

Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ М-КФ «Машиностроительный» **КАФЕДРА** М1-КФ «Машиностроительные технологии»

ОТЧЁТ

КУРСОВОЙ ПРОЕКТ

ДИСЦИПЛИНА «Основы конструирования приспособлений» **ТЕМА** «Проектирование станочных приспособлений»

Выполнил: студент группы ТМД.Б-71 Куркин М. В.	
Проверил: Попков В. М.	
Дата сдачи (защиты) домашнего задания:	
Результаты сдачи (защиты):	
	баллов (тах 30)

СОДЕРЖАНИЕ

Co	держ	ание	3	
1.	Анализ исходных данных			
	1.1.	Служебное назначение детали	4	
	1.2.	Анализ технических условий на изготовление детали	4	
	1.3.	Характеристика материала заготовки	5	
	1.4.	Анализ технологичности конструкции детали	6	
2.	Про	ектирование операций механической обработки детали	7	
	2.1.	Проектирование сверлильной операции с ЧПУ	7	
	2.2.	Проектирование фрезерной операции	27	
3.	Расч	ёт и проектирование станочных приспособлений	35	
	3.1.	Приспособление для сверлильной операции с ЧПУ	35	
	3.2.	Приспособление для фрезерной операции	39	
Сп	исок	использованных источников	45	

1 АНАЛИЗИСХОДНЫХ ДАННЫХ

1.1 Служебное назначение детали

Обрабатываемая деталь — корпус барабана. Детали типа «корпус» предназначены для крепления к ним других деталей и сборочных единиц изделия. Корпусные детали обеспечивают точность и постоянство относительного расположения прикрепляемых к ней деталей, поэтому должны обладать достаточной жёсткостью. Обрабатываемая деталь является вращающейся.

Наружная поверхность детали — призма, основанием которой является правильный шестиугольник с диаметром вписанной окружности 620 мм. С обеих торцов призмы деталь имеет ряд выступов, образующих цилиндрические и конические поверхности. На каждой грани шестигранника расположено по четыре штифтовых отверстия Ø20 H7 мм и по восемь резьбовых M12.

Ступица детали имеет отверстие Ø125 H7 мм, предназначенное для установки детали на вал. На внешней части ступицы расположен паз. Ступица соединена с наружной частью детали полотном. На нём расположены 6 рёбер, служащих для повышения жёсткости детали. В перемычках между спицами выполнены два такелажных отверстия Ø100 мм.

Кроме перечисленных, деталь имеет ряд резьбовых и штифтовых отверстий, необходимых для прикрепления к корпусу других деталей изделия.

Заготовка детали — отливка из серого чугуна СЧ 21-40 (ГОСТ 1412-85).

1.2 Анализ технических условий на изготовление детали

Наиболее точные цилиндрические поверхности детали — отверстие в ступице \emptyset 125 H7 мм, 6 отверстий \emptyset 45 H7 мм, 2 отверстия \emptyset 25 H7 мм, 26 отверстий \emptyset 20 H7 мм и 6 отверстий \emptyset 12 H7 мм. Необходимость их высокой точности обусловлена тем, они являются сопрягаемыми. Для менее точных поверхностей заданы их предельные отклонения: \emptyset 600 $_{-0.2}$ мм и

 \emptyset 590 $_{-0,5}$ мм. Заданные предельные отклонения удовлетворяют требованиям, соответственно, 10 и 12 квалитетов. Размеры с неуказанными предельными отклонениями выполняются по 14 квалитету.

Точность взаимного расположения поверхностей детали задана допусками параллельности торцовых поверхностей детали относительно друг друга и перпендикулярности наружных граней корпуса относительно торца, которые составляют 0.03 мм, и допуском радиального биения наружной цилиндрической поверхности $\emptyset 600_{-0.2}$ мм относительно посадочного отверстия ступицы $\emptyset 125$ H7 мм, который составляет 0.1 мм.

Точность формы задана допусками на плоскостность торца и наружных граней корпуса, который составляет 0,02 мм.

Шероховатость задана значениями Ra 1,25 для посадочного отверстия ступицы Ø125 H7 мм и других сопрягаемых отверстий, Ra 2,5 для плоских поверхностей наружных граней и торцов корпуса и для внутренней цилиндрической поверхности Ø430 мм, и Ra 10 для плоских поверхностей торцов ступицы, наружных цилиндрических поверхностей Ø590 _0,5 мм и отдельных резьбовых отверстий. Для остальных поверхностей задана шероховатость Rz 630, получаемая без применения механической обработки.

1.3 Характеристика материала заготовки

Материал заготовки — серый чугун СЧ 21-40 (ГОСТ 1412–85). Это чугун с пластинчатым графитом для отливок с временным сопротивлением при растяжении не менее $\sigma_B = 210 \, \mathrm{M}\Pi a$.

Серый чугун — сравнительно дешёвый конструкционный материал. Имеет хорошие литейные и технологические свойства. Из серого чугуна изготавливают массивные литые детали, такие как станины, маховики, крупногабаритные корпуса.

Физические свойства чугуна СЧ 21-40: плотность $\rho=7100\,\frac{\mathrm{K\Gamma}}{\mathrm{M}^3}$, линейная усадка $\varepsilon=1,2$ %, модуль упругости при растяжении $E=850...1100\cdot 10^{-5}$ МПа, удельная теплоёмкость при $t=20...200\,^{\circ}\mathrm{C}$ $c=480\,\frac{\mathrm{Дж}}{\mathrm{Kr}\cdot\mathrm{K}}$, коэффициент

линейного расширения при $t=20...200\,^{\circ}\text{C}$ $\alpha=9,5\cdot10^{-6}\,^{\circ}\text{C}^{-1}$, теплопроводность при $20\,^{\circ}\text{C}$ $\lambda=54\,\frac{\text{Bt}}{\text{M}\cdot\text{K}}$.

Химический состав чугуна СЧ 21-40: массовая доля углерода 3,3...3,5%, кремния — 1,4...2,4%, марганца — 0,7...1,0%, фосфора — не более 0,2%, серы — не более 1,5%. Допускается низкое легирование чугуна различными элементами (хромом, никелем, медью, фосфором и другими).

1.4 Анализ технологичности конструкции детали

Большинство конструктивных элементов детали унифицированы.

Точность размеров и шероховатость поверхностей экономически и конструктивно обоснованы.

Физико-химические и механические свойства материала, жёсткость детали, её форма и размеры соответствуют требованиям технологии изготовления, конструкция жёсткая.

Деталь имеет технологические базы, позволяющие обеспечить точность установки, обработки и контроля.

Обработка и контроль точных поверхностей детали не затруднены.

Деталь имеет большое количество глухих точных отверстий, что усложняет обработку.

Шпоночный паз расположен нетехнологично, его обработка затрудняется необходимостью располагать деталь под углом.

Большая масса и габаритные размеры заготовки усложняют транспортировку и установку детали на станке.

Конструкция детали в целом технологична, но имеет ряд элементов, обработка которых затруднена.

2 ПРОЕКТИРОВАНИЕ ОПЕРАЦИЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ

2.1 Проектирование сверлильной операции с ЧПУ

2.1.1 Выбор и характеристика оборудования

Операция выполняется на горизонтальном сверлильно-фрезерно-расточном станке с ЧПУ и АСИ 2206ВМФ4.

Это станок с крестовым поворотным столом, предназначенный для комплексной обработки плоских деталей средних размеров сложной формы. Станок предназначен для многооперационной обработки разнообразных деталей сложной конфигурации из стали, чугуна, цветных и лёгких сплавов. На станке можно производить получистовое и чистовое фрезерование плоскостей, пазов и криволинейных поверхностей различными типами фрез, а также растачивание, сверление, зенкерование, развёртывание отверстий и нарезание резьбы метчиками и резцами по заданной программе. Станок может быть использован в мелкосерийном и серийном производствах различных отраслей промышленности.

Управление станком — от универсальной комплексной системы ЧПУ «Размер-2М-1300», позволяющей производить позиционную и контурную обработку, а также вручную с пульта управления. На станке программируются координатные перемещения стола и шпиндельной головки, скорости этих перемещений, частота вращения шпинделя, выбор и смена инструмента, смена обрабатываемой детали и циклы обработки.

На станке программируются координатные перемещения стола, шпиндельной головки, скорости этих перемещений, режимы обработки, выбор, смена и коррекция инструмента, циклы обработки.

Станок может быть оснащен устройством автоматической загрузки и выгрузки изделий, предназначенным для установки заготовки вне станка на сменные столы (паллеты) и последующей автоматической загрузки столов на станок, а также их выгрузки со станка после окончания обработки.

Использование сменных столов устройства позволяет совместить загрузку заготовок или выгрузку обработанных изделий с работой станка, что существенно сокращает холостые простои, повышает эффективность его использования и производительность, при этом исключается последняя ручная операция — установка и снятие деталей со станка.

Основные характеристики станка:

- Класс точности станка В по ГОСТ 8-82
- Размеры рабочей поверхности стола 630×800 мм
- Расстояние от торца шпинделя до центра стола 195...825 мм
- Наибольшее продольное перемещение стола (X) 800 мм
- Наибольшее поперечное перемещение стола (Z) 630 мм
- Наибольшее вертикальное перемещение шпиндельной головки (Y) 630 мм
- Наибольшая нагрузка на стол 800 кг
- Ёмкость инструментального магазина 30 шт
- Наибольший диаметр устанавливаемого инструмента 200 мм
- Наибольшая длина инструмента, устанавливаемого в шпинделе станка 400 мм
- Частота вращения шпинделя $10...3500 \frac{\text{об}}{\text{мин}}$
- Электродвигатель привода шпинделя 15 кВт
- Масса станка 12 т

На рис. 1 приведены габариты рабочего пространства сверлильно-фрезерно-расточного станка $2206BM\Phi 4$ (а) и его посадочные и присоединительные размеры (б, в, г).

Рисунок 1 — Посадочные и присоединительные размеры станка 2206ВМФ4

2.1.2 Выбор и обоснование схемы базирования

Базирование осуществляется по схеме, представленной на рис. 2

Рисунок 2 — Схема базирования на операции 040

1, 2, 3 — установочная база,

4, 5 — направляющая база,

6 — опорная база

2.1.3 Выбор и обоснование последовательности и содержания переходов

На операции 040 осуществляется обработка отверстий, расположенных на гранях наружной поверхности детали. Деталь установлена в специальном приспособлении, поворот относительно своей оси она осуществляет за счёт делительного движения, совершаемого поворотным столом станка. На каждой позиции последовательно обрабатываются все отверстия, расположенные на грани, обращённой к шпинделю. Обработка 4 отверстий Ø20 Н7 мм осуществляется за три перехода последовательным сверлением, зенкерованием и развёртыванием. Обработка 8 резьбовых отверстий М12-7Н производится сверлением и нарезанием резьбы метчиком. Последним переходом снимаются фаски на всех отверстиях. После этого стол станка поворачивается и обрабатывается следующая грань детали. Последовательность обработки отверстий на каждой грани приведена в табл. 1

Таблица 1 — Содержание основных переходов операции 040

Содержание переходов

По программе:

- Сверлить 4 отверстия (35) Ø18,5 $^{+0,130}$ на глубину 35
- Сверлить 8 отверстий (37) ø10,2 $^{+0,36}$ на глубину 25
- Зенкеровать 4 отверстия (35) ø19,7 $^{+0,052}$ на глубину 30
- Развернуть 4 отверстия (35) ø20 $^{+0,025}$ на глубину 30
- Нарезать резьбу (39) в 8 отверстиях М12-7Н на глубину 20
- Зенковать 12 фасок (36) и (38), выдерживая размер 1,6 \times 45°

2.1.4 Выбор и характеристика режущего инструмента

Для сверления отверстий (35) выбрано сверло Ø18,5 2301-3619 ГОСТ 10903-77. Для сверления отверстий под резьбу (37) выбрано сверло Ø10,2 2301-4204 ГОСТ 22736-77. Для зенкерования отверстий (35) выбран зенкер Ø19,7 2320-0529 ГОСТ 12489-71. Для развёртывания отверстий (35) выбрана развёртка Ø20 2363-3463 ГОСТ 1672-80. Для нарезания резьбы (39) выбран метчик М12 2621-1515 ГОСТ 3266-81. Для зенковки фасок (36) и (38) выбрана зенковка 2353-0123 ГОСТ 14953-80.

Материал режущей части всех инструментов — быстрорежущая сталь P6M5 [7, прил. 2].

2.1.5 Расчёт режимов и сил резания

Расчёт ведётся табличным методом по методике, приведённой в [7].

Т01 Сверление Ø18,5

Глубина резания определяется по формуле:

$$t = \frac{D}{2} = \frac{18.5}{2} = 9.25 \text{ MM}$$

Табличное значение осевой подачи корректируется по формуле:

$$S_o = S_{o_{\mathrm{T}}} K_{S_{\mathrm{M}}}$$

$$S_{o_{\mathrm{T}}} = 0.26 \, \frac{_{\mathrm{MM}}}{_{\mathrm{O}\mathrm{O}}} \, [7, \, \mathrm{карта} \, 46]$$

$$K_{S_{\rm M}} = 1,0$$
 [7, карта 53]

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\rm T} K_{V_{\rm M}} K_{V_{\rm 3}} K_{V_{\rm W}} K_{V_{\rm T}} K_{V_{\rm W}} K_{V_{\rm M}} K_{V_{\rm I}} K_{V_{\rm II}}$$

$$V_{\rm T} = 23.8 \, \frac{\rm M}{\rm MUH} \, [7, \, {\rm карта} \, 46]$$

$$K_{V_{\mathrm{M}}}=K_{V_{\mathrm{3}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{W}}}=K_{V_{\mathrm{H}}}=K_{V_{\mathrm{I}}}=K_{V_{\mathrm{II}}}=1,0$$
 [7, карта 53]

$$S_o = 0.26 \cdot 1.0 = 0.26 \frac{\text{MM}}{\text{o}6}$$

$$V = 23.8 \cdot 1.0 = 23.8 \frac{\text{M}}{\text{MUH}}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 23.8}{\pi \cdot 18.5} = 409.5 \frac{\text{o}6}{\text{MUH}}$$

$$V_s = S_o n = 0.26 \cdot 409.5 = 106.5 \frac{\text{MM}}{\text{MUH}}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 400 \frac{\text{об}}{\text{мин}}$, $V_{S\phi} = 100 \frac{\text{мм}}{\text{мин}}$; тогда $S_{o\phi} = 0.25 \frac{\text{мм}}{\text{об}}$.

Фактическая скорость резания:

$$V_{\phi} = \frac{\pi D n_{\phi}}{1000} = \frac{\pi \cdot 18,5 \cdot 355}{1000} = 23,3 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле:

$$N = \frac{N_{\scriptscriptstyle \rm T}}{K_{N_{\scriptscriptstyle \rm M}}}$$

 $N_{\rm t} = 1,36 \, {\rm кВт} \, [7, \, {\rm карта} \, 46]$

 $K_{N_{\rm M}} = 1,0$ [7, карта 53]

$$N = \frac{1,36}{1.0} = 1,36 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = \frac{P_{\scriptscriptstyle \rm T}}{K_{P_{\scriptscriptstyle \rm M}}}$$

 $P_{\rm t} = 4345 \, {\rm H} \, [7, \, {\rm карта} \, 46]$

 $K_{P_{\text{м}}} = 1,0$ [7, карта 53]

$$P = \frac{4345}{1.0} = 4345 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по формуле:

$$t_o = \frac{L}{nS_o} = \frac{l_{\rm Bp} + l + l_{\rm nep}}{V_S}$$

где $l_{\rm вp}$ — длина на врезание, [мм]

l — глубина обработки [мм]

 $l_{\text{пер}}$ — длина на перебег [мм]

При сверлении глухого отверстия перебег отсутствует, а длина на врезание определяется по формуле:

$$l_{\rm Bp} = 1 + \frac{D}{2} \cdot \tan 31^{\circ}$$

$$l_{\rm Bp} = 1 + \frac{18.5}{2} \cdot \tan 31^{\circ} = 6.6 \,\mathrm{MM}$$
 $t_o = \frac{6.6 + 35 + 0}{100} = 0.42 \,\mathrm{M}$ ин

Т02 Сверление Ø10,2

Глубина резания определяется по формуле:

$$t = \frac{D}{2} = \frac{10.2}{2} = 5.1 \text{ MM}$$

Табличное значение осевой подачи корректируется по формуле:

$$S_o = S_{o_{\mathrm{T}}} K_{S_{\mathrm{M}}}$$

$$S_{o_{\rm T}} = 0.42 \, \frac{\rm MM}{\rm of} \, [7, \, {\rm карта} \, 46]$$

$$K_{S_{M}} = 1,0$$
 [7, карта 53]

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\scriptscriptstyle \mathrm{T}} K_{V_{\scriptscriptstyle \mathrm{M}}} K_{V_{\scriptscriptstyle 3}} K_{V_{\scriptscriptstyle \mathrm{K}}} K_{V_{\scriptscriptstyle \mathrm{T}}} K_{V_{\scriptscriptstyle \mathrm{W}}} K_{V_{\scriptscriptstyle \mathrm{M}}} K_{V_{\scriptscriptstyle \mathrm{I}}} K_{V_{\scriptscriptstyle \mathrm{I}}}$$

$$V_{\rm T} = 25,2 \frac{\rm M}{\rm MUH} [7, \, {\rm карта} \, 46]$$

$$K_{V_{\mathrm{M}}}=K_{V_{\mathrm{3}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{W}}}=K_{V_{\mathrm{H}}}=K_{V_{\mathrm{I}}}=K_{V_{\mathrm{II}}}=1,0$$
 [7, карта 53]

$$S_o = 0.42 \cdot 1.0 = 0.42 \frac{\text{MM}}{\text{o}6}$$

$$V = 25.2 \cdot 1.0 = 25.2 \frac{\text{M}}{\text{MUH}}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 25.2}{\pi \cdot 10.2} = 786.4 \frac{\text{o}6}{\text{MUH}}$$

$$V_s = S_o n = 0.42 \cdot 768.4 = 330.3 \frac{\text{MM}}{\text{MUH}}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 750 \frac{\text{об}}{\text{мин}}$, $V_{S\phi} = 320 \frac{\text{мм}}{\text{мин}}$; тогда $S_{o\phi} = 0.43 \frac{\text{мм}}{\text{об}}$.

Фактическая скорость резания:

$$V_{\Phi} = \frac{\pi D n_{\Phi}}{1000} = \frac{\pi \cdot 10.2 \cdot 750}{1000} = 24.0 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле

$$N = \frac{N_{\rm T}}{K_{N_{\rm M}}}$$

$$N_{\rm t} = 1,34 \, {
m кBT} \, [7, \, {
m карта} \, 46]$$
 $K_{N_{
m M}} = 1,0 \, [7, \, {
m карта} \, 53]$

$$N = \frac{1,34}{1.0} = 1,34 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = \frac{P_{\rm T}}{K_{P_{\rm M}}}$$

 $P_{\rm t} = 3675\,{\rm H}$ [7, карта 46]

 $K_{P_{\rm M}} = 1,0$ [7, карта 53]

$$P = \frac{3675}{1.0} = 3675 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по формуле:

$$t_o = \frac{L}{nS_o} = \frac{l_{\rm Bp} + l + l_{\rm \Pi ep}}{V_S}$$

где $l_{\rm вp}$ — длина на врезание, [мм]

l — глубина обработки [мм]

 $l_{\text{пер}}$ — длина на перебег [мм]

При сверлении глухого отверстия перебег отсутствует, а длина на врезание определяется по формуле:

$$l_{\rm Bp} = 1 + \frac{D}{2} \cdot \tan 31^{\circ}$$

$$l_{\rm Bp} = 1 + \frac{10.2}{2} \cdot \tan 31^{\circ} = 4.1 \,\mathrm{MM}$$
 $t_o = \frac{4.1 + 25 + 0}{320} = 0.09 \,\mathrm{MuH}$

Т03 Зенкерование Ø19,7

Глубина резания определяется по формуле:

$$t = \frac{D-d}{2} = \frac{19,7-18,5}{2} = 0,6 \text{ MM}$$

Табличное значение осевой подачи корректируется по формуле:

$$S_o = S_{oT} K_{S_{co}}$$

$$S_{o_{\mathrm{T}}} = 0.74 \, \frac{_{\mathrm{MM}}}{_{\mathrm{O}\mathrm{O}}} \, [7$$
, карта 48]

$$K_{S_{\rm M}} = 1,0$$
 [7, карта 53]

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\rm T} K_{V_{\rm M}} K_{V_{\rm 3}} K_{V_{\rm K}} K_{V_{\rm T}} K_{V_{\rm W}} K_{V_{\rm M}} K_{V_{\rm i}} K_{V_{\rm I}}$$

$$V_{\mathrm{T}}=27,8\,rac{\mathrm{M}}{\mathrm{MUH}}\,$$
 [7, карта 48]
$$K_{V_{\mathrm{M}}}=K_{V_{\mathrm{3}}}=K_{V_{\mathrm{K}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{W}}}=K_{V_{\mathrm{H}}}=1,0\,$$
 [7, карта 53]
$$K_{V_{\mathrm{i}}}=0,98\,$$
 [7, карта 53]

$$S_o = 0.74 \cdot 1.0 = 0.74 \frac{\text{MM}}{\text{o}6}$$

$$V = 27.8 \cdot 1.0 \cdot 0.98 = 27.2 \frac{\text{M}}{\text{MUH}}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 27.2}{\pi \cdot 19.7} = 440.2 \frac{\text{o}6}{\text{MUH}}$$

$$V_s = S_o n = 0.74 \cdot 440.2 = 325.8 \frac{\text{MM}}{\text{MUH}}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 400 \, \frac{\text{об}}{\text{мин}},$ $V_{S\phi} = 320 \, \frac{\text{мм}}{\text{мин}};$ тогда $S_{o\phi} = 0.80 \, \frac{\text{мм}}{\text{об}}.$

Фактическая скорость резания:

$$V_{\Phi} = \frac{\pi D n_{\Phi}}{1000} = \frac{\pi \cdot 19,7 \cdot 400}{1000} = 24,8 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле

$$N = N_{\mathrm{T}} \frac{K_{N_{\mathrm{i}}}}{K_{N_{\mathrm{M}}}}$$

$$N_{\rm t} = 0.91 \, {
m кВт} \, [7, \, {
m карта} \, 48]$$

$$K_{N_{\rm M}} = 1,0$$
 [7, карта 53]

 $K_{N_i} = 1,08$ [7, карта 53]

$$N = 1.34 \frac{1.08}{1.0} = 1.45 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = P_{\mathrm{T}} \frac{K_{P_{\mathrm{i}}}}{K_{P_{\mathrm{M}}}}$$

 $P_{\rm t} = 152 \, {\rm H} \, [7, \, {\rm карта} \, 48]$

 $K_{P_{\rm M}} = 1,0$ [7, карта 53]

 $K_{P_i} = 1,1 [7, карта 53]$

$$P = 152 \frac{1.1}{1.0} = 167.2 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по формуле:

$$t_o = \frac{L}{nS_o} = \frac{l_{\rm Bp} + l + l_{\rm nep}}{V_S}$$

где $l_{\rm вp}$ — длина на врезание, [мм]

l — глубина обработки [мм]

 l_{nep} — длина на перебег [мм]

Для зенкерования принимается длина на врезание 1 мм, а на перебег — 2 мм.

$$t_o = \frac{1+30+2}{320} = 0,10$$
 мин

Т04 Развёртывание Ø20

Глубина резания определяется по формуле:

$$t = \frac{D-d}{2} = \frac{20-19,7}{2} = 0,15 \,\mathrm{mm}$$

Табличное значение осевой подачи корректируется по формуле:

$$S_o = S_{o_{\mathrm{T}}} K_{S_{\mathrm{M}}}$$

$$S_{o_{\mathrm{T}}} = 0.76 \, \frac{\mathrm{MM}}{\mathrm{o}6} \, [7, \, \mathrm{карта} \, 49]$$

 $K_{S_{\mathrm{M}}} = 1.0 \, [7, \, \mathrm{карта} \, 53]$

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\mathrm{T}} K_{V_{\mathrm{M}}} K_{V_{\mathrm{3}}} K_{V_{\mathrm{K}}} K_{V_{\mathrm{W}}} K_{V_{\mathrm{W}}} K_{V_{\mathrm{I}}} K_{V_{\mathrm{I}}}$$

$$V_{\mathrm{T}} = 15,0 \, \frac{_{\mathrm{M}}}{_{\mathrm{MUH}}} \, [7, \, \mathrm{карта} \, 49]$$

$$K_{V_{\mathrm{M}}} = K_{V_{\mathrm{3}}} = K_{V_{\mathrm{K}}} = K_{V_{\mathrm{T}}} = K_{V_{\mathrm{W}}} = K_{V_{\mathrm{U}}} = K_{V_{\mathrm{II}}} = 1,0 \, [7, \, \mathrm{карта} \, 53]$$

$$K_{V_{\mathrm{i}}} = 0,84 \, [7, \, \mathrm{картa} \, 53]$$

$$S_o = 0.76 \cdot 1.0 = 0.76 \frac{\text{MM}}{\text{o}6}$$

$$V = 15 \cdot 1.0 \cdot 0.84 = 12.6 \frac{\text{M}}{\text{MUH}}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 12.6}{\pi \cdot 20} = 200.5 \frac{\text{o}6}{\text{MUH}}$$

$$V_s = S_o n = 0.76 \cdot 200.5 = 152.4 \frac{\text{MM}}{\text{MUH}}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 200 \, \frac{\text{об}}{\text{мин}},$ $V_{S\phi} = 150 \, \frac{\text{мм}}{\text{мин}};$ тогда $S_{o\phi} = 0.75 \, \frac{\text{мм}}{\text{об}}.$

Фактическая скорость резания:

$$V_{\Phi} = \frac{\pi D n_{\Phi}}{1000} = \frac{\pi \cdot 20 \cdot 200}{1000} = 12,5 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле

$$N = N_{\rm T} \frac{K_{N_{\rm i}}}{K_{N_{\rm M}}}$$

$$N_{\rm t} = 0.39 \, {
m кBT} \, [7, \, {
m карта} \, 49]$$
 $K_{N_{
m M}} = 1.0 \, [7, \, {
m карта} \, 53]$

$$K_{N_i} = 1,92 [7, карта 53]$$

$$N = 0.39 \frac{1.92}{1.0} = 0.75 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = P_{\mathrm{T}} \frac{K_{P_{\mathrm{i}}}}{K_{P_{\mathrm{M}}}}$$

 $P_{\rm t} = 19 \, {\rm H} \, [7, \, {\rm карта} \, 49]$

 $K_{P_{\rm M}} = 1,0$ [7, карта 53]

 $K_{P_i} = 2,4$ [7, карта 53]

$$P = 19\frac{2.4}{1.0} = 45.6 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по форму-

$$t_o = \frac{L}{nS_o} = \frac{l_{\rm Bp} + l + l_{\rm nep}}{V_S}$$

где $l_{\rm вp}$ — длина на врезание, [мм]

ле:

l — глубина обработки [мм]

 $l_{\mathrm{пер}}$ — длина на перебег [мм]

Для развёртывания принимается длина на врезание 1 мм, а на перебег — $2\,\mathrm{mm}$.

$$t_o = \frac{1+30+2}{150} = 0.22$$
 мин

Т05 Нарезание резьбы М12-7Н

Подача при нарезании резьбы равна шагу:

$$S_o = 1,75 \text{ mm}$$

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\scriptscriptstyle \rm T} K_{V_{\scriptscriptstyle \rm M}} K_{V_{\scriptscriptstyle \rm K}}$$

$$V_{\rm T} = 7.4 \, \frac{\rm M}{\rm MUH} \, [7, \, {\rm карта} \, 50]$$

$$K_{V_{\rm M}}=K_{V_{\rm K}}=1,0\ [7,$$
 карта 53]

$$V = 7,4 \cdot 1,0 = 7,4 \frac{M}{MИH}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 7,4}{\pi \cdot 12} = 196,3 \frac{\text{об}}{\text{мин}} =$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 180 \frac{\text{об}}{\text{мин}},$ $S_{o\phi} = 1,75 \frac{\text{мм}}{\text{o}6}.$

Фактическая скорость резания:

$$V_{\Phi} = \frac{\pi D n_{\Phi}}{1000} = \frac{\pi \cdot 12 \cdot 180}{1000} = 6.8 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле

$$N = \frac{N_{\rm T}}{K_{N_{\rm M}}}$$

 $N_{\rm t} = 0.32 \, \text{кВт} \, [7, \, \text{карта} \, 50]$

 $K_{N_{\rm M}}=1,0$ [7, карта 53]

$$N = \frac{0.32}{1.0} = 0.32 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = \frac{P_{\rm T}}{K_{P_{\rm M}}}$$

 $P_{\rm t} = 41 \, {\rm H} \, [7, \, {\rm карта} \, 50]$

 $K_{P_{\rm M}} = 1,0$ [7, карта 53]

$$P = \frac{41}{1,0} = 41 \text{ H}$$

Табличное значение крутящего момента корректируется по формуле:

$$M_{\rm KP} = \frac{M_{\rm KP}}{K_{M_{\rm M}}}$$

 $M_{\rm kp} = 1.9 \, \mathrm{H} \cdot \mathrm{M} \, [7, \, \mathrm{карта} \, 50]$

$$K_{M_{\rm M}} = 1,0$$
 [7, карта 53]

$$M_{\rm Kp} = \frac{1.9}{1.0} = 1.9 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по формуле:

$$t_o = \frac{L}{n_{\text{p. x.}} S_o} + \frac{L}{n_{\text{x. x.}} S_o}$$
$$L = l_{\text{Bp}} + l + l_{\text{nep}}$$

где $n_{\rm p.~x.}$ — частота вращения шпинделя на рабочем ходу, $\left[\frac{\rm of}{\rm мин}\right]$ $n_{\rm x.~x.}$ — частота вращения шпинделя на холостом ходу, $\left[\frac{\rm of}{\rm мин}\right]$ $l_{\rm Bp}$ — длина на врезание, [мм]

l — глубина обработки [мм]

 l_{nep} — длина на перебег [мм]

Для нарезания резьбы принимается длина на врезание 1 мм, на перебег — 2 мм. Принимается $n_{\rm x.~x.}=1{,}75n_{\rm p.~x.}$

$$n_{\text{X. X.}} = 1,75 \cdot 180 = 315 \frac{\text{об}}{\text{мин}}$$
 $L = 1 + 20 + 2 = 23 \text{ мм}$
 $t_o = \frac{23}{180 \cdot 1,75} + \frac{23}{315 \cdot 1,75} = 0,15 \text{ мин}$

Т06 Зенкование

Глубина резания при зенковании фаски равна ширине фаски:

$$t = 1.6 \, \text{MM}$$

Табличное значение осевой подачи корректируется по формуле:

$$S_o = S_{o_{\mathrm{T}}} K_{S_{\mathrm{M}}}$$

$$S_{o_{\mathrm{T}}} = 0.17 \, \frac{_{\mathrm{MM}}}{_{\mathrm{o}\mathrm{o}}} \, [7$$
, карта 51] $K_{S_{\mathrm{M}}} = 1.0 \, [7$, карта 53]

Табличное значение скорости резания корректируется по формуле:

$$V = V_{\mathrm{T}} K_{V_{\mathrm{M}}} K_{V_{3}} K_{V_{\mathrm{K}}} K_{V_{\mathrm{T}}} K_{V_{\mathrm{W}}} K_{V_{\mathrm{H}}} K_{V_{\mathrm{H}}}$$

$$V_{\rm T} = 20 \, \frac{\rm M}{\rm MWH} \, [7, \, {\rm карта} \, 51]$$

$$K_{V_{\mathrm{M}}}=K_{V_{\mathrm{3}}}=K_{V_{\mathrm{K}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{W}}}=K_{V_{\mathrm{H}}}=K_{V_{\mathrm{H}}}=1,0$$
 [7, карта 53]

$$S_o = 0.17 \cdot 1.0 = 0.17 \frac{\text{MM}}{\text{o}6}$$

$$V = 20 \cdot 1.0 = 20 \frac{\text{M}}{\text{MUH}}$$

$$n = \frac{1000V}{\pi D} = \frac{1000 \cdot 20}{\pi \cdot 20} = 318.3 \frac{\text{o}6}{\text{MUH}}$$

$$V_s = S_o n = 0.17 \cdot 318.3 = 54.11 \frac{\text{MM}}{\text{MUH}}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 315 \frac{\text{об}}{\text{мин}}$, $V_{S\phi} = 50 \frac{\text{мм}}{\text{мин}}$; тогда $S_{o\phi} = 0.16 \frac{\text{мм}}{\text{o}6}$.

Фактическая скорость резания:

$$V_{\Phi} = \frac{\pi D n_{\Phi}}{1000} = \frac{\pi \cdot 20 \cdot 315}{1000} = 19.8 \frac{M}{MUH}$$

Табличное значение мощности резания корректируется по формуле:

$$N = \frac{N_{\rm T}}{K_{N_{\rm M}}}$$

 $N_{\rm t} = 0{,}44\,{\rm кВт}\,[7,\,{\rm карта}\,51]$

 $K_{N_{\rm M}} = 1,0$ [7, карта 53]

$$N = \frac{0.44}{1.0} = 0.44 \,\mathrm{kBT}$$

Табличное значение осевой силы резания корректируется по формуле:

$$P = \frac{P_{\scriptscriptstyle \rm T}}{K_{P_{\scriptscriptstyle \rm M}}}$$

 $P_{\rm t} = 188 \, {\rm H} \, [7, \, {\rm карта} \, 46]$

$$K_{P_{\rm M}} = 1,0$$
 [7, карта 53]

$$P = \frac{188}{1.0} = 188 \,\mathrm{H}$$

Основное время обработки одного отверстия рассчитывается по формуле:

$$t_o = \frac{L}{nS_o} = \frac{l_{\rm BP} + l + l_{\rm nep}}{V_S}$$

где $l_{\rm вp}$ — длина на врезание, [мм]

l — глубина обработки [мм]

 l_{nep} — длина на перебег [мм]

При зенковании фасок перебег отсутствует, а длина на врезание определяется по формуле:

$$l_{\rm Bp} = 1 + \frac{D}{2} \cdot \tan 45^{\circ}$$

$$l_{\rm Bp} = 1 + \frac{20}{2} \cdot \tan 45^{\circ} = 11 \,\mathrm{MM}$$
 $t_o = \frac{11 + 1.6 + 0}{50} = 0.03 \,\mathrm{M}$ ин

Полученные значения параметров режимов резания сведены в табл. 2.

Таблица 2 — Режимы резания для переходов операции 040

	t, MM	$S_o, rac{ ext{mm}}{ ext{of}}$	$n, \frac{\text{of}}{\text{мин}}$	$V, \frac{M}{MUH}$	t_o , мин
T01	9,25	0,25	400	23,3	0,42
T02	5,1	0,43	750	24	0,09
T03	0,6	0,80	400	24,8	0,1
T04	0,15	0,75	200	12,6	0,22
T05		1,75	180	6,8	0,15
T06	1,6	0,16	315	19,8	0,03

2.1.6 Техническое нормирование

Под техническим нормированием подразумевается определение технически обоснованной нормы времени на выполнение операции.

Штучное время $t_{\text{иит}}$ рассчитывается по формуле:

$$t_{\text{HIT}} = t_{\text{O}} + t_{\text{B}} + t_{\text{OGC}} \tag{1}$$

где t_{0} — основное время операции

 $t_{\scriptscriptstyle \mathrm{B}}$ — вспомогательное время

 $t_{
m oбc}$ — время на обслуживание рабочего места

Основное время операции определяется как сумма времени выполнения всех переходов.

$$t_{0} = N \sum_{i=1}^{n} k_{i} t_{oi}$$
 (2)

где k_i — количество поверхностей, обрабатываемых на переходе i

N — количество позиций обработки

 t_{oi} — основное время выполнения перехода i

$$t_{o} = 6 \cdot (4 \ t_{o}^{\text{T01}} + 8 \ t_{o}^{\text{T02}} + 4 \ t_{o}^{\text{T03}} + 4 \ t_{o}^{\text{T04}} + 8 \ t_{o}^{\text{T05}} + 12 \ t_{o}^{\text{T06}}) =$$

$$= 6 \cdot (4 \cdot 0.42 + 8 \cdot 0.09 + 4 \cdot 0.1 + 4 \cdot 0.22 + 8 \cdot 0.15 + 12 \cdot 0.03) =$$

$$= 31.44 \text{ мин}$$

Вспомогательное время рассчитывается по формуле:

$$t_{\rm B} = t_{\rm ycT} + t_{\rm B. O.} + t_{\rm H3M}^{\rm IIIT} \tag{3}$$

где t_{vcr} — время установки заготовки

 $t_{\rm B.\,O.}$ — время, связанное с выполнением операции

 $t_{\scriptscriptstyle \mathrm{H3M}}^{\scriptscriptstyle \mathrm{IIIT}}$ — время на измерения, приведённое к одной детали

Время установки рассчитывается по формуле:

$$t_{\text{VCT}} = a \cdot Q^{x} \tag{4}$$

где a, x — коэффициенты, зависящие от схемы закрепления

Q — вес заготовки [кг]

Для установки в специальном приспособлении по отверстию с креплением гайкой или винтом ключом a = 0.26, x = 1.0 [9, прил. 3].

$$t_{\text{уст}} = 0.26 \cdot 253,6^{0.22} = 0.88$$
 мин

Время, связанное с выполнением операции [9, прил. 4]:

Включение станка: 0,02 мин;

Подвод инструмента: 0,02 мин;

Отвод инструмента: 0,02 мин;

Смена инструмента: 0,04 мин;

Поворот стола: 0,05 мин;

Выключение станка: 0,02 мин.

$$t_{\text{B. O.}} = 0.02 + 6 \; (2 \cdot 8 + 3 \cdot 4) \cdot 0.02 + 6 \; (2 + 3) \cdot 0.02 + 6 \; (2 + 3) \cdot 0.04 + 6 \cdot 0.5 + 0.02 = 5.50 \,\text{мин}$$

Время на измерения рассчитывается по формуле:

$$t_{\text{\tiny H3M}} = \sum k D_{\text{\tiny H3M}}^z L_{\text{\tiny H3M}}^u \tag{5}$$

где k, z, u — коэффициенты, зависящие от способа измерения

 $D_{\mbox{\tiny ИЗМ}},\,L_{\mbox{\tiny ИЗМ}}$ — размеры контролируемой поверхности [мм]

Для контроля размера отверстий 6...10 квалитета калибр-пробкой k=0,0196, u=0,178, z=0,247 [9, прил. 5].

$$t_{\mathrm{H3M}} = 0.0196 \cdot (24 \cdot 20^{0.178} \cdot 35^{0.247} + 48 \cdot 12^{0.178} \cdot 25^{0.247}) = 5.17$$
 мин

При выборочном время измерения приводится к одной детали по формуле:

$$t_{\text{M3M}}^{\text{IIIT}} = \frac{k}{100} t_{\text{M3M}} \tag{6}$$

где k — число контрольных измерений на 100 деталей [%]

Для сверления отверстий диаметром 10...25 мм k = 2%.

$$t_{\text{изм}}^{\text{шт}} = \frac{2}{100} \cdot 5,17 = 0,10 \,\text{мин}$$

$$t_{\rm b} = 0.88 + 5.50 + 0.10 = 6.48$$
 мин

Время обслуживания рабочего места определяется в процентах от суммы основного и вспомогательного:

$$t_{\rm oбc} = \frac{k}{100} (t_{\rm o} + t_{\rm B}) \tag{7}$$

где k — коэффициент, зависящий от вида оборудования [%]

Для обработки на горизонтально-фрезерных станках с длиной стола $700...1500 \,\mathrm{MM}\ k = 4,5\,\%$ [9, прил. 5].

$$t_{\text{обс}} = \frac{4,5}{100} (31,44 + 6,48) = 1,71 \text{ мин}$$

$$t_{\text{IIIT}} = 31,44 + 6,48 + 1,71 = 39,63$$
 мин

Штучно-калькуляционное время $t_{\text{шт}}^{\text{к}}$ включает в себя подготовительнозаключительное время на операцию. Его можно приближённо рассчитать по формуле:

$$t_{\text{HIT}}^{\text{K}} = \varphi_{\text{k}} t_{\text{HIT}} \tag{8}$$

где $\varphi_{\mathbf{k}}$ — коэффициент, зависящий от типа станка

Для обработки на фрезерных станках с ЧПУ $\phi_{\rm k}=$ 1,25 [9, прил. 7].

$$t_{\text{пит}}^{\text{K}} = 1,25 \cdot 39,63 = 49,54$$
 мин

2.1.7 Выбор методов и средств операционного контроля

Для контроля размера полученных отверстий выбран калибр-пробка Ø20 8133-0934 Н7 ГОСТ 14810-69. Для контроля резьбовых отверстий выбран резьбовой проходной калибр-пробка М12-7Н ГОСТ 24939-81.

2.2 Проектирование фрезерной операции

2.2.1 Выбор и характеристика оборудования

Операция выполняется на бесконсольном вертикально-фрезерном станке 65А80.

Фрезерный станок модели 65A80 с крестовым столом предназначен для скоростного фрезерования крупногабаритных деталей в основном торцовыми фрезами в условиях индивидуального и серийного производства. Станок модели 65A80 бесконсольного типа предназначен для высокопроизводительного фрезерования деталей из чугуна, стали и цветных металлов. На станке выполняется обработка не только сырых, но и закаленных деталей с применением современного инструмента с ножами из эльбора, сверхтвёрдых композиционных материалов из металлокерамики. На станке производится фрезерование, сверление, зенкерование, развертывание и растачивание.

Основные характеристики станка:

- Класс точности Н по ГОСТ 8-82
- Размеры рабочей поверхности стола 2000 × 800 мм
- Расстояние от торца шпинделя до поверхности стола 125...900 мм
- Расстояние от станины до оси шпинделя 850 мм
- Наибольший продольный ход стола (Х) 1600 мм
- Наибольший поперечный ход стола (Y) 800 мм
- Наибольший вертикальный ход шпинделя (Z) 775 мм
- Наибольшая масса обрабатываемой заготовки 6000 кг
- Частота вращения шпинделя $5...2000 \frac{\text{об}}{\text{мин}}$, 85 ступеней
- Электродвигатель привода шпинделя 20 кВт
- Масса станка 18,5 т

На рис. 3 приведены габариты рабочего пространства бесконсольного вертикально-фрезерного станка 65A80 (а) и его посадочные и присоединительные размеры (б).

(а) габаритные размеры рабочего поля

(б) посадочные и присоединительные базы

Рисунок 3 — Посадочные и присоединительные размеры станка 65А80

2.2.2 Выбор и обоснование схемы базирования

Базирование осуществляется по схеме, представленной на рис. 4

Рисунок 4 — Схема базирования на операции 045

1, 2, 3 — установочная база,

4, 5 — направляющая база,

6 — опорная база

2.2.3 Выбор и обоснование последовательности и содержания переходов

На операции 045 осуществляется обработка паза, расположенных под углом к торцу детали. Деталь установлена в специальном приспособлении под наклоном. Обработка паза производится за один проход концевой фрезой, радиус которой совпадает с радиусом скруглений паза. Последовательность обработки приведена в табл. 3

Таблица 3 — Содержание основных переходов операции 045

2.2.4 Выбор и характеристика режущего инструмента

Для фрезерования паза (34) выбрана концевая фреза 1-25 ГОСТ Р 50572-93. Материал режущей части фрезы — быстрорежущая сталь Р6М5 [7, прил. 4].

2.2.5 Расчёт режимов и сил резания

Расчёт ведётся табличным методом по методике, приведённой в [7]. Обработка происходит за один рабочий ход.

Ширину фрезерования B измеряют в направлении, параллельном оси фрезы, а глубину резания t — в направлении, перпендикулярном оси фрезы.

При выбранной схеме обработки $B_{\rm max} = 37,5$ мм, $t_{\rm max} = 15,3$ мм.

Табличное значение подачи корректируют по формуле:

$$S_z = S_{z_{\rm T}} K_{S_{\rm M}} K_{S_{\rm H}} K_{S_{\rm Z}} K_{S_{\rm I}}$$
 (9)

$$S_{z_{\mathrm{T}}} = 0.09 \, \frac{\mathrm{MM}}{\mathrm{3y6}} \, [7$$
, карта 81]

$$K_{S_{\mathrm{M}}} = K_{S_{\mathrm{H}}} = 1,0$$

 $K_{S_{\mathrm{Z}}} = 0,60$
 $K_{S_{\mathrm{I}}} = 0,85$ [7, карта 82]

$$S_z = 0.09 \cdot 1.00 \cdot 0.60 \cdot 0.85 = 0.05 \frac{\text{MM}}{3\text{y}6}$$

Полученное значение сравнивают с максимально допустимым при заданной шероховатости поверхности. Для получения шероховатости Ra 6,3 при фрезеровании фрезой Ø25 с шестью зубьями $S_z^{\rm max}=0.07\,{\rm MM\over 3yo}$. Окончательно выбирается меньшее значение.

Подача при врезании должна быть снижена на 30 %.

Табличное значение скорости резания корректируют по формуле:

$$V = V_{\rm T} K_{V_{\rm O}} K_{V_{\rm M}} K_{V_{\rm H}} K_{V_{\rm T}} K_{V_{\rm B}} K_{V_{\rm T}} K_{V_{\rm w}}$$
 (10)

$$V_{\mathrm{T}}=18\,rac{\mathrm{M}}{\mathrm{Muh}}\,[7,\,\mathrm{карта}\,\,87]$$
 $K_{V_{\mathrm{O}}}=K_{V_{\mathrm{M}}}=K_{V_{\mathrm{H}}}=K_{V_{\mathrm{T}}}=K_{V_{\mathrm{X}}}=1,\!00$ $K_{V_{\mathrm{B}}}=0,\!93$ $K_{V_{\mathrm{T}}}=0,\!80\,[7,\,\mathrm{карта}\,\,85]$

$$V = 18 \cdot 1,00 \cdot 0,93 \cdot 0,80 = 13,4 \frac{M}{MUH}$$

$$n = \frac{1000V}{\pi D} \frac{1000 \cdot 13,4}{\pi \cdot 25} = 170,6 \frac{o6}{MUH}$$

$$S_m = S_z z n = 0,05 \cdot 6 \cdot 170,6 = 51,2 \frac{MM}{MUH}$$

Станок позволяет регулировать обороты шпинделя и подачи бесступенчато. Фактические режимы резания округляют до значений из стандартных рядов предпочтительных чисел в меньшую сторону: $n_{\phi} = 160 \frac{\text{об}}{\text{мин}},$ $S_{\text{м}\phi} = 50 \frac{\text{мм}}{\text{мин}}.$

Фактическая скорость резания:

$$V_{\phi} = \frac{\pi D n_{\phi}}{1000} = \frac{\pi \cdot 25 \cdot 160}{1000} = 12.6 \frac{M}{MUH}$$

Табличное значение мощности резания корректируют по формуле:

$$N = N_{\rm T} K_{N_0} K_{N_{\rm M}} K_{N_{\rm H}} K_{N_{\rm T}} K_{N_{\rm R}} K_{N_{\rm H}} K_{N_{\rm M}}$$
(11)

$$N_{\mathrm{T}}=1,38~\mathrm{кВт}~[7,~\mathrm{карта}~87]$$
 $K_{N_{\mathrm{O}}}=K_{N_{\mathrm{M}}}=K_{N_{\mathrm{H}}}=K_{N_{\mathrm{T}}}=K_{N_{\mathrm{X}}}=1,00$ $K_{N_{\mathrm{B}}}=0,93$ $K_{N_{\mathrm{H}}}=0,80~[7,~\mathrm{карта}~85]$

$$V = 1.38 \cdot 1.00 \cdot 0.93 \cdot 0.80 = 1.03 \text{ kBt}$$

Составляющие силы резания корректируют по формуле:

$$P = P_{\rm T} K_{P_{\rm o}} K_{P_{\rm M}} K_{P_{\rm Z}} K_{P_{\rm B}} \tag{12}$$

$$P_{y_{\mathrm{T}}} = 950\,\mathrm{H}$$
 $P_{z_{\mathrm{T}}} = 2875\,\mathrm{H}$ [7, карта 88] $K_{P_{0}} = 0.90$ $K_{P_{\mathrm{M}}} = 1.00$ $K_{P_{\mathrm{Z}}} = 1.50$ $K_{P_{\mathrm{B}}} = 2.00\,\mathrm{[7,\,kapta\,88]}$

$$P_{y_{\text{T}}} = 950 \cdot 1,00 \cdot 0,90 \cdot 1,50 \cdot 2,00 = 2565 \text{ H}$$

 $P_{z_{\text{T}}} = 2875 \cdot 1,00 \cdot 0,90 \cdot 1,50 \cdot 2,00 = 7763 \text{ H}$

Основное время обработки паза рассчитывается по формуле:

$$t_o = \frac{l}{S_{\rm M}} + \frac{l_{\rm Bp}}{S_{\rm M}^{\rm Bp}}$$
$$S_{\rm M}^{\rm Bp} = S_{\rm M} - 30 \%$$

где
$$l$$
 — длина обработки, $\left[\frac{\text{об}}{\text{мин}}\right]$

 $l_{\mathrm{вp}}$ — длина движения врезания, $\left[\frac{\mathrm{of}}{\mathrm{\scriptscriptstyle MИH}}\right]$

$$S_{\rm M}^{\rm BP} = 0.7 \cdot 50 = 35 \, {\rm of \over {
m MИH}}$$
 $l = 25 \, {
m MM}$ $l^{\rm BP} = 15 \, {
m MM}$ $t_o = {25 \over 50} + {15 \over 35} = 0.93 \, {
m MИH}$

Полученные значения параметров режимов резания сведены в табл. 4.

Таблица 4 — Режимы резания для переходов операции 045

t, MM	$S_{\scriptscriptstyle m M}, rac{\scriptscriptstyle m MM}{\scriptstyle m MUH}$	$n, \frac{\text{of}}{\text{мин}}$	$V, \frac{M}{MUH}$	t_o , мин
15,3	50	160	12,6	0,93

2.2.6 Техническое нормирование

Под техническим нормированием подразумевается определение технически обоснованной нормы времени на выполнение операции.

Штучное время $t_{\text{пит}}$ рассчитывается по формуле:

$$t_{\text{IIIT}} = t_{\text{O}} + t_{\text{B}} + t_{\text{OSC}}$$

где t_{0} — основное время операции

 $t_{\scriptscriptstyle \mathrm{B}}$ — вспомогательное время

 $t_{
m oбc}$ — время на обслуживание рабочего места

Вспомогательное время рассчитывается по формуле:

$$t_{\rm B} = t_{\rm yct} + t_{\rm B.\,O.} + t_{\rm H3M}^{\rm IIIT}$$

где $t_{\text{уст}}$ — время установки заготовки

 $t_{\rm B.~O.}$ — время, связанное с выполнением операции

 $t_{\text{изм}}^{\text{ШТ}}$ — время на измерения, приведённое к одной детали

Время установки рассчитывается по формуле:

$$t_{\rm ycr} = a \cdot Q^x$$

где а, х — коэффициенты, зависящие от схемы закрепления

Q — вес заготовки [кг]

Для установки в специальном приспособлении по отверстию с креплением гайкой или винтом ключом a = 0.26, x = 1.0 [9, прил. 3].

$$t_{
m yct} = 0.26 \cdot 250.8^{0.22} = 0.88$$
 мин

Время, связанное с выполнением операции [9, прил. 4]:

Включение станка: 0,02 мин;

Подвод инструмента: 0,02 мин;

Отвод инструмента: 0,02 мин;

Выключение станка: 0,02 мин.

$$t_{\text{в. o.}} = 0.02 + 0.02 + 0.02 + 0.02 = 0.08 \text{ мин}$$

Время на измерения рассчитывается по формуле:

$$t_{\text{изм}} = \sum k D_{\text{изм}}^z L_{\text{изм}}^u$$

где k, z, u — коэффициенты, зависящие от способа измерения

 $D_{\mbox{\tiny ИЗМ}},\,L_{\mbox{\tiny ИЗМ}}$ — размеры контролируемой поверхности [мм

Для контроля размера угла фасонным шаблоном простого профиля с точностью 0,15...0,25 мм k=0,0113, u=0, z=0,368 [9, прил. 5].

$$t_{\text{изм}} = 0.0113 \cdot 50^{0.368} = 0.05$$
 мин

При выборочном время измерения приводится к одной детали по формуле:

$$t_{\text{M3M}}^{\text{IIIT}} = \frac{k}{100} t_{\text{M3M}}$$

где k — число контрольных измерений на 100 деталей [%]

Для фрезерования плоскостей k = 10 %.

$$t_{\text{изм}}^{\text{шт}} = \frac{10}{100} \cdot 0.05 = 0.01 \text{ мин}$$

$$t_{\rm b} = 0.88 + 0.08 + 0.01 = 0.97$$
 мин

Время обслуживания рабочего места определяется в процентах от суммы основного и вспомогательного:

$$t_{\text{oбc}} = \frac{k}{100} \left(t_{\text{o}} + t_{\text{B}} \right)$$

где k — коэффициент, зависящий от вида оборудования [%]

Для обработки на фрезерных станках с длиной стола $700...1500 \,\mathrm{MM}$ $k=4.5\,\%$ [9, прил. 5].

$$t_{\text{обс}} = \frac{4.5}{100} (0.93 + 0.97) = 0.09 \,\text{мин}$$

$$t_{\text{IIIT}} = 0.93 + 0.97 + 0.09 = 1.99$$
 мин

Штучно-калькуляционное время $t_{\text{шт}}^{\text{к}}$ включает в себя подготовительнозаключительное время на операцию. Его можно приближённо рассчитать по формуле:

$$t_{\text{IIIT}}^{\text{K}} = \varphi_{\text{k}} t_{\text{IIIT}}$$

где $\varphi_{\mathbf{k}}$ — коэффициент, зависящий от типа станка

Для обработки на фрезерных станках $\varphi_{\rm k} = 1,75$ [9, прил. 7].

$$t_{\text{шт}}^{\text{K}} = 1,75 \cdot 1,99 = 3,48$$
 мин

2.2.7 Выбор методов и средств операционного контроля

Для контроля выдерживаемого угла выбран фасонный шаблон 60° .

3 РАСЧЁТ И ПРОЕКТИРОВАНИЕ СТАНОЧНЫХ ПРИСПОСОБЛЕНИЙ

3.1 Приспособление для сверлильной операции с ЧПУ

3.1.1 Характеристика и описание принципа работы приспособления

Спроектированное приспособление — специальное, одноместное, с ручным приводом. Предназначено для установки и закрепления заготовки на поворотном столе станка на сверлильной операции с ЧПУ.

Заготовка устанавливается на установочные элементы, закреплённые на плите приспособления и закрепляется с помощью быстросъёмной шайбы, что позволяет ускорить процесс установки. Усилие закрепления создаётся вручную гайкой M20.

Установочные элементы приспособления — три плоские опоры, цилиндрический палец Ø125 и срезанный палец Ø25. Технологические базы детали выбраны так, чтобы обеспечить их совпадение с измерительными, в соответствии с принципом совмещения баз.

Приспособление базируется на столе станка при помощи круглых штифтов, один из которых ориентирует приспособление по центральному отверстию стола станка, обеспечивая совпадение оси приспособления с осью вращения стола, а второй — по Т-образному пазу стола, предотвращая поворот приспособления относительно стола. Приспособление закрепляется на столе четырьмя болтами для Т-образных пазов.

3.1.2 Силовой расчёт приспособления

Приложенная сила закрепления должна исключить возможность отрыва, сдвига или проворота заготовки под действием сил резания на протяжении всего процесса обработки. Сущность силового расчёта заключается в том, чтобы определить силу закрепления, которая обеспечит равновесие заготовки под действием всех приложенных к ней внешних сил: сил резания, закрепления, реакции опор и сил трения.

Для силового расчёта необходимо составить расчётную схему, на которой обозначены внешние силы, действующие на заготовку.

Рисунок 5 — Расчётная схема для силового расчёта приспособления для операции 040

При данной расчётной схеме сила закрепления находится по формуле:

$$Q = \frac{KP}{f_1 + f_2} \tag{13}$$

где K — коэффициент запаса

Р — сила резания, возникающая при обработке [H]

 $f_1,\,f_2$ — коэффициенты трения между поверхностью заготовки и установочными и зажимными элементами приспособления

Силы резания в процессе обработки изменяются, поэтому для обеспечения надёжности закрепления силу зажима рассчитывают с учётом коэффициента запаса. Он рассчитывается по формуле:

$$K = K_0 K_1 K_2 K_3 K_4 K_5 K_6 (14)$$

где $K_0 = 1,5$ — гарантированный коэффициент запаса

 $K_1 = 1$ — коэффициент, учитывающий увеличение силы резания из-за случайных неровностей на заготовке

 $K_2 = 1$ — коэффициент, учитывающий увеличение силы резания из-за затупления инструмента

 $K_3 = 1$ — коэффициент, учитывающий увеличение силы резания при прерывистом резании

 $K_4 = 1,2$ — коэффициент, учитывающий непостоянство усилия зажима

 $K_5=1,2$ — коэффициент, учитывающий удобство расположения рукоятки ручного зажимного устройства

 $K_6 = 1,1$ — коэффициент, учитывающий неопределённости из-за неровностей места контакта заготовки с опорными элементами, имеющими ограниченную опорную поверхность

Значения коэффициентов выбраны в соответствии с рекомендациями [12, разд. 4.1].

$$K = 1.5 \cdot 1 \cdot 1 \cdot 1.1 \cdot 1.2 \cdot 1.2 \cdot 1.1 = 2.38$$

Принимают коэффициент запаса $K \ge 2,5$.

В соответствии с условиями контакта опор и зажимных элементов приспособления, выбраны коэффициенты трения $f_1=f_2=0.16$ [11, с. 85, табл. 10].

Максимальную силу, действующую в процессе обработки, оказывает сверло $\emptyset 18,5$ на переходе T01. Это осевая сила $P=4345\,\mathrm{H}.$

$$Q = \frac{2,5 \cdot 4345}{0,16 + 0,16} = 33\,945\,\mathrm{H}$$

Закрепление осуществляется гайкой. При известной силе закрепления номинальный диаметр винта d вычисляют по формуле:

$$d = 1.4 \sqrt{\frac{Q}{[\sigma]_{\rm p}}} \tag{15}$$

где $[\sigma]_p$ — допустимое напряжение растяжения материала винта [МПа] Для Стали 45 $[\sigma]_p = 200\,\mathrm{M}\Pi$ а.

$$d = 1.4 \sqrt{\frac{33945}{200}} = 18.2 \,\text{mm}$$

Назначена резьба М20.

Необходимый крутящий момент на гайке рассчитывается по формуле: [11, с. 87]

$$M_{\rm kp} = 0.2 \ Qd_2 \tag{16}$$

где d_2 — средний диаметр резьбы [мм]

Для резьбы M20 $d_2 = 18,376$ мм.

$$M_{\rm KP} = 0.2 \cdot 33945 \cdot 18,379 = 124756 \,\mathrm{H\cdot MM} = 124,8 \,\mathrm{H\cdot M}$$

В приспособлениях с ручным приводом усилие на конце рукоятки при закреплении не должно превышать $160\,\mathrm{H}$. Необходимая для выполнения этого условия длина рукоятки L определяется по формуле:

$$L = \frac{M_{\text{kp}}}{P_{\text{max}}}$$

$$L = \frac{124.8}{160} = 0.78 \,\text{M}$$
(17)

3.1.3 Прочностной расчёт приспособления

При проектировании приспособления необходимо выполнить расчёт на прочность «слабого звена» — наиболее нагруженного элемента конструкции.

Сущность прочностного расчёта заключается в определении действующих на «слабое звено» напряжений и сравнении их с допускаемыми.

В проектируемом приспособлении «слабым звеном», наиболее вероятно, окажется шпилька, с помощью которой осуществляется закрепление. Произведён её расчёт на разрыв по внутреннему диаметру резьбы.

Условие прочности можно определить как: [10, форм. 14.6]

$$\sigma = \frac{4 Q}{\pi d_3^2} \le [\sigma]_p \tag{18}$$

где Q — сила, растягивающая болт [H]

 d_3 — внутренний диаметр резьбы [мм]

 $[\sigma]_p$ — допускаемое напряжение [МПа]

Для резьбы M20 $d_3 = 16,933$ мм.

$$\sigma = \frac{433945}{\pi \cdot 16.933^2} = 150,7 \,\mathrm{MHa}$$

Для Стали 45 $[\sigma]_{\rm p} = 200\,{\rm M}\Pi{\rm a}$

150,7 МПа
$$< 200 \, \text{МПа}$$

Условие прочности выполняется, значит прочность «слабого звена» обеспечивается.

3.1.4 Точностной расчёт приспособления

3.2 Приспособление для фрезерной операции

3.2.1 Характеристика и описание принципа работы приспособления

Спроектированное приспособление — специальное, одноместное, с ручным приводом. Предназначено для установки и закрепления заготовки под наклоном на столе фрезерного станка для фрезеровки паза под углом.

Заготовка устанавливается на установочные элементы, закреплённые на плите приспособления и закрепляется с помощью быстросъёмной шайбы, что позволяет ускорить процесс установки. Усилие закрепления создаётся вручную гайкой M20.

Установочные элементы приспособления — обработанная плоскость плиты, внутренняя цилиндрическая поверхность Ø590 и срезанный палец Ø45.

Приспособление закрепляется на столе станка четырьмя болтами для Т-образных пазов.

Наклон плит приспособления относительно друг друга осуществляется с помощью элементов универсальной станочной оснастки — угловых опор. Опоры базируются на основании по цилиндрическим штифтам, закрепляется болтом. На опорах таким же образом установлена наклонная плита, на которую устанавливается заготовка.

3.2.2 Силовой расчёт приспособления

Приложенная сила закрепления должна исключить возможность отрыва, сдвига или проворота заготовки под действием сил резания на протяжении всего процесса обработки. Сущность силового расчёта заключается в том, чтобы определить силу закрепления, которая обеспечит равновесие заготовки под действием всех приложенных к ней внешних сил: сил резания, закрепления, реакции опор и сил трения.

Для силового расчёта необходимо составить расчётную схему, на которой обозначены внешние силы, действующие на заготовку.

Рисунок 6 — Расчётная схема для силового расчёта приспособления для операции 045

При данной расчётной схеме сила закрепления должна удовлетворять каждому из следующих условий:

$$Q \ge K \frac{P_z \cos 60^\circ - G \cos 60^\circ}{f_1 + f_2} \tag{19}$$

$$Q \ge K \left(P_z \sin 60^\circ - G \sin 60^\circ \right) \tag{20}$$

$$Q \ge K \frac{P_y}{f_1 + f_2} \tag{21}$$

где K — коэффициент запаса

 $P_z,\, P_y$ — соответствующие компоненты силы резания, возникающей при обработке [H]

G — вес заготовки [H]

 f_1, f_2 — коэффициенты трения между поверхностью заготовки и установочными и зажимными элементами приспособления

Силы резания в процессе обработки изменяются, поэтому для обеспечения надёжности закрепления силу зажима рассчитывают с учётом коэффициента запаса. Он рассчитывается по формуле:

$$K = K_0 K_1 K_2 K_3 K_4 K_5 K_6$$

где $K_0 = 1,5$ — гарантированный коэффициент запаса

 $K_1 = 1$ — коэффициент, учитывающий увеличение силы резания из-за случайных неровностей на заготовке

 $K_2 = 1$ — коэффициент, учитывающий увеличение силы резания из-за затупления инструмента

 $K_3 = 1$ — коэффициент, учитывающий увеличение силы резания при прерывистом резании

 $K_4 = 1,2$ — коэффициент, учитывающий непостоянство усилия зажима

 $K_5 = 1,2$ — коэффициент, учитывающий удобство расположения рукоятки ручного зажимного устройства

 $K_6 = 1,1$ — коэффициент, учитывающий неопределённости из-за неровностей места контакта заготовки с опорными элементами, имеющими ограниченную опорную поверхность

Значения коэффициентов выбраны в соответствии с рекомендациями [12, разд. 4.1].

$$K = 1.5 \cdot 1 \cdot 1 \cdot 1 \cdot 1.2 \cdot 1.2 \cdot 1.1 = 2.38$$

Принимают коэффициент запаса $K \ge 2.5$.

В соответствии с условиями контакта опор и зажимных элементов приспособления, выбраны коэффициенты трения $f_1=f_2=0.16$ [11, c. 85, табл. 10].

Силы, возникающие в процессе обработки: $P_y = 950\,\mathrm{H},\,P_z = 2875\,\mathrm{H}.$ Вес заготовки: $G = 2458\,\mathrm{H}$

$$Q \ge 2.5 \frac{2875 \cos 60^{\circ} - 2458 \cos 60^{\circ}}{0.16 + 0.16} = 1630 \,\text{H}$$

$$Q \ge 2.5 (2875 \sin 60^{\circ} - 2458 \sin 60^{\circ}) = 903 \,\text{H}$$

$$Q \ge 2.5 \frac{950}{0.16 + 0.16} = 7422 \,\text{H}$$

Выбирается наибольшее из полученных значений. $Q = 7422 \, \mathrm{H}$

Закрепление осуществляется гайкой. При известной силе закрепления номинальный диаметр винта d вычисляют по формуле:

$$d = 1.4 \sqrt{\frac{Q}{[\sigma]_{\rm p}}}$$

где $[\sigma]_p$ — допустимое напряжение растяжения материала винта [МПа] Для Стали 45 $[\sigma]_p = 200\,\mathrm{M}\Pi$ а.

$$d = 1.4 \sqrt{\frac{7421}{200}} = 7.6 \,\text{mm}$$

Назначена резьба М20.

Необходимый крутящий момент на гайке рассчитывается по формуле: [11, с. 87]

$$M_{\rm \kappa p} = 0.2 \ Qd_2$$

где d_2 — средний диаметр резьбы [мм]

Для резьбы M20 $d_2 = 18,376$ мм.

$$M_{\text{kp}} = 0.2 \cdot 7422 \cdot 18,379 = 27277 \,\text{H·mm} = 27,3 \,\text{H·m}$$

В приспособлениях с ручным приводом усилие на конце рукоятки при закреплении не должно превышать 160 Н. Силу на конце рукоятки можно определить по формуле:

$$P = \frac{M_{\rm \kappa p}}{L} \tag{22}$$

где L — длина рукоятки [м]

При L = 0.3 м

$$L = \frac{27.3}{0.3} = 90.9 \,\mathrm{H}$$

3.2.3 Прочностной расчёт приспособления

При проектировании приспособления необходимо выполнить расчёт на прочность «слабого звена» — наиболее нагруженного элемента конструкции.

Сущность прочностного расчёта заключается в определении действующих на «слабое звено» напряжений и сравнении их с допускаемыми.

В проектируемом приспособлении «слабым звеном», наиболее вероятно, окажется шпилька, с помощью которой осуществляется закрепление. Произведён её расчёт на разрыв по внутреннему диаметру резьбы.

Условие прочности можно определить как: [10, форм. 14.6]

$$\sigma = \frac{4 Q}{\pi d_3^2} \le [\sigma]_p$$

где Q — сила, растягивающая болт [H]

 d_3 — внутренний диаметр резьбы [мм]

 $[\sigma]_p$ — допускаемое напряжение [МПа]

Для резьбы M20 $d_3 = 16,933$ мм.

$$\sigma = \frac{433945}{\pi \cdot 16.933^2} = 150,7 \,\mathrm{MHa}$$

Для Стали 45 $[\sigma]_{\rm p}=200\,{\rm M}\Pi{\rm a}$

150,7 МПа < 200 МПа

Условие прочности выполняется, значит прочность «слабого звена» обеспечивается.

3.2.4 Точностной расчёт приспособления

Точностной расчёт не проводится. Требуемый размер обеспечивается методом пробных проходов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Безъязычный В. Ф.* Основы технологии машиностроения: учебник для вузов. М.: Машиностроение, 2013. 567 с.: ил. URL: https://e.lanbook.com/book/37005 (дата обр. 04.11.2018). Режим доступа.
- 2. *Блюменштейн В. Ю., Клепцов А. А.* Проектирование технологической оснастки. 2-е изд., испр. и доп. М.: Лань, 2011. 224 с. URL: https://e.lanbook.com/book/628 (дата обр. 15.12.2018).
- 3. *ГОСТ 14.205–83*. ЕСТПП. Технологичность конструкции изделий. Термины и определения.
- 4. ГОСТ 2.105-95. ЕСКД. Общие требования к текстовым документам.
- 5. *ГОСТ 3.1118-82*. ЕСТД. Формы и правила оформления маршрутных карт.
- 6. ГОСТ 3.1702-79. ЕСТД. Правила записи операций и переходов. Обработка резанием.
- 7. *Гузеев В. И., Батуев В. А., Сурков И. В.* Режимы резания для токарных и сверлильно-фрезерно-расточных станков с числовым программным управлением: Справочник / под ред. В. И. Гузеева. 2-е изд. М.: Машиностроение, 2007. 368 с.
- 8. *Малышев Е. Н., Вяткин А. Г.* Проектирование станочных приспособлений: Методические указания по выполнению курсового проекта по дисциплине «Основы конструирования приспособлений». Калуга: Калужский филиал МГТУ им. Н. Э. Баумана, 2018. 18 с.: ил.
- 9. Нормирование затрат времени на выполнение операции : Методические указания по выполнению домашнего задания по дисциплине «Технология производства деталей машин» / Е. Н. Малышев [и др.]. Калуга : Калужский филиал МГТУ им. Н. Э. Баумана, 2015. 23 с. : ил.

- 10. *Ряховский О. А., Клыпин А. В.* Детали машин : Учебник. М. : Машиностроение, 2002. 288 с. : ил.
- 11. Справочник конструктора-машиностроителя : в 2-х т. Т2 / под ред. Р. К. М. А. Г. Косиловой. 4-е изд., перераб. и доп. М. : Машиностроение, 1986. 496 с. : ил.
- 12. *Тарабаринн О. И., Абызов А. П., Ступко В. Б.* Проектирование технологической оснастки в машиностроении. 2-е изд., испр. и доп. М.: Лань, 2013. 304 с. URL: https://e.lanbook.com/book/5859 (дата обр. 05.12.2018).
- 13. Технология машиностроения: Производство машин: учебник для вузов: в 2 т. Т. 2 / В. М. Бурцев, А. С. Васильев, И. Н. Гемба [и др.]. М.: Изд-во МГТУ им. Н. Э. Баумана, 2012. 368 с. URL: https://e.lanbook.com/book/106429 (дата обр. 15.12.2018).