PDF 7.070 Cross Product (aka the Vector Product)

If you are given two non-zero vectors in \mathbb{R}^2 , it is not necessarily possible to find a vector perpendicular to both of the given vectors.

For example, consider the two vectors at the right.

However, it is a different story in R^3 ...

If you are given any two non-zero vectors in \mathbb{R}^3 , it is possible to find a third vector perpendicular to both of the given vectors. One way of doing this is called the cross-product.

The reason that it is always possible in \mathbb{R}^3 is because you have a third dimension. (Think of the perpendicular vector as coming out of the page, or going into the page). Perhaps it's helpful to think of the x and y and z axes. That third dimension provides us with an opportunity to find a vector perpendicular to each of the given vectors.

Cross Product of Two Vectors in R³

To determine a vector perpendicular to each of two different vectors in \mathbb{R}^3 , we use the cross product.

Suppose
$$\vec{a} = \overrightarrow{(a_1, a_2, a_3)}$$
 and $\vec{b} = \overrightarrow{(b_1, b_2, b_3)}$.

If we let $\vec{v} = \overline{(a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)}$, then we can say that \vec{v} is the cross product of \vec{a} and \vec{b} , and we can write this as

$$\vec{v} = \vec{a} \times \vec{b}$$

$$\vec{a} \times \vec{b} = \overline{(a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)}$$

Example 1

Show that \vec{v} (from the formula above) is perpendicular to both \vec{a} and \vec{b} .

^{*} We develop the cross product formula in the powerpoint

Example 2

Given that $\vec{p} = (-1,3,2)$ and that $\vec{q} = (2,-5,6)$, determine $\vec{p} \times \vec{q}$ and $\vec{q} \times \vec{p}$. Then determine that each of them is perpendicular to each of \vec{p} and \vec{q} .