Математические основы искусственного интеллекта Основные понятия теории вероятностей

Солодушкин Святослав Игоревич

Кафедра вычислительной математики и компьютерных наук, УрФУ имени первого Президента России Б.Н. Ельцина

Октябрь 2021

Элементарная теория вероятностей

Определение

Пространством элементарных исходов называется множество Ω , содержащее все возможные взаимоисключающие результаты данного случайного эксперимента. Элементы множества Ω называются элементарными исходами и обозначаются буквой ω .

«Определение»

Событиями называются подмножества множества Ω . Говорят, что произошло событие A, если эксперимент завершился одним из элементарных исходов, входящих в множество A.

Замечание. Вообще говоря, можно называть событиями не любые подмножества множества Ω , а лишь элементы некоторого набора подмножеств. О смысле такого ограничения мы поговорим позднее.

Операции над событиями

Определение

Объединением $A \cup B$ событий A и B называется событие, состоящее в том, что из двух событий A и B случилось хотя бы одно. Это событие включает как элементарные исходы из множества A, так и элементарные исходы из множества B.

Определение

Пересечением $A \cap B$ событий A и B называется событие, состоящее в том, что произошли сразу оба события A и B. Это событие содержит элементарные исходы, каждый из которых принадлежит и множеству A, и множеству B. Вместо $A \cap B$ часто пишут просто AB.

Операции над событиями

Определение

Дополнением $A \setminus B$ события B до A называется событие, состоящее в том, что произошло A, но не произошло B. Событие $A \setminus B$ содержит элементарные исходы, входящие в множество A, но не входящие в B.

Определение

Противоположным (или дополнительным) к событию A называется событие $\overline{A}=\Omega\setminus A$, состоящее в том, что A не произошло. Событие \overline{A} состоит из элементарных исходов, не входящих в множество A.

Пример, когда Ω конечно

Кидают игральный кубик.

Пространство элементарных исходов $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Можно определить события A — выпало четное число, B — результат меньше трех.

Можно определить вероятности элементарных исходов:

$$p_i = 1/6, i = 1, \ldots, 6.$$

Можно определить вероятности событий:

$$P(A) = 3/6, P(B) = 2/6.$$

 $P(A \cap B) = 1/6.$

Если Ω конечное, то «Определение» работает безупречно.

Геометрическая вероятность

Два человека договорились о встрече с 12-00 до 13-00. Первый пришедший ждет 15 минут, и если не дождался, то уходит. Какова вероятность того, что встреча состоится?

Особеннность задачи в том, что множество элементарных исходов бесконечно (имеет мощность континуум).

Мотивировка формализации

Анри Леон Лебег (1875—1941)

Алгебра и сигма-алгебра событий

Наш план

Пусть Ω — пространство элементарных исходов некоторого случайного эксперимента.

- 1. Определим набор подмножеств Ω , которые будут называться событиями.
- 2. Зададим вероятность как функцию, определенную только на множестве событий.

Итак, событиями мы будем называть не любые подмножества Ω , а лишь элементы некоторого выделенного набора подмножеств множества Ω . При этом необходимо, чтобы этот набор подмножеств был замкнут относительно обычных операций над событиями, т. е. чтобы объединение, пересечение, дополнение событий снова давало событие.

Алгебра событий

Определение

Множество \mathcal{A} , элементами которого являются подмножества множества Ω (не обязательно все) называется алгеброй, если оно удовлетворяет следующим условиям:

- (A1) $\Omega \in \mathcal{A}$ (алгебра содержит достоверное событие);
- (A2) если $A\in\mathcal{A},$ то $\overline{A}\in\mathcal{A}$ (вместе с любым множеством алгебра содержит противоположное к нему);
- (A3) если $A\in\mathcal{A}$ и $B\in\mathcal{A}$, то $A\cup B\in\mathcal{A}$ (вместе с любыми двумя множествами алгебра содержит их объединение).

Пример алгребры событий

Пусть $\Omega = \{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \}$ — пространство элементарных исходов. Следующие наборы подмножеств Ω являются алгебрами:

$$\mathcal{A} = \{\Omega,\emptyset\} = \{\{\spadesuit,\clubsuit,\diamondsuit,\heartsuit\},\emptyset\}$$
 — тривиальная алгебра;

$$\mathcal{A} = \{ \{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \}, \emptyset, \{ \diamondsuit \}, \{ \spadesuit, \clubsuit, \heartsuit \} \};$$

$$\mathcal{A}=2^{\Omega}$$
 — множество всех подмножеств $\Omega.$

Является ли алгеброй такой набор

$$\mathcal{A} = \{ \{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \}, \emptyset, \{ \spadesuit \}, \{ \clubsuit \}, \{ \diamondsuit, \heartsuit \} \};$$

Сигма-алгебра событий

Мотивировка

В теории вероятностей часто возникает необходимость объединять счетные наборы событий и считать событием результат такого объединения. При этом свойства (АЗ) алгебры оказывается недостаточно: из него не вытекает, что объединение счетной последовательности множеств из алгебры снова принадлежит алгебре. Поэтому разумно наложить более жесткие ограничения на класс событий.

Сигма-алгебра событий

Определение

Множество \mathcal{F} , элементами которого являются подмножества множества Ω (не обязательно все) называется σ -алгеброй (σ -алгеброй событий), если выполнены следующие условия:

- (S1) $\Omega \in \mathcal{F}$ (σ -алгебра событий содержит достоверное событие);
- (S2) если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$ (вместе с любым событием σ -алгебра содержит противоположное событие);
- (S3) если $A_1, A_2, \ldots \in \mathcal{F}$, то $A_1 \cup A_2 \cup \ldots \in \mathcal{F}$ (вместе с любым счетным набором событий σ -алгебра содержит их объединение).

Примеры алгебр, неявляющихся σ -алгебрами

Пусть $\Omega = \mathbb{N}$. Множество, состоящее их всех подмножеств наутрального ряда, которые либо конечны (т. е. состоят из конечного числа наутральных чисел), либо имеют конечное дополнение.

Пусть $\Omega = [0, 1]$. Множество, состоящее их подмножеств отрезка [0,1], представляющих собой объединение конечного числа промежутков вида [a,b], (a,b), (a,b], [a,b).

Брелевская σ -алгебра

Определение

Минимальная σ -алгебра, содержащая множество всех интервалов на вещественной прямой, называется борелевской σ -алгеброй в $\mathbb R$ и обозначается $\mathfrak{B}(\mathbb R)$.

Замечание. Разумеется, σ -алгебры, содержащие все интервалы, существуют. Например, множество всех подмножеств \mathbb{R} — это σ -алгебра, и она содержит все интервалы.

Минимальная σ -алгебра, содержащая все интервалы, — результат пересечения всех возможных σ -алгебр, содержащих все интервалы.

Следующий шаг: определим вероятности событий

Итак, мы определили специальный класс $\mathcal F$ подмножеств Ω , названный σ -алгеброй событий. Применение счетного числа любых операций (объединений, пересечений, дополнений) к множествам из $\mathcal F$ снова дает множество из $\mathcal F$, т. е. не выводит за рамки этого класса. Событиями будем называть только множества $A \in \mathcal F$.

Определим теперь понятие вероятности как функции, определенной на множестве событий (функции, которая каждому событию ставит в соответствие число — вероятность этого события).

Вероятностная мера

Определение

Пусть Ω — некоторое непустое множество, \mathcal{F} — σ -алгебра его подмножеств. Функция $\mu: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ называется вероятностной мерой на (Ω, \mathcal{F}) , если она удовлетворяет условиям:

- $(\mu 1)$ $\mu(A) \geq 0$ для любого множества $A \in \mathcal{F}$;
- $(\mu 2)$ для любого счетного набора попарно непересекающихся множеств $A_1,\ A_2,\ A_3,\ \ldots\in\mathcal{F}$ (т. е. $A_i\cap A_j=\emptyset$ при $i\neq j$) мера их объединения равна сумме их мер: $\muig(igcup_{i=1}^\infty A_iig)=\sum_{i=1}^\infty \mu(A_i);$
- (μ3) μ(Ω) = 1.

Условие $\mu 2$ называется «счетная аддитивность» меры или « σ -аддитивность».

Вероятностное пространство

Определение

Тройка $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$, в которой Ω — пространство элементарных исходов, $\mathcal{F} - \sigma$ -алгебра его подмножеств и P — вероятностная мера на \mathcal{F} , называется вероятностным пространством.

Свойства вероятности

Вероятность обладает следующими свойствами.

- $P(\emptyset) = 0$.
- ② Для любого конечного набора попарно несовместных событий $A_1, \ldots, A_n \in \mathcal{F}$ имеет место равенство: $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$.
- $P(\overline{A}) = 1 P(A).$
- **4** Если $A \subseteq B$, то $P(B \setminus A) = P(B) P(A)$.
- ullet Если $A\subseteq B$, то $\mathsf{P}(A)\le\mathsf{P}(B)$ (монотонность вероятности).
- $P(A_1 \cup \ldots \cup A_n) \leq \sum_{i=1}^n P(A_i).$

Задача о рассеянной секретарше

Есть n писем и n подписанных конвертов. Секретарша, будучи в расстроенных чувствах, случаным образом разложила письма в конверты по одному. Найти вероятность того, что хотя бы одно письмо попадет в предназначенный ему конверт.

Задача о рассеянной секретарше

Пусть событие A_i , i = 1, ..., n, означает, что i-е письмо попало в свой конверт. Тогда

$$A = \{ extit{xoтя бы одно письмо попало в свой конверт} \} = A_1 \cup \ldots \cup A_n.$$

События A_1, \ldots, A_n совместны, поэтому используем формулу (??). По классическому определению вероятности вычислим вероятности всех событий A_i и их пересечений.

Элементарными исходами будут всевозможные перестановки п писем по n конвертам. Их общее число есть $|\Omega| = n!$.

Событию A_i благоприятны (n-1)! исходов, а именно перестановки всех писем, кроме i-го, лежащего в своем конверте. Поэтому $P(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}$ — одна и та же для всех *i*.

Аналогично получаем

$$P(A_iA_j) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)},$$
 $P(A_iA_jA_m) = \frac{(n-3)!}{n!} = \frac{1}{n(n-1)(n-2)}$ и т. д.

Задача о рассеянной секретарше

Вычислим количество слагаемых в каждой сумме в формуле (??). Например, сумма по $1 \le i < j < m \le n$ состоит из C_n^3 слагаемых — ровно столько троек индексов можно образовать из n номеров событий. Подставляя все вероятности в формулу (??), получаем:

$$P(A) = C_n^1 \cdot \frac{1}{n} - C_n^2 \cdot \frac{1}{n(n-1)} + C_n^3 \cdot \frac{1}{n(n-1)(n-2)} - \dots + (-1)^{n-1} \frac{1}{n!} =$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}.$$

Замечание. $P(A) \longrightarrow 1 - e^{-1}$ при $n \to \infty$.

Парадокс Бертрана

Для некоторой окружности случайным образом выбирается хорда. Найти вероятность того, что хорда длиннее стороны правильного треугольника, вписанного в данную окружность.

Задачи

Сколько существует строк длины 30, состоящих из нулей и единиц, таких, что никакие два нуля не стоят рядом?

Сколько слов длины 10 можно составить из букв a, b и с так, чтобы буквы a и b не стояли рядом?

Из вершин правильного n-угольника ($n \geq 6$) наугад выбираются две тройки различных точек. Какова вероятность того, что два треугольника, вершинами которых являются выбранные тройки, не пересекаются?

Что читатать

- Колмогоров А.Н. Основные понятия теории вероятностей Фундаментальная книга. Первоисточник.
- Ширяев А.Н. Вероятность
 Фундаментальная книга. Университетский учебник.
- Чернова Н.И. Введение в теорию вероятностей https://intuit.ru/studies/courses/2263/219/info
 Обычный учебник, много незамысловатых примеров.
- Гмурман В.Е. Теория вероятностей и математическая статистика
 - Для тех, кто вобоще не знает математику и кому надо понять самые простые идеи.

Что читатать

- Разъяснение понятий алгебры и σ -алгебры, вероятностных пространств и случаных величин. Ясно, наглядно и одновременно с тем строго. https://mipt.ru/education/chair/mathematics/upload/c1f/tv-1911-arph0dyidz5.pdf
- Неплохие олимпиадные задачи по комбинаторие. Объяснение доступно даже школьнику. https://mathus.ru/math/kombinatorika.pdf