Loi normale: cas univarié

Définitions et propriétés de la loi normale

On rappelle que la loi normale de paramètres $\mu \in \mathbb{R}$ et $\nu > 0$ a une densité donnée pour tout $x \in \mathbb{R}$ par

$$\varphi_{\mu,\nu}(x) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{(x-\mu)^2}{2\nu}\right) .$$

On note $X \sim \mathcal{N}(\mu, \nu)$, si X est une variable aléatoire ayant pour densité $\varphi_{\mu,\nu}$. Notons que si $X \sim \mathcal{N}(\mu, \nu)$, alors X a pour **espérance** μ et pour **variance** ν . Le cas particulier $\mu = 0$ et $\nu = 1$ correspond à une variable aléatoire dite **centrée réduite**.

On parle aussi souvent de loi gaussienne, en hommage au mathématicien Carl Friedrich Gauss, le prince des mathématiciens¹.

La loi normale vérifie la propriété de **stabilité par transformation affine** : si $X \sim \mathcal{N}(\mu, \nu)$ et si $(a,b) \in \mathbb{R}^* \times \mathbb{R}$, alors la variable aléatoire aX + b suit une loi normale $\mathcal{N}(a\mu + b, a^2\nu)$. On peut donc facilement passer d'une loi normale centrée réduite à une loi normale quelconque via une transformation affine :

- si $X \sim \mathcal{N}(0, 1)$, alors $\sqrt{\nu}X + \mu \sim \mathcal{N}(\mu, \nu)$,
- si $X \sim \mathcal{N}(\mu, \nu)$, alors $(X \mu)/\sqrt{\nu} \sim \mathcal{N}(0, 1)$.

Ainsi, savoir simuler une loi normale centrée réduite, permet de simuler n'importe quelle loi normale.

Proposition 0.1 (Fonction caractéristique de la loi normale). La fonction caractéristique d'une variable aléatoire $X \sim \mathcal{N}(\mu, \nu)$ est donnée pour tout $t \in \mathbb{R}$ par

$$\begin{split} \phi_{\mu,\nu}(t) &\triangleq \mathbb{E}(e^{itX}) \\ &= \exp\left(i\mu t - \frac{\nu t^2}{2}\right) \;. \end{split}$$

¹Carl Friedrich Gauss: (1777-1855) mathématicien, astronome et physicien né à Brunswick, directeur de l'observatoire de Göttingen de 1807 jusqu'à sa mort en 1855

Preuve. on remarque d'abord que si $X \sim \mathcal{N}(0,1)$ alors pour tout $z \in \mathbb{R}$, on a

$$\begin{split} \mathbb{E}[e^{zX}] &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} e^{zx} \, dx \\ &= \frac{e^{\frac{1}{2}z^2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-z)^2} \, dx \\ &= \frac{e^{\frac{1}{2}z^2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} \, dy \\ &= e^{\frac{1}{2}z^2}. \end{split}$$

En utilisant le théorème de prolongement analytique (voir par exemple (Théorème I.10., Queffélec et Zuily 2013) on peut donc étendre cette formule à tout $z \in \mathbb{C}$, et particulier au cas z=it pour $t \in \mathbb{R}$. On obtient alors $\phi_{\mu,\nu}(t)=e^{-\frac{t^2}{2}}$. Enfin, on utilise la linéarité de l'espérance pour obtenir le résultat pour $X \sim \mathcal{N}(\mu,\nu)$. En effet, si $X \sim \mathcal{N}(0,1)$, alors $X = \mu + \sqrt{\nu}Z$ avec $Z \sim \mathcal{N}(0,1)$, et donc $\phi_{\mu,\nu}(t)=e^{i\mu t}\phi_{0,1}(\sqrt{\nu}t)=e^{i\mu t-\frac{\nu t^2}{2}}$.

Simulation d'une loi normale

i Une mauvaise piste pour simuler une loi normale

On peut simuler une loi normale à partir de variables aléatoires uniformes U_1,\dots,U_n iid en appliquant le théorème central limite à

$$\frac{U_1 + \dots + U_n - n/2}{\sqrt{n/12}} \, .$$

Cependant, cette méthode ne donne qu'une approximation d'une loi normale. Par ailleurs, la vitesse de convergence étant relativement lente (de l'ordre de \sqrt{n}), il faudra simuler beaucoup de variables aléatoires uniformes pour avoir une approximation correcte, ce qui demande un temps de calcul assez élevé.

Changement de variables

Le théorème suivant permet de passer de la loi d'un couple (X,Y) à celle de $(U,V)=\phi(X,Y)$, où ϕ est un C^1 -difféomorphisme, c'est-à-dire une application bijective dont la réciproque est également de classe C^1 .

Pour cela rappelons que la **jacobienne** de ϕ^{-1} correspond à la matrice (application linéaire) des dérivées partielles. Ainsi, si $\phi(x,y) = (u,v) \iff (x,y) = \phi^{-1}(u,v)$, alors

$$\mathbf{J}_{\phi^{-1}}:(u,v)\mapsto\begin{pmatrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{pmatrix}\;.$$

Théorème 0.1 (Caractérisation de la loi d'une variable aléatoire réelle). Soit (X,Y) un vecteur aléatoire de densité $f_{(X,Y)}$ définie sur l'ouvert $A \subset \mathbb{R}^2$ et $\phi: A \to B \subset \mathbb{R}^2$ un C^1 -difféomorphisme. Le vecteur aléatoire $(U,V) = \phi(X,Y)$ admet alors pour densité $f_{(U,V)}$ définie sur B pour tout $(u,v) \in \mathbb{R}^2$ par

$$(u,v) \mapsto f_{(X,Y)}(\phi^{-1}(u,v)) |\det(\mathbf{J}_{\phi^{-1}}(u,v))| \mathbf{1}_{B}(u,v)$$
.

On a énoncé le résultat en dimension 2 par simplicité. Il s'étend bien évidemment à une dimension d quelconque. En particulier, pour d=1, on retrouve le changement de variable classique dans le cas de l'intégration d'une fonction à valeurs réelles.

Preuve. On rappelle que la loi de (U,V) est caractérisée par les quantités $\mathbb{E}[h(U,V)]$ pour tout $h:\mathbb{R}^2\to\mathbb{R}$ mesurable bornée. On considère donc une telle fonction h et on applique la formule de transfert :

$$\begin{split} \mathbb{E}[h(U,V)] &= \mathbb{E}[h(\phi(X,Y))] \\ &= \int_{\mathbb{R}^2} h(\phi(x,y)) f_{(X,Y)}(x,y) \, dx dy \\ &= \int_A h(\phi(x,y)) f_{(X,Y)}(x,y) \, dx dy \enspace . \end{split}$$

On applique alors la formule du changement de variables vu en théorie de l'intégration avec $(u,v)=\phi(x,y)\iff \phi^{-1}(u,v)=(x,y)$:

$$\begin{split} &\mathbb{E}[h(U,V)] \\ &= \int_{B} & h(u,v) f_{(X,Y)}(\phi^{-1}(u,v)) |\det(\mathbf{J}_{\phi^{-1}}(u,v))| \, du dv \\ &= \int_{\mathbb{R}^{2}} & h(u,v) f_{(X,Y)}(\phi^{-1}(u,v)) |\det(\mathbf{J}_{\phi^{-1}}(u,v))| \mathbb{1}_{B}(u,v) \, du dv. \end{split}$$

ce qui donne le résultat voulu.

Exemple 0.1 (Exemple : loi de de $\cos(X)$). Donnons un exemple dans le cas réel. On considère une variable aléatoire X de loi uniforme sur $]0,\pi[$. Sa densité est donnée par $f_X(x)=1\!\!1_{]0,\pi[}(x)/\pi$. On pose $U=\cos(X)$ et on souhaite déterminer la loi de U.

On applique le théorème précédent avec la fonction $\phi^{-1}(u) = \arccos(u)$ sur]-1,1[. La densité de U est alors donnée pour tout $u \in \mathbb{R}$ par

$$f_U(u) = \frac{\mathbb{1}_{]0,\pi[}(\arccos(u))}{\pi} \Big| \frac{-1}{\sqrt{1-u^2}} \Big| \mathbb{1}_{]-1,1[}(u)$$
$$= \frac{1}{\pi\sqrt{1-u^2}} \mathbb{1}_{]-1,1[}(u) .$$

Méthode de Box-Müller

Un cas particulier fondamental de la formule de changement de variables concerne le passage en coordonnées polaires. Cette transformation est définie via l'application

$$\begin{array}{ccccc} \phi^{-1} & : &]0,\infty[\times]0,2\pi[& \to & \mathbb{R}^2 & ([0,\infty[\times\{0\})]) \\ & \begin{pmatrix} r \\ \theta \end{pmatrix} & \mapsto & \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix}. \end{array}$$

L'expression de ϕ ne nous sera pas utile. On peut tout de même la donner au passage :

$$\phi : \mathbb{R}^2 ([0, \infty[\times \{0\})] \to [0, \infty[\times]0, 2\pi[$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{x^2 + y^2} \\ 2\arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \end{pmatrix}.$$

Ici, le jacobien de ϕ^{-1} est la matrice

$$\mathbf{J}_{\phi^{-1}}(r,\theta) = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}\,,$$

qui vérifie $|\det(\mathbf{J}_{\phi^{-1}}(r,\theta))|=r.$ Ainsi, si (X,Y) a pour densité $f_{(X,Y)}$, alors $(R,\Theta)=\phi(X,Y)$ a pour densité

$$f_{(R,\Theta)}(r,\theta) = r \cdot f_{(X,Y)}(r\cos(\theta),r\sin(\theta)) \cdot \mathbbm{1}_{]0,\infty[}(r) \mathbbm{1}_{]0,2\pi[}(\theta).$$

Dans le cas où X et Y sont des variables aléatoires gaussiennes indépendantes, on obtient le résultat suivant.

Théorème 0.2 (Méthode de Box-Müller). Soit X et Y deux variables aléatoires indépendantes de loi normales centrées réduites : $X, Y \sim \mathcal{N}(0, 1)$. Le couple de variables aléatoires polaires $(R, \Theta) = \phi(X, Y)$ a pour densité

$$f_{R,\Theta}(r,\theta) = \Big(r\cdot e^{-\frac{r^2}{2}}1\!\!1_{]0,\infty[}(r)\Big) \bigg(\frac{1\!\!1_{]0,2\pi[}(\theta)}{2\pi}\bigg)\,.$$

Autrement dit, elles sont indépendantes, l'angle Θ suit une loi uniforme sur $]0,2\pi[$ et la distance à l'origine R suit une loi de Rayleigh donnée par la densité

$$f_R(r) = r \cdot e^{-r^2/2} 1\!\!1_{]0,\infty[}(r) \,, \quad r > 0 \,.$$

Preuve. La densité du couple (X,Y) est donnée par

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}, \quad x,y \in \mathbb{R}.$$

Le théorème précédent donne alors la densité de (R,Θ) :

$$\begin{split} f_{(R,\Theta)}(r,\theta) &= r \cdot f_{(X,Y)}(r\cos(\theta),r\sin(\theta)) \cdot \mathbb{1}_{]0,\infty[}(r)\mathbb{1}_{]0,2\pi[}(\theta) \\ &= r \cdot \frac{1}{2\pi} e^{-\frac{r^2}{2}} \cdot \mathbb{1}_{]0,\infty[}(r)\mathbb{1}_{]0,2\pi[}(\theta) \,, \end{split}$$

ce qui conclut la preuve.

Si R suit une loi de Rayleigh alors $\sqrt{-2\log(U)}$ a la même loi que R, où U est une variable aléatoire de loi uniforme sur]0,1[: Pour cela il suffit de remarquer que pour tout x>0, $F_R(x)=\mathbb{P}(R\leq x)=1-\exp(-\frac{x^2}{2}),$ et donc que pour tout $q\in]0,1[,F_R^\leftarrow(q)=\sqrt{-2\log(1-q)}$ et donc $\sqrt{-2\log(1-U)},$ puis $\sqrt{-2\log(U)}$ on donc la même loi que R.

L'algorithme de Box-Müller s'en suit: si U et V sont des v.a. indépendantes de loi uniforme sur [0,1] et qu'on définit X et Y par

$$\begin{cases} X = \sqrt{-2\log(U)}\cos(2\pi V) \\ Y = \sqrt{-2\log(U)}\sin(2\pi V) \,. \end{cases}$$

alors X et Y des variables aléatoires gaussiennes centrées réduites indépendantes.

Note

Cet algorithme n'est en fait pas souvent utilisé en pratique : il fait appel à des fonctions dont l'évaluation est coûteuse (logarithme, cosinus, sinus). Pour s'affranchir des fonctions trigonométriques, une version modifiée de l'algorithme de Box-Müller a été proposée : la

méthode de Marsaglia, qui s'appuie sur des variables aléatoires uniformes sur le disque unité (voir l'exercice dédié en TD). Une autre alternative est la méthode de Ziggurat.

Lois autour de la loi normale

Loi du χ^2

Concernant la prononciation, on prononce "khi-deux" le nom de cette loi.

Définition 0.1 (Loi du χ^2). Soit X_1,\dots,X_k des variables aléatoires i.i.d. de loi normale centrée réduite. La loi de la variable aléatoire $X=X_1^2+\dots+X_k^2$ est appelée loi du χ^2 à k degrés de liberté. Sa densité est donnée par

$$f(x) = \frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} x^{\frac{k}{2} - 1} e^{-x/2}, \quad x \ge 0,$$

où Γ désigne la fonction gamma d'Euler :

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

On note alors $X \sim \chi^2(k)$.

Au vu de sa définition, la simulation d'une loi du χ^2 est claire : on simule k variables aléatoires gaussiennes centrées réduites indépendantes et on somme leur carrés.

Preuve. Montrons pour k=1 que la densité est bien de la forme précédente, c'est-à-dire

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{e^{-x/2}}{\sqrt{x}}, \quad x \ge 0,$$

où on a utilisé la relation $\Gamma(1/2) = \sqrt{\pi}$ (intégrale de Gauss).

Soit $h:\mathbb{R}\to\mathbb{R}$ une fonction mesurable bornée. On a

$$\mathbb{E}[h(X_1^2)] = \int_{\mathbb{R}} h(x^2) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$$

$$= \int_{-\infty}^0 h(x^2) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx + \int_0^\infty h(x^2) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx.$$

En effectuant le changement de variable $x=-\sqrt{u}$ dans la première intégrale et $x=\sqrt{u}$ dans la deuxième, on obtient

$$\mathbb{E}[h(X_1^2)] = \int_{\infty}^0 h(u) \frac{e^{-u/2}}{\sqrt{2\pi}} \frac{du}{2\sqrt{u}} + \int_0^{\infty} h(u) \frac{e^{-u/2}}{\sqrt{2\pi}} \frac{du}{2\sqrt{u}}.$$

Les deux intégrales étant égales, on conclut que

$$\mathbb{E}[h(X_1^2)] = \int_0^\infty h(u) \frac{e^{-u/2}}{\sqrt{2\pi}\sqrt{u}} \, du \,,$$

ce qui prouve le résultat pour k = 1.

La généralisation à k quelconque se fait par récurrence: on utilise la formule de convolution des la loi pour obtenir la loi pour k + 1:

$$\begin{split} X_1^2 + \dots + X_k^2 + X_{k+1}^2 &= (X_1^2 + \dots + X_k^2) + X_{k+1}^2 \\ &= \chi^2(k) + X_{k+1}^2 \,. \end{split}$$

Ainsi,

$$\begin{split} f_{\chi^2(k+1)}(x) &= \int_0^\infty f_{\chi^2(k)}(x-y) f_{X_{k+1}^2}(y) \, dy \\ &= \int_0^x \frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} (x-y)^{\frac{k}{2}-1} e^{-\frac{x-y}{2}} \frac{e^{-\frac{y}{2}}}{\sqrt{2\pi y}} \, dy \\ &= \frac{e^{-\frac{x}{2}}}{2^{\frac{k+1}{2}} \Gamma(\frac{k}{2}) \Gamma(\frac{1}{2})} \int_0^x (x-y)^{\frac{k}{2}-1} \frac{1}{\sqrt{y}} \, dy \\ &= \frac{e^{-\frac{x}{2}}}{2^{\frac{k+1}{2}} \Gamma(\frac{k}{2}) \Gamma(\frac{1}{2})} x \int_0^1 (x-ux)^{\frac{k}{2}-1} \frac{1}{\sqrt{xu}} \, du \end{split}$$

avec le changement de variable y = ux. Ensuite,

$$f_{\chi^2(k+1)}(x) = \frac{x^{\frac{k+1}{2}}e^{-\frac{x}{2}}}{2^{\frac{k+1}{2}}\Gamma(\frac{k}{2})\Gamma(\frac{1}{2})} \int_0^1 (1-u)^{\frac{k}{2}-1}u^{1/2-1}du \ .$$

Or rappelons que si $B(a,b)=\int_0^1(1-u)^{a-1}u^{b-1}\,du$, alors pour tout $a,b\in[0,+\infty[,B(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. En effet, en faisant le changement de variable dans l'intégrale double qui suit:

$$\begin{array}{cccc} \psi & : & \mathbb{R}^+ \times \mathbb{R}^+ & \to & \mathbb{R}^+ \times]0,1[\\ & & (s,t) & \mapsto & \left(s+t,\frac{t}{s+t}\right), \end{array}$$

c'est-à-dire $\psi^{-1}(r,w)=(r(1-w),rw),$ et le jacobien est donné par $J_{\psi^{-1}}(r,w)=\begin{pmatrix} 1-w & -r \\ w & r \end{pmatrix},$ et donc $J_{\psi^{-1}}(r,w)=r,$ on obtient:

$$\begin{split} \Gamma(a)\Gamma(b) &= \int_0^\infty t^{a-1}e^{-t}\,dt \int_0^\infty s^{b-1}e^{-s}\,ds \\ &= \int_0^\infty \int_0^\infty e^{-t-s}t^{a-1}s^{b-1}\,dt\,ds \\ &= \int_0^1 \int_0^\infty e^{-r}(rw)^{a-1}(r(1-w))^{b-1}r\,dr\,dw \\ &= \int_0^1 w^{a-1}(1-w)^{b-1} \int_0^\infty e^{-r}r^{a+b-1}\,dr\,dw \end{split}$$

et donc $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. En appliquant cette relation pour $a=\frac{k}{2}$ et b=1/2, on obtient

$$f_{\chi^2(k+1)}(x) = \frac{x^{\frac{k+1}{2}}e^{-\frac{x}{2}}}{2^{\frac{k+1}{2}}\Gamma(\frac{k+1}{2})} \ .$$

Le résultat est donc prouvé par récurrence.

Loi de Student

Définition 0.2 (Loi de Student). Soit $X \sim \mathcal{N}(0,1)$ et $Y \sim \chi^2(k)$ deux variables aléatoires indépendantes. La loi de la variable aléatoire $V = \frac{X}{\sqrt{Y/k}}$ est appelée **loi de Student à** k degrés de liberté. Elle admet pour densité

$$f_V(t) = \frac{1}{\sqrt{k\pi}} \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})} \left(1 + \frac{t^2}{k}\right)^{-\frac{k+1}{2}}, \quad t \in \mathbb{R}.$$

La loi de Student correspond donc au ratio d'une loi normale par la racine carrée d'une loi du $\chi^2(k)$ normalisée. Ce ratio apparaît souvent en statistique lors de la construction d'intervalles de confiance. Cette loi a été décrite en 1908 par William Gosset².

Au vu de la proposition précédente, simuler une loi de Student est assez simple : on simule k+1 loi normales indépendantes X_1,\dots,X_{k+1} et on considère

$$V = \frac{\sqrt{k}X_{k+1}}{\sqrt{X_1^2 + \dots + X_k^2}} \,.$$

Formule de la densité. On applique pour cela la formule du changement de variables avec la transformation

$$\begin{array}{cccc} \phi & : & \mathbb{R}^* \times]0, \infty[& \to & \mathbb{R}^* \times \mathbb{R}^* \\ & & (x,y) & \mapsto & \left(x, \frac{x}{\sqrt{y/k}}\right), \end{array}$$

c'est-à-dire

$$\phi^{-1}(u,v) = \left(u, k \frac{u^2}{v^2}\right).$$

La fonction ϕ^{-1} a pour matrice jacobienne

$$J_{\phi^{-1}}(u,v) = \begin{pmatrix} 1 & 0\\ \frac{2k}{v^2} & \frac{-2ku^2}{v^3} \end{pmatrix} ,$$

dont le déterminant vaut $\frac{-2ku^2}{v^3}$. Par ailleurs, les variables aléatoires X et Y étant indépendantes, la densité du couple (X,Y) correspond au produit des densités :

$$f_{(X,Y)}(x,y) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \frac{1}{2^{\frac{k}{2}2}\Gamma(\frac{k}{2})} y^{\frac{k}{2}-1} e^{-\frac{y}{2}} 1\!\!1_{]0,\infty[}(y) \quad x,y \in \mathbb{R} \,.$$

Tout est prêt pour appliquer la théorème du changement de variables qui assure que la densité du couple (U,V) est donnée par

$$f_{(U,V)}(u,v) = \frac{e^{-\frac{u^2}{2}}}{\sqrt{2\pi}} \frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})} \left(\frac{ku^2}{v^2}\right)^{\frac{k}{2}-1} e^{-\frac{1}{2}\frac{ku^2}{v^2}} \frac{2ku^2}{(v^2)^{\frac{3}{2}}} 1\!\!1_{\mathbb{R}^*}(v) \,.$$

Il suffit alors de marginaliser pour obtenir la densité de V, ce qui s'effectue en calculant l'intégrale

$$\int_{\mathbb{R}} f_{(U,V)}(u,v) \, du \, .$$

Les termes en u de l'expression précédente s'intègre en

²William Gosset: (1876-1937) statisticien et chimiste anglais. Il était employé à la brasserie Guinness à Dublin, chargé du contrôle qualité. Son employeur lui refusant le droit de publier sous son propre nom, W. Gosset choisit un pseudonyme, *Student* (: étudiant).

$$\int_{-\infty}^{\infty} e^{-\frac{u^2}{2}(1+\frac{k}{v^2})} (u^2)^{\frac{k}{2}} du = \int_{0}^{\infty} e^{-s} \left(\frac{2s}{1+\frac{k}{v^2}}\right)^{\frac{k}{2}} \sqrt{\frac{2}{1+\frac{k}{v^2}}} \frac{ds}{2\sqrt{s}}$$
$$= \frac{2^{\frac{k+1}{2}}}{2} \frac{1}{\left(1+\frac{k}{v^2}\right)^{\frac{k+1}{2}}} \int_{0}^{\infty} e^{-s} s^{\frac{k}{2}-\frac{1}{2}} ds,$$

où la première égalité résulte du changement de variable

$$s = \frac{u^2}{2} \left(1 + \frac{k}{v^2} \right) \iff \sqrt{\frac{2s}{1 + \frac{k}{v^2}}} = u.$$

On reconnaît dans l'intégrale la valeur de $\Gamma(\frac{k+1}{2})$ ce qui conduit à

$$f_V(v) = \frac{1}{\sqrt{2\pi}} \frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} \bigg(\frac{k}{v^2}\bigg)^{\frac{k}{2}-1} \frac{2k}{(v^2)^{\frac{3}{2}}} \frac{2^{\frac{k+1}{2}}}{2} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\left(1+\frac{k}{v^2}\right)^{\frac{k+1}{2}}} \,.$$

On réécrit alors les termes en k/v^2 via

$$\left(\frac{k}{v^2}\right)^{\frac{k}{2}-1} \frac{k}{(v^2)^{\frac{3}{2}}} \frac{1}{\left(1+\frac{k}{v^2}\right)^{\frac{k+1}{2}}} = \left(\frac{k}{v^2}\right)^{\frac{k}{2}-1} \frac{1}{\sqrt{k}} \left(\frac{k}{v^2}\right)^{\frac{3}{2}} \frac{1}{\left(1+\frac{k}{v^2}\right)^{\frac{k+1}{2}}}$$

$$= \frac{1}{\sqrt{k}} \left(1+\frac{v^2}{k}\right)^{-\frac{k+1}{2}} ,$$

ce qui permet de conclure :

$$f_V(v) = \frac{1}{\sqrt{k\pi}} \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})} \Big(1 + \frac{v^2}{k}\Big)^{-\frac{k+1}{2}} \,. \label{eq:fv}$$

Loi de Cauchy

Définition 0.3 (Loi de Cauchy). Une variable aléatoire X suit une loi de Cauchy standard si sa densité est donnée par

$$f_X(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

On note alors $X \sim \mathcal{C}(0,1)$ dans ce cas. Plus généralement on dit que Y suit une loi de Cauchy de paramètres $(\mu,\sigma) \in \mathbb{R} \times]0,+\infty[$ si $Y=\mu+\sigma X$ où X suit une loi de Cauchy standard. Sa densité est alors donnée par

$$f_Y(y) = \frac{1}{\sigma \pi (1 + \frac{(y-\mu)^2}{\sigma^2})} \,, \quad y \in \mathbb{R} \,.$$

Pour rappel cette loi est importante comme exemple de loi qui n'admet ni espérance, ni variance a fortiori. En effet, si X suit une loi de Cauchy standard,

$$\int_{\mathbb{R}} |x| f_X(x) \, dx = \int_{\mathbb{R}} \frac{|x|}{\pi (1 + x^2)} \, dx.$$

Or $\frac{|x|}{\pi(1+x^2)} \sim \frac{1}{\pi x}$ quand $|x| \to \infty$, et $x \mapsto \frac{|x|}{\pi(1+x^2)}$ n'est donc pas intégrable sur $\mathbb R$ au sens de Lebesgue. C'est donc un exemple de loi pour laquelle la loi des grands nombres et le théorème central limite ne s'appliquent pas.

Fonction caractéristique

La fonction caractéristique de la loi de Cauchy standard est donnée par

$$\varphi_X(t) \triangleq \int_{\mathbb{R}} e^{itx} f_X(x) \, dx = e^{-|t|} \, .$$

et donc si $X \sim \mathcal{C}(\mu, \sigma)$, alors pour tout $t \in \mathbb{R}$, $\varphi_X(t) = e^{i\mu t - \sigma|t|}$. Pour la preuve voir par exemple (Exemple III.5.5., Barbe et Ledoux 2006) Une conséquence directe est que la somme de deux variables aléatoires indépendantes de loi de Cauchy reste une loi de Cauchy: Si $X_1 \sim \mathcal{C}(\mu_1, \sigma_2)$ et $X_2 \sim \mathcal{C}(\mu_2, \sigma_2)$ sont indépendantes, alors $X_1 + X_2 \sim \mathcal{C}(\mu_1 + \mu_2, \sigma_1 + \sigma_2)$ (car elles ont la même fonction caractéristique).

On en déduit que la moyenne de variables de Cauchy standard i.i.d suit la loi de Cauchy standard. En effet, si X_1,\dots,X_n sont i.i.d de loi de Cauchy standard, alors pour tout $t\in\mathbb{R}$, $\varphi_{\frac{1}{n}\sum_{i=1}^n X_i}(t)=e^{-|t|}$, et donc $\frac{1}{n}\sum_{i=1}^n X_i\sim\mathcal{C}(0,1)$. Ainsi la moyenne empirique ne converge pas en probabilité vers une constante!

Fonction de répartition et simulation

La fonction de répartition de X correspond, à une constante près, à la fonction arctangente qui est bijective de \mathbb{R} sur $]\frac{-\pi}{2}, \frac{\pi}{2}[$. La méthode d'inversion permet donc de simuler une variable aléatoire de loi de Cauchy. La proposition suivante donne un autre moyen.

Proposition 0.2 (Loi de Cauchy et loi normale). Soit X et Y deux variables aléatoires indépendantes de loi normale centrée réduite. Alors la variable aléatoire Y/X suit une loi de Cauchy.

Notons que Y/X est bien définie puisque X est différent de 0 presque sûrement.

Preuve. Comme pour la loi de Student, on démontre ce résultat avec un changement de variables. On considère l'application

$$\begin{array}{cccc} \phi & : & \mathbb{R}^* \times \mathbb{R} & \to & \mathbb{R}^2 \\ & & (x,y) & \mapsto & \left(x,\frac{y}{x}\right), \end{array}$$

c'est-à-dire

$$\phi^{-1}(u,v) = (u,uv)$$
.

La matrice jacobienne de ϕ^{-1} est donnée par

$$J_{\phi^{-1}}(u,v) = \begin{pmatrix} 1 & 0 \\ v & u \end{pmatrix} \,,$$

dont le déterminant vaut u. Rappelons également que la densité du couple (X,Y) vaut

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}, \quad x,y \in \mathbb{R}.$$

La formule du changement de variables donne alors la densité de $f_{(U,V)}$:

$$f_{(U,V)} = \frac{1}{2\pi} e^{-\frac{u^2 + u^2 v^2}{2}} |u| .$$

On obtient alors la densité de V en intégrant par rapport à u:

$$\begin{split} f_V(v) &= \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\frac{u^2 + u^2 v^2}{2}} |u| \, \mathrm{d}u \\ &= \frac{1}{\pi} \int_0^\infty e^{-\frac{u^2 (1 + v^2)}{2}} u \, \mathrm{d}u \\ &= \frac{1}{\pi} \left[-\frac{e^{-\frac{u^2 (1 + v^2)}{2}}}{1 + v^2} \right]_0^\infty \\ &= \frac{1}{\pi (1 + v^2)} \ . \end{split}$$

On obtient ainsi une autre manière de simuler une loi de Cauchy, en prenant le ratio de deux gaussiennes indépendantes. Cependant, la simulation via la méthode d'inversion peut-être moins coûteuse puisqu'elle ne fait appel qu'à une variable aléatoire uniforme et à la fonction tangente.

Bibliographie

Barbe, Philippe, et Michel Ledoux. 2006. Probabilités. Queffélec, H., et C. Zuily. 2013. Analyse pour l'agrégation. Dunod.