Real Analysis Notes

If $\frac{a}{h}$, $\frac{c}{d} \in \mathbb{Q}$, then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \qquad \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

$$\frac{a}{h} - \frac{c}{d} = \frac{ad - bc}{hd}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{h} \div \frac{c}{d} = \frac{ac}{hc}$$

provided that $\frac{c}{d} \neq \frac{0}{1}$.

Strictly speaking, we need to show that these operations are well-defined or that they don't depend on the choice of representatives from the equivalence classes.

Definition. Suppose *S* is an ordered set, and $E \subseteq S$. If there exists $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say E is **bounded above** and we call β an **upper bound**. The terms **bounded below** and **lower bound** are defined similarly.

Definition. Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose there exists $\alpha \in S$ such that α is an upper bound for E and if $\gamma < \alpha$, then γ is not an upper bound for *E*, then α is the **least upper bound** of *E* or the **supremum** of *E*, and we write $\alpha = \sup E$. The **greatest lower bound** and **infimum** (inf *E*) are defined similarly.

Example. Consider the set $\{r \in \mathbb{Q} : r^2 < 2\}$, which has no supremum in \mathbb{Q} .