Tidycomm-tests

Test Bär

Inhaltsverzeichnis

1	Reg	ressionsanalyse mit den Daten "World of Journalism"	1
	1.1	Teiltabelle	1
	1 2	Analyse der Voraussetzungen	1

1 Regressionsanalyse mit den Daten "World of Journalism"

Es ist immer ratsam sich zunächst die Regressionskoeffizienten genau anzuschauen, was mit einer Tabelle praktisch am besten geht, wie sie in ?@tbl-tab1 einsehbar ist.

Tabelle 1: Linear Regression for

	unstd.					sig.		Multicoll.	
Variable	В	SE B	LL	UL	beta	t	p	VIF	TOL
(Intercept)	3.52	0.09	3.34	3.70	-	38.83	<.001	-	-
$work_experience$	0.01	0.00	0.01	0.02	.160	5.72	<.001	1.01	.990
$trust_government$	0.05	0.03	0.00	0.10	.050	1.85	.060	1.01	.990

1.1 Teiltabelle

1.2 Analyse der Voraussetzungen

In Abbildung 1 ist gut zu erkennen.

Abbildung 1: residualsleverage plot

Schaut man sich darüber hinaus Abbildung 2 im schönen UZH-Design an, wird einem alles klar.

Abbildung 2: scalelocation plot

Nicht zuletzt sollte man sich die Residuen in Abhängigkeit der geschätzten Werte ansehen, was im schönen Viridis-Design in Abbildung 3 durchaus möglich ist, auch wenn das dunkle Lila nicht gut zu erkennen ist.

Abbildung 3: residualsleverage plot