EDUC/PSY 6600 Formula Sheet

Comparing Means

		Confidence Intervals			Hypothe			
Situation		Estimate	C.V.	$SE_{estimate}$	Hypothesis	Test-statistic (df)	Notes	
X = measurement in sample $\mu = POPULATION MEAN$	1 SAMPLE	$ar{x}$ Sample mean	± z*	$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	$H_0: \mu_x = \mu_0$ $H_a: \mu_x [\neq > <] \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	Use if you know the population SD or when sample is very large	
			±t*	$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$		$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ $df = n - 1$	Use with a small sample or using the sample's SD instead of the population's $d={\bar X}/{SE_{\bar X}}$	
	MATCHED PAIRS $(n = \# \ of \ pairs)$	$D = x_1 - x_2$	±t*	$SE_{\overline{D}} = \frac{s_D}{\sqrt{n}}$	$H_0: \mu_D = \mu_0$ $H_a: \mu_D[\neq > <] \mu_0$	$t = \frac{\overline{D} - \mu_0}{s_D / \sqrt{n}}$ $df = n - 1$	"Direct-Differences Method" First must subtract all pairs to create a new variable D and then find s_D which is the SD of D's	
		$\overline{D} = \overline{x_1} - \overline{x_2}$	± t*	$SE_{\bar{D}} = \sqrt{\frac{s_1^2 + s_2^2}{n} - \frac{2rs_1s_2}{n}}$	or $H_0: \mu_1 - \mu_2 = 0$ $H_a: \mu_1 - \mu_2 [\neq > <] 0$	$t = \frac{\overline{D} - \mu_0}{\sqrt{\frac{s_1^2 + s_2^2}{n} - \frac{2rs_1s_2}{n}}}$ $df = n - 1$	"Correlation Method" Instead of subtracting all pairs, find each variables' M & SD, as well as the r between the variables in the sample	
	2 INDEPENDENT SAMPLES (not paired)	$\overline{D} = \overline{x_1} - \overline{x_2}$ Difference in 2 sample means	± z*	$SE_{\bar{D}} = \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$	$H_0: \mu_1 - \mu_2 = 0$ $H_a: \mu_1 - \mu_2 [\neq > <] 0$	$z = \frac{\overline{D}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Know both populations SD or when samples are large	
			± t*	$SE_{\bar{D}} = \sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$		$t = \frac{\overline{D}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ $\min(n's) - 1 < df_{SV}$ $< n_1 + n_2 - 2$	"Separate Variances t-test" Use with equal n's –or- if violated HOV (var.equal = FALSE). Also use with equal n's if the larger sample as the smaller SD $d=\overline{^{D}}/_{SE_{\overline{D}}}$	
				$SE_{\overline{D}} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ $s_p^2 \xrightarrow{n_1 = n_2} \frac{s_1^2 + s_2^2}{2}$	$t = \frac{\overline{D}}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $df_{pooled} = n_1 + n_2 - 2$	"Pooled Variance t-test" Assumes the populations have equal SD's (test HOV w/Levene's Test, var.equal = TRUE). Also use then the n's are not equal and the larger sample has the larger SD $d=\overline{^D}/_{S_p}$	

Effect Size

$$\delta = \text{"expected t or z"} \quad (\textbf{population parameters})$$

$$1 \text{ group: } \delta = \frac{\mu}{\sigma} \sqrt{n} \quad \stackrel{d = \frac{\mu}{\sigma}}{\longrightarrow} \quad \delta = d\sqrt{n}$$

$$2 \text{ groups: } \delta \stackrel{n_1 = n_2}{\Longrightarrow} \frac{\mu_1 - \mu_2}{\sigma} \sqrt{\frac{n}{2}} \quad \stackrel{d = \frac{\mu_1 - \mu_2}{\sigma}}{\longrightarrow} \quad \delta = d\sqrt{\frac{n}{2}}$$

$$\delta = d\sqrt{\frac{n}{2}}$$

Pearson's Correlation:
$$r = \frac{\sum_{i=1}^{N} z_x z_y}{N}$$

Post Hoc Test (after ANOVA)

Pairwise Linear Contrast
$$t_{pair} = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{\frac{2MS_w}{n}}} \qquad L = \sum c_i \bar{x}_i \xrightarrow{0 = \sum c_i} SS_{con} = \frac{nL^2}{\sum c_i^2} \rightarrow F_{con(1,df_w)} = \frac{SS_{con}}{MS_w}$$
 Fisher's LSD Scheffe's F, 1-way
$$LSD = t_{CV} \sqrt{\frac{2MS_w}{n}} \qquad F_S = (k-1)F_{cv}(k-1,n_T-k)$$
 Tukey's HSD Scheffe's F, 2-way
$$F_S = df_{int} F_{cv}(df_{int}, df_w)$$

One-Way ANOVA

Source	SS	df	MS	F	p
Between-Groups $(k = \# groups)$	$df_{BetGrp}MS_{BetGrp}$	k-1	$n\frac{\sum_{i=1}^k (\bar{x}_i - \bar{x}_G)^2}{k-1}$	$\frac{MS_{BetGrp}}{MS_{WithGrp}}$	
Within-Groups (Residual or Error)	$df_{WithGrp}MS_{WithGrp}$	$n_T - k$	$\frac{\sum_{i=1}^{k} s_i^2}{k}$	ordinary $\eta^2 =$ modified $\eta^2 =$	$n^{2}(1-1)$
Total	$SS_{BetGrp} + SS_{WithGrp}$	$n_T - 1$		$est. \varpi^2 = \frac{SS_{BetGrp}}{SS_{tot}}$	$\frac{-(k-1)MS_w}{t_{sl}+MS_w}$

Two-Way ANOVA

Source		SS	df	MS	F	p	
	ween-Cells ow, Cell, & Interaction)	$n_T \frac{\sum_{i=1}^r \sum_{j=1}^c (\overline{x}_{ij} - \overline{x}_G)^2}{rc}$	rc – 1	$SS_{total} = SS_{BetRow}$	$SS_{total} = SS_{BetRow} + SS_{BetCol} + SS_{Inter} + SS_{error}$		
	Row Groups $(r = \# rows)$		r-1	$n_r \frac{\sum_{i=1}^r (\bar{x}_i - \bar{x}_G)^2}{r - 1}$	$\frac{MS_{BetRow}}{MS_{WithCell}}$		
	Column Groups $(c = \# columns)$	– – 1	c – 1	$n_c \frac{\sum_{j=1}^{c} \left(\bar{x}_j - \bar{x}_G\right)^2}{c - 1}$	$\frac{MS_{BetCol}}{MS_{WithCell}}$		
	INTER (Row x Col)	$SS_{BetCells} \ -SS_{BetRow} \ -SS_{BetCol}$	(r-1)(c-1)	$\frac{SS_{Inter}}{df_{inter}}$	$\frac{MS_{Inter}}{MS_{WithCell}}$		
Within-Cells (Residual or Error)		$df_{WithCell}MS_{WithCell}$	$n_T - rc$	$\frac{\sum_{i=1}^{r} \sum_{j=1}^{c} s_{ij}^2}{rc}$	$ordinary \eta^2 = rac{SS_{Effect}}{SS_{total}}$ $partial \eta^2 = rac{SS_{Effect}}{SS_{Effect} + SS_{effect}}$		
Total		$SS_{BetCell} + SS_{WithCell}$	n_T-1				
						$\frac{-\left(df_{Effect}\right)MS_{w}}{_{otal}+MS_{w}}$	

1-way Independent ANOVA

of groups = k

1-way Repeated Measures ANOVA

of repeated measures per subject = c

TOTAL

 SS_T

 $n_T \cdot \sigma^2 \binom{all}{values}$

TOTAL

 SS_{T}

 $n_T \cdot \sigma^2 \binom{all}{values}$

BETWEEN GROUP

SS_{BG}

 $n_T \cdot \sigma^2 \begin{pmatrix} group \\ means \end{pmatrix}$

k - 1

WITHIN GROUPS

SSwg

n_T -k

BETWEEN SUBJECTS

 SS_{Sub}

 $n_T \cdot \sigma^2 \binom{subject}{means}$

n - 1

WITHIN SUBJECT

 SS_{w-Sub}

(w-group ≠ w-sub)

MS_{BG}

$$n\frac{\sum_{i=1}^{k}(\bar{X}_i - \bar{X}_{iG})^2}{k-1}$$

 $F_{group} = \frac{MS_B}{MS_{WG}}$

MSwg

$$\frac{\sum_{i=1}^k {s_i}^2}{k}$$

 $SS_W = SS_{Sub} + SS_{Inter}$

df

 $\frac{\text{Notes}}{\text{MS} = \text{SS/df}}$ SS & df add up, but not MS

BETWEEN RM

SS_{RM}

 $n_T \cdot \sigma^2 \binom{RM}{means}$

C - 1

MS_{RM}

$$n\frac{\sum_{i=1}^{c}(\bar{X}_i - \bar{X}_{iG})^2}{k-1}$$

INTERACTION

SS_{Inter}

(Subject x RM)

(n-1)(c-1)

 $F_{RM} = \frac{MS_{RM}}{MS_{Inter}}$

ANOVA: df trees

