Matjaž Mav (63130148)

April 10, 2020

1. Reduction of the N-queens problem to SAT

Code for the reduction of the N-queens to SAT problem is available in *src/reduce_nq_sat.py*.

2. Reduction of the dominanting set problem to SAT

Description

Input: Graph $G = \{V, E\}$ and integer k.

Problem: Does in graph G contains a dominanting set $\{DS\}$ of size $\geq k$?

Variables: x_i^r is true if node i is the r-th node of the dominanting set, where $1 \le i \le n, 1 \le r \le k$

and n = |V|.

Clauses:

1. Some node is the r-th node of the $\{DS\}$:

For each
$$r: x_1^r \vee x_2^r \vee ... \vee x_n^r$$

2. No node is both the r-th and s-th node of the $\{DS\}$:

For each
$$i, r < s$$
: $\neg x_i^r \lor \neg x_i^s$

3. Only one node can be the r-th node of the $\{DS\}$:

For each
$$r$$
, $i < j$: $\neg x_i^r \lor \neg x_j^r$

4. At least one of the *i*-th node or one of its neighbour nodes must be in the $\{DS\}$:

For each
$$i$$
 and its neighbours¹: $(x_i^1 \lor x_{adj(i,1)}^1 \lor x_{adj(i,2)}^1 \lor \dots \lor x_{adj(i,m)}^1) \lor \dots \lor (x_i^r \lor x_{adj(i,1)}^r \lor x_{adj(i,2)}^r \lor \dots \lor x_{adj(i,m)}^r)$

Code

Code for the reduction of the dominanting set to SAT problem is available in *src/reduce_ds_sat.py*.

¹Node adj(i, m) is the m-th neighbour of the i-th node.

Solutions

We have manually performed search with bisection and found the following sizes of the minimal dominanting sets:

- 1. *g1.col*: 40
- 2. *g2.col*: 3
- 3. *g3.col*: 15
- 4. g4.col: Not found any solution
- 5. *g5.col*: 5

3. Other

We have also implemented reduction of the vertex cover (*src/reduce_vc_sat.py*) and clique problem (*src/reduce_clique_sat.py*) the to SAT.