In the equation $k_1 + k_2 + k_3 = 0$, we are free to select two of the variables arbitrarily. Choosing, on the one hand, $k_2 = 1$, $k_3 = 0$ and, on the other, $k_2 = 0$, $k_3 = 1$, we obtain two linearly independent eigenvectors

$$\mathbf{K_2} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{K_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

EXERCISES FOR APPENDIX II

Answers to selected odd-numbered problems begin on page ANS-31.

BASIC DEFINITIONS AND THEORY

1. If
$$A = \begin{pmatrix} 4 & 5 \\ -6 & 9 \end{pmatrix}$$
 and $B = \begin{pmatrix} -2 & 6 \\ 8 & -10 \end{pmatrix}$, find

$$(a) A + B$$

(a)
$$A + B$$
 (b) $B - A$ (c) $2A + 3B$

2. If
$$\mathbf{A} = \begin{pmatrix} -2 & 0 \\ 4 & 1 \\ 7 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 & -1 \\ 0 & 2 \\ -4 & -2 \end{pmatrix}$, find

(a)
$$A - R$$

$$(c) 2(A + B)$$

3. If
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ -5 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -1 & 6 \\ 3 & 2 \end{pmatrix}$, find

(c)
$$A^2 = AA$$

(a) AB (b) BA (c)
$$A^2 = AA$$
 (d) $B^2 = BB$

4. If
$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 5 & 10 \\ 8 & 12 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -4 & 6 & -3 \\ 1 & -3 & 2 \end{pmatrix}$, find

5. If
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 6 & 3 \\ 2 & 1 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix}$,

(a) BC (b)
$$A(BC)$$
 (c) $C(BA)$ (d) $A(B+C)$

6. If
$$A = (5 - 6 7)$$
, $B = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$, and

$$C = \begin{pmatrix} 1 & 2 & .4 \\ 0 & 1 & -1 \\ 3 & 2 & 1 \end{pmatrix}$$
, find

7. If
$$A = \begin{pmatrix} 4 \\ 8 \\ -10 \end{pmatrix}$$
 and $B = (2 \ 4 \ 5)$, find

(a)
$$A^TA$$

b)
$$\mathbf{B}^T \mathbf{B}$$

(a)
$$A^TA$$
 (b) B^TB (c) $A + B^T$

8. If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -2 & 3 \\ 5 & 7 \end{pmatrix}$, find

(a)
$$A + B^T$$

(b)
$$2A^{T} - B$$

(a)
$$A + B^T$$
 (b) $2A^T - B^T$ (c) $A^T(A - B)$

9. If
$$\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 8 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 5 & 10 \\ -2 & -5 \end{pmatrix}$, find

(a)
$$(\mathbf{A}\mathbf{B})^T$$
 (b) $\mathbf{B}^T\mathbf{A}^T$

10. If
$$A = \begin{pmatrix} 5 & 9 \\ -4 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} -3 & 11 \\ -7 & 2 \end{pmatrix}$, find

(a)
$$\mathbf{A}^T + \mathbf{B}^T$$
 (b) $(\mathbf{A} + \mathbf{B})^T$

(b)
$$(A + B)^2$$

In Problems 11-14 write the given sum as a single column

11.
$$4\binom{-1}{2} - 2\binom{2}{8} + 3\binom{-2}{3}$$

12.
$$3t \begin{pmatrix} 2 \\ t \\ -1 \end{pmatrix} + (t-1) \begin{pmatrix} -1 \\ -t \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 3t \\ 4 \\ -5t \end{pmatrix}$$

13.
$$\begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 & 6 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -7 \\ 2 \end{pmatrix}$$

14.
$$\begin{pmatrix} 1 & -3 & 4 \\ 2 & 5 & -1 \\ 0 & -4 & -2 \end{pmatrix} \begin{pmatrix} t \\ 2t - 1 \\ -t \end{pmatrix} + \begin{pmatrix} -t \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$$

In Problems 15-22 determine whether the given matrix is singular or nonsingular. If it is nonsingular, find A^{-1} using Theorem II.2.

15.
$$A = \begin{pmatrix} -3 & 6 \\ -2 & 4 \end{pmatrix}$$

16.
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 4 \end{pmatrix}$$

$$\mathbf{17. \ A} = \begin{pmatrix} 4 & 8 \\ -3 & -5 \end{pmatrix}$$

18.
$$A = \begin{pmatrix} 7 & 10 \\ 2 & 2 \end{pmatrix}$$

19.
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$

19.
$$A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
 20. $A = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 1 & 0 \\ -2 & 5 & -1 \end{pmatrix}$

21.
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -2 & -3 \\ 3 & 2 & 4 \end{pmatrix}$$
 22. $\mathbf{A} = \begin{pmatrix} 4 & 1 & -1 \\ 6 & 2 & -3 \\ -2 & -1 & 2 \end{pmatrix}$

In Problems 23 and 24 show that the given matrix is nonsingular for every real value of t. Find $A^{-1}(t)$ using Theorem II.2.

23.
$$A(t) = \begin{pmatrix} 2e^{-t} & e^{4t} \\ 4e^{-t} & 3e^{4t} \end{pmatrix}$$

24.
$$\mathbf{A}(t) = \begin{pmatrix} 2e^t \sin t & -2e^t \cos t \\ e^t \cos t & e^t \sin t \end{pmatrix}$$

In Problems 25–28 find dX/dt.

25.
$$\mathbf{X} = \begin{pmatrix} 5e^{-t} \\ 2e^{-t} \\ -7e^{-t} \end{pmatrix}$$
 26. $\mathbf{X} = \begin{pmatrix} \frac{1}{2}\sin 2t - 4\cos 2t \\ -3\sin 2t + 5\cos 2t \end{pmatrix}$

27.
$$\mathbf{X} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t} + 4 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-3t}$$
 28. $\mathbf{X} = \begin{pmatrix} 5te^{2t} \\ t \sin 3t \end{pmatrix}$

29. Let
$$A(t) = \begin{pmatrix} e^{4t} & \cos \pi t \\ 2t & 3t^2 - 1 \end{pmatrix}$$
. Find

(a)
$$\frac{d\mathbf{A}}{dt}$$
 (b) $\int_0^2 \mathbf{A}(t) dt$ (c) $\int_0^t \mathbf{A}(s) ds$

30. Let
$$\mathbf{A}(t) = \begin{pmatrix} \frac{1}{t^2 + 1} & 3t \\ t^2 & t \end{pmatrix}$$
 and $\mathbf{B}(t) = \begin{pmatrix} 6t & 2 \\ 1/t & 4t \end{pmatrix}$. Find

(a)
$$\frac{d\mathbf{A}}{dt}$$

(b)
$$\frac{d\mathbf{B}}{dt}$$

(c)
$$\int_0^1 \mathbf{A}(t) \, dt$$

(d)
$$\int_{1}^{2} \mathbf{B}(t) dt$$

(e)
$$\mathbf{A}(t)\mathbf{B}(t)$$

(e)
$$\mathbf{A}(t)\mathbf{B}(t)$$
 (f) $\frac{d}{dt}\mathbf{A}(t)\mathbf{B}(t)$

(g)
$$\int_1^t \mathbf{A}(s)\mathbf{B}(s) ds$$

II.2 GAUSSIAN AND GAUSS-JORDAN **ELIMINATION**

In Problems 31–38 solve the given system of equations by either Gaussian elimination or Gauss-Jordan elimination.

31.
$$x + y - 2z = 14$$

 $2x - y + z = 0$
 $6x + 3y + 4z = 1$

32.
$$5x - 2y + 4z = 10$$

 $x + y + z = 9$
 $4x - 3y + 3z = 1$

33.
$$y + z = -5$$

 $5x + 4y - 16z = -10$
 $x - y - 5z = 7$

34.
$$3x + y + z = 4$$

 $4x + 2y - z = 7$
 $x + y - 3z = 6$

35.
$$2x + y + z = 4$$

 $10x - 2y + 2z = -1$
 $6x - 2y + 4z = 8$

36.
$$x + 2z = 8$$

 $x + 2y - 2z = 4$
 $2x + 5y - 6z = 6$

37.
$$x_1 + x_2 - x_3 - x_4 = -1$$
 38. $2x_1 + x_2 + x_3 = 0$
 $x_1 + x_2 + x_3 + x_4 = 3$ $x_1 + 3x_2 + x_3 = 0$
 $x_1 - x_2 + x_3 - x_4 = 3$ $7x_1 + x_2 + 3x_3 = 0$
 $4x_1 + x_2 - 2x_3 + x_4 = 0$

In Problems 39 and 40 use Gauss-Jordan elimination to demonstrate that the given system of equations has no solution.

39.
$$x + 2y + 4z = 2$$
 $2x + 4y + 3z = 1$ $2x + 2y - z = 7$ **40.** $x_1 + x_2 - x_3 + 3x_4 = 1$ $x_2 - x_3 - 4x_4 = 0$ $x_1 + 2x_2 - 2x_3 - x_4 = 6$ $4x_1 + 7x_2 - 7x_3 = 9$

In Problems 41-46 use Theorem II.3 to find A-1 for the given matrix or show that no inverse exists.

41.
$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & -2 & 0 \end{pmatrix}$$
 42. $\mathbf{A} = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 2 & -2 \\ 8 & 10 & -6 \end{pmatrix}$

43.
$$\mathbf{A} = \begin{pmatrix} -1 & 3 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 44. $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 8 \end{pmatrix}$

45.
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & 2 & 1 \\ 2 & 1 & -3 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix}$$
 46. $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

THE EIGENVALUE PROBLEM

In Problems 47-54 find the eigenvalues and eigenvectors of the given matrix.

$$47. \begin{pmatrix} -1 & 2 \\ -7 & 8 \end{pmatrix}$$

48.
$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$$

49.
$$\begin{pmatrix} -8 & -1 \\ 16 & 0 \end{pmatrix}$$

50.
$$\begin{pmatrix} 1 & 1 \\ \frac{1}{4} & 1 \end{pmatrix}$$

51.
$$\begin{pmatrix} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{pmatrix}$$

52.
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$

53.
$$\begin{pmatrix} 0 & 4 & 0 \\ -1 & -4 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

54.
$$\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$