Chapitre 2 Structures de données : arbres binaires et graphes

HLIN401 : Algorithmique et complexité

L2 Informatique Université de Montpellier 2020 – 2021

Introduction

Étude de

- ▶ Deux objets informatiques avec algorithmes de base
 - ► Arbres (binaires)
 - ► Graphes (non orientés)

Introduction

Étude de

- ▶ Deux objets informatiques avec algorithmes de base
 - Arbres (binaires)
 - Graphes (non orientés)
- deux structures de données basées sur les arbres binaires
 - Arbres binaires de recherche (ABR)
 - ► Tas

Introduction

Étude de

- ▶ Deux objets informatiques avec algorithmes de base
 - Arbres (binaires)
 - Graphes (non orientés)
- deux structures de données basées sur les arbres binaires
 - Arbres binaires de recherche (ABR)
 - ► Tas

Rappel (HLIN301)

- ► Tableaux
- Listes (simplement) chaînées
- ► Piles et files
- Arbres binaires et tas

1. Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

3. Tas

- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

1. Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes
- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Définition

Définition

Un arbre binaire est défini récursivement :

- ► l'arbre vide Ø est un arbre binaire;
- un arbre non vide est constitué d'une racine, d'un sous-arbre gauche G et d'un sous-arbre droit D qui sont eux-mêmes deux arbres binaires.

Représentation informatique

Représentation informatique

Un nœud x est soit

- ▶ le **nœud vide**, noté ∅
- défini par une valeur val(x) et trois pointeurs vers d'autres nœuds : père(x), filsG(x), filsD(x) tels que
 - ▶ Si filsG(x) $\neq \emptyset$, père(filsG(x)) = x
 - ► Si filsD(x) $\neq \emptyset$, père(filsD(x)) = x

Un arbre binaire A est donné par une racine rac(A) qui est un nœud tel que père(rac(A)) = \emptyset .

Utilité des arbres binaires

- Arbres binaires de recherche
- ► Tas
- Analyse syntaxique
- ▶ Bases de données
- ► Partition binaire de l'espace
- ► Tables de routage

$$2 \times (3+4) - (6 \times 2 + 4)$$

Hauteur et niveaux

Un nœud x est une **feuille** si internes fils $G(x) = \emptyset$ et fils $D(x) = \emptyset$

- Un nœud x est une feuille si fils $G(x) = \emptyset$ et fils $D(x) = \emptyset$
- ► La hauteur h(x) d'un nœud x dans l'arbre A est définie récursivement par
 - Si x = rac(A), h(x) = 0 $(\Leftrightarrow p\`{ere}(x) = \emptyset)$
 - \triangleright Sinon, h(x) = 1 + h(pere(x))
- ► La **hauteur** d'un arbre A est $h(A) = \max\{h(x) : x \in A\}$
- Le $k^{\text{ème}}$ niveau de A est $N_k = \{x : h(x) = k\}$

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Lemme

$$h(A) + 1 \le n(A) \le 2^{h(A)+1} - 1$$
 où $n(A) = nombre de nœuds de A$

Preuve
$$n(A) = \sum_{i=0}^{h(A)} |N_i| \text{ et } 1 \le |N_i| \le 2^i$$

$$\rightsquigarrow h(A) + 1 \le n(A) \le \sum_{i=0}^{h(A)} 2^i = 2^{h(A)+1} - 1$$

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Lemme

$$h(A) + 1 \le n(A) \le 2^{h(A)+1} - 1$$
 où $n(A) = nombre de nœuds de A$

$$n(A) = \sum_{i=0}^{h(A)} |N_i| \text{ et } 1 \leq |N_i| \leq 2^i$$

$$\rightsquigarrow h(A) + 1 \le n(A) \le \sum_{i=0}^{h(A)} 2^i = 2^{h(A)+1} - 1$$

Corollaire

$$\lfloor \log(n(A)) \rfloor \leq h(A) < n(A)$$

Algorithme: PARCOURSINFIXE(x)

si $x \neq \emptyset$:

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

Algorithme : ParcoursInfixe(x) $\mathbf{si} \times \neq \emptyset$: ParcoursInfixe(filsG(x)) Afficher val(x) ParcoursInfixe(filsD(x))

► Affichage: 273056819

Algorithme: PARCOURSINFIXE(x)

si $x \neq \emptyset$:

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

- Affichage: 273056819
- ightharpoonup Complexité en O(n(A))

Preuve \mathcal{P}_n : l'algo. effectue 2n appels à lui-même au total

- ightharpoonup n = 0: pas trop dur...
- Supp. \mathcal{P}_k pour tout k < n(A) et soit n_G et n_D le nb de nœuds dans les sous-arbres gauche et droit. Dans les deux appels récursifs, $2n_G$ et $2n_D$ appels à PARCOURSINFIXE, donc au total $2n_G + 2n_D + 2$ appels. Or $n(A) = n_G + n_D + 1$, d'où le résultat.

Algorithme : ParcoursInfixe(x)

si $x \neq \emptyset$:

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

- ► Affichage: 273056819
- ightharpoonup Complexité en O(n(A))
- ► Appel de la fonction : PARCOURSINFIXE(rac(A))
- ► Variantes : PARCOURSPREFIXE et PARCOURSSUFFIXE → TD

Exemples d'algorithmes

```
Algorithme: MINIMUM(x)
m \leftarrow +\infty
\mathbf{si} \times \neq \emptyset:
m_G \leftarrow \text{MINIMUM(filsG(x))}
m_D \leftarrow \text{MINIMUM(filsD(x))}
m \leftarrow \min(m_G, m_D, \text{val}(x))
renvoyer m
```


Exemples d'algorithmes

```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

\mathbf{si} \times \neq \emptyset :

m_G \leftarrow \mathsf{MINIMUM}(\mathsf{filsG}(x))

m_D \leftarrow \mathsf{MINIMUM}(\mathsf{filsD}(x))

m \leftarrow \min(m_G, m_D, \mathsf{val}(x))

renvoyer m

Algorithme : NBNŒUDS(x)

n \leftarrow 0
```

```
Algorithme: NBNGEODS(x)
n \leftarrow 0
si x \neq \emptyset:
\begin{array}{c} n_G \leftarrow \text{NBNGEODS}(\text{filsG}(x)) \\ n_D \leftarrow \text{NBNGEODS}(\text{filsD}(x)) \\ n \leftarrow n_G + n_D + 1 \end{array}
renvoyer n
```


Algorithme générique sur les arbres binaires

Appel de ALGO(rac(A)) avec

```
Algorithme: ALGO(x)

res \leftarrow valeur pour l'arbre vide

si x \neq \emptyset:

res<sub>G</sub> \leftarrow ALGO(filsG(x))

res<sub>D</sub> \leftarrow ALGO(filsD(x))

res \leftarrow f(res, res<sub>G</sub>, res<sub>D</sub>, x)

renvoyer res
```

Algorithme générique sur les arbres binaires

Appel de ALGO(rac(A)) avec

```
Algorithme: ALGO(x)

res \leftarrow valeur pour l'arbre vide

si x \neq \emptyset:

res_G \leftarrow ALGO(filsG(x))

res_D \leftarrow ALGO(filsD(x))

res \leftarrow f(res, res_G, res_D, x)

renvoyer res
```

Lemme

L'algorithme générique sur les arbres binaires a une complexité O(n(A)) si le calcul de f a une complexité en temps en O(1).

Parcours en largeur d'un arbre binaire

Algorithme: ParcoursLargeur(x)

 $F \leftarrow \text{file vide}$

 $\mathbf{si} \times \neq \emptyset$: l'ajouter à F

tant que F est non vide :

 $y \leftarrow \text{défiler un élément de } F$

Afficher val(y)

si fils $G(y) \neq \emptyset$: l'ajouter à F

Parcours en largeur d'un arbre binaire

Algorithme: ParcoursLargeur(x)

 $F \leftarrow \text{file vide}$

 $\mathbf{si} \times \neq \emptyset$: l'ajouter à F

tant que F est non vide :

 $y \leftarrow \text{défiler un élément de } F$

Afficher val(y)

 \mathbf{si} fils $\mathsf{G}(y) \neq \emptyset$: l'ajouter à F

- ► Affichage: 5 3 6 7 0 1 2 8 9
 - niveau par niveau
 - de gauche à droite

Parcours en largeur d'un arbre binaire

Algorithme: ParcoursLargeur(x)

 $F \leftarrow \text{file vide}$

 $\mathbf{si} \times \neq \emptyset$: l'ajouter à F

tant que F est non vide :

 $y \leftarrow \text{défiler un élément de } F$

Afficher val(y)

si fils $G(y) \neq \emptyset$: l'ajouter à F

- ► Affichage: 5 3 6 7 0 1 2 8 9
 - niveau par niveau
 - de gauche à droite
- ightharpoonup Complexité en O(n(A))

1. Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

chemin de longueur 4

chemin de longueur 4

Représentations informatiques

Matrice d'adjacence

•										
		1		0	0	0	0	0	1	0.
		0		0	1	1	0	0	0	0
		0		0					0	0
	0	0	0	0	0	1	1	0	0	0
	0	1	1	0	0	0			1	0
	0	1	1	1	0	0	0	1	1	0
	0	0	0	1	0	0	0	0	1	1
	0	0	0			1	0	0	1	0
	1	0	0	0	1	1	1	1	0	0
	0	0	0	0	0	0	1	0	0	0

Listes d'adjacence

 $\begin{array}{lll} 0: & 1 \to 2 \to 8 \\ 1: & 0 \to 4 \to 5 \\ 2: & 0 \to 4 \to 5 \\ 3: & 5 \to 6 \\ 4: & 1 \to 2 \to 8 \\ 5: & 1 \to 2 \to 7 \to 8 \\ 6: & 3 \to 8 \to 9 \\ 7: & 5 \to 8 \end{array}$

8: $0 \rightarrow 4 \rightarrow 5 \rightarrow 6$

Représentations informatiques

Matrice d'adjacence

٠	Waterice a adjacence									
	Γ0	1	1	0	0	0	0	0	1	0
	1	0	0	0	1	1	0	0	0	0
	1	0	0	0	1	1	0	0	0	0
	0	0	0	0	0	1	1	0	0	0
	0	1	1	0	0	0	0	0	1	0
	0	1	1	1	0	0	0	1	1	0
	0		0	1	0	0	0	0	1	1
	0	0	0	0	0	1	0	0	1	0
	1	0	0	0	1	1	1	1	0	0
	0	0	0	0	0	0	1	0	0	0

Listes d'adjacence

 $\begin{array}{lll} 0: & 1 \to 2 \to 8 \\ 1: & 0 \to 4 \to 5 \\ \hline 2: & 0 \to 4 \to 5 \\ 3: & 5 \to 6 \\ 4: & 1 \to 2 \to 8 \\ 5: & 1 \to 2 \to 7 \to 8 \\ 6: & 3 \to 8 \to 9 \end{array}$

8: $0 \rightarrow 4 \rightarrow 5 \rightarrow 6$

7: $5 \rightarrow 8$

Parcours en largeur

Algorithme: ParcoursLargeur(x)

 $F \leftarrow \text{file vide}$

 $\mathbf{si} \times \neq \emptyset$: l'ajouter à F

tant que F est non vide :

 $y \leftarrow \text{défiler un élément de } F$

Afficher val(y)

si fils $G(y) \neq \emptyset$: l'ajouter à F


```
Algorithme: PARCOURSLARGEUR(G, s)

F \leftarrow \text{ file vide}

Ajouter s à F et marquer s

tant que F est non vide:

u \leftarrow \text{ défiler un élément de } F

Afficher u

pour tout voisin non marqué v de u:

Ajouter v à F et marquer v
```



```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```


- ► File: 0
- ► Affichage :

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```


- File:
- ► Affichage : 0

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge \overline{F} et marquer v
```


► File: 1 2 8

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```

► File : 28

► Affichage : 0 1

```
Algorithme: PARCOURSLARGEUR(G, s)

F \leftarrow \text{file vide}

Ajouter s à F et marquer s

tant que F est non vide:

u \leftarrow \text{défiler un élément de } F

Afficher u

pour tout voisin non marqué v de u:

A

Ajouter v à F et marquer v
```


► File: 2845

► Affichage : 0 1

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
   Afficher 11
   pour tout voisin non marqué v de u :
      Ajouter v à F et marguer v
```


► File : 8 4 5

► Affichage: 0 1 2

```
Algorithme: PARCOURSLARGEUR(G, s)

F \leftarrow \text{file vide}

Ajouter s à F et marquer s

tant que F est non vide:

u \leftarrow \text{défiler un élément de } F

Afficher u

pour tout voisin non marqué v de u:

Ajouter v à F et marquer v
```


► File : 4 5

► Affichage : 0 1 2 8

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à F et marguer v
```

► File: 4567

► Affichage : 0 1 2 8

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à F et marguer v
```

► File : 5 6 7

► Affichage : 0 1 2 8 4


```
Algorithme: PARCOURSLARGEUR(G, s)

F \leftarrow file vide

Ajouter s à F et marquer s

tant que F est non vide:

u \leftarrow défiler un élément de F

Afficher u

pour tout voisin non marqué v de u:

Ajouter v à F et marquer v
```

► File : 6 7

► Affichage: 0 1 2 8 4 5

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à F et marguer v
```

► File : 6 7 3

► Affichage: 0 1 2 8 4 5

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```


► File : 7 3

► Affichage: 0 1 2 8 4 5 6

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à F et marguer v
```

► File: 7 3 9

► Affichage: 0 1 2 8 4 5 6

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```


► File : 3 9

► Affichage: 0 1 2 8 4 5 6 7

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```

► File :

► Affichage: 0 1 2 8 4 5 6 7 3

```
Algorithme: ParcoursLargeur(G, s)
F \leftarrow \text{file vide}
Ajouter s \ni F et marquer s
tant que F est non vide :
    u \leftarrow \text{défiler un élément de } F
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v \ge F et marquer v
```


File:

► Affichage: 0 1 2 8 4 5 6 7 3 9

Propriétés du parcours en largeur

Théorème

Parcours Largeur (G, s) affiche une fois et une seule chaque sommet de la composante connexe de s. Sa complexité est

- $ightharpoonup O(n^2)$ si le graphe est représenté par matrice d'adjacence
- ightharpoonup O(m+n) si le graphe est représenté par listes d'adjacence où n est le nombre de sommets et m le nombre d'arêtes.

Propriétés du parcours en largeur

Théorème

Parcours Largeur (G, s) affiche une fois et une seule chaque sommet de la composante connexe de s. Sa complexité est

- $ightharpoonup O(n^2)$ si le graphe est représenté par matrice d'adjacence
- \triangleright O(m+n) si le graphe est représenté par listes d'adjacence où n est le nombre de sommets et m le nombre d'arêtes.

Preuve de complexité :

- ▶ Matrice : pour chaque sommet, parcours de la ligne correspondante
- Liste : parcours de toutes les listes ; somme des longueurs = 2m

Propriétés du parcours en largeur

Théorème

Parcours Largeur (G, s) affiche une fois et une seule chaque sommet de la composante connexe de s. Sa complexité est

- $ightharpoonup O(n^2)$ si le graphe est représenté par matrice d'adjacence
- \triangleright O(m+n) si le graphe est représenté par listes d'adjacence où n est le nombre de sommets et m le nombre d'arêtes.

Preuve de correction :

récurrence sur la distance à s

```
Algorithme: PARCOURSLARGEUR(G, s)

F \leftarrow \text{ file vide}

Ajouter s à F et marquer s

tant que F est non vide:

u \leftarrow \text{ défiler un élément de } F

Afficher u

pour tout voisin non marqué v de u:

Ajouter v à F et marquer v
```



```
Algorithme: PARCOURS PROFONDEUR (G, s)

P ← pile vide

Ajouter s à P et marquer s

tant que P est non vide:

u ← dépiler un élément de P

Afficher u

pour tout voisin non marqué v de u:

Ajouter v à P et marquer v
```



```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher u
    pour tout voisin non marqué v de u :
       Ajouter v à P et marquer v
```


- ► Pile : 0
- ► Affichage :

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher u
    pour tout voisin non marqué v de u :
       Ajouter v à P et marquer v
```


- Pile:
- ► Affichage : 0

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2 8

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2 4 5 6 7

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2 4 5 6

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2 4 5


```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile: 1 2 4 5 3 9

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

► Pile : 1 2 4 5 3


```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

5 8 7

► Pile: 1 2 4 5

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

▶ Pile : 1 2 4

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```

▶ Pile : 1 2

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
      Ajouter v à P et marquer v
```


▶ Pile : 1

```
Algorithme: Parcours Profondeur (G, s)
P \leftarrow \mathsf{pile} \; \mathsf{vide}
Ajouter s à P et marquer s
tant que P est non vide :
    u \leftarrow \text{dépiler un élément de } P
    Afficher 11
    pour tout voisin non marqué v de u :
       Ajouter v à P et marquer v
```


- Pile:
- ► Affichage: 0876935421

Propriétés du parcours en profondeur

Théorème

Parcours Profondeur (G, s) affiche une fois et une seule chaque sommet de la composante connexe de s. Sa complexité est

- $ightharpoonup O(n^2)$ si le graphe est représenté par matrice d'adjacence
- ightharpoonup O(m+n) si le graphe est représenté par listes d'adjacence où n est le nombre de sommets et m le nombre d'arêtes.

Propriétés du parcours en profondeur

Théorème

Parcours Profondeur (G, s) affiche une fois et une seule chaque sommet de la composante connexe de s. Sa complexité est

- $ightharpoonup O(n^2)$ si le graphe est représenté par matrice d'adjacence
- \triangleright O(m+n) si le graphe est représenté par listes d'adjacence où n est le nombre de sommets et m le nombre d'arêtes.

Preuve : Identique au cas du parcours en largeur!

- ► Un arbre binaire est un graphe particulier :
 - connexe
 - sans cycle
 - ▶ sommets de degrés 1, 2 ou 3

sinon *forêt* pour être un arbre pour être binaire

- ▶ Un arbre binaire est un graphe particulier :
 - connexe
 - sans cycle
 - sommets de degrés 1, 2 ou 3
- Un arbre binaire n'est pas un graphe :
 - racine identifiée
 - distinction fils gauche / fils droit
 - Définition récursive et représentation informatique bien différentes!

sinon *forêt* pour être un arbre pour être binaire

sommet de degré 1 ou 2

- ► Un arbre binaire est un graphe particulier :
 - connexe
 - sans cycle
 - sommets de degrés 1, 2 ou 3
- Un arbre binaire n'est pas un graphe :
 - racine identifiéedistinction fils gauche / fils droit
 - Définition récursive et représentation informatique bien différentes!
- ► Algorithmes de parcours de graphes :
 - besoin de *marquer* les sommets
 - besoin d'une *pile* pour le parcours en profondeur
 - ▶ algorithme essentiellement identique pour le parcours en largeur (avec *file*)

- sinon *forêt*
- pour être un arbre
- pour être binaire

sommet de degré 1 ou 2

- ▶ Un arbre binaire est un graphe particulier :
 - connexe
 - sans cycle
 - sommets de degrés 1, 2 ou 3
- Un arbre binaire n'est pas un graphe :
 - racine identifiéedistinction fils gauche / fils droit
 - ▶ Définition récursive et représentation informatique bien différentes!
- ► Algorithmes de parcours de graphes :
 - besoin de *marquer* les sommets
 - besoin d'une *pile* pour le parcours en profondeur
 - ▶ algorithme essentiellement identique pour le parcours en largeur (avec *file*)

Les arbres et les graphes sont deux structures de données proches, mais différentes. Les algorithmes sur les arbres sont souvent plus simples que sur les graphes.

sinon *forêt* pour être un arbre

pour être binaire

sommet de degré 1 ou 2

► Un arbre binaire est un graphe particulier :

- connexe
- sans cycle
- sommets de degrés
- Un arbre binaire n'est
 - racine identifiée
 - distinction fils gauch
 - Définition récursive
- Algorithmes de parcour
 - besoin de *marquer* le
 - besoin d'une *pile* po
 - algorithme essentiell

Les arbres et les graphes se Les algorithmes sur les arb

BREPTH-FIRST SEARCH

sinon *forêt* pour être un arbre pour être binaire

sommet de degré 1 ou 2

différentes!

en largeur (avec *file*)

proches, mais différentes. ue sur les graphes.

- 1. Arbres binaires et graphes
- 1.1 Arbres binaires
- 1.2 Graphes
- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Stocker un ensemble ordonné de n valeurs avec les opérations :

- ► Insérer et Supprimer
- ► MINIMUM et MAXIMUM
- ► Rechercher
- Successeur et Prédécesseur

→ toutes ces opérations en « bonne » complexité

Stocker un ensemble ordonné de n valeurs avec les opérations :

- ► Insérer et Supprimer
- ► MINIMUM et MAXIMUM
- ► Rechercher
- ► Successeur et Prédécesseur

→ toutes ces opérations en « bonne » complexité

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

Stocker un ensemble ordonné de n valeurs avec les opérations :

- ► INSÉRER et SUPPRIMER
- ► MINIMUM et MAXIMUM
- ► Rechercher
- Successeur et Prédécesseur

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

→ toutes ces opérations en « bonne » complexité

Utilisation

- Stockage de données dynamiques
- Base de données (valeurs = identifiant)
- Linux : ordonnancement, mémoire virtuelle, ...

Stocker un ensemble ordonné de n valeurs avec les opérations :

- ► INSÉRER et SUPPRIMER
- MINIMUM et MAXIMUM
- ► Rechercher
- Successeur et Prédécesseur

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

→ toutes ces opérations en « bonne » complexité

Utilisation

- Stockage de données dynamiques
- Base de données (valeurs = identifiant)
- Linux : ordonnancement, mémoire virtuelle, ...

Les arbres binaires de recherche sont **une** structure de donnée remplissant ces objectifs, mais pas la seule!

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

Si A est un arbre binaire et $x \in A$, on note

- ► saG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

Si A est un arbre binaire et $x \in A$, on note

- ► saG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

Si A est un arbre binaire et $x \in A$, on note

- ► saG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Parcours infixe d'un ABR

Algorithme: PARCOURSINFIXE(x)

si $x \neq \emptyset$:

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

Parcours infixe d'un ABR

Algorithme : PARCOURSINFIXE(x) si $x \neq \emptyset$: PARCOURSINFIXE(filsG(x)) Afficher val(x) PARCOURSINFIXE(filsD(x))

Lemme

Le parcours infixe d'un arbre binaire A affiche les valeurs de A triées si et seulement si A est un ABR.

Preuve par induction : affichage en ordre \nearrow ssi val $(y) \le \text{val}(\text{rac}(A)) \le \text{val}(z)$ pour $y \in \text{saG}(A)$, $z \in \text{saD}(A)$ ssi A est un ABR

Algorithme : RECHERCHER(x, k) tant que $x \neq \emptyset$ et $val(x) \neq k$: | si $k < val(x) : x \leftarrow filsG(x)$

sinon: $x \leftarrow \mathsf{filsD}(x)$

renvoyer x

Algorithme : RECHERCHER(x, k)tant que $x \neq \emptyset$ et $val(x) \neq k$: $si k < val(x) : x \leftarrow filsG(x)$ $sinon : x \leftarrow filsD(x)$ renvoyer x


```
Algorithme : RECHERCHER(x, k)

tant que x \neq \emptyset et val(x) \neq k :

si k < val(x) : x \leftarrow filsG(x)

sinon : x \leftarrow filsD(x)

renvoyer x
```


Correction admise

Lemme

RECHERCHER(rac(A), k) a une complexité O(h(A)).

Preuve

- ightharpoonup À chaque itération, la hauteur de x augmente de $1:\leq h(A)$ itérations
- ightharpoonup Chaque itération coûte O(1)

Algorithme : MINIMUM(x)

tant que fils $G(x) \neq \emptyset$:

 $x \leftarrow \mathsf{filsG}(x)$

 $\mathbf{renvoyer}\ x$


```
Algorithme: MINIMUM(x)
tant que filsG(x) \neq \emptyset:
 x \leftarrow \mathsf{filsG}(x)
renvoyer x
Algorithme: Successeur(x)
si filsD(x) \neq \emptyset:
 renvoyer MINIMUM(filsD(x))
y \leftarrow pere(x)
tant que y \neq \emptyset et x = filsD(y):
    x \leftarrow y
   y \leftarrow pere(x)
renvoyer y
```



```
Algorithme: MINIMUM(x)
tant que filsG(x) \neq \emptyset:
 x \leftarrow \mathsf{filsG}(x)
renvoyer x
Algorithme: Successeur(x)
si filsD(x) \neq \emptyset:
 renvoyer MINIMUM(filsD(x))
y \leftarrow pere(x)
tant que y \neq \emptyset et x = filsD(y):
    x \leftarrow y
   y \leftarrow \text{père}(x)
renvoyer y
```



```
Algorithme: MINIMUM(x)
tant que filsG(x) \neq \emptyset:
 x \leftarrow \mathsf{filsG}(x)
renvoyer x
Algorithme: Successeur(x)
si filsD(x) \neq \emptyset:
  renvoyer MINIMUM(filsD(x))
y \leftarrow pere(x)
tant que y \neq \emptyset et x = filsD(y):
    x \leftarrow y
   y \leftarrow \text{père}(x)
renvoyer y
```


Algorithme: MINIMUM(x)tant que fils $G(x) \neq \emptyset$: $x \leftarrow \mathsf{filsG}(x)$ renvoyer x Algorithme: Successeur(x)si filsD(x) $\neq \emptyset$: renvoyer MINIMUM(filsD(x)) $y \leftarrow pere(x)$ tant que $y \neq \emptyset$ et x = filsD(y): $x \leftarrow y$ $y \leftarrow \text{père}(x)$ renvoyer v


```
Algorithme: MINIMUM(x)
tant que filsG(x) \neq \emptyset:
 x \leftarrow \mathsf{filsG}(x)
renvoyer x
Algorithme: Successeur(x)
si filsD(x) \neq \emptyset:
   renvoyer MINIMUM(filsD(x))
y \leftarrow pere(x)
tant que y \neq \emptyset et x = filsD(y):
    x \leftarrow y
   y \leftarrow \text{père}(x)
renvoyer v
```


Successeur(6) = 7

 $Successeur(9) = \emptyset$

Lemme

MINIMUM et SUCCESSEUR ont une complexité O(h(A))

Correction de successeur

Lemme

Successeur renvoie un nœud de valeur minimale parmi ceux dont la valeur est $\geq val(x)$.

Correction de successeur

Lemme

Successeur renvoie un nœud de valeur minimale parmi ceux dont la valeur est $\geq \operatorname{val}(x)$.

Preuve Supp. les valeurs 2-à-2 distinctes.

- ▶ si filsD(x) $\neq \emptyset$ (m existe) : val(x) < val(m) < val(p)
- **Proof** pour tout ancêtre $z \neq p$ de x, deux possibilités :
 - $\triangleright x \in \operatorname{saD}(z) \rightsquigarrow \operatorname{val}(z) < \operatorname{val}(x) \text{ et } \forall y \in \operatorname{saG}(z), \operatorname{val}(y) < \operatorname{val}(z) < \operatorname{val}(x)$

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Equilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
\emptyset \rightarrow \emptyset
tant que x \neq \emptyset:
     p \leftarrow x
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
pere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Insertion de z dans A:

- 1. Si A est vide : insérer z
- 2. Si rac(A) > z:
- 3. insérer z dans saG(A)
- 4. Sinon:
- 5. insérer z dans saD(A)

(cf. Rechercher)

Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset:
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
p\`ere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset:
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
p\`ere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
\emptyset \rightarrow Q
tant que x \neq \emptyset:
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
p\`ere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset:
     p \leftarrow x
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
p\`ere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Insertion d'un élément

```
Algorithme: INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset:
      p \leftarrow x
     si val(z) < val(x) : x \leftarrow filsG(x)
     sinon: x \leftarrow filsD(x)
p\`ere(z) \leftarrow p
\mathbf{si} \ p = \emptyset : \operatorname{rac}(A) \leftarrow z
sinon si val(z) < val(p): filsG(p) \leftarrow z
sinon: filsD(p) \leftarrow z
```


Algorithme de remplacement du sous-arbre enraciné en x par celui enraciné en z dans l'arborescence A

Les 2 pointeurs $x \leftrightarrows p\`ere(x)$ sont remplacés par 2 pointeurs $z \leftrightarrows p\`ere(z)$

```
Algorithme : REMPLACE(A, x, z)

p \leftarrow \text{père}(x)

p \text{ère}(x) \leftarrow \emptyset

\text{si } p = \emptyset : \text{rac}(A) \leftarrow z

\text{sinon si } x = \text{filsG}(p) : \text{filsG}(p) \leftarrow z

\text{sinon : filsD}(p) \leftarrow z

\text{si } z \neq \emptyset : \text{père}(z) \leftarrow p
```

```
Algorithme: SUPPRIMER(A, z)
si filsG(z) = \emptyset: REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset: REMPLACE(A, z, filsG(z))
sinon:
    v = Successeur(z)
     REMPLACE(A, y, \text{ filsD}(y))
    filsD(y) \leftarrow filsD(z); filsD(z) \leftarrow \emptyset
    filsG(y) \leftarrow filsG(z); filsG(z) \leftarrow \emptyset
    si filsD(y) \neq \emptyset: père(filsD(y)) = y
    si filsG(y) \neq \emptyset: père(filsG(y)) = y
     REMPLACE(A, z, y)
```


Supprimer **z** de **A**:

- 1. Enlever le successeur y de z de A
- 2. Déplacer les fils de z comme fils de y
- 3. Remplacer z par y

```
Algorithme: SUPPRIMER(A, z)
si filsG(z) = \emptyset: REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset: REMPLACE(A, z, filsG(z))
sinon:
    v = Successeur(z)
     REMPLACE(A, y, \text{ filsD}(y))
    filsD(y) \leftarrow filsD(z); filsD(z) \leftarrow \emptyset
    filsG(y) \leftarrow filsG(z); filsG(z) \leftarrow \emptyset
    si filsD(y) \neq \emptyset: père(filsD(y)) = y
    si filsG(y) \neq \emptyset: père(filsG(y)) = y
     REMPLACE(A, z, y)
```



```
Algorithme: SUPPRIMER(A, z)
si filsG(z) = \emptyset: REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset : REMPLACE(A, z, filsG(z))
sinon:
    v = Successeur(z)
    REMPLACE(A, v, filsD(v))
    filsD(y) \leftarrow filsD(z); filsD(z) \leftarrow \emptyset
    filsG(y) \leftarrow filsG(z); filsG(z) \leftarrow \emptyset
    si filsD(y) \neq \emptyset: père(filsD(y)) = y
    si filsG(y) \neq \emptyset: père(filsG(y)) = y
    REMPLACE(A, z, y)
```



```
Algorithme: SUPPRIMER(A, z)
si filsG(z) = \emptyset: REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset: REMPLACE(A, z, filsG(z))
sinon:
    v = Successeur(z)
     REMPLACE(A, y, \text{ filsD}(y))
    filsD(y) \leftarrow filsD(z); filsD(z) \leftarrow \emptyset
    filsG(y) \leftarrow filsG(z); filsG(z) \leftarrow \emptyset
    si filsD(v) \neq \emptyset: père(filsD(v)) = v
    si filsG(y) \neq \emptyset: père(filsG(y)) = y
     REMPLACE(A, z, y)
```



```
Algorithme: SUPPRIMER(A, z)
si filsG(z) = \emptyset: REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset: REMPLACE(A, z, filsG(z))
sinon:
     v = Successeur(z)
     REMPLACE(A, y, \text{ filsD}(y))
    \mathsf{filsD}(y) \leftarrow \mathsf{filsD}(z) \, ; \, \mathsf{filsD}(z) \leftarrow \emptyset
     filsG(y) \leftarrow filsG(z); filsG(z) \leftarrow \emptyset
     si filsD(y) \neq \emptyset: père(filsD(y)) = y
     si filsG(y) \neq \emptyset: père(filsG(y)) = y
     REMPLACE(A, z, y)
```


Correction et complexités

Lemme

Si A est un ABR, il reste un ABR après SUPPRIMER(A, z).

Preuve Le nœud z est remplacé par son successeur y :

- Pour tout $x \in \operatorname{saG}(y)$, $\operatorname{val}(x) \le \operatorname{val}(z) \le \operatorname{val}(y)$
- Pour tout $x \in \operatorname{saD}(y)$, $\operatorname{val}(x) \ge \operatorname{val}(y)$ car $y = \min(\operatorname{saD}(z))$

Le reste de l'arbre est inchangé.

Correction et complexités

Lemme

Si A est un ABR, il reste un ABR après SUPPRIMER(A, z).

Preuve Le nœud z est remplacé par son successeur y :

- Pour tout $x \in \operatorname{saG}(y)$, $\operatorname{val}(x) \le \operatorname{val}(z) \le \operatorname{val}(y)$
- Pour tout $x \in \operatorname{saD}(y)$, $\operatorname{val}(x) \ge \operatorname{val}(y)$ car $y = \min(\operatorname{saD}(z))$

Le reste de l'arbre est inchangé.

Lemme

Insérer et Supprimer ont une complexité O(h(A)).

Preuve On parcourt une branche de l'arbre pour trouver soit l'endroit où insérer (INSÉRER) soit le successeur (SUPPRIMER) : complexité O(h(A)). Le reste est un nombre constant de modifications de pointeurs.

Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Motivation

Rappel des complexités

- ▶ INSÉRER et SUPPRIMER : O(h(A))
- ► MINIMUM et $Maximum^1 : O(h(A))$
- ightharpoonup Rechercher : O(h(A))
- ▶ Successeur et Prédecesseur¹ : O(h(A))

¹ Exercice!

Motivation

Rappel des complexités

- ▶ INSÉRER et SUPPRIMER : O(h(A))
- ► MINIMUM et MAXIMUM¹ : O(h(A))
- ightharpoonup Rechercher : O(h(A))
- ▶ Successeur et Prédecesseur¹ : O(h(A))

Un ABR est une structure de donnée efficace s'il est équilibré, c'est-à-dire si $h(A) = O(\log(n(A)))$.

¹ Exercice!

Lemme

Si A est un ABR, il reste un ABR après rotation.

Preuve Les rotations ne modifient que leur sous-arbre.

- Pour tout $z \in A_1$, $val(z) \le val(x) \le val(y)$
- Pour tout $z \in A_2$, $val(x) \le val(z) \le val(y)$
- Pour tout $z \in A_3$, $val(x) \le val(y) \le val(z)$

Lemme

Si A est un ABR, il reste un ABR après rotation.

Utilisation

- ► Augmentation de la hauteur d'un côté, diminution de l'autre
- ightharpoonup Opération en temps O(1) : quelques pointeurs à changer

Lemme

Si A est un ABR, il reste un ABR après rotation.

- ► Techniques d'équilibrage lors de INSÉRER/SUPPRIMER
 - ▶ arbres rouge-noir, AVL, B, déployés, ...
 - ► Tarbres (ou arbres-tas) : simulent l'insertion en ordre aléatoire

Lemme

Si A est un ABR, il reste un ABR après rotation.

- ► Techniques d'équilibrage lors de INSÉRER/SUPPRIMER
 - ▶ arbres rouge-noir, AVL, B, déployés, ...
 - ► Tarbres (ou arbres-tas) : simulent l'insertion en ordre aléatoire
- ► Au delà du contenu de ce cours...

Conclusion sur les ABR

- Structure de données pour ensembles ordonnés
- ► Insérer/Supprimer, Rechercher, ... : O(h(A))
- $\blacktriangleright \lfloor \log(n(A)) \rfloor \leq h(A) < n(A)$
 - ► Efficace uniquement si $h(A) = O(\log(n(A)))$
 - Vrai si insertion en ordre aléatoire
 - ► Techniques d'équilibrage basées sur les rotations

Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

3. Tas

- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Utilisations principales des tas

- ► Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - ► AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - EXTRAIREMAX ou EXTRAIREMIN : retire l'élément de priorité maximale ou minimale
 - ► CHANGERPRIORITÉ : modifie la priorité d'un élément

Utilisations principales des tas

- ► Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - ► AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - EXTRAIREMAX ou EXTRAIREMIN : retire l'élément de priorité maximale ou minimale
 - ► CHANGERPRIORITÉ : modifie la priorité d'un élément
- Utilisation de files de priorité
 - Trouver le chemin le plus court entre deux points
 - dans un graphe (Dijkstra)

→ partie 2 du cours

- ► sur une carte (A*, ...)
- ▶ Répartition de charge entre serveurs, ordonnancement de processus...
- Priorités aléatoires pour équilibrer des ABR

Utilisations principales des tas

- ► Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - ► AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - EXTRAIREMAX ou EXTRAIREMIN : retire l'élément de priorité maximale ou minimale
 - ► CHANGERPRIORITÉ : modifie la priorité d'un élément
- Utilisation de files de priorité
 - Trouver le chemin le plus court entre deux points
 - dans un graphe (Dijkstra)

→ partie 2 du cours

- ► sur une carte (A*, ...)
- Répartition de charge entre serveurs, ordonnancement de processus...
- Priorités aléatoires pour équilibrer des ABR

Le tas est <u>une</u> structure de donnée permettant d'implanter les files de priorités, mais les autres sont en général des extensions.

1. Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

3. Tas

- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Définition

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

Un arbre binaire est quasi-complet si

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- ▶ les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Lemme

Si A est un arbre quasi-complet, $2^{h(A)} \le n(A) < 2^{h(A)+1}$.

Preuve La borne supérieure est vraie pour tout arbre.

$$N_0$$
, ..., $N_{h(A)-1}$ complets et $|N_{h(A)}| \ge 1$

(Le + petit arbre quasi-complet est un arbre complet de hauteur h(A) - 1, donc de taille $2^{h(A)} - 1$, avec 1 élément au niveau h(A))

Définition

Un arbre binaire est quasi-complet si

- ightharpoonup pour tout $k < h(A), |N_k| = 2^k$
- ▶ les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Lemme

Si A est un arbre quasi-complet, $2^{h(A)} \le n(A) < 2^{h(A)+1}$.

Corollaire

Si A est un arbre quasi-complet, alors $h(A) = \lfloor \log n(A) \rfloor$.

Preuve On a
$$2^{h(A)} \le n(A) < 2^{h(A)+1}$$
 et donc $h(A) \le \log n(A) < h(A) + 1$.

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son numéro, défini par

- ightharpoonup num(rac(A)) = 0
- ightharpoonup si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- ▶ si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son numéro, défini par

- ightharpoonup num(rac(A)) = 0
- ightharpoonup si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- ▶ si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son num'ero, défini par

- ightharpoonup num(rac(A)) = 0
- ▶ si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- ▶ si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation de haut en bas et de gauche à droite : parcours en largeur

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Preuve

1. Si
$$x \in N_k$$
, $2^k - 1 \le \text{num}(x) \le 2^{k+1} - 2$ (récurrence)

k = 0: la racine a le numéro 0

▶
$$2^{k-1} - 1 \le \text{num}(\text{père}(x)) \le 2^k - 2 \text{ car père}(x) \in N_{k-1} \text{ si } x \in N_k$$
 (HR) Or $2 \text{num}(\text{père}(x)) + 1 \le \text{num}(x) \le 2 \text{num}(\text{père}(x)) + 2$ Donc $2 \cdot (2^{k-1} - 1) + 1 \le \text{num}(x) \le 2 \cdot (2^k - 2) + 2$

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Preuve

- 1. Si $x \in N_k$, $2^k 1 \le \text{num}(x) \le 2^{k+1} 2$ (récurrence)
- 2. Si x est le voisin de gauche de y, num(y) = num(x) + 1
 - Si $\operatorname{num}(x) = 2p + 1$, $x = \operatorname{filsG}(\operatorname{p\`ere}(x))$. Donc $y = \operatorname{filsD}(\operatorname{p\`ere}(x))$ et $\operatorname{num}(y) = 2p + 2$
 - Si $\operatorname{num}(x) = 2p + 2$, $x = \operatorname{filsD}(\operatorname{p\`ere}(x))$. Donc $y = \operatorname{filsG}(\operatorname{p\`ere}(y))$; et $\operatorname{p\`ere}(x)$ est voisin de gauche de $\operatorname{p\`ere}(y) \rightsquigarrow \operatorname{num}(\operatorname{p\'ere}(y)) = \operatorname{num}(\operatorname{p\'ere}(x)) + 1$

$$\mathsf{num}(y) = 2\,\mathsf{num}(\mathsf{p\`ere}(y)) + 1 = 2\,\mathsf{num}(\mathsf{p\`ere}(x) + 1) + 1 = \mathsf{num}(x) + 1$$

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Preuve

- 1. Si $x \in N_k$, $2^k 1 \le \text{num}(x) \le 2^{k+1} 2$ (récurrence)
- 2. Si x est le voisin de gauche de y, num(y) = num(x) + 1
- D'après 1. : numéros 0 à $2^h 2 \iff$ niveaux complets jusqu'à N_{h-1}
- D'après 2. : numéros entre $2^h 1$ et $n(A) 1 \iff N_h$ rempli par la gauche

Représentation informatique des arbres quasi-complets

Corollaire

On peut représenter un arbre quasi-complet par un tableau de taille n(A) contenant val(x) en case num(x).

Représentation informatique des arbres quasi-complets

Corollaire

On peut représenter un arbre quasi-complet par un tableau de taille n(A) contenant val(x) en case num(x).

On identifie un arbre quasi-complet et le tableau A qui le représente, et un nœud x et son numéro num(x).

- ightharpoonup rac(A) = 0
- filsG(i) = 2i + 1 et filsD(i) = 2i + 2
- ightharpoonup père $(i) = \lfloor (i-1)/2 \rfloor$
- ightharpoonup val(i) = A[i]
- $h(i) = \lfloor \log(i+1) \rfloor$

Définition des tas

- ▶ Un arbre binaire A a la propriété de tas max si pour tout $x \neq rac(A)$, $val(père(x)) \ge val(x)$
- ▶ Un arbre binaire A a la **propriété de tas min** si pour tout $x \neq rac(A)$, $val(père(x)) \leq val(x)$

Définition des tas

- ▶ Un arbre binaire A a la propriété de tas max si pour tout $x \neq rac(A)$, $val(p\`ere(x)) \geq val(x)$
- ▶ Un arbre binaire A a la **propriété de tas min** si pour tout $x \neq rac(A)$, $val(père(x)) \leq val(x)$

Définition

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Un tas max (resp. min) est un arbre quasi-complet ayant la propriété de tas max (resp. min)

Un tableau T est un tas max si pour tout $i \geq 1$, $T_{\lfloor \lfloor \frac{i-1}{2} \rfloor \rfloor} \geq T_{[i]}$

Définition des tas

- ▶ Un arbre binaire A a la propriété de tas max si pour tout $x \neq rac(A)$, $val(père(x)) \ge val(x)$
- ▶ Un arbre binaire A a la **propriété de tas min** si pour tout $x \neq rac(A)$, $val(père(x)) \leq val(x)$

Définition

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Un tas max (resp. min) est un arbre quasi-complet ayant la propriété de tas max (resp. min)

Un tableau T est un tas max si pour tout $i \geq 1$, $T_{\lfloor \lfloor \frac{i-1}{2} \rfloor \rfloor} \geq T_{[i]}$

Remarque

Un arbre binaire peut avoir la propriété de tas max sans être quasi-complet!

Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

3. Tas

- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Algorithme: INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T_{[i]} \leftarrow x$

REMONTER(T, i)

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Algorithme: INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T_{[i]} \leftarrow x$

REMONTER(T, i)

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1, 10]

Algorithme : INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T_{[i]} \leftarrow x$

REMONTER(T, i)

[9, 7, 8, 6, 10, 0, 2, 3, 5, 1, 4]

Algorithme: INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T_{[i]} \leftarrow x$

REMONTER(T, i)

[9, 10, 8, 6, 7, 0, 2, 3, 5, 1, 4]

Algorithme: INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T_{[i]} \leftarrow x$

REMONTER(T, i)

[10, 9, 8, 6, 7, 0, 2, 3, 5, 1, 4]

$\begin{array}{l} \textbf{Algorithme}: \mathsf{INSÉRER}(T,x) \\ i \leftarrow n(T) \\ \mathsf{Agrandir} \ T \ \mathsf{d'une} \ \mathsf{case} \\ T_{[i]} \leftarrow x \\ \mathsf{REMONTER}(T,i) \end{array}$

Algorithme : REMONTER(T, i)

tant que i > 0 et $T_{[p\`{e}re(i)]} < T_{[i]}$:

Échanger $T_{[i]}$ et $T_{[p\`{e}re(i)]}$ $i \leftarrow p\`{e}re(i)$

[10, 9, 8, 6, 7, 0, 2, 3, 5, 1, 4]

Complexité et validité de l'insertion

```
Algorithme : REMONTER(T, i)
tant que i > 0 et T_{[p\`{e}re(i)]} < T_{[i]} :

Échanger T_{[i]} et T_{[p\`{e}re(i)]}
i \leftarrow p\`{e}re(i)
```

Lemme

REMONTER(T, i) a une complexité $O(\log(n(T)))$.

Preuve \mathcal{P}_i : le nombre d'itérations de la boucle est $\leq h(i) = \lfloor \log(i+1) \rfloor$

▶ à chaque itération, i est remplacé par père(i), et h(père(i)) = h(i) - 1. Donc h(i) diminue de 1 à chaque itération.

```
\sim Complexité O(h(T)) = O(\log(n(T)))
```

Complexité et validité de l'insertion

```
Algorithme : REMONTER(T, i)

tant que i > 0 et T_{[p\`{e}re(i)]} < T_{[i]} :

Échanger T_{[i]} et T_{[p\`{e}re(i)]}
i \leftarrow p\`{e}re(i)
```

Lemme

 $Si \ i = n(T) - 1 \ et \ que \ T \ privé \ de \ i \ est \ un \ tas, \ alors \ T \ est \ un \ tas \ après \ \mathsf{REMONTER}(T,i).$

Preuve T_i : sous-arbre enraciné en i

- ► Invariant : T_i est un tas
 - Initialement, ok car i n'a pas de fils
 - Si l'invariant est satisfait avant une itération, soit p = père(i) et f l'autre fils de p s'il existe; alors $T_{[i]} > T_{[p]} \ge T_{[f]} \leadsto$ invariant conservé
- ightharpoonup À la fin : $T_{[i]} \leq T_{[p\`{
 m ere}(i)]}$ et les nœuds hors de T_i n'ont pas été modifiés, donc T est un tas

Algorithme : SUPPRIMER(T, i)

$$x \leftarrow T_{[i]}$$

$$T_{[i]} \leftarrow T_{[n(T)-1]}$$

Réduire T d'une case

REMONTER(T, i)

Entasser(T, i)

renvoyer x

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Algorithme : SUPPRIMER(T, i)

$$x \leftarrow T_{[i]}$$

$$T_{[i]} \leftarrow T_{[n(T)-1]}$$

Réduire T d'une case

REMONTER(T, i)

Entasser(T, i)

renvoyer x

[1, 7, 8, 6, 4, 0, 2, 3, 5]

Algorithme : SUPPRIMER(T, i)

$$x \leftarrow T_{[i]}$$

$$T_{[i]} \leftarrow T_{[n(T)-1]}$$

Réduire T d'une case

REMONTER(T, i)

Entasser(T, i)

renvoyer x

[8, 7, 1, 6, 4, 0, 2, 3, 5]

Algorithme : SUPPRIMER(T, i)

$$x \leftarrow T_{[i]}$$

$$T_{[i]} \leftarrow T_{[n(T)-1]}$$

Réduire T d'une case

REMONTER(T, i)

Entasser(T, i)

renvoyer x

[8, 7, 2, 6, 4, 0, 1, 3, 5]

```
 \begin{aligned} & \textbf{Algorithme}: \mathsf{SUPPRIMER}(T,i) \\ & x \leftarrow T_{[i]} \\ & T_{[i]} \leftarrow T_{[n(T)-1]} \\ & \mathsf{R\'eduire} \ T \ \mathsf{d'une} \ \mathsf{case} \\ & \mathsf{REMONTER}(T,i) \\ & \mathsf{ENTASSER}(T,i) \\ & \mathbf{renvoyer} \ x \end{aligned}
```

Algorithme : ENTASSER(T, i)tant que filsG(i) < n(T) : $(m, g, d) \leftarrow (i, \text{fils}G(i), \text{fils}D(i))$ si $T_{[g]} > T_{[m]} : m \leftarrow g$ si d < n(T) et $T_{[d]} > T_{[m]} : m \leftarrow d$ si $m \neq i$: Échanger $T_{[i]}$ et $T_{[m]}$ sinon : $i \leftarrow n(T)$

[8, 7, 2, 6, 4, 0, 1, 3, 5]

Complexité et validité de la suppression

Lemme

 $\mathsf{Entasser}(T, i)$ a une complexité $O(\log(n(T)))$

```
Algorithme: ENTASSER(T, i)
tant que filsG(i) < n(T):
(m, g, d) \leftarrow (i, \text{fils}G(i), \text{fils}D(i))
si T_{[g]} > T_{[m]} : m \leftarrow g
si d < n(T) et T_{[d]} > T_{[m]} : m \leftarrow d
si m \neq i: Échanger T_{[i]} et T_{[m]}
sinon: i \leftarrow n(T)
```

Preuve \mathcal{P}_i : le nombre d'appels récursifs est $\leq h(T) - \overline{h(i)}$ Récurrence descendante sur h(i):

- ▶ Si h(i) = h(T), aucun appel récursif donc ok
- Sinon ≤ 1 appel récursif sur un fils de hauteur $h(i) + 1 \rightsquigarrow$ nombre total d'appels récursif $\leq 1 + [h(T) (h(i) + 1)]$ par hypothèse de récurrence

```
\sim Complexité O(h(T)) = O(\log(n(T)))
```

Complexité et validité de la suppression

Lemme

Si les sous-arbres gauche et droit de i sont des tas, l'arbre enraciné en i est un tas après Entasser(T, i)

```
 \begin{aligned} \textbf{Algorithme} &: \mathsf{ENTASSER}(T,i) \\ \textbf{tant que} & \mathsf{filsG}(i) < n(T) : \\ & (m,g,d) \leftarrow (i,\mathsf{filsG}(i),\mathsf{filsD}(i)) \\ & \mathsf{si} \ T_{[g]} > T_{[m]} : m \leftarrow g \\ & \mathsf{si} \ d < n(T) \ \mathsf{et} \ T_{[d]} > T_{[m]} : m \leftarrow d \\ & \mathsf{si} \ m \neq i : \mathsf{\acute{E}changer} \ T_{[i]} \ \mathsf{et} \ T_{[m]} \\ & \mathsf{sinon} : i \leftarrow n(T) \end{aligned}
```

Preuve par récurrence sur h(T) - h(i) (cas de base facile...)

- ightharpoonup Si l'algo. s'arrête à la première itération : T_i est déjà un tas
- ightharpoonup Sinon, le même algorithme est appliqué avec i=m
 - \triangleright par hypothèse de récurrence, T_m est un tas à la fin de l'algo.
 - l'autre sous-arbre de *i* est un tas car non modifié
 - $ightharpoonup T_{[i]} \geq T_{[g]}$ et $T_{[i]} \geq T_{[d]}$ grâce à l'échange

Arbres binaires et graphes

- 1.1 Arbres binaires
- 1.2 Graphes

2. Arbres binaires de recherche

- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

3. Tas

- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
pour i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0:
\lfloor \text{ENTASSER}(T, i)
pour i = n(T) - 1 \stackrel{.}{a} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
renvoyer S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{\text{a}} 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \stackrel{.}{\text{a}} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \stackrel{.}{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
pour i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0:
\lfloor \text{ENTASSER}(T, i)
pour i = n(T) - 1 \stackrel{.}{a} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
renvoyer S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0 \text{ :}
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \text{ à } 0 \text{ :}
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
pour i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0:
\lfloor \text{ENTASSER}(T, i)
pour i = n(T) - 1 \stackrel{.}{a} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
renvoyer S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0 \text{ :}
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \text{ à } 0 \text{ :}
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \stackrel{.}{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0 \text{ :}
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0 \text{ :}
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
pour i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0:
\lfloor \text{ENTASSER}(T, i)
pour i = n(T) - 1 \stackrel{.}{a} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
renvoyer S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{\text{a}} 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \stackrel{.}{\text{a}} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \stackrel{.}{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \stackrel{.}{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme: TRITAS(T)

S \leftarrow \text{tableau vide de taille } n(T)

pour i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{\Rightarrow} 0:

\lfloor \text{ENTASSER}(T, i)

pour i = n(T) - 1 \stackrel{.}{\Rightarrow} 0:

\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)

renvoyer S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \stackrel{.}{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0 \text{ :}
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0 \text{ :}
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{\text{a}} 0:
\quad \lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \stackrel{.}{\text{a}} 0:
\quad \lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \text{ à } 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```



```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \stackrel{.}{\text{a}} 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \stackrel{.}{\text{a}} 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```

```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```

Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\mathbf{pour } i = \lfloor n(T)/2 \rfloor - 1 \grave{a} 0 :
\lfloor \text{ENTASSER}(T, i)
\mathbf{pour } i = n(T) - 1 \grave{a} 0 :
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\mathbf{renvoyer } S
```

Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

Preuve

- ▶ O(n) appels à ENTASSER et SUPPRIMER $\rightsquigarrow O(n \log n)$
- ▶ Correction : si $i \ge \lfloor n(T)/2 \rfloor$, i est une feuille


```
Algorithme: TRITAS(T)
S \leftarrow \text{tableau vide de taille } n(T)
\text{pour } i = \lfloor n(T)/2 \rfloor - 1 \text{ à } 0:
\lfloor \text{ENTASSER}(T, i)
\text{pour } i = n(T) - 1 \text{ à } 0:
\lfloor S_{[i]} \leftarrow \text{SUPPRIMER}(T, 0)
\text{renvoyer } S
```

Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

Remarque

Possibilité de tri en place car on remplit S par la fin \rightsquigarrow TD

Borne inférieure pour le tri

Théorème

Un algorithme de tri ne faisant que des comparaisons a une complexité $\Omega(n \log n)$

Borne inférieure pour le tri

Théorème

Un algorithme de tri ne faisant que des comparaisons a une complexité $\Omega(n \log n)$

Preuve au tableau, basée sur l'arbre de décision :

- Nœuds : comparaisons entre deux entrées du tableau
- Feuilles : toutes les permutations de n éléments

 \rightsquigarrow arbre à n! feuilles, donc de hauteur $\geq \lfloor \log(n!) \rfloor = \Omega(n \log n)$

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Tas max de couples (x, p_x) qui vérifie la propriété de tas pour les priorités

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Tas max de couples (x, p_x) qui vérifie la propriété de tas **pour les priorités**

AJOUTER : ajoute un nouvel élément (avec sa priorité)

→ Insérer

EXTRAIREMAX : retire l'élément de priorité maximale

→ SUPPRIMER

► CHANGERPRIORITÉ : modifie la priorité d'un élément

→ REMONTER/ENTASSER

 \rightsquigarrow opérations en complexité $O(\log n)$

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Tas min de couples (x, p_x) qui vérifie la propriété de tas **pour les priorités**

AJOUTER : ajoute un nouvel élément (avec sa priorité)

→ Insérer

► EXTRAIREMIN : retire l'élément de priorité minimale

→ SUPPRIMER

► CHANGERPRIORITÉ : modifie la priorité d'un élément

→ Remonter/Entasser

 \rightsquigarrow opérations en complexité $O(\log n)$

Conclusion sur les tas

- Structure de données pour conserver un ordre de priorité
- ► Arbre binaire quasi-complet :
 - représentation en tableau
 - ▶ arbre équilibré \rightsquigarrow hauteur $O(\log n)$
- ▶ INSÉRER et SUPPRIMER : $O(\log n)$
- Utilisations :
 - Tri par tas : $O(n \log n)$
 - Files de priorités

Conclusion

https://xkcd.com/835/

- ► Représentation structurée de l'information
 - ► arbres binaires de recherche
 - ► tas
 - ...

Search.

Home

PUBLIC

Stack Overflow

Tags

Users

Jobs

What are the applications of binary trees?

Applications of binary trees

• Binary Search Tree - Used in many search applications where data is constantly entering/leaving,

- Binary Tries Used in almost every high-bandwidth router for storing router-tables.
- Binary Tries Osed in almost every high-dandwidth router for storing router-tables.
- Hash Trees used in p2p programs and specialized image-signatures in which a hash needs to be verified, but the whole file is not available.
 Heaps Used in implementing efficient priority-queues, which in turn are used for scheduling
 - processes in many operating systems, Quality-of-Service in routers, and A* (path-finding algorithm used in AI applications, including robotics and video games). Also used in heap-sort.
- <u>Huffman Coding Tree</u> (<u>Chip Uni</u>) used in compression algorithms, such as those used by the .ipeg and .mp3 file-formats.
- GGM Trees Used in cryptographic applications to generate a tree of pseudo-random numbers.

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **...**
- Raisonnement informatique
 - Arbre de récursion (analyse des algorithmes récursifs)
 - ► Arbre de décision (borne inférieure sur le tri)
 - **>** ...

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **...**
- ► Raisonnement informatique
 - Arbre de récursion (analyse des algorithmes récursifs)
 - Arbre de décision (borne inférieure sur le tri)
- Pourquoi binaires?
 - ► Arbres ternaires, ..., *d*-aires
 - Arbres avec nombre quelconque (non constant) de fils

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **...**
- Raisonnement informatique
 - Arbre de récursion (analyse des algorithmes récursifs)
 - Arbre de décision (borne inférieure sur le tri)
- Pourquoi binaires?
 - ► Arbres ternaires, ..., *d*-aires
 - Arbres avec nombre quelconque (non constant) de fils

Les arbres sont un des objets centraux de l'informatique!

Les graphes en informatique

Un objet (encore plus?) central en informatique!

► Réseaux sociaux, graphe du web, réseaux biologiques, graphes de connaissance, réseaux de neurones, réseaux routiers, ...

Les graphes en informatique

Un objet (encore plus?) central en informatique!

- ► Réseaux sociaux, graphe du web, réseaux biologiques, graphes de connaissance, réseaux de neurones, réseaux routiers, ...
- Algorithmique très riche :
 - Parcours de graphes (détection de cycles, calculs de distances/chemins le plus court, composantes connexes, ...)
 - ▶ Algorithmes de flots et coupes (optimisation de réseaux, planification de tâches, ...)
 - **.**..

Les graphes en informatique

Un objet (encore plus?) central en informatique!

- ► Réseaux sociaux, graphe du web, réseaux biologiques, graphes de connaissance, réseaux de neurones, réseaux routiers, ...
- Algorithmique très riche :
 - Parcours de graphes (détection de cycles, calculs de distances/chemins le plus court, composantes connexes, ...)
 - ▶ Algorithmes de flots et coupes (optimisation de réseaux, planification de tâches, ...)
 - **.**..
- Plusieurs algorithmes de graphes dans la suite du cours