微积分 A (2)

姚家燕

第 21 讲

在听课过程中,

严禁使用与教学无关的电子产品!

第 20 讲回顾: 单连通集与 Green 公式

定义 1. 称 $\Omega \subset \mathbb{R}^2$ 为单连通集, 若 Ω 中的任意 闭曲线所围的区域仍包含在 Ω 中 (也即 Ω 中的任意闭曲线可连续地收缩成为一点). 若 Ω 不为 单连通集, 则称之为复连通集.

例 1. \mathbb{R}^2 中单位圆盘 $B(\mathbf{0},1)$ 为单连通集, 但是 去心单位圆盘 $\mathring{B}(\mathbf{0},1)$ 不为单连通.

定理 1. (Green 公式) 假设 $\Omega \subset \mathbb{R}^2$ 为单连通的 有界闭区域, 它的边界 $\partial\Omega$ 为分段光滑闭曲线, 该曲线的正方向为逆时针方向, 记 \vec{n}^0 为 $\partial\Omega$ 的 单位外法向量. 如果 $\vec{F} = (F_1, F_2)^T : \Omega \to \mathbb{R}^2$ 为 连续可导的向量值函数.则

$$\oint_{\partial\Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \oint_{\partial\Omega^+} F_1 \, dy - F_2 \, dx = \iint_{\Omega} \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} \right) dx dy,$$

$$\oint_{\partial\Omega^+} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 \, dx + F_2 \, dy = \iint_{\Omega} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

评注

•
$$|\Omega| = \iint_{\Omega} 1 dx dy = \oint_{\partial \Omega^+} x dy = -\oint_{\partial \Omega^+} y dx = \frac{1}{2} \oint_{\partial \Omega^+} x dy - y dx.$$

• (外微分) 设 $\omega = F_1 dx + F_2 dy$. 定义

$$\begin{split} \mathrm{d}\omega &:= & \mathrm{d}F_1 \wedge \mathrm{d}x + \mathrm{d}F_2 \wedge \mathrm{d}y \\ &= & \left(\frac{\partial F_1}{\partial x} \, \mathrm{d}x + \frac{\partial F_1}{\partial y} \, \mathrm{d}y\right) \wedge \mathrm{d}x + \left(\frac{\partial F_2}{\partial x} \, \mathrm{d}x + \frac{\partial F_2}{\partial y} \, \mathrm{d}y\right) \wedge \mathrm{d}y \\ &= & \frac{\partial F_1}{\partial y} \, \mathrm{d}y \wedge \mathrm{d}x + \frac{\partial F_2}{\partial x} \, \mathrm{d}x \wedge \mathrm{d}y = \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \, \mathrm{d}x \wedge \mathrm{d}y. \end{split}$$

• 外微分形式下的 Green 公式: $\oint_{\partial \Omega^+} \omega = \iint d\omega$.

回顾: 复连通集与 Green 公式

对于复连通区域,如果规定沿它的边界的正方向行走时,上述区域在其边界的左边,则我们有:

定理 2. (Green 公式) 设 $\Omega \subset \mathbb{R}^2$ 为有界闭区域, 边界 $\partial\Omega$ 为分段的光滑闭曲线, 且其方向取正向.

若
$$\vec{F} = (F_1, F_2)^T : \Omega \to \mathbb{R}^2$$
 为连续可导, 则

$$\oint_{\partial\Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \oint_{\partial\Omega^+} F_1 \, dy - F_2 \, dx = \iint_{\Omega} \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} \right) dx dy,$$

$$\oint_{\partial\Omega^+} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 \, dx + F_2 \, dy = \iint_{\Omega} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

回顾: 散度与旋度

定义 2. 假设 $\Omega \subset \mathbb{R}^2$ 为非空开集, $\vec{F} = (F_1, F_2)$ 在 Ω 上可导. $\forall (x, y) \in \Omega$, 定义

$$\operatorname{div} \vec{F}(x,y) = \frac{\partial F_1}{\partial x}(x,y) + \frac{\partial F_2}{\partial y}(x,y),$$

$$\operatorname{rot} \vec{F}(x,y) = \frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y),$$

称为 \vec{F} 的散度和旋度. 此时 Green 公式变为

$$\oint_{\partial\Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \oint_{\partial\Omega^+} F_1 \, dy - F_2 \, dx = \iint_{\Omega} \operatorname{div} \vec{F}(x, y) \, dx dy,$$

$$\oint_{\partial\Omega^+} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 \, dx + F_2 \, dy = \iint_{\Omega} \operatorname{rot} \vec{F}(x, y) \, dx dy.$$

回顾: 积分与路径的无关性

定理 3. 假设 $\Omega \subset \mathbb{R}^2$ 为非空开集, $\vec{F} = (F_1, F_2)^T$ 在 Ω 上为连续可导, 而 $A, B \in \Omega$ 为两个固定点, $L \subset \Omega$ 为连接 A, B 的分段光滑曲线. 则

$$\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$$

仅依赖 A, B 而与路径 L 无关当且仅当对于 Ω 中过 A, B 的任意分段光滑闭曲线 Γ , 均有

$$\oint_{\Gamma^+} \vec{F} \cdot d\vec{\ell} = 0.$$

定理 4. 假设 $\Omega \subset \mathbb{R}^2$ 为单连通开区域, 而函数 $\vec{F} = (F_1, F_2)^T$ 在 Ω 上连续可导. 则下列等价:

- (1) $\forall (x,y) \in \Omega$, 均有 $\frac{\partial F_1}{\partial y}(x,y) = \frac{\partial F_2}{\partial x}(x,y)$;
- (2) $\forall A, B \in \Omega$, $\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$ 仅与 A, B 有关, 而与 Ω 中连接 A, B 的分段光滑曲线 L 无关;
- M 中廷按 A, B 的分权儿捐曲线 L 儿大;
- (3) 存在函数 $U:\Omega\to\mathbb{R}$ 使得 $\forall (x,y)\in\Omega$,

$$dU(x,y) = F_1(x,y) dx + F_2(x,y) dy.$$

回顾: 评注

- •满足 $dU = F_1 dx + F_2 dy$ 的函数 U 被称为 微分形式 $F_1 dx + F_2 dy$ 的一个原函数.
- 若 U 为 $F_1 dx + F_2 dy$ 的一个原函数,那么 U + C 也是上述微分形式另外一个原函数,其中 C 为任意的常数.
- 前面的定理是说: 单连通区域 $\Omega \subset \mathbb{R}^2$ 上的 微分形式 $F_1 dx + F_2 dy$ 具有原函数当且仅当 我们有 $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$.

• 单连通的条件不能够去掉. 例如函数 $\frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2}$ 在 $\mathbb{R}^2 \setminus \{(0,0)\}$ 上满足条件 (1), 但对于单位 圆周 $L: x^2 + y^2 = 1$ (逆时针方向), 却有 $\oint_{L^+} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} = \int_0^{2\pi} \cos \varphi \, \mathrm{d}(\sin \varphi) - \sin \varphi \, \mathrm{d}(\cos \varphi) = 2\pi.$

定理 5. 若 $\Omega \subset \mathbb{R}^2$ 为开区域, 而 $\vec{F} = (F_1, F_2)^T$ 在 Ω 上连续并且使得 $F_1 dx + F_2 dy$ 在 Ω 上有原函数 U, 则 $\forall (x_1, y_1), (x_2, y_2) \in \Omega$, 我们有

$$\int_{(x_1,y_1)}^{(x_2,y_2)} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y = U(x_2,y_2) - U(x_1,y_1) = U \Big|_{(x_1,y_1)}^{(x_2,y_2)}.$$

回顾: Gauss 公式

定理 1. (Gauss 公式) 设 $\Omega \subset \mathbb{R}^3$ 为有界闭区域, 其边界 $\partial\Omega$ 为分片光滑可定向曲面且以外侧为 正向, 而 $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$, 则 $\iint_{\partial\Omega^+} \vec{F} \cdot d\vec{\sigma} = \iiint_{\Omega} \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) dxdydz.$

注: (1) 令
$$\operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
, 称为向量场 \vec{F} 的散度.

(2) Gauss 公式的证明与 Green 公式的类似.

利用微分形式表述的 Gauss 公式

于是 Gauss 公式也可以表述成

$$\iint_{\partial\Omega^{+}} F_{1} dy \wedge dz + F_{2} dz \wedge dx + F_{3} dx \wedge dy$$

$$= \iiint_{\Omega} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dx dy dz.$$

我们由此考虑微分 2-形式

$$\omega = F_1 \, \mathrm{d}y \wedge \mathrm{d}z + F_2 \, \mathrm{d}z \wedge \mathrm{d}x + F_3 \, \mathrm{d}x \wedge \mathrm{d}y.$$

我们下面定义外微分

$$d\omega := dF_1 \wedge dy \wedge dz + dF_2 \wedge dz \wedge dx + dF_3 \wedge dx \wedge dy$$

$$= \left(\frac{\partial F_1}{\partial x} dx + \frac{\partial F_1}{\partial y} dy + \frac{\partial F_1}{\partial z} dz\right) \wedge dy \wedge dz$$

$$+ \left(\frac{\partial F_2}{\partial x} dx + \frac{\partial F_2}{\partial y} dy + \frac{\partial F_2}{\partial z} dz\right) \wedge dz \wedge dx$$

$$+ \left(\frac{\partial F_3}{\partial x} dx + \frac{\partial F_3}{\partial y} dy + \frac{\partial F_3}{\partial z} dz\right) \wedge dx \wedge dy$$

$$= \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right) dx \wedge dy \wedge dz.$$

故 Gauss 公式也可表述成 $\iint \omega = \iiint d\omega$.

回顾: Stokes 公式

定理 2. (Stokes 公式) 假设 $\Omega \subset \mathbb{R}^3$ 为非空开集, $S \subset \Omega$ 为分片光滑可定向有界曲面, 其边界 ∂S 为分段光滑闭曲线并且 S^+ 与 ∂S^+ 的定向满足右手螺旋法则, $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$, 则

$$\oint_{\partial S^{+}} \vec{F} \cdot d\vec{\ell} = \oint_{\partial S^{+}} F_{1} dx + F_{2} dy + F_{3} dz$$

$$= \iint_{S^{+}} \operatorname{rot} \vec{F} \cdot d\vec{\sigma},$$

其中 $\operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F}$ 被称为向量场 \vec{F} 的旋度.

利用微分形式表述的 Stokes 公式

Stokes 公式也可以表述成

$$\oint_{\partial S^{+}} \vec{F} \cdot d\vec{\ell} = \oint_{\partial S^{+}} F_{1} dx + F_{2} dy + F_{3} dz$$

$$= \iint_{S^{+}} \left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right) dy \wedge dz + \left(\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right) dz \wedge dx$$

$$+ \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx \wedge dy.$$

由此令
$$\omega = F_1 dx + F_2 dy + F_3 dz$$
, 并定义
$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz.$$

则我们有

$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$$

$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$$

$$= \left(\frac{\partial F_1}{\partial x} dx + \frac{\partial F_1}{\partial y} dy + \frac{\partial F_1}{\partial z} dz\right) \wedge dx$$

$$(\partial F_2 + \partial F_2$$

$$\left(\frac{\partial x}{\partial x} dx + \frac{\partial y}{\partial y} dy + \frac{\partial z}{\partial z} dz\right) \wedge dx + \frac{\partial F_2}{\partial z} dz + \frac{\partial F_2}$$

 $+\left(\frac{\partial F_2}{\partial x}dx + \frac{\partial F_2}{\partial y}dy + \frac{\partial F_2}{\partial z}dz\right) \wedge dy + \left(\frac{\partial F_3}{\partial x}dx + \frac{\partial F_3}{\partial y}dy + \frac{\partial F_3}{\partial z}dz\right) \wedge dz$

 $= \frac{\partial F_1}{\partial y} dy \wedge dx + \frac{\partial F_1}{\partial z} dz \wedge dx + \frac{\partial F_2}{\partial x} dx \wedge dy$

 $+\frac{\partial F_2}{\partial z} dz \wedge dy + \frac{\partial F_3}{\partial x} dx \wedge dz + \frac{\partial F_3}{\partial y} dy \wedge dz$

 $= \left(\frac{\partial F_3}{\partial u} - \frac{\partial F_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial u}\right) dx \wedge dy.$ 于是 Stokes 公式也可写成 $\oint_{as+} \omega = \iint d\omega$.

第 21 讲

例 4. 计算 $\oint_{L^+} y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z$, 其中 L^+ 是由 三个点 A(a,0,0), B(0,a,0), C(0,0,a) 所组成的 三角形的边界, 其中 a>0.

解: 设 S 为三角形块 $\triangle ABC$, 其正向与其边界 L^+ 满足右手螺旋法则, 于是由 Stokes 公式得 $\oint_{L^+} y \, \mathrm{d} x + z \, \mathrm{d} y + x \, \mathrm{d} z = \iint_{S^+} \vec{\nabla} \times (y,z,x)^T \cdot \mathrm{d} \vec{\sigma}$ $= -\iint_{S} (1,1,1)^T \cdot \frac{1}{\sqrt{3}} (1,1,1)^T \mathrm{d} \sigma = -\sqrt{3} |S| = -\frac{3}{2} a^2.$

- 例 5. 计算 $\oint_{L^+} \frac{x \, \mathrm{d}y y \, \mathrm{d}x}{x^2 + y^2}$, (1) 其中 L 是不经过也不围绕 z 轴的闭曲线;
- (2) 其中 L 是围绕 z 轴一圈的闭曲线, 从 z 的 正向向下看, 曲线 L 的正向为逆时针方向.

解: (1) 由于闭曲线 L 是不经过也不围绕 z 轴, 因此存在以 L 为边界且与 z 不相交的曲面 S, 取 S 的正向使之与 L^+ 满足右手螺旋法则, 则

$$\oint_{L^+} \frac{x \,\mathrm{d} y - y \,\mathrm{d} x}{x^2 + y^2} = \iint\limits_{S^+} \vec{\nabla} \times \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right)^T \cdot \mathrm{d} \vec{\sigma} = 0.$$

(2) 以 L^+ 为准线并以 z 轴为母线作一个柱面,该柱面与 xy 平面的交线为 L_1^+ ,该柱面的侧面为 S,其正向向外.则由 Stokes 公式可知

$$\oint_{L^+ \cup L_1^-} \frac{x \, \mathrm{d} y - y \, \mathrm{d} x}{x^2 + y^2} = - \iint_{C_+} \vec{\nabla} \times \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0 \right)^T \cdot \mathrm{d} \vec{\sigma} = 0,$$

则 $\oint_{L^+} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} = \oint_{L_1^+} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2}$. 设 L_1 在 xy 平面 所围区域为 D, 取 $\delta > 0$ 使得 $B((0,0);\delta) \subset D$, 令 $L_2 = \partial B((0,0);\delta)$, 则由 Green 公式可得

 $\oint_{L^+} \frac{x \, dy - y \, dx}{x^2 + y^2} = \oint_{L^+} \frac{x \, dy - y \, dx}{x^2 + y^2} = \oint_{L^+} \frac{x \, dy - y \, dx}{x^2 + y^2} = 2\pi.$

定义 1. 称开区域 $\Omega \subset \mathbb{R}^3$ 为单连通区域 (也称 线单连通区域), 若对于 Ω 中的任意分段光滑的 闭曲线 L, 在 Ω 中均可找到某个以 L 为边界的 分片光滑曲面 S. 而这又等价于说 Ω 中的任意 分段光滑闭曲线均可以连续地收缩成一点.

例 6. 空间 ℝ³ 中单位球体为单连通区域, 轮胎 所用成的区域不为单连通.

3. 空间第二类曲线积分与路径的无关性 原函数

定理 3. 设 $\Omega \subset \mathbb{R}^3$ 为<mark>单连通</mark>区域,向量值函数 $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$,则下列结论等价:

- (1) $\operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F} = \vec{0};$
- (2) 对 Ω 中任意分段光滑闭曲线 L, $\oint_L \vec{F} \cdot d\vec{\ell} = 0$;
- (3) $\forall A, B \in \Omega$ 以及 Ω 中连接 A, B 的分段光滑曲线 L, 积分 $\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = L$ 的选取无关;
- (4) 存在函数 $U:\Omega \to \mathbb{R}$ 使得

$$dU = F_1 dx + F_2 dy + F_3 dz.$$

评注

- 上述定理与平面曲线积分与路径无关的刻画 完全类似, 只是这里我们需应用 Stokes 公式 而不是 Green 公式.
- 若函数 U 使得 $dU = F_1 dx + F_2 dy + F_3 dz$, 则称 U 为微分形式 $F_1 dx + F_2 dy + F_3 dz$ 的一个原函数. 此时 $\overrightarrow{\text{grad}} U = \vec{\nabla} U = \vec{F}$:

$$\frac{\partial U}{\partial x} = F_1, \ \frac{\partial U}{\partial y} = F_2, \ \frac{\partial U}{\partial z} = F_3.$$

- 如果 U 为微分形式 $F_1 dx + F_2 dy + F_3 dz$ 的一个原函数, 那么 U + C 也是该微分形式的一个原函数, 其中 $C \in \mathbb{R}$ 为任意常数.
- 前面的定理是说: 单连通区域 Ω ⊂ ℝ³ 上的 微分形式 F₁ dx + F₂ dy + F₃ dz 具有原函数 当且仅当 rot F = 0. 此时我们有:

$$\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = U(B) - U(A) = U \Big|_A^B.$$

例 7. 求 $\oint_{L^+} \frac{x \, \mathrm{d}x + y \, \mathrm{d}y + z \, \mathrm{d}z}{x^2 + y^2 + z^2}$, 其中曲线 L 为球面 $S: x^2 + y^2 + z^2 = a^2$ 在第一卦限中与坐标平面相交的圆弧 \widehat{AB} , \widehat{BC} , \widehat{CA} 连接而成的闭曲线.

解:由于曲面 S 不包含原点,则存在包含 S 但不包含原点的单连通区域,于是

$$\oint_{L^{+}} \frac{x \, dx + y \, dy + z \, dz}{x^{2} + y^{2} + z^{2}} = \frac{1}{2} \oint_{L^{+}} \frac{d(x^{2} + y^{2} + z^{2})}{x^{2} + y^{2} + z^{2}}$$

$$= \frac{1}{2} \oint_{L^{+}} d\left(\log(x^{2} + y^{2} + z^{2})\right) = \frac{1}{2} \log(x^{2} + y^{2} + z^{2}) \Big|_{A}^{A} = 0.$$

作业题: 第4.7节第227页第6.(1)题,第228页

第 7.(1) 题.

26 / 62

例 8. 求 $\int_{L^+} (x^2 - yz) dx + (y^2 - zx) dy + (z^2 - xy) dz$, 其中 L 是由下述参数方程给出的螺线:

$$x = a\cos t, \ y = a\sin t, \ z = bt \ (0 \leqslant t \leqslant 2\pi),$$

其正向为 t 递增的方向.

解: 由题设立刻可知 L 的起点为 A = (a, 0, 0), 终点为 $B = (a, 0, 2\pi b)$, 于是

$$\int_{L^{+}} (x^{2} - yz) dx + (y^{2} - zx) dy + (z^{2} - xy) dz$$

$$= \int_{L^{+}} d\left(\frac{1}{3}(x^{3} + y^{3} + z^{3}) - xyz\right) = \frac{8}{3}\pi^{3}b^{3}.$$

例 9. 计算 $\int_{L^+} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2}$,

(1) 其中路径 L 位于第一卦限 (但不经过 z 轴)

且以 A(1,0,0) 为起点, 以 B(0,1,1) 为终点;

(2) 其中路径 L 从点 A(1,0,0) 出发, 依次穿过

第四、三、二卦限 (不经过 z 轴) 至 B(0,1,1).

解: (1) 由题设知 $\forall (x,y) \in L$, 均有 $x,y \ge 0$, 则

$$\int_{L^+} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} = \int_{L^+} \mathrm{d}\left(\arctan \frac{y}{x}\right) = \arctan \frac{y}{x} \Big|_{A(1,0,0)}^{B(0,1,1)} = \frac{\pi}{2}.$$

(2) 设路径 L_1 位于第一卦限 (不经过 z 轴) 且以 A 为起点,以 B 为终点,则 $L^+ \cup L_1^-$ 构成了一个围绕 z 轴的闭曲线且从 z 轴的正向向下看,曲线 $L^+ \cup L_1^-$ 的方向为顺时针方向,于是

$$\oint_{L^+ \cup L_1^-} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} = -2\pi,$$

从而借助 (1) 立刻可得

$$\int_{L^{+}} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^{2} + y^{2}} = -2\pi + \int_{L^{+}_{1}} \mathrm{d}\left(\arctan \frac{y}{x}\right) = -\frac{3\pi}{2}.$$

例 10. 设 k 为常数. $\forall (x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, 定义 $\vec{F}(x, y, z) = -k\frac{\vec{r}}{r^3}$, 其中 $\vec{r} = (x, y, z)$,

$$r = \|\vec{r}\| = \sqrt{x^2 + y^2 + z^2}.$$

求证: 力 \vec{F} 从点 $A(x_1, y_1, z_1)$ 到点 $B(x_2, y_2, z_2)$ 所做的功与路径 (不经过原点) 无关.

证明:设 L 为从点 A 到点 B 任意分段光滑的路径 (不经过原点),则力 \vec{F} 沿 L 所做的功为

$$W = \int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = \int_{L(A)}^{(B)} d\left(\frac{k}{r}\right) = \frac{k}{r} \Big|_{A}^{B},$$

故所证结论成立.

4. 特殊的向量场

若用 $\vec{i}, \vec{j}, \vec{k}$ 表示 \mathbb{R}^3 的标准基底, 则

$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}.$$

于是我们有

梯度:
$$\overrightarrow{\text{grad}}f = \vec{\nabla}f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$$
,
散度: $\overrightarrow{\text{div}}\vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$,
旋度: $\overrightarrow{\text{rot}}\vec{F} = \vec{\nabla} \times \vec{F}$.

定义 2. 设 $\vec{F} = (F_1, F_2, F_3)^T$ 为向量值函数.

- (1) 若存在 U 使得 $\nabla U = \vec{F}$, 则称 \vec{F} 为梯度场或有势场或保守场. 函数 U 称为 \vec{F} 的势函数.
- (2) 若存在向量值函数 \vec{V} 使得 $\vec{F} = \vec{\nabla} \times \vec{V}$, 则 称 \vec{F} 为旋度场.
- (3) 若 $\vec{\nabla} \cdot \vec{F} = 0$, 则称 \vec{F} 为无源场.
- (4) 若 $\vec{\nabla} \times \vec{F} = \vec{0}$, 则称 \vec{F} 为无旋场.

定理 4. 设 $\Omega \subset \mathbb{R}^3$ 为单连通区域, $\vec{F}: \Omega \to \mathbb{R}^3$ 为连续可导向量值函数.

- (1) $\vec{\nabla} \times \vec{F} = \vec{0}$ 当且仅当有函数 U 使 $\vec{\nabla} U = \vec{F}$. 即向量场无旋当且仅当为梯度场.
- (2) $\vec{\nabla} \cdot \vec{F} = \vec{0}$ 当且仅当存在向量值函数 \vec{V} 使得 $\vec{\nabla} \times \vec{V} = \vec{F}$. 即向量场无源当且仅当为旋度场.

作业题: 第 4.7 节第 228 页第 9 题.

第4章小结

- 第一类、第二类曲线积分
- 第一类、第二类曲面积分
- 线积分, 面积分与体积分之间的关系: Green 公式, 第二类平面曲线积分与路径 无关性, Gauss 公式, Stokes 公式, 第二类 空间曲线积分与路径的无关性
- 梯度, 散度, 旋度及其关系

回顾: 曲线积分

设 $L \subset \mathbb{R}^3$ 为从点 A 到点 B 的分段光滑曲线,参数方程为 $\vec{\ell}(t) = \big(x(t), y(t), z(t)\big)^T$ $(t \in [a, b])$,相应单位切向量为 $\vec{\tau}^0 = (\cos \alpha, \cos \beta, \cos \gamma)^T$.

1. 第一类曲线积分: 设 $f: L \to \mathbb{R}$ 分段连续,

$$\int_{L} f(x, y, z) d\ell = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt.$$

应用: 计算曲线的总质量与质心 (形心).

2. 第二类曲线积分: 假设 $\vec{F} = (F_1, F_2, F_3)^T$ 为 定义在曲线 L 上的分段连续向量值函数,

$$\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = \int_{L(A)}^{(B)} F_1 dx + F_2 dy + F_3 dz
= \int_L \vec{F} \cdot \vec{\tau}^0 d\ell = \int_L (F_1 \cos \alpha + F_2 \cos \beta + F_3 \cos \gamma) d\ell
= \int_a^b (F_1(x(t), y(t), z(t))x'(t) + F_2(x(t), y(t), z(t))y'(t)
+ F_3(x(t), y(t), z(t))z'(t)) dt.$$

应用: 沿曲线所做功及平面闭曲线所围面积:

$$|\Omega| = \iint 1 \, \mathrm{d}x \, \mathrm{d}y = \oint_{\partial \Omega^+} x \, \mathrm{d}y = -\oint_{\partial \Omega^+} y \, \mathrm{d}x = \frac{1}{2} \oint_{\partial \Omega^+} x \, \mathrm{d}y - y \, \mathrm{d}x.$$

回顾: 曲面积分

假设 $S \subset \mathbb{R}^3$ 为分片光滑曲面且其参数方程为

$$\vec{r}(u,v) = \big(x(u,v),y(u,v),z(u,v)\big)^T \ (u,v) \in D.$$

1. 第一类曲面积分: 设 f 在 S 上分片连续, $\iint_S f(x,y,z) d\sigma = \iint_D f(x(u,v),y(u,v),z(u,v)) \sqrt{EG-F^2} du dv,$

$$\begin{split} E &= \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2, \ G = \left(\frac{\partial x}{\partial v}\right)^2 + \left(\frac{\partial y}{\partial v}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2, \\ F &= \frac{\partial x}{\partial u}\frac{\partial x}{\partial v} + \frac{\partial y}{\partial u}\frac{\partial y}{\partial v} + \frac{\partial z}{\partial u}\frac{\partial z}{\partial v}. \end{split}$$

应用: 计算曲面的总质量与质心 (形心).

2. 第二类曲面积分: 设 S 为定向曲面, 相应的单位法向量为 $\vec{n}_S^0 = (\cos \tilde{\alpha}, \cos \tilde{\beta}, \cos \tilde{\gamma})^T$, 则

$$\iint_{S^{+}} \vec{F}(x,y,z) \cdot d\vec{\sigma} = \iint_{S} (\vec{F} \cdot \vec{n}_{S}^{0})(x,y,z) d\sigma$$

$$= \iint_{S} \left(F_{1}(x,y,z) \cos \tilde{\alpha} + F_{2}(x,y,z) \cos \tilde{\beta} + F_{3}(x,y,z) \cos \tilde{\gamma} \right) d\sigma$$

$$= \iint_{S^{+}} F_{1}(x,y,z) dy \wedge dz + F_{2}(x,y,z) dz \wedge dx + F_{3}(x,y,z) dx \wedge dy$$

$$= \underbrace{\pm \iint_{S^{+}} \left(F_{1} \frac{D(y,z)}{D(u,v)} + F_{2} \frac{D(z,x)}{D(u,v)} + F_{3} \frac{D(x,y)}{D(u,v)} \right) dudv,}$$

其中 \pm 由任意一点处, \vec{n}_+, S^+ 是否同向来定.

回顾: 线积分, 面积分与体积分的关系

1. Green 公式: 假设 $\Omega \subset \mathbb{R}^2$ 为有界平面闭区域, 其边界 $\partial \Omega$ 为分段光滑闭曲线, 其方向为正向.

若
$$\vec{F} = (F_1, F_2)^T : \Omega \to \mathbb{R}^2$$
 为连续可导,则
$$\oint_{\partial \Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \oint_{\partial \Omega^+} F_1 \, dy - F_2 \, dx = \iint_{\Omega} \operatorname{div} \vec{F}(x, y) \, dx dy,$$

$$\oint_{\partial\Omega^+} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 dx + F_2 dy = \iint_{\Omega} \operatorname{rot} \vec{F}(x, y) dx dy.$$

注: 设 $\omega = F_1 dx + F_2 dy$, 则我们有

$$d\omega := dF_1 \wedge dx + dF_2 \wedge dy = \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx \wedge dy.$$

2. 第二类平面曲线积分与路径无关的刻画:

假设 $\Omega \subset \mathbb{R}^2$ 为<mark>单连通</mark>开区域,而 $\vec{F} = (F_1, F_2)^T$ 在 Ω 上连续可导. 则下列结论等价:

- (1) $\forall (x,y) \in \Omega$, 均有 $\frac{\partial F_1}{\partial y}(x,y) = \frac{\partial F_2}{\partial x}(x,y)$;
- (2) 对 Ω 中任意分段光滑闭曲线 L, $\oint_{r} \vec{F} \cdot d\vec{\ell} = 0$;
- (3) $\forall A, B \in \Omega$, 积分 $\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$ 仅与 A, B 有关,
- 而与 Ω 中连接 A, B 的分段光滑曲线 L 无关;
- (4) 存在原函数 $U:\Omega\to\mathbb{R}$ 使得在 Ω 上, 成立

$$dU = F_1 dx + F_2 dy.$$

回顾: 评注

- 单连通的条件不能够去掉. 例如函数 $\frac{x \, dy y \, dx}{x^2 + y^2}$ 在 $\mathbb{R}^2 \setminus \{(0,0)\}$ 上满足条件 (1), 但对于单位 圆周 $L: x^2 + y^2 = 1$ (逆时针方向), 却有 $\oint_{L^+} \frac{x \, dy y \, dx}{x^2 + y^2} = \int_0^{2\pi} \cos \varphi \, d(\sin \varphi) \sin \varphi \, d(\cos \varphi) = 2\pi.$
- 若 $\Omega \subset \mathbb{R}^2$ 为开区域, $\vec{F} = (F_1, F_2)^T$ 在 Ω 上连续且 $F_1 dx + F_2 dy$ 在 Ω 上有原函数 U, 则 $\forall (x_1, y_1), (x_2, y_2) \in \Omega$, 我们有 $\int_{(x_1, y_1)}^{(x_2, y_2)} F_1 dx + F_2 dy = U(x_2, y_2) U(x_1, y_1) = U\Big|_{(x_1, y_1)}^{(x_2, y_2)}.$

3. Gauss 公式: 设 $\Omega \subset \mathbb{R}^3$ 为有界闭区域, 边界 $\partial\Omega$ 为分片光滑可定向曲面并且以外侧为正向, 而 $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$, 则我们有

$$\iint_{\partial\Omega^{+}} \vec{F} \cdot d\vec{\sigma} = \iint_{\partial\Omega^{+}} F_{1} dy \wedge dz + F_{2} dz \wedge dx + F_{3} dx \wedge dy$$

$$= \iiint_{\Omega} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dx dy dz = \iiint_{\Omega} div \vec{F} dx dy dz,$$

注: 设 $\omega = F_1 \, \mathrm{d}y \wedge \mathrm{d}z + F_2 \, \mathrm{d}z \wedge \mathrm{d}x + F_3 \, \mathrm{d}x \wedge \mathrm{d}y$, 则 $\mathrm{d}\omega := \mathrm{d}F_1 \wedge \mathrm{d}y \wedge \mathrm{d}z + \mathrm{d}F_2 \wedge \mathrm{d}z \wedge \mathrm{d}x + \mathrm{d}F_3 \wedge \mathrm{d}x \wedge \mathrm{d}y$ $= \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right) \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z.$

4. Stokes 公式: 设 $\Omega \subset \mathbb{R}^3$ 为非空开集, $S \subset \Omega$

为分片光滑的可定向有界曲面, 边界 ∂S 为分段

光滑闭曲线, 并且 S^+ 与 ∂S^+ 的定向满足右手螺旋法则, $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$, 则

$$\oint_{\partial S^+} \vec{F} \cdot d\vec{\ell} = \oint_{\partial S^+} F_1 dx + F_2 dy + F_3 dz = \iint_{S^+} \operatorname{rot} \vec{F} \cdot d\vec{\sigma}$$

 $= \iint_{S^{+}} \left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right) dy \wedge dz + \left(\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right) dz \wedge dx + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx \wedge dy,$

其中 $\operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F}$ 被称为向量场 \vec{F} 的旋度.

注: 令 $\omega = F_1 dx + F_2 dy + F_3 dz$, 则我们有 $d\omega := dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$

$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx \wedge dy.$$

5. 一般形式的 Stokes 公式:

$$\oint_{\partial S^+} \omega = \int_{S^+} d\omega,$$

其中 S 为 k 维带边分片光滑定向曲面, ∂S 与 S 的定向"和谐", 而 ω 为 k-1 维微分形式.

6. 第二类空间曲线积分与路径无关的刻画:

假设 $\Omega \subset \mathbb{R}^3$ 为线单连通的区域, 而向量值函数 $\vec{F} = (F_1, F_2, F_3)^T \in \mathcal{C}^{(1)}(\Omega)$, 则下列结论等价:

- (1) $\cot \vec{F} = \vec{0};$
- (2) 对 Ω 中任意分段光滑闭曲线 L, $\oint_{I} \vec{F} \cdot d\vec{\ell} = 0$;
- (3) $\forall A, B \in \Omega$, 积分 $\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$ 仅与 A, B 有关,
- 而与 Ω 中连接 A,B 的分段光滑曲线 L 无关;
- (4) 存在原函数 $U:\Omega\to\mathbb{R}$ 使得在 Ω 上, 成立

$$dU = F_1 dx + F_2 dy + F_3 dz.$$

回顾: 梯度, 散度, 旋度及其关系

若用 $\vec{i}, \vec{j}, \vec{k}$ 表示 \mathbb{R}^3 的标准基底, 则

梯度:
$$\overrightarrow{\text{grad}} f = \vec{\nabla} f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k},$$

散度:
$$\operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z},$$

旋度:
$$\operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F}$$
.

三者之间的关系:

$$\operatorname{rot}\left(\overrightarrow{\operatorname{grad}}f\right) = \vec{\nabla} \times \left(\vec{\nabla}f\right) = \vec{0},$$
$$\operatorname{div}\left(\operatorname{rot}\vec{F}\right) = \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F}\right) = 0.$$

综合练习

例 1. 假设 $f: \mathbb{R} \to \mathbb{R}$ 为可导函数使得曲线积分 $\int_{L^+} (x + xy \sin x) \, \mathrm{d}x + \frac{f(x)}{x} \, \mathrm{d}y \, 与 \, L \, \mathbb{E} + \mathbb{E} + \mathbb{E} + \mathbb{E} + \mathbb{E} = 0.$

- (1) 求函数 f.
- (2) 求函数 $u: \mathbb{R}^2 \to \mathbb{R}$ 使得

$$du = (x + xy\sin x) dx + \frac{f(x)}{x} dy.$$

(3) 计算
$$\int_{(\pi,1)}^{(2\pi,0)} (x + xy \sin x) dx + \frac{f(x)}{x} dy$$
.

解: (1) 由于曲线积分 $\int_{L^+} (x + xy \sin x) dx + \frac{f(x)}{x} dy$

与路径 L 无关, 则我们有

$$\frac{\partial}{\partial x} \left(\frac{f(x)}{x} \right) = \frac{\partial (x + xy \sin x)}{\partial y} = x \sin x,$$

由此立刻可得 $f(x) = x(-x\cos x + \sin x + C)$,

其中 $C \in \mathbb{R}$ 为常数. 又 $f\left(\frac{\pi}{2}\right) = 0$, 故 C = -1.

从而我们有 $f(x) = x(\sin x - x \cos x - 1)$.

(2) 由 (1) 可知

$$(x + xy \sin x) dx + \frac{f(x)}{x} dy$$

$$= (x + xy \sin x) dx + (\sin x - x \cos x - 1) dy$$

$$= d\left(\frac{x^2}{2}\right) + y d(\sin x - x \cos x - 1)$$

$$+(\sin x - x \cos x - 1) dy$$

$$= d\left(\frac{x^2}{2} + (\sin x - x \cos x - 1)y\right),$$

故所求原函数为

$$u(x,y) = \frac{x^2}{2} + (\sin x - x \cos x - 1)y + C$$
,

其中 $C \in \mathbb{R}$ 为任意的常数.

(3) 由 (2) 立刻可得

$$\int_{(\pi,1)}^{(2\pi,0)} (x + xy \sin x) dx + \frac{f(x)}{x} dy$$

$$= \left(\frac{x^2}{2} + (\sin x - x \cos x - 1)y \right) \Big|_{(\pi,1)}^{(2\pi,0)}$$

$$= \frac{3}{2} \pi^2 - \pi + 1.$$

例 2. 设 $\Omega \subset \mathbb{R}^2$ 为单连通区域. 固定 $P_0 \in \mathbb{R}^2$. $\forall P \in \partial \Omega$, 记 $\vec{\xi} = \overrightarrow{P_0 P}$, $\xi = ||\vec{\xi}||$, 而 \vec{n}^0 为 $\partial \Omega$ 的 单位外法向量, $\theta = \langle \vec{\xi}, \vec{n}^0 \rangle$. 求证:

$$\oint_{\partial\Omega}\frac{\cos\theta}{\xi}\,\mathrm{d}\ell = \left\{ \begin{array}{l} 0, \quad \ddot{A} \ P_0 \ \dot{A} \ \Omega \ \dot{D} \ \dot{P} \dot{P} \dot{P}, \\ 2\pi, \quad \ddot{A} \ P_0 \ \dot{A} \ \dot{D} \ \dot{D} \ \dot{P} \dot{P}. \end{array} \right.$$

证明:由于 $\xi \cos \theta = \vec{\xi} \cdot \vec{n}^0$,于是我们有 $\oint_{\partial \Omega} \frac{\cos \theta}{\xi} d\ell = \oint_{\partial \Omega} \frac{\vec{\xi} \cdot \vec{n}^0}{\xi^2} d\ell = \oint_{\partial \Omega^+} \frac{(x - x_0) dy - (y - y_0) dx}{(x - x_0)^2 + (y - y_0)^2},$

其中令 $P_0 = (x_0, y_0)$, P = (x, y).

(1) 若 P_0 在 Ω 的外部,则由 Green 公式可得

$$\oint_{\partial\Omega} \frac{\cos\theta}{\xi} d\ell = \oint_{\partial\Omega^{+}} \frac{(x-x_{0}) dy - (y-y_{0}) dx}{(x-x_{0})^{2} + (y-y_{0})^{2}}
= \iint_{\Omega} \left(\frac{\partial}{\partial x} \left(\frac{x-x_{0}}{(x-x_{0})^{2} + (y-y_{0})^{2}} \right) + \frac{\partial}{\partial y} \left(\frac{y-y_{0}}{(x-x_{0})^{2} + (y-y_{0})^{2}} \right) \right) dxdy
= \iint_{\Omega} \left(\left(\frac{1}{(x-x_{0})^{2} + (y-y_{0})^{2}} - \frac{2(x-x_{0})^{2}}{((x-x_{0})^{2} + (y-y_{0})^{2})^{2}} \right) + \left(\frac{1}{(x-x_{0})^{2} + (y-y_{0})^{2}} - \frac{2(y-y_{0})^{2}}{((x-x_{0})^{2} + (y-y_{0})^{2})^{2}} \right) dxdy
= 0$$

(2) 若 P_0 在 Ω 的内部, 则 $\exists \delta > 0$ 使得 Ω 包含 $L: (x - x_0)^2 + (y - y_0)^2 = \delta^2$. 同样可用 \vec{n}^0 表示 圆周 L 的单位外法向量, 则由 Green 公式可知

$$\oint_{\partial\Omega} \frac{\cos\theta}{\xi} d\ell - \oint_{L} \frac{\cos\theta}{\xi} d\ell
= \oint_{\partial\Omega^{+} \cup L^{-}} \frac{(x - x_{0}) dy - (y - y_{0}) dx}{(x - x_{0})^{2} + (y - y_{0})^{2}} = 0.$$

由此我们可立刻导出

$$\oint_{\partial\Omega} \frac{\cos\theta}{\xi} \, \mathrm{d}\ell = \oint_L \frac{\cos\theta}{\xi} \, \mathrm{d}\ell = \oint_L \frac{1}{\delta} \, \mathrm{d}\ell = \frac{1}{\delta} \cdot 2\pi\delta = 2\pi.$$

例 3. 假设 $\Omega \subset \mathbb{R}^2$ 为区域, 而 $\Omega_0 \subset \Omega$ 为闭区域, $u, v \in \mathscr{C}^{(2)}(\Omega)$, 并且 \vec{n}^0 为 $\partial \Omega_0$ 的单位外法向量,

 $\frac{\partial u}{\partial n}$, $\frac{\partial v}{\partial n}$ 分别为 u, v 沿 \vec{n}^0 的方向导数. 求证:

(1)
$$\oint_{\partial\Omega_0} \frac{\partial u}{\partial n} d\ell = \iint_{\Omega} \Delta u dxdy;$$

(2)
$$\oint_{\partial\Omega_0} v \frac{\partial u}{\partial n} d\ell = \iint_{\Omega_0} \left(v(\Delta u) + (\vec{\nabla} u \cdot \vec{\nabla} v) \right) dxdy;$$

(3)
$$\oint_{\partial\Omega_0} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d\ell = \iint_{\Omega_0} \left(u(\Delta v) - v(\Delta u) \right) dxdy;$$

其中
$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2}$$
.

证明: (1) 由 Green 公式可得

$$\oint_{\partial\Omega_0} \frac{\partial u}{\partial n} \, \mathrm{d}\ell = \oint_{\partial\Omega_0} \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \right)^T \cdot \vec{n}^0 \, \mathrm{d}\ell = \iint\limits_{\Omega_0} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \, \mathrm{d}x \, \mathrm{d}y.$$

(2) 由 Green 公式可得

$$\oint_{\partial\Omega_0} v \frac{\partial u}{\partial n} d\ell = \oint_{\partial\Omega_0} \left(v \frac{\partial u}{\partial x}, v \frac{\partial u}{\partial y} \right)^T \cdot \vec{n}^0 d\ell
= \iint_{\Omega_0} \left(\frac{\partial}{\partial x} \left(v \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} \right) \right) dx dy
= \iint_{\Omega_0} \left(v \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + v \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right) dx dy,$$

由此立刻可知所证结论成立.

(3) 由 (2) 立刻可得

$$\oint_{\partial\Omega_0} v \frac{\partial u}{\partial n} d\ell = \iint_{\Omega_0} \left(v(\Delta u) + (\vec{\nabla} u \cdot \vec{\nabla} v) \right) dx dy,$$

$$\oint_{\partial\Omega_0} u \frac{\partial v}{\partial n} d\ell = \iint_{\Omega_0} \left(u(\Delta v) + (\vec{\nabla} v \cdot \vec{\nabla} u) \right) dx dy.$$

然后再用第二式减去第一式立刻可得

$$\oint_{\partial\Omega_0} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d\ell = \iint_{\Omega} \left(u(\Delta v) - v(\Delta u) \right) dx dy.$$

例 4. 假设 $D \subset \mathbb{R}^2$ 为有界闭区域, 其边界 ∂D 为分段光滑闭曲线, \vec{n}^0 为 ∂D 的单位外法向量, 而 $u \in \mathcal{C}(D)$ 在 D 的内部为二阶连续可导且为调和函数, 也即 $\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0$. 记 $\frac{\partial u}{\partial n}$ 为 u 沿 \vec{n}^0 的方向导数. 求证:

(1)
$$\oint_{\partial D} \frac{\partial u}{\partial n} d\ell = 0;$$

(2)
$$\oint_{\partial D} u \frac{\partial u}{\partial n} d\ell = \iint_{D} ||\vec{\nabla} u||^{2} dx dy = \iint_{D} \left(\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right) dx dy;$$

(3) 若
$$u|_{\partial D} = 0$$
, 则 u 在 D 上恒为零.

证明: (1) 由 Green 公式立刻可知

$$\oint_{\partial D} \frac{\partial u}{\partial n} \, d\ell = \oint_{\partial D} \vec{\nabla} u \cdot \vec{n}^0 \, d\ell = \iint_{D} \operatorname{div}(\vec{\nabla} u) \, dx dy = \iint_{D} \Delta u \, dx dy = 0.$$

(2) 由 Green 公式可知

$$\oint_{\partial D} u \frac{\partial u}{\partial n} d\ell = \oint_{\partial D} u \vec{\nabla} u \cdot \vec{n}^0 d\ell = \oint_{\partial D} \left(u \frac{\partial u}{\partial x}, u \frac{\partial u}{\partial y} \right)^T \cdot \vec{n}^0 d\ell$$

$$= \iint_{D} \left(\frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(u \frac{\partial u}{\partial y} \right) \right) dx dy$$

$$= \iint_{D} \left(u \frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial u}{\partial x} \right)^2 + u \frac{\partial^2 u}{\partial y^2} + \left(\frac{\partial u}{\partial y} \right)^2 \right) dx dy$$

$$= \iint_{D} \left(u (\Delta u) + \| \vec{\nabla} u \|^2 \right) dx dy = \iint \| \vec{\nabla} u \|^2 dx dy.$$

(3) 若 $u|_{\partial D} = 0$, 则我们由 (2) 可得

$$\iint\limits_{D} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] \mathrm{d}x \mathrm{d}y = \oint_{\partial D} u \frac{\partial u}{\partial n} \, \mathrm{d}\ell = 0,$$

再由非负连续函数的积分严格保号性立刻可知, 在 \mathring{D} 上, 成立 $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 0$, 故 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$. 进而由 Lagrange 中值定理可得知 u 在 D 上为常值函数, 再由 $u|_{\partial D} = 0$ 知 u 在 D 上恒为零.

例 5. 设 $D = \{(x, y) \mid x^2 + y^2 \leq 1\}, f \in \mathcal{C}^{(2)}(D)$ 在 ∂D 上恒为零, 求证:

$$\iint\limits_{D} f(x,y) \left(\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) \right) dxdy \leqslant 0.$$

证明: 设 \vec{n} 为 ∂D 的单位外法向量, 则

$$0 = \oint_{\partial D} f \frac{\partial f}{\partial \vec{n}} d\ell = \oint_{\partial D} f \vec{\nabla} f \cdot \vec{n} d\ell = \iint_{D} \operatorname{div}(f \vec{\nabla} f) dx dy$$
$$= \iint_{D} \left(f(\Delta f) + ||\vec{\nabla} f||^{2} \right) dx dy,$$

由此我们立刻可得

$$\iint\limits_{\mathcal{D}} f(x,y) \left(\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) \right) \mathrm{d}x \mathrm{d}y = -\iint\limits_{\mathcal{D}} \|\vec{\nabla} f\|^2 \, \mathrm{d}x \mathrm{d}y \leqslant 0.$$

例 6. 设 R > 0, 而 $D = \{(x, y) \mid x^2 + y^2 \leqslant R^2\}$.

计算
$$I = \iint_D \frac{1}{\sqrt{x^2 + y^2}} \left(y \frac{\partial f}{\partial x}(x, y) - x \frac{\partial f}{\partial y}(x, y) \right) dxdy.$$

证明:
$$\forall (x,y) \in \mathbb{R}^2$$
, 令 $r = \sqrt{x^2 + y^2}$. 则

$$I = \iint_{D} \left(\frac{\partial r}{\partial y} \frac{\partial f}{\partial x} - \frac{\partial r}{\partial x} \frac{\partial f}{\partial y} \right) dxdy$$

$$= \iint_{D} \left(\frac{\partial}{\partial x} \left(\frac{\partial r}{\partial y} f \right) + \frac{\partial}{\partial y} \left(-\frac{\partial r}{\partial x} f \right) \right) dxdy$$

$$= \iint_{D} \operatorname{div} \left(f \left(\frac{\partial r}{\partial y}, -\frac{\partial r}{\partial x} \right)^{T} \right) dxdy$$

$$= \oint_{\partial D} f \left(\frac{y}{r}, -\frac{x}{r} \right)^{T} \cdot \left(\frac{x}{r}, \frac{y}{r} \right)^{T} d\ell = 0.$$

谢谢大家!