The average value of
$$f(x)$$
 on $[a,b]$ is given by
$$favg = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

tang = b-a a)

1. Find the average value of
$$f(x) = 1+x^2$$
 on $[-1,2]$

fang = $\frac{1}{2-(-1)}$, $\int_{-1}^{2} (1+x^2) dx = \frac{1}{3} \left[x + \frac{x^3}{3} \right]_{-1}^{2}$

fang = $\frac{1}{3} \left[(2+\frac{x}{3}) - (-1-\frac{1}{3}) \right] = \frac{1}{3}(6) = 2$

$$favg = \frac{\sin\left(\frac{\pi}{X}\right)}{X^{2}}, \quad \begin{bmatrix} 1,2 \end{bmatrix}$$

$$favg = \frac{1}{2-1}, \int_{-\frac{\pi}{X^{2}}}^{2} \frac{\sin\left(\frac{\pi}{X}\right)}{X^{2}} dX = \frac{1}{\pi}, \int_{-\frac{\pi}{X^{2}}}^{2} \frac{\sin\left(\frac{\pi}{X}\right)}{X^{2}} dX$$

$$u = \frac{\pi}{X} = \pi x^{-1} \qquad u(1) = \pi$$

$$du = -\pi x^{-2} dx = \frac{-\pi}{X^{2}} dx \quad u(2) = \frac{\pi}{2}$$

$$favg = \frac{-1}{\pi}, \int_{-\pi}^{\pi} \sin u \, du = \frac{1}{\pi} \cos u \Big|_{\pi}^{\pi} = \frac{1}{\pi} \left[0 + 1 \right] = \frac{1}{\pi}$$

3.
$$f(x) = \frac{1}{x^{2}+1}$$
, $[-1,1]$

$$f_{avg} = \frac{1}{1-(-1)} \int_{-1}^{1} \frac{1}{x^{2}+1} dx = \frac{1}{2} \left[\frac{\pi}{4} - \left(-\frac{\pi}{4} \right) \right] = \frac{\pi}{4}$$

$$= \frac{\pi}{4}$$