

Time series topic 2: Decomposition

Marcus W. Beck¹

¹USEPA NHEERL Gulf Ecology Division Email: beck.marcus@epa.gov

Objectives for the session (3:30-4:15)

- What is and why do we use time series decomposition
- Functions in SWMPr
- Application to NERRS data
 - Data prep
 - Execution
 - Interpretation

Interactive portion

Follow along as we go:

• flash drive

• online: swmprats.net 2016 workshop tab

Interactive portion

Follow along as we go:

- flash drive
- online: swmprats.net 2016 workshop tab

You will run examples whenever you see this guy:

♣Is everything installed?

We will use functions in the SWMPr package

Option 1, from the R Console prompt:

```
install.packages('SWMPr')
library(SWMPr)
```


We will use functions in the SWMPr package

Option 1, from the R Console prompt:

```
install.packages('SWMPr')
library(SWMPr)
```

Option 2, install the source file from the flash drive:

```
# change as needed
path_to_file <- 'C:/Users/mbeck/Desktop/SWMPr-v2.1.7.9000.tar.gz'
# install, load
install.packages(path_to_file, repos = NULL, type="source")
library(SWMPr)</pre>
```

Observed data represents effects of many processes

Climate

precipitation temperature wind events ENSO effects

Local

light/turbidity residence time invasive species trophic effects

Regional/historical

watershed inputs
point sources
management actions
flow changes

Observed data represents effects of many processes

Models should describe components to evaluate effects

Observed data represents effects of many processes

Models should describe components to evaluate effects

Observed data represents effects of many processes

Models should describe components to evaluate effects

• Time series decomposition is a very general topic - WRTDS is a form of decomposition

- Time series decomposition is a very general topic WRTDS is a form of decomposition
- There are more generic and simpler approaches

- Time series decomposition is a very general topic WRTDS is a form of decomposition
- There are more generic and simpler approaches
- Objective is to decompose a time series into individual components, isolate or otherwise remove components of interests

- Time series decomposition is a very general topic WRTDS is a form of decomposition
- There are more generic and simpler approaches
- Objective is to decompose a time series into individual components, isolate or otherwise remove components of interests
- The individual components are sometimes additive or multiplicative components of the complete time series

- Time series decomposition is a very general topic WRTDS is a form of decomposition
- There are more generic and simpler approaches
- Objective is to decompose a time series into individual components, isolate or otherwise remove components of interests
- The individual components are sometimes additive or multiplicative components of the complete time series
- But be warned... just because you can doesn't mean you should

M. Beck

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

decomp()

• Almost identical to the decompose function

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Almost identical to the decompose function
- Works well for time series with daily or seasonal cycles

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Almost identical to the decompose function
- Works well for time series with daily or seasonal cycles
- Separates components as trend, cyclical variation (e.g., annaul, daily), and random

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Almost identical to the decompose function
- Works well for time series with daily or seasonal cycles
- Separates components as trend, cyclical variation (e.g., annaul, daily), and random
- Additive or multiplicative decomposition

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

decomp()

• Gets trend by moving average, removes it from the time series.

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Gets trend by moving average, removes it from the time series.
- 2 Gets seasonal variation by averaging across time periods

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Gets trend by moving average, removes it from the time series.
- 2 Gets seasonal variation by averaging across time periods
- 3 Gets error as the remainder from the trend and seasonal components

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

decomp_cj()

• Based on a deprecated method in the wq package, described in [Cloern and Jassby, 2010]

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Based on a deprecated method in the wq package, described in [Cloern and Jassby, 2010]
- Works only for time series with seasonal cycles

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Based on a deprecated method in the wq package, described in [Cloern and Jassby, 2010]
- Works only for time series with seasonal cycles
- Separates components as grandmean, annual, seasonal, and events

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- Based on a deprecated method in the wq package, described in [Cloern and Jassby, 2010]
- Works only for time series with seasonal cycles
- Separates components as grandmean, annual, seasonal, and events
- Additive or multiplicative decomposition

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

decomp_cj()

1 Takes grandmean, removes it from time series

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- 1 Takes grandmean, removes it from time series
- 2 Annual trends as averages within years, removes from time series

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- 1 Takes grandmean, removes it from time series
- 2 Annual trends as averages within years, removes from time series
- 3 Seasonal trend as averages between periods, removes from time series

Two very general decomposition methods are provided in SWMPr: decomp() and decomp_cj

These are not new methods, they just make it easy to decompose NERRS data - work with swmpr objects

- 1 Takes grandmean, removes it from time series
- 2 Annual trends as averages within years, removes from time series
- 3 Seasonal trend as averages between periods, removes from time series
- 4 Events as remainder

♣Using decomp with NERRS data

Load some water quality data from Apalachicola Bay, Dry Bar station

Let's look at DO variation over one month

```
# load SWMPr
library(SWMPr)

# subset for daily decomposition
dat <- subset(apadbwq, subset = c('2013-07-01 00:00', '2013-07-31 00:00'),
    select = 'do_mgl')
plot(dat)</pre>
```


*Using decomp with NERRS data

```
dat_add <- decomp(dat, param = 'do_mgl', frequency = 'daily', type = 'additive')
plot(dat_add)</pre>
```

Decomposition of additive time series

*Using decomp with NERRS data

What's in the decomposed object?

```
str(dat add)
## List of 6
            : Time-Series [1:2881] from 1 to 31: 6.2 6.3 6.3 6.2 6 5.9 5.7 5.8 5.
  $ seasonal: Time-Series [1:2881] from 1 to 31: 0.165 0.12 0.178 0.239 0.163 ...
## $ trend : Time-Series [1:2881] from 1 to 31: NA ..
## $ random : Time-Series [1:2881] from 1 to 31: NA ..
## $ figure : num [1:96] 0.165 0.12 0.178 0.239 0.163 ...
   $ type : chr "additive"
##
## - attr(*, "class") = chr "decomposed.ts"
str(dat add$trend)
```


What does additive mean?

```
add <- with(dat_add, seasonal + trend + random)
plot(add, dat$do_mgl)</pre>
```


Let's try a multiplicative decomposition

```
dat_mul <- decomp(dat, param = 'do_mgl', frequency = 'daily',
  type = 'multiplicative')
plot(dat_mul)</pre>
```

Decomposition of multiplicative time series

What does multiplicative mean?

```
mul <- with(dat_mul, seasonal * trend * random)
plot(mul, dat$do_mgl)</pre>
```


♣Using decomp_cj with NERRS data

Use discrete, monthly data with decomp_cj: Apalachicola Bay, Cat Point nutrient station

```
apacpnut <- qaqc(apacpnut, qaqc_keep = c(0, 4))
decomp_cj(apacpnut, param = 'chla_n', type = 'add')</pre>
```


♣Using decomp_cj with NERRS data

Note that the default behavior for decomp_cj is a plot, use vals_out = TRUE for values

```
add <- decomp_cj(apacpnut, param = 'chla_n', type = 'add', vals_out = TRUE)
head(add)
          Time original grand annual seasonal
                                                       events
    2002-01-01
                    NA 5.929384 -2.760634 -1.9742526
                                                           NA
                    NA 5.929384 -2.760634 -0.4467677
  2 2002-02-01
                                                           NΑ
  3 2002-03-01
                    NA 5.929384 -2.760634 -1.6590556
                                                           NΑ
  4 2002-04-01
                   1.6 5.929384 -2.760634 -1.2348774 -0.3338726
  5 2002-05-01
                   NA 5.929384 -2.760634 1.3020742
                                                           NΑ
## 6 2002-06-01
                   3.4 5.929384 -2.760634 0.4469690 -0.2157190
```


A word of caution, decomp_cj uses setstep before decomposing

```
head(apacpnut)
```

```
## datetimestamp po4f nh4f no2f no3f no23f chla_n
## 1 2002-04-02 11:55:00 0.004 0.027 0.002 0.048 0.050 1.8
## 2 2002-04-02 11:56:00 0.004 0.029 0.002 0.046 0.048 1.8
## 3 2002-04-30 11:15:00 0.014 0.138 0.005 0.115 0.120 1.2
## 4 2002-06-04 11:03:00 0.006 0.049 0.002 0.024 0.026 3.4
## 5 2002-07-02 09:53:00 0.014 0.083 0.002 NA 0.039 3.7
## 6 2002-07-02 09:55:00 0.017 0.093 0.002 NA 0.040 3.0
```

head(add)

```
Time original grand annual seasonal
                                                    events
    2002-01-01
                   NA 5.929384 -2.760634 -1.9742526
                                                        NΑ
  2 2002-02-01
                  NA 5.929384 -2.760634 -0.4467677
                                                        NA
  3 2002-03-01
                  NA 5.929384 -2.760634 -1.6590556
                                                        NΑ
  4 2002-04-01 1.6 5.929384 -2.760634 -1.2348774 -0.3338726
  5 2002-05-01 NA 5.929384 -2.760634 1.3020742
                                                        NA
## 6 2002-06-01
                  3.4 5.929384 -2.760634 0.4469690 -0.2157190
```


A word of caution, decomp does not work with missing data

```
dat <- subset(apadbwq, subset = c('2013-06-01 00:00', '2013-07-31 00:00'))
# this returns an error
test <- decomp(dat, param = 'do_mgl', frequency = 'daily')
### Error in na.omit.ts(x): time series contains internal NAs</pre>
```



```
# use na.approx to interpolate missing data
dat <- subset(apadbwq, subset = c('2013-06-01 00:00', '2013-07-31 00:00'))
dat <- na.approx(dat, params = 'do_mgl', maxgap = 10)

# decomposition and plot
dat_fl <- decomp(dat, param = 'do_mgl', frequency = 'daily')
plot(dat_fl)</pre>
```

Decomposition of additive time series

Things to ask before decomposition:

• What is the time step? Is it regular? Does it need be standardized?

Things to ask before decomposition:

- What is the time step? Is it regular? Does it need be standardized?
- How do I deal with missing data?

Things to ask before decomposition:

- What is the time step? Is it regular? Does it need be standardized?
- How do I deal with missing data?
- Is there any expected cyclical variation? If so, what is the period (e.g., seasonal, daily)?

Things to ask before decomposition:

- What is the time step? Is it regular? Does it need be standardized?
- How do I deal with missing data?
- Is there any expected cyclical variation? If so, what is the period (e.g., seasonal, daily)?
- Is stationarity a reasonable expectation of the cyclical variation (yes = additive, no = multiplicative)?

Up next... Time Series Topic 3: Seasonal Kendall

$Questions \ref{eq:constraint} ?$

References

Cloern JE, Jassby AD. 2010.

Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems.

Estuaries and Coasts, 33(2):230-241