

Python for Good

>>>> PyCon China 2022

多模态场景下的高性能 Embedding服务

主讲人: 付杰 @ Jina Al, 高级算法工程师

Python for Good >>>> PyCon China 2022

0] 为什么要研究多模态?

02 多模态场景下如何表征数据

03 搭建高性能模型推理服务

04 demo

为什么要研究多模态?

Python for Good>>>> PyCon China 2022

● 什么是多模态数据?

我们生活的世界是一个多模态的世界,包含丰富的文本、视觉、听觉、嗅觉信息,通常我们所接触的物体都不只有一个模态,例如短视频、电商物品等

• 多模态数据在哪里领域有运用?

- 消费电商领域: 商品的多模态, 商品价格, 文本描述, 图片视频描述
- 短视频娱乐领域:视频的多模态,图像,声音,字幕,视频标签
- 自动化/机器人领域: 感知信息的多模态, 外界采集的图像, 声音, 环境光线...

为什么要研究多模态?

Python for Good>>>> PyCon China 2022

● 短视频电商/广告领域

哪些行业涉及到多模态数据?

- 1. 短视频数据:
 - 如何理解用户上传的视频
 - 如何实现内容的精准/多样 性分发/推荐
- 1. 电商搜索:
 - 如何更好的理解商品
 - ◆ 针对用户搜索历史如何更 好地推荐商品

多模态技术在工业界的应用

Python for Good >>>> PyCon China 2022

● 爱奇艺/优酷——视频搜索, 视频内容理解

- 多模态召回辅助文本召回
- 具看TA
- 明星视频自动化生成

多模态技术在工业界的应用

Python for Good>>>> PyCon China 2022

● 腾讯AlLab——数字人

Python for Good >>>> PyCon China 2022

01 为什么要研究多模态?

02 多模态场景下如何表征数据

03 搭建高性能模型推理服务

04 demo

多模态场景下如何表征数据——向量表征

Python for Good>>>> PyCon China 2022

• 表征多模态数据有哪些难点?

表征单模态: 如何针对不同的模态数据选取不同的表征模型

对齐不同模态: 如何确定来自两种或两种以上不同模式的(分)要素之间的直接关系

融合各个单模态: 如何利用多模态的互补性和冗余性的特质来表示和总结多模态数据

多模态场景下如何表征数据——CLIP

Python for Good>>>> PyCon China 2022

对比学习: 自监督学习的一种, 从无标注的数据中学习数据的分布

OpenAl 在 2021 年 1 月发布的 CLIP (Contrastive Language-Image Pre-training) 模型,它可以基于文本对图像进行分类,打破了自然语言处理和计算机视觉两大门派「泾渭分明」的界限,实现了多模态 Al 系统

Python for Good >>>> PyCon China 2022

为什么要研究多模态?

02 多模态场景下如何表征数据

03 搭建高性能模型推理服务

04 demo

模型推理服务的现状和挑战

Python for Good>>>> PyCon China 2022

• 复杂技术栈: 模型推理、分布式、服务协议、日志收集、服务监控等

• 部署多模型: 越来越多的应用需要多个模型模型一起工作

• **云原生部署**:容器化,微服务,服务编排,异构计算等

• 业务集成难: 推理服务能够快速即成到业务系统中, 并且需要满足不同场景个性化需求

模型推理服务的现状和挑战

Python for Good>>>> PyCon China 2022

- 服务协议: HTTP, gRPC
- 数据格式: JSON, Protobuf
- 开发语言: Python, C++, Java, Golang, Rust
- 模型格式: Tensorflow, Pytorch, ONNX, PaddlePaddle
- 请求模式: 批处理, 实时推理, 流式推理; 异步 vs 同步;
- 推理性能:对推理加速引擎的支持,例如 Nvidia TensorRT, OpenAl Triton, ONNX-Runtime 等;
- 服务监控: Promethesus, OpenTelemetry, Grafana

模型推理服务的现状和挑战——云原生

Python for Good>>>> PyCon China 2022

云原生的特点:

- 容器化技术: 保证每个模块都有独立的运行环境;

- 微服务技术:保证每个模块在以分布式形式独立运行;

- 微服务编排:负责协调流水线的持续运行和弹性伸缩;

- 指标观测性: 及时捕获性能指标, 收集日志, 快速定位故障原因;

模型推理服务的现状和挑战——服务部署

Python for Good>>>> PyCon China 2022

Terraform是一种安全有效地构建、更改和版本控制基础设施的工具线上服务部署在Amazon EKS(Elastic Kubernetes Service)


```
terraform {
 required_providers {
     source = "hashicorp/aws"
     version = "~> 4.16"
 required version = ">= 1.2.0"
provider "aws" {
 region = "us-west-2"
resource "aws_instance" "app_server" {
                = "ami-830c94e3"
 instance_type = "t2.micro"
 tags = {
   Name = "ExampleAppServerInstance"
```

模型推理服务的现状和挑战——服务监控

Python for Good>>>> PyCon China 2022

OpenTelemetry: Tracing + Metrics数据收集
Jaeger + Promethesus: 数据接收并统计

Grafana: 前端数据展示

模型推理服务的现状和挑战——服务监控

Python for Good >>>> PyCon China 2022

```
f _img_da:
  with self.tracer.start_as_current_span(
  ) as ima_encode_span:
       img_encode_span.set_attribute(
           'num_pool_workers', self._num_worker_preprocess
       for minibatch, batch_data in _img_da.map_batch(
           partial(
               self._preproc_images,
               drop_image_content=_drop_image_content,
           batch_size=self._minibatch_size.
           pool=self._pool,
           with self.monitor(
               documentation='images encode time in seconds'
               minibatch.embeddings = (
                   self._model.encode_image(**batch_data)
                   .cpu()
                   .numpy()
                   .astype(np.float32)
```

```
def monitor(
   self, name: Optional[str] = None, documentation: Optional[str] = None
 -> Optional[MetricsTimer]:
   :param name: the name of the metrics
   :param documentation: the description of the metrics
   :return: the given prometheus metrics or None if monitoring is not enable.
   _{summary} = (
       self._metrics_buffer.get(name, None) if self._metrics_buffer else None
   _histogram = (
       self._histogram_buffer.get(name, None) if self._histogram_buffer else None
   if self._metrics_buffer and not _summary:...
   if self._histogram_buffer and not _histogram:...
   if _summary or _histogram:
       return MetricsTimer(
           _summary,
           _histogram,
           histogram_metric_labels={'runtime_name': self.runtime_args.name},
   return contextlib.nullcontext()
```

模型推理服务的现状和挑战——服务协议

Python for Good>>>> PyCon China 2022

Version 1: 部署两个Flow, 通过Nginx来进行转发

缺点: 部署流程复杂, 维护成本高, 并且存在两套服务, 资源消耗大

Version 2: 集成Jina custom gateway的能力, 只需要部署一套服务

优点: 同时支持多种协议, 大大降低部署成本和资源消耗

Version 2

Version 1

模型推理服务的现状和挑战——请求模式

Python for Good >>>> PyCon China 2022

```
async def aencode(self, content, **kwargs):

async def arank(
    self, docs: Union['DocumentArray', Iterable['Document']], **kwargs')

-> 'DocumentArray':

async for _ in self._async_client.post(
    on=f'/encode/{model_name}'.rstrip('/'),
    **self._get_post_payload(content, results, **kwargs),
    on_done=on_done,
    on_error=on_error,
    on_always=partial(self._update_pbar, func=on_always),
    parameters=parameters,
):
    continue
```

```
from jina import Executor, requests, dynamic batching, Flow, DocumentArray, Document
import numpy as np
import torch
class MvExecutor(Executor):
    def __init__(self, **kwarqs):
        super(). init (**kwargs)
        # initialize model
        self.model = torch.nn.Linear(in_features=128, out_features=128)
    @requests(on='/bar')
    @dynamic batching(preferred batch size=10, timeout=200)
    def embed(self, docs: DocumentArray, **kwargs):
        docs.embeddings = self.model(torch.Tensor(docs.tensors))
flow = Flow().add(uses=MyExecutor)
```

- client端使用async异步请求
- client端支持用户自定义on_done, on_error, on_always,满足用户的回调需求
- 支持dynamic batching,最大程度利用cpu/gpu资源

模型推理服务的现状和挑战——模型格式

Python for GoodPyCon China 2022

```
O PyTorch
import torch # 1.8.1
import torchvision.models as models # 0.9.1
from jina import Executor, requests
class PytorchMobilNetExecutor(Executor):
     def init (self, **kwargs):
          super(). init ()
          self.model = models.quantization.mobilenet v2(pretrained=True, quantize=True)
          self.model.eval()
     @requests
     def encode(self, docs, **kwarqs):
          blobs = torch.Tensor(docs.get attributes('blob'))
          with torch.no_grad():
               embeds = self.model(blobs).detach().numpy()
               for doc, embed in zip(docs, embeds):
                    doc.embedding = embed
import numpy as np
import tensorflow as tf
                                                                                 TensorFlow
from keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
from tensorflow.python.framework.errors_impl import InvalidArgumentEr
from jina import Executor, requests
class TfMobileNetEncoder(Executor):
   def __init__(self, **kwargs):
      super(), init ()
      self image dim = 224
      self.model = MobileNetV2(pooling='avg', input_shape=(self.image_dim, self.image_dim, 3))
   def encode(self, docs, **kwargs):
      buffers, docs = docs.get_attributes_with_docs('buffer')
      tensors = [tf.io.decode_image(contents=b, channels=3) for b in buffers]
      resized_tensors = preprocess_input(np.array(self._resize_images(tensors)))
      embeds = self.model.predict(np.stack(resized_tensors))
      for d, b in zip(docs, embeds):
         d.embedding = b
   def resize images(self, tensors):
      resized_tensors = []
      for t in tensors:
            resized_tensors.append(tf.keras.preprocessing.image.smart_resize(t, (self.image_dim, self.image_dim)))
         except InvalidArgumentError:
            # this can happen if you include empty or other malformed images
      return resized_tensors
```

```
from pathlib import Path
                                                                        import paddle as P # paddle==2.1.0
import numpy as np
import onnxruntime
                                                                        import numpy as np
from lina import Executor, requests
from transformers import BertTokenizerFast, convert_graph_to_onno
                                                                        from ernie.modeling ernie import ErnieModel # paddle-ernie 0.2.0.dev1
                                                                        from ernie.tokenizing ernie import ErnieTokenizer
class ONNXBertExecutor(Executor):
  def init (self. **kwargs):
      super().__init__()
                                                                        from jina import Executor, requests
      # export your huggingface model to onnx
      convert_graph_to_onnx.convert(
         framework="pt",
         model="bert-base-cased",
         output=Path("onnx/bert-base-cased.onnx"),
                                                                        class PaddleErineExecutor(Executor):
         opset=11,
                                                                              def init (self, **kwarqs):
                                                                                    super().__init__()
      self.tokenizer = BertTokenizerFast.from pretrained("bert-base-cased")
                                                                                    self.tokenizer = ErnieTokenizer.from pretrained('ernie-1.0')
      # create the inference session
      options = onnxruntime.SessionOptions()
                                                                                    self.model = ErnieModel.from pretrained('ernie-1.0')
      options.intra_op_num_threads = 1 # have an impact on performances
      options.graph optimization level = (
                                                                                    self.model.eval()
        onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
      # Load the model as a graph and prepare the CPU backend
                                                                              @requests
      self.session = onnyruntime.InferenceSession(
         "onnx/bert-base-cased.onnx", options
                                                                              def encode(self, docs, **kwargs):
      self.session.disable fallback()
                                                                                    for doc in docs:
                                                                                         ids, = self.tokenizer.encode(doc.text)
   def encode(self, docs, **kwargs):
      for doc in docs:
                                                                                         ids = P.to_tensor(np.expand_dims(ids, 0))
         tokens = self.tokenizer.encode_plus(doc.text)
         inputs = {name: np.atleast 2d(value) for name, value in tokens.itens()}
                                                                                         pooled, encoded = self.model(ids)
         output, pooled = self.session.run(None, inputs)
                                                                                         doc.embedding = pooled.numpy()
         # assign the encoding results to "embedding"
         doc.embedding = pooled[0]
```

基于Jina的强大能力,可以将各种framework/runtime的模型封装为 executor,提供服务接口供外部直接调用

Python for Good>>>> PyCon China 2022

• 半精度 (fp16) 推理

半精度推理在分类和检索任务上对性能影响不大,但对显存的需求有明显降低

```
Datasets: CIFAR10 Task: zero-shot classification acc: fp16(fp32)
                               | 71.55(-0.03) | 98.11(-0.04) | 71.50(-0.01)
    ViT-B-16::laion400m_31
                            | 91.70(-0.01) | 99.72(0.00)
                                                              1 91.69(0.00)
|ViT-B-32-quickgelu::laion400m_32| 90.72(+0.03) | 99.79(0.00)
                                                              1 90.74(+0.03)
    ViT-L-14::laion400m_31
                               | 94.66(0.00) |
                                                99.90(0.00)
                                                                 94.67(0.00)
    ViT-H-14::laion400m_31
                               1 97.45(0.00) I
                                                99.93(0.00)
    ViT-g-14::laion2b_s12b_b42k | 97.06(out of memory)| 99.93
Datasets: VOC2007 Task: zero-shot calssification precision: fp16(fp32)
          RN50::openai
                               1 74.83750(-0.0052)
    ViT-B-16::laion400m 31
                            1 78.35778(-0.0043)
|ViT-B-32-quickgelu::laion400m_32| 76.27471(+0.0071)
    ViT-L-14::laion400m_31
                               1 78.53070(+0.0009)
    ViT-H-14::laion2b s32b b79k \mid 80.12784(+0.0039)
```

```
Datasets: flickr8k Task: zero-shot retrieval acc: fp16(fp32)
                model
                                        image_recall@5
                                                                 text recall@5
          RN50::openai
                                 | 0.5033920886(+0.0006741) |
                                                               0.689284384(+-0.00037) gpu: (2477MB/2993MB)
    ViT-B-16::laion400m_31
                               | 0.6197503209(0)
                                                              0.765047609(+0.000247) gpu: (2531MB/3043MB)
IViT-B-32-quickgelu::laion400m_32| 0.5794092416(+0.0001482) |
                                                              0.739710807(+0.000370) gpu: (2691MB/3159MB)
    ViT-L-14::laion400m 31
                                 | 0.6750710606(+0.0000241) |
                                                               0.805833637(0)
                                                                                      apu: (3607MB/5085MB)
     ViT-H-14::laion2b-s32b_79k | 0.7459646463(0)
                                                               0.856136441(+0.000247) gpu: (5021MB/8591MB)
```

Python for Good>>>> PyCon China 2022

AlTemplate

把 AI 模型转换成高性能 C++ GPU 模板代码的 Python 框架 该框架在设计上专注于性能和简化系统

AlTemplate 系统一共分为两层: 前端部分进行图优化, 后端部分针对目标 GPU 生成 C++ 模板代码

shape	pt (ms)	ait (ms)	without flash_attn	mean idff	max diff
(1, 77)	8.6888	0.8523	1.6269	0.00335	0.01758
(2, 77)	8.7543	0.9854	2.0161	0.00333	0.01782
(4, 77)	8.7231	1.2459	2.8970	0.00358	0.04297
(8, 77)	9.4466	2.0201	4.8552	0.00355	0.03906
(16, 77)	10.0222	3.4399	8.7880	0.00333	0.03906
(1, 224, 224, 3)	18.0799	3.7753	8.4608		
(2, 224, 224, 3)	17.9421		8.4604		

Python for Good>>>> PyCon China 2022

FlashAttention

传统优化attention策略: 优化FLOPS, 稀疏近似/低秩近似 FlashAttention: 优化GPU memory IO: 避免频繁向HBM 读写数据, 尽量使用SRAM完成计算

Model: `ViT-L-14::la	ion2b-s32b-b82k`			
shape	baseline(s) fl			
(1, 77)		0.66437		0.00066
(2, 77) (4, 77)	0.8264 0.81998	0.70035 0.69887	1.17998 1.1733	0.0007 0.00064
(8, 77)	1.05975	0.85742	1.23597	0.00054
(16, 77) (1, 3, 224, 224)	2.12992 2.00593	1.68367 1.34507	1.26504 1.49131	0.00057 0.00155
(2, 3, 224, 224) (4, 3, 224, 224)	3.74493 7.35365	2.29818 4.44447	1.62952 1.65456	0.00122 0.00159
(8, 3, 224, 224)	14.63006	9.05604	1.6155	0.00135
(16, 3, 224, 224)	29.63732	18.29142	1.62028	0.00155

在GPT-2上实现了7倍的加速,并且 内存的使用与序列长度成线性关系

Python for Good >>>>> PyCon China 2022

torch.fx

用于捕获和转换PyTorch模型,主要有三种用途:

- 修改网络结构
- FX Graph Mode Quantization
- 结合CUDAGraph加速推理

```
import torch
from torch.fx import symbolic trace. GraphModule
def my_func(x):
 return torch.relu(x).neg()
# Program capture via symbolic tracing
traced : GraphModule = symbolic_trace(my_func)
for n in traced.graph.nodes:
 print(f'{n.name} = {n.op} target={n.target} args={n.args}')
x = placeholder target=x args=()
relu = call_function target=<built-in method relu ...> args=(x,)
neg = call_method target=neg args=(relu,)
output = output target=output args=(neg,)
print(traced.code)
def forward(self, x):
   relu = torch.relu(x); x = None
   neg = relu.neg(); relu = None
    return neg
```

```
Launch A
                      Launch B
                                  Launch C
               Launch
              Latency
Build
           Launch Graph
Graph
```

```
. .
import torch
from torch.fx import symbolic trace
from clip server.model.openclip model import OpenCLIPModel
model = OpenCLIPModel(name='Vit-B-32::openai',
device='cuda'). model vision
graph module: torch.fx.GraphModule = symbolic_trace(model)
static inputs = [torch.zeros like(x, device='cuda') for x in
example inputs)
stream = torch.cuda.Stream()
stream.wait stream(torch.cuda.current stream())
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, stream=stream,
    static_outputs = graph_module(*static_inputs)
if not isinstance(static outputs, (list, tuple)):
    static outputs = (static outputs.)
def run(*new inputs):
    for dst, src in zip(static_inputs, new_inputs):
    return static outputs
```

Python for GoodPyCon China 2022

TorchDynamo

在bytecode层面修改并生成fx.graph

https://www.youtube.com/watch?v=egZB5Uxki0I

将在明年的torch2.0中正式发布,目前已经整合到torch的

times	shape	pt (s)	graph (s)	speed up	GPU(MB)	RES(MB)
1 (1, 77)	(1, 77)	0.0068	0.00182/0.00309	3.6558/2.1231	1857/3011/2993	3)
	(2, 77)	0.0073	0.00216/0.00419	3.0058/1.6446	1859/3005/3132	
	(4, 77) 0.00	0.0070	0.00294/0.00753	2.2076/0.9188	1859/3087/3043	-
(8, 77)	0.0071	0.00450/0.01200	2.3033/0.5882	1863/3369/3315		
	(16, 77)	0.0087	0.00791/0.02126	1.0675/0.4427	1883/3619/3591	-

main branch中, 可参考: https://pytorch.org/docs/master/dynamo/get-started.html

Python for Good >>>> PyCon China 2022

01 为什么要研究多模态?

02 多模态场景下如何表征数据

03 搭建高性能模型推理服务

04 demo

demo: CLIP-as-service

Python for Good >>>> PyCon China 2022

https://clip-as-service.jina.ai/playground/embedding/#

Thanks!

感谢观看