1. V Pythonu proveďte fit píku v souboru peak.txt Gaussiánem

modelová funkce: intenzita poloha píku $y = \frac{I}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right] + \log$

standardní odchylka

from scipy.optimize import curve_fit
def peak(x,x0,sigma,I,bcg):

return I/(np.sqrt(2*np.pi)*sigma)*np.exp(-(x-x0)**2/(2*sigma**2))+bcg

nelineární fit metodou nejmenších čtverců

params, pcov = curve fit(func, x, y, p0, sigma=ey)chyby naměřených hodnot závislé proměnné závislá hodnoty kovarianční proměnná nafitovaných matice počáteční odhad modelová parametrů funkce nezávislá parametrů $(zde I, x_0, \sigma, bcg)$ proměnná

pozadí

1. V Pythonu proveďte fit píku v souboru peak. txt Gaussiánem

modelová funkce: intenzita poloha píku

 χ^2 test kvality fitu

from scipy.stats import chi2
chi2_exp=np.sum(((y-yfit)/ey)**2)
print("P = ",1-chi2.cdf(chi2_exp,v))

počet stupňů volnosti počet naměřených hodnot mínus počet fitovaných parametrů

P - hodnota

distribuční funkce χ² rozdělení experimentální hodnota χ² vážený součet rozdílů kvadrátů mezi experimentálními hodnotami a modelovou funkcí

Fit píku Gaussiánem v Originu

Model	Gaussian
Equation	y = y0 + A/(w*sqrt(pi/(4*ln(2)))) * exp(-4*ln(2)*(x-xc)^2/w^2)
Plot	у
y0	74.73812 ± 1.39744
XC	7.42521 ± 7.21092E-4
Α	141.2053 ± 1.46542
w	0.16172 ± 0.00155
Reduced Chi-Sqr	1 .07379
R-Square (COD)	0.99249
Adj. R-Square	0.9922

hodnota χ² na počet stupňů volnosti

kvadratická závislost (*N* = 100 hodnot)

fit parabolou
$$\lambda(x|\theta) = \theta_0 + \theta_1 x + \theta_2 x^2$$

kvadratická závislost (N = 100 hodnot) fit parabolou $\lambda(x|\theta) = \theta_0 + \theta_1 x + \theta_2 x^2$ 1000 opakování

kvadratická závislost (*N* = 100 hodnot)

fit parabolou
$$\lambda(x|\theta) = \theta_0 + \theta_1 x + \theta_2 x^2$$

1000 opakování

rezidua
$$r_i = \frac{y_i - \lambda(x_i|\theta)}{\sigma_i}$$

kvadratická závislost (*N* = 100 hodnot)

fit přímkou
$$\lambda(x|\theta) = \theta_0 + \theta_1 x$$

1000 opakování (nesprávná modelová funkce)

