

2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

conticomos sinos Soixe Ofer One (onic span (x, x2) is the convex cone (

Affine set

line through x_1 , x_2 : all points

 $x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

$$C = \sum_{i=1}^{n} Ax = \sum_{i=1}^{n} \frac{3}{2}$$

$$2C_{1} \in C_{2} \Rightarrow A \times_{1} = b$$

$$2C_{1} \in C_{2} \Rightarrow A \times_{2} = b$$

$$S = 6 \times (4(-0))$$

$$Ay = b$$
 2
$$Ay = b - 2$$

$$Ay = b - 3$$

$$Ay = 5$$

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Converc.

Non Convex

Non Convey.

Mon Convex

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \dots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull $\operatorname{conv} S$: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

 x_0

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex
 Not affine

$$C = \frac{3}{2} \times \left(\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \right)$$

$$x_{1} \in C \implies \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$

$$x_{2} \in C \implies \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$

$$x_{3} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{$$

Euclidean balls and ellipsoids

роч

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

2, and 2 are the cigen values of P

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Symmetric AT= A

cigen values are real

semidefinite.

positive 4x > $cTAx \ge 0$ ST

cigen values ≥ 0

Site definite Dosite definite Cigen velue

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

•
$$||x + y|| \le ||x|| + ||y||$$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \leq t\}$

Euclidean norm done is called secondorder cone

norm balls and cones are convex

2 - 8

Morn balls are convex ?. 2(1)2(2 C B(xc, r) => 11 2(1-xc, 11 4 r -- 1) $\frac{y}{y} = 0x_{1} + (1-u)x_{2} \quad 0 \in [0,1]$ $\frac{y}{y} = 0x_{1} + (1-u)x_{2} \quad 0 \in [0,1]$ $\frac{y}{y} = 0x_{1} + (1-u)x_{2} \quad 0 \in [0,1]$ $\frac{y}{y} = 0x_{1} + (1-u)x_{2} \quad 0 \in [0,1]$ $\frac{y}{y} = 0x_{1} + (1-u)x_{2} \quad 0 \in [0,1]$ Esiangular ineq $\leq 1100(x_1-x_0)11+11(1-a)(x_0-x_0)1$ 40112(-7(c[]-1 (1-0) []x2-x(c]) howegenty. 119-2 M = 7/ 280+8-80

Norm Cohe Convex 2 -64 (x,+i) & B => 1/2(1/4) $B = \{(x,t) \mid (x) \leq t \}$ 2 (252, t2) EB => 11252 11 5 t2 $(x, t)' = o(x, t_1) + (1-o)(x_1, t_2)$ of (0) = (0.2(1+(1-0.)2(2)+0+(1-0.)+2) 2(1.0.)2(2)+0+(1-0.)+211 > (1) 11 71 7 $= || (0 \times 1 + (1 - 0) \times 2 ||$ = 11 0 x (11 + 11(1-0) 25_11 (triang. ineq.) 50 11 x, 11 + (1-10) 11 x 11 (homogenity) < 0 = 1 + (1-0-) = 2.

Polyhedra =
$$\{x \mid Ax \leq b \mid Cx = d\}$$

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$
Component wise inequality

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

X <u><</u> Y

notation:

notation:

Solve Sign is set of symmetric
$$n \times n$$
 matrices $A^T = A$
 $Y - X \ge 0$
 $Y - X \in S^n$

$$\Rightarrow Y - X \ge 0$$

$$Y - X \in S_{1}^{n}$$

•
$$\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$$
: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

$$\mathbf{S}^n_+$$
 is a convex cone

$$\mathbf{S}^n_+ \text{ is a convex cone}$$

$$\mathbf{S}^n_{++} = \{X \in \mathbf{S}^n \mid X \succ 0\} \text{: positive definite } n \times n \text{ matrices}$$

example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}^2_+$$

set et et symmetric matrice (Sn) X, X, E Sn, $\frac{1}{2} = 0 \times (1 - \alpha) \times 2 = 0 \in [0, 1]$ $Y' = o \times T + (I - ce) \times T$ $\left[x, x_2 \right] = 3$ x_2 x_4 x_5 . \rightarrow x_5 $=0\times_1+(1-\alpha)\times_2,$ (X2.) X5 26 -> 1 Y1= Y (3) x_3 (not x_2) 3+2+1. N+ (n-1)+(n-2)----1 5 n is a vector space with => n(n+1) dimension (n+1)

positive semidéfinite noutric -> Conver Cone. $S_n^+ = \{ X \in S^n \mid X \geq 0, \}$ $X_1, X_2 \in S_n^{\dagger} \Rightarrow \overline{Z}X_1 = 0$ $\overline{Z}^T X_2 = 0$ $QX_1 + QX_2$ $Q_1, Q_2 \geq 0$ $2 = 0, 2^{T}x, 2 + 0, 2^{T}x, 2$ 20 = 20 = 20 20 = 20 $2^{T}(0, X_{1} + 0_{2} X_{2}) 2$ ESM

Plotfing St in MATLAB

close all x=0:0.01:3; z=0:0.01:3;

[x_axis z_axis]=meshgrid(x,z); y=sqrt(x_axis.*z_axis); surf(x_axis, z_axis, y) hold on surf(x_axis, z_axis, -y) xlabel('x axis') ylabel('z axis') zlabel('y axis')

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

intersection preserve convexity. (prove).

Intersection

P(t) = at x

the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

 $X = \begin{bmatrix} x & 2 \\ z & y \end{bmatrix}$

Example 2.7 The positive semidefinite cone \mathbf{S}_{+}^{n} can be expressed as

$$\bigcap_{z\neq 0} \{ X \in \mathbf{S}^n \mid \underline{z^T X z \ge 0} \}.$$

For each $z \neq 0$, $z^T X z$ is a (not identically zero) linear function of X, so the sets

$$\{X \in \mathbf{S}^n \mid z^T X z \ge 0\}$$

are, in fact, halfspaces in S^n . Thus the positive semidefinite cone is the intersection of an infinite number of halfspaces, and so is convex.

Incar function
$$f(x) = f(x)$$

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex $\implies f(S) = \{f(x) \mid x \in S\}$ convex

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Hyperbolic Core 3 { 2 | 2 P2C = (cTx) } cTx >0 PESNZ Processing and order cone $C = \frac{2}{2}(z,t)|z^{7}z \leq t^{2}, t > 03$ $f(x) = (p^{\vee_2} x, c^{-1}x)$ Hyperbolic Cave. $f'(c) = \{ x \in R^{M} | (P^{1/2}x)^{T}(P^{1/2}x) \leq (c^{T}x)^{2}, c^{T}x > 0 \}$ Conclusion ? Hyperbolic cone is the inverse image of a 2nd order cove under affine napping fox

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(\underline{x},t) = \frac{x/t}{2^{n+1}} \quad \text{dom } P = \{(x,t) \mid t > 0\}$$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $dom f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

take the convex combination of these 2 points

$$y_3 = (0 \times 1 + (1-0) \times 2) \cdot 6t(+(1-0) t_2)$$
; $0 \in [0, 1]$.

Since S is convex $y_3 \in S$

Now

$$f(y_1) = \underbrace{x_1}_{t_1} \in f(S)$$

$$f(y_2) = \underbrace{x_2}_{t_2} \in f(S)$$

We have to check whether for $x \in [0, 1]$

$$x = \underbrace{x_1}_{t_2} + \underbrace{x_2}_{t_2} \in f(S)$$

$$x = \underbrace{x_2}_{t_1} + \underbrace{x_2}_{t_2} + \underbrace{x_2}_{t_2} = \underbrace{x_2}_{t_2} + \underbrace{x_2}_{t_2} = \underbrace{x_2}_{t$$

(i) holds when $O = \frac{x+2}{(1-\alpha)t_1+\alpha t_2}$ (verify) Motes Since & E[O, I], O E [O, I] in (2) Linear fractional function. - pespective transform f(x) = A x + bof an affine function $C^T x + M$ Affine function $= \text{perspective}\left(\frac{A}{A}\right) \times + \left(\frac{b}{b}\right)$ $= \frac{A}{A} \times + \frac{b}{b} \times + \frac{B}{A} \times +$

Linear fraction function preseues convexity (convex set Affine function Convex Set Perspective functions (convex set)

$$\mathbb{Z}^2$$

example of a linear-fractional function

I.

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Axto

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

2<3 ×≤9 ×≤7

- *K* is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

ullet componentwise inequality $(K={\bf R}^n_+)$

$$x \leq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K **properties:** many properties of \leq_K are similar to \leq on **R**, e.g.,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

Read proporties of Gen. Inequ from text book, 2-17

$$x = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \quad y = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

$$x - y = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \quad \downarrow \quad \mathbb{R}^{\frac{1}{2}}$$

Generalized inequality is not a linear order 1 < 3 < 7 $\frac{\chi}{\chi} = \frac{1}{2}$ 2 = (1) 9 - (2) 2-7-[-] J XX X False S This can happen. $Y \leq X$ $Q^{N} \rightarrow \mathbb{R}^{3}$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example
$$(K = \mathbf{R}_+^2)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Not Vnique Minimal oc is a nimmal element of S, iff oc-K. x, s a niminal element. 12= 12+ fuisa point.

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

need not be convex

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

$$\bullet \ K = \mathbf{R}^n_+ \colon K^* = \mathbf{R}^n_+$$

•
$$K = \mathbf{S}_{+}^{n}$$
: $K^{*} = \mathbf{S}_{+}^{n}$

•
$$K = \{(x,t) \mid ||x||_2 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_2 \le t\}$

•
$$K = \{(x,t) \mid ||x||_1 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are **self-dual** cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \geq 0 \text{ for all } x \succeq_K 0$$

Dual cone of St is St 25 Proof: (1) $/ \notin S_{+}^{n} \Rightarrow / \notin (S_{+}^{n})^{*}$ (2) $/ \in S_{+}^{n} \Rightarrow / \in (S_{+}^{n})^{*}$ tr(XTY)... x(:) y(:) O Assume $7 \notin 5^{1} \Rightarrow$ there exists 2ER such that 272 = 0 tr(2742) 50 Lr (22Ty) <0 (cyclic property we know that $X = 22^T \in S_t^n$ of trace) $tr(X^TY) \leq 0$ \Rightarrow $\neq (S_{\tau}^{\eta})^*$

(2) Assume $Y \in S_{+}^{n}$ jolues

Let $X \in S_{+}^{n}$ reigen vector $X = \sum_{i=1}^{N} g_{i} g_{i}^{n}$ (eigen value decomposition) $tr(YX) = tr(Y \geq \lambda_i 2_i 2_i^T)$ (Since XEST) = 2 A? tx (22 Y 22) (cyclic property) (Since YES4) = \frac{\gamma_1}{2\cdot \gamma_2 \gamma_2 \gamma_2 \gamma_2 \gamma_2 \quad \q \Rightarrow $\forall \in (S_{\tau}^{\eta})^{*}$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \preceq_K

ullet if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

optimal production frontier

Shi Prind

- ullet different production methods use different amounts of resources $x \in \mathbf{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

