Modulation /Kommunikationssystem

ELA405, Signaler och Signalbehandling 20190214, Västerås elaine.astrand@mdh.se

Modulation

 Modulationsegenskapen hos Fourier transformen bildar basen i många kommunikationssystem där man modulerar en signal (amplitud, fas,..) för överföring.

$$s(t)p(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$$

→ Idéen är att signalen av intresse modulerar en annan signal (sk. bärvåg).

- Amplitudmodulering med pulståg
- Modulering med impulståg

En viktigt brygga mellan tidskontinuerliga och tidsdiskreta signaler

Modulation

Vi kan t.ex. använda oss av en signal för att modulera amplituden av en annan signal → amplitudmodulering

Eller för att modulera fasen av en annan signal → fasmodulering

Varför vill man göra detta?

- 1. Man kan behöva högre frekvenser för att överföra signaler långa sträckor
- 2. Vid överföring av multipla signaler → måste separeras för att kunna skiljas åt på mottagarsidan

$$x(t)c(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} [X(j\omega) * C(j\omega)]$$

Olika typer av bärvågor används:

- puls
- sinusvåg
- komplex exponential

- komplex exponential

$$\begin{split} &B\ddot{a}rv\mathring{a}g:\\ &c(t)=e^{j(\omega_c t+\theta_c)}\\ &=\cos(\omega_c t+\theta_c)+j\sin(\omega_c t+\theta_c) \end{split}$$

Modulation:

$$x(t)c(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} [X(j\omega) * C(j\omega)]$$

Hur ser frekvensspektrat av den modulerade utsignalen ut?

 Att amplitudmodulera en signal med en komplex exponential flyttar centerfrekvensen till runt bärvågens frekvens (bärfrekvensen)

- komplex exponential

Hur får vi tillbaka signalen?

Modulation:

$$x(t)c(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} [X(j\omega) * C(j\omega)]$$

För att få tillbaka det ursprungliga frekvensspektrat så kan vi multiplicera den modulerade signalen med $e^{-j(\omega_c+\theta_c)}$, $\theta_c=0$

- komplex exponential

Modulator

Demodulator

- komplex exponential

Hur fungerar det i den "riktiga" världen att använda en komplex exponential?

En komplex exponential är representerad av två reella signaler:

- sinusvåg

Bärvåg:

$$c(t) = \cos(\omega_c t + \theta_c) = \frac{1}{2}e^{j(\omega_c t + \theta_c)} + \frac{1}{2}e^{-j(\omega_c t + \theta_c)}$$

Hur får vi tillbaka den ursprungliga signalen?

- sinusvåg

Hur får vi tillbaka den ursprungliga signalen?

- Vi måste applicera ett lågpassfilter med amplitud 2:

- sinusvåg

Modulator

Demodulator

Varför vill man göra detta?

- Materialet f\u00f6r l\u00e4ngdistans-\u00f6verf\u00f6ring kan beh\u00f6va h\u00f6gre frekvenser \u00e4n signalens egna frekvensband
- 2. Man kan överföra flera signaler på samma kanal genom att amplitudmodulera varje signal med bärvågor av olika bärfrekvens
 - → Multiplexing (d.v.s. man sprider ut signalerna i frekvensled)

Frequency Division Multiplexing (FDM)

Demultiplexing

Demodulation

- synkron demodulation

Hittills så har vi pratat om **synkron amplitud-demodulation.** Det innebär att sändare och mottagare är synkroniserade.

Modulator Demodulator $\cos(\omega_c t + \theta_c)$ $\cos(\omega_c t + \theta_c)$ $\cos(\omega_c t + \theta_c)$ w(t) w(t)

- Demodulatorn måste man ha tillgång till en bärvåg med exakt samma frekvens och fasläge som modulatorn.
- När man överför signaler över en lång sträcka kan detta vara svårt

- asynkron demodulation
- Synkronisera bärvågsfrekvens och fas i sändare och mottagare är kostsamt och kräver mycket stabila oscillatorer
- → Asynkron demodulation

- Bärvågen finns i de snabba variationerna (höga frekvenser) och informationssignalen finns i de långsamma variationerna (låga frekvenser)
- För att återskapa informationssignalen räcker det att följa envelopen

Detta kan göras med en envelopemottagare.

- asynkron demodulation

Villkor:

- 1. x(t) måste vara positiv
- 2. x(t) måste variera långsamt i jämförelse med bärvågen

Om x(t) är negativ:

En konstant, A, läggs till x(t) så att x(t) alltid är positiv

Vi får en extra sinusvågskomponent i frekvensspektrat

→ mindre energieffektivt

Tidsdiskret Modulation

1.
$$c[n] = e^{j(\Omega_c n + \theta_c)}$$

2.
$$c[n] = \cos(\Omega_c n + \theta_c)$$

Amplitud modulation med pulståg

p(t) är ett periodiskt pulståg

Amplitud modulation med pulståg

 Återskapning av den ursprungliga signalen beror inte på bredden av pulserna utan mer på perioden (eller dess frekvens)

→ Lågpassfilter för att återskapa x(t)

Time-Division Multipexing (TDM)

Puls-amplitud modulation

I amplitud modulation med pulståg hade vi:

I teorin:

 Ju smalare pulserna är desto fler signaler kan skickas

I praktiken:

 Ju smalare pulserna är desto mindre energi→ brusproblem

Detta löses genom att sätta arean under pulsen till ett konstant värde:

 $N\ddot{a}r \Delta \rightarrow 0 \ d\mathring{a} \ g\mathring{a}r \ pulsen \ mot \ en \ impuls$

x(t) återskapas på samma sätt som amplitud modulering med pulståg

Läsning:

Oppenheim A. Signals and Systems. 2nd Ed. (2014):

Kap 8: 8.1-8.3, 8.5-8.6.2, 8.7 (översiktligt), 8.8

Gör tillhörande uppgifter