Taking the context into account : New voting frameworks

Pôle 1 Meeting in Deauville

Théo Delemazure

Paris Dauphine University, PSL Supervisors : Jérôme Lang and Dominik Peters

November 30th, 2021

Outline

- Ranked Delegations for Liquid Democracy
 - With Ulrike Schmidt-Kraepelin, Markus Brill, Martin Lackner, Anne-Marie George
 - Submitted (Accepted?) at AAAI 2022
- Approval With Runoff
 - With Jérôme Lang, Remzi Sanver, Jean-François Laslier

Summary

Ranked Delegations for Liquid Democracy

2 Approval With Runoff

Liquid Democracy Framework

The issue with Liquid Democracy

The solution: ranked delegations

How to assign representatives?

Which delegation sequence to choose between (2) and (1,1,1,1)?

The delegation rules

Which delegation sequence to choose between
$$s_1 = (2)$$
 and $s_2 = (1, 1, 1, 1)$?

Here are some examples of such delegation rules :

- Breadth-First-Delegation : Select the shortest sequence (lexicographic tie-breaking)
- Depth-First-Delegation : Select the best sequence according to the lexicographic order
- Min-Sum : Select the sequence of minimal sum (lexicographic tie-breaking)
- Diffusion : Algorithmic rule
- LexiRank : s_1 is preferred to s_2 if $\sigma(s_1)$ is better than $\sigma(s_2)$ according to lexicographic order, where σ sort the sequence in decreasing order

Our results

- Axiomatic analysis of the voting rules with nice characterizations and several impossibility theorems.
- Experimental analysis of the voting rules which highlight a trade-off between power concentration and voter satisfaction

Summary

1 Ranked Delegations for Liquid Democracy

2 Approval With Runoff

People are not ready for a radical change

	9				9			9	@	
v_1	✓									
v_2		-	~				v_1	<u> </u>		
v_3				/		\Rightarrow	v_2			=
v_4	/						v_3		<u> </u>	
v_5							v_5		<u> </u>	

People are not ready for a radical change

People are not ready for a radical change

People are not ready for a radical change

First round: let's replace plurality votes by approval ballots

People are not ready for a radical change

People are not ready for a radical change

How to select the two finalists?

A first possibility:

Definition (Approval Voting)

The two finalists are the two candidates with the highest approvals

$$\frac{50 \quad \text{a}}{25 \quad \text{ab}}$$

$$\frac{40 \quad \text{bcd}}{20 \quad \text{c}}$$

$$\frac{20 \quad \text{c}}{5 \quad \text{abc}}$$

$$\Rightarrow \frac{\begin{array}{c|c} \text{a} & 80 \\ \hline \text{b} & 70 \\ \hline \text{c} & 65 \\ \hline \text{d} & 40 \\ \end{array}}{\Rightarrow \{a, b\}}$$

⇒ What is the point of doing a runoff if we use the same criterion for

How to select the two finalists?

A first possibility:

Definition (Approval Voting)

The two finalists are the two candidates with the highest approvals

$$\frac{50 \quad \text{a}}{25 \quad \text{ab}}$$

$$\frac{40 \quad \text{bcd}}{20 \quad \text{c}}$$

$$\frac{20 \quad \text{c}}{5 \quad \text{abc}}$$

$$\Rightarrow \frac{\begin{array}{c|c} \text{a} & 80 \\ \hline \text{b} & 70 \\ \hline \text{c} & 65 \\ \hline \text{d} & 40 \\ \end{array}}{\Rightarrow \{a, b\}}$$

⇒ What is the point of doing a runoff if we use the same criterion for both finalists?

How to select the two finalists?

A first possibility:

Definition (Approval Voting)

The two finalists are the two candidates with the highest approvals

$$\frac{50 \quad \text{a'a}}{25 \quad \text{a'ab}}$$

$$\frac{40 \quad \text{bcd}}{20 \quad \text{c}}$$

$$\frac{20 \quad \text{c}}{5 \quad \text{a'abc}}$$

$$\Rightarrow \frac{\text{a'a} \quad 80}{\text{b} \quad 70}$$

$$\frac{\text{c} \quad 65}{\text{d} \quad 40}$$

$$\Rightarrow \{a, a'b\}$$

⇒ What is the point of doing a runoff if we use the same criterion for both finalists?

A spectrum of rules

The first finalist is the one with highest approvals and...

Definition (Approval Voting)

...the second finalist is the one with the second highest approvals

$$\frac{10 \quad \text{a}}{20 \quad \text{abc}}$$

$$\frac{30 \quad \text{ab}}{20 \quad \text{cd}}$$

$$\frac{20 \quad \text{cd}}{5 \quad \text{d}}$$

$$\Rightarrow \frac{\begin{vmatrix} \text{a} & 60 \\ \text{b} & 50 \\ \hline \text{c} & 40 \\ \hline \text{d} & 25 \end{vmatrix}}$$

$$\Rightarrow \{a, b\}$$

A spectrum of rules

The first finalist is the one with highest approvals and...

Definition (Proportional Approval Voting)

...the second finalist is the one with highest approval if the weight of voter already satisfied is $1/2\,$

$$\frac{10 \quad \text{a} \quad 10 \times 1/2 = 5}{20 \quad \text{abc} \quad 20 \times 1/2 = 10} \Rightarrow \frac{1}{20 \quad \text{ab} \quad 30 \times 1/2 = 15} \Rightarrow \frac{1}{20 \quad \text{cd} \quad 20 \times 1 = 20} \Rightarrow \frac{1}{20 \quad \text{cd} \quad 25 \quad 25} \Rightarrow \{a, c\}$$

A spectrum of rules

The first finalist is the one with highest approvals and...

Definition (Chamberlain-Courant Approval Voting)

...the second finalist is the one with highest approval if the weight of voter already satisfied is $\boldsymbol{0}$

$$\frac{10 \quad \text{a} \quad 10 \times 0 = 0}{20 \quad \text{abc} \quad 20 \times 0 = 0} \Rightarrow \frac{10 \quad \text{a} \quad 60}{20 \quad \text{ab} \quad 30 \times 0 = 0} \Rightarrow \frac{10 \quad \text{a} \quad 60}{20 \quad \text{cd} \quad 20 \times 1 = 20} \Rightarrow \frac{10 \quad \text{a} \quad 60}{20 \quad \text{c} \quad 40 \quad 20} \Rightarrow \{a, d\}$$

Axiomatic analysis

	AV^R	$sPAV^R$	$sCCAV^R$	$TRIV^R$
Pareto-efficient	✓	~	~	
Monotonic	~			~
W/S Strategy-proof				✓
Weakly Clone-proof			✓	

Characterization of AV

- Several impossibilities
 - Efficient + Strategy-proof
 - Symmetry + (Weakly) Clone-proof + Monotonic
 - (Strongly) Clone-proof + Efficient

Axiomatic analysis

	AV^R	$sPAV^R$	$sCCAV^R$	$oxed{TRIV^R}$
Pareto-efficient	~		~	
Monotonic	/			~
W/S Strategy-proof				✓
Weakly Clone-proof			✓	

- Characterization of AV
- Several impossibilities :
 - Efficient + Strategy-proof
 - Symmetry + (Weakly) Clone-proof + Monotonic
 - (Strongly) Clone-proof + Efficient

Experiments on real data

City	Respondents
Strasbourg	1055
HSC	701
Grenoble	1048
Crolles-1	1291
Crolles-2	1269

Table – Datasets with approval ballots

Experiments on real data

Table – Selected finalists with different approval with runoff rules (Grenoble dataset)

Other projects

- Proportional rankings and bidimensional apportionment : The case of French regional elections (with Jérôme)
- The tradeoff between proportionality and strategyproofness in Multi-winner approval voting (with Jonas Israel, Patrick Lederer and Tom Demeulemeester)
- What metric distorsion has to say about irrelevant alternatives
- Algorithms aggregation using the Nash product (with François Durand and Fabien Mathieu)

Thanks

Thanks for listening!

