In [1]:	Image Captioning with LSTMs In the previous exercise you implemented a vanilla RNN and applied it to image captioning. In this notebook you will implement the LSTM update rule and use it for image captioning. # As usual, a bit of setup fromfuture import print_function
	<pre>import time, os, json import numpy as np import matplotlib.pyplot as plt import nltk from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array from cs231n.rnn_layers import * from cs231n.captioning_solver import CaptioningSolver from cs231n.classifiers.rnn import CaptioningRNN</pre>
In [2]:	<pre>from cs231n.coco_utils import load_coco_data, sample_coco_minibatch, decode_captions from cs231n.image_utils import image_from_url %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load ext autoreload</pre>
	<pre>%autoreload 2 def rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))</pre> Load MS-COCO data
	# Load COCO data from disk; this returns a dictionary # We'll work with dimensionality-reduced features for this notebook, but feel # free to experiment with the original features by changing the flag below. data = load_coco_data(pca_features=True) # Print out all the keys and values from the data dictionary for k, v in data.items(): if type(v) == np.ndarray:
	<pre>print(k, type(v), v.shape, v.dtype) else: print(k, type(v), len(v)) train_captions <class 'numpy.ndarray'=""> (400135, 17) int32 train_image_idxs <class 'numpy.ndarray'=""> (400135,) int32 val_captions <class 'numpy.ndarray'=""> (195954, 17) int32 val_image_idxs <class 'numpy.ndarray'=""> (195954,) int32 train_features <class 'numpy.ndarray'=""> (82783, 512) float32 val_features <class 'numpy.ndarray'=""> (40504, 512) float32 idx_to_word <class 'list'=""> 1004 word_to_idx <class 'dict'=""> 1004 train_urls <class 'numpy.ndarray'=""> (82783,) <u63 'numpy.ndarray'="" <class="" val_urls=""> (40504,) <u63< pre=""></u63<></u63></class></class></class></class></class></class></class></class></class></pre>
	If you read recent papers, you'll see that many people use a variant on the vanialla RNN called Long-Short Term Memory (LSTM) RNNs. Vanilla RNNs can be tough to train on long sequences due to vanishing and exploding gradiants caused by repeated matrix multiplication. LSTMs solve this problem by replacing the simple update rule of the vanilla RNN with a gating mechanism as follows. Similar to the vanilla RNN, at each timestep we receive an input $x_t \in \mathbb{R}^D$ and the previous hidden state $h_{t-1} \in \mathbb{R}^H$; the LSTM also maintains an H -dimensional $cell$ state, so we also receive the previous cell state $c_{t-1} \in \mathbb{R}^H$. The learnable parameters of the LSTM are a input-to-hidden matrix $W_x \in \mathbb{R}^{4H \times D}$, a hidden-to-hidden matrix $W_h \in \mathbb{R}^{4H \times H}$ and a bias vector $b \in \mathbb{R}^{4H}$. At each timestep we first compute an activation vector $a \in \mathbb{R}^{4H}$ as $a = W_x x_t + W_h h_{t-1} + b$. We then divide this into four vectors $a_i, a_f, a_o, a_g \in \mathbb{R}^H$ where a_i consists of the first H elements of a_i, a_f is the next H elements of a_i , etc. We then compute the input gate $g \in \mathbb{R}^H$, forget gate $g \in \mathbb{R}^H$, output gate $g \in \mathbb{R}^H$ and block input $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$ and block input $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$ and block input $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$ and block input $g \in \mathbb{R}^H$ as $g \in \mathbb{R}^H$
	where \odot is the elementwise product of vectors. In the rest of the notebook we will implement the LSTM update rule and apply it to the image captioning task. In the code, we assume that data is stored in batches so that $X_t \in \mathbb{R}^{N \times D}$, and will work with $transposed$ versions of the parameters: $W_x \in \mathbb{R}^{D \times 4H}$, $W_h \in \mathbb{R}^{H \times 4H}$ so that activations $A \in \mathbb{R}^{N \times 4H}$ can be computed efficiently as $A = X_t W_x + H_{t-1} W_h$ LSTM: step forward Implement the forward pass for a single timestep of an LSTM in the <code>lstm_step_forward</code> function in the file <code>cs231n/rnn_layers.py</code> . This should be similar to the <code>rnn_step_forward</code> function that you implemented above, but using the LSTM update rule instead.
In [3]:	Once you are done, run the following to perform a simple test of your implementation. You should see errors around 1e-8 or less. N, D, H = 3, 4, 5 x = np.linspace(-0.4, 1.2, num=N*D).reshape(N, D) prev_h = np.linspace(-0.3, 0.7, num=N*H).reshape(N, H) prev_c = np.linspace(-0.4, 0.9, num=N*H).reshape(N, H) Wx = np.linspace(-2.1, 1.3, num=4*D*H).reshape(D, 4 * H) Wh = np.linspace(-0.7, 2.2, num=4*H*H).reshape(H, 4 * H) b = np.linspace(0.3, 0.7, num=4*H) next_h, next_c, cache = lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b) expected_next_h = np.asarray([[0.24635157,
	expected_next_c = np.asarray([[0.32986176, 0.39145139, 0.451556, 0.51014116, 0.56717407], [0.66382255, 0.76674007, 0.87195994, 0.97902709, 1.08751345], [0.74192008, 0.90592151, 1.07717006, 1.25120233, 1.42395676]]) print('next_h error: ', rel_error(expected_next_h, next_h)) print('next_c error: ', rel_error(expected_next_c, next_c)) next_h error: 5.7054131185818695e-09 next_c error: 5.8143123088804145e-09 LSTM: step backward Implement the backward pass for a single LSTM timestep in the function lstm_step_backward in the file cs231n/rnn_layers.py. Once you are done, run the following to perform numeric gradient checking on your implementation. You should see errors around le-6 or state of the file cs231n/rnn_layers.py.
In [4]:	<pre>np.random.seed(231) N, D, H = 4, 5, 6 x = np.random.randn(N, D) prev_h = np.random.randn(N, H) prev_c = np.random.randn(N, H) Wx = np.random.randn(D, 4 * H)</pre>
	<pre>Wh = np.random.randn(H, 4 * H) b = np.random.randn(4 * H) next_h, next_c, cache = lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b) dnext_h = np.random.randn(*next_h.shape) dnext_c = np.random.randn(*next_c.shape) fx_h = lambda x: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0] fh_h = lambda h: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0] fc_h = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0] fWx_h = lambda Wx: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0] fWh_h = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0] fb_h = lambda b: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fc_c = lambda x: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fc_c = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fc_c = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]</pre>
In [5]:	<pre>fc_c = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fWx_c = lambda Wx: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fWh_c = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] fb_c = lambda b: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1] num_grad = eval_numerical_gradient_array dx_num = num_grad(fx_h, x, dnext_h) + num_grad(fx_c, x, dnext_c) dh_num = num_grad(fh_h, prev_h, dnext_h) + num_grad(fh_c, prev_h, dnext_c) dc_num = num_grad(fc_h, prev_c, dnext_h) + num_grad(fc_c, prev_c, dnext_c) dWx_num = num_grad(fWx_h, Wx, dnext_h) + num_grad(fWx_c, Wx, dnext_c) dWh_num = num_grad(fWh_h, Wh, dnext_h) + num_grad(fWh_c, Wh, dnext_c) db_num = num_grad(fb_h, b, dnext_h) + num_grad(fb_c, b, dnext_c) dx, dh, dc, dWx, dWh, db = lstm_step_backward(dnext_h, dnext_c, cache)</pre>
	<pre>print('dx error: ', rel_error(dx_num, dx)) print('dh error: ', rel_error(dh_num, dh)) print('dc error: ', rel_error(dc_num, dc)) print('dwx error: ', rel_error(dwx_num, dwx)) print('dwh error: ', rel_error(dwh_num, dwh)) print('db error: ', rel_error(db_num, db)) dx error: 2.9464153589878856e-09 dh error: 3.3285546369425005e-10 dc error: 1.5221771913099803e-10 dwx error: 3.731536590178925e-09 dwh error: 2.5561304277792622e-08 db error: 1.347277414636331e-10</pre>
	In the function <code>lstm_forward</code> in the file <code>cs231n/rnn_layers.py</code> , implement the <code>lstm_forward</code> function to run an LSTM forward on an entire timeseries of data. When you are done, run the following to check your implementation. You should see an error around <code>le-7</code> . N, D, H, T = 2, 5, 4, 3 x = np.linspace(-0.4, 0.6, num=N*T*D).reshape(N, T, D) h0 = np.linspace(-0.4, 0.8, num=N*H).reshape(N, H) Wx = np.linspace(-0.2, 0.9, num=4*D*H).reshape(D, 4 * H)
	<pre>Wh = np.linspace(-0.3, 0.6, num=4*H*H).reshape(H, 4 * H) b = np.linspace(0.2, 0.7, num=4*H) h, cache = lstm_forward(x, h0, Wx, Wh, b) expected_h = np.asarray([[[0.01764008, 0.01823233, 0.01882671, 0.0194232], [0.11287491, 0.12146228, 0.13018446, 0.13902939], [0.31358768, 0.33338627, 0.35304453, 0.37250975]], [[0.45767879, 0.4761092, 0.4936887, 0.51041945], [0.6704845, 0.69350089, 0.71486014, 0.7346449], [0.81733511, 0.83677871, 0.85403753, 0.86935314]]]) print('h error: ', rel_error(expected_h, h)) h error:</pre>
In [6]:	<pre>np.random.seed(231) N, D, T, H = 2, 3, 10, 6 x = np.random.randn(N, T, D) h0 = np.random.randn(N, H) Wx = np.random.randn(D, 4 * H) Wh = np.random.randn(H, 4 * H) b = np.random.randn(4 * H)</pre>
	<pre>out, cache = lstm_forward(x, h0, Wx, Wh, b) dout = np.random.randn(*out.shape) dx, dh0, dWx, dWh, db = lstm_backward(dout, cache) fx = lambda x: lstm_forward(x, h0, Wx, Wh, b)[0] fh0 = lambda h0: lstm_forward(x, h0, Wx, Wh, b)[0] fWx = lambda Wx: lstm_forward(x, h0, Wx, Wh, b)[0] fWh = lambda Wh: lstm_forward(x, h0, Wx, Wh, b)[0] fb = lambda b: lstm_forward(x, h0, Wx, Wh, b)[0] dx_num = eval_numerical_gradient_array(fx, x, dout) dh0_num = eval_numerical_gradient_array(fWx, Wx, dout) dWx_num = eval_numerical_gradient_array(fWx, Wx, dout) dWh_num = eval_numerical_gradient_array(fWx, Wx, dout) db_num = eval_numerical_gradient_array(fWx, Wx, dout) db_num = eval_numerical_gradient_array(fWx, Wx, dout) db_num = eval_numerical_gradient_array(fWx, Wx, dout) </pre>
	<pre>print('dx error: ', rel_error(dx_num, dx)) print('dh0 error: ', rel_error(dh0_num, dh0)) print('dwx error: ', rel_error(dwx_num, dwx)) print('dwh error: ', rel_error(dwh_num, dwh)) print('db error: ', rel_error(db_num, db)) dx error: 4.266927657639044e-09 dh0 error: 1.649961113952263e-08 dwx error: 1.1165102483011122e-09 dwh error: 5.331755328825282e-07 db error: 1.5489792754837614e-09</pre> <pre>LSTM captioning model</pre>
	Now that you have implemented an LSTM, update the implementation of the loss method of the CaptioningRNN class in the file cs231n/classifiers/rnn.py to handle the case where self.cell_type is lstm . This should require adding less than 10 lines of code. Once you have done so, run the following to check your implementation. You should see a difference of less than le-10 . N, D, W, H = 10, 20, 30, 40 word_to_idx = {' <null>': 0, 'cat': 2, 'dog': 3} V = len(word_to_idx) T = 13 model = CaptioningRNN(word_to_idx, input_dim=D, wordvec_dim=W, hidden_dim=H,</null>
	<pre>cell_type='lstm', dtype=np.float64) # Set all model parameters to fixed values for k, v in model.params.items(): model.params[k] = np.linspace(-1.4, 1.3, num=v.size).reshape(*v.shape) features = np.linspace(-0.5, 1.7, num=N*D).reshape(N, D) captions = (np.arange(N * T) % V).reshape(N, T) loss, grads = model.loss(features, captions) expected_loss = 9.82445935443 print('loss: ', loss) print('expected loss: ', expected_loss) print('difference: ', abs(loss - expected_loss)) loss: 9.82445935443226 expected loss: 9.82445935443 difference: 2.261302256556519e-12</pre>
	Overfit LSTM captioning model Run the following to overfit an LSTM captioning model on the same small dataset as we used for the RNN previously. You should see losse less than 0.5. np.random.seed(231) small_data = load_coco_data(max_train=50) small_lstm_model = CaptioningRNN(
	<pre>small_lstm_solver = CaptioningSolver(small_lstm_model, small_data,</pre>
	<pre>plt.title('Training loss history') plt.show() (Iteration 1 / 100) loss: 79.551150 (Iteration 11 / 100) loss: 43.829100 (Iteration 21 / 100) loss: 30.062610 (Iteration 31 / 100) loss: 14.020061 C:\Georgia Tech\DL - CS 4803\HW4\cs231n\rnn_layers.py:266: RuntimeWarning: overflow encountered in ex p return 1 / (1 + np.exp(-num))</pre>
	(Iteration 41 / 100) loss: 6.005908 (Iteration 51 / 100) loss: 1.849163 (Iteration 61 / 100) loss: 0.644039 (Iteration 71 / 100) loss: 0.282755 (Iteration 81 / 100) loss: 0.236485 (Iteration 91 / 100) loss: 0.130703 Training loss history
	50 - SS 40 - 30 - 20 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
In [9]•	LSTM test-time sampling Modify the sample method of the CaptioningRNN class to handle the case where self.cell_type is lstm. This should take fewer than 10 lines of code. When you are done run the following to sample from your overfit LSTM model on some training and validation set samples. for split in ['train', 'val']:
	<pre>minibatch = sample_coco_minibatch(small_data, split=split, batch_size=2) gt_captions, features, urls = minibatch gt_captions = decode_captions(gt_captions, data['idx_to_word']) sample_captions = small_lstm_model.sample(features) sample_captions = decode_captions(sample_captions, data['idx_to_word']) for gt_caption, sample_caption, url in zip(gt_captions, sample_captions, urls): plt.imshow(image_from_url(url)) plt.title('%s\n%s\nGT:%s' % (split, sample_caption, gt_caption)) plt.axis('off') plt.show()</pre>
	GT: <start> a man standing on the side of a road with bags of luggage <end></end></start>
	train GT: <start> a man <unk> with a bright colorful kite <end></end></unk></start>
	val GT: <start> a sign that is on the front of a train station <end></end></start>
	val GT: <start> a car is parked on a street at night <end></end></start>
	Train a good captioning model (extra credit for both 4803 and 7643) Using the pieces you have implemented in this and the previous notebook, train a captioning model that gives decent qualitative results (better than the random garbage you saw with the overfit models) when sampling on the validation set. You can subsample the training set you want; we just want to see samples on the validation set that are better than random. In addition to qualitatively evaluating your model by inspecting its results, you can also quantitatively evaluate your model using the BLEU unigram precision metric. In order to achieve full credit you should train a model that achieves a BLEU unigram score of >0.25. BLEU score range from 0 to 1; the closer to 1, the better. Here's a reference to the paper that introduces BLEU if you're interested in learning more about how it works.
In [10]:	Feel free to use PyTorch for this section if you'd like to train faster on a GPU though you can definitely get above 0.25 using your Numpy code. We're providing you the evaluation code that is compatible with the Numpy model as defined above you should be able to adapt it for PyTorch if you go that route. Create the model in the file cs231n/classifiers/mymodel.py. You can base it after the CaptioningRNN class. Write a text comment in the delineated cell below explaining what you tried in your model. Also add a cell below that trains and tests your model. Make sure to include the call to evaluate_model which prints out your highest validation BLEU score for full credit. def BLEU_score(gt_caption, sample_caption): """ gt_caption: string, ground-truth caption sample_caption: string, your model's predicted caption
	<pre>sample_caption: string, your model's predicted caption Returns unigram BLEU score. """ reference = [x for x in gt_caption.split(' ')</pre>
	<pre># write a description of your model here: # write your code to train your model here. # make sure to include the call to evaluate_model which prints out your highest validation BLEU score.</pre>