

Course > Unit 4: ... > Lec. 6: ... > 12. Exe...

12. Exercise: Memorylessness of the geometric

Exercises due Feb 28, 2020 05:29 IST Completed

Exercise: Memorylessness of the geometric

2/2 points (graded)

Let X be a geometric random variable, and assume that $\mathsf{Var}(X) = 5$.

a) What is the conditional variance ${\sf Var}\,(X-4\mid X>4)$?

b) What is the conditional variance $Var(X-8\mid X>4)$?

Solution:

- a) The conditional distribution of X-4 given X>4 is the same geometric PMF that describes the distribution of X. Hence ${\sf Var}\,(X-4\mid X>4)={\sf Var}\,(X)=5$.
- b) In the conditional model (i.e., given that X>4), the random variables X-4 and X-8 differ by a constant. Hence they have the same variance and the answer is again 5.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Topic: Unit 4: Discrete random variables:Lec. 6: Variance; Conditioning on an event; Multiple r.v.'s / 12. Exercise: Memorylessness of the geometric

Hide Discussion

Sho	ow all posts	∨ by	recent activ	vity 🕶
€	Geometric In (b), we are	property e interested in the distribution of X-8 , given that 4 tosses have occured with tails. Wh	iat abo	2
2	Does X-8 m	akes sense when X is between 5 and 8, inclusive?	6 new_	8
2		thon code to illustrate and prove the b) whether the rule of linearity of expectations applies to the second case where the di	stributi	1
∀	_	ght, but the explanation isn't quite what I expected prect answer but not along the same lines of the solution: in the slide regarding pro	<u>perties</u>	3
∀	Getting to t	he solution mathematically?		2
2	Doubt https://en.wik	kipedia.org/wiki/Geometric distribution Under Properties section, different expressi	ons are	1
?		nswer these?	<u>nd, any</u>	7
?	-	e explanations for the solutions to (a) and (b) different? asoning applied in (b) to both parts of the problem. Was that reasoning incorrect for	4 new_ (<u>a)?</u>	9

© All Rights Reserved

