Particle Filter

Project #4

Introduction

In this assignment you will use the same data as the Nonlinear Kalman Filter assignment. In this assignment, instead of implementing a Kalman Filter you will implement a Particle Filter for the estimation. Refer to the introduction in the Nonlinear Kalman Filter on the input data and system models. We will be using the same 15 state model.

Task 1: Particle Filter Implementation

Your first task is to implement a particle filter to track the state of the quadrotor. The algorithm for a particle filter is readily implemented by using an object-style range-based for loop. However, such loops tend to be computation inefficient, particularly in Python. Therefore, I recommend using a vectorized approach and storing the particle list in an array and making use of linear algebra libraries (NumPy, Eigen, et cetera) to perform the actual computation. Again, despite this linear algebra-based implementation, I still strongly recommend not using MATLAB. If you choose to use a vectorized approach, be careful and understand how the library orders operations. Python is row-wise (ex: N x 15).

In the prediction step, for each particle you need to take the original particle, sample from the noise distribution, and use the measured inputs plus noise to determine the future state of that particle using the process model. You should use the noise covariance values you found in the Nonlinear Kalman Filter assignment as a starting point for the process noise.

In the update step, you need to use the observation model and the measurements to calculate its importance weight for each particle and then use the low variance resampling algorithm to find your updated particle set. Again, you should use the covariance values you found in the previous assignment as a starting point for the observation model.

Task 2: Navigation solution and particle count investigation

One notable drawback of the particle filter is the lack of a ready navigation solution. While a Kalman filter provides a mean and covariance, the particle filter has only the particle distribution. Therefore we must introduce some method of sampling the particle field to determine a singular position estimate. There are a couple ways of doing this, please examine the error from truth by taking the position estimate as: the highest weighted particle, the average over all particles, and the weighted average over all particles. Finally, compute the root-mean-square error over all particles with respect to truth to have a general gauge of how your implementation is performing. RMSE is the typical error characterization of a particle filter, however it is only useful when you have a ground truth estimate.

With the error and navigation solution metrics as defined above established, investigate the performance of the particle filter for a 250, 500, 750, 1000, 2000, 3000, 4000, and 5000 particles. Are there any trends to these results?

Task 3: Comparison to the nonlinear Kalman filter

Finally, please discuss in 2-3 paragraphs the results from this assignment as well as the previous Nonlinear Kalman Filter assignment. Some specific points to discuss:

- Ease of implementation
 - O Which method was easier to write the code for? Why?
 - O Which method was easier to tune parameters for?
- Speed of code
 - O Which method runs faster?
 - O Why might this be important?
- Accuracy of results: which method yielded more accurate tracking results?

Grading Rubric

Task 1	Excellent – 5 pts	Acceptable – 4 pts	Marginal – 2 pts	Unacceptable – 0 pts
	The student has	The student has	The student has	The student fails to
	correctly	correctly implemented	attempted to	implement a particle
	implemented a	the particle filter	implement a	filter.
	particle filter and	including the	particle filter, but	
	through iteration	resampling method	there are minor	
	arrived at accurate	but lacks sufficient	errors.	
	tuning parameters.	tuning.		
Task 2	Excellent – 5 pts	Acceptable – 4 pts	Marginal – 2 pts	Unacceptable – 0 pts
	The student has	The student has	The student has	No answer was given,
	correctly	correctly implemented	attempted to	the response was
	implemented the	the error metrics and	implement the	lacking sufficient detail,
	error metrics and	navigation solution	error metrics and	or the answer was
	navigation solution	methods and provided	navigation	completely incorrect.
	methods and	a basic response.	solutions but	
	provided a detailed	·	there are some	
	response to the		minor errors.	
	question asked			
	with plots.			
Task 3	Excellent – 5 pts	Acceptable – 4 pts	Marginal – 2 pts	Unacceptable – 0 pts
	The student has	The student has	The student has	No answer was given,
	provided a	provided a response	provided a	the response was
	response that	that sufficiently	minimal analysis	lacking sufficient detail,
	sufficiently answers	answers the	and does not	or the answer was
	the questions and	questions.	draw from their	completely incorrect.
	reflects on how		results.	
	that relates to their			
	own			
	implementation.			
Code	Excellent – 5 pts	Acceptable – 4 pts	Marginal – 2 pts	Unacceptable – 0 pts
Quality	The student has	The student's code	The student's	The student's code fails
	intuitive, concise,	makes sense given the	code is poorly	to run, runs incorrectly,
	well written code	context of the	structured and	or otherwise fails to
	that follows a	problem. Some	not intuitive.	address the problem.
	logical and	comments or	Little to no	
	organized	documentation is	comments or	
	structure.	provided.	documentation is	
	Comments are		provided.	
	provided and			
	document the			
	functionality of the			
	code.			