Swimming Tango

An underwater navigation mechanism for deep-sea divers

Rishabh Ananthan Anupam Goli

ECE 4012 L7A

Project in a Nutshell

- Creating a means of underwater navigation (similar to a mobile GPS).
- Hardware size limited to the size of a small tablet.
- End goal is to produce a visualization of the underwater environment.

Objective

- Design a device that attempts to reconstruct Google's Project Tango using a Micron DST SONAR instead of the Kinect.
 - Kinect doesn't work well in low-light conditions.
- Waterproof and will complement the diver's breathing apparatus.
- Also enables divers to communicate with each other.

Motivation

- Helps divers communicate in case of emergency.
- Allows divers to be found in case they lose their way.
- Enable autonomous exploration while mapping.

Background

 Project Tango makes use of computer vision to help mobile devices to detect their position relative to their surroundings.

• Key algorithm used is SLAM. Tango uses an IMU and Kinect-like laserscan

sensor. We intend to use the SONAR.

Concept of Operations

Concept of Operation Cont.

Technical Specs of the Device

Specification	Feature
Screen size	ideally between 4-7 inches
Thickness	preferably not more than 9mm (excluding SONAR)
OS	Linux with ROS
Max. depth	66 Feet of Seawater (FSW)
Max. number of divers supported	56 on one network
Max. communications range	1000m
Navigations equipment	SONAR, IMU

Technical Specs of the SONAR

Specification	Feature
Size	Smallest digital CHIRP SONAR in the world. Dimensions shown in the figure on the next slide.
Max. depth	750m (around 2460 feet)
Max. range	75m
Min. range	0.3m
Power requirement	12-48V DC at 4 VA average power
Communications protocols	RS-232, RS-485 (twisted pair)

SONAR Dimensions

Simultaneous Localization and Mapping: SLAM

- Developed by Hugh Durrant-Whyte and John J Leonard.
 - Originally termed SMAL.
- Consists of:
 - Landmark extraction
 - Data association
 - State estimation
 - State update
 - Landmark update
- Requires a mobile robot and a range-estimation device (our SONAR).

SLAM algorithm

Visual Odometry

- Use features from different frames to discern distance traveled.
- Project Tango uses Visual Odometry to generate a map
- Useful to complement SLAM algorithm to map path traveled more accurately

Robotic Operating System: ROS

- Open-source meta-operating system for robots.
 - Provides services such as hardware abstraction, low-level device control and package management.
 - Provides tools and libraries for obtaining, building, writing and running code across multiple computers.
- Custom sensor libraries.
 - Many open source implementations of various sensors in ROS exist.

Mission Oriented Operating Suite: MOOS

- C++ cross-platform middleware for robotics research.
- Very useful for underwater robots.
- Can be bridged with ROS to add even more sensor integration.

Codes and Standards

- Protocols for interfacing of sensors:
 - o SPI
 - \circ I^2C
 - o USB
 - o RS-232
 - o RS-485
- FCC standards when interfacing with communications device.
- GNU GPL when using open-source software like ROS and MOOS.

Design Constraints

Cost

- Unsure of the budget provided by the sponsor.
- The sensor will need to be bought

Time

- Only one semester available.
- Unlikely to be sufficient to design the entire system from scratch.

Size

Affects the choice of sensors.

Potential Trade-Offs

Size-related

Smaller, less-accurate sensors vs Larger, more-accurate sensors

Power related

- Battery life vs number and quality of sensors
- Computational power vs battery life
- Computational power vs quality of sensors

Gantt Chart

Current Status

- Working on setting up research environment.
 - Project Tango
 - ROSpy
 - DST packages
- Installing ROS on a small laptop and setting up ROSpy.
- Found a McGill University Robotics GitHub repository for the DST Micron which will be used as a starting point.

Resources Used

SLAM

- "SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping".
 http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
- "Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms"
 http://www.cs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf

ROS

- http://wiki.ros.org/ROS/Introduction
- M00S