OPTIMISATION NUMÉRIQUE

Département de Mathématiques Master Mathématiques

Optimisation Numérique

PROGRAMMATION LINÉAIRE I

DUALITÉ

On considère le programme (\mathcal{L})

$$(\mathcal{L}) \qquad \left\{ \begin{array}{l} \min z = c^{\top} x \\ Ax \geq b, \\ x \geq 0. \end{array} \right.$$

Ce problème sera appelé programme primal, et on lui associe le programme (\mathcal{D})

$$(\mathcal{D}) \qquad \left\{ \begin{array}{l} \max w = b^{\top} y \\ A^{\top} y \leq c, \\ y \geq 0. \end{array} \right.$$

Le problème (\mathcal{D}) est appelé programme dual de (\mathcal{L}) .

SOMMAIRE

- DUALITÉ
- INTERPRETATION ÉCONOMIQUE
- 3 THÉORÈME DE DUALITÉ
- 4 THÉORÈME DE COMPLÉMENTARITÉ

<ロ > ∢回 > ∢回 > ∢ 直 > く 直 > り へ ⊙ Optimisation Numérique

PROGRAMMATION LINÉAIRE I

DUALITÉ

REMARQUE

Tout programme linéaire peut se mettre sous la forme de (\mathcal{L}) :

- $u \le v$ se transforme en $-u \ge -v$,
- ② u = v se transforme en $u \ge v$ et $-u \ge -v$,
- la contrainte de positivité s'obtient comme pour la forme standard.

EXEMPLE

$$(\mathcal{L}) \qquad \begin{cases} \min z = -3x_1 + 2x_2 \\ x_1 \leq 4, \\ x_2 \leq 6, \\ x_1 + x_2 \leq 5, \\ x_2 \geq 1, \\ x_1, x_2 \geq 0. \end{cases} \qquad \equiv \qquad \begin{cases} \min z = -3x_1 + 2x_2 \\ -x_1 \geq -4, \\ -x_2 \geq -6, \\ -x_1 - x_2 \geq -5, \\ x_2 \geq 1, \\ x_1, x_2 \geq 0. \end{cases}$$

$$c = \begin{pmatrix} -3 & 2 \end{pmatrix}^{\mathsf{T}}, \ A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ -1 & -1 \\ 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} -4 \\ -6 \\ -5 \\ 1 \end{pmatrix}.$$

Optimisation Numérique

5/28

Dualité

PROGRAMMATION LINÉAIRE I

DUALITÉ

REMARQUE

Le dual du dual (\mathcal{D}) est le primal (\mathcal{L}) .

Le programme (\mathcal{D}) s'écrit

$$(\mathcal{D}) \qquad \begin{cases} \min -b^{\top} y \\ -A^{\top} y \ge -c, \\ y \ge 0. \end{cases}$$

Son dual est

$$(\mathcal{D}) \qquad \left\{ \begin{array}{l} \max - c^{\top} x \\ \left(-A^{\top} \right)^{\top} x \leq -b, \\ x \geq 0. \end{array} \right. \equiv \qquad \left\{ \begin{array}{l} \min c^{\top} x \\ Ax \geq b, \\ x \geq 0. \end{array} \right.$$

PROGRAMMATION LINÉAIRE II

DUALITÉ

Son dual s'écrit

$$(\mathcal{D}) \qquad \begin{cases} \max w = -4y_1 - 6y_2 - 5y_3 + y_4 \\ -y_1 - y_3 \le -3, \\ -y_2 - y_3 + y_4 \le 2, \\ y_1, y_2, y_3, y_4 \ge 0. \end{cases}$$

Dualité

Optimisation Numérique

PROGRAMMATION LINÉAIRE I

DUALITÉ

1er cas (contraintes mixtes): Considérons un programme linéaire de la forme suivante

$$(\mathcal{L}) \qquad \begin{cases} \min c^{\top} x \\ A_1 x \leq b_1, \\ A_2 x \geq b_2, \\ A_3 x = b_3, \\ x \geq 0. \end{cases} \equiv \qquad \begin{cases} \min c^{\top} x \\ \begin{bmatrix} -A_1 \\ A_2 \\ A_3 \\ -A_3 \end{bmatrix} x \geq \begin{bmatrix} -b_1 \\ b_2 \\ b_3 \\ -b_3 \end{bmatrix}$$

avec $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$; A_1 , A_2 et A_3 sont respectivement des matrices d'ordre $m_1 \times n$, $m_2 \times n$, $m_3 \times n$; $b_1 \in \mathbb{R}^{m_1}$, $b_2 \in \mathbb{R}^{m_2}$ et $b_3 \in \mathbb{R}^{m_3}$.

PROGRAMMATION LINÉAIRE I

DUALITÉ

Son dual s'écrit

$$(\mathcal{D}) \qquad \left\{ \begin{array}{ll} \max \left[-b_1^\top & b_2^\top & b_3^\top & -b_3^\top \right] u \\ \left[-A_1^\top & A_2^\top & A_3^\top & -A_3^\top \right] u \leq c, \\ u \geq 0. \end{array} \right.$$

On pose

$$u=\left[egin{array}{c} u_1\ u_2\ u_3\ u_4 \end{array}
ight] \quad ext{avec } u_1\in\mathbb{R}^{m_1},\ u_2\in\mathbb{R}^{m_2},\ u_3,u_4\in\mathbb{R}^{m_3}.$$

$$\left\{ \begin{array}{l} \max -b_1^\top u_1 + b_2^\top u_2 + b_3^\top u_3 - b_3^\top u_4 \\ -A_1^\top u_1 + A_2^\top u_2 + A_3^\top u_3 - A_3^\top u_4 \le c, \\ u_1, \ u_2, \ u_3, \ u_4 \ge 0. \end{array} \right.$$

()

Optimisation Numériqu

9 / 28

Dualité

PROGRAMMATION LINÉAIRE I

DUALITÉ

2ème cas (contraintes de signes différentes) : Considérons maintenant un programme avec certaines variables sans contraintes de signe.

$$(\mathcal{L}) \qquad \left\{ \begin{array}{l} \min c_1^\top x_1 + c_2^\top x_2 + c_3^\top x_3 \\ A_1 x_1 + A_2 x_2 + A_3 x_3 \geq b, \\ x_1 \leq 0, \ x_2 \geq 0, \ x_3 \in \mathbb{R}^{m_3}. \end{array} \right.$$

Ce programme s'écrit de façon équivalente, en posant $x'_1 = -x_1$ et $x_3 = x'_3 - x''_3$,

$$(\mathcal{L}) \qquad \left\{ \begin{array}{l} \min -c_1^\top x_1' + c_2^\top x_2 + c_3^\top x_3' - c_3^\top x_3'' \\ -A_1 x_1' + A_2 x_2 + A_3 x_3' - A_3 x_3'' \geq b, \\ x_1', x_2, x_3', x_3'' \geq 0. \end{array} \right.$$

Dualité

PROGRAMMATION LINÉAIRE II

DUALITÉ

En posant $y_1 = -u_1$, $y_2 = u_2$ et $y_3 = u_3 - u_4$ le programme devient

$$\left\{ \begin{array}{l} \max b_1^\top y_1 + b_2^\top y_2 + b_3^\top y_3 \\ A_1^\top y_1 + A_2^\top y_2 + A_3^\top y_3 \leq c, \\ y_1 \leq 0, \ y_2 \geq 0, \ y_3 \in \mathbb{R}^{m_3} \text{(sans contrainte de signe)}. \end{array} \right.$$

10 / 3

Dualité

PROGRAMMATION LINÉAIRE II

DUALITÉ

On pose

$$x = \begin{bmatrix} x_1' \\ x_2 \\ x_3' \\ x_3'' \end{bmatrix}$$

$$(\mathcal{L}) \qquad \begin{cases} \min \begin{bmatrix} -c_1^\top & c_2^\top & c_3^\top & -c_3^\top \end{bmatrix} x \\ \begin{bmatrix} -A_1 & A_2 & A_3 & -A_3 \end{bmatrix} x \ge b, \\ x \ge 0. \end{cases}$$

Son dual est

$$(\mathcal{D}) \qquad \begin{cases} \max b^{\top} y \\ A_{1}^{\top} y \geq c_{1} \\ A_{2}^{\top} y \leq c_{2} \\ A_{3}^{\top} y = c_{3} \\ y \geq 0. \end{cases}$$

PROGRAMMATION LINÉAIRE I

DUALITÉ

Primal	Dual
min	max
Second membre b	Second membre c
Objectif c	Objectif b
Contraintes A	Contraintes A^{\top}
Variable $i \geq 0$	Contrainte $i \leq c_i$
Variable $i \leq 0$	Contrainte $i \geq c_i$
Variable <i>i</i> sans contrainte de signe	Contrainte $i = c_i$
Contrainte $i \geq$	Variable $i \geq 0$
Contrainte $i \leq$	Variable $i \leq 0$
Contrainte <i>i</i> =	Variable <i>i</i> sans contrainte de signe

Optimisation Numérique

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<</p>

Dualité

PROGRAMMATION LINÉAIRE III

DUALITÉ

EXEMPLE

$$(\mathcal{L}) \qquad \left\{ egin{array}{l} \min z = c^{ op}x \ Ax = b, \ x \geq 0. \end{array}
ight.$$

$$(\mathcal{D}) \qquad \left\{ \begin{array}{l} \max w = b^{\top} y \\ A^{\top} y \leq c. \end{array} \right.$$

PROGRAMMATION LINÉAIRE II

DUALITÉ

EXEMPLE

$$(\mathcal{L}) \begin{cases} \min z = x_1 + 9x_2 + 5x_3 \\ 4x_1 + 6x_2 + 2x_3 \ge 6, \\ 3x_1 - 2x_2 + 3x_3 \le 1, \\ -2x_1 + 9x_2 + 8x_3 = 1, \\ x_2 \le 0, x_3 \ge 0. \end{cases}$$

$$(\mathcal{D}) \begin{cases} \max w = 6y_1 + y_2 + y_3 \\ 4y_1 + 3y_2 - 2y_3 = 1, \\ 6y_1 - 2y_2 + 9y_3 \ge 9, \\ 2y_1 + 3y_2 + 8y_3 \le 5, \\ y_1 \ge 0, \ y_2 \le 0. \end{cases}$$

Optimisation Numérique

<ロ > ←□ > ←□ > ← □ > ← □ = ・ りへの

Dualité

PROGRAMMATION LINÉAIRE I

INTERPRÉTATION ECONOMIQUE

INTERPRÉTATION ÉCONOMIQUE

- Une entreprise E1 peut fabriquer *n* produits
- \bigcirc des quantités x_i , $j = 1, \ldots, n$
- \odot à partir de m ressources b_i (quantité disponible), $i = 1, \ldots, m$
- chaque unité du produit j consomme la quantité a_{ii} de la ressource bi
- \odot le profit unitaire de chaque produit j est c_i
- o la quantité totale consommée du produit i est $\sum_{i=1}^{m} a_{ij}x_{i}$
- l'entreprise doit maximiser $\sum_{j=1}^{m} c_j x_j$ avec les contraintes que $\sum_{i=1}^{m} a_{ij} x_i \leq b_i$, pour $i = 1, \ldots, m$

PROGRAMMATION LINÉAIRE II

INTERPRÉTATION ECONOMIQUE

L'entreprise doit résoudre

$$\begin{cases} \max \sum_{j=1}^{m} c_j x_j \\ \sum_{j=1}^{m} a_{ij} x_j \leq b_i, & i = 1, \dots, m, \\ x_j \geq 0 & j = 1, \dots, n. \end{cases} \equiv \begin{cases} \max c^\top x \\ Ax \leq b, \\ x \geq 0. \end{cases}$$

Optimisation Numérique

Interpretation économique

PROGRAMMATION LINÉAIRE II

INTERPRÉTATION ECONOMIQUE

CONCLUSION

Les deux programmes à résoudre par les deux entreprises E1 et E2 sont duaux.

E1
$$\begin{cases} \max c^{\top} x \\ Ax \leq b, \\ x \geq 0. \end{cases}$$

E2
$$\begin{cases} \min b^{\top} y \\ A^{\top} y \ge c \\ y \ge 0. \end{cases}$$

PROGRAMMATION LINÉAIRE I

INTERPRÉTATION ECONOMIQUE

- Supposons qu'une autre entreprise E2 veut racheter les ressourses b_i , i = 1, ..., m à des prix unitaires y_i
- ② L'entreprise E2 doit minimiser le prix $\sum_{i=1}^{m} b_i y_i$ à payer à l'entreprise E1
- \odot l'entreprise E1 ne veut vendre les quantités a_{ii} , i = 1, ..., m, nécessaires pour la fabrication du produit j que si $\sum_{i=1}^{m} a_{ij} y_i \ge c_i$

L'entreprise E2 doit résoudre

$$\left\{ \begin{array}{ll} \min \sum_{i=1}^m b_i y_i \\ \sum_{i=1}^m a_{ij} y_i \geq c_j, \quad j=1,\ldots,n \\ y_i \geq 0, \quad 1=1,\ldots,m. \end{array} \right. \equiv \left\{ \begin{array}{ll} \min b^\top y \\ A^\top y \geq c, \\ y \geq 0. \end{array} \right.$$

Théorème de dualité

PROGRAMMATION LINÉAIRE I

THÉORÈME DE DUALITÉ

On considère maintenant le programme (\mathcal{L}) sous sa forme standard

THÉORÈME

Soit x un point réalisable pour le primal (\mathcal{L}) , et y un point réalisable pour le dual (\mathcal{D}) . Alors $c^{\top}x > b^{\top}y$.

Théorème de dualité

PROGRAMMATION LINÉAIRE I

THÉORÈME DE DUALITÉ

PREUVE

On a $A^{\top}y \leq c$ puisque y est réalisable pour le dual. Donc $x^{\top}A^{\top}y \leq x^{\top}c = c^{\top}x$. D'où $b^{\top}y \leq c^{\top}x$ puisque x est réalisable pour le primal (Ax = b et $x \geq 0$).

◆□▶◆□▶◆壹▶◆壹▶ 壹 り90

Optimisation Numérique

21 / 28

Théorème de dualité

PROGRAMMATION LINÉAIRE I

THÉORÈME DE DUALITÉ

PREUVE

Soit x^* une solution de base associée à la base B. Soit $\pi = c_B^\top B^{-1}$ et $y^* = \pi^\top$. On va montrer que y^* est solution optimale pour (\mathcal{D}) .

$$A = (B \ N) \ x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \ c = \begin{pmatrix} c_B \\ c_N \end{pmatrix}.$$

 $y^{*\top}A = c_B^\top B^{-1}A = c_B^\top B^{-1} \begin{pmatrix} B & N \end{pmatrix} = \begin{pmatrix} c_B^\top & c_B^\top B^{-1}N \end{pmatrix} \leq \begin{pmatrix} c_B^\top & c_N^\top \end{pmatrix} = c^\top$

puisque $\bar{c}_N = c_N^\top - c_B^\top B^{-1} N \ge 0$ (B base optimale). Donc $A^\top y^* \le c$ et y^* est réalisable pour le dual.

D'autre part, $b^{\top}y^* = y^{*\top}b = c_B^{\top}B^{-1}b = c^{\top}x^*$, et donc y^* est solution optimale de (\mathcal{D}) d'après le théorème faible de dualité.

PROGRAMMATION LINÉAIRE I

THÉORÈME DE DUALITÉ

THÉORÈME

Si l'un des deux programmes (\mathcal{L}) et (\mathcal{D}) admet une solution optimale, alors l'autre admet aussi une une solution optimale et leur valeur optimale sont égales (z = w).

Optimisation Numérique

Si l'un admet un optimum infini, alors l'autre est incompatible.

Théorème de dualité

PROGRAMMATION LINÉAIRE II

THÉORÈME DE DUALITÉ

Supposons que $\inf\{c^{\top}x\mid x\in X\}=-\infty$. Alors

$$\forall M > 0 \quad \exists x_M \in X \quad \text{tel que} \quad c^\top x_M < -M.$$

Si u est réalisable pour le dual (\mathcal{D}) , on doit avoir $b^{\top}u \leq c^{\top}x_M$, d'après le théorème de dualité faible. Et donc $b^{\top}u < -M$ pour tout M > 0, ce qui n'est pas possible.

PROGRAMMATION LINÉAIRE III

THÉORÈME DE DUALITÉ

REMARQUE

En écrivant que

$${y^*}^\top A = \begin{pmatrix} c_B^\top & c_B^\top B^{-1} N \end{pmatrix} = \begin{pmatrix} c_B^\top & c_N^\top - \bar{c}_N \end{pmatrix} = c^\top - \begin{pmatrix} 0_m^\top & \bar{c}_N \end{pmatrix},$$

on aura

$$A^{ op}y^* + egin{pmatrix} 0_m \ ar{c}_N^{ op} \end{pmatrix} = c^{ op}.$$

 $\bar{c}_N^{ op}$ représente les variables d'écart pour le dual.

()

Optimisation Numérique

25 / 28

Théorème de complémentarité

PROGRAMMATION LINÉAIRE I

THÉORÈME DE COMPLÉMENTARITÉ

PREUVE

Soit x et y tels que Ax = b, $x \ge 0$ et $A^{\top}y \le c$. Si x et y sont optimales, alors $c^{\top}x = b^{\top}y$ (Théorème de dualité). Donc $c^{\top}x = x^{\top}c = x^{\top}A^{\top}y$. D'où $x^{\top}(c - A^{\top}y) = 0$.

Inversement, $x^{\top}(c - A^{\top}y) = 0$ entraîne que $c^{\top}x = b^{\top}y$ et donc x est solution optimale de (\mathcal{L}) et y est solution optimale de (\mathcal{D}) (utiliser le théorème faible de dualité).

PROGRAMMATION LINÉAIRE I

THÉORÈME DE COMPLÉMENTARITÉ

THÉORÈME

Soit x un vercteur réalisable pour le primal (\mathcal{L}) et y un vecteur réalisable pour le dual (\mathcal{D}) . Alors x et y solutions optimales, respectivement pour (\mathcal{L}) et pour (\mathcal{D}) , si et seulement si, $x^{\top}(A^{\top}y-c)=0$.

◆□▶◆□▶◆■▶◆■▶ ■ 少♀

Théorème de complémentarité

PROGRAMMATION LINÉAIRE II

THÉORÈME DE COMPLÉMENTARITÉ

REMARQUE

Si on note ai la jeme colonne de A, le théorème implique que

$$x^{\top}(c - A^{\top}y) = \sum_{j=1}^{n} x_{j}(c_{j} - a_{j}^{\top}y) = 0$$

Optimisation Numérique

et par suite $x_j(c_j - a_j^\top y) = 0$ pour tout j = 1, ..., n puisque $x_j \ge 0$ et $a_i^\top y \le c_j$.

Én particulier, si $x_j > 0$ alors la jeme contrainte du dual est saturée $(c_j - a_i^\top y = 0)$ et si $a_i^\top y < c_j$ alors $x_j = 0$.