

BENTHIC INVERTEBRATES OF THE UPPER RUBY RIVER WATERSHED: A BIOASSESSMENT

May-June 2001

FINAL

A report to

The Montana Department of Environmental Quality Helena, Montana

by

Wease Bollman Rhithron Biological Associates Missoula, Montana

STATE DOCUMENTS COLLECT.

SEP - 6 2004

MONTANA STATE LIB. 1515 E. 6th AVE HELENA MONTAN

April 2002

RECEIVED

Monitoring & DEQ/PPA
Data Management Bureau

INTRODUCTION

Aquatic invertebrates are aptly applied to bioassessment since they are known to be important indicators of stream ecosystem health (Hynes 1970). Long lives, complex life cycles and limited mobility mean that there is ample time for the benthic community to respond to cumulative effects of environmental perturbations.

This report summarizes data collected in late May and June 2001 from 12 sites on seven streams in the upper Ruby River watershed, Madison County, Montana. Aquatic invertebrate assemblages were sampled by personnel of the Montana Department of Environmental Quality (DEQ). Study sites apparently lie within the Montana Valley and Foothill Prairie ecoregion (Woods et al. 1999). A multimetric approach to bioassessment such as the one applied in this study uses attributes of the assemblage in an integrated way to measure biotic health. A stream with good biotic health is "...a balanced, integrated, adaptive system having the full range of elements and processes that are expected in the region's natural environment..." (Karr and Chu 1999). The approach designed by Plafkin et al. (1989) and adapted for use in the State of Montana has been defined as "... an array of measures or metrics that individually provide information on diverse biological attributes, and when integrated, provide an overall indication of biological condition." (Barbour et al. 1995). Community attributes that can contribute meaningfully to interpretation of benthic data include assemblage structure, sensitivity of community members to stress or pollution, and functional traits. Each metric component contributes an independent measure of the biotic integrity of a stream site; combining the components into a total score reduces variance and increases precision of the assessment (Fore et al. 1995). Effectiveness of the integrated metrics depends on the applicability of the underlying model, which rests on a foundation of three essential elements (Bollman 1998). The first of these is an appropriate stratification or classification of stream sites, typically, by ecoregion. Second, metrics must be selected based upon their ability to accurately express biological condition. Third, an adequate assessment of habitat conditions at each site to be studied is needed to assist in the interpretation of metric outcomes.

Implicit in the multimetric method and its associated habitat assessment is an assumption of correlative relationships between habitat parameters and the biotic metrics, in the absence of water quality impairment. These relationships may vary regionally, requiring an examination of habitat assessment elements and biotic metrics and a test of the presumed relationship between them. Bollman (1998) has recently studied the assemblages of the Montana Valley and Foothill Prairie ecoregion, and has recommended a battery of metrics applicable to the montane ecoregions of western Montana. This metric battery has been shown to be sensitive to impairment, related to habitat assessment parameters, and consistent over replicated samples.

Habitat assessment enhances the interpretation of biological data (Barbour and Stribling 1991), because there is generally a direct response of the biological community to habitat degradation in the absence of water quality impairment. If biotic health appears more damaged than the habitat quality would predict, water pollution by metals, other toxicants, high water temperatures, or high levels of organic and/or nutrient pollution might be suspected. On the other hand, an "artificial" elevation of biotic condition in the presence of habitat degradation may be due to the paradoxical effect of mild nutrient or organic enrichment in an oligotrophic setting.

METHODS

Aquatic invertebrates were sampled at twelve sites by Montana DEQ personnel on May 31 and June 1-20, 2001. Sample identifications are given, sites are described, and locations indicated in Table 1. The sampling method employed was that recommended in the Montana Department of Environmental Quality (DEQ) Standard Operating Procedures for Aquatic Macroinvertebrate Sampling (Bukantis 1998). In addition to aquatic invertebrate sample collection, habitat quality was visually evaluated at two of the visited sites and was reported by means of the habitat assessment protocols recommended by Bukantis (1998) for streams with riffle/run prevalence.

Aquatic invertebrate samples were delivered to Rhithron Biological Associates, Missoula, Montana, for laboratory and data analyses. In the laboratory, the Montana DEQ-recommended sorting method was used to obtain subsamples of at least 300 organisms from each sample, when possible. Organisms were identified to the lowest possible taxonomic levels consistent with Montana DEQ protocols.

Table 1. Sampling sites and dates. Twelve sites on seven streams in the upper Ruby River watershed. Sites are listed from upstream to downstream.

Site	137-4 - d d	Campling Data	Location
designation	Waterbody	Sampling Date	Lat. Long.
MF3	Middle Fork Ruby River	6/12/01	44° 51' 19" N 111° 59' 50" W
Basin1	Basin Creek	6/19/01	44° 51′ 49" N 111° 59′ 37" W
Basin2	Basin Creek	6/19/01	44° 51′ 40″ N 111° 59′ 11″ W
P1	Poison Creek	6/18/01	44° 52′ 39" N 111° 59′ 54" W
MF5	Middle Fork Ruby River	6/12/01	Near confluence with East and West Forks
EF1	East Fork Ruby River	6/19/01	44° 54' 09" N 111° 59' 24" W
EF2	East Fork Ruby River	6/19/01	44° 54' 19" N 111° 59' 30" W
Burnt1	Burnt Creek	6/20/01	44° 56' 51" N 111° 58' 03" W
Burnt2	Burnt Creek	6/20/01	44° 56′ 52" N 111° 58′ 16" W
SI	Sweetwater Creek	6/01/01	45° 04' 03" N 112° 15' 55" W
S4	Sweetwater Creek	6/01/01	45° 05' 54" N 112° 12' 39" W
С3	Cottonwood Creek	5/31/01	45° 12' 18" N 112° 15' 23" W

To assess aquatic invertebrate communities in this study, a multimetric index developed in previous work for streams of western Montana ecoregions (Bollman 1998) was used. Multimetric indices result in a single numeric score, which integrates the values of several individual indicators of biologic health. Each metric used in this index was tested for its response or sensitivity to varying degrees of human influence. Correlations have been demonstrated between the metrics and various symptoms of human-caused impairment as expressed in water quality parameters or instream. streambank, and stream reach morphologic features. Metrics were screened to minimize variability over natural environmental gradients, such as site elevation or sampling season, which might confound interpretation of results (Bollman 1998). The multimetric index used in this report incorporates multiple attributes of the sampled assemblage into an integrated score that accurately describes the benthic community of each site in terms of its biologic integrity. In addition to the metrics comprising the index, other metrics, which have been shown to be applicable to biomonitoring in other regions (Kleindl 1995, Patterson 1996, Rossano 1995) were used for descriptive interpretation of results. These metrics include the number of "clinger" taxa, long-lived taxa richness, the percent of predatory organisms, and others. They are not included in the integrated bioassessment score, however, since their performance in western Montana ecoregions is unknown. However, the relationship of these metrics to habitat conditions is intuitive and reasonable.

The six metrics comprising the bioassessment index used in this study were selected because, both individually and as an integrated metric battery, they are robust at distinguishing impaired sites from relatively unimpaired sites (Bollman 1998). In addition, they are relevant to the kinds of impacts that are present in the upper Ruby River drainage. They have been demonstrated to be more variable with anthropogenic disturbance than with natural environmental gradients (Bollman 1998). Each of the six metrics developed and tested for western Montana ecoregions is described below.

- 1. Ephemeroptera (mayfly) taxa richness. The number of mayfly taxa declines as water quality diminishes. Impairments to water quality which have been demonstrated to adversely affect the ability of mayflies to flourish include elevated water temperatures, heavy metal contamination, increased turbidity, low or high pH, elevated specific conductance and toxic chemicals. Few mayfly species are able to tolerate certain disturbances to instream habitat, such as excessive sediment deposition.
- 2. Plecoptera (stonefly) taxa richness. Stoneflies are particularly susceptible to impairments that affect a stream on a reach-level scale, such as loss of riparian canopy, streambank instability, channelization, and alteration of morphological features such as pool frequency and function, riffle development and sinuosity. Just as all benthic organisms, they are also susceptible to smaller scale habitat loss, such as by sediment deposition, loss of interstitial spaces between substrate particles, or unstable substrate.
- 3. Trichoptera (caddisfly) taxa richness. Caddisfly taxa richness has been shown to decline when sediment deposition affects their habitat. In addition, the presence of certain case-building caddisflies can indicate good retention of woody debris and lack of scouring flow conditions.

- 4. Number of sensitive taxa. Sensitive taxa are generally the first to disappear as anthropogenic disturbances increase. The list of sensitive taxa used here includes organisms sensitive to a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability, and others. Unimpaired streams of western Montana typically support at least four sensitive taxa (Bollman 1998).
- 5. Percent filter feeders. Filter-feeding organisms are a diverse group; they capture small particles of organic matter, or organically enriched sediment material, from the water column by means of a variety of adaptations, such as silken nets or hairy appendages. In forested montane streams, filterers are expected to occur in insignificant numbers. Their abundance increases when canopy cover is lost and when water temperatures increase and the accompanying growth of filamentous algae occurs. Some filtering organisms, specifically the Arctopsychid caddisflies (Arctopsyche spp. and Parapsyche sp.) build silken nets with large mesh sizes that capture small organisms such as chironomids and early-instar mayflies. Here they are considered predators, and, in this study, their abundance does not contribute to the percent filter feeders metric.
- 6. Percent tolerant taxa. Tolerant taxa are ubiquitous in stream sites, but when disturbance increases, their abundance increases proportionately. The list of taxa used here includes organisms tolerant of a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability, and others.

Table 2. Metrics and scoring criteria for bioassessment of streams of western Montana ecoregions (Bollman 1998).

		Se	core	
metric	3	2	1	0
Ephemeroptera taxa richness	> 5	5 - 4	3 - 2	< 2
Plecoptera taxa richness	> 3	3 - 2	1	0
Trichoptera taxa richness	> 4	4 - 3	2	< 2
Sensitive taxa richness	> 3	3 - 2	Ī	0
Percent filterers	0 - 5	5.01 - 10	10.01 - 25	> 25
Percent tolerant taxa	0 - 5	5.01 - 10	10.01 - 35	> 35

Scoring criteria for each of the six metrics are presented in Table 2. Metrics differ in their possible value ranges as well as in the direction the values move as biological conditions change. For example, Ephemeroptera richness values may range from zero to ten taxa or higher. Larger values generally indicate favorable biotic conditions. On the other hand, the percent filterers metric may range from 0% to 100%; in this case, larger values are negative indicators of biotic health. To facilitate scoring, therefore, metric values were transformed into a single scale. The range of each metric has been divided into four parts and assigned a point score between zero and three. A score of three indicates a metric value similar to one characteristic of a non-impaired condition. A score of zero indicates strong deviation from non-impaired condition and suggests severe degradation of biotic health. Scores for each metric were summed to give an overall

score, the total bioassessment score, for each site in each sampling event. These scores were expressed as the percent of the maximum possible score, which is 18 for this metric battery.

The total bioassessment score for each site was expressed in terms of use-support. Criteria for use-support designations were developed by Montana DEQ and are presented in Table 3a. Scores were also translated into impairment classifications according to criteria outlined in Table 3a.

In this report, certain other metrics were used as descriptors of the benthic community response to habitat or water quality but were not incorporated into the bioassessment metric battery, either because they have not yet been tested for reliability in streams of western Montana, or because results of such testing did not show them to be robust at distinguishing impairment, or because they did not meet other requirements for inclusion in the metric battery. These metrics and their use in predicting the causes of impairment or in describing its effects on the biotic community are described below.

- The modified biotic index. This metric is an adaptation of the Hilsenhoff Biotic Index (HBI, Hilsenhoff 1987), which was originally designed to indicate organic enrichment of waters. Values of this metric are lowest in least impacted conditions. Taxa tolerant to saprobic conditions are also generally tolerant of warm water, fine sediment, and heavy filamentous algae growth (Bollman, unpublished data). Loss of canopy cover is often a contributor to higher biotic index values. The taxa values used in this report are modified to reflect habitat and water quality conditions in Montana (Bukantis 1998). Ordination studies of the benthic fauna of Montana's foothill prairie streams showed that there is a correlation between modified biotic index values and water temperature, substrate embeddedness, and fine sediment (Bollman 1998). In a study of reference streams, the average value of the modified biotic index in least-impaired streams of western Montana was 2.5 (Wisseman 1992).
- Taxa richness. This metric is a simple count of the number of unique taxa present in a sample. Average taxa richness in samples from reference streams in western Montana was 28 (Wisseman 1992). Taxa richness is an expression of biodiversity, and generally decreases with degraded habitat or diminished water quality. However, taxa richness may show a paradoxical increase when mild nutrient enrichment occurs in previously oligotrophic waters, so this metric must be interpreted with caution.
- Percent predators. Aquatic invertebrate predators depend on a reliable source of invertebrate prey, and their abundance provides a measure of the trophic complexity supported by a site. Less disturbed sites have more plentiful habitat niches to support diverse prey species, which in turn support abundant predator species.
- Number of "clinger" taxa. So-called "clinger" taxa have physical adaptations that
 allow them to cling to smooth substrates in rapidly flowing water. Aquatic
 invertebrate "clingers" are sensitive to fine sediments that fill interstices between
 substrate particles and eliminate habitat complexity. Animals that occupy the
 hyporheic zones are included in this group of taxa. Expected "clinger" taxa

- richness in unimpaired streams of western Montana is at least 14 (Bollman, unpublished data).
- Number of long-lived taxa. Long-lived or semivoltine taxa require more than a year to completely develop, and their numbers decline when habitat and/or water quality conditions are unstable. They may completely disappear if channels are dewatered or if there are periodic water temperature elevations or other interruptions to their life cycles. Western Montana streams with stable habitat conditions are expected to support six or more long-lived taxa (Bollman, unpublished data).

Table 3a. Criteria for the assignment of thresholds (Bukantis, 1998).	use-support classifications / standards violation
% Comparability to reference	Use support
>75	Full supportstandards not violated
25-75	Partial supportmoderate impairmentstandards violated
<25	Non-supportsevere impairmentstandards violated
Table 3b. Criteria for the assignment of i	mpairment classifications (Plafkin et al. 1989).
% Comparability to reference	Classification
> 83 54-79 21-50 <17	nonimpaired slightly impaired moderately impaired severely impaired

RESULTS

Habitat assessment

Habitat assessment results for ten of the twelve sampled sites were provided; sites on Basin Creek were not evaluated. The appraisals indicate that optimal habitat conditions were perceived at the upstream site on the Middle Fork Ruby River but the downstream site was judged sub-optimal. Among the tributaries, both sites on Burnt Creek were perceived to have optimal habitat conditions, but overall habitat at sites on Poison Creek, Sweetwater Creek, and Cottonwood Creek was rated sub-optimal. On the East Fork Ruby River, the upstream site (EF-1) appeared to have marginal habitat, while the downstream site (EF-2) appeared to have sub-optimal conditions.

The upstream site on the Middle Fork Ruby River (MF-3) scored 83% of the maximal assessment score. Some sediment deposition was noted, but all other instream habitat parameters received optimal scores. Benthic substrate was reported to be composed of diverse particle sizes. Sediment inputs could have originated from streambanks, which appeared to be moderately unstable; erosion was reported to be prevalent throughout the reach. The field evaluator indicated that recent heavy rains were a possible cause of the erosion. Riparian zone width was rated sub-optimal, though field

notes suggest that riparian vegetation was vigorous and that willows exhibited good age diversity.

Moderate streambank instability was reported at the Poison Creek site. The moderate erosion of banks and slumping of outside bends may have been a source of the silt accumulations noted on channel edges, and the observed enlargement of gravel bars. Benthic substrate was scored sub-optimal, apparently because of the prevalence of boulder-sized particles; good particle size diversity was described in field notes, however. The riparian zone vegetation was described as vigorous and diverse in both structure and age.

At site MF-5, moderate deposition of sediment was observed. Point bars were particularly involved, with enlargement by large amounts of sand noted by field personnel. Instream habitat characteristics appear to have been affected somewhat by sediment deposition; although benthic substrate diversity was judged optimal, embeddedness of riffle substrates by fines was estimated at about 20%. Some large-scale channel alteration was observed; the evaluator noted that a "USFS road runs through (the) river...". Streambanks on both sides of the channel were judged "very unstable", and vegetative protection of streambank soils was rated marginal. The riparian zone width was reported to be somewhat abbreviated. Riparian vegetation was reported to be dominated by young willows and sage.

Severe sediment deposition compromised habitat at the upstream site on the East Fork Ruby River. Field personnel described the substrate as "...boulders and large amounts of silt," with cobbles nearly completely embedded in fine sediment. Upstream of the sampled site, channels were braided. Frequent cattle and road crossings were perceived to significantly alter channel morphology. Erosion of streambanks was noted to be prevalent and severe, with "...banks sloughed off in large chunks at the sample site." The riparian zone exhibited obvious disruptions, and although width was judged to be about 30 feet, breaks occurred frequently.

At the downstream site on the East Fork, streambanks were perceived to be somewhat more stable than at the upstream site; field forms reported only moderate instability. Perhaps as a consequence, benthic substrates did not appear to be so severely affected by sediment deposition. Substrate diversity, embeddedness, and sediment deposition were each appraised as sub-optimal. Riparian conditions were described as similar to those at the upstream site; width appeared to be sub-optimal, but notable disruptions were evident.

All habitat parameters were generally scored similarly at both sites on Burnt Creek. Sediment deposition was noted to be somewhat more problematic at the downstream site, however; where cobbles were less than 10% embedded at the upper site, they were judged to be about 25% embedded at the downstream site. Field notes describe "...some sediment deposition in pools" at the upper site, but "...fines extensively deposited in pools" at the lower site. Healthy, vigorous riparian vegetation was noted, although riparian zone width was abbreviated at both sites.

Eroding and slumping streambanks were described by field personnel at the upstream site on Sweetwater Creek, and stability was appraised as poor. Sediment deposition, however, did not appear to significantly affect benthic substrate diversity or

Table 4. Stream and riparian habitat assessment for ten of the twelve sampled sites in the upper Ruby River watershed, June-July 2001. Sites are listed in an upstream-to-downstream order, and are described in Table 1.

Max. possible score	Parameter	MF3	Basin1	Basin2	P1	MF5	EF1
10	Riffle development	10	n.a.	n.a.	10	10	10
10	Benthie substrate	9	n.a.	n.a.	6	9	5
20	Embeddedness	17	n.a.	n.a.	16	16	2
20	Channel alteration	18	n.a.	n.a.	15	14	9
20	Sediment deposition	15	n.a.	n.a.	12	6	2
20	Channel flow status	20	n.a.	n.a.	20	20	18
20	Bank stability: left / right	5 / 5	n.a.	n.a.	5/5	3/3	1 / 1
20	Bank vegetation: left / right	9 / 9	n.a.	n.a.	9/9	3 / 3	5 / 5
20	Vegetated zone: left / right	8 / 8	n.a.	n.a.	8 / 8	6 / 6	6 / 6
160	Total	133	n.a.	n.a.	123	99	70
	Percent of maximum CONDITION*	83 OPT	n.a. n.a.	n.a. n.a.	77 SUB	62 SUB	44 MARG
Max. possible score	Parameter	EF2	Burnt1	Burnt2	S1	S4	С3
10	Riffle development	10	10	10	9	9	10
10	Benthic substrate	6	8	8	9	7	6
20	Embeddedness	12	18	15	17	11	11
20	Channel alteration	12	19	18	16	11	19
20	Sediment deposition	11	17	15	15	11	11
20	Channel flow status	16	20	18	16	12	17
20	Bank stability: left / right	5 / 5	8 / 8	9/9	2/2	1/1	5/5
20	Bank vegetation: left / right	6 / 6	9/9	10 / 10	9 / 9	5 / 5	8 / 8
20	Vegetated zone: left / right	6 / 6	9/9	8 / 8	9 / 9	7/7	2/2
160	Total	101	144	138	122	87	104
	Percent of maximum CONDITION*	63 SUB	90 OPT	86 OPT	76 SUB	54 SUB	65 SUB

^{*}Condition categories: Optimal (OPT) > 80% of maximum score; Sub-optimal (SUB); 75 - 56%; Marginal (MARG) 49 - 29%; Poor <23%. Adapted from Platkin et al. 1998.

embeddedness in riffle habitats; both of these parameters received optimal scores. Sediment deposition in pools was reported to be slight at the sampling location. Riparian zone width received a high score although width was perceived to be abbreviated and vegetation was comprised mostly of sage, decadent willow stands, and grasses. Field notes contend that this appeared to be normal vegetation for the area.

At the downstream location on Sweetwater Creek, sediment deposition appeared to compromise benthic habitats; substrates exhibited sub-optimal diversity of particle sizes, and cobbles were 50% embedded by fines. Severe streambank instability, with sloughing of banks was noted. The riparian zone appeared to be heavily grazed, and streambank vegetation was limited to grasses, affording little stabilization. Bridges altered the natural morphology to some extent. Flow conditions were judged sub-optimal.

Moderate sediment accumulation was noted at the sampled site on Cottonwood Creek, possibly related to the moderate instability of streambanks also appraised there. Benthic substrate was described as "...some small cobbles, but mostly gravel, sand, and silt." Some embeddedness of larger substrate particles was noted as well. The riparian zone width parameter was scored "poor," although field personnel felt that the vegetation present was "normal and desirable for the area." Further comments, however, described poor age diversity of riparian willows, heavy browsing, and hedging.

Figure 1. Total habitat assessment scores for twelve sites in the upper Ruby River watershed, June-July 2001. Sites are described in Table 1.

Bioassessment

Figure 2 summarizes bioassessment scores for aquatic invertebrate communities at the twelve sites in this study. Table 5 itemizes each contributing metric and shows individual metric scores for each site. Tables 3a and 3b show criteria for impairment classifications and use-support categories recommended by Montana DEQ.

Seven of the sites in this study yielded samples with fewer than the minimum number of organisms necessary to provide reliable bioassessment results. These were Basin 1, Basin 2, P-1, MF-5, EF-1, Burnt 1, and C-3. Whether this was due to depauperate communities at the sites or to sampling bias is not clear from the data. The accuracy of results and conclusions pertinent to sites Basin 1, Basin 2, MF-5, and EF-1 should be regarded as tentative. Three samples were particularly lacking in organisms.

Thus, results and conclusions pertinent to sites P-1, Burnt 1, and C-3 are especially suspect. Bioassessment scores derived from the method used here, and in spite of low abundance of organisms in the 7 samples mentioned above, suggest that 2 of the 12 sites studied achieve full support of designated uses although there is evidence of slight impairment of biotic health. Nine sites partly support designated uses and exhibit slight impairment. The remaining site partly supports designated uses but appears to be moderately impaired.

Figure 2 illustrates the general trend of worsening bioassessment scores from upstream sites to downstream sites on both the Middle and East Forks of the Ruby River, as well as on the tributary sites from a south-to-north direction. The upstream site on the Middle Fork Ruby River (MF-3) exhibits slight impairment evident by a larger proportion than expected of filter-feeders among functional groups. In addition, the relative abundance of tolerant organisms was greater than expected. Downstream at site MF-5, similar evidence of slight impairment was present; additionally, 2 Plecoptera taxa present in the sample from the upstream site were not collected at the downstream site.

Sites on the East Fork Ruby River were also similar to each other in the evidence of impairment. The upstream site (EF-1) had a higher abundance of tolerant organisms than expected, as did its downstream correlate (EF-2). Where the upstream site had a single Plecoptera present in the sample, the downstream site did not yield any Plecoptera. Like the Middle Fork sites, both East Fork sites were appraised as slightly impaired, and partially supportive of designated uses.

Figure 2. Total bioassessment scores for twelve sites in the upper Ruby River watershed, June-July 2001. Sites are described in Table 1. The evaluations are based on the revised bioassessment metric battery (Bollman 1998).

Both Basin Creek sites yielded samples with fewer Plecoptera taxa and fewer sensitive taxa than expected. While the upper site (Basin 1) fully supported designated uses, conditions there supported a population of filter-feeders that was somewhat more abundant than expected. At the lower site (Basin 2), the proportion of filter-feeders was more appropriate, but the bioassessment score was depressed by the large proportion of tolerant organisms present in the sample. The lower site only partly supported uses. No single bioassessment metric performed especially poorly at the single site on Poison Creek (P-1); slight impairment was evident by slightly fewer Ephemeroptera taxa and Plecoptera taxa than expected, and a somewhat elevated proportion of tolerant organisms. Despite this evidence of slight impairment, the site fully supported designated uses.

Sites on Burnt Creek were both characterized by much larger proportions of tolerant animals than expected. Like many of the other sites visited for this study, these locations also supported low Plecoptera taxa richness compared to reference conditions.

The greatest difference between upstream and downstream bioassessment scores among the streams in this study occurred on Sweetwater Creek. Slight impairment of biotic health at the upper site (S-1) deteriorated to moderate impairment at the lower site (S-4). No Plecoptera taxa were collected at the upper site, fewer sensitive taxa were present than expected, and the site supported abundant tolerant animals. By contrast, site S-4 appeared to lack Ephemeroptera as well as Trichoptera taxa. Not a single sensitive organism was taken in the sample. While the abundance of tolerant organisms was appropriate, somewhat greater numbers of filter-feeders than expected were present.

Slight impairment of biotic health and partial support of designated uses was suggested by the bioassessment score calculated for the single site on Cottonwood Creek (C-3) studied here. Numbers of Ephemeroptera and Trichoptera taxa were lower than expected, and the proportion of tolerant organisms was higher than expected.

Aquatic invertebrate communities

Measures reflecting water quality performed positively at both sites on the Middle Fork Ruby River. Six mayfly taxa were collected at the uppermost site (MF-3), including the sensitive ephemerellid Drunella grandis. The modified biotic index value calculated for the sampled assemblage was 4.13, perhaps slightly elevated over expectations, but not as convincing a finding as the rich mayfly fauna. Eight mayfly taxa were taken at the lower site (MF-5), and the modified biotic index (3.89) was within expected limits for a foothill stream. At both sites, filter-feeders were more preponderant than expected, suggesting that fine particulates in suspension were plentiful. Tolerant taxa were more abundant than expected at both sites, however, in both cases, tolerant animals were nearly all elmid beetles Optioservus sp. and Zaitzevia sp., which together comprised 13% of the assemblages collected at each site. These animals are ubiquitous, and may be gregarious in habit, implying that collecting them in large numbers in a sample may be a fortuitous event, and not necessarily reflective of degraded habitat or water quality conditions. Ample numbers of "clingers" were present in both samples (14 at MF-3 and 15 at MF-5); this finding, together with rich caddisfly faunas, suggests that fine sediment deposition did not appreciably impair hard substrate habitats. At the lower site, only 3 stonefly taxa were present in the sample, and none were abundant, suggesting that large-scale features influence biota at the site. Such features might be streambank instability, loss of riparian

Table 5. Metric values, scores, and bioassessments for sites in the upper Ruby River watershed, June-July 2001. Sites are described in Table 1. Assessment classifications and use support designations in parentheses are tentative, since they are based on samples with inadequate numbers of organisms. The revised bioassessment metric battery (Bollman 1998) was used in the evaluation.

						SITES	ES					
	MF3	Basin l	Basin 2	P1	MF5	EF1	EF2	Burntl	Burnt2	Sı	\$4	C3
METRICS						METRIC VALUES	VALUES					
Ephemeroptera richness	9	9	9	2	∞	6	6	6	9	4		m
Plecoptera richness	5		_	2	3		0	-	2	0	1	3
Trichoptera richness	5	7	6	9	5	8	7	4	9	6	0	-
Number of sensitive taxa	2	2	3	2	2	m	3	m	2	_	0	2
Percent filterers	24	7		0	14	0	0	2	-	-	7	0
Percent tolerant taxa	14	2	25	8	14	31	15	44	57	26	3	25
						METRIC SCORES	SCORES					
Ephemeroptera richness	3	3	3	2	3	3	m	m	m	2	0	-
Plecoptera richness	3	1	_	2	2		0	-	2	0	_	2
Trichoptera richness	(C)	3	3	3	3	m	3	2	m	m	0	0
Number of sensitive taxa	7	2	2	2	2	2	2	2	2	-	0	2
Percent filterers	1	2	3	3	1	B	ю	m	n	m	7	3
Percent tolerant taxa	-	3	1	2	_	_	-	0	0	-	3	-
TOTAL SCORE (max=18)	13	14	13	14	12	13	12	11	13	10	9	6
PERCENT OF MAX.	72	(78)	(72)	(78)	(67)	(72)	29	(61)	72	99	33	(50)
Impairment classification*	SLI	(SLI)	(SLI)	(SLI)	(SLI)	(SLI)	SLI	(SLI)	SLI	SLI	MOD	(SLI)
USE SUPPORT †	PART	(FULL)	(PART)	(FULL)	(PART)	(PART)	PART	(PART)	PART	PART	PART	(PART)

* Classifications: (NON) non-impaired, (SLI) slightly impaired, (MOD) moderately impaired, (SEV) severely impaired. See Table 3a.

† Use support designations: See Table 3b.

canopy, channel widening; even landscape characteristics not related to human disturbance could be involved.

The benthic assemblages of Basin Creek suggest good water quality, since 6 mayfly taxa were found at both sites. The moderately elevated biotic index values (4.53 at Basin 1 and 4.65 at Basin 2), however, seem to indicate mild impairment of water quality. At the upstream site (Basin 1) water quality impairment is not evident in the taxonomic composition of the sampled assemblage. The dominant taxon, the midge Micropsectra sp., is assigned a high tolerance value, it's abundance in the sample may only indicate that a slack water habitat was included in the sampling effort. Since this midge comprised 22% of organisms in the sample, its high biotic index designation appears to have greatly influenced the calculated biotic index value. At the lower site, however, the high biotic index value appears to reflect thermal conditions; the dominant taxon here was the caddisfly Helicopsyche borealis, which prefers warmer water. This taxon comprised 20% of organisms collected at the site, and influenced the performance of the Percent Tolerant Taxa metric as well. At both sites, only a single stonefly taxon was collected; this was the sensitive periodid Kogotus sp. At both Basin Creek sites, high taxa richness (33 at Basin 1 and 34 at Basin 2), and high diversity and proportion of predatory taxa suggest good instream habitat with abundant niches. "Clinger" taxa and caddisfly taxa were also plentiful at both sites, implying that fine sediments did not appreciably alter hard substrate availability.

Low abundance of organisms in the sample collected at the Poison Creek site limit the observations and hypotheses that can be made based on its composition. However, 5 mayfly taxa were taken, suggesting that water quality was no more than mildly impaired, if it were impaired at all. Six caddisfly taxa and 12 "clinger" taxa were present in the sample, suggesting that fine sediment deposition was not much of a problem at the Poison Creek site visited.

Water quality indicators performed exceptionally well at both sites on the East Fork Ruby River; modified biotic index values (3.24 at EF-1 and 2.66 at EF-2) calculated for these sites were the lowest among sites studied. In addition, 9 mayfly taxa were present in each of the 2 samples analyzed. Both sites supported populations of the sensitive ephemerellid *Drunella doddsi*. Cold water of good quality is suggested. Rapid flow conditions may be indicated by the dearth of chironomids at both sites. Only 12 individuals in 4 taxa were collected at the upper site (EF-1), 3 individuals in 2 taxa were collected at the lower site (EF-2). Other factors, such as sampling bias may account for this finding, however. A rich collection of "clinger" taxa and caddisfly taxa suggest that fine sediments were not excessively deposited at either site. Low stonefly taxa richness, which appeared to be a ubiquitous condition among the sites in this study, was also apparent in the East Fork Ruby River.

Low abundance of organisms in the sample collected at the upper site on Burnt Creek (Burnt 1) precludes confidence in most observations that could be made concerning the site. One thing that can be noted, however, is that the 9 mayfly taxa taken there suggest that water quality was not impaired. The mayfly fauna included 2 sensitive taxa: *Drunella doddsi* and *Drunella spinifera*. A large number of "clinger" taxa were present in the sample, suggesting that substrates were unimpacted by fine sediment deposition. The number of organisms collected at the lower site (Burnt 2) was adequate for analysis. Mayfly taxa richness (6) suggests good water quality at this site, although

the modified biotic index value (4.92) was higher than expected. The dominant taxon in the sample was the ubiquitous tolerant mayfly *Baetis tricaudatus*, which comprised 55% of organisms. The abundance of this animal accounts for the high proportion of tolerant taxa, and the low score associated with that metric. Mild water quality impairment is probably indicated by these findings; the impairment could be due to nutrient and/or organic pollution. Fifteen "clinger" taxa and 6 caddisfly taxa were present in the sample, suggesting that cobble surfaces lacked fine sediment deposition.

Taxa richness (37) at the upper Sweetwater Creek site (S-1) was higher than at any other site visited for this study. Seven predator taxa were present. These findings suggest diverse instream habitats at this site. Benthic substrate is probably free of significant fine sediment deposition, since 9 caddis fly taxa were collected as well as 12 "clinger" taxa. Water quality impairment, possibly due to nutrients and/or organic pollution, appears to affect the benthic community composition, however. The modified biotic index value was 4.74, and only 4 mayfly taxa were present in the sample. Mild enrichment may have enhanced taxa richness; this phenomenon is sometimes called the "nutrient paradox." The downstream site on Sweetwater Creek received the lowest bioassessment score among the sites studied. Among the 17 taxa present in the sample, 10 taxa, representing 87% of organisms, were chironomids. A single mayfly taxon was collected, and the modified biotic index value (5.95) was the highest calculated for any site in this study. These findings suggest poor water quality, perhaps impaired by nutrient pollution and/or elevated water temperature. No caddis fly taxa were collected and there was a dearth of "clinger" taxa among the sampled organisms, suggesting that fine sediment deposition may obliterate some instream habitats. Further evidence of monotonous habitats can be found in the low taxa richness, and the presence of only 4 predator taxa

The sample taken at the site on Cottonwood Creek contained too few organisms for effective analysis. No richness metric performed well. It is unclear whether the low abundance of organisms represents actual conditions at the site or whether it could be attributed to sampling bias.

CONCLUSIONS

- For the sites located above Sweetwater Creek, there was a remarkably small range
 of bioassessment scores (67-78), and low stonefly taxa richness was common to
 all save the most upstream site in the drainage. These findings suggest that the
 slight impairment implied by these scores may be attributable to basin-wide
 geographic or geologic features of the landscape. Low stonefly taxa richness is
 often related to large-scale disturbances; whether or not the features are related to
 human disturbance or to natural processes is not apparent from these data alone.
- Low abundance of organisms in some samples prevented reliable bioassessment
 of some sites. It was unclear whether the low numbers of animals was due to
 conditions at the stream site or to sampling procedures. Low abundance of
 organisms at sites could be due to natural conditions, such as torrential flow or
 other factors, or to anthropogenic disturbances, such as degraded water and/or
 habitat quality.

- Middle Fork Ruby River sites and the upper site on Basin Creek (Basin 1)
 exhibited evidence of good water quality and unimpaired habitat. Fine organic
 matter in suspension appeared to be plentiful at these sites.
- Taxonomic composition of the benthic assemblage collected at the lower Basin Creek site (Basin 2) suggests warm water temperatures, but good habitat conditions.
- Low sample abundance makes observations about the benthic assemblage at Poison Creek uncertain. However, high mayfly taxa richness, and high caddis fly taxa richness seem to indicate good water quality and unimpaired habitat conditions at the studied site.
- Good habitat conditions and water quality are indicated by the composition of samples taken at both East Fork Ruby River sites.
- Low sample abundance makes observations about the benthic assemblage at the upper site on Burnt Creek (Burnt 1) uncertain. However, high mayfly taxa richness and ample caddisfly taxa seem to indicate good water quality and habitat conditions at that site. Mild water quality impairment may limit biotic health at the lower site on Burnt Creek (Burnt 2).
- Biotic health appears to deteriorate from the upper site (S-1) to the lower site (S-4) on Sweetwater Creek. The lower site appears to be impacted by sediment deposition and by degraded water quality, perhaps due to nutrient pollution or elevated water temperatures or both.
- Low abundance of organisms and poor performance of richness metrics preclude reliable observations about conditions at the Cottonwood Creek site.
- The relationship between habitat assessment scores and bioassessment scores for sites in this study is illustrated in Figure 3. The red curve in the center of the graph represents the hypothetical relationship between habitat quality and biotic health when habitat degradation is the sole source of impairment to benthic assemblage health (Barbour and Stribling 1991). The graph suggests that symbols falling to the right and below the red line represent sites where bioassessment scores were lower than expected given the assessed habitat quality. This implies that water quality may have been impaired at these sites.

Figure 3. The relationship of habitat assessment scores and bioassessment scores for 10 sites in the upper Ruby River watershed, June-July 2001. The red curve represents the hypothetical relationship between habitat scores and bioassessment scores if habitat quality solely determined biotic health.

LITERATURE CITED

Barbour, M.T., J.B. Stribling and J.R. Karr. 1995. Multimetric approach for establishing biocriteria and measuring biological condition. Pages 63-79 in W.S. Davis and T.P. Simon (editors) *Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making*. Lewis Publishers, Boca Raton.

Barbour, M.T. and J.B. Stribling. 1991. Use of habitat assessment in evaluating the biological integrity of stream communities. In: *Biological Criteria: Research and Regulation*. Proceedings of a Symposium, 12-13 December 1990. Arlington, Virginia. EPA-440-5-91-005. U.S. Environmental Protection Agency. Washington, DC.

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Unpublished Master's Thesis. University of Montana. Missoula, Montana.

Bukantis, R. 1997. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft, April 22, 1997. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Fore, L.S., J.R. Karr and L.L. Conquest. 1995. Statistical properties of an index of biological integrity used to evaluate water resources. *Canadian Journal of Fisheries and Aquatic Sciences*. 51: 1077-1087.

Fore, L.S., J.R. Karr and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. *Journal of the North American Benthological Society* 15(2): 212-231.

Gauch, H. G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press. Cambridge.

Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomologist*. 20: 31-39.

Hynes, H.B.N. 1970. The Ecology of Running Waters. The University of Toronto Press. Toronto.

Karr, J.R., and E. W. Chu. 1999. Restoring Life in Running Water: better biological monitoring. Island Press. Washington, DC.

Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound Lowland Streams, Washington, USA. Unpublished Master's Thesis. University of Washington, Seattle, Washington.

Omernik, J.M. 1997, Level III-Level IV ecoregions of Montana. Unpublished First Draft. August, 1997.

Patterson, A.J. 1996. The effect of recreation on biotic integrity of small streams in Grand Teton National Park. Unpublished Master's Thesis. University of Washington, Seattle, Washington.

Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M.Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic Macroinvertebrates and Fish. EPA 440-4-89-001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Rossano, E.M. 1995. Development of an index of biological integrity for Japanese streams (IBI-J). Unpublished Master's Thesis. University of Washington, Seattle, Washington.

Wisseman, R.W. 1992. Montana rapid bioassessment protocols. Benthic invertebrate studies, 1990. Montana Reference Streams study. Report to the Montana Department of Environmental Quality. Water Quality Bureau. Helena, Montana.

Woods, A.J., Omernik, J. M. Nesser, J.A., Shelden, J., and Azevedo, S. H. 1999. Ecoregions of Montana. (*Poster*). Reston, Virginia. USGS.

APPENDIX

Taxonomic data and summaries

The upper Ruby River watershed

May-June, 2001

Site Name: M F Ruby River Site ID: MF-3 6/12/01

Approx, percent of sample used: 20

Site ID: MF-3 6/12/01	Approx, percent of sample used: 20				
Taxon	Quant	ity	Percent	HB1	FFG
Sphaeriidae		1	0.33	8	CG
Acari		2	0.66	5	PA
Total Misc. Taxa		3	0.99		
Acentrella turbida		1	0.33	4	CG
Baetis tricaudatus		1	0.33	6	CG
Drunella grandis		3	0.99	2	CG
Ephemerella sp.		7	2.31	1	CG
Cinygmula sp.		26	8.58	4	SC
Epeorus longimanus		12	3.96	1	SC
Total Ephemeroptera		50	16.50		
Triznaka sp.		2	0.66	0	PR
Suwallia sp.		1	0.33	0	PR
Iesperoperla pacifica		2	0.66	2	PR
Isoperla sp.		5	1.65	2	PR
Kogotus sp.		1	0.33	2	PR
Total Plecoptera		11	3.63		
Amiocentrus aspilus		1	0.33	3	CG
Brachycentrus americanus		15	4.95	i	OM
Helicopsyche borealis		3	0.99	7	SC
Lepidostoma spsand case larvae		16	5.28	i	SH
Neophylax splendens		1	0.33	2	SC
Total Trichoptera		36	11.88		
Optioservus sp.		3	0.99	4	SC
Zaitzevia sp.		36	11.88	4	CG
Total Coleoptera		39	12.87	·····	
Ceratopogoninae		1	0.33	6	PR
Chelifera sp.		5	1.65	6	PR
Simulium sp.		22	7.26	6	CF
Antocha sp.		7	2.31	3	CG
Hexatoma sp.		11	3.63	2	PR
Total Diptera		46	15.18		
Diamesa sp.	1	1	0.33	5	CG
Eukiefferiella Brehmi Gr.		7	2.31	4	OM
Microtendipes sp.		í	0.33	6	CG
Orthocladius sp.		50	16.50	6	CG
Pagastia sp.		7	2.31	1	CG
^D arametriocnemus sp.		1	0.33	5	CG
Potthastia sp.		1	0.33	2	CG
Tanytarsus sp.		50	16.50	6	CF
Total Chironomidae		18	38.94	- 0	СГ
rotal Chitonomidae		03	100.00	 -	

Site Name: M F Ruby	v River	Si	te ID: MF-3 6/1	12/01		
TOTAL ABUNDANCI	E		303	CONTRIBUTION OF DOMINA	ANT TAXA	
Ephemeroptera + Pleco				TAXON	ABUNDANCE	
Trichoptera (EPT) abu	ndance		97	Orthocladius sp.	50	
				Tanytarsus sp.	50	
TOTAL NUMBER OF	TAXA		33	Zaitzevia sp	36	
Number EPT taxa			16	Cinygmula sp.	26	0.00
		_		Simulium sp.	22	
TAXONOMIC GROUI				SUBTOTAL 5 DOMINANTS	184	
GROUP		UNDAN PI		Lepidostoma spsand case larv		
Misc. Taxa	2	3	0 99	Brachycentrus americanus	15	
Odonata	0	0	0.00	Epeorus longimanus	12	
Ephemeroptera	6	50	16.50	Hexatoma sp.	11	
Plecoptera	5	11	3.63	Ephemerella sp.	7	
Hemiptera	0	0	0.00	TOTAL DOMINANTS	238	78.55
Megaloptera	0	0	0.00			
Trichoptera	5	36	11.88	a i Bharla h miara		
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	2	39	12.87	Hilsenhoff Biotic Index		4.13
Diptera	5	46	15.18			
Chironomidae	8	118	38.94			
RATIOS OF TAX GRO	OUP ABUNDAN	CES				
EPT/Chironomidae			0.82			
				DIVERSITY MEASURES Shannon H (loge)		2.39
FUNCTIONAL FEEDI	NG GROUP (FFC	EL COMPO	SETION	Shannon H (log2)		3.45
GROUP		UNDAN PI		Evenness		0.68
Predator	8	28	9 24	Simpson D		0.08
Parasite	ĭ	2	0.66	Shipson 2		0.00
Collector-gatherer	14	118	38.94			
Collector-filterer	2	72	23.76	COMMUNITY VOLTINISM A	NALYSIS	
Macrophyte-herbivore	0	0	0.00	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multivoltine	92	30.36
Scraper	5	45	14.85	Univoltine	155	50.99
Shreddei	1	16	5.28	Semivoltine	57	
				Senii vorane	5,	10.03
		0				
	3	,,	0.00	#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABU	NDANCES			Tolerant 4	43	14.19
Scraper/Collector-filter	er		0.63	Intolerant 1	1	0.33
Scraper/(Scraper + C.fi			0.38		187	61.72
			0.02			
Scraper/Collector-filter	er ilterer)	0 22 0	0.38	Tolerant 4 Intolerant 1	43 1	PERCEN 14.1 0.3

Site Name: Basin Creek

Site ID: B-1 6/20/01	Approx. percer	t of sample used:	60	
Taxon	Quantit	•		FFG
Sphaeriidae		2 0.7	71 8	CG
Acari		3 1.0)6 5	PA
Total Misc. Taxa		5 1.7	7	
Acentrella turbida		8 2.8	34 4	CG
Baetis tricaudatus		3 1.0	6	CG
Drunella spinifera		0.3	5 0	PR
Ephemerella sp.		2 0.7	'! 1	CG
Cinygmula sp.		6 2.1	3 4	SC
Epeorus longimanus		3 1.0	6 1	SC
Total Ephemeroptera	2	3 8.1	6	
Kogotus sp.		2 0.7	1 2	PR
Total Plecoptera		2 0.7		
Amiocentrus aspilus	3	7 13.1	2 3	CG
Brachycentrus americanus	20	5 9.2	2 1	OM
Micrasema sp.		5 1.7	7 1	MH
Helicopsyche borealis		0.3	5 7	SC
Ochrotrichia sp.		0.3	5 4	PH
Lepidostoma sppanel case larvae		0.3	5 1	SH
Dicosmoecus gilvipes		0.3	5 2	SC
Total Trichoptera	7:	2 25.5	3	
Oreodytes sp.		1 0.3	5 5	PR
Heterlimnius sp.		3 1.0	6 4	CG
Total Colcoptera		1 1.4	2	
Chelifera sp.		0.3	5 6	PR
Prosimulium sp.		0.3	5 3	CF
Simulium sp.	19	9 6.7	4 6	CF
l'abanidae		0.3	5 8	PR
Antocha sp.	10	3.5	5 3	CG
Hexatoma sp.	1:	2 4.2	6 2	PR
Tipula sp.		0.3	5 4	OM
Total Diptera	4:	5 15.9	6	
Cricotopus Bicinctus Gr.		2 0.7	1 7	CG
Eukiefferiella Gracei Gr.		1.0	6 4	OM
Micropsectra sp.	6	21.6	3 7	CG
Orthocladius sp.	52	2 18.4	4 6	CG
Pagastia sp.		3 2.8	4 1	CG
Parametriocnemus sp.		0.3	5 5	CG
Thienemannimyia Gr.] :	3 1.0	6 6	PR
Tvetenia sp.		0.3	5 5	CG
Total Chironomidae	13	46.4	5	
	Grand Total 282	2 100.0	0	

PERCENT
21.63
18.44
13.12
9.22
6.74
69.15
4.26
3.55
2.84
2.84
2.13
84.75
4 53
2.23
3 22
0.64
0.10
0.10
PERCENT
39.10
49.73
11.17
11.17
PERCENT
2.48
0.71
42.20
120.20

Site ID: B-2 6/20/01 Taxon	Approx. percent of		V V T 1 4	
	Quantity	Percent	HB1	FFG
Nematoda Sebaggidas		0.37	5	PA
Sphaerridae	4	1.50	8	CG
Acari	2	0.75	5	PA
Total Misc. Taxa	7	2.62		
Baetis tricaudatus	3	1.12	6	CG
Drimella grandis	1	0.37	2	CG
Ephemerella sp.	1	0.37	1	CG
Cinygmula sp.	26	9.74	4	SC
Epeorus longimanus	1	0.37	1	SC
Paraleptophlebia sp.	1	0.37	4	CG
Total Ephemeroptera	33	12.36		
Kogotus sp.	8	3.00	2	PR
Total Plecoptera	8	3.00		
Amiocentrus aspilus	15	5.62	3	CG
Brachycentrus americanus	1	0.37	1	OM
Micrasema sp.	7	2.62	1	MH
Ielicopsyche borealis	54	20.22	7	SC
Ochrotrichia sp.	1	0.37	4	PH
Lepidostoma spsand case larvae	2	0.75	1	SH
Rhyacophila Angelita Gr.	8	3 00	0	PR
Rhyacophila Brunnea Gr.	6	2.25	1	PR
Neophylax splendens	2	0.75	2	SC
Total Trichoptera	96	35.96		
Optioservus sp.	3	1.12	4	SC
Zaitzevia sp.	4	1.50	4	CG
Total Coleoptera	7	2.62		
Thelifera sp.	2	0.75	6	PR
Prosimulium sp.	1	0.37	3	CF
Simulium sp.	2	0.75	6	CF
Caloparyphus sp.	1	0.37	5	CG
Intocha sp.	24	8_99	3	CG
lexatoma sp.	14	5.24	2	PR
Total Diptera	44	16.48		-
Corynoneura sp.	1	0.37	7	CG
Cricotopus nostococladius	l	0.37	3	PH
Lukiefferiella Devonica Gr.	8	3.00	4	OM
ukiefferiella Gracei Gr.	4	1.50	4	OM
licropsectra sp.	36	13.48	7	CG
Orthocladius sp.	21	7.87	6	CG
Thienemanniella sp.		0.37	6	CG
		26.97	· · · · ·	
Total Chironomidae	72 Frand Total 267	26		5.97

Site Name: Basin Cree	k	S	ite ID: B-2 6/20/01	_		
TOTAL ABUNDANCE			267	CONTRIBUTION OF DOMIN	ANT TAXA	
Ephemeroptera + Plecop	otera +			TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abund			137	Helicopsyche borealis	54	20.22
				Micropsectra sp	36	13.48
TOTAL NUMBER OF T	ΓΑΧΑ		34	Cinygmula sp.	26	9.74
Number EPT taxa			16	Antocha sp.	24	8.99
				Orthocladius sp.	21	7.87
TAXONOMIC GROUP	COMPOSITIO	ON		SUBTOTAL 5 DOMINANTS	161	60.30
GROUP	#TAXA A	BUNDAN P	ERCENT	Amiocentrus aspilus	15	5.62
Misc. Taxa	3	7	2.62	Hexatoma sp.	14	5.24
Odonata	0	0	0.00	Kogotus sp.	8	3.00
Ephemeroptera	6	33	12.36	Rhyacophila Angelita Gr.	8	3.00
Plecoptera	1	8	3.00	Eukiefferiella Devonica Group	8	3
Hemiptera	0	0	0.00	TOTAL DOMINANTS	214	80 15
Megaloptera	0	0	0.00			
Trichoptera	9	96	35.96			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	2	7	2.62	Hilsenhoff Biotic Index		4.65
Diptera	6	44	16.48			
Chironomidae	7	72	26.97			
RATIOS OF TAX GROU	JP ABUNDAI	NCES				
EPT/Chironomidae			1 90			
				DIVERSITY MEASURES		
				Shannon H (loge)		2.41
FUNCTIONAL FEEDING	G GROUP (FI	G) COMPO	SITION	Shannon H (log2)		3.48
GROUP	#TAXA A	BUNDAN PI	ERCENT	Evenness		0.68
Predator	5	38	14 23	Simpson D		0.09
Parasite	2	3	1 12			
Collector-gatherer	13	113	42.32			
Collector-filterer	2	3	1.12	COMMUNITY VOLTINISM A	NALYSIS	
Macrophyte-herbivore	1	7	2.62	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	2	2	0.75	Multivoltine	60	22.47
Scraper	5	86	32.21	Univoltine	190	71.16
Shredder	1	2	0.75	Semivoltine	17	6.37
Xylophage	0	0	0.00			
Omnivore	3	13	4.87			
Unknown	0	0	0.00			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABUN	DANCES			Tolerant 6	66	24.72
Scraper/Collector-filterer	-		28.67	Intolerant 2	9	3.37
Scraper/(Scraper + C.filte	erer)		0.97	Clinger 18	165	61.80
Shredder/Total organisms	S		0.00	-		

Site ID: P-1 6/18/01	Appr	ox, percent of s	sample used: 100		
Taxon		Quantity	Percent	нві	FFG
Acentrella turbida		1	0.56	4	CG
Baetis tricaudatus		13	7.26	6	CG
Cinygmula sp.		71	39.66	4	SC
Epeorus longimanus		3	1.68	1	SC
Rhithrogena sp.		3	1.68	0	SC
Total Ephemeroptera		91	50.84		
Suwallia sp.		1	0.56	0	PR
Kogotus sp.		1	0.56	2	PR
Total Plecoptera		2	1.12		
Amiocentrus aspilus		1	0.56	3	CG
Brachycentrus americanus		20	11.17	1	OM
Micrasema sp.		5	2.79	ì	MH
Helicopsyche borealis		1	0.56	7	SC
Rhyacophila Angelita Gr.		2	1.12	0	PR
Rhyacophila Brunnea Gr.		5	2.79	1	PR
Total Trichoptera		34	18.99		
Chelifera sp.		7	3.91	6	PR
Antocha sp.		2	1.12	3	CG
Hexatoma sp.		22	12.29	2	PR
Ormosia sp.		1	0.56	3	CG
Tipula sp.		2	1.12	4	OM
Total Diptera		34	18.99		
Corynoneura sp.		1	0.56	7	CG
Cricotopus nostococladius		2	1 12	3	PH
Eukiefferiella Devonica Gr		l	0.56	4	OM
Eukiefferiella Gracei Gr		4	2.23	4	OM
Micropsectra sp		3	1.68	7	CG
Orthocladius sp.		3	1.68	6	CG
Pagastia sp		2	1 12	1	CG
Polypedilum sp.		1	0.56	6	OM
Tvetenia sp.		1	0.56	5	CG
Total Chironomidae		18	10.06		
	Grand Total	179	100.00		

Site Name: Poison Ci	reek	S	ite ID: P-1 6/	18/01			
TOTAL ABUNDANCI	Ξ		179	CONT	TRIBUTION OF DOM	MINANT TAXA	
Ephemeroptera + Pleco				TAXO	N	ABUNDANCE	PERCENT
Trichoptera (EPT) abur			127	Cinvg	mula sp.	71	39.66
1 , , ,					oma sp.	22	12.29
TOTAL NUMBER OF	TAXA		27	Brach	ycentrus americanus	20	11.17
Number EPT taxa			13	Baetis	ricaudatus	13	7.26
				Chelif	^l era sp.	7	3.91
TAXONOMIC GROUT	COMPOSE	ΠΟΝ		SUBT	OTAL 5 DOMINAN	TS 133	74.30
GROUP	#TAXA	ABUNDAN P	ERCENT	λ ficra	isema sp.	5	2.79
Misc Taxa	0	0	0.00		ophila Brunnea Gr.	5	2 79
Odonata	0	0	0.00	Eukie	fferiella Gracei Gr.	4	2.23
Ephemeroptera	5	91	50.84	Epeor	us longimanus	3	1.68
Plecoptera	2	2	1.12	Rhith	rogena sp.	3	1.68
Hemiptera	0	0	0.00	TOTA	L DOMINANTS	153	85.48
Megaloptera	0	0	0.00				
Trichoptera	6	34	18 99				
Lepidoptera	0	0	0.00	SAPR	OBIC INDICES		
Coleoptera	0	0	0.00	Hilser	nhoff Biotic Index		3.35
Diptera	5	34	18.99				
Chironomidae	9	18	10.06				
RATIOS OF TAX GRO	OUP ABUND	ANCES					
EPT/Chironomidae			7.06				
				DIVE	RSITY MEASURES		
					ion H (loge)		2.29
FUNCTIONAL FEEDI	NG GROUP	'		Shann	ion H (log2)		3.30
GROUP	#TAXA	ABUNDAN P	ERCENT	Evenn			0.69
Predator	6	38	21.23	Simps	son D		0.19
Parasite	0	0	0.00				
Collector-gatherer	10	28	15.64				
Collector-filterer	0	0	0.00	COM	MUNITY VOLTINIS		
Macrophyte-herbivore	1	5	2.79	TYPE		ABUNDANCE	PERCENT
Piercer-herbivore	1	2	1.12	Multi	voltine	24	13.41
Scraper	4	78	43.58	Univo	ltine	132	73.46
Shredder	0	0	0.00	Semiv	oltine	24	13.13
Xylophage	0	0	0.00				
Omnivore	5	28	15.64				
Unknown	0	0	0.00				
					#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABU				Tolera	ant	2 14	7.82
Scraper/Collector-filter			#D1V/0!	Intole	rant	2 3	1.68
Scraper/(Scraper + C.fi			1.00	Clinge	er	12 115	64.25
Shredder/Total organis	ms		0.00				

Site Name: Middle Fork Ruby River

Site ID: MF-5 6/12/01	Approx. per	ent of s	sample used: 100		
Taxon	Quan	tity	Percent	HBI	FFG
Tubificidae - immature		7	2.72	9	CG
Sphaeriidae		4	1.56	8	CG
Total Misc. Taxa		I1	4.28		
Acentrella turbida		34	13.23	4	CG
Baetis tricaudatus		2	0.78	6	CG
Drunella spinifera		1	0.39	0	PR
Ephemerella sp.		6	2.33	1	CG
Cinygmula sp.		16	6.23	4	SC
Epeorus albertae		6	2.33	1	SC
Epeorus longimanus		6	2.33	1	SC
Rhithrogena sp.		17	6.61	0_	SC
Total Ephemeroptera		88	34.24		
Suwallia sp.		3	1.17	0	PR
Hesperoperla pacifica		1	0.39	2	PR
Isoperla sp.		1	0.39	2	PR
Total Plecoptera		5	1.95	-	
Amiocentrus aspilus		1	0.39	3	CG
Brachycentrus americanus		5	1.95	1	OM
Helicopsyche borealis		1	0.39	7	SC
Lepidostoma spsand case larvae		6	2.33	1	SH
Neophylax sp.		1	0.39	3	SC
Total Trichoptera		14	5.45		
Optioservus sp.	——————————————————————————————————————	11	4.28	4	SC
Zaitzevia sp.		23	8.95	4	CG
Total Coleoptera		34	13.23		
Atherix sp.		13	5.06	4	PR
Chelifera sp.		4	1.56	6	PR
Simulium sp.		35	13.62	6	CF
Antocha sp.		4	1.56	3	CG
Hexatoma sp.		2	0.78	2	PR
Hesperoconopa sp.		15	5.84	1	UN
Total Diptera		73	28.40		
Cricotopus Bicinctus Gr.		2	0.78	7	CG
Eukiefferiella Brehmi Gr.		8	3.11	4	OM
Micropsectra sp.		17	6.61	7	CG
Orthocladius sp.		5	1.95	6	CG
Total Chironomidae		32	12.45		
	Grand Total	257	100,00		·

Site Name: Middle F	ork Ruby River	Si	te ID: MF-5 6/12	2/01		
TOTAL ABUNDANC	F		257	CONTRIBUTION OF DOMIN	JANT TAYA	
Ephemeroptera + Plece			237	TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abu			107	Simulium sp.	35	13.62
Thenoptera (El 1) and	ndance		107	Acentrella turbida	34	13.23
TOTAL NUMBER OF	ΤΑΥΛ		30	Zaitzevia sp.	23	8.95
Number EPT taxa	TAAA		16	Rhithrogena sp.	17	6.61
Traineer Er Frank			10	Micropsectra sp.	17	6.61
TAXONOMIC GROU	P COMPOSITION	J		SUBTOTAL 5 DOMINANTS		49.03
GROUP		UNDAN PI	FRCENT	Cinygmula sp.	16	6.23
Misc. Taxa	2	11	4.28	Hesperoconopa sp.	15	5.84
Odonata	0	0	0.00	Atherix sp.	13	5.06
Ephemeroptera	8	88	34.24	Optioservus sp.	11	4.28
Plecoptera	3	5	1.95	Eukiefferiella Brehmi Gr.	8	3.11
Hemiptera	0	0	0.00	TOTAL DOMINANTS	189	73.54
Megaloptera	0	0	0.00	TO THE BOWN THIS	107	73.54
Trichoptera	5	14	5.45			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	2	34	13.23	Hilsenhoff Biotic Index		3.89
Diptera	6	73	28.40	imsellion blode fidex		3.67
Chironomidae	4	32	12.45			
Chironomidae	7	32	12.43			
RATIOS OF TAX GRO	OUP ABUNDANG	CES				
EPT/Chironomidae			3.34			
				DIVERSITY MEASURES		
				Shannon H (loge)		2.58
FUNCTIONAL FEEDI	NG GROUP (FFC	i) COMPO	SITION	Shannon H (log2)		3.72
GROUP	#TAXA AB	UNDAN PI	ERCENT	Evenness		0.76
Predator	7	25	9 73	Simpson D		0.07
Parasite	0	0	0.00			
Collector-gatherer	11	105	40.86			
Collector-filterer	1	35	13.62	COMMUNITY VOLTINISM.	ANALYSIS	
Macrophyte-herbivore	0	0	0.00	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multivoltine	51	19.84
Scraper	7	58	22.57	Univoltine	164	63.81
Shredder	1	6	2.33	Semivoltine	42	16.34
Xylophage	0	0	0.00			
Omnivore	2	13	5.06			
Unknown	1	15	5 84			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABU				Tolerant	4 37	14.40
Scraper/Collector-filter			1.66	Intolerant	1 15	5.84
Scraper/(Scraper + C fi			0.62	Clinger 1	5 135	52.53
Shredder/Total organis	ms		0.01			

Site Name: E F Ruby River Site ID: EF-1 6/19/01

Approx. percent of sample used: 100

Site ID: EF-1 6/19/01	Approx	Approx. percent of sample used: 100			
Taxon	Q	uantity	Percent	HBI	FFG
Polycelis coronata		1	0.38	4	CG
Total Misc. Taxa		1	0.38		
Baetis tricaudatus		81	30.92	6	CG
Drunella coloradensis		6	2.29	0	CG
Drunella doddsi		3	1.15	0	CG
Drunella grandis		1	0.38	2	CG
Ephemerella mermis/infrequens		8	3.05	1	CG
Cinygmula sp.		42	16.03	4	SC
Epeorus longimanus		11	4.20	l	SC
Rhithrogena sp.	}	8	3.05	0	SC
Ameletus sp.		1	0.38	0	CG
Total Ephemeroptera		161	61.45		
Kogotus sp.		2	0.76	2	PR
Total Plecoptera		2	0.76		
Arctopsyche grandis		4	1.53	l	PR
Brachycentrus americanus		38	14.50	1	OM
Micrasema sp.		2	0.76	1	MH
Glossosoma sp.		2	0.76	1	SC
Lepidostoma spsand case larvae	İ	9	3.44	1	SH
A <i>patania</i> sp.		2	0.76	1	SC
Rhyacophila Angelita Gr.		3	1 15	0	PR
Rhyacophila Brunnea Gr.		4	1.53	1	PR
Total Trichoptera		64	24.43		
Antocha sp		6	2.29	3	CG
lexatoma sp.		15	5.73	2	PR
Tipula sp.		1	0.38	4	OM
Total Diptera		22	8.40		
Eukiefferiella Gracei Gr.		6	2.29	4	OM
Orthocladius sp.		3	1.15	6	CG
Pagastia sp.		1	0.38	1	CG
Tvetenia sp.		2	0.76	5	CG
Total Chironomidae		12	4.58		
	Grand Total	262 /	100.00		

TOTAL ADIDIDANO	NT.		262	CONTRIBUTION OF DOLON	4 N PT	
TOTAL ABUNDANC Ephemeroptera + Plea			262	CONTRIBUTION OF DOMINATAXON	ANT TAXA ABUNDANCE	DEDCEMT
Trichoptera (EPT) abi			227	Baetis tricaudatus	ABUNDANCE 81	
Trichopiera (EFT) abi	undance		221	Cmygmula sp.	42	
TOTAL NUMBER OF	E TAVA		26	Brachycentrus americanus	38	
Number EPT taxa	I IAAA		18	Hexatoma sp.		
rumoci El Tuaxa			10	Epeorus longimanus	11	
TAXONOMIC GROU	IP COMPOSITION	J		SUBTOTAL 5 DOMINANTS	187	
GROUP		, UNDAN PI	ERCENT	Lepidostoma spsand case larv		
Misc. Taxa	1	1	0.38	Ephemerella inermis infrequens		
Odonata	0	0	0.00	Rhithrogena sp.	8	
Ephemeroptera	9	161	61.45	Drunella coloradensis	6	
Plecoptera	1	2	0.76	Antocha sp.	6	
Hemiptera	()	0	0.00	TOTAL DOMINANTS	224	
Megaloptera	0	0	0.00			
Trichoptera	8	64	24.43			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	0	0	0.00	Hilsenhoff Biotic Index		3.24
Diptera	3	22	8.40			
Chironomidae	4	12	4.58			
RATIOS OF TAX GR	OUP ARUNDANG	TES.				
EPT/Chironomidae	OOI TIBOTOM	CLO	18.92			
				DIVERSITY MEASURES		
				Shannon H (loge)		2.40
FUNCTIONAL FEED	ING GROUP (FFC	G) COMPO	SITION	Shannon H (log2)		3.46
GROUP	#TAXA AB	UNDAN PI	ERCENT	Evenness		0.74
Predator	5	28	10.69	Simpson D		0.15
Parasite	0	0	0.00			
Collector-gatherer	11	113	43.13			
Collector-filterer	0	0	0.00	COMMUNTLY VOLTINISM A	NALYSIS	
Macrophyte-herbivore	1	2	0 76	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multivoltine	71	27.00
Scraper	5	65	24.81	Univoltine	146	55.63
Shredder	l	9	3.44	Semivoltine	46	17.37
Xylophage	0	0	0.00			
Omnivore	3	4 5	17.18			
Unknown	0	0	0.00			
burger or one				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABU				Tolerant 1	81	30.92
Scraper/Collector-filte		#	#DIV/0!	Intolerant 2	4	1.53
Scraper/(Scraper + C.f			1.00	Clinger 16	142	54.20
Shredder/Total organis	sms		0.01			

Site Name: E F Ruby River

Site ID: EF-2 6/16/01		Approx. percent of sample used: 67			
Taxon	(Quantity	Percent	HBI	FFG
Acentrella insignificans		40	11.63	4	CG
Baetis tricaudatus		50	14_53	6	CG
Drunella coloradensis		2	0.58	0	CG
Drunella doddsi		3	0.87	0	CG
Ephemerella infrequens		6	1.74	1	SH
Cinygmula sp.		50	14.53	4	SC
Epeorus longimanus		11	3.20	1	SC
Rhithrogena sp.		4	1 16	0	SC
Ameletus sp.		ŀ	0.29	0	CG
Total Ephemeroptera		167	48.55		
Brachycentrus americanus		72	20.93	1	OM
Micrasema sp.		1	0.29	1	MH
Lepidostoma spsand case larvae		35	10.17	1	SH
Ecclisomvia sp.		1	0.29	2	OM
Rhyacophila Brunnea Gr.		1	0.29	1	PR
Rhyacophila pellisa		2	0.58	1	PR
Neophylax occidentis		27	7.85	1	SC
Total Trichoptera		139	40.41		
Atherix sp.		2	0.58	4	PR
Ceratopogoninae		2	0.58	6	PR
Antocha sp.		4	1 16	3	CG
Hexatoma sp.		26	7.56	2	PR
Hesperoconopa sp.		1	0.29	1	UN
Total Diptera		35	10.17		
Eukiefferiella Brehmi Gr.		2	0.58	4	OM
Orthocladius sp.		1	0.29	6	CG
Total Chironomidae		3	0.87		
	Grand Total	344	100.00		

Site Name: E F Ruby Rive	r	Si	te ID: EF-2 6/	16/01		
TOTAL ABUNDANCE			344	CONTRIBUTION OF DOMI	NANT TAXA	
Ephemeroptera + Plecoptera	+		3-1-1	TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abundanc			306	Brachycentrus americanus	72	
Thenopiera (El 1) abundane			200	Baetis tricaudatus	50	
TOTAL NUMBER OF TAX	Δ		23	Cinvgmula sp.	50	
Number EPT taxa			16	Acentrella insignificans	40	
rumber ist I taka			. •	Lepidostoma spsand case la		
TAXONOMIC GROUP CO	MPOSITION	J		SUBTOTAL 5 DOMINANTS		
		UNDAN PI	ERCENT	Neophylax occidentis	27	7.85
Misc. Taxa	0	0	0.00	Hexatoma sp.	26	7.56
Odonata	0	0	0.00	Epeorus longimanus	11	3.20
Ephemeroptera	9	167	48.55	Ephemerella infrequens	6	
Plecoptera	0	0	0.00	Rhithrogena sp.	4	1.16
Hemiptera	0	0	0.00	TOTAL DOMINANTS	321	93.31
Megaloptera	0	0	0.00			
Trichoptera	7	139	40.41			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	0	0	0.00	Hilsenhoff Biotic Index		2.66
Diptera	5	35	10.17			
Chironomidae	2	3	0.87			
RATIOS OF TAX GROUP	A RI INIDA NO	oes.				
EPT/Chironomidae	ADOMDAM	C155	102.00			
Li i/emonomidae			102.00	DIVERSITY MEASURES		
				Shannon H (loge)		2.34
FUNCTIONAL FEEDING C	ROUP (FFC	T) COMPO	SITION	Shannon II (log2)		3.38
		UNDAN PI		Evenness		0.75
Predator	5	33	9.59	Simpson D		#D1V/0!
Parasite	0	0	0.00	ompoon 5		
Collector-gatherer	7	101	29.36			
Collector-filterer	0	0	0.00	COMMUNITY VOLTINISM	ANALYSIS	
Macrophyte-herbivore	1	1	0.29	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multīvoltine	70	
Scraper	4	92	26.74	Univoltine	201	58.36
Shredder	2	41	11.92	Semivoltine	74	
Xylophage	0	0	0.00			
Omnivore	3	75	21.80			
Unknown	1	1	0.29			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABUNDA	NCES			Tolerant	1 50	14.53
Scraper/Collector-filterer		#	#DIV/0!	Intolerant	3 29	8.43
Scraper/(Scraper + C.filterer	.)		1.00	Clinger	3 184	53.49
Shredder/Total organisms	-		0.03			•

Site Name: Burnt Creek

Site ID: B-1 6/19/01	prox. percent of s				
Taxon		Quantity	Percent	HBI	FFG
Baetis tricaudatus		62	43.36	6	CG
Drunella coloradensis		9	6.29	0	CG
Drunella doddsi	İ	10	6.99	0	CG
Drunella spinifera		1	0.70	0	PR
Ephemerella sp.		1	0.70	1	CG
Cinygmula sp.		-1	2.80	-4	SC
Epeorus longimanus		11	7.69	1	SC
Epeorus grandis		2	1.40	0	SC
Rhithrogena sp.		1	0.70	0	SC
Total Ephemeroptera		101	70.63		
Hesperoperla pacifica		3	2.10	2	PR
Total Plecoptera		3	2.10		
Micrasema sp.		1	0.70	1	MH
Glossosoma sp.		2	1.40	1	SC
Rhyacophila Angelita Gr.		1	0.70	0	PR
Rhyacophila Brunnea Gr.		12	8.39	1	PR
Total Trichoptera		16	11.19		
Dytiscidae - larvae		1	0.70	5	PR
Heterlimnius sp.		5	3.50	4	CG
Total Colcoptera		6	4.20		
Pericoma sp.		l	0.70	4	CG
Simulium sp.		3	2.10	6	CF
Total Diptera		4	2.80		
Corynoneura sp.		2	1.40	7	CG
Cricotopus (Isocladius) Gr.		6	4.20	7	CG
Orthocladius sp.		5	3.50	6	CG
Total Chironomidae		13	9.09		
	Grand Total	143	100.00		

TOTAL ABUNDANCE Ephemeroptera + Plecoptera + Trichoptera (EPT) abundance 120 Baetis tricaudatus Rhyacophila Brunnea Gr TOTAL NUMBER OF TAXA 11 Number EPT taxa 12 TAXON ABUNDANCE PER Rhyacophila Brunnea Gr 12 Epeorus longimanus 11 Drunella doddsi 10 Drunella coloradensis 9 TAXONOMIC GROUP COMPOSITION GROUP #TAXA ABUNDAN PERCENT Misc. Taxa 0 0 0 0 0 0 Heterlimnius sp. 5	43.36 8.39 7.69 6.99 6.29 72.73 4.20 3.50 3.50 2.80 2.10
Trichoptera (EPT) abundance 120 Baetis tricaudatus 62 Rhyacophila Brunnea Gr 12 TOTAL NUMBER OF TAXA 21 Epeorus longimanus 11 Number EPT taxa 14 Drunella doddsi 10 Drunella coloradensis 9 TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isocladius) Gr. 6	43.36 8.39 7.69 6.99 6.29 72.73 4.20 3.50 3.50 2.80 2.10
Rhyacophila Brumea Gr 12 TOTAL NUMBER OF TAXA 21 Epeorus longimanus 11 Number EPT taxa 14 Drunella doddsi 10 Drunella coloradensis 9 TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isocladius) Gr. 6	8.39 7.69 6.99 6.29 72.73 4.20 3.50 3.50 2.80 2.10
TOTAL NUMBER OF TAXA 21 Epeorus longimanus 11 Number EPT taxa 14 Drunella doddsi 10 Drunella coloradensis 9 TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isocladius) Gr. 6	7.69 6.99 6.29 72.73 4.20 3.50 3.50 2.80 2.10
Number EPT taxa 14 Drunella doddsi 10 Drunella coloradensis 9 TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isociadius) Gr. 6	6.99 6.29 72.73 4.20 3.50 3.50 2.80 2.10
TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isociadius) Gr. 6	6.29 72.73 4.20 3.50 3.50 2.80 2.10
TAXONOMIC GROUP COMPOSITION SUBTOTAL 5 DOMINANTS 104 GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isociadius) Gr. 6	72.73 4.20 3.50 3.50 2.80 2.10
GROUP #TAXA ABUNDAN PERCENT Cricotopus (Isocladius) Gr. 6	4.20 3.50 3.50 2.80 2.10
	3.50 3.50 2.80 2.10
Misc. Taxa 0 0.00 Heterlimnius sp. 5	3.50 2.80 2.10
	2.80 2.10
Odonata 0 0 0.00 Orthocladius sp. 5	2.10
Ephemeroptera 9 101 70.63 Cinygmula sp. 4	
Plecoptera 1 3 2.10 Hesperoperla pacifica 3	
Hemiptera 0 0 0.00 TOTAL DOMINANTS 127	88.81
Megaloptera 0 0.00	
Trichoptera 4 16 11.19	
Lepidoptera 0 0 0.00 SAPROBIC INDICES	
Coleoptera 2 6 4 20 Hilsenhoff Biotic Index	3.87
Diptera 2 4 2.80	
Chironomidae 3 13 9.09	
RATIOS OF TAX GROUP ABUNDANCES	
EPT/Chironomidae 9.23	
DIVERSITY MEASURES	
Shannon H (loge)	2.18
FUNCTIONAL FEEDING GROUP (FFG) COMPOSITION Shannon H (log2)	3.14
GROUP #TAXA ABUNDAN PERCENT Evenness	0:72
Predator 5 18 12.59 Simpson D	0.21
Parasite 0 0 0.00	
Collector-gatherer 9 101 70.63	
Collector-filterer 1 3 2.10 COMMUNITY VOLTINISM ANALYSIS	
Macrophyte-herbivore 1 1 0 70 TYPE ABUNDANCE PER	CENT
Piercer-herbivore 0 0 0.00 Multivoltine 56	39.34
Scraper 5 20 13.99 Univoltine 71	49.83
Shredder 0 0 0.00 Semivoltine 16	10.84
Xylophage 0 0 0.00	
Omnivore 0 0 0.00	
Unknown 0 0 0.00	
#TAXA ABUNDANCE PER	CENT
RATIOS OF FFG ABUNDANCES Tolerant 2 63	44.06
Scraper/Collector-filterer 6.67 Intolerant 1 2	1.40
Scraper/(Scraper + C.filterer) 0.87 Clinger 15 69	48.25
Shredder/Total organisms 0.00	

Site Name: Burnt Creek

Parametriocnemus sp.

Total Chironomidae

Stempellinella sp.

Site ID: B-2 6/19/01 Approx. percent of sample used: 50 Taxon Quantity Percent HBI **FFG** Polycelis coronata 0.61 CG 4 Total Misc. Taxa 2 0.6IBaetis tricaudatus 178 54.60 6 CG Ephemerella sp. 8 2.45 I CG Cinvgmula sp. 19 5.83 4 SC Epeorus longimanus 11 3.37 1 SC Rhithrogena sp. 2 0.61 0 SC Ameletus sp. 0.31 1 0 CGTotal Ephemeroptera 219 67.18 Hesperoperla pacifica 2 2 PR 0.61 Kogotus sp. 6 1.84 2 PR Total Plecoptera 8 2.45 Brachycentrus americanus 2 0.61 OM 1 Micrasema sp. 2 0.61 МН 1 Helicopsyche borealis Ì 0.31 7 SC Ochrotrichia sp. Ì 0.31 4 PH Rhyacophila Angelita Gr 1 0.31 0 PR Rhyacophila Brunnea Gr. 6 1.84 PR I Total Trichoptera 13 3.99 Oreodytes sp. 3 0.92 5 PR Cleptelmis sp. 1 0.31 4 CG Heterlimnius sp. 6 1.84 4 $\mathbf{C}\mathbf{G}$ Total Coleoptera 10 3.07 Ceratopogoninae 2 0.61 6 PR Chelifera sp. I 0.31 6 PR Pericoma sp. 2 0.61 4 CG Simulium sp. 4 1.23 6 CF Caloparyphus sp 1 0.31 5 CG3 Antocha sp. 5 1.53 CG Hexatoma sp. 0.31 2 PR1 Total Diptera 16 4.91 Cricotopus nostococladius 4 1.23 3 PH Eukiefferiella Devonica Gr. 24 7.36 4 OM Eukiefferiella Gracei Gr. ĺ 0.31 4 OM Microtendipes sp. 1 0.31 6 CG Orthocladius sp. 25 7.67 6 CG

Grand Total 326 100.00

2

1

58

0.61

0.31

17.79

5

4

CG

UN

Site Name: Burnt Cre	eek	Si	te ID: B-2 6/19/01	_		
TOTAL ABUNDANCE	₹		326	CONTRIBUTION OF DOM	INANT TAXA	
Ephemeroptera + Pleco				TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abur			240	Baetis tricaudatus	178	54.60
				Orthocladius sp.	25	7.67
TOTAL NUMBER OF	TAXA		32	Eukiefferiella Devonica Gr	24	7.36
Number EPT taxa			14	Cinvgmula sp.	19	5.83
				Epeorus longimanus	11	3.37
TAXONOMIC GROUP	P COMPOSITION	1		SUBTOTAL 5 DOMINANT	S 257	78.83
GROUP	#TAXA AB	UNDANPI	ERCENT	Ephemerella sp.	8	2.45
Misc. Taxa	1	2	0.61	Kogotus sp.	6	1.84
Odonata	0	0	0.00	Rhyacophila Brunnea Gr.	6	1.84
Ephemeroptera	6	219	67.18	Heterlimnius sp.	6	1.84
Plecoptera	2	8	2.45	Antocha sp.	5	1.53
Hemiptera	0	0	0.00	TOTAL DOMINANTS	288	88.34
Megaloptera	0	0	0.00			
Trichoptera	6	13	3.99			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	3	10	3.07	Hilsenhoff Biotic Index		4.92
Diptera	7	16	4 91			
Chironomidae	7	58	17.79			
RATIOS OF TAX GRO	DIP ABINDAN	CES				
EPT/Chironomidae	or important	0130	4 14			
21 17 CHIII OHOMINGAC				DIVERSITY MEASURES		
				Shannon H (loge)		1.61
FUNCTIONAL FEEDI	NG GROUP (FFC	G) COMPO	SITION	Shannon H (log2)		2.33
GROUP		UNDAN PI		Evenness		0.47
Predator	8	22	6 75	Simpson D		0.26
Parasite	0	0	0.00	r		
Collector-gatherer	12	232	71 17			
Collector-filterer	1	4	1 23	COMMUNITY VOLTINISM	1 ANALYSIS	
Macrophyte-herbivore	1	2	0.61	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	2	5	1.53	Multivoltine	180	55.14
Scraper	4	33	10.12	Univoltine	129	39.49
Shredder	0	0	0.00	Semivoltine	18	5.37
Xylophage	0	0	0.00			
Omnivore	3	27	8.28			
Unknown	1	1	0.31			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABU	NDANCES			Tolerant	6 185	56.75
Scraper/Collector-filter	er		8.25	Intolerant	2 10	3.07
Scraper/(Scraper + C.fi			0.89	Clinger	15 75	23.01
Shredder/Total organism			0.00			

Site Name: Sweetwater Creek

Site ID: S-1 6/1/01	Approx. percent of	comple used: 27		
Taxon	Quantity	Percent	нві	FFG
Nais sp.	- Quantity	0.33	8	CG
Tubificidae - immature	4	1.32	9	CG
Sphaeriidae	8	2.65	8	CG
Fossaria sp.	4	1.32	6	CG
Acari	2	0.66	5	PA
Total Misc. Taxa	19	6.29	<u>J</u>	FA
Acentrella insignificans	16	5.30	4	CG
Baetis tricaudatus	3	0.99	6	CG
Labiobaetis sp.	3	0.99	4	CG
Ephemerella inermis	2	0.66	1	CG
Total Ephemeroptera	24	7.95		
Brachycentrus americanus	3	0.99	1	OM
Micrasema sp.	1	0.33	1	МН
Glossosoma sp.	1	0.33	1	SC
Helicopsyche borealis	5	1.66	7	SC
Hydropsyche sp.	3	0.99	4	CF
Lepidostoma spsand case larvae	4	1.32	1	SH
Wormaldia sp.	1	0.33	3	CF
Rhyacophila Angelita Gr.	1	0.33	0	PR
Rhyacophila Brunnea Gr.	2	0.66	1	PR
Total Trichoptera	21	6.95	· ·	
Dytiscidae	1	0.33	5	PR
Optioservus sp.	30	9.93	4	SC
Zaitzevia sp.	11	3.64	4	CG
Total Coleoptera	42	13.91		
Ceratopogoninae	1	0.33	6	PR
Chelifera sp.	2	0.66	6	PR
Antocha sp.	12	3.97	3	CG
lexatoma sp.	2	0.66	2	PR
Limnophila sp.	1	0.33	6	MH
Total Diptera	18	5.96		
Corynoneura sp.		0.33	7	ĊĠ
Eukiefferiella Brehmi Gr.	J	0.33	4	OM
Eukiefferiella Pseudomontana Gr.	22	7.28	8	OM
Heterotrissocladius sp.	3	0.99	0	CG
Micropsectra sp.	10	3.31	7	CG
Orthocladius sp.	49	16.23	6	CG
Pagastia sp	40	13.25	1	CG
Parametriocnemus sp.	1	0.33	5	CG
Thenemanniella sp.	40	13.25	6	CG
Гhienemannimyia Gr.	8	2.65	6	PR
Tvetenia sp.	3	0.99	5	CG
Total Chironomidae	178	58.94		
	Grand Total 302	100.00		-

Site Name: Sweetwater	r Creek	Si	te ID: S-1 6/1/01	_		
TOTAL ABUNDANCE			302	CONTRIBUTION OF DOMIN	IANT TAXA	
Ephemeroptera + Plecop	tera +			TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abund			45	Orthocladius sp.	49	
F (/ / / / / / / / / / /				Pagastia sp.	40	
TOTAL NUMBER OF T	'AXA		37	Thienemanniella sp.	40	
Number EPT taxa			13	Optioservus sp.	30	9.93
				Eukiefferiella Pseudomontana	. C 22	
TAXONOMIC GROUP	COMPOSITION	1		SUBTOTAL 5 DOMINANTS	181	59.93
GROUP	#TAXA AB	UNDAN PI	ERCENT	Acentrella insignificans	16	5.30
Misc. Taxa	5	19	6.29	Antocha sp.	12	3.97
Odonata	0	0	0.00	Zaitzevia sp.	11	3.64
Ephemeroptera	4	24	7.95	Micropsectra sp.	10	3.31
Plecoptera	0	0	0.00	Sphaerridae	8	2.65
Hemiptera	0	0	0.00	TOTAL DOMINANTS	238	78.81
Megaloptera	0	0	0.00			
Trichoptera	9	21	6.95			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	3	42	13.91	Hilsenhoff Biotic Index		4 74
Diptera	5	18	5.96			
Chironomidae	11	178	58.94			
RATIOS OF TAX GROU	JP ABUNDANO	CES				
EPT/Chironomidae			0.25			
				DIVERSITY MEASURES		
				Shannon H (loge)		2.85
FUNCTIONAL FEEDING	G GROUP (FFC	G) COMPO	SITION	Shannon H (log2)		4 11
GROUP	#TAXA AB	UNDAN PE	ERCENT	Evenness		0.79
Predator	7	17	5.63	Simpson D		0.08
Parasite	1	2	0.66			
Collector-gatherer	18	211	69.87			
Collector-filterer	2	4	1.32	COMMUNITY VOLTINISM.	ANALYSIS	
Macrophyte-herbivore	2	2	0.66	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multivoltine	153	50.58
Scraper	3	36	11.92	Univoltine	99	32.70
Shredder	1	4	1.32	Semivoltine	51	16.72
Xylophage	0	0	0.00			
Omnivore	3	26	8.61			
Unknown	0	0	0.00			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABUN				Tolerant	8 77	25.50
Scraper/Collector-filterer			9.00		1 3	0.99
Scraper/(Scraper + C.filte			0.90	Clinger 1	2 72	23 84
Shredder/Total organisms	S		0.00			

Site Name: Sweetwater Creek

Site ID: S-4 6/1/01	Approx, percent of sample used; 100				
Taxon		Quantity	Percent	HB1	FFG
Eiseniella tetraedra		8	2.57	8	CG
Total Misc. Taxa		8	2.57		
Baetis tricaudatus		4	1.29	6	CG
Total Ephemeroptera	-	4	1.29		
Alloperla sp.		1	0.32	0	PR
Total Plecoptera		1	0.32		
Dytiscidae-larvae		3	0.96	5	PR
Optioservus sp.		1	0.32	4	SC
Total Colcoptera		4	1.29		
Simulium sp.		21	6.75	6	CF
Dicranota sp.		1	0.32	3	PR
Total Diptera		22	7.07		
Corynoneura sp.		16	5.14	7	CG
Cricotopus (Isocladius) Gr.		2	0.64	7	CG
Eukiefferiella Gracei Gr		2	0.64	4	OM
Micropsectra sp.		3	0.96	7	CG
Orthocladius sp.		210	67.52	6	CG
Pagastia sp.		1	0.32	1	CG
Parametriocnemus sp.		6	1.93	5	CG
Thienemanniella sp		4	1.29	6	CG
Thienemannimyia Gr.		5	1.61	6	PR
Tvetenia sp.		23	7.40	5	CG
Total Chironomidae		272	87.46		
	Grand Total	311	100.00		

Site Name: Sweetwate	er Creek	Si	te ID: S-4 6/1/01	_		
TOTAL ABUNDANCI	E		311	CONTRIBUTION OF DOMI	NANT TAXA	
Ephemeroptera + Plece	optera +			TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abu			5	Orthocladius sp.	210	67.52
• , , ,				Tvetenia sp	23	7.40
TOTAL NUMBER OF	TAXA		17	Simulium sp.	21	6.75
Number EPT taxa			2	Corynoneura sp.	16	5.14
				Eiseniella tetraedra	8	2.57
TAXONOMIC GROUP	P COMPOSITION	1		SUBTOTAL 5 DOMINANTS	3 278	89.39
GROUP	#TAXA AB	UNDAN P	ERCENT	Parametriocnemus sp.	6	1.93
Misc. Taxa	1	8	2.57	Thienemannimyia Gr	5	1.61
Odonata	0	0	0.00	Baetis tricaudatus	4	1.29
Ephemeroptera	1	4	1.29	Thienemanniella sp.	4	1.29
Plecoptera	1	1	0.32	Dytiscidae	3	0.96
Flemiptera	0	0	0.00	TOTAL DOMINANTS	300	96.47
Megaloptera	0	()	0.00			
Trichoptera	0	0	0.00			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	2	4	1.29	Hilsenhoff Biotic Index		5.95
Diptera	2	22	7.07			
Chironomidae	10	272	87.46			
RATIOS OF TAX GRO	DUP ABUNDAN	CES				
EPT/Chironomidae			0.02			
				DIVERSITY MEASURES		
				Shannon H (loge)		1.37
FUNCTIONAL FEEDI	(,		Shannon H (log2)		1.98
GROUP	#TAXA AB	UNDAN PI	ERCENT	Evenness		0.48
Predator	4	10	3.22	Simpson D		0.47
Parasite	0	0	0.00			
Collector-gatherer	10	277	89.07			
Collector-filterer	1	21	6.75	COMMUNITY VOLTINISM		
Macrophyte-herbivore	0	()	0.00	TYPE	ABUNDANCE I	PERCENT
Piercer-herbivore	0	()	0.00	Multivoltine	207	66.56
Scraper	1	1	0.32	Univoltine	100	32.15
Shredder	0	0	0.00	Semivoltine	4	1 29
Xylophage	0	0	0.00			
Omnivore	1	2	0.64			
Unknown	0	0	0.00			
				#TAXA	ABUNDANCE I	PERCENT
RATIOS OF FFG ABU				Tolerant	3 8	2.57
Scraper/Collector-filter			0.05	Intolerant	0 0	0.00
Scraper/(Scraper + C.fi			0.05	Clinger	3 24	7.72
Shredder/Total organis	ms		0.00			

Site Name: Cottonwood Creek Site 1D: C-3 5/31/01

Site ID: C-3 5/31/01	Approx. percent of sample used: 100				
Taxon		Quantity	Percent	HBI	FFG
Baetis tricaudatus		22	24.18	6	CG
Drunella coloradensis		13	14.29	0	CG
Cinygmula sp.		2	2.20	4	SC
Total Ephemeroptera		37	40.66		
Kathroperla perdita		1	1.10	0	PR
Sweltsa sp.		1	1 10	1	PR
Perlodidae-early instar		1	1.10	2	PR
Total Plecoptera		3	3.30		
Rhyacophila Brunnea Gr.		4	4.40	1	PR
Total Trichoptera		4	4.40		
Heterlimnius sp.		40	43.96	4	CG
Optioservus sp.		1	1.10	4	SC
Total Coleoptera		41	45.05		
Hesperoconopa sp.		5	5.49	1	UN
Total Diptera		5	5.49		
Parametriocnemus sp.		1	1.10	5	CG
Total Chironomidae		1	1.10		
	Grand Total	91	100.00		

Site Name: Cottonwood C	Creek	Si	te ID: C-3 5/31/01			
TOTAL ABUNDANCE			91	CONTRIBUTION OF DOM	NANT TAXA	
Ephemeroptera + Plecopter	a +			TAXON	ABUNDANCE	PERCENT
Trichoptera (EPT) abundan			44	Heterlimnius sp.	40	
Thenopieta (ETT) available			• •	Baetis tricaudatus	22	
TOTAL NUMBER OF TAX	ΧA		11	Drunella coloradensis	13	
Number EPT taxa			7	Hesperoconopa sp.	5	
				Rhyacophila Brunnea Gr.	4	
TAXONOMIC GROUP CO	MPOSITION	1		SUBTOTAL 5 DOMINANT	S 84	92.31
GROUP #T	AXA AB	UNDAN PI	ERCENT	Cinygmula sp.	2	2.20
Misc. Taxa	0	0	0.00	Kathroperla perdita	1	1.10
Odonata	0	0	0.00	Sweltsa sp.	1	1.10
Ephemeroptera	3	37	40.66	. 1		
Plecoptera	3	3	3.30			
Hemiptera	0	0	0.00	TOTAL DOMINANTS	88	96.70
Megaloptera	0	0	0.00			
Trichoptera	I	4	4.40			
Lepidoptera	0	0	0.00	SAPROBIC INDICES		
Coleoptera	2	41	45.05	Hilsenhoff Biotic Index		3.53
Diptera	I	5	5.49			
Chironomidae	I	1	1.10			
RATIOS OF TAX GROUP	ABUNDANG	CES				
EPT/Chironomidae			44.00			
				DIVERSITY MEASURES		
				Shannon H (loge)		1.61
FUNCTIONAL FEEDING	GROUP (FFC) COMPO	SITION	Shannon H (log2)		2.32
GROUP #T	AXA AB	UNDAN PI	ERCENT	Evenness		0.67
Predator	4	7	7.69	Simpson D		0.27
Parasite	0	0	0.00	•		
Collector-gatherer	4	76	83.52			
Collector-filterer	0	0	0.00	COMMUNITY VOLTINISM	ANALYSIS	
Macrophyte-herbivore	0	0	0.00	TYPE	ABUNDANCE	PERCENT
Piercer-herbivore	0	0	0.00	Multivoltine	17	18.96
Scraper	2	3	3.30	Univoltine	31	33.79
Shredder	0	0	0.00	Semivoltine	43	47.25
Xylophage	0	0	0.00			
Omnivore	0	0	0.00			
Unknown	1	5	5.49			
				#TAXA	ABUNDANCE	PERCENT
RATIOS OF FFG ABUNDA	ANCES			Tolerant	2 23	25.27
Scraper/Collector-filterer		į	#DIV/0!	Intolerant	2 6	6.59
Scraper/(Scraper + C.filtere	er)		1.00	Clinger	6 61	67.03
Shredder/Total organisms			0.00			

Waterbody(s):	Addendum Prepared by Alan Nixon 01/24/02

Burnt Creek

(Tributary to the Upper Ruby River)

Table 1. Benthic macroinvertebrate metric analysis.

Site:	Bur-1	Bur-2	
Date:	5/25/2001	5/25/2001	
Taxa Richness	21	32	
EPT Richness	14	14	
Biotic Index	3.870	4.9200	
% Dominant Taxon	43.36	54.6	
% Collectors (g+ff)	72.73	72.4	
% Scrapers and Shredders	13.99	10.12	
% Hydropsychinae of Trichoptera	0	0	
% EPT	83.9	73.6	

Table 2. Benthic macroinvertebrate data scoring using MDEQ's Intermountain Valley and Foothill Ecoregion criteria.

Site:	Bur-1	Bur-2			}
Taxa Richness	1	3			
EPT Richness	2	2			
Biotic Index	2	2			
% Dominant Taxon	1	0			
% Collectors (g+ff)	3	3			
% Scrapers and Shredders	1	1			<u> </u>
% Hydropsychinae of Trichoptera	0	0			† —
% EPT	3	3			
Totals	13	14	0	0	0
Scored percentages	54.2	58.3	0.0	0.0	0.0