NTR 306: Fundamentals of Nutrition

Chapter 6: Proteins

1) Growth and Maintenance

Major structural component of all cells in the body

- Skeletal muscle
- Bones/Ligaments/Tendons/Cartilage
- GI tract
- Heart/Kidneys/Liver
- Skin
- Allows for movement and function
- Replacement of dead/damaged cells
 - Skin cells, turnover 30 days
 - Gl tract cells, turnover 2-3 days

2) <u>Enzymes</u>

- Enzymes = catalysts
 - Facilitate reactions
 - They remain intact
- Build up (anabolic) substances
- Break down (catabolic) substances
- Transform substances

- 3) <u>Hormones (some)</u>
 - Messenger molecules
 - Transported in blood from glands to target tissues
 - Elicit responses in target tissues to maintain homeostasis
 - Examples: insulin, glucagon, ghrelin, CCK, thyroid hormones, growth hormone

- 4) Regulators of fluid balance
- 5) Acid-base regulators
 - Proteins = buffers that maintain acid-base balance in body
- 6) <u>Transporters</u>
 - Cell membrane "pumps"
 - Carry nutrients/other molecules (e.g., hemoglobin)

7) <u>Antibodies</u>

- Defend body against disease
- Body detects antigens (invaders) and makes antibodies (protein molecules that combat specific antigens)

8) Energy/Glucose

- Starvation or insufficient CHOs: PRO → Amino Acids →
 Energy
- Priority: Help maintain blood glucose (which may cost lean body tissue)

Roles of Proteins — Summary

Proteins buffer body fluids to aid in maintaining a proper pH.

PRO <u>Deficiency</u>

- PRO Deficiency:
 - Too little total protein
 - Missing essential amino acids (building blocks of protein)
- Significant impact at every life stage, but especially in young people
 - Reduced growth
 - Reduced physical function
 - Reduced cognition
 - Mood disorders
 - Hunger
 - Impaired immune function
 - Skin, hair, nail problems

Stunting: Most
 common sign of
 protein malnutrition in
 infants/children

- Amino Acids (AAs) = building blocks of protein
- Amino acid atoms:
 - Carbon (C), hydrogen (H), oxygen (O) just like carbohydrates and lipids!
 - PLUS: nitrogen (N): <u>amino</u> = nitrogen-containing
- Amino acid structure:
 - Central carbon (C) with four bonds
 - One hydrogen (H)
 - Amino group (NH₂)
 - Acid group (COOH)
 - Unique side group for each amino acid

Amino Acid

- Twenty different amino acids
 - Similar chemical structure
 - Olifferent characteristics (side groups): size, shape, electrical charge
 - Examples:

Essential amino acids

- Body needs but cannot make
- 'Essential' to get these from diet

9 Essential AAs						
Leucine	Phenylalanine					
Isoleucine	Threonine					
Valine	Tryptophan					
Lysine	Histidine					
Methionine						

Nonessential amino acids

- Body needs but can synthesize (make)
- Not needed from diet

11 Non-essential AAs						
Alanine	Glutamic acid					
Arginine	Glutamine					
Asparagine	Glycine					
Aspartic acid	Proline					
Cysteine	Serine					
	Tyrosine					

Peptide bonds connect amino acids to form proteins (condensation)

A peptide bond (highlighted in red) forms between the two amino acids, creating a dipeptide.

- 2 AAs bonded: dipeptide
- 3 AAs bonded: tripeptide
- 4+ AAs bonded: polypeptide

Most proteins contain dozens to hundreds of amino acids

An OH group from the acid end of one amino

acid and an H atom from the amino group of

another join to form a molecule of water.

- Breaking down proteins: denaturation
 - Exposure to heat, acid, other conditions
 - Disruption of polypeptide bonds
 - Protein structures lose shape, stability and functionality
 - Irreversible (at certain point)
 - Examples:
 - Cooking eggs (heat)
 - Curdling milk (acid)
 - Digesting proteins in stomach (acid)

Instapoll

Where does most protein digestion occur?

- Mouth
- Stomach
- Small Intestine
- Large Intestine
- Colon

PRO Digestion & Absorption

<u>Ultimate goal</u>: Break foods into smaller molecules for use by the body

Proteins $\rightarrow \rightarrow \rightarrow AAs$

Long polypeptide chains

AAs

Absorption:

AAs (digestive tract) → blood → body

PRO Digestion - Mouth

O None!

PRO Digestion - Stomach

- Small amount of digestion (~10-15%)
- Hydrochloric acid (HCl): denatures proteins and converts pepsinogen (inactive gastric enzyme) -> pepsin (active gastric enzyme)

PRO Digestion - Small Intestine

- Most protein digestion occurs here (85-90%)
 - - Note: There are a lot of these (10+)

PRO Digestion - Large Intestine

O None!

Protein Absorption

Amino Acid (AA) transport:

- AAs are absorbed by transport with Na⁺ into cells
 - 2 Transport requires ATP (energy)
- 3 AAs either stay and are used there OR move out of the cells by facilitated diffusion
- AAs enter the intestinal villi capillaries and are carried through the hepatic portal vein to the liver

Protein Metabolism

- Fed State: abundance/surplus of amino acids (e.g., after meals)
 - Provide AAs for functional needs (including muscle)
 - Supplies 10-15% of the body's daily energy needs
 - Excess AAs:
 - No "storage space" in the body
 - ✓ Converted to glucose → stored as glycogen
 - ✓ Converted to ketones → stored as fat

Protein Metabolism

- Fasted State: low availability (e.g., between meals, overnight)
 - Body protein broken down to provide amino acids for:
 - √ Functional needs, excluding muscle
 - Creation of glucose for energy
 - Creation of ketones for energy

Protein Metabolism

- Biproducts of protein/AA breakdown
 - Also called deamination
 - Produces ammonia:
 - ✓ Toxic (must be eliminated)
 - ✓ Liver adds CO₂ and converts ammonia to urea (non-toxic)
 - Kidneys filter urea out of blood and into urine

Protein Excess: Kidney + Liver Function

- Increased dietary protein = increased ammonia + urea production
 - ↑ liver function (converting ammonia to urea)
 - ↑ kidney function (excreting urea from body)
 - Adequate hydration = critical to urea elimination (keep urea in solution)
 - High protein diet: water consumption is critical to avoid dehydration
- Indicator of liver disease: elevated blood ammonia
- Indicator of kidney disease: elevated blood urea

- Protein turnover: Continual production and destruction of proteins in cells
 - Releases amino acids
- Amino acid pool: released amino acids mix with dietary amino acids
 - Pattern of amino acids in pool = fairly constant, despite varying rates of protein intake and breakdown
 - Used for protein production
 - Used for energy or glucose (if deaminated)
 - Can also be stored as fat

Nitrogen Balance

- Nitrogen balance accompanies protein turnover
 - Balance: N in = N out
- Balance occurs when protein synthesis = protein breakdown AND when protein intake from food = N excretion (urine, feces, sweat)
- Positive N status: synthesis of new proteins exceeds breakdown;
 blood, bone, skin, and muscle cells are built
 - From increased dietary protein
 - Growing infants, children, pregnant women, recovering from injury, building muscle
- Negative N status: protein breakdown exceeds synthesis; muscle and other proteins are broken down for glucose or energy (muscle wasting)
 - Starvation, severe stress or injury (burns, infections, fever)

Protein Turnover

When AAs are deficient (- N balance), body breaks down protein (muscle)

Dietary Proteins

Amino Acid Pool

AAs are NOT stored! They are either: used (then lost) converted to something else

Amino Acid Metabolism

Used for: Energy, Glucose, Fat, **Ketone Bodies**

AAs (N) Losses

Protein – DRIs

- RDA set to prevent negative N balance (to meet growth, development, and maintenance needs)
 - AMDR (lower range) set to include whole-body requirements
- No UL → Protein isn't toxic
 - AMDR (upper range) → set based on what's 'left over' after carbohydrates and fat

Total PROs DRIs (19-30yo)								
	RDA	AMDR	UL					
Males	0.8	10-35%	N/A					
Females	g/kg body weight/d	10-33/0	IN/A					

Protein amounts within AMDR for a 2000 kcal diet:

2000 kcal x 0.10 = 200 kcal / 4 kcal/g = 50 g/d 2000 kcal x 0.35 = 700 kcal/ 4 kcal/g = 175 g/d

<u>Assumptions</u>: Healthy; adequate energy intake; protein is high quality; & protein is consumed with sufficient carbohydrates and fat

Protein – DRIs

- RDA set to prevent negative N balance (to meet growth, development, and maintenance needs)
 - AMDR (lower range) set to include whole-body requirements
- No UL → Protein isn't toxic
 - AMDR (upper range) → set based on what's 'left over' after carbohydrates and fat

Total PROs DRIs (19-30yo)								
	RDA	AMDR	UL					
Males	0.8	10-35%	N/A					
Females	g/kg body weight/d	10-33/0	14/ 🖰					

Habitual Intakes (19–30yo)							
	Per gran	%					
Males	1.0	98 g/d	7.50/				
Females	g/kg body weight/d	71 g/d	15%				

Assumptions: Healthy; adequate energy intake; protein is high quality; & protein is consumed with sufficient carbohydrates and fat

Protein - DGAs

- Consume a variety of protein-rich foods across food groups:
 - Seafood
 - Lean meats (including red meat), lean poultry, eggs
 - Legumes, nuts, seeds, soy
- Consume in moderation:
 - Fatty and/or processed meats

Protein Excess: Health Risk

- Cardiometabolic Risks
 - No causal role of ↑ protein & CVD risk
 - No causal role of ↑ protein & Type 2 Diabetes risk
 - Many protein-rich foods are protective against CVD

Cancer Risks

No causal role of ↑ protein & cancer

Processed & Fatty Meat Consumption is associated with CVD & Cancer Risks

What is it about meat that increases health risks?

- Protein content
- Saturated fat content
- Accompanying foods (i.e., fries, refined grains, etc.)
- How meat is processed or cooked

Protein Foods - DGAs

Food Groups/Subgroups		CALORIE Level (within the Healthy US Dietary Pattern)										
	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200
Protein Foods (oz eq/day)	2	3	4	5	5	5 ½	6	6 1/2	6 1/2	7	7	7

- Meats, poultry, eggs, and seafood
 - Most are protein-rich and low-fat:
 - √ 80-90% kcals from protein
 - √ 10-20% kcals from fat
 - Be mindful of cooked oils, etc.
 - Many have polyunsaturated fat

Protein Foods - DGAs

Food Groups/Subgroups		CALORIE Level (within the Healthy US Dietary Pattern)										
	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200
Protein Foods (oz eq/day)	2	3	4	5	5	5 ½	6	6 1/2	6 1/2	7	7	7

Nuts and seeds

- Most are protein-rich and fat-rich:
 - ✓ 80% kcals from fat
 - ✓ 10% kcals from carbohydrates
 - ✓ 10% kcals form protein
- Be mindful of sugar and salt content
- Soy Products: Protein > Fat

Dairy - DGAs

Food Groups/Subgroups		CALORIE Level (within the Healthy US Dietary Pattern)										
	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200
Dairy (cup eq/day)	2	2 ½	2 ½	3	3	3	3	3	3	3	3	3

- Low-fat (1%) or fat-free milk, yogurt, and cheese (or soy alternatives):
 - Milk: (per serving, 1 cup)

	Energy	Sat. Fat	Protein	Added Sugar
Low-fat (1%)	100	1.5	8	0
Fat Free (Skim)	80	0	8	0
Lactose Free, Ultra-filtered, Skim	80	0	13	0
Soymilk (unsweetened)	80	0	7	0

Yogurt (per serving, 5.3 oz)

	Energy	Sat. Fat	Protein	Added Sugar
Fat Free Greek, Plain	80	0	16	0
Fat Free Greek, Strawberry	140	0	14	13
Fat Free (Regular), Strawberry	80	0	5	11
Soy (non-dairy), Strawberry	130	0	6	11

F

Protein Quality

Digestibility

- Proteins must be digested before they can provide AAs to the body
- Digestibility depends on the source AND other foods eaten with protein
 - ✓ Animal proteins: 90-99% digestible
 - ✓ Plant proteins: 70-90% digestible

2. Amino Acid Composition

- For protein synthesis, dietary protein must supply all 9 essential AAs in required proportions
 - ✓ <u>Animal proteins</u>: generally provide the most complete array of amino acids; are sometimes referred as Complete Proteins
 - ✓ <u>Plant proteins</u>: tend to be limiting in one or more essential amino acids; can be referred as 'Incomplete Proteins'

Protein Quality

- Not all animal proteins are the same quality
- Not all plant proteins are the same quality

DIAAS – Protein Quality Score

Complementary Proteins

- Low-quality proteins combined with each other to provide adequate levels of essential amino acids
- Protein quality of the combined foods is greater than either food alone
- Plant protein = lower quality than animal protein, and less protein by weight (per measure of food)
 - Vegetarians improve protein in diet by combining foods
 - Not necessary at every meal, but throughout a day
- Goal: eat foods you enjoy, while being mindful of protein!

