DLD LAB ASSIGNMENT 3

Aim: The simulate behavior of 8-bit full adder and 8-bit full Subtractor

Tools used: Vivado software

Truth table:

8-bit full adder:

input	input	input	output	output	
а	Ь	Cin	S	Cout	
00000001	0000001	0	0000010	0	
00000011	00000011	0	00000110	0	
10000101	10000101	0	00001010	1	
01001001	01001001	0	10010010	0	
11001101	11001101	0	10011010	1	
01101011	01101011	0	11010110	0	

Boolean expression:

Sum =
$$(-a^*-b^*c) + (-a^*b^*-c) + (a^*-b^*-c) + (a^*b^*c)$$

Carry = $(a^*b) + (a^*c) + (b^*c)$

8-bit full subtractor:

input	input	input	output	output	
α	Ь	cin	S	cout	
00011001	0000001	0	00011000	0	
00001011	00000011	0	00001000	0	
10011101	10000101	0	00011000	0	
01001001	01001001	0	00000000	0	
11001101	11001101	0	00000000	0	
01101011	01101011	0	00000000	0	

Boolean expression:

Sum = a(XOR) b c

Carry = a'b + a'c + bc

Circuit diagrams:

8-bit full adder:

8-bit full subtractor:

Codes:

8-bit full adder:

```
22 module eig bit adder(a,b,cin,s,count);
23 input [7:0] a;
24 input [7:0] b;
25 input cin;
26 output [7:0] s;
27 output count;
28 wire c0,c1,c2,c3,c4,c5,c6;
29 full adder al(a[0],b[0],0,s[0],c0);
30 full_adder a2(a[1],b[1],c0,s[1],c1);
31 full adder a3(a[2],b[2],c1,s[2],c2);
32 full adder a4(a[3],b[3],c2,s[3],c3);
33 full adder a5(a[4],b[4],c3,s[4],c4);
34 full adder a6(a[5],b[5],c4,s[5],c5);
35 full adder a7(a[6],b[6],c5,s[6],c6);
36 full_adder a8(a[7],b[7],c6,s[7],count);
37 endmodule
```

Test bench code:

```
23 module tb eig bit adder;
24 reg [7:0] a,b;
25 reg cin;
26 wire [7:0] s;
27 wire count;
28 eig bit adder al(a,b,cin,s,count);
29 initial
30 begin
31 a = 8'b000000001;b = 8'b00000001;cin = 1'b0;
32 #10 a = 8'b000000011;b = 8'b00000011;cin = 1'b0;
33 #10 a = 8'b10000101;b = 8'b10000101;cin = 1'b0;
34 #10 a = 8'b01001001;b = 8'b01001001;cin = 1'b0;
35 #10 a = 8'b11001101;b = 8'b11001101;cin = 1'b0;
36 #10 a = 8'b01101011;b = 8'b01101011;cin = 1'b0;
37 end
38 endmodule
```

Results:

8-bit full subtractor:

```
23 module eigbitsub(x,y,cin,z,bout);
24 input [7:0] x,y;
25 input cin;
26 output [7:0] z;
27 output bout;
28 wire c0,cl,c2,c3,c4,c5,c6;
29 full_adder fal(x[0],~y[0],l,z[0],c0);
30 full_adder fa2(x[1],~y[1],c0,z[1],c1);
31 full_adder fa3(x[2],~y[2],cl,z[2],c2);
32 full_adder fa4(x[3],~y[3],c2,z[3],c3);
33 full_adder fa5(x[4],~y[4],c3,z[4],c4);
34 full_adder fa6(x[5],~y[5],c4,z[5],c5);
35 full_adder fa7(x[6],~y[6],c5,z[6],c6);
36 full_adder fa8(x[7],~y[7],c6,z[7],bout);
37 endmodule
```

Test bench code:

```
23 module tb eig bit sub 26;
24 reg [7:0] x,y;
25 reg cin;
26 wire [7:0] z;
27 wire bout;
28 eig bit_sub_26 f5(x,y,cin,z,bout);
29 initial
30 begin
31 x = 8'b111111000;y = 8'b101111000;cin = 1'b0;
32 #10 x = 8'b00101011; y = 8'b01101011; cin = 1'b0;
33 #10 x = 8'b00011001; y = 8'b00000011; cin = 1'b0;
34 #10 x = 8'b10110100; y = 8'b001111100; cin = 1'b0;
35 #10 x = 8'b001111110; y = 8'b01010110; cin = 1'b0;
36 #10 x = 8'b01010010; y = 8'b00010010; cin = 1'b0;
37 #10 x = 8'b00011010;y = 8'b00011000;cin = 1'b0;
38 #10 x = 8'b00111011;y = 8'b00001011;cin = 1'b0;
39 end
40 endmodule
```

Results:

=					14.000 n	5		
E CO	Name	Value	0 ns	10 ns	1	20 ns	30 ns	40 ns
0+	□-№ x[7:0]	00101011	11111000		01011	00011001	10110100	00111110
		01101011	10111000	01:	.01011	00000011	00111100	01010110
o.	1% cin	0						
<u>\</u>		11000000	01000000	110	00000	00010110	01111000	11101000
14	[™] bout	0						
M								
N								
12								
2								
Ę.								
100								
31								
Ş,JL								

Conclusion:

Now I'm able to design the 8-bit full adder and subtractor, its truth table, its timing diagram and figure of the logic gates