SiWaSim

Generated by Doxygen 1.9.3

1	Class Index	1
	1.1 Class List	1
2	File Index	3
	2.1 File List	3
3	Class Documentation	5
	3.1 Configuration Class Reference	5
	3.1.1 Constructor & Destructor Documentation	6
	3.1.1.1 Configuration()	6
	3.1.1.2 ~Configuration()	6
	3.1.2 Member Function Documentation	6
	3.1.2.1 loadConfiguration()	6
	3.1.3 Member Data Documentation	6
	3.1.3.1 a	7
	3.1.3.2 addvol_ratio	7
	3.1.3.3 b	7
	3.1.3.4 c	7
	3.1.3.5 cellCharecteristic	7
	3.1.3.6 cellMode	7
	3.1.3.7 d	7
	3.1.3.8 endVoltage	8
	3.1.3.9 exc_voltage	8
	3.1.3.10 freqAt100	8
	3.1.3.11 initial_weight	8
	3.1.3.12 inputChannel1	8
	3.1.3.13 inputChannel2	8
	3.1.3.14 inputChannel3	8
	3.1.3.15 inputChannel4	9
	3.1.3.16 load_weight	9
	3.1.3.17 max_diff_voltage	9
	3.1.3.18 speedAt100	9
	3.1.3.19 startVoltage	9
	3.1.3.20 systemType	9
	3.2 CURVE Struct Reference	10
	3.2.1 Member Data Documentation	10
	3.2.1.1 fallTime	10
	3.2.1.2 maxFlow	10
	3.2.1.3 riseTime	10
	3.2.1.4 startDelay	11
	3.2.1.5 stopDelay	11
	3.3 GPIO Class Reference	11
	3.3.1 Constructor & Destructor Documentation	11

3.3.1.1 GPIO()	. 11
3.3.1.2 ~GPIO()	. 11
3.3.2 Member Function Documentation	. 12
3.3.2.1 readPin()	. 12
3.3.2.2 setPinMode()	. 12
3.3.2.3 setPWM()	. 12
3.3.2.4 writePin()	. 12
3.4 I2C Class Reference	. 12
3.4.1 Constructor & Destructor Documentation	. 13
3.4.1.1 I2C()	. 13
3.4.1.2 ∼I2C()	. 13
3.4.2 Member Function Documentation	. 13
3.4.2.1 begin()	. 13
3.4.2.2 readData() [1/2]	. 13
3.4.2.3 readData() [2/2]	. 14
3.4.2.4 writeData() [1/2]	. 14
3.4.2.5 writeData() [2/2]	. 14
3.5 IABoard Class Reference	. 14
3.5.1 Constructor & Destructor Documentation	. 15
3.5.1.1 IABoard()	. 15
3.5.1.2 ~IABoard()	. 15
3.5.2 Member Function Documentation	. 15
3.5.2.1 detectBoard()	. 15
3.5.2.2 digitalRead() [1/2]	. 15
3.5.2.3 digitalRead() [2/2]	. 16
3.5.2.4 getAnalogCurOut()	. 16
3.5.2.5 getAnalogVolOut()	. 16
3.5.2.6 getBoardData() [1/2]	. 16
3.5.2.7 getBoardData() [2/2]	. 16
3.5.2.8 getDigitalRead()	. 16
3.5.2.9 getLED()	. 16
3.5.2.10 getOpenDrainDOUT() [1/2]	. 17
3.5.2.11 getOpenDrainDOUT() [2/2]	
3.5.2.12 getOpenDrainPWM()	
3.5.2.13 getTransistionType()	
3.5.2.14 readAnalogCurln()	
3.5.2.15 readAnalogVolIn()	
3.5.2.16 readAnalogVoIInPM()	
3.5.2.17 readTransistions()	
3.5.2.18 resetTransitions()	
3.5.2.19 setAllLED()	
3.5.2.20 setAllOFF()	. 19

3.5.2.21 setAnalogCurOut()	. 19
3.5.2.22 setAnalogVolOut()	
3.5.2.23 setLED()	
3.5.2.24 setOpenDrainDOUT()	
3.5.2.25 setOpenDrainPWM()	
3.5.2.26 setTransistionType()	
3.6 MaterialFlow Class Reference	
3.6.1 Constructor & Destructor Documentation	
3.6.1.1 MaterialFlow() [1/2]	. 21
3.6.1.2 MaterialFlow() [2/2]	
3.6.1.3 ∼MaterialFlow()	
3.6.2 Member Function Documentation	. 21
3.6.2.1 setFlowCurve()	. 21
3.6.2.2 setFlowType()	. 22
3.6.2.3 update()	. 22
3.7 PCB Class Reference	. 22
3.7.1 Constructor & Destructor Documentation	
3.7.1.1 PCB()	. 23
3.7.1.2 ∼PCB()	. 23
3.7.2 Member Function Documentation	. 23
3.7.2.1 getBoardStatus()	. 23
3.7.2.2 getEXCVoltage()	. 23
3.7.2.3 getSENVoltage()	. 23
3.7.2.4 ledBusy()	. 23
3.7.2.5 ledFault()	. 23
3.7.2.6 ledReady()	. 24
3.7.2.7 reloadConfig()	. 24
3.7.2.8 setCellAddvol()	. 24
3.7.2.9 setCellSubvol()	. 24
3.7.2.10 setEXTRASW1()	. 24
3.7.2.11 setEXTRASW2()	. 24
3.7.2.12 setImpedance()	. 24
3.7.2.13 setLoadcellDCVoltage()	. 25
3.7.2.14 setLoadcellVoltage()	. 25
3.7.2.15 setPOWERSW1()	. 25
3.7.2.16 setPOWERSW2()	. 25
3.7.2.17 setPWM()	. 25
3.7.2.18 setSENVoltage()	. 25
3.8 Simulator Class Reference	. 26
3.8.1 Constructor & Destructor Documentation	. 26
3.8.1.1 Simulator()	. 26
3.8.1.2 ~Simulator()	. 26

3.8.2.1 bootupAnimation() 26 3.8.2.2 calibrateLCVoltage() 27 3.8.2.3 reloadConfig() 27 3.8.2.4 run() 27 3.8.2.5 runPassive() 27 3.8.2.6 setImpedance() 27 3.8.2.7 setVelocity() 26 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29 3.9.1 Constructor & Destructor Documentation 29
3.8.2.3 reloadConfig() 27 3.8.2.4 run() 27 3.8.2.5 runPassive() 27 3.8.2.6 setImpedance() 27 3.8.2.7 setVelocity() 27 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.4 run() 27 3.8.2.5 runPassive() 27 3.8.2.6 setImpedance() 27 3.8.2.7 setVelocity() 27 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.5 runPassive() 27 3.8.2.6 setImpedance() 27 3.8.2.7 setVelocity() 27 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.6 setImpedance() 27 3.8.2.7 setVelocity() 27 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.7 setVelocity() 27 3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.8 setVelocityFRQ() 28 3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.9 setVelocityPER() 28 3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.10 setWeightKG() 28 3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.11 setWeightPER() 28 3.8.2.12 testFunction() 29 3.9 UART Class Reference 29
3.8.2.12 testFunction()
3.9 UART Class Reference
3.9.1 Constructor & Destructor Documentation
3.9.1.1 UART()
3.9.1.2 ~UART()
3.9.2 Member Function Documentation
3.9.2.1 begin()
3.9.2.2 receiveMSG()
3.9.2.3 transmitMSG()
4 File Documentation 3
4.1 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp File Reference
•
4.2 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp File Reference
4.2 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp File Reference
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33 4.2.1.9 PIN_IMPEDANCE1 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33 4.2.1.9 PIN_IMPEDANCE1 33 4.2.1.10 PIN_IMPEDANCE2 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33 4.2.1.9 PIN_IMPEDANCE1 33 4.2.1.10 PIN_IMPEDANCE2 33 4.2.1.11 PIN_LED_BUSY 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 33 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33 4.2.1.9 PIN_IMPEDANCE1 33 4.2.1.10 PIN_IMPEDANCE2 33 4.2.1.11 PIN_LED_BUSY 33 4.2.1.12 PIN_LED_FAULT 33
4.2.1 Macro Definition Documentation 32 4.2.1.1 ADDVOL_CHANNEL 32 4.2.1.2 CELL_DC 32 4.2.1.3 CONFIG_PATH 32 4.2.1.4 EXC_IN 32 4.2.1.5 I2C_ADDRESS 33 4.2.1.6 I2C_DEVICE 33 4.2.1.7 PIN_EXTRASW1 33 4.2.1.8 PIN_EXTRASW2 33 4.2.1.9 PIN_IMPEDANCE1 33 4.2.1.10 PIN_IMPEDANCE2 33 4.2.1.11 PIN_LED_BUSY 33 4.2.1.12 PIN_LED_FAULT 33 4.2.1.13 PIN_LED_READY 34

4.2.1.17 SEN_IN	34
4.2.1.18 SEN_OUT	34
4.2.1.19 SUBVOL_CHANNEL	34
4.2.2 Typedef Documentation	34
4.2.2.1 json	35
4.2.3 Enumeration Type Documentation	35
4.2.3.1 IMPEDANCE	35
4.2.3.2 LoadCellMode	35
4.2.3.3 MATERIAL_FLOW	35
4.2.3.4 RUN_MODE	36
4.2.3.5 SYSTEM_TYPE	36
4.3 Configuration.hpp	36
4.4 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp File Reference	38
4.5 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp File Reference	38
4.6 GPIO.hpp	38
4.7 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp File Reference	38
4.8 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp File Reference	39
4.9 I2C.hpp	39
4.10 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp File Reference	39
4.11 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp File Reference	39
4.11.1 Enumeration Type Documentation	40
4.11.1.1 TRANSITION	40
4.12 IABoard.hpp	40
4.13 F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp File Reference	41
4.13.1 Function Documentation	42
4.13.1.1 main()	42
4.14 F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.cpp File Reference	42
4.15 F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.hpp File Reference	42
4.16 MaterialFlow.hpp	43
4.17 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp File Reference	43
4.18 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp File Reference	43
4.19 PCB.hpp	44
4.20 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp File Reference	44
4.21 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp File Reference	44
4.22 Simulator.hpp	45
4.23 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp File Reference	45
4.24 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp File Reference	45
4.25 UART.hpp	46
4.26 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp File Reference	46
4.26.1 Function Documentation	46
4.26.1.1 calculateAverage()	46
4.26.1.2 calculateCubic()	47

4.26.1.3 calculateCubicDeriv()	47
4.26.1.4 constrainMax()	47
4.26.1.5 constrainMin()	48
4.26.1.6 constrainMinMax()	48
4.26.1.7 cubicRegression()	48
4.26.1.8 linearRegression()	49
4.26.1.9 solveCubicForVoltage()	49
4.27 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp File Reference	49
4.27.1 Function Documentation	50
4.27.1.1 calculateAverage()	50
4.27.1.2 calculateCubic()	50
4.27.1.3 calculateCubicDeriv()	51
4.27.1.4 constrainMax()	51
4.27.1.5 constrainMin()	51
4.27.1.6 constrainMinMax()	52
4.27.1.7 cubicRegression()	52
4.27.1.8 linearRegression()	52
4.27.1.9 solveCubicForVoltage()	53
4.28 utility.hpp	53
Index	55

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Configuration							 												 				5
CURVE											 								 				10
GPIO											 								 				- 11
I2C							 												 				12
IABoard											 								 				14
MaterialFlow											 								 				20
PCB											 								 				22
Simulator .											 								 				26
IIΔRT																							20

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp	1
F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp	1
F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp	8
F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp	8
F:/GITHUB/SiWaSIM-PiSoftware/src/l2C.cpp	8
F:/GITHUB/SiWaSIM-PiSoftware/src/l2C.hpp	9
F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp	9
F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp	9
F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp	1
F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.cpp	2
F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.hpp	2
F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp	3
F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp	3
F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp	4
F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp	4
F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp	5
F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp	5
F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp	6
F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp	9

File Index

Chapter 3

Class Documentation

3.1 Configuration Class Reference

```
#include <Configuration.hpp>
```

Public Member Functions

- · Configuration (std::string path)
- ∼Configuration ()
- void loadConfiguration ()

Public Attributes

LoadCellMode cellMode = LoadCellMode::NORMAL

Loadcell mode to be simulated.

• SYSTEM_TYPE systemType = SYSTEM_TYPE::DOSING_SCALE

System type to be simulated.

• float exc_voltage = 10.f

Nominal EXC voltage ouputted by the SIWAREX module.

• float load_weight = 20.f

Nominal Load Weight of the cell in kg.

• float initial_weight = 10.f

Initial weight (for manual / non-auto mode)

• float addvol_ratio = 500

Inverted OpAmp gain (e.g.: At 10V Aout the added / subtracted voltage is 20mV --> ratio = 10V / 20mV = 500)

• float max_diff_voltage = 40

Maximum Differential Voltage of SIG+-.

• float cellCharecteristic = 4

Characteristic in mV/V.

float speedAt100 = 5

Belt velocity in m/s at 100% speed.

• float freqAt100 = 10000

Belt encoder frequency at 100% speed.

float startVoltage = 2

- float endVoltage = 9
- float a
- float b
- float c
- float d
- MATERIAL_FLOW inputChannel1 = MATERIAL_FLOW::EMPTY
- MATERIAL_FLOW inputChannel2 = MATERIAL_FLOW::FINE
- MATERIAL FLOW inputChannel3 = MATERIAL FLOW::COARSE
- MATERIAL FLOW inputChannel4 = MATERIAL FLOW::XCOARSE

3.1.1 Constructor & Destructor Documentation

3.1.1.1 Configuration()

Creates a new configuration that stores all configuration settings needed for the Simulator. IMPORTANT: Should only be created once, since there is only one valid configuration for the simulator!

Parameters

```
path The path to the configuration file on the filesystem
```

3.1.1.2 \sim Configuration()

```
Configuration::~Configuration ( )
```

3.1.2 Member Function Documentation

3.1.2.1 loadConfiguration()

```
void Configuration::loadConfiguration ( )
```

Loads a configuration file from the file system (specified by path in Configuration(std::string path)) and parses all settings to their respective variables

3.1.3 Member Data Documentation

3.1.3.1 a

float Configuration::a

3.1.3.2 addvol_ratio

float Configuration::addvol_ratio = 500

Inverted OpAmp gain (e.g.: At 10V Aout the added / subtracted voltage is 20mV --> ratio = 10V / 20mV = 500)

3.1.3.3 b

float Configuration::b

3.1.3.4 c

float Configuration::c

3.1.3.5 cellCharecteristic

float Configuration::cellCharecteristic = 4

Characteristic in mV/V.

3.1.3.6 cellMode

LoadCellMode Configuration::cellMode = LoadCellMode::NORMAL

Loadcell mode to be simulated.

3.1.3.7 d

float Configuration::d

3.1.3.8 endVoltage

```
float Configuration::endVoltage = 9
```

3.1.3.9 exc_voltage

```
float Configuration::exc_voltage = 10.f
```

Nominal EXC voltage ouputted by the SIWAREX module.

3.1.3.10 freqAt100

```
float Configuration::freqAt100 = 10000
```

Belt encoder frequency at 100% speed.

3.1.3.11 initial_weight

```
float Configuration::initial_weight = 10.f
```

Initial weight (for manual / non-auto mode)

3.1.3.12 inputChannel1

```
MATERIAL_FLOW Configuration::inputChannel1 = MATERIAL_FLOW::EMPTY
```

3.1.3.13 inputChannel2

```
MATERIAL_FLOW Configuration::inputChannel2 = MATERIAL_FLOW::FINE
```

3.1.3.14 inputChannel3

MATERIAL_FLOW Configuration::inputChannel3 = MATERIAL_FLOW::COARSE

3.1.3.15 inputChannel4

MATERIAL_FLOW Configuration::inputChannel4 = MATERIAL_FLOW::XCOARSE

3.1.3.16 load_weight

```
float Configuration::load_weight = 20.f
```

Nominal Load Weight of the cell in kg.

3.1.3.17 max_diff_voltage

```
float Configuration::max_diff_voltage = 40
```

Maximum Differential Voltage of SIG+-.

3.1.3.18 speedAt100

```
float Configuration::speedAt100 = 5
```

Belt velocity in m/s at 100% speed.

3.1.3.19 startVoltage

```
float Configuration::startVoltage = 2
```

3.1.3.20 systemType

```
SYSTEM_TYPE Configuration::systemType = SYSTEM_TYPE::DOSING_SCALE
```

System type to be simulated.

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp

3.2 CURVE Struct Reference

```
#include <MaterialFlow.hpp>
```

Public Attributes

• float startDelay = 0

Delay from input high to flow increase start in seconds.

• float stopDelay = 0

Delay from input low to flow decrease start in seconds.

• float riseTime = 1

Time it takes the flow to reach its maximum in seconds.

• float fallTime = 1

Time it takes the flow to reach zero in seconds.

• float maxFlow = 1

Maximal flow after rise time in kg/s.

3.2.1 Member Data Documentation

3.2.1.1 fallTime

```
float CURVE::fallTime = 1
```

Time it takes the flow to reach zero in seconds.

3.2.1.2 maxFlow

```
float CURVE::maxFlow = 1
```

Maximal flow after rise time in kg/s.

3.2.1.3 riseTime

```
float CURVE::riseTime = 1
```

Time it takes the flow to reach its maximum in seconds.

3.3 GPIO Class Reference

3.2.1.4 startDelay

```
float CURVE::startDelay = 0
```

Delay from input high to flow increase start in seconds.

3.2.1.5 stopDelay

```
float CURVE::stopDelay = 0
```

Delay from input low to flow decrease start in seconds.

The documentation for this struct was generated from the following file:

• F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.hpp

3.3 GPIO Class Reference

```
#include <GPIO.hpp>
```

Public Member Functions

- GPIO ()
- ∼GPIO ()
- void setPWM (int pin, float dutyCycle, float frequency)
- void setPinMode (uint8_t pin, uint8_t mode)
- void writePin (uint8_t pin, bool state)
- bool readPin (uint8_t pin)

3.3.1 Constructor & Destructor Documentation

3.3.1.1 GPIO()

```
GPIO::GPIO ()
```

3.3.1.2 ∼GPIO()

 ${\tt GPIO::}{\sim}{\tt GPIO}$ ()

3.3.2 Member Function Documentation

3.3.2.1 readPin()

3.3.2.2 setPinMode()

3.3.2.3 setPWM()

3.3.2.4 writePin()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp

3.4 I2C Class Reference

```
#include <I2C.hpp>
```

3.4 I2C Class Reference

Public Member Functions

```
I2C (std::string dev, uint16_t address)
~I2C ()
bool begin ()
```

- bool writeData (uint8_t data)
- bool writeData (uint8_t data)
 bool writeData (uint8_t *data, uint8_t length)
- bool readData (uint8_t *data, uint8_t length)
- uint8_t readData ()

3.4.1 Constructor & Destructor Documentation

3.4.1.1 I2C()

3.4.1.2 ∼I2C()

```
I2C::∼I2C ( )
```

3.4.2 Member Function Documentation

3.4.2.1 begin()

```
bool I2C::begin ( )
```

3.4.2.2 readData() [1/2]

```
uint8_t I2C::readData ( )
```

3.4.2.3 readData() [2/2]

3.4.2.4 writeData() [1/2]

3.4.2.5 writeData() [2/2]

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp

3.5 IABoard Class Reference

```
#include <IABoard.hpp>
```

Public Member Functions

- IABoard ()
- ∼IABoard ()
- bool detectBoard ()
- uint8_t digitalRead ()
- bool digitalRead (uint8_t channel)
- bool getDigitalRead (uint8_t channel)
- uint16_t readTransistions (uint8_t channel)
- TRANSITION getTransistionType (uint8_t channel)
- void setTransistionType (uint8_t channel, TRANSITION tran)
- void resetTransitions (uint8_t channel)
- float getAnalogVolOut (uint8_t channel)
- void setAnalogVolOut (uint8_t channel, float voltage)
- float getAnalogCurOut (uint8_t channel)
- void setAnalogCurOut (uint8_t channel, float current)
- float getOpenDrainPWM (uint8_t channel)
- void setOpenDrainPWM (uint8_t channel, float dutyCycle)
- uint8_t getOpenDrainDOUT ()

- bool getOpenDrainDOUT (uint8_t channel)
- void setOpenDrainDOUT (uint8_t channel, bool value)
- bool getLED (uint8_t channel)
- void setLED (uint8_t channel, bool value)
- void setAllLED (bool value)
- float readAnalogVolIn (uint8_t channel)
- float readAnalogVolInPM (uint8_t channel)
- float readAnalogCurIn (uint8_t channel)
- void getBoardData ()
- void getBoardData (uint8_t *temp, float *rail24, float *rail5)
- void setAllOFF ()

3.5.1 Constructor & Destructor Documentation

3.5.1.1 IABoard()

```
IABoard::IABoard ( )
```

3.5.1.2 ∼IABoard()

```
IABoard::∼IABoard ( )
```

3.5.2 Member Function Documentation

3.5.2.1 detectBoard()

```
bool IABoard::detectBoard ( )
```

3.5.2.2 digitalRead() [1/2]

```
uint8_t IABoard::digitalRead ( )
```

3.5.2.3 digitalRead() [2/2]

3.5.2.4 getAnalogCurOut()

3.5.2.5 getAnalogVolOut()

3.5.2.6 getBoardData() [1/2]

```
void IABoard::getBoardData ( )
```

Receives the board data through the command. Board data includes temperature, 24V input rail voltage and 5V rail voltage

3.5.2.7 getBoardData() [2/2]

3.5.2.8 getDigitalRead()

3.5.2.9 getLED()

Gets the current state of one of the on board LEDs

Parameters

channel	The LED to be read (1 - 4)
---------	----------------------------

Returns

Returns the state of the LED (0 = OFF, 1 = ON)

3.5.2.10 getOpenDrainDOUT() [1/2]

```
uint8_t IABoard::getOpenDrainDOUT ( )
```

3.5.2.11 getOpenDrainDOUT() [2/2]

3.5.2.12 getOpenDrainPWM()

3.5.2.13 getTransistionType()

3.5.2.14 readAnalogCurln()

Reads the Analog Input Current of a channel

Parameters

channel	The channel as marked on the IABoard-PCB (1 - 4)
---------	--

Returns

Returns the measured current in mA

3.5.2.15 readAnalogVolln()

Reads the Analog Input Voltage of a channel if the jumper is not set

Parameters

channel	The channel as marked on the IABoard-PCB (1 - 4)
---------	--

Returns

Returns the measured voltage in Volts from 0V to 10V

3.5.2.16 readAnalogVolInPM()

Reads the Analog Input Voltage of a channel if the jumper is set to measure negative voltages

Parameters

channel The channe	l as marked on the IABoard-PCB (1 - 4)
--------------------	--

Returns

Returns the measured voltage in Volts from -10V to 10V

3.5.2.17 readTransistions()

3.5.2.18 resetTransitions()

3.5.2.19 setAIILED()

```
void IABoard::setAllLED (
          bool value )
```

Sets all IABoard-LEDs to the same state

Parameters

```
value The wanted state of all the LEDs (0 = OFF, 1 = ON)
```

3.5.2.20 setAlIOFF()

```
void IABoard::setAllOFF ( )
```

Sets all digital and analog outputs to OFF / 0V

3.5.2.21 setAnalogCurOut()

3.5.2.22 setAnalogVolOut()

3.5.2.23 setLED()

Sets on of the four on board LEDs to a certain state

Parameters

channel	The LED to be toggled (1 - 4)
value	The wanted state of the LED (0 = OFF, 1 = ON)

3.5.2.24 setOpenDrainDOUT()

Sets on of the four digital outputs

Parameters

channel	The Open Drain Pin to be toggled (1 - 4)
value	The wanted state of the channel

3.5.2.25 setOpenDrainPWM()

3.5.2.26 setTransistionType()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp

3.6 MaterialFlow Class Reference

```
#include <MaterialFlow.hpp>
```

Public Member Functions

- MaterialFlow (uint8_t channel)
- MaterialFlow (uint8_t channel, MATERIAL_FLOW flowType)
- ∼MaterialFlow ()
- void setFlowCurve (CURVE curve)
- void setFlowType (MATERIAL_FLOW flowType)
- float update (float *currentWeight, float dt, bool pinState)

3.6.1 Constructor & Destructor Documentation

3.6.1.1 MaterialFlow() [1/2]

3.6.1.2 MaterialFlow() [2/2]

3.6.1.3 ∼MaterialFlow()

```
MaterialFlow::~MaterialFlow ( )
```

3.6.2 Member Function Documentation

3.6.2.1 setFlowCurve()

```
void MaterialFlow::setFlowCurve (  {\tt CURVE} \ \ curve \ )
```

3.6.2.2 setFlowType()

3.6.2.3 update()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.cpp

3.7 PCB Class Reference

```
#include <PCB.hpp>
```

Public Member Functions

- PCB (Configuration *config)
- ∼PCB ()
- void ledFault (bool state)
- void ledBusy (bool state)
- void ledReady (bool state)
- void setImpedance (IMPEDANCE impedance)
- void setEXTRASW1 (bool state)
- void setEXTRASW2 (bool state)
- void setPOWERSW1 (bool state)
- void setPOWERSW2 (bool state)
- · void setLoadcellVoltage (float voltage)
- void setLoadcellDCVoltage (float voltage)
- void setCellAddvol (float voltage)
- void setCellSubvol (float voltage)
- void setSENVoltage (float voltage)
- float getEXCVoltage ()
- float getSENVoltage ()
- void setPWM (float frequency, float dutyCycle)
- void getBoardStatus ()
- void reloadConfig ()

3.7.1 Constructor & Destructor Documentation

3.7 PCB Class Reference 23

3.7.1.1 PCB()

```
PCB::PCB ( {\tt Configuration} \ * \ config \ )
```

3.7.1.2 ∼PCB()

```
PCB::∼PCB ( )
```

3.7.2 Member Function Documentation

3.7.2.1 getBoardStatus()

```
void PCB::getBoardStatus ( )
```

3.7.2.2 getEXCVoltage()

```
float PCB::getEXCVoltage ( )
```

3.7.2.3 getSENVoltage()

```
float PCB::getSENVoltage ( )
```

3.7.2.4 ledBusy()

3.7.2.5 ledFault()

```
void PCB::ledFault (
          bool state )
```

3.7.2.6 ledReady()

3.7.2.7 reloadConfig()

```
void PCB::reloadConfig ( )
```

3.7.2.8 setCellAddvol()

3.7.2.9 setCellSubvol()

3.7.2.10 setEXTRASW1()

3.7.2.11 setEXTRASW2()

```
void PCB::setEXTRASW2 (
                bool state )
```

3.7.2.12 setImpedance()

3.7 PCB Class Reference 25

3.7.2.13 setLoadcelIDCVoltage()

3.7.2.14 setLoadcellVoltage()

3.7.2.15 setPOWERSW1()

3.7.2.16 setPOWERSW2()

3.7.2.17 setPWM()

3.7.2.18 setSENVoltage()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp

3.8 Simulator Class Reference

```
#include <Simulator.hpp>
```

Public Member Functions

- Simulator ()
- ∼Simulator ()
- void setWeightPER (float percentage)
- void setWeightKG (float kg)
- void setVelocity (float meterspersecond)
- void setVelocityPER (float percentage)
- void setVelocityFRQ (float frequency)
- void setImpedance (IMPEDANCE impedance)
- void bootupAnimation ()
- void reloadConfig ()
- void testFunction ()
- float run (RUN_MODE runMode, float timestep, float *weight)
- float runPassive (float timestep, float *weight)
- void calibrateLCVoltage ()

3.8.1 Constructor & Destructor Documentation

3.8.1.1 Simulator()

```
Simulator::Simulator ( )
```

3.8.1.2 ∼Simulator()

```
Simulator::\simSimulator ( )
```

3.8.2 Member Function Documentation

3.8.2.1 bootupAnimation()

```
void Simulator::bootupAnimation ( )
```

Starts an animation with the on board LEDs

3.8.2.2 calibrateLCVoltage()

```
void Simulator::calibrateLCVoltage ( )
```

3.8.2.3 reloadConfig()

```
void Simulator::reloadConfig ( )
```

Reloads the configuration from the disk an stores the settings

3.8.2.4 run()

```
float Simulator::run (
    RUN_MODE runMode,
    float timestep,
    float * weight )
```

3.8.2.5 runPassive()

3.8.2.6 setImpedance()

3.8.2.7 setVelocity()

Sets the simulated belt velocity in meters per second

Parameters

meterspersecond Velocity in meters / second

3.8.2.8 setVelocityFRQ()

Sets the PWM output to a certain frequency to represent belt movement

Parameters

frequency	The frequency of the PWM signal
-----------	---------------------------------

3.8.2.9 setVelocityPER()

Sets the simulated belt velocity from 0 - 100% of the maximal speed

Parameters

3.8.2.10 setWeightKG()

```
void Simulator::setWeightKG ( \label{eq:float} \texttt{float} \ kg \ )
```

Set the output weight of the simulated load cell in kg

Parameters

```
kg Output weight in kilograms
```

3.8.2.11 setWeightPER()

Set the output weight as a percentage of the nominal load

3.9 UART Class Reference 29

Parameters

percentage	Percentage from 0 - 1 where 1	I represents the nominal load as specified
1		-

3.8.2.12 testFunction()

```
void Simulator::testFunction ( )
```

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp

3.9 UART Class Reference

```
#include <UART.hpp>
```

Public Member Functions

- UART ()
- ∼UART ()
- bool begin ()
- bool transmitMSG (uint8_t *msg, uint16_t length)
- std::vector< uint8_t > receiveMSG ()

3.9.1 Constructor & Destructor Documentation

3.9.1.1 UART()

```
UART::UART ( )
```

3.9.1.2 ∼UART()

```
UART::~UART ( )
```

3.9.2 Member Function Documentation

30 Class Documentation

3.9.2.1 begin()

```
bool UART::begin ( )
```

3.9.2.2 receiveMSG()

```
std::vector< uint8_t > UART::receiveMSG ( )
```

3.9.2.3 transmitMSG()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp

Chapter 4

File Documentation

4.1 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp File Reference

```
#include "Configuration.hpp"
```

4.2 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp File Reference

```
#include <string>
#include <iostream>
#include <fstream>
#include "nlohmann/json.hpp"
```

Classes

· class Configuration

Macros

- #define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"
- #define I2C_ADDRESS 0x50
- #define I2C DEVICE "/dev/i2c-1"
- #define PIN LED READY 23
- #define PIN_LED_BUSY 24
- #define PIN_LED_FAULT 25
- #define PWM PIN 13
- #define PIN_POWERSW1 4
- #define PIN_POWERSW2 26
- #define PIN_IMPEDANCE1 5
- #define PIN_IMPEDANCE2 6
- #define PIN_EXTRASW1 27
- #define PIN_EXTRASW2 22
- #define ADDVOL_CHANNEL 2
- #define SUBVOL_CHANNEL 3
- #define CELL_DC 1
- #define SEN OUT 4
- #define EXC_IN 1
- #define SEN_IN 2

Typedefs

• using json = nlohmann::json

Enumerations

```
enum LoadCellMode { NORMAL = 0x00 , OVERLOAD = 0x01 , INVERTED = 0x02 }
enum IMPEDANCE { OPEN = 0x00 , NOMINAL = 0x01 , SHORT = 0x02 }
enum SYSTEM_TYPE { DOSING_SCALE = 0x01 , BELT_SCALE = 0x02 }
enum MATERIAL_FLOW {
    NONE = 0x00 , EMPTY , FINE , COARSE ,
    XCOARSE }
enum RUN_MODE {
    AUTO , PASSIVE , MANUAL , IDLE ,
    OFF }
```

4.2.1 Macro Definition Documentation

4.2.1.1 ADDVOL_CHANNEL

```
#define ADDVOL_CHANNEL 2
```

4.2.1.2 CELL_DC

#define CELL_DC 1

4.2.1.3 CONFIG_PATH

#define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"

4.2.1.4 EXC_IN

#define EXC_IN 1

4.2.1.5 I2C_ADDRESS

#define I2C_ADDRESS 0x50

4.2.1.6 I2C_DEVICE

#define I2C_DEVICE "/dev/i2c-1"

4.2.1.7 PIN_EXTRASW1

#define PIN_EXTRASW1 27

4.2.1.8 PIN_EXTRASW2

#define PIN_EXTRASW2 22

4.2.1.9 PIN_IMPEDANCE1

#define PIN_IMPEDANCE1 5

4.2.1.10 PIN_IMPEDANCE2

#define PIN_IMPEDANCE2 6

4.2.1.11 PIN_LED_BUSY

#define PIN_LED_BUSY 24

4.2.1.12 PIN_LED_FAULT

#define PIN_LED_FAULT 25

4.2.1.13 PIN_LED_READY

#define PIN_LED_READY 23

4.2.1.14 PIN_POWERSW1

#define PIN_POWERSW1 4

4.2.1.15 PIN_POWERSW2

#define PIN_POWERSW2 26

4.2.1.16 PWM_PIN

#define PWM_PIN 13

4.2.1.17 SEN_IN

#define SEN_IN 2

4.2.1.18 SEN_OUT

#define SEN_OUT 4

4.2.1.19 SUBVOL_CHANNEL

#define SUBVOL_CHANNEL 3

4.2.2 Typedef Documentation

4.2.2.1 json

using json = nlohmann::json

4.2.3 Enumeration Type Documentation

4.2.3.1 IMPEDANCE

enum IMPEDANCE

Types of impedances of the load cell that can be simulated. Is equivilant with the impedance between EXC+ and EXC-

Enumerator

OPEN	Open circuit, high impedance.
NOMINAL	Nominal impedance of approx. 350 ohms.
SHORT	Short circuit, approx. zero impedance.

4.2.3.2 LoadCellMode

enum LoadCellMode

Enumerator

NORMAL	Positive differential voltage from 0 - 100% nominal load.
OVERLOAD	Positive differential voltage from 0 - 120% nominal load.
INVERTED	Negative differential voltage from 0 - 100% nominal load.

4.2.3.3 MATERIAL_FLOW

enum MATERIAL_FLOW

Types of different material flows

Enumerator

NONE	
EMPTY	
FINE	
COARSE	
XCOARSE	

Generated by Doxyger

4.2.3.4 RUN MODE

enum RUN_MODE

Enumerator

AUTO	
PASSIVE	
MANUAL	
IDLE	
OFF	

4.2.3.5 SYSTEM_TYPE

```
enum SYSTEM_TYPE
```

Type of the system represented by the simulator

Enumerator

DOSING_SCALE	Dosing Scale.	
BELT_SCALE	Belt Scale.	

4.3 Configuration.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <string>
3 #include <iostream>
4 #include <fstream>
5 #include "nlohmann/json.hpp"
7 using json = nlohmann::json;
9 #define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"
10
11 // I2C
12 #define I2C_ADDRESS 0x50
13 #define I2C_DEVICE "/dev/i2c-1"
14
15 // LED Pins
16 #define PIN_LED_READY 23
17 #define PIN_LED_BUSY 24
18 #define PIN_LED_FAULT 25
19
20 // PWM Pin
21 #define PWM_PIN 13
23 // 24V Power Switch Pins
24 #define PIN_POWERSW1 4
25 #define PIN_POWERSW2 26
26
27 // Pins for Impedance switching
28 #define PIN_IMPEDANCE1 5
```

```
29 #define PIN_IMPEDANCE2 6
31 // Pins for extra switches (e.g. WebServer, WriteProtect)
32 #define PIN_EXTRASW1 27
33 #define PIN EXTRASW2 22
34
35 // Analog Channels
36 #define ADDVOL_CHANNEL 2
37 #define SUBVOL_CHANNEL 3
38 #define CELL DC 1
39 #define SEN_OUT 4
40 #define EXC_IN 1
41 #define SEN_IN 2
43 enum LoadCellMode
44 {
      NORMAL = 0x00,

OVERLOAD = 0x01,

INVERTED = 0x02,
46
48
50
52 } typedef LoadCellMode;
53
58 enum IMPEDANCE
59 {
61
      OPEN = 0x00,
      NOMINAL = 0x01,
63
65
      SHORT = 0x02,
66
67 } typedef IMPEDANCE;
68
72 enum SYSTEM_TYPE
73 {
75
      DOSING_SCALE = 0x01,
77
      BELT\_SCALE = 0x02,
78 } typedef SYSTEM_TYPE;
79
83 enum MATERIAL FLOW
84 {
      NONE = 0x00,
85
86
      EMPTY,
87
      FINE,
      COARSE.
88
      XCOARSE.
89
90
91 } typedef MATERIAL_FLOW;
92
93 enum RUN_MODE
94 {
95
      AUTO.
      PASSIVE,
96
      MANUAL,
98
      IDLE,
99
      OFF
100
101 } typedef RUN_MODE;
102
103 class Configuration
104 {
105 public:
106
       Configuration(std::string path);
107
       ~Configuration();
108
109
       void loadConfiguration();
110
111
       // SETTING VARIABLES
113
       LoadCellMode cellMode = LoadCellMode::NORMAL;
115
       SYSTEM_TYPE systemType = SYSTEM_TYPE::DOSING_SCALE;
       float exc_voltage = 10.f;
float load_weight = 20.f;
117
119
       float initial_weight = 10.f;
121
123
       float addvol_ratio = 500;
125
       float max_diff_voltage = 40;
       float cellCharecteristic = 4;
float speedAt100 = 5;
127
129
131
       float freqAt100 = 10000;
132
133
       float startVoltage = 2;
134
       float endVoltage = 9;
135
136
       float a, b, c, d;
137
138
       // Input channel assignment
139
       MATERIAL_FLOW inputChannel1 = MATERIAL_FLOW::EMPTY;
       MATERIAL_FLOW inputChannel2 = MATERIAL_FLOW::FINE;
140
       MATERIAL_FLOW inputChannel3 = MATERIAL_FLOW::COARSE;
MATERIAL_FLOW inputChannel4 = MATERIAL_FLOW::XCOARSE;
141
142
143
```

```
144 private:
145     void parseJSON();
146     std::string _path;
147 };
```

4.4 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp File Reference

```
#include "GPIO.hpp"
```

4.5 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp File Reference

```
#include <signal.h>
#include <pigpio.h>
#include <stdint.h>
#include <cstdio>
```

Classes

• class GPIO

4.6 GPIO.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <signal.h>
3 #include <pigpio.h>
4 #include <stdint.h>
5 #include <cstdio>
7 class GPIO
9 public:
10
   GPIO();
11
      ~GPIO();
     void setPWM(int pin, float dutyCycle, float frequency);
12
13
     void setPinMode(uint8_t pin, uint8_t mode);
     void writePin(uint8_t pin, bool state);
17
     bool readPin(uint8_t pin);
18
19 private:
20 };
```

4.7 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp File Reference

```
#include "I2C.hpp"
```

4.8 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp File Reference

```
#include <stdio.h>
#include <unistd.h>
#include <string>
#include <stdint.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include #include
```

Classes

class I2C

4.9 I2C.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <stdio.h>
3 #include <unistd.h>
4 #include <string>
5 #include <stdint.h>
6 #include <sys/stat.h>
7 #include <fcntl.h>
8 #include <sys/ioctl.h>
9 #include <linux/i2c.h>
10 #include <linux/i2c-dev.h>
11
12 class I2C
14 public:
      I2C(std::string dev, uint16_t address);
16
       ~I2C();
17
      bool begin();
bool writeData(uint8_t data);
bool writeData(uint8_t *data, uint8_t length);

hool writeData(uint8_t *data, uint8_t length);
     bool readData(uint8_t *data, uint8_t length);
uint8_t readData();
21
22
23 private:
      std::string _dev;
24
     uint16_t _address;
int i2c0 = -1;
25
27 };
```

4.10 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp File Reference

```
#include "IABoard.hpp"
```

4.11 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp File Reference

```
#include "Configuration.hpp"
#include "I2C.hpp"
#include "utility.hpp"
#include <chrono>
#include <thread>
#include <iostream>
```

Classes

· class IABoard

Enumerations

```
    enum TRANSITION {
        DISABLE = 0x00 , RISING = 0x01 , FALLING = 0x02 , BOTH = 0x03 ,
        UNDEFINED = 0x04 }
```

4.11.1 Enumeration Type Documentation

4.11.1.1 TRANSITION

```
enum TRANSITION
```

Enumerator

DISABLE	
RISING	
FALLING	
BOTH	
UNDEFINED	

4.12 IABoard.hpp

Go to the documentation of this file.

```
1 #pragma once
1 #pragma once
2 #include "Configuration.hpp"
3 #include "I2C.hpp"
4 #include "utility.hpp"
6 #include <chrono>
7 #include <thread>
8 #include <iostream>
9 using namespace std::chrono_literals;
11 enum TRANSITION
12 {
        DISABLE = 0x00,
13
        RISING = 0 \times 01,
FALLING = 0 \times 02,
14
15
15 FALLING = 0x02,

16 BOTH = 0x03,

17 UNDEFINED = 0x04

18 } typedef TRANSITION;
19
20 class IABoard
21 {
22 public:
      IABoard();
24
        ~IABoard();
25
        // Check if the board is responding
bool detectBoard();
26
        // Read all digital inputs
```

```
30
      uint8_t digitalRead();
      // Read digital input of certain channel 1 - 4
32
      bool digitalRead(uint8_t channel);
33
      bool getDigitalRead(uint8_t channel);
34
35
      // Reads the number of counted transitions (if enabled)
      uint16_t readTransistions(uint8_t channel);
      // Reads th ecurrently set transition type
38
      TRANSITION getTransistionType(uint8_t channel);
39
      // Sets the type of transistions that should be counted
      void setTransistionType(uint8_t channel, TRANSITION tran);
40
41
      // Sets the transistion counter of a channel to 0
42
      void resetTransitions(uint8 t channel);
44
      // Get the currently set analog output voltage
4.5
      float getAnalogVolOut(uint8_t channel);
      // Set the analog output voltage from 0 - 10V, voltage in volts
46
      void setAnalogVolOut(uint8_t channel, float voltage);
47
      // Get the currently set analog output current
      float getAnalogCurOut(uint8_t channel);
51
      // Set the analog output current from 4 - 20mA, current in mA
52
      void setAnalogCurOut(uint8_t channel, float current);
5.3
54
      // Get the PWM Duty Cycle for the Open Drain Output (if not used as digital out)
      float getOpenDrainPWM(uint8_t channel);
// Set the PWM Duty Cycle (0 - 100%) for the Open Drain Output
55
57
      void setOpenDrainPWM(uint8_t channel, float dutyCycle);
58
59
      // Read all digital open drain outputs
      uint8 t getOpenDrainDOUT();
60
      // Get the currently set open drain digital out value bool getOpenDrainDOUT(uint8_t channel);
61
      // Set the digital open drain output
6.3
64
      void setOpenDrainDOUT(uint8_t channel, bool value);
65
66
      // Gets the state of a certain LED
      bool getLED(uint8_t channel);
      // Sets a certain LED Low or High
      void setLED(uint8_t channel, bool value);
69
70
      // Sets all LEDs ON or OFF
71
      void setAllLED(bool value);
72
73
      // Reads the analog input voltage of a certain channel (0-10V)
      float readAnalogVolIn(uint8_t channel);
75
      // Reads the analog input voltage of a certain channel (-10-10V, Jumper set)
76
      float readAnalogVolInPM(uint8_t channel);
77
78
      // Reads the analog input current of a certain channel (4-20mA)
      float readAnalogCurIn(uint8_t channel);
79
      void getBoardData();
81
82
      void getBoardData(uint8_t *temp, float *rail24, float *rail5);
83
      // Turn all digital and analog outputs off
84
85
      void setAllOFF();
87 private:
88
     I2C *_i2c;
89
90
     bool digitalRead[4] = \{0, 0, 0, 0\};
91
      uint8_t _fwVersion[2] = \{0x00, 0x00\};
      uint8_t _boardTemperature = 0;
94
      float _24Vrail = 0.f;
95
     float _5Vrail = 0.f;
96
      // Delay because the IA-Board can only handle commands every few ms
      const std::chrono::milliseconds _delayBetweenCommands = 2ms;
98
      std::chrono::time_point<std::chrono::system_clock, std::chrono::duration<double> _lastCommand;
100
101
       \ensuremath{//} Wait till the minimum time between commands has elapsed
102
       void waitForIA();
103 };
```

4.13 F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp File Reference

```
#include <iostream>
#include <string>
#include <stdio.h>
```

```
#include <stdlib.h>
#include <vector>
#include "I2C.hpp"
#include "UART.hpp"
#include "GPIO.hpp"
#include "IABoard.hpp"
#include "PCB.hpp"
#include "Simulator.hpp"
#include "matplotlib/matplotlibcpp.h"
```

Functions

• int main ()

4.13.1 Function Documentation

4.13.1.1 main()

```
int main ( )
```

4.14 F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.cpp File Reference

```
#include "MaterialFlow.hpp"
```

4.15 F:/GITHUB/SiWaSIM-PiSoftware/src/MaterialFlow.hpp File Reference

```
#include <iostream>
#include "Configuration.hpp"
#include "IABoard.hpp"
```

Classes

- struct CURVE
- class MaterialFlow

4.16 MaterialFlow.hpp 43

4.16 MaterialFlow.hpp

Go to the documentation of this file.

```
2 #include <iostream>
3 #include "Configuration.hpp"
4 #include "IABoard.hpp"
6 struct CURVE
     float startDelay = 0;
     float stopDelay = 0;
float riseTime = 1;
11
13
    float fallTime = 1;
float maxFlow = 1;
18 } typedef CURVE;
19
20 class MaterialFlow
21 {
22 public:
23
      MaterialFlow(uint8_t channel);
      MaterialFlow(uint8_t channel, MATERIAL_FLOW flowType);
25
       ~MaterialFlow();
26
     void setFlowCurve(CURVE curve);
     void setFlowType(MATERIAL_FLOW flowType);
float update(float *currentWeight, float dt, bool pinState);
30
31 private:
    uint8_t _channel;
MATERIAL_FLOW _flowType;
32
33
34
      bool _lastPinState = 0;
     float _currentFlow = 0;
float _lastPinStateTime = 0;
36
37
38
      CURVE _curve;
39
40
      IABoard *_ia;
42 };
```

4.17 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp File Reference

```
#include "PCB.hpp"
```

4.18 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp File Reference

```
#include "utility.hpp"
#include "GPIO.hpp"
#include "IABoard.hpp"
#include "Configuration.hpp"
```

Classes

• class PCB

4.19 PCB.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include "utility.hpp"
3 #include "GPIO.hpp"
4 #include "IABoard.hpp"
5 #include "Configuration.hpp"
7 class PCB
8 {
9 public:
      PCB(Configuration *config);
1.0
11
      ~PCB();
12
      void ledFault(bool state);
13
      void ledBusy(bool state);
    void ledReady(bool state);
16
      void setImpedance(IMPEDANCE impedance);
17
18
      void setEXTRASW1(bool state);
20
      void setEXTRASW2(bool state);
22
      void setPOWERSW1(bool state);
      void setPOWERSW2 (bool state);
2.3
      void setLoadcellVoltage(float voltage);
      void setLoadcellDCVoltage(float voltage);
27
      void setCellAddvol(float voltage);
28
      void setCellSubvol(float voltage);
2.9
      void setSENVoltage(float voltage);
30
31
     float getEXCVoltage();
32
      float getSENVoltage();
34
     void setPWM(float frequency, float dutyCycle);
35
36
     void getBoardStatus();
37
      void reloadConfig();
39
40 private:
41
      GPIO *_gpio;
     IABoard *_ia;
Configuration *_config;
42
43
```

4.20 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp File Reference

```
#include "Simulator.hpp"
```

4.21 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp File Reference

```
#include "PCB.hpp"
#include "Configuration.hpp"
#include "IABoard.hpp"
#include "MaterialFlow.hpp"
#include <chrono>
#include <thread>
```

Classes

· class Simulator

4.22 Simulator.hpp 45

4.22 Simulator.hpp

Go to the documentation of this file.

```
2 #include "PCB.hpp"
3 #include "Configuration.hpp"
4 #include "IABoard.hpp"
5 #include "MaterialFlow.hpp"
7 #include <chrono>
8 #include <thread>
10 using namespace std::chrono_literals;
11
12 class Simulator
13 {
14 public:
15
      Simulator();
16
      ~Simulator();
18
     void setWeightPER(float percentage); // Set the weight from 0 - 100% of nominal Load
      void setWeightKG(float kg);
                                              // Set the weight in kg
20
2.1
      void setVelocity(float meterspersecond);
      void setVelocityPER(float percentage);
void setVelocityFRQ(float frequency);
22
23
25
      void setImpedance(IMPEDANCE impedance);
26
      void bootupAnimation();
28
      void reloadConfig();
29
30
      void testFunction();
     float run(RUN_MODE runMode, float timestep, float *weight);
33
      float runPassive(float timestep, float *weight);
34
      void calibrateLCVoltage();
35
36
37 private:
      Configuration *_config;
39
      PCB *_pcb;
40
      IABoard *_ia;
41
     MaterialFlow *_materialFlows[4];
42
```

4.23 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp File Reference

```
#include "UART.hpp"
```

4.24 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp File Reference

```
#include <stdint.h>
#include <fcntl.h>
#include <iostream>
#include <sstream>
#include <termios.h>
#include <unistd.h>
#include <vector>
```

Classes

• class UART

4.25 UART.hpp

Go to the documentation of this file.

```
2 #include <stdint.h>
3 #include <fcntl.h>
4 #include <iostream>
5 #include <sstream>
6 #include <termios.h>
7 #include <unistd.h>
8 #include <vector>
10 class UART
12 public:
13
     UART();
14
      ~UART();
15
     bool begin();
     bool transmitMSG(uint8_t *msg, uint16_t length);
16
     std::vector<uint8_t> receiveMSG();
18
19 private:
   int uart0 = -1;
20
     // std::string _dev;
const uint8_t _messageSizeRX = 0;
21
                                             // Number of bytes to wait for
     const uint8_t _messageTimeoutRX = 50; // Read Timeout in 0.1s steps
```

4.26 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp File Reference

```
#include "utility.hpp"
```

Functions

- · float constrainMinMax (float value, float min, float max)
- float constrainMin (float value, float min)
- float constrainMax (float value, float max)
- void linearRegression (std::vector< float > x, std::vector< float > y, float *m, float *b)
- float calculateAverage (std::vector< float > values)
- void cubicRegression (std::vector< float > x, std::vector< float > y, float *a, float *b, float *c, float *d)
- float solveCubicForVoltage (float a, float b, float c, float d, float value)
- float calculateCubic (float a, float b, float c, float d, float x)
- float calculateCubicDeriv (float a, float b, float c, float x)

4.26.1 Function Documentation

4.26.1.1 calculateAverage()

Calculates the average of values of a vector

Parameters

values The vector that contains the values
--

Returns

Returns the average of the values in the vector

4.26.1.2 calculateCubic()

4.26.1.3 calculateCubicDeriv()

```
float calculateCubicDeriv (
    float a,
    float b,
    float c,
    float x )
```

4.26.1.4 constrainMax()

```
float constrainMax ( \label{float value,} \mbox{float } max \ )
```

Constrain a value to an upper limit if the value is above that limit

Parameters

value	The value to be clipped
max	The upper limit

Returns

Returns the clipped / constrained value

4.26.1.5 constrainMin()

```
float constrainMin (
            float value,
            float min )
```

Constrain a value to a lower limit if the value is below that limit

Parameters

value The value to be clipp	
min	The lower limit

Returns

Returns the clipped / constrained value

4.26.1.6 constrainMinMax()

Constrain a value between an upper and a lower limit to clip the value

Parameters

value	The value to be clipped
min	The lower limit
max	The upper limit

Returns

Returns the clipped / constrained value

4.26.1.7 cubicRegression()

```
void cubicRegression (
          std::vector< float > x,
          std::vector< float > y,
          float * a,
          float * b,
          float * c,
          float * d )
```

Calculates a cubic regression $f(x)=ax^3+bx^2+cx+d$ for a dataset of x and y values

Parameters

X	Vector of x-values of the dataset
У	Vector of y-values of the dataset
а	Coefficient in front of x^3
b	Coefficient in front of x^2
С	Coefficient in front of x^1
d	Coefficient in front of x^0

4.26.1.8 linearRegression()

```
void linearRegression (
    std::vector< float > x,
    std::vector< float > y,
    float * m,
    float * b )
```

Calculates a linear regression f(x)=mx+b for a dataset of x and y values

4.26.1.9 solveCubicForVoltage()

Newton-Raphson Method for finding the x-value that corresponds to a y-value of a cubic function $ax^3+x^2+cx+d=value$, only for the range 0 - 10

Parameters

а	Coefficient in front of x^3
b	Coefficient in front of x^2
С	Coefficient in front of x^1
d	Coefficient in front of x^0
value	y-value of the cubic function that corresponds to the wanted x-value

Returns

Returns the x-value that corresponds to the y-value

4.27 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp File Reference

```
#include <vector>
#include <iostream>
```

```
#include <cmath>
#include "Eigen/Dense"
```

Functions

- float constrainMinMax (float value, float min, float max)
- float constrainMin (float value, float min)
- float constrainMax (float value, float max)
- void linearRegression (std::vector< float > x, std::vector< float > y, float *m, float *b)
- float calculateAverage (std::vector< float > values)
- void cubicRegression (std::vector< float > x, std::vector< float > y, float *a, float *b, float *c, float *d)
- float solveCubicForVoltage (float a, float b, float c, float d, float value)
- float calculateCubic (float a, float b, float c, float d, float x)
- float calculateCubicDeriv (float a, float b, float c, float x)

4.27.1 Function Documentation

4.27.1.1 calculateAverage()

```
float calculateAverage ( {\tt std::vector} < {\tt float} \, > \, {\it values} \,\, )
```

Calculates the average of values of a vector

Parameters

ector that contains the values	values
--------------------------------	--------

Returns

Returns the average of the values in the vector

4.27.1.2 calculateCubic()

```
float calculateCubic (
    float a,
    float b,
    float c,
    float d,
    float x )
```

4.27.1.3 calculateCubicDeriv()

4.27.1.4 constrainMax()

Constrain a value to an upper limit if the value is above that limit

Parameters

value	The value to be clipped
max	The upper limit

Returns

Returns the clipped / constrained value

4.27.1.5 constrainMin()

```
float constrainMin ( \label{float_state} \mbox{float } value, \\ \mbox{float } \min \mbox{ )}
```

Constrain a value to a lower limit if the value is below that limit

Parameters

value	The value to be clipped
min	The lower limit

Returns

Returns the clipped / constrained value

4.27.1.6 constrainMinMax()

Constrain a value between an upper and a lower limit to clip the value

Parameters

value	The value to be clipped
min	The lower limit
max	The upper limit

Returns

Returns the clipped / constrained value

4.27.1.7 cubicRegression()

```
void cubicRegression (
    std::vector< float > x,
    std::vector< float > y,
    float * a,
    float * b,
    float * c,
    float * d)
```

Calculates a cubic regression $f(x)=ax^3+bx^2+cx+d$ for a dataset of x and y values

Parameters

Х	Vector of x-values of the dataset
У	Vector of y-values of the dataset
а	Coefficient in front of x^3
b	Coefficient in front of x^2
С	Coefficient in front of x^1
d	Coefficient in front of x^0

4.27.1.8 linearRegression()

```
void linearRegression (
    std::vector< float > x,
    std::vector< float > y,
```

4.28 utility.hpp 53

```
float * m,
float * b )
```

Calculates a linear regression f(x)=mx+b for a dataset of x and y values

4.27.1.9 solveCubicForVoltage()

```
float solveCubicForVoltage (
    float a,
    float b,
    float c,
    float d,
    float value )
```

Newton-Raphson Method for finding the x-value that corresponds to a y-value of a cubic function $ax^3+x^2+cx+d=value$, only for the range 0 - 10

Parameters

а	Coefficient in front of x^3
b	Coefficient in front of x^2
С	Coefficient in front of x^1
d	Coefficient in front of x^0
value	y-value of the cubic function that corresponds to the wanted x-value

Returns

Returns the x-value that corresponds to the y-value

4.28 utility.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <vector>
3 #include <iostream>
4 #include <comath>
5 #include "Eigen/Dense"
6
7 using Eigen::MatrixXd;
8 using Eigen::VectorXd;
9
10 float constrainMinMax(float value, float min, float max);
11 float constrainMin(float value, float min);
12 float constrainMax(float value, float max);
13
14 void linearRegression(std::vector<float> x, std::vector<float> y, float *m, float *b);
15
16 float calculateAverage(std::vector<float> values);
17
18 void cubicRegression(std::vector<float> x, std::vector<float> y, float *a, float *b, float *c, float *d);
19
20 float solveCubicForVoltage(float a, float b, float c, float d, float value);
21
22 float calculateCubic(float a, float b, float c, float d, float x);
23 float calculateCubicDeriv(float a, float b, float c, float x);
```

Index

\sim Configuration	constrainMax
Configuration, 5	utility.cpp, 31
~GPIO	utility.hpp, 32
GPIO, 7	constrainMin
∼I2C	utility.cpp, 32
I2C, 9	utility.hpp, 32
\sim IABoard	constrainMinMax
IABoard, 10	utility.cpp, 32
∼PCB	utility.hpp, 33
PCB, 15	
\sim Simulator	detectBoard
Simulator, 17	IABoard, 11
\sim UART	digitalRead
UART, 18	IABoard, 11
	DISABLE
ADDVOL_CHANNEL	IABoard.hpp, 25
PCB.hpp, 28	
addvol_ratio	exc_voltage
Configuration, 6	Configuration, 6
begin	F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp
I2C, 9	21
UART, 18	F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp
ВОТН	21, 22
IABoard.hpp, 25	F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp, 23
	F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp, 23
cellCharecteristic	F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp, 23
Configuration, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp, 23, 24
cellMode	F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp, 24
Configuration, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp, 24
Configuration, 5	25
~Configuration, 5	F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp, 26
addvol_ratio, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp, 27
cellCharecteristic, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp, 27, 29
cellMode, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp, 30
Configuration, 5	F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp, 30
exc_voltage, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp, 30
initial_weight, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp, 31
load_weight, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp, 31
— · ·	F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp, 32, 33
loadConfiguration, 6	
max_diff_voltage, 7	FALLING
Configuration.hpp	IABoard.hpp, 25
IMPEDANCE, 21	getAnalogCurOut
INVERTED, 22	IABoard, 11
LoadCellMode, 22	
NOMINAL, 22	getAnalogVolOut
NORMAL, 22	IABoard, 11
OPEN, 22	getEXCVoltage
OVERLOAD, 22	PCB, 15
SHORT, 22	getLED

56 INDEX

IABoard, 11	INVERTED
getOpenDrainDOUT	Configuration.hpp, 22
IABoard, 11, 12	
getOpenDrainPWM	ledBusy
IABoard, 12	PCB, 15
getSENVoltage	ledFault
PCB, 15	PCB, 15
getTransistionType	ledReady
IABoard, 12	PCB, 15
GPIO, 7	load_weight
\sim GPIO, 7	Configuration, 6
GPIO, 7	LoadCellMode
readPin, 7	Configuration.hpp, 22
setPinMode, 8	loadConfiguration
setPWM, 8	Configuration, 6
writePin, 8	
	main
I2C, 8	main.cpp, 27
\sim I2C, 9	main.cpp
begin, 9	main, 27
I2C, 9	max_diff_voltage
readData, 9	Configuration, 7
writeData, 9	
I2C_ADDRESS	NOMINAL
IABoard.hpp, 25	Configuration.hpp, 22
IABoard, 10	NORMAL
\sim IABoard, 10	Configuration.hpp, 22
detectBoard, 11	
digitalRead, 11	OPEN
getAnalogCurOut, 11	Configuration.hpp, 22
getAnalogVolOut, 11	OVERLOAD
getLED, 11	Configuration.hpp, 22
getOpenDrainDOUT, 11, 12	
getOpenDrainPWM, 12	PCB, 14
getTransistionType, 12	~PCB, 15
IABoard, 10	getEXCVoltage, 15
readAnalogCurIn, 12	getSENVoltage, 15
readAnalogVolIn, 12	ledBusy, 15
readAnalogVoIInPM, 12	ledFault, 15
readTransistions, 12	ledReady, 15
resetTransitions, 13	PCB, 14
setAnalogCurOut, 13	setEXTRASW1, 15
setAnalogVolOut, 13	setEXTRASW2, 16
setLED, 13	setImpedance, 16
setOpenDrainDOUT, 13	setLoadcellDCVoltage, 16
setOpenDrainPWM, 13	setLoadcellVoltage, 16
setTransistionType, 14	setPOWERSW1, 16
IABoard.hpp	setPOWERSW2, 16
BOTH, 25	setSENVoltage, 16
DISABLE, 25	PCB.hpp
	ADDVOL_CHANNEL, 28
FALLING, 25	PIN_EXTRASW1, 28
I2C_ADDRESS, 25	PIN_EXTRASW2, 28
RISING, 25	PIN_IMPEDANCE1, 28
TRANSITION, 25	PIN_IMPEDANCE2, 28
UNDEFINED, 25	PIN_LED_BUSY, 28
IMPEDANCE	PIN_LED_FAULT, 28
Configuration.hpp, 21	PIN_LED_READY, 28
initial_weight	PIN_POWERSW1, 29
Configuration, 6	

INDEX 57

PIN_POWERSW2, 29	IABoard, 13
SUBVOL_CHANNEL, 29	setPinMode
PIN_EXTRASW1	GPIO, 8
PCB.hpp, 28	setPOWERSW1
PIN_EXTRASW2	PCB, 16
PCB.hpp, 28	setPOWERSW2
PIN_IMPEDANCE1	PCB, 16
PCB.hpp, 28	setPWM
PIN_IMPEDANCE2	GPIO, 8
PCB.hpp, 28	setSENVoltage
PIN_LED_BUSY	PCB, 16 setTransistionType
PCB.hpp, 28 PIN_LED_FAULT	IABoard, 14
PCB.hpp, 28	setWeightKG
PIN LED READY	Simulator, 17
PCB.hpp, 28	setWeightPER
PIN POWERSW1	Simulator, 17
PCB.hpp, 29	SHORT
PIN POWERSW2	Configuration.hpp, 22
PCB.hpp, 29	Simulator, 17
1 ОВ.Прр, 23	~Simulator, 17
readAnalogCurIn	setWeightKG, 17
IABoard, 12	setWeightPER, 17
readAnalogVolIn	Simulator, 17
IABoard, 12	SUBVOL CHANNEL
readAnalogVolInPM	PCB.hpp, 29
IABoard, 12	1 OB.11pp, 20
readData	TRANSITION
I2C, 9	IABoard.hpp, 25
readPin	transmitMSG
GPIO, 7	UART, 19
readTransistions	
IABoard, 12	UART, 18
receiveMSG	\sim UART, 18
UART, 18	begin, 18
resetTransitions	receiveMSG, 18
IABoard, 13	transmitMSG, 19
RISING	UART, 18
IABoard.hpp, 25	UNDEFINED
	IABoard.hpp, 25
setAnalogCurOut	utility.cpp
IABoard, 13	constrainMax, 31
setAnalogVolOut	constrainMin, 32
IABoard, 13	constrainMinMax, 32
setEXTRASW1	utility.hpp
PCB, 15	constrainMax, 32
setEXTRASW2	constrainMin, 32
PCB, 16	constrainMinMax, 33
setImpedance	ita Data
PCB, 16	writeData
setLED	I2C, 9
IABoard, 13	writePin
setLoadcellDCVoltage	GPIO, 8
PCB, 16	
setLoadcellVoltage	
PCB, 16	
setOpenDrainDOUT	
IABoard, 13	
setOpenDrainPWM	