页

- ◆ 多路转换开关MUX
- ◆ MUX 逻辑应用
- ◆ 棒状图

MOS晶体管开关逻辑

- MOS晶体管开关逻辑是建立在"传输晶体管"或"传输门"基础上的
- · 信号的传输是通过导通的MOS器件从源到漏或者从漏到源
- □ NMOS: 完全传输低电平, 电流: 漏—>源
- □ PMOS: 完全传输高电平, 电流: 源—>漏
- · 信号输出端的逻辑值将同时取决于信号的发送端和MOS器件栅极的逻辑值

wxhsnow@163.com

多路转换开关MUX

- ◆ NMOS四到一转换开关电路
- ◆ 其中A, B为控制信号;
- ◆ C0, C1, C2, C3为发送信号端

В	A	Z
0	0	C_0
0	1	\mathbf{C}_1
1	0	\mathbb{C}_2
1	1	\mathbf{C}_3

转换关系 $Z = \overline{B} \cdot \overline{A} \cdot C_0 + \overline{B} \cdot A \cdot C_1 + B \cdot \overline{A} \cdot C_2 + B \cdot A \cdot C_3$

多路转换开关MUX

- · 在A、B信号的控制下,多路开关完成不同通 路的连接
- 在传统的MUX 中, A、B信号作为地址信号
- · MUX 的传输逻辑函数为

$$Z = \overline{B} \cdot \overline{A} \cdot C_0 + \overline{B} \cdot A \cdot C_1 + B \cdot \overline{A} \cdot C_2 + B \cdot A \cdot C_3$$

$$Z = \overline{C} \cdot \overline{B} \cdot \overline{A} \cdot R_0 + \overline{C} \cdot \overline{B} \cdot A \cdot R_1 + \overline{C} \cdot B \cdot \overline{A} \cdot R_2 + \dots$$

多路转换开关MUX

- ◆地址信号为A、B、C三位,则可实现八个与项的或运算
- ◆依次类推,可实现多位的逻辑运算
- ◆位数越多,串联的MOS管越多,导通电阻也将越大
- ◆ ==》影响运算速度

wxhsnow@163.com

MUX逻辑应用一一判奇电路

- · 设计一个判奇电路: A、B、C三个输入信号中有奇数 个高电平时,输出F为高电平,否则输出为低电平
- 要求: 1) 写出判奇电路的真值表
 - 2) 用异或门电路实现逻辑函数,画出逻辑电路图
 - 3) 采用四选一转换开关实现该电路(MUX原理如下图)

$\mathbf{A_0}$	$\mathbf{A_1}$	Y
0	0	$\mathbf{D_0}$
0	1	\mathbf{D}_1
1	0	$\mathbf{D_2}$
1	1	\mathbf{D}_3

5

判奇电路的真值表

A、B、C三个输入信号中 有奇数个高电平时, 输出F为高电平,

否则输出为低电平

❖ 用异或门电路实现逻辑函数 $F = A \oplus B \oplus C$

В	A	C	F
0	0	0	^
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	_

wxhsnow@163.com

用四选一MUX实现该电路

В	A	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	Õ	1
1	0	1	0
1	1	0	0
1	1	1	1

\mathbf{A}	Y
0	\mathbf{C}
1	\overline{C}
0	\overline{C}
, 1 ,	\mathbf{C}
A 1	V
	0 1 0 , 1

A0	A1	Y
0	0	$\mathbf{D_0}$
0	1	\mathbf{D}_1
1	0	$\mathbf{D_2}$
1	1	\mathbf{D}_3

❖全NMOS 结构的MUX传输高电平存在阈值损耗

==》对信号幅度要求较高的电路采用CMOS 结构

❖缺点:

晶体管数目增加了一倍

逻辑电平提升电路

• 逻辑电平提升电路解决阈值电压损耗问题

- 正反馈电路==》电位提升到电源电压
- ●同时得到一个反相的信号
- ●TTL逻辑电路与CMOS电路的接口

弟

10

页

1,TTL电平:

输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平

是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是

0.4V。

2, CMOS电平:

1逻辑电平电压接近于<u>电源</u>电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。

3, 电平转换电路:

因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需

要电平的转换

专题: 手把手学习硬件基础-----15、TTL和CMOS 3.3vcmos和3.3vttl-CSDN博客 https://blog.csdn.net/weixin 36131597/article/details/126455513 **12**

TTL集成电路主要由BJT晶体管Q逻辑门构成,如74LS系列IC,电平规范如下:

CMOS集成电路主要由MOS管构成逻辑门构成,如74HC系列IC,电平规范如下:

wxhsnow@163.com

CMOS工艺就是以MOS管为主制作成的 集成电路 Q Uoh -> 输出高电平 , Uol -> 输出低电平

Uih -> 输入高电平, Uil -> 输入低电平 1、TTL电平

2、CMOS电平

一、基本概述

TTL工艺就是 BJTQ 晶体管为主制作成的集成电路

输出模式: Uoh ≥ 2.4V, Uol ≤ 0.4V

输出模式: Uoh ≥ VCC, Uol ≈ GND

输入模式: Uih ≥ 0.7VCC, Uil ≤ 0.2VCC

输入模式: Uih ≥ 2V, Uil ≤ 0.2V

二、数字接口匹配 1、3.3V5V TTL驱动3.3V CMOS **13** 3.3V/5V TTL输出Uoh ≥ 2.4V , Uol ≤ 0.4V 3.3V CMOS管 输入Uih ≥ 0.7VCC = 2.31V 输入Uol ≥ 0.2VCC = 0.66V 2.4V ≥ 2.31V 0.4 ≤ 0.66V 可以直接驱动 2、3.3V/5V TTL驱动5V CMOS 3.3V/5V TTL输出Uoh ≥ 2.4V, Uol ≤ 0.4V 5V CMOS管 输入Uih ≥ 0.7VCC = 3.5V 输入Uol ≥ 0.2VCC = 1V 2.4V ≤ 3.5V 0.4 ≤ 1V 低电平可以直接驱动,高电平落在2.4V和3.5V之间是不能驱动的,需要转换电平 3、3.3V/5V CMOS驱动3V/5V TTL 3.3V CMOS管輸出Uoh = 3.3V Uol = GND 5V CMOS管 输出Uoh = 5V Uol = GND 3.3V/5V TTL输入Uih ≥ 2V, Uil ≤ 0.8V 可以直接驱动 4、3.3V CMOS驱动5V CMOS 3.3V CMOS管 输出Uoh = 3.3V Uol = GND 5V CMOS Uil ≥ 0.7VCC=3.5V, Uil≤0.2VCC=1V 高电平输出3.3V, CMOS电路不能检测高电平, 需要电平转换 m

TTL和CMOS两大系列

14

页

- 数字集成电路中最常用的主要有TTL和CM0S两大系列。
- ①TTL集成电路。
- 双极型三极管—三极管集成电路,简称TTL电路,是一种性能优良的 集成门电路,其开关速度快、抗干扰能力强、负载能力强,因此应用 也最广泛。
- TTL集成电路为正逻辑系统,即高电平("1")是大约3.6V的正电压,低电平("0")是大约0.2~0.35V。TTL集成电路主要有54系列和74系列两种。其中,54系列为军用产品,74系列为民用产品。在54/74系列后不加字母表示标准TTL电路(如7410),如加有L、H、S或LS等字母,则分别表示低功耗、高速、肖特基和低功耗肖特基TTL电路(如74H00表示高速TTL电路、74LS00表示低功耗肖特基TTL电路)。54/74系列产品,只要尾数相同(如74LS10和7410),则逻辑功能和引脚排列完全相同。

wxhsnow@163.com

TTL和CMOS两大系列

__

- ②CM0S集成电路。
- CM0S集成电路以单极型晶体管为基本元件制成,是互补金属氧化物半导体集成电路的简称。由于CM0S电路功耗低、电源电压范围宽(3~18V)、抗干扰能力强、输入阻抗高、扇出能力强、温度稳定性好、成本低等,故应用范围极广,尤其是其制造工艺简单,为大量生产提供了方便。CM0S集成电路主要有4000系列、54 / 74HC×××系列、54 / 74HCT×××系列和54 / 74HCU×x×四大类。

74hc138与74ls138有哪些区别

时间:2019-08-04 08:07 来源:电工之家

74HC138和74LS138在逻辑功能是是完全一样的,没有任何区别。但是其参数和电平类型上却存在很多的区别。这个问题就转化为了74HC系列和74LS系列逻辑芯片有哪些区别。他们的区别表现在如下几个方面。

1.74HC138和74LS138的供电范围不同

74LS138逻辑芯片的供电范围为(4.75-5.25)V之间,而74HC138的供电范围为(2-6)V之间,由此可见HC系列的供电范围更快,应用更广泛。LS是早期的逻辑芯片,那时候的电路多以5V为主,(4.75-5.25) V的电压刚好适用于5V的电源系统。而后来出现了3.3V的供电系统,LS显然不再适用,所有出现了HC系列的芯片。现在单片机多以3.3V供电系统为主,74HC138更为适合。

2.74HC138和74LS138的电平类型不同

74LS138是属于TTL类型的电平,而74HC138是属于CMOS类型的电平。早期的数字电路,在衡量驱动能力的时候都以驱动TTL电路数量为依据的,如可以驱动4个TTL电路、可以驱动8个TTL电路。TTL和CMOS的高低电平规范不同,从74LS138数据手册可以看出TTL电平高于2.7V为高电平VOH,低于0.4V为低电平VOL;而74HC138的数据手册上规定电平高于1.9V为高电平VOH,低于0.1V为低电平VOL。

3.74HC138和74LS138的驱动能力不同

74LS138内部都是双极性三极管的输出方式,驱动能力比较强,功耗也比较大;而74HC138是MOS管电路,功耗比较小。不过驱动能力大小的问题都可以通过后级电路解决掉,所以驱动能力的问题不是很大。

以上三点,就是74HC138和74LS138的主要不同点。从选型的角度,现在以74HC138应用较多。

16

页

MUX逻辑应用

· MUX作为开关使用,A和B当作地址控制信号

 C_0,C_1,C_2,C_3 当作数据信号

В	A	Z
0	0	C_0
0	1	\mathbf{C}_{1}
1	0	\mathbf{C}_2
1	1	\mathbb{C}_3

$$Z = \overline{B} \cdot \overline{A} \cdot C_0 + \overline{B} \cdot A \cdot C_1 + B \cdot \overline{A} \cdot C_2 + B \cdot A \cdot C_3$$

● 若 C_0 , C_1 , C_2 , C_3 当作控制信号,A和B当作逻辑数据信号,情况将怎样???

wxhsnow@163.com

18

• C₀,C₁,C₂,C₃为控制信号,A和B为数据信号

$$Z = \overline{B} \cdot \overline{A} \cdot C_0 + \overline{B} \cdot A \cdot C_1 + B \cdot \overline{A} \cdot C_2 + B \cdot A \cdot C_3$$

ebr wat	B·A	[®] B⋅A	B· A	$\overline{B}\!\cdot\!\overline{A}$	Z (B,A)
序列	C ₃	C ₂	C ₁	C_0	逻辑	描述
0	0	0	0	0	0	禁止
1	0	0	0	1	B+A	或非
2	0	0	1	0	B·A	1
3	0	0	1 /	1 .	B	倒相 B
4	0	1	0	0	$B \cdot \overline{A}$	

· C₀,C₁,C₂,C₃为控制信号,A和B为数据信号

etic and	B·A	[®] B⋅Ā	B·A	$\overline{B} \cdot \overline{A}$	Z (B,A)
序列	C ₃	C ₂	C ₁	Co	逻辑	描述
0	0	0	0	0	0	禁止
1	0	0	0	1	B+A	或非
2	0	0	1	0	B·A	1
3	0	0	1	1 .	B	倒相 B
4	0	1	0	0	$B \cdot \overline{A}$	
5	0	1	0	1	Ā	倒相A
6	0	1	1	0	$B \cdot \overline{A} + \overline{B} \cdot A$	异或
7	0	1	1	1	B · A	与非
8	1	0	0	0	B · A	与
9	1	0	0	1	$B \cdot A + \overline{B} \cdot \overline{A}$	同或
10	1	0	1	0	A	同相A
11	1	0	1	1	$A + \overline{B}$	
12	1	1	0	0	В	同相 B
13	1	1	0	1	A + B	
14	1	1	1	0	A+B	或
15	1	1	1	1	1	使能

$$Z = \overline{B} \cdot \overline{A} \cdot C_0 + \overline{B} \cdot A \cdot C_1 + B \cdot \overline{A} \cdot C_2 + B \cdot A \cdot C_3$$

第

例题: 4-2

设计一个实现四种逻辑操作的电路,其中控制信号为 K_1K_0 ,逻辑输入为AB.

当 $K_1K_0 = 00$ 时,实现A、B的与非操作; $\overline{K_1} \cdot \overline{K_0} \cdot \overline{A \cdot B}$ 当 $K_1K_0 = 01$ 时,实现A、B的或非操作; $\overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B}$ 当 $K_1K_0 = 10$ 时,实现A、B的异或操作; $\overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B} \cdot \overline{A}$) 当 $K_1K_0 = 11$ 时,实现A的倒相操作; $\overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B}$

方案 $+\frac{K}{R}$ · $\frac{K}{K}$ · $\frac{K}{K}$ · $\frac{K}{R}$ · $\frac{K}{A}$ + $\frac{B}{B}$ · $\frac{A}{A}$)+ $\frac{K}{R}$ · $\frac{K}{A}$ · $\frac{K}{A}$

方案二:用规则逻辑阵列实现(MUX,ROM等)

(a) 163.com

 $Z = K_1 \cdot K_0 \cdot A \cdot B + K_1 \cdot K_0 \cdot A + B$ $+ K_{1} \cdot \overline{K_{0}} \cdot (B \cdot \overline{A} + \overline{B} \cdot A) + K_{1} \cdot K_{0} \cdot \overline{A}$ $C_3 C_2 C_1 C_0 = 0111$ 时,A、B的与非 ($K_1 K_0 = 00$) $C_3 C_2 C_1 C_0 = 0001$ 时, A、B的或非 ($K_1 K_0 = 01$) $C_3 C_2 C_1 C_0 = 0110$ 时, A、B的异或 ($K_1 K_0 = 10$) $C_3 C_2 C_1 C_{0_{V_{DD}}} = 0101$ 时,倒相A ($K_1 K_0 = 11$) \mathbf{R}_{2}

 $\mathbf{R_3}$

• 示例电路

 $V_{\rm DD}$

 $K_1K_0 = 00, C_3C_2C_1C_0 = 0111$

4.2.2 棒状图

- ◆棒状图:一种版图的描述方式 仅仅表示器件的相对位置以及所采用的基本结构形式, 并不描述器件的具体形状和尺寸
- →适合描述晶体管规则阵列的版图

第四章作业1

· 例题:设计一个实现四种逻辑操作的电路, 其中控制信号为K₁K₀,逻辑输入为AB.

当 $K_1K_0 = 00$ 时,实现A、B的与操作; 当 $K_1K_0 = 01$ 时,实现A、B的或操作; 当 $K_1K_0 = 10$ 时,实现A、B的异或操作; 当 $K_1K_0 = 11$ 时,实现B的倒相操作;

4.3 PLA及其拓展结构 ◆PLA可编程逻辑阵列 Programed Logic Array

25

页

- ◆典型的晶体管规则阵列结构
- ◆采用两级ROM形式构造电路: "与平面"、"或平面
- ◆实际PLA结构中"与平面"、"或平面"不是"与门"、"或门"阵列而是"与非一与非"、"或非--或非"结构
 - ◆基本的PLA结构格局严谨,原始输入只能从"与平面"进入,输出信号只能由"或平面"输出
 - ◆目前比较常用的PLA以MOS工艺为基础结构 硅栅 MOS结构PLA wxhsnow@163.com

- **26**
 - 页

- ◆ "与非一与非"阵列结构
- ◆ "或非一或非"阵列结构
- ◆ 多级门阵列MGA

4.3.1"与非一与非"阵列结构

$$A = \overline{a} \cdot b \cdot \overline{c}$$

$$Z = \overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

$$B = \overline{a} \cdot c \cdot \overline{d}$$

$$= \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot c \cdot \overline{d} + b \cdot d$$

与非: N型 ->短路

wxhsnow@163.com

第

练习: 用与非-与非结构的PLA实现下列逻辑:

$$Z = \overline{b} \cdot c \cdot \overline{d} + \overline{a} \cdot b \cdot c + \overline{b} \cdot \overline{d} + \overline{a} \cdot \overline{c} \cdot d$$

NMOS或非门变形

4.3.2 "或非一或非"

DD

$$Z = A + B + C$$

A + B + C

$$\frac{A}{a} + \frac{B}{b} + \frac{C}{c} + \frac{A}{a} \cdot c \cdot \frac{A}{d} + \frac{B}{c} \cdot d$$
wxhsnow@163.com

$$A = a + \overline{b} + c = \overline{ab} \overline{c}$$

$$B = a + \overline{c} + d = \overline{ac} \overline{d}$$

$$C = \overline{b} + \overline{d} = b d$$

或非一或非结构 的 P L A 应 满 足:

输入取反 出取反

wxhsnow@163.com

第

练习: 用或与非-或非结构的PLA实现下列逻辑: 34

小结

- 邪
- 页

- 与非--与非结构
- 或非--或非结构

例题4-3"或非一或非"阵列结构的PL系 例4-3:用或非一或非结构的PLA设计一个电 路实现下面的四种逻辑操作(控制信号为 K₁K₀,逻辑输入为AB) $\mathbf{K}_{1}\mathbf{K}_{0}=00$ 时,实现A、B的与非操作; 当 $K_1K_0=01$ 时,实现A、B的或非操作; 当 $K_1K_0=10$ 时,实现A、B的异或操作; 当K₁K₀=11时,实现A的倒相操作; 解: 写出电路实现的逻辑函数 $Z = \overline{K_1} \cdot \overline{K_0} \cdot \overline{A \cdot B} + \overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B}$ $+ K_{1} \cdot \overline{K_{0}} \cdot (B \cdot \overline{A} + \overline{B} \cdot A) + K_{1} \cdot K_{0} \cdot \overline{A}$

例题4-3"或非一或非"阵列结构的PLA7

$$Z = \overline{K_1} \cdot \overline{K_0} \cdot \overline{A \cdot B} + \overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B} + \overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B} + \overline{K_1} \cdot \overline{K_0} \cdot \overline{A + B} \cdot \overline{A} + \overline{B} \cdot \overline{A} + \overline{B} \cdot \overline{A} + \overline{B} \cdot \overline{A} + \overline{A} \cdot \overline{A}$$

将逻辑函数化为标准的与一或式

$$Z = \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A} + \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B} + \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A} \cdot \overline{B}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B} \cdot \overline{A} + \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B} \cdot \overline{A} + \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A}$$

该函数六个与项:与平面:六个或非门或平面:一个或非门

例题4-3 结构图

$$Z = \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{A}$$

$$+ \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{B}$$

$$+ \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{A} \cdot \overline{B}$$

$$+ \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{B} \cdot \overline{A}$$

$$+ \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{B} \cdot \overline{A}$$

$$+ \overline{K_{1}} \cdot \overline{K_{0}} \cdot \overline{A}$$
翰 入 取 反
输 出 取 反

例题4-3 结构图

$$Z = \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A} \cdot \overline{B}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B} \cdot \overline{A}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{B} \cdot \overline{A}$$

$$+ \overline{K}_{1} \cdot \overline{K}_{0} \cdot \overline{A}$$

页

40

对比 PLA结构与 ROM+MUX

- 41
- 页

- ◆PLA结构更简单、规则
- ◆若改变逻辑操作要求,ROM更方便
- ◆当所需实现的逻辑函数数量增加时,PLA的与项增加较多,逻辑函数比较复杂

4.3.3 多级门阵列结构MGA

- □ MGA是在PLA基础上变化而成的多级门结构
- □ 实质是多级PLA的级联和组合 N级PLA串联,相应有2N级"平面"
- □标志:对输入、输出位置的限制 要求:所有的原始输入必须从每一个PLA的"与平面"进入,每一个输出必须从相应的"或平面"输出(输入在奇数级,输出在偶数级)
- ◆ 若逻辑不能满足要求,必须进行逻辑转换

多级门阵列结构MGA

43

页

原始逻辑

处理后的逻辑电路

wxhsnow(a)163.com

多级门阵列结构MGA

44

页

• PLA结构图

多级门阵列结构MGA

wxhsnow@163.com

第四章作业2

用与非一与非结构的PLA实现逻辑 $Z = a \cdot b \cdot d + b \cdot c \cdot d + a \cdot c \cdot d$

第四章作业3

用或非一或非结构的PLA实现逻辑 $Z = a \cdot b \cdot d + b \cdot c \cdot d + a \cdot c \cdot d$

第四章作业4

• 用P62图4-19的门阵列单元实现一个与 非门加一个倒相器形成的与门

wxhsnow@163.com

47

页