You Only Look Once: Unified, Real-Time Object Detection (YOLO v1)

Joseph Redmon Santosh Divvala Ross Girshick Ali Farhadi

University of Washington, Allen Institute for AI, Facebook AI Research

Sunwoo Kim swkim@dongguk.edu

Computer Vision Task

Structure of R-CNN

R-CNN: Regions with CNN features

1. Input image

Structure of R-CNN

aeroplane? no.

person? yes.

tvmonitor? no.

4. Classify

warped region

3. Compute

Problem of R-CNN series

These complex pipelines are **slow** and **hard** to optimize Because each individual component must be trained separately

Problem Solving

How do we make detection algorithm fast and simple?

You Only Look Once

1. Divide the input image into S X S grid

 $S \times S$ grid on input

2. Each grid cell has the number of B bounding box

3. Calculate (x, y, w, h, confidence score) for each bounding box

 $S \times S$ grid on input

Bounding box2

X:x center of bb

Y: y center of bb

W: relative width of the Img

H: relative height of the Img

Confidence score

$$Pr(Object) * IOU_{pred}^{truth}$$

4. Calculate 'C' conditional class probability for each grid cell **Grid cell**

 $S \times S$ grid on input

Conditional Class Probability

 $Pr(Class_i|Object)$

Sunwoo Kim

Sunwoo Kim

Non-Maximum Suppression

https://docs.google.com/presentation/d/1aeRvtKG21KHd D5lg6Hgyhx5rPq ZOsGjG5rJ1HP7BbA/pub?start=false&l oop=false&delayms=3000&slide=id.g137784ab86_4_554 4

Loss Function

$$\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]$$

$$+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{p}_{i}(c) \right)^{2}$$

$$\lambda_{\text{noobj}} = 5$$
 $\lambda_{\text{noobj}} = 0.5$

$$B = bb$$

$$C = class$$

Training

Pre-training: ImageNet 1000-class dataset, 20 conv layer

Add layer: 4conv layer + 2 FC layer

Batch size: 64

Momentum: 0.9

Decay: 0.0005

Dropout rate: 0.5

Activation function: leaky relu

Limitation

- 1. One grid cell can predict one class
- -> It makes to difficult to predict when objects are dense
- 2. Bounding boxes are learned from data (x,y,w,h,CS)
- -> It struggles to objects in new or unusual aspect ratio
- 3. Coarse features & don't address error in box size
- -> It makes localization relatively incorrect

Results

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

Table 1: Real-Time Systems on PASCAL VOC 2007. Comparing the performance and speed of fast detectors. Fast YOLO is the fastest detector on record for PASCAL VOC detection and is still twice as accurate as any other real-time detector. YOLO is 10 mAP more accurate than the fast version while still well above real-time in speed.

Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

Thanks