Geometric Data Analytics, Inc. 343 W. Main Street Durham, NC 27701

michael.catanzaro@geomdata.com https://catanzaromj.github.io

Employment

- Senior Scientist, Geometric Data Analytics, Inc., June 2022 present.
- Assistant Professor, Iowa State University, August 2018 May 2022.
- Postdoctoral Research Associate, University of Florida, August 2016 July 2018.
 Mentor: Peter Bubenik.

Education

- Ph.D. Mathematics, Wayne State University, March 2016.
 Advisors: Dr. John R. Klein, Department of Mathematics, and Dr. Vladimir Y. Chernyak, Department of Chemistry.
- M.A. Mathematics, Wayne State University, December 2011.
 Advisor: Dr. Robert R. Bruner, Department of Mathematics.
- B.S. Physics, Wayne State University, December 2010.
- B.S. Mathematics, Wayne State University, December 2010.

Research Interests

- Machine learning, Reinforcement learning, Risk and Safety of perception models, deep learning.
- Topological data analysis, multiparameter persistence, multiparameter persistence modules.

Publications

Submitted articles

1. Catanzaro, Michael J.; McCarty, Sarah; Weber, Eric S. *Using Higher Order Persistence to Detect Anomalies in Traffic Data*, Submitted to WinCompTop. 2024.

Peer-reviewed articles

- 21. Jin, Yinzhu; McDaniel, Rory; Tatro, N. Joseph; Catanzaro, Michael J.; Smith, Abraham D.; Bendich, Paul; Dwyer, Matthew B.; Fletcher, P. Thomas, *Implications of Data Topology for Deep Generative Models*, Front. Comput. Sci. **6** (2024), DOI 10.3389/fcomp.2024.1260604. Available at frontiersin.org
- Smith, Abraham D.; Catanzaro, Michael J.; Angeloro, Gabrielle; Patel, Nirav; Bendich, Paul Topological Parallax: A Geometric Specification for Deep Perception Models, Advances in Neural Information Processing Systems, 36 (2024). Available at https://proceedings.neurips.cc.https://arxiv.org/abs/2306.11835.

- 19. Bubenik, Peter; Catanzaro, Michael J. *Multiparameter persistent homology via generalized Morse theory*, Toric Topology and Polyhedral Products. Cham: Springer Nature Switzerland. (2024), 55–79, DOI 10.1007/978-3-031-57204-3-4 https://arxiv.org/abs/2107.08856.
- 18. Catanzaro, Michael J.; Dharna, Aaron; Hineman, Jay; Polly, James B.; McGoff, Kevin; Smith, Abraham D.; Bendich, Paul, *Topological Decompositions Enhance Efficiency of Reinforcement Learning*, 2024 IEEE Aeroconference. (2024), 1 8, DOI 0.1109/AERO58975.2024.10521237.
- Zhou, Youjia; Lazovskis, Janis; Catanzaro, Michael J.; Zabka, Matthew; Wang, Bei, Combinatorial Exploration of Morse–Smale Functions on the Sphere via Interactive Visualization, 2023 Topological Data Analysis and Visualization (TopolnVis). (2023), 51 60, DOI 10.1109/TopolnVis60193.2023.00012.
- 16. Catanzaro, Michael J.; Rizzo, Sam; Kopchick, John; Chodury, Asadur; Rosenberg, David R.; Bubenik, Peter; Diwadkar, Vaibhav A, *Topological Data Analysis Captures Task-Driven fMRI Profiles in Individual Participants: A Classification Pipeline Based on Persistence*, Neuroinformatics. (2023), DOI 10.1007/s12021-023-09645-3.
- 15. Catanzaro, Michael J.; Vose, Brantley, *Harmonic Representatives in homology over arbitrary fields*, J Appl. and Comput. Topology. **7** (2023), 643–670, DOI 10.1007/s41468-023-00117-w arxiv.org/abs/2110.10885.
- 14. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., *Fluctuations of cycles in a finite CW complex*, Isr. J. Math. **248** (2022), 315–354, DOI 10.1007/s11856-022-2303-9. arxiv.org/abs/1710.07995.
- 13. Catanzaro, Michael J.; Przybylski, Lee; Weber, Eric S., *Persistence Landscapes of Affine Fractals*, Demonstratio Mathematica. **55** (2022), 163–192, DOI doi.org/10.1515/dema-2022-0015 arxiv.org/abs/2201.02552.
- 12. Catanzaro, Michael J.; Zabka, Matthew J., *A Model for Random Chain Complexes*, Abh. Math. Semin. Univ. Hambg. **91** (2021), 335–344, DOI 10.1007/s12188-021-00248-w arxiv.org/abs/1901.00964.
- 11. Salch, Andrew; Abdallah, Hassan; Regalski, Adam; Suryadevara, Raviteja; Catanzaro, Michael J.; Diwadkar, Vaibhav A. From mathematics to medicine: A practical primer on topological data analysis (TDA) and the development of related analytic tools for the functional discovery of latent structure in fMRI data, PLOS One. (2021), doi.org/10.1371/journal.pone.0255859
- Catanzaro, Michael J.; Curry, Justin; Fasy, Brittany Terese; Lazovskis, Janis; Malen, Greg; Riess, Hans; Wang, Bei; Zabka, Matthew, Moduli Spaces of Morse Functions for Persistence, J. Appl. and Comput. Topology. 4 (2020), 353–385, DOI doi.org/10.1007/s41468-020-00055-x arxiv:1909.10623.
- 9. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., *Exciton Scattering via Algebraic Topology*, J. Topology and Analysis. **11** (2019), 251–272. DOI doi:10.1142/S1793525319500110 arXiv:1505.02365.
- Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., A higher Boltzmann Distribution, J. Appl. and Comput. Topology. 1 (2017), 215–240, DOI doi:10.1007/s41468-017-0006-9 arXiv:1506.06775.

- 7. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., *Stochastic Dynamics of Extended Objects in Driven Systems: I. Higher-Dimensional Currents in the Continuous Setting*, Chem. Phys. **481** (2016), 5–18, DOI doi:10.1016/j.chemphys.2016.08.021 arxiv:1609.00336.
- 6. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., *Stochastic Dynamics of Extended Objects in Driven Systems II: Current Quantization in the Low-Temperature Limit*, Chem. Phys. **481** (2016), 19–27, DOI doi:10.1016/j.chemphys.2016.08.020 arxiv:1609.00334.
- 5. Catanzaro, Michael J.; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y., *Counting the number of excited states in organic semiconductors systems using topology*, J. Chem. Phys. **142** (2015), 1–12, DOI doi:10.1063/1.4908560 arxiv:1612.03434.
- 4. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R., *Kirchhoff's theorems in higher dimensions and Reidemeister torsion*, Homology, Homotopy, and Applications. **17** (2015), 165–189, DOI doi:10.4310/HHA.2015.v17.n1.a8 arxiv:1206.6783.
- 3. Li, Hao; Catanzaro, Michael J.; Tretiak, Sergei; Chernyak, Vladimir, *Excited-state structure modifications due to molecular substituents and exciton scattering in conjugated molecules*, J. Phys. Chem. Let. **5** (2014), 641–647, DOI doi:10.1021/jz4027198 arxiv:1612.03523.
- 2. Catanzaro, Michael J.; Chernyak, Vladimir Y.; and Klein, John R., *On Kirchhoff's theorems with coefficients in a line bundle*, Homology, Homotopy, and Applications. **15** (2013), 267–280, DOI doi:10.4310/HHA.2013.v15.n2.a16 arxiv:1207.2822.
- 1. Catanzaro, Michael J., *Generalized Tonnetze*, J. Math. Music. **5** (2011), 117–139, DOI doi:10.1080/17459737.2011.614448 arxiv:1612.03519.

Preprints

- 2. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R. *Probability measures on graph trajectories*. Available on the arXiv at arXiv:2104.13566.
- 1. Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R. *Hypercurrents*. Available on the arXiv at arxiv.org/abs/2010.06783.

Books, In progress

1. Bruner, Robert R.; Catanzaro, Michael J.; May, J. Peter. *Characteristic Classes.* pp 97. Draft available at math.uchicago.edu/~may/CHAR/charclasses.pdf.

Other publications

- Catanzaro, Michael J. A Topological Study of Stochastic Dynamics on CW Complexes. Wayne State University Dissertations 1433 (2016). Available at digitalcommons.wayne.edu/oa_dissertations/1433/.
- 2. Catanzaro, Michael J. *Finitely Presented Modules over the Steenrod Algebra in Sage.* Master's thesis, Wayne State University, December 2011. Available at people.clas.ufl.edu/catanzaro/files/Essayfinal.pdf
- 1. Catanzaro, Michael J. A user's guide: Dynamics and fluctuations of cellular cycles on CW complexes, available at mathusersquides.com/enchiridion-vol-2-2016-mike-catanzaro/

Funding

- Former Co-PI on NSF Award 2219959, ATD: Quantifying Human Mobility using Topological and Time Frequency Analysis. 2023.
- Senior Personnel on NSF Award 1934884, HDR TRIPODS: D4 (Dependable Data-Driven Discovery) Institute NSF HDR. 2019.

Conference Organization

 Local organizer for the Underrepresented Students in Algebra and Topology Research Symposium (USTARS) at Iowa State University, April 2019.

Mentoring activities

Masters students

• Gabrielle Angeloro, 2020, Iowa State University. Wrote python package pyscapes implementing persistence landscapes in python (now at Geometric Data Analytics, Inc.).

Undergraduate students

- Brantley Vose, 2019 2021, Iowa State University: Harmonic chain representatives of persistent homology classes, including coding and developing a visualization package (now at Ohio State University).
- Samuel Swanson, 2017, University of Florida: Computing Hodge decompositions for persistent homology classes.
- Samuel Rizzo, 2017 2018, University of Florida: Applying persistence landscapes to study task modulation with fMRI data (now at Vanderbuilt University).
- Raviteja Suryadevara, 2015 2016, Wayne State University: Application of persistent homology to an fMRI study (now at Wayne State Medical School).

Refereeing

- Referee for Geometry and Topology; Homotopy, Homology, and its Applications; and Journal of Symposium on Computational Geometry.
- Reviewer for mathscinet.

Software developed

- pyscapes. A python implementation of persistence landscapes. Joint work with Gabby Angeloro. Now part of the persim module of the scikit-tda package. Original code available at github.com/gabbyangeloro/Masters Thesis.
- fpmods. Finitely Presented Modules over the Steenrod Algebra. Joint work with Robert R Bruner, Sverre Lunøe-Nielsen, and Koen van Woerden. Currently under code-review at sagemath. Available at github.com/rrbruner/FPMods.

Technical skills

- Proficient in Python, C++, R, and Bash scripting.
- Written code for sage, Pythia, Hijing, and Root.

Presentations

Invited Presentations

- 30. Topological Parallax: A Geometric Specification for Deep Perception Models, UFTDA 2024. Gainesville, Florida, February 2024.
- 29. Topological Parallax: A Geometric Specification for Deep Perception Models, CodEx Seminar. Virtual. November 2023.
- 28. *Using persistence to study task modulation in fMRI*, Colorado State University Topology Seminar. Fort Collins, Colorado, November 2022.
- 27. A workshop on Topological Data Analysis, Midwest Big Data Summer School. Ames, Iowa, May 2021.
- 26. Geometric perspectives on multiparameter persistence, 6th CIMAT TDA workshop and winter school. Guanajuato, Mexico, January 2020.
- 25. Multiparameter Persistence via Geometric Topology, SIAM Conference on Applied Algebraic Geometry. Bern, Switzerland, July 2019.
- 24. Stochastic Dynamics of Cellular Cycles, Probability, Analysis, and Data Science Seminar. Iowa State University, October 2019.
- 23. Topological Data Analysis, Midwest Big Data Summer School. Ames, Iowa, May 2019.
- 22. Geometric multiparameter persistence, Computational and Applied Math Seminar, Iowa State University, April 2019.
- 21. *An Introduction to Topological Data Analysis*, Mathematical Association of America, Northwest Sectional Meeting. Southwest Minnesota State University, October 2018.
- 20. *Combining sub-level and let set persistence*, Multiparameter Persistent Homology, CMO, Oaxaca, Mexico, August 2018.
- 19. Multiparameter persistence via geometric topology, Algebraic Topology: Methods, Computation and Science 8, IST Austria, June 2018.
- 18. *Multiparameter persistence via geometric topology*, Bridging Statistics and Sheaves, Institute for Mathematics and its Applications, May 2018.
- 17. *Geometric multiparameter persistence*, Topology and Dynamics Seminar, University of Florida, December 2017.
- 16. Stochastic Dynamics on CW complexes, Applied Math and Analysis Seminar, Duke University, November 2017.
- 15. Stochastic Dynamics of Cellular Cycles, Geometry, Topology, and Data Seminar, The Ohio State University, September 2017.
- 14. *Stochastic Dynamics on CW Complexes*, Applied Topology in Bedlewo 2017, Bedlewo, Poland, June 2017.

- 13. Exciton Scattering for Topologists, Topology and Dynamics Seminar, University of Florida, March 2017.
- 12. Stochastic Dynamics on CW Complexes, two presentations given in Topology and Dynamics Seminar, University of Florida, October 2016.
- 11. The Topology of Higher-Dimensional Currents and Langevin Processes, Non-Equilibrium Statistical Physics, Telluride, CO, July 2016.
- 10. Kirchhoff's laws in higher dimensions and Reidemeister torsion, Topology Seminar, Brandeis University, November 2015.
 - 9. On the Boltzmann distribution and Hodge theory, Young Topologists' Meeting, EPFL, July 2015.
 - 8. A generalization of the Boltzmann distribution & Hodge theory, Graduate Student Topology and Geometry Conference, University of Illinois, March 2015.
 - 7. Counting Electronic Excitations In Organic Systems Using Algebraic Topology, Topology Seminar, Johns Hopkins University, April 2014.
 - 6. Constructions in ∞-categories, Talbot Workshop, 2014.
 - 5. Counting Electronic Excitations In Organic Systems Using Algebraic Topology, Topology Seminar, Wayne State University, February 2014.
 - 4. Counting The Number Of Electronic Excitations In Branched Conjugated Molecules Using Algebraic Topology, Physical Chemistry Seminar, Wayne State University, November 2013.
 - 3. *Kirchhoff's theorems in higher dimensions and Reidemeister Torsion*, Topology Seminar, Wayne State University, October 2013.
 - 2. Counting Electronic Excitations using Cohomology, Graduate Student Geometry and Topology seminar, University of Illinois Urbana-Champaign, May 2013.
- 1. The Topology of Spaces of Triads, The Undergraduate Mathematics Seminar, University of Michigan Dearborn, March 2010.

Contributed Presentations

- 9. *Morse theory and persistence*. Algebra and Geometry seminar, Iowa State University, September 2019.
- 8. *An Introduction to Topological Data Analysis*. Theoretical and Applied Data Science Seminar, Iowa State University, January 2019.
- 7. Stochastic Dynamics on CW Complexes, Applied Topology in Bedlewo 2017, Bedlewo, Poland, June 2017.
- 6. On the Boltzmann distribution and Hodge theory, Young Topologists' Meeting, EPFL, July 2015.
- 5. A generalization of the Boltzmann distribution & Hodge theory, Graduate Student Topology and Geometry Conference, University of Illinois, March 2015.

- 4. Constructions in ∞-categories, Talbot Workshop, 2014.
- 3. *Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions*, The Undergraduate Physics Research Conference, Wayne State University, November 2009.
- 2. The Topology of Spaces of Triads and Generalized Tonnetze, The Undergraduate Research Conference, Wayne State University, November 2009.
- 1. *The Topology of Spaces of Triads*, The Young Mathematicians Conference, The Ohio State University, August 2009.

Teaching Experience

As the primary instructor, I developed syllabi, quizzes, and tests for the following courses.

- Algebraic Toplogy (ISU 506x): Spring 2021.
- Advanced Abstract Algebra II (ISU 505): Spring 2020.
- Advanced Abstract Algebra (ISU 504): Fall 2019.
- Directed study on Algebraic Topology (UF 5000): Fall 2019.
- Topology (ISU 502): Spring 2019.
- Advanced Topics in Topology: Differential Topology, Vector Bundles, and Characteristic Classes (UF 7396): Fall 2017.
- Advanced Calculus for Engineers and Physical Scientists I (UF 4102/5104): Winter 2017.
- Elementary Statistics (WSU 1020): Summer 2014.
- Algebra with Trigonometry (WSU 1050): Summer 2011, Fall 2011, Fall 2014, and Winter 2015.
- Mathematics in Today's World (WSU 1000): Summer 2013.
- Linear Algebra (ISU 207, WSU 2250): Spring 2021, Summer 2015.
- Pre-Calculus (WSU 1800): Winter 2011.

As the primary lecturer, I taught the following courses.

- Calculus 1 (ISU 165): Fall 2019, Fall 2020.
- Calculus 2 (ISU 166): Fall 2021.
- Calculus 3 (ISU 265, WSU 2313): Fall 2016 and Fall 2018.

Awards

- Anderson Scholar Faculty Honoree, University of Florida, College of Liberal Arts and Sciences, December 2017.
- Bertram Eisenstadt Award for Outstanding Achievement in PhD Program, Wayne State University, Department of Mathematics, May 2016.

- Robert Irvan Endowed Mathematics Scholarship, Wayne State University, Department of Mathematics, May 2015.
- M.F. Janowitz Endowed Mathematics Scholarship, Wayne State University, May 2014.
- Maurice Zelonka Endowed Scholarship, Wayne State University, Department of Mathematics, May 2013.
- Outstanding Teaching Service, Wayne State University, Department of Mathematics, May 2012.
- Outstanding Undergraduate Award, Wayne State University, Department of Mathematics, May 2010.
- M.F. Janowitz Endowed Mathematics Scholarship, Wayne State University, May 2010.
- George B. Beard Student Prize for Excellent Presentation of Research, Wayne State University, Department of Physics, November 2009.
- Robert Irvan Endowed Mathematics Scholarship, Wayne State University, Department of Mathematics, May 2009.
- Vaden W. Miles Outstanding Undergraduate Award, Wayne State University, Department of Physics, March 2009.
- Undergraduate Scholarship, Wayne State University, Department of Mathematics, May 2008.
- Presidential Scholarship, Wayne State University, June 2005.