

M195RTN01.0

AU OPTRONICS CORPORATION

() Preliminary	Specification
----------------	---------------

(V) Final Specification

Module	19.5" Color TFT-LCD
Model Name	M195RTN01.0 open cell

Customer Date	Approved by Date
	<u>15th, Aug 2013</u>
Approved by	Prepared by Date
	<u>15, Aug 2013</u>
Note: This Specification is subject to change without notice.	AU Optronics corporation

AU OPTRONICS CORPORATION

Contents

1	Handling Precautions	.3
	General Description	
	2.1 Display Characteristics	
	2.2 Absolute Maximum Rating of Environment	
	2.3 Optical Characteristics	
3	TFT-LCD Module	.3
	3.1 Block Diagram	3
	3.2 Interface Connection	3
	3.2.1 Connector Type	3
	3.2.2 Connector Pin Assignment	3
	3.3 Electrical Characteristics	3
	3.3.1 Absolute Maximum Rating	3
	3.3.2 Recommended Operating Condition	3
	3.4 Signal Characteristics	3
	3.4.1 LCD Pixel Format	3
	3.4.2 LVDS Data Format	3
	3.4.3 Color versus Input Data	3
	3.4.4 LVDS Specification	3
	3.4.5 Input Timing Specification	3
	3.4.6 Input Timing Diagram	3
	3.5 Power ON/OFF Sequence	
	Reliability Test	.3
5	Mechanical Characteristic	_3

M195RTN01.0

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description	New Description	Remark
1.0	8/15	5	Pixel pitch 0.2712x 0.2626	271.2 x 262.6	
				,	

M195RTN01.0

AU OPTRONICS CORPORATION

1 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 3) When the cell surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 4) Since the cell is made of glass, it may break or crack if dropped or bumped on hard surface.
- 5) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 6) Do not press or pat the panel surface by fingers, hand or tooling.
- 7) Please handle TFT cell with care. The FPCs can only sustain for quite limited stress.
- 8) The cell package tray is packed in clean room. Please do pack & unpack it in clean room.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT cell.
- 10) Pls avoid touching COF position while you are doing mechanical design.
- 11) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.

M195RTN01.0

AU OPTRONICS CORPORATION

2 General Description

This specification applies to the 19.5 inch wide Color a-Si TFT-LCD Module M195RTN01.0. The display supports the HD+ 1600(H) x 900(V) screen format and 16.7M colors (RGB 6-bits + Hi-FRC data). The input interface is Dual channel LVDS.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS			
Screen Diagonal	[mm]	495.3 (19.5")			
Active Area	[mm]	433.92 (H) x 236.34(V)			
Pixels H x V	ı	1600x3(RGB) x 900			
Pixel Pitch	[um]	271.2 x 262.6			
Pixel Arrangement	ı	R.G.B. Vertical Stripe			
Display Mode	1	TN Mode, Normally White			
Response Time	[msec]	5 (Typ., on/off)			
Power Consumption	[Watt]	VDD line : PDD (typ)= 3 W			
Weight	[Grams]	335.6 gram			
Electrical Interface	1	Dual channel LVDS			
Support Color	-	16.7M colors (RGB 6-bit + Hi_FRC)			
Surface Treatment	-	Anti-Glare, 3H			
Temperature Range		0 to +50			
Operating	[°C]	-20 to +60			
Storage (Shipping)	[0]				
Cell transmittance	[%]	Base on AUO LED Backlight			
Con transmittance	[/0]	5.27 (Min.)			
Cell thickness	[mm]	1.435			

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark	
TOP	Operating Temperature	0	+50	[°C]	Note 2-1	
TGS	Glass surface temperature (operation)	0	+65	[°C]	Note 2-1 Function judged only	
НОР	Operation Humidity	5	90	[%RH]	Note 2-1	
TST	Storage Temperature	-20	+60	[°C]		
HST	Storage Humidity	5	90	[%RH]		

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. (Ta \leq 39°C)
- 3. No condensation

Operating Range

Storage Range

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

1. Equipment setup: Please refer to Note 2-2.

2. Panel Lighting time: 30 minutes

3. VDD=5.0V, Fv=60Hz,Is=65mA,Ta=25 $^{\circ}$ C

Symbol	Description			Тур.	Max.	Unit	Remark
T_R		Rising Time	-	3.8	5.5		
T_F	Response Time	Falling Time	-	1.2	2.5	[msec]	Note 2-3
-		Rising + Falling	-	5	8		By TRD-100
СТ	Cross	-	-	1.5	[%]	Note 2-4 By SR-3	
F _{dB}	Flicker (Cente	-	-	-20	[dB]	Note 2-5 <i>By SR-3</i>	

Note 2-2: Equipment setup :

AU OPTRONICS CORPORATION

Note 2-3: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response. (*Black & White color definition: Please refer section 3.4.3*)

Note 2-4: Crosstalk measurement

Definition:

 $CT = Max. (CT_H, CT_V);$

Where

a.Maximum Horizontal Crosstalk:

$$CT_H = Max. (| Y_{BL} - Y_{AL} | / Y_{AL} \times 100 \%, | Y_{BR} - Y_{AR} | / Y_{AR} \times 100 \%);$$

Maximum Vertical Crosstalk:

$$CT_V = Max. (|Y_{BU} - Y_{AU}|/Y_{AU} \times 100 \%, |Y_{BD} - Y_{AD}|/Y_{AD} \times 100 \%);$$

b. Y_{AU} , Y_{AD} , Y_{AL} , Y_{AR} = Luminance of measured location without Black pattern Y_{BU} , Y_{BD} , Y_{BL} , Y_{BR} = Luminance of measured location with Black pattern

Note 2-5: Flicker measurement

a. Test pattern: It is listed as following.

Gray level = L127

R: Red, G: Green, B:Blue

b. Measured position: Center of screen & perpendicular to the screen

AU OPTRONICS CORPORATION

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 19.5 inch Color TFT-LCD Module.

3.2 Interface Connection

3.2.1 Connector Type

TFT-LCD Connector	Manufacturer	P-Two	STM	
TT T-LOD Gottifiector	Part Number	AL230F-A0G1D-P	MSCKT2407P30HB	
Mating Connector	Manufacturer	JAE		
Mating Connector	Part Number	FI-X30HL (Locked Type)		

3.2.2 Connector Pin Assignment

PIN#	Symbol	Description	Remark
1	RxO0-	Negative LVDS differential data input (Odd data)	
2	RxO0+	Positive LVDS differential data input (Odd data)	
3	RxO1-	Negative LVDS differential data input (Odd data)	
4	RxO1+	Positive LVDS differential data input (Odd data)	
5	RxO2-	Negative LVDS differential data input (Odd data)	
6	RxO2+	Positive LVDS differential data input (Odd data)	
7	GND	Ground	
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)	
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)	
10	RxO3-	Negative LVDS differential data input (Odd data)	
11	RxO3+	Positive LVDS differential data input (Odd data)	
12	RxE0-	Negative LVDS differential data input (Even data)	
13	RxE0+	Positive LVDS differential data input (Even data)	
14	GND	Ground	
15	RxE1-	Negative LVDS differential data input (Even data)	
16	RxE1+	Positive LVDS differential data input (Even data)	
17	GND	Ground	
18	RxE2-	Negative LVDS differential data input (Even data)	
19	RxE2+	Positive LVDS differential data input (Even data)	
20	RxECLK-	Negative LVDS differential clock input (Even clock)	
21	RxECLK+	Positive LVDS differential clock input (Even clock)	
22	RxE3-	Negative LVDS differential data input (Even data)	
23	RxE3+	Positive LVDS differential data input (Even data)	
24	GND	Ground	
25	NC	No connection (for AUO test only. Do not connect)	
26	NC	No connection (for AUO test only. Do not connect)	

M195RTN01.0

AU OPTRONICS CORPORATION

27	NC	No connection (for AUO test only. Do not connect)
28	VDD	Power Supply Input Voltage
29	VDD	Power Supply Input Voltage
30	VDD	Power Supply Input Voltage

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	6.0	[Volt]	Ta=25°ℂ

3.3.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.5	[Volt]	
IDD	Power supply	ı	0.6	0.7	[A]	VDD= 5.0V, Black Pattern, Fv=60Hz
	Input Current (RMS)		0.7	8.0	[A]	VDD= 5.0V, Black Pattern, Fv=75Hz
PDD	VDD Power	ı	3.0	4.0	[Watt]	VDD= 5.0V, Black Pattern, Fv=60Hz
FDD	Consumption		3.5	4.4	[Watt]	VDD= 5.0V, Black Pattern, Fv=75Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-1
VDDrp	Allowable VDD Ripple Voltage	-	-	500	[mV]	VDD= 5.0V, Black Pattern, Fv=75Hz

Note 3-1: Inrush Current measurement:

Test circuit:

The duration of VDD rising time: 470us.

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

		1			2			1	59	9	16	500)
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
		-			-				-			-	
		-			-		•		-			-	
		-							-			-	
		-			-		-		-			-	
		÷			:		· .		:			÷	
		:			:		•		:			:	
							:						
		•			•				•			•	
900 Line	R	G	В	R	G	В		R	G	В	R	G	В

3.4.2 LVDS Data Format

8 Bit Color Bit Order								
MSB	R7	G7	В7					
	R6	G6	B6					
	R5	G5	B5					
	R4	G4	B4					
	R3	G3	В3					
	R2	G2	B2					
	R1	G1	B1					
LSB	R0	G0	В0					

Note 3-2:

- a. O = "Odd Pixel Data" E = "Even Pixel Data"
- b. Refer to 3.4.1 LCD pixel format, the 1st data is 1 (Odd Pixel Data), the 2nd data is 2 (Even Pixel Data) and the last data is 1600 (Even Pixel Data).

M195RTN01.0

AU OPTRONICS CORPORATION

3.4.3 Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

		Color Input Data																								
Color Gray Level	Gray Level	RED data (MSB:R7, LSB:R0)					GREEN data (MSB:G7, LSB:G0)					BLUE data (MSB:B7, LSB:B0)					Remark									
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	B1	BO	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	-	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	• • •	• • •		**		• • •	:	:	:	:	:	:	:	• •	:	:	:	:	:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

AU OPTRONICS CORPORATION

3.4.4 LVDS Specification

a. DC Characteristics:

Symbol	Description	Min	Тур	Max	Units	Condition
V_{TH}	LVDS Differential Input High Threshold	ı	-	+100	[mV]	V _{CM} = 1.2V
V_{TL}	LVDS Differential Input Low Threshold	-100	-	-	[mV]	V _{CM} = 1.2V
V _{ID}	LVDS Differential Input Voltage	100	-	600	[mV]	
V _{CM}	LVDS Common Mode Voltage	+1.0	+1.2	+1.5	[V]	V_{TH} - $V_{TL} = 200$ m V

LVDS Signal Waveform:

Use RxOCLK- & RxOCLK+ as example.

b. AC Characteristics:

Symbol	Description	Min	Max	Unit	Remark
F _{DEV}	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

Fclk: LVDS Clock Frequency

3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

Symbol	Descript	ion	Min.	Тур.	Max.	Unit	Remark
Tv		Period	912	934	1564	Th	
Tdisp (v)	Vertical Section	Active	900	900	900	Th	
Tblk (v)	Vertical dection	Blanking	12	34	664	Th	
Fv		Frequency	50	60	76	Hz	
Th		Period	980	1080	1150	Tclk	
Tdisp (h)	Horizontal Section	Active	800	800	800	Tclk	
Tblk (h)	Tionzoniai ocolion	Blanking	180	280	350	Tclk	
Fh		Frequency	45.6	56.0	78.2	KHz	Note 3-3
Tclk	LVDS Clock	Period	13.0	16.5	22.4	ns	1/Fclk
Fclk		Frequency	44.7	60.5	76.6	MHz	Note 3-4

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

```
Fh (Min.) = Fclk (Min.) / Th (Min.);
Fh (Typ.) = Fclk (Typ.) / Th (Typ.);
Fh (Max.)= Fclk (Max.) / Th (Min.);
```

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

```
Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.);
Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.);
Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);
```

3.4.6 Input Timing Diagram

AU OPTRONICS CORPORATION

3.5 Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value	l lm:t	Remark		
	Min.	Тур.	Max.	Unit		
T1	0.5	-	10	[ms]		
T2	0	-	50	[ms]		
Т3	500	-	-	[ms]		
T4	100	-	-	[ms]		
T5	0		50	[ms]	Note 3-5 Note 3-6	
Т6	0	-	150	[ms]	Note 3-6	
T7	1000	-	-	[ms]		

Note 3-5: Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 3-6: During T5 and T6 period, please keep the level of input LVDS signals with Hi-Z state.

M195RTN01.0

AU OPTRONICS CORPORATION

4 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	Note 4-1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electro Statio Discharge)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 4-2
ESD (Electro Static Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	NOIE 4-2
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft	

- **Note 4-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20° C to 60° C, and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 4-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost Self-recoverable No hardware failures.