Graph Theory

CO 442

Luke Postle

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 442 during Fall 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Here is the notation used in this course.

- $\chi(G)$: chromatic number, k vertex coloring
- $\Delta(G)$: max degree of vertices
- $\omega(G)$: max size of a clique
- $\chi'(G)$: chromatic index, edge chromatic number, k edge coloring
- L(G): line graph of G

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface				
1	Colo	orings	4	
		Coloring and Brooks' Theorem		
	1.2	An Informal Proof of Brooks' Theorem	5	
	1.3	A Formal Proof of Brooks' Theorem	8	
	1.4	Beyond Brooks' Theorem	9	
	1.5	Edge Coloring	12	
	1.6	Vizing's Theorem	14	

First let's look at a proof example.

Theorem

Every two longest paths in a connected graph *G* intersect.

Proof.

Suppose note. That is, there exist two longest paths P_1 and P_2 of G such that $V(P_1) \cap V(P_2) = \emptyset$. For each $i \in \{1,2\}$, let $v_{i,1}$ and $v_{i,2}$ be the ends of P_i . Since G is connected, there exists a shortest path P from $V(P_1)$ to $V(P_2)$. Since P is shortest, we have that $|V(P_i) \cap V(P)| = 1$ for each $i \in \{1,2\}$.

For each $i \in \{1,2\}$, let u_i be the end of P in $V(P_i)$. For each $i,j \in \{1,2\}$, let $Q_{i,j}$ be the subpath of P_i from u_i to $v_{i,j}$. We assume without loss of generality that for each $i \in \{1,2\}$, we have that $|E(Q_{i,1})| \ge |E(Q_{i,2})|$ and hence

$$|E(Q_{i,1})| \ge |E(P_i)|/2.$$

Let $P' = v_{1,1}Q_{1,1}u_1Pu_2Q_{2,1}v_{2,1}$. Note that P' is a path in G and

$$|E(P')| = |E(Q_{1,1})| + |E(P)| + |E(Q_{2,1})| \ge |E(P)| + |E(P_1)| > |E(P_1)|.$$

Hence P' is a longer path than P_1 , contradicting that P_1 is a longest path.

Things to remember:

- 1. Correctness
- 2. Clarity/Precision
- 3. Ease of Reading

Colorings

1.1 Coloring and Brooks' Theorem

coloring

A **coloring** of a graph *G* is an assignment of colors to vertices of *G* such that no two adjacent vertices receive the same color.

k-coloring

Let *G* be a graph. We say $\phi : V(G) \to [k]$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ for every $uv \in E(G)$.

Since every graph G has a |V(G)|-coloring, we are interested in the minimum numbers of colors needed to color G.

chromatic number

The **chromatic number** of a graph G, denoted $\chi(G)$, is the minimum number k such that G has a k-coloring.

Then why coloring?

- Coloring is a foundational problem in graph labeling, wherein we study functions on V(G) according to constraints imposed on the graph (e.g. non-adjacent vertices are labeled differently)
- Coloring is a foundational problem in graph decomposition, wherein we seek to decompose V(G) into certain kinds of subgraphs (e.g. independent sets)
- Applications to maps, scheduling, job processing, frequency assignment (e.g. cell networks)
- Applications to algorithms (e.g. distributed computing)

However, coloring is hard.

A graph being an **independent set** is by definition equivalent to being **1-colorable**.

A graph being **bipartite** is by definition equivalent to being **2-colorable**. (Indeed coloring is a generalization of partite)

Proposition 1.1

G is 2-colorable if and only if *G* does not contain an odd cycle.

Moreover, there exists a poly-time algorithm to decide if *G* is 2-colorable.

Theorem: Karp (1972)

For each $k \ge 3$, deciding if a graph *G* has a *k*-coloring is NP-complete.

Indeed, 3-coloring is NP-complete even for planar graphs. Any constant factor approximation is also NP-complete.

Then what about the bounds on chromatic number?

As mentioned $\chi(G) \leq |V(G)|$.

Greedy Upper bound: $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ denotes the maximum degree of vertices in G. Why? By a greedy algorithm:

- Order the vertices of *G* arbitrarily, $v_1, \ldots, v_{|V(G)|}$.
- Color the vertices in order avoiding the colors of previously colored neighbors.
- Since each vertex has at most $\Delta(G)$ neighbors, there is always at least one color for the current vertex.

Lower bound: $\chi(G) \ge \omega(G)$, where $\omega(G)$ denotes the clique number of H, that is the maximum size of a clique in G.

Can we do better than the greedy upper bound?

No! The bound is tight for complete graphs: $\omega(K_n) = \chi(K_n) = (n-1) + 1 = \Delta(K_n) + 1$.

Can we do better if the graph is not complete?

No! The graph could have a component that is complete.

Can we do better if the graph is connected and not complete?

No! The bound is tight for odd cycles: $\chi(C_{2k+1}) = 3 = 2 + 1 = \Delta(C_{2k+1}) + 1$.

Can we do better if the graph is connected and neither complete nor an odd cycle? Yes!

Theorem 1.2: Brooks 1941

If *G* is connected, then $\chi(G) \leq \Delta(G)$ if and only if *G* is neither complete nor an odd cycle.

1.2 An Informal Proof of Brooks' Theorem

How to prove Brook's Theorem?

Actually there are 8 to 10 distinct ways to prove Brooks' Theorem. See the nice survey *Brooks' Theorem and Beyond* by Cranston and Rabern from 2014 for more details. Here are some of those methods: Greedy Coloring, Kempe Chains, List Coloring, Alon-Tarsi Theorem, Kernel Perfection, Potential Method.

Today we give an informal proof sketch via the Greedy Coloring Method - arguably the most direct, brute-force of the approaches. (See Diestel for the Kempe Chain proof).

The idea is to try a method (greedy coloring) we know works for a similar problem ($\Delta + 1$ -coloring), and ask under what conditions can we use this to get the desired outcome (a Δ -coloring).

In the other cases we cannot apply greedy, we instead do **reductions**: that is, we show how to inductively color or to show that the graph is one of the exceptional outcomes (clique or odd cycle).

Alternatively, we could have built up a suite/library of reductions that work, and then tried to find a method to deal a finishing blow (i.e. to handle the cases we could not reduce).

First Reduction G has a cutvertex v. Then v separates G into two smaller graphs G_1 and G_2 .

By minimality of G, G_i has a Δ -coloring ϕ_i , $i \in 1, 2$.

This only works if neither graph is $K_{\Delta+1}$ or odd cycle when $\Delta=2$.

Now permute the colors in ϕ_2 so that $\phi_1(v) = \phi_2(v)$. Then $\phi_1 \cup \phi_2$ yields a Δ -coloring of G, a contradiction.

Second Reduction G has a cutset $\{u, v\}$.

Try the same trick. Say $\{u,v\}$ separates G into two smaller graphs G_1 and G_2 . By induction or minimum counterexample, each of G_1 , G_2 has a Δ-coloring ϕ_i , $i \in 1,2$.

If $uv \in E(G)$, then we can permute the colorings so that $\phi_1(u) = \phi_2(u)$ and $\phi_1(v) = \phi_2(v)$.

This fails if $uv \notin E(G)$. Because we may have u, v colored the same in one coloring and different in the order and no permuting will fix this! So we can add the edge uv to both G_1 and G_2 !

Have to show $\Delta(G_1 + uv)$, $\Delta(G_2 + uv) \leq \Delta(G)$. We also have to ensure that neither G_1 nor G_2 is complete (or odd cycle in $\Delta(G) = 2$ case).

Then we assume G is 3-connected. We now turn to the finishing blow (greedy). The greedy *fails* when a vertex has $\Delta(G)$ earlier neighbors in the ordering, each with a different color from $\{1, \ldots, \Delta(G)\}$.

Can we find an ordering where most of the vertices have at most $\Delta(G) - 1$ earlier neighbors? Yes for all but the last vertex in the ordering! We can fix a root, then take a depth-first search tree ordering from the root. Reverse it!

Now all vertices but the last will be fine in greedy.

If $\deg(v) \leq \Delta(G) - 1$, then we can ensure greedy does not fail at the last vertex v. Otherwise, we ensure that two of its neighbors x and y are colored the same (and hence there is a color left for v when it is v's turn). These two are two non-adjacent neighbors, which guaranteed to exist as G is not $K_{\Delta+1}$.

We can put x, y first in the ordering to guarantee x and y are colored the same. Then we can color them as we desire (since non-adjacent), say both with color 1.

Use the reverse of a depth-first search tree ordering of $G - \{x,y\}$ with root v, then we finish the ordering so every vertex in $V(G) \setminus \{x,y,v\}$ has at most $\Delta(G) - 1$ earlier neighbors. Since $G - \{x,y\}$ is connected as G is 3-connected, then this ordering exist.

1.3 A Formal Proof of Brooks' Theorem

Let us codify our ordering fact as a proposition.

Proposition 1.3: Ordering Proposition

If *G* is a connected graph on *n* vertices and $v \in V(G)$, then there exists an ordering $v_1, \ldots, v_n = v$ of V(G) such that $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \ge 1$ for all $i \in [n-1]$.

Proof.

Reverse a depth-first search tree ordering from root v. Or more formally:

We proceed by induction on |V(G)|. If |V(G)|=1, then the ordering v is as desired. So we assume that $|V(G)|\geq 2$. Let G_1,\ldots,G_k be the components of G-v. As G is connected, there exists neighbors u_1,\ldots,u_k of v such that $u_i\in V(G_i)$ for each $i\in [k]$. For each $i\in [k]$, there exists by induction applied to G_i and u_i , an ordering σ_i of $V(G_i)$ as prescribed by the proposition. Let σ be the ordering of V(G) obtained by concatenating the σ_i and finally v. Then σ is as desired.

Now we are ready to prove Brooks' Theorem:

Suppose not. Let G a counterexample with |V(G)| minimized. If $\Delta(G) \leq 2$, the result is standard. So we assume that $\Delta(G) \geq 3$.

Claim 1 There does not exist a cutvertex of *G*.

Proof:

Suppose not. That is, there exists a cutvertex v of G and two connected subgraphs G_1 , G_2 of G such that $G_1 \cap G_2 = \{v\}$, $G_1 \cup G_2 = G$ and $|V(G_i)| < |V(G)|$ for each $i \in [2]$.

As G_1 and G_2 are subgraphs of G, we have that $\Delta(G_i) \leq \Delta(G)$ for each $i \in [2]$. Moreover, as G is connected, we have for each $i \in [2]$ that $\deg_{G_i}(v) \geq 1$ and hence $\deg_{G_i}(v) \leq \Delta(G) - 1$. Hence $G_i \neq K_{\Delta(G)+1}$ for each $i \in [2]$. Thus by the minimality of G, there exist $\Delta(G)$ -colorings ϕ_i of G_i for each $i \in [2]$.

By permuting the colors of ϕ_2 as necessary, we assume without loss of generality that $\phi_1(v) = \phi_2(v)$. But then $\phi_1 \cup \phi_2$ is a $\Delta(G)$ -coloring of G, a contradiction.

Claim 2 There does not exist a 2-cut of G, or, there exists a vertex $v \in V(G)$ with $\deg_G(v) \leq \Delta(G) - 1$.

Proof:

Suppose not. Now let us suppose there exists a 2-cut $\{v_1, v_2\}$ of G and two connected subgraphs G_1, G_2 of G such that $G_1 \cap G_2 = \{v_1, v_2\}$, $G_1 \cup G_2 = G$ and $|V(G_i)| < |V(G)|$ for each $i \in [2]$.

Choose v_1, v_2, G_1, G_2 such that neither $G_1 + v_1v_2$ nor $G_2 + v_1v_2$ is equal to $K_{\Delta(G)+1}$ if possible.

As G is connected and G does not have a cutvertex by Claim 1, we have for all $i, j \in [2]$ that $\deg_{G_i}(v_j) \geq 1$ and hence $\deg_{G_i}(v_j) \leq \Delta(G) - 1$. Thus $\Delta(G_i + v_1v_2) \leq \Delta(G)$ for all $i \in [2]$.

Next suppose that there exists $i \in [2]$ such that $G_i + v_1v_2 = K_{\Delta(G)+1}$. Without loss of generality, we assume that i = 1. Let v_1' be the neighbor of v_1 in $G_2 - v_2$. Let $G_1 = G_1 + v_1v_1'$ and $G_2' = G_2 \setminus \{v_1\}$. Now wither $\deg_G(v_1') \leq \Delta(G) - 1$, a contradiction, or we find that $G_i' + v_1'v_2 \neq K_{\Delta(G)+1}$ for each $i \in [2]$. But then v_1', v_2, G_1', G_2' contradict the choice of v_1, v_2, G_1, G_2 .

So we assume that $G_1 + v_2v_2$, $G_2 + v_1v_2 \neq K_{\Delta(G)+1}$. Thus by the minimality of G, there exist $\Delta(G)$ -colorings ϕ_i of G_i for each $i \in [2]$. By permuting the colors of ϕ_2 as necessary, we assume without loss of generality that $\phi_1(v_j) = \phi_2(v_j)$ for each $j \in [2]$. But then $\phi_2 \cup \phi_2$ is a $\Delta(G)$ -coloring of G, a contradiction.

Let $v \in V(G)$ with $\deg_G(v)$ minimized.

First suppose that $\deg_G(v) \leq \Delta(G) - 1$. By the Ordering Proposition, there exists an ordering v_1, \ldots, v of V(G) such that $|N(v_i) \cap \{v_{i+1}, \ldots, v\}| \geq 1$ for all $i \in [|V(G)| - 1]$. Now greedily color V(G) in that order. This yields a $\Delta(G)$ -coloring of G, a contradiction.

So we assume that $\deg_G(v) = \Delta(G)$. Since $G \neq K_{\Delta+1}$, there exist distinct $x,y \in N(v)$ such that $xy \notin E(G)$. By Claims 1 and 2, it follows that G is 3-connected and hence $G - \{x,y\}$ is connected. Hence by the Ordering Proposition, there exists an ordering v_1, \ldots, v of $V(G) - \{x,y\}$ such that $|N(v_i) \cap \{v_{i+1}, \ldots, v\}| \geq 1$ for all $i \in [|V(G)| - 3]$. Now color x,y with color 1. Then greedily color $V(G) - \{x,y\}$ in that order. This yields a $\Delta(G)$ -coloring of G, a contradiction.

1.4 Beyond Brooks' Theorem

Can we go further? Can we save more colors? Under what conditions?

Question (ω , Δ , χ paradigm)

What is the maximum chromatic number of graphs with $\omega(G) \leq \omega$ and $\Delta(G) \leq \Delta$?

Brooks' Reformulated

If *G* is a graph with $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \Delta(G)$.

Borodin-Kostochka Conjecture (1977)

If *G* is a graph with $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq (G) - 1$.

Why $\Delta > 9$?

Let $G = C_5 \boxtimes K_3$. (the blowup of every vertex in C_5 to a triangle K_3) Then $\Delta(G) = 8$, $\omega(G) = 6$, and yet $\chi(G) = 8$.

Theorem (Reed 1999)

True for $\Delta(G) \geq 10^{14}$.

Reed's conjecture

Reed's Conjecture (1998)

$$\chi(G) \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

$$\Delta = 3t - 1$$

$$\omega = 2t$$

$$\left[\frac{1}{2}(\Delta + 1 + \omega)\right] = \left[\frac{5t}{2}\right]$$

$$\alpha = 2$$

5-cycle blowup

Theorem (Reed 1998)

The conjecture holds when $\Delta(G)$ is sufficiently large and

$$\omega(G) \ge (1 - 7 \cdot 10^{-7}) \Delta(G).$$

Corollary (Reed)

There exists $\varepsilon > 0$ such that for every graph G,

$$\chi(G) \le (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G).$$

Reed's value of ε was 10^{-8} .

Can we improve the ε for large enough Δ ? Can we get closer to $\varepsilon = 1/2$?

For Large enough Δ , the following ε suffices:

- $\frac{1}{320e^6}$ (King and Reed 2012)
- $\frac{1}{26}$ (Bonamy, Perrett, Postle 2016+)
- $\frac{1}{13}$ (Delcourt and Postle 2017+)
- $\frac{1}{8.4}$ (Hurley, de Joannis de Verclos, Kang 2020+)

Large Girth

The **girth** of a graph *G* is the length of a shortest cycle in *G*.

Theorem (Erdös 1959)

 $\forall g, k \ge 1$, there exists graphs of girth at least g and chromatic number at least k.

Theorem (Frieze and Luczak 1992)

Random *d*-regular graphs have chromatic number $(1 - o(1)) \frac{d}{2 \ln d}$ with high probability.

Corollary

 $\forall g, d \geq 1$, there exists a *d*-regular graph *G* of girth at least *g* with

$$\chi(G) \ge (1 - o(1)) \frac{d}{2 \ln d}.$$

Girth-Five and Triangle-Free

Theorem (Kim 1995)

If *G* is a graph of girth five, then

$$\chi(G) \le (1 + o(1)) \frac{\Delta(G)}{\ln \Delta(G)}.$$

Theorem (Johansson 1996)

If *G* is a triangle-free graph, then

$$\chi(G) \le O\left(\frac{\Delta(G)}{\ln \Delta(G)}\right).$$

Theorem (Molloy 2017)

If *G* is a triangle-free graph, then

$$\chi(G) \le (1 + o(1)) \frac{\Delta(G)}{\ln \Delta(G)}.$$

Small Clique Number

Theorem (Johansson 1999)

For every fixed r: if G is a graph with $\omega(G) \leq r$, then

$$\chi(G) \leq O\left(\frac{\Delta(G)}{\ln \Delta(G)} \cdot \ln \ln \Delta(G)\right).$$

Theorem (Molloy 2017)

$$\chi(G) \leq 200 \cdot \omega(G) \cdot \frac{\Delta(G)}{\ln \Delta(G)} \cdot \ln \ln \Delta(G).$$

Good for $\omega(G) \leq \frac{\ln \Delta(G)}{\ln \ln \Delta(G)}$. What if $\omega(G)$ is larger?

Question

For $k \ge 2$, what value of $\omega(G)$ guarantees $\chi(G) \le \frac{\Delta(G)}{k}$?

Theorem (Bonamy, Kelly, Nelson, Postle 2018+)

$$\chi(G) \leq O\left(\Delta(G) \cdot \sqrt{\frac{\ln \omega(G)}{\ln \Delta(G)}}\right).$$

Corollary

$$orall k \geq 2$$
, if $\omega(G) \leq \Delta(G)^{rac{1}{(192k)^2}}$, then
$$\chi(G) \leq \frac{\Delta(G)}{k}.$$

Ramsey theory constructions show that we cannot extend this beyond $\Delta(G)^{\frac{2}{k-1}}$.

1.5 Edge Coloring

edge coloring

An **edge-coloring** of a graph *G* is an assignment of colors to edges of *G* such that no two incident edges receive the same color.

k edge coloring

Let *G* be a graph. We say $\phi : E(G) \to [k]$ is a *k*-edge-coloring of *G* if $\phi(e) \neq \phi(f)$ for every $e, f \in E(G)$ with $e \sim f$.

Here $e \sim f$ means e, f share a common endpoint ("are adjacent") in G.

chromatic index

The **chromatic index** of a graph G (also known as **edge chromatic number**), denoted $\chi'(G)$, is the minimum number k such that G has a k-edge-coloring.

line graph

The **line graph** of a graph G, denoted by L(G), is the graph where V(L(G)) := E(G) and $E(L(G)) := \{ef : e, f \in E(G), e \sim f\}$.

Edge colorings of *G* are equivalent to vertex colorings of L(G). Hence $\chi'(G) = \chi(L(G))$.

What are some natural upper and lower bounds on $\chi'(G)$?

Proposition 1.4

$$\Delta(L(G)) \le 2\Delta(G) - 2$$

Hence by greedy,

$$\chi'(G) \le 2\Delta(G) - 1$$

Proposition 1.5

$$\omega(L(G)) \ge \Delta(G)$$

Hence

$$\chi'(G) \ge \Delta(G)$$

Moreover, $\omega(L(G)) = \Delta(G)$ if $\Delta(G) \geq 3$.

Note that for even cycles, namely K_n , n even, $\chi'(G) = \Delta(G)$. For odd cycles, we have $\chi'(G) > \Delta(G)$.

Theorem 1.6: König (1916)

If *G* is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof (first):

It suffices to prove the theorem when G is $\Delta(G)$ -regular since every bipartite graph G is a subgraph of some $\Delta(G)$ -regular graph H.

Prove by induction on $\Delta(G)$. If $\Delta(G) = 0$, then the statement holds trivially. So assume $\Delta(G) \geq 1$.

Let $S \subseteq A$. By double counting E(G(S, N(S))), it follows that

$$\Delta(G)|S| = |E(G(S, N(S)))| \le \Delta(G)|N(S)|,$$

and thus $|S| \leq |N(S)|$. Hence by Hall's theorem, there exists a perfect matching M of G.

By induction, G - M has a $(\Delta(G) - 1)$ -coloring ϕ . Let $\phi(e) = \Delta(G)$ for each $e \in M$. Then ϕ is a $\Delta(G)$ -coloring of G as desired.

Kempe chain

Let ϕ be a partial k-edge-coloring of a graph G. If $a,b \in [k]$ and $v \in V(G)$, then (a,b)-chain at v in ϕ , denoted $P_v(a,b,\phi)$ is the maximal path/cycle of a and b colored edges containing v.

switching

The coloring ϕ' obtained from switching (aka **recoloring**) $P_v(a, b, \phi)$ is defined as:

- $\phi'(e) = \{a, b\} \setminus \phi(e) \text{ if } e \in P_v(a, b, \phi), \text{ and }$
- $\phi'(e) = \phi(e)$ otherwise.

missing colors

Let ϕ be a partial k-edge coloring of a graph G.

- A coloring $a \in [k]$ is missing at v in ϕ if $a \notin {\phi(e) : e \sim v}$.
- We let $\phi(v)$ denote the set of missing colors at v.

Proof (second proof of König):

We proceed by induction on |E(G)|. If $E(G) = \emptyset$, there is nothing to show. So we assume that $E(G) \neq \emptyset$.

let $e = uv \in E(G)$. By induction, there exists a $\Delta(G)$ -edge-coloring of G - e. Let ϕ be a $\Delta(G)$ -edge-coloring of G - e such that $|\phi(u) \cap \phi(v)|$ is maximized.

Note that $\phi(u)$, $\phi(v) \neq \emptyset$ since $\deg_{G-e}(u)$, $\deg_{G-e}(v) \leq \Delta(G) - 1$.

If $\phi(u) \cap \phi(v) \neq \emptyset$, then let $\phi(e) \in \phi(u) \cap \phi(v)$ and hence ϕ is a $\Delta(G)$ -edge-coloring of G as desired.

Now assume that $\phi(u) \cap \phi(v) = \emptyset$. Let $a \in \phi(u)$, $b \in \phi(v)$. Note that $P := P_u(a, b, \phi)$ is a path. If $v \in V(P)$, then it follows that P has even length and hence P + e is an odd cycle in G, contradicting that G is bipartite.

So we assume that $v \notin V(P)$. But then switching P yields a coloring ϕ' such that $b \in \phi'(u) \cap \phi'(v)$, contradicting the choice of ϕ .

1.6 Vizing's Theorem

Theorem 1.7: Vizing (1964)

If *G* is a graph, then $\chi'(G) \leq \Delta(G) + 1$.

A graph G is called **class 1** if $\chi'(G) = \Delta(G)$, or **class 2** if $\chi'(G) = \Delta(G) + 1$. Note that deciding if a graph is class 1 is NP-complete!

Vizing fan

Suppose that *G* is a graph, $e = v_0 v_1 \in E(G)$, and ϕ is a partial *k*-edge-coloring of G - e for some integer *k*.

We say $T = (v_0 e_1 v_1 e_2 \dots e_n v_n)$ is a **Vizing fan** with respect to the edge e, vertex v_0 and the coloring ϕ if

- $v_0, v_1, v_2, \ldots, v_n$ are all disjoint, and
- $\forall j, 1 \leq j \leq n, e_j = v_j v_0$, and
- $\forall j, 2 \leq j \leq n, \phi(e_j) \in \bigcup_{i < j} \phi(v_i).$

Index

С	L
chromatic index 12 chromatic number 4 class 1 14	line graph12
class 2	M
	missing colors14
E	
edge chromatic number	R
	recoloring13
G girth	S
8-4-1	switching
K	
k edge coloring	V
Kempe chain	Vizing fan14