```
In [1]: # import modules
    import pandas as pd
    import os
    import warnings

# Only show warning once in the notebook
    warnings.filterwarnings(action = 'ignore')

# Adding options to display all of the rows of DataFrame w/o truncation
    pd.set_option('display.max_rows',None)
    pd.set_option('display.max_columns',None)
In [2]: # Create DataFrame from csv file
    path_to_csv = os.path.join('Resources','purchase_data.csv')
    purchase_df = pd.read_csv(path_to_csv)
    purchase_df.head()
```

Out[2]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

Player Count

```
In [3]: # Player Count
    total_players = purchase_df["SN"].nunique()
    pd.DataFrame({"Total Players":[total_players]})
Out[3]:
```

0 576

Total Players

Purchasing Analysis (Total)

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$3.05	780	\$2,379.77

Gender Demographics

```
In [5]: # Performing value_counts() on Gender column after
    # dropping duplicate players from the data set
    # Reasoning: A player may have bought items more than once and therefore
    # may appear multiple times in transactions.
    gender_df = pd.DataFrame(purchase_df.drop_duplicates("SN")["Gender"].value_counts())
    gender_df = gender_df.rename(columns = {"Gender":"Total Counts"})
    gender_df["Percentage of Players"] = gender_df["Total Counts"]/total_players*100

# Change formatting for cleaner display
    gender_df.style.format({"Percentage of Players": "{:,.2f}%"})
```

Out[5]:

	iotal Counts	Percentage of Players
Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

1/5/2020 HeroesOfPymoli_HW4

```
In [19]: # Groupby Gender to calculate gender demographics
         purchase count = (purchase df.groupby(["Gender"])["Purchase ID"].count())
         average price = (purchase df.groupby(["Gender"])["Price"].mean())
         total revenue = (purchase df.groupby(["Gender"])["Price"].sum())
         avg price per person = (purchase df.groupby(["Gender", "SN"])['Price'].sum())
         # Summary Table for purchasing analysis by Gender
         summary purchase by gender = pd.DataFrame({"Purchase Count": purchase count,\
                                                     "Average Purchase Price": average price,\
                                                     "Total Purchase Value": total revenue})
         # Calculate total price per ID per gender by adding all the prices per ID.
         total purchase per person = purchase df.groupby(['Gender','SN'])['Price'].sum().reset index()
         avg total purchase per person = total purchase per person.groupby('Gender').mean()
         # using reset index() to bring Gender as common column in both dfs
         avg total purchase per person = avg total purchase per person.reset index()
         # Merge summary purchase by gender with newly calculated ava total purchase per person
         summary purchase by gender merged = pd.merge(summary purchase by gender.reset index(),\
                                                      avg total purchase per person)
         summary purchase by gender merged = summary purchase by gender merged.set index('Gender')
         summary purchase by gender merged = summary purchase by gender merged.rename(columns={'Price':'Avg Total Purc
         hase per Person'})
         #summary purchase by gender
         # Change formatting for cleaner display
         summary purchase by gender merged.style.format({'Average Purchase Price': "${:,.2f}",\
                                            'Total Purchase Value': '${:,.2f}','Avg Total Purchase per Person': '${:,.2
         f}'})
```

Out[19]:

Purchase Count Average	ge Purchase Price	Total Purchase Value	Avo	Total Purchase per Person
------------------------	-------------------	----------------------	-----	---------------------------

Gender 					
Female	113	\$3.20	\$361.94	\$4.47	
Male	652	\$3.02	\$1,967.64	\$4.07	
Other / Non-Disclosed	15	\$3.35	\$50.19	\$4.56	

Age Demographics

Out[20]:

Total Counts Percentage of Players

Age Ranges		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

```
In [21]: # Not Dropping duplicates for analysis on item purchases
         # Define age bins and labels
         age bins = [0,9,14,19,24,29,34,39,50]
         age labels = ['<10','10-14','15-19','20-24','25-29','30-34','35-39','40+']
         purchase df['Age Ranges'] = pd.cut(purchase df['Age'], bins = age bins, labels = age labels)
         # Calculate total purchase count,
         purchase counts per age bin = purchase df.groupby(['Age Ranges'])['Purchase ID'].count()
         avg purchase price per age bin = purchase df.groupby(['Age Ranges'])['Price'].mean()
         total purchase value per age bin = purchase df.groupby(['Age Ranges'])['Price'].sum()
         #ava total purchase per person = ???
         purchase by age df = pd.DataFrame({'Purchase Count': purchase counts per age bin,\
                                            'Average Purchase Price': avg purchase price per age bin,\
                                            'Total Purchase Value': total purchase value per age bin,\
                                            'Avg Total Purchase Per Person':['?','?','?','?','?','?','?','?']})
         # Change formatting for cleaner display
         purchase by age df.style.format({'Average Purchase Price': "${:,.2f}",\
                                            'Total Purchase Value': '${:,.2f}'})
```

Out[21]:

Purchase Count Average Purchase Price Total Purchase Value Avg Total Purchase P	er Person
---	-----------

Age Ranges				
<10	23	\$3.35	\$77.13	?
10-14	28	\$2.96	\$82.78	?
15-19	136	\$3.04	\$412.89	?
20-24	365	\$3.05	\$1,114.06	?
25-29	101	\$2.90	\$293.00	?
30-34	73	\$2.93	\$214.00	?
35-39	41	\$3.60	\$147.67	?
40+	13	\$2.94	\$38.24	?

Top Spenders

Out[22]:

Purchase Count	Average Purchase Price	Total Purchase Value
i di dilado odalit	Avolugo i dionaco i nec	Total I albitable Value

SN			
Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

Purchase Count Item Price Total Purchase Value

Out[23]:

Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

```
In [24]: profitable_df = popular_df.sort_values('Total Purchase Value', ascending = False)
    profitable_df.head().style.format({'Item Price': "${:,.2f}", 'Total Purchase Value': '${:,.2f}'})
```

Purchase Count Item Price Total Purchase Value

Out[24]:

Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

In []: