MATH 401: Lecture 1 (08/19/2025)

This is Introduction to Analysis I I'm Bala Krishnamoorthy (Call me Bala). Today. * Syllabus, logistics see the course web page

* proof techniques for details

- proof by contradiction

- proof by induction Book: Lindstrøm: Spaces-An Intro to Real Analysis (LSIRA)

LSIRA 1-1 Logical statements and notation. 96 A then B (or A >B) "implies"

 $A \Rightarrow B$ typically closs not mean $B \Rightarrow A$. e.g., A: p a natural number, is divisible by 6

B: p is divisible by 3.

A >> B holds, but B +> A (B does not imply A), e.g., P=9.

But if A=>B and B=>A hold, we say A if and only if B, or A (or A is equivalent to B).

To prove A >> B, we often prove A >> B and B >> A (A = B) separately.

We start by reviewing certain standard techniques to construct proofs of mathematical statements.

To show A=>B, equivalently show $not B \Rightarrow not A (TB \Rightarrow TA).$ "negation" or "not" 4 A happened then & happened" This statement is equivalent to "If B did not happen then."
A did not happen!

LSIRA1-1 Prob3. Prove the following Lemma.

Lemma 1 If n is a natural number such that n² is divisible by 3,

then n is divisible by 3.

This is A => B where A: 3 | n² (n² is divisible by 3).

B: 3 | n (n is divisible by 3).

Let's try to ras n² | 3 | n² (taking square root on both sides)

prove A => B >> n² = 3k => n = 13 lk (taking square root on both sides)

divectly: Hard to conclude that n | 3 @! >> would have to argue

| A | b | the try to conclude that n | 3 @! >> would have to argue

Let's try proving TB => TA.

TB: n is not divisible by 3.

 \Rightarrow n=3p+1 or

Case 1. $n=3pt_1$

 \Rightarrow $\eta^2 = (3pH)^2$

 $= 9p^2 + 6p + 1$

 $= 3(3p^2+2p)+1$

= 3K+1 for 12=313+2p

=> n2 is not divisible by 3

n= 39+2, for \$96 M.

Case 2. n = 39,+2

 \Rightarrow $n^2 = (2qt^2)^2$

 $=99^{2}+129+4$

 $=99^{2}+129+3+1$

 $=3(39^{2}+49+1)+1$

= 3k'+1 = k'

=> n is not divisible by 3.

Hence we have proved that if n is not divisible by 3, then n^2 is not divisible by 3. Hence, by the contrapositive, we have $n^2 |3 \rightarrow n|3$.

Should we always try to build a contrapositive proof? Not necessarily! In cases where $A \Rightarrow B$ could be concluded directly, the contrapositive argument might make life harder! It is one of the different proof approaches that you should be aware of.

2 Proof by Contradiction

Assume opposite of what you want to prove, and end up with a contradiction (or an obviously wrong statement). Hence the original assumption must be wrong, i.e., you have proved the statement.

LSIRAI. | Prob 3 (continued) Prove the following Theorem.

Theorem 2 v3 is irrational. The opposite of what you want to prove Assume v3 is rational. > bu delimition

 $\Rightarrow (3 = \frac{1}{2})^2$ p, q.E.IN with no common factors. rational number can be written in the form 1/9 as specified. > let's square both sides, and cross multiply.

 \Rightarrow $3q^2 = p^2 \Rightarrow 3p^2 (p^2 \text{ is divisible by 3}).$

Hence by Lemma 1, 3/p. Let p=3k. (kEN). Plug p=3k back in:

 \Rightarrow $3q^2 = (3k)^2 = 9k^2$ (divide both sides by 3)

 \Rightarrow $q^2 = 3k^2$, i.e., $3|q^2(q^2)$ is divisible by 3).

Again by Lemma 1, 3/9.

Since we started with the assumption that band q have no common factors

Thus pand q have a common factor of 3, which is a contradiction.

Hence V3 is irrational.

3. Proof by Induction

To show a statement P(n) holds for all nEIN,

- 1. Show P(1) holds;
- 2. Assume P(k) holds for some KEIN.
- 3. Show P(k+1) holds under Assumption 2.

Example

Show that $P(n) = 3 + 5 + \cdots + 2n + 1 = n(n+2) + n \in \mathbb{N}$.

- 1. P(1) = 3 = 1(1+2) (so P(1) is true).
- 2. Assume P(k) = k(k+2) for some kEIN.
- 3. P(kH) = P(k) + 2(kH) + 1 = P(k) + 2k+3

= k(k+2) + 2k+3 by induction assumption.

= k(k+2)+k+k+3

= k(K+3) + K+3

= (kH)(kH3) = n(n+2) for n=kH.

 \Rightarrow P(n) = n(n+2) \forall n \in N.