International Rectifier

SMPS MOSFET

IRFP32N50K

HEXFET® Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Low R_{DS(on)}

V_{DSS}	R _{DS(on)} typ.	I _D
500V	0.135Ω	32A

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	32	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	20	A
I _{DM}	Pulsed Drain Current ①	130	
P _D @T _C = 25°C	Power Dissipation	460	W
	Linear Derating Factor	3.7	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	13	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	°C
	(1.6mm from case)		
	Mounting torque, 6-32 or M3 screw		10lb*in (1.1N*m)

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		450	mJ
I _{AR}	Avalanche Current①		32	Α
E _{AR}	Repetitive Avalanche Energy①		46	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.26	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

International
TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.54		V/°C	Reference to 25°C, I _D = 1mA [©]
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.135	0.16	Ω	V _{GS} = 10V, I _D = 32A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
	Droin to Course Leekage Current			50	μA	V _{DS} = 500V, V _{GS} = 0V
IDSS	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	^	V _{GS} = 30V
IGSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -30V$

Dynamic @ T_{.I} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	14			S	$V_{DS} = 50V, I_{D} = 32A$
Qg	Total Gate Charge			190		I _D = 32A
Q _{gs}	Gate-to-Source Charge			59	nC	$V_{DS} = 400V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			84	Ī	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		28			V _{DD} = 250V
t _r	Rise Time		120		ns	$I_D = 32A$
t _{d(off)}	Turn-Off Delay Time		48			$R_G = 4.3\Omega$
t _f	Fall Time		54			V _{GS} = 10V ④
C _{iss}	Input Capacitance		5280			$V_{GS} = 0V$
Coss	Output Capacitance		550			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		45		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5630			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		155			$V_{GS} = 0V, V_{DS} = 400V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		265			V _{GS} = 0V, V _{DS} = 0V to 400V ⑤

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions					
Is	Continuous Source Current			32		MOSFET symbol					
	(Body Diode)			32	A	showing the					
I _{SM}	Pulsed Source Current				420		120	120			integral reverse
	(Body Diode) ①		130		p-n junction diode.						
V _{SD}	Diode Forward Voltage			1.5	V	$T_J = 25$ °C, $I_S = 32$ A, $V_{GS} = 0$ V ④					
t _{rr}	Reverse Recovery Time		530	800	ns	$T_J = 25$ °C, $I_F = 32A$					
Q _{rr}	Reverse RecoveryCharge		9.0	13.5	μC	di/dt = 100A/µs ④					
I _{RRM}	Reverse RecoveryCurrent		30		Α						
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)									

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:local_transform} \begin{array}{ll} \text{ \ensuremath{\mathbb{Q}}} & \text{Starting T}_J = 25^\circ\text{C}, \ L = 0.87\text{mH}, \ R_G = 25\Omega, \\ & I_{AS} = 32A, \end{array}$
- $\label{eq:loss_distance} \begin{tabular}{ll} $I_{SD} \leq 32A, \ di/dt \leq 197 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 150^{\circ}C$ \end{tabular}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

2

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFP32N50K

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

Fig 12a. Maximum Avalanche Energy Vs. Drain Current

Fig 12c. Unclamped Inductive Test Circuit

Fig 12d. Unclamped Inductive Waveforms

Fig 13a. Gate Charge Test Circuit

Fig 13b. Basic Gate Charge Waveform

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

TOR Rectifier

TO - 247 Package Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-247AC

EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY

WITH ASSEMBLY LOT CODE 3A1Q

This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/01

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.