Physics 926 Problem Set 10

Due Tuesday, April 7

1. Show that

$$\frac{\Gamma(K_L \to \pi^- e^+ \nu_e) - \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e)}{\Gamma(K_L \to \pi^- e^+ \nu_e) + \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e)} = 2\text{Re}(\epsilon)$$
(1)

to first order in ϵ . This asymmetry is evidence for indirect CP violation, and also allows us to unambiuously define electric charge – positive charge is assigned to the lepton that dominates in K_L decay.

2. Defining

$$\eta_{\pm} = |\eta_{\pm}| e^{i\phi_{\pm}} = \frac{\langle \pi^{+}\pi^{-}|K_{L}\rangle}{\langle \pi^{+}\pi^{-}|K_{S}\rangle},\tag{2}$$

calculate the probabilities of $\pi^+\pi^-$ decay as a function of (proper) time for an initial K^0 or \bar{K}^0 produced at t=0. Express your answer, up to common proportionality constants, in terms of ϵ , $|\eta_{\pm}|$, ϕ_{\pm} , Δm , Γ_S and Γ_L , where Δm is the K_S – K_L mass difference and Γ_S and Γ_L are the widths of the states. Keep only leading terms in ϵ . Using the experimental values for these quantities, plot the two probabilities as a function of time in units of the K_S lifetime, going out to 30 K_S lifetimes. (Hint: K_L and K_S are the eigenstates of the total Hamiltonian, and thus have straightforward time evolution. Write the time evolution of the K^0 and \bar{K}^0 in terms of the Hamiltonian eigenstates.)

- 3. Calculate P(A,t;B), where A and B are either K^0 or \bar{K}^0 . This is defined to be the probability that a neutral kaon in state B at t=0 has oscillated into a state A after a time t. Express your answer in terms of ϵ , Δm , Γ_S and Γ_L . Keep only leading terms in ϵ . Plot the probabilities as before, going out to 20 K_S lifetimes, and using a factor of ϵ that is a factor of ten larger than the experimental value (so that you can see something interesting).
- 4. In class, we briefly mentioned the (approximate) $\Delta I = 1/2$ rule, which says that in strange particle decays, transitions with $\Delta I = 1/2$ are enhanced over those with $\Delta I = 3/2$. Use this rule to derive

$$\Gamma(K_L \to 3\pi^0) = \frac{3}{2} \Gamma(K_L \to \pi^+ \pi^- \pi^0),$$
 (3)

and compare this result to experimental data. Make the reasonable assumption that all pairs of pions are in an L=0 state. Don't forget that pions are bosons and you'll need to write totally symmetric wavefunctions.