

Praca dyplomowa inżynierska

na kierunku Informatyka i Systemy Informacyjne

System do zdalnej pracy w środowisku graficznym wykorzystujący maszyny wirtualne QEMU z akceleracja sprzętową

Krzysztof Smogór

Numer albumu 298906

Piotr Widomski

Numer albumu 298919

promotor

dr inż. Marek Kozłowski

Streszczenie

System do zdalnej pracy w środowisku graficznym wykorzystujący maszyny wirtualne

QEMU z akceleracja sprzętową

Streszczam.

Lorem ipsum dolor sit amet, consetetur sadipscing elit, sed diam nonumyeirmod

tempor invidunt ut labore et dolore magna aliquyam erat, sed diamvoluptua. At vero eos

et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata

sanctus est Lorem ipsum dolor sit amet.

Słowa kluczowe: slowo1, slowo2, ...

Abstract

Environment for remote work with Graphical User Interface using QEMU virtual

machines with hardware acceleration

Konieczne jest załączenie wypełnionego oświadczenia o autorstwie pracy. By tego

dokonać, skan (w formacie PDF) należy umieścić w folderze scans i nazwać go, np.

oswiadczenie $_{\rm o}_{\rm autorstwie}_{\rm pracy.pdf}$ (w przypadku innej nazwy lub umieszczenia

w innym folderze, konieczne jest adekwatne zmodyfikowanie ścieżki w komendzie je

załączającej — patrz fragment kodu OŚWIADCZENIA.

Keywords: keyword1, keyword2, ...

czytelny podpis studenta

załącznik nr 5 do zarządzenia nr 42 /2020 Rektora PW

Politechnika Warszawska

NAPERSTY OF RE
miejscowość i data
imię i nazwisko studenta
numer albumu
kierunek studiów
OŚWIADCZENIE
Świadomy/-a odpowiedzialności karnej za składanie fałszywych zeznań oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie, pod opieką kierującego pracą dyplomową. Jednocześnie oświadczam, że:
 niniejsza praca dyplomowa nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 roku o prawie autorskim i prawach pokrewnych (Dz.U. z 2021 r., poz. 1062) oraz dóbr osobistych chronionych prawem cywilnym,
— niniejsza praca dyplomowa nie zawiera danych i informacji, które uzyskałem/-am w sposób niedo-zwolony,
— niniejsza praca dyplomowa nie była wcześniej podstawą żadnej innej urzędowej procedury związane z nadawaniem dyplomów lub tytułów zawodowych,
— wszystkie informacje umieszczone w niniejszej pracy, uzyskane ze źródeł pisanych i elektronicznych zostały udokumentowane w wykazie literatury odpowiednimi odnośnikami,
— znam regulacje prawne Politechniki Warszawskiej w sprawie zarządzania prawami autorskimi i prawami pokrewnymi, prawami własności przemysłowej oraz zasadami komercjalizacji.

 Załącznik nr 3 do zarządzenia nr 109 /2021 Rektora PW z dnia 9 listopada 2021 r.

załącznik nr 9 do zarządzenia nr 42 /2020 Rektora PW

Politechnika Warszawska

miejscowość i data
imię i nazwisko studenta
numer albumu
Wydział i kierunek studiów
Wydziai i kieruliek studiow
Oświadczenie studenta w przedmiocie udzielenia licencji
Politechnice Warszawskiej
Oświadczam, że jako autor/współautor* pracy dyplomowej pt
udzielam/nie udzielam* Politechnice Warszawskiej
nieodpłatnej licencji na niewyłączne, nieograniczone w czasie, umieszczenie pracy dyplomowej w elek-
tronicznych bazach danych oraz udostępnianie pracy dyplomowej w zamkniętym systemie bibliotecznym
Politechniki Warszawskiej osobom zainteresowanym.
Licencja na udostępnienie pracy dyplomowej nie obejmuje wyrażenia zgody na wykorzystywanie pracy
dyplomowej na żadnym innym polu eksploatacji, w szczególności kopiowania pracy dyplomowej w całości
lub w części, utrwalania w innej formie czy zwielokrotniania.
czytelny podpis studenta
- J J

 $[\]ast$ niepotrzebne skreślić

Spis treści

1. Wstęp	11
1.1. Opis problemu	11
1.2. Podobne rozwiązania	11
1.3. Wizja systemu	11
1.4. Istotne pojęcia	12
1.5. Wymaganie funkcjonalne	14
1.5.1. Nadzorca	14
1.5.2. Serwer wirtualizacji	16
1.5.3. Panel administratora	18
1.6. Wymaganie niefunkcjonalne	20
1.7. Analiza ryzyka	21
1.7.1. Omówienie zagrożeń	21
1.8. Podział pracy	25
2. Opis rozwiązania	2 4
2.1. Architektura systemu	24
2.1.1. Model systemu	25
2.1.2. Nadzorca	26
2.1.3. Serwer wirtualizacji	27
2.1.4. Aplikacja kliencka	27
2.1.5. Panel administratora	28
2.1.6. Broker wiadomości	28
2.2. Zewnętrzne narzędzia	29
2.2.1. Ansible	29
2.2.2. Vagrant	29
2.2.3. Libvirt z QEMU	29
2.3. Stany biznesowe	30
2.3.1. Maszyna wirtualna	30

2.3.2.	Serwer wirtualizacji	31
2.3.3.	Użytkownik	32
2.4. Pr	ocesy biznesowe	33
2.4.1.	Uzyskanie sesji	33
2.4.2.	Kończenie sesji	34
2.4.3.	Rozpoczęcie pracy serwera wirtualizacji	34
2.5. Ko	$_{ m munikacja}$	36
2.5.1.	Komunikacja wewnętrzna	36
2.5.2.	Komunikacja zewnętrzna	37
2.6. Se	kwencje komunikacji	38
2.6.1.	Utworzenie sesji	38
2.6.2.	Zakończenie sesji	40
2.6.3.	Aktualizacja stanu	40
2.6.4.	Włączenie maszyny	40
2.6.5.	Wyłączenie maszyny	41
3. Anali	za rozwiązania	42
3.1. Te	stowana funkcjonalność	42
3.1.1.	Brak komunikacji z nadzorcą	42
3.1.2.	Utrata komunikacji z nadzorcą	42
3.1.3.	Standardowe użycie systemu przez użytkownika	43
3.1.4.	Standardowe użycie systemu przez użytkownika przy awarii nadzorcy	43
3.1.5.	Podłączenie nowego serwera wirtualizacji	44
3.1.6.	Podłączenie nowego nadzorcy	44
3.1.7.	Odnotowanie utraty serwera wirtualizacji	44
3.1.8.	Utrata komunikacji przy działającej sesji	45
3.1.9.	Odzyskanie komunikacji przy działającej sesji	45
3.2. Śro	odowisko testowe	46
3.3. W	konane testy	46
3.4. W	yniki testów	46
4. Pods	ımowanie	47

1. Wstęp

1.1. Opis problemu

Można aktualnie zaobserwować dużą zmianę w rynku pracy. Z powodu globalnej epidemii wiele firm zdecydowało się na zmianę pracy stacjonarnej na zdalną. Nawet po złagodzeniu obostrzeń, znaczna część miejsc pracy pozostała przy takim trybie, lub przyjęło hybrydową formę pracy. Taka forma pracy prowadzi jednak do pewnych utrudnień. Pracownicy mogą musieć łączyć się za pomocą funkcji zdalnego pulpitu z komputerami znajdującymi się w biurze. Może to wynikać z niewystarczającej wydajności sprzętu pracownika, lub dostępu do specyficznych programów lub zasobów. W takim wypadku komputer, z którym łączy się pracownik, musi być uruchomiony, a w przypadku awarii - zrestartowany. Dodatkowo taki dostęp może być wymagany przez ograniczony czas, co powoduje, że dużą część czasu spędza włączony, ale nieużywany.

Możliwym sposobem na złagodzenie tego problemu jest użycie zmniejszonej liczby komputerów, które mogą być używane przez większą liczbę pracowników jednocześnie, za pośrednictwem maszyn wirtualnych. Tym zmniejszamy liczbę działających maszyn, a zarządzanie może być rozwiązane za za pomocą zdalnego operowania komputerem, na którym działają.

System stworzony w ramach tej pracy adresuje opisany problem. Rozwiązanie opiera się na tym wcześniej opisanym, jednocześnie rozbudowując je w sposób ułatwiający użytkowanie oraz zarządzanie.

1.2. Podobne rozwiązania

1.3. Wizja systemu

Tworzony system ma za zadanie umożliwiać zdalną pracę za pomocą protokołu zdalnego pulpitu. System skierowany jest w stronę firm zatrudniających wielu pracowników, które chcą scentralizować sprzęt używany do pracy zdalnej.

Użytkownikami końcowym są pracownicy, którzy za pomocą okienkowej aplikacji klienckiej

mogą uzyskać sesję do pracy zdalnej. Użytkownik podczas łączy się za pomocą protokołu zdalnego pulpitu z maszyną wirtualną uruchamiającą obraz systemu GNU/Linux. Uruchamianie i zarządzanie maszynami jest zadaniem aplikacji działającej na rzeczywistej maszynie, która udostępnia swoje zasoby maszynom wirtualnym. Aplikacja ta, oraz rzeczywista maszyna uruchamiająca ją, nazywana jest dalej serwerem wirtualizacji. Aplikacje te działają niezależnie od siebie i nie ma teoretycznego ograniczenia na ich liczbę w systemie. Komunikacją z użytkownikami oraz zarządzaniem systemem zajmuje się aplikacja nadzorcza. Ilość jej instancji również jest teoretycznie nieograniczona, co umożliwia balansowanie obciążeniem.

System pozwala na tworzenie maszyn wirtualnych różnych typów, czyli kombinacji zasobów systemowych udostępnianych dla maszyny wirtualnej, oraz faktu czy ma ona bezpośredni dostęp do karty graficznej maszyny, na której pracuje. Do używania systemu użytkownik musi posiadać konto w systemie katalogowym, który umożliwia użytkownikom dostęp do własnego folderu domowego na każdej maszynie. System katalogowy nie jest ujęty w obrębie systemu, ale jego poprawna konfiguracja jest wymagana do użytkowania systemu.

System udostępnia panel administracyjny w postaci strony WWW umożliwiający podgląd obciążenia i stanu systemu przez upoważnione osoby. Komunikacja aplikacji klienckiej z aplikacją nadzorczą oraz panel administratora wykorzystują komunikację za pomocą protokołu HTTP. Możliwe jest użycie szyfrowanego protokołu HTTPS, pod warunkiem użycia poprawnych certyfikatów SSL/TSL.

1.4. Istotne pojecia

- Aplikacja kliencka aplikacja okienkowa uruchamiana na komputerze użytkownika, która umożliwi komunikację z systemem oraz uruchomienie zewnętrznego programu implementującego protokół RDP.
- Aplikacja nadzorcza (Nadzorca) aplikacja, która przetwarza zapytania od aplikacji klienckiej oraz komunikuje się ze wszystkimi serwerami wirtualizacji. Na podstawie tych informacji buduje model zajętości każdego z serwerów wirtualizacji oraz decyduje kiedy, i na którym serwerze, trzeba uruchomić nowe maszyny wirtualne. Decyduje również, do której wirtualnej maszyny ma podłączyć się użytkownik proszący o utworzenie sesji.
- Serwer wirtualizacji komputer, który udostępnia swoje zasoby (rdzenie procesora, karty graficzne, pamięć RAM oraz przestrzeń dyskową) w postaci uruchamianych na nim maszyn wirtualnych. Komputer ten uruchamia aplikację, która odpowiada na zapytania aplikacji

1.4. ISTOTNE POJĘCIA

nadzorczej oraz wykonuje operacje na maszynach wirtualnych (uruchamianie i wyłączanie). Komputer może uruchamiać co najwyżej jedną aplikację, dlatego zarówno komputer, jak i aplikację, nazywamy serwerem wirtualizacji.

- Maszyna wirtualna CPU maszyna systemowa emulująca, lub para-emulująca, sprzęt i służąca do uruchamiania systemu operacyjnego. Udostępnia użytkownikowi podstawowe zasoby (procesor, pamięć RAM i przestrzeń dyskowa). Uruchamiana jest na serwerze wirtualizacji z liczbą zasobów określoną w konfiguracji. Maszyna wirtualna uruchamia system operacyjny GNU/Linux (ArchLinux).
- Maszyna wirtualna GPU maszyna analogiczna do maszyny wirtualnej CPU. Wyróżnia się przekazaną na wyłączność, za pośrednictwem mechanizmu GPU Passthrough, kartą graficzną podłączona do serwera wirtualizacji.
- RDP protokół zdalnego dostępu do pulpitu od firmy Microsoft¹. Maszyny wirtualne uruchamiają serwer RDP(XRDP²), który umożliwia zdalną pracę za pośrednictwem protokołu RDP.
- Sesja jednorazowy dostępu użytkownika do systemu oraz maszyny wirtualnej. Utworzenie sesji wiąże się z przypisaniem do użytkownika konkretnej maszyny wirtualnej, na której będzie pracować. Sesja kończy się w przypadku, gdy użytkownik poinformuje system o zakończeniu pracy lub gdy minie czas oczekiwania na odzyskanie połączenia jego utracie.
- Vagrant-box³ przygotowany wcześniej obraz maszyny wirtualnej, który umożliwia zmianę dostępnych zasoby. Uruchamiają się bardzo powtarzalnie w środowisku programu Vagrant.
 Obrazy te używane są do tworzenia maszyn wirtualnych.
- Ansible playbook⁴ skrypt konfiguracyjny dla systemu operacyjnego, który umożliwia parametryzację oraz wykonywanie podczas uruchamiania Vagrant-boxa.
- Panel administratora aplikacja przeglądarkowa, która umożliwia administratorowi systemu podgląd listy serwerów wirtualizacji znajdujących się w systemie oraz zajętości zasobów.
- Konto użytkownika profil użytkownika w systemie, do którego ma dostęp na każdej maszynie wirtualnej. Używając przygotowanych wcześniej danych logowania może za ich pomocą

¹Dokumnetacja protokołu RDP od Microsoft

²Strona projektu XRDP

³Dokumentacja i opis na stronie Vagranta

⁴Dokumentacja i opis na stronie Ansible'a

logować się do maszyn wirtualnych. Przechowywane są w zewnętrznym (poza opisanym systemem) systemie katalogowym.

- Katalog użytkownika prywatny folder dostępny dla użytkownika na każdej maszynie wirtualnej. Przechowywany na zewnętrznym (poza opisanym systemem) dysku sieciowym.
- Konfiguracja stała konfiguracja maszyny wirtualnej, która nie zmienia się w zależności od miejsca uruchomienia. Docelowo ta konfiguracja ma być zapisana w Vagrant-boxie. W razie potrzeby można ja także zdefiniować w odpowiednim Ansible playbooku.
- Konfiguracja zmienna konfiguracja maszyny wirtualnej, która zmienia się w zależności od miejsca uruchomienia. Jest definiowana w odpowiednim Ansible playbooku uruchamianym przy każdym włączeniu maszyny.

1.5. Wymaganie funkcjonalne

1.5.1. Nadzorca

Rysunek 1.1: Przypadki użycia aplikacji nadzorczej

1.5. Wymaganie funkcjonalne

Tablica 1.1: Przypadki użycia aplikacji nadzorczej

Akto	r	Nazwa	Opis	Odpowiedź systemu
		Uzyskanie sesji	Uzyskanie sesji do pracy na maszy-	Do użytkownika zostaje przydzie-
		do pracy	nie wirtualnej CPU lub GPU	lona maszyna wirtualna oraz ze-
				stawione połączenie RDP. W przy-
				padku, gdy utracił on połączenie, to
				przydzielana jest do niego poprzed-
lik				nio używana maszyna, jeżeli jego se-
Użytkownik				sja nie została jeszcze umorzona.
Jżyt]		Poznanie ilości	Wyświetlanie szacowanej ilości do-	Użytkownikowi zostaje wyświetlona
		dostępnych ma-	stępnych maszyn każdego typu	szacowana liczba dostępnych ma-
		szyn		szyn obliczona na podstawie infor-
				macji o dostępnych zasobach każ-
				dego z serwerów wirtualizacji
		Zgłoszenie	Serwer zgłasza nadzorcy dostępne	Nadzorca wykorzystuje zgłoszone
.,	_	$\operatorname{dost}_{\operatorname{\mathfrak{S}}}$	zasoby	zasoby do wyliczania szacowanej
	ızacj	zasobów		liczny dostępnych maszyn oraz do
Serwer	wirtualizacji			balansowania obciążenia serwerów
Ser	WII			wirtualizacji
		Podgląd stanu	Nadzorca udostępnia panelowi ad-	Panel administratora wykorzystuje
	ora	modelu	ministratora stan zasobów systemu.	uzyskane dane to wygenerowania ra-
	strat			portu o stanie systemu dla admini-
Panel	administratora			stratora. wirtualizacji
Pa	adı			

1.5.2. Serwer wirtualizacji

Rysunek 1.2: Przypadki użycia serwera wirtualizacji

1.5. Wymaganie funkcjonalne

Tablica 1.2: Przypadki użycia serwera wirtualizacji

Aktor	Nazwa	Opis	Odpowiedź systemu
Użytkownik	Nawiązanie po- łączenia z ma- szyną	Użytkownik nawiązuje połączenie z maszyną wirtualną	Maszyna wirtualna zostaje zajęta przez użytkownika; serwer wirtuali- zacji rozpoczyna monitorowanie, czy sesja wciąż trwa
	Poproś o zgło- szenie zasobów	Nadzorca wysyła do wszystkich ser- werów wirtualizacji prośbę o zgło- szenie swoich używanych i wolnych zasobów	Serwer wirtualizacji informuje nadzorcę o stanie swoich zasobów
Nadzorca	Stwórz nową wirtualna ma- szynę	Nadzorca prosi serwer wirtualizacji o stworzenie nowej wirtualnej ma- szyny dla danego użytkownika na wybranym typie maszyny	Serwer wirtualizacji tworzy wirtu- alna maszynę i udostępnia możli- wość połączenia się z nią
	Wyłącz kon- kretna wirtu- alna maszynę	Nadzorca prosi serwer wirtualizacji aby wyłączył konkretna wirtualna maszynę.	Serwer wirtualizacji wyłącza kon- kretna wirtualna maszynę oraz pil- nuje aby na pewno się wyłączyła.
	Zmień obraz maszyn wirtual- nych	Zmiana obrazu źródłowego maszyn wirtualnych	Zdefiniowany przez administratora vagrant-box jest używany przez ser- wery wirtualizacji
Administrator	Zmień konfigu- rację maszyn wirtualnych	Zmiana zmiennej konfiguracji maszyn wirtualnych	Zmodyfikowany ansible playbook jest używany przez serwery wirtuali- zacji
Adm	Zdefiniuj zasoby maszyn wirtual- nych	Zmiana ilości zasobów przydziela- nych na każdy z typów maszyn wir- tualnych oraz łączną ilość zasobów przeznaczonych na maszyny	Zmodyfikowana konfiguracja zaso- bów będzie wykorzystywana przez serwer wirtualizacji przy kolejnym uruchomieniu

1.5.3. Panel administratora

Rysunek 1.3: Przypadki użycia panelu administratora

Tablica 1.3: Przypadki użycia panelu administratora

Aktor	Nazwa	Opis	Odpowiedź systemu
	Podgląd zaso-	Wyświetlanie wolnych oraz zajętych	Wyświetlenie zasobów poszczegól-
l i	bów serwerów	zasobów serwerów wirtualizacji	nych serwerów wirtualizacji, liczby
Administrator	wirtualizacji		zajętych maszyn oraz szacowanej
inis			liczby wolnych maszyn
Adm			

1.5. Wymaganie funkcjonalne

1.6. Wymaganie niefunkcjonalne

Tablica 1.4: Wymagania niefunkcjonalne

Grupa wymagań	Nr wymagania	Opis
Użytkowanie	1	Aplikacja kliencka ma działać na systemach operacyjnych
(Usability)		MS Windows (Windows 10) oraz GNU/Linux (ArchLi-
		nux). Aplikacja na systemach GNU/Linux wymaga zain-
		stalowanego klienta RDP zgodnego z XRDP ⁵ .
	2	Aplikacja kliencka musi udostępniać możliwość użycia
		własnego klienta RDP do nawiązania połączenia z ma-
		szyną wirtualną
	3	Maszyny wirtualne muszą mieć dostęp do systemu prze-
		chowującego konta użytkowników wraz z ich katalogami
		domowymi
${ m Niezawodno}$ ść	4	System musi być odporny na awarie poszczególnych serwe-
(Reliability)		rów wirtualizacji i kontynuować działanie w sposób niezau-
		ważalny dla użytkowników nie używających danego ser-
		wera.
	5	Awaria nadzorcy może spowodować uniemożliwienie roz-
		poczęcia nowych sesji, ale nie może przerwać istniejących
		sesji
Wydajność	6	Łącznie zużywane zasoby przez maszyny wirtualne na po-
(Performance)		szczególnym serwerze wirtualizacji nie mogą przekroczyć
		wcześniej zdefiniowanych limitów
	7	Nadzorca musi balansować obciążenie serwerów wirtuali-
		zacji
	8	W systemie zawsze musi istnieć jedna działająca maszyna
		wirtualna nie połączona z żadną sesją, aby można było ją
		szybko przydzielić użytkownikowi
	9	Zwolnione maszyny wirtualne, które nie są wykorzysty-
		wane jako zapas, muszą być wyłączane
Utrzymanie	10	Możliwe jest działanie więcej niż jednego nadzorcy w sys-
(Supportability)		temie, w celu zwiększenie dostępności lub przeprowadzenia
		prac utrzymaniowych

1.7. Analiza ryzyka

1.7. Analiza ryzyka

Tablica 1.5: Analiza ryzyka

Mocne strony

- Łatwa skalowalność pod względem liczby sesji w systemie
- Wiele rozwiązań Open Source
- Elastyczność pod względem konfiguracji
- Tańsze rozwiązanie niż kupno stacji roboczych

Słabości

- System trudny w konfiguracji
- Potrzeba wymiany sprzętu komputerowego
- Krótki czas rozwoju systemu
- Ograniczenie doświadczenie twórców systemu
- Małe prawdopodobieństwo wsparcia projektu po zakończeniu prac

Okazje

- Grupa docelowa to firmy z dużą ilością stacji roboczych
- Zwiększenie zapotrzebowania na prace zdalną na rynku pracy

Zagrożenia

- Istnienie konkurencji ugruntowanej na rynku
- System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje

1.7.1. Omówienie zagrożeń

• System trudny w konfiguracji - wysoko prawdopodobne

Można temu zaradzić poprzez udostępnienie dokładnej dokumentacji lub ścisłą współprace z klientem przy wdrażaniu systemu.

Wartość: duża

• Potrzeba wymiany sprzętu komputerowego - średnio prawdopodobne

Klient może potrzebować wymienić aktualne stacje robocze na terminale oraz zainwestować w sprzęt serwerowy. Jednak gdy klientami będą firmy, które mają dużo pracowników pracujących spoza biura, lub dopiero tych pracowników pozyskują, to kupno terminali i

serwerów powinno być bardziej zachęcające niż kupno stacji roboczych.

Wartość: średnia.

• Krótki czas rozwoju systemu - wysoko prawdopodobne

Czas rozwoju systemu jest bardzo ograniczony. Aby pomimo tego ograniczenia działał on w sposób akceptowalny powinniśmy skupić się na dobrym przedyskutowaniu i opisaniu kluczowych modułów systemu. W czasie projektu należy pilnować aby nie dodawać nadmiarowych funkcjonalności do systemu. W czasie implementacji krytyczne będzie dokładne zaplanowanie aplikacji pod kątem testowania automatycznego. Ułatwi to wyłapywanie prostych błędów jeszcze we wczesnej fazie projektu.

Wartość: wysoka

1.8. Podział pracy

• Ograniczone doświadczenie twórców systemu - pewne

Jedynym sposobem na ograniczenie ryzyka jest rozważna implementacja.

Wartość: średnia

• Małe prawdopodobieństwo wsparcia projektu po zakończeniu prac - wysoko prawdopo-

dobne

Trudno teraz przewidzieć co się stanie z projektem po zakończeniu prac. Jednak prawdopo-

dobnie twórcy systemu zajmą się innymi projektami. Można jedynie dokładnie komentować

kod i pokrywać jak najwięcej jego części testami. Wtedy inne osoby będą w stanie szukać

błędów albo próbować w taki sposób uzupełnić brakującą wiedzę o systemie.

Wartość: niska

• Istnienie konkurencji ugruntowanej na rynku - bardzo prawdopodobne

Konkurencyjne systemy oferujące podobne rozwiązania są już dobrze ugruntowane na rynku

i przetestowane. Nasz system może spróbować konkurować jedynie z nimi ceną implemen-

tacji oraz elastycznością.

Wartość: średnia

• System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje - nisko

prawdopodobne

W czasie życia systemu mogą pojawić się błędy w oprogramowaniu nie rozwijanym w

ramach naszego systemu, naprawa takich błędów może trwać bardzo długo. Pewnym spo-

sobem wsparcia takiego systemu jest własnoreczne poprawiania błędów w zewnętrznym

oprogramowaniu i zgłaszanie ich do odpowiedniej organizacji. Do czasu zastosowania po-

prawki jest możliwość korzystania z wersji, na którą nanieśliśmy własną poprawkę.

Wartość: wysoka

1.8. Podział pracy

23

2. Opis rozwiązania

2.1. Architektura systemu

1. Arcmiektura systemu
Opracowywany system składa się z następujących modułów:
• nadzorcy,
• serwera wirtualizacji,
• aplikacji klienckiej,
• panelu administratora,
• brokera wiadomości,
• systemu katalogowego,
• dysku współdzielonego.

Schematyczny obraz systemu przedstawia poniższy rysunek.

Rysunek 2.1: Schematyczna architektura systemu

Połączenia oznaczone liczbami rzymskimi oznaczają kolejki komunikacji za pośrednictwem brokera wiadomości, które opisane zostały w punkcie jemu poświęconym. Z założenia system powinien móc skalować się w dwóch wymiarach, to znaczy:

- 1. Zwiększanie liczby serwerów wirtualnych zwiększenie liczby istniejących jednocześnie sesji.
- 2. Zwiększenie liczby nadzorców zwiększenie liczby obsługiwanych klientów jednocześnie oraz niezawodności systemu.

2.1.1. Model systemu

W celu zarządzania systemem, każdy z nadzorców musi posiadać dokładną wiedzę o jego aktualnym stanie. Informacje te przechowuje w strukturze nazywanej dalej modelem systemu. Ważnym jest, że klasy modelu nie wykonują żadnych akcji poza modyfikacją przechowywanych danych. Wszelkie metody służą jedynie do zmiany stanu przechowywanego modelu w celu dopasowania go do rzeczywistego stanu, na podstawie otrzymanych danych. Przyczyną takiego stanu, jest pierwsze z założeń komunikacji opisane w 2.5.1. Sprawia ono, że zmiana modelu musi być

VirtualizationServer PciAddressId runningMachines: Dictionary<string, Machine> {re <<get.set>> Domain: string ons: Dictionary<Guid,Session> {readonly} <<get,set>> Bus: string SystemModel templateResources: Dictionary<string, TemplateResources> {readonly} <<get,set>> Slot: string SortedDictionary<Guid, Virtuali <<get,set>> Function: string ns: Dictionary<Guid,Session> {readonly} <<get>> ServerGuid: Guid <<get>> Sessions: IReadonlyDictionary<Guid, Session: <<get>> Servers: IReadonlyDictionary<Guid, VirtualizationSe <<get>> TemplateResources: IReadonlyDictionary<string, TemplateResources <<get>> Sessions: IReadonlyDictionary<Guid, Session> <<get>> RunningMachines: IReadonlyDictionary<Guid, Machine> GetSessionInfo(sessionGuid: Guid) <<get>> TotalResources: ServerResources CreateSession(user: User, sessionType: SessionType) <<get>> AvailableResources: ServerResource UpdateOrAddSession(session: Session) <get,set>> Pcildentifiers: Collection<PciAddressId> <<get>> Queue: string DeleteSession(sessionGuids: IEnumerable<Guid>) <<get,set>> Managable: bool = false - UpdateOrAddServer(server: VirtualizationServer) CreateMachine(name: string, type: MachineType, gpuld: Gpuld) + DeleteServer(serverGuid: Guid) Server DeleteMachine(name: string) <qet>> GpuCount: int CreateFullSession(halfSe <get>> Gpulds: Collection<Gpuld> DeleteSession(sessionGuid: G Session ionGuid: Guid TemplateResources <<get>> CorrelatedUser: Use <<get>> CorrelatedMachine: Machine <<set>> CorrelatedMachine: Machine <qet, set>> WishedGpuModel: string <get>> MachineType: MachineType <qet>> SessionType: SessionType <<get,set>> SessionState: SessionState AttachMachine(machine: Machine) MachineResources + <<get,set>> Gpu: Gpuld Use <qet,set>> JwtToken: string SessionType TunerdOff <<get,set>> Type: string MachineType <<get,set>> HumanReadat <<get,set>> TechnicalName: string <<get,set>> Port: int <qet.set>> HumanReadableName

następstwem pewnej akcji wykonanej przez serwer wirtualizacji.

Rysunek 2.2: Schemat klas modelu systemu

Główną klasą modelu jest SystemModel zawierający informacje o aktualnie działających serwerach wirtualizacji oraz aktywnych sesjach. Klasa VirtualizationServer modeluje pojedynczy serwer wirtualizacji, jego zasoby, maszyny wirtualne oraz obsługiwane sesje. Przechowuje ona również informacje wymagane do komunikacji z daną instancją serwera.

Klasa Resources oraz jej pochodne opisują zasoby systemowe i są używane do przedstawienia zarówno zasobów maszyny jak i całego serwera wirtualizacji. Jej klasa pochodna TemplateRe sources służy do przechowywania informacji o zasobach potrzebnych do utworzenia maszyny danego typu.

2.1.2. Nadzorca

Aplikacja mająca za zadanie obsługiwać komunikację z aplikacjami klienckimi oraz wysyłać polecenia do serwerów wirtualizacji. Udostępnia REST API służące do komunikacji z aplikacjami klienckimi. Do komunikacji z serwerami wirtualizacji wykorzystuje kolejki.

Nadzorca przechowuje wewnętrznie model systemu zawierający informację o działających serwerach wirtualizacji i stanie ich maszyn. Na podstawie tego modelu moduł stwierdza, do której

2.1. Architektura systemu

maszyny przypisać nowo utworzoną sesję. Wewnętrzne procesy skupione są wokół zmian modelu. Jeżeli proces wysłał do serwera wirtualizacji prośbę o zmianę stanu, to dalsze procesowanie odbywa się, gdy stan modelu został zaktualizowany, i na podstawie jego stanu podejmowane są decyzje.

Dzięki zastosowaniu kolejek oraz zasad komunikacji w systemie może istnieć więcej niż jeden nadzorca. Instancje nadzorców działają niezależnie od siebie i przechowują identyczny model systemu. Dzięki temu uzyskujemy retencję i możemy zmniejszyć obciążenie poszczególnych nadzorców.

2.1.3. Serwer wirtualizacji

Zadaniem serwera wirtualizacji jest uruchamianie i zarządzanie maszynami wirtualnymi, z którymi łączy się użytkownik systemu. Komunikuje się on z nadzorcami i wykonuje operacje na maszynach wirtualnych zgodnie z żądaniami.

Moduł ten nie jest w stanie funkcjonować samodzielnie. Z tego powodu aplikacja nie uruchomi się, jeżeli nie jest w stanie nawiązać połączenia z aplikacją nadzorczą, a w przypadku ostatni nadzorca w systemie zakończy działanie, aplikacja również je zakończy, pod warunkiem że nie ma żadnych działających sesji.

Serwer wirtualizacji jest częścią systemu, która przechowuje realne zasoby udostępniane użytkownikom. System zaprojektowany jest w taki sposób aby teoretycznie nie było ograniczenia na liczbę serwerów wirtualizacji działających jednocześnie.

2.1.4. Aplikacja kliencka

Aplikacja okienkowa umożliwiająca użytkownikowi autoryzację, uzyskanie sesji oraz automatyczne rozpoczęcie połączenia. Komunikuje się z nadzorcą za pomocą REST API.

Proces uzyskania sesji z perspektywy aplikacji klienckiej zawiera:

- 1. Uzyskanie informacji o dostępnych typach i liczbie maszyn
- 2. Wybór typu maszyny
- 3. Oczekiwanie na utworzenie sesji
- 4. Nawiązanie połączenia RDP
- 5. Utrzymanie i monitorowanie stanu połączenia.

2.1.5. Panel administratora

Prosta aplikacja internetowa umożliwiająca administratorowi systemu podgląd stanu zużycia zasobów serwerów wirtualizacji.

2.1.6. Broker wiadomości

Komunikacje wewnątrz systemu, czyli pomiędzy serwerami wirtualizacji oraz nadzorcami, będzie realizowali poprzez kolejki wiadomości. W tym celu użyty został system RabbitMQ, który zajmuje się transportem wiadomości wewnątrz systemu oraz niezawodnością komunikacji między modułami.

Zdefiniowane zostały następujące kolejki wiadomości:

- (I) Kolejka kończąca się na każdym z serwerów wirtualizacji powielająca wiadomości między nich. Służy ona do wysyłania nie spersonalizowanych próśb od nadzorców do serwerów wirtualizacji.
- (II) Kolejka kończąca się na każdym z nadzorców powielająca wiadomości między nich. Służy ona do przesyłania informacji do nadzorców o zmianach wewnątrz serwera wirtualizacji.
- (III) Kolejka kończąca się wyłącznie na pojedynczym serwerze wirtualizacji. Liczba kolejek zgadza się z liczbą serwerów wirtualizacji aktywnych w systemie. Służą one do przesyłania spersonalizowanych wiadomości oraz sprawdzania, czy serwer wirtualizacji nadal pracuje po drugiej stronie. Skorzystamy z funkcjonalności kolejek na wyłączność (Exclusive Queue¹).
- (IV) Kolejka kończąca się na aktualnie podłączonym do maszyny wirtualnej kliencie. Podobnie jak powyżej kolejek istnieje tyle ile aktywnych użytkowników. Celem kolejki jest sprawdzenie, czy aplikacja kliencka nadal jest podłączona do wirtualnej maszyny (mechanizm Exclusive Queue). W celach bezpieczeństwa będą one definiowane na oddzielnym procesie brokera, który będzie można w razie potrzeby udostępnić poza sieć lokalną.

Powyższe 4 grupy kolejek umożliwią prawidłowe działanie systemu. Każdy z modułów tworzy w trakcie uruchamiania kolejki, z których odbiera wiadomości. Jedynym wymogiem prawidłowego uruchomienia komunikacji jest dostępny dla wszystkich serwerów wirtualizacji oraz nadzorców proces brokera.

¹Opis zachowania kolejek na wyłączność

2.2. Zewnętrzne narzędzia

2.2.1. Ansible

Ansible został wykorzystany w systemie do zaaplikowania zmiennej konfiguracji do każdej uruchamianej wirtualnej maszyny. Podstawowo playbook będzie zawierać informacje o:

- 1. danych dostępowych do dysku sieciowego oraz wykorzystanym protokole,
- 2. danych dostępowych do usługi katalogowej.

Playbook można rozszerzać o potrzebne dane zależne od użycia.

2.2.2. Vagrant

Vagrant został wykorzystany w celu łatwej parametryzacji oraz powtarzalnego tworzenia maszyn wirtualnych z przygotowanego wcześniej obrazu systemu.

Wykorzystywany jest głównie mechanizm Vagrant-boxów, które są obrazami wcześniej przygotowanego systemu operacyjnego. Aby system działał prawidłowo obraz systemu zamknięty w Vagrantboxie musi spełniać następujące warunki:

- 1. Użytkownicy muszą być pobierani z usługi katalogowej.
- 2. Katalogi domowe użytkowników muszą być na dysku sieciowym.
- 3. Musi istnieć serwer RDP

2.2.3. Libvirt z QEMU

Libvirt połączony z QEMU jest wykorzystany do zarządzania maszynami wirtualnymi uruchamianymi na serwerze wirtualizacji. Umożliwia on:

- 1. Tworzenie maszyn wirtualnych.
- 2. Uruchamianie maszyn wirtualnych.
- 3. Przyporządkowanie zasobów maszynom wirtualnym (w tym krat graficznych).
- 4. Wyłączanie maszyn wirtualnych.
- 5. Sprawdzanie, czy maszyna o danej nazwie już działa.

2.3. Stany biznesowe

2.3.1. Maszyna wirtualna

Najważniejszym obiektem biznesowym w systemie jest maszyna wirtualna, do której będą podłączać się użytkownicy.

Rysunek 2.3: Diagram stanów dla maszyny wirtualnej

Maszyna, aby być całkowicie uruchomiona, musi zostać zaopatrzona we wszystkie konfiguracje. Stan "Wolnaóznacza możliwość przypisania sesji do tej maszyny. Po przypisaniu maszyny do sesji przechodzi ona w stan oczekiwania na użytkownika. Czas oczekiwania jest konfigurowalny, a po jego upłynięciu maszyna przechodzi w stan oczekiwania na wyłączenie. W tym stanie oczekuje ona na ponowne połączenie, pozwalając użytkownikowi na bezproblemowy powrót do sesji

2.3. Stany biznesowe

w przypadku nieoczekiwanego utracenia połączenia. Jeżeli użytkownik nie powróci do sesji, system wyłącza maszynę. Maszyna jest w stanie Źajęta", gdy aktualnie pracuje na niej użytkownik. Monitorowanie zajętości realizowane jest przy użyciu odpowiedniej kolejki wiadomości.)

2.3.2. Serwer wirtualizacji

Serwer wirtualizacji monitoruje zasoby zużywane przez uruchamiane na nim maszyny wirtualne oraz fakt podłączenia do niego użytkowników.

Rysunek 2.4: Diagram stanów dla serwera wirtualizacji

Przy starcie serwer wirtualizacji oczekuje na działającego nadzorcy w sieci. W przypadku jego braku serwer kończy działanie zwracając błąd. Pod względem zasobów, może on mieć wolne zasoby aby utworzyć nowe maszyny, lub też nie. Jednak ważniejszym stanem z perspektywy działania serwera są podłączeni do niego użytkownicy. W przypadku gdy podłączony jest do niego przynajmniej jeden użytkownik, serwer nie może się poprawnie zakończyć pracy aż użytkownik nie skończy używać maszyny.

2.3.3. Użytkownik

Rysunek 2.5: Diagram stanów dla użytkownika

Użytkownik z perspektywy systemu po zalogowaniu może być 2 dwóch stanach: pracuje w ramach swojej sesji lub też nie. W stanie "Połączonyąplikacja kliencka powiadamia serwer wirtualizacji, że ciągle jest obecny. Przy zmianie stanu do innego informowanie musi ustać, aby serwer mógł wykryć odłączenie się użytkownika.

2.4. Procesy biznesowe

2.4.1. Uzyskanie sesji

Proces opisuje prośbę klienta o ustanowienie dla niego sesji. Sesja może już istnieć lub zostać utworzona.

Rysunek 2.6: Diagram aktywności dla uzyskania sesji

W przypadku gdy sesja już istnieje zostaje one zwrócona użytkownikowi. W przeciwnym razie nadzorca, na podstawie modelu systemu, wybiera pewną wolna maszynę i wysyła do serwera wirtualizacji, na którym działa wybrana maszyna, prośbę o utworzenie sesji. Możliwość działanie wielu nadzorców wymaga, aby proces ten był powtarzalny, czyli dla konkretnego stanu modelu wybrana musi zostać ta sama maszyna. Gdy nie znajdzie wolnej maszyny, to zgłasza błąd do użytkownika. Z założenia taka sytuacja może zajść jedynie, gdy wszystkie maszyny zostały zajęte i brakuje zasobów na utworzenie nowych. Wynika to z tego, że system zawsze powinien trzymać pewien zapas wolnych maszyn. Może się zdarzyć, że model jest nieaktualny i nie można utworzyć sesji z wcześniej wybraną maszyną. Taka prośba zostaje odrzucona przez serwer wirtualizacji, ale zmiana modelu w nadzorcy, wywołana odświeżeniem modelu, spowoduje powtórzenie procesu, tym razem wybierając inną maszynę.

Uzyskanie sesji przez użytkownika zrealizowane jest asynchronicznie. Użytkownik oddzielnym zapytaniem prosi o uzyskanie sesji, po czym używając otrzymanego identyfikatora sesji prosi o jej dane. Obiekt jest w pełni utworzona, gdy odpowiedź nadzorcy sesję w stanie gotowym oraz

adres maszyny do połączenia.

2.4.2. Kończenie sesji

Proces ma za zadanie zakończyć sesję oraz wyłączyć skojarzoną z nią wirtualna maszynę w celu zwolnienia zasobów.

Rysunek 2.7: Diagram aktywności dla zakończenia sesji

Proces rozpoczyna się w momencie, gdy użytkownik odłączy się od systemu lub utraci połączenie. Po upłynięciu ustalonego czasu, jeżeli użytkownik nie podłączył się ponownie, maszyna zostaje wyłączona. serwer wirtualizacji informuję nadzorcę o utracie połączenia lub odłączeniu się użytkownika poprzez zmianę model. Decyzję o wyłączeniu maszyny podejmuje nadzorca. Powoduje to, że zmiana konfiguracji nadzorców będzie oznaczać spójną reakcje całego systemu. Dodatkowo umożliwia to w perspektywie czasu utworzenie bardziej złożonego algorytmu zarządzania zasobami.

2.4.3. Rozpoczęcie pracy serwera wirtualizacji

Proces opisuje przyjęcie nowego serwera wirtualizacji do systemu.

Rysunek 2.8: Diagram aktywności dla rozpoczęcia pracy serwera wirtualizacji

Serwer wirtualizacji bez działającego nadzorcy nie jest w stanie obsługiwać użytkowników. Oznacza to, że jeśli przy starcie nie wykryje brokera wiadomości lub nadzorcy po drugiej stronie kolejek² to się wyłączy. Jeżeli jednak komunikacja z nadzorcą jest możliwa, to serwer podłączy się do wspólnych kolejek oraz przekaże informacje nadzorcom o kolejce bezpośredniej. Gdy komunikacja będzie ustanowiona bezwarunkowo wyśle stan swojego modelu do nadzorców.

²Mechanizm potwierdzenia wykonania zadania

2.5. Komunikacja

2.5.1. Komunikacja wewnętrzna

Komunikacja wewnątrz systemu opiera się na kolejkach opisanych w opisie modułów. W celu uniknięcia wyścigów i utrzymania spójności modelu systemu pomiędzy nadzorcami ustalone są następujące zasady:

- Nadzorca może zmienić stan systemu jedynie w reakcji na odpowiedź serwera wirtualizacji.
 Odpowiedzi te wysyłane są do wszystkich nadzorców, dzięki czemu każdy nadzorca ma taki sam model systemu.
- Wiadomości przetwarzane są przez serwer wirtualizacji w sposób atomowy. Pojedyncza wiadomość musi zostać w pełni obsłużona zanim program przejdzie do obsługi kolejnej.
- Serwer wirtualizacji odpowiada na wiadomości wysyłając nowy stan maszyn. Jeżeli żądanie
 nie może być spełnione z powodu błędnego żądania, to serwer nie odpowiada na żądanie.
 Wyjątkiem jest żądanie o wysłanie aktualnego stanu maszyn.
- Z powodu asynchroniczności wiadomości moduły nie oczekują na odpowiedź. W przypadku nadzorcy przetwarzanie ódpowiedziźostanie uruchomione przez zmianę modelu.
- Do monitorowania utrzymania połączenia z brokerem użyty jest mechanizm zwracania wiadomości, które nie mogą zostać dostarczone³. Używając tego nadzorcy mogą wykryć, kiedy poszczególne serwery wirtualizacji przestaną działać, a serwery wirtualizacji - kiedy wszyscy nadzorcy przestaną działać.

Opisane wyżej założenia pozwalają uniknąć problemu hazardów i wyścigów. Jeżeli wiele nadzorców wyśle do serwera wirtualizacji tą samą prośbę, np. o stworzenie sesji na konkretnej maszynie, to z atomowości obsługi sesja zostanie stworzona tylko dla pierwszego z nich. Serwer wirtualizacji wyśle wiadomość o aktualizacji stanu maszyn i zignoruje pozostałe prośby. Nadzorcy otrzymają zmianę stanów, co spowoduje wywołanie odpowiednich procedur. Dla pierwszego będzie to dalsza część procesu tworzenia sesji, a pozostali nadzorcy pozostaną w procesie wyszukiwania maszyny do sesji.

³Mechanizm zwracania wiadomości

2.5.2. Komunikacja zewnętrzna

Komunikacja aplikacji klienckiej oraz panelu administratora z systemem - nadzorcą - rozwiązana jest za pomocą REST API⁴. W zależności od konfiguracji nadzorcy wiadomości mogą być
wysyłane za pomocą protokołu HTTPS⁵, który zapewnia ich szyfrowanie. W tym celu wymagane jest, aby na adres, pod którym udostępniony będzie system, wystawiony był odpowiedni
certyfikat⁶, gwarantujący jego tożsamość.

Całość specyfikacji API umieszczona jest w załączniku. Poniżej znajduje się zestawienie oraz krótki opis endpointów.

Rysunek 2.9: Endpointy API

- Login służy do logowania do systemu; współdzielony przez aplikację kliencką oraz panel administracyjny. Poprawne zalogowanie zwraca token do dalszej autoryzacji.
- Machines służy do pobierania przez aplikację informacji o typach i ilości dostępnych maszyn. Ten endpoint, oraz wszystkie następne wymagają autoryzacji poprzez umieszczenie tokenu otrzymanego podczas logowania w odpowiednim nagłówku wiadomości, oraz dostępne są tylko dla użytkownika.
- Session pozwala na wysłanie prośby o uzyskanie sesji, pobranie stanu sesji oraz jej anulowanie. Utworzenie sesji jest możliwe poprzez POST z typem maszyny. W odpowiedzi użytkownik dostaje częściowo wypełniony obiekt sesji zawierający id umożliwiające dalsze zapytania. GET zwraca obiekt sesji z aktualnym stanem. Jeżeli sesja jest gotowa, to zawiera on

⁴Opis REST API

⁵Specyfikacja protokołu HTTP Over TLS

⁶Opis certyfikatu TLS/SSL

też adres, z którym należy nawiązać połączenie RDP. DELETE umożliwia anulowanie sesji.

 Resources - udostępnia informację o zasobach działających serwerów wirtualizacji. Dostępny jedynie dla administratora.

Ważną informacją jaką musi posiadać system to fakt, czy użytkownik rzeczywiście jest podłączony do maszyny wirtualnej. System uzyskuje tą informację komunikując się z brokerem wiadomości odpowiedzialnym za komunikację z użytkownikami. Każda aplikacja kliencka po podłączeniu się do maszyny wirtualnej poprzez protokół RDP tworzy kolejkę o takiej nazwie jak uzyskany identyfikator sesji. Serwer wirtualizacji sprawdza co jakiś czas, czy na końcu kolejki istnieje jakikolwiek konsument. Gdy użytkownik się rozłączy to kolejka jest usuwana przez aplikację kliencką, co pozwala serwerowi wykryć odłączenie się użytkownika.

2.6. Sekwencje komunikacji

2.6.1. Utworzenie sesji

Celem tej sekwencji komunikacji jest odnalezienie istniejącej już sesji lub stworzenie nowej. Zakładamy, że w systemie zawsze jest jakaś wolna maszyna. Inaczej zgłaszamy użytkownikowi błąd.

Rysunek 2.10: Sekwencja komunikacji utworzenia sesji

Po prośbie użytkownika nadzorca znajduje wolna maszynę i prosi konkretny serwer wirtualizacji aby spróbował utworzyć sesje dla pewnego użytkownika. Gdy to się uda, ten wysyła zbiorczą kolejką do nadzorców informacje o zmianie modelu. W przeciwnym przypadku nadzorca powtarza wyszukanie wolnej maszyny. O tym, czy nadzorca musi powtórzyć wyszukiwanie decyduje stan otrzymanej maszyny (m.in. czy sesja do niej przypisana należy do tego użytkownika).

Może się zdarzyć także anulowanie wyszukiwania przez użytkownika. Wtedy jeżeli maszyna jest już przydzielona użytkownikowi, to serwer wirtualizacji jest powiadamiany o anulowaniu sesji, aby ją anulował. Jeżeli nie została jeszcze utworzona, to nadzorca dopilnuje aby więcej nie szukać sesji lub wyłączy ją w miarę potrzeby.

2.6.2. Zakończenie sesji

Sekwencja ta zainicjowana jest poprzez utracenie połączenia z użytkownikiem maszyny. Serwer powiadamia o tym fakcie nadzorców, po czym oczekuje na polecenie wyłączenia maszyny przesłane przez nadzorcę. Serwer może odmówić z powodów różnic modelu, lub jeżeli maszyna znów jest używana przez użytkownika, ignorując wiadomość.

Rysunek 2.11: Sekwencja komunikacji zakończenia sesji

2.6.3. Aktualizacja stanu

Nadzorca może w każdej chwili poprosić wszystkie serwery wirtualizacji o przesłanie ich aktualnego stanu poprzez wspólna kolejkę do serwerów wirtualizacji. Serwery muszą bezwarunkowo odpowiedzieć aktualnym stanem do wspólnej kolejki zwrotnej.

Rysunek 2.12: Sekwencja komunikacji aktualizacji stanu systemu

2.6.4. Włączenie maszyny

Nadzorca może poprosić konkretny serwer wirtualizacji aby utworzył maszynę o konkretnej nazwie. Jeżeli maszynie nie istnieje, to zostanie uruchomiona oraz serwer odeśle powiadomienie zbiorcza kolejką o zmianie modelu. W przeciwnym wypadku nie zrobi nic.

2.6. Sekwencje komunikacji

Rysunek 2.13: Sekwencja komunikacji włączenia maszyny

2.6.5. Wyłączenie maszyny

Nadzorca może poprosić konkretny serwer wirtualizacji aby wyłączył konkretną maszynę wirtualną. Jeżeli maszynę można wyłączyć to zostanie on wyłączona. Następnie serwer wirtualizacji odeśle powiadomienie zbiorcza kolejką o zmianie modelu. W przeciwnym wypadku nie zrobi nic.

Rysunek 2.14: Sekwencja komunikacji wyłączenia maszyny

3. Analiza rozwiązania

3.1. Testowana funkcjonalność

Gotowy system poddany został testom akceptacyjnym mającym za zadanie sprawdzić, czy działa on poprawnie, oraz czy spełnienia wymagania przedstawione w 1.5 oraz 1.6. W opisie testów, jako standardowe uruchomienie systemu rozumiemy procedurę opisaną w ??.

Wykonane zostały następujące scenariusze akceptacyjne:

3.1.1. Brak komunikacji z nadzorcą

Przy starcie samodzielnego serwera wirtualizacji i wykryciu braku komunikacji z jakimkolwiek nadzorcą (poprzez brokera wiadomości) serwer powinien poinformować o błędzie i zakończyć działanie.

Kroki:

- 1. Włącz wewnętrznego brokera wiadomości oraz serwer wirtualizacji.
- 2. Wyświetl błąd i zakończ działanie.

3.1.2. Utrata komunikacji z nadzorcą

Po poprawnym starcie systemu z pojedynczym nadzorcą oraz serwerem wirtualizacji, serwer powinien wyłączyć się po wyłączeniu się ostatniego (jedynego) nadzorcy.

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Wyłącz nadzorcę lub brokery wiadomości.
- 4. Poczekaj na wykrycie braku nadzorców (brak otrzymanych wiadomości)
- 5. Wyświetl błąd i zakończ działanie.

3.1. Testowana funkcjonalność

3.1.3. Standardowe użycie systemu przez użytkownika

Użytkownik podłącza się do systemu składającego się z pojedynczego nadzorcy oraz serwera wirtualizacji, gdzie działa przynajmniej jedna wolna maszyna. Użytkownik powinien prawidłowo otrzymać sesję, a po odłączeniu się od maszyny, powinna ona zostać wyłączona po 15 minutach (czas konfigurowalny).

Kroki:

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na uruchomienie przynajmniej jednej maszyny wirtualnej.
- 3. Poproś o sesję poprzez aplikację kliencką.
- 4. Podłącz się poprzez RDP do uzyskanej maszyny.
- 5. Zakończ sesję z poziomu aplikacji.
- 6. Po określonym czasie maszyna powinna się wyłączyć.

3.1.4. Standardowe użycie systemu przez użytkownika przy awarii nadzorcy

Użytkownik podłącza się do systemu składającego się z dwóch nadzorców oraz jednego serwera wirtualizacji, gdzie działa przynajmniej jedna wolna maszyna. Użytkownik uzyskuje sesję, a w trakcie jej użytkowania następuje awaria nadzorcy. Po odłączeniu się od sesji i ponownej prośbie o sesję, w czasie krótszym niż czas wyłączenia maszyny, użytkownik powinien otrzymać ponownie tą samą maszynę.

- 1. Uruchom system standardową procedurą z dwoma nadzorcami.
- 2. Poczekaj na uruchomienie przynajmniej jednej maszyny wirtualnej.
- 3. Poproś o sesję poprzez aplikację kliencką.
- 4. Podłącz się poprzez RDP do uzyskanej maszyny.
- 5. Wyłącz tego nadzorcę, z którym klient się komunikował.
- 6. Zakończ sesję z poziomu aplikacji.
- 7. Poproś ponownie o sesję poprzez aplikację kliencką (powinien uzyskać tą sama maszynę)
- 8. Podłącz się poprzez RDP do uzyskanej maszyny.

3.1.5. Podłączenie nowego serwera wirtualizacji

W trakcie działania systemu nowy serwer wirtualizacji powinien zostać włączony do modelu nadzorców oraz wyświetlony w panelu administratora.

Kroki:

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Włącz kolejną instancję serwera wirtualizacji.
- 4. Poczekaj na aktualizację modelu.
- 5. Sprawdź w panelu administratora, czy dwa serwery sa w modelu.

3.1.6. Podłączenie nowego nadzorcy

W trakcie działania systemu nowy nadzorca powinien posiadać taki sam model, jak aktualnie działający

Kroki:

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Włącz kolejną instancję nadzorcy.
- 4. Poczekaj na aktualizację modelu.
- 5. Sprawdź model na pierwszym nadzorcy poprzez panel administratora.
- 6. Sprawdź model na drugim nadzorcy poprzez panel administratora.

3.1.7. Odnotowanie utraty serwera wirtualizacji

W trakcie działania systemu, przy utracie serwera wirtualizacji, nadzorcy powinni usunąć go z modelu.

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Wyłącz serwer wirtualizacji.

3.1. Testowana funkcjonalność

- 4. Poczekaj na odnotowanie straty.
- 5. Sprawdź model poprzez panel administratora.

3.1.8. Utrata komunikacji przy działającej sesji

W trakcie działania systemu, przy utracie ostatniego nadzorcy, serwer wirtualizacji powinien zakończyć działanie. Jeżeli serwer posiada działające sesje, przed zakończeniem pracy musi poczekać na ich zakończenie.

Kroki:

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Poproś o sesję poprzez aplikację kliencką.
- 4. Podłącz się poprzez RDP do uzyskanej maszyny.
- 5. Wyłącz nadzorcę lub brokery wiadomości.
- 6. Poczekaj na wykrycie braku nadzorców (brak otrzymanych wiadomości)
- 7. Wyświetl bład, ale kontynuuj działanie.
- 8. Poczekaj na zakończenie sesji.
- 9. Zakończ działanie.

3.1.9. Odzyskanie komunikacji przy działającej sesji

W trakcie działania systemu, przy utracie ostatniego nadzorcy, serwer wirtualizacji powinien zakończyć działanie. Jeżeli serwer posiada działające sesje, przed zakończeniem pracy musi poczekać na ich zakończenie. Jeżeli przed zakończeniem ostatniej sesji nastąpi przywrócenie komunikacji, serwer powinien kontynuować działanie po zakończeniu sesji.

- 1. Uruchom system standardową procedurą.
- 2. Poczekaj na prawidłowy start systemu.
- 3. Poproś o sesję poprzez aplikację kliencką.
- 4. Podłącz się poprzez RDP do uzyskanej maszyny.

- 5. Wyłącz nadzorcę lub brokery wiadomości.
- 6. Poczekaj na wykrycie braku nadzorców (brak otrzymanych wiadomości)
- 7. Wyświetl błąd, ale kontynuuj działanie.
- 8. Włącz wyłączony wcześniej moduł.
- 9. Poczekaj na zakończenie sesji.
- 10. Kontynuuj działanie.
- 3.2. Środowisko testowe
- 3.3. Wykonane testy
- 3.4. Wyniki testów

4. Podsumowanie

Bibliografia

- [1] A. Author, Title of a book, Publisher, year, page-page.
- [2] J. Bobkowski, S. Dobkowski, Jak stworzyć bibliografię w BibTeX-u, *Czasopismo nr*, rok, strona–strona.
- [3] C. Brink, Power structures, Algebra Universalis 30(2), 1993, 177–216.
- [4] F. Burris, H. P. Sankappanavar, A Course of Universal Algebra, Springer-Verlag, Nowy Jork, 1981.

Wykaz symboli i skrótów

nzw. nadzwyczajny

- * operator gwiazdka
- ~ tylda

Jak nie występują, usunąć.

Spis rysunków

1.1	Przypadki użycia aplikacji nadzorczej	14
1.2	Przypadki użycia serwera wirtualizacji	16
1.3	Przypadki użycia panelu administratora	18
2.1	Schematyczna architektura systemu	25
2.2	Schemat klas modelu systemu	26
2.3	Diagram stanów dla maszyny wirtualnej	30
2.4	Diagram stanów dla serwera wirtualizacji	31
2.5	Diagram stanów dla użytkownika	32
2.6	Diagram aktywności dla uzyskania sesji	33
2.7	Diagram aktywności dla zakończenia sesji	34
2.8	Diagram aktywności dla rozpoczęcia pracy serwera wirtualizacji	35
2.9	Endpointy API	37
2.10	Sekwencja komunikacji utworzenia sesji	39
2.11	Sekwencja komunikacji zakończenia sesji	40
2.12	Sekwencja komunikacji aktualizacji stanu systemu	40
2.13	Sekwencja komunikacji włączenia maszyny	41
2.14	Sekwencja komunikacji wyłaczenia maszyny	41

Spis tabel

1.1	Przypadki użycia aplikacji nadzorczej	15
1.2	Przypadki użycia serwera wirtualizacji	17
1.3	Przypadki użycia panelu administratora	18
1.4	Opis skrócony	20
1.5	Analiza ryzyka	21

Spis załączników

- 1. Załącznik 1
- 2. Załącznik 2
- 3. Jak nie występują, usunąć rozdział.