

特許協力条約に基づいて公開された国際出願

JР

J.P

JР

(51) 国際特許分類 5

C07D 401/04, 401/14, 403/04 C07D 403/14, 405/14, 409/14 A01N 43/56

A1

(11) 国際公開番号

WO 93/07138

(43) 国際公開日

1993年4月15日(15.04.1993)

(21)国際出願番号

液

(22)国際出願日

POT/JP92/01303

1992年10月7日(07.10.92)

(30) 優先権データ

特顯平 3/289158 1991年10月8日(08.10.91) 特顯平 4/131571 1992年4月24日(24.04.92)

特願平4/197457

1992年7月2日(02.07.92)

(71) 出願人(米国を除くすべての指定国について)

日本曹達株式会社(NIPPON SODA CO., LTD.)[JP/JP]

〒100 東京都千代田区大手町2丁目2番1号 Tokyo. (JP)

(72) 発明者: および

(75) 発明者/出願人(米国についてのみ)

笠原 勇(KASAHARA, Isamu)[JP/JP]

飯浜照幸(IIHAMA, Teruyuki)[JP/JP]

杉浦忠司(SUGIURA, Tadashi)[JP/JP]

橋本 章(HASHIMOTO, Sho)[JP/JP]

佐野似亮(SANO, Shinsuke)[JP/JP]

細川浩靖(HOSOKAWA, Hiroyasu)[JP/JP]

横田 因(YOKOTA, Chinami)[JP/JP]

〒250-02 神奈川県小田原市高田字柳町345

日本曹達株式会社 小田原研究所内 Kanagawa. (JP)

(74) 代理人

弁理士 東海裕作,外(TOKAI, Yusaku et al.)

〒100 東京都千代田区大手町2丁目2番1号

日本曹達株式会社内 Tokyo. (JP)

(81) 指定国

AT(欧州特許)、AT. AU. BB, BE(欧州特許)。

BF(OAPI特許), BG, BJ(OAPI特許), BR, CA,

CF(OAPI特許), OG(OAPI特許), CH(欧州特許), CH,

CI(OAPI特許), OM(OAPI特許), OS.DE(欧州特許), DE.

DK(欧州特許), DK, ES(欧州特許), ES, FI, FR(欧州特許),

GA(OAPI特許),GB(欧州特許),GB、GN(OAPI特許)。

GR(欧州特許), HU, IE(欧州特許), IT(欧州特許), JP, KR,

LK, LU(欧州特許), LU, MO(欧州特許), MG.

ML(OAPI特許), MN, MR(OAPI特許), MW, NL(欧州特許),

NL, NO, PL, RO, RU, SD, SE(欧州特許), SE,

SN(OAPI特許), TD(OAPI特許), TG(OAPI特許), US

添付公開書類

国際調査報告部

(54) Title: PYRAZOLE DERIVATIVE AND AGROHORTICULTURAL BACTERICIDE CONTAINING SAME

(54) 発明の名称 ビラソール誘導体及びその農園芸用殺菌剤

(57) Abstract

A compound represented by general formula (I), which has an agrohorticultural bactericidal activity, wherein Q represents (a) or (b); Y represents CR⁶ or N; A represents an optionally substituted aryl or heterocyclic group; and B represents (c), (d) or (e).

本発明は一般式[[]で表される農園芸用殺菌作用を有する化合物である。

$$A-B-Q \xrightarrow{N} R^{1}$$

$$R^{2}$$

YはCR⁶ 又はNを表し、Aは置換されていてもよいアリール基、置換されてもよいヘテロ環基を表し、

情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

NL オランダ NO ノルウェー NZ ニュー・ジーランド FR フランス AT オーストリア AU オーストラリア BB バルバードス GA ガボン GB イギリス PL ボーランド PT ボルトガル GN Y-T BE ·:ルギー GR ギリシャ HU ハンガリー BF ブルキナ・ファソ BG ブルガリア RO ルーマニブ HU ハンカリー IE アイリランド IT イタリー JP 日本 KP 朝鮮民主主義人民共和国 KR 大韓民国 LI リヒテンシュダイン LK スリクシンカルグ RUロシア連邦 BJ パナン BR ブラジル CA カナダ CF 中央アフリカ共和国 CG コンゴー CH スイス CI コート・ジボアール SD スーダン SE スウェーデン SK スロヴァキア共和国 SN セネガル SU ソヴィエト連邦 CI LU ルクセンフルグ UA ウクライナ US 米国 VN ヴェトナム CM カメルーン CS チェッコスロヴァキア MC E+ 3 CS CZ MG マダカスカル CZ チェッコ共和国 DE ドイツ DK デンマーク ML マリ MN モンゴル MR モーリターア MWマラウイ フィンランド

明細響

ピラゾール誘導体及びその農園芸用殺菌剤

技術分野:

本発明は、新規なピラゾール誘導体、その農園芸用殺菌剤に関する。

背景技術:

農園芸作物の栽培に当り、作物の病虫害に対して多数の防除薬剤が使用されているが、その防除効力が不十分であったり、薬剤耐性の病原菌や害虫の出現によりその使用が制限されたり、また植物体に薬害や汚染を生じたり、あるいは人畜魚類に対する毒性が強かったりすることから、必ずしも満足すべき防除薬とは言い難いものが少なくない。従って、かかる欠点の少ない安全に使用できる薬剤の出現が強く要請されている。

本発明化合物に類似した化合物として、特開昭 6 2 - 4 0 4 に殺菌活性を有する下記の化合物が記載されており、

〔ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 は水素原子、低級アルキル基、低級アルケニル基を、 R_2 、 R_5 はさらにハロゲン原子であってもよく、 R_1 と R_2 で低級アルキレン基を、 R_2 と R_3 、 R_5 と R_6 と R_7 と R_8 で低級アルキレン基を形成してもよい〕、

また、1992年1月30日に発行されたDE4023488に殺菌活性を有する下記の化合物が記載されている。

本発明の目的は、工業的に有利に合成でき効果が確実で安全に使用できる農園 芸用殺菌剤となりうる新規化合物を提供することにある。

発明の開示:

本発明は、一般式〔Ⅰ〕

$$A-B-Q \bigvee_{Y \longrightarrow \mathbb{R}^3} \mathbb{R}^1$$

$$\mathbb{R}^2$$

〔式中、Qは

$$R^4$$
 R^5 R^5 R^5

を表し、

YはCR⁶又はNを表し、

 R^1 、 R^2 、 R^3 、 R^4 、 R^6 は同一又は相異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルケニルオキシ基、とが一緒になって環を形成してもよく、

WO 93/07138

 R^5 は水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルケニルオキシ基、置換されていてもよいアルキニルオキシ基、ヒドロキシ基、置換されていてもよいアルキルチオ基を表し、また R^4 と R^5 とが一緒になって環を形成してもよく、Aは置換されていてもよいアリール基、置換されていてもよいヘテロ環基を表わし、

Bは

(式中、 r^1 、 r^2 、 r^3 、 r^4 、 r^5 、 r^6 は同一又は相異って、水素原子、ハロゲン原子、ヒドロキシ基、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基又は置換されていてもよいアシルオキシ基を、また r^1 と r^2 、 r^3 と r^4 又は r^5 と r^6 は一緒になってオキソ基を表し、さらに、 r^1 ~ r^6 と R^4 とが一緒になって環を形成してもよい。)を表す。ただし、Q が

の時、 R^1 、 R^2 、 R^3 、 R^6 が全て水素原子であることはない。〕で表されるピラゾール誘導体又はその塩及びその農園芸用殺菌剤である。本発明化合物の製造法は次の通りである。

(1-1) R⁵ がヒドロキシ基のとき

$$A-B \xrightarrow{Q} QR + R^{2} \xrightarrow{R^{3}} Y$$

$$R^{4} \qquad QH$$

$$A-B \xrightarrow{N} N \xrightarrow{N} R^{1}$$

$$R^{4} \qquad QH$$

$$R^{2} \qquad R^{3}$$

$$R^{2} \qquad QH$$

式中、Rはアルキル基を示し、Y、 $R^1 \sim R^4$ 、A、Bは前記と同じ意味を示す。

(1-2) R がヒドロキシ基のとき

WO 93/07138

式中、Rはアルキル基を示し、Y、 R^1 \sim R^3 、 R^5 、A 、B は前記と同じ意味を示す。

(1-1)、(1-2)の反応は、通常、一般式〔III〕と一般式〔III〕もしくは一般式〔IV〕と一般式〔V〕またはそれらの塩を無溶媒、好ましくは溶媒中、反応温度0~150℃で10分間~24時間攪拌することにより得られる。使用しうる溶媒として、エタノール、メタノールなどのアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、メチルセロソルブ、エチルセロソルブなどのセロソルブ類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。これらの溶媒は単独、または種々の混合比で2種またはそれ以上の混合溶媒として用いることができる。本反応は触媒の存在は必須ではないが、酸または塩基を添加すると反応が著しく促進されることがある。酸としてはギ酸、酢酸などの有機酸、塩酸、硫酸などの無機酸、四塩化チタン、三フッ化ホウ素などのルイス酸などが挙げられる。塩基としては水酸化ナトリウム、水酸化カリウム、ナトリウムエチラート、ナトリウムメチラートなどの無機塩基やピリジン、トリエチルアミンなどの有機塩基が挙げられる。

また、 [III] 、 [IV] などのヒドラジンはHCI、HBr等との塩または水和物でもよい。

(2-1) R⁵ がハロゲンのとき

式中、Halはハロゲン原子を示し、Y、 $R^1 \sim R^4$ 、A、Bは前記と同じ意味を示す。

(2-2) R4 がハロゲンのとき

$$R^5$$
 ハロゲン化剤 ハロゲン化剤 R^2 R^3 R^2 R^3 R^2 R^3 R^4 R^5 R^2 R^3

式中H a l はハロゲン原子を示し、Y、 R^1 \sim R^3 、 R^5 、A 、B は前記と同じ意味を示す。

(2-1)、(2-2)の反応は、通常 $1\sim10$ 当量のハロゲン化剤を、必ずしも溶媒は必要ではないが、一般的には溶媒の存在下反応温度 $20\sim150$ $\mathbb C$ で、 $0.5\sim24$ 時間反応させハロゲン誘導体を合成する。ハロゲン化剤としてはオキシ塩化リン、塩化チオニル、五塩化リン、ホスゲン、三臭化リン、臭化チオニル等が挙げられ、また溶媒としてベンゼン、トルエン等の芳香族炭化水素類、テトラクロルエチレン等のハロゲン化炭化水素類等が用いられる。

(3-1) R⁵ が水素のとき

$$\begin{array}{c|c}
R^4 & \text{Hal} \\
& & \\
N & & \\
N & & \\
& & \\
R^2 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

$$\begin{array}{c}
R^4 \\
 N \\
 N \\
 N \\
 N \\
 N \\
 R^1 \\
 R^2 \\
 R^2 \\
 R^3 \\
 R^2 \\
 R^3 \\
 R^2 \\
 R^3 \\
 R^4 \\
 R^4 \\
 R^4 \\
 R^5 \\
 R^6 \\$$

式中H a 1 はハロゲン原子を示し、Y 、 R^1 ~ R^4 、 A 、 B は前記と同じ意味を示す。

(3-2) R⁴ が水素のとき、

Hal
$$\begin{array}{c}
R^{5} \\
A-B
\end{array}$$

$$\begin{array}{c}
N \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{5} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{5} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{5} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
R^{2}
\end{array}$$

式中Halはハロゲン原子を示し、Y、R¹~R³、R⁵、A、Bは前記と同じ 意味を示す。

(3-1)、(3-2)の反応においては、溶媒中、触媒存在下、水素ガスと 常圧あるいは、加圧下、室温~50℃で接触させることにより得られる。

容媒としては、メタノール、エタノール等のアルコール類、酢酸エチル等のエ ステル類、ベンゼン、トルエン等の芳香族炭化水素類、ジオキサン等のエーテル 類、水及びそれらの混合物等が挙げられる。触媒としては、パラジウム炭素等が 挙げられ、水素圧は1~10気圧が好ましい。また好ましくは、脱ハロゲン化水 素剤の存在下で反応を行なう。脱ハロゲン化水素剤としては、炭酸ナトリウム、 酢酸ナトリウム、トリエチルアミン等の塩基が挙げられる。

(4-1) R^5 が置換されていてもよいアルコキシ基、置換されていてもよい アルケニルオキシ基、置換されていてもよいアルキニルオキシ基のとき

(I' - 7)

式中rは置換されていてもよいアルキル基、置換されていてもよいアルケニル 基又は置換されていてもよいアルキニル基を示し、Y、R¹~R⁴、A、Bは前 記と同じ意味を示す。

(4-2) R⁴ が置換されていてもよいアルコキシ基、置換されていてもよい

アルケニルオキシ基又は置換されていてもよいアルキニルオキシ基のとき、

A-B

$$R^{5}$$
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}

式中r は置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基を示し、Y、 R^1 $\sim R^3$ 、 R^5 、A 、B は前記と同じ意味を示す。

(4-1)、(4-2) の反応においては、一般式〔I'-1〕あるいは〔I'-2〕を水あるいはアルコールなどの溶媒中、水酸化ナトリウム、水酸化カリウム、ナトリウムアルコラートなどの塩基存在下、硝酸銀水溶液を $0\sim50$ ℃で作用させることにより得られる一般式〔I'-1〕あるいは〔I'-2〕の銀塩を溶媒中、r-X〔式中、Xは脱離基を表わし、rは前記と同じ意味を表す。〕と室温 ~150 ℃で10分間 ~24 時間反応させることにより合成される。使用しうる溶媒として、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。Xの脱離基としては、ヨウ素、臭素、塩素のようなハロゲン原子などが挙げられる。

または、一般式 (I'-1) あるいは (I'-2) を溶媒中、r-X (式中、<math>r 、 X は前記と同じ意味を表す。〕と酸化銀あるいは炭酸銀存在下、室温~150

WO 93/07138

℃で10分間~24時間反応させることにより合成される。使用しうる溶媒としてジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。

(5) R⁵ が置換されてもよいアルキル基の時

$$R^4$$
 Hal R^5 MgHal R^5 (VI) R^4 R^5 R^5

Y R³

(I' - 9)

式中、A、B、 R^1 \sim R^4 、Y、H a 1 は前記と同じ意味を示し、 R^5 ' は置換されてもよいアルキル基を示す。

使用しうる溶媒としては、ジエチルエーテル、テトラヒドロフラン、1, 2-ジメトキシエタンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。

触媒としては NiX' $_2$ L $_2$ (X' =ハロゲン、L $_2$ = 2 PPh $_3$ 、dppe、dppp、bpy など) で示されるNi(II)錯体が挙げられる。ここでdppe=Ph $_2$ P(CH $_2$) $_2$ PPh $_2$ 、dppp=Ph $_2$ P(CH $_2$) $_3$ PPh $_2$ 、bpy = 2, 2 '-bipyridylを示す。

(6-1) R^5 が置換されてもよいアルキル基あるいは R^4 と一緒になって環を形成する時、

$$A-B \xrightarrow{Q} R^{5}$$

$$R^{1}$$

$$R^{1}$$

$$NHNH_{2}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

式中、A、B、 R^1 \sim R^4 、Y は前記と同じ意味を示す。 R^5 " は置換されてもよいアルキル基あるいは R^4 と一緒になって環を示す。

(6-2) R⁴ がアルキル基あるいはR⁵ と一緒になって環を形成する時、

$$A-B-NHNH_{2} + R^{2} \longrightarrow R^{3}$$

$$R^{4} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$A-B-N \longrightarrow R^{5}$$

$$R^{4} \longrightarrow R^{5}$$

$$R^{2} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{4} \longrightarrow R^{5}$$

$$R^{2} \longrightarrow R^{2}$$

$$R^{2} \longrightarrow R^{2}$$

式中、A、B、R¹ ~R³、R⁵、Yは前記と同じ意味を示す。

R' "は置換されてもよいアルキル基あるいはR b と一緒になって環を示す。

(6-1)、(6-2)の反応は、通常、一般式 [VII] と一般式 [III] もしくは一般式 [IV] と一般式 [V'] またはそれらの塩を無溶媒、好ましくは溶媒中、反応温度 $0\sim150$ \mathbb{C} で10 \mathcal{O} 間 ~24 時間攪拌することにより得られる。使用しうる溶媒として、エタノール、メタノールなどのアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、メチルセロソルブなどのセロソルブ類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。これらの溶媒は単独、または種々の混合比で 2 種またはそれ以上の混合溶媒として用いることができる。本反応は触媒の存在は必須ではないが、酸または塩基を添加すると反応が著しく促進されることがある。酸としてはギ酸、酢酸などの有機酸、塩酸、硫酸などの無機酸、四塩化チタン、三フッ化ホウ素などのルイス酸などが挙げられる。塩基としては水酸化ナトリウム、水酸化カリウム、ナトリウムエチラート、ナトリウムメチラートなどの無機塩基やピリジン、トリエチルアミンなどの有機塩基が挙げられる。

また、 (III) 、 (IV) のヒドラジンはHC1、HBr等との塩又は水和物でもよい。

(7)

$$R^4$$
 R^5 R^5 R^1 E E R^3 R^4 R^5 R^5 R^4 R^5 R^5 R^7 R^7 R^7 R^7 R^7 R^7 R^8 R^8 R^8 R^8 R^8 R^8

式中、A' は含窒素へテロ環を示し、L はハロゲン原子、あるいはメタンスルホニルオキシ基などの脱離基を示し、 $R^1 \sim R^5$ 、Y は前記と同じ意味を示す。

本反応は、無溶媒、好ましくは溶媒中、塩基存在下、0~150℃で10分~ 24時間反応することにより得ることができる。

溶媒としては、DMF、DMSO、ベンゼン、トルエン等の芳香族炭化水素類、ジオキサン、テトラヒドロフラン等のエーテル類、アセトニトリル、ピリジン、水等または、それらの混合物等が挙げられる。

塩基としては、水素化ナトリウム等の水素化アルカリ金属類、n-ブチルリチウム等のアルキルリチウム類、ナトリウムメトキシド等のアルカリ金属アルコキシド類、炭酸カリウム、水酸化ナトリウム等の無機塩基、トリエチルアミン、ピリジン等の有機塩基等が挙げられる。また含窒素へテロ環の種類によっては溶媒あるいは塩基を兼ねることができる。

(8)

式中、L、Y、R^I~R⁵、A、Bは前記と同じ意味を示す。

本反応は、一般式 $\{X\}$ および一般式 $\{XIV\}$ を無溶媒、好ましくは溶媒中、塩基等の脱酸剤存在下、反応温度 $0\sim1$ 5 0 $\mathbb C$ で 1 0 $\mathcal O$ 間 ~2 4 時間攪拌することにより得られる。使用しうる溶媒として、アセトン、 2 - $\mathcal O$ $\mathcal O$

塩基として、ピリジン、トリエチルアミン、ジメチルアニリン、DBUなどの有機塩基(これらは場合によっては溶媒としても使用できる)、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、水素化ナトリウムなどの無機塩基が挙げられる。

また出発化合物一般式 [XIV] は例えば次のようにして合成することができる。 R'=Hのとき、

$$(CH_3)_2N \xrightarrow{R^5} R^1$$

$$R^5$$

$$R^5$$

$$R^1$$

$$R^2$$

$$R^3$$

$$R^2$$

(XIV')

(9)

$$\begin{array}{c|c}
R^4 & R^5 \\
A - CH_2 & N & R^1 \\
\hline
N & R^2 \\
R^2 & R^3
\end{array}$$

KM_nO₄等の酸化剤

カルボニル基の適当な改変

式中、A、R 1 ~R 5 、Y、r 1 、r 2 は前記と同じ意味を示す。

本反応は、水溶媒中、過マンガン酸カリウムと10分~24時間、20~100 ℃にて攪拌することにより得られる。

またACS Monograph 186 "Oxidations in Organic Chemistry" 1990, 103-104 に記載されている二酸化セレン、二酸化マンガン、無水クロム酸等の酸化剤を用いても得ることができる。

また、本反応で得られるカルボニル基の適当な改変により、アルコール誘導体、ハロゲン誘導体等、種々の官能基に変換できる。

本発明において、塩としては塩酸、臭化水素酸などの塩が挙げられる。

いずれの場合も反応終了後は通常の後処理を行うことにより目的物を得ることができる。

本発明化合物の構造は、IR、NMR、MASS等から決定した。

本発明化合物で、ピラゾール環にヒドロキシ基が置換された場合、次式のような互変異性体が存在し得る。

発明を実施するための最良の形態:

次に実施例を挙げ、本発明を具体的に説明する。

実施例1

3-(4-クロロベンジル)-5-ヒドロキシー1-(6-メチルー2-ピリジル) ピラゾール (化合物番号 I-133)

(6-メチルー2-ピリジル)ヒドラジン3. 0 gを無水エタノール5 0 mlに 溶解し、これにエチル 4-クロロフェニルアセチルアセテート5. 9 gを加え、5 時間加熱還流した。反応液を室温まで冷却後、これにエタノール1 5 ml、金属ナトリウム0. 5 6 gから調製したナトリウムエトキシドエタノール溶液を加え、室温にて3 時間攪拌した。反応液を氷水に注ぎこみ、これに酢酸を加え、中和した。析出した結晶をろ過し、冷水洗、n-ヘキサンついでエーテルにて洗浄して、目的物5. 5 g (mp. 103-104 °C) を得た。

実施例2

3-(4-クロロベンジル)-5-メトキシー1-(6-メチルー2-ピリジール)ピラゾール (化合物番号 I-13)

 $3-(4-0000 \times 10^{-1}) - 5-E \times 10^{-1} - (6-2 \times 10^{-1}) \times 10^{-1}$ ジル)ピラゾール 2. 8 6 gに水酸化ナトリウム 0. 3 8 gの水溶液 1 5 ml およびメタノール 1 5 ml を加えて、溶解させ、これに硝酸銀 1. 7 0 gの水溶液 1 5 ml を室温にて攪拌下滴下した。室温にて 3 0 分間攪拌後析出した銀塩を 5 過、水洗した後、十分に乾燥した。これをテトラヒドロフラン(THF) 4 0 ml に懸濁し、ョウ化メチル 2. 0 gを加えて、 4 時間加熱還流した。不溶物を 5 去後、 5 液を減圧濃縮し、得られたオイル状残渣をシリカゲルカラムクロマトグラフィー(溶出液;ヘキサン:酢酸エチル=1:1(V/V))精製して、目的物 1. 8 7 g (np 26 1. 5 8 6 3)を 得た。

実施例3

5-クロロー3-(4-クロロベンジル)-1-(6-メチルー2-ピリジル) ピラゾール(化合物番号 I-155)

実施例 4

3-(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 3 -(4-2) 4 -(4-2) 3 -(4-2) 6 -(4-2) 3 -(4-2) 6 -(4-2) 3 -(4-2) 6 -(4-2) 7 -(4-2) 9 -(4-2)

$$\begin{array}{c} \text{C1} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{CH}_3 \\ \\ \text{CH}_4 \\ \\ \text{CH}_5 \\ \\ \text{CH}_5$$

5-000-3-(4-000ベンジル)-1-(4,6-ジメチル-2-ピリミジニル)ピラゾール0.6 gをエタノール5 ml、トルエン10 mlに溶解した。これに炭酸ナトリウム0.2 gの水溶液2 mlを加えさらに10%パラジウム炭素0.1 gを加えて2.5時間、室温で水素ガスと接触させた。触媒をセライトを用いてろ去した後、ろ液にトルエン、水を加え、分液した。トルエン層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。これを減圧濃縮し、得られた白色の結晶残渣をn-0キサンにて洗浄して、目的物0.56 g(mp.109-111℃)を得た。

実施例5

1 - ベンジル-5-ヒドロキシ-3-(6-メチル-2-ピリジル) ピラゾール (化合物番号VI-2)

ベンジルヒドラジン二塩酸塩 4. 4g、エチル 3-(6-x+y)-2-2-2-2ジル) -3-x+yプロピオネート 4. 7g および無水酢酸ナトリウム 3. 7g を酢酸 30 mlに溶解し、室温にて 2 時間攪拌した。反応液を氷水に注ぎ、酢酸エチルを加え、さらに炭酸水素ナトリウム水溶液にで中和した。これを分液し、酢酸エチル層を飽和食塩水にて洗浄後、無水硫酸マグネシウム乾燥した。これを減圧濃縮し、得られた結晶状残渣をn-x+yとにて洗浄して目的物 3. 4g(mp. 163-165 $\mathbb C$)を得た。

実施例6

1-ベンジルー5-メトキシー3-(6-メチルー2-ピリジル) ピラゾール (化合物番号VI-3)

 $1-\text{N} \sim 2 - \text{L} = 1 - \text{N} \sim 2 - \text{L} = 1 - \text{L} \sim 2 - \text{L}$

参考例1

4-メトキシー3-(6-メチルー2-ピリジル) ピラゾール

3-(N, N-ジメチルアミノ)-2-メトキシ-1-(6-メチル-2-ピリジル)-2-プロペン-1-オン0.5 gをエタノール<math>10mlに溶解し、抱水ヒドラジン0.17gを加え、2時間加熱還流した。反応液を減圧濃縮した後、クロロホルム、水を加え分液した。クロロホルム層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。これを減圧乾燥し、得られた結晶状残渣をヘキサンにて洗浄して、目的物0.37g(mp.171-173°C)を得た。 1HNMR (CDC1 $_3$) δ , ppm

2.53(s,3H), 3.92(s,3H), 7.01(d,1H), 7.43(s,1H), 7.60(t,1H), 7.72(d,1H)

参考例 2

3-(N, N-ジメチルアミノ) -2-メトキシー1-(6-メチルー2-ピリジル) -2-プロペン-1-オン

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline CH_3 & NCH & OCH_3 \\ \hline CH_3 & CH_3 \\ \hline \\ CH_3 & OCH_3 \\ \hline \end{array}$$

2-(メトキシメチル)カルボニル-6-メチルピリジン1.0 gおよびN, N-ジメチルホルムアミドジメチルアセタール1.8 gをトルエン10 mlに溶解し、7時間加熱還流した。放冷後、反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出液;酢酸エチル:メタノール=9:1(V/V))処理して目的物0.5 gを得た。

'HNMR (CDC13) δ ppm

2.58(s, 3H), 3.14(s, 6H), 3.72(s, 3H), 7.17(d, 1H), 7.47(s, 1H), 7.58(d, 1H), 7.65(t, 1H)

実施例7

1-(4-クロロベンジル)-4-メトキシ-3-(6-メチル-2-ピリジル)ピラゾール (化合物番号VI-17)

4-メトキシー3-(6-メチルー2-ピリジル)ピラゾール0. 37gをN. N-ジメチルホルムアミド5 mlに溶解し、炭酸カリウム0. 41g, 4-クロロベンジルプロミド0. 44gを加え、室温にて17 時間攪拌した。反応液を氷水に注ぎ、酢酸エチルにて抽出した。これを、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液;ヘキサン:酢酸エチル= $7:3\sim1:4$ (V/V))精製して目的物0. 28g(Mp. 110-112 C)を得た。

¹HNMR (CDCl₃) δppm

2.64(s, 3H), 3.78(s, 3H), 5.31(s, 2H), 7.00(s, 1H), 7.03(d, 1H, J=7.5Hz), 7.19(d, 2H, J=8.5Hz), 7.31(d, 2H, J=8.5Hz), 7.59(t, 1H, J=7.5Hz), 7.77(d, 1H, J=7.5Hz)

実施例8

5-メトキシー3-(3-メトキシベンジル)-1-(6-メチルー2-ピリ

ジル) ピラゾール (化合物番号 I - 47)

5-ヒドロキシー3-(3-メトキシベンジル)-1-(6-メチルー2-ピリジル) ピラゾール4.0 gをテトラヒドロフラン30 mlに溶解し、ヨウ化メチル3.04g, ついで酸化銀2.36gを加えて室温にて3時間攪拌した。不溶物をろ過、テトラヒドロフランにて洗浄した後、このろ液および洗液をあわせて減圧濃縮し、得られたオイル状残渣をシリカゲルカラムクロマトグラフィー(溶出液; ヘキサン: 酢酸エチル=<math>1:1(V/V)) 精製して、目的物3.28g(n_{D} ^{23.8}1.5944) を得た。

実施例9

5-メトキシー1-(6-メチルー2-ピリジル)-3-(4-二トロベンゾイル)ピラゾール(化合物番号II-7)

$$\begin{array}{c|c}
O_2 N & OCH_3 \\
N & N & CH_3
\end{array}$$

5-メトキシ-1-(6-メチル-2-ピリジル)-3-(4-ニトロベンジル)ピラゾール 4. 6 gを水 7 0 m l に懸濁し、過マンガン酸カリウム 6. 8 gを加え、7 0 \sim 8 0 ∞ にて 2 0 時間加熱攪拌した。

不溶物をろ過、さらに水洗、クロロホルム洗浄した。ろ液および洗液を合わせ、 分液した。クロロホルム層を飽和食塩水洗浄した後、無水硫酸マグネシウムにて 乾燥した。減圧濃縮し、得られた結晶状残渣を酢酸エチルを用いて洗浄し、目的 物4.2g(mp173-174 $^{\circ}$)を得た。

実施例10

3- [1-ヒドロキシ-1-(4-二トロフェニル) メチル] -5-メトキシ -1-(6-メチルピリジル) ピラゾール (化合物番号II-8)

5-メトキシー1-(6-メチルー2-ピリジル)-3-(4-ニトロベンソイル)ピラゾール3. 2 gをメタノール4 0 mlに溶解し、 $5\sim1$ 0 ∞ にて水素化ホウ素ナトリウム0. 2 0 gを加え、さらに室温にて2 時間攪拌した。反応液を3分の1程度まで減圧濃縮した後、食塩水を加え、クロロホルムで抽出した。クロロホルム層を水洗した後無水硫酸マグネシウムにて乾燥した。減圧濃縮し、得られた粗生成物をn-ヘキサン洗浄して目的物2. 8 g(m p 1 2 8 - 1 2 9 ∞)を得た。

実施例11

3- (1-ベンツイミダゾリルメチル) -5-メトキシー1- (6-メチルー2-ピリジル) ピラゾール (化合物番号IV-14)

ベンツィミダゾール 0.25gをN,N-ジメチルホルムアミド20mlに溶解し、炭酸カリウム 0.29gを加え、さらに3-クロロメチル-5-メトキシー1-(6-メチル-2-ピリジル)ピラゾール 0.5gを加え、70 $^{\circ}$ にて 5 時間加熱攪拌した。放冷後、反応液を氷水に注ぎこみ、酢酸エチルにて抽出した。さらに飽和食塩水にて洗浄した後、無水硫酸マグネシウム乾燥した。これを減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶出液;クロロホルム:エタノール=19:1(v/v))精製して、目的物 0.41g (n_0)

実施例12

3-(4-クロロベンジル)-1-(6-メチル-2-ピリジル)-4,5.6,7-テトラヒドロ-1H-インダゾール(化合物番号I-229)

 $2-(4-\rho \Box \Box z = \lambda D z = \lambda D$

実施例13

3 ーベンジルー5 ーエチルー1 ー (6 ーメチルー2 ーピリジル) ピラゾール (化合物番号 I ー 2 3 0)

反応液を放冷後、氷水を加え、分液し、エーテル層を飽和食塩水洗浄した後、無水硫酸マグネシウム乾燥した。減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液; ヘキサン: 酢酸エチル=9:1)精製して目的物 0. 4 5 g $(n_D$ 1. 5913)を得た。

前記実施例を含め、本発明化合物の代表例を、第1-1表、第1-2表、第2表、第3表、第4表、第5-1表、第5-2表、第6表に示す。

第 1 - 1 表

化		R ⁴						物理恒数
合物	X _m	[] m.p.						
番		(℃)						
号	X _m	R ⁴	R ⁵	R¹	R²	R³	Y	
I - 1	Н	· H	Н	СН₃	Н	Н	СН	[79-80]
I - 2	2 - C 1	Н	Н	СН₃	H	Н	CH	
I - 3	3-C1	Н	Ĥ	СНз	Н	Н	CH	
I - 4	4 - C 1	Н	Н	СНз	H	Н	CH	[96-97]
I - 5	4 -NO2	H	Н	СНз	H	Н	CH	
I - 6	4-CN	Н	Н	CH3	Н	Н	CH	
1-7	4-CH ₃	Н	H	СН₃	H	Н	CH	
I - 8	4 - O C H 3	Н	Н	СН₃	H	Н	CH	
I — 9	4 - CF s	Н	н	СН₃	Н	H	СН	28.4
I -10	Н	Н	ОСНз	СНз	Н	Н	CH	n _D 1.5887
I -11	2 - C 1	Н	ОСНа	СН₃	Н	H	СН	n _D 1.5805
I -12	3 - C 1	Н	OCH ₃	СН₃	Н	Н	СН	n _D 1.5891
I -13	4 - C 1	Н	OCH ₃	СН₃	Н	Н	СН	n _D 1.5863
I -14	2 – B r	Н	OCH3	СН₃	Н	Н	СН	n _D 1.6122

第 1 - 1 表 (続 き)

							Y	物理恒数
No.	$X_{\mathfrak{m}}$	R⁴	R⁵	R¹	R ²	R³		[] mp °C
I -15	3 – B r	Н	OCH ₃	СНз	Н	Н	СН	n _D 1.6060
I -16	4 – B r	Н	ОСНз	СНз	Н	Н	СН	n _D 1.5888
I -17	2 - F	Н	OCH3	СНз	H	Н	СН	
I -18	3-F	Н	OCH3	CH₃	Н	Н	СН	n _D 1.5822
I -19	4 – F	Н	ОСНз	СН₃	Н	Н	СН	n _D 1.5653
I -20	4 — Ï	Н	OCH3	СНз	Н	н	СН	·
I -21	2, 3 – C 1 ₂	Н	OCH₃	СНз	Н	Н	CH	
I -22	2,4-C1 ₂	Н	ОСНз	CH₃	Н	Н	СН	n _D 1.5888
I -23	2,6-C1 ₂	Н	OCH3	СН₃	Н	Н	СН	
I -24	2, 4 – F ₂	Н	OCH₃	СН₃	Н	Н	СН	
I -25	2, 6 – F ₂	Н	ОСН₃	CH₃	Н	Н	СН	
I -26	2-C1, 6-F	Н	ОСНз	СНз	Н	Н	СН	
I -27	2, 3, 4-Cl ₃	H	ОСНа	СНз	Н	H	СН	
I -28	2, 4, 6-Cl ₃	Н	OCH ₃	СН₃	Н	Н	CH	
I -29	2, 3, 4-F ₃	Н	ОСН₃	СНз	Н	H	CH	,
1 -30	2, 3, 4, 5-Cl ₄	Н	ОСН₃	CH ₃	Н	Н	СН	
I -31	2, 3, 4, 5, 6-Cl ₅	Н	ОСНз	СНз	Н	Н	СН	
1 -32	2, 3, 4, 5, 6-F ₅	Н	ОСН₃	СНз	Н	Н	СН	
I -33	2 - C H 3	Н	ОСНз	СНз	Н	Н	СН	. •
I -34	3 - C H ₃	H	OCH3	СНз	Н	Н	СН	
I -35	4 - C H ₃	H	ОСН₃	СН₃	Н	Н	СН	n _D 1.5828

第 1 - 1 表 (続 き)

	界				<u> </u>	, c		
No.	X _m	R⁴	R ⁵	R¹	R ²	R ³	Y	物理恒数
No.	Δm							[] mp °C
I -36	4 - CH ₂ CH ₃	Н	ОСН 3	CH₃	Н	Н	CH	
I -37	4 — CH ₂ CH ₂ CH ₃	Н	OCH3	СНз	Н	Н	СН	
I -38	4 - CH(CH ₃) ₂	H	ОСНз	СНз	Н	Н	СН	
I -39	4 — tertBu	H	ОСНз	CH3	Н	Н	СН	
I -40	4 — CH ₂ CH=CH ₂	Н	ОСН₃	СНз	H	H	СН	
I -41	$4 - CH_2C \equiv CH$	Н	ОСНз	CH₃	Н	Н	СН	
I -42	4 — cyclohexyl	·H	ОСНз	СНз	Н	Н	СН	
I -43	2 - C F 3	Н	OCH3	СНз	Н	Н	СН	
I -44	3 - C F 3	H	OCH ₃	СНз	Н	Н	CH	
I -45	4 - C F 3	H	OCH ₃	СН₃	Н	Н	СН	
I -46	2 — OCH3	Н	ОСН₃	CH₃	Н	Н	CH	23.9
I -47	3 — OCH ₃	H	OCH3	СН₃	Н	H	CH	n _D 1.5944
- 10		ΤT	ОСНз	CH₃	H	Н	СН	25. 5 n _D 1.6051
I -48	4 — OCH₃	H			•			110 1.0001
I -49	4 - OCH ₂ CH ₃	H	OCH3	СН₃	H	H	CH	
I —50	4 - OCH (CH ₃) ₂	Н	OCH3	СН₃	Н	Н	СН	
I -51	4 — OCH ₂ CH=CH ₂	Н	OCH ₃	СНз	Н	Н	СН	
I -52	4 -OCH ₂ C≡CH	Н	OCH3	СНз	Н	Н	СН	
I -53	4-0-cyclohexyl	Н	ОСНз	СН₃	Н	Н	СН	
I -54	4 -0CF ₃	. H	OCH ₃	СН₃	Н	Н	СН	
I -55	4 -OCH ₂ CH ₂ F	Н	ОСНз	СН₃	Н	Н	СН	
I -56	2 — SCH ₃	Н	OCH ₃	СНз	Н	Н	СН	

第 1 - 1 表 (続 き)

		D.4	D 5	7.	D2	D3	37	物理恒数
No.	X _m	R⁴	R ⁵	R¹	R ²	R³	Y	[] mp °C
I -57	3 — SCH ₃	Н	OCH ₃	СНз	Н	Н	СН	
I -58	4 — SCH ₃	Н	OCH3	CH ₃	Н	H	СН	n _D 1.6155
I -59	4 — SCH ₂ CH=CH ₂	Н	OCH ₃	СНз	Н	Н	СН	<u>.</u>
I -60	2 — SOCH₃	Н	OCH ₃	CH₃	Н	Н	СН	
I -61	3 — SOCH₃	H	ОСНз	СНз	Н	Н	СН	
I -62	4 — SOCH₃	Н	ОСН₃	СНэ	Н	Н	СН	n _D 1.6186
I -63	$2 - SO_2CH_3$	Н	ОСНз	СНз	Н	Н	СН	
I -64	3 - \$0 ₂ CH ₃	Н	ОСНз	СНз	Н	Н	СН	 **1
I -65	4 — SO ₂ CH ₃	H -	ОСН₃	СН₃	Н	Н	СН	amorphous solid
I -66	2 - N O 2	Н	ОСНз	СН₃	Н	Н	СН	n _D 1. 5956
I -67	3 - N O 2	Н	ОСНз	СНз	Н	Н	СН	[95-96]
I -68	4 - N O ₂	Η.	OCH3	СНз	Н	Н	СН	[127-128]
I -69	2 – C N	Н	OCH3	CH ₃	Н	Н	СН	
I -70	3 - C N	Н	ОСН₃	СНз	Н	H	СН	n _D 1.5845
I -71	4 - C N	Н	OCH₃	CH3	Н	Н	CH	n _D 1.5841
I -72	4 — COOH	Н	OCH ₃	CH ₃	Н	Н	СН	[165-166]
I -73	4 - COOCH ₃	н	OCH3	СНз	Н	Н	СН	n _D 1.5714
I -74	4 - COOCH ₂ CH ₃	Н	ОСНз	СНз	Н	Н	СН	
I -75	4 - CONH ₂	H	OCH ₃	CH3	Н	Н	·CH	[193-194]
I -76	$4 - CON(CH_3)_2$	Н	OCH3	CH3	Н	Н	СН	
I -77	4 - O H	Н	OCH3	CH₃	Н	Н	СН	

第 1 - 1 表 (続 き)

			_		5 2	D 3	37	物理恒数
No.	X _m	R⁴	R⁵	R۱	R ²	R³	Y	[] mp °C.
I -78	4 -0Ac	Н	OCH ₃	СНз	H.	Н	СН	
I -79	4 -0SO ₂ CH ₃	Н	ОСНз	СН₃	Н	Н	СН	
I -80	4 — COCH ₃	H	ОСНз	CH₃	Н	Н	CH	
I -81	4 −CSCH ₃	Н	OCH3	СНз	H	Н	CH	
I -82	4-NH ₂	H	OCH ₃	CH3	Н	Н	СН	[104-105]
I -83	4 — NHAc	H	ОСНз	СН₃	Н	Н	CH	[141-142°C]
I -84	4 —NHCONHCH₃	Н	OCH3	СНз	Н	Н	CH	25. 5
I —85	4-NHCOOCH2CH3	Н	ОСНз	СНз	Н	H	СН	n _D 1.5818
I -86	3,4-methylen- dioxy	Н	OCH ₃	СН₃	H	Н	СН	
I -87	2-C1, 4-NO ₂	Н	OCH3	CH₃	Н	Н	CH	
I -88	2-CH3, 4-NO2	Н	OCH3	СН₃	Н	Н	CH	
I -89	2-0CH ₃ , 4-NO ₂	Н	OCH3	CH₃	Н	Н	CH	
I -90	3-C1, 4-NO ₂	Н	OCH₃	CH₃	Н	Н	СН	[85-86]
I -91	3-CH ₃ , 4-NO ₂	н	OCH3	CH₃	Н	Н	СН	n _D 1.5938
I -92	3-0CH3, 4-NO2	Н	OCH3	CH₃	Н	H	CH	n _D 1.6131
I -93	3-F, 4-NO ₂	Н	ОСНз	СНз	Н	H	СН	[107-108]
I -94	3-Br, 4-NO ₂	Н	ОСНз	CH₃	Н	Н	СН	[91-92]
I -95	3-NO ₂ , 4-C1	Н	OCH₃	СНз	Н	Н	СН	[72-73]
I -96	3-NO ₂ , 4-F	Н	ОСНз	СНз	Н	Н	СН	
I -97	3-NO ₂ , 4-Br	н	ОСНз	СН₃	Н	Н	СН	
I -98	3-NO ₂ , 4-CH ₃	Н	OCH3	СНз	Н	Н	СН	

第 1 - 1 表 (続 き)

	1				1	1	Τ	<u> </u>
No.	X _m	R4	R ⁵	R¹	R ²	R ³	Y	物理恒数
110.	ZY m	"						[] mp °C
I -99	3-NO ₂ , 4-OCH ₃	Н	OCH ₃	СНз	Н	Н	СН	
I -100	2, 4-Cl ₂ , 5-NO ₂	Н	OCH ₃	СН₃	Н	Н	СН	n _D 1.6055
1-101	2-NO ₂ , 5-C1	Н	OCH ₃	СН₃	Н	Н	СН	[98-99]
I -102	2, 4-(NO ₂) ₂ , 5-OCH ₃	Н	ОСН₃	СНз	Н	Н	СН	[108-109]
I -103	3,5-(NO ₂) ₂ ,4-OCH ₃	Н	ОСН₃	СН₃	Н	Н	СН	[121-122]
I -104	3-NO ₂ , 4-CF ₃	Н	ОСНз	CH₃	Н	Н	СН	
I -105	2, 4-(NO ₂) ₂	Н	OCH ₃	CH ₃	Н	Н	СН	
I -106	3-C1, 4-CN	Н	OCH3	CH₃	Н	Н	СН	
I -107	3-CH ₃ , 4-CN	Н	OCH3	CH ₃	Н	Н	СН	
I -108	3-OCH ₃ , 4-CN	Н	OCH3	CH ₃	Н	Н	СН	
I -109	3-CN, 4-C1	Н	ОСНз	CH ₃	Н	Н	СН	
I -110	3-CN, 4-OCH ₃	Н	OCH3	СНз	Н	Н	СН	
I -111	3-CN, 4-CH ₃	Н	ОСНз	СНз	Н	Н	СН	·

第	1	 1	表	(続	き)

	77						•	物理恒数
No.	X _m	R ⁴	R⁵	R¹	R ²	R³	Y	[] mp °C
7 110	4 NO	CH ₃	ОСНз	CH3	Н	Н	CH	[75-76]
I -112	$4-NO_2$				Н	Н	СН	
I -113	$4-NO_2$	CH ₂ CH ₃	ОСНз	CH ₃				,
I -114	$4-NO_2$	CH(CH ₃) ₂	OCH ₃	CH ₃	H	Н	CH	
I -115	4 - N O 2	OCH3	OCH ₃	СН₃	H	Н	CH	
I -116	4 - N O 2	OCH2CH3	ОСН₃	СНз	H	Н	CH	
I -117	4 - N O 2	OCH(CH ₃) ₂	ОСНз	CH3	Н	Н	CH	
I -118	4 - C 1	СН₃	OCH ₃	СН₃	Н	Н	CH	[51-52]
I -119	4 - C 1	CH2CH3	ОСН₃	СН₃	Н	Н	СН	
1 -120	4-C1	CH(CH ₃) ₂	ОСН₃	CH₃	Н	Н	CH	
I -121	4 - C 1	OCH ₃	OCH ₃	CH₃	Н	Н	CH	
I -122	4 - C 1	OCH2CH3	OCH3	СНз	Н	H.	CH	
I -123	4 - C 1	OCH(CH ₃) ₂	OCH3	СН₃	Н	Н	СН	
I -124	Н	СНз	OCH3	СНз	Н	Н	СН	
I -125	4 - C N	CH₃	OCH₃	СНз	H	Н	ĊH	[80-81]
I -126	4 −SCH ₃	CH3	OCH3	СНз	Н	Н	CH	n _D 1.6088
I -127	4 —SOCH₃	СНз	OCH3	СН₃	Н	Н	CH .	n _D 1.5953
								23. 6
I -128	4 —SO₂CH₃	СH ₃	OCH₃	СНз	Н	H	CH	n _в 1.5762
1 -129	4 - COOCH ₃	СHз	OCH ₃	СН₃	Н	H	CH	[71-72]
I -130	4 - CH ₃	CH ₃	OCH3	СНз	Н	H	СН	n _D 1.5838
I -131	4 -NO ₂	Вr	ОСН₃	СНз	Н	Н	СН	[109-110]

第 1 - 1 表 (続 き)

			~ 5		22	D3	37	物理恒数
No.	X _m	R⁴	R⁵	R¹	R²	R³	Y	[]mp °C
I -132	Н	Н	ОН	СНз	Н	H	СН	
I -133	4 - C 1	Н	ОН	СНз	Н	Н	· CH	[103-104]
I -134	4 - C 1	Н	OCH2 CH3	СНз	Н	Н	СН	
I -135	4 - C 1	Н	OCH(CH ₃) ₂	СН₃	Н	Н	ĊH	
I -136	4 - C 1	H	OCH ₂ CH=CH ₂	СНз	Н	Н	СН	n _D 1.5895
I -137	4 - C 1	H	OCH ₂ C≡CH	СНз	Н	Н	СН	n _{D.} 1.6071
I -138	4 - C 1	Ĥ	OCH2OCH3	СНз	Н	Н	СН	
I -139	4 - C 1	Н	SCH ₃	CH₃	Н	Н	СН	[103-104]
1 -140	4 - C 1	Н	CH ₃	СН₃	Н	Н	CH.	n _D 1.6005
I -141	4 - C 1	н	CH ₂ CH ₃	СНз	Н	Н	CH	
I -142	4 - C 1	Н	CH(CH ₃) ₂	CH ₃	Н	Н	СН	
I -143	4 - C 1	Н	CH ₂ OCH ₃	СНз	Н	Н	СН	. i
I -144	4 - NO ₂	Н	он	CH3	Н	Н	СН	[192-193]
I -145	4 - NO ₂	H	OCH2CH3	СНз	Н	Н	СН	
I146	4 - NO ₂	Н	OCH(CH ₃) ₂	СНз	Н	Н	СН	
I -147	4 - N O 2	Н	OCH2CH=CH2	СНз	Н	Н	СН	
I -148	4 - NO ₂	Н	OCH ₂ C≡CH	СНз	Н	Н	СН	
1 -149	4 - N O 2	Н	OCH2OCH3	СНз	Н	Н	СН	
I -150	4 - NO ₂	Н	SCH ₃	СНз	Н	Н	СН	[91-92]
I -151	4 - N O 2	Н	CH ₃	CH ₃	Н	Н	СН	

第 1 - 1 表 (続 き)

								物理恒数
No.	X.	R⁴	R⁵	R ¹	R ²	R ³	Y	[] mp °C
I -152	4 - N O 2	Н	CH ₂ CH ₃	СН₃	Н	Н	СН	
I -153	4 -NO ₂	Н	CH(CH ₃) ₂	СН₃	Н	Н	СН	
I -154	4 - N O 2	Н	CH2OCH3	CH ₃	Н	H	СН	2 5
I -155	4 - C 1	Н	C 1	СН₃	Н	Н	СН	n b 1. 6059
I -156	4 - NO ₂	Н	C 1	CH₃	Н	Н	СН	[69-70]
I -157	3-CH ₃ , 4-NO ₂	Н	C 1	СН₃	H.	Н	СН	n p 1. 6055
I -158	4 - C 1	Н	OCH3	CH2 CH3	Н	Н	СН	23.7
I -159	4 - C 1	Н	OCH3	CH2CH2CH3	Н	Н	СН	n b 1. 5932
1 -160	4 - C 1	Н	OCH3	CH(CH ₃) ₂	н	Н	СН	22. 4
I -161	4 - C 1	Н	OCH ₃	Н	·H	Н	СН	n _p 1.5956
I -162	4 - C 1	Н	OCH3	CF3	H	Н	СН	[85—86]
I -163	4 - NO ₂	Н	OCH3	CH2CH2CH3	H	Н	CH.	n _p 1.5847
I -164	4 - C 1	Н	OCH ₃	СН₃	CH₃	Н	СН	
I -165	4 - C 1	Н	OCH ₃	СHз	Н	CH3	СН	
					<u> </u>		L	

第 1 - 1 表 (続 き)

						-		物理恒数
No.	X _m	R ⁴	R ⁵	R¹	R²	R ³	Y	[]mp °C
I -166	4-C1 ·	Н	ОСН₃	CH _{3.}	Н	Н	C(CH ₃)	
I -167	4-C1	Н	OCH ₃	CH₃	Н	Н	C(OCH ₃)	
I -168	4-NO ₂	Н	OCH₃	CH ₃	СНз	Н	СН	
1 -169	4-NO2	Н	ОСН₃	CH ₃	Н	CH₃	CH	
I -170	4-NO2	Н	ОСН₃	CH ₃	Н	Н	C(CH ₃)	
I -171	4-NO ₂	Н	ОСНз	CH ₃	Н	Н	C(OCH ₃)	
I -172	4-CN	Н	OCH3	CH₃	Вr	Н	СН	[149— 150]
I -173	4-C1	Н	OCH ₃	- CH2 CH2 CH2 CH2 -	_	Н	CH	
I -174	4-NO2	Н	ОСНз	- CH2 CH2 CH2 CH2 -	-	Н	CH	
I -175	H	Ή	H	СH3	Н	СНз	N	
1 -176	2-C1	Н	Н	СН₃	H	CH ₃	N	
I -177	3-C1	Н	Н	CH ₃	Н	СНз	N	[103 <i>-</i> 104]
I -178	4-C1	Н	Н	СН₃	Н	СН₃	N	[109-
I -179	3-NO ₂	Н	H	СНз	Н	CH₃	N	111]
I -180	4-NO ₂	Н	H	CH ₃	Н	CH ₃	N	
I -181	3-CN	Н	Н	CH ₃	Н	СНз	N	
I -182	4-CN	Н	Н	CH ₃	Н	СНз	N	
1 -183	4-CH ₃	Н	Н	СНз	Н	СНз	N ·	
I -184	4-0CH3	Н	Н	СНз	Н	СНз	N	,
1 -185	4-CF ₃	Н	Н	СНз	Н	CHs	N	•
I -186	4-F	Н	Н	СН₃	H	CH3	N·	

笙	1	_	1	表	(続	き)
27.7	1.		-	~	•		_	

		 	<u> </u>	X (1176			
.,	37	R⁴	R⁵	R¹	\mathbb{R}^2	R³	Y	物理恒数
No.	X _m	K.	K		IX			[] mp °C
I -187	4 —Br	Н	Н	СНз	Н	СНз	N	
I -188	2, 6-C1 ₂	Н	Н	СНз	Н	СНз	N	
I -189	4-COOCH3	Н	Н	CH₃	Н	СН₃	N	
1 -190	H	Н	ОН	СНз	H	СНз	N	·
I -191	4 -C1	Н	OH	СНз	Н	СН₃	N	[178-179]
I -192	4 -NO ₂	Н	ОН	CH₃	Н	СН₃	N	[163-164]
I -193	4 -C1	Н	ОН	CH3	Н	OCH₃	N	[156—158]
I -194	4 -C1	СН₃	ОН	СН₃	Н	СНз	N	[163-167]
I -195	4 -C1	Н	OCH₃	CH ₃	Н	СН₃	N	[69-70]
I -196	4 -C1	CH ₃	OCH₃	СНз	Н	СН₃	N	[89-90]
1 -197	4 -C1	CH₃	Н	СН₃	Н	CH ₃	N	
I -198	4 -Cl	OCH₃	OCH₃	СН₃	Н	CH3	N	
I -199	4 -C1	Н	OCH2CH3	CH₃	Н	СНз	N	
I -200	4 -C1	H	OCH2CH3	CH3	H	OCH3	N	[83-84]
I -201	4 -NO ₂	Н	OCH3	СН₃	Н	СНз	N	[84-85]
I -202	4 -NO ₂	ĊH₃	OCH₃	СНз	H	СН₃	N	
I -203	4 -NO ₂	CH3	H	СНз	H	CH₃	N	
1 -204	4 -NO ₂	OCH₃	OCH₃	СН₃	Н	CH₃	N	
I -205	4 -NO ₂	Н	OCH2CH3	СН₃	Н	СНз	N	
1 -206	4 -C1	Н	Н	Н	Н	Н	N	
I -207	4 -Cl	Н	Н	СН₃	Н	Н	N	n _D 1.6139
	<u> </u>				لـــــا	<u></u>		L

第 1 - 1 表 (続 き)

No.	X _m	R ⁴	R 5	R¹	R ²	R ³	Y	物理恒数
I -208	4 -C1	Н	Н	СНз	СНз	Н	N	
I -209	4 -C1	Н	Н	СН₃	CH₃	CH ₃	N	
I -210	4 -C1	Н	Н	СН₃	Н	OCH ₃	N	[48-50]
1 -211	4 -NO ₂	H	Н	Н	Н	Н	N	
I -212	4 -NO ₂	Н	H	СНз	Н	Н	N	
I -213	4 -NO ₂	Н	Н	СНз	CH₃	Н	N	
I -214	4 -NO ₂	Н	Н	СН₃	СН₃	СН₃	N	
I -215	4 -NO ₂	Н	Н	CH ₃	Н	ОСН3	N	
I -216	4 -C1	Н	C 1	СНз	Н	СН₃	N	[102-103]
I -217	4 -NO ₂	Н	C 1	СНз	Н	CH₃	N	[125-126]
1 -218	4 — NH ₂	Ĥ	C 1	СНз	Н	СН₃	N	[171-172]
I -219	H	СНз	OCH3	Н	Н	Н	СН	n _D 1.5835
I -220	Н	Н	OCH3	Н	Н	Н	СН	n _D 1.5912
I -221	3 - F	CH₃	OCH3	CH ₃	. Н	Н	СН	n _D 1.5595
I -222	Н	Н	OCH(CH ₃) ₂	CH3	Н	Н	СН	n _D 1.5748
I -223	2-NO₂, 5-F	Н	ОСН₃	СНз	·H	Н	СН	[110-111]
I -224	3 —Br	СНз	ОСН₃	CH3	Н	Н	СН	n _D 1.5885
I -225	2-NO ₂ , 5-OCH ₈	Н	OCH3	СНз	H	Н	СН	n _D 1.6056

第 1 - 1 表 (続 き)

					_ 0		~~	物理恒数
No.	X≖	R4	R⁵	R¹	R²	R ³ ,	Y	[] mp °C
I -226	2-NO ₂ ,	Н	OCH ₃	СНз	Н	Н	СН	[98-99]
I -227	5-Br 2-NO ₂ , 5-NHCH ₃	Н	OCH ₃	СН₃	Н	Н	СН	[141-142]
1 -228	3-NHCH ₃ , 4-NO ₂	Н	ОСН₃	CH3	Н	H	СН	[119-120]
I -229	4 -C1	-CH ₂ C	H ₂ CH ₂ CH ₂ -	СН₃	Н	Н	СН	n _D 1.5880
I -230	Н	Н	CH2CH3	СН₃	Н	Н	СН	n _p 1.5913
I -231	4 -C1	Н	OCH ₃	O CH2OCCH3	Н	Н	СН	n _D 1.5772
I -232	3 -C1	Н	ОН	СН₃	Н	Н	СН	[85-86]
I -233	3 —Br	H	ОН	CH ₃	Н	H	СН	[88-89]
I -234	3 - F	Н	OH	CH₃	Н	H	СН	[82-83]
1 -235	2, 4-Cl ₂	Н	ОН	СНз	Н	Н	СН	[117-118]
I -236	2 -NO ₂	H	OH	СН₃	Н	H	СН	[120-121]
I -237	3 -NO ₂	Н	ОН	СН₃	Н	Н	СН	[127-128]
I -238	4 — SCH ₃	Н	ОН	CH ₃	Н	Н	СН	[48-49]
I -239	4 — OCH ₃	Н	ОН	CH₃	H	Н	СН	[57-58]
I -240	4 — CN	Н	ОН	CH ₃	H	. H	CH	[148-149]
I -241	4 — CH ₃	H	ОН	CH ₃	Н	Н	СН	**2
I -242	4 -C1	H	OH	CH ₃	Н	Н	СН	[133-134]
I -243	2 -NO ₂	Н	OH	СНз	Н	СН₃	N	[142-143]
I -244	3 -NO ₂	Н	ОН	CH ₃	H	СНз	N	[174-175]
I -245	Н	Н	SCH₃	CH ₃	Н	Н	СН	[86-87]

第 1		1	表	(続	き)
-----	--	---	---	---	---	---	---

			=	- 1	n 2	n 2	7.	物理恒数
No.	X _m	R ⁴	R ⁵	R¹	R ²	R³	Y	[] mp °C
1 -246	4 -C1	Н	ОСНз	OCH ₃	Н	Н	СН	n _D 1.5890
I -247	4 -C1	H	OCH3	Н	CF ₃	Н	C(C1)	n _D 1.5466
I -248	4 - C1	Н	OCH ₃	H	CF ₃	Н	СН	[93-94]
I -249	4 -C1	Н	OCH3	Н	Н	CF.3	СН	[79-80]
I -250	4 -C1	Н	OCH ₃	Н	Н	Н	C(CF ₃)	n _{.D} 1.5463
1 -251	4 -C1	Н	ОН	OCH3	Н	Н	СН	[100-101]
I -252	4 -C1	H	OH	H	CF ₃	Н	C(C1)	[173-175]
I -253	4 -C1	Н	OH	CF ₃	Н	Н	CH	[105-106]
I -254	4 -C1	Н	OH	Н	CF ₃	Н	СН	[101-102]
I -255	4 - 01	Н	ОН	Н	Н	CF ₃	СН	[171-172]
I -256	4 -C1	Н	ОН	Н	Н	Н	C(CF ₃)	[152-153]

**1 NMR \vec{r} - β (CDC1 $_3$), δ (ppm)

2. 62 (s, 3H), 3. 04 (s, 3H), 3. 89 (s, 3H)

4. 09 (s, 2H), 5. 40 (s, 1H), 7. 09 (d, 1H,

J = 7.5 Hz), 7.28 (s, 1H), 7.42 (d, 1H, J =

7. 5 H z), 7. 5 1 (d, 2 H, J = 8. 5 H z), 7. 6 8

(t, 1 H, J = 7. 5 H z), 7. 8 8 (d, 2 H, J = 8. 5 Hz)

**2 NMR \vec{r} - β (CDC1 $_3$), δ (ppm)

2. 33 (s, 3H), 2. 52 (s, 3H), 3. 87 (s, 3H)

5. 33 (s, 1H), 6. $9 \sim 7$. 3 (m, 5H),

7. $7 \sim 7$. 8 (m, 2H), 1. 31 (brs. 1H)

第 1 - 2 表

	R^4 R^5 N N R^1 R^2										
No.	X _m	R ⁴	R ⁵	R¹	R ²	R³	Y	塩			
I -257	4-NO ₂	Н	OCH ₃	CH₃	Н	Н	СН	CuC12	[193-194] 分解		
I -258	4-NO2	Н	OCH₃	СН₃	Н	Н	СН	ZnCl2	[252-253] 分解		
I -259	4-NO ₂	Н	OCH ₃	CH₃	Н	Н	СН	FeC12	[240-245] 分解		
I -260	4-NO2	Н	ОСНз	CH₃	Н	Н	СН	NiCl ₂			
I -261	4-NO2	Н	OCH3	СНз	Н	Н	СН	HC1	,		
I -262	4-NO2	Н	OCH3	СНз	Н	Н	СН	HВr			

衷
∞,
無

				,							
物理恒数	.d .m ()	(D _e)		[102-103]	011 **3	n.p 1.5696		n p 1.5836		[173-174]	[128-129]
			Y	CH	CH	СН	НЭ	СН	СН	СН	CH
,			R³	Н	н	н	П	Н	田	Ħ	H
			R²	Н	Н	H	H	H	H	H	Н
	R 5 N K 1		R 1	CH3	CH3	CH3	CH3	снз	· CH3	CH3	CH3
			R	осн3	OCH3	енэо	оснз	в ноо	0CH3	0CH3	ен осн з
	Z //	. /	R 4	Н	Н	Н	H	田	I	H	E
**	Xm r 1 r 2	·	Γ^1 , Γ^2	0=	Н , НО	ОСН3, Н	OAc , H	CH3, H	CH3, CH3	0 =	Н , НО
			X m	4 - C1	4 - 61	4 - C1	4 - 61	4 - C1	4 - C1	$4 - NO_2$	$4 - NO_2$
			No.	11-11	11 - 2	11 – 3	11 – 4	11 – 5	11 – 6	11-7	8 – 11

第 2 表(統 き)

物理恒数 () m.p. (°C)		n 1.5469	n 1.5841	Г					n 1.5837			
> -	CH	СН	CH	СН	CH	CH	CH	СН	СН	СН	z	z
R³	н	Н	щ	н	Ħ	Ħ	н	Н	H	н	CH3	CH3
R2	Н	H	H	H	н	Н	H	н	H	Ħ	H	Н
R 1	снз	CH3	СНз	CH3	снз	CH3	СНз	CH3	CH3	CH ₃	CH3	CH3
R. 6	OCH 3	осн3	осна	OCH3	OCH3	OCH 3	OCH3	OCH3	осн3	OCH3	H	Н
R 4	H	H	五	н	н	н	Н	Н	Ħ	Ħ	Ħ	Н
r¹, r²	OCH3, H	OAc , H	CH3. H	CH3, CH3	0 =	н . но	осн, н	OAc , H	CH3, H	CH3, CH3	0	н но
Ж	4 — NO ₂	4 — NO ₂	4 — NO2	4 - NO ₂	н	·H	耳	H	Ħ	Ħ	4 - 61	4 - 61
No.	11 – 9	11 – 10	11-11	11-12	11-13	11 – 14	11-15	11 – 16	11-17	11 – 18	11 – 19	11 - 20

第 2 表(続き)

·	1					-					
物理恒数 () m.p. (°C)					23.1 n p 1.5740		n p 1.5760	[143-144]	[107-108]	[110-111]	
Ā	z	Z	Z	z	НЭ	ЖЭ	СН	HO	НЭ	НЭ	
R³	CH3 .	снз	CH3	CH3	Ħ	H	Ħ	Н	Н	Н	
R2	Н	H	H	Ή	н	H	H	H	H	H	
R	CH3	CH3	сна	СНз	CH3	снз	снз	CH3	CH3	СНз	
R 5	H	Н	H	H	0CH3	ен20	оснз	ен20	OCH 3	енэо	
R 4	Н	Н	Н	Н	снз	H	снз	Н	Н	Н	
2 1	=	=	×	CH3	=	T	H	_	H	H	
r 1	осн₃,	OAc,	CH3,	CH3,	CH3,	. IO	CH3,	0 =	0H,	ET.	
X	4 - C1	4 - CI	4 - 61	4 - C1	Н	$4 - N0_2$	4 - C1	4 - CN	4 - CN	$4 - N0_2$	
No.	11-21	11 - 22	11 - 23	11-24	11 – 25	11-26	11-27	11 – 28	11 – 29	11 – 30	

NMR $\vec{\tau} - \beta$ 2. 62(s, 3H), 2 7. 11(d, 1H, 1 ჯ *

表	
က	
紙	

		<u> </u>										
· · · · · · · · · · · · · · · · · · ·	多用 同数	() m. p.	(၁)		(6L-LL)	n 1.5805	n 1.5573					
				Y	СН	СН	СН	НЭ	СН	CH	HO	CH
				R³	Н	H	Н	Н	H	H	н	田
·				R ²	Н	н	Ħ	H	н	H	H	н
		₩ ₩	R 3	R	сна	CH3	CH 3	CH3	CH3	CH3	CH3	CH3
R.	2 × ×	&	R5	НО	OCH &	OCH3	0CH3	0CH3	0CH3	OCH3	OCH3	
				R 4	Н	Ħ	CH3	H 	н	H	H	H —
ž K		M /		В	CH2CH2	CH ₂ CH ₂	CH2 CH2	CH2CH2	CH2 CH2	CH2 CH2 CH2	CH2 CH2 CH2	CH2CH2CH2
	~X	w X		ж Ж	Н	H	н	4 - 61	4 - NO ₂	H	4 - 61	4 - NO ₂
				No.	1111-1	111-2	111-3	1111=4	2 -111	9 -111	1111-7	8-111

第3表(続き)

物理恒数 (
Å .	z	z	z	Z	
. K	СНз	СНз	CH3	CH3	
	Н	Н	Н	H	· ·
R 1 R 2	СН3	CH3	CH3	CH3	
Ά.	H	耳	エ	Ħ	
자	Н	H	H	H	
B	CH2 CH2	CH2 CH2	CH2CH2CH2	CH2 CH2 CH2	
Xm	H	4 – C1	Н	4 – C1	
No.	6-111	111-10 4 - C1	111-111	111-12 4 - C1	

₩	
4	
紙	

				, -	·		
加理恒数	() m.p.	(၁)		[122-123]			
			Y	СН	СН	СН	НО
			R³	Н	Н	ш	н
		,	R 2	Н	Щ	H 	H
		₩ 8	R 1	СНз	CH3	CH3	CH3
R 5	N N N N N N N N N N N N N N N N N N N	- &	R	осн в	ОСНЭ	OCH3	ОСН3
			R4	H	茁	Ħ	H
R R	A – B		В	— CH ₂ —)=0 	- C H 0 H	- C H - O A c
			A				
			No.	IV - 1	IV - 2	1V — 3	IV - 4

第4表(税き

	· , , , , , , , , , , , , , , , , , , ,					
物理恒数 (n 1.6132	٠.			·
>	CH	СН	НЭ	СН	СН	СН
R 3	Ħ	Ħ	н	н	耳 .	н
, R ⁻²	H	н	н	I	ш.	Ħ
- A	СН3	СН3	СН3	CH ₃	СН3	CH3
R.	в ноо	енэо	енэо	OCH3	ОСН3	OCH3
R 4	H	H	H	H	Ξ.	耳
В	- C H - O CH3	— CH2 —)=0 	H O H	- C H - O A c	- C H - 0 CH ₃
A						
No.	17 - 5	9 - 1	7 – VI	N – 8	9 – VI	1V-10

	物理恒数 〔 〕 m. p. (℃)			np 1.5669	n b 1.6006	[127 – 128]
٠.	¥	Z	Z	НЭ	К	СН
	R³	снз	CH3	I	н	ш
^	R ²	Н	Ħ	E	Œ	=
410	R 1	снз	CH3	СН3	CH3	снз
) 熊	R	Н	H	OCH3	0CH3	OCHs
₩	R.	Н	ш	田	Ħ	H
第	В	— CH2 —	- CH ₂ -	— CH ₂ —	– CH2 –	- CH2 -
	A					2 2
	No.	11-11	IV-12	IV – 13	IV – 14	17 – 15

	物理恒数 () m.p. (°C)	[121 – 122]	25.3 np 1.6002	23.8 np 1.5812	22.8 n p 1.5934	n b 1.5889
	Ā	НЭ	СН	СН	Ĥ)	СН
	R ³	H	H	Ħ	Œ	. Ц
	R²	H	H	Н	Н	н
טוג	R 1	СН3	снз	снз	CH3	CH3
(統	R 5	ОСН3	ОСН	осн	0CH3	OCH3
₩	R 4	Н	Н	Н	CH3	ш.
第	В	— CH ₂ —	— CH ₂ —	— CH ₂ —	— CH2 —	— CH2 —
	A			N	S	S
•	No.	IV-16	IV - 17	IV-18	IV – 19	IV - 20

第4数(税各)

	22. 6 n b 1.5787	12.8 np 1.5720	n b 1,5738	[84-85]	[175-176]	
>	СН	СН	СН	НЭ	СН	
R 3	H	П	Œ	耳		
R2	Н	н	Ξ.	圧	正	·
- PA	СНз	СИз	CH3	CH3	СН3	
ξ. 5.	OCHs	OCHs	0CH3	Н0	но	
R 4	сна	п	Ħ		H	
В	— CH2 —	— CH2 —	— СН 5 —	— CH2 —	- CH ₂ -	
A	S	S	Z	S	S	
No.	14 – 21	17 – 22	IV — 23	IV — 24	IV – 25	

~		
410		
鹡		
\smile		
表		
4		
紙		
	•	

物理恒数 () m.p. (°C)	[103-104]	[142-143]
X	СН	СН
г	Н	н
	H	田
R¹ R²	СНз	СН3
R4 R5	HO	H0
R 1	Н	ш
В	— СН3 —	— CH2 —
A		
No.	1V — 26	IV - 27

裘
<u> </u>
വ
無

	,				က္		2]	<u>.</u>			
物理恒数) m.p.		[125-127]	- 80]	1.5843	[106 - 108]	[115 - 115.5]				
参		•	[125-	-8 <i>L</i> ·J	n 24.	[106	[115				
		7	CH	CH	СН	СН	НЭ	HO	CH	CH	Z
		R³	H	Н	H	Ħ	H	н	Н	Н	СНЗ
		R ²	H	耳	Ħ	н	ж	Ħ	H	H	H
R R L	, :	R.	CH3	СНз	CH3	CH3	CH3	CH3	CH3	CH3	CH ₃
R N N N	~~~~~~	R 5	НО	0CH3	C 1	енэо	енэо	енэо	осн	оснз	Н
(CH2)1		——————————————————————————————————————	-CH2CH2CH2-	-CH2CH2CH2-	-CH2CH2CH2-	-CH2CH2CH2-	-CH2CH2CH2-	- CH2 CH2 -	- CH2CH2-	- CH2CH2-	-CH2CH2CH2-
		X	Н	Н	Н	4 - 61	$4 - NO_2$	Н	4 - 61	$4 - N0_2$	H
		No.	V - 1	V-2	V - 3	V - 4	V - 5	9 - A	V - 7	N - 8	6 - V

410
雑
J
裘
-
1
വ
紙

No.	X	—————————————————————————————————————	R	요 1	R 2	R³	Y	参理信数 () m.p. (°C)	
V - 10	4 - CI	-CH2CH2CH2-	Н	CH3	H	CH.3	Z		
V - 11	$4 - N0_2$	-CH2CH2CH2-	Н	CH 3	H	CH3	Z		
V - 12	4 - C1	-CH2CH2CH2-	Н О	CH ₃	Н	H	СН	[124-126]	
V-13	4 — NH2	-CH2CH2CH2-	OCH3	СНз	H	H	СН	[125-128]	
	0 =								
V - 14	4-NHCCH3	-CH2CH2CH2-	осн3	CH3	프	H	СН	[153-155]	
V - 15	₽ *	-CH2CH2CH2-	OCH3	снз	田	H	НЭ	[130 - 132]	·
V - 16	** 4	-CH2CH2CH2-	H 0	CH ₃	H	H	СН	[84-76]	
	** 4: 2,	2, 3 -СН=СН-СН=СН-							_

第 5 - 2 表

	物理恒数	No.		物理恒数
OCH 3 N CH 8	n 1.5884	V-18	OH N CH3	[108-109]

第 6 表

物理恒数	() m.p.	(°C)		(68-70)	[163-165]	n p 1.5902	(83-88)	A-2			
			Y	СН	СН	CH	CH	СН	CH	CH	СН
			R³	Н	Н	н	н	H	H	н	H
			R 2	Н	Н	н	H	н	H	H 	H
٠.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	8	R 1	cH3	CH3	CH3	CH3	CH3	CH3	CH3	CH3
R 5	N N	R 3	R	Н	Н	Н	CH3	CH2 CH3	CH(CH ₃) ₂	0CII3	осн
N	2	i	R4	н	НО	в ноо	H	H	H	H	в ноо
	Χm		В	CH2	CH2	CH 2	CH 2	CH ₂	CH2	CH2	CH2
			X	H	H	Н	н	I	H	H	Н
			No.	VI - 1	VI - 2	VI - 3	VI – 4	VI – 5	NI — 6	VI – 7	VI – 8

第6表(続き)

No.	Х м .	В	R 4	R	R 1	R 2	R³	Y	物理恒数 () m.p. (°C)
VI — 9	Н	CH2	0CH3	CH3	снз	Н	H	CH	
VI - 10	Н	CH2	OCH2 CH3	ш	СНз	ш	н	СН	n o 1.5876
VI - 11	4 - 61	CH2	H	Ξ	снз	Н	エ	СН	[110-114]
VI - 12	4 - C1	CH2	но	н	снз	Н	Н	H)	
VI - 13	4 - C1	CH2	0CH3	耳	CH3	Н	н	HO.	
VI - 14	4 - C1	cH2	н	CH3	CH3	Н	Ħ	НЭ	n b 1.5956
VI - 15	4 - C1	CH2	Ħ	CH2 CH3	CH3	н	н	НЭ	
VI - 16	4 - C1	CH2	н	CH(CH ₃) ₂	СН3	H	田	СН	
VI - 17	4 - 01	CH2	Н	0CH3	СН3	н	н	СН	[110-112]
VI - 18	4 - 01	CH2	0CH3	осн.	CH3	Ħ	н	CH	
VI - 19	4 - 61	CH2	OCH3	СН3	CH3	H	н	СН	n b 1.5932
VI - 20	4 -NO ₂	CH2	H	H	СН3	H	H	СН	[8e-89]
VI - 21	4 -NO ₂	CH2	Н 0	Н	СН3	н.	H	НО	

第6表(続き

	•												\neg
	物理恒数 () m.p. (℃)		[79-83]			[154 - 155]			[134 - 135]		_	n b 1.6106	
	Y	СН	СН	HO	СН	СН	СН	CH	НЭ	НЭ	СН	СН	
	R.	Н	Н	田	Ħ	н	ж	Ħ	H	Н	н	н	
	R²	Н	Ħ	Н	Н	Ħ	H	Н	H	Ħ	H	H	
	R 1	CH3	CH3	CH ₃	CH3	CH3	CH3	CH3	CH3	CH3	CH3	CH3	
	R	Н	СН3	CH2 CH3	CH(CH3)2	0CH3	0CH3	CH3	CH3	CH ₂ CH ₃	CH3	— CH2CH2CH2CH2—	
٠	R	0CH s	н	工	н	Н	0CH3	енэ0	н	енэо	OCH2CH3	— CH2CH2	
	(B) n	CH2	CH2	CH2	CH2	CH2	CH2	CH2	CH2	CH2	CH ₂	CH2	
	×	4 -N02	4 -N0 ₂	4 -N02	4 -N0 ₂	4 -N02	4 -N02	4 -NO2	4 -CN	4 -C1	4 -C1	4 -01	
	No.	VI - 22	VI - 23	VI - 24	VI - 25	VI — 26	VI - 27	VI – 28	VI – 29	VI - 30	VI - 31	VI - 32	

本発明化合物は、広範囲の種類の糸状菌に対し、すぐれた殺菌力をもっている ことから、花卉、芝、牧草を含む農園芸作物の栽培に際し発生する種々の病害の 防除に使用することが出来る。たとえば、テンサイの褐斑病(Cercospo ra <u>beticola</u>)、ラッカセイの褐斑病(<u>Mycosphaerell</u> arachidis)、黒波病(Mycosphaerella berk eleyi)、キュウリのうどんこ病 (Sphaerotheca fulig inea)、つる枯病 (Mycosphaerella melonis)、菌 核病(Sclerotinia sclerotiorum)、灰色かび病(B otrytis cinerea)、黒星病(Cladosporium cu cumerinum)、トマトの灰色かび病(Botrytis cinere a)、葉かび病(Cladosporium fulvum)、ナスの灰色かび 病 (Botrytis <u>cinerea</u>)、黒枯病 (<u>Corynespora</u> melongenae)、うどんこ病(Erysiphe cichorace arum)、イチゴの灰色かび病(Botrytis cinerea)、うど んこ病(Sphaerotheca humuli)、タマネギの灰色腐敗病 (Botrytis allii)、灰色かび病(Botrytis cine rea)、インゲンマメの菌核病 (Sclerotinia scleroti orum)、灰色かび病(Botrytis cinerea)、りんごのうど んこ病(<u>Podosphaera</u> <u>leucotricha</u>)、黒星病(<u>Ve</u>n turia <u>inaequalis</u>)、モニリア病(<u>Monilinia ma</u> <u>li</u>)、カキのうどんこ病(Phyllactinia <u>kakicola</u>)、 炭そ病(Gloeosporium kaki)、角斑落葉病(Cercosp ora kaki)、モモ・オウトウの灰星病 (Monilinia fruc ticola)、ブドウの灰色かび病(Botrytis cinerea)、 うどんこ病 (Uncinula necator)、晩腐病 (Glomerel la cingulata)、ナシの黒星病(<u>Venturia</u> <u>nashic</u> ola)、赤星病(Gymnosporangium asiaticum)、

黒斑病(Alternaria kikuchiana)、チャの輪斑病(Pe <u>stalotia</u> <u>theae</u>)、炭そ病(<u>Colletotrich</u>um t <u>heae-sinensis</u>)、カンキツのそうか病(<u>Elsinoe</u> <u>faw</u> <u>cetti</u>)、青かび病(<u>Penicillium</u> <u>italicum</u>)、緑か び病 (Penicillium digitatum)、灰色かび病 (Botr ytis cinerea)、オオムギのうどんこ病(Erysiphe gr aminis f. sp. hordei)、裸黒穂病(Ustilago nu da)、コムギの赤かび病 (Gibberella zeae)、赤さび病 (P uccinia recondita)、斑点病(Cochliobolus sativus)、眼紋病(Pseudocercosporella her potrichoides)、ふ枯病 (Leptosphaeria nodo rum)、うどんこ病(Erysiphe graminis f. sp. tr itici)、紅色雪腐病 (Micronectriella nivalis)、 イネのいもち病 (Pyricularia oryzae)、紋枯病 (Rhiz octonia <u>solani</u>)、馬鹿苗病(<u>Gibberella fuji</u> <u>kuroi</u>)、ごま葉枯病(<u>Cochliobolus miyabeanus</u>)、 タバコの菌核病 (<u>Sclerotinia</u> <u>sclerotiorum</u>)、うど んこ病(Erysiphe cichoracearum)、チューリップの灰 色かび病 (Botrytis cinerea)、ベントグラスの雪腐大粒菌核 病(<u>Sclerotinia</u> <u>borealis</u>)、オーチャードグラスのうど んこ病(Erysiphe graminis)、ダイズの紫斑病(Cerco spora kikuchii)、ジャガイモ・トマトの疫病(Phytoph thora infestans)、キュウリのべと病(Pseudopero nospora cubensis)、ブドウのべと病(Plasmopara viticola) などの防除に使用することが出来る。

また、ベンズイミダゾール系殺菌剤(例えば、チオファネートメチル、ベノミル、カルベンダジム)に耐性を示す灰色かび病菌(Botrytis cine

rea)やテンサイ褐斑病菌 (Cercospora beticola)、リンゴ黒星病菌 (Venturia inaequalis)、ナシ黒星病菌 (Venturia inaequalis)、ナシ黒星病菌 (Venturia nashicola)に対しても感受性菌と同様に本発明化合物は有効である。

さらに、ジカルボキシイミド系殺菌剤(例えば、ビンクロゾリン、プロシミドン、イプロジオン)に耐性を示す灰色かび病菌(Botrytis ciner e a)に対しても感受性菌と同様に本発明化合物は有効である。

適用がより好ましい病害としては、テンサイの褐斑病、コムギのうどんこ病、イネのいもち病、リンゴ黒星病、キュウリの灰色かび病、ラッカセイの褐斑病等が挙げられる。

本発明化合物は、水棲生物が船底、魚網等の水中接触物に付着するのを防止するための防汚剤として使用することも出来る。

このようにして得られた本発明化合物を実際に施用する際には他成分を加えず 純粋な形で使用できるし、また農薬として使用する目的で一般の農薬のとり得る 形態、即ち、水和剤、粒剤、粉剤、乳剤、水溶剤、懸濁剤等の形態で使用することもできる。添加剤および担体としては固型剤を目的とする場合は、大豆粒、小麦粉等の植物性粉末、珪藻土、燃灰石、石こう、タルク、パイロフィライト、クレイ、鉱物油、植物油等の鉱物性微粉末が使用される。液体の剤型を目的とする 場合は、ケロシン、鉱油、石油、ソルベントナフサ、キシレン、シクロヘキサン、シクロヘキサノン、ジメチルホルムアミド、ジメチルスルホキシド、アルコール、アセトン、鉱物油、植物油、水等を溶剤として使用する。これらの製剤において 均一かつ安定な形態をとるために、必要ならば界面活性剤を添加することもできる。このようにして得られた水和剤、乳剤は水で所定の濃度に希釈して懸濁液あるいは乳濁液として、粉剤・粒剤はそのまま植物に散布する方法で使用される。

次に、本発明の組成物の実施例を若干示すが、添加物及び添加割合は、これら 実施例に限定されるべきものではなく、広範囲に変化させることが可能である。 製剤実施例中の部は重量部を示す。

実施例14 水和剤

本発明化合物 40部

珪藻土 53部

高級アルコール硫酸エステル 4部

アルキルナフタレンスルホン酸塩 3部

以上を均一に混合して微細に粉砕すれば、有効成分40%の水和剤を得る。

実施例15 乳剤

本発明化合物 30部

キシレン 33部

ジメチルホルムアミド 30部

ポリオキシエチレンアルキルアリルエーテル 7部

以上を混合溶解すれば、有効成分30%の乳剤を得る。

実施例16 粉剤

本発明化合物 10部

タルク 8 9 部

ポリオキシエチレンアルキルアリルエーテル 1部

以上を均一に混合して微細に粉砕すれば、有効成分10%の粉剤を得る。

実施例17 粒剤

本発明化合物 5部

クレー 73部

ベントナイト 20部

ジオクチルスルホサクシネートナトリウム塩 1部

リン酸ナトリウム 1部

以上をよく粉砕混合し、水を加えてよく練り合せた後、造粒乾燥して有効成分 5%の粒剤を得る。

実施例18 懸濁剤

本発明化合物

10部

リグニンスルホン酸ナトリウム ドデシルベンゼンスルホン酸ナトリウム

キサンタンガム

0.2部

4 部

1部

水

84.8部

以上を混合し、粒度が1ミクロン以下になるまで湿式粉砕すれば、有効成分10 %の懸濁剤を得る。

なお、本発明化合物は単独でも十分有効であることは言うまでもないが、効力が不十分もしくは弱い病害又は有害昆虫、ダニに対しては各種の殺菌剤や殺虫・ 殺ダニ剤の1種又は2種以上と混合して使用することも出来る。

本発明化合物と混合して使用出来る殺菌剤、殺虫剤、殺ダニ剤、植物生長調節剤の代表例を以下に示す。

〔殺菌剤〕

キャプタン、フォルペット、チウラム、ジネブ、マンネブ、マンコゼブ、プロピネブ、ポリカーバメート、クロロタロニル、キントーゼン、キャプタホル、イプロジオン、プロサイミドン、ピンクロゾリン、フルオロイミド、サイモキサニル、メプロニル、フルトラニル、ペンシクロン、オキシカルボキシン、ホセチルアルミニウム、プロパモカーブ、トリアジメホン、トリアジメノール、プロイトラゾール、ビテルタノール、ヘキサコナゾール、マイクロブタニル、フルシラゾール、エタコナゾール、フルオトリマゾール、フルトリアフェン、ペンコナゾール、ジニコナゾール、サイプロコナゾール、フェナリモール、トリフルミゾール、プロクロラズ、イマザリル、ペフラゾエート、トリデモルフ、フェンプロピモルフ、トリホリン、ブチオベート、ピリフェノックス、イソコチオラン、ポリオキシン、メタラキシル、オキサジキシル、フララキシル、イソプロチオラン、プロベナゾール、ピロールニトリン、ブラストサイジンS、カスガマイシン、バリダマイシン、硫酸ジヒドロストレプトマイシン、ベノミル、カルベンダジム、チオファネートメチル、ヒメキサゾール、塩基性塩化銅、塩基性硫酸銅、フェンチンアセテート、水酸化トリフェニル錫、ジエトフェンカルブ、

メタスルホカルブ、キノメチオナート、ビナパクリル、レシチン、重曹、ジチア ノン、ジノカップ、フェナミノスルフ、ジクロメジン、グアザチン、ドジン、I BP、エディフェンホス、メパニピリム、フェリムゾン、トリクラミド、メタス ルホカルブ、フルアジナム、エトキノラック、ジメトモルフ、ピロキロン、テク ロフタラム、フサライド。

[殺虫・殺ダニ剤]

クロルベンジレート、クロルプロピレート、プロクロノール、フェニソプロモ レート、ジコホル、ジノブトン、クロルフェナミジン、アミトラズ、BPPS、 PPPS、ベンゾメート、ヘキシチアゾクス、酸化フェンブタスズ、ポリナクチ ン、チオキノックス、CPCBS、テトラジホン、イソキサチオン、アベルメク チン、多硫化石灰、クロフェンテジン、フルベンズミン、フルフェノクスロン、 BCPE、シヘキサチン、ピリダベン、フェンピロキシメート、フェンチオン、 フェニトロチオン、ダイアジノン、クロルピリホス、ESP、バミドチオン、フ ェントエート、ジメトエート、ホルモチオン、マラチオン、ジプテレックス、チ オメトン、ホスメット、メナゾン、ジクロルボス、アセフェート、EPBP、ジ アリホール、メチルパラチオン、オキシジメトンメチル、エチオン、ピラクロホ ス、モノクロトホス、メソミルモノクロトホス、アルディカーブ、プロポキシュ ール、BPMC、MTMC、ナック、カルタップ、カルボスルファン、ベンフラ カルブ、ピリミカーブ、エチオフェンカルブ、フェノキシカルブ、パーメスリン、 サイパーメスリン、デカメスリン、フェンバレレート、フェンプロパスリン、ピ レトリン、アレスリン、テトラメスリン、レスメスリン、ジメスリン、プロパス リン、ビフェンスリン、プロスリン、フルバリネート、シフルスリン、シハロス リン、フリシリネート、エトフェンプロックス、シクロプロトリン、トラロメス リン、シラネオファン、ジフルベンズロン、クロルフルアズロン、トリフルムロ ン、テフルベンズロン、ブプロフェジン、機械油。

[植物生長調節剤]

ジベレリン類(例えばジベレリンA。、ジベレリンA。、ジベレリンAr)I

AA, NAA.

産業上の利用可能性:

次に、本発明化合物が各種植物病害防除剤の有効成分として有用であることを 試験例で示す。防除効果は、調査時の供試植物の発病状態、すなわち葉、茎等に 出現する病斑や菌そうの生育の程度を肉眼観察し、菌そう、病斑が全く認められ なければ「5」、無処理区に比べ10%程度認めれば「4」、25%程度認めれ ば「3」、50%程度認めれば「2」、75%程度認めれば「1」、無処理区の 発病状態と差異がなければ「0」として、0~5の6段階に評価し、0,1,2, 3,4,5で示す。

試験例1 テンサイ褐斑病防除試験

9 cmの素焼きポットで栽培したテンサイ幼苗(品種「バーレスストリーネ」、 5~6 葉期)に本発明化合物の水和剤の所定濃度の薬液を散布し、葉を風乾させた後、テンサイ褐斑病菌(<u>Cercospora</u> <u>beticola</u>)の分生胞子懸濁液を噴霧接種し24~28℃、高湿度に1日間保ってから、23~30℃の温室に12日間保持して発病の状況を調査し、防除効果を求めた。その結果を第7表に示す。

第 7 表

化合物番号 有効成分 度 (ppm) (p				 	_	
I - 1 0	化合物番号	濃 度	防除効果	化合物番号	濃 度	防除効果
I - 2 5 9 2 0 0 5	I-10 $I-11$ $I-12$ $I-13$ $I-15$ $I-16$ $I-19$ $I-22$ $I-35$ $I-45$ $I-47$ $I-48$ $I-62$ $I-65$ $I-65$ $I-68$ $I-70$ $I-71$ $I-75$ $I-83$ $I-90$ $I-71$ $I-75$ $I-83$ $I-90$ $I-71$ $I-75$ $I-83$ $I-90$ $I-71$ $I-75$ $I-83$ $I-90$ $I-71$ $I-127$ $I-128$ $I-101$ $I-127$ $I-128$ $I-137$	2 0 0 2 0 0 0 0	444445445455455445444544444444444444444	II-3 II-17 II-17 II-28 II-29 II-29 II-30 IV-13 IV-29 IV-20 VI-13 VI-23 VI-20 VI-23 VI-20	2 0 0 2 0 0 0 2 0	555454444554445545555443

*1 mancozeb 75%水和剤

*2 chlorothalonil 75%水和剤

*3 fentin hydroxide 17%水和剤

試験例2 テンサイ褐斑病防除試験(治療試験)

9 cmの素焼きポットで栽培したテンサイ幼苗(品種「バーレスストリーネ」、5~6 葉期)にテンサイ褐斑病菌(<u>Cercospora</u> <u>beticola</u>)の分生胞子懸濁液を噴霧接種し24~28℃、高湿度に1日間保ち、さらに23~30℃の温室に2日間保持してから、本発明化合物の水和剤の所定濃度の薬液を散布し、葉を風乾させた後、温室に10日間保ってから発病の状況を調査し、防除効果を求めた。その結果を第8表に示す。

第 8 表

作品物番号	度 防除効果 m)
	0 5
I - 1 0 2 (
I - 1 1 2	0 5
	0 5
1 - 1 3 2	0 5
1 - 15 2	0 4
1	0 5
I - 19 20	0 5
1	0 5
:	0 5
1 - 47 2	0 4
1 - 48 2	
	0 5
1 - 65 2	
1 - 68 2	I
1 - 70 2	0 5
I - 7 1 2 (0 5
	0 4
1 - 83 2	
1 :	0 5
,	0 5
, ,	0 4
, 1	0 5
* * -	0 5
	0 4
1 - 128 20	i i
1 - 129 20	
1 - 1 3 7 2 (
1 - 159 20	
1 - 178 20	i i
I - 19.5 2	l l
$I - 196 \mid 20$	
	0 5
I - 259 2 (0 5

化合物番号	有効成分 濃 度 (ppm)	防除効果
II - 2	200	5
11-3	200	5
11 – 5	200	4
II-10	200	5
II - 1 1	200	5
II - 17	200	4
II - 2.5	200	4
II - 28	200	5
11 - 29	200	5
11 - 30	200	5
IV - 6	200	5
IV-16	200	4
IV - 2 2	2 0 0	5
V-2	200	5
V-4	200	5
VI – 4	2 0 0	4 ,
VI - 1 3	200	4
VI - 1 4	200	5
VI - 17	200	5
VI - 20	200	5
VI - 2 3	200	5
VI - 2 6	200	5
VI - 2 9	200	5
対照剤 C*4	200	0
対照剤 D*5	200	5
対照剤 B*6	200	3

^{*4} fentin hydroxide 17%水和剤

^{*5} thiophanate-methyl 70%水和剤

^{*6} kasugamycin-HCl 2.3%液剤

試験例3 コムギうどんこ病防除試験(予防試験)

素焼きポットで栽培したコムギ幼苗(品種「農林 6 1 号」、1 1 0 \sim 1 2 葉 期)に本発明化合物の水和剤の所定濃度の薬液を散布し、葉を風乾させた後、コムギうどんこ病菌(Erysiphe graminis f.sp. <math>trit ici) の分生胞子を振り払い接種し、 $22\sim25$ C の温室で 7 日間生育させ、防除効果を調査した。その結果を第 9 表に示す。

第 9 表

化合物番号	有効成分 濃 度 (ppm)	防除効果
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5555555555554545444555445454545454545444

化合物番号	有効成分 濃 度 (ppm)	防除効果
II-3 II-5 II-27 IV-1 IV-1 IV-1 IV-1 IV-2 IV-2 IV-2 IV-2 V-4 VI-1 VI-1 VI-1 VI-1 VI-1 VI-1 VI-1 VI-1	2 0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0	454554444454454545555543

*7 sulfur. 水和硫黄 75%水和剤

試験例4 イネいもち病防除試験(予防試験)

プラスチックポットで育苗したイネ(品種「日本晴」、3.0 葉期)幼苗に、本発明化合物の水和剤の所定濃度の薬液を散布し、室温で風乾後、培養で得たイネいもち病菌(Pyricularia oryzae)の分生胞子の懸濁液を噴霧接種して、25 $\mathbb C$ 、暗黒下、48 時間高湿度に保持した。その後、植物を25 $\mathbb C$ 、湿度 10 %以上の恒温室内で育成した。接種 10 行後に発病状況を調査し、防除効果を求めた。その結果を第10 表に示す。

第 10 表

化合物番号	有効成分 濃 度 (ppm)	防除効果
I-1	2 0 0 2 0 0	5 4
I-4	200	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	5
I - 1 2 I - 1 3	200	5
I-15	200	5
I - 18	200	5
I - 19	200	5
I-22	200	. 4
I - 35	200	5
I - 45	200	5
I - 47	200	4
I - 48	200	5
I - 62	200	5
I-65	200	5
I-68	200	5
I - 71	200	5
I-75	200	4
$I - 8 \ 3$	2 0 .0	5
I-90	200	5 5
I-91	200	5 5
$I - 1 \ 0 \ 1$	200	4
I - 127	2 0 0 2 0 0	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	200	5
_	200	4
I - 159 I - 178	2 0 0	5
I - 1 7 8 I - 1 9 5	200	5
I - 196	200	5
I - 1 0 0	200	4
I - 2 1 0	200	5
I-228	200	5
I - 259	200	5

化合物番号	有効成分 濃 度 (ppm)	防除効果
II-1	200	5
II-2	200	5
II - 3	200	5
11 – 5	200	5
II - 1 0	200	5 .
II - 1 1	200	5
11 - 17	200	4
II - 25	200	4
11 - 29	200	5
11 - 30	200	5
IV- 6	200	5
V-2	200	5
V-4	200	5
VI - 3	200	5
VI - 4	200	4
VI - 1 0	200	5
VI - 1 4	200	5
VI - 17	200	5
VI - 20	200	5
VI - 2 3	200	5
VI - 26	200	5
VI - 29	200	5
対照剤 G*8	200	4
対照剤 H*8	2 0 0	4

*8 isoprothiolane 40%水和剤

*9 fthalide 50%水和剤

試験例5 リンゴ黒星病防除試験(予防試験)

素焼きポットで栽培したリンゴ幼苗(品種「国光」、 $3\sim4$ 葉期)に、本発明 化合物の水和剤の所定濃度の薬液を散布し風乾させた後、リンゴ黒星病菌(\underline{V} e n t u r i a i n a e q u a l i s)の分生胞子を接種し、照明下(明・暗くりかえし)、20 $\mathbb C$ 、高湿度の室内に2 週間保持した後、防除効果を調査した。その結果を第11表に示す。

第 11 表

化合物番号	有効成分 濃 度 (ppm)	防除効果
01693679381356070901234568 1411111111111111111111111111111111111	00000000000000000000000000000000000000	544555555554545544544554555555444554455454

化合物番号	有効成分 濃 度 (ppm)	防除効果
II3 II3 II3 II123 II	000000000000000000000000000000000000000	555555454454444445555444444554

*10 captan 80%水和剤

試験例6 キュウリ灰色かび病防除試験

素焼きポットに育苗したキュウリ(品種「相模半白」、1.0葉期)幼苗に、本発明化合物の水和剤の所定濃度の薬液を散布した。散布後、植物を室温で風乾し、培養で得た灰色かび病菌(Botrytis cinerea、ベンズイミダゾール系薬剤およびジカルボキシイミド系薬剤に感受性を示す菌、以下、薬剤感性菌と称す。両系薬剤に耐性を示す菌、以下薬剤耐性菌と称す。)の胞子の懸濁液(グルコースおよびイーストエキス含有)でキュウリ本葉に滴下接種し、20℃、暗黒下、高湿度に保持した。接種4日後、発病状況を調査し、防除効果を求めた。その結果を第12表に示す。

第 12 表

	有効成分濃度	防除	効 果
化合物番号	(ppm)	薬剤感性菌	薬剤耐性菌
1382356809 111111111111111111111111111111111111	00000000000000000000000000000000000000	444444444445454444544444455544544444444	444444444454544444444444444444444444444

*11 thiophanate-methyl 70%水和剤
*12 polyoxine complex 10%水和剤

*13 vinclozolin 50%水和剤

試験例7 ラッカセイ褐斑病防除試験

素焼ポットに育苗したラッカセイ(品種「ナカテユタカ」、4.0複葉期)幼苗に、本発明化合物の水和剤の所定濃度の薬液を散布した。散布後、植物を室温で風乾し、培養で得たラッカセイ褐斑病菌(Mycosphaerellaarachidis)の胞子の懸濁液を噴霧接種し、24~28℃、高湿度に1日間保持してから、23~30℃の温室に12日間生育させ、発病状況を調査し、防除効果を求めた。その結果を第13表に示す。

第 13 表

化合物番号	有効成分 濃 度 (ppm)	防除効果
I - 1	200	4
I-10	200	5 5
I-11	200	5 5
I-12	200	5
I-13	200	5
I-16	200	5
I-19	200	4
I-22	200	5
I-35	200	4
I - 4 5 I - 4 7	200	4
I - 47 $I - 48$	200	5
I-48	200	4
I - 6.5	200	5.
I - 68	200	5
I - 71	200	5
I - 75	2.00	4
I-83	200	4
I - 9 0	200	5
I — 9 1	200	4
I - 1 0 1	200	5
I - 1 2 7	200	4
I - 1 2 8	200	4
I - 1 2 9	200	4
I - 1 3 7	200	4
I - 159	200	4
I - 178	200	4
I - 195	200	5
I - 196	200	4
I - 2 1 0	200	4
1 - 2 2 8	200	5
I - 259	2 0 0	5

化合物番号	有効成分 濃 度 (ppm)	防除効果
II-1	200	5
II-2	200	5
II - 1 0	200	4
II - 1 1	200	5
II - 17	200	4
11 - 25	200	4
IV — 6	200	5
V-2	200	4
V-4	200	5
VI-4	200	4
VI - 1 4	200	5
VI - 17	200	5
VI - 20	200	4
VI - 2 6	200	5
対照剤 B*14	200	. 4

*14 chlorothalonil 75%水和剤

請求の範囲

1. 一般式 [I]

〔式中、Qは

を表し、

YはCR®又はNを表し、

 R^1 、 R^2 、 R^3 、 R^4 、 R^6 は同一又は相異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキニルオキシ基、上ドロキシ基を表し、また R^1 と R^2 とが一緒になって環を形成してもよく、 R^5 は水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルカキシ基、置換されていてもよいアルキニルオキシ基、上ドロキシ基、置換されていてもよいアルキルチオ基を表し、また R^4 と R^5 とが一緒になって環を形成してもよく、 R^5 とが一緒になって環を形成してもよく、 R^5 とが一緒になって環を形成してもよく、 R^5 とが一緒になって環を形成してもよく、 R^5 と R^5 とが一緒になって環を形成してもよく、 R^5 とが一緒になって環を形成してもよい

(式中、 r^1 、 r^2 、 r^3 、 r^4 、 r^5 、 r^6 は同一又は相異って、水素原子、ハロゲン原子、ヒドロキシ基、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基又は置換されていてもよいアシルオキシ基を、また r^1 と r^2 、 r^3 と r^4 又は r^5 と r^6 は一緒になってオキソ基を表し、さらに、 r^1 ~ r^6 と R^4 とが一緒になって環を形成してもよい。)を表す。ただし、Qが

のとき、 R^1 、 R^2 、 R^3 、 R^6 が全て水素原子であることはない。〕で表されるピラゾール誘導体又はその塩。

2. 一般式 [II]

$$A-B \xrightarrow{0 \quad 0} OR$$

$$R^4 \qquad OR$$

〔式中、Rはアルキル基を表し、A、B、R は前記と同じ意味を表す。)で表わされる化合物と、一般式 [III]

$$\begin{array}{c}
R^2 \\
Y \\
N \\
NHNH_2
\end{array}$$
(111)

〔式中、 R^1 、 R^2 、 R^3 、Yは前記と同じ意味を表す。〕で表わされる化合物を反応させることを特徴とする一般式〔 $I^\prime-1$ 〕

〔式中、A、B、 R^1 、 R^2 、 R^3 、 R^4 、Yは前記と同じ意味を表す。〕で表わされる化合物の製造方法。

3. 一般式 (IV)

$$A - B - N H N H_2 \tag{IV}$$

[式中、A、B、は前記と同じ意味を表す。] で表わされる化合物と一般式 [V]

$$\begin{array}{c|c}
R^2 & & & \\
 & & & \\
R^1 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

〔式中、R、R¹、R²、R³、Yは前記と同じ意味を表す。〕で表わされる化 合物を反応させることを特徴とする一般式〔I'-2〕

$$\begin{array}{c} HO \\ R^5 \\ A-B \end{array}$$

$$\begin{array}{c} N \\ Y \\ R^2 \end{array}$$

$$\begin{array}{c} R^1 \\ R^2 \end{array}$$

〔式中、A、B、 R^1 、 R^2 、 R^3 、 R^5 、Yは前記と同じ意味を表す。〕で表わされる化合物の製造方法。

4. 一般式 [I'-1]

〔式中、A、B、 R^1 、 R^2 、 R^3 、 R^4 、Yは前記と同じ意味を表す。〕で表わされる化合物と、一般式r-X 〔式中、r は置換されてもよいアルキル基、置換されてもよいアルケニル基又は置換されてもよいアルキニル基を表し、X は脱離基を表す。〕で表わされる化合物を反応させることを特徴とする一般式〔I' -7〕

$$R^4$$
 Or R^1 $(I'-7)$ R^2

〔式中、A、B、R 1 、R 2 、R 3 、R 4 、r、Yは前記と同じ意味を表す。〕 で表わされる化合物の製造方法。

5. 一般式 [I'-2]

$$\begin{array}{c} HO \\ R^5 \\ \hline \\ A-B \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ \hline \\ R^2 \\ \hline \\ R^2 \\ \end{array}$$

〔式中、A、B、 R^1 、 R^2 、 R^3 、 R^5 、Yは前記と同じ意味を表す。〕で表わされる化合物と、一般式r-X〔式中、r、Xは前記と同じ意味を表わす。〕で表される化合物を反応させることを特徴とする一般式〔 I^2-8 〕

〔式中、A、B、 R^1 、 R^2 、 R^3 、 R^5 、r、Yは前記と同じ意味を表す。〕 で表わされる化合物の製造方法。

6. 一般式 [I]

$$A - B - Q \longrightarrow \begin{array}{c} N & R^1 \\ & & \\ R^2 & & \end{array}$$

[式中、Q、Y、 $R^1 \sim R^3$ 、A、Bは前記と同じ意味を表す。] で表されるピ

ラゾール誘導体又はその塩の1種または2種以上を有効成分として含有すること を特徴とする農園芸用殺菌剤。

INTERNATIONAL SEARCH REPORT

					Intern	ational Appl	ication No	PCT/	JP92/0	1303
I. CLASSIF	FICATIO	N OF SUBJECT	MATTER (if se	veral class	ification s	ymbols app	ly, Indicate a	ll) ⁶	·	
-		ional Patent Classi	fication (IPC) or	to both Na	tional Cla	ssification ar	d IPC			
Int.	Cl		/04, CO					C07	D403/1	4,
		C07D405	/14, CO	7D409,	/14,	A01N4	3/56			
II. FIELDS	SEARCH	IED								
			Minimu	m Docume	ntation Se	arched 7				
Classification	System				Classifica	tion Symbol	5			•
IPC			/04, C07 /14, C07					C07	D403/1	4,
			umentation Searc Extent that such					ed s		
			<u>·</u>							
						•			•	
III. DOCUM	ENTS C	ONSIDERED TO	RE RELEVAN	T '					· · · · · · · · · · · · · · · · · · ·	···
Category *		on of Document, 11			ropriate.	of the relevan	nt passages	12	Relevant to C	laim No. 13
		, 2-2291							1	3
	•	tries, L		01	1011110	~_		.	,	J
8	Septe Claim	ember 11, n; particular (Family	1990 (1 ularly,	Compo			10			
PE	מ פי	1, 46935	7 (Baver	AG).	_				1,	2
		ary 5, 19						- 1	- /	
		A, 4023		02.	321				•	•
٩	, DE	A, 4023	400					1	•	
	•									
		•							•	
ľ		•						ŀ		
								Ì		
	•							ļ		
								Į		
	•	`						1		
								}		
								1		•
					•				•	
* Special act	ennries of	cited documents:	10		"T" late	er document	nuhlishad a	tter the '	nternational (illing data c-
"A" docume	nt definir	ng the general state	e of the art whic	h is not	prid	ority date and	not in confi	lict with t	he application	but cited to
conside	red to be	of particular releva	ance						nderlying the claimed inve	
"E" earlier d filing da		but published on	or after the inter	national	be	considered			considered to	
"L" docume	nt which	may throw doubt	s on priority cla	im(s) or		entive step cument of par	rticular relev	ance: the	claimed inve	ntion cases
		establish the pub special reason (as		another	be	considered t	o involve an	inventive	step when th	e document
"O" docume	nt referri	ng to an oral discl	•	oition or					ir auch docu on skilled in t	
other me		ned prior to the inte	emational filips	late hut	"&" doc	ument memi	ber of the sa	ime patei	nt family	
. 000011101		ority date claimed	ung (-
V. CERTIFIC	CATION									
Date of the Ac	ctual Com	pletion of the inter	national Search		Date of	Mailing of th	is Internatio	nal Sear	ch Report	
Novemb	er 1	2, 1992 ((12. 11.	92)	Jan	uary 7	, 199	3 (0.	7. 01.	93)
nternational S	earching	Authority			Signatui	e of Authori	zed Officer			
Japan	ese :	Patent Of	fice					٠		

I. 発明の	の量する分	野の分割	u								·										
国際特許分別			. CL	7.8			71) 4	n 1	<u>/</u> n	4		Ω	7 D	4 0	1	/1	4 -			
		C U	7 D 4	, Λ 1	a /	0 4	(10	7 D	A 0	3	/1	4	. c	0.7	D	40	5 /	1	4.	
	•		7 D 4											, –	•	_		- ,	_	- ,	•
			104	· · ·																	
Ⅱ. 国際票	賃査を行っ	た分野											79e-	44							
			湖 3	査	と	行			极			<u> </u>	資	料						-	
分類体	* 系						分								· · ·						
	ł	C 0	7 D 4	0 1	1/	0 4	, (0 5	7 D	4 0	1,	/1	4	, C	0 7	D	4 0	3/	0	4 ,	•
IPO	C	C 0	7 D 4	0 :	3/	1 4	, (0 3	7 D	4 0	5,	/1	4	, C	0 7	D	4 0	9/	1	4 ,	•
	1	A O	1 N 4	3/	/5	6															
	1		数/	小限	資料	以分	10	資料	で関	査を	行。	った	60)				-		_	
	 																•				
٠.																					
Ⅲ. 関連す																	1.				
引用文献の カテゴリー	引用文	献名	及び一日	部の1	窗所均	が関	連する	કે કે	H.	その	関連	する	箇	折の3	表示		1#:	東の	0囲	り 番	号
X J	JP, A,	9	99.0	D 1	E. 0	(2	滅	8. 7	- 查	烙;	14	計	٠).				1	, 3	3	
A	P, A,	,, 2 — A i	000) (1 1		Д, II 3. Q	77C	Մ) Մո	_*	3 ~	~ 1	111	, , ,				_	, -		
At At	· 1. 3. 导許請才	刀。 ↓ タカの 第66	99V ⊞	ハ (性)	r H	•	Ster N	i n	1 (,)及	75	1 1									
	す町晒る				C 10	, 0	100 T		•	_							ł				
		9		,																	
PE	EP, A	1. 4	693	3 5	7 (В	уе	r	A G	·),								- 1	, 2	?	
	5. 2月.																1				'
	b DE,														•						
	•	•															'	•			
																	1				
	٠								•								1				
																	1				
																	ŀ				
																			•		
		•																			
			,																		
※引用文献	オのカテゴ	IJ —							 [T]	国際	出願E	又出	建步	も日の	後に	公衰	された	:文獻	であ・	って	: #I
「A」特K與	連のある文	献ではた						ව ව	_	願と	矛盾寸	るも	07	cita	: 〈 }	発明	の原理	又は	理論の	の理	解
「E」先行文	献ではある	が、国際	を出願日	以後	に公ま	はされ	たも	か ロ			めた引 いさa				-T	邓	該文献	to4	でぬる	男の	新
「L」優先権 若しく	E主張に疑惑 は他の特別	を提起す な理由を	って献。 と確立す	人ない	吸ので	(献り	/光仃 る文(試	_	規性:	工社道	步 担	とかりた	といと	考え	られ	360	•			
(理由	を付す)																数文制 * * * *				
「O」口頭に 「P」国際出							, jily 1666 .	ת		-	との、 がなり	•				カで	ある船	10°C	ار پر ،	っし	, 145 ,
	♪願日削で、 セに公表され		て配の土	, TO 100 1	es we c	- 14 6	, mark	.,	ر & ا						の文	i t		\			
IV. 12	læ.																				
				·					国際	1 本 40	生の	# # #	FI -			<u></u>					
国際調査を完	き了した日 12 。		. 92	2					ER ISS #	-4 <u>-3.</u> FM		75.4Q	-		0	7.	0 1	.9	3		
国際調査機関	3							+	権限の	りある	真鄉						4	C 8	8	2	9
	本国特部	k: 📥 🖊	TC A /T	ſΡŊ				- 	特許	- 庁 :	密查	官		大	€	•	郁	— <u>'</u> — 治	· <u>'</u>	<u>-</u> -	