SYDE 556/750

Simulating Neurobiological Systems Lecture 4: Temporal Representations

Andreas Stöckel

January 22 & 28, 2020

Reminder: The LIF Neuron

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}t} v(t) &= -rac{1}{ au_{\mathrm{RC}}} ig(v(t) - J ig) \,, \ v(t) &\leftarrow \delta(t - t_{\mathrm{th}}) \,, \ v(t) &\leftarrow 0 \,, \end{aligned}$$

Temporal Decoding of Two Neurons

Temporal Decoding of One Hundred Neurons

Filtering by Convolution

Gaussian Filter

$$h(t)=c\exp\left(rac{-t^2}{\sigma^2}
ight)$$
 where c chosen s.t. $\int_{-\infty}^{\infty}h(t)\,\mathrm{d}t=1$

Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) dt'$$

Filtering a Spike Train

Random Signals

White Noise (zero mean)

Bandlimited
White Noise
(zero mean,
5 Hz bandwidth)

Filtering a Spike Train for a Random Signal

Optimal Filter

$$H(\omega) = \frac{X(\omega)\overline{R}(\omega)}{|R(\omega)|^2}$$

Filtering a Spike Train for a Random Signal (Optimal Filter)

Optimal Filter (Improved)

$$H(\omega) = \frac{X(\omega)\overline{R}(\omega) * W(\omega)}{|R(\omega)|^2 * W(\omega)}$$

Filtering a Spike Train for a Random Signal (Improved Optimal Filter)

Image sources

Title slide

"Captive balloon with clock face and bell, floating above the Eiffel Tower, Paris, France."

Author: Camille Grávis, between 1889 and 1900.

From Wikimedia.