Statystyka i Analiza Danych

W4: Estymacja punktowa i przedziałowa

dr hab. inż. Katarzyna Filipiak, prof. PP

Instytut Matematyki Politechnika Poznańska

2023/2024

Próba prosta

Obserwację przed jej pobraniem modelujemy jako zmienną losową X o rozkładzie f(x) - rozkładzie populacji.

Próba (losowa) prosta o liczebności n – zbiór n niezależnych zm. losowych X_1, X_2, \ldots, X_n o takim samym rozkładzie f(x) jak interesująca zm. losowa X w populacji.

 X_1, X_2, \ldots, X_n – zm. losowe reprezentujące nieznane pomiary, które w procesie losowania próby zamienią się w pierwszą, drugą, \ldots, n tą obserwację

 x_1, x_2, \ldots, x_n – obserwacje (realizacje zm. losowych X_1, X_2, \ldots, X_n)

Estymacja

 θ - nieznany parametr w rozkładzie populacji, f(x)

Estymator θ – statystyka podająca sposób obliczania oceny parametru θ :

$$\widehat{\Theta} = \widehat{\Theta}(X_1, X_2, \dots X_n)$$

Estymator jest zmienną losową (a więc posiada swój rozkład)!

Ocena parametru θ :

$$\widehat{\theta} = \widehat{\Theta}(x_1, x_2, \dots x_n)$$

Estymacja punktowa średniej populacyjnej

Obserwowana cecha w populacji – zmienna losowa X o rozkładzie z nieznaną średnią populacyjną μ

Parametr: średnia populacyjna μ

Próba: X_1, X_2, \dots, X_n

Estymator μ : średnia z próby, tzn. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Obserwacje: x_1, x_2, \ldots, x_n

Ocena μ :

 $\hat{\mu} = \overline{x}$

Przykład 1

Inżynier mechanik, który zaprojektował urządzenie do fizjoterapii, wybrał do badania 12 pacjentów i sprawdził, ile czasu spędzają korzystając z nowego urządzenia. Otrzymał następujące wyniki (w godzinach):

```
8; 12; 26; 10; 23; 21; 16; 22; 18; 17; 36; 9.
```

Oceń średni czas korzystania z urządzenia danego typu przez wszystkich pacjentów poddanych terapii.

time =
$$c(8, 12, 26, 10, 23, 21, 16, 22, 18, 17, 36, 9)$$

Estymacja przedziałowa

Niech $(1-\alpha)$ będzie określonym "dużym" prawdopodobieństwem i niech statystyki (zmienne losowe) L oraz U będą funkcjami próby X_1,X_2,\ldots,X_n takimi, że

$$P(L < \theta < U) = 1 - \alpha.$$

Wówczas przedział losowy (L,U) nazywamy $(1-\alpha)100\%$ przedziałem ufności dla parametru θ a wartość $(1-\alpha)$ nazywamy współczynnikiem ufności przedziału.

Rozkłady średniej z próby – przypomnienie

(1) $X_i \sim N(\mu, \sigma), \mu, \sigma$ – znane:

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \quad \Rightarrow \quad \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

(2) X_i ze znanymi μ , σ , rozkład X_i nie jest normalny, n duże:

$$\overline{X} \underset{\text{app}}{\sim} N(\mu, \frac{\sigma}{\sqrt{n}}) \quad \Rightarrow \quad \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \underset{\text{app}}{\sim} N(0, 1)$$

(3)
$$X_i \sim N(\mu, \sigma)$$
, μ – znane, σ – nieznane: $\frac{X - \mu}{\frac{S}{\sigma}} \sim t_{n-1}$

$$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

Założenie: $X_i \sim N(\mu, \sigma)$, μ – nieznane, σ – znane

Z ufnością $100(1-\alpha)\%$ przedział

$$\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

pokrywa nieznaną prawdziwą średnią populacyjną μ .

$$z_{1-\alpha/2}$$
 – kwantyl rozkładu $N(0,1)$: qnorm $(1-\alpha/2)$

Założenia: dowolny rozkład populacji z nieznaną średnią populacyjną μ , próba duża $(n \ge 30)$

Z ufnością $100(1-\alpha)\%$ przedział

$$\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + z_{1-\alpha/2} \cdot \frac{S}{\sqrt{n}}\right)$$

pokrywa nieznaną prawdziwą średnią populacyjną μ .

$$z_{1-\alpha/2}$$
 – kwantyl rozkładu $N(0,1)$: qnorm $(1-\alpha/2)$

Założenie: $X_i \sim N(\mu, \sigma)$, μ – nieznane, σ – nieznane

Z ufnością $100(1-\alpha)\%$ przedział

$$\left(\overline{X} - t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}}\right)$$

pokrywa nieznaną prawdziwą średnią populacyjną μ .

$$t_{n-1,1-\alpha/2}$$
 – kwantyl rozkładu t_{n-1} : $\operatorname{qt}(1-\alpha/2,\,n-1)$

Inżynier mechanik, który zaprojektował urządzenie do fizjoterapii, wybrał do badania 12 pacjentów i sprawdził, ile czasu spędzają korzystając z nowego urządzenia. Otrzymał następujące wyniki (w godzinach):

```
8; 12; 26; 10; 23; 21; 16; 22; 18; 17; 36; 9.
```

Zakładając normalność rozkładu czasu użytkowania urządzenia oceń przedziałowo z ufnością 95% średni czas korzystania z urządzenia zaprojektowanego przez inżyniera przez wszystkich pacjentów poddanych terapii.

time =
$$\mathbf{c}(8, 12, 26, 10, 23, 21, 16, 22, 18, 17, 36, 9)$$

$$n = \text{length(time)} = 12$$
 $1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025$ $\overline{x} = \text{mean(time)} = 18.17$ $s^2 = \text{var(time)} = 65.78788$ $t_{n-1,1-\alpha/2} = t_{11;0.975} = \text{qt}(0.975, 11) = 2.200985$

$$n = \text{length}(\text{time}) = 12$$

 $\overline{x} = \text{mean}(\text{time}) = 18,17$
 $s^2 = \text{var}(\text{time}) = 65,78788$
 $\overline{x} \mp t_{n-1,1-\alpha/2} \cdot \sqrt{\frac{s^2}{n}}$

$$\begin{array}{ll} 1-\alpha &= 0{,}95 \\ t_{n-1,1-\alpha/2} = 2{,}200985 \end{array}$$

Przedziały ufności dla μ w R

- (1) $X_i \sim N(\mu, \sigma)$, μ nieznane, σ znane: z.test(dane, sigma.x = σ , conf.level = $1-\alpha$)
- (2) nieokreślony rozkład X_i , μ nieznane, duża próba:

- σ nieznane zsum.test(mean(dane), sd(dane), n, conf.level = $1-\alpha$)
- (3) $X_i \sim N(\mu, \sigma)$, μ nieznane, σ nieznane: t.test(dane, conf.level = 1α)

UWAGA! Dla przypadku (1) i (2) wymagany jest pakiet BSDA

Inżynier mechanik, który zaprojektował urządzenie do fizjoterapii, wybrał do badania 12 pacjentów i sprawdził, ile czasu spędzają korzystając z nowego urządzenia. Otrzymał następujące wyniki (w godzinach):

```
8; 12; 26; 10; 23; 21; 16; 22; 18; 17; 36; 9.
```

Zakładając normalność rozkładu czasu użytkowania urządzenia oceń przedziałowo z ufnością 95% średni czas korzystania z urządzenia zaprojektowanego przez inżyniera przez wszystkich pacjentów poddanych terapii.

Estymacja punktowa wariancji

Obserwowana cecha w populacji – zmienna losowa X o rozkładzie z nieznaną wariancją populacyjną σ^2

Parametr: wariancja populacyjna σ^2

Próba: X_1, X_2, \dots, X_n

Estymator σ^2 : wariancja z próby, tzn. $S^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \overline{X}^2 \right)$

Obserwacje: x_1, x_2, \ldots, x_n

Ocena σ^2 :

 $\hat{\sigma}^2 = s^2$

Inżynier mechanik, który zaprojektował urządzenie do fizjoterapii, wybrał do badania 12 pacjentów i sprawdził, ile czasu spędzają korzystając z nowego urządzenia. Otrzymał następujące wyniki (w godzinach):

```
8; 12; 26; 10; 23; 21; 16; 22; 18; 17; 36; 9.
```

Oceń odchylenie standardowe czasu korzystania z urządzenia danego typu przez wszystkich pacjentów poddanych terapii.

time =
$$c(8, 12, 26, 10, 23, 21, 16, 22, 18, 17, 36, 9)$$

Przedział ufności dla wariancji

Założenie: $X_i \sim N(\mu, \sigma)$, σ - nieznane

Z ufnością $100(1-\alpha)\%$ przedział

$$\left(\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}\right)$$

pokrywa nieznaną prawdziwą wariancję populacyjną σ^2 .

$$\chi^2_{n-1,\beta}$$
 – kwantyle rozkładu χ^2_{n-1} : qchisq $(\beta,\,n-1)$

Przedział ufności dla σ^2 w R:

$$sigma.test(dane, conf.level = 1 - \alpha)$$

UWAGA! Wymagany pakiet TeachingDemos

Inżynier mechanik, który zaprojektował urządzenie do fizjoterapii, wybrał do badania 12 pacjentów i sprawdził, ile czasu spędzają korzystając z nowego urządzenia. Otrzymał następujące wyniki (w godzinach):

```
8; 12; 26; 10; 23; 21; 16; 22; 18; 17; 36; 9.
```

Zakłądając normalność rozkładu czasu użytkowania urządzenia oceń przedziałowo z ufnością 95% wariancję i odchylenie standardowe czasu korzystania z urządzenia danego typu przez wszystkich pacjentów poddanych terapii.

time = c(8, 12, 26, 10, 23, 21, 16, 22, 18, 17, 36, 9)n = length(time) = 12 $1 - \alpha = 0.95$

$$s^2 = \text{var}(\text{time}) = 65,78788 \qquad \alpha = 0,05 \\ \alpha/2 = 0,025$$

$$\chi^2_{n-1,1-\alpha/2} = \chi^2_{11;0,975} = \text{qchisq}(0.975,11) = 21,92005 \\ \chi^2_{n-1,\alpha/2} = \chi^2_{11;0,025} = \text{qchisq}(0.025,11) = 3,815748$$

$$n = length(time) = 12$$

 $s^2 = var(time) = 65,78788$

$$\left(\frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}\right)$$

$$\begin{array}{l} 1-\alpha &= 0{,}95 \\ \chi^2_{11;0,975} &= 21{,}92005 \\ \chi^2_{11;0,025} &= 3{,}815748 \end{array}$$

Estymacja punktowa proporcji

Obserwowana cecha w populacji – zmienna losowa X o rozkładzie bin(1, p) z nieznanym prawd. sukcesu p

Parametr: proporcja populacyjna p

Próba: X_1, X_2, \dots, X_n

Estymator p: proporcja z próby, tzn. $\hat{p} = \frac{T}{n}$ T - liczba "sukcesów" w próbie

Obserwacje: x_1, x_2, \ldots, x_n

Ocena p:

Przykład 2

Pewna szkoła chce poznać opinię uczniów o nowym programie nauczania. Aby to zrobić wybrano losowo próbę 150 uczniów i zapytano ich o opinię: 70 uczniów pozytywnie wypowiedziało się w sprawie nowego program nauczania. Wyznacz ocenę proporcji wszystkich uczniów pozytywnie nastawionych do nowego programu nauczania.

Przedział ufności dla proporcji

Założenie: próba duża $(n \ge 100)$

Z ufnością $100(1-\alpha)\%$ przedział

$$\left(\widehat{p} - z_{1-\alpha/2} \cdot \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \ \widehat{p} + z_{1-\alpha/2} \cdot \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right)$$

pokrywa nieznaną prawdziwą proporcję populacyjną p.

$$z_{1-\alpha/2}$$
 – kwantyl rozkładu $N(0, 1)$: qnorm $(1-\alpha/2)$

Przedział ufności dla p w R:

$$\begin{aligned} & \texttt{binom.test}(T, \, n, \, \texttt{conf.level} = 1 - \alpha) \\ & \texttt{prop.test}(T, \, n, \, \texttt{conf.level} = 1 - \alpha) \end{aligned} \text{ (przybliżony)}$$

23 / 27

Pewna szkoła chce poznać opinię uczniów o nowym programie nauczania. Aby to zrobić wybrano losowo próbę 150 uczniów i zapytano ich o opinię: 70 uczniów pozytywnie wypowiedziało się w sprawie nowego program nauczania. Przyjmując współczynnik ufności 0,99 oceń przedziałowo proporcję wszystkich uczniów pozytywnie nastawionych do nowego programu nauczania.

$$n = 150, \quad T = 70 \qquad \Rightarrow \quad \hat{p} = \frac{T}{n} = \frac{7}{15}$$

$$1 - \alpha = 0.99 \quad \Rightarrow \quad \alpha = 0.01 \quad \Rightarrow \quad \alpha/2 = 0.005$$

$$z_{1-\alpha/2} = z_{0.995} = \underset{n}{\mathsf{qnorm}}(0.995) = 2.575829$$

$$\hat{p} \mp z_{1-\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$n=150, \quad T=70 \qquad \Rightarrow \quad \widehat{p}=\frac{T}{n}=\frac{7}{15}=0,4666667$$

$$1-\alpha = 0,99$$

$$\mathrm{propCI} = \mathtt{binom.test}(70,\,150,\mathtt{conf.level}=0.99)$$

$$\mathrm{propCI} \$\mathtt{conf.int}$$

Przykład 3

24.12.1991 *New York Times* podał, że 46% Amerykanów jest zadowolonych z polityki ekonomicznej prezydenta Busha, z marginesem błędu $\pm 3\%$. Wiedząc, że media przyjmują zazwyczaj 95% poziom ufności wyjaśnij, co oznacza podany wynik. Czy na podstawie opublikowanych wyników możemy wywnioskować, jak dużą grupę osób zapytano?

