Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Greedy Algorithm

- 1 Climb The Hill
- 2 Revisit: Knapsack
- 3 Paradigm of The Greedy Algorithms
- 4 Cash Only
- 5 Interval Scheduling
- 6 Matroid Optimization
- 7 Set Cover
- 8 Submodularity-Based Optimization

Local search: Optimize the action within the observable local area.

Local search: Optimize the action within the observable local area.

- y increases by 1 if x = x + 1;
- y increases by 0.5 if x = x 1;

Local search: Optimize the action within the observable local area.

- y increases by 1 if x = x + 1;
- y increases by 0.5 if x = x 1;
- go with x = x + 1, if the **maximum** is desired.

Local search: Optimize the action within the observable local area.

- y increases by 1 if x = x + 1;
- y increases by 0.5 if x = x 1;
- go with x = x + 1, if the **maximum** is desired.

How far can you see?

- narrow (local) area:
 - less choice
 - less calculation
- wide (local) area
 - more choice
 - more calculation

Revisit: Knapsack

The Knapsack Problem: 0/1 Version

Given

- ullet a container ${\mathcal K}$ of capacity W
- n items $\{x_0, x_1, \dots, x_{n-1}\}$
 - integral weight $w_i > 0$
 - value $v_i > 0$

Fill the knapsack so as to maximize the total value.

The Knapsack Problem: Fractional Version

When filling the knapsack, you can take part of an item.

Consider an item of weight 2 and value 4. Taking 1/2 of the item results in

- weight 1
- value 2

The Knapsack Problem: Example

\mathcal{K} of capacity W = 10

- x_0 : $w_0 = 1$, $v_0 = 1$
- x_1 : $w_1 = 2$, $v_1 = 6$
- x_2 : $w_2 = 5$, $v_2 = 18$
- x_3 : $w_3 = 6$, $v_3 = 22$
- x_4 : $w_4 = 7$, $v_4 = 28$

The Knapsack Problem: Example

0/1 version

- x_0, x_1, x_4
- total weight: 10
- total value: 35

Fractional version

- $\frac{1}{2}$ x_3 , x_4
- total weight: 10
- total value: $28 + \frac{1}{2}22 = 39$

\mathcal{K} of capacity W = 10

- x_0 : $w_0 = 1$, $v_0 = 1$
- x_1 : $w_1 = 2$, $v_1 = 6$
- x_2 : $w_2 = 5$, $v_2 = 18$
- x_3 : $w_3 = 6$, $v_3 = 22$
- x_4 : $w_4 = 7$, $v_4 = 28$

Select the item of the maximum v_i/w_i

 \mathcal{K} of capacity W=10

•
$$x_0$$
: $w_0 = 1$, $v_0 = 1$

•
$$x_1$$
: $w_1 = 2$, $v_1 = 6$

•
$$x_2$$
: $w_2 = 5$, $v_2 = 18$

•
$$x_3$$
: $w_3 = 6$, $v_3 = 22$

•
$$x_4$$
: $w_4 = 7$, $v_4 = 28$

•
$$v_0/w_0 = 1/1 = 1$$

•
$$v_1/w_1 = 6/2 = 3$$

•
$$v_2/w_2 = 18/5 = 3.6$$

•
$$v_3/w_3 = 22/6 = 3.666$$

•
$$v_4/w_4 = 28/7 = 4$$

Select the item of the maximum v_i/w_i

- select x₄
 - capacity: 10 7 = 3
 - value: 28

 \mathcal{K} of capacity W=10

•
$$x_0$$
 : $w_0 = 1$, $v_0 = 1$

•
$$x_1 : w_1 = 2, v_1 = 6$$

•
$$x_2$$
: $w_2 = 5$, $v_2 = 18$

•
$$x_3$$
: $w_3 = 6$, $v_3 = 22$

•
$$x_4$$
: $w_4 = 7$, $v_4 = 28$

•
$$v_0/w_0 = 1/1 = 1$$

•
$$v_1/w_1 = 6/2 = 3$$

•
$$v_2/w_2 = 18/5 = 3.6$$

•
$$v_3/w_3 = 22/6 = 3.666$$

•
$$v_4/w_4 = 28/7 = 4$$

Select the item of the maximum v_i/w_i

- select x₄
 - capacity: 10 7 = 3
 - value: 28
- take $\frac{3}{w_3} = \frac{1}{2}$ of x_3
 - capacity: 3 3 = 0
 - value: $\frac{1}{2}22 = 11$

 $\mathcal K$ of capacity W=10

•
$$x_0$$
: $w_0 = 1$, $v_0 = 1$

•
$$x_1$$
: $w_1 = 2$, $v_1 = 6$

•
$$x_2$$
: $w_2 = 5$, $v_2 = 18$

•
$$x_3$$
: $w_3 = 6$, $v_3 = 22$

•
$$x_4$$
: $w_4 = 7$, $v_4 = 28$

•
$$v_0/w_0 = 1/1 = 1$$

•
$$v_1/w_1 = 6/2 = 3$$

•
$$v_2/w_2 = 18/5 = 3.6$$

•
$$v_3/w_3 = 22/6 = 3.666$$

•
$$v_4/w_4 = 28/7 = 4$$

Select the item of the maximum v_i/w_i

- select x₄
 - capacity: 10 7 = 3
 - value: 28
- take $\frac{3}{w_3} = \frac{1}{2}$ of x_3
 - capacity: 3 3 = 0
 - value: $\frac{1}{2}22 = 11$
- total value: 39

 ${\cal K}$ of capacity W=10

- x_0 : $w_0 = 1$, $v_0 = 1$
- x_1 : $w_1 = 2$, $v_1 = 6$
- x_2 : $w_2 = 5$, $v_2 = 18$
- x_3 : $w_3 = 6$, $v_3 = 22$
- x_4 : $w_4 = 7$, $v_4 = 28$
- $v_0/w_0 = 1/1 = 1$
- $v_1/w_1 = 6/2 = 3$
- $v_2/w_2 = 18/5 = 3.6$
- $v_3/w_3 = 22/6 = 3.666$
- $v_4/w_4 = 28/7 = 4$

Select the item of the maximum v_i/w_i

- select x₄
 - capacity: 10 7 = 3
 - value: 28
- take $\frac{3}{w_3} = \frac{1}{2}$ of x_3
 - capacity: 3 3 = 0
 - value: $\frac{1}{2}22 = 11$
- total value: 39

Is 39 optimal?

 ${\cal K}$ of capacity W=10

•
$$x_0$$
: $w_0 = 1$, $v_0 = 1$

•
$$x_1$$
: $w_1 = 2$, $v_1 = 6$

•
$$x_2$$
: $w_2 = 5$, $v_2 = 18$

•
$$x_3$$
: $w_3 = 6$, $v_3 = 22$

•
$$x_4$$
: $w_4 = 7$, $v_4 = 28$

•
$$v_0/w_0 = 1/1 = 1$$

•
$$v_1/w_1 = 6/2 = 3$$

•
$$v_2/w_2 = 18/5 = 3.6$$

•
$$v_3/w_3 = 22/6 = 3.666$$

•
$$v_4/w_4 = 28/7 = 4$$

Item x_i can be divided into w_i pieces. Thus each piece is of weight 1, and value v_i/w_i .

Item x_i can be divided into w_i pieces. Thus each piece is of weight 1, and value v_i/w_i .

Item x_i can be divided into w_i pieces. Thus each piece is of weight 1, and value v_i/w_i .

Paradigm of The Greedy Algorithms

Greedy Algorithms

Algorithm is greedy if

- it builds up a solution in small steps.
- it optimizes the action at each step according to the local observation.

Greedy Algorithms

Algorithm is **greedy** if

- it builds up a solution in small steps.
- it optimizes the action at each step according to the local observation.

The optimality of the greedy algorithm is shown by

- in every step, it is **not worse** than **any other** algorithm.
- every algorithm can be gradually transformed to the greedy one without loosing any quality.

Cash Only

Pay with Cash

Pay $B \in \mathbb{Z}^+$ with coins of value $v_0 > v_1 > \ldots > v_{n-1}$, where $v_i \in \mathbb{Z}^+$ and $v_{n-1} = 1$. Try to minimize the number of coins.

For i = 0 to n - 1

- find max n_i such that $n_i \cdot v_i \leq B$
- $B = B n_i \cdot v_i$

Pay with n_i coins of value v_i .

Interval Scheduling

Scheduling

Given jobs

- Job 1: must be started at time 1 and finished at time 3
- Job 2: must be started at time 2 and finished at time 5
- Job 3: must be started at time 4 and finished at time 6

Restriction: two jobs can not be processed at the same time.

Problem: Try to process as many jobs as possible.

- All three jobs: overlap!
- Job 1 and Job 2: overlap!
- Job 2 and Job 3: overlap!
- Job 1 and Job 3: great!

Interval Scheduling

Problem: Find the largest subset of the given intervals, such that none two of them overlap.

Interval Scheduling: Greedy

Initialize a set as empty

$$S = \emptyset$$

- Select the intervals one by one according to a specific rule, and put it into S.
- Stop when no interval can be added.

The First Try

Rule: select the interval (among the remaining ones) that starts earliest, but not overlapping the already selected ones.

 \longrightarrow time

The First Try

The First Try

Rule: select the interval (among the remaining ones) that starts earliest, but not overlapping the already selected ones.

48 / 159

The Second Try

Rule: select the interval (among the remaining ones) that is the shortest, but not overlapping the already selected ones.

The Second Try

The Second Try

ect the interval ewest, but not	` -	_	,
		L	
			──── time

1			
1			

Rule: select the interval (among the remaining ones) that ends first, but not overlapping the already selected ones.

Idea: after processing a job, we want as much remaining time as possible, and thus we have more chance to process the other jobs.

Rule: select the interval (among the remaining ones) that ends first, but not overlapping the already selected ones.

time

	L				
_					time

			→ time

OPT	L		
			→ tin

		→ time

The Fourth Try: Analysis

Followed the restriction: when a job is selected, it has been checked that the new added job overlaps with none of the previously added ones.

The Fourth Try: Analysis

Followed the restriction: when a job is selected, it has been checked that the new added job overlaps with none of the previously added ones.

- *S*: the set of intervals selected according to the rule
 - select the interval (among the remaining ones) that ends first, but not overlapping the already selected ones.

The Fourth Try: Analysis

Followed the restriction: when a job is selected, it has been checked that the new added job overlaps with none of the previously added ones.

- S: the set of intervals selected according to the rule
 - select the interval (among the remaining ones) that ends first, but not overlapping the already selected ones.
- P: the optimal solution
 - one of the largest set of non-overlapping intervals.

The Fourth Try: Analysis

Followed the restriction: when a job is selected, it has been checked that the new added job overlaps with none of the previously added ones.

- S: the set of intervals selected according to the rule
 - select the interval (among the remaining ones) that ends first, but not overlapping the already selected ones.
- P: the optimal solution
 - one of the largest set of non-overlapping intervals.
- we are going to show: |S| = |P|.

$$S$$
 S_1 S_2 \cdots S_k P P_1 P_2 \cdots P_k P_{k+1} \cdots P_m

Intervals in S and P are sorted according to the ending time.

$$S$$
 S_1 S_2 \cdots S_k P P_1 P_2 \cdots P_k P_{k+1} \cdots P_m

 S_1 ends before or at the same time with P_1

$$S$$
 S_1 S_2 \cdots S_k P P_2 P P_k P_{k+1} P P

 S_1 ends before or at the same time with P_1

$$S$$
 S_1 S_2 \cdots S_k P P_{k+1} P P_m

- P_2 starts after S_1 ends
- S_2 ends before or at the same time with P_2

$$S$$
 S_1 S_2 \cdots S_k P S_1 S_2 \cdots P_k P_{k+1} P_k

- P_2 starts after S_1 ends
- S_2 ends before or at the same time with P_2

- P_k starts after S_{k-1} ends
- S_k ends before or at the same time with P_k

$$S$$
 S_1 S_2 \cdots S_k P_{k+1} \cdots P_m

- P_k starts after S_{k-1} ends
- S_k ends before or at the same time with P_k

$$S$$
 S_1 S_2 \cdots S_k P_{k+1} \cdots P_m

- P_{k+1} starts after S_k ends
- k = m; otherwise, S can be extended.

$$S$$
 S_1 S_2 \cdots S_k P S_1 S_2 \cdots S_k

- P_{k+1} starts after S_k ends
- k = m; otherwise, S can be extended.

Lemma: For $1 \le i \le k+1$, P_i starts after the ending time of S_{i-1} .

- Base case: P_2 starts after the ending time of S_1 .
 - P_2 starts after the ending time of P_1
 - P_1 ends after the ending time of S_1
- **Assumption**: for $i \ge 1$, P_i starts after the ending time of S_{i-1} .
- P_{i+1} starts after the ending time of S_i .

Lemma: For $1 \le i \le k + 1$, P_i starts after the ending time of S_{i-1} .

- Base case: P_2 starts after the ending time of S_1 .
 - P_2 starts after the ending time of P_1
 - P_1 ends after the ending time of S_1
- **Assumption**: for $i \ge 1$, P_i starts after the ending time of S_{i-1} .
- P_{i+1} starts after the ending time of S_i .
 - P_{i+1} starts after the ending time of P_i .

Lemma: For $1 \le i \le k+1$, P_i starts after the ending time of S_{i-1} .

- Base case: P_2 starts after the ending time of S_1 .
 - P_2 starts after the ending time of P_1
 - P_1 ends after the ending time of S_1
- **Assumption**: for $i \ge 1$, P_i starts after the ending time of S_{i-1} .
- P_{i+1} starts after the ending time of S_i .
 - P_{i+1} starts after the ending time of P_i .
 - P_i starts after the ending time of S_{i-1} .

Lemma: For $1 \le i \le k + 1$, P_i starts after the ending time of S_{i-1} .

- Base case: P_2 starts after the ending time of S_1 .
 - P_2 starts after the ending time of P_1
 - P_1 ends after the ending time of S_1
- **Assumption**: for $i \ge 1$, P_i starts after the ending time of S_{i-1} .
- P_{i+1} starts after the ending time of S_i .
 - P_{i+1} starts after the ending time of P_i .
 - P_i starts after the ending time of S_{i-1} .
 - P_i must ends after or at the same time with S_i ; otherwise, P_i is added to S, following S_{i-1} .

Lemma: For $1 \le i \le k + 1$, P_i starts after the ending time of S_{i-1} .

- Base case: P_2 starts after the ending time of S_1 .
 - P_2 starts after the ending time of P_1
 - P_1 ends after the ending time of S_1
- **Assumption**: for $i \ge 1$, P_i starts after the ending time of S_{i-1} .
- P_{i+1} starts after the ending time of S_i .
 - P_{i+1} starts after the ending time of P_i .
 - P_i starts after the ending time of S_{i-1} .
 - P_i must ends after or at the same time with S_i ; otherwise, P_i is added to S, following S_{i-1} .
 - P_{i+1} starts after the ending time of S_i .

Lemma: For $1 \le i \le k + 1$, P_i starts after the ending time of S_{i-1} .

Theorem: k = m.

If k < m, then P_{k+1} starts after the ending time of S_k . Thus P_{k+1} can be added to S. **Contradiction!**

The Fourth Try: $O(n \log n)$

```
Algorithm: IntervalSchedule(1)
S = \emptyset:
e = -1:
Sort intervals in I in the ascending order of the ending
 time;
for i = 0 to |I| - 1 do
     if I[i] starts after e then
           add I[i] to S;

e = \text{ending time of } I[i];
     end
end
Return S:
```

Complexity: $O(n \log n) + O(n) = O(n \log n)$

Matroid Optimization

Matroid: $M(S, \mathcal{I})$, where

- *S* is a finite and nonempty set (of elements)
- $\mathcal{I} \subseteq 2^S$ is hereditary:

$$B \in \mathcal{I}$$
, and $A \subseteq B \Rightarrow A \in \mathcal{I}$

M satisfies the exchange property:

$$A, B \in \mathcal{I}$$
, and $|A| < |B| \Rightarrow \exists x \in B \setminus A, A \cup \{x\} \in \mathcal{I}$

Theorem: For $A, B \in \mathcal{I}$, if A and B are maximal (within \mathcal{I}), then |A| = |B|.

Theorem: For $A, B \in \mathcal{I}$, if A and B are maximal (within \mathcal{I}), then |A| = |B|.

A subset $A \subseteq 2^S$ is maximal in $\mathcal{I} \Leftrightarrow$

$$\forall B \in \mathcal{I} \setminus \{A\}, \ s.t. \ A \setminus B \neq \emptyset$$

$$\mathcal{I} = \{[0,1,2],[0,1],[1,2],[0,2],[0],[1],[2],\emptyset\}$$

- [0] is not maximal: $[0] \setminus [0,1] = \emptyset$
- [1,2] is not maximal: $[1,2] \setminus [0,1,2] = \emptyset$
- [0, 1, 2] is maximal

Theorem: Given $M(S, \mathcal{I})$, for $A, B \in \mathcal{I}$, if A and B are maximal (within \mathcal{I}), then |A| = |B|.

Proof: Suppose to the contrary that there are

- A is maximal
- B is maximal
- |A| < |B|

Theorem: Given $M(S, \mathcal{I})$, for $A, B \in \mathcal{I}$, if A and B are maximal (within \mathcal{I}), then |A| = |B|.

Proof: Suppose to the contrary that there are

- A is maximal
- B is maximal
- |A| < |B|
- M satisfies the exchange property ⇒

$$\exists x \in B \setminus A, \ s.t. \ A \cup \{x\} \in \mathcal{I}$$

Theorem: Given $M(S, \mathcal{I})$, for $A, B \in \mathcal{I}$, if A and B are maximal (within \mathcal{I}), then |A| = |B|.

Proof: Suppose to the contrary that there are

- A is maximal
- B is maximal
- |A| < |B|
- M satisfies the exchange property ⇒

$$\exists x \in B \setminus A, \ s.t. \ A \cup \{x\} \in \mathcal{I}$$

- A is not maximal
- Controdiction!

Weighted Matroid

Weighted Matroid: $M(S, \mathcal{I})$ is associated with a weighted function w

- $w(x) > 0, \forall x \in S$
- $w(A) = \sum_{x \in A} w(x), \ \forall A \subseteq S$

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S, \mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S, \mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S,\mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

W

- w(0) = 2
- w(1) = 1
- w(2) = 3

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S, \mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

- $\begin{array}{c|cccc}
 S & \boxed{0} & \boxed{1} & \boxed{2} \\
 w & 2 & 1 & 3
 \end{array}$
- \mathcal{I} 0 1
 - 0 2
 - 0 1 2

- w(0) = 2
- w(1) = 1
- w(2) = 3
- w([0,1]) = 3
- w([1,2]) = 4
- w([0,2]) = 5

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S, \mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

$$\begin{array}{c|cccc}
S & \boxed{0} & \boxed{1} & \boxed{2} \\
w & 2 & 1 & 3
\end{array}$$

•
$$w(0) = 2$$

•
$$w(1) = 1$$

•
$$w(2) = 3$$

•
$$w([0,1]) = 3$$

•
$$w([1,2]) = 4$$

•
$$w([0,2]) = 5$$

•
$$A = [0, 2]$$

Maximum-Weight Subset

Problem: Given a weighted matroid $M(S, \mathcal{I})$, with weight function w, find the subset $A \in \mathcal{I}$ such that w(A) is maximized.

$$\begin{array}{c|cccc}
S & \boxed{0} & \boxed{1} & \boxed{2} \\
w & 2 & 1 & 3
\end{array}$$

•
$$w(0) = 2$$

•
$$w(1) = 1$$

•
$$w(2) = 3$$

•
$$w([0,1]) = 3$$

•
$$w([1,2]) = 4$$

•
$$w([0,2]) = 5$$

•
$$A = [0, 2]$$

• A is maximal.

Lemma: Given $M(S,\mathcal{I})$ and w, sort S in the decreasing order of w[s]. Let x be the first element in S such that $\{x\} \in \mathcal{I}$, then $\exists A \in \mathcal{I}$, s.t.

- $x \in A$, and
- w(A) is maximized

Lemma: Given $M(S,\mathcal{I})$ and w, sort S in the decreasing order of w[s]. Let x be the first element in S such that $\{x\} \in \mathcal{I}$, then $\exists A \in \mathcal{I}$, s.t.

- $x \in A$, and
- w(A) is maximized

Assume x = S[i]. Thus

- $\{S[i]\} \in \mathcal{I}$
- $\{S[j]\} \notin \mathcal{I}, \forall j < i$

Lemma: Given $M(S,\mathcal{I})$ and w, sort S in the decreasing order of w[s]. Let x be the first element in S such that $\{x\} \in \mathcal{I}$, then $\exists A \in \mathcal{I}$, s.t.

- $x \in A$, and
- w(A) is maximized

Proof: If $\{S[i]\} \notin \mathcal{I}, \ \forall i$, then $\mathcal{I} = \{\emptyset\}$. Thus $A = \emptyset$.

When $\exists i, \{x\} = \{S[i]\} \in \mathcal{I}$ and $\{S[j]\} \notin \mathcal{I}, \forall j < i$, assume there is nonempty $B \in \mathcal{I}$, such that

- w(B) is maximized
- x ∉ B

Then $w(y) \le w(x), \forall y \in B$. Otherwise

- y = S[j], j < i
- $\{y\} = \{S[j]\} \in \mathcal{I}$
- Contradiction.

Then $w(y) \leq w(x), \forall y \in B$. Otherwise

- y = S[j], j < i
- $\{y\} = \{S[j]\} \in \mathcal{I}$
- Contradiction.

Now, we try to construct A, such that $x \in A$ and w(A) = w(B). As M satisfies the exchange property, we can do

- $A = \{x\}$
- while |A| < |B|
 - let $y \in B \setminus A$
 - $A = A \cup \{y\}$
- let z be the last element in $B \setminus A$

Then $w(y) \leq w(x), \forall y \in B$. Otherwise

- y = S[j], j < i
- $\{y\} = \{S[j]\} \in \mathcal{I}$
- Contradiction.

Now, we try to construct A, such that $x \in A$ and w(A) = w(B). As M satisfies the exchange property, we can do

- $A = \{x\}$
- while |A| < |B|
 - let $y \in B \setminus A$
 - $A = A \cup \{y\}$
- let z be the last element in $B \setminus A$
- $w(A) = w(B) w(z) + w(x) \ge w(B)$

Lemma: Given $M(S,\mathcal{I})$, if $x \in S$, $A \in \mathcal{I}$ and $A \cup \{x\} \in \mathcal{I}$, then $\{x\} \in \mathcal{I}$.

Corollary: If $\{x\} \notin \mathcal{I}$, then

$$x \notin A, \forall A \in \mathcal{I}$$

```
Algorithm: Greedy(M, w)
A = \emptyset;
Sort S in the decreasing order of w[s];
for i = 0 to |S| - 1 do
| \quad \text{if } A \cup \{S[i]\} \in \mathcal{I} \text{ then add } S[i] \text{ to } A;
end
Return A;
```

$$S[0]$$
 $S[1]$ $S[2]$ \cdots $S[k]$ \cdots

```
Algorithm: Greedy(M, w)
A = \emptyset;
Sort S in the decreasing order of w[s];
for i = 0 to |S| - 1 do
| \quad \text{if } A \cup \{S[i]\} \in \mathcal{I} \text{ then add } S[i] \text{ to } A;
end
Return A;
```

$$S[0]$$
 $S[1]$ $S[2]$ \cdots $S[k]$ \cdots

 $\{S[0]\} \not\in \mathcal{I}$

```
Algorithm: Greedy(M, w)
A = \emptyset;
Sort S in the decreasing order of w[s];
for i = 0 to |S| - 1 do
| \quad \text{if } A \cup \{S[i]\} \in \mathcal{I} \text{ then add } S[i] \text{ to } A;
end
Return A;
```

```
Algorithm: Greedy(M, w)
A = \emptyset;
Sort S in the decreasing order of w[s];
for i = 0 to |S| - 1 do
| \quad \text{if } A \cup \{S[i]\} \in \mathcal{I} \text{ then add } S[i] \text{ to } A;
end
Return A;
```

$$S[0]$$
 $S[1]$ $S[2]$ \cdots $S[k]$ \cdots

$$\{S[2]\} \in \mathcal{I}$$

$$S[0]$$
 $S[1]$ $S[2]$ \cdots $S[k]$ \cdots

$$\{S[2]\} \in \mathcal{I}$$

•
$$S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$$

- $S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$
- $\bullet \ \mathcal{I}' = \{B \subseteq S \setminus \{x\} : B \cup \{x\} \in \mathcal{I}\}\$

- $S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$
- $\bullet \ \mathcal{I}' = \{ B \subseteq S \setminus \{x\} : B \cup \{x\} \in \mathcal{I} \}$
- $A' = \text{Greedy}(M'(S', \mathcal{I}'), w)$

- $S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$
- $\bullet \ \mathcal{I}' = \{ B \subseteq S \setminus \{x\} : B \cup \{x\} \in \mathcal{I} \}$
- $A' = \text{Greedy}(M'(S', \mathcal{I}'), w)$
- $A = \{x\} \cup A'$

- $S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$
- $\mathcal{I}' = \{B \subseteq S \setminus \{x\} : B \cup \{x\} \in \mathcal{I}\}$
- $A' = \text{Greedy}(M'(S', \mathcal{I}'), w)$
- $A = \{x\} \cup A'$
- A' is optimal to $M' \Rightarrow A$ is optimal to M

- $S' = \{ y \in S : \{ x, y \} \in \mathcal{I} \}$
- $\bullet \ \mathcal{I}' = \{ B \subseteq S \setminus \{x\} : B \cup \{x\} \in \mathcal{I} \}$
- $A' = \text{Greedy}(M'(S', \mathcal{I}'), w)$
- $A = \{x\} \cup A'$
- A' is optimal to $M' \Rightarrow A$ is optimal to M
- Thus, we can reduce M to smaller M', step by step, until $\mathcal{I}' = \emptyset$, which implies $A' = \emptyset$.

- If A is not optimal, then there is $B \in \mathcal{I}$, such that
 - w(B) > w(A)
 - x ∈ B
 - otherwise construct B^* , such that $w(B^*) = w(B)$ and $x \in B^*$

- If A is not optimal, then there is $B \in \mathcal{I}$, such that
 - w(B) > w(A)
 - x ∈ B
 - otherwise construct B^* , such that $w(B^*) = w(B)$ and $x \in B^*$
- $S[j] \notin B, \forall j < i$
 - $\{x\} = \{S[i]\} \in \mathcal{I}.$
 - $\{S[j]\} \notin \mathcal{I} \Rightarrow x \notin C, \forall C \in \mathcal{I}$

- If A is not optimal, then there is $B \in \mathcal{I}$, such that
 - w(B) > w(A)
 - x ∈ B
 - otherwise construct B^* , such that $w(B^*) = w(B)$ and $x \in B^*$
- $S[j] \notin B, \forall j < i$
 - $\{x\} = \{S[i]\} \in \mathcal{I}.$
 - $\{S[j]\} \notin \mathcal{I} \Rightarrow x \notin C, \forall C \in \mathcal{I}$
- Let $B' = B \setminus \{x\}$. Then
 - $B' \in \mathcal{I}'$
 - w(B') = w(B) w(x) > w(A) w(x) = w(A')
 - Contradiction.

```
Algorithm: Greedy(M, w)
A = \emptyset;
Sort S in the decreasing order of w[s];
for i = 0 to |S| - 1 do
| \quad \text{if } A \cup \{S[i]\} \in \mathcal{I} \text{ then add } S[i] \text{ to } A;
end
return A;
```

Theorem: Given matroid $M(S, \mathcal{I})$ and weight function w, then Greedy(M, w) returns an optimal subset $A \in \mathcal{I}$.

Given

- ullet a container ${\mathcal K}$ of capacity $W\in {\mathbb Z}^+$
- n items $\{x_0, x_1, \dots, x_{n-1}\}$
 - integral weight $w_i \in \mathbb{Z}^+$
 - value $v_i > 0$

Fill the knapsack so as to maximize the total value.

Given

- ullet a container ${\mathcal K}$ of capacity $W\in {\mathbb Z}^+$
- n items $\{x_0, x_1, \dots, x_{n-1}\}$
 - integral weight $w_i \in \mathbb{Z}^+$
 - value $v_i > 0$

Fill the knapsack so as to maximize the total value.

• Divide item x_i into w_i pieces. Each piece is of weight 1 and value v_i/w_i .

Given

- ullet a container ${\mathcal K}$ of capacity $W\in {\mathbb Z}^+$
- n items $\{x_0, x_1, \dots, x_{n-1}\}$
 - integral weight $w_i \in \mathbb{Z}^+$
 - value $v_i > 0$

Fill the knapsack so as to maximize the total value.

- Divide item x_i into w_i pieces. Each piece is of weight 1 and value v_i/w_i .
- Define
 - S: the set of all the pieces
 - \mathcal{I} : all subsets of size < W
 - for a piece x from item x_i , $w(x) = v_i/w_i$

- S: the set of all the pieces
- \mathcal{I} : all subsets of size $\leq W$
- for a piece x from item x_i , $w(x) = v_i/w_i$

Matroid $M(S, \mathcal{I})$ satisfies

• hereditary: For $A \in \mathcal{I}$,

$$A' \subseteq A \Rightarrow |A'| \le |A| \le W$$

• exchange property: For $A, B \in \mathcal{I}$, and $|A| < |B| \le W$. Let x be any element in $B \setminus A$. Then

$$|A \cup \{x\}| = |A| + 1 \leq W$$

- S: the set of all the pieces
- \mathcal{I} : all subsets of size $\leq W$
- for a piece x from item x_i , $w(x) = v_i/w_i$

Matroid $M(S, \mathcal{I})$ satisfies

• hereditary: For $A \in \mathcal{I}$,

$$A' \subseteq A \Rightarrow |A'| \le |A| \le W$$

• exchange property: For $A, B \in \mathcal{I}$, and $|A| < |B| \le W$. Let x be any element in $B \setminus A$. Then

$$|A \cup \{x\}| = |A| + 1 \leq W$$

Thus, with the optimal subset for matroid $M(S,\mathcal{I})$ we know how to fill the knapsack to maximize the total value.

Set Cover

Set and Cover

Problem: Given

- B: a set of elements
- k sets $S_0, S_1, \ldots, S_{k-1} \in 2^B$

find a cover

- a selection $S_{i_0}, S_{i_1}, \dots, S_{i_{h-1}}$
- $\bullet \cup_{i_i} S_{i_i} = B$

such that h is minimized.

Set and Cover

Problem: Given

- B: a set of elements
- k sets $S_0, S_1, \dots, S_{k-1} \in 2^B$

find a cover

- a selection $S_{i_0}, S_{i_1}, \dots, S_{i_{h-1}}$
- $\bullet \cup_{i_i} S_{i_i} = B$

such that h is minimized.

•
$$B = [0, 1, 2, 3, 4]$$

Set and Cover

Problem: Given

- B: a set of elements
- k sets $S_0, S_1, \dots, S_{k-1} \in 2^B$

find a cover

- a selection $S_{i_0}, S_{i_1}, \dots, S_{i_{h-1}}$
- $\bullet \ \cup_{i_j} S_{i_j} = B$

such that h is minimized.

- B = [0, 1, 2, 3, 4]
- 4 sets
 - [0, 1]
 - [2, 3]
 - [3, 4]
 - [0, 1, 4]

Set and Cover

Problem: Given

- B: a set of elements
- k sets $S_0, S_1, \dots, S_{k-1} \in 2^B$

find a cover

- a selection $S_{i_0}, S_{i_1}, \dots, S_{i_{h-1}}$
- $\bullet \ \cup_{i_j} S_{i_j} = B$

such that h is minimized.

•
$$B = [0, 1, 2, 3, 4]$$

- 4 sets
 - [0, 1]
 - [2, 3]
 - [3, 4]
 - [0, 1, 4]
- cover
 - $[0,1]\cup[2,3]\cup[3,4]=B$
 - $[0,1,4] \cup [2,3] = B$

Selection: choose the set (in the remaining ones) that covers the largest number of uncovered elements.

Selection: choose the set (in the remaining ones) that covers the largest number of uncovered elements.

• Let *S* be the result of the greedy selection.

Selection: choose the set (in the remaining ones) that covers the largest number of uncovered elements.

- Let *S* be the result of the greedy selection.
- Let *P* be the optimal solution.

Selection: choose the set (in the remaining ones) that covers the largest number of uncovered elements.

- Let *S* be the result of the greedy selection.
- Let *P* be the optimal solution.
- $\bullet |S| \leq |P| \ln |B|$

$$|S| \leq |P| \ln |B|$$

Proof: Let n_t be the number of uncovered elements after step t.

- $n_0 = n$
- at step 1, select a set S_1
- $n_1 = n |S_1|$

The remaining n_t elements are covered by optimal selection P. Thus, there exists a not-selected set S' with $|S'| \ge n_t/|P|$.

- $|S_{t+1}| \ge n_t/|P|$
- $n_{t+1} \leq n_t n_t/|P| = n_t(1 1/|P|)$
- $n_t \leq n_0(1-1/|P|)^t$

With
$$n_t \leq n_0 (1 - 1/|P|)^t$$

- recall that $1 x < e^{-x}$ for all $x \neq 0$
- $n_t \leq n_0 (1 1/|P|)^t < n \cdot e^{-t/|P|}$
- let $t^* = |P| \ln |B|$
- $n_{t^*} < n \cdot e^{-\ln |B|} = 1$
- $|S| \le t^* = |P| \ln |B|$

Submodularity-Based Optimization

Matroid and Subset-Weight

Matroid: $M(S, \ell)$, where

- *S* is a finite and nonempty set (of elements)
- $\mathcal{I} \subseteq 2^S$ is hereditary:

$$B \in \ell$$
, and $A \subseteq B \Rightarrow A \in \mathcal{I}$

• *M* satisfies the **exchange property**:

$$A, B \in \mathcal{I}, \text{ and } |A| < |B| \Rightarrow \exists x \in B \setminus A, A \cup \{x\} \in \mathcal{I}$$

Subset-Weight: $w: 2^S \to \mathcal{R}^+$

Monotone and Submodular

w is **monotone** if

$$A \subseteq B \Rightarrow w(A) \leq w(B)$$

w is **submodular** if

$$\forall A \subseteq B \text{ and } x \in S, w(A \cup \{x\}) - w(A) \ge w(B \cup \{x\}) - w(B)$$

Monotone and Submodular

w is monotone if

$$A \subseteq B \Rightarrow w(A) \leq w(B)$$

w is **submodular** if

$$\forall A \subseteq B \text{ and } x \in S, w(A \cup \{x\}) - w(A) \ge w(B \cup \{x\}) - w(B)$$

or, equivalently

$$w(A) + w(B) \ge w(A \cup B) + w(A \cap B)$$

Notice that

$$A \cap B \subseteq B, \ x = A \setminus B$$

Thus

$$A \cap B \cup x = A, \ B \cup x = A \cup B$$

Climb The Hill: Submodularity

```
Algorithm: HillClimb(M, w)
A = \emptyset;
while true do
| let X = \{x | x \in S \setminus A, A \cup \{x\} \in \mathcal{I}\} 
if |X| < 1 then break;
| let x^* = \arg\max_{x \in X} w(A \cup \{x\}) - w(A) 
add x to A;
end
| return A;
```

Climb The Hill: Submodularity

```
Algorithm: HillClimb(M, w)
A = \emptyset;
while true do
| \text{ let } X = \{x | x \in S \setminus A, A \cup \{x\} \in \mathcal{I}\} 
| \text{ if } |X| < 1 \text{ then break};
| \text{ let } x^* = \arg\max_{x \in X} w(A \cup \{x\}) - w(A)
| \text{ add } x \text{ to } A;
end
| \text{ return } A;
```

$$w(A) \geq w(P) \cdot (1 - 1/e)$$

THANK YOU

