Homework 11: Taylor's Theorem

Graded Problems

Problem 1 Give a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with a > 0 and det(A) > 0 for which the quadratic form $p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is **NOT** positive definite. Does this mean the theorem in problem 6 is incorrect?

Problem 2 Prove the following theorem: Let $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ be a symmetric 2×2 matrix. If $\det(A) < 0$, then the quadratic form $p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is indefinite, regardless of the value of a.

(Hint: think about the cases a > 0, a = 0 and a < 0. In two cases you can apply Sylvester's Theorem. In the third case, you'll have to do some work by hand to show p(x, y) can have both positive and negative values.)

Professional Problem

Problem 3 Complete the online peer review form posted on moodle.

Completion Packet

Problem 4 Find the symmetric matrix that represents each quadratic form.

(a)
$$r(x_1, x_2, x_3, x_4) = x_3^2 - x_2 x_3 + x_1 x_4$$

Learning outcomes: Author(s):

(b)
$$t(\mathbf{x}) = \mathbf{x}^T \begin{bmatrix} 6 & 1 & 8 & -2 \\ 0 & 5 & 1 & 9 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$

Problem 5 Prove the following theorem without using Sylvester's theorem: Let $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ be a symmetric 2×2 matrix. If a > 0 and $\det(A) > 0$, then the quadratic form $p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is positive definite.

(Hint: Write out p in terms of the variables x and y, then complete the square with respect to x and collect the remaining terms.)

Problem 6 (a) Write the Taylor series for $f(x) = \sin(x)$ centered at x = 0.

- (b) Find the second-order Taylor approximation for $f(x, y) = \sin(xy)$ centered at (0,0), using your answer to part (a).
- (c) Verify your answer to part (b), by computing the second-order Taylor approximation for $f(x,y) = \sin(xy)$ directly.

Problem 7 (a) Write the Taylor series for $f(x) = e^x$ centered at x = 0.

- (b) Find the second-order Taylor approximation for $f(x,y) = e^{x^2+y^2}$ centered at (0,0), using your answer to part (a).
- (c) Verify your answer to part (b), by computing the second-order Taylor approximation for $f(x,y) = e^{x^2+y^2}$ directly.

Problem 8 Compute the Hessian matrix for each function at the given point.

(a)
$$f(x,y) = \sqrt{xy}$$
 at (1,1)

(b)
$$f(x,y) = \cos(x) + x^2 \sin(y)$$
 at $(0,\pi)$

(c)
$$f(x,y,z) = \frac{1}{x^2 + y^2 + z^2 + 1}$$
 at $(0,0,0)$

Problem 9 Consider the function $f(x,y) = \frac{x}{x+y}$ and the point $\mathbf{a} = (1,2)$.

- (a) Find the first-order Taylor polynomial of f at \mathbf{a} .
- (b) Find the second-order Taylor polynomial of f at a.
- (c) Express the second-order Taylor polynomial using the derivative matrix and the Hessian matrix, as in formula (10) of section 4.1 of the textbook.

Problem 10 Consider the function $f(x,y) = x^2 e^y$ and the point $\mathbf{a} = (1,0)$.

- (a) Find the first-order Taylor polynomial of f at a.
- (b) Find the second-order Taylor polynomial of f at ${\bf a}$.
- (c) Express the second-order Taylor polynomial using the derivative matrix and the Hessian matrix, as in formula (10) of section 4.1 of the textbook.