Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn import metrics
```

Data Collection & Processing

```
# loading the data from csv file to a Pandas DataFrame
calories = pd.read_csv('/content/calories.csv')
```

print the first 5 rows of the dataframe
calories.head()

	User_ID	Calories
0	14733363	231.0
1	14861698	66.0
2	11179863	26.0
3	16180408	71.0
4	17771927	35.0

exercise_data = pd.read_csv('/content/exercise.csv')

exercise_data.head()

	User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp
0	14733363	male	68	190.0	94.0	29.0	105.0	40.8
1	14861698	female	20	166.0	60.0	14.0	94.0	40.3
2	11179863	male	69	179.0	79.0	5.0	88.0	38.7
3	16180408	female	34	179.0	71.0	13.0	100.0	40.5
4	17771927	female	27	154.0	58.0	10.0	81.0	39.8

Combining the two Dataframes

```
calories_data = pd.concat([exercise_data, calories['Calories']], axis=1)
```

calories_data.head()

	User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp	Calories
0	14733363	male	68	190.0	94.0	29.0	105.0	40.8	231.0
1	14861698	female	20	166.0	60.0	14.0	94.0	40.3	66.0
2	11179863	male	69	179.0	79.0	5.0	88.0	38.7	26.0
3	16180408	female	34	179.0	71.0	13.0	100.0	40.5	71.0
4	17771927	female	27	154.0	58.0	10.0	81.0	39.8	35.0

checking the number of rows and columns
calories_data.shape

(15000, 9)

getting some informations about the data
calories_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15000 entries, 0 to 14999
Data columns (total 9 columns):

Duca	COTAMM13 (CO	car > coramiis).	
#	Column	Non-Null Count	Dtype
0	User_ID	15000 non-null	int64
1	Gender	15000 non-null	object
2	Age	15000 non-null	int64
3	Height	15000 non-null	float64
4	Weight	15000 non-null	float64
5	Duration	15000 non-null	float64
6	Heart_Rate	15000 non-null	float64
7	Body_Temp	15000 non-null	float64
8	Calories	15000 non-null	float64
dtype	es: float64(6), int64(2), ob	ject(1)

checking for missing values
calories_data.isnull().sum()

memory usage: 1.0+ MB

```
User_ID 0
Gender 0
Age 0
Height 0
Weight 0
Duration 0
Heart_Rate 0
Body_Temp 0
```

Calories 0 dtype: int64

Data Analysis

get some statistical measures about the data
calories_data.describe()

	User_ID	Age	Height	Weight	Duration	Heart_R
count	1.500000e+04	15000.000000	15000.000000	15000.000000	15000.000000	15000.000
mean	1.497736e+07	42.789800	174.465133	74.966867	15.530600	95.518
std	2.872851e+06	16.980264	14.258114	15.035657	8.319203	9.583
min	1.000116e+07	20.000000	123.000000	36.000000	1.000000	67.000
25%	1.247419e+07	28.000000	164.000000	63.000000	8.000000	88.000
50%	1.499728e+07	39.000000	175.000000	74.000000	16.000000	96.000
75%	1.744928e+07	56.000000	185.000000	87.000000	23.000000	103.000
max	1.999965e+07	79.000000	222.000000	132.000000	30.000000	128.000

Data Visualization

sns.set()

plotting the gender column in count plot sns.countplot(calories_data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f3a23007110>

finding the distribution of "Age" column
sns.distplot(calories_data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f3a22b17e50>

finding the distribution of "Height" column
sns.distplot(calories_data['Height'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f3a17f6ec90>


```
# finding the distribution of "Weight" column
sns.distplot(calories_data['Weight'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f3a17f6fad0>

Finding the Correlation in the dataset

- 1. Positive Correlation
- 2. Negative Correlation

```
correlation = calories_data.corr()
```

```
# constructing a heatmap to understand the correlation

plt.figure(figsize=(10,10))
sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, annot_kws={'size':
```


Converting the text data to numerical values

 $calories_data.replace(\{"Gender":\{'male':0,'female':1\}\}, inplace=True)$

calories_data.head()

	User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp	Calories
0	14733363	0	68	190.0	94.0	29.0	105.0	40.8	231.0
1	14861698	1	20	166.0	60.0	14.0	94.0	40.3	66.0
2	11179863	0	69	179.0	79.0	5.0	88.0	38.7	26.0
3	16180408	1	34	179.0	71.0	13.0	100.0	40.5	71.0
4	17771927	1	27	154.0	58.0	10.0	81.0	39.8	35.0

Separating features and Target

```
X = calories_data.drop(columns=['User_ID','Calories'], axis=1)
Y = calories_data['Calories']
```

print(X.head())

	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp
0	0	68	190.0	94.0	29.0	105.0	40.8
1	1	20	166.0	60.0	14.0	94.0	40.3
2	0	69	179.0	79.0	5.0	88.0	38.7
3	1	34	179.0	71.0	13.0	100.0	40.5
4	1	27	154.0	58.0	10.0	81.0	39.8

print(Y.head())

```
0 231.0
1 66.0
2 26.0
```

3 71.0

4 35.0

Name: Calories, dtype: float64

Splitting the data into training data and Test data

Model Training

XGBoost Regressor

```
# loading the model
model = XGBRegressor()

# training the model with X_train
model.fit(X_train, Y_train)
```

reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
silent=None, subsample=1, verbosity=1)

→

Evaluation

Prediction on Test Data

```
test_data_prediction = model.predict(X_test)
print(test_data_prediction)
```

[167.63509 193.85378 51.93017 ... 30.419823 188.78845 148.03796]

Mean Absolute Error

```
mae = metrics.mean_absolute_error(Y_test, test_data_prediction)
print("Mean Absolute Error = ", mae)
```

Mean Absolute Error = 2.622601093477673

Score on test and train dataset

```
model.score(X_train, Y_train)
```

0.9969798435494149

```
model.score(X_test, Y_test)
```

0.9965459879538597