Parametric Curves and Surfaces I

Higher Degree Curves and Surfaces

- Way to model objects, specify motion curves
- Compact
 - Smooth curve/surface possible with few control points
- Easier to use for modeling
 - User has small set of parameters that control large DOF
- Image rendering more complex
 - Direct or Polygonal approximation
- 3D "rendering" simpler
 - Numerically Controller (NC) milling of mathematically defined surface

Explicit equation

- y=f(x), z=g(x)
- Cannot get multiple y or z for single x
- Not rotationally invariant
- Cannot describe curves with infinite slopes

Implicit equation

- f(x, y, z) = 0
- Have to solve non-linear equation for each point
- Difficult to move along the curve
- More solution than we want (need to specify additional constraint)
- Difficult to join two curves (such that tangents are same)
- Derivatives not given in terms of direction of motion

Parametric equation

- x=x(t), y=y(t), z=z(t)
- As t varies from 0 to 1, function sweeps out a curve (or surface in the case of parametric surfaces in u and v)
- t not plotted

Cubic

 $x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

 $0 \le t \le 1$

- Lower degree poly too little control (cannot be made to pass through specific point with specified derivatives)
- Higher degree poly too much complexity (greater the degree, greater the amount of oscillations)
- Need 4 known vector equations to solve for the 4 unknowns
- Depending on the constraints, different curve

Matrix form

C

$$Q(t) = [x(t) \ y(t) \ z(t)] = [t^{3} \ t^{2} \ t \ 1] \begin{bmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z} \end{bmatrix}$$

Parametric tangent vector

$$\frac{d}{dt}Q(t) = [3a_x t^2 + 2b_x t + c_x \quad 3a_y t^2 + 2b_y t + c_y \quad 3a_z t^2 + 2b_z t + c_z]$$

Velocity of a point on the curve w.r.t. t

Continuity between two curves

- G⁰ geometric continuity 2 curve segments joined
- G¹ geometric continuity 2 curve segments joined & direction of tangent same
- Cⁿ parametric continuity 2 curves joined & nth tangent vector, $\frac{d^n}{dt^n}Q(t)$, same

- In general $C^1 \Rightarrow G^1$ except when $\frac{dQ}{dt} = [0, 0, 0]$ can have tangent vector same, direction of tangent different
- Cannot determine tangent vector (magnitude) by looking at resulting curve: t not plotted

Basis functions (Blending functions)

- $Q = T \bullet C$
- Rewrite $C = M \bullet G$

-
$$M$$
t 4 x 4 "basis" matrix
- G t: Geometry vector (of vectors)
$$\begin{bmatrix} g_{1x} & g_{1y} & g_{1z} \\ g_{2x} & g_{2y} & g_{2z} \\ g_{3x} & g_{3y} & g_{3z} \\ g_{4x} & g_{4y} & g_{4z} \end{bmatrix}$$

$$x(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41})g_{1x} + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{42})g_{2x} + (t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43})g_{3x} + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44})g_{4x}$$

y(t), z(t) similar

$$x(t) = \sum_{k=0}^{3} g_{kx} B_k(t)$$

- Can think of Q as weighted sum of geometry matrix G where weights are the "blending functions" B
- Another way of looking: reconstruction of a function Q
 by "filtering" 4 samples
 - Basis functions are the filters

Linear interpolation

$$Q(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \end{bmatrix} = TMG$$

- M is "basis" matrix of coefficients and different for different curves
- G is geometric vector
- TM are the basis functions
 - -1-t and t

To Transform Curve

- Just x-form G
- Not for non-affine transform like perspective transform (ok for rational curves...to come later)

Bézier Curves

 $Q(t) = \sum_{k=0}^{3} P_k B_k(t)$

Where basis functions are given by the Bernstein cubic

polynomials

$$B_0(t) = (1-t)^3$$

$$B_1(t) = 3t(1-t)^2$$

$$B_2(t) = 3t^2(1-t)$$

$$B_3(t) = (t)^3$$

$$B_3(t) = (t)^3$$

- At t=0, $Q(0) = P_0$
- At t=1, $Q(1) = P_{3}$
- At any t, the 4 blending functions give weights for 4 control points

- Basis functions chosen such that $p_1 p_0$ gives the first point's tangent and $p_2 p_3$ gives the last point's tangent
- This plus the beginning and end points make up the 4 constraints

- Curve contained in "convex hull" formed by control points
 - Basis functions sum to unity for all t
 - Useful for defining bounding box

Matrix form

$$Q(t) = \sum_{k=0}^{3} P_k B_k(t)$$

$$Q(t) = P_0(1-t)^3 + P_13t(1-t)^2 + P_23t^2(1-t) + P_3(t)^3$$

$$Q(t) = T M G$$

$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} G$$

$$G = egin{bmatrix} P_0 \ P_1 \ P_2 \ P_3 \end{bmatrix}$$

Combine Bezier curves

For 2 Bézier curves to have C¹ continuity

- $p_3 p_4 p_5$ collinear and equally spaced
- If not equally spaced, G¹ continuous

Problems with Bezier curves

- Global control
 - All weighting function non-zero everywhere except at the ends (for one curve)
 - Means that small changes in one control point changes the whole curve
- Continuity between curves explicitly controlled by the linearity of the control points

Splines

- Natural spline
 - Global control
 - At least C² continuous
 - Flexible strip & "ducks" or "whales"

- Knot: where two curves join
- Interpolating
 - Control point = knot point
- Approximating
 - Control point # knot point

control pts: $p_0 \dots p_m$

curves $: Q_3 \dots Q_m$

Parameter for Q_i :

$$t_i \le t \le t_{i+1}$$

Cardinal splines

- Interpolating
- C¹ continuity

Assume tangent at p_j given by p_{j-1} p_{j+1}

$$p_{j-1} p_{j+1}$$

$$Q(t) = At^{3} + Bt^{2} + Ct + D$$

or
 $Q(t) = [t^{3} t^{2} t 1] [A B C D]^{T}$

$$Q(0) = p_{i-2} = D$$

 $Q(1) = p_{i-1} = A + B + C + D$

Parametric derivative

$$Q'(t) = [3t^2 \ 2t \ 1 \ 0] [A B C D]^T$$

At t=0, beginning tangent and at t=1, end tangent

$$Q'(0) = a (p_{i-1} - p_{i-3}) \equiv S_0 = C$$

 $Q'(1) = a (p_i - p_{i-2}) \equiv S_1 = 3A + 2B + C$

 M_1

 4 constraints from previous two slides give

$$\begin{bmatrix} p_{i-2} \\ p_{i-1} \\ S_0 \\ S_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

Definitions of S₀ and S₁ give

$$\begin{bmatrix} p_{i-2} \\ p_{i-1} \\ S_0 \\ S_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -a & 0 & a & 0 \\ 0 & -a & 0 & a \end{bmatrix} \begin{bmatrix} p_{i-3} \\ p_{i-2} \\ p_{i-1} \\ p_i \end{bmatrix}$$

 M_2

Equating the two equations

$$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = M_1^{-1} M_2 \begin{bmatrix} p_{i-3} \\ p_{i-2} \\ p_{i-1} \\ p_i \end{bmatrix}$$

- Multiply out M₁-1M₂
 - Call this M

$$M_1^{-1}M_2 = \begin{bmatrix} -a & 2-a & a-2 & a \\ 2a & a-3 & 3-2a & -a \\ -a & 0 & a & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \equiv M$$

Matrix form of Cardinal Spline

$$Q(t) = [t^3 t^2 t 1] [A B C D]^T$$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} M \begin{bmatrix} p_{i-3} \\ p_{i-2} \\ p_{i-1} \\ p_i \end{bmatrix}$$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} M \begin{bmatrix} p_{i-3} \\ p_{i-2} \\ p_{i-1} \\ p_i \end{bmatrix} M = \begin{bmatrix} -a & 2-a & a-2 & a \\ 2a & a-3 & 3-2a & -a \\ -a & 0 & a & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Blending functions for Catmull-Rom spline

Uniform (Nonrational) B-splines ("basis spline")

- Approximating
- C⁰, C¹, C² continuous

$$Q_i(t) = \sum_{k=0}^{3} p_{i-3+k} B_{i-3+k}(t)$$

- p: control points (geometric vector components)
- B: basis functions (or blending functions)
- i: segment number
- k: local control point index
- t: 0 to 1

• For parameter range $t_i \leq t \leq t_{i+1}$

$$B_{i} = \frac{1}{6}t^{3}$$

$$B_{i-1} = \frac{1}{6}(-3t^{3} + 3t^{2} + 3t + 1)$$

$$B_{i-2} = \frac{1}{6}(3t^{3} - 6t^{2} + 4)$$

$$B_{i-3} = \frac{1}{6}(1 - t)^{3}$$

Basis functions in range

Define as one B-spline curve

- i: non-local control point number
- t: global parameter (not just 0 to 1)
- Basis function in entire range given by shifting right given equations by
 0, 1, 2, 3, 4 units to right

$$B_{i} = \frac{1}{6}t^{3}$$

$$B_{i-1} = \frac{1}{6}(-3t^{3} + 3t^{2} + 3t + 1)$$

$$B_{i-2} = \frac{1}{6}(3t^{3} - 6t^{2} + 4)$$

$$B_{i-3} = \frac{1}{6}(1 - t)^{3}$$

 $Q(t) = \sum_{i=1}^{m} p_i B_i(t)$

- For the useful range, basis functions sum to 1
 - t ≥ 3 for curve
- For example on right, two curves between t=3 and 5

- Curve segments end/start at equal intervals with respect to global parameter t: "uniform"
 - -[0, 1, 2, ..., m]
 - Called knot vector
- On right, 9 knots
 - Basis functions shown weighted by value of control points

 For the B-spline on the right: knot vector is [0,1,2,3,4,5,6,7,8,9,10,11,12,13] with useful knot values at [3,4,5,6,7,8,9,10] where basis function sum to 1

Matrix form

$$Q_i(t) = T_i M G_i$$

$$M = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}$$

Multiplicity of Control Points

- Example: Last control point used three times
- Q5 uses p5 once
- Q6 uses p5 twice
- Q7 uses p5 three times

B-spline Segments

- Example: Interior control point used twice
- Continuity C²G¹:
 - Continuity within still C²
 - Continuity across knot G1

- Example: Interior control point used three times
- Continuity C²G⁰
 - Continuity within still C²
 - Continuity across knot G⁰

Nonuniform (Nonrational) B-Spline

- Parameter interval between knot values need not be uniform.
 - Most common is reducing intervals between successive knots to 0 (multiplicity of knots)
 - When $t_i = t_{i+1}$ multiple knot and Q_i becomes a point
- Basis functions can vary from curve segment to curve segment
- Continuity can be reduced from C² to C¹ to C⁰ to none
- C⁰: curve interpolates control point w/o straight line segment as in uniform B-spline w/ multiplicity of control points
- Possible to add additional knots and control points

Effect of knot multiplicity On single basis function

- [0,1,2,3,4]
 - Uniform interval between knot values

Right figure shows basis
function with multiplicity of one for each knot
(usual B-spline as before)

- [0,1,1,2,3]
 - Interval between second and third knot values is 0
 - $-B_{i-1}$ (second segment) shrinks to 0
 - Eliminate second derivative continuity, first derivative continuity remain

Knot multiplicity	Continuity Conditions	Continuity
1	Positional tangential curvature	C ²
2	Positional tangential	C ¹
3	positional	C ⁰
4	none	none

Example of knot multiplicity on ends

Knot vector [0, 0, 0, 0, 1, 1, 1, 1]

equal to Bézier curve

- Basis functions are Bezier basis functions
- Bezier a subset of B-splines

Example of knot multiplicity in interior knot

- Triple knot vector [0, 1, 2, 3, 4, 4, 4, 5, 6, 7, 8]
- Q₄ and Q₅ shrink to zero
- C⁰ continuity between
 Q₃ and Q₆

Next: Parametric surfaces

