EnsembleTM Essentials

Ansoft HF Users' Workshop 2002 Los Angeles, CA USA

Ansoft Corporation Four Station Square, Suite 200 Pittsburgh, PA 15219-1119 USA (412) 261-3200 www.ansoft.com Ansoft Corporation 3800 Arapahoe Avenue, Suite 250 Boulder, CO 80303 USA (303) 541-9525 gray@ansoft.com

EnsembleTM Fundamentals Remain the Same ...

Independent of GUI!

Topics

- ▶ 2.5D and 3D Excitations
- **Editing layers**
- Layer types
- **▶** Importing/exporting DXF
- **▶** Arranging layers/specifying materials
- Creating vias
- Frequency sweeps
- **▶** Meshing
- Port solution
- Normalized & generalized S-parameters
- **▶** Accurately modeling thin layers
- **▶** Advanced solver options
- **▶** Environment variables

5 Excitation Types:

- **▶ 2.5D Edge Port (default choice)**
 - **▶** Excitation parallel to trace/slot plane(s)
 - ▶ High freq.(~>100MHz)/electrically larger geometries
 - .7*lambda de-embedding arms, compute S matrix from currents induced on arm
 - Higher order modes ok
 - **D** 2D mesh, metal thickness accounted for with Zs
 - Orthogonal/cylindrical vias only
- ▶ 2.5D Probe/Gap Source
 - **▶** Coaxial probe perpendicular to signal plane
 - **▶ Voltage Gap Sources**
 - ▶ 1Hz to occurrence of 1st higher order mode
 - ▶ 1V at excited port, current computed at all ports (defines Y matrix)
 - No de-embedding arms/overlap issues
- ▶ 2.5D Plane Wave
 - **▶ RCS only**
- ▶ 3D Edge/Gap Port
 - ▶ 3D ports similar to 2.5D (freqs., de-embed arms)
 - **Extra cost/licensed feature**
 - ▶ Metal thickness modeled using 3D surface mesh
 - Non-cylindrical/orthogonal vias allowed

Create/remove/arrange layers only Edit Stack Up 3D View Start Estimate ... Layer Included Elevation Thickness Material Type Single Select Layers Layer Name: outline perf_conductor Inf. Ground Yes Trace Dielectric Just three layer types! Infinite Ground ∇ Include in model Add Update Delete Position ... Draw Metal Layers ... *.qds; *.dxf; *.sn2 Import Metal Layers ... c:/ansoft/examples/ensemble/wmtpatch.pjt/stackup Directories: 01.8MZ outline.smZ **Ensemble** DXF/.sm2 Select Geometry datafile: import Regments Per Arc: 8 @ Import traces C Import infinite grounds Filter Cancel Help Brit. . .

Ansoft Ensemble Ensemble 8.8 Copyright 1984-2001 Ansoft Corporation

Three Layer Types

Trace

- All objects drawn on trace layers are metal
- ▶ To create an aperture drawn within a trace
 - Draw both objects
 - **▶** "Customize Materials" inner object to air

Dielectric

- **▶** Infinite in XY plane, finite in Z direction
- **▶ Infinite dielectric effects**
 - **▶** Antenna patterns at horizon
 - **▶** Other finite dielectric effects not captured
- **Elevation reference for Trace & Inf. Grounds**
- **▶ Define first!** (dielectrics are elevation reference)

▶ Infinite Ground

- **▶** Infinite in XY plane
- ▶ All objects drawn on inf. ground layers are slots
- ▶ To create a metal object drawn within a slot
 - Draw both objects
 - "Customize Materials" inner object to metal

Importing/Exporting DXF

- "Zero Width Closed Polylines" Only
 - No thick lines
 - Polyines begin and end at same point
- **AutoCAD R14 DXF**

Specify materials/arrange layers only Model Definition "wmtpatch" - 2.5D Edge Port _ | X Edit Layers 3D View Start Estimate ... Single Select Edit Stack Up Laver Type Included Elevation Thickness Material Prace Layer Name: outline Inf. Ground perf conductor Yes 1,5748 Blevation: Thickness: Set Material: copper Apply Available Materials Conductor Position ... Al2_03_ceramic Dielectri Dielectri Material name: local 2 B7 systems Dielectri Be O Dielectri Conductivity (mho/m): 1e+006 FR4 ероку Dielectr Conduct MdFe30 NdFe35 Conduct Conductor Conduc SmCo24 Cancel Smcoza Condu Teflon air Diel ectric alumina_92pct ectric Material name: local 2 alumina_96pct lectric **Dielectric** aluminum ductor aluminum EC nductor Relative Permittivity: aluminum no2 BC onductor bakelite Dielectric Dielectric Loss Tangent: benzocyclobuten Dielectric beryllium Dielectric Bulk Conductivity: hin Film R brage Conductor bronze Conductor Relative Permeability: 1 cast iron Conduct chromium Magnetic Loss Tangent: 0 cobalt auctor A Thin Film Resistor 8B+D07 mbo/m Conductivi Material name: local 2 Impedance (ohm/square): 1 Add Draw Metal Layers ... Import Cancel Brit ... Help 4 item(s) selected.

Creation of Vias

2.5D & 3D Vias

- **2.5D** Vias
 - Cylindrical
 - Induced currents are vertical
 - **▶** Induced currents are circularly symmetric
- ▶ 3D Vias
 - Arbitrary cross section
 - Induced currents in any direction
 - Meshed similar to other metal surfaces

Frequency Sweeps

- ▶ Fast Sweep
 - **▶** S-parameters only
 - MoM matrix solved only at freqs. needed for interpolation
 - Faster in general than Discrete for large number of freq. points
 - No way to know in advance how long sweep will take
 - Currents not saved
- Discrete Sweep
 - **▶** MoM matrix solved at every freq.
 - Currents may be saved/plotted
 - Near/Far fields may be generated
 - Solve time may be estimated

Meshing Guidelines

- Use Fixed mesh
- Use highest freq. of interest as starting point for mesh frequency
- Investigate effect, in band of interest (i.e. shift in resonance), of increasing mesh density
- ▶ Edge meshing/virtual objects* may assist in capturing behavior, as currents flow along the edge of conductors
- Poor mesh = poor result
 ("Garbage in, garbage out")

Mesh Illustrations

Port Solution

- Microstrip, Stripline: Zo=Z_{PI}
- ▶ Slotline, CPW: Zo=Z_{PV}
- Full-wave eigenvalue problem (includes dispersion)

Normalized and Generalized S-Parameters

- Normalized
 - Zo typically the same for all ports
 - Zo typically 50 ohms
 - **▶** Zo constant over frequency
- Generalized
 - Computed by default
 - Each port may have different Zo
 - Zo varies with frequency

Accurate Modeling of Thin Layers: Meshing and Trace Thickness

Example: Spiral inductor

Virtual objects force same mesh on both layers, improves calculation of current interactions

mesh top view

Appropriately set ENSEMBLE_TRACE_THICKNESS*

Advanced Solver Options I

- Loop Tree
 - Utilized by default
 - **▶** MoM matrix re-ordering
 - Stabilizes calculations at very low frequencies
- **▶** Gap Port Calibration
 - **▶** Eliminates mismatch between port and feedline
 - **▶** Uses Through Reflect Line (TRL) method
 - Provides most improvement at high frequency
- Accuracy Level
 - Adjusts accuracy of MoM integrals, port solver, and matrix resolution
 - Default is lowest setting of 1

Advanced Solver Options II

Direct

- **▶** Used for small problems requiring highest accuracy
- **▶** Used by default up to 1000 unknowns

Iterative

- Resolves MoM matrix equation faster than Direct for problems larger than approximately 1000 unknowns
- ▶ MoM matrix accumulation, memory use, and accuracy levels the same as Direct
- **▶** Used by default for problems with 1000-5000 unknowns
- ▶ Fast (SVD FastSolveTM)
 - **▶** Uses loop tree, iterative solver, Ansoft matrix compression
 - ▶ Far less memory required
 - **▶** Memory compression ratio problem & frequency dependent
 - **▶** Used by default for problems >5000 unknowns
 - ▶ Not efficient for problems <~5000 unknowns

Environment Variables

- ▶ ENSEMBLE_TRACE_THICKNESS
 - **▶** Utilized by 2.5D engine only, Zs(t)
 - **Default 17.5um (1/2 oz Cu)**
 - ▶ 0<thickness<1mm
 - **▶** Global setting all trace layers
 - Setting other than default appears in profile
- ▶ ENSEMBLE_CPW_BOTH_MODES
 - **▶** Set to compute even and odd mode CPW
 - **▶** Both CPW slots must be the same width

EnsembleTM Fundamentals Remain the Same ...

Stay tuned for NextGen!

