Aprendizado de Máquina Aprendizado Supervisionado e Não Supervisionado Avaliação de Classificação

Inteligência Artificial – 2020/1

Avaliação de algoritmos de aprendizado supervisionado

Normalmente baseada na ideia de *amostragem*: seleção de subconjuntos do conjunto de dados inicial, para separar dados de treinamento e dados de teste

Avaliação de algoritmos de aprendizado supervisionado Métodos de amostragem

resubstituição:

 construir o classificador e testar seu desempenho no mesmo conjunto de exemplos

Treinamento e Teste (mesmo conjunto)

holdout:

 divide os exemplos em uma porcentagem fixa de exemplos p para treinamento e (1-p) para teste, considerando normalmente p > 1/2

Avaliação de algoritmos de aprendizado supervisionado

Métodos de amostragem

- Cross-validation (Validação cruzada):
 - r-fold cross validation: exemplos são aleatoriamente divididos em r partições mutuamente exclusivas (folds) de tamanho aproximadamente igual a n/r
 - os exemplos em r-1 folds são usados para treinamento e o fold remanescente é usado para teste
 - o treinamento é repetido r vezes, cada vez com um fold como teste
 - o erro é a média dos erros de cada treinamento

- Conjunto de dados: clima
- Atributos:
 - Tempo
 - Temperatura
 - Umidade
 - Vento
- Classes: sim, não
- Número total de instâncias:
 - sim (9) não (5)
- Algoritmo: J48 (implementação do Weka do C4.5)
- Método de amostragem: validação cruzada com 10 pastas

Clima					
tempo	temperatura	umidade	vento	jogar	
sol	85	85	falso	não	
sol	80	90	verdadeiro	não	
nublado	83	86	falso	sim	
chuva	70	96	falso	sim	
chuva	68	80	falso	sim	
chuva	65	70	verdadeiro	não	
nublado	64	65	verdadeiro	sim	
sol	72	95	falso	não	
sol	69	70	falso	sim	
chuva	75	80	falso	sim	
sol	75	70	verdadeiro	sim	
nublado	72	90	verdadeiro	sim	
nublado	81	75	falso	sim	
chuva	71	91	verdadeiro	não	

Weka – the workbench for machine learning https://www.cs.waikato.ac.nz/ml/weka/

Matriz de confusão

Uma linha para cada classe real Uma coluna para cada classe definida pelo modelo Para o conjunto de dados clima (com todo o conjunto de dados):

Classificada como ->	а	b
a = sim	7	2
b = não	3	2

Tabela de confusão para classificação binária

Distingue 4 categorias de resultados:

- Verdadeiro Positivo (VP) (True positive-TP)
 - Casos em que é retornada a classe sim e são da classe sim
- Falso Positivo (FP) (False positive-FP)
 - Casos em que é retornada a classe sim e são da classe não
- Verdadeiro Negativo (VN) (True negative-TN)
 - Casos em que é retornada a classe não e são da classe não
- Falso Negativo (FN) (Falso Negativo-FN)
 - Casos em que é retornada a classe não e são da classe sim

VP	FN
FP	VN

Classificada	а	b
como ->		
a = sim	7	2
b = não	3	2

Métricas de avaliação

Definidas com base nas 4 categorias de valores

- Acurácia:
 - (Com que frequência o classificador está correto?)

Λευνάεια –	VerdadeirosPositivos(VP) + VerdadeirosNegativos(VN)
Acurácia =	Total

- Precisão:
 - (Daqueles classificados na classe a, quantos eram realmente da classe a?)

$$Pr e cisão = \frac{Verdadeiros Positivos (VP)}{Verdadeiros Positivos (VP) + Falsos Positivos (FP)}$$

Métricas de avaliação

- Revocação (recall):
 - (Daqueles que s\u00e3o da classe a, quantos foram classificados na classe a?)

VP	FN
FP	VN

$$Re \, vocação = \frac{VerdadeirosPositivos(VP)}{VerdadeirosPositivos(VP) + FalsosNegativos(FN)}$$

- Precisão e Revocação devem ser equilibradas
- Se o classificador não comete nenhum erro, Precisão e Revocação são iguais, com valor 1

Métricas de avaliação

- Medida F (F-measure):
 - Combina as medidas de precisão e revocação (média harmônica)
 - Quanto maior o valor, melhor o classificador

$$MedidaF = 2 * \frac{precisão * revocação}{precisão + revocação}$$

VP	FN
FP	VN

Métricas de avaliação para o Conjunto de dados clima

Acurácia

$$Acur\'acia = \frac{VerdadeirosPositivos(VP) + VerdadeirosNegativos(VN)}{Total}$$

$$Acurácia = \frac{7+2}{14} = \frac{9}{14} = 0,6429$$

Precisão

$$Precisão = \frac{VerdadeirosPositivos(VP)}{VerdadeirosPositivos(VP) + FalsosPositivos(FP)}$$

$$\Pr{ecis\tilde{a}o} = \frac{7}{7+3} = \frac{7}{10} = 0,7$$

Revocação

$$Re \, vocação = \frac{VerdadeirosPositivos(VP)}{VerdadeirosPositivos(VP) + FalsosNegativos(FN)}$$

Re
$$vocação = \frac{7}{7+2} = \frac{7}{9} = 0,7778$$

	а	b
a = sim	7	2
o = não	3	2

Métricas de avaliação para o Conjunto de dados clima

Medida F:

$$MedidaF = 2 * \frac{precisão * revocação}{precisão + revocação}$$

	а	b
a = sim	7	2
b = não	3	2

$$MedidaF = 2 * \frac{0.7 * 0.7778}{0.7 + 0.7778} = 2 * \frac{0.54446}{1.4778} = 2 * 0.3684 = 0.7368$$

Avaliação de algoritmos de classificação Conjuntos de dados com mais de duas classes

Conjunto de dados: iris

Atributos:

Comprimento de sépala Largura de sépala Comprimento de pétala Largura de pétala

Classes: iris-setosa, iris-versicolor, iris-virginica

Número total de instâncias: 150 (50 de cada classe) Algoritmo: J48 (implementação do Weka do C4.5) Método de amostragem: holdout 60/40

```
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3, Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3, Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3, Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8, Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
```

13

Matriz de confusão para conjuntos de dados com mais de duas classes

Para o conjunto de dados iris

- Matriz construída para os 60 exemplos de treinamento
- VP e VN formam um único grupo (diagonal principal)
- FP: última linha (soma dos valores da coluna, exceto diagonal)
- FN: última coluna (soma dos valores da linha, exceto diagonal)
- Soma dos valores de FP para todas as classes é igual a soma dos valores de FN para todas as classes

		Classe predita			ΓNI
		а	b	С	FN
real	a = Iris-setosa	17	0	0	0
Classe r	b = Iris-versicolor		19	2	2
c = Iris-virginica		0	3	19	3
	FP	0	3	2	5

Métricas de avaliação para o Conjunto de dados iris

Matriz de confusão por classes		Classe predita		LVI		
		а	b	С	FN	
	real	a = Iris-setosa	17	0	0	0
	lasse r	b = Iris-versicolor	0	19	2	2
	Clas	c = Iris-virginica	0	3	19	3
		FP	0	3	2	5

As métricas de avaliação são calculadas por classe

As métricas gerais são obtidas pela média das métricas por classe

Métricas de avaliação para o Conjunto de dados iris

Métricas de avaliação para o Conjunto de dados íris Acurácia

а		
(VP) 17	(FN) 0	
(FP) 0	(VN) 38	

$$Acur\'{a}cia = \frac{VP + VN}{Total}$$

$$Acurácia _a = \frac{17 + 38}{60} = \frac{55}{60} = 0,9167$$

$$Acurácia_{b} = \frac{19+36}{60} = \frac{55}{60} = 0,9167$$

$$Acurácia _c = \frac{19+36}{60} = \frac{55}{60} = 0,9167$$

$$Acurácia_geral = \frac{0.9167 + 0.9167 + 0.9167}{3} = 0.9167$$

Métricas de avaliação para o Conjunto de dados íris Precisão

а	
(VP) 17	(FN) 0
(FP) 0	(VN) 38

$$\Pr{ecis\tilde{a}o} = \frac{VP}{VP + FP}$$

$$\Pr{ecis\tilde{a}o}_{-}a = \frac{17}{17+0} = 1$$

$$\Pr{ecis\tilde{a}o_b} = \frac{19}{19+3} = \frac{19}{22} = 0,86$$

$$\Pr{ecis\tilde{a}o_c} = \frac{19}{19+2} = \frac{19}{21} = 0,83$$

Precisão _ geral =
$$\frac{1+0.86+0.83}{3} = \frac{2.69}{3} = 0.8967$$

Métricas de avaliação para o Conjunto de dados íris Revocação

а	
(VP) 17	(FN) 0
(FP) 0	(VN) 38

$$\operatorname{Re} vocação = \frac{VP}{VP + FN}$$

$$\operatorname{Re} vocação_{-} a = \frac{17}{17 + 0} = 1$$

Re
$$vocação_b = \frac{19}{19+2} = \frac{19}{21} = 0.83$$

Re
$$vocação_c = \frac{19}{19+3} = \frac{19}{22} = 0.86$$

Re
$$vocação_geral = \frac{1+0.83+0.86}{3} = \frac{2.69}{3} = 0.8967$$

Métricas de avaliação para o Conjunto de dados íris F-measure

а	
(VP) 17	(FN) 0
(FP) 0	(VN) 38

b	
(VP) 19	(FN) 2
(FP) 3	(VN) 36

С	
(VP) 19	(FN) 3
(FP) 2	(VN) 36

$$MedidaF = 2 * \frac{precisão * revocação}{precisão + revocação}$$

MedidaF_a =
$$2 * \frac{1*1}{1+1} = 2 * \frac{1}{2} = 1$$

$$MedidaF_b = 2*\frac{0.86*0.83}{0.86+0.83} = 2*\frac{0.7138}{1.69} = 2*0.4224 = 0.8447$$

$$MedidaF_c = 2*\frac{0.83*0.86}{0.83+0.86} = 2*\frac{0.7138}{1.69} = 2*0.4224 = 0.8447$$

$$MedidaF_geral = \frac{1+0,8447+0,8447}{3} = \frac{2,6894}{3} = 0,8965$$

Execução e avaliação de classificação em Python

- O algoritmo indutor de árvore de decisão disponível na biblioteca scikit-learn é o algoritmo CART
- (Não aceita atributos nominais!!)
- classe DecisionTreeClassifier do módulo sklearn.tree

```
DecisionTreeClassifier(...)
```

- Parâmetros de interesse:
- criterion
 - Define a função usada para medir a qualidade de uma divisão.
 - Valores possíveis:
 - "gini" medida de impureza Gini (valor default)
 - "entropy" ganho de informação.
- min_samples_split
 - Número mínimo de amostras necessárias para dividir um nó interno da árvore
 - tipo int or float, default=2

https://scikit-learn.org

• Carregar o conjunto de dados Iris, que faz parte do módulo sklearn.datasets

```
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
```

• Dividir o conjunto de dados, em treinamento e teste

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

- test_size: tamanho ou proporção do conjunto de teste
- train_size: tamanho ou proporção do conjunto de treinamento

 Instanciar um objeto DecisionTreeClassifier com o critério de ganho de informação para a divisão de atributos (entropy)

```
from sklearn import tree
clf = tree.DecisionTreeClassifier(criterion='entropy')
```

• Executar o método **fit()** para gerar o modelo com os parâmetros X (matriz de atributos) e y (classes conhecidas)

```
clf = clf.fit(X_train, y_train)
```

 Depois de gerar o modelo, mostrar a figura da árvore

```
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10,10))
fig = tree.plot_tree(clf)
```

Fazer a classificação dos dados de teste

```
predicted = clf.predict(X test)
```


• Encontrar a matriz de confusão

disp.ax .set_title(title)

HAC

plt.show()

• Calcular as medidas de precisão, revocação, medida F e acurácia

```
from sklearn.metrics import classification report
print ("Relatório de avaliação do classificador: \n")
print(f"{classification report(y test, predicted)}\n")
           Relatório de avaliação do classificador:
                                  recall f1-score
                        precision
                                                   support
                            1.00
                                    1.00
                                             1.00
                                                       13
                            1.00
                                    0.94
                                             0.97
                                                       16
                            0.90
                                    1.00
                                             0.95
                                                        9
                                             0.97
                                                       38
               accuracy
```

0.97

0.98

macro avg weighted avg

HAC 27

0.97

0.97

38

38

0.98

0.97

FIM