Learning and Using Hand Abstraction Values for Parameterized Poker Squares

Colin Messinger & Zuozhi Yang
Todd W. Neller
Gettysburg College

Structure of the Al Player

Static Evaluation

Evaluate scoring potentials under given point system in five minutes

Quickly provide estimated score

Real-Time Search

Search on the game tree using those estimation

Static Evaluation

Key Techniques:

- Partial Hand Abstractions
- Monte Carlo Methods
- ϵ -Greedy Strategy

Naïve Partial Hand Abstraction

- Why naïve? Assume that each row/column is independent
- Key Features:
 - number of cards
 - row ("-") or column ("|")?
 - rank counts and how many cards undealt in the rank
 - flush ("f") is achievable?
 - straight ("s") is achievable?
 - royal flush ("r") is achievable?
- For example, "14|1(3)1(2)1(2)f3(8)s" represents a column hand abstraction after the 14th move.

Monte Carlo and ϵ -greedy

- Play a lot of games during 5 min of training
- Exploration versus Exploitation
 - Exploration: random plays
 - Exploitation: greedy plays
- ϵ is the proportion of random plays
- On-policy learning
 - constantly update the policy that is used to make decisions

Real-Time Search

- Colin's goal: Utilize George's heuristic evaluation of PPS game states to design a limited real-time search that approximates optimal play.
- Two main design decisions:
 - Time Management
 - Search Algorithms

Time Management

- Sometimes, it is beneficial to distribute reasoning time non-uniformly in real-time play
- Comparison:
 - Uniform Time Management (UTM)
 - Gaussian Time Management (GTM)
 - more middle-game time concentration
 - 4 sets of means and standard deviations
- UTM dominated GTMs for almost all point systems

Search Algorithm

- Three approaches tried
 - Greedy Monte Carlo (a.k.a. Flat Monte Carlo), depth limit 5
 - -UCB1 Monte Carlo, depth limit 5
 - Expectimax, depth limit 2
 - Chance-Sampled
 - Action-Sampled
- Expectimax was found to have the best performance

Search Algorithm Results

Total Normalized Chart Scores

Comparison of Design Components

- We performed component significance testing by comparing performance of players with trivialized components:
 - Expectimax search, 0.5 initial epsilon NARL evaluation (GettysburgPlayer)
 - Expectimax search, simple score evaluation
 - Greedy Monte Carlo search, 0.5 initial epsilon NARL evaluation
- Heuristic evaluation function was most significant

Component Significance Results

Component Comparison Normalized Scores

Future Research

- Argument for improving heuristic evaluation:
 - It was most significant to our performance, so greater performance may come most easily here.
- Argument for improving search:
 - Expectimax with depth limit 2 only utilized 9.4% of our allotted play decision time, so we can surely leverage the unused 90.6% (e.g. Monte Carlo Tree Search with parallelization).