Logika és számításelmélet 10. előadás

Rekurzíve felsorolható nyelvek tulajdonságai

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy **tulajdonságának** nevezzük. \mathcal{P} **triviális**, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \in \mathcal{P} \}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$.

Bizonyítás

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Egy tetszőleges $\langle M, w \rangle$ TG – bemenet pároshoz elkészítünk egy M' (valójában $M'_{\langle M, w \rangle}$) kétszalagos TG-t, mely egy x bemenetén a következőképpen működik:

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-n
- 2. Így, ha M nem áll meg w-n, M' se áll meg semelyik inputján $\Rightarrow L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et $\Rightarrow L(M') = \emptyset$.
- 4. Ha M elfogadja w-t, akkor M' szimulálja M_L -et x-en (azaz L(M') = L).

Bizonyítás

Összefoglalva

- $\land \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \langle M, w \rangle \notin L_u \Rightarrow L(M') = \emptyset \Rightarrow L(M') \notin \mathcal{P} \Rightarrow \langle M' \rangle \notin L_{\mathcal{P}}.$

Azaz:

 $\langle M, w \rangle \in L_u \Leftrightarrow \langle M' \rangle \in L_P$, tehát $L_u \leq L_P$ és így $L_P \notin R$.

Bizonyítás

- **2.** eset $\emptyset \in \mathcal{P}$.
 - ► Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}} = RE \setminus \mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\emptyset \notin \overline{\mathcal{P}}$.
 - ► Azt kapjuk, hogy $L_{\overline{\varphi}} \notin R$.
 - ▶ $\overline{L_{\mathcal{P}}} \notin R$, hiszen ha R-beli lenne akkor a nem TG-kódokat elutasítva $L_{\overline{\mathcal{P}}}$ -t eldöntő TG-t kapnánk.
 - ► $\overline{L_{\mathcal{P}}} \notin R \Rightarrow L_{\mathcal{P}} \notin R$ (tétel volt).

Alkalmazások

Következmények:

Eldönthetetlen, hogy egy M TG

- ▶ az üres nyelvet ismeri-e fel. ($\mathcal{P} = \{\emptyset\}$)
- véges nyelvet ismer-e fel ($\mathcal{P} = \{L \mid L \text{ véges }\}$)
- ► környezetfüggetlen nyelvet ismer-e fel $(\mathcal{P} = \{L \mid L \text{ környezetfüggetlen }\})$
- ▶ elfogadja-e az üres szót ($\mathcal{P} = \{L \in RE \mid \varepsilon \in L\}$)

▶ ...

Legyenek $u_1, \ldots, u_n, v_1 \ldots, v_n \in \Sigma^+ \ (n \ge 1)$.

A $D = \{d_1, \dots, d_n\}$ halmazt **dominókészletnek** nevezzük ha $d_i = \frac{u_i}{v_n}$ $(1 \le i \le n)$.

A $d_{i_1} \cdots d_{i_m}$ sorozat $(m \ge 1)$ a D egy **megoldása**, ha $d_{i_j} \in D$ $(1 \le j \le m)$ és $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$.

Példa: Az $\left\{\frac{b}{ca}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ egy megoldása $\frac{a}{ab}$ $\frac{b}{ca}$ $\frac{ca}{a}$ $\frac{a}{ab}$ $\frac{abc}{c}$.

Megjegyzés: Tehát a megoldáshoz a dominók többször felhasználhatók és nem kell mindet felhasználni.

Post Megfelelkezési Probléma (PMP):

 $L_{\text{PMP}} = \{\langle D \rangle \mid D\text{-nek van megoldása}\}.$

Tétel

 $L_{\text{PMP}} \in RE$.

Bizonyítás: Ha D-t egy ábécének tekintjük, akkor éppen a D feletti szavak a potenciális megoldások. Egy TG, mely ezen D feletti szavakat a hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen L_{PMP} -t ismeri fel.

Tétel

 $L_{\text{PMP}} \notin R$.

Bizonyítás:

Definiáljuk a PMP egy módosított változatát, MPMP-t. Az MPMP probléma igen-példányai olyan (D,d) (dominókészlet,dominó) párok, melyre D-nek van d-vel kezdődő megoldása.

 $L_{\text{MPMP}} = \{\langle D, d \rangle \mid d \in D \land D \text{-nek van } d \text{-vel kezdődő megoldása} \}.$

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u = a_1 \cdots a_n \in \Sigma^+$ és $* \notin \Sigma$ akkor legyen

balcsillag(u) := $*a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$. mindkétcsillag(u) := $*a_1 * a_2 * \cdots * a_n *$.

Legyen $D = \{d_1, \dots, d_n\}$ egy tetszőleges dominókészlet, ahol $d_i = \frac{u_i}{v_i}$ $(1 \le i \le n)$.

D' legyen a következő |D| + 2 méretű készlet:

$$d_0' = \frac{\text{balcsillag}(u_1)}{\text{mindk\'etcsillag}(v_1)}, \quad d_i' = \frac{\text{balcsillag}(u_i)}{\text{jobbcsillag}(v_1)} \quad (1 \le i \le n), \quad d_{n+1}' = \frac{*\#}{\#}.$$

Állítás: $\langle D, d_1 \rangle \in L_{\text{MPMP}} \iff \langle D' \rangle \in L_{\text{PMP}}$.

Az állítás bizonyítása:

- ▶ ha $d_{i_1} \cdots d_{i_m}$ MPMP egy (D, d_1) bemenetének egy megoldása, akkor $d'_0 d'_{i_2} \cdots d'_{i_m} d'_{n+1}$ megoldása D'-nek, mint PMP inputnak.
- ha $d'_{i_1} \cdots d'_{i_m}$ D'-nek, mint PMP inputnak egy megoldása, akkor az első illetve az utolsó betű egyezése miatt ez csak úgy lehetséges, hogy $d'_{i_1} = d'_0$ és $d'_{i_m} = d'_{n+1}$. Ekkor viszont $d_{i_1} \cdots d_{i_{m-1}}$ megoldása a (D, d_1) MPMP bemenetnek.

Ezzel az állítást bizonyítottuk. Mivel a megfeleltetés TG-pel kiszámítható, ezért $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Most megmutatjuk, hogy $L_u \leq L_{\text{MPMP}}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Legyen $M = (Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n)$ és $w = a_1 \cdots a_n \in \Sigma^*$. (D, d) konstrukciója:

- $d := \frac{\#}{\#q_0 a_1 \cdots a_n \#}$ (ahol $\# \notin \Sigma$) $d :\in D$
- $\text{ha } \delta(p, a) = (q, b, R), \text{ akkor } \frac{pa}{bq} :\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor $(\forall c \in \Gamma :) \frac{cpa}{qcb} :\in D$
 - $\text{ ha } \delta(p, a) = (q, b, S), \text{ akkor } \frac{pa}{qb} :\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$
- ullet $\frac{\#}{\#}, \ \frac{\#}{\sqcup \#}, \ \frac{\#}{\# \sqcup} :\in D$
- $(\forall a \in \Gamma :) \frac{aq_i}{q_i}, \frac{q_i a}{q_i} :\in D$
- $\bullet \quad \frac{q_i^{\#\#}}{\#} :\in D.$

Példa:

Ha M-nek $\delta(q_0, b) = (q_2, a, R)$ és $\delta(q_2, a) = (q_i, b, S)$ átmenetei, akkor $q_0bab \vdash aq_2ab \vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet-, $\frac{a}{a}$, $\frac{b}{b}$, $\frac{\sqcup}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Ekkor egy kirakás (|-al blokkokra osztva):

$$\frac{\#}{\#q_0bab\#} \mid \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \mid \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \mid \frac{aq_i}{q_i} \frac{b}{b} \frac{b}{b} \# \mid \frac{q_ib}{q_i} \frac{b}{b} \# \mid \frac{q_ib}{q_i} \# \mid \frac{q_i\#}{q_i} \#$$

$$\frac{\#}{\#q_0bab\#} \mid \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \mid \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \mid \frac{aq_i}{q_i} \frac{b}{b} \frac{b}{b} \# \mid \frac{q_ib}{q_i} \frac{b}{b} \# \mid \frac{q_ib}{q_i} \# \mid \frac{q_i\#}{q_i} \#$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Az első blokk csak a $d = \frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_i a}{q_i}$) típusú dominókkal egyesével behozható a felső szó lemaradása, egészen addig, amíg az alsó rész már csak q_i #-al hosszabb.

Végül a 7. blokkban csak egy (záró)dominó szerepel, melynek az a szerepe, hogy behozza a még megmaradt lemaradást.

A fenti példa alapján meg lehet általános esetben is konstruálni egy megoldást, így $w \in L(M) \Rightarrow \text{van } \langle D, d \rangle$ -nak megoldása.

Másrészt ha van d-vel kezdődő megoldás, akkor ez a dominósorozat két szavának hosszára vonatkozó megfontolások alapján csak q_i -t tartalmazó dominók használatával lehetséges. Meggondolható, hogy minden kirakás gyakorlatilag konfigurációátmenetek sorozata kell legyen az első q_i megjelenéséig, és így a w szóhoz tartozó kezdőkonfigurációból el lehet jutni elfogadó konfigurációba, azaz $w \in L(M)$.

Nyilván $\langle D, d \rangle \langle M, w \rangle$ -ből TG-pel kiszámítható, így beláttuk, hogy $L_u \leq L_{\text{MPMP}}$.

Innen a tétel bizonyítása: $L_u \leq L_{\text{MPMP}}$, $L_{\text{MPMP}} \leq L_{\text{PMP}}$ és tudjuk már, hogy $L_u \notin R$. Ebből a visszavezetés tranzitivitása és korábbi tételünk alapján $L_{\text{PMP}} \notin R$.

CF nyelvtanokkal kapcsolatos eldönthetetlen problémák

Egyértelmű nyelvtan

Egy G környezetfüggetlen (CF, 2-es típusú) nyelvtan **egyértelmű**, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\text{ECF}} = \{ \langle G \rangle \mid G \text{ egy egyértelmű CF nyelvtan} \}.$

Tétel

 $L_{\text{ECF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{\text{PMP}} \leq \overline{L_{\text{ECF}}}$.

Legyen $D = \left\{ \frac{u_1}{v_1}, \dots, \frac{u_n}{v_n} \right\}$ egy tetszőleges dominókészlet.

 $\Delta := \{a_1, \ldots, a_n\}$ úgy, hogy $\Gamma \cap \Delta = \emptyset$.

 $P_A := \{A \to u_1 A a_1, \dots, A \to u_n A a_n, A \to \varepsilon\}.$

 $P_B := \{B \to v_1 B a_1, \dots, B \to v_n B a_n, B \to \varepsilon\}.$

CF nyelvtanokkal kapcsolatos eldönthetetlen problémák

Egyértelmű nyelvtan

Bizonyítás: (folyt.)

$$G_A = \langle A, \{A\}, \Gamma \cup \Delta, P_A \rangle.$$
 $G_B = \langle B, \{B\}, \Gamma \cup \Delta, P_B \rangle.$ $G_D = \langle S, \{S, A, B\}, \Gamma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle.$

 $f: \langle D \rangle \to \langle G_D \rangle$ visszavezetés, mert:

* ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.

* ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű. A generált szavak xy, $x \in \Gamma^*, y \in \Delta^*$ alakúak, így ugyanaz a generált Γ feletti prefix is. Így a két levezetés D egy megoldását adja.

f nyilván TG-pel kiszámítható. Mivel L_{PMP} ∉ R, következik, hogy L_{ECF} ∉ R, amiből kapjuk, hogy L_{ECF} ∉ R.

CF nyelvtanokkal kapcsolatos eldönthetetlen problémák

Közös metszet, ekvivalencia, tartalmazás

Tétel

Eldönthetetlenek az alábbi CF nyelvtanokkal kapcsolatos kérdések. Legyen G_1 és G_2 két CF nyelvtan.

- ► $L(G_1) \cap L(G_2) \neq \emptyset$
- ► $L(G_1) = \Gamma^*$ valamely Γ -ra
- ► $L(G_1) = L(G_2)$
- $ightharpoonup L(G_1) \subseteq L(G_2)$

Csak az elsőt bizonyítjuk. L_{PMP} -t vezethetjük vissza rá. Legyen $D = \left\{\frac{u_1}{v_1}, \ldots, \frac{u_n}{v_n}\right\}$ a dominókészlet. Készítsük el a fenti G_A és G_B nyelvtanokat. Könnyen látható, hogy D-nek akkor és csak akkor van megoldása, ha $L(G_A)$ -nak és $L(G_B)$ -nek van nemüres metszete. (A másik 3 állítás: biz. nélkül)

Eldönthetetlen problémák az elsőrendű logikában

Tétel

Eldönthetetlen, hogy A elsőrendű logikai formulára

(1) $\models A$ teljesül-e (logikailag igaz-e).

(biz. nélkül). L_{PMP} -t lehet visszavezetni rá. Azaz minden D dominókészlethez megadható egy A_D elsőrendű formula, melyre van D-nek megoldása $\Leftrightarrow \models A_D$. (részletek l. pl. Gazdag jegyzet)

Következmény

Legyen \mathcal{F} egy elsőrendű formulahalmaz és A egy elsőrendű formula. Eldönthetetlen, hogy

- (2) A kielégíthetetlen-e
- (3) A kielégíthető-e
- (4) $\mathcal{F} \models A$ teljesül-e

Bizonyítás: (2) $\models \neg A \Leftrightarrow A$ kielégíthetetlen. (3) Eldönthetetlen nyelv komplementere. (4) Kieléghetetlenségre visszavezethető (l. logika rész)

Eldönthetetlen problémák az elsőrendű logikában

Logikából tanultuk, hogy van olyan algoritmus, ami egy tetszőleges *A* elsőrendű formulára pontosan akkor áll meg igen válasszal, ha *A* kielégíthetetlen (például a elsőrendű logika rezolúciós algoritmusa). Ezért a kielégíthetetlenség eldöntése RE-beli probléma.

⇒ a kielégíthetőség eldöntése nem RE-beli probléma.

Mi a helyzet nulladrendű logika esetén?

A fenti kérdések mindegyike eldönthető. (ítélettábla). Véges sok interpretáció van, elsőrendben végtelen.

Nulladrendű logikában, az a kérdés van-e hatékony megoldás.

A továbbiakban az R nyelvosztályt vizsgáljuk. (Bonyolultságelmélet.)

BONYOLULTSÁGELMÉLET

Determinisztikus és nemdeterminisztikus időbonyolultsági osztályok

A továbbiakban eldönthető problémákkal foglalkozunk, ilyenkor a kérdés az, hogy milyen hatékonyan dönthető el az adott probléma.

- ► TIME (f(n)) = { $L \mid L$ eldönthető O(f(n)) időigényű determinisztikus TG-pel}
- ► NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű NTG-pel}\}$
- ightharpoonup P= $\bigcup_{k>1}$ TIME (n^k) .
- ► NP= $\bigcup_{k\geq 1}$ NTIME (n^k) .
- ► Észrevétel: P⊆NP.
- ► Sejtés: P ≠ NP (sejtjük, hogy igaz, de bizonyítani nem tudjuk).

NP

A *P* tartalmazza a gyakorlatban is hatékonyan megoldható problémákat.

Milyen problémákat tartalmaz NP?

Egy L NP-beli problémához definíció szerint létezik őt polinom időben eldöntő NTG ami gyakran a következőképpen működik: a probléma minden I bemenetére polinom időben "megsejti" (azaz nemdeterminisztikusan generálja) I egy lehetséges m megoldását és polinom időben leellenőrzi (determinisztikusan), hogy m alapján $I \in L$ -e.

A következőkben a P és NP bonyolultsági osztályok közötti kapcsolatot vizsgáljuk.

Polinom idejű visszavezetés

Polinom időben kiszámítható szófüggvény

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **polinom időben kiszámítható**, ha van olyan Turing-gép, ami polinom időben kiszámítja.

Visszavezetés polinom időben

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq_p L_2$.

A polinom idejű visszavezetést Richard Karpról elnevezve *Karp-redukciónak* is nevezik.

Tétel

- ► Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$.
- ► Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

Az elsőt bizonyítjuk, a második analóg.

Polinom idejű visszavezetés

Bizonyítás:

Legyen $L_2 \in P$ és tegyük fel, hogy $L_1 \leq_p L_2$. Legyen M_2 az L_2 -t eldöntő, míg M a visszavezetést kiszámító TG. Feltehetjük, hogy M p(n) és M_2 $p_2(n)$ polinom idejű TG-ek. Konstruáljuk meg M_1 -et:

- ► M_1 eldönti az L_1 nyelvet
- ► ha w n hosszú, akkor f(w) legfeljebb p(n) hosszú lehet
- ► M_1 időigénye $p_2(p(n))$, ami szintén polinom

Polinom idejű visszavezetés

Adott problémaosztályra nézve nehéz nyelv

Legyen $\mathfrak C$ egy problémaosztály. egy L probléma $\mathfrak C$ -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathfrak C$ esetén $L' \leq_p L$.

Adott problémaosztályban teljes nyelv

Egy \mathbb{C} -nehéz L probléma \mathbb{C} -teljes, ha $L \in \mathbb{C}$.

Tétel

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

Bizonyítás: Elég megmutatni, hogy NP ⊆ P.

Legyen $L' \in NP$ egy tetszőleges probléma.

Ekkor $L' \leq_p L$, hiszen L NP-teljes.

Mivel $L \in P$, ezért az előző tétel alapján $L' \in P$.

Ez minden $L' \in NP$ -re elmondható, ezért $NP \subseteq P$.