Modelling covariate effects in extremes of storm severity on the Australian North West Shelf

David Randell, Philip Jonathan, Kevin Ewans, Yanyun Wu david.randell@shell.com

Shell Technology Centre Thornton, Chester, UK

SIMRIDE March 2013

Acknowledgements

Thanks for work done by summer students

- Emma Ross
- Kaylea Haynes

Outline

- Background
 - Motivation
 - Australian North West Shelf
- Extreme Value Analysis: Challenges
- Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values
- Other Applications and Developments

Contents

- $lue{1}$ Background
 - Motivation
 - Australian North West Shelf
- Extreme Value Analysis: Challenges
- Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values
- 4 Other Applications and Developments

Motivation

- Rational design an assessment of marine structures:
 - Reducing bias and uncertainty in estimation of structural reliability.
 - Improved understanding and communication of risk.
 - Climate change.
- Other applied fields for extremes in industry:
 - Corrosion and fouling.
 - Finance.
 - Network traffic.

Katrina in the Gulf of Mexico.

Katrina damage.

Platform in a Northern North Sea storm.

Platform in the Southern North Sea.

A wave seen from a ship.

Australian North West Shelf

Australian North West Shelf

- Data consist of hindcast storms during 1970-2007.
- Model storm peak significant wave height H_S .
- Wave climate is dominated by westerly monsoonal swell and tropical cyclones.
- Cyclones originate from Eastern Indian Ocean and in the Timor and Arafura Sea area is also a region of cyclogensis.

Cyclone Narelle January 2013

Cyclone Narelle January 2013

Storm Peak H_S by Direction

Quantiles of storm peak H_S Spatially

Contents

- Background
 - Motivation
 - Australian North West Shelf
- 2 Extreme Value Analysis: Challenges
- Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values
- Other Applications and Developments

Extreme Value Analysis: Challenges

- Covariate effects:
 - Location, direction, season, time ...
 - Multiple covariates in practice.
- Cluster dependence:
 - e.g. storms independent, observed (many times) at many locations.
 - e.g. dependent occurrences in time.
 - estimated using e.g. extremal index (Ledford and Tawn 2003)
- Scale effects:
 - Modelling X^2 gives different estimates c.f. modelling X. (Reeve et al. 2012)
- Threshold estimation.
- Parameter estimation.
- Measurement issues:
 - Field measurement uncertainty greatest for extreme values.
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation.

• Multivariate extremes:

- Waves, winds, currents, forces, moments, displacements, ...
- - Assumes all components extreme.
 - >> Perfect independence or asymptotic dependence **only**.
- Extremal dependence:
 - Assumes regular variation of joint survivor function.
 - Gives rise to more general forms of extremal dependence.
 - Asymptotic dependence, asymptotic independence (with +ve, -ve association).
- Conditional extremes:
 - Assumes, given one variable being extreme, convergence of distribution of remaining variables.
 - Not equivalent to extremal dependence.
 - Allows some variables not to be extreme.
- Inference:
 - ... a huge gap in the theory and practice of multivariate extremes ... (Beirlant et al. 2004)

Contents

- Background
 - Motivation
 - Australian North West Shelf
- 2 Extreme Value Analysis: Challenges
- Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values
- Other Applications and Developments

Model Components

- Sample $\{\dot{z}_i\}_{i=1}^{\dot{n}}$ of \dot{n} storm peak significant wave heights observed at locations $\{\dot{x}_i,\dot{y}_i\}_{i=1}^{\dot{n}}$ with storm peak directions $\{\dot{\theta}_i\}_{i=1}^{\dot{n}}$.
- Model Components
 - **1 Threshold** function ϕ above which observations \dot{z} are assumed to be extreme estimated using quantile regression.
 - **Q** Rate of occurrence of threshold exceedances modelled using Poisson Process model with rate $\rho(\stackrel{\triangle}{=} \rho(\theta, x, y))$
 - **Size of occurrence** of threshold exceedance using a generalised Pareto (GP) model with shape and scale parameters ξ and σ .

Model Components

- Rate of occurrence and size of threshold exceedance are functionally independent (Chavez-Demoulin and Davison 2005).
- Equivalent to non-homogeneous Poisson point process model (Dixon et al. 1998).
- Smooth functions of covariates are estimated using P-splines (Eilers and Marx 2010)

P-Splines

- Physical considerations suggest that we should expect the model parameters ϕ, ρ, ξ and σ to vary smoothly with respect to covariates θ, x, y .
- n dimensional basis matrix B formulated using Kronecker products of marginal basis matrices

$$B = B_{\theta} \otimes B_{\mathsf{x}} \otimes B_{\mathsf{y}}$$

Roughness is defined

$$R = \beta' P \beta$$

where P is penalty matrix formed by taking differences of neighbouring β .

P-Splines

- Wrapped bases allows for periodic covariates such as seasonality or direction.
- High dimensional bases can easily be constructed although number of parameters problematic.
- Strength of roughness penalty is controlled by roughness coefficient λ : cross validation is used to choose λ optimally.

Quantile regression models threshold

• Estimate smooth quantile $\phi(\theta_i, x_i, y_i; \tau)$ for non-exceedance probability τ of storm peak H_S .

Spline basis:
$$\psi(\tau,\theta) = \sum_{k=0}^{p} \Phi_{\theta k} \beta_{\tau k}$$

 \bullet Estimated by minimising **penalised** criterion ℓ_ϕ^* with respect to basis parameters:

$$\ell_{\phi}^* = \{\tau \sum_{r_i \ge 0}^{n} |r_i| + (1 - \tau) \sum_{r_i < 0}^{n} |r_i| \} + \lambda_{\phi} R_{\phi}$$

for $r_i = z_i - \phi(\theta_i, x_i, y_i; \tau)$ for i = 1, 2, ..., n, and **roughness** R_{ϕ} controlled by roughness coefficient λ_{ϕ} .

 Quantile regression with P-splines can be formulated and solved as a linear program (Bollaerts et al. 2006).

Marginal 50% Quantile Threshold

Spatio-Directional 50% Quantile Threshold

Cross Validation for Penalty

Poisson models rate of threshold exceedances

 Rate of occurrence of threshold exceedances is estimated by minimising the roughness penalised log likelihood

$$\ell_{\rho}^* = \ell_{\rho} + \lambda_{\rho} R_{\rho}$$

 (Negative) penalised Poisson log-likelihood for rate of occurrence of threshold excesses:

$$\ell_{\rho} = -\sum_{i=1}^{n} \log \rho(\theta_{i}, x_{i}, y_{i}) + \int \rho(\theta, x, y) d\theta dxdy$$

• λ_{ρ} is estimated using cross validation.

Marginal Rate of Threshold Exceedances

Spatio-Directional Rate of Threshold Exceedances

Cross Validation for Penalty

GP models size of threshold exceedances

 Generalised Pareto density (and negative conditional log-likelihood) for sizes of threshold excesses:

$$\ell_{\xi,\sigma} = \sum_{i=1}^{n} \log \sigma_i + \frac{1}{\xi_i} \log(1 + \frac{\xi_i}{\sigma_i} (z_i - \phi_i))$$

- Parameters: **shape** ξ , **scale** σ .
- Threshold ϕ_i set prior to estimation.
- Smoothness is imposed by minimising the roughness penalised log-likelihood.

$$\ell_{\xi,\sigma}^* = \ell_{\xi,\sigma} + \lambda_{\xi} R_{\xi} + \lambda_{\sigma} R_{\sigma}$$

• λ_{ξ} and λ_{σ} are estimated using cross validation. In practice set $\lambda_{\xi} = \kappa \lambda_{\sigma}$ for fixed κ .

Marginal Rate GP Shape and Scale

Spatio-Directional Scale of GP Exceedances

Spatio-Directional Shape of GP Exceedances

Cross Validation for Penalty

Return Values

• The return value z_T of storm peak significant wave height corresponding to some return period T, expressed in years, can be evaluated in terms of estimates for model parameters ϕ, ρ, ξ and σ

$$z_T = \phi - \frac{\sigma}{\xi} \left(1 + \frac{1}{
ho} (\log(1 - \frac{1}{T}))^{-\xi}\right)$$

• z_{100} corresponds to the 100–year return value, often denoted by H_{S100} .

Marginal 100-year Return Value H_{S100}

Spatio-Directional 100-year Return Value H_{S100}

Contents

- Background
 - Motivation
 - Australian North West Shelf
- Extreme Value Analysis: Challenges
- Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values
- Other Applications and Developments

Other Applications and Developments

- Spatio-directional models for other ocean basins
 - North Sea
 - Gulf of Mexico
- Spatio-temporal splines for non-stationary extreme values
 - Almost all current EVA assumes data are steady state
 - Climate change means this is no longer reliable.
 - Using GCM, RCM as well as historical hindcasts.
- Incorporation of uncertainty
 - Spatial block bootstrapping allows quick estimates of parameter uncertainty
 - Bayesian estimation.
- Incorporation of spatial dependency
 - Composite likelihood: model (asymptotically dependent) componentwise—maxima.
 - Censored likelihood: allows extension from block-maxima to threshold exceedances.

References

- K. Bollaerts, P. H. C. Eilers, and I. Van Mechelen. Simple and multiple p-splines regression with shape constraints. *British Journal of Mathematical & Statistical Psychology*, 59:451–469, 2006.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. *J. Roy. Statist. Soc. Series C: Applied Statistics*, 54:207, 2005.
- J. M. Dixon, J. A. Tawn, and J. M. Vassie. Spatial modelling of extreme sea-levels. *Environmetrics*, 9:283–301, 1998.
- P H C Eilers and B D Marx. Splines, knots and penalties. *Wiley Interscience Reviews: Computational Statistics*, 2:637–653, 2010.
- A. W. Ledford and J. A. Tawn. Diagnostics for dependence within time series extremes. *J. Roy. Statist. Soc. B*, 65:521–543, 2003.
- D.T. Reeve, D. Randell, K.C.Ewans, and P. Jonathan. Accommodating measurement scale uncertainty in extreme value analysis of North Sea storm severity. *Ocean Eng.*, 53:164–176, 2012.

Thank You

david.randell@shell.com