TOPICS IN ALGEBRAIC LOGIC AND DUALITY THEORY Lecture 2

Rodrigo N. Almeida, Simon Lemal June 5, 2025

Plan for the Day

- Beth definability property.
- Epimorphism surjectivity.

Beth definability

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an explicit definition of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an *explicit definition* of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the Beth property if for any set of formulas $\Gamma(\overline{p},r)$, if Γ implicitly defines r, then there is an explicit definition of r relative to Γ .

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an explicit definition of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *Beth property* if for any set of formulas $\Gamma(\overline{p},r)$, if Γ implicitly defines r, then there is an explicit definition of r relative to Γ .

Example

In CPC, consider $\Gamma(p_1, p_2, r) = \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.$

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an explicit definition of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *Beth property* if for any set of formulas $\Gamma(\overline{p},r)$, if Γ implicitly defines r, then there is an explicit definition of r relative to Γ .

Example

In CPC, consider $\Gamma(p_1,p_2,r)=\{r\to p_1,r\to p_2,p_1\to (p_2\to r)\}$. Γ implicitly defines r.

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an explicit definition of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *Beth property* if for any set of formulas $\Gamma(\overline{p},r)$, if Γ implicitly defines r, then there is an explicit definition of r relative to Γ .

Example

In CPC, consider $\Gamma(p_1, p_2, r) = \{r \to p_1, r \to p_2, p_1 \to (p_2 \to r)\}.$

 Γ implicitly defines r. $\phi_r=p_1 \wedge p_2$ is an explicit definition relative to Γ .

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p},r)$ implicitly defines r if

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p})$ is an explicit definition of r relative to $\Gamma(\overline{p},r)$ if

$$\Gamma(\overline{p},r) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *Beth property* if for any set of formulas $\Gamma(\overline{p},r)$, if Γ implicitly defines r, then there is an explicit definition of r relative to Γ .

Example

In CPC, consider $\Gamma(p_1, p_2, r) = \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.$

 Γ implicitly defines r. $\phi_r=p_1\land p_2$ is an explicit definition relative to Γ . However, in the implicative fragment of CPC, such an explicit is not possible.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Substituting r for r_1 and \top for r_2 , we obtain $\Gamma(\overline{p},r), \Gamma(\overline{p},\top) \vdash_L r$.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Substituting r for r_1 and \top for r_2 , we obtain $\Gamma(\overline{p},r), \Gamma(\overline{p},\top) \vdash_L r$. By the deduction theorem,

$$\Gamma(\overline{p},r) \vdash_L \Gamma(\overline{p},\top) \to r.$$

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Substituting r for r_1 and \top for r_2 , we obtain $\Gamma(\overline{p},r), \Gamma(\overline{p},\top) \vdash_L r$. By the deduction theorem,

$$\Gamma(\overline{p},r) \vdash_L \Gamma(\overline{p},\top) \to r.$$

We also have $r \leftrightarrow \top \vdash_L \Gamma(\overline{p}, r) \leftrightarrow \Gamma(\overline{p}, \top)$.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Substituting r for r_1 and \top for r_2 , we obtain $\Gamma(\overline{p},r), \Gamma(\overline{p},\top) \vdash_L r$. By the deduction theorem,

$$\Gamma(\overline{p},r) \vdash_L \Gamma(\overline{p},\top) \to r.$$

We also have $r \leftrightarrow \top \vdash_L \Gamma(\overline{p},r) \leftrightarrow \Gamma(\overline{p},\top)$. In particular, $r \vdash_L \Gamma(\overline{p},r) \to \Gamma(\overline{p},\top)$.

Theorem (Kreisel, 1960)

Any intermediate logic L has the Beth property.

Proof.

Assume that Γ implicitly define r, that is,

$$\Gamma(\overline{p}, r_1), \Gamma(\overline{p}, r_2) \vdash_L r_1 \leftrightarrow r_2.$$

By compactness, we may assume Γ to be finite, and taking conjunctions, we may assume that Γ is a single formula.

Substituting r for r_1 and \top for r_2 , we obtain $\Gamma(\overline{p},r), \Gamma(\overline{p},\top) \vdash_L r$. By the deduction theorem,

$$\Gamma(\overline{p},r) \vdash_L \Gamma(\overline{p},\top) \to r.$$

We also have $r \leftrightarrow \top \vdash_L \Gamma(\overline{p},r) \leftrightarrow \Gamma(\overline{p},\top)$. In particular, $r \vdash_L \Gamma(\overline{p},r) \to \Gamma(\overline{p},\top)$. By the deduction theorem,

$$\Gamma(\overline{p},r) \vdash_L r \to \Gamma(\overline{p},\top).$$

Theorem (Maksimova, 1993)

Any normal extension of **K4** has the Beth property.

Theorem (Maksimova, 1993)

Any normal extension of K4 has the Beth property.

Example

Let L be the logic of the frame below. Note that it is weakly transitive.

Theorem (Maksimova, 1993)

Any normal extension of K4 has the Beth property.

Example

Let L be the logic of the frame below. Note that it is weakly transitive.

Consider $\Gamma(r) = r \leftrightarrow \Box \neg r$.

Theorem (Maksimova, 1993)

Any normal extension of K4 has the Beth property.

Example

Let L be the logic of the frame below. Note that it is weakly transitive.

Consider $\Gamma(r) = r \leftrightarrow \Box \neg r$. The only valuation validating it is $r \mapsto \{b\}$, thus Γ implicitly defines r.

Theorem (Maksimova, 1993)

Any normal extension of K4 has the Beth property.

Example

Let L be the logic of the frame below. Note that it is weakly transitive.

Consider $\Gamma(r) = r \leftrightarrow \Box \neg r$. The only valuation validating it is $r \mapsto \{b\}$, thus Γ implicitly defines r.

If r were explicitly definable, it would be by a variable free formula. However, every variable free formula is equivalent to \top or \bot (by induction).

Definition

Let ${\cal L}$ be a logic.

We say that a set of formulas $\Gamma(\overline{p}, \overline{r})$ implicitly defines \overline{r} if for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2}) \vdash_L r_1 \leftrightarrow r_2.$$

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p}, \overline{r})$ implicitly defines \overline{r} if for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2})\vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p}$ is an explicit definition of r relative to $\Gamma(\overline{p},\overline{r})$ if

$$\Gamma(\overline{p},\overline{r}) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p}, \overline{r})$ implicitly defines \overline{r} if for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2})\vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p} \text{ is an explicit definition of } r \text{ relative to } \Gamma(\overline{p},\overline{r}) \text{ if }$

$$\Gamma(\overline{p},\overline{r}) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *infinitary Beth property* if for any set of formulas $\Gamma(\overline{p}, \overline{r})$ that implicitly defines \overline{r} , every $r \in \overline{r}$ has an explicit definition relative to Γ .

Definition

Let L be a logic.

We say that a set of formulas $\Gamma(\overline{p}, \overline{r})$ implicitly defines \overline{r} if for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p}, \overline{r_1}), \Gamma(\overline{p}, \overline{r_2}) \vdash_L r_1 \leftrightarrow r_2.$$

We say that a formula $\phi_r(\overline{p}$ is an explicit definition of r relative to $\Gamma(\overline{p},\overline{r})$ if

$$\Gamma(\overline{p},\overline{r}) \vdash_L r \leftrightarrow \phi_r(\overline{p}).$$

The logic L has the *infinitary Beth property* if for any set of formulas $\Gamma(\overline{p}, \overline{r})$ that implicitly defines \overline{r} , every $r \in \overline{r}$ has an explicit definition relative to Γ .

Proposition

If a logic L has the infinitary Beth property, then it has the Beth property.

Definition

A logic L has the local deduction property if for each pair of formulas ϕ, ψ , there is a formula δ_{ϕ} in the language of ϕ such that for each formula ξ ,

- 1. $\xi, \phi \vdash_L \psi \text{ iff } \xi \vdash_L \delta_\phi \to \psi$,
- 2. $\phi, \delta_{\phi} \to \xi \vdash_L \xi$.

Definition

A logic L has the local deduction property if for each pair of formulas ϕ, ψ , there is a formula δ_{ϕ} in the language of ϕ such that for each formula ξ ,

- 1. $\xi, \phi \vdash_L \psi \text{ iff } \xi \vdash_L \delta_\phi \to \psi$,
- 2. $\phi, \delta_{\phi} \rightarrow \xi \vdash_L \xi$.

Example

Any intermediate logic L has a local deduction property, with δ_ϕ given by ϕ .

Definition

A logic L has the local deduction property if for each pair of formulas ϕ, ψ , there is a formula δ_{ϕ} in the language of ϕ such that for each formula ξ ,

- 1. $\xi, \phi \vdash_L \psi \text{ iff } \xi \vdash_L \delta_\phi \to \psi$,
- 2. $\phi, \delta_{\phi} \rightarrow \xi \vdash_L \xi$.

Example

Any intermediate logic L has a local deduction property, with δ_ϕ given by ϕ .

Example

Any normal modal logic L has a local deduction property, with $\delta_{\phi} = \phi \wedge \Box \phi \wedge \cdots \wedge \Box^{n} \phi$, where n is the modal depth of ψ .

Definition

A logic L has the local deduction property if for each pair of formulas ϕ, ψ , there is a formula δ_{ϕ} in the language of ϕ such that for each formula ξ ,

- 1. $\xi, \phi \vdash_L \psi \text{ iff } \xi \vdash_L \delta_\phi \to \psi$,
- 2. $\phi, \delta_{\phi} \to \xi \vdash_L \xi$.

Example

Any intermediate logic L has a local deduction property, with δ_ϕ given by ϕ .

Example

Any normal modal logic L has a local deduction property, with $\delta_{\phi} = \phi \wedge \Box \phi \wedge \cdots \wedge \Box^{n} \phi$, where n is the modal depth of ψ .

Proposition (Exercise)

Let L be a logic with the local deduction property. If L has the Craig interpolation property, then L has the deductive interpolation property.

Craig and Beth, hand in hand

Theorem

Let L be a (compact, conjunctive) logic with the local deduction property. If L has the Craig interpolation property, then L has the (infinitary) Beth property.

Craig and Beth, hand in hand

Theorem

Let L be a (compact, conjunctive) logic with the local deduction property. If L has the Craig interpolation property, then L has the (infinitary) Beth property.

Proof.

See seminar 2.

Epimorphism surjectivity

Epimorphisms and surjections

Definition

A map $h\colon A\to B$ is epic (or an epimorphism if for all maps $f_1,f_2\colon B\to C$, we have $f_1\circ h=f_2\circ h$ implies $f_1=f_2$.

Epimorphisms and surjections

Definition

A map $h: A \to B$ is epic (or an epimorphism if for all maps $f_1, f_2: B \to C$, we have $f_1 \circ h = f_2 \circ h$ implies $f_1 = f_2$.

Intuitively, h covers enough of B so that any two maps agreeing on the range of h agree on B. In other words, every $b \in B$ is defined implicitly from A.

Definition

A map $h:A\to B$ is epic (or an epimorphism if for all maps $f_1,f_2\colon B\to C$, we have $f_1\circ h=f_2\circ h$ implies $f_1=f_2$.

Intuitively, h covers enough of B so that any two maps agreeing on the range of h agree on B. In other words, every $b \in B$ is defined implicitly from A.

Definition

A map $h:A\to B$ is onto (or a surjection) if for each $b\in B$, there is $a\in A$ such that h(a)=b.

Definition

A map $h: A \to B$ is epic (or an epimorphism if for all maps $f_1, f_2: B \to C$, we have $f_1 \circ h = f_2 \circ h$ implies $f_1 = f_2$.

Intuitively, h covers enough of B so that any two maps agreeing on the range of h agree on B. In other words, every $b \in B$ is defined implicitly from A.

Definition

A map $h \colon A \to B$ is onto (or a surjection) if for each $b \in B$, there is $a \in A$ such that h(a) = b.

In other words, every $b \in B$ is defined explicitly from A.

Definition

A map $h:A\to B$ is epic (or an epimorphism if for all maps $f_1,f_2\colon B\to C$, we have $f_1\circ h=f_2\circ h$ implies $f_1=f_2$.

Intuitively, h covers enough of B so that any two maps agreeing on the range of h agree on B. In other words, every $b \in B$ is defined implicitly from A.

Definition

A map $h:A\to B$ is onto (or a surjection) if for each $b\in B$, there is $a\in A$ such that h(a)=b.

In other words, every $b \in B$ is defined explicitly from A.

Definition

In general, onto maps are epic. A variety of algebras is said to have the *epimorphism surjectivity property* if the converse is true (for its morphisms).

Definition

A map $h:A\to B$ is epic (or an epimorphism if for all maps $f_1,f_2\colon B\to C$, we have $f_1\circ h=f_2\circ h$ implies $f_1=f_2$.

Intuitively, h covers enough of B so that any two maps agreeing on the range of h agree on B. In other words, every $b \in B$ is defined implicitly from A.

Definition

A map $h:A\to B$ is onto (or a surjection) if for each $b\in B$, there is $a\in A$ such that h(a)=b.

In other words, every $b \in B$ is defined explicitly from A.

Definition

In general, onto maps are epic. A variety of algebras is said to have the *epimorphism surjectivity property* if the converse is true (for its morphisms).

Example

The varieties BA, HA, MSL and Lat have epimorphism surjectivity. The variety DL doesn't, as is witnessed by the map $3 \to 2 \times 2$.

Theorem (Hoogland, 2000)

Let L be a logic and K the variety of its algebras. Then L has the Beth property iff K has epimorphism surjectivity.

Theorem (Hoogland, 2000)

Let L be a logic and K the variety of its algebras. Then L has the Beth property iff K has epimorphism surjectivity.

Proof.

First assume that K has epimorphism surjectivity, and let $\Gamma(\overline{p}, \overline{r})$ such that for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2})\vdash_L r_1 \leftrightarrow r_2.$$

Theorem (Hoogland, 2000)

Let L be a logic and K the variety of its algebras. Then L has the Beth property iff K has epimorphism surjectivity.

Proof.

First assume that K has epimorphism surjectivity, and let $\Gamma(\overline{p}, \overline{r})$ such that for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2})\vdash_L r_1 \leftrightarrow r_2.$$

The map $\pi \circ \iota$ is epic.

Theorem (Hoogland, 2000)

Let L be a logic and K the variety of its algebras. Then L has the Beth property iff K has epimorphism surjectivity.

Proof.

First assume that K has epimorphism surjectivity, and let $\Gamma(\overline{p}, \overline{r})$ such that for every corresponding pair $r_1 \in \overline{r_1}$, $r_2 \in \overline{r_2}$,

$$\Gamma(\overline{p},\overline{r_1}),\Gamma(\overline{p},\overline{r_2})\vdash_L r_1 \leftrightarrow r_2.$$

The map $\pi \circ \iota$ is epic. Take $h_1,h_2 \colon F(\overline{p},r)/\Gamma \to A$ such that $h_1 \circ \pi \circ \iota = h_2 \circ \pi \circ \iota$. Clearly h_1 and h_2 agree on \overline{p} , and it is sufficient to show $h_1(r) = h_2(r)$ for each $r \in \overline{r}$.

Proof.

We define a valuation

$$\begin{array}{c} v\colon F(\overline{p},\overline{r_1},\overline{r_2})\to A\\ \\ p\mapsto h_1(p)=h_2(p) & \text{for }p\in\overline{p}\\ \\ r_1\mapsto h_1(r) & \text{for }r_1\in\overline{r_1}\text{ corresponding to }r\in\overline{r}\\ \\ r_2\mapsto h_2(r) & \text{for }r_2\in\overline{r_2}\text{ corresponding to }r\in\overline{r}. \end{array}$$

Proof.

We define a valuation

$$\begin{array}{c} v \colon F(\overline{p},\overline{r_1},\overline{r_2}) \to A \\ \\ p \mapsto h_1(p) = h_2(p) & \text{for } p \in \overline{p} \\ \\ r_1 \mapsto h_1(r) & \text{for } r_1 \in \overline{r_1} \text{ corresponding to } r \in \overline{r} \\ \\ r_2 \mapsto h_2(r) & \text{for } r_2 \in \overline{r_2} \text{ corresponding to } r \in \overline{r}. \end{array}$$

Observe that for $\gamma \in \Gamma$,

$$v(\gamma(\overline{p},\overline{r_1})) = \gamma(v(\overline{p}),v(\overline{r_1})) = \gamma(h_1(\overline{p}),h_1(\overline{r})) = h_1(\gamma(\overline{p},\overline{r})) = h_1(1) = 1.$$

Proof.

We define a valuation

$$\begin{array}{c} v\colon F(\overline{p},\overline{r_1},\overline{r_2})\to A\\ \\ p\mapsto h_1(p)=h_2(p) & \text{for }p\in\overline{p}\\ \\ r_1\mapsto h_1(r) & \text{for }r_1\in\overline{r_1}\text{ corresponding to }r\in\overline{r}\\ \\ r_2\mapsto h_2(r) & \text{for }r_2\in\overline{r_2}\text{ corresponding to }r\in\overline{r}. \end{array}$$

Observe that for $\gamma \in \Gamma$,

$$v(\gamma(\overline{p},\overline{r_1})) = \gamma(v(\overline{p}),v(\overline{r_1})) = \gamma(h_1(\overline{p}),h_1(\overline{r})) = h_1(\gamma(\overline{p},\overline{r})) = h_1(1) = 1.$$

Therefore v sends $\Gamma(\overline{p}, \overline{r_1})$ to 1.

Proof.

We define a valuation

$$\begin{array}{c} v\colon F(\overline{p},\overline{r_1},\overline{r_2})\to A\\ \\ p\mapsto h_1(p)=h_2(p) & \text{for }p\in\overline{p}\\ \\ r_1\mapsto h_1(r) & \text{for }r_1\in\overline{r_1}\text{ corresponding to }r\in\overline{r}\\ \\ r_2\mapsto h_2(r) & \text{for }r_2\in\overline{r_2}\text{ corresponding to }r\in\overline{r}. \end{array}$$

Observe that for $\gamma \in \Gamma$,

$$v(\gamma(\overline{p},\overline{r_1})) = \gamma(v(\overline{p}),v(\overline{r_1})) = \gamma(h_1(\overline{p}),h_1(\overline{r})) = h_1(\gamma(\overline{p},\overline{r})) = h_1(1) = 1.$$

Therefore v sends $\Gamma(\overline{p}, \overline{r_1})$ to 1. Similarly for $\Gamma(\overline{p}, \overline{r_2})$.

Proof.

We define a valuation

$$\begin{array}{c} v\colon F(\overline{p},\overline{r_1},\overline{r_2})\to A\\ \\ p\mapsto h_1(p)=h_2(p) & \text{for }p\in\overline{p}\\ \\ r_1\mapsto h_1(r) & \text{for }r_1\in\overline{r_1}\text{ corresponding to }r\in\overline{r}\\ \\ r_2\mapsto h_2(r) & \text{for }r_2\in\overline{r_2}\text{ corresponding to }r\in\overline{r}. \end{array}$$

Observe that for $\gamma \in \Gamma$,

$$v(\gamma(\overline{p},\overline{r_1})) = \gamma(v(\overline{p}),v(\overline{r_1})) = \gamma(h_1(\overline{p}),h_1(\overline{r})) = h_1(\gamma(\overline{p},\overline{r})) = h_1(1) = 1.$$

Therefore v sends $\Gamma(\overline{p}, \overline{r_1})$ to 1. Similarly for $\Gamma(\overline{p}, \overline{r_2})$. Therefore, as Γ implicitly defines \overline{r} , every $r_1 \leftrightarrow r_2$ for corresponding r_1, r_2 is sent to 1, thus

$$h_1(r) = v(r_1) = v(r_2) = h_2(r).$$

Proof.

We define a valuation

$$\begin{array}{c} v\colon F(\overline{p},\overline{r_1},\overline{r_2})\to A\\ \\ p\mapsto h_1(p)=h_2(p) & \text{for }p\in\overline{p}\\ \\ r_1\mapsto h_1(r) & \text{for }r_1\in\overline{r_1}\text{ corresponding to }r\in\overline{r}\\ \\ r_2\mapsto h_2(r) & \text{for }r_2\in\overline{r_2}\text{ corresponding to }r\in\overline{r}. \end{array}$$

Observe that for $\gamma \in \Gamma$,

$$v(\gamma(\overline{p},\overline{r_1})) = \gamma(v(\overline{p}),v(\overline{r_1})) = \gamma(h_1(\overline{p}),h_1(\overline{r})) = h_1(\gamma(\overline{p},\overline{r})) = h_1(1) = 1.$$

Therefore v sends $\Gamma(\overline{p}, \overline{r_1})$ to 1. Similarly for $\Gamma(\overline{p}, \overline{r_2})$. Therefore, as Γ implicitly defines \overline{r} , every $r_1 \leftrightarrow r_2$ for corresponding r_1, r_2 is sent to 1, thus

$$h_1(r) = v(r_1) = v(r_2) = h_2(r).$$

This proves that $h_1 = h_2$, thus $\pi \circ \iota$ is epic.

Proof.
As $\pi \circ \iota$ is epic, it is surjective.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$. Thus L has the Beth property.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$. Thus L has the Beth property.

Now assume that ${\cal L}$ has the Beth property, and let us show that ${\cal K}$ has epimorphism surjectivity.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$. Thus L has the Beth property.

Now assume that L has the Beth property, and let us show that K has epimorphism surjectivity. Take an epimorphism $h \colon A \to B$.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$. Thus L has the Beth property.

Now assume that L has the Beth property, and let us show that K has epimorphism surjectivity. Take an epimorphism $h\colon A\to B$. By the first isomorphism theorem, we have.

h is epic iff ι is, and h is onto iff ι is.

Proof.

As $\pi \circ \iota$ is epic, it is surjective. Thus there is $\phi_r \in F(\overline{p})$ such that $\pi \circ \iota(\phi_r) = r$ for all $r \in \overline{r}$. We have $\phi_r = r$ in $F(\overline{p}, \overline{r})/\Gamma$ iff $\Gamma(\overline{p}, \overline{r}) \vdash_L r \leftrightarrow \phi_r$. Thus L has the Beth property.

Now assume that L has the Beth property, and let us show that K has epimorphism surjectivity. Take an epimorphism $h\colon A\to B$. By the first isomorphism theorem, we have.

h is epic iff ι is, and h is onto iff ι is. Therefore, we can restrict our investigation of epimorphisms to epic inclusions.

Let A be a subalgebra of B such that the inclusion is epic.

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let
$$\Gamma = \pi^{-1}(\{1\})$$
.

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let $\Gamma = \pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} .

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let $\Gamma=\pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} . Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1.

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let $\Gamma=\pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} . Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1. This defines two maps $h_1,h_2\colon F(\overline{p},\overline{r})\to C$ (with $h_1(p)=h_2(p)=h(p),h_1(r)=h(r_1)$ and $h_2(r)=h(r_2)$).

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let $\Gamma=\pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} . Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1. This defines two maps $h_1,h_2\colon F(\overline{p},\overline{r})\to C$ (with $h_1(p)=h_2(p)=h(p),h_1(r)=h(r_1)$ and $h_2(r)=h(r_2)$). Those two maps identify Γ with 1, hence they factor through π by definition of Γ .

Let $\Gamma = \pi^{-1}(\{1\})$. We claim that Γ implicitly defines \bar{r} .

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1. This defines two maps $h_1,h_2\colon F(\overline{p},\overline{r})\to C$ (with $h_1(p)=h_2(p)=h(p),\,h_1(r)=h(r_1)$ and $h_2(r)=h(r_2)$). Those two maps identify Γ with 1, hence they factor through π by definition of Γ . As they agree on A, and the inclusion $A\to B$ is epic, we must have $h_1=h_2$.

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc} A & & & & B \\ \uparrow & & & \uparrow^{\pi} \\ F(\overline{p}) & & & & F(\overline{p}, \overline{r}) \end{array}$$

Let $\Gamma=\pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} . Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1. This defines two maps $h_1,h_2\colon F(\overline{p},\overline{r})\to C$ (with $h_1(p)=h_2(p)=h(p),\,h_1(r)=h(r_1)$ and $h_2(r)=h(r_2)$). Those two maps identify Γ with 1, hence they factor through π by definition of Γ . As they agree on A, and the inclusion $A\to B$ is epic, we must have $h_1=h_2$. Therefore $h(r_1)=h_1(r)=h_2(r)=h(r_2)$ for any corresponding r,r_1,r_2 , and

$$\Gamma(\overline{p}, \overline{r_1}), \Gamma(\overline{p}, \overline{r_2}) \vdash_L r_1 \leftrightarrow r_2.$$

Proof.

Let A be a subalgebra of B such that the inclusion is epic. Let $\overline{p}=A$, $\overline{r}=B\backslash A$ and consider the diagram below.

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \uparrow^{\pi} \\
F(\overline{p}) & \longrightarrow & F(\overline{p}, \overline{r})
\end{array}$$

Let $\Gamma=\pi^{-1}(\{1\})$. We claim that Γ implicitly defines \overline{r} . Indeed, consider a map $h\colon F(\overline{p},\overline{r_1},\overline{r_2})\to C$ such that $\Gamma(\overline{p},\overline{r_1})$ and $\Gamma(\overline{p},\overline{r_2})$ are sent to 1. This defines two maps $h_1,h_2\colon F(\overline{p},\overline{r})\to C$ (with $h_1(p)=h_2(p)=h(p),\,h_1(r)=h(r_1)$ and $h_2(r)=h(r_2)$). Those two maps identify Γ with 1, hence they factor through π by definition of Γ . As they agree on A, and the inclusion $A\to B$ is epic, we must have $h_1=h_2$. Therefore $h(r_1)=h_1(r)=h_2(r)=h(r_2)$ for any corresponding r,r_1,r_2 , and

$$\Gamma(\overline{p}, \overline{r_1}), \Gamma(\overline{p}, \overline{r_2}) \vdash_L r_1 \leftrightarrow r_2.$$

This prove that Γ implicitly defines \overline{r} .

Proof.

As Γ implicitly define $\overline{r}\text{,}$ it must also explicitly define it.

Proof.

As Γ implicitly define \overline{r} , it must also explicitly define it. Therefore, for any $r \in \overline{r}$ (or any $b \in B \setminus A$), there is $\phi_r \in F(\overline{p})$ that explicitly defines r relative to Γ . From

$$\Gamma(\overline{p}, \overline{r}) \vdash r \leftrightarrow \phi_r,$$

we deduce that $r = \phi_r$ in B (since B validates Γ).

Proof.

As Γ implicitly define \overline{r} , it must also explicitly define it. Therefore, for any $r \in \overline{r}$ (or any $b \in B \setminus A$), there is $\phi_r \in F(\overline{p})$ that explicitly defines r relative to Γ . From

$$\Gamma(\overline{p}, \overline{r}) \vdash r \leftrightarrow \phi_r,$$

we deduce that $r = \phi_r$ in B (since B validates Γ). Now remember that $\overline{r} = B \backslash A$, so for any $b \in B \backslash A$, there is $\phi_b \in F(\overline{p})$ such that $\phi_b = b$ in B.

Proof.

As Γ implicitly define \overline{r} , it must also explicitly define it. Therefore, for any $r \in \overline{r}$ (or any $b \in B \setminus A$), there is $\phi_r \in F(\overline{p})$ that explicitly defines r relative to Γ . From

$$\Gamma(\overline{p}, \overline{r}) \vdash r \leftrightarrow \phi_r,$$

we deduce that $r=\phi_r$ in B (since B validates Γ). Now remember that $\overline{r}=B\backslash A$, so for any $b\in B\backslash A$, there is $\phi_b\in F(\overline{p})$ such that $\phi_b=b$ in B. As $\overline{p}=A$, this ϕ_b is an element of A, and we are done.

