GaussBetti

Release 2.0.0

Siddharth

CONTENTS

1	topologicalFunc	1
2	Utilities	3
3	gaussClass	7
4	rocGen	9
5	Indices and tables	11
Ру	thon Module Index	13
In	dex	15

TOPOLOGICALFUNC

topologicalFunc . **GaussianFiltration** (*GaussianRandomField*, *type='lower'*) Generates Filtration for the Gaussian Random Field.

Parameters

- **GaussianRandomField** (*array*) numpy 2-D array. The Gaussian Random Field generated from the class using Gen_GRF method.
- **type** (*string*) Takes ipnut either 'lower' or 'upper' for lower or upper filtration.
- nsize (integer) Size of the Gaussian Random Fields grid.

Returns Filtration Diagram

Return type Dionysus object

topologicalFunc.**GenerateBettiP**(*Filtraion*, *thresholds_start*, *thresholds_stop*, *type='lower'*)

Generates the Betti numbers from the Filtration diagram.

Parameters

- **Filtration** (*Dionysus object*) Output of GaussianFiltration.
- **thresholds_start** (*float*) start value for generating superlevels of the Gaussian Random field .
- **thresholds_stop** (*float*) stop value for generating superlevels of the Gaussian Random field.

Returns Multidimensaion array containing Betti numbers for different dimensions

Return type Numpy array

topologicalFunc.GenerateGenus(Betti_array)

Generates the Genus curve for gaussian random field using Betti arrays.

Parameters array (Betti) – Betti array from GenerateBettiP.

Returns 1-D array containing Genus curve for the Gaussian random field.

Return type Numpy array

TWO

UTILITIES

utilities. Generate_BettiGenus_array (Nsize, power_index_null, power_index_test, average, iteration, filtration threshold start, filtration threshold stop, type1='lower')

Generate_Likelihood_Array

Generates the Betti and Genus curves for specified parameters.

Parameters

- Nsize (integer) grid size of the Gaussian Random Field
- power_index_null (float) Power spectral index of Null Hypothesis
- power_index_test (float) Power spectral index of Test Hypothesis
- average (integer) No. of times the betti curves need to be averaged
- iteration (integer) Size of the arrays generated
- filtration_threshold_start (float) Start value for generating filtraion from dionysus
- **filtration_threshold_stop** (*float*) Stop value for generation filtration from dionysus
- type Type of filtration accepted values are 'lower' 'upper

Returns array of Betti and Genus curves

Return type numpy array

utilities.**Generate_Likelihood_Array**(*Nsize*, *power_index_null*, *power_index_test*, *iteration*) Generates the array of likelihood ratios for making ROC curves.

Parameters

- Nsize (integer) grid size of the Gaussian Random Field
- power_index_null (float) Power spectral index of Null Hypothesis
- power_index_test (float) Power spectral index of Test Hypothesis
- iteration (integer) Size of the likelihood ratio array generated

Returns array of likelihood ratios

Return type numpy array

utilities.KLdivergence(x, y1, y2)

Calculates the KL divergence for 2 different Gaussian Random Field.

Parameters

- x (array) -
- y1 (array) Gausian Random Field of null hypothesis as a 1-D array
- y2 (array) Gaussian Random Field of test hypothesis as a 1-D array

Returns KL divergence

Return type float

utilities.plotROC(PFA, PD, nsize, num_iter, H0, H1, type1, Betti='default')

Plots the PFA and PD ROC graph with the labels provided through parameters.

Parameters

- **PFA** (*array*) numpy vector. The PFA array generated during ROC gen.
- PD (array) numpy vector. THe PD array generated during ROC gen.
- nsize (integer) Size of the Gaussian Random Fields grid.
- num_iter (integer) Number of iteration for which ROC gen is run.
- **HO** (*float*) Power spectral index of Null Hypothesis.
- **H1** (*float*) Power spectral index of Test Hypothesis.
- type1 (string) type1 of the ROC curve generated takes value 'likelihood', 'betti', 'genus
- **Betti** (*integer*) Dimension of Betti curve not needed when type = likelihood

Returns None

Return type None

utilities.readROC(nsize, num_iter, H0, H1, type1, Betti='default')

Reads the PFA and PD array from the files generated using saveROC.

Parameters

- nsize (integer) Size of the Gaussian Random Fields grid.
- num_iter (integer) Number of iteration for which ROC gen is run.
- **H0** (*integer*) Power spectral index of Null Hypothesis.
- **H1** (*integer*) Power spectral index of Test Hypothesis.
- type1 (string) type1 of the ROC curve generated takes value 'likelihood', 'betti', 'genus
- **Betti** (*integer*) Dimension of Betti curve not needed when type = likelihood

Returns Returns PFA and PD arrays

Return type Numpy Array

utilities.saveROC(PFA, PD, nsize, num_iter, H0, H1, type1, Betti='default')
SaveROC

Saves the PFA and PD array with the labels provided through parameters.

Parameters

- **PFA** (*array*) numpy vector. The PFA array generated during ROC gen.
- PD (array) numpy vector. THe PD array generated during ROC gen.
- nsize (integer) Size of the Gaussian Random Fields grid.
- num_iter (integer) Number of iteration for which ROC gen is run.

- **H0** (*float*) Power spectral index of Null Hypothesis.
- **H1** (*float*) Power spectral index of Test Hypothesis.
- type1 (string) type1 of the ROC curve generated takes value 'likelihood', 'betti', 'genus
- Betti (integer) Dimension of Betti curve not needed when type = likelihood

Returns None

Return type None

6 Chapter 2. Utilities

THREE

GAUSSCLASS

class gaussClass.GaussianRandomField(Nsize, n)

The class for making Gaussian random field with specified spectral index and size of grid.

Nzise

size of the grid.

Type int

n

Spectral index of the power law used to generate the Gaussian Random Field.

Type int

k_ind

Grid in the fourier space.

Type array

PowerSpectrum

The power spectrum grid made using the spectral index used to make the Gaussian Random Field.

Type array

corr_s

Correlation matrix in the fourier space.

Type array

corr f

Correlation matrix in the spatial space.

Type array

Gen_GRF(type='grid')

GenerateBettiP

Generates the Gaussian Random field with the specified paramters.

Parameters type (str) – Takes either 'grid' or 'array' in string format

Returns: Numpy array: Gaussian Random field

PowerSpectrum_grid_generator()

Generates the powerspectrum grid.

fourier_space_ind()

Generates the fourier space grid.

gen_correlation()

Generates the correlation matrices in fourier and spatial spcae.

FOUR

ROCGEN

rocGen.BettiROC(Betti_array0, Betti_array1, threshold_step)

Generates PFA and PD values from Betti curves using the specified parameters

Parameters

- **Betti_array0** (*array*) multiple Betti curves for null hypothesis generated from GenerateBetti function for a one dimension.
- **Betti_array1** (*array*) multiple Betti curves for test hypothesis generated from GenerateBetti function for a one dimension.
- **threshold_step** (*float*) Step value for generating threshold array.

Returns PFA and PD values

Return type Array

rocGen.GenusROC(Genus_array0, Genus_array1, threshold_step)

Generates PFA and PD values from Genus curves using the specified parameters

Parameters

- **Genus_array0** (*array*) multiple Genus curves for null hypothesis generated from GenerateBetti function for a one dimension.
- **Genus_array1** (*array*) multiple Genus curves for test hypothesis generated from GenerateBetti function for a one dimension.
- index (integer) index at which the Genus value is calculated and compared with threshold.
- **threshold_step** (*float*) Step value for generating threshold array.

Returns PFA and PD values

Return type Array

rocGen.LikelihoodROC(likelihoodratio0, likelihoodratio1, threshold_step)

Generates PFA and PD values from likelihood ratios of the Gaussian Random Field using the specified parameters

Parameters

- **likelihoodratio0** (*array*) arrays containing likelihood ratios of the Gaussian Random field of type 1 see doc for likelihoodratio .
- **likelihoodratio1** 2-D arrays containing likelihood ratios of the Gaussian Random field of type 2 see doc for likelihoodratio
- **threshold_step** (*float*) Step value for generating threshold array.

Returns PFA and PD values

Return type Array

10 Chapter 4. rocGen

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
g
gaussClass, 7

r
rocGen, 9
t
topologicalFunc, 1
U
utilities, 3
```

14 Python Module Index

INDEX

В	N
<pre>BettiROC() (in module rocGen), 9</pre>	n (gaussClass.GaussianRandomField attribute), 7 Nzise (gaussClass.GaussianRandomField attribute), 7
C corr_f (gaussClass.GaussianRandomField attribute), 7	P
$\verb corr_s (gauss Class. Gaussian Random Field\ attribute), 7$	plotROC() (in module utilities), 4 PowerSpectrum (gaussClass.GaussianRandomField at-
F fourier_space_ind() (gauss-	<pre>tribute), 7 PowerSpectrum_grid_generator() (gauss-</pre>
Class.GaussianRandomField method), 7	Class.GaussianRandomField method), 7
G	R
gaussClass	readROC() (in module utilities), 4
module, 7	rocGen
GaussianFiltration() (in module topologicalFunc), 1 GaussianRandomField (class in gaussClass), 7	module, 9
gen_correlation() (gauss-	S
Class.GaussianRandomField method), 7	<pre>saveROC() (in module utilities), 4</pre>
Gen_GRF() (gaussClass.GaussianRandomField method), 7	Т
<pre>Generate_BettiGenus_array() (in module utilities), 3</pre>	topologicalFunc module, 1
<pre>Generate_Likelihood_Array() (in module utilities), 3</pre>	U
GenerateBettiP() (in module topologicalFunc), 1 GenerateGenus() (in module topologicalFunc), 1	utilities
GenusROC() (in module rocGen), 9	module, 3
K	
k_ind (gaussClass.GaussianRandomField attribute), 7 KLdivergence() (in module utilities), 3	
L	
LikelihoodROC() (in module rocGen), 9	
M	
module	
gaussClass, 7	
rocGen, 9 topologicalFunc, 1	
utilities, 3	