

- 1 In the claims:
- 2 1. A method of depositing solder, the method comprising the steps of:
- 3 providing a substrate that includes a substantially planar surface and a
- 4 sloped surface adjacent to the substantially planar surface;
- 5 forming a wettable layer on a portion of the sloped surface; and
- 6 forming a solder layer on a first portion of the wettable layer.
- 7 2. The method of claim 1, wherein the providing step comprises the step of:
- 8 etching the substrate to form the sloped surface.
- 9 3. The method of claim 2, wherein the providing step further comprises the step of:
- 10 anisotropically etching completely through the substrate to form the sloped
- 11 surface.
- 12 4. The method of claim 1, wherein the step of forming the wettable layer comprises
- 13 the step of:
- 14 depositing a metal layer as the wettable layer.
- 15 5. The method of claim 1, further comprising the step of:
- 16 adhering, prior to the step of forming the solder layer, an organic film to
- 17 the substantially planar surface of the substrate.
- 18 6. The method of claim 5, wherein the adhering step substantially prevents the
- 19 organic film from adhering to the sloped surface of the substrate.
- 20 7. The method of claim 5, further comprising the step of:
- 21 removing, prior to the step of forming the solder layer, a portion of the
- 22 organic film adjacent to the wettable layer, forming a gap between the organic
- 23 film and the wettable layer on the sloped surface of the substrate.
- 24 8. The method of claim 7, wherein the step of forming the solder layer comprises the
- 25 step of:
- 26 substantially filling the volume of the portion of the organic film that was
- 27 removed from the organic film with solder paste.
- 28 9. The method of claim 8, wherein the forming the solder layer step further
- 29 comprises heating the solder paste to about 180°C or less.
- 30 10. The method of claim 5, wherein the adhering step further comprises adhering the
- 31 organic film to a substantially planar portion of the wettable layer on the
- 32 substantially planar surface of the substrate.
- 33 11. The method of claim 1, further comprising the step of:

- 1 forming a coating layer on the wettable layer prior to the formation of the
2 solder layer,
3 wherein the coating layer prevents the formation of the solder layer on the
4 surface of the wettable layer occupied by the coating layer.
- 5 12. The method of claim 11, wherein the coating layer is a non-wettable layer.
- 6 13. A semiconductor device comprising:
7 a substrate having a substantially planar surface and an interior sloped
8 surface;
9 a wettable layer adhered to a portion of the interior sloped surface; and
10 a solder layer adhered to a first portion of the wettable layer.
- 11 14. The semiconductor device of claim 13, wherein the wettable layer comprises a
12 metal.
- 13 15. The semiconductor device of claim 13, further comprising a coating layer adhered
14 to a second portion of the wettable layer.
- 15 16. The semiconductor device of claim 15, wherein the coating layer is a non-wettable
16 layer.
- 17 17. The semiconductor device of claim 16, wherein the coating layer comprises a dielectric material.
- 19 18. The semiconductor device of claim 13, wherein the solder layer comprises a tin-
20 bismuth compound.
- 21 19. The semiconductor device of claim 13, wherein the solder layer comprises a eutectic tin-lead compound.
- 23 20. The semiconductor device of claim 13, further comprising a rigid organic film
24 adhered to a portion of the substantially planar surface of the substrate and
25 adjacent to a portion of the sloped surface.
- 26 21. A method of depositing solder, the method comprising the steps of:
27 providing a semiconductor substrate that includes a substantially planar
28 surface and a sloped surface that has been etched into the semiconductor substrate,
29 adjacent to the substantially planar surface;
30 forming a wettable layer on a portion of the sloped surface; and
31 forming a solder layer on the wettable layer.
- 33 22. The method of claim 21, wherein the step of forming the wettable layer comprises
34 the step of:

- 1 depositing a metal layer as the wettable layer.
- 2 23. The method of claim 21, further comprising the step of:
- 3 adhering, prior to the step of forming the solder layer, an organic film to
- 4 the substantially planar surface of the semiconductor substrate.
- 5 24. The method of claim 23, further comprising the step of:
- 6 removing, prior to the step of forming the solder layer, a portion of the
- 7 organic film adjacent to the wettable layer, forming a gap between the organic
- 8 film and the wettable layer on the sloped surface of the semiconductor substrate.
- 9 25. The method of claim 24, wherein the step of forming the solder layer comprises
- 10 the step of:
- 11 substantially filling the volume of the portion of the organic film that was
- 12 removed from the organic film with solder paste and heating the solder paste.
- 13 26. The method of claim 23, wherein the adhering step further comprises adhering the
- 14 organic film to a substantially planar portion of the wettable layer on the
- 15 substantially planar surface of the semiconductor substrate.
- 16 27. The method of claim 21, further comprising the step of:
- 17 forming a coating layer on the wettable layer prior to the formation of the
- 18 solder layer,
- 19 wherein the coating layer prevents the formation of the solder layer on the
- 20 surface of the wettable layer occupied by the coating layer.
- 21 28. The method of claim 27, wherein the coating layer is a non-wettable layer.