Quiz 7- Lösungen

1. Sei Σ ein Alphabet und $L \subseteq \Sigma^*$, dann

$$\sqrt{L \in \mathcal{L}_{RE} \wedge L^{c} \in \mathcal{L}_{RE}} \implies L \in \mathcal{L}_{R}$$

$$\sqrt{L \in \mathcal{L}_{RE} \wedge L^{c} \in \mathcal{L}_{RE}} \iff L \in \mathcal{L}_{R}$$

$$\sqrt{L} \in \mathcal{L}_{RE} \wedge L^{C} \in \mathcal{L}_{RE} \iff L \in \mathcal{L}_{R}$$

○ Keine der Aussagen ist korrekt

Lösung: Informal justification for $L \in \mathcal{L}_{RE} \wedge L^C \in \mathcal{L}_{RE} \Rightarrow L \in \mathcal{L}_R$:

If $L \in \mathcal{L}_{RE} \wedge L^C \in \mathcal{L}_{RE}$ we know that there exists a TM M such that L = L(M) and a TM M' with $L^C = L(M')$. We can therefore create a TM \overline{M} that alternately executes a state in M and M' for an input x. We note that q_{accept} and q_{reject} of \overline{M} become q_{accept} and q_{reject} of \overline{M} . And q_{accept} of M' becomes q_{accept} of \overline{M} .

If x is in L, then \overline{M} is guaranteed to terminate in q_{accept} because of M. If x is not in L, \overline{M} is definitely going to halt in q_{reject} because of M'.

 \Leftarrow follows from Lemme 5.4 and $\mathcal{L}_R \subsetneq \mathcal{L}_{RE}$

2. Sei $L = \{ \text{Kod}(M) \mid M \text{ ist eine TM die Primzahlen akzeptiert} \}$ dann gilt

$$\bigcirc L \in \mathcal{L}_{R}$$

$$\sqrt{L} \notin \mathcal{L}_{R}$$

Begründe:

Lösung: L ist die Sprache der Turingmaschinen, welche $L_P = \{p \mid p \text{ ist Prim}\}$ akzeptiert. Es gilt $L \neq \emptyset$, ausserdem L_P ist offensichtlich rekursiv. Somit ist L ein semantisch nichttriviales Entscheidungsproblem über Turingmaschinen und gemäss Satz von Rice $L \notin \mathcal{L}_R$

- 3. Sei $L = \{ \text{Kod}(M) \mid M \text{ hält nie} \}$
 - (a) Bestimme L^{c}

Lösung:

$$L^{\mathsf{c}} = \{ w \in (\Sigma_{\mathsf{bool}})^* \mid w \neq \mathsf{Kod}(M) \text{ für alle TM } M \}$$
$$\cup \{ \mathsf{Kod}(M) \mid \exists x \text{ so dass TM } M \text{ auf } x \text{ h\"{a}lt} \}$$

(b) Zeige $L^{c} \in \mathcal{L}_{RE}$

Lösung: Wir beschreiben eine NTM M, so dass L(M) = L. Für jedes Wort $w \in L^{c}$ gibt es eine endliche akzeptierende Berechnung.

- 1. Prüfe ob w = Kod(M') für eine TM M', falls nicht akzeptiert M das Wort.
- 2. Falls w = Kod(M') für eine TM M', dann wählt M nichtdeterministisch ein Wort x über dem Eingabealphabet von M' und simuliert M' deterministisch auf x. Falls M' auf x hält, akzeptiert M das Wort. Sonst rechnet M unendlich lange.

Korrektheitsbegründung (schwammig): M akzeptiert offensichtlich alle Wörter, welche keine TM sind. Falls w eine Kodierung einer TM M' ist, so ist $w \in L^C$ gdw. es ein Wort gibt so dass diese TM M' hält. Es gibt eine akzeptierende Berechnung von M wo dieses Wort nichtdeterministisch gewählt wird. Oder $w \in L$, dann gibt es keine akzeptierende Berechung von M. Somit $L^C \in \mathcal{L}_{RE}$

- 4. Welche Aussagen sind korrekt? (M ist eine MTM, $n \in \mathbb{N}$, C ist eine Konfiguration)
 - $\sqrt{\min\{\mathbf{Time}_M(x)\mid x\in\Sigma^n\}} + \max\{\mathbf{Time}_M(x)\mid x\in\Sigma^n\} \leq 2\cdot\mathbf{Time}_M(n)$
 - \bigcirc Space_M(n) hängt von der Mächtigkeit des Arbeitsalphabetes von M ab.
 - \bigcirc Space_M(n) hängt von der Mächtigkeit des Eingabealphabetes von M ab.
 - $\sqrt{\operatorname{Space}_M(C)}$ hängt nicht von der Länge des Eingabewortes ab.