import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

Load the dataset
df_train = pd.read_csv(r"C:\Users\Prajwal\Desktop\Mtech\Second Sem\ML\train.csv")
df_test = pd.read_csv(r"C:\Users\Prajwal\Desktop\Mtech\Second Sem\ML\test.csv")

In [72]: df_train.head()

Out[72]: PassengerId Survived Pclass Sex Age SibSp Parch **Ticket** Fare Cabin Embarked Name 0 1 0 3 Braund, Mr. Owen Harris male 22.0 0 A/5 21171 7.2500 NaN S Cumings, Mrs. John Bradley female 38.0 0 1 2 1 1 PC 17599 71.2833 C85 C (Florence Briggs Th... STON/O2. 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 7.9250 S NaN 3101282 Futrelle, Mrs. Jacques Heath (Lily female 35.0 3 4 1 1 0 113803 53.1000 C123 S May Peel) 4 5 0 3 Allen, Mr. William Henry 0 0 8.0500 S male 35.0 373450 NaN

In [73]: df_train.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Out[73]:

```
In [56]: import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
         # Load the Titanic dataset
         train_data = pd.read_csv(r"C:\Users\Prajwal\Desktop\Mtech\Second Sem\ML\train.csv")
         # Plot histograms for numerical columns
         numerical_columns = train_data.select_dtypes(include=['int64', 'float64']).columns
         for col in numerical_columns:
             plt.figure(figsize=(10, 6))
             plt.hist(train_data[col].dropna(), bins=20, color='skyblue', edgecolor='black')
             plt.xlabel(col)
             plt.ylabel('Frequency')
             plt.title(f'Distribution of {col}')
             plt.show()
         # Plot bar plots for categorical columns
         categorical_columns = train_data.select_dtypes(include=['object']).columns
         for col in categorical columns:
             plt.figure(figsize=(8, 5))
             sns.countplot(data=train_data, x=col, palette='Set2')
             plt.xlabel(col)
             plt.ylabel('Count')
             plt.title(f'Distribution of {col}')
             plt.xticks(rotation=45)
              plt.show()
```

Distribution of Passengerld

Distribution of Survived

Distribution of Pclass

Distribution of Parch

Distribution of Fare

Penasco y Car

Name

Distribution of Ticket

Distribution of Cabin

Distribution of Embarked


```
In [60]: # Preprocessing
    # Fill missing values

df_train['Age'].fillna(df_train['Age'].median(), inplace=True)

df_test['Age'].fillna(df_train['Embarked'].mode()[0], inplace=True)

df_train['Embarked'].fillna(df_train['Embarked'].mode()[0], inplace=True)

In [61]: # Feature selection
    features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
    X = pd.get_dummies(df_train[features])
    print("Input matrix for the training data, X:\n", X)
```

```
Input matrix for the training data, X:
               Pclass
                       Age SibSp Parch
                                               Fare Sex_female Sex_male Embarked_C \
                   3 22.0
                                                                               False
         0
                                1
                                          7.2500
                                                         False
                                                                    True
                   1 38.0
         1
                                1
                                        0 71.2833
                                                          True
                                                                   False
                                                                                True
         2
                   3
                      26.0
                                          7.9250
                                                          True
                                                                   False
                                                                               False
                   1 35.0
                                        0 53.1000
                                                                               False
         3
                                1
                                                          True
                                                                   False
                                           8.0500
         4
                   3 35.0
                                                         False
                                                                    True
                                                                               False
                                0
                  . . .
                       . . .
                                               . . .
                                                           . . .
                                                                    . . .
                                                                                . . .
         . .
                                      . . .
                               . . .
         886
                   2 27.0
                                        0 13.0000
                                                         False
                                                                    True
                                                                               False
                                        0 30.0000
                   1 19.0
                                                                   False
                                                                               False
         887
                                0
                                                          True
                   3 28.0
                                        2 23.4500
         888
                                                          True
                                                                   False
                                                                               False
                                1
                   1 26.0
                                        0 30.0000
         889
                                 0
                                                         False
                                                                    True
                                                                                True
                   3 32.0
                                        0 7.7500
                                                         False
                                                                               False
         890
                                 0
                                                                    True
              Embarked_Q Embarked_S
         0
                   False
                                True
         1
                   False
                                False
                   False
         2
                                True
         3
                   False
                                True
         4
                   False
                                True
                    . . .
                                 . . .
         . .
                   False
         886
                                True
         887
                   False
                                True
         888
                   False
                                True
         889
                                False
                    False
                               False
         890
                    True
         [891 rows x 10 columns]
In [62]: y = df_train['Survived']
         print("Target Variable, y:\n", y)
         Target Variable, y:
                 0
         1
                1
         2
                1
         3
                1
                . .
         886
                0
         887
                1
                0
         888
         889
                1
         890
         Name: Survived, Length: 891, dtype: int64
```

```
In [63]: X test = pd.get dummies(df test[features])
         print("Input matrix for the test data, X test:\n", X test)
         Input matrix for the test data, X test:
                Pclass
                        Age SibSp Parch
                                                Fare Sex female Sex male Embarked C \
         0
                                                                     True
                    3 34.5
                                 0
                                             7.8292
                                                          False
                                                                                False
                   3 47.0
                                                           True
         1
                                1
                                             7.0000
                                                                    False
                                                                                False
         2
                   2 62.0
                                             9.6875
                                                          False
                                                                     True
                                                                                False
                   3 27.0
         3
                                             8.6625
                                                          False
                                                                     True
                                                                                False
                   3 22.0
         4
                                1
                                            12.2875
                                                           True
                                                                    False
                                                                                False
                                        1
                  . . .
                       . . .
                                                            . . .
                                                                      . . .
                                                                                  . . .
         . .
                                      . . .
                                                . . .
         413
                   3 27.0
                                        0
                                             8.0500
                                                          False
                                                                     True
                                                                                False
                                        0 108.9000
                   1 39.0
                                                                    False
         414
                                                           True
                                                                                 True
                   3 38.5
         415
                                             7.2500
                                                          False
                                                                     True
                                                                                False
                   3 27.0
         416
                                 0
                                             8.0500
                                                          False
                                                                     True
                                                                                False
                   3 27.0
                                            22.3583
                                                          False
                                                                                 True
         417
                                1
                                                                     True
              Embarked Q Embarked S
         0
                    True
                                False
         1
                    False
                                True
         2
                                False
                    True
         3
                   False
                                True
         4
                    False
                                True
                                 . . .
         . .
                   False
         413
                                True
         414
                   False
                                False
         415
                   False
                                True
                                True
         416
                    False
         417
                   False
                                False
         [418 rows x 10 columns]
In [64]: # Split the data into training and testing sets
         X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
         print("X train:\n", X train)
         print("X val:\n", X val)
         print("y train:\n", y train)
```

print("y_val:\n", y val)

X train: Fare Sex_female Sex_male Embarked_C \ Pclass Age SibSp Parch 1 45.5 331 0 28.5000 False True False 23.0 733 2 13.0000 False True False 32.0 382 3 7.9250 False False True 26.0 704 3 1 7.8542 False True False 813 3 6.0 4 2 31.2750 True False False . 21.0 3 7.6500 True False False 106 28.0 270 1 31.0000 False False 0 True 41.0 860 3 2 14.1083 False True False 435 1 14.0 1 120.0000 True False False 1 21.0 102 0 77.2875 False True False Embarked_Q Embarked_S 331 False True False 733 True 382 False True 704 False True 813 False True False 106 True False 270 True 860 False True 435 False True False 102 True [712 rows x 10 columns] X_val: Pclass Fare Sex female Sex male Embarked C \ Age SibSp Parch 1 15.2458 709 3 28.0 1 False True True 439 31.0 0 10.5000 False True False 840 3 20.0 7.9250 False False True 6.0 720 33.0000 False False True 3 14.0 0 11.2417 39 1 True False True . 3 17.0 7.1250 False 433 False True 28.0 7.2250 773 False True True 3 25 38.0 1 31.3875 True False False 84 2 17.0 0 10.5000 False False True 4.0 False 10 1 1 16.7000 True False Embarked_Q Embarked_S 709 False False False 439 True

```
840
                   False
                                True
         720
                   False
                                True
         39
                   False
                               False
         . .
                    . . .
                                 . . .
                   False
         433
                                True
         773
                   False
                               False
                   False
                                True
         25
         84
                   False
                                True
                   False
         10
                                True
         [179 rows x 10 columns]
         y_train:
          331
                 0
                0
         733
         382
                0
         704
                0
         813
                0
                1
         106
         270
                0
                0
         860
         435
                1
                0
         102
         Name: Survived, Length: 712, dtype: int64
         y_val:
          709
                 1
                0
         439
         840
                0
                1
         720
         39
                1
         433
         773
         25
                1
         84
                1
         10
         Name: Survived, Length: 179, dtype: int64
In [65]: from sklearn.model_selection import GridSearchCV
         # Define the hyperparameters to tune
         param_grid = {
              'max_depth': [3, 5, 7, 10],
              'min_samples_split': [2, 5, 7, 10],
              'min_samples_leaf': [1, 2, 4, 5, 7]
```

```
# Initialize the GridSearchCV object
         grid search = GridSearchCV(estimator=DecisionTreeClassifier(random state=42),
                                    param grid=param grid,
                                    n jobs=-1,
                                    verbose=2)
         # Perform the grid search
         grid search.fit(X train, y train)
         # Get the best hyperparameters
         best params = grid search.best params
         print("Best Hyperparameters:", best params)
         # Use the best model for prediction
         best model = grid search.best estimator
         y pred = best model.predict(X test)
         Fitting 5 folds for each of 80 candidates, totalling 400 fits
         Best Hyperparameters: {'max depth': 3, 'min samples leaf': 5, 'min samples split': 2}
In [66]: # Decision Tree Classifier
         dt classifier = DecisionTreeClassifier(max depth=3, min samples split=2, min samples leaf=5, random state=42)
         dt classifier.fit(X train, y train)
         # Model evaluation
         # Cross-validation
         cv scores = cross val score(dt classifier, X, y, cv=11)
         print(f"Cross-validation scores: {cv scores}")
         print(f"Mean CV accuracy: {cv scores.mean()}")
         # Predictions on the test set
         y pred = dt classifier.predict(X test)
         # Output predictions to a file
         output = pd.DataFrame({'PassengerId': df test.PassengerId, 'Survived': y pred})
         output.to_csv(r"C:\Users\Prajwal\Desktop\Mtech\Second Sem\ML\titanic_predictions_dt_classification.csv", index=False)
         Cross-validation scores: [0.82716049 0.81481481 0.82716049 0.80246914 0.86419753 0.83950617
          0.77777778 0.80246914 0.7654321 0.88888889 0.81481481]
         Mean CV accuracy: 0.8204264870931538
In [67]: from sklearn import tree
         import matplotlib.pyplot as plt
```

```
# Get feature names as a list
feature_names = X.columns.tolist()

# Visualize the Decision Tree
plt.figure(figsize=(20,10))
tree.plot_tree(dt_classifier, filled=True, feature_names=feature_names, class_names=['Not Survived', 'Survived'])
plt.show()
```



```
# Define the hyperparameters to tune
         param grid = {
              'classifier n estimators': [50, 100],
              'classifier max depth': [10, 20],
              'classifier min samples split': [2, 5, 7, 10],
              'classifier min samples leaf': [1, 2, 4, 5, 7]
         # Initialize the GridSearchCV object
         grid search = GridSearchCV(estimator=pipeline,
                                    param grid=param grid,
                                    n jobs=-1,
                                    verbose=2)
         # Perform the grid search
         grid search.fit(X train, y train)
         # Get the best hyperparameters
         best params = grid search.best params
         print("Best Hyperparameters:", best_params)
         # Use the best model for prediction
         best model = grid search.best estimator
         y pred = best model.predict(X test)
         # Output predictions to a file
         output = pd.DataFrame({'PassengerId': df test.PassengerId, 'Survived': y pred})
         output.to csv(r"C:\Users\Prajwal\Desktop\Mtech\Second Sem\ML\titanic predictions rf classification.csv", index=False)
         Fitting 5 folds for each of 80 candidates, totalling 400 fits
         Best Hyperparameters: {'classifier__max_depth': 10, 'classifier__min_samples_leaf': 7, 'classifier min samples split':
         2, 'classifier n estimators': 100}
In [69]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import cross_val_score
         import numpy as np
         # Random Forest Classifier
         rf classifier = RandomForestClassifier(n estimators=100, max depth=10, min samples split=2, min samples leaf=7, random
         rf classifier.fit(X train, y train)
         # Model evaluation
         # Random Forest
         rf_cv_scores = cross_val_score(rf_classifier, X, y, cv=11)
```