CS-663 Assignment 4 Q2

Soham Naha (193079003) Akshay Bajpai (193079002) Mohit Agarwala (19307R004)

November 6, 2020

2

Consider a set of N vectors $\mathcal{X}=\{x_1,x_2,...,x_N\}$ each in \mathbb{R}^d , with average vector \bar{x} . We have seen in class that the direction e such that $\sum_{i=1}^N \|x_i - \bar{x} - (e \cdot (x_i - \bar{x}))e\|^2$ is minimized, is obtained by maximizing e^tCe , where C is the covariance matrix of the vectors in \mathcal{X} . This vector e is the eigenvector of matrix C with the highest eigenvalue. Prove that the direction f perpendicular to e for which f^tCf is maximized, is the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues of C are distinct and that $\mathrm{rank}(C) > 2$. [10 points]

Proof:

We have to maximise f^tCf given the constraints:

- \bullet f is perpendicular to e
- \bullet f is a unit vector
- $e^t Ce = \lambda_1$.

We use the method of Lagrange multipliers to do so, as in the proof in class, with two constraints:

- $f^t f 1 = 0$
- $f^t e = 0$

So, the lagrangian equation to solve becomes:

$$J(f) = f^t C f - \lambda (f^t f - 1) - \delta (f^t e)$$

Taking derivative of J(f) with respect to f^t and setting it to zero, we get

$$2Cf - 2\lambda f - \delta e = 0$$

Left multiplying both sides by e we get

$$2e^tCf - 2\lambda e^tf - \delta e^te = 0$$

We have $Ce = \lambda_1 e$ or taking transpose both sides, $e^t C^t = \lambda_1 e^t$.

Now, as C is a co-variance matrix, hence it is symmetric as co-variance of x_i and x_j is the same as co-variance of x_j and x_i . Thus we have $e^t C^t = e^t C = \lambda_1 e^t$.

Right multiplying with f we get $e^t C f = \lambda_1 e^t f = 0$ As $e^t f = 0$ (i.e. f and e are perpendicular) and $e^t C f = 0$, hence $\delta = 0$ and so

$$Cf - \lambda f = 0$$

$$f^t C f = \lambda$$

To maximise f_tCf we have to choose the largest λ . As we have assumed that rank(C) > 2 and as e is the eigenvector corresponding to λ_1 hence the next largest value of λ can be λ_2 (the second largest eigenvalue).

Thus f is the eigenvector corresponding to λ_2 , the second largest eigen value.