Projet P6

Classification automatique de bien de consommation

Introduction

• DataScientist pour Place de Marche -> Faire une étude de faisabilité d'un moteur de classification d'articles en différentes catégories.

• Objectifs:

- Travail sur une base de données limitée de 1050 produits
- Extraction des features texte
- Extraction des features images
- - Obtenir une classification pertinente des produits de manière non-supervisée

Démarche

Données

Jeux de données de 1050 lignes et 15 colonnes :

- Description du produit
- Categories du produit
- Images

	product_category_tree	description	image
0	["Home Furnishing >> Curtains & Accessories >>	Key Features of Elegance Polyester Multicolor	55b85ea15a1536d46b7190ad6fff8ce7.jpg
1	["Baby Care >> Baby Bath & Skin >> Baby Bath T	Specifications of Sathiyas Cotton Bath Towel (7b72c92c2f6c40268628ec5f14c6d590.jpg
2	["Baby Care >> Baby Bath & Skin >> Baby Bath T	Key Features of Eurospa Cotton Terry Face Towe	64d5d4a258243731dc7bbb1eef49ad74.jpg
3	["Home Furnishing >> Bed Linen >> Bedsheets >>	Key Features of SANTOSH ROYAL FASHION Cotton P	d4684dcdc759dd9cdf41504698d737d8.jpg
4	["Home Furnishing >> Bed Linen >> Bedsheets >>	Key Features of Jaipur Print Cotton Floral Kin	6325b6870c54cd47be6ebfbffa620ec7.jpg

Sommaire

- 1. Nettoyage des données
- 2. Text Processing
- 3. Image Processing
- 4. Concaténation des features Image & Texte
- 5. Modélisation & Evaluation
- 6. Conclusion

Nettoyage des données

Suppression des colonnes inutiles

Nettoyage des données

Formatage de la colonne catégorie

'["Home Furnishing >> Curtains & Accessories >> Curtains >> Elegance Polyester Multicolor Abstract Ey elet Do..."]'

	cat_lvl_1	cat_lvl_2	cat_lvl_3
0	Home Furnishing	Curtains & Accessories	Curtains

Nettoyage des données

Formatage de la colonne catégorie

7 catégories avec 150 articles chacunes

- Pré-traitement de la colonne description (tokenisation, leminisation)
- Extraction des features en utilisant divers methodes :
 - Bag of Words (comptage simple et TF-IDF)
 - Word2Vec
 - Bert
 - USE
- Clustering pour évaluer les performances de chaque méthodes

Tokenisation & leminisation

- Elimination des caractères non-alphabétiques
- Mise en minuscule
- Elimination des stopwords et des lettres isolées
- Lemmatisation

Analyse des mots clés par catégories

- Certaines catégories ont des mots-clés plus représentatifs que d'autres
- Mots-clés communs à certaines catégories

Extraction des features

- On va comparer 5 méthode d'extraction de features textuelles :
 - Comptage simple avec CountVectorizers
 - Comptage avec TF-IDF
 - Word2VEC (sentence embedding)
 - Bert
 - USE
- Clusterisation avec Kmeans
- Evaluation des modèles (ari, accuracy)
- Representation sous tsne

Extraction des features

	cv	TF-IDF	W2V	BERT	USE
accuracy	0.62	0.721905	0.497143	0.569524	0.613333
ari	0.367824	0.511265	0.277111	0.326547	0.422782

TF-IDF et USE nous donne de meilleurs performances On choisi ces 2 méthodes pour l'extraction des features textes

Visualisation T-sne

Visualisation T-sne

Extraction des features

- On va comparer 3 méthode d'extraction de features images :
 - SIFT
 - ORB
 - CNN
- Clusterisation avec Kmeans
- Evaluation des modèles (ari, accuracy)
- Representation sous tsne

Extraction des features

	CNN	SIFT	ORB
accuracy	0.5086	0.28092	0.233941
ari	0.344047	0.0645153	0.0296804

CNN donne des performances correct

Performances faibles pour ORB & SIFT

Visualisation T-sne

Visualisation T-sne

Fusion textes et images

On utilise l'approche de la concatenation des meilleurs features

- Pré traitement des features
- Clusterisation avec kmeans
- Comparaison des performances

Fusion textes et images

Fusion textes et images

Apres ACP


```
Avant Reduction de Dimension accuracy ari

USE + CNN 0.550725 0.300869
```

Conclusion

- Text processing plus efficace que l'Image Processing
- Solution: Plus de données afin d'augmenter l'Image Processing
 Ex: L'espace des phase visuelle pour une montre est plus vaste que l'espace des phases textuelle
- Pour la fusion texte et image, une autre technique peut etre utilisé : la pondération des prédiction