Machine Learning (IT3190E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

The course's content:

- Introduction
- Performance evaluation of ML system
- Supervised learning
- Unsupervised learning
 - Clustering problem
 - Partition-based clustering: k-Means
 - Hierarchical clustering: HAC
 - Recommender system and Collaborative filtering
- Ensemble learning
- Reinforcement learning

Supervised vs. Unsupervised learning

Supervised learning

- The training set is a set of examples, each associated with a class/output value
- The goal is to learn (approximate) a hypothesis (e.g., a classification function, or a regression function) that fits the given labelled dataset
- The learned hypothesis will then be used to classify/predict future (unseen) examples

Unsupervised learning

- The training set is a set of instances with no class/output value
- The goal is to find some intrinsic groups/structures/relations

Clustering

- The most popular and important unsupervised learning method
 - There exist other unsupervised learning methods, such as collaborative filtering, association rules mining, etc.
- Clustering
 - Take as input an unlabeled dataset (i.e., a set of instances with no class/output value)
 - Group the instances in clusters
- A cluster is a set of instances that are
 - similar together (i.e., by some measure/meaning), and
 - dissimilar to the instances in other clusters

Clustering – Example

A clustering example, where the instances are grouped into three clusters

[Liu, 2006]

Clustering methods – Main components

- A distance (or similarity, or dissimilarity) function
- A clustering algorithm
 - Partition-based clustering
 - Hierarchical clustering
 - Self-organizing map (SOM)
 - Mixture models
 - ...
- Clustering quality measure
 - Inter-cluster distance/dissimilarity → To be maximized
 - Intra-cluster distance/dissimilarity → To be minimized

Clustering problem: Performance evaluation

- How to evaluate clustering efficiency?
 - External evaluation: Use additional external information (e.g., the class label of each example)
 - Example: Accuracy, Precision,...
 - Internal evaluation: Based on clustered examples only (without additional external information)
 - Very challenging!
 - Is the focus to be presented next

Internal evaluation: Principle

Compactness (coherence)

Distance between examples in the same cluster (intra-cluster distance)

Separation

The distance between the examples belongs to 2 different clusters (intercluster distance)

The distance between the examples belongs to 2 different clusters (inter-cluster distance)

Internal evaluation: Metrics (1)

- RMSSTD (Root-mean-square standard deviation)
 - Evaluate the cohesion (compactness) of the obtained clusters
 - Expected that the RMSSTD value is as small as possible!

$$RMSSTD = \sqrt{\frac{\sum_{i=1}^{k} \sum_{x \in C_i} ||x - m_i||^2}{P \sum_{i=1}^{k} (n_i - 1)}}$$

- k: The number of clusters
- C_i: Cluster i
- m_i: The center (centroid) of cluster C_i
- P: The number of dimensions (i.e., the number of attributes) used to represent examples
- n_i: The number of examples in cluster C_i

Internal evaluation: Metrics (2)

R-squared

- Evaluate the separation between the obtained clusters
- Expected that the R-squared value is as large as possible!

$$R\text{-}squared = \frac{\sum_{x \in D} \|x - g\|^2 - \sum_{i=1}^k \sum_{x \in C_i} \|x - m_i\|^2}{\sum_{x \in D} \|x - g\|^2}$$

- k: The number of clusters
- C_i: Cluster i
- m_i: The center (centroid) of cluster C_i
- D: The entire set of examples
- g: The center (centroid) of the entire set of examples

Internal evaluation: Metrics (3)

Dunn index

- (Separation/Compactness): The ratio between the minimum inter-cluster distance and the maximum intra-cluster distance
- Expected that the **Dunn index** is as large as possible!

$$Dunn - index = \frac{min_{1 \leq i < j \leq k} inter - distance(i, j)}{max_{1 \leq h \leq k} intra - distance(h)}$$

- k: The number of clusters
- inter-distance(i,j): The distance between the 2 clusters i and j
- intra-distance(h): The distance (dissimilarity) between the examples of cluster h

Machine Learning

11

Internal evaluation: Metrics (4)

Davies-Bouldin index

- (Compactness/Separation): The ratio of the average intracluster distance and the inter-cluster distance
- Expected that the Davies-Bouldin index is as small as possible!

$$DB - index = \frac{1}{k} \sum_{i=1}^{k} max_{j \neq i} \frac{\frac{1}{n_i} \sum_{x \in C_i} d(x, m_i) + \frac{1}{n_j} \sum_{x \in C_j} d(x, m_j)}{d(m_i, m_j)}$$

- k: The number of clusters
- n_i, m_i: The number of examples and the centroid of cluster i
- n_i, m_i : The number of examples and the centroid of cluster j
- $d(m_i, m_j)$: The distance between the 2 cluster centroids m_i and m_j

k-means clustering

- The most popular method of partition-based clustering
- Let's call $D=\{x_1,x_2,...,x_r\}$ the dataset
 - Where x_i is an instance (i.e., a vector in an n-dimensional vector space X)
- The k-means algorithm partitions the given dataset into k clusters
 - Each cluster has a cluster center, called centroid
 - *k* (i.e., the number of clusters) is pre-defined (i.e., decided by the system designer)

k-means algorithm – Main steps

Given a pre-defined value of *k*

- Step 1. Randomly choose *k* instances (i.e., **seeds**) to be the *initial centroids* (i.e., the *k* initial clusters)
- Step 2. For each instance, assign it to the cluster
 (among the k clusters) whose centroid is closest to the instance
- Step 3. For each cluster, re-compute its centroid based on the instances in that cluster
- Step 4. If the convergence criterion is satisfied, then stop; otherwise, go to Step 2

k-means(D, k)

D: The dataset

k: The number of clusters

Randomly select k instances in D as the initial centroids

while not CONVERGENCE

for each instance $x \in D$

Compute the distance from x to each centroid

Assign $\, \mathbf{x} \,$ to the cluster whose centroid is closest to $\, \mathbf{x} \,$

end for

for each cluster

Re-compute its centroid based on its own instances

end while

return {The k clusters}

Convergence criterion

The clustering process stops if:

- no (or insignificant) re-assignment of instances to different clusters, or
- no (or insignificant) change of centroids, or
- insignificant decrease in the sum of squared error:

$$Error = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mathbf{m_i})^2$$

where

- C_i: The *i*-th cluster
- \mathbf{m}_{i} : The centroid of cluster C_{i} , and
- $d(\mathbf{x}, \mathbf{m}_i)$: The distance between instance \mathbf{x} and centroid \mathbf{m}_i

k-means algorithm – Illustration (1)

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

[Liu, 2006]

k-means algorithm – Illustration (2)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

[Liu, 2006]

Centroid computation and Distance function

Example of the centroid computation: Mean centroid

$$\mathbf{m_i} = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$

- (vector) m_i is the centroid of cluster C_i
- $|C_i|$ is the size of cluster C_i (i.e., the number of instances in C_i)
- Example of the distance function: Euclidean distance

$$d(\mathbf{x}, \mathbf{m_i}) = \|\mathbf{x} - \mathbf{m_i}\| = \sqrt{(x_1 - m_{i1})^2 + (x_2 - m_{i2})^2 + \dots + (x_n - m_{in})^2}$$

- (vector) m_i is the centroid of cluster C_i
- $d(x, m_i)$ is the distance between instance x and centroid m_i

k-means algorithm — Strengths

Simple

- Easy to implement
- Easy to understand

Efficient

- The time complexity ~ O(rkt)
 - r: The number of instances (i.e., the size of the dataset)
 - k: The number of clusters
 - t: The number of iterations
- If both k and t are small, then k-means is considered as a linear algorithm
- k-means is the most popular clustering algorithm

Machine Learning

20

k-means algorithm – Weaknesses (1)

- The value of k (i.e., # of clusters) must be pre-defined
- The *k*-means algorithm needs the mean definition (in order to compute a cluster's centroid)
 - For nominal attributes, the centroid can be represented by the most frequent values of those attributes
- The *k*-means algorithm is sensitive to *outliers*
 - Outliers are such instances that are (very) far away (dissimilar)
 from all the other instances
 - Outliers may be resulted by errors in the data recording/collection
 - Outliers may be special/abnormal instances with very different values

k-means algorithm – Outliers problem

(A): Undesirable clusters

(B): Ideal clusters

[Liu, 2006]

Machine Learning

22

Solving the outliers problem

- Solution 1. To remove some instances in the clustering process that are much further away from the centroids than other instances
 - To be safe, track the outliers over a few (instead of only one) iterations
- Solution 2. To perform a random sampling
 - Since a sampling process selects only a small subset of the dataset, the chance of selecting an outlier is very small
 - Assign the rest of the dataset to the clusters by distance (or similarity) comparison

k-means algorithm – Weaknesses (2)

■ The *k*-means algorithm is sensitive to the initial centroids

(A). Random selection of seeds (centroids)

(C). Iteration 2

[Liu, 2006]

k-means algorithm – The initial seeds (1)

- To use different seeds → A better result!
 - Do many runs of k-means, each starting with different random initial seeds

(A). Random selection of k seeds (centroids)

[Liu, 2006]

k-means algorithm – The initial seeds (2)

- Randomly select the first centroid (m_1)
- Select a second centroid (m₂) that is as far away as possible from the first one

•

• Select the *i*-th centroid (m_i) that is as far away as possible from the closest of $\{m_1, m_2, \dots, m_{i-1}\}$

• ...

26

k-means algorithm – Weaknesses (3)

The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres)

(A): Two natural clusters

(B): k-means clusters

27

[Liu, 2006]

k-means algorithm – Summary

- Despite its weaknesses, k-means is still the most popular algorithm due to its simplicity and efficiency
 - Other clustering algorithms have also their own weaknesses
- No clear evidence that any other clustering algorithm performs better than k-means in general
 - Some clustering algorithms may be more suitable for some specific types of dataset, or for some specific application problems, than the others
- Comparing the performance of different clustering algorithms is a difficult task
 - No one knows the correct clusters!

Hierarchical agglomerative clustering (1)

- Produce a nested sequence of clusters called dendrogram
 - Also called taxonomy/hierarchy/tree of instances

Hierarchical agglomerative clustering (2)

- Hierarchical agglomerative (bottom-up) clustering builds the dendrogram from the bottom level
- The algorithm:
 - At the beginning, each instance forms a cluster (also called a node)
 - Merge the most similar (nearest) pair of clusters
 - i.e., The pair of clusters that have the least distance among all the possible pairs
 - Continue the merging process
 - Stop when all the instances are merged into a single cluster (i.e., the root cluster)

HAC algorithm – Example

31

Distance of two clusters

- The HAC algorithm requires the computation of the distance between two clusters
 - Before the merging, for every possible pairs of clusters the distance between the two clusters is computed
- Different methods to measure the distances of two clusters (i.e., resulting in variations of the HAC algorithm)
 - Single link
 - Complete link
 - Average link
 - Centroid link

• ...

HAC – Single link

- The distance between two clusters is the minimum distance between the instances (members) of the two clusters
- Tend to generate "long chains"

Two natural clusters are split into two

[Liu, 2006]

HAC – Complete link

- The distance between two clusters is the maximum distance between the instances (members) of the two clusters
- Sensitive to outliers

[Liu, 2006]

HAC – Average link

- Average-link distance is a compromise between complete-link and single-link distances
 - To reduce the sensitivity of complete-link clustering to outliers
 - To reduce the tendency of single-link clustering to form long chains (that do not correspond to the intuitive notion of clusters)
- The distance between two clusters is the average distance of all pairs of instances (one from each cluster)

HAC – Centroid link

 The distance between two clusters is the distance between their centroids

HAC algorithm – Complexity

- All the variations of the HAC algorithm have the complexity of at least O(r²)
 - r: The number of instances (i.e., the size of the dataset)
- Single-link can be done in O(r²)
- Complete-link and average-link can be done in O(r²logr)
- Because of the complexity, the HAC algorithm is hard to use for large datasets

Clustering – Distance functions

- A key component to clustering
 - "similarity functions" and "dissimilarity functions" are also commonly used terms
- There are different distance functions for
 - Different types of data
 - Numeric data
 - Nominal data
 - Specific application problems

Distance functions for numeric attributes

- The family of geometry distance functions (Minkowski distance)
- Most commonly used functions
 - Euclidean distance and
 - Manhattan (a.k.a. city-block) distance
- Let's denote $d(\mathbf{x}_i, \mathbf{x}_j)$ the distance between the two instances (vectors) \mathbf{x}_i and \mathbf{x}_j
- The general Minkowski distance (p is a positive integer)

$$d(\mathbf{x_i}, \mathbf{x_j}) = [(x_{i1} - x_{j1})^p + (x_{i2} - x_{j2})^p + \dots + (x_{in} - x_{jn})^p]^{1/p}$$

Distance functions for binary attributes

- We use a confusion matrix to introduce the distance function
 - a: The number of attributes with value of 1 for both
 x_i and x_j
 - d: The number of attributes with value of 0 for both
 x_i and x_j
 - b: The number of attributes for which the value in x_i is 1 whereas the value in x_i is 0
 - c: The number of attributes for which the value in x_i is 0 whereas the value in x_i is 1
- Simple matching coefficient: The proportion of mismatches of the attribute values between the two examples x_i and x_j

$$d(\mathbf{x_i}, \mathbf{x_j}) = \frac{b+c}{a+b+c+d}$$

Distance functions for nominal attributes

- The distance function is also based on the simple matching method
- Given two examples x_i and x_j, let's denote p the number of attributes and q the number of attributes whose values are identical in x_i and x_j

$$d(\mathbf{x_i}, \mathbf{x_j}) = \frac{p - q}{p}$$

Recommender system: Information overload

- The problem of information overload
 - Too much information
 - Too many options of a certain product/service
- In many information search tasks (e.g., product selection) the user:
 - is not aware of the range of available options,
 - may not know exactly what he wants to search for,
 - if presented with some options, may not be able to choose
- It is (very) difficult for a user to make a decision
 - Not enough of time
 - Not enough of effort
 - Not enough of knowledge of the (product/service) domain

Machine Learning

42

What news should I read?

Search

yahoo!

Search News

Machine Learning

43

Quang Nhat Mail

What movie should I see?

What book should I buy?

What accommodation should I select?

recommendations

, we found more properties like Aguila Atlantis Hotel

Machine Learning

46

Information overload

Which one(s) should I select?

Which one(s) best suit for me?

Information search vs. discovery

- Search means to locate known objects in a content repository
- Discovery means to explore some promising space for partially specified or unknown objects
- There are many search tools, but few discovery environments

Recommender systems (RSs)

- RSs are decision-making support tools
 - Aimed at addressing the information overload problem
 - Provide product and service recommendations to a user
 - Personalized (adapted) to the user's needs and preferences
 - Appropriate at the user's request context
- Inspiration of RSs
 - In everyday life we rely on recommendations from other people (word of mouth, recommendation letters, reviews in newspapers, ...)
- RSs are based on a number of technologies:
 - Information Filtering
 - Machine Learning
 - Adaptive and Personalized Systems,
 - User Modeling
 - **-** ...

Machine Learning

49

Recommender systems (RSs)

Successful application domains

E-Commerce, Entertainment, Travel and tourism, E-Learning, E-Health, Social network, etc.

Examples on contribution of RSs in practice:

- Netflix: 2/3 of all movies viewed by users are based on the recommendation function
- Google News: The recommendation function helps increase the number of views by 38%
- Amazon: 35% of total sales value is due to the recommendation function

Recommender systems (RSs)

- Recommender System can be seen as a function
- Given:
 - User model (e.g., ratings, preferences, demographics, situational context, etc.)
 - Items (with or without description of item attributes)
- Find:
 - Relevance score. Used for ranking.

Machine Learning

51

Traditional recommendation approaches

- Collaborative filtering (a.k.a. Social filtering)
 - Assumption: Users who had similar tastes in the past will have similar tastes in the future
- Content-based
- Knowledge-based

Social filtering

So far you have rated **0** movies.

MovieLens needs at least **15** ratings from you to generate predictions for you.

Please rate as many movies as you can from the list below.

		next >
	Your Rating	Movie Information
***	3.0 stars 💌	Austin Powers: International Man of Mystery (1997) Action, Adventure, Comedy
****	4.0 stars 💌	Contact (1997) Drama, Sci-Fi
???	Not seen 💌	Crouching Tiger, Hidden Dragon (Wu Hu Zang Long) (2000) Action, Adventure, Drama, Fantasy, Romance
???	Not seen 💌	Demolition Man (1993) Action, Comedy, Sci-Fi
???	Not seen 💌	Eraser (1996) Action, Drama, Thriller
???	Not seen 💌	Maverick (1994) Action, Comedy, Western
****	4.5 stars 💌	Philadelphia (1993) Drama
****	3.5 stars 💌	Piano, The (1993) Drama, Romance
???	Not seen 💌	Toy Story 2 (1999) Adventure, Animation, Children, Comedy, Fantasy
****	3.5 stars 💌	X-Men (2000) Action, Adventure, Sci-Fi
		next >

To getachine westing movies click the next> link.

movielens

helping you find the right movies

Welcome

You've rated 16 movies.

You're the 26th visitor in the past hour.

★★★★★ = Must See ★★★★☆ = Will Enjoy ★★★☆☆ = It's OK ★★☆☆☆ = Fairty Bad ★☆☆☆☆ = Awful

Home | Forums | Manage Buddies | Your Account | Help

Shortcuts Search Search Titles Go! Use selected buddies! Combined Search	Tags Related to You	Dates: All w Printer-F r Search: In est Cinemat	You've searched for all titles. Jound 8220 movies, sorted by Prediction Genres: All Exclude Genres: None Domain: All Format: All Languages: All Friendly Page Download Results Suggest a Title Netflix queue (178), Futuristmovies.com (134), My DVD: tography) (90), Oscar (Best Picture) (85), (about tags) Page 1 of 548 Go to page: .109218327436545last	s (123), ge 2>
All Genres All Dates Domain: All movies	(hide) Predictions for you \$	Your Ratings	Movie Information	Wish List
Tag: Use selected buddies!		ot seen 💌	Cat Returns, The (Neko no ongaeshi) (2002) DVD info imdb Adventure, Animation, Children, Fantasy - Japanese anime ■, cats ■, In Netflix queue ■	
<u>uu:</u>	A A A A A	otseen 🔻	Immigrant, The (1917) DVD VHS info imdb add tag Comedy - Silent	
Advanced Search	****	otseen 💌	Experiment, The (Das Experiment) (2001) DVD VHS info imdb add tag Drama, Thriller - German	
Select Buddies	****	otseen 💌	Thesis (Tesis) (1996) DVD info imdb add tag Drama, Horror, Thriller - Spanish	
☐ Test Buddy What are buddies?	****	otseen 💌	Howl's Moving Castle (Hauru no ugoku shiro) (2004) DVD info imdb Adventure, Animation, Children, Fantasy, Romance - Japanese	
	[add tag] Pi	opular tags:	06 Oscar Nominated Best Movie - Animation 3, In Netflix queue	Ħ
	Machine Lea	arning	Why We Fight (2005) info imdb Documentary Military ■, In Netflix queue ■, controversial ■	55

Matrix of ratings

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24 2	25
	a			1		4	5			4		3					2			4		2				
	b			4							3							5	1		3					
	C		5		4			4						3		5					4		5			
	d								3				5				3			4		2			3	
	е		3					5			4	5				5					1			5	4	
	f			4				1		3	5		4	1		5	4	4		4				3		
	g	2	4				4		2			5		1	4	5		4	2	4		5			4	
	h			2		1		4		3	5		4	2		5	4	5						5		
	Т		1					3			5				5		4	4		5			4		3	
Users	j			4			4				5			1		5		4		4				4		
	k		5				4			2		5		1	5		4		2		4				2	
,						3			3				4	1		4		4	2	4					3	
	m	5		3					5	3		5	4		5	5	3			4	4	5	4		4	
	n			1		4	5				4	5		1	5		4		3		4		4	3		
	0			4			4				5		4		5			4	2		5		5		3	
	р				4			5								5	4		2	4	4	5	4		2	
	q					3			3					1	5		4	4		4			4		3	
	r		4			1	4		2					2		5		4				5	4		4	
	S			2		4		4			5			1			4		2	4		4		5		
	t		1		4			3					4		5	5		4			4				3	
	u			2		1		4		3				1		5	4		2	4		5	4			
	٧					4	5				4	3		5			2					2			5	
	W				2			2		3			5			4	5		4	2		3	4			
	X	4			5				3		3				4	5					1					
	v			1			3				2	3						3	3		5		4			

Items

Collaborative filtering

Collaborative filtering recommendation

- For a target user (i.e., to whom a recommendation is produced) the set of his ratings to the items are collected
- Neighbor formation. The users most similar to the target user (according to a similarity function) are identified
- The items selected (bought/interested) by these similar users are identified
- For each of these items, a prediction (i.e., the estimated rating that the target user may give to the item) is generated
- Based on these predicted ratings, a set of top N items (i.e., those with highest estimated ratings) are recommended

Nearest neighbor collaborative filtering

1-Nearest neighbor can be easily wrong

Collaborative filtering

- A collection of users u_i , i=1, ..., m and a collection of products p_i , j=1, ..., m
- An $n \times m$ matrix of ratings v_{ij} , with $v_{ij} = ?$ if user i has not rated product j
- A predicted rating of user i on product j is computed as:

$$v *_{ij} = v_i + K \sum_{v_{ki} \neq ?} u_{ik} (v_{kj} - v_k)$$

□ Where, v_i is the average rating of user i, K is a normalization factor such that the sum of u_{ik} is 1, and

$$u_{ik} = \frac{\sum_{l} (v_{il} - v_i)(v_{kl} - v_k)}{\sqrt{\sum_{l} (v_{il} - v_i)^2 \sum_{l} (v_{kl} - v_k)^2}}$$

Pearson similarity of user i and user k

61

Where the sums (and averages) are over products 1, such that v_{il} and v_{kl} are not "?"

[Breese et al., 1998]

Example

Users' similarities: $u_{i5} = 0.5$, $u_{i8} = 0.5$, $u_{i9} = 0.8$

$$v^*_{ij} = v_i + K \sum_{v_{ki} \neq ?} u_{ik} (v_{kj} - v_k)$$

$$v*_{ij} = 3.2 + 1/(0.5 + 0.5 + 0.8) * [0.5 (4 - 4) + 0.5 (3 - 3.5) + 0.8 (5 - 3)$$

= 3.2 + 1/1.8 * [0 - 0.25 + 1.6] = 3.2 + 0.75 = 3.95

More on ratings: Explicit ratings

- Probably the most precise ratings
- Most commonly used (1 to 5, 1 to 7 Likert response scales)
- Research topics
 - Optimal granularity of scale; indication that 10-point scale is better accepted in movie domain
 - An even more fine-grained scale was chosen in the joke recommender discussed by Goldberg et al. (2001), where a continuous scale (from −10 to +10) and a graphical input bar were used
 - Multi-dimensional ratings (multiple ratings per movie such as ratings for actors and sound)
- Main problems
 - Users not always willing to rate many items
 - Number of available ratings could be too small → Sparse rating matrices → Poor recommendation quality
 - How to stimulate users to rate more items?

More on ratings: Implicit ratings

- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating
- Clicks, page views, time spent on some page, demo downloads ...
- Implicit ratings can be collected constantly and do not require additional efforts from the user
- Main problem
 - One cannot be sure whether the user behavior is correctly interpreted
 - For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else
- Implicit ratings can be used in addition to explicit ones; question of correctness of interpretation

64

Collaborative filtering issues

- Pros: <a>
 - well-understood, works well in some domains, no knowledge engineering required
- Cons: 🖣
 - requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results
- How to evaluate the prediction quality?
 - MAE / RMSE: What does an MAE of 0.7 actually mean?
 - Serendipity (novelty and surprising effect of recommendations)
 - Not yet fully understood
- What about multi-dimensional ratings?

References

- B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer, 2006.
- Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich (2010). Recommender Systems: An Introduction. Cambridge University Press.