2.2 Évolutions successives

Exemple. Le prix de l'électricité augmente de 5% tous les ans pendant deux ans. De quel pourcentage a augmenté le prix de l'électricité après deux ans?

Proposition 3. La succession de deux évolutions, respectivement de taux t_1 et t_2 , a pour coefficient multiplicateur :

$$CM_t = CM_1 \times CM_2 = (1 + t_1) \times (1 + t_2)$$

Alors, le taux d'évolution global associé à cette succession est donné par $t = CM_t - 1$.

Exemple. Le prix du gaz, quant à lui, a augmenté de $t_1=20\%$ la première année puis a diminué de $t_2=-40\%$ la deuxième année.

- a) Donner les coefficients multiplicateurs CM_1 et CM_2 associés à t_1 et à t_2 .
- b) En déduire le coefficient multiplicateur CM_t de la succession d'évolutions.
- c) En déduire le taux d'évolution global t.

2.3 Évolution réciproque

Exemple. Un article est soldé de 33% en 2024. Mais, en 2025, on souhaite augmenter son prix d'un certain pourcentage afin d'obtenir son prix initial. Quel est ce pourcentage?

Proposition 4. Soit un taux d'évolution t, décrivant l'évolution depuis une valeur V_d vers une valeur V_f . Son coefficient multiplicateur est noté CM.

Alors, pour calculer le taux de l'évolution de V_f vers V_d , on calcule son coefficient multiplicateur

$$CM_r = \frac{1}{CM}$$

Alors le taux d'évolution réciproque est donné par

$$t_r = CM_r - 1$$

Exemple. Un autre article est augmenté de t=+60%. On se demande par quel pourcentage solder cet article pour qu'il retrouve son prix d'origine.

- a) Calculer le coefficient multiplicateur CM associé à ce taux d'évolution.
- b) En déduire le coefficient multiplicateur réciproque CM_r .
- c) En déduire le taux d'évolution réciproque t_r .