Name _____

TOPOLOGY QUALIFYING EXAM

Spring 1999

(Maginnis and Strecker)

Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. <u>Do not turn in more than six problems</u>. In the problems below, a space always means a topological space.

- **1.** Let $f: X \to Y$ be any function, let $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{B} \subseteq \mathcal{P}(Y)$. Prove or disprove each of the following:
 - (a) $f[\cap A] = \bigcap \{f[A] | A \in A\}$
 - **(b)** $f^{-1}[\cap \mathcal{B}] = \bigcap \{f^{-1}[B] | B \in \mathcal{B}\}$
- 2. (a) State the Axiom of Choice.
 - (b) State the Well-Ordering Theorem.
 - (c) Either use the Axiom of Choice to prove the Well-Ordering Theorem or use the Well-Ordering Theorem to prove the Axiom of Choice.
- **3.** Let X be a well-ordered set in the order topology, and assume X has a maximal element. Prove X is a compact space.
- 4. Prove that every closed subset of a metrizable space is a countable intersection of open sets.
- 5. Let X be a connected and locally path connected space. Prove X is path connected.
- **6.** Let I denote the closed unit interval [0,1] in \mathbb{R} (the real numbers with its usual topology). Prove or disprove that in $\mathbb{R}^{\mathbb{R}}$ with its usual product topology $(I^{\circ})^{\mathbb{R}} = (I^{\mathbb{R}})^{\circ}$, (where A° denotes the interior of A).
- 7. Let $X \xrightarrow{f} Y$ be any continuous function.
 - (a) Prove that there is a factorization of $f: X \xrightarrow{f} Y = X \xrightarrow{q} Z \xrightarrow{m} Y$ where q is a quotient map and m is a one-to-one continuous function.
 - (b) Prove that the factorization $f=m\circ q$ of part (a) is essentially unique in the sense that if $X\stackrel{f}{\longrightarrow}Y=X\stackrel{\widehat{q}}{\longrightarrow}\widehat{Z}\stackrel{\widehat{m}}{\longrightarrow}Y$ is also a factorization of f with \widehat{q} a quotient map and \widehat{m} one-to-one and continuous, then there is a unique homeomorphism $Z\stackrel{h}{\longrightarrow}\widehat{Z}$ such that $h\circ q=\widehat{q}$ and $\widehat{m}\circ h=m$.

- **8.** Prove that a filter F on a space X converges to a point $x \in X$ if and only if the net f based on F converges to x.
- **9.** Let (X, \leq) be a linearly ordered set and let τ be the topology on X inherited from the order. If A is a subset of X, there are two natural ways to topologize A. The first, τ_1 , is as a subspace of (X, τ) . The second, τ_2 , is as an ordered space with the order on A inherited from (X, \leq) . Prove or disprove that in all cases $(A, \tau_1) = (A, \tau_2)$.
- **10.** Let A be a connected subset of a connected space X, and let C be a component of X A. Prove X C is connected.
- 11. Prove that a Hausdorff space with a basis consisting of sets that are both open and closed is totally disconnected.
- 12. Prove or disprove.
 - (a) Every quotient map is an open map.
 - (b) Every open map is a quotient map.
- 13. Prove that a compact subset of a Hausdorff space is closed.
- 14. Find a flaw in the following purported proof of the statement:

Every discrete subspace of a topological space that has no isolated points is nowhere dense.

Purported proof:

Suppose X is a space with no isolated points and D is a discrete subspace of X. If D is not nowhere dense, then there is a nonempty open set U with $U \subseteq \overline{D}$. Thus there is some $d \in D \cap U$. Since D is discrete, there is some open set $W \subseteq U$ such that $W \cap D = \{d\}$. Since X has no isolated points $W \neq \{d\}$. Thus $W \setminus \{d\}$ is a nonempty open set contained in \overline{D} . Thus there is some $\widehat{d} \in (W \setminus \{d\}) \cap D \subseteq W \cap D = \{d\}$, which is a contradiction. Thus D must be nowhere dense.

15. Assume X is a normal space. Let $\beta(X)$ be the Čech-Stone compactification of X, and let $y \in \beta(X) - X$. Prove that y is not the limit of a sequence of points of X.