Lecture Notes for

Neural Networks and Machine Learning

Multi-Task Demo

Logistics and Agenda

- Logistics
 - None!
- Agenda
 - Multi-Task Examples
 - Paper Presentation
 - Multi-Task Demos
 - Multi-Task Town Hall
- Next Time
 - Variational Auto-Encoders

Multi-Task Model Examples

Multi-task: Deep Relationship Networks

- Start training traditionally
- Minimize Kroenecker Product between fully connected task specific layers
 - that is, make Covariance between layers close to identity
 - encourages feature maps in each task to be less
 correlated to feature maps of another task

Multi-task: Adaptive Feature Sharing

- Trair
- Rep
 - 0

$$A^{\star}, \omega^{\star}(l) = \underset{A \in \mathbb{R}^{d \times d'}, |\omega| = d'}{\arg \min} ||W^{p,l} - AW^{p,l}_{\omega:}||_F, \qquad (2)$$

where $W_{\omega}^{p,l}$ is a truncated weight matrix that only keeps the rows indexed by the set ω . This problem is NP-hard, however, there exist approaches based on convex relaxation

- Cut weights and fine tune network
- Decrement current layer index

Multi-task: Cross Stitch Networks

- Only works for simultaneous multi-label problems
 - like semantic segmentation and surface normal segmentation (clustering similarly facing objects)
- Take a learned weighted sum of the activations
- Works a little better than single task, but no worse

Multi-task: Uncertainty Weighting

- Use variance of each loss function from each task to normalize
 - call it homoscedastic without sound reasoning because that feels better than "normalized variance"
 - talk about homoscedasticity for no reason
- Write an entire paper in a "mathy" way to make it seem like more of a contribution
- Profit because you are Oxford/Cambridge and reviewers give you a pass

76

Current Multi-task Research

- Incredibly diverse sets of solutions
- Mostly not evaluated on similar datasets
- Reasoning given is mostly ad-hoc...
- Theory is wildly under developed
 - because the problem is incredibly difficult
- Neural architecture search is an option...

Paper Presentation: Multi-task with Chemical Fingerprints

A Survey of Multi-task Learning Methods in Chemoinformatics

Sergey Sosnin,[™] Mariia Vashurina, [™] Michael Withnall, [≥] Pavel Karpov, [™] Maxim Fedorov, [™] and Igor V. Teko**

Multi-Task Learning in Keras with Multi-Label Data

Fashion week, colors and dresses

"finish demo"

Follow Along: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/

Multi-Task Learning

School Data, Computer Surveys

"finish demo"

Traian Pop

Luke Wood

Follow Along: LectureNotesMaster/ 05 LectureMultiTask.ipynb

Lab Three Town Hall

Multi-Task Networks
Multi-Modal Networks

Lecture Notes for

Neural Networks and Machine Learning

Demo Multi-Task

Next Time:

GANs

Reading: Chollet 8.1-8.5

