INSTITUTO FEDERAL DO RIO GRANDE DO NORTE – IFRN

QUÍMICA GERAL E INORGÂNICA

Introdução ao Estudo da Química e propriedades dos materiais

Prof.: Saulo Henrique

Introdução

O que estuda a Química?

Estuda as transformações que envolve matéria e energia.

Introdução

Conceitos Iniciais

Chamamos de matéria tudo aquilo que tem massa e ocupa um lugar no espaço. A madeira, o ferro e o vidro são exemplos de matéria.

Uma porção delimitada da matéria é chamada de **corpo**.

Por exemplo, um pedaço de madeira ou um caco de vidro.

Quando um corpo é usado como utensílio ou ferramenta pelo homem, temos um **objeto**.

Propriedades físicas

🔆 **Solubilidade:** capacidade que um material (soluto) possui de se dissolver em determinada quantidade de outro material (solvente).

A água é conhecida como solvente universal, é um excelente veículo para transporte de princípios ativos, e para facilitar reações.

Grandezas físicas

🔆 *Volume:* Espaço ocupado (tridimensional) por um corpo ou objeto. No SI o volume é expresso em m³.

$$1 \text{ m}^3 = 1000 \text{ L}$$

$$1 \text{ m}^3 = 1000 000 \text{ mL}$$

$$1 \text{ cm}^3 = 1 \text{ mL}$$

Outras propriedades físicas

Massa: É sempre uma comparação com o padrão escolhido quilograma (kg).

🗩 **Peso:** é a força com que a terra nos atrai para sua superfície, devido a ação da gravidade. Indica a força gravitacional que o planeta exerce sobre a massa desse corpo.

> Na lua nosso peso é 1/6 do peso que apresenta na terra.

Outras propriedades físicas

🗩 **Densidade:** É relação entre a massa (m) e o volume (V) de determinado material.

> d= massa volume

O volume é uma grandeza física que varia com a temperatura e pressão.

Temperatura e calor: Temperatura está relacionada com energia térmica do material. Calor é a energia térmica em trânsito, sendo que é transferida de um corpo para outro, quando existe diferença de temperatura entre eles.

O calor depende da massa do corpo.

Outras propriedades físicas

Pressão: Exercida por uma força de 1 Newton, uniformemente distribuída sobre uma superfície plana de 1 metro quadrado de área, perpendicular à direção da força.

$$P = força (N)$$

Área (m²)

Diagrama de Mudança de Estado Físico

Influencia da Altitude

Quanto MAIOR a ALTITUDE, MENOR a TEMPERATURA DE EBULIÇÃO.

Diferença entre gás e vapor

Temperatura Crítica: acima da qual é impossível fazê-la mudar do estado gasoso para o estado líquido apenas pelo aumento de pressão.

A matéria está no estado de vapor quando sua temperatura está abaixo da temperatura crítica.

A matéria está no estado gasoso quando sua temperatura está acima

da temperatura crítica.

- 1) (UNIUBE-MG) Foi realizada uma festa de formatura do terceiro ano do ensino médio de uma escola de Uberaba. Dois formandos estavam muito entusiasmados com a festa, que aconteceu em um dia quente de primavera. Percebendo os fenômenos químicos e físicos que ocorriam ao seu redor, afirmaram:
- I) O gelo, que está nos copos, após a ingestão dos sucos, está derretendo com muita facilidade.
 - II) A carne do churrasco está ao ponto.
- III) Para acender o fogo na churrasqueira foi utilizado um pouco de etanol em gel, facilitando, assim, o processo.
- IV) A água da piscina não estava quente, porém visivelmente evaporava com facilidade devido à alta temperatura ambiente.
- Classifique os fenômenos em químicos ou físicos:
- 2) (Mackenzie) Certas propagandas recomendam determinados produtos, destacando que são saudáveis por serem naturais, isentos de química. Um aluno atento percebe que essa afirmação é:
- a) verdadeira, pois o <u>produto</u> é dito natural porque não é formado por substâncias químicas.
- b) falsa, pois as substâncias químicas são sempre benéficas.

- c) verdadeira, pois a Química só estuda materiais artificiais.
- d) enganosa, pois confunde o leitor, levando-o a crer que "química" significa não-saudável, artificial.
- e) verdadeira, somente se o produto oferecido não contiver água.
- 3) (FAAP-SP) No texto: "Um escultor recebe um bloco retangular de mármore e, habilmente, o transforma na estátua de uma celebridade do cinema", podemos identificar matéria, corpo e objeto e, a partir daí, definir esses três conceitos.
 - I. Matéria (mármore): tudo aquilo que tem massa e ocupa lugar no espaço.
- II. Corpo (bloco retangular de mármore): porção limitada de matéria que, por sua forma especial, se presta a um determinado uso.
- III. Objeto (estátua de mármore): porção limitada de matéria. Classifique as afirmações em verdade ou falso:
- 4) O ponto de fusão do ferro é igual a 1530 °C e o ponto de ebulição é de 2 450°C. Baseado nisso, qual será o estado físico do ferro nas seguintes temperaturas:
- a) 25 °C

b) 130 °C

c) 1459 °C

- d) 2 235 °C
- e) 3 002 °C

5) Observe a tabela abaixo e identifique o estado físico das substâncias na temperatura ambiente (considere 20 °C como a temperatura ambiente) e pressão de 1 atm:

Material	Ponto de Fusão (°C) em 1 atm	Ponto de Ebulição (°C) em 1 atm	
Cálcio	810,0	1200,0	
Éter etílico	-116,0	34,0	
Cobre	1083,0	2310,0	
Oxigênio	-218,4	-183,0	
Amônia	-78,0	-33,5	
Fenol	43	182	
Bromo	-7,3	63,0	
Pentano	-130	36,1	
Ouro	1063,0	2500,0	
Etanol	-117,0	78,0	

Fenômenos físicos e químicos

Fenômeno é toda e qualquer transformação que ocorre com a matéria. Podendo ser químico ou físico.

Fenômeno químico é todo aquele que ocorre com a formação de novas substâncias. Um fenômeno químico, como a combustão, transforma uma substância em outra, com diferentes propriedades químicas e físicas.

Fenômenos físicos causam transformações da matéria sem ocorrer alteração de sua composição química. Geralmente ocorre mudança de forma ou de estado físico.

Fenômenos físicos e químicos

Equações químicas

Representação das reações químicas.

Maneira para descrever as transformações químicas de forma prática e direta, colocando todas as informações em uma linha, de maneira a compreender rapidamente o que deveria ser descrito em várias palavras.

É processo de mudanças químicas, onde ocorre a conversão de uma substância, ou mais, em outras substâncias.

Sistema: é uma porção limitada do universo, considerada como um todo para efeito de estudo, é o foco da investigação. Podendo ser **homogêneo ou heterogêneo**.

Homogêneo é aquele que apresenta as mesmas propriedades em qualquer parte de sua extensão em que seja examinado.

Heterogêneo é todo que apresentam propriedades diferentes em qualquer parte de sua extensão.

Fases são diferentes porções homogêneas, limitadas por superfícies de separação, que constituem um sistema heterogêneo.

Sistemas.

<u>Sistema</u> é região na qual estamos interessados, o foco da investigação. <u>Vizinhança</u> é todo resto. O sistema mais a vizinhança formam o <u>universo</u>.

Sistema Aberto

S

Sistema Fechado

Sistema Isolado

Ocorre troca de matéria e energia com a vizinhança

Ocorre troca de energia, mas não de matéria.

Não ocorre troca de matéria e energia com o ambiente

Sistemas com n componentes sólidos geralmente possuem n fases. Os sistemas gasosos são homogêneos.

Sistema homogêneo ou é uma mistura monofásica ou uma substância pura.

- 1) (UFES) Observe a representação dos sistemas I, II e III e seus componentes. O número de fases em cada um é, respectivamente:
 - I- óleo, água e gelo.
 - II- água gaseificada e gelo.
 - III- água salgada, gelo, óleo e granito.

- 2) Classifique os sistemas a seguir, indicando o número de fases em cada um dos sistemas abaixo:
- I) água e cloreto de chumbo II (insolúvel);
- II) água e açúcar dissolvido;
- III) água e açúcar em excesso;
- IV) $H_2O_{(\ell)} \rightleftharpoons H_2O_{(v)}$
- V) $H_2O_{(s)} \rightleftharpoons H_2O_{(\ell)} \rightleftharpoons H_2O_{(v)}$;
- VI) $CaO_{(s)} + CuSO_{4(s)}$;
- VII) $N_{2(g)} + CO_{2(g)}$;
- VIII) água + açúcar + sal (dissolvidos);
- IX) água e sal em excesso

- 3) (UFG-GO) São transformações químicas:
 - 01) o apodrecimento de um fruto;
 - 02) a efervescência de um comprimido de sonrisal em água;
 - 04) o escurecimento da superfície de um metal exposta ao ar;
 - 08) o cozimento de alimentos;
 - 16) a fermentação da uva;
 - 32) o derretimento de um picolé de abacaxi.

Soma ()

- 4) Assinale a alternativa correta.
 - a) Todo sistema homogêneo é uma mistura homogênea.
 - b) Todo sistema heterogêneo é uma mistura heterogênea.
 - c) Todo sistema heterogêneo é monofásico.
 - d) Todo sistema homogêneo é polifásico.
- e) Todo sistema heterogêneo pode ser uma mistura heterogênea ou uma substância pura em mais de um estado físico.

- 5) (PUC-Campinas-SP) "O sistema formado por etanol, água e três cubos de gelo é X e contém Y substâncias químicas". Completa-se corretamente a afirmação mencionada substituindo-se X e Y, respectivamente, por:
 - a) bifásico duas.
 - b) bifásico três.
 - c) trifásico duas.
 - d) tetrafásico três.
 - e) pentafásico duas.
- 6) (CFT-SC) Em um laboratório de química, em condições ambientais, foram preparadas as seguintes misturas:
 - I) gasolina + areia
 - II) água + gasolina
 - III) oxigênio + nitrogênio
 - IV) água + sal
 - V) água + álcool

Quais misturas podem ser homogêneas?

Substâncias e misturas

Substâncias puras.

São materiais que apresentam composição química, propriedades físicas e químicas constantes, quando medidas nas mesmas condições de temperatura e pressão. Podendo ser *simples* ou *composta*.

Simples são as substâncias que são formadas por apenas um mesmo elemento químico.

Compostas são as substâncias formadas por diferentes elementos químicos.

SUBSTÂNCIAS COMPOSTAS

Substâncias e misturas

Alotropia.

Denominação atribuída por Jöns Jacob Berzelius ao fenômeno em que um mesmo elemento químico pode originar duas ou mais substâncias simples diferentes. São alótropos os carbonos, enxofre, oxigênio, entre outros.

Substâncias e misturas

Misturas.

Duas ou mais substâncias diferentes (independentemente se são simples ou compostas). Ela apresenta características físicas (ponto de fusão, ponto de ebulição, densidade, tenacidade etc.) diferentes e variáveis (não fixas) em comparação com as substâncias que a compõem.

1º revisão: 3ª repisão: **Assunto:** Substâncias puras e Mapa n° 2ª repisão: 4ª repisão: misturas É representada por uma fórmula Simples- É formada por átomos de um único elemento química e possui propriedades químico. Ex.: H2,O2, O3, S8, Au. características: ponto de fusão, ponto de ebulição, densidade etc Substância Composta-É formada por átomos de dois ou mais Pura Homogêneaelementos químicos diferentes. Ex.: CO2, H2O, H2SO4 Quando apresenta uma única fase. Ex.: água + sal. Heterogênea-É uma combinação de duas ou mais Quando apresenta Fase-cada um substâncias, na qual cada uma duas ou mais fases. dos aspectos delas mantém sua identidade Ex.: água + óleo. DIAUGIA

Fonte: www.aquimicaesquematizada.com/substancias-puras-e-misturas/

enxergados.

química.

- 1) (Mackenzie-SP) Água mineral engarrafada, propanona (C_3H_6O) e gás oxigênio são classificados, respectivamente, como:
- 2) Abaixo temos quatro sistemas formados por três tipos diferentes de átomos, representados por bolinhas de cores diferentes. Responda às perguntas abaixo referentes à classificação de cada um dos sistemas:
 - a) Quais são substâncias simples?
 - b) Quais são substâncias compostas?
 - c) Quais são misturas?
 - d) Quantos componentes apresenta cada sistema?
 - e) No caso de sistemas com mais de um componente, quantos componentes são substâncias simples e quantos são substâncias compostas?

3) Relacione corretamente as colunas a seguir:

Coluna I:

- a) Mistura líquida homogênea constituída por duas substâncias.
- b) Mistura bifásica formada por três substâncias.
- c) Mistura trifásica formada por duas substâncias.
- d) Solução líquida.
- e) Mistura homogênea constituída por três substâncias.

Coluna II:

- I. água + álcool + areia
- II. vapor de água + gás carbônico + gás oxigênio
- III. sal + água
- IV. água + areia + gelo
- V. álcool hidratado.

4) Observe os dados fornecidos na tabela abaixo e classifique as substâncias A, B e C como substâncias puras, misturas heterogêneas ou homogêneas.

Amostras	Aspecto visual	Aspecto microscópico	TF (°C)	TE (°C)
A	Líquido roxo	Heterogêneo	Variável	Variável
В	Liquido azul	Homogêneo	Variável	Variável
C	Líquido roxo	Homogêneo	-7	59

- 5) (Mackenzie-SP) Água mineral engarrafada, propanona (C_3H_6O) e gás oxigênio são classificados, respectivamente, como:
- a) substância pura composta, substância pura simples e mistura homogênea.
- b) substância pura composta, mistura homogênea e substância pura simples.
- c) mistura heterogênea, substância pura simples e substância pura simples.
- d) mistura homogênea, substância pura composta e substância pura composta.
- e) mistura homogênea, substância pura composta e substância pura simples.

Os processos de separação de misturas são feitos diariamente, desde os laboratórios até nas residências. é um processo que permite separar componentes de uma mistura, tanto em pequena escala, como nos laboratórios, quanto em grande, como na indústria química e diversas outras.

Reciclagem do lixo;

Refinamento do petróleo;

Separação de minérios;

Obtenção de minérios;

A água que chega nas torneiras;

Reciclagem do lixo.

Todo resíduo proveniente das atividades humanas ou naturais, gerado nos centros urbanos, é considerado lixo. Conforme sua origem- domiciliar, industrial, hospitalar, agrícola- o lixo deve ser reciclado ou encaminhado para um tratamento ou disposição final adequado.

O principal método é catação, que consiste em separar na diferença de tamanho e de aspectos das partículas de uma mistura sólida de granulados. Conhecido como *coleta seletiva*.

Além da importância econômica, ameniza problemas ambientais graves.

Reciclagem do lixo.

As instalações de tratamento físico do lixo apresentam: balança, fosso de recepção, transportadores, esteiras, transportadores, esteiras de catação manual, trituração, peneiração e pátio de compostagem.

Peneiração (tamisação): é um processo pelo qual se separam misturas sólidas granulados com partículas de tamanhos diferentes com uma peneira.

Reciclagem papel: produz cerca de 10,4 milhões de toneladas, sendo reciclados cerca de 45,7%. Estima-se que diminui a poluição do ar em 73%, das águas em 44%; e economia de energia em 71%.

Reciclagem do lixo.

Reciclagem de metais: Recicla cerca de 98% do alumínio, aproximadamente 267,1 mil toneladas. Polui 86% menos ar; 76% menos água, e economia de 95%. A energia gasta para reciclar uma tonelada de latinhas, é apenas 5% se fosse produzir da bauxita.

Também são recicláveis lata de folha de flandres (latas de aço), sucatas de ferro e cobre.

Reciclagem do vidro.

Baixo valor na reciclagem. Reduz a extração da areia em 55%, diminuindo a emissão de poluentes em 6%, e consumo de energia em 32%.

Reciclagem de plásticos: O índice é de 21%, de 7127 mil toneladas produzidas em 2012. Sobe para 58,9% quando considerados os PET´s.

A principal é a *primária* que se baseia na regeneração. Um mercado crescente é a *secundária*, que consiste no processamento do plástico ou não.

Tratamento da água.

Outras substâncias químicas dão cor e gosto a água.

Alguns íons, como os carbonatos, podem alterar o pH da água tornando-o levemente ácido.

Pode ser encontrada nos três estados físicos.

Figura 3 – Distribuição da água doce no planeta. Adaptado de Shiklomavnov (1998), citado por Tundisi (2003).

Figura 4 – Distribuição relativa dos recursos hídricos renováveis por continente.

Tratamento da água.

O setor agrícola é responsável por 65% do consumo de água doce no mundo;

Para produzir alimentos para uma pessoa por dia, é necessário de 2000 a 5000 litros de água;

Nos últimos 50 anos, a degradação da qualidade da água aumentou em níveis alarmantes

Tratamento da água.

Estima que 80-90% das internações ocorram por causas de doenças transmitidas pela água.

Tratamento da água.

Tratamento do esgoto

- ➤ Tratamento primário (físico): o esgoto passa por grades e peneiras para remover materiais sólidos grandes, como lixo. Depois, vai para tanques de decantação, onde sólidos menores sedimentam no fundo.
- Tratamento secundário (biológico): utiliza-se bactérias para decompor a matéria orgânica presente no esgoto a fim de reduzir significativamente a poluição biológica.
- Tratamento terciário (químico): em algumas estações, há uma etapa adicional para remover nutrientes como fósforo e nitrogênio, além de desinfetar a água com cloro ou outro agente

Tratamento da água.

Associe as etapas do processo utilizado nas ETA's (Estações de tratamento de água) com o procedimento característico.

- 1- Filtração
- 2- Floculação
- 3- Decantação
- 4- Filtros de carbono
- 5- Desinfecção
- () adição de cloro para eliminar os germes nocivos à saúde.
- () a água é filtrada para a retirada de partículas grandes de sujeira.
- () a água fica parada para que os flocos mais pesados se depositem no fundo.
- () sulfato de alumínio é adicionado para que as partículas de sujeira se juntem, formando pequenos coágulos.

Processos mecânicos de separação.

https://pt.slideshare.net/7fibn/cfq-processos-fsicos-de-separao-de-misturas

Processos mecânicos de separação.

Processo	Separação	características
Levigação	Sólido-sólido, separado por diferencia de densidade (ouro)	Emprega um fluido para arrastar o componente menos denso.
Flotação	Sólido-sólido, geralmente de minérios pulverizados.	O óleo adere a superfícies dos minérios, tornando impermeável em água.
Dissolução fracionada	Sólido-sólido, pela diferença de solubilidades dos sólidos.	O líquido dissolve apenas um dos sólidos.
Sedimentação fracionada	Sólido-sólido, cujos componentes apresentam uma acentuada diferença de densidade.	Adiciona aos sólidos, um líquido de densidade intermediária.

Processos mecânicos de separação.

Levigação

Flotação

Sedimentação fracionada

Outros métodos de separação.

- Ventilação: Arraste por corrente de ar de um dos componentes da mistura que seja bem leve. Exemplos: separação das cascas de grãos de café, cereais e amendoim torrado;
- Extração por solventes: Usa-se algum líquido para extrair um ou mais componentes da mistura. Por exemplo, se adicionarmos uma solução aquosa de cloreto de sódio em uma mistura de gasolina e álcool.
- Filtração: É um método de separação de misturas heterogêneas sólido-líquido ou gases-sólidos que se baseia na passagem da mistura por um filtro. Existem dois tipos de filtração: a comum e a vácuo.
- Separação magnética: É a aproximação de um ímã magnético de uma mistura que contém alguma substância que é atraída pelo ímã,

DUCAÇÃO, CIÊNCIA E TECNOLOGIA

Separação de misturas

Outros métodos de separação.

<u>Destilação</u>: É usada para separar cada um dos componentes de misturas sólido-líquido ou líquido-líquido miscíveis. Existem dois tipos: a <u>destilação simples e a destilação fracionada</u>.

Fracionada

Outros métodos de separação.

Ventilação

Separação magnética

Filtração a vácuo

Exercícios

- 1) Sobre a separação de misturas em laboratório, analise as alternativas abaixo. A resposta é a soma dos números das alternativas corretas.
- 01. Os componentes do ar atmosférico podem ser separados diretamente por destilação fracionada.
- 02. A tamisação é utilizada para separar sólidos cujo tamanho das partículas seja sensivelmente diferentes.
- 04. A levigação é usada para separar mistura de sólidos de diferentes densidades com uma corrente de água.
- 08. A flotação é utilizada para separar sólidos de diferentes densidades utilizando-se óleo para aderir às partículas do sólido mais denso.
- 16. A sedimentação fracionada baseia-se na diferença de solubilidade dos materiais da fase sólida em um determinado líquido.
- 32. É possível separar uma mistura de arroz cru e açúcar adicionando-se água suficiente e filtrando a mistura em seguida. Esse procedimento envolve um processo mecânico e um processo físico.
 - 64. A mineração artesanal do ouro envolve um processo de levigação.

Exercícios

- 2) É possível separar a mistura heterogênea SAL + AREIA? Qual e como seria o processo de separação?
- 3) Na perfuração de uma jazida petrolífera, a pressão dos gases faz com que o petróleo jorre para fora. Ao reduzir-se à pressão, o petróleo bruto para de jorrar e tem de ser bombeado. Devido às impurezas que o petróleo bruto contém, ele é submetido a dois processos mecânicos de purificação antes do refino: separá-lo da água salgada e separá-lo de impurezas sólidas, como areia e argila. Esses processos mecânicos de purificação são, respectivamente:
 - a) decantação e filtração
 - b) decantação e destilação fracionada
 - c) filtração e destilação fracionada
 - d) filtração e decantação
 - e) destilação fracionada e decantação

Exercícios

- 4) (Fuvest-SP) Para a separação das misturas: gasolina-água e nitrogêniooxigênio, os processos mais adequados são respectivamente:
- a) decantação e liquefação.

b) sedimentação e destilação.

c) filtração e sublimação.

d) destilação e condensação.

- e) flotação e decantação.
- 5) Faça a associação correta entre as colunas, relacionando a(s) técnica(s) que deve(m) ser empregada(s) para separar os componentes de cada mistura a fim de obter todos os componentes:

Coluna I:

- (1) Óleo + água
- (2) Álcool + éter
- (3) Sal + água
- (4) Limalhas de ferro + areia
- (5) Areia + cascalho
- (6) Ar atmosférico
- (7) Óleo + água + sal

Coluna II:

- a) Evaporação
- b) Filtração
- c) Destilação simples
- d) Decantação
- e) Destilação fracionada
- f) Levigação
- g) Decantação e destilação
- h) Liquefação
- i) Separação magnética
- j) Peneiração ou tamisação