Universidade Federal Fluminense

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

LISTA 10 - 2010-2

Equação diferencial exata

EDO's especiais:

Bernoulli, Ricatti e Clairaut

Nos exercícios 1 a 6 identifique as equações diferenciais exatas e resolva-as.

1.
$$(x-y)dx + (-x+y+2)dy = 0$$

5.
$$(y + \cos x)dx + (x + \sin y)dy = 0$$

2.
$$y' = \frac{y - x + 1}{-x + y + 3}$$

3.
$$(x^2 + y^2) dx + (xe^{xy} + 1) dy = 0$$

6.
$$\left(1 + \ln x + \frac{y}{x}\right) dx = (1 - \ln x) dy$$

4.
$$(3x^2y + e^y - e^x) dx + (x^3 + xe^y) dy = 0$$

Nos exercícios 7 e 8 resolva o PVI.

7.
$$(e^x + y) dx + (2 + x + ye^y) dy = 0$$
, $y(0) = 1$

8.
$$\left(\frac{1}{1+y^2} + \cos x - 2xy\right) \frac{dy}{dx} = y(y + \sin x), \quad y(0) = 1$$

Nos exercícios 9 e 10 verifique que $\lambda = \lambda(x,y)$ é um fator de integração que transforma a EDO dada em uma EDO exata e resolva a EDO.

9.
$$x^2y^3 + x(1+y^2)y' = 0$$
; $\lambda(x,y) = \frac{1}{xy^3}$

10.
$$\left(\frac{\sin y}{y} - 2e^{-x}\sin x\right)dx + \left(\frac{\cos y + 2e^{-x}\cos x}{y}\right)dy = 0; \quad \lambda(x,y) = ye^x$$

Nos exercícios 11 a 18 verifique se é possível encontrar um fator de integração do tipo $\lambda = \lambda(x)$ ou $\lambda = \lambda(y)$ que transforma a EDO dada em uma EDO exata. Em caso afirmativo, determine o fator de integração e resolva a EDO.

11.
$$yx^3dx - (x^4 + y^4) dy = 0$$

$$16. dx + \left(\frac{x}{y} - \sin y\right) dy = 0$$

12.
$$y' = e^{2x} + y - 1$$

13.
$$(3x^2y + 2xy + y^3) dx + (x^2 + y^2) dy = 0$$
 17. $ydx + (2xy - e^{-2y}) dy = 0$

17.
$$ydx + (2xy - e^{-2y}) dy = 0$$

14.
$$\left(\frac{x}{y+x^2}dx\right) + \left(\frac{y}{x+y^2}\right)dy = 0$$

18.
$$e^x dx + (e^x \cot y + 2y \csc y) dy = 0$$

15.
$$(x^2 + y^2 + 2x) dx + (x^2 + y^2 + 2y) dy = 0$$

Nos exercícios 19 a 22 identifique as equações do tipo Bernoulli e resolva-as.

[lembrando, tipo Bernoulli: $y' + p(x)y = q(x)y^n$, n constante real]

19.
$$y' - 2xy = 4xy^{1/2}$$

21.
$$y' - xy = x^3 + y^3$$

20.
$$xy' - \frac{y}{2 \ln x} = y^2$$

22.
$$xdy - (y + xy^3(1 + \ln x)) dx = 0$$

Nos exercícios 23 a 26 identifique as equações do tipo Ricatti e se é conhecida uma solução particular y_1 , resolva-a. [lembrando, tipo Ricatti: $y' = a(x)y^2 + b(x)y + c(x)$]

23.
$$y' = (x+y)^2$$
, $y_1 = -x + \tan x$

25.
$$\frac{dy}{dx} = e^{2x} + (1 + 2e^x)y + y^2$$
, $y_1 = -e^x$

24.
$$\frac{dy}{dx} = 1 - xy^2 + y^3$$
, $y_1 = x$

$$26. \ y' = 9 + 6y + y^2$$

Nos exercícios 27 e 27 verifique que as equações são do tipo Clairaut e encontre uma família de soluções e as soluções singulares na forma paramétrica. [lembrando, tipo Clairaut: y=xy'+F(y')]

27.
$$y = xy' + \ln(y')$$

28.
$$y = (x+4)y' + (y')^2$$

Nos exercícios 29 e 30 resolva o PVI.

29.
$$y' = \sec^2(x) - (\tan x)y + y^2$$
, se $y_1 = \tan x$ é uma solução da EDO e $y(0) = 1/2$.

30. $y = xy' + (y')^{-2}$, y(-2) = 3. Este PVI terá mais de uma solução. Isso contradiz o Teorema da Existência e Unicidade?

RESPOSTAS DA LISTA 10 (Com indicação ou resumo de algumas resoluções)

1.
$$x^2 + y^2 + (4 - 2x)y = C$$

2.
$$x^2 + y^2 - 2xy - 2x + 6y = C$$

4.
$$x^3y + xe^y + e^x = C$$

5.
$$xy + \sin x - \cos y = C$$

6.
$$-y + y \ln x + x \ln x = C$$

7.
$$e^x + xy + 2y + ye^y - e^y = 3$$

8.
$$-xy^2 + y\cos x + \arctan y = 1 + \pi/4$$

9.
$$x^2 + 2 \ln |y| - y^- 2 = C$$

10.
$$e^x \operatorname{sen} y + 2y \operatorname{cos} x = C$$

11.
$$\lambda(x) = \frac{1}{y^5}$$
; $x^4 - 4y^4 \ln|y| = Cy^4$

12.
$$\lambda(x) = e^{-x}$$
; $y = Ce^x + 1 + e^{2x}$

13.
$$\lambda(x) = e^{3x}$$
; $(3x^2y + y^3)e^{3x} = C$

14. Não é possível

16.
$$\lambda(y) = y$$
; $xy + y \cos y - \sin y = C$

17.
$$\lambda(y) = \frac{e^{2y}}{y}; \quad xe^{2y} - \ln|y| = C$$

18.
$$\lambda(y) = \sin y$$
; $e^x \sin y + y^2 = C$

19.
$$y(x) = \left(-2 + Ce^{x^2/2}\right)^2$$

20.
$$y(x) = \frac{3\sqrt{\ln x}}{C - 2\sqrt{(\ln x)^3}}$$

22.
$$y^2 = \frac{3}{x(1+2\ln x) + cx^{-2}}$$

23.
$$y = -x + \tan x + \frac{\sec^2 x}{C - \tan x}$$

24. Não é tipo Ricatti

25.
$$y = -e^x + \frac{1}{Ce^{-x} - 1}$$

26.
$$y = -3 + \frac{1}{C - x}$$

27. Família de soluções:
$$y=Cx+\ln C$$

Solução singular: $x=-\frac{1}{t};\,y=-1+\ln t$

28. Família de soluções:
$$y = Cx + 4C + C^2$$

Solução singular: $x = -4 - 2t$; $y = -t^2$

29.
$$y = \tan x + \frac{\sec x}{2 - \ln(\sec x + \tan x)}$$

30.
$$y = -x + 1$$
; $y = \frac{x}{2} + 4$ e $4y^3 = 27x^2$

Não, só seria contradição se as hipóteses estivessem satisfeitas e a tese não valesse, mas não é este o caso, o que não está satisfeita é a tese. Para testar as hipóteses teríamos que explicitar y' em termos de x e y, que neste caso é difícil. Mas com certeza uma das hipóteses falha, pois se não falhasse, a tese (solução única) seria válida.