Markov Chain Monte Carlo

Galin L. Jones

School of Statistics

University of Minnesota

Draft: January 15, 2023

Contents

1	Introduction	1
2	Markov Chains	2
3	Metropolis-Hastings	3
Εx	kercises	3
$\mathbf{A}_{]}$	ppendix	4

1 Introduction

Later.

2 Markov Chains

Let (X, \mathcal{B}) be a measurable space. A sequence of X-valued random variables $\{X_1, X_2, X_3, \ldots\}$ is a Markov chain if for all g

$$E[g(X_{n+1}, X_{n+2}, \ldots) \mid X_n, X_{n-1}, \ldots, X_1] = E[g(X_{n+1}, X_{n+2}, \ldots) \mid X_n].$$

Then P is a Markov kernel if $P: \mathsf{X} \times \mathcal{B} \to \mathbb{R}$ satisfying (i) for each fixed $x \in \mathsf{X}$, $P(x, \cdot)$ is a probability measure and (ii) for each fixed $B \in \mathcal{B}$, $P(\cdot, B)$ is a measurable function.

When X is a discrete set a Markov kernel can be represented as a square matrix whose entries are nonnegative and whose rows sum to 1.

Example 2.1. Let $X = \mathbb{Z}$ and let $0 < \theta < 1$. If $x \ge 1$, then a Markov kernel is defined by the matrix P with elements

$$P(x, x + 1) = P(-x, -x - 1) = \theta,$$
 $P(x, 0) = P(-x, 0) = 1 - \theta,$

and P(0,1) = P(1,0) = 1/2.

Most often X will be uncountable and \mathcal{B} will be countably generated. If X is topological, then \mathcal{B} will be the Borel σ -algebra generated by X.

Example 2.2. Let X = (0,1) and consider the Markov chain that evolves as follows. Draw $U \sim \text{Uniform}(0,1)$. If $u \leq 0.5$, $X_{n+1} \sim \text{Uniform}(0,X_n)$, but if u > 0.5, $X_{n+1} \sim \text{Uniform}(X_n,1)$. Then if $X_n = x$ and $B \in \mathcal{B}$

$$P(x,B) = \int_{B} \left[\frac{1}{2} \frac{1}{x} I_{y}((0,x)) + \frac{1}{2} \frac{1}{1-x} I_{y}(x,1) \right] dy.$$

In Example 2.2, the integrand in the Markov kernel is a conditional density on X. This is a setting that will be encountered repeatedly throughout. If there is a conditional density $k(y \mid x)$ such that the Markov kernel satisfies for $B \in \mathcal{B}$

$$P(x,B) = \int_{B} k(y \mid x) dy$$

then say k is a Markov transition density.

Suppose λ is a probability measure on (X, \mathcal{B}) , define

$$\lambda P(B) = \int_{\mathsf{X}} \lambda(\mathrm{d}x) P(x, B).$$

Since the encouraged interpretation is that $X_{n+1} \mid X_n \sim P(X_n, \cdot)$ and $X_n \sim \lambda$ the product $\lambda(\mathrm{d}x)P(x,\cdot)$ is the joint distribution of (X_n,X_{n+1}) and λP is the marginal distribution of X_{n+1} .

If $\lambda = \lambda P$, then λ is invariant for P.

$$\lambda(\mathrm{d}x)P(x,\mathrm{d}y) = \lambda(\mathrm{d}y)P(y,\mathrm{d}x). \tag{1}$$

Integrating both sides of equation 1 shows that it implies λ is invariant for P.

3 Metropolis-Hastings

Exercises

Appendix

References