LevelUP

제조데이터분석

핀성형기의 가동 상태 탐지

하연주

김유림

김희주

CONTENTS

1

2

3

4

5

분석 목적

데이터 설명

모델링

이슈 사항

결과

분석 목적

핀성형기 가동정보 데이터를 바탕으로 설치된 센서 데이터를 확인하여 핀성형기 START/STOP의 구분점을 찾는 것을 목표

각 데이터가 'START' 또는 'STOP' 중 하나로 분류되도록 모델을 학습

데이터 설명

	MAKING1_START	MAKING1_STOP	MAKING1_CNT
0	1	0	19978.679427
1	1	0	19978.679427
2	1	0	19978.679427
3	1	0	19978.679427
4	1	0	19978.679427
•••			
158395	1	0	37264.135652
158396	1	0	37264.135652
158397	1	0	37264.685514
158398	1	0	37264.685514
158399	1	0	37264.685514

158400 rows × 17 columns

- MAKING1_START: 가동 (단위: ON/OFF, ON=1, OFF=0) (Type: int64)
- MAKING1_STOP: 정지 (단위: ON/OFF, ON=1, OFF=0) (Type: int64)
- MAKING1_CNT: 생산수량 (단위: EA) (Type: float64)
- MAKING1_VOLT_N상: N상 전압 (단위: V) (Type: float64)
- MAKING1_VOLT_AVG: 평균 전압 (단위: V) (Type: float64)
- MAKING1_CURR_N상: N상 전류 (단위: A) (Type: float64)
- MAKING1_CURR_AVG: 평균 전류 (단위: A) (Type: float64)
- MAKING1_KW: 유효전력 (단위: KW) (Type: float64)
- MAKING1_KVAR: 무효전력 (단위: KVAR) (Type: float64)
- MAKING1_HZ: 주파수 (단위: HZ) (Type: float64)
- MAKING1_PWR_FACTOR: 역률 (단위: %) (Type: float64)
- MAKING1_KWH: 유효전력량 (단위: KWH) (Type: float64)
- MAKING1_KVARH: 무효전력량 (단위: KVARH) (Type: float64)

모델링 - START

로지스틱 회귀

정확도: 56.5%

정밀도: 56.8%

재현율: 68.5%

의사결정나무 분류

정확도: 99.5%

정밀도: 99.5%

재현율: 99.5%

랜덤포레스트 분류

정확도: 99.9%

정밀도: 99.8%

재현율: 99.9%

XGBoost 분류

정확도: 52.0%

정밀도: 52.0%

재현율: 1.0%

Positive 클래스에 대해서는 매우 좋은 성능을 보이지만, Negative 클래스에 대해서는 매우 부정확한 성능

로지스틱 회귀

정확도: 63.0%

정밀도: 62.7%

재현율: 33.7%

의사결정나무 분류

정확도: 98.9%

정밀도: 98.8%

재현율: 98.7%

랜덤포레스트 분류

정확도: 99.5%

정밀도: 99.3%

재현율: 99.5%

XGBoost 분류

정확도: 57.1%

정밀도: 00.0%

재현율: 00.0%

Negative 클래스에 대해서는 매우 좋은 성능을 보이지만,
Positive 클래스에 대해서는 매우 부정확한 성능 Predicted Values

이슈 사항

과하게 낮은 learning_rate(0.0001)로 인해

학습이 거의 진행되지 않거나

최적의 결정 경계를 찾지 못함

START - Before

오류 : 모델이 모든 데이터를 Positive로 예측 실제 데이터는 Positive와 Negative STOP - Before

오류 : 모델이 모든 데이터를 Negative로 예측 실제 데이터는 Positive와 Negative

이슈 해결

GridSearchCV 모델을 사용해

다양한 learning_rate[0.1, 0.01, 0.001, 0.0001] 값을 시도하고

START - After

교차 검증을 통해 최적값(O.1)을 찾음

STOP - After

정확도: 99.5%

정밀도: 99.5%

재현율: 99.6%

정확도: 98.3%

정밀도: 97.5%

재현율: 98.6%

결과

- 'START' 와 'STOP '를 각각 훈련시킨 후에는 새로운 데이터에 대해 각 모델(로지스틱, 의사결정나무, 랜덤포레스트, XGBoost)을 사용하여 시작과 종료를 예측.
- 'START' 사용한 모델의 결과와 'STOP' 사용한 모델의 결과가 각각 2개씩 나오며,
 이를 종합하여 핀성형기의 시작과 종료를 식별할 수 있다.

- 과적합 처리
 - 의사결정 트리 : 트리의 깊이를 제한, 가지치기
 - 랜덤포레스트 : 트리의 갯수, 깊이 조절
 - XGBoost: learning rate 조절, 하이페라라미터 조절

Thank You!

하연주

김유림

김희주