Deep Virtual $\pi\pi$ Production Simulation Pseudo-Code

Charles E. Hyde
Old Dominion University, Norfolk VA 23529

(Dated: May 15, 2021)

1. Event Generation

(a) Generate beam particle four-vectors $k^\mu=$ k4Beam, P^μ P4Beam. Construct light-cone 4-vectors $n_e^\mu,\,\widetilde{n}_e^\mu.$

$$n^{\mu} = \alpha \left[k^{\mu} - \frac{m_e^2/(k \cdot P)}{1 + \sqrt{1 - \delta_e}} P^{\mu} \right], \quad \delta_e = \frac{m_e^2 M_p^2}{(k \cdot P)^2} \quad \widetilde{n}^{\mu} = \widetilde{\alpha} \left[-k^{\mu} + ()P^{\mu} \right]$$
 (1)

Construct lab based transverse unit vectors X_{Det}^{μ} , Y_{Det}^{μ} :

$$X \cdot X = -1 = Y \cdot Y,$$
 $X \cdot n = 0,$ etc. $\epsilon_{\mu\nu\rho\sigma} n_e^{\mu} X_{\rm Det}^{\nu} Y_{\rm Det}^{\rho} \widetilde{n}_e^{\sigma} = 1$ (2)

- (b) Generate Invariants: Q^2 , x_B , Φ_e ;
- (c) Construct four-vectors: k4Scat, q4Virt and basis unit vectors

$$n_q^{\mu}, \qquad \widetilde{n}_q^{\mu} \qquad X_q^{\mu} \qquad Y_q^{\mu}$$

with constraint $Y_q \cdot k' = 0$.

(d) Generate Two-Pion mass-squared $M_{\pi\pi}^2$;

Generate invariant momentum transfer squared t_p .

Generate Invariant azimuthal angle $\Phi_{\pi\pi}$ (value is from 0 to 2π , meaning to be defined below);

Construct all remaining final state four vectors;

Generate two-pion rest-frame variables $\cos \theta_+$ and ϕ_+ .

- (e) Compute invariant flux and phase space factors.
- 2. Construct amplitude for $e+p\to e+\pi^++N^*$ with a virtual π^- exchange coupled to $\pi^-p\to\pi^-p$ amplitudes of SAID.

Four-vector p4Virt = q4Virt-p4piPlus.

Define final state $\pi^- p$ Center-of-Mass frame and determine pion scattering angle.

Sum over SAID πN amplitudes up to $F_{17}(1700)$.

Use helicity basis for nucleon spin.

- 3. Construct amplitude for $e+p\to e+\pi^-+N^*$ with a virtual π^+ exchange coupled to $\pi^+p\to\pi^+p$ amplitudes of SAID.
- 4. Construct Schilling and Wolf style amplitude for diffractive production in (I,J)=(0,0) and (1,1) channels