ECE102, Fall 2020 Discussion 8

Signals & Systems

Prof. J.C. Kao

University of California, Los Angeles; Department of ECETAs: A. Ghosh, T. Monsoor & G. Zhao

1. Frequency response of RC circuits

Consider the first-order RC circuit shown in Figure 1

Figure 1: First order RC circuit

(a) Determine, $H_1(j\omega)$, the transfer function from $v_s(t)$ to $v_c(t)$. Compute the magnitude and phase of $H_1(j\omega)$.

Hint: The differential equation relating $v_s(t)$ and $v_c(t)$ is given by

$$RC\frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$

(b) Determine, $H_2(j\omega)$, the transfer function from $v_s(t)$ to $v_r(t)$. Compute the magnitude and phase of $H_2(j\omega)$.

Hint: The differential equation relating $v_s(t)$ and $v_r(t)$ is given by

$$RC\frac{d(v_s(t) - v_r(t))}{dt} + v_s(t) - v_r(t) = v_s(t)$$

- (c) What are the cutoff frequencies for $H_1(j\omega), H_2(j\omega)$? (For this problem, the cutoff frequency is defined as the frequency at which the magnitude of the frequency response is $\frac{1}{\sqrt{2}}$ times its maximum value.)
- (d) Suppose we now consider the system shown in Figure 2 Compute $\frac{V(j\omega)}{V_s(j\omega)}$. What is the corresponding cutoff frequency?

2. Parameterized filter

Consider the system in Figure 3. Let $G(j\omega)$ be real and have the form shown in Figure 4. Plot the resulting frequency response magnitude and phase for the following cases.

Figure 2: System for 1(d)

- (a) $\alpha > 1$
- (b) $1 > \alpha > 0$
- (c) $\alpha < 0$

Figure 3: System for 2

Figure 4: $G(j\omega)$

3. Signal recovery

Consider the modulated signal $z(t) = A(t)\cos(\omega_c + \theta_c)$, where ω_c is known but θ_c is unknown. We would like to recover A(t) from z(t).

- (a) Show that $z(t) = x(t) \cos \omega_c t + y(t) \sin \omega_c t$ and express x(t) and y(t) in terms of A(t) and θ_c .
- (b) Show how to recover x(t) from z(t) by modulation followed by filtering.

- (c) Show how to recover y(t) from z(t) by modulation followed by filtering.
- (d) Express A(t) in terms of x(t) and y(t) with no reference to θ_c and show in a block diagram how to recover A(t) from z(t). The following trigonometric identities may be useful:

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
$$\cos^2(A) = \frac{1}{2}(1+\cos(2A))$$
$$\sin^2(A) = \frac{1}{2}(1-\cos(2A))$$
$$\sin(2A) = 2\sin(A)\cos(A)$$