Disciplina:

Banco de Dados Relacional e Não Relacional

Aula: Projeto de Banco De Dados Relacional

Professor: Anderson Theobaldo

Nesta Aula

- Modelagem de Dados
- Modelo Conceitual
- Modelo Lógico
- Modelo Físico

Modelagem de Dados

- É o processo de criação de uma representação abstrata e estruturada dos dados de um sistema de informação.
- Essa representação é projetada para capturar os diferentes tipos de dados que precisam ser armazenados e manipulados pelo sistema.
- A modelagem de dados envolve identificar as entidades relevantes (como pessoas, lugares, coisas, eventos) e os relacionamentos entre elas, bem como os atributos que descrevem essas entidades e relacionamentos.
- Visa facilitar o entendimento sobre os dados e o projeto de dados, ao representarem suas características principais.
- A modelagem de dados é fundamental para o sucesso da implementação de um banco de dados.

Abstração Dados

Abstração refere-se ao grau de detalhamento dos dados ou conceitos que são descritos no modelo.

Conceitual:

Descreve apenas parte do banco de dados que são direcionadas para entendimento dos usuários finais.

Lógico:

Descreve quais dados estão armazenados de fato no banco de dados e as relações que existem entre eles.

Físico:

Descreve a estrutura física dos dados e como estão realmente armazenados.

Alto Nível Baixo Nível

Projeto de Banco de Dados

4. Definir o modelo 1. Levantamento e Análise físico de Requisitos 3. Definir o modelo Definir o modelo lógico conceitual

Modelo Conceitual

- Captura os requisitos de informação e regras de negócio sob o ponto de vista do negócio ou do usuário.
- Representa os conceitos no domínio em análise, bem como as associações entre esses conceitos.

Modelo Entidade-Relacionamento (MER)

- Proposto por Peter Chen em 1976(baseado na teoria relacional de Edgar Frank Codd).
- Baseado na percepção do mundo real.
- Consiste de um conjunto de objetos básicos chamados de entidades, e no relacionamento entre esses objetos.
- Desenvolvido para facilitar o projeto de bancos de dados.
- Este modelo é normalmente apresentado através de um diagrama chamado Diagrama Entidade-Relacionamento (DER).

Entidade

- É uma representação concreta ou abstrata de um objeto, com características semelhantes, do mundo real.
- Expressões por substantivos ou verbos substantivado.
- Exemplo: produto, cliente, fornecedor, pedido, etc.

Entidade Forte

Sua existência independe de outra.

Representação gráfica:

Entidade Fraca

Sua existência depende de outra entidade para existir.

Representação gráfica:

Pedido

Itens de Pedido

Atributo

- Propriedades ou características de um tipo de entidade.
 - Exemplo: Nome do cliente, data do pedido, email de contrato, etc.
- Cada atributo terá um valor, que se tornará parte do banco de dados.
- Atributos são representados por ovais contendo seu nome e ligados ao tipo de entidade por linhas retas.

Classificação dos Atributos

Nome

Atributo simples: são atômicos ou indivisíveis

Atributo multivalorado possui vários valores simultâneos

Atributo chave identifica de modo único cada instância de uma entidade

Atributo complexo é o agrupamento dos atributos composto e multivalorado.

Atributo composto é aquele que pode ser dividido em dois ou mais atributos.

Atributo é derivado quando o valor deste depende do valor de um ou mais atributos.

Relacionamentos

- As entidades são conectadas/relacionadas umas às outra através de relacionamentos.
- Responsáveis por definir as características das ligações entre as entidades.
- Em geral é expresso por um verbo ou por uma locução verbal.
- Restrições dos relacionamentos:
- Cardinalidade: 1:1, 1:N ou N:1, N:N
- Obrigatoriedade: 0 ou 1
- Participação: Total ou Parcial

Cardinalidade de 1:1

Uma instância da entidade A está associada a no máximo uma instância da entidade B, e uma instância da entidade B está associada a no máximo uma instância da entidade A.

Representação Gráfica

Cardinalidade de 1 : N ou N : 1

Uma instância da entidade A está associada a várias instâncias da entidade B, e uma instância da entidade B está associada a no máximo uma instância da entidade A.

Representação Gráfica

Cardinalidade de N: N

Muitos para muitos (N:N): Uma instância da entidade A está associada a várias instâncias da entidade B, e uma instância da entidade B está associada a várias instâncias da entidade A.

Representação Gráfica

Grau de Relacionamento

Número de entidades participantes no relacionamento.

Binários: Envolvem duas entidades.

Binários recursivos: Envolvem a associação entre duas instâncias de uma única entidade as quais participam do relacionamento assumindo diferentes papeis.

Ternários: Envolvem três entidades.

Restrição de Participação

- Participação Total: uma relação é total, se toda instância de uma determinada entidade participa do relacionamento na sua totalidade.
 - Exemplo: no relacionamento abaixo, todas as instâncias da entidade Departamento está relacionado a alguma instância da entidade Empregado, porque todo departamento tem que ter um gerente.
- Participação Parcial: uma relação é parcial, se nem toda instância de uma determinada entidade participa do relacionamento.
 - Exemplo: no relacionamento abaixo, nem todas as instâncias da entidade Empregado está relacionado a alguma instância da entidade Departamento, pois somente alguns empregados serão gerentes.

Construção do Modelo MER

- Identifique as possíveis entidades e atributos, substantivos e verbos substantivos
- Determine os tipos de cada atributo(chaves, simples, composto, multivalorados, etc.
- Identifique e estabeleça os relacionamentos entre as entidades, verbos ou locuções verbais
- Defina as restrições do relacionamento(cardinalidade, opcionalidade, participação)

Exemplo: Modelagem para um Sistema de Gerenciamento de Projetos

- A empresa é organizada em diversos departamentos.
- Cada departamento possui código de identificação, nome e pode estar espalhado em diversos locais.
- Um departamento pode alocar vários funcionários.
- Cada funcionário possui matrícula, nome (nome, sobrenome), CPF, endereço, salário, sexo e data de nascimento registrados.
- Um funcionário pode ser designado para trabalhar em apenas um departamento, durante a vigência de seu contrato.
- Um departamento é gerenciado por apenas um funcionário, e a data em que um funcionário se torna gerente do departamento deve ser registrada.

Exemplo: Modelagem para um Sistema de Gerenciamento de Projetos

- Cada departamento controla uma certa quantidade de projetos e cada um deles possuindo código e nome únicos, e local de execução.
- Os funcionários podem ser alocados em múltiplos projetos, com definição de número de horas dedicadas.
- Também é necessário acompanhar o supervisor direto de cada empregado
- É necessário acompanhar os dependentes diretos de cada empregado
- Para cada dependente precisamos saber o nome(nome e sobrenome), sexo, data de nascimento e grau de parentesco com o empregado

Exemplo:

Modelagem para um Sistema de Gerenciamento de Projetos

Modelo Lógico

Modelo de Rede

Modelo Hierárquico

Modelo Relacional

Modelo Orientado a Objetos

Modelo a Grafos

Modelo a Documentos

Descreve a estrutura do banco de dados conforme um paradigma tecnológico

Modelo Relacional

Definido por E.F.Cood em 1970, se tornou o modelo mais usado a partir de meados da década de 1980

Representa um banco de dados com base na teoria de conjuntos e como os conjuntos se relacionam.

Em um banco de dados relacional os dados estão organizados na forma de tabelas, também chamadas de relações.

Elementos do Modelo Relacional

- Tabela(relação) é um conjunto não ordenado de linhas(duplas).
- Cada linha é composta por uma série de campos (colunas ou atributos.
- Cada atributo é definido conforme um domínio específico

Mapeamento do Modelo Entidade-Relacionamento para o Modelo Lógico(Relacional)

- É possível projetar um esquema relacional a partir de um esquema conceitual
- O resultado materializa o projeto lógico
- O mapeamento é descrito como um algoritmo

Modelo Conceitual

Modelo Relacional

Projeto Conceitual - Gerenciamento de Projetos

Etapa 1: Entidade Forte

- Criar uma relação para cada entidade forte.
- Incluir todos os atributos simples e compostos.
- Escolher o(s) atributo(s) para compor a chave primária.

Empregado
Codigo (PK)
Nome
Sobrenome
CPF
DataNascimento
Sexo
Logradouro
Salario

Projeto
Codigo (PK)
Nome
Localizacao

Departamento					
Codigo (PK)					
Nome					

Etapa 2: Entidade Fraca

- Criar uma relação para cada entidade fraca.
- Incluir todos os atributos simples e compostos.
- Incluir como chave estrangeira a chave primária da entidade forte relacionada.
- A chave primária será composta pelas chaves estrangeira e parcial.

Dependente		Empregado	
CodigoEmpregado (PK, FK)	Codigo (PK)		
Nome (PK)		Nome	
Sobrenome (PK)		Sobrenome	
DataNascimento		CPF	
Parentesco		DataNascimento	
Sexo		Sexo	
		Logradouro	
		Salario	

Departamento					
Codigo (PK)					
Nome					

Etapa 3: Relacionamento binário 1:1

- Incluir como chave estrangeira a chave primária da entidade com participação total no relacionamento.
- Se ambas as entidades tiverem participação total, pode-se unificar as duas entidades em uma única relação.

Projeto					
Codigo (PK)					
Nome					
Localizacao					

Etapa 3: Relacionamento binário 1:1

- Incluir como chave estrangeira a chave primária da entidade com participação total no relacionamento.
- Se ambas as entidades tiverem participação total, pode-se unificar as duas entidades em uma única relação.

Projeto					
Codigo (PK)					
Nome					
Localizacao					

Etapa 4:Relacionamento binário 1:N

• Na relação que participa do lado N, incluir como chave estrangeira a chave primária da outra relação do relacionamento.

Etapa 5: Relacionamento Binário N:N

- Para cada relacionamento criar uma nova relação.
- Incluir como chave estrangeira as chaves primárias das relações que representam as entidades participantes.
- Incluir os atributos do relacionamento como atributo da nova relação
- A chave primária será composta pelas chaves estrangeiras.

Etapa 6: Atributo Multivalorado

- Criar uma nova relação incluindo o atributo multivalorado e a chave primária da relação correspondente(será uma chave estrangeira). Se o atributo multivalorado for composto, incluir todos os atributos simples.
- A chave primária será composta pela junção do atributo multivalorado e a chave estrangeira.

Modelo Relacional Final

Modelo Físico

- O modelo físico de banco de dados consiste no mapeamento do modelo lógico para um SGBD real.
- Deve levar em conta fatores como:
 - Desempenho
 - Tempo de resposta das transações
 - Alocação de espaço em disco

Modelo Físico

- O modelo físico de banco de dados consiste no mapeamento do modelo lógico para um SGBD real.
- Deve levar em conta fatores como:
 - Desempenho
 - Tempo de resposta das transações
 - Alocação de espaço em disco

Modelo Físico

- Principais definições
 - Escolher SGBD
 - Definir estrutura do banco de dados (Schema)
 - Definir índices
 - Definir tamanhos de bloco (páginas)
 - Definir localização física de arquivos e índices
 - Definir permissões de acesso (grupos, usuários e papéis)

Implementação da Estrutura do Banco de Dados

- A implementação do modelo físico é feita através da linguagem SQL.
- SQL é uma linguagem padronizada para manipulação de bancos de dados.
- Surgiu na década de 70 através da IBM
- Teve algumas variações, decorrentes do trabalho de outros fabricantes de SGBDs.
- Foi padronizada em 1986 (SQL1) pelo ANSI e pela ISO

Classificação da Linguagem SQL

alteração e

exclusão).

Comandos SQL DQL **DCL** DDL **DML** TCL Select Create Insert Grant Commit Alter Revoke Update Rollback Delete Drop Save point Truncate Rename Usada para Usada para Usada para Usada para lidar Usada para conceder e definição dos manipulação dos com transações recuperação de dados (inclusão, retirar privilégios dados. no banco de esquemas.

de usuários em

banco de dados.

objetos de

dados.

Exemplo de Dicionário de Dados

- Relação: DEP_Departamento
- Objetivo: Manter o cadastro de departamentos da empresa.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
DEP_Id	Numérico	3	N	PK	Incremental
DEP_Nome	Texto	30	N	UQ	Não pode ter repetição
DEP_EMP_IdGerente	Numérico	5	S	FK (EMP_EPREGADO.EMP_Id)	
DEP_DtInicioGer	Data	8	S		

- Relação: LOC_Localidade
- Objetivo: Manter o cadastro de localidade de departamentos da empresa.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
LOC_Id	Numérico	3	N	PK	Incremental
LOC_Nome	Texto	30	N	UQ	Não pode ter repetição

- Relação: DLO_DepartamentoLocal
- Objetivo: Manter o cadastro de localidade de departamentos da empresa.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
DLO_DEP_Id	Numérico	3	N	PK FK (DEP_Departamento.DEP_Id)	
DLO_LOC_id	Numérico	5	N	PK FK (LOC_Localidade.LOC_Id)	

Exemplo de Dicionário de Dados

- Relação: EMP_Empregado
- Objetivo: Manter o cadastro de empregados envolvidos na execução de algum projeto.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
EMP_Id	Numérico	5	N	PK	Incremental
EMP_CPF	Texto	11	N	UK	
EMP_PrimeiroNome	Texto	20	N		
EMP_Sobrenome	Texto	30	N		
EMP_Logradouro	Texto	60	S		
EMP_DtNascimento	Data	8	N		
EMP_Salario	Numérico	8,2	N	Não pode ser negativo	
EMP_Sexo	Texto	1	N	Domínio válido = F, M e O	
EMP_DEP_Id	Numérico	3	S	FK (DEP_Departamento.DEP_Id)	
EMP_IdSupervisor	Texto	11	S	FK (EMP_Empregado.EMP_Id)	

- Relação: PRJ_Projeto
- Objetivo: Armazenar os dados dos projetos executados na empresa.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
PRJ_Id	Numérico	5	N	PK	Incremental
PRJ_Nome	Texto	30	N	UQ	
PRJ_Local	Texto	40	N		
PRJ_DEP_Id	Numérico	3	N	FK(DEP_DEPARTAMENTO.DEP_Id)	

Exemplo de Dicionário de Dados Relação: DPD_Dependente

- Objetivo: Manter o cadastro de dependentes dos empregados. Será utilizado no cálculo de imposto de renda devido pelo empregado.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
DPD_Id	Numérico	5	N	PK	Incremental
DPD_EMP_Id	Numérico	5	N	PK, FK(EMP_EMPREGADO.EMP_Id)	
DPD_PrimeiroNome	Texto	20	N	PK	
DPD_Sobrenome	Texto	30	N	PK	
DPD_Sexo	Texto	1	N	Domínio válido = F, M e O	
DPD_Parentesco	Texto	2	N	Domínio válido = FI, CJ, OU Valor padrão = FI	FI - Filho CJ - Cônjuge OU - Outro

- Relação: PEM_ProjetoEmpregado
- Objetivo: Cadastrar a relação de horas trabalhadas dos empregados nos respectivos projetos.

Atributo	Tipo de Dado	Tamanho	Nulo?	Restrições	Observações
PEM_PRJ_Id	Numérico	5	N	PK FK(PRJ_PROJETO.PRJ_id)	
PEM_EMP_Id	Numérico	5	N	PK FK(EMP_EMRPEGADO.EMP_id)	
PEM_QteHs	Numérico	5	N	CK(PEM_QteHs > 0)	Deve ser maior que zero

IEC PUC Minas

Exemplo de Implementação de Estrutura do Banco de Dados utilizando instruções DDL


```
Create database Projetos;
Create table Projetos.DEP_departamento
                      Tinyint
                                   Not Null auto_increment,
   DEP_Id
   DEP_Nome
                       Varchar(30) Not Null,
   DEP_EMP_IdGerente
                       int
                                   Null,
   DEP_DtInicioGer
                                   Null,
                       Date
                            Primary Key(DEP_Id),
    Constraint DEP_PK_Id
    Constraint DEP_UK_Nome Unique(DEP_Nome)
);
Create table Projetos.LOC_Localidade
   LOC_Id
                                   Not Null auto_increment,
                      Tinyint
   LOC_Nome
                       Varchar(30) Not Null,
    Constraint LOC_PK_Id Primary Key(LOC_Id),
    Constraint LOC_UK_Nome Unique(LOC_Nome)
);
Create table Projetos.DLO_DepartamentoLocal
   DLO_DEP_Id Tinyint Not Null,
   DLO_LOC_Id Tinyint Not Null,
                          Primary Key(DL0_DEP_Id, DL0_L0C_Id),
   Constraint DL0_PK_Id
    Constraint DLO_FK_DEP_Id Foreign Key(DLO_DEP_Id)
       References Dep_Departamento(DEP_Id),
    Constraint DL0_FK_LOC_Id Foreign Key(DL0_LOC_Id)
        References LOC_Localidade(LOC_Id)
);
```


Exemplo de Implementação de Estrutura do Banco de Dados utilizando instruções DDL

```
Create table Projetos.EMP_Empregado
    EMP_Id
                                       Not Null auto_increment,
                       int
    EMP_PrimeiroNome
                       Varchar(20)
                                       Not Null,
    EMP_Sobrenome
                       Varchar(30)
                                       Not Null,
    EMP_CPF
                       Char(11)
                                       Null,
    EMP_DtNasc
                       date
                                       Not Null,
                       Decimal(8,2)
    EMP_Salario
                                       Not Null,
   EMP_Sexo
                       Char(1)
                                       Not Null,
   EMP_DEP_Id
                       Tinyint
                                       Not Null,
    EMP_IdSupervisor
                       int
                                       Null,
   Constraint EMP_PK_Id
                             Primary Key(EMP_Id),
   Constraint EMP_UK_CPF Unique(EMP_cpf),
   Constraint EMP_FK_DEP_Id Foreign Key(EMP_DEP_Id) References Dep_Departamento(DEP_Id),
   Constraint EMP_FK_IdSuper Foreign Key(EMP_IdSupervisor) References EMP_Empregado(EMP_Id),
   CONSTRAINT EMP_CK_Sexo
                             CHECK (EMP_Sexo in ('F','M','0')),
   CONSTRAINT EMP_CK_Salario CHECK (EMP_Salario > 0)
);
Create table Projetos.DPD_Dependente
   DPD_Id
                               Not Null auto_increment,
                       int
   DPD_EMP_Id
                               Not Null,
                       int
   DPD_PrimeiroNome
                       Varchar(20) Not Null,
   DPD_Sobrenome
                       Varchar(30) Not Null,
   DPD_Sexo
                       Char(1) Not Null,
                       Char(2) Not Null Default 'FI',
   DPD_Parentesco
                                 Primary Key(DPD_Id, DPD_EMP_Id),
    Constraint DPD_PK_Id
   Constraint DPD_FK_EMP_Id
                                 Foreign Key(DPD_EMP_Id)
       References EMP_Empregado(EMP_Id),
   CONSTRAINT DPD_CK_Sexo
                                 CHECK (DPD_Sexo in ('F', 'M', '0')),
   CONSTRAINT DPD_CK_Parentesco CHECK (DPD_Parentesco in ('FI', 'CJ', 'OU'))
);
```


Exemplo de Implementação de Estrutura do Banco de Dados utilizando instruções DDL

```
Create table Projetos.PRJ_Projeto
   PRJ_ID
                        Not Null auto_increment,
              int
   PRJ_Nome Varchar(30) Not Null,
   PRJ_Local Varchar(40) Not Null,
   PRJ_DEP_Id Tinyint Not Null,
                          Primary Key(PRJ_Id),
   Constraint PRJ_PK_Id
   Constraint PRJ_UK_Nome Unique(Prj_Nome),
   Constraint PRJ_FK_DEP_Id Foreign Key(PRJ_DEP_Id) References Dep_Departamento(DEP_Id)
);
Create table Projetos.PEM_ProjetoEmpregado
   PEM_PRJ_Id int Not Null,
   PEM_EMP_Id int Not Null,
   PEM_QteHs int Not Null,
   Constraint PEM_FK_PRJ_Id Foreign Key(PEM_PRJ_Id) References PRJ_Projeto(PRJ_Id),
   Constraint PEM_FK_EMP_Id Foreign Key(PEM_EMP_Id) References EMP_Empregado(EMP_Id),
   CONSTRAINT PEM_CK_QteHs CHECK (PEM_QteHs > 0)
);
Alter Table Projetos.DEP_Departamento
   Add Constraint DEP_FK_EMP_Id Foreign Key(DEP_EMP_IdGerente) References Emp_Empregado(EMP_Id);
```


Referência Bibliográfica

Elmasri & Navathe. Sistemas de Banco de Dados. Editora Person.

