第五次機率與統計作業

F74094017 資訊 113 李昆翰

一、手寫部分:

Fig. 14

a.1 by binomial direct interior
$$\frac{1}{2}$$
 b $(x; 4, 0.4) - \frac{1}{2}$ b $(x; 4, 0.4) = [.0000 - 0.3434 - 0.656]$ $\frac{1}{2}$ b.1 by binomial direct interior $\frac{1}{2}$ b $(x; 4, 0.4) - \frac{1}{2}$ b $(x; 4, 0.4) = [.0000 - 0.3434 - 0.656]$ $\frac{1}{2}$ b.1 by binomial direct interior $\frac{1}{2}$ b.1 by binomial direct interior $\frac{1}{2}$ b.2 b $\frac{1}{2}$ b.3 b $\frac{1}{2}$

(5.80)
$$\chi = 2.7$$

(a.) By posson discribution

 $P(\chi \leq q) = \frac{4}{2\pi} P(\chi; 2.7) = \frac{2^{12} O \eta^2}{0!} + \frac{e^{-27} O \eta^2}{1!} + \frac{e^{-27} (2.7)^2}{2!} + \frac{e^{-27} (2.7)^2}{4!} + \frac{e^{-27} (2.7)^2}{4$

二、matlab 部分:

1(c):

1(d):

1(e):

(表格一) Binomial 和 Poisson 的機率分布圖如下:

(表格二) Binomial 和 Poisson 機率分布的精準度(即兩者的差距):

在 binomial distribution 中,若 n 值逼近無限大,且 p 值逼近 0,則可以將 平均值 np 用 u 換進 poisson distribution 之 p(x;u)中。

而在此 matlab 實驗中,由於 n 是固定的,因此可以看 p 的變化來進行分析。由實驗的結果圖可以知道,當 p 越來越小時,binomial distribution 和 poisson distribution 的差距越來越小(p=0.01 時之誤差高峰約 $2*10^{-4}$); 反之,則雙方的誤差逐漸增大(p=0.5 時之誤差高峰約 $2.4*10^{-3}$)。以上的結果是合乎我於第一段寫的趨勢,因此實驗結果是合理的。

2(a):

2(b):

在本次的實驗中,由於有約 10^4 的樣本數,所以用機率出來 plot 出來的結果圖和 2(a)的圖非常的相像,顯現出 2(a)的機率分布趨勢。若數據的數量沒有到此實驗的量級的話(例如:100),則可能沒法顯示出 2(a)的機率分布趨勢。