SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 1

DECEMBER 2013

Mathematics

General Instuctions

- Working time 70 minutes
- · Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in questions 6 to 13
- Start each question on a new page

Total marks - 53

Section 1 - 5 marks

Attempt Questions 1-5. Allow about 7 minutes for this section.

Section 2 - 48 marks

Attempt Questions 6 - 13. Allow about 63 minutes for this section.

Name:		•	
eacher:			

Section 1

5 marks Attempt Questions 1-5 Allow about 7 minutes for this section

Use the multiple choice answer sheet in your answer booklet for Questions 1-5. Do not remove the multiple choice sheet from your answer booklet.

1.

PQRS is a rectangle. Which triangles are similar?

- A. I and II only.
- B. II and III only.
- C. I, II and III.
- D. No two triangles are similar.
- 2. The coordinates of the centre and length of the radius of the circle

$$x^2 + y^2 - 4x + 10y - 35 = 0$$

are

- A. centre (2,-5), radius $\sqrt{6}$
- B. centre (-2,5), radius $\sqrt{6}$
- C. centre (2,-5), radius 8
- D. centre (-2,5), radius 8

The value of a is given by

A. 10 sin 60° sin 75°

B. 10 sin 45° sin 60°

C. 10 sin 60° sin 45°

D. 13 sin 60° sin 75°

4:

$$\angle A = \angle E$$

$$AB = EF$$

$$AC = DF$$

If the above triangles are congruent, which of the following statements is correct?

- A. The triangles must be scalene.
- B. The triangles must be isosceles.
- C. The triangles can be either scalene or isosceles.
- D. The types of triangle cannot be determined from the information given.
- 5. If the angles of a pentagon form an Arithmetic Progression, then one of the angles will <u>always</u> be:
 - A. 120°
 - B. 90°
 - C. 108°
 - D. 105°

48 marks Attempt Questions 6-13

Allow about 63 minutes for this section Start each question on a new page

Question 6 (6 marks) Start a new page.

- a) For the series 3 + 10 + 17 + ...
 - i) Show that the sum of the first *n* terms is given by $Sn = \frac{n}{2}(7n-1)$.
 - ii) Find the least number of terms required to give a sum greater than 2000.

2

2

2

2

1

1

b) Solve $\tan x = -\sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$.

Question 7 (6 marks) Start a new page.

- a) i) Find the equation of the tangent to the parabola $x^2 = 12y$ at (6,3).
 - ii) Find the coordinates of the point where this tangent intersects with the directrix $\boldsymbol{\cdot}$
- b) In the figure AP = 12cm and PB = 4cm

- i) Explain why AQ:QC = 3:1
- ii) Hence find RP.

Question 8 (6 mar	s) Start a new page.
-------------------	----------------------

a)	Th	e first three terms of a sequence are 3, -1 and -5. Find the 19th term.	2
b)	If	$ imes$ and eta are the roots of the quadratic equation $3x^2+mx+p=0$.	
	Fii	nd the value of	
	i)	$\propto + \beta$	1
	ii)	$\propto eta$	1
	iii)	If $\beta = 3 \propto$, show that $m^2 - 16p = 0$.	2
Qu	estion	9 (6 marks) Start a new page.	
a)	i)	Find the coordinates of the vertex of the parabola with focus at (-4,-1) and equation of	
		the directrix $y = 3$.	1
	ii)	Hence write down the equation of this parabola.	-J
b)	The	sponsors of a golf tournament have provided \$232,500 for the total prizes for the first	.,
		places. The prize for the winner is to be \$26,000 and, from there down, each prize	
		reases by a constant amount.	
	Find	l:	
	i)	the prize for finishing 15th	2
	ii)	the prize for finishing 2nd	1
Que	stion	10 (6 marks) Start a new page.	
a)	Shov	w that $5x - 3 - 6x^2$ is negative for all values of x.	2
b)	Let A	and B be fixed points $(-1,0)$ and $(2,0)$ and let P be the variable point (x,y) .	.)
	i)	Write down expressions for PA ² and PB ² in terms of x and y .	1
	ii)	Suppose that P moves so that PA = 2PB, find the equation of the locus.	2
	iii)	Describe the locus.	1

a) In the diagram ABCD is a square, E and F are the mid points of the sides AD and DC respectively.

- i) Redraw the diagram.
- ii) Prove that $\triangle ABE$ is congruent to $\triangle ADF$.
- iii) Explain why < AHE = 90°.
- b) If \propto and β are the roots of the quadratic equation $2x^2 + 6x 1 = 0$, find the value of

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

2

2

2

2

1

3

Question 12 (6 marks) Start a new page

a) Solve $x^4 = 32 - 4x^2$

b)

- i) Explain why KL=LN
- ii) If NM = 1, deduce that $\tan 15^{\circ} = 2 \sqrt{3}$

a) Simplify

 $\frac{1-\cos^2 \propto}{\sin \propto \cos \propto}$

b) In the diagram ABCD is a parallelogram. A line is drawn from A to cut DB, DC and BC produced at E, F and G respectively.

- i) Redraw the diagram.
- ii) Prove that $\triangle ADE$ is similar to $\triangle BGE$.
- iii) Hence or otherwise prove

$$\frac{AE}{EG} = \frac{AF}{AG}$$

2

2:

Studen (Q v		Sves a	Pa'2
1			
	7 2 0 1 2	on lines	
	151 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Vation of tax 4-3=1(x-6) 4-3=1(x-6) 4 = 26-3 When y=-	versals versals versals versals versals	32 = 12 - 2 42 = 12 2 = 3 2 = 3 3 = 3 3 3 = 3 3 = 3 3 3 = 3 3 = 3 3 3 = 3 3 =
Name:	4-3=1(2) 4-3=1(2) 4-3=1(2) 4-3=1(2)	bi i) The intercepts on all transversals by a family of paraille l'Imare in the same retro	i de de
Teacher Teacher	3 .;	Di j	
		3+(n-1)7 1	1 (th)
Assessment			1 4x7x-4000 14 112001- 14 4erms = -13 = 60(2x, 4
A SS C 5	2 2 C B B	EN IN EN E	
S.C. Such	1017	S = 2	
Studen S S	m 3 m y 2	(1,0	7 (A

Teacher Name:		ii) 26000 = 5000 + 14 ch	140: 21000	0 21 1200	i,	42.4	000	Quettion 10	a) A= 52- 4x-6x-3	レヤーニ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	٠. · ع >	A. A Dression 15	for all	bi) PA== (2+1)2+42	PB2 = (x-2)2 +42	a de la companya de l	ii) PA-2PB	Ph2 = 4PB2	(x+1)2+12		322+34218x+15=0		iii) Locus is a circle	
Student Name: (Qvestion 8	a) Tig = 3+18x-4	1 6 9		DII 4+13 = - m	11) 4 3 = 2	- [evi]	h h	E u by	£ [1	also 342 = P	3(-11) 2 2	ļ	0 = cl91 = 2m	Question 9	a) 1) vertex = (-4,1)	(1-h) 2×11-= (1+2) (11	(1-1/8-= (1+2)		1) 232 500 = 15 26000 +L	751+00005 340000+121	151 = 75000	L = 5000	Prize for 15th 15\$ 5000	

Now & +B = Q 2+ B2 butCEA軍= CABE D) 24811-3 a) ii) In DABE and DADE - 人民中國十八四日中 1190 E; · · DABE III DADE (SAS) · CARE = 90 Question = triangles of congruent CAEB+ CABE = 90 (angle sum (BAE = (FDA = 90 (anglesof) A-B= AD (Stokes of squard) AF = DF (decta) 1 (d 4 13)2-22 B [] (3)2-2X-1/2 -20 又图11/2 of triangle) Question 12 11 tan 60 = LN a) x4+42 - 32=0 1) LXNLP 15 (+xterior Lotherary ly Teacher Name: +0115 -. KL= LN (sixtes ofposite equa J COSENC 30 = LN ズ -: M7++M - 3220 Lym とと M" 18 97 4 (m+8) (m-4) = 0 1. FN 11 2 LM - MJ メトリーの の アードイ ・・スト \<u>~</u> 2 2 20 -2 IJ angles in isoscetis A) 2-1-2 ×2-1-3 2+43 127. ď.

ornneiir Mame:

Now DADF DGBA (equiangular)	EG BG (corresponding sides)	onparallel lines)	CAED = < BEG (vertically opposite) < DAE = < BGE (alternate and la	D P C	· A\	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 St. 2	a) 1-cost = sunta	Question 13	Student Name:
							··· AE = AF	BG AG of similar triangle		Teacher Name: