Approach to Building the Assessment Recommender

Objective

The goal of the project is to create a **recommendation system** that takes a **job description** or **natural language query** and returns relevant **assessment options** that match the provided criteria. The solution leverages **OpenAl embeddings** to understand the content of the assessments and match them with user queries based on their semantic similarity.

Key Components

1. Data Source:

- The assessments data is stored in a CSV file (assessments.csv), which includes columns like name, description, url, duration_text, and test_type.
- The dataset is processed to compute embeddings for each assessment using OpenAl's Embedding model (text-embedding-ada-002), which converts the textual information into a dense vector representation.

2. User Interface (Streamlit):

- The app is built using **Streamlit** to create a **user-friendly interface** where users can input a **job description** or **query**.
- The app provides an input field for users to enter their requirements, and it returns the best matching assessment along with the name, URL, duration, and similarity score.

3. Embedding and Similarity Matching:

- We compute embeddings for both the query entered by the user and the assessments stored in the dataset.
- Using cosine similarity, we find the assessments that are most similar to the user's query. The assessment with the highest similarity score is returned as the recommendation.

4. Caching:

 The application leverages Streamlit's caching mechanism to store precomputed embeddings and avoid re-calculating them on each request, thereby speeding up the recommendation process.

Step-by-Step Explanation

1. Data Loading and Embedding Computation

The assessments data is loaded from a CSV file (assessments.csv). Each row contains the assessment's name, description, duration_text, test_type, and URL. For each assessment, we compute an embedding using OpenAl's text embedding model. The embeddings are stored in a pickle file (assessments_with_emb.pkl) for future use, avoiding the need to recompute embeddings on each session.

```
python
CopyEdit
@st.cache_data
def load_data():
    # Load precomputed embeddings if available; else compute and cache
    if os.path.exists(PICKLE_PATH):
        df = pd.read_pickle(PICKLE_PATH)
    else:
        df = pd.read_csv(CSV_PATH)
        df[EMB_COL] = df.apply(lambda r: get_embedding(f"{r['name']}.
{r['description']}"), axis=1)
        df.to_pickle(PICKLE_PATH)
    return df
```

2. Getting Embeddings Using OpenAl API

The function get_embedding() calls **OpenAI's API** to compute the embedding for a given text (combination of name and description). The response is stored as a **NumPy array**.

```
python
CopyEdit
def get_embedding(text: str) -> np.ndarray:
    """Call OpenAI to get an embedding for `text`."""
    resp = openai.Embedding.create(input=text, model=EMBEDDING_MODEL)
    return np.array(resp["data"][0]["embedding"], dtype=np.float32)
```

3. Query Processing and Finding Best Match

The query entered by the user is also embedded using the same method as the assessments. Then, we compute the **cosine similarity** between the query embedding and all precomputed assessment embeddings. The assessments with the highest similarity are returned.

```
python
CopyEdit
@st.cache_data
def find_best_match(query: str, df: pd.DataFrame, top_k: int = 1):
    """Embed the query, compute cosine sims against df, and return
top_k matches."""
    q_emb = get_embedding(query).reshape(1, -1)
    all_emb = np.vstack(df[EMB_COL].values)
    sims = cosine_similarity(q_emb, all_emb)[0]
    df2 = df.copy()
    df2["similarity"] = sims
    return df2.nlargest(top_k, "similarity")
```

4. User Interface with Streamlit

The **Streamlit interface** allows users to enter a job description or query, and then, upon clicking the "Get Recommendation" button, the system returns the most relevant assessment.

```
python
CopyEdit
def main():
    st.title("Assessment Recommender")
    st.write("Enter your assessment requirements to get the best
matching URL.")

df = load_data()
    query = st.text_input("Enter your query:", "")

if st.button("Get Recommendation") and query:
    with st.spinner("Fetching recommendation..."):
        best = find_best_match(query, df, top_k=1).iloc[0]
        st.markdown(f"**Name:** {best['name']}")
        st.markdown(f"**URL:** [{best['url']}]({best['url']})")
```

- Text Input: Users input their job description or query.
- Recommendation: The system provides the best matching assessment with a similarity score, duration, test type, and URL.

5. Running the Application

To run the application, execute the following code in your environment or Google Colab:

```
python
CopyEdit
if __name__ == "__main__":
    main()
```

API Endpoints and Structure

- 1. Health Check Endpoint (/health):
 - Method: GET
 - **Description**: Verifies the API is running and returns a basic status message.

Response Example:

```
json
CopyEdit
{
    "status": "up",
    "message": "API is running!"
}
```

0

2. Recommendation Endpoint (/recommend):

- o Method: POST
- Description: Accepts a job description or query and returns the most relevant assessment.

Request Body Example:

```
json
CopyEdit
{
    "job_description": "Looking for a Python developer with experience
in machine learning and data analysis."
}
```

Response Example:

0

Conclusion

This solution implements an **Assessment Recommender** that leverages **OpenAl embeddings** and **Streamlit** for an interactive web application. The system processes natural language queries, computes their embeddings, and uses **cosine similarity** to match them with the most relevant assessments. The results are presented to the user via an intuitive Streamlit interface, and the application efficiently handles multiple user queries through caching.