Лекция 1

Ilya Yaroshevskiy

13 февраля 2021 г.

Содержание

1	Ста	тистическая вероятность	1
	1.1	Пространство элементарных исходов. Случайные событи	1
	1.2	Операции над событиями	2
	1.3	Классическое определение вероятности	2
	1.4	Геометрическое понятие вероятности	3

1 Статистическая вероятность

n — ч
сло экспериментов n_A — число выполнения события A Отношение
 $\frac{n_A}{n}$ — частота события A $P(A)\approx \frac{n_A}{n},\; n\to +\infty$

1.1 Пространство элементарных исходов. Случайные событи

Определение. Пространстов элементарных исходов называется множество содержащее все возможные результаты данного эксперимента из которых при испытании происходит ровно один. Элементы этого множества называются **элементарными исходами**

Обозначение.

- Пространство элементарных исходов Ω
- Элементарный исход $w \in \Omega$

Определение. Случайными событиями называются подмножества $A \subset \Omega$. Событие A наступило если в ходе эксперимента произошел один из элементарных исходов $w \in A$. w — благоприятный к A

Пример. Бросаем кубик. = $\{1, 2, 3, 4, 5, 6\}$ Выпало четное число очков. $A = \{2, 4, 6\}$

Пример. Монета бросается дважды

- Учитываем порядок. $\Omega = \{HH, HT, TH, TT\}$
- Не учитываем порядок. $\Omega = \{HH, HT, TT\}$

Пример. Бросается дважды кубик. Учитывем порядок. Число очков кратно 3. $A = \{(1,2),(2,1),(1,5),(5,1),\dots\}$

Пример. Монета бросается до выпадения герба. $\Omega = \{(H), (T,H), (T,T,H), \dots\}$ — счетное число исходов

Пример. Монета бросается на плоскость. $\Omega = \{(x,y)|x,y \in \mathbb{R}\}$ — нечетное число исходов

1.2 Операции над событиями

Определение. Ω — универсальное событие, достоверное, наступает всегда, т.к. содержит все элементарные исходы

 \emptyset — невозможное событие, никогда не выполняется, т.к. не одержит элементарных исходов

Определение. Суммой событий A+B называется событие $A\cup B$ — событие состоящее в том что произошло событие A или событие B, т.е. хотя бы одно и них

Определение. Произведением $A \cdot B$ называется событие $A \cap B$ — событие состоящее в том что произошло событие A и событие B, т.е. оба из них

Определение. Противоположным к A называется событие \overline{A} — состоящее в том событие A не произошло

Определение. Дополнение

Определение. События A и B называются **несовместными** если $A \cdot B = \emptyset$, т.е. в ходе эксперимента может наступить только одно из них

Определение. Событие A влечет событие B, если $A \subset B$

Определение. $P(A) \le 1$ — вероятность наступления события A

1.3 Классическое определение вероятности

Пусть Ω содержит конечное число исходов, при чем их можно считать равновозможным. Тогда применимо классическое определение вероятности

Определение. Вероятность события A $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$, где n — число всех возможных элеметарных исходов, m — число элементарных исходов благоприятных событию A. В частности, если $|\Omega=n|$, а A — элементарный исход, то $P(A)=\frac{1}{n}$

Примечание. Свойства:

- 1. $0 \le P(A) \le 1$
- 4. Если события A и B несовместны то вероятность P(A+B) = P(A) + P(B)

Доказательство.
$$]|A|=m_1, |B|=m_2, |A\cup B|=m_1+m_2$$
 $P(A+B)=\frac{m_1+m_2}{n}=\frac{m_1}{n}+\frac{m_2}{n}=P(A)+P(B)$

Пример. Найти вероятность того, что при бросании кости выпадет четное число очков $\Omega=\{1,2,3,4,5,6\},\ A=\{2,4,5\},\ P(A)=\frac{3}{6}=\frac{1}{2}$

Пример. В ящике 3 белых и два черных шара. Вынули 3 шара, найти вероятность того что из них 2 белый и 1 черных

$$n = C_5^3 = 10$$

$$m = C_3^2 \cdot C_2^1 = 6$$

$$P(A) = \frac{6}{10}$$

1.4 Геометрическое понятие вероятности

Пусть $\Omega \subset \mathbb{R}^n$ — замкнутая ограниченая область

 $\mu(\Omega)$ — конечная мера множества Ω (например мера Римана, т.ее длина, площадь, объем) В эту область *наугад* бросаем точку. Термин *наугад* означает, что веротяность попадания в область A зависит только от меры этой области, но не зависит от ее положения. Вероятность попадания в любые точки равновозможны. Тогда применимо геометрическое определение вероятности.

Определение.
$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$
, где $\mu(\Omega)$ — мера Ω , $\mu(A)$ — мера благоприятной области A

Примечание. Заметим что по этому определению, мера точки равна 0 и веротяность попадания в конкретную точку равна 0, хотя это событи не является невозможным.

Пример. Игра. Монета диаметром 6 сантиметров бросается на пол, вымощеный квадратной плиткой со стороной 20 сантиметров. Найти вероятнсть того что монета целиком окажется на одной плитке

$$S(\Omega) = 20^2 = 400$$

$$S(A) = 14^2 = 196$$

$$P(A) = \frac{196}{400} = 0.49$$

 $\it Задача.$ Пол выложен ламинатом. На пол бросается игла длиной равной ширине доски. Найти вероятность того что она пересечет стык

 $Pemenue.\ 2l-$ длина иглы, x- расстояние от центра игла до ближайщего края, $\varphi-$ угол к ближайшему краю

Игла пересечет край если $x \leq |AB|, \, |AB| = l \sin \varphi$

Можно считать что положение от центра и угол, независимы друг от друга. $x \in [0, l]. \varphi \in [0, \pi]$

$$A: x \le l \sin \varphi$$

$$S(\Omega) = \pi \cdot l$$

$$S(A) = \int_0^{\pi} l \sin \varphi d\varphi = 2l$$

$$P(A) = \frac{S(A)}{S(\Omega)} = \frac{2l}{\pi l} = \frac{2}{\pi}$$