I. CONVERGENCE ANALYSIS

Before analyzing the convergence of the proposed FedWA mechanism, we first introduce the following assumptions (similar assumptions can be seen in [1]–[4]).

Definition 1 (*L-Lipschitz smoothness*) $F_i(\mathbf{w})$ is *L-Lipschitz smoothness for each of the participating nodes* $i \in \mathcal{S}_t$, i.e., $\|\nabla F_i(\mathbf{w}) - \nabla F_i(\mathbf{w}')\| \le L \|\mathbf{w} - \mathbf{w}'\|$ for any two parameter vectors \mathbf{w} , \mathbf{w}' .

Definition 2 The sequence of iterations $F(\mathbf{w}_t)$ is contained in an open set over which F is bounded below by a scalar F^* .

Definition 3 The stochastic gradient $\nabla F(\mathbf{w}; \xi)$ computed from random samples ξ is an unbiased estimator of the true gradient for the parameter \mathbf{w} , i.e.,

$$\mathbb{E}_{\xi}[\nabla F(\mathbf{w}; \xi)] = \nabla F(\mathbf{w}) \tag{1}$$

Definition 4 (Non-IID data) Let ξ_t^i be the sample that is randomly sampled from the client i's local data in t-th communication round. The variant of stochastic gradient in each client is bounded,

$$\mathbb{E} \left\| \nabla F_i \left(\mathbf{w}_t^i; \xi_t^i \right) - \nabla F_i \left(\mathbf{w}_t^i \right) \right\|_2^2 \le \sigma_i^2 \tag{2}$$

for any t, i, where σ_i^2 is a constant, and $\sigma_i^2 > 0$.

Next, we derive an upper bound on the expected average squared gradient norms, which can be viewed as a metric to measure the convergence rate for non-convex objective. Suppose that E is the number of epochs of each client, φ_t^i denotes the aggregation weight assigned to client i in communication round t, I is the total number of clients, and m_i means the number of local updates in one communication round. According to Assumptions 1, 2, 3, and 4, we can get

Theorem 1 The expected average squared gradient norms of $F(\mathbf{w}_t)$ converges to a nonzero constant as $T \to \infty$ under a fixed learning rate.

Proof. Firstly, based on Assumption 1, we can get that $F(\mathbf{w})$ is L-Lipschitz smoothness. In addition, for any mini-batch \mathcal{B}^i , the variance of stochastic gradient decreases by a factor of $b_i = |\mathcal{B}^i|$, namely,

$$\mathbb{E} \left\| \nabla F_i \left(\mathbf{w}_t^i; \xi_{B_t^i} \right) - \nabla F_i \left(\mathbf{w}_t^i \right) \right\|_2^2 \le \frac{\sigma_i^2}{b_i}, \tag{3}$$

where B_t^i is the mini-batch sample sampled from the client i's local data in t-th communication round.

Suppose that our algorithm runs with a fixed learning rate $\eta_t = \eta$, which satisfies [5]

$$\sum_{i=1}^{I} \left[\frac{(m_i - 2)(m_i + 1)}{2} - \frac{1}{L^2 \eta^2} + \frac{\varphi_t^i m_i}{L \eta} \right] \le 0, \quad (4)$$

where $m_i = D_i E/b_i$, and $0 \le \varphi_t^i \le 1$.

Then, according to [5], the expected average squared gradient norms of F satisfies the following bound for all $T \in \mathbb{N}$,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \|\nabla F(\mathbf{w}_{t})\|_{2}^{2} \qquad (5)$$

$$\leq \frac{F(\mathbf{w}_{1}) - F^{*}}{T(G - A - C)} + \frac{L\eta^{2}}{2I(G - A - C)} \sum_{i=1}^{I} (\varphi_{t}^{i})^{2} \beta_{i} m_{i}$$

$$+ \frac{L^{2} \eta^{3}}{12I(G - A - C)} \sum_{i=1}^{I} \varphi_{t}^{i} \beta_{i} (m_{i} - 1) m_{i} (2m_{i} - 1),$$

where $\beta_i = \sigma_i^2/b_i$, $A = \frac{L^2\eta^3}{4I} \sum_{i=1}^I m_i \, (m_i-1)$, $G = \frac{\eta}{2I} \sum_{i=1}^I (m_i+1)$, and $C = \frac{L\eta^2}{2I} \sum_{i=1}^I m_i$. As φ_t^i is the aggregation weight assigned to client i in communication round t, and $0 \le \varphi_t^i \le 1$, it does not affect the convergence of the model. Therefore, we prove the Theorem. \square

REFERENCES

- X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, On the convergence of fedavg on non-iid data, in Proc. of ICLR, 2020.
- [2] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, Siam Review, vol. 60, no. 2, pp. 223–311, 2018.
- [3] H. Yu, S. Yang, and S. Zhu, Parallel restarted SGD with faster convergence and less communication: Demystifying why model averaging works for deep learning, in Proc. of AAAI, vol. 33, 2019, pp. 5693–5700.
- [4] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, Sparsified SGD with memory, in Proc. of NeurIPS, 2018, pp. 4447–4458.
- [5] J. Zhang et al., "Adaptive Federated Learning on Non-IID Data with Resource Constraint," in IEEE Transactions on Computers, doi: 10.1109/TC.2021.3099723.