

Data Structures and Algorithms (ES221)

Graph Algorithms

Dr. Zubair Ahmad

Depth First Search (DFS)

- Formally, DFS is an uninformed search that progresses by
 - expanding the first child node of the search tree (or graph) that appears, and
 - thus going deeper and deeper
 - until a goal node is found, or until it hits a node that has no children.
- Then the search backtracks, returning to the most recent node it hasn't finished exploring.
- In a non-recursive implementation, all freshly expanded nodes are added to a stack for exploration.

DFS Pseudocode


```
procedure DFS(G, s)
   for each vertex u in G
     u.status = notVisited/white
     u.pi = NULL
     time = 0;
   for each vertex u in G
     if u.status = notVisited/white
            DFS visit(G, u)
```

DFS Pseudocode


```
procedure DFS_visit(G, u)
   u.status = visited / grey
     time = time + 1;
     u.d = time;
   for each v adjacent to u do
      if v.status = notVisited/white
         v.pi = u;
         DFS visit(G, v)
   u.status = processed/ black
```


DFS: Non-recursive Implementation

- 1. Initialize all nodes to the notVisited state (STATUS=1)
- 2. PUSH starting node A on stack and change its status to visited(STATUS=2)
- 3. Repeat 4-5 until stack is empty
 - 4. POP *N*. Process it and change its status to processed(STATUS=3)
 - 5. PUSH on stack all the neighbors of *N* that are still in notVisited state and change their status to visited
- 6. Exit

r

S
V

t
X
V

u
X
V

у	
X	
V	

The **Dijkstra algorithm** is a **greedy algorithm** used to find the **shortest paths from a single source node** to all other nodes in a graph with **non-negative edge weights**

Dijkstra's algorithm

- N: set of nodes for which shortest path already found
- Initialization: (Start with source node s)
 - $N = \{s\}, D_s = 0$, "s is distance zero from itself"
 - $D_j = C_{sj}$ for all $j \neq s$, distances of directly-connected neighbors
- Step A: (Find next closest node i)
 - Find i ∉ N such that
 - $D_i = \min D_j$ for $j \notin N$
 - Add *i* to *N*
 - If N contains all the nodes, stop
- Step B: (update minimum costs)
 - For each node j ∉ N
 - $D_i = \min(D_i, D_i + C_{ij})$
 - Go to Step A

Minimum distance from s to j through node i in N

Execution of Dijkstra algorithm

Iteration	N	D_2	D_3	D_4	D_5	D_6
Initial	{1}	3	2 🗸	5	oc	∞
1	{1,3}	3 🗸	2	4	∞	3
2	{1,2,3}	3	2	4	7	3 🗸
3	{1,2,3,6}	3	2	4 🗸	5	3
4	{1,2,3,4,6}	3	2	4	5 🗸	3
5	{1,2,3,4,5,6}	3	2	4	5	3

Shortest Paths in Dijkstra's Algorithm

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
 0	А	2,A	5,A	1,A	infinity	infinity
1	AD	2,A	4,D		2,D	infinity
	ADE	2,A	3,E			4,E
→ 3	ADEB		3,E			4,E
	ADEBC					4,E
5	ADEBCF					

All pairs shortest path

- So far, we have discussed the problem of finding the shortest paths, starting from a specific node.
- How about finding the shorted path between every possible pair of nodes in a graph?
- Which algorithm can be used?
- Dijkstra' s algorithm can be used
 - Call the Dijkstra's algorithm by setting each node as the source node, one by one
- Any Other solution?
 - Floyd -Warshal Algorithm can be used instead.

- Initially $d_{ij} = w_{ij}$
 - $w_{ii} = 0$
 - w_{ij} = weight of the directed edge
 - *W_{ii}* = ∞

if
$$i = j$$

if $i \neq j$, and $(i, j) \in E$

if $i \neq j$, and $(i, j) \in E$

- Initially
 - p_{ij} = Nil
 - $p_{ij} = i$

if
$$i = j$$
 or $w_{ij} = \infty$

if
$$i \neq j$$
 and $w_{ij} < \infty$

<i>i j</i>	1	2	3	4	5	6
1	0	3	2	5	8	8
2	3	0	5	1	4	8
3	2	(5)) 0	2	8	1
4	5	1	2	0	3	8
5	∞	4	8	3	0	2
6	∞	8	1	∞	2	0

I / j	1	2	3	4	5	6
1	Nil	1	1	1	Nil	Nil
2	2	Nil	1	2	2	Nil
3	3	$\left(1 \right)$	Nil Nil	3	Nil	3
4	4	4	4	Nil	4	4
5	NI	5	NI	5	Nil	5
6	Nil	Nil	6	Nil	6	Nil

i / j	1	2	3	4	5	6	I / j	1	2	3	4	5	6
1	0	3	2	4	7	3	1	Nil	1	1	2	2	3
2	3	0	5	1	4	6	2	2	Nil	1	2	2	3
3	2	5	0	2	9	1	3	3	1	Nil	3	2	3
4	4	1	2	0	3	(3)	4	2	4	4	Nil	4	3
5	7	4(9	3	0	2	5	2	5	1	5	Nil	5
6	3	6	1	3	2	0	6	3	(1)	6	3	6	N

• • •	•)	
1	0	3	2	4	7	3
2	3	0	3	1	4	4
3	2	3	0	2	5	1
4	4	1	2	0	3	3
5	7	4	5	3	0	2
6	3	4	1	3	2	0

2	2	Nil	4	2	2	3
3	3	4	Nil	3	4	3
4	2	4	4	Nil	4	3
5	2	5	4	5	Nil	5
6	4	1	6	3	6	Nil

Nil

Minimum Spanning Tree (MST)

- A minimum spanning tree of an undirected graph G is a tree formed from graph edges that connects all the vertices of G at lowest total cost.
- A minimum spanning tree exists if and only if G is connected

A graph G

MST of G

Connect all vertices with the **minimum total edge** weight, without forming any cycles.

Start with any vertex (this becomes the root of the MST).

Maintain two sets:

Tree vertices (T): already included in the MST.

Non-tree vertices: not yet in the MST.

- One way to compute a minimum spanning tree is to grow the tree in successive stages.
- In each stage,
 - 1. Pick a node as the root,
 - 2. add an edge, and
 - 3. the associated vertex, to the tree.
- At any point in the algorithm, we have
 - a set of vertices that have already been included in the tree;
 - the rest of the vertices are not in the tree yet
- At each stage, the algorithm finds
 - \blacksquare a new vertex to add to the tree by choosing the edge (u, v)
 - such that the cost of (u, v) is the smallest among all edges where u is in the tree and v is not.
- Same as Dijkstra' s algo?

Prim Algorithm $v_1 \ v_4 \ v_2 \ v_3 \ v_7 \ v_6 \ v_5 \ v_3 \ v_4 \ v_7 \ v_6 \ v_7 \ v_6 \ v_7 \ v_6 \ v_7 \ v_8 \ v_7 \ v_8 \ v$

 p_4

 p_5

 p_6

 D_4 ,

 p_3

 D_2 , p_2


```
MST-Kruskal (G,w)
 F = { }
 For each vertex v \in V[G]
   MakeSet(v)
 sort the edges(E) in increasing order by
 weight w
 for each edge (u, v) \in E
   if FindSet(u) \neq FindSet(v)
        F = F U \{(u,v)\}
            UNION (u, v)
```


- MakeSet(v): Create a new set whose only member is pointed to by v. Note that for this operation v must already be in a set.
- FindSet(v): Returns a pointer to the set containing v.
- UNION(u, v): Unites the dynamic sets that contain u and v into a new set that is union of these two sets.

SETS

Min Edge =
$$(v_1, v_4)$$

FindSet(
$$v_1$$
) \neq FindSet(v_4)

$$F = F \cup \{(v_1, v_4)\}$$

UNION (v_1, v_4)

 $\left(\mathbf{v}_{3}\right)$

$$F = \{ (v_1, v_4) \}$$

$$v_6$$

SETS

Min Edge =
$$(v_6, v_7)$$

FindSet(
$$v_6$$
) \neq FindSet(v_7)

$$F = F \cup \{(v_6, v_7)\}$$

UNION(v_6, v_7)

$$F = \{ (v_1, v_4), (v_6, v_7) \}$$

SETS

Min Edge =
$$(v_1, v_2)$$

FindSet(
$$v_1$$
) \neq FindSet(v_2)

$$F = F \cup \{(v_1, v_2)\}$$

UNION(v_1, v_2)

$$F = \{ (v_1, v_4), (v_6, v_7), (v_1, v_2) \}$$

SETS

2

```
{v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, v<sub>4</sub>},
{v<sub>5</sub>},
{v<sub>6</sub>, v<sub>7</sub>}
```

Min Edge =
$$(v_3, v_4)$$

FindSet(
$$v_3$$
) \neq FindSet(v_4)

$$F = F \cup \{(v_3, v_4)\}$$

UNION (v_3, v_4)

SETS

2

$$\left\{ \begin{matrix} v_1 \;,\, v_2 \;,\, v_3 \;,\, v_4 \;,\, v_6 \;,\, v_7 \end{matrix} \right\} \;, \\ \left\{ \begin{matrix} v_5 \; \end{matrix} \right\}$$

FindSet(
$$v_4$$
) \neq FindSet(v_7)
$$F = F \cup \{(v_4, v_7)\}$$

$$UNION(v_4, v_7)$$

$$F = \{ (v_1, v_4), (v_6, v_7), (v_1, v_2), (v_3, v_4), (v_4, v_7) \}$$

FINAL SET

 V_7

Min Edge = (v_7, v_5)

FindSet(
$$v_7$$
) \neq FindSet(v_5)

$$F = F \cup \{(v_7, v_5)\}\$$
UNION(v_7, v_5)

 v_1
 v_2
 v_3
 v_4
 v_5

Questions?

zahmaad.github.io