CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 12 MAGGIO 2017

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Dato un intero a, dire per quali interi b sono definiti quoziente e resto nella divisione di a per b, enunciando il corrisponente teorema. Chiarire se quoziente e resto sono determinati in modo unico. Fornire quoziente e resto

- (i) nella divisione di 32 per 7; e
- (ii) nella divisione di -32 per -7.

Esercizio 2. Sia \mathbb{P} l'insieme dei numeri interi positivi primi e, per ogni $n \in \mathbb{N}$ tale che n > 1, siano $\alpha_n = \max\{i \in \mathbb{N}^* \mid (\exists p \in \mathbb{P})(p^i|n)\}$ e $B_n = \{p \in \mathbb{P} \mid p^{\alpha_n}|n\}$. Trovare α_{700} e B_{700} .

Esercizio 3. Posto $S = \{1, 2, 3, 4, 5\}$, si consideri l'applicazione

$$f: (a_1, a_2, a_3, a_4, a_5) \in S^5 \longmapsto \{a_1, a_2, a_3, a_4, a_5\} \in \mathcal{P}(S) \setminus \{\emptyset\}$$

ed il nucleo di equivalenza \mathcal{R} di f.

- (i) f è iniettiva?
- (ii) f è suriettiva?
- (iii) Quanti elementi ha l'insieme quoziente S^5/\Re ?
- (iv) Quanti elementi ha la classe $[(1,1,1,1,3)]_{\mathcal{R}}$?

Sia σ la relazione d'ordine definita in S^5 ponendo, per ogni $(a_1, a_2, a_3, a_4, a_5), (b_1, b_2, b_3, b_4, b_5) \in S^5,$ $(a_1, a_2, a_3, a_4, a_5) \sigma (b_1, b_2, b_3, b_4, b_5) \iff (\forall i \in \{1, 2, 3, 4, 5\})(a_i \leq b_i).$

- (v) Si determinino in (S^5, σ) gli eventuali elementi minimali, massimali, minimo, massimo.
- (vi) Posto $X = \{(1, 1, 5, 2, 3), (1, 2, 4, 3, 5)\}$, si determinino i maggioranti ed i minoranti di X in (S^5, σ) , e poi, se esistono, inf X e sup X.
- (vii) Provare che, per ogni $\underline{a} = (a_1, a_2, a_3, a_4, a_5), \underline{b} = (b_1, b_2, b_3, b_4, b_5) \in S^5$, posto $Y = \{\underline{a}, \underline{b}\}$ si ha inf $Y = (\min\{a_1, b_1\}, \min\{a_2, b_2\}, \min\{a_3, b_3\}, \min\{a_4, b_4\}, \min\{a_5, b_5\}).$
- (viii) (S^5, σ) è un reticolo? È un reticolo booleano?

Esercizio 4. Per ogni intero positivo m si definisca l'operazione binaria * in \mathbb{Z}_m ponendo, per ogni $a, b \in \mathbb{Z}_m$, $a * b = \bar{3}ab$.

- (i) Verificare che per ogni scelta di m, $(\mathbb{Z}_m, *)$ è un semigruppo commutativo.
- (ii) Verificare che se m=16 allora $(\mathbb{Z}_m,*)$ è un monoide, individuandone l'elemento neutro e l'insieme degli invertibili.
- (iii) Trovare, se possibile, l'inverso di $\bar{5}$ in $(\mathbb{Z}_{16}, *)$.
- (iv) Determinare una parte S di \mathbb{Z}_{16} che sia chiusa rispetto a * e tale che |S| > 1.
- (v) Caratterizzare gli interi positivi m tali che $(\mathbb{Z}_m, *)$ sia un monoide.

Esercizio 5.

- (i) Determinare in $\mathbb{Q}[x]$ un polinomio f di grado 25 che sia prodotto di tre polinomi irriducibili e che abbia 1 e 2 come uniche radici in \mathbb{Q} .
- (ii) Provare che, comunque un tale f sia stato scelto, esso deve avere in \mathbb{R} almeno una radice non razionale.
- (iii) Fattorizzare in prodotto di polinomi irriducibili monici il polinomio $x^4 14^2$ in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{Z}_5[x]$ e $\mathbb{Z}_3[x]$.