Section 14.1 Counting

1 Find All the Subsets of a Set

Finding All the Subsets of a Set

Write down all the subsets of the set $\{a, b, c\}$.

0 Elements	1 Element	2 Elements	3 Elements
Ø	$\{a\}, \{b\}, \{c\}$	$\{a,b\},\{b,c\},\{a,c\}$	$\{a,b,c\}$

2 Count the Number of Elements in a Set

If A is a set with n elements, A has 2^n subsets.

Analyzing Survey Data

In a survey of 100 college students, 35 were registered in College Algebra, 52 were registered in Computer Science I, and 18 were registered in both courses.

- (a) How many students were registered in College Algebra or Computer Science I?
- (b) How many were registered in neither course?
- (a) First, let A = set of students in College Algebra
 B = set of students in Computer Science I

$$n(A) = 35$$
 $n(B) = 52$ $n(A \cap B) = 18$

Those in Set A that are not in Set B = 35 - 18 = 17

Those in Set B that are not in Set A = 52 - 18 = 34

So total is 18 + 17 + 34 = 69 students.

(b) Since 100 students were surveyed, it follows that 100 - 69 = 31 were registered in neither course.

THEOREM

Counting Formula

If A and B are finite sets, then

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

THEOREM

Addition Principle of Counting

If two sets A and B have no elements in common, that is,

if
$$A \cap B = \emptyset$$
, then $n(A \cup B) = n(A) + n(B)$

THEOREM

General Addition Principle of Counting

If, for n sets A_1, A_2, \ldots, A_n , no two have elements in common, then

$$n(A_1 \cup A_2 \cup \cdots \cup A_n) = n(A_1) + n(A_2) + \cdots + n(A_n)$$

Counting

Table 1 lists the level of education for all United States residents 25 years of age or older in 2007.

Level of Education	Number of U.S. Residents at Least 25 Years Old
Not a high school graduate	27,787,000
High school graduate	61,404,000
Some college, but no degree	32,451,000
Associate's degree	16,711,000
Bachelor's degree	36,726,000
Advanced degree	19,237,000

- (a) How many U.S. residents 25 years of age or older had an associate's degree or bachelor's degree?
- (b) How many U.S. residents 25 years of age or older had an associate's degree, a bachelor's degree, or an advanced degree?

Let A represent the set of associate's degree holders, B represent the set of bachelor's degree holders, and C represent the set of advanced degree holders. No two of the sets A, B, or C have elements in common

Counting

Level of Education	Number of U.S. Residents at Least 25 Years Old
Not a high school graduate	27,787,000
High school graduate	61,404,000
Some college, but no degree	32,451,000
Associate's degree	16,711,000
Bachelor's degree	36,726,000
Advanced degree	19,237,000

- (a) How many U.S. residents 25 years of age or older had an associate's degree or bachelor's degree?
- (b) How many U.S. residents 25 years of age or older had an associate's degree, a bachelor's degree, or an advanced degree?

$$n(A) = 16,711,000$$
 $n(B) = 36,726,000$ $n(C) = 19,237,000$

(a) Using formula (2),

$$n(A \cup B) = n(A) + n(B) = 16,711,000 + 36,726,000 = 53,437,000$$

There were 53,437,000 U.S. residents 25 years of age or older who had an associate's degree or bachelor's degree.

Counting

Level of Education	Number of U.S. Residents at Least 25 Years Old
Not a high school graduate	27,787,000
High school graduate	61,404,000
Some college, but no degree	32,451,000
Associate's degree	16,711,000
Bachelor's degree	36,726,000
Advanced degree	19,237,000

- (a) How many U.S. residents 25 years of age or older had an associate's degree or bachelor's degree?
- (b) How many U.S. residents 25 years of age or older had an associate's degree, a bachelor's degree, or an advanced degree?
- (b) Using formula (3),

$$n(A \cup B \cup C) = n(A) + n(B) + n(C)$$

= 16,711,000 + 36,726,000 + 19,237,000
= 72,674,000

There were 72,674,000 U.S. residents 25 years of age or older who had an associate's degree, bachelor's degree, or advanced degree.

Counting the Number of Possible Meals

The fixed-price dinner at Mabenka Restaurant provides the following choices:

Appetizer: soup or salad

Entree: baked chicken, broiled beef patty, baby beef liver,

or roast beef au jus

Dessert: ice cream or cheese cake

How many different meals can be ordered?

Choose an Appetizer

Choose an Entree

Choose a Dessert

2 choices

4 choices

2 choices

Number of Choices = $2 \cdot 4 \cdot 6 = 16$

Appetizer	Entree	Dessert
		Ice cream Soup, chicken, ice cream
	net.	Cheese cake Soup, chicken, cheese cake
	Chicken	Ice cream Soup, patty, ice cream
	Patty	Cheese cake Soup, patty, cheese cake
	Liver	Ice cream Soup, liver, ice cream
Soll	B_{Cef}	Cheese cake Soup, liver, cheese cake
55/		Ice cream Soup, beef, ice cream
		Cheese cake Soup, beef, cheese cake
(0		Ice cream Salad, chicken, ice cream Cheese cake
Salad	Chicken	Salad, chicken, cheese cake
	Patty	Cheese cake
	Liver	Salad, patty, cheese cake Ice cream Salad, liver, ice cream
	Beer	Cheese cake
	and the second	Salad, liver, cheese cake Ice cream Salad, beef, ice cream
		Cheese cake
		Salad, beef, cheese cake

THEOREM

Multiplication Principle of Counting

If a task consists of a sequence of choices in which there are p selections for the first choice, q selections for the second choice, r selections for the third choice, and so on, then the task of making these selections can be done in

$$p \cdot q \cdot r \cdot \dots$$

different ways.

Forming Codes

How many two-symbol code words can be formed if the first symbol is an uppercase letter and the second symbol is a digit?

It sometimes helps to begin by listing some of the possibilities. The code consists of an uppercase letter followed by a digit, so some possibilities are A1, A2, B3, X0, and so on. The task consists of making two selections: the first selection requires choosing an uppercase letter (26 choices) and the second task requires choosing a digit (10 choices). By the Multiplication Principle, there are

$$26 \cdot 10 = 260$$

different code words of the type described.