CS2445 Introduction to Computer Systems Homework

1

Total Points: 160

Instructions:

- You must show COMPLETE work on ALL problems to get FULL CREDIT.
 You will get ZERO if you do NOT show detailed solving steps.
- Please type the solutions using a word processor such as WORD, Latex, etc., or write by hand very neatly and legibly, comparable to typing*.
- Please submit a SINGLE PDF file in Canvas.
- Please pay special attention to the due date no late turn ins or special case consideration.
- * The preferred format is typing with a word processor for the following reasons:
- (1) You have a copy in your computer that you can study for exams or future use.
- (2) You will learn to use a word processor (if not already learned) to do math, diagrams, etc. This will be one of the most useful things in your career.
- (3) You have a backup copy in case of lost or misplaced assignment.
- (4) A typed assignment helps the TA to spend less time and to be more accurate in grading. Our class is multi-national, and it is hard and time consuming to decode many different handwriting styles.

You must show COMPLETE work on ALL problems to get FULL CREDIT. You will get ZERO if you do NOT show detailed solving steps.

Q1 [20 POINTS]: Convert the following decimal numbers to their binary numbers. Note: You must show detailed solving steps.

```
1) 145<sub>10</sub>

145=128+17

17=16+1

128=2^7 16=2^4

145=(10010001)<sub>2</sub>

2) 25.25<sub>10</sub>

25=16+8+1,16=2^4,8=2^3 25=11001<sub>2</sub>

.25=1/4=2^-2 =(.01)<sub>2</sub>

25.25=11001.01<sub>2</sub>
```

4) 125.125₁₀

43.625=101011.1012

So the result is 1111101.001₂

Q2 [20 POINTS]: Convert the following binary numbers to their decimal numbers. Note: You must show detailed solving steps.

- 1) $1010\ 1010_2$ $0101010_2 = (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)\ 10101010_2 = 128 + 0 + 32 + 0 + 8 + 0 + 2 + 010101010_2 = 170_1$
- 2) 1000 1110₂

$$\begin{aligned} 10001110_2 &= (1\times2^7) + (0\times2^6) + (0\times2^5) + (0\times2^4) + (1\times2^3) \\ &+ (1\times2^2) + (1\times2^1) + (0\times2^0) \\ 10001110_2 &= 128 + 0 + 0 + 0 + 8 + 4 + 2 + 0 \\ &10001110_2 = 142_10 \end{aligned}$$

3) 0101 1010.1000 0000₂

$$1011010.1_{2} = (1 \times 2^{6}) + (0 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) + (1 \times 2^{-1})$$

$$1011010.1_{2} = 64 + 0 + 16 + 8 + 0 + 2 + 0 + 0.5$$

$$1011010.1_{2} = 90 + 0.5$$

$$1011010.1_{2} = 90.5_{1}0$$

4) 1111 1110.0110 1100₂

$$\begin{aligned} 11111110.011011_2\\ &= (1\times2^7) + (1\times2^6) + (1\times2^5) + (1\times2^4) + (1\times2^3)\\ &+ (1\times2^2) + (1\times2^1) + (0\times2^0) + (0\times2^{-1}) + (1\times2^{-2})\\ &+ (1\times2^{-3}) + (0\times2^{-4}) + (1\times2^{-5}) + (1\times2^{-6}) \end{aligned}$$

$$1111110.011011_2\\ &= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 + 0 + 0.25 + 0.125\\ &+ 0 + 0.03125 + 0.015625 \end{aligned}$$

$11111110.011011_2 = 254 + 0.421875$ $11111110.011011_2 = 254.421875_10$

Q3 [20 POINTS]: Convert the following binary numbers to their hexadecimal numbers. Note: You must show detailed solving steps.

1) 1010 1010₂

1010 1010 A A

Split the digits and convert as above

$$10101010_2 = AA_16$$

2) 1000 11102

1000 1110 8 E

Split the digits and convert as above

$$10001110_2 = 8E_16$$

3) 0101 1010.1000 0000₂

0101 1010. 1000 5 A. 8

Split the digits and convert as above

$$01011010.1_2 = 5A.8_16$$

4) 1111 1110.0110 1100₂

1111 1110. 0110 1100 F E. 6 C

Split the digits and convert as above

$$111111110.011011_2 = FE.6C_{16}$$

Q4 [20 POINTS]: Convert the following hexadecimal numbers to their binary numbers. Note: You must show detailed solving steps.

1) F7₁₆

F 7
1111 01111 $F7_{16} = 11110111_{2}$

2) BE.A0₁₆

B E A 0 1011 1110 1010 0000
$$BE.A0_16 = 10111110.10100000_2$$

3) 123.45₁₆

1	2	3.	4	5
0001.	0010	0011.	0100	0101

$$123.45_{16} = 000100100011.01000101_2$$

4) A64.BC₁₆

Convert hex to binary as below

Α	6	4	В	С
1010.	0110	0100	1011	1100

$$A64.BC_{16} = 101001100100.101111100_2$$

Q5 [20 POINTS]: Convert the following decimal numbers to their hexadecimal numbers. Note: You must show detailed solving steps.

- 1) 145₁₀ 145=9*16+1=91₁₆
- 2) 25.25₁₀ 25=1*16+9 0.25=4/16 The result is 19.4₁₆
- 3) 43.625₁₀ 43=2*16+11 11=B₁₆ 0.625=10/16 10=A₁₆ The result is 2B.A

$$43.625_10 = 2B.A_16$$

4) 125.125_{10} 125=7*16+13 0.125=2/16 The result is $125.125_{10}=7D.2_{16}$

Q6 [20 POINTS]: Present the following decimal numbers in twos complements. Note: You must show detailed solving steps. You **CANNOT** use <u>this converter</u> in this question.

- 1) 25 $25=16+8+1=(11001)_2$ Under 8bit system, the inverse is 00011001, +1, We got 00011001
- 2) -25
 25=(11001)₂
 Under 8bit system, the inverse is 11100110 +1
 We got 11100111
- 3) 62.25 62.25=32+16+8+4+2+1/4=111110.01₂ Inverse we got 11110101110,+1 111101011.11
- 4) -62.25 62.25 in

Q7 [20 POINTS]: Perform twos complement arithmetic for the followings.

Note: You must show detailed solving steps. You **CAN** use <u>this converter</u> to get twos complement representation of each number.

- 1) 37 + 45
- 2) -17 31
- 3) 51 78
- 4) -71 + (-31)

Q8 [20 POINTS]: Present the following decimal numbers to IEEE 754 Binary 32 format as described below.

Note: You must show detailed solving steps.

Sign	Biased Exponent (+ 127)	Fraction
1 bit	8 bits	23 bits

- 1) 65.626
- 2) 129.125

- 3) 520.2
- 4) 1028.02