Teoria Analisi 1

A. Languasco

February 19, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato) 1.1 Enunciato	4
	1.2 Dimostrazione	4
2	Teorema dell'unicità del limite 2.1 Enunciato	4
	2.2 Dimostrazione	4
3	Teorema fondamentale del calcolo integrale (TFCI) 3.1 Enunciato	6
	3.2 Dimostrazione	-
4	Formula fondamentale del calcolo integrale	7
	4.1 Enunciato	7
5	Teorema del confronto I	7
	5.1 Enunciato	8
6	Teorema del confronto II	8
	6.1 Enunciato	8
7	Teorema del confronto III - delle 3 funzioni - Carabinieri	9
	7.1 Enunciato Enunciato 7.2 Dimostrazione	9
8	Teorema del valore medio integrale	10
	8.1 Enunciato	
9	Criterio integrale convergenza delle serie numeriche	10
Э		10
10	Teorema delle derivate successive	10
	10.1 Enunciato	10
	Teorema di Rolle	11

12	Teorema di Lagrange	11
	12.1 Enunciato	
13	Teorema condizione necessaria di convergenza delle serie	12
	13.1 Enunciato	
	13.2 Dimostrazione	12
14	Teorema Disuguaglianza di Bernoulli	12
	14.1 Enunciato	
	14.2 Dimostrazione	12
15	Integrale di Riemann	13
	15.1 Integrali Definiti	13
	\circ	13
	15.2.1 Definizione	
	15.3.1 Dimostrazione	
		19
16	Teorema di Bolzano - Weierstrß	14
	16.1 Enunciato	
	16.2 Esempio 1	
	16.3 Esempio 2	14
17	Proprietà di Archimede	14
	17.1 Enunciato	
	17.2 Dimostrazione	14
18	Teorema Bernoulli - de l'Hopital	15
	18.1 $\frac{0}{0}$; limiti al finito	
	18.1.1 Errori comuni	
	18.2 $\frac{0}{0}$; limiti all'infinito	
	18.3 $\frac{\infty}{\infty}$; limiti al finito	
	18.4 $\frac{\infty}{\infty}$; limiti al'infinito	15
19	Teorema Densità di $\mathbb Q$ in $\mathbb R$	16
	19.1 Enunciato	
	19.2 Dimostrazione	16
20	Definizione di Limite	16
21	Teorema formula di Taylor con resto di Peano	16
	21.1 Enunciato	16
22	Criterio di Von Leibniz (Serie segni alterni)	17
	22.1 Enunciato	17
23	Criterio della radice (CAUCHY)	17
24	Criterio del rapporto (D'Alembert)	17
25	Criterio integrale	17
40	Serie a termini di segno qualunque	17

27	Criterio asintotico in (a,b] 27.1 Enunciato 27.2 Dimostrazione	
2 8	Criterio asintotico in $[a, +\infty)$ 28.1 Enunciato	
2 9	Teorema dei valori intermedi 29.1 Enunciato	18 18
30	Proprietà della parte intera 30.1 Enunciato	19
31	Teorema "Ponte" o limiti mediante successioni 31.1 Enunciato	
32	Teorema degli Zeri 32.1 Enunciato	
33	Principio di sostituzione degli infiniti di ordine inferiore 33.1 Enunciato	
34	Condizione necessaria del primo ordine per punti estremali interni 34.1 Enunciato	
35	Classificazione delle discontinuità 35.1 Discontinuità eliminabile	21

1 Teorema del differenziale (Lagrange - Rolle generalizzato)

Se una funzione è derivabile in un punto, allora il suo comportamento vicino a quel punto può essere descritto da una retta tangente (approssimazione lineare). Il termine $o(x - x_0)$ indica che il resto dell'approssimazione tende a zero più velocemente di $x - x_0$.

1.1 Enunciato

 $f: I \subset \mathbb{R}, I$ intervallo, $x_0 \in I$, x_0 interno ad I, f derivabile in x_0 . Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , w $(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x - x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

1.2 Dimostrazione

Sia
$$w(x) := \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \text{ Se } x \neq x_0 \\ 0 \text{ Se } x = x_0 \end{cases}$$

$$\lim_{x \to x_0} w(x_0) = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right] = f'(x_0) - f'(x_0) = 0$$

Sia $x \neq 0$: $w(x_0) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \Rightarrow (w(x) - f'(x_0))(x - x_0) = f(x) - f(x_0)$

$$\Rightarrow f(x) = f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0) \ \forall x \in I \ x \neq x_0$$

Sia
$$x = x_0$$
: $f(x_0) \stackrel{?}{=} f(x_0) + f'(x_0)(x_0 - x_0) + w(x_0)(x_0 - x_0)$ Si!

Pertanto la tesi è verificata $\forall x \in I$

2 Teorema dell'unicità del limite

2.1 Enunciato

 $f: A \subset \mathbb{R} \to \mathbb{R}, x_0 \in \widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1.
$$\lim_{x \to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$$

$$2. \lim_{x \to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$$

Allora: $l_1 = l_2$

2.2 Dimostrazione

- ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) \{0\}$
- ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \cap V l_2 \neq \emptyset$

 $Wx_0 = Ux_0 \cap U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \cap A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \text{ (Per definizione di limite 1)} \\ f(x) \in Vl_2 \text{ (Per definizione di limite 2)} \end{cases}$$

$$\Rightarrow f(x) \in Vl_1 \cap Vl_2 \neq \emptyset \Rightarrow \mathbf{l_1} = \mathbf{l_2}.$$
 Contraddizione

Teorema fondamentale del calcolo integrale (TFCI) 3

3.1 **Enunciato**

 $[a,b] \subset \mathbb{R}, a < b.$ f R-integrale su [a,b]. $\exists x_1 \in [a, b]$ t.c. f sia continua in x_1 . Fissato $x_0 \in [a, b]$ e presa $F(x) = \int_{x_0}^x f(t)dt$, si ha che F è derivabile in x_1 e $F'(x_1) = f(x_1)$

3.2Dimostrazione

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$

$$= \left| \frac{\int_{x_0}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_0}^x f(t)dt + \int_{x_1}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - f(x_1)(x - x_1)}{x - x_1} \right|$$

$$= \left| \frac{\int_{x_1}^x (f(t) - f(x_1))dt}{x - x_1} \right|$$

$$\le \frac{1}{x - x_1} \int_{x_1}^x |f(t) - f(x_1)|dt$$

Ma f è continua in $x_1 \iff \forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 \ \text{t.c.} \ |f(t) - f(x_1)| < \epsilon \ \forall t/0 < |t - x_1| < \delta_{\epsilon} \ t \in [a, b]$

Osservo che $t \in [x_1, x]$ (oppure $t \in [x, x_1]$, dipende come abbiamo disposto $x \in x_1$)

Implica che $|t - x_1| \le |x - x_1|$

Sia allora $x \in [a, b]/|x - x_1| < \delta_{\varepsilon}$. Con questo forziamo le due varibli a stare vicine fra loro

Quindi
$$|t - x_1| \le |x - x_1| < \delta_{\varepsilon}$$
 e $|f(t) - f(x_1)| < \epsilon$
Allora $0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$

Ossia: $\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \epsilon \ \forall x \ \text{t.c.} \ 0 < |x - x_1| < \delta_{\varepsilon}, \ x \in [a, b]$

Cioè: $\lim_{x_1} \frac{F(x) - F(x_1)}{x - x_1}$ esiste e vale $f(x_1)$

Quindi: $\mathbf{F}'(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_1)$

4 Formula fondamentale del calcolo integrale

4.1 Enunciato

 $f \in C^0[a,b]$ e sia $G:[a,b] \to \mathbb{R}$ una primitiva di f in [a,b]

$$\Rightarrow \int_a^b f(t)dt = G(b) - G(a)$$

4.2 Dimostrazione

Sia $x \in [a,b]$ e $F(x) = \int_{x_0}^x f(t)dt$. Per il TFCI* è derivabile in [a,b] e $F'(x) = f(x) \forall x \in [a,b]$. F, G sono primitive di f in un intervallo $[a,b] \Rightarrow \exists c \in \mathbb{R}/G(x) = F(x) + c \ \forall x \in [a,b]$

Osservo adesso che:
$$G(b) - G(a) = F(b) + c - F(a) - c = F(b) - F(a)$$

 $= \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt$
 $= \int_{x_0}^a f(t)dt + \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt = \int_{x_0}^b f(t)dt.$

*TFCI: Teorema Fondamentale Calcolo Integrale

Osservazione: $f \in C^0([a,b])$ e sia

 $H(x) = \int_{\alpha(x)}^{\beta(x)} f(t)dt$ dove $\alpha, \beta : [a, b] \to \mathbb{R}$ derivabili in [a, b].

Si ha che H(x) è derivabile perché $H(x) = F(\beta(x)) - F(\alpha(x))$ dove $F(u) = \int_{x_0}^{u} f(t)dt$ (Composizione di f derivabili)

Inoltre $H'(x) = F'(\beta(x))\beta'(x) - F'(\alpha(x))\alpha'(x) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x) \ \forall x \in [a, b]$

5 Teorema del confronto I

5.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}, x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = \ell_1 \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = \ell_2 \in \mathbb{R}$ con $\ell_1 < \ell_2$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

b) Se $\lim_{x\to x_0} f(x) = -\infty$ Se $\lim_{x\to x_0} g(x) = \ell \in \mathbb{R} \cup \{+\infty\}$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

c) Se $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = +\infty$, allora:

 $\exists U_{x_0}$, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

5.2 Dimostrazione

a) $l_1 < l_2(l_1, l_2 \in \mathbb{R})$. Fisso $\epsilon > 0$ $\lim_{x \to x_0} f(x) = l_1 \Rightarrow \exists U'x_0 \text{ intervallo di } x_0 \text{ tale che } \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$ $\lim_{x \to x_0} g(x) = l_2 \Rightarrow \exists U''x_0 \text{ intorno di } x_0/l_2 - \epsilon < g(x) < l_2 + \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Se $x \in (U'x_0 \cap U''x_0 \cap A) \setminus \{x_0\}$ idea: scelgo $\epsilon > 0/l_1 + \epsilon \le l_2 - \epsilon$ Scelgo in quanto sopra $\epsilon = \frac{l_2 - l_1}{2}$ Per $x \in (U'x_0 \cap U''x_0 \ cap A) \setminus \{x_0\}$ si ha allora

$$f(x) < l_1 + \epsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2}$$

6 Teorema del confronto II

6.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}$ $A\neq\emptyset$ $x\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$

Se $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$

Se $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow l_1 \leq l_2$$

b) Se $\lim_{x\to x_0}g(x)=-\infty$ e $\exists Ux_0$ intorno di $x_0/f(x)\leq g(x)$ $\forall x\in (Ux_0\cap A)\setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

c) Se $\lim_{x\to x_0} f(x) = +\infty$ e $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

6.2 Osservazione

Cosa accade se si suppone $f(x) < g(x) \stackrel{?}{\Rightarrow} l_1 < l_2$

NO:
$$f(x) = 0 \ \forall x \mathbb{R} \ g(x) = \begin{cases} \frac{1}{x} \ x > 0 \\ 0 \ x = 0 \\ -\frac{1}{x} \ x < 0 \end{cases}$$

8

7 Teorema del confronto III - delle 3 funzioni - Carabinieri

7.1 Enunciato

 $f,g,h:A\subset\mathbb{R}\to\mathbb{R},\,A\neq\emptyset,\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A. Inoltre

$$\exists \lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

$$\exists \lim_{x \to x_0} g(x) = l \in \mathbb{R}$$

 $\exists Ux_0 \text{ intorno di } x_0/f(x) \leq h(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} h(x) = l$$

7.2 Dimostrazione

Sia
$$\epsilon > 0$$
: $\exists U'x_0, U''x_0$ intorni di $x_0/|f(x) - l| < \epsilon \ \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$
 $|g(x) - l| < \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Sia $Wx_0 = U'x_0 \cap U''x_0$ è un intorno di x_0 . Se $x \in Wx_0 \cap A \setminus \{x_0\}$

$$l - \epsilon < f(x) \text{ definizione } \lim f \text{ (per ipotesi)}$$

$$f(x) \leq h(x) \leq g(x)$$

$$g(x) < l + \epsilon$$

Quindi $l - \epsilon < h(x) < l + \epsilon$ cioè $|h(x) - l| < \epsilon$ Ho fatto vedere che:

$$\forall \epsilon > 0 \; \exists W x_0 \; \text{intorno di} \; x_0 / |h(x) - l| < \epsilon \; \text{per} \; x \in W x_0 \cap A \setminus \{x_0\}$$

Che è esattamente la definizione di: $\lim_{x \to x_0} h(x) = l$

8 Teorema del valore medio integrale

8.1 Enunciato

$$\begin{split} f: [a,b] &\to \mathbb{R}, \, f, gR - integralein[a,b]. \\ \operatorname{Sia} \, m &= \inf f(x)/x \in [a,b], \, (\in \mathbb{R}) \\ M &= \sup f(x)/x \in [a,b], \, (\in \mathbb{R}) \\ \\ &\Rightarrow \begin{cases} 1) \, \, m(b-a) \leq \int_a^b f(x) dx \leq M(b-a) \\ 2) \, \, \exists \mu \in [m,M]/\int_a^b f(x) dx = \mu(b-a) \\ 3) \, \operatorname{Se} \, f \, \operatorname{continua} \, \operatorname{in} \, [a,b], \, \operatorname{allora} \, \exists x_0 \in [a,b]/\int_a^b f(x) dx = f(x_0)(b-a). \end{cases} \end{split}$$

8.2 Dimostrazione

$$\begin{array}{l} 1) \ m \leq f(x) \leq M \ x \in [a,b] \\ P = a, b \Rightarrow D(P,f) = m(b-a) \in G \\ S'(P,f) = M(b-a) \in H. \\ \text{Allora:} \ m(b-a) \leq \sup(G) = \int_a^b f(x) dx = \inf(H) \leq M(b-a) \end{array}$$

- 2) Dal punto 1): $m \leq \frac{\int_a^b f(x)dx}{b-a} \leq M$. Sia $\mu = \frac{\int_a^b f(x)dx}{b-a}$, allora $\mu \in [m,M]$ e ovviamenete, $\int_a^b f(x)dx = \mu(b-a)$
- 3) $f \in C^0[a, b]$: per il teorema dei valori intermedi f([a, b]) è intervallo; per il teorema di Weistrass f ha max e min **GLOBALE**

Quindi
$$f([a,b]) = [m,M]$$

Per il punto 2), $\exists \mu \in [m,M]/\mu(b-a) = \int_a^b f(x)dx$;
ma $[m,M] = Im(f) \Rightarrow \exists x_0 \in [a,b]/f(x_0) = \mu$

9 Criterio integrale convergenza delle serie numeriche

9.1 Enunciato

$$\begin{array}{l} f: [1,+\infty) \to \mathbb{R}, \ f(x) \geq 0 \ \forall x \in [1,+\infty). \\ \text{Sia } f. \ \text{debolmente crescente in } [+\infty). \\ \text{Allora } (\sum_{k=1}^{\infty} f(k) \ \text{converge} \iff \int_{1}^{+\infty} f(x) dx \ \text{converge.}) \end{array}$$

10 Teorema delle derivate successive

10.1 Enunciato

Sia
$$n \in \mathbb{N}$$
, $n \ge 1$, $f \in C^{n-1}(I)$, I intervallo, $x_0 \in I$, x_0 interno ad I .
Suppongo che $\exists f^n(x_0)$ e che $f^{(k)}(x_0) = 0$ per $k = 1, 2, 3, ..., n - 1$.
 $f^{(n)} > 0 \ (< 0)$.

 $\Rightarrow \begin{cases} \text{se } n \text{ è } \mathbf{PARI}, \text{ si ha che } x_0 \text{ è punto di minimo (massmimo) locale forte.} \\ \text{se } n \text{ è } \mathbf{DISPARI}, \text{ allora } x_0 \text{ nè pto di massimo nè pto di minimo locale.} \end{cases}$

11 Teorema di Rolle

11.1 Enunciato

 $f:[a,b] \to \mathbb{R}, f$ continua in [a,b] f derivabile in (a,b) e f(a)=f(b)Allora $\exists \overline{x} \in [a,b]$ $x_1=a$ e $x_2=b$ (o viceversa): allora, dato che

$$f(a) = f(b) \Rightarrow f(x) = f(a) \ \forall x \in [a, b]$$
$$\Rightarrow f'(x) = 0 \ \forall x \in (a, b)$$

Se almeno uno tra x_1 e x_2 non è in un estremo di [a, b] esempio sia $x_1 \in (a, b)$. Allora x_1 è interno ad [a, b]. Per le condizioni necessarie di estremalità si ha $f'(x_1) = 0$ Nel caso di $x_2 \in (a, b)$: si replichi lo stesso ragionamento.

12 Teorema di Lagrange

12.1 Enunciato

 $f:[a,b]\to\mathbb{R}, f$ continua in [a,b], f derivabile in (a,b).

$$\Rightarrow \exists \overline{x} \in (a,b)/f(b) - f(a) = f'(\overline{x})(b-a)$$

12.2 Dimostrazione

Sia $\varphi(x) = (f(x) - f(a))(b - a) - (f(b) - f(a))(x - a)$, f è continua in [a, b]; φ è derivabile in (a, b), $\varphi(a) = 0 - 0 = 0$; $\varphi(b) = 0 - 0 = 0$. Per il teorema di Rolle: $\exists \overline{x} \in (a, b) \qquad \varphi(\overline{x}) \to \text{punto che azzera la derivata prima.}$ Ma $\varphi'(x) = (f'(x)(b - a)) - (f(b) - f(a)) \ \forall x \in (a, b)$

$$\Rightarrow 0 = \varphi'(\overline{x}) = f'(\overline{x})(b-a) - f(b) - f(a)$$
e quindi $0 = \varphi'(\overline{x})$ dato che il resto è nullo da cui segue la tesi.

13 Teorema condizione necessaria di convergenza delle serie

13.1 Enunciato

Se
$$\sum a_k$$
 converge, allora $\lim_{x \to +\infty} a_k = 0$

13.2 Dimostrazione

Sia
$$A_n = \sum_{k=0}^n a_n, \ n \in \mathbb{N}$$
.
Per ipotesi $\exists A \in \mathbb{R} \lim_{n \to +\infty} An = A$.
Inoltre si ha che $A_n - A_{n-1} = \sum_{k=0}^n a_n - \sum_{h=0}^{n-1} a_n = a_n$
Ma $\lim_{n \to +\infty} (A_n - A_{n-1}) = (\lim_{n \to +\infty} A_n) - (\lim_{n \to +\infty} A_{n-1}) = A - A = 0$
 $\Rightarrow \lim_{n \to +\infty} a_n = 0$.

14 Teorema Disuguaglianza di Bernoulli

14.1 Enunciato

$$x \in \mathbb{R}, \, x > -1.$$
 Allora $(1+x)^m \geq 1 + nx \; \forall n \in \mathbb{N}$

14.2 Dimostrazione

Passo base:

È vero che: $(1+x)^0 \le 1+0 \cdot x$?, si \Rightarrow passo base <u>verificato!</u>

Passo induttivo:

Ipotesi induttiva: $(1+x)^m \ge 1+mx$ con $m \in \mathbb{N}$ Tesi induttiva: $(1+x)^{m+1} \ge 1+(m+1)x$

 $(1+x)^{m+1} = (1+x)(1+x)^m \ge (1+mx)(1+x)$ $1+x+mx+mx^2 = x(1+m)+1+mx^2 = (m+1)x+1+mx^2 \ge (m+1)x+1$ Posso anche ingnorare mx^2 perche è sempre positivo

Quindi il passo induttivo è verificato per il principio di induzione $\forall x > -1$

15 Integrale di Riemann

15.1 Integrali Definiti

Vogliamo dare un significato al concetto (per $f(x) \ge 0$) di "area sottesa al grafico di f".

15.2 Estensione dell'integrale di Riemann

A casi cui $a \ge b$.

15.2.1 Definizione

f Riemann-integrale in $[a, b], a < b, a, b \in \mathbb{R}$.

Definiamo
$$\int_a^b f(x)dx = 0$$
 e $\int_b^a f(x)dx = -\int_a^b \mathbf{f}(\mathbf{x})d\mathbf{x}$

15.3 Teorema Integrazione di Riemann per parti

$$f,g:[a,b]\to\mathbb{R},\,f,g\in C^1([a,b])$$

Allora:
$$\int_a^b f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)dx$$

$$f(b)g(b) - f(a)g(a) = f(x)g(x)|_a^b$$

15.3.1 Dimostrazione

f'ge fg'sono continue in [a,b]e quindi sono R-int^{le} in [a,b]. Inoltre $\int_a^b (fg)'(x)dx = \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx$ Ma $f\cdot g$ è primitiva di (fg)'e quindi

$$\int_{a}^{b} (fg)'(x)dx = f(b)g(b) - f(a)g(a)$$
la tesi segue

16 Teorema di Bolzano - Weierstrß

16.1 Enunciato

Sia a_n una successione LIMITATA (Quindi superiormente e inferiormente limitata). Allora $\exists \{a_{n_k}\}$ successione di a_n t.c.

$$\lim_{k \to +\infty} a_{n_k} = l \in \mathbb{R}$$

16.2 Esempio 1

$$a_n = \begin{cases} 0 \text{ se } n \text{ pari} \\ n \text{ se } n \text{ dispari} \end{cases}$$

 $\operatorname{Sup}\{a_n\} = +\infty \Rightarrow$ non posso applicare il teorema di Bolzano-Weistraß.

16.3 Esempio 2

$$a_n = (-1)^n \Rightarrow |a_n| \le \forall n \in \mathbb{N}$$

Per il teorema di Bolzano-Weistraß $\exists a_{n_k}$ sottosuccessione di a_n t.c. $\exists \lim_{k \to +\infty} a_{n_k} \in \mathbb{R}$

17 Proprietà di Archimede

17.1 Enunciato

$$\forall x \in \mathbb{R} \ \exists n \in \mathbb{N}/n < x$$

17.2 Dimostrazione

Sia
$$x > 0 \to A := \{n \in \mathbb{N}/n \le x\} \subseteq \mathbb{N}$$

Tesi: $\iff A \ne \mathbb{N}$

Suppongo che $A = \mathbb{N} \neq \emptyset$

Sia $B := \{ y \in \mathbb{R}/y \ge n \ \forall n \in \mathbb{N} \}$

dal fatto che $A=\mathbb{N}$ segue che $x\in B\Rightarrow B\neq\emptyset$

Notiamo che $\forall y \in B$ si ha che $y \ge n \ \forall n \in A (= \mathbb{N})$. Quindi A e B sono separati per l'assioma di separazione $\exists \alpha \in \mathbb{R}/n \le \alpha \le y \ \forall n \in A \ \forall y \in B \ (A = \mathbb{N})$

Quindi è anche vero che $\mathbb{N}\ni n+1\leq \alpha\leq y\Rightarrow n\leq \alpha-1\ \forall n\in A\Rightarrow \alpha-1\in B$ Ma α è elemento separatore di A e $B\colon (n\leq)\alpha\leq y\ \forall y\in B\ \forall n\in A$

Quindi
$$\alpha \le \alpha - 1 \Rightarrow 1 \le 0 \rightarrow \textbf{Contraddizione}$$

Abbiamo provato l'applicazione contronominale; quindi il teorema è dimostrato. $A=\mathbb{N}$ FALSO $\Rightarrow a\subseteq \mathbb{N}$

[&]quot;Esiste sempre un numero intero più grande di qualsiasi numero reale".

Teorema Bernoulli - de l'Hopital 18

$\frac{0}{0}$; limiti al finito 18.1

 $a, b \in \mathbb{R}, f, g: (a, b) \to \mathbb{R}, f, g$ derivabili in (a, b) $\underline{g'(x) \neq 0} \ \forall x \in (a,b)$. Siano $\lim_{x \to a^+} g(x)$ e sia $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \widetilde{\mathbb{R}}$.

$$\Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$$

Nota vale anche per: $x \to b^-$, $Df = Dg = (a, b) \setminus \{x_0\}$

18.1.1 Errori comuni

1) Errore: uguagliare $\frac{f(x)}{g(x)}$ con $\frac{f'(x)}{g'(x)}$ senza aver verificato che l'ultimo limite esista.

2) Non si può usare il teorema di Bernoulli - de l'Hopital per studiare lim
 $\frac{\sin x}{x}$

$\frac{0}{0}$; limiti all'infinito

Sia $a \in \mathbb{R}$, $f, g: (a, +\infty)^* \to \mathbb{R}$, f, g derivabili in $(a, +\infty)^*$ e $g'(x) \neq 0 \ \forall x \in (a, +\infty)^*$ * $(a, +\infty)$ al contrario vale anche: $(-\infty, a)$.

Inoltre $\lim_{x \to +\infty} f(x) = 0 = \lim_{x \to +\infty} g(x)$ e $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l \in \widetilde{\mathbb{R}}$.

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$$

18.3 $\frac{\infty}{\infty}$; limiti al finito

 $a, b \in \mathbb{R}, f, g: (a, b) \to \mathbb{R}, f, g$ derivabili in (a, b) $g'(x) \neq 0 \ \forall x \in (a,b)$. Inoltre

 $\lim_{\substack{x\to a^+\\ *+\infty}}g(x)=+\infty^*; \lim_{\substack{x\to a^+\\ y'(x)}}\frac{f'(x)}{g'(x)}=l\in\widetilde{\mathbb{R}}.$

$$\Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$$

$\frac{\infty}{\infty}$; limiti al'infinito

Sia $a \in \mathbb{R}$, $f, g: (a, +\infty) \to \mathbb{R}$, f, g derivabili in $(a, +\infty)$ e $g'(x) \neq 0 \ \forall x \in (a, +\infty)$.

Inoltre $\lim_{x \to +\infty} g(x) = +\infty^*$; $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}$. *+\infty al contrario vale anche: $-\infty$

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$$

19 Teorema Densità di \mathbb{Q} in \mathbb{R}

19.1 Enunciato

Per ogni $x \in \mathbb{R}$ e $\forall \epsilon > 0$, $\exists z \in \mathbb{Q}/z < x < z + \epsilon$

19.2 Dimostrazione

 $x\in\mathbb{R},\,\epsilon>0\Rightarrow\frac{1}{\epsilon}>0$ Uso la Proprietà di Archimede: $\exists q\in\mathbb{N}/q>\frac{1}{\epsilon}>0$

Considero $qx \in \mathbb{R}$

Per le prorietà delle parti intrere $\exists p \in \mathbb{Z}/p \leq qz < p+1$ Divido per $q>0 \Rightarrow \frac{p}{q} \leq x < \frac{p+1}{q}$ con $\frac{p+1}{q} = \frac{p}{q} + \frac{1}{p}$

Ma $q > \frac{1}{\epsilon} = \epsilon q > 1 \Rightarrow \epsilon < \frac{1}{q}$

Segue che
$$\frac{p}{q} \le x < \frac{p}{q} + \epsilon$$

20 Definizione di Limite

 $f: A \subset \mathbb{R} \to \mathbb{R}, A \neq \emptyset$. Sia $x_0 \in \mathbb{R}$ un punto di accumulazione per A.

Diremo che f ammette limite $l \in \mathbb{R}$ per x che tende a x_0 [scriviamo $\lim_{n \to \infty} f(x) = l$] se e solo se per ogni intorno Vldi l esiste un intorno Ux_0 , intorno di x_0 , tale che $f(x) \in Vl$ per ogni $x \in (Ux_0 \cap A) \setminus \{x_0\}$.

N.B. Se $x_0 \in \{-\infty, +\infty\}$, l'ultima parte sopra è da leggere come: $(Ux_0 \cap A)$, senza togliere x_0 .

$$\forall \epsilon > 0 \quad \exists \delta_{\epsilon} / |f(x) - l| < \epsilon \ \forall x \in A, \ f(x) \in Vl$$

 $0 < |x - x_o| < \delta_{\varepsilon}$: Vuol dire prendere i valori del disco di raggio δ_{ε} e togliere il punto centrale in x_0 (quindi togliere x_0), si dice in questo caso: "disco bucato".

Teorema formula di Taylor con resto di Peano 21

21.1 Enunciato

Sia $n \in \mathbb{N}$, $n \ge 1$, $f: I \subset \mathbb{R} \to \mathbb{R}$, I intervallo, sia derivabile n-1 volte in I e tali funzioni derivate siano continue

Sia inoltre $x_0 \in I$, x_0 interno ed $\exists f^{(n)}(x_0)$

Allora $\exists w : I \subset \mathbb{R} \to \mathbb{R}$ t.c. w continua in $x_0, w(x_0) = 0$ ed inoltre

$$f(x) = \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k + w(x)(x - x_0)^n \quad \forall x \in I$$

Dove: $\sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k \to \text{è la formula di Taylor.}$ $w(x)(x - x_0)^n \to \text{è il resto di Peano.}$

22 Criterio di Von Leibniz (Serie segni alterni)

22.1 Enunciato

Sia $a_k \neq 0, a_{k+1} \neq a_k$ e $\lim_{x \to +\infty} a_k = 0$.

$$\Rightarrow \sum_{k=1}^{\infty} (-1)^{k-1} a_k$$
 converge

23 Criterio della radice (CAUCHY)

 $a_k \in \mathbb{R} \ \forall k \in \mathbb{N}. \ \text{Se} \lim_{k \to +\infty} \sqrt[k]{|a_k|} = l < 1$

$$\Rightarrow \sum a_k$$
è ASSOLUTAMENTE CONVERGENTE

N.B. se l = 1 non si può concludere.

24 Criterio del rapporto (D'Alembert)

 $a_k \in \mathbb{R} \setminus \{0\}, \ \forall k \in \mathbb{N}. \ \text{Se} \lim_{k \to +\infty} \left| \frac{a_k+1}{a_k} \right| = l < 1$

$$\Rightarrow \sum a_k$$
è ASSOLUTAMENTE CONVERGENTE

N.B. se l = 1 non si può concludere.

25 Criterio integrale

 $f: [1, +\infty) \to \mathbb{R}, f(x) \ge 0, \forall x \in [1, +\infty).$ Sia f. debolmente crescente in $[1, +\infty)$.

$$\Rightarrow (\sum_{k=1}^{+\infty} f(k) \text{ converge } \iff \int_{1}^{+\infty} f(x) dx \text{ converge})$$

26 Serie a termini di segno qualunque

Sia $a_n \in \mathbb{R}$, $\forall k \in \mathbb{N}$ una successione.

Diremo che $\sum \frac{(-1)^k}{k}$ è ASSOLUTAMENTE CONVERGENTE $\iff \sum |a_k|$ converge.

27 Criterio asintotico in (a,b]

27.1 Enunciato

 $f,g: (a,b] \to (0,+\infty), \ f,g$ R-integrali in $[x,b] \ \forall x>a.$ Siano f,g INFINITE per $t\to a^+.$ Allora:

1) Se
$$\lim_{t\to a^+} \frac{f(t)}{g(t)} = l \in \mathbb{R} \setminus \{0\} \Rightarrow (\int_a^b f(t)dt \text{ CONVERGE } \iff \int_a^b g(t)dt \text{ CONVERGE })$$

2) Se
$$\lim_{t\to a^+} \frac{f(t)}{g(t)} = 0 \Rightarrow \int_a^b g(t)dt$$
 CONVERGE $\Rightarrow \int_a^b f(t)dt$ **CONVERGE** e $\int_a^b f(t)dt$ **DIVERGE** $\Rightarrow \int_a^b g(t)dt$ **DIVERGE**

3) Se
$$\lim_{t\to a^+} \frac{f(t)}{g(t)} = +\infty \Rightarrow \int_a^b f(t)dt$$
 CONVERGE $\Rightarrow \int_a^b g(t)dt$ CONVERGE e $\int_a^b g(t)dt$ DIVERGE $\Rightarrow \int_a^b f(t)dt$ DIVERGE

27.2 Dimostrazione

Le ipotesi significano che:

- 1) f, g hanno lo stesso ordine di infinito.
- 2) f ha ordine di infinito inferiore a g.
- 3) f ha ordine di infinito superiore a g.

Basta scrivere la corrispondente Definizione di limite per ottenere delle disuguaglianze su cui usare il criterio del confronto.

28 Criterio asintotico in $[a, +\infty)$

28.1 Enunciato

 $f,g:[a.+\infty) \to (0,+\infty), \ f,g$ R-integrali in [a,x] $\forall x>a.$ f,g infinitesime per $t\to +\infty.$ Allora:

1) Se
$$\lim_{t\to +\infty} \frac{f(t)}{g(t)} = l \in \mathbb{R} \setminus \{0\} \Rightarrow (\int_a^{+\infty} f(t)dt \text{ CONVERGE } \iff \int_a^{+\infty} g(t)dt \text{ CONVERGE })$$

2) Se
$$\lim_{t \to +\infty} \frac{f(t)}{g(t)} = 0 \Rightarrow \int_a^{+\infty} g(t)dt$$
 CONVERGE $\Rightarrow \int_a^{+\infty} f(t)dt$ CONVERGE $\Rightarrow \int_a^{+\infty} f(t)dt$ DIVERGE

3) Se
$$\lim_{t\to +\infty} \frac{f(t)}{g(t)} = +\infty \Rightarrow \int_a^{+\infty} f(t)dt$$
 CONVERGE $\Rightarrow \int_a^{+\infty} g(t)dt$ CONVERGE $\Rightarrow \int_a^{+\infty} g(t)dt$ DIVERGE

28.2 Dimostrazione

Basta scrivere la corrispondente Definizione di limite per ottenere delle disuguaglianze su cui usare il Criterio del confronto.

Anche in questo caso dobbiamo capire il comportamento di funzioni prive di ordine di infinitesimo a $+\infty$.

29 Teorema dei valori intermedi

29.1 Enunciato

 $f: I \subset \mathbb{R} \to \mathbb{R}$, I intervallo, f continua in I.

 $\Rightarrow Im(f)$ è un intervallo.

30 Proprietà della parte intera

30.1 Enunciato

 $\forall x \in \mathbb{R} \exists ! \ n \in \mathbb{Z} \text{ t.c. } n \leq x < n+1$ **N.B.** $n \text{ è detto parte intera di } x \to n = |x|$

31 Teorema "Ponte" o limiti mediante successioni

31.1 Enunciato

 $f: A \subset \mathbb{R} \to \mathbb{R}, x_0 \in \widetilde{\mathbb{R}}$ di accumulazione per A.

$$\Rightarrow \lim_{x\to x_0} f(x) = l(\in \widetilde{\mathbb{R}}) \iff \forall \text{successione } a_n \in A \setminus \{x_0\} / \lim_{n\to +\infty} a_n = x_0, \text{ si ha che } \lim_{n\to +\infty} f(a_n) = l$$

31.2 Dimostrazione

" \Rightarrow " segue dal teorema di sostituzione dei limiti

"⇐" va dimostrato direttamente.

32 Teorema degli Zeri

32.1 Enunciato

 $f:[a,b]\to\mathbb{R}, f$ continua su [a,b] e f(a)f(b)<0.

$$\Rightarrow \exists \overline{x} \in (a,b)/f(\overline{x}) = 0$$

32.2 Dimostrazione (metodo dicotomico)

Suppongo f(a) < 0 < f(b)Sia $c = \frac{a+b}{2}$. Calcolo f(c):

- 1) Se $f(c) = 0 \Rightarrow$ la tesi è vera con $\overline{x} = c$
- 2) Se $f(c) < 0 \Rightarrow \text{pongo } a_1 = c, b_1 = b \text{ e ho } f(a_1) < 0 < f(b_1)$
- 3) Se $f(c) > 0 \Rightarrow \text{pongo } a_1 = a, b_1 = c \text{ e ho } f(a_1) < 0 < f(b_1)$

Nei casi 2) e 3): possiamo ripetere il procedimento su $[a_1,b_1]$: Calcolo $c_1=\frac{a_1+b_1}{2}$; Valuto $f(c_1)$

1) Se $f(c_1) = 0 \Rightarrow$ la tesi è vera con $\overline{x} = c_1$

2) e 3) come sopra.

Procedo in tal modo, per induzione, definendo $a_n,\,b_n,\,a\leq a_n< b_n\leq b$ e $f(a_n)<0< f(b_n)$. Osservo che $b_1-a_1=\frac{b-a}{2};b_2-a_2=\frac{b_1-a_1}{2}=\frac{b-a}{4}...=b_n-a_n=\frac{b-a}{2^n},n\geq 1$ Inoltre per costruzione, $a_n< a_n+1$ (deb. crescente) $b_{n+1}\leq b_n$ (deb. crescente).

Per il teorema sui limiti delle funzione monotone:

$$\lim_{n \to +\infty} a_n = l \in [a, b] (a_n \le a_n \le b)$$

$$\lim_{n \to +\infty} b_n = m \in [a, b] (a \le b_n \le b)$$

D'altra parte, $\lim_{n \to +\infty} (b_n - a_n) = \lim_{n \to +\infty} \frac{b-a}{2^n} = 0$ Ma $\lim_{n \to +\infty} (b_n - a_n) = m - l \Rightarrow l = m$.

Ricordiamo ora che $f(a_n) < 0 < f(b_n)$ e quindi che: $f(a_n) < f(l) < f(b_n)$

D'altra parte per il teorema del confronto, da $f(a_n) < 0$ segue $\lim_{n \to +\infty} f(a_n) \le 0 \Rightarrow f(l) \le 0$

Infine, per il teorema del confronto, da $f(b_n) > 0$ segue $\lim_{n \to +\infty} f(b_n) \ge 0 \Rightarrow f(l) \ge 0$.

Pertanto $0 \le f(l) \le 0 \Rightarrow f(l) = 0$ e la tesi segue $(\overline{x} = l)$

Principio di sostituzione degli infiniti di ordine inferiore 33

Enunciato 33.1

 f, g, f_1, g_1 , sono infinite per $x \to x_0$.

 f_1 è infinito di ordine inferiore a f,

 g_1 è infinito di ordine inferiore a g per $x \to x_0$.

$$\Rightarrow (\lim_{x\to x_0} \frac{f(x)+f_1(x)}{g(x)+g_1(x)} \text{esiste} \iff \lim_{x\to x_0} \frac{f(x)}{g(x)} \text{esiste}) \text{ ed in tal caso sono uguali fra loro.}$$

33.2 Dimostrazione (Traccia)

$$\frac{f(x) + f_1(x)}{g(x) + g_1(x)} = \frac{f(x)(1 + \frac{f_1(x)}{f(x)})}{g(x)(g(x) + \frac{g_1(x)}{g(x)})}$$

34Condizione necessaria del primo ordine per punti estremali interni

Enunciato 34.1

Se

- 1) $f: A \subset \mathbb{R} \to \mathbb{R}$
- 2) $x_0 \in A$, x_0 interno ad A
- 3) x_0 punto di minimo (massimo) locale
- 4) f derivabile in x_0

$$\Rightarrow f'(x_0) = 0$$

Una retta è sempre derivabile.

34.2 Dimostrazione

Sia x_0 un punto di minimo locale $\Rightarrow \exists \delta_1 > 0$ t.c. $f(x_0) \leq f(x) \ \forall x \in (x_0 - \delta_1, x_0 + \delta_1) \cap A$. So che x_0 è interno ad A; quindi $\exists \delta_2 > 0/(x_0 - \delta_2, x_0 + \delta_2) \subset A$.

Considero
$$x \in (x_0, x_0 + \delta)$$
 e $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$

So che
$$x_0$$
 è interno ad A ; quindi $\exists \delta_2 > 0/(x_0 - \delta_2, x_0 + \delta_2) \subset A$.
Sia $\delta^* = \min(\delta_1, \delta_2) > 0$. *(il minimo fra i 2)
Considero $x \in (x_0, x_0 + \delta)$ e $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$
Sia $x \in (x_0 - \delta, x_0)$; ho che $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$

$$\Rightarrow 0 \ge f(x) \ge 0 \Rightarrow f'(x_0) = 0$$

35 Classificazione delle discontinuità

 $A \subset \mathbb{R}, f: A \to \mathbb{R}, x_0$ di accumulazione per A.

Discontinuità eliminabile

Se
$$\lim_{x \to x_0^+} f(x) = l_1 \in \mathbb{R}, \lim_{x \to x_0^-} = l_2 \in \mathbb{R}$$

 $l_1 = l_2$, Ma $f(x_0) \neq l$, diremo che x_0 è punto di **discontinuità eliminabile** di f

Seconda Specie

Se $\lim_{x \to x_0^+} f(x) = l_1 \in \mathbb{R}$, $\lim_{x \to x_0^-} f(x) = l_2 \in \mathbb{R}$ e $l_1 \neq l_2$, diciamo che x_0 è discontinuità di **Prima Specie**

35.3 Seconda Specie

In ogni altro possibile caso in cui f è discontinua in x_0 , è detto di **Seconda Specie**.

