

Anton Vooren

Expanding ADMIRE's Aerodynamic Envelope for High Angles of Attack

Swedish Defence Research Agency System Technology Division SE-172 90 STOCKHOLM Sweden FOI-R--0771--SE January 2002 1650-1942

Technical report

Anton Vooren

Expanding ADMIRE's Aerodynamic Envelope for High Angles of Attack

Issuing organization	Report number, ISRN	Report type			
Swedish Defence Research Agency	FOI-R0771SE	Technical report			
System Technology Division	Research area code				
SE-172 90 STOCKHOLM Sweden	Vehicles				
Sweden	Month year	Project no.			
	January 2002	E6113			
	Customers code				
	Aeronautical Research Sub area code				
	Air Vehicles Technologie	es			
Author/s (editor/s)	Project manager				
Anton Vooren	Lars Forsell, Gunnar Hov	vmark			
	Monica Dahlén Sponsoring agency				
	Sponsoring agency				
	Scientifically and technically resp	ponsible			
	Lars Forsell, Gunnar Ho	vmark			
Report title	,				
Expanding ADMIRE's Aerodynamic Envelope for High	Angles of Attack				
Abstract					
The aim of this report is to expand the aerodynamic database of an aircraft model called ADMIRE (Aero-Data Model In a Research Environment). The aircraft is a generic canard-delta configuration and the expansion has focused on it's angle of attack range. The new aerodynamic database is developed according to present theory on high angle of attack aerodynamic for close-coupled delta-canard configuration and compared with the X-31A aircraft. The angle of attack limit has been expanded from 30 degrees to 90 degrees and includes the effect of canard and elevon deflection. Fundamental increments of pitching moment, normal force and tangential force as functions of angle of attack have after the expansion been added to the original database. The result is an aircraft with realistic controllability and behaviour at high angles of attack in longitudinal direction, but with unrealistic roll accelerations. This report is a master's thesis governed by the Department of Aeronautics at KTH and carried out on behalf of the Swedish Defence Research Agency.					
Keywords					
ADMIRE, high angle of attack, aoa, modelling, GAM, si	imulation, delta, canard, clos	e coupled			
Further bibliographic information	Language				
	English				
ISSN	Pages				
1650-1942	57				
Distribution	Price Acc. to pricelist				
By sendlist	•				
	Security classification Unclassified				

Utgivare	Rapportnummer, ISRN	Klassificering			
Totalförsvarets forskningsinstitut	FOI-R0771SE Teknisk rapport				
Avdelningen för Systemteknik	Forskningsområde				
SE-172 90 STOCKHOLM Sweden	Farkoster				
Sweden	Månad, år	Projektnummer			
	Januari 2002	E6113			
	Verksamhetsgren Flygteknisk forskning				
	Delområde				
	Flygfarkostteknik - övrig	·t			
Författare/redaktör	Projektledare	jt			
Anton Vooren	Lars Forsell, Gunnar Hov	vmark			
	Godkänd av				
	Monica Dahlén				
	Uppdragsgivare/kundbeteckning				
	Tekniskt och/eller vetenskapligt a	nsvarig			
	Lars Forsell, Gunnar Hov	vmark			
Rapportens titel					
Utvidning av ADMIREs Aerodynamiska Underlag för H	öga Anfallsvinklar				
Sammanfattning					
Samana					
Syftet bakom denna rapport är att utöka den aerodynamiska databasen för flygplansmodellen ADMIRE (Aero-Data Model In a Research Environment). Modellen beskriver en generisk delta-nosvingekonfiguration. Utvidgingen av enveloppen är fokuserad till anfallsvinkeln (α). Den nya aerodynamiska databasen har utvecklats i enlighet med de senaste teoriena om hög-alfa aerodynamik för en så kallad "close-couplednosvinge-deltakonfiguration och har jämförts med databasen för X-31A. Modellens giltighet har ökats från 30° till 90° anfallsvinkel och inkluderar effekt från båda nosvingen och bakkantsrodren. Fundamentala bidrag till tippmomentet, normal- och tangential-kraften som funktion av anfallsvinkeln har inkorporerats i den ursprungliga databasen. Resultatet är en flygplansmodell med realistiska egenskaper och styrbarhet vid höga anfallsvinklar i longitudinell led, men med orealistiskt hög rollacceleration. Detta arbetet har utförts som ett examensarbete på Institutionen för Flygteknik/KTH och har utförts vid Avdelningen för Systemteknik/FOI					
Övriga bibliografiska uppgifter	Språk				
	Engelska				
ISSN	Antal sidor				
1650-1942	57				
Distribution					
Enligt missiv					
	Sekretess Öppen				

Contents

	Symbols and Abbreviations	1 2
1	Introduction 1.1 Generic Aero-data Model (GAM)	3 3 5 5
2	Methodology2.1Summary of Methodology2.2Extracting the Aerodynamic Data2.3Aerodynamic Data From Other aircraft2.4Implementation	7 7 7 7 9
3	Theory 3.1 Vortex Systems on Slender Bodies	11 11 12 13
4	Results4.1 Basic Coefficients	15 15 15 20 22
5	Conclusion5.1 Assessment of Realism and Usefulness5.2 Further Work	25 25 25
Bi	bliography	28
A	ADMIRE Coefficient Structure A.1 Longitudinal Coefficients for Mach Numbers Below 0.4	29 29 30 31
В	ADMIRE High Angle of Attack in AER format B.1 Basic increments for $C_m(\alpha)$, $C_N(\alpha)$ and $C_T(\alpha)$. B.2 $C_m(\bar{\delta}_n, \alpha)$. B.3 $C_m(\bar{\delta}_e, \alpha)$. B.4 $C_N(\bar{\delta}_n, \alpha)$. B.5 $C_N(\bar{\delta}_e, \alpha)$. B.6 $C_T(\bar{\delta}_n, \alpha)$. B.7 $C_T(\bar{\delta}_e, \alpha)$.	33 34 35 37 39 42 44 46
C	Block Diagram for ADMIRE Extract & Plot	49

Symbols and Abbreviations

The symbols and abbreviations used in this report are listed below. In the bibliographed literature the use of symbols is not coherent, partly because of different configurations used. Most of the symbols are extracted from the GAM, see Backström [1], although sometimes modified to harmonize with common notation. The coefficients subscripts used in the GAM are left unaltered while symbols have been changed from FORTRAN variable names to textbook style notation (for example DEI $\longrightarrow \delta_{ei}$). The GAM's original abbreviations used in the aerodynamic tables can be seen in section A.3.

q_∞	Free stream dynamic pressure	N/m^2
$q_{a,corr}$	Non-dimensional $q_{\infty} \cdot \frac{1}{10000}$	
V_t	Aircraft velocity	$m/_{S}$
M, M_{∞}	Mach number and free stream Mach number	
Re_C	Reynolds Number depending on mean aerodynamic chord	
h	Altitude	m
S_{ref}	Wing reference area	m^2
b_{ref}	Wing reference span	m
\bar{c}_{ref}	Mean aerodynamic chord	m
C_D	Drag coefficient	
C_d	Drag coefficient for a 2 dimensional body	
C_L	Lift coefficient	
C_N	Normal force coefficient	
C_T	Tangential force coefficient	
C_C	Side force coefficient	
C_m	Pitching moment coefficient	
C_l	Rolling moment coefficient	
C_n	Yawing moment coefficient	
$ar{\delta}_e$	Mean elevon deflection (positive deflection downwards)	rad
δ_{ei} , δ_{ey}	Inner and outer elevon deflection (positive deflection downwards)	rad
$\bar{\delta}_n$	Mean canard deflection (positive deflection downwards)	rad
δ_{le}	Leading edge deflection (positive deflection upwards)	rad
δ_{ai}	Difference between inner elevon angle on either side	rad
δ_{ay}	Difference between outer elevon angle on either side	rad
δ_r	Rudder deflection (positive deflection right)	rad
cai	Engine mass flow ratio	
eieff	Aeroelastic effect on inner elevon	
eoeff	Aeroelastic effect on outer elevon	
α	Angle of attack (positive is nose up)	rad
ά	Angle of attack rate	$rad/_{S}$
β	Sideslip angle (positive is nose left)	rad
θ	Pitch attitude	rad
p, r, q	Roll, yaw and pitch rate (body fixed coordinate system)	$rad/_{S}$
\dot{p},\dot{r},\dot{q}	Angular accelerations	$rad/_{S}^{2}$
$ar{p},ar{r},ar{q}$	Dimensionless angular velocity	
n_z	Load factor in body fixed frame of reference (B)	

Frames of Reference Used

The frames of reference used for this report are a body fixed frame of reference (F_B) and a frame of reference from which all coefficients are calculated (F_U) . The frames of reference can be seen in Figure 1 where the arrows indicate positive direction. The body fixed frame of reference has its origin in the center of gravity (O_B) . O_U is then placed with certain distance from O_B depending on for example aerodynamic center.

Figure 1: Body fixed frame of reference O_B and the aerodata frame of reference O_U

1. Introduction

The aim of this master's thesis is to expand the aerodynamic database of an existing aircraft model, to make an open model with a wide angle of attack range available.

In 1996 SAAB AB and KTH released an unclassified Generic Aero-data Model called GAM, see Backström [1]. The GAM was developed to have the complexity of a real aircraft model, and should for aerodynamic purposes be looked upon as a small single-seat, single engine fighter aircraft with a delta canard configuration.

Since the GAM is open and available for anyone interested, the Aeronautical Research Institute of Sweden (FFA), now merged with the Swedish Defence Research Establishment (FOA) to form the Swedish Defence Research Agency (FOI), has used it as an aerodynamic base in studies on aircraft modelling and control system design and testing. One application is the Aero-Data Model In a Research Environment called ADMIRE, see Forssell et al. [8], which has been used for research on the implementation of flight control system on complex aerodynamic data and for general simulations in the Flight Dynamics Simulator called FENIX¹.

During the flight simulator tests in the GARTEUR² AG-12 project regarding PIO³, the runs were frequently aborted because the aircraft angle of attack and sideslip angle exceeded the limits in the aerodynamic database. If the limits had been wider, the excursions in pitch, yaw and roll could have been studied in a more realistic way. A wider angle of attack envelope would also be useful for tests with thrust vectoring and post-stall manoeuvres.

One problem is the lack of geometrical data. Except for reference data needed to calculate forces and moments, no other information about the GAM exist such as whether the canard is long or close-coupled and what the horizontal and vertical distances are between canard and wing. One alternative other than expanding the existing aerodynamic data, is to design a new virtual fighter and extract the aerodynamic data with the help of CFD⁴. This would, though, require much computer time and resources and does include risk of incorrect data and an aircraft with unpleasant characteristics. According to Bergmann and Hummel [5], considerable discrepancies occur between numerical and experimental data for higher angles of attack than 20 degrees.

Since the general configuration is known, like canard and delta wing, comparison can be made to similar fighters. Not many fighters have open sources though, but the aerodynamic data for the X-31A [3, 12, page 227-228] is open and has been used in this report.

The following report is a master's thesis at KTH with Professor Ulf Ringertz as examiner and has been executed at FOI with Lars Forssell and Gunnar Hovmark as supervisors. It is written for students at a masters degree level and requires basic knowledge in aerodynamics and stability. The ADMIRE is available at http://www.foi.se/admire/ and the contact address is mailto:admire@foi.se.

1.1 Generic Aero-data Model (GAM)

The GAM is a delta canard fighter whose known measurements are in Table 1.1 except for reference values for control surfaces. No other open information about the geometry exists,

¹see http://www.foi.se/fenix/eng/

²Group for Aeronautical Research and Technology in EURope

³Pilot Involved Oscillations

⁴Computational Fluid Dynamics

Component	Value	Unit
wing area (S_{ref})	45.00	m^2
canard area (S_c)	3.20	m^2
wing span (b_{ref})	10.00	m
canard span (b_c)	2.60	m
wing chord (mean) (\bar{c}_{ref})	5.20	m
canard chord (c_c)	1.30	m
Mass (gross)	9100	kg
$I_{\scriptscriptstyle X}$	21000	kgm ²
$I_{\rm v}$	81000	kgm ²
I_z	101000	kgm ²
$I_{\chi_{\mathcal{Z}}}$	2500	kgm ²

Table 1.1: Nominal GAM configuration data as defined in ADMIRE

although a very general picture is shown in Figure 1.1. Compared to e.g JAS-39 Gripen [12, page 472-475], the GAM's wing area and span are bigger and the wing loading lower. The GAM's control surfaces consist of four wing trailing edge control surfaces, here called elevons, two wing leading edge control surfaces, here called leading edge flaps, one tail trailing edge control surface called rudder and a fully moveable canard (see Figure 1.1).

The GAM consists mainly of the aerodynamic data tables saved in SAAB's own "aer" format together with certain program routines. These are Fortran routines for summations of forces and moments, routines that look up the aerodynamic data and routines to make the linear interpolation in the aerodynamic tables.

Figure 1.1: The GAM model as it is used for ADMIRE. The original SAAB picture (leading edge flap and engine differ) can be found in Backström [1] (aircraft is not to scale)

The GAM aerodynamic database is valid up to the Mach number 2.5. For Mach numbers below 0.4, the angle of attack range from -10° up to 30° and the sideslip angle from -20° to 20° . Expanding the angle of attack range is for structural reasons only interesting in the low speed domain, which is below Mach 0.4.

To visualise the GAM's entire envelope, Figure 1.2 from Backström [1] has been included. The deflection of canard and elevon follows the right hand rule in a body fixed frame of reference. This implies that a positive deflection is when the trailing edge of the respective control surface moves down. The canard has a deflection of -55° to $+25^{\circ}$ and the elevon deflection range from -30° to $+30^{\circ}$. The leading edge has opposite signwise notation and it deflects from -10° to $+30^{\circ}$.

Figure 1.2: The GAM envelope

1.2 Aero-Data Model In Research Environment (ADMIRE)

ADMIRE (see Forssell et al. [8]) is an aircraft model with a flight control system and the GAM as its aerodynamic base. Most of the original Fortran routines have without significant changes been translated to C except for the aerodynamic table look-up routines that have been superseded by new and more effective C routines developed at FFA. An F-16 [11, page 640] engine has also been added together with a thrust-vectoring system. Since it was difficult to find the optimum settings for the leading edge flaps, these are fixed in ADMIRE at zero degrees.

In the rest of this report, the model will be referred to as ADMIRE, since there may be some differences between the GAM and ADMIRE characteristics caused for example by the different look-up and interpolation routines.

1.3 Acknowledgements

The author wishes to thank: FOI for allowing this project and specially the supervisor Gunnar Hovmark and Lars Forssell, Dag Wallström at FOI for valuable aerodynamic discussions and my beloved wife Carina for support and patience.

Credit for the occasionally good English language in this report should be given to Paul Morland and Gunnar Hovmark.

2. Methodology

2.1 Summary of Methodology

To be able to evaluate ADMIRE's existing data, the individual coefficients (see section A.3) have to be plotted for selected variables. Therefore MATLAB¹(see [14]) programs have been written where coefficient and variables can be individually chosen together with plot method. To evaluate these coefficients when added together, for example the aerodynamic longitudinal coefficients C_N , C_T and C_m , a copy of the Simulink² model of ADMIRE has been modified to exclude all non-stationary (dynamic) data. This way a wind tunnel measurement is simulated and comparable coefficients can be extracted.

Aerodynamic data from the X-31A are found to be suitable to a certain extent for comparison with ADMIRE. The X-31A data were scanned in from Reference [4] and plotted together with the output from the virtual wind tunnel. For every sweep in angle of attack from 30 to 90 degrees with constant control surface settings, a path of points is drawn. This path is based on the data from the X-31A together with present theory (see Chapter 3) and is later interpolated with a spline curve. The resulting curve is saved in steps of one degree between 30 and 90 degrees in the "aer" format. The new data tables are then implemented in the existing ADMIRE model and tested in the FOI simulator FENIX together with general tests in Simulink.

2.2 Extracting the Aerodynamic Data

To find the total aerodynamic data for the ADMIRE comparable to other aircraft, the coefficient parts shown in Appendix A have to be summed together at the preferred state (see example in Eq. 2.1).

$$C_T = C_{T_{basic}} + C_{T_{alpha}} + C_{T_{dei}} + C_{T_{dev}} + C_{T_{dedn}} + C_{T_{dn}} + C_{T_{dle}} + C_{T_{beta}} + C_{T_{da}} + C_{T_{dr}}$$
(2.1)

ADMIRE extracts data from the aerodynamic database for every new time step in the simulation and uses a linear interpolation function between the points in the database. The resultant coefficient is then used to find the static and dynamic behavior of the aircraft. If the dynamic part of ADMIRE is taken away, only the database look-up system and summation are left which is a suitable way of extracting the total static coefficients. The resulting simplified Simulink version of ADMIRE is implemented by Gunnar Hovmark, FOI, and called "ADMIRE Extract & Plot". Its Simulink scheme can be seen in Appendix C (time in this model is only used to stride through the states wanted). The input for the Simulink program is created in a MATLAB batch file that also extracts the result and plots it.

In contrast to the case in this report, total coefficient for most aircraft are found by using a wind tunnel. For example the well known C_L curve is easily found this way. With the method above, similar comparable static coefficients can be found.

2.3 Aerodynamic Data From Other aircraft

In the 80's, high angle of attack research had a high priority at several defence agencies. The need for highly manoeuvrable aircraft overtook the need for merely fast aircraft as experience

¹MATLAB is a trademark of Mathworks and a language for technical mathematical computing

²Simulink is a trademark of Mathworks and is used for model-based and system-level design

indicated that both manoeuvrability and speed proved important for an aircraft's survivability. The values of these aircraft's aerodynamic coefficients cannot be used directly because of differences in geometry, but the tendencies can give a hint of how ADMIRE's aerodynamic coefficients should be extrapolated.

Several aircraft have been evaluated as possible candidates for comparison with the AD-MIRE. The usable aerodynamic data available at FOI is limited to the HIRM, the F-16 and the F-18 (HARV) [2, 12, page 653] because of the open nature of the project. Most modern military aircraft developers are very secret about achieved data like EADS (Eurofighter 2000 [12, page 205-208]) and Mikoyan-Gourevitch (the MIG planes [12, page 392] besides the fact that there exists only a few unstable delta canard fighters. The most obvious source for aerodynamic data would be the Jas-39 Gripen [12, page 472-475] because of its origin, but this aircraft is unfortunately also classified.

Since ADMIRE is a canard delta aircraft with most likely a close-coupled canard, aircraft with the same characteristics are the most interesting. Only very few operative military aircraft are of this type. Table 2.1 shows the evaluated fighters and their relevance to this project. The MIG³ fighter, Su fighters⁴ and the Ye-8⁵ are all Russian, the Rafale⁶ is French, the JAS-39⁷ Swedish, the Lavi⁸ Israeli, the Eurofighter⁹ and HIRM (only drop model) European while the rest are American¹⁰. The Russian fighters and the HIRM are all equipped with both canards and conventional tailplanes, and except for the MIG-1.42 MFI, their canards are very small.

		Open	Canard /	Close-
Name	Company	source	Delta	Coupled
F-16 Fighting Falcon	Lockheed Martin	$lpha ightarrow 45^\circ$	No	N/a
F/A-18 HARV	McDonnel Douglas	$\alpha \rightarrow 90^{\circ}$	No	N/a
HIRM	Garteur / DRA	$\alpha \rightarrow 120^{\circ}$	Yes	No
X-31A EFM	Rockwell / DASA	$lpha ightarrow 67^{\circ}$	Yes	No
Eurofighter 2000	EADS	No	Yes	No
Rafale	Dassault	No	Yes	Yes
MIG-1.42 MFI	MiG Corp. / MAPO	No	Yes	Yes
Su-32,-35	Sukhoi	No	Yes	Yes
Ye-8	MiG Corp. / MAPO	No	Yes	No
JAS-39 Gripen	SAAB	No	Yes	Yes
Lavi	Rafael	No	Yes	Yes

Table 2.1: Evaluated fighter aircraft

As seen from Table 2.1, only the X-31A and the HIRM are interesting and since the HIRM is a stable aircraft with very sparse data at high angles of attack, the X-31A is chosen to be the main source of aerodynamic data.

The X-31A is the most promising aircraft to compare with ADMIRE because of its similarity (canard and unstable), its amount of research data and because it has been used for high angle of attack research. It's however smaller and does have a long-coupled canard. The X-31A's coefficients are found in Banks et al. [4] and gathered in a MATLAB file to be compared with those from the ADMIRE. They were found to correlate enough to draw some conclusions. The geometry for the X-31A compared with the ADMIRE can be found

 $^{^3\}mathbf{See}$ http://www.aeroworldnet.com/lra01189.htm and http://angela.ctrl-c.liu.se/misc/ram/i-42.html

⁴See official homepage http://www.sukhoi.org and http://angela.ctrl-c.liu.se/misc/ram/su-35.html

⁵See http://angela.ctrl-c.liu.se/misc/ram/ye-8.html

 $^{^6} See \ \texttt{http://www.dassault-aviation.fr/defense/gb/Favions armes.cfm?ss_rubrique=rafale}$

⁷See official homepage http://www.gripen.saab.se

⁸See http://military.topcities.com/israel/lavi.htm

⁹See http://www.eurofighter.com/

 $^{^{10}} See \; \texttt{http://military.topcities.com} \; or \; \texttt{http://www.fighter-planes.com}$

	Value		
Component	X-31A	ADMIRE	Unit
wing area	21.0	45.0	m^2
canard area	2.2	3.2	m^2
wing span	7.3	10.0	m
wing chord (mean)	3.7	5.2	m
Mass	7300	9100	kg
$I_{\scriptscriptstyle X}$	45700	21000	kgm ²
$I_{\rm y}$	612000	81000	kgm ²
I_z	635000	101000	kgm ²

Table 2.2: Nominal X-31A and ADMIRE configuration data

in Table 2.2.

The coefficients available from the X-31A data set in Banks et al. [4] are three moments and three forces in the body fixed frame of reference together with C_L and C_D . The variables are canard, leading edge, elevon and rudder deflection together with speed brake and thrust vectoring. The exterior has also been changed during the test; particularly the nose, inlet and leading edge extension. The tables chosen are from the X-31A when it is configured with a flow through inlet, basic geometry nose, nose boom in its lowest position (N6), a strake of type S12 together with a basic type of leading edge without extension. The table for low angle of attack with neutral control surfaces is called "run 694" and for high angle of attack "run 670". Tables used for canard and elevon deflection are "run 668" through "run 674" together with "run 628" and "run 635". The canard deflection is denoted as δ_c and has a range from -60 degrees to 20 degrees. As a symbol for elevon deflection, $\delta_{f,TE}$ is used, which spans from -30 to 30 degrees. The X-31A leading edge deflection is denoted as $\delta_{f,LE}$.

No instationary effects are found in the X-31A data tables and no aeroelastic dependence or similar complicated data. Still, the huge difference in inertia between the X-31A and the ADMIRE indicate future differences in pitching moment and the influence magnitude from control surfaces. It can also be mentioned that the X-31A's ratio between main wing area and canard wing area is 9.5 which is to be compared to 14.0 for the ADMIRE. For that reason, the X-31A's canard can be more effective or, because of the long coupling between canard and wing, less effective than the ADMIRE's canard. The discrepancies between the X-31A and the ADMIRE will make the comparison harder.

2.4 Implementation

Since it has been impossible to extend all of the coefficient parts in Appendix A), only the most important inputs are extended for high angle of attack. For longitudinal motion the canard and elevon deflection are chosen. The resultant coefficients are divided into a main coefficient depending only on angle of attack and two parts depending on angle of attack and respective control surface deflection as seen in equation 2.2.

$$C_{N} = C_{N}(\alpha) + \Delta C_{N}(\bar{\delta}_{n}, \alpha) + \Delta C_{N}(\bar{\delta}_{e}, \alpha)$$

$$C_{T} = C_{T}(\alpha) + \Delta C_{T}(\bar{\delta}_{n}, \alpha) + \Delta C_{T}(\bar{\delta}_{e}, \alpha) \quad , \text{ for } \alpha \in (30^{\circ}..90^{\circ}]$$

$$C_{m} = C_{m}(\alpha) + \Delta C_{m}(\bar{\delta}_{n}, \alpha) + \Delta C_{m}(\bar{\delta}_{e}, \alpha)$$

$$(2.2)$$

Since not all derivatives have been extended for the coefficients, it is likely to be differences in coefficient value when shifting from the original aerodynamic tables to the new ones for high angles of attack. One example is deployment of landing gear: The aircraft enters the extended envelope with landing gear retracted and extends it while angle of attack is above 30 degrees. This will give an increase in drag and change the moment curve, which is not covered in the extended envelope. Other examples are speed dependency and sideslip angle dependency.

To solve the blending of old and new coefficients, all coefficients depending on angle of attack keep as default their edge value when the aircraft is at an angle of attack of more than 30 degrees in ADMIRE. Therefore the new coefficients for high angles of attack are subtracted with the edge value and added as a difference as illustrated for the pitching moment coefficient C_m in Figure 2.1.

Figure 2.1: The original GAM $C_m(\alpha)$, the new high angle of attack increment and the combination of both

For the angle of attack dependent coefficient parts, the ones depending on angle of attack only and the ones depending on canard and elevon deflection will then change for angles of attack higher than 30 degrees. The rest of the angle of attack dependent coefficients will contribute with their edge value in the high angle of attack range.

Further implementations in ADMIRE not presented in this report consist of ADMIRE compilation and preparations for use in the real-time simulator FENIX, together with general changes needed in ADMIRE to include new aerodynamic data tables.

3. Theory

The ADMIRE aerodynamic characteristics for high angles of attack are governed by the interference between canard and wing vortices and their breakdown. In addition to these systems, the forebody vortices affect not only the canard and wing pressure coefficients but can for a missile body also create side forces (C_c) stronger than C_{Lmax} (Champigny [6]). The Institute of Fluid Mechanics at the Technical University in Braunschweig, Germany, has carried out much research on vortex issues and will be quoted extensively. General understanding about vortices can be gathered from Rom [15, Chap. 2,3,5,6]. The theory together with the aerodynamic data from similar aircraft will be the foundation for the new extended longitudinal ADMIRE database.

Vertical and horizontal canard distance with respect to main wing is not known for AD-MIRE. From its original aerodynamic coefficients it can be seen that the derivative of C_L indicates stall after approximately 35 degrees. Stall is in this report defined as full canard and wing vortex breakdown. It occurs at a slightly higher angle of attack than $\alpha(C_{Lmax})$. Hummel and Oelker [10] have found that longitudinal positioning of canard within close-coupled domain gives a full stall around 35 degrees whilst the long-coupled canard system, on i.e. the X-31A, gives a full stall at 30 degrees.

The discussion above indicates that ADMIRE has a close-coupled canard and that will, according to Eugene [7], affect its aerodynamic characteristics. Together with the assumption about close-coupled canard, it will also be assumed a slender body and placement of canards and wings that ensure a good aerodynamic design without abrupt features.

In the following discussion, angle of attack is the wing, forebody or canard angle towards the free stream denoted α , the effective angle is the angle of attack that the surface really experiences in the near-flow field and the induced angle is the change in angle of attack because of an upwash or downwash field induced from another surface.

3.1 Vortex Systems on Slender Bodies

As already mentioned, three vortex systems are likely to appear at high angle of attack on a fighter with slender body, delta canard and delta wing. All three systems depend highly on geometry of which little is known. Still some qualitative conclusions can and will be drawn.

At angles of attack higher than approximately 5 degrees, vortices will start to form on both sides of the forebody. For higher angles of attack the theory is complex and is still a matter for discussion however this report will draw upon Champigny [6] and Stavöstrand [16]. As long as the vortex system is stable, the vortices will ensure high-energy flow over the canard and to some extent over the wings. Their breakdown will with increasing angle of attack travel forward to the vortex origin, and most likely become asymmetric before they disappear (i.e. go from unstable symmetric flow to stable asymmetric flow).

The asymmetric tendencies for fighter slender bodies seem to start at around 30 degrees angle of attack and end around 60 degrees. Also, it does not seem to occur at Mach numbers above 1.15. What triggers this behaviour is still not agreed on, but one explanation is that this happens because the two contrarotating vortices become strong and are very close to each other so that a small sideslip angle or perturbation will make one of the vortices stronger and suppress the other. Both vortices create a suction force on the side of the body and will therefore create a yawing moment when asymmetric. The result of the yawing moment will include some sideslip angle which will shadow the strong vortex and support the suppressed

vortex to grow strong again with a side force of opposite magnitude as result. An illustrative figure can be seen in Stavöstrand [16, Fig. 3]. The asymmetric behavior can be of damping or accelerating nature throughout the alpha domain where it appears. The secondary effect is that the extra lift on canards and wings will vary together with the asymmetric pulsing of vortices which create a rolling moment sometimes called "wing ock". The canard vortex system formation is the same as on a delta wing according to Bergmann and Hummel [5]. The primary vortex will start in the intersection between canard leading edge and fuselage, followed by a secondary vortex travelling on the underside which together will be merged with the trailing edge vortex and travel towards the wing. Depending on the vertical position of the canard with respect to the wing, the canard vortex system will interact with the flow over the wing containing wing and fuselage vortices. (An illustrative picture made by Tuncer et al. [17, Figure 7] can be found in Figure 3.1.)

The wing vortex system develops in much the same way as the canard vortex system, but will be influenced by the canard vortices. This vortex system can also be seen in Figure 3.1. The wing vortex system tends to push the canard as well as fuselage vortex system (the last one not shown in figure) against the root of the wing. The wing vortex build up will be delayed because of the canard vortex system suppressing flow separation at the wing leading edge. In addition, the downwash of the canard gives the wing a lower effective angle (the sum of angle of attack and angle of canard downwash field).

Figure 3.1: Computed turbulent flow over a delta canard configuration at $\alpha = 20^{\circ}$, $M_{\infty} = 0.2$ and $Re_C = 0.32 \cdot 10^6$. Fuselage vortex is not shown.

When angle of attack is higher than 35 degrees, full stall can (as described above) be assumed for a canard delta configuration. The flow field behind wing and canard will then have the characteristics of a wake. As mentioned above, some stable asymmetric vortices from the forebody can appear, flowing like a Karman gate and cause lift on either wing to vary dramatically with time.

3.2 Mutual Influence

The forebody will for all positive angles of attack create an upwash field which again will give the canard an induced angle of attack. The wing also has this effect on a close-coupled canard because it creates an upward flow around the wing leading edge and therefore an upwash flow

field in front of the wing where the canard is placed. This implies that the canard effective angle of attack is higher than α and the canard will therefore stall at an α less than 35 degrees.

From Figure 3.2 it can be seen that $\bar{\delta}_n = 5^\circ$ and $\alpha = 0^\circ \Rightarrow C_m(\bar{\delta}_n, \alpha) \approx 0$. To keep the moment zero for even higher angle of attack, approximately the same effective canard angle of attack is required. Another look at Figure 3.2 shows that zero pitching moment at 30 degrees angle of attack requires -30° canard deflection which, when compared to $C_m(\bar{\delta}=0,\alpha=0^\circ)$ indicates an upwash from the forebody of 5° . These results can be used to predict $C_m=0$ for higher angle of attack. Another result is that the point where the canard does more harm than good is in the upper right side of Figure 3.2 when pitching moment C_m decreases for increasing canard deflection (No explanation will be given for the phenomena occurring when $\alpha \in [-10^\circ..0^\circ]$ and $\bar{\delta}_n \in [0^\circ..-55^\circ]$). The reason for the steep increase in C_m even after the canard has stalled, is probably because of vortex breakdown at wing trailing edge that moves the aerodynamic centre forward and gives an increased nose up moment C_m .

Generally, every control surface deflection will cause increased drag. The effect from the canard on the normal force is the extra lift created. This is seen as an increase in lift for decreasing canard deflections until canard stall. An increasing tangential force is seen for all positive or negative lift-creating canard angles. The negative tangential forces are believed to originate from the so called nose-suction produced by the wing. Nose-suction varies with the lift produced, which is to say that this effect should decrease when the wing stalls. After stall, the tangential force should approach zero for every canard and elevon setting when angle of attack is approaching 90 degrees.

High angle of attack will also lead to loss in elevon effectiveness due to the change in flow at the wing trailing edge. This leads to less controllability in pitch and roll. Principally, a positive deflection of elevons will give a wing with increased lift and consequently drag. Depending on the center of gravity position in respect to the aerodynamic center, the increased lift and drag will cause a pitching moment C_m of some degree.

Figure 3.2: Contour plot of coefficient $C_m(\bar{\delta}_n, \alpha)$ extracted from the original GAM database

3.3 Known Points at 90 Degree Angle of Attack

An aircraft flying level with zero angle of attack will have $C_N = C_L$ and $C_T = C_D$. When an aircraft has an angle of attack of 90 degrees, $C_L = C_T \approx 0$ (see Equation 3.1 and 3.4). It can also be assumed that $C_N \approx C_D$ when the angle of attack is 90 degrees (see Equation 3.3) and that it is roughly the same as the aircraft's maximum drag at a given speed.

$$C_L = C_N \cdot cos(\alpha) - C_T \cdot sin(\alpha) \tag{3.1}$$

$$C_N(\alpha = 90^\circ) = C_D(\alpha = 90^\circ) \tag{3.3}$$

$$C_T(\alpha = 90^\circ) = C_L(\alpha = 90^\circ) \approx 0$$
 (3.4)

If the normal force for a cylinder with an ogive nose is scaled to have same $C_N(\alpha = 90^\circ)$ as a fighter with a delta canard configuration, their normal and tangential force coefficient will in theory look like in Figure 3.3. In this Figure, the cylinder plot has been derived from Jorgensen [13].

Figure 3.3: Coefficient $C_N(\alpha)$ and $C_T(\alpha)$ for a delta canard and a cylinder with ogive nose

Although C_N or C_D at $\alpha = 90^\circ$ are not so easy to calculate, a rough estimate can be readily established. If a few measures are guessed, like the area of the underside between the canards being equal to $2 m^2$, then the total area that can be predicted as a plate is $50 m^2$ (see Table 1.1). The nose (and engine exhaust) can be predicted as having a square cross section with rounded corners. According to Jorgensen [13, Table 1] given a high Reynolds number, a square cross section with rounded corners where radius is half the width, has a $C_d \approx 1.2$. Estimating this to be valid for the ADMIRE 3D body will give a $C_D \approx 1.2$. For a flat plate, Hoerner [9] estimates drag to be $C_D = 1.7$. This leads to Equation 3.5 and the maximum C_D . It is important to state that the wing is not a flat plate because some kind of profile is used. Therefore this estimation is probably too high and should be used accordingly.

$$C_N(\alpha = 90^\circ) = \frac{C_{plate} \cdot (S_{wing} + S_{canard} + S_{underside}) + C_{square} \cdot S_{nose}}{S_{ref}}$$

$$= \frac{1.7 \cdot 50 + 1.2 \cdot 4}{45} \approx \underline{2.0}$$
(3.5)

Besides the gravitation which can be counteracted with engine force, no force will have its direction across the airstream when angle of attack is 90°. This implies as stated in Equation 3.4 that C_T has to be zero.

For the pitching moment C_m only the slope sign can be foreseen. When the vortex system break down and stall occurs, the aircraft's center of pressure will move to the rear such that the aircraft in fact becomes stable while pitching moment is still positive. This implies a risk of being stuck in a stalled condition. If the aircraft's control surfaces cannot give enough change in pitching moment after stall, the danger exists of the aircraft becoming held in a for example "deep" stall. The aerodynamic should therefore be chosen carefully to prevent this from happening.

4. Results

The results will be presented in the form of plots with general comments. The actual data has been included in Appendix B. A reminder has to be given about the different reference area and mean chord between the ADMIRE and the X-31A as well as the long/close-coupled canard difference mentioned in the Theory chapter. This will give relatively prominent discrepancies and is why only the *tendencies* from the X-31A aerodynamic data should be counted on. MATLAB is not able to create a bar over the variables, so in the figures $\delta_n = \bar{\delta}_n$ and $\delta_e = \bar{\delta}_e$

4.1 Basic Coefficients

When all control surfaces are set neutral, a sweep in a wind tunnel will give very typical coefficient curves which to some extent can be compared to other aircraft. Figure 4.4, 4.1 and 4.2 show the ADMIRE coefficients below 30° together with the X-31A data for both below and above 30° overlapping each other. The new extrapolated data for the ADMIRE is marked as black crosses and can be seen overlapping the old data from 24° to 30° in order to give the spline function mentioned in Methodology a good derivate to start with.

As seen in Figure 4.1, a smooth stall has been chosen for the ADMIRE. The X-31A has a little more abrupt stall which is mainly due to the long-coupled canard. C_N follows the theoretical C_N in Figure 3.3 and the resulting C_L calculated with Equation 3.1 can be seen in Figure 4.3 where the point of vortex breakdown or stall is easier to see.

According to the theoretical C_T from Figure 3.3, the tangential force should move towards zero when the angle of attack increases beyond 40 degrees angle of attack. This is certainly not the case with the X-31A tangential force which seems to decrease for higher angle of attack. Negative tangential force is mostly referred to as nose-suction which is likely to be small on a stalled wing. Since C_T relative to C_N is very small in this region, no further evaluation has been done and a likely path has been chosen as drawn in Figure 4.2.

The result of the normal force and tangential force in the U frame of reference (see section "Frames of reference used") and Equation 3.1 and 3.2) is called C_L and C_D and has been included for the reader's convenience in Figure 4.3. Compared to conventional aircraft, the shift from positive to negative lift slope is much smoother and gives a less abrupt stall characteristic typical for canard equipped aircraft.

For a canard delta configuration, vortex breakdown at high angle of attack will shift the center of pressure rear of the center of gravity and the aircraft will become stable as explained in the Theory chapter. This is seen as a negative pitching moment C_m slope in Figure 4.4.

The chosen degree of the slope for both pitching moment C_m and normal force C_N has also drawn upon Stavöstrand [16, Fig. 1].

4.2 Canard dependency

For the sake of clearness, the three dimensional plots are not represented with both X-31A and ADMIRE coefficient data. Since this report probably will be read from a gray scale printout, effort has been made to use a color map that will be clear in both color and gray scale. The mean canard deflection $\bar{\delta}_n$ has been used since differences between left and right canard deflection should have little impact on the longitudinal characteristics.

Figure 4.1: Coefficient $C_N(\alpha)$ with all control surfaces fixed in neutral position

Figure 4.2: Coefficient $C_T(\alpha)$ with all control surfaces fixed in neutral position

Figure 4.3: Coefficient $C_L(\alpha)$ and $C_D(\alpha)$ with all control surfaces fixed in neutral position

Figure 4.4: Coefficient $C_m(\alpha)$ with all control surfaces fixed in neutral position

Figure 4.5: Contour (left) and 3D (right) plot of coefficient $C_N(\alpha, \bar{\delta}_n)$

Figure 4.6: Contour (left) and 3D (right) plot of coefficient $C_T(\alpha, \bar{\delta}_n)$

Generally for both canard and elevon longitudinal dependency a characteristic has been chosen that should avoid any erratic behavior with today's control system.

Figure 4.5 shows how the normal coefficient C_N is chosen to change with respect to angle of attack and mean canard deflection. First of all maximum lift is where both canard and wing still generate positive lift which has to be at approximately the same angle of attack. From the basic lift curve in Figure 4.3, the wing will have its maximum lift at 32° angle of attack. Assuming an upwash from the forebody in front of the canard, a stall will appear earlier on the canard than on the wing. Therefore a peak can be expected around 35° angle of attack and -5° canard deflection. From this peak the normal force will decrease for both positive and negative canard deflections. This tendency is expected to be less as the flow turns into a wake and will eventually be almost the same for every canard deflection when angle of attack is approaching 90°.

The canards contribution to drag has its minimum when the canard effective angle of attack is zero. For higher angles of attack the canard deflection impact on the tangential force will, as described above, decrease and move towards zero for 90 degree angle of attack and all canard deflections. The tangential force has been plotted in Figure 4.6

For the readers convenience, plots of the resulting drag and lift have also been included, see Figure 4.7 and 4.8.

Pitching moment C_m has been formed after canard stall behavior shown in Figure 4.9. The old GAM aerodynamic data indicate the highest pitching moment to be around 5 degrees canard angle. For higher canard angles, stall occurs and with that a shift in slope sign. For negative canard angles, the slope has been decreased and becomes negative after canard stall.

Figure 4.7: Contour (left) and 3D (right) plot of coefficient $C_L(\alpha, \bar{\delta}_n)$

Figure 4.8: Contour (left) and 3D (right) plot of coefficient $C_D(\alpha, \bar{\delta}_n)$

Figure 4.9: Contour (left) and 3D (right) plot of coefficient $C_m(\alpha, \bar{\delta}_n)$

Figure 4.10: Contour (left) and 3D (right) plot of coefficient $C_N(\alpha, \bar{\delta}_e)$

Figure 4.11: Contour (left) and 3D (right) plot of coefficient $C_T(\alpha, \bar{\delta}_e)$

4.3 Elevon dependency

An increasing elevon deflection will give a wing with increased lift as long as flow is attached to the wing. For an angle of attack below 25° and elevon deflections between -20° and 20° , the normal force seems to be almost linearly dependent on elevon deflection as seen in Figure 4.10. For increasingly higher angle of attack, stall angle will depend on elevon deflection. A positive deflection gives earlier stall in terms of angle of attack than a negative deflection. A negative elevon deflection can postpone stall because the wing's effective angle of attack will decrease.

Figure 4.11 shows that when the ADMIRE has an angle of attack below stall angle, elevon impact on tangential force is almost symmetric around zero deflection. After stall, positive deflection will increase the tangential force while a negative deflection will have very little effect.

The effect of elevon deflection on lift C_L and drag C_D has been included, see Figure 4.12 and 4.13

Since the center of pressure over the wing will shift with elevon deflection, the pitching moment C_m generally will decrease with increasing elevon deflection. In Figure 4.14 the C_m dependency on elevon and angle of attack can be seen. Compared to the C_m dependency on canard deflection, the elevon has almost double impact on C_m (see Figure 4.9 and 4.14).

Figure 4.12: Contour (left) and 3D (right) plot of coefficient $C_L(\alpha, \bar{\delta}_e)$

Figure 4.13: Contour (left) and 3D (right) plot of coefficient $C_D(\alpha, \bar{\delta}_e)$

Figure 4.14: Contour (left) and 3D (right) plot of coefficient $C_m(\alpha, \bar{\delta}_e)$

Figure 4.15: Output from virtual wind tunnel

4.4 Simulation

The new coefficient database has been tested in two ways. First of all, a sweep in angle of attack has been made with the help of "ADMIRE Extract & Plot" to determine whether the change from low to high angle of attack is smooth (see Figure 4.15. By changing a coefficient that does not depend on angle of attack, a step should be seen in the resulting plot. This has been done without remarks. Second, test flights where performed in FENIX. Besides looking for abrupt changes in performance, certain maneuvers were carried out.

A part of one test flight where a stall has been carried out can be seen in Figure 4.16. Slowly a pull up was performed with the help of a small positive stick input. When ADMIRE reached $\alpha \approx 35$ degrees, lift C_L and pitching moment C_m decrease radically and the Mach number becomes very low. The dimensionless pitching angular velocity \bar{q} together with pitch attitude θ shows that the aircraft nose starts to descend. The control system tries to prevent this from happening by deflecting canard and elevon. When C_m reaches its lowest value maximum downward pitching acceleration \dot{q} is reached. With the help of stick input, the angle of attack decreases and speed increases until a pull-up can be done.

No erratic behavior depending on aerodynamic data has been found during test flights. The sudden increase in pitching moment C_m can not be fully explained by canard and elevon deflection and is therefore assumed to depend on the original aerodynamics or on the combination of control system and aerodynamic data.

Figure 4.16: Output from FENIX. (The right labels belong to the dotted lines)

5. Conclusion

With the help of comparison with similar aircraft and gathered aerodynamic knowledge, a prediction of the ADMIRE's performance at high angle of attack has been performed.

The aircraft used for comparison has been the X-31A. This is simply because it resembles the ADMIRE and because the aerodynamic data has been available for high angles of attack. The comparison has not given as much help as expected because only the tendencies could be used. Also, the tangential force coefficient for the X-31A was hard to understand and the data for elevon was very sparse.

Tools to derive and visualize aerodynamic coefficients and for the development of new aerodynamic data have been developed. These tools are also partly prepared for the expanding of other coefficients than those expanded in this report.

The theory behind high angle of attack aerodynamics on canard delta aircraft has been explained and accounted for when the aerodynamics were derived. Together with the condition that the aircraft should have good properties without any erratic behavior, satisfactory aerodynamics for angles up to 90 degrees have been developed.

Transition from low angles of attack to high angles of attack has become very smooth. The old aerodynamics have not been tampered with which leaves the high angle of attack aerodynamic to be an add-on to the existing aerodynamics.

5.1 Assessment of Realism and Usefulness

During testing of the ADMIRE in FENIX, the aircraft has proved to have trustworthy properties and to be fully controllable with the current control system up to high angles of attack in the longitudinal direction. Stall has been performed and no deep stall tendencies have been found.

Since only longitudinal aerodynamics have been expanded in the angle of attack domain, the lateral motion is wrong above 30 degrees angle of attack. Especially roll angular acceleration \dot{p} is too high since the elevon effectiveness should have decreased considerably after stall. This gives an unrealistically good controllability in the lateral direction. Prediction precision decreases with increasing angle of attack, still the important thing is that the aircraft has received the properties wanted.

For PIO research, the new angle of attack domain will be enough, while for research regarding spin ADMIRE most probably needs more aerodynamic data in lateral movement depending on both angle of attack and sideslip angle.

5.2 Further Work

With the material found and the tools made to expand the angle of attack for longitudinal coefficients, only theoretical problems remain before the angle of attack domain can be expanded for lateral coefficients. One of the theoretical problems is the asymmetric forces from vortices acting on the nose. One suggestion is to program random scale factors on the side force and roll moment coefficient to simulate this.

Another variable that could be extended is sideslip angle. Especially when spin is simulated, this variable range turns out to be far too small ($\pm 20^{\circ}$). Again, vortices around the nose will be hard to simulate and the coefficients hard to find.

Bibliography

[1] Hans Backström. Report on the usage of the Generic Aerodata Model. Technical report, SAAB Aircraft AB, SAAB Military Aircraft, S-58199 Linköping Sweden, may 1997. URL http://www.flyg.kth.se/misc-dir/DFM\&ADinfo.html. Download GAM at bottom of HTML page.

- [2] Jenny Baer-Riedhart. F-18 HARV. Internet, Dec 2001. URL http://www.dfrc.nasa.gov/Projects/HARV/.
- [3] Jenny Baer-Riedhart. X-31. Internet, Dec 2001. URL http://www.dfrc.nasa.gov/Projects/X31/home.html.
- [4] Daniel W. Banks, Gregory M. Gatlin, and John W. Paulson Jr. Low-speed Longitudenal and Lateral-Directional Aerodynamic Characteristics of the X-31 Configuration. Technical Memorandum NASA TM-4351, National Aeronautics and Space Administration, Washington, DC 20546-0001, oct 1992. URL http://techreports.larc.nasa.gov/ltrs/PDF/tm4351.pdf. (No figures nor data in electronic document).
- [5] A. Bergmann and D. Hummel. Aerodynamic Effects of Canard Position on a Wing Body Configuration in Symmetrical Flow. Technical Report AIAA-2001-0116, Institute of Fluid Mechanics, Technical University Braunschweig, Germany, Jan 2001.
- [6] P. Champigny. High Angle of Attack Aerodynamics. AGARD Special Course, Office National d'Etudes et de Recherches Aérospatiales, 29, Avenue de la Division Leclerc, 92320 Chatillon, France. Presented at an AGARD Special Course on "Missile Aerodynamics", June 1994.
- [7] L. Tu Eugene. Effect of Canard Deflection on Close-Coupled Canard-Wing-Body Aerodynamics. *Journal of Aircraft*, 31(1):138–145, Jan-Feb 1994. Presented as paper 92-2602 at the 10th AIAA Applied Aerodynamics Conference.
- [8] Lars Forssell, Gunnar Hovmark, Åke Hyden, and Fredrik Johansson. The Aero-Data Model In a Research Environment ADMIRE for Flight Control Robustness Evaluation. Technical Report TP-119-7, GARTEUR FM(AG11), August 2001. Flight Clearance project.
- [9] S.F. Hoerner. Fluid-Dynamic Drag. Published by author, 2 edition, 1958.
- [10] D. Hummel and H.-Chr Oelker. Vortex Interference Effects on Close-Coupled Canard Configuration at Low Speed. Technical Report AGARD-CP-465, Institut für Strömnungsmechanik, Technische Universität Braunschweig, Germany, 1989.
- [11] Fred Thomas Jane. *Jane's All the World's Aircraft 1986-87*. Jane's Yearbooks. Jane's Information Group, Coulsden, UK, 77th edition, 1986. ISBN 071061863.
- [12] Fred Thomas Jane. *Jane's All the World's Aircraft 1996-97*. Jane's Yearbooks. Jane's Information Group, Coulsden, UK, 87th edition, 1996. ISBN 07106 1377 6.
- [13] Leland Howard Jorgensen. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack. Technical Report NASA TR R-474, Ames Research Center, Moffett Field, California, September 1977.

[14] MATLAB Version 5.3. The Mathworks, Inc., 2000. URL http://www.mathworks.com.

- [15] Josef Rom. *High Angle of Attack Aerodynamics*. Springer-Verlag, New York, 1992. ISBN 0-387-97672-8.
- [16] Tor Stavöstrand. Förekomst av Aerodynamiska Hysteres-Effekter. Technical report, SAAB, Gripen Systems and Flight Test, 1999. Report written for a course in Flight Mechanics at KTH.
- [17] I.H. Tuncer, M.F. Platzer, and R.D. VanDyken. A Computional Study of a Close-Coupled Delta Canard-Wing-Body Configuration. AIAA 96-2440, Department of Aeronautics and Astronautics, Naval Postgraduate School, Monterey, California, 1996.

A. ADMIRE Coefficient Structure

The coefficient structure belonging to the generic model called GAM is as complex as the ones control system designers deal with in today's modern fighter aircraft. The datatable dimension belonging to each coefficient can be seen from the amount of input variables. The coefficients for Mach numbers above 0.4 have been excluded. Sideslip angle β , elevon asymmetry deflection angle and leading edge flap deflection angle are normalized with their maximum deflection angle (20°, 30° and 27°). Sibeta, siday and sidai mean that the sign of the variables beta, day and dai is used. The index "c" indicates that the input variable is normalized.

A.1 Longitudinal Coefficients for Mach Numbers Below 0.4

$$C_{T_{basic}} = C_{T_{zero}}(M) + C_{T_h}(h, M)$$

$$C_{T_{alpha}} = C_{T_{al}}(\alpha)$$

$$C_{T_{dei}} = C_{T_{deal}}(\delta_{ei}, \alpha) \cdot eieff$$

$$C_{T_{dey}} = C_{T_{deal}}(\delta_{ey}, \alpha) \cdot eoeff$$

$$C_{T_{dedn}} = C_{T_{dnde}}(\delta_{n}, \delta_{e}, \alpha)$$

$$C_{T_{de}} = C_{T_{dnal}}(\delta_{n}, \alpha)$$

$$C_{T_{dle}} = C_{T_{dleal}}(\delta_{le}, \alpha) + C_{T_{lednal}}(\delta_{n}, \alpha) \cdot \frac{\delta_{le}}{27}$$

$$C_{T_{beta}} = C_{T_{beta}}(\delta_{n}, \alpha) \cdot C_{T_{kb}}(|\beta|)$$

$$C_{T_{da}} = C_{T_{daal}}(|\delta_{ai}|, |\alpha|) \cdot eieff + C_{T_{daal}}(|\delta_{ay}|, |\alpha|) \cdot eoeff$$

$$C_{T_{dr}} = C_{T_{mdr}}(|\delta_{r}|, M)$$

$$\therefore C_{T} = C_{T_{basic}} + C_{T_{alpha}} + C_{T_{dei}} + C_{T_{dey}} + C_{T_{dedn}} + C_{T_{dn}} + C_{T_{dle}} + C_{T_{beta}} + C_{T_{deal}} + C_{T$$

$$\begin{split} &C_{N_{basic}} = C_{N_{zero}}\left(M\right) + C_{N_{ezero}}\left(q_{a,corr},M\right) \\ &C_{N_{alfa}} = C_{N_{deal}}\left(0.0,\alpha\right) \cdot C_{N_{ea}}\left(q_{a,corr},M\right) \\ &C_{N_{dei}} = \left(C_{N_{deal}}\left(\delta_{ei},\alpha\right) - C_{N_{deal}}\left(0.0,\alpha\right)\right) \cdot eieff \cdot C_{N_{edei}}\left(q_{a,corr},M\right) \\ &C_{N_{dey}} = \left(C_{N_{deal}}\left(\delta_{ey},\alpha\right) - C_{N_{deal}}\left(0.0,\alpha\right)\right) \cdot eoeff \cdot C_{N_{edey}}\left(q_{a,corr},M\right) \\ &C_{N_{dedn}} = C_{N_{dnde}}\left(\delta_{n},\delta_{e},\alpha\right) \\ &C_{N_{dean}} = C_{N_{dnde}}\left(\delta_{n},\alpha\right) \cdot C_{N_{edn}}\left(q_{a,corr},M\right) \\ &C_{N_{dle}} = \left(C_{N_{dleal}}\left(\alpha\right) + C_{N_{dldnal}}\left(\delta_{n},\alpha\right) + C_{N_{dldeal}}\left(\delta_{e},\alpha\right)\right) \cdot \frac{\delta_{le}}{27} \\ &C_{N_{cai}} = C_{N_{cai}}\left(cai,\alpha\right) \\ &C_{N_{eda}} = C_{N_{beta}}\left(\delta_{n},\alpha\right) \cdot C_{N_{kb}}\left(|\beta|\right) \\ &C_{N_{alfad}} = C_{N_{adam}}\left(|\alpha|,M\right) \cdot \dot{\alpha} \\ &C_{N_{q}} = C_{N_{qal}}\left(|\alpha|\right) \cdot \hat{q} \cdot C_{N_{eq}}\left(q_{a,corr},M\right) \\ &C_{N_{nz}} = C_{N_{enz}}\left(q_{a,corr},M\right) \cdot (n_{z}-1) \\ &C_{N_{qd}} = C_{N_{eqd}}\left(q_{a,corr},M\right) \cdot \dot{q} \end{split}$$

$$\therefore C_{N} = C_{N_{basic}} + C_{N_{alfa}} + C_{N_{dei}} + C_{N_{dey}} + C_{N_{dedn}} + C_{N_{dn}} + C_{N_{dle}} + C_{N_{cai}} + C_{N_{beta}} + C_{N_{alfad}} + C_{N_{q}} + C_{N_{nz}} + C_{N_{qd}}$$

$$C_{m_{basic}} = C_{m_{zero}}(M) + C_{m_{ezero}}(q_{a,corr}, M)$$

$$C_{m_{alfa}} = C_{m_{deal}}(0.0, \alpha) + C_{m_{ea}}(q_{a,corr}, M) \cdot \alpha$$

$$C_{m_{dei}} = (C_{m_{deal}}(\delta_{ei}, \alpha) - C_{m_{deal}}(0.0, \alpha)) \cdot eieff \cdot C_{m_{edei}}(q_{a,corr}, M)$$

$$C_{m_{dey}} = (C_{m_{deal}}(\delta_{ey}, \alpha) - C_{m_{deal}}(0.0, \alpha)) \cdot eoeff \cdot C_{m_{edey}}(q_{a,corr}, M)$$

$$C_{m_{dedn}} = C_{m_{dnale}}(\delta_{n}, \delta_{e}, \alpha)$$

$$C_{m_{dedn}} = C_{m_{dnal}}(\delta_{n}, \alpha) \cdot C_{m_{edn}}(q_{a,corr}, M)$$

$$C_{m_{dle}} = (C_{m_{dlal}}(\alpha) + C_{m_{dldea}}(\delta_{e}, \alpha) + C_{m_{dldna}}(\delta_{n}, \alpha)) \cdot \frac{\delta_{le}}{27} + \left(C_{m_{edlei}}(q_{a,corr}, M) + C_{m_{edley}}(q_{a,corr}, M)\right) \cdot \frac{\delta_{le}}{27}$$

$$C_{m_{cai}} = C_{m_{cai}}(cai, \alpha) + C_{m_{caidn}}(\delta_{n}, cai, \alpha)$$

$$C_{m_{beta}} = C_{m_{beta}}(|\beta|, \delta_{n}, \alpha)$$

$$C_{m_{da}} = C_{m_{beta}}(|\beta|, \delta_{n}, \alpha)$$

$$C_{m_{da}} = C_{m_{daal}}(|\delta_{ai}|, \alpha) \cdot eieff + C_{m_{daal}}(|\delta_{ay}|, \alpha) \cdot eoeff$$

$$C_{m_{alphad}} = C_{m_{daal}}(|\alpha|, M) \cdot \dot{\alpha}$$

$$C_{m_{q}} = \left(C_{m_{qal}}(\alpha) + C_{m_{qdnal}}(\delta_{n}, \alpha)\right) \cdot \hat{q} \cdot C_{m_{eq}}(q_{a,corr}, M)$$

$$C_{m_{nz}} = C_{m_{enz}}(q_{a,corr}, M) \cdot (n_{z} - 1)$$

$$C_{m_{qd}} = C_{m_{eqd}}(q_{a,corr}, M) \cdot \dot{q}$$

$$\therefore C_{m} = C_{m_{basic}} + C_{m_{alfa}} + C_{m_{dei}} + C_{m_{dey}} + C_{m_{dedn}} + C_{m_{dn}} + C_{m_{dle}} + C_{m_{cai}} + C_{m_{deal}} + C_{m_{deal}$$

A.2 Lateral Coefficients for Mach Numbers Below 0.4

$$C_{n_{basic}} = C_{n_{col}}(|\alpha|) \\ C_{n_{beta}} = C_{n_{bol}}(|\beta|, \alpha) \cdot sibeta + C_{n_{cb}}(q_{a,corr}, M) \cdot \beta \\ C_{n_{bd}} = (C_{n_{bd}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{bd}} = (C_{n_{db}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{bd}} = C_{n_{db}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{cb}} = C_{n_{cb}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{cb}} = C_{n_{bc}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{cb}} = C_{n_{bc}}(|\beta|, \delta_{n}, \alpha) \cdot sibeta \\ C_{n_{cb}} = C_{n_{bc}}(|\beta|, \delta_{n}, \alpha) \cdot sideti + (C_{n_{dd}}(\delta_{ei}, \alpha) - C_{n_{dd}}(0.0, \alpha)) \cdot \delta_{ai}) \cdot eieff \\ C_{n_{cd}} = C_{n_{bc}}(|\beta|, \delta_{n}, \alpha) \cdot C_{n_{cb}}(|\alpha|_{a,corr}, M) \\ C_{n_{dai}} = (C_{n_{dai}}(|\delta_{ai}|, \alpha) \cdot sidai + (C_{n_{dd}}(\delta_{ei}, \alpha) - C_{n_{dd}}(0.0, \alpha)) \cdot \delta_{ai}) \cdot eieff \\ C_{n_{dai}} = C_{n_{dai}}(|\alpha|, \delta) \cdot (\frac{|\beta|}{300}) \cdot (\frac{|\beta|}{200}) \cdot eieff \\ C_{n_{dai}} = C_{n_{dai}}(|\alpha|, \delta) \cdot (\delta_{ai}) \cdot (\delta_{ai$$

A.3 Original GAM coefficients

This is extracted from GAM's .aer files to show how the longitudinal coefficients are named internally. The explanation is SAAB's own as well as the use of abbreviations, see [1] for further explanation.

Coefficient in GAM domain	Explanation	Speed domain	First	riable requi Second	Third
CNADAM	Alpha-dot deriv	high speed.	ALFA	M	
CNBETA	Incr. due to side slip.	mgn speed.	DN	ALFA	
CNCAI	Incr.due to side ship. Incr.due to engine mass flow ratio.		CAI	ALFA	
CNDEAL	Elevator efficiency	low speed	DE	ALFA	
		low speed.			
CNDEYODE	Outboard elevon efficiency.	1 1	ALFA	M	
CNDLDEAL	L-E flap eff. de-depend	low speed.	DE	ALFA	
CNDLDNAL	L-E flap eff. dn-depend	low speed.	DN	ALFA	
CNDLEAL	L-E flap efficiency	low speed.	ALFA		
CNDNAL	Canard efficiency	low speed.	DN	ALFA	
CNDNDE	Incr. at combined de-dn.		DN	DE	ALFA
CNDNH	Canard efficiency	high speed.	ALFA	DN	M
CNEA	Elast. on alfa-dependency.		QA	M	
CNEDEI	Elast. on dei-efficiency.		QA	M	
CNEDEY	Elast. on dey-efficiency.		QA	M	
CNEDN	Elast. on dn-efficiency.		QΑ	M	
CNENZ	Elast incr.due to nz.		QA	M	
CNEQ	Elast. due to q.		QA	M	
CNEQD	Elast incr.due to q-dot.		QA	M	
CNEZERO	Elast.incr. to zero value.		QA	M	
CNKB	Interpol.function, side slip.		BETA	111	
	Incr due to air brake	larra amaa d	DE	ALFA	
CNLBRDEA		low speed.	1	1	
CNLBRM	Incr due to air brake	high speed.	DLBR	M	
CNLST	Incr. due to landing gear.		BETA	ALFA	
CNMDEA	Elevator efficiency	high speed.	M	DE	ALFA
CNMDLEA	L-E flap efficiency	high speed.	M	DLE	ALFA
CNQAL	Q-derivative	low speed.	ALFA		1
CNQAM	Q-derivative	high speed.	ALFA	M	1
CNZERO	Zero value.		M		
CPMADAM	Derivative wrt alfa-dot.		ALFA	M	
CPMBETA	Incr. due to side slip.		BETA	DN	ALFA
CPMCAI	Incr. due to engine mass flow rate.		CAI	ALFA	
CPMCAIDN	Incr. in CAI-efficiency due to dn.		DN	CAI	ALFA
CPMDAAL	Incr. due to aileron	low speed.	DA	ALFA	ALIA
-			1	ALFA	
CPMDEAL	Elevator efficiency	low speed.	DE	1	
CPMDEYOD	Outboard elevon efficiency.		ALFA	M	
CPMDLAL	L-E flap efficiency	low speed.	ALFA		
CPMDLDEA	L-E flap eff. de-dependency	low speed.	DE	ALFA	
CPMDLDNA	L-E flap eff. de-dependency	low speed.	DN	ALFA	
CPMDNAL	Canard efficiency	low speed.	DN	ALFA	
CPMDNDE	Incr. at combined de-dn.		DN	DE	ALFA
CPMEA	Elast. on alfa-dependency.		QA	M	
CPMEDEI	Elast. on dei-efficiency.		QA	M	
CPMEDEY	Elast. on dey-efficiency.		QA	M	
CPMEDLEI	Elast. on dlei-efficiency.		QΑ	M	
CPMEDLEY	Elast. on dley-efficiency.		QA	M	
CPMEDN	Elast. on dn-efficiency.		QA	M	
CPMENZ	Elast incr. due to nz.		QA	M	
-	Elast flier, due to fiz.		QA	M	
CPMEQ				M	
CPMEQD	Elast incr. due to q-dot.		QA	1	
CPMEZERO	Elast. incr. to zero value.		QA	M	
CPMLBRDA	Incr. due to air brake	low speed.	DE	ALFA	
CPMLBRM	Incr. due to air brake	high speed.	DLBR	M	
CPMLST	Incr. due to landing gear.		BETA	ALFA	
CPMMDEA	Elevator efficiency	high speed.	M	DE	ALFA
CPMMDLEA	L-E flap efficiency	high speed.	M	DLE	ALFA
CPMMDNA	Canard efficiency	high speed.	M	DN	ALFA
CPMQAL	Q-derivative	low speed.	ALFA		
CPMQAM	Q-derivative	high speed.	ALFA	M	
CPMQDNAL	O-deriv. dn-dependency low speed.	J 1	DN	ALFA	
CPMZERO	Zero value.		M		1
CTAL	Alpha dependency	low speed.	ALFA		1
CTBETA	Incr. due to side slip.	.o., opeou.	DN	ALFA	
CTDAAL	Incr. due to side snp. Incr. due to aileron	low speed.	DA	ALFA	1
	Incr. due to alleron Incr. due to aileron			1	1
CTDAM		high speed.	DA	M	
CTDEAL	Elevator efficiency	low speed.	DE	ALFA	
CTDEYODE	Outboard elevon efficiency.		M		1
CTDLEAL	L-E flap efficiency	low speed.	DLE	ALFA	
CTDNAL	Canard efficiency	low speed.	DN	ALFA	
CTDNDE	Incr. at combined de-dn.		DN	DE	ALFA
CTH	Zero value & altitude dependency.		Н	M	
CTKB	Interpolation function.		BETA		
CTLBRDEA	Incr. due to air brake	low speed.	DE	ALFA	
CTLBRM	Incr. due to air brake	high speed.	DLBR	M	1
CTLEDNAL	L-E flap efficiency dn=-40gr	low speed.	DN	ALFA	
CTLST	Incr. due to landing gear.	.o., opeou.	BETA	ALFA	
CTMA	Incr. due to landing gear.	high speed.	M	ALFA	
			I .	1	A T 17A
CTMDEA	Elevator efficiency	high speed.	M	DE	ALFA
CTMDLEA	L-E flap efficiency	high speed.	M	DLE	ALFA
CITA (DAY)			M	DN	ALFA
CTMDNA CTMDR	Canard efficiency Rudder efficiency.	high speed.	DR	M	/ ILI / I

B. ADMIRE High Angle of Attack in AER format

B.1 Basic increments for $C_m(\alpha)$, $C_N(\alpha)$ and $C_T(\alpha)$

Basi 020	CPMHZERO Basic Cm increment at high aoa, low speed. 020110		ZERO CN increment at high aoa, low speed. 0	Basic	CTHZERO Basic CT increment at high aoa, low speed. 020110			
1		1		1				
ALF	Ά	ALFA	L	ALFA				
-10	0	-10	0	-10	0			
30	0	30	0	30	0			
31	0.00393702	31	0.0294658	31	0.000712537			
32	0.00611439	32	0.0528843	32	0.00144353			
33	0.00696266	33	0.0711848	33	0.00230658			
34	0.00680104	34	0.0852009	34	0.00341404			
35	0.0068876	35	0.0950007	35	0.00480371			
36	0.00745795	36	0.100283	36	0.00639883			
37	0.00288654	37	0.100811	37	0.00811293			
38	-0.00403471	38	0.0971894	38	0.00988454			
39	-0.00979179	39	0.0906064	39	0.0117243			
40	-0.0160015	40	0.0822615	40	0.0136556			
41	-0.0223403	41	0.0731041	41	0.0156875			
42	-0.0281654	42	0.0634197	42	0.0177463			
43	-0.0332625	43	0.053387	43	0.0197293			
44	-0.0377787	44	0.0432897	44	0.0215695			
45	-0.0418731	45	0.0335581	45	0.0232992			
46	-0.0457044	46	0.0246333	46	0.0249683			
47	-0.0494315	47	0.0169252	47	0.0266056			
48	-0.0531876	48	0.0105042	48	0.0281814			
49	-0.0569955	49	0.00523344	49	0.0296562			
50	-0.0608478	50	0.000972991	50	0.0309904			
51	-0.0647369	51	-0.0024171	51	0.0321593			
52	-0.0686556	52	-0.00507687	52	0.0331708			
53	-0.0725964	53	-0.00715279	53	0.0340368			
54	-0.0765535	54	-0.00880106	54	0.0347695			
55	-0.0805343	55	-0.0101787	55	0.0353808			
56	-0.0845522	56	-0.0114428	56	0.0358829			
57	-0.0886211	57	-0.0127503	57	0.0362875			
58	-0.0927544	58	-0.0142345	58	0.0366031			
59	-0.0969658	59	-0.0158591	59	0.0368371			
60	-0.101269	60	-0.0175141	60	0.0369964			
61	-0.105677	61	-0.0190892	61	0.0370882			
62	-0.110205	62	-0.0204741	62	0.0371197			
63	-0.114863	63	-0.0215586	63	0.0370979			
64	-0.119646	64	-0.0222453	64	0.0370299			
65	-0.124535	65	-0.0225592	65	0.0369222			
66	-0.129513	66	-0.0225917	66	0.0367787			
67	-0.134564	67	-0.0224352	67	0.0366032			
68	-0.139669	68	-0.022182	68	0.0363996			
69	-0.14481	69	-0.0219242	69	0.0361716			
70	-0.149971	70	-0.0217535	70	0.035923			
71	-0.155134	71	-0.0217114	71	0.0356576			
72	-0.160282	72	-0.0217479	72	0.0353791			
73	-0.165409	73	-0.0218041	73	0.0350913			
74	-0.170514	74	-0.0218436	74	0.0347981			
75	-0.175599	75	-0.0218658	75	0.0345031			
76	-0.180662	76	-0.021873	76	0.0342102			
77	-0.185705	77	-0.0218678	77	0.0339231			
78	-0.190727	78	-0.0218527	78	0.0336455			
79	-0.19573	79	-0.0218301	79	0.0333813			
80	-0.200713	80	-0.0218025	80	0.0331342			
81	-0.205676	81	-0.0217723	81	0.0329079			
82	-0.21062	82	-0.0217421	82	0.0327062			
83	-0.215545	83	-0.0217143	83	0.0325309			
84	-0.220452	84	-0.0216914	84	0.0323831			
85	-0.22534	85	-0.0216758	85	0.0322637			
86	-0.23021	86	-0.0216701	86	0.0321736			
87	-0.235062	87	-0.0216767	87	0.0321137			
88	-0.239896	88	-0.021698	88	0.0320849			
89	-0.244713	89	-0.0217365	89	0.0320882			
90	-0.249514	90	-0.0217948	90	0.0321244			

B.2 $C_m(\bar{\delta}_n, \alpha)$

CDMI	221		4.5	20	0.147427	25	~~	0.002200
CPMHI			-45	39	-0.147437	-35	55	-0.092399
Increme	ent due t	o canard at high aoa, low speed.	-45	40	-0.141674	-35	56	-0.091874
020119			-45	41	-0.136101	-35	57	-0.091346
2			-45	42	-0.131321	-35	58	-0.090771
DN			-45	43	-0.127522	-35	59	-0.090102
ALFA			-45	44	-0.124551	-35	60	-0.089293
-55	-10	0	-45	45	-0.122242	-35	61	-0.088303
-55	30	0	-45	46	-0.120434	-35	62	-0.087120
-55	31	-0.194961	-45	47	-0.118960	-35	63	-0.085749
-55	32	-0.196650	-45	48	-0.117683	-35	64	-0.084214
-55	33	-0.197407	-45	49	-0.116566	-35	65	-0.082549
-55	34	-0.197283	-45	50	-0.115596	-35	66	-0.080788
-55	35	-0.197415	-45	51	-0.114758	-35	67	-0.078966
-55	36	-0.198111	-45	52	-0.114039	-35	68	-0.077117
-55	37	-0.193828	-45	53	-0.113424	-35	69	-0.075275
-55	38	-0.187444	-45	54	-0.112897	-35	70	-0.073475
-55	39	-0.182556	-45	55	-0.112428	-35	71	-0.071749
-55	40	-0.177609	-45	56	-0.111979	-35	72	-0.070115
-55	41	-0.172890	-45	57	-0.111512	-35	73	-0.068573
-55	42	-0.168975	-45	58	-0.110988	-35	74	-0.067119
	43			59		-35		
-55		-0.166014	-45		-0.110369		75	-0.065745
-55	44	-0.163793	-45	60	-0.109618	-35	76	-0.064447
-55	45	-0.162087	-45	61	-0.108698	-35	77	-0.063219
-55	46	-0.160675	-45	62	-0.107593	-35	78	-0.062054
	47		-45	63		-35	79	
-55		-0.159391			-0.106304			-0.060947
-55	48	-0.158135	-45	64	-0.104855	-35	80	-0.059892
-55	49	-0.156917	-45	65	-0.103277	-35	81	-0.058883
-55	50	-0.155779	-45	66	-0.101603	-35	82	-0.057915
-55	51	-0.154763	-45	67	-0.099864	-35	83	-0.056981
-55	52	-0.153910	-45	68	-0.098094	-35	84	-0.056076
-55	53	-0.153257	-45	69	-0.096325	-35	85	-0.055194
-55	54	-0.152796	-45	70	-0.094589	-35	86	-0.054329
-55	55	-0.152474	-45	71	-0.092916	-35	87	-0.053476
-55	56	-0.152230	-45	72	-0.091327	-35	88	-0.052627
-55	57	-0.152006	-45	73	-0.089831	-35	89	-0.051779
-55	58	-0.151741	-45	74	-0.088431	-35	90	-0.050924
-55	59	-0.151376	-45	75	-0.087127	-25	-10	0
-55	60	-0.150852	-45	76	-0.085922	-25	30	0
-55	61	-0.150130	-45	77	-0.084817	-25	31	-0.128547
-55	62	-0.149201	-45	78	-0.083815	-25	32	-0.129201
-55	63	-0.148060	-45	79	-0.082917	-25	33	-0.129546
-55	64	-0.146718	-45	80	-0.082124	-25	34	-0.129043
-55	65	-0.145198	-45	81	-0.081437	-25	35	-0.128813
-55	66	-0.143525	-45	82	-0.080846	-25	36	-0.129128
-55	67	-0.141722	-45	83	-0.080340	-25	37	-0.124402
-55	68	-0.139815	-45	84	-0.079910	-25	38	-0.117465
-55	69	-0.137835	-45	85	-0.079545	-25	39	-0.111869
						-25	40	
-55	70	-0.135813	-45	86	-0.079235			-0.106037
-55	71	-0.133781	-45	87	-0.078970	-25	41	-0.100319
-55	72	-0.131769	-45	88	-0.078740	-25	42	-0.095352
-55	73	-0.129797	-45	89	-0.078534	-25	43	-0.091344
	74		-45	90		-25	44	
-55		-0.127880			-0.078342			-0.088137
-55	75	-0.126029	-35	-10	0	-25	45	-0.085564
-55	76	-0.124245	-35	30	0	-25	46	-0.083457
-55	77	-0.122529	-35	31	-0.148496	-25	47	-0.081649
	78	-0.120877	-35	32	-0.148930	-25	48	-0.079998
-55								
-55	79	-0.119287	-35	33	-0.148510	-25	49	-0.078471
-55	80	-0.117759	-35	34	-0.147465	-25	50	-0.077065
-55	81	-0.116290	-35	35	-0.146996	-25	51	-0.075768
-55	82	-0.114879	-35	36	-0.147312	-25	52	-0.074573
-55	83	-0.113523	-35	37	-0.142760	-25	53	-0.073468
-55	84	-0.112222	-35	38	-0.136105	-25	54	-0.072443
-55	85	-0.110973	-35	39	-0.130834	-25	55	-0.071474
-55	86	-0.109775	-35	40	-0.125303	-25	56	-0.070529
-55	87	-0.108626	-35	41	-0.119809	-25	57	-0.069579
-55	88	-0.107524	-35	42	-0.114970	-25	58	-0.068594
-55	89	-0.106467	-35	43	-0.111002	-25	59	-0.067553
-55	90	-0.105454	-35	44	-0.107771	-25	60	-0.066444
-45	-10	0	-35	45	-0.105132	-25	61	-0.065251
-45	30	0	-35	46	-0.102942	-25	62	-0.063961
-45	31	-0.169959	-35	47	-0.101054	-25	63	-0.062562
-45	32	-0.170480	-35	48	-0.099351	-25	64	-0.061061
-45	33	-0.169631	-35	49	-0.097823	-25	65	-0.059473
-45	34	-0.167750	-35	50	-0.096493	-25	66	-0.057817
-45	35	-0.166282	-35	51	-0.095365	-25	67	-0.056109
-45	36	-0.165648	-35	52	-0.094419	-25	68	-0.054367
-45	37	-0.160334	-35	53	-0.093629	-25	69	-0.052610
-45	38	-0.153105	-35	54	-0.092969	-25	70	-0.050856

-25	71	-0.049126	-15	90	-0.022946	0	47	0
-25	72	-0.047440	-5	-10	0	0	48	0
-25	73	-0.045805	-5	30	0	0	49	0
-25	74	-0.044224	-5	31	-0.037023	0	50	0
-25	75	-0.042699	-5	32	-0.037862	0	51	0
-25	76	-0.041233	-5	33	-0.036366	0	52	0
-25	77	-0.039826	-5	34	-0.034032	0	53	0
-25	78	-0.038482	-5	35	-0.034421	0	54	0
-25	79	-0.037202	-5	36	-0.039759	0	55	0
-25	80	-0.035988	-5	37	-0.042991	0	56	0
-25	81	-0.034843	-5	38	-0.043589	0	57	0
-25	82	-0.033767	-5	39	-0.043974	0	58	0
-25	83	-0.032764	-5	40	-0.042869	Ö	59	Ö
-25	84	-0.031835	-5	41	-0.040964	0	60	0
-25	85	-0.030983	-5	42	-0.039264	0	61	0
-25	86	-0.030209	-5	43	-0.038257	0	62	0
-25	87	-0.029515	-5	44	-0.037818	0	63	0
-25	88	-0.028904	-5	45	-0.037772	0	64	0
-25	89	-0.028377	-5	46	-0.037942	0	65	0
-25	90	-0.027937	-5	47	-0.038151	0	66	0
-15	-10	0	-5	48	-0.038249	0	67	0
-15	30	0	-5	49	-0.038198	0	68	0
-15	31	-0.102553	-5	50	-0.038015	0	69	0
-15	32	-0.101882	-5	51	-0.037727	Ö	70	Ö
-15	33	-0.100222	-5	52	-0.037360	0	71	0
-15	34	-0.098335	-5	53	-0.036943	0	72	0
-15	35	-0.097463	-5	54	-0.036502	0	73	0
-15	36	-0.097744	-5	55	-0.036047	0	74	0
-15	37	-0.093456	-5	56	-0.035587	Ö	75	Ö
-15	38	-0.087290	-5	57	-0.035127	0	76	0
-15	39	-0.082665	-5	58	-0.034672	0	77	0
-15	40	-0.077883	-5	59	-0.034228	0	78	0
-15	41	-0.073234	-5	60	-0.033779	0	79	0
-15	42	-0.069334	-5	61	-0.033300	0	80	0
-15	43	-0.066370	-5	62	-0.032769	0	81	0
-15	44	-0.064167	-5	63	-0.032163	0	82	0
-15	45	-0.062540	-5	64	-0.031479	0	83	0
-15	46	-0.061303	-5	65	-0.030724	0	84	0
-15	47	-0.060270	-5	66	-0.029906	0	85	0
-15	48	-0.059301	-5	67	-0.029033	0	86	0
-15	49	-0.058379	-5	68	-0.028111	0	87	0
-15	50	-0.057524	-5	69	-0.027148	0	88	0
-15	51	-0.056750	-5	70	-0.026152	0	89	0
-15	52	-0.056076	-5	71	-0.025142	0	90	0
-15	53	-0.055518	-5	72	-0.024138	5	-10	0
-15	54	-0.055091	-5	73	-0.023150	5	30	0
-15	55	-0.054793	-5	74	-0.022182	5	31	0.023449
-15	56	-0.054589	-5	75	-0.021239	5	32	0.021456
-15	57	-0.054441	-5	76	-0.020323	5	33	0.019668
-15	58	-0.054306	-5	77	-0.019439	5	34	0.018114
-15	59	-0.054144	-5	78	-0.018589	5	35	0.015461
-15	60	-0.053915	-5	79	-0.017778	5		0.013401
							36	
-15	61	-0.053577	-5	80	-0.017010	5	37	0.011412
-15	62	-0.053091	-5	81	-0.016287	5	38	0.012650
-15	63	-0.052435	-5	82	-0.015614	5	39	0.011483
-15	64	-0.051616	-5	83	-0.014995	5	40	0.009519
-15	65	-0.050653	-5	84	-0.014432	5	41	0.007018
-15	66	-0.049565	-5	85	-0.013930	5	42	0.007016
-15	67	-0.048372	-5	86	-0.013492	5	43	0.001402
-15	68	-0.047093	-5	87	-0.013122	5	44	-0.000956
-15	69	-0.045747	-5	88	-0.012824	5	45	-0.002908
-15	70	-0.044352	-5	89	-0.012600	5	46	-0.004438
-15	71	-0.042931	-5	90	-0.012456	5	47	-0.005526
-15	72		0	-10	0	5	48	-0.005320
		-0.041505						
-15	73	-0.040087	0	30	0	5	49	-0.006470
-15	74	-0.038684	0	31	0	5	50	-0.006492
-15	75	-0.037300	0	32	0	5	51	-0.006331
-15	76	-0.035943	0	33	0	5	52	-0.006075
-15	77	-0.034617	Ö	34	0	5	53	-0.005810
-15	78	-0.033329	0	35	0	5	54	-0.005621
-15	79	-0.032085	0	36	0	5	55	-0.005542
-15	80	-0.030890	0	37	0	5	56	-0.005559
-15	81	-0.029751	0	38	0	5	57	-0.005653
-15	82	-0.028672	ő	39	Ö	5	58	-0.005806
			0	40	0	5		
-15	83	-0.027660					59	-0.006002
-15	84	-0.026722	0	41	0	5	60	-0.006221
-15	85	-0.025861	0	42	0	5	61	-0.006446
-15	86	-0.025086	0	43	0	5	62	-0.006658
-15	87	-0.024401	0	44	0	5	63	-0.006829
-15	88	-0.023812	ő	45	0	5	64	-0.006948
			0	46	0	5		
-15	89	-0.023325	U	40	U	3	65	-0.007012

5	66	-0.007020	15	54	-0.015464	25	42	-0.046354
5	67	-0.006971	15	55	-0.015260	25	43	-0.045126
5	68	-0.006863	15	56	-0.015059	25	44	-0.044454
5	69	-0.006695	15	57	-0.014872	25	45	-0.044174
5	70	-0.006465	15	58	-0.014696	25	46	-0.044122
5	71	-0.006174	15	59	-0.014522	25	47	-0.044132
5	72	-0.005839	15	60	-0.014342	25	48	-0.044065
5	73	-0.005475	15	61	-0.014147	25	49	-0.043893
5	74	-0.005093	15	62	-0.013928	25	50	-0.043617
5	75	-0.004703	15	63	-0.013678	25	51	-0.043251
5	76	-0.004314	15	64	-0.013409	25	52	-0.042819
5	77	-0.003936	15	65	-0.013136	25	53	-0.042346
5	78	-0.003580	15	66	-0.012868	25	54	-0.041854
5	79	-0.003254	15	67	-0.012608	25	55	-0.041356
5	80	-0.002969	15	68	-0.012364	25	56	-0.040854
5	81	-0.002734	15	69	-0.012139	25	57	-0.040352
5	82	-0.002559	15	70	-0.011939	25	58	-0.039854
5								
	83	-0.002454	15	71	-0.011770	25	59	-0.039366
5	84	-0.002429	15	72	-0.011637	25	60	-0.038889
5	85	-0.002493	15	73	-0.011534	25	61	-0.038427
5	86	-0.002657	15	74	-0.011448	25	62	-0.037965
5	87	-0.002929	15	75	-0.011368	25	63	-0.037471
						25		
5	88	-0.003321	15	76	-0.011281		64	-0.036935
5	89	-0.003841	15	77	-0.011175	25	65	-0.036356
5	90	-0.004499	15	78	-0.011037	25	66	-0.035733
15	-10	0	15	79	-0.010856	25	67	-0.035065
15	30	0	15	80	-0.010618	25	68	-0.034351
					-0.010010	25		
15	31	0.010509	15	81			69	-0.033590
15	32	0.006093	15	82	-0.009924	25	70	-0.032783
15	33	0.002565	15	83	-0.009444	25	71	-0.031927
15	34	-0.000432	15	84	-0.008858	25	72	-0.031022
15	35	-0.004327	15	85	-0.008154	25	73	-0.030067
							74	
15	36	-0.009505	15	86	-0.007319	25		-0.029072
15	37	-0.010276	15	87	-0.006342	25	75	-0.028050
15	38	-0.009234	15	88	-0.005210	25	76	-0.027013
15	39	-0.009693	15	89	-0.003911	25	77	-0.025973
15	40	-0.009838	15	90	-0.002432	25	78	-0.024943
15	41		25	-10	0.002132	25	79	
		-0.009837						-0.023935
15	42	-0.010207	25	30	0	25	80	-0.022960
15	43	-0.011044	25	31	-0.039513	25	81	-0.022033
15	44	-0.012085	25	32	-0.044417	25	82	-0.021164
15	45	-0.013153	25	33	-0.048173	25	83	-0.020366
15			25	34		25	84	
	46	-0.014141			-0.051173			-0.019652
15	47	-0.014945	25	35	-0.054659	25	85	-0.019033
15	48	-0.015484	25	36	-0.058820	25	86	-0.018522
15	49	-0.015789	25	37	-0.057986	25	87	-0.018132
15	50	-0.015920	25	38	-0.054902	25	88	-0.017874
	51		25	39			89	
15		-0.015919			-0.053038	25		-0.017760
15	52	-0.015819	25	40	-0.050733	25	90	-0.017804
15	53	-0.015657	25	41	-0.048293			
B.3	$C_m($	$ar{\delta}_e, lpha)$						
CPMI	IDE		-30	49	0.107287	-30	75	0.039965
		. 1 6 1:1 1						
		to elevon for high aoa, low speed.	-30	50	0.103784	-30	76	0.037930
02011	.0		-30	51	0.100197	-30	77	0.035876
2			-30	52	0.096561	-30	78	0.033825
ALFA				53			79	0.021902
			-30		0.092914	-30		0.051602
DE.			-30 -30		0.092914 0.089293	-30 -30		0.031802
DE 20		0	-30	54	0.089293	-30	80	0.029829
-30	-10	0	-30 -30	54 55	0.089293 0.085750	-30 -30	80 81	0.029829 0.027931
-30 -30	-10 30	0	-30 -30 -30	54 55 56	0.089293 0.085750 0.082325	-30 -30 -30	80 81 82	0.029829 0.027931 0.026131
-30	-10		-30 -30	54 55	0.089293 0.085750	-30 -30	80 81	0.029829 0.027931
-30 -30	-10 30	0	-30 -30 -30	54 55 56	0.089293 0.085750 0.082325	-30 -30 -30	80 81 82	0.029829 0.027931 0.026131
-30 -30 -30 -30	-10 30 31 32	0 0.178350 0.177240	-30 -30 -30 -30 -30	54 55 56 57	0.089293 0.085750 0.082325 0.079028	-30 -30 -30 -30 -30	80 81 82 83 84	0.029829 0.027931 0.026131 0.024454 0.022921
-30 -30 -30 -30 -30	-10 30 31 32 33	0 0.178350 0.177240 0.174165	-30 -30 -30 -30 -30 -30	54 55 56 57 58 59	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854	-30 -30 -30 -30 -30 -30	80 81 82 83 84 85	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558
-30 -30 -30 -30 -30 -30	-10 30 31 32 33 34	0 0.178350 0.177240 0.174165 0.165199	-30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994	-30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387
-30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35	0 0.178350 0.177240 0.174165 0.165199 0.146213	-30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298	-30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433
-30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36	0 0.178350 0.177240 0.174165 0.165199 0.146213 0.130125	-30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773	-30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720
-30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35	0 0.178350 0.177240 0.174165 0.165199 0.146213	-30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298	-30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433
-30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36	0 0.178350 0.177240 0.174165 0.165199 0.146213 0.130125	-30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.0669994 0.067298 0.064773 0.062428	-30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38	0 0.178350 0.177240 0.174165 0.165199 0.146213 0.130125 0.127900 0.131273	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39	0 0.178350 0.177240 0.174165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.067298 0.064773 0.062428 0.060250 0.058216	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40	0 0.178350 0.177240 0.1774165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41	0 0.178350 0.177240 0.177165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.067298 0.067298 0.062428 0.060250 0.058216 0.056299 0.054473	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40	0 0.178350 0.177240 0.1774165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41	0 0.178350 0.177240 0.177165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.067298 0.067298 0.062428 0.060250 0.058216 0.056299 0.054473	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43	0 0.178350 0.177240 0.1774165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712 0.127615 0.125248	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0 0 0.123518 0.122534 0.123833
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0 0.178350 0.177240 0.177240 0.174165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712 0.127615 0.125248 0.122671	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981 0.049260	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33 34	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0 0 0.123518 0.122534 0.123833 0.119197
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	0 0.178350 0.177240 0.177240 0.174165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712 0.127615 0.125248 0.122671 0.119905	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981 0.049260 0.047519	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33 34 35	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.018720 0.018269 0.018106 0 0.123518 0.122534 0.123833 0.119197 0.103674
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0 0.178350 0.177240 0.1771465 0.165199 0.146213 0.130125 0.127900 0.131273 0.131273 0.131245 0.129712 0.127615 0.125248 0.122671 0.119905 0.116972	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.0669994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981 0.049260 0.047519 0.045731	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33 34 35 36	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0 0.123518 0.122534 0.123833 0.119197 0.103674 0.089990
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	0 0.178350 0.177240 0.177240 0.174165 0.165199 0.146213 0.130125 0.127900 0.131273 0.131958 0.131245 0.129712 0.127615 0.122671 0.119905 0.116972 0.113892	-30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.069994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981 0.049260 0.047519 0.043880	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33 34 35 36 37	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0 0.123518 0.122534 0.123833 0.119197 0.103674 0.089990 0.086181
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0 0.178350 0.177240 0.1771465 0.165199 0.146213 0.130125 0.127900 0.131273 0.131273 0.131245 0.129712 0.127615 0.125248 0.122671 0.119905 0.116972	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	0.089293 0.085750 0.082325 0.079028 0.075868 0.072854 0.0669994 0.067298 0.064773 0.062428 0.060250 0.058216 0.056299 0.054473 0.052710 0.050981 0.049260 0.047519 0.045731	-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	80 81 82 83 84 85 86 87 88 89 90 -10 30 31 32 33 34 35 36	0.029829 0.027931 0.026131 0.024454 0.022921 0.021558 0.020387 0.019433 0.018720 0.018269 0.018106 0 0.123518 0.122534 0.123833 0.119197 0.103674 0.089990

-20	39	0.087711	-10	58	0.021003	0	77	0
-20	40	0.087811	-10	59	0.021003	0	78	0
			-10				79	0
-20	41	0.087424		60	0.019875	0		
-20	42	0.086150	-10	61	0.019390	0	80	0
-20	43	0.084019	-10	62	0.018968	0	81	0
-20	44	0.081425	-10	63	0.018615	0	82	0
-20	45	0.078740	-10	64	0.018320	0	83	0
-20	46	0.076132	-10	65	0.018059	0	84	0
-20	47	0.073678	-10	66	0.017810	0	85	0
-20	48	0.071432	-10	67	0.017550	ő	86	0
	49							
-20		0.069334	-10	68	0.017266	0	87	0
-20	50	0.067296	-10	69	0.016950	0	88	0
-20	51	0.065229	-10	70	0.016595	0	89	0
-20	52	0.063054	-10	71	0.016191	0	90	0
-20	53	0.060760	-10	72	0.015734	10	-10	0
-20	54	0.058375	-10	73	0.015225	10	30	0
-20	55	0.055937	-10	74	0.013223	10	31	-0.045034
-20	56	0.053495	-10	75		10	32	-0.043034
					0.014093			
-20	57	0.051093	-10	76	0.013490	10	33	-0.044929
-20	58	0.048778	-10	77	0.012876	10	34	-0.044496
-20	59	0.046597	-10	78	0.012261	10	35	-0.044332
-20	60	0.044585	-10	79	0.011653	10	36	-0.044064
-20	61	0.042752	-10	80	0.011063	10	37	-0.038494
-20	62	0.041103	-10	81	0.010499	10	38	-0.035024
-20		0.039644		82			39	-0.033024
	63		-10		0.009972	10		
-20	64	0.038361	-10	83	0.009489	10	40	-0.040948
-20	65	0.037229	-10	84	0.009060	10	41	-0.041636
-20	66	0.036224	-10	85	0.008696	10	42	-0.040932
-20	67	0.035321	-10	86	0.008404	10	43	-0.039606
-20	68	0.034493	-10	87	0.008194	10	44	-0.038062
-20	69	0.033712	-10	88	0.008076	10	45	-0.036695
-20	70	0.032950	-10	89	0.008058	10	46	-0.035734
-20	71	0.032177	-10	90	0.008151	10	47	-0.035052
-20	72	0.031366	0	-10	0	10	48	-0.034501
-20	73	0.030498	0	30	0	10	49	-0.034046
-20	74	0.029562	0	31	0	10	50	-0.033679
-20	75	0.028548	0	32	0	10	51	-0.033393
-20	76	0.027453	0	33	0	10	52	-0.033183
-20	77	0.026293	0	34	0	10	53	-0.033103
-20	78	0.025086	0	35	0	10	54	-0.032961
-20	79	0.023848	0	36	0	10	55	-0.032920
-20	80	0.022596	0	37	0	10	56	-0.032895
-20	81	0.021347	0	38	0	10	57	-0.032867
-20	82	0.020119	0	39	0	10	58	-0.032812
-20	83	0.018929	0	40	0	10	59	-0.032710
-20	84	0.017793	0	41	0	10	60	-0.032538
-20			0	42		10		-0.032336
	85	0.016730			0		61	
-20	86	0.015755	0	43	0	10	62	-0.031901
-20	87	0.014887	0	44	0	10	63	-0.031395
-20	88	0.014142	0	45	0	10	64	-0.030755
-20	89	0.013538	0	46	0	10	65	-0.029991
-20	90	0.013091	0	47	0	10	66	-0.029113
-10	-10	0	0	48	0	10	67	-0.028138
-10	30	0	0	49	0	10	68	-0.027083
-10	31	0.058748	0	50	0	10	69	-0.027083
-10	32	0.057606	0	51	0	10	70	-0.024816
-10	33	0.058084	0	52	0	10	71	-0.023643
-10	34	0.056108	0	53	0	10	72	-0.022469
-10	35	0.046813	0	54	0	10	73	-0.021303
-10	36	0.034151	0	55	0	10	74	-0.020147
-10	37	0.029976	0	56	0	10	75	-0.019002
-10	38	0.031460	0	57	0	10	76	-0.017871
-10	39	0.033393	0	58	0	10	77	-0.017671
-10	40	0.035714	0	59	0	10	78	-0.015658
-10	41	0.037194	0	60	0	10	79	-0.014579
-10	42	0.037433	0	61	0	10	80	-0.013521
-10	43	0.036549	0	62	0	10	81	-0.012487
-10	44	0.035023	0	63	0	10	82	-0.011477
-10	45	0.033313	0	64	0	10	83	-0.010494
-10	46	0.031635	0	65	0	10	84	-0.009539
-10	47	0.031033		66	0	10		-0.009339
			0				85	
-10	48	0.028801	0	67	0	10	86	-0.007724
-10	49	0.027709	0	68	0	10	87	-0.006866
-10	50	0.026771	0	69	0	10	88	-0.006045
-10	51	0.025936	0	70	0	10	89	-0.005262
-10	52	0.025155	0	71	0	10	90	-0.004518
-10	53	0.024409	0	72	0	20	-10	0
-10	54	0.023683	0	73	0	20	30	0
-10	55	0.022974	0	74	0	20	31	-0.078705
			0	75	0	20	32	-0.078703
-10	56	0.022288						
-10	57	0.021630	0	76	0	20	33	-0.081433

20	34	-0.081848	20	74	-0.041597	30	52	-0.093978
20	35	-0.081847	20	75	-0.039797	30	53	-0.091844
20	36	-0.081983	20	76	-0.037995	30	54	-0.089768
20	37	-0.078927	20	77	-0.036191	30	55	-0.087747
20	38	-0.076564	20	78	-0.034386	30	56	-0.085776
20	39	-0.077561	20	79	-0.032582	30	57	-0.083848
20	40	-0.079299	20	80		30	58	
					-0.030779			-0.081954
20	41	-0.081070	20	81	-0.028978	30	59	-0.080088
20	42	-0.082483	20	82	-0.027179	30	60	-0.078242
20	43	-0.083043	20	83	-0.025384	30	61	-0.076410
20	44	-0.082755	20	84	-0.023594	30	62	-0.074584
20	45	-0.081754	20	85	-0.021808	30	63	-0.072756
20	46	-0.080178	20	86	-0.020030	30	64	-0.070920
20	47	-0.078163	20	87	-0.018258	30	65	-0.069078
20	48	-0.075870	20	88	-0.016494	30	66	-0.067233
20	49	-0.073572	20	89	-0.014739	30	67	-0.065385
20	50	-0.071545	20	90	-0.012993	30	68	-0.063538
20	51	-0.069855	30	-10	0	30	69	-0.061692
20	52	-0.068462	30	30	0	30	70	-0.059849
20	53	-0.067329	30	31	-0.098322	30	71	-0.058012
20	54	-0.066416	30	32	-0.097931	30	72	-0.056182
20	55	-0.065671	30	33	-0.097048	30	73	-0.054349
20	56	-0.065034	30	34	-0.096303	30	74	-0.052499
20	57	-0.064446	30	35	-0.098315	30	75	-0.050622
20	58	-0.063848	30	36	-0.104134	30	76	-0.048716
20	59	-0.063187	30	37	-0.106675	30	77	-0.046779
20	60	-0.062436	30	38	-0.106982	30	78	-0.044809
20	61	-0.061579	30	39	-0.108116	30	79	-0.042804
20	62	-0.060600	30	40	-0.108357	30	80	-0.040763
20			30	41		30		
	63	-0.059483			-0.107924		81	-0.038683
20	64	-0.058233	30	42	-0.107357	30	82	-0.036564
20	65	-0.056865	30	43	-0.106836	30	83	-0.034401
20	66	-0.055392	30	44	-0.106280	30	84	-0.032195
20	67	-0.053829	30	45	-0.105606	30	85	-0.029943
20	68	-0.052191	30	46	-0.104729	30	86	-0.027643
20	69	-0.050493	30	47	-0.103568	30	87	-0.025294
20	70	-0.048748	30	48	-0.102064	30	88	-0.022892
20	71	-0.046974	30	49	-0.100270	30	89	-0.020437
20	72	-0.045186	30	50	-0.098269	30	90	-0.017927
20	73	-0.043394	30	51	-0.096144			
		_						
B.4	C _N (δ., α)						
B.4	$C_N($	$ar{\delta}_n, lpha)$						
B.4	$C_N($	$ar{\delta}_n, lpha)$						
	,	$ar{\delta}_n, lpha)$						
CNHE) N	,	-55	59	-0.204801	-45	33	-0.350057
CNHE) N	$ar{\delta}_n, lpha)$ to canard for high aoa, low speed.	-55	59 60	-0.203890	-45	33 34	-0.350057 -0.344632
CNHE	ON nent due	,						
CNHE Incren 02011	ON nent due	,	-55 -55	60 61	-0.203890 -0.202942	-45 -45	34 35	-0.344632 -0.336313
CNHE Increm 020110	ON nent due O	,	-55 -55 -55	60 61 62	-0.203890 -0.202942 -0.202078	-45 -45 -45	34 35 36	-0.344632 -0.336313 -0.324378
CNHE Increm 020110 2 ALFA	ON nent due O	,	-55 -55 -55 -55	60 61 62 63	-0.203890 -0.202942 -0.202078 -0.201422	-45 -45 -45 -45	34 35 36 37	-0.344632 -0.336313 -0.324378 -0.308312
CNHE Increm 020110 2 ALFA DN	ON nent due	to canard for high aoa, low speed.	-55 -55 -55 -55 -55	60 61 62 63 64	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082	-45 -45 -45 -45 -45	34 35 36 37 38	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091
CNHE Increm 020110 2 ALFA DN -55	ON nent due 0	to canard for high aoa, low speed.	-55 -55 -55 -55 -55	60 61 62 63 64 65	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046	-45 -45 -45 -45 -45	34 35 36 37 38 39	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456
CNHE Increm 020110 2 ALFA DN -55 -55	ON nent due 0	to canard for high aoa, low speed. 0 0	-55 -55 -55 -55 -55 -55	60 61 62 63 64	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082	-45 -45 -45 -45 -45	34 35 36 37 38	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091
CNHE Increm 020110 2 ALFA DN -55	ON nent due 0	to canard for high aoa, low speed.	-55 -55 -55 -55 -55	60 61 62 63 64 65	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046	-45 -45 -45 -45 -45	34 35 36 37 38 39	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456
CNHE Increm 020110 2 ALFA DN -55 -55	DN nent due 0 -10 30 31	to canard for high aoa, low speed. 0 0 -0.386308	-55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046 -0.201233 -0.201555	-45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694
CNHE Increm 020110 2 ALFA DN -55 -55 -55	ON nent due 0 -10 30 31 32	to canard for high aoa, low speed. 0 0 -0.386308 -0.387311	-55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046 -0.201233 -0.201555 -0.201924	-45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55	ON nent due 0 -10 30 31 32 33	0 0 0 -0.386308 -0.387311 -0.384031	-55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252	-45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727
CNHE Increm 020110 2 ALFA DN -555 -555 -555 -555 -555 -555 -55	-10 30 31 32 33 34	0 0 0 -0.386308 -0.387311 -0.376300	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405
CNHE Increm 02011(2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201046 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72	-0.203890 -0.202942 -0.2012078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202454 -0.202420	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.178759
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201033 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202302	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.178759 -0.177279
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72	-0.203890 -0.202942 -0.2012078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202454 -0.202420	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.178759
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201033 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202302	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.178759 -0.177279
CNHE Increm 02011 v 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202420 -0.202302 -0.202179 -0.202057	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.178759 -0.177279 -0.177864 -0.179581
CNHE Incren 02011/2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40	0 0 0 -0.386308 -0.387311 -0.386300 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202420 -0.202302 -0.202179 -0.202057 -0.201938	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177854 -0.179581 -0.181826
CNHE Increm 02011(2) ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201033 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202420 -0.202179 -0.202057 -0.201938 -0.201824	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.177279 -0.177864 -0.177581 -0.181826 -0.184323
CNHE Increm 02011t 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202420 -0.202179 -0.202057 -0.201938 -0.201824 -0.201716	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810
CNHE Increm 020111 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201085 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202492 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201716 -0.201618	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.181826 -0.184323 -0.186810 -0.189019
CNHE Increm 020111 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201233 -0.201924 -0.20252 -0.202454 -0.202492 -0.202420 -0.202302 -0.202179 -0.202057 -0.201938 -0.201716 -0.201618 -0.201618	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177854 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687
CNHE Increm 020111 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201085 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202492 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201716 -0.201618	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.181826 -0.184323 -0.186810 -0.189019
CNHE Incren 02011/2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201233 -0.201924 -0.20252 -0.202454 -0.202492 -0.202420 -0.202302 -0.202179 -0.202057 -0.201938 -0.201716 -0.201618 -0.201618	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191697
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202179 -0.202057 -0.201938 -0.201824 -0.201618 -0.201618 -0.201618 -0.201457 -0.201457 -0.201457	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1777279 -0.177279 -0.177864 -0.179581 -0.184323 -0.186810 -0.189019 -0.190687 -0.191697 -0.191097
CNHE Increm 02011t 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202402 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201716 -0.201618 -0.201531 -0.201457 -0.201399 -0.201359	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177264 -0.179581 -0.181826 -0.184323 -0.186810 -0.190687 -0.190687 -0.191697
CNHE Increm 02011tr 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202402 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201716 -0.201618 -0.201618 -0.201457 -0.201399 -0.201359 -0.201359 -0.201339	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1778759 -0.177279 -0.177864 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191697 -0.192014 -0.191605 -0.190460
CNHE Incren 02011 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	0 0 0 -0.386308 -0.387311 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202492 -0.202179 -0.202179 -0.201938 -0.201824 -0.201716 -0.201618 -0.201531 -0.201457 -0.201399 -0.201359 -0.201339 -0.201342	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177259 -0.177259 -0.177259 -0.188810 -0.188910 -0.1990687 -0.199014 -0.191605 -0.191605 -0.190460 -0.188741
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.187647 -0.187647	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201084 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202179 -0.202179 -0.201938 -0.201824 -0.201716 -0.201618 -0.201618 -0.201457 -0.201359 -0.201359 -0.201359 -0.201342 -0.201368	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57 58 60	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191605 -0.190460 -0.188741 -0.190460
CNHE Incren 02011 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371 -0.293000 -0.272725 -0.253345 -0.23345 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.187647 -0.192760 -0.197495	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201618 -0.201618 -0.201457 -0.201399 -0.201359 -0.201359 -0.201368 -0.201368 -0.201421	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177259 -0.177259 -0.177259 -0.188810 -0.188910 -0.1990687 -0.199014 -0.191605 -0.191605 -0.190460 -0.188741
CNHE Increm 020110 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.187647 -0.187647	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201084 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202179 -0.202179 -0.201938 -0.201824 -0.201716 -0.201618 -0.201618 -0.201457 -0.201359 -0.201359 -0.201359 -0.201342 -0.201368	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57 58 60	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191605 -0.190460 -0.188741 -0.190460
CNHE Incren 020111 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.350213 -0.32789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647 -0.192760 -0.197495 -0.201039	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 80 81 82 83 84 85 86 87 88	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202302 -0.202179 -0.202057 -0.201302 -0.201716 -0.201618 -0.201531 -0.201457 -0.201399 -0.201399 -0.201399 -0.201342 -0.201368 -0.201421 -0.201503	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57 58 59 60 61 62	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1778759 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191697 -0.192014 -0.191605 -0.198741 -0.188741 -0.188679 -0.184510 -0.184510 -0.184510
CNHEI Increm 020111 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	0 0 0 -0.386308 -0.387311 -0.386300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647 -0.192760 -0.1977495 -0.203504	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 88	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202492 -0.202179 -0.202179 -0.201938 -0.201824 -0.201716 -0.201618 -0.201531 -0.201457 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201399 -0.201309 -0.201421 -0.201503 -0.201421	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 60 61 62 63	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177879 -0.177279 -0.177279 -0.178641 -0.188610 -0.189019 -0.190687 -0.191605 -0.190460 -0.188741 -0.186679 -0.184510 -0.184510 -0.184510 -0.184516 -0.1845466 -0.180783
CNHE Increm 020111 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647 -0.192760 -0.197495 -0.201039 -0.203504 -0.205062	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 88 89 90	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202420 -0.202179 -0.202179 -0.20257 -0.201938 -0.201824 -0.201716 -0.201618 -0.201531 -0.201457 -0.201399 -0.201399 -0.201342 -0.201342 -0.201342 -0.201368 -0.201421 -0.201615 -0.201615 -0.201615 -0.201615	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57 58 60 61 62 63 64	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.177279 -0.177269 -0.177279 -0.177864 -0.179581 -0.184323 -0.186810 -0.189019 -0.190460 -0.188741 -0.186679 -0.182466 -0.182466 -0.182468
CNHE Increm 02011t 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.332289 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647 -0.192760 -0.197495 -0.201039 -0.203504 -0.205062 -0.205886	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 -10	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202302 -0.202179 -0.202057 -0.201938 -0.201824 -0.201618 -0.201618 -0.201531 -0.201457 -0.201359 -0.201359 -0.201359 -0.201368 -0.201421 -0.201503 -0.201615 -0.201616 -0.201303 -0.201303 -0.201303 -0.201303 -0.201421 -0.201503 -0.201761	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 55 57 58 59 60 61 62 63 64 65	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1777279 -0.177279 -0.177864 -0.179581 -0.184323 -0.186810 -0.189019 -0.190687 -0.191605 -0.191605 -0.190460 -0.188741 -0.186679 -0.182466 -0.180783 -0.180783 -0.180783 -0.180783 -0.180783 -0.179635 -0.179635 -0.179635 -0.179635
CNHE Increm 02011ti 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.183610 -0.187647 -0.192760 -0.187647 -0.192760 -0.197495 -0.203504 -0.203504 -0.205062 -0.205886 -0.206150	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 -10 30	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202302 -0.202179 -0.202057 -0.201393 -0.2011618 -0.201618 -0.201457 -0.201459 -0.201459 -0.201459 -0.201459 -0.201451 -0.201618 -0.201457 -0.201399 -0.201399 -0.201399 -0.201368 -0.201421 -0.201615 -0.201615 -0.201761 0	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 67 60 61 62 63 64 65 66	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1777279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191605 -0.190460 -0.188741 -0.186679 -0.182466 -0.184510 -0.182466 -0.184763 -0.179635 -0.179635 -0.179635 -0.178996 -0.178761
CNHE Increm 02011tr 2 ALFA DN -555 -555 -555 -555 -555 -555 -555 -	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	0 0 0 -0.386308 -0.387311 -0.386301 -0.36300 -0.364873 -0.350213 -0.350213 -0.332789 -0.313371 -0.293000 -0.72725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.182116 -0.183610 -0.187647 -0.192760 -0.197495 -0.201039 -0.205086 -0.205886 -0.206150 -0.206021	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 10 10 10 10 10 10 10 10 10 10 10 10 10	-0.203890 -0.202942 -0.202978 -0.201422 -0.201082 -0.201082 -0.201233 -0.201555 -0.201924 -0.202252 -0.202454 -0.202492 -0.202492 -0.202179 -0.202179 -0.202179 -0.201618 -0.201618 -0.201531 -0.201457 -0.201399	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 61 62 63 64 66 66 67	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.187859 -0.177279 -0.177269 -0.177864 -0.179581 -0.184323 -0.186810 -0.189019 -0.190687 -0.191697 -0.192014 -0.191605 -0.198641 -0.186679 -0.184510 -0.182466 -0.182466 -0.178761 -0.178761 -0.178761 -0.178761
CNHE Increm 02011ti 2 ALFA DN -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	-10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	0 0 0 -0.386308 -0.387311 -0.384031 -0.376300 -0.364873 -0.350213 -0.3322789 -0.313371 -0.293000 -0.272725 -0.253345 -0.235016 -0.218125 -0.203463 -0.191977 -0.184625 -0.183610 -0.187647 -0.192760 -0.187647 -0.192760 -0.197495 -0.203504 -0.203504 -0.205062 -0.205886 -0.206150	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 -10 30	-0.203890 -0.202942 -0.202078 -0.201422 -0.201082 -0.201083 -0.201555 -0.201924 -0.202252 -0.202454 -0.202420 -0.202302 -0.202179 -0.202057 -0.201393 -0.2011618 -0.201618 -0.201457 -0.201459 -0.201459 -0.201459 -0.201459 -0.201451 -0.201618 -0.201457 -0.201399 -0.201399 -0.201399 -0.201368 -0.201421 -0.201615 -0.201615 -0.201761 0	-45 -45 -45 -45 -45 -45 -45 -45 -45 -45	34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 67 60 61 62 63 64 65 66	-0.344632 -0.336313 -0.324378 -0.308312 -0.289091 -0.268456 -0.248157 -0.229694 -0.213834 -0.200727 -0.190405 -0.183043 -0.1777279 -0.177279 -0.177864 -0.179581 -0.181826 -0.184323 -0.186810 -0.189019 -0.190687 -0.191605 -0.19460 -0.188741 -0.188743 -0.186679 -0.182466 -0.184510 -0.182466 -0.184763 -0.179635 -0.179635 -0.179635 -0.178996 -0.178761

-45	69	-0.179441	-35	88	0.166060	-15	45	-0.080028
					-0.166960			
-45	70	-0.179783	-35	89	-0.165709	-15	46	-0.079656
-45	71	-0.180059	-35	90	-0.164281	-15	47	-0.080351
-45	72	-0.180308	-25	-10	0	-15	48	-0.081919
-45	73	-0.180577	-25	30	0	-15	49	-0.084005
-45	74	-0.180890	-25	31	-0.219455	-15	50	-0.086397
-45	75	-0.181235	-25	32	-0.221785	-15	51	-0.088914
-45	76	-0.181599	-25	33	-0.221233	-15	52	-0.091376
-45	77	-0.181967	-25	34	-0.215883	-15	53	-0.093608
-45	78	-0.182324	-25	35	-0.207329	-15	54	-0.095501
-45	79	-0.182656	-25	36	-0.197899	-15	55	-0.096977
-45	80	-0.182949	-25	37	-0.189289	-15	56	-0.097958
-45	81	-0.183187	-25	38	-0.180967	-15	57	-0.098367
-45	82	-0.183358	-25	39		-15	58	
					-0.172135			-0.098149
-45	83	-0.183445	-25	40	-0.162430	-15	59	-0.097419
-45	84	-0.183435	-25	41	-0.153233	-15	60	-0.096355
-45	85	-0.183313	-25	42	-0.145846	-15	61	-0.095110
-45	86	-0.183065	-25	43	-0.140898	-15	62	-0.093840
-45	87	-0.182677	-25	44	-0.138172	-15	63	-0.092698
-45	88	-0.182133	-25	45	-0.137501	-15	64	-0.091825
-45	89	-0.181420	-25	46	-0.138586	-15	65	-0.091240
-45	90	-0.180522	-25	47	-0.140720	-15	66	-0.090895
-35	-10	0	-25	48	-0.142799	-15	67	-0.090742
-35	30	0	-25	49	-0.143633	-15	68	-0.090731
-35	31	-0.299789	-25	50	-0.143099	-15	69	-0.090792
-35	32	-0.303642	-25	51	-0.141621	-15	70	-0.090828
-35	33	-0.303683	-25	52	-0.139630	-15	71	-0.090792
-35	34	-0.298496	-25	53	-0.137548	-15	72	-0.090728
-35	35	-0.289247	-25	54	-0.135788	-15	73	-0.090687
-35	36	-0.276990	-25	55	-0.134580	-15	74	-0.090699
-35	37	-0.262654	-25	56	-0.133757	-15	75	-0.090760
-35	38	-0.247200	-25	57	-0.133098	-15	76	-0.090859
-35	39	-0.231947	-25	58	-0.132410	-15	77	-0.090989
-35	40	-0.218194	-25	59	-0.131666	-15	78	-0.091140
-35	41	-0.206695	-25	60	-0.130914	-15	79	-0.091303
-35	42	-0.197358	-25	61	-0.130202	-15	80	-0.091470
-35	43	-0.189946	-25	62	-0.129579	-15	81	-0.091631
-35	44	-0.184131	-25	63	-0.129116	-15	82	-0.091779
-35	45	-0.179676	-25	64	-0.128918	-15	83	-0.091903
-35	46	-0.176465	-25	65	-0.128968	-15	84	-0.091995
-35	47	-0.174559	-25	66	-0.129186	-15	85	-0.092046
	48	-0.173699	-25	67	-0.129489	-15		-0.092047
-35							86	
-35	49	-0.173420	-25	68	-0.129795	-15	87	-0.091990
-35	50	-0.173257	-25	69	-0.130022	-15	88	-0.091865
-35	51	-0.172945	-25	70	-0.130088	-15	89	-0.091664
-35	52	-0.172500	-25	71	-0.129961	-15	90	-0.091377
-35	53	-0.171957	-25	72	-0.129703	-5	-10	0
	54	-0.171338	-25	73	-0.129703		30	0
-35						-5		
-35	55	-0.170666	-25	74	-0.129042	-5	31	-0.043895
-35	56	-0.169962	-25	75	-0.128697	-5	32	-0.041118
-35	57	-0.169223	-25	76	-0.128354	-5	33	-0.038842
-35	58	-0.168346	-25	77	-0.128020	-5	34	-0.037893
-35	59	-0.167362	-25	78	-0.127702	-5	35	-0.037473
-35	60	-0.166375	-25	79	-0.127409	-5	36	-0.036292
-35	61	-0.165488	-25	80	-0.127147	-5	37	-0.033146
-35	62	-0.164806	-25	81	-0.126925	-5	38	-0.028104
-35	63	-0.164433	-25	82	-0.126750	-5	39	-0.022193
-35	64	-0.164459	-25	83	-0.126629	-5	40	-0.016464
-35	65	-0.164855	-25	84	-0.126570	-5	41	-0.011718
-35	66	-0.165523	-25	85	-0.126581	-5	42	-0.008066
-35	67	-0.166363	-25	86	-0.126670	-5	43	-0.005359
-35	68	-0.167279	-25	87	-0.126843	-5	44	-0.003492
-35	69	-0.168170	-25	88	-0.127108	-5	45	-0.002511
-35	70	-0.168941	-25	89	-0.127474	-5	46	-0.002470
-35	71	-0.169542	-25	90	-0.127947	-5	47	-0.003393
-35	72	-0.170018	-15	-10	0	-5	48	-0.005020
-35	73	-0.170422	-15	30	0	-5	49	-0.007133
-35	74	-0.170784	-15	31	-0.138239	-5	50	-0.009579
-35	75	-0.171098	-15	32	-0.142453	-5	51	-0.012201
-35	76	-0.171356	-15	33	-0.144471	-5	52	-0.014847
-35	77	-0.171550	-15	34	-0.142297	-5	53	-0.017355
-35	78	-0.171670	-15	35	-0.136752	-5	54	-0.019555
-35	79	-0.171709	-15	36	-0.128806	-5	55	-0.021286
-35	80	-0.171657	-15	37	-0.119491	-5	56	-0.022457
-35	81	-0.171507	-15	38	-0.110387	-5	57	-0.023001
-35	82	-0.171248	-15	39	-0.102262	-5	58	-0.022875
-35	83	-0.170874	-15	40	-0.095485	-5	59	-0.022205
-35	84	-0.170375	-15	41	-0.090252	-5	60	-0.021192
-35	85	-0.170373	-15	42	-0.090232	-5 -5	61	-0.021192
-35	86	-0.168968	-15	43	-0.083413	-5	62	-0.018937
-35	87	-0.168044	-15	44	-0.081321	-5	63	-0.018065

5	64	0.017529	0	92	0	15	40	-0.047912
-5	64	-0.017528		83	0			
-5	65	-0.017305	0	84	0	15	41	-0.051876
-5	66	-0.017311	0	85	0	15	42	-0.054958
-5	67	-0.017458	0	86	0	15	43	-0.056439
-5	68	-0.017660	0	87	0	15	44	-0.055933
-5	69	-0.017830	0	88	0	15	45	-0.053991
-5	70	-0.017882	0	89	0	15	46	-0.051344
-5	71	-0.017779	0	90	0	15	47	-0.048689
-5	72	-0.017577	5	-10	0	15	48	-0.046387
-5	73	-0.017340	5	30	0	15	49	-0.044589
-5	74	-0.017110	5	31	0.001329	15	50	-0.043398
-5	75	-0.016892	5	32	0.000872	15	51	-0.042737
-5	76	-0.016691	5	33	0.000445	15	52	-0.042484
-5	77	-0.016508	5	34	-0.000119	15	53	-0.042512
-5	78	-0.016347	5	35	-0.001079	15	54	-0.042683
-5	79	-0.016210	5	36	-0.002515	15	55	-0.042859
-5	80	-0.016101	5	37	-0.004121	15	56	-0.042900
-5	81	-0.016021	5	38	-0.005284	15	57	-0.042670
-5	82	-0.015975	5	39	-0.005799	15	58	-0.042051
-5	83	-0.015965	5	40	-0.005857	15	59	-0.041093
-5	84	-0.015994	5	41	-0.006081	15	60	-0.039919
-5	85	-0.016064	5	42	-0.006500	15	61	-0.038655
-5	86	-0.016180	5	43	-0.007034	15	62	-0.037422
-5	87	-0.016342	5	44	-0.007670	15	63	-0.036344
-5	88	-0.016556	5	45	-0.008486	15	64	-0.035533
-5	89	-0.016822	5	46	-0.009566	15	65	-0.034977
-5	90	-0.017145	5	47	-0.010964	15	66	-0.034597
0	-10	0	5	48	-0.012391	15	67	-0.034316
0	30	0	5	49	-0.013427	15	68	-0.034053
0	31	0	5	50	-0.014025	15	69	-0.033730
0	32	0	5	51	-0.014258	15	70	-0.033269
0	33	0	5	52	-0.014202	15	71	-0.032641
0	34	0	5	53	-0.013923	15	72	-0.031911
0	35	0	5	54	-0.013480	15	73	-0.031150
0	36	0	5	55	-0.012930	15	74	-0.030407
0	37	0	5	56	-0.012329	15	75	-0.029699
0	38	0	5	57	-0.011649	15	76	-0.029034
0	39	0	5	58	-0.010764	15	77	-0.028424
0	40	0	5	59	-0.009708	15	78	-0.027880
0	41	0	5	60	-0.008590	15	79	-0.027413
0	42	0	5	61	-0.007518	15	80	-0.027033
0	43	0	5	62	-0.006600	15	81	-0.026752
0	44	0	5	63	-0.005945	15	82	-0.026581
0	45	0	5	64	-0.005649	15	83	-0.026530
0	46	0	5	65	-0.005684	15	84	-0.026610
0	47	0	5	66	-0.005957	15	85	-0.026832
0	48	0	5	67				
					-0.006375	15	86	-0.027208
0	49	0	5	68	-0.006843	15	87	-0.027748
0	50	0	5	69	-0.007272	15	88	-0.028463
0	51	0	5	70	-0.007574	15	89	-0.029363
0	52	0	5	71	-0.007711	15	90	-0.030461
0	53	0	5	72	-0.007736	25	-10	0
0	54	0	5	73	-0.007711	25	30	0
0	55	0	5	74	-0.007676	25	31	-0.074424
0	56	0	5	75	-0.007636	25	32	-0.084076
0	57	0	5	76	-0.007591	25	33	-0.092115
0	58	0	5	77	-0.007542	25	34	-0.099491
0	59	0	5	78	-0.007490	25	35	-0.106937
0	60	0	5	79	-0.007436	25	36	-0.113721
0	61	0	5	80	-0.007380	25	37	-0.118464
0	62	0	5	81	-0.007325	25	38	-0.120618
0	63	0	5	82	-0.007270	25	39	-0.120219
0	64	0	5	83	-0.007216	25	40	-0.117616
0	65	0	5	84	-0.007165	25	41	-0.113720
0	66	0	5	85	-0.007118	25	42	-0.108916
0	67	0	5	86	-0.007074	25	43	-0.103482
0	68	0	5	87	-0.007036	25	44	-0.097773
0	69	0	5	88	-0.007004	25	45	-0.092202
0	70	0	5	89	-0.006979	25	46	-0.087176
0	71	0	5	90	-0.006962	25	47	-0.083067
0	72	0	15	-10	0	25	48	-0.079909
0	73	0	15	30	0	25	49	-0.077531
0	74	0	15	31	-0.019096	25	50	-0.075756
0	75	0	15	32	-0.017862	25	51	-0.074409
0	76	0	15	33	-0.017611	25	52	-0.073347
0	77	0	15	34	-0.019721	25	53	-0.072474
0	78	0	15	35	-0.023885	25	54	-0.071686
0	79	0	15	36	-0.029100	25	55	-0.070879
0	80	0	15	37	-0.034354	25	56	-0.069948
0	81	0	15	38	-0.039193	25	57	-0.068790
0	82	0	15	39	-0.043681	25	58	-0.067324

25	59	-0.065639	25	70	-0.059360	25	81	-0.059638
25	60	-0.063899	25	71	-0.059416	25	82	-0.059696
25			25	72		25	83	
	61	-0.062248			-0.059397			-0.059748
25	62	-0.060799	25	73	-0.059363	25	84	-0.059792
25	63	-0.059662	25	74	-0.059349	25	85	-0.059824
25	64	-0.058934	25	75	-0.059355	25	86	-0.059842
25	65	-0.058589	25	76	-0.059379	25	87	-0.059841
25	66	-0.058534	25	77	-0.059416	25	88	-0.059819
25	67	-0.058676	25	78	-0.059463	25	89	-0.059772
25	68	-0.058923	25	79	-0.059518	25	90	-0.059697
25	69	-0.059182	25	80	-0.059577			
B.5	C_{vi}	$ar{\delta}_e, lpha)$						
D. 3	C_N	o_e, o						
CNILIE	NE.		20	00	0.217202	10	10	0
CNHE		41 f1:-h 1	-30	88	-0.216293	-10	-10	0
		to elevon for high aoa, low speed.	-30	89	-0.213222	-10	30	0 152699
02011	U		-30	90	-0.210140	-10	31	-0.153688
2			-20	-10	0	-10	32	-0.157022
DE			-20	30	0	-10	33	-0.160283
ALFA		^	-20	31	-0.310719	-10	34	-0.163558
-30	-10	0	-20	32	-0.307891	-10	35	-0.166788
-30	30	0	-20	33	-0.305765	-10	36	-0.169566
-30	31	-0.454683	-20	34	-0.304273	-10	37	-0.171551
-30	32	-0.448585	-20	35	-0.302835	-10	38	-0.173244
-30	33	-0.440114	-20	36	-0.300501	-10	39	-0.175469
-30	34	-0.429626	-20	37	-0.296456	-10	40	-0.178216
-30	35	-0.418693	-20	38	-0.290798	-10	41	-0.181047
-30	36	-0.407909	-20	39	-0.284212	-10	42	-0.182867
-30	37	-0.396536	-20	40	-0.277393	-10	43	-0.182929
-30	38	-0.384485	-20	41	-0.270787	-10	44	-0.181517
-30	39	-0.372250	-20	42	-0.264183	-10	45	-0.179171
-30	40	-0.360475	-20	43	-0.257487	-10	46	-0.176444
-30	41	-0.350015	-20	44	-0.250977	-10	47	-0.173854
-30	42	-0.341162	-20	45	-0.245091	-10	48	-0.171572
-30	43	-0.334100	-20	46	-0.240278	-10	49	-0.169557
-30	44	-0.329062	-20	47	-0.236957	-10	50	-0.167760
-30	45	-0.325927	-20	48	-0.235206	-10	51	-0.166137
-30	46	-0.324303	-20	49	-0.234895	-10	52	-0.164639
-30	47	-0.323764	-20	50	-0.235890	-10	53	-0.163214
-30	48	-0.323555	-20	51	-0.237922	-10	54	-0.161796
-30	49	-0.323129	-20	52	-0.240588	-10	55	-0.160265
-30	50	-0.322493	-20	53	-0.243468	-10	56	-0.158469
-30	51	-0.321692	-20	54	-0.246135	-10	57	-0.156253
-30	52	-0.320771	-20	55	-0.248161	-10	58	-0.153486
-30	53	-0.319770	-20	56	-0.249115	-10	59	-0.150209
-30	54	-0.318714	-20	57	-0.248569	-10	60	-0.146533
-30	55	-0.317549	-20	58	-0.246167	-10	61	-0.142573
-30	56	-0.316122	-20	59	-0.242075	-10	62	-0.138440
-30	57	-0.314279	-20	60	-0.236682	-10	63	-0.134249
-30	58	-0.311887	-20	61	-0.230380	-10	64	-0.130100
-30	59	-0.308984	-20	62	-0.223559	-10	65	-0.126008
-30	60	-0.305680	-20	63	-0.216611	-10	66	-0.120006
-30	61	-0.302095	-20	64	-0.209915	-10	67	-0.121930
-30	62	-0.298376	-20	65	-0.203726	-10	68	-0.117936
-30	63	-0.294681	-20	66	-0.198233	-10	69	-0.113910
-30	64	-0.291153	-20	67	-0.193589	-10	70	-0.105960
-30	65	-0.287815	-20	68	-0.189712	-10	71	-0.103867
-30	66	-0.284620	-20	69	-0.186423	-10	72	-0.101833
			-20					
-30 -30	67 68	-0.281523 -0.278478	-20	70 71	-0.183546 -0.180956	-10 -10	73 74	-0.094410 -0.091200
			-20	72				-0.091200
-30	69	-0.275438			-0.178616	-10	75	
-30	70	-0.272341	-20	73	-0.176501	-10	76	-0.085791
-30	71	-0.269145	-20	74	-0.174563	-10	77	-0.083525
-30	72	-0.265897	-20	75	-0.172716	-10	78	-0.081508
-30	73	-0.262652	-20	76	-0.170874	-10	79	-0.079706
-30	74	-0.259444	-20	77	-0.168949	-10	80	-0.078085
-30	75	-0.256271	-20	78	-0.166892	-10	81	-0.076612
-30	76	-0.253127	-20	79	-0.164750	-10	82	-0.075253
-30	77	-0.250007	-20	80	-0.162586	-10	83	-0.073975
-30	78	-0.246906	-20	81	-0.160461	-10	84	-0.072745
-30	79	-0.243819	-20	82	-0.158438	-10	85	-0.071529
-30	80	-0.240743	-20	83	-0.156580	-10	86	-0.070294
-30	81	-0.237677	-20	84	-0.154948	-10	87	-0.069006
-30	82	-0.234619	-20	85	-0.153605	-10	88	-0.067631
-30	83	-0.231565	-20	86	-0.152613	-10	89	-0.066138
-30	84	-0.228514	-20	87	-0.152034	-10	90	-0.064491
-30	85	-0.225463	-20	88	-0.151932	0	-10	0
-30	86	-0.222411	-20	89	-0.152367	0	30	0
-30	87	-0.219355	-20	90	-0.153402	0	31	0

0	32	0	10	51	0.042065	20	70	0.067066
0	33	0	10	52	0.045051	20	71	0.066885
0	34	0	10	53	0.046698	20	72	0.066965
0	35	0	10	54	0.047250	20	73	0.067216
0	36	0	10	55	0.046990	20	74	0.067571
0	37	0	10	56	0.046206	20	75	0.067999
0	38	0	10	57	0.045183	20	76	0.068473
0	39	0	10	58	0.044184	20	77	0.068964
0	40	0	10	59	0.043301	20	78	0.069445
0	41	0	10	60	0.042552	20	79	0.069887
0	42	0	10	61	0.041957	20	80	0.070264
0	43	0	10	62	0.041482	20	81	0.070546
0	44	0	10	63	0.041002	20	82	0.070706
						20		
0	45	0	10	64	0.040398		83	0.070717
0	46	0	10	65	0.039671	20	84	0.070549
0	47	0	10	66	0.038890	20	85	0.070176
0	48	0	10	67	0.038125	20	86	0.069569
0	49	0	10	68	0.037443	20	87	0.068701
0	50	0	10	69	0.036916	20	88	0.067544
0	51	0	10	70	0.036612	20	89	0.066069
0	52	0	10	71	0.036548	20	90	0.064249
0	53	0	10	72	0.036652	30	-10	0
0	54	0	10	73	0.036843	30	30	0
0	55	0	10	74	0.037060	30	31	0.193986
0	56	0	10	75	0.037280	30	32	0.172756
0	57	0	10	76	0.037483	30	33	0.151140
0	58	0	10	77	0.037648	30	34	0.128721
0	59	0	10	78	0.037754	30	35	0.105847
0	60	0	10	79	0.037782	30	36	0.084192
0	61	0	10	80	0.037710	30	37	0.066117
0	62	0	10	81	0.037518	30	38	0.053157
0	63	0	10	82	0.037186	30	39	0.045763
0	64	0	10	83	0.036692	30	40	0.042714
0	65	0	10	84	0.036017	30	41	0.042703
0	66	0	10	85	0.035141	30	42	0.045087
0	67	0	10	86	0.034041	30	43	0.049329
0	68	0	10	87	0.032699	30	44	0.054786
0	69	0	10	88	0.031093	30	45	0.060702
0	70	0	10	89	0.029203	30	46	0.066475
0	71	0	10	90	0.027009	30	47	0.071590
0	72	0	20	-10	0	30	48	0.075867
0	73	0	20	30	0	30	49	0.079336
0	74	0	20	31	0.171066	30	50	0.082030
0	75	0	20	32	0.155160	30	51	0.083981
0	76	0	20	33	0.142467	30	52	0.085231
0	77	0	20	34	0.131337	30	53	0.085904
0	78	0	20	35	0.118194	30	54	0.086171
0	79	0	20	36	0.099865	30	55	0.086204
0	80	0	20	37	0.076972	30	56	0.086175
0	81	0	20	38	0.056094	30	57	0.086257
0	82	0	20	39	0.041362	30	58	0.086598
0	83	0	20	40	0.032149	30	59	0.087177
0	84	0	20	41	0.027568	30	60	0.087899
0	85	0	20	42	0.027341	30	61	0.088670
0	86	0	20	43	0.030813	30	62	0.089393
0	87	0	20	44	0.036970	30	63	0.089971
0	88	0	20	45	0.044647	30	64	0.090298
0	89	0	20	46	0.052669	30	65	0.090380
0	90	0	20	47	0.059917	30	66	0.090292
10	-10	0	20	48	0.065969	30	67	0.090111
10	30	0	20	49	0.070890	30	68	0.089910
10	31	0.106912	20	50	0.074755	30	69	0.089766
10	32	0.094250	20	51	0.077639	30	70	0.089753
10	33	0.083848	20	52	0.079617	30	71	0.089896
10	34	0.074434	20	53	0.080770	30	72	0.090128
10	35	0.065283	20	54	0.081191	30	73	0.090372
10	36	0.056031	20	55	0.081027	30	74	0.090576
10				56				
	37	0.046515	20		0.080484	30	75	0.090721
10	38	0.037252	20	57	0.079775	30	76	0.090794
10	39	0.028719	20	58	0.079085	30	77	0.090780
10	40	0.021381	20	59	0.078433	30	78	0.090665
10	41	0.015636	20	60	0.077763	30	79	0.090433
10	42	0.011727	20	61	0.077018	30	80	0.090070
	42							
10		0.009878	20	62	0.076141	30	81	0.089563
10	44	0.010206	20	63	0.075077	30	82	0.088896
10	45	0.012678	20	64	0.073783	30	83	0.088056
10	46	0.016923	20	65	0.072336	30	84	0.087026
10	47	0.022069	20	66	0.070882	30	85	0.085794
10	48	0.027531	20	67	0.069557	30	86	0.084344
10	49	0.032933	20	68	0.068438	30	87	0.082663
10	50	0.037903	20	69	0.067587	30	88	0.080735

30 89 0.078546 30 90 0.076081

B.6 $C_T(\bar{\delta}_n, \alpha)$

CTHD	N		-45	36	0.017720	-35	49	-0.059347
Increm	ent due	to canard for high aoa, low speed.	-45	37	0.015886	-35	50	-0.060309
020110		, I	-45	38	0.013998	-35	51	-0.060951
2	,		-45	39	0.012139	-35	52	-0.061278
ALFA			-45	40	0.010377	-35	53	-0.061301
DN			-45	41	0.008798	-35	54	-0.061029
-55	-10	0	-45	42	0.007564	-35	55	-0.060472
-55	30	0	-45	43	0.006795	-35	56	-0.059638
-55	31	0.086591	-45	44	0.006481	-35	57	-0.058545
-55	32	0.084046	-45	45	0.006511	-35	58	-0.057215
-55	33	0.082196	-45	46	0.006754	-35	59	-0.055672
-55	34	0.080641	-45	47	0.007103	-35	60	-0.053937
-55	35	0.079125	-45	48	0.007507	-35	61	-0.052035
-55	36	0.077668	-45	49	0.007926	-35	62	-0.049988
-55	37	0.076318	-45	50	0.008319	-35	63	-0.047818
-55	38	0.075099	-45	51	0.008666	-35	64	-0.045549
-55	39	0.073964	-45	52	0.008973	-35	65	-0.043203
-55	40	0.072850	-45	53	0.009251	-35	66	-0.040795
	41	0.071723	-45	54		-35	67	
-55					0.009509			-0.038327
-55	42	0.070632	-45	55	0.009756	-35	68	-0.035798
-55	43	0.069662	-45	56	0.010003	-35	69	-0.033206
-55	44	0.068857	-45	57	0.010260	-35	70	-0.030551
-55	45	0.068164	-45	58	0.010539	-35	71	-0.027830
-55	46	0.067513	-45	59	0.010855	-35	72	-0.025044
-55	47	0.066856	-45	60	0.011222	-35	73	-0.022189
-55	48	0.066219	-45	61	0.011656	-35	74	-0.019266
-55	49	0.065650	-45	62	0.012169	-35	75	-0.016283
-55	50	0.065196	-45	63	0.012764	-35	76	-0.013270
-55	51	0.064888	-45	64	0.013430	-35	77	-0.010258
-55	52	0.064728	-45	65	0.014157	-35	78	-0.007278
-55	53	0.064709	-45	66	0.014939	-35	79	-0.004360
-55	54	0.064828	-45	67	0.015768	-35	80	-0.001536
-55	55	0.065080	-45	68	0.016639	-35	81	0.001163
-55	56	0.065460	-45	69	0.017544	-35	82	0.003707
-55	57	0.065957	-45	70	0.018477	-35	83	0.006067
-55	58	0.066558	-45	71	0.019430	-35	84	0.008213
	59		-45	72	0.020397	-35	85	
-55		0.067246						0.010119
-55	60	0.068009	-45	73	0.021372	-35	86	0.011756
-55	61	0.068832	-45	74	0.022347	-35	87	0.013096
-55	62	0.069701	-45	75	0.023315	-35	88	0.014110
-55	63	0.070603	-45	76	0.024271	-35	89	0.014771
-55	64	0.071522	-45	77	0.025206	-35	90	0.015051
-55	65	0.072447	-45	78	0.026115	-25	-10	0
-55	66	0.073365	-45	79	0.026991	-25	30	0
-55	67	0.074268	-45	80	0.027827	-25	31	-0.033904
-55	68	0.075153	-45	81	0.028615	-25	32	-0.035657
-55	69	0.076018	-45	82	0.029350	-25	33	-0.036941
			-45			-25	34	
-55	70	0.076861		83	0.030027			-0.038199
-55	71	0.077681	-45	84	0.030641	-25	35	-0.039753
-55	72	0.078476	-45	85	0.031189	-25	36	-0.041553
-55	73	0.079245	-45	86	0.031666	-25	37	-0.043452
-55	74	0.079985	-45	87	0.032070	-25	38	-0.045330
-55	75	0.080696	-45	88	0.032395	-25	39	-0.047137
-55	76	0.081374	-45	89	0.032638	-25	40	-0.048837
-55	77	0.082020	-45	90	0.032795	-25	41	-0.050380
-55	78	0.082630	-35	-10	0	-25	42	-0.050500
								0.00-00-
-55	79	0.083204	-35	30	0	-25	43	-0.052429
-55	80	0.083740	-35	31	-0.015505	-25	44	-0.052680
-55	81	0.084236	-35	32	-0.020383	-25	45	-0.052482
-55	82	0.084690	-35	33	-0.024331	-25	46	-0.051966
-55	83	0.085103	-35	34	-0.027625	-25	47	-0.051241
-55	84	0.085476	-35	35	-0.030474	-25	48	-0.050360
-55	85	0.085810	-35	36	-0.032972	-25	49	-0.049363
-55	86	0.086106	-35	37	-0.035203	-25	50	-0.048292
-55	87	0.086365	-35	38	-0.037276	-25	51	-0.047183
-55	88	0.086589	-35	39	-0.039373	-25	52	-0.046038
-55	89	0.086778	-35	40	-0.041624	-25	53	-0.044850
-55	90	0.086935	-35	41	-0.044023	-25	54	-0.043614
-45	-10	0	-35	42	-0.046469	-25	55	-0.042321
-45	30	0	-35	43	-0.048831	-25	56	-0.040966
-45	31	0.025766	-35	44	-0.051014	-25	57	-0.039542
-45	32	0.022648	-35	45	-0.053024	-25	58	-0.038038
-45	33	0.021378	-35	46	-0.054882	-25	59	-0.036442
-45	34	0.020582	-35	47	-0.056590	-25	60	-0.034744
-45	35	0.019345	-35	48	-0.058094	-25	61	-0.032936

-25	62	-0.031037	-15	81	0.009630	0	38	0
-25	63	-0.029067	-15	82	0.010866	0	39	0
-25	64	-0.027050	-15	83	0.012020	0	40	0
-25	65	-0.025008	-15	84	0.013063	0	41	0
-25	66	-0.022959	-15	85	0.013966	0	42	0
-25	67	-0.020924	-15	86	0.014699	0	43	0
-25	68	-0.018920	-15	87	0.015234	0	44	0
-25	69	-0.016955	-15	88	0.015541	0	45	0
-25	70	-0.015018	-15	89	0.015590	0	46	0
-25	71	-0.013098	-15	90	0.015354	0	47	0
-25	72	-0.011185	-5	-10	0	0	48	0
-25	73		-5 -5	30	0	0	49	0
		-0.009268						
-25	74	-0.007337	-5	31	-0.009258	0	50	0
-25	75	-0.005382	-5	32	-0.008858	0	51	0
-25	76	-0.003391	-5	33	-0.008458	0	52	0
-25	77	-0.001375	-5	34	-0.008231	0	53	0
-25	78	0.000630	-5	35	-0.008258	0	54	0
-25	79	0.002585	-5	36	-0.008445	0	55	0
-25	80	0.004450	-5	37	-0.008679	0	56	0
-25	81	0.006186	-5	38	-0.008872	0	57	0
-25	82	0.007754	-5	39	-0.009005	0	58	0
-25	83	0.009116	-5 -5	40	-0.009003	0	59	0
-25	84	0.010236	-5	41	-0.009073	0	60	0
-25	85	0.011079	-5	42	-0.008947	0	61	0
-25	86	0.011606	-5	43	-0.008627	0	62	0
-25	87	0.011783	-5	44	-0.008079	0	63	0
-25	88	0.011573	-5	45	-0.007370	0	64	0
-25	89	0.010938	-5	46	-0.006583	0	65	0
-25	90	0.009844	-5	47	-0.005780	0	66	0
-15	-10	0	-5	48	-0.004962	0	67	0
						0		
-15	30	0	-5	49	-0.004122		68	0
-15	31	-0.030072	-5	50	-0.003248	0	69	0
-15	32	-0.030497	-5	51	-0.002347	0	70	0
-15	33	-0.030704	-5	52	-0.001457	0	71	0
-15	34	-0.030889	-5	53	-0.000620	0	72	0
-15	35	-0.031142	-5	54	0.000121	0	73	0
-15	36	-0.031412	-5	55	0.000726	0	74	0
-15	37	-0.031636	-5	56	0.001182	0	75	0
-15	38	-0.031779	-5	57	0.001507	0	76	0
-15	39	-0.031876	-5	58	0.001720	0	77	0
	40		-5 -5	59		0	78	0
-15		-0.031976			0.001842			
-15	41	-0.032113	-5	60	0.001894	0	79	0
-15	42	-0.032230	-5	61	0.001899	0	80	0
-15	43	-0.032239	-5	62	0.001878	0	81	0
-15	44	-0.032083	-5	63	0.001852	0	82	0
-15	45	-0.031809	-5	64	0.001842	0	83	0
-15	46	-0.031478	-5	65	0.001868	0	84	0
-15	47	-0.031131	-5	66	0.001935	0	85	0
-15	48	-0.030752	-5	67	0.002038	0	86	0
-15	49	-0.030309	-5	68	0.002176	0	87	0
		-0.029765						
-15	50		-5	69	0.002346	0	88	0
-15	51	-0.029091	-5	70	0.002545	0	89	0
-15	52	-0.028294	-5	71	0.002770	0	90	0
-15	53	-0.027383	-5	72	0.003020	5	-10	0
-15	54	-0.026368	-5	73	0.003291	5	30	0
-15	55	-0.025258	-5	74	0.003580	5	31	0.021697
-15	56	-0.024064	-5	75	0.003885	5	32	0.022544
-15	57	-0.022793	-5	76	0.004197	5	33	0.023509
-15	58	-0.021454	-5	77	0.004507	5	34	0.024294
-15	59	-0.020054	-5	78	0.004805	5	35	0.024687
-15	60	-0.018606	-5	79	0.005081	5	36	0.024719
-15		-0.017121	-5	80	0.005326	5	37	0.024507
-15	61 62	-0.017121	-5 -5	81	0.005531	5	38	0.024307
-15	63	-0.014092	-5	82	0.005685	5	39	0.023656
-15	64	-0.012572	-5	83	0.005781	5	40	0.023047
-15	65	-0.011063	-5	84	0.005812	5	41	0.022341
-15	66	-0.009576	-5	85	0.005771	5	42	0.021643
-15	67	-0.008117	-5	86	0.005652	5	43	0.021055
-15	68	-0.006698	-5	87	0.005447	5	44	0.020629
-15	69	-0.005326	-5	88	0.005150	5	45	0.020320
-15	70	-0.004009	-5	89	0.004755	5	46	0.020061
-15	71	-0.002741	-5	90	0.004254	5	47	0.019811
-15	72	-0.001512	0	-10	0	5	48	0.019583
			0	30	0		48 49	
-15	73	-0.000309				5		0.019404
-15	74	0.000880	0	31	0	5	50	0.019297
-15	75	0.002068	0	32	0	5	51	0.019273
-15	76	0.003266	0	33	0	5	52	0.019311
-15	77	0.004487	0	34	0	5	53	0.019383
-15	78	0.005743	0	35	0	5	54	0.019477
-15	79	0.007036	0	36	0	5	55	0.019588
-15	80	0.008343	0	37	0	5	56	0.019711
-								

5	57	0.019841	15	48	0.055908	25	39	0.097481
5	58	0.019978	15	49	0.054983	25	40	0.096228
5	59	0.020121	15	50	0.054173	25	41	0.094823
5	60	0.020270	15	51	0.053500	25	42	0.093339
5	61	0.020426	15	52	0.052958	25	43	0.091881
5	62	0.020589	15	53	0.052532	25	44	0.090519
5	63	0.020758	15	54	0.052209	25	45	0.089223
5	64	0.020934	15	55	0.051978	25	46	0.087943
5	65	0.021119	15	56	0.051825	25	47	0.086653
5	66	0.021314	15	57	0.051738	25	48	0.085385
5	67	0.021524	15	58	0.051709	25	49	0.084180
5	68	0.021749	15	59	0.051730	25	50	0.083080
5	69	0.021983	15	60	0.051793	25	51	0.082111
5	70	0.022220	15	61	0.051890	25	52	0.081267
5	71	0.022455	15	62	0.052015	25	53	0.080538
5	72	0.022683	15	63	0.052160	25	54	0.079914
5	73	0.022897	15	64	0.052318	25	55	0.079384
5	74	0.023092	15	65	0.052481	25	56	0.078939
5	75	0.023263	15	66	0.052645	25	57	0.078568
5	76	0.023403	15	67	0.052806	25	58	0.078264
5	77	0.023507	15	68	0.052960	25	59	0.078022
5	78	0.023569	15	69	0.053099	25	60	0.077837
5	79	0.023584	15	70	0.053217	25	61	0.077703
5	80	0.023546	15	71	0.053307	25	62	0.077615
5	81	0.023449	15	72	0.053362	25	63	0.077568
5	82	0.023288	15	73	0.053374	25	64	0.077556
5	83	0.023059	15	74	0.053337	25	65	0.077575
5	84	0.022759	15	75	0.053244	25	66	0.077622
5	85	0.022386	15	76	0.053087	25	67	0.077695
5	86	0.021935	15	77	0.052860	25	68	0.077787
5	87	0.021406	15	78	0.052555	25	69	0.077894
5	88	0.020794	15	79	0.052166	25	70	0.078010
5	89	0.020097	15	80	0.051686	25	71	0.078131
5	90	0.019313	15	81	0.051107	25	72	0.078251
15	-10	0	15	82	0.050423	25	73	0.078365
15	30	0	15	83	0.049628	25	74	0.078469
15	31	0.065940	15	84	0.048719	25	75	0.078556
15	32	0.066732	15	85	0.047691	25	76	0.078621
15	33	0.067599	15	86	0.046539	25	77	0.078661
15	34	0.068199	15	87	0.045260	25	78	0.078669
15	35	0.068349	15	88	0.043850	25	79	0.078640
15	36	0.068129	15	89	0.042305	25	80	0.078569
15	37	0.067642	15	90	0.040619	25	81	0.078451
15	38	0.066967	25	-10	0	25	82	0.078282
15	39	0.066110	25	30	0	25	83	0.078057
15	40	0.065065	25	31	0.102194	25	84	0.077774
15	41	0.063840	25	32	0.102143	25	85	0.077431
15	42	0.062525	25	33	0.102038	25	86	0.077027
15	43	0.061241	25	34	0.101743	25	87	0.076557
15	44	0.060071	25	35	0.101197	25	88	0.076021
15	45	0.058989	25	36	0.100451	25	89	0.075416
15	46	0.057945	25	37	0.099569	25	90	0.074739
15	47	0.056908	25	38	0.098587			

B.7 $C_T(\bar{\delta}_e, \alpha)$

CTHDE	-30 46 0.004064	-30 69 0.012669
Increment due to elevon at high aoa, low speed.	-30 47 0.003815	-30 70 0.012835
020119	-30 48 0.003745	-30 71 0.012982
2	-30 49 0.003826	-30 72 0.013111
DE	-30 50 0.004068	-30 73 0.013222
ALFA	-30 51 0.004473	-30 74 0.013310
-30 -10 0	-30 52 0.005006	-30 75 0.013367
-30 30 0	-30 53 0.005633	-30 76 0.013384
-30 31 0.043703	-30 54 0.006316	-30 77 0.013354
-30 32 0.041115	-30 55 0.007018	-30 78 0.013269
-30 33 0.038093	-30 56 0.007704	-30 79 0.013121
-30 34 0.034746	-30 57 0.008342	-30 80 0.012906
-30 35 0.031210	-30 58 0.008926	-30 81 0.012630
-30 36 0.027599	-30 59 0.009459	-30 82 0.012300
-30 37 0.024009	-30 60 0.009944	-30 83 0.011926
-30 38 0.020514	-30 61 0.010385	-30 84 0.011516
-30 39 0.017136	-30 62 0.010784	-30 85 0.011083
-30 40 0.013942	-30 63 0.011146	-30 86 0.010636
-30 41 0.011021	-30 64 0.011472	-30 87 0.010185
-30 42 0.008546	-30 65 0.011767	-30 88 0.009740
-30 43 0.006661	-30 66 0.012031	-30 89 0.009312
-30 44 0.005365	-30 67 0.012269	-30 90 0.008911
-30 45 0.004544	-30 68 0.012481	-20 -10 0
20 12 0.00 12 1 1	50 00 0.012.01	20 10 0

20.20. 0	10.40 0.016701	0 60 0
-20 30 0	-10 49 -0.016791	0 68 0
-20 31 0.012686	-10 50 -0.016260	0 69 0
-20 32 0.011195	-10 51 -0.015452	0 70 0
-20 33 0.009757	-10 52 -0.014387	0 71 0
-20 34 0.008349	-10 53 -0.013094	0 72 0
-20 35 0.006909	-10 54 -0.011599	0 73 0
-20 36 0.005486	-10 55 -0.009931	0 74 0
-20 37 0.004137	-10 56 -0.008132	0 75 0
-20 38 0.002896	-10 57 -0.006296	0 76 0
-20 38 0.002890	-10 58 -0.004527	0 70 0
-20 40 0.000587	-10 59 -0.002925	0 78 0
-20 41 -0.000540	-10 60 -0.001592	0 79 0
-20 42 -0.001595	-10 61 -0.000572	0 80 0
-20 43 -0.002488	-10 62 0.000187	0 81 0
-20 44 -0.003162	-10 63 0.000749	0 82 0
-20 45 -0.003662	-10 64 0.001176	0 83 0
-20 46 -0.004035	-10 65 0.001531	0 84 0
-20 47 -0.004288	-10 66 0.001882	0 85 0
-20 48 -0.004367	-10 67 0.002293	0 86 0
-20 49 -0.004209	-10 68 0.002805	0 87 0
-20 50 -0.003753	-10 69 0.003391	0 88 0
-20 51 -0.002949	-10 70 0.004012	0 89 0
-20 52 -0.001793	-10 71 0.004628	0 90 0
-20 53 -0.000368	-10 72 0.005202	10 -10 0
-20 54 0.001203	-10 73 0.005693	10 30 0
-20 55 0.002793	-10 74 0.006073	10 31 0.015211
-20 56 0.004278	-10 75 0.006355	10 32 0.016549
-20 57 0.005552	-10 76 0.006566	10 33 0.017996
-20 58 0.006608	-10 77 0.006728	10 34 0.019370
-20 59 0.007470	-10 78 0.006867	10 35 0.020621
-20 60 0.008164	-10 79 0.000007	10 36 0.020021
-20 61 0.008714	-10 80 0.007174	10 37 0.023021
-20 62 0.009145	-10 81 0.007382	10 38 0.024204
-20 63 0.009482	-10 82 0.007605	10 39 0.025247
-20 64 0.009745	-10 83 0.007803	10 40 0.026022
-20 65 0.009939	-10 84 0.007938	10 41 0.026412
-20 66 0.010068	-10 85 0.007972	10 42 0.026405
-20 67 0.010137	-10 86 0.007866	10 43 0.026115
-20 68 0.010151	-10 87 0.007582	10 44 0.025648
-20 69 0.010114	-10 88 0.007082	10 45 0.025013
-20 70 0.010030	-10 89 0.006328	10 46 0.024199
-20 71 0.009905	-10 90 0.005281	10 47 0.023216
-20 72 0.009743	0 -100	10 48 0.022125
-20 73 0.009547	0 30 0	10 49 0.020984
-20 74 0.009320	0 31 0	10 50 0.019855
-20 75 0.009064	0 32 0	10 51 0.018782
-20 76 0.008778	0 33 0	10 52 0.017779
-20 77 0.008465	0 34 0	10 53 0.016855
-20 78 0.008127	0 35 0	10 54 0.016015
-20 79 0.007763	0 36 0	10 55 0.015254
-20 80 0.007377	0 37 0	10 56 0.014566
-20 81 0.006970	0 38 0	10 57 0.013942
-20 82 0.006550	0 39 0	10 58 0.013379
-20 83 0.006124	0 40 0	
-20 84 0.005701	0 41 0	10 59 0.012876
	0 41 0	10 60 0.012429
-20 85 0.005291	0 42 0	10 60 0.012429 10 61 0.012029
-20 85 0.005291 -20 86 0.004902	0 42 0 0 43 0	10 60 0.012429 10 61 0.012029 10 62 0.011645
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544	0 42 0 0 43 0 0 44 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241
-20 85 0.005291 -20 86 0.004902	0 42 0 0 43 0	10 60 0.012429 10 61 0.012029 10 62 0.011645
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225	0 42 0 0 43 0 0 44 0 0 45 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 30 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 56 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 56 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004488 10 77 0.004137
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004137 10 78 0.003764
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.00378
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 30 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.0044431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977 -10 44 -0.016520	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004492 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824 10 82 0.002642
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977 -10 44 -0.016520 -10 45 -0.016869	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005488 10 74 0.005066 10 75 0.004792 10 76 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824 10 82 0.002642 10 83 0.002517
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977 -10 44 -0.016520 -10 46 -0.016869 -10 46 -0.017072	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824 10 82 0.002542 10 83 0.002517 10 84 0.002429
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977 -10 44 -0.016520 -10 45 -0.016869 -10 46 -0.017072 -10 47 -0.017152	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 65 0 0 66 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 68 0.008059 10 69 0.007311 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824 10 82 0.002642 10 83 0.002517 10 84 0.002429 10 85 0.002361
-20 85 0.005291 -20 86 0.004902 -20 87 0.004544 -20 88 0.004225 -20 89 0.003955 -20 90 0.003743 -10 -10 0 -10 30 0 -10 31 -0.002308 -10 32 -0.003319 -10 33 -0.004431 -10 34 -0.005637 -10 35 -0.006967 -10 36 -0.008344 -10 37 -0.009683 -10 38 -0.010923 -10 39 -0.012076 -10 40 -0.013171 -10 41 -0.014232 -10 42 -0.015197 -10 43 -0.015977 -10 44 -0.016520 -10 46 -0.016869 -10 46 -0.017072	0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0	10 60 0.012429 10 61 0.012029 10 62 0.011645 10 63 0.011241 10 64 0.010782 10 65 0.010235 10 66 0.009573 10 67 0.008831 10 70 0.006641 10 71 0.006097 10 72 0.005679 10 73 0.005348 10 74 0.005066 10 75 0.004792 10 76 0.004488 10 77 0.004137 10 78 0.003764 10 79 0.003401 10 80 0.003078 10 81 0.002824 10 82 0.002542 10 83 0.002517 10 84 0.002429

10	87 0.002218	20 68 0.00666	4	30	49	0.043416
10	88 0.002108	20 69 0.006303	2	30	50	0.040767
10	89 0.001948	20 70 0.005994	4	30	51	0.038212
10	90 0.001721	20 71 0.00573	8	30	52	0.035773
20	-100	20 72 0.005533	2	30	53	0.033470
20	30 0	20 73 0.00537	3	30	54	0.031323
20	31 0.039485	20 74 0.005259	9	30	55	0.029352
20	32 0.042480	20 75 0.005189	9	30	56	0.027573
20	33 0.045127	20 76 0.005154	4	30	57	0.025976
20	34 0.046797	20 77 0.00514	4	30	58	0.024539
20	35 0.047547	20 78 0.005143	3	30	59	0.023241
20	36 0.047586	20 79 0.005140	0	30	60	0.022062
20	37 0.047136	20 80 0.00512	1	30	61	0.020980
20	38 0.046385	20 81 0.00507	3	30	62	0.019976
20	39 0.045381	20 82 0.004983	2	30	63	0.019029
20	40 0.044095	20 83 0.00483	8	30	64	0.018122
20	41 0.042513	20 84 0.004629	9	30	65	0.017254
20	42 0.040703	20 85 0.00434	6	30	66	0.016428
20	43 0.038762	20 86 0.00397	8	30	67	0.015648
20	44 0.036750	20 87 0.003513		30	68	0.014918
20	45 0.034631	20 88 0.00294	6	30	69	0.014242
20	46 0.032372	20 89 0.00226	1	30	70	0.013624
20	47 0.029996	20 90 0.001450	0	30	71	0.013068
	48 0.027581	30 -100				0.012571
	49 0.025219	30 30 0				0.012123
20	50 0.023000	30 31 0.06903		30	74	0.011712
	51 0.020999	30 32 0.070113		30	75	0.011326
	52 0.019258	30 33 0.07091				0.010953
	53 0.017773	30 34 0.07122				0.010581
20	54 0.016508	30 35 0.070989	9	30	78	0.010199
20	55 0.015422	30 36 0.07030	6	30	79	0.009795
	56 0.014479	30 37 0.06928				0.009367
	57 0.013639	30 38 0.06800		30	81	0.008916
20	58 0.012869	30 39 0.066489		30	82	0.008442
20	59 0.012134	30 40 0.06472	4	30	83	0.007949
20	60 0.011408	30 41 0.06271	7	30	84	0.007442
20	61 0.010692	30 42 0.06053		30	85	0.006923
20	62 0.009995	30 43 0.05828	6	30	86	0.006397
	63 0.009324	30 44 0.05602				0.005868
20	64 0.008688	30 45 0.05371	1	30	88	0.005341
	65 0.008096	30 46 0.05129				0.004819
20	66 0.007559	30 47 0.048750	0	30	90	0.004306
20	67 0.007082	30 48 0.04610	0			

C. Block Diagram for ADMIRE Extract & Plot

Figure C.1: Simulation model used to extract coefficient from ADMIRE