

Politechnika Wrocławska

Systemy RT i embedded

Wykład 9 Interfejsy mikrokontrolerów, cz. I

Wrocław 2013

Plan

- Microncontrollers' interfaces
- SCI
- SPI
- |2C
- OneWire
- I²S

Microcontrollers' interfaces

Types of interfaces

Interface:

- a. equipment or programs designed to communicate information from one system of computing devices or programs to another.
- b. any arrangement for such communication.

Types of interfaces

- Types:
 - Software
 - Hardware
 - Serial
 - Parallel:
 - 4-bit
 - 8-bit
 - 16-bit
 - ...

Serial vs parallel

- Features of serial interfaces:
 - Simplicity:
 - Medium (RS232)
 - Large (OneWire)
 - Perfomance
 - From very small (OneWire) to very large (Ethernet)
 - Implementation difficulties:
 - From small (RS232) to large (Bluetooth)

Serial vs parallel

- Features of parallel interfaces:
 - Simplicity:
 - Medium
 - Perfomance
 - Large or very large (64-bit)
 - Limited by propagation delay, noises
 - Implementation difficulties:
 - Small at low speed
 - Very large at high speeds
 - Problems with large range implmentations

UART interface

UART interface

Features:

- One of the most popular serial interfaces
- Serial, two-wire interface
- Used for internal and external communication
- Original versions (e.g. RS-232C) require many control lines (DB9, DB25)
- Two state logic used, but not TTL!
- Asynchronous data transfer. No clock transmitted!
- Full duplex transmission
- Point to point transmission
- Throughput up to hundreds of kb/s

RS232C

Nume	er	l/iamumale	Oznaczania	Nozwe engislaka	Nozwe poloke		
9 pin	25 pin	Kierunek	Oznaczenie	Nazwa angielska	Nazwa polska		
1	8	DCE - > DTE	DCD	Data Carrier Detected	sygnał wykrycia nośnej		
2	3	DCE - > DTE	RxD	Receive Data	odbiór danych		
3	2	DCE < - DTE	TxD	Transmit Data	transmisja danych		
4	20	DCE < - DTE	DTR	Data Terminal Ready	gotowość terminala 1)		
5	7	DCE - DTE	GND	Signal Ground	masa		
6	6	DCE - > DTE	DSR	Data Set Ready	gotowość "modemu" 1)		
7	4	DCE < - DTE	RTS	Request to Send Data	żądanie wysyłania		
8	5	DCE - > DTE	CTS	Clear to Send Data	gotowość wysyłania		
9	22	DCE - > DTE	RING	Ring indicator	wskaźnik dzwonka		
	9-19; 21; 23-25		NC		nie wykorzystane 2)		

Features:

- Full duplex, asynchronous or **synchronous** communications
- Fractional baud rate generator systems Common programmable transmit and receive baud rate
- Programmable data word length (8 or 9 bits)
- Configurable stop bits support for 1 or 2 stop bits
- Transmitter clock output for synchronous transmission
- Single-wire half-duplex communication
- Configurable multibuffer communication using DMA (direct memory access)
 - Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

- For asynchronous mode only two pins necessary:
 - RX: Receive Data Input
 - TX: Transmit Data Output
- Additional pin necessary for synchrounous mode:
 - SCLK: Transmitter clock output. This pin outputs the transmitter data clock for synchronous transmission
- Pins required in Hardware flow control mode:
 - nCTS: Clear To Send blocks the data transmission at the end of the current transfer when high
 - nRTS: Request to send indicates that the USART is ready to receive a data (when low).

- Important registers:
 - USART_SR status register

			Addres	s offse	et: 0x00	0										
	Reset value: 0x00C0 0000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved															
	15	14	13	12	11	10	. 9	. 8	7	6	5	4	3	2	1	0
	Reserved					CTS	LBD	TXE	TC	RXNE	IDLE	ORE	NF	FE	PE	
						rc_w0	rc_w0	r	rc_w0	rc_w0	r	r	r	r	r	

USART_DR – data register (8-bit value)

USART_BRR – baud rate register

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIV_Mantissa[11:0]								DIV_Fraction[3:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

	Oversampling by 16 (OVER8=0)									
Ba	ud rate7		f _{PCLK} = 8 MH	z	f _{PCLK} = 12 MHz					
S.No	Desired	Actual	Value programmed in the baud rate register	% Error = (Calculated - Desired) B.rate / Desired B.rate	Actual	Value programmed in the baud rate register	% Error			
5	38.4 KBps	38.462 KBps	13	0.16	38.339 KBps	19.5625	0.16			
6	57.6 KBps	57.554 KBps	8.6875	0.08	57.692 KBps	13	0.16			
7	115.2 KBps	115.942 KBps	4.3125	0.64	115.385 KBps	6.5	0.16			
8	230.4 KBps	228.571 KBps	2.1875	0.79	230.769 KBps	3.25	0.16			
9	460.8 KBps	470.588 KBps	1.0625	2.12	461.538 KBps	1.625	0.16			
10	921.6 KBps	NA	NA	NA	NA	NA	NA			
11	2 MBps	NA	NA	NA	NA	NA	NA			
12	3 MBps	NA	NA	NA	NA	NA	NA			

- Important registers:
 - USART CR1 control register
 - USART_CR2 control register
 - USART_CR3 control register

TC/TXE behaviour when transmitting

- Parity control:
 - Parity control generation of parity bit in transmission and parity checking in reception
 - Can be enabled by setting the PCE bit in the USART_CR1 register
 - Parity can be Even or Odd

- Synchronous mode:
 - Full duplex, clock controlled mode used for fast data transfer to **slave** devices

Synchronous mode:

- Half-duplex operation:
 - the TX and RX lines are internally connected
 - the RX pin is no longer used
 - the TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception.

- Continuous operation with DMA:
 - Transmission

- Continuous operation with DMA:
 - Reception

- Hardware flow control:
 - It is possible to control the serial data flow between 2 devices by using the nCTS input and the nRTS output

- Hardware flow control:
 - Request To Send RTS flow control

 nRTS is asserted (tied low) as long as the USART receiver is ready to receive a new data

- Hardware flow control:
 - Clear To Send CTS flow control

 the transmitter checks the nCTS input before transmitting the next frame

- Multiprocessor communication:
 - There is a possibility of performing multiprocessor communication with the USART (several USARTs connected in a network)
 - One of the USARTs is a master its TX output is connected to the RX input of the other USARTs
 - The outputs of slaves are ANDed and connected to the RX of the master
 - Each processor has each own address (soft

USART Interrupts

. .

Interrupt event	Event flag	Enable control bit	
Transmit Data Register Empty	TXE	TXEIE	
CTS flag	CTS	CTSIE	
Transmission Complete	TC	TCIE	
Received Data Ready to be Read	RXNE	RXNEIE	
Overrun Error Detected	ORE	HANEIE	
Idle Line Detected	IDLE	IDLEIE	
Parity Error	PE	PEIE	
Break Flag	LBD	LBDIE	
Noise Flag, Overrun error and Framing Error in multibuffer communication	NF or ORE or FE	EIE	

SPI Interface

SPI interface

Features:

- One of the most popular serial interfaces
- Serial, four-wire interface
- Used for internal communication
- Master-slave architecture
- Two state TTL logic used!
- Fully synchronous data transfer. Clock controlled by the master!
- Full duplex transmission
- Point to point transmission
- Throughput up to tens of Mb/s

SPI - connection

- MISO master input slave output
- MOSI master output slave input
- SCLK serial clock
- SS slave select

SPI - przebieg komunikacji

- Both in Master and in Slave there are implemented shift registers (8-bits), SIPO and PISO type
- Zata are exchanged with the SCK signal
- After 8 (16) clock cycles the data transfer is finished

SPI - configuration

SPI - Multiple devices

Data bus

Daisy chain

- Main features:
 - Full-duplex synchronous transfers on three lines
 - Simplex synchronous transfers on two lines with or without a bidirectional data line
 - 8- or 16-bit transfer frame format selection
 - Master or slave operation
 - Multimaster mode capability
 - Programmable clock polarity and phase
 - Programmable data order with MSB-first or LSB-first shifting
 - Hardware CRC feature for reliable communication
 - 1-byte transmission and reception buffer with DMA capability: Tx and Rx requests

- Half-duplex operation
 - The SPI is capable of operating in half-duplex mode in 2 configurations:
 - 1 clock and 1 bidirectional data wire
 - 1 clock and 1 data wire (receive-only or transmit-only)

Data transfer in full-duplex Master mode

Data transfer in full-duplex Slave mode

- Main registers:
 - SPI_DR 16b data register split into 2 buffers
 - one for writing (Transmit Buffer) and another one for reading (Receive buffer)
 - SPI_SR status register

- Main registers:
 - SPI_CR1 control register 1
 - SPI_CR2 control register 2

- SPI communication using DMA:
 - SPI can be configure to operate at throughput exceeding 10Mb/s
 - To facilitate the transfers, the SPI features a DMA capability implementing a simple request/acknowledge protocol
 - In transmission, a DMA request is issued each time TXE is set to 1. The DMA then writes to the SPI_DR register.
 - In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads the SPI_DR register

Transmission using DMA

Reception using DMA

Interrupts:

. .

Interrupt event	Event flag	Enable Control bit
Transmit buffer empty flag	TXE	TXEIE
Receive buffer not empty flag	RXNE	RXNEIE
Master Mode fault event	MODF	
Overrun error	OVR	ERRIE
CRC error flag	CRCERR	
TI frame format error	FRE	ERRIE

I²C Interface

I²C interface

Features:

- Serial, two-wire interface
- Used for internal communication
- Master-slave architecture
- Two state TTL logic used
- Fully synchronous data transfer. Clock controlled by the master
- Half-duplex transmission
- Point to point transmission
- Data rate 400kb/s (3.4Mb/s in HS mode)

Features:

- Transmission over two lines
- Both lines are open-drain type
- Both lines are pulled-up
- Each device checks, if there is no collision on the line
- Data transfer can be initiated only by the master

I²C -START/STOP

l²C - data transfer

I²C -Acknowledge

I²C - addressing

- Each device has its own unique address
- Address is 7-bit long
- 8-th bit defines if there will be a read (1) or write (0) operation

I²C - special modes

- In the first protocol specifications (1982) the max speed was set to 100 kb/s
- Nex the <u>Fast Mode</u> was introduced with the maximum speed of 400 kb/s
- In 2006 the <u>Fast Mode Plus</u> was defined with maximum speed of 1Mb/s
- With additional logic the, so called, <u>Highspeed Mode</u> can be implemented with maximum speed of 3.4 Mb/s

- Main features:
 - Multimaster capability: the same interface can act as Master or Slave
 - I2C Master features:
 - Clock generation
 - Start and Stop generation
 - I2C Slave features:
 - Programmable I2C Address detection
 - Dual Addressing Capability to acknowledge 2 slave addresses
 - Stop bit detection

- Main features:
 - Generation and detection of 7-bit/10-bit addressing
 - Supports different communication speeds:
 - Standard Speed (up to 100 kHz)
 - Fast Speed (up to 400 kHz)
 - Programmable digital noise filter
 - Optional clock stretching
 - 1-byte buffer with DMA capability

- Modes of operation:
 - Slave transmitter
 - Slave receiver
 - Master transmitter
 - Master receiver
 - By default the module operates in Slave mode
 - The interface automatically switches from slave to Master:
 - after it generates a START condition
 - The interface automatically switches from master to slave:
 - if an arbitration loss
 - a Stop generation occurs, allowing multimaster capability

Slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge, EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2

EV3-1: TxE=1, shift register empty, data register empty, write Data1 in DR.

EV3: TxE=1, shift register not empty, data register empty, cleared by writing DR EV3-2: AF=1; AF is cleared by writing '0' in AF bit of SR1 register.

Slave receiver

Legend: S= Start, S_r = Repeated Start, P= Stop, A= Acknowledge, EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2

EV2: RxNE=1 cleared by reading DR register.

EV4: STOPF=1, cleared by reading SR1 register followed by writing to the CR1 register

Master transmitter

Legend: S= Start, S_r = Repeated Start, P= Stop, A= Acknowledge, EVx= Event (with interrupt if ITEVFEN = 1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2.

EV8_1: TxE=1, shift register empty, data register empty, write Data1 in DR.

EV8: TxE=1, shift register not empty, data register empty, cleared by writing DR register

EV8_2: TxE=1, BTF = 1, Program Stop request. TxE and BTF are cleared by hardware by the Stop condition

EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

Master receiver

Legend: S= Start, S_r = repeated Start, P = Stop, A= Ackowledge, NA = Non-acknowledge, EVx= Event (with interrupt if ITEVFEN=1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2. In 10-bit master receiver mode, this sequence should be followed by writing CR2 with SART = 1.

In case of the reception of 1 byte, the Acknowledge disable must be performed suring EV6 event, i.e. before clearing ADDR flag. EV7: RxNE = 1 cleared by reading DR register.

EV7_1: RxNE = 1 cleared by reading DR register, programming ACK = 0 and STOP request.

EV9: ADD10 = 1, cleared by reading SR1 register followed by writing DR register.

DMA:

- DMA requests (when enabled) are generated only for data transfer
- DMA requests are generated:
 - by Data Register becoming empty in transmission
 - Data Register becoming full in reception

Interrupts:

Interrupt event	Event flag	Enable control bit
Start bit sent (Master)	SB	ITEVFEN
Address sent (Master) or Address matched (Slave)	ADDR	
10-bit header sent (Master)	ADD10	
Stop received (Slave)	STOPF	
Data byte transfer finished	BTF	
Receive buffer not empty	RxNE	ITEVFEN and ITBUFEN
Transmit buffer empty	TxE	
Bus error	BERR	ITERREN
Arbitration loss (Master)	ARLO	
Acknowledge failure	AF	
Overrun/Underrun	OVR	
PEC error	PECERR	
Timeout/Tlow error	TIMEOUT	
SMBus Alert	SMBALERT	

- Main registers:
 - I2C_CCR Clock control register
 - I2C_DR data register
 - I2C_OAR1 Own address register
 - I2C_SR1 status register 1
 - I2C_SR2 status register 2
 - I2C_CR1 control register 1
 - I2C_CR2 control register 2

OneWire Interface

OneWire interface

Features:

- Serial, one-wire interface
- Communcation wire can aalso be used for delivering power supply!
- Used for internal communication but on longer distances
- Master-slave architecture
- Asynchronous data transfer. Data transfer controlled by the master
- Half-duplex transmission
- Point to point transmission
- Data rate 15.4kb/s (standard) or 125kb/s (overdrive)

OneWire - podłączenie master/slave

OneWire - reset/wykrywanie obecności

LEGEND	
PULLUP	
MASTER	
SLAVE	_
SPEED = STANDAR	D (15.4kbps)

Precence detection

OneWire - fazy komunikacji

- Communication has three main phases: RESET, authorisation (ROM commands), data read/write
- Each OneWire device has a unique 64-bit security code

Power supply delivery

I²S Interface

I²S interface

Features:

- Serial, bidirectional bus used to transfer data in electronic devices
- Suitable for connection of digital audio
- Developed by Philips (like I2C)
- Also known abbreviation IIS
- Separated clock and data bus (similar to SPI)
- Transmission is via at least three lines SCK (clock),
 WS (select dates), SD (data) and ground GND
- Speed depends on the type of data being transferred
- Maximum speed exceeds 2 Mb / s (eg 32b data at 44.1kHz)

I²S interface

- Features, cont'd:
 - On the I2S bus there is only one transmitter and one monitoring device (the master)
 - The master can be a transmitter, a receiver or a system of supervising transmission between two slave devices
 - I2S interface transferres data of two channels: left and right
 - Data channels are transmitted on change
 - A large number of devices used for the transmission of additional supervisory controller

I²S configurations

I²S - time dependencies (transmitter)

T = clock period

T_{tr} = minimum allowed clock period for transmitter

 $T > T_{tr}$

* t_{RC} is only relevant for transmitters in slave mode.

Example: Master transmitter with data rate of 2.5MHz (±10%) (all values in ns)

	MIN	TYP	MAX	CONDITION
clock period T	360	400	440	T _{tr} = 360
clock HIGH t _{HC}	160			min > 0.35T = 140 (at typical data rate)
clock LOW t _{LC}	160			min > 0.35T = 140 (at typical data rate)
delay t _{dtr}			300	max < 0.80T = 320 (at typical data rate)
hold time t _{htr}	100			min > 0
clock rise-time t _{RC}			60	max > 0.15T _{tr} = 54 (only relevant in slave mode)

I²S - time dependencies (receiver)

T = clock period

T_r = minimum allowed clock period for transmitter

 $T > T_r$

Example: Slave receiver with data rate of 2.5MHz (±10%) (all values in ns)

	MIN	TYP	MAX	CONDITION
clock period T	360	400	440	T _{tr} = 360
clock HIGH t _{HC}	110			min < 0.35T = 126
clock LOW t _{LC}	110			min < 0.35T = 126
set-up time t _{sr}	60			min < 0.20T = 72
hold time t _{htr}	0			min < 0

I²S - transmitter diagram

125 kontekeiver diagram

CM3001 - Stereo Codec with analog output

- Low-cost system encoder / decoder audio
- Includes digital filters, provides digital signal attenuation, De-emphasis, mild blanking signal (soft-mute) and the detection of silence
- Control via a digital interface

PCM3001 - Block diagram

PCM3001 - I²S

FORMAT 5: FMT[2:0] = 101

DAC: 18-Bit, MSB-First, I2S

ADC: 18-Bit, MSB-First, I2S

T0016-09

Thank you for your attention

References

[1] Reference Manual RM0090, www.st.com