Nama : Teosofi Hidayah Agung

NRP : 5002221132

1. Tunjukkan bahwa barisan $x^n/(1+x^n)$ tidak konvergen seragam pada [0,2] dengan menunjukkan bahwa limit fungsinya tidak kontinu pada [0,2]

Jawab

Perhatikan bahwa $\lim(x^n/(1+x^n))$ menuju ke fungsi sepotong-sepotong gvaitu

$$g = \begin{cases} 0, & x = 0\\ \frac{1}{2}, & x \in (0, 1]\\ 1, & x \in (1, 2] \end{cases}$$

Dapat dilihat bahwa g tidak kontinu untuk semua $x \in [0,2]$, sehingga menggunakan **Teorema 8.2.2** dapat disimpulkan bahwa barisan diatas tidak konvergen seragam.

4. Misalkan (f_n) barisan fungsi yang kontinu pada interval I juga konvergen seragam pada I ke fungsi f. Jika $(x_n) \subseteq I$ konvergen ke $x_0 \in I$, tunjukkan bahwa $\lim (f_n(x_n)) = f(x_0)$.

Jawab:

Karena f_n konvergen seragam pada I, maka $\lim(f_n(x)) = f(x)$ untuk setiap $x \in I$. Sebab $(x_n) \subseteq I$, maka untuk setiap n berlaku $f_n(x_n)$ akan konvergen ke $f(x_n)$. Kemudian barisan (x_n) juga konvergen ke $x_0 \in I$ atau $\lim(x_n) = x_0$. Sehingga dari informasi diatas dapat disimpulkan

$$\lim(f_n(x_n)) = f(\lim(x_n)) = f(x_0) \quad \blacksquare$$

7. Misalkan barisan (f_n) konvergen seragam ke f pada himpunan A, dan andaikan setiap f_n terbatas pada A. (Artinya, untuk setiap n terdapat konstanta M_n sedemikian sehingga $|f_n(x)| \leq M_n$ untuk setiap $x \in A$.) Tunjukkan bahwa fungsi f terbatas di A.

Jawab:

Karena barisan f_n selalu terbatas pada M_n , maka barisan M_n juga terbatas pada suatu M. Dengan menggunakan fakta tersebut maka didapatkan

$$\lim |f_n(x)| \le \lim (M_n)$$

Fakta bahwa f_n konvergen seragam berakibat $\lim |f_n(x)| = |\lim (f_n(x))|$.

$$|\lim(f_n(x))| \le M \quad x \in A$$

 $|f(x)| \le M, \quad x \in A$

Hai diatas menunjukkan bahwa fkonvergen terbatas diA. \blacksquare