Facultad de Ingeniería I. Electrónica

Nombre:			
NOUDLE.	Marshana		
	MOUNDIE.		

1. a) Demuestre que si f y g son funciones absolutamente integrables, entonces:

$$\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$$

b) Demuestre que si \widehat{f} es la transformada de Fourier de f, entonces:

$$\widehat{\left[f(t)\cos(w_0t)\right]} = \frac{1}{2} \left[\widehat{f}(w+w_0) + \widehat{f}(w-w_0)\right]$$

- 2. Conociendo que si $f(t) = \frac{t}{t^2 + b^2}$, entonces $\widehat{f}(w) = -\frac{\pi i w}{b} e^{-bw}$, determine, en términos de la transformada de Fuourier de f:
- a) la transformada de Fourier de $g(t)=\frac{5t^3-t^2+5t+1}{\left(t^2+1\right)^2}$
- b) la transformada de Fourier de $h(t) = \frac{t \sin(2\pi t/5)}{t^2 + 9}$
- 3 a) Demuestre que: si f es una señal de banda limitada, con ancho de banda L, y con transformada compleja de Fourier:

$$\widehat{f}(w) = \sum_{k=-\infty}^{\infty} c_k e^{\left(\frac{k\pi w}{L}\right)i} \qquad \text{con} \qquad c_k = \frac{1}{2L} \int_{-L}^{L} e^{-\left(\frac{k\pi w}{L}\right)i} \widehat{f}(w) dw$$

entonces:

$$f(t) = \sum_{n = -\infty}^{\infty} f\left(\frac{n\pi}{L}\right) \frac{\sin(Lt - n\pi)}{(t - n\pi)}$$

b)Resuelva la ecuación diferencial parcial:

$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} + x \frac{\partial^{2} u}{\partial x \partial y} - \frac{\partial u}{\partial y} - y^{2} u = 0$$

Facultad de Ingeniería I. Electrónica

Nombre:		
MOHIDLE.		

1. a) Demuestre que si f y g son funciones absolutamente integrables, entonces:

$$\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$$

b) Demuestre que si \widehat{f} es la transformada de Fourier de f, entonces:

$$\widehat{\left[f(t)\sin(w_0t)\right]} = \frac{i}{2} \left[\widehat{f}(w+w_0) - \widehat{f}(w-w_0)\right]$$

- 2. Conociendo que, para a > 0, si $f(t) = e^{-at^2}$, entonces $\widehat{f}(w) = e^{\frac{w^2}{4a}}$, determine, en términos de la transformada de Fuourier de f:
- a) La transformada de Fourier de $g(t) = e^{-5t^2} \sin(\frac{\pi t}{3})$,
- b) La transformada de Fourier de $h(t) = -6(1 t + t^2)e^{-3t^2}$
- 3 a) Demuestre que: si f es una señal de banda limitada, con ancho de banda L, y con transformada compleja de Fourier:

$$\widehat{f}(w) = \sum_{k=-\infty}^{\infty} c_k e^{\left(\frac{k\pi w}{L}\right)i} \qquad \text{con} \qquad c_k = \frac{1}{2L} \int_{-L}^{L} e^{-\left(\frac{k\pi w}{L}\right)i} \widehat{f}(w) dw$$

entonces:

$$f(t) = \sum_{n=-\infty}^{\infty} f\left(\frac{n\pi}{L}\right) \frac{\sin(Lt - n\pi)}{(t - n\pi)}$$

b)Resuelva la ecuación diferencial parcial:

$$t^{2} \frac{\partial^{2} u}{\partial y^{2}} + y \frac{\partial^{2} u}{\partial y \partial t} - \frac{\partial u}{\partial t} - t^{2} u = 0$$

Facultad de Ingeniería I. Electrónica

Nombre:

1. a) Si \hat{f} es la transformada de Fourier de f, determine la transformada de: $\widehat{f(at-b)}$

b) Demuestre que si \widehat{f} es la transformada de Fourier de f, entonces:

$$\widehat{\left[f(t)\sin(w_0t)\right]} = \frac{i}{2} \left[\widehat{f}(w+w_0) - \widehat{f}(w-w_0)\right]$$

2. Conociendo que si $f(t) = \frac{t}{t^2 + b^2}$, entonces $\widehat{f}(w) = -\frac{\pi i w}{b} e^{-bw}$, determine:

a) la transformada de Fourier de $g(t) = \frac{5t^3 - t^2 + 5t + 1}{\left(t^2 + 1\right)^2}$

b) la transformada de Fourier de $h(t) = \frac{t \cos(t/5)}{t^2 + 9}$

3a) Demuestre que: si f es una señal de banda limitada, con ancho de banda
 $L,\,{\bf y}$ con transformada compleja de Fourier:

$$\widehat{f}(w) = \sum_{k=-\infty}^{\infty} c_k e^{\left(\frac{k\pi w}{L}\right)i} \qquad \text{con} \qquad c_k = \frac{1}{2L} \int_{-L}^{L} e^{-\left(\frac{k\pi w}{L}\right)i} \widehat{f}(w) dw$$

entonces:

$$f(t) = \sum_{n = -\infty}^{\infty} f\left(\frac{n\pi}{L}\right) \frac{\sin(Lt - n\pi)}{(t - n\pi)}$$

b) Resuelva la ecuación diferencial parcial:

$$t^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial^2 u}{\partial y \partial t} - \frac{\partial u}{\partial t} = 0$$

Facultad de Ingeniería I. Electrónica

Nombre:		
monupre:		

1. a) Demuestre que si f y g son funciones absolutamente integrables, entonces:

$$\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$$

b) Demuestre que si \widehat{f} es la transformada de Fourier de f, entonces:

$$\widehat{\left[f(t)\cos(w_0t)\right]} = \frac{1}{2} \left[\widehat{f}(w+w_0) + \widehat{f}(w-w_0)\right]$$

2. Conociendo que si $f(t) = \frac{t}{t^2 + b^2}$, entonces $\hat{f}(w) = -\frac{\pi i w}{b} e^{-bw}$, determine, en términos de la transformada de Fuourier de f:

a) la transformada de Fourier de $g(t) = \frac{5t^3 - t^2 + 5t + 1}{\left(t^2 + 1\right)^2}$

b) la transformada de Fourier de $h(t) = \frac{t \sin(2\pi t/5)}{t^2 + 9}$

3. a) Conociendo que, para a>0, si $f(t)=e^{-at^2}$, entonces $\widehat{f}(w)=e^{\frac{w^2}{4a}}$, determine, en términos de la transformada de Fuourier de f:

a) La transformada de Fourier de $g(t)=e^{-\tilde{5}t^2}\sin\left(\frac{\pi t}{3}\right),$

b) La transformada de Fourier de $h(t) = -6(1 - t + t^2)e^{-3t^2}$

b)Resuelva la ecuación diferencial parcial:

$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} + x \frac{\partial^{2} u}{\partial x \partial y} - \frac{\partial u}{\partial y} - y^{2} u = 0$$