Data Visualization III

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris (https://archive.ics.uc

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a box plot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

In [1]:

```
import pandas as pd
import numpy as np
csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
col_names = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width','Species']
```

In [2]:

```
iris = pd.read_csv(csv_url, names = col_names)
```

Q1. How many features are there and what are their types?

```
In [3]:
```

```
column = len(list(iris))
column
```

Out[3]:

5

Clearly, dataset has 5 column indicating 5 features about the data

In [4]:

```
iris.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
#
     Column
                   Non-Null Count
                                    Dtype
- - -
     Sepal_Length 150 non-null
                                    float64
0
1
                   150 non-null
                                    float64
     Sepal_Width
2
     Petal_Length 150 non-null
                                    float64
     Petal Width
                   150 non-null
                                    float64
 3
     Species
                   150 non-null
                                    object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

Hence the dataset contains 4 numerical columns and 1 object column

In [6]:

```
np.unique(iris["Species"])
```

Out[6]:

```
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

Q2. Compute and display summary statistics for each feature available in the dataset.

In [13]:

```
iris.describe()
```

Out[13]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Q3. Data Visualization-Create a histogram for each feature in the dataset to illustrate the feature distributions. Plot each histogram.

In [8]:

```
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

In [10]:

```
fig, axes = plt.subplots(2, 2, figsize=(16, 8))

axes[0,0].set_title("Distribution of First Column")
axes[0,0].hist(iris["Sepal_Length"]);

axes[0,1].set_title("Distribution of Second Column")
axes[0,1].hist(iris["Sepal_Width"]);

axes[1,0].set_title("Distribution of Third Column")
axes[1,0].hist(iris["Petal_Length"]);

axes[1,1].set_title("Distribution of Fourth Column")
axes[1,1].hist(iris["Petal_Width"]);
```


Q4. Create a boxplot for each feature in the dataset. All of the boxplots should be combined into a single plot. Compare distributions and identify outliers.

In [12]:

```
data_to_plot = [iris["Sepal_Length"],iris["Sepal_Width"],iris["Petal_Length"],iris["Petal_W
sns.set_style("whitegrid")
# Creating a figure instance
fig = plt.figure(1, figsize=(12,8))
# Creating an axes instance
ax = fig.add_subplot(111)
# Creating the boxplot
bp = ax.boxplot(data_to_plot);
```


If we observe closely, for the box 2, interquartile distance is roughly around 0.75 hence the values lying beyond this range of (third quartile + interquartile distance) i.e. roughly around 4.05 will be considered as outliers. Similarly outliers with other boxplots can be found.