

Lista 8. Posições Relativas, Ângulos e Distâncias

MTM5512 - Geometria Analítica

Para os Exercícios de 1 a 13, $\Sigma = (O, \mathcal{E})$ é um sistema de coordenadas ortogonal no espaço, fixado.

Em cada um dos itens abaixo, estude a posição relativa das retas r e s, cujas equações são dadas por

(a)
$$r: X = (1, -1, 1)_{\Sigma} + \lambda(-2, 1, -1)_{\mathcal{E}}, \ \lambda \in \mathbb{R}, \ e \quad s: \begin{cases} y + z = 3 \\ x + y - z = 6 \end{cases}$$
.

(b)
$$r: \begin{cases} x - y - z = 2 \\ x + y - z = 0 \end{cases}$$
 e $s: \begin{cases} 2x - 3y + z = 5 \\ x + y - 2z = 0 \end{cases}$.

(c)
$$r: \frac{x-1}{3} = \frac{y-5}{3} = \frac{z+2}{5}$$
 e $s: x = -y = \frac{z-1}{4}$.

Exercício 2.....

Dadas as retas

$$r: \begin{cases} x = my - 1 \\ z = y - 1 \end{cases}$$
 $s: x = \frac{y}{m} = z$ $t: -x + z = y = -z - 1,$

encontre os valores de $m \in \mathbb{R}$ de modo que

- (a) $r \in s$ sejam paralelas e não-coincidentes;
- (b) $r, s \in t$ sejam paralelas a um mesmo plano;
- (c) $r \in t$ sejam concorrentes;
- (d) $r \in s$ sejam reversas.

Exercício 3.....

Determine $\alpha, \beta \in \mathbb{R}$ de modo que as retas r e s dadas por $r: X = (1, \alpha, 0)_{\Sigma} + \lambda(1, 2, 1)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$, e s: $\begin{cases} x = z - 2 \\ y = \beta z - 1 \end{cases}$ sejam coplanares e obtenha nesse caso a equação geral do plano que as contém

Exercício 4.....

Em cada um dos itens abaixo, estude a posição relativa da reta r e do plano π .

(a)
$$r: X = (1, 1, 0)_{\Sigma} + \lambda(0, 1, 1)_{\mathcal{E}}, \ \lambda \in \mathbb{R}$$
 e $\pi: x - y - z = 2$

(a)
$$r: X = (1, 1, 0)_{\Sigma} + \lambda(0, 1, 1)_{\mathcal{E}}, \ \lambda \in \mathbb{R}$$
 e $\pi: x - y - z = 2$.
(b) $r: \begin{cases} x - y + z = 0 \\ 2x + y - z - 1 = 0 \end{cases}$ e $\pi: X = (0, \frac{1}{2}, 0)_{\Sigma} + \alpha(1, -\frac{1}{2}, 0)_{\mathcal{E}} + \beta(0, 1, 1)_{\mathcal{E}}, \ \alpha, \beta \in \mathbb{R}$.

Exercício 5.....

Em cada um dos itens abaixo, estude a posição relativa dos planos π_1 e π_2 .

- (a) $\pi_1: X = (1,1,1)_{\Sigma} + \alpha(0,1,1)_{\mathcal{E}} + \beta(-1,2,1)_{\mathcal{E}}$, para $\alpha,\beta \in \mathbb{R}$ e $\pi_2: X = (1,0,0)_{\Sigma} +$ $\alpha(1,-1,0)_{\mathcal{E}} + \beta(-1,-2,-2)_{\mathcal{E}}$, para $\alpha,\beta \in \mathbb{R}$.
- **(b)** $\pi_1: 2x y + 2z 1 = 0$ e $\pi_2: 4x 2y + 4z = 0$.

Obtenha uma equação vetorial da reta s, que contém o ponto $P = (1, 1, 0)_{\Sigma}$, é paralela ou está contida no plano π : 2x + y - z - 3 = 0 e concorrente à reta r: $X = (1,0,0)_{\Sigma} + \lambda(-1,0,1)_{\varepsilon}$, $\lambda \in \mathbb{R}$.

Exercício 7...

Calcule o volume do tetraedro determinado pelas retas r: x = z = 0, s: x = y = 0, t: x - 2y = 0z = 0 e pelo plano $\pi: x + y + z - 5 = 0$.

Em cada um dos itens abaixo, verifique se as retas dadas são ortogonais. Em caso afirmativo, verifique se são perpendiculares.

- (a) $r: X = (1,2,3)_{\Sigma} + \lambda(1,2,1)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$, e s: $X = (2,4,4)_{\Sigma} + \lambda(-1,1,-1)_{\mathcal{E}}$, para
- **(b)** $r: \frac{x-1}{2} = \frac{y-3}{5} = \frac{z}{7} \text{ e } s: (1,3,0)_{\Sigma} + \lambda(0,-7,5)_{\mathcal{E}}, \text{ para } \lambda \in \mathbb{R}.$
- (c) $r: x+3=y=\frac{z}{3} e s: \frac{x-4}{2}=y-4=-z.$

Encontre uma equação vetorial de reta paralela ao plano π : 2x-y+3z-1=0, perpendicular à reta que contém $A = (1,0,1)_{\Sigma}$ e $B = (0,1,2)_{\Sigma}$, e concorrente com a reta $s: X = (4,5,0)_{\Sigma} +$ $\lambda(3,6,1)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$.

Exercício 10.....

Encontre a equação geral do plano que contém o ponto $P = (0, 1, -1)_{\Sigma}$ e é perpendicular à reta $r: X = (0,0,0)_{\Sigma} + \lambda(1,-1,1)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$.

Encontre as coordenadas do ponto simétrico ao ponto $P = (1,4,2)_{\Sigma}$ em relação ao plano π : x - y + z - 2 = 0.

Encontre o ponto simétrico do ponto $P=(1,1,-1)_{\Sigma}$ em relação à reta $r\colon \frac{x+2}{3}=y=z.$

Determine as coordenadas da projeção ortogonal do ponto $P=(4,0,1)_{\Sigma}$ sobre o plano $\pi:3x-$ 4y + 2 = 0.

Exercício 14.....

Determine as coordenadas da projeção ortogonal da reta r: x + 1 = y + 2 = 3z - 3 sobre o plano π : x - y + 2z = 0.

Exercício 15.....

Verifique se os planos abaixo são perpendiculares.

- (a) π_1 : x + y z 2 = 0 e π_2 : 4x 2y + 2z = 0.
- **(b)** $\pi_1: X = (1, -3, 4)_{\Sigma} + \alpha(1, 0, 3)_{\mathcal{E}} + \beta(0, 1, 3), \text{ para } \alpha, \beta \in \mathbb{R} \text{ e } \pi_2: X = (0, 0, 0) +$ $\alpha(1,1,6)_{\mathcal{E}} + \beta(1,-1,0)_{\mathcal{E}}$, para $\alpha,\beta \in \mathbb{R}$.

Exercício 16.....

Um cubo tem diagonal AB onde $A = (1,1,0)_{\Sigma}$ e $B = (1,3,\sqrt{2})_{\Sigma}$, e uma de suas faces está contida na plano π : x - y = 0. Determine todos os seus vértices.

Exercício 17.....

Encontre o cosseno do ângulo formado pelas retas r: $\begin{cases} \frac{x+2}{3} = 3 - z \\ y = 0 \end{cases}$ e s: $\begin{cases} \frac{x+1}{2} = z + 3 \\ x - y = 0 \end{cases}$.

Exercício 18.....

Calcule o ângulo (em radianos) entre os planos π_1 : 2x+y-z-1=0 e π_2 : x-y+3z-10=0.

Exercício 19
Encontre a equação vetorial da reta que contém o ponto $P = (1, -2, 3)_{\Sigma}$ e que forma ângulos de $\frac{\pi}{4}$ e $\frac{\pi}{3}$ radianos com os eixos Ox e Oy , respectivamente.
Exercício 20
Exercício 21
Calcule a distância do ponto $P = (0, -1, 0)_{\Sigma}$ à reta r : $\begin{cases} x = 2z - 1 \\ y = z + 1 = 0 \end{cases}$.
Exercício 22
Exercício 23
Calcule a distância do ponto $P = (0, 0 - 6)_{\Sigma}$ ao plano $\pi \colon x - 2y - 2z - 6 = 0$.
Exercício 24
Calcule a distância entre os planos π_1 : $\begin{cases} x = 2 - \alpha - \beta \\ y = \beta \end{cases}$, para $\alpha, \beta \in \mathbb{R}$ e π_2 : $4x - 2y + 4z - z = 0$
21 = 0.
Exercício 25
Obtenha as equações do lugar geométrico dos pontos do espaço que são equidistantes das retas r : $\begin{cases} x=4 \\ y+z=3 \end{cases}, s \colon \begin{cases} 3x+y+z=0 \\ x-y-z=0 \end{cases} \text{ e } t \colon x-y=x+z=1+z.$
Exercício 26. Obtenha a equação geral do plano que contém os pontos $A=(1,1,1)_\Sigma$ e $B=(0,2,1)_\Sigma$ e equidistantes de $C=(2,3,0)_\Sigma$ e $D=(0,1,2)_\Sigma$.
Exercício 27. Encontre as equações do lugar geométrico dos pontos do espaço cujas distâncias ao plano π_1 : $2x - y + 2z - 6 = 0$ são o dobro de suas distâncias ao plano π_2 : $x + 2y + 2z + 3 = 0$.
Exercício 28