(b) For any two open subsets, $B_1, B_2 \in \mathcal{B}$, for every $x \in E$, if $x \in B_1 \cap B_2$, then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$. See Figure 37.15.

Figure 37.14: Given an open subset U of \mathbb{R}^2 and $x \in U$, there exists an open ball B containing x with $B \subset U$. There also exists an open rectangle B_1 containing x with $B_1 \subset U$.

Figure 37.15: A schematic illustration of Condition (b) in Proposition 37.8.

We now consider the fundamental property of continuity.

37.3 Continuous Functions, Limits

Definition 37.16. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be topological spaces, and let $f: E \to F$ be a function. For every $a \in E$, we say that f is continuous at a, if for every open set $V \in \mathcal{O}_F$ containing f(a), there is some open set $U \in \mathcal{O}_E$ containing a, such that, $f(U) \subseteq V$. See Figure 37.16. We say that f is continuous if it is continuous at every $a \in E$.

Define a neighborhood of $a \in E$ as any subset N of E containing some open set $O \in \mathcal{O}$ such that $a \in O$. If f is continuous at a and N is any neighborhood of f(a), there is some open set $V \subseteq N$ containing f(a), and since f is continuous at a, there is some open set U containing a, such that $f(U) \subseteq V$. Since $V \subseteq N$, the open set U is a subset of $f^{-1}(N)$