AD 672 837

THERMAL RADIATION PHENOMENA. VOLUME V. RADIATION HYDRODYNAMICS OF HIGH TEMPERATURE AIR

Harold L. Brode, et al

Lockheed Missiles and Space Company Sunnyvale, California

November 1967

3-27-87-1 . VOL. 5 . MOVEMBER 1987

AD 672837

DASA 1917-5

THERMAL RADIATION PHENOMENA

YOL. 5
RADIATION HYDRODYNAMICS OF HIGH TEMPERATURE AIR

This document has been approved for public release and sale; its distribution is unlimited

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Ve. 22151

THERMAL RADIATION PHENOMENA

Radiation Hydrodynamics of High Temperature Air

Edited by

R K. M. Landshoff

Work performed under contract

DA-49-146-XZ-198

DASA Subtask RLN5015

ABSTRACT

This report introduces the reader to radiation hydrodynamics (RH) and discusses its application to fireballs in the atmosphere. After formulating the basic equations of RH, special attention is given to the radiative transfer problem. Several methods for solving the equations of transfer are touched upon but special emphasis is placed on the two stream method with a frequency averaging procedure, which is specifically designed for use with finite zone sizes. A version of the FIREBALL code which utilizes this approach is described. The physics of fireballs is illustrated with the example of a one kiloton detonation at sea level density and without interference from the ground. Some remarks are made on scaling procedures for extending the results to higher yields and altitudes. Estimates are made of the validity of the models.

FOREWORD

"Thermal radiation" is electromagnetic radiation emitted by matter in a state of thermal excitation. The energy density of such radiation in an enclosure at constant temperature is given by the well known Planck formula. The importance of thermal radiation in physical problems increases as the temperature is raised. At moderate temperatures (say, thousands of degrees Kelvin) its role is primarily one of transmitting energy; whereas at high temperatures (say, millions of degrees Kelvin) the energy density of the radiation field itself becomes important as well. If thermal radiation must be considered explicitly in a problem, the radiative properties of the matter must be known. In the simplest order of approximation, it can be assumed that the matter is in thermodynamic equilibrium "locally" (a condition called local thermodynamic equilibrium or LTE), and all of the necessary radiative properties can be defined, at least in principle. Of course whenever thermal radiation must be considered, the medium which contains it inevitably has pressure and density gradients and the treatment requires the use of hydrodynamics. Hydrodynamics with explicit consideration of thermal radiation is called "radiation hydrodynamics".

In the past twenty years or so, many radiation hydrodynamic problems involving air have been studied. In this work a great deal of effort has gone into calculations of the equilibrium properties of air. Both thermodynamic and radiative properties have been calculated. It has been generally believed that the basic theory is well enough understood that such calculations yield valid results, and the limited experimental checks which are possible seem to support this hypothesis. The advantage of having sets of tables which are entirely calculated is evident: the calculated quantities are self-consistent on the basis of some set of assumptions, and they can later be improved if calculational techniques are improved, or if better assumptions can be made.

The origin of this set of books was in the desire of a number of persons interested in the radiation hydrodynamics of air to have a good source of reliable information on basic air properties. A series of books dealing with both theoretical and practical aspects was envisaged. As the series materialized, it was thought appropriate to devote the first three volumes to the equilibrium properties of air. They are:

The Equilibrium Thermodynamic Properties of Air, by F. R. Gilmore

The Radiative Properties of Heated Air, by B. H. Armstrong and R. W. Nicholls

Tables of Radiative Properties of Air, by Lockheed Staff

The first volume contains a set of tables along with a detailed discussion of the basic models and techniques used for their computation. Because of the size of the related radiative tables and text, two volumes were considered necessary. The first contains the text, and the second the tables. It is hoped that these volumes will be widely useful, but because of the emphasis on very high temperatures it is clear that they will be most attractive to those concerned with nuclear weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important and at present in a state of rapid growth, is not as easy to assess as are equilibrium properties. Severe limitations had to be placed on choice of material. The fourth volume is devoted to general aspects of this topic. It is:

Excitation and Non Equilibrium Phenomena in Air, by Landshoff, et al.

It provides material on the more important processes involved in the excitation of air, criteria for the validity of LTE and special radiative effects.

A discussion of radiation hydrodynamics was felt to be necessary and the fifth volume which deals with this topic is:

Radiation Hydrodynamics of High Temperature Air, by Landshoff, Hillendahl, et al.

It reviews the basic theory of radiation hydrodynamics and discusses the application to fireballs in the atmosphere.

The choice of material for these last two volumes was made with an eye to the needs of the principal users of the other three volumes.

Most of the work on which these volumes are based was supported by the United States Government through various agencies of the Defense Department and the Atomic Energy Commission. The actual preparation of the volumes was largely supported by the Defense Atomic Support Agency.

We are indebted to many authors and organizations for assistance and we gratefully acknowledge their cooperation. We are particularly grateful to the RAND Corporation for permission to use works of F. R. Gilmore and H. L. Brode and to the IBM Corporation for permission to use some of the work of B. H. Armstrong. Most of the other authors are employed by the Lockheed Missiles and Space Company, in some cases as consultants.

Finally, we would like to acknowledge the key role of Dr. R. E. Meyerott of LMSC in all of this effort, from the initial conception to its realization.

We are particularly grateful to him for his constant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of these books. We understand that much remains to be done in this field, and we hope that the efforts represented by this work will be a stimulus to its development.

The Editors

J. L. Magee

H. Aroeste

R. K. M. Landshoff

Preface

This volume reviews the basic theory of radiation hydrodynamics and discusses the application to fireballs in the atmosphere. The first chapter starts with a formulation of the basic equations and goes on to discuss schemes for translating these impossibly difficult equations into manageable computing procedures. As a companion to this chapter we have added Appendix A with a version of Hillendahl's FIREBALL code, which runs without inputs of a classified nature.

Chapter 2 deals with the physics of fireballs. The main discussion is devoted to the description of a one kiloton detonation at sea level. That section has nearly all been written by H. L. Brode of the RAND Corporation but a few passages have been added by the editor. One of these deals with opaque precursors to shocks whose significance to the thermal output was noted by Hillendahl since the original version was written. The section on other yield and altitudes was also written by the editor.

The summary chapter examines the reliability of the results and how this is affected by approximations, incomplete basic information and other deficiencies in the present state of the art.

I would like to thank Dr. H. L. Brode for his contribution and the RAND Corporation for permission to include his work in this volume.

R. K. M. Landshoff

Contents

Chapter 1.	Radiation Hydrodynamics (R. W. Hillendahl, R. K. M. Landshoff)		
	1.1	Introduction	1
	1.2	Basic equations of radiation hydrodynamics	3
	1.3	Average absorption coefficients	8
	1.4	Solution of the equation of transfer	10
	1.5	Finite difference equations	15
Chapter 2.	The Physics of Fireballs (H. L. Brode, R. K. M. Landshoff)		
	2.1	Introduction	36
	2.2	One kiloton at sea level	37
	2.3	Other yields and altitudes	58
Chapter 3.	Summary (R. K. M. Landshoff)		
	3.1	Equation of state	74
	3.2	Absorption coefficients	75
	3.3	Radiation hydrodynamics codes	78
	3.4	Deviations from LTE	8 0
Appendix A.	A Radiation-Hydrodynamics Code (R. W. Hillendahl)		
	A.1	Introduction	83
	A.2	Reading FORTRAN	96
	A.3	The computational scheme	101
	A.4	Data printout routines	109

A.5	Variation of the number of zones in use	114
A .6	Hydrodynamics routine	117
A.7	Equation of state routine	120
A. 8	Radiative properties routine	121
A.9	Radiative flux routine	126
A.10	Code listing	128

Chapter 1. RADIATION HYDRODYNAMICS

1.1 Introduction

A nuclear detonation deposits a large amount of heat energy in the air around it. The heating phase is of relatively short duration since the energy arrives in the form of X-rays which come either directly from the surface of the exploding bomb or from the shock heated air in the immediate vicinity of that surface.

Following the X-ray deposition the air approaches local thermodynamic equilibrium (LTE). The method of calculating the subsequent explosion history which is discussed in this chapter ignores this period where the air relaxes to LTE. Before we proceed we take a short look at the validity of that assumption.

The kinetics of relaxation processes has been discussed in Chapter 6, (4).

The relaxation time depends on the ambient air density and on the final temperature as shown in Fig. 6.1 (4).

For a detonation at sea level practically all the energy deposited by X-rays gets stuck in a relatively small volume and raises the temperature to very high values. Under these conditions relaxation times are very short. For a detonation at a high altitude a sizeable fraction of the X-ray energy is deposited at large distances and produces a lesser temperature rise because of the inverse square drop of the flux density. The lower air density and the lower temperature both contribute to increase the relaxation time.

^{*} DASA-1917-4, from now on referred to as (4).

As an example, let us consider a detonation with an X-ray yield of 10^{20} ergs radiating like a blackbody with a temperature of 10^{7} oK occurring at an altitude somewhat below 50 km where the air density is 10^{-3} times less than at sea level. A crude estimate, using the asymptotic theory of Section 4.4, (4) shows that about 10% of the X-ray energy is deposited at distances more than about 80 m where it produces temperatures less than $12,000^{\circ}$ K. In Fig. 6.1 (4) one reads off that the relaxation time at that temperature and a density $\frac{\rho}{P_{O}} = 10^{-3}$ is 10^{-6} sec. Within that sphere it takes less time and on the outside more time to relax the air to its equilibrium temperature. Thus 10% of the energy relaxes at a relatively slow rate and the assumption that one can ignore the relaxation period is not entirely justified in that case.

The assumption of LTE is essential to the classical formulation of hydrodynamics. It means that the temperature is a well defined property of the fluid and that pressure and internal energy are known functions of density and temperature. Without LTE it would be much more difficult to formulate the conservation theorems for momentum and energy.

In the theory of radiative transfer (Chapter 2, (2)*, which together with hydrodynamics accounts for the expansion of fireballs, LTE also is an assumption of major importance. Without it a quantitative prediction of the interaction between matter and radiation would be a hopelessly complicated problem.

Despite the very important role played by radiative transport radiation does not as a rule account for a significant fraction of the energy density and the pressure within a fireball. Even for blackbody radiation,

DASA 1917-2, from now on referred to as (2).

which is not present unless the gas is opaque, this contribution is small unless the temperature exceeds values like 25 eV. Temperatures of that magnitude are only maintained during the very early stages of fireball histories. In this period the fireball cools down by radiative expansion and this goes so fast that there is essentially no hydrodynamical motion. In formulating the hydrodynamic equations one can therefore ignore the energy density and pressure of radiation because by the time they get into the act they are indeed negligible.

During the early period of fireball expansion (where radiative transfer of energy is important) the shape generally appears to be almost spherical, at least at low altitudes where the size is small compared to the scale height of the atmosphere. Asymmetries which are hidden by the opaque outer layers may possibly occur due to instabilities at the bomb air interface, but we shall ignore these. Not much is known about such phenomena in any case and adding the complication of asymmetry would compromise the already complicated problem of treating radiation flow. In line with the current state-of-the-art we shall therefore discuss only spherically symmetrical problems.

1.2 Basic equations of radiation hydrodynamics

The differential equations for calculating fireball histories are the conservation relations of ordinary hydrodynamics but with a rather complicated heating term in the energy equation. They can be written in either Eulerian or Lagrangian form. The two forms are characterized by a different choice of independent space variables. In the Eulerian system these are the coordinates in real space and in the

Lagrangian one they are coordinates which are tied to the particles of the fluid. In the Lagrangian system the coordinates in real space which describe the position of a specified particle are used as dependent variables. In the Eulerian system this is manifestly impossible and the motion is described in terms of the fluid velocity.

The other dependent variables which characterize the thermodynamic state of the fluid are the same in the two systems and can be chosen from a set which includes the density ρ or its reciprocal the specific volume V, the pressure ρ , the temperature T, the internal energy E, etc. It may be convenient to keep several of these variables in the equations but one must keep in mind that they are interrelated and that the thermodynamic state is specified by any two of them.

The Lagrangian method is especially useful in problems with a high degree of symmetry where one needs only one coordinate to specify the position. Having restricted ourselves to spherically symmetrical problems we shall therefore adopt the Lagrangian approach.

We define the Lagrangian radius $\ r$ of a given particle as its radius at time zero, i.e. before it has started to move. The actual radius of the particle at any time is denoted by the capital letter $\ R$. The hydrodynamic problem is to find $\ R(r,t)$.

If ρ_{o} stands for the initial density the specific volume at any instant is

$$V = \frac{1}{\rho_o} \left(\frac{R}{r}\right)^2 \frac{\Delta R}{\delta r}$$
 (conservation of mass) (1.2-1)

Introducing the velocity

$$u = \frac{\partial R}{\partial t} \tag{1.2-2}$$

the other conservation equations are

$$\frac{\partial u}{\partial t} = -\frac{1}{\rho_O} \left(\frac{R}{r}\right)^2 \frac{\partial p}{\partial r} \quad \text{(conservation of momentum)} \tag{1.2-3}$$

$$\frac{\partial E}{\partial t} + p \frac{\partial V}{\partial t} = V \dot{Q}$$
 (conservation of energy) (1.2-4)

where the rate of heating per unit volume Q still needs to be worked out.

As it stands the energy equation has a serious defect because it does not allow for the entropy raise produced by a shock. To get around this we adopt the method of Von Neumann and Richtmyer (1950) and add a pseudo-viscous pressure

$$q = \begin{cases} (c^2/V) (\partial u/\partial r) & \text{if } \frac{\partial u}{\partial r} < 0 \\ 0 & \text{if } \frac{\partial u}{\partial r} > 0 \end{cases}$$
 (1.2-5)

to the regular pressure in Eqs. (1.2-3) and (1.2-4). The constant ℓ has the dimensions of a length; it will be further specified when we go to finite difference equations.

The radiative heating rate \dot{Q} at some point is the difference between absorbed and emitted power per unit volume

$$\dot{Q} = \iint \mu'_{V} (I_{V} - B_{V}) dV d\Omega \qquad (1.2-6)$$

The emitted power presents no problem because the blackbody intensity

By is a known function of temperature. There is no angular dependence
and the integral over frequency can be expressed in terms of the Planck
mean, Eq. (2.4-15), (2). One obtains:

$$\hat{Q}_{em} = 4\bar{u}_p \ \sigma \ T^4 \tag{1.2-7}$$

where σ is the Stefan Boltzmann constant.

The absorbed power is much more difficult to evaluate because the calculation of the intensity I, is a major task. To carry this out one should in principle solve the equation of transfer (Eq. (1.3-1)) along every ray passing through the point in question and for all values of the frequency. One of the major difficulties of such a program arises from the fact that the optical properties of air in a large part of the relevant temperature range result mainly from transitions between molecular levels. The spectrum associated with the major band systems consists of an enormous number of lines and the absorption coefficient fluctuates from large values at the line centers to small ones between the lines. Because of these "windows" the radiation at some point generally comes from points along the ray which are La ppreciable distance further back. This distance varies just as strong: with frequency as μ_{ij}^{-1} itself and it is therefore not proper to use local averages of μ_{ij} in a frequency interval containing, say, a few lines. Instead, " is in principle necessary to integrate the transport equation at a large enough number of frequencies within every one of these intervals. This correct approach clearly demands an impossible amount of computational

effort which has to be avoided. There are two limiting situations where this can be readily done. The one situation arises for a transparent medium where the optical depth μ_{\downarrow} 'L (L being the size of the radiating region) is uniformly small compared to unity. In that case I_{\downarrow} is very much smaller than B_{\downarrow} and one can neglect the absorption altogether. In that case we have $\hat{Q} = -\hat{Q}_{em}$ which we know from Eq. (1.2-7).

In the opposite extreme of an opaque region for which μ_{ν} 'L>> 1 one can simplify Eq. (1.2-6) directly. The heating rate can in that case be expressed in the form

The flux vector is given by Eq. (2.5-8), (2) which we rewrite in the form

$$\vec{F} = -\frac{4}{3} \lambda_{R} \sigma \vec{\nabla} T^{4} \qquad (1.2-9)$$

Tables and graphs of the Rosseland mean free path λ_R or the related opacity can be found in (3)**, p. 12, pp. 446 to 449 and pp. 622 to 625.

The above method of treating radiative transfer was originally developed by Eddington nearly half a century ago. In its application it was however, limited to astrophysical problems where it was not coupled to hydrodynamics. An early discussion of the use of this so-called diffusion approximation to radiation hydrodynamics has been given by Magee and Hirschfelder (1953). The first calculations carried out with this method to appear in the open literature were presented by Marshak (1958).

The operator $\vec{\nabla}$ is defined in Eulerian space. In plane or spherical geometry it is well known how to express it in Lagrangian form.

^{**} DASA 1917-3.

1.3 Average absorption coefficients

In the temperature range where molecular transitions occur and where optical depths are neither uniformly small nor uniformly large one has to resort to approximation schemes. It is clearly necessary to apply some kind of frequency averaging which will do a fair amount of violence to the "correct approach" of solving the transfer equation for a few million values of the frequency. The basic mathematical problem is that one wants to average the product μ_{γ} ' I_{γ} which enters in Eq. (1.2-6) as well as in the transport equation

$$\frac{dI_{y}}{ds} = \mu_{y}' (B_{y} - I_{y}) \qquad (1.3-1)$$

by equating the average of the product and the product of the averages, i.e. one wants to replace μ_{ν} by μ_{ν} by μ_{ν} and that is of course not correct. The quality of this approximation depends on the amount of fluctuation among the values of μ_{ν} and μ_{ν} and μ_{ν} that are being averaged and in a line spectrum this fluctuation may be quite severe. A number of averaging schemes have been proposed and are used in various computing programs.

One scheme divides the spectrum into groups (10 to 100) whose widths are chosen fairly narrow at the low energy end and wider as the energy goes up. Within each interval a Rosseland type average is obtained. Such group averages have been used, for example, in the SPUTTER program of AWFL as reported in RTD-TDR-63-3128 Vol. II and in a code developed by J. Zinn of LASL.

Strictly speaking, the left hand side of this equation should contain the additional term $\frac{1}{C}\frac{\partial I}{\partial t}$ but because of the large value of the light velocity this time dependence is usually left out. We note further that light rays are straight lines in Eulerian space and in this section we temporarily abandon the Lagrangian system.

A second method of averaging uses the <u>average transmission function</u> (Eq. (2.6-12b), (2)

$$\overline{\text{Tr}(\mu'_{V}s)} = \frac{1}{\Delta v_{i}} \int_{\Delta v_{i}} e^{-\mu'_{V}s} dv \qquad (1.3-2)$$

and the slab absorption coefficient related to it by Eq. (2.6-19), (2)

$$\overline{\mu_{\nu}}(s) = -\frac{1}{s} \ln \overline{\text{Tr}(\mu_{\nu}'s)} \qquad (1.3-3)$$

These averages are defined for slabs of thickness s in which the temperature and density of the air are uniform. The intervals Δv_i are much narrower than the groups of the first mentioned method. The spacing between intervals is 10 to 20 times as large as the interval size. The calculated averages depend smoothly on the frequency so that it seems reasonable to interpolate. The slai average is made to order for use in finite difference equations where the fluid is divided into zones. It has been used in a number of LMSC codes which will be discussed later in this chapter.

A variation of the group average procedure consists of subdividing the frequencies within a group into subgroups which are ordered according to the magnitude of the absorption coefficient rather than by frequency.

The spread between the absorption coefficients within each subgroup is obviously less than between those in the entire group and subgroup averages

will therefore be more meaningful. To use subgroup averages we must also introduce individual intensities for each subgroup. Even the use of only two subgroups would improve the accuracy considerably. A short-cut for the calculation of two subgroup absorption coefficients consists of fitting the average transmission function in the form (Eq. (2.6-46), (2).

$$\overline{\text{Tr}(\mu_{\nu}'s)} = \frac{1}{2} (e^{-\mu_{1}'s} + e^{-\mu_{2}'s})$$
 (1.3-4)

Tables of μ_1^i and μ_2^i are given by Churchill et al. (1963). We don't know of any code which has utilized this type of average.

1.4 Solution of the equation of transfer

Having obtained an average absorption coefficient which permits us to replace the average product $\overline{\mu_{\nu}}$ by the product of averages $\overline{\mu_{\nu}}$ $\overline{I_{\nu}}$ the transfer equation becomes

$$\frac{dI_{\nu}}{ds} = \overline{\mu_{\nu}} (\overline{B}_{\nu} - \overline{I}_{\nu}) \qquad (1.4-1)$$

The formal integration of this equation along a ray is straightforward and leads to

$$\overline{\overline{I}_{\nu}}(s) = e^{-T_{\nu}} \overline{I_{\nu}}(s_{o}) + \int_{0}^{T_{\nu}} \overline{B}_{\nu}(s') e^{(T_{\nu}' - T_{\nu})} dT_{\nu}' \qquad (1.4-2)$$

The absorption coefficient is still meant to include the correction factor for induced emission (Eq. (2.2-11a), (2) and the prime is left out for convenience of writing only.

$$\tau_{v} = \tau_{v}(s) = \int_{s_{0}}^{s} \tilde{\mu}_{v}(s_{1}) ds_{1} ; \quad \tau_{v}' = \tau_{v}(s')$$
 (1.4~3)

The difficulty arises because one has to determine the value of this integral for all the rays through a given point to evaluate the rate of absorption of radiative energy at that point. This is required for carrying out the angular integration in Eq. (1.2-6).

There are basically two approaches to this problem. One is the brute force approach to follow this program directly and to evaluate $I_{\nu}(s)$ along a large number of rays. This approach has been used in the SPUTTER program with one tangential ray through the center of each zone. Fig. 1-1 shows how these rays are combined to obtain the various values of \overline{I}_{ν} at the center of zone 4. Of the 7 rays which are drawn 3 are redundant because of symmetry and one obtains 3 different values of \overline{I}_{ν} going out, 3 going in and 1 grazing the zone.

In the other approach one defines certain moments, i.e. angular integrals of \bar{I}_{V} which now depend only on the radius and not on the direction. To solve for these moments one integrates a system of coupled linear differential equations which are only approximately correct but which give exactly the right answer when one considers the limit where the diffusion approximation applies. Such schemes have been used widely in astrophysics and are discussed in great detail by Chandrasekhar (1960) and Mustel (1958). Some of the more sophisticated schemes use a large number of moments but quite good results can be obtained by restricting that number to two and using only the outgoing and ingoing flux which

are defined as the integrals

$$\mathbf{F}_{\mathbf{V}} \stackrel{+}{(-)} = \int \tilde{\mathbf{I}}_{\mathbf{V}} \cos \theta \, d\Omega \tag{1.4-4}$$

$$\cos \theta > 0$$

$$(\cos \theta < 0)$$

where θ is the angle between the ray and the radial direction.

We consider first the case of plane geometry where the medium is stratified in plane parallel layers. This geometry has been studied extensively by astrophysicists and applied to the radiative equilibrium in the outer regions of stars where it is indeed unnecessary to worry about the curvature. By treating the radial coordinate R as if it were a cartesian coordinate the angle θ of a ray remains constant along the ray path. The optical path length between two surfaces is therefore simply the optical path length along the normal divided by $\|\cos\theta\|$. We shall express this in terms of the optical depth conventionally defined by astrophysicists as the optical path length measured radially inward from the surface of a star (or in our case a fireball), i.e. the integral

$$\widetilde{\tau}_{V}(R) = \int_{R}^{R_{S}} \widetilde{\mu}_{V}(R') dR' \qquad (1.4-5)$$

To evaluate $I_{\nu}(s)$ as given by Eq. (1.4-2) for an outgoing ray we place s_{0} far enough inside that the factor $e^{-\tau_{\nu}}$ is essentially zero; for an ingoing ray we start at the surface where $\bar{I}_{\nu}(s_{0})=0$. The first term of

Eq. (1.4-2) can therefore be left out in both cases. For the exponent under the integral one can write

$$\tau_{v}' - \tau_{v} = - \left| \frac{\widetilde{\tau}_{v}' - \widetilde{\tau}_{v}}{\cos \theta} \right| \tag{1.4-6}$$

and for outgoing and ingoing rays one obtains

$$\overline{I}_{V} = \frac{1}{|\cos \theta|} \int_{0}^{T} \overline{B}_{V}(R') \, \overline{\mu}_{V}(R') \, e^{\left|\frac{\widetilde{T}_{V}' - \widetilde{T}_{V}}{\cos \theta}\right|} dR' \, ; \cos \theta > o \qquad (1.4-7a)$$

$$\overline{I}_{v} = \frac{1}{|\cos \theta|} \int_{\Gamma}^{r_{s}} \overline{B}_{v}(R') \, \overline{\mu}_{v}(R') \, e^{-\left|\frac{\widetilde{\tau}_{v}' - \widetilde{\tau}_{v}}{\cos \theta}\right|} \, dR' \; ; \; \cos \theta < o \quad (1.4-7b)$$

Entering these expressions into Eq. (1.4-4) one obtains the outgoing and the ingoing flux

$$F_{v+} = 2\pi \int_{\Omega}^{r} \overline{B}_{v}(R') \, \overline{\mu}_{v}(R') \, E_{2} \left(|\widetilde{\tau}_{v}' - \widetilde{\tau}_{v}| \right) \, dR' \qquad (1.4-8a)$$

$$F_{V-} = 2\pi \int_{\Gamma}^{r} \overline{B}_{V}(R') \, \overline{\mu}_{V}(R') \, E_{2}\left(|\widetilde{\tau}_{V}' - \widetilde{\tau}_{V}|\right) \, dR' \qquad (1.4-8b)$$

where

$$E_2(\tau) = \int_1^\infty e^{-u\tau} u^{-2} du$$
 (1.4-9)

A useful approximation is obtained if one replaces $|\cos\theta|$ in Eq. (1.4-7) by an average $c = \cos\theta$. Substituting the approximate form of $I_{\frac{1}{2}}$ into Eq. (1.4-4) gives expressions similar to those in Eqs. (1.4-8) but the exponential integral is now replaced by a simple exponential function, i.e. we have the approximation

$$E_2(\tau) \approx \frac{1}{2c} e^{-\tau/c}$$
 (1.4-10)

The average intensities calculated from the approximate fluxes

$$\bar{I}_{\nu \pm} = F_{\nu \pm} / \pi \tag{1.4-11}$$

satisfy the differential equations

$$c \frac{d\overline{I}_{V\pm}}{dR} = \pm \widetilde{\mu}_{V} (\overline{B}_{V} - \overline{I}_{V\pm}) \qquad (1.4-12)$$

These average intensities are therefore identical with the intensities in the directions for which $|\cos\theta|=c$. The idea of the two stream model with intensities in a characteristic direction goes back to Schwarzschild and Schuster who suggested to use $c=\frac{1}{2}$. A much better choice is $c=\frac{2}{3}$ which gives the correct net flux

$$F_{V+} - F_{V-} = -\frac{4\pi}{3U_V} \frac{dB_V}{dR}$$
 (1.4-13)

in the high opacity limit.

In spherical geometry one has no simple rigorous expressions for I, like those given in Eqs. (1.4-7) from which to derive two stream equations. It seems, nevertheless, reasonable that one should be able to use equations which are essentially of the same character but with minor modifications to maintain conservation of energy. It is easy to see that this is achieved by the pair of equations

$$\frac{2}{3} \frac{d}{dR} \left(R^2 \, \overline{I}_{v\underline{+}} \right) = \pm R^2 \, \overline{\mu}_v \left(\overline{B}_v - \overline{I}_{v\underline{+}} \right) \tag{1.4-14}$$

With the definition given in Eq. (1.4-11) one obtains the outgoing and incoming flux simply by multiplying the corresponding intensities $\bar{I}_{\nu\pm}$ by a factor π . From the total integrated net flux

$$g = \int (F_{y+} - F_{y-}) dv$$
 (1.4-15)

one can finally obtain the heating rate

$$\dot{Q} = -\frac{1}{R^2} \frac{d}{dR} \left(R^2 \mathcal{J} \right)$$
 (1.4-16)

for use in the energy equation.

1.5 Finite difference equations

It is obviously impossible to find exact analytical solutions to the equations of RH and one must be satisfied with approximate numerical solutions. To obtain these one replaces infinitesimal increments of dependent as well as independent variables by finite differences. Mathematically RH

can be characterized as an initial value problem and the methods and problems arising in treating this by means of finite difference equations have been thoroughly discussed by Richtmyer (1957). We shall review some general considerations and then turn to questions which are specifically relevant to our problem.

In a finite difference scheme continuous variables are replaced by discrete ones but there are numerous possibilities for doing this. Thus one can regard the discrete values of a variable as representing either the values of the corresponding continuous variable at a set of discrete meshpoint or the average values between meshpoints. There are other variations but they are not needed in the following discussion. One can treat some variables in the first and others in the second manner. To indicate the actual choice one can use integral subscripts for variables defined at the meshpoints and half integral ones for those defined in the intervals. It is convenient and natural to let R_1 and U_1 represent the radius and the velocity of the particle at the meshpoint i and this leads almost automatically to defining $V_{i+1/2}$, $P_{i+1/2}$, $E_{i+1/2}$, and $T_{i+1/2}$ as the averages of specific volume, pressure, internal energy density and temperature in the interval between the meshpoints i and i+1.

Another element of choice enters in the methods used for advancing variables in time. Almost all variables are defined at meshpoints in time which are indicated by integral superscripts. It may, however, be useful to define the velocity between meshpoints which can be indicated by half integral superscripts. With this definition and abbreviating the right hand side of Eq. (1.2-3) by a (for acceleration) that equation and Eq. (1.2-2)

lead to the integration procedure

$$u^{n+1/2} = u^{n-1/2} + a^n \delta t (1.5-1)$$

$$R^{n+1} = R^n + U^{n+1/2} \delta t ag{1.5-2}$$

Having obtained R^{n+1} one can then obtain V^{n+1} by differencing which follows from Eq. (1.2-1). So far we have not bothered to look at alternate schemes because the procedures outlined above are very straightforward and there seems to be no good reason for doing anything more elaborate. In the purely hydrodynamic case, i.e. if $\hat{Q} = 0$ the energy equation (1.2-4) can also be integrated very simply. Centering the difference equation at (n+1/2) leads to

$$E^{n+1} - E^n + \frac{1}{2} \left(p^{n+1} + p^n + 2q^{n+1/2} \right) \left(v^{n+1} - v^n \right) = 0$$
 (1.5-3)

If E is expressed as a function of V and p this equation can be solved for p^{n+1} , the one variable which is still unknown. Anticipating the problems which arise when one has radiative heating it is really more useful to express both E and p as functions of V and T and to solve Eq. (1.5-3) for T^{n+1} . Either way one has to solve for only one unknown at a time which causes no real difficulty even though it may have to be done by iteration.

This situation changes drastically when the radiative heating rate \hat{Q} becomes important. The heating term to be added on the right hand side of Eq. (1.5-3) should be centered at the level $t^{n+1/2}$ like the remaining

part of the equation but the temperature distribution from which it must be calculated is only known up to the time t^n . There are two major avenues of attack. One is to forget about centering \dot{Q} and use its value as calculated at t^n . If this is done one can still solve explicitly for T^{n+1} and this is as the <u>explicit method</u> of integration.

In the other attack one uses the properly centered heating rate $\frac{1}{2}(\mathring{Q}^{n+1}+\mathring{Q}^n)$. This means that the equation which describes the heating in any one zone depends on the values of T^{n+1} in all zones so that one has to solve a large number of equations (one per zone) simultaneously. This implicit method involves a considerable amount of algebraic labor. If centering was only required for accuracy it would not be worthwhile to go to all this trouble because one could increase the accuracy more easily by reducing δt . What is really involved is the question of mathematical stability which we shall briefly discuss.

It is physically clear and a fluid responds to any pressure or temperature disturbance by a motion or heat flow which counteracts the disturbance. In an integration by means of "fference equations which uses too large time intervals it may happen that the disturbance is overcompensated so that an excess turns in one step into a deficit, in the next step again into an excess etc. If the magnitude of this alternating disturbance increases each time any small disturbance will eventually cause the solution to blow up. In principle one can cure such an instability by taking of small enough but this could seriously increase the running time of a problem.

There are two cases where the stability condition has been obtained analytically. The first arises when the dominant mode of energy transfer is of a hydrodynamic nature. The maximum of in this case is found as

follows. One calculates for each zone the traversal time $\Delta t_{i+1/2} = \left(R_{i+1} - R_i\right) V_{s(i+1/2)}$ of a signal traveling with the local sound speed. Going through all intervals one then finds the smallest, say Δt_{min} . The time increment is then limited by the so-called <u>Courant-condition</u>

$$\delta t < k \Delta t_{min}$$
 (1.5-4)

where k is a numerical factor near unity which depends on the integration scheme. In the scheme where one uses the three equations at the beginning of this section one has k = 1.

When radiative heating dominates, the stability analysis has been carried out for the case where one can use the diffusion approximation. In the explicit scheme the limit for δt is proportional to $\bar{\mu}_R \delta R^2$ which decreases together with the Rosseland mean absorption coefficient of the air. If the air is fairly transparent ot is limited to very small values and this makes an explicit calculation very costly in computer time. The implicit method does not have this trouble and is in fact unconditionally stable. On the other hand it is of course also time consuming to solve a large number of coupled equations simultaneously. One can attempt to approach the implicit solution by iteration. On the first go-around one can advance T by the explicit method. With the advanced temperature distribution one can then work out $\mathring{\mathbb{Q}}^{n+1}$, form the average $\mathring{\mathbb{Q}}^{n+1/2}$ = $\begin{pmatrix} \dot{Q}^n + \dot{Q}^{n+1} \end{pmatrix}$ and reevaluate T^{n+1} . This procedure can be repeated several times and if it converges it will lead to a stable solution. The time step ot is now limited by the condition that the solution should converge. In contrast to the stability condition of the explicit method this limit of ... &t.

is inversely proportional to $\widetilde{\mu}_R$ and independent of the zone size. The actual convergence criterion is almost equivalent with imposing a limit on the fractional energy change per time step within every zone. That form of the condition is easy to use and experience has shown that a fraction like one percent ensures the convergence. In a purely implicit procedure there is no such limitation on the magnitude of the time step. For the sake of accuracy one should also impose a limit on the fractional energy change per time step but it does not need to be as small. This limit can be allowed to vary from zone to zone to require greater accuracy in those zones where the changes make a significant contribution to the overall picture.

It is obvious that the allowed time interval changes throughout the calculation. For reasons of economy one should always run fairly close to the maximum without, however increasing δt too abruptly. To change δt generally requires some interpolation (or extrapolation) and all programs nowadays have provisions for carrying the necessary changes out automatically. Although the preceding arguments were based on the diffusion approximation they apply equally in the more general case. It is true that one can not readily obtain analytic stability or convergence criteria but experience with numerical calculations indicates the same pattern.

In addition to the various decisions described above one also has to make a choice on zone sizes. There are two parts to this decision relating to the total number of zones and to their relative sizes at different radii. Part one involves a compromise between conflicting requirements for accuracy and economy because it takes a large amount of computer time to use very many zones. This is amplified if the choice of δR also limits the time step as in hydrodynamic calculations where $\delta t \sim \delta R$ and even more in the explicit

calculation of radiative transfer where $\delta t \sim \delta R^2$.

Part two involves a judgment as to where the really significant changes are taking place and it is of course at those regions where one should use the finest zoning. In the course of a calculation the location of significant changes moves so that one has to make provisions in the program to detect this and to react to it by rezoning. Furthermore the overall radius of the fireball changes during an average calculation by as much as 3 orders of magnitude so that rezoning is also necessary to keep the number of zones at a more or less constant level.

The pseudo viscous pressure q introduced in Eq. (1.2-5) is a device for calculating the entropy rise behind the shock. Without the damping mechanism provided by q the changes induced behind the shock overshoot and produce lasting oscillations which physically do not belong there. A large value of ℓ will kill these improper oscillations most effectively but at the cost of making the transition region very wide which is also incorrect. Experience has shown that $\ell = 2\Delta R$ will stop the fake oscillations reasonably fast without spreading the shock transition over more than about 4 zones.

One can also express q in terms of $\frac{\partial v}{\partial t}$ rather than $\frac{\partial u}{\partial r}$ and Richtmyer suggests to use the formula

$$q = \frac{(\rho_0 t)^2}{V} \left(\frac{\partial V}{\partial t}\right)^2 , \frac{\partial V}{\partial t} < 0$$
 (1.5-5)

with

$$t = a \left(\frac{r}{R}\right)^2 \Delta r \qquad (1.5-6)$$

so that the transition region covers the same number of zones near the center and further away from it. The numerical factor a should again be approximately 2.

In differencing either Eq. (1.2-5) or (1.5-5) one is led to expressions at half integral times. To obtain the acceleration in Eq. (1.5-1) it should be known at t^{1} but to achieve that, one would have to use an implicit routine. In this case that is not worthwhile since the use of q is an artifice anyway and it is customary to have q lag half a time step behind. In the energy equation (1.5-3) q is automatically in step.

The total energy which is obtained by summing the kinetic and internal energy within the fireball and the energy carried away by radiation should always stay at a constant level. The internal energy should in principle contain a part due to radiation but as mentioned in section 1.1 this does not amount to much. A trivial point, but one which must nevertheless be kept in mind is, that one should only count the excess over the energy in the ambient unheated air; otherwise the nominal energy would grow with the volume of the fireball.

It is important to keep track of any violations of energy conservation which may creep in through the use of finite difference schemes. Any program should therefore contains a routine for checking energy conservation.

The point at which R.H. goes beyond standard methods comes with the calculation of radiative transfer. The various methods require the evaluation of certain space integrals before one can calculate the energy deposition in a specified zone. Because of the very strong temperature dependence of the integrands these integrals depend critically on the radial dependence of the temperature. The common method of approximating

this dependence by assuming constant values of the temperature within the zones may lead to serious errors. An attempt to correct these has been made by Hillendahl (1954).

We shall present the analysis for the plane case which is formally easier. The transition to spherical geometry can be made later and requires only minor changes which are rather obvious. The starting point is Eq. (1.4-12) but before one has carried out any frequency averaging. Thus the line character is still preserved and μ_{V} and I_{V} are rapidly changing functions of frequency. Integrating Eq. (1.4-12) across the zones which are separated by the interface at R_{I} one finds for the outgoing and ingoing stream (represented by the upper and lower sign

$$I_{v \pm ,i} = I_{v \pm ,i \mp 1} = \frac{-\frac{3}{2} \Delta_{v,i} \mp \frac{1}{2}}{\underbrace{+\frac{3}{2}}} \int_{v,i}^{\widetilde{\tau}_{v,i} \mp 1} e^{-\frac{3}{2} \Delta_{v,i}'} d\widetilde{\tau}_{v}'$$

$$(1.5-7)$$

$$\Delta_{\vee,i}' = |\widetilde{\tau}_{\vee,i} - \widetilde{\tau}_{\vee}'| \; ; \; \Delta_{\vee,i+1/2} = |\widetilde{\tau}_{\vee,i} - \widetilde{\tau}_{\vee,i+1}'|$$
 (1.5-8)

To carry out the integral we use the first two terms of the power expansion

$$\mathbf{B}_{\mathbf{v}}^{'} = \mathbf{B}_{\mathbf{v},\mathbf{i}} + \left(\frac{\mathbf{d}\mathbf{B}_{\mathbf{v}}}{\mathbf{c}\widetilde{\tau}_{\mathbf{v}}}\right) \left(\widetilde{\tau}_{\mathbf{v}}^{'} - \widetilde{\tau}_{\mathbf{v},\mathbf{i}}\right) + \dots$$
 (1.5-9)

and obtain

$$I_{\nu \pm, i} = I_{\nu \pm, i \mp 1} e^{-\frac{3}{2} \Delta_{\nu, i \mp 1/2}} + B_{\nu, i} \left(1 - e^{-\frac{3}{2} \Delta_{\nu, i \mp 1/2}} \right)$$

$$\pm \frac{2}{3} \left(\frac{dB_{\nu}}{d\tilde{\tau}_{\nu}} \right) \left[1 - \left(1 + \frac{3}{2} \Delta_{\nu, i \mp 1/2} \right) e^{-\frac{3}{2} \Delta_{\nu, i \mp 1/2}} \right]$$
(1.5-10)

Integrating over frequency we obtain formally

$$I_{\pm,i} = I_{\pm,i\mp 1} \quad Z_{\pm,i} + \left(B_i \quad 1 - A_{\pm,i}\right) \pm \frac{2}{3} \left(\frac{dB}{d\tau}\right) \quad W_{\pm,i}$$
 (1.5-11)

where

$$I_{\pm,i} = \int I_{\nu \pm,i} d\nu \qquad (1.5-12)$$

$$Z_{+,i} = \int \frac{I_{v+,i}}{I_{+,i}} e^{-\frac{3}{2}\Delta,i+1/2} dv$$
 (1.5-13)

$$A_{\pm,i} = \int \frac{B_{\nu,i}}{B_i} e^{-\frac{3}{2}\Delta_{\nu,i} + 1/2} d\nu$$
 (1.5-14)

$$W_{\pm,1} = \int_{\begin{pmatrix} \frac{dB}{d\tau} \\ \frac{dS}{d\tau} \end{pmatrix}_{i}}^{\begin{pmatrix} \frac{dB}{d\tau} \\ \frac{dS}{d\tau} \end{pmatrix}_{i}} \left[1 - \left(1 + \frac{3}{2} \Delta_{\nu,1} + \frac{1}{2} \right) e^{-\frac{3}{2} \Delta_{\nu,1} + \frac{1}{2}} \right]$$
(1.5-15)

and where B_i is the integrated intensity

$$B = \int B_{v} dv = \frac{\sigma}{\pi} T^{4}$$
 (1.5-16)

at the point R_i . No limits of integration have so far been specified and one is free to divide the spectrum into any set of frequency intervals. As a first approximation Hillendahl used the entire spectrum without subdividing it.

Before Eq. (1.5-11) can become operational one has to define the average optical depth $\tilde{\tau}$ which enters in the derivative $\frac{dB}{d\tilde{\tau}}$ and one has to face the difficulty of an unknown ratio $I_{\tilde{\tau}}/I$ entering into the definition of Z.

The procedure devised by Hillendahl for obtaining an average for $\tilde{\tau}$ is specifically intended for use with finite zone sizes. The prescription is designed to keep the emissivity of a zone of constant density and temperature unchanged if one replaces the frequency dependent optical depth $\Delta \tilde{\tau}_{ij} = \mu_{ij} \Delta R$ by its average $\Delta \tilde{\tau}$. Thus, i.e., by making this substitution in the exponent of Eq. (1.5-14) one is led to

$$A = \int \frac{B}{B} e^{-\frac{3}{2}\mu_{\nu}\Delta R} d\nu = e^{-\frac{3}{2}\Delta T}$$
 (1.5-17)

We note that the factor $\frac{B_{V,1}}{B_1}$ in Eq. (1.5-14) is taken at the edge of the zone. Since this ratio varies only very slowly with T we will take it at the center of the zone instead, so that there is only one emissivity A per zone and not different ones for the ingoing and outgoing ray. In the above integral for A one can clearly replace the rapidly varying exponential by a smooth one in which one uses the slab absorption coefficient $\overline{\mu}_V$ as defined in Eqs. (1.3-2) and (1.3-3). In

the new expression

$$A = \int \frac{B_{\nu}}{B} e^{-\frac{3}{2}\vec{\mu}_{\nu}} \Delta R d\nu$$
 (1.5-18)

the zone with ΔR enters not only as a factor in the exponent but also as one of the variables in $\widetilde{\mu}_{\nu} = \widetilde{\mu}_{\nu}(\rho,T,\Delta R)$. Various methods for calculating $\widetilde{\mu}_{\nu}$, which apply when the dominant absorption is molecular, atomic or free-free, have been described in (2). The results are tabulated in and have been used in the above integral to obtain $A(\rho,T,\Delta R)$. It is convenient to express this in terms of a mean absorption coefficient $\widetilde{\mu}_{\rm H}(\rho,T,\Delta R) = -\frac{2}{3}\ln A/\Delta R$ and to write:

$$A = e^{-\frac{3}{2}(I_{H} \Delta R)}$$
 (1.5~19)

Depending on ΔR as well as on ρ and T, $\overline{\mu}_H$ differs from the Rosseland mean $(\overline{\mu}_R)$ and the Planck mean $(\overline{\mu}_P)$ which depend only on ρ and T.

For the function $\,W\,$, which should in principle be calculated from Eq. (1.5-15) we use an approximation and set

$$W = 1 - \left(1 + \frac{3}{2} \bar{\mu}_{H} \Delta R\right) e^{-\frac{3}{2} \bar{\mu}_{H} \Delta R}$$
 (1.5-20)

which looks reasonable and leads to the correct energy deposition when $\mu_H^- \Delta R$ is large enough that one can use the diffusion approximation. As in the case of A we are using only one W per zone.

The coefficients $\mathbf{Z}_{\underbrace{+},i}$ as defined by Eq. (1.5-13) depend on the unknown spectral distribution $\mathbf{I}_{\bigvee \underbrace{+},i}/\mathbf{I}_{\underbrace{+},i}$ at the point i. Since the difference equations (1.5-11) apply only to the integrated intensities $\mathbf{I}_{\underbrace{+},i}$ their solution does not give us any direct information about the spectral distribution and we must rely on educated guesses for the latter. The basic clue which we follow is that the radiation at some point i comes by and large from a zone (the radiating zone) which lies an optical depth unity behind that point in the direction where the stream comes from. The distribution has therefore the distribution of a blackbody source at the temperature \mathbf{T}_R of the radiating zone but modified by selective absorption in the intermediate zones.

When we apply this model we distinguish 3 typical situations for the ingoing and 3 for the outgoing stream. This comes from the peculiar temperature dependence of mean absorption coefficients. For all these means, whether we talk of $\bar{\mu}_R$, $\bar{\mu}_P$ or $\bar{\mu}_H$, one can distinguish a central temperature range where $\bar{\mu}$ is large and the low and high. The ranges where it drops to very low values.

The temperature profile of a fireball is typically a monotonically decreasing curve. While the central temperature is still large this profile looks like the sketch in Fig. 1-2 with a central section where $\vec{\mu}$ is small so that radiative transfer maintains a nearly constant temperature. Beyond that plateau comes a more opaque region with a relatively large temperature gradient and at the point where the temperature has dropped to where the air is again transparent the profile becomes again more level. Superimposed on this one finds usually

some structure due to shocks or other disturbances but this does not alter the main conclusion that there are 3 distinct regions.

In the opaque intermediate region the spectral distribution I/I can be identified with that of a blackbody at the local temperature so that one is led to $Z_{\downarrow} = Z_{-} = A$. In the interior region the radiation comes mainly from its boundary where it is in contact with the opaque region. Since the temperature profile is quite level one does not commit a significant error by identifying I/I again with the local B/B which varies much less with T than either B or B itself. As in the previous case we therefore use the approximation $Z_{\downarrow} = Z_{-} = A$.

Only in the outer section do we have to make a more careful choice of I_{γ}/I and only for the outgoing stream. The ingoing stream carries essentially no energy and it doesn't matter much what one does. The simplest choice is again to set $Z_{\gamma} = A$.

The point where it really counts that our model should adequately represent the true physical nature of radiative transport comes when we consider the outgoing stream as it emerges from the opaque region. The absorption to which this stream is subjected is largely due to molecules. In calculating which parts of the spectrum are and which are not transmitted one is greatly helped by the character of the energy dependence of $\vec{\mu}_{\nu}$. Fig. 1-3, which is a typical example taken from SACHA type calculations shows that $\vec{\mu}_{\nu}$ is a very rapidly rising function of frequency. From this graph we find by inspection that a zone of about 10 m thickness would transmit practically no photons above 5 eV and practically all photons below 3.8 eV. Approximately one can assume that there is a critical photon energy $h_{\nu_{c}}$ in the

vicinity of 4.4 eV at which the transmitted flux is sharply cut off. For a stream which starts out as a blackbody spectrum $\frac{B}{B} = b_{V} (T_{R})$ one finds that the transmitted fraction of the energy is a known integral

$$L(T_{R}, hv_{c}) = \int_{0}^{v_{c}} b_{v}(T_{R}) dv$$
 (1.5-21)

The procedure for determining Z_{\downarrow} for any zone i=1/2 outside the opaque region starts out with finding the radiating zone which belongs to it and whose temperature has been designated as T_R . We assume that the model spectrum I_{\downarrow} starts out there as a blackbody spectrum B_{\downarrow} (T_R). Any of the zones through which it passes will not transmit any radiation above its cut-off energy h_{\downarrow} and the model spectrum which finally enters into zone i=1/2 remains $I_{\downarrow}=B_{\downarrow}$ (T_R) up to the lowest cut-off energy h_{\downarrow} encountered by the stream but is reduced to $I_{\downarrow}=0$ above h_{\downarrow} in . If zone i=1/2 has a lower cut-off h_{\downarrow} c, i=1/2 we set therefore

$$Z_{+,i} = \frac{L(T_R h_{C,i-1/2})}{L(T_R h_{V_{min}})}$$
 (1.5-22)

If the cut-off energy is equal to or larger than $h\nu_{min}$ the model spectrum would lead to $\mathbf{Z}_{\mathbf{t},i} = 1$ which can't be right and indicates that the sharp cut-off approximation is too crude to fit this case. An upper limit for \mathbf{Z} can be obtained by setting it equal to the local \mathbf{A} since the bulk of the true spectral distribution lies at somewhat higher energies than the local blackbody spectrum. Thus the true $\mathbf{I}_{\mathbf{v}}$ will suffer somewhat more absorption than $\mathbf{B}_{\mathbf{v}}$ which leads to the inequality

 $Z < \lambda$.

The modifications which are necessitated by going to spherical symmetry can be written down without difficulty. One only has to note that Eq. (1.4-14) differs from Eq. (1.4-12) by the factor R² which multiplies both I and B. Clearly this factor must enter when one modifies the corresponding set of Eqs. (1.5-11). As we write down the modified set we incorporate the result that the coefficients A and W depend only on the zone and not on the direction of the stream, and obtain:

$$R_{i}^{2} I_{\underline{+},i} = R_{i+1}^{2} Z_{\underline{+},i} I_{\underline{+},i+1} + R_{i}^{2} B_{i} \left(1 - A_{i+1/2}\right) \pm \frac{2}{3} R_{i}^{2} \left(\frac{\partial B}{\partial \hat{\gamma}}\right)_{i} W_{i+1/2}$$
 (1.5-23)

The A and W are as before given by Eqs. (1.5-19) and (1.5-20) and $Z_{\pm,1}$ is nearly always equal to $A_{1\pm1/2}$ except in a few zones just outside the opaque region where one should use Eq. (1.5-22).

In the two stream model the fluxes differ from the intensities by a factor π as shown in Eq. (1.4-11). The relation carries over when one performs the frequency radiation so that

$$F_{\pm,i} = \pi I_{\pm,i}$$
 (1.5-24)

Having determined the intensities by solving the set of Eqs. (1.5-23) one is therefore ready to evaluate $-\nabla \cdot \vec{F}$ which according to Eq. (1.2-8) gives us the radiative heating rate. Thus one obtains:

$$\dot{Q}_{i+1/2} = \frac{3}{R_{i+1}^3 - R_i^3} \left[R_i^2 (F_{+,i} - F_{-,i}) - R_{i+1}^2 (F_{+,i+1} - F_{-,i+1}) \right]$$
 (1.5-25)

which is the final equation of the two stream method. Before leaving it let us take a somewhat closer look how this equation handles a zone in the opaque region. In any region where one replaces Z_{μ} and Z_{μ} by A one finds that Eq. (1.5-23) reduces to:

$$I_{\pm,i} = B_i \pm \frac{2}{3} \begin{pmatrix} dB \\ d\hat{\gamma}_i \end{pmatrix} W_{i + 1/2}$$
 (1.5-26)

from which one obtains in turn

$$F_{+,i} - F_{-,i} = \frac{2\pi}{3} \left(\frac{dB}{dT} \right)_i \left(W_{i-1/2} + W_{i+1/2} \right)$$
 (1.5-27)

In an opaque region this simplifies still further because the factor $e^{-\frac{\lambda}{2}\vec{\mu}_{H}\Delta R}$ in Eq. (1.5-20) becomes negligible compared to unity. One can therefore set W=1 and obtains

$$F_{+,i} - F_{-,i} = \frac{4\pi}{3} \left(\frac{dB}{dT} \right)_{i}$$
 (1.5-28)

and since $B = \frac{\sigma}{\pi} T^4$ this is clearly equivalent to Eq. (1.2-9) i.e., to the basic equation of the diffusion approximation. This is of course no surprise because we picked $\cos \theta = \frac{2}{3}$ precisely in order to achieve this equivalence.

In an opaque region, the diffusion approximations contains all the physics needed for the calculation of radiative energy transfer and it is superior to other methods as far as speed and possibly accuracy of calculation are concerned. Hillendahl's formulation of the two stream method automatically leads to this procedure. More elaborate methods such as the multiple ray technique do not, but it is of course possible to switch to a diffusion theory calculation when one considers an opaque region. This is indeed done in the SPUTTER program.

In the form outlined in this section the two stream method is not applicable at high altitudes where the ambient air has a density less than about $\rho/\rho_0 = 10^{-4}$. At such densities the air becomes transparent in the spectral region where B, has its maximum and the fireball has no opaque region. There is still a significant amount of radiation at frequencies above and below this window but one has to devise new methods for dealing with this problem. At these altitudes the mathematical difficulties are further aggravated by the non-spherical energy deposition which takes place when the mean free path of x-rays get large compared to the atmospheric scale height. Eventually, say at about $\rho/\rho_0 \approx 3 \times 10^{-6}$ the air becomes transparent in all parts of the spectrum and thermal radiation is no longer a significant factor.

References

Chandrasekhar, S., Radiative Transfer, Dover, 1960.

Hillendahl, R.W., LMSC Report 3-27-64-1, DASA 1522, 1964.

Magee, J.L. and J.O. Hirschfelder, Chapter 3 of Los Alamos Report LA 2000, 1953.

Marshak, R.E., Phys. Fl. 1, 24, 1958.

Mustel, E.R., in Theoretical Astrophysics, by V.A. Ambartsumian, ed., Pergamon Press, 1958.

Richtmyer, R.D., Difference Methods for Initial-Value Problems, Interscience, 1957.

Von Neumann, J. and R.D. Richtmyer, J. of Appl. Phys. 21, 232, 1950.

Churchill, D.R., S.A. Hagstrom and R.K. Landshoff, The Spectral Absorption Coefficient of Heated Air, JQSRT 4, 291, 1964.

FIG. 1-1 RAYS CONVERGING UPON ZONE 4 WHICH ARE USED TO COMPUTE I_{ν} AS FUNCTION OF ANGLE

FIG. 1-2 SKETCH OF TEMPERATURE PROFILE IN A FIREBALL INDICATING OPTICAL PROPERTY OF THE AIR

FIG. 1-3 TYPICAL ENERGY DEPENDENCE OF ABSORPTION COEFFICIENT

Chapter 2. THE PHYSICS OF FIREBALLS

2.1 Introduction

A nuclear explosion in the atmosphere creates a fireball whose development depends in large measure on the physics of hot air. All of the previously discussed properties of hot air and all of the mechanisms for energy transport developed in previous chapters are a part of nuclear fireball physics. However, these energy transforming and transporting relations and the detailed knowledge of the properties of air find considerably wider application. They have or can contribute to the study of stellar dynamics, the nature of stellar atmospheres, the radiation from various astrophysical sources, and they can aid in the study of hypervelocity flight, upper atmosphere physics, aurora, and other atomic and molecular physics problems which involve high temperatures.

It is certainly the case that the information presented in these previous chapters makes the conditions created in a nuclear explosion more understandable. Some knowledge of air heating mechanisms, of air excitation, of radiation transport, and of hydrodynamics, of absorption properties, and of the thermodynamics of air is necessary before a full description of a nuclear explosion can become more than heuristic.

Much of the present knowledge about fireballs has been gleaned from test observations, but by far the greatest detail has come from numerical computer calculations, as have the quantitative estimates of fireball interior dynamics which appear in this chapter. Calculations of widely varying detail and sophistication now abound, and it is not the intention in this chapter to review such results or analyze computing methods. Most current calculations rely for their measure of success on the ster to which the physical concepts and properties covered in the

preceding chapters have been taken into account in a mathematical model. The principal objective of this chapter is to outline the physical features of nuclear fireballs and their thermal radiations, stressing where possible those factors which are most general and which provide the best understanding on which to base predictions and extrapolations. The approach adopted is to begin by considering a small yield explosion (1 kiloton) at sea level and to describe the sequence of events which occur unencumbered with interactions from the earth's surface or inhomogeneous environments. This development will then be extended to higher yields and altitudes. There will be no attempt at completeness and no great concern for quantitative rigor, but it is intended to display as much as possible the current understanding of the physics of nuclear fireballs.

2.2 One kiloton at sea level

A one kiloton explosion in a sea level atmosphere provides an appropriate example for an initial examination of the sequence of events that constitute a fireball history. The now familiar usage of kilotonage and megatonage refers to the total energy release in a nuclear explosion with the usual metric prefixes for a thousand or a million and with the understanding that a ten of high explosive – TNT – releases 10^9 calories of effective energy, i.e., one gram of TNT is taken as equivalent to one kilocalorie or 4.185×10^{10} ergs.

For any nuclear explosion the sequence of events is remarkably complex. In following its development for this one kiloton sea level explosion, the reader may appreciate that the present understanding,

although not complete, has become quite detailed and much of it has grown directly from the material reviewed in this series of volumes.

The nuclear energy is released in an extramely short time - a small fraction of a microsecond - and always in a small mass and volume. It is the properties of this small mass, constituting the weapon itself and its carrier that determine the early source of energy for the fireball, and some of these properties may influence the character of the later thermal radiation. Everything starts in this nuclear source and all of the initial radiations - gamma rays, neutrons, and x-rays - are generated by it. However, the air or other immediately surrounding material absorbs almost everything emitted within a few hundred meters and the nature of the observable fireball is largely determined by the properties of this surrounding air. For our example of one kiloton in a sea level atmosphere, the air within a few feet of the weapon stops nearly all of the x-rays, and the prompt gamma rays and the neutrons have removal mean free paths of about 400 and 240 meters, respectively. These rapid absorptions make knowledge of specific details of the nuclear device largely unnecessary in describing the fireball phenomena. Consequently, we shall be able to proceed without reference to classified aspects of nuclear weapons and yet without significantly truncating our description of the fireball and its thermal radiations.

The fraction of the energy which may be radiated out of the weapon as x-rays before it begins to blow apart under hydrodynamic action depends largely on its yield-to-mass ratio and to some extent on other construction details. This fraction may range from almost nothing at all (or a very small percent) to a significantly more than 80% of the total

energy generated (Glasstone, 1962; Brode, 1964 b).

Before the air has had a chance to re-radiate any of the energy deposited by the x-rays, the bulk of this energy is concentrated in a relatively small sphere and at a temperature which is typically of the order of several million degrees K. There is, however, a small fraction of x-rays, from the high frequency end of the spectral distribution function, which penetrates to a distance of perhaps a few meters, and heats this shell to temperatures in the 10,000°K range. Energywise this heating is insignificant but it makes a contribution to the fireball phenomenology which is of some interest. By consulting the table of mean free paths on p. 447 of (3) we discover that this shell is opaque. As long as it exists such an opaque shell hides the much hotter sphere on its inside and all that can be observed is the radiation from the shell itself, which is comparatively dim.

This phase is always very short-lived and terminates when the radiation from the center floods into the shell and heats it up. During the next phase the fireball can be characterized rather well as an extremely high temperature sphere of air surrounding the nuclear source and showing a fairly sharp temperature drop at its edge. The interior of this high temperature sphere m y be at a fairly uniform temperature, and the whole may contain quite a large fraction of the nuclear explosion energy in the form of heat. Some small fraction always remains in the dense bomb vapors, but most of the early phases of the fireball development are quite independent of the details of the weapon design. The subsequent explosion and radiation behavior can be derived almost entirely from the properties of this hot air. Such a model will be less true in high altitude or space

DASA-1917-3.

environments where the immediate external surroundings fail to contain as thoroughly the explosion energy because they lack sufficient opacity or optical thickness.

Throughout the explosion development, radiant energy is emitted by the fireball. That fraction which is transmitted by the cold exterior atmosphere is called thermal radiation. The rate of energy emission, or radiated power, has shape as shown in Fig. 2-1. If the opaque fringe layer has been penetrated early enough and if the instruments used for measuring the thermal power have sufficient time resolutions, the signal will include the early peak which is shown as a dotted line. Otherwise, one sees the two-peak curve which is drawn as a full line. The explanation of this curve is an important objective of any theory.

Although it is a rather simple exercise, it is instructive to note the rather small size of air volumes required to contain the large amounts of energy at the high temperatures created by the absorption of the initial flux of x-rays. The following table indicates the radii of spheres for a few examples of energy content and temperatures. These temperatures, of course, are too high for the air to remain that hot for very long, but in the immediate first fractions of a microsecond these radii are representative of the sizes and temperatures of the earliest (x-ray) fireballs.

Size of Spheres of Sea Level Air Necessary to Contain 1 KT, 1 MT or 100 MT of Energy at Various Uniform Temperatures

Temperature Millions of K	1 KT	1 MT	100 MT
7 1/2	3/4 m	7.5 m	35 m
6	1	10	46
5	1 1/4	12	5 7
4	1.6	16	74
3	2.1	21	100

In a very few microseconds, these fireballs would have grown much larger and much less hot by the continued diffusion of radiation into the external cold air.

For most considerations these earliest phases of x-ray deposition and re-radiation remain both obscure and of little probable importance. When the flux of source radiations has been sufficiently intense as to completely strip the electrons from the air ions, then that volume of plasma can offer only Compton scattering as further resistance to the x-ray flux or as opacity to its own re-radiation. The most appropriate physical model for the continued expansion of this low emissivity, high energy density region is neither by hydrodynamics (which requires relatively long times to accelerate masses of gas) nor by radiation diffusion which presumes many interactions over any appreciable temperature gradient. The growth of such a heated volume is a radiative process which can be characterized roughly by its emissivity, temperature, and volume together with the heat capacity of the external cold air. The single further physical characteristic necessary to include in a growth rate prediction is the fact that the surrounding air is essentially opaque to the radiations from this hot air. Detailed knowledge of the opacity between this blackness at cold temperatures and its transparent nature at sufficiently high temperature is at this point unnecessary. Thus, the rate of energy lost, expressed as a grey-body loss rate, is the rate at which energy is deposited in the cold air at the surface of the high temperature sphere, viz.,

$$\frac{dW}{dt} = 4 \pi R^2 \sigma \pi^4 e , \qquad (2.2-1)$$

in which e is the emissivity. T the temperature of the hot isothermal sphere. R its radius, and dW/dt the rate of energy change. When en appropriate specific heat is introduced, a differential prescription for the volume growth and temperature drop results.

Following this approximation, one can express the rate of growth, dR/dt, in the same terms as

$$\frac{dR}{dt} = \frac{e\sigma T^4}{E_0} , \qquad (2.2-2)$$

in which E represents the internal energy per unit mass, and p the density of the air just behind the front, while T is the inner temperature. The usefulness of this approximation in estimating the rate of growth of a partially transparent fireball is largely dependent on the accuracy with which average or "effective" interior temperatures, specific energies, and emissivities can be chosen. During the most rapid expansion, the interior is likely to be considerably non-isothermal, i.e., the interior may be more than twice as hot as the region just behind the front. The dependence on the fourth power of the temperature makes this rate quite sensitive to such differences. The most uncertain quantity is likely to be the effective emissivity, since it represents some average over the emitting region, and may also disguise some geometric dependence - not all the radiation being emitted radially. Appropriate choices of effective emissivity and temperature may make this simple formula appropriate for predicting the growth rate during the subsequent radiation diffusion phase.

The temperature profiles illustrated in Fig. 2-2 are typical of this early radiative growth for a one kiloton sea level burst. The curves represent the air temperatures as a function of radius for six selected instants in time. The dashed curve indicates the shock temperatures. It is the lowest temperature within the fireball at each of these times. After about 15 microseconds, the radiation diffusion growth becomes so slow that a shock wave begins to form, to compress the newly engulfed air and heat it to a temperature substantially below that of the radiatively heated inner sphere. With either the early radiative expansion or the subsequent adiabatic expansion behind the forming shock front, the inner temparatures drop with time in an approximately exponential fashion. During this early growth, the power radiated or the thermal radiation to points outside the fireball is not a significant fraction of the energy it contains. The time is short, the size is small, its opacities are high, and the fireball exterior so well shields the hotter core that the radiation out is less than half a per cent of the available energy.

Of course, the radiative properties are influenced by the air density as well as by the temperature, and the gradual formation of the shock causes an appreciable increase in the air density at the fireball surface (as much as tenfold increase at sea level). In the process, the outer surface of the fireball passes from a rather diffuse radiation-driven front to a sharp, dense shock front. Fig. 2-3 shows some typical early density profiles, in which the shock is seen to grow and the fireball interior is seen to expand to much less than the external ambient density.

Reference to the opacities for air as given in Volume 3 will

confirm that the shock front at these early densities and temperatures is quite opaque. For instance, at the 250 µsec time of Figs. 2-2 and 2-3, the emission mean free path for a shock temperature of 30,000 K and a density of 8 times normal is about 0.01 cm. The fireball will expand to much lower temperatures and much larger size before anything behind the shock front will become visible. It is during this period that the thermal radiation rate decreases toward a minimum and the fireball appears to grow dimmer. (Fig. 2-1, before one millisecond.)

If the fireball growth rate defined in Eq. (2.2-2) is computed for the earliest time illustrated in the temperature profiles of Fig. 2-2, assuming for the moment an emissivity of unity, the rate is about 4×10^8 cm/sec. This rate is too high by an order of magnitude in comparison with results of the numerical calculation example. The calculation showed that the expansion at this 1.2 microsecond time was still being determined by radiation diffusion. The calculation, however, also treated the earliest times by diffusion, and not (as suggested above) by transport within a transparent heated region with a radius less than one mean free path for the emitted radiation. The appropriate mean free path for diffusion is the so-called Rosseland average, hereafter abbreviated as Rmfp. The Rmfp is defined as

$$\lambda_{R} = \frac{\int_{0}^{\infty} \lambda_{v} \frac{dBv}{dT} dv}{\int_{0}^{\infty} \frac{dBv}{dT} dv}$$
 (2.2-3)

in which λ_{ν} is the spectral mean free path, B_{ν} (T) the Planck function, and $\int_{0}^{\infty} d\nu$ denoting integration over all frequencies. The Rmfp used in

the calculation approaches the Compton limit at high temperatures, however, and allows the rate of growth to be equally fast. In fact, without special consideration for relativistic effects, the diffusion growth can exceed even the speed of light.

At the earliest time illustrated in Figs. 2-2 and 2-3, the fireball has grown to more than one mean free path in radius which reduces the effectiveness of the inner temperature in driving the continued expansion. A more heuristic interpretation of the growth rate formula allows the emissivity to be interpreted as a resistance parameter which reduces the growth rate to less than the blackbody rate for that central temperature. An alternative interpretation treats this efficiency factor as one which compensates for the use of the shielded innermost temperature whe the effective temperature is at some radial position further out and is lower in value, i.e., $e \approx (T_0/T_i)^4$ where T_0 is the effective outer temperature and T, is the screened central temperature. A crude measure of this correction and of an appropriate value for this viscosity constant might be the ratio of the Rmfp to the radius of the front, i.e., the reciprocal of the number of mean free paths between the radiating interior and the front. For the diffusion approximation, such a correction might better be expressed in terms of the local temperature gradient as well.

The inner temperature of our example calculation at 1.2 microseconds is around 10^6 °K (Fig. 2-2) and the density is still normal (1.29 x 10^{-3} gm/cm³) (see Fig. 2-3). The Rmfp is a bit less than one meter, while the radius is about 3.2 meters. Taking e to be 1/3.2 brings the growth rate down to about 1.3×10^8 , which is still high compared to that for the numerical calculation. The mean free path decreases rapidly as the temperature falls below 10^6 °K, however, and since the front at $1.2 \, \mu \rm sec$ is at around half the interior temperature, a more appropriate mean free path might be between 0.92 (the value at 10^6 °K) and 0.12 (the value at 5×10^5 °K). Taking the average of their reciprocals, i.e., averaging the opacities, gives about 0.2, so that the correction factor, e, becomes 0.2/3.2, and the corrected rate becomes $\sim 3 \times 10^7$ which agrees well with the growth rate at that time from the detailed diffusion calculation.

The most appropriate specific energy and density values for use in the growth rate approximation are those just behind the front of the wave, since it is to those conditions that the cold air is to be heated, i.e., it is that heat capacity that will absorb the subsequent radiation energy flux. Fig. 2-4 displays the specific energy profiles for this one kiloton example for the same time as those of Figs. 2-2 and 2-3.

It is interesting to test the simple growth rate formula (Eq. 2.2-2) against the fireball growth speed that results from the numerical calculations. The calculation should show a rate faster than hydrodynamic shock growth until the radiation growth has fallen below the speed of hydrodynamic motions, and this simple form should show a comparable rate until that time, then a much slower rate as the shock wave takes over.

Fig. 2-5 compares these rates for the same time period as covered by the profiles of Figs. 2-2, 2-3, and 2-4 and beyond. In these comparisons, several approximations are represented by dashed curves, while the numerical calculation rate is shown as a solid curve. The rate calculated as blackbody at the inner temperature, shown as circled points, is clearly too high at all times. Even when the lower temperatures of the outer edge of the hot region are used to determine a blackbody rate (the triangles Δ of Fig. 2-5), the rate is at all times too high.

When the radiative resistance parameter is represented as the ratio of the Rmfp to the hot region radius, using the Rmfp evaluated at the hot interior temperature, the modified rate is still high at the early times when diffusion is still dominant (the square points of Fig. 2-5). It drops precipitously as the interior cools and becomes opaque at just the times when a shock begins to form (at about 10 microseconds in this example). Although this approximation is not correct in value, the sharpness of the decrease as hydrodynamics takes over can make it a useful indicator of the transition onset, and so a reasonable prediction tool.

The more accurate estimate of the early diffusion growth rate, involving the averaged opacity between interior and front, is also more subject to error due to the difficulty in judging appropriate front conditions. These estimates are indicated in Fig. 2-5 by diamonds. These values are closest to the numerical calculations rate of growth at the earliest times when diffusion is the dominant mechanism. The earliest profile front temperatures are difficult to define because the front is not sharp. The rate of growth estimated at these approximate front temperatures with

a corresponding resistance parameter leads to the estimates indicated by the triangles in Fig. 2-5. Again, the shock formation times is denoted by a sharp drop in the rate estimated in this manner. Both of the blackbody rate curves (upper curves of Fig. 2-5) show a fairly sharp drop at shock formation time. Such a simple but uncertain formula may be preferable to the use of the radiation resistance notion in determining shock formation radius and time. Since in this range of temperature and densities, the Rmfp decreases with decreasing temperature as about the fourth power of the temperature, using the Rmfp as a correction factor then means that the adjustment parameter is as sensitive to temperature changes at the blackbody rate itself. Such critical opacity dependences may provide some sharp distinctions in estimates but at the same time present some hazards in choosing effective temperatures too casually.

After shock formation, the rate of growth of the fireball should follow the shock growth itself until the shock cools to transparency. The shock speed for a strong shock is approximately given by

$$\dot{R}_{s} \sim \sqrt{\frac{(\dot{Y}_{s}^{+1})P_{s}}{2\rho_{Q}}}$$
 (2.2-4)

where $\gamma_s = (P_s/\rho_s E_s) + 1$, ρ_o is the ambient air density and P_s , ρ_s , and E_s are shock front values of pressure, density and internal specific energy. This approximation is shown in Fig. 2-5 by the symbol \triangleleft . For the earliest times, the expansion is faster than this shock rate, but at later times it corresponds well.

Using the particle velocities (u_s) at the front and the density at the front (through the mass conservation relation) provides the relation

$$\dot{R}_{S} = \frac{u_{S}\rho_{S}}{\rho_{S}\rho_{O}} \tag{2.2-5}$$

The rate derived from corresponding values of u_s and ρ_s for the numerical calculation is indicated in Fig. 2-5 by triangles pointing down (∇) . After nuclear shock catch-up this curve coincides with the solid curve for the directly computed rate.

In the temperature region of interest, a shock can be pictured as a sharp gasdynamic jump imbedded in a region of radiation-induced temperature variation (Fig. 2-6). The internal structure of this type of wave has been investigated extensively by Zeldovich (1957), Raizer (1957), and Heaslett and Baldwin (1963), to name a few, all of whom employed the equations of steady continuum gas dynamics with gray radiative transport.

The important feature of this picture is the temperature precursor which runs ahead of the sharp front. This precursor is created by the radiation from the high temperature region behind the sharp front. One can estimate the temperature of the precursor by equating the power radiated by this front with the rate of heating in the precursor. In the resulting relation

$$\rho u e_p = \sigma T_s^4 \qquad (2.2-6)$$

 ρ , u and e_p stand for the ambient air density, the shock velocity and the internal energy of the air in the precursor. From the latter quantity and the equation of state, one can then obtain the temperature of the precursor. Using the Hugoniot relations (Section 5.1 of (4)) and a simple analytic fit

to the equation of state, one obtains at sea level the relation

$$T_p = 3.45 \times 10^{-7} T_s^{2.17}$$
 (2.2-7)

For a shock temperature of 10^5 OK we calculate a precursor temperature of 23,000 K and note that a millimeter layer of air at that temperature is opaque. Up to the time when the shock temperature drops to 10^5 OK all the thermal radiation comes therefore from the precursor. To make a quantitative evaluation of the power radiated during this phase requires a more detailed analysis of the radiative transfer problem. Qualitatively one can see that the power must decrease with time and this is the decrease following the early peak in Fig. (2-1).

As the shock temperature drops below 10⁵ °K, the precursor cools to where it gradually becomes transparent so that the radiation from the shock front begins to shine through. When this happens the power-time curve goes through the minimum which is shown in Fig. 2-1 as the shock precursor minimum (SPM). While the shock front gets more and more exposed, the power rise because of the exposure is eventually compensated by the temperature drop of the shock itself and at that time the power level reaches the maximum which is shown on Fig. 2-1 as the shock exposure maximum (SEM).

During the phase following this maximum the rate of thermal radiation loss from the fireball can be characterized as that from a blackbody sphere at the shock front temperature and of radius equal to that of the shock radius. Although such a rate describes the fireball emission, the power observed at any distance will contain only that fraction which the cold air

outside the fireball is capable of transmitting. To a good approximation, that fraction can be calculated by assuming a simple cut-off in the transmitted spectrum. Values of this fraction $f(T_s, v_c)$ where v_c is the frequency corresponding to a cut-off at 1860Å (representing the edge of the O_2 absorption) are shown as functions of the temperature (T_s) in Fig. 2-7). The fraction is evaluated from a tabulation of the Planck radiation function and its partial integral by Gilmore (1956). The fraction is defined as

$$f(T_g, v_c) = \frac{15}{\pi^4} \int_0^{x_c} \frac{x^3 dx}{e^{x_{-1}}}$$
 (2.2-8)

where $x_c = hv_c/kT_s$ and h and k are Planck's and Boltzmann's constants, respectively (h $\approx 6.625 \times 10^{-27}$ erg sec, k $\approx 1.380 \times 10^{-16}$ erg/K).

During this phase which lasts until the shock temperature has dropped to so low a value as to make the shock front transparent, the following simple expression characterizes the thermal radiation rate for an air burst nuclear explosion:

$$P \sim 4\pi R_s^2 \sigma T_s^4 f(T_s, v_c)$$
 , (2.2-9)

in which R_g represents the shock radius, T_g the temperature, σ the Stefan-Boltzmann constant (5.672 x 10^{-5} erg/cm²/deg⁴/sec) and $f(T_g, v_g)$ the fraction passed by the cold air.

Unit optical depth for most frequencies grows longer as the shock front cools, so that emission from hotter air behind the front begins to shine through. The shock front itself becomes fainter and appears to pull ahead of the luminous fireball, a phenomenon which is referred to as the

"breakaway" (Gladstone, 1962, Section 2.110). Because the shock has been carrying the shock-heated air outwards with its expansion, a rather steep gradient in temperature is maintained just behind the front, so that a slight increase in unit optical depth exposes higher temperatures but at no appreciable decrease in radius of effective radiating surface. At this time the power curve goes through the principal minimum (PMIN) in Fig. 2-1.

Fig. 2-8 indicates the geometry of fireball temperatures (in cross-section) at a time somewhat beyond the time of minimum thermal power. While the thermal radiation increases, and while progressively deeper parts of the fireball are exposed, the hydrodynamic expansion dominates so that the visible or apparent fireball size continues to grow. Eventually, the luminous fireball stops expanding and the power output reaches the final maximum (FMAX).

Throughout this radiative and then hydrodynamic expansion of the fireball, right up to the time of minimum light intensity, something less than half of one percent of the total yield has been radiated out of the fireball. Both integrals of the measured power-time data from tests and of the simple expression given above for radiation from the fireball (as determined by shock front conditions) lead to an answer close to 0.44%. In the latter integral, the properties of the shock front are sufficiently well defined by almost any calculation - even those not accounting for radiation transport in the early phases, but necessarily taking account of the real gas properties of air. (e.g., Brode, 1955a,b).

Since the air just behind the shock is much hotter and much less dense than the air at the front itself (see Figs. 2-2, 2-3, and 2-4), the rate of thermal radiation increases rapidly when that air is exposed, until the hottest temperatures at the back of the steep gradient

behind the shock front become visible and are radiating directly to the exterior. Thereafter, as the size of the radiating sphere shrinks and the interior cools, the rate decreases. This is the period in which the fireball history comes closest to the cooling wave notion expressed in a simple form by Zel'dovich, Kompaneets and Raizer (1958) and applied into a fireball theory by Bethe (1964). The notion is that a recognizable and fixed form cooling wave erodes the hot fireball interior, beginning at the exterior and working inwards. After the shock front has become transparent, such a cooling wave process is very likely operating, but it is not at first working into a fixed or uniform temperature or density, and it is not shrinking the fireball. The outward hydrodynamic expansion is still too strong. When the outer regions have all become sufficiently cool and transparent so that the inner radiation-heated region is exposed, then the conditions suggested for a cooling wave are approximated. Even then the temperatures are not constant and the surface area is shrinking rapidly, so that the cooling rate decreases. When this interior sphere has cooled to below about 10,000°K, the whole of the fireball has become relatively transparent, and the subsequent radiation losses are characterized more by a grey body approximation, i.e., characteristic of a volume of air of low emissivity - one of less than unit optical thickness. It may also still be expanding adiabatically, and contributing energy to the shock growth.

Temperature profiles spanning this period from principal minimum through final maximum and on to a transparent fireball are illustrated in Fig. 2-9. For a yield of one kiloton, the cooling wave is less obvious as a wave than as a rather sudden depletion of the hottest interior region. At larger

yields, where more optical thickness is represented at every stage, the progress of a cooling wave from outside toward the center is more easily imagined (Brode, 1964a, Fig. 5, b Fig. 15).

In this rather complex power radiated history of two or three maxima, as illustrated in Fig. 2-1, the final pulse represents a total energy of 30 or 40% of the total yield of the nuclear device. When all the energy is accounted for, including that in the infrared which originates in shock heated air outside the visible fireball and is radiated only very slowly, the fraction may be even larger.

There are several features of this one kiloton explosion that have not yet been mentioned and that are of lesser influence on the thermal radiation and fireball behavior at sea level, but which become relatively more important at other yields or altitudes. One such feature is a second shock wave which originates within the bomb vapors, traverses the early sphere of hot air behind the radiation front, and overtakes the strong shock that forms the fireball surface at later times. This debris or bomb shock is seldom in evidence in sea level explosions, and has lost most of its energy long before it overtakes the main shock, so that it contributes little to the fireball surface or thermal radiation histories. Because the hot interior of the fireball is for most of the fireball expansion a region of long mean free path, it is a region of nearly uniform temperature. When the case shock compresses and heats this air further, some of that heat is promptly re-radiated ahead, forcing this interior shock to behave isothermally rather than adiabatically. This isothermal shock can lose energy very rapidly by this means, and may persist only through the

continuation of its outward momentum.

A history of the radii of this shock and other fronts in this kiloton example is shown in Fig. 2-10. When this debris shock travels outward to the edge of the fireball, it encounters a sharp discontinuity in density. At that point, a reflected shock originates and is returned inward to implode upon the origin. Here again, is a phenomenon which has no consequence for this example, but may be prominent in high altitude events. The vaporized bomb expands along behind this debris shock, but at sea level is not visible until very late - after the second maximum in the thermal power. This bomb debris is not realistically treated in any of the usual calculations, since they invariably assume radial symmetry and allow no mixing or turbulent flow. When it emerges in the transparent fireball at late times, the vaporous debris has become highly turbulent and has evidently mixed with considerable fireball air.

Although Fig. 2-10 indicates a transition from radiation expansion to strong shock expansion, the radiation diffusion does not stop. As the shock brings down the density in the interior air, the opacity of that air decreases also, and the radiation is allowed to diffuse into some of the now shock-heated air. The dotted curve below the shock front curve of Fig. 2-10 indicates the position of the radiation front. Most of its outward excursion is due to the flow of air in the expansion behind the shock itself. At times later than shown in Fig. 2-10, the radiation front and the visible fireball drop behind. The short dashed curve near the end of the shock front curve of Fig. 2-10 represents a position close to the fireball front - being the locus of points at 5000°K - with higher temperatures inside of that radius, and colder temperatures outside.

The continued flow of radiation is made more obvious in a plot of the temperature histories of several shells of gas representing the air that was shocked to a particular temperature, cooled in the subsequent adiabatic expansion, but then reheated by the radiation wave following. Such a set of curves are shown in Fig. 2-11, where at particles shocked to 10^5 , 70,000 and $40,000^{\circ}$ K the adiabatic cooling is arrested by the arrival of the radiation diffusion wave which causes that shell of air to rise in temperature again. The air starting at the $20,000^{\circ}$ K shock point is never over-run by the radiation wave, i.e., the radiation wave stops before it gets that far, having run out of energy and not being aided by further expansion which would help to reduce the opacity of the cooler air in front of it.

A great many nuclear weapon applications, tests, and effects interests involve the thermal and fireball effects of nuclear explosions on or close to the surface of the earth. Many interesting and novel interactions occur which are not evident in air bursts well away from the surface. However, there is no intention of providing a review of these factors in this current effort. It should suffice to point out that all of the essential features which are described and followed here are also an important part of surface bursts, while the latter are further complicated by the early injection into the fireball of massive amounts of earth material, and by the geometric distortions of the fireball that occur as a consequence of shock and thermal reflections from the earth's surface. The change in radiator shape from spherical to at best hemispherical or worse a partially obscured hemisphere means that the thermal flux to other points on the earth's surface will be less than that from an air burst. Total flux at

points in the air above the burst may at the same time be increased.

As the earliest pictures of nuclear explosions (Glasstone, 1962) clearly show a further consequence of the ground involvement is the "dust skirt" which precedes the fireball shock and largely obscures the base of the fireball. Although not visible in any of the pictures, there must also be vast amounts of earth shovelled into the hot fireball interior at an early time (Brode and Bjork, 1960), and this material cannot fail to have profound effects on both the temperature and thermodynamic state of the fireball gases and on the opacities or optical properties of that region. Test observations indirectly attest to the influence of such surface effects.

Observations and measurements at very late times in the fireball history show that the radiation rate trails off with a very long tail (as in Fig. 2-1) and comes from shapes other than simple spheres. The fireball at late times is like a bubble in the atmosphere – having very low densities in its interior – and so it rises, and in rising breaks up at the bottom to transform itself into the familiar atomic cloud ring or torroid which rolls its way up through the atmosphere. The torroidal circulation that is induced is quite strong and serves to severely limit mixing of the hot fireball gases with the exterior cold air, thus prolonging the existence of air and debris at temperatures of thousands of degrees Kelvin, while the cloud rises in the atmosphere. When much earth material and/or water vapor is present, the late fireball remains opaque, and the rate of late radiation is more determined by the rate of turbulent mixing which brings hot gases to the cloud surface rather than by the radiation transport

properties alone. For an air burst well above the surface, however, the late fireball becomes quite transparent, so that only a faintly luminous ring assures us that the rise and circulations are much the same as for lower bursts.

2.3 Other yields and altitudes

The example of a one kiloton detonation at sea level contains all the basic physical phenomena which enter into consideration at other yields and at altitudes up to about 70 km. The overall appearance is, nevertheless, appreciably different since the individual events which are responsible for the various maximum and minima in Fig. 2-1 occur at different times.

In carrying out a discussion of these changes, it is useful to note that the relation between shock radius and time can be approximately represented by a hydrodynamic scaling law. To formulate this we introduce the scaled variables

$$R^* = \left(\frac{\overline{\varrho}}{Y}\right)^{1/3}$$
 (2,3-1)

$$t^* = \left(\frac{\overline{\rho}}{\overline{Y}}\right)^{1/3} t \tag{2.3-2}$$

where Y is the yield of the explosion and $\overline{\rho} = \rho/\rho_0$ the ambient air density relative to that at sea level. In our 1 kiloton sea level example the scaling factors are of course unity.

The scaling law is not valid until after the debris shock has caught up with the somewhat slower shock which is driven by only a fraction of the total yield. The scaling law can be deduced from the strong-shock solution for a point source (Taylor, 1950; and Sedov, 1959). This limits the validity of the scaling laws at late times when the shock becomes weak. The law obtained in this manner takes the form

$$R_s^* = k(t^*)^{2/5}$$
 (2.3-3)

where the subscript s denotes that the value is taken at the shock front.

From the radius $R_s = 20$ m read off Fig. 2-10 for t=1 msec, one determines the proportionality factor to be

$$k = 20 \text{ m (msec)}^{-2/5}$$
 (KT)^{-1/5} (2.3-4)

In the above scaling law the scaling factors cancel out of the expression for the shock velocity

$$\frac{dR_{s}}{dt} = \frac{dR_{s}^{*}}{dt^{*}} = \frac{2}{5} k(t^{*})^{-3/5}$$
 (2.3-5)

which makes this velocity a function of t^* only. Applying the Hugoniot relations one can now show that the temperature T_g behind the shock is

also very nearly a function of t^{π} only. This is not an exact result because it depends on certain assumptions about the equation of state which are only approximately true. If one checks the prediction that T_s is a function of the scaled time only against computed results, one finds that it fits the changes with yield at a given altitude very well. The changes with altitude at a given yield are not given with quite the same accuracy, but are still sufficiently close for most purposes.

It should be noted that the above scaling procedure differs somewhat from the so-called Sachs scaling where one introduces the variables

$$\Re = (p/Y)^{1/3}R$$
 (2.3-6)

$$\tilde{t} = (p/Y)^{1/3} (p/\rho)^{1/2} t$$
 (2.3-7)

If one expresses the ambient pressure and density p and ρ , the yield Y and the variables R and t all in the same system of units, the scaled variables are dimensionless. It is more convenient, however, to replace p and p by the ratios $\overline{p} = p/p_0$ and $\overline{p} = \rho/\rho_0$ relative to the sea level values, and to express Y as before in KT. With this choice, the strong shock relation between \widetilde{R} and \widetilde{t} is the same as between R^* and t^* , i.e. Eq. (2.3-3) with the same value of the constant k.

The two methods of scaling differ in regard to what are considered similar situations. For the starred variables similarity implies that for example the hydrodynamic velocity and the temperature are unchanged; for the variables with the tilde the Mach number and the temperature ratio T/T_0 are unchanged. Either choice is acceptable, but ours has the advantage of using only one parameter to characterize the altitude.

From the time of shock formation until breakaway the thermal radiation comes partly from the shock precursor and partly from the shock front, and it is evident that the shock temperature is a major factor in determining the timing of the maxima and minima during this period. At a given altitude where one has a one-to-one relation between shock and precursor temperature (see Eq. 2.2-7 for the sea level case) it is fairly accurate to state that the shock formation maximum, the shock precursor minimum and the shock exposure maximum occur at fixed values of the shock temperature and therefore at fixed values of the scaled time. As one considers different altitudes the relation between $T_{\rm p}$ and $T_{\rm s}$ changes and one finds different values of the scaled times associated with these features of the power curve.

After breakaway the radiation comes from points to the inside of the shock front whose locations depend on the optical properties of the air and in turn on the temperature and density distribution. This is a radiative transfer problem and hydrodynamic scaling, where times vary as the cube root of Y, is replaced by radiative scaling, where times vary approximately as the square root of Y (Glasstone, 1962, section 7.92).

Altitude scaling is a more difficult problem than yield scaling. We have already mentioned the effect of the changing relation between $\,T_{\rm g}\,$ and $\,T_{\rm p}\,$. To this we must add that the relative importance of hydrodynamics and radiation transfer shifts with increasing altitude in favor of the latter. Thus shocks form more slowly and radiation is emitted more rapidly as one goes to higher altitudes. As a result the features before breakaway are increasingly delayed and the maxima and minima tend to become weaker. The final radiative pulse on the other hand advances in time and becomes more prominent. At about 50 km the early features have become washed out and what was the final pulse is now the only pulse.

References

Bethe, H.A., Theory of the Fireball, LASL, LA-3064, Feb. 1964

Brode, H.L., Point Source Explosion in Air, RAND, RM-1824-AEC, Dec. 1956 (a)

Brode, H.L., The Blast Wave in Air Resulting from a High Temperature, High Pressure Sphere of Air, RAND, RM-1825-AEC, Dec. 1956 (b)

Brode, H.L., A Review of Nuclear Explosion Phenomena Pertinent to Protective Construction, RAND, R-425-PR, May 1964 (b)

Brode, H.L., Fireball Phenomenology, RAND, P-3026, Oct. 1964 (b)

Brode, H.L. and R.L. Bjork, Cratering from a Megaton Surface Burst, RAND, RM-2600, June 1960

Gilmore, F.R., A Table of the Planck Radiation Function and its Integral, RAND, RM-1743, July 1956

Glasstone, S., The Effects of Nuclear Weapons, Superintendent of Documents, 1962

Heaslet, M.A. and B.S.Baldwin, Predictions of the Structure of Radiation-Resisted Shock Wavws, Phys. of Fluids, 6, 781, 1963

Raizer, Iu. P., On the Structure of the Front of Strong Shock Waves in Gases, J.E.T.P. 5, 1242, 1957

Sedov, L.I., Similarity and Dimensional Methods in Mechanics, Academic Press, 1957

Taylor, G.I., The Formation of a Rlast Wave by a Very Intense Explosion, Proc.Roy.Soc.(London), A201, 159, 1950

Zeldovich, Ia. B.J., Shock Waves of Large Amplitude in Air, J.E.T.P., 5, 919, 1957

Zeldovich, Ta.B.J., A.S. Kompaneets and Iu.P. Raizer, Cooling of Air by Radiation, J.E.T.P., 7, 882,1001, 1958

FIG. 2-1 THERMAL POWER RADIATED FROM ONE KILOTON AT SEA LEVEL

FIG. 2-2 EARLY TEMPERATURE PROFILES - 1 KT, SEA LEVEL

FIG. 2-4 EARLY ENERGY DENSITY PROFILES - 1 KT, SEA LEVEL

FIG. 2-5 COMPARISON OF VARIOUS APPROXIMATE RATES WITH EARLY FIREBALL GROWTH RATE

FIG. 2-6 FRACTION OF BLACKBODY RATE AT WAVELENGTHS LONGER THAN CUTOFF AT 1860Å

FIG. 2-7 SHOCK TEMPERATURE PROFILES WITH AND WITHOUT RADIATIVE TRANSPORT

FIG. 2-8 FIREBALL THERMAL GRADIENTS AT TIMES NEAR MINIMUM LIGHT INTENSITY

FIG. 2-9 LATE FIREBALL TEMPERATURE PROFILES - 1 KT, SEA LEVEL

FIG. 2-10 EARLY RADIUS-TIME FOR A ONE KILOTON - SEA LEVEL FIREBALL

AR MASS TEMPERATURE HISTORIES - SHOWING ADIABATIC EXPANSION COOLING AND THE HEATING BY THE FURTHER GROWTH OF THE RADIATION DIFFUSION WAVE FIG. 2-11

Chapter 3. SUMMARY

As the reader of this report will have gathered any attempt at following the evolution of a fireball by numerical means utilizes a whole spectrum of facts and assumptions ranging all the way from being undisputable to being highly suspect. This is likely to leave him with a somewhat uncomfortable feeling about the reliability of such a calculation. In this summary we will put the finger on some of the underlying assumptions, point out what we know about their validity and evaluate how strongly our lack of basic information or of the willingness to spend computing dollars will influence the final product.

3.1 Equation of state

Nearly all calculations make the basic assumption that the air remains throughout in a state of LTE. Once this is accepted it follows that the relation between the various state variables can be found by the methods of statistical mechanics. The application of these methods is very straightforward and the results as presented in (1) and (3) are probably correct to within a few percent. In some instances analytic fits which were made to feed these results into a computer have been poor but this problem can certainly be overcome and should not contribute significantly to errors in hydrodynamics or other phases of the main calculation. Some problems may arise in the central region where one has debris rather than air and even more so in the transition region where one may have a debris air mixture. Fortunately many important results are rather insensitive to these details.

^{*} Local Thermodynamic Equilibrium (LTE).

⁽¹⁾ stands for DASA-1917-1, etc.

3.2 Absorption coefficients

This subject has been discussed in detail in (2) and related facts are brought up in Chapter 1 of this volume. There are several ways of describing the absorption which differ in the amount of detail which is presented. The most detailed description consists of a listing of lines with intensities and line shape parameters on top of a continuum. All these factors are subject to errors as we shall briefly discuss.

In the low temperature case where the lines are due to molecular systems the information comes largely from experimental spectroscopic studies. The limitations of our knowledge about frequencies and intensities is discussed in (2) Chapter 7. The information on line shapes is almost non-existent. To this one should add that one can hardly afford to include any but the strongest band systems. Even the rather minimal choice of eight band systems in the most recent version of the SACHA program brings the number of transitions to over 190,000.

In the high temperature case the absorption comes from inverse Bremsstrahlung and from transitions in atoms and atomic ions. There is a strong continuum due to the first and due to photoionization. There is a fairly well developed theory and some experimental information backing it up. On top of the continuum is a large number of lines. A few levels have been observed experimentally but the majority, especially for the highly ionized atoms, have not been observed and must be obtained theoretically. It is certainly necessar to find the transition probabilities by quantum mechanical methods. These are so complex that one is forced to make radical approximations to get any answers and the results are not very reliable.

The calculation of the line contribution is the most elaborate part of the program and again one can hardly afford to include any but the strongest lines. This involves a somewhat arbitrary cut-off procedure whose practical effect can only be evaluated when one specifies how the absorption coefficient is to be used.

The detailed description of absorption with fine spectral resolution greatly exceeds the requirements of radiative transfer calculations. As shown in (2) Chapter 2, it is unfortunately difficult to define averages which permit satisfactory calculations. Thus Planck and Rosseland means which average μ_{ν} and μ_{ν}^{-1} respectively apply only in limiting situations; the one for very transparent, the other for very opaque media. Nevertheless such means are useful and have been calculated. In the specific case of line effects, mentioned in the preceding paragraph, the contribution is not very large until one reaches temperatures like 2 x 10 5 6 K and high densities.

Because of the many uncertainties entering the calculation of absorption coefficients one has no systematic way of estimating their accuracy. The responsible authors of opacity calculations are generally confident—it their results lie within a factor of three of the true values.

In the intermediate temperature range where the opacity reaches a maximum,the occuracy is probably somewhat better. Because of the large opacity the coraging procedures, which are appropriate for radiative transfer calculations, put the most weight on those parts of the spectrum where μ_{ij} is small and very little weight on the lines. The Rosseland mean does and the Planck mean does not fall into this class. Because of

the emphasis on the continuum, where one has more reliable information, the Rosseland mean is expected to be more accurate.

The extent to which opacity errors falsify fireball calculations depends on the temperature range. Inspecting the temperature profiles of Fig. 2-2 which are typical for the early stage of a fireball one finds large temperatures near the center which makes the air in that region very transparent. Further out the temperature drops so that the opacity rises, goes through a maximum and then drops again. In the transparent central region radiative heat transfer is rapid and keeps that region at a fairly uniform temperature, as one sees in Fig. 2-2. Just how uniform this profile is has very little effect on the rate of expansion and therefore opacity errors by a factor twice or even more are not serious in that region.

The opaque zone around the central region acts as a radiative barrier and the development of the fireball does depend quite critically on the opacity there. During the very early phase where hydrodynamic motion is still negligible compared to the radiative expansion the section of the opacity-temperature relation near the maximum determines the rate of that expansion. It also determines when and where the hydrodynamic shock begins to form.

When shock temperatures are still high, the opaque shell forms in a temperature toe ahead of the shock. This is the precursor which has been sketched in Fig. 2-7 and which causes the early structure in Fig. 2-1. At this stage the opacity is still of interest, since it determines the character of the escaping radiation and other observable phenomena, but the rate at which the fireball expands is given by the shock speed which does not depend on the opacity in the toe.

The next phase starts when the shock temperature has dropped low enough that the shocked air becomes opaque. This is aided by the high density directly behind the shock which can be seen for example, in the density profiles of Fig. 2-3. Up to that time radiative transfer plays a major role in feeding energy to the expanding shock front. Now that source fades out and hydrodynamics takes over as the dominant mechanism for energy transfer. The details of the change depend quite critically on the opacity relation.

Upon further cooling the shock front becomes transparent again and the opaque shell recedes toward the center. This starts the long time interval during which the power vs. time curve of Fig. 2-1 goes through its minimum, rises back to the final maximum, and starts to drop again. The calculation of this phase also depends quite critically on the opacity. A test calculation made with an opacity twice the accepted value stretched the total duration of this phase by almost a factor of two with a corresponding reduction of the maximum power level to about half of what it was in the earlier calculation. Thus, errors in the opacity relation could lead to fairly severe discrepancies between fireball models at the time of the second maximum.

3.3 Radiation hydrodynamics codes

The purely hydrodynamic part of any code is probably as accurate as the equation of state that is being used except for the smearing out of the shock front introduced by the artificial viscosity method. The accuracy of radiative transfer calculations is less certain, unless one is justified in using the diffusion approximation. In that case the limiting factor is

probably the accuracy of the opacity. Difficulties do arise, however, at the front of an opaque shell. Consider, for example, two zones labeled a and b whose temperatures place them on the rising branch of the opacity curve as indicated in Fig. 3-1. As the heating wave progresses these points move up on the curve. The radiation escaping to the outside comes at first from zone a and passes without attenuation through zone . As zone a climbs higher the radiation rises as T4 but when zone b becomes sufficiently opaque to take over the role of zone a the power output drops. This cycle is repeated when zone c and others after it climb into the position originally held by zone a . The result of this is a sequence of maxima and minima in the power versus time curve which has no physical reality. This spurious effect can be counteracted by using finer zone sizes but at the expense of increasing the running time which increases as the square of the number of subdivisions per zone. Actually this is not necessary, since test calculations show that the cruder zone divisions lead to the same average power and to the same rate of expansion as a very fine division. A related problem arises when the artificial viscosity routine introduces improper heating ahead of the shock front. Letting the point a in Fig. 3-1 represent the shocked zone and b and c the zones just ahead of the shock, this heating would make points b and c lie at too high temperatures. The calculated attenuation of the radiation from the shock is therefore larger than what it should really be and leads us to predict too low a brightness of the fireball. The reduced output has, however, practically no effect on the calculated motion of the fireball air because at that stage the amount of energy lost by radiation is still too small to influence the hydrodynamics.

Other errors may be introduced by the use of approximate integration routines such as the multiple ray or the two stream techniques which have been discussed in Chapter 1. Given a set of experimental data one can, within limits, adjust the opacity temperature relation so that either model will reproduce these data. It is therefore not really possible to disentangle errors which may arise from the use of these models on the one hand, and from incorrect absorption coefficients on the other hand.

3.4 Deviations from LTE

As we have repeatedly stated, nearly all calculations assume the air to be always in LTE. There are, however, some equilibration processes which are decidedly slow on the time scale of nuclear fireballs. At somewhat elevated altitudes one finds for example, that the processes responsible for populating the vibrationally excited levels of $\rm O_2$ and $\rm N_2$ fall into this class. These processes are discussed under the heading "vibrational relaxation" in (4) section 6.1 In the case of $\rm O_2$, populating the vibrational levels reduces the photon energy required for reaching the Schumann-Runge continuum below the 8.5 eV which it takes from the ground state. As long as these levels are not populated the actual absorption is therefore less than it would be in equilibrium. Similar considerations apply to the Birge-Hopfield transitions in $\rm N_2$. In most codes these delays are just ignored. Hillendahl (see Appendix A) has attempted to account for them by means of a fairly crude model assumption.

Other deviations from LTE are caused by the slowness of chemical reactions at temperatures, say, below 6000° K (see (4) sections 6.9 and 7.5) Among the molecules which can form in this temperature range is

 NO_2 which has a large absorption coefficient. The delay in forming this molecule when air is suddenly heated by a shock and the subsequent delay in removing it again when the air cools down can change the absorption significantly from the value at equilibrium conditions. If the temperature drop is rapid enough the NO_2 concentration may stay for a long time at the high concentration corresponding to 3000° K even though the temperature has dropped below 2000° K. In this situation one speaks of NO_2 as being frozen in.

Non-equilibrium processes also occur at the debris air interface. It has been pointed out in (4) section 5.2 that this is very poorly understood. It is, in particular, quite uncertain what temperature the shocked air would reach and what X-ray spectrum would be emitted by that air.

The questions raised in this chapter clearly do not exhaust the subject of possible errors in the present state of the art. It is, in fact, quite likely that effects with more practical significance have been overlooked. Still, this enumeration should provide the reader with some guidance what he should watch.

FIG. 3-1 LOCATION OF 3 ADJACENT ZONES ON OPACITY CURVE

Appendix A. A Radiation-Hydrodynamics Code

A.1 Introduction

In this appendix, a sample radiation-hydrodynamics code is presented which employs, with varying degrees of sophistication, much of the physics and basic data presented elsewhere in this volume.

In keeping with Chapter 2, this code describes the radiative and hydrodynamic properties of a sphere of hot air. Details of the weapon itself are not of interest in the present context, and rather crude generalizations have been used to represent the gross properties of the hardware.

The code is presented as a means of demonstrating some of the techniques of radiation-hydrodynamics, as described in Chapter 1, the application of basic physical data, as described in Volume 2, and as an illustration of the results discussed in Chapter 2. The code is not intended as a demonstration of the programming art and has not been polished-up for presentation here. A great deal of the program could be deleted were the program to be used only for present purposes. Much of the basic philosophy of this code has been presented in Chapter 1 and by Hillendahl (1964), and will not be repeated in detail.

The basic equations of the problem are the conservation equations of radiation-hydrodynamics for a one-dimensional spherical system which can be written in Lagrangian form as

$$\frac{\partial U}{\partial t} = -4\pi R^2 \frac{\partial (P+Q)}{\partial m}$$
 Conservation of momentum (A.1)

$$u = \frac{\partial R}{\partial t}$$

Definition of velocity

(A.2)

$$V = 4\pi R^2 \frac{\partial R}{\partial m}$$

Conservation of mass

(A.3)

$$Q = c \frac{\left(\rho_0 \Delta R\right)^2}{V} \left[\frac{\Delta V}{\Delta t}\right]^2 \text{ on compression}$$

Definition of Artificial Viscosity

(A.4)

$$\frac{\partial E}{\partial t}$$
 + (P + Q) $\frac{\partial V}{\partial t}$ + $4\pi \frac{\partial (R^2 \mathcal{G})}{\partial m}$ = 0

Conservation of energy

(A.5)

$$E = E(V,T)$$

(A.6)

$$P = P(V,T)$$

(A.7)

$${\mathcal T}$$
 is an integral functional of V and T

(A.8)

where

U = local fluid velocity

t = time

R = radius

P = pressure

Q = artificial viscosity

m = mass

c = an arbitrary constant near unity

 ρ_{o} = initial density

- V = specific volume (reciprocal density)
- 9 = radiative net flux at R
- E = internal energy

Quite generally, the mathematical formulation of the problem may be characterized as an initial value problem whose solution consists of a time-wise and mass-wise integration of a well defined set of hyperbolic partial differential and partial integro-differential equations.

The solution of these equations is carried out by numerical techniques in which values of the dependent variables are determined in terms of the two independent variables (the time and lagrangian zone mass) by means of finite difference equations which are used to represent Eqs. (A.1) - (A.8).

For purposes of numerical computation, the fireball configuration is represented by a series of concentric, contiguous, spherical mass shells. The mass of the k^{th} zone is designated by m_k (gm/cm³). Since the mass zones retain their identity throughout the time-wise development of the configuration, the zone index k and the time t (seconds) are convenient choices for the independent variables.

Integration of the set of 8 equations (Eqs. (A,1) - (A.8)) then determines the values of the 8 dependent variables as functions of k and t. U(k,t) (cm sec⁻¹) and R(k,t) (cm) are used to specify the instantaneous values of the interface velocity and radius of the outer surface of the k^{th} mass shell. $\mathcal{F}(k,t)$ (ergs cm⁻² sec⁻¹) is used to specify the instantaneous value of the net radiative flux at the outer boundary of the k^{th} mass zone. P(k,t) (dynes cm⁻²), Q(k,t) (dynes cm⁻²), V(k,t) (cm³ gm⁻¹), T(k,t) (${}^{O}K$), E(k,t) (ergs gm⁻¹) are used to represent the instantaneous values of

the pressure, artificial viscous pressure, specific volume (reciprocal density), temperature and internal energy of the mass zone m_{ν} .

In a purely hydrodynamic problem without radiative transfer, it is the standard practice to reckon the thermodynamic properties of a zone (i.e.: pressure, internal energy, density, temperature) as constant average values over each zone. These values are also considered to be the central values of these variables at the geometrical zone centers. Particle velocities are reckoned at the zone interfaces; the interface density and pressure gradient are formulated in terms of the values at the zone centers. The zoning mesh must be chosen fine enough so that the variation in properties from zone to zone is small enough to insure that these average values are meaningful.

In a problem which also includes radiative transfer, the above restrictions must also be met. Zone sizes in a problem including radiation will generally be smaller than the zone sizes required by hydrodynamics alone. The addition of radiative transfer to the problem will, in general, add further restrictions.

If the temperature is taken as constant across each zone, temperature discontinuities will occur at the zone interfaces. Radiative variables like T⁴ will have even greater discontinuities. More detailed examination indicates that the temperature and its spatial derivatives should be continuous at the zone interfaces. Thus, consistent with the expansion used in Eq. (2.5-9), the source function B is taken as linear between zone centers. Then the discontinuous spatial derivatives of the source function which occur at the zone centers do not appear in the formulation. In a more general formulation, a higher order polynomial could be used to

fit the source function through the zone centers, but numerical experience has indicated such a procedure resulted in only minor improvement in the computations.

The central zone temperature T is used as the average over the zone for purposes of computing average zone pressures, internal energies, and is used also in the Z, A, and W computations (Eqs. (2.5-13) through (2.5-15)). This is done primarily for purposes of convenience, but can be at least partially justified. In regions of small temperature gradient, no problem occurs since the central and average zone temperatures are nearly identical. In regions of large temperature gradients, the "average value" of the temperature is poorly defined in terms of the rapidly varying radiative variables, and it is preferable to keep the problem well poised hydrodynamically.

The specific volume V is taken as having a linear variation across each zone. The values of V at the zone centers and zone interfaces are then uniquely defined and afford no further difficulty.

The Z, A, and W functions are then computed using the average zone temperature T and specific volume V. Use of the average specific volume is justified since these functions show a relatively weak density dependence. Neglecting the variations in temperature across the zone causes only relatively small errors in the high temperature inner fireball regions since these functions show only a weak dependence upon temperature. In the low temperature regions, the Z, A, and W functions vary about as the ninth power of the temperature. Even with extremely fine zoning, large temperature gradients occur across each zone, and the Z, A, and W functions would be ill defined in terms

of any average temperature no matter how the average be defined. But the emission from these low temperature regions is small compared to the emission from the high temperature regions further inside, and these layers act primarily as a selective absorber for radiation from larger optical depths. Hence the $Z^{\frac{1}{2}}$ function must be known with some accuracy, but small errors in the A function, originating because of the use of the average zone temperature, can be tolerated.

The Z[†] function, however, has peculiar properties in the low temperature region which allow its values to be obtained with sufficient accuracy. As discussed in Chapter 8, the spectral absorption coefficient varies extremely rapidly—ith wavelength so that the spectrum is effective y divided at some wavelength into absorbed and transmitted fractions. This transition wavelength, however, depends only weakly on the zone temperature, and hence the average zone temperature will again suffice.

It should always be born in mind that these numerical approximations all improve as the zone size is decreased and can, in principle be made accurate to any desired precision. In practice, however, the fineness of the zone mesh is limited by the second computation. Skill is thus required to accomplish a large computational program within a limited budget. One tries to test each situation for sensitivity to zone sizes and achieve a compromise between economy of computation and accurate representation of the physics.

For purposes of carrying out the integration procedure by numerical methods, the basic equations (Eqs. (A.1) - (A.8)) are replaced by a set of centered finite difference equations as follows. The notation and

centering can best be seen by reference to Fig. A-1.

$$\frac{U_{k}^{n+1/2} - U_{k}^{n-1/2}}{t^{n+1/2} - t^{n-1/2}} = \frac{-8\pi \left(R_{k}^{n}\right)^{2} \left(P_{k+1/2}^{n} + Q_{k+1/2}^{n-1/2} - P_{k-1/2}^{n} - Q_{k-1/2}^{n-1/2}\right)}{m_{k} + m_{k+1}}$$
(A.9)

$$R_k^{n+1} = R_k^n + U_k^{n+1/2} (t^{n+1} - t^n)$$
 (A.10)

$$v_{k-1/2}^{n+1} = \frac{4\pi}{3m_k} \left\{ \left(R_k^{n+1} \right)^3 - \left(R_{k-1}^{n+1} \right)^3 \right\}$$
 (A.11)

$$\begin{cases} Q_{k-1/2}^{n+1} = \left(\frac{c}{v_{k-1/2}^{n+1} + v_{k-1/2}^{n}} \right) \left(\frac{m_{k}}{4\pi R_{k}^{n+1}}^{2} \right)^{2} \left(\frac{v_{k-1/2}^{n+1} - v_{k-1/2}^{n}}{t^{n+1} - t^{n}} \right)^{2} \\ Q_{k-1/2}^{n+1} = 0 \quad \text{if} \quad v_{k-1/2}^{n+1} > v_{k-1/2}^{n} \end{cases}$$
(A. 12)

$$\frac{E_{k-1/2}^{n+1} - E_{k-1/2}^{n}}{t^{n+1} - t^{n}} + \left(\frac{P_{k-1/2}^{n+1} + P_{k-1/2}^{n}}{2} + Q_{k-1/2}^{n+1/2}\right) \left(\frac{V_{k-1/2}^{n+1} - V_{k-1/2}^{n}}{t^{n+1} - t^{n}}\right) + \frac{2\pi}{m_{k}} \left\{ \left(R_{k}^{n+1}\right)^{2} \mathcal{J}_{k}^{n+1} - \left(R_{k-1}^{n+1}\right)^{2} \mathcal{J}_{k-1}^{n+1} + \left(R_{k}^{n}\right)^{2} \mathcal{J}_{k}^{n} - \left(R_{k-1}^{n}\right)^{2} \mathcal{J}_{k-1}^{n} \right\} = 0$$
(A. 13)

$$E_{k-1/2}^{n+1} = E\left(V_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}\right)$$
 (A. 14)

$$P_{k-1/2}^{n+1} = P\left(V_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}\right)$$
 (A.15)

$$\mathcal{J}_{k}^{n+1} = \mathcal{J}_{k} \left(V_{i}^{n+1}, T_{i}^{n+1} \right) \quad i = 1, \dots L$$
 (A. 16)

Eq. (A.9) expresses the conservation of momentum and is centered over the grid point (n,k).

Eq. (A.10) simply expresses the definition of velocity and is centered over the grid point (n+1/2,k).

The conservation of mass, expressed by Eq. (A.11), is centered over the grid point (n+1/2 ,k-1/2, i.e. over $Q_{k-1/2}^{n+1/2}$.

The difference expression (Eq. (A.12)) for the artificial viscosity is centered on the grid location (n+1/2, k-1/2) except for the R_k^{n+1} factor. The artificial viscosity is thus correctly centered for use in the energy Eq. (A.13), but lags a half time step behind in the equation of motion (Eq. (A.9).

The energy equation (Eq. (A.13)) is centered over the grid location (n+1/2 ,k-1/2) and constitutes an implicit expression to determine the local temperature $T_{k-1/2}^{n+1}$.

Eqs. (A.14) and (A.15) are equations of condition rather than finite difference equations, and express the equations of state for the fluid at the location (n+1, k-1/2) in terms of $V_{k-1/2}^{n+1}$ and $T_{k-1/2}^{n+1}$.

Eq. (A.16), which is written above only in symbolic form, expresses that the local net flux \mathcal{F}_k^{n+1} is an instantaneous integral functional of the temperatures and densities of all of the L zones in the configuration. The set of Eqs. (A.9) - (A.16) thus constitutes a set of 8L equations in 8L unknowns.

The following set of 11 auxiliary equations are used to evaluate Eq. (A.16):

$$zo_{k-1/2}^{n+1} = zo(v_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}, t^{n+1})$$
 (A.17)

$$ZI_{k-1/2}^{n+1} = ZI\left(v_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}, t^{n+1}\right)$$
 (A.18)

$$\lambda H_{k-1/2}^{n+1} = \lambda H \left(V_{k-1/2}^{n+1}, T_{k-1/2}^{n+1}, t^{n+1} \right)$$
 (A.19)

$$\Delta \tau_{k-1/2}^{n+1} = \left(R_k^{n+1} - R_k^{n-1} \right) \lambda_{k-1/2}^{n+1}$$
(A. 20)

$$A_{k-1/2}^{n+1} = \exp\left(-\Delta \tau_{k-1/2}^{n+1}\right) \tag{A.21}$$

$$BC_{k-1/2}^{n+1} = \sigma \left(T_{k-1/2}^{n+1} \right)^{4}$$
 (A.22)

$$s_{k-1/2}^{n+1/2} = \frac{BC_{k-1/2}^{n+1} - BC_{k+1/2}^{n+1}}{\Delta \tau_{k-1/2}^{n+1} + \Delta \tau_{k+1/2}^{n+1}}$$
(A.23)

$$W_{k-1/2}^{n+1} = 1 - A_{k-1/2}^{n+1} - A_{k-1/2}^{n+1} \Delta \tau_{k-1/2}^{n+1}$$
 (A.24)

$$BB_{k}^{n+1} = \frac{\sigma \left[\left(R_{k+1}^{n+1} - R_{k}^{n+1} \right) \left(T_{k-1/2}^{n+1} \right)^{4} + \left(R_{k}^{n+1} - R_{k-1}^{n+1} \right) \left(T_{k+1/2}^{n+1} \right)^{4} \right]}{\left(R_{k+1}^{n+1} - R_{k-1}^{n+1} \right)}$$
(A.25)

$$FO_{k}^{n+1} = FO_{k-1}^{n+1} \left(\frac{R_{k-1}^{n+1}}{R_{k}^{n+1}}\right)^{2} \mathbf{Z} \varphi_{k}^{n+1} + FI_{k}^{n+1} \left[1 - \left(\frac{R_{k-1}^{n+1}}{R_{k}^{n+1}}\right)^{2}\right] \mathbf{Z} I_{k}^{n+1}$$
(A.26)

+
$$B_k^{n+1}$$
 (1 - A_k^{n+1}) + $2S_k^{n+1}$ W_k^{n+1}

$$\mathbf{FI}_{k}^{n+1} = \mathbf{FI}_{k+1}^{n+1} \ \mathbf{ZI}_{k+1}^{n+1} + \mathbf{BB}_{k}^{n+1} \left(1 - \mathbf{A}_{k+1}^{n+1}\right) - 2\mathbf{S}_{k}^{n+1} \mathbf{W}_{k+1}^{n+1}$$
 (A. 27)

$$\mathcal{J}_{k}^{n+1} = FO_{k}^{n+1} - FI_{k}^{n+1} \tag{A.28}$$

where $\sigma = 5.67 \times 10^{-5}$ is the Stephan-Boltzmann constant, and TR is the temperature used to specify the spectral character of the radiation incident upon the zone from regions of smaller radius.

The analytic expressions for Eqs. (A.18) and (A.19) are not given explicitly in the written text, but are available in the FIREBALL code listing which follows.

In carrying out the numerical integration scheme, it is assumed that the initial values of R, T, V, E, P, U, Q, and $\mathcal F$ are known at the initial time t^n for all values of k. The difference equations (Eqs. (A.9) - (A.28)) are then used to determine values for these variables at $t^{n+1} = t^n + \Delta t$ for all values of k. The procedure is repeated as n is increased until the desired period of time has been covered by the integration.

The initial values of Q and U are chosen at t^n rather than $t^{n-1/2}$ in the above procedure, but little error is introduced since the initial values may be adjusted accordingly and the time step Δt may be chosen as very small on the initial cycle.

The actual input model consists of a set of R, U, T, and V values for each zone of the configuration. Initial values of Q, E, P, Q, and \mathcal{F} are then found by use of Eqs. (A.12), (A.14), (A.15), and (A.16) before starting the first time cycle.

The set of Eqs. (A.9) through (A.12) depend only on the localized properties of the fluid and they can be advanced explicitly in space and time, subject to the limitations on the time increments according to the Courant criterion (see Chapter 2).

The set of Eqs. (A.13) through (A.28) must be solved simultaneously for all of the L zones in the configuration because of the linkage between distant zones caused by the radiative flux. Since the advanced values

 $V_{k-1/2}^{n+1}$ of the specific volumes are known by advancing Eq. (A.11) explicitly, a set of trial temperatures $T_{i-1/2}^{n+1}$, $i=1,\ldots,1$ are estimated, substituted into the Eqs. (A.13) - (A.28), and a Newton-Raphson iteration scheme is then used to adjust the estimated values of temperature until Eq. (A.13) is satisfied to a predetermined accuracy.

The iteration is carried out by numerical methods. The equation of state derivatives, at fixed V, are carried out by raising and lowering the temperature 2% from its trial value, e.g.:

$$\frac{\Delta E}{\Delta T} = \frac{E(V, 1.02T) - E(V, 0.98T)}{1.02T - 0.98T}$$
(A.29)

The derivatives of the radiative quantities are computed by a ripple zone technique in which the temperature of a single zone is raised 2%, the set of Eqs. (A.17) - (A.28) is evaluated and the desired derivatives formed, and the displaced temperature is then returned to its undisplaced value. This procedure is repeated for each zone in the configuration until all the desired derivatives are available. In practice, radiative derivatives for zones more than 2 zones distant are small, so that only a 5 zone set of derivatives is carried. Neglect of the more distant derivatives does not constitute a neglect of radiative transfer between distant zones; their neglect only influences rate of convergence of the iteration procedure.

For a system of L zones, the iteration procedure then results in L linear algebraic equations in L unknown temperature increments, each equation consisting of a set of terms involving 5 of the unknowns. This array is then solved by direct elimination and back substitution. The temperature increments are then used to adjust the trial values of

temperature until all temperature increments for all zones are simultaneously less than 10% of their respective zone temperatures.

The FIREBALL code is written in a programming language called FORTRAN; the particular vintage is known as FORTRAN II, Version 2. The various types of FORTRAN currently in use differ from each other only in minor details. This particular version was selected primarily because it has been in use for a number of years, and has achieved a measure of stability and reliability not to be found in the more recent efforts of the computer industry.

The FORTRAN language little resembles the machine language coding of a decade ago, and its resemblance to ordinary algebra is so close that the average physicist or engineer can learn to read FORTRAN with a very minimum of effort. This allows one to communicate the solution of a complicated theoretical calculation to his fellow scientists in complete detail and complete scientific honesty.

Section A.2 is devoted to a brief discussion of how to read FORTRAN and is designed for the scientist who is not familiar with this type of language. The remainder of Appendix A is devoted to the scientific aspects of the FIREBALL code and is intended to be independent of the language details. Readers not interested in great detail may thus skip over Section A.2, while those interested in such detail will find this section helpful in reading the code itself which is listed in full. The four digit numbers which appear in parenthesis throughout this appendix, e.g. (0136), refer to serial numbers (line numbers) in the code listing.

A.2 Reading FORTRAN

Variables and Constants

Algebraic variables are represented by symbols as in ordinary algebra and may take on values from about \pm 1.7 x 10⁻³⁸ to \pm 1.7 x 10^{\pm 38}, and zero. Arithmetic is accurate to 8 significant figures.

Variable names must consist of 1 to 6 characters, the first of which must be a letter of the alphabet other than I, J, K, L, M, or N.

Examples: YIELD, X, A47, FI, DIVFAR

Integer Variables

Integers are used in subscripts, counting, indices, and sometimes in exponents. They are represented by symbols of 1 to 6 characters and must begin with I, J, K, L, M, or N.

Examples: N, J63, MCOUNT

Subscripts

Variables may have up to three subscripts, but no superscripts. The subscripts may be positive integers, but not zero.

Examples: X(K+1), Z(J,N), BB(I,J,K)

Arithmetic Operations

The symbols for standard arithmetic operations are little different from those used in ordinary algebra:

X + Y means add X and Y

X - Y means subtract Y from X

X * Y means multiply X by Y

X / Y means divide X by Y

Normal algebraic sign conventions are used. A double asterisk is used for exponentiation, i.e.:

$$R ** 2 means R2$$

R ** BETA means R^{β}

 $Q ** 0.5 means <math>Q^{1/2}$

Operations are carried out in the preferential order of first exponentiation, then multiplication and division , and finally addition and subtraction.

Equal Sign

The equal sign has a meaning slightly different from algebraic usage, e.g.:

means carry out the algebraic operations to the right of the equal sign and store the result of this computation as the new value of XYIELD. Note that the previous value of XYIELD is first used, then destroyed and replaced.

Parenthesis

Parenthesis may be used to group information, indicate subscripts, or indicate the argument of a function.

Examples:

(A+B)*C means add A and B, then multiply by C

X(K+1) means K+1 is a subscript of the variable X

SINF(X) means X is the argument of the sine function

Usually parenthesis will be used for grouping; subscripts can be recognized because they are integers, i.e., I, J, K, etc.; functions can usually be recognized by the letter F and the lack of an arithmetic operation symbol.

Library Functions

Certain library functions may be called in by name in order to save programming labor.

Examples:

EXPF(X) =
$$e^{X}$$

SQRTF(Y) = \sqrt{Y}
LOGF(Z) = $\log_{a} Z$

Program Flow

Statements are processed by the computer in order of occurrence unless other directions are provided. Formula numbers, which occur in the first 5 spaces to the left, are not required unless control is to be

switched to that particular formula. The most common control commands are:

GO TO 436

IF(X(K) - 3.0) 450, 500, 750

sends control to statement 436 tells the computer to test the sign of the expression in parenthesis (X-3) and to transfer control to statement 450 if negative, 500 if zero, 750 if positive.

The IF statement provides the only means by which the computer makes judgments.

Subroutines

Complete subprograms, designed to accomplish a particular set of computations many times, can be used. For example:

CALL STATE

appearing in a program will send the computer to subroutine STATE, the set of computations indicated in that subroutine will be carried out, and control will return to the main program at the statement following CALL STATE.

Repetitive Operations

To save labor in programming, the DO statement may be used:

DO 100 K=1, 95

instructs the computer to carry out all instructions following this statement until statement 100 is reached. Do this first with K equal to 1; repeat this process, increasing K by unity each time, making the final pass with K equal to 95.

This statement can be used to compute repetitive formulae, or it can be used to select values from an array of numbers. For example:

	TESTV = 1.6 E+02	means set TESTV = 1.6×10^2
	DO 50 K=1, 100	
	IF(X(K) - TESTV) 50,	50, 10
10	XCRIT = X(K)	sets XCRIT equal to X(K)
	N = K	retain the value of \boldsymbol{K} as the symbol N
	GO TO 70	exit from the DO statement
50	CONTINUE	a dummy statement
	XCRIT = 0.0	set XCRIT to zero
70	YSTART = XCRIT + DELTAY	the next step in the computation

values of X, starting at X(1),.....X(100). If no such value is found, then XCRIT is set equal to zero.

The above material has been brief and oversimplified, but should enable those unfamiliar with FORTRAN to decipher formulae from a program listing and to follow the scheme of computation. Additional help can usually be obtained from programmers if additional questions of interpretation should arise. Books on FORTRAN are available, but none are recommended.

A.3 The computational scheme

The general computational scheme is cyclic in nature, each completed cycle representing an advance in the time variable.

The method of computation is illustrated in the schematic flow chart, Fig. A-2. Each block in this illustration represents a principal feature of the computation; numbers in the upper left corner of each block refer to a line number to the far-right of each page in the code listing.

The computation begins by reading in an initial configuration from data cards. The configuration consists essentially of the initial density, temperature, velocity, and dimensions of each of the 100 zones in the model. The data cards may represent an initial configuration, or the data might represent the results of a previous computer run on a model that is being done in short segments.

If the entry is a restart rather than an initial start, a dummy subroutine rejust (0693) is provided to make minor changes in program control parameters without the need for recompiling the major subroutines.

After reading in the initial configuration, the data is tested for obvious errors (0367), the equation of state subroutine (0387), the radiative properties subroutine (0389), and finally the flux subroutine (0410) are used to complete the details of the initial configuration. The computation cycle proper is then initiated (0402-0405). The initial time, which has been modified (0404), is now restored to its proper value (0123).

A sequence is then used to determine the number of zones, out of the possible 100, that are to be used at the present stage of the computation. (0124-0138). The number of zones in use is continuously adjusted during the computation to avoid unnecessary computation. When the data is loaded,

zone 100 must have the ambient temperature and density at burst altitude. The code then probes inward to a point where the temperature is twice the ambient value or the particle velocity reaches 1 m per second. The number of zones in use is then arrived at by adding a 6 zone safety factor to the result of the above selection.

The next sequence (0139-0162) selects the times at which the data printrout routine (0833) is called, selects the magnetic tapes to be used for the data, and sets up the necessary parameters to integrate the total energy lost by radiation between two data printouts, and to find the radiant power by differentiation of the energy vs time. The data print-out routine will be described in detail in Section A.4. The data printout routines are one-way streets so far as the main stream of the computation is concerned. Data is siphoned off, but no feed back into the computation proper occurs.

The sequence (0164-0177) provides an emergency data saving mechanism for use in case the computation becomes numerically unstable. In order to provide an economical computation, the time step used must be just below the critical value prescribed by the various criteria which will be described in the hydrodynamic routine (0360). These criteria are not fool-proof, and should the computation become numerically unstable (or should the computer operator err), the already completed computation might be lost unless there were a mechanism for restarting. Once the calculation has become unstable, the data presently in the computer may be invalid. The present sequence writes the fireball configuration on a magnetic tape at the completion of each 50 code cycles. Each time another 50 cycles are completed, the tape is rewound and the next configuration

written. Finally, at the end of the run, the last configuration remains on the tape, is read into the computer (0305), and data cards are punched (0312). Should this data card punching process fail, the tape itself is saved and the cards can then be punched directly. At the time of termination due to any type of error, data cards are then available not more than 50 cycles back. On occasion, an instability may occur just after a configuration has been written in the tape, in which case the computation is lost. But this has a probability of occurrence of about 1 chance in 50.

The next two sequences (0179-0257) select the rezoning subroutine (0179) and the zone splitting subroutine (0225). These sequences will be discussed below in Section A.5 dealing with these subroutines. In principle, one tries to remove fine zoning where it is not needed, and to create fine zoning when the physics of the problem so demands. Use of fine zoning throughout is not feasible because of the increased computational costs and also because the computer can only accommodate a total of 100 zones at one time. If the finest zoning in the problem were used throughout, the entire fireball could not be accommodated. So far as is known, other codes (Brode and Whittaker, private communications, 1965) currently in use are rezoned manually by visual inspection. The present sequences are an attempt to carry out this process automatically during the computation.

The sequence (0259-0264) provides for the printing of detailed diagnostics at the initial cycle, the next cycle following, and at one selected by data card input. The diagnostic routine (1125) is called for this purpose.

A termination sequence is provided (0266-0342) which is used whenever the computation is terminated, except in those cases where the normal course of the computation is interupted by a machine difficulty or an operator error. The termination sequence provides for a final data printout (0274), the printing of program diagnostics (0273), the punching of current data cards (0275-0282) for possible restart purposes, completes, copies, combines, and unloads various tapes (0283-0326), and punches data cards containing the configurations from 1 to 50 cycles prior to the termination (0303-0319), before completing the run (0343).

The series (0123) through (0345) has dealt primarily with control mechanisms, rather than the actual computation, which is resumed at (0346). In the course of the computation it is necessary to carry most of the program variables for all mass zones, but only for the current point in time. A few of the variables must be carried for all space zones, but for two consecutive points in time. For example, the present value of the specific volume for zone K is represented by the symbol V(K), while the specific volume from one time-step in arrears, the retarded value, is represented by VR(K). As the program cycles, the present value becomes the new retarded value, and a new "present" value is computed.

The shifting process, in which the retarded values are set equal to the present values, takes place in the next sequence of commands (0346-0356). Also in this sequence, the present values of the variables are independently seved under the symbol W(K,I) for possible use in the event that the entire cycle requires restarting. The restarting procedure is discussed at the end of this section.

Following retardation of the variables, a hydrodynamics routine (0360) is called, which will be described in detail in Section A.6. This routine advances the velocities, radii, specific volumes, and artificial viscosities.

One of the more important steps in the program is accomplished by a single dummy statement (0364). The first step in solution of the energy equation (Eq. (A.13)), is the estimation of a new trial temperature for each zone. Skillful selection of the trial values will make the iteration process converge faster and thus speed up the computation. However, in an iteration process the equation being solved is never satisfied identically, and any prejudice used in estimating the new temperatures may tend to impose non-random errors in the final results. For this reason, the old values of temperature are used as the first estimates for the new values. The iteration scheme itself then, in a sense, becomes a basic part of the system of equations. As will be discussed later, the iteration scheme used employs the same set of equations as are used to represent the energy equation itself. This procedure should tend to minimize any bias.

The iteration cycle proper (0365) begins by testing the set of temperatures for negative or zero values. Such values are likely to occur in the event of a numerical instability, in which case the computation is immediately terminated through the sequence previously described.

In the next sequence (0371-0387) the equation of state subroutine (1217) is called on three successive occasions. This subroutine is discussed in Section A.7. At this point in the computation, the advanced values of the specific volume are known for each zone. A trial set of temperatures has been selected. The derivatives of the internal energy and pressure,

with respect to temperature, at constant specific volume, are formed by first increasing the temperatures 2% above the trial values, passing through the equation of state to obtain energies and pressures, then repeating the process after lowering the temperatures 2% below the trial values. The required derivatives are then formed numerically from the above data (0384-0385).

The temperatures are then returned to the original trial values and a final pass through the equation of state is made to obtain trial values of the internal energy and pressure (0387).

Two subroutines are then called to provide the necessary radiative flux divergences for use in the energy equation. Subroutine SWABZ (0490) uses the values of V, T, and the dimensions of the zones to compute values of the SWAB and Z functions and is discussed in Section A.8. These values are used in subroutine FLUXS (1183) to compute fluxes and flux divergences as described in Section A.9.

A temperature test occurs next in the computation, but is bypassed on the initial trial of the energy equation.

The energy equation itself is then evaluated (0415-0424). A residue, comprising the imbalance of the energy equation due to the use of trial temperatures, is computed for each zone (0422).

The temperature iteration of the energy equation then commences (0425). Two types of iteration schemes can be selected. If the configuration is entirely optically thin (i.e. the total optical depth from the outer edge to the center is less than a given value) a non-radiative iteration (0429) can be used. Radiative transport is still included in the energy balance, but explicit radiative derivatives do not appear in the iteration scheme. If this alternative is selected, the temperature increments for each zone are

computed immediately (0431).

When radiation is included in the frenation (0439), the radiative and hydrodynamic derivatives are carried only in the inner zones, while only hydrodynamic derivatives are carried in the cuter zones.

In the radiative iteration procedure, subroutine COEFF (1395) is called to form the required coefficients for the solution (0447) for the temperature increments. This subroutine is described in Section A.10.

Once the full set of proposed temperature increments is known, they are tested (0457) to see if they are within arbitrary bounds which have been developed by experience. Should these bounds be exceeded, there is a high probability that the time increment used by the computer was too large. Program diagnostics are then printed, the variables are restored to their values at the beginning of the cycle, and the cycle is repeated using a smaller time increment. This recycling is allowed 3 times, after which the computation proceeds even though the test bounds were violated. If the test criteria were correct, a numerical instability results, and the computation is terminated from one of the several points in the program where the instability can be positively detected. An instability does not always occur, however, since the tests are not infallible.

Usually a recycling occurs when a time increment just slightly too large has been used and a single recycle cures the difficulty. Use of this stability check "after the fact" enables the various time step selection criteria to be pushed close to their limits. Use of large safety factors in these criteria, as is the common practice, would be prohibitive as the total computation time would be seriously increased. If the proposed temperature increments satisfy the stability tests, they are accepted and

the trial temperatures are modified accordingly (9485).

These new temperatures become a new set of trial temperatures and the iteration cycle is begun again (0367). The iteration convergence test (0409) is made well into the second and subsequent passes through the iteration sequence. Should the test be satisfied, then the best values of internal energy, pressure, and fluxes, etc., are available as the cycle is completed. If the test is failed, the iteration cycle then progresses with all the necessary data. The code as written performs some unnecessary computations in that the state derivatives are computed but not used if the convergence test is satisfied. This technique was a compromise between several alternatives and was adopted because it required less computer storage at a period when the program was storage limited.

The actual convergence test used (0408) consisted of the requirement that the temperature increments for all zones be simultaneously less than 10% of their respective zone temperatures. This method proved to be more efficient than several other methods tried which were based directly on the degree of imbalance of the energy equation.

The number of passes through the iteration sequence is limited to 3 on any one code cycle (0416). It is a characteristic of the Newton method that convergence takes place very rapidly or not at all, and that on odd number of attempts is usually better than an even number. Should an abnormally large temperature increment occur after 3 iterations, a convergence check at the beginning of subroutine HYDRO detects this and forces a smaller time step on the following cycle. This test differs from the main program stability check in that it is applied only after 3 full iterations and uses stricter criteria.

A.4 Data printout routines

The data printout sequence is contained in subroutine CGSPO (0833),
This routine samples the data from the computation proper, generates
additional parameters of interest from this information, and produces two
magnetic tapes: the main listing and the user tape.

The general problem of determining observables from a list of temperature and density values is a difficult one. Many of the "observable" parameters generated by the printout routine are extremely crude and must be used with extreme caution. These "observables" have been printed below the main tables of data and include the shock radius, fireball radius, effective temperature, color temperature, and the spectral distributions. For example, the code defines the fireball radius (FBR) as the radius at which the optical depth is 0.44 as measured from outside the fireball. This simple definition is easy to code and is useful radius to have printed out. But for comparison with an experimental radius measured photographically, a complete brightness profile is required for comparison with the corresponding densitometer traces from the experiment.

The routine begins by testing for temperature inversions (0864) and causes program diagnostics to be printed if such inversions are found. Placement of this test in the printout routine causes the diagnostics to coincide in time with the data printout so that any unusual features seen in the listings may be studied in detail.

In the sequence (0868-0874) a number of variables to be printed out are set up. This sequence works in conjunction with the sequence (0139-0162) in the main program. The variable CN(LZ) is the average time step between two successive printouts. The variable SAVE1 is the value of the last time step before the printout. The total power being radiated

in watts (POWER), the color temperature (TCOL), and the effective temperature (TEFF) all depend upon the value of the total flux (TFLUX) which is the power being radiated in ergs. TFLUX is computed in the main program (0155). The instantaneous total flux at the end of each cycle is called FLOX and is summed continuously (0139) throughout the computation and called FLEX. The average power TFLUX over the time interval between printouts is obtained by numerical differentiation of FLEX (0155). This method gives more representative results for the power output since the instantaneous power tends to fluctuate due to the finite zoning of the model. The instantaneous total power corresponding to the time of a given printout can easily be obtained since the radius and outward flux at the last zone are available from the printout.

The code definition of the effective temperature (TEFF) is defined (0874) from

TFLUX =
$$4\pi$$
 (FBR)² σ (TEFF)⁴

where $\sigma = 5.67 \times 10^{-5}$ = Stephan's Constant.

It is the temperature of a black body radiation having the same size as the fireball and which emits the same total power. This temperature is a minimum estimate of the fireball "surface" temperature since the fireball does not have an emissivity of unity.

The code definition of (0873) color temperature (TCOL) uses an estimate of the total emissivity and yields a higher temperature which can be used to describe the spectral character of the radiation escaping from the fireball. The emissivity estimate is based on the $Z^{\frac{1}{2}}$ function

for the zone having the largest λ_c and the radiation temperature for that same zone (0689).

After the fireball becomes transparent in the continuum, the effective and color temperatures are no longer defined since their definitions involve the fireball radius, and by the code's definition, FBR=0 under these circumstances.

At this point (0875), the printout routine calls subroutine PHOTOG (1061). This routine computes an estimate of the photographic brightness as a function of radius. Using an approximate fit (1073) to the absorption coefficient for the "photographic" region of the spectrum, and a Planck function (1083), the emitted intensity is calculated for chord rays which are tangent to the mid-point of each mass zone. Since the spectral band width of the photographic region is unspecified, only relative brightness values are obtained. The brightness scale, however, remains fixed throughout the entire computation. It is clear that only an estimate can be obtained from this computation since the absorption coefficient is not independent of wavelength across the photographic region of the spectrum, and also because the appropriate absorption coefficient data are not available at temperatures above 20 eV. The data is useful, however, in making comparisons with experimental results and in finding the gross brightness variations across the fireball.

The CGSPO routine next makes an estimate of the spectral distribution of the total radiation emitted by the fireball. The code decides (0877) whether the fireball is optically thick or is transparent. If the fireball is transparent (0878), no realistic estimate of the spectral distribution can be made since the spectrum consists of emission lines and a weak

continuum. An extremely crude estimate of the "visible power" (4000-7000 Å) can be made by noting that fireballs tend to form an isothermal region at these late times. Most of the emitted radiation must come from this isothermal region since it is the hottest part of the fireball. These isothermal region temperatures range from 9500° K down to 5000° K as the transparent fireball cools. If it is assumed that the envelope of the emitted spectrum crudely approximates a Planckian distribution, then $37 \pm 3\%$ of the radiation will fall in the "visible" region of the spectrum over this entire range of temperatures. Hence, for the transparent case, the visible power (P47) is taken as 37% of the total power (0878).

If the fireball is optically thick (0888), then the color temperature is used as a basis for division of the total power into broad spectral bands (0889-0939). The formula for the Z^{+} function, which very nearly approximates the fractional Planck function in the visible and IR spectrum, was used in place of an accurate fit to $\int_{-\infty}^{\infty} B_{\lambda} d\lambda$ as an analytic fit to this integral was not know to be readily available. The accuracy so achieved is probably better than the physics of the spectral estimation process. The overall results are of a quality comparable to those achieved by assuming the sun to be a 6000° K black body.

The next sequence (0944-0963) performs an energy check by summing the internal and kinetic energy of the current configuration. The sequence computes the internal energy and the kinetic energy zone by zone, and also the internal energy of the volume or space currently occupied by the configuration if there had been no detonation. This "ambient" energy of

the undisturbed air constitutes a significant part of the total energy of the configuration, particularly at late times when the radius of the configuration is large. It must be taken into account in studying the energetics of the model.

The code has no built-in method of forcing energy conservation. The energy check sequence is simply an after-the-fact sampling to see if energy has been conserved. If the difference equations do in fact represent the basic conservation equations, then mass, energy, and momentum will automatically be conserved.

The energy accounting at any one moment can be verified by adding the present model energy due to the detonation and the thermal losses up to the given moment. The quantities TOT ES, EAMB and TYIELD are printed out and are the appropriate numbers to use for this purpose. TOT ES in the printout is the total energy, (DPP(LZ) in the code (0959),) and includes EAMB, the energy content of the cold air before the detonation. TYIELD in the printout, (FLEX in the code (0139),) is the total energy radiated outward across the outer boundary of the model from the time of detonation up to the present time. In general, the code conserves energy to within a fraction of 1%.

Sandwiched in the energy check routine are some operations which concern the printing out of shock parameters. (0955-0958). It should be remarked that the location of shock fronts in a numerical configuration is a difficult problem because of the varying number of shocks and the wide range in their characteristics. Many methods were tried, but with limited success. Shocks are best located by a careful study of density vs. radius

and velocity vs. radius graphs,

The location of a strong shock is determined by the program by finding the largest value of the artificial viscous pressure, with the added requirement that it be larger than the ambient gas pressure at burst altitude. This shock radius is printed, but cannot be relied upon without further inspection to see if a shock really exists at that radius. This simple technique will print out the location of one shock, but it may not select the same shock on consecutive printouts.

The sequence (0978-0991) simply changes units and sets up certain quantities in proper form for printing them out. For example, (0987) computes the effective value of "gamma," while (0984) yields the temperature in electron volts.

sequence (1001-1016) prints out the main listing, while the sequence (1022-1029) prints out the user magnetic tape for use in continuation computations such as fireball environmental studies.

A.5 Variation of the number of sones in use

It has been said that there are three major problems to be solved in writing a fireball code: the basic physics, the interpretation of the results, and the use of proper zoning. Proper zoning is by far the most difficult of these problems. One simply cannot use a fine mesh throughout the configuration as the computing time increases approximately as the square of the number of zones, i.e. halving a zone halves the time step and doubles the number of computer operations, thereby requiring four times as much computer time.

In the other extreme, if the model is represented by zones of equal size, some of the zones may be too large to properly represent the gradients in physical properties.

Consider, for example, a model where the fireball has a radius of 10^3 cm and may require zones of width 10^{-1} cm at the fireball boundary. Since the computer can accommodate only about 100 zones at a time, the zone obviously cannot be of equal size. Furthermore, use of a 10^{-1} cm zone in the hot isothermal region would slow the computation by at least a factor of a hundred, and perhaps a factor of ten thousand or more.

Ideally, new zones should be created and old zones combined in an optimum manner based on the local physical conditions at each point in the configuration. The subroutines SPLIT (0785) and REZONE (0701) are provided for these purposes.

In the split subroutine, the zone indices for the zones exterior to the zone to be split are first shifted outward (0789-0808) to make room for the new zone.

The zone is then split in half mass-wise (0810-0811). The particle velocity at the new interface is taken as the square root of the average of the squares of the particles velocity at the boundaries of the original zone. The temperature of the two new zones are displaced 10% above and below the temperature of the original zone, (0824-0825) and a similar treatment is accorded the internal energies (0826-0827).

This routine must be considered as only a crude beginning and much work is still being done in developing new techniques. The present routine can only be used before the gradients become large, and even then its use should be discouraged.

The calling sequence for the SPLIT subroutine occurs in the main program (0225-0257). Statements (0228 and 0248) prevent a split more often than each third cycle. Statement (0231) requires a split at any time that a single zone represents more than 8% of the radius of the entire configuration.

The real purpose of zone splitting is to provide very fine zones just ahead of an advancing shock front so that the optical properties will not be too severely distorted. The sequence (0232-0244) attempts to achieve this goal. Optical depth 0.7 from the outside is located (0232) and this zone is tested to see if it is being compressed (0235). Then if the particle velocity is greater than 10⁵ cm/sec as is characteristic of optically thick shocks, the five zones immediately exterior are scanned and one per cycle can be split, until a certain minimum zone size is reached. Once the shock has started, the splitting takes place 5 zones ahead of the shock until the shock becomes transparent. The minimum zone size has not yet been formulated in general terms, and must be re-programmed in for each separate run. In the program listing (0240) a zone of 200 cm or more can be split, resulting in a minimum zone size of 100 cm. This is about appropriate for a megaton burst at sea level.

As a final insurance against undesirable zone splitting at high altitudes, statement (0244) prevents splitting at temperatures above 6×10^{40} K.

Subroutine REZONE (0701), which combines two existing zones is on a much more sound basis. Conservation of mass in the zone combining process is trivial (0735), but the conservation of energy and momentum are slightly more complicated. The internal energy of the new zone is taken

as a mass weighted average of the internal energies of the two zones being combined (0733). The conservatism of kinetic energy and momentum for a four zone system (0709-0712), which is collapsed into a 3 zone system, results in two equations for the two unknown particle velocities at the inner and outer edges of the combined zone.

The remainder of the subroutine REZONE consists of a shifting of indices for zones exterior to the fusion, and the addition of a new zone 100 at the outer edge of the configuration.

While this routine works well and quite accurately, some skill is required (but not always attained) in deciding when rezoning should take place.

The calling sequence for rezoning is in the main program (0179-0274). On the basis of optical properties (0182), the outer limit of the region to be scanned (the index NZ TS) and an allowable mass ratio for neighboring zones (PMT) are selected (0181-0202). If at least two cycles have passed since the last rezone (0204), zones 9 through NZTS are tested for size compared to the size of the entire configuration (0205), temperature gradient (0206), density gradient (0207), and mass gradient (0208). If these gradients are less than the allowable artitrary limits, then rezoning is allowed so long as the zone is not undergoing significant compression (0209).

A.6 Hydrodynamics routine

The hydrodynamics routine (1261) is patterned after the artificial viscosity method of treating shocks (see Chapter 2). In addition to advanging four of the basic equations, this routine also controls the size of the time increments and performs miscellaneous other functions.

At the beginning of the routine, the previous temperature increment is tested (1273) against the temperature, and if the increment is too large, the proposed time step is cut a factor of five (1277). This test serves several purposes depending upon the values of the previous temperature increment that may be stored in the computer at the moment. If a maincycle has been completed satisfactorily, i.e. all temperature increments are less than 10% of their respective temperatures, then no decrease in estimated time step takes place. If, however, a main cycle was completed after three passes of the energy equation, the 10% requirement may not have been satisfied, i.e., the iteration may not have converged. Should this be the case, then the time step is shortened in the hope that a numerical instability can be avoided.

If the main program stability check (0457) is violated, the program returns to the beginning of that master cycle after restoring all data except the temperature increments. Then, since the HYDRO tests are slightly more demanding than are the main program tests, the time step will also be decreased when the main program senses a difficulty.

The equation of motion sequence is carried out in two separate phases which are separated by criteria to choose a new time increment. The particle velocities are first advanced using the previous value of the time step (1289) so that proper time centering of the difference equation (Eq. A.9)) is maintained.

A new time increment is then selected (1298-1335). First a time step 30% larger is suggested (1299). This value is then reduced should the Courant criterion, Eq. (2.5-4), demand that a smaller value be used

(1302-1310). The time may be further reduced by a radiative criterion (1314-1326). Gross checks are then imposed, as a safety factor, which demand that the new time step can never exceed the previous one by more than a factor of two, or be less than a given minimum value (DTMIN). The value of DTMIN is continually increased during the computation and is kept a factor of 50 smaller than the largest time step that has been used. Should the speed of computation decrease more than this factor of 50, too large a time step (the value of DTMIN) is forced into use and the computation may become unstable and turn itself off. This feature prevents the waste of computer time should the time step conditions become abnormally critical at some point in the configuration.

Superimposed on these criteria is the mechanism for causing data to be printed out exactly at fixed predetermined times (1333-1335). This criterion may further decrease the time step.

After a new time step has been decided upon, new values of the particle velocity are determined by linear interpolation (or extrapolation) so that proper time centering of the equation of motion is maintained (1337).

The radii (1344) and specific volumes (1362) are then advanced in a straightforward manner. The new radii are tested before adoption (1348) to prevent sudden zone collapse should the estimated hydrodynamic time step be too large. A local recycle with decreased time step is then instituted (1358).

It is perhaps appropriate to again mention that the use of large safety factors in the time step criteria result in the use of large amounts of computer time. Considerable economy is achieved by lowering the safety factors, testing the proposed results before closing a cycle,

and re-cycling when necessary. Using this technique and with a little experience, the code can be kept running at near optimum speed.

The sequence (1372-1385) advances the artificial viscous pressure.

A variety of formulae are available in the literature for this purpose. The formulae used here is similar to that given by Richtmyer (see Chapter 8 references). This form appears to give better results when shocks reflect at the center of the sphere than do the "linear" and "quadratic" forms. In the final analysis, the use of an artificial viscosity is an art and an adjustable constant (1374) is available to achieve optimum results for any specific situation. Use of too small a constant causes numerical ripples behind the shock, while use of too large a value spreads the shock-over too large a distance and lowers the shock velocity. According to Richtmyer, choice of the arbitrary constant in a manner so as to spread the shock discontinuity over 3-4 zones results in shock velocities and pressures that agree well with laboratory experiments.

The use of an artificial viscosity causes a ficticious precursor ahead of the shock front. If this precursor is optically thick, the shock radiation rate will be affected. This effect reduces the rate of radiation loss when the shock temperature is large, but numerical testing has shown that it has little effect on the shock energetics.

A.7 Equation of state routine

The equation of state subroutine (1217) is entered with known values of the temperatures and specific volumes for each zone, and values of pressure and interval energy are computed.

The source data for the analytic fit to equation of state are primarily due to Gilmore (1955) and to Hilsenrath and Beckett (1955). This polynomial type of fit, though in principle not as accurate as an iterative routine, is preferred for computational purposes because the derivatives are well behaved. This fit is also self consistent in that the hugoniots are closely satisfied, while some of the piece-wise fits, that are accurate over limited ranges, fail in this regard. No significant inaccuracies are known to have resulted from use of this simple expression.

There is some question as to whether radiation pressure and the radiation energy density should be included in the equations of state (see Chapter 2). The subroutine STATE allows an explicit choice to be made in this regard (1222-3). These effects can only be important at high temperatures. The argument against including these effects is that at the high temperatures the matter and the radiation cannot be in equilibrium according to the local high temperature since the gas is too transparent. The radiation field is characteristic of the lower temperatures where the opacity is higher. To base the radiation pressure on the higher values of temperatures in the interior would thus be an overestimate.

A.8 Radiative properties routine

The radiative properties of the fluid, which are characterized by the S, W, A, and Z functions, Eqs. (A.17) through (A.25), are supplied by subroutine SWABZ (0492-0692). The analytic representations of the Z and A functions, which differ only in that the electron scattering is omitted in the A function, are formulated in terms of $\lambda_{\rm H}$, a radiative mean free path which depends upon the zone temperature, zone specific volume, and the time.

The Z⁻ function (ZI in the code) is formulated directly as a transmission (9500-0507). The A function cannot be formulated directly in this fashion since $\ln A$ is needed to define optical distance, and truncation errors would occur as $A \rightarrow 1.0$. Thus λ_{H^+} (HMFP in the code, is found (0508-7511), together with a separate high temperature emission term (0512) due to Bremsstrahlung (HMFF in the code). The smaller of these two mean free paths is used for temperatures above 10 eV (0514).

The emission optical depth (0516) then follows immediately from the zone thickness. The A function (0517) at this point in the code is identical with the definitions used in Eqs. (A.21) and (2.5-14). A later sequence (0670-0675) redefines A as (1-A) (an emissivity) as a computational convenience for zones of small emissivity.

The variables BC and BB 91518 and 0526) are used to represent the source function at the zone centers and zone boundaries respectively. It will be noted that the boundary value is determined by linear interpolation of the source function in terms of geometrical rather than optical distance. The two methods yield substantially the same results when the two neighboring zones have comparable optical thicknesses, but the geometrical method gives better values when an optically thick zone occurs next to an optically thin zone. The terms involving the boundary values cancel if both zones are optically thick, while the source function gradient is small for two transparent zones, so that the method of interpolation is not important in these cases.

The sequence (0536-0563) computes the optical depth inward from

The double subscripting, i.e. A(K, N) has been carried over from an earlier version of the code in which N spectral bands were used.

the outer boundary of the configuration and sets various control variables used by the program at other locations. The index LZR specifies the last zone to be included in the radiative part of the iteration scheme. The fireball radius, FBR, is set as the outer radius of the zone in which the total optical depth as measured from the outside has reached 0.44. Choice of this value has no particular significance. For high air densities the optical depth increases abruptly so that any reasonable test value will result in choosing of the same zone to specify he radius. For rarefied atmospheres, considerable limb darkening takes place and chord integrations would be necessary to find a precise radius. The test value of 0.44 has been found to yield radii satisfactory for the intended applications elsewhere in the code. The index MCP is used to specify the zone in which optical depth unity occurs as measured along the representative ray. (This corresponds to a radial optical depth of 2/3).

The sequence (0564-0607) computes the wavelength at which the principal spectral absorption edge occurs for each zone. This wavelength depends only upon the physical characteristics of each zone, i.e., its temperature, density, and zone thickness. Zones are first sorted according to temperature to determine whether the spectral transition is due to an atomic species, the nitrogen molecule, or the oxygen molecule.

The transition edges due to atomic species are in the far ultraviolet and a fit will be required only at very high altitudes when the fireball is transparent throughout while the temperatures are high enough so that the Planck function is significant in the ultraviolet. This fit used by the code is therefore very limited in its application.

The nitrogen and oxygen molecular formulations involve a continuum with a relatively sharp long wavelength limit, and an extensive system or molecular bands extending from this limit toward longer wavelengths. The continual are assumed to exist at all times that the molecules have sufficient population, but the band systems, which depend upon the population of the higher vibrational levels, are assumed not to exist until the passage of a vibrational relaxation period.

While in principle the relaxation time should be measured from the time that each zone is first heated (actually the temperature-time history should be taken into account), a satisfactory first approximation is given by use of the time since the detonation. The relaxation time for N_2 at sea level is taken as 5×10^{-7} sec and for O_2 as 3×10^{-7} secs. These times are scaled inversely with the density to obtain the relaxation times at higher altitudes. These times are based on data by Blackman (1956).

The absorption edge and the continuum absorption due to a particular species must fade away as the population is diminished by dissociation. At a given density, the population decreases very rapidly with temperature as soon as kT becomes comparable with the dissociation energy. Due to the finite zoning structure, the population of a particular specie will be appreciable in one zone, but negligible in a neighboring hotter zone due to the rapid temperature dependence of the populations. Thus, for the purpose of computing absorption edges, the species can be assumed to exist below a certain temperature and not to exist above that temperature. The dissociation is thus assumed to take place at a temperature rather than over a narrow temperature range. The dissociation temperatures for N_2

and O_2 , as a function of density, are represented in the code by two formulae (1708-1709) and are used in the SWABZ subroutine (0572-0580).

The sequence (0612-0669) computes the \mathbf{Z}^{\dagger} values (ZO in the code). The \mathbf{Z}^{\dagger} function depends on $\lambda_{\mathbf{C}}$ which has been determined above, and the temperature $T_{\mathbf{R}}$ used to describe the spectral distribution of the radiation incident upon the zone. The sequence (0622-0642) selects this temperature for each zone. In the case of an optically thick fireball, this temperature is that of the first zone at optical depth greater than 0.7 from the zone in question (0628). For a transparent fireball, where the radiation comes from a shell rather than from a "surface", the temperature is taken as an optical depth weighted average of the zones interior to the zone in question (0624). This "shell source" sequence is important only at high altitudes where the fireball is transparent, and when the temperatures are still high enough to have radiative flow in the far UV region of the spectrum where the absorption edges occur.

The Z^{\dagger} values are corrected for the effects of intervening zones between the source of the radiation and the zone in question (0655).

The sequence (0676-0688) becomes effective at very high altitudes when the configuration is quite thin and thermal radiation plays only a minor part in determining the temperature distribution. Under these circumstances, the series expansion of the source function should not be truncated and derivatives of higher order than the first should be included. But since the radiation is of little importance in this case, the series can be further truncated so that only the zero order term is used and the code automatically switches over to radiative transfer for isothermal optically thin slabs.

The variable EMS (0689) is used as an estimate of the total emissivity. It corresponds to the Z^{\dagger} function for that zone having the maximum cut-off wavelength, but without correction for intermediate zones.

A.9 Radiative flux routine

Since all the needed data has been generated elsewhere by the code, the radiative flux routine is particularly simple (1183).

To perform the flux integration a boundary condition is needed. For this purpose, the inward flux incident on the outer boundary of the configuration is chosen as zero (1190).

The inward flux at the boundary, one zone inside, is given by the sum of the transmitted and emitted components (1193) as in Eq. (A.27). The integration continues inward until the spherical central zone is reached. The outward flux for this zone is the sum of the transmitted inward flux and the local emission (1195). The integration then proceeds outward (1197) using Eq. (A.26). One can view this process as an integration starting at one side of the fireball, passing through the center, and then on out the other side. All of the inward and outward fluxes needed to form the radial component of the flux divergences (1211) are generated during this integration.

It should be noted that this subroutine is written again for N spectral bands, and that the total directional flux at a given boundary is obtained by a summation over the spectrum, even though only 1 spectral band is used by the present code. In addition, the A function used in (1193-1198) does not correspond to the transmission function used elsewhere in the text, but to (1-A) as explained in the SWABZ subroutine.

The energy Equation (Eq. (A.5)) is solved by an iterative method as described by Hillendahl (1964). Subroutine COEFF (1395) performs the necessary algebra to form the required derivatives.

The basic approach is to compute the derivatives numerically by a ripple zone technique, rather than to derive and to code explicit formulae for the derivatives. In using this technique, the temperature of a single zone is increased 2%, then formulae identical to those used in subroutine SWABZ are used to calculate those radiative properties which change as a result of this temperature increment (1429-1576). A flux integration is then carried out (1577-1593), the flux derivatives are formed (1614), and the perturbed variables are returned to their normal values (1627) which were saved (1411). This ripple zone process is repeated until all the required derivatives are available. Derivatives with respect to zone temperature more than two zones distant are truncated.

The energy equation derivatives, including both the radiative and hydrodynamic parts, are formed numerically (1647). The data is then available to form a set of linear algebraic equations for the temperature increments of the zones.

This matrix is then solved by direct elimination and back substitution using recursion formulae (1673) and (0447).

This numerical method of solution, involving the ripple zone method of obtaining flux derivatives and the step by step formation of the energy equation derivatives has been found to be both convenient and economical. If details of the radiative properties or flux formulae are changed, duplicates of the new formulae are simply inserted into the coefficient subroutine without the necessity of deriving explicit formulae for the

derivatives, which in some cases, have as many as 40 terms. Such lengthy formulae are difficult to derive and code without errors, and the sorting of terms to avoid arithmetic truncation difficulties is a major task. Since the actual number of operations to be carried out by the computer is approximately equivalent in the two methods, the numerical technique is to be preferred.

A.10 Code listing

The pages following present a complete listing of an actual working radiation-hydrodynamic code which has been described in sections A.1-A.9. No attempt has been made to edit the listing for publication purposes since this practice quite often results in the publication of codes that do not work.

```
FORTRAN
                                                                                     0001
                                                                                     0002
CFIRE
      1
    MODIFIED DIMENSION STATEMENT
                                        NSZ=1
                                                                                     0003
      DIMENSION
                                 TS(100).
                                             TP(100).
                                                        TM(100).
                                                                                     0004
                      T(101).
                                                                    TR(100).
          PAC (00).
                      P(100).
                                 PS(100).
                                             PP(100).
                                                        PM(100).
                                                                    PR(100).
                                                                                     0005
     1
          DE(100).
                     E(100).
                                 GM(100).
                                             EP(100).
                                                        EM(100).
                                                                    ER(100).
                                                                                     0006
          Q(100).
                      V(100).
                                 VS(100).
                                             RHOZ(100).U(100).
                                                                    VR(100).
                                                                                     0007
      5DR(100).D(1).R(101).
                                 RZ(100).
                                             R2(100).
                                                        UA(100).
                                                                    UR(100).
                                                                                     8000
          DTM(100). DTR(100).
                                DTH(100).
                                            DPT(100).
                                                        DET(100).
                                                                   RR(100).
                                                                                     0009
          ZMAS(100).DIVFA(100).DIVFR(100).RESDUE(100).FP(100). FZ(100).
                                                                                     0010
                                                                                     0011
                     FMM(100), HZ(100),
                                             HP(100).
                                                        HPPP(100), HPP(100),
          FM(100).
     9 DMM(100), DM(100), DZ(100), DP(100), DPP(100), BM(100)
1 CN(100).DN(100).EN(100).ETA(100).XS(100).GNU(100),PART(100)
                                             DP(100).
                                                        DPP(100), BH(100).
                                                                                     0012
                                                                                     0013
      DIMENSION THETA(100)
                                                                                     0014
                                                                                     0015
    STORAGE FOR RADIATION VARIABLES
                                                                                     0016
                                                                                     0017
      DIMENSION 88(100.10).
                                   DTAU(100-10).
                                                     S(100.2).
                                                                   FO(100.10).
                                                                                     0018
      1FOT(100.10).FI(100.10).
                                   FIT(100.10).
                                                    ZO(100.10).ZI(100.10)
                                                                                     0019
                                                                                     0020
                     W(100, 10).
      2.A(100.10).
                                     BC(101,10).
                                                     FIS(100), FOS(100),
      3CVL(100, 2), YM(10V), TAU(100, 2)
                                                                                     0021
      COMMON T.TS.TP.TM.TR.PA.P.PS.PP.PM.PR.DE.E.GM.EP.EM.ER.Q.V.VS.RHO
2Z.U.VR.DR.D.R.RZ.RZ.UA.UR.DTM.DTR.DTH.DPT.DET.RR.ZMAS.DIVFA.DIVFR
                                                                                     0022
                                                                                     0023
      3. RESQUE. FP. FZ. FM. FMH. HZ. HP. HPPP. HPP. DMH. DH. DZ. DP. DPP. BN. CN. DN. EN
                                                                                     0024
      4.ETA.XS.GNU.PART.THETA.KGU.KGP
                                                                                     0025
                                                                                     0026
      5.88.DTAU.S.FO.FOT.FI.FIT.ZO.ZI.A.W.BC.FIS.FOS.CWL.YM.TAU.NSZ.
               LZ.LZMI.LZM2.LZP1.LZP2.BR.RJ.RX.NCV.NMC.NTI.FLOX.FLEX.
                                                                                     0027
      71 IME. DT. CS. CR. RS. MCL. MCP. MCV. RM. VD. ZA. NB. NQS. FBR. LZR. DTMIN. NR
                                                                                     0028
      8.KZ1.KZ2.KZ3.KZ4.KZ5.KZ6.KZ7.KZ8.KZ.TD02.TDN2.NOP.SCALE.EMS.
                                                                                     0029
      9BLANK.AST.TEE.PLUS.PERIOD.DASH.EQUAL.PINUS.FFF.UUU.PPP.NTAPE.TIMEW
                                                                                     0030
      6. TFLUX.FLIX.TIMES.P03.P34.P45.P57.P71.P47.Q47.Q71.WKT.YIELD.XYIELD
                                                                                     0031
      KZ6=0
                                                                                     0032
       REVIND 41
                                                                                     0033
      REVINO 31
                                                                                     0034
       REVINO 32
                                                                                     0035
       REVINO 22
                                                                                     0036
       REVIND 42
                                                                                     0037
       REVINO 25
                                                                                     0038
B
       BLANK = 606060606060
                                                                                     0039
₿
       AST=545454545454
                                                                                     0040
8
      PLUS=202020202020
                                                                                     0041
8
      PER 100=3333333333333
                                                                                     0042
      D(1)=0.0
                                                                                     0043
       TIMEW=1.0E-10
                                                                                     0044
                                                                                     0045
      FORMAT(17HCONTROL DATA RUN 914,6X,E10.3,11A1)
40
                                                                                     0046
      FORMAT(14HCONSTANTS RUN 12,7H CYCLE 14,1X,1P3E12.5.0P4F4.2)
41
                                                                                     0047
      FORMAT(17HDATA CARDS CYCLE 14.10X.10HRUN NUMBER 13.10X.5HSET A/
                                                                                     0048
42
      1(14.1P5E12.5.1PE11.4.12.13))
42
                                                                                     0049
     FORMAT(17HDATA CARDS CYCLE 14-10X-10HRUN NUMBER13-10X-5HSET 8/1(14-1P5E12-5-1PE11-4-12-13))
                                                                                     0050
43
43
                                                                                     005 i
```

```
FORMATCIH . SH MODE=14/6H NMC=14/6HNZONE=14/6H
                                                               NQS=14/6H MCL=14/
                                                                                       0052
     16H
            RS=1PE11.4/6H TIME=E11.4/6H
                                                DT=E11.4/6H
44
                                                                CS=E11.4/6H
                                                                                       0053
                                                                                 CR=
                   9R=E11.4/7H TIMEL=1PE11.4)
44
                                                                                       0054
45
47
       FORMAT(1H1,214,1PE12.3,15,1PGE12.3/(14,1P12E10.3))
                                                                                       0055
       FORMAT(IH . ISHZONE SPLIT AT NMC=14.5X.5HTIME=1PE11.4.5X.5HZONE=14.
                                                                                       0056
47
      119)
                                                                                       0057
48
       FORMAT(1H1.30X.4HRUN=14.15X.20HLOG POWER (ERGS/SEC)/6H CYCLE.X.4HT
                                                                                       0058
48
      21HE . 3X . 12 . 13X . 12 . X . 11HTOTAL POVER . 3X .
                                                                                       0059
48
      36HRAD1US/15X.76A1)
                                                                                       0060
49
       FORMAT(1H - ISHREZONED AT NMC=14.5%.SHTIME=1PE11.4.5%.SHZONE=14.17)
                                                                                       0061
50
       FORMAT(14.1P5E13.5)
                                                                                       0062
       NSZ=1
                                                                                       0063
       REVIND 15
                                                                                       0064
       REVIND 16
                                                                                       0065
       READ INPUT TAPE 5.40, NR. MODE. NMC. NLP. NOD, LZ. NZONE. NQS. MCL. TIMEL
                                                                                       0066
      1.BLANK.AST.TEE.PLUS.PERIOD.DASH.EQUAL.PINUS.FFF.UUU.PPP
                                                                                       0067
       PRINT 8321. MCL.TIMEL
                                                                                       0068
       FORMAT(34H NORMAL TERMINATION CONDITION NMC=14.10X.5HTIME=1PE12.3)
8321
                                                                                       0069
       WRITE OUTPUT TAPE 15,12345.NR
                                                                                       0070
12345 FORMAT(IH1///////H .40X. 32HR W HILLENDAHL PALO ALTO 201 123451//1H .40X.33HPRODUCTION OUTPUT LIST RUN NUMBER14)
                                                                                       0071
                                                                                       0072
       READ INPUT TAPE 5.41.NR.NMC.TIME.DT.FLEX.CS.CR.BR.RS
                                                                                       0073
       NSTART=NHC
                                                                                       0074
       DTMIN=DT
                                                                                       0075
       NEB=NMC
                                                                                       0076
       MCDC=NMC+50
                                                                                       0077
       NMA6=MCDC
                                                                                       0078
       JXC=0
                                                                                       0079
       NMCS=NMC
                                                                                       0080
       TIMES=TIME
                                                                                       0081
       FLIX=FLEX
                                                                                       0082
       NSTOP=0
                                                                                       0083
       NRZ=50
                                                                                       0084
       NB=14
                                                                                       0085
       IPS=0
                                                                                       0086
       LZM1=LZ-1
                                                                                       0087
       LZM2=LZ-2
                                                                                       0088
       IF(MODE-1)1.1.1000
                                                                                       0089
       CALL ENTRY
                                                                                       0090
       WRITE OUTPUT TAPE 6.44
                                   . MODE . NMC . NZONE . NQS . MCL . RS . TIME . DT . CS . CR .
                                                                                       0091
      IBR. TIMEL
                                                                                       0092
       FBR=R(100)
                                                                                       0093
       RTEST=R(1)
                                                                                       0094
       NPL=NMC
                                                                                       0095
       GO TO 1036
                                                                                       0096
      READ INPUT TAPE 5.42.NMC.NR.(NMC.R(K).U(K).V(K).Q(K).T(K).P(K).NR.
1000
                                                                                       0097
1000 IK.K=1.100)
                                                                                       0098
       READ INPUT TAPE 5.43. NMC. NR. (NMC. RZ(K). RZ(K). ZMAS(K). DR(K). RHOZ(K)
                                                                                       0099
     1.TR(K).NR.K.K=1.100)

READ INPUT TAPE 5.50.NR.TIME.TEE.WKT.TDN2.TD02

READ INPUT TAPE 5.50.NR.SCALE.EQUAL.071.Q47.TIMEW
                                                                                       0100
                                                                                       0101
                                                                                       0102
```

	NB*NMC+1	0103
	LZ=100	0104
	NLP=NLP+25	0105
	DTM[N=DT+0, 1	0106
	CALL REJUST	0107
	IPS=0	0106
	NPL=NHC	0109
1034	WRITE OUTPUT TAPE 6.1035.DT.DR(1).(K.R(K).RHOZ(K).V(K).T(K).U(K).Q	0110
	1(K).ZMAS(K).DR(K).K=1.100)	0111
	FORMATCINI, 10HINPUT DATA, 10X, 3HDT=E12.4, 5X, 3HDR=E12.4/3H K, 2X, 4HR	0112
	1(L).8X.7HRHOZ(K).5X.4HV(K).8X.4HT(K).8X.4HU(L).8X.4HQ(K).8X.7HZMAS	0113
	1(K).5X.5HDR(K) /(14.1P8E12.4))	0114
		0115
	WRITE OUTPUT TAPE 6.44 .MODE.NMC.NZONE.NQS.MCL.RS.TIME.DT.CS.CR.	0116
	19R, TIMEL	0117
	FBR=R(100)	0118
	RTEST=R(1)	0119
1 036	NTÄPE=15	0120
	GO TO 3000	0121
C MAS	TER CYCLE RE-ENTRY POINT	0122
	TIME=TIME+DT	0123
C R	BUTINE TO CHANGE NUMBER OF ZONES IN USE " " LIMIT 100 ZONES	0124
10	DC 14 J=1.100	0125
	K=101-J	0126
	IF(U(K)-1.0E+02) 11.12.12	0127
11	IF(T(K)-2.0+T(100)) 14.14.12	0128
12	LZ=K+6	0129
13	GO TO 16	0130
14	CONTINUE	0131
15	LZ=100	0132
16	IF(LZ-100) 18.18.17	0133
17	l.Z=100	0134
18	LZM1=LZ-1	0135
19	LZM2=LZ-2	0136
20	LZP1=LZ+1	0137
21	LZP2=LZ+2	0138
22	FLEX=FLEX+FLOX+DT	0139
23	IF(NMC) 33.24.26	0140
24	NTAPE=15	0141
	CN(LZ)=0.0	0142
	TFLUX=FLOX	0143
	FLEX=0.0	0144
25	66 10 732	0145
26	1F(NMC- 3) 27.27.29	0146
27	NTAPE=6	0147
28	GO TO 32	0148
29	IF(TIME-TIMEN) 33.30.30	0149
30	TIMEW=TIMEW=(10.0++(1.0/18.0))	0150
	IF(NMC-4) 31.29.31	0151
31	NTAPE=15	0152
	LZP2=N1	0153

32	CMI TA-ITIME TIMES IN BATELONE MACES	0154
34	CN(LZ)=(TIME-TIMES)/FLOATF(NMC-NMCS) TFLUX=(FLEX-FLIX)/(TIME-TIMES)	0155
732	CALL CGSPS	0156
7.54	NOP-NOP	0157
	FLIX=FLEX	0158
	NOCENNIC	0159
	TINES-TINE	0160
	L2P2=L2+2	0161
33	CONT INVE	0162
		0163
484	IF(NMC-MCDC) 414.409.409	0164
409	NCDC=MCDC+50	0165
	REVINO 16	0166
	MODE=MODE+1 WRITE DUTPUT TAPE 16.40.NR.MODE.NMC.NLP.NEG.LZ.NZONE.NGS.MCL.	0167 0168
	17 IMEL. BLANK. AST. TEE. PLUS. PERIOD. DASH, EQUAL. PINUS, FFF. UUU. PPP	0169
	WRITE DUTPUT TAPE 16.41.NR.NMC.TIME.DT.FLEX.CS.CR.BR.RS	0170
	WRITE OUTPUT TAPE 16.42.NMC.NR. (NMC.R(K).U(K).V(K).Q(K).T(K).	0171
	IP(K).NR.K.K=1.100)	0172
	WRITE GUTPUT TAPE 18.43.NNC.NR.(NMC.RZ(K).RZ(K).ZMAS(K).DR(K).	0173
	1RH0Z(K),TR(K),NR,K,K=1,100)	0174
	WRITE OUTPUT TAPE 16.50.NR.TIME.TEE.WKT.TON2.TD02	0175
	WRITE OUTPUT TAPE 16.50.NR.SCALE.EQUAL.071.Q47.TIMEN	0176
	MODE = MODE - 1	0177 0178
414	EZONE SWITCH RTEST=R(LZ-5)	0179 0180
414	NZTS=LZ-11	0181
	IF(MCP-3) 415.415.4150	0182
C	4150 ALL OPTICALLY THICK CASES	0183
4150	NZTS=MCP-4	0184
****	PHT=2.55	0185
4153	IF(NZTS-9) 427.417.417	0186
_	415 ALL TRANSPARENT CASES	0187
415	IF(7(4)-2.0+TON2) 4:70-4170-416	0188
C	416 HIGH ALTITUDE EARLY PHASE	0189
416	DS 4161 L=9.LZ [F(T(L)-1.5*TDN2) 4160.4161.4161	0190 0191
4160	NZTS=L-1	0192
7100	PMT=1.5	0193
	IF(NZTS-9) 427.417.417	0194
4161	• • • • • • • • • • • • • • • • • • •	0195
Ċ	4170 LATE TIME TRANSPARENT CASE	0196
4170	06 4140 J=11.LZ	0197
	IF(R(J)-V(1.9)) 4140.4141.4141	0198
4141	NZTS=J-5	0199
	PMT=2.8	0200
	IF(NZTS-9) 427.417.417	0201
4140		0202
417	00 426 K=9,NZTS	0203
4013	[F(NMC-NRZ) 427.427.419	9204

```
419
                                                                                              0205
       1F((R(K)-R(K-2))-0.08+RTEST) 422,422,428
422
423
       IF(ABSF(T(K)-T(K-1))-0.30+T(K)) 423.423.426
IF(ABSF(V(K)-V(K-1))-0.7+V(K)) 424.424.426
                                                                                              0206
                                                                                              0207
424
        IF(ZMAS(K)+ZMAS(K-1)-PMT+ZMAS(K-2)) 425,425,426
                                                                                              0208
425
        IF(Q(K)-0.05.P(K)) 9425.9425.426
                                                                                              0209
9425
       LZP2=K
                                                                                              0210
        NRZ=NMC
                                                                                              0211
        JXC=JXC+1
                                                                                              0212
       WRITE OUTPUT TAPE22.49.NHC.TIME.LZP2 .JXC WRITE OUTPUT TAPE 6.49.NHC.TIME.LZP2 .JXC
                                                                                              0213
                                                                                              0214
       CALL REZONE
                                                                                              0215
       LZ=LZ-1
                                                                                              0216
       LZM2=LZ-2
                                                                                              0217
       LZM1=LZ-1
                                                                                              0218
       LZP1=LZ+1
                                                                                              0219
       LZR=LZR-2
                                                                                              0220
       LZP2=LZ+2
                                                                                              0221
       NRZ=NMC+2
                                                                                              0222
        GO TO 427
                                                                                              0223
     CONTINUE OPTICAL SPLIT TEST
426
                                                                                              0224
427
       NS=LZ-5
                                                                                              0226
       KS=0
                                                                                              0227
        IF(NMSP-NMC) 428,428,448
                                                                                              0228
       DO 440
K=LZ-J
                   J=3.NS
428
                                                                                              0229
429
                                                                                              0230
        1F((R(K)-R(K-1))-0.08+R(LZ))
                                               430, 430, 442
                                                                                              0231
        IF(TAU(K.1)-1.7) 440.440.431
430
                                                                                              0232
431
       KS=KS+1
                                                                                              0233
       IF(KS-1) 448.433.448
IF(Q(K)-P(K)) 448.434.434
432
                                                                                              0234
433
434
435
        IF(U(K)-1.0E+05) 448.435.435
                                                                                              0236
       KST=K
                                                                                              0237
       KSP=K+5
                                                                                              0238
       DO 436 J=KST.KSP
IF((R(J)-R(J-1))-200.0)
                                                                                              0239
                                               436, 436, 437
                                                                                              0240
                                                                                              0241
436
       CONT INUE
       GO TO 448
                                                                                              0242
437
       KZ2=J
                                                                                              0243
       IF(T(J)-6.0E+04) 443.448.448
                                                                                              0244
440
       CONTINUE
                                                                                              0245
       GO TO 448
KZ2=K
441
                                                                                              0246
442
                                                                                              0247
443
       NHSP=NHC+3
                                                                                              0248
       I+OXL=OXL
                                                                                              0249
       CALL SPLIT
WRITE GUTPUT TAPE 6.47.NMC.TIME.KZ2.JXD
WRITE GUTPUT TAPE 22.47.NMC.TIME.KZ2.JXD
444
                                                                                              0250
0251
                                                                                              0252
       LZ=LZ+1
                                                                                              0253
       LZM1=LZ-1
                                                                                              0254
       LZP1=LZ+1
                                                                                              0255
```

```
LZP2=LZ+2
                                                                                                                0256
                                                                                                                0257
        LZM2+LZ-2
                                                                                                                0258
         IF(NMC-NSTART) 449.451.449
IF(NMC-NSTART-1) 450.451.450
IF(NMC-NOD) 453.451.453
                                                                                                                9259
                                                                                                                0260
                                                                                                                0261
         KZ2=-451
                                                                                                                0262
         CALL DIAGNS
                                                                                                                0263
         NMC=NMC+1
                                                                                                                0264
                                                                                                                0265
C
                                                                                                                0266
         IF(NETOP) 35.35.36
IF(TIME-6.0) 34.52.52
                                                                                                                0267
                                                                                                                0268
         IF(SENSE SWITCH 1) 52.65
                                                                                                                0269
         MODE -MODE +1
                                                                                                                0270
         NETOP=1
                                                                                                                0271
         MCL=MCL+3000
                                                                                                                0272
         CALL DIAGNS
                                                                                                                0273
         00 10 28
                                                                                                                0274
         PUNCH 40. NR. MODE, NMC, NLP, NEG, LZ, NZONE, NGS, MCL, TIMEL
                                                                                                                0275
        1.BLANK.AST.TEE.PLUS.PERIGD.DASH.EQUAL.PINUS.FFF.UUU.PPP
PUNCH 41.NR.NMC.TIME.DT.FLEX.CS.CR.BR.RS
PUNCH 42. NMC.NR.(NMC.R(K).U(K).V(K).Q(K).T(K).P(K).NR.K.K=1.100)
PUNCH 43.NMC.NR.(NMC.RZ(K).R2(K).ZMAS(K).DR(K).RHGZ(K)
                                                                                                                0276
                                                                                                                0277
                                                                                                                0278
                                                                                                                0279
        1.TR(K).NR.K.K=1.100)
                                                                                                                0280
         PUNCH 50. NR. TIME. TEE. WKT. TON2. TOO2
                                                                                                                0281
         PUNCH SO.NR. SCALE, EQUAL, 071, 047, TIMEN
                                                                                                                0282
         END FILE 15
END FILE 25
                                                                                                                0283
                                                                                                                0284
          MEVIND 25
                                                                                                                0285
         CALL COPY (25-15)
                                                                                                                0286
         END FILE 15
                                                                                                                0287
                                                                                                                0288
          REVINO 22
                                                                                                                0289
         CALL COPY(22.15)
END FILE 15
WRITE GUTPUT TAPE 6.37.JXC
                                                                                                                0290
                                                                                                                0291
                                                                                                                0292
         FORMAT(1H .13HREZONE CALLEDIA.6H TIMES)
REVIND 16
NR=3889
                                                                                                                0293
                                                                                                                0294
                                                                                                                0295
        WRITE OUTPUT TAPE 41.1499.NR.KZG
WRITE TAPE 31.NR.KZG
FORMAT(214)
                                                                                                                0296
                                                                                                                0297
                                                                                                                0298
        WRITE OUTPUT TAPE 32. 45.NR.NMC.TIME.LZ.P(99).T(99).RHOZ(99).POWER 2.P47.FGR.(K.R(K).U(K).P(K).UR(K).T(X).FGS(K).FIS(K).DM(K).Q(K).
                                                                                                                0299
                                                                                                                0300
        3FZ(K).E(K).HPPP(K).K=1.LZ)
[F(NMC-NMAG) 1502.1502.1501
                                                                                                                0301
                                                                                                                0302
         READ INPUT TAPE
                                    18.40.NR.MODE.NMC.NLP.NEG.LZ.NZONE.NQS.MCL.
                                                                                                                0303
1501
        ITIMEL. BLANK. AST. TEE. PLUS. PERIOD. DASH. EQUAL. PINUS. FFF. UUU. PPP
                                                                                                                0304
         READ INPUT TAPE
                                    16.41.MR.MMC.TIME.DT.FLEX.CS.CR.BR.RS
16.42.MMC.MR.(NMC.R(K).U(K).V(K).Q(K).T(K).
                                                                                                                0395
                                                                                                                0306
```

```
1P(K).NR.K.X=1.100)
                                                                                                       0307
        READ INPUT TAPE
                                 16.43.NMC.NR.(NMC.RZ(K).R2(K).ZMAS(K).DR(K).
                                                                                                       0308
       IRHOZCK). TRCK). NR.K.K=1.100)
                                                                                                       0309
        READ INPUT TAPEIS. 50. NR. TIME. TEE. WKT. TDN2. TD02
READ INPUT TAPEIS. 50. NR. SCALE. EQUAL. Q71. Q47. TIMEW
                                                                                                       0310
                                                                                                       0311
        PUNCH 40. NR. HODE. NHC. NLP. NEG. LZ. NZONE. NQS. MCL. TIMEL
                                                                                                       0312
       1.BLANK. AST. TEE. PLUS. PERIOD. DASH. EQUAL. HINUS. FFF. UUU. PPP
                                                                                                       0313
        PUNCH 41 NR. NMC . TIME . DT . FLEX . CS . CR . BR . RS
                                                                                                       0314
        PUNCH 42. NMC.NR.(NMC.R(K),U(K),V(K),Q(K),T(K),P(K),NR.K.K=1.100)
PUNCH 43.NMC.NR.(NMC.RZ(K),RZ(K),ZMAS(K),DR(K),RHOZ(K)
                                                                                                       0315
                                                                                                       0316
       1,TR(K).NR.K.K=1,100)
                                                                                                       0317
        PUNCH 50. NR. TIME, TEE, WKT. TON2, TO02
PUNCH 50. NR. SCALE, EQUAL, Q71, Q47, TIMEY
                                                                                                       031B
                                                                                                       0319
        END FILE 16
CALL UNLGAD(16)
                                                                                                       0320
1502
                                                                                                       0321
        CEASE=1.0E+29
                                                                                                       0322
        END FILE 32
END FILE 42
                                                                                                       0323
        REVINO 42
                                                                                                       0325
        CALL COPY(42.32)
                                                                                                       0326
        CALL UNLOAD(42)
                                                                                                       0327
     EXTRA COPY OF USER TAPE 32 INFO COPIED AS FILE 2 OF TAPE 15 END FILE 32
                                                                                                       0330
        REVIND 32
                                                                                                       0331
        CALL COPY(32.15)
END FILE 15
CALL COPY (32.15)
END FILE 15
                                                                                                       0332
                                                                                                       0333
                                                                                                       0334
                                                                                                       0335
        CALL UNLOAD(15)
                                                                                                       0336
        CALL UNLOAD(32)
                                                                                                       0337
        END FILE 41
                                                                                                       0338
        CALL UNLOAD(41)
END FILE 31
                                                                                                       0339
                                                                                                       0340
        CALL UNLOAD(31)
                                                                                                       0341
1500
        CALL EXIT
                                                                                                       0342
    65 NTI=0
                                                                                                       0343
        IF(NMC-MCL) 64.64.52
IF(TIME-TIMEL) 88.68.52
                                                                                                       0344
                                                                                                       0345
C SET RETARDED VARIABLES
66 DO 71 K=1.100
                                                                                                       0346
                                                                                                       0347
67
        VR(K)=V(K)
                                                                                                       034R
68
        ER(K)=E(K)
                                                                                                       0349
69
        PR(K)=P(K)
                                                                                                       0350
        W(K.4)=T(K)
                                                                                                       0351
        V(K.6)=V(K)
V(K.7)=P(K)
                                                                                                       0352
                                                                                                       0353
        W(K.8)=Q(K)
                                                                                                       0354
        W(K.9)=E(K)
                                                                                                       0355
        DIVFR(K)=DIVFA(K)
                                                                                                       0356
        KRT-0
                                                                                                       0357
```

Ä

```
IF(DT-50.0+DTMIN) 74.74.73
DTMIN+DT/50.0
72
73
                                                                                                  0358
                                                                                                  0359
        CALL HYDRO
                                                                                                  0360
        KZ4=KZ4
                                                                                                  0361
    IF(U(99)-1.0E+03) 290.290.52
INITIAL TEMPERATURE EXTRAPOLATION
                                                                                                  0362
                                                                                                  0363
        CONTINUE
                                                                                                  0364
C ITERATION CYCLE RE-ENTRY POINT C DERIVATIVES WITH RESPECT TO TEMP
                                                                                                  0365
                                                     OP
                                                              DE
                                                                                                  0366
        DO 301
1F(T(K))
                   K-1.LZ
3000
                                                                                                  0367
                    3002.3002.300
3001
                                                                                                  0368
3002
        KZ2=-3000
                                                                                                  0369
        CALL DIAGNS
GO TO 52
TP(K)=1.02+T(K)
TS(K)=TP(K)
                                                                                                  0370
                                                                                                  0371
300
                                                                                                  0372
301
                                                                                                  0373
        CALL STATE
303
                                                                                                  0374
        00 310 K=1.LZ
304
                                                                                                  0375
305
        PP(K)=P(K)
                                                                                                  0376
        EP(K)=E(K)
306
                                                                                                  0377
309
        TM(K)=0.98+T(K)
                                                                                                  0378
        TS(K)=TM(K)
310
                                                                                                  0379
        CALL STATE
DO 318 K=1.LZ
311
                                                                                                  0380
312
                                                                                                  0381
        PM(K)=P(K)
313
                                                                                                  0382
314
315
        EH(K)=E(K)
                                                                                                  0383
        DPT(K)=(PP(K)-PM(K))/(TP(K)-TM(K))
                                                                                                  0384
        DET(K)=(EP(K)-EM(K))/(TP(K)-TM(K))
316
                                                                                                  0385
        TS(K)=T(K)
318
                                                                                                  0336
  20 CALL STATE
CALL RADIATIVE PROPERTIES ROUTINE
320
                                                                                                  0387
                                                                                                  0388
        CALL SWABZ
                                                                                                  0389
501
        LZR=LZR
                                                                                                  0390
        MCP=MCP
                                                                                                  0391
        KZ1=KZ1
                                                                                                  0392
        KZZ=KZZ
                                                                                                  0393
        KZ3=KZ3
                                                                                                  0394
        KZ8=KZ8
                                                                                                  0395
        KZ9=KZ9
                                                                                                  0396
321
        NCY=NCY
                                                                                                  0397
        DTAU(LZP1.1)=0.0
322
                                                                                                  0398
                                                                                                  0399
    INTENSITY INTEGRATION
                                                                                                  0400
        CALL FLUXS
IF(IPS) 503.503.530
500
                                                                                                  0401
502
                                                                                                  0402
        IPS=IPS+1
503
                                                                                                  0403
504
        TIME=TIME-DT
                                                                                                  04 04
505 GO TO 2000
C TEMPERATURE TEST BYPASS ON FIRST GUESS
530 IF(NTI) 540.540.532
C TEMPERATURE TEST
                                                                                                  0405
                                                                                                  0406
                                                                                                  0407
                                                                                                  0408
```

```
532
                                                                                 0409
      00 536 K=1.LZ
      IF(ABSF(DTH(K)/T(K))-0.1 ) 536.536.540
                                                                                 0410
533
536
                                                                                 0411
      CONTINUE
   MAIN CYCLE COMPLETED -- RETURN TO 2000
                                                                                 0412
      GO TO 2000
NT1=NTI+1
537
                                                                                 0413
                                                                                 0414
540
   ENERGY EQUATION BLOCK 600
                                                                                 0415
       IF(NTI-3) 601.601.2000
600
                                                                                 0416
601
      00 617 K=1.LZ
                                                                                 0417
602
                                                                                 0418
      L=K
603
      N=110+K
                                                                                 0419
      DE(K)=(E(K)-ER(K))/DT
613
                                                                                 0420
      PA(K)=(PR(K)+P(K))/2.0
614
                                                                                 0421
615
      RESDUE(K) *DE(K) + (PA(K) +Q(K)) + (Y(K) - VR(K))/DT
                                                                                 0422
     1+(DIVFA(K)+DIVFR(K))/2.0
625
                                                                                 0423
617
      CONTINUE
                                                                                 0424
C
700
   TEMPERATURE ITERATION OF ENERGY EQUATION
       IF(LZR-4) 703.703.701
701
       CALL COEFF
                                                                                 0427
       GO TO 829
702
                                                                                 0428
C
  NO ITERATION OF RADIATION
                                                                                 0429
703
       DO 704 K=1.LZ
                                                                                 0430
704
       DTM(K)=-RESDUE(K)/((DET(K)/DT)+(DPT(K)/(2.0+DT))+(V(K)-VR(K)))
                                                                                 0431
       IF (NMC-NLP)
705
                         906.706.906
                                                                                 0432
       NLP=NLP+50
706
                                                                                 0433
      PRINT 707. NHC. TIME. DT. LZ
FORMAT(23H PROGRESS REPORT
                                                                                 0434
                                      NMC=14. 5X.SHTIME=1PE12.3.5X.11HTIME
707
                                                                                 0435
707
     1 STEP=1PE12, 3.10x. 5HNORAD[4///)
                                                                                 0436
       GO TO 906
708
                                                                                 0437
                                                                                 0438
    RADIATIVE ITERATION
C
                                                                                 0439
929
       CONTINUE
930
       IF(NMC-NLP) 987,831,987
       NLP=NLP+50
831
       PRINT 832. NMC. TIME. DT. LZ
                                                                                 0443
      FORMAT(23H PROGRESS REPORT
                                      NMC=14. 5X.SHTIME=1PE12.3.5X.11HTIME
832
832
     1 STEP=1PE12.3,10X,9HRADHYDR0[4///]
                                                                                 0445
                                                                                 0446
      COEFFICIENTS NOW KNOWN-SOLUTION FOR DTM(K)
Č
                                                                                 0447
987
      LZJ=LZR+1
                                                                                 044R
       DOSES K=LZJ.LZ
                                                                                 0449
      OTM(K)=-RESOUE(K)/((DET(K)/DT)+(DPT(K)/(2.0+DT))+(V(K)-VR(K)))
                                                                                 0450
      OTM(LZR)=(EN(LZR)-EN(LZR-1))/(CN(LZR)-CN(LZR-1))
900
                                                                                 0451
      OTM(LZR-1)=(EN(LZR-1)-CN(LZR-1)+DTM(LZR))
902
                                                                                 0452
      00
                     J=3.LZR
                                                                                 0453
      K=LZJ-J
                                                                                 0454
      DTM(K)=EN(K)-DN(K)+DTM(K+2)-CN(K)+DTM(K+1)
905
                                                                                 0455
      CONTINUE
                                                                                 0456
906
   STABILITY CHECK
                                                                                 0457
907
      00 930 K=1.LZ
                                                                                 0458
      IF(DTM(K)) 909.930.910
908
                                                                                 0459
```

```
209
       IF(ABSF(DTM(K))-0.5+T(K)) 930.930.918
                                                                                         0460
       IF(T(K)-2.0E+05) 912.911.911
910
                                                                                         0461
       IF(ABSF(DTM(K))-0.90T(K)) 930.930.918
IF(ABSF(DTM(K))-5.00T(K)) 930.930.918
911
                                                                                         0462
912
                                                                                         0463
ÌIO
       KZ2=-920
                                                                                         0464
919
       KZ3-K
                                                                                         0465
920
       CALL DIAGNS
                                                                                         0466
921
       KRT-KRT+1
                                                                                         0467
922
       IF(KRT-3)
                    923.933.933
                                                                                         0468
       DB 927 L=1.LZ
923
                                                                                         0469
       U(L)=V(L.3)
                                                                                         0470
       T(L)=V(L.4)
                                                                                         0471
       R(L)=V(L,5)
                                                                                         0472
       A(F)=A(F'E)
                                                                                         0473
       P(L)=Y(L.7)
                                                                                         0474
       O(L)=V(L.8)
                                                                                         0475
       E(L)-Y(L.9)
                                                                                         0476
       R2(L)=R(L)++2
                                                                                         0477
927
       CONTINUE
                                                                                         0478
       PRITE OUTPUT TAPE 6.929.NMC.KRT.K
928
                                                                                         0479
                                                                                         0480
929
       FORMAT(418)
                                                                                         0481
       NTI=0
                                                                                         0482
       GO TO 74
                                                                                         0483
   O CONTINUE HODIFY TEMPERATURE
930
                                                                                         04B4
                                                                                         0485
933
       DO 934 K=1.LZ
                                                                                         0486
       T(K)=T(K)+DTM(K)
934
                                                                                         0487
935
936
       GO TO 3000
                                                                                         0488
       END
                                                                                         0489
       FORTRAN
                                                                                         0490
CF 18WZ
                                                                                         0491
       SUBROUTINE SWABZ
                                                                                         0492
      STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                         0493
       D(1)=0.0
                                                                                         0494
                                                                                         0495
       00 126 K=1.LZ
                                                                                         0496
       DO 135 N=1.NSZ
                                                                                         0497
       TS(K)=TS(K)/11606.5
                                                                                         049A
       ETA(K)=1.293E-03+V(K)
                                                                                         0499
       ALPHA=9.0+EXPF(-TIME/1.0E-03+(ETA(K)++2))
                                                                                         0500
       BETA=((6.0E-180V(K))+0.5)+(TS(K)+0.1)
ZI(K,1)=EXPF(-1.5+(R(K)-R(K-1)) /((ETA(K)++1.5)/((TS(K)++ALPHA)
+8ETA) +0.2+(ETA(K)++1.81)/(TS(K)++2.73)
                                                                                         0501
300
                                                                                         0502
      2+BETA)
300
                                                                                         0503
300
      3+0.023+(ETA(K)++1.8)+(TS(K)++0.25)+1.0E-07+(ETA(K)++2.0)/
                                                                                         0504
      4((T$(K)++(-5.0))+4.0E-14+V(K))))
Z!(K-1)=Z!(K-1)+0.99999996
300
                                                                                         0505
                                                                                         0506
       Z1(K.2)=Z1(K.1)
                                                                                         0507
       HMFP=(ETA(K)++1.5)/((TS(K)++ALPHA)+BETA)
                                                                                         0508
      1+0.2+(ETA(K)++1.91)/(T$(K)++2.73)
                                                                                         0509
      2+0.023+(ETA(K)++1.8)+(78(K)++0.25)
                                                                                         0510
```

```
3+1.0E-07+(ETA(K)++2.0)+(T$(K)++5.04)
                                                                                    0511
       HAFF=8.3E-06+(ETA(K)++2.0)+(T8(K)++3.5)
                                                                                    0512
       IF(TS(K)-10.0) 301.296.298
IF(HMFF-HMFP) 299.301.301
                                                                                    0513
298
                                                                                    0514
       HEP-HEF
299
                                                                                    0515
301
       DTAU(K.1)=1.5+(R(K)-R(K-1))/HMFP
                                                                                    0516
302
       A(K.N)=EXPF(-DTAU(K.N))
                                                                                    0517
312
       BC(K.N)=5.67E-05+(T(K)++4)
                                                                                    0518
       TS(K)=TS(X)+11606.5
                                                                                    0519
135
       CONTINUE
                                                                                    0520
126
       CONTINUE
                                                                                    0521
                                                                                    0522
     SOURCE FUNCTION INTERPOLATION
                                                                                    0523
       DO 201 K=1.LZ
DO 202 N=1.NSZ
                                                                                    0524
                                                                                    0525
       BB(K+N)=(((((R(K+1)-R(K))+T (K)++4)+((R(K)-R(K-1))+T (K+1)++4))/
311
                                                                                    0526
      1(R(K+1)-R(K-1))))+5.67E-05
311
                                                                                    0527
       BB(K.2)=BB(K.1)
                                                                                    0528
506
       S(K.N)=(BC(K.N)-BC(K+1.N))/(PTAU(K.N)+DTAU(K+1.N))
                                                                                    0529
       W(K.N)=1.0-A(K.N)-A(K.N)+DTAU(K.N)
IF(W(K.N)-1.0E-04) 509.202.202
507
                                                                                    0530
508
                                                                                    0531
509
       W(K.N)=0.5+(DTAU(K.N)++2)
                                                                                    0532
       CONTINUE
202
                                                                                    0533
       CONTINUE
201
                                                                                    0534
                                                                                    0535
     SET OPTICAL INDICES
                                                                                    0536
       KM=0
                                                                                    0537
501
       KD=0
                                                                                    0538
502
       KN=0
                                                                                    0539
503
       TAU(LZ.1)=DTAU(LZ.1)
                                                                                    0540
       DO 522 J=1.LZM1
K=LZ-J
511
                                                                                    0541
512
                                                                                    0542
513
       TAU(K.1)=TAU(K+1.1)+DTAU(K.1)
                                                                                    0543
       IF(TAU(K.1)-5.0E-06) 522.515.515
514
                                                                                    0544
515
       KN=KN+1
                                                                                    0545
516
       IF(KN-1) 518.517.518
                                                                                    0546
517
       LZR=K+3
                                                                                    0547
518
       IF(TAU(K.1)-.44) 522.519.519
                                                                                    0548
519
       KD=KD+1
                                                                                    0549
       IF(KD-1)
520
                 622.523.622
                                                                                    0550
533
       FBR=R(K)
                                                                                    0551
622
       IF(TAU(K.1)-1.0) 522.623.623
                                                                                    0552
      KM=KM+1
623
                                                                                    0553
624
       IF(KM-1) 522,625,522
                                                                                    0554
      HCP=K
625
                                                                                    0555
      CONTINUE
522
                                                                                    0556
       IF(LZR-LZ+1) 530.530.529
525
                                                                                    0557
529
      LZR=LZ-1
                                                                                    0558
      CONTINUE
530
                                                                                    0559
       IF(KD) 521.521.524
                                                                                    0560
521
      FBR=0.0
                                                                                    0561
```

```
0562
       HCP+0
   I CONTINUE
SET CUTOFF WAVELENGTH CWL(K)
                                                                                           0563
0564
524
       CWMAX=0.0
                                                                                            0565
                                                                                            0566
       KCYMAX=0
       CWL (MCP. 1)=0.0
NCY=MCP
                                                                                            0567
                                                                                            0568
       TR(MCP)=T(MCP)
                                                                                            0569
                                                                                            0570
       DO 565 K=1.LZ
IF(T(K)-TDN2) 546.542.542
                                                                                            0571
540
541
                                                                                            0572
                                                                                            0573
     OPACITY DUE TO ATOMIC SPECIES
CWL(K.1)= 700.0*EXPF(-0.36*(T(K)-11606.5)/11606.5)
                                                                                            0574
542
                                                                                            0575
       DTH(K)=212121212121
                                                                                            0576
B544
                                                                                            0577
                                 545,560,560
        IF(CWL(K.1)-275.0)
       CML(K,1)=275.0
GO TO 560
IF(T(K)-TDO2) 551-547-547
545
                                                                                            0578
                                                                                            0579
                                                                                            0580
546
                                                                                            0581
C OPACITY DUE TO N2 MOLECULE
B 547 DTH(K)=454545454545
                                                                                            0582
                                                                                            0583
        TCN2=5.0E-07+1.293E-03+V(K)
                                                                                            0584
       CWL(K.1)=1140.0+(((R(K)-R(K-1))/(V(K)+1.293E-03))++0.11)
                                                                                            0585
549
       1 = (1.0-EXPF(-TIME/TCN2))
                                                                                            0586
       IF(CWL(K.1)-1000.0) 530.560.560
                                                                                            0587
       CWL(K.1)=1000.0
                                                                                            0588
550
       GO TO 560
                                                                                            0589
                                                                                            0590
     OPACITY DUE TO 02 MOLECULE
                                                                                            0591
        TC=4250.0-271.0+LOGF(1.293E-03+ V(K))
551
                                                                                            0592
        TC02=3.0E-07+1.293E-03+V(K)
                                                                                            0593
B 552 DTH(K)=676767676767
                                                                                            0594
       IF(T(K)-TC)554.554.556
CWL(K.1)=1500.0+TS(X)+(0.163+0.0745+LOGF(DR(K)+RHOZ(K)/1.293E-03))
                                                                                            0595
553
554
                                                                                            0596
      1+(1.0-EXPF(-TIME/TC02))
554
                                                                                            0597
       GO TO 557
                                                                                            0598
555
       TSB=TS(K)+(.0647+LOGF(R(K)-R(K-1))-0.25-.109+LOGF(1.293E-03+V(K)))
CWL(K.1)=3500.0+TSB-(2000.0+TSB)+EXPF(-TIME/TCU2)
556
                                                                                            0599
                                                                                            0600
        IF(CWL(K.1)-1500.0) 558.560.560
557
                                                                                            C601
558
       CWL(K.1)=1500.0
                                                                                            0602
        IF(K-MCP) 365.565.561
IF(CWL(K.1)-CVMAX) 565.565.563
560
                                                                                            0603
                                                                                            0604
561
563
       CWMAX=CVL(K.1)
                                                                                            0605
564
       KCWMAX=K
                                                                                            0606
       CONTINUE
                                                                                            0607
                                                                                            90 90
       NCV=KCVHAX
                                                                                            0609
                         603.603.604
                                                                                            0610
       IF(LZR-NCY)
603
       LZR=NCV+1
                                                                                            0611
     CALCULATE ZO VALUES
                                                                                            0612
```

```
604
      ZO(1.1)=ZI(1.1)
                                                                                   0613
      KD=0
                                                                                   0614
      00 670
605
              L=2.LZ
                                                                                   0615
       TR(L)=T(L)
                                                                                   0616
       IF(T(L)-8.0E+04) 607.668.668
                                                                                   0617
607
      KD=KD+1
                                                                                   0618
       IF(KD-1) 608.608.609
                                                                                   0619
608
       MS=L-1
                                                                                   0620
    IF(DTAU(L.1)-1.0) 610.668.668
SELECT TR(L)= TEMPERATURE OF RADIATION TRAVERSING ZONE L
                                                                                   0621
609
C
                                                                                   0622
610
       LIM=L-1
                                                                                   0623
611
       TAUSUM= 0. 0
                                                                                   0624
615
      DO 630 NN=1.LIM
                                                                                   0625
                                                                                   0626
616
      M=L-NN
       TAUSUM=TAUSUM+DTAU(M. 1)
617
                                                                                   0627
620
       IF(TAUSUM-0.7) 630.627.627
                                                                                   0628
627
       TR(L)=T(H)
                                                                                   0629
      IF(M-2) 630.630.638
CONTINUE
628
                                                                                   0630
630
                                                                                   0631
       IF(T(L)-2500.0) 631.632.632
                                                                                   0632
631
       TR(L)=TR(L-1)
                                                                                   0633
       GO TO 637
                                                                                   0634
632
      EPTSUM=0.0
                                                                                    0635
       EPSUM=0.0
                                                                                   0636
       DO 635 K=3.LIM
                                                                                   0637
       EPSUM=EPSUM+DTAU(K.1)
                                                                                   0638
       EPTSUM=EPTSUM+T(K)+DTAU(K.1)
                                                                                   0639
       IF(T(K)-2500.0)
                         636.636.635
                                                                                   0640
635
       CONTINUE
                                                                                   0641
       TR(L)=EPTSUM/EPSUM
636
                                                                                   0642
637
      M=2
                                                                                   0643
638
       IZ=M+1
                                                                                   0644
639
      DO 646
                 1=1Z.L
                                                                                   0645
640
641
       IF(TR(L)+CWL(1.1)-2.0E+08) 641.641.644
                                                                                   0646
       ZI(1,2)= EXPF((-3.41E-08*CWL(1,1)*TR( L )+2.5E-25*((CWL(1,1)*TR(L
                                                                                   0647
     2))++3))+EXPF(-3.07E+13/((CWL([,1)+TR( L ))++1.8)))
641
                                                                                   064B
642
      GO TO 646
                                                                                   0649
       Z1(1.2)=7.61E+22/((CWL(1.1)+TR( L ))++3)
644
646
                                                                                   0650
       CONTINUE
                                                                                   0651
       ZMAX=Z1(M+1.2)
                                                                                   0652
       ZO(L.1)=Z1(H+1.2)
                                                                                   0653
    IF(L-M-1) 668,663,650 CORRECTION FOR INTERMEDIATE ZONES
647
                                                                                   0654
                                                                                   0655
       1Z=M+2
650
                                                                                   0656
651
652
      CWLTST=CWL(M+1.1)
                                                                                   0657
      DO 660 NZ=1Z.L
                                                                                   0658
       IF(CWL(NZ.1)-CWLTST) 654.654.657
653
                                                                                   0659
654
655
       IF(NZ-L) 660,655,668
                                                                                   0660
      ZO(L.1)=1.0
                                                                                   0661
656
      GO TO 660
                                                                                   0662
657
      ZO(L.1)=Z1(N2.2)/ZMAX
                                                                                   0663
```

```
650
      CWLTST=CWL(NZ.1)
                                                                                     0664
659
       ZMAX=21(NZ.?)
                                                                                     0665
660
       CONTINUE
                                                                                     9990
       IF(20(L.1)-ZI(L.1)) 670.668.668
                                                                                     0667
een
       20(L.1)=21(L.1)
                                                                                     0668
670
       CONTINUE
                                                                                     0669
671
672
       DD 676 K=1.LZ
IF(DTAU(K.1)-1.0E-04) 673.675.675
                                                                                     0670
                                                                                     0671
673
       ACK. 1)=DTAUCK. 1)
                                                                                     0672
674
       GO TO 676
                                                                                     0673
675
676
       A(K.1)=1.0-A(K.1)
CONTINUE
                                                                                     0674
                                                                                     0675
       00 699 K*1.LZ
IF(S(K.1)-1.69E+38) 767.767.677
                                                                                     0676
                                                                                     0677
767
       HZ(K)=88(K.1)+A(K+1.1)
                                                                                     067B
       DZ(K)=2.0+S(K.1)+W(K+1.1)
                                                                                     0679
       HP(K)=BC(K+1,1)=A(K+1,1)
                                                                                     0680
       IF(HZ(K)-DZ(K)-HP(K)+0.01)
                                         677,677,699
                                                                                     0681
677
       S(K.1)=0.0
                                                                                     0682
       88(K.1)=8C(K+1.1)
678
                                                                                     0683
       88(K.2)=8C(K.1)
679
                                                                                     0684
699
       CONTINUE
                                                                                     0685
900
       IF(8C(1.1)-8C(2.1))
                                915.916.916
                                                                                     0686
       99(1.2)=9C(1.1)
915
                                                                                     0687
916
       CONTINUE
                                                                                     0688
       EMS=ZI(NCV.2)
                                                                                     0689
179
       RE TURN
                                                                                     0690
       END
                                                                                     0691
                                                                                     0692
       FORTRAN
                                                                                     0693
CFIRJST
                                                                                     0694
       SUBROUTINE REJUST
                                                                                     0695
      STÄNDÄRD DIMENSION AND COMMON STATEMENTS. AS IN MAIN PROGRAM
                                                                                     0696
       T002=7100.0+EXPF((0.43429+LOGF(RH0Z(99)/1.293E-03))/5.3)
                                                                                     0697
       TDN2=15000.00EXPF((0.434290LGGF(RH0Z(99)/1.293E-03))/4.8)
                                                                                     0698
       RETURN
                                                                                     0699
       END
                                                                                     0700
       FORTRAN
                                                                                     0701
CF IRZNE
                                                                                     0702
       SUBROUTINE REZONE
                                                                                     0703
      STANDARD DIMENSION AND COMMON STATEMENTS. AS IN MAIN PROGRAM
                                                                                     0704
                                                                                     0705
      M=LZP2
                                                                                     0706
   ZETA=(T(M-1)+T(M))/(E(M-1)+E(M))
ROUTINE TO COMBINE ZONES M AND M-1
FRE= (ZMAS(M-2)+(U(M-2)++2)+ZMAS(M-1)+((U(M-1)++2)+(U(M-2)++2)
                                                                                     0707
                                                                                     07 0B
                                                                                     0709
     2)+ZMAS(M)+((U(M-1)++2)+(U(M)++2))+ZMAS(M+1)+(U(M)++2))
                                                                                     0710
      FMV=(ZMAS(M-2)+U(M-2)+ZMAS(M-1)+(U(M-1)+U(M-2))+ZMAS(M)+(U(M-1)
                                                                                     0711
     2+U(H))+ZHAS(H+1)+U(H))
                                                                                    0712
      FKA=ZMAS(M-2)+ZMAS(M-1)+ZMAS(M)
                                                                                     0713
      FKB=ZMAS(M-1)+ZMAS(M)+ZMAS(M+1)
                                                                                     0714
```

```
FKB=FKB/SKA
                                                                                  0715
      FKE=FKE/FKA
                                                                                  0716
      FMV=FMV/FXA
                                                                                  0717
      FSR=(FKE+FKB)+(FKB+1.0)-FKB+(FMV++2)
                                                                                  0718
      IF(FSR)
                                                                                  0719
                   7700.7701.7701
7700
      U(M-2)=U(M-2)
                                                                                  0720
      U(M-1)=U(M)
                                                                                  0721
      GG TO 7733
                                                                                  0722
7701
      FSR=:(FSR++0.5)/FKB
                                                                                  0723
      UPLUS=(FMV+FSR)/(FKB+1.0)
                                                                                  0724
      LMINS=(FMV-FSR)/(FKB+1.0)
                                                                                  0725
       IF(U(M-2)-U(M)) 7722.7711.7711
                                                                                  0726
7711
      U(H-2)=UPLUS
                                                                                  0727
      U(M-1)=UMINS
                                                                                  0728
      GO TO 7733
                                                                                  0729
 7722 U(H-2)=UHINS
                                                                                  0730
      U(M-1)=UPLUS
                                                                                  0731
7733
      CONTINUE
                                                                                  0732
      E(M-1)=(ZMAS(M-1)+E(M-1)+ZMAS(M)+E(M))/(ZMAS(M-1)+ZMAS(M))
2
3
                                                                                  0733
       T(M-1)=(E(M-1)
                           WZE 1)
                                                                                  0734
45
      ZMAS(M-1)=ZMAS(M-1)+ZhmS(M)
                                                                                  0735
      DIVFA(M-1)=(R2(M)/ZMAS(M-1))+(FOS(M)-FIS(M))
                                                                                  0736
     1-(R2(M-2)/ZMAS(M-1))*(FOS(M-2)-FIS(M-2))
                                                                                  0737
7
      R(H-1)=R(M)
                                                                                  0738
8
      RZ(M-1)=RZ(M)
                                                                                  0739
9
      R2(M-1)=R2(M)
                                                                                  0740
      DR(M-1)=DR(M-1)+DR(M)
10
                                                                                  0741
      RR(M-1)=RR(M)
                                                                                  0742
11
13
      TR(M-1)=TR(M)
                                                                                  0743
14
                                                                                  0744
      V(M-1)=(R(M-1)++3-R(M-2)++3)/(3.0+ZMAS(M-1))
      P(H-1)=(P(M-1)+P(M))/2.0
                                                                                  0745
16
      G(M-1)=(G(M-1)+G(M))/2.0
                                                                                  0746
      OTM(M-1)=0.0
                                                                                  0747
                                                                                  0748
    SHIFT IN EXTERIOR ZONES DO 50 K=M.99
                                                                                  0749
20
21
22
23
                                                                                  0750
       V(K)=V(K+1)
                                                                                  9751
                                                                                  0752
      T(K)=T(K+1)
      RHOZ(K)=RHOZ(K+1)
                                                                                  0753
24
25
      U(K)=U(K+1)
                                                                                  0754
      P(K)=P(K+1)
                                                                                  0755
26
27
      R(K)=R(K+1)
                                                                                  0756
      R2(K)=R2(K+1)
                                                                                  0757
28
29
      RZ(K)=RZ(K+1)
                                                                                  0758
      DR(K)=DR(K+1)
                                                                                  0759
30
      Q(K)=Q(K+1)
                                                                                  0760
      E(K)=E(K+1)
31
                                                                                  0761
      DIVFA(K)=DIVFA(K+1)
32
                                                                                  0762
33
      UR(K)=UR(K+1)
                                                                                  0763
34
35
      ZMAS(K)=ZMAS(K+1)
                                                                                  0764
      RR(K)=RR(K+1)
                                                                                  0765
```

```
DTM(K)=DTM(K+1)
                                                                                 0766
50
       TR(K)=TR(K+1)
                                                                                 0767
                                                                                 0768
   ADDITION OF NEW ZONE 100
                                                                                 0769
51
      R(100)=R(99)+DR(99)
                                                                                 0770
52
53
54
55
      R2(100)=R(100)++2
                                                                                 0771
      RZ(100)=R(100)
                                                                                 0772
      RHDZ(100)=RH0Z(99)
                                                                                 0773
       RR(100)=1.0
                                                                                 0774
       DR(100)=DR(99)
                                                                                 0775
       ZMAS(100)=(RHGZ(100)/3.0)+((RZ(100)++3)-(RZ(99)++3))
                                                                                 0776
       U(100)=0.0
                                                                                 0777
39
       T(100)=T(99)
                                                                                 0778
       V(100)=V(99)
60
                                                                                 0779
62
       Q(100)=0.0
                                                                                 0780
                                                                                 0781
       T(101)=T(100)
                                                                                 0782
       RETURN
                                                                                 0783
       END
                                                                                 0784
       FORTRAN
                                                                                 0785
       SUBROUTINE SPLIT
                                                                                 0786
C
      STÁNDÁRO ÖÏHENŠION AND COMMON STATEMENTS. AS IN MAIN PROGRAM
                                                                                 0787
       M=100-KZ2
                                                                                 0788
       DØ 30 J=1.M
                                                                                 0789
       K=101-J
                                                                                 0790
       R(K)=R(K-1)
                                                                                 0791
       DR(K)=DR(K-1)
                                                                                 0792
       RR(K)=RR(K-1)
                                                                                 0793
       RHOZ(K)=RHOZ(K-1)
                                                                                 0794
       RZ(K)=RZ(K-1)
                                                                                 0795
       R2(K)=R2(K-1)
                                                                                 0796
      U(K)=U(K-1)
                                                                                 0797
       RR(K)=RR(K-1)
                                                                                 0798
       TR(K)=TR(K-1)
                                                                                 0799
       V(K)=V(K-1)
                                                                                 0800
       P(K)=P(K-1)
                                                                                 0801
       ZMAS(K)=ZMAS(K-1)
                                                                                 0802
       O(K)=O(K-1)
                                                                                 6080
       T(K)=T(K-1)
                                                                                 0804
                                                                                 0805
      E(K)=E(K-1)
      DIVFACK)=DIVFACK-1)
                                                                                 9080
      UR(K)=UR(K-1)
                                                                                 0807
30
      CONTINUE
                                                                                 0808
    ADD ZONE JUST OUTSIDE K=KZ2
ZMAS(KZ2)=ZMAS(KZ2)/2.0
                                                                                 0809
                                                                                 0810
           ZMAS(KZ2+1)=ZMAS(KZ2)
                                                                                 0811
      V(KZ2+1)=V(KZ2)
                                                                                 0812
      RHOZ(KZ2+1)=RHOZ(KZ2)
                                                                                 0813
      R(KZ2)=((R(KZ2+1)++3)-(3.0+ZMAS(KZ2+1)+
                                                    V(KZ2+1)))++(1.0/3.0)
                                                                                 0814
      RZ(KZ2)=((RZ(KZ2+1)++3)-(3.0+ZMAS(KZ2+1)/RHOZ(KZ2+1)))++(1.0/3.0)
                                                                                 0815
      RR(KZ2)=R(KZ2)/RZ(KZ2)
                                                                                 0816
```

```
0817
       DR(KZ2+1)=R(KZ2+1)-R(KZ2)
                                                                                              0818
       DR(KZ2)=R(KZ2)-R(KZ2-1)
                                                                                              0819
       R2(KZ2)=R(KZ2)++2
       U(KZ2)=(((U(KZ2-1)++2)+(U(KZ2+1)++2))/2.0)++0.5
                                                                                              0820
                                                                                              0821
        TR(KZ2+1)=TR(KZ2)
       P(KZ2+1)=P(KZ2)
                                                                                              0822
                                                                                              0823
        Q(KZ2+1)=Q(KZ2)
                                                                                              0624
        T(KZ2+1)=0.9+T(KZ2)
                                                                                              0825
        T(KZ2)=1.1+T(KZ2)
                                                                                              9826
        E(KZ2+1)=0.85+E(KZ2)
        E(KZ2)=1.15+E(KZ2)
                                                                                              0827
        DIVFA(KZ2+1)=DIVFA(KZ2)
                                                                                              0828
                                                                                              0829
        UR(KZ2)=0.5+(UR(KZ2-1)+UR(KZ2+1))
                                                                                              0830
        RETURN
                                                                                              0831
        END
        FORTRAN
                                                                                              0832
CF 1 CGSPO
                CGS PRINT OUT PACKAGE
                                               FIRE I
                                                                                              0833
        SUBROUTINE CGSPO
                                                                                              0834
C
       STANDARD DIMENSION AND COMMON STATEMENTS. AS IN MAIN PROGRAM
                                                                                              0835
45
        FORMAT(1H1//39H AT COMPLETION OF MASTER CYCLE NUMBER 14.25x.15.
                                                                                              0836
       240X.3HSE=0PF10.3//6H TIME=1PE10.3.21X.6HPOWER=1PE10.3.2X.5HWATTS.
45
                                                                                              0837
       313X.10HTIME STEP=1PE10.3.20X.14HPASSES ENG EQ 14//
43H K.2X.6HRADIUS.5X.8HPART VEL.2X.4HPRES.6X.3HQ/P.3X.3HTEV.4X.3HR
45
                                                                                              0838
45
                                                                                              0839
       SHO.7X.3HE/G.7X.4HFOUT.5X.SHFI/FO.2X.4HDIVF.5X.4HTEMP.4X.5HGAMMA.
45
                                                                                              0840
      6X.4HPART.X.1HC.2X.3HTAU.5X.4HDTAU//(14.1PE10.3.1P2E10.2.0P2F6.2.71P3E10.2.0PF6.2.1A1.0PF7.2.1A1.1PE9.2))
45
                                                                                              0841
45
                                                                                              0842
        FORMATCIH /8H T PART=1PE12.4.9H FRACT .5X.6HDTHYD=1PE12.4.8H SEC
46
                                                                                              0843
      15 .5X.6HPOV03=1PE12.4.8H VATTS .5X.5HTEFF=0PF6.0.8H DEG K .5
24HLZR=14/8H TYIELD=1PE12.4 9H ERGS .5X.6HDTRAD=1PE12.4.8H SEC
3 .5X.6HPOV34=1PE12.4.8H VATTS .5X.5HTCDL=0PF6.0.8H DEG K .5X.
46
                                                                                      .5x.
                                                                                              0844
                                                   .5X.GHDTRAD=1PE12.4.8H SECS
46
                                                                                              0845
46
                                                                                              0846
       44HNCV=14/8H IN ENG=1PE12.4.9H ERGS .5X.6HDTMIN=1PE12.4.8H SECS
46
                                                                                              0847
      5 .5x.6HPOW45=1PE12.4.8H WATTS .5x.5HWLMX=0PF6.0.8H ANG 64HOD1=14/8H KN ENG=1PE12.4.9H ERGS .5x.6HDTLST=1PE12.4.
46
                                                                                   .5x.
                                                                                              0848
                                                     .5X. 6HDTLST=1PE12.4.8H SECS
46
                                                                                              0849
          .5x.6HPOW57=1PE12.4.8H WATTS .5X.5HTY41=0PF7.2. 7HKT
46
                                                                                              0850
       8.4H EMS= 0PF5.4)
46
                                                                                              0851
       FORMATION TOT ES=1PE12.4.9H ERGS
                                                                                              0852
36
36
                                                     5X.6HFBRAD=1PE12.4.8H CM
       25X.6HPOW71=1PE12.4.8H WATTS .5X.5HTY71=0PF7.2. 7HKT
                                                                              .5x.
                                                                                              0853
                                                       5X.6HSHRAD=1PE12.4.8H CM
       34HNSZ=14/8H E AMBT=1PE12.4.9H ERGS
                                                                                              0854
       4 .5x.6HPOW47=1PE12.4.8H WATTS .5x.5HTY47=0PF7.2. 7HKT
                                                                                  .5x.
                                                                                              0855
       56HD1589-12)
                                                                                              0856
36
47
       FORMATCIHIZZ.
                                                                                              0857
       43H K. 2X. SHRADIUS. SX. SHPART VEL. 2X. 4HPRES. 6X. 3HQ/P. 3X. 3HTEV. 4X. 3HR
47
                                                                                              0858
      5HO.7X.3HE/G.7X.4HFOUT.5X.5HFI/FO.2X.4HDIVF.5X.4HTEMP.4X.5HGAMMA.6X.4HPART.X.1HC.2X.3HTAU.5X.4HDTAU//(14.1PE10.3.1P2E10.2.0P2F6.2.71P3E10.2.0PF6.2.1P2E10.2.0PF5.2.0PF6.2.1A1.0PF7.2.1A1.1PE9.2))
                                                                                              0859
47
47
                                                                                              0960
                                                                                              1980
                                                                                              0862
        YIELD=EQUAL
        DO 1000 K=4.LZ
                                                                                              0863
                                                                                              0864
        IF(T(K-1)-0.6+T(K)) 1002.1002.1000
                                                                                              0860
1002
       KZ2=0
       CALL DIAGNS
                                                                                              بترغوض
1 000
                                                                                              YA6'
```

```
0868
      RSHOCK=0.0
                                                                                VB69
      SAVE 1 - DT
                                                                                0870
      DT=CN(LZ)
                                                                                0871
      STX=P(LZ)
                                                                                0872
      POWER=TFLUX+1.. 0E-07
                              #12.56*5.67E-05*(FBR**2)))**0.25
      TCOL=(TFLUX/( EMS
                                                                                7873
      TEFF=(TFLUX/(12.56+5.67E-05+(FBR++2)))++0.25
                                                                                0874
                                                                                0875
      CALL PHOTOG
    ESTIMATE OF OBSERVED SPECTRAL DISTRIBUTION
                                                                                0876
      IF(FBR) 1059-1059-1061
                                                                                0877
      P47=0.37+POWER
                                                                                0878
1059
      Q47=Q47+P47+(TIME-TIMES)/4.186E+12
                                                                                0879
                                                                                0880
      Q41=0.0
      P03=0.0
                                                                                0881
                                                                                0882
      P34=0.0
      P45=0.0
                                                                                0883
                                                                                0884
      P57=0.0
      P71=0.0
                                                                                0885
                                                                                0886
      Q71 = 0.0
1060
      GO TO 1600
                                                                                0887
                                                                                0888
      SAVET=T(MCP)
1061
1062
      T(MCP)=TCOL
                                                                                0889
                                                                                0890
                                    1065, 1065, 1068
      IF( T(MCP)+CWLM
                        -2.0E+08)
1064
                                                                                0891
      CAFW=CAF(NCA-1)
1063
      FLM = EYPF((-3.41E-08+CWLM + T(MCP)+2.5E-25+((CWLM + T(MCP))++3)
                                                                                0892
     1) *EXPF(-3.07E+13/((CWLM * T(MCP))**1.8)))
1065
                                                                                0893
                                                                                0894
1067
      GO TO 1164
      FLH =7.61E+22/((CVLH +T(HCP))++3)
                                                                                0895
1 068
      IF( T(MCP)+3000.0-2.0E+08) 1165,1165,1168
                                                                                0896
1164
           * EXPF((-3.41E-08*3000.0* T(MCP)+2.5E-25*((3000.0* T(MCP))**3)
                                                                                0897
      F3
1165
     1)*EXPF(-3.07E+13/((3000.0* T(MCP))**1.8)))
                                                                                0898
1165
                                                                                0899
1167
      00 TO 1264
          *7.61E+22/((3000.0*T(MCP))**3)
                                                                                0900
1168
      IF( T(MCP)+4000.0-2.0E+08) 1265.1265.1268
                                                                                0961
1264
           * EXPF((-3.41E-08+4000.0+ T(MCP)+2.5E-25+((4000.0+ T(MCP))++3)
                                                                                0902
1295
126
      )*EXPF(-3.07E+13/((4000.0* T(MCP))**1.8)))
                                                                                9903
      50 TO 1364
                                                                                0904
1267
1268
           =7.61E+22/((4000,0+T(MCP))++3)
                                                                                0905
      IF( T(MCP)+5000.0-2.0E+08) 1365.1365.1368
                                                                                0906
1364
           = EXPF((-3.41E-08+5000.0+ T(MCP)+2.5E-25+((5000.0+ T(MCP))++3)
                                                                                0907
      F5
1365
      130 XPF(-3.07E+13/((5000.0+ T(MCP))++1.8)))
                                                                                908
      GL TO 1464
1367
                                                                                9909
           *7.61E+22/((5000.0+T(MCP))**3)
                                                                                0910
1368
       1rt T(MCP)+7000.0-2.0E+08) 1465.1465.1468
                                                                                0911
1464
           * EXPF((-3.41E-08*7000.0* T(MCP)+2.5E-25*((7000.0* T(MCP))**3)
                                                                                0912
1465
     1) -EXPF(-3.07E+13/((7000.0+ T(MCP))++1.8)))
                                                                                0913
1465
                                                                                0914
1467
      GO TO 1564
                                                                                0915
           =7.61E+22/((7000.0+T(MCP))++3)
1468
      IF( T(MCP)+10000.0-2.0E+08) 1565.1565.1568
F1= EXPF((-3.41E-08+10000.0+ T(MCP)+2.5E-25*((10000.0+ T(MCP))+*3)
                                                                                0916
1564
                                                                                0917
1565
1565 1) *EXPF(-3.07E+13/((10000.0+ T(MCP))++1.8)))
                                                                                0918
```

```
GO TO 1580
Fi =7.61E+22/((10000.0+T(MCP))++3)
1567
                                                                               0919
1568
                                                                               0320
1580
      CONTINUE
                                                                               0921
      T(MCP)=SAVET
                                                                               0:322
1581
      IF(CWLM-3000.0) 1583.1583.1582
                                                                               0723
1582
1583
      F3=FLH
                                                                               0924
                                                                               0925
      IF(CWLM-4000.0) 1585.1585.1584
1584
      F4=FLH
                                                                               0926
1585
                                                                               0927
      IF(CWLM-5000.0) 1587.1587.1586
1586
      F5=FLH
                                                                               0928
1587
      IF(CWLM-7000.0) 1589.1589.1588
                                                                               0929
1588
      F7=FLM
                                                                               0930
      IF(CWLM-10000.0) 1591.1591.1590
                                                                               0931
1589
                                                                               0932
1590
      F1=FLM
      CONTINUE
                                                                               0933
1591
                                                                               0934
      PO3=POVER+(FLM-F3)/FLM
      P34=POVER+(F3-F4)/FLM
                                                                               0935
      P45=POVER+(F4-F5)/FLM
                                                                               0936
      P57=POVER+(F5-F7)/FLM
                                                                               0937
      P71=POYER=(F7-F1)/FLM
                                                                               0938
      P47=POVER+(F4-F7)/FLM
                                                                               0939
      Q71=Q71+P71+(TIME-TIMES)/4.186E+12
                                                                               0940
      Q47=Q47+P47+(TIME-TIMES)/4.186E+12
                                                                               0941
      Q41=Q47+Q71
                                                                               0942
                                                                               0943
      EN(1)=4.189+(R(1)++3)+(E(1)/V(1) )
                                                                               0944
1600
      BN(1)=EN(1)
                                                                               0945
      CN(1)=3.14159+(U(1)++2)+ZMAS(1)
                                                                               0946
      DN(1)=CN(1)
                                                                               0947
      DPP(1)=BN(1)+DN(1)
                                                                               0948
      DO 490 K=2.LZ
                                                                               0949
      EN(K)=4.189+((R(K)++3)-(R(K-1)++3))+(E(K)/V(K))
                                                                               0950
                                                                               0951
      CN(K)=3.14159+(U(K)++2+U(K-1)++2)+ZMAS(K)
      BN(K)=BN(K-1)+EN(K)
                                                                               0952
                                                                               0953
      DN(K)=DN(K-1)+CN(K)
      THETA(K)=212121212121
                                                                               0954
      IF(Q(K)-STX) 490.490.488
                                                                               0955
      STX=Q(K)
                                                                               0956
488
      J3=K-3
                                                                               0957
      RSHOCK=R(K)
                                                                               0958
489
      DPP(K)=BN(K)+DN(K)
                                                                               0959
490
      EAMB=4.189+(R(LZ)++3)+E(99)/V(99)
                                                                               0960
      ESYSM=DPP(LZ)-EAMB
                                                                               0961
      ETOTAL = ESYSM/4. 186E+19
                                                                               0962
      PARTT=FLEX/YIELD
                                                                               0963
               493.492.493
491
      IF(NMC)
                                                                               0964
      YIELD=ESYSM
                                                                               0965
492
      EQUAL = Y I ELD
                                                                               9966
      CONTINUE
                                                                               0967
493
      WRITE OUTPUT TAPE22.495.NR.NMC.TIME.EAMB.NCW.HCP.DPP(NCW).DPP(MCP)
                                                                               0968
     1.TR(NCV).TR(MCP).(K.EN(K).BN(K).CN(K).DN(K).DPP(K).A(K.1).ZB(K.1).
                                                                               0969
```

```
221(K.1). TR(K).K=1.LZ)
                                                                                    0970
495
      FORMATCIHI. 13H ENERGY CHECK, 10X, 4HRUN=14.5X, 4HNMC=14.5X, 5HTIME=1PE
                                                                                    0971
495
495
      210.3.5X.BHE AMB=1PE10.3//5H NCV=14.5X.4HMCP=14.5X.9HDPP(NCV)=1PE12
                                                                                    0972
     3.4.5X. 9HOPP(MCP)=1PE12.4.5X.9HTR(NCV)=1PE10.3.5X.9HTR(MCP)=1PE10
                                                                                    0973
      4.3//SH ZONE.3X.2HDE.10X.4HSUME.6X.3HDKE.7X.SHSUMKE.5X.9HSUMTOTALE.
495
                                                                                    0974
      511X.1HA.11X.2HZO.10X.2HZI.10X.2HTR//(15.1P5E12.4.3X.1P4E12.4))
495
                                                                                    0975
       THETA(1)=646464646464
8494
                                                                                    0976
       THETA(2)=232323232323
                                                                                    0977
       00 29 K=1.LZ
                                                                                    0978
       HZ(K)=DTAU(K,1)/1.5
                                                                                    0979
       DMM(K)=DTAU(K,1)/(R(K)-R(K-1))
                                                                                    0980
       FZ(K)=4.28 E-08+(E(K)+P(K)+V(K))
                                                                                    1860
       DZ(K)=TAU(K.1)/1.5
                                                                                    0982
       DP(K)=Q(K)/P(K)
                                                                                    0983
       FM(K)=T(K)/11606.5
                                                                                    0984
       HP(K)=FOS(K)+1.0E-07
                                                                                    0985
       HPP(K)=ABSF(FIS(K)/FOS(K))
                                                                                    0986
       GM(K)=1.0+(P(K)+V(K)/E(K))
                                                                                    0987
       UR(K)=1.0/V(K)
                                                                                    0988
       IF(PART(K)-4.0) 29.28.28
                                                                                    0989
       DTH(K)=31313131313131
828
                                                                                    0990
29
       CONTINUE
                                                                                    0991
       SHVEL=U(J3)*(1.0+GM(J3))/2.0
                                                                                    0992
       PSHK=(2.0/(GM(J3)+1.0))=RHNZ(LZ)+(SHVEL++2)
                                                                                    0993
       ESHK#0.5*((2.0*SHVEL/(1.0+GM(J3)))**2)
                                                                                    0994
       TRSHK=T(J3)*ESHK/E(J3)
                                                                                    0995
       ETGE=(5.67E-05*(TRSHK++4)/\RH02(LZ)*SHVEL))+E(LZ)
                                                                                    0996
       TTOE=ETOE+T(LZ)/E(LZ)
                                                                                    0997
       POWSK=12.56+(R(J3+2)++2)+5.67E-05+(TRSHK++4)+FLM
WRITE OUTPUT TAPE 6.496.NR.NMC.TIME.SHVEL.PSHK.TRSHK.TTOE
PUNCH 496. NR.NMC.TIME.SHVEL.PSHK.TRSHK.TTOE
                                                                                    8660
                                                                                    0999
                                                                                    1000
       FORMAT(214.1P5E12.4)
496
                                                                                    1001
       IF(LZ-40) 30.30.81
80
                                                                                    1002
       WRITE OUTPUT TAPE NTAPE. 45. NMC. LZ. ETOTAL. TIME. POWER. DT. NTI.
81
                                                                                    1003
81
      1(K.R(K).U(K).P(K).DP(K).FM(K).UR(K).E(K).HP(K).HPP(K).DIVFA(K).T(K
                                                                                    1004
      2).GM(K).PART(K).THETA(K).DZ(K).DTH(K).HZ(K).K=1.40)
81
                                                                                    1005
      WRITE OUTPUT TAPE NTAPE.47.
1(K.R(K),U(K).P(K).DP(K).FM(K).UR(K).E(K).HP(K).HPP(K).DIVFA(K).T(K
82
                                                                                    1006
82
                                                                                    1007
      2).GMCK).PART(K).THETA(K).DZ(K).DTH(K).HZ(K).K=41.LZ)
82
                                                                                    1008
      GO TO 85 WRITE OUTPUT TAPE NTAPE.45.NMC.LZ.ETOTAL.TIME.POWER.DT.NTI.
83
                                                                                    1009
30
                                                                                    1010
      1(K.R(K).U(K).P(K).DP(K).FM(K).UR(K).E(K).HP(K).HPP(K).DIVFA(K).T(K
30
                                                                                    1011
      2).GM(K).PART(K).THETA(K).DZ(K).DTH(K).HZ(K).K=1.LZ)
30
                                                                                    1012
       WRITE OUTPUT TAPE NTAPE.46. PARTT.RJ.PO3. TEFF.LZR.FLEX.RX.P34.TCOL.
                                                                                    1013
      2NCW. BN(LZ). DTHIN. P45. CVL(NCW. 1). MCP. DN(LZ). SAVE1. P57. Q41. EMS
                                                                                    1014
       WRITE OUTPUT TAPE NTAPE. 36. OPP(LZ). FBR. P71. Q71. NSZ. EAMB. RSHOCK. P47
                                                                                    1015
      1.047.NR
                                                                                    1016
      W(1.9)=RSHOCK
                                                                                    1017
      DT=SAVE !
                                                                                    1018
       IF(NMC-1)
                   403.400.400
                                                                                    1019
400
       IF(NMC-10)
                     411.411.403
                                                                                    1020
```

```
CONTINUE
403
                                                                                   1021
  USER TAPE PRINT OUT WRITE OUTPUT TAPE 32,300.NK.NMC.TIME.LZ.P(98).T(99).RHOZ(99).POWER
                                                                                   1022
                                                                                   1023
     2.P47.FBR.(K.R(K).U(K).P(K).UR(K).T(K).FOS(K).FIS(K).DMM(K).Q(K).
                                                                                   1024
     3FZ(K).E(K).HPPP(K).K=1.LZ)
                                                                                   1025
      FORMAT(1H1.214.1PE12.3.15.1PGE12.3/(14.1P12E:0.3))
WRITE OUTPUT TAPE 42,437.NR.NMC.TIME.T(1).TCOL.TEFF.ETOTAL.PARTT.
300
                                                                                   1026
                                                                                   1027
      1BN(LZ).DN(LZ).ESYSM.EAMB.FLEX.Q41.Q47.Q71.P03.P34.P45.P57.P71.P47.
                                                                                   1028
      2FBR.RSHOCK
                                                                                   1029
437
      FORMATCIH .214.1P10E11.3/1P12E11.4///)
                                                                                   1030
       IF(NMC) 500,420,411
410
                                                                                   1031
       IF(TIME-6.82E-05) 500.412.412
411
                                                                                   1032
412
      NSIX=NSIX+1
                                                                                   1033
       IF(NSIX-3) 500,420,500
413
                                                                                   1034
      NSIX+0
420
                                                                                   1035
421
      CALL SIXDPO
                                                                                   1036
      RETURN
500
                                                                                   1037
      ENO
                                                                                   1038
      FORTRAN
                                                                                   1039
CFISIXD
                                                                                   1040
      SUBROUTINE SIXDPO
                                                                                   1041
      STANDARD DIMENSION AND COMMON STATEMENTS. AS IN MAIN PROGRAM
                                                                                   1042
      FLAG=1.0E+31
                                                                                   1043
       SCUNDS=SQRTF(1.4*P(99)/RHQZ(99))
                                                                                   1044
      DO 10 K=1.LZ
                                                                                   1045
      BN(K)=P(K)/P(99)
                                                                                   1046
      CN(K)=V(98)/V(K)
                                                                                   1047
      ON(K)=T(K)/T(99)
                                                                                   1048
      EN(K)=U(K)/SOUNDS
                                                                                   1049
      AVERAGE ZONE RADIUS IN FEET DP(K)=(R(K)+R(K-1))/60.96
                                                                                   1050
10
                                                                                   1051
       WRITE TAPE 31.NR.TIME.LZ.(DP(K).BN(K).CN(K).DN(K).EN(K).GN(K).
                                                                                   1052
      IK=1.LZ).FLAG
                                                                                   1053
      WRITE OUTPUT TAPE 41.50.NR.TIME.LZ.COP(K).BN(K).CN(K).DN(K).EN(K).
                                                                                   1054
      IGM(K).K=1.LZ)
                                                                                   1055
      FORMAT(1H1/14.X.27H SIXDPLOT DIAGNOSTICS TIME=1PE10.3.5X.3HLZ=14
50
                                                                                   1056
50
      2///(1P6E16.4))
                                                                                   1057
      KZ6=KZ6+1
                                                                                   1058
20
      RETURN
                                                                                   1059
      END
                                                                                   1060
      FORTRAN
                                                                                   1061
CF IPHOTOG
              PHOTOGRAPHIC BRIGHTNESS ROUTINE
                                                                                   1062
      SUBROUTINE PHOTOG
                                                                                   1063
     STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                   1064
C
       IF(NMC)
                32.30.32
                                                                                   1065
       JTAPE=25
30
                                                                                   1066
31
      GO TO 40
                                                                                   1067
       IF(NMC- 3) 33.33.30
32
                                                                                   1068
      JTAPE=6
33
                                                                                   1069
40
      CONTINUE
                                                                                   1070
    SOURCE FUNCTION EM(K) AND ABSORPTION COEFF BN(K)
                                                                                   1071
```

```
DO 5 K=1.LZ
                                                                                            1072
       BHCK J=CACK)\C
                                                                                            1073
      18.5*((1.293E-)2*V(K))**1.15)/(((T(K)/11606.5)**8.0)*2.6E-12*V(K))
2*0.180*(C;.35%E-03*V(K))**1.91)/((T(K)/11606.5)**(3.5))
4*8.00E-05*(C!.293E-03*V(K))**2.0)*((T(K)/11606.5)**0.59)
                                                                                            1074
                                                                                            1075
                                                                                            1076
      5+1.00E-09+((1.293E-03+V(K))++2.0)+((T(K)/11606.5)++4.00)))
6+(1.0-EXPF(-3.2E404/T(K)))
                                                                                            1077
                                                                                            1078
       TEA=3.958E+04/T(K)
                                                                                            1079
       IF(TEA-80.0) 1.1.2
                                                                                            1080
       EM(K)=0.0
                                                                                            1081
       GO TO 5
                                                                                            1082
       EM(K)=1.0E+05/(EXPF(3.956E+04/T(K))-1.0)
                                                                                            1083
       CONTINUE
                                                                                            1084
                                                                                            1085
   OPTICAL DEPTHS
C
                                                                                            1086
       00 200 K=1.LZ
                                                                                            1087
       DM(K)=0.0
                                                                                            1088
       DZ(K)=0.0
                                                                                            1089
       DP(K)=(R(K)+R(K-1))/2.0
                                                                                            1090
       LS=K
                                                                                            1091
       00 100 L*LS.LZ
IF(L-K) 320.310.320
                                                                                            1092
300
                                                                                            1093
       DZ(L)=SQRTF(R(L)++2-DP(K)++2)
310
                                                                                            1094
                                                                                            1095
311
       DM(L)=DZ(L)
       GO TO 100
313
                                                                                            1096
320
       DZ(L) = SQRTF(R(L) + +2-DP(K) + +2)-DM(L-1)
                                                                                            1097
324
       DM(L)=DM(L-1)+DZ(L)
                                                                                            1098
100
       HZ(L)=EXPF(-BN(L)+DZ(L)/V(L))
                                                                                            1099
      BRIGHTNESS INTEGRATION
C
                                                                                            1100
       HP(LZ)=0.0
                                                                                            1101
       LS=LZ-K+1
                                                                                            1102
       00 7 J=1.LS
                                                                                            1103
       M=LZ-J
                                                                                            1104
       HP(M)=HP(M+1)=HZ(M+1)+(1.0-HZ(M+1))*EM(M+1)
                                                                                            1105
       LS=K
                                                                                            1106
       DO 6 J=LS.LZ
HP(J)=HP(J-1)+HZ(J)+(1.0-HZ(J))+EM(J)
                                                                                            1107
                                                                                            1108
       HPP(K)=HP(LZ)
                                                                                            1109
       IF(K-3)
                         155, 150, 155
                                                                                            1110
       HNORM=HPP(3)
150
                                                                                            1111
       (F(NMC) 155.151.155
                                                                                            1112
       SCALE=HPP(3)+10.0
151
                                                                                            1113
155
       CONTINUE
                                                                                            1114
       HPPP(K)=HPP(K)/SCALE
199
                                                                                            1115
       HPP(K)=HPP(K)/HNORM
200
                                                                                            1116
210
       WRITE GUTPUT TAPE JTAPE.201.NMC.TIME.(K.DP(K).HPPP(K).HPP(K).K=1.
                                                                                            1117
210
                                                                                            1118
      FORMAT(1H1.6HPHCTCG.14.10X.5HT1ME=1PE10.3//5H ZONE.3X.6HMEAN R.4X.25HABS 8.5X.5HREL 8//(16.1P3E10.3))
201
                                                                                            1119
201
                                                                                            1120
       RETURN
END
280
                                                                                            1121
                                                                                            1122
```

•	FORTRAN	1123
CF 10		1124
	SUBROUTINE DIAGNS	1125
C	STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM	1126
35	FORMAT(1H1.4HNMC=14.5X.4HNT1=14.5X.4HKZ2=15.5X.5HZONE=14.5X.4HRUN=	1127
	214/1	1128
	M=KZS	1129
	IF(KZ2) 5.10.15	1130
5	WRITE OUTPUT TAPE 6.6.KZ2	1131
ĕ	FORMAT(1H1,21HDIAG CALLED FROM MAINIS)	1132
•	GB TD 20	1133
10	30 - 2-	
10	WRITE OUTPUT TAPE 6.11.KZ2	1134
11	FORMAT(1H1.22HDIAG CALLED FROM CGSPOIS)	1135
	60 10 20	1136
15	WRITE OUTPUT TAPE 6.16.KZ2	1137
16	FORMAT(1H1.22HDIAG CALLED FROM HYDROIS)	1138
20	WRITE OUTPUT TAPE 6.21.NMC.NTI.LZ.LZR.MCP.MCL.TIME.DT.CS.CR.BR.RS.	1139
20	1(K.V(K).VR(K).E(K).ER(K).RESDUE(K).PA(K).DIVFA(K).DIVFR(K).K*1.LZ)	1140
21	FORMAT(1H ,4HNMC=14,2X,4HNTI=14,2X,3HLZ=14,2X,4HLZR=14,2X,4HMCP=14	1141
21	1.2X.4HMCL=14/6H TIME=1PE12.4.2X.3HDT=1PE12.4.2X.3HCS=0PF5.2.2X.	1142
21	23HCR=0PF5.2.2X.3HBR=0PF5.2.2X.3HRS=0PF5.2//3H K.6X.1HV.13X.2HVR.	1143
21	312X-1HE-13X-2HER-12X-6HRESOUE-8X-2HPA-12X-5HD1VFA-9X-5HD1VFR//	1144
21	4(14.198614.7))	1145
22	WRITE OUTPUT TAPE 6.23.NMC.NTI.DTMIN.YIELD.SCALE.TFLUX.FBR.TIMEV.	1146
22	1(K.T(K).DTM(K).DET(K).DPT(K).BN(K).CN(K).DN(K).EN(K).K=1.LZ)	1147
23	FGRMAT(1H1.4HNMC=14.2X.4HNT1=14.2X.6HDTMIN=1PE12.4.2X.6HY1ELD=1PE1	1148
23	12.4.2X.6HSCALE=1PE12.4.2X/7H TFLUX=1PE12.4.2X.4HFBR=1PE12.4.2X.6HT	1149
23	21MEW=1PE12.4//3H K.6X.1HT.13X.3HDTM.11X.3HDET.11X.3HDPT.11X.2HBN.	1150
23	312X.2HCN.12X.2HDN.12X.2HEN//(14.1P8E14.7))	1151
13	WRITE OUTPUT TAPE 6,35,NMC,NT1,KZ2,M,NR	1152
24	WRITE OUTPUT TAPE 6.25.(K.FOS(K).FIS(K).BB(K.1).BC(K.1).R(K).	
24	120(K.1).A(K.1).ZI(K.1).K=1.LZ)	1153
	FORMATCH /3H K-6X-2HF0-12X-2HF1-12X-2HBB-12X-2HBC-12X-1HR-13X-	1154
25		1155
25	12HZO. 12X. 1HA. 13X. 2HZI/(I4. 108E14.7))	1156
	WRITE OUTPUT TAPE 6.35.NMC.NTI.KZZ.M.NR	1157
26	WRITE OUTPUT TAPE 6.27. (K.S(K.1). W(K.1). DTAU(K.1). R2(K). ZMAS(K).	1158
26	ITAU(K.1).CVL(K.1).TR(K).K=1.LZ)	1159
27	FORMATCIH /3H K.6X.1HS.13X.1HW.13X.4HDTAU.10X.2HR2.12X.4HZMAS.10X	1160
27	1.3HTAU-11X-3HCVL-11X-2HTR/([4-1PBE14.7))	1161
	WRITE CUTPUT TAPE 6.35.NMC.NTI.KZ2.M.NR	1162
28	WRITE OUTPUT TAPE 6.29.(K.DMM(K).DM(K).DZ(K).DP(K).DPP(K).Q(K).	1163
28	1FO(K, 2).FI(K, 2).K=1.LZ)	1164
29	FORMATCIH /3H K.6X.3HDMM.11X.2HDM.12X.2HDZ.12X.2HDP.12X.3HDPP.11X	1165
29	1.1HQ.13X.5HF0TJZ.9X.5HF1TJZ/(14.1P8E14.7))	1166
	WRITE OUTPUT TAPE 6.35.NMC.NTI.KZZ.M.NR	1167
30	WRITE OUTPUT TAPE 6.31. (K. FHM(K). FM(K). FZ(K). HZ(K). FP(K). HP(K).	1168
30	1HPP(K).HPPP(K).K=1.LZ)	1169
31	FORMATCIH /3H K.6X.3HFMM.11X.2HFM.12X.2HFZ.12X.2HHZ.12X.2HFP.12X.	1170
	1200P, 12X, 300PP, 11X, 400PPP/(14, 1P8E14, 7))	
31	MRITE GUTPUT TAPE 6.35.NMC.NT1.KZ2.M.NR	1171
22	WRITE DUITUI TATE 6:33:MRL:NILINEZ:THINK MDITE BUTTUIT TATE 6:33:MRZ:THR2.THR2.THRE 0.47 07: ELLY ELRY ELEY	1172
- 2 - 2		1177

```
IRM.RX.RJ.(K.FO(K.3).DTR(K).RZ(K).P(K).DE(K).RR(K).RHDZ(K). U(K).
32
                                                                                 1174
32
     2K=1.100)
                                                                                 1175
      FORMAT(1H .2X.5HTDN2=1PE12.4.2X.5HTD02=1PE12.4.2X.6HT1MES=1PE12.4.
33
                                                                                 1176
     12x.4HQ47=1PE12.4.2X.4HQ71=1PE12.4.2X/6H FL1x=1PE12.4.2X.5HFL0X=1PE
212.4.2X.5HFLEX=1PE12.4.2X.3HRM=1PE12.4.2X.3HRX=1PE12.4.2X.3HRJ=1PE
33
                                                                                 1177
                                                                                 1178
33
33
     312.4//3H K.6X.3HDTH.11X.3HDTR.11X.2HRZ.12X.1HP.13X.2HDE.12X.2HRR.
                                                                                 1179
     412X.4HRH0Z.10X.2HU /(14.1P8E14.7))
                                                                                 1180
      RETURN
                                                                                 1181
      END
                                                                                 1182
      FORTRAN
                                                                                 1183
CFIFLUX
                                                                                 1184
      SUBROUTINE FLUXS
                                                                                 1185
     STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                 1186
500
      LZ91=LZ-1
                                                                                 1187
      DO 530 N=1.NSZ
                                                                                 1188
   BOUNDARY CONDITION
                          NO INVARD FLUX AT OUTER BOUNDARY
                                                                                 1189
      F1(LZ.N)=0.0
                                                                                 1190
510
      DO 512
                J=1.LZM1
                                                                                 1191
      K=LZ-J
511
                                                                                 1192
      F1(K.N)=F1(K+1.N)=Z1(K+1.N)+BB(K,1)=(A(K+1.N))=2.0=S(K.N)=Y(K+
512
                                                                                 1193
512
                                                                                 1194
     11.N)
520
      FO(1.N)=FI(1.N)=ZI(1.N)+BB(1.2)=(A(1.N))+2.0=S(1.N)=V(1.N)
                                                                                 1195
522
      DO 525 K*2.LZ
                                                                                 1196
525
      FD(K.N)=FO(K-1.N)+(R2(K-1)/R2(K))+ZO(K.N)
                                                                                 1197
525
     2+88(K.2)*(A(K.N))+2.0*S(K.N)*W(K.N)
                                                                                 1198
     3+(1.0-(R2(K-1)/R2(K)))*FI(K.N)*ZI(K.N)
525
                                                                                 1199
530
      CONTINUE
                                                                                 1200
      DO 555 |
F1S(K)=0.0
549
                 K=1.LZ
                                                                                 1201
                                                                                 1202
      FOS(K)=0.0
                                                                                 1203
      DO 550 N=1.NSZ
                                                                                 1204
      F1S(K)=F1S(K)+F1(K.N)
                                                                                 1205
      FOS(K)=FOS(K)+FO(K.N)
550
                                                                                 1206
551
552
       IF(K-1)
                 552,552,554
                                                                                 1207
      D1=0.0
                                                                                 1208
      GO TO 555
553
                                                                                 1209
554
      D1=1.0
                                                                                 1210
      DIVFA(K)=(R2(K)/ZMAS(K))+(FOS(K)-FIS(K))
555
                                                                                 1211
555
     1-D1+(R2(K-1)/ZMAS(K))+(FOS(K-1)-FIS(K-1))
                                                                                 1212
      FLOX=12.56*R2(LZ-3)*FOS(LZ-3)
541
                                                                                 1213
590
      RETURN
                                                                                 1214
591
      END
                                                                                 1215
                                                                                 1216
      FORTRAN
                                                                                 1217
CFISTE
                                                                                 1218
      SUBROUTINE STATE
                                                                                 1219
     STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                 1220
                                                                                 1221
    STEFAN =2.514E-09 TO INCLUDE RADIATION ENERGY AND PRESSURE
                                                                                 1222
   STEFAN = 0.00 TO DELETE RADIATION ENERGY AND PRESSURE
                                                                                 1223
      STEFAN=0.0
                                                                                 1224
```

```
100
      DO 126 K=1.LZ
                                                                                1225
      ETA(K)=1.0/(1.293E-03+ V(K))
101
                                                                                1226
      TS(K)=TS(K)+1.0E-04
102
                                                                                1227
      XS(K)#1.0E+04+TS(K)/( ETA(K)++0.086)
103
                                                                                1228
      GNU(K)=LOGF(XS(K)/2000.0)/LOGF(1250.0)
104
                                                                                1229
105
      IF(XS(K)-2000.0) 106.106.108
                                                                                1230
106
      PART(K)=1.0
                                                                                1231
107
      GO TO 112
                                                                                1232
1 08
      IF(XS(K)-2.5E+06) 109.111.111
                                                                                1233
      PART(K)=1.0+15.4+( GNU(K)++3)+(4.0-3.0+ GNU(K))
109
                                                                                1234
110
      GO TO 112
                                                                                1235
      PART(K)=16.4
111
                                                                                1236
112
      P(K)= (2.881+(TS(K)/ V(K))+ PART(K)+STEFAN+(TS(K)++4))+1.0E+10
                                                                                1237
      Y=0.0784/(2.881*TS(K)* PART(K))
UZ=1.0+(27.0*Y+3.0)/(5.0*Y+1.0)+861.0*(1.0-Y)*Y/(3000.0*(Y**2)+1.0
113
                                                                                1238
114
                                                                                1239
     1)+(2356.0+(1.0-Y)+Y)/(9.0E+04+(Y++2)+1.0)+( 41000.0+(1.0-Y)+Y)/
114
                                                                                1240
     2(12.0E+06*(Y**2)+1.0)+(2.15E+05*(1.0-Y)*Y)/(1.5E+18*(Y**4)+1.0)
114
                                                                                1241
115
      UT=(24.0+(Y++2)+4.0E-10)/(4.+(Y++2)+1.E-10)-(0.0970+(Y++2)+(1.0-Y)
                                                                                1242
     1)/(2.0E-06+Y++3)+(4.18E-05+(Y++3)+(1.0-Y))/(1.14E-11+Y++6)
115
                                                                                1243
116
      UC=UZ-0.09*(UZ-UT)*LOGF( ETA(K))
                                                                                1244
      E(K)= (0.03920*(UC-1.0)/Y+3.0*STEFAN*(TS(K)**4)* V(K))*1.0E+10
117
                                                                                1245
      TS(K)=TS(K)+1.0E+04
126
                                                                                1246
      TS(2)=TS(2)+1.0E-04
                                                                                1247
      TS(1)=TS(1)+1.0E-04
                                                                                1248
      P(1)=(0.538E+10+TS(1)++1.5)/V(1)
E(1)=2.53E+10+(((V(1)++0.25)+10.0)/(3.0+V(1)++0.5+10.0))+
                                                                                1249
                                                                                1250
     1((V(1)++0.25)-0.13)+(TS(1)++1.5+.02722/V(1)++1.5)
                                                                                1251
      P(2)=36.18*TS(2)*1.0E+10*(920.0+TS(2)*+2)/(V(2)*(TS(2)*+2+1.08E+04
                                                                                1252
                                                                                1253
      E(2)=((649.0+TS(2)**2)/(100.0+TS(2)))
                                                                                1254
     1*((82.7*TS(2)*1.0E+10)/(116.0/(V(2)**0.25)+TS(2)*(1.0+0.12/(V(2)**
                                                                                1255
     20.25))))
                                                                                1256
      TS(1)=TS(1)+1.0E+04
                                                                                1257
      TS(2)=TS(2)+1.0E+04
                                                                                1258
176
      RETURN
                                                                                1259
177
      END
                                                                                1260
      FORTRAN
                                                                                1261
CF 1 HYDO
                                                                                1262
      SUBROUTINE HYDRO
                                                                                1263
     STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
C
                                                                                1264
                                                                                1265
      KHR=0
                                                                                1266
      KRS=1
                                                                                1267
      KZ4=0
                                                                                1268
    TEST FOR IMPROPER CONVERGENCE
                                                                                1269
      DO 195 K=1.LZ
                                                                                1270
      IF(DTM(K))
                     192.195.191
                                                                                1271
                                188.188.189
191
      IF(T(K)-2.0E+05)
                                                                                1272
      IF(ABSF(DTM(K))-4.99+T(K)) 195.195.193
188
                                                                                1273
      IF(ABSF(DTM(K))-0.80+T(K)) 195.195.193
189
                                                                                1274
      IF(ABSF(DTM(K))-0.25+T(K)) 195,195,193
192
                                                                                1275
```

```
1276
193
      KZ2=193
       ROX=ROX+0.2
                                                                                      1277
       RM=RQX+1.3
                                                                                      1278
       CALL DIAGNS
                                                                                      1279
       GO TO 198
                                                                                      1280
194
195
       CONTINUE
                                                                                      1281
       1F(RQX)
                 199.199.200
                                                                                      1282
138
       RQX=DTMIN
199
                                                                                      1283
    CHTMYER - VON NEUMANN HYDRODYNAMIC SCHEME ADVANCE VELOCITY - - CHOOSE TIME STEP
C RICHTHYER -
                                                                                      1284
                                                                                      1285
       00 207 K=1.LZ
200
                                                                                      1286
201
       W(K.3)=U(K)
                                                                                      1287
202
       UR(K)=U(K)
                                                                                      1288
      U(K)= U(K)-2.0+((R2(K)
1-P(K)-Q(K))
203
                                     *DT)/(ZMAS(K)+ZMAS(K+1)))*(P(K+1)+Q(K+1)
                                                                                      1289
204
                                                                                      1290
206
       IF(U(K)-1.0E+11) 207.210.210
                                                                                      1291
207
       CONTINUE
                                                                                      1292
       U(LZ)=0.0
208
                                                                                      1293
       GO TO 217
209
                                                                                      1294
       KZ2=210
                                                                                      1295
CALL DIAGNS
213 GO TO 52
C HYDRODYNAMIC TIME STEP - - COURANT CRITERION
                                                                                      1296
                                                                                      1297
                                                                                      1298
217
       RM=RQX+1.3
                                                                                      1299
218
       IF(RM-0.070+TIME) 222,222,219
                                                                                      1300
       RM=0.070+TIME
219
                                                                                      1301
222
       DO 227 K=1.LZ
                                                                                      1302
       DTH(K)=DR(K)/(RS+SQRTF(P(K)/(V(K)+(RHQZ(K)++2))))
224
                                                                                      1303
       DTH(K)=DTH(K)*((RZ(K)/R(K))++2)
                                                                                      1304
       FO(K.3)=DTH(K)
                                                                                      1305
       IF(RM-DTH(K)) 227.226.226
225
                                                                                      1306
       RM=DTH(K)
226
                                                                                      1307
       KZ4=K
                                                                                      1308
227
       CONTINUE
                                                                                      1309
228
       RJ=RM
                                                                                      1310
                                                                                      1311
      RADIATION LIMITED TIME STEP
                                                                                      1312
       RX=RM
229
                                                                                      1313
       DO 242 K=KRS.LZ
IF(K-1) 233.233.223
IF(R(K)-FBR) 231.231.233
230
                                                                                       1314
                                                                                      1315
223
                                                                                      1316
231
       AR=BR
                                                                                       1317
232
233
       GO TO 234
                                                                                      1318
       AR=BR+2.0
                                                                                       1319
234
       CONTINUE
                                                                                       1320
       DTR(K)=ABSF(AR+E(K)/DIVFA(K))
235
                                                                                       1321
238
       IF(DTR(K)-DTHIN ) 242.242.239
                                                                                      1322
       IF(OTR(K)-RX) 240.240.242
239
                                                                                      1323
       RX=DTR(K)
240
                                                                                      1324
       KZ4=K
CONTINUE
241
                                                                                      1325
242
                                                                                      1326
```

```
243
                                                                                     1327
       RM=RX
                                                                                     1328
244
       IF(RM-2.0.DT) 246.246.245
245
       RM=2.0=DT
                                                                                     1329
       IF(RM-DTMIN) 247.248.248
246
                                                                                     1330
247
       RM=OTHIN
                                                                                     1331
248
249
250
       ROX=RM
                                                                                     1332
       IF((TIME+RM)-TIMEW) 252.252.250
                                                                                     1333
       IF(NMC- 4) 252.252.251
                                                                                     1334
251
       RM=T[HEV-T[HE
                                                                                     1335
       DG 255 L=1.LZM1
UA(L)=(U(L)/2.0)+(UR(L)/2.0)+(U(L)+RM)/(2.0+DT)-(UR(L)+RM)/(2.+DT)
252
                                                                                     1336
253
                                                                                     1337
254
       UR(L)=(U(L)/2.0)+(UR(L)/2.0)-(U(L)+RM)/(2.0+DT)+(UR(L)+RM)/(2.+DT)
                                                                                     1338
255
       U(L)=UA(L)
                                                                                     1339
256
       DT=RM
                                                                                     1340
   ADVANCE RADIUS ALL L
                                                                                     1341
       DO 263 L=1.LZ
W(L.5)=R(L)
260
                                                                                     1342
                                                                                     1343
261
       R(L)=R(L)+DT+U(L)
                                                                                     1344
262
       RR(L)=R(L)/RZ(L)
                                                                                     1345
263
       R2(L)*R(L)**2
                                                                                     1346
       DO 269 K=2.LZ
                                                                                     1347
       IF((R(K)-R(K-1))-0.15)
                                   264.264.269
                                                                                     1348
264
       KHR=KHR+1
                                                                                     1349
       IF(KHR-3) 265,265,270
                                                                                     1350
265
       KZ2=266
                                                                                     1351
266
       CALL DIAGNS
                                                                                     1352
       DO 268 L=1.LZ
                                                                                     1353
       U(L)=W(L.3)
                                                                                     1354
       R(L)=W(L.5)
                                                                                     1355
       CONTINUE
268
                                                                                     1356
       RQX=DT+0.2
                                                                                     1357
       GO TO 200
                                                                                     1358
269
       CONTINUE
                                                                                     1359
  ADVANCE SPECIFIC VOLUME
С
                                                                                     1360
       V(1)=((R(1)++3)/(RZ(1)++3))/RHGZ(1)
270
                                                                                     1361
271
       DØ 277 K=2.LZ
                                                                                     1362
       V(K)=(1.0/RHOZ(K))+(((R(K)/DR(1))++3)-((R(K-1)/DR(1))++3))/
273
                                                                                     1363
274
      1(((RZ(K)/DR(1))++3)-((RZ(K-1)/DR(1))++3))
                                                                                     1364
       JF(V(K)-1.0E+20) 276.279.279
275
                                                                                     1365
                      279.279.277
       IF(V(K))
276
                                                                                     1366
277
       CONTINUE
                                                                                     1367
       GO TO 283
KZ2=279
                                                                                     1368
278
279
                                                                                     1369
CALL DIAGNS
282 GO TO 52
C ADVANCE ARTIFICAL VISCOSITY
283 IF(NMC-NQS) 284.284.286
                                                                                     1370
                                                                                     1371
                                                                                     1372
                       284.284.286
                                                                                     1373
       VD=CS
                                                                                     1374
284
       GO TO 287
                                                                                     1375
285
286
       VD=CR
                                                                                     1376
       DO 295 K=1.LZ
287
                                                                                     1377
```

Ţ

```
IF(V(K)-VR(K)) 293.2942.2942
                                                                                     1378
293
       Q(K)=(VD=((ZMAS(K)/R(K)++2)++2)+(V(K)+VR(K)))+(((V(K)-VR(K))/DT)++
                                                                                    1379
     13)
                                                                                     1380
294
2941
2942
       IF(Q(K)-1.0E+22) 2941.298.298
IF( Q(K)) 2942.295.295
                                                                                     1381
                                                                                     1382
       B(K)=0.0
                                                                                     1383
295
       CONTINUE
                                                                                     1384
       Q(LZ)=0.0
                                                                                     1385
       RETURN
                                                                                      386
       KZ2=298
                                                                                     1367
       CALL DIAGNS
                                                                                     1388
       WRITE OUTPUT TAPE 6.43.7(1)
                                                                                     1389
       FORMATCIH . 15HEXIT FROM HYDRO. 5x, 5HT(1)=1PE13.6)
43
                                                                                     1390
       T(1)=0.000000
                                                                                     1391
1500
       GO TO 297
                                                                                     1392
       END
                                                                                     1393
                                                                                     1394
       FORTRAN
                                                                                     1395
CF1COEF
                                                                                     1396
       SUBROUTINE COEFF
                                                                                     1397
     STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                     1398
700
                                                                                     1399
   SET FLUX DERIVATIVES NEAR OUTER BOUNDARY OF RADIATIVE REGION
                                                                                     1400
701
       FP(LZR)=0.0
                                                                                     1401
702
       HP(LZR)=0.0
                                                                                     1402
703
       HPP(LZR)=0.0
                                                                                     1403
704
       HPPP(LZR)=0.0
                                                                                     1404
705
       HPP(LZR-1)=0.0
                                                                                     1405
706
       HPPP(LZR-1)=0.0
                                                                                     1406
       HPPP(LZR-2)=0.0
707
                                                                                     1407
    DO 769 J=1.LZR
SET RIPPLE ZONE PARAMETERS
DO 514 N=1.NSZ
SAVE1=88(J.N)
                                                                                     1408
C
                                                                                     1409
                                                                                     1410
                                                                                     1411
       SAVE2=88(J-1.N)
                                                                                     1412
       SAVE3=S(J.N)
                                                                                     1413
       SAVE4=S(J-1.N)
                                                                                     1414
       SAVES-DTAU(J.N)
                                                                                     1415
       SAYEG=A(J.N)
                                                                                     1416
       SAVE7=W(J.N)
                                                                                     1417
       SAVE8=ZI(J.N)
                                                                                     1418
       SAVE9=ZI(J-1.N)
                                                                                     1419
       SAVE 10=ZO(J.N)
                                                                                     1420
       SAVE11=Z0(J+1.N)
                                                                                     1421
       SAVE12=BC(J.N)
                                                                                    1422
       SAVEL4=T(J)
                                                                                     1423
       SAVE13=TS(J)
                                                                                     1424
       SAVE15=CVL(J.1)
                                                                                     1425
       SAVE 16=Z0(J+2.N)
                                                                                    1426
      SAVE17=88(J.2)
                                                                                    1427
      SAVE 18=88(J-1,2)
                                                                                    1428
```

```
BB(J.N)=((((R(J+1)-R(J))+TP(J)+4)+((R(J)-R(J-1))+T (J+1)+4))/
                                                                                    1429
311
311
      1(R(J+1)-R(J-1))))*5.67E-05
                                                                                    1430
      BB(J-1.N)=(((((R(J)-R(J-1))+T(J-1)++4)+((R(J-1)-R(J-2))+TP(J)++4))
                                                                                    1431
      1/(R(J)-R(J-2))))+5.67E-05
                                                                                    1432
      88(J-1.2)=88(J-1.1)
                                                                                    1433
      88(J.2)=88(J.1)
                                                                                    1434
      BC(J.N)=5.67E-05+(TP(J)++4)
                                                                                    1435
312
       TS(J)=TP(J)/11606.5
                                                                                    1436
       T(J)=TP(J)
                                                                                    1437
      ETA(J)=1.293E-03*V(J)
                                                                                    1438
       ALPHA=9.0+EXPF(-TIME/1.0E-03+(ETA(J)++2))
                                                                                    1439
      BETA=((6.0E-18*V(J))**0.5)*(TS(J)**0.1)
71(J.1)=EXPF(-1.5*(R(J)-R(J-1)) /((ETA(J)**1.5)/((TS(J)**ALPHA))
                                                                                    1440
300
                                                                                    1441
      2+BETA) +0.2+(ETA(J)++1.91)/(TS(J)++2.73)
3+0.023+(ETA(J)++1.8)+(TS(J)++0.25)+1.0E-07+(ETA(J)++2.0)/
300
                                                                                    1442
300
                                                                                    1443
300
      4((TS(J)**(-5.0))*4.0E-14*V(J)}})
                                                                                     1444
       Z1(J.1)=Z1(J.1)+0.99999998
                                                                                    1445
       Z1(J.2)=Z1(J.1)
                                                                                    1446
       HMFP=(ETA(J)++1.5)/((TS(J)++ALPHA)+BETA)
                                                                                    1447
      1+0.2*(ETA(J)**1.91)/(TS(J)**2.73)
                                                                                     1448
      2+0.023*(ETA(J)**1.8)*(TS(J)**0.25)
                                                                                     1449
      3+1.0E-07*(ETA(J)**2.0)*(TS(J)**5.00)
                                                                                    1450
       HMFF=9.3E-06*(ETA(J)**2.0)*(TS(J)**3.5)
                                                                                     1451
       IF(TS(J)-10.0) 301.298.298
IF(HMFF-HMFP) 299.301.301
                                                                                    1452
298
                                                                                    1453
299
       HMFP=HMFF
                                                                                     1454
       DTAU(J.1)=1.5*(R(J)-R(J-1))/HMFP
301
                                                                                    1455
       A(J.N)=EXPF(-DTAU(J.N))
302
                                                                                     1456
       TS(J)=TP(J)
305
                                                                                    1457
       S(J.N)=(BC(J.N)-BC(J+1.N))/(DTAU(J.N)+DTAU(J+1.N))
506
                                                                                    1458
       S(J-1.N)=(BC(J-1.N)-BC(J.N))/(DTAU(J-1.N)+DTAU(J.N))
                                                                                    1459
       W(J.N)=1.0-A(J.N)-A(J.N)*DTAU(J.N)
507
                                                                                    1460
       IF(W(J.N)-1.0E-04) 509.514.514
508
                                                                                     1461
509
       W(J.N)=0.5*(DTAU(J.N)++2)
                                                                                    1462
       CONTINUE
514
                                                                                    1463
                                                                                     1464
    SET CUTOFF WAVELENGTHS
                                                                                    1465
540
                                                                                     1466
       IF(T(1)-TDN2) 546.542.542
                                                                                    1467
541
                                                                                     1468
    OPACITY DUE TO ATOMIC SPECIES
CWL(1.1)= 700.0+EXPF(-0.36+(T(1)-11606.5)/11606.5)
                                                                                    1469
                                                                                    1470
542
       IF(CWL(I.1)-275.0)
                               545.560.560
                                                                                     1471
       CWL(1.1)=275.0
                                                                                    1472
545
       GO TO 560
                                                                                     1473
       IF(T(1)-TD02) 551.547.547
                                                                                    1474
546
                                                                                     1475
 OPACITY DUE TO N2 MOLECULE
17 TCN2=5.0E-07+1.293E-03+V(1)
                                                                                     1476
                                                                                     1477
      CWL(1.1)=1140.0+(((R(1)-R(1-1))/(V(1)+1.293E-03))++0.11)
                                                                                    1478
      1#(1.0-EXPF(-TIME/TCN2))
                                                                                     1479
```

```
IF(CWL(1.1)-1000.0) 550.560.560
                                                                                      1480
       CWL(1.1)=1000.0
GO TO 360
550
                                                                                      1481
                                                                                      1482
                                                                                      1483
    SPACITY DUE TO 02 HOLECULE
                                                                                      1484
       TC=4250.0-271.0+LOGF(1.293E-03+ V(1))
TCO2=3.0E-07+1.293E-03+V(1)
551
                                                                                      1485
                                                                                      1486
       IF(T(1)-TC)554.554.556
553
                                                                                      1487
554
554
       CWL(1.1)=1500.0+TS(1)+(0.163+0.0745+LOGF(DR(1)+RHOZ(1)/1.293E-03))
                                                                                      1488
      1 = (1.0-EXPF(-T[ME/TCO2))
                                                                                      1489
555
       GO TO 557
                                                                                      1490
       TS9=TS(I)+(.0647+LOGF(R(I)-R(I-1))-(.25-.109+LOGF(1.293E-03+V(I)))
CWL(I-1)=3500.0+TS8-(2000.0+TS8)+EXPF(-TIME/TC02)
556
                                                                                      1491
                                                                                      1492
557
       IF(CVL(1.1)-1500.0) 558.560.560
                                                                                      1493
       CWL([.1)=1500.0
550
                                                                                      1494
560
       CONT ! NUE
                                                                                      1495
                                                                                      1496
C
     CALCULATE FO VALUES
                                                                                      1497
       ZO(1.1)* .(1.1)
JSTR=J+2
                                                                                      1498
604
                                                                                      1499
       KD=0
                                                                                      1500
       00 670 L:
TR(L)=T(L)
605
                 L=J.JSTR
                                                                                      1501
                                                                                      1502
       IF(T(L)-8.0E+04) 607.668.668
607
       KD=KD+1
                                                                                      1504
       IF(KD-1) 608.608.609
                                                                                      1505
608
       MS=L-1
                                                                                      1506
       IF(DTAU(L.1)-1 0) 610.668.668
609
                                                                                      1507
     SELECT TREE OF RADIATION TRAVERSING ZONE L
                                                                                      1508
610
       LIM=L ...
                                                                                      1509
       TAUSUM=0.0
611
                                                                                      1510
615
       DO 630 NN=1.LIM
                                                                                      1511
                                                                                      1512
616
       Mal -NN
       TAUSUM=TAUSUM+DT 11/ H. 1)
617
                                                                                      1513
620
       IF(TAUSUM-0.7)
                                                                                      1514
       TR(L)=T(M)
627
                                                                                      1515
628
       IF(M-2) 630.630.638
630
       CONTINUE
                                                                                      1517
       IF(T(L)-2500.0) 631.632.632
                                                                                      151B
       TR(L)=TR(L-1)
                                                                                      1519
631
       GO TO 637
EPTSUM=0.0
                                                                                      1520
632
                                                                                      1521
       FPSUM=0.0
                                                                                      1522
       00 635 I=3.LIM
                                                                                      1523
       EPTSUM=EPTSUM+T(1)+DTAU(1,1)
                                                                                      1524
       EPSUM=EPSUM+OTAU(1.1)
                                                                                      1525
       [F(T(1)-2500.0)
                            636.636.635
                                                                                      1526
635
       CONTINUE
                                                                                      1527
636
637
       TR(L)=EPTSUM/EPSUM
                                                                                      1528
                                                                                      1529
       M=2
       1Z=M+1
                                                                                      1530
```

```
DO 646 [=12.L
1F(TR(L)+CVL(1.1)-2.0E+08) 641.641.644
                                                                               1531
1532
639
640
641
      ZI(1,2)= EXPF((-3.41E-08+CWL(1.1)+TR( L )+2.5E-25+((CWL(1.1)+TR(L
                                                                               1533
     2))++3))+EXPF(-3.07E+13/((CVL(1.1)+TR( L ))++1.8)))
641
                                                                                1534
642
      GO TO 646
                                                                                1535
644
      Z1(1.2)=7.61E+22/((CVL(1.1)=TR( L ))=+3)
                                                                                1536
646
      CONTINUE
                                                                                1537
      ZMAX=Z1(M+1.2)
                                                                               1538
      Z0(L.1)=Z[(M+1.2)
                                                                                1539
      IF(L-M-1) 668.663.650
647
                                                                                540
    CORRECTION FOR IMTERMEDIATE ZUNES
                                                                                1541
650
      1Z=M+2
                                                                                1542
651
      CWLTST=CWL(M+1.1)
                                                                                1543
652
      DO 660 NZ=12.L
                                                                                1514
653
      IF(CWL(NZ.1)-CWLTST) 654.654.657
                                                                                1545
654
      IF(NZ-L) 660.655.668
                                                                                1546
655
      ZO(L.1)=1.0
                                                                               1547
656
      GO TO 660
                                                                                1548
657
      ZO(L.1)=ZI(NZ.2)/ZMAX
                                                                                1549
      CULTST=CUL(NZ.1)
658
                                                                                1550
659
      ZMAX=ZI(NZ.2)
                                                                                1531
660
      CONTINUE
                                                                                1552
663
      IF(Z0(L.1)-Z1(L.1)) 670.668.668
                                                                                1553
      ZO(L.1)=ZI(L.1)
668
                                                                                1554
670
      CONTINUE
                                                                                1555
                                                                                1556
671
      IF(DTAU(J.1)-1.0E-04) 672.674.674
      A(J.1)=DTAU(J.1)
672
                                                                                1557
673
      GO TO 675
                                                                                1558
      A(J.1)=1.0-A(J.1)
                                                                                1559
674
                             8675.8675.677
      IF(S(J.1)-1.69E+38)
675
                                                                                1560
8675
      IF((BB(J-1)*A(J+1-1)-2.0*S\J-1)*W(J+1-1))-BC(J+1-1)*A(J+1-1)*0.01)
                                                                               1561
8675 1
                                                                                1562
        677.680.680
677
      S(J.1)=0.0
                                                                                1563
      BB(J.1)=BC(J+1.1)
678
                                                                                1564
      BB(J.2)=BC(J.1)
679
                                                                                1565
680
       IF(S(J-1.1)-1.69E+38) 8680.8680.681
                                                                                1566
      IF((B8(J-1.1)*A(J.1)-2.0*S(J-1.1)*V(J.1))-BC(J.1)*A(J.1)*0.01)
8680
                                                                                1567
8680 1
           681.684.684
                                                                                1568
681
      S(J-1.1)=0.0
                                                                                1569
682
      BB(J-1.1)=BC(J.1)
                                                                                1570
      88(J-1.2)=BC(J-1.1)
683
                                                                                1571
               900.900.916
                                                                                1572
684
      IF(J-2)
      IF(BC(1.1)-8C(2.1))
                              915.916.916
900
                                                                                1573
915
      88(1.2)*BC(1.1)
                                                                                1574
      T(J)=SAVE14
                                                                                1575
916
      CWL(J.1)=SAVE15
                                                                                1576
C
    CALCULATE TEMPORARY FLUXS
                                                                                1577
      JSTR=J+2
831
                                                                                1578
      IF(JSTR-LZR) 834.834.833
832
                                                                                1579
      JSTR=LZR
833
                                                                                1580
      DO 842 N=1.NSZ
                                                                                1581
834
```

```
1582
835
      FIT(JSTR+1.N)=FI(JSTR+1.N)
836
                                                                                    1583
      06 839 L=1.JSTR
837
      K=JSTR-L+1
                                                                                    1584
      FIT(K.N)=FIT(K+1.N)* ZI(M+1.N)+BB(K.L)+( A(K+1.N))-2.0* S(K.N)
839
                                                                                    1585
838
     20 W(K+1.N)
                                                                                     586
                                                                                    1587
839
      FOT(1.N)=FIT(1.N)* Z1(1.N)+BB(1.7)*( A(1.N))+2.0* S(1.N)
839
     20 W(1.N)
                                                                                    1588
840
      DO 841
                K=2.JSTR
                                                                                    1589
      FOT(K.N)=FOT(K-1.N)*(R2(K-1)/R2(K))* ZO(K.N)
841
                                                                                    1590
841
      2+88(K.2)+( A(K.N.) -2.0+ S(K.N)+ V(K.N)
                                                                                    1591
      3+(1.0-(R2(K-1)/R2(N)))+F1(K.N)* Z1(K.N)
841
                                                                                     : 592
842
       CONTINUE
                                                                                     593
                                                                                    1594
    SPECTRAL SUMMATION
C
726
      FOTJP2=0.0
                                                                                    1595
727
728
       FOTJP1=0.0
                                                                                    1596
       FOTJZ=0.0
                                                                                    1597
729
       FOTJM1 = 0. 0
                                                                                    1598
       FITJZ=0.0
730
                                                                                    1599
731
732
       FITJM1=0.0
                                                                                    1600
       F1TJM2=0.0
                                                                                    1601
       FITJM3=0.0
733
                                                                                    1602
734
       DO 742
                N=1.NSZ
                                                                                    1603
       FOTJP2=FOTJP2 + FOT(J+2.N) .
735
                                                                                    1604
736
       FOTJP1=FOTJP1 + FOT(J+1.N)
                                                                                    1605
       FOTUZ=FOTUZ + FOT(J.N)
737
                                                                                    1606
       FOTJM1=FOTJM1 + FOT(J-1.N) .
FITJZ=FITJZ + FIT(J.M)
                                                                                    1607
738
739
                                                                                    1608
740
       FITJM1=FITJM1 + FIT(J-1.N)
                                                                                    1609
       FITJM2=FITJM2 + FIT(J-2.N)
FITJM3=FITJM3 + FIT(J-3.N)
741
                                                                                    1610
742
                                                                                    1611
       FO(J.2)=FOTJZ
                                                                                     1612
       FI(J.2)=FITJZ
                                                                                     1613
     CALCULATE FLUX DERIVATIVES
                                                                                    1614
       IF(J-LZR+1) 744,745,746
743
                                                                                     1615
744
       FMM(J+2)=(FOTJP2 -FOS(J+2))/(TP(J)-T(J))
FM(J+1)=(FOTJP1 -FOS(J+1))/(TP(J)-T(J))
                                                                                     1616
745
                                                                                    1617
       FZ(J)=(FOTJZ-FOS(J))/(TP(J)-T(J))
746
                                                                                     1618
       HZ(J)=(F1TJZ-F1S(J))/(TP(J)-T(J))
747
                                                                                    1619
       IF(J-1) 755.755.749
748
                                                                                     1620
       FP(J-1)=(FOTJM1 -FOS(J-1))/(TP(J)-T(J))
                                                                                    1621
749
750
751
       HP(J-1)=(F[TJM1-FIS(J-1))/(TP(J)-T(J))
                                                                                     1622
       IF(J-2) 755.755.752
                                                                                     1623
       HPP(J-2)=(F1TJM2-F1S(J-2))/(TP(J)-T(J))
752
                                                                                    1624
       IF(J-3) 755.755.754
HPPP(J-3)=(FITJM3-FIS(J-3))/(TP(J)-T(J))
                                                                                    1625
753
                                                                                    1626
754
     RETURN RIPPLE ZONE PARAMETERS TO NORMAL VALUES
                                                                                    1627
       DO 768 N=1.NSZ
755
                                                                                     1628
       BB(J.N)=SAVE1
                                                                                     1629
       BB(J-1,N)=SAVE2
                                                                                     1630
       S(J.N)=SAVE3
                                                                                     1631
       S(J-1,N)=SAVE4
                                                                                     1632
```

```
DTAU(J.N)=SAVE5
                                                                                   1633
      A(J.N)=SAVEG
                                                                                   1634
      W(J.N)=SAVE7
                                                                                   1635
       ZI(J.N)=SAVER
                                                                                   1636
                                                                                   1637
       21(J-1,N)=8AVE9
       ZG(J.N)=SAVE10
                                                                                   1638
       ZO(J+1.N)=SAVE11
                                                                                   1639
       BC(J.N)=SAVE12
                                                                                   1640
       TS(J)=SAVE13
                                                                                   1641
       ZO(J+2.N)=SAVE16
                                                                                   1642
       BB(J.2)=SAVE17
                                                                                   1643
       88(J-1.2)=SAVE18
                                                                                   1644
768
      CONTINUE
                                                                                   1645
       CONTINUE
769
                                                                                   1646
   GENERALIZED COEFFICIENT ROUTINE
                                         DEC 6.1963
                                                                                   1647
770
                K=1.LZR
772.772.775
      00 789
                                                                                   1648
771
       IF(K-1)
                                                                                   1649
772
       DMM(1)=0.0
                                                                                   1650
      D1 = 0. 0
                                                                                   1651
773
       OM(1)=0.0
                                                                                   1652
774
775
       GO TO 780
                                                                                   1653
      D1=1.0
                                                                                   1654
       IF(K-2)
                777.776.778
                                                                                   1655
       DMM(2)=0.0
776
                                                                                   1656
777
       GO TO 779
                                                                                   1657
778
      DMM(K)=(0.5+R2(K)/ZMAS(K))+FMM(K)
                                                                                   1658
778
      1-D1+(0.5+R2(K-1)/ZMAS(K))+FM(K-1)
                                                                                   1659
      DM(K)= (0.5+R2(K)/ZMAS(K))+FM(K)
779
                                                                                   1660
779
                          *MAS(K))*(FZ(K-1)-HZ(K-1))
      1-01*(0.5*R2(K
                                                                                   1661
                           ZMAS(K))*(FZ(K)-HZ(K))
780
      DZ(K)= (0.5+F
                                                                                   1662
                          LMAS(K))+(FP(K-1)-HP(K-1))
780
      1-D1+(0.5+R2(N
                                                                                   1663
     2+(DET(K)/DT)+(PT(K)/(2.*DT))*(V(K)-VR(K))
DP(K)= (0.5*R2(K)/ZMAS(K))*(FP(K)-HP(K))
780
                                                                                   1664
781
                                                                                   1665
781
      1-01*(0.5*R2(K-1)/ZMAS(K))*(-HPP(K))
                                                                                   1666
782
      DPP(K)=(0.5+R2(K)/ZMAS(K))+(-HPP(K))
                                                                                   1667
782
      1-D1+(0.5+R2(K-1)/ZMAS(K))+(-HPPP(K-1))
                                                                                   1668
789
      CONTINUE
                                                                                   1669
790
      DPP(LZR-1)=0.0
                                                                                   1670
       DP(LZR)=0.0
791
                                                                                   1671
      DPP(LZR)=0.0
792
                                                                                   1672
   BLOCK 800 SOLUTION OF MATRIX
                                                                                   1673
800
      CN(1)=OP(1)/DZ(1)
                                                                                   1674
      DN(1)=DPP(1)/DZ(1)
801
                                                                                   1675
      EN(1)=-RESDUE(1)/02(1)
802
                                                                                   1676
803
      BN(2)=DZ(2)-DM(2)+CN(1)
                                                                                   1677
      CN(2)=(DP(2)-DH(2)+DN(1))/BN(2)
804
                                                                                   1678
805
      DN(2)=DPP(2)/BN(2)
                                                                                   1679
      EN(2) = - (RESDUE(2)+DM(2)+EN(1))/BN(2)
806
                                                                                   1680
807
      00 811
                K=3.LZR
                                                                                   1681
      BN(K)=(DZ(K)-DM(K)=CN(K-1)-DMM(K)=DN(K-2)+DMM(K)+CN(K-2)+CN(K-1))
808
                                                                                   1682
809
      CH(K) = (DP(K) - DM(K) + DN(K-1) + DMM(K) + CN(K-2) + DN(K-1) / BN(K)
                                                                                   1683
```

```
DN(K)=DPP(K)/BN(K)
810
                                                                                                                                                                  1684
911
             ENCK) = -CRESDUE(K) + CMCK) + CMCK - 1) - CMMCK) + CMCK - 2) + ENCK - 1) + CMMCK) + ENCK - 1) + CMMCK) + CMCK - 1) + CMMCK - 1) + CMMCK) + CMCK - 1) + CMMCK - 1) + C
                                                                                                                                                                 1685
           1-2))/BN(K)
011
                                                                                                                                                                  1686
912
             DN(LZR-1)=0.0
                                                                                                                                                                  1687
             EN(LZR)=DM(LZR)-DMM(LZR)+CN(LZR-2)
013
                                                                                                                                                                  1689
814
             CN(LZR)=(DZ(LZR)-DM(LZR)+ON(LZR-2))/BN(LZR)
                                                                                                                                                                  1689
ē15
             DN(LZR)=0.0
                                                                                                                                                                  1690
816
             EN(LZR) = - (RESDUE(LZR) + DMM(LZR) + EN(LZR-2))/BN(LZR)
                                                                                                                                                                  1691
             ME TURN
819
                                                                                                                                                                  1692
             END
VERSION C ENTRY ROUTINE
820
                                                                                                                                                                  1693
                                                                                                                                                                  1694
             STARTING MODEL IS READ IN FROM DATA CARDS GENERATED
                                                                                                                                                                  1695
             BY THE X-RAY DEPOSIT ROUTINE ON UNIVAC 1107
                                                                                                                                                                  1696
             FORTRAN
                                                                                                                                                                  1697
              SUBROUTINE ENTRY
                                                                                                                                                                  1698
           STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
                                                                                                                                                                  1699
             D(1)=0.0
                                                                                                                                                                  1700
              TEE = 3. 0E + 04
                                                                                                                                                                  1701
             READ INPUT TAPE 5. 9277. RUNIDI. RUNID2. TR(NN1). TR(NN2). ENERGY. TIME.
                                                                                                                                                                  1702
           1FX.(K.R(K).DR(K).T(K).RHOZ(K).U(K).E(K).RUNID1.RUNID2.K=1.100)
                                                                                                                                                                  1703
9277
             FORMAT(2A6.1PSE13.3/(14.1P6E11.3.2A5))
                                                                                                                                                                  1704
             LZ=100
                                                                                                                                                                  1705
             VD*CS
                                                                                                                                                                  1706
              WKT=ENERGY/4.18E+19
                                                                                                                                                                  1707
              TD02=7100.0=EXPF((0.43429+LOGF(RH0Z(99)/1.293E-03))/5.3)
                                                                                                                                                                  1708
              TDK2=15000. 0*EXPF((0.43429*LOGF(RHOZ(99)/1.293E-03))/4.8)
                                                                                                                                                                  1709
   1019 DO 1033 K=1.100
1026 V(K)=1.0/RHOZ(K)
                                                                                                                                                                  1710
                                                                                                                                                                  1711
             VR(K)=V(K)
                                                                                                                                                                  1712
   1027 L=K
                                                                                                                                                                  1713
              TS(K)=T(K)
                                                                                                                                                                  1714
             R2(L)=R(L)++2
                                                                                                                                                                  1715
   1029 RZ(L)=R(L)
                                                                                                                                                                  1716
   1030 RR(L)=1.0
                                                                                                                                                                  1717
              TR(K)=T(K)
                                                                                                                                                                  1718
              ZMAS(K)=(RHGZ(K)/3.0)+((RZ(L)++3)-(RZ(L-1)++3))
                                                                                                                                                                  1719
             DU=U(L)-U(L-1)
                                                                                                                                                                  1720
             Q(K)=-(VD/(2.0+V(K)))+DU+ABSF(DU)
                                                                                                                                                                  1721
             Q(1)=-(VD/(2.0+V(1)))+U(1)+ABSF(U(1))
                                                                                                                                                                  1722
                                     2233.1033.1033
              IF(O(K))
                                                                                                                                                                  1723
2233
             Q(K)=0.0
                                                                                                                                                                  1724
             CONTINUE
1033
                                                                                                                                                                  1725
              ZHAS(1)=RHOZ(1)+(R(1)++3)/3.0
                                                                                                                                                                  1726
   1034 WRITE OUTPUT TAPE 6.1035, TON2, TO02, RN2, RO2, WKT . (K.R(K), RHOZ(K),
                                                                                                                                                                  1727
1934 1V(K), T(K), U(K), Q(K), ZMAS(K), DR(K), DPP(K), DTAU(K, 1), TAU(K, 1), K=1.
                                                                                                                                                                 1728
           1100)
                                                                                                                                                                  1729
  1035 FORMATCH +10HIMPUT DATA-10x-SHTDN2=0PF7.1-10x-SHTD02=0PF6.1-5x-
                                                                                                                                                                  1730
1035 14MM2=1PE9.2.5X.4HR02=1PE9.2.5X.4HWKT=0PF7.2//4H K .2X.4HR(L)
                                                                                                                                                                  1731
                    .7X.7HRHOZ(K).4X.4HV(K).7X.4HT(K).7X.4HU(L).7X.4HQ(K).7X.7HZHAS
                                                                                                                                                                 1732
           1(K).4X.5HDR(K).7X.6HENG(K).5X.7HDTAU(K).4X.3HTAU//(14.1P11E11.4))
                                                                                                                                                                  1733
             T(101)=T(100)
                                                                                                                                                                  1734
             RETURN
1000
                                                                                                                                                                  1735
             END
                                                                                                                                                                  1736
```

References

- Blackman, V., Vibrational Relaxation in Oxygen and Nitrogen, Jour. Fluid Mech. 1, p. 61, 1956.
- Brode, H., B. Whittaker, private communications, 1965.
- Gilmore, F.R., Equilibrium Composition and Thermodynamic Properties of Air to 24,000°K, RAND Corp. RM-1543, 1955.
- Hillendahl, R.W., Approximation Techniques for Radiation-Hydrodynamics Computations, Lockheed Report 3-27-64-1, DASA 1522, 1964.
- Hilsenrath, J. and C.W. Buckett, Thermodynamic Properties of Argon-Free Air, N.B.S. Report 3991, 1955.

FIG. A-1 FINITE DIFFERENCE GRID

FIG. A-2 SCHEMATIC FLOW CHART

DISTRIBUTION LIST

	No of Cys
Department of Defense:	
Commander in Chief, Strategic Air Command, Offutt AFB, Nebraska 68113	1
Administrator, Defense Documentation Center, Cameron Station-Building 5, ATTN: Document Control, Alexandria, Virginia 22314	20
Director, Defense Atomic Support Agency, Washington, D. C. 20305	2
Director of Defense Research & Engineering, ATTN: Tech Library Washington, D. C. 20301	, 1
Director, Defense Intelligence Agency, Washington, D. C. 20301	1
Department of the Army:	
Commanding General, Army Munitions Command, Picatinny Arsenal, ATTN: Technical Library, Dover, New Jersey 07801	1
Commanding Officer, Army Nuclear Defense Laboratory, ATTN: AMXND-NT, Edgewood Arsenal, Maryland 21010	1
Commanding Officer, Harry Diamond Laboratories, Connecticut Avenue & Van Ness Street, N. W., ATTN: Technical Reference Branch, Washington, D. C. 20438	1
Commanding General, Army Missile Command, Redstone Arsenal, Alabama 35809	1
Commanding General, Army Electronics Command, ATTN: AMSEL/SMA, Fort Monmouth, New Jersey 07703	1
Commanding Officer, U. S. Army Ballistic Research Laboratories, ATTN: Mr. Baicy, Aberdeen Proving Ground, Maryland 21005	1
Commanding Officer, Army Combat Developments Command, Institute of Nuclear Studies, Fort Bliss, Texas 79916	1
Chief of Research and Development, Department of the Army, ATTN: Nuclear, Chemical-Biological Division, Washington, D. 20310	c.
Commanding General, U. S. Army Materiel Command, ATTN: Nuclear Branch, Washington, D. C. 20315	1
Commanding Officer, Frankford Arsenal, Bridge and Tacony Street ATTN: Mr. A. Britten, Philadelphia, Pennsylvania 19137	s, l
Office of the Secretary of the Army, Director of Civil Defense, ATTN: Research Director, Washington, D. C. 20310	1
Department of the Navy:	
Commanding Officer and Director, Naval Radiological Defense Laboratory, ATTN: Code 222A, Technical Information Division, San Francisco, California 94135	1

Commander, Naval Ordnance Laboratory-White Oak, ATTN: Dr. Rudlin, Silver Spring, Maryland 20910	1
Commander, Naval Ships Systems Command, Department of the Navy, ATTN: Code 03541, Mr. L. Sieffert, Washington, D. C. 20360	1
Commanding Officer and Director, Naval Applied Science Laboratory, Flushing and Washington Avenues, ATTN: Mr. W. Derksen, Brooklyn, New York 11251	1
Chief of Naval Research, Department of the Navy, ATTN: Code 811, Washington, D. C. 20360	1
Director, Naval Research Laboratory, ATTN: Code 2029, Washington, D. C. 20390	1
Director, Special Projects Office, Department of the Navy, ATTN: SP-42, Washington, D. C. 20360	1
Commanding Officer and Director, Naval Civil Engineering Laboratory, ATTN: Code L31, Port Hueneme, California 93041	1
Department of the Air Force:	
Commander, Air Force Weapons Laboratory, ATTN: WLL-Technical Library, Kirtland AFB, New Mexico 87117	1
Headquarters, USAF, TEMPO-BLDG-8, ATTN: AFTAC/SDP-R, Washington, D. C. 20333	1
School of Aerospace Medicine, ATTN: Mr. E. Richey, Brooks AFB, Texas 78235	1
Commander, Space and Missile Systems Organization, Air Force Unit Post Office, ATTN: Capt Dickison, Los Angeles, California 90045	1
Director, Air University Library, Maxwell AFB, Alabama 36112	1
Commander, Air Force Cambridge Research Laboratories, ATTN: CROR and CRZC, L. G. Hanscom Field, Bedford, Massachusetts 07130	1
Commander, Electronic Systems Division, L. G. Hanscom Field, Bedford, Massachusetts 01730	1
AEC:	
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87544 ATTN: Document Control For- Technical Library	1
University of California, Lawrence Radiation Laboratory, Technical Information Division, P. O. Box 808, Livermore, California 94550 ATTN: Dr. Gilbert	1
Assistant General Manager for Military Application, U. S. Atomic Energy Commission, Washington, D. C. 20545 ATTN: Library	1

Sandia Corporation, P. O. Box 5800, Albuquerque,	i
New Mexico 87116	
Sandia Corporation, Livermore Laboratory,	1
P. O. Box 969, Livermore, California 94550	
ATTN: Document Control For Technical Library	
Civilian:	
RAND Corporation, 1700 Main Street, Santa Monica, California 90406 ATTN: Library	1
Aerospace Corporation, 1111 E. Mill Street, San Bernardino, California 92402	1
Lockheed Missiles & Space Company, Division of Lockheed	1
Aircraft Corporation, 3251 Hanover Street, Palo Alto,	•
California 94304 ATTN: Dr. R. Meyerott	
Boeing Company, P. O. Box 3707, Seattle, Washington 98124	1
ATTN: Mr. Ed York	-
IIT Research Institute, 10 West 35th Street, Chicago,	1
Illinois 60616 ATTN: Dr. W. Christian	_
General Electric Company, TEMPO-Center for Advanced Studies,	1
816 State Street, Santa Barbara, California 93101	
ATTN: DASIAC, Mr. Warren Chan	
American Science & Engineering, Inc., 11 Carleton Street,	1
Cambridge, Massachusetts 02138 ATTN: Dr. Jack Carpenter	
Kaman Corporation, Kaman Nuclear Division, Garden of the	1
Gods Road, Colorado Springs, Colorado 80907	
ATTN: Dr. F. Shelton	
EG&G, Inc., P. O. Box 227, Bedford, Massachusetts 01730	1
Technical Operations, Inc., South Avenue, Burlington,	1
Massachusetts 01804 ATTN: Dr. I. Kofsky	
AVCO Everett Research Laboratory, 2385 Revere Beach Parkway,	1
Everett, Massachusetts 02140 ATTN: Library	
AVCO Missiles, Space & Electronics Group Missile & Space	1
Systems Division, 201 Lowell Street, Wilmington, Massachusetts	
018t.7	
GCA Corporation, Burlington Road, Bedford, Massachusetts 01730	1
ATTN: Library	
Stanford Research Institute, 333 Ravenswood Avenue, Menlo Park,	1
California 94025 ATTN: Document Custodian, FOR: Library	
General Lynamics/Convair, 5001 Kearny Villa Road, P. O. Box 1128,	1
San Diego, California 92112	
Martin Company, Division of Martin-Marietta Corporation,	1
Orlando Division, P. O. Box 5837, Orlando, Florida 32805	
Douglas Aircraft Company, Division of McDonnell-Douglas Corporation	, 1
3000 Ocean Park Boulevard, Santa Monica, California 90405	_
Systems, Science and Software, 3347 Industrial Court, Sorrento	1
Valley Industrial Park, San Diego, California 92121	
ATTN: Dr. B. Freeman	

BLANK PAGE

ecurity Classification

Security Classification			
	NTROL DATA - RA		
(Security classification of title, body of abstract and indexing ORIGINATING ACTIVITY (Corporate author)	ul annotation must be an		he overall report (a electrical) RT SECURITY C LASSIFICATION
1. Outmink ild o bolist; t (colbouis anius)		1	• • • • • • • • • • • • • • • • • • • •
Lockheed Missiles & Space Company		SP GWOUL	assified
3 REPORT TITLE			
THE ALL ALERS OF THE PARTY OF T			
THERMAL RADIATION PHENOMENA VOL. 5 RADIATION HYDRODYNAMICS OF HIGH TEMPER	RATURE AIR		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report, 5th out of a series of 6	5		•
S. AUTHOR(S) (Last name, limit name, initial)			
Harold L. Brode; Richard W. Hillendahl	l; Rolf K. Land	lshoff	
6. REPORT DATE November, 1967	· · · · · · · · · · · · · · · · · · ·		76. NO. OF REFS 22
BE CONTRACT OR BRANT NO.	Se. ORIGINATOR'S RE	PORT NUM	9E R(5)
DA-49-146-XZ-198 6 PROJECT NO.	DA-49-146-XZ-198 DASA-1917-5 PROJECT NO.		
c.	SA. OTHER REPORT	NO(S) (Any	other numbers that may be seeigned
d.	3 -27- 67 - 1	Vol. 5	
10. AVAILABILITY/LIMITATION NOTICES			
This document has been approved for p is unlimited.	ublic release	and sale	e; its distribution
11. SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACT	VITY
	Defense Ator Washington,		
13. ABSTRACT			
This report introduces the reader to its application to fireballs in the a equations of RH, special attention is Several methods for solving the equat special emphasis is placed on the two procedure, which is specifically desi version of the FIREBALL code which ut physics of fireballs is illustrated wat sea level density and without inte made on scaling procedures for extend tudes. Estimates are made of the val	tmosphere. Afgiven to the sions of transference from ing the result	ter formadiative are stated with a lith find proach to high	nulating the basic we transfer problem. touched upon but frequency averaging ite zone sizes. A is described. The one kiloton detonation und. Some remarks are

DD 1508M. 1473

Unclassified
Security Classification

Security Classification

14. KEY WORDS	LIN	LINK A LINK B		K B	LINKC	
NET WORDS	ROLE	WT	MOLE	WT	MOLE	WT
Radiation hydrodynamics		<u>.</u>				
High temperature air						
Radiative transport						
Strong shocks						
Nuclear fireball		İ				
Local thermodynamic equilibrium						

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2e. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final, Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first rame, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, menth, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b. 8c. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 95. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) ⁴¹U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users ahall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

PO 886-551

Unclassified