

Brian Cervantes Alvarez March 15, 2025

Problem 1

Part A

```
library(sf)
library(spatstat)
library(ggplot2)
library(viridis)

eqData <- data.frame(
    longitude = c(140.123, 139.000, 141.250),
    latitude = c(35.600, 36.500, 34.800),
    depth = c(20, 12, 18),
    magnitude = c(5.2, 4.6, 5.0)
)
eqSf <- st_as_sf(eqData, coords = c("longitude", "latitude"), crs = 4326)
eqSfUtm <- st_transform(eqSf, crs = 32654)
summary(eqSfUtm)</pre>
```

depth		${\tt magnitude}$		geometry	
Min.	:12.00	Min.	:4.600	POINT	:3
1st Qu.	:15.00	1st Qu.	:4.800	epsg:32654	:0
Median	:18.00	Median	:5.000	+proj=utm	:0
Mean	:16.67	Mean	:4.933		
3rd Qu.	:19.00	3rd Qu.	:5.100		
Max.	:20.00	Max.	:5.200		

Part B

coords <- st_coordinates(eqSfUtm)</pre>

xrange = range(coords[, 1]),
yrange = range(coords[, 2])

= eqSfUtm\$depth,

eqWindow <- owin(

eqPpp <- ppp(

x = coords[, 1],
y = coords[, 2],
window = eqWindow,
marks = data.frame(

eqDataUtm <- data.frame(</pre>

= coords[, 1],
= coords[, 2],
= eqSfUtm\$depth,

magnitude = eqSfUtm\$magnitude


```
magnitude = eqSfUtm$magnitude
  )
  summary(eqPpp)
Marked planar point pattern: 3 points
Average intensity 7.80156e-11 points per square unit
Coordinates are given to 10 decimal places
Mark variables: depth, magnitude
Summary:
    depth
                magnitude
       :12.00 Min.
Min.
                       :4.600
1st Qu.:15.00
               1st Qu.:4.800
Median :18.00
               Median :5.000
Mean :16.67
               Mean :4.933
3rd Qu.:19.00
                3rd Qu.:5.100
Max. :20.00
               Max. :5.200
Window: rectangle = [320878.7, 522868.3] x [3850893, 4041268] units
                   (202000 x 190400 units)
Window area = 38453800000 square units
```



```
ggplot(eqDataUtm, aes(x = x, y = y)) +
  geom_point(aes(color = depth, size = magnitude), alpha = 0.7) +
  scale_size_continuous(name = "Magnitude", range = c(1, 6)) +
  coord_fixed() +
  labs(title = "Earthquake Locations (UTM) by Depth and Magnitude ") +
  theme_minimal()
```


Part C

The envelope analysis shows that the observed K-function mostly stays inside the simulation envelope. This means the earthquake locations seem to occur in a completely random pattern. There's no clear sign of either clustering or a regular spacing out (inhibition), so overall, the spatial distribution of these earthquakes appears random.

```
envEq <- envelope(eqPpp, fun = Kest, nsim = 39)</pre>
```

Generating 39 simulations of CSR ...

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39.

Done.

plot(envEq, main = "Envelope for Ripley's K-function")

Envelope for Ripley's K-function

University

Problem 2

Part A

```
data(clmfires)
dfClmFires <- data.frame(</pre>
 x = clmfires$x,
          = clmfires$y,
 cause = clmfires$marks$cause,
 burntArea = clmfires$marks$burnt.area
regionPoly <- as.polygonal(Window(clmfires))</pre>
regionSf <- st_as_sf(regionPoly)</pre>
causeColors <- c(</pre>
 "lightning" = "purple",
 "accident" = "red",
 "intentional" = "blue",
 "other" = "green"
)
causeShapes <- c(</pre>
 "lightning" = 15,
 "accident" = 16,
 "intentional" = 17,
 "other" = 18
ggplot() +
 geom_sf(data = regionSf, fill = NA, color = "black") +
 geom_point(
   data = dfClmFires,
   aes(x = x, y = y, shape = cause, color = cause, size = burntArea),
   alpha = 0.7
 ) +
 scale_size_area(max_size = 8, name = "Burnt Area") +
 scale_color_manual(
   name = "Cause of Fire",
   values = causeColors,
   breaks = names(causeColors),
```



```
labels = c("Lightning", "Accident", "Intentional", "Other")
) +
scale_shape_manual(
   name = "Cause of Fire",
   values = causeShapes,
   breaks = names(causeShapes),
   labels = c("Lightning", "Accident", "Intentional", "Other")
) +
guides(
   color = guide_legend(order = 1, override.aes = list(shape = causeShapes)),
   shape = guide_legend(order = 1, override.aes = list(color = causeColors)),
   size = guide_legend(order = 2)
) +
labs(title = "Castilla-La Mancha Fires: Cause and Burnt Area") +
theme_minimal()
```


Part B

clmFiresUnmarked <- unmark(clmfires)</pre>

summary(clmFiresUnmarked)


```
Planar point pattern: 8488 points
Average intensity 0.1069628 points per square kilometre

Coordinates are given to 14 decimal places

Window: polygonal boundary
single connected closed polygon with 2325 vertices
enclosing rectangle: [4.1311, 391.3795] x [18.565, 385.189] kilometres
(387.2 x 366.6 kilometres)

Window area = 79354.7 square kilometres
Unit of length: 1 kilometre

Fraction of frame area: 0.559
```

```
densityEst <- density(clmFiresUnmarked)
densityDf <- as.data.frame(densityEst, xy = TRUE)
regionPolygon <- as.polygonal(Window(clmFiresUnmarked))
regionSf <- st_as_sf(regionPolygon)
ggplot() +
    geom_raster(data = densityDf, aes(x = x, y = y, fill = value)) +
    geom_sf(data = regionSf, fill = NA, color = "black") +
    scale_fill_viridis_c(name = "Intensity", option = "magma") +
    coord_sf() +
    labs(title = "Estimated Intensity Function for Fires") +
    theme_minimal()</pre>
```


Part C

summary(clmfires\$marks[["burnt.area"]])

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.000	0.060	0.595	11.297	3.000 12	2887.370

Part D

```
Marked planar point pattern: 8488 points
Average intensity 0.1069628 points per square kilometre
Coordinates are given to 14 decimal places
Multitype:
      frequency proportion intensity
small
           4244
                     0.5 0.05348142
           4244
large
                     0.5 0.05348142
Window: polygonal boundary
single connected closed polygon with 2325 vertices
enclosing rectangle: [4.1311, 391.3795] x [18.565, 385.189] kilometres
                     (387.2 x 366.6 kilometres)
Window area = 79354.7 square kilometres
Unit of length: 1 kilometre
Fraction of frame area: 0.559
```

University

Part E


```
firesSplit <- split(firesCut)
summary(firesSplit$small)</pre>
```

summary(firesSplit\$large)

Point process model

Fitted to data: firesSplit\$large

Fitting method: maximum likelihood (Berman-Turner approximation)

Model was fitted using glm()

Algorithm converged

Call:

ppm.formula(Q = firesSplit\$large ~ elevation, data = clmfires.extra[["clmcov100"]])

Edge correction: "border"

[border correction distance r = 0]

Quadrature scheme (Berman-Turner) = data + dummy + weights

Data pattern:

Planar point pattern: 4244 points

Average intensity 0.0535 points per square kilometre

Window: polygonal boundary

single connected closed polygon with 2325 vertices

enclosing rectangle: [4.1311, 391.3795] x [18.565, 385.189] kilometres

(387.2 x 366.6 kilometres)

Window area = 79354.7 square kilometres

Unit of length: 1 kilometre Fraction of frame area: 0.559

Dummy quadrature points:

140 x 140 grid of dummy points, plus 4 corner points

dummy spacing: 2.766060 x 2.618743 kilometres

Original dummy parameters: =

Planar point pattern: 10948 points

Average intensity 0.138 points per square kilometre

Window: polygonal boundary

single connected closed polygon with 2325 vertices

enclosing rectangle: [4.1311, 391.3795] x [18.565, 385.189] kilometres

(387.2 x 366.6 kilometres)

Window area = 79354.7 square kilometres

Unit of length: 1 kilometre Fraction of frame area: 0.559

Quadrature weights:

(counting weights based on 140 x 140 array of rectangular tiles)

All weights:

range: [0.135, 7.24] total: 78700

Weights on data points:

range: [0.135, 4.55] total: 5380

Weights on dummy points:

range: [0.137, 7.24] total: 73300

FITTED :

Nonstationary Poisson process

---- Intensity: ----

Log intensity: ~elevation

Model depends on external covariate 'elevation'

Covariates provided:

elevation: im
orientation: im

slope: im
landuse: im

Fitted trend coefficients:

(Intercept) elevation -2.793168241 -0.000147325

Estimate S.E. CI95.lo CI95.hi Ztest (Intercept) -2.793168241 5.280608e-02 -2.8966662530 -2.689670e+00 *** elevation -0.000147325 5.890025e-05 -0.0002627674 -3.188262e-05 *

(Intercept) -52.894824 elevation -2.501262

----- gory details -----

Fitted regular parameters (theta):

(Intercept) elevation -2.793168241 -0.000147325

Fitted exp(theta):

(Intercept) elevation 0.06122692 0.99985269

The estimated intensity function is

$$\lambda(x,y) = \exp(0.06122692 + 0.99985269 \cdot \text{elevation}(x,y)).$$