6. The Karnaugh Map

Aims

- to describe the *Karnaugh map* technique for circuit simplification
- to apply **Karnaugh** mapping as a technique
- to extend Karnaugh maps to include *don't care* states

6.0

Introduction

Consider the truth table below : -

A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

In Sum of Products representation, the truth table can be expressed as : -

$$X = \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.C$$

A	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Using *Boolean algebra* the expression can be reduced as follows:-

Law name	AND form	OR form
identity	1A = A	0 + A = A
Null	0A = 0	1 + A = 1
Idempotent	AA = A	A + A = A
for the same	$A\overline{A} = 0$	$A + \overline{A} = 1$
Inverse	— A :	= A
Commutative	AB = BA	A + B = B + A
Associative	(AB)C = A(BC)	(A + B) + C = A + (B + C)
<u> Distributive</u>	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption	A(A+B)=A	A + AB = A $A + AB = A + B$
De-Morgan's	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \overline{B}$

$$X = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

$$X = \overline{A}B\overline{C} + \overline{A}BC + AC(\overline{B} + B)$$

distributive

OR

$$X = \overline{ABC} + \overline{ABC} + AC(1)$$

inverse

OR

$$X = \overline{A}B\overline{C} + \overline{A}BC + AC$$

identity

AND

$$X = \overline{A}B(\overline{C} + C) + AC$$

distributive

OR

$$X = \overline{A}B(1) + AC$$

inverse

OR

$$X = \overline{AB} + AC$$

identity

AND

- Relatively straightforward for simple circuits.
 - ⇒ But using Boolean algebra to reduce circuits can be difficult.

6.1 Karnaugh Maps

- Visual way of detecting redundancy in a Sum of Products expression.
 - \Rightarrow can easily be used for circuits with 2, 3, or 4 inputs.
- Consists of an array of cells, each representing a possible combination of inputs.
 - ⇒ cells are arranged so that each cell's input combination differs from adjacent cells by only a single bit.

• Now lets look at empty Karnaugh Map tables – ready for logical inputs to be written in them.

Karnaugh Map Numbers do not follow a binary sequence

2-input	3-input	4-input
8	BC	CD
0 1	00 01 11 10	00 01 11 10
Α 0	A 0	00
1	1	AB 01
		11
		10

- ⇒ Rows and columns are arranged so that only a single bit changes between neighbours
- \Rightarrow this applies at the edges too

Building a Karnaugh Map from a Truth Table

Starting with an empty Karnaugh map ...

 locate the 1's in the function's truth table output

 place them in the cells corresponding to the same inputs

A	8	C	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

			B	C	
		00	01	11	10
^	0	0	0	1	1
A	1	0	1	1	0

Karnaugh Map RULES

- 1. Group adjacent 1's together in **square** or **rectangular groups** of **2**, **4**, **8**, or **16**, such that the <u>total number of groups and isolated 1's is minimised</u>, ... while making the largest groups as possible
- 1. Groups may overlap so that a particular cell may be included in more than one group
- 3. Remember that adjacency wraps around the edges of the map

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

- Considering the grouping, notice the following:
 - 1. B changes but the output does not
 - Therefore B is redundant in this group
 - **2. C** changes but the output does not
 - Therefore **C** is redundant in this group

Boolean expressions are written for each group, leaving out the redundant terms

$$X = \overline{A}B + A.C$$

Process of converting a truth table output into a Karnaugh map
 can be summarised into a basic set of rules :

- 1. Each cell with a 1 must be included in at least one group
- 2. Form the largest possible groups
- 3. Form as **few groups as possible**
- 4. Groups may be sizes that are powers of 2
- 5. Groups may be **square** or **rectangular** only

(including wrap-around at the map edges)

6. The larger a group is, the more redundant inputs there are : -

•	A group	of	1	has	no	redundant inputs
•	A group	of	2	has	1	redundant input
•	A group	of	4	has	2	redundant inputs
•	A group	of	8	has	3	redundant inputs
•	A group	of	16	has	4	redundant inputs

2-Input

A	B	Х
0	0	1
0	1	1
1	0	1
1	1	0

 $X = \overline{B} + \overline{A}$

3-Input

A	8	C	Х
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

A	В	С	\mathbf{x}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

 $\mathsf{B} + \mathsf{A} \, \overline{\subset}$

4-Input

A I C D X 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0 1 1 0 1 1 1 1 1 0 1
1 1 0 1 1
1 1 1 1 1
A B C D X
0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
$egin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0

7.1 Don't Care Logic States

We have seen how: -

Karnaugh maps are a visual way of detecting redundancy in a Sum of Products representation

- ⇒ We sometimes have cases where the output of a circuit does not matter
- ⇒ Certain input combinations for which we **do not care** what the output is

Don't Care States

• Consider a seven-segment display:

• Only the numbers 0 to 9 can be displayed.

⇒ four bits are required : - 0000 represents zero 1001 represents nine

- Four bits can actually represents values from 0 (0000) to 15 (1111).
 - \Rightarrow when the input bit values are from **10** (1010) to **15** (1111)

we do not care what the output is

⇒ inputs to the circuits will never have those values so what the circuit does if it does happen we do not care

- Consider the segment labelled P.
 - \Rightarrow assume that a value of **1** activates the segment and a value of **0** turns it off
 - \Rightarrow the top segment will be lit for values 0, 2, 3, 5, 6, 7, 8, 9

- \Rightarrow We **do not care** what it does if the inputs are in the range **10** to **15**
- In both the truth table and the Karnaugh map, a don't care state is represented with a 'd'.

 They are drawn on the Karnaugh map along with the 1's

 'X' is also a common 'don't care' notation

For segment 'P'

 $\overline{BD} + C + BD + A$

Example

A	В	C	D	X	Υ	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	d	d	d
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

A	В	C	D	X	Y	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	х	Х	X
1	1	0	1	х	Х	Х
1	1	1	0	х	х	х
1	1	1	1	х	х	х

$$X = \overline{A.B.C} + D + A.C$$

Example

A	B	C	D	X	Υ	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	d	d	d
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

A	В	С	D	X	Y	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	х	Х	X
1	1	0	1	х	Х	X
1	1	1	0	х	X	X
1	1	1	1	х	X	X

$$Y = \overline{C.D} + C.D + B.D$$

Example

A	B	C	D	X	Υ	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	d	d	d
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

A	В	C	D	X	Y	Z
0	0	0	0	1	1	1
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	1	1	0
0	1	1	0	0	1	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	х	X	x
1	1	0	1	х	X	x
1	1	1	0	х	Х	X
1	1	1	1	х	Х	X

Z

$$Z = \overline{D} + A$$

The circuit for X,Y,Z

$$X = \overline{A}.\overline{B}.\overline{C} + D + A.C$$

$$Y = \overline{C}.\overline{D} + C.D + B.D$$

$$Z = D + A$$