1. Постановка задач кинематики в робототехнике

В теории управления манипуляционными роботами кинематический анализ является фундаментальным этапом. Он подразделяется на две основные задачи: прямую и обратную задачу кинематики.

- Прямая задача кинематики (ПЗК) заключается в определении положения и ориентации рабочего органа (энд-эффесtor) манипулятора по известным кинематической схеме (длинам звеньев) и значениям обобщённых координат (например, углов поворота в сочленениях $q_1, q_2, ..., q_n$, где n число степеней свободы).
- Обратная задача кинематики (ОЗК) заключается в определении значений обобщённых координат $q_1, q_2, ..., q_n$, которые обеспечивают заданное положение и ориентацию рабочего органа в пространстве.

Таким образом, ПЗК отвечает на вопрос: «Где окажется рабочий орган при заданных углах в сочленениях?» В то время как ОЗК решает противоположную проблему: «Как должны быть установлены углы в сочленениях, чтобы рабочий орган достиг требуемого положения?»

Для задач планирования траектории и управления **обратная задача кинематики** является более важной и распространённой на практике. Однако её решение сопряжено с фундаментальной сложностью — **неоднозначностью**. Если для любого набора углов $(q_1, q_2, ..., q_n)$ существует единственное положение рабочего органа (x, y, z) (следствие определения ПЗК), то для заданного положения (x, y, z) может существовать несколько различных конфигураций манипулятора (наборов углов $(q_1', q_2', ..., q_n')$), обеспечивающих его достижение. При аналитическом решении ОЗК эта неоднозначность проявляется, например, через выбор знака при извлечении квадратного корня или через периодичность тригонометрических функций.

2. Пример решения для плоского двухзвенного манипулятора

Для иллюстрации рассмотрим классический пример — плоский двухзвенный манипулятор с двумя вращательными степенями свободы.

Дано:

- Длина первого звена (плеча): l_1
- Длина второго звена (предплечья): l_2
- Угол поворота первого звена относительно основания: q_1
- Угол поворота второго звена относительно первого: q_2
- Рабочий орган расположен на конце второго звена.

2.1. Решение прямой задачи кинематики

Цель: Найти декартовы координаты (x_p, y_p) рабочего органа.

Положение точки сочленения между первым и вторым звеном A в базовой системе координат O определяется как:

$$x_A = l_I \cdot \cos(q_I)$$

$$y_A = l_I \cdot \sin(q_I)$$

Второе звено в базовой системе координат повёрнуто на угол q_1+q_2 . Следовательно, проекции вектора l_2 на оси координат равны:

$$x' = l_2 \cdot \cos(q_1 + q_2)$$

$$y' = l_2 \cdot \sin(q_1 + q_2)$$

Результирующие координаты рабочего органа находятся векторным сложением:

$$x_n = x_A + x' = l_1 \cdot \cos(q_1) + l_2 \cdot \cos(q_1 + q_2)$$

$$y_p = y_A + y' = l_1 \cdot \sin(q_1) + l_2 \cdot \sin(q_1 + q_2)$$

Данная система уравнений представляет собой решение ПЗК для рассматриваемого манипулятора.

На рисунке 1 представлено схематичное изображение манипулятора с 2 вращательными звеньями с обозначениями, соответствующими описанию решения ПЗК.

Рисунок 1 - Схематичное изображение манипулятора с 2 вращательными звеньями с обозначениями, соответствующими описанию решения ПЗК.

2.2. Решение обратной задачи кинематики

Цель: По заданным координатам рабочего органа (x_p, y_p) найти углы q_1 и q_2 . Введём вспомогательные величины:

- $b = \sqrt{x_p^2 + y_p^2}$ расстояние от основания манипулятора до целевой точки.
- $q'_{I} = \arctan 2(y_{p}, x_{p})$ угол между осью OX и вектором b . Использование функции $\arctan 2$ корректно определяет квадрант угла.

Для треугольника, образованного звеньями $l_1,\, l_2$ и отрезком b , по теореме косинусов:

$$l_2^2 = l_1^2 + b^2 - 2 \cdot l_1 \cdot b \cdot \cos(q'_2)$$

где q'_2 — угол между l_I и b. Отсюда:

$$\cos(q'_2) = \frac{l_1^2 + b^2 - L_2^2}{2 \cdot l_1 \cdot b}$$

$$q'_2 = \arccos\left(\frac{l_I^2 + b^2 - l_2^2}{2 \cdot l_I \cdot b}\right)$$

Первое решение для углов (конфигурация "локоть вниз"):

$$q_1 = q'_1 - q'_2$$

$$q_2 = \pi - \arccos\left(\frac{l_1^2 + l_2^2 - b^2}{2 \cdot l_1 \cdot l_2}\right)$$

Графическая интерпретация представлена на рисунке 2.

Рисунок 2 - Графическая интерпретация решения ОЗК для двухзвенного манипулятора с конфигурацией "локоть вниз".

Второе решение (конфигурация "локоть вверх"):

$$q_1 = q'_1 + q'_2$$

$$q_2 = -\left[\pi - \arccos\left(\frac{l_1^2 + l_2^2 - b^2}{2 \cdot l_1 \cdot l_2}\right)\right] = \arccos\left(\frac{l_1^2 + l_2^2 - b^2}{2 \cdot l_1 \cdot l_2}\right) - \pi$$

Графическая интерпретация представлена на рисунке 3.

Рисунок 3 - Графическая интерпретация решения ОЗК для двухзвенного манипулятора с конфигурацией "локоть вверх".

Возникновение неоднозначности: Два различных решения появляются изза свойства чётности функции косинус $\cos(\theta) = \cos(-\theta)$, что эквивалентно выбору знака при геометрическом построении. На практике выбор конфигурации определяется дополнительными ограничениями (например, областью изменения углов, препятствиями в рабочей зоне).