# **Matlab Tutorial**

Ying Shen, SSE, Tongji University

## Matlab environment



# Simple arithmetical operations

| a+b | Addition.      | a/b | Division.                                         |
|-----|----------------|-----|---------------------------------------------------|
| a-b | Subtraction.   | a\b | Left division, (this is exactly the same as b/a). |
| a*b | Multiplication | a^b | Exponentiation (i.e., $a^b$ ).                    |

• 
$$3.17 \times 5.7 + \frac{17}{3}$$
: >>  $3.17*5.17+17/3$ 

## Variables

• 
$$x = \sqrt[3]{2}$$
:  
>>  $x = 2^{(1/3)}$   
>>  $fx = 3*x^6 - 17*x^3 + 79$   
>>  $x = x + 5$ 

display variables:

clear variable

>> clear

## Variable

#### • Predefined variables:

- ans
- \* pi
- \* eps
- \* Inf/inf
- NaN/nan
- **\*** ...

#### Common mathematical functions

```
sin>> sin(3)
```

exp>> exp(2)

log/log2>> log(10)/log2(4)

•

Refer to the help document!

#### Matrix and vector

• 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
  
>>  $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9];$   
or  
>>  $A = [1,2,3; \ 4,5,6;7,8,9]$ 

• 
$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$
  
>>  $x = [1;2;3;4;5;6];$   
or  
>>  $x = [1 2 3 4 5 6]'$ 

#### Matrix and vector

Select an element:

$$>> A(3,3)$$
: ans = 9

Select several element:

>> A(1:2;2:3): ans = 
$$\begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}$$

>> x(3:5): ans = 
$$\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$

>> x(3:end)

Get matrix/vector dimension:

$$>> size(A); size(x): ans = 3 3; ans = 6 1$$

## Generating matrix

• C = zeros(3); C = zeros(3,3)

$$>> C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• C = zeros(3,5)

- C = ones(3); C = ones(3,3); C = ones(3,5)
- C = zeros(size(A))

## Generating matrix

repmat(A,2,3)

$$\Rightarrow \Rightarrow \text{ans} = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\ 4 & 5 & 6 & 4 & 5 & 6 & 4 & 5 & 6 \\ 7 & 8 & 9 & 7 & 8 & 9 & 7 & 8 & 9 \\ 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\ 4 & 5 & 6 & 4 & 5 & 6 & 4 & 5 & 6 \\ 7 & 8 & 9 & 7 & 8 & 9 & 7 & 8 & 9 \end{pmatrix}$$

cat(1,A,A); cat(2,A,A)

>> ans = 
$$\begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ 4 & 5 & 6 & 4 & 5 & 6 \\ 7 & 8 & 9 & 7 & 8 & 9 \end{pmatrix}$$
; ans =  $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ 

# Generating vector

- $x = [1 \ 2 \ 3 \dots 100]$ >> x = (1:1:100)
- $x = [1 \ 1.1 \ 1.2 \ ... \ 2] ??$

# Simple matrix operations

- A + B
  - \* means  $A + B = (a_{ij} + b_{ij}) =$   $(a_{ij} + b_{ij})$
- A − B
  - \* means  $A B = (a_{ij} b_{ij}) =$   $(a_{ij} b_{ij})$
- c\*A
  - \* means  $cA = c(a_{ij}) = (c * a_{ij})$
- A\*B
  - \* means  $AB = (a_{ij})(b_{ij}) =$  $(\sum_{k=1}^{l} a_{ik}b_{kj})$

- A^p
  - \* means  $A^p = AA \dots A$
- A\b (not recommended)
  - the solution of Ax=b;
  - using inv(A)\*b instead
- A\B
  - solve AX=B by repeatedly solving Ax=b where b is each column of B in turn and x is the corresponding column of X

# Simple matrix operations

- A.\*B
  - \* means  $(a_{ij} * b_{ij})$
- A./B
  - $\bullet$  means  $(a_{ij}/b_{ij})$
- B.\A
  - means A./B
- A.^p
  - \* means $(a_{ii}^p)$

# Data manipulation commands

Maximum value of vector x

```
>> m = max(x)
>> [m i] = max(x)
```

Maximum value of matrix A

```
>> max(A): ans = 7 8 9
>> max(A(:)): ans = 9
```

 The sum of the elements of the vector x

```
>> sum(x)
```

 The average of the elements of x

```
>> mean(x)
```

- Standard deviation of x>> std(x)
- Sort the elements of the vector x in increasing order
   >> sort(x)
- Euclidean distance of x>> norm(x)
- The matrix norm of A>> norm(A)

# Graphics

• Plot the functions  $y_1 = \sin(x)$  and  $y_2 = e^{\cos(x)}$  for  $x \in [0, 2\pi]$ >> n = 100 >> x = 2\*pi\*(0:n-1)'/(n-1) >> y1 =  $\sin(x)$ >> y2 =  $\exp(\cos(x))$ >> plot(x,y1) >> plot(x,y2)

# Input and output

- The matrix is input by using command:
  - >> load <file name> or load '<file name>' or load('<file name>')
- Read in a file
  - >> fid = fopen('iris.data')
  - >> fileContent = textscan(fid, '%f%f%f%f%s', 'delimiter', ',')
  - fileContent is 1\*5 cell
  - To index an element in fileContent: >> fileContent{i,j}

# Flow control and logical variables

#### for loop:

```
for <variable> = <expression>
    <statement>
    <statement>
end
```

#### example:

```
x = zeros(n, 1);
for i = 1:n
   x(i) = i * sin( i^2 *pi/n );
end
```

#### • if statement:

```
if <logical expression 1>
     <statement group 1>
elseif < logical expression 2>
     <statement group 2>
elseif < logical expression 3>
     <statement group 3>
else < logical expression r>
     <statement group r>
end
```

|                                   |                                      | Logical Operators |                                                                                                                               |
|-----------------------------------|--------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| A & B<br>A   B<br>~A<br>xor(A, B) | AND.<br>OR.<br>NOT.<br>EXCLUSIVE OR. | a && b            | Short-circuit AND. Returns logical 1 (true) or 0 (false). Only evaluates b if a is true.  Short-circuit OR. Returns logical 1 |
| XOI (A, D)                        | EACLUSIVE OR.                        | a     b           | (true) or 0 (false). Only evaluates b if a is false.                                                                          |

# Flow control and logical variables

#### while statement

#### switch command

#### **Function M-files**

- function <out> = <function name>(<in 1>, ..., <in n>)
- Example
  - Calculate the summation

$$S(n) = \sum_{k=0}^{n} \frac{1}{k^2 + 1}$$

# How to improve your programming skills

- Help document
- Read codes from others