SHEET 1

- 1. If $z_1 = 2 + 3i$ and $z_2 = 4 5i$, calculate the following:
 - (a) $(5z_1 + 3z_2)^2$
 - (b) $Re\left(\frac{1}{Z_1}\right)$
 - (c) $Re(z_2^2)(Re(z_1))^2$
- 2. Find the modulus and the principal argument for the following complex numbers:
 - (a) $\frac{i}{-2-2i}$
 - $(b) \quad \frac{-1+\sqrt{3}i}{\left(\sqrt{3}-i\right)(1+i)}$
 - $(c) \frac{(1+i)(2-i2\sqrt{3})}{\sqrt{2}i-\sqrt{6}}$
- 3. Solve the following equations:
 - (a) $z^3 8i = 0$
 - (b) $z^2 + 4z + 16 = 0$
 - (c) $z^5 + 1 = 0$
 - (d) $z^2 + (2i 3)z + 5 i = 0$
- 4. Assuming that $|z_1| \neq |z_2|$, prove that:

$$\left| \frac{z_1}{z_1 + z_2} \right| \le \frac{z_1}{||z_1| - |z_2||}$$

5. Prove that:

$$|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

(Hint: use the fact that $|z|^2 = \bar{z}$)

- 6. Describe graphically the regions represented by each of the following:
 - (a) $1 < |z 2i| \le 2$
 - (b) $Re(z^2) > 1$
 - (c) |z + 3i| > 4
- 7. Let S be the vertical strip $S=\{z=x+iy:1\leq x\leq 2\}$. Find the image of S under the mapping $f(z)=z^2$
- 8. Find the image of |z-2| < 1 under the mapping $w = \frac{z}{z-1}$
- 9. Describe the range of the function $f(z) = x^2 + 2i$ on the closed disk $|z| \le 1$
- 10. A square S in the \mathbb{Z} -plane has vertices at (0,0),(1,0),(0,1),(1,1). Determine the region in the \mathbb{W} -plane into which S is mapped under the transformation:
 - (a) $w = z^2$
 - (b) $w = \frac{1}{1+z}$
- 11. Find the general solution of the following:
 - (a) $\sinh z = \frac{i}{2}$
 - (b) $\cosh z = \frac{1}{2}$
 - (c) $\cos z = 2$
 - (d) $\sin z = \cosh 4$
- 12. Evaluate the following expressions for $z_1 = 1 + i \& z_2 = 1 i$ and write your answer in the form a + ib
 - (a) e^{z_1}
 - (b) $3ie^{z_2}$
 - (c) $e^{z_1}e^{z_2}$
 - (d) $Im(e^{z_1})$
- 13. Solve the following equations:
 - (a) $e^z = 2 2i$
 - (b) $e^{2z} = i$
 - (c) $e^{-z+1} = -3 4i$

- 14. Compute Log(z), when:
 - (a) z = -5
 - (b) z = 1 i
 - (c) z = -5i
 - (d) $z = \sqrt{3} + i$
- 15. Compute $\log(z)$ for the following:
 - (a) z = 2i
 - (b) $z = -\frac{1}{2}$
 - (c) z = 4 + 4i
 - (d) z = i
 - (e) $z = \frac{1}{(1+i)^4}$
- 16. Evaluate the principal value of:
 - (a) 5^{i}
 - (b) $(1+i)^{3+i}$
 - (c) i^i
 - (d) $\left(\frac{1+i}{1-i}\right)^2$