Satisfiability of Propositional Formulas

Mooly Sagiv

Slides by Sharad Malik, Ohad Shacham, Daniel Kroening and Ofer Strichman

The SAT Problem

- Given a propositional formula (Boolean function)
 - $\varphi = (a \lor b) \land (\neg a \lor \neg b \lor c)$
- Determine if φ is valid true in all assignments
- Determine if φ is satisfiable
 - Find a satisfying assignment or report that such does not exit
- For n variables, there are 2ⁿ possible truth assignments to be checked

Why Bother?

- Core computational engine for major applications
 - Artificial Intelligence
 - Knowledge base deduction
 - Automatic theorem proving
 - Electronic Design Automaton
 - Testing and Verification
 - Logic synthesis
 - FPGA routing
 - Path delay analysis
 - And more...
 - Software Verification

Problem Representation

- Represent the formulas in Conjunctive Normal Form (CNF)
- Conversion to CNF is straightforward
 - $a \lor (b \land \neg(c \lor \neg d)) \equiv (a \lor (b \land \neg c \land \neg \neg d)) \equiv (a \lor (b \land \neg c \land \neg \neg d)) \equiv (a \lor b) \land (a \lor \neg c) \land (a \lor d)$
 - May need to add variables
- Notations
 - Literals
 - Variable or its negation
 - Clauses
 - Disjunction of literals
 - $\phi = (a \lor b) \land (\neg a \lor \neg b \lor c) \equiv (a + b)(a' + b' + c)$
- Advantages of CNF
 - Simple data structure
 - Compact
 - Compositional
 - All the clauses need to be satisfied

Complexity Results

- First established NP-Complete problem
 - Even when at most 3 literals per clause (3-SAT)
 - S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the Theory of Computing, 1971, 151-158
 - No polynomial algorithm for all instances unless P = NP
- Becomes polynomial when
 - At most two literals per clause (2-SAT)
 - At most one positive literal in every clause (Horn)

Goals

- Develop algorithms which solve all SAT instances
- Exponential worst case complexity
- But works well on many instances
 - Interesting Heuristics
 - Annual SAT conferences
 - SAT competitions
 - Randomly, Handmade, Industrial, Al
 - 10 Millions variables!

SAT made some progress...

Naïve SAT solving (DFS)

Enumerate all truths assignments X₁, X₂, ..., X_n

```
Pseudo code
  main=
   if sat(0, \varphi)
       then return SAT(X)
       else return UNSAT
  boolean sat(i, \varphi)=
    if i = n then return false
      else
         j :=i+1
          x[j] := 0; \varphi' := simp(\varphi, j, 0)
          if sat(j, \varphi') then return true
           else x[j] := 1; \varphi' := simp(\varphi, j, 1)
                  return sat(j, φ')
```

The intuition behind resolution

$$A \rightarrow B$$
 $B \rightarrow C$ $A \rightarrow C$

$$\neg A \lor B \qquad \neg B \lor C$$
 $\neg A \lor C$

$$\neg A \lor B \qquad \neg B \lor C$$
 $A \to C$

Clause Resolution

Resolution of a pair of clauses with exactly ONE incompatible variable

What if more than one incompatible variables?

Davis Putnam Algorithm

```
dp(CL)=
  for i = 1 to n do
    CL := eliminate(X_i, CL);
  if () \in CL then return UNSAT;
            else return SAT;
eliminate(x, CL)=
   new := {}
   for each c1, c2 \in CL
           such that x \in c1 and \neg x \in c2
              new := new \cup (c1-x \cup c2-\negx )
  return CL - x \cup new
```

Davis Putnam Algorithm

M .Davis, H. Putnam, "A computing procedure for quantification theory", *J. of ACM*, Vol. 7, pp. 201-214, 1960

- Iteratively select a variable for resolution till no more variables are left
- Report UNSAT when the empty clause occurs
- Can discard resolved clauses after each iteration

Potential memory explosion problem!

Can we avoid using exponential space?

DLL Algorithm

Davis, Logemann and Loveland

M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", *Communications of ACM*, Vol. 5, No. 7, pp. 394-397, 1962

- Basic framework for many modern SAT solvers
- Also known as DPLL for historical reasons

```
(a' + b + c)

(a + c + d)

(a + c + d')

(a + c' + d)

(a + c' + d')

(b' + c' + d)

(a' + b + c')

(a' + b' + c)
```


Implication Graph

Implication Graph

Implications and Boolean Constraint Propagation

- Implication
 - A variable is forced to be assigned to be True or False based on previous assignments
- Unit clause rule (rule for elimination of one literal clauses)
 - An <u>unsatisfied</u> clause is a <u>unit</u> clause if it has exactly one unassigned literal
 Satisfied Literal

$$(a + b' + c)(b + c')(a' + c')$$
 Unsatisfied Literal
 $a = T, b = T, c \text{ is unassigned}$ Unassigned Literal

- The unassigned literal is implied because of the unit clause
- Boolean Constraint Propagation (BCP)
 - Iteratively apply the unit clause rule until there is no unit clause available
- Workhorse of DLL based algorithms

A Basic SAT algorithm

```
Choose the next
                                              variable and value.
                                               Return False if all
   While (true)
                                             variables are assigned
           if (!Decide()) return (SAT)
           while (!BCP())
                   if (!Resolve_Conflict()) return (UNSAT)
 Apply repeatedly the
                                             Backtrack until
   unit clause rule.
                                               no conflict.
Return False if reached
                                         Return False if impossible
      a conflict
```

```
x1 + x4

x1 + x3' + x8'

x1 + x8 + x12

x2 + x11

x7' + x3' + x9

x7' + x8 + x9'

x7 + x8 + x10'

x7 + x10 + x12'
```


x2=0

 $x3=1 \land x7=1 \land x8=0 \rightarrow conflict$

Add conflict clause: x3'+x7'+x8

Backtrack to the decision level of x3=1x7 = 0

```
x1 + x4

x1 + x3' + x8'

x1 + x8 + x12

x2 + x11

x7' + x3' + x9

x7' + x8 + x9'

x7 + x8 + x10'

x7 + x10 + x12'

x3' + x7 + x8'
```


What's the big deal?

Significantly prune the search space – learned clause is useful forever!

Useful in generating future conflict Clauses

No longer polynomial space

Restart

- Abandon the current search tree and reconstruct a new one
- The clauses learned prior to the restart are still there after the restart and can help pruning the search space
- Adds to robustness in the solver

Conflict clause: x1'+x3+x5'

BCP Algorithm

- What "causes" an implication? When can it occur?
 - All literals in a clause but one are assigned to F
 - (v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)
 - For an N-literal clause, this can only occur after N-1 of the literals have been assigned to F
 - So, (theoretically) we could completely ignore the first N-2 assignments to this clause
 - In reality, we pick two literals in each clause to "watch" and thus can ignore any assignments to the other literals in the clause
 - Example: (v1 + v2 + v3 + v4 + v5)
 - (v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

Chaff Decision Heuristic - VSIDS

- Variable State Independent Decaying Sum
 - Rank variables by literal count in the initial clause database
 - Periodically, divide all counts by a constant
 - Only increment counts as new clauses are added
- Quasi-static:
 - Static because it doesn't depend on var state
 - Not static because it gradually changes as new clauses are added
 - Decay causes bias toward *recent* conflicts

Finding a Solution to a SAT problem is can be viewed as 2 player game

- Player 1: tries to find satisfying assignment
- Player 2: tries to show that such assignment does not exist

```
Let A be an arbitrary assignment while true: 
 if A \models C then return SAT 
 if () \in C then return UNSAT 
 let c \in C such that not A \models c and let A' such that A' \models c 
 A := A' 
 || 
 let c' \notin C such that C \models c' and not A \models c' 
 C := C \cup \{c'\}
```

Example Game 1

[]
$$(a + b) (a + b') (a' + c)(a' + c')$$

Example Game 2

$$(a + b + c)(b + c' + f')(b' + e)$$

Some Bibliography

- Chaff: Engineering an Efficient SAT Solver
 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik (DAC'01)
- Efficient Conflict Driven Learning in a Boolean Satisfiability Solver Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz (IJCAD'01)
- A New Method for Solving Hard Satisfiability Problems
 Bart Selman, Hector Levesque, David Mitchell
 (AAI'92)

Missing

- Post Chaff SAT solvers
 - BerkMin
 - Seige
 - miniSat
 - HaifaSAT
 - JeruSAT (Alex Nadel)
- The Stålmarck's algorithm
- Hyperresolution
- Local Search

Open Question

- Is there a subset of a useful propositional logic beyond Horn clauses which:
 - Allows polynomial SAT
 - Includes many of the practical instances
 - Some recent ideas in
 - Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, Laurent Simon: Impact of Community Structure on SAT Solver Performance. SAT 2014: 252-268

Summary

- Rich history of emphasis on practical efficiency
- Need to account for computation cost in search space pruning
- Need to match algorithms with underlying processing system architectures
- Specific problem classes can benefit from specialized algorithms
 - Identification of problem classes?
 - Dynamically adapting heuristics?
- We barely understand the tip of the iceberg here
 - much room to learn and improve