Lecture 4: Model-Free Prediction

Lecture 4: Model-Free Prediction

David Silver

Outline

- 1 Introduction
- 2 Monte-Carlo Learning
- 3 Temporal-Difference Learning
- 4 $TD(\lambda)$

Lecture 4: Model-Free Prediction

Introduction

Model-Free Reinforcement Learning

- Last lecture:
 - Planning by dynamic programming
 - Solve a known MDP
- This lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- Next lecture:
 - Model-free control
 - Optimise the value function of an unknown MDP

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from *complete* episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

■ Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

• Recall that the *return* is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- lacksquare By law of large numbers, $V(s)
 ightarrow v_\pi(s)$ as $N(s)
 ightarrow \infty$

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- lacksquare Again, $V(s)
 ightarrow v_\pi(s)$ as $N(s)
 ightarrow \infty$

Blackjack Example

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - \blacksquare +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - $lue{}$ -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12</p>

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards \geq 20, otherwise twist

Incremental Mean

The mean $\mu_1, \mu_2, ...$ of a sequence $x_1, x_2, ...$ can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*
- TD updates a guess towards a guess

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is *unbiased* estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on *many* random actions, transitions, rewards
 - TD target depends on *one* random action, transition, reward

Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$
 - (but not always with function approximation)
 - More sensitive to initial value

Random Walk Example

Random Walk: MC vs. TD

RMS error, averaged over states

Batch MC and TD

- MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$
- But what about batch solution for finite experience?

$$s_{1}^{1}, a_{1}^{1}, r_{2}^{1}, ..., s_{T_{1}}^{1}$$

$$\vdots$$

$$s_{1}^{K}, a_{1}^{K}, r_{2}^{K}, ..., s_{T_{K}}^{K}$$

- e.g. Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k

AB Example

```
Two states A, B; no discounting; 8 episodes of experience
```

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?

AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?

☐Batch MC and TD

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k) \right)^2$$

- In the AB example, V(A) = 0
- TD(0) converges to solution of max likelihood Markov model
 - \blacksquare Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_s^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

■ In the AB example,
$$V(A) = 0.75$$

Advantages and Disadvantages of MC vs. TD (3)

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Unified View of Reinforcement Learning

∟n-Step TD

n-Step Prediction

■ Let TD target look *n* steps into the future

n-Step Return

■ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$\begin{array}{ll} n = 1 & (TD) & G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) \\ n = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) \\ \vdots & \vdots & \vdots \\ n = \infty & (MC) & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T \end{array}$$

■ Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

■ *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

Large Random Walk Example

Averaging *n*-Step Returns

- We can average *n*-step returns over different *n*
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?

λ -return

- The λ -return G_t^{λ} combines all *n*-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^\lambda = (1-\lambda)\sum_{n=1}^\infty \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

 \vdash Forward View of TD(λ)

$\mathsf{TD}(\lambda)$ Weighting Function

$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

- Update value function towards the λ -return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Forward-View $TD(\lambda)$ on Large Random Walk

Backward View $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

Eligibility Traces

- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

accumulating eligibility trace

times of visits to a state

Backward View $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$\delta_{t} = R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$V(s) \leftarrow V(s) + \alpha \delta_{t} E_{t}(s)$$

$$\vdots$$

$$\delta_{t}$$

$$\bullet_{t}$$

$$\bullet_{$$

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(0)$

■ When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

■ This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$\mathsf{TD}(\lambda)$ and MC

- When $\lambda = 1$, credit is deferred until end of episode
- Consider episodic environments with offline updates
- Over the course of an episode, total update for TD(1) is the same as total update for MC

Theorem

The sum of offline updates is identical for forward-view and backward-view $TD(\lambda)$

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t) \right) \mathbf{1}(S_t = s)$$

MC and TD(1)

- \blacksquare Consider an episode where s is visited once at time-step k,
- TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ \gamma^{t-k} & \text{if } t \ge k \end{cases}$$

■ TD(1) updates accumulate error *online*

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha \left(G_k - V(S_k) \right)$$

By end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1}$$

Telescoping in TD(1)

When $\lambda=1$, sum of TD errors telescopes into MC error,

$$\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-1-t} \delta_{T-1}$$

$$= R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$+ \gamma R_{t+2} + \gamma^{2} V(S_{t+2}) - \gamma V(S_{t+1})$$

$$+ \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3}) - \gamma^{2} V(S_{t+2})$$

$$\vdots$$

$$+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V(S_{T}) - \gamma^{T-1-t} V(S_{T-1})$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} \dots + \gamma^{T-1-t} R_{T} - V(S_{t})$$

$$= G_{t} - V(S_{t})$$

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(1)$

- TD(1) is roughly equivalent to every-visit Monte-Carlo
- Error is accumulated online, step-by-step
- If value function is only updated offline at end of episode
- Then total update is exactly the same as MC

Telescoping in $TD(\lambda)$

For general λ , TD errors also telescope to λ -error, $G_t^{\lambda} - V(S_t)$

$$G_{t}^{\lambda} - V(S_{t}) = -V(S_{t}) + (1 - \lambda)\lambda^{0} (R_{t+1} + \gamma V(S_{t+1})) + (1 - \lambda)\lambda^{1} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})) + (1 - \lambda)\lambda^{2} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3})) + ...$$

$$= -V(S_{t}) + (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - \gamma \lambda V(S_{t+1})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - \gamma \lambda V(S_{t+2})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - \gamma \lambda V(S_{t+3})) + ...$$

$$= (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - V(S_{t+1})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - V(S_{t+2})) + ...$$

$$= \delta_{t} + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + ...$$

Forward and Backward Equivalence

Forwards and Backwards $TD(\lambda)$

- Consider an episode where s is visited once at time-step k,
- TD(λ) eligibility trace discounts time since visit,

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ (\gamma \lambda)^{t-k} & \text{if } t \ge k \end{cases}$$

■ Backward $TD(\lambda)$ updates accumulate error *online*

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha \left(G_k^{\lambda} - V(S_k) \right)$$

- **B** By end of episode it accumulates total error for λ -return
- For multiple visits to s, $E_t(s)$ accumulates many errors

Offline Equivalence of Forward and Backward TD

Offline updates

- Updates are accumulated within episode
- but applied in batch at the end of episode

Onine Equivalence of Forward and Backward TD

Online updates

- ullet TD(λ) updates are applied online at each step within episode
- Forward and backward-view $TD(\lambda)$ are slightly different
- NEW: Exact online $TD(\lambda)$ achieves perfect equivalence
- By using a slightly different form of eligibility trace
- Sutton and von Seijen, ICML 2014

Forward and Backward Equivalence

Summary of Forward and Backward $TD(\lambda)$

Offline updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
	l II		
Forward view	TD(0)	Forward $TD(\lambda)$	MC
Online updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
	ll ll	#	#
Forward view	TD(0)	Forward $TD(\lambda)$	MC
	`		
Exact Online	TD(0)	Exact Online $TD(\lambda)$	Exact Online TD(1)

= here indicates equivalence in total update at end of episode.