$$f$$
 or $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, b + (a+c), d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

for $x = f(a, b, c, d) = a, d$

<u>Tablo:</u>					A		B	
					*		4	
	a	6	U	8	a. p	9+0	(otc).2	Ats
Ø	0	0	0	0	0	٥	00	0
1	0	0	0		Ø	0	0	0
2		4	1	0		t	8	0
•	0	0		1	0	1	t	1 ~~ 3
: J,	0	1	2	0	<u> </u>	9	Q	0
	٥	1	S	1	<u> </u>	0	8	0
	0	1	1	٥	ပ	(0	~
	0	1	•	1	0	1	1	1
	1	Q	۵	9	0	1	0	0
	1	9	0	1	0	1	1	1-9
	1	0	1	0	0	4	•	S
	7	9	1	1	0	1	(1—11
,	•	1	0	0	1	1	0	1 — in
/	1	4	9	1	į	(1	1 410
•	1	1	1	0.	1	1	0	1 -14
15	1	1	1	1	1	1	1	1 - 15

X= 2(3,2,9,11.12,13,14.15)10

x= \((0011, 0111, 1001, 1011, 1100, 1101, 1110, 1111) 2

€ FONTE LA

$$x = f(a, b, c, \delta) = a.b + (a+c).d$$

$$x = a.b. 1.1 + a.d. 1.1 + c.d. 1.1$$

$$= a.b. (c+c).(d+d) + a.d. (b+d).(c+c)$$

$$+ c.d. (a+a).(b+d)$$

$$- abcdtl$$

4 anahtarla korunan bir güvenlik sistemine parola girişi anahtarların sırayla (1,2,3,4) <u>açık(1)</u> veya kapalı(0) konuma getirilmesiyle yapılmaktadır. Önce 1. anahtarın konumu belirlenir ardından 2. anahtarın konumu v.b. gibi devam eder. Sistem anahtarların **kapalı ve açık konumun** simetrik bir şekilde olması durumunda girişe izin **vermemektedir**. Örneğin sisteme 1010 girişi yapılırsa sistem içeriye girişe izin **verecektir**, fakat 0110 girişi yapılsaydı sistem girişe izin vermeyecektir. (Simetrik olması için birinci-dördüncü <u>anahtar</u>, ve ikinci-üçüncü anahtarın aynı olması gereklidir.)

- a) Bu güvenlik sistemine ait fonksiyonu doğruluk tablosu yardımıyla bulunuz.
- b) (a) şıkkında bulduğunuz fonksiyonu yadansal ve vedensel tek biçim şeklinde yazınız.

C Q * • 1 * l

f = abed + abed + abed + abed

Yedonsol tele bicimi.

 $= 2(0000,0110,1001,1111)_{2}$ $= 2(0,6,9,15)_{10}$

子= でしてとするしてとするしころ でしてとするしてとするしてる でしてとするしてとり でしてとするしてる でしてとするしてる でしてとするしてる でしてる でして でしてる でして でしてる でしてる でしてる でしてる でしてる でしてる でしてる

Tehrest but brown. $f = f = (a + b + c + d) \cdot (a + b + c + d)$ $-(a + b + c + d) \cdot (a + b + c + d)$ $-(a + b + c + d) \cdot (a + b + c + d) \cdot (a + b + c + d)$ $-(a + b + c + d) \cdot (a + b + c + d) \cdot (a + b + c + d)$ $-(a + b + c + d) \cdot (a + b + c + d)$ $-(a + b + c + d) \cdot (a + b + c + d)$

Golizma Sorver:

 $G(x_1, x_2, x_3) = x_1x_3 + x_1x_2 + x_2x_3 + x_1x_2$ Fonksiyonu veriliyor.

- **a-)** G'nin yadansal tek biçimini bulunuz,
- **b**-) G'nin vedensel tek biçimini bulunuz.

@ 2017c!

 $G(x_1,x_2,x_3) = x_1.x_3.(x_2+x_2) + x_1.x_2.(x_3+x_3) + x_2.x_3.(x_1+x_1) + x_2.x_3.(x_1+x_1) + x_3.x_2.(x_3+x_3)$ $(x_1.x_2.(x_3+x_3) + x_2.x_3.(x_1+x_1) + x_3.x_2.(x_1+x_1) + x_3.x_2.(x_2+x_3)$

- ×1.×2×3+×1×2×3+ ----