

RESEARCH ARTICLE

Why Psychologists Should by Default Use Welch's *t*-test Instead of Student's *t*-test

Marie Delacre*, Daniël Lakens† and Christophe Leys*

When comparing two independent groups, psychology researchers commonly use Student's t-tests. Assumptions of normality and homogeneity of variance underlie this test. More often than not, when these conditions are not met, Student's t-test can be severely biased and lead to invalid statistical inferences. Moreover, we argue that the assumption of equal variances will seldom hold in psychological research, and choosing between Student's t-test and Welch's t-test based on the outcomes of a test of the equality of variances often fails to provide an appropriate answer. We show that the Welch's t-test provides a better control of Type 1 error rates when the assumption of homogeneity of variance is not met, and it loses little robustness compared to Student's t-test when the assumptions are met. We argue that Welch's t-test should be used as a default strategy.

Keywords: Welch's *t*-test; Student's *t*-test; homogeneity of variance; Levene's test; Homoscedasticity; statistical power; type 1 error; type 2 error

Independent sample *t*-tests are commonly used in the psychological literature to statistically test differences between means. There are different types of *t*-tests, such as Student's *t*-test, Welch's *t*-test, Yuen's *t*-test, and a bootstrapped *t*-test. These variations differ in the underlying assumptions about whether data is normally distributed and whether variances in both groups are equal (see, e.g., Rasch, Kubinger, & Moder, 2011; Yuen, 1974). Student's *t*-test is the default method to compare two groups in psychology. The alternatives that are available are considerably less often reported. This is surprising, since Welch's *t*-test is often the preferred choice and is available in practically all statistical software packages.

In this article, we will review the differences between Welch's *t*-test, Student's *t*-test, and Yuen's *t*-test, and we suggest that Welch's *t*-test is a better default for the social sciences than Student's and Yuen's *t*-tests. We do not include the bootstrapped *t*-test because it is known to fail in specific situations, such as when there are unequal sample sizes and standard deviations differ moderately (Hayes & Cai, 2007).

When performing a *t*-test, several software packages (i.e., R and Minitab) present Welch's *t*-test by default. Users can request Student's *t*-test, but only after explicitly stating that the assumption of equal variances is

ences (Erceg-Hurn & Mirosevich, 2008).^{2,3} Here, we argue

that there are no strong reasons to assume equal variances

in the psychological literature by default nor substantial

costs in abandoning this assumption.

met. Student's t-test is a parametric test, which means

it relies on assumptions about the data that are ana-

lyzed. Parametric tests are believed to be more powerful

than non-parametric tests (i.e., tests that do not require

assumptions about the population parameters; Sheskin, 2003). However, Student's *t*-test is generally only more

powerful when the data are normally distributed (the

In this article, we will first discuss why we need a default test and why a two-step procedure where researchers decide whether or not to use Welch's *t*-test based on a check of the assumption of normality and equal variances is undesirable. Then, we will discuss whether the assumption of equal variances is plausible in psychology and point out research areas where this assumption is implausible.

Corresponding author: Marie Delacre (marie.delacre@ulb.ac.be)

assumption of normality) and the variances are equal in both groups (homoscedasticity; the assumption of homogeneity of variance; Carroll & Schneider, 1985; Erceg-Hurn & Mirosevich, 2008).

When sample sizes are equal between groups, Student's t-test is robust to violations of the assumption of equal variances as long as sample sizes are big enough to allow correct estimates of both means and standard deviations (i.e., $n \ge 5$), except when distributions underlying the data have very high skewness and kurtosis, such as a chisquare distribution with 2 degrees of freedom. However, if variances are *not* equal across groups and the sample sizes differ across independent groups, Student's t-test can be severely biased and lead to invalid statistical infer-

^{*} Université Libre de Bruxelles, Service of Analysis of the Data (SAD), Bruxelles, BE

[†] Eindhoven University of Technology, Human Technology Interaction Group, Eindhoven, NL