAAGATTAATGACAGAGACTC TGGAGAAAATGGAAAGATGGTTTGCTACATTCAAGAGAATCTGCCATTCCTACTAAAACCTT CTGTGGAGAATTTTTACATCCTAATTACAGAAGGCGCGCTGGACAGAGAGATCAGAGCCGAG TACAACATCACTATCACCGTCACTGACTTGGGGACACCCAGGCTGAAAACCGAGCACAACAT AACGGTCCTGGTCTCCGACGTCAATGACAACGCCCCCGCCTTCACCCCAAACCTCCTACACCC GACTCGGGCACCAACGCCCAGGTCACCTACTCGCTGCTGCCGCCCCAAGACCCGCACCTGCC CCTCGCCTCCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCTCAGGTCGCTGG ACTACGAGGCCCTGCAGGCTTTCGAGTTCCGCGTGGGCGCCACAGACCGCGGCTCCCCCGCG CTGAGCAGAGAGGCGCTGGTGCGGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGT GCTGTACCCGCTGCAGAACGGCTCCGCGCCCTGCACCGAGCTGGTGCCCCGGGCGGCCGAGC CGGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGCCTGGCTG TCGTACCAGCTGCTCAAGGCCACGGAGCCCGGGCTGTTCGGTGTGTGGGCGCACAATGGGGA GGTGCGCACCGCCAGGCTGCTGAGCGAGCGCGACGCAAGCACAGGCTCGTGGTGCTTG TCAAGGACAATGGCGAGCCTCCTCGCTCGGCCACCGCCACGCTGCACTTGCTCCTGGTGGAC GGCTTCTCCCAGCCCTACCTGCCTCTCCCGGAGGCGGCCCCGGCCCAGGCCCAGGCCGAGGC TGCTCGGTGCCCGAGGGTCCTTTTCCAGGGCATCTGGTGGACGTGAGGGGCGCTGAGACCCT GTCCCAGAGCTACCAGTATGAGGTGTGTCTGACGGGAGGCCCCGGGACCAGTGAGTTCAAGT  ${ t TCCACCTTCCGAAATAGCTTTGGATTTAATATTCAG{ t TAA}{ t AA}}$ AGTCTGTTTTTAGTTTCATATAC TTTTGGTGTGTTACATAGCCATGTTTCTATTAGTTTACTTTTAAATCTCAAATTTAAGTTAT TATGCAACTTCAAGCATTATTTTCAAGTAGTATACCCCTGTGGTTTTACAATGTTTCATCAT AAGGTTTTAATTCTTTCCAACTGCCCAAGGAATTAATTACTATTATATCTCATTACAGAAAT CTGAGGTTTTGATTCATTTCAGAGCTTGCATCTCATGATTCTAATCACTTCTGTCTATAGTG TACTTGCTCTATTTAAGAAGGCATATCTACATTTCCAAACTCATTCTAACATTCTATATATT CGTGTTTGAAAACCATGTCATTTATTTCTACATCATGTATTTAAAAAGAAATATTTCTCTAC TACTATGCTCATGACAAAATGAAACAAAGCATATTGTGAGCAATACTGAACATCAATAATAC CCTTAGTTTATATATTTTTTTTTTTTAAGCATGCTACTTTTACTTGGCCAATATTTT CTTATGTTAACTTTTGCTGATGTATAAAACAGACTATGCCTTATAATTGAAATAAAATTATA 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA87976

><subunit 1 of 1, 800 aa, 1 stop

><MW: 87621, pI: 4.77, NX(S/T): 7

MAVRELCFPRQRQVLFLFLFWGVSLAGSGFGRYSVTEETEKGSFVVNLAKDLGLAEGELAAR GTRVVSDDNKQYLLLDSHTGNLLTNEKLDREKLCGPKEPCMLYFQILMDDPFQIYRAELRVR DINDHAPVFQDKETVLKISENTAEGTAFRLERAQDPDGGLNGIQNYTISPNSFFHINISGGD EGMIYPELVLDKALDREEQGELSLTLTALDGGSPSRSGTSTVRIVVLDVNDNAPQFAQALYE TQAPENSPIGFLIVKVWAEDVDSGVNAEVSYSFFDASENIRTTFQINPFSGEIFLRELLDYE LVNSYKINIQAMDGGGLSARCRVLVEVLDTNDNPPELIVSSFSNSVAENSPETPLAVFKIND RDSGENGKMVCYIQENLPFLLKPSVENFYILITEGALDREIRAEYNITITVTDLGTPRLKTE HNITVLVSDVNDNAPAFTQTSYTLFVRENNSPALHIGSVSATDRDSGTNAQVTYSLLPPQDP HLPLASLVSINADNGHLFALRSLDYEALQAFEFRVGATDRGSPALSREALVRVLVLDANDNS PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATEPGLFGVWAH NGEVRTARLLSERDAAKHRLVVLVKDNGEPPRSATATLHLLLVDGFSQPYLPLPEAAPAQAQ AEADLLTVYLVVALASVSSLFLLSVLLFVAVRLCRRSRAASVGRCSVPEGPFPGHLVDVRGA ETLSQSYQYEVCLTGGPGTSEFKFLKPVISDIQAQGPGRKGEENSTFRNSFGFNIQ

#### Important features of the protein:

### Signal peptide:

amino acids 1-26

#### Transmembrane domain:

amino acids 687-711

### N-glycosylation sites.

amino acids 169-173, 181-185, 418-422, 436-440, 567-571, 788-792

Glycosaminoglycan attachment site.

amino acids 28-32

#### Tyrosine kinase phosphorylation sites.

amino acids 394-402, 578-585

#### N-myristoylation sites.

amino acids 22-28, 27-33, 53-59, 82-88, 162-168, 184-190, 217-223, 324-330, 325-331, 471-477, 568-574, 759-765

### Amidation site.

amino acids 781-785

### Aminoacyl-transfer RNA synthetases class-II signature 1.

amino acids 117-138

### Cadherins extracellular repeated domain signature.

amino acids 121-132, 230-241, 335-346, 439-450, 549-560

GAATGAATACCTCCGAAGCCGCTTTGTTCTCCAGATGTGAATAGCTCCACTATACCAGCCTC GTCTTCCTTCCGGGGGACAACGTGGGTCAGGGCACAGAGAGATATTTAATGTCACCCTCTTG GGGCTTTCATGGGACTCCCTCTGCCACATTTTTTGGAGGTTGGGAAAGTTGCTAGAGGCTTC CTGCTGCTGCTGGAGCGCGCATGTTCTCCTCACCCTCCCCGCCCCCGGCGCTGTTAGAGAA CCATCGAGAGCGACTCTGTCCAGCCTGTGCCTCGCTTCAGACAAGAGCTCTTCAGAATGATG GCCGTGGCTGCGGACACGCTGCAGCGCCTGGGGGCCCGTGTGGCCTCGGTGGACATGGGTCC TCAGCAGCTGCCCGATGGTCAGAGTCTTCCAATACCTCCCGTCATCCTGGCCGAACTGGGGA GCGATCCCACGAAAGGCACCGTGTGCTTCTACGGCCACTTGGACGTGCAGCCTGCTGACCGG GGCGATGGGTGGCTCACGGACCCCTATGTGCTGACGGAGGTAGACGGGAAACTTTATGGACG AGGAGCGACCGACAACAAAGGCCCTGTCTTGGCTTGGATCAATGCTGTGAGCGCCTTCAGAG CCCTGGAGCAAGATCTTCCTGTGAATATCAAATTCATCATTGAGGGGATGGAAGAGGCTGGC TCTGTTGCCCTGGAGGAACTTGTGGAAAAAGAAAAGGACCGATTCTTCTCTGGTGTGGACTA CATTGTAATTTCAGATAACCTGTGGATCAGCCAAAGGAAGCCAGCAATCACTTATGGAACCC GGGGGAACAGCTACTTCATGGTGGAGGTGAAATGCAGAGACCAGGATTTTCACTCAGGAACC  ${\tt TTTGGTGGCATCCTTCATGAACCAATGGCTGATCTGGTTGCTCTTCTCGGTAGCCTGGTAGA}$ CTCGTCTGGTCATATCCTGGTCCCTGGAATCTATGATGAAGTGGTTCCTCTTACAGAAGAGG AAATAAATACATACAAAGCCATCCATCTAGACCTAGAAGAATACCGGAATAGCAGCCGGGTT GAGAAATTTCTGTTCGATACTAAGGAGGAGATTCTAATGCACCTCTGGAGGTACCCATCTCT TTCTATTCATGGGATCGAGGGCGCGTTTGATGAGCCTGGAACTAAAACAGTCATACCTGGCC GAGTTATAGGAAAATTTTCAATCCGTCTAGTCCCTCACATGAATGTGTCTGCGGTGGAAAAA CAGGTGACACGACATCTTGAAGATGTGTTCTCCAAAAGAAATAGTTCCAACAAGATGGTTGT TTCCATGACTCTAGGACTACACCCGTGGATTGCAAATATTGATGACACCCAGTATCTCGCAG ATTCCAATTGCCAAAATGTTCCAGGAGATCGTCCACAAGAGCGTGGTGCTAATTCCGCTGGG AGCTGTTGATGATGGAGAACATTCGCAGAATGAGAAAATCAACAGGTGGAACTACATAGAGG GAACCAAATTATTTGCTGCCTTTTTCTTAGAGATGGCCCAGCTCCAT**TAA**TCACAAGAACCT TCTAGTCTGATCTGATCCACTGACAGATTCACCTCCCCACATCCCTAGACAGGGATGGAAT GTAAATATCCAGAGAATTTGGGTCTAGTATAGTACATTTTCCCTTCCATTTAAAATGTCTTG GGATATCTGGATCAGTAATAAAATATTTCAAAGGCACAGATGTTGGAAATGGTTTAAGGTCC CCCACTGCACACCTTCCTCAAGTCATAGCTGCTTGCAGCAACTTGATTTCCCCCAAGTCCTGT GCAATAGCCCCAGGATTGGATTCCTTCCAACCTTTTAGCATATCTCCAACCTTGCAATTTGA TTGGCATAATCACTCCGGTTTGCTTTCTAGGTCCTCAAGTGCTCGTGACACATAATCATTCC ATCCAATGATCGCCTTTGCTTTACCACTCTTTTCCTTTTATCTTATTAATAAAAATGTTGGTC AAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA92234

><subunit 1 of 1, 507 aa, 1 stop

><MW: 56692, pI: 5.22, NX(S/T): 3

MDPKLGRMAASLLAVLLLLLERGMFSSPSPPPALLEKVFQYIDLHQDEFVQTLKEWVAIESD SVQPVPRFRQELFRMMAVAADTLQRLGARVASVDMGPQQLPDGQSLPIPPVILAELGSDPTK GTVCFYGHLDVQPADRGDGWLTDPYVLTEVDGKLYGRGATDNKGPVLAWINAVSAFRALEQD LPVNIKFIIEGMEEAGSVALEELVEKEKDRFFSGVDYIVISDNLWISQRKPAITYGTRGNSY FMVEVKCRDQDFHSGTFGGILHEPMADLVALLGSLVDSSGHILVPGIYDEVVPLTEEEINTY KAIHLDLEEYRNSSRVEKFLFDTKEEILMHLWRYPSLSIHGIEGAFDEPGTKTVIPGRVIGK FSIRLVPHMNVSAVEKQVTRHLEDVFSKRNSSNKMVVSMTLGLHPWIANIDDTQYLAAKRAI RTVFGTEPDMIRDGSTIPIAKMFQEIVHKSVVLIPLGAVDDGEHSQNEKINRWNYIEGTKLF AAFFLEMAQLH

### Important features of the protein:

#### Signal peptide:

amino acids 1-26

### Transmembrane domain:

273-292

#### N-glycosylation sites.

amino acids 322-326, 382-386, 402-406

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 400-404

#### N-myristoylation sites.

amino acids 89-95, 119-125, 162-168, 197-203, 242-248, 263-269, 351-357

### Cell attachment sequence.

amino acids 140-143

#### ArgE / dapE / ACY1 / CPG:

amino acids 156-167

CTCGGCTGGATTTAAGGTTGCCGCTAGCCGCCTGGGAATTTAAGGGACCCACACTACCTTCC  ${\sf CGAAGTTGAAGGCAAGCGGTGATTGTTTGTAGACGGCGCTTTGTC}$ GGGAATATTGCTTTTCCTTTTTTTGGCCGTGCACGAGGCTTGGGCTGGGATGTTGAAGGAGG AGGACGATGACACAGAACGCTTGCCCAGCAAATGCGAAGTGTGTAAGCTGCTGAGCACAGAG CTACAGGCGGAACTGAGTCGCACCGGTCGATCTCGAGAGGTGCTGGAGCTGGGGCAGGTGCT GGATACAGGCAAGAGGAAGAGACACGTGCCTTACAGCGTTTCAGAGACAAGGCTGGAAGAG CCTTAGAGAATTTATGTGAGCGGATCCTGGACTATAGTGTTCACGCTGAGCGCAAGGGCTCA CTGAGATATGCCAAGGGTCAGAGTCAGACCATGGCAACACTGAAAGGCCTAGTGCAGAAGGG GGTGAAGGTGGATCTGGGGATCCCTCTGGAGCTTTGGGATGAGCCCAGCGTGGAGGTCACAT ACCTCAAGAAGCAGTGTGAGACCATGTTGGAGGAGTTTGAAGACATTGTGGGAGACTGGTAC TTCCACCATCAGGAGCAGCCCCTACAAAATTTTCTCTGTGAAGGTCATGTGCTCCCAGCTGC TGAAACTGCATGTCTACAGGAAACTTGGACTGGAAAGGAGATCACAGATGGGGAAGAGAAAA ATGACCAAGACAGGAAGCCACCCCAAACTTGACCGAGAAGATCTT**TGA**CCCTTGCCTTTGAG CCCCAGGAGGGGAAGGGATCATGGAGAGCCCTCTAAAGCCTGCACTCTCCCTGCTCCACAG CTTTCAGGGTGTGTTTATGAGTGACTCCACCCAAGCTTGTAGCTGTTCTCTCCCATCTAACC TCAGGCAAGATCCTGGTGAAACAGCATGACATGGCTTCTGGGGTGGAGGGTGGGGGTGGAGG TCCTGCTCCTAGAGATGAACTCTATCCAGCCCCTTAATTGGCAGGTGTATGTGCTGACAGTA CTGAAAGCTTTCCTCTTTAACTGATCCCACCCCACCCAAAAGTCAGCAGTGGCACTGGAGC TGTGGGCTTTGGGGAAGTCACTTAGCTCCTTAAGGTCTGTTTTTAGACCCTTCCAAGGAAGA GGCCAGAACGGACATTCTCTGCGATCTATATACATTGCCTGTATCCAGGAGGCTACACACCA GCAAACCGTGAAGGAGAATGGGACACTGGGTCATGGCCTGGAGTTGCTGATAATTTAGGTGG GATAGATACTTGGTCTACTTAAGCTCAATGTAACCCAGAGCCCACCATATAGTTTTATAGGT 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA92256</pre>

><subunit 1 of 1, 248 aa, 1 stop

><MW: 28310, pI: 4.63, NX(S/T): 0

MGPVRLGILLFLFLAVHEAWAGMLKEEDDDTERLPSKCEVCKLLSTELQAELSRTGRSREVL ELGQVLDTGKRKRHVPYSVSETRLEEALENLCERILDYSVHAERKGSLRYAKGQSQTMATLK GLVQKGVKVDLGIPLELWDEPSVEVTYLKKQCETMLEEFEDIVGDWYFHHQEQPLQNFLCEG HVLPAAETACLQETWTGKEITDGEEKTEGEEEQEEEEEEEEEGGDKMTKTGSHPKLDREDL

### Important features of the protein:

Signal peptide:

amino acids 1-21

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 106-110

N-myristoylation site.

amino acids 115-121

Amidation site.

amino acids 70-74

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA92274

><subunit 1 of 1, 223 aa, 1 stop

><MW: 25402, pI: 8.14, NX(S/T): 1

MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKVVP DCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKGADLK KGKIQGQELSAYQAPSPPAHSGFHRYQFFVYLQEGKVISLLPKENKTRGSWKMDRFLNRFHL GEPEASTQFMTQNYQDSPTLQAPRGRASEPKHKTRQR

## Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 169-173

Tyrosine kinase phosphorylation site.

amino acids 59-68

N-myristoylation sites.

amino acids 54-60, 83-89, 130-136

Phosphatidylethanolamine signature.

amino acids 113-157

GTCGACCCACGCGTCCGAAGCTGCTGGAGCCACGATTCAGTCCCCTGGACTGTAGATAAAGA  $\texttt{CCCTTTCTTGCCAGGTGCTGAGACAACCACACT} \underline{\textbf{ATG}} \texttt{AGAGGCACTCCAGGAGACGCTGATGG}$ TGGAGGAAGGCCGTCTATCAATCAATCACTGTTGCTGTTATCACATGCAAGTATCCAGAGG CTCTTGAGCAAGGCAGAGGGGATCCCATTTATTTGGGAATCCAGAATCCAGAAATGTGTTTG TATTGTGAGAAGGTTGGAGAACAGCCCACATTGCAGCTAAAAGAGCAGAAGATCATGGATCT GTATGGCCAACCCGAGCCCGTGAAACCCTTCCTTTTCTACCGTGCCAAGACTGGTAGGACCT CCACCCTTGAGTCTGTGGCCTTCCCGGACTGGTTCATTGCCTCCTCCAAGAGAGACCAGCCC ATCATTCTGACTTCAGAACTTGGGAAGTCATACAACACTGCCTTTGAATTAAATATAAATGA  $\texttt{C}\underline{\textbf{TGA}} \texttt{ACTCAGCCTAGAGGTGGCAGCTTGGTCTTTGTCTTAAAGTTTCTGGTTCCCAATGTGT}$ TTTCGTCTACATTTTCTTAGTGTCATTTTCACGCTGGTGCTGAGACAGGAGCAAGGCTGCTG TTATCATCTCATTTTATAATGAAGAAGAAGCAATTACTTCATAGCAACTGAAGAACAGGATG TGGCCTCAGAAGCAGGAGAGCTGGGTGGTATAAGGCTGTCCTCAAGCTGGTGCTGTAG GCCACAAGGCATCTGCATGAGTGACTTTAAGACTCAAAGACCAAACACTGAGCTTTCTTCTA GGGGTGGGTATGAAGATGCTTCAGAGCTCATGCGCGTTACCCACGATGGCATGACTAGCACA GAGCTGATCTCTGTTTTCTGTTTTTGCTTTATTCCCTCTTGGGATGATATCATCCAGTCTTTAT ATGTTGCCAATATACCTCATTGTGTGTAATAGAACCTTCTTAGCATTAAGACCTTGTAAACA AAAATAATTCTTGGGGTGGGTATGAAGATGCTTCAGAGCTCATGCGCGTTACCCACGATGGC ATGACTAGCACAGAGCTGATCTCTGTTTCTGTTTTGCTTTATTCCCTCTTGGGATGATATCA TCCAGTCTTTATATGTTGCCAATATACCTCATTGTGTGTAATAGAACCTTCTTAGCATTAAG ACCTTGTAAACAAAAATAATTCTTGTGTTAAGTTAAATCATTTTTGTCCTAATTGTAATGTG TAATCTTAAAGTTAAATAAACTTTGTGTATTTATATAATAATAAAGCTAAAACTGATATAAA ATAAAGAAAGAGTAAACTG

MRGTPGDADGGGRAVYQSITVAVITCKYPEALEQGRGDPIYLGIQNPEMCLYCEKVGEQPTL QLKEQKIMDLYGQPEPVKPFLFYRAKTGRTSTLESVAFPDWFIASSKRDQPIILTSELGKSY NTAFELNIND

## Signal sequence:

amino acids 1-17

# N-myristoylation site.

amino acids 10-16

## Cell attachment sequence.

amino acids 36-39

CTCCTGGCGGGAGCCCCGCCGCGGCCCACTCCCCGACCTGCTACTCCCGCATGCGGGC CCTGAGCCAGGAGATCACCCGCGACTTCAACCTCCTGCAGGTCTCGGAGCCCTCGGAGCCAT GTGTGAGATACCTGCCCAGGCTGTACCTGGACATACACAATTACTGTGTGCTGGACAAGCTG CGGGACTTTGTGGCCTCGCCCCGTGTTGGAAAGTGGCCCAGGTAGATTCCTTGAAGGACAA AGCACGGAAGCTGTACACCATCATGAACTCGTTCTGCAGGAGAGATTTGGTATTCCTGTTGG ATGACTGCAATGCCTTGGAATACCCAATCCCAGTGACTACGGTCCTGCCAGATCGTCAGCGC **TAA**GGGAACTGAGACCAGAGAAAGAACCCAAGAGAACTAAAGTTATGTCAGCTACCCAGACT TAATGGGCCAGAGCCATGACCCTCACAGGTCTTGTGTTAGTTGTATCTGAAACTGTTATGTA TCTCTCTACCTTCTGGAAAACAGGGCTGGTATTCCTACCCAGGAACCTCCTTTGAGCATAGA GTTAGCAACCATGCTTCTCATTCCCTTGACTCATGTCTTGCCAGGATGGTTAGATACACAGC ATGTTGATTTGGTCACTAAAAAGAAGAAAAGGACTAACAAGCTTCACTTTTATGAACAACTA TTTTGAGAACATGCACAATAGTATGTTTTTATTACTGGTTTAATGGAGTAATGGTACTTTTA TTCTTTCTTGATAGAAACCTGCTTACATTTAACCAAGCTTCTATTATGCCTTTTTCTAACAC AGACTTTCTTCACTGTCTTTCATTTAAAAAGAAATTAATGCTCTTAAGATATATTTTTACG TAGTGCTGACAGGACCCACTCTTTCATTGAAAGGTGATGAAAATCAAATAAAGAATCTCTTC **ACATGGA** 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA93011

><subunit 1 of 1, 136 aa, 1 stop

><MW: 15577, pI: 8.88, NX(S/T): 0

MRTPGPLPVLLLLLAGAPAARPTPPTCYSRMRALSQEITRDFNLLQVSEPSEPCVRYLPRLY LDIHNYCVLDKLRDFVASPPCWKVAQVDSLKDKARKLYTIMNSFCRRDLVFLLDDCNALEYP IPVTTVLPDRQR

Important features of the protein:

Signal peptide:

amino acids 1-19

Tyrosine kinase phosphorylation site.

amino acids 60-69

N-myristoylation site.

amino acids 16-22

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGA CTTGACTCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCA GCCGCCCAGTCCCGGCCCTCTCCCGCCCCACACCCACCCTCCTGGCTCTTCCTGTTTTTAC TCCTCCTTTTCATTCATAACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCA AGCCGAGCGTGGAAGA**ATG**GGGTTCCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCC CGATTCAAGCTTTCCCCAAACCTGGAGGAAGCCAAGACAAATCTCTACATAATAGAGAATTA AGTGCAGAAAGACCTTTGAATGAACAGATTGCTGAAGCAGAAGAAGACAAGATTAAAAAAAC ATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTTTGTTGATAACTTGAACCTGC CTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTGATCGATGA TTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCATC AACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTAT GAAGAAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTAT CACAGAAAGCCAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCT CAAAGGAAGCCAACAATTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAG GCTGGAAAAATACCAGAGAAAGTGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGG AGAAAACGATGAAACAGTATCTAACACATTAACCTTGACAAATGGCTTGGAAAGGAGAACTA AAACCTACAGTGAAGACAACTTTGAGGAACTCCAATATTTCCCAAATTTCTATGCGCTACTG ACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCTCCAGAAGAAGGTGTTT GCTACTGACAATATAAGCAAGCTTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAACAGA CAGTACCAAGGAAGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAA AAGATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTAT TTGGAAGCCATCAGAAAAATATTGAATGGTTGAAGAAACATGACAAAAAGGGAAATAAAGA AGATTATGACCTTTCAAAGATGAGAGACTTCATCAATAAACAAGCTGATGCTTATGTGGAGA  $\mathtt{AAGGCATCCTTGACAAGGAAGAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTG}$   $\mathtt{AAGGCATCTTATAGCAGCCTG}$   $\mathtt{AAGGCATCAAGCGCATTTATAGCAGCCTG}$ TGGCAAAAGATCCAGGAGTCTTTCAACTGTTTCAGAAAACATAATATAGCTTAAAACACTTC TAATTCTGTGATTAAAATTTTTTTGACCCAAGGGTTATTAGAAAGTGCTGAATTTACAGTAGT TAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCCGTAAAAACTATCTGAAAGTAAAGT TGTATGTAAGCTGAAAAAAAAAAAAAAAAAAAAAAA

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPEN KPGQSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTK SGLDHKFQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQA HTLEDEVAEVLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDET VSNTLTLTNGLERRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFV KMMVKYGTISPEEGVSYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEE AAKMEKEYGSLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLS KMRDFINKQADAYVEKGILDKEEAEAIKRIYSSL

### N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

### Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

#### N-myristoylation sites:

amino acids 143-148, 239-244

GTTGCTCCGGCGGCGCTCGGGGAGGGAGCCAGCAGCCTAGGCCCTAGGCCCGGGCCACC**ATG** GCGCTGCCTCCAGGCCCAGCCGCCCTCCGGCACACACTGCTGCTCCTGCCAGCCCTTCTGAG CTCAGGTTGGGGGGAGTTGGAGCCACAAATAGATGGTCAGACCTGGGCTGAGCGGGCACTTC GGGAGAATGAACGCCACGCCTTCACCTGCCGGGTGGCAGGGGGGCCTGGCACCCCCAGATTG GCCTGGTATCTGGATGGACAGCTGCAGGAGGCCAGCACCTCAAGACTGCTGAGCGTGGGAGG GGAGGCCTTCTCTGGAGGCACCAGCACCTTCACTGTCACTGCCCATCGGGCCCAGCATGAGC TCAACTGCTCTCTGCAGGACCCCAGAAGTGGCCGATCAGCCAACGCCTCTGTCATCCTTAAT GTGCAATTCAAGCCAGAGATTGCCCAAGTCGGCGCCAAGTACCAGGAAGCTCAGGGCCCAGG CCTCCTGGTTGTCCTGTTTGCCCTGGTGCCTGCCAACCCGCCGGCCAATGTCACCTGGATCG ACCAGGATGGGCCAGTGACTGTCAACACCTCTGACTTCCTGGTGCTGGATGCGCAGAACTAC CCCTGGCTCACCACCACGGTGCAGCTGCAGCTCCGCAGCCTGGCACACACCTCTCGGT GGTGGCCACCAATGACGTGGGTGTCACCAGTGCGTCGCTTCCAGCCCCAGGCCCCTCCCGGC ACCCATCTCTGATATCAAGTGACTCCAACAACCTAAAACTCAACAACGTGCGCCTGCCACGG GAGAACATGTCCCTCCCGTCCAACCTTCAGCTCAATGACCTCACTCCAGATTCCAGAGCAGT GAAACCAGCAGACCGGCAGATGGCTCAGAACAACAGCCGGCCAGAGCTTCTGGACCCGGAGC  $\tt GTGTCCAGCGTGAGCAGTGATGAGATCTGGCTC{\color{red}{\textbf{TGA}}} GCCGAGGGCGAGACAGGAGTATTCTC$ CACGTGATGCATTTCACTGGGCTGTAACCCGCAGGGGCACAGGTATCTTTGGCAAGGCTACC AGTTGGACGTAAGCCCCTCATGCTGACTCAGGGTGGGCCCTGCATGTGATGACTGGGCCCTT CCAGAGGGAGCTCTTTGGCCAGGGGTGTTCAGATGTCATCCAGCATCCAAGTGTGGCATGGC CTGCTGTATACCCCACCCCAGTACTCCACAGCACCTTGTACAGTAGGCATGGGGGCGTGCCT GTGTGGGGGACAGGGAGGCCCTGCATGGATTTTCCTCCTATGCTATGTAGCCTTGTT CCCTCAGGTAAAATTTAGGACCCTGCTAGCTGTGCAGAACCCAATTGCCCTTTGCACAGAAA CCAACCCCTGACCCAGCGGTACCGGCCAAGCACAAACGTCCTTTTTGCTGCACACGTCTCTG CCCTTCACTTCTTCTCTTCTGTCCCCACCTCCTCTTGGGAATTCTAGGTTACACGTTGGACC TTCTCTACTACTTCACTGGGCACTAGACTTTTCTATTGGCCTGTGCCATCGCCCAGTATTAG CACAAGTTAGGGAGGAAGAGGCAGGCGATGAGTCTAGTAGCACCCAGGACGGCTTGTAGCTA GGGCCCAGAGCCCTCTTTGTGGCTTCCCCACGTTTGGCCTTCTGGGATTCACTGTGAGTGTC CTGAGCTCTCGGGGTTGATGGTTTTTCTCTCAGCATGTCTCCTCCACCACGGGACCCCAGCC CTGACCAACCCATGGTTGCCTCATCAGCAGGAAGGTGCCCTTCCTGGAGGATGGTCGCCACA CCCAAAGTGACCTAAGAACACTTTAAAAAGCAACATGTAAATGATTGGAAATTAATATAGTA CAGAATATATTTTCCCTTGTTGAGATCTTCTTTTGTAATGTTTTCATGTTACTGCCTAGG AAAAAAAAAAAAAAAAAAAAAAA

MALPPGPAALRHTLLLLPALLSSGWGELEPQIDGQTWAERALRENERHAFTCRVAGGPGTPR
LAWYLDGQLQEASTSRLLSVGGEAFSGGTSTFTVTAHRAQHELNCSLQDPRSGRSANASVIL
NVQFKPEIAQVGAKYQEAQGPGLLVVLFALVRANPPANVTWIDQDGPVTVNTSDFLVLDAQN
YPWLTNHTVQLQLRSLAHNLSVVATNDVGVTSASLPAPGPSRHPSLISSDSNNLKLNNVRLP
RENMSLPSNLQLNDLTPDSRAVKPADRQMAQNNSRPELLDPEPGGLLTSQGFIRLPVLGYIY
RVSSVSSDEIWL

### N-glycosylation sites:

amino acids 106-110, 119-123, 162-166, 175-179, 192-196, 205-209, 251-255, 280-284

## Glycosaminoglycan attachment site:

amino acids 23-27

### Casein kinase II phosphorylation sites:

amino acids 36-40, 108-112, 164-168, 282-286, 316-320

#### N-myristoylation sites:

amino acids 34-40, 89-95, 215-221, 292-298, 293-299

></usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA96857

><subunit 1 of 1, 221 aa, 1 stop

><MW: 23598, pI: 6.96, NX(S/T): 0

MWSAGRGGAAWPVLLGLLLALLVPGGGAAKTGAELVTCGSVLKLLNTHHRVRLHSHDIKYGS GSGQQSVTGVEASDDANSYWRIRGGSEGGCPRGSPVRCGQAVRLTHVLTGKNLHTHHFPSPL SNNQEVSAFGEDGEGDDLDLWTVRCSGQHWEREAAVRFQHVGTSVFLSVTGEQYGSPIRGQH EVHGMPSANTHNTWKAMEGIFIKPSVEPSAGHDEL

## Important features of the protein:

### Signal peptide:

amino acids 1-28

## Glycosaminoglycan attachment site.

amino acids 62-66

### N-myristoylation sites.

amino acids 16-22, 25-31, 27-33, 61-67, 71-77, 86-92, 87-93, 91-97, 190-196

### Endoplasmic reticulum targeting sequence.

amino acids 218-223

GTTGCTATGTTGCCCAGGCTGGTCTTGAAGTGCCTTGACCTCCTAAAGTGTTGGAACCACAG ACGTGAGCCACTCCACCCAGCCTAAAACTTCATCTTCTTTGGATGAGATGAACACTTTTAAC AAGAGAACAGGACTCTATATAAATCGCTGTGGGCTCACCACCTCTAAGGAGGAGCACTGACT GAAGACAGAAAATTGATGAACTGAAGAAGACATGGTCCATTATGCCTTACAAACTTACACA GTGCTTTGGGAATTCCAAAGTACTCAGTGGAGAGAGGTGTTTCAGGAGCCGTAGAGCCAGAT CGTCATC ATG TCTGCATTGTGGCTGCTGGGCCTCCTTGCCCTGATGGACTTGTCTGAAAGCAGCAACTGGGGATGCTATGGAAACATCCAAAGCCTGGACACCCCTGGAGCATCTTGTGGG AGACATGCCATACCTCCTGAAATATCAACCCATGATGCAAACCATTGGCCAAAAGTACTGCA TGGATCCTGCCGTGATCGCTGGTGTCTTGTCCAGGAAGTCTCCCGGTGACAAAATTCTGGTC AACATGGGCGATAGGACTAGCATGGTGCAGGACCCTGGCTCTCAAGCTCCCACATCCTGGAT TAGTGAGTCTCAGGTTTCCCAGACAACTGAAGTTCTGACTACTAGAATCAAAGAAATCCAGA GGAGGTTTCCAACCTGGACCCCTGACCAGTACCTGAGAGGTGGACTCTGTGCCTACAGTGGG GGTGCTGGCTATGTCCGAAGCAGCCAGGACCTGAGCTGTGACTTCTGCAATGATGTCCTTGC  ${\tt ACGAGCCAAGTACCTCAAGAGACATGGCTTC} {\color{red}{\textbf{TAA}}} {\tt CATCTCAGATGAAACCCAAGACCATGAT}$ CACATATGCAGCCTCAAATGTTACACAGATAAAACTAGCCAAGGGCACCTGTAACTGGGAAT 

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96867

.><subunit 1 of 1, 194 aa, 1 stop

><MW: 21431, pI: 8.57, NX(S/T): 0

MSALWLLLGLLALMDLSESSNWGCYGNIQSLDTPGASCGIGRRHGLNYCGVRASERLAEIDM PYLLKYQPMMQTIGQKYCMDPAVIAGVLSRKSPGDKILVNMGDRTSMVQDPGSQAPTSWISE SQVSQTTEVLTTRIKEIQRRFPTWTPDQYLRGGLCAYSGGAGYVRSSQDLSCDFCNDVLARA KYLKRHGF

### Important features of the protein:

Signal peptide:

amino acids 1-19

### N-myristoylation sites.

amino acids 23-29, 26-32, 35-41, 45-51, 50-56, 76-82, 156-162

#### Amidation site.

amino acids 40-44

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96878

><subunit 1 of 1, 125 aa, 1 stop

><MW: 13821, pI: 8.60, NX(S/T): 2

 $\label{lem:mkalmltlsvllcwvsadirchscykvpvlgcvdrqscrlepgqqcltthaylgkmwvfsn\\ LRCGTPEEPCQEAFNQTNRKLGLTYNTTCENKDNCNSAGPRPTPALGLVFLTSLAGLGLWLLH$ 

### Important features of the protein:

Signal peptide:

amino acids 1-18

N-glycosylation sites.

amino acids 77-81, 88-92

N-myristoylation site.

amino acids 84-90

Ly-6 / u-PAR domain protein signature.

amino acids 85-98

ACGGGCCGCAGCGCAGTGACGTAGGGTTGGCGCACGGATCCGTTGCGGCTGCAGCTCTGCA TGCTGACCGCGGGCCCTGCCCTGGGCTGGAACGACCCTGACAGAATGTTGCTGCGGGATGTA AAAGCTCTTACCCTCCACTATGACCGCTATACCACCTCCCGCAGGCTGGATCCCATCCCACA GTTGAAATGTGTTGGAGGCACAGCTGGTTGTGATTCTTATACCCCAAAAGTCATACAGTGTC AGAACAAAGGCTGGGATGGGTATGATGTACAGTGGGAATGTAAGACGGACTTAGATATTGCA TACAAATTTGGAAAAACTGTGGTGAGCTGTGAAGGCTATGAGTCCTCTGAAGACCAGTATGT ACTAAGAGGTTCTTGTGGCCTTGGAGTATAATTTAGATTATACAGAACTTGGCCTGCAGAAAC TGAAGGAGTCTGGAAAGCAGCACGGCTTTGCCTCTTTCTCTGATTATTATTATAAGTGGTCC TCGGCGGATTCCTGTAACATGAGTGGATTGATTACCATCGTGGTACTCCTTGGGATCGCCTT TGTAGTCTATAAGCTGTTCCTGAGTGACGGCCAGTATTCTCCTCCACCGTACTCTGAGTATC CTCCATTTTCCCACCGTTACCAGAGATTCACCAACTCAGCAGGACCTCCTCCCCCAGGCTTT AAGTCTGAGTTCACAGGACCACAGAATACTGGCCATGGTGCAACTTCTGGTTTTGGCAGTGC TTTTACAGGACAACAAGGATATGAAAATTCAGGACCAGGGTTCTGGACAGGCTTGGGAACTG GTGGAATACTAGGATATTTGTTTGGCAGCAATAGAGCGGCAACACCCTTCTCAGACTCGTGG TACTACCCGTCCTATCCTCCCTCCTACCCTGGCACGTGGAATAGGGCTTACTCACCCCTTCA TGGAGGCTCGGGCAGCTATTCGGTATGTTCAAACTCAGACACGAAAACCAGAACTGCATCAG  $\texttt{GATATGGTGGTACCAGGAGACGA} \underline{\textbf{TAA}} \texttt{AGTAGAAAGTTGGAGTCAAACACTGGATGCAGAAAT}$ TTTGGATTTTCATCACTTTCTCTTTAGAAAAAAGTACTACCTGTTAACAATTGGGAAAAG GGGATATTCAAAAGTTCTGTGGTGTTATGTCCAGTGTAGCTTTTTTGTATTCTATTATTTGAG GCTAAAAGTTGATGTGTGACAAAATACTTATGTGTTGTATGTCAGTGTAACATGCAGATGTA TATTGCAGTTTTTGAAAGTGATCATTACTGTGGAATGCTAAAAATACATTAATTTCTAAAAC CTGTGATGCCCTAAGAAGCATTAAGAATGAAGGTGTTGTACTAATAGAAACTAAGTACAGAA AATTTCAGTTTTAGGTGGTTGTAGCTGATGAGTTATTACCTCATAGAGACTATAATATTCTA TTTGGTATTATTTTTTGATGTTTGCTGTTCTTCAAACATTTAAATCAAGCTTTGGACTAA TTATGCTAATTTGTGAGTTCTGATCACTTTTGAGCTCTGAAGCTTTGAATCATTCAGTGGTG GAGATGGCCTTCTGGTAACTGAATATTACCTTCTGTAGGAAAAGGTGGAAAATAAGCATCTA TCATAAGAGGTAAAGGTCAAATTTTTCAACAAAAGTCTTTTAATAACAAAAGCATGCAGTTC TCTGTGAAATCTCAAATATTGTTGTAATAGTCTGTTTCAATCTTAAAAAGAATCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96889

><subunit 1 of 1, 339 aa, 1 stop

><MW: 36975, pI: 7.85, NX(S/T): 1

MAAACGPGAAGYCLLLGLHLFLLTAGPALGWNDPDRMLLRDVKALTLHYDRYTTSRRLDPIP QLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGYESSEDQY VLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFSDYYYKWSSADSCNMSGLITIVVLLGIA FVVYKLFLSDGQYSPPPYSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSGFGS AFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDSWYYPSYPPSYPGTWNRAYSPL HGGSGSYSVCSNSDTKTRTASGYGGTRRR

### Signal peptide:

amino acids 1-30

#### Transmembrane domain:

amino acids 171-190

### N-glycosylation site.

amino acids 172-176

### Glycosaminoglycan attachment sites.

amino acids 244-248, 259-263, 331-335

#### Tyrosine kinase phosphorylation site.

amino acids 98-106

#### N-myristoylation sites.

amino acids 68-74, 69-75, 131-137, 241-247, 247-253, 266-272, 270-276, 278-284, 312-318