Open In Colab

(https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb)

This notebook was written by Ultralytics LLC, and is freely available for redistribution under the <u>GPL-3.0 license</u> (https://choosealicense.com/licenses/gpl-3.0/). For more information please visit https://github.com/ultralytics/yolov5) and https://www.ultralytics.com). And https://www.ultralytics.com).

Setup

Clone repo, install dependencies, %cd into ./yolov5 folder and check GPU.

In []: !git clone https://github.com/ultralytics/yolov5 # clone repo
!pip install -qr yolov5/requirements.txt # install dependencies (ignore errors)
%cd yolov5

import torch
from IPython.display import Image, clear_output # to display images
from utils.google_utils import gdrive_download # to download models/datasets

clear_output()
print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_ava
ilable() else 'CPU'))

Setup complete. Using torch 1.5.1+cu101 _CudaDeviceProperties(name='Tesla T4', major=7, minor=5, total_memory=15079 MB, multi_processor_count=40)

1. Inference

Run inference with a pretrained checkpoint on contents of /inference/images folder. Models are auto-downloaded from <u>Google Drive</u> (https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J).

In []: !python detect.py --weights yolov5s.pt --img 416 --conf 0.4 --source inference/images/
Image(filename='inference/output/zidane.jpg', width=600)

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_si ze=416, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='y olov5s.pt')

Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

image 1/2 inference/images/bus.jpg: 416x352 3 persons, 1 buss, Done. (0.009s) image 2/2 inference/images/zidane.jpg: 288x416 2 persons, 2 ties, Done. (0.009s) Results saved to /content/yolov5/inference/output Done. (0.100s)

Out[]:


```
In []: #Example syntax (do not run cell)
!python detect.py --source file.jpg # image
file.mp4 # video
dir/ # directory
0 # webcam
'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # rtsp
'http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8' # http
```

2. Test

Test a model on COCO val or test-dev dataset to determine trained accuracy. Models are auto-downloaded from <u>Google Drive</u> (https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J). To show results by class use the --verbose flag. Note that pycocotools metrics may be 1-2% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation.

2.1 val2017

Download COCO val 2017 dataset, 1GB, 5000 images, and test model accuracy.

```
In []: # Download COCO val2017
       gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') #val2017 dataset
       !mv ./coco ../ # move folder alongside /yolov5
      Downloading https://drive.google.com/uc?export=download&id=1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43 as coco2017val.zi
      p... unzipping... Done (11.2s)
In []: # Run YOLOv5x on COCO val2017
      !python test.py --weights yolov5x.pt --data coco.yaml --img 672
      Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', img_size=672, iou_thres=0.
      65, merge=False, save_json=True, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt']) Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)
      Fusing layers... Model Summary: 284 layers, 8.89222e+07 parameters, 8.89222e+07 gradients
      Scanning labels ../coco/labels/val2017.cache (4952 found, 0 missing, 48 empty, 0 duplicate, for 5000 images): 100% 5000/500
      0 [00:00<00:00, 22899.17it/s]
              Class Images Targets
                                                    R mAP@.5 mAP@.5:.95: 100% 157/157 [02:38<00:00, 1.01s/it]
                    5e+03 3.63e+04
                                         0.426
                                                  0.746
                                                            0.66
                                                                   0.469
      Speed: 22.3/1.7/24.0 ms inference/NMS/total per 672x672 image at batch-size 32
      COCO mAP with pycocotools... saving detections_val2017__results.json...
      loading annotations into memory...
      Done (t=0.41s)
      creating index...
      index created!
      Loading and preparing results...
      DONE (t=4.39s)
      creating index...
      index created!
      Running per image evaluation...
      Evaluate annotation type *bbox*
      DONE (t=76.56s).
      Accumulating evaluation results...
      DONE (t=11.02s).
       Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.484
       Average Precision (AP) @[ IoU=0.50
                                              | area = all | maxDets = 100 ] = 0.668
       Average Precision (AP) @[ IoU=0.75
                                              | area= all | maxDets=100 ] = 0.528
       Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.311
       Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.534
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628
       Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.371
       Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.609
                        (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.662
       Average Recall
       Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.501
       Average Recall
                        (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.714
       Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.807
```

2.2 test-dev2017

Download COCO test2017 dataset, 7GB, 40,000 images, to test model accuracy on test-dev set, 20,000 images. Results are saved to a *.json file which can be submitted to the evaluation server at https://competitions.codalab.org/competitions/20794 (https://competitions.codalab.org/competitions/20794).

```
In []: #Download COCO test-dev2017
gdrive_download('1cXZR_ckHki6nddOmcysCuuJFM--T-Q6L','coco2017labels.zip') #annotations
!f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7GB, 41k images
!mv ./test2017 ./coco/images && mv ./coco ../ # move images into /coco and move /coco alongside /yolov5

In []: #Run YOLOv5s on COCO test-dev2017 with argument --task test
!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test
```

3. Train

Download https://www.kaggle.com/ultralytics/coco128), a small 128-image tutorial dataset, start tensorboard and train YOLOv5s from a pretrained checkpoint for 3 epochs (actual training is much longer, around 300-1000 epochs, depending on your dataset).

```
In []: #Download coco128
gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') #coco128 dataset
!mv ./coco128 ../ # move folder alongside /yolov5
```

 $Downloading \ https://drive.google.com/uc?export=download\&id=1n_oKgR81BJtqk75b00eAjdv03qVCQn2f \ as \ coco128.zip...\ unzipping...\ Done (5.3s)$

Train a YOLOv5s model on coco128 by specifying model config file --cfg models/yolo5s.yaml , and dataset config file --data data/coco128.yaml . Start training from pretrained --weights yolov5s.pt , or from randomly initialized --weights '' . Pretrained weights are auto-downloaded from Google Drive (<a href="https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J).

All training results are saved to runs/exp0 for the first experiment, then runs/exp1 , runs/exp2 etc. for subsequent experiments.

python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cac!

 $Name space (batch_size=16, bucket='', cache_images=True, cfg='./models/yolov5s.yaml', data='./data/coco128.yaml', device=16, bucket='', cache_images=True, cfg='./models/yolov5s.yaml', data='./data/coco128.yaml', data-'./data/coco128.yaml', data-'./data/coco128.yaml'$ =", epochs=3, evolve=False, hyp=", img_size=[640], multi_scale=False, name=", noautoanchor=False, nosave=True, notest=F alse, rect=False, resume=False, single_cls=False, weights='yolov5s.pt') Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)

2020-07-11 20:37:09.422496: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1

Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/

Hyperparameters {'optimizer': 'SGD', 'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.58, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.014, 'hsv_s': 0.68, 'hsv_v': 0.36, 'degrees': 0.

```
0, 'translate': 0.0, 'scale': 0.5, 'shear': 0.0}
       from n params module
                                              arguments
0
               3520 models.common.Focus
         -1 1
                                                    [3, 32, 3]
                                                     [32, 64, 3, 2]
         -1 1 18560 models.common.Conv
 1
         -1 1 19904 models.common.BottleneckCSP
 2
                                                          [64, 64, 1]
 3
               73984 models.common.Conv
                                                     [64, 128, 3, 2]
 4
         -1 1 161152 models.common.BottleneckCSP
                                                          [128, 128, 3]
5
                                                      [128, 256, 3, 2]
         -1 1 295424 models.common.Conv
6
         -1 1 641792 models.common.BottleneckCSP
                                                          [256, 256, 3]
 7
         -1 1 1180672 models.common.Conv
                                                      [256, 512, 3, 2]
 8
         -1 1 656896 models.common.SPP
                                                     [512, 512, [5, 9, 13]]
9
         -1 1 1248768 models.common.BottleneckCSP
                                                           [512, 512, 1, False]
10
         -1 1 131584 models.common.Conv
                                                      [512, 256, 1, 1]
11
          -1 1
                 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
                   0 models.common.Concat
12
       [-1, 6] 1
                                                     [1]
13
          -1 1 378624 models.common.BottleneckCSP
                                                           [512, 256, 1, False]
          -1 1 33024 models.common.Conv
                                                     [256, 128, 1, 1]
14
15
                 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
          -1 1
16
       [-1, 4] 1
                  0 models.common.Concat
          -1 1 95104 models.common.BottleneckCSP
                                                           [256, 128, 1, False]
17
          -1 1 32895 torch.nn.modules.conv.Conv2d
                                                         [128, 255, 1, 1]
18
          -2 1 147712 models.common.Conv
19
                                                      [128, 128, 3, 2]
20
       [-1, 14] 1 0 models.common.Concat
                                                      [1]
          -1 1 313088 models.common.BottleneckCSP
21
                                                           [256, 256, 1, False]
22
          -1 1 65535 torch.nn.modules.conv.Conv2d
                                                         [256, 255, 1, 1]
          -2 1 590336 models.common.Conv
                                                      [256, 256, 3, 2]
23
24
       [-1, 10] 1
                   0 models.common.Concat
                                                      [1]
          -1 1 1248768 models.common.BottleneckCSP
25
                                                            [512, 512, 1, False]
          -1 1 130815 torch.nn.modules.conv.Conv2d
26
                                                          [512, 255, 1, 1]
                                                   [80, [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 3
27
     [-1, 22, 18] 1
                    0 models.yolo.Detect
0, 33, 23]]]
Model Summary: 191 layers, 7.46816e+06 parameters, 7.46816e+06 gradients
Optimizer groups: 62 .bias, 70 conv.weight, 59 other
Scanning labels ../coco128/labels/train2017.cache (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128
[00:00<00:00, 20484.22it/s]
Caching images (0.1GB): 100% 128/128 [00:00<00:00, 156.07it/s]
Scanning labels ../coco128/labels/train2017.cache (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128
[00:00<00:00, 22082.55it/sl
Caching images (0.1GB): 100% 128/128 [00:00<00:00, 152.91it/s]
Analyzing anchors... Best Possible Recall (BPR) = 0.9935
Image sizes 640 train, 640 test
Using 2 dataloader workers
Starting training for 3 epochs...
  Epoch gpu_mem GloU obj cls total targets img_size
   0/2 6.84G 0.04376 0.06831 0.02 0.1321 225 640: 100% 8/8 [00:09<00:00, 1.22s/it]
                                   Р
                                         R mAP@.5 mAP@.5:.95: 100% 8/8 [00:09<00:00, 1.24s/it]
      Class Images Targets
              128
                                   0.762
                                            0.69
                                                  0.446
       all
                     929
                            0.34
  Epoch gpu_mem GloU
                            obj
                                   cls total targets img_size
   1/2 6.06G 0.04333 0.08225 0.02207 0.1476
                                                  182 640: 100% 8/8 [00:03<00:00, 2.17it/s]
                                         R mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 3.28it/s]
      Class Images Targets
                                   Р
                           0.342
                                    0.755
                                            0.687
              128
```

0.759 0.689 929 0.354 0.45 Optimizer stripped from runs/exp0/weights/last.pt, 15.2MB 3 epochs completed in 0.009 hours.

Class Images Targets

Epoch gpu_mem GIoU obj cls total targets img_size

Ρ

2/2 6.06G 0.0444 0.07251 0.01855 0.1355 216 640: 100% 8/8 [00:03<00:00, 2.15it/s]

R

mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 3.46it/s]

4. Visualize

View runs/exp0/train*.jpg images to see training images, labels and augmentation effects. A **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in <u>YOLOv4 (https://arxiv.org/abs/2004.10934)</u>.

View test_batch0_gt.jpg to see test batch 0 ground truth labels.

View test_batch0_pred.jpg to see test batch 0 predictions.

Training losses and performance metrics are saved to Tensorboard and also to a runs/exp0/results.txt logfile. results.txt is plotted as results.png after training completes. Partially completed results.txt files can be plotted with from utils.utils import plot_results; plot_results() . Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (blue), and from pretrained yolov5s.pt (orange).

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

- Google Colab Notebook with free GPU:
 Open In Colab
 - (https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb)
- Kaggle Notebook with free GPU: https://www.kaggle.com/ultralytics/yolov5 (https://www.kaggle.com/ultralytics/yolov5)
- · Google Cloud Deep Learning VM. See GCP Quickstart Guide (https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- Docker Image https://hub.docker.com/r/ultralytics/yolov5). See Docker Quickstart Guide (https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)

Appendix

Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.

```
In []: # Re-clone repo
%cd ..
!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5
%cd yolov5

In []: # Test GCP ckpt
%%shell
for x in best*
do
    gsutil cp gs://*/*/$x.pt .
    python test.py --weights $x.pt --data coco.yaml --img 672
done
```