MATH 552 Homework 4[^]

Problem 20.4+ Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$ and $g'(z_0)$ exist, where $g'(z_0) \neq 0$. Use definition (1), Sec. 19, of derivative to show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

Solution.

$$\frac{f'(z_0)}{g'(z_0)} = \frac{\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}}{\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}} \qquad \text{(using definition of derivative)}$$

$$\frac{f'(z_0)}{g'(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} \qquad \text{(using Theorem 16.2 and multiplying by } \frac{z - z_0}{z - z_0}$$

$$\frac{f'(z_0)}{g'(z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)} \qquad \text{(using } f(z_0) = g(z_0) = 0)$$

The equality is shown.

Problem 20.6+ Derive expression (2), Sec. 20, for the derivative of z^n when n is a positive integer by using

- (a) mathematical induction and expression (4), Sec. 20, for the derivative for the product of two functions;
- (b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).

Solution.

(a) We claim $\frac{d}{dz}[z^n] = nz^{n-1}$ for all $n \in \mathbb{Z}^+$.

Let n=1.

$$\frac{d}{dz}[z] = \lim_{\Delta z \to 0} \frac{(z + \Delta z) - z}{\Delta z}$$
 (using limit definition)

$$= \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z}$$

$$= \lim_{\Delta z \to 0} 1$$

$$= 1$$

Using the claim:

$$\frac{d}{dz}[z] = (1)z^{1-0}$$
$$= 1$$

Thus, the claim is true for n = 1.

Let $k \in \mathbb{Z}^+$ be given and suppose the claim is true for n = k. Then,

$$\frac{d}{dz}[z^{k+1}] = \frac{d}{dz}[z(z^k)]$$

$$= z\frac{d}{dz}[z^k] + \frac{d}{dz}[z]z^k \qquad \text{(using product rule)}$$

$$= z(kz^{k-1}) + z^k \qquad \text{(by } z^k = kz^{k-1} \text{ for } k\text{)}$$

$$= kz^k + z^k$$

$$= (k+1)z^{(k+1)-1} \qquad \text{(rearranging)}$$

Thus, the claim holds for n = k + 1. By induction, the claim is true for all $n \in \mathbb{Z}^+$.

(b)

$$\frac{d}{dz}[z^n] = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^n - z^n}{\Delta z} \qquad \text{(using limit definition)}$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(\sum_{k=0}^n \left[\binom{n}{k} z^{n-k} (\Delta z)^k \right] - z^n \right) \qquad \text{(using binomial theorem)}$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(z^n + \sum_{k=1}^n \left[\binom{n}{k} z^{n-k} (\Delta z)^k \right] - z^n \right) \qquad \text{(since } \binom{n}{0} z^{n-0} (\Delta z)^0 = z^n \text{)}$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(\sum_{k=1}^n \binom{n}{k} z^{n-k} (\Delta z)^k \right) \qquad \text{(subtracting)}$$

$$= \lim_{\Delta z \to 0} \sum_{k=1}^n \binom{n}{k} z^{n-k} (\Delta z)^{k-1} \qquad \text{(dividing each term by } \Delta z \text{)}$$

$$= \sum_{k=1}^n \binom{n}{k} z^{n-k} (0)^{k-1} \qquad \text{(direct substitution)}$$

$$= \binom{n}{1} z^{n-1} \qquad \text{(every term is 0 except for when } k = 1 \text{)}$$

$$= nz^{n-1}$$

The equality is shown.

Problem 24.2d Use the theorem in Sec. 23 to show that f'(z) and its derivative f''(z) exist everywhere, and find f''(z) when $f(z) = \cos x \cosh y - i \sin x \sinh y$.

Solution.

$$f(z) = u(x, y) + v(x, y)$$
 where $u(x, y) = \cos x \cosh y, v(x, y) = -\sin x \sinh y$

We can now check the Cauchy-Riemann equations:

$$u_x = -\sin x \cosh y, u_y = \cos x \sinh y$$
$$v_x = -\cos x \sinh y, v_y = -\sin x \cosh y$$

Homework 4[^] MATH 552

Since the Cauchy-Riemann equations hold, and u(x, y), v(x, y), and their partials are continuous everywhere, f'(z) exists and

$$f'(z) = u_x(x,y) + iv_x(x,y) = -\sin x \cosh y - i\cos x \sinh y.$$

To take the second derivative, let

$$f'(z) = s(x, y) + t(x, y)$$
 where $s(x, y) = -\sin x \cosh y$, $t(x, y) = -\cos x \sinh y$.

We can now check the Cauchy-Riemann equations again:

$$s_x = -\cos x \cosh y, s_y = -\cos x \sinh y$$
$$t_x = \sin x \sinh y, t_y = -\cos x \cosh y$$

Since they hold again, and s(x,y), t(x,y), and their partials are continuous everywhere, f''(z) exists and

$$f''(z) = s_x(x, y) + it_x(x, y) = -\cos x \cosh y + i\sin x \sinh y.$$

Problem 24.6 Let a function f(z) = u + iv be differentiable at a nonzero point $z_0 = r_0 \exp(i\theta_0)$. Use the expressions for u_x and v_x found in Exercise 5, together with the polar form (6), Sec. 24, of the Cauchy-Riemann equations, to rewrite the expression

$$f'(z_0) = u_x + iv_x$$

in Sec. 24 as

$$f'(z_0) = e^{-i\theta}(u_r + iv_r),$$

where u_r and v_r are to be evaluated at (r_0, θ_0) .

$$f'(z) = u_x + iv_x$$

$$= u_r \cos \theta - u_\theta \frac{\sin \theta}{r} + iv_x \qquad \text{(using expressions)}$$

$$= u_r \cos \theta - u_\theta \frac{\sin \theta}{r} + iv_x - i[u_r \sin \theta + u_\theta \frac{\cos \theta}{r}] \qquad \text{(using } v_x = -u_y)$$

$$= u_r \cos \theta - u_\theta \frac{\sin \theta}{r} - iu_r \sin \theta - iu_\theta \frac{\cos \theta}{r} \qquad \text{(distributing)}$$

$$= u_r \cos \theta + rv_r \frac{\sin \theta}{r} - iu_r \sin \theta + irv_r \frac{\cos \theta}{r} \qquad \text{(using } u_\theta = -rv_r)$$

$$= u_r (\cos \theta - i \sin \theta) + iv_r (\cos \theta - i \sin \theta) \qquad \text{(rearranging)}$$

$$= (\cos(-\theta) + i \sin(-\theta))(u_r + iv_r) \qquad \text{(rearranging)}$$

$$= e^{-i\theta}(u_r + iv_r) \qquad \text{(using Euler's formula)}$$

The equality is shown.