BML 300: INTRODUCTION TO HEALTHCARE ENGINEERING

Coordinator: Dr. Arnab Chanda

Centre for Biomedical Engineering, IIT Delhi

Department of Biomedical Engineering, AIIMS Delhi

Date: Oct 21, 2024

Medical Imaging

Computed Tomography (CT)

How it works

- Provides high-resolution cross-sectional anatomical images
- Table moves through a circular opening in the CT scanner called the gantry, while an x-ray tube emits xrays as it spins 360 degrees inside the gantry
- A detector array measures the amount of x-rays that pass through the anatomic part and cross-sectional images are generated from data.

uses

- Detects and confirms the presence of tumor
- Guides a biopsy
- Helps plan and monitor radiation and surgical treatment
- Helps diagnose problems with blood vessels and the heart
- Used for diagnosing abnormalities of the:
 - Brain, nasal passages, musculo-skeletal system, spine, abdomen, lungs and mediastinum

Other facts

- Average scanning time per anatomic region is only 10-20 seconds therefore many patients can be examined under sedation instead of anesthesia
- General anesthesia and is necessary for thorax imaging to control respiration and for timed contrast imaging to control movement
 - Ensures the clearest and most accurate images

Risks

- CT scans should be avoided during the first trimester of pregnancy
- Animals must be sedated or under anesthesia

Magnetic resonance imaging (MRI)

How it works

- Uses magnetic fields and radio waves to diagnose diseases and injury of soft tissue
- The atoms comprising soft tissue align with the magnetic field in the machine
- Radio waves pulsed into the field alter the atoms causing signals to be released and transmitted to a computer
- Signals then show up as either light or dark areas in the computer image

How it works cont'd.

- Primarily used to examine internal organs for abnormalities
- Imaging of large patients is limited to the limbs and head due to size constraints

uses

- Diagnosing abnormalities of the brain, spinal cord, and musculoskeletal system
- Diagnose or monitor treatment for conditions such as:
 - Tumors of the chest, abdomen or pelvis
 - Certain types of heart disease
 - Blockages, enlargements or anatomical variants of blood vessels
 - Diseases of the gastrointestinal tract
 - Cysts and solid tumors in the kidneys or other urinary tract organs

Risks

- Radio-frequency energy to excite molecules is similar to those from a radio or TV station
- Caution must be taken in patients with metal implants or pacemakers
- Requires general anesthesia to ensure the clearest and most accurate image possible

•

Digital Fluoroscopy

how it works

- Digital images are acquired at a rate of 1-8 frames per second
- The unit is used for myelography, contrast GI tract studies, and small animal general diagnostic imaging.

uses

 Special procedures such as angiography, venography, cardiac fluoroscopy, or evaluation for dynamic tracheal disease

Safety while operating

- Only persons required for a fluoroscopic procedure should be in the room during the procedure
- Use the smallest possible beam area, thereby reducing the scatter radiation to personnel.
- Fluoroscopic doses can also be minimized by reduction in the fluoroscopic time used
- Use the shortest possible distance from the image intensifier to the animal to reduce scattered radiation levels.

Digital or computed Radiography

How it works

- Computed Radiography uses a cassette system with imaging plate that contains photostimulable storage phosphors.
- The phosphors detect and store energy from the x-rays that strike the cassette.
- The light is captured, recorded, and processed into an image by a computer. The imaging plate is then erased by fluorescent light in the scanner, and is ready to be used again.

How it works

- Digital Radiography has no processing or erasing step
- Provides an instant digital image similar to a digital camera

How it works Cont'd.

 The digitized image can be manipulated: changing contrast and brightness, zoom in or out, and take measurements

• Images are stored in a secure file that is difficult to

alter

uses

 Provides information about the internal architecture of abdominal organs, bones and areas such as the pelvic canal.

Safety While Operating

- Limit the X-Ray beam to the smallest area possible
- Align the X-ray beam properly with the animal and the image receptor
- Remain behind a protective barrier during the entire radiographic exposure
- Wear protective gloves and aprons having a lead equivalent of not less than 0.5 millimeter

Risks

 Some radiographs require sedation or general anesthesia

Ultrasound

How it works

- Uses sound waves to produce images of organs.
- Sound waves sent into the body are reflected off of an internal tissue interface.
- Hundred of these reflected signals provide an image of the organ, which can be visualized on the ultrasound machine monitor.

uses

- Areas frequently viewed with ultrasound:
 - Thorax, abdomen, eyes, brain, and tendons
- View abnormalities of organs and provides guidance for biopsies

risks

• The ultrasound exam is painless, most patients require no sedation or anesthesia, and tolerate the procedure well.

Nuclear Scintigraphy

how it works

 An animal is injected with a short-lived radioactive isotope which travels to specific organs/tissues

Uses

- Identifying lameness in equine patients where the cause of the lameness is difficult to localize by conventional methods
- Detects Porto systemic shunts, sub-clinical renal failure, and hyperthyroidism
- Evaluation of mucociliary clearance

Risks

- The animal is administered radioactive elements called isotopes or tracers that go through the bloodstream to the target organ
- Patient is usually isolated 12-24 hours after the exam to allow the body to become clear of the radioactive tracers

Endoscope

how it works

- a small camera is guided throughout the body via naturally existing orifices (nose, mouth, etc)
- Can reach most parts of the body without the need for open surgery

Uses

- Observe internal structures without surgery
 - Assists with diagnosis
- Minimally invasive surgeries (biopsy)

types of Endoscopy

- Gastrointestinal Tract
 - Esophagogastroduodenoscopy: esophagus, stomach and duodenum
 - Enteroscopy: small intestine
 - Colonoscopy, sigmoidoscopy: large intestine/colon
 - Proctoscopy: rectum and anus
- Respiratory tract
 - Rhinoscopy: nose
 - Bronchoscopy: lower respiratory tract

types of Endoscopy

- Ear: otoscope
- Urinary tract: cystoscopy
- Female reproductive system: gynoscopy
 - Colposcopy: cervix
 - Hysteroscopy: uterus
 - Falloposcopy: fallopian tubes
- Closed Body Cavities
 - Laparoscopy: abdominal or pelvic cavity
 - Arthroscopy: interior of a joint
 - Thoracoscopy and mediastinoscopy: chest organs

Risks

- Patient is usually anesthetized
- Complications (such as perforation of organs) due to the exam rarely occur
- Tearing of tissue may require surgical repair

Electrocardiograph

How it works

- Pet lies on its right side or stands
- Conductive gel or alcohol is applied to the skin to better transmit the electrical activity
- Clip or plate electrodes are attached to the pets limbs and chest wall which are attached to thin lead cables connected to the machine
- Typical recording duration is 30 seconds to 2 minutes

Uses

- Reveals abnormalities of heart rate and electrical rhythm.
- "Screening test" for serious heart disease, but should be used in conjunction with stethoscope exam, chest x-ray and echocardiogram

Safety AND RISK

- Neither sedation or anesthesia is needed
 - Some animals resist restraint and may need to be sedated, but it is not recommended due to the potential influence on the heart
- This exam is noninvasive and is not painful

Radiograph

How does it work

- Produced by transmitting x-rays through a patient
 - X-rays pass through less dense objects (fluid or air) and are absorbed by denser objects (bone)
- A capture device converts x-rays into visible light which then forms an image
- Denser objects (like bone) appear whiter, while less dense objects (air or fluid) appear black

Uses

 Used to examine and diagnose internal structures such as: bones, heart, lungs, and abdominal organs

Safety and Risk

- Radiography is painless
- Sedation may be needed to reduce stress and properly position animals
- Technicians restraining patients must wear protective apparel and monitor exposure

Safety with equipment

Identification

 Verifying the identify of the patient is the most important first step in imaging

restraint

 Whenever possible, use sandbags or other restraints instead of having persons hold patients during imaging

Access to imaging rooms

- No unauthorized visitors during imaging exams
 - This includes the owners of the animals being imaged

Radiation safety

- Control exposure levels by:
 - Maximization of distance from radiation source
 - Minimization of radiation exposure time
 - Proper shielding of radiation source
 - Proper shielding for personnel
- Personnel staying in the exam room should be protected by proper shielding.
 - thyroid shields, leaded glasses, gloves, and aprons

References

- http://www.ehrs.upenn.edu/media_files/docs/pdf/vetusersguide2012.pdf
- http://www.peteducation.com/article.cfm?c=0+1302+1473&aid=1007
- http://www.vetmed.vt.edu/vth/radiology.asp#tomo
- http://largeanimal.vethospitals.ufl.edu/services/diagnostic-imaging/digital-computed-radiography-dr-cr/
- http://www.vetmed.wsu.edu/depts-vth/radiology/
- http://gvi.vetmed.ufl.edu/faq.html#Q10