Chapter 5 | Integration 509

interpreted as $s_2 + s_3 + s_4 + s_5 + s_6 + s_7$. Note that the index is used only to keep track of the terms to be added; it does not factor into the calculation of the sum itself. The index is therefore called a *dummy variable*. We can use any letter we like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let's try a couple of examples of using sigma notation.

Example 5.1

Using Sigma Notation

- a. Write in sigma notation and evaluate the sum of terms 3^i for i = 1, 2, 3, 4, 5.
- b. Write the sum in sigma notation:

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$$
.

Solution

a. Write

$$\sum_{i=1}^{5} 3^{i} = 3 + 3^{2} + 3^{3} + 3^{4} + 3^{5}$$
$$= 363.$$

b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as $\sum_{i=1}^{5} \frac{1}{i^2}.$

5.1 Write in sigma notation and evaluate the sum of terms 2^i for i = 3, 4, 5, 6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ represent two sequences of terms and let c be a constant. The following properties hold for all positive integers n and for integers m, with $1 \le m \le n$.

1.

$$\sum_{i=1}^{n} c = nc \tag{5.1}$$

2.

$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$
 (5.2)

3.

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$
(5.3)

4.

$$\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$$
(5.4)