1 Monads and Comonads

1.1 Definition of Monads and Comonads

A central notion in algebra is that of a *monoid*, that is, a set M equipped with a map $\mu \colon M \times M \to M$; $(a,b) \mapsto a \cdot b$ (often called *multiplication*) and an element $e \in M$ such that the following two axioms hold:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 for all $a, b, c \in M$. (associativity)
 $e \cdot a = a \cdot e = a$ for all $a \in M$ (identity element)

We can give an equivalent definition in terms of maps and commuting diagrams as follows: A monoid is a set M together with two functions

$$\mu: M \times M \to M, \quad e: \{*\} \to M$$

such that the following diagrams commute:

where id is the identity on m, and l and r are the canonical bijections

$$l: \{*\} \times M \to M; \ l(*, m) = m$$
$$r: M \times \{*\} \to M; \ r(m, *) = m.$$

Explicitly, the first diagram means that for all $a, b, c \in M$:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 for all $a, b, c \in M$.

which is verbatim the associativity axiom, the second diagram means that for all $m \in M$:

$$e(*) \cdot m = l(*, m) = m = r(m, *) = m \cdot e(*)$$

which is clearly the identity element axiom for the element e(*). This motivates the following definition:

Definition 1.1 (Monad). A *Monad* (T, μ, η) in a category X consists of

monoid/monad/ monoid object

- an endofunctor $T: X \to X$
- a natural transformation η : $id_X \Rightarrow T$
- a natural transformation $\mu \colon T^2 \Rightarrow T$

such that the following diagrams commute:

In terms of components, this means that for every object x of X the following diagrams commute:

$$T(T(Tx)) \xrightarrow{T(\mu_x)} T(Tx) \qquad Tx \xrightarrow{\eta_{Tx}} T(Tx) \xleftarrow{T(\eta_x)} Tx$$

$$\downarrow^{\mu_T} \qquad \downarrow^{\mu_x} \qquad \downarrow^{$$

Example 1 (preorder). Recall: A *preorder* (\mathcal{P}, \leq) is a category with \mathcal{P} as objects and a morphism between X and Y iff $X \leq Y$. A functor $T \colon \mathcal{P} \to \mathcal{P}$ is thus a monotonic function $\mathcal{P} \to \mathcal{P}$ $(x \leq y \implies Tx \leq Ty)$. The existence of the natural transformations η is equivalent to

$$x < Tx \ \forall x \in \mathcal{P}$$

and the existence of μ is equivalent to

$$T(Tx) \le Tx \ \forall x \in \mathcal{P}$$

because there is at most one morphism $x \to y$, so the neccessary diagrams commute trivially. Now suppose $\mathcal P$ is a *partial order*, i.e. $x \le y \le x \implies x = y \ \forall x,y \in \mathcal P$. Then:

$$x \le Tx \implies Tx \le T(Tx)$$

 $T(Tx) \le Tx \implies Tx = T(Tx)$

so a Monad T in a partial order \mathcal{P} is a *closure operation* in \mathcal{P} , i.e. a monotonic function $T \colon \mathcal{P} \to \mathcal{P}$ with $x \leq Tx$ and $T(Tx) = Tx \ \forall x \in \mathcal{P}$.

Now every topological space X induces a partial order $\mathcal{P} = (\mathcal{P}(X), \subseteq)$. Here an example for a closure operation is taking the topological closure $A \mapsto \overline{A}$, since it holds for all $A \subseteq X$ that $A \subseteq \overline{A}$ and $\overline{\overline{A}} = \overline{A}$.

Definition 1.2 (Comonad). A *Comonad* (L, ε, ω) in a Category \mathcal{A} consists of

- an endofunctor $L \colon \mathcal{A} \to \mathcal{A}$
- a natural transformation $\varepsilon \colon L \Rightarrow \mathrm{id}_{\mathcal{A}}$
- a natural transformation $\omega \colon L \Rightarrow L^2$

such that the following diagrams commute:

$$L \xrightarrow{L\omega} L^{2} \qquad \qquad L$$

$$\omega L \downarrow \qquad \qquad \downarrow_{L\omega} \qquad \qquad \downarrow_{\omega} \downarrow_{\omega} \qquad \downarrow_{\omega} \downarrow$$

In terms of components, this means that for every object x of $\mathcal A$ the following diagrams commute:

$$Lx \xrightarrow{L(\omega_{x})} L(Lx) \qquad Lx$$

$$\omega_{Lx} \downarrow \qquad \qquad \downarrow_{L(\omega_{x})} \qquad \downarrow_{L(\omega_{x})} \qquad \downarrow_{\omega_{x}} \qquad \downarrow_{\omega_$$

Lemma 1.3 For every object x in X, the following diagram commutes:

$$T(Tx) \xrightarrow{T(\delta_x)} T(T'x)$$

$$\downarrow \delta_{Tx} \qquad \qquad \downarrow \delta_{T'x}$$

$$T(T'x) \xrightarrow{T'(\delta_x)} T'(T'x)$$

this means

$$\delta T' \circ T\delta = T'\delta \circ \delta T \colon T^2 \Longrightarrow (T')^2.$$

PROOF: $\delta: T \Rightarrow T'$ is natural.

Definition 1.4 (Morphism of monads). Let X be a category, let (T, η, μ) and (T', η', μ') be monads in X. We say that a natural transformation $\delta \colon T \Rightarrow T'$ is a *morphism of monads* if it preserves the unit and the multiplication, i.e. the following diagrams commute:

$$\operatorname{id}_{x} \xrightarrow{\eta_{x}} Tx \\ \downarrow \delta_{x} \\ T'x$$

$$T^{2}x \xrightarrow{\mu_{x}} Tx$$

$$\delta T' \circ T \delta \downarrow \qquad \qquad \downarrow \delta_{x}$$

$$T'^{2}x \xrightarrow{\mu'_{x}} T'x$$

Definition 1.5 (Morphism of comonads).

show that the other composition is the same(siehe iPad)

definition