CE483 STRUCTURAL ANALYSIS

THREE DIMENSIONAL FRAME ELEMENT STIFFNESS MATRIX

(SHEAR DEFORMATIONS EXCLUDED)

$\left[F_{x1} \right]$		$\int \frac{A}{L}$	0	0	0	0	0	$-\frac{A}{L}$	0	0	0	0	0	u_1	
F_{y1}		0	$\frac{12I_z}{L^3}$	0	0	0	$\frac{6I_z}{L^2}$	0	$-\frac{12I_z}{L^3}$	0	0	0	$\frac{6I_z}{L^2}$	v_1	
F_{z1}		0	0	$\frac{12I_y}{L^3}$	0	$-\frac{6I_y}{L^2}$	0	0	0	$-\frac{12I_y}{L^3}$	0	$-\frac{6I_y}{L^2}$	0	w_1	
M_{x1}		0	0	0	$\frac{J}{2(1+\nu)L}$	0	0	0	0	0	$-\frac{J}{2(1+\nu)L}$	0	0	θ_{x1}	
M_{y1}		0	0	$-\frac{6I_y}{L^2}$	0	$\frac{4I_y}{L}$	0	0	0	$\frac{6I_y}{L^2}$	0	$\frac{2I_y}{L}$	0	θ_{y1}	
M_{z1}	_	0	$\frac{6I_z}{L^2}$	0	0	0	$\frac{4I_z}{L}$	0	$-\frac{6I_z}{L^2}$	0	0	0	$\frac{2I_z}{L}$	θ_{z1}	
F_{x2}	$\rightarrow = E$	$-\frac{A}{L}$	0	0	0	0	0	$\frac{A}{L}$	0	0	0	0	0	u_2	
F_{y2}		0	$-\frac{12I_z}{L^3}$	0	0	0	$-\frac{6I_z}{L^2}$	0	$\frac{12I_z}{L^3}$	0	0	0	$-\frac{6I_z}{L^2}$	v_2	
Fz2		0	0	$-\frac{12I_y}{L^3}$	0	$\frac{6I_y}{L^2}$	0	0	0	$\frac{12I_y}{L^3}$	0	$\frac{6I_y}{L^2}$	0	w_2	
M_{x2}		0	0	0	$-\frac{J}{2(1+\nu)L}$	0	0	0	0	0	$\frac{J}{2(1+\nu)L}$	0	0	θ_{x2}	
M_{y2}		0	0	$-\frac{6I_y}{L^2}$	0	$\frac{2I_y}{L}$	0	0	0	$\frac{6I_y}{L^2}$	0	$\frac{4I_y}{L}$	0	θ_{y2}	
M_{z2}	j	0	$\frac{6I_z}{L^2}$	0	0	0	$\frac{2I_z}{L}$	0	$-\frac{6I_z}{L^2}$	0	0	0	$\frac{4I_z}{L}$	θ_{z2}	