Aula 05 – Tipos Avançados de Grafos

Notas de Aula de Teoria dos Grafos

Profa: Patrícia D. L. Machado

UFCG – Unidade Acadêmica de Sistemas e Computação

Nesta aula, continuaremos estudando diferentes tipos de grafos, porém focando em conceitos mais avançados.

Sumário

Grafo Direcionado	
Grafo Direcionado Estrito, Grafo Base e Orientação	
Caminho e Ciclo Orientado	3
Exercício	
Grafo Ponderado	5
Caminho Mais Curto	5
Exercício	
Grafo Hamiltoniano	6
Exercício	7
Problema do Caixeiro Viajante	8
Exercício	8
Grafo Denso	9
Exercícios Propostos	11
Referências	13

Grafo Direcionado

Existem situações em que precisamos representar o direcionamento das relações entre vértices. Por exemplo, quando representamos hierarquia tal com relações entre pai e filho; a relação existe em um único sentido. Como outro exemplo, temos grafos de dependências de classes e diagramas de fluxo de controle para os quais vimos exemplos na Aula 01. Para estas situações, usamos os grafos direcionado.

Definição 1. Um **Grafo Direcionado** D, também chamado de **Grafo Dirigido** ou **Dígrafo** é um par ordenado (V(D), A(D)), onde:

- *V(D)* é um conjunto de **vértices**;
- A(D) é um conjunto de **arcos**, juntamente com uma **função de incidência** ψ que associa a cada arco de D um par ordenado de vértices de D.
- Se α é um arco, u e v são vértices e $\psi(\alpha) = (u, v)$, dizemos que:
 - o a liga u a v
 - o u domina v
 - o u e v são os terminais de a, sendo u a cauda e v a cabeça

Conceitos que vimos anteriormente para grafos não direcionados, também se aplicam a grafos direcionados. No entanto, eles são definidos levando em conta a direção do relacionamento. Vejamos a seguir alguns deles.

Seja *D* um grafo direcionado.

Os **vizinhos de entrada** de um vértice v em D, $N_D^-(v)$, são todos os vértices que o dominam, enquanto os **vizinhos de saída** de v em D, $N_D^+(v)$, são os vértices que v domina. Como exemplo, vamos considerar o grafo abaixo. Os vizinhos de entrada e saída do vértice v são:

$$N_D^-(v) = \{i, h, o\}$$
 $N_D^+(v) = \{u, a, d\}$

O grau de entrada de um vértice v, indegree(v) é o número de arcos que têm v como cabeça. O grau de saída de um vértice v, outdegree(v) é o número de arcos que têm v como cauda. Como exemplo, vamos considerar o grafo abaixo. O grau de entrada do vértice 0 é 2 enquanto o grau de saída é 3. O grau de entrada do vértice 2 é 1 e o grau de saída é 3.

Grafo Direcionado Estrito, Grafo Base e Orientação

Um **grafo direcionado estrito** é aquele que não possui *loops* e arcos paralelos. Na coluna à esquerda da tabela abaixo temos um exemplo de um grafo direcionado estrito.

Todo dígrafo *D* possui um grafo não direcionado *G* associado com o mesmo conjunto de vértices, onde cada arco é substituído por uma aresta com os mesmos terminais. *G* é chamado de **grafo base** (*underlying*) de *D*. Na tabela abaixo, temos um dígrafo e seu grafo base.

Da mesma forma, um grafo G pode ser representado por um dígrafo *D* substituindo cada aresta por apenas um arco com os mesmos terminais. *D* é chamado de **orientação** de *G*.

Um **grafo orientado** (*oriented graph*) é uma orientação em um grafo simples (nenhum par de vértices possui arcos simétricos.

Caminho e Ciclo Direcionado

Um **caminho direcionado** é uma sequência linear de arcos em um grafo onde a cauda de cada arco subsequente é igual a cabeça do anterior. Para o grafo abaixo, ((0,7),(2,7)) não é um caminho orientado, visto que a cauda do segundo arco é diferente da cabeça do primeiro. Por outro lado, ((1,0),(0,5),(5,4)) é um caminho orientado e ((0,5),(5,1),(1,0)) é um **ciclo direcionado**.

Exercício

Identifique o grau de entrada e o de saída para os vértices do grafo abaixo. Encontre um caminho direcionado de h até b se existir. Calcule o grafo base.

Vértice	Grau de Entrada	Grau de Saída
а	2	0
b	1	0
С	1	2
d	1	3
е	2	1
f	2	2
g	1	2
h	1	1

Caminho direcionado de h para b: ((h,g),(g,f)(f,c),(c,d),(d,b)). O grafo base segue abaixo.

Grafo Ponderado

Existem situações em que precisamos representar uma informação numérica junto ao relacionamento entre os vértices, seja em grafos não-direcionados ou direcionados. Por exemplo, considere um grafo onde vértices são cidades e cada aresta indica a existência de uma estrada que liga as cidades terminais. Podemos associar a cada aresta o comprimento da estrada entre as cidades relacionadas. Com isto, poderemos calcular o tamanho dos possíveis trajetos de uma cidade para outra.

Um **grafo ponderado** é aquele que possui um valor numérico, chamado de peso, associado a cada aresta (arco). Formalmente, para cada aresta e de G, seja w(e) o seu peso, onde $w: E \rightarrow R$. Então G é chamado de **grafo ponderado**.

O conjunto de todos os vetores w é denotado por R^E . Além disso, se F é um subgrafo de um grafo ponderado, então o **peso** de F - w(F) - é a soma dos pesos de suas arestas. Estudaremos subgrafos em aulas subsequentes.

Abaixo temos um exemplo de um grafo ponderado. Neste grafo, o peso do subgrafo F correspondente ao caminho (a, b, c, d) é 2 + 3 + 6 = 11.

Caminho Mais Curto

O peso de um caminho é definido como a soma dos pesos das arestas (arcos) do caminho. O menor caminho ou caminho mais curto (shortest path) entre 2 vértices é um caminho de menor peso. A distância entre 2 vértices é o peso do menor caminho entre eles. No grafo do exemplo anterior, o peso do caminho (a,b,c,d) é 11 e o peso do caminho (a,d) é 4, onde este último é o menor caminho entre a e d. Assim, a distância entre a e d é 4.

Note que, para grafos não-ponderados, o caminho mais curto e a distância são determinados pela quantidade de arestas.

Exercício

Identifique um caminho de menor peso entre os vértices **F** e **E.** Identifique um caminho de menor tamanho entre os vértices **F** e **E.**

Existem diferentes caminhos entre F e E, mas o de menor peso é formado por (F,C,D,E) o qual possui peso 2+3+3=8. Note que o caminho (F,G,E) possui tamanho 8+2=10.

O tamanho de um caminho, independente deste grafo ser ponderado ou não é medido pela quantidade de arestas. Portanto, o caminho de menor tamanho entre F e E é (F,G,E).

Grafo Hamiltoniano

Um **caminho Hamiltoniano** é um passeio que visita cada vértice de um grafo G exatamente uma vez. No grafo abaixo, o caminho (a, c, d, b, e, f), ilustrado por setas em vermelho, é hamiltoniano.

Um **ciclo Hamiltoniano** é um passeio fechado que visita cada vértice exatamente uma vez e termina no vértice inicial. No grafo abaixo, os ciclos ilustrados em vermelho (a, b, d, f, e, c, a) e em azul (a, b, e, f, d, c, a) são hamiltonianos.

O grafo que possui um ciclo Hamiltoniano é chamado de **grafo Hamiltoniano**. Como exemplo, temos o grafo ilustrado acima.

Determinar se existem caminhos/ciclos Hamiltonianos em grafos corresponde ao problema do caminho Hamiltoniano que é NP-Completo. Problemas NP-Completos são aqueles para os quais não são conhecidas soluções eficientes ou tempo polinomial. Estudaremos este conceito em aulas posteriores.

Exercício

Determine se os grafos abaixo possui um caminho Hamiltoniano. Determine se o grafo abaixo é Hamiltoniano.

a)

Um exemplo de um caminho hamiltoniano neste grafo é: (A, C, F, G, D, E, H, B).

O grafo é hamiltoniano porque possui um ciclo hamiltoniano. Como exemplo temos: (A,C,D,E,B,H,G,F,A)

b)

Um exemplo de um caminho hamiltoniano neste grafo é: (f, h, g, d, b, a, c, e).

Este grafo não possui um ciclo hamiltoniano. Note que não é possível definir um ciclo simples com todos os vértices do grafo sem repetir o vértice d.

Problema do Caixeiro Viajante

Um exemplo clássico de aplicação do conceito de ciclo hamiltoniano é na definição do problema do caixeiro viajante. O caixeiro viajante precisa viajar entre um certo número de cidades para vender suas mercadorias. Idealmente, ele deve passar por cada cidade exatamente uma vez, retornando à cidade de origem e percorrendo as menores distâncias. Ou seja, busca-se encontrar no grafo um ciclo hamiltoniano de peso mínimo.

A fim de ilustrar este problema, vamos considerar o exemplo abaixo onde temos 2 possíveis ciclos hamiltonianos para o mesmo grafo. O da esquerda possui um peso menor que o da direita. O objetivo do problema do caixeiro viajante é encontrar dentre todos os possíveis aquele de menor peso.

Exercício

Para o grafo abaixo, determine um ciclo hamiltoniano de peso mínimo.

Na tabela abaixo, temos exemplos de diferentes ciclos hamiltonianos para este grafo, onde podemos observar qual(is) são o(s) de peso mínimo.

Ciclo	Tamanho
(A, B, E, C, D, A)	2+3+4+2+2 = 13
(A, B, E, C, D, A)	2+3+2+2+1 = 10
(A, C, B, E, D, A)	2+3+3+4+1 = 13
(A, C, E, B, D, A)	2+2+2+3+1 = 10

Grafo Denso

A **densidade** de um grafo *G* simples (não direcionado) é definida como:

$$Den(G) = \frac{2m}{n(n-1)}$$

onde m é a quantidade de arestas de G e n é a quantidade de vértices de G.

Por outro lado, a densidade de um grafo D estrito (direcionado), é definida como:

$$Den(D) = \frac{m}{n(n-1)}$$

onde m é a quantidade de arcos de D e n é a quantidade de vértices de D. Note que, comparando com a fórmula para densidade de grafos não-direcionados, o fator 2 foi eliminado do numerador, visto que cada arco em um grafo não-direcionado representa o relacionamento em apenas um sentido.

A tabela abaixo apresenta o cálculo da densidade para um grafo não-direcionado e para um grafo direcionado.

Um grafo simples é **denso** quando sua quantidade de arestas é próxima a quantidade máxima. Como podemos observar no exemplo acima, a densidade de um grafo completo G é 1. Grafos com baixa densidade podem ser denominados **esparsos**. O grafo direcionado D acima pode ser considerado esparso.

Exercícios Propostos

1. Considere o grafo abaixo. Apresente a sua definição formal (matemática) e calcule o grau de entrada e saída de cada vértice.

2. Considere o grafo abaixo. Apresente a sua definição formal (matemática) e calcule o peso de cada caminho de A para D.

3. Seja k a distância entre dois vértices v e w num grafo não-ponderado. Mostre que (1) existe um caminho de comprimento k de v a w e (2) não existe caminho de comprimento menor que k de v a w. Mostre a recíproca: se (1) e (2) valem, então a distância entre v e w é k.

 $Quest\~ao \ de: \underline{https://www.ime.usp.br/^pf/grafos-exercicios/texto/ETG.pdf}$

4. Para o grafo abaixo, encontre um ciclo hamiltoniano, se existir. Caso não exista, justifique.

5. Seja G um grafo dotado de ciclo hamiltoniano. Mostre que toda aresta de G pertence a um ciclo.

Questão de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf

6. É verdade que todo grafo que possui um circuito hamiltoniano é conectado? Justifique.

Referências

- J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008,2010.
 - Seção 1.5
 - Seção 2.2 Ver final desta seção Weighted Graphs

Links da Wikipedia (considerar apenas a Introdução ao conceito)

- https://en.wikipedia.org/wiki/Hamiltonian path (Apenas a Introdução ao conceito)
- https://en.wikipedia.org/wiki/Travelling salesman problem (Apenas a Introdução ao conceito)
- https://en.wikipedia.org/wiki/Shortest path problem (Apenas a Introdução ao conceito)
- https://en.wikipedia.org/wiki/Dense_graph
- https://en.wikipedia.org/wiki/Girth (graph theory)

Leitura Complementar: Strategy Games (http://nrich.maths.org/1374#tth sEc3)