Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 18

Виконав	студент	Король Валентин Олегович
(шифр,	прізвище, ім'я, п	ю батькові)
Перевірив	3	
		(прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

18. Знайти суму
$$n$$
 членів послідовності $a_n = \frac{a_{n-1}^2}{a_{n-1} + 3}$, якщо $a_1 = 2$.

Варіант 18 Постановка задачі

Результатом є виведення суми S членів ряду

Побудова математичної моделі

Складемо таблицю імен змінних та функцій

	± •		
Змінна	Тип	Ім'я	Призначення
Кількість членів послідовності	Натуральний	n	Початкове дане
Лічильник циклу обчислення ряду	Натуральний	i	Проміжні дані
Арифметичний параметр 2	Натуральний	k	Проміжні дані
Факторіал числа	Натуральний	F	Проміжні дані
Сума п членів ряду	Дійсний	S	Результат

Для знаходження степеня будемо користуватися функцією ром

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення першого арифметичного циклу

Крок 3. Деталізуємо дію обчислення другого арифметичного циклу

Псевдокод

Крок 1

початок

Введення п

Знаходження суми ряду

Виведення S

кінець

Крок 2

початок

Введення п

для і від 1 до п повторити

$$a = pow(a,2) / (a + 3)$$

 $S := S + a$

все повторити

Виведення S

кінець

Блок-схема

Тестування

Блок	Дія
1	Введення n = 2
2	Перша ітерація першого
	циклу
3	Перша ітерація другого циклу
4	a = 2
5	S = 2
6	Друга ітерація першого
	циклу
7	Перша ітерація другого циклу
8	F = 0.8
9	Друга ітерація другого
	циклу
11	S = 2.8
12	Виведення: 2.8

Висновки

Я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Побудував мат. модель, псевдокод та блок схему. Протестував алгоритм.