Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
April./May. 2024	5.6
$2\frac{3}{4}$ hours.	

THE CHEMISTRY DEPARTMENT END OF TERM ONE EXAMS - 2024

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer all questions in this section A and six questions in section B.

All answers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, R=8.31 JK⁻¹mol⁻¹.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

For Teachers' Use Only																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section

1.	(a) Def	ine the term standard enthalpy of formation.	(01 mark)
-		standard enthalpies of combustion of zinc su are -441, -348 and -297 kJmol ⁻¹ respectively	•
st		enthalpy of formation of zinc sulphide.	
2.	State v	what is observed and write equation for the read	ction that takes
	(a)	Propyne is bubbled through a solution of an nitrate.	nmoniacal silver (02 marks)
•••		Observation;	(<i>02 marks)</i>
•••			
•••	••••••	Equation;	
•••	(b)	Brady's reagent is added to propanone.	(02 marks)

•••••	•••••	Observation;	
•••••	•••••	Equation;	
•••••	•••••		
ŗ		en 0.209g of beryllium chloride was vapurised at 52 sure of $4.60 imes 10^4 Pa$, it occupied a volume of 200cm 3 . (i) Determine the molecular mass and hence the formula of beryllium chloride.	
		•	$\frac{1}{2}$ marks)
•••••	•••••		
••••			
••••			
•••••	• • • • • • •		
	(ii)	Draw the structural formula of beryllium chloride conditions above.	under the (01 mark)
	(b)	Water was added to beryllium chloride at room tempera	ature.
(i	i)	State what was observed.	(01 mark)

••••	(ii) Wri	te the equat	tion for the reaction th	
				$(1\frac{1}{2} marks)$
4.	Draw the st	ructure and	name the shape of the	following species. (4 ½ marks)
	Spec	ies	Structure	Shape
	SnO	Sl_2		
	НСО	0-		
	H_3C)+		
5.	II elements (a)State th	but resemb e term us	le those of Aluminium.	om those of other group similarities in chemical (½ mark)
			why the properties of bose of other group II el	peryllium; lements. (1 ½ marks)

(ii) ı	resemble those of aluminium.	(1 ½ marks)
takes	what will be observed and write equ place when a piece of beryllium trated sodium hydroxide solution. Observation	
(ii)	Equation for the reaction	(1 ½ marks)
resulting same cor was depr in;	of a compound M was dissolved solution had a freezing point of appound was dissolved in 111g of be sessed by 0.6° C. Calculate the appoint $(K_f \ for \ water = 1.90^{\circ}$ C $mol^{-1}kg$	-0.14°C.When 2.9g of the enzene, the freezing point arent molecular mass of M
	12.2. (i.g.) 5. Water 1170 Gillet 108	, (= 2 mar no)

(ii)	benzene.	$(K_f for benzer)$	$ne = 5.5 ^{\circ}\text{C} mol^{-1} kg$	
	••••••			
(b)	Explain why	the molecular	mass of M differ	s in the two solvents.
				(1 ½ marks)
•••••				
7. (a) (Complete the	following orga	nic reaction and o	utline the mechanism.
		CH_3 Conc.	$H_3PO_4/NaBr$ warm	
Me	chanism			(03 marks)
	••••••			

(b)	Name the type of reaction		•	e in (a). (1 mark)
fol ob: (a)	ime the reagent which can lowing pairs of compounds serve when the reagent is true CH_3CH_2OH and CH_3OH	be used In each	to distinguish case state w	n between the hat you would
	agent;			
Ob:	servation;			
_	HCOOH and CH3COOH			(03 marks)
<i>O</i> b:	servation;			
9. (a)	Define the term complex io	on.		(01 mark)

(b) Complete the following table about complexes of chromium and cobalt. (02 marks)

Complex	Oxidation state of metal ion	Coordination number
$[Co(NH_3)_4(H_2O)_2Cl_2]$		
$[Cr(NH_3)_6]^{3+}$		

(c)	Name e	ach of the complexes in (b) above.	(01 mark)
•••••	•••••••••••••••••••••••••••••••••••••••		•••••
		SECTION B: (54 MARKS) Answer any six questions from this sections	ion
10.(a) 5	State t k	nree reasons why fluorine differs in its proj	
othe	(03 marks)		
•••••			
	• • • • • • • • • • • • • • • • • • • •		•••••
(b)	\//ni+a	equation for the reaction between fluoring	and:
(b)	(i)	. equation for the reaction between fluoring Water	e ana, (1 ½ marks)
	(ii)	Cold dilute sodium hydroxide	(1 ½ marks)
	·····		
	(iii)	Hot concentrated sodium hydroxide	(1 ½ marks)

(c)	Write an equation for the reaction between silicon dioxide.	hydrofluoric acid and (1 ½ marks)
bein comp prod deco	compound, P, containing 12.8% carbon, 2.1g bromine is hydrolysed by aqueous potential pound, Q, Q is oxidised in several stages by uct being acid, R of relative formula masslourises an acidified solution of potassium masslourises the empirical formula of P.	assium hydroxide to nitric acid, the final s 90. On warming, R
(b)	Identify compounds Q and R .	(02 marks)

(d)	Write the structural formula and with compound P .	name of the compound isomeric (02 marks)
	ne one reagent that can be used to compounds. In each	
	I^- and Br^- Reagent	(03 marks)
Obs	ervation	
(b)	HCO_3^- and CO_3^{2-} Reagent	(03 marks)
Ohs	ervation	
(a)	Al^{3+} and Sn^{2+} Reagent	(03 marks)

Observation										
13. Write equations to show how the following synthesises can be carried out. In each case indicate the necessary reagents and conditions.										
(a)	Benzene to 2-phenylpropene.	(03 marks)								
(b)	methylbenzene to phenylethanone.	(2 ½ marks)								
(c)	Chloroethane to $\mathit{CH}_3\mathit{CH}_2\mathit{CONH}_2$.	(3 ½ marks)								

C	ride and tin(IV) (02 marks)	
(b) <i>C</i> oi	State the condition(s) of reaction between tin a write equation for the reaction that takes place. ndition(s)	nd chlorine and (2 ½ marks)
	ation	
(c)	Silicon(IV) chloride was dissolved in water. (i) State what was observed.	(01 mark)
	Write equation for the reaction that took place.	(1 ½ marks)
(d)	When 0.325g of silicon(IV) chloride was dissolved resultant solution required 48cm ³ of 0.1M sodium complete neutralization. Calculate the percent silicon(IV) oxide.	d in water, the hydroxide for

•••••••••••••••••••••••••••••••••••••••	••••••
15.1.0 mole of phosphorus(V) chloride was strongly heat closed glass bulb until equilibrium was obtained. The then rapidly broken under potassium iodide solution found to contain 40.70% of chlorine.	e glass bulb was n. The bulb was
(a) Write equations for the reactions that took place when (i) the glass bulb was strongly heated.	(01 mark)
(ii) the glass bulb was broken under potassium iodide	e solution. (01 mark)
(b)State the reasons why the bulb;	
(i) was rapidly broken	(01 mark)
(ii) was broken under potassium iodide solution.	(02 marks)
(c)Determine the;	

(i) 	degree of dissociation of phosp	(02 marks) 		
(ii)	equilibrium constant, K_c , for the	ne reaction.	(02 marks)	
16.(a) Cl	assify each of the reaction belo	w by type.	(05 marks)	
(i)	$CH_3CHO + NaHSO_3$	→ CH ₃ CHSO ₃ Na OH		
Type of	reaction;			
(ii)	$C_6H_5CH = CH_2 + HBr \qquad$	$C_6H_5CHCH_3$ Br		
Type of	reaction;			
	$C_6H_5CH_2CH_2I + \bar{O}H(aq) -$			
Type of	reaction;			

(iv)
$$CH_4 + Cl_2 \longrightarrow CH_3Cl$$

Type o	of reaction;
(v)	Nitration of benzene to form nitrobenzene
Type o	of reaction;
(b)	(i) Outline a mechanism for the reaction in (a)(i) above.
	(03 marks)
•••••	
•••••	
(c)	•
	method for preparation of chloromethane. (01 mark)
17. The	e kinetics data for the reaction between ${f Q}$ and sodium hydroxide is
sho	wn in the table below.

Concentration 1.05 0.88 0.74 0.51 0.37 0.26 0.16 0.10 of $Q(moll^{-1})$ Time(minutes) 3.5 7.0 14.5 20.0 27.0 35.5 0.0 45.0

(a) Plot a graph of concentration of \mathbf{Q} against time. (03 marks)

(b)Use y	(02 1)	
(i)	half life of Q	(03 marks)
(::)	the enden of neartice	(01
(ii)	the order of reaction	(01 mark)
/··· >		(00 ()
(iii)	the rate constant for the reaction	(02 marks)
••••••		

END

THE PERIODIC TABLE

1	2			/								3	4	5	6	7	8
1.0 H 1					-						-					1.0 H 1	4.0 He 2
	9.0 Be 4								*			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25			-	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31		100000	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41		98.9 Tc 43	101 Ru 44	103 Rh 45		108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52		131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	1100000	204 TI 81	207 Pb 82	Bi	Po	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89															
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60		150 Sm 62	100000000000000000000000000000000000000	157 Gd 64				T-170	169 Tm 69	173 Yb 70	71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	257 Fm 100		254 No 102	260 Lw 103