Application of Word2Vec to Represent Biological Sequences

Li Ka Shing Faculty of Medicine, HKU

Xu Hang

PhD. Candidate

2/4/2018

Content

- 1. Background
- 2. Principle of Word2Vec
- 3. Pipeline of dna2vec
- 4. Performance Evaluations and Discussions.

Background

1. Biological Problems

- Long DNA sequences are usually investigated
- K-mer representation plays important role in splitting DNA sequences

- 2. Encoding for k-mer: one-hot vector
 - Simple to understand
 - High dimension: $4^6 = 4096$
 - The distance between all paired vectors is equivalent

Word2Vec

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).

Efficient Estimation of Word Representations in Vector Space

Mikolov, T., Le, Q. V., & Sutskever, I. (2013).

Tomas Mike Google Inc., Mountai

tmikolov@goog

Greg Corra

Google Inc., Mountai gcorrado@goog Tomas Mikolov Google Inc.

Mountain View tmikolov@google.com Quoc V. Le

Exploiting Similarities among Languages for Machine Translation

Google Inc. Mountain View

qv1@qooqle.com

Ilya Sutskever

Google Inc.

Mountain View

ilyasu@google.com

Word2Vec

1. Model description

- The vocabulary size is V.
- Input layer: $\{x_1, \dots, x_V\}$
- Hidden layer: $h_{N\times N}$
- Output layer: $\{y_1, \dots, y_V\}$
- Two matrix: $W_{V\times N}$, $W_{N\times V}$

2. Optimization Target

- Given one context word x, the model can properly predict the word y
- 3. Important intermediate product
 - The row vector in $W_{V \times N}$ can be used as word vector

Figure 1: A simple CBOW model with only one word in the context

Rong, X. (2014).

Word2Vec

- 3. Important intermediate product
 - The row vector in $W_{V \times N}$ can be used as word vector
- 4. Application of word vector in translation
 - English to Spanish
 - These concepts have similar geometric arrangements in both spaces

Mikolov, T., Le, Q. V., & Sutskever, I. (2013).

dna2vec

1. Analogy between DNA and Nature Language

Nature Language	DNA
Words	K-mer
Sentences	DNA fragments
Corpus	Part or whole genome

- 2. Pipeline of training dna2vec
 - 1. Preparing corpus
 - Prepare a genome which contains long DNA contig (chromosome) (>1M)
 - Randomly select DNA fragments from contigs (<1k)
 - Use sliding-window or non-overlapping to split DNA fragments into k-mers
 - 2. Use gensim (python package) to train word2vec model with corpus

Different Strategies of Establishing Corpus

Methods to Evaluate dna2vec

• Similarity between k-mers

• Application:

The performance of dna2vec should be significantly higher than one-hot encoding

dna2vec Reflects Similarity Between K-mers

Three tests of cosine similarity:

- 1. $v(kmer) \sim v(kmer + \{A, T, C, G\}^1)$ for $kmer \in \{A, T, C, G\}^k : \underline{ACT} \sim \underline{ACTC}$
- 2. $v(kmer) \sim v(kmer + \{A, T, C, G\}^n)$ for $kmer \in \{A, T, C, G\}^k : \underline{ACT} \sim \underline{ACTCTCAC}$
- 3. $v(kmer) \sim v(kmer + A) + v(kmer + T) + v(kmer + C) + v(kmer + G)$ for $kmer \in \{A, T, C, G\}^k$ $\underbrace{ACT \sim ACTA + ACTT + ACTC + ACTG}$

dna2vec Reflects Similarity Between K-mers

Three tests of cosine similarity:

- 1. $v(kmer) \sim v(kmer + \{A, T, C, G\}^1)$ for $kmer \in \{A, T, C, G\}^k : \underline{ACT} \sim \underline{ACTC}$
- 2. $v(kmer) \sim v(kmer + \{A, T, C, G\}^n)$ for $kmer \in \{A, T, C, G\}^k : \underline{ACT} \sim \underline{ACTCTCAC}$
- 3. $v(kmer) \sim v(kmer + A) + v(kmer + T) + v(kmer + C) + v(kmer + G)$ for $kmer \in \{A, T, C, G\}^k$ $ACT \sim ACTA + ACTT + ACTC + ACTG$

dna2vec Increase the Performance of Downstream Analysis

Summary

- The training method of dna2vec model was presented
- The representation of k-mers with dna2vec was shown to be able to reflect the similarity between k-mers
- The performance of classifier trained with dna2vec was proved to be better than SVM (Gaussian Kernel)