Trabajo Práctico N° 1: Geometría.

Ejercicio 1.

Representar en el plano los siguientes puntos y decir a qué cuadrante pertenecen: P(2, -1), $Q(3, \frac{1}{2})$, R(-2, -4), S(0, -2), T(-3, 0).

Gráfico.

P pertenece al 4to. cuadrante.

Q pertenece al 1er. cuadrante.

R pertenece al 3er. cuadrante.

S no pertenece a ningún cuadrante.

T no pertenece a ningún cuadrante.

Ejercicio 2.

Representar en el plano los puntos abscisa negativa y ordenada mayor que 2.

Ejercicio 3.

Representar en el plano los siguientes conjuntos:

(a)
$$A = \{(x, y) : (x, y) \in \mathbb{R}^2 \land 1 \le x < 2 \land y \ge 0\}.$$

<mark>Gráfico.</mark>

(b)
$$B = \{(x, y) : (x, y) \in \mathbb{R}^2 \land xy < 0\}.$$

<mark>Gráfico.</mark>

(c)
$$C = \{(x, y) : (x, y) \in \mathbb{R}^2 \land x = y\}.$$

Ejercicio 4.

Definir, mediante condiciones, los siguientes subconjuntos del plano:

(a)

$$A = \{(x, y) \colon (x, y) \in \mathbb{R}^2 \land x < \frac{5}{2} \land -1 < y < 2\}.$$

(b)

$$B = \{(x, y): (x, y) \in \mathbb{R}^2 \land (x = 1 \lor x = 2)\}.$$

Ejercicio 5.

Calcular la distancia entre P_1 (3, 2) y P_2 (-1, 4).

d
$$(P_1, P_2) = \sqrt{(-1-3)^2 + (4-2)^2}$$

d $(P_1, P_2) = \sqrt{(-4)^2 + 2^2}$

$$d(P_1, P_2) = \sqrt{(-4)^2 + 2^2}$$

$$d(P_1, P_2) = \sqrt{16 + 4}$$

$$d(P_1, P_2) = \sqrt{20}$$

d
$$(P_1, P_2) = \sqrt{4 * 5}$$

d
$$(P_1, P_2) = \sqrt{4} \sqrt{5}$$

$$d(P_1, P_2) = 2\sqrt{5}.$$

Ejercicio 6.

Representar y hallar el perímetro del triángulo de vértices A (-1,2), B (4,5) y C (5,0).

$$\begin{split} & \text{Per} \\ \text{metro} = d \; (A,B) + d \; (B,C) + d \; (C,A) \\ & \text{Per} \\ \text{metro} = \sqrt{(4+1)^2 + (5-2)^2} + \sqrt{(5-4)^2 + (0-5)^2} + \sqrt{(-1-5)^2 + (2-0)^2} \\ & \text{Per} \\ \text{metro} = \sqrt{5^2 + 3^2} + \sqrt{1^2 + (-5)^2} + \sqrt{(-6)^2 + 2^2} \\ & \text{Per} \\ \text{metro} = \sqrt{25 + 9} + \sqrt{1 + 25} + \sqrt{36 + 4} \\ & \text{Per} \\ \text{metro} = \sqrt{34} + \sqrt{26} + \sqrt{40} \\ & \text{Per} \\ \text{metro} = \sqrt{2} \cdot \sqrt{17} + \sqrt{2} \cdot \sqrt{13} + \sqrt{2} \cdot \sqrt{20} \\ & \text{Per} \\ \text{metro} = \sqrt{2} \; (\sqrt{17} + \sqrt{13} + \sqrt{20}). \end{split}$$

Ejercicio 7.

Determinar un punto sobre el eje y que equidiste de (2,5) y (3,3).

$$d((0, y), (2, 5)) = d((0, y), (3, 3))$$

$$\sqrt{(2 - 0)^2 + (5 - y)^2} = \sqrt{(3 - 0)^2 + (3 - y)^2}$$

$$\sqrt{2^2 + (5 - y)^2} = \sqrt{3^2 + (3 - y)^2}$$

$$\sqrt{4 + (5 - y)^2} = \sqrt{9 + (3 - y)^2}$$

$$4 + (5 - y)^2 = 9 + (3 - y)^2$$

$$4 + 25 - 10y + y^2 = 9 + 9 - 6y + y^2$$

$$29 - 10y = 18 - 6y$$

$$-6y + 10y = 29 - 18$$

$$4y = 11$$

$$y = \frac{11}{4}$$

Por lo tanto, el punto sobre el eje y que equidista de (2, 5) y (3, 3) es $(0, \frac{11}{4})$.

Ejercicio 8.

El punto medio entre dos puntos $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ está dado por el punto $M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ como se muestra en el gráfico:

Determinar las coordenadas del punto medio entre A (-3, 8) y B (5, -4).

$$M \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = M \left(\frac{-3 + 5}{2}, \frac{8 - 4}{2}\right)$$

$$M \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = M \left(\frac{2}{2}, \frac{4}{2}\right)$$

$$M \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = M (1, 2).$$

Ejercicio 9.

Hallar la ecuación explícita de la recta que pasa por los puntos dados:

$$\begin{cases} 5 = 2m + b \iff b = 5 - 2m \\ 3 = 4m + b \iff b = 3 - 4m \end{cases}$$

$$5 - 2m = 3 - 4m$$

$$-2m + 4m = 3 - 5$$

$$2m = -2$$

$$m=\frac{-2}{2}$$

$$m = -1$$

$$b=5-2(-1)=5+2=7.$$

$$b=3-4(-1)=3+4=7.$$

$$y = -x + 7$$
.

Ecuación explícita de la recta.

$$\begin{cases} 3 = -m + b \Leftrightarrow b = 3 + m \\ -3 = -2m + b \Leftrightarrow b = -3 + 2m \end{cases}$$

$$3 + m = -3 + 2m$$

$$2m - m = 3 + 3$$

$$m=6$$
.

$$b=3+6=9$$
.

$$b = -3 + 2 * 6 = 9$$
.

$$y = 6x + 9$$
.

Ecuación explícita de la recta.

(c)
$$(\frac{1}{2}, 0)$$
 y $(\frac{-1}{2}, -2)$.

$$\begin{cases} 0 = \frac{1}{2}m + b \iff b = \frac{-1}{2}m \\ -2 = \frac{-1}{2}m + b \iff b = -2 + \frac{1}{2}m \end{cases}$$

$$\frac{-1}{2} m = -2 + \frac{1}{2} m$$

$$\frac{1}{2} m + \frac{1}{2} m = 2$$

$$\frac{1}{2}$$
 m + $\frac{1}{2}$ m = 2

$$m=2$$

b=
$$\frac{-1}{2}$$
* 2= -1.
b= -2 + $\frac{1}{2}$ * 2= -2 + 1= -1.

y= 2x - 1. Ecuación explícita de la recta.

Ejercicio 10.

Determinar el valor de k para el cual los puntos (-1,2), (3,1) y (2,-k+1) están alineados.

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$$

$$\frac{y-2}{y-2} = \frac{2-1}{3-(-1)}$$

$$\frac{y-2}{y-2} = \frac{1}{3+1}$$

$$\frac{y-2}{y-2} = \frac{1}{4}$$

$$y - 2 = \frac{1}{4}(x+1)$$

$$y - 2 = \frac{1}{4}x + \frac{1}{4}$$

$$y = \frac{1}{4}x + \frac{1}{4} + 2$$

$$y = \frac{1}{4}x + \frac{9}{4}$$

$$-k + 1 = \frac{1}{2} + \frac{9}{4}$$

$$k = 1 - \frac{1}{2} - \frac{9}{4}$$

$$k = \frac{-7}{4}$$

Por lo tanto, el valor de k para el cual los puntos (-1,2), (3, 1) y (2, -k+1) están alineados es $\frac{-7}{4}$.

Ejercicio 11.

Hallar la pendiente y la ordenada al origen de las siguientes rectas y representarlas gráficamente.

(a) L:
$$5x + y - 3 = 0$$
.

$$y = -5x + 3$$
.

m=-5.

Pendiente.

b=3.

Ordenada al origen.

(b) *S*:
$$4x - 3y = 6$$
.

$$3y=4x - 6$$

$$y = \frac{4x - 6}{3}$$

$$y = \frac{4}{3}x - 2.$$

$$m = \frac{4}{3}$$

Pendiente.

b = -2.

Ordenada al origen.

(c)
$$M: 3x - 6 = 0$$
.

$$3x = 6$$

$$3x = 6$$

$$x = \frac{6}{3}$$

$$x = 2.$$

$$x=2$$
.

(d)
$$H$$
: $y + 2 = 0$.

$$y = -2.$$

$$m=0$$
.

Pendiente.

$$b = -2$$
.

Ordenada al origen.

Licenciatura en Informática UNLP - Matemática 1 | 14

Juan Menduiña

Ejercicio 12.

Escribir la ecuación explícita de la recta que:

- (a) tiene pendiente –2 y pasa por el origen de coordenadas.
- y= -2x. Ecuación explícita de la recta.
- **(b)** tiene pendiente -2 y pasa por (-2, -3).

$$-3 = -2(-2) + b$$

$$-3 = 4 + b$$

$$b = -3 - 4$$

$$b = -7$$
.

y=-2x-7. Ecuación explícita de la recta.

Ejercicio 13.

(a) Hallar la ecuación explícita de la recta L que tiene pendiente $\frac{3}{5}$ y pasa por P (12, 5).

$$5 = \frac{3}{5} * 12 + b$$
$$5 = 9 + b$$

$$5 = 9 + b$$

$$b = 5 - 9$$

$$b = -4$$
.

$$y = \frac{3}{5}x - 4$$
.

Ecuación explícita de la recta L.

(b) Hallar una paralela a L que pase por Q(3, 12).

$$12 = \frac{3}{5} * 3 + b$$

$$12 = \frac{9}{5} + b$$

$$b = 12 - \frac{9}{5}$$

$$12 = \frac{3}{5} + b$$

$$b=12-\frac{9}{5}$$

$$b = \frac{51}{5}$$
.

$$y = \frac{3}{5}x + \frac{51}{5}$$
.

Ecuación explícita de recta paralela a L.

(c) Hallar una perpendicular a L que pase por T (3, 6).

$$6 = \frac{-5}{3} * 3 + b$$
$$6 = -5 + b$$

$$6 = -5 + b$$

$$b = 6 + 5$$

$$y = \frac{-5}{3}x + 11.$$

 $y = \frac{-5}{3}x + 11$. Ecuación explícita de recta perpendicular a L.

Ejercicio 14.

(a) Hallar la ecuación explícita de la recta L que tiene pendiente $\frac{-5}{12}$ y pasa por P (9, 6).

$$6 = \frac{-5}{12} * 9 + b$$

$$6 = \frac{-15}{4} + b$$

$$b = 6 + \frac{15}{4}$$

$$b = \frac{39}{4}$$

$$y = \frac{-5}{12} x + \frac{39}{4}$$
. Ecuación explícita de la recta L.

(b) Hallar una paralela a L que pase por Q(-5, 1).

$$1 = \frac{-5}{12} (-5) + b$$

$$1 = \frac{25}{12} + b$$

$$b = 1 - \frac{25}{12}$$

$$b = \frac{-13}{12}$$

$$y = \frac{-5}{12} x - \frac{13}{12}$$
. Ecuación explícita de recta paralela a L.

(c) Hallar una perpendicular a L que pase por T (-8, 4).

$$4 = \frac{12}{5}(-8) + b$$

$$4 = \frac{-96}{5} + b$$

$$b = 4 - \frac{96}{5}$$

$$b = \frac{-76}{5}.$$

$$y = \frac{12}{5} x - \frac{76}{5}$$
. Ecuación explícita de recta perpendicular a L.

Ejercicio 15.

(a) Hallar la ecuación explícita de la recta L que pasa por los puntos P (-1, 5) y Q (5, 9).

$$\frac{y-5}{x-(-1)} = \frac{5-9}{-1-5}$$

$$\frac{y-5}{x+1} = \frac{-4}{x+1}$$

$$\frac{y-5}{x+1} = \frac{2}{3}$$

$$y - 5 = \frac{2}{3}(x+1)$$

$$y - 5 = \frac{2}{3}x + \frac{2}{3}$$

$$y = \frac{2}{3}x + \frac{2}{3} + 5$$

$$y = \frac{2}{3}x + \frac{17}{3}$$
Ecuación explícita de la recta L.

(b) *Hallar una perpendicular a L que pase por S (-8, 5).*

$$5 = \frac{-3}{2}(-8) + b$$

$$5 = 12 + b$$

$$b = 5 - 12$$

$$b = -7.$$

 $y = \frac{-3}{2}x - 7$. Ecuación explícita de recta perpendicular a L.

(c) Hallar una paralela a L que pase por Q (-9, 15).

$$15 = \frac{2}{3}(-9) + b$$

$$15 = -6 + b$$

$$b = 15 + 6$$

$$b = 21.$$

 $y = \frac{2}{3}x + 21$. Ecuación explícita de recta paralela a L.

Ejercicio 16.

(a) Hallar la ecuación explícita de la recta que pasa por $P(-1, \frac{1}{3})$ y es paralela a la recta de ecuación -x + 2y - 1 = 0.

$$-x + 2y - 1 = 0$$

$$2y = x + 1$$

$$y = \frac{x+1}{2}$$

$$y = \frac{1}{2}x + \frac{1}{2}$$

$$\frac{1}{3} = \frac{1}{2}(-1) + b$$

$$\frac{1}{3} = \frac{-1}{2} + b$$

$$b = \frac{1}{3} + \frac{1}{2}$$

$$b = \frac{5}{6}$$

$$y = \frac{1}{2}x + \frac{5}{6}$$
. Ecuación explícita de la recta.

(b) Hallar la ecuación explícita de la recta que pasa por $P(2, \frac{-1}{2})$ y es perpendicular a la recta de ecuación 3x - 2y + 1 = 0.

$$3x - 2y + 1 = 0$$

$$2y = 3x + 1$$

$$y = \frac{3x+1}{2}$$

$$y = \frac{3}{2}x + \frac{1}{2}$$

$$\frac{-1}{2} = \frac{-2}{3} * 2 + b$$

$$\frac{-1}{2} = \frac{-4}{3} + b$$

$$b = \frac{-1}{2} + \frac{4}{3}$$

$$b = \frac{5}{6}$$

$$y = \frac{-2}{3} + \frac{5}{6}$$
. Ecuación explícita de la recta.

Ejercicio 17.

Hallar las pendientes de las siguientes rectas y expresarlas por sus ecuaciones explícitas. Para cada una de ellas, hallar una recta paralela y una perpendicular que pasen por el origen:

(a) L:
$$3x - 2y + 6 = 0$$
.

$$3x - 2y + 6 = 0$$

$$2y = 3x + 6$$

$$y = \frac{3x + 6}{2}$$

 $y = \frac{3}{2}x + 3$. Ecuación explícita de la recta con pendiente $m = \frac{3}{2}$.

 $y = \frac{3}{2} x$. Ecuación explícita de recta paralela.

 $y = \frac{-2}{3} x$. Ecuación explícita de recta perpendicular.

(b)
$$S: 2x + y = 6$$
.

$$2x + y = 6$$

y= $-2x + 6$.

Ecuación explícita de la recta con pendiente m= -2.

$$y = -2x$$
.

Ecuación explícita de recta paralela que pasa por el origen.

$$y = \frac{-1}{2} x$$
.

Ecuación explícita de recta perpendicular que pasa por el origen.

(c)
$$T = 6y - x - 2 = 0$$
.

$$6y - x - 2 = 0$$

$$6y = x + 2$$

$$y = \frac{x+2}{6}$$

$$y = \frac{x+2}{6}$$

$$y = \frac{1}{6}x + \frac{1}{3}.$$
 Ecuación explícita de la recta con pendiente m= $\frac{1}{6}$.

$$y = \frac{1}{6}x$$
. Ecuación explícita de recta paralela que pasa por el origen.

Ejercicio 18.

Decidir si los siguientes pares de rectas son transversales, paralelas o coincidentes y determinar, cuando corresponda, las coordenadas del punto en el que se cortan.

(a)
$$\begin{cases} 2x - y = -3 \\ -6x + 3y = -6 \end{cases}$$

$$y = 2x + 3$$
.

$$3y = 6x - 6$$
$$y = \frac{6x - 6}{3}$$

$$y = 2x - 2$$
.

Por lo tanto, estas rectas son paralelas, ya que tienen la misma pendiente (m= 2).

(b)
$$\begin{cases} 2x + y = -1 \\ x - y = 2 \end{cases}$$

$$y = -2x - 1$$
.

$$y = x - 2$$
.

$$-2x - 1 = x - 2$$

 $x + 2x = -1 + 2$

$$3x = 1$$

$$x = \frac{1}{3}$$
.

$$y = -2\frac{1}{3} - 1 = \frac{-2}{3} - 1 = \frac{-5}{3}.$$
$$y = \frac{1}{3} - 2 = \frac{-5}{3}.$$

Por lo tanto, estas rectas son transversales, ya que se cortan en un punto pero sin formar un ángulo recto de 90°, y las coordenadas del punto en el que se cortan son $(\frac{1}{3}, \frac{-5}{3})$.

(c)
$$\begin{cases} 4x - 8y = -12 \\ -x + 2y = 3 \end{cases}$$

$$8y = 4x + 12$$

$$y = \frac{4x+12}{8}$$

$$y = \frac{1}{2}x + \frac{3}{2}$$

$$y = \frac{4x + 12}{8}$$

$$y = \frac{1}{2}x + \frac{3}{2}$$

$$2y = x + 3$$

Juan Menduiña

$$y = \frac{x+3}{2} \\ y = \frac{1}{2} x + \frac{3}{2}.$$

Por lo tanto, estas rectas son paralelas, ya que tienen la misma pendiente (m= $\frac{1}{2}$).

Ejercicio 19.

(a) Escribir la ecuación estándar de la circunferencia de centro C (-3, 4) y radio $3^{\frac{1}{2}}$. Graficar.

$$[x-(-3)]^2+(y-4)^2=(3^{\frac{1}{2}})^2$$

 $(x+3)^2+(y-4)^2=3$. Ecuación estándar de la circunferencia.

Gráfico.

(b) Escribir la ecuación estándar de la circunferencia de centro C (-2, 5) y que pasa por el punto de coordenadas (1, 2). Graficar.

$$[x - (-2)]^2 + (y - 5)^2 = r^2$$

(x + 2)² + (y - 5)² = r².

$$r^{2} = (1+2)^{2} + (2-5)^{2}$$

$$r^{2} = 3^{2} + (-3)^{2}$$

$$r^{2} = 9 + 9$$

$$r^{2} = 18.$$

$$(x + 2)^2 + (y - 5)^2 = 18$$
. Ecuación estándar de la circunferencia.

Ejercicio 20.

Hallar las ecuaciones estándar de las siguientes circunferencias con centro P y que pasa por Q, y con centro Q que pasa por P:

Con centro P y que pasa por Q:

$$(x-2)^2 + (y-5)^2 = r^2$$
.

$$r^2 = (4-2)^2 + (3-5)^2$$

 $r^2 = 2^2 + (-2)^2$

$$r^2 = 4 + 4$$

$$r^2 = 8$$
.

 $(x-2)^2 + (y-5)^2 = 8.$ Ecuación estándar de la circunferencia.

Con centro Q y que pasa por P:

$$(x-4)^2 + (y-3)^2 = r^2$$
.

$$r^2 = (2-4)^2 + (5-3)^2$$

 $r^2 = (-2)^2 + 2^2$

$$r^2 = (-2)^2 + 2^2$$

$$r^2 = 4 + 4$$

$$r^2 = 8$$
.

$$(x-4)^2 + (y-3)^2 = 8$$
. Ecuación estándar de la circunferencia.

Con centro P y que pasa por Q:

$$(x+1)^2 + (y-3)^2 = r^2$$
.

$$r^2 = (-2+1)^2 + (-3-3)^2$$

 $r^2 = (-1)^2 + (-6)^2$

$$r^2 = (-1)^2 + (-6)^2$$

$$r^2 = 1 + 36$$

$$r^2 = 37$$
.

$$(x+1)^2 + (y-3)^2 = 37$$
. Ecuación estándar de la circunferencia.

Con centro Q y que pasa por P:

$$(x+2)^2 + (y+3)^2 = r^2$$
.

$$r^2 = (-1+2)^2 + (3+3)^2$$

$$r^2 = 1^2 + 6^2$$

$$r^2 = 1 + 36$$

$$r^2 = 37$$
.

 $(x+2)^2 + (y+3)^2 = 37$. Ecuación estándar de la circunferencia.

(c)
$$P(\frac{1}{2}, 0) y Q(\frac{-1}{2}, -2)$$
.

Con centro P y que pasa por Q:

$$(x-\frac{1}{2})^2+y^2=r^2.$$

$$r^{2} = \left(\frac{-1}{2} - \frac{1}{2}\right)^{2} + (-2)^{2}$$

$$r^{2} = (-1)^{2} + 4$$

$$r^{2} = 1 + 4$$

$$r^{2} = 5.$$

$$r^2 = (-1)^2 + 4$$

$$r^2 = 1 + 4$$

$$r^2 = 5$$

$$(x-\frac{1}{2})^2+y^2=5.$$

Ecuación estándar de la circunferencia.

Con centro Q y que pasa por P:

$$(x+\frac{1}{2})^2+(y+2)^2=r^2.$$

$$r^{2} = (\frac{1}{2} + \frac{1}{2})^{2} + (0 + 2)^{2}$$
$$r^{2} = 1^{2} + 2^{2}$$

$$2 - 12 + 22$$

$$r^2 = 1 + 4$$

$$r^2-5$$

$$(x + \frac{1}{2})^2 + (y + 2)^2 = 5$$
. Ecuación estándar de la circunferencia.

Ejercicio 21.

Analizar si las siguientes ecuaciones corresponden o no a una circunferencia, indicando, en caso afirmativo, los elementos de la misma y graficar:

(a)
$$2x^2 + 2y^2 + 4x - 8y - 8 = 0$$
.

$$2x^{2} + 2y^{2} + 4x - 8y - 8 = 0$$

$$2(x^{2} + y^{2} + 2x - 4y - 4) = 0$$

$$x^{2} + y^{2} + 2x - 4y - 4 = \frac{0}{2}$$

$$x^{2} + y^{2} + 2x - 4y - 4 = 0$$

$$x^{2} + y^{2} + 2x - 4y = 4$$

$$(x + 1)^{2} + (y - 2)^{2} = 4 + 1^{2} + (-2)^{2}$$

$$(x + 1)^{2} + (y - 2)^{2} = 4 + 1 + 4$$

$$(x + 1)^{2} + (y - 2)^{2} = 9.$$

Centro: C (-1, 2).

Radio: r=3.

Gráfico.

(b)
$$x^2 + y^2 - 2x = 1$$
.

$$x^{2} + y^{2} - 2x = 1$$

$$(x - 1)^{2} + y^{2} = 1 + (-1)^{2}$$

$$(x - 1)^{2} + y^{2} = 1 + 1$$

$$(x - 1)^{2} + y^{2} = 2.$$

Centro: C (1, 0).

Radio: $r = \sqrt{2}$.

(c)
$$3x^2 + 3y^2 + 9x - 3y + 21 = 0$$
.

$$3x^{2} + 3y^{2} + 9x - 3y + 21 = 0$$

$$3(x^{2} + y^{2} + 3x - y + 7) = 0$$

$$x^{2} + y^{2} + 3x - y + 7 = \frac{0}{3}$$

$$x^{2} + y^{2} + 3x - y + 7 = 0$$

$$x^{2} + y^{2} + 3x - y = -7$$

$$(x + \frac{3}{2})^{2} + (y - 1)^{2} = -7 + (\frac{3}{2})^{2} + (-1)^{2}$$

$$(x + \frac{3}{2})^{2} + (y - 1)^{2} = -7 + \frac{9}{2} + 1$$

$$(x+\frac{3}{2})^2+(y-1)^2=\frac{-3}{2}$$
.

Por lo tanto, esta ecuación no corresponde a una circunferencia.

(d)
$$x^2 + y^2 + 3x - 5y - \frac{1}{2} = 0$$
.

$$x^{2} + y^{2} + 3x - 5y - \frac{1}{2} = 0$$

$$x^{2} + y^{2} + 3x - 5y = \frac{1}{2}$$

$$(x + \frac{3}{2})^{2} + (y - \frac{5}{2})^{2} = \frac{1}{2} + (\frac{3}{2})^{2} + (\frac{-5}{2})^{2}$$

$$(x + \frac{3}{2})^{2} + (y - \frac{5}{2})^{2} = \frac{1}{2} + \frac{9}{4} + \frac{25}{4}$$

$$(x + \frac{3}{2})^{2} + (y - \frac{5}{2})^{2} = 9.$$

Centro: C $(\frac{-3}{2}, \frac{5}{2})$. Radio: r= 3.

Ejercicio 22.

Llevar la ecuación $6x^2 + 6y^2 - 12x + 12y - 6 = 0$ a la forma estándar e indicar sus elementos. Graficar.

$$6 (x^{2} + y^{2} - 2x + 2y - 1) = 0$$

$$x^{2} + y^{2} - 2x + 2y - 1 = \frac{0}{6}$$

$$x^{2} + y^{2} - 2x + 2y - 1 = 0$$

$$x^{2} + y^{2} - 2x + 2y = 1$$

$$(x - 1)^{2} + (y + 1)^{2} = 1 + (-1)^{2} + 1^{2}$$

$$(x - 1)^{2} + (y + 1)^{2} = 1 + 1 + 1$$

$$(x - 1)^{2} + (y + 1)^{2} = 3.$$
 Ecuación estándar de la circunferencia.

Centro: C (1, -1). Radio: $r = \sqrt{3}$.

Ejercicio 23.

(a) Hallar la intersección de la circunferencia del ejercicio anterior con el eje x.

$$(0-1)^{2} + (y+1)^{2} = 3$$

$$(-1)^{2} + (y+1)^{2} = 3$$

$$1 + (y+1)^{2} = 3$$

$$(y+1)^{2} = 3 - 1$$

$$(y+1)^{2} = 2$$

$$\sqrt{(y+1)^{2}} = \sqrt{2}$$

$$|y+1| = \sqrt{2}$$

$$y+1 = \pm \sqrt{2}$$

$$y=-1 \pm \sqrt{2}$$

Por lo tanto, la circunferencia del ejercicio anterior intersecciona con el eje x en los puntos $(0, -1 + \sqrt{2})$ y $(0, -1 - \sqrt{2})$.

(b) Hallar la intersección de dicha circunferencia con el eje y.

$$(x-1)^{2} + (0+1)^{2} = 3$$

$$(x-1)^{2} + 1^{2} = 3$$

$$(x-1)^{2} + 1 = 3$$

$$(x-1)^{2} = 3 - 1$$

$$(x-1)^{2} = 2$$

$$\sqrt{(x-1)^{2}} = \sqrt{2}$$

$$|x-1| = \sqrt{2}$$

$$x - 1 = \pm \sqrt{2}$$

$$x = 1 \pm \sqrt{2}$$

Por lo tanto, dicha circunferencia intersecciona con el eje y en los puntos $(1 + \sqrt{2}, 0)$ y $(1 - \sqrt{2}, 0)$.

(c) Hallar la intersección de dicha circunferencia con la recta de ecuación y=x-1.

$$(x-1)^{2} + (x-1+1)^{2} = 3$$

$$x^{2} - 2x + 1 + x^{2} = 3$$

$$2x^{2} - 2x + 1 = 3$$

$$2x^{2} - 2x + 1 - 3 = 0$$

$$2x^{2} - 2x - 2 = 0$$

$$2(x^{2} - x - 1) = 0$$

$$x^{2} - x - 1 = \frac{0}{2}$$

$$x^{2} - x - 1 = 0$$

$$x_{1}, x_{2} = \frac{-(-1)\pm\sqrt{(-1)^{2}-4*1(-1)}}{2*1}$$

$$x_{1}, x_{2} = \frac{1\pm\sqrt{1+4}}{2}$$

$$x_{1}, x_{2} = \frac{1\pm\sqrt{5}}{2}$$

$$x_{1} = \frac{1+\sqrt{5}}{2} = \frac{1}{2} + \frac{\sqrt{5}}{2}$$

$$x_{2} = \frac{1-\sqrt{5}}{2} = \frac{1}{2} - \frac{\sqrt{5}}{2}$$

$$y_1 = \frac{1}{2} + \frac{\sqrt{5}}{2} - 1 = \frac{-1}{2} + \frac{\sqrt{5}}{2} = \frac{-1 + \sqrt{5}}{2}.$$
$$y_2 = \frac{1}{2} - \frac{\sqrt{5}}{2} - 1 = \frac{-1}{2} - \frac{\sqrt{5}}{2} = \frac{-1 - \sqrt{5}}{2}.$$

Por lo tanto, dicha circunferencia intersecciona con el eje y en los puntos $(\frac{1+\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2})$ y $(\frac{1-\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2})$.

Ejercicio 24.

Escribir la ecuación canónica de las parábolas:

(a) con foco en
$$(0, 6)$$
 y directriz $y + 6 = 0$.

$$(x-0)^2 = 4 * 6 (y - 0)$$

 $x^2 = 24y$. Ecuación estándar de la parábola.

(b) con vértice en el origen y foco en (-4, 0).

$$(y-0)^2 = 4$$
 (-4) (x - 0)
 $y^2 = -16x$. Ecuación estándar de la parábola.

(c) con vértice en (3, 2) y foco en (5, 2).

$$(y-2)^2 = 4 * 2 (x - 3)$$

 $(y-2)^2 = 8 (x - 3)$. Ecuación estándar de la parábola.

(d) con vértice en (0, 0) y que contiene a los puntos (2, -3) y (-2, -3).

$$(x-0)^2 = 4c (y-0)$$

 $x^2 = 4cy$.

$$2^{2}=4c (-3)$$

$$4=-12c$$

$$c=\frac{4}{-12}$$

$$c=\frac{-1}{3}$$

$$(-2)^{2} = 4c (-3)$$

$$4 = -12c$$

$$c = \frac{4}{-12}$$

$$c = \frac{-1}{3}$$

$$x^2 = 4 \left(\frac{-1}{3}\right) y$$

 $x^2 = \frac{-4}{3} y.$

Ecuación estándar de la parábola.

Ejercicio 25.

Graficar y dar los elementos de las parábolas definidas por las siguientes ecuaciones:

(a)
$$3y^2 = 8x$$
.

Vértice: V (0, 0).

Foco: $F(\frac{2}{3}, 0)$.

Directriz: $x = \frac{-2}{3}$.

Gráfico.

(b)
$$y^2 = -12x$$
.

Vértice: V (0, 0).

Foco: F (-3, 0).

Directriz: x = 3.

Gráfico.

(c)
$$x^2 = 4(y + 1)$$
.

Vértice: V (0, -1).

Foco: F(0, 0). Directriz: y=-2.

Gráfico.

(d)
$$(y-3)^2 = -20(x+2)$$
.

Vértice: V (-2, 3).

Foco: F (-7, 3).

Directriz: x = 3.

Ejercicio 26.

Encontrar la ecuación estándar y los elementos de las parábolas:

(a)
$$2x^2 + 12x + 8y + 10 = 0$$
.

$$2x^{2} + 12x + 8y + 10 = 0$$

$$2(x^{2} + 6x + 4y + 5) = 0$$

$$x^{2} + 6x + 4y + 5 = \frac{0}{2}$$

$$x^{2} + 6x + 4y + 5 = 0$$

$$x^{2} + 6x + 4y + 5 = 0$$

$$x^{2} + 6x = -4y - 5$$

$$(x + 3)^{2} = -4y - 5 + 3^{2}$$

$$(x + 3)^{2} = -4y - 5 + 9$$

$$(x + 3)^{2} = -4y + 4$$

$$(x + 3)^{2} = -4(y - 1).$$

Ecuación estándar de la parábola.

Vértice: V (-3, 1). Foco: F (-3, 2). Directriz: y= 0.

(b)
$$3y^2 + 18y - 24x = 93$$
.

$$3y^{2} + 18y - 24x = 93$$

$$3(y^{2} + 6y - 8x) = 93$$

$$y^{2} + 6y - 8x = \frac{93}{3}$$

$$y^{2} + 6y - 8x = 31$$

$$y^{2} + 6y = 8x + 31$$

$$(y + 3)^{2} = 8x + 31 + 3^{2}$$

$$(y + 3)^{2} = 8x + 40$$

$$(y + 3)^{2} = 8(x + 5)$$

Ecuación estándar de la parábola.

Vértice: V (-5, -3). Foco: F (-3, -3). Directriz: x= -7.

(c)
$$y = x^2 + 6x + 10$$
.

$$y=x^2 + 6x + 10$$

 $x^2 + 6x = y - 10$
 $(x + 3)^2 = y - 10$.

Ecuación estándar de la parábola.

Vértice: V (-3, 10).

Licenciatura en Informática UNLP - Matemática 1 | 34

Juan Menduiña

Foco: F (-3, $\frac{41}{4}$). Directriz: $y = \frac{39}{4}$.

Ejercicio 27.

(a) Hallar la ecuación estándar de la parábola con vértice V(1,3), eje focal paralelo al eje x y que pasa por el punto P(6, 13). Graficar y dar los restantes elementos.

$$(y-3)^2 = 4c(x-1).$$

$$(13-3)^2 = 4c (6-1)$$

$$10^2 = 4c * 5$$

$$100 = 20c$$

$$c = \frac{100}{20}$$

$$c = 5$$
.

$$(y-3)^2=4*5(x-1)$$

$$(y-3)^2=20(x-1)$$
.

Ecuación estándar de la parábola.

Foco: F (6, 3).

Directriz: x = -4.

Gráfico.

(b) Hallar una ecuación de una recta vertical que corte a la parábola. Dar el punto de corte.

$$x = 6$$
.

$$(y-3)^2=20(6-1)$$

$$(y-3)^2=20*5$$

$$(y-3)^2=100$$

$$\sqrt{(y-3)^2} = \sqrt{100}$$

$$|y - 3| = 10$$

$$y - 3 = \pm 10$$

$$y = 3 \pm 10$$

$$y_1 = 3 + 10 = 13$$
.

$$y_2 = 3 - 10 = -7$$
.

Por lo tanto, los puntos de corte son (6, 13) y (6, -7).

(c) Hallar la ecuación estándar de la parábola con vértice V(-5,1), eje focal paralelo al eje y y que pasa por el punto P(1,0). Graficar y dar los restantes elementos.

$$(x + 5)^2 = 4c (y - 1).$$

$$(1+5)^2 = 4c (0-1)$$

$$6^2 = 4c (-1)$$

 $36 = -4c$

$$c = \frac{36}{-4} \\ c = -9.$$

$$c = -9$$

$$(x + 5)^2 = 4 (-9) (y - 1)$$

 $(x + 5)^2 = -36 (y - 1).$

Ecuación estándar de la parábola.

Foco: F (-5, -8). Directriz: y= 10.

Gráfico.

(d) Hallar una ecuación de una recta horizontal que corte a la parábola. Dar el punto de corte.

$$y = -8.$$

$$(x + 5)^2 = -36(-8 - 1)$$

$$(x+5)^2 = -36(-9)$$

$$(x+5)^2 = 324$$

$$\sqrt{(x+5)^2} = \sqrt{324}$$

$$|x + 5| = 18$$

$$x + 5 = \pm 18$$

$$x = -5 \pm 18$$

$$x_1 = -5 + 18 = 13$$
.

$$x_2 = -5 - 18 = -23$$
.

Por lo tanto, los puntos de corte son (13, -8) y (-23, -8).

Ejercicio 28.

(a) Hallar las ecuaciones estándar de las parábolas con vértice V(3, 2) y foco F(7, 2), y otra con vértice V(7, 2) y foco F(3, 2).

$$(y-2)^2=16 (x-3)$$
. Ecuación estándar de la parábola con V (3, 2) y F (7, 2). $(y-2)^2=-16 (x-7)$. Ecuación estándar de la parábola con V (7, 2) y F (3, 2).

(b) Hallar las ecuaciones estándar de las parábolas con vértice V(-3, 3) y foco F(-3, -1), y otra con vértice V(-3, -1) y foco F(-3, 3).

$$(x+3)^2$$
= -16 (y - 3). Ecuación estándar de la parábola con V (-3, 3) y F (-3, -1). $(x+3)^2$ = 16 (y + 1). Ecuación estándar de la parábola con V (-3, -1) y F (-3, 3).