Computational Methods in Physics (PHY 365) FA23

Dr. Muhammad Kamran

Department of Physics

COMSATS University Islamabad

Lab 7

- vq = interp1(x , v , xq) returns interpolated values of a 1-D function at specific query points using linear interpolation.
 - ♦ Vector x contains the sample points.
 - \diamond Vector v contains the corresponding values, v(x).
 - ♦ Vector xq contains the coordinates of the query points.

- vq = interp1(x , v , xq) returns interpolated values of a 1-D function at specific query points using linear interpolation.
 - ⋄ Vector x contains the sample points.
 - \diamond Vector v contains the corresponding values, v(x).
 - ♦ Vector xq contains the coordinates of the query points.
- vq = interp1(x , v , xq , method) specifies an alternative interpolation method.

- vq = interp1(x , v , xq) returns interpolated values of a 1-D function at specific query points using linear interpolation.
 - ♦ Vector x contains the sample points.
 - \diamond Vector v contains the corresponding values, v(x).
 - $\diamond~$ Vector xq contains the coordinates of the query points.
- vq = interp1(x, v, xq, method) specifies an alternative interpolation method.
- vq = interp1(x, v, xq, method, extrapolation) specifies a strategy for extrapolation of data.
 - Set extrapolation to 'extrap' when you want to use the method algorithm for extrapolation.
 - ♦ Alternatively, a scalar value can be specified, in which case, interp1 returns that value for all points outside the domain of x.

Method	Description						
linear	Linear interpolation. The interpolated value at a						
	query point is based on linear interpolation of the						
	values at neighboring grid points in each respec-						
	tive dimension. This is the default interpolation						
	method.						
nearest	Nearest neighbor interpolation. The interpolated						
	value at a query point is the value at the nearest						
	sample grid point.						
next	Next neighbor interpolation. The interpolated						
	value at a query point is the value at the next sam-						
	ple grid point.						
previous	Previous neighbor interpolation. The interpolated						
	value at a query point is the value at the previous						
	sample grid point.						

Method	Description							
pchip	Shape-preserving piecewise cubic interpolation.							
	The interpolated value at a query point is based							
	on a shape-preserving piecewise cubic interpolation							
	of the values at neighboring grid points.							
cubic	Same as 'pchip'. The behavior of interp1(,'cubic')							
	will change in a future release. In a future release,							
	this method will perform cubic convolution.							
spline	Spline interpolation using not-a-knot end condi-							
	tions. The interpolated value at a query point							
	is based on a cubic interpolation of the values at							
	neighboring grid points in each respective dimen-							
	sion.							

- Vq = interp2(X, Y, V, Xq, Yq) returns interpolated values of a function of two variables at specific query points using linear interpolation.
 - The results always pass through the original sampling of the function.
 - ⋄ X and Y contain the coordinates of the sample points.
 - V contains the corresponding function values at each sample point.
 - ⋄ Xq and Yq contain the coordinates of the query points.

- Vq = interp2(X , Y , V , Xq , Yq) returns interpolated values of a function of two variables at specific query points using linear interpolation.
 - The results always pass through the original sampling of the function.
 - ⋄ X and Y contain the coordinates of the sample points.
 - V contains the corresponding function values at each sample point.
 - Xq and Yq contain the coordinates of the query points.
- Vq = interp2(_____, method) specifies an alternative interpolation method.
 - 'nearest'.
 - 'cubic'.
 - 'spline'.

Write a MATLAB program to interpolate the surface
$$\sin\left(\sqrt{x^2+y^2}\right)/\sqrt{x^2+y^2}$$
 (-2 \le x, y \le 2).

Write a MATLAB program to interpolate the surface
$$\sin(\sqrt{x^2 + y^2})/\sqrt{x^2 + y^2}$$
 (-2 \le x, y \le 2).

Given data

$$[X, Y] = meshgrid(-2:2);$$

 $R = sqrt(X.^2 + Y.^2);$
 $V = sin(R)./R;$

Write a MATLAB program to interpolate the surface
$$\sin\left(\sqrt{x^2+y^2}\right)/\sqrt{x^2+y^2}$$
 (-2 \le x, y \le 2).

■ Given data

$$[X, Y] = meshgrid(-2 : 2);$$

 $R = sqrt(X .^2 + Y .^2);$
 $V = sin(R) ./ R;$

■ The query points

$$[Xq, Yq] = meshgrid(-2:0.2:2);$$

Write a MATLAB program to interpolate the surface
$$\sin(\sqrt{x^2 + y^2})/\sqrt{x^2 + y^2}$$
 (-2 \le x, y \le 2).

■ Given data

```
[X, Y] = meshgrid(-2:2);

R = sqrt(X.^2 + Y.^2);

V = sin(R)./R;
```

- The query points [Xq, Yq] = meshgrid(-2 : 0.2 : 2);
- The interp2 function interp2 poly 1 = interp2(X, Y, V, Xq, Yq);

■ Plotting

```
\begin{aligned} & \mathrm{surf}(X \ , Y \ , V) \\ & \mathrm{figure} \\ & \mathrm{surf}(Xq \ , Yq \ , \mathrm{interp2\_poly\_1}) \end{aligned}
```


- Vq = interp3(X , Y , Z , V , Xq , Yq , Zq) returns interpolated values of a function of three variables at specific query points using linear interpolation.
 - The results always pass through the original sampling of the function.
 - ⋄ X, Y, and Z contain the coordinates of the sample points.
 - V contains the corresponding function values at each sample point.
 - ⋄ Xq, Yq, and Zq contain the coordinates of the query points.

- Vq = interp3(X , Y , Z , V , Xq , Yq , Zq) returns interpolated values of a function of three variables at specific query points using linear interpolation.
 - The results always pass through the original sampling of the function.
 - ⋄ X, Y, and Z contain the coordinates of the sample points.
 - V contains the corresponding function values at each sample point.
 - \diamond Xq, Yq, and Zq contain the coordinates of the query points.
- Vq = interp3(_____, method) specifies an alternative interpolation method.
 - 'nearest'.
 - 'cubic'.
 - 'spline'.

- s = spline(x , y , xq) returns a vector of interpolated valuess corresponding to the query points in xq.
 - ♦ The values of s are determined by cubic spline interpolation of x and y.

- s = spline(x , y , xq) returns a vector of interpolated values
 s corresponding to the query points in xq.
 - ♦ The values of s are determined by cubic spline interpolation of x and y.
- \blacksquare pp = spline(x , y) returns a piecewise polynomial structure for use by ppval and the spline utility unmkpp.

Use the spline function to interpolate the following data

X	-3	-2	-1	0	1	2	3
у	-1	-1	-1	0	1	1	1

References

- https://www.mathworks.com/help/matlab/ref/interp1.html
- https://www.mathworks.com/help/matlab/ref/interp2.html
- https://www.mathworks.com/help/matlab/ref/interp3.html
- https://en.wikipedia.org/wiki/Spline_interpolation
- https://towardsdatascience.com/ numerical-interpolation-natural-cubic-spline-52c1157b98ac
- https://www.mathworks.com/help/matlab/ref/spline.html