

Airframe

Summary/ OpenRocket Diagram

- Overall length: 8' 1"
- Nose cone base diameter: 6"
- Nose cone length (ogive): 18"
- Payload section diameter: 6"
- Payload section length: 18"
- Booster section diameter: 6"
- Booster section length: 2'3"

- Motor type: Aerotech L1150 motor
- CG: 39.7" from rear
- CP: 25.7" from rear
- Stability margin: 2.34 calibers
- Thrust to weight ratio: 8.839
- Rail exit velocity: 67.4 ft/s

Materials

- Main body
 - BlueTube
- Nose cone
 - Upper-half polycarbonate
 - To facilitate camera viewing through the nose cone, as required by our payload experiment.
 - Lower-half fiberglass
- Fins
 - Fiberglass with carbon fiber/glue reinforcement
- Motor Mount Tube
 - Phenolic
 - Wood centering rings
- Glue
 - Epoxy/ JB Weld

Airframe Simulation

Booster Section

Payload

Target Detection and Upright Landing

- Detect and differentiate ground targets with camera mounted in nose cone
- Deploy landing legs
 - Simultaneously deploy three parachutes

Payload

Target Detection and Upright Landing

- Legs mounted within airframe wall, pin-closure
 - Spring-loaded hinge
 - Alternative: gas-spring deployment

Payload/Recovery

	PHASE	EVENT				
	1	Ignition.				
	2 Powered flight.					
3 Coasting.						
	4	Drogue parachute deployed at apogee (projected at 5,567 ft. AGL)				
	5	Main parachute deployed at an altitude of 1,000 ft. AGL.				
	6	Camera in the nosecone of the rocket begins target spotting.				
	7	Payload section deploys itself from rocket and deploys its legs and three parachutes.				
	8	All sections of the rocket land with a KE under 75 ft-lbf.				

Recovery

Recovery

Avionics Bay
External Design
-removable door
-covered by an
O-ring

Internal Design -3D printed

Calculating Parachute Sizes

- Drogue Parachute
 - Optimally velocity 50 mph (or 73 ft/s)
 - 1x 24" diameter elliptical parachute with C_d = 1.5
- Main Parachute
 - Payload will detach before rocket lands
 - 1x 72" diameter toroidal parachute with C_d = 2.2
- Payload Parachute
 - 3 parachutes for stabilization
 - 3x 42" diameter elliptical parachute with C_d = 1.5

$$V_{Terminal} = \sqrt{\frac{(2m_{total}g)}{\rho C_1 A_1}}$$

$$m_{total(w/o \ payload)}g = \frac{1}{2}\rho v_{max}^2 C_1 A_1 + \frac{1}{2}\rho v_{max}^2 C_2 A_2$$

Calculating Final KE

- Avionics Bay and Booster
 - Avionics bay: 12.416 ft-lbf
 - o Booster: 34.918 ft-lbf
- Payload
 - Payload: 27.1856 ft-lbf

Safety

General

Safety Officer: Grant Posner

We make sure the team follows codes and regulations and maintains safety, throughout construction, testing, assembly, and launch.

Responsibilities:

- Primary goals
- Others

Team Mentor

Mentor: David Raimondi

President of Livermore Unit of NAR (LUNAR)

Mentor duties:

- Supports team
- Owns project

Personnel Hazards: Greatest Risks

Construction injuries

- Launch safety: energetic devices
 - Subscale tests
 - Full-scale tests/launches

Environmental Risk Analysis

- 1. Minimize any environmental issues during the design phase.
- 2. Be aware of applicable laws and regulations.
- 3. Identify and rate all risks.
- 4. Have containment and remediation plans.

Environmental Ratings for Livermore

Water Contamination

2. Ground Contamination

3. Air Contamination

4. Ecosystem & Animal Risk

5. Human Risk

6. Noise

7. Community Risk

8. Rocket Engine

None

Very Minimal

Very Minimal

Very Minimal

Very Minimal

Very Minimal

Minimal

Minimal

Clean-Up and Disposal of Launch Waste

- 1. Identification of possible hazardous contaminants
- Proper neutralization and disposal of hazardous contaminants
- 3. Post launch cleanup of launch site
- 4. Remediation of contamination, if necessary
- 5. Disposal of non-hazardous waste

Reports/ Outreach

Requirement Compliance Plan

- Have complied with all design requirements
- Delegation of responsibility
- Redundancy
- Track progress
 - (Completed, In Progress, Planned, Not Started)
- Team Derived Requirements

Outreach

Current Events:

- Habitat for Humanity School Trip
- KIPP Bay Area

Appendices

Dimensioned OpenRocket Flysheet

Milestone Review Flysheet

Institution University of California Berkeley

Milestone PDR

Vehicle Properties			
Total Length (in)	96		
Diameter (in)	6		
Gross Lift Off Weigh (lb)	29.25		
Airframe Material	Blue Tube		
Fin Material	Fiberglass		
Coupler Length (in)	6		

Stability Analysis		
Center of Pressure (in from nose)	71.293	
Center of Gravity (in from nose)	57.236	
Static Stability Margin	2.34	
Static Stability Margin (off launch rail)	2.38	
Thrust-to-Weight Ratio	8.839	
Rail Size and Length (in)	96	
Rail Exit Velocity (ft/s)	67.4	

M	otor Properties
Motor Designation	L
Max/Average Thrust (lb)	303/259
Total Impulse (lbf-s)	791
Mass Before/After Burn	8.1/3.9
Liftoff Thrust (lb)	1262
Motor Retention	Aft and fore closure screws

Ascent Analysis	5
Maximum Velocity (ft/s)	747
Maximum Mach Number	0.66
Maximum Acceleration (ft/s^2)	300
Target Apogee (From Simulations)	5697
Stable Velocity (ft/s)	45.25
Distance to Stable Velocity (ft)	4

Recovery System Properties				Recovery System Properties					
Drogue Parachute					Main Parachute				
Manufactu	ırer/Model		Fruity Chutes		Manufacturer/Model Fruity Chutes;			s; Iris Ultra Compa	ct
Siz	ze		24" Elliptical		Size 72		2'' Toroidal		
Altitud	de at Deployme	ent (ft)	5	280	Altitud	Altitude at Deployment (ft)			
Velocit	y at Deploymer	nt (ft/s)		0	Velocity	at Deploymer	nt (ft/s)	66.891	
Terr	minal Velocity (ft/s)	66.891		Terminal Velocity (ft/s)		ft/s)	13.988	
Recov	ery Harness Ma	aterial	Tubular Kevlar		Recovery Harness Material		aterial	Tubular Kevlar	r
Harness Size/Thickness (in)			1/2"		Harness Size/Thickness (in)		ess (in)	1/2"	
Recovery Harness Length (ft)		20		Recovery Harness Length (ft)		igth (ft)	20 (2x)		
Harness/Airframe Interfaces U-Bolt of Boosters Quicklinks of L2 T			Self and secretary and the second	Harness/Airframe Interfaces U-Bolt of Avionics B L2 Tende		s Bay, Bottom Quick nder Descender	klink c		
Kinetic	Section 1	Secti	on 2		Kinetic	Section 1	Section 2		
Energy of Each Section	Booster	avionics and p	ayload		Energy of Each Section	booster	avionics		
(Ft-lbf)	798.463	943.72			(Ft-lbs)	34.918	12.416		

Re	covery Electronics	Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	Perfectflite Stratologger CF Missileworks RRC3	Rocket Locators (Make/Model)	Eggfinder GPS System	
Dadundanau Dlan	Having two different altimeters	Transmitting Frequencies	***Required by CDR***	
Redundancy Plan	that can both launch the drogue and main chutes	Black Powder Mass Drogue Chute (grams)	2.97 g	
Pad Stay Time (Launch Configuration)	2 hours	Black Powder Mass Main Chute (grams)	0.2 g	

stitution University of California Berkeley

Milestone PDR

	Payload				
	Overview				
Payload 1	SAGITTA-VL is designed to execute a "Target Detection and Upright Landing" experiment using an onboard camera housed in the upper airframe and nose cone to identify and distinguish between three differently colored 40 ft. square tarps. The upper airframe section is then ejected, and landed under its own recovery system, deploying legs built into the airframe wall in order to land on the ground upright. The purpose of this experiment is to verify the capability to examine and differentiate features of the landing zone in order to verify safe landing sites or potential ground hazards, and perform an upright landing of a reusable payload.				

	Test Plans, Status, and Results						
Ejection Charge Tests	Have not yet been scheduled. Planning is in progress and first test will occur 1-2 weeks before first sub-scale test flight.						
Sub-scale Test Flights	Scheduled for December 3rd at Livermore Unit NAR (LUNAR). Alternate/back-up launch date scheduled for December 17th at Fresno TRA.						
Full-scale Test Flights	Scheduled for February 4th at Livermore Unit NAR (LUNAR). Alternate/back-up launch date scheduled for February 18th at Fresno TRA.						

Questions?

Thank You