Data Mining & Machine Learning

CS37300 Purdue University

Sep 29, 2023

Linear Regression

Setup

- ▶ Data $\{x_i, y_i\}$ Total n data points, $x_i \in \mathbb{R}^d$, $y \in \mathbb{R}$.
- $y \sim w^{\mathsf{T}} x$
- Cost function:
- ▶ Interpretation: Minimize the "residuals" $(y_i w^T x_i)$ i.e. leftover after fitting the model

Closed form solution

$$w^* = (X^T X)^{-1} X^T y$$

- Prediction: $w^{*T}x_{test}$
- What is the time and space complexity?
 - $ightharpoonup O(d^*d^*n + d^*d^*d)$
- ▶ What if X^TX is not invertible? When does this happen?
 - Multicollinearity in the features (columns)
 - Instability: Small change in input can alter the output a lot. Makes interpretation hard

Eigendecomposition

- Let A be a square matrix with N linearly independent eigenvectors, q_i (i=1, ..., N). Then A can be factorized as:
 - $A = Q\Lambda Q^{-1}$
 - Q is the square matrix whose i-th column is the eigenvector q_i of A, Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., $\Lambda_{ii} = \lambda_i$
 - For a symmetric matrix A, Q is an orthogonal matrix, that is, $A=Q\Lambda Q^T$
 - With Eigendecomposition available, how can we invert A?

Probabilistic interpretation

- $y = x^T w + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$. What is p(y|x)?
- MLE in this model is equivalent to linear regression,
- Clearly delineates the underlying "implicit" assumptions in the least squared loss e.g. Homoskedasticity. Also, quantifies uncertainty.

 Probabilistic interpretation also quantifies uncertainty under the same assumptions

Generalized Linear Models (GLMs)

- Y is a RV from a distribution in the exponential family e.g. Gaussian, Bernoulli, Poisson etc
- For some function g(.)
 - $g(E[Y]) = (x^T w)$
- Allows for certain algorithms to be applied widely to all GLMs.

A taste of interpretability

- How important is each individual feature?
- Recall we can write: $y_j = \sum_i w_i x_{ji}$
- A measure of feature importance: "If x_{ji} is increased by 1, how much does y_j change?
- \triangleright Sizes of individual w_i tell us about relative importance of features
 - Counter-example: Should income and credit score be on the same scale?

A taste of evaluation

- ▶ How do we check whether the learnt model is reasonable?
- MSE
- ► Coefficient of determination or R^2 statistic = $\frac{\sum_i (y_i w^T x_i)^2}{\sum_i (y_i \bar{y})^2}$
 - Intuitively, ratio of variance explained and total variance

Ridge regression

Alternate cost function using regularization:

$$ightharpoonup \min_{w} \sum_{i} |y_{i} - w^{T} x_{i}|^{2} + \lambda ||w||^{2}$$

- "Want to fit the data but don't want w to be too big"
- Also has closed form solution: $w^* = (X^TX + \lambda I)^{-1}X^Ty$
 - The inner matrix is always invertible
- Bias-variance tradeoff (more on this later!)

Sparse modeling

- ► Instead of using all the features, start with using a few
- Iteratively add or remove features that improve "performance" (e.g. MSE or \mathbb{R}^2)
- Alternatively, use LASSO

$$\min_{w} \sum_{i} |y_i - w^{\mathsf{T}} x_i|^2 + \lambda \big| |w| \big|_1 \quad ,$$

where $||w||_1 = \sum_i |w|$ is the L1 norm of w.

Commonly used: Elastic net

$$\min_{w} \sum_{i} |y_{i} - w^{\mathsf{T}} x_{i}|^{2} + \lambda_{1} ||w||^{2} + \lambda_{2} ||w||_{1}$$