٠, /	A: PE VO	١			
	DEC 2 2 2008 D-1449/A and B	odifica	1 DTO/SD/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
\ \	NAME OF THE N D		,	FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
	TEMENT BY			APPLICANT: Krieg et al.	
Sheet	1	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield

U.S. PATENT DOCUMENTS

Examiner's	Cite	U.S. Patent Document		Name of Patentee or Applicant of Cited	Date of Publication or Issue	
Initials #	No.	Number	Kind Code	Document	of Cited Document MM-DD-YYYY	
· . · . · . · . · . · . · . · . · . · .	A144	4,806,463		Goodchild et al.	02-21-1989	
	A145	5,004,810		Draper	04-02-1991	
<u>.</u>	A146	5,166,195		Ecker	11-24-1992	
	A147	5,194,428		Agrawal et al.	03-16-1993	
	A148	5,264,423		Cohen et al.	11-23-1993	
	A149	5,276,019		Cohen et al.	01-04-1994	
	A150	5,416,203		Letsinger	05-16-1995	
	A151	5,780,448		Davis	07-14-1998	
•	A152	6,221,882	B1	Macfarlane	04-24-2001	
	A153	6,399,630	Bl	Macfarlane	06-04-2002	
	A154	6,479,504	B1	Macfarlane et al.	11-12-2002	
	A155	6,521,637	B2	Macfarlane	02-18-2003	
	A156	6,589,940	B1	Raz et al.	07-08-2003	
	A157	6,610,308	Bl	Haensler	08-26-2003	
	A158	6,749,856	B1	Berzofsky et al.	06-15-2004	
	A159	6,835,395	B1	Semple et al.	12-28-2004	
	A160	6,852,705	B2	Audonnet et al.	02-08-2005	
	A161	7,223,741	B2	Krieg	05-29-2007	
	A162	7,271,156	B2	Krieg et al.	07-18-2007	
	A163	7,303,881	B2	Huang et al.	12-04-2007	
-	A164	7,354,711	B2	Macfarlane	04-08-2008	
	A165	7,354,909	B2	Klinman et al.	04-08-2008	
	A166	7,402,572	B2	Krieg et al.	07-22-2008	
	A167	7,410,975	B2	Lipford et al.	08-12-2008	
	A168	2002-0065236	Al	Yew et al.	05-30-2002	
	A169	2002-0142977	Al	Raz et al.	10-03-2002	
	A170	2002-0151518	Al	Agrawal et al	10-17-2002	
-	A171	2002-0168340	Al	Agrawal	11-14-2002	
	A172	2003-0119773	A1	Raz et al.	06-26-2003	
-	A173	2003-0125279	Al	Junghans et al.	07-03-2003	
	A174	2003-0129605	Al	Yu et al.	07-10-2003	
	A175	2003-0176389	Al	Raz et al.	09-18-2003	
	A176	2003-0212029	Al	Agrawal et al.	11-13-2003	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[&]quot;EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with acknowledge the North Considered. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO-1449/A and B (modified PTO/SB/08)

INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

APPLICATION NO.: 10/613,228

FILING DATE: July 3, 2003

CONFIRMATION NO.: 4680

APPLICANT: Krieg et al.

GROUP ART UNIT: 1645

EXAMINER: Nita M. Minnifield

<u></u>		1	T	Lacation
A177	2003-0225016	Al	Fearon et al.	12-04-2003
A178	2003-0232443	A1	Bennett et al.	12-18-2003
A179	2003-0232856	A1	Macfarlane	12-18-2003
A180	2004-0006010	A1	Carson et al.	01-08-2004
A181	2004-0006034	A1	Raz et al.	01-08-2004
A182	2004-0047869	A1	Garcon et al.	03-11-2004
A183	2004-0067902	A9	Bratzler et al.	04-08-2004
A184	2004-0092468	A1	Schwartz et al.	05-13-2004
A185	2004-0092472	A1	Krieg	05-13-2004
A186	2004-0171571	A1	Krieg et al.	09-02-2004
A187	2004-0198680	A1	Krieg	10-07-2004
A188	2005-0079152	A1	Bot et al.	04-14-2005
A189	2005-0159351	A1	Grate et al.	07-21-2005
A190	2005-0209184	A1	Klinman et al.	09-22-2005
A191	2006-0286070	A1	Hartmann et al.	12-21-2006
A192	2006-0287263	Al	Davis et al.	12-21-2006
A193	2007-0009482	A1	Krieg et al.	01-11-2007
A194	2007-0010470	A1	Krieg et al.	01-11-2007
A195	2007-0037767	Al	Bratzler et al.	02-15-2007
A196	2007-0065467	A1	Krieg et al.	03-22-2007
A197	2007-0066550	Al	Diener et al.	03-22-2007
A198	2007-0066553	A1	Krieg et al.	03-22-2007
A199	2007-0066554	A1	Krieg et al.	03-22-2007
A200	2007-0078104	A1	Krieg et al.	04-05-2007
A201	2007-0129320	A9	Davis et al.	06-07-2007
A202	2007-0142315	A1	Forsbach et al.	06-21-2007
A203	2007-0184465	A1	Wagner et al.	08-09-2007
A204	2007-0202128	Al	Krieg et al.	08-30-2007
A205	2007-0224210	A1	Krieg et al.	09-27-2007
A206	2007-0232622	A1	Lipford et al.	10-04-2007
A207	2008-0009455	A9	Krieg et al.	01-10-2008
A208	2008-0026011	A1	Krieg et al.	01-31-2008
A209	2008-0031936	A1	Krieg et al.	02-07-2008
A210	2008-0045473	A1	Uhlmann et al.	02-21-2008
A211	2008-0113929	Al	Lipford et al.	05-15-2008
A212	2008-0146488	Al	Wettstein et al.	06-19-2008
	*···	•	• • • • • • • • • • • • • • • • • • • •	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form Aith per remaining the North CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM DTC	0-1449/A and B (m	odifie	d PTO/SR/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
	RMATION I		·	FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
	EMENT BY			APPLICANT: Krieg et al.	
				CROUP ART UNIT. 1645	EVANINED. Nice M. Minnifield
Sheet	3	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield

A213	2008-0226649	A1	Schetter et al.	09-18-2008

FOREIGN PATENT DOCUMENTS

г ,		For	eign Patent Docume	nt	N. CD. A. P. CO.	Date of	T
Examiner's Initials #	Cite No.	Office/ Country	Number	Kind Code	Name of Patentee or Applicant of Cited Document	Publication of Cited Document MM-DD-YYYY	Translation (Y/N)
	B24	EP	1 187 629	A2	Smithkline Beecham Biologicals, S.A.	10-26-2000	
	B25	WO	95/03407	A2	Gen-Probe Incorporated	02-02-1995	
	B26	WO	99/63975	A2	Biognostik Gesellschaft Fur Biomolekular Diagnostik MBH	12-16-1999	
	B27	WO	00/14217	A3	CpG ImmunoPharmaceuticals GmbH	03-16-2000	
	B28	wo	00/67023	A1	CpG ImmunoPharmaceuticals GmbH	11-09-2000	
	B29	wo	02/18632	A2	Epigenomics AG	03-07-2002	Y- Abstract Only
	B30	WO	02/069369	A2	Coley Pharmaceutical Group, Ltd.	09-06-2002	
	B31	wo	03/094963	A2	INEX Pharmaceuticals Corp.	11-20-2003	
	B32	WO	2004/012669	A2	The Government of the United States	02-12-2004	
	B33	WO	2004/016805	A2	Coley Pharmaceutical Group, Inc.	02-26-2004	
	B34	WO	2004/039829	A2	Coley Pharmaceutical Group, Ltd.	05-13-2004	
	B35	WO	2004/087203	A2	Coley Pharmaceutical Group, Ltd.	10-14-2004	
	B36	WO	2004/094671	A2	Coley Pharmaceutical GMBH	11-04-2004	
	B37	WO	2006/080946	A2	Coley Pharmaceutical GmbH	08-03-2006	
	B38	WO	2007/031877	A2	Coley Pharmaceutical GmbH	03-22-2007	
	B39	WO	2007/038720	A2	Coley Pharmaceutical GmbH	04-05-2007	
	B40	WO	2008/030455	A2	Coley Pharmaceutical Group, Inc.	03-13-2008	
	B41	wo	2008/033432	A2	Coley Pharmaceutical Group, Inc.	03-20-2008	
	B42	WO	2008/039538	A2	Coley Pharmaceutical Group, Inc.	04-03-2008	
	B43	WO	2008/068638	A2	Coley Pharmaceutical GMBH	06-12-2008	
	B44	wo	2008/139262	A2	Coley Pharmaceutical GMBH	11-20-2008	

OTHER ART — NON PATENT LITERATURE DOCUMENTS

		OTHER ART — NORTH ATENT EFFER AT ORL DOCUMENTS	
Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C76	Press Release, January 2007, "Coley Pharmaceutical Group Updates Hepatitis C Drug Development Strategy".	
	C77	Press Release, June 2007, "Coley Pharmaceutical Group Announces Pfizer's Discontinuation of Clinical Trials for PF-3512676 Combined with Cytotoxic Chemotherapy in Advanced Non Small Cell Lung Cancer".	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with next communication to Considerate. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM DTO	0-1449/A and B (1	modified	PTO/SR/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
·	RMATION:		ŕ	FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
	EMENT BY			APPLICANT: Krieg et al.	
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	4	of	15	GROOP ART UNIT: 1043	EXAMINER: INIta M. Millimited

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C78	[No Author Listed] CpG 7909: PF 3512676, PF-3512676. Drugs R D. 2006;7(5):312-6.	•••
	C79	[No Author Listed] CPG10101 HCV Toll-Receptor 9 Antagonist Phase II Study Results. 57 th Annual Meeting of the American Association for the Study of Liver Diseases. October 27-311, 2006. Boston, MA. 9 pages.	
	C80	[No Author Listed] Mechanisms of Microbial Diseases, Third Edition. Schaechter et al., editors. Lippencott, Williams & Wilkins, 1999. p.xv-xvi.	
	C81	AGRAWAL et al., Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today. 2000 Feb;6(2):72-81.	
	C82	AGRAWAL et al., Chapter 19: Pharmacokinetics and bioavailability of antisense oligonucleotides following oral and colorectal administrations in experimental animals. 1998: 525-43.	
	C83	AHLUWALIA et al., Immunostimulatory profiles from two classes of CpG ODN administered subcutaneously to healthy subjects. ICI FOCIS 2004. Poster.	
	C84	ANITESCU et al., Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced secretion of interleukin-12. J Interferon Cytokine Res. 1997 Dec;17(12):781-8.	
	C85	AOKI et al., Use of cytokines in infection. Expert Opin Emerg Drugs. 2004 Nov;9(2):223-36.	
	C86	BALLAS et al., Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 1996 Sep 1;157(5):1840-5.	
	C87	BAUER et al., DNA activates human immune cells through a CpG sequence-dependent manner. Immunology. 1999 Aug;97(4):699-705.	
	C88	BAUER et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9237-42.	
	C89	BIBBY, Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004 Apr;40(6):852-7.	
	C90	BOGGS et al., Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):461-71.	
	C91	BOHN et al., Ambiguous role of interleukin-12 in Yersinia enterocolitica infection in susceptible and resistant mouse strains. Infect Immun. 1998 May;66(5):2213-20.	
	C92	BRAZOLOT MILLAN et al., CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15553-8.	
	C93	CHACE et al., Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol. 1997 Aug;84(2):185-93.	
	C94	CHU et al., CpG oligodeoxynucleotides down-regulate macrophage class II MHC antigen processing. J Immunol. 1999 Aug 1;163(3):1188-94.	
	C95	CONNELL et al., Anti-tumor activity of a CpG-containing oligodeoxynucleotide (ODN) in athymic mice. American Assn Cancer Reseach. March 1999;40:Abstract 1982.	
	C96	COOPER et al., CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. AIDS. 2005 Sep 23;19(14):1473-9.	
	C97	COOPER et al., CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol. 2004 Nov;24(6):693-701.	

/N. M. Minnifield/ (02/15/2009)	I	EXAMINER:	DATE CONSIDERED:
		/N. M. Minnifield/ (02/15/2009)	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form ALL REPERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO	FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT Sheet 5 of 15	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00			
		FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680				
				APPLICANT: Krieg et al.		
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	
Sheet	5	of	15	GROUP ART UNIT: 1043	EAAMINER. INta W. Millimed	

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C98	COWDERY et al., Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996 Jun 15;156(12):4570-5.	
-	C99	DAVIS, Use of CpG DNA for enhancing specific immune responses. Curr Top Microbiol Immunol. 2000;247:171-83.	
	C100	DENG et al., CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J Immunol. 2004 Oct 15;173(8):5148-55.	
	C101	DIWAN et al., Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release. 2002 Dec 13;85(1-3):247-62.	
	C102	ECKSTEIN, Phosphorothioation of DNA in bacteria. Nat Chem Biol. 2007 Nov;3(11):689-90.	
	C103	GOLDBERG et al., Beyond danger: unmethylated CpG dinucleotides and the immunopathogenesis of disease. Immunol Lett. 2000 Jul 3;73(1):13-8.	
	C104	GRAMZINSKI et al., Interleukin-12- and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect Immun. 2001 Mar;69(3):1643-9.	
	C105	GURA, Antisense has growing pains. Science. 1995 Oct 27;270(5236):575-7.	
	C106	HALPERN et al., Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cell Immunol. 1996 Jan 10;167(1):72-8.	
	C107	HARANDI et al., A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J Virol. 2003 Jan;77(2):953-62.	
	C108	HARTMANN et al., CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther. 1999 May;6(5):893-903.	
	C109	HARTMANN et al., Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000 Feb 1;164(3):1617-24.	
	C110	HARTMANN et al., Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res. 2003 Oct 1;63(19):6478-87.	
	C111	HARTMANN et al., Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000 Jan 15;164(2):944-53.	
	C112	HARTMANN et al., Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol. 2003 Jun;33(6):1633-41.	
	C113	HOPKIN et al., Curbing the CpGs of Bacterial and Viral DNA. BioMedNet. 1999 Jun 25; Issue 57.	
	C114	HORNER et al., Immunostimulatory DNA is a potent mucosal adjuvant. Cell Immunol. 1998 Nov 25;190(1):77-82.	
	C115	HUANG et al., Induction and regulation of Th1-inducing cytokines by bacterial DNA, lipopolysaccharide, and heat-inactivated bacteria. Infect Immun. 1999 Dec;67(12):6257-63.	
	C116	HUNTER et al., Biodegradable microspheres containing group B Streptococcus vaccine: immune response in mice. Am J Obstet Gynecol. 2001 Nov;185(5):1174-9.	
	C117	IHO et al., Oligodeoxynucleotides containing palindrome sequences with internal 5'-CpG-3' act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol. 1999 Oct 1;163(7):3642-52.	
	C118	INFANTE-DUARTE et al., Th1/Th2 balance in infection. Springer Semin Immunopathol. 1999;21(3):317-38.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form XiII PEPERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FODM DTO		odified	PTO/SB/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT Sheet 6 of 15		FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680	
				APPLICANT: Krieg et al.	
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	6	of	15		

Cita	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item	Translation
i .		(Y/N)
		(1/11)
C119		
ļ. <u> </u>		
C120		
1 0120		
C121	JIANG et al., Enhancing immunogenicity by CpG DNA. Curr Opin Mol Ther. 2003 Apr;5(2):180-5.	
Claa	JIANG et al., Synthetic vaccines: the role of adjuvants in immune targeting. Curr Med Chem. 2003	
CIZZ	Aug;10(15):1423-39.	
C122	JONES et al., Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a	
C123	peptide malaria vaccine in Aotus monkeys. Vaccine. 1999 Aug 6;17(23-24):3065-71	
GIOA	KANDIMALLA et al., Secondary structures in CpG oligonucleotides affect immunostimulatory	
C124	l	
2125		
C125		
C126		
C127		
0100		
C128		
0100		
C129		
0120		
C130		
C131		
C132	· · · · · · · · · · · · · · · · · · ·	
		
C133		
	· · · · · · · · · · · · · · · · · · ·	
C134		
C135		
1		
C137		
5.57		
 		
C138	independent type 2 antigens. Immunology. 2001 Jan;102(1):67-76.	
	C122 C123 C124 C125 C126 C127 C128 C129 C130 C131 C132 C133 C134 C135 C136 C137	City Mook, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. ISHII et al., Antitumor therapy with bacterial DNA and toxin: complete regression of established tumor induced by liposomal CpG oligodeoxynucleotides plus interleukin-13 cytotoxin. Clin Cancer Res. 2003 Dec 15;9(17):651-622. JACOBSON et al., Early viral response and on treatment response to CpG 10101 (ACTILON TM), in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. 57th Annual Meeting of American Association for the Study of the Liver Diseases (AASLD). 2006 Oct 30, Boston, Massachusetts; Presented Abstract #96. C121 JIANG et al., Synthetic vaccines: the role of adjuvants in immune targeting. Curr Med Chem. 2003 Aug;10(15):1423-39. C122 JUNES et al., Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine. 1999 Aug 6;17(23-24):3065-71 C124 KANDIMALLA et al., Secondary structures in CpG oligonucleotides affect immunostimulatory activity. Biochem Biophys Res Commun. 2003 Jul 11;306(4):948-53. KELLAND, Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004 Apr;40(6):827-36. C126 KIM et al., Prognostic implication of aberrant promoter hypermethylation of CpG islands in CpG 7990. Blood. 2004 Nov16;104(11):Abstract #743. C127 KIMURA et al., Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J Biochem (Tokyo). 1994 Nov;116(5):991-4. C130 KLINE et al., Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of sathma. J Immunol. 1998 Mar 15;160(6):2555-9. KLINMAN et al., Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol. 1997 Apr 15;158(8):3635-9. KLINMAN et al., CpG motifs present in bacteria DNA rapidly induce lym

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

^{*} EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form Xith pex REPERENCES. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM DTC) 1440/A and B (m	odifier	LPTO/SR/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT Sheet 7 of 15	FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680				CONFIRMATION NO.: 4680
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT				
				CDOUB ART INUT. 1645	EXAMINER: Nita M. Minnifield
Sheet	7	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Millillilleid

Examiner's Initials #	Cite No .	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C139	KRANZER et al., CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12. Immunology. 2000 Feb;99(2):170-8.	
	C140	KRIEG et al., A role for endogenous retroviral sequences in the regulation of lymphocyte activation. J Immunol. 1989 Oct 15;143(8):2448-51.	
	C141	KRIEG et al., Bacterial DNA or oligonucleotides containing CpG motifs protect mice from lethal L. monocytogenes challenge. 1996 Meeting on Molecular Approaches to the Control of Infectious Diseases. Cold Spring Harbor Laboratory, September 9-13, 1996:116.	
	C142	KRIEG et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6.	
	C143	KRIEG et al., Chapter 17:Immune stimulation by oligonucleotides. in Antisense Drug Tech. 2001;1394:471-515.	
	C144	KRIEG et al., Chapter 8: Immune Stimulation by Oligonucleotides. In: Antisense Research and Application. Crooke, Ed. 1998:243-62.	
	C145	KRIEG et al., CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol. 1998 Sep 1;161(5):2428-34.	
	C146	KRIEG et al., CpG DNA: a novel immunomodulator. Trends Microbiol. 1999 Feb;7(2):64-5.	
	C147	KRIEG et al., CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709-60.	
	C148	KRIEG et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9.	
	C149	KRIEG et al., Direct immunologic activities of CpG DNA and implications for gene therapy. J Gene Med. 1999 Jan-Feb;1(1):56-63.	
	C150	KRIEG et al., How to exclude immunostimulatory and other nonantisense effects of antisense oligonucleotides. Manual of Antisense. 1999:79-89.	
	C151	KRIEG et al., Immune effects and therapeutic applications of CpG motifs in bacterial DNA. Immunopharmacology. 2000 Jul 25;48(3):303-5.	
	C152	KRIEG et al., Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother. 2004 Nov-Dec;27(6):460-71.	
	C153	KRIEG et al., Infection. In: McGraw Hill Book. 1996:242-3.	
	C154	KRIEG et al., Leukocyte stimulation by oligodeoxynucleotides. In: Applied Antisense Oligonucleotide Technology. 1998:431-48.	
	C155	KRIEG et al., Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol. 1996 Feb;4(2):73-6.	
	C156	KRIEG et al., Lymphocyte activation mediated by oligodeoxynucleotides or DNA containing novel un-methylated CpG motifs. American College of Rheumatology 58 th National Scientific Meeting. Minneapolis, Minnesota, October 22, 1994. Abstracts. Arthritis Rheum. 1994 Sep;37(9 Suppl.).	
	C157	KRIEG et al., Mechanism of action of CpG DNA. Curr Top Microbiol Immunol. 2000;247:1-21.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

^{*} EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form XiII PREPERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO 1449/A and B (modified PTO/SB/08)				APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00	
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT Sheet 8 of 15	·			FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
1				APPLICANT: Krieg et al.		
				GROUP ART UNIT: 1645	EVAMINED, Nite M. Minnifestal	
Sheet	8	of	15	GROUP ART UNIT: 1043	EXAMINER: Nita M. Minnifield	

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translatior (Y/N)
	C158	KRIEG et al., Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1048-52.	
	C159	KRIEG et al., Oligodeoxynucleotide modifications determine the magnitude of B cell stimulation by CpG motifs. Antisense Nucleic Acid Drug Dev. 1996 Summer;6(2):133-9.	
	C160	KRIEG et al., P-chirality-dependent immune activation by phosphorothioate CpG oligodeoxynucleotides. Oligonucleotides. 2003;13(6):491-9.	
	C161	KRIEG et al., Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev. 1995 Winter;5(4):241.	
•	C162	KRIEG et al., Rescue of B cells from apoptosis by immune stimulatory CpG DNA. Springer Semin Immunopathol. 2000;22(1-2):55-61.	
	C163	KRIEG et al., Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12631-6.	
	C164	KRIEG et al., The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 1998 Jan;6(1):23-7.	
	C165	KRIEG et al., Unmethylated CpG DNA protects mice from lethal listeria monocytogenes challenge. Vaccines. 1997; 97:77-9.	
	C166	KRIEG, An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med. 1996 Aug;128(2):128-33.	
	C167	KRIEG, Antiinfective applications of toll-like receptor 9 agonists. Proc Am Thorac Soc. 2007 Jul;4(3):289-94.	
	C168	KRIEG, Chapter 7: CpG oligonucleotides as immune adjuvants. Ernst Schering Research Found Workshop 2001; 30:105-18.	
	C169	KRIEG, CpG DNA: a pathogenic factor in systemic lupus erythematosus? J Clin Immunol. 1995 Nov;15(6):284-92.	
	C170	KRIEG, Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007 May;117(5):1184-94.	
	C171	KRIEG, Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim Biophys Acta. 1999 Dec 10;1489(1):107-16.	
	C172	KRIEG, Now I know my CpGs. Trends Microbiol. 2001 Jun;9(6):249-52.	
	C173	KRIEG, Signal transduction induced by immunostimulatory CpG DNA. Springer Semin Immunopathol. 2000;22(1-2):97-105.	
	C174	KRIEG, Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006 Jun;5(6):471-84.	
	C175	KRIEG, Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008 Jan 7;27(2):161-7. Review.	
	C176	KRUG et al., Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001 Jul;31(7):2154-63.	
	C177	KRUG et al., Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001 Oct;31(10):3026-37.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with nex remarking the NOTES* CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

*CODM DTC	FORM PTO-1449/A and B (modified PTO/SB/08)			APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
	•		ŕ	FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680	
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT			APPLICANT: Krieg et al.	
Sheet	9	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.				
	C178	KURAMOTO et al., Changes of host cell infiltration into Meth A fibrosarcoma tumor during the course of regression induced by injections of a BCG nucleic acid fraction. Int J Immunopharmacol. 1992 Jul;14(5):773-82.				
	C179	KURAMOTO et al., In situ infiltration of natural killer-like cells induced by intradermal injection of the nucleic acid fraction from BCG. Microbiol Immunol. 1989;33(11):929-40.				
	C180	KURAMOTO et al., Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res. 1992 Nov;83(11):1128-31.				
	C181	LEE et al., Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J Immunol. 2000 Oct 1;165(7):3631-9.				
	C182	LI et al., Effective induction of CD8+ T-cell response using CpG oligodeoxynucleotides and HER-2/neu-derived peptide co-encapsulated in liposomes. Vaccine. 2003 Jul 4;21(23):3319-29.				
	C183	LI et al., Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol. 2007 Aug 15;179(4):2493-500.				
	C184	LIPFORD et al., Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol. 1997 Dec;27(12):3420-6.				
	C185	LIPFORD et al., Bacterial DNA as immune cell activator. Trends Microbiol. 1998 Dec;6(12):496-500.				
	C186	MAJOR et al., Chapter 34 Hepatitis C Viruses. in Fields' Virology. 2001; 1:1127-61				
	C187	MARSHALL et al., Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol. 2003 Jun;73(6):781-92.				
	C188	MARTIN-OROZCO et al., Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int Immunol. 1999 Jul;11(7):1111-8.				
	C189	MASIHI, Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. 2001 Jul;1(4):641-53.				
	C190	MATSON et al., Nonspecific suppression of [3H]thymidine incorporation by "control" oligonucleotides. Antisense Res Dev. 1992 Winter;2(4):325-30.				
	C191	McCLUSKIE et al., Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol. 2006;311:155-78.				
	C192	McCLUSKIE et al., Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med. 1999 May;5(5):287-300.				
	C193	McCLUSKIE et al., The role of CpG in DNA vaccines. Springer Semin Immunopathol. 2000;22(1-2):125-32.				
	C194	McCLUSKIE et al., The use of CpG DNA as a mucosal vaccine adjuvant. Curr Opin Investig Drugs. 2001 Jan;2(1):35-9.				
	C195	McHUTCHISON et al., Early clinical results with CpG 10101, a new investigational antiviral TLR9 agonist being developed for treatment of subjects chronically infected with hepatitis C virus. 12 th International Symposium on Viral Hepatitis and Liver Disease (ISVHLD). 2006 July 3, Paris, France; Presented Abstract #O105.				

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with next communication with mext communication with next communication with mext communication with next communication with next communication with mext communication with next communication

FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE				APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00	
				FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680		
	TEMENT BY		-	APPLICANT: Krieg et al.		
Sheet	10	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C196	McHUTCHISON et al., Early viral response to CpG 10101, in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. 41 st Annual Meeting of European Association for the Study of the Liver (EASL). 2006 April 26-30, Vienna, Austria; Submitted Abstract.	
	C197	McHUTCHISON et al., Final results of a multi-center phase 1B, randomized, placebo-controlled, dose-escalation trial of CpG 10101 in patients with chronic hepatitis C virus. 41 st Annual Meeting of European Association for the Study of the Liver (EASL). 2006 April 30, Vienna, Austria; Presented Abstract #111.	
	C198	MESSINA et al., The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens. Cell Immunol. 1993 Mar;147(1):148-57.	
	C199	MOLDOVEANU et al., CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine. 1998 Jul;16(11-12):1216-24.	
	C200	MOSEMAN et al., Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol. 2004 Oct 1;173(7):4433-42.	
	C201	NORMAN et al., Liposome-mediated, nonviral gene transfer induces a systemic inflammatory response which can exacerbate pre-existing inflammation. Gene Ther. 2000;7:1425-30.	
	C202	PAYETTE et al., History of vaccines and positioning of current trends. Curr Drug Targets Infect Disord. 2001 Nov;1(3):241-7.	
	C203	PETERSON et al., Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer. 2004 Apr;40(6):837-44.	
	C204	PISETSKY et al., Stimulation of in vitro proliferation of murine lymphocytes by synthetic oligodeoxynucleotides. Mol Biol Rep. 1993 Oct;18(3):217-21.	, , , , , , , , , , , , , , , , , , ,
	C205	PISETSKY et al., The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology. 1998 Nov;40(3):199-208.	
	C206	PISETSKY, Immunologic consequences of nucleic acid therapy. Antisense Res Dev. 1995 Fall;5(3):219-25.	
	C207	PISETSKY, The influence of base sequence on the immunostimulatory properties of DNA. Immunol Res. 1999;19(1):35-46.	
	C208	POLANCZYK et al., Immunostimulatory effects of DNA and CpG motifs. Cent Eur J of Immunol. 2000;25(3):160-6.	
	C209	RANKIN et al., CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 2001 Oct;11(5):333-40.	
	C210	READETT et al., PF-3512676 (CPG7909) a Toll-like receptor 9 agonist – status of development for non-small cell lung cancer (NSCLC). Abstract PD3-1-6. Pfizer. 24 Aug. 2007. Poster.	
	C211	REES et al., CpG-DNA protects against a lethal orthopoxvirus infection in a murine model. Antiviral Res. 2005 Feb;65(2):87-95.	
	C212	RODRIGUEZ et al., Immunostimulatory PyNTTTTGT oligodeoxynucleotides: structural properties and refinement of the active motif. Oligonucleotides. 2006 Fall;16(3):275-85.	
	C213	ROMAN et al., Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med. 1997 Aug;3(8):849-54.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with personal process. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

'EODM DTO	0.1440/A and P (m	odifiac	1 PTO/SR/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
FORM PTO-1449/A and B (modified PTO/SB/08)				FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT			APPLICANT: Krieg et al.	
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	11	of	15	GROUP ART UNIT: 1043	EXAMINER. INIA W. WHILITIEID

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C214	ROTHENFUSSER et al., Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther. 2003 Apr;5(2):98-106.	
	C215	RUDGINSKY et al., Antitumor activity of cationic lipid complexed with immunostimulatory DNA. Mol Ther. 2001 Oct;4(4):347-55.	
	C216	RYNKIEWICZ et al., Marked enhancement of antibody response to anthrax vaccine adsorbed with CPG 7909 in healthy volunteers. 45 th Intersci. Conf. Antimicrob. Agents Chemother. 2005 Sep. 21-24; New Orleans, Louisiana. Meeting Poster.	
	C217	SAIJO et al., What are the reasons for negative phase III trials of molecular-target-based drugs? Cancer Sci. 2004 Oct;95(10):772-6.	
	C218	SAKAO et al., IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock. Int Immunol. 1999 Mar;11(3):471-80.	
	C219	SANDLER et al., CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res. 2003 Jan 15;63(2):394-9.	
	C220	SATO et al., Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science. 1996 Jul 19;273(5273):352-4.	
	C221	SATOH et al., Morphological and immunohistochemical characteristics of the heterogeneous prostate-like glands (paraurethral gland) seen in female Brown-Norway rats. Toxicol Pathol. 2001 Mar-Apr;29(2):237-41.	
	C222	SCHELLER et al., CpG oligodeoxynucleotides activate HIV replication in latently infected human T cells. J Biol Chem. 2004 May 21;279(21):21897-902. Epub 2004 Mar 11.	
	C223	SCHEULE, The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev. 2000 Nov 15;44(2-3):119-34.	
	C224	SCHUH, Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol. 2004 Mar-Apr;32 Suppl 1:53-66.	
	C225	SCHWARTZ et al., Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway. J Immunol. 1999 Jul 1;163(1):224-31.	
	C226	SCHWARZ et al., Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol. 2003 Jun;33(6):1465-70.	
	C227	SESTER et al., Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J Immunol. 2000 Oct 15;165(8):4165-73.	
	C228	SFONDRINI et al., Prevention of spontaneous mammary adenocarcinoma in HER-2/neu transgenic mice by foreign DNA. FASEB J. 2002 Nov;16(13):1749-54.	
	C229	SHALABY, Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol. 1995 Feb;74(2):127-34.	
-	C230	SHAO et al., CpG-containing oligodeoxynucleotide 1826 converts the weak uveitogenic rat interphotoreceptor retinoid-binding protein peptide 1181-1191 into a strong uveitogen. J Immunol. 2003 Nov 1;171(9):4780-5.	
	C231	SIEGRIST et al., Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine. 2004 Dec 16;23(5):615-22.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form Xith next reminurication to Applicant. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO) 1449/A and B (n	nodifie	1 PTO/SR/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE				FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680	
STATEMENT BY APPLICANT				APPLICANT: Krieg et al.	
				CROUD ART UNIT. 1645	EVAMINED. Niss M. Minnifesta
Sheet	12	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C232	SONEHARA et al., Hexamer palindromic oligonucleotides with 5'-CG-3' motif(s) induce production of interferon. J Interferon Cytokine Res. 1996 Oct;16(10):799-803.	
	C233	SPARWASSER et al., Bacterial DNA causes septic shock. Nature. 1997 Mar 27;386(6623):336-7.	
	C234	SPARWASSER et al., Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J Immunol. 1999 Feb 15;162(4):2368-74.	
	C235	SPARWASSER et al., Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol. 1997 Jul;27(7):1671-9.	
	C236	STEIN et al., Non-antisense effects of oligodeoxynucleotides. Antisense Technology. 1997; Ch. 11: 241-64.	
	C237	STEIN et al., Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res Dev. 1994 Summer;4(2):67-9.	
	C238	STOREY et al., Anti-sense phosphorothioate oligonucleotides have both specific and non-specific effects on cells containing human papillomavirus type 16. Nucleic Acids Res. 1991 Aug 11;19(15):4109-14.	•
	C239	STUNZ et al., Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur J Immunol. 2002 May;32(5):1212-22.	
	C240	SUN et al., Multiple effects of immunostimulatory DNA on T cells and the role of type I interferons. Springer Semin Immunopathol. 2000;22(1-2):77-84.	
	C241	SUN et al., Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med. 1998 Dec 21;188(12):2335-42.	
	C242	THREADGILL et al., Mitogenic synthetic polynucleotides suppress the antibody response to a bacterial polysaccharide. Vaccine. 1998 Jan;16(1):76-82.	
	C243	TOKUNAGA et al., Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of Mycobacterium bovis BCG induce interferons and activate natural killer cells. Microbiol Immunol. 1992;36(1):55-66.	
	C244	TOKUNAGA, Response of the organism to DNA – With a focus on immunostimulatory DNA. Kansen Ensho Meneki. 2001 Autumn; 31(3): 1-12. Japanese.	Y
	C245	TUETKEN et al., Ch. 6: Immune effects of bacterial DNA and their possible role in the pathogenesis of lupus. In: Lupus: Molecular and Cellular Pathogenesis, Kammar and Tsokos, Eds. Humana Press;1999:79-100.	
	C246	TZAO et al., 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer. 2004 Sep;40(14):2175-83.	
	C247	UHLMANN et al., Recent advances in the development of immunostimulatory oligonucleotides. Curr Opin Drug Discov Devel. 2003 Mar;6(2):204-17.	
	C248	VERTHELYI et al., Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol. 2001 Feb 15;166(4):2372-7.	
	C249	VICARI et al., Development of targeted toll-like receptor agonists for cancer therapy. PPO Focus. 2007; 1(2):1-15.	
	C250	VOLLMER et al., Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol. 2004 Jan;34(1):251-62.	

ĺ	EXAMINER:	DATE CONSIDERED:
	/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with pex communication in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with pex communication in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with pex communication in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with pex communication in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT			DTO/SB/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
				FILING DATE: July 3, 2003	CONFIRMATION NO.: 4680
				APPLICANT: Krieg et al.	
		GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield		
Sheet	13	of	15	GROUP ART UNIT: 1043	EXAMINER. INITA WI. MITHINIER

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C251	VOLLMER et al., Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev. 2002 Jun;12(3):165-75.	
	C252	VOLLMER et al., Immunopharmacology of CpG oligodeoxynucleotides and ribavirin. Antimicrob Agents Chemother. 2004 Jun;48(6):2314-7.	
	C253	VOLLMER et al., Impact of modifications of heterocyclic bases in CpG dinucleotides on their immune-modulatory activity. J Leukoc Biol. 2004 Sep;76(3):585-93. Epub 2004 Jun 24.	
	C254	VOLLMER et al., Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides. 2004 Spring;14(1):23-31.	
	C255	VOLLMER et al., Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation. Immunology. 2004 Oct;113(2):212-23.	
	C256	VOLLMER, CpG motifs to modulate innate and adaptive immune responses. Int Rev Immunol. 2006 May-Aug;25(3-4):125-34. Abstract.	
	C257	VOLLMER, TLR9 in health and disease. Int Rev Immunol. 2006 May-Aug;25(3-4):155-81.	
	C258	WAGNER, Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol. 2002 Feb;5(1):62-9.	
	C259	WALKER et al., Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6970-5.	
	C260	WANG et al., Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol. 2007 Nov;3(11):709-10. Epub 2007 Oct 14. Supplementary information, 12 pages.	
	C261	WANG et al., T-cell-directed cancer vaccines: the melanoma model. Expert Opin Biol Ther. 2001 Mar;1(2):277-90.	
	C262	WANG et al., Synergy between CpG- or non-CpG DNA and specific antigen for B cell activation. Int Immunol. 2003 Feb;15(2):223-31.	
	C263	WARREN et al., APC stimulated by CpG oligodeoxynucleotide enhance activation of MHC class I-restricted T cells. J Immunol. 2000 Dec 1;165(11):6244-51.	
	C264	WEERATNA et al., CpG DNA induces stronger immune responses with less toxicity than other adjuvants. Vaccine. 2000 Mar 6;18(17):1755-62.	
	C265	WEERATNA et al., Reduction of antigen expression from DNA vaccines by coadministered oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev. 1998 Aug;8(4):351-6.	
	C266	WEIGEL et al., Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood. 2002 Dec 1;100(12):4169-76.	
	C267	WEIGEL et al., CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma. Clin Cancer Res. 2003 Aug 1;9(8):3105-14.	
	C268	WHITMORE et al., LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther. 1999;6:1867-75.	
	C269	WHITMORE et al., Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Canc Immun Immunother. 2001;50:503-14.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

[#] EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with next comprehensive professor. CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO-1449/A and B (modified PTO/SB/08)				APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00
INFORMATION DISCLOSURE STATEMENT BY APPLICANT				FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680	
				APPLICANT: Krieg et al.	
		GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield		
Sheet	14	of	15	GROUP ART UNIT: 1043	EXAMINER: INITIA IVI. IVIIIIIIIIIIIII

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)						
	C270	WOHLLEBEN et al., Atopic disorders: a vaccine around the corner? Trends Immunol. 2001 Nov;22(11):618-26.							
	C271	WOOLDRIDGE et al., Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma. Blood. 1997 Apr 15;89(8):2994-8.							
	C272	YAMADA et al., Effect of suppressive DNA on CpG-induced immune activation. J Immunol. 2002 Nov 15;169(10):5590-4.							
	C273	YAMAMOTO et al., [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese.							
	C274	YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22.							
	C275	YAMAMOTO et al., Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831-6.							
	C276	YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9.							
	C277	YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992 Jun 15;148(12):4072-6.							
	C278	YI et al., CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 Jun 15;160(12):5898-906.							
	C279	YI et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):558-64.							
	C280	YI et al., Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402.							
	C281	YI et al., Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7.							
	C282	YI et al., CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL. J Immunol. 1996 Dec 1;157(11):4918-25.							
	C283	YU et al., Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem Biophys Res Commun. 2002 Sep 13;297(1):83-90.							
	C284	ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17.							
	C285	ZHANG et al., Antisense oligonucleotide inhibition of hepatitis C virus (HCV) gene expression in livers of mice infected with an HCV-vaccinia virus recombinant. Antimicrob Agents Chemother. 1999 Feb;43(2):347-53.							
	C286	ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.							
EXAMINER:		DATE CONSIDERED:							
/	N. M. Mir	nnifield/ (02/15/2009)							

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form XiII PEPERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /NMM/

FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT			PTO/SB/08)	APPLICATION NO.: 10/613,228	ATTY. DOCKET NO.: C1037.70045US00	
				FILING DATE: July 3, 2003 CONFIRMATION NO.: 4680		
				APPLICANT: Krieg et al.		
			٠	CROUD ARTIQUE 1645		
Sheet	15	of	15	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	

Examiner's Initials #	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C287	ZIPS et al., New anticancer agents: in vitro and in vivo evaluation. In Vivo. 2005 Jan-Feb;19(1):1-7.	

[NOTE – No copies of U.S. patents, published U.S. patent applications, or pending, unpublished patent applications stored in the USPTO's Image File Wrapper (IFW) system, are included. See 37 CFR §1.98 and 12870G163. Copies of all other patent(s), publication(s), unpublished, pending U.S. patent applications, or other information listed are provided as required by 37 CFR §1.98 unless 1) such copies were provided in an IDS in an earlier application that complies with 37 CFR §1.98, and 2) the earlier application is relied upon for an earlier filing date under 35 U.S.C. §120.]

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (02/15/2009)	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

Include copy of this form with next company at the company of the copy of this form with next company at the copy of this form with next company at the copy of this form with next company of the copy of this form with next company of the copy of this form with next company of the copy of this form with next copy of the copy of this form with next copy of this f