定义 0.1

——到上的同态映射称为同构 (isomorphism). 又称群同构. 同构 $\mu:G\to G'$ 称为群 G 上的自同构 (automorphism).

定义 0.2

群G的子群H称为正规(normal)子群或不变(invariant)子群,若

 $ghg^{-1} \in H, \quad \forall g \in G, h \in H$

*

定义 0.3

李代数 g 的子代数 H 称为理想 (ideal), 若

 $[A, \mu] \in \mathcal{H}, \forall A \in \mathcal{G}, \mu \in \mathcal{H}$

*

定理 0.1

 $\exp(sA) = \gamma(s), \quad \forall s \in \mathbb{R}, A \in V_e$

 $\gamma(s)$ 是由 A 决定的单参子群.

 \odot

定理 0.2

设 $\phi: \mathbb{R} \times G \to G$ 是由 $A \in V_e$ 对应的左不变矢量场 \bar{A} 产生的单参微分同胚群, 则

$$\phi_t(g) = g \exp(tA), \quad \forall g \in G, t \in \mathbb{R}$$

 \sim

定理 0.3

$$Exp(A) = exp(A), \quad \forall A \in \mathscr{GL}(m)$$

 \odot

定理 0.4

设 $G \in GL(M)$ 的李子群, 则其李代数元 $A, B \in \mathcal{G} \subset \mathcal{GL}(m)$ 的李括号 [A, B] 对应的矩阵的对易子

$$[A, B] = AB - BA$$

C

第一章 伴随表示和 killing 型

1.1 伴随表示

设 $V \neq m(< \infty)$ 维实矢量空间, 令

$$\mathcal{L}(V) \equiv \{$$
线性变换 $\psi: V \to V \} \equiv \mathcal{T}_V(1,1)$

则 $\mathcal{L}(V)$ 是 m^2 维矢量空间, 我们给其定义乘法

$$\psi \varphi := \psi \circ \varphi \quad \forall \psi, \varphi \in \mathscr{L}(V)$$

然后我们就可以定义李括号为

$$[\psi,\varphi]:=\psi\varphi-\varphi\psi$$

从而使得 $\mathcal{L}(V)$ 成为 m^2 李代数.

定义 1.1

李代数同态映射 $\beta: \mathcal{G} \to \mathcal{L}(V)$ 称为**李代数** \mathcal{G} 的表示

同一李群(李代数)可能有不同的表示, 本节介绍李群和李代数的伴随表示, 根据定义0.1, 对任意群 G 的群元可构造映射

$$I_q: G \to G \Longrightarrow I_q(h) := ghg^{-1}, \quad \forall h \in G$$

称为自同构映射, 对于李群而言, 这还是个微分同胚, 所以可以称为李群同构. 根据定义 $I_g(e)=e$, 所以这个映射在 e 点诱导的推前映射(切映射)是 $V_e \to V_e$ 的映射, 记为 $\mathscr{A}d_g$, 因为 V_e 就是 G 的李代数 \mathscr{G} , 故而 $\mathscr{A}d_g:\mathscr{G}\to\mathscr{G}$ 是线性变换. 最后需要强调的一点, 虽然 I_g 作用到 e 为 e, 但是不代表 $\mathscr{A}d_g$ 会得到相同的切矢, 所以对应的曲线不同.

定理 1.1

设 罗 是李群 G 的李代数,则有

$$\exp(t(\mathscr{A}d_gA)) = g(\exp tA)g^{-1}$$

proof: 设 $\gamma(t) = \exp(tA), \gamma'(t) = g(\exp tA)g^{-1}$, 首先 $\gamma(t)$ 是单参子群, 且方程左面是 $\mathscr{A}d_gA$ 生成的, 见定理0.1, 下面我们证明 $\gamma'(t)$ 也是单参子群.

 $\gamma'(t+s) = g(\exp(t+s)A)g^{-1} = g(\exp(tA)\exp(sA))g^{-1} = g(\exp(tA)g^{-1}g\exp(sA)g^{-1} = \gamma'(t)\gamma'(s)$ 所以要想证明方程相等, 只需要证明 $\gamma'(t)$ 在恒等元的切矢为 $\mathscr{A}d_g$, 证明如下:

$$\frac{d}{dt}\Big|_{0} \left[g \exp(tA)g^{-1}\right] = \frac{d}{dt}\Big|_{0} \left[I_{g} \exp(tA)\right] = I_{g*} \frac{d}{dt}\Big|_{0} \left[\exp(tA)\right] = I_{g*}A = \mathscr{A}d_{g}A$$

定理得证.

定理 1.2

设H是李群G的正规子群(定义见0.2), \mathcal{H} 是H的李代数,则

$$\mathcal{A}d_qB \in \mathcal{H}, \quad \forall B \in \mathcal{H}, g \in G$$

首先 B 是某个李代数, 会生成一个单参子群 $\exp(tB)$, 又因为是正规子群所以 $g\exp(tB)g^{-1}\subset H$, 可见生成的单参子群也是 H 的单参子群. 又因为

$$\exp(t(\mathcal{A}d_qB)) = g(\exp tB)g^{-1}$$

可见 $\mathcal{A}d_qB \in \mathcal{H}$

定理 1.3

设 \mathcal{G} 是李群 G 的李代数, 则 $\forall A, B \in \mathcal{G}$ 有

$$[A, B] = \frac{d}{dt} \Big|_{t=0} \left(\mathscr{A} d_{(\exp tA)} B \right)$$

设 φ 是由 A 产生的单参微分同胚群. 同定理0.4的证明

$$[A, B] = [\bar{A}, \bar{B}]_e = (\mathscr{L}_{\bar{A}}\bar{B})_e = \frac{d}{dt}\Big|_{t=0} (\phi_{-t*}\bar{B}_{\phi_t(e)})$$

因为定理0.2, 有 $\phi_t(e)=e(\exp(tA))=\exp(tA)$, 则有 $\bar{B}_{\phi_t(e)}=L_{\exp(tA)*}B$, 则

$$[A, B] = \frac{d}{dt} \bigg|_{t=0} \left[(\phi_{-t} \circ L_{\exp(tA)})_* B \right]$$

另一方面有

$$I_{\exp(tA)}(g) = \exp(tA)g \exp(-tA) = \phi_{-t}[\exp(tA)(g)] = \phi_{-t}[L_{\exp(tA)}(g) = (\phi_{-t} \circ L_{\exp(tA)}(g))]$$

即 $I_{\exp(tA)} = \phi_{-t} \circ L_{\exp(tA)}$,代入前面式子

$$[A, B] = \frac{d}{dt} \Big|_{t=0} \left(I_{\exp(tA)*} B \right) = \frac{d}{dt} \Big|_{t=0} \left(\mathscr{A} d_{\exp(tA)} B \right)$$

定理 1.4

设H是连通李群G的连通李子群, \mathcal{H} 和 \mathcal{G} 分别是 \mathcal{H} 和 \mathcal{G} 的李代数,则 \mathcal{H} 是 \mathcal{G} 的正规子群 \Leftrightarrow \mathcal{H} 是 \mathcal{G} 的理想 (理想的定义见0.3).

证明

- 1. (⇒) 由定理1.2知 $\mathscr{A}_{\exp(tA)}B \in \mathscr{H}$, $\forall A \in \mathscr{G}, B \in \mathscr{H}, t \in \mathbb{R}$ 根据定理1.3, $[A, B] \in \mathscr{H}$, 根据理想的定义, \mathscr{H} 是 \mathscr{G} 的理想.
- 2. (⇐)

引理 1.1

只要 H 是连通李群的连通李子群, 则 $\forall h \in H, \exists B_1, B_2, \dots \in \mathcal{H}$ 使得 $h = \exp(B_1) \exp(B_2) \dots ($ 有限个指数之积)

引理就交给数学家证明吧.

当 $h = \exp(B), B \in \mathcal{H}$ 时

$$ghg^{-1} = g(\exp B)g^{-1} = \exp(\mathscr{A}d_qB) \in H$$

当 $h = \exp(B_1) \exp(B_2) \cdots$ 则有

$$ghg^{-1} = g\exp(B_1)\exp(B_2)\cdots h^{-1} = g\exp(B_1)g^{-1}g\exp(B_2)\cdots h^{-1} = h_1h_2\cdots \in H$$

则 H 是 G 的正规子群.

🍷 笔记 理想在李代数的地位就是正规子群在群论的地位.

因为推前映射的线性性, 不难知道 $\mathscr{A}d_g: \mathscr{G} \xrightarrow{\mathrm{gth}} \mathscr{G} \Rightarrow \mathscr{A}d_g \in \mathscr{L}(\mathscr{G})$, 由此可见, 每有一个 g 便可以通过映射 $\mathscr{A}d: g \mapsto \mathscr{A}d_g$ 获得一个 $\mathscr{L}(\mathscr{G})$ 的元素, 便有映射

$$\mathscr{A}d:G\to\{\mathscr{G}$$
上可逆线性变换 $\}\subset\mathscr{L}(\mathscr{G})$

为什么会有可逆的? 是因为 $I_g: G \to G$ 是微分同胚, 保证了 $I_{g*}: \mathcal{G} \to \mathcal{G}$ 是同构映射, 便存在了逆映射. 故 \mathcal{G} 上可逆线性变换对应于一个矩阵群 $GL(m,\mathbb{R})$

定理 1.5

 $\mathcal{A}d:G\to\{\mathcal{G}\bot$ 的可逆线性变换} 是同态映射.

 \Diamond

证明

$$\mathscr{A}d_{qh} = I_{qh*} = (I_q \circ I_h)_* = I_{q*} \circ I_{h*} = \mathscr{A}d_q \circ \mathscr{A}d_h$$

群元的复合映射就是群乘积, 所以有 $\mathcal{A}d_{gh} = \mathcal{A}d_q \cdot \mathcal{A}d_h$ 可见是同态映射.

笔记 $I_{gh}(m) = ghmh^{-1}g^{-1} = I_g(I_hm) = I_g \circ I_h(m) \Rightarrow I_{gh} = I_g \circ I_h$

定义 1.2

同态映射 $\mathscr{A}d:G \to \{\mathscr{G}$ 上可逆线性变换 $\}$ 称为**李**群 G 的伴随表示 (adjoint representation)

定义映射 $ad_A := [A, B], \quad \forall B \in \mathcal{G}$ 由李括号的线性性可知 $ad_A : \mathcal{G} \to \mathcal{G}$ 有如下两个性质:

- (a). $\forall B_1, B_2 \in \mathcal{G}, \beta_1, \beta_2 \in \mathbb{R} \neq ad_A(\beta_1 B_1 + \beta_2 B_2) = \beta_1 ad_A(B_1) + \beta_2 ad_A(B_2)$
- (b). $\forall A_1, A_2 \in \mathcal{G}, \alpha_1, \alpha_2 \in \mathbb{R}$ 有 $ad_{\alpha_1 A_1 + \alpha_2 A_2} = \alpha_1 ad_{A_1} + \alpha_2 ad_{A_2}$

性质 (a) 表明 ad_A 是 \mathcal{G} 上的线性变换, 即 $ad_A \in \mathcal{L}(\mathcal{G})$ 也可以看作 (1,1) 型张量, 则有

$$(ad_A)^c{}_bB^b = [A, B]^c = C^c{}_{ab}A^aB^b, \quad \forall B^b \in \mathscr{G}$$

甩掉 Bb 后有

$$(ad_A)^c_b = A^a C^c_{ab}$$

映射 ad_A , $A \in \mathcal{G}$, 虽然与 $\mathcal{A}d_g$, $g \in G$, 但两者有如下关系:

$$\mathscr{A}d_{exp(A)} = \operatorname{Exp}(ad_A)$$

证明 构造映射 $\gamma(t) = \mathscr{A}_{\exp(tA)}, \gamma'(t) = \operatorname{Exp}(t(ad_A))$, 由定理0.3, 可见 $\gamma'(t)$ 是由 ad_A 唯一决定的单参子群 $\exp(t(ad_A))$, 由于 \mathscr{A} 是同态映射, 再结合 $\exp(t+s)A = \exp tA + \exp sA$ 说明 $\gamma(t)$ 也是单参子群. 又因为二者都是 $\mathscr{G} \to \mathscr{G}$ 的映射, 可见它们是同一个群. 要证明二者相等, 问题就比较简单了, 只需要证明均过恒等元, 且在切矢量相同即可, 当 t=0 时, 两者不难看出是恒等元. 我们来看切矢量, 对于 $\gamma(t)$ 由定理1.3可以看出

$$\frac{d}{dt}\Big|_{t=0} \left(\mathscr{A}d_{\exp(tA)} \right) = ad_A$$

对于 $\gamma'(t)$, 很明显, 切矢为 ad_A , 所以可以得到结论

$$\mathscr{A}d_{\exp(tA)} = \operatorname{Exp}(t(ad_A))$$

当 t=1 时, 便有我们想要的结果.

笔记 以上证明为个人所想, 如有错误请及时指出.

既然每一个 $A \in \mathcal{G}$ 对应于一个 $ad_A \in \mathcal{L}(\mathcal{G})$, 便有从 $\mathcal{G} \to \mathcal{L}(\mathcal{G})$ 记作 $ad : \mathcal{G} \to \mathcal{L}(\mathcal{G})$, 性质 (b) 表明 ad 是 线性映射, 接下来我们来看映射是否是同态映射李代数的同态映射, 就是看它是否保李括号. 即

$$ad_{[A,B]}(C) = [[A,B],C] = [A,[B,C]] + [B,[C,A]]$$
$$= [A,[B,C]] - [B,[A,C]]$$
$$= ad_A(ad_B(C)) - ad_B(ad_A(C))$$
$$= (ad_Aad_B - ad_Bad_A)(C)$$

由此可见 $ad_{[A,B]} = [ad_A, ad_B]$

定义 1.3

同态映射 $ad: \mathcal{G} \to \mathcal{L}(\mathcal{G}$ 李代数 \mathcal{G} 的伴随表示)

五个映射总结

- 1. $I_g: G \to G$
- 2. $\mathscr{A}d_q:\mathscr{G}\to\mathscr{G}$
- 3. $\mathscr{A}d:G\to\{\mathscr{G}$ 上可逆线性变换 $\}$ 为李群的伴随表示
- 4. $ad_A: \mathscr{G} \to \mathscr{G}, \quad A \in \mathscr{G}$
- 5. $ad: \mathcal{G} \xrightarrow{\mathfrak{G}} \mathcal{L}(\mathcal{G})$ 为李代数的伴随表示

实际上 Ad* 作为推前映射 (切映射) 与 ad 相等, 有定理

定理 1.6

映射 $\mathscr{A}d_*:\mathscr{G}\to\mathscr{L}(\mathscr{G})$ 与 $ad:\mathscr{G}\to\mathscr{L}(\mathscr{G})$ 相等

 \odot

证明 只需要证明 $(\mathscr{A}d_*A)(B) = ad_A(B) \quad \forall A, B \in \mathscr{G}$

$$\mathscr{A}d_*A = \mathscr{A}d_*\left[\frac{d}{dt}\bigg|_{t=0} \exp(tA)\right] = \left.\frac{d}{dt}\bigg|_{t=0} \mathscr{A}d(\exp(tA)) = \left.\frac{d}{dt}\bigg|_{t=0} \mathscr{A}d_{\exp(tA)}\right]$$

故有

$$\mathscr{A}d_*A(B) = \left[\frac{d}{dt}\bigg|_{t=0} \mathscr{A}d_{\exp(tA)}(B)\right] = \left.\frac{d}{dt}\bigg|_{t=0} \left(\mathscr{A}d_{\exp(tA)}(B) = [A, B] = ad_A(B)\right)$$

1.2 killing型

利用 \mathcal{G} 伴随表示可以定义映射 $K:\mathcal{G}\times mathscr G\to \mathbb{R}$ 如下:

$$K(A,B) := \operatorname{tr}(ad_A ad_B), \quad \forall A, B \in \mathscr{G}$$

其中 ad_A , ad_B 是映射先后作用. 加上求迹后, 不难看出这是一个对称的双线性映射, 可以看作是 $\mathscr G$ 上的 (0,2) 对称张量, 在李代数理论中称为 killing 型.

定理 1.7

$$K([A, B], C) = K(A, [B, C]), \quad \forall A, B \in \mathscr{G}$$

 \sim

证明

$$\begin{split} K([A,B],C) &= \operatorname{tr}(ad_{[A,B]}ad_C) \\ &= \operatorname{tr}([ad_A,ad_B]ad_C) \\ &= \operatorname{tr}(ad_Aad_Bad_C - ad_Bad_Aad_C) \\ &= \operatorname{tr}(ad_Aad_Bad_C - ad_Aad_Cad_B) \\ &= \operatorname{tr}(ad_A[ad_B,ad_C]) \\ &= K(A,[B,C]) \end{split}$$

注意: 求迹可以交换顺序, 不影响结果.