

磁化率的测定

刘松瑞 2100011819 组号: 24 组内编号: 5 化学与分子工程学院

实验日期: 2023年12月7日

温度: 20.6 °C 大气压强: 99.70 kPa

摘要: 本实验采用 Guoy 磁天平法,并以莫尔盐为标准样品,在室温 21.9 °C 下,测得了计算得到硫酸铜的摩尔磁化率 $1.93 \pm 0.04 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$, 亚铁氰化钾的摩尔磁化率 $-0.1 \pm 0.1 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$,样品的比磁化率 $1.75 \pm 0.04 \times 10^{-7} \text{m}^3 \cdot \text{kg}^{-1}$ 。计算分析得到硫酸铜的分子磁矩为 $1.89 \ \mu B$,有一个不成对电子;亚铁氰化钾为反磁性物质,没有不成对电子。实验的主要误差来自于质量变化的测量误差。

关键词: Guoy 磁天平法 硫酸铜 磁化率 亚铁氰化钾

1 引言

1.1 实验目的、原理与方法

1.1.1 实验目的

- 1. 掌握 Guoy 磁天平法测定磁化率的原理与方法。
- 2. 利用 Guoy 磁天平测定几种固体物质的磁化率,计算其摩尔磁化率,并估算离子的不成对数。

1.1.2 实验原理与方法

实验原理与方法详见预习报告图 1。[1]

图 1: 实验的目的与原理

2 实验部分

2.1 实验步骤

实验步骤详见预习报告图 2。

「实验原理」
物质于磁场中部磁线
$B=B+B'=\mu_0H+\mu_0KH$
属海水平由此定义的为
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
文M = X M = X M M M M M M = X M M M M M M
Mm = XING + Xxx = XIIIC = No M Mas Mo
12/22
И=197.7 × 1 1/2° ГИВ = √ n(n+2) ИВ
放 有
数据 $n = (791.7^2 \cdot \chi_{\text{MB}} \cdot T + 1)^2 - 1$
Cury FFR F = (AMF-AMZ) 9 1KA(H,2-H2)
Albi 1/10 7.360 V70 -
A(Hi-Ho) 神野病之
AME - AME ME
M 存 = X 行: m 样 Am 年 - Am 京 M 样
空路之名
于中Cuoy天平法,以Mohr监力举标样,测定磁化学
1 to 1 min x 1

图 2: 实验的目的与原理

2.2 仪器与药品

- 1. 试剂
 - 莫尔盐 (AR), CuSO₄·5H₂O(AR), K₄Fe(CN)₆·3H₂O(AR), 未知样;
- 2. 仪器
 磁天平(配电子天平),研钵,试管。

3 实验现象与数据处理

3.1 数据记录

实验温度为 T=20.6 °C = 293.15 K ,实验中物质的质量与磁场强度如表1所示,并计算不同励磁电流下质量变化如表2 。

励磁电流/A			0	3	4	4.5	4	3	0
空管		B_0	1.9	218.8	291.0	/	291.4	220.1	2.0
		m	8.5037	8.5026	8.5020	/	8.5020	8.5029	8.5037
	<i>-</i>	B_0	2.0	218.5	290.9	/	291.4	220.1	2.0
莫尔盐	5 cm	m	10.5620	10.5950	10.6195	/	10.6196	10.5956	10.5631
关 小血	6 am	B_0	1.9	219.0	291.3	/	291.9	219.5	2.0
	6 cm	m	11.0332	11.0681	11.0944	/	11.0950	11.0683	11.0337
	5 cm	B_0	1.8	219.2	290.8	/	292	220.1	2.0
硫酸铜	3 CIII	m	11.0916	11.0995	11.1050	/	11.1054	11.0995	11.0917
1911. 自文 刊刊	6 cm	B_0	1.8	218.8	291.0	/	291.8	219.6	1.8
	o ciii	m	11.6642	11.6726	11.6787	/	11.6789	11.6727	11.6644
	5 cm	B_0	1.9	218.7	291.3	/	291.7	219.7	1.9
亚洲复儿加		m	10.6849	10.6837	10.6829	/	10.6827	10.6838	10.6849
亚铁氰化钾	6 cm	B_0	1.8	218.8	291.3	/	291.6	220.1	1.8
		m	11.1839	11.1828	11.1815	/	11.1818	11.1826	11.1840
	5 cm	B_0	1.8	219.3	291.1	/	291.8	220.0	1.8
	3 CIII	m	10.6367	10.6488	10.6579	/	10.6578	10.6488	10.6367
样品	5 cm	B_0	2.0	219.3	290.9	/	291.8	220.1	1.8
	3 CIII	m	10.5887	10.6010	10.6099	/	10.6102	10.6012	10.5888
	6 cm	B_0	1.8	218.6	290.8	/	291.5	219.6	2.0
		m	11.1541	11.1675	11.1777	/	11.1778	11.1678	11.1545
	6 cm	B_0	1.8	219.5	292.0	/	292.0	220.0	1.8
o cn		m	11.1658	11.1791	11.1902	/	11.1901	11.1800	11.1660

表 1: 实验过程中的磁场强度与各物质的质量

3.2 磁化率的计算

由公式,

$$\chi_{Mohr} = \frac{4\pi \cdot 9.500 \times 10^{-6}}{T+1} = 4.584 \times 10^{-7} m^3 \cdot kg^{-1}$$

计算得到,莫尔盐的磁化率为 $4.584 \times 10^{-7} \ m^3 \cdot kg^{-1}$,通过以下公式可以计算比磁

表 2: 不同条件下样品的质量变化

		m/g	$\Delta m_{3A}/g$	$\Delta m_{4A}/g$	$\Delta m_{4A}/g$	$\Delta m_{3A}/g$	$\Delta m_{0A}/g$
空管		8.5037	-0.0011	-0.0017	-0.0017	-0.0008	0.0000
	5 cm	10.5620	0.0330	0.0575	0.0576	0.0336	0.0011
关 小血	6 cm	11.0332	0.0349	0.0612	0.0618	0.0351	0.0005
硫酸铜	5 cm	11.0916	0.0079	0.0134	0.0138	0.0079	0.0001
	6 cm	11.6642	0.0084	0.0145	0.0147	0.0085	0.0002
亚铁氰化钾	5 cm	10.6849	-0.0012	-0.0020	-0.0022	-0.0011	0.0000
	6 cm	11.1839	-0.0011	-0.0024	-0.0021	-0.0013	0.0001
样品	5 cm	10.6367	0.0121	0.0212	0.0211	0.0121	0.0000
	5 cm	10.5887	0.0123	0.0212	0.0215	0.0125	0.0001
	6 cm	11.1541	0.0134	0.0236	0.0237	0.0137	0.0004
	6 cm	11.1658	0.0133	0.0244	0.0243	0.0142	0.0002

化率

$$\chi_{m_{sample}}^{,} = \chi_{m_{standard}} \frac{\Delta m_{sample} - \Delta m_{blank}}{\Delta m_{standard} - \Delta m_{blank}} \times \frac{m_{standard}}{m_{sample}}$$

样品的磁化率可以由下计算得到

$$\chi_{m_{sample}} = \chi_{m_{sample}}^{,} \times M_{sample}$$

计算得到硫酸铜、亚铁氰化钾在不同条件下的摩尔磁化率如下表 3 所示,由于不知道样品的摩尔质量,因此只能计算得到比磁化率如下表 4 所示

表 3: 硫酸铜、亚铁氰化钾在不同条件下的摩尔磁化率

样品	样品高度	励磁电流	$\chi/10^{-8}$	$n^3 \cdot mol^{-1}$
	5 cm	3A	1.90	1.86
硫酸铜	3 CIII	4A	1.90	1.96
刊几日又刊刊	6 cm	3A	1.94	1.95
	0 CIII	4A	1.96	1.97
	5 cm	3A	-0.03	-0.10
亚铁氰化钾	3 CIII	4A	-0.06	-0.10
业场前化坍	6 cm	3A	0.00	-0.16
	o cili	4A	-0.13	-0.07

观察各个样品的摩尔磁化率与比磁化率,硫酸铜与未知样的平行度较好,极差均在 $0.1\times10^{-8} \text{m}^3\cdot\text{mol}^{-1}$ 与 $0.1\times10^{-7} \text{m}^3\cdot\text{kg}^{-1}$ 以内

表 4: 未知样的比磁化率

	$\chi_{3A}^{,}/10^{-7}\text{m}^3\cdot\text{kg}^{-1}$	$\chi'_{4A}/10^{-7} \text{m}^3 \cdot \text{kg}^{-1}$	$\chi'_{4A}/10^{-7} \text{m}^3 \cdot \text{kg}^{-1}$	$\chi'_{3A}/10^{-7} \text{m}^3 \cdot \text{kg}^{-1}$
5 cm	1.71	1.71	1.70	1.66
5 cm	1.78	1.75	1.77	1.75
6 cm	1.76	1.76	1.75	1.77
6 cm	1.74	1.81	1.78	1.82

由于下行时样品会存在剩磁现象,因此只取硫酸铜与亚铁氰化钾的上行部分求平均值,得:

$$\chi_{\text{CuSO}_4} = 1.93 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$$

 $\chi_{\text{KFe(CN)}_6} = -0.06 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$

同样地我们对样品的比磁化率求平均值,得:

$$\chi'_{\text{sample}} = 1.75 \times 10^{-8} \text{m}^3 \cdot \text{kg}^{-1}$$

3.3 分子磁矩与单电子数的计算

由公式,

$$\mu = 797.7 \times \sqrt{\frac{\chi_{\rm p}}{\rm m}^3 \cdot {\rm mol}^{-1}} \frac{\rm T}{\rm K} \mu_{\rm B}$$

由表 3 的数据,可以计算得到硫酸铜的分子磁矩如下表 5。

表 5: 硫酸铜在不同条件下的分子磁矩

	μ_{3A}/μ_B	μ_{4A}/μ_B
5 cm	1.88	1.88
6 cm	1.90	1.91

可以得到硫酸铜的平均磁矩为 $1.89 \mu_B$ 。

若将亚铁氰化钾的数据代入公式中,根号下为负数,没有意义。这是由于亚铁氰化钾是一种反磁性物质,测得的 χ_m 为反磁性的磁矩 χ_d ,因此亚铁氰化钾的分子磁矩是 0,无单电子。

又由于

$$\mu = \sqrt{n(n+2)}$$

可以计算硫酸铜的单电子数如下表 6 所示。

表 6: 硫酸铜在不同条件下的单电子数

	n_{3A}	n_{4A}
5 cm	1.13	1.13
6 cm	1.15	1.16

可以得到硫酸铜的测量的平均单电子数为 1.14 , 因此硫酸铜分子的单电子数为 1 个, 这与硫酸铜的实际分子结构相吻合。

由于未知样的摩尔质量未知,因此无法进行分子磁矩与不成对电子数的计算。

3.4 误差计算

本次实验误差的主要来源为磁场强度的误差,天平称量的误差。查阅^[2]文献,可以 得到

$$\chi_{\text{CuSO}_4}^{\text{o}} = 1.835 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$$

虽然实验所用的天平较为精准,为万分之一分析天平,但是由于实验中样品在磁场下的质量变化很小,称量误差仍然较大,称量误差为 ±0.1mg。

$$\chi_{m_{sample}} = \chi_{m_{standard}} \frac{\Delta m_{sample} - \Delta m_{blank}}{\Delta m_{standard} - \Delta m_{blank}} \times \frac{m_{standard} M_{sample}}{m_{sample}}$$

$$\sigma_{m_{standard}} = \sqrt{2}\sigma_{m} = 0.1mg$$

$$\sigma_{m_{sample}} = \sqrt{2}\sigma_{m} = 0.1mg$$

$$\sigma_{m_{sample}} = \sqrt{2}\sigma_{m} = 0.1mg$$

$$\sigma_{\Delta m_{sample} - \Delta m_{blank}} = \sigma_{\Delta m_{standard} - \Delta m_{blank}} = \sqrt{4}\sigma_{m} = 0.2mg$$

$$\sigma_{\chi} = \chi_{m_{sample}} \sqrt{\left(\frac{\sigma_{m_{standard}}}{m_{standard}}\right)^{2} + \left(\frac{\sigma_{m_{sample}}}{m_{sample}}\right)^{2} + \left(\frac{\sigma_{\Delta m_{sample}} - \Delta m_{blank}}{\Delta m_{sample}}\right)^{2} + \left(\frac{\sigma_{\Delta m_{standard}} - \Delta m_{blank}}{\Delta m_{standard}}\right)^{2}}$$

$$= 0.04 \times 10^{-8} m^{3} \cdot mol^{-1}$$

$$\chi_{\text{CuSO}_4} = 1.93 \pm 0.04 \times 10^{-8} \text{m}^3 \cdot \text{mol}^{-1}$$

计算得到硫酸铜的摩尔磁化率 $1.93 \pm 0.04 \times 10^{-8} \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$,然后同理得到亚铁氰化钾的摩尔磁化率 $-0.1 \pm 0.1 \times 10^{-8} \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$,样品的比磁化率 $1.75 \pm 0.04 \times 10^{-7} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$ 。可以看出,亚铁氰化钾的摩尔磁化率测量误差较大,这是因为亚铁氰化钾的摩尔磁化率很低,测量时质量变化很小,导致质量变化的相对误差很大。

可能的误差来源有:

- 1. 每次装样的时候都要求粗细紧密程度一致,但实际操作误差很大。
- 2. 由于磁滞效应,在励磁电流减小的过程中,读数可能会偏大。
- 3. 电流调至相同值时, 磁场强度存在波动。
- 4. 样品管每次悬挂的高度不一定相同。

4 实验结果与讨论

4.1 结论

本实验采用 Guoy 磁天平法,并以莫尔盐为标准样品,在室温 21.9 °C 下,测得了计算得到硫酸铜的摩尔磁化率 $1.93 \pm 0.04 \times 10^{-8} \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$,亚铁氰化钾的摩尔磁化率 $-0.1 \pm 0.1 \times 10^{-8} \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$,样品的比磁化率 $1.75 \pm 0.04 \times 10^{-7} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$ 。计算分析得到硫酸铜的分子磁矩为 $1.89 \,\mu B$,有一个不成对电子;亚铁氰化钾为反磁性物质,没有不成对电子。实验的主要误差来自于质量变化的测量误差。

5 附录

F数据记录-7	rdi 4AM
T/A 0 19 3 218 8 42910	45 4 3 0,0
Bomt of 20 2126 290 9	29/4 220/ 2
3 m/a 8 too 2 8 5026 8 5020	3 taza 25029 8.50#
BUT 20 2185 2909	10.619 610.5956 105651
Mohry Scm m/m 10.5620 10.5950 10,6195	10.619 610.5956 105631
/ Bol 19 2/9.1 291.3	42919295 20
m 11.0332 13/1.0681 11.0944	110950 11.0683 11.033]
Cust 5cm Bo 1.8. 2/92 2908	> 2920 2201 2011
11.0916. 11.0990. 11.1000	11.1054 11.0995.11.091
6cm Bo 1.8 218.8 291.0	
m 11.642.11.6726.11.67867	
Life(9V) m 10,63489 10,63287 10,6329	
	The second second
- 6cm Bo 1.8 39 2/8.8 29/.3 m 11-1824 11.1829 11.18185	> 291.6 220 1.8 1.1818 1/1.1826 1/1.1827
Sch m 12/32 12/42 12/42	
1	10.6578 10.6487 10.6267
The By \$2.0. 219.3 290.9	
m 10,5887 12,60010 10.6099	10.61.02 10.6012 10.5888
GCN Bo 18. 2186. 2908	10.61.02 10.6012 10.5288 291.5 219.6
m 11.1541 11.1675. 11.177]	11.1178 11.1878 11.1843
- 60m Bo 1.8 2195. 292.0	1292,0 220,0 1.8
	> 11.1901 11.1800 11.166 to
arg m 106127 106249 10.6339	1.71 × 10=4
6cm 11.1800 11.1733 11.1840.	1. TI XIO-0.
- and m 11.1600 11.1133 11.1840.	70000

图 3: 数据记录图片

参考文献

- [1] 北京大学化学学院物理化学实验教学组. 物理化学实验[M]. 4 版. 北京: 北京大学出版社, 2002: 5.
- [2] WEAST, ROBERTC. Crc handbook of chemistry and physics[M]. CRC handbook of chemistry and physics, 1988.