Math 103A Midterm 1

Q1: 0 check binary operation: Let $a, b \in \mathbb{Z}_1$, $a * b = a + b + 2 \in \mathbb{Z}_2$. $(\mathbb{Z}_1, *) i < c > b > d$

G1: for all $a,b,c \in \mathbb{Z}$, $(a \times b) \times c = (a + b + 2) \times c$ = a + b + 2 + c + 2 = a + b + c + 2 + 2 = a + b + c + 4 = a + b + c + 4 = a + b + c + 4 = a + b + c + 4

G2: identity is -2.

for all $x \in \mathbb{Z}$, (-2) * x = -2 + x + 2 = x - 2 + 2 = x * (-2) = x $-2 \in \mathbb{Z}$.

C3: The inverse of $a \in 74$ is -4-a $(-4-a) \times a = -4-a+a+2=-2$ $a \times (-4-a) = a-4-a+2=-2$

Since - 4 6 72, -a 6 72

Thus, (-4-a) 6 72

reperence especially and the second Q2: G is abelian group With identity e. Wanna Show Subset {XEC| X3=07 is a Subgroup of G. 10 Show M = FXECIX3: e3 is closed under binger Let X, y & M x3=0,13-0 shie a is abelian => xy=yx. $(xy)(xy)(xy) = x^3y^3 - 4$ is commutative. $= e \cdot e = 1$ can change or dor) Hence , XX &N - dosod. Q Ghas identity e, e3=e EM, identity exists. (3) $x^3 = 0$ x = 0 $Y^{T}XXX = X^{-1}$ TO $x = x^{-1}$ multiply x^{-1} on left $x^{-1}x = x^{-1}x^{-1}$ multiply x^{-1} on left P X= X - (X -) x-1x=x-1x-1x-1 multiply x-1 on left $6 = (X_{-1})_{\frac{3}{2}}$ Hence x GM. Subgroup of G.

MPKMPZN-1 = MPKMPZM M=M = Mpk M(Mpn+2) = MPR (MM) Pn+2 = MPRpn+2 = MPRpnp2 P = 2 - MPRP2 MPR+2

05 RKN