Explainability in Decision Tree

Dr. Sabu M K
Department of Computer Applications
CUSAT

- # Importing pandas
- import numpy as np, pandas as pd
- import matplotlib.pyplot as plt
- import seaborn as sns
- import warnings
- warnings.filterwarnings('ignore')

- # Loading dataset
- df = pd.read_csv('/home/sabu/Desktop/WA_Fn-UseC_-Telco-Customer-Churn.csv',header=0)

- # Inspecting data
- df.head()

- # Inspecting basic information out of columns
- df.info()

- # Displaying summary statistics
- df.describe()

- # Assigning 0 and 1 to Yes and No
- df['SeniorCitizen'] = df['SeniorCitizen'].map({0:'No',1:'Yes'})

- #Binning the tenure column
- cut_labels = ['0-12', '13-24', '25-36', '37-48','49-60','61-72']
- $cut_bins = [0, 12, 24, 36, 48, 60, 72]$
- df['Tenure Period'] = pd.cut(df['tenure'], bins=cut bins, labels=cut labels)
- df['Tenure Period'].value_counts()

- #Binning the MonthlyCharges column
- cut_labels = ['0-20', '21-40', '41-60', '61-80','81-100','101-120']
- cut_bins = [0, 20,40,60,80,100,120]
- df['MonthlyCharges_Range'] =
 pd.cut(df['MonthlyCharges'], bins=cut_bins,
 labels=cut_labels)
- df['MonthlyCharges_Range'].value_counts()

- df['TotalCharges'] = pd.to_numeric(df['TotalCharges'],errors='coerce')
- df['TotalCharges'].describe()

- #Binning the total charges column
- cut_labels = ['0-1000', '1001-2000','2001-4000','4001-6000','6001-8000','8001-10000']
- cut_bins = [0, 1000,2000,4000,6000,8000,10000]
- df['TotalCharges_Range'] =
 pd.cut(df['TotalCharges'], bins=cut_bins,
 labels=cut_labels)
- df['TotalCharges_Range'].value_counts()

- # Dropping columns that are not required
- cols_to_drop =
 ['customerID','MonthlyCharges','tenure','TotalCharges']
- df.drop(labels=cols_to_drop,axis=1,inplace=True)
- # Sanity checks
- df.head(4)

- # Checking count of null values by the columns
- df.isna().sum()

- # Missing values imputation
- df['TotalCharges_Range'].fillna(df['TotalCharges_R ange'].mode()[0], inplace=True)
- df['Tenure Period'].fillna(df['Tenure Period'].mode()
 [0], inplace=True)

- #Label Encoding
- # Importing LabelEncoder
- from sklearn.preprocessing import LabelEncoder
- # Instantiating LabelEncoder
- le=LabelEncoder()
- # Iterating over all the values of each column and extract their dtypes
- for col in df.columns.to_numpy():
- # Comparing if the dtype is object
- if df[col].dtypes in ('object','category'):
- # Using LabelEncoder to do the numeric transformation
- df[col]=le.fit_transform(df[col].astype(str))

- # Sanity Check
- df.head()

- # Putting feature variable to X
- X = df.drop('Churn',axis=1)

- # Putting response variable to y
- y = df['Churn']

- from sklearn.model_selection import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=42)
- X_train.shape, X_test.shape

- #Model Building
- from sklearn.tree import DecisionTreeClassifier
- dt =
 DecisionTreeClassifier(max_depth=3,random_state=43)
- dt.fit(X_train, y_train)

- from sklearn.tree import export_graphviz
- from sklearn.externals.six import StringIO
- from IPython.display import Image
- import pydotplus
- dot_data = StringIO()
- export_graphviz(dt, out_file=dot_data,
- filled=True, rounded=True,
- special_characters=True,feature_names = X.columns,class_names=['Churn', "Not Churn"])
- graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
- graph.write_png('Churn.png')
- Image(graph.create_png())

- #Model Evaluation
- from sklearn.metrics import confusion_matrix, accuracy score

- #Let's build a tree to it's full depth
- dt = DecisionTreeClassifier(random_state=43)
- dt.fit(X_train,y_train)

- y_train_pred = dt.predict(X_train)
- y_test_pred = dt.predict(X_test)

- print(accuracy_score(y_train, y_train_pred))
- confusion_matrix(y_train, y_train_pred)

- print(accuracy_score(y_test, y_test_pred))
- confusion_matrix(y_test, y_test_pred)

- # Let's check the overall accuracy.
- trainaccuracy= accuracy_score(y_train, y_train_pred)
- testaccuracy= accuracy_score(y_test, y_test_pred)
- confusion_TRN = confusion_matrix(y_train, y_train_pred)
- confusion_TST = confusion_matrix(y_test, y_test_pred)

- TP = confusion_TRN[1,1] # true positive
- TN = confusion_TRN[0,0] # true negatives
- FP = confusion_TRN[0,1] # false positives
- FN = confusion_TRN[1,0] # false negatives

- TP_TST = confusion_TST[1,1] # true positive
- TN_TST = confusion_TST[0,0] # true negatives
- FP_TST = confusion_TST[0,1] # false positives
- FN_TST = confusion_TST[1,0] # false negatives

- trainsensitivity = TP / float(TP+FN)
- trainspecificity= TN / float(TN+FP)

- testsensitivity= TP_TST / float(TP_TST+FN_TST)
- testspecificity= TN_TST / float(TN_TST+FP_TST)

```
• # Let us compare the values obtained for Train & Test:
print('-'*30)
print('On Train Data')
print('-'*30)
print("Accuracy : {} %".format(round((trainaccuracy*100),2)))
print("Sensitivity: {} %".format(round((trainsensitivity*100),2)))
print("Specificity: {} %".format(round((trainspecificity*100),2)))
print('-'*30)
print('On Test Data')
print('-'*30)
print("Accuracy : {} %".format(round((testaccuracy*100),2)))
print("Sensitivity: {} %".format(round((testsensitivity*100),2)))

    print("Specificity: {} %".format(round((testspecificity*100),2)))
```

print('-'*30)

- #Hyper Parameter Tuning
- from sklearn.model_selection import GridSearchCV

dt_hp = DecisionTreeClassifier(random_state=43)

- params = $\{\text{'max_depth':}[3,5,7,10],$
- 'min_samples_leaf':[5,10,15,20],
- 'min_samples_split':[10,12,18,20],
- 'criterion':['gini','entropy']}

GS =
 GridSearchCV(estimator=dt_hp,param_grid=params,cv=5,n_jobs=-1, verbose=True, scoring='accuracy')

- print('Best Parameters:',GS.best_params_,end='\ n\n')
- print('Best Score:',GS.best_score_)

 dt_hp = DecisionTreeClassifier(max_depth= 9,min_samples_leaf= 25, min_samples_split=5,random_state=43) dt_hp.fit(X_train, y_train)

- y_train_pred = dt_hp.predict(X_train)
- y_test_pred = dt_hp.predict(X_test)

- # Let's check the overall accuracy.
- trainaccuracy= accuracy_score(y_train, y_train_pred)
- testaccuracy= accuracy_score(y_test, y_test_pred)

- confusion_TRN = confusion_matrix(y_train, y_train_pred)
- confusion_TST = confusion_matrix(y_test, y_test_pred)

- TP = confusion_TRN[1,1] # true positive
- TN = confusion_TRN[0,0] # true negatives
- FP = confusion_TRN[0,1] # false positives
- FN = confusion_TRN[1,0] # false negatives

- TP_TST = confusion_TST[1,1] # true positive
- TN_TST = confusion_TST[0,0] # true negatives
- FP_TST = confusion_TST[0,1] # false positives
- FN_TST = confusion_TST[1,0] # false negatives

- trainsensitivity = TP / float(TP+FN)
- trainspecificity= TN / float(TN+FP)

- testsensitivity= TP_TST / float(TP_TST+FN_TST)
- testspecificity= TN_TST / float(TN_TST+FP_TST)

```
• # Let us compare the values obtained for Train & Test:
print('-'*30)
print('On Train Data')
print('-'*30)
print("Accuracy : {} %".format(round((trainaccuracy*100),2)))
print("Sensitivity: {} %".format(round((trainsensitivity*100),2)))
print("Specificity: {} %".format(round((trainspecificity*100),2)))
print('-'*30)
print('On Test Data')
print('-'*30)
print("Accuracy : {} %".format(round((testaccuracy*100),2)))
print("Sensitivity: {} %".format(round((testsensitivity*100),2)))

    print("Specificity: {} %".format(round((testspecificity*100),2)))
```

print('-'*30)

- #Feature Importance
- # let's create a dictionary of features and their importance values
- feat_dict= {}
- for col, val in sorted(zip(X_train.columns, dt_hp.feature_importances_),key=lambda x:x[1],reverse=True):
- feat_dict[col]=val

```
    feat_df =
        pd.DataFrame({'Feature':feat_dict.keys(),'Importa
        nce':feat_dict.values()})
```

feat_df

- #visualize the relative importance using Seaborn
- values = feat_df.Importance
- idx = feat df.Feature
- plt.figure(figsize=(10,8))
- clrs = ['green' if (x < max(values)) else 'red' for x in values]
- sns.barplot(y=idx,x=values,palette=clrs).set(title='Important features to predict customer Churn')
- plt.show()

