$$a,b\in\mathbb{R},\ n\in\mathbb{N}$$

$$\forall\ a>0,n>1\ :\ \exists!\ b>0\ :\ b^n=a$$

$$\mathrm{jele:}\ b=a^{\frac{1}{n}}$$

Tulajdonság:

$$(a^{\frac{1}{n}})^m = (a^m)^{\frac{1}{n}}$$

Legyen a > 1 és

 $a_{-} = \{b : b^{n} < a\}$ $a_{+} = \{b : b^{n} > a\}$

Megfigyelések:

- a_- és a_+ nemüresek
- $\bullet\,$ bármely $b\in a_+$ felső korlátja a_-
- bármely $b \in a_-$ alsó korlátja a_+

A valós számok felső/alsó-határ tulajdonsága miatt egyértelműen létezik $S = \sup a_-$ és $I = \inf a_+$ és $S \leq I$. Ha S < I akkor az ábra segít megtalálni az ellentmondást:

Tehát S=I. Ezért: $I^n=S^n\leq a$ és $I^n\geq a$, vagyis az S=I szám valóban $a^{\frac{1}{n}}$ -ként viselkedik.