```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [2]:
         df=pd.read_csv("C:\\Users\\tejas\\Downloads\\heart.csv")
         df.head()
In [3]:
Out[3]:
                     cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                sex
         0
             52
                  1
                      0
                             125
                                  212
                                        0
                                                1
                                                      168
                                                               0
                                                                      1.0
                                                                             2
                                                                                 2
                                                                                      3
                                                                                             0
                                                                                      3
         1
             53
                  1
                      0
                             140
                                  203
                                        1
                                                0
                                                      155
                                                               1
                                                                      3.1
                                                                             0
                                                                                 0
                                                                                             0
         2
             70
                      0
                             145
                                  174
                                        0
                                                1
                                                      125
                                                               1
                                                                      2.6
                                                                             0
                                                                                 0
                                                                                      3
                                                                                             0
                  1
         3
                                                               0
                                                                                      3
             61
                      0
                             148
                                  203
                                        0
                                                      161
                                                                      0.0
                                                                                             0
                      0
                                                               0
                                                                                      2
                                                                                             0
         4
             62
                  0
                             138
                                  294
                                        1
                                                1
                                                      106
                                                                      1.9
                                                                             1
                                                                                 3
         df.tail()
In [4]:
                                                                                  ca thal targe
Out[4]:
                        ср
                           trestbps chol fbs restecg thalach exang
                                                                    oldpeak slope
               age sex
         1020
                                                                                         2
                59
                     1
                         1
                                140
                                     221
                                           0
                                                   1
                                                         164
                                                                  1
                                                                         0.0
                                                                                2
                                                                                    0
                                     258
         1021
                60
                     1
                         0
                               125
                                           0
                                                   0
                                                         141
                                                                  1
                                                                         2.8
                                                                                1
                                                                                    1
                                                                                         3
                                                   0
                                                                  1
                                                                                         2
         1022
                47
                     1
                         0
                                     275
                                           0
                                                                                1
                                                                                    1
                               110
                                                         118
                                                                         1.0
                                                                                                (
         1023
                50
                         0
                                110
                                     254
                                           0
                                                   0
                                                         159
                                                                  0
                                                                         0.0
                                                                                2
                                                                                         2
                     0
                                                                                    0
         1024
                54
                         0
                                                   1
                                                                  0
                                                                                1
                                                                                         3
                                                                                                (
                     1
                                120
                                     188
                                           0
                                                         113
                                                                         1.4
                                                                                    1
         df.columns.values
In [5]:
         Out[5]:
               dtype=object)
In [6]:
         #checking for null values
         df.isna().sum()
                     0
         age
Out[6]:
                     0
         sex
                     0
         ср
         trestbps
                     0
         chol
                     0
         fbs
                     0
                     0
         restecg
         thalach
                     0
                     0
         exang
                     0
         oldpeak
                     0
         slope
                     0
         ca
         thal
                     0
         target
         dtype: int64
```

```
In [7]: #concise summary of our dataset
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1025 entries, 0 to 1024
         Data columns (total 14 columns):
          # Column Non-Null Count Dtype
         ---
          0 age 1025 non-null int64
                       1025 non-null int64
          1
            sex
          2 cp 1025 non-null int64
             trestbps 1025 non-null int64
chol 1025 non-null int64
fbs 1025 non-null int64
          3
          5
             fbs
          6 restecg 1025 non-null int64
          7 thalach 1025 non-null int64
8 exang 1025 non-null int64
          9 oldpeak 1025 non-null float64
10 slope 1025 non-null int64
                       1025 non-null int64
          11 ca
          12 thal
                       1025 non-null int64
          13 target 1025 non-null int64
         dtypes: float64(1), int64(13)
         memory usage: 112.2 KB
In [8]: #plotting histograms of all numeric values
         df.hist(bins=50,grid=False,figsize=(20,15))
         array([[<Axes: title={'center': 'age'}>, <Axes: title={'center': 'sex'}>,
                 <Axes: title={'center': 'cp'}>,
                 <Axes: title={'center': 'trestbps'}>],
                [<Axes: title={'center': 'chol'}>,
                 <Axes: title={'center': 'fbs'}>,
                 <Axes: title={'center': 'restecg'}>,
<Axes: title={'center': 'thalach'}>],
                [<Axes: title={'center': 'exang'}>,
                 <Axes: title={'center': 'oldpeak'}>,
                 <Axes: title={'center': 'slope'}>,
                 <Axes: title={'center': 'ca'}>],
                [<Axes: title={'center': 'thal'}>,
                 <Axes: title={'center': 'target'}>, <Axes: >, <Axes: >]],
```

dtype=object)

In [9]: #Generating descriptive statistics
 df.describe()

Out[9]:		age	sex	ср	trestbps	chol	fbs	restecg
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000
	75 %	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000

In [11]: Questions=["1)How many people have heart disease and how many people dont have hear
"2)people of which sex has most heart disease?",

In [12]: df.target.value_counts()

[&]quot;3)people of of which sex has which type of chest pain most?",

[&]quot;4)people with which chest pain are most prone to have heart disease?",

[&]quot;5)What is the average age of individuals with heart disease compared to those with

[&]quot;6) How does cholesterol level correlate with the presence of heart disease?",

[&]quot;7)Is there a relationship between exercise induced angina (exang) and the severity

```
Out[12]: target
1    526
0    499
Name: count, dtype: int64

In [13]: df.target.value_counts().plot(kind='bar',color=["orchid","salmon"])
    plt.title("Heart Disease Values")
    plt.xlabel("1=Heart Disease,0= No heart disease")
    plt.ylabel("Amount")
```

Out[13]: Text(0, 0.5, 'Amount')

Heart Disease Values


```
In [14]: #plotting a pie chart

df.target.value_counts().plot(kind='pie',figsize=(8,6))
plt.legend(["Disease","No Disease"])
```

Out[14]: <matplotlib.legend.Legend at 0x25308bc3d10>


```
In [15]: #check how many male and female are in the dataset
    df.sex.value_counts()

Out[15]:    sex
    1    713
    0    312
    Name: count, dtype: int64

In [16]:    df.sex.value_counts().plot(kind='pie',figsize=(8,6))
    plt.title('Male Female Ratio')
    plt.legend(["Male","Female"])

Out[16]:    <matplotlib.legend.Legend at 0x2530b3a0b90>
```

Male Female Ratio

Heart Disease Frequency for sex

chest pain type vs count


```
In [29]: pd.crosstab(df.sex,df.cp)
```

Out[29]: cp 0 1 2 3

 sex

 0
 133
 57
 109
 13

 1
 364
 110
 175
 64

In [30]: pd.crosstab(df.sex,df.cp).plot(kind='bar',color=['coral','lightskyblue','plum','kha
plt.title("Type of chest pain for sex")
plt.xlabel("1=Male,0= Female")

Out[30]: Text(0.5, 0, '1=Male,0= Female')

Type of chest pain for sex


```
In [31]: #Q4
pd.crosstab(df.cp,df.target)
```

Out[31]: target 0 1

```
In [32]: sns.countplot(x='cp',data=df,hue='target')
```

Out[32]: <Axes: xlabel='cp', ylabel='count'>

In [33]: #create a distribution plot with normal distribution curve
sns.displot(x='age',data=df,bins=30,kde=True)

C:\Users\tejas\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: T
he figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[33]: <seaborn.axisgrid.FacetGrid at 0x2530d05ef90>


```
In [40]:
         #Q5
         # Average age of individuals with and without heart disease
         avg_age = df.groupby('target')['age'].mean()
         print("Average age of individuals with and without heart disease:")
         print(avg_age)
         Average age of individuals with and without heart disease:
         target
         0
              56.569138
         1
              52,408745
         Name: age, dtype: float64
In [41]: # Bar chart for average age
         plt.figure(figsize=(8, 5))
         sns.barplot(x=avg_age.index, y=avg_age.values, palette='viridis')
         plt.title('Average Age of Individuals with and without Heart Disease')
         plt.xlabel('Heart Disease (0: No, 1: Yes)')
         plt.ylabel('Average Age')
         plt.xticks(ticks=[0, 1], labels=['No Heart Disease', 'Heart Disease'])
         plt.show()
```

Average Age of Individuals with and without Heart Disease


```
In [42]: # Q6. Correlation between cholesterol level and heart disease
         cholesterol_corr = df[['chol', 'target']].groupby('target').mean()
         print("\nAverage Cholesterol Level based on Heart Disease presence:")
         print(cholesterol_corr)
         Average Cholesterol Level based on Heart Disease presence:
                       chol
         target
                 251.292585
                 240.979087
In [43]:
         # Bar chart for average cholesterol
         plt.figure(figsize=(8, 5))
         sns.barplot(x=cholesterol_corr.index, y=cholesterol_corr['chol'], palette='rocket')
         plt.title('Average Cholesterol Level based on Heart Disease Presence')
         plt.xlabel('Heart Disease (0: No, 1: Yes)')
         plt.ylabel('Average Cholesterol Level')
         plt.xticks(ticks=[0, 1], labels=['No Heart Disease', 'Heart Disease'])
```

plt.show()

Average Cholesterol Level based on Heart Disease Presence


```
# Q7. Relationship between exercise induced angina and heart disease
exang_count = df.groupby(['exang', 'target']).size().unstack(fill_value=0)
print("\nCount of Exercise Induced Angina based on Heart Disease presence:")
print(exang_count)
```

```
Count of Exercise Induced Angina based on Heart Disease presence: target 0 1 exang 0 225 455 1 274 71
```

```
In [45]: # Bar chart for exercise induced angina
    exang_count.plot(kind='bar', stacked=True, figsize=(8, 5), color=['lightblue', 'sal
    plt.title('Count of Exercise Induced Angina based on Heart Disease Presence')
    plt.xlabel('Exercise Induced Angina (0: No, 1: Yes)')
    plt.ylabel('Count')
    plt.xticks(ticks=[0, 1], labels=['No Angina', 'Angina'], rotation=0)
    plt.legend(title='Heart Disease', labels=['No Heart Disease', 'Heart Disease'])
    plt.show()
```


In []: