Vladislav Belavin, Maxim Borisyak

Black-Box Optimization

Introduction

Definition and examples

Optimization methods categorization

- black-box:
 - Bayesian Optimization;
 - Variational Optimization;
 - evolutionary algorithms;
 - and many others.
- gradient methods:
 - SGD, adam and friends;
- second order and quasi-Newton:
 - Netwon's method, BFGS.

Examples: car aerodynamics

- computationally expensive;
- gradients might exist:
 - even more expensive;
 - potentially unstable.

Image source: spectre-design.com

Examples: SHiP shield optimization

$$\operatorname{background}(\theta) = \underset{\operatorname{event}}{\mathbb{E}} \mathbb{I} \big[\operatorname{muons} > 0 \mid \operatorname{event}, \theta \big] \to \min$$

- computationally expensive;
 - each call involves many simulations;
- only MC estimate:
 - no gradient;
- the expectation might have the gradient.

Image source: Oliver Lantwin, Bayesian optimisation of the SHiP muon shield.

Examples: chess bot

$$\operatorname{win}\operatorname{rate}(\theta) = \underset{\operatorname{opponent}}{\mathbb{E}} \mathbb{I}\big[\operatorname{win}\mid\operatorname{opponent},\theta\big] \to \max$$

- potentially cheap to evaluate;
- only MC estimate:
 - no gradient;
- the expectation might have the gradient.

Image source: Wikimedia Commons.

Black-box optimization

- can assess value of the objective in any point;
- no additional information:
 - the gradient is not accessible;
- some prior knowledge about the objective is possible:
 - bounds;
 - (Lipschitz) continuity;
 - smoothness;
 - family of functions, e.g., quadratic;
- usually (not necessarily) applied to heavy objectives.

Algorithms

Reduction to gradient methods

$$\frac{\partial}{\partial x}f(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

- requires $\mathcal{O}(d)$ evaluations;
- quasi-Newton algorithms are recommended;
- sensitive to noise or function irregularities.

Sensitivity to noise

$$\frac{f(x+h) + \varepsilon_1 - f(x-h) - \varepsilon_2}{2h} \approx \frac{\partial}{\partial x} f(x) + \mathcal{O}\left(\frac{\varepsilon}{h}\right)$$

- ▶ small h large noise;
- ▶ large h unreliable gradient:
 - might be ok if the objective is smooth.

Sensitivity to noise: BFGS

$$h = 10^{-3}$$

Black-Box Optimization

Sensitivity to noise: Gradient Descent

$$h = 10^{-3}$$

Sensitivity to noise: Gradient Descent

$$h = 10^{-1}$$

Grid search

- 1. make grid;
- 2. evaluate f in every point of the grid;
- 3. search for minimum.
- slow;
- extraordinary slow;
- global optimization;
- makes minimum assumptions.

Random search

- 1. draw uniformly multiple points;
- 2. evaluate *f* in every point;
- 3. search for minimum.
- slow;
- extraordinary slow;
- global optimization;
- prior knowledge via distribution;
- makes minimum assumptions.

Simulated Annealing

```
1: for i = 1 to N do
         x_i' = x_{i-1} + \varepsilon \cdot \text{normal}()
     y_i' = f(x_i')
 3:
    T = T_0 \cdot (N - i + 1)/N
 4:
    P = \exp\left(\left(y_{i-1} - y_i\right)/T\right)
 5:
         if P > \text{uniform}(0, 1) then
 6:
              x_i, y_i = x_i', y_i'
 7:
         else
 8:
 9:
              x_i, y_i = x_{i-1}, y_{i-1}
         end if
10:
11: end for
```


Simulated Annealing: examples

Simulated Annealing: discussion

- "guided" random search;
- global optimization;
- robust against noise;
- small temperature leads to an evolutionary algorithm;
- sensitive to the temperature schedule.

Black-box optimization:

- only function evaluations;
- use cases:
 - gradients are not available;
 - computationally heavy objective.

Numerical gradient:

- employs gradient methods;
- poorly scales with dimensionality;
- use cases:
 - gradients are not available;
 - noise-free objective.

Grid/random search:

- minimum assumptions;
- not scalable;
- use cases:
 - low dimensionality;
 - slowly changing function;
 - no time to write sophisticated code.

Simulated annealing:

- "guided" random search;
- poorly scalable;
- use cases:
 - low dimensionality;
 - noisy/irregular function;
 - multiple local minima.

References

Audet, C. and Hare, W., 2017. Derivative-free and blackbox optimization.