1

Math 5600

6/30.00 7/01/14.

Let's start with a large liverer

Laplace Equation

Uxx + Uyy = 0 0 = x, y = 1

U= U(x, y)

U(x,y) = g(x,y) on the boundary

heat distribution in a plate

Discretization

 $x_n = y_n = nh$ $h = \frac{1}{N+1}$

Umn & u(xm, Yn)

U(xm+1, 40) 2 ((xm+1) -2u(xm+14) + U(xm-1) / (u)

Uyy (xm, Yn) 2 U(xm, Yn,) - 2 U(xm, Yur) + U(x, x, x, 1)

42

Discretization

1 Month, n - 2 Mm n + Mm - 1, n + Mon, orn - 2 Month Mm, n-1

- Rewrite as

- This is a linear system of N² equations in N² unknowns.
- It's not homogeneous despite it's appearance, because of the boundary condition.
- Huge literature on how to solve systems like this.
- will just vook ut some basic ideas.

Describe them in terms of a general union system, but been going back to (*) for illustration

Ax = b Anxn x,5 & R4

 $\sum a_{ij} \times_j = b_i$

 $x_{i} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j} - \sum_{j=i+i}^{M} a_{ij} x_{j} \right)$

Start with an initial solution x [0]

 $x_{i}^{[k+1]} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} \times \sum_{j=i+1}^{i} a_{ij} \times \sum_{$

Jucobi Method low iteration!

 $x_{i}^{[[k+1]]} = \frac{1}{a_{ij}} \left(b_{i} - \sum_{j=1}^{i} a_{ij} x_{j}^{[[k+1]]} - \sum_{j=i+1}^{i} a_{ij} x_{j}^{[[k+1]]} \right)$

Gauss-Seidel Method

 $X_{i}^{[4]} = (1-w)x_{i}^{[4]} + \frac{w}{a_{ij}}(b_{i} - \sum_{j=1}^{3} a_{ij} x_{j}^{[4]} - \sum_{j=1}^{3} a_{ij} x_{j}^{[4]})$

Successive Overrelaxation 50R

w relaxation parameter

Next step: think of this iteration in

Next step. Toping of terms of mutrices.

$$A = L + D + U \qquad \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}^{\dagger} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$L$$

The Jueobi Method becomes

$$x^{[4+iJ]} = \overline{D}(b-(L+u) \times [4J])$$

$$= -D^{-1}(L+u) \times [4J] + D^{-1}b$$

The Gis method becomes:

$$x^{[\ell+1]} = D^{-1}b - Lx^{[\ell+1]} - Ux^{[\ell+1]}$$

$$(I+L)x^{[\ell+1]} = D^{-1}b - Ux^{[\ell+1]}$$

$$x^{[\ell+1]} = (I+L)^{-1}b - Ux^{[\ell+1]}$$

$$= -(I+L)^{-1}Ux^{[\ell+1]} + (Q(I+L))^{-1}b$$

$$= Bx^{[\ell+1]} + Z$$

$$x^{[k+1]} = (1-w)x^{[k]} + w(Bx^{[k]} + c)$$
$$= ((1-w)I + wB)x^{[k]} + wZ$$

In all cases:

$$x^{[k+1]} = T \times [4] + e$$

(1)

for some Tande.

- so when does this iteration converge?

Notice that the way the iteration is set up, the true solution & satisfies

(2)

subtracting (2) - (1) gives:

$$e^{[4i]3} = T \times [43]$$
where $e^{[43]} = x - x^{[43]}$

So when does e[4+1] = Te[4] Converge to zero.

Let's review some basic linear algalique

11 All = max 11 Ax11

11x11=1

induced matrix norm-

For example

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|$$
 $\|A\|_{1} = \max_{i=1}^{n} \sum_{i=1}^{n} |\alpha_{i}|$ $\|x\|_{1} = \max_{i=1}^{n} |x_{i}|$ $\|A\|_{2} = \max_{i=1}^{n} \sum_{i=1}^{n} |\alpha_{i}|$ $\|A\|_{2} = \sqrt{\frac{n}{2}} |x_{i}|^{2}$ $\|A\|_{2} = \sqrt{\frac{n}{2}} |x_{i}|^{2}$

major property of included matrix

$$||Az|| = ||A\frac{z}{||z||}||||z||$$

$$\leq ||A|| ||z||$$

for all vertors z

- So if we can find a matrix norm such that in the included matrix norm! ITII <1 then we have convergence.

- Example: Jacobi Method.

$$\overline{J} = -D(L+u)$$

11 11

- Then we will have 1/1/1/21 if A is diagonally dominant 1α;; 1 > Σ 1α; j 1 - our linear system Only gives 11 Ty 11 E1 but actually it is indeed true then 117,112/ Any induced matrix norm is no less then the larges eig con alue. Ax= 2x 11 Ax11 = 12111X11 & 114/1 11X11 - The spectral radius itself is not - uny not? - But we can find a norm that is arbitrarily close. - So we want to minimize tre spectral radius.

For our Poisson Equation

$$w_{best} = \frac{7}{1 + \sinh}$$

$$S(T_{W_{best}}) = \frac{\cos^2 h}{(1 + \sinh)^2}$$

Books by Varga and Young.

```
implicit double precision(a-h,o-z)
      n = 10
      write (20,10000)
      pi = dacos(0.0d0)*2.0d0
           do 100 i = 1.18
           n = idint(dfloat(n)*1.2d+00)
           h = pi/dfloat(n+1)
           omb = 2/(1.d+00+dsin(h))
           sj = dcos(h)
           sgs = sj**2
           sor = sgs/(1.d+00+dsin(h))**2
           nj = dlog(.1d+00)/dlog(sj)
           nqs = dlog(.1d+00)/dlog(sgs)
           nsor = dlog(.1d+00)/dlog(sor)
           annsor = 4.*float(nsor)*float(n)**2
           ange = float(n)**6/3
           ratio = ange/annsor
           write (20,20000) n,omb,sj,nj,sgs,ngs,sor,nsor,
              annsor, ange, ratio
  100
           continue
      stop
10000 FORMAT(/' n',' best omega',6X,' Jacobi
                                                  ',7X,
     X' Gauss-Seidel ',11X' SOR',
           flops(sor) flops(LU) ratio '//)
20000 FORMAT(I4, X, F8.5, 3(3X, F8.5, I8), X, 3(1PD10.2))
      end
```

ratio	4.32D+02	6.40D+02	9. TOD+02	1.55D+03	2.44D+03	4.23D+03	7.000+03	1.20D+04	1.95D + 04	3.21D+04	5.35D+04	9.26D+04	1.56D+05	2.67D+05	4.57D+05	7.88D+05	1.36D+06	2.34D+06
Elops (LU)						-	•	8.550+08	2.42D+09	6.59D+09	1.89D+10	5.47D+10		4.47D+11	1.33D+12	3.95D+12	1.17D+13	3.48D+13
flops(sor) flops(LU)				1.01D+04	1.55D+04	2.43D+04	4.23D+04	7.12D+04	1.24D+05	2.06D+05	3.54D+05	5.91D+05	9.91D+05	1.68D+06	2.920+06	5.02D+06	8.65D+06	1.49D+07
**	4	S	ဖ	7	ω	σ	11	13	16	19	23	27	32	38	46	52	99	79
SOR																		
	0.61379	0.65575	0.68955	0.72945	0.76031	0.79197	0.82147	0.84744	0.86958	0.88815	0.90504	0.91961	0.93182	0.94244	0.95173	0.95950	0.96606	0.97159
Seidel	39	25	67	92	123	169	238	336	472	654	925	1311	1847	2620	3762	5389	7727	11086
Gauss-Seidel	0.94273	0.95677	0.96624	0.97553	0.98146	0.98652	0.99039	0.99318	0.99513	0.99649	0.99752	0.99825	0.99875	0.99912	0.99939	0.99957	0.99970	0.99979
	78	104	134	185	246	339	477	673	944	1309	1851	2623	3692	5241	7525	10779	15454	22173
Jacobi	0.97094	0.97815	0.98297	0.98769	0.99069	0.99324	0.99518	0 99658	0.99756	0 99824	0 99876	0.99912	82666 0	95666 0	69666 0	62666 0	10000 C	
best omega	1.61379	1.65575	1.68955	1.72945	1.76031	1.79197	1 82147	•	1 86958	1 88815	1.0001	1 91961	1 93182	4	•	1 05050	•	1.97159
n be	12	1 4	16	19		96	2 4	1 6	1 <	יר דע	א ני	7 6	† O	0 0	100	150	101	217