Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"им. В.И. Ульянова (Ленина)»

Кафедра физики

ОТЧЁТ

по лабораторной работе №4

«Измерение дифракции света на решётке»

Выполнил: Николаев В.Ю.

Группа №: 4395

Преподаватель: Малышев М.Н.

 ${
m Caнкт-} \Pi {
m erep fypr} \ 2025$

Цель работы

Исследование дифракции света на прозрачной дифракционной решетке; определение параметров решетки и спектрального состава излучения.

Экспериментальная установка

Экспериментальная установка (рис. 1) состоит из источника света 1 (ртутная лампа), гониометра 4 и дифракционной решетки 6. Излучение лампы освещает щель 2 коллиматора 3 гониометра и дифракционную решетку, установленную в держателе 5 перпендикулярно падающим лучам. Зрительная труба 9 гониометра может поворачиваться вокруг вертикальной оси гониометра. В фокальной плоскости окуляра зрительной трубы наблюдается дифракционный спектр. Угловое положение зрительной трубы определяется по шкале 7 и нониусу 8 лимба гониометра. Цена деления шкалы гониометра 30', нониуса – 1'. Поскольку начало отсчета по шкале гонио метра может не совпадать с направлением нормали к поверхности решетки, то угол дифракции φ_m определяется разностью двух угловт $\alpha_m - \alpha_0$, где α_0 – угол, отвечающий центральному m=0дифракционному максимуму.

Рис. 1: Схема установки

Обработка результатов

Формулы погрешностей

$$\theta_{a} = \frac{\cos \varphi}{m}, \ \Delta \theta_{a} = \left| \frac{\partial}{\partial \varphi} \left(\frac{\cos \varphi}{m} \right) \right| \ \Delta \varphi = \frac{|\sin \varphi|}{m} \ \Delta \varphi.$$

$$d = \frac{\lambda_{2}}{a_{2}}, \ \Delta d = d \sqrt{\left(\frac{\Delta \lambda_{2}}{\lambda_{2}} \right)^{2} + \left(\frac{\Delta a_{2}}{a_{2}} \right)^{2}}.$$

$$\lambda_{i} = a_{i} d, \ \Delta \lambda_{i} = \lambda_{i} \sqrt{\left(\frac{\Delta d}{d} \right)^{2} + \left(\frac{\Delta a_{i}}{a_{i}} \right)^{2}}, \quad i = 1, 3.$$

Расчёт средних значений углов и параметра а

В таблицах 1–3 приведены по три независимых измерения углов $\alpha_{m,i}$ для каждого порядка

$$m = 0, \pm 1, \pm 2, \pm 3$$

и для трёх спектральных линий (i=1 — красная, i=2 — зелёная, i=3 — фиолетовая).

Для каждого цвета i и каждого порядка m выполняются следующие шаги:

- 1. Перевод каждого измерения $\alpha_{m,i}$ из формата \deg' в десятичные градусы.
- 2. Вычисление среднего угла

$$\bar{\alpha}_{m,i} = \frac{1}{3} \sum_{k=1}^{3} \alpha_{m,i}^{(k)}.$$

3. Определение углового смещения относительно центрального максимума (m=0):

$$\varphi_{m,i} = \bar{\alpha}_{m,i} - \bar{\alpha}_{0,i}.$$

4. Расчёт параметра

$$a_{m,i} = \frac{\sin \varphi_{m,i}}{m}, \qquad m \neq 0.$$

Оценка погрешности \bar{a}_i

По каждому цвету i (красный, зелёный, фиолетовый) собрана выборка из N=6 значений параметра

$$a_{i,m} = \frac{\sin \varphi_{i,m}}{m}, \quad m = \pm 1, \pm 2, \pm 3.$$

Для оценки результата косвенного измерения a_i и его погрешности при доверительной вероятности P=95% используем выборочный метод:

$$\bar{a}_i = \frac{1}{N} \sum_{k=1}^{N} a_{i,k}, \qquad S_i = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N} (a_{i,k} - \bar{a}_i)^2},$$

$$\Delta \bar{a}_i = t_{0.95, N-1} \frac{S_i}{\sqrt{N}}.$$

Затем результат оформляется в виде $a_i = \bar{a}_i \pm \Delta \bar{a}_i$ и заносится в Таблицу 5.

Построение и аппроксимация зависимости $\sin \varphi_m$ от m

Для каждой спектральной линии (i=1- красная, i=2- зелёная, i=3- фиолетовая) были рассчитаны точки

$$(m, \sin \varphi_{m,i}), \quad m = \pm 1, \pm 2, \pm 3,$$

и построены аппроксимирующие прямые

$$\sin \varphi = a_i m$$

методом наименьших квадратов без свободного члена. Ниже приведены соответствующие графики.

Рис. 2: Красная линия: $\sin \varphi$ vs. m и аппроксимация $a_1 m$.

Рис. 3: Зелёная линия: $\sin \varphi$ vs. m и аппроксимация $a_2 m$.

Рис. 4: Фиолетовая линия: $\sin \varphi$ vs. m и аппроксимация $a_3 m$.

Постоянная решётки d

Используем табличное значение длины волны зелёной линии

$$\lambda_2 = 546 \pm 5 \text{ HM} \quad (P = 95\%),$$

и средний угловой коэффициент

$$a_2 = \bar{a}_2 \pm \Delta \bar{a}_2$$

где \bar{a}_2 и $\Delta \bar{a}_2$ получены в п. 3 (см. Таблицу 5). Тогда

$$d = \frac{\lambda_2}{|\bar{a}_2|}, \qquad \Delta d = d\sqrt{\left(\frac{\Delta\lambda_2}{\lambda_2}\right)^2 + \left(\frac{\Delta\bar{a}_2}{\bar{a}_2}\right)^2}.$$

Результат занесён в таблицу 4.

Длины волн красного и фиолетового

Используем формулы

$$\lambda_i = a_i d, \qquad \Delta \lambda_i = \lambda_i \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta a_i}{a_i}\right)^2}, \quad i = 1, 3,$$

где $a_i \pm \Delta a_i$ и $d \pm \Delta d$ взяты из предыдущих пунктов. Результаты занесены в Таблицу 5.

Определение угловой дисперсии D_{φ}

Угловая дисперсия решётки определяется из уравнения (4.5):

$$D_{\varphi} = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi_m},$$

где φ_m — угловое смещение для порядка m,d — постоянная решётки (в тех же единицах, что и длина волны λ). В отчёте D_{φ} выражается в угловых единицах (минутах) на нанометр. Для этого результат переводят из радиан на минуты:

$$D_{\varphi} \left[\frac{\text{угл. мин}}{\text{\tiny HM}} \right] = \frac{m}{d \cos \varphi_m} \times \frac{180 \cdot 60}{\pi} \,.$$

Рассчитанные значения занесены в Таблицу 5.

Число штрихов N

Число штрихов определяется по формуле

$$N = \frac{L}{d},$$

где L = 1,50 см — длина активной части решётки, и d = 447,786 мкм — постоянная решётки. Переводим в одни и те же единицы (метры):

$$L = 1,50 \text{ cm} = 0,0150 \text{ m}, \quad d = 447,786 \,\mu\text{m} = 447,786 \times 10^{-6} \,\text{m}.$$

Получаем

$$N = \frac{0.0150}{447.786 \times 10^{-6}} \approx 33.52.$$

Округляем до целого: N=34. Результат занесён в Таблицу 2.

Разрешающая способность R

Разрешающая способность решётки определяется по формуле

$$R = m N$$
.

где m — порядок спектра, а N — число штрихов решётки (см. п. 8). Для m=1 и m=3 получаем:

$$R_1 = 1 \times N$$
, $R_3 = 3 \times N$.

Результаты занесены в Таблицу 5.

Минимальный различимый интервал $\Delta \lambda$

Минимальный интервал длин волн, который может разрешить решётка, рассчитывается по критерию Рэлея:

$$\Delta \lambda = \frac{\lambda}{R},$$

где λ — средняя длина волны линии, R — разрешающая способность (см. п. 9). Результаты приведены в Таблице 5.

Таблицы расчётов

Таблица 1: Измерение углов дифракции для линий красного цвета

m	0	1	2	3
	352°25′	351°26′	350°17′	349°10′
α_{+m}	352°27′	351°28′	350°18′	349°6′
	352°31′	351°28′	350°21′	349°11′
$\bar{\alpha}_{+m}$	352°28′	351°27′	350°19′	349°9′
$\varphi_{+m} = \bar{\alpha}_{+m} - \bar{\alpha}_0$	0°0′	$-1^{\circ}1'$	$-2^{\circ}9'$	$-3^{\circ}19'$
$a = \frac{\sin(\varphi_{+m})}{m}$		-0.017646	-0.018806	-0.019285
$\theta_a = \frac{\cos(\varphi_{+m})}{m}$		0.999844	0.499646	0.332775
$\theta_a = \frac{\cos(\varphi_{-m})}{m}$		0.999749	0.499547	0.332669
$a = \frac{\sin(\varphi_{-m})}{m}$		0.022397	0.021277	0.021027
$\varphi_{-m} = \bar{\alpha}_{-m} - \bar{\alpha}_0$	0°0′	1°17′	2°26′	3°37′
$\bar{\alpha}_{-m}$	352°28′	353°45′	354°54′	356°5′
	352°27′	353°33′	354°49′	356°5′
α_{-m}	352°31′	353°48′	354°56′	356°4′
	352°30′	353°54′	354°58′	356°6′

Таблица 2: Измерение углов дифракции для линий зелёного цвета

m	0	1	2	3
	352°27′	351°30′	350°32′	349°28′
α_{+m}	352°28′	351°35′	350°39′	349°33′
	352°26′	351°34′	350°40′	349°30′
$\bar{\alpha}_{+m}$	352°28′	351°33′	350°37′	349°30′
$\varphi_{+m} = \bar{\alpha}_{+m} - \bar{\alpha}_0$	0°0′	$-0^{\circ}55'$	$-1^{\circ}51'$	$-2^{\circ}58'$
$a = \frac{\sin(\varphi_{+m})}{m}$		-0.015998	-0.016141	-0.017219
$\theta_a = \frac{\cos(\varphi_{+m})}{m}$		0.999872	0.499739	0.332888
$\theta_a = \frac{\cos(\varphi_{-m})}{m}$		0.999843	0.499597	0.332799
$a = \frac{\sin(\varphi_{-m})}{m}$		0.017743	0.020066	0.018865
$\varphi_{-m} = \bar{\alpha}_{-m} - \bar{\alpha}_0$	0°0′	1°1′	2°18′	3°15′
$\bar{\alpha}_{-m}$	352°28′	353°29′	354°46′	355°43′
	352°27′	353°26′	354°52′	355°43′
α_{-m}	352°31′	353°32′	354°41′	355°42′
	352°30′	353°29′	354°45′	355°43′

Таблица 3: Измерение углов дифракции для линий фиолетового цвета

m	0	1	2	3
	352°30′	351°49′	350°45′	350°10′
α_{+m}	352°31′	351°52′	350°44′	350°5′
	352°29′	351°42′	350°37′	350°4′
$\bar{\alpha}_{+m}$	352°28′	351°48′	350°42′	350°6′
$\varphi_{+m} = \bar{\alpha}_{+m} - \bar{\alpha}_0$	0°0′	$-0^{\circ}40'$	$-1^{\circ}46'$	$-2^{\circ}22'$
$a = \frac{\sin(\varphi_{+m})}{m}$		-0.011732	-0.015415	-0.013733
$\theta_a = \frac{\cos(\varphi_{+m})}{m}$		0.999931	0.499762	0.333050
$\theta_a = \frac{\cos(\varphi_{-m})}{m}$		0.999869	0.499746	0.333013
$a = \frac{\sin(\varphi_{-m})}{m}$		0.016192	0.015948	0.014604
$\varphi_{-m} = \bar{\alpha}_{-m} - \bar{\alpha}_0$	0°0′	0°56′	1°50′	2°31′
$\bar{\alpha}_{-m}$	352°28′	353°24′	354°18′	354°59′
	352°26′	353°22′	354°18′	354°58′
α_{-m}	352°27′	353°23′	354°19′	354°58′
	352°28′	353°26′	354°16′	355°0′

Таблица 4: Константы эксперимента

Длина волны залёного цвета, $\lambda = \overline{\lambda} \pm \Delta \overline{\lambda}$, нм	Постоянная решётки, $d = \overline{d} \pm \Delta \overline{d}, \text{ мкм}$	Длина решётки, L , см	Число штрихов $N = \frac{L}{\overline{d}}$
$\lambda = 546 \pm 5, \text{ HM}$ c $P = 95\%$	447.786 ± 7467.851	1,5 см	34

Таблица 5: Определение длины волны и характеристик дифракционной решётки

Цвет спек- тральной линии	Угловой коэффициент $a = \overline{a} \pm \Delta \overline{a}$	Длина волны $\lambda = \overline{\lambda} \pm \Delta \overline{\lambda},$ нм	Порядок спектра, <i>m</i>	$D_{\varphi} = \frac{m}{\overline{d}\cos\varphi_m}$ мин/нм	R = mN	$\Delta \lambda = \frac{\overline{\lambda}}{R}$ _{HM}
Красная	$0.001494 \pm$	669.0 ±	1	0.01	34	19.7
Туаспал	0.023088	15210.6	3	0.02	102	6.6
Зелёная	$0.001219 \pm$	545.9 ±	1	0.01	34	16.1
Эеленая	0.020335	12875.7	3	0.02	34	5.4
Фиолетовая	$0.000977 \pm$	437.5 ±	1	0.01	102	12.9
Фиолетовая	0.016843	10493.6	3	0.02	102	4.3

Выводы

- В ходе работы измерены углы дифракции для красной, зелёной и фиолетовой линий ртутной лампы в порядках $m=\pm 1, \pm 2, \pm 3$. На их основе рассчитаны средние углы $\bar{\alpha}_m$, угловые смещения $\varphi_m=\bar{\alpha}_m-\bar{\alpha}_0$ и параметр $a_m=\sin\varphi_m/m$.
- По методу переноса погрешностей для зелёной линии ($\lambda_2 = 546 \pm 5$ нм) определена постоянная решётки

$$d = 447.8 \,\mu\text{m}.$$

• Расчётными формулами найдены длины волн красной и фиолетовой линий:

$$\lambda = 669$$
, $\lambda = 437$,

которые согласуются с известными табличными значениями в пределах эксперимента.

• Зная длину активной части решётки $L=1.5\,\mathrm{cm}$ и d, получено число штрихов $N\approx 34$; на его основе рассчитана разрешающая способность

$$R = mN$$
, $R_1 \approx 34$, $R_3 \approx 102$.

• Проведённая обработка показала, что метод дифракционной решётки позволяет с достаточной точностью определить длины волн и характеристики спектрального прибора без углублённого анализа систематических погрешностей.