Zadanie 1. (4 pkt)

Funkcja liniowa f określona jest wzorem f(x) = ax + b dla $x \in R$.

- a) Dla a = 2008 i b = 2009 zbadaj, czy do wykresu tej funkcji należy punkt $P = (2009, 2009^2)$.
- b) Narysuj w układzie współrzędnych zbiór

$$A = \left\{ (x, y) : x \in \langle -1, 3 \rangle \quad \text{i} \quad y = -\frac{1}{2}x + b \quad \text{i} \quad b \in \langle -2, 1 \rangle \right\}.$$

Zadanie 5. (0-2)

Dane są dwie przecinające się proste. Miary kątów utworzonych przez te proste zapisano za pomocą wyrażeń algebraicznych (zobacz rysunek).

Dokończ zdanie. Wybierz <u>dwie</u> odpowiedzi, tak aby dla każdej z nich dokończenie poniższego zdania było prawdziwe.

Układem równań, w którym zapisano prawidłowe zależności między miarami kątów utworzonych przez te proste, jest układ

A.
$$\begin{cases} (\alpha + \beta) + \beta = 90^{\circ} \\ \alpha + \beta = 2\alpha - \beta \end{cases}$$

B.
$$\begin{cases} (\alpha + \beta) + \beta = 180^{\circ} \\ \alpha + \beta = 2\alpha - \beta \end{cases}$$

c.
$$\begin{cases} (\alpha + \beta) + \beta = 180^{\circ} \\ \beta = 2\alpha - \beta \end{cases}$$

D.
$$\begin{cases} \alpha + \beta = 90^{\circ} \\ \beta = 2\alpha - \beta \end{cases}$$

E.
$$\begin{cases} \alpha + \beta = 2\alpha - \beta \\ 180^{\circ} - (2\alpha - \beta) = \beta \end{cases}$$

$$\textbf{F. } \begin{cases} 3\alpha + 2\beta = 360^{\circ} \\ 2\alpha - \beta = 2\beta \end{cases}$$

Zadanie 8. (0-1)

Funkcja liniowa f(x) = (a-1)x + 3 osiąga wartość najmniejszą równą 3. Wtedy

A.
$$a = -1$$

B.
$$a = 0$$

C.
$$a = 1$$

D.
$$a = 3$$

Zadanie 11. (0-1)

Dana jest funkcja liniowa f określona wzorem f(x) = ax + b, gdzie a i b są liczbami rzeczywistymi. Wykres funkcji f przedstawiono w kartezjańskim układzie współrzędnych (x,y) na rysunku obok.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Współczynniki a i b we wzorze funkcji f spełniają warunki

A.
$$a > 0$$
 i $b > 0$.

B.
$$a > 0$$
 i $b < 0$.

C.
$$a < 0$$
 i $b > 0$.

D.
$$a < 0$$
 i $b < 0$.

Zadanie 6. (0-1)

Rozwiązaniem układu równań $\begin{cases} 11x-11y=1\\ 22x+22y=-1 \end{cases}$ jest para liczb: $x=x_0$, $y=y_0$. Wtedy

A.
$$x_0 > 0$$
 i $y_0 > 0$

B.
$$x_0 > 0$$
 i $y_0 < 0$

C.
$$x_0 < 0$$
 i $y_0 > 0$

D.
$$x_0 < 0$$
 i $y_0 < 0$

Zadanie 11. (0-1)

Miejscem zerowym funkcji liniowej f określonej wzorem $f(x) = -\frac{1}{3}(x+3) + 5$ jest liczba

B.
$$\frac{9}{2}$$

Zadanie 8. (0-1)

Funkcja f jest określona wzorem f(x) = ax + 4 dla każdej liczby rzeczywistej x. Miejscem zerowym tej funkcji jest liczba (-1). Wtedy

A.
$$a = -4$$

B.
$$a = 1$$

C.
$$a = 4$$

D.
$$a = 5$$

Zadanie 5. (0-1)

Para liczb x=1, y=-3 spełnia układ równań $\begin{cases} x-y=a^2\\ (1+a)x-3y=-4a \end{cases}$

Wtedy a jest równe

B.
$$-2$$

c.
$$\sqrt{2}$$

D.
$$-\sqrt{2}$$

Zadanie 3. (0-1)

Właściciel sklepu kupił w hurtowni 50 par identycznych spodni po x zł za parę i 40 identycznych marynarek po y zł za sztukę. Za zakupy w hurtowni zapłacił 8000 zł. Po doliczeniu marży 50% na każdą parę spodni i 20% na każdą marynarkę ceny detaliczne spodni i marynarki były jednakowe.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Cenę pary spodni $\,x\,$ oraz cenę marynarki $\,y\,$, jakie trzeba zapłacić w hurtowni, można obliczyć z układu równań

A.
$$\begin{cases} x + y = 8000 \\ 0.5x = 0.2y \end{cases}$$

B.
$$\begin{cases} 50x + 40y = 8000 \\ 0.5x = 0.2y \end{cases}$$

c.
$$\begin{cases} 50x + 40y = 8000 \\ 1,5x = 1,2y \end{cases}$$

D.
$$\begin{cases} x + y = 8000 \\ 1.5x = 1.2y \end{cases}$$

Zadanie 8. (0-1)

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań. Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.

A.
$$\begin{cases} y = x + 1 \\ y = -2x + 4 \end{cases}$$

B.
$$\begin{cases} y = x - 1 \\ y = 2x + 4 \end{cases}$$

c.
$$\begin{cases} y = x - 1 \\ y = -2x + 4 \end{cases}$$

D.
$$\begin{cases} y = x + 1 \\ y = 2x + 4 \end{cases}$$

Zadanie 9. (0-1)

Proste o równaniach y = 3x - 5 oraz $y = \frac{m-3}{2}x + \frac{9}{2}$ są równoległe, gdy

A.
$$m = 1$$

B.
$$m = 3$$

C.
$$m = 6$$

D.
$$m = 9$$