COMP2610/COMP6261 - Information Theory

Lecture 10: Typicality and Approximate Equipartition

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

August 20th, 2014

Last time

Markov's inequality

Chebyshev's inequality

Law of large numbers

This time

- Ensembles and sequences
- Typical sets
- Approximation Equipartition (AEP)

- Ensembles and sequences
 - Counting Types of Sequences
- 2 Typical sets
- 3 Asymptotic Equipartition (AEP)
- 4 Wrapping Up

Ensembles

Ensemble

An ensemble X is a triple $(x, \mathcal{A}_X, \mathcal{P}_X)$; x is a random variable taking values in $\mathcal{A}_X = \{a_1, a_2, \dots, a_I\}$ with probabilities $\mathcal{P}_X = \{p_1, p_2, \dots, p_I\}$.

We will call A_X the alphabet of the ensemble

Ensembles

Example: Bent Coin

bent-coin.jpg

Let X be an ensemble with outcomes h for heads with probability 0.9 and t for tails with probability 0.1.

- The outcome set is $A_X = \{h, t\}$
- The probabilities are

$$\mathcal{P}_X = \{ p_h = 0.9, p_t = 0.1 \}$$

We can also consider blocks of outcomes, which will be useful to describe sequences:

Example (Coin Flips):

$\mathtt{hhhhthhthh} \to \mathtt{hh} \ \mathtt{hh} \ \mathtt{th} \ \mathtt{ht} \ \mathtt{hh}$	(6 \times 2 outcome blocks)
ightarrow hhh hth hth thh	$(4 \times 3 \text{ outcome blocks})$
ightarrow hhhh thht hthh	$(3 \times 4 \text{ outcome blocks})$

We can also consider blocks of outcomes, which will be useful to describe sequences:

Example (Coin Flips):

Extended Ensemble

Let X be a single ensemble. The **extended ensemble** of blocks of size N is denoted X^N . Outcomes from X^N are denoted $\mathbf{x}=(x_1,x_2,\ldots,x_N)$. The **probability** of \mathbf{x} is defined to be $P(\mathbf{x})=P(x_1)P(x_2)\ldots P(x_N)$.

Example: Bent Coin

bent-coin.jpg

Let X be an ensemble with outcomes $A_X = \{h, t\}$ with $p_h = 0.9$ and $p_t = 0.1$.

Consider X^4 – i.e., 4 flips of the coin.

 $\mathcal{A}_{X^4} = \{\mathtt{hhhh},\mathtt{hhht},\mathtt{hhth},\ldots,\mathtt{tttt}\}$

Example: Bent Coin

bent-coin.jpg

Let
$$X$$
 be an ensemble with outcomes $\mathcal{A}_X = \{\mathtt{h},\mathtt{t}\}$ with $p_\mathtt{h} = 0.9$ and $p_\mathtt{t} = 0.1$.

Consider X^4 – i.e., 4 flips of the coin.

$$\mathcal{A}_{X^4} = \{\mathtt{hhhh},\mathtt{hhht},\mathtt{hhth},\ldots,\mathtt{tttt}\}$$

$$P(\text{hhhh}) = (0.9)^4 \approx 0.6561$$

 $P(\text{tttt}) = (0.1)^4 = 0.0001$
 $P(\text{hthh}) = (0.9)^3(0.1) \approx 0.0729$
 $P(\text{htht}) = (0.9)^2(0.1)^2 \approx 0.0081$.

Example: Bent Coin

We can view X^4 as comprising 4 independent random variables, based on the ensemble X

Entropy is additive for independent random variables

Thus,

$$H(X^4) = 4H(X) = 4.(-0.9 \log_2 0.9 - 0.1 \log_2 0.1) = 1.88 \text{bits.}$$

More generally,

$$H(X^N) = NH(X).$$

In the bent coin example,

$$(0.9)^{2}(0.1)^{2} = P(hhtt)$$

$$= P(htht)$$

$$= P(htth)$$

$$= P(thht)$$

$$= P(thht)$$

$$= P(tthh).$$

The order of outcomes in the sequence is irrelevant

Let X be an ensemble with alphabet $A_X = \{a_1, \ldots, a_I\}$

For a sequence $\mathbf{x} = x_1, x_2, \dots, x_N$, let $n_i = \#$ of times symbol a_i appears in \mathbf{x}

Given the n_i 's, we can compute the probability of seeing \mathbf{x} :

$$P(\mathbf{x}) = P(x_1).P(x_2)...P(x_N)$$

= $P(a_1)^{n_1}.P(a_2)^{n_2}...P(a_I)^{n_I}$

Sequence Types

Each unique choice of (n_1, n_2, \ldots, n_I) gives a different type of sequence

• 4 heads, (3 heads, 1 tail), (2 heads, 2 tails), ...

For a given type of sequence how many sequences are there with these symbol counts?

of sequences with
$$n_i$$
 copies of $a_i = \frac{N!}{n_1! n_2! \dots n_l!}$

Counting Types of Sequences Example

Let
$$A = \{a, b, c\}$$
 with $P(a) = 0.2$, $P(b) = 0.3$, $P(c) = 0.5$.

Example

Let
$$A = \{a, b, c\}$$
 with $P(a) = 0.2$, $P(b) = 0.3$, $P(c) = 0.5$.

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

Example

Let
$$A = \{a, b, c\}$$
 with $P(a) = 0.2$, $P(b) = 0.3$, $P(c) = 0.5$.

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

There are $\frac{6!}{2!1!3!} = 60$ such sequences.

Example

Let
$$A = \{a, b, c\}$$
 with $P(a) = 0.2$, $P(b) = 0.3$, $P(c) = 0.5$.

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

There are $\frac{6!}{2!1!3!} = 60$ such sequences.

The probability **x** is of type (2,1,3) is $(0.0015) \cdot 60 = 0.09$.

- Ensembles and sequences
 - Counting Types of Sequences
- 2 Typical sets
- 3 Asymptotic Equipartition (AEP)
- 4 Wrapping Up

Example

With $p_h = 0.75$, what are the probabilities for X^N ?

N	=	2
, v	_	_

×	P(x)
hh	0.5625
ht	0.1875
th	0.1875
tt	0.0625

Example

With $p_h = 0.75$, what are the probabilities for X^N ?

$$N=2$$

hh ht th

tt

$P(\mathbf{x})$	
0.5625	
0.1875	
0.1875	

0.0625

Ν	=	3
, v	_	•

X	$P(\mathbf{x})$
hhh	0.4219
hht	0.1406
hth	0.1406
thh	0.1406
htt	0.0469
tht	0.0469
tth	0.0469
ttt	0.0156

Example

With $p_h = 0.75$, what are the probabilities for X^N ?

N=2

N=3

N = 4

х	$P(\mathbf{x})$
hh	0.5625
ht	0.1875
th	0.1875
tt	0.0625

X	$P(\mathbf{x})$
hhh	0.4219
hht	0.1406
hth	0.1406
thh	0.1406
htt	0.0469
tht	0.0469
tth	0.0469
ttt	0.0156

x	$P(\mathbf{x})$	x	$P(\mathbf{x})$
hhhh	0.3164	thht	0.0352
hhht	0.1055	thth	0.0352
hhth	0.1055	tthh	0.0352
hthh	0.1055	httt	0.0117
thhh	0.1055	thtt	0.0117
htht	0.0352	ttht	0.0117
htth	0.0352	ttth	0.0117
hhtt	0.0352	tttt	0.0039

Observations

As N increases, there is an increasing spread of probabilities

The most likely single sequence will always be the all h's

However, for N=4, the most likely sequence type is 3 h's and 1 t

Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence x from X^N ?

Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence \mathbf{x} from X^N ?

Intuitively, we would expect to see

 a_i roughly $n_i \approx N.p_i$ times in sequence of length N.

So
$$P(\mathbf{x}) = P(a_1)^{n_1} P(a_2)^{n_2} \dots P(a_I)^{n_I} \approx p_1^{p_1 N} p_2^{p_2 N} \dots p_I^{p_I N}$$

Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence \mathbf{x} from X^N ?

Intuitively, we would expect to see

 a_i roughly $n_i \approx N.p_i$ times in sequence of length N.

So
$$P(\mathbf{x}) = P(a_1)^{n_1} P(a_2)^{n_2} \dots P(a_I)^{n_I} \approx p_1^{p_1 N} p_2^{p_2 N} \dots p_I^{p_I N}$$

So the information content $-\log_2 P(\mathbf{x})$ of that sequence is approximately

$$-p_1 N \log_2 p_1 - \ldots - p_l N \log_2 p_l = -N \sum_{i=1}^{l} p_i \log_2 p_i = NH(X)$$

We want to consider elements \mathbf{x} that have $\log_2 P(\mathbf{x})$ "close" to -NH(X)

Typical Set

For "closeness" $\beta > 0$ the typical set $T_{N\beta}$ for X^N is

$$T_{N\beta} \stackrel{\text{def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$$

We want to consider elements \mathbf{x} that have $\log_2 P(\mathbf{x})$ "close" to -NH(X)

Typical Set

For "closeness" $\beta > 0$ the typical set $T_{N\beta}$ for X^N is

$$T_{N\beta} \stackrel{\text{def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$$

The name "typical" is used since $\mathbf{x} \in T_{N\beta}$ will have roughly p_1N occurrences of symbol a_1, p_2N of a_2, \ldots, p_KN of a_K .

fig410.pdf

Properties

Typical sequences are nearly equiprobable: Every $\mathbf{x} \in T_{N\beta}$ has

$$2^{-N(H(X)+\beta)} \le P(\mathbf{x}) \le 2^{-N(H(X)-\beta)}.$$

Number of sequences in the typical set: For any N, β ,

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}.$$

Proof of Cardinality Bound

For every $\mathbf{x} \in T_{N\beta}$,

$$p(\mathbf{x}) \geq 2^{-N(H(X)-\beta)}.$$

Thus,

$$1 = \sum_{\mathbf{x}} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x} \in T_{N\beta}} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x} \in T_{N\beta}} 2^{-N(H(X) - \beta)}$$

$$= 2^{-N(H(X) - \beta)} \cdot |T_{N\beta}|.$$

Thus

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}$$

Most Likely Sequence

The most likely sequence may not belong to the typical set

e.g. with $p_h = 0.75$, we have

$$-\frac{1}{4}\log_2 P(\text{hhhh}) = 0.4150$$

whereas H(X) = 0.8113

The most likely single sequence \rightarrow hhhh

The most likely single sequence type \rightarrow {hhtt,htht,...}

Most Likely Sequence

Probability of most likely sequence decays like θ^N

Sequences with $N\theta$ heads contain much more total probability mass

- Ensembles and sequences
 - Counting Types of Sequences
- 2 Typical sets
- 3 Asymptotic Equipartition (AEP)
- Wrapping Up

Asymptotic Equipartition Property Eventually Equally Divided

Asymptotic Equipartition Property (Informal)

As $N \to \infty$, $\log_2 P(x_1, \dots, x_N)$ is close to -NH(X) with high probability.

For large block sizes "almost all sequences are typical" (i.e., in $T_{N\beta}$)

Probability sequence **x** has r 1s for N=100 (left) and N=1000 (right)

Informally

Asymptotic Equipartition Property Formally

Asymptotic Equipartition Property

If x_1, x_2, \ldots are i.i.d. with distribution P then, in probability,

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)\to H(X)$$

Asymptotic Equipartition Property

Asymptotic Equipartition Property

If x_1, x_2, \ldots are i.i.d. with distribution P then, **in probability**,

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)\to H(X)$$

Defn: For i.i.d. v_1, v_2, \ldots we say $v_N \to v$ in probability if for all $\epsilon > 0$ $\lim_{N \to \infty} P(|v_N - v| > \epsilon) = 0$

Asymptotic Equipartition Property

Since x_1, \ldots, x_N are independent,

$$-\frac{1}{N}\log p(x_1,\ldots,x_N) = -\frac{1}{n}\log \prod_{n=1}^N p(x_n)$$
$$= -\frac{1}{N}\sum_{n=1}^N \log p(x_n).$$

Let
$$Y=-\log p(X)$$
 and $y_n=-\log p(x_n)$. Then, $y_n\sim Y$, and
$$\mathbb{E}[Y]=H(X).$$

But then by the law of large numbers,

$$(\forall \epsilon > 0) \lim_{N \to \infty} p(|\frac{1}{N} \sum_{n=1}^{N} y_n - H(X)| > \epsilon) = 0.$$

Asymptotic Equipartition Property

For an ensemble with binary outcomes, and low entropy,

$$|T_{N\beta}| \leq 2^{NH(X)+\beta} \ll 2^N$$

i.e. the typical set is a small fraction of all possible sequences

AEP says that for N sufficiently large, we are virtually guaranteed to draw a sequence from this small set

- Ensembles and sequences
 - Counting Types of Sequences
- 2 Typical sets
- 3 Asymptotic Equipartition (AEP)
- Wrapping Up

Summary & Conclusions

- Ensembles and sequences
- Typical sets
- Approximation Equipartition (AEP)