ER-to-Relational Mapping

Very important!!!!!!

DATA MODEL

STEP 1: REGULAR ENTITY TYPES

- For each regular/strong entity type, create a corresponding relation that includes all the <u>simple</u> attributes (includes simple attributes of composite relations)
- ii. Choose one of the key attributes as primary
 - If composite, the simple attributes together form the primary key
- Any remaining key attributes are kept as secondary unique keys (these will be useful for physical tuning w.r.t. indexing analysis)

STEP 1 RESULT

EMPLOYEE

Fname Minit Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
-------------------	------------	-------	---------	-----	--------

DEPARTMENT

PROJECT

STEP 2: WEAK ENTITY TYPES

- For each weak entity type, create a corresponding relation that includes all the simple attributes
- Add as a <u>foreign key</u> all of the primary key attribute(s) in the entity corresponding to the owner entity type
- The primary key is the combination of all the primary key attributes from the owner and the partial key of the weak entity, if any

STEP 2 RESULT

STEP 3: MAPPING BINARY 1-TO-1

Three approaches

- Foreign Key
 - Usually appropriate
- Merged Relation
 - Possible when both participations are total
- Relationship Relation
 - Not discussed

Step 3: Mapping Binary 1-to-1

Foreign Key

- Choose one relation as S(dept), the other T(employee)
 - Better if S(dept) has total participation (reduces number of NULL values)
- ii. Add to S(dept) all the simple attributes of the relationship
- Add as a foreign key in *S(dept)* the primary key attributes of *T(employee)*

STEP 2 RESULT

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary
--

DEPARTMENT

Dname	<u>Dnumber</u>
-------	----------------

STEP 3 RESULT

EMPLOYEE

STEP 4: BINARY 1-TO-N

Choose the S(project) relation as the type at the
N-side of the relationship, other is T(dept)

Add as a <u>foreign key</u> to *S(project)* all of the primary key attribute(s) of *T(dept)*

Another approach: create a relationship relation

STEP 4 RESULT

EMPLOYEE Salary Fname Minit <u>Ssn</u> Bdate Address Sex Dno Lname Super_ssn **DEPARTMENT** Dname Dnumber Mgr_ssn Mgr_start_date **PROJECT** Pname **Plocation** Pnumber Dnum **DEPENDENT** Relationship Sex Essn Dependent_name **B**date

STEP 5: BINARY M-TO-N

- i. Create a <u>new</u> relation S (termed: *relationship relation*)
 - In some ERD dialects, actually drawn in.
- Add as foreign keys the primary keys of both relations; their combination forms the primary key of S
- Add any simple attributes of the M:N relationship to S

STEP 5 RESULT

EMPLOYEE

Step 6: Multivalued Attributes

- Create a <u>new</u> relation S(location)
- Add as foreign keys the primary keys of the corresponding relation

Add the attribute to *S(location)* (if composite, the simple attributes); the combination of all attributes in *S(location)* forms the primary key

STEP 6 RESULT

EMPLOYEE

Step 7: Specialization/Generalization (As of Now Ignore)

- Multiple relations subclass and superclass
 - Usually works (assumes unique id at parent)
- B. Multiple relations subclass only
 - Should only be used for disjoint
- Single relation with one type attribute
 - Only for disjoint, can result in many NULLs
- Single relation with multiple type attributes
 - Better for overlapping, could be disjoint

SUMMARY

Mapping from ERDs to relations is an algorithmic process

- Some choice points involve comparing time-space tradeoffs (more in physical design)
- ☐ The ER diagram may change from people to people depending on their understanding.