Locating Patient Zero In a Network

Pablo Curiel

CSCI - 651

December 8, 2022

Outline

- Review of Spread in Networks
- Overview of Patient Zero (P-0) Problem
- Methods of Locating P-0
- Experimental Methods of Locating P-0
- Future Work

Review of Spread in Networks

- Applications include spread of: disease, rumors/fake news, malware attacks
- Classical models of spread (SI, SIS, SIR, SEIR, etc.)
 - Often represented with system of ODEs
 - Assume homogeneous mixing
- Analogs of classical models can be applied to networks
 - Hubs are super-spreaders
 - Use discrete time
- Basic reproductive number $R_0 = \frac{\beta \langle k \rangle}{\mu}$
 - β = rate of infection, μ = rate of recovery/death, $\langle k \rangle$ = avg. degree of network
 - Number of secondary infections produced by a single infected individual in fully susceptible population
 - $R_0 > 1 \implies$ disease spread, $R_0 < 1 \implies$ disease dies out
 - COVID-19 $R_0 \approx 1.5 4$

Overview of P-0 Problem

- Critical real-world application of spread in networks
 - Contact tracing
 - Allocating immunization resources
 - Mitigating spread of rumors/fake news
 - Defending against malware attacks
 - Preventing rolling blackouts when key electrical grids fail
- Somewhat newer research area (2011-Present)
- Requires learning the backwards-time dynamics of a spread
 - Often difficult and computationally expensive

Methods of Locating P-0

- Shah and Zaman (2011)
 - Focus on inferring source of a rumor spread using SI model
 - Define a max. likelihood estimator called "rumor centrality"
 - Accuracy $\approx 0 16\%$ (depending on network structure)
- Pinto, Thiran, Vetterli (2012)
 - Make use of "observer" nodes within network
 - Observer nodes track:
 - Time of infection
 Node that infected them
 - Difficulties include observer placement/density within network
 - Complexity: O(N) for arbitrary trees,
 O(N³) for arbitrary graphs

Methods of Locating P-0 (cont.)

Lokhov et al. (2014)

- Uses dynamic message passing (DMP) to infer source
- Proven to be exact on trees
- Complexity: $O(tN^2\langle k \rangle)$, t = time-steps

Shah et al. (2020)

- Use GNNs to identify P-0 with increased efficiency/accuracy
- Model agnostic (does not require spread model parameters)
- Complexity: $O(N^2 log N)$
- Accuracy ≥≈ 20% (depending on graph structure and time)

Inference times

Dataset	DMP	GCN	GAT
BA-Tree	14.40 hr	3.89s	3.18s
BA-Dense	77.04 hr	4.91s	8.19s
ER-Dense	71.77 hr	4.93s	9.66s
Geometric	70.35 hr	5.34s	10.87s

Experimental Methods of Locating P-0

- Attempted to infer source node based on:
 - Various centrality measures (whole graph)
 - Various centrality measures (recovered subgraph)
 - Clustering coefficients
 - Centrality measures + clustering coefficients
 - Random guessing
- Inferred source was max of each measure
- Experiment parameters:
 - Time simulated = 15
 - Number of nodes N = 1000
 - Iterations per simulation = 100
 - $R_0 = 1.5$
- Graph types:
 - Barabási-Albert scale-free (m = 3)
 - Erdős-Rényi random (p = 0.2)
 - Twitter Russian trolls network (n = 1245, |E| = 2974)

Experimental Methods (cont.)

Barabási-Albert scale-free graph results:

Experimental Methods (cont.)

• Erdős-Rényi random graph results:

Experimental Methods (cont.)

• Twitter Russian trolls graph results:

Future Work

- Understand/implement a variation of GNN-based method
 - Classify nodes based on probability of being P-0
- Expand on methods described in 2020 paper
- Focus is on GCN architecture (Kipf and Welling 2017)
 - Uses spectral convolution (Fourier Transform applied to graphs)
- Current ideas for architecture:
 - Node features: one-hot encoded node states
 - Ex: $x_f = [1 \ 0 \ 0] \implies x \in S$
 - Two node classes: P-0 ($x_c = 1$), not P-0 ($x_c = 0$)

References and Acknowledgements

- J.D. Murray. Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics Springer, vol. 17, 2002.
- Albert-László Barabási. Network science. Cambridge University Press, 2016.
- Devavrat Shah, Tauhid Zaman. Rumors in a Network: Who's the Culprit? IEEE Transcactions on Information Theory, vol. 57, no. 8, August 2011. https://doi.org/10.48550/arxiv.0909.4370
- Pedro C. Pinto, Patrick Thiran, Martin Vetterli. Locating the Source of Diffusion in Large-Scale Networks. Phys. Rev. Lett., vol. 109, no. 6, August 2012. 10.1103/PhysRevLett.109.068702
- Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, Lenka Zdeborová. Inferring the Origin of an Epidemic with a Dynamic Message-Passing Algorithm. Phys. Rev. E, vol. 90, no. 1, July 2014. 10.1103/PhysRevE.90.012801
- Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-László Barabási, Alessandro Vespignani, Rose Yu. Finding Patient Zero: Learning Contagion Source with Graph Neural Networks. June 2020. https://doi.org/10.48550/arXiv.2006.11913
- Thomas N. Kipf, Max Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017. https://doi.org/10.48550/arXiv.1609.02907