

Observing the Earth: Resolutions Part 1

The Resolutions

First: Quick Review from last class

- We rushed a little bit at the end of lecture so let's just quickly review:
 - NIR to Red Simple Ratio (SR)
 - First spectral/remote sensing derived vegetation index
 - Larger SR = Healthier vegetation
 - Normalized Difference Vegetation Index (NDVI)
 - The standard today for spectral/remote sensing derived vegetation indeces
 - Ranges from -1 1 (but vegetation never below 0 in general)
 - Closer to 1 = Healthier vegetation

Vegetation Metrics

- Both metrics take advantage of the same process:
 - Healthier vegetation will have
 - Higher NIR reflectance
 - And lower VIS red reflectance
 - Unhealthier vegetation will have
 - Lower NIR reflectance
 - And higher VIS red reflectance

$$NDVI = \frac{NIR - red}{NIR + red}$$

$$\frac{(0.50 - 0.08)}{(0.50 + 0.08)} = 0.72$$

$$\frac{(0.4 - 0.30)}{(0.4 + 0.30)} = 0.14$$

Learning Objectives:

In this lecture you will learn about:

- What resolutions are important to consider in Earth Observation
- Understand why they are important to consider when imaging the Earth
- What is a definition of spatial resolution?
- What is a definition of spectral resolution?
- What is a definition of temporal resolution?

The Resolutions 5

The Resolutions:

- Spatial Resolution
- Spectral Resolution
- Temporal Resolution

- Smallest possible feature/object that can be detected
- Digital imagery:
 - Minimum area that can be resolved by the sensor
 - Ex: 30 x 30m area
 - Each pixel possesses a reflectance value
- Satellites:
 - Resolution is fixed
- Arial
 - Resolution is variable

17 170 119

238 136

119 255 85 170 136 238

238 17 | 221 | 68 | 119 | 255

68

255

136

221

Impacts level of detail/information

• Coarser resolution = less detail/information

Spatial resolution is typically defined by the pixel size

 Which is a function of platform and sensor specifications and geometry

- Spatial arrangement of targets
- Data quality

- Spatial resolution of this image = 60cm
- Tennis court line widths are < 20cm
- Why are we still able to see the lines?

Figure 4.4 Poor atmospheric and light conditions can dramatically reduce the effective spatial resolution of a remote sensing system.

Ł

These images of the same scene were taken by the same sensor system under good (a) and poor (b) atmospheric conditions.

Source: Courtesy of Imagery Resolution Assessments and Reporting Standards Committee.

- Poor atmospheric & light conditions can reduce effective spatial resolution
 - The pixel size is the same, but the poor conditions increase the size of the smallest detectable object/feature

Low Spatial Resolution (>100m)

Platform: Terra; Aqua

Sensor: MODIS

Spatial resolution:

250m – 1km

Applications:

- Land cover type
- Snow cover extent
- Vegetation phenology
- Canopy cover
- Sea surface temp.

- Free
- Typically government

The Resolutions

Moderate Spatial Resolution (<100m)

Platform: Landsat

Sensor: Thematic Mapper and OLI

Spatial resolution:

30m

Applications:

- Forest cover
- Insect infestation
- Crop forecasting
- Land cover use/change

- Free
- Typically government

High Spatial Resolution (<5m)

Platform: IKONOS

Sensor: IKONOS

Spatial resolution:

4m

Applications:

- Urban mapping
- Road mapping

- Not free
- Private

Very High Spatial Resolution

Platform: airplane/drone

Sensor: digital camera

Spatial resolution:

Variable (ex. 0.1m)

Applications:

- Individual trees
 - Health (insect infestation)
 - Crown size and shape

- Not free
- Private or government

The Resolutions:

Spectral Resolution

Spectral Resolution

The number and dimension of specific wavelength intervals in the electromagnetic spectrum to which a remote sensing instrument is sensitive...

OR

- the # of spectral channels/bands used
- their location in the electromagnetic spectrum
- the bandwidth of each channel/band

Spectral Resolution

Spectral Resolution

Spatial Resolution	30 x 30 m	
Bandwidth (in nanometers)	nm	
Band numbers	1 (Blue)	450 – 520
	2 (Green)	520 – 600
	3 (Red)	630 – 690
	4 (NIR)	760 – 900
	5 (SWIR)	1550 – 1750
	6 (Thermal)	10400 – 12600
	7 (SWIR)	2080 – 2350

Landsat Thematic Mapper

- 7 channels
- located in visible; NIR; mid-IR; and Thermal
- bandwidths ranging from: 60-270 nm (+ thermal is 2,200nm)

The Resolutions:

Temporal Resolution

Amount of time it takes to revisit same place on Earth

- Why does it matter?
 - Coarse vs. fine scale time change analysis
 - Seasonal differences vs. daily differences

Depends on:

- Orbit
 - Close elliptical vs. geostationary
- · Swath width

Orbits used in Earth Observation

- Close Elliptical orbits (700-2000km altitude)
 - Polar or near polar orbit
 - Sun synchronous orbit
- Geo-stationary
 - Orbit speed matched to rotation of Earth
 - Location static above a geographic location
 - Altitude is 36,000 km above equator

Polar Orbit

(Jensen 2004)
The Resolutions

(Jensen 2004)

Sun-synchronous Orbits

- What is the difference between:
 - Close-elliptical orbit
 - Polar orbit
 - Sun-synchronous orbit

Sun-synchronous Orbits

- What is the difference between:
 - Close-elliptical orbit
 - Defined by altitude
 - 700 2000km
 - Polar orbit
 - Defined by orientation of orbit
 - Orbit passes over the pole
 - Is near perpendicular to equator
 - Sun-synchronous orbit
 - Passes over the equator the same time each day
 - Landsat passes over the equator between 10-10:30am
 - Passes over any same point on the earth at the same local time

Why a Sun Synchronous Orbit?

Geostationary Orbits

- Weather satellites (ex. GOES)
- Telephone and television relay satellites
- Constant contact w/ground stations
- Limited spatial coverage
 - Each satellite can only cover about 25-30% of the Earth's surface
 - Coverage extends only to the mid-latitudes, no more than about 55 degrees

Important Topics

- What are the three resolutions we discussed that are important in earth observation?
- What are the 3 aspects that we use to describe the spectral resolution of a satellite?
- Describe a sun synchronous orbit:
 - Is a sun synchronous orbit a close-elliptical orbit?
 - Is it a polar/near polar orbit?
 - And ultimately how is it defined?
 - Why is it useful?
- What is the temporal resolution of a satellite in geostationary orbit?

