Question 57

Escreva uma equação do plano que contém o ponto A = (1, -2, 3) e é perpendicular a cada um dos planos 2x + y - z = 2 e x - y - z = 3.

Question 55

Determine a distância do ponto A = (2, 1, 3) a cada um dos planos:

- a) x 2y + z = 1
- b) x + y z = 0
- c) x 5z = 8

Question 56

Determine:

- a) a distância do ponto (5,4,7) à reta r: $\begin{cases} x=1+5t\\ y=2-t\\ z=t \end{cases}, t\in R$ b) a distância do ponto (1,2,-1) à reta r: $\begin{cases} x=1+2t\\ y=5-t\\ z=-2+3t \end{cases}, t\in R$
- c) a distância do ponto (2,3,5) a cada um dos eixos do sistema de coordenadas.

Question 4

Julgue cada item abaixo como verdadeiro ou falso, justificando com um argumento lógico ou com um contraexemplo. Respostas sem justificativas não serão consideradas.

- a) (6 pontos) O triângulo determinado pelos pontos A = (0,0,0), B = $(1,\sqrt{2},1)$ e C=(2,0,0) é um triângulo equilátero.
- b) (6 pontos) O raio da circunferência, obtida pela interseção da esfera de equação $x^2 + y^2 + z^2 = 4$ com o plano π de equação x + y + z = 1, é
- c) (6 pontos) Se $4A^2+B^2-4C^2<0,$ então a equação $x^2-Ax+4y^2+By-C^2$ $z^2 + Cz = 0$ representa um hiperbolóide de uma folha.

- d) (6 pontos) O ponto D = (0,4,1) pertence ao plano determinado pelos pontos A = (1,0,2), B = (-2,0,1) e C = (-1,2,1).
- e) (6 pontos) Se $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, com $\vec{u} \neq \vec{0}$, então $\vec{v} = \vec{w}$.

Questions 17-22 (Vector problems)

- 17. Sejam \vec{u} e \vec{v} vetores, com ângulo entre si medindo $\theta = \frac{\pi}{6}$ e tais que $(\vec{u}, \vec{v}) = 2$. Determine a área do triângulo que tem os vetores \vec{u} e \vec{v} como lados adjacentes.
- 18. Se \vec{u} e \vec{v} são vetores tais que $||\vec{u} + \vec{v}|| = 10$ e $||\vec{u} \vec{v}|| = 8$, determine (\vec{u}, \vec{v}) .
- 19. Sejam \vec{u} e \vec{v} vetores unitários tais que $(\vec{u}, \vec{v}) = \frac{1}{2}$. Determine $(\vec{u} + \vec{v}, \vec{u} \vec{v})$ e $||\vec{u} + \vec{v}||$.
- 20. Seja $\vec{v} = (1, -5, 3)$. Determine o vetor \vec{w} , tal que $||\vec{w}|| = 10$, e que tem a mesma direção e o sentido contrário ao \vec{v} .
- 21. Obtenha \vec{v} tal que $\vec{v} \times \vec{j} = \vec{k}$ e $||\vec{v}|| = \sqrt{5}$.
- 22. Sejam $\vec{u} = a\vec{i} + 2\vec{j} + \vec{k}$ e $\vec{v} = \vec{i} + \vec{j} 2\vec{k}$. Sabendo-se que o ângulo entre \vec{u} e \vec{v} é obtuso, determine o valor de a de modo que a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} seja $\sqrt{90}$.

Question 3 (Vector orthogonality)

Seja \vec{u} um vetor ortogonal a \vec{v} e \vec{w} . Sabendo-se que \vec{v} e \vec{w} formam um ângulo de 30 e que $||\vec{u}|| = 6$, $||\vec{v}|| = 3$ e $||\vec{w}|| = 3$, calcule $(\vec{u}, \vec{v} \times \vec{w})$.

Question 68 (Plane equations)

Determinar a equação geral dos planos nos seguintes casos:

- a) passa pelo ponto D=(1,-1,2) e é ortogonal ao vetor $\vec{v}=(2,-3,1)$
- b) possui o ponto A=(1,2,1)e é paralelo aos vetores $\vec{u}=\vec{i}+\vec{j}-\vec{k}$ e $\vec{v}=\vec{i}+\vec{j}-2\vec{k}$
- c) passa pelos pontos A = (2, 1, 5), B = (3, 1, 3) e C = (4, 2, 3)
- d) passa pelo ponto E=(1,2,2) e contém os vetores $\vec{u}=(2,-1,1)$ e $\vec{v}=(-3,1,2)$
- e) possui o ponto P=(2,1,3) e é paralelo ao plano π
- f) contém as retas $r: \frac{x-7}{3} = \frac{y-2}{2} = \frac{1-z}{2}$ e $s: \frac{x-1}{3} = \frac{y+2}{3} = \frac{z-5}{4}$

- g) contém as retas $r:\frac{x}{2}-y+1=z+3$ e $s:\frac{x+1}{4}=\frac{y-2}{2}=\frac{z}{2}$
- h) contém as retas r: $\begin{cases} x=-3+t\\ y=-t\\ z=4 \end{cases}, t\in R \text{ e } s: \frac{x+2}{2}=\frac{2-y}{2}=z=0$
- i) contém a reta $r:\frac{x-1}{2}=\frac{y}{2}=z-1$ e é paralelo à reta $s:\frac{x-3}{2}=2-y=\frac{z-4}{4}$

Question 72 (Spheres)

Encontre o centro e o raio das esferas:

- a) $x^2 + y^2 + z^2 + 4x 4z = 0$
- b) $2x^2 + 2y^2 + 2z^2 + x + y + z = 9$

Question 82 (Surface equation)

Determine a equação da superfície definida pelo conjunto dos pontos P=(x,y,z) tais que a distância de P ao eixo dos $y \in \frac{3}{4}$ da distância de P ao plano xz. Identifique a superfície.

Question 2 (Planes)

Considere os planos:

$$\pi_1: x-y-2z=3$$
 e $\pi_2: -2x-y+z=5$

- a) (5 pontos) Caso exista, determine as equações paramétricas da reta de interseção dos planos π_1 e π_2
- b) (5 pontos) Determine o ângulo formado por π_1 e π_2
- c) (10 pontos) Seja s a reta de equações paramétricas dadas por

$$s: \begin{cases} x = 2 + 2t \\ y = -3 - 4t \\ z = -2 - 3t \end{cases}, t \in R$$

Determinar, caso existam, os pontos do espaço que estão localizados sobre a reta s e que distam $\sqrt{6}$ unidades do plano π_1 .