2018-03-06

Definition: binary operation

S: set, *: binary operation

$$*: S \times S \to S$$

$$*(a,b) = a * b$$

 $\langle S, * \rangle$ (* : 적절한 조건 \rightarrow Group(군), Ring(환), Field(체))

1.

Z = set of integers

$$(Z,+)$$

2.

 $Z_n = \{0, 1, ..., n-1\}$ (when n : 양의정수)

$$(Z_n, +_n)$$

 $+_n$: modulo n

3.

$$< M_n(R), +> < M_n(R), \cdot>$$

4.

$$R_{2\pi} = [0, 2\pi), +_{2\pi}$$

 $< R_{2\pi}, +_{2\pi} >$

5.

 $U_n = \{z \in C | z^n = 1\} \text{ (n-th root of unity)}$ $\langle U_n, \cdot \rangle (\because (ab)^n = a^n b^n = 1)$ when $z = 1(\cos \frac{2\pi}{n} + i\sin \frac{2\pi}{n}), z^n = 1$

$$U_n = \{1, z, z^2, ..., z^{n-1}\}$$

6.

 $u = z \in C||z| = 1$ (circle)

$$< u, \cdot >$$

not binary operation

1.

2.

< M(R), + > (M(R))은 모든 크기에 해당하는 행렬)

Definition

$$< S, * >$$

commutative

$$a * b = b * a$$

associative

$$(a * b) * c = a * (b * c)$$

Commot(?)

$$|S| < \infty$$

$$S = \{a_1, a_2, ..., a_n\}$$

for all $i, j, a_i \cdot a_j = a_k$ for some k

Definition: issomorphism

$$< S, * >, < S', *' >$$

$$\phi: S - > S'$$

1) ϕ : one to one, onto.

2)
$$\phi(a * b) = \phi(a) *' \phi(b)$$
 (homomorphic property)

 \Leftrightarrow

 ϕ is issomorphism

S, S' 사이에 ϕ 가 존재한다면 S = S' (isomorphism)

1.

$$< R(,), +>, < R + (X,), \cdot>$$

$$x->a^x$$
 (some $a>0$)

one to one

2.

$$U_n = \{1, z, z^2, ..., z^{n-1}\} < U_n, \cdot > \simeq < Z_n, +_n > z^i \to i$$

$$\phi(z^i \cdot z^j) = \phi(z^{i+j\%n})) = i + j\%n$$

3.

$$< Z, +>, < 2Z, +>$$
 $Z \rightarrow 2Z \ n \rightarrow 2n$ one to one
$$\phi(n+m) = \phi(n) + \phi(m)$$

How to proof not issomrophism

$$(S,*)! \simeq (S',*')$$

assume $< S,*> \simeq < S',*'>$
then "" holds
structure prop.
 $< Q,+>,< R,+>$
 $|Q|=|Z|=\aleph_0$
 $|R|>\aleph_0$

1.

$$\begin{array}{l} < Z, \; \cdot \; > ! \simeq < Z+, \; \cdot \; > \\ \text{if)} \; \phi \; \text{exists} \\ x \; = \; 0 or 1 \; \Leftrightarrow \; x \cdot x \; = \; x \; \Leftrightarrow \; \phi(x) \cdot \phi(x) \; = \; \phi(x) \; \Leftrightarrow \\ \phi(x) \; = \; 1 \\ \phi(0) \; = \; 1, \phi(1) \; = \; 1 \\ \text{not one to one} \end{array}$$

contradiction. so, $\langle Z, \cdot \rangle! \simeq \langle Z+, \cdot \rangle$

2.

$$\begin{split} &< Z, +> ! \simeq < Q, +> \\ &|Z| = |Q| \\ &\text{if) } \phi \text{ exists } xisNone \Leftrightarrow x+x=3 \Leftrightarrow \phi(x)+\phi(x) = \\ &\phi(3) = cinQ \\ &\phi(v) = \frac{c}{2} \\ &v \text{ is None} \\ &\text{contradiction. so, } < Z, +> ! \simeq < Q, +> \end{split}$$

3.

$$< R, \cdot > \simeq < C, \cdot >$$

 $C = \{a + bi|a, binR\}$
 $|C| = |R|$
 $x^2 = -1$
??????

I don't know

???? $(G, \cdot) : \text{Group } G \simeq G'$ $n = \dim V$; $\inf V = F^n(FisRorC, ithink?)$ |G| = nwhen n=4 Z_4, Z_2xZ_2

Group

 $\langle G, * \rangle$: Group \Leftrightarrow 0) *: binary operation (it might be) (closure) 1) * is associative 2) exists e in G s.t a * e = a (= e * a) (some a in G) e: identity 3) for all a in G, exists a' s.t. a*a' = e = (= a'*a)a': inverse of a ()로 약화해도 됨 * 기준으로 방향 중요.

uniqueness of e

if exists e, e'e = e * e' = e'contradiction

uniqueness of a'

if exists a', a''a' = a' * e = a' * (a * a'') = (a' * a) * a'' = e * a'' = a''contradiction

2018-03-08

Group 정의 정리

Definition: abelian group

Group 이며,

 $a * b = b * a, (a, b \in G)$ 인 경우 (교환법칙 성립)

0.

semi-group, mono-group 언급을 함.

- 1. $(\mathbb{Z}, +)$
- **2.** $(\mathbb{Z}_n, +_n)$
- 1. 결합법칙 성립
- 2. e = 0
- 3. a' = 0 if a = 0 else n a
- **3.** (Q, +), (R, +), (C, +)
- **4.** $(M_{m \times n}(R), +)$
- **5.** $(Q^*, \cdot), (R^*, \cdot), (C^*, \cdot)$

 $Q^* = Q - \{0\}$

 (Z^*,\cdot) 은 역원이 없어서 안됨

6. $(GL(n,R), \cdot)$

 GL : General Linear

 $GL(n,R) = n \times n$ matrix : invertible

 $(M_n(R),\cdot)$ 은 역원(역행렬)이 없어서 안됨

n = 1, GL(1, R) = R*

 $n \geq 2, |GL(n,R)| = \infty$ and not abelian (교환법칙

성립 X)

7. S_n

 $S_n = {\sigma : I_n \to I_n}, I_n = {1, 2, ..., n}$

n = 1, 2: abelian

 $n \geq 3$: not abelian

 $|S_n| = n!$

8. $(Q^+,*)$ when * is a*b = (ab/2)

$$e = 2, a' = 4/a$$

결합법칙 성립하면, 동형인 것도 결합법칙이 성립한다

1.

 $(U_n,*) o (Z_n,+_n)$ 은 동형, 둘다 결합법칙 성립

 $\phi((z^iz^j)z^k)=\phi(z^i(z^jz^k))$

 \Leftrightarrow

 $(i +_n j) +_n k = i +_n (j +_n k)$

note

(G,*)

 $* \rightarrow +$

e = 0, a' = -a

 (G,\cdot)

 $* \rightarrow \cdot$ or None

 $e = e, a' = a^{-1}$

정리

(G, *): group

1. 2. : cancellation law

1. $a * c = b * c \Rightarrow a = b$

right cancellation law 양변 오른쪽에 c'을 *하면 된다.

2. $c * a = c * b \Rightarrow a = b$

left cancellation law

3.

 $\forall a, b \in G, \exists x, a * x = b$

x = a' * b

x is unique

if a * x = b = a * x', x = x' (cancellation law)

 $\forall a, b \in G, \exists x, x * a = b$

머지

1. $(\mathbb{Z}, +)$

2 + x = 5

-2 + (2 + x) = -2 + 5

x = 3

2. (\mathbb{Q}^*,\cdot)

2x = 5

 $2^{-1}(2x) = 2^{-1}5$

x = 5/2

Cor(corollary)

(G,*)

1. uniqueness of e, a'

cancellation law

2. (a*b)' = b'*a'

하면 됨

3.

if $|G| < \infty$

 $|G| \times |G|$ 로 * 값을 table로 나타내면, 각 행의 |G|개의 값은 다르다. (by left cancellation law) 마찬가지로, 각 열의 |G|도 다르다. (by right cancellation law)

Remark:

(G,*)가 다음 3개를 만족해도 Group이다. (왼쪽만 성립하는 경우, 오른쪽도 마찬가지)

- 1) association
- $\exists e, e * a = a$
- 3) $\exists a', a' * a = e$

Lemma:

(G,*) with 1), 2), 3) \Rightarrow $(c*c=c\Rightarrow c=e)$

pf. c' * (c * c) = c' * c

(c'*c)*c = c'*c

 $\Box e*c=e$

c = e

To Show: a * a' = e and a * e = a

(a*a')*(a*a') = a*(a'*a)*a' = a*e*a' = a*a'

by Lemma, a * a' = e

a * e = a * (a' * a) = (a * a') * a = e * a = a

머지

|G|=1

 $G = \{e\}$

|G| = 2

 $G = \{e, a\}$

then, $a * a = e \ (\because a * a! = a * e)$

 $\cdot \rightarrow +_2$

 $e \to 0$

 $a \rightarrow 1$

이러면, 동형인 것을 알 수 있다. $G \simeq \mathbb{Z}_2$

|G| = 3

 $G = \{e, a, b\}$

e a b e e a b a a b e b b e a

일 수 밖에 없다.

 $\cdot \rightarrow +_3$

 $e \to 0$

 $a \rightarrow 1$

 $b\to 2$

|G| = 4

 $G = \{e, a, b, c\}$

e a b c e e a b c a a e c b b b c a e c c b e a

 $\cdot \rightarrow +_4$

 $e \to 0$

 $a \rightarrow 2$

 $b \to 1$

 $c \to 3$

e a b c e e a b c a a b c e b b c e a c c e a b

 $\cdot \rightarrow +_4$

 $e \to 0$

 $a \rightarrow 1$

 $b \rightarrow 2$

 $c \to 3$

위 두개는, $\simeq Z_4$

e a b c e e a b c a a e c b b b c e a c c b a e

 $\cdot \to +_{2\times 2}$

 $e \to (0,0)$

 $a \rightarrow (0,1)$

 $b \to (1,0)$

 $c \to (1,1)$

위는 $\simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$

What is $G_1 \oplus G_2$

 $G_1 \oplus G_2$

 $(a_1, b_1) + (a_2, b_2), (a_1, a_2 \in G_1)(b_1, b_2 \in G_2)$

 $(a_1 + a_2, b_1 + b_2)$

Proof $\mathbb{Z}_4! \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$

x*x=e을 만족하는 갯수

 $\mathbb{Z}_2 \oplus \mathbb{Z}_2 는 4$ 개

 \mathbb{Z}_4 는 2개

동형일 수 없다.

Klein 4-group

뭔가를 저렇게 부른다.

Note

 $G_6! \simeq S_3: Z_6$ 은 교환법칙 성립, S_3 은 성립안함 G_6 의 동형은 Z_6 밖에 없다.