Data Preprocessing

PHOSPHENE AI

Contents

- Filling missing values
- Converting Categorical Data to Numerical format

The dataset we'll be using

Country	Age	Salary	Size	Purchased
France	44	72000	M	No
Spain	27	48000	S	Yes
Germany	30	54000	M	No
Spain	38	61000	L	No
Germany	40		XL	Yes
France	35	58000	XXL	Yes
Spain		52000	M	No
France	48	79000	M	Yes
Germany	50	83000	L	No
France	37	67000	S	Yes

Nominal Data

Ordinal Data

Filling in Missing Values

Data Imputation Methods

- Mean Imputation Calculate the mean of the values in the same column and fill the missing value with the mean
- Median Imputation Calculate the median of the values in the same column and fill the missing value with the median
- Hot Deck Imputation Randomly choose a value from the column from another row and fill the missing cell (NOT RECOMMENDED)
- Cold Deck Imputation Systematically choose value from another row that has similar properties on other columns and then fill the missing cell
- Manual Imputation Manually examine the row and fill the value

Mean = 38.778 Mean = 63777.78

We'll use the Mean Imputation strategy

Country	Age	Salary	Size	Purchased
France	44	72000	М	No
Spain	27	48000	S	Yes
Germany	30	54000	M	No
Spain	38	61000	L	No
Germany	40		XL	Yes
France	35	58000	XXL	Yes
Spain		52000	М	No
France	48	79000	М	Yes
Germany	50	83000	L	No
France	37	67000	S	Yes

We'll use the Mean Imputation strategy

Country	Age	Salary	Size	Purchased
France	44	72000	M	No
Spain	27	48000	S	Yes
Germany	30	54000	M	No
Spain	38	61000	L	No
Germany	40	63777.78	XL	Yes
France	35	58000	XXL	Yes
Spain	38.778	52000	M	No
France	48	79000	M	Yes
Germany	50	83000	L	No
France	37	67000	S	Yes

Converting Categorical Data to Numerical format

The dataset we'll be using

Country	Age	Salary	Size	Purchased
France	44	72000	M	No
Spain	27	48000	S	Yes
Germany	30	54000	M	No
Spain	38	61000	L	No
Germany	40	63777.78	XL	Yes
France	35	58000	XXL	Yes
Spain	38.778	52000	M	No
France	48	79000	M	Yes
Germany	50	83000	L	No
France	37	67000	S	Yes

Nominal Data

Ordinal Data

Let's start with encoding Ordinal Data

Size
М
S
М
L
XL
XXL
М
М
L
S

The values in the column are S, M, L, XL, XXL

We can replace each value like this:

- S-1
- M-2
- L-3
- XL-4
- XXL 5

Let's start with encoding Ordinal Data

We can replace each value like this:

- S-1
- M 2
- L-3
- XL-4
- XXL 5

Size	
2	
1	
2	
3	
4	
5	
2	
2	
3	

Now the dataset will be

Country	Age	Salary	Size	Purchased
France	44	72000	2	No
Spain	27	48000	1	Yes
Germany	30	54000	2	No
Spain	38	61000	3	No
Germany	40	63777.78	4	Yes
France	35	58000	5	Yes
Spain	38.778	52000	2	No
France	48	79000	2	Yes
Germany	50	83000	3	No
France	37	67000	1	Yes

Nominal Data

Ordinal Data

Let's move to the 'Country' column which contains Nominal Data

Country

France

Spain

Germany

Spain

Germany

France

Spain

France

Germany

France

The values in the column are France, Spain, Germany

We already saw that we can't assign 1, 2, 3.. To the values because the values in that column don't have any numerical significance.

So, we'll create three columns called isGermany, isFrance and isSpain.

Let's move to the 'Country' column which contains Nominal Data

isFrance	isSpain	isGermany
1	0	0
0	1	0
0	0	1
0	1	0
0	0	1
1	0	0
0	1	0
1	0	0
0	0	1
1	0	0

Finally, we remove the 'Country' column and then add the newly created 3 columns using one-hot encoding

isFrar	ice isSp	ain isGern	nany Age	Salary	Size	Purchased
1	0	0	44	72000	2	No
0	1	0	27	48000	1	Yes
0	0	1	30	54000	2	No
0	1	0	38	61000	3	No
0	0	1	40	63777.78	4	Yes
1	0	0	35	58000	5	Yes
0	1	0	38.778	52000	2	No
1	0	0	48	79000	2	Yes
0	0	1	50	83000	3	No
1	0	0	37	67000	1	Yes
	One-hot	encoded	•	outed Mean	Ordinal Encoding	