Pe1	j	nult OEW	2,		Ħ	ŀ	Ì	MZFW	MTOW (MRTOW)	MLW (MRLW)	MAC		rl	ţ.	ᆉ		٢	æ	<u>ج</u> :	*	ם ימ	; †	ਤੰ	ļ	HESH G	י ה	Ð	C.G.	מו,	, ,	D' D'			מ	ъ ⁶	BOW	ענ	NUW.	LPU USA	S. d.		กั
power (kVA)			'un exponent of a weight parameter	the airplane	number of an item present in	weight for a sample point	ratio of actual to estimated	Maximum Zero Fuel Weight	Maximum (Regu	Maximum (Regular) Landing Weight	Mean Aerodynamic Chord	ne	points of wing and horizontal	Chapter 9) distance between 1/4-chord	horizontal tail length (cf.	between end faces of a prismoid	length; moment arm; distance	ight	Ç,	factor of proportionality	root	height of horizontal tailplane	epth		Propertor diameter Equivalent Shaft Horse Power			of gravity	\sim	structural span ($b_s=b/\cos h_{\frac{1}{2}}$)	reference span	tic	or of propo	span (no index: wing span);	number of propetter blades per	Operating Weight	constant factor in statistical	All-Up Weight	Auxiliary Power Unit	Aircraft Prepared for Service	ณ	alternating current
	c ₂	F	× +	4	ao,	•	Δ×			t XLEMAC		×	w_{ZF}	ន _័	M DE	ć	왕· th t	¥• ba	W	V max	b t	₇ ∨	∢	r.c.	a	ห์	t	Tto	Swet	SMC	SIV		ne Die	s G	21,22)	ស	Rref		, P	t	in H

id.	airplane c.g. position for th OEW weight of an airplane part actual (measured) value of Y for a sample	eight estimation examourdinate of MAC lead coordinate of weight coordinate of walue of ion; sample value of ange of x-coordinates.g.	rated bleed airflow of APU fuel flow per engine, corresponding to Pto or Tto Delivery Empty Weight Operating Empty Weight Gross Weight Maximum Zero Fuel Weight	(absolute) maximum thickness of root chord annual airplane utilisation undercarriage speed; volume blockspeed pesign Dive speed maximum horizontal flight speed weight	ross shell ross shell rea rea tandard It tandard Me atted area akeoff thr revel, stately state	(sea level, static) maximum range with maximum pay- load (Fig. 8-3) maximum range with maximum fuel (Fig. 8-3) reference range (projected) area of a surface (no index: wing area); standard error of prediction areas of parallel end faces of a prismoid
-----	--	--	---	--	--	--

maximum deflection angle;	
ample	Ęor
actual (measured) value of Y	Ç.
ght of an airplane pa	0
airplane c.g. position for the	air F
cion; sample value of A cange of x-coordinates for the	[<u>[</u> []
inate of weight of	· ö
of MAC lea	ŏ
tion example	œ.
	D)
aximum Zero Fuel Weight	a i
perating Empty Weight ross Weight	o H
777	e 7
el flow per engine, corre-	E 1
bleed a	4
	P.
n hori	×
esian Dive speed	in Ö
peed; volume	ğ
ndercarriage	ğ
nual airplane utilisation	Ē .
	, Ě.
tic)	Š
keoff thrust per engine (sea	× (
	# 1
andard Item Variations andard Mean Chord	ar ar
	e '
ed horizontal tailplane	ď
prismold prismold	sso
us of parallel end faces of	eas ·
of prediction	ror
rea);	o
rojected) area of a surface	Ö
_	į
um rar	Ž.
ximum range With maximum Pay- ad (Fig. 8-3)	g E
rel, static)	Ď
f hors	ø

ower per engine	
_	0
with maximum pay-	φ1.φ2φ
	
with maximum fuel	weeks a
	1
ge	Subscripts
rea of a surface	
ng area); standard 🧼	APU
iction	APUG
llel end faces of	Da.
rea of the fuselage	cf
ontal tailplane	cg
	ရ ငည်
Chord	O .
	e 1
t per engine (sea	er
3	
ximum thickness	, H
	, fa
me utilisation	fg
	Н

NOMENCLATURE

늄

8.1. INTRODUCTION;	THE	IMPORTANCE	쉱	MOT
WEIGHT				

where, leading to the well-known snowball of one component means added weight elseplanes. In many cases the increased weight the effects on total operating costs are to achieve a weight reduction and the aseffect of weight growth. The opportunities particularly for large and complex airparamount for most high-performance designs, obtained only at some initial cost penalty though reduction of weight is generally Weight minimization of an airplane design design process. sociated costs depend upon the phase of the is a subject of the utmost importance. Al-

prediction is a prerequisite. Weight preand high accuracy of the initial weight design layout should be carefully optimized choice of the airplane layout, geometry and a. During the initial conceptual design the detailed configuration affects weight. The

									: .		1						ripts				Φ		,	• •
fuel tank	fuselage group	flight crew	fuselage; flaps; fuel	engine(s)	bending moment relief due to	electrical system	engine(s)	intake duct	cargo hold	center of gravity	cabin floor	cabin crew	(APU) bleed airflow	APU Group	Auxiliary Power Unit					estimation formula	om parameters for general weight	average load factor	(no index: wing)	sweepback angle at 50% chord
wt	ВM	WC	इ	<	r r c	o t	thr	tail	SC	ดร	w	Бđ	рс	pax	טי	Ħ	LEMAC	Td		ieg	μ.	hc	5	geo
water tank for injection flu	wing group	toilet/watercloset compartme	wing; weight	vertical tailplane	undercarriage	takeoff	thrust reverser	horizontal plus vertical tai	surface controls group	speed brake	structure; slat	propulsion group	passenger cabin	passengers	propeller	nacelle (group)	Leading Edge of MAC	lift dumper	group	instruments and electronics	inlet; installation; sample	horizontal tail controls	horizontal tailplane	geometric shape

ance, unless limited engine performance span - the final result may well be a tal sign change to improve performance - e.g component weight growth is caused by a d ally evaluated for constant design perfo Weight reductions or increments are gene task of the preliminary design office, i systems design offices. The initial weig so to set a goal for the structural and assessment of the design qualities, but increase is therefore associated with a volves virtually no extra costs. both. This type of work, being the norma prediction must be a realistic challenge diction is necessary not only to make an improved high-lift devices, increased win takeoff weight increase. If, however, the does not permit this. Any component weigh

ture weight growth was followed by a resions. In the case considered, a 10% stru are shown in Table 8-1 for some typical I Sensitivities to structure weight increme off weight reduction. where

$$a = \frac{\sum x_i \sum x_i y_i - \sum y_i \sum x_i^2}{(\sum x_i)^2 - N \sum x_i^2}$$
(8-6)

and

$$b = \frac{\sum x_i \sum Y_i - N \sum x_i Y_i}{(\sum X_i)^2 - N \sum x_i^2}$$
(8-7)

For limited ranges of X and Y a linear function may be satisfactory, but if a considerable variation in the actual size of the item exists, a better result is usually obtained with:

$$Y = kX^{n} (8-8)$$

On a log-log scale this relation is linear: log Y = log k + n log X (8-9)

and again linear regression analysis can be used.

The standard error of a prediction method is:

$$S = \sqrt{\frac{1}{N-1} \left[\sum_{i=1}^{N-1} \frac{\left(\sum_{i=1}^{N} \frac{1}{N}\right)^{2}}{N} \right]}$$
 (8-10)

where m_i is the ratio of actual to estimated weight of the sample.

References 8-41 and 8-44 give more information on the use of statistics and various types of regression analysis. A certain amount of care should always be taken when using statistical methods. A check must be made to see if the airplane being analyzed falls within the range of data points that were used to develop the method. The choice of parameters to be used is always somewhat arbitrary and due attention must be paid to data points that are far from the regression line. They may indicate that alternative correlations should be investigated. Finally, all parameters used in weight prediction must be well defined and not give rise to misinterpretation or vagueness. Finally, it should be realized that many weight prediction methods apply to a

limited category of airplanes. Occasionally

they may be adapted to other categories simply by modifying the factor of proportionality, provided that the basic expression has a rational background and derivation.

8.4. WEIGHT PREDICTION DATA AND METHODS

8.4.1. Airframe structure

a. Structure weight prediction based on the aircraft specific density. An intriguing approach to structure weight estimation, applicable to conventional configurations, is made by Caddell in Ref. 8-39, who uses the aircraft density, i.e. the design gross weight divided by the total airplane volume. If his line of thought is adopted, the structural weight fraction of transport-type turbine-powered airplanes can be expressed in terms of the ultimate load factor, the fuselage dimensions and the MTOW:

$$\frac{W_{s}}{W_{to}} = k_{s} \sqrt{n_{ult}} \left(\frac{b_{f} h_{f} l_{f}}{W_{to}} \right)^{24}$$
 (8-11)

where

 k_s = .230 for b_f , h_f and l_f in ft and W_s and W_{to} in 1b,

 $k_s = .447$ for b_f, h_f and l_f in m and W_s and W_{to} in kg, and

nult corresponds to the MTOW. Although this simple expression yields a reasonably accurate prediction, it is useless for design optimization, as the effects of the airplane layout are not accounted for. The only alternative is a detailed assessment of the contributions of all structural components or groups. The subdivision in Table 8-4 can be used to collect structural weight data. A compilation of structure weight data for existing aircraft is presented in Table 8-5. According to (8-11) the ultimate load factor affects structural weight to a considerable extent. The rules for establishing the ultimate load factor (1.5 times the limit load factor) are laid down in the various airworthiness regulations. It should be

CESTER SECTION-BASIC STRUCTURE INTERREDIATE FAMEL-BASIC STRUCTURE OUTER FAMEL-BASIC STRUCTURE (INCL. HING FOLD MECH) SECONDARY STRUCTURE (INCL. MING FOLD MECH) ALLERONS (INCL. BALANCE WEIGHT) FLAPS - TRAILING EDGE - LEADING EDGE SLATS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND WORTEX GENERATORS STRUITS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORBAL) SECONDARY STRUCTURE (INCL. DORBAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE FUSELAGE OR HULL - ECONS - SPEED BRAKES - DOORS, PARELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) MAIN MOSE TAIL (BUMPER) LOCATION FILOTS LOCATION FILOTS SUPPACE CONTROLS GROUP COCKPIT CONTROLS ALICHTING CEAR GROUP - WATER LOCATION FILOTS LOCATION FILOTS SUPPACE CONTROLS GROUP COCKPIT CONTROLS ALICHTING CEAR GROUP - WATER LOCATION FILOTS SUPPACE CONTROLS GROUP COCKPIT CONTROLS ALICHTING GEAR GROUP - WATER LOCATION FILOTS SYSTEM CONTROLS GROUP COCKPIT CONTROLS ALTOWART FILOTS SYSTEM CONTROLS GROUP COCKPIT CONTROLS LOCATION FILOTS SYSTEM CONTROLS GROUP COCKPIT CONTROLS ALTOWART FILOTS SYSTEM CONTROLS GROUP COCKPIT CONTROLS ALTOWART FILOTS SYSTEM CONTROLS (INCL. POWER AND PERL CONTR.) ENGINE SECTION OR RACELLE GROUP INBOARD LOCATION LOCATION FILOTS CUTEGORD DOORS, FANELS AND MISC.	WING GROUP	·			 -	 									
INTERMEDIATE PANEL-BASIC STRUCTURE (INCL. TIPS OUTER PANEL-BASIC STRUCTURE (INCL. TIPS SECONDARY STRUCTURE (INCL. WING FOLD MECH) ALLERONS (INCL. BALANCE MEIGHT) FLAFS - TRAILING EDGE - LEADING EDGE SLATS SPOILERS, SPEED BRAKES, LIFT DURPERS FENCES AND WORTEX GENERATORS STRUTS TAIL GROUP STABILIZER-BASIC STRUCTURE FUNS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (INCL. DORSAL) RUDDERS (INCL. BALANCE MEIGHT) BODY GROUP FUNSLAGE OR MULL-BASIC STRUCTURE BOONS-BASIC STRUCTURE SECONDARY STRUCTURE - FUNSLAGE OR HULL - BOONS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, SRAKES, STRUCTURE CONTROLS TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - MATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS ALIGHTING CEAR GROUP - MATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS FINDAME ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTGOARD DOORS, PANELS AND MISC.			 			ļ									
OUTER PANEL-MASIC STRUCTURE (INCL. TIPS) SECONDARY STRUCTURE (INCL. WING FOLD MECH) AITERONS (INCL. BALANCE WEIGHT) FLAPS - TRAILING EDGE - LEADING EDGE SLATS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND WORTEX GENERATORS STRUTS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (INCL. DORSAL) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE ROOMS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - EOOMS - SPEED BRAKES - DOOMS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN NOSE TAIL (BUMPER) ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL., FOWER AND, FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INTODAED CENTER OUTBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.						1									
SECONDARY STRUCTURE (INCL. WING FOLD MECH) ALTERONS (INCL. BALANCE WEIGHT) FLAPS - TRAILING EDGE - LEADING EDGE SLATS SLATS SATURES SPEED BRAKES, LIFT DUMPERS FENCES AND WORTEX GENERATORS STRUIS TAIL GROUP STABILIZER-BASIC STRUCTURE FIRS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP PUSCLAGE OR HULL-BASIC STRUCTURE SOOMS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - EOONS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTGOARD DOORS, PANELS AND MISC.						•									
ALIGHTING CEAR CROUP FLAPS - TRAILING EDGE - LEADING EDGE SLATS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND VORTEX GENERATORS STRUITS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR NULL-BASIC STRUCTURE BOOHS-BASIC STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, FANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION MNEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR HAIN NOSE TAIL (SUMPER) ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUCTURE STRUCTURE CONTROLS SURFACE CONTROLS CROUP COCKPIT CONTROLS ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUITS SURFACE CONTROLS CROUP COCKPIT CONTROLS ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUITS SURFACE CONTROLS CROUP COCKPIT CONTROLS ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUITS SURFACE CONTROLS CROUP COCKPIT CONTROLS LOCATION FLOATS STRUITS SURFACE CONTROLS CROUP COCKPIT CONTROLS LINBOARD CRITER OUTGOARD DOORS, PANELS AND MISC.	OUTER FAREL-BA	ASIC STRUCTURE (INCL	TIPS)		<u> </u> 									
FLAPS - TRAILING EDGE - LEADING EDGE SLATS SAITS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND WORTEX CENERATORS STRUTS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE SECONDARY	SECONDARY STRU	OCTURE (INCL. WING F	OLD MECH)											
FLAPS - TRAILING EDGE - LEADING EDGE SLATS SAITS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND WORTEX CENERATORS STRUTS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE SECONDARY	AILERONS (INCI	. BALANCE WEIGHT)												
- LEADING EDGE SIATS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND VORTEX GENERATORS STRUIS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE SECONDARY STRUCTURE FUSELAGE OR HULL - BOONS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. POWER AND, FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CONTROLS (INCL. POWER AND, FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD DOORS, PANELS AND HISC.			<u></u>												
SLATS SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND VORTEX GENERATORS STRUITS TAIL GROUP STABLIZER-BASIC STRUCTURE FINN-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (INCL. DORSAL) RUDDERS (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOONS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - BOONS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION MEELS, BRAKES, STRUCTURE ALIGHTING GEAR GROUP - WATER LOCATION FILOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. FOWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, FANELS AND HISC.	- LEADIN	G EDGE													
SPOILERS, SPEED BRAKES, LIFT DUMPERS FENCES AND VORTEX GENERATORS STRUIS TAIL GROUP STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOKS-BASIC STRUCTURE SECONDARY STRUCTURE FUSELAGE OR HULL - BOOKS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. FOWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CCHTER OUTBOARD DOORS, PANELS AND MISC.															
FENCES AND VORTEX GENERATORS STRUIS TAIL GROUP STABILIZER-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) EDDY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOKS-BASIC STRUCTURE FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION HEELS, BRAKES, STRUCTURE CONTROLS TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER CUTBOARD DOORS, PANELS AND MISC.			FDC												
TAIL GROUP STABILIZER-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOKS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN HOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER GUIBOARD DOORS, PANELS AND MISC.			210												
TAIL GROUP STABILIZER-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE - FUSELAGE OR HULL - EXCONDARY STRUCTURE CONTROLS - SPEED BRAKES - DOORS - STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR CONTROLS TOTAL TYRES, TUBES, AIR CONTROLS TOTAL - TYRES, TUBES, AIR CONTROLS TOTAL - EXCONDARY STRUCTURE CONTROLS SURFACE CONTROLS GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP - COCKPIT CONTROLS AUTOMATIC FILIOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP - THEOARD - T		CIEA GENERATORS													
STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL HAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKFIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	51K015														
STABILIZER-BASIC STRUCTURE FINS-BASIC STRUCTURE (INCL. DORSAL) SECONDARY STRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL HAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKFIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	TAIL GROUP	•			<u></u>	· · · · · · · · · · · · · · · · · · ·									
SECONDARY SIRUCTURE (STAB. AND FINS) ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL HAIN HOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INEOARD CENTER OUTGOARD DOORS, PANELS AND MISC.		SIC STRUCTURE													
ELEVATOR (INCL. BALANCE WEIGHT) RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS—BASIC STRUCTURE - FUSELAGE OR HULL - BCOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR HAIN NOSE TAIL (BUMPER) ALIGHTING CEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	FINS-BASIC STE	RUCTURE (INCL. DORSA	L)											
RUDDERS (INCL. BALANCE WEIGHT) BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	SECONDARY STRU	CTURE (STAB. AND FI	NS)												
BODY GROUP FUSELAGE OR HULL-BASIC STRUCTURE BOOMS-BASIC STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND PEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CERTER OUTBOARD DOORS, PANELS AND MISC.	ELEVATOR (INCI	BALANCE WEIGHT)												
FUSELAGE OR HULL-BASIC STRUCTURE BOOMS—BASIC STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP LINBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	RUDDERS (INCI	. BALANCE WEIGHT)			e.									
FUSELAGE OR HULL-BASIC STRUCTURE BOOMS—BASIC STRUCTURE — FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP LINBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.															
BOOMS-BASIC STRUCTURE SECONDARY STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	BODY GROUP														
SECONDARY STRUCTURE - FUSELAGE OR HULL - BOOMS - SPEED BRAKES - DOORS, PANELS AND MISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	FUSELAGE OR HI	JLL-BASIC STRUCTURE													
- BOOMS - SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR HAIN NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC FILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND HISC.	BOOMS-BASIC ST	RUCTURE													
- SPEED BRAKES - DOORS, PANELS AND HISC. ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN HOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND HISC.	SECONDARY STRE	JCTURE - FUSELAGE OR	HULL												
ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR HAIN NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP CENTER OUTBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.		~ BOOMS													
ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.		- SPEED BRAKE	5												
ALIGHTING GEAR GROUP - LAND (TYPE) LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.		- DOORS, PANE	LS AND HISC.												
LOCATION WHEELS, BRAKES, STRUCTURE CONTROLS TOTAL TYRES, TUBES, AIR MAIN MOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.		·····													
TYRES, TUBES, AIR MAIN NOSE TAIL (BUHPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	ALIGHTING GEAR CF	ROUP - LAND (TYPE)			•									
MAIN NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOHATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	LOCATION	WHEELS, BRAKES,	STRUCTURE	CONTROLS	TOTAL										
NOSE TAIL (BUMPER) ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOHATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	•	TYRES, TUBES, AIR													
ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	MAIN														
ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	NOSE														
ALIGHTING GEAR GROUP - WATER LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	TAIL (BUMPER)	· · · · · · · · · · · · · · · · · · ·													
LOCATION FLOATS STRUTS CONTROLS SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOHATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.					,										
SURFACE CONTROLS GROUP COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	ALIGHTING GEAR G	ROUP - WATER													
COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	LOCATION	FLOATS	STRUTS	CONTROLS											
COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.															
COCKPIT CONTROLS AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.															
AUTOMATIC PILOT SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	SURFACE CONTROLS	GROUP													
SYSTEM CONTROLS (INCL. POWER AND FEEL CONTR.) ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	COCKPIT CONTRO	ors ,													
ENGINE SECTION OR NACELLE GROUP INBOARD CENTER OUTBOARD DOORS, PANELS AND MISC.	AUTOMATIC PILOT														
CENTER OUTBOARD DOORS, PANELS AND MISC.	SYSTEM CONTROLS (INCL, POWER AND FEEL CONTR.)														
CENTER OUTBOARD DOORS, PANELS AND MISC.															
CENTER OUTBOARD DOORS, PANELS AND MISC.	PUCING COCHACU CO	D 11400114 00014 0													
OUTBOARD DOORS, PANELS AND MISC.		R NACELLE GROUP		↓											
DOORS, PANELS AND MISC.	INBOARD	R NACELLE GROUP													
	INBOARD	R NACELLE GROUP		Ŧ.	•										
TOTAL, AIRFRAME STRUCTURE	INBOARD CENTER OUTBOARD			7.	\$										
	INBOARD CENTER OUTBOARD			= -	•										

Table 8-4. Airframe Structure Group weight breakdown according to AN-9103-D (modified)

ž.:

LIGHT AIRCRAFT

	AIRPLANE CATEGORY AND TYPE		WING GROU		TAIL GROU		FUSEL GRO		LANDI GEAI		SURFA CONTRO		NACEL GROU	
AN	U life	10 ³ 1ь	10 ³ 1ь	z	10 ³ 1b	z	10 ³ 1ъ	X	10 ³ 1b	X	10 ³ 1b	z	10 ³ 1b	z
LIGHT SINGLES RECIPROCATING	Cessna - 150A - 172B - 180D - 182D - 185 - 210 Beechcraft J-35 Saab Safir	1.50 2.20 2.65 2.65 3.20 2.90 2.90 2.66	0.213 0.236 0.254 0.254 0.266 0.261 0.379 0.276	14.2 10.7 9.58 9.58 8.31 9.0 13.1	0.041 0.061 0.059 0.061 0.071 0.071 0.058 0.060	2.73 2.77 2.23 2.30 2.22 2.45 2.00 2.26	0.166 0.253 0.270 0.273 0.290 0.316 0.200 0.386	11.1 11.5 10.2 10.3 9.06 10.90 6.90 14.5	0.106 0.122 0.119 0.136 0.132 0.207 0.205 0.119	7.07 5.55 4.49 5.13 4.13 7.14 7.07 4.47	0.031 0.031 0.036 0.036 0.036 0.044 0.056	2.07 1.41 1.36 1.36 1.13 1.52 1.93	0.024 0.031 0.037 0.036 0.041 0.031 0.062	1.60 1.41 1.40 1.36 1.28 1.07 2.14
LIGHT TWINS RECIPROCATING	Cessna C-310 Beechcraft G-50 -65 -95 .D-18S E-18S De Havilland Dove	4.83 7.15 7.37 4.00 8.75 9.70 8.80	0.454 0.656 0.670 0.458 0.858 0.874 0.930	9.40 9.17 9.09 11.5 9.81 9.01 10.6	0.118 0.156 0.153 0.079 .0.177 0.180 0.196	2.44 2.18 2.08 1.98 2.02 1.86 2.23	0.319 0.495 0.601 0.276 0.733 0.768 0.745	6.60 6.92 8.15 6.90 8.38 7.92 8.47	0.268 0.447 0.444 0.218 0.560 0.585 0.391	5.45 6.25 6.02 5.45 6.40 6.03 4.44	0.066 0.120 0.132 0.073 0.115 0.115	1.37 1.68 1.79 1.83 1.31 1.19	0.129 0.261 0.285 0.180 0.311 0.331 0.220*	2.67 3.65 3.87 4.50 3.55 3.41 2.50
JET TRAINERS	Cessna T-37 Fouge Magister Canadair CL-41	6.44 6.28 6.50	0.531 1.089 0.892	8.24 17.3 13.7	0.128 0.165 0.201	1.99 2.63 3.09	0.839 0.743 0.955	13.0 11.8 14.7	0.330 0.459 0.318	5.12 7.31 4.89	0.154 0.260 0.172	2.39 4.14 2.65	0.040	_ 0.62
JET EKEC- UTIVES	H. Siddeley - 125 Jet Commander 1121 N.Am.Sabreliner Lockheed Jetstar	21.200 16.000 16.700 30.680	1.968 1.322 1.753 2.827	9.28 8.26 10.5 9.21	0.608 0.425 0.297 0.879	2.87 2.66 1.78 2.87	1.628 1.622 2.014 3.491	7.68 10.1 12.1 11.4	0.659 0.443 0.728 1.061	3.11 2.76 4.36 3.46	0.217 0.223 0.344 0.768	1.02 1.39 2.06 2.50	** 0.35 0.315 0.792	2.19 1.89 2.58

^{*} estimated

Table 8-5. Weight breakdown of the structure group weight

PROPELLER TRANSPORTS

		IRPLANE CATEGORY	MTOW	WING GROU		TAIL GROU		FUSEL GRO		LANDI GEA		SURFA CONTR		NACEL GROU	
	A.	ND TYPE	10 ³ 15	10 ³ 1ь	Z.	10 ³ 1ь	Z	10 ³ 1ь	Z	10 ³ 1b	z	10 ³ 1b	z	10 ³ 1b	z
RECIPROCATING	2 ENGINES	De Havilland DHC-4 Saab Scandia H. Page Herald S.A. Twin Pioneer Canadair CL-21	24,000 35,273 37,500 14,600 32,500	2.925 4.195 4.365 2.121 3.99	12.2 11.9 11.6 14.5 12.3	0.790 0.584 0.987 0.576 1.055	3.29 1.66 2.63 3.95 3.25	2.849 2.773 2.986 1.381 3.260	11.9 7.86 7.96 9.46 10.0	1.23 1.841 1.625 0.703 1.609	5.13 5.22 4.33 4.82 4.95	0.326 0.369 0.364 0.300 0.371	1.36 1.05 0.97 2.05 1.14	0.781 1.479 0.830 0.230 1.29	3.25 4.19 2.21 1.58 3.97
RECIPE	4 ENGINES	Douglas DC-68 DC-7C Lockheed L-749 L-1049	81.500 143.000 102.072 137.500	7.506 11.100 11.102 11.542	9.21 7.76 10.9 8.39	1.406 1.900 2.059 2.604	1.73 1.33 2.02 1.89	5.471 8.450 7.407 12.839	6.71 5.91 7.26 9.34	4.165 5.130 4.782 5.422	5.11 3.59 4.68 3.94	1.052 1.215 1.488 1.685	1.29 0.85 1.46 1.23	2.871 4.130 3.869 4.420	3.52 2.89 3.79 3.21
PELLER	2 ENGINES	Nord 262 Fokker F-27/100 F-27/200 F-27/500 Grumman Gulfstream Short Skyvan	23.050 39.000 43.500 45.000 33.600 12.500	2.698 4.408 4.505 4.510 3.735 1.220	11.7 11.3 10.4 10.0 11.2 9.76	0.805 0.977 1.501 1.060 0.874 0.374	3.49 2.51 2.42 2.35 2.60 2.99	3.675 4.122 4.303 5.142 3.718 2.154	15.9 10.6 2.89 11.4 11.1	1.085 1.940 1.825 1.865 1.207 0.466	4.71 4.97 4.20 4.14 3.59 3.73	0.408 0.613 0.620 0.626 0.461 0.265	1.77 1.57 1.43 1.39 1.37 2.12	0.236 0.628 0.667 0.668 1.136 0.254	1.02 1.61 1.53 1.48 3.38 2.03
TURBOPROPELLER	4 ENGINES.	Breguet 941 . H.S. Argosy Vickers Viscount 810 Bristol Brit . 300 Brir . 320 Canadair CL-44C CL-44D Lockheed Electra C-130E C-133A	58.421 82.000 69.000 155.000 184.523 205.000 205.000 106.700 151.522 275.000	4.096 10.800 6.25 13.433 14.199 15.710 15.588 7.670 11.697 27.403	7.01 13.2 9.06 8.67 7.69 7.66 7.60 7.19 7.72 9.96	1.387 1.300 1.245 3.202 3.221 3.749 3.540 1.924 3.425 6.011	2.37 1.59 1.80 2.07 1.75 1.83 1.73 1.80 2.26 2.19	6.481 11.100 6.900 11.100 11.750 20.524 16.047 9.954 14.340 30.940	11.1 13.5 10.0 7.16 6.38 10:0 7.83 9.33 9.46 11.3	2.626 3.180 2.469 5.785 6.500 7.083 7.300 3.817 5.341 10.635	4.94 3.88 3.58 3.73 3.52 3.46 3.56 3.58 3.53 3.87	1.056 ** 0.824 1.221 2.048 2.146 1.830 *** 1.702	1.81 1.19 0.79 1.11 1.05 0.89	1.200 1.816 4.930 7.350 6.834 6.043 4.417 2.675 3.512	1.46 2.62 3.18 3.98 3.33 2.95 4.14 1.77 1.28

tail booms (2,360 lb) included

Table 8-5. (Continued)

^{**} included in other items

included in other items

^{***} no data available

	AIRPIANE CATEGORY	мтой	WING GROU	P	TAIL GROU		FUSEL GRO		LANDI GEA		SURFA CONTRO		NACEL GROU	
	AND TYPE,	10 ³ 1b	10 ³ 15	I.	10 ³ 1b	Z	10 ³ 1b	z	10 ³ 1b	I	10 ³ 1b	Z	10 ³ 1b	Z
2 ENGINES	VFW-Fokker 614 Fchler-VFW F-28/1000 F-28/2000 F-28/5000 F-28/6000 PAC 1-11/300 1-11/400 Mc D. Douglas DC-9/10 Boeing 737-100M 737-200 Aerospat. Caravelle VIR Airbus A3008/2	40.981 65.000 65.000 70.800 70.800 87.000 91.500 97.800 100.000 110.230	5.767 7.330 7.347 8.223 8.244 9.643 9.670 9.470 9.968 10.613 14.735	14.1 11.3 11.6 11.6 11.6 11.1 10.3 10.2 10.6 13.4	1.121 1.632 1.632 1.632 2.369 2.419 2.630 2.700 2.718 1.957 5.941	2.74 2.46 2.46 2.31 2.31 2.72 2.78 2.87 2.76 2.72 1.77	5.233 7.043 7.649 7.043 7.649 9.713 9.743 11.206 12.380 12.108 11.570 35.820	12.8 10.8 11.8 9.95 10.8 11.2 11.3 12.2 12.7 12.1 10.5 11.8	1.620 2.759 2.759 2.759 2.789 2.865 2.899 3.660 3.687 4.354 5.110	3.45 4.24 4.24 3.90 3.94 3.29 3.33 4.00 3.77 4.35 4.63	0.745 1.387 1.400 1.665 1.674 1.481 1.207 1.264 1.589 2.348 2.063 5.808	1.82 2.13 2.15 2.35 2.36 1.76 1.39 1.38 1.62 2.35 1.87	0.971 0.834 0.834 0.849 0.849 ** ** 1.417 *** 1.392 1.581 7.039	2.37 1.28 1.28 1.20 1.20
3 ENGINES	H. Siddeley 121-IC 121-IE Boeing 727-100 727-100C	115.000 134.000 161.000 160.000	12.600 13.462 17.764 17.492	11.0 10.0 11.0 10.9	3.225 3.341 4.133 4.142	2.80 2.49 2.57 2.59	12.469 13.328 17.681 20.044	10.8 9.95 10.9 12.5	4.413 5.073 7.211 6.860	3.84 3.79 4.48 4.29	1.792 1.689 2.996 2.957	1.56 1.26 1.86 1.85	** ** 3.864 3.839	2.40 2.40
4 ENGINES	Boeing KC-135 707-121 707-320 707-320C 707-321 720-022 747-100 747-200B Mc D. Douglas DC-8-10 DC-8-55 BAC VC-10-1101 G. Dynamics 880 990	297.000 246.000 311.000 330.000 301.000 203.000 710.000 775.000 273.000 328.000 312.000 184.500 253.000	25.251 24.024 29.762 32.255 28.647 22.850 86.402 92.542 26.235 34.759 34.672 17.669 26.871	8.50 9.76 9.57 9.77 9.52 11.3 12.2 11.9 9.61 10.6 11.1 9.58 10.6	5.074 5.151 5.511 6.165 6.004 5.230 11.850 11.842 4.740 4.889 6.958 4.247 5.326	1.71 2.09 1.77 1.87 1.99 2.58 1.67 1.53 1.74 1.49 2.23 2.30 2.11	18.867 20.061 21.650 26.937 22.129 19.035 71.845 72.053 21.495 22.248 25.113 13.699 16.673	6.35 8.15 6.96 8.16 7.35 9.38 10.1 9.30 7.87 6.78 8.05 7.42 6.59	10.180 9.763 12.700 12.737 11.122 8.110 31.427 32.693 10.185 11.255 10.489 6.203 8.718	3.43 3.97 4.08 3.70 4.00 4.43 4.22 3.73 3.43 3.36 3.36 3.44	2.044 2.044 2.400 3.052 2.408 2.430 6.982 7.073 2.000 2.253 ***	0.77 0.92 0.80 1.21 0.98	2.575 4.639 4.497 4.183 5.119 4.510 10.031 10.136 3.505 4.685 ** 3.685 6.772	0.87 1.89 1.45 1.27 1.70 2.22 1.41 1.31 1.28 1.43 -

estimated ** included in other items *** no data available

.Table 8-5. (Continued)

taken as the larger of the maximum positive gust or the maneuver load factor for the applicable weight at the most critical flight altitude (approximately 20,000 ft for pressurized transports). For further details see Appendix C.

b. Wing group.

A reasonably accurate wing weight estimate can be made in preliminary design as the loads on the wing are fairly well known at the design stage. Usually the bending moment in flight is assumed to be decisive for most of the primary structure. For a certain category of high-speed aircraft, however, torsional stiffness requirements may become dominant and the extra structure weight required to safeguard against flutter may amount to as much as 20% of the wing weight. The location of the inertia axis of the wing plus wing-mounted engines is of importance. A fairly large portion is also made up of secondary structure and non-optimum penalties, such as joints, non-tapered skin,

undercarriage attachments, etc.

The derivation of a typical wing weight prediction method is explained in Ref. 8-101, the results of which are summarized in Appendix C. If sufficient data are not available to apply this method, the following simplified approximation can be used for civil airplanes with Al-alloy cantilever wings. The following basic expression is valid for the case of a wing-mounted retractable undercarriage, but not for wing-mounted engines:

$$\frac{W_{w}}{W_{G}} = k_{w}b_{s} \cdot 75 \left[1 + \sqrt{\frac{b_{ref}}{b_{s}}} \right] n_{ult} \cdot 55 \left(\frac{b_{s}/t_{r}}{W_{G}/S} \right) \cdot 30$$
(8-12)

where b_{ref}= 6.25 ft or 1.905 m for b_s in ft or m, respectively, while b_s= b/cos $\Lambda_{\frac{1}{2}}$, the structural wing span. The factor of proportionality is as follows: Light aircraft, W_{to}<12,500 lb (5670 kg): k_w= 1.25×10⁻³; W_G=MTOW in lb, b_s in ft, S in ft, W_w in lb. k_w= 4.90×10⁻³; W_G=MTOW in kg, b_s in m, S in m², W_w in kg.

Transport category aircraft W_{to}>12,500 lb (5670 kg):

 $k_w = 1.70 \times 10^{-3}$; $W_G = MZFW$ in 1b, b_s in ft, S in ft², W_w in 1b.

 $k_w = 6.67 \times 10^{-3}$; $W_G = MZFW$ in kg, b_s in m, S in m^2 , W_w in kg.

The weight given by (8-12) includes high-lift devices and ailerons. For spoilers and speed brakes, if incorporated, 2% should be added. Reduce W_W by 5% or 10% for 2 or 4 wing-mounted engines, respectively and by 5% if the main undercarriage is not mounted to the wing. For braced wings a reduction of approximately 30% relative to (8-12) can be assumed. This figure includes the strut, contributing about 10% of the total wing group weight.

Wing optimization studies must be sensitive to variations in the external geometry, configuration and operational characteristics. It is generally recognized that for modern wing designs the weight of high-lift devices should be determined separately. The method in Appendix C meets these requirements and predicts the wing weights with a standard prediction error of 9.64%.

On inspection of (8-12), the observation can be made that the structural weight fraction, for a given cantilever ratio b_s/t_r and wing loading W_G/S , increases with the wing span. This unfavorable scale effect, associated with the square-cube law (cf. Section 7.2.2.), can be counteracted by increasing the wing loading. This is one of the reasons why large aircraft usually have high wing loadings. Decreasing the cantilever ratio is unfavorable as it results in a drag increment; its value is usually between 35 and 45 (see Fig. 7-8.).

c. Tail group.

This weight is only a small part - about 2 to 3% - of the MTOW but on account of its remote location it has an appreciable effect on the position of the airplane's center of gravity. Accurate weight prediction is difficult due to the wide variety of tailplane configurations and the limited knowledge of strength, stiffness and other conditions which will govern the design.

For relatively low-speed, light aircraft ($V_{\rm D}$ up to 250 kts EAS), the maneuvering loads are most important and the specific tailplane weight is affected by the load factor as follows:

$$W_{tail} = k_{wt} \left\{ n_{ult} s_{tail}^{2} \right\}^{75}$$
 (8-13)

where k_{wt}=.04; W_{tail} in 1b and S_{tail} in ft²
k_{wt}=.64; W_{tail} in kg and S_{tail} in m²

It is interesting to note that for this category the specific tailplane weight obeys the square-cube law, the weight being proportional to the cube while the area is proportional to the square of the linear dimension. If the tailplane area is not (yet) known, the total tailplane weight may be assumed between 3½ and 4% of the empty weight. For transport category aircraft and executive jets the Design Dive speed appears to have a dominant effect (Fig. 8-5):

Fig. 8-5. Normalized specific horizontal tailplane weight

$$\frac{W_h}{S_h} = k_h \cdot f\left(\frac{S_h^{2} V_D}{\sqrt{\cos \Lambda_h}}\right)$$
 (8-14)

$$\frac{W_{v}}{S_{v}} = k_{v}.f\left(\frac{S_{v}^{2} V_{D}}{\sqrt{\cos \Lambda_{v}}}\right)$$
 (8-15)

where $\mathbf{V}_{\mathbf{D}}$ is expressed in terms of EAS and $\mathbf{k}_{\mathbf{h}}$ and $\mathbf{k}_{\mathbf{V}}$ are correction factors for the tailplane configuration:

k_h= 1.0 - fixed stabilizer, 1.1 for variable-incidence tails; for a bullet of appreciable size \$% should be added. $k_{V}=1.0-\text{fuselage-mounted horizontal}$ tailplanes $k_{V}=1+.15\frac{\text{Shh}}{\text{Subv}}-\text{fin-mounted stabilizers}$ (e.g. T-tails) $k_{V}=1+.15\frac{\text{Shh}}{\text{Subv}}+\text{fin-mounted stabilizers}$ (e.g. T-tails) $k_{V}=1+.15\frac{\text{Subv}}{\text{Subv}}+\text{fin-mounted stabilizers}$ (e.g. T-tails) $k_{V}=1$

d. Body group.

The fuselage makes a large contribution to the structural weight, but it is much more difficult to predict by a generalized method than the wing weight. The reason is the large number of local weight penalties in the form of floors, cutouts, attachment and support structure, bulkheads, doors, windows and other special structural features.

Fuselage weight is affected primarily by the gross shell area $S_{\rm G}$, defined as the area of the entire outer surface of the fuselage. All holes for doors, windows, cutouts, etc. are assumed to be faired over and all local excrescences such as blisters, wheelwell fairings and canopies to be removed and faired over. The gross shell area can be calculated with the methods of Appendix B.

The following simple weight estimation method for Al-alloy fuselages is based on the approach of Ref. 8-113, slightly modified and updated for modern types. The basic fuselage weight is:

$$w_f = k_{wf} \sqrt{v_D \frac{1_t}{b_f + h_f}} s_G^{1 \cdot 2}$$
 (8-16)

The Design Dive speed V_D is expressed in terms of EAS. For definitions of l_t , b_f and h_f see Appendix D (Fig. D-1). The constant of proportionality is: k_{wf} =.021- w_f in 1b, V_D in kts and S_G in ft k_{wf} =.23- w_f in kg, k_{wf} =.23- k_{wf} in kg, k_{wf} =.23- k_{wf} =.23-

aircraft. If there is no attachment structure for the landing gear for a wheelbay, 4% may be subtracted from the basic weight. Most of the more detailed prediction methods are based on the approach in Ref. 8-115, applicable to semi-monocoque structures. The calculation of the shell weight according to this method, supplemented with some recent data to estimate various weight penalties, is given in Appendix D.

For tail booms (8-16) can be used for each boom separately. In this case 1_t is defined as the distance between the quarter-chord points of the local wing chord and the horizontal tailplane. Add 7% for a main landing gear wheelbay and undercarriage attachment.

e. Alighting gear group*.

The undercarriage has a well-defined set.

of loading conditions and weight prediction can therefore be dealt with on a analytical basis. To this end the weight of
each gear must be subdivided into:

- wheels, brakes, tires, tubes and air
- main structure, i.e. legs and struts
- items such as the retraction mechanism, bogies, dampers, controls, etc.

The first part of the weight prediction process is to decide upon tire and wheel size, inflation pressure, location of the gears, length of the legs, etc. This subject will be treated in Chapter 10, an example of a weight prediction method is given in Ref. 8-125.

The weight of conventional undercarriages may be found by summation of the main gear and the nose gear, each predicted separately with the following expression:

$$W_{uc} = k_{uc} \left[A + B. W_{to}^{3/4} + C. W_{to} + D. W_{to}^{3/2} \right]$$
 (8-17)

where $k_{\rm uc}=1.0$ for low-wing airplanes and $k_{\rm uc}=1.08$ for high-wing airplanes Table 8-6 gives suggested values of the factors A, B, C and D, based on a statistical evaluation of data on undercar-

*Only conventional undercarriages will be dealt with

A/C CATEGORT	U.C. CONTICU	MOTTAN	A	\$	C	Ď
JET PROPELLED TRAINERS AND	RETRACTABLE	MAIN	33 (15,0)	.04 (.033)	.021	-
EXECUTIVES	ALIAN INDE	NOSE	12 (5.4)	.06 (.049)	-	-
		MAIN	20 (9.1)	.10 (.082)	.019	-
	FIRED	HOSE	25 (11.3)	-	.0024	-
ALL OTHER CIVIL TYPES		TAIL	9 (4.1)	-	.0024	-
C141E 11163		HAIN	40 (18.1)	.16 (.131)	-019	1.5 (2.23).10-5
	RETRACTABLE	NOSE	29 (9.1)	.10 (.082)	-	2 (2.97).10-6
		TAIL	5 (2.3)	-	.0031	

CORFFICIENTS CORRESPOND TO WEIGHTS IN LEGECT

Table 8-6. Coefficients for the calculation of the landing gear weight

riage weights of existing airplanes. Fig. 8-6 compares the result of (8-17) with data for existing airplanes. Up to 100,000 1b (45,000 kg) takeoff weight the weight fraction decreases with increasing airplane size. The main reasons are that for large airplanes a larger part of the gear structure can be highly stressed, while the use of higher inflation pressures on large aircraft saves some weight as well. For main landing gears the weight fraction does not appreciably decrease at takeoff weights above 100,000 lb (45,000 kg), but for nose gears there is still a reduction of the weight fraction up to very large airplane sizes like the B-747 and C-5A.

Fig. 8-6. Landing gear weight fraction

It can be argued that in many aircraft the critical load is formed by the landing impact load and that the MLW should therefore be used to predict the undercarriage weight. A reasonable approximation for the weight of retractable undercarriages is 4.7% of the MLW.

f. Surface controls group.
The weight of surface controls is generally of the order of .8 to 2% of the takeoff weight. An approximation is:

$$W_{sc} = k_{sc} W_{to}^{2/3}$$
 (8-18)

The factor k can be determined from known weights of airplanes in the same category with a similar flight control system. Alternatively, for W and W to in lb, we have:

 $k_{sc} = .23$ - fight airplanes without duplicated system controls,

 $k_{\scriptsize SC}$ = .44 - transport airplanes and trainers, manually controlled, and

 $k_{\rm SC}$ = .64 - transport airplanes, with powered controls and trailing-edge high-lift devices only.

Multiply these values by .768 when $W_{\rm sc}$ and $W_{\rm to}$ are in kg. Add 20% for leading-edge flap or slat controls and 15% for lift dumper controls, if used.

If sufficient data are available, a more detailed analysis can be made. To this end the surface controls group weight is subdivided into:

1. cockpit controls:
.056 W_{to} 3/4 lb (.046 W_{to} 3/4 kg)
for W_{to}≤25,000 lb (11,340 kg)
110 lb (50 kg)
for W_{to}>25,000 lb (11,340 kg)
2. automatic pilot:

17 $W_{to}^{1/5}$ 1b (9 $W_{to}^{1/5}$ kg) (8-20) for transport and executive aircraft

3. system controls:

.008 W_{to} for light airplanes with (8-21) single flight control systems

For transport aircraft a prediction of the system controls weight can be made with the aid of Table 8-7. In the absence of better data these formulas may be also used for trainers and executive airplanes.

g. Engine section or nacelle group. The following statistical data may be used if no details of the engine installation

EARLEM FORFCREAL	нетно	D	ROMENCLATURE
MANEUVERING CONTROL	manually operated duplicated controls	2 x W _{to} .67	W _{to} = Max. Takeoff Weight ∿ lb (kg)
SYSTEM	duplicated powered controls, single hydr. power system	.42 × W _{to} .65 (.318)	'
(elevator, rudder, ailerons, spoilers)	duplicated powered controls, dual hydr, power system	1.06 × W _{ED} .60	
TRAILING EDGE FLAP CONTROL SYSTEM	rotating flaps (cylinder actuation) translating (Fowler) flaps (screwjack actuation)	1.38 x (S _f sin δ _f) (5.569) 2.73 x (S _f sin δ _f) (11.02)	Sf = total projected flap area ~ ft ² (m ²) of = maximum flap deflection angle
LEADING EDGE FLAP OR SLAT CONTROL SYSTEM	3,52 (11,2	3 x S _s .82	S _s = total projected slat area ∿ ft ² (m ²)
VARIABLE INCIDENCE STABILIZER CONTROLS	khc (She Vmax sin Sh).88 s	single powered: k _{hc} = .31 (1.52) dual powered: k _{hc} = .44 (2.16) lplane incidence variation	She exposed hor, tail area ~ ft ² (u ²) V = max. hor, flight speed ~ kts (u/s) TAS
SPEED BRAKE CONTROLS			S _{ab} ≈ speed brake vetted area ∿ ft ² (m ²
LIFT DUMPER CONTROL	5 x (20.2)	.92 (S _{id} sin δ_{id})	Std= total area of lift dumpers ~ ft² (m²)
DIRECT LIFT CONTROL	δ _{id} = maximum lift dumper deflection angle		

ALL COMPONENT WEIGHTS IN LB (KG)

NOTES:

- 1. Most formulas are approximations of the curves in SAWE Technical Paper No 812
- 2. Coefficients in brackets refer to the metric system

Table 8-7. Weight of system controls (transport aircraft)

MEICHT CONTRIBUTION	• нетнов
ENGING MOUNTS AND VIBRATION ABSORBERS	5% of engine plus propeller installation weight
NACELLE STRUCTURE,	.03\(\var_D\) S_wet 1.3 (1b); V_D~kts EAS; Swet~sq.
PYLONS AND STRUTS,	.405 $\sqrt{v_D}$ S _{wet} ^{1.3} (kg); V_D =/a EAS; V_{wet} =2
ENGINE CONLINGS,	$S_{\text{wat}} \rightarrow \text{total area per nacelle wettad by}$
FLAPS AND BAFFLES	the cold sirflow, both internally and
	externally *
GAS GENERATOR CONLING AND PLDG	3 lb/eq.ft (14.6 kg/m ²) of wetted area
HOISE SUPPRESSION	.35 lb/sq.ft (1.71 kg/m ²) ~ nacelle valls
MATERIAL (EXTEA VEIGHT)	1.75 lb/sq.ft (8.53 kg/m2) ~ splitter plates
FIREVALLS AND SHADOOS FOR FIRE PROTECTION	1.13 lb/sq.ft (5.51 kg/m ²)

for straight jet engines the external nacelle area plus the inlet duct area

Table 8-8. Data for estimating the nacelle group weight

are available. Light aircraft, single tractor propeller in the fuselage nose: $W_n = 2.5 \sqrt{P_{to}}$ (1b) $W_n = 1.134 \sqrt{P_{to}}$ (kg) Pto in hp This weight refers to the complete engine section in front of the firewall. Multi-engine aircraft, reciprocating . horizontally opposed cylinders - $W_n = .32 P_{to}$ (1b) $W_{n} = .145 P_{to} (kg)$ Other engine 5/4 (lb) W_n = .0\$5 P_{to 5/4} (lb) 0204 P_{to} (kg) (8-23)All weights per nacelle P_{to}: takeoff bhp per engine Aircraft with turboprop engines: $W_n = .14 \text{ lb } (.0635 \text{ kg}) \text{ per}$ (8-24) takeoff ESHP

Add .04 lb (.018 kg) per ESHP if the main landing gear is retractable into the nacelle and .11 lb (.05 kg) per ESHP for overwing exhausts (cf. Fig. 2-13, Lockheed Electra). Aircraft with pod-mounted turbojet or turbofan engines:

 $W_n = .055 T_{to}$ high bypass turbofans with short fan duct -

(8-25)

 $W_n = .065 T_{to}$ This value inc

This value includes the pylon weight and extended nacelle structure for a thrust reverser installation. In the absence of thrust reversing a reduction of 10% may be assumed.

If a more detailed weight analysis taking into account the configuration and geometry of the nacelle and engine mounting is desirable, some degree of structural design must be attempted first. The subdivision and weight data in Table 8-8 may then be used to calculate the weight. The weight penalty due to noise suppression material obviously depends upon the amount of suppression desired; the engine manufacturer should be consulted for detailed data. For a typical "quiet" turbofan pod, acoustic lining may be required over 50% of the nacelle area. A typical weight penalty is 20% of the nacelle weight, apart from the extra weight of the engine itself.

8.4.2. The propulsion group

Project designs are normally based on existing engine types or paper studies of engines in an advanced state of development. Thus a specification of the definitive engine weight W_e is usually available comprising:

1. engine weight, bare and dry,

3)

- 2. standard engine accessories and
- additional weight contributions such as gas generator cowling and/or noise suppression material.

During parametric investigations it may be convenient to employ more general information and the engine weight data in Chapter 4 may be used:

- reciprocating engines: Section 4.2.2. and

Fig. 4-12,

- turbojet and turbofan engines: Section 4.4.3. and equation 4-36,
- turboprop engines: Section 4.5.2. and equation 4-40.

Detailed methods for the computation of turbojet engine weights will be found in References 8-129 through 8-136.

If sufficient details of the powerplant installation are not available, a first approximation for the propulsion group weight is obtained by assuming that part of this weight contribution is proportional to the engine weight, while propeller weight is proportional to the power to be absorbed:

propeller aircraft -

$$\begin{array}{l}
W_{pg} = k_{pg} N_{e} (W_{e} + .24P_{to}) & (1b) \\
W_{pg} = k_{pg} N_{e} (W_{e} + .109P_{to}) & (kg)
\end{array}$$
(8-26)

Pto: takeoff hp per engine

jet aircraft -

$$W_{pg} = k_{pg} k_{thr} N_e W_e$$
where (8-27)

k_{pg} = 1.16 for single tractor propeller in fuselage

- = 1.35 for multi-engine propeller airplanes
- = 1.15 for jet transports, podded engines
- = 1.40 for light jet airplanes, buried engines

k_{thr}= 1.00 with no thrust reversers = 1.18 with thrust reversers installed Add 1.5% for jets and 3% for propeller aircraft with a water injection system. The term .24 (.109) P_{to} in (8-26) for propeller aircraft represents the propeller installation weight in 1b (kg).

Instead of the simple approximation given above, Table 8-9 can be used to analyze the powerplant weight in more detail. Weight data for some present-day aircraft are presented in Table 8-10.

A large contribution to the powerplant group included in Table 8-9 is made by the fuel system, comprising:

- 1. fuel tanks and sealing,
- 2. pumps, collector tanks and plumbing,
- 3. distribution and filling system, and
- 4. fuel dump system (if used).

285

WEIGHT CONTRIBUTION	WEIHOD	· · · · · · · · · · · · · · · · · · ·		REMARKS AND				
	TURBOJET/TURBOFAN	Tukbop rop	RECIPROCATING	NOMENGLATURE				
ENGINE INSTALLATION	N _e W _e			consult engine manufacturer's brochure				
ACCESSORY GEAR BOXES AND DRIVES. FOWER PLANT CONTROLS, STARTING AND IGNITION SYSTEM	.03 x Ne (wf to) 1.168 (.0343) pneumatic or cartridge starting system	.4 x N P .8 (.181) add 30% for beta control		We = definitive weightvlb(kg) per engine Ne = pumber of engines Wf = fuel flow/engine during takeoff vlb/sec (kg/sec) Pto = takeoff BHP per engine				
AIR INDUCTION SYSTEM	podded engines: included in nacelle group buried engines: . i1.45 x(2 _d N _i A _i .5 _{kgeo}),73	included in nacelle group 31	1.03 × N _e P _{to} .7	<pre>L_d = duct length ~ ft (m) N_i = number of inlets A_i = capture area per inlet</pre>				
EXRAUST SYSTEM	tailpipes: 31b/sq.ft (14. silencers: .01 N _e T _{to}	63 kg/m ²)		T _{to} = takeoff SLS thrust/ engine assumed inlet Hach number:				
SUPERCHARGERS	-	-	.455 x (H _e W _e).943	for separate superchargers				
OIL SYSTEM AND COOLER	(.01 to .03) Na War	.07 N _a W _e	radial: .08 N _e W _e hor. opposed: .03 N _e W _e	additional system; basic system supplied by engine manufacturer				
FUEL SYSTEM	integral tanks: 80 x(Ne+Nft-1)+ 15 (36.3) (4.366) bladder tanks: 3.2 x V _{ft}	xN _{ft} .5 V _{ft} .333	single engine: 2 x V _{ft} (.3735) multi engine: 4.5 x V _{ft} (.9184)	N _{ft} = total number of fuel tanks (N _{ft} ≥ N _e for airworthiness) V _{ft} = total fuel tank volume, U.S. gal. (liters)				
WATER INJECTION SYSTEM	8,586 x V _{ut}	.687 (opti	onal)	V _{wt} = total water tank capacity ∿ U.S. gal. (liters				
PROPELLER INSTALLATION*	-	$k_p N_p B (D_p P_{to})^*$ $k_p = .108 (.124)$	78174 k _p = .144 (.165)	N _p = number of propellers D _p = propeller diameter ∿ ft (m) B _p = number of blades / propeller				
THRUST REVERSERS	.18 N.W.		-	optional				

ALL WEIGHTS IN LB (KG)

Note: coefficients in brackets refer to the metric system

Table 8-9. Weight analysis of the propulsion group

It will be observed that, for a given integral fuel tank capacity, the number of fuel tanks and the number of engines are primary parameters for determining the fuel system weight.

8.4.3. Airframe services and equipment

In the pre-design phase, with few details of the design of the airframe services and

equipment, their weight is very difficult to predict. The initial prediction error may be very large, as demonstrated by the examples quoted in Ref. 8-151. As soon as preliminary discussions with system (component) manufacturers have been held, the initial weight prediction must be revised.

^{*}From Saw# Technical Paper No. 970

^{*}A subdivision is shown in Table 8-3.

	GROUP AIRPLANE TYPE		Fuel System			EXHAUST + THRUST REV.		er Ms	PROPULSION GROUP		
	AIRPLANE TIPE	10 ³ гв	10 ³ LB	1 *	10 ³ LB	z*	10 ³ LE	z*	103 LB	z*	
	Atlas Airbus A-300 B2	16.825	1.257	7.47	4.001	23.8	.814	4.84	22.897	136	
1	Boeing 707/320 C	17.368	2.418	13.9	3.492	20.1	.798	4.59	24.247	140	
İ	727/100	9.325	1.143	12.2	1.744	18.7	.250	2.68	12.759	137	
	737/200	6,217	.575	9,25	1.007	16.2	.378	6.08	8,177	132	
3	747/100	34.120	2.322	6.81	6.452	18.9	.802	2.35	43.696	128	
AIRCRAFT	Fokker VFW F-28 Mk 1000	4.495	.345	12.1	.127	2.82	.215		5.227		
	Lockheed Jetstar	1.750	.360	20.6	**	_	.365	20.9	2.475		
其	HcDonnell Douglas DC-8/55	16,856	3.107	18.4	4.964	29,4	1.560	9.37	26.507	157	
	DC-9/10RC	6.160	.510	8.28	.658	10.7	.409	6.64	7.737	126	
	North Am. T-39A Sabreliner	.959	.190	19.8	**	-	.152	15.8	1.301	136	
	Aerospatiale Caravelle VI E	7.055	.518	7.34	.975	13.8	.179	2.54	8.727	124	
	VFW Fokker 614	3.413	. 162	4.75	.119	3.49	.690	20,2	3.763	110	
	Cessne T-37	.751	.224	29.8	**	-	.221	29.4	1.196	159	
	Northrop T-38A Talon	1.038	.285	27.4	**	-	.307	29.6	1.630	157	
					PROPEL	Ler(s)					
	Bristol Britannia 300A	11.192	1.329	11.9	3,557	8 مار3	3.820	34.1	19.898	178	
	Canadair CL-44C	12.800	1.755	13.7	5.006	39.1	3.134	24.5	22.695	177	
14	Fokker VFW F-27 Hk 100	2.427	.390	16.1	.918	37,8	.612	25.2	4.454	184	
NC.	Grumman Gulfstream I	2.688	.133	4.95	1.002	37.3	.698	26.0	4.521	168	
AI.	Lockheed C-130 E	7.076	1.695	24.0	4.573	64.6	1.874	26.5	15.268	216	
ROPELLER AIRCRAFT	L-1049 E	14.256	.893	6.26	2.980	20.9	2.547	17.9	20.682	145	
PROPI	Beechcraft 95 Travel Air	.519	.083	16.0	.162	31.2	.109	21.0	.873	168	
	G-50 Twin Bonanza	1,008	. 137	13.6	.258	25.6·	.207	20.5	1,610	160	
	E-185	1.352	.274	20.3	.334	24.7	.321	23.7	2.281	169	
	Cessna 310-C	.852	.076	8.92	.162	19.0	.160	18.8	2.250	147	
	Beechcraft Bonanza J-35	.432	.030	6.94	.073	16.9	.045	10.4	. 580	134	
	Cessos 150A	.194	.020	10.3	.025	12.9	.034	17.5	,273		
	1758	.312	.030	9.61	.038	12.2	.047	15.1	.427		
	185	.428	.024	5,61	-072	16.8	.056	13.1	.580		

Table 8-10. Propulsion group weight breakdown for existing aircraft types

a percent of engine installation weight

** not specified: included in other items

The data and methods in this section are based primarily on statistical correlations. There is, however, not always a functional relationship between the parameter on which the correlation is based and the actual weight contribution. Consequently, if some weight item is related to the takeoff weight or the empty weight and the first and second estimation of these characteristic weights are different, it may be unnecessary to reiterate the complete weight estimation, provided the estimates do not differ greatly.

It should be noted that for several individual weight contributions a marked discrepancy between the calculated value according to the present methods and the actual value for existing aircraft may be observed. This will be caused to a large extent

by differences in de definitions of these items.

However, the total estimated systems and equipment weight will be reasonably representative of the actual weight of the operational airplane. In some cases, particularly for wide-body aircraft, the weight estimate may be somewhat conservative due to recent improvements in systems design technology. Typical averages for the total airframe services and equipment weight are:

light single-engine private airplane: 8% W_{to}
light twin-engined airplanes :11% W_{to}
jet trainers :13% W_{to}
short-range transports :14% W_{to}
medium-range transports :11% W_{to}
long-range transports :8% W_{to}

A collection of weight data is presented in

										,	
	ALEPLANE TYPE	MION	A.P.U GROUP	INSTR. NAV.EQPT.	HYDR. PNEUM.	ELEC- TRICAL	ELEC- TRONICS	FUPNISH. EQPT.	AIRCOND. ANTI-ICE	HISC.	TOTAL
	Atlas Airbus A-300 B2	302,000	983	377	3,701	4,923	1,726	13,161	3,642	732	29,245
1	BAC 1-11 Srs 300	87,000	457	182	997	2,317	1,005	4,933	1,579	-	11,465
- 1	Boeing 707/320 C	330,000	151	515	1,086	4,179	2,338	9,527	3,608	-389	21,015
	707/321	301,000	-	561	498	3,959	1,716	14,854	3,290	-	24,878
	720/022	203,000	-	555	505	4,070	1,200	13,055	2,690	-	22,275
- 1	727/100	160,000	60	756	1,418	2,142	1,591	10,257	1,976	85	18,285
	727/100C	160,000	52	802	843	3,617	1,559	6,729	2,401	75	16,078
Ŋ	737/200	100,400	836	625	873	1,066	956	6,643	1,416	124	13,539
TRANSPORTS	747/100	710,000	1,130	1,909	4,471	3,348	4,429	37,245	3,969	-421	54,380
NS.	Fokker VFW F-28 Mk 1000	65,000	346	302	364	1,023	869	4,030	1,074	-	8,008
18	Mx 2000	65,000	353	309	366	1,045	869	4,614	1,111	-	8,667
ᇤ	Lockheed Jetstar	30,680	-	153	262	973	318	1,521	510	560	4,297
٦	McDonnell Douglas' DC-8/55	328,000	- .	1,271	2,196	2,398	1,551	14,335	3,144	57	24,952
}	DC-9/10 RC	91,500	818	719	714	1,663	914	7,408	1,476	24	13,736
.]	North Am. T-39A Sabreliner	16,700	-	122	116	720	407	857	333	-	2,555
	Aerospatiale Caravelle VI R	114,640	-	236	1,376	2,846	1,187	6,481	1,752	-	13,878
1	VFW Fokker - 614	40,981	305	215	403	1,054	436	2,655	719	49	5,836
-	Bristol Britannia 300A	155,000	-	505	650	1,800	1,040	6,866	3,000	-	13,861
	Canadair CL-44C	205,000	1	858	630	3,040	1,229	12,349	2,536	-	20,662
ETS.	CL-44D	205,000	-	783	640	2,875	1,046	3,155	4,090	-	12,589
PROPELLER TRANSPORTS	Fokker VFW F-27 Mk 100	39,000	-	81	242	835	386	2,291	1,225	-	5,060
SNA	Hk 500	45,000	-	126	256	840	329	3,035	1,257	-	5,843
1	Grumman Gulfstream I	33,600	355	97	235	966	99	415	755	6	2,929
137	Lockheed C-130 E	151,522	466	665	671	2,300	2,432	4,765	2,126	62	13,487
PEI	L-1049 E	133,000	-	503	654	1,505	1,371	7,405	3,298	-	14,736
78	Nord 262	23,050	-	133	76	\$5	238	1,324	527	33	3,020
	Vickers Fiscount 702	50,044	-	154	331	2,048	447	2,519	1,516	-	7,015
S.	Beechcraft MS 760	7,650	_	70	-	284	158	169	48	30	759
JET TRAINERS	Cesena T-37	6,436	1	132	56	194	86	256	69	3	796
7 %	Northrop T-38A Talon	11,651	1	211	154	296	246	460	142	24	1,539
20	Beechcraft 95 Travel Air	2,900	-	49	-	96	26	194	48	25	438
THINS	G-50	7,150	1	80	-	184	و	333	81	27	834
F .	E-18 S	9,700	j	100	-	295	63	524	144	58	1,184
LICHT	Cessna 310 C	4,830	1	46	-	121	-	154	46	65	498
ä	Cessna 310 C	1									
, c		2,900		16	-	72	_	174	12	7	281
۵/۲۶	Beachcraft Bonanza J-35	2,900	1	1	- 2	72 41	-	174 42	12 4	7	281 96
۵/۲۶	Beachcraft Bonanza J-35	1,500	-	16 7 7	2 3	1	-			7 -	1
٢	Beachcraft Bonanza J-35	1 1	-	7	Į.	41	-	42	4	- -	96

ALL WEIGHTS IN LB

Table 8-11. Airframe services and equipment group weight breakdown

Table 8-11. Several items will be discussed in greater detail in the paragraphs below.

a. APU group.

An APU is installed in most modern transport aircraft and also in some jet execu-

tives. The installed weight may be based on the dry weight of the APU:

Weight = $k_{APU}^{W}_{APU}$ (8-28)

The installation factor accounts for the inlet and exhaust ducting mounting frames,

silencers, fire protection and accessories, and is generally of the order of 2.0 to 2.5. The APU engine weight is mainly a function of the airflow capacity and power delivery. The bleed airflow requirement is approximately .025 lb/min per cu. ft (.4 kg/min per m³) of passenger cabin volume or 1.1 lb/min (.5 kg/min) per passenger in the high-density layout.

The APU engine weight can be obtained from the APU specification once the engine has been chosen. The following relationship may be used instead:

$$W_{APU}^{=} = 16 \dot{W}_{ba}^{3/5} (W_{APU} \text{ in 1b, } \dot{W}_{ba} \text{ in } | (8-29))$$
 $W_{APU}^{=11.7 \dot{W}_{ba}^{3/5}} (W_{APU} \text{ in kg, } \dot{W}_{ba} \text{ in } | (8-29))$

Recent APU engines used on wide-body transports have a specific weight of only 65% of this value, due to improved materials and cycle efficiencies and increased cycle pressures and turbine temperatures.

b. Instruments, navigational equipment and electronics groups.

Requirements for the instruments and NAV/ COM equipment (avionics) are usually listed in the design specification. The minimum equipment required for safe operation is supplemented by a choice of optional equipment to improve the operational flexibility. The effects of airplane size are found mainly in the weight of wiring and the flight control system, which increases in size and complexity when the aircraft is scaled up. NAV/COM equipment is partly or fully duplicated on modern transports and even triplicated on recent large transports. A weight estimate may be based on the unit weight of each item of equipment, as obtained from manufacturers, as well as on data for airplanes designed for similar Operational capabilities. If these data are not available, the following statistical correlations may be used for the combined weight of instruments and avionics.

Single-engine propeller aircraft: 8 1b (3.6

kg) per pilot, for instruments and 20-30 lb (9-13.6 kg) for radio, which is optional on private aircraft but compulsory on trainers, commuters and taxi aircraft. Propeller-powered utility airplanes up to 12,500 lb (5,670 kg) takeoff weight, VFR operations:

Low-subsonic transports with manual flight control system, intended for IFR operations and equipped with single NAV/COM equipment:

120 + 20
$$N_e$$
 + .006 W_{to} (1b)
54.4 + 9.1 N_e + .006 W_{to} (kg) (8-31)

where N_e is the number of engines per aircraft. This equation also gives reasonable results for low-subsonic jet trainers. For high-subsonic jet transports with predominantly duplicated NAV/COM equipment, jet executives and high-subsonic trainers, the weight of the instruments and electronics group is:

$$W_{\text{leg}} = k_{\text{leg}} W_{\text{DE}}^{5/9} R_{\text{D}}^{1/4}$$
 (8-32) where W_{DE} is the Delivery Empty Weight and R_{D} the maximum range (Fig. 8-3) $k_{\text{leg}} = .575$ for W_{DE} and W_{leg} in 1b, R_{D} in nm $k_{\text{leg}} = .347$ for W_{DE} and W_{leg} in kg, R_{D} in km these data do not include the autopilot weight, which is considered part of the surface control system weight in the present subdivision.

c. Hydraulic, pneumatic and electrical groups.

On light aircraft (MTOW up to 12,500 lb or 5,670 kg) the hydraulic system is generally restricted to a brake system and flap and undercarriage operation. For some categories a good correlation was found for the combined weight of hydraulic and electrical systems:

weight = .00780
$$W_E^{6/5}$$
 lb $(W_E \text{ in lb})$ weight = .00914 $W_E^{6/5}$ kg $(W_E \text{ in kg})$ (8-33)

weight = .325
$$W_e^{4/5}$$
 lb $(W_E \text{ in lb})$ weight = .277 $W_e^{4/5}$ kg $(W_E \text{ in kg})$ (8-35)

A subdivision for jet transports and jet executives appears desirable. The hydraulic and pneumatic power system weight is mainly affected by:

- the number of functions to be powered,
 e. powered or non-powered controls, operation of spoilers, etc.,
- the extent of duplication or even triplication,
- the operating hydraulic or pneumatic pressure, as well as other details of the system design,
- the airplane size and geometry as related to the length of the plumbing,
- the relative quantity of pneumatic functions, if any, and
- 6. the state of the art.

The combined weight of the hydraulic plus pneumatic system may be assumed to be 15% of the DEW or, alternatively:

no powered controls -

weight =
$$.004 \text{ W}_{DE} + 100 \text{ (1b)}$$
 (8-36)
weight = $.004 \text{ W}_{DE} + 45 \text{ (kg)}$

boosted controls, only some essential

functions duplicated -

weight = .007
$$W_{DE}$$
 + 200 (1b) (8-37)
weight = .007 W_{DE} + 91 (kg)

powered controls, fully duplicated system -

weight = .011
$$W_{DE}$$
 + 400 (1b) (8-38)
weight = .011 W_{DE} + 181 (kg)

powered controls, triplex system -

weight = .015
$$W_{DE}$$
 + 600 (1b) (8-39)
weight = .015 W_{DE} + 272 (kg)

For jet freighters these figures are roughly 30% higher, due partly to the somewhat lower empty weight and partly to the extra services required for loading and unloading. Some weight reduction is possible for an increasing number of pneumatic system functions.

The electrical system weight is affected mainly by:

- the total electrical power required, which is primality determined by the galley power, electronic equipment and fuel system power,
- whether or not the primary system is an A.C. or D.C. system*,
- 3. the size of the airplane, in view of the length of wiring,
- the amount of system duplication and the standby systems,
- 5. whether or not electrical power is generated by the A.P.U., and
- 6. the state of the art.

the following statistical relationships are suggested:

primary system D.C. - $W_{el} = .02 W_{to} + \frac{400}{4200}$ (1b) (8-40) $W_{el} = .02 W_{to} + 181$ (kg) primary system A.C., total electrical power generated up to 400 kVA - $W_{el} = 36 P_{el} (1-.033 \sqrt{P_{el}})$ (1b) (8-41) $W_{el} = 16.3 P_{el} (1-.033 \sqrt{P_{el}})$ (kg)

In the absence of better information the electrical power generation may be obtained from statistical data in publications like Jane's All the World's Aircraft or from correlations with the passenger cabin volume $V_{\rm DC}$:

if no electrical power is generated by the APU, V_{pc} up to 8,000 cu.ft (227 m³) - $P_{el} = .016 V_{pc} (V_{pc} \text{ in cu.ft})$ (8-42) $P_{el} = .565 V_{pc} (V_{pc} \text{ in m}^3)$ if electrical power generation by the APU

Pel = .3 Vpc.7 (Vpc in cu.ft) (8-43)
Pel = 3.64 Vpc (Vpc in m³)
These figures on electrical systems are based on 1950-1965 technology. Recent developments have indicated that considerable improvements in system weights are possible by applying advanced techniques - like multiplexing** and high-speed generators.

*Most present-day transport aircraft feature A.C. primary systems

**Aviation Week of October 28, 1968, pp.
157-161: a weight reduction of 400 lb (181 kg) was achieved on the Boeing 747

GROUP	DESCRIPTION	METHOD	REMARKS				
FLIGHT DECK ACCOMMODATIONS	flight crew seats, instrument panels, control stands, sound proofing, insulation, trim, floor covering, lighting and wiring, miscellaneous equipment	29 .285 jet a/c : (16.5) * **DE 16 .285 propeller a/c: (9.1) * **DE	W _{DE} = Delivery Empty Weight lb(kg)				
	passenger and attendants' seats	Table 3-2					
	galley (pantry) structure and provisions	main meal galley: 250%b(113.4kg) each snack pantry : 100%b(45.3kg) each coffee bar : 65%b(29.5kg) each	galley inserts, potable water				
PASSENGER CABIN	lavatory and toilet provisions, water system (dry)	medium/long-haul: 300lb(136.0kg)/toil short-haul : 165lb(75.0kg)/toil commuters : 85lb(38.5kg)/toil	et included				
ACCOMMODATIONS	floor covering	jet aircraft: .18 1.15 .135 1.15 (1.25) * Sef (.94) * Sef	floor area, galleys and toilets				
CARGO	soundproofing and insulation, wall covering, curtains, screens, window shades, ceiling, lighting panels, hatracks, partitions and doors; wardrobe and stowage provisions, freight hold linings and partitions	.30 1.07 .14 1. (6.17)*(V _{pc} +V _{ch}) x(V _{pc} +V _{ch}) (3.69)	included vsq.ft (m ²) Vpc passenger cabin volume, galleys and toilets included vcu.ft (m ³) Vch total cargo hold volume ~ cu.ft (m ³)				
ACCOMMODATIONS	cargo restraints and handling provisions	.08 15/cu.ft (1.28kg/m ³) of V _{ch}					
	container or pallet cargo handling provisions	2.8 £b/sq.ft(13.67kg/m ²) of freight floor area for convertible passenger/cargo version					
(STANDARD)	fixed oxygen system, portable oxygen sets	altitude b(9.1+ .227N					
EMERGENCY	fire detection and extinguishing system, portable extinguishers	jet a/c : .0012 W _{to} turboprop a/c: .0030 W _{to} reciproc. a/c: .0060 W _{to}	N _{pax} max.no. of passengers for certification (pressure cabins)				
EQUIPHENT	escape provisions (evacuation slides and ropes)	1 £b(.453 kg) per occupant	Other provisions in Operational Items				

ALL WEIGHTS IN LB (KG)

ed

NOTE: coefficients in brackets refer to the metric system

Table 8-12. Furnishing and equipment group weight for transport and executive aircraft

d. Furnishing and equipment group.
Light single-engine aircraft: this weight
group consists mainly of the weight of
seats, wall and floor covering, and some
miscellaneous contributions. The weight is
approximately 13 lb (5.9 kg) per seat, plus
25 lb (11.3 kg) per row of two seats, plus

an additional 5 lb (2.3 kg).

Light twin-engine aircraft: 15 lb (6.3 kg) per seat, plus 1 lb per cu.ft (16 kg per m³) of cabin plus cargo compartment volume. Jet trainers, equipped with two ejection seats: 6.5% of the Delivery Empty Weight. Civil freighters: 3 lb per sq.ft (14.7 kg/

1 TEM	SGITIAIZION	MET	нор	REMARKS, SYMBOLS
-	flight and cabin crew with baggage, flight equipment	205 × N _{fc} +	150 × N _{CC}	N _{fc} , N _{cc} = number of flight/ cabin crew members respectively
PASSENGER CABIN SUPPLIES	removable galley bar equip- ment, meal service, consum- able food, drinks, beverages pillows, papers and maga- zines, entertainment	commuters: 1 lb (.453 transport aircraft, snacks only main meal, short-rang	: 50b (2.27kg).N _{pax}	N = number of passengers, all-tourist. First class: all data 5%b (2.27kg) per passenger higher
POTABLE WA	TER AND TOTLET CHEMICALS	short/medium-range:	120N or 3.0N Net (36.3 N _{wc} or .68N _{pax} , kg) 54.4 N _{wc} or 1.36N _{pax} , kg) 90.7 N _{wc} or 2.95N _{pax} , kg)
SAFETY EQUIPMENT	life jackets, fire axes, emergency navigational equipment	short or no over 2N ~%b (.907N pax ~%b (.907N extended overwa 7.5N ~%b (3.40	^kg) pax ter flights:	N = number of toilets/water closets; data based on all- tourist layout
OIL RESIDUAL FUEL WATER/	residual fuel	gas turbine engines: .81 2/3 (.151)	.008 W _{tó}	V _{ft} = total fuel tank capacity ∿ U.S. gal. (liters) W _{to} = Max. Takeoff Weight ∿ 1b (kg)
METHANOL	residual oil	turboprop engines: .81 × V _{ft} (.151)		Weight 0 15 (kg) Wf = fuel weight ↑ 15 (kg)
	engine oil consumed		.045 W _f	
	water/methanol	optional		
CARGO HANCINE	G pallets, containers, cargo tiedown eqpt.	Fig. 3	3-20	ALL WEIGHTS IN LB (KG)

NOTE: coefficients in brackets refer to the metric system

Table 8-13. Data for estimating the weight of Operational Items (transport aircraft)

m²) of main freightfloor area.
•Passenger transports and jet executives:
a rough approximation is obtained with the statistical expression:

weight = .211
$$W_{ZF}^{-91}$$
 (1b)
weight = .196 W_{ZF}^{-91} (kg)

where W_{ZF} is the Maximum Zero Fuel Weight. The furnishing and equipment weight forms a very substantial contribution, of the order of half the fuselage structure weight. Instead of using (8-44) the designer may prefer to use a more detailed

estimation by breaking down the weight into several individual contributions. A proposed subdivision and calculation methods are presented in Tables 8-12 and 3-2. It should be noted that several items such as the weight of seats depend on the required standard of comfort and the type of interior; these may be subject to customer requirements (Standard Items Variation).

e. Air-conditioning and anti-icing group. The weight of the air-conditioning and pressurization system depends on many factors:

- the type of system used: air cycle or vapor cycle, use of ram air or engine bleed air, etc.,
- design requirements, in terms of airconditioning airflow per unit of time, air temperature, humidity and cabin pressure differential, cargo compartment air-conditioning,
- 3. the amount of system duplication,
- 4. the airplane size, or more specifically the cabin volume and length, and the subdivision into zones,
- 5. the state of the art.

Factors affecting the anti-icing and deicing system weight are:

- type of system (electrical, hot-air, rubber boots),
- 2. dimensions, mainly the length or span of the airplane parts concerned, and
- 3. the type of operation, viz. IFR or VFR flights.

For the combined system, the following data can be used:

Light single-engine aircraft - 2.5 lb (1.1 kg) per seat. Multi-engine unpressurized aircraft and jet trainers - 1.8% of the Delivery Empty Weight

pressurized transports and executive aircraft -

weight =
$$6.75 l_{pc}^{1.28} (lb) - l_{pc} in ft$$

weight = $14.0 l_{pc}^{1.28} (kg) - l_{pc} in m$ (8-45)

f. Miscellaneous.

This item refers to auxiliary gears, photographic equipment, external paint, manufacturing variation, unaccounted items, unexpected weight growth, etc. No systematic data are available, but in general a figure of up to 1% of the Delivery Empty Weight is typical for existing aircraft.

8.4.4. Useful Load and the All-Up Weight

a. Operational Items.

Due to the large variation in operational conditions and requirements applying to passenger service, considerable variations in the weight of operational items can be observed. The data in Table 8-13 are re-

presentative of but by no means mandatory for the transport aircraft category. For private aircraft and jet trainers the only item of interest is the residual fuel and oil.

It should be noted that the data of Table 8-13 are generally applicable to modern, gas turbine powered aircraft. Considerably higher weight values are applicable to older piston-engine powered transport aircraft.

b. Payload and fuel.

Some data on specific gravity of fuels and civil payload will be found in Table 8-14.

			LB	3	(G
PASSENCE	RS	:	165	7	15
PASS. BA	CGA	CE :	40	1	8 - TOURIST CLASS
			60	2	7 - FIRST CLASS
BAGGAGE :	SPE	C. DENSIT	12 1	.B/FT ³ (192 KG/	н ³ >
PUEL		SPECIFIC	EZAT	SPECIFIC W	eight 4
		BTU/LB	KCAL/KG	LB/U.S. GAL	KG/LITER
CASOLINE	:	18,700	10, 389	5.85	.701
JP - 3	:	18,000	10,000	6.32	.767
JP - 4	•	18,550	10, 305	6.50	.779
		15,400	10, 222	6.84	.820

+AT 59°F (15°C)

Table 8-14. Standard weights of payload, fuel and oil

The data presented in this Section 8.4 and Appendices C and D are sufficiently complete to enable the designer to make a fairly accurate prediction of the OEW of a civil airplane. Of necessity, the procedure is based on an initial estimate of the various characteristic weights, as obtained, for example, with Sections 5.2 and 8.2.

The more detailed weight prediction will result in a value for the OEW that is essentially different from the first "guess-timate". The designer must therefore decide whether he should modify the Useful Load (i.e. fuel and/or payload) or the MTOW. Fresh calculations of the weight distribution will then be necessary until the designer is satisfied with the convergence.

	CC.C C./TNT	C.G. LOCATION							
	WING (CALF)	straight wing: 38-47% chord from LE at 40% semi-span from centerline swept wing: 70% local distance between front and rear spar, measured from front spar, at 35% semi-span from centerline							
IRE	FUSELAGE	distance from fuselage nose, in I of fuselage length [excl.spinner] single tractor engine : 32 - 35 wing-mounted propeller engines : 38 - 40 wing-mounted jet Engines : 42 - 45 rear fuselage mounted pods : 47 jet engine buried in fuselage : 45							
STRUCTURE	TAILPLANE (HALF)	42% chord from LE at 38% semi-span from root chord. Fin, T-tail configuration: 42% chord from LE at 55% of height from root chord							
	NACELLES	40% of nacella length from nose, spinner excluded							
	SURFACE CONTROL SYSTEM	100% MAC from LEMAC, autopilot excluded							
	ALIGHTING CEAR	at airplane c.g., or determined from location and weight of main and nose undercarriage							
	ENGINES AND ACCESSORIES	from engine manufacturer's data							
	AIRFRAME SERVICES AND EQUIPMENT	from educated guess, taking into account location of main elements and functions to be powered							
	FURNISHING	from aubdivision of Table 8-!! and cabin layout							
	FILLED FUEL TANK	for prismoid with height L and parallel end faces with area S, and S ₂ (see Fig. 3-4), at distance $\frac{1}{2}S_1 + 3S_2 + 2\sqrt{S_1S_2} \qquad \text{from}$							
		$\frac{\frac{1}{4} \frac{s_1 + 3 s_2 + 2 \sqrt{s_1 s_2}}{s_1 + s_2 + \sqrt{s_4 s_2}} \qquad \text{from plane } s_1}{s_1 + s_2 + \sqrt{s_4 s_2}}$							

NOTE: more accurate estimates can be made by further breakdown of each item into several contributions

Table 8-15. Approximate contains of the center of gravity for several groups

If the designer decides to alter the Useful Load, the specified transport performance (payload-range) may no longer be achieved, while in the second eventuality the takeoff weight may become too high for acceptable takeoff, landing and/or climb performance. Sufficient aerodynamic data must be available to evaluate the design performance (Chapter 11).

In this textbook we will proceed with the layout design, assuming that the previous weight prediction has not entailed major difficulties and that only minor changes in the weight distribution are required. However, there may be occasions when weight evaluation and changes result in a considerable increase of the takeoff weight.

8.5. CENTER OF GRAVITY

Each airplane must be designed in such a way that good stability and control properties and adequate flexibility in loading conditions are obtained. By suitable arrangement of the design layout and acceptable tailplane size, acceptable fore-andaft limits of the center of gravity must be established, taking into account the following aspects:

- fore-and-aft position of the wing relative to the fuselage,
- provision of suitable locations for payload and fuel,
- 3. design of the horizontal tailplane, the elevator and the longitudinal flight con-

			C.G. LIMITS, PER CENT H.A.C.							Τ	
1	AIRPLANE TYPE	FOR	WARD		REAR RANGE			PAY-		hor.	_
		takeoff				+	flight	Z OEW	. —	type	C _L max
		landing		landing	<u></u>	landing			5ê	+#	***
	Aerospatiale Corvette SN60	1 -	20.0	-	36:0	-	16.0	28.3	.64	V	2,40
	A.C. Jet Commander 1121	20.0	20.0	36.0	36.0	16.0	16.0	20.6	.54	F	1.66
	Lear Jet 25	9.0	9.0	30.0	30.0	21.0	21.0	35.6	.64	F	1.39
	H. Siddeley HS-125 1A/1B	18.0.	18.0 4	37.5 *	37.5 *	19.5 +	19.5 =	14.0	.69	F	2.44
N.	Dassault Mystère 20F	14.0	16.0	28.5	28.5	14.5	12.5	23.1	.66	v	2.30
ENCINES	H.F.B. Hansa	13.0	11.7	23.0	21.7	10.0	10.0	30.9	.71	F	2.00
JET 1	Fokker VFW F-28 Mk1000	18.0	17.0	35.0	37.0	17.0	20.0	42.0	. 97	¥	2.53
2 2	BAC 1-11 Srs. 400	15.0 +	14.0 *	39,0 +	41.0 *	24.0 +	27.0 *	35.3	.85	٧	2.38
	Sud. Av. Caravelle 10R	25.0	25.0	41.5	41.5	16.5	16.5	32.3	.56	F	2.10
	McD. Douglas DC-9/10	16.3	15.0	39.0	40.0	22.7	25.0	42.4	1.15	V	2.40
l	DC-9/33F	5.9	3.1	34.7	34.7	28.8	31.6	70.8	1.18	٧	2.98
	Boeing 737/100 Airbus A-300 B2	15.0	15.0	35.0	35.0	20.0	20.0	49.4	1.14	٧	3.10
ļ	Altibus A-300 B2	11.0	11.0	31.0	31.0	20.0	20.0	37.4	1.07	V	2.65
ES	Lockheed 1011 Tristar	-	12.0	-	32.0	-	20.0	36.1	.93	A	2.57
ENCINES	Boeing 707/120	16.0	16.0	34.0	34.0	18.0	18.0	38.2	.61	V	1.86
	720/022	15.0	15.0	31.0	31.0	16.0	16.0	31,9	.59	V	2.26
JE,	747/200B	-	12.5	-	32.0	-	19.5	45.8	1.00	Ÿ	2.55
4	McD. Douglas DC-8/21	16.5	16.5	32.0	32.0	15.5	15.5	27.0	.58	٧	2.10
3 08	Lockheed_C-141A	19.0	19.0	32.0	32.0	13.0	13.0	50.3	.51	٧	2.32
	Lockheed C-5A	19.0	19.0	41.0	41.0	22.0	22.0	67.9	.54	V	2.60
	Fokker S-11 Instructor	21.5	21.5	27.0	27.0	5.5	5.5	22,2	.43	¥	1.25
	Cessna 172, Normal Cat.	15.6	15.6	36.5	36.5	20.9	20.9	64.3	.59	P	2,14
ENCINE	177, Normal Cat.	5.0	5.0	28.0	28.0	23.0	23.0	58.6	.60	٨	1.86
Na Na	177, Utility Cat.	5.0	5.0	18.5	18.5	13.5	13.5	58.6	.60	A	1.86
12	206 Skywagon	12.2	12.2	39.4	39.4	27.2	27.2	67.3	.77	P	2,16
PROPELLER	Beechcraft 8-45 Mentor	20, 1	19.0	28.0	28.0	7.9	9.0	17.4	.54	F	2.01
<u> </u>	Piaggio P-148 (3 seater)	22.3	22.3	30.7	30.7	8.4	8,4	26.3	.43	F	1.90
-	Pilatus PC-6-H2 Porter Saab 91-B Safir	11.0	11.0	34.0	34.0	23.0	23.0	79.9	.67	٨	2,28
	De Havilland DHC-2 Beaver	17.9	17.9	27.1	27.1	9.2	9.2	23.9	.64	F	-
<u> </u>		17.4	17.4	40.3	40.3	22.9	22.9	49.3	.76	F	
	Cesana Model 337	17,3	17.3	30.9	30.9	13.6	13.6	37.1	.51	¥	1.78
y,	Piper PA 30C Twin Comanche	12.0	12.0	27.8	27.8	15.8	15.8	40.7	.44	٨	1.66
ENCINES	Beechcraft Queen Air H. 80	16.0	16.0	29.9	29.9	13.9	13.9	44.9	.73	P	1.88
Ĭ,	Dornier Do 28-0-1 DHC-5 Twin Otter	10.7	10.7	30.8	30.8	20,1	20.1	34.7	.67	A	2.36
ă	Nord 262	20.0	20.0	36.0	36.0	16.0	16.0	74.0	.93	P	2.37
PEL	Fokker VFW F-27 HG 200	16.0 20.0	16.0	30.0	30.0	14.0	14.0	48.0	.96	P	2.23
PROPELLS	Hurel Dubois HD 32	23.5	18.7	38.0	40.7	18.0	22.0	55.8	.96	¥	2.94
~	Convair 240	15.0	8.5	46.5	46.5	23.0	23.0	36.5	1.32	P	2,70
	340	13.0	8.5	34.0	33.0 35.0	16.0	24.5	33.9	1.07	F	2.33
	H. Siddeley Andover C.Mk	13.3 *	13.3 *	36.0 +	36.0 *	21.0	26.5	56.0	1.03	F	2.61
	Bréguet 941		 -}				22.7 *	53.6	1.09	F	2.88
SE	Douglas DC-6	23.0	23.0	32.0	32.0	9.0	9.0	70.0	1.05	V	7.19
ğ.	Lockheed 1880 Electra	16.0 i5.0	12.0	33.0	35.0	17.0	23.0	29.4	1.04	P	2.77
ם	Bristol 175 Britannia	13.0 *	12.0 #	32.0	33.0	17.0	20.0	53.6	.80	P	2,54
TIE	Lockheed L-1049 H	18.0	15.0	32.0	35.5 *	21,5 =	i	37.3	.97	P	2.56
PROPELLER ENCINES	L-1649 A	i	12.0	32.0	34.0	14.0 17.0		44.9	1.15	2	2.60
4 PR	C-130 E	ŀ	15.0	30.0	30.0	15.0	22.0 15.0	17.5 51.4	1.12	P	2.53
	Canadair CL-44 C	- 1	12,2	30.5	31.4	18.3	Į.	ı	1.00	F	2.28
		L								•	61.70

per cent SMC

Table 8-16. Center of gravity limits for several types of aircraft

^{**} F = fixed stabilizer, V = variable incidence stabilizer, A = all-movable tail

^{· ***} flap angle for landing