Лабораторная работа №4.

Определение ускорения свободного падения с помощью вращающего диска.

Оборудование: электропроигрыватель, линейка инструментальная, транспортир, два шарика равной массы на нити, листки белой и копировальной бумаги, имеющие форму круга, штатив, спички.

Содержание и метод выполнения работы.

Чтобы вычислить ускорение свободного падения g, надо знать две величины — высоту h и время падения тела t: $g = \frac{2h}{t^2}$

Одну из этих величин h можно измерить с достаточной точностью инструментальной линейкой. Но измерение малого промежутка времени, в течение которого происходит падение шариков с небольшой высоты, требует особого приёма. В данной работе для этой цели применён равномерно вращающийся диск проигрывателя,

делающий известное число оборотов v в минуту. Над диском с помощью штатива укрепляют небольшую пластину, через которую нить с подвешенными на её концах двумя одинаковыми шариками, которые должны находиться на разной высоте строго над одним из радиусов диска. Если пережечь нить, то шарики упадут на вращающийся диск в разные моменты времени t_1 и t_2 .

Между радиусами, проведёнными через точки падения шариков на диск, образуется некоторый центральный угол ф.

Измерив угол поворота ϕ в градусах и зная число оборотов диска ν , можно определить интервал времени между падением шариков $\Delta t = t_2 - t_1 = \frac{\phi}{360\nu}$.

С другой стороны, интервал времени Δt можно определить через время падения шариков t_1 и t_2 : $\Delta t = t_2 - t_1 = \sqrt{\frac{2h_1}{g}} - \sqrt{\frac{2h_2}{g}}$,

следовательно
$$\frac{\phi}{360\nu} = \sqrt{\frac{2h_1}{g}} - \sqrt{\frac{2h_2}{g}}$$
,

откуда

$$g = \frac{(\sqrt{2h_1} - \sqrt{2h_2})^2 \times (360v)^2}{\omega^2}$$

Порядок выполнения работы

- 1. Положите на диск проигрывателя круг из копировальной бумаги чёрным слоем вверх, а на него круг из белой бумаги. На белом круге начертите предварительно один радиус.
- 2. Расположите шарики точно над начерченным радиусом, один на высоте h_1 =10см, а другой на 15 20 см выше. Эти числа внесите в таблицу.
- 3. Включите проигрыватель с частотой вращения v = 78 об/мин, и через некоторое время пережгите нить, соединяющую шарики. Выключите проигрыватель и снимите с него белый круг. Метки, оставленные шариками на этом круге, соедините тонкими линиями точно с центром круга, угол ф между этими линиями измерьте с помощью транспортира. Результаты измерений занесите в таблицу.
- 4. Зная частоту ν вращения диска проигрывателя, расстояния h_1 и h_2 от шариков до диска в начальный момент времени и угол ϕ , вычислите величину ускорения свободного падения тел g.
- 5. Повторите опыт при других высотах h_1 и h_2 . результаты измерений и вычислений занесите в таблицу.

№ опыта	h ₁ , м	h ₂ , м	ν, c ⁻¹	φ , ⁰	g, _M /c ²

Контрольные вопросы.

- ❖ Почему время падения шариков в этой работе не измеряют карманным секундомером?
- ❖ Как измеряется время падения шарика с помощью вращающегося диска?
- ❖ Изменится ли результат в этой работе, если шарики будут иметь массу в два раза больше прежней?
- Изменится ли погрешность результата измерений времени Δt , если расстояние между шариками h_1 h_2 будет больше, чем указанная в опыте?
- ❖ Каковы основные причины погрешностей измерений, возникающих при выполнении данной лабораторной работы?