FCC RF Test Report

APPLICANT : FIH International Co., Ltd.

EQUIPMENT: **GSM/WCDMA/LTE** Mobile Phone

BRAND NAME : Nokia MODEL NAME : TA-1047

FCC ID : 2AJOTTA-1047

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Oct. 26, 2017 and testing was completed on Dec. 04, 2017. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

James, Muang

TESTING

NVLAP LAB CODE 600155-0

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCCID: 2AJOTTA-1047 Page Number : 1 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

TABLE OF CONTENTS

1	GENERAL DESCRIPTION		
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TEST	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	12
3	TEST	T RESULT	13
	3.1	6dB Bandwidth Measurement	13
	3.2	Peak Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	35
4	LIST	OF MEASURING EQUIPMENT	36
5	UNC	ERTAINTY OF EVALUATION	37
ΑP	PEND	IX A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. RADIATED SPURIOUS EMISSION	
ΑP	PEND	OIX C. DUTY CYCLE PLOTS	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 2 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

REVISION HISTORY

Report No.: FR7O2602B

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR7O2602B	Rev. 01	Initial issue of report	Dec. 11, 2017

 Sporton International (Kunshan) Inc.
 Page Number
 : 3 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 13.96 dB at 947.62 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 17.41 dB at 0.175 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 4 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

1 General Description

1.1 Applicant

FIH International Co., Ltd.

No.18, Tongji zhonglu, Beijing Economic&Technological Development Area

1.2 Manufacturer

HMD Global Oy

Karaportti 2 02610 Espoo FINLAND

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment GSM/WCDMA/LTE Mobile Phone				
Brand Name	Nokia			
Model Name	TA-1047			
FCC ID	2AJOTTA-1047			
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/HSPA+/LTE WLAN 2.4GHz 802.11b/g/n HT20 Bluetooth v2.1+EDR/ Bluetooth v4.2 LE			
IMEI Code	Conducted: 004402970640060/004402970640078 Conduction: 004402970653220/004402970653238 Radiation: 004402970653444/004402970653451			
HW Version	HW0201			
SW Version	000C_0_14A			
EUT Stage	Identical Prototype			

Report No.: FR7O2602B

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	5.49 dBm (0.0035 W)			
Antenna Type / Gain	PIFA Antenna with gain 0.13 dBi			
Type of Modulation	Bluetooth LE : GFSK			

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0) and the FCC designation No. is CN5013.

Report No.: FR7O2602B

Test Site	Sporton International (Kunshan) Inc.			
Test Site Location	No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jian Province 215335 China TEL: +86-512-57900158 FAX: +86-512-57900958			
Test Site No.	Sporton Site No. TH01-KS CO01-KS		FCC Test Firm Registration No. 630927	

Note: The test site complies with ANSI C63.4 2014 requirement.

Sporton International (Shenzhen) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600156-0) and the FCC designation No. is CN5019

Test Site	Sporton International (Shenzhen) Inc.		
No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Walter Site Location Nanshan District Shenzhen City Guangdong Province 518055 China TEL: +86-755-3320-2398			
Took Cita No	Sporton Site No.	FCC Test Firm Registration No.	
Test Site No.	03CH04-SZ	577730	

Note: The test site complies with ANSI C63.4 2014 requirement.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 7 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

		Bluetooth LE RF Output Power				
Channel	Eroguenov	Data Rate / Modulation				
Chamilei	Frequency	GFSK				
		1Mbps				
Ch00	2402MHz	5.22 dBm				
Ch19	2440MHz	5.49 dBm				
Ch39	2480MHz	5.31 dBm				

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 8 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
rest item	Bluetooth LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
ics	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
AC	Made 1 :CSM950 Idle Diveteeth Link W/LAN Link/2 4C) Fernhane LISD Coble					
Conducted	Mode 1 :GSM850 Idle + Bluetooth Link + WLAN Link(2.4G) + Earphone + USB Cable					
Emission	(Charging from Adapter)					
Remark: For	Radiated TCs, The tests were performed with Adapter, Earphone and USB Cable.					

 Sporton International (Kunshan) Inc.
 Page Number
 : 9 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1047

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR7O2602B

2.3 Connection Diagram of Test System

<Bluetooth LE Tx Mode>

<AC Conducted Emission Mode>

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 10 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	BT Base Station	R&S	СВТ	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
4.	Notebook	Lenovo	G480	PRC4	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
5.	WLAN AP	LINKSYS	WRT600N	Q87-WRT600NV11	N/A	shielded cable DC O/P1.8m , Unshielded AC I/P1.8m
6.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 11 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.5 dB.

Offset(dB) = RF cable loss(dB). = 5.5 (dB)

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 12 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 13 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3.1.5 Test Result of 6dB Bandwidth

Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

Report No.: FR7O2602B

Date: 24.NOV.2017 18:56:45

6 dB Bandwidth Plot on Channel 19

Date: 24.NOV.2017 19:03:27

 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

6 dB Bandwidth Plot on Channel 39

Date: 24.NOV.2017 19:07:05

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 15 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR7O2602B

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v04 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

 Sporton International (Kunshan) Inc.
 Page Number
 : 16 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR7O2602B

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.
 558074 D01 DTS Meas. Guidance v04
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

 Sporton International (Kunshan) Inc.
 Page Number
 : 17 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 24.NOV.2017 18:57:23

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 18 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

PSD 100kHz Plot on Channel 19

Report No.: FR7O2602B

: 19 of 37

Date: 24.NOV.2017 19:04:05

PSD 100kHz Plot on Channel 39

Date: 24.NOV.2017 19:08:21

Sporton International (Kunshan) Inc. Page Number TEL: +86-512-57900158 Report Issued Date: Dec. 11, 2017

FAX: +86-512-57900958 Report Version : Rev. 01 FCC ID: 2AJOTTA-1047 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 24.NOV.2017 18:57:11

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 20 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

PSD 3kHz Plot on Channel 19

Report No.: FR7O2602B

Date: 24.NOV.2017 19:03:51

PSD 3kHz Plot on Channel 39

Date: 24.NOV.2017 19:07:49

 Sporton International (Kunshan) Inc.
 Page Number
 : 21 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

Report No.: FR7O2602B

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

 Sporton International (Kunshan) Inc.
 Page Number
 : 22 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

Report No.: FR7O2602B

Date: 24.NOV.2017 18:57:54

High Band Edge Plot on Channel 39

Date: 24.NOV.2017 19:08:31

 Sporton International (Kunshan) Inc.
 Page Number
 : 23 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Report No.: FR7O2602B

Date: 24.NOV.2017 18:59:23

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 24.NOV.2017 18:59:49

 Sporton International (Kunshan) Inc.
 Page Number
 : 24 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Report No.: FR7O2602B

Date: 24.NOV.2017 19:04:16

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 24.NOV.2017 19:04:36

 Sporton International (Kunshan) Inc.
 Page Number
 : 25 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Report No.: FR7O2602B

Date: 24.NOV.2017 19:10:25

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 24.NOV.2017 19:10:48

 Sporton International (Kunshan) Inc.
 Page Number
 : 26 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 27 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR7O2602B

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

 Sporton International (Kunshan) Inc.
 Page Number
 : 28 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 29 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCCID: 2AJOTTA-1047 Page Number : 30 of 37
Report Issued Date : Dec. 11, 2017

Report No.: FR7O2602B

Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR7O2602B

Frequency of emission (MHz)	Conducted limit (dBμV)		
Frequency of emission (MH2)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

 Sporton International (Kunshan) Inc.
 Page Number
 : 31 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.6.4 Test Setup

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 32 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3.6.5 Test Result of AC Conducted Emission

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 33 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

Test Mode :	Mode 1		Temperature	:	22 ~24	$^{\circ}\!\mathbb{C}$	
Test Engineer :	Amos Zhang		Relative Hum	nidity :	42~469	%	
Test Voltage :	120Vac / 60H	łz	Phase :		Neutral	l	
Function Type :	GSM850 Idle (Charging fro		Link + WLAN	Link(2.	4G) + E	Earphone + USB	Cable
80 Level	(dBuV)						7
70.0							
60.0		-				FCC PART 15C	
50.0 ₩ 3	Man	-				FCC PART 15C(AVG)	
40.0	17'9 17 1 1 1 1 1 1 1 1 1	. 4 / N. N. M. A.	TV-1/4 MANAGA JAMA ARAWANANANA	, North Maria Company and the	PALINIA LA	JANES AND HAVE AND HELD THE REAL PROPERTY OF THE PARTY OF	
30.0	8 ¹⁰ 12	W)	V V				
10.0							
0.15	2	.5 1	2	5		10 20	30
.15	.2	.5 1	Frequency (MHz)	3		10 20	30
Site Condition	: CO01- : FCC PA		013-060103 NEUTRAI	L			
·		Over Limit	Read LISN	Cable			
	Freq Level		Level Factor	Loss R	lemark		
_	MHz dBuV	dB dBuV	dBuV dB	dB		_	
1	0.168 45.63	-19.45 65.08	34.80 0.28	10.55 (<u>j</u> P		
2		-24.05 55.08		10.55 A			
3 *	0.182 45.09			10.51 (
4 5		-24.38 54.37 -20.58 63.62		10.51 A	_		
6		-25.98 53.62					
7		-23.81 63.14			_		
8		-28.61 53.14		10.45 A	_		
9		-22.64 62.57		10.45 (•		
10 11		-27.24 52.57 -23.98 61.60		10.45 A	_		
12		-27.68 51.60		10.44			

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 34 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 35 of 37

Report Issued Date : Dec. 11, 2017

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR7O2602B

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Oct. 12, 2017	Nov. 24, 2017~ Nov. 28, 2017	Oct. 11, 2018	Conducted (TH01-KS)
Spectrum Analyzer	'		101338	10Hz~30GHz	May 25, 2017	Nov. 24, 2017~ Nov. 28, 2017	May 24, 2018	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 19, 2017	Nov. 24, 2017~ Nov. 28, 2017	Jan. 18, 2018	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 19, 2017	Nov. 24, 2017~ Nov. 28, 2017	Jan. 18, 2018	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Apr. 20, 2017	Nov. 28, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Apr. 20, 2017	Nov. 28, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 14, 2017	Nov. 28, 2017	May 13, 2018	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May 16, 2017	Nov. 28, 2017	May 15, 2018	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-147 4	1GHz~18GHz	Jan. 12, 2017	Nov. 28, 2017	Jan. 11, 2018	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	May 17, 2017	Nov. 28, 2017	May 16, 2018	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 19, 2017	Nov. 28, 2017	Oct. 18, 2018	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1989346	1GHz~18GHz	Jul. 27, 2017	Nov. 28, 2017	Jul. 26, 2018	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1988315	18GHz~40GHz	Jul. 27, 2017	Nov. 28, 2017	Jul. 26, 2018	Radiation (03CH04-SZ
Amplifier	Agilent Technologies	83017A	MY532701 56	500MHz~26.5G Hz	Apr. 20, 2017	Nov. 28, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
AC Power Source	Chroma	61601	N/A	N/A	NCR	Nov. 28, 2017	NCR	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Nov. 28, 2017	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Nov. 28, 2017	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 20, 2017	Dec. 04, 2017	Apr. 19, 2018	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2017	Dec. 04, 2017	Oct. 12, 2018	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 13, 2017	Dec. 04, 2017	Oct. 12, 2018	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2017	Dec. 04, 2017	Oct. 11, 2018	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : 36 of 37
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Magazina Uncertainty for a Layel of Confidence	
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.3dB
01 93 % (0 = 20C(y))	

Report No.: FR7O2602B

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.0ub

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	3. IUD

 Sporton International (Kunshan) Inc.
 Page Number
 : 37 of 37

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : A1 of A1
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR7O2602B

Report Number : FR7O2602B

Bluetooth Low Energy

Test Engineer:	Silent Hai	Temperature:	21~25	°C
Test Date:	2017/11/28	Relative Humidity:	51~55	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.02	0.70	0.50	Pass	
BLE	1Mbps	1	19	2440	1.02	0.70	0.50	Pass	
BLE	1Mbps	1	39	2480	1.02	0.70	0.50	Pass	

TEST RESULTS DATA

Peak Power Table

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	5.22	30.00	0.13	5.35	36.00	Pass
BLE	1Mbps	1	19	2440	5.49	30.00	0.13	5.62	36.00	Pass
BLE	1Mbps	1	39	2480	5.31	30.00	0.13	5.44	36.00	Pass

TEST RESULTS DATA

Average Power Table (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	1Mbps	1	0	2402	2.14	4.98	
BLE	1Mbps	1	19	2440	2.14	5.30	
BLE	1Mbps	1	39	2480	2.14	5.16	

TEST RESULTS DATA

Peak Power Density

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	3.41	-10.94	0.13	8.00	Pass
BLE	1Mbps	1	19	2440	3.52	-10.87	0.13	8.00	Pass
BLE	1Mbps	1	39	2480	3.40	-10.94	0.13	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		. ,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2329.215	45.17	-28.83	74	42.26	27.18	4.66	28.93	325	308	Р	Н
		2386.44	36.2	-17.8	54	32.93	27.43	4.78	28.94	325	308	Α	Н
DI E	*	2402	93.7	-	-	90.43	27.43	4.78	28.94	325	308	Р	Н
BLE CH 00	*	2402	93.27	-	-	90	27.43	4.78	28.94	325	308	Α	Н
2402MHz		2344.125	45.59	-28.41	74	42.63	27.24	4.66	28.94	197	226	Р	٧
		2388.225	36.03	-17.97	54	32.76	27.43	4.78	28.94	197	226	Α	٧
	*	2402	95.19	-	-	91.92	27.43	4.78	28.94	197	226	Р	٧
	*	2402	94.62	-	-	91.35	27.43	4.78	28.94	197	226	Α	٧
		2352.28	45.78	-28.22	74	42.7	27.3	4.72	28.94	312	296	Р	Н
		2384.2	36.22	-17.78	54	33.07	27.37	4.72	28.94	312	296	Α	Н
	*	2440	94.07	-	-	90.58	27.61	4.82	28.94	312	296	Р	Н
	*	2440	93.54	-	-	90.05	27.61	4.82	28.94	312	296	Α	Н
		2498.11	46.13	-27.87	74	42.43	27.8	4.85	28.95	312	296	Р	Н
BLE		2489.78	36.78	-17.22	54	33.08	27.8	4.85	28.95	312	296	Α	Н
CH 19 2440MHz		2378.6	46.18	-27.82	74	43.03	27.37	4.72	28.94	347	236	Р	٧
244UIVII112		2374.4	36.13	-17.87	54	32.98	27.37	4.72	28.94	347	236	Α	٧
	*	2440	94.91	-	-	91.42	27.61	4.82	28.94	347	236	Р	٧
	*	2440	93.88	-	-	90.39	27.61	4.82	28.94	347	236	Α	٧
		2493.98	46.24	-27.76	74	42.54	27.8	4.85	28.95	347	236	Р	V
		2487.4	36.61	-17.39	54	32.97	27.74	4.85	28.95	347	236	Α	٧

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : B1 of B6
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

	2480	92.54	-	-	88.9	27.74	4.85	28.95	129	28	Р	Н
*	2480	92.09	-	-	88.45	27.74	4.85	28.95	129	28	Α	Н
	2488.44	47.31	-26.69	74	43.61	27.8	4.85	28.95	129	28	Р	Н
	2483.52	37.71	-16.29	54	34.07	27.74	4.85	28.95	129	28	Α	Н
*	2480	92.52	-	-	88.88	27.74	4.85	28.95	100	308	Р	V
*	2480	91.52	-	-	87.88	27.74	4.85	28.95	100	308	Α	V
	2490.16	45.94	-28.06	74	42.24	27.8	4.85	28.95	100	308	Р	V
	2483.52	37.27	-16.73	54	33.63	27.74	4.85	28.95	100	308	Α	V
	*	2480 2488.44 2483.52 * 2480 * 2490.16	2480 92.09 2488.44 47.31 2483.52 37.71 * 2480 92.52 * 2480 91.52 2490.16 45.94	2480 92.09 - 2488.44 47.31 -26.69 2483.52 37.71 -16.29 * 2480 92.52 - * 2480 91.52 - 2490.16 45.94 -28.06	2480 92.09	2480 92.09 - - 88.43 2488.44 47.31 -26.69 74 43.61 2483.52 37.71 -16.29 54 34.07 * 2480 92.52 - - 88.88 * 2480 91.52 - - 87.88 2490.16 45.94 -28.06 74 42.24	2480 92.09 - - 68.45 27.74 2488.44 47.31 -26.69 74 43.61 27.8 2483.52 37.71 -16.29 54 34.07 27.74 * 2480 92.52 - - 88.88 27.74 * 2480 91.52 - - 87.88 27.74 2490.16 45.94 -28.06 74 42.24 27.8	2480 92.09 - - 68.45 27.74 4.85 2488.44 47.31 -26.69 74 43.61 27.8 4.85 2483.52 37.71 -16.29 54 34.07 27.74 4.85 * 2480 92.52 - - 88.88 27.74 4.85 * 2480 91.52 - - 87.88 27.74 4.85 2490.16 45.94 -28.06 74 42.24 27.8 4.85	2480 92.09 - - 88.43 27.74 4.85 28.95 2488.44 47.31 -26.69 74 43.61 27.8 4.85 28.95 2483.52 37.71 -16.29 54 34.07 27.74 4.85 28.95 * 2480 92.52 - - 88.88 27.74 4.85 28.95 * 2480 91.52 - - 87.88 27.74 4.85 28.95 2490.16 45.94 -28.06 74 42.24 27.8 4.85 28.95	2480 92.09 - - 88.43 27.74 4.85 28.95 129 2488.44 47.31 -26.69 74 43.61 27.8 4.85 28.95 129 2483.52 37.71 -16.29 54 34.07 27.74 4.85 28.95 129 * 2480 92.52 - - 88.88 27.74 4.85 28.95 100 * 2480 91.52 - - 87.88 27.74 4.85 28.95 100 2490.16 45.94 -28.06 74 42.24 27.8 4.85 28.95 100	2480 92.09 - - 68.45 27.74 4.85 28.95 129 28 2488.44 47.31 -26.69 74 43.61 27.8 4.85 28.95 129 28 2483.52 37.71 -16.29 54 34.07 27.74 4.85 28.95 129 28 * 2480 92.52 - - 88.88 27.74 4.85 28.95 100 308 * 2480 91.52 - - 87.88 27.74 4.85 28.95 100 308 2490.16 45.94 -28.06 74 42.24 27.8 4.85 28.95 100 308	2480 92.09 - - 68.43 27.74 4.85 28.95 129 28 A 2488.44 47.31 -26.69 74 43.61 27.8 4.85 28.95 129 28 P 2483.52 37.71 -16.29 54 34.07 27.74 4.85 28.95 129 28 A * 2480 92.52 - - 88.88 27.74 4.85 28.95 100 308 P * 2480 91.52 - - 87.88 27.74 4.85 28.95 100 308 A 2490.16 45.94 -28.06 74 42.24 27.8 4.85 28.95 100 308 P

Remark 1.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : B2 of B6
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

[.] No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	i
BLE		4804	38.61	-35.39	74	59.84	31.44	5.55	58.22	151	360	Р	Н
CH 00 2402MHz		4804	38.91	-35.09	74	60.14	31.44	5.55	58.22	151	360	Р	V
BLE		4880	39.8	-34.2	74	60.64	31.61	5.65	58.1	152	269	Р	Н
		7320	44.48	-29.52	74	58.9	36.19	7.26	57.87	152	269	Р	Н
CH 19		4880	40.3	-33.7	74	61.14	31.61	5.65	58.1	152	360	Р	V
2440MHz		7320	43.25	-30.75	74	57.67	36.19	7.26	57.87	152	360	Р	٧
		4960	39.68	-34.32	74	59.86	31.82	5.96	57.96	151	360	Р	Н
CH 39		7440	43.42	-30.58	74	57.4	36.34	7.17	57.49	151	360	Р	Н
		4960	39.65	-34.35	74	59.83	31.82	5.96	57.96	151	360	Р	٧
2480MHz		7440	44.53	-29.47	74	58.51	36.34	7.17	57.49	151	360	Р	٧

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : B3 of B6
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	23.63	-16.37	40	30.45	24.9	0.25	31.97	-	-	Р	Н
		106.63	20.28	-23.22	43.5	34.19	16.7	1.09	31.7	-	-	Р	Н
		230.79	21.09	-24.91	46	34.18	16.51	1.67	31.27	-	-	Р	Н
		387.93	24.64	-21.36	46	32.07	21.61	2.15	31.19	-	-	Р	Н
0.4011		665.35	28.8	-17.2	46	30.8	26.39	2.85	31.24	-	-	Р	Н
2.4GHz BLE		947.62	32.04	-13.96	46	30.03	29.87	3.47	31.33	100	214	Р	Н
LF		30.97	22.95	-17.05	40	30.22	24.43	0.27	31.97	-	-	Р	V
L.		108.57	18.39	-25.11	43.5	32.19	16.81	1.09	31.7	-	-	Р	٧
		453.89	25.1	-20.9	46	31.04	23.03	2.31	31.28	-	-	Р	٧
		650.8	27.04	-18.96	46	29.2	26.25	2.82	31.23	-	-	Р	٧
		822.49	29.33	-16.67	46	28.62	28.68	3.2	31.17	100	274	Р	٧
		989.33	31.02	-22.98	54	28.44	30.37	3.54	31.33	-	-	Р	٧
		1	1			1	1	1	1	ı	1	1	

Remark 2.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : B4 of B6
Report Issued Date : Dec. 11, 2017

Report No.: FR7O2602B

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : B5 of B6
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR7O2602B

A calculation example for radiated spurious emission is shown as below:

Report No.: FR7O2602B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level($dB\mu V/m$)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (Kunshan) Inc.
 Page Number
 : B6 of B6

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 11, 2017

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth v4.0 LE	60.65	0.380	2.634	3KHz

Bluetooth v4.0 LE

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1047 Page Number : C1 of C1
Report Issued Date : Dec. 11, 2017
Report Version : Rev. 01

Report No.: FR7O2602B