Plus courts chemins, programmation dynamique

- 1. Plus courts chemins à partir d'un sommet
- 2. Plus courts chemins entre tous les sommets
- 3. Semi-anneau
- 4. Programmation dynamique
- 5. Applications à la bio-informatique

Graphes orientés avec longueur

Soit un graphe orienté $G = (X, A, or, ext, \ell)$

- $X = \{x_1, x_2, \dots, x_n\}$ Ensemble de sommets
- A Ensemble d'arcs
- $or: A \rightarrow X, ext: A \rightarrow X$ origine et extrémité de chaque arc
- ℓ : $A \to \mathcal{Z}$ longueur des arcs
- 1. Une *marche* est une suite d'arcs a_1, a_2, \ldots, a_p telle que pour tout $1 \le i < p$:

$$or(a_{i+1}) = ext(a_i)$$

2. Un *chemin* est une marche a_1, a_2, \ldots, a_p telle que pour tout $i \neq j$ on ait:

$$or(a_i) \neq or(a_i)$$

3. Un *circuit* est un chemin tel que $or(a_1) = ext(a_p)$

Plus courts chemins à partir d'un sommet

On se donne un graphe orienté G aux arcs valués par l(x,y) et un sommet x_0 , trouver pour chaque sommet x:

- 1. La longueur du plus court chemin de x_0 à x
- 2. La suite des arcs constituant ce plus court chemin

Structures de données :

- d[x] la longueur du plus court chemin de x_0 à x (avec mise à jour)
- pere [x] sommet qui précède x sur le plus court chemin de x_0 à x

Relaxation

Relaxation de l'arc x, y

• Si
$$d[y] > d[x] + l(x,y)$$

- Alors
- $\bullet \qquad d[y] = d[x] + l(x, y)$
- \bullet pere[y] = x

Algorithme de Dijkstra

- Les distances sont supposées positives
- Un ensemble F initialisé à X
- les valeurs de d[x] sont initialisées à ∞ sauf : d[x0] = 0.
- Tant que F non vide :
- Soit y l'élément de F ayant un d[y] minimal
- Pour tout arc a d'origine y Faire Relaxation (a)
- Supprimer y de F.

Algorithme de Dijkstra: preuve de correction

- $d[x] \geq \delta(x_0, x)$
- lorsqu'un sommet x quitte F on ne peut pas trouver un chemin plus court entre x_0 et x par la suite
- Si le chemin le plus court entre x_0 et x passe par y, alors il est composé d'un chemin le plus court entre x_0 et y et d'un plus court y et x.
- point fixe

Implantation

- 1. Gérer F comme une file?
- 2. Trouver le plus petit d [x]
- 3. Heaps, Fibonacci Heaps
- 4. Retrouver le chemin le plus court

Algorithme de Dijkstra dans le cas d'arcs de longueurs négatives

La version précédente ne donne pas le bon résultat

On propose la modification suivante:

- Tant que F non vide :
- Soit y l'élément de F ayant un d[y] minimal
- Supprimer y de F

Analyse de cette modification

Donne le bon résultat s'il n'y a pas de circuit de longueur négative

Mais un exemple montre que la complexité peut être exponentielle

Exemple de Johnson

Un graphe D_n ayant n sommets x_1, x_2, \ldots, x_n et des arcs entre tous les sommets (dans les deux sens)

Les longueurs des arcs (x_i, x_j) pour i < j est 2^n

Exemple de Johnson (suite)

Les longueurs des arcs (x_i, x_j) pour i > j sont toutes négatives et sont données par les relations suivantes

$$\ell(x_2, x_1) = -2, \ \forall i > 2, \ \ell(x_{i+1}, x_1) = \ell(x_i, x_1) - 2^{i-2} - 1$$

$$\forall i \geq 2, \quad 1 < j < i, \quad \ell(x_i, x_j) = \ell(x_i, x_{j-1}) + 1$$

Exemple n = 5

$$\ell(x_5, x_1) = \ell(x_4, x_1) - 5 = \ell(x_3, x_1) - 3 - 5 = \ell(x_2, x_1) - 2 - 8 = -12$$

On obtient facilement la matrice des longueurs :

	x_1	x_2	x_3	x_4	x_5
x_1	0	32	32	32	32
x_2	-2	0	32	32	32
x_3	-4	-3	0	32	32
x_4	-7	-6	-5	0	32
x_5	-12	-11	-10	-9	0

$$F = \{x_1, x_2, x_3, x_4, x_5\}$$

$$F = \{x_1, x_2, x_3, x_4\}$$

$$F = \{x_2, x_3, x_4\}$$

$$F = \{x_1, x_3, x_4\}$$

$$F = \{x_3, x_4\}$$

$$F = \{x_1, x_2, x_4\}$$

$$\vdots$$

$$F = \{x_4\}$$

$$F = \{x_1, x_2, x_3\}$$

$$\vdots$$

∞	∞	∞	∞	0
-12	-11	-10	-9	0
-12	-11	-10	-9	0
-13	-11	-10	-9	0
-14	-13	-10	-9	0
-14	-13	-10	-9	0
-14	-13	-10	-9	0

. . .

-15	-13	-10	-9	0
-16	-15	-14	-9	0

. . .

Analyse de l'exécution

- Il n'y a pas de circuit de longueur négative
- x_1 sort une fois sur deux
- x_2 une fois sur quatre
- Au total 2^{n-1} étapes de calcul

Algorithme de Ford

• Les distances peuvent être négatives

- Pour i= 1 à n-1 faire
- Pour tout arc a du graphe Faire Relaxation (a)

Remarque Pour vérifier qu'il n'y a pas de circuit négatif on refait un tour de relaxation: si une nouvelle valeur est modifiée c'est qu'il existe un circuit négatif

Plus courts chemins entre tous les couples de sommets

On calcule les $\delta_k(x,y)$ par l'algorithme suivant :

• Pour tous les couples x, y on pose : $\delta_0(x, y) = l(a)$ s'il existe un arc a entre x et y et ∞ sinon.

- Pour k = 1, 2, 3, ..., n faire
- Pour tout couple x, y
- Pour tout sommet z successeur de x

$$\delta_{k+1}(x,y) = \min(\delta_k(x,y), \delta_0(x,z) + \delta_k(z,y))$$

Preuve de valdité

- Il suffit de vérifier que $\delta_k(x,y)$ est la longueur du plus court chemin composé de k arcs au plus entre x et y
- Par récurrence sur k

Recherche du chemin

• Maintenir un tableau suivant [x] [y] qui contient le sommet qui suit x dans le chemin qui mène de x à y

Algorithme de Roy-Warshall (en n^3)

- Pour k de 1 à n faire
- Pour i de 1 à n faire
- Pour j de 1 à n faire
- Si delta[i][j] > delta[i][k] + delta[k][j]
- Alors delta[i][j] = delta[i][k] + delta[k][j]

Un exemple d'illustration

Semi-anneau

Un ensemble muni de deux lois notées ⊙, ⊕:

- La loi ⊕ est associative, commutative
- Elle possède un élément neutre $\bar{0}$
- La loi ⊙ est associative
- La loi ⊙ est distributive par rapport à ⊕
- $\overline{0}$ est un zéro pour \odot

Exemples de semi-anneaux

- 1. Un anneau, par exemple \mathcal{Z}
- 2. Les entiers naturels \mathcal{N} avec + et \times
- 3. Le semi-anneau de Boole à deux éléments 0, 1 avec (1 + 1 = 1)
- 4. Les opérations min + sur \mathcal{N}
- 5. Les opérations max \times sur l'intervalle réel [0,1]
- 6. Union et concaténation pour les ensembles de mots

Graphes à arcs valués sur un semi-anneau

Le semi anneau a pour lois \odot , \oplus :

- Sommets X, Arcs A, Valuation λ
- Valuation d'un chemin $f = a_1, a_2, \ldots, a_k =$
- $\bullet \qquad \qquad \lambda(f) = \lambda(a_1) \odot \lambda(a_2) \odot \ldots \odot \lambda(a_k)$
- Valuation d'un ensemble $\Gamma = \{f, g, \dots u, v\}$ de chemins
- $\lambda(f) = \lambda(f) \oplus \lambda(g) \oplus \ldots \oplus \lambda(u) \oplus \lambda(v)$

Algorithme sur un semi anneau quelconque

On calcule les $\lambda_k(x, y)$ par l'algorithme suivant :

- Pour tous les couples x, y $\lambda_0(x, y) = \lambda(a)$ s' il existe un arc a entre x et y et ε sinon.
- Pour k = 1, 2, 3, ..., n faire
- Pour tous les x, y faire

$$\lambda_{k+1}(x,y) = \lambda_k(x,y) \oplus \lambda_k(x,z) \odot \lambda_k(z,y)$$

Applications

- Min et + : Les plus courts chemins
- Max et * : La fiabilité maximale dans un réseau
- Semi-anneau de Boole: Existence de chemins
- Union, concaténation: Forme rationnelle d'un langage reconnu par un automate

Principe de la programmation dynamique

- 1. La solution d'un problème P_k contient les solutions de problèmes ayant des tailles plus petites
- 2. La construction de la solution pour P_k s'effectue à l'aide d'un faible nombre d'informations sur P_j , j < k

Exemple 1: faire un produit de matrices de tailles différentes

On se donne n matrices M_1, M_2, \ldots, M_n chaque M_i a m_i lignes et m_{i+1} colonnes, les entrées sont des nombres (réels ou entiers). On cherche la matrice produit:

$$M_1M_2\ldots M_n$$

Il faut trouver l'ordre des produits à effectuer de façon à minimiser le nombre total d'opérations.

Remarque: Le calcul de $M_{i-1}M_i$ demande $O(m_{i-1}m_im_{i+1})$ opérations.

Exemple Trois matrices M_1, M_2, M_3 de tailles respectives $10 \times 100, 100 \times 5$ et 5×50

- 1. Le calcul de M_1M_2 demande 5 000 multiplications de nombres le produit ensuite par M_3 fait faire 2 500 de plus soit un total de 7 500
- 2. Le calcul de M_2M_3 demande 25 000 multiplications de nombres, la détermination ensuite de $M_1M_2M_3$ utilise 50 000 multiplications soit un total de 75 000

Conclusion II vaut mieux faire $((M_1M_2)M_3)$ que calculer $(M_1(M_2M_3))$

Cas général

- On note $c_{i,j}$ le nombre minimum de multiplications pour calculer $M_i M_{i+1} \dots M_j$
- On a alors $c_{i,i} = 0$, $c_{i-1,i} = m_{i-1}m_im_{i+1}$
- On découpe $M_i M_{i+1} \dots M_j$ en $M_i \dots M_k$ et $M_{k+1} \dots M_j$ en choisissant le meilleur k:

$$c_{i,j} = \min_{k=i,j-1} [c_{i,k} + c_{k+1,j} + m_i m_{k+1} m_{j+1}]$$

• On doit déterminer $M_{1,n}$

i	1	2	3	4	5	6	7
m_i	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	_	_	_	_	_
2	_	0	_	_	-	_
3	-	_	0	_	-	-
4	-	_	_	0	-	-
5	-	-	_	_	0	-
6	-	-	_	_	-	0

i	1	2	3	4	5	6	7
$\boxed{m_i}$	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	15 750	-	_	_	_
2	-	0	2 625	_	_	-
3	-	-	0	750	_	-
4	-	_	-	0	1 000	-
5	-	-	_	_	0	5 000
6	-	-	-	_	-	0

Calcul de $c_{1,3}$:

i	1	2	3	4	5	6	7
m_i	30	35	15	5	10	20	25

$$c_{1,3} = \min [c_{1,1} + c_{2,3} + m_1 m_2 m_4,$$

$$c_{1,2} + c_{3,3} + m_1 m_3 m_4$$

$$= \min [0 + 2625 + 30 \times 35 \times 5, 15750 + 0 + 30 \times 15 \times 5]$$

= min

[7 875,

18 000]

i	1	2	3	4	5	6	7
$\boxed{m_i}$	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	15 750	7 875	1	-	-
2	_	0	2 625	4 375	_	_
3	_	-	0	750	2 500	_
4	_	-	_	0	1 000	3 500
5	_	-	_	-	0	5 000
6	-	-	_	-	-	0

i	1	2	3	4	5	6	7
m_i	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	15 750	7 875	9 375	_	_
2	-	0	2 625	4 375	7 125	-
3	-	-	0	750	2 500	5 375
4	-	-	_	0	1 000	3 500
5	-	-	_	_	0	5 000
6	-	-	_	-	-	0

i	1	2	3	4	5	6	7
$\boxed{m_i}$	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	15 750	7 875	9 375	11 875	-
2	_	0	2 625	4 375	7 125	10 500
3	-	-	0	750	2 500	5 375
4	-	-	_	0	1 000	3 500
5	-	-	_	-	0	5 000
6	_	-	_	-	-	0

i	1	2	3	4	5	6	7
m_i	30	35	15	5	10	20	25

$c_{i,j}$	1	2	3	4	5	6
1	0	15 750	7 875	9 375	11 875	15 125
2	_	0	2 625	4 375	7 125	10 500
3	_	-	0	750	2 500	5 375
4	-	-	_	0	1 000	3 500
5	-	-	_	_	0	5 000
6	_	-	_	_	-	0

Retrouver les étapes du calcul

un tableau pour les valeurs des k intermédiaires

$K_{i,j}$	1	2	3	4	5	6
1	-	-	1	3	3	3
2	_	-	-	3	3	3
3	-	-	-	_	3	3
4	-	-	-	_	_	5
5	-	-	-	_	_	-
6	-	-	-	_	_	-

Pour calculer $M_i \dots M_j$ on pose $k = K_{i,j}$ donné par le tableau puis on calcule $M_i \dots M_k$ et $M_{k+1} \dots M_j$ et on les multiplie entre elles.

- Des objets $1, 2, \ldots, n$ de poids w_1, w_2, \ldots, w_n
- Chacun rapporte un bénéfice b_1, b_2, \ldots, b_n
- Trouver le bénéfice maximum réalisable sachant que la charge maximale est P_0

Sac à dos: idée pour P_0 entier pas trop grand

- On note B(k, p) le bénéfice maximal reálisable avec des objets $1, 2, \ldots, k$ et le poids maximal p
- On a pour k = 1:

$$B(1,p) = \begin{cases} 0 & \text{si} \quad p < w_1 \\ b_1 & \text{si} \quad p \ge w_1 \end{cases}$$

• Pour k > 1

$$B(k,p) = \begin{cases} B(k-1,p) & \text{si } p < w_k \\ \max(B(k-1,p), B(k-1,p-w_k) + b_k) & \text{si } p \ge w_k \end{cases}$$

Exemple pour le sac à dos

Objets	1	2	3	4	5	6	7	8
Poids	2	3	5	2	4	6	3	1
Bénéfices	5	8	14	6	13	17	10	4

Poids total $P_0 = 12$

Objets	1	2	3	4	5	6	7	8
Poids	2	3	5	2	4	6	3	1
Bénéfices	5	8	14	6	13	17	10	4

B(k,p)	0	1	2	3	4	5	6	7	8	9	10	11	12
k = 1	0	0	5	5	5	5	5	5	5	5	5	5	5

Objets	1	2	3	4	5	6	7	8
Poids	2	3	5	2	4	6	3	1
Bénéfices	5	8	14	6	13	17	10	4

B(k,p)	0	1	2	3	4	5	6	7	8	9	10	11	12
k = 1	0	0	5	5	5	5	5	5	5	5	5	5	5
k=2	0	0	5	8	8	13	13	13	13	13	13	13	13

Objets	1	2	3	4	5	6	7	8
Poids	2	3	5	2	4	6	3	1
Bénéfices	5	8	14	6	13	17	10	4

B(k,p)	0	1	2	3	4	5	6	7	8	9	10	11	12
k = 1	0	0	5	5	5	5	5	5	5	5	5	5	5
k=2	0	0	5	8	8	13	13	13	13	13	13	13	13
k=3	0	0	5	8	8	14	14	19	22	22	27	27	27

B(k,p)	0	1	2	3	4	5	6	7	8	9	10	11	12
k = 1	0	0	5	5	5	5	5	5	5	5	5	5	5
k=2	0	0	5	8	8	13	13	13	13	13	13	13	13
k = 3	0	0	5	8	8	14	14	19	22	22	27	27	27
k=4	0	0	6	8	11	14	14	20	22	25	28	28	33
k=5	0	0	6	8	13	14	19	21	24	27	28	33	35
k = 6	0	0	6	8	13	14	19	21	24	27	30	33	36
k = 7	0	0	6	10	13	16	19	23	24	29	31	34	37
k = 8	0	4	6	10	14	17	20	23	27	29	33	35	38

Alignements de séquences

Pour deux mots sur l'alphabet $\{A,C,G,T\}$ on cherche un alignement qui optimise une fonction qui mesure la similarité

Exemple: GATGCAT et ATCGAT

G	A	T	ı	G	C	A	T
_	A	T	C	G	_	A	T

Algorithme de calcul du meilleur alignement

p(a,b) est d'autant plus grand que les lettres sont similaires.

$$b \neq a, p(a, a) > 0 > p(a, b)$$

$$p(a,b) = p(b,a)$$

q < 0 exprime la similarité d'une lettre avec l'espacement: p(a, e) = p(e, a) = q

$$ms_{i,j} = \max \begin{cases} ms_{i-1,j-1} + p(u_i, v_j) \\ ms_{i-1,j} + q \\ ms_{i,j-1} + q \end{cases}$$

Principe d'un algorithme en espace linéaire

- Le calcul des meilleurs scores peut se faire sur une seule ligne
- Le problème est de retrouver l'alignement une fois que l'on a le score
- On procède par divide and conquer
- ullet Pour aligner u et v on prend i comme la moitié de la longueur de u
- On calcule le score a_j du meilleur alignement de $u_1u_2 \dots u_{i-1}$ avec chaque facteur gauche $v_1v_2 \dots v_j$ de v
- On calcule le score b_k du meilleur alignement de $u_{i+1}u_{i+2}\dots u_n$ avec chaque facteur droit $v_kv_{k+1}\dots v_n$ de v
- On cherche le $a_{j-1} + b_{j+1} + p(u_i, v_j)$ le meilleur

Calcul de la complexité de l'algorithme en espace linéaire

- On montre que le nombre de comparaison $C(m, n) \leq 2mn$
- Vrai pour m=1

$$C(m,n) \le \frac{mn}{2} + \frac{mn}{2} + C(m/2,j) + C(m/2,n-j)$$

$$C(m,n) \le \frac{mn}{2} + \frac{mn}{2} + mj + m(n-j) \le 2mn$$