Answers to Selected Exercises in Real and Complex Analysis*

Solutions by

MARCEL K. GOH

CHAPTER 1. ABSTRACT INTEGRATION

1. Does there exist an infinite σ -algebra which has only countably many members?

The answer is no.

Proof. Let X be a ground set and let \mathcal{F} be a σ -algebra (over X) with infinitely many members. First we claim that we can always find a set $E \neq \emptyset$ such that the set $\{F \cap E^c : F \in \mathcal{F}\}$ is infinite. If this did not hold, then take any $E \neq \emptyset$ in \mathcal{F} . Then by assumption, $\mathcal{S}_1 = \{F \cap E^c : F \in \mathcal{F}\}$ is finite and because $E^c \in \mathcal{F}$, $\mathcal{S}_2 = \{F \cap E : F \in \mathcal{F}\}$ is finite as well. Since any member of \mathcal{F} can be expressed as a union of an element of \mathcal{S}_1 with an element of \mathcal{S}_2 , the implies that \mathcal{F} is finite, a contradiction.

Now we may use the claim to construct a countable sequence of pairwise disjoint elements of \mathcal{F} . Let G_1 be the set E given by the claim. Now the infinite set \mathcal{S}_1 we constructed before is also a σ -algebra, so repeat the argument to get a set G_2 , disjoint from G_1 . Continuing in this manner, we obtain a sequence G_1, G_2, \ldots where the G_i are pairwise disjoint. Now we see that the map from the power set of the natural numbers to \mathcal{F} given by

$$A \mapsto \bigcup_{i \in A} G_i$$

is injective. So the uncountability of \mathcal{F} follows from the uncountability of $\mathcal{P}(\mathbf{N})$.

^{*} Walter Rudin. 1987. Real and complex analysis, 3rd ed. McGraw-Hill, Inc., USA.