

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{10} + u^9 - 5u^8 - 4u^7 + 8u^6 + 3u^5 - 5u^4 + 2u^3 + 3u^2 + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{10} + u^9 - 5u^8 - 4u^7 + 8u^6 + 3u^5 - 5u^4 + 2u^3 + 3u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} - 4u^{7} + 3u^{5} + 2u^{3} + u \\ u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^8 + 20u^6 28u^4 + 4u^3 + 8u^2 8u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \ c_6, c_7$	$u^{10} - u^9 + 7u^8 - 6u^7 + 16u^6 - 11u^5 + 13u^4 - 6u^3 + 3u^2 - u - 1$
c_3, c_4, c_8 c_9	$u^{10} - u^9 - 5u^8 + 4u^7 + 8u^6 - 3u^5 - 5u^4 - 2u^3 + 3u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$y^{10} + 13y^9 + \dots - 7y + 1$
c_3, c_4, c_8 c_9	$y^{10} - 11y^9 + \dots - 7y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.510102 + 0.680941I	10.72030 - 2.28632I	-4.39779 + 2.91176I
u = 0.510102 - 0.680941I	10.72030 + 2.28632I	-4.39779 - 2.91176I
u = -0.449833 + 0.459351I	1.85926 + 1.60532I	-4.94346 - 5.03395I
u = -0.449833 - 0.459351I	1.85926 - 1.60532I	-4.94346 + 5.03395I
u = 1.50079 + 0.11328I	-4.58159 - 3.55946I	-9.64226 + 4.06361I
u = 1.50079 - 0.11328I	-4.58159 + 3.55946I	-9.64226 - 4.06361I
u = -1.50960	-7.13336	-14.0490
u = -1.51481 + 0.22020I	4.09816 + 5.55652I	-7.79190 - 2.88175I
u = -1.51481 - 0.22020I	4.09816 - 5.55652I	-7.79190 + 2.88175I
u = 0.417104	-0.609522	-16.4010

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$u^{10} - u^9 + 7u^8 - 6u^7 + 16u^6 - 11u^5 + 13u^4 - 6u^3 + 3u^2 - u - 1$
c_3, c_4, c_8 c_9	$u^{10} - u^9 - 5u^8 + 4u^7 + 8u^6 - 3u^5 - 5u^4 - 2u^3 + 3u^2 - u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \ c_6, c_7$	$y^{10} + 13y^9 + \dots - 7y + 1$
c_3, c_4, c_8 c_9	$y^{10} - 11y^9 + \dots - 7y + 1$