# Lecture 28: Logistic Regression Chapter 8.4

1/19

Binary Outcome Variables

| Outcome Variable     |      |
|----------------------|------|
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      | 3/19 |
| Logit Transformation |      |
| Logic Hansiormation  |      |
|                      |      |



#### Simple Logistic Regression Example p.388

So say we fit a logistic regression with:

- $ightharpoonup Y_i$  is spam: binary variable of whether message was classified as spam (1 if spam)
- $ightharpoonup x_i$  is to\_multiple: binary variable indicating if more than one recipient listed

|             | Estimate | Std. Error | z value | Pr(> z ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -2.1161  | 0.0562     | -37.67  | 0.0000   |
| to_multiple | -1.8092  | 0.2969     | -6.09   | 0.0000   |

7/19

#### Inverse Logit Transformation

#### Fitted Probabilities

9/19

#### Fitted Model Using Backwards Regression

The following model was selected in the text using backwards selection using  $\alpha=0.05. \label{eq:alpha}$ 

|                     | Estimate | Std. Error | z value | Pr(> z ) |
|---------------------|----------|------------|---------|----------|
| (Intercept)         | -0.8057  | 0.0880     | -9.15   | 0.0000   |
| to_multiple?        | -2.7514  | 0.3074     | -8.95   | 0.0000   |
| word winner used?   | 1.7251   | 0.3245     | 5.32    | 0.0000   |
| special formatting? | -1.5857  | 0.1201     | -13.20  | 0.0000   |
| 'RE:' in subject?   | -3.0977  | 0.3651     | -8.48   | 0.0000   |
| attachment?         | 0.2127   | 0.0572     | 3.72    | 0.0002   |
| word password used? | -0.7478  | 0.2956     | -2.53   | 0.0114   |

#### Fitted Model Using Backwards Regression

The following variables increase the probability that the email is spam, since  $b>0\,$ 

|                   | Estimate | Std. Error | z value | Pr(> z ) |
|-------------------|----------|------------|---------|----------|
| (Intercept)       | -0.8057  | 0.0880     | -9.15   | 0.0000   |
| word winner used? | 1.7251   | 0.3245     | 5.32    | 0.0000   |
| attachment?       | 0.2127   | 0.0572     | 3.72    | 0.0002   |

11 / 19

#### Fitted Model Using Backwards Regression

The following variables decrease the probability that the email is spam, since  $b < 0\,$ 

|                                          | Estimate           | Std. Error       | z value         | Pr(> z )         |
|------------------------------------------|--------------------|------------------|-----------------|------------------|
| (Intercept)                              | -0.8057            | 0.0880           | -9.15           | 0.0000           |
| to_multiple?                             | -2.7514            | 0.3074           | -8.95           | 0.0000           |
| special formatting?<br>'RE:' in subject? | -1.5857<br>-3.0977 | 0.1201<br>0.3651 | -13.20<br>-8.48 | 0.0000<br>0.0000 |
| word password used?                      | -0.7478            | 0.2956           | -2.53           | 0.0114           |



13 / 10

#### Fitted Probabilities

These are all 3921 fitted probabilities:



#### Using Cutoffs to Classify Emails as Spam

Say we use a cutoff of 65% to classify an email spam or not:



-- --

#### Using Cutoffs to Classify Emails as Spam

Using a cutoff of 65%:

## Classification Truth Not Spam Spam Spam 3351 3 Spam 357 10

- $\blacktriangleright$  Of the emails classified as spam:  $\frac{10}{10+3}=76\%$  correct
- ▶ Of the emails classified not as spam:  $\frac{3351}{3351+357} = 90.3\%$  correct

16/19

#### Using Cutoffs to Classify Emails as Spam

Now say we use a cutoff of 30% to classify an email spam or not:



17 / 19

#### Using Cutoffs to Classify Emails as Spam

Using a cutoff of 30%:

### Classification Truth Not Spam Spam Spam 3138 416 Spam 166 201

- ▶ Of the emails classified as spam:  $\frac{201}{201+416} = 32.6\%$  correct
- $\blacktriangleright$  Of the emails classified not as spam:  $\frac{3138}{3138+166}=95.0\%$  correct

## Using Cutoffs to Classify Emails as Spam

Moral of the Story: most classifiers are never perfect (like hypothesis tests). There will almost always be a trade-off between:

- ▶ Type I errors: labeling an email spam when it is not
- ▶ Type II errors: failing to label an email as spam when it is