

Sim Shankaracharya rechnical Campus

Shri Shankaracharya Group of Institutions (Managed by Shri Gangajali Education Scociety, Bhilai) Junwani, Bhilai-490020 (Chhattisgarh), India Phone: 0788-2291605, 4088888 Fax: 0788-2291606 E-mail: ssgi@ssgl.edu.in

*NIRF ranking 2020 (250-300) band

BTech (6-th All)

Semester - 6th

Session 2022-23

Subject Code: CS102601

Class Test-I

Subject Name: compiler design

Duration: 02 Hrs

Max. Marks: 40

- CO1 To understanding the fundamental principles in compiler design
- CO2 To provide the skills needed for building compilers for various situations that one may encounter in a career in ComputerScience.
- CO3 After the course a student should have an understanding, based on knowledge of the underlying machine architecture, the limitations and efficiency of various design techniques of compilers implementation

Note: Attempt Ques.1 & Ques.2. Parts (a) of both the questions is compulsory & attempt any two parts from (b), (c) & (d) of both the questions

			SECTION 1				
Question No.		Questions		Marks	СО	BL	PI
1 a)	Write differences	s between comp	iler and interpreter	2	C01	L2	1.2.1
1 b)	What are different detail	ent phases of	compiler? Explain in	6	CO2	L3	1.2.1
1 c)	Explain compiler	construction to	ools kit.	6	CO2	L3	1.2.2
1 d)	Convert the given Input/State q0 (start state) q1 q2 q3 (final state)	NFA to DFA: 0 {q0, q1} q2 q3 (null character)	1 q0 q1 q3 q2	6	CO2	L3	1.2.2

	SECTION 2		RAPE.		
Questi on No.	Questions	Mar	СО	BL	PI
2 a)	What is Bootstrapping.	ks 2	CO1	L2	1.2.2
2b	Explain cross compiler with example.	6	,2 CO2	L3	1.2.2

Shri Shankaracharya Technical Campus
Shri Shankaracharya Group of Institutions
(Managed by Shri Gangajali Education Scociety, Bhilai) Junwani, Bhilai-490020 (Chhattisgarh), India Phone: 0788-2291605, 4088888 Fax: 0788-2291606 E-mail: ssgi@ssgi.edu.in

*NIRF ranking 2020 (250-300) band

2	C Calculate FIRST() & FOLLOW () for given Gramma	r	-		
	E=E*T/T				
	T=T+F/F				
	F=(E)/id,		6 0	02 1	.3 1.2
	Modify the following CFG so as to make it suital for Top-down parsing. Construct LL1 parser is modified CFG show moves made by this LI parser on Input id+id * id	for			1.2
20	Explain the following terms: a) Specification of Tokens b) Recognition of Tokens	6	СО	2 L3	1.2.2
	SECTION 3				
Quest on No	2 acstrons	Ma ks		BL	PI
3 a	What is token counting? Count the tokens in given instructions: For(i=1;i<=n;i++) x=x+y; y=y+x;	2	COS	3 L2	1.2.2
3 b	S → a S → T S T → T,S T → S construct the predictive parsing Table For the above grammar and also parse the given string w=(a,a)	5	CO3	L3	1.2.2
С	Explain classification of parser with suitable diagram.	5	CO3	L 3	1.2.2
d	Let G be a Context Free Grammar for which the production Rules are given below: S -> aB bA A -> a aS bAA B -> b bS aBB	5	CO3	L3	1.2.2

Session: EVEN SEM (2022-23)

Class Test -1	Course Name P. T. L. (CON No.	
Cime: 2 Hours	Subject Name: B Tech (CSE, 1997) A, B, C, D,	Semester: 6th
	Talle: Sollware Engineering and Agile	Min Marks: 14
	Subject Code: CS102602	Max Marks: 40

Cou	rse C	empt all questions. Parts (a) are compulsory & attempt any two poutcome:	arts iro	ın (u), (c) oc 1	(u).
COI						
CO2		Developing some basic level of software architecture/design				
CO ₃		Extracting and analysing software requirements specifications for different	t project	5		
		and implement different software development			-	
CO4		Defining the concepts of software quality and reliability on the basis of Int Analysing software risks and risk management street.				
CO5		Analysing software risks and risk management strategies	ernation	ial quality	/ stand	dards
Q.	No.	Questions				
		What is the weignt	Mar ks	CO	В	PI
1	a	What is the unified process?	2	COL	L	-
1	b	Write down major characteristics of a software. Illustrate with a		COI	L2	1.3
		diagram that the software does not wear out.	6	CO2	L2	1.3
1	C	Explain software engineering as a layered technology.	6	CO3	L2	10
		Write short notes:		003	14	1.3.
1	d	1)Evolution process model 2)Waterfall Model	6	CO3	Li	2.1.
2	a	Explain Reverse Engineering	2	COO	-	-
2	b	Explain about the incremental model. List out its merits and		CO2	L3	2.1.3
	D	demerits.	6	CO4	L2	1.3.1
2	С	With suitable illustrations explain spiral model evolutionary software development.	6	CO5	L2	1.3.1
2	d	A project size of 200KLOC is to be Developed ,Software Development team has average experience on similar type of project. The project size is not very tight. Calculate the effort, development time, average staff size and productivity of the project.	6	CO2	L3	2.1.3
3	a	Define requirement engineering.	2	C03	L2	1.3.

3	b	What is software measurement and metrics of software quality? Explain.	5	COI	L3	1.3.1
3	c	Explain Halsteads software science metric with example. Or Explain open source Software development.	5	CO5	L1	2.1.2
3	đ	An application has following :10 low external inputs 12 high External outputs 20 low internal logical files 15 high external interface files 12 Average external inquiries Complexity Adjustment Factor of 1.10 What are the unadjusted and adjusted function point counts?	5	CO6	L2	1.3.1

SHRI SHANKARACHARYA TECHNICAL CAHPUS

Bhill (Chialdegath)

An Autonomous Institute

Approved by AUCTE, New Dolls Affiliated to CSV Technical Delversity Bhiles

श्री शंकराचार्व देवलीकत कैंग्यस

स्वशासी संस्थान

All B Tack Courses" Accredited by NRA, Now Calle Accress but by MAAC with "A" Serveta

Class Test 1 Session: EVEN SEM (2022-23)

Subject Code	CS109603
Subject Name	Artificial Intelligence and Machine Learning

Course & Sem: B. Tech. 6th Sem

Sec(C,D)

Max Marks: 40

Min Marks: 14

Time: 2Hours

Branch: CSE

Q.	No.	Questions	M	CO	BL	PI
1	a	Difference between Bias and Variance?	2	CO1	L2	1,3.
1	b	Explain machine learning Life cycle?	6	COi	L2	1.3.
1	e	Explain Bais variance Tradeoff along with different combination of Bais and variance?		CO1	L2	1.3.
	d	Short Notes: a)Scope of Machine Learning d)Limitation of Machine Learning	6	CO1	L1	2.1
	3	Define Perceptron?	2	CO2	L3	2.1
	b	Explain KNN algorithm and it working with different steps. Find the solution to the given question. We have an objective testing with two attribute (Acid Durability) and (Strength) to classify whether a special paper tissue is good or not. Here are four training sampleX1 (Acid Durability) X2(Strength) y(classification) 7	6	CO2	L2	1.3.
		Define Perceptron? Explain in brief Perceptron Convergence Theorem?	6 (002	L2	1.3.1
	d	Explain different type of Naïve Bayes algorithm?.	6 0	002	L3	2.1.3

3	-2	Differ	ence of lir	near and	logistic rep	gression?		2	CO1,	L2	1.3.1
3	b				uss it work			5	CO1,	L3	1.3.1
3	1						f Machine learning Algorithm?	5	CO1,	L1	2.1.2
3	đ	the spe	ecies class te the prob green,,leg	es:{M,H pability	I) using the value for ne ght=tall an Height short tall short short tall tall short tall short	e data give ew instanc d smelly=1	oute {color,leg,,height,,smelly} on in table using these probabilitie no) Species M M M H H H		CO1, 2	L2	1.3.1

SHRI SHAVKARACHARYA TECHNICAL CAMPUS

Bhill (Chiraltisgari)

An Autonomous Institute

Esp. Samuel Samuel Brodusti जिला (सर्गीसम्बद्ध)

स्वशासी संस्थान

MITE PARKING MOOR B. 2021 (Barrie 261 -500)
Russ MAR LINE (Mational Loves)
Am 190 MOIS CRIS E CASTELLA SHORTHAIN

Approved by ARCTE, New Dollni Affiliated to DSY Technical University, Strikei

All II Tack Common According by NRA, Mow Est his According by MAAC with "A" Bracks

Class Test 1
Session: EVEN SEM (2022-23)

Subject Code	CS102644
Subject Name	Cloud Computing

Course: B. Tech.

Sem: 6th (A,B,C,D,IoTCS,DS)

Max Marks: 40

Min Marks: 14

Branch: CSE

Time: 2Hours

Q.	No.	Questions	M	co	BL	PI
1	a	Define the term "Cloud Computing".	2	CO1	L2	1.3.1
1	b	What are the different characteristics of Cloud Computing?	6	CO1	L2	1.3.1
1	c	What are the cloud adoption and rudiments methods?	6	CO1	L2	1.3.1
1	d	Explain Cloud and Dynamic Infrastructure.	6	CO1	L1	2.1.2
2	a	What do you mean by term "as-a-service"?	2	CO2	L3	2.1.3
2	b	Write short notes on (any 2): i) DBaaS ii) NaaS iii) BaaS	6	CO2	L2	1.3.
2	С	Explain briefly Cloud Referencing Model.	6	CO2	L2	1.3.
2	d	Differentiate between Fog Computing and Edge computing.	6	CO2	L3	2.1.
3	a	List the companies who offer cloud service development.	2	CO1,	L2	1.3
3	b	Explain different types of cloud.	5	CO1,	L3	1.3.
3	С	Explain the evolution of cloud computing.	5	CO1,	L1	2.1.
3	d	Explain the most common scenario where a) a private cloud is preferred over a public cloud. b) a public cloud is preferred over a private cloud.	5	CO1,	L2	1.3.

SHRI SHANKARACHARYA TECHNICAL CAMPUS

त्री शंकराचार्य देवनीकत केंउपस जिल्ला (छगीवन्छ)

Shital (Chiadtegarh)

An Autonomous Institute

Approved by AICTE, New Dolls Affiliated is CSV Technical Delversity, Bhiles (20ert Derryopet) Estudett Ketzt. 1 pes

स्वशासी संस्थान AR IS Tock Courses" Accredited by N.S.A., More Cellyl Accredited by MAAC with "A" fireds

MIRF RESIDEN SODE & SODE (Send SEE SODE)
Rest MER Unit (Matter of Level)
As 180 3001 3011 5 Certified Institution

Session: EVEN SEM (2022-23)

		Course Name: B Tech (CSE)	Class Test - I
r: 6th (C. D)	Semester: 6th (72
rks: 14	Min Marks: 14	Subject Name: Data analytics using R Programming	Time. 2 Hours
	Min Ma Max Ma	Subject Code: CS102626	

Note	: At	tempt all questions. Parts (a) are compulsory & attempt any two	o parts fr	om (b),	(c) &	(d).
		Outcome:				
COI		Learn Fundamentals of R.				
CO2		Covers how to use different functions in R, how to read data into R, acc				Carrie Contract
CO ₃		Writing R functions, debugging, and organizing data using R functions.		ackages.		
CO ₄		Cover the Basics of statistical data analysis with examples.				
COS						
	No.	The whole syllabus will give an idea to collect, compile and visualize da	ta using sta	tistical fu	inction	ns.
Q.	No.	Questions	Marks	СО	B	PI
1	a	Explain commands: 1. installed.packages() 2. packageDescription()	2	CO1	L2	
1	b	Explain Input and Output functions usage: a. scan() b. readLine()	6	CO2	L2	1.3.1
1	С	What are vectors? Explain different ways to create vectors. Give example.	6	CO3	L2	1.3.1
1	d	R has five "atomic" classes of object. What are they? Quote examples.	6	CO3	L1	2.1.2
2	a	What would be the output of the following code? $> x <-1:4$ $> x > 2$	2	CO2	L3	2.1.3
2	b	How to import packages in R? Give examples.	6	CO4	L2	1.3.1
2	С	Demonstrate the following using R programming: 1. For loop 2. Repeat loop	6	CO5	L2	1.3.1
2	d	Explain Special Values functions: NA, Inf and -inf.	6	CO2	L3	2.1.3

3	a	Write about complex objects in R.	2	CO3	L	2
3	ь	Explain various data structures involved in R programming with example.	5	CO1	L3	1.3
3	С	Write short notes on: 1. library() 2. require()	5	CO5	L1	2.1.
3	d	Illustrate the creation of an empty vector and insert the values in the vector using for loop.	5	CO6	L2	1.3.1