

Trasformazioni per la sicurezza

La tecnica che può rendere i dati sicuri

I principi della difesa

Impossibilità di sapere

1: Trasformazioni "segrete"

2: Calcoli impossibili

Impossibilità Impossibilità di di indovinare dedurre

Elaborazioni per la riservatezza di un messaggio

La sorgente trasforma la rappresentazione originaria delle informazioni riservate in una rappresentazione che le renda apparentemente incomprensibili; la destinazione è l'unica a saper eseguire la trasformazione inversa

Elaborazioni per la riservatezza di un messaggio

La sorgente trasforma la rappresentazione originaria delle informazioni riservate in una rappresentazione che le renda apparentemente incomprensibili; la destinazione è l'unica a saper eseguire la trasformazione inversa

Sicurezza perfetta: da c non si impara nulla di più di quello che si sapeva già

I calcoli per mettere in chiaro un testo cifrato senza conoscere l'algoritmo di decifrazione devono essere difficili

Integrità: rilevazione di attacchi intenzionali

La sorgente deve affiancare al documento un "riassunto" che ne rappresenti in modo pressoché univoco il contenuto; la destinazione deve ricalcolare il riassunto e confrontare i due dati

Resistenza alle collisioni: l'individuazione di due messaggi con la stessa impronta deve essere un calcolo difficile

intro al Corso – Sicurezza dell'informazione ivi

Collisioni

n bit di hash: 2ⁿ valori d'uscita

Attestazione ed accertamento dell'integrità

A -> B: m || H(M)

Funziona?

Attestazione ed accertamento dell'integrità

Produttori di software Portachiavi del PGP

Attestazione ed accertamento dell'integrità

Produttori di software Portachiavi del PGP

Protocollo per la difesa di Riservatezza & Integrità

Come possiamo combinare insieme le trasformazioni E ed H?

Protocollo per la difesa di Riservatezza & Integrità

1. $\mathbf{p} = \mathbf{m} || \mathbf{H}(\mathbf{m})$ testo in chiaro concatenato con

l'attestazione d'integrità

2. c = E(p) testo cifrato trasmesso

3. $p^* = D(c^*) = m^* ||H^*(m)|$ testo in chiaro ricevuto

4. $H^*(m) = ? H(m^*)$ controllo d'integrità

Protocollo per la difesa di Riservatezza & Integrità

1. **p** = **m** testo in chiaro concatenato con l'attestazione d'integrità

2. c = E(p)||H(m) testo cifrato trasmesso

-Funziona?

Protocollo per la difesa di Riservatezza & Integrità

1. $\mathbf{p} = \mathbf{m}$ testo in chiaro concatenato con

l'attestazione d'integrità

2. c = E(p)||H(m) testo cifrato trasmesso

Violazione della riservatezza: un intruso può fare ipotesi su possibili m^* , fare $H(m^*)$ e controllare se $H(m^*)=H(m)$

Protocollo per la difesa di Riservatezza & Integrità

p = m testo in chiaro concatenato con l'attestazione d'integrità

2. c = E(p)||H(E(p)) testo cifrato trasmesso

Violazione dell'integrità: un intruso può modificare E(p) e ottenere $E^*(p)$ e sostituire H(E(p)) con $H(E^*(p))$; se m è un messaggio privo di significato (ad esempio un numero) D(E(p)) restituisce m^* e la destinazione potrebbe non accorgersi che m^* non è corretto. Se invece m è un messaggio dotato di significato la destinazione potrebbe accorgersi che m^* non ha senso e quindi comunque non accettarlo per buono

Elaborazioni per l'autenticazione di un messaggio

La sorgente aggiunge al documento informazioni non imitabili e atte ad attestare chi l'ha predisposto; la destinazione verifica che il documento ricevuto sia stato originato proprio da chi dichiara di averlo fatto".

Elaborazioni per l'autenticazione di un messaggio

I calcoli per costruire un messaggio apparentemente autentico senza conoscere la trasformazione della sorgente devono essere difficili

Intro al Corso – Sicurezza dell'Informazione M

Autenticazione di un messaggio in chiaro

1: schema firma digitale

WALL STORY

Autenticazione di un messaggio in chiaro

2: hash del messaggio e di un segreto

Protocollo per la difesa di Riservatezza & Autenticazione

1. $\mathbf{p} = \mathbf{m}||\mathbf{H}(\mathbf{m}||\mathbf{s})$ testo in chiaro concatenato con

l'attestazione di autenticità

2. c = E(p) testo cifrato trasmesso

es. SSL

3. $p^* = D(c^*)= m^*||H^*(m)||s|$ testo in chiaro ricevuto

4. $H^*(m||s) =$? $H(m^*||s)$ controllo d'integrità

Protocollo per la difesa di Riservatezza & Autenticazione

1. $\mathbf{p} = \mathbf{m}$ testo in chiaro

2. $\mathbf{c} = \mathbf{E}(\mathbf{p}), \mathbf{H}(\mathbf{m}||\mathbf{s})$ es. SSH

1. $\mathbf{p} = \mathbf{m}$

2. $\mathbf{c} = \mathbf{E}(\mathbf{p}), \mathbf{H}((\mathbf{E}(\mathbf{p})||\mathbf{s}))$ es. IPSEC

Il modello della funzione unidirezionale (one-way function)

L'intruso non deve riuscire ad invertire

- ·una funzione hash
- ·una funzione di cifratura
- ·una funzione di verifica

•••••

Una funzione f è detta unidirezionale se

è invertibile,

facile da calcolare

e se per quasi tutti gli x appartenenti al dominio di

f è difficile risolvere per x il problema y = f(x).

In teoria non esistono, in pratica SI:

- ·Manipolazioni a livello di bit
- ·Problemi difficili della Teoria dei numeri

Una funzione F è detta pseudo-unidirezionale (trapdoor one-way) se appare come unidirezionale per chiunque non sia in possesso di una particolare informazione sulla sua costruzione

Trasformazioni segrete

Decifrazione

Autenticazione

Algoritmo

Parametro

- Ispezione
- Installazione

- Progetto
- Produzione
- Certificazione

Algoritmo pubblico e parametro segreto

Kerckhoffs: "La criptogràphie militaire" 1883

Responsabilità dell'utente

cassaforte

Valutazione pubblica

AES

Software open e free

JCE, JSSE

Algoritmi segreti e parametri segreti

Clipper

GSM

Intro al Corso – Sicurezza dell'Informazione M

Segretezza di una trasformazione: algoritmo con chiave segreta!

 $\begin{array}{ll} \text{insieme delle trasformazioni:} & \mathbf{T} = \{\mathbf{t_1}, \ \mathbf{t_2} \ , \ ..., \ \ \mathbf{t_N} \, \} \\ \text{spazio delle chiavi:} & \mathbf{K} = \{\mathbf{k_1}, \ \mathbf{k_2}, \ ..., \ \ \mathbf{k_N} \, \} \\ \end{array}$

N grandissimo!

Attacco con forza bruta alla segretezza di una chiave

La relazioni tra le chiavi

ks ∈ K $kd \in K$

 $K \rightarrow K : ks = f(kd)$.

Algoritmo a chiavi simmetriche o simmetrico:

le chiavi ks, kd sono o uguali o facilmente calcolabili una dall'altra; la situazione usuale è

ks = kd.

Algoritmo a chiavi asimmetriche o asimmetrico:

le chiavi ks, kd sono diverse ed una delle due

è difficilmente calcolabile dall'altra

Autenticazione Riservatezza

kd = f(ks) facile! ks = f(kd) facile!

 $ks = f^{-1}(kd)$ difficile! $kd = f^{-1}(ks)$ difficile!

La relazioni tra le chiavi

ks ∈ K $kd \in K$

 $K \rightarrow K : ks = f(kd)$.

Algoritmo a chiavi simmetriche o simmetri

le chiavi ks, kd sono o uguali o facks & kd segrete una dall'altra; la situazione usua

ks = kd.

Algoritm

iavi asimmetriche o asimmetrico:

sono diverse ed una ks segreta ate calcolabile dall'altra kd pubblica

Riservat

 $\mathbf{k} \mathbf{a} = \mathbf{f}(\mathbf{k}\mathbf{s})$ facile!

ks = f(kd)

 $ks = f^{-1}(kd)$ difficile!

 $kd = f^{-1}(ks)$ difficile!

kd segreta

ks pubblica

Attacco con forza bruta e con dizionario

Tirare ad indovinare

I simboli della stringa che rappresenta un segreto devono essere molti e scelti a caso

Valutazioni

Tirare a indovinare 2⁻ⁿ > 20 bit
 Provare per k volte k.2⁻ⁿ > 30 bit

3. Ricerca esauriente $O(\exp(n)) > 80 \text{ bit } \rightarrow 10^{11} \text{ anni MIPS}$

Un dato segreto deve essere frequentemente modificato

HardDisk < MemoryCard < SmartCard

morizzazione della chiave su File System

Intro al Corso – Sicurezza dell'Informazione M

Deduzione di un segreto dal suo uso

ATTACCO	CONOSCENZE DELL'INTRUSO
con solo testo cifrato	linguaggio e probabilità d'occorrenza
con testo in chiaro noto	coppie di testo in chiaro e cifrato
con testo in chiaro scelto	testi cifrati di testi in chiaro scelti
con testo cifrato scelto	testi in chiaro di testi cifrati scelti

Contromisura preventiva

l'uscita di un algoritmo crittografico deve apparire come una variabile aleatoria che assume con eguale probabilità tutti i suoi possibili valori

Teoria della Complessità di un Algoritmo

Tempo di esecuzione di un algoritmo: numero di operazioni N che occorre eseguire per terminarlo quando il dato d'ingresso è rappresentato da una stringa di n bit (n = log [valore del dato])

$$N = f(n)$$

In generale, a parità di n, si hanno diversi valori di N.

Tempo di esecuzione nel caso peggiore: numero massimo di operazioni

 N_{max} che occorre eseguire per qualsiasi dato d'ingresso di n bit

 $\frac{N_{max} = f(n)}{\textit{Si considera la modalità d'incremento di } N_{max}\textit{ al crescere senza limiti di } n}$

Andamento asintotico del tempo di esecuzione nel caso peggiore detto Ordine di grandezza del tempo di esecuzione: T = O(g(n)) ove g(n) è una funzione tale che $0 \le f(n) \le c.g(n)$ per $n \ge n_0$ e c cost.

La notazione del "grande O"

Se è nota l'espressione di f(n), si considera come g(n) il termine di f(n) che cresce più rapidamente con n

Classificazioni

Classificazione degli algoritmi

1. con tempo polinomiale:

 $T = O(n^t)$ con t esponente più grande in g(n),

2. con tempo esponenziale:

 $T = O(b^n)$, con b costante, o anche T = O(exp(n))

Classificazione dei problemi

- 1. facile, se esiste un algoritmo polinomiale in grado di risolverlo su una macchina di Turing deterministica,
- 2. difficile, se non sono stati fino ad ora individuati (e probabilmente non saranno mai individuati) algoritmi che lo risolvono in tempo polinomiale

Complessità e Sicurezza

· Caso peggiore e istanze facili

· Modalità di incremento e valori di n

R10:"ogni algoritmo che consente di difendere una proprietà critica dell'informazione deve avere tempo polinomiale" ESEMPI: O(1), O(n), O(n³)

R11:"ogni algoritmo che consente di violare una proprietà critica della informazione deve avere tempo esponenziale" ESEMPI: $O(\exp(n))$, $O(\exp(n))^{1/2}$

Algoritmi sub-esponenziale: $O(exp((n)^{\alpha}(ln(n)^{1-\alpha})) con 0 < \alpha < 1$

Anni MIPS e dimensione del dato

Livello di sicurezza

1-L'algoritmo di ricerca esauriente risolve ogni problema difficile

PROBLEMA: inversione di una funzione

ES. Per quale intero x, con $0 < x < 2^n-1$, vale la proprietà f(x) = y?

Nel caso peggiore occorrono 2ⁿ passi: O(exp(n))

Livello di sicurezza

2-La complessità di ogni algoritmo di attacco può essere misurata facendo riferimento all'attacco con forza bruta

Algoritmo A: N passi per terminare nel caso peggiore

Si individua un n tale che 2ⁿ ≤ N < 2ⁿ⁺¹
in altre parole si confronta la complessità di A con quella
dell'algoritmo di ricerca esauriente
Si assegna all'algoritmo A un livello di sicurezza di n bit

Misura di robustezza indipendente dal calcolatore e dalle operazioni

10¹² anni MIPS equivalgono ad un livello di sicurezza di 85 bit. Attualmente si cerca di conseguire un livello di 128 bit

3000

1000

2000

Uso: algoritmo polinomiale

5000

Dimensione della chiave (bit)

6000

4000

