Mathématiques – Première spécialité

Corrigés des exercices

Table des matières

1 Le second degré : équations et paraboles

2

1 Le second degré : équations et paraboles

Dans chaque exercice, on note ${\mathcal S}$ l'ensemble des solutions des équations.

Exercice 1 1. On résout l'équation $x^2 + 2x = 0$:

On factorise:

$$x(x+2) = 0.$$

Un produit de facteurs est nul lorsque l'un des facteurs est nul, donc il y a deux possibilités :

$$x = 0$$
 ou $x + 2 = 0$
 $x + 2 - 2 = 0 - 2$
 $x = -2$

Conclusion : l'équation a deux solutions : x = 0 et x = -2. Autrement dit :

$$\mathscr{S} = \{0; -2\}.$$

2. On résout l'équation $x^2 - 16 = 0$:

On « isole » x^2 :

$$x^{2} - 16 = 0$$

$$x^{2} - \cancel{16} + \cancel{16} = 0 + 16$$

$$x^{2} = 16$$

Comme 16 est positif, il y a deux solutions :

$$x = \sqrt{16} = 4$$
 ou $x = -\sqrt{16} = -4$.

Conclusion:

$$\mathscr{S} = \{4; -4\}.$$

3. On résout l'équation (2x-1)(x-5) = 0:

$$2x-1=0 \qquad \text{ou} \qquad x-5=0$$

$$2x-\cancel{1}+\cancel{1}=0+1 \qquad \text{ou} \qquad x-\cancel{5}+\cancel{5}=0+5$$

$$\frac{\cancel{2}x}{\cancel{2}}=\frac{1}{2} \qquad \text{ou} \qquad x=5$$

$$x=\frac{1}{2}$$

Conclusion:

$$\mathscr{S} = \left\{ \frac{1}{2}; 5 \right\}.$$

4. On résout l'équation $x^2 + 7 = 0$:

$$x^{2} + 7 = 0$$

$$x^{2} + 7 - 7 = 0 - 7$$

$$x^{2} = -7$$

Il n'y a pas de solution, car un carré est positif (donc aucun nombre x ne peut avoir un carré égal à -7). Conclusion :

$$\mathcal{S} = \emptyset$$
.

(On rappelle que Ø désigne l'ensemble vide : l'ensemble qui ne contient aucun élément.)

Exercice 2 Dans chaque cas, on note Δ le discriminant.

- 1. On résout l'équation $x^2 3x 4 = 0$:
 - a = 1, b = -3, c = -4.
 - $\Delta = b^2 4ac = (-3)^2 4 \times 1 \times (-4) = 9 + 16 = 25$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{3 - 5}{2} = -1,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2} = \frac{3 + 5}{2} = 4.$$

Conclusion:

$$\mathscr{S} = \{-1; 4\}.$$

2. On résout l'équation $2x^2 - 12x = -18$:

On se ramène d'abord à la situation du cours (équation de la forme $ax^2 + bx + c = 0$) en « transposant -18 »:

$$2x^{2} - 12x + 18 = -18 + 18$$
$$2x^{2} - 12x + 18 = 0$$

- a = 2, b = -12, c = 18.
- $\Delta = b^2 4ac = (-12)^2 4 \times 2 \times 18 = 144 144 = 0.$
- $\Delta = 0$, donc il y a une seule solution :

$$x_0 = \frac{-b}{2a} = \frac{-(-12)}{2 \times 2} = \frac{12}{4} = 3.$$

Conclusion:

$$\mathscr{S} = \{3\}.$$

- 3. On résout l'équation $x^2 4x + 5 = 0$:
 - a = 1, b = -4, c = 5.
 - $\Delta = b^2 4ac = (-4)^2 4 \times 1 \times 5 = 16 20 = -4$.
 - Δ < 0, donc il n'y a pas de solution.

Conclusion:

$$\mathcal{S} = \emptyset$$
.

- 4. On résout l'équation $x^2 + 2x 4 = 0$:
 - a = 1, b = 2, c = -4.
 - $\Delta = b^2 4ac = 2^2 4 \times 1 \times (-4) = 4 + 16 = 20$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{20}}{2 \times 1} = \frac{-2 - \sqrt{20}}{2},$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{20}}{2 \times 1} = \frac{-2 + \sqrt{20}}{2}.$$

Conclusion:

$$\mathcal{S} = \left\{ \frac{-2 - \sqrt{20}}{2}; \frac{-2 + \sqrt{20}}{2} \right\}.$$

Remarque: On peut écrire les solutions de façon plus élégante : sachant que

$$\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times \sqrt{5},$$

on trouve

$$x_2 = \frac{-2 + \sqrt{20}}{2} = \frac{-2 + 2\sqrt{5}}{2} = \frac{\cancel{2}(-1 + \sqrt{5})}{\cancel{2}} = -1 + \sqrt{5}.$$

De même, $x_1 = -1 - \sqrt{5}$.

5. On résout l'équation $x^2 = -6x$:

À partir de maintenant, on s'autorise à aller un peu plus vite : on transpose directement le «-6x» dans le membre de gauche, qui devient «+6x».

$$x^2 = -6x$$
$$x^2 + 6x = 0.$$

Ici, il y a deux méthodes possibles:

- soit on utilise le discriminant, avec a = 1, b = 6 et c = 0 (puisque $x^2 + 6x = 1x^2 + 6x + 0$);
- soit on factorise.

On utilise la deuxième méthode, qui est plus rapide 1:

$$x(x+6) = 0$$

 $x = 0$ ou $x+6 = 0$
 $x = -6$.

Conclusion:

$$\mathcal{S} = \{0; -6\}.$$

Exercice 3 On commence par un schéma indicatif, qui n'est bien sûr pas à l'échelle puisqu'on ne connaît pas x.

D'après le théorème de Pythagore :

$$x^2 + (x+7)^2 = 17^2$$
.

On développe $(x+7)^2$ avec l'identité remarquable

$$(a+b)^2 = a^2 + 2 \times a \times b + b^2$$
.

L'équation se réécrit :

$$x^{2} + x^{2} + 2 \times x \times 7 + 7^{2} = 289$$
$$2x^{2} + 14x + 49 - 289 = 0$$
$$2x^{2} + 14x - 240 = 0.$$

- a = 2, b = 14, c = -240.
- $\Delta = b^2 4ac = 14^2 4 \times 2 \times (-240) = 196 + 1920 = 2116$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 - \sqrt{2116}}{2 \times 2} = \frac{-14 - 46}{4} = -15,$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 + \sqrt{2116}}{2 \times 2} = \frac{-14 + 46}{4} = 8.$$

Or x désigne une longueur, donc la première solution (x_1) est impossible. On a donc x=8.

Remarque: Ce n'est pas demandé, mais on peut donner la longueur des trois côtés:

$$x = 8$$
, $x + 7 = 8 + 7 = 15$ et 17.

On peut alors vérifier que

$$8^2 + 15^2 = 17^2$$
.

^{1.} De plus, il y a un gros risque d'erreur de résolution lorsqu'on utilise la méthode avec Δ dans le cas où b ou c valent 0.

Exercice 4 1. Voici un schéma du terrain en notant x la largeur de la pelouse (donc la longueur est 2x):

2. La longueur du terrain (en m) est

$$2x + 3 + 3 = 2x + 6,$$

sa largeur est

$$x + 3 + 3 = x + 6$$
.

Donc la surface du terrain (en m²) est

longueur × largeur =
$$(2x+6) \times (x+6)$$
.

Or on sait que cette surface vaut 360 m², donc

$$(2x+6) \times (x+6) = 360.$$

3. On résout l'équation obtenue dans la question précédente ² :

$$(2x+6) \times (x+6) = 360$$

$$\iff 2x \times x + 2x \times 6 + 6 \times x + 6 \times 6 = 360$$

$$\iff 2x^2 + 12x + 6x + 36 = 360$$

$$\iff 2x^2 + 18x + 36 - 360 = 0$$

$$\iff 2x^2 + 18x - 324 = 0.$$

Il s'agit d'une équation du second degré.

- a = 2, b = 18, c = -324.
- $\Delta = 18^2 4 \times 2 \times (-324) = 2916$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-18 - \sqrt{2916}}{2 \times 2} = \frac{-18 - 54}{4} = \frac{-72}{4} = -18,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-18 + \sqrt{2916}}{2 \times 2} = \frac{-18 + 54}{4} = \frac{36}{4} = 9.$$

Or x désigne une longueur, donc x ne peut pas être négatif et seule la solution $x_2 = 9$ est valable.

Conclusion : x = 9, donc la longueur du terrain (en m) est $2 \times 9 + 3 + 3 = 24$, sa largeur est 9 + 3 + 3 = 15.

Exercice 5 On utilise le mètre comme unité de longueur, le mètre carré comme unité de surface. On note *x* et *y* les dimensions du champ.

^{2.} Les « 👄 » que l'on place entre les lignes se lisent « équivalent à ». Cela signifie que la résolution de l'équation écrite à une ligne est équivalente à la résolution de l'équation écrite à la ligne suivante.

• Le périmètre est 54, donc la moitié du périmètre est

$$x + y = 27$$
.

• L'aire est 180, donc

$$x \times y = 180$$
.

On obtient ainsi le système

$$\begin{cases} x + y = 27 & L_1 \\ xy = 180 & L_2 \end{cases}$$

On multiplie L_1 par x:

$$(x + y) \times x = 27 \times x$$
, soit $x^2 + xy = 27x$.

Or d'après L_2 , xy = 180, donc

$$x^2 + 180 = 27x$$
, et ainsi $x^2 - 27x + 180 = 0$.

On aboutit à une équation du 2^d degré. En utilisant la méthode habituelle, on trouve deux solutions (je ne détaille pas) : $x_1 = 12$, $x_2 = 15$.

On sait que x + y = 27, donc si x = 12, alors y = 27 - x = 27 - 12 = 15; et si x = 15, alors y = 27 - x = 27 - 15 = 12. Dans les deux cas, on obtient un champ qui mesure 12 m sur 15 m.

Exercice 6 On note n le nombre d'amis initialement présents, et p le prix à payer par chacun (en euros).

• Le montant total de la location est 2 400 €, donc

$$n \times p = 2400. \tag{1}$$

• Si deux amis s'en vont, le montant individuel augmente de 40 €. On a donc dans ce cas (*n* − 2) amis, et chacun paye alors (*p* + 40) €. En revanche, le montant total de la location ne change pas, il vaut toujours 2 400 €. On en déduit

$$(n-2) \times (p+40) = 2400.$$

En développant, cela donne encore

$$np + 40n - 2p - 80 = 2400. (2)$$

On compare (1) et (2) : comme les membres de droite valent 2400 dans les deux cas, on obtient l'égalité

$$np = np + 40n - 2p - 80$$
,

soit

$$40n - 2p - 80 = 0$$
.

Finalement, le couple (n, p) est solution du système

$$\begin{cases} n \times p = 2400 \\ 40n - 2p - 80 = 0. \end{cases}$$

On résout ce système comme dans l'exercice 5 (je ne détaille pas) et l'on obtient

$$n = 12$$
 , $p = 200$.

Conclusion : comme 12 - 10 = 2, ce sont 10 amis qui sont finalement partis.

Exercice 7 1. $P_1: y = x^2 - 6x + 5$.

- a = 1, b = -6, c = 5.
- a est \oplus , donc P_1 est vers le haut.
- On note S le sommet de P_1 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-6}{2 \times 1} = \frac{6}{2} = 3.$$

On en déduit

$$y_S = 3^2 - 6 \times 3 + 5 = 9 - 18 + 5 = -4.$$

On a donc S(3; -4).

Venons-en au tracé de la parabole. On fait un tableau de valeurs sur [0;6], avec un pas de 1³. Pour cela, on utilise la calculatrice:

^{3.} Nous choisissons un intervalle symétrique par rapport à l'abscisse du sommet, et qui ne soit ni trop court, ni trop long. On choisit un pas de 1 par facilité, mais le graphique serait bien sûr plus précis avec un pas plus petit.

• MODE ou MENU • 4: TABLE ou 4: Tableau • f(X)=X² - 6X + 5 EXE (si on demande g(X)=, ne rien rentrer)

• Début?0 EXE

• Fin?6 EXE

• Pas?1 EXE

x s'obtient avec les touches alpha x • Fonctions EXE puis choisir Fonctions EXE • f(x)=x²-6x+5 EXE • choisir Tableau EXE puis Régler l'intervalle EXE • X début 0 EXE • X fin 6 EXE • Pas 1 EXE

choisir Valider

NUMWORKS

TI graphiques	CASIO
X s'obtient avec la touche x, t, θ, n • $f(x)$ • $Y_1 = X^2 - 6X + 5$ EXE • $2nde$ déf table • $DébTable=0$ EXE • $PasTable=1$ EXE ou $\Delta Tbl=1$ EXE • $2nde$ table	X s'obtient

	CASIO graphiques				
	X s'obtient avec la touche X, θ, T				
he	MENU puis choisir TABLE EXE				
	• $Y_1: X^2 - 6X + 5$ EXE				
	• F5 (on choisit donc SET) • Start :0 EXE				
	• End:6 EXE • Step:1 EXE				
	• EXIT				

On obtient le tableau de valeurs :

х	0	1	2	3	4	5	6
у	5	0	-3	-4	-3	0	5

Enfin on construit le graphique (j'ai un peu « écrasé » l'axe des ordonnées pour gagner de la place) :

Remarque : On peut avoir intérêt à ajouter des points près du sommet pour obtenir un tracé plus précis. C'est ce que l'on a fait ci-dessus avec les deux losanges rouges, correspondant au tableau de valeurs ci-dessous.

I	х	2,5	3,5		
	у	-3,75	-3,75		

- 2. $P_2: y = -0.5x^2 x + 4.$
 - a = -0.5, b = -1, c = 4.
 - $a \operatorname{est} \ominus$, donc $P_2 \operatorname{est} \operatorname{vers} \operatorname{le} \operatorname{bas}$.
 - On note S le sommet de P_2 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-1}{2 \times (-0,5)} = \frac{1}{-1} = -1.$$

On en déduit

$$y_S = -0.5 \times (-1)^2 - (-1) + 4 = -0.5 + 1 + 4 = 4.5.$$

On a donc S(-1; 4,5).

Tableau de valeurs :

х	-4	-3	-2	-1	0	1	2
у	0	2,5	4	4,5	4	2,5	0

Tracé de la parabole:

Exercice 8 1. On trace la parabole P:

- qui coupe l'axe des abscisses en $x_1 = -1$ et en $x_2 = 3$.
- dont le sommet est le point S(1;2).

Remarque : Il est difficile de faire un tracé hyper précis avec si peu d'informations. L'élève intéressé peut essayer de prouver – en faisant un bel effort – que $f(x) = -0.5x^2 + x + 1.5$. Auquel cas, il pourra faire un tableau de valeurs et obtenir une courbe presque aussi parfaite que celle dessinée ci-dessus avec l'ordinateur.

- 2. On pose $\Delta = b^2 4ac$.
 - Comme P est vers le bas, a est du signe Θ .
 - Comme *P* coupe l'axe des abscisses en deux points, il y a deux racines et Δ est du signe \oplus .