1 Hamiltonians and EOM

1.1 Toy Problem

Consider simplest spin Hamiltonian $H = -\vec{B} \cdot \vec{s}$. It's clear that if we set up initial conditions \vec{s} misaligned from \vec{B} , it will simply spin around \vec{B} , which is fixed. Thus, let $\hat{B} \cdot \hat{s} = \cos \theta$ the angle between the two, and let ϕ measure the azimuthal angle.

We claim that $\cos\theta$, ϕ are canonical variables. Since ϕ is ignorable, immediately $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}\cos\theta}{\mathrm{d}t} = -\frac{\partial H}{\partial \phi} = 0$, while $\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\partial H}{\partial(\cos\theta)} = Bs$ tells us the rate at which the spin precesses around \vec{B} .

1.2 Cassini State Hamilttonian

This Hamiltonian is Kassandras Eq. 13, in the co-rotating frame with the perturber's angular momentum:

$$\mathcal{H} = \frac{1}{2} (\hat{s} \cdot \hat{l})^2 - \eta (\hat{s} \cdot \hat{l}_p). \tag{1}$$

In this frame, we can choose $\hat{l} \equiv \hat{z}$ fixed, and $\hat{l}_p = \cos I \hat{z} + \sin I \hat{x}$ fixed as well. Then

$$\hat{s} = \cos\theta \hat{z} - \sin\theta (\sin\phi \hat{y} + \cos\phi \hat{x}).$$

We can choose the convention for $\phi = \phi$ azimuthal angle requiring $\phi = 0, \pi$ mean coplanarity between $\hat{s}, \hat{l}, \hat{l}_p$ in the \hat{x}, \hat{z} plane such that \hat{l}_p, \hat{s} lie on the same side of \hat{l} . Then we can evaluate in coordinates

$$\begin{split} \hat{s} \cdot \hat{l} &= \cos \theta, \\ \hat{s} \cdot \hat{l}_p &= \cos \theta \cos I - \sin I \sin \theta \cos \phi, \\ \mathcal{H} &= \frac{1}{2} \cos^2 \theta - \eta \bigl(\cos \theta \cos I - \sin I \sin \theta \cos \phi \bigr). \end{split}$$

Note that if we take $\cos \theta$ to be our canonical variable, $\sin \theta = \sqrt{1 - \cos^2 \theta}$ can be used.

1.3 Equation of Motion

The correct EOM comes from Kassandra's Eq. 12:

$$\begin{split} \frac{\mathrm{d}\hat{s}}{\mathrm{d}t} &= \big(\hat{s} \cdot \hat{l}\big) \big(\hat{s} \times \hat{l}\big) - \eta \big(\hat{s} \times \hat{l}_p\big), \\ &= \big(s_y s_z - \eta s_y \cos(I)\big) \hat{x} - \big(s_x s_z + \eta (s_x \cos I - s_z \sin I)\big) \hat{y} + \eta s_y \sin(I) \hat{z}. \end{split}$$

Alternatively, consider Hamilton's equations applied to the Hamiltonian:

$$\frac{\partial \phi}{\partial t} = \frac{\partial \mathcal{H}}{\partial (\cos \theta)} = \cos \theta - \eta (\cos I + \sin I \cot \theta \cos \phi), \tag{2}$$

$$\frac{\partial(\cos\theta)}{\partial t} = -\frac{\partial\mathcal{H}}{\partial\phi} = +\eta \sin I \sin\theta \sin\phi. \tag{3}$$

This produces the same trajectories as the Cartesian EOM, so this is correct. However, since $\frac{\partial \phi}{\partial t} \propto 1/\sin\theta$, this is not a desirable system of equations to use, as they are very stiff near $\theta \approx 0$.

1.4 Tidal Dissipation

We can add a tidal dissipation term; we write it in form $\left(\frac{d\hat{s}}{dt}\right)_{tide} = \epsilon \hat{s} \times (\hat{l} \times \hat{s})$. Expanding,

$$\left(\frac{\mathrm{d}\hat{s}}{\mathrm{d}t}\right)_{tide} = \epsilon(\hat{z} - s_z\hat{s}),$$

$$= \epsilon(-s_z s_x \hat{x} - s_z s_y \hat{y} + (1 - s_z^2)\hat{z}).$$
(4)

We run numerical simulations for weaker $\epsilon \ll \eta \ll 1$ and stronger $\epsilon \lesssim \eta \ll 1$.

We can seek equilibria of the the system including tides, which requires

$$0 = s_y s_z - \eta s_y \cos I - \epsilon s_z s_x,$$

$$0 = -s_x s_z - \eta (s_x \cos I - s_z \sin I) - \epsilon s_z s_y,$$

$$0 = \eta s_y \sin(I) + \epsilon (1 - s_z^2).$$

We expect at least two equilibria, based on the simulations: one near $s_z \approx 1$ and one $s_z \approx 0$.

For near alignment/near Cassini state 1, $1 - s_z \sim 1 - s_\perp^2$, so we can set $s_z = 1$ to first order: $s_y - \epsilon s_x - \eta s_y \cos I = -s_x - \eta (s_x \cos I - \sin I) - \epsilon s_y = \eta s_y \sin I = 0$. This can be satisfied if we set $s_x = \tan(I) \ll 1$, $s_y = \mathcal{O}(\epsilon s_x)$; this coarsely corresponds to Cassini state 1.

The other solution should be near Cassini state 2, where $s_x \approx 1$; dropping second order terms forces $\eta s_y + \epsilon s_z = -s_z - \eta(\cos I - s_z \sin I) = \eta s_y \sin(I) + \epsilon = 0$. This can thus be satisfied for $s_y \approx -\frac{\epsilon}{\eta \sin(I)}$. Thus, this explains why as ϵ is increased, we first start to get points that don't converge to Cassini state 2 in the absence of tides, before starting to see points that fail to converge to Cassini state 1.

2 Separatrix Hopping

Inspired by G&H, heteroclinic orbits are topologically unstable for any nonzero perturbation, but opened width ~ perturbation parameter.

We zoom in on Cassini State 4, which has $\cos\theta\approx0, \phi=0$. In particular, by using equations of motion

$$\frac{\partial \phi}{\partial t} = \cos \theta - \eta (\cos I + \sin I \cot \theta \cos \phi), \tag{5}$$

$$\frac{\partial \theta}{\partial t} = -\eta \sin I \sin \phi - [\epsilon \sin \theta],\tag{6}$$

we can compute $\theta_4 \approx -\frac{\pi}{2} + \frac{\eta \sin I}{1 + \eta \cos I}$, $\phi_4 = 0$ in the $\epsilon = 0$ limit (the other solution is $\theta_2 \approx +\frac{\pi}{2} - (\ldots)$). Indeed the signs are correct: near $\theta \approx \frac{\pi}{2}$, $\phi \approx 0$ we have EOM $\dot{\delta \phi}_4 \approx -\delta \theta_4$ while $\dot{\delta \theta}_4 \approx -\eta \sin I \delta \phi_4$ which is unstable.

Substituting in perturbatively for nonzero ϵ in $\frac{\partial \theta}{\partial t}$ gives $\delta \phi_4 = +\frac{\epsilon}{\eta \sin I}$, $\delta \theta_4 = 0$. This is in agreement with Dong's result. Note that $\delta \theta_2 = -\frac{\epsilon}{\eta \sin I}$, which I saw in my simulations.

This implies that the stable manifolds of the two saddle points, which once overlapped with each other's unstable manifolds (creating a heteroclinic orbit) now are offset from one another by distance $D \sim \frac{\epsilon}{n \sin J}$. The question is how likely it is to thread the needle.

Consider that, very near CS4, the angle of incidence on the desired gap is roughly $\tan \psi \approx \psi = \frac{\Delta \theta}{\Delta \phi}$. Over the course of one orbit, $\Delta \phi$ changes by 2π , while $\Delta \theta \sim \epsilon \sin \theta T$ where T is the period of an orbit. Examining the data, $T \sim 50$, and so $\frac{\Delta \theta}{\Delta \phi} \sim \frac{2\pi}{\epsilon(50)}$.

Examining the data, $T\sim 50$, and so $\frac{\Delta\theta}{\Delta\phi}\sim \frac{2\pi}{\epsilon(50)}$. The effective probability of threading the opened gap between the stable/unstable manifolds is then just $P\propto D\sin\psi\sim \frac{2\pi}{T(\eta\sin I)}$. Plugging in some observational values $T\sim 50, \eta=0.1, I=20^\circ$ gives

 $P \propto 0.13$. In reality, I find it asymptotes to ~ 0.08 , so the constant of proportionality is of order unity. Not bad given the really crappy $\psi \sim \frac{\langle \dot{\theta} \rangle}{\dot{\phi}}$ argument.