Machine Learning

Refresher

About Me

- Masters and PhD on Artificial Intelligence and Machine Learning
- Researcher at IT Aveiro
- Areas of interest: Artificial Intelligence, Machine Learning, text mining, stream mining, IoT, M2M

AI & ML

What is ML (Why should i Care)? What does machine learning mean?

The term machine learning (abbreviated ML) refers to the capability of a machine to improve its own performance. It does so by using a statistical model to make decisions and incorporating the result of each new trial into that model. In essence, the machine is programmed to learn through trial and error.

What is ML (Why should i Care)?

The Machine Learning Process

Step 1 Gathering data from various sources Step 2
Cleaning data to have homogeneity

Step 3

Model BuildingSelecting the right ML
algorithm

Step 4
Gaining insights from the model's results

Step 5
Data VisualizationTransforming results into visuals graphs

What is ML (Why should i Care)?

Machine Learning

What is ML (Why should i

Care)?

What is ML?

- A body of knowledge related with learning methods for machines (computers)
- Research area
- Opportunities for something useful

Why Should You Care?

Taxonomy

Taxonomies...

Taxonomies...

Taxonomies...

Induction symbolic reasoning

Neural Networks connections modelled on brain's neurons

Evolutionary algorithms learn from random generations (genetic algorithm)

Bayesian inference probabilistic models based on bayes' theorem

Analogy learns by finding similar examples

Limitations

Limitations...

Limitations...

• Our model is a simplification of reality

• Assumptions fail in certain situations

Bias and Variance

Terminology

Terminology

Dataset: organized set of examples, typically composed of features and labels

Feature: single property of an example (input variable)

Label: classification category of an example (output variable)

Example: single instance of a dataset

Aprendizagem Aplicada à Segurança

Mário Antunes September 22, 2023

University of Aveiro

Table of Contents

SPAM

SPAM Detection

Binary Classification

Text Mining

Natural Language Processing (NLP)

Classification Model

Model Evaluation

- The term "spam" is internet slang that refers to unsolicited commercial email (UCE).
- The first reported case of spam occurred in 1898, when the New York Times reported unsolicited messages circulating in association with an old swindle.
- The term "spam" was coined in 1994, based on a now-legendary Monty Python's Flying Circus sketch, where a crowd of Vikings sings progressively louder choruses of "SPAM! SPAM!"

Dear Sir,
I am prince
I want to transfer all of my fortune outside if Nigeria due to a frozen account,
If you could be so kind and transfer small sum of 3 500 USD to my account,
I would be able to unfreeze my account and transfer my money outside of
Nigeria. To repay your kindness, I will send 1 000 000 USD to your account.

Please contact me to proceed

Prince

Fight against SPAM

- Huge list of https://en.wikipedia.org/wiki/ Anti-spam_techniques
- · From common sense to Bayesian spam filtering
- Unfortunately it is a costly battle

Fight against SPAM

SPAM Detection

Binary Classification

- Binary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule.
- For this application one message can either be spam or ham.

Text Mining

- Text mining is the process of deriving high-quality information from text.
- Combines concepts from Machine Learning, Linguistic and statistical analysis.
- In this area we will explore the methods used to rank words/tokens and the BoW model.

Bag of Words (Bow) model

		the	red	dog		eats	food
1.	the red dog ->	1	1	1	0	0	0
2.	cat eats dog ->	0	0	1	1	1	0
3.	dog eats food->	0	0	1	0	1	1
4.	red cat eats→	0	1	0	1	1	0

Natural Language Processing (NLP)

- NLP gives the computers the ability to understand text.
- · Combines Sintax and Semantic into the analysis.
- One famous exemples are the Large Language Models (LLMs) that power OpenAI Chat GPT.

Classification Model

- · SPAM detection is "considered" a toy example.
- As such, we will explore two of the simples learning models: Naive Bayes and Logistic Regression.

Model Evaluation

- Classification model can be evaluated using a confusing matrix
- The simplest methods to evaluate a model is through accuracy: $acc = \frac{TP+TN}{TN+TN+FP+FN}$

	Predicted Positive	Predicted Negative	
Actual Positive	TP True Positive	FN False Negative	Sensitivity $\frac{TP}{(TP + FN)}$
Actual Negative	FP False Positive	TN Trac Negative	Specificity $\frac{TN}{(TN + FP)}$
	Precision TP (TP + FP)	Negative Predictive Value TN (TN + FN)	Accuracy $TP + TN$ $TP + TN + FP + FN$

Model Evaluation

Aprendizagem Aplicada à Segurança

Mário Antunes

October 14, 2023

Universidade de Aveiro

It is becoming difficult to identify Cybersecurity attacks. These attacks can originate internally due to malicious intent or negligent actions or externally by malware, target attacks, and APT (Advanced Persistent Threats).

But insider threats are more challenging and can cause more damage than external threats because they have already entered the network.

These activities present unknown threats and can steal, destroy or alter the assets.

Context

Earlier firewalls, web gateways, and some other intrusion prevention tools are enough to be secure, but now hackers and cyber attackers can bypass approximately all these defense systems.

Therefore with making these prevention systems strong, it is also equally essential to use detection. So that if hackers get into the network, the system should be able to detect their presence.

Signature detection requires knowing what to look for and comparing hashes or other strings to identify a match. Signature detection is a common feature found within antivirus and IPS/IDS products.

Behavior detection looks for malicious or other known behavior characteristics and alarms the SOC when a match is made. An example is identifying port scanning or a file attempting to encrypt your hard drive, which is an indication of ransomware behavior. Antimalware and sandboxes are examples of tools that heavily leverage behavior detection capabilities.

Anomay detection it takes into consideration hot topics including big data, threat intelligence, and "zero-day" detection.

Anomaly Detection

Anomaly detection, also called outlier detection, is the identification of unexpected events, observations, or items that differ significantly from the norm:

- · Anomalies in data occur only very rarely
- The features of data anomalies are significantly different from those of normal instances

What is an anomaly?

Generally speaking, an **anomaly** is something that differs from a norm: a deviation, an exception. In software engineering, by anomaly we understand a rare occurrence or event that doesn't fit into the pattern, and, therefore, seems suspicious. Some examples are:

- · sudden burst or decrease in activity;
- error in the text logs;
- sudden rapid drop or increase in temperature.

What is an anomaly?

Common reasons for outliers are:

- · data preprocessing errors;
- · noise;
- · fraud;
- · attacks.

Types of Anomalies

Anomalies can be broadly categorized as:

- Point anomalies: A single instance of data is anomalous if it's too far off from the rest.
- Contextual anomalies: The abnormality is context specific. This type of anomaly is common in time-series data.
- Collective anomalies: A set of data instances collectively helps in detecting anomalies.

Types of Anomalies

Anomaly Detection - Example #1

Network anomalies: Anomalies in network behavior deviate from what is normal, standard, or expected. To detect network anomalies, network owners must have a concept of expected or normal behavior. Detection of anomalies in network behavior demands the continuous monitoring of a network for unexpected trends or events.

Anomaly Detection - Example #2

Application performance anomalies: These are simply anomalies detected by end-to-end application performance monitoring. These systems observe application function, collecting data on all problems, including supporting infrastructure and app dependencies. When anomalies are detected, rate limiting is triggered and admins are notified about the source of the issue with the problematic data.

Anomaly Detection - Example #3

Web application security anomalies: These include any other anomalous or suspicious web application behavior that might impact security such as CSS attacks or DDOS attacks.

Anomaly Detection

Clustering

Type of unsupervised learning method. Generally, it is used as a process to find meaningful structure, explanatory underlying processes, generative features, and groupings inherent in a set of examples.

Clustering Methods

- Density-Based Methods: These methods consider the clusters as the dense region having some similarities and differences from the lower dense region of the space. These methods have good accuracy and the ability to merge two clusters.
- Hierarchical Based Methods: The clusters formed in this method form
 a tree-type structure based on the hierarchy. New clusters are formed
 using the previously formed one.
- Partitioning Methods: These methods partition the objects into k
 clusters and each partition forms one cluster. This method is used to
 optimize an objective criterion similarity function such as when the
 distance is a major parameter.

Clustering: Anomaly Detection

Blind Source Separation

Blind Source Separation (BSS) refers to a problem where both the sources and the mixing methodology are unknown, only mixture signals are available for further separation process.

In several situations it is desirable to recover all individual sources from the mixed signal, or at least to segregate a particular source.

Blind Source Separation: PCA

** Principal component analysis**, or PCA, is a statistical procedure that allows you to summarize the information content in large data tables by means of a smaller set of "summary indices" that can be more easily visualized and analyzed.

Blind Source Separation: ICA

Independent Component Analysis (ICA) is a powerful technique in the field of data analysis that allows you to separate and identify the underlying independent sources in a multivariate data set.

Blind Source Separation: NNMF

Non-negative matrix factorization (NNMF) is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into two matrices W and H, with the property that all three matrices have no negative elements.

This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered.

Since the problem is not exactly solvable in general, it is commonly approximated numerically.

Non-Negative Matrix Factorization Diagram - Example

Visible Variables
Input
Document x Term Matrix
n x m
10 x 20

Weights
Feature Set
Document x Topic Matrix
n x p
10 x 6

Hidden Variables
Coefficients
Topic x Term Matrix
p x m
6 x 20