Inverter Chain Output Delay Difference

Table of Contents

1. Introduction	1
2. Section One: Output_A(top-left corner) and the Output_B(bottom-right corner)	2
2.1 Floorplanning	2
2.2 MSO2 observation	3
2.3 WP 254HD observation	5
3. Section Two: Output_A(top-left corner) and the Output_B(top-right corner)	8
3.1 Floorplanning	8
3.2 MSO2 observation	9
3.3. WP 254HD observation	10
4. Section Three: Results	12
5. Conclusion	12

1. Introduction

This report provides an examination of the 2-chain inverters' output delay difference. The implementation is completed with two oscilloscopes, a Tektronix 2-Series Mixed Signal Oscilloscope and a LeCroy WavePro 254 HD. Results are shown in the comparison table.

Figure 1 below shows the architecture of the design. The Output_A is connected to the CH1, and the Output_B is connected to the CH2 in both of the oscilloscopes (MS02 and WP 254HD).

Figure 1

2. Section One: Output_A(top-left corner) and the Output_B(bottom-right corner)

2.1 Floorplanning

The floorplanning of the Output_A and the Output_B is shown in **Figure 2** below.

Figure 2: Output_A(top-left corner) and the Output_B(bottom-right corner)

2.2 MSO2 observation

The MSO2 has a built-in AFG (arbitrary function generator). The AFG and the oscilloscope settings are documented, and the output results are shown in Figure 3 below. In addition, the delay difference between the output_A and the output_B is found to be 1.418 ns by using the built-in measurement function. The methodology is shown in Figures 4 and 5.

Function Generator (AFG)

• Waveform: Square

• Frequency: 1 kHz

Amplitude: 3.3 Vpp (High = 3.3 V, Low = 0 V)

• Offset: +1.65 V (so it swings 0...3.3 V)

• Duty cycle: 50 %

• Load impedance: High-Z

Channel 1 (output_A)

• Probe: 10×, DC coupling

• Bandwidth: 200 MHz limit enabled

• Vertical scale: 830 mV/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Channel 2 (output_B)

• Probe: 10×, DC coupling

• Bandwidth: 200 MHz limit enabled

Vertical scale: 850 mV/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Figure 3: Ch1: output_A, and CH2: output_B (delay = 1.418 ns)

Figures 4 and 5 below show how to measure the delay difference.

Figure 4

Figure 5: Reference Levels

2.3 WP 254HD observation

Tektronix AFG 3021B is used as a function generator, and the same values are set. The AFG and the oscilloscope settings are documented, and the output results are shown in Figure 6 below. In addition, the delay difference between the output_A and the output_B is found to be 1.819 ns by using the built-in measurement function. The methodology is shown in Figure 7.

Function Generator (AFG)

• Waveform: Square

Frequency: 1 kHz

Amplitude: 3.3 Vpp (High = 3.3 V, Low = 0 V)

Offset: +1.65 V (so it swings 0...3.3 V)

• Duty cycle: 50 %

• Load impedance: High-Z

Channel 1 (output_A)

• **Probe:** 10×, DC coupling

• Bandwidth: full (2.5GHZ)

• Vertical scale: 1 V/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Channel 2 (output_B)

• **Probe:** 10×, DC coupling

• Bandwidth: full (2.5 GHz)

• Vertical scale: 1 V/div (enough to keep 3.3 V logic on-screen without clipping)

Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Figure 6: WP 254HD observation (1.819 ns)

Figure 7: WP 254HD built-in delay difference measurement

To open the delay difference measurement in the WP 254HD:

- Tap measure
- + add new measurement
- Select skew
- Reference level is set as **50% crossing** (default).

3. Section Two: Output_A(top-left corner) and the Output_B(top-right corner)

3.1 Floorplanning

Figure 8: Floorplanning (output_A is at top-left and output_B is at top-right)

3.2 MSO2 observation

The Measurement Setup (Same values are used in the Tektronix MSO2**)**

Function Generator (AFG)

• Waveform: Square

• Frequency: 1 kHz

• Amplitude: 3.3 Vpp (High = 3.3 V, Low = 0 V)

• Offset: +1.65 V (so it swings 0...3.3 V)

• Duty cycle: 50 %

• Load impedance: High-Z

Channel 1 (output_A)

• Probe: 10×, DC coupling

• Bandwidth: 200 MHz limit enabled

• Vertical scale: 850 mV/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Channel 2 (output_B)

• Probe: 10×, DC coupling

• Bandwidth: 200 MHz limit enabled

• Vertical scale: 850 mV/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Horizontal / Acquisition

• Scale: 4 ns/div when zoomed in on one rising edge

• Record length: 25 pts

• Sample rate: 1.25 GS/s (maximum for two active channels)

Figure 9: Ch1: output_A, and CH2: output_B (delay = 2.111 ns)

The delay difference between the output_A and the output_B is found to be 2.111 ns by using the built-in measurement function that is shown in Figure 9 above.

3.3. WP 254HD observation

Tektronix AFG 3021B is used as a function generator, and the same values as before are set-see details below. The AFG and the oscilloscope settings are documented, and the output results are shown in Figure 10 below. In addition, the delay difference between the output_A and the output_B is found to be 2.502 ns by using the built-in measurement function.

Function Generator (AFG)

• Waveform: Square

Frequency: 1 kHz

Amplitude: 3.3 Vpp (High = 3.3 V, Low = 0 V)

• Offset: +1.65 V (so it swings 0...3.3 V)

Duty cycle: 50 %

• Load impedance: High-Z

Channel 1 (output_A)

• **Probe:** 10×, DC coupling

• **Bandwidth:** full (2.5GHz)

• **Vertical scale:** 1 V/div (enough to keep 3.3 V logic on-screen without clipping)

• Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Channel 2 (output_B)

• **Probe:** 10×, DC coupling

• Bandwidth: full (2.5 GHz)

• Vertical scale: 1 V/div (enough to keep 3.3 V logic on-screen without clipping)

Vertical position: 0

• Trigger: Rising edge, 50% threshold (~1.58 V)

Figure 10: WP 254HD observation (2.502 ns)

4. Section Three: Results

This section presents results, supported by a comparison table.

Function Generator	Oscilloscope	Delay Measurement	Delay Measurement
Settings	Settings	CH1: output_A (top_left corner)	CH1: output_A (top_left corner)
(same for all)		CH2: output_B (bottom_right corner)	CH2: output_B (top_right corner)
Square Wave, 1 kHz,	Tektronix	1.418 ns	2.111 ns
3.3 Vpp,	MSO2		
High Z,			
50% Duty Cycle	Bandwidth:		
	100 MHz		
Square Wave, 1kHz,	LeCroy	1.819 ns	2.502 ns
3.3 Vpp,	WavePro		
High Z,	254HD		
50% Duty Cycle			
2570 Zucy dyele	Bandwidth:		
	2.5 GHz		
	2.5 diiz		

Table 1

5. Conclusion

The report highlights key findings, supported by figures and comparative data.