Неравенство о средних

Неравенство о средних — это неравенство между *средним квадратическим, средним арифметическим, средним геометрическим и средним гармоническим*:

$$\sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}} \ge \frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} \dots + \frac{1}{x_n}}$$

для любых положительных чисел x_1, x_2, \ldots, x_n , причём равенство достигается тогда и только тогда, когда $x_1 = x_2 = \ldots = x_n$. Частный случай,

$$\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

 $\boxed{1}$ $1+x\geq 2\sqrt{x}$ при $x\geqslant 0$ через неравенство о средних.

 $\boxed{2}$ $\frac{x}{y} + \frac{y}{x} \geqslant 2$ при x, y > 0 через неравенство о средних.

 $3 \frac{1}{x} + \frac{1}{y} \geqslant \frac{4}{x+y}$ при x, y > 0 через неравенство о средних.

 $\boxed{4} \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$ при a, b, c > 0.

 $[5] \ 2(x^2+y^2) \geqslant (x+y)^2$ при любых x и y через неравенство о средних.

[6] $\frac{a+3b}{4} \geqslant \sqrt[4]{ab^3}$, при $a,b \geqslant 0$

 $\boxed{7} \frac{a^6 + b^9}{4} \geqslant 3a^2b^3 - 16$, при $b \geqslant 0$.

[8] $2x + \frac{3}{8} \geqslant \sqrt[4]{x}$, при $x \geqslant 0$.

[9] $(2+x)(2+y)(2+z) \geqslant 27$, если xyz = 1 и x, y, z > 0.

10 $\frac{a}{b+c+d} + \frac{b}{a+c+d} + \frac{c}{a+b+d} + \frac{d}{a+b+c} \geqslant \frac{4}{3}$, при положительных a, b, c, d.

11 $\sqrt{a} + \sqrt{b} + \sqrt{c} \geqslant ab + bc + ac$, если a + b + c = 3.