Задания

24 марта 2021 г.

- 1. Пусть ${\bf C}$ категория предпорядка, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 2. Пусть ${\bf C}$ категория с одним объектом, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 3. Пусть ${\bf C}$ дискретная категория, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 4. Пусть **C** группоид, а **D** нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 5. Докажите, что ${\bf Num}$ эквивалентна ${\bf FinSet}$. Изоморфны ли эти категории?

Рассмотрим функтор
$$F: \mathbf{Num} \to \mathbf{FinSet}$$
 $F(n) = \{1, 2, ...n\} =: A_n$ $F((a_1, ..., a_n)) = \lambda x. \ case \ x \ of \{i \Rightarrow a_i\} \ : A_n \to A_k$

Так как $|Hom_{\mathbf{Num}}(n,k)| = k^n = |Hom_{\mathbf{FinSet}}(\{1,...,n\},\{1,...,k\})|$ и $F: Hom_{\mathbf{Num}}(n,k) \to Hom_{\mathbf{FinSet}}(\{1,...,n\},\{1,...,k\})$ — инъекция, то F — сюръекция. Значит F строгий и полный.

 $\forall \ S \in \mathbf{Set} \ \exists A_{|S|} \simeq S$, так как равномощные множества изоморфны. Значит $\forall F(|S|) \simeq S$. F существенно сюръективен. Получается, что F — экви.

FinSet не изоморфен **Num**, так как первый состоит из континуального множества объектов, а второй — из счетного.

- 6. Докажите, что ${\bf Mat}$ эквивалентна ${\bf Mat}^{op}$. Изоморфны ли эти категории?
- 7. Докажите, что **FinSet** не эквивалентна **Set**.

Пусть $F: \mathbf{Set} \to \mathbf{FinSet}$ — экви. Тогда $|Hom_{\mathbf{Set}}(\mathbb{N}, \{0\})| = |Hom_{\mathbf{FinSet}}(F(\mathbb{N}), F(\{0\}))| < \infty$, что неверно.

8. Пусть $F,G: \mathbf{C} \to \mathbf{D}$ — пара функторов. Естественное преобразование $\alpha: F \to G$ называется естественным изоморфизмом, если для любого объекта X в \mathbf{C} морфизм $\alpha_X: F(X) \to G(X)$ является изоморфизмом. Докажите, что $\alpha: F \to G$ — естественный изоморфизм тогда и только тогда, когда α — изоморфизм в категории $\mathbf{D}^{\mathbf{C}}$.

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(X) \xrightarrow{\alpha_Y} G(Y)$$

Если $\forall X: \alpha_X$ – изо, то позьмем $\beta_X:=\alpha_X^{-1}$. Для такого β диаграмма выше коммутирует, значит β – естественное проеобразование. Кроме того, $(\alpha \circ \beta)_X = \alpha_X \circ \beta_X = id_{G(X)}$, а $(\beta \circ \alpha)_X = \beta_X \circ \alpha_X = id_{F(X)}$. Значит $\beta = \alpha^{-1}$ в $\mathbf{D}^{\mathbf{C}}$.

Если $\beta=\alpha^{-1}$ в $\mathbf{D^C}$, то $(\alpha\circ\beta)_X=\alpha_X\circ\beta_X=id_{G(X)}$ (и симметрично с другой стороны). Значит $\forall X:\ \beta_X=\alpha_X^{-1}$, то есть $\forall X:\ \alpha_X$ – изо.

9. Пусть ${\bf C}$ – декартова категория. Докажите, что функтор – \times 1 изоморфен тождественному функтору в ${\bf C}^{\bf C}$.

$$\begin{array}{c|c} X\times 1 \xrightarrow{\pi_1} X \\ \langle f,! \rangle & & & \langle id,! \rangle \\ Y\times 1 \xrightarrow{\pi_1} X \end{array}$$

Поскольку диаграмма выше коммутирует, то $\pi_1: -\times 1 \to id$ и $\langle id,! \rangle$ — естественные преобразования, причем взаимно обратные. То есть π_1 — изоморфизм этих функторов.

10. Пусть \Rightarrow – категория, состоящая из двух объектов $\{v,e\}$ и четырех морфизмов $\{id_v:v\to v,id_e:e\to e,d:v\to e,c:v\to e\}$. Докажите, что категории **Graph** (эта категория определяется в предыдущем ДЗ) и **Set** \Rightarrow^{op} эквивалентны. Изоморфны ли эти категории?

Рассмотрим функтор $F: \mathbf{Graph} \to \mathbf{Set}^{\Rightarrow^{op}}$.

 $F(\ (V,E)\)=g,$ где g — функтор \Rightarrow op \to **Set** определененный следующим образом:

$$g(v) := V$$

$$g(e) := \{(x, y, e) \mid x, y \in V, e \in E(x, y)\}$$

$$g(c^{op}) := \pi_1$$

$$g(d^{op}) := \pi_2$$

$$g(id) := id$$

Далее g(e) буду обозначать как (x, y, Exy)

Пусть (f_V, f_E) – морфизм графов. Тогда должно быть $F((f_V, f_E)) = \alpha$, где α – какое-то Е.П. функторов \Rightarrow $^{op} \rightarrow \mathbf{Set}$.

Пусть $\alpha_v = f_V$, $\alpha_e = \langle f_V, f_V, f_E \rangle$. Докажем, что α – Е.П. Пусть $F(\ (V,E)\) = g_1$, $F(\ (f_V(V), f_E(E))\) = g_2$ тогда $\alpha: g_1 \to g_2$. Так как в \rightrightarrows^{op} все стрелки направлены от e к v, достаточно рассмотреть диаграмму

$$g_{1}(e) \xrightarrow{f_{V}, f_{V}, f_{E}\rangle} g_{2}(e)$$

$$\pi_{i} \downarrow \qquad \qquad \pi_{i} \downarrow$$

$$g_{1}(v) \xrightarrow{f_{V}} g_{2}(v)$$

Или точнее

$$(x, y, Exy) \xrightarrow{\langle f_V, f_V, f_E \rangle} (f_V(x), f_V(y), f_E(Exy))$$

$$\uparrow_{i} \downarrow \qquad \qquad \uparrow_{i} \downarrow \qquad \qquad \downarrow$$

$$V \xrightarrow{f_V} f_V(V)$$

Так как данная диаграмма коммутирует для $\pi_{[1,2]}$, α – Е.П.

Кроме того, если применить F к композиции морфизмов $(f_V^1, f_E^1) \circ (f_V^2, f_E^2) = (f_V^1 \circ f_V^2, f_E^1 \circ f_E^2)$, то полученное естественное преобразование будет в точности композицией естественных преобразований (нужно просто к диаграмме выше добавить еще один квадрат справа). То есть $F(x \circ y) = F(x) \circ F(y)$. Значит F — корректный функтор.

Очевидно, что есть биекция между парой (f_V, f_E) и парой (α_v, α_e) . Значит $Hom(X,Y) \simeq Hom(F(X),F(Y))$. То есть F — строгий и полный.

Пусть $f:\rightrightarrows {}^{op}\to \mathbf{Set}$ – некоторый функтор. Возьмем граф (V,E), где V=f(v)

$$E(x,y) = \{e \mid e \in f(e), \ f(c^{op})(e) = x, \ f(d^{op})(e) = y\}$$

Тогда $F(\ (V,E)\)$ будет равен g

g(v) := V = f(v)

 $g(e) := \{ (f(c^{op})(e), \ f(d^{op})(e), \ e) \mid e \in f(e) \}$

 $g(c^{op}) := \pi_1$

 $g(d^{op}) := \pi_2$

g(id) := id

Рассмотрим пару естественных преобразований α, β , где $\alpha_v = \beta_v = id$, $\alpha_e = \langle f(c^{op}), f(d^{op}), id \rangle$, $\beta_e = \pi_3$. Так как $\alpha_v \circ \beta_v = id$, $\beta_v \circ \alpha_v = id$, $\alpha_e \circ \beta_e = id$, $\beta_e \circ \alpha_e = id$, данные преобразования являются изоморфизмами. То есть $F(V, E) \simeq f$. Значит F существенно сюръективен.

Таким образом, F — экви.

Про изоморфность надо еще подумать.

- 11. Пусть **D** рефлективная подкатегория **C**.
 - (а) Докажите, что рефлектор $\mathrm{Ob}(\mathbf{C}) \to \mathrm{Ob}(\mathbf{D})$ является фнуктором $R: \mathbf{C} \to \mathbf{D}.$

R(id) = id:

$$X \xrightarrow{id} X$$

$$\eta_X \downarrow \qquad \eta_X \downarrow$$

$$\eta_X(X) \stackrel{\exists!h=id}{-} \eta_X(X)$$

 $R(f \circ g) = R(f) \circ R(g)$:

$$X \xrightarrow{g} Y \xrightarrow{f} Z$$

$$\eta_X \downarrow \qquad \eta_Y \downarrow \qquad \eta_Z \downarrow$$

$$\eta_X(X) \xrightarrow{\exists !g'} \eta_Y(Y) \xrightarrow{\exists !f'} \eta_Z(Z)$$

(b) Докажите, что η является естественным преобразованием между $\mathrm{Id}_{\mathbf{C}}$ и $i\circ R$, где $i:\mathbf{D}\to\mathbf{C}$ – функтор вложения.

Следующая диаграмма коммутирует:

$$\begin{array}{c|c} X & \stackrel{\eta_X}{\longrightarrow} \eta_X \big(X \big) \\ f & & |\exists ! h = (i \circ R)(f) \\ \forall & & \forall \\ Y & \stackrel{\eta_Y}{\longrightarrow} \eta_Y \big(Y \big) \end{array}$$

- 12. Пусть $F: \mathbf{CMon} \to \mathbf{Ab}$ рефлектор вложения $i: \mathbf{Ab} \to \mathbf{CMon}$.
 - (a) Приведите пример конечного нетривиального коммутативного моноида X, такого что |F(X)| = |X|.

Можно взять любую нетривиальную абелеву группу (ее вложение в **CMon**).

(b) Приведите пример конечного коммутативного моноида X, такого что |F(X)| < |X|.

Рассмотрим моноид $M = \{0,1\}$ с операцией max.

Докажем, что $F(M) = \{0\}$. Пусть $f: M \to G$.

Тогда
$$f(0) = 0$$
, $f(1) = f(1 \text{ 'max' 1}) = f(1) * f(1)$

$$0 = f(0) = f(1) * f(1)^{-1} = f(1) * f(1) * f(1)^{-1} = f(1).$$

То есть $f(M)=\{0\}$. Тогда единственный существующий гомоморфизм $F(M)\to G$ заставит коммутировать диаграмму из определения рефлектора.

$$|M| = 2, |F(M)| = 1$$

(c) Приведите пример коммутативного моноида X, такого что η_X : $X \to i(F(X))$ – не сюръективна.

$$X=(\mathbb{N},+)$$
 $F(X)=(\mathbb{Z},+)$ $i(F(X))=(\mathbb{Z},+)$ $\eta_X(x)=x$ – не сюръекция

(d) Докажите, что для любого конечного коммутативного моноида X функция $\eta_X: X \to i(F(X))$ является сюръективной. В частности $|F(X)| \leq |X|$.

Пусть дан некоторый коммутативный моноид M. Возьмем группу Гротендика G(M), соответствующую этому моноиду.

(нашел вот тут https://en.wikipedia.org/wiki/Grothendieck_group, решил не переписывать определение).

Докажем, что $M \to i(G(M))$ — сюръекция.

Пусть $(a,b) \in G(M)$.

Если
$$\exists b^{-1}$$
, то $(a,b) \sim (a*b^{-1},0) = G(a*b^{-1})$.

Если это не так, то, поскольку моноид конечный, $\exists n, m \in \mathbb{N}, n > m$: $b^n = b^m$. Тогда $(a,b) \sim (a*b^{m+1},b^{m+1}) = (a*b^{n+1},b^{m+1}) = (a*b^{n+1},b^{m+1})$

$$(a*b^{m+1}*b^{n-m},b^{m+1})\sim (a*b^{n-m},0)=G(a*b^{n-m}).$$

Таким образом, $i\circ G$ — сюръекция, а значит η_X — сюръекция, так как F изоморфен G.