МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения»
ТЕМА: РАСЧЕТ МЕТРИЧЕСКИХ ХАРАКТЕРИСТИК КАЧЕСТВА РАЗРАБОТКИ
ПРОГРАММ ПО МЕТРИКАМ ХОЛСТЕДА

Студентка гр. 7304	 Юруть Е.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2021

Цель работы

Изучение и сравнение метрик Холстеда для программ на C, Pascal и ассемблере.

Постановка задачи

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с экспериментов). Для измерительных получения ассемблерного представления программы можно либо самостоятельно написать код на ассемблере, реализующий заданный алгоритм, либо установить опцию "Code generation/Generate assembler source» при компиляции текста программы, представленной на языке Си. Во втором случае В ассемблерном представлении программы нужно удалить директивы описаний И отладочные директивы, оставив только исполняемые операторы.

В заданных на Паскале вариантах программ обработки данных важен только вычислительный алгоритм, реализуемый программой. Поэтому для получения более корректных оценок характеристик программ следует учитывать только вычислительные операторы и исключить операторы, обеспечивающие интерфейс с пользователем и выдачу текстовых сообщений.

В сути алгоритма, реализуемого программой, нужно разобраться достаточно хорошо для возможности внесения в программу модификаций, выполняемых в дальнейшем при проведении измерений и улучшении характеристик качества программы.

Для измеряемых версий программ в дальнейшем будет нужно исключить операции ввода данных с клавиатуры и вывода на печать, потребляющие основную долю ресурса времени при выполнении программы.

Поэтому можно уже в этой работе предусмотреть соответствующие преобразования исходной программы.

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

1. Измеримые характеристики программ:

- число простых (отдельных) операторов, в данной реализации;
- число простых (отдельных) операндов, в данной реализации;
- общее число всех операторов в данной реализации;
- общее число всех операндов в данной реализации;
- число вхождений ј-го оператора в тексте программы;
- число вхождений ј-го операнда в тексте программы;
- словарь программы;
- длину программы.

2. Расчетные характеристики программы:

- длину программы;
- реальный и потенциальный объемы программы;
- уровень программы;
- интеллектуальное содержание программы;
- работу программиста;
- время программирования;
- уровень используемого языка программирования;
- ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Расчет характеристик программ и их оценок выполнить двумя способами:

- 1) вручную (с калькулятором) или с помощью одного из доступных средств математических вычислений EXCEL, MATHCAD или MATLAB. Для программы на Ассемблере возможен только ручной расчет характеристик. При ручном расчете, в отличие от программного, нужно учитывать только выполняемые операторы, а все описания не учитываются. Соответственно все символы («;», «=», переменные, цифры), входящие в описания, не учитываются.
- 2) с помощью программы автоматизации расчета метрик Холстеда (для Сии Паскаль-версий программ), краткая инструкция по работе с которой приведена в файле user guide.

Для варианта расчета с использованием программы автоматизации желательно провести анализ влияния учета тех или иных групп операторов исследуемой программы на вычисляемые характеристики за счет задания разных ключей запуска.

Результаты расчетов представить в виде таблиц с текстовыми комментариями:

- 1) Паскаль. Ручной расчет:
 - а) Измеримые характеристики, б) Расчетные характеристики
- 2) Паскаль. Программный расчет:
 - а) Измеримые характеристики, б) Расчетные характеристики
- 3) Си. Ручной расчет:
 - а) Измеримые характеристики, б) Расчетные характеристики
- 4) Си. Программный расчет:
 - а) Измеримые характеристики, б) Расчетные характеристики
- 5) Ассемблер. Ручной расчет:
 - а) Измеримые характеристики, б) Расчетные характеристики
- 6) Сводная таблица расчетов для трех языков.

Ход работы

- 1. Исходный код программы на языке программирования Pascal представлен в Приложении A.
- 2. Написана программа на языке программирования Си, реализующая заданный алгоритм. Исходный код в Приложении В.
- 3. Получен код программы на языке Assembler в результате компиляции текста программы, написанной на языке Си. Исходный код в Приложении С.
 - 4. Расчет характеристик:
 - 1) Ручной расчет для программы на Pascal.
 - а) Ручной расчёт измеримых характеристик представлен в Таблице 1.

Оператор	I	F _{1i}	Операнд	J	F _{2j}	Операнд	J	F _{2j}
;	1	15	done	1	4	0.0	30	3
:=	2	16	ec	2	6	0.01693122	31	1
() или begin end	3	32	er	3	6	0.07619048	32	1
*	4	31	X	4	16	1	33	13
+	5	23	x2	5	18	1.0	34	5
-	6	10	erfc	6	1	1.5	35	1
/	7	14	i	7	1	1.7724538	36	2
<	8	2	sqrtpi	8	4	10	37	1
=	9	1	sum	9	8	11	38	1
Ifthenelse	10	3	t10	10	2	12	39	3
repeat	11	1	t11	11	2	2	40	1
erf	12	1	t12	12	2	2.0	41	2
erfc	13	1	t2	13	2	3	42	1
exp	14	2	t3	14	2	3.07843E-3	43	1
			t4	15	2	4	44	2
			t5	16	2	4.736005E-4	45	1
			t6	17	2	5	46	1
			t7	18	2	6	47	1
			t8	19	2	6.314673E-5	48	1
			t9	20	2	6.476214E-9	49	1
			v	21	14	7	50	1
			true	22	1			
			false	23	1			
			erf	24	1			

		7.429027E -6	25	1		
		7.447646E -8	26	1		
		7.820028E -7	27	1		
		8	28	2		
		9	29	1		
Сумма	152					153

Таблица 1. Ручной расчет измеримых характеристик Pascal

b) Ручной расчет расчетных характеристик представлен в Таблице 2.

Характеристика	Значение
Число простых операторов η ₁	14
Число простых операндов η2	50
Общее число всех операторов N ₁	152
Общее число всех операндов N ₂	153
Словарь η	64
Длина N	305
Теоретическая длина N	335.50
Объём V	1830.00
Потенциальный объём V*	11.61
Уровень программы L	0.00634
Оценка уровня программы L [~]	0.04669
Интеллектуальное содержание I	85.43
Работа программирования Е	288459.55
Оценка времени программирования Т	3919.86
Время программирования Т	28845.96
Уровень языка λ	0.074
Ожидаемое число ошибок в программе В	2

Таблица 2. Ручной расчет расчетных характеристик Pascal

- 2) Программный расчет для программы на Pascal.
- а) Программный расчёт измеримых характеристик представлен в Таблице 3.

Операто р	I	F _{1i}	Операнд	J	F _{2j}	Операнд	J	F 3	Операнд	J	F _{3j}
0	1	37	', Erf='	1	1	7.447646 E-8	27	1	V	53	14
*	2	31	', Erfc='	2	1	7.820028	28	1	X	54	16

						E-7					
+	3	23	'Arg?'	3	1	8	29	2	x2	55	18
-	4	3	'X= '	4	1	9	30	1	0.666666 67	56	2
/	5	14	0.0	5	3	done	31	4			
;	6	48	0.01693122	6	1	ec	32	6			
<	7	2	0.07619048	7	1	er	33	6			
=	8	30	1	8	13	erf	34	1			
ClrScr	9	1	1.0	9	5	erfc	35	1			
boolean	10	1	1.5	10	1	erfd4	36	1			
const	11	2	1.7724538	11	2	false	37	1			
erf	12	2	10	12	1	i	38	1			
erfc	13	2	11	13	1	sqrtpi	39	4			
exp	14	2	12	14	3	sum	40	8			
function	15	2	2	15	1	t10	41	2			
if	16	3	2.0	16	2	t11	42	2			
integer	17	1	3	17	1	t12	43	2			
program	18	1	3.07843E-3	18	1	t2	44	2			
readln	19	1	4	19	2	t3	45	2			
real	20	7	4.736005E- 4	20	1	t4	46	2			
repeat	21	1	5	21	1	t5	47	2			
write	22	1	6	22	1	t6	48	2			
writeln	23	2	6.314673E- 5	23	2	t7	49	2			
			6.476214E- 9	24	1	t8	50	2			
			7	25	1	t9	51	2			
			7.429027E- 6	26	1	true	52	1			
Сумма		217									160

Таблица 3. Программный расчет измеримых характеристик Pascal

ь) Программный расчёт расчетных характеристик представлен в Таблице 4.

Характеристика	Значение
Число простых операторов η1	23
Число простых операндов η2	56
Общее число всех операторов N ₁	217

Общее число всех операндов N ₂	160
Словарь η	79
Длина N	377
Теоретическая длина N	429,254
Объём V	2476,53
Потенциальный объём V*	11,61
Уровень программы L	0,008269
Оценка уровня программы L~	0,0304348
Интеллектуальное содержание I	72,329
Работа программирования Е	287402
Оценка времени программирования Т	4939,38
Время программирования Т	15966,8
Уровень языка λ	0,162498
Ожидаемое число ошибок в программе В	1,45168

Таблица 4. Программный расчет расчетных характеристик Pascal

Ручной расчет для программы на С.

а) Ручной расчёт измеримых характеристик представлен в Таблице 5.

Оператор	I	F _{1i}	Операнд	J	F _{2j}	Операнд	J	F _{2j}
0	1	25	done	1	4	0.0	27	3
*	2	47	ec	2	6	0.01693122	28	1
+	3	23	er	3	6	0.07619048	29	1
,	4	11	i	4	1	1	30	13
-	5	10	sqrtpi	5	4	1.0	31	5
/	6	30	sum	6	8	1.5	32	1
;	7	22	t10	7	2	1.7724538	33	2
<	8	5	t11	8	2	10	34	1
=	9	30	t12	9	2	11	35	1
==	10	1	t2	10	2	12	36	3
erf	11	2	t3	11	2	2	37	1
erfc	12	2	t4	12	2	2.0	38	2
dowhile	13	1	t5	13	2	3	39	1
exp	14	2	t6	14	2	3.07843E-3	40	1
ifelse	15	3	t7	15	2	4	41	2
			t8	16	2	4.736005E-4	42	1
			t9	17	2	5	43	1

		v	18	14	6	44	1
		X	19	16	6.314673E-5	45	1
		x2	20	18			
		7.429027E-6	21	1			
		7.447646E-8	22	1			
		7.820028E-7	23	1			
		8	24	2			
		9	25	1			
		6.476214E-9	26	1			
Сумма	214						148

Таблица 5. Ручной расчет измеримых характеристик С

b) Ручной расчет расчетных характеристик представлен в Таблице 6.

Характеристика	Значение
Число простых операторов η1	15
Число простых операндов η2	45
Общее число всех операторов N ₁	214
Общее число всех операндов N2	148
Словарь η	60
Длина N	362
Теоретическая длина 🕅	305.74
Объём V	2138.29
Потенциальный объём V*	11,61
Уровень программы L	0.00543
Оценка уровня программы L [~]	0.04054
Интеллектуальное содержание I	86.69
Работа программирования Е	393838.11
Оценка времени программирования Ť	5274.46
Время программирования Т	39383.81

Уровень языка λ	0.063
Ожидаемое число ошибок в программе В	3

Таблица 6. Ручной расчет расчетных характеристик С

- 3) Программный расчет для программы на С.
- а) Программный расчёт измеримых характеристик представлен в Таблице7.

Оператор	I	F _{1i}	Операнд	J	F _{2j}	Операнд	J	F _{2j}
()	1	1	"%lf"	1	8	7,447646E-8	30	1
*	2	5	"Arg? "	2	14	7,820028E-7	31	1
+	3	32	"X= %8.4f, Erf= %12f, Erfc = %12f\n"	3	1	8	32	1
,	4	1	"\n"	4	2	9	33	1
-	5	50	"clr"	5	1	done	34	4
/	6	9	0	6	1	ec	35	6
;	7	26	0,0	7	3	er	36	6
<	8	6	0,01693122	8	3	i	37	1
=	9	2	0,07619048	9	30	sqrtpi	38	4
==	10	42	0,6666667	10	19	sum	39	8
_&	11	5	1	11	9	t10	40	2
	12	2	1,0	12	9	t11	41	2
const	13	1	1,5	13	6	t12	42	2
double	14	6	1,7724538	14	3	t2	43	2
dowhile	15	4	10	15	9	t3	44	2
erf	16	2	11	16	3	t4	45	2
erfc	17	2	12	17	10	t5	46	2
exp	18	1	2	18	22	t6	47	2
if	19	1	2,0	19	25	t7	48	2
int	20	1	3	20	1	t8	49	2
main	21	4	3,078403E-3	21	1	t9	50	2
printf	22	2	4	22	1	V	51	14
return	23	5	4,736005E-4	23	1	X	52	16
scanf	24	1	5	24	1	x2	53	18
system	25	4	6	25	1			
			6,314673E-5	26	1			
			6,476214E-9	27	1			

Сумма	239					154
		7,429027E-6	29	1		
		7	28	1		

Таблица 7. Программный расчет измеримых характеристик С

b) Программный расчёт расчетных характеристик представлен в Таблице 8.

Характеристика	Значение
Число простых операторов η1	25
Число простых операндов η2	53
Общее число всех операторов N ₁	239
Общее число всех операндов N ₂	154
Словарь η	78
Длина N	393
Теоретическая длина N	419,676
Объём V	2470,16
Потенциальный объём V*	11,61
Уровень программы L	0.00795554
Оценка уровня программы L [~]	0.0275325
Интеллектуальное содержание I	68.0097
Работа программирования Е	310496
Оценка времени программирования Т	5322,67
Время программирования Т	17249,8
Уровень языка λ	0,156338
Ожидаемое число ошибок в программе В	1,52844

Таблица 8. Программный расчет расчетных характеристик С

- 4) Ручной расчет для программы на Assembler.
- а) Ручной расчёт измеримых характеристик представлен в Таблице 9.

Оператор	I	F _{1i}	Операнд	J	F _{2j}
Pushl	1	4	\$152	1	1
movl	2	18	\$72	2	1

subl	3	3	\$-16	3	1
fldl	4	56	\$LC23	4	1
fstpl	5	32	\$1	5	1
fmul	6	2	\$10		1
faddl	7	9	\$LC24	7	1
faddp	8	15	\$0	8	2
fchs	9	1	\$LC28	9	1
Jp L21 fadd	10	2	\$_x %ebp	10	6
fdivl	12	1	8(%ebp)	12	2
fmull	13	14	-128(%ebp)	13	3
fmulp	14	12	12(%ebp)	14	2
fld1	15	18	-112(%ebp)	15	13
leave	16	3	-16(%ebp)	16	4
ret	17	3	-24(%ebp)	17	5
fdivp	18	5	-32(%ebp)	18	15
fdivrp	19	5	-40(%ebp)	19	6
fld	20	1	-48(%ebp)	20	5
ret	21	3	-56(%ebp)	21	2
andl	22	1	-64(%ebp)	22	2
subl	23	3	-72(%ebp)	23	2
movb	24	2	-80(%ebp)	24	2
fldz	25	4	-88(%ebp)	25	2
fcommp	26	2	-96(%ebp)	26	2
fnstsw	27	4	-104(%ebp)	27	2
sahf	28	4	-128(%ebp)	28	3
Jbe L19	29	1	-120(%ebp)	29	2
Jmp L8	30	2	%esp	30	16
Jbe L20	31	1	20(%esp)	31	1
Jmp L13	32	1	12(%esp)	32	1
Call _exp	33	2	4(%esp)	33	2
Callmain	34	1	%eax	34	10
fsubp	43	2	%st(0)	35	6
movezbl	44	1	%st(1)	36	43
testb	45	1	%st	37	42

Call _erf	38	1	%st(2)	38	1
Call _erfc	39	1	%al	39	2
fucomp	40	2	%ax	40	4
Jne L9	41	1	\$32	41	1
Jne L14	42	1			
Сумма		246			220

Таблица 9. Ручной расчет измеримых характеристик Assembler

b) Ручной расчет расчетных характеристик представлен в Таблице 10.

Характеристика	Значение
Число простых операторов η1	42
Число простых операндов η2	41
Общее число всех операторов N_1	246
Общее число всех операндов N ₂	220
Словарь η	83
Длина N	466
Теоретическая длина N	446.14
Объём V	2970.77
Потенциальный объём V*	11.61
Уровень программы L	0.00391
Оценка уровня программы L [~]	0.00887
Интеллектуальное содержание I	26.36
Работа программирования Е	760186.81
Оценка времени программирования Ť	33475.49
Время программирования Т	76018.68
Уровень языка λ	0.045

Ожидаемое число ошибок в	
программе В	3

Таблица 10. Ручной расчет расчетных характеристик Assembler

5) Сводная таблица расчетов для трех языков

Marrayyya/flayyy	P	ascal		С	Assembler
Метрика/Язык	Ручной	Программный	Ручной	Программный	Ручной
	14	23	15	25	42
	50	56	45	53	41
N ₁	152	217	214	239	246
N ₂	153	160	148	154	220
	64	79	60	78	83
N	305	377	362	393	466
Ń	335.50	429,254	305.74	419,676	446.14
V	1830.00	2476,53	2138.29	2470,16	2970.77
V*	11.61	11,61	11,61	11,61	11.61
L	0.00634	0,008269	0.00543	0.00795554	0.00391
Ĺ	0.04669	0,0304348	0.04054	0.0275325	0.00887
I	85.43	72,329	86.69	68.0097	26.36
E	288459.55	287402	393838.11	310496	760186.81
Ť	3919.86	4939,38	5274.46	5322,67	33475.49
Т	28845.96	15966,8	39383.81	17249,8	76018.68
λ	0.074	0,162498	0.063	0,156338	0.045
В	2	1,45168	3	1,52844	3

Таблица 11. Сводная таблица расчетов для языков Pascal, C, Assembler

Вывод

В результате выполнения данной лабораторной работы была изучена система метрик Холстеда. Было проведено сравнение программ на языках Pascal, Си и Ассемблер

Приложение A. Исходный код программы на Pascal

```
program erfd4;
uses Crt;
{ evaluation of the gaussian error function }
                     : real;
var
       x,er,ec
                     : boolean;
       done
function erf(x: real): real;
{ infinite series expansion of the Gaussian error function }
                     = 1.7724538;
const sqrtpi
       t2
                     = 0.66666667;
                     = 0.66666667;
       t3
                     = 0.07619048;
       t4
                     = 0.01693122;
       t5
                     = 3.078403E-3;
       t6
                     =4.736005E-4;
       t7
       t8
                     = 6.314673E-5;
       t9
                     = 7.429027E-6;
                     = 7.820028E-7;
       t10
                     = 7.447646E-8;
       t11
       t12
                     = 6.476214E-9;
       x2,sum
                     : real;
var
                     : integer;
begin
       x2:=x*x;
       sum:=t5+x2*(t6+x2*(t7+x2*(t8+x2*(t9+x2*(t10+x2*(t11+x2*t12))))));
       erf:=2.0*exp(-x2)/sqrtpi*(x*(1+x2*(t2+x2*(t3+x2*(t4+x2*sum)))))
end;
       { function erf }
function erfc(x: real): real;
{ complement of error function }
                     = 1.7724538;
const sqrtpi
       x2,v,sum
                     : real;
var
begin
       x2:=x*x;
       v:=1.0/(2.0*x2);
       sum:=v/(1+8*v/(1+9*v/(1+10*v/(1+11*v/(1+12*v)))));
       sum:=v/(1+3*v/(1+4*v/(1+5*v/(1+6*v/(1+7*sum)))));
```

```
erfc:=1.0/(exp(x2)*x*sqrtpi*(1+v/(1+2*sum)))
               { function ercf }
end;
begin
               { main }
               done:=false;
        {writeln;}
               {write('Arg?');}
               {readln(x);}
               if x<0.0 then done:=true
               else
                       begin
                              if x=0.0 then
                                      begin
                                              er:=0.0;
                                              ec := 1.0
                                      end
                              else
                                      begin
                                              if x < 1.5 then
                                                      begin
                                                             er:=erf(x);
                                                             ec:=1.0-er
                                                      end
                                              else
                                                      begin
                                                             ec := erfc(x);
                                                             er:=1.0-ec
                                                      end
                                                             { if }
                                      end;
                               {writeln('X=',x:8:4,', Erf=',er:12,', Erfc=',ec:12)}
                               { if }
                       end
  until done
end.
```

Приложение В. Исходный код программы на С

```
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

/* evaluation of the gaussian error function */
double x, er, ec;
bool done;
```

```
double erf(double x)
  const double sqrtpi = 1.7724538;
  const double t2 = 0.66666667;
  const double t3 = 0.66666667;
  const double t4 = 0.07619048;
  const double t5 = 0.01693122;
  const double t6 = 3.078403E-3;
  const double t7 = 4.736005E-4;
  const double t8 = 6.314673E-5;
  const double t9 = 7.429027E-6;
  const double t10 = 7.820028E-7;
  const double t11 = 7.447646E-8;
  const double t12 = 6.476214E-9;
  double x2, sum;
  int i;
  x2 = x * x;
  sum = t5 + x2 * (t6 + x2 * (t7 + x2 * (t8 + x2 * (t9 + x2 * (t10 + x2 * (t11 + x2 * t12))))));
  return 2.0 * \exp(-x2) / \operatorname{sqrtpi} * (x * (1 + x2 * (t2 + x2 * (t3 + x2 * (t4 + x2 * sum)))));
} /* function erf */
double erfc(double x)
  /* complement of error function */
  const double sqrtpi = 1.7724538;
  double x2, v, sum;
  x2 = x * x;
  v = 1.0 / (2.0 * x2);
  sum = v/(1 + 8 * v/(1 + 9 * v/(1 + 10 * v/(1 + 11 * v/(1 + 12 * v)))));
  sum = v / (1 + 3 * v / (1 + 4 * v / (1 + 5 * v / (1 + 6 * v / (1 + 7 * sum)))));
  return 1.0 / (\exp(x2) * x * \text{sqrtpi} * (1 + v / (1 + 2 * \text{sum})));
} /* function ercf */
int main() /* main */
 /* system("clr");*/
  done = true;
 /* printf("\n");*/
  do {
```

```
printf("Arg? ");
     scanf("%lf", &x);
     if (x < 0.0)
        done = false;
     else if (x == 0.0)
        er = 0.0;
        ec = 1.0;
     else
       if (x < 1.5)
        {
          er = erf(x);
          ec = 1.0 - er;
        }
        else
          ec = erfc(x);
          er = 1.0 - ec;
          /* if */
       /* printf("X= %8.4f, Erf= %12f, Erfc= %12f\n", x, er, ec);*/
     } /* if */
  } while (done);
}
/* End. */
```

Приложение С. Исходный код программы на Assembler

```
.text
.comm _x, 8, 3
.comm _er, 8, 3
.comm _ec, 8, 3
.comm _done, 1, 0
.globl _erf
.def _erf; .scl 2; .type 32; .endef _erf:
LFB13:
.cfi_startproc
pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
```

movl %esp, %ebp

.file "lab1.c"

.cfi def cfa register 5

subl \$152, %esp

movl 8(%ebp), %eax

mov1 %eax, -128(%ebp)

movl 12(%ebp), %eax

movl %eax, -124(%ebp)

fldl LC0

fstpl -16(%ebp)

fldl LC1

fstpl -24(%ebp)

fldl LC1

fstpl -32(%ebp)

fldl LC2

fstpl -40(%ebp)

fldl LC3

fstpl -48(%ebp)

fldl LC4

fstpl -56(%ebp)

fldl LC5

fstpl -64(%ebp)

fldl LC6

fstpl -72(%ebp)

fldl LC7

fstpl -80(%ebp)

fldl LC8

fstpl -88(%ebp)

fldl LC9

fstpl -96(%ebp)

fldl LC10

fstpl -104(%ebp)

fldl -128(%ebp)

fmul %st(0), %st

fstpl -112(%ebp)

fldl -112(%ebp)

fmull -104(%ebp)

faddl -96(%ebp)

fmull -112(%ebp)

faddl -88(%ebp)

fmull -112(%ebp)

faddl -80(%ebp)

fmull -112(%ebp)

faddl -72(%ebp)

fmull -112(%ebp)

faddl -64(%ebp)

fmull -112(%ebp)

```
faddl -56(%ebp)
fmull -112(%ebp)
fldl -48(%ebp)
faddp %st, %st(1)
```

1addp %st, %st(1)

fstpl -120(%ebp)

fldl -112(%ebp)

fchs

fstpl (%esp)

call_exp

fadd %st(0), %st

fdivl -16(%ebp)

fldl -112(%ebp)

fmull -120(%ebp)

faddl -40(%ebp)

fmull -112(%ebp)

faddl -32(%ebp)

fmull -112(%ebp)

faddl -24(%ebp)

fmull -112(%ebp)

fld1

faddp %st, %st(1)

fmull -128(%ebp)

fmulp %st, %st(1)

leave

.cfi_restore 5

.cfi def cfa 4, 4

ret

.cfi endproc

LFE13:

.globl erfc

.def erfc; .scl 2; .type 32; .endef

erfc:

LFB14:

.cfi_startproc

pushl %ebp

.cfi def cfa offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi def cfa register 5

subl \$72, %esp

movl 8(%ebp), %eax

movl %eax, -48(%ebp)

movl 12(%ebp), %eax

movl %eax, -44(%ebp)

fldl LC0

fstpl -16(%ebp)

fldl -48(%ebp)

fmul %st(0), %st

fstpl -24(%ebp)

fldl -24(%ebp)

fadd %st(0), %st

fld1

fdivp %st, %st(1)

fstpl -32(%ebp)

fldl -32(%ebp)

fldl LC13

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC14

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC15

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC16

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC17

fmulp %st, %st(1)

fld1

faddp %st, %st(1)

fdivrp %st, %st(1)

fld1

faddp %st, %st(1)

fldl -32(%ebp)

fdivp %st, %st(1)

fstpl -40(%ebp)

fldl -32(%ebp)

fldl LC18

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC19

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC20

fmulp %st, %st(1)

fldl -32(%ebp)

fldl LC21

fmulp %st, %st(1)

fldl -40(%ebp)

fldl LC22

fmulp %st, %st(1)

fld1

faddp %st, %st(1)

fdivrp %st, %st(1)

fld1

faddp %st, %st(1)

fldl -32(%ebp)

fdivp %st, %st(1)

fstpl -40(%ebp)

fldl -24(%ebp)

fstpl (%esp)

call exp

fmull -48(%ebp)

fmull -16(%ebp)

fldl -40(%ebp)

fld %st(0)

faddp %st, %st(1)

fld1

faddp %st, %st(1)

fldl -32(%ebp)

fdivp %st, %st(1)

fld1

faddp %st, %st(1)

fmulp %st, %st(1)

fld1

fdivp %st, %st(1)

```
leave
.cfi restore 5
.cfi def cfa 4, 4
ret
.cfi endproc
LFE14:
.def___main; .scl 2; .type 32; .endef
.section .rdata,"dr"
LC23:
.ascii "clr\0"
LC24:
.ascii "Arg? \0"
LC25:
.ascii "%lf\0"
.align 4
LC28:
.ascii "X= %8.4f, Erf= %12f, Erfc= %12f\12\0"
.text
.globl _main
.def _main; .scl 2; .type 32; .endef
main:
LFB15:
.cfi startproc
pushl %ebp
.cfi def cfa offset 8
.cfi offset 5, -8
movl %esp, %ebp
.cfi_def_cfa_register 5
andl $-16, %esp
subl $32, %esp
call___main
movl $LC23, (%esp)
call system
movb $1, done
mov1 $10, (%esp)
call putchar
L14:
movl $LC24, (%esp)
call printf
mov1 $ x, 4(\%esp)
movl $LC25, (%esp)
call_scanf
fldl_x
fldz
fcompp
```

fnstsw %ax

sahf

jbe L19

movb \$0, _done

jmp L8

L19:

fldl x

fldz

fucomp %st(1)

fnstsw %ax

sahf

jp L21

fldz

fucompp

fnstsw %ax

sahf

jne L9

fldz

fstpl_er

fld1

fstpl_ec

jmp L8

L21:

fstp %st(0)

L9:

fldl x

fldl LC27

fcompp

fnstsw %ax

sahf

jbe L20

 $fldl_x$

fstpl (%esp)

call _erf

fstpl er

fldl _er

fld1

fsubp %st, %st(1)

fstpl_ec

jmp L13

L20:

 $fldl_x$

fstpl (%esp)

call _erfc

fstpl_ec

fldl _ec

fld1

fsubp %st, %st(1)

fstpl_er

L13:

fldl ec

fldl _er

fldl _x

fxch %st(2)

fstpl 20(%esp)

fstpl 12(%esp)

fstpl 4(%esp)

movl \$LC28, (%esp)

call _printf

L8:

movzbl _done, %eax

testb %al, %al

jne L14

movl \$0, %eax

leave

.cfi_restore 5

.cfi def cfa 4, 4

ret

.cfi endproc

LFE15:

.section .rdata,"dr"

.align 8

LC0:

.long -2079671268

.long 1073503224

.align 8

LC1:

.long 1461679763

.long 1071994197

.align 8

LC2:

.long 601740724

.long 1068728632

.align 8

LC3:

.long -256263175

.long 1066489450

.align 8

LC4:

- .long 112156783
- .long 1063860193
- .align 8
- LC5:
- .long -1465145423
- .long 1061095858
- .align 8
- LC6:
- .long -1886360939
- .long 1058049460
- .align 8
- LC7:
- .long 1685304208
- .long 1054812379
- .align 8
- LC8:
- .long 1473632397
- .long 1051344218
- .align 8
- LC9:
- .long -1115619875
- .long 1047789051
- .align 8
- LC10:
- .long 793809704
- .long 1044107436
- .align 8
- LC13:
- .long 0
- .long 1075838976
- .align 8
- LC14:
- .long 0
- .long 1075970048
- .align 8
- LC15:
- .long 0
- .long 1076101120
- .align 8
- LC16:
- .long 0
- .long 1076232192
- .align 8
- LC17:
- .long 0

```
.long 1076363264 .align 8
```

LC18:

.long 0

.long 1074266112

.align 8

LC19:

.long 0

.long 1074790400

.align 8

LC20:

.long 0

.long 1075052544

.align 8

LC21:

.long 0

.long 1075314688

.align 8

LC22:

.long 0

.long 1075576832

.align 8

LC27:

.long 0

.long 1073217536

.ident "GCC: (MinGW.org GCC Build-20200227-1) 9.2.0"

.def exp; .scl 2; .type 32; .endef

.def _system; .scl 2; .type 32; .endef

.def_putchar; .scl 2; .type 32; .endef

.def_printf; .scl 2; .type 32; .endef

.def_scanf; .scl 2; .type 32; .endef