Balancing Scalability and Uniformity in SAT-Witness Generator

Supratik Chakraborty¹, **Kuldeep S Meel**², Moshe Y Vardi²

¹Indian Institute of Technology Bombay, India

²Department of Computer Science, Rice University

Simulation-Based Verification

Dominant paradigm in recent years

 Hardware design is simulated with test vectors

 Test vectors represent different verification scenarios

Constrained-Random Simulation

Sources for Constraints

- Designers:
 - 1. 100 < b < 200
 - 2. 300 < a < 451
 - 3. 40 < a < 50 and 30 < b < 40
- Past Experience:
 - 1. 400 < a < 2000
 - 2. 120 < b < 230
- Users:
 - 1. 1000<a < 1100
 - 2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b satisfying the above

Problem Formulation

Set of Constraints

SAT Formula

Given a SAT formula, can one uniformly sample solutions without enumerating all solutions while scaling to real

werd are biens of SAT-Witnes

Prior Work

BDD-based **Guarantees:**

strong

Performance:

weak

SAT-based heuristics Guarantees: no/weak

Performance:

strong

Theoretical Work

Guarantees: strong

Performance: weak

Heuristic Work Guarantees: weak

Performance: strong

ACADEMIA

INDUSTRY

BGP Algorithm

XORSample'

Our CAV'13 Work

BDD-based

Guarantees:

strong

Performance:

weak

UniWit

Guarantees:

good

Performance:

SAT-based heuristics

Guarantees:

no/weak

Performance:

strong

Theoretical Work good

Guarantees: strong

Performance: weak

Heuristic Work

Guarantees: weak

Performance: strong

ACADEMIA

INDUSTRY

BGP Algorithm

XORSample'

Our Contribution (DAC'14)

BDD-based

Guarantees:

strong

Performance:

weak

UniGen

Guarantees:

strong

Performance:

strong

SAT-based heuristics

Guarantees:

no/weak

Performance:

strong

Theoretical Work

Guarantees: strong

Performance: weak

Heuristic Work

Guarantees: weak

Performance: strong

ACADEMIA

INDUSTRY

BGP Algorithm

XORSample'

Partitioning into equal "small" cells

Partitioning into equal "small" cells

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

3-Universal Hashing [Carter-Wegman 1979, Sipser

Strong Theoretical Guarantees

Near-Uniformity

For every solution y of R_F 1/(6.84+ ϵ) x 1/ $|R_F|$ <= Pr [y is output] <= (6.84+ ϵ) / $|R_F|$ bability

UniGen succeeds with probability at least 0.52

- In practice, succ. probability > 0.9
- Polynomial number of calls to SAT Solver

Results: Uniformity

#Solutions

Benchmark: case110.cnf; #var: 287; #clauses:
 1263

2-3 Orders of Magnitude Faster

Benchmarks

Takeaways

- Uniform Generation had diverse applications
- Prior work either did not provide guarantees or did not scale.
- Proposed a new scalable approach based on hashing that provides strong guarantees
- Runs 2-3 orders of magnitude faster than prior state-of-art tools