

**Amendments to the Claims**

Please cancel Claims 12-16, 18, 21-24, 26, 27, 30-34, 36, 37, 40-43, 45, 47-49, 51, 52, 56-100, 102-107, and 109-114. Please amend Claims 2, 9, 11, 17, 20, 25, 29, 35, 39, 44, 50, 53, 101, and 108. The Claim Listing below will replace all prior versions of the claims in the application:

**Claim Listing**

1. (Original) A compound represented by the following Structural Formula:



and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

- (a) T1 is selected from the group consisting of





- (b) R1 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl, wherein C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl are each optionally substituted with from one to three substituents independently selected from R1';
- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C<sub>0</sub>-4-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)<sub>2</sub>R16, N(R17)<sub>2</sub>, NR18C(O)R19, NR20SO<sub>2</sub>R21, SR22, S(O)R23, S(O)<sub>2</sub>R24, and S(O)<sub>2</sub>N(R25)<sub>2</sub>; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;
- (d) R2 is selected from the group consisting of C<sub>0</sub>-C<sub>8</sub> alkyl and C<sub>1</sub>-6-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)<sub>2</sub> and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

- (h) E is C(R3)(R4)A or A and wherein
  - (i) A is selected from the group consisting of C<sub>0</sub>-C<sub>6</sub> alkylcarboxyl, C<sub>0</sub>-C<sub>6</sub> alkyltetrazole, C<sub>1</sub>-C<sub>6</sub> alkynitrile, C<sub>0</sub>-C<sub>6</sub> alkylcarboxamide, C<sub>0</sub>-C<sub>6</sub> alkylsulfonamide and C<sub>0</sub>-C<sub>6</sub> alkylacylsulfonamide; wherein C<sub>0</sub>-C<sub>6</sub> alkylsulfonamide, C<sub>0</sub>-C<sub>6</sub> alkylacylsulfonamide and C<sub>0</sub>-C<sub>6</sub> alkyltetrazole are each optionally substituted with from one to two groups independently selected from R<sup>7</sup>;
  - (ii) each R<sup>7</sup> is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> haloalkyl, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl and C<sub>1</sub>-C<sub>6</sub> alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C<sub>1</sub>-C<sub>6</sub> alkyl, and haloC<sub>1</sub>-C<sub>6</sub> alkyl;
  - (iii) R3 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub> alkyl, and C<sub>1</sub>-C<sub>5</sub> alkoxy; and
  - (iv) R4 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub> alkyl, C<sub>1</sub>-C<sub>5</sub> alkoxy, aryloxy, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, and aryl C<sub>0</sub>-C<sub>4</sub> alkyl, and R3 and R4 are optionally combined to form a C<sub>3</sub>-C<sub>4</sub> cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;
- (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;
- (j) Z is selected from the group consisting of N and C;
- (k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;
- (l) Z3 is N or O;

- (m) Z4 is selected from the group consisting of N, S, and O, wherein when Z4 is N



- (n) Z5 is S or O;
- (o) Z12 is selected from the group consisting of hydrogen and -Z13C<sub>0</sub>-C<sub>3</sub>alkylZ14;
- (p) Z13 is selected from the group consisting of a single bond, CO, CO<sub>2</sub>, CONZ15, and SO<sub>2</sub>;
- (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylenyl, oxo, sulfo, and halo;
- (v) R9 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylenyl, halo, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, heteroaryl, C<sub>1</sub>-C<sub>6</sub> allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C<sub>5</sub>-C<sub>6</sub> ring with the carbons to which they are attached, and wherein aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>4</sub> alkyl;
- (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>0</sub>-C<sub>6</sub> alkyl-

COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)<sub>2</sub>R16', N(R17')<sub>2</sub>, NR18'C(O)R19', NR20'SO<sub>2</sub>R21', SR22', S(O)R23', S(O)<sub>2</sub>R24', and S(O)<sub>2</sub>N(R25')<sub>2</sub>; and wherein aryl-C<sub>0</sub>-4-alkyl, aryl- C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl are each optionally substituted with from one to three independently selected from R28;

- (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;
- (y) R30 is selected from the group consisting of C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl, and wherein C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0</sub>-4-alkyl, aryl- C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> alkyloxo;
- (aa) R33 is selected from the group consisting of C<sub>2</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkoxy,



phenyl, thiophene, pyridine, piperidine, , , and ,



, wherein the C<sub>2</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkoxy, phenyl, thiophene,



pyridine, piperidine, , and , are each optionally substituted with R10 and R11;

- (bb) AL is selected from the group consisting of a fused C<sub>3</sub>-C<sub>8</sub> carbocyclic and a fused phenyl;
- (cc) “---” are each independently an optional bond to form a double bond at the indicated position;
- (dd) wherein when Z4 is N, Z2 and Z3 are each N;

2. (Currently amended) The compound of Claim 1 wherein wherein when n2 is 1, Z4 is O or S, and R33 is phenyl optionally substituted with R10 and R11, T1 is selected from the group consisting of:





3. (Original) The compound of Claim 2, wherein A is selected from the group consisting of C<sub>0</sub>-C<sub>6</sub> alkylcarboxyl, C<sub>0</sub>-C<sub>6</sub> alkyltetrazole, C<sub>1</sub>-C<sub>6</sub> alkynitrile, C<sub>0</sub>-C<sub>6</sub> alkylsulfonamide and C<sub>0</sub>-C<sub>6</sub> alkylacylsulfonamide; wherein C<sub>0</sub>-C<sub>6</sub> alkylsulfonamide, C<sub>0</sub>-C<sub>6</sub> alkylacylsulfonamide and C<sub>0</sub>-C<sub>6</sub> alkyltetrazole are each optionally substituted with from one to two groups independently selected from R<sup>7</sup>.
  
4. (Original) The compound of Claim 2, wherein the compound is represented by the following Structural Formula:



and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

- (a) T1 is selected from the group consisting of





- (b) R1 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-<sub>4</sub>-alkyl, aryl-C<sub>1</sub>-<sub>6</sub>-heteroalkyl, heteroaryl-C<sub>0</sub>-<sub>4</sub>-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-<sub>2</sub>-alkyl, wherein C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-<sub>4</sub>-alkyl, aryl-C<sub>1</sub>-<sub>6</sub>-heteroalkyl, heteroaryl-C<sub>0</sub>-<sub>4</sub>-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-<sub>2</sub>-alkyl are each optionally substituted with from one to three substituents independently selected from R1';
- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, aryloxy, aryl-C<sub>0</sub>-<sub>4</sub>-alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)<sub>2</sub>R16, N(R17)<sub>2</sub>, NR18C(O)R19, NR20SO<sub>2</sub>R21, SR22, S(O)R23, S(O)<sub>2</sub>R24, and S(O)<sub>2</sub>N(R25)<sub>2</sub>; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;
- (d) R2 is selected from the group consisting of C<sub>0</sub>-C<sub>8</sub> alkyl and C<sub>1</sub>-<sub>6</sub>-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)<sub>2</sub> and N;

- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
  - (i) A is selected from the group consisting of carboxyl, tetrazole, C<sub>1</sub>-C<sub>6</sub> alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R<sup>7</sup>;
  - (ii) each R<sup>7</sup> is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> haloalkyl, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl and C<sub>1</sub>-C<sub>6</sub> alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C<sub>1</sub>-C<sub>6</sub> alkyl, and haloC<sub>1</sub>-C<sub>6</sub> alkyl;
  - (iii) R3 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub> alkyl, and C<sub>1</sub>-C<sub>5</sub> alkoxy; and
  - (iv) R4 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub> alkyl, C<sub>1</sub>-C<sub>5</sub> alkoxy, aryloxy, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, and aryl C<sub>0</sub>-C<sub>4</sub> alkyl, and R3 and R4 are optionally combined to form a C<sub>3</sub>-C<sub>4</sub> cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;
- (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;
- (j) Z is selected from the group consisting of N and C;
- (k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;
- (l) Z3 is N or O;

- (m) Z4 is selected from the group consisting of N, S, and O, wherein when Z4 is N



- (n) Z5 is S or O;
- (o) Z12 is selected from the group consisting of hydrogen and -Z13C<sub>0</sub>-C<sub>3</sub>alkylZ14;
- (p) Z13 is selected from the group consisting of a single bond, CO, CO<sub>2</sub>, CONZ15, and SO<sub>2</sub>;
- (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylene, oxo, sulfo, and halo;
- (v) R9 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylene, halo, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, heteroaryl, C<sub>1</sub>-C<sub>6</sub> allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C<sub>5</sub>-C<sub>6</sub> ring with the carbons to which they are attached, and wherein aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>4</sub> alkyl;
- (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>0</sub>-C<sub>6</sub> alkyl-

COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)<sub>2</sub>R16', N(R17)<sub>2</sub>, NR18'C(O)R19', NR20'SO<sub>2</sub>R21', SR22', S(O)R23', S(O)<sub>2</sub>R24', and S(O)<sub>2</sub>N(R25)<sub>2</sub>; and wherein aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl are each optionally substituted with from one to three independently selected from R28;

- (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;
- (y) R30 is selected from the group consisting of C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl, and wherein C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0</sub>-4-alkyl, aryl-C<sub>1</sub>-6-heteroalkyl, heteroaryl-C<sub>0</sub>-4-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> alkyloxo;
- (aa) R33 is selected from the group consisting of phenyl, thiophene, pyridine,





thiophene, pyridine, piperidine, , and , are each optionally substituted with R10 and R11;

- (bb) AL is selected from the group consisting of a fused C<sub>3</sub>-C<sub>8</sub> carbocyclic and a fused phenyl; and
- (ee) “----” are each independently an optional bond to form a double bond at the indicated position and
- (ff) Z2 and Z3 are each N.

5. (Original) The compound of Claim 3, wherein T1 is selected from



6. (Original) The compound of Claim 4, wherein the compound is represented by the following Structural Formula:



7. (Original) The compound of Claim 6, wherein the compound is represented by the following Structural Formula:



8. (Original) The compound of Claim 7 wherein  $n2$  is 2.

9. (Currently amended) (Old 6) The compound of Claim 7, wherein the compound is represented by the following Structural Formula:



10. (Original) The compound of Claim 9 wherein the compound is represented by the following Structural Formula:



11. (Currently Amended) The compound of Claim 10 wherein:

X is -O-;

E is C(R3)(R4)CO<sub>2</sub>H or CO<sub>2</sub>H;

R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>2</sub> alkyl;

R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> haloalkyloxy; and

U is saturated C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl.

12. - 16. (Cancelled)

17. (Currently Amended) The compound of Claim [[14]]11 wherein:

the compound is represented by the following Structural Formula:



U is[[ : ]]-saturated C<sub>1</sub>-C<sub>3</sub> alkyl[[ ; ]] and optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl.

18. (Cancelled)

19. (Original) The compound of Claim 9 wherein the compound is represented by the following Structural Formula:



20. (Currently Amended) The compound of Claim 19 wherein:

E is C(R3)(R4)CO<sub>2</sub>H or CO<sub>2</sub>H;

R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>2</sub> alkyl; and

R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> haloalkyloxy.

21. - 24. (Cancelled)

25. (Currently Amended) The compound of Claim [[22]]20 wherein:

the compound is represented by the following Structural Formula:



U is[:]-saturated C<sub>1</sub>-C<sub>3</sub> alkyl[;] and optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl.

26. - 27. (Cancelled)

28. (Original) The compound of Claim 9 wherein the compound is represented by the following Structural Formula:



29. (Currently Amended) The compound of Claim 28 wherein:

X is -O-;

E is C(R3)(R4)CO<sub>2</sub>H or CO<sub>2</sub>H;

R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>2</sub> alkyl; and

R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> haloalkyloxy.

30. - 34. (Cancelled)

35. (Currently Amended) The compound of Claim [[32]]29 wherein:

the compound is represented by the following Structural Formula:



n1 is 1 to 5;

U is saturated C<sub>1</sub>-C<sub>3</sub> alkyl;

optionally one carbon in U is replaced with an -O-; and

U is optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl.

36. - 37. (Cancelled)

38. (Original) The compound of Claim 28 wherein X is -S-.
39. (Currently Amended) The compound of Claim 38 wherein:  
 E is C(R<sub>3</sub>)(R<sub>4</sub>)CO<sub>2</sub>H or CO<sub>2</sub>H;  
R<sub>1</sub>, R<sub>3</sub>, and R<sub>4</sub> are each independently selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>2</sub> alkyl; and  
R<sub>10</sub> and R<sub>11</sub> are each independently selected from the group consisting of hydrogen, halo, oxo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR<sub>12</sub>”, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> haloalkyloxy.

40. - 43. (Cancelled)

44. (Currently amended) The compound of Claim [[41]]39 wherein:  
the compound is represented by the following Structural Formula:



U is saturated C<sub>1</sub>-C<sub>3</sub> alkyl;  
 optionally one carbon in U is replaced with an -O-; and  
 U is optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl.

45. (Cancelled)

46. (Original) The compound of Claim 2 wherein the compound is selected from the group consisting of:  
{6-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;

{4-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;

{4-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;

(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(R)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(S)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(R)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(S)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;

(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;

Racemic-(4-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;

3-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-pyrido[1,2-a]indole-10-carboxylic acid;

(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzofuran-3-yl)-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-benzofuran-3-yl)-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;

{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-benzofuran-3-yl}-acetic acid;

(6-{1-Methyl-1-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

(6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

2-{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-benzofuran-3-yl}-propionic acid;

2-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-benzofuran-3-yl)-propionic acid;

(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;

(R)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid (Isomer 2);

(S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid;

(6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-2-oxo-3,4-dihydro-2H-quinolin-1-yl)-acetic acid;

{2-Oxo-6-[4-phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;

{7-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;

{8-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-2,3,4,5-tetrahydro-benzo[b]azepin-1-yl}-acetic acid;

(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

{6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;

(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;

2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

{5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;

(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

{5-[5-(4-Trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-indol-1-yl}-acetic acid;

3-{4-[3-Isobutyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-2-methyl-phenyl}-propionic acid;

(5-{2-[3-Methyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-yl]-propoxy}-indol-1-yl)-acetic acid;

(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

{6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;

(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;

2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

{5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;

(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-{5-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

(S)-{6-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6,7,8-tetrahydro-4H-cycloheptathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;

2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid;

2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;

2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[*b*]thiophen-3-yl)acetic acid;  
 2-(6-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propylthio)benzo[*b*]thiophen-3-yl)acetic acid;  
 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-yl)methylthio)benzo[*b*]thiophen-3-yl)acetic acid; and  
 2-(6-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methylthio)benzo[*b*]thiophen-3-yl)acetic acid.

47. - 49. (Cancelled)

50. (Currently Amended) A method of treating a mammal in need of treatment for a disease, wherein the disease is treatable by modulating a peroxisome proliferator activated receptor, comprising the step of administering to the mammal in need thereof a therapeutically effective amount of the compound of Claim 1. a compound represented by the following Structural Formula:



~~and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:~~

(a) ~~T1 is selected from the group consisting of~~





- (b) ~~R1 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, aryl-C<sub>1</sub>-C<sub>6</sub> heteroalkyl, heteroaryl-C<sub>0</sub>-C<sub>4</sub> alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-C<sub>2</sub> alkyl, wherein C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkenyl, aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, aryl-C<sub>1</sub>-C<sub>6</sub> heteroalkyl, heteroaryl-C<sub>0</sub>-C<sub>4</sub> alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0</sub>-C<sub>2</sub> alkyl are each optionally substituted with from one to three substituents independently selected from R1';~~
- (c) ~~R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, o xo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkyl-COOR12, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C<sub>0</sub>-C<sub>4</sub> alkyl, optionally substituted heteroaryl, optionally substituted heterocyccloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)<sub>2</sub>R16, N(R17)<sub>2</sub>, NR18C(O)R19, NR20SO<sub>2</sub>R21, SR22, S(O)R23, S(O)<sub>2</sub>R24, and S(O)<sub>2</sub>N(R25)<sub>2</sub>; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;~~
- (d) ~~R2 is selected from the group consisting of C<sub>0</sub>-C<sub>8</sub> alkyl and C<sub>1</sub>-C<sub>6</sub> heteroalkyl;~~

- (e) ~~X is selected from the group consisting of a bond, O, S, S(O)<sub>2</sub> and N;~~
- (f) ~~U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R<sub>30</sub>;~~
- (g) ~~Y is selected from the group consisting of C, O, S, NH and a single bond;~~
- (h) ~~E is C(R<sub>3</sub>)(R<sub>4</sub>)A or A and wherein~~
  - (i) ~~A is selected from the group consisting of C<sub>0</sub>-C<sub>6</sub>-alkylcarboxyl, C<sub>0</sub>-C<sub>6</sub>-alkyltetrazole, C<sub>4</sub>-C<sub>6</sub>-alkyl nitrile, C<sub>0</sub>-C<sub>6</sub>-alkylcarboxamide, C<sub>0</sub>-C<sub>6</sub>-alkylsulfonamide and C<sub>0</sub>-C<sub>6</sub>-alkylacylsulfonamide; wherein C<sub>0</sub>-C<sub>6</sub>-alkylsulfonamide, C<sub>0</sub>-C<sub>6</sub>-alkylacylsulfonamide and C<sub>0</sub>-C<sub>6</sub>-alkyltetrazole are each optionally substituted with from one to two groups independently selected from R<sup>7</sup>;~~
  - (ii) ~~each R<sup>7</sup> is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, aryl C<sub>0</sub>-C<sub>4</sub>-alkyl and C<sub>1</sub>-C<sub>6</sub>-alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R<sup>7</sup>; each R<sup>7</sup> is independently selected from halo, C<sub>1</sub>-C<sub>6</sub>-alkyl, and halo C<sub>1</sub>-C<sub>6</sub>-alkyl;~~
  - (iii) ~~R<sub>3</sub> is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub>-alkyl, and C<sub>1</sub>-C<sub>5</sub>-alkoxy; and~~
  - (iv) ~~R<sub>4</sub> is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>5</sub>-alkyl, C<sub>1</sub>-C<sub>5</sub>-alkoxy, aryloxy, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, and aryl C<sub>0</sub>-C<sub>4</sub>-alkyl, and R<sub>3</sub> and R<sub>4</sub> are optionally combined to form a C<sub>3</sub>-C<sub>4</sub>-cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl alkyl are each optionally substituted with one to three each independently selected from R<sub>26</sub>;~~
- (i) ~~B is selected from the group consisting of S and O, wherein when Z is C then B is N;~~
- (j) ~~Z is selected from the group consisting of N and C;~~
- (k) ~~Z<sub>1</sub> and Z<sub>2</sub> are each independently N or C with the proviso that at least one of Z<sub>1</sub> and Z<sub>2</sub> is N;~~
- (l) ~~Z<sub>3</sub> is N or O;~~

(m) — Z4 is selected from the group consisting of N, S, and O, wherein when Z4 is N



(n) — Z5 is S or O;

(o) — Z12 is selected from the group consisting of hydrogen and Z13C<sub>0</sub>-C<sub>3</sub>alkylZ14;

(p) — Z13 is selected from the group consisting of a single bond, CO, CO<sub>2</sub>, CONZ15, and SO<sub>2</sub>;

(q) — Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';

(r) — Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';

(s) — W is independently selected from the group consisting of S and O;

(t) — n2 is 1 to 3;

(u) — R8 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylenyl, oxo, sulfo, and halo;

(v) — R9 is selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylenyl, halo, aryl-C<sub>0</sub>-C<sub>4</sub>alkyl, heteroaryl, C<sub>1</sub>-C<sub>6</sub>allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C<sub>5</sub>-C<sub>6</sub> ring with the carbons to which they are attached, and wherein aryl-C<sub>0</sub>-C<sub>4</sub>alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>4</sub>alkyl;

(w) — R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>0</sub>-C<sub>6</sub>alkyl

~~COOR12'', C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyloxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, aryl-C<sub>0-4</sub>-alkyl, aryl-C<sub>1-6</sub>-heteroalkyl, heteroaryl-C<sub>0-4</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0-2</sub>-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)<sub>2</sub>R16', N(R17)<sub>2</sub>, NR18'C(O)R19', NR20'SO<sub>2</sub>R21', SR22', S(O)R23', S(O)<sub>2</sub>R24', and S(O)<sub>2</sub>N(R25)<sub>2</sub>; and wherein aryl-C<sub>0-4</sub>-alkyl, aryl-C<sub>1-6</sub>-heteroalkyl, heteroaryl-C<sub>0-4</sub>-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0-2</sub>-alkyl are each optionally substituted with from one to three independently selected from R28;~~

- (x) ~~R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl and aryl;~~
- (y) ~~R30 is selected from the group consisting of C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0-4</sub>-alkyl, aryl-C<sub>1-6</sub>-heteroalkyl, heteroaryl-C<sub>0-4</sub>-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0-2</sub>-alkyl, and wherein C<sub>1</sub>-C<sub>6</sub> alkyl, aryl-C<sub>0-4</sub>-alkyl, aryl-C<sub>1-6</sub>-heteroalkyl, heteroaryl-C<sub>0-4</sub>-alkyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkylaryl-C<sub>0-2</sub>-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;~~
- (z) ~~R32 is selected from the group consisting of a bond, hydrogen, halo, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, and C<sub>1</sub>-C<sub>6</sub> alkyloxy;~~
- (aa) ~~R33 is selected from the group consisting of C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkoxy, phenyl, thiophene, pyridine, piperidine,~~



~~, and~~



~~, wherein the C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>8</sub> alkoxy, phenyl, thiophene,~~



~~pyridine, piperidine, , and , are each~~

~~optionally substituted with R10 and R11;~~

- (bb) ~~AL is selected from the group consisting of a fused C<sub>3</sub>-C<sub>8</sub>-carboyclic and a fused phenyl;~~
- (cc) ~~" " are each independently an optional bond to form a double bond at the indicated position; and~~
- (dd) ~~wherein when Z4 is N, Z2 and Z3 are each N.~~

51. - 52. (Cancelled)

53. (Currently Amended) The method of Claim [[51]]50, wherein the disease is selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis.

54. (Original) The method of Claim 53, wherein the disease is diabetes mellitus.

55. (Original) The method of Claim 53, wherein the disease is Syndrome X.

56. - 100. (Cancelled)

101. (Currently amended) A compound, wherein the compound is:

~~{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid[[.,.]];  
2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid;  
2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;  
2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-~~

yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;  
2-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-  
yl)propylthio)benzo[b]thiophen-3-yl)acetic acid;  
2-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-  
yl)methylthio)benzo[b]thiophen-3-yl)acetic acid; or  
2-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-  
yl)methylthio)benzo[b]thiophen-3-yl)acetic acid;

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.

102. - 107. (Cancelled)

108. (Currently Amended) A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of the compound of Claim 101. {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.

109. - 114. (Cancelled)