Transmission en bande transposée

Objectifs

- La modulation a pour rôle d'adapter l'occupation spectrale du signal à la Bande Passante du canal sur lequel il sera transmis.
- C'est donc de transformer le signal en bande de base en un signal modulé à spectre étroit, centré autour d'une fréquence haute adaptée aux transmissions en espace libre.

Principe

• L'opération de modulation d'un signal devra conserver l'information contenue dans le message originel, afin de pouvoir le reconstituer en réception, lors de l'opération inverse appelée démodulation.

Définitions

 Onde porteuse : signal support de l'information

 Signal modulant : signal qui porte l'information

Signal modulé : signal transmis

Onde porteuse

• $p(t) = A \cos (2\pi f_P t + \phi_P)$

- Les paramètres modifiables sont :
 - A l'amplitude,
 - f_P la fréquence,
 - φ_P la phase.

Différentes modulations numériques

- Modulation FSK: Frequence Shift Keying;
 Modulation par Déplacement de Fréquence;
- Modulation ASK: Amplitude Shift Keying;
 Modulation par Déplacement d'Amplitude;
- Modulation PSK : Phase Shift Keying ;
 Modulation par Déplacement de Phase ;
- Modulation A+PSK:

Modulation par Déplacement d'Amplitude et de Phase.

 Principe : On transmet une sinusoïde d'amplitude constante et dont la fréquence varie selon la valeur des bits à transmettre.

 Principe : On transmet une sinusoïde d'amplitude constante et dont la fréquence varie selon la valeur des bits à transmettre.

Modulation :

- commutateur + différents oscillateurs,
- OCT commandé par un CNA en paliers (pas de discontinuité de phase);

Démodulation :

- PLL,
- filtrage passe-bande.

 Principe : On transmet une sinusoïde de fréquence constante et dont l'amplitude varie selon la valeur des bits à transmettre.

 Principe : On transmet une sinusoïde de fréquence constante et dont l'amplitude varie selon la valeur des bits à transmettre.

On peut augmenter la valence!

Exemple de mapping pour une 4ASK		
Symboles numériques	Symboles de modulation a _K	
00	0	
01	1	
10	2	
11	3	

Modulation :

- multiplication du signal codé par la porteuse

Démodulation :

- détection d'enveloppe,
- multiplication par la porteuse + filtre passe-bas

Modulation PSK et DPSK

- Elle consiste à transmettre une sinusoïde de fréquence f_P et d'amplitude A constantes dont on fait varier la phase d'un angle fixé selon la valeur des bits à transmettre.
- PSK : Différence de phase par rapport à une horloge de référence ;
- DPSK : Différence de phase par rapport à l'ITE précédent.

Modulation 4-PSK

Exemple de mapping pour une 4PSK		
Symboles numériques	Symboles de modulation φ _K	
00	π/4	
01	$3\pi/4$	
10	7π/4	
11	5π/4	

Constellation

- Représentation des symboles dans un plan :
 - Amplitude du signal,
 - Phase.
- Autant de points que de symboles différents transmis;
- Nbre de points = Valence.

Constellation Exemple 4-PSK

- Valence = 4;
- Amplitude constante;
- $\varphi = \pi/4$, $3\pi/4$, $5\pi/4$ et $7\pi/4$.

Constellation D'autres exemples

 Elle consiste à transmettre une sinusoïde de fréquence f_P dont on fait varier la phase et l'amplitude selon la valeur des bits à transmettre.

Intérêt : pouvoir augmenter la valence.

Constellation d'une modulation A+PSK

Mesures sur la constellation

Puissance émise :

 proportionnelle au carré de la distance entre le point de la constellation et l'origine.

Immunité aux bruits :

- plus les points de la constellation sont proches plus l'immunité au bruit diminue.
- => amélioration de la position des points sur la constellation !

Amélioration possible

 Répartir différemment les points de la constellation de manière à maximiser la distance entre eux pour une puissance moyenne donnée :

Modulation QAM:

Quadrature Amplitude Modulation

Constellation d'une modulation QAM

Modulation 16-QAM

Modulation IQ

- Un point sur la constellation :
 - $u(t) = A \cos(\omega t + \varphi)$
 - $u(t) = a cos(\omega t) + b sin(\omega t)$

- cos(ωt) In phase
- sin(ωt) en Quadrature

Modulation IQ

Symboles numériques	Symboles de modulation a _K	Symboles de modulation φκ
00	1	$\pi/4$
01	1	$3\pi/4$
11	1	5π/4
10	1	$7\pi/4$
Symboles numériques	Symboles de modulation i _K	Symboles de modulation q _K
00	0.707	0.707
01	-0.707	0.707
11	-0.707	-0.707
10	0.707	-0.707

Caractéristiques

- Probabilité d'erreur par bits transmis,
- Occupation spectrale,
- Débit souhaité,
- Complexité du récepteur.