Machine Learning Classification

Fernando Rodríguez Sánchez

ferjorosa@gmail.com

Universidad Politécnica de Madrid

16/10/2020

- Introduction
- Support vector machines
- Openion Decision trees
- 4 K-nearest neighbours
- Naïve Bayes

- Introduction
- Support vector machines
- Openion Decision trees
- 4 K-nearest neighbours
- Naïve Bayes

Supervised learning

	X_1	 X_n	Y
$(\mathbf{x}^{(1)}, y^{(1)})$	$x_1^{(1)}$	 $x_n^{(1)}$	$y^{(1)}$
$(\mathbf{x}^{(1)}, y^{(1)})$ $(\mathbf{x}^{(2)}, y^{(2)})$	$x_1^{(2)}$	 $x_n^{(2)}$	$y^{(1)}$ $y^{(2)}$
$(\mathbf{x}^{(m)}, y^{(m)})$	$x_1^{(m)}$	 $x_n^{(m)}$	$y^{(m)}$

Classification

- \bullet X_i is discrete/continuous
- Y is discrete (the **class**)

- ullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete (the **class**)

One-dimensional

- \bullet Given $(\mathbf{x}^{(1)},y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete (the **class**)

One-dimensional

- Given $(\mathbf{x}^{(1)}, y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete (the **class**)

One-dimensional

Multi-dimensional

- Given $(\mathbf{x}^{(1)}, y^{(1)})$ learn a function $f(\mathbf{x})$ to predict y given \mathbf{x}
- y is discrete (the **class**)

One-dimensional

Multi-dimensional

- Introduction
- Support vector machines
- Openion Decision trees
- K-nearest neighbours
- Naïve Bayes

Support Vector Machines

Support Vector Machines try to find the linear function f(x) that best separate **two** classes

Tries to make the separation as wide as possible

Support vectors \rightarrow closest points to the line

Kernel trick

What happens when classes are not linearly separable?

The training points are mapped to a 3-dimensional space where a separating hyperplane can be easily found

$$(A, B) \to (A, B, A^2 + B^2)$$

Multi-class classification

Multi-class classification via All vs. All

What happens on ties (grey area)?

- Depends on implementation
- Scikit-learn assigns a class probability via K-fold cross validation

Strengths and weaknesses

Strengths

- Memory efficient (only need to store the support vectors)
- Can represent many decision boundaries via kernels
- Effective in high dimensional spaces

Weaknesses

- Performance is sometimes kernel-dependent
- Doesn't scale well to large datasets
- Doesn't work well with mixed data

- Introduction
- Support vector machines
- Openion Decision trees
- W-nearest neighbours
- Naïve Bayes

Decision trees

Decision trees

Overfitting?

Strengths and weaknesses

Strengths

- Easy to understand
- Works with mixed data
- Very good when done in ensembles

Weaknesses

- Individual trees are prone to overfitting
- Pruning is usually necessary (when/how to **prune**?)

- Introduction
- Support vector machines
- Openion Decision trees
- 4 K-nearest neighbours
- Naïve Bayes

K-nearest neighbours

Procedure to classify a new x:

- Measure distance to all the other instances
- Select k closest ones
- Assigns the most frequent class of those k instances

K-nearest neighbours

Procedure to classify a new x:

- Measure distance to all the other instance
- ullet Select k closest ones
- Assigns the most frequent class of those k instances

K-nearest neighbours

What happens if there is a **tie** (even k value)?

- Depends on implementation
- Scikit-learn chooses the first ordered instance of the k and assigns its class to x

We can also use an **uneven** k value

Strengths and weaknesses

Strengths

- Easy to understand
- Can represent any function with enough data

Weaknesses

- Memory intensive
- Problems on high dimensional data (distances)
- Doesn't work well with mixed data

- Introduction
- Support vector machines
- Openion Decision trees
- 4 K-nearest neighbours
- Naïve Bayes

Naïve Bayes

- Probabilistic model
- Models the joint probability distribution of data
- Predictor variables are independent given Y
- Uses statistical inference to predict the value of Y given X

Naïve Bayes

- Gaussian Naïve Bayes
- Categorical Naïve Bayes
- Multinomial Naïve Bayes
- etc.

Gaussian Naïve Bayes

$$p(Y)$$

$$p(Y = M) = (7/13) = 0.54$$

$$p(Y = B) = (6/13) = 0.46$$

$$p(X_1 \mid Y)$$

$$p(X_1 \mid Y = M) = \mathcal{N}(2.2, 0.39)$$

$$p(X_1 \mid Y = B) = \mathcal{N}(1.5, 0.15)$$

$$p(X_2 \mid Y)$$

$$p(X_2 \mid Y = M) = \mathcal{N}(55.7, 88.2)$$

$$p(X_2 \mid Y = B) = \mathcal{N}(37.8, 45.4)$$

$$p(Y|\mathbf{X}) \to \mathsf{Bayes'}$$
 Theorem

Naïve Bayes extensions

Strengths and weaknesses

Strengths

- Allows uncertainty in the predictions
- Only requires a small number of data instances to work
- Can handle high dimensional data
- Rarely overfits the data

Weaknesses

- Usually underfits the data (Generative vs discriminative)
- It is not implemented in Scikit-learn for mixed data

Machine Learning Classification

Fernando Rodríguez Sánchez

ferjorosa@gmail.com

Universidad Politécnica de Madrid

16/10/2020

