

Analyse af antalstabeller

Anders Tolver Institut for Matematiske Fag

I dag og næste uge

I dag: lærebogen kap. 12 (dog ikke 12.2.3, 12.2.4)

- Intro til test i tabeller
- Test for specifikke sandsynligheder
- Test for ens sandsynligheder (homogenitetstest)
- Test for uafhængighed
- Quiz 7

Næste uge:

- Mandag, forelæsning: repetition vha. nogle opgaver
- Mandag, øvelser: opgaveregning
- Onsdag: Ingen undervisning

Test i tabeller

Eksempel 12.1: Mendels ærteforsøg

Class	Number
Round, yellow	315
Round, green	108
Wrinkled, yellow	101
Wrinkled, green	32
Total	556

- 566 ærter fra generation F2 undersøgt for farve og form
- Mendels arvelighedslære: Uafhængighed + dominans → kombinationen af fænotyper skal være forholdet 9 : 3 : 3 : 1.
- Stemmer data overens med Mendels påstand?

Eksempel: Kastrering og diabetes

Eksempel fra i mandags:

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

- 50 kastrerede og 50 ikke-kastrerede mus undersøgt for diabetes.
- Er sandsynlighederne for diabetes ens i to to grupper? Altså:
 Er proportionerne ens i de to rækker, på nær tilfældighed?
- Bemærk: Rækkesummerne kendt på forhånd (begge 50)

Eksempel: Politik og økonomi

	Demokrat	Republikaner	Uafhængig
Begrænse udgifter	101	282	61
Øge skatter	38	67	25
Øge offentlige invest.	131	88	31
Lade underskuddet vokse	61	90	25

- 1000 tilfældige amerikanske vælgere adspurgt om to ting: politisk tilhørsforhold og foretrukne finanspolitisk instument
- Er de to ting uafhængige?
- Bemærk: De 1000 personer er udtrukket tilfældigt. Hverken række- eller søjlesummer, kun totalsummen, kendt på forhånd.

Ligheder og forskelle mellem dataeksemplerne

Data:

- I alle tre eksempler kunne vi beskrive data vha. en antalstabel (eng.: contingency table)
- Interesseret i specifikke cellesandsynligheder (Mendel) eller sammenhænge mellem cellesandsynligheder (de andre eks.)
- I tovejstabellerne: Rækkesummer kendte (diabetes) eller kun totalsummen kendt (politik)

Hypotese afhænger af dataindsamlingen:

- Test for specifikke sandsynligheder (goodness-of-fit)
- Test for ens sandsynligheder/proportioner (homogenitetstest)
- Test for uafhængighed

Hypotesetest i antalstabeller

I alle tilfælde:

- Beregn forventet antal obs. i hver celle under hypotesen
- Beregn teststørrelse

$$X_{\rm obs}^2 = \sum_{\text{alle celler}} \frac{(\text{observeret} - \text{forventet})^2}{\text{forventet}}$$

 $X_{\rm obs}^2$ måler forskellen mellem tabel med observerede værdier og tabel med forventede værdier.

• Bestem *p*-værdi ved at sammenligne $X_{\rm obs}^2$ med en (den rigtige) χ^2 -fordeling. Detaljer kommer senere.

Er tabellerne med obs. hhv. forventede antal så forskellige at det må skyldes at hypotesen er falsk, eller kan det skyldes tilfældigheder?

Goodness-of-fit test (GOF): Test for specifikke sandsynligheder

Mendels ærteforsøg: Model og hypotese

Class	Number
Round, yellow	315
Round, green	108
Wrinkled, yellow	101
Wrinkled, green	32
Total	556

Stat. model: n = 556 uafhængige obs. der hver især kan havne i k = 4 grupper; alle med (ukendte) sandsynligheder p_1, \ldots, p_k .

Hypotese,

$$H_0: p_1 = \frac{9}{16}, \quad p_2 = \frac{3}{16}, \quad p_3 = \frac{3}{16}, \quad p_4 = \frac{1}{16}$$

Generelt: $H_0: p_1 = p_{01}, \ldots, p_k = p_{0,k}$ for **kendte ssh**, p_{01}, \ldots, p_{0k} .

Mendels ærteforsøg: Forventede værdier

Hvis hypotesen er sand, hvor mange observationer ville vi så **forvente** i hver gruppe?

$$E_i = \text{expected}_i = n \cdot p_{i0}$$

For Mendels data:

Class	Observed	Expected
Round, yellow	315	312.75
Round, green	108	104.25
Wrinkled, yellow	101	104.25
Wrinkled, green	32	34.75
Total	556	556

Mendels ærteforsøg: Teststørrelse og p-værdi

Teststørrelse:

$$X_{\text{obs}}^{2} = \sum_{i=1}^{4} \frac{(\text{observed}_{i} - \text{expected}_{i})^{2}}{\text{expected}_{i}}$$

$$= \frac{(315 - 312.75)^{2}}{312.75} + \dots + \frac{(32 - 34.75)^{2}}{34.75} = 0.470$$

 X^2 er altid ≥ 0 , og store værdier passer dårligt med H_0 (er kritiske), små værdier passer godt med H_0 .

p-værdi:

- Sandsynlighed for at få værdi af X^2 der er $\geq X_{
 m obs}^2$
- Viser sig at *p*-værdien skal bestemmes i χ^2 -fordelingen (chi-i-anden) med k-1=4-1=3 frihedsgrader.

χ^2 -fordelinger, beregning af *p*-værdi

- p-værdien er arealet **til højre for** $X_{\rm obs}^2$
- Her fås p-værdien 0.93, så vi accepterer hypotesen

R: chisq.test

```
### Testet
chisq.test(c(315,108,101,32), p=c(9,3,3,1)/16)
##
##
    Chi-squared test for given probabilities
##
## data: c(315, 108, 101, 32)
## X-squared = 0.47002, df = 3, p-value = 0.9254
### De forventede vaerdier
chisq.test(c(315,108,101,32), p=c(9,3,3,1)/16)$expected
## [1] 312.75 104.25 104.25 34.75
```


Mendels ærteforsøg: Opsummering

- Stat. model: 556 uafhængige obs. der hver især kan havne i 4 grupper; alle med (ukendte) sandsynligheder p_1, \ldots, p_4 .
- Hypotese, svarende til Mendels love:

$$p_1 = \frac{9}{16}, \ p_2 = \frac{3}{16}, \ p_3 = \frac{3}{16}, \ p_4 = \frac{1}{16}$$

- χ^2 -test gav p = 0.93 ($X_{\rm obs}^2 = 0.47$, df = 3)
- Hypotesen accepteres, så data er i fin overensstemmelse med Mendels teorier

Test for ens sandsynligheder/proportioner: Homogenitetstest

Eksempel: Kastrering og diabetes

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

- Rækkesummer kendt på forhånd. Kunne have organiseret data det i stedet var søjlesummerne der var kendt på forhånd.
- I hver række har vi sandsynligheder for at havne i hver søjle. For hver række summerer sandsynlighederne til 1.
- Vi er interesseret i om sandsynligheden for diabetes er ens for kastrerede og ikke-kastrerede mus
- Der kunne være flere rækker og/eller søjler

Homogenitetstest: Generel notation

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>Y</i> 1 <i>k</i>	n_1
række 2	<i>y</i> 21	<i>y</i> 22	• • •	<i>Y</i> 2 <i>k</i>	n_2
:	:	:	٠	Ė	÷
række <i>r</i>	y _{r1}	Уr2		Уrk	n _r
Total	s ₁	<i>s</i> ₂		s _k	n

Dataindsamling:

- r populationer (rækker), n_i observationer fra population i
- I hver population er observationerne klassificeret efter et kriterium med *k* muligheder.
- Rækkesummer (men ikke søjlesummer) kendt på forhånd.

Homogenitetestest: Sandsynligheder og hypotese

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	p ₁₁	<i>p</i> ₁₂	• • •	p_{1k}	1
række 2	<i>p</i> ₂₁	<i>p</i> ₂₂	• • •	p_{2k}	1
:	:	:	٠	÷	÷
række <i>r</i>	p_{r1}	p_{r2}	• • •	p_{rk}	1

Hypotesen er at sandsynlighederne/proportionerne er ens i alle populationer:

$$p_{1j} = p_{2j} = \cdots = p_{rj}$$
 for alle søjler j

Altså at fordelingen henover søjlerne er den samme for alle rækker.

Hvis der kun er to søjler: Sammenligning af r binomialfordelinger

Homogenitetstest: Statistisk model og hypotese

Statistisk model:

- Uafhængige obs. fra r populationer med n_i obs. i population i. Hver obs. kan havde i k grupper/celler
- I population i er sandsynligheden for at havne i gruppe j lig p_{ij} . Summen af p_{ij} 'erne er 1 for hvert i for sig
- Hvis der kun er to søjler: r binomialfordelinger

Hypotesen om homogenitet er at søjlesandsynlighederne er ens for alle rækker:

$$p_{1j} = p_{2j} = \cdots = p_{rj}$$
 for alle søjler j .

To søjler: Sammenligning af binomialsandsynligheder!

Homogenitetstest: Forventede værdier

Under hypotesen **estimeres søjlesandsynlighederne** — fælles for alle rækker — naturligt som

$$\hat{q}_j = \frac{s_j}{n} = \frac{\text{søjlesum}_j}{n}$$

Forventet antal i celle (i,j) hvis hypotesen er sand:

$$E_{ij} = n_i \cdot \hat{q}_j = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{\text{totalsum}}$$

Kastrering og diabetes: Forventede værdier

Data:

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

Forventede værdier:

	Diabetes	Ikke diabetes	Total
Katrerede mus	19	31	50
Ikke-kastrerede mus	19	31	50

Kastrering og diabetes: Teststørrelse og p-værdi

Teststørrelse:

$$X_{\text{obs}}^{2} = \sum_{\text{alle celler}} \frac{(y_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \sum_{\text{alle celler}} \frac{(\text{observed}_{ij} - \text{expected}_{ij})^{2}}{\text{expected}_{ij}}$$

$$= \frac{(26 - 19)^{2}}{19} + \frac{(24 - 31)^{2}}{31} + \frac{(12 - 19)^{2}}{19} + \frac{(38 - 31)^{2}}{31}$$

$$= 8.32$$

Store værdier passer dårligt med H_0 , små værdier passer godt.

p-værdi: Viser sig at X_{obs}^2 skal vurderes i χ^2 -fordelingen med $\mathrm{df}=(r-1)(k-1)=1$

Kastrering og diabetes: χ^2 -fordelingen og p-værdien

- p-værdien er arealet **til højre for** den $X_{\rm obs}^2$
- Her fås p-værdien 0.0039, så hypotesen forkastes klart

R: chisq.test

```
diabetes \leftarrow matrix(c(26,12,24,38), 2,2)
diabetes
## [,1] [,2]
## [1.] 26 24
## [2,] 12 38
chisq.test(diabetes, correct=FALSE)
##
  Pearson's Chi-squared test
## data: diabetes
## X-squared = 8.3192, df = 1, p-value = 0.003923
chisq.test(diabetes, correct=FALSE)$expected
  [,1] [,2]
## [1.] 19 31
## [2.] 19 31
```


R: prop.test

```
prop.test(c(26,12), c(50,50), correct=FALSE)
##
##
   2-sample test for equality of proportions without continuity
##
   correction
##
## data: c(26, 12) out of c(50, 50)
## X-squared = 8.3192, df = 1, p-value = 0.003923
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.09781821 0.46218179
## sample estimates:
## prop 1 prop 2
## 0.52 0.24
```


Kastrering og diabetes: Opsummering

- Statistisk model: Data fra to binomialfordelinger med successandsynligheder p₁₁ og p₂₁
- Hypotese om homogenitet, $H_0: p_{11}=p_{21}$. Vi fik p=0.0039, så hypotesen afvises.
 - Der er forskel på risikoen for at udvikle diabetes.
- Kastrering øger risikoen for diabetes: Forskellen mellem ssh. estimeres til 0.280 med 95% KI (0.098, 0.462)

Test for uafhængighed

Studerende på StatData1 i 2019

Ved forelæsningen i Stat
Data1 d. 2/9-2019 svarede 110 studerede bl.a. på følgende spørgsmål

- Har du glædet dig til StatData1? (ja/nej)
- Hvor tit drikker du alkohol?
 (A: aldrig, B: 0-1 gang/uge, C: 2- gange/uge)

	A (aldrig)	B (0-1)	C(2+)
ja	6	43	27
nej	5	23	6

- Hverken række- eller søjlesummer kendt på forhånd.
- Er svarene på de to spørgsmål uafhængige? ... Hvad skal det egentlig betyde?

Data kan nu hentes på hjemmesiden.

Alkohol og forventing til SD1: Hypotese

Hypotese: Ingen sammenhæng mellem alkoholforbrug og forventing til Statistisk Dataanalyse 1.

For eksempel:

 $P(\text{aldrig alkohol } \mathbf{og} \text{ glæder sig}) = P(\text{aldrig alkohol}) \cdot P(\text{glæder sig})$

Altså at sandsynligheden for at begge dele er opfyldt fås ved at **gange** de to sandsynligheder. Skal gælde for **alle celler** i tabellen.

Hvis p_{ij} er cellesandsynligheder, p_i er rækkesandsynligheder og q_j er søjlesandsynligheder er hypotesen at

$$p_{ij} = p_i \cdot q_j$$
 for alle i, j

Uafhængighedstest: Generel notation

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	<i>y</i> 11	<i>y</i> 12	• • •	<i>Y</i> 1 <i>k</i>	n_1
række 2	<i>y</i> 21	<i>y</i> 22	• • •	У 2k	n_2
:	:	:	٠	:	:
række <i>r</i>	Уr1	Уr2		Уrk	n _r
Total	<i>s</i> ₁	<i>s</i> ₂	• • •	Sk	n

- Alle observationer klassificeret efter to kriterier. Organiseret i r rækker og k søjler
- Kun totalsumen n er kendt på forhånd
- Rækkesummer og søjlesummer ikke kendt på forhånd, men kan selvfølgelig beregnes når vi har data

Uafhængighedstest: Statistisk model

Statistisk model:

- n uafhængige obs. der hver især kan havne i $r \cdot k$ celler
- Ssh. for celle (i,j) kaldes p_{ij} . Sum af **alle** p_{ij} 'er er 1

Rækkesandsynligheder p_i og søjlesandsynligheder q_j . Sum af de relevante cellesandsynligheder.

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	p_{11}	p_{12}		p_{1k}	p_1
række 2	<i>p</i> ₂₁	<i>p</i> ₂₂	• • •	p_{2k}	p_2
÷	÷	÷	٠	÷	÷
række <i>r</i>	p_{r1}	p_{r2}		p_{rk}	p_r
Total	q_1	q_2		q_k	1

Uafhængighedstest: Hypotese

Hypotese om uafhængighed:

```
p_{ij} = Sandsynlighed for række i og søjle j
 = Sandsynlighed for række i · Sandsynlighed for søjle j
 = p_i \cdot q_j
```

Hypotesen er at dette gælder for **alle** i og j, dvs. alle celler.

Forventede værdier

Estimater for række- og søjlesandsynligheder:

$$\hat{p}_i = \frac{\text{rækkesum}_i}{\text{totalsum}} = \frac{n_i}{n}, \quad \hat{q}_j = \frac{\text{søjlesum}_j}{\text{totalsum}} = \frac{s_j}{n}$$

Under hypotesen har vi derfor følgende estimater for cellessh.:

$$\hat{p}_{ij} = \hat{p}_i \cdot \hat{q}_j = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{n^2}$$

Forventet antal i celle (i,j) hvis H_0 er sand:

$$E_{ij} = n \cdot \hat{p}_{ij} = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{\text{totalsum}}$$

Præcis det samme som for homogenitetstestet!

Alkohol og forventing til SD1: Forventede værdier

Data:

	A (aldrig)	B (0-1)	C (2+)	I alt
ja	6	43	27	76
nej	5	23	6	34
I alt	11	66	33	110

Forventede værdier:

	A (aldrig)	B (0-1)	C (2+)	I alt
ja	7.6	45.6	22.8	76
nej	3.4	20.4	10.2	34
l alt	11	66	33	110

Alkohol og forventing til SD1: Teststørrelse og *p*-værdi

Teststørrelse

$$X_{\text{obs}}^{2} = \sum_{\text{alle celler}} \frac{(y_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \sum_{\text{alle celler}} \frac{(\text{observed}_{ij} - \text{expected}_{ij})^{2}}{\text{expected}_{ij}}$$

$$= \frac{(6 - 7.6)^{2}}{7.6} + \dots + \frac{(6 - 10.2)^{2}}{10.2}$$

$$= 4.0725$$

Store værdier passer dårligt med H_0 , små værdier passer godt.

p-værdi: Viser sig at $X_{\rm obs}^2$ skal vurderes i χ^2 -fordelingen med $df = (r-1)(k-1) = (2-1) \cdot (3-1) = 2$. Ligesom

homogenitetstestet!

Alkohol og forventing til SD1: χ^2 -fordelingen og p-værdien

- p-værdien er arealet **til højre for** $X_{\rm obs}^2$
- Her fås p-værdien 0.1305, så hypotesen forkastes ikke (på niveau 5 %)

R: chisq.test

```
sd1data \leftarrow matrix(c(6, 5, 43, 23, 27, 6), 2, 3)
sd1data
## [,1] [,2] [,3]
## [1,] 6 43 27
## [2,] 5 23 6
chisq.test(sd1data, correct = FALSE)
## Warning in chisq.test(sd1data, correct = FALSE):
Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: sd1data
## X-squared = 4.0725, df = 2, p-value = 0.1305
```


R: chisq.test

```
### De forventede vaerdier
chisq.test(sd1data)$expected

## Warning in chisq.test(sd1data): Chi-squared
approximation may be incorrect

## [,1] [,2] [,3]
## [1,] 7.6 45.6 22.8
## [2,] 3.4 20.4 10.2
```


Alkohol og forventing til SD1: Opsummering

- Stat. model: 110 uafhængige obs. der hver især kan havne i 6 grupper; alle med (ukendte) sandsynligheder p_{ij}
- Hypotese om uafhængighed: $p_{ij} = p_i \cdot q_j$ for alle i, j
- χ^2 -test gav p = 0.1305 ($X_{obs}^2 = 4.0725$, df = 2)
- Hypotesen forkastes ikke, så alkoholforbrug og forvetning til SD1 er uafhængige

Diverse

Uafhængighedstest vs. homogenitetstest

Beregningerne er helt identiske:

- Forventede værdier beregnes som $E_{ij} = \frac{rækkesum_i \cdot søjlesum_j}{totalsum}$
- Teststørrelse beregnes som $X_{\mathrm{obs}}^2 = \sum \frac{(\mathrm{observeret-forventet})^2}{\mathrm{forventet}}$
- Teststørrelsen vurderes i χ^2 -ford. med $\mathrm{df}=(r-1)(k-1)$: p-værdien beregnes som sandsynlighed til højre for X^2_{obs}
- Hypotesen forkastes/afvises på baggrund af p-værdien som sædvanlig
- Testet kan udføres med chisq.test i R

Men: **Hypotesen og derfor fortolkningen er forskellig** afhængig af datastrukturen/-indsamlingen.

Uafhængighedstest vs. homogenitetstest

Uafhængighedstest:

- Når to kategoriske variable med hhv. r og k kategorier er observeret for en enkelt population
- Hverken række- eller søjlesummer er kendt på forhånd
- Hypotese om uafhængighed mellem de to variable

Homogenitetstest:

- Når en enkelt kategorisk variabel med k kategorier er observeret i r forskellige populationer
- Rækkesummer (eller søjlesummer) kendt på forhånd
- Hypotese om ens proportioner/sandsynligheder for de r populationer

Kontinuitetskorrektion

For 2×2 tabeller (men ikke større tabeller) laver chisq.test som default en **kontinuitetskorrektion**, når X^2 beregnes.

- chisq.test(..., correct=FALSE): Giver det vi netop har beregnet
- chisq.test(..., correct=TRUE): Giver lidt andre resultater
 faktisk forbedret.

Begge dele er OK til eksamen, medmindre der står noget specifikt.

R: Med og uden kontinuitetskorrektion

```
diabetes
       [,1] [,2]
## [1,] 26 24
## [2,] 12 38
chisq.test(diabetes, correct=TRUE)
##
   Pearson's Chi-squared test with Yates' continuity correction
##
## data: diabetes
## X-squared = 7.1732, df = 1, p-value = 0.0074
chisq.test(diabetes, correct=FALSE)
   Pearson's Chi-squared test
## data: diabetes
## X-squared = 8.3192, df = 1, p-value = 0.003923
```


Alkohol og forventning til SD1: R warning

I forbindelse med analysen giver chisq.test en advarsel!

```
chisq.test(sd1data, correct = FALSE)

## Warning in chisq.test(sd1data, correct = FALSE):
Chi-squared approximation may be incorrect

##

## Pearson's Chi-squared test

##

## data: sd1data

## X-squared = 4.0725, df = 2, p-value = 0.1305
```


Approksimation

Vi har hele tiden sagt at X^2 kommer fra χ^2 -fordeling når hypotesen er sand, men faktisk er det kun en approksimation.

Tommelfingerregel: Approksimationen er kun god hvis de forventede værdier i alle celler er ≥ 5 .

```
chisq.test(sd1data)$expected

## Warning in chisq.test(sd1data): Chi-squared
approximation may be incorrect

## [,1] [,2] [,3]
## [1,] 7.6 45.6 22.8
## [2,] 3.4 20.4 10.2
```


Hvad gør man hvis forventede antal er for små?

- Slå rækker og/eller søjler sammen så tommelfingerreglen om forventede værdier er OK.
 - Sammenlægningen skal selvfølgelig give mening, typisk for ordinale data. (Kunne godt gøres her!)
- Beregn p-værdien ved simulation.
 Laver mange datasæt som de ville se ud hvis hypotesen var sand og beregner X². Hvor ofte er den større end X²_{obs}?

R: Simuleret p-værdi

```
set.seed(2019)
chisq.test(sd1data, simulate.p.value = TRUE, B=10000)

##

## Pearson's Chi-squared test with simulated p-value (based on 1)
## replicates)
##

## data: sd1data
## X-squared = 4.0725, df = NA, p-value = 0.122
```


Alkohol og forventning til SD1: Konklusion

- Simulerede p-værdierne lidt forskellige fra gang til gang (medmindre man som her vælger fast seed)
- De simulerede p-værdier tæt på p-værdien baseret på χ^2 -approksimationen (0.1305)
- Ikke tegn på sammenhæng ml. alkoholforbrug og forventning til SD1

Opsummering vedr. R

Test i tabeller:

- chisq.test: Giver $X_{\rm obs}^2$ og p-værdi samt forventede værdier. Kan også beregne simulerede p-værdier. Ingen konfidensint.
- prop.test: Kan bruges hvis der kun er to søjler (evt. flere rækker). Giver ikke de forventede værdier.
 - Også KI for forskel mellem rækkessh. for 2×2 tabeller.
- For 2×2 tabeller: chisq.test og prop.test fås med/uden kontinuitetskorrektion.
- Data skal indtastes forskelligt når man bruger chisq.test og prop.test.

Vælg selv metoden medmindre du bliver spurgt om noget eksplicit.

