

Data Worx Ltd

Spain Electricity
ShortFall Project

TABLE OF CONTENTS

01.

Introduction

.50

Problem Statement

03.

EDA & Feature Engineering

04.

Model Building

05.

Model Evaluation

06.

Conclusion

01. INTRODUCTION

ABOUT US

Services Provided:

- Data collection,
- Data cleaning,
- Data analysis and
- Model building.

The Team

- 1. Ms. Mandy Rasemphe: Data Science Team lead
- 2. Mr. Karabo Molema: Data Analyst
- 3. Mr. Michael Benjamin: Machine Learning Engineer
- 4. Mr. John Chukwuebuka: Data Engineer

PROBLEM STATEMENT

- Importance of electricity
- Inadequate infrastructure
- Expansion of renewable energy resource infrastructure investments.
- Model the shortfall between energy generated by means of fossil fuels & various renewable resources

03. EDA ¢ Feature Engineering

Investigating Dataset

- Provided Dataset and supporting information explored
- Contains information on weather conditions.
- Spain's 5 prominent cities were tracked.
- Duration is from 1st January 2015 to 31st December 2017

Data Issues

Outliers

- 28 Features contained outliers
- Keep Outliers
- Use outlier robust techniques.

Data Issues

Missing Values

- One feature contained Null values: Valencia_pressure
- Replaced with median

Data Issues

Incorrect Feature Data types

- Some features were of object data types
- Features with incorrect data types were converted

Correlation

- Little to no correlation between predictors and response feature
- Multicollinearity amongst predictor features
- Drop Multicollinear features

Distribution of data

- Distributions of all features
- Importance of distribution
- Too much skewness may affect prediction models

Distribution of data

Date time feature

- Split time feature
- Get different information such as Year, Month, day, time.
- Useful in capturing seasonal patterns in a dataset

04. Model Building

TYPES OF MODELS

- Multiple linear regression
- Ridge regression
- Lasso regression
- Decision Tree
- Random Forest

05. Model Evaluation

Evaluation Metrics

ROOT MEAN SQUARED ERROR

	MEAN ABSOLUTE ERROR	R Squared
Linear Regression	3857	0.17
Ridge	3858	0.17
Lasso	3858	0.17
Decision Tree	2626	0.51
Random Forest	2285	0.70

BUSINESS VALUE OF PROJECT

- Our robust analysis has taken most factors into account.
- Model will assist in making accurate future predictions.
- Trends and patterns identified between fossils and renewables.
- This will assist government make informed business decisions.

Conclusion

- Show the extent of the shortfall between producing electricity from fossil fuel and renewable source.
- Random Forest best modelled the data
- Limitations of project included: Outliers
- Improvement for future purposes could be further investigation into where the outliers originates.
- Findings of the project comprehensively highlights the energy deficit between the two systems.

QUESTIONS???

