Wybrane metody numeryczne poszukiwania miejsc zerowych funkcji ciągłych

Niech dana będzie funkcja skalarna jednej zmiennej rzeczywistej: $f \in C^0([a,b])$, dla której $f(a) \cdot f(b) < 0$ (wartości funkcji dla argumentów a i b są przeciwnych znaków). Celem jest określenie miejsca zerowego x_0 funkcji f, gdzie $x_0 \in [a,b]$.

Algorytm bisekcji

Przyjmuje się: $a_0 = a$, $b_0 = b$, tol ≈ 0 (np. tol $= 10^-6$). Poszukuje się $x^* \in [a, b]$, będącego przybliżeniem miejsca zerowego. Dla $n = 1, 2, \ldots$, nmax:

1.
$$c_n = \frac{a_{n-1} + b_{n-1}}{2}$$

- 2. Jeżeli $f(c_n) \cdot f(a_{n-1}) < 0$, to $b_n = c_n$ oraz $a_n = a_{n-1}$, w przeciwnym razie $a_n = c_n$ oraz $b_n = b_{n-1}$
- 3. Jeżeli $n = \max \text{ lub } f(c) = 0 \text{ lub } \frac{b_n a_n}{2} < \text{tol, to } x^* = c_n \text{ oraz następuje zakończenie procedury iteracyjnej}$

Metoda Newtona

Niech dana będzie funkcja skalarna jednej zmiennej rzeczywistej: $f \in C^1([a,b])$, dla której $\exists \overline{x} \in [a,b]: f(\overline{x}) = 0$, a f' jest jej pochodną.

Przyjmuje się wartość początkową $x_0 \in [a, b]$ oraz tol ≈ 0 .

Poszukuje się $x^* \in [a, b]$, będącego przybliżeniem miejsca zerowego.

Dla n = 1, 2, ..., nmax:

1.
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

2. Jeżeli $n=\max$ lub $f(x_n)=0$ lub $\frac{|x_n-x_{n-1}|}{|x_n|}<$ tol, to $x^*=x_n$ oraz następuje zakończenie procedury iteracyjnej

Krok 1. algorytmu dla ustalonego n uzasadnia się wykorzystując liniową aproksymację funkcji f w pewnym otoczeniu punktu x_{n-1} , za pomocą stycznej do wykresu funkcji w punkcie x_{n-1} zadanej wzorem $y=f(x_{n-1})+f'(x_{n-1}(x-x_{n-1})$. Jako punkt x_n przyjmuje się miejsce zerowe przywołanej stycznej, tzn. $f(x_{n-1})+f'(x_{n-1}(x_n-x_{n-1}))=0 \Leftrightarrow x_n=x_{n-1}-\frac{f(x_{n-1})}{f'(x_{n-1})}$.

Przykłady zastosowania metod

1. Numeryczne przybliżenie wartości pierwiastka

Numeryczne przybliżenie wartości pierwiastka kwadratowego z liczby $k \in \mathbf{R}_+$. Miejscem zerowym dla wielomianu drugiego stopnia $f(x) = x^2 - k$ jest:

$$\overline{x}^2 - k = 0 \Leftrightarrow |\overline{x}| = \sqrt{k} \Leftrightarrow \overline{x} = \pm \sqrt{k}.$$

Tym samym przyjmując za przedział $[a,b] \subset \mathbf{R}_+$, taki, że $\sqrt{k} \in [a,b]$, można z pomocą metody bisekcji znaleźć przybliżenie miejsca zerowego wielomianu $f(x) = x^2 - k$, będące tym samym przybliżeniem wartości \sqrt{k} .

2. Wyznaczanie wartości wewnetrznej stopy zwrotu dla inwestycji

Wyznaczanie wartości wewnętrznej stopy zwrotu (IRR), będącej pierwiastkiem funkcji:

$$f(r) = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t} = \frac{1}{(1+r)^T} \sum_{t=0}^{T} CF_t (1+r)^{T-t}$$

przy czym $r \in \mathbf{R} - \{-1\}$, $CF_t \in \mathbf{R} - \{0\}$, t = 0, 1, ..., T są ustalonymi przepływami pieniężnymi w równoodalonych momentach t. Miejsce zerowe \bar{r} funkcji f, określa:

$$f(\overline{r}) = 0 \Leftrightarrow \sum_{t=0}^{T} CF_t (1 + \overline{r})^{T-t} = 0$$

Podstawiając x = 1 + r, rozważamy wielomian T-tego stopnia

$$w(x) = \sum_{t=0}^{T} CF_t x^{T-t}$$

o współczynnikach $CF_t, t = 0, 1, \dots, T$, dla którego poszukujemy miejsc zerowych \overline{x} , takich że $w(\overline{x}) = 0$.

W celu rozważenia liczby możliwych pierwiastków rzeczywistych (dodatnich i ujemnych) wykorzystuje się regułę znaków Kartezjusza. Dla wielomianu w, współczynniki CF_t uporządkowane są malejąco względem potęg zmiennej x, do których się odnoszą.

Zgodnie z regułą znaków Kartezjusza liczba dodatnich pierwiastków rzeczywistych \overline{x} wielomianu w odpowiada liczbie zmian znaków pomiędzy kolejnymi niezerowymi współczynnikami, bądź jest ona mniejsza od niej o wielokrotność 2.

Przy założeniu, niezerowych przepływów CF_t w każdym z momentów $t=0,1,\ldots,T$ (założenie to zostało utrzymane także w dalszej części), rozpatruje się liczbę zmian znaku wśród par wartości CF_{t-1} oraz CF_t dla $t=1,2,\ldots,T$.

Maksymalna możliwa liczba dodatnich pierwiastków rzeczywistych wielomianu w wynosi

$$l_{\text{max}}^+ = \sum_{t=1}^T I\left(\operatorname{sgn}(CF_{t-1}) \neq \operatorname{sgn}(CF_t)\right)$$

gdzie I jest funkcją wskaźnikową, $I(p) = \begin{cases} 1 & \text{, gdy } p \text{ jest prawdziwe} \\ 0 & \text{, gdy } p \text{ jest fałszywe} \end{cases}$, natomiast sgn jest

funkcją signum. Liczbę możliwych pierwiastków rzeczywistych dodatnich określają elementy zbioru:

$$\{l \in \mathbf{N}_0 : l_{\max}^+ - 2k, k \in \mathbf{N}_0\}$$

Co tyczy się pierwiastków rzeczywistych ujemnych ich możliwą liczbę można okreslić wykorzystując regułę znaków Kartezjusza dla w(-x), który można równoważnie wyrazić

$$w(-x) = \sum_{t=0}^{T} [(-1)^{T-t} CF_t] x^{T-t}$$

Tym samym maksymalna liczba ujemnych pierwiastków rzeczywistych wielomianu w wynosi

$$l_{\max}^{-} = \sum_{t=1}^{T} I\left(\operatorname{sgn}\left((-1)^{T-t+1} C F_{t-1}\right) \neq \operatorname{sgn}\left((-1)^{T-t} C F_{t}\right)\right)$$

Liczbę możliwych pierwiastków rzeczywistych dodatnich określają elementy zbioru:

$$\{l \in \mathbf{N}_0 : l_{\max}^- - 2k, k \in \mathbf{N}_0\}$$

Wykorzystując pierwiastki rzeczywiste \overline{x} , takie że $w(\overline{x})=0$, których położenie można określić z pomocą metod numerycznych (m.in. metody bisekcji, Newtona), można wyznaczyć pierwiastki $\overline{r}=\overline{x}-1$, spośród których odpowiednio określone przyjmuje się za wartość wewnętrznej stopy zwrotu IRR.