Introduction to Image Segmentation

Segmentation is the process of partitioning a digital image into multiple regions and extracting the meaningful region which is known as Region of Interest (ROI)

03:03

Introduction to Image Segmentation

Segmentation is the process of partitioning a digital image into multiple regions and extracting the meaningful region which is known as Region of Interest (ROI)

~	Region of Interest (ROI) vary with applications
_	In fact no single universal segmentation algorithm exists for segmenting the ROI in all images
V	Therefor many segmentation algorithms need to apply and pick tha algorithm which performs the best for given requirement

05:37

06:35

Introduction to Image Segmentation

Definition of Image Segmentation

An image can be portioned into many regions R_1 , R_2 , R_3 ... R_n

R₃ R₄

08:44

09:33

Introduction to Image Segmentation

Characteristics of Segmentation Process

Let R represent the entire image region and Segmentation is partitioning R into n subgroups R_i

12:06

Introduction to Image Segmentation

Characteristics of Segmentation Process

Let R represent the entire image region and Segmentation is partitioning R into(n) subgroups R_i

$$\bigcup_{i=1}^{n} Ri = R \qquad \qquad i=1,2,-n \quad \bigcirc$$

- $\sim \square$ Ri should be connected region :i=1,2,3,....,n
- A $Ri \cap R_1 = \emptyset$ (for all i and j): $i \neq j$
 - \square $P(R_i) = TRUE \ for \ i = 1,2,3, \dots n$

12:52

Introduction to Image Segmentation

Characteristics of Segmentation Process

Let R represent the entire image region and Segmentation is partitioning R into n subgroups R_i

$$\bigcup_{i=1}^{n} Ri = R \qquad \qquad i=1,2,-n \quad \mathbb{R}$$

- $\sim \square$ Ri should be connected region :i=1,2,3,....,n
- A $Ri \cap R_1 = \emptyset$ (for all i and j): $i \neq j$
- $P(R_i) = TRUE \text{ for } i = 1,2,3,....n$
 - $\square P(R_i \cup R_j) = FALSE \ for \ i \neq j$

Introduction to Image Segmentation

Image Segmentation Algorithms are based on:

13:13

Introduction to Image Segmentation

Characteristics of Segmentation Process

Let R represent the entire image region and Segmentation is partitioning R into n subgroups R_i

$$\bigcup_{i=1}^{n} Ri = R \qquad \qquad i=1,2,-n \quad \bigcirc$$

 $\sim \square$ Ri should be connected region :i=1,2,3,....,n

$$\sqrt{2} Ri \cap R_1 = \emptyset (for all i and j): i \neq j$$

$$\sqrt{\square} P(R_i) = TRUE \text{ for } i = 1,2,3,\dots n$$

$$\square P(R_i \cup R_i) = FALSE \ for \ i \neq j$$

Here $P(R_i)$ is a predicate that indicates some property over the region

