# Прикладной статистический анализ данных 11. Причинно-следственные связи

Бахтеев Олег psad@phystech.edu

2022

# Исследование уровня холестерина



Физическая активность

# Исследование уровня холестерина



# Парадокс Симпсона

#### Пример 1:

| Σ              | лекарство | плацебо |
|----------------|-----------|---------|
| выздоровели    | 273       | 289     |
| не выздоровели | 77        | 61      |
|                | 78%       | 83%     |

плацебо на 5% эффективнее

| мужчины        | лекарство | плацебо |
|----------------|-----------|---------|
| выздоровели    | 81        | 234     |
| не выздоровели | 6         | 36      |
|                | 93%       | 87%     |

лекарство на 5% эффективнее

| женщины        | лекарство | плацебо |
|----------------|-----------|---------|
| выздоровели    | 192       | 55      |
| не выздоровели | 71        | 25      |
|                | 73%       | 69%     |
|                | •         | •       |

лекарство на 4% эффективнее

### Парадокс Симпсона

Какой из двух выводов верен?

Предположение: верны выводы по отдельным подгруппам, потому что они основаны на более детальной информации.

Это предположение неверно — всё зависит от того, как признак, по которому происходит разбиение на подгруппы, связан с остальными анализируемыми признаками.

# Парадокс Симпсона

Пример 2:

Лекарство снижает давление, но имеет множество побочных эффектов.

| Σ              | лекарство | плацебо |
|----------------|-----------|---------|
| выздоровели    | 273       | 289     |
| не выздоровели | 77        | 61      |
|                | 78%       | 83%     |

плацебо на 5% эффективнее

| низкое давление | лекарство | плацебо |  |
|-----------------|-----------|---------|--|
| в конце лечения | Лекарство |         |  |
| выздоровели     | 81        | 234     |  |
| не выздоровели  | 6         | 36      |  |
|                 | 93%       | 87%     |  |

лекарство на 5% эффективнее

| высокое давление | покарство | плацебо |  |
|------------------|-----------|---------|--|
| в конце лечения  | лекарство | плацеоо |  |
| выздоровели      | 192       | 55      |  |
| не выздоровели   | 71        | 25      |  |
|                  | 73%       | 69%     |  |

лекарство на 4% эффективнее

### Причинные графы

Отношения причинности могут быть представлены в виде направленного графа, вершины которого соответствуют признакам, а наличие пути говорит о существовании причинно-следственной связи.

 $\mathsf{Путь}$  — последовательность вершин, где каждая вершина соединена со следующей ребром. **Направленный путь** — путь, в котором все ребра имеют одинаковое направление.

2022

# Элементы причинного графа

$$X o Y o Z$$
 — цепочка

### Пример:

- X бюджет школы
- ullet Y средний балл учеников
- ullet Z доля поступающих в ВУЗы

#### Свойства:

- f U X и Y, Y и Z зависимы:
  - $\exists x, y : \mathbf{P}(Y = y | X = x) \neq \mathbf{P}(Y = y)$  $\exists u, z : \mathbf{P}(Z = z | Y = y) \neq \mathbf{P}(Z = z)$
- $oldsymbol{2}$  Z и X скорее всего, зависимы
- 3  $Z \perp X | Y$  условно независимы:  $\forall x, y, z$

$$P(Z = z | X = x, Y = y) = P(Z = z | Y = y)$$

(если Y фиксировано, то X и Z независимы)

# Элементы причинного графа

$$X \leftarrow Y 
ightarrow Z$$
 — вилка

### Пример:

- ullet X продажи мороженого
- Y средняя дневная температура воздуха
- ullet Z число преступлений

#### Свойства:

- lacksquare X и Y, Y и Z зависимы
- $oldsymbol{2}$  X и Z скорее всего, зависимы
- $3 X \perp Z | Y$  условно независимы

# Элементы причинного графа

$$Y o X \leftarrow Z$$
 — коллайдер

### Пример (заболевание вирусом):

- Y возраст
- $\bullet$  Z хронические болезни

#### Свойства:

- $\P$  У и X, Z и X зависимы
- $oldsymbol{2}$  Y и Z независимы
- $oldsymbol{3} Y \not\perp Z|X$  условно зависимы

Путь P блокируется переменной Z, если:

- $\blacksquare$  P содержит  $A \to B \to C$ ,  $A \leftarrow B \to C$ ,  $B \in Z$
- ② P содержит  $A \to B \leftarrow C$ ,  $B \notin Z$  и все потомки  $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d-разделимы**:

$$X \perp Y|Z$$
.

Пример:



| Упорядоченная пара вершин | d-разделяющее множество |
|---------------------------|-------------------------|
| $(Z_1,W)$                 | X                       |

(условие 1: цепочка)

2022

Пример:



| Упорядоченная пара вершин | d-разделяющее множество        |
|---------------------------|--------------------------------|
| $(Z_1,W)$                 | X                              |
| $(Z_1,Y)$                 | ${Z_3, X, Z_2}, {Z_3, W, Z_2}$ |

 $(X, W, Z_3$ : цепочка)  $(Z_2$ : вилка)

### Пример:



| Упорядоченная пара вершин | d-разделяющее множество        |
|---------------------------|--------------------------------|
| $(Z_1,W)$                 | X                              |
| $(Z_1,Y)$                 | ${Z_3, X, Z_2}, {Z_3, W, Z_2}$ |
| (X,Y)                     | $\{W,Z_3,Z_1\}$                |

(W: цепочка)  $(Z_1,Z_3:$  вилка)

# Алгоритм индуктивной причинности

#### Вход: множество вершин V

- 4  $\forall A, B \in V$  ищем множество  $S_{AB} \colon A \perp B | S_{AB}, \ A, B \notin S_{AB}$ . Если такого  $S_{AB}$  не существует, соединяем A и B ребром.
- ②  $\forall A, B$ , не связанных ребром и имеющих общего соседа C, проверяем:  $C \in S_{AB}$ ? Если нет, то заменяем пару рёбер A C, C B на пару ориентированных рёбер  $A \to C, C \leftarrow B$
- 3 Рекурсивно применяем следующие два правила:
  - ightharpoonup если из A в B есть ориентированный путь  $A o \cdots o B$ , то A B заменяем на A o B;
  - lacktriangle если A и B не соединены, A o C, C B, то C B заменяем на C o B.

Выход: ориентированный (возможно, частично) граф G.

### Алгоритм индуктивной причинности

Правила (1) и (2) применять в чистом виде невозможно — число перебираемых множеств экспоненциально растёт с числом вершин графа. Поэтому используются сокращающие перебор эвристики.

| Признаки                | дискретные                      |             | непрерывные           |
|-------------------------|---------------------------------|-------------|-----------------------|
| Распределение           | мультиномиальное                |             | нормальное            |
| Критерий условной       | хи-квадрат                      | для         | Стьюдента для частной |
| независимости           | трёхмерных таб<br>сопряжённости | блиц        | корреляции            |
| Критерий качества графа |                                 | $B_{\cdot}$ | $\overline{C}$        |

### Причинность по Грейнджеру

Между рядами  $x_1,\dots,x_T$  и  $y_1,\dots,y_T$  существует причинная связь Грейнджера  $x_t\to y_t$ , если дисперсия ошибки оптимального прогноза  $\hat{y}_{t+1}$  по  $y_1,\dots,y_t,x_1,\dots,x_t$  меньше, чем только по  $y_1,\dots,y_t$ .

#### Причинность по Грейнджеру

- может следовать из причинно-следственной связи;
- не является достаточным условием причинно-следственной связи.

 $x_1,\ldots,x_T$  и  $y_1,\ldots,y_T$  взаимосвязаны, если  $x_t\to y_t$  и  $y_t\to x_t$ .

### Критерий Грейнджера

$$y_t = \alpha + \sum_{i=1}^{k_1} \phi_{1i} y_{t-i} + \sum_{i=1}^{k_2} \phi_{2i} x_{t-i} + \varepsilon_t.$$

 $k_1$  и  $k_2$  выбирается по информационному критерию.

$$x_t \to y_t \Rightarrow \exists \phi_{2i} \neq 0.$$

нулевая гипотеза:  $H_0$ :  $\phi_{21} = \cdots = \phi_{2k_2} = 0$ ;

альтернатива:  $H_1: H_0$  неверна;

статистика:  $F = \frac{(RSS_r - RSS_{ur})/k_2}{RSS_{ur}/(T - k_1 - k_2 - 1)};$ 

 $F \sim F(k_1, T - k_1 - k_2 - 1)$  при  $H_0$ .





# Многомерный критерий Грейнджера

Зависимость между признаками x и y может оцениваться с учётом возможной зависимости от всех остальных признаков:

$$y_t = \alpha + \sum_{i=1}^{k_1} \phi_{1i} y_{t-i} + \sum_{i=1}^{k_2} \phi_{2i} x_{t-i} + \sum_{j=1}^m \sum_{i=1}^{k_{j+2}} \phi_{(j+2)i} z_{t-i}^j + \varepsilon_t.$$

Для задач с большим количеством признаков могут использоваться регуляризаторы (лассо, ридж).

# Граф причинности по Грейнджеру



К критерию Грейнджера применима поправка на множественную проверку гипотез

# Причинно-следственная связь и обусловленность

$$X \leftarrow Y \rightarrow Z$$
.

- ullet X продажи мороженого
- ullet Y средняя дневная температура воздуха
- ullet Z число преступлений

X и Z кореллируют. Как понять, зависит ли число преступлений от продажи мороженного?

### Интервенция

X коррелировано с  $Y \not\Rightarrow X$  влияет на Y.

Влияние обычно оценивают в эксперименте, когда объектам искусственно назначают разные уровни X, но эксперимент можно провести не всегда:

- ullet погода o лесные пожары не можем управлять X
- ullet теленасилие o жестокость тяжело фиксировать уровень X и создать условия для измерения Y
- ullet потребление алкоголя o успеваемость школьников неэтично

В таких случаях мы вынуждены использовать обзервационные данные, по которым мы хотим оценить эффект **интервенции**: что будет с Y, если мы установим значение X равным x? Обозначение: do(X=x).

Бахтеев Олег

### Интервенция



Оценку эффективности лекарства можно сформулировать в терминах интервенций:

$$ACE = \mathbf{P}(Y =$$
 выздоровление  $|do\left(X =$  лекарство) )  $-\mathbf{P}(Y =$  выздоровление  $|do\left(X =$  плацебо)  $)$  .

(average conditional effect).

### Хирургия графа

**Хирургия графа** — удаление всех ребер, входящих в X.

Пример 1, исходный граф G:



Оперированный граф  $G_m$ :



$$\mathbf{P}(Y = y | do(X = x)) = \mathbf{P}_m(Y = y | X = x)$$

# Хирургия графа

#### В оперированном графе:

$$\mathbf{P}_{m}(Z=z) = \mathbf{P}(Z=z),$$
  
 $\mathbf{P}_{m}(Y=y|X=x,Z=z) = \mathbf{P}(Y=y|X=x,Z=z),$ 

так как рёбра, входящие в Z и Y, не изменились  $\Rightarrow$ 

$$\mathbf{P}(Y=y | do(X=x)) = \mathbf{P}_m(Y=y | X=x) =$$

$$= \sum_{z} \mathbf{P}_m(Y=y | X=x, Z=z) \mathbf{P}_m(Z=z) =$$

$$= \sum_{z} \mathbf{P}(Y=y | X=x, Z=z) \mathbf{P}(Z=z).$$

2022

# Хирургия графа

В примере 1 по полученной формуле:

$$\mathbf{P}(Y=$$
 выздоровление  $|do\left(X=$  лекарство $ight))=0.832$ ,

$$\mathbf{P}(Y=$$
 выздоровление  $|do\left(X=$  плацебо $)\left.
ight)=0.7818$ 

$$\Rightarrow ACE = 0.05.$$

В примере 2  $G = G_m$ :



Значит,

$$\mathbf{P}(Y=y\,|do\,(X=x)\,)=\mathbf{P}_m(\,Y=y\,|\,X=x)=\mathbf{P}(Y=y\,|\,X=x\,)$$
  $\mathbf{P}(Y=$  выздоровление  $|do\,(X=$  лекарство $)\,)=0.78$ ,

$$\mathbf{P}(Y=$$
 выздоровление  $|do\left(X=$  плацебо $)
ight)=0.83$ 

$$\Rightarrow ACE = -0.05.$$

### Поправочная формула

Поправочная формула позволяет вычислить эффект интервенции обуславливанием по вершинам Z:

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{z} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z).$$

Что это за вершины?

#### Формула причинного эффекта:

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{z} \mathbf{P}(Y = y | X = x, PA = z) \mathbf{P}(PA = z),$$

где PA — родители вершины X.

### ACE и причинность

$$X \longrightarrow Y$$

- $\bullet$  X температура выше 20 градусов;
- $\bullet$  Y спрос на мороженное выше среднего.

Подсчет эффекта температуры на спрос мороженного:

$$P(Y|do(X) = 1) - p(Y|do(X) = 0).$$

Подсчет эффекта спроса мороженного на температуру:

$$P(X|do(Y) = 1) - p(X|do(Y) = 0) = P(X) - P(X) = 0.$$

Путь P блокируется переменной Z, если:

- $\blacksquare$  P содержит  $A \to B \to C$ ,  $A \leftarrow B \to C$ ,  $B \in Z$
- ② P содержит  $A \to B \leftarrow C$ ,  $B \notin Z$  и все потомки  $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d-разделимы**:

$$X \perp Y|Z$$
.

### Неизвестные родители



Социоэкономический статус — ненаблюдаемая величина; как оценить эффект интервенции по X?

# Критерий задней двери (КЗД)

Для упорядоченной пары вершин (X,Y) в ациклическом графе G множество вершин Z удовлетворяет критерию задней двери, если:

- ullet Z не содержит потомков X
- ullet Z блокирует все пути между X и Y, содержащие  $X \leftarrow$ .

Если Z удовлетворяет КЗД для (X,Y), то

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{z} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z)$$

(формула задней двери).

# Критерий задней двери (КЗД)

Чтобы вычислять меньше условных вероятностей, ФЗД можно упростить:

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{z} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z) =$$

$$= \sum_{z} \frac{\mathbf{P}(X = x, Y = y, Z = z)}{\mathbf{P}(X = x | Z = z)}$$

#### В таком виде

- метод называется обратное вероятностное взвешивание
- ullet знаменатель  $\mathbf{P}(X=x\,|Z=z\,)$  propensity score.

### Неизвестные родители

### Вызывает ли курение рак?



| Σ        | курильщики | некурящие |
|----------|------------|-----------|
| нет рака | 341        | 59        |
| есть рак | 39         | 361       |
|          | 15%        | 90.25%    |

курильщики болеют на 75.25% реже

### Курение



| смола    | курильщики | некурящие |
|----------|------------|-----------|
| нет рака | 323        | 1         |
| есть рак | 57         | 19        |
|          | 15%        | 95%       |

курильщики болеют на 80% реже

| нет смолы | курильщики | некурящие |
|-----------|------------|-----------|
| нет рака  | 18         | 38        |
| есть рак  | 2          | 342       |
|           | 10%        | 90%       |

курильщики болеют на 80% реже

Курить полезно?

### Курение

У курильщиков смола в 95% случаев вместо 5%; у курильщиков смола увеличивает риск рака с 10% до 15%; у некурящих — с 90% до 95%.

Курить вредно?

Поможет граф!

#### Курение

Поправочная формула (КЗД для пустого множества и для X):

$$\mathbf{P}(Z=z \mid do(X=x)) = \mathbf{P}(Z=z \mid X=x),$$

$$\mathbf{P}(Y=y \mid do(Z=z)) = \sum_{x'} \mathbf{P}(Y=y \mid Z=z, X=x') \mathbf{P}(X=x')$$



$$\begin{aligned} &\mathbf{P}(Y=y | do(X=x)) = \\ &= \sum_{z} \mathbf{P}(Y=y | do(Z=z)) \mathbf{P}(Z=z | do(X=x)) = \\ &= \sum_{z} \sum_{x'} \mathbf{P}(Y=y | Z=z, X=x') \mathbf{P}(Z=z | X=x) \mathbf{P}(X=x'). \end{aligned}$$

# Критерий передней двери (КПД)

Для упорядоченной пары вершин (X,Y) в ациклическом графе G множество вершин Z удовлетворяет критерию передней двери, если:

- ullet Z перекрывает все направленные пути из X в Y
- ullet нет незакрытых путей через заднюю дверь из X в Z
- ullet все пути через заднюю дверь из Z в Y блокируются X

Если Z удовлетворяет КПД для (X,Y), то

$$\begin{split} \mathbf{P}(Y = y \, | do \left( X = x \right) ) &= \\ &= \sum_{z} \mathbf{P}(Z = z \, | X = x) \sum_{x'} \mathbf{P} \big( Y = y \, \big| X = x', Z = z \big) \, \mathbf{P} \big( X = x' \big) \end{split}$$

(формула передней двери).

# Инструментальные переменные

$$U$$
 (соц.-экон. статус) 
$$\downarrow \qquad \qquad \qquad Y$$
 (доход  $Z$  (грант)  $\to$   $X$  (образование)  $\longrightarrow$   $Y$ 

- КЗД не подходит, нет блокирующей переменной.
- ullet КПД не подходит, нет промежуточной переменной между X и Y.

# Инструментальные переменные

$$U$$
 (соц.-экон. статус) 
$$\downarrow \qquad \qquad \downarrow \qquad \qquad X$$
 (грант)  $\mapsto X$  (образование)  $\longrightarrow Y$  (доход)

Z — инструментальная переменная, т.к. входит в X, но не влияет напрямую на Y.

#### Идея:

• 
$$P(X = x | do(Z) = z) = P(X = x | Z = z);$$

• 
$$P(Y = y|do(Z) = z) = \sum_{x} P(Y = y|X = x)P(X = x|Z = z)$$
.

#### Для бинарных величин:

$$P(Y|do(X) = 1) - P(Y|do(X) = 0) = \frac{P(Y = 1|Z = 1) - P(Y = 1|Z = 0)}{P(X = 1|Z = 1) - P(X = 1|Z = 0)}.$$

#### Литература

- причинные графы и выводы по ним Pearl
- восстановление графов по статическим данным Nagarajan, глава 2
- причинность по Грейнджеру Kirchgassner, глава 3
- инструментальные переменные Кісітап, глава 3

Kirchgassner G., Wolters J., Hassler U. Introduction to modern time series analysis, 2013.

Nagarajan R., Scutari M., Lebre S. Bayesian Networks in R with Applications in Systems Biology, 2013.

Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer, 2016.

Kiciman E., Sharma A. Causal Reasoning: Fundamentals and Machine Learning Applications. https://causalinference.gitlab.io/

Vargo C. J., Guo L. Networks, big data, and intermedia agenda setting: An analysis of traditional, partisan, and emerging online US news //Journalism & Mass Communication Quarterly. – 2017. – T. 94. – №. 4. – C. 1031-1055.