Python para dados

Numpy

Introdução a Numpy

Array

1	2	3	3
4	5	6	6
7	8	9	9

Importando Numpy

```
import numpy as np
```


Importando Numpy

```
import numpy as np
```

```
1 l = [4, 8, 2, 12, 5, 8, 0]

1 arr = np.array(1)
2 arr
```

array([4, 8, 2, 12, 5, 8, 0])

Criando um numpy array do zero

```
np.zeros()
np.arange()
np.random.random()
```


Por que usar numpy e não listas?

- Arrays NumPy aceita que todos os elementos sejam de diferentes tipo de dados, contudo o array sempre terá apenas um tipo de dados*. Contudo a normal dentro da análise de dados que usamos apenas um tipo de dados dentro de um array.
- Um único tipo de dados também resulta em arrays NumPy ocupando menos espaço na memória em comparação com listas.
- Quando precisamos de uma estrutura multidimensional para armazenar os dados, optamos por arrays em vez de listas, pois as listas podem ser unidimensionais apenas.
- Se precisarmos de um comprimento fixo e alocação estática, usamos arrays em vez de listas.
- Quando é necessária uma processamento de dados mais rápido, preferimos arrays em vez de listas.
- Tipos de dados primitivos podem ser armazenados diretamente em arrays, mas não em listas.

Arrays e mais dimensões

```
arr1_2d = np.array([[1, 2], [3, 4]])
arr2_2d = np.array([[5, 6], [7, 8]])
arr3_2d = np.array([[9, 2], [3, 4]])

arr_3d = np.array([arr1_2d, arr1_2d, arr3_2d])
```



```
arr1_2d = np.array([[1, 2], [3, 4]])
arr2_2d = np.array([[5, 6], [7, 8]])
arr3_2d = np.array([[9, 2], [3, 4]])
arr_3d = np.array([arr1_2d, arr1_2d, arr3_2d])
         arr_3d
    array([[[1, 2],
            [3, 4]],
           [[1, 2],
            [3, 4]],
           [[9, 2],
            [3, 4]]])
```



```
arr1_2d = np.array([[1, 2], [3, 4]])
arr2_2d = np.array([[5, 6], [7, 8]])
arr3_2d = np.array([[9, 2], [3, 4]])

arr_3d = np.array([arr1_2d, arr1_2d, arr3_2d])
```


Matriz

2 dimensões

1	2	3	3
4	5	6	6
7	8	9	9

Matriz

2 dimensões

1	2	3	3
4	5	6	6
7	8	9	9

Tensor

mais de 3 dimensões

Dimensões do array (atributos e métodos)

Atributo:

.shape

Método:

.flatten() .reshape()

Quantas dimensões tem o array (shape)

```
1 arr = np.zeros((2, 4))
2 arr

array([[0., 0., 0., 0.],
       [0., 0., 0., 0.]])

1 arr.shape

(2, 4)
```


Linhas e colunas em arrays 2D

- Linhas (rows) são a primeira dimensãoColunas (columns) são a segunda dimensão

"Achatando" um array

Coloca o array em apenas uma dimensão

Reshaping - mudando as dimensões

```
1 arr = np.array([[3, 4, 2], [8, 11, 5]])
 2 arr.reshape((3, 2))
array([[ 3, 4],
     [ 2, 8],
      [11, 5]])
   arr.reshape((3, 3))
ValueError
                                       Traceback (most recent call last)
<ipython-input-65-a5ab0f3d8792> in <cell line: 1>()
----> 1 arr.reshape((3, 3))
ValueError: cannot reshape array of size 6 into shape (3,3)
```


HORA DE PRATICAR

Tipo de dados em um numpy array

Tipos em Numpy vs. tipo em Python

Python

- Int
- float

Numpy

- np.int64
- np.int32
- np.float64
- np.float32

Bits e bytes

0000011111101000

Bits e bytes

Bits e bytes

np.int32 armazena 4.294.967.296 em valor de inteiro = 2^{32}

2.147.488.648 2.147.488.648

 $4.294.967.296 = 2^{32}$

Atributo .dtype e tipo default

```
1 np.array([2.14, 6.25, 160.87, 8.4]).dtype
dtype('float64')
```

```
1 np.array([2, 6, 160, 8]).dtype
dtype('int64')
```


String

```
1 np.array(["Hello", "Coder", "Girls"]).dtype
```

```
dtype('<U5')
```


Conversão e coerção

dtype como argumento

```
1 arr_flaot32 = np.array([2.14, 6.25, 160.87], dtype=np.float32)
2 arr_flaot32
array([ 2.14, 6.25, 160.87], dtype=float32)
```

Conversão

Coerção

```
1 np.array(["pedra", False , 42, 42.42])
array(['pedra', 'False', '42', '42.42'], dtype='<U32')</pre>
```


Hierarquia de coerção

Adicionar um float a um array de int mudará todo os valores para float.

Adicionar um inteiro em um array de booleanos transformará todo o array em inteiros

```
1    np.array([True, False]).dtype

dtype('bool')

1    np.array([True, False, 12]).dtype

dtype('int64')
```


HORA DE PRATICAR

Manipulando array

Manipulando arrays

Index e slices

Index em um array de 1 dimensão

```
1 arr = np.array([2, 4, 6, 8])
2 arr[2]
```


Index em um array de 2 dimensão

16	10	3	15
14	23	17	27
6	19	3	1
10	4	18	19

```
1 cartela_bing[1, 3]

27
```


Index em um array de 2 dimensão

16	10	3	15
14	23	17	27
6	19	3	1
10	4	18	19

```
1 cartela_bing[0]

array([16, 10, 3, 15])
```


Index em um array de 2 dimensão

16	10	3	15	
14	23	17	27	
6	19	3	1	
10	4	18	19	

```
1 cartela_bing[:, 1]
array([10, 23, 19, 4])
```


Fatiar (slicing) um array de 1 dimensão


```
1 arr = np.array([2, 4, 6, 8, 10])
2 arr[2:4]
```

```
array([6, 8])
```


Fatiar (slicing) um array de 2 dimensão

16	10	3	15	
14	23	17	27 1	
6	19	3		
10	10 4		19	

```
1 cartela_bingo[1:3, 0:2]
array([[14, 23],
       [ 6, 19]])
```


Ordenar (sorting) um array

16	10	3	15	
14	23	17	27	
6	19	3	1	
10	4	18	19	

```
1     np.sort(cartela_bingo)
array([[ 3, 10, 15, 16],
        [14, 17, 23, 27],
        [ 1, 3, 6, 19],
        [ 4, 10, 18, 19]])
```


Eixos (axis)

Eixos (axis)


```
np.sort(cartela_bingo, axis=0)
array([[ 6, 4, 3, 1],
       [10, 10, 3, 15],
       [14, 19, 17, 19],
       [16, 23, 18, 27]])
     np.sort(cartela_bingo, axis=1)
 array([[ 3, 10, 15, 16],
       [14, 17, 23, 27],
       [ 1, 3, 6, 19],
        [ 4, 10, 18, 19]])
```

HORA DE PRATICAR

Filtrando arrays

Indexação sofisticada (fancy indexing) e máscara (mask) em array 2D

```
1 pessoas_id_idade = np.array([[1, 22], [2, 21], [3, 27], [4, 26]])
1 pessoas_id_idade[:, 1] % 2 == 0
array([ True, False, False, True])
```


Indexação sofisticada (fancy indexing) e máscara (mask)

Boolean mask

 Retorna um array de verdadeiros e falsos

Fancy indexing

 Retorna os valores do array quando passado a máscara

```
1 arr1 = np.array([1, 2, 3, 4, 5])
2 mask = arr1 % 2 == 0
3 mask
```

array([False, True, False, True, False])

```
1 arr1[mask]
array([2, 4])
```


Fancy indexing e np.where()

Fancy indexing

 Retorna os valores do array quando passado a máscara

```
1 cartela_bingo
array([[16, 10, 3, 15],
        [14, 23, 17, 27],
        [6, 19, 3, 1],
        [10, 4, 18, 19]])
```

```
1    np.where(cartela_bingo % 3 ==0)
(array([0, 0, 1, 2, 2, 3]), array([2, 3, 3, 0, 2, 2]))
```

np.where()

- Retorna um array de indices
- Cria uma matriz com base em se os elementos correspondem ou não a uma condição.

```
pessoas_id_idade = np.array([[1, 22], [2, 21], [3, 27], [4, 26]])
```


Buscar e substituir

HORA DE PRATICAR

Adicionando e removendo dados do array

Concatenando linhas

14 23 17 27			
	14	23	17
19 3 1	6	19	3
	10	4	18

Concatenando linhas

```
arrv1 = np.random.randint(10, size=(3,2))
 2 arrv1
array([[7, 6],
     [4, 1],
      [1, 1]])
     arrv2 = np.array([["Peras", "Morango"]])
 2 arrv2
array([['Peras', 'Morango']], dtype='<U7')
    np.concatenate((arrv1, arrv2))
array([['7', '6'],
     ['4', '1'],
      ['1', '1'],
      ['Peras', 'Morango']], dtype='<U21')
```


16	10	3	15		16	10	3	15
L	1,0	Ľ	13		14	23	17	27
14	23	17	27		5//5		tisār	55.00
_	10	2	1		6	19	3	1
L	19	ď	1	- 1				
10	4	18	19		10	4	18	19
10	4	18	19		52900		5993	19


```
1 arrv1
array([[7, 6],
    [4, 1],
      [1, 1]])
    arro1 = np.array(["Uva", "Abacaxí", "Laranja"]).reshape((3, 1))
 2 arro1
array([['Uva'],
     ['Abacaxí'],
      ['Laranja']], dtype='<U7')
   np.concatenate((arrv1, arro1), axis=1)
array([['7', '6', 'Uva'],
     ['4', '1', 'Abacaxí'],
      ['1', '1', 'Laranja']], dtype='<U21')
```


16	10	3		
14	23	17	27	FRRO
6	19	3	1	
10	4	18		


```
1 arrv1
array([[7, 6],
     [4, 1],
      [1, 1]])
    arro1 = np.array(["Uva", "Abacaxí", "Laranja"]).reshape((3, 1))
 2 arro1
array([['Uva'],
      ['Abacaxí'],
      ['Laranja']], dtype='<U7')
     np.concatenate((arrv1, arro1), axis=1)
array([['7', '6', 'Uva'],
     ['4', '1', 'Abacaxí'],
      ['1', '1', 'Laranja']], dtype='<U21')
```


- É possível adicionar arrays para criar novas dimensões
- Mas o método np.concatenate não permite
- É compatível apenas para as dimensões já existentes no array

Não com np.concatenate()

Deletando com np.delete()

Deletando com axis = 0

```
5 sala_espera
array([['5', '30', '1', 'Alice'],
      ['6', '29', '1', 'Bob'],
      ['7', '35', '3', 'Cristina'],
      ['8', '34', '3', 'Luiz']], dtype='<U8')
   np.delete(sala_espera, 2, axis=0)
array([['5', '30', '1', 'Alice'],
      ['6', '29', '1', 'Bob'],
      ['8', '34', '3', 'Luiz']], dtype='<U8')
```

Deletando com axis = 1

```
1 sala espera
array([['5', '30', '1', 'Alice'],
    ['6', '29', '1', 'Bob'],
      ['7', '35', '3', 'Cristina'],
      ['8', '34', '3', 'Luiz']], dtype='<U8')
 1 np.delete(sala espera, 1, axis=1)
array([['5', '1', 'Alice'],
    ['6', '1', 'Bob'],
      ['7', '3', 'Cristina'],
      ['8', '3', 'Luiz']], dtype='<U8')
```


Deletando com np.delete()

Deletando sem axis

```
1 sala_espera
array([['5', '30', '1', 'Alice'],
      ['6', '29', '1', 'Bob'],
      ['7', '35', '3', 'Cristina'],
      ['8', '34', '3', 'Luiz']], dtype='<U8')
 1 np.delete(sala_espera, 1)
array(['5', '1', 'Alice', '6', '29', '1', 'Bob', '7', '35', '3',
       'Cristina', '8', '34', '3', 'Luiz'], dtype='<U8')
```


Cálculos com Array

Métodos de agregação de dados

Python

- .sum()
- .min()
- .max()
- .mean()
- .cumsum()

Dados

Somar

1 acidentes.sum()

16

Somar linhas

```
1 acidentes.sum(axis=0)
```

array([4, 6, 6])

Somar colunas

```
1 acidentes.sum(axis=1)
array([6, 1, 7, 0, 2])
```


Somar colunas

Mínimos e máximos

```
1 acidentes.min()
 1 acidentes.max()
    acidentes.max(axis=0)
array([2, 3, 4])
```


Média

```
acidentes.mean()
1.0666666666666667
     acidentes.mean(axis=0)
array([0.8, 1.2, 1.2])
     acidentes.mean(axis=1)
                                                  , 0.66666667])
array([2.
               , 0.33333333, 2.33333333, 0.
```


Keedims - manter as mesmas dimensões

```
acidentes.mean(axis=0)
array([0.8, 1.2, 1.2])
     acidentes.mean(axis=0, keepdims=True)
array([[0.8, 1.2, 1.2]])
     acidentes.mean(axis=1)
array([2.
                , 0.33333333, 2.33333333, 0.
                                                  , 0.66666667])
     acidentes.mean(axis=1, keepdims=True)
array([[2.
      [0.33333333],
       [2.33333333],
      [0.66666667]])
```


Soma cumulativa - cumsum

```
acidentes.cumsum(axis=0)
array([[1, 3, 2],
      [1, 4, 2],
      [3, 5, 6],
       [3, 5, 6],
      [4, 6, 6]])
     acidentes.cumsum(axis=1)
array([[1, 4, 6],
      [0, 1, 1],
       [2, 3, 7],
       [0, 0, 0],
       [1, 2, 2]])
```


Soma cumulativa - cumsum

```
plt.plot(np.arange(1, 6), acidentes.cumsum(axis=0), label=['Cliente 1', 'Cliente 2', 'Cliente 3'])
plt.legend()
plt.show()
```


HORA DE PRATICAR

Operações com vetorização

Comparação operações - Python vs Numpy

Ao realizar a soma de elementos em um array utilizando o NumPy, a operação não ocorre de forma individual para cada elemento; em vez disso, ela é realizada de maneira simultânea para todos os elementos do array.

```
velocidade
    arr = np.array([[1, 2], [4, 5]])
    for linha in range(0, arr.shape[0]):
        for coluna in range(0, arr.shape[1]):
            arr[linha][coluna] += 3
    arr
array([[4, 5],
                  1 arr = np.array([[1, 2], [4, 5]])
     [7, 8]])
                      arr += 3
                      arr
                array([[4, 5],
                        [7, 8]])
```


Sintax Numpy

No NumPy, a **sintaxe é otimizada**: empregamos um sinal de adição e indicamos ao NumPy o número único que desejamos adicionar a todos os elementos do array. Na linguagem matemática, esse único número é comumente denominado escalar. Podemos utilizar uma sintaxe semelhante para multiplicar um array por um escalar.

```
1 arr = np.array([[1, 2], [4, 5]])
    arr += 3
     arr
array([[4, 5],
      [7, 8]])
    arr2 = np.array([[1, 2], [4, 5]])
    arr2 * 5
array([[ 5, 10],
      [20, 25]])
```


Adicionando 2 array

O NumPy permite operações vetorizadas entre arrays do mesmo formato. Na adição de dois arrays com o mesmo formato, o NumPy realiza a operação elemento por elemento, somando cada elemento do primeiro array ao elemento correspondente no segundo array.

```
1  a = np.array([[1, 2, 3], [4, 5, 6]])
2  b = np.array([[2, 2, 2], [0, 0, 1]])
3  a + b
```

```
array([[3, 4, 5],
[4, 5, 7]])
```

Multitplicando 2 arrays

O mesmo conceito se aplica à multiplicação, subtração e divisão de dois arrays no NumPy. Nessas operações, os elementos nas posições correspondentes de cada array são multiplicados, subtraídos ou divididos entre si.

```
1  a = np.array([[1, 2, 3], [4, 5, 6]])
2  b = np.array([[2, 2, 2], [0, 0, 1]])
3  a * b
```

```
array([[2, 4, 6],
[0, 0, 6]])
```


Operação booleanas

Embora as operações vetorizadas se destacam em operações matemáticas, seu aproveitamento se estende por todo o NumPy. Anteriormente, exploramos o uso dessas operações para criar máscaras booleanas e filtrar arrays.

Vetorizando código Python (np.vectorize)

np.vectorize transforma funções Python regulares em funções vetorizadas. Isso significa que podemos aplicar eficientemente uma função a cada elemento de um array NumPy sem nos preocuparmos com loops explícitos. É muito útil quando precisamos operar em arrays, mas temos funções projetadas para operar em valores únicos.

```
1 arr = np.array(["Hello", "meninas", "coders"])
2 len(arr) > 5

False

1 vetorizar_len = np.vectorize(len)
2
3 vetorizar_len(arr) > 5

array([False, True, True])
```


Vetorizando código Python (np.vectorize)

np.vectorize transforma funções Python regulares em funções vetorizadas. Isso significa que podemos aplicar eficientemente uma função a cada elemento de um array NumPy sem nos preocuparmos com loops explícitos. É muito útil quando precisamos operar em arrays, mas temos funções projetadas para operar em valores únicos.

```
def minha_funcao(x):
    return x**2 + 3*x + 1

vetorizada_funcao = np.vectorize(minha_funcao)

array_original = np.array([1, 2, 3, 4, 5])

resultado = vetorizada_funcao(array_original)

resultado

array([ 5, 11, 19, 29, 41])
```


Broadcasting

Broadcasting (transmissão)

Broadcasting (transmissão) refere-se à capacidade do NumPy de lidar com operações entre arrays de diferentes formas e tamanhos durante operações aritméticas. O Broadcasting permite que o NumPy execute essas operações mesmo quando as dimensões dos arrays não são as mesmas, seguindo um conjunto de regras específicas.

```
arr 3x3 = np.array([[1, 2],
                           [7, 8]])
     arr 3x3
array([[1, 2],
     [4, 5],
      [7, 8]])
 1 arr_3x1 = np.array([1, 0, -1]).reshape((3,1))
 2 arr 3x1
array([[ 1],
 1 \quad arr_3x3 + arr_3x1
array([[2, 3],
      [4, 5],
      [6, 7]])
```


Linhas

```
1 arr10 = np.arange(10).reshape((2, 5))
2 arr5 = np.array([0, 1, 2, 3, 4])
3 arr10.shape, arr5.shape
((2, 5), (5,))
```

1	ar	r	10	+ a	rr5	
array						8], 13]])

0	1	2	3	4	4	0	1	2	3	1
5	6	7	8	9	T	0	1		3	4

0	2	4	6	8		
5	7	9	11	13		

Colunas

0	1	2	3	4	_	0	0	1	2	3	4
5	6	7	8	9	•	1	6	7	8	9	10

arr10 = np.arange(10).reshape((2, 5))

```
2 arr2 = np.array([0, 1]).reshape(2, 1)
3 arr10.shape, arr2.shape

((2, 5), (2, 1))

1 arr10 + arr2

array([[ 0,  1,  2,  3,  4],
       [ 6,  7,  8,  9,  10]])
```


Outras operações

A aplicação da mesma lógica estende-se à **multiplicação**, **subtração e divisão**! Ao multiplicar por uma coluna, cada elemento dessa coluna é multiplicado pelos elementos correspondentes em ambas as colunas do array maior. Da mesma forma, ao subtrair uma linha, cada elemento dessa linha é subtraído dos elementos correspondentes em ambas as linhas do array maior.

Salvando arquivos numpy

Por quê usar arquivos .npy

Dados numpy podem ser salvos em diferentes formatos:

- .npy (NumPy Binary)
- .txt (Text/CSV)
- .h5 (HDF5 Hierarchical Data Format)
- .json (JSON)
- .csv (Comma-Separated Values)
- .parquet (Apache Parquet)

Por quê usar arquivos .npy

- 1. Eficiência de Armazenamento: O formato binário utilizado é altamente eficiente em termos de armazenamento, sendo especialmente útil para grandes conjuntos de dados, reduzindo os requisitos de espaço e melhorando a velocidade de operações de leitura e escrita.
- 2. Preservação de Informações: Ao salvar um array como .npy, o formato inclui informações cruciais sobre o tipo de dados e a forma do array. Isso garante que, ao carregá-lo posteriormente, a estrutura original seja recriada com precisão, evitando perda de informações.
- 3. Carregamento Rápido: O carregamento de dados a partir de um arquivo .npy é geralmente mais rápido do que em formatos de texto. Isso se deve à eficiente serialização e deserialização dos dados, resultando em tempos de carregamento mais curtos.
- 4. Compatibilidade com NumPy: O formato .npy é específico do NumPy, proporcionando compatibilidade sólida com outras ferramentas e bibliotecas baseadas em NumPy. Isso estabelece uma maneira padronizada e confiável de armazenar e compartilhar arrays entre diferentes projetos e colaboradores.

Carregando

1 arr = np.load('arr10.npy') 2 arr array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])

Salvando

HORA DE PRATICAR

