WHAT HAVE I LEARNED TODAY?

SIXUAN LOU

1. 2019 May

05-22: Today I learned the proof of the Bertini's Theorem. The theorem says, if $L \in \operatorname{Pic}(X)$, and $V \subseteq \Gamma(X,L)$ a bpf linear system, then the set of elements of V that are not transverse to the zero section has measure zero. The main tool is the Sard's Theorem. We consider the evaluation map $\epsilon: X \times V \to L$, show it's a submersion, and then $\epsilon^{-1}(Z) \subseteq X \times V$ is an embedded submanifold. Then apply Sard's Theorem to $f: \epsilon^{-1}(Z) \hookrightarrow X \times V \xrightarrow{\operatorname{pr}_2} V$. A section s is a regular value of f if and only if it's transverse to the zero section. To prove this fact we consider the following diagram, by a diagram chase we show ds_x is surjective iff $df_{(x,s)}$ is surjective.

I have also learned an important technique of showing certain maps are surjective via sheaf cohomology. One realization of this idea is: if X is a compact Riemann surface, $\mathcal{O}_X(1)$ is a positive line budle, then for any $L \in \text{Pic}(X)$, there exists $N \in \mathbb{N}$ such that $L \otimes \mathcal{O}_X(n)$ is bpf (n > N). We reduce the problem of showing $L \otimes \mathcal{O}_X(n)$ is bpf to showing the s.e.s of sheaves of \mathcal{O}_X -modules

$$0 \longrightarrow \mathcal{L} \otimes \mathcal{O}_X(n) \mathcal{I}_x \longrightarrow \mathcal{L} \otimes \mathcal{O}_X(n) \longrightarrow i_*((L \otimes \mathcal{O}_X(n))_x) \longrightarrow 0$$

is exact on global sections. Prove exactness by showing $H^1(X, L \otimes \mathcal{O}_X(n) \otimes \mathcal{I}_x) = 0$ using Kodaira vanishing, because we can make $\omega_X^{\vee} \otimes L \otimes \mathcal{I}_x \otimes \mathcal{O}_X(n)$ positive for large n.

05-21: Today I learned the degree theory of smooth maps between compact, oriented n-manifolds. We first investigate the case of proper maps between \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a proper map, the pullback $f^*: H^n_{dR}(\mathbb{R}^n) \to H^n_{dR}(\mathbb{R}^n)$ maps compactly supported n-forms to compactly supported forms, hence $f^*: H^n_c(\mathbb{R}^n) \to H^n_c(\mathbb{R}^n)$. Let ω be a generator of $H^n_c(\mathbb{R}^n)$ (this means $\int_{\mathbb{R}^n} \omega = 1$, this is possible by the Poincaré Lemma that $H^n_c(\mathbb{R}^n) \cong \mathbb{R}$), we define the degree $\deg(f) := \int_M f^*\omega$. To prove this is an integer, pick a regular value $q \in \mathbb{R}^n$ of f by Sard's Theorem. Since f is proper, $f^{-1}(q)$ is a finite set of points $\{p_1, \ldots, p_K\}$. Since f is a regular value, the map f is locally a diffeomorphism when restricted to small neighborhoods V_i of each p_i such that V_i are disjoint and

2 SIXUAN LOU

 $f(V_i) = W$ for all i. By partition of unity we may pick a generator ω of $H_c^n(\mathbb{R}^n)$, with $\operatorname{Supp} \omega \subseteq W$. Then $\int_M f^*\omega = \sum_i \int_{V_i} f^*\omega$ and each $\int_{V_i} f^*\omega$ is +1 if df_{p_i} is orientation preserving and -1 if df_{p_i} is orientation reversing. To prove the case of smooth maps between compact, oriented n-manifolds, we assume the fact that $H^n(M) \cong \mathbb{R}$ as well. This fact could be proved from Poincaré Duality.

References