明細書

エネルギー貯蔵デバイス用電極及びその製造方法

技術分野

[0001] 本発明は、エネルギー貯蔵デバイス用電極及びその製造方法に関し、さらに詳述すると、アミノキノキサリン重合体を電極活物質として含むエネルギー貯蔵デバイス用電極及びその製造方法に関する。

背景技術

- [0002] エネルギー貯蔵デバイスの1つとして知られる電気二重層キャパシタは、一般的に多孔質材料を含む一対の分極性電極、セパレータ及び電解質溶液などから構成される。この電気二重層キャパシタは、電極界面におけるイオンの移動により発生する電気二重層に起因する電気エネルギーを充放電機構として利用するデバイスであり、電極活物質の電気化学反応を伴わないことから、二次電池のような寿命を持たない上、瞬時充放電特性に優れ、広い温度範囲で安定した充放電特性を示し、かつ繰り返しによる性能低下が少ないという特性を有している。
- [0003] 従来、電気二重層キャパシタの静電容量は、分極性電極の表面積と比例的な関係 にあるとされ、比表面積の大きな多孔質材料を分極性電極に使用することで、これを 高める検討がなされてきた。

すなわち、分極性電極は、一般的に、炭素質材料等の多孔質材料、導電補助材であるアセチレンブラック、結着材であるフッ素系ポリマーまたはゴム系ポリマーを混練して得られる電極用組成物を集電板に貼り付けることで作製されるものであるが、例えば、炭素質材料として、高い導電性を示すとともに電気化学的に比較的安定な比表面積の大きい活性炭(多孔質炭素材料)を使用することで、静電容量を高める試みがなされてきた。

具体的には、石炭、石炭コークス、ヤシ殻、木粉、樹脂などの炭素質原料に、水蒸気、空気、酸素、COなどの酸化性ガス、または塩化亜鉛、水酸化カリウムなどの薬品により細孔を形成する賦活化(多孔質化)処理を施して得られる比表面積の大きい活性炭が用いられている。

[0004] ところで、近年、電子機器、電気自動車などの開発が進展するにつれて、電気二重 層キャパシタを初めとしたエネルギー貯蔵デバイスの基本設計も変わりつつある。

例えば、電気二重層キャパシタにおいては、エネルギーを高密度化して小型軽量化を図る必要があることから、多孔質材料の単位質量当りの静電容量(F/g)だけでなく、単位体積当りの静電容量(F/cm³)も向上させるなどの工夫をする必要が出てきている(特許文献2:特開2000-68164号公報、特許文献3:特開2000-100668号公報、特許文献5:特開平11-214270号公報参照)。

[0005] 多孔質材料(分極性電極)の単位質量当たりの静電容量は、上述のように比表面 積の大きな多孔質材料を使用することで、高めることができる。

しかし、比表面積の増加に伴い、多孔質材料の密度(充填)は低下するため、単位 休積当りの静電容量は、必ずしも比表面積の増加と比例的な関係にはない。それど ころか、比表面積がある程度以上に大きくなると、単位体積当りの静電容量はむしろ 低下する傾向にあることが知られている。

このように多孔質材料の比表面積の増加を図るという手法のみでは、電気二重層キャパシタの静電容量を増加させることには限界があり、近年要求されるレベルのエネルギーの高密度化を図ることは困難であった(特許文献1:特開平11-317333号公報、特許文献4:特開平11-297577号公報参照)。

[0006] 一方、電極活物質として導電性高分子を用いたポリマー電池又はキャパシタ等の エネルギー貯蔵デバイスの開発がなされている。

正極・負極とも同種の導電性高分子を使用する場合、正負極の酸化・還元電位に 依存している反応電位を広くすることには限界があり、高い電圧で動作するポリマー 電池又はキャパシタを作製することは一般的に困難であった。

ポリチオフェンは、参照極に銀/酸化銀電極を用いて測定した場合、酸化側で約0.7V、還元側で約2.3Vの位置にそれぞれHOMO及びLUMOが観察される物質である。このため、正負極とも同種の導電性高分子で広い電位活性を示すことが期待でき、ポリチオフェンを用い、電圧範囲が広い電極を得る検討が行われている(非特許文献1:ジャーナル パワーソース)。

[0007] また、正極及び負極に用いる導電性高分子の種類を異なるものとし、より酸化され

易い導電性高分子と、より還元され易い導電性高分子とをそれぞれ正極及び負極に用いることで、広い電圧範囲で使用でき、しかも容量が高いポリマー電池又はキャパシタが開発されている(特許文献6:特開2002-134162号公報)。この技術では、正極活物質として、ポリー5-シアノインドールが、負極活物質として、ポリフェニルキノキサリンが使用されている。

しかし、このエネルギー貯蔵デバイスは、上述のように正負極で異なる分子を用いる必要があるので、生産性の面で欠点を有していることから、正負両極に使用でき、 広い電位活性を示す電極活物質となり得る導電性高分子化合物の開発が望まれている。

[0008] 特許文献1:特開平11-317333号公報

特許文献2:特開2000-68164号公報

特許文献3:特開2000-100668号公報

特許文献4:特開平11-297577号公報

特許文献5:特開平11-214270号公報

特許文献6:特開2002-134162号公報

非特許文献1:ジャーナル パワーソース、47巻、89頁、1994年

発明の開示

発明が解決しようとする課題

[0009] 本発明は、このような事情に鑑みてなされたものであり、エネルギーレベルを高密度 化することができる結果、デバイスの小型軽量化を図ることのできるエネルギー貯蔵 デバイス用電極及びその製造方法を提供することを目的とする。

課題を解決するための手段

[0010] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、新規なアミノキ ノキサリン化合物を重合させてなる導電性高分子を電極活物質として含む電極が、 当該高分子化合物の酸化還元反応及び当該高分子化合物表面に発生する電気二 重層の両者をエネルギー源として用いることが可能となるため、従来の活性炭を主成 分とする電極を用いたデバイスよりも高容量の蓄電が可能となることを見出し、本発 明を完成した。

[0011] すなわち、本発明は、

1. 式(1a)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを特徴とするエネルギー貯蔵デバイス用電極、

[化]

$$\begin{array}{c|c}
R^1 & R^2 \\
N & N \\
R^3 & R^4
\end{array}$$

[式中、 R^1 及び R^2 は、それぞれ独立して、水素原子、水酸基、 C_1 ー C_1 アルキル基、 C_1 ーC アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよ いピリジル基、Yで置換されていてもよいビフェニル基、Yで置換されていてもよいナ フチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル 基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合ヘテロアリ ール基(R1とR2とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニ ル基、ピロリル基、フリル基又は縮合ヘテロアリール基のとき、これらの基は単結合で 結合していてもよい。)を表し、R3及びR4は、それぞれ独立して、水素原子、ハロゲン 原子、シアノ基、ニトロ基、アミノ基、C、一C、アルキル基、C、一C、アルコキシ基、Yで 置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換さ れていてもよいビフェニル基、Yで置換されていてもよいナフチル基、Yで置換されて、 いてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていても よいフリル基又はYで置換されていてもよい縮合ヘテロアリール基(R³とR⁴とが前記フ ェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基 又は縮合ヘテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表 し、 X^1 は、 $-NH-R^5-NH-$ 又は $-NH-R^5-$ を表し、 R^5 及び R^6 は、それぞれ独立して 、C 〜 C アルキレン基、 ーC(O)CH ー、 ーCH C(O)ー、 Yで置換されていてもよい2 価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていても よい2価のビフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換さ れていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Y

で置換されていてもよい2価のフラン環又はYで置換されていてもよい縮合へテロ環を表す。Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C

一C。アルキル基、C。一C。ハロアルキル基、C。一C。アルコキシ基、C。一C。シアノアルキル基、Zで置換されていてもよいアエニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサエニル基、Zで置換されていてもよいプリル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいフリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C。C。アルキル基、C。一C。ハロアルキル基、C。C。アルコキシ基、C。一C。シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)、nは、少なくとも2以上の整数を表す。〕

2. 前記 R^1 及び R^2 が、それぞれ独立して、式(2)で表されることを特徴とする1のエネルギー貯蔵デバイス用電極、

[化2]

(式中R⁷ーR¹¹は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁クロアルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₂シアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

3. 前記 R^1 及び R^2 が、それぞれ独立して、式(3)で表されることを特徴とする1記のエネルギー貯蔵デバイス用電極、

[化3]

$$R^{16} \stackrel{\text{II}}{\underset{\text{R}}{\text{II}}} \stackrel{\text{R}^{18}}{\underset{\text{R}^{15}}{\text{R}^{14}}} R^{12} \qquad (3)$$

(式中R¹²〜R¹⁸は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

4. 前記 R^1 及び R^2 が、それぞれ独立して、式(4)で表されることを特徴とする1のエネルギー貯蔵デバイス用電極、

[化4]

$$R^{20} \xrightarrow{\parallel} A^{1}$$

(式中R¹⁰~R²¹は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁~C₁アルキル基、C₁~C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。A¹はNH、O又はSを表す。)

5. 前記 R^1 及び R^2 が、それぞれ独立して、式(5)で表されることを特徴とする1のエネルギー貯蔵デバイス用電極、

[化5]

$$R^{26}$$
 CH_2R^{22}
 R^{25}
 R^{23}
 CH_2R^{23}

(式中 R^{22} は、ハロゲン原子又はシアノ基を表し、 R^{23} ー R^{26} は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C ーC

アルキル基、C、一C、アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

 前記R⁵が、式(6)で表されることを特徴とする1~5のいずれかのエネルギー貯 蔵デバイス用電極、

[化6]

$$\begin{array}{c|c}
R^{30} & & \\
\hline
 & & \\
R^{29} & & \\
R^{28} & & \\
\end{array}$$
(6)

(式中R²⁷ーR³⁰は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

7. 前記R⁵が、式(7)で表されることを特徴とする1~5のいずれかのエネルギー貯蔵デバイス用電極、

[化7]

(式中R³¹〜R³²は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C 〜C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。W¹はNH、O又はSを表す。)

8. 前記R⁵が、式(8)で表されることを特徴とする1~5のいずれかのエネルギー貯蔵デバイス用電極、

[化8]

(式中R³³〜R³⁴は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。Q¹はNH、O又はSを表す。)

9. 前記R⁵が、式(9)で表されることを特徴とする1~5のいずれかのエネルギー貯蔵デバイス用電極、

[化9]

(式中R³6~R⁴0は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁~C₁₀アルキル基、C₁~C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

10. 前記R⁶が、式(10)で表されることを特徴とする1~5のいずれかのエネルギー 貯蔵デバイス用電極、

[化10]

(式中R⁴¹ーR⁴⁴は、それぞれ独立して、環上の任意の位置で置換している水業原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C ーC アルキ

ル基、C、C、アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

11. 前記R⁶が、式(11)で表されることを特徴とする1~5のいずれかのエネルギー 貯蔵デバイス用電極、

[化11]

$$\mathbb{R}^{45}$$
 \mathbb{R}^{46}
 \mathbb{R}^{2}
(1 1)

(式中R⁴⁵~R⁴⁶は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁~C₁₀アルキル基、C₁~C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。W²はNH、O又はSを表す。)

12. 前記R⁶が、式(12)で表されることを特徴とする1~5のいずれかのエネルギー 貯蔵デバイス用電極、

[化12]

(式中R⁴⁷ーR⁴⁸は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。Q²はNH、O又はSを表す。)

13. 前記 R^6 が、式(13)で表されることを特徴とする1~5のいずれかのエネルギー 貯蔵デバイス用電極、

[化13]

(式中R⁴⁹〜R⁵⁴は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

14. 前記R¹とR²とが単結合で結合して形成される基が、式(14)で表されることを特徴とする1のエネルギー貯蔵デバイス用電極、

[化14]

(式中 A^2 はC又はNを表し、 R^{55} ~ R^{62} は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、 C_1 ~ C_1 7ルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。ただし、 A^2 がNのとき、 R^{58} 及び R^{59} は存在しない。)

15. 式(1b)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを 特徴とするエネルギー貯蔵デバイス用電極、

[化15]

$$\begin{bmatrix}
R^1 & R^2' \\
N & N
\end{bmatrix}$$

$$\begin{bmatrix}
R^3 & R^4
\end{bmatrix}$$

$$\begin{bmatrix}
R^3 & R^4
\end{bmatrix}$$

[式中、 $R^{1'}$ 及び $R^{2'}$ は、これら各基が一緒になって、 $-CH_{_2}CH_{_2}CH_{_2}-$ 、 $-CH_{_2}CH_{_2}O-$

 $, - OCH_2CH_2 -, - CH_2OCH_2 -, - OCH_2O -, - CH_2CH_2S -, - SCH_2CH_2 -, - CH_2CH_2S -, - CH_$ SCH₂-,-CH₂CH₂N(R)-,-N(R)CH₂CH₂-,-CH₂N(R)CH₂-,-CH₂CH₂ $\mathrm{CH_{2}CH_{2}-,-CH_{2}CH_{2}CH_{2}O-,-OCH_{2}CH_{2}CH_{2}-,-CH_{2}CH_{2}OCH_{2}-,-CH_{2}OCH$ CH₂CH₃-,-CH₂OCH₂O-,-OCH₂CH₂O-,-SCH₂CH₂S-,-OCH₂CH₃S-, -SCH,CH,O-,-CH,CH=CH-,-CH=CHCH,-,-OCH=CH-,-CH=C HO-, -SCH=CH-, -CH=CHS-, -N(R)CH=CH-, -CH=CHN(R)-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R)CH=N-, -N=CHN(R)-,-N(R)N=CH-,-CH=N(R)N-,-CH=CHCH=CH-,-OCH₂CH=CH-,-CH=CHCH₂O-,-N=CHCH=CH-,-CH=CHCH= N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成 し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく ルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル 基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、 Zで置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置 換されていてもよいフリル基又はZで置換されていてもよい縮合ヘテロアリール基を 表す。R³、R⁴、X¹、Y、Z及びnは上記と同じ。〕

16. 式(1c)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを 特徴とするエネルギー貯蔵デバイス用電極、

[化16]

「式中、 R^3 '及び R^4 は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O-$ 、 $-OCH_2CH_2-$ 、 $-CH_2OCH_2-$ 、 $-OCH_2O-$ 、 $-CH_2CH_2S-$ 、 $-SCH_2CH_2-$ 、 $-CH_2CH_2S-$ 、 $-SCH_2CH_2-$ 、 $-CH_2CH_2S -CH_2CH_2S -CH_2CH_$

CH₂CH₂-、-CH₂OCH₂O-、-OCH₂CH₂O-、-SCH₂CH₂S-、-OCH₂CH₂S-、-SCH₂CH₂O-、-CH₂CH=CH-、-CH=CHCH₂-、-OCH=CH-、-CH=CHCH₂-、-OCH=CH-、-CH=CHO-、-CH=CHN(R')-、-CH=CHN(R')-、-CH=CHN(R')-、-CH=CHN(R')-、-N(R')CH=N-N-、-N(R')CH=N-N- -N(R')CH=N-N- -N(R')CH=N-N-

17. 式(1d)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを 特徴とするエネルギー貯蔵デバイス用電極、

[4217]

$$\begin{array}{c|c}
R^{1} & R^{2'} \\
N & N \\
X^{1} & X^{1}
\end{array}$$

(式中、R¹、R²、R³、R⁴、X¹及びnは上記と同じ。)

18. 前記 R^1 及び R^2 が一緒になって形成される基が、式(15)で表されることを特徴とする15又は17のエネルギー貯蔵デバイス用電極、

[化18]

(式中 A^3 はO又はSを表し、 R^{63} ー R^{66} は、それぞれ独立して、水素原子、ハロゲン原 了、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、 C_1 ー C_{10} アルキル基、 C_1 ー C_{10} アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

19. 前記R^{3'}及びR^{4'}が一緒になって形成される基が、式(16)で表されることを特徴とする16又は17のエネルギー貯蔵デバイス用電極、

[化19]

(式中A⁴はO又はSを表し、R⁶⁷〜R⁷⁰は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは、上記と同じ。)

20. 前記R³ 及びR⁴ が一緒になって形成される基が、式(17)で表されることを特徴とする16又は17のエネルギー貯蔵デバイス用電極。

[{\psi_20]

$$\begin{array}{c|c}
\mathbf{N} & \mathbf{N} \\
\mathbf{R}^{71} & \mathbf{R}^{72}
\end{array}$$

(式中R⁷¹及びR⁷²は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Z で置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表す。Zは上記と同じ。)

- 21. 1ー20のいずれかのエネルギー貯蔵デバイス用電極を備えることを特徴とするエネルギー貯蔵デバイス、
- 22. 前記式(1a)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板電極上に塗布積層することを特徴とする1のエネルギー貯蔵デバイス用電極の製造方法、
- 23. 前記式(1b)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板電極上に途布積層することを特徴とする15のエネルギー貯蔵デバイス用電極

の製造方法、

- 24. 前記式(1c)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板電極上に塗布積層することを特徴とする16のエネルギー貯蔵デバイス用電極の製造方法、
- 25. 前記式(1d)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板電極上に塗布積層することを特徴とする17のエネルギー貯蔵デバイス用電極の製造方法、
- 26. 式(18a)で表されるアミノキノキサリン化合物を集電板電極上で電解電合する ことを特徴とする1のエネルギー貯蔵デバイス用電極の製造方法、

[化21]

$$R^1$$
 R^2
 N N
 X^2 X^2 X^3 X^4

[式中、X²は、-NH-R³3-NH2又は-NH-R³4を表し、R³3は、C1-C1アルキレン基、-C(O)CH2、-CH2C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい箱合へテロ環を表し、R³4は、C1-C7アルキル基、アセチル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいアナル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいプリル基又はYで置換されていてもよい紹合へテロアリール基を表す。R¹、R²、R³、R⁴及びYは上記と同じ。〕

27. 式(18b)で表されるアミノキノキサリン化合物を集電板電極上で電解重合する ことを特徴とする15のエネルギー貯蔵デバイス用電極の製造方法、

[化22]

(式中、R^{1'}、R^{2'}、R³、R⁴及びX²は上記と同じ。)

28. 式(18c)で表されるアミノキノキサリン化合物を集電板電極上で電解重合することを特徴とする16のエネルギー貯蔵デバイス用電極の製造方法、

[化23]

(式中、R¹、R²、R³、R⁴及びX²は上記と同じ。)

29. 式(18d)で表されるアミノキノキサリン化合物を集電板電極上で電解重合する ことを特徴とする17のエネルギー貯蔵デバイス用電極の製造方法、

[1比24]

(式中、R¹、R²、R³、R⁴及びX²は上記と同じ。)

を提供する。

発明の効果

[0012] 本発明のエネルギー貯蔵デバイス用電極の電極活物質として用いられている上記式(1a)〜(1d)で示されるポリアミノキノキサリン化合物は、優れた耐熱性を有し、プロトン移動を伴う電気化学的酸化還元を容易にコントロールでき、かつサイクル性に富むものである。

また、上記ポリアミノキノキサリン化合物は、その一分子内に電子受容性部と電子供 与性部とを併せ持っているため、正極・負極のどちらにでも使用できるだけでなく、広 い電位活性を示す導電性高分子化合物である。

このポリアミノキノキサリン化合物を電極活物質として使用した本発明のエネルギー 貯蔵デバイス用電極を備えて構成されるデバイスは、高容量の蓄電が可能となる。

特に電気二重層キャパシタ用電極として用いた場合、電極活物質の酸化還元反応 とその表面に発生する電気二重層の両者がエネルギー源として機能するため、従来 の活性炭のみの電気二重層キャパシタより高容量の蓄電が可能となる。

発明を実施するための最良の形態

[0013] 以下、本発明についてさらに詳しく説明する。

本発明に係るエネルギー貯蔵デバイス用電極は、上記式(1a)〜(1d)で表されるポリアミノキノキナリン化合物を電極活物質として含むことを特徴とするものである。

まず、式(1a)~(1d)で示されるポリアミノキノキサリン化合物、又は式(18a)~(18d)で示されるアミノキノキサリン化合物について説明する。

これら各式において、R¹及びR²は、それぞれ独立して、水素原子、水酸基、C、C PC Pルキル基、C、C、PC Pルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいナロリル基、Yで置換されていてもよいアリル基又はYで置換されていてもよい紹合へテロアリール基(R¹とR²とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表す。

[0014] R^1 及び R^2 は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O-$ 、-O $-CH_2CH_2-$ 、 $-CH_2OCH_2-$ 、 $-OCH_2O-$ 、 $-CH_2CH_2S-$ 、 $-SCH_2CH_2-$ 、 $-CH_2SCH_2-$ 、 $-CH_2CH_2$ $-CH_2$ $-CH_2$

-、-SCH=CH-、-CH=CHS-、-N(R)CH=CH-、-CH=CHN(R)-、-OCH=N-、-N=CHO-、-SCH=N-、-N(R)CH=N-、-N(R)CH=N-、-N=CHO-、-N=CHO-、-N=CHS-、-N(R)CH=N-、-N=CHO-、-N=CHO-、-N=CHS-、-N(R)CH=N-、-N=CHO-、-N=CHCH=CH-、-CH=CHCH=CH-、-OCHCH=CH-、-CH=CHCH=N-、-OCHCH=CH-、-CH=CHCH=N-、-OCHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく、Rは、水素原子、CーCにアルキル基、CーCにアルキル基、CーCにアルキル基、CーCにアルキル基、CーCにアルキル基、CーCにアルキル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリンル基、Zで置換されていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいアリル基を表す。

具体的には、例えば、下記式(2)~(5)、(14)及び(15)で示される基などが挙げ られる。

[0015] [化25]

[0016] また、アミノキノキサリン化合物の溶解性を考慮した場合、 R^1 、 R^2 、 R^1 及び R^2 は、さらに置換基Yで置換されていることが好ましく、この置換基Yとしては、 $C_1 \sim C_1$ アルキル基又は $C_1 \sim C_1$ アルコキシ基が好適であり、 $C_1 \sim C_2$ アルキル基又は $C_1 \sim C_3$ アルコキシ基がより好ましい。

さらに、ポリアミノキノキサリン化合物の電気特性という点から、R¹とR²とが単結合で

結合して上記式(14)を形成したものが好適であり、特に、式(14)中、 A^2 が炭素原子であるものが好ましい。

一方、R³及びR⁴は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいテエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合ヘテロアリール基(R³とR⁴とが前記フェニル基、ピリジル基、ピフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表す。

- [0017] R³及びR⁴は、これら各基が一緒になって、一CH₂CH₂CH₂ー、一CH₂CH₂Oー、一O CH₂CH₂ー、一CH₂OCH₂ー、一OCH₂Oー、一CH₂CH₂Sー、一SCH₂CH₂ー、一CH₂SC H₂ー、一CH₂CH₂ー、一ON(R) CH₂CH₂ー、一CH₂CH₂CH₂ー、一CH₂CH₂CH₂ CH₂ー、一CH₂CH₂CH₂ CH₂ー、一CH₂CH₂CH₂ CH₂ー、一CH₂CH₂CH₂ CH₂ー、一CH₂CH₂CH₂Oー、一OCH₂CH₂CH₂ー、一CH₂CH₂OCH₂ー、一CH₂OCH₂ CH₂ー、一CH₂OCH₂ Oー、一OCH₂CH₂Oー、一SCH₂CH₂Sー、一OCH₂CH₂Sー、一SC H₂CH₂Oー、一CH₂CH=CHー、一CH=CHCH₂ー、一OCH=CHー、一CH=CHO 一、一SCH=CHー、一CH=CHO、一N(R)CH=CHー、一CH=CHN(R)ー、一O CH=Nー、ーN=CHOー、一SCH=Nー、一N=CHSー、一N(R)CH=Nー、ーN=CHCH=Nー、一N=CHCH=Nー、一N=CHCH=Nー、一N=CHCH=Nー、一OCH CH=CHー、一CH=CHCH₂Oー、一N=CHCH=CHー、一CH=CHCH=Nー、一OCH CH=CHー、一CH=CHCH₂Oー、一N=CHCH=CHー、一CH=CHCH=Nー、一N=CHCH=Nー、一N=CHCH=Nー、一N=CHCH=Nー、一N=CHCH=Nー、を形成し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよい。Zは上記と同じである。
- [0018] R³(R³)及びR⁴(R⁴)が、アルキル基(アルキレン基)及びアルコキシル基(アルキレンオキシ基)の場合、導電率を考慮すると、それらの炭素数は、1~5であることが好ましい。また、酸化還元電位を良好にするという点から、R³及びR⁴は、フェニル基、ナフチル基又はチエニル基が好ましい。さらに、電気特性という点から、R³、R⁴、R³及びR⁴も、さらに置換基Yで置換されていることが好ましい。質換基Yとしては、C₂~C

アルキル基、 C_1 ー C_1 アルコキシ基が好ましく、 C_1 ー C_5 アルキル基又は C_1 ー C_5 アルコキシ基がより好ましい。具体的には、上記 R^1 、 R^2 、 R^1 及び R^2 で例示した(2)ー(5)、(14)で示されるものに加え、例えば、下記(16)及び(17)で示される基などが挙げられる。

[0019] [化26]

[0020] また、上記式(1a)~(1d)において、X¹は、-NH-R⁵-NH-又は-NH-R⁶-を表し、これらR⁶及びR⁶は、それぞれ独立して、C₁~C₁₀アルキレン基、-C(O)CH₂~、-C H₂C(O)~、Yで置換されていてもよい2価のペンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のプラン環又はYで置換されていてもよい2価のプラン環又はYで置換されていてもよい縮合~テロ環である。具体的には、例えば、下記式(6)~(13)で示される基などが挙げられる。

[0021] [化27]

- [0022] 上記式(18a)~(18d)において、X²は、-NH-R⁷³-NH₂又は-NH-R⁷⁴を表し、R

 ⁷³は、C₁~C₁アルキレン基、-C(O)CH₂~、-CH₂C(O)~、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のプラン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい縮合へテロ環であり、R⁷⁴は、C₁~C₁₀アルキル基、アセチル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいテエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいテエニル基、Yで置換されていてもよいポ合へテロアリール基である。
- [0023] 上記R⁵、R⁷³及びR⁷⁴は、酸化還元電位を良好にするという点から、特に、2価のベンゼン環、2価のナフタレン環又は2価のチオフェン環が望ましい。また、ポリアミノキノキサリン化合物からなる膜等の電気特性を安定に保つという点から、これらの環状置換基は、さらに置換基Yで置換されていることが好ましい。

R⁶についても、酸化還元電位を良好にするという点から、フェニル基、ナフチル基

又はチエニル基が好ましい。

なお、ポリアミノキノキサリン化合物からなる膜等のアモルファス性を安定に保つという点から、これらの R^5 、 R^6 、 R^{73} 及び R^{74} は、さらに置換基Yで置換されていることが好ましい。これらの場合も、置換基Yとしては、 $C_1 - C_1$ アルキル基、 $C_1 - C_1$ アルコキシ基が好ましく、 $C_1 - C_2$ アルキル基又は $C_1 - C_3$ アルコキシ基がより好ましい。

- [0024] また、式(1)で示されるポリアミノキノキサリン化合物の分子量は特に限定されるものではないが、重量平均分子量として1,000~100,000、特に4,000~50,000であることが好ましい。このことから、上記式(1)におけるnは、2以上の正の整数であるが、ポリアミノキノキサリン化合物を上記重量平均分子量の範囲とする数であることが好ましく、例えば、n=2~400とすることができる。
- [0025] なお、上記各式において、C、一C、アルキル基としては、直鎖、分岐又は環状のいずれでもよく、例えば、メチル、エチル、nープロピル、iープロピル、nーブチル、iーブチル、tーブチル、sーブチル、nーペンチル、nーヘキシル、2ーエチルプロピル、2, 2ージメチルプロピル、1, 2ージメチルプロピル、1, 2ートリメチルプロピル、1, 2, 2ートリメチルプロピル、1, 2, 2ートリメチルプロピル、1, 2, 2ートリメチルプロピル、1ーエチルー1ーメチルプロピル、1ーエチルー2ーメチルプロピル、1ーメチルブチル、1ーメチルブチル、1, 2ージメチルブチル、2ーメチルブチル、3ージメチルブチル、3ージメチルブチル、2, 2ージメチルブチル、2, 3ージメチルブチル、2ーメチルブチル、1ーエチルブチル、2ーエチルブチル、1ーメチルペンチル、2ーメチルペンチル、3ーメチルペンチル及び4ーメチルペンチル等があげられる。なお、C、一C、アルキレン基としては、上記各アルキル基の水素原子を1つ外してなる基が挙げられる。
- [0026] CーC ハロアルキル基としては、上記各アルキル基の水素原子の少なくとも1つが、ハロゲン原子で置換されてなる基が挙げられる。なお、ハロゲン原子は、塩素、臭素、ヨウ素、フッ素原子のいずれでもよい。

CーC シアノアルキル基としては、上記各アルキル基の水素原子の少なくとも1つが、シアノ基で置換されてなる基が挙げられる。

縮合へテロアリール基としては、チエノ[3, 4-b]ピラジン-5-イル、フロ[3, 4-b]ピラジン-5-イル及び6H-ピロロ[3, 4-b]ピラジン-5-イル等が挙げられる。

[0027] CーC アルコキシ基としては、直鎖、分岐又は環状のいずれでもよく、例えば、メトキシ、エトキシ、nープロポキシ、iープロポキシ、nープトキシ、iープトキシ、sープトキシ、tープトキシ、nーペンチルオキシ、nーへキシルオキシ、1, 1ージメチルプロポキシ、1, 2ージメチルプロポキシ、2, 2ージメチルプロポキシ、1-エチルプロポキシ、1, 1, 2ートリメチルプロポキシ、1, 2, 2ートリメチルプロポキシ、1-エチルー1ーメチルプロポキシ、1ーエチルー2ーメチルプロポキシ、1ーエチループロポキシ、3ーメチルブトキシ、3ーメチルブトキシ、1ーエチルブトキシ、2ーエチルブトキシ、1, 1ージメチルブトキシ、1, 2ージメチルブトキシ、1, 3ージメチルブトキシ、2, 2ージメチルブトキシ、2, 3ージメチルブトキシ、3, 3ージメチルブトキシ、1ーメチルペンチルオキシ、2ーメチルペンチルオキシ、3ーメチルペンチルオキシ及び4ーメチルペンチルオキシ等が挙げられる。

上記において、nはノルマルを、iはイソを、sはセカンダリーを、tはターシャリーをそれぞれ表す。

[0028] 上記式(1a)〜(1d)で示される化合物としては、例えば、下記のものが挙げられるが、これらに限定されるものではない。

[0029] [化28]

[0030] [化29]

[0032] [化31]

[0033] [化32]

[0034] [化33]

[0035] 次に、式(18a)〜(18d)(式(1a)〜(1d))で表される化合物のうち、式(18a)(式(1a))で表される化合物を例に挙げて、その合成法について説明する。この化合物は、下記式(19)で表される5ーアミノキノキサリン化合物を原料として合成することができる。

[0036] [1\(\)234]

$$\begin{array}{c|c}
R^1 & R^2 \\
N & N \\
N & NH_2
\end{array}$$
(19)

(式中、R¹~R⁴は、上記式(1a)と同じ。)

[0037] 具体的な合成法としては、特に限定されるものではなく、ジャーナル・オブ・ザ・ケミカル・ソサイエティ・パーキン・トランサクションズ I(J. Chem. Soc. Perkin Trans. I)、1988年、1331-1335頁、ケミストリ・レターズ(Chem. Lett.)、1997年、1185頁に記載されている方法を用いることができる。

例えば、対応する5-アミノキノキサリン化合物を適当な溶媒に溶解し、適当な塩基存在下でニトロフルオロベンゼンと室温で反応させ、さらにPd/C存在下で水素添加反応させることによりR⁵にフェニル環を導入した目的化合物を合成できる。また、R⁶にチエニル基を有する目的化合物は、5-アミノキノキサリン化合物を適当な溶媒に溶

解させ、Pd₂(dba)₃、BINAPをそれぞれ触媒虽添加し、適当な塩基存在下で2ープロモチオフェンと反応させることで合成できる。

- [0038] なお、上記式(19)の5-アミノキノキサリン化合物の合成法としては、特に限定されるものではなく、例えば、ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(J. Am. Chem. Soc.)、1957年、79巻、2245-2248頁、ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、1966年、31巻、3384-3390頁に記載されている方法を用いることができる。
- [0039] 式(1a)で示されるポリアミノキノキサリン化合物の製造法としては、特に限定される ものではなく、式(18a)のアミノキノキサリン化合物を任意の手法により重合法させて 製造することができ、例えば、化学酸化重合、電解酸化重合、触媒重合等を用いるこ とができ、多くの場合、重合体を電極表面に形成できるという点から、化学酸化重合、 電解酸化重合が好ましく、特に、電解酸化重合が好適である。

化学酸化重合に用いられる酸化剤としては、特に限定されるものではなく、例えば、 過硫酸アンモニウム、テトラアンモニウムパーオキサイド、塩化鉄、硫酸セリウム等が 挙げられる。

[0040] 電解酸化重合の具体的手法としては、例えば、式(18a)で示されるモノマーに、酸 化剤を添加して充分に攪拌した後、有機溶媒を加えて均一な溶液とし、この溶液中 のモノマーを白金メッシュ対極等を備えた三極式ビーカー型セルなどを用いて電解 重合させればよい。

電解重合は、例えば、試験極基板として表面をエメリーペーパーなどにより傷つけた白金板を、参照極としてAg/Ag[†]を使用し、電気化学測定システムにより電解重合を行う。電解重合の具体的手法としては、例えば、電位掃引法、定電位法を用いることができる。これにより、目的とする高分子化合物は、電極上で膜状に析出することになる。

[0041] 電解酸化重合に用いられる酸化剤としては、例えば、塩酸、硫酸、過塩素酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸等が挙げられ、中でも過塩素酸が好適である。

また、有機溶媒としては、例えば、N, N-ジメチルホルムアミド、テトラヒドロフラン、

アセトニトリル、ジクロロメタン、ジメチルスルホキシド、メタノール、エタノール等が挙げ られ、特に、N, Nージメチルホルムアミドを用いることが好ましい。

[0042] 以上説明した式(1a)〜(1d)で示されるポリアミノキノキサリン化合物は、その優れた電気化学特性を利用してエネルギー貯蔵デバイスの活物質、特に電極活物質などに好適に利用できる。この場合、ポリアミノキノキサリン化合物自体が導電性を示すため、電極界面における接触抵抗を下げる効果が期待できる。

式(1a)~(1d)で示されるポリアミノキノキサリン化合物を含むエネルギー貯蔵デバイス用電極を作製する手法としては、特に限定されるものではなく、上述した式(18a)~(18d)のモノマーを、それぞれ電極上で電解酸化重合して式(1a)~(1d)で表される化合物を膜状に析出させて電極を作製することができる。

また、ポリアミノキノキサリン化合物は、蒸着法、スピンコート法、ディッピング法、キャスト法、スクリーン印刷法等により容易に薄膜化することができ、これらの手法を用いて、電極表面をポリアミノキノキサリン化合物含有薄膜で被覆する等により、電極を作製することもできる。

[0043] 特に、式(1a) ー(1d) で表されるポリアミノキノキサリン化合物からなる電極活物質を含むコーティング用組成物を調製し、これを集電板電極上に塗布積層する方法を用いることで、ポリアミノキノキサリン化合物を電極活物質として含む電極を簡便にかつ容易に作製することができる。

ここで、ポリアミノキノキサリン化合物を含むコーティング組成物の構成成分としては、特に限定されるものではなく、例えば、ポリアミノキノキサリン化合物、成膜性を向上させるための高分子材料、及び分散剤等を含む組成物を用いることができる。組成物中におけるポリアミノキノキサリン化合物の含有量としては、例えば、50~90質量%程度とすることができる。

なお、この組成物中には、必要に応じて、熱安定剤、光安定剤、充填剤、強化剤等 の添加剤を適宜配合することができる。

[0044] 以上で説明したエネルギー貯蔵デバイス用電極では、ポリアミノキノキサリン化合物 からなる電極活物質は、電解重合や塗布等により、電極表面に付着している態様の みであったが、これに限定されるものではない。例えば、予めポリアミノキノキサリン化 28

合物からなる電極活物質を混合してなる電極用組成物を用いて、電極を作製することもできる。

[0045] 本発明のエネルギー貯蔵デバイス用電極は、電気二重層キャパシタ、リチウムイオン電池、プロトンポリマー電池、ニッケル水素電池、鉛蓄電池等の各種エネルギー貯蔵デバイスに好適に使用することができ、中でも、電気二重層キャパシタ、リチウムイオン電池、プロトンポリマー電池用の電極として用いることが好ましい。

特に、電気二重層キャパシタ用の電極として用いると、当該電極活物質の酸化還元反応とその表面に発生する電気二重層の両者をエネルギー源とすることができるので、従来の活性炭のみの電気二重層キャパシタより高容量の蓄電が可能となるものである。

実施例

- [0046] 以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、以下において、NMRデータは、日本電子(株)製のJNM-ECP200を用いて、MSデータは、Applied Bio systems社製のVoyager DE Proにより測定した。
- [0047] [合成例1]2、3-ジヒドロキシ-5-アミノキノキサリンの合成 以下の(1)〜(3)の方法で合成した。 (1)2、3-ジアミノニトロベンゼンの合成 [化35]

[0048] 市販の1-アミノ-2, 5-ジニトロベンゼン14gをメタノール225mlに溶解し、これに 硫化ナトリウム60g、炭酸水素ナトリウム21gを水240gに溶解したものを、滴下ロート を用いて反応温度60℃に保ったまま添加した。添加終了後さらに60℃で1時間攪拌した。 反応終了後、室温まで冷却し、濾過した。

m/z:(FD+)153(計算値153.1396)

¹H-NMR:7. 7228, 7. 7203, 7. 7026, 7. 2433, 6. 9245, 6. 6209, 6. 60

63, 6. 6038, 6. 5886, 5. 9210, 3. 3978ppm.

収量:7.79g(66.5%)

性状:赤褐色微細結晶

融点:140℃

[0049] (2)2,3-ジヒドロキシ-5-ニトロキノキサリンの合成

[化36]

[0050] 2, 3ージアミノニトロベンゼン4g(26.12mmol)と市販の蓚酸2水和物6.59g(52.24mmol)を50%酢酸に溶解し、アルゴン気流下、沸点で3時間反応させた。反応終了後室温まで冷却し、析出した結晶を濾過した。

収量:3.01g(55.6%)

性状:黄色微細結晶

m/z:207(計算值207.144)

[0051] (3)2,3-ジヒドロキシ-5-アミノキノキサリンの合成 [化37]

[0052] 2,3-ジヒドロキシ-5-ニトロキノキサリン2.00gをメタノール/ジオキサン1:1溶媒 100gに溶解した後、反応系を充分にアルゴン置換し、これに5%Pd/C(含水)1.0 0g添加した。その後、系を水素置換し、室温で20時間反応した。反応終了後、水13 0mlに炭酸カリウム6.00g溶解させたものに反応物を分散させ、生成物を溶解させた。 濾過後得られた溶液に35%塩酸を徐々に添加し析出物を得た。

収量:1.10g

性状:淡黄色微細結晶

m/z(FD+):177(計算値177.1616)

¹³C-NMR:155. 8030, 155. 6504, 135. 9570, 126. 8390, 124. 1303, 1 12. 3265, 109. 6025, 103. 8418 ppm.

[0053] [合成例2]2、3-ジフェニル-5-アミノキノキサリンの合成 以下の(1)、(2)の方法で合成した。 (1)2、3-ジフェニル-5-ニトロキノキサリンの合成

[0054] [化38]

$$O_2N \overset{\mathsf{NH}_2}{\longleftrightarrow} \mathsf{NH}_2 \overset{\mathsf{NO}_2}{\longleftrightarrow} \mathsf$$

[0055] 2, 3-ジアミノニトロベンゼン1. 53g(10mmol)、benzil 2. 00g(9. 6mmol)を4 つ口フラスコに入れ、これに酢酸:メタノール=1:1溶媒30gを加え溶解させた。その後反応温度70℃で2時間反応させた。反応後溶媒を除去し、生成物をシリカゲルカラムで抽出した(酢酸エチル:ヘキサン=1:1)。

収量:2.11g

性状:黄色微細結晶

m/z:327(計算值327.24)

[0056] (2)2,3-ジフェニル-5-アミノキノキサリンの合成 [化39]

[0057] 2. 3-ジフェニル-5-ニトロキノキサリン1. 04gをジオキサン30gに溶解し、アルゴン置換した後、5%Pd/C(含水)0. 5gを添加した。再度アルゴンで充分に置換した後、水素を添加し、室温で30時間反応させた。反応終了後、濾過して反応溶媒を除去した後、シリカゲルカラムで分離精製した(酢酸エチル: ヘキサン=1:3)。

収量:0.73g

性状: 黄色微細結晶

m/z:297(計算值M:297,36)

¹³C-NMR:153. 6055, 150. 1185, 144. 2280, 141. 9619, 139. 4516, 1 39. 3524, 131. 1348, 130. 0894, 129. 9368, 128. 7694, 128. 6473, 12 8. 3497, 128. 1743, 117. 2098, 110. 2511 ppm.

[0058] [合成例3]<u>2.3-ジ(4-メチルフェニル)-5-アミノキノキサリンの合成</u> 以下の(1)、(2)の方法で合成した。

> (1)2,3-ジ(4-メチルフェニル)-5-ニトロキノキサリンの合成 [化40]

[0059] 2, 3ージアミノニトロベンゼン1. 84g(12mmol), 4, 4′ージメチルベンジル2. 38g (10mmol)を酢酸、メタノール混合溶媒(1:1)40gに溶解し、反応温度80℃で4時間反応させた。反応終了後、溶媒を除去し、反応生成物をシリカゲルカラムで抽出した。

収量:1.30g

性状: 黄色微細結晶

m/z:355(計算值355.39)

¹⁸C-NMR:154. 8950, 154. 8339, 147. 0894, 140. 7563, 140. 1307, 1
39. 8636, 135. 5984, 135. 1253, 133. 7061, 133. 2254, 130. 2725, 12
9. 7003, 129. 3188, 129. 1204, 128. 4108, 127. 7470, 124. 2142 ppm

[0060] (2)2, 3-ジ(4-メチルフェニル)-5-アミノキノキサリンの合成 [化41]

[0061] 2, 3-ジ(4-メチルフェニル)-5-ニトロキノキサリン2. 02gをジオキサン30gに溶解し、アルゴンで置換した後に5%Pd/C(含水)0. 6gを添加した。 再度アルゴン置換

した後、水素置換し、室温で18時間反応させた。反応終了後、濾過し、濾サイをさら にアセトンとジオキサンで洗浄し、再度濾過した。得られた濾液から溶媒を除去した 後、反応生成物をシリカゲルカラムで抽出した。

収量:1.36g

性状: 黄色微細結晶

m/z:325(計算值325.14)

¹³C-NMR:153. 6131, 150. 1643, 144. 0907, 141. 8551, 138. 6581, 1 38. 5894, 136. 7047, 136. 6666, 131. 2721, 130. 7761, 129. 9292, 12 9. 7766, 129. 0365, 128. 9815, 117. 2403, 110. 0603 ppm.

[0062] [合成例4]<u>2、3-ジ(4-メトキシフェニル)-5-アミノキノキサリンの合成</u> 以下の(1)、(2)の方法で合成した。

> (1)2,3-(4-ジメトキシフェニル)-5-ニトロキノキサリンの合成 [化42]

[0063] 2, 3-ジアミノニトロベンゼン1. 54g(10mmol), 4, 4' -ジメトキシベンジル2. 25 g(8. 3mmol)を溶媒(メタノール:酢酸=1:1、100g)に溶解し、室温で20時間反応させた。反応終了後、濾過し、濾サイをさらにアセトンとジオキサンで洗浄し、再度濾過した。得られた濾液から溶剤を除去した後、反応生成物をシリカゲルカラムで抽出した。

収量:1.24g

性状:黄色微細結晶

m/z:387(計算值:387,39)

¹³C-NMR:161. 0983, 160. 9075, 154. 3303, 154. 2464, 146. 9520, 1 40. 6495, 133. 5993, 133. 1415, 131. 9207, 130. 8448, 130. 4099, 12 7. 5104, 124. 0998, 114. 1043, 113. 8830ppm.

[0064] (2) 2, 3-ジ(4-メトキシフェニル)-5-アミノキノキサリンの合成

[化43]

[0065] 2,3-(4-ジメトキシフェニル)-5-ニトロキノキサリン0.55gをジオキサン30gに溶解し、アルゴンで充分に置換した。その後、5%Pd/C(含水)0.5gを添加し、再度アルゴンで充分置換した。この系を水素置換し、室温で24時間反応させた。反応終了後、濾過し、濾サイをさらにアセトンとジオキサンで洗浄し、再度濾過した。得られた濾液から溶媒を除去した後、反応生成物をシリカゲルカラムで抽出した。

収量:0.37g

性状:黄色微細結晶

m/z:325(計算值:325.43)

¹³C-NMR:160, 1369, 160, 0606, 153, 1324, 149, 7370, 144, 0144, 141, 7483, 131, 3942, 131, 2874, 130, 6235, 117, 1640, 113, 8296, 113, 6618, 110, 0145, 55, 3828 ppm.

[0066] [合成例5]2.3-ジ(4-ブロモフェニル)-5-アミノキノキサリンの合成 以下の(1)、(2)の方法で合成した。

(1)2,3-ジ(4-ブロモフェニル)-5-ニトロキノキサリンの合成 [化44]

$$O_2N \xrightarrow{NH_2} NH_2 + OOO \xrightarrow{\mid H^+ \mid} NO_2 N \xrightarrow{NO_2} N$$

[0067] 2, 3-ジアミノニトロベンゼン1. 53g(10mmol), 4, 4′ -ジブロモベンジル3. 68g (10mmol)を酢酸、メタノール混合溶媒(1:1)80gに溶解し、反応温度70℃で30時間反応させた。反応終了後、溶媒を除去し、反応生成物をシリカゲルカラムで抽出した。

収量:1.89g

性状:黄色微細結晶

m/z:485(計算值485.12)

¹³C-NMR:153. 4453, 153. 3613, 147. 0065, 140. 7945, 136. 8116, 1 36. 3766, 133. 7824, 133. 2635, 132. 0504, 131. 8749, 131. 8215, 13 1. 3789, 128. 5787, 124. 9849, 124. 8780, 124. 7102 ppm.

[0068] (2)2,3-ジ(4-プロモフェニル)-5-アミノキノキサリンの合成 [化45]

[0069] 2,3-ジ(4-ブロモフェニル)-5-ニトロキノキサリン1.01g(2.1mmol)をジオキサン30gに溶解し、アルゴンで充分に置換した。その後、5%Pd/C(含水)0.3gを添加し、再度アルゴンで充分置換した。この系を水素置換し、室温で24時間反応させた。反応終了後濾過し、濾サイをさらにアセトンとジオキサンで洗浄し、再度濾過した。得られた濾液から溶媒を除去した後、反応生成物をシリカゲルカラムで抽出した。収量:0.66g

性状:黄色微細結晶

m/z:455(計算值:455.12)

¹³C-NMR:151. 966, 148. 493, 144. 065, 141. 897, 137. 920, 137. 82 0, 135. 042, 131. 706, 131. 637, 131. 492, 131. 400, 131. 248, 123. 5 14, 123. 377, 117. 064, 110. 452 ppm.

[0070] [合成例6]2. 3-ジチエニル-5-アミノキノキサリンの合成

以下の(1)、(2)の方法で合成した。

(1)2,3-ジチエニル-5-ニトロキノキサリンの合成

[化46]

[0071] 2, 3-ジアミノニトロベンゼン0. 022g(0. 144mmol), 2, 2' -チエニル0. 0193

8g(0.087mmol)を酢酸、メタノール混合溶媒(1:1)3gに溶解し、反応温度70℃で30時間反応させた。反応終了後溶媒を除去し、反応生成物をシリカゲルカラムで抽出した。

収量:0.04g

性状:黄色微細結晶

m/z:339(計算值:339.40)

[0072] (2)2,3-ジチエニル-5-アミノキノキサリンの合成

[化47]

[0073] 2. 3ージチエニルー5ーニトロキノキサリン1. 01g(3. 0mmol)をジオキサン30gに溶解し、アルゴンで充分に置換した。その後5%Pd/C(含水)0. 3gを添加し、再度アルゴンで充分置換した。この系を水素置換し、室温で24時間反応させた。反応終了後濾過し、濾サイをさらにアセトンとジオキサンで洗浄し、再度濾過した。得られた濾液から溶剤を除去した後、反応生成物をシリカゲルカラムで抽出した。

収量:0.40g

性状:黄褐色微細結晶

m/z:309(計算值309.42)

¹³C-NMR:146. 569, 143. 752, 142. 111, 141. 546, 141. 233, 131. 23 2, 130. 614, 129. 064, 128. 820, 128. 553, 128. 469, 127. 530, 127. 4 61, 116. 911, 110. 422, 99. 902 ppm

[0074] [合成例7]10-アミノジベンゾ(A, C)フェナジンの合成

以下の(1)、(2)の方法で合成した。

(1)1,2,3-トリアミノベンゼンの合成

[化48]

- [0075] 2,6-ジニトロアニリン15.0g(82mmol)をTHF150gに溶解した後、反応系を充分に窒素置換し、これに5%Pd/C(含水)7.6g添加した。その後水素置換し、室温で15時間反応した。反応終了後、反応液をろ過してPdを除去し、ろ液をそのまま濃縮することで目的物を得た。得られた化合物は不安定であるため、そのまま次反応に使用した。
- [0076] (2)10-アミノジベング(A, C)フェナジンの合成 [化49]

[0077] 1, 2, 3ートリアミノベンゼン10. 1g(82mmol)、9, 10-フェナントレンキノン14. 6g (70mmol)を4つ口フラスコに入れ、これに酢酸:メタノール=1:1溶媒350gを加え溶解させた。その後反応温度70℃で2時間反応させた。反応後溶媒を除去し、生成物をメタノールで洗浄することで目的物を得た。

収量:17.1g

性状:黄土色固体

m/z:295(計算值295.11)

¹³C-NMR:146. 932, 144. 145, 143. 084, 139. 740, 133. 473, 133. 00 7, 132. 656, 132. 213, 131. 602, 131. 488, 130. 847, 130. 473, 128. 4 65, 126. 869, 126. 831, 126. 663, 123. 900, 116. 243, 108. 647 ppm.

[0078] [合成例8]2.3-ジフェニル-5-(4-アミノフェニル)アミノキノキサリンの合成 以下の(1)、(2)の方法で合成した。

(1)2,3-ジフェニルー5-(4-ニトロフェニル)アミノキノキサリンの合成 [化50]

[0079] 2, 3-ジフェニルー5-アミノキノキサリン4. Og(13.4mmol)、4-フルオロニトロベンゼン2. 1g(14.9mmol)、ジメチルスルホキシド100mlを攪拌しながら、tープトキシカリウム5. Og(44.6mmol)をゆっくり添加した。添加終了後、反応容器中を窒素置換し、室温で24時間攪拌させた。反応終了後、冷却しながら水100mlを添加した後、クロロホルム溶媒を用い有機層を抽出し、溶媒を濃縮して目的物を得た。

収量:5.4g

[0080] (2)2,3-ジフェニル-5-(4-アミノフェニル)アミノキノキサリンの合成 [化51]

[0081] 2, 3-ジフェニルー5-(4-ニトロフェニル)アミノキノキサリン5. 4g(2.9mmol)をテトラヒドロフラン100mlに溶解し、反応容器内を窒素置換した。その後5%Pd/C(含水)5.0gを添加し、再度窒素で充分置換した。この系を水素置換し、室温で10時間反応させた。反応終了後、濾過し、濾サイをさらにテトラヒドロフランで洗浄し、再度濾過した。得られた濾液から溶媒を除去した後、反応生成物をテトラヒドロフラン/ヘプタン混合溶媒中から再結晶させた。

収量:3.9g

性状:橙色固体

m/z:388(計算值388.17)

¹³C-NMR:153. 597, 149. 658, 142. 978, 142. 887, 142. 009, 139. 30 6, 139. 199, 132. 290, 131. 283, 130. 008, 129. 825, 128. 680, 128. 5

88, 128. 267, 128. 130, 124. 794, 116. 198, 116. 114, 106. 648 ppm.

[0082] [合成例9]<u>2、3-ジ(4-メチルフェニル)-5-(4-アミノフェニル)アミノキノキサリンの</u> 合成

以下の(1)、(2)の方法で合成した。

(1)2,3-ジ(4-メチルフェニル)-5-(4-ニトロフェニル)アミノキノキサリンの合成 [化52]

[0083] 2, 3-ジ(4-メチルフェニル)-5-アミノキノキサリン3. 0g(9. 2mmol)、4-フルオロニトロベンゼン1. 4g(9. 9mmol)、ジメチルスルホキシド100mlを攪拌しながら、tープトキシカリウム3. 4g(30. 3mmol)をゆっくり添加した。添加終了後、反応容器中を窒素置換し、室温で20時間攪拌させた。反応終了後、冷却しながら水100mlを添加した後、クロロホルム溶媒を用い有機層を抽出し、溶媒を濃縮して目的物を得た。

m/z:446(計算值446.17)

収量:5.9g

[0084] (2)2,3-ジ(4-メチルフェニル)-5-(4-アミノフェニル)アミノキノキサリンの合成 [化53]

[0085] 2, 3-ジ(4-メチルフェニル)-5-(4-ニトロフェニル)アミノキノキサリン5.9g(13.2mmol)をテトラヒドロフラン70mlに溶解し、反応容器内を窒素置換した。その後5% Pd/C(含水)2gを添加し、再度窒素で充分置換した。この系を水素置換し、室温で13時間反応させた。反応終了後、濾過し、濾サイをさらにテトラヒドロフランで洗浄し

、再度濾過した。得られた濾液から溶剤を除去した後、反応生成物をシリカゲルカラ ムで抽出した。

収量:1.1g

性状:橙色固体

m/z:416(計算值416.20)

¹³C-NMR:153. 605, 149. 711, 142. 719, 141. 917, 138. 573, 136. 54 3, 132. 542, 130. 977, 129. 863, 129. 703, 128. 970, 128. 870, 124. 6 64, 116. 198, 106. 480, 21. 352 ppm.

[0086] [合成例10]<u>2、3-ジ(4-メトキシフェニル)-5-(4-アミノフェニル)アミノキノキサリン</u> の合成

以下の(1)、(2)の方法で合成した。

(1)2,3-ジ(4-メトキシフェニル)-5-(4-ニトロフェニル)アミノキノキサリンの合成 [化54]

[0087] 2, 3-ジ(4-メトキシフェニル)-5-アミノキノキサリン5. Og(14. Ommol), 4-フルオロニトロベンゼン2. 4g(17. Ommol), ジメチルスルホキシド120mlを攪拌しながら、t-ブトキシカリウム5. 7g(50. 8mmol)をゆっくり添加した。添加終了後、反応容器中を窒素置換し、室温で8時間攪拌させた。反応終了後、冷却しながら水100mlを添加した後、クロロホルム溶媒を用い有機層を抽出し、溶媒を濃縮して目的物を得た

収量:8.3g

性状:茶色固体

[0088] (2)2,3-ジ(4-メトキシフェニル)-5-(4-アミノフェニル)アミノキノキサリンの合成 [化55]

[0089] 2, 3-ジ(4-メトキシフェニル)-5-(4-ニトロフェニル)アミノキノキサリン8. 3g(17 . 3mmol)をテトラヒドロフラン100mlに溶解し、反応容器内を窒素置換した。その後5%Pd/C(含水)5gを添加し、再度窒素で充分置換した。この系を水素置換し、室温で10時間反応させた。反応終了後、濾過し、濾サイをさらにテトラヒドロフランで洗浄し、再度濾過した。得られた濾液から溶剤を除去した後、反応生成物をヘキサン中で再結晶させることで目的物を得た。

収量:4.5g

性状:橙色固体

m/z:448(計算值448.19)

¹³C-NMR:163. 766, 159. 994, 153. 131, 148. 872, 142. 940, 142. 68 8, 141. 803, 132. 420, 131. 947, 131. 329, 131. 206, 130. 779, 124. 7 25, 116. 076, 113. 755, 113. 625, 106. 411, 98. 953, 55. 324 ppm.

[0090] [合成例11]2、3-ジ(2-チエニル)-5-(4-アミノフェニル)アミノキノキサリンの合成 以下の(1)、(2)の方法で合成した。

(1)2,3-ジ(2-チエニル)-5-(4-ニトロフェニル)アミノキノキサリンの合成 [化56]

[0091] 2, 3-ジ(2-チエニル)-5-アミノキノキサリン3. 1g(9. 9mmol), 4-フルオロニトロベンゼン1. 4g(9. 9mmol), ジメチルスルホキシド15gを攪拌しながら、tープトキシカリウム3. 3g(29. 6mmol)をゆっくり添加した。添加終了後、反応容器中を窒素置

換し、室温で14時間攪拌させた。反応終了後、冷却しながら水100mlを添加した後、得られた化合物をろ過、乾燥し、シリカゲルカラムにより精製した。

収量:2.6g

性状:黄色固体

[0092] (2)2,3-ジ(2-チエニル)-5-(4-アミノフェニル)アミノキノキサリンの合成 [化57]

[0093] 2, 3-ジ(2-チエニル)-5-(4-ニトロフェニル)アミノキノキサリン2. 2g(5. 1mmol)をテトラヒドロフラン50mlに溶解し、反応容器内を窒素置換した。その後5%Pd/C(含水)0. 7gを添加し、再度窒素で充分置換した。この系を水素置換し、室温で5時間反応させた。反応終了後濾過し、濾サイをさらにテトラヒドロフランで洗浄し、再度濾過した。得られた濾液から溶剤を除去した後、反応生成物をシリカゲルカラムで抽出した。

収量:1.9g

性状:橙色固体

m/z:399(計算值400.08)

¹³C-NMR:146. 665, 143. 161, 143. 009, 142. 619, 142. 009, 141. 41 3, 132. 084, 131. 535, 130. 443, 129. 061, 128. 840, 128. 603, 128. 4 73, 127. 618, 127. 512, 124. 878, 116. 068, 115. 931, 106. 930 ppm.

- [0094] [合成例12]<u>N-4-アミノフェニル-10-アミノジベンゾ(A, C)フェナジンの合成</u> 以下の(1)、(2)の方法で合成した。
 - (1)N-4-ニトロフェニル-10-アミノジベング(A, C)フェナジンの合成 [化58]

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

- [0095] 10-アミノジベンプ(A, C)フェナジン10. 0g(34mmol)、4-フルオロニトロベンゼン4. 8g(34mmol)、ジメチルスルホキシド500mlを攪拌しながら、tープトキシカリウム19. 4g(173mmol)をゆっくり添加した。添加終了後、反応容器中を窒素置換し、室温で24時間攪拌させた。反応終了後、冷却しながら水500mlを添加した後、反応液をろ過してろ物を得た。得られたろ物をメタノールで洗浄し、目的物を得た。
- [0096] (2)N-4-アミノフェニルー10-アミノジベンプ(A, C)フェナジンの合成 [化59]

[0097] N-4-ニトロフェニル-10-アミノジベンプ(A, C)フェナジン4.5g(10.8mmol)を テトラヒドロフラン200mlに溶解し、反応容器内を窒素置換した。その後5%Pd/C(含水)4.6gを添加し、再度窒素で充分置換した。この系を水素置換し、室温で10時 間反応させた。反応終了後濾過し、濾サイをさらにテトラヒドロフランで洗浄した後に カラムで精製し、目的物を得た。

性状:紫色結晶

m/z:386(計算值386.15)

¹³C-NMR:146. 771, 145. 183, 144. 191, 143. 244, 139. 687, 133. 52 6, 133. 022, 132. 671, 132. 236, 131. 434, 131. 389, 130. 892, 130. 5 87, 128. 518, 126. 877, 126. 320, 125. 892, 123. 907, 116. 319, 115. 739, 105. 960 ppm.

[0098] [実施例1]ポリ{2、3-ジフェニル-5-(4-アミノフェニル)アミノキノキサリン}の合成

白金メッシュ対極を備えた三極式ビーカー型セルを用い、下記の電位掃引法により電解酸化を行うことで、目的化合物の合成を行った。

2, 3-ジフェニル-5-(4-アミノフェニル)アミノキノキナリン0. 19mg(0. 5mmol)、過塩素酸1. 05ml(11mmol)をN, N-ジメチルホルムアミド6. 5gに溶解させた溶液を用いた。試験極基板として、表面をエメリーペーパーにより傷つけた白金板(片面1 .0cm²)を用い、参照極にAg/Ag[†]を使用し、電気化学測定システム(ビー・エー・エス株式会社)を用いて、電位範囲400~700mV、掃引速度50mVsec⁻¹とし、30サイクルの電位掃引を行い、電解重合を行った。電極上に重合された目的化合物が得られた。

性状: 黒色固体

TOF-MS:m/z 415(一量体), 772(二量体), 1156(三量体)

[0099] [実施例2]ポリ{2、3-ジ(4-メチルフェニル)-5-(4-アミノフェニル)アミノキノキサリン}の合成

白金メッシュ対極を備えた三極式ビーカー型セルを用い、下記の電位掃引法により 電解酸化を行うことで、目的化合物の合成を行った。

2, 3-ジ(4-メチルフェニル)-5-(4-アミノフェニル)アミノキノキサリン0. 21mg(0 . 5mmol)、過塩素酸1. 05ml(11mmol)をN, N-ジメチルホルムアミド6. 5gに溶解させた溶液を用いた。試験極基板として、表面をエメリーペーパーにより傷つけた白金板(片面1. 0cm²)を用い、参照極にAg/Ag[†]を使用し、電気化学測定システム(ビー・エー・エス株式会社)を用いて、電位範囲1300~1600mV、掃引速度100mVsec⁻¹とし、30サイクルの電位掃引を行い、電解重合を行った。電極上に重合された目的化合物が得られた。

性状: 黑色固体

TOF-MS:m/z 429(一量体), 826(二量体), 1240(三量体), 1667(四量体)

[0100] [実施例3]ポリ{2, 3-ジ(2-チエニル)-5-(4-アミノフェニル)アミノキノキサリン}の 合成

白金メッシュ対極を備えた三極式ビーカー型セルを用い、下記の電位掃引法により

電解酸化を行うことで、目的化合物の合成を行った。

2, 3-ジ(2-チエニル)-5-(4-アミノフェニル)アミノキノキサリン0. 20mg(0. 5m mol)、過塩素酸1. 05ml(11mmol)をN, N-ジメチルホルムアミド6. 5gに溶解させた溶液を用いた。試験極基板として、表面をエメリーペーパーにより傷つけた白金板(片面1. 0cm²)を用い、参照極にAg/Ag[†]を使用し、電気化学測定システム(ビー・エー・エス株式会社)を用いて、電位範囲400~700mV、掃引速度100mVsec⁻¹とし、30サイクルの電位掃引を行い、電解重合を行った。電極上に重合された目的化合物が得られた。

性状: 黒色固体

TOF-MS:m/z 398(一量体), 793(二量体), 1192(三量体), 1602(四量体), 1987(五量体)

[0101] [実施例4]ポリ{N-4-アミノフェニル-10-アミノジベンゾ(A, C)フェナジン}の合成 白金メッシュ対極を備えた三極式ビーカー型セルを用い、下記の定電位法により電 解酸化を行うことで、目的化合物の合成を行った。

N-4-アミノフェニルー10-ジベング(A, C)フェナジン0. 19mg(O. 5mmol)、過塩素酸1. 05ml(11mmol)をN, N-ジメチルホルムアミド6. 5gに溶解させた溶液を用いた。試験極基板として、表面をエメリーペーパーにより傷つけた白金板(片面1. 0cm²)を用い、参照極にAg/Ag*を使用し、電気化学測定システム(ビー・エー・エス株式会社)を用いた。定電位法では電気量を2. 0C/cm²に規制し0. 7Vで重合を行い、試験極表面に黒色の重合膜が得られた。得られた膜はN, N-ジメチルホルムアミドにより表面を洗浄した。

TOF-MS:m/z 781(二量体), 1167(三量体), 1552(四量体), 1940(五量体)

サイクリックボルタンメトリー測定による酸化ピーク及び還元ピーク(0. 1mol/Lテトラエチルアンモニウムパークロレートのアセトニトリル溶液中で測定):酸化ピーク700 mV, 1000mV、還元ピーク-200mV, 300mV

[0102] 上記実施例4で得られた電極を用いてセルを作製し、下記方法にて充放電試験を 行い、静電容量を求めたところ、58F/gであった。詳述すると、1サイクル目では48 . 5F/gの放電容量が得られ、5サイクル目には65. 8F/gまで向上した。また10サイクル目でも58. 5F/gの容量を保持した。

(充放電試験方法)

上記重合膜が形成された白金電極を試験極、白金板を対極、Ag/Agを参照極と した三極式ビーカー型セルを用い、下記条件により定電流光放電試験を行った。

- 0. 1mol/Lテトラエチルアンモニウムパークロレートのアセトニトリル溶液中に、上記セルをセットし、電流密度0. 5mA/cm²、カットオフ電位1. 5V~-0. 5Vで測定を行い、10サイクル時の値を測定値とした。
- [0103] [比較例1]ポリ(10-アミノジベンノ(A, C)フェナジン)の合成 白金メッシュ対極を備えた三極式ビーカー型セルを用い、定電位法により電解酸化 を行うことで、目的化合物の合成を行った。10-アミノジベンノ(A, C)フェナジン0. 15mg(0.5mmol),過塩素酸1.05ml(11mmol)をN, N-ジメチルホルムアミド6 .5gに溶解させた溶液を用いた。試験極基板として、表面をエメリーペーパーにより 傷つけた白金板(片面1.0cm²)を用い、参照極にAg/Ag+を使用し、電気化学測 定システム(ビー・エー・エス株式会社)を用いた。定電位法では電気量を2.0C/c m²に規制し0.9Vで重合を行い、試験極表面に黒色の重合膜が得られた。得られた 膜はN, N-ジメチルホルムアミドにより表面を洗浄した。
- [0104] TOF-MS:m/z 596.9(二量体),893.9(三量体),1192.3(四量体),148
 8.5(五量体),1788.7(六量体),2088.9(七量体)
 サイクリックボルタンメトリー測定による酸化ピーク及び還元ピーク(0.1mol/Lテトラエチルアンモニウムパークロレートのアセトニトリル溶液中で測定):酸化ピーク1100mV、還元ピーク200mV

上記比較例1で得られた電極を用いてセルを作製し、実施例4と同様の条件にて充放電試験を行い、静電容量を求めたところ、47F/gであった。詳述すると、1サイクル目では83.5F/gの放電容量が得られ、5サイクル目には62.0F/gまで低下し、10サイクル目で47.0F/gに低下した。

請求の範囲

[1] 式(1a)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを特徴とするエネルギー貯蔵デバイス用電極。

[化1]

$$\begin{bmatrix}
R^1 & R^2 \\
N & N
\end{bmatrix}$$

$$\begin{bmatrix}
R^3 & R^4
\end{bmatrix}$$
n

【式中、R¹及びR²は、それぞれ独立して、水素原子、水酸基、C ーC アルキル基、C ーC アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチェニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよい紹合へテロアリール基(R¹とR²とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

R³及びR⁴は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁ ーC₁₀ アルキル基、C₁ ーC₁₀ アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基(R³とR⁴とが前記フェニル基、ピリジル基、ピフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

X'は、-NH-R⁵-NH-又は-NH-R⁶-を表し、

 R^5 及び R^6 は、それぞれ独立して、 $C_1 \sim C_1$ アルキレン基、 $-C(O)CH_2$ ー、 $-CH_2C(O)$ ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい

2価のナフタレン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい給合へテロ環を表す。

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、CーC」でルキル基、CーC」のアルキル基、CーC」のアルキル基、CーC」がアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサフェニル基、Zで置換されていてもよいサロリル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)、

nは、少なくとも2以上の整数を表す。〕

[2] 前記R¹及びR²が、それぞれ独立して、式(2)で表されることを特徴とする請求項1 記載のエネルギー貯蔵デバイス用電極。

[化2]

(式中R⁷-R¹¹は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁-C₁₀アルキル基、C₁-C₁₀アルコキシ基、C₁-C₁₀アルコキシ基、C₁-C₁₀アルコキシ基、C₁-C₁₀アルコキシ基、C₁-C₁₀シアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、ーC

アルキル基、C₁ ーC₁₀ ハロアルキル基、C₁ ーC₁₀ アルコキシ基、C₁ ーC₁₀ シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[3] 前記R¹及びR²が、それぞれ独立して、式(3)で表されることを特徴とする請求項1 記載のエネルギー貯蔵デバイス用電極。

[化3]

(式中R¹²〜R¹⁸は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、C₁〜C₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[4] 前記R¹及びR²が、それぞれ独立して、式(4)で表されることを特徴とする請求項1 記載のエネルギー貯蔵デバイス用電極。

[{\\ 4]

$$R^{20} = \begin{bmatrix} R^{21} \\ R^{19} \end{bmatrix}$$

(式中 R^{19} 〜 R^{21} は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、 C_1 〜 C_1 アルキル基、 C_1 〜 C_1 アルコキシ基、 C_1 で置換されていてもよいフェニル基、 C_1 で置換されていてもよいナフチル基又は C_1 で置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C ーC

アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し、A¹はNH、O又はSを表す。)

[5] 前記R¹及びR²が、それぞれ独立して、式(5)で表されることを特徴とする請求項1 記載のエネルギー貯蔵デバイス用電極。

[化5]

$$R^{26}$$
 CH_2R^{22} (5)

(式中R²²は、ハロゲン原子又はシアノ基を表し、R²³ーR²⁶は、それぞれ独立して、水 素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換 されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基を表す。)

[6] 前記R⁵が、式(6)で表されることを特徴とする請求項1~5のいずれか1項記載のエネルギー貯蔵デバイス用電極。

[化6]

$$R^{30} = R^{29} = R^{28}$$
 (6)

(式中R²⁷〜R³⁰は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀ハロアルキル基、C₁〜C₁₀アルコキシ基、C₁〜C₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[7] 前記R⁵が、式(7)で表されることを特徴とする請求項1~5のいずれか1項記載のエネルギー貯蔵デバイス用電極。

[₁k₇]

$$\mathbb{R}^{31}$$

$$\mathbb{R}^{32}$$

$$\mathbb{V}^{1}$$

$$(7)$$

(式中R³¹〜R³²は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し、W¹はNH、O又はSを表す。)

[8] 前記R⁵が、式(8)で表されることを特徴とする請求項1〜5のいずれか1項記載のエネルギー貯蔵デバイス用電極。

[化8]

(式中R³³ーR³⁴は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、C、アルキル基、C、C、アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し、Q¹はNH、O又はSを表す。)

[9] 前記R⁵が、式(9)で表されることを特徴とする請求項1~5のいずれか1項記載のエネルギー貯蔵デバイス用電極。

[化9]

(式中R³⁵ーR⁴⁰は、それぞれ独立して、環上の任意の位置で置換している水素原子、 ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁アルキル基、C₁ーC₁アルコキシ基、C₁ーC₁シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チェニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[10] 前記R⁶が、式(10)で表されることを特徴とする請求項1~5のいずれか1項記載の エネルギー貯蔵デバイス用電板。

[化10]

(式中R⁴¹〜R⁴⁴は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフェニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、C、Tルキル基、C、C、ハロアルキル基、C、C、アルコキシ基、C、C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基を表す。)

[11] 前記R⁶が、式(11)で表されることを特徴とする請求項1〜5のいずれか1項記載の エネルギー貯蔵デバイス用電極。

[化11]

$$\mathbb{R}^{45}$$
 \mathbb{R}^{46}
 \mathbb{R}^{2}

(式中R⁴⁶ーR⁴⁶は、それぞれ独立して、環上の任意の位置で置換している水業原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、 $C_1 - C_1$ アルキル基、 $C_1 - C_1$ アルコキシ基、 $C_1 - C_1$ シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し、 W^2 はNH、O又はSを表す。)

[12] 前記R⁶が、式(12)で表されることを特徴とする請求項1~5のいずれか1項記載の エネルギー貯蔵デバイス用電極。

[化12]

(式中R⁴⁷ーR⁴⁸は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し、Q²はNH、O又はSを表す。)

[13] 前記R⁶が、式(13)で表されることを特徴とする請求項1〜5のいずれか1項記載の エネルギー貯蔵デバイス用電極。

[化13]

$$R^{53}$$
 R^{52} R^{51} R^{50} R^{50}

(式中R⁴⁹〜R⁵⁴は、それぞれ独立して、環上の任意の位置で置換している水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[14] 前記R¹とR²とが単結合で結合して形成される基が、式(14)で表されることを特徴と する請求項1記載のエネルギー貯蔵デバイス用電極。

[化14]

$$R^{62}$$
 R^{81}
 R^{60}
 R^{60}
 R^{60}
 R^{60}
 R^{60}
 R^{60}
 R^{60}

チル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、C、C、アルキル基、C、C、C、ハロアルキル基、C、C、アルコキシ基、C、C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基を表す。ただし、A²がNのとき、R⁵⁸及びR⁵⁹は存在しない。)式(1b)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを特徴とするエネルギー貯蔵デバイス用電極。

[化15]

[15]

$$\begin{array}{c|c}
R^{1} & R^{2} \\
N & N \\
R^{3} & R^{4} \\
\end{array}$$
(1b)

[式中、 R^{I} 及び R^{I} は、これら各基が一緒になって、 $-CH_{2}CH_{2}CH_{2}-$ 、 $-CH_{2}CH_{2}O , -\mathrm{OCH_2CH_2}-, -\mathrm{CH_2OCH_2}-, -\mathrm{OCH_2O}-, -\mathrm{CH_2CH_2S}-, -\mathrm{SCH_2CH_2}-, -\mathrm{CH_2CH_2}-, -\mathrm{CH_2CH_2}-,$ 2SCH₂-,-CH₂CH₂N(R)-,-N(R)CH₂CH₂-,-CH₂N(R)CH₂-,-CH₂CH₂ $\mathtt{CH_{2}CH_{2}-,-CH_{2}CH_{2}O-,-OCH_{2}CH_{2}CH_{2}-,-CH_{2}CH_{2}OCH_{2}-,-CH_{2}-,-CH_{2}OCH_{2}-,-CH_{2}-,$ CH₂CH₂-,-CH₂OCH₂O-,-OCH₂CH₂O-,-SCH₂CH₂S-,-OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-, -CH=C HO-, -SCH=CH-, -CH=CHS-, -N(R)CH=CH-, -CH=CHN(R)-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R)CH=N-, -NOCH₂CH=CH-,-CH=CHCH₂O-,-N=CHCH=CH-,-CH=CHCH= N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成 し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく 、 \dot{R} は、水素原子、 \dot{C}_1 ー \dot{C}_{10} アルキル基、 \dot{C}_1 ー \dot{C}_{10} ハロアルキル基、 \dot{C}_1 ー \dot{C}_{10} シアノア ルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル 基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、 Zで置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置

換されていてもよいフリル基又はZで置換されていてもよい縮合へテロアリール基を 表し、

R³及びR'は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基(R³とR¹とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

X¹は、-NH-R⁵-NH-又は-NH-R⁶-を表し、

R⁵及びR⁶は、それぞれ独立して、C₁ーC₁アルキレン基、一C(O)CH₂ー、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい26のプラン環又はYで置換されていてもよい名のプラン環又はYで置換されていてもよい名のプラン環又はYで置換されていてもよい名のプラン環又はYで置換されていてもよい統合へテロ環を表す。

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀ハロアルキル基、C₁〜C₁₀アルコキシ基、C₁〜C₁₀シアノアルキル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁アルキル基、C₁〜C₁アルコキシ基、C₁〜C₁シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し(ただし、Zが2個以上の場合は同一か相互に異なっ

てもよい。)、

nは、少なくとも2以上の整数を表す。〕

[16] 式(1c)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを特徴とするエネルギー貯蔵デバイス用電極。

[化16]

$$\begin{array}{c|c}
R^1 & R^2 \\
N & N \\
X^1 & R^4
\end{array}$$

[式中、R¹及びR²は、それぞれ独立して、水素原子、水酸基、CューC」アルキル基、CューC」アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいプリル基又はYで置換されていてもよい縮合へテロアリール基(R¹とR²とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

とき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく、Rは、水素原子、C、C、C、アルキル基、C、C、ハロアルキル基、C、C、シアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサフチル基、Zで置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいフリル基又はZで置換されていてもよい縮合ヘテロアリール基を表し、

X¹は、-NH-R⁵-NH-又は-NH-R⁶-を表し、

R⁵及びR⁶は、それぞれ独立して、C₁〜C₁アルキレン基、一C(O)CH₂・、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい3価のピロール環、Yで置換されていてもよい3価のフラン環又はYで置換されていてもよい名

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チェニル基、ピロリル基、フリル基又は縮合へテロアリール基を表し(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)、

nは、少なくとも2以上の整数を表す。〕

[17] 式(1d)で表されるポリアミノキノキサリン化合物を電極活物質として含むことを特徴とするエネルギー貯蔵デバイス用電極。

[化17]

$$\begin{array}{c|c}
R^{1} & R^{2} \\
N & N \\
X^{1} & & \\
R^{3} & R^{4} & & \\
\end{array}$$

〔式中、 $R^{1'}$ 及び $R^{2'}$ は、これら各基が一緒になって、 $-CH_2CH_2CH_2$ ー、 $-CH_2CH_2O$ ー $, -\mathrm{OCH_2CH_2}-, -\mathrm{CH_2OCH_2}-, -\mathrm{OCH_2O}-, -\mathrm{CH_2CH_2S}-, -\mathrm{SCH_2CH_2}-, -\mathrm{CH_2CH_2S}-, -\mathrm{CH_2CH_2S}$ $_2$ SCH $_2$ -, -CH $_2$ CH $_2$ N(R $^{'}$)-, -N(R $^{'}$)CH $_2$ CH $_2$ -, -CH $_2$ N(R $^{'}$)CH $_2$ -, -CH $_2$ CH $_2$ CH,CH,-,-CH,CH,O-,-OCH,CH,CH,-,-CH,CH,OCH,-,-CH,O $\mathtt{CH_2CH_2-,-CH_2OCH_2O-,-OCH_2CH_2O-,-SCH_2CH_2S-,-OCH_2CH_2S-,}$ $-SCH_2CH_2O-$, $-CH_2CH=CH-$, $-CH=CHCH_2-$, -OCH=CH-, -CH=CH-HO-, -SCH=CH-, -CH=CHS-, -N(R)CH=CH-, -CH=CHN(R)-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R)CH=N-, -N=CHN(R)-,-N(R)N=CH-,-CH=N(R)N-,-CH=CHCH=CH-,-OCH₂CH=CH-,-CH=CHCH₂O-,-N=CHCH=CH-,-CH=CHCH= N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成 し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく 、Rは、水素原子、C、一C。アルキル基、C、一C、ハロアルキル基、C、一C。シアノア ルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル 基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、 Zで置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置 換されていてもよいフリル基又はZで置換されていてもよい縮合ヘテロアリール基を 表し、

 R^3 及び R^4 は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O-$ 、-O CH_2CH_2- 、 $-CH_2OCH_2-$ 、 $-OCH_2O-$ 、 $-CH_2CH_2S-$ 、 $-SCH_2CH_2-$ 、 $-CH_2SCH_2-$ 、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2CH_2 -CH_2CH_2CH_2 -CH_2CH_2 -CH_2 -CH_2-$

H_CH_O-、-CH_CH=CH-、-CH=CHCH_-、-OCH=CH-、-CH=CHO-、-SCH=CH-、-CH=CHS-、-N(R)CH=CH-、-CH=CHN(R)-、-OCH=N-、-N=CHO-、-SCH=N-、-N=CHS-、-N(R)CH=N-、-N=CHN(R)-、-N=CHN(R)-、-N=CHN(R)-、-N=CHN(R)-、-N=CHN(R)-、-N=CHN(R)-、-N=CHCH=CH-、-CH=CHCH=CH-、-OCHCH=CH-、-CH=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-を形成し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく、Rは、水素原子、C-Cアルキル基、C-Cハロアルキル基、C-Cシアノアルキル基、Zで置換されていてもよいアリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピコリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい紹合へテロアリール基を表し、

X¹は、-NH-R⁵-NH-又は-NH-R⁵-を表し、

R^b及びR⁶は、それぞれ独立して、C₁ーC₁₀アルキレン基、一C(O)CH₂ー、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のチオフェン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい2価のフラン環又はYで置換されていてもよい名曲のフラン環又はYで置換されていてもよい給合へテロ環を表す。

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキル基、C₁ーC₁₀シアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサフチル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C ーC のアルキル基、C ーC シアノアルキル基、C ーC シアノアルキ

ル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又 は縮合ヘテロアリール基を表し(ただし、Zが2個以上の場合は同一か相互に異なっ てもよい。)、

nは、少なくとも2以上の整数を表す。〕

[18] 前記R¹及びR²が一緒になって形成される基が、式(15)で表されることを特徴とする請求項15又は17記載のエネルギー貯蔵デバイス用電極。

[化18]

(式中A³はO又はSを表し、R⁵³ーR⁵⁶は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[19] 前記R³及びR⁴が一緒になって形成される基が、式(16)で表されることを特徴とする請求項16又は17記載のエネルギー貯蔵デバイス用電極。

[化19]

(式中A⁴はO又はSを表し、R⁶⁷〜R⁷⁰は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C 〜C アルキル基、C 〜C アルコキシ基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいナフ

チル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、ーC、アルキル基、C、ーC、ハロアルキル基、C、ーC、アルコキシ基、C、ーC、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チェニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

[20] 前記R³及びR⁴が一緒になって形成される基が、式(17)で表されることを特徴とする請求項16又は17記載のエネルギー貯蔵デバイス用電極。
[化20]

$$\begin{array}{c|c}
N & N \\
\hline
 & (17)
\end{array}$$

(式中R¹¹及びR¹²は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Z で置換されていてもよいフェニル基、Zで置換されていてもよいナフチル基又はZで置換されていてもよいチエニル基を表し、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁₀アルキル基、C₁〜C₁₀アルコキシ基、C₁〜C₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チェニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。)

- [21] 請求項1~20のいずれか1項記載のエネルギー貯蔵デバイス用電極を備えること を特徴とするエネルギー貯蔵デバイス。
- [22] 前記式(1a)で表されるポリアミノキノキナリン化合物からなる電極活物質を集電板 電極上に塗布積層することを特徴とする請求項1記載のエネルギー貯蔵デバイス用 電極の製造方法。
- [23] 前記式(1b)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板 電極上に塗布積層することを特徴とする請求項15記載のエネルギー貯蔵デバイス 用電極の製造方法。
- [24] 前記式(1c)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板

電極上に塗布積層することを特徴とする請求項16記載のエネルギー貯蔵デバイス 用電極の製造方法。

- [25] 前記式(1d)で表されるポリアミノキノキサリン化合物からなる電極活物質を集電板 電極上に塗布積層することを特徴とする請求項17記載のエネルギー貯蔵デバイス 用電極の製造方法。
- [26] 式(18a)で表されるアミノキノキサリン化合物を集電板電極上で電解重合することを 特徴とする請求項1記載のエネルギー貯蔵デバイス用電極の製造方法。 [化21]

$$R^1$$
 R^2 X^2 X^2 X^3 X^4

R³及びR⁴は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、Yで置換されていてもよいアエニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基(R³とR⁴とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

X²は、-NH-R³³-NH。又は-NH-R³⁴を表し、

R⁷³は、C、一C、アルキレン基、一C(O)CH ー、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のドフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい縮合へテロ環を表し、

R⁷⁴は、C、一C、アルキル基、アセチル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいビフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基を表し、

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルキル基、C₁ーC₁₀ハロアルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい紹合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、一C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)]

[27] 式(18b)で表されるアミノキノキサリン化合物を集電板電極上で電解重合することを 特徴とする請求項15記載のエネルギー貯蔵デバイス用電極の製造方法。 [化22]

〔式中、 $R^{1'}$ 及び $R^{2'}$ は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O , - OCH_{,}CH_{,} - , - CH_{,}OCH_{,} - , - OCH_{,}O - , - CH_{,}CH_{,}S - , - SCH_{,}CH_{,} - , - CH_{,}CH_{,}S - , - SCH_{,}CH_{,}S - , - CH_{,}CH_{,}S - , - CH_{$ sch,-,-ch,ch,n(r)-,-n(r)ch,ch,-,-ch,n(r)ch,-,-ch,ch, $\mathsf{CH_2CH_2} - \mathsf{,-CH_2CH_2CH_2O} - \mathsf{,-OCH_2CH_2CH_2} - \mathsf{,-CH_2CH_2OCH_2} - \mathsf{,-CH_2O}$ $\mathtt{CH_2CH_2} - \mathtt{,-CH_2OCH_2O} - \mathtt{,-OCH_2CH_2O} - \mathtt{,-SCH_2CH_2S} - \mathtt{,-OCH_2CH_2S} - \mathtt{,-OCH_2CH_2S$ -SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-, -CH=C HO-, -SCH=CH-, -CH=CHS-, -N(R)CH=CH-, -CH=CHN(R)-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R)CH=N-, -N=CHN(R)-,-N(R)N=CH-,-CH=N(R)N-,-CH=CHCH=CH-,-OCH, CH=CH-, -CH=CHCH, O-, -N=CHCH=CH-, -CH=CHCH= N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成 し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく 、Rは、水素原子、CーCアルキル基、CーC ハロアルキル基、CーC シアノア ルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル 基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、 Zで置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置 換されていてもよいフリル基又はZで置換されていてもよい縮合ヘテロアリール基を 表し、

R³及びR¹は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁ーC₁アルキル基、C₁ーC₁アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいピフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい紹合へテロアリール基(R³とR⁴とが前記フェニル基、ピリジル基、ビフ

ェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基 のとき、これらの基は単結合で結合していてもよい。)を表し、

X²は、-NH-R⁷³-NH,又は-NH-R⁷⁴を表し、

R⁷³は、C₁ーC₁₀アルキレン基、一C(O)CH₂ー、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のプラン環又はYで置換されていてもよい縮合へテロ環を表し、

R⁷⁴は、C、一C、アルキル基、アセチル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいビフェニル基、Yで置換されていてもよいナフェニル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基を表し、

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、C、C、アルキル基、C、C、C、ハロアルキル基、C、C、アルコキシ基、C、C、D、シアノアルキル基、Zで置換されていてもよいアエニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいサフチル基、Zで置換されていてもよいサロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基を表す。(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)〕

[28] 式(18c)で表されるアミノキノキサリン化合物を集電板電極上で電解重合することを 特徴とする請求項16記載のエネルギー貯蔵デバイス用電極の製造方法。 [化23]

[式中、R¹及びR²は、それぞれ独立して、水素原子、水酸基、CューC」アルキル基、CューC」アルコキシ基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいサいピリジル基、Yで置換されていてもよいサフチル基、Yで置換されていてもよいサフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基(R¹とR²とが前記フェニル基、ピリジル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合へテロアリール基のとき、これらの基は単結合で結合していてもよい。)を表し、

 R^3 及び R^4 は、これら各基が一緒になって、 $-CH_2CH_2CH_2$ 、 $-CH_2CH_2O$ 、-O $-CH_2CH_2$ 、 $-CH_2OCH_2$ 、 $-OCH_2OCH_2$ 、 $-OCH_2OCH_2$ 、 $-CH_2CH_2$ S、 $-SCH_2CH_2$ 、 $-CH_2SCH_2$ 、 $-CH_2CH_2$ 。 $-CH_2CH_2$ 。 -CH

れていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいフリル基又はZで置換されていてもよい縮合へテロアリール基を表し、

X²は、-NH-R¹³-NH₂又は-NH-R¹⁴を表し、

R⁷³は、C₁ーC₁₀アルキレン基、一C(O)CH₂ー、一CH₂C(O)ー、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のプラン環又はYで置換されていてもよい縮合へテロ環を表し、

R⁷⁴は、C₁ ~ C₁ アルキル基、アセチル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいビフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基を表し、

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁〜C₁
アルキル基、C₁〜C₁ハロアルキル基、C₁〜C₁アルコキシ基、C₁〜C₁シアノアルキル基、Zで置換されていてもよいピリジル基、Z
で置換されていてもよいピフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい紹合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チェニル基、ピロリル基、フリル基又は縮合へテロアリール基を表す。(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)〕

[29] 式(18d)で表されるアミノキノキサリン化合物を集電板電極上で電解重合することを 特徴とする請求項17記載のエネルギー貯蔵デバイス用電極の製造方法。 [化24]

〔式中、 $R^{1'}$ 及び $R^{2'}$ は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O , -\mathrm{OCH_2CH_2}-, -\mathrm{CH_2OCH_2}-, -\mathrm{OCH_2O}-, -\mathrm{CH_2CH_2S}-, -\mathrm{SCH_2CH_2}-, -\mathrm{CH_2CH_2S}-, -\mathrm{CH_2CH_2}-, -\mathrm{CH_2CH_2S}-, -\mathrm{CH_2CH_2S} _{2}$ SCH $_{2}$ -, -CH $_{2}$ CH $_{1}$ N(R)-, -N(R)CH $_{2}$ CH $_{2}$ -, -CH $_{1}$ N(R)CH $_{2}$ -, -CH $_{2}$ CH $_{2}$ $\mathsf{CH_{2}CH_{2}-,-CH_{2}CH_{2}O-,-OCH_{2}CH_{2}CH_{2}-,-CH_{2}CH_{2}OCH_{2}-,-CH_{2}-,-CH_{2}OCH_{2}-,-CH_{2}-,$ $\mathtt{CH_2CH_2} - \mathtt{,-CH_2OCH_2O} - \mathtt{,-OCH_2CH_2O} - \mathtt{,-SCH_2CH_2S} - \mathtt{,-OCH_2CH_2S} - \mathtt{,-OCH_2CH_2S$ -SCH,CH,O-,-CH,CH=CH-,-CH=CHCH,-,-OCH=CH-,-CH=C HO-, -SCH=CH-, -CH=CHS-, -N(R)CH=CH-, -CH=CHN(R)-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R)CH=N-, -N=CHN(R)-,-N(R)N=CH-,-CH=N(R)N-,-CH=CHCH=CH-,-OCH₂CH=CH-,-CH=CHCH₂O-,-N=CHCH=CH-,-CH=CHCH= N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成 し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく 、Rは、水素原子、CーC。アルキル基、CーC、ハロアルキル基、CーC。シアノア ルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル 基、Zで置換されていてもよいビフェニル基、Zで置換されていてもよいナフチル基、 2で置換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置 換されていてもよいフリル基又はZで置換されていてもよい縮合ヘテロアリール基を 表し、

 R^3 及び R^4 は、これら各基が一緒になって、 $-CH_2CH_2CH_2-$ 、 $-CH_2CH_2O-$ 、-O CH_2CH_2- 、 $-CH_2OCH_2-$ 、 $-OCH_2O-$ 、 $-CH_2CH_2S-$ 、 $-SCH_2CH_2-$ 、 $-CH_2SCH_2-$ 、 $-CH_2CH_2$ 0-、 $-CH_2CH_2$ 0-、 $-CH_2CH_2$ 0-、 $-CH_2CH_2$ 0-、 $-CH_2$ 0- $-CH_$

H_CH_O-、-CH_CH=CH-、-CH=CHCH_-、-OCH=CH-、-CH=CHO-、-SCH=CH-、-CH=CHS-、-N(R)CH=CH-、-CH=CHN(R)-、-OCH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)CH=N-、-N=CHS-、-N(R)N-、-CH=CHCH=CH-、-OCHCH=CH-、-CH=CHCH=N-、-OCHCH=CH-、-CH=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHCH=N-、-N=CHN=CH-、もしくは-CH=NCH=N-を形成し、このとき、これらの基の炭素原子に結合した水素原子はYで置換されていてもよく、Rは、水素原子、CーC、アルキル基、CーC、ハロアルキル基、CーC、シアノアルキル基、スで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリンル基、Zで置換されていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいチェニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいプリル基又はZで置換されていてもよい縮合へテロアリール基を表し、

 X^2 は、 $-NH-R^{73}-NH_{_{2}}$ 又は $-NH-R^{74}$ を表し、

R⁷³は、C₁~C₁アルキレン基、-C(O)CH₂-、-CH₂C(O)-、Yで置換されていてもよい2価のベンゼン環、Yで置換されていてもよい2価のピリジン環、Yで置換されていてもよい2価のピフェニル基、Yで置換されていてもよい2価のナフタレン環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のピロール環、Yで置換されていてもよい2価のフラン環又はYで置換されていてもよい縮合へテロ環を表し、

R^{**}は、C₁-C₁アルキル基、アセチル基、Yで置換されていてもよいフェニル基、Yで置換されていてもよいピリジル基、Yで置換されていてもよいビフェニル基、Yで置換されていてもよいナフチル基、Yで置換されていてもよいチエニル基、Yで置換されていてもよいピロリル基、Yで置換されていてもよいフリル基又はYで置換されていてもよい縮合へテロアリール基を表し、

Yは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C₁ーC₁₀アルキル基、C₁ーC₁₀アルコキシ基、C₁ーC₁₀シアノアルキル基、Zで置換されていてもよいフェニル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピリジル基、Zで置換されていてもよいピフェニル基、Zで置換されていてもよいナフチル基、Zで置換されていてもよいナフチル基、Zで置

換されていてもよいチエニル基、Zで置換されていてもよいピロリル基、Zで置換されていてもよいフリル基又はZで置換されていてもよい縮合へテロアリール基を表し(ただし、Yが2個以上の場合は同一か相互に異なってもよい)、

Zは、ハロゲン原子、シアノ基、ニトロ基、アミノ基、エポキシ基、ビニル基、C、C、C、アルキル基、C、一C、ハロアルキル基、C、一C、アルコキシ基、C、一C、シアノアルキル基、フェニル基、ビフェニル基、ナフチル基、チエニル基、ピロリル基、フリル基又は縮合ヘテロアリール基を表す。(ただし、Zが2個以上の場合は同一か相互に異なってもよい。)〕

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/00

		PCT/JP2	2005/001388
A. CLASSIFIC Int.Cl	CATION OF SUBJECT MATTER 7 H01G9/00, C08G73/02, H01G9/09	58, Н01М4/60	
According to Int	ernational Patent Classification (IPC) or to both national	d classification and IPC	
B. FIELDS SE			
Minimum docun Int . Cl	nentation searched (classification system followed by cl H01G9/00, C08G73/02, H01G9/09	assification symbols) 58, H01M4/60	
Jitsuyo Kokai J:	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho oroku Jitsuyo Shinan Koho	1996-2005 1994-2005
Electronic data b	pase consulted during the international search (name of o	data base and, where practicable, search to	erms used)
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap		Relevant to claim No.
A	Yasuaki MUKAI, "Aminoquinoxal Jugo to Sono Capacitor Denkyo 44 Kai Battery Symposium in J 2003 (04.11.03), pages 672 to	oku Tokusei", Dai Japan, 04 November,	1-29
A	EP 1361244 A1 (NISSAN CHEMIC LTD.), 12 November, 2003 (12.11.03), Full text; all drawings & US 2003/215701 A1 & JP		1-29
Further documents are listed in the continuation of Box C. See patent family annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
26 Apri	I completion of the international search (1, 2005 (26.04.05)	Date of mailing of the international sear 17 May, 2005 (17.05	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer	
Faccimile No		Telephone No	

国際出願番号 PCT/JP2005/001388

:::

発明の風する分野の分類(国際特許分類(IPC)) Int.Cl.7 H01G9/00, C08G73/02, H01G9/058, H01M4/60

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 H01G9/00, C08G73/02, H01G9/058, H01M4/60

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年 1971-2005年 1996-2005年

日本国公開実用新案公報

日本国実用新案登録公報

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	向井泰晃, アミノキノキサリン類の電解重合とそのキャパシタ電極 特性, 第 44 回電池討論会講演要旨集, 2003. 11. 04, p. 672-673	1-29
A	EP 1361244 A1 (NISSAN CHEMICAL INDUSTRIES LTD.) 2003.11.12,全文,全図 &US 2003/215701 A1&JP 2004-083563 A	1-29
	·	

C欄の続きにも文献が列挙されている。

「 パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に目及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 **17.** 05.2005 26.04.2005 国際調査機関の名称及びあて先 9375 特許庁審査官(権限のある職員) 日本国特許庁 (ISA/JP) 桑原 消 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3565