Egzamin licencjacki – 30 czerwca 2006

Matematyka I

Za poprawne rozwiązanie całego zadania można otrzymać 9 punktów. 3 punkty dają ocenę dostateczną, 4 — dostateczną z plusem, 5 — dobrą, 6 — dobrą z plusem, a 7 — ocenę bardzo dobrą.

Mówimy, że zbiory X i Y są równoliczne, jeśli istnieje bijekcja (czyli funkcja różnowartościowa i "na") ze zbioru X na zbiór Y.

- 1. (1 punkt) Podaj definicję funkcji różnowartościowej.
- 2. (1 punkt) Podaj definicję funkcji "na".
- 3. (1 punkt) Podaj przykład bijekcji ze zbioru liczb naturalnych na zbiór liczb całkowitych.
- 4. Udowodnij, że dla dowolnego zbioru X rodzina $\mathcal{P}(X)$ wszystkich jego podzbiorów jest równoliczna ze zbiorem $\{0,1\}^X$ wszystkich funkcji ze zbioru X w zbiór $\{0,1\}$:
 - (2 punkty) zdefiniuj bijekcję $f: \mathcal{P}(X) \to \{0,1\}^X$,
 - \bullet (2 punkty) udowodnij, że f jest różnowartościowa,
 - (2 punkty) udowodnij, że f jest "na".

Matematyka II

Zadanie 1.

Znaleźć macierz odwrotną do macierzy o elementach rzeczywistych: $\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right].$

Zadanie 2.

Egzamin licencjacki – 30 czerwca 2006

Algorytmy i Struktury Danych

Jakie zadania powinna efektywnie realizować kolejka priorytetowa? Podaj kilka przykładów realizacji tej struktury danych. Opisz jedną wybraną implementację kolejki priorytetowej i przeanalizuj złożoność czasową poszczególnych operacji.

Zastanów się, jak można wykorzystać kolejkę priorytetową w algorytmie Prima, który służy do znajdowania minimalnego~drzewa~rozpinającego w grafie spójnym z nieujemnymi wagami na krawędziach G=(V,E,d), gdzie V jest zbiorem wierzchołków, E zbiorem krawędzi a funkcja $d:E\mapsto \mathbf{R}_+$ to wagi krawędzi. (Algorytm Prima rozpatruje kolejne krawędzie zaczynając od najmniejszej w sensie wagi). Uzasadnij poprawność tego algorytmu i oszacuj jego złożoność obliczeniową przed zastosowaniem kolejki i po jej zastosowaniu.

Matematyka dyskretna

Niech a_n oznacza liczbę sposobów pokrycia prostokąta $3 \times n$ (dowolnie obróconymi) prostokątami 1×3 . Podaj zależność rekurencyjną, z której można wyliczyć a_n na podstawie wartości a_k dla k < n. Jakie są warunki początkowe dla tej zależności? Korzystając z tej zależności podaj funkcję tworzacą ciągu a_n .

Metody numeryczne

- Niech c będzie liczbą rzeczywistą dodatnią. Jak można bardzo dokładnie przybliżyć wartość $c^{-\frac{1}{2}}$ wykonując jedynie dodawania, odejmowania i mnożenia? Zaproponuj dokładny algorytm.
- Jak definiuje się wykładnik zbieżności iteracyjnej metody szukania miejsca zerowego funkcji ciągłej? Porównaj pod względem niezawodności i szybkości metody bisekcji oraz siecznych.