CPU Architecture

LAB1 preparation report

VHDL part1 – Concurrent code

Hanan Ribo

23/03/2020

Table of contents

1.	Aim of the Laboratory	. 3
2.	System Design definition	. 3
	Generic Adder/Subtractor module:	
4.	Barrel Shifter of 8-bit Module:	. 4
	Test and Timing:	
	Requirements	
	Grading Policy	

1. Aim of the Laboratory

- Obtaining skills in VHDL part1 code, which contains Code Structure, Data Types, Operators and Attributes,
 Concurrent Code, Design Hierarchy, Packages and Components.
- Obtaining basic skills in ModelSim (multi-language HDL simulation environment).
- General knowledge rehearsal in digital systems.
- Proper analysis and understanding of architecture design.

2. System Design definition

In this laboratory you will design a module which contains the next two sub-modules:

- Generic Adder/Subtractor between two vectors x, y of size n-bit (the default value is n=8).
- Barrel Shifter of 8-bit (its inner components are generic).

Sel	Operation	Note
0	Res=X+Y	
1	Res=X+Y+cin	
2	Res=X-Y	
3	Res=RLA X,Y(2 to 0)	Rotate left X of Y(20) times

Table 1: Selected operations

You are required to design the whole system and make a test bench for testing.

Figure 1 : System structure

- The Top Level design must be Structural and contains the three entities, as depicted in figure 1.
- you are given the next two files that you must use in your project: top.vhd, aux_package.vhd (you can only add code to these files, you are not allowed to erase nothing).

3. Generic Adder/Subtractor module:

- You are required to design a Generic Adder/Subtractor between two vectors x, y (represented in 2's complement) of size n-bit (the default value is n=8), using the next diagram. The design must be Structural of a least two levels.
- In order to do so, you are asked to use the Generic Adder code, that was given in Moodle.

Figure 2: Generic Adder/Subtractor

4. Barrel Shifter of 8-bit Module:

You are required to design a Barrel Shifter of 8-bit (its inner components are generic). The encompassed parts in red has to be generic and their interconnections must be structural. (using sll, srl are not allowed).

Figure 3: Barrel Shifter of 8-bit

5. Test and Timing:

- Design a test bench which tests all the system.
- Analyze the results by zooming on the important transactions in the waveforms. explain these (input/output/internal signals of the system).
- You are welcome to use the Internet also as reference.
- Good tip for beginners: Build a test bench for each module you are designing for easy debugging, otherwise you will waste a lot of time for whole system debug.
- The timing of the system will be ideal (means a functional simulation).

6. Requirements

- 1. Due to the situation, the lab assignment is for individuals (not in pairs).
- 2. The design must be well commented.
- 3. **Important:** For each of two submodules:
 - Graphical description (a square with ports going in and out) and short descriptions.
- 4. Elaborated analysis and wave forms:
 - Remove irrelevant signals.
 - Zoom on regions of interest.
 - Draw clouds on the waveform with explanations of what is happening (Figure 4).
 - Change the waveform colors in ModelSim for clear documentation

(Tools->Edit Preferences->Wave Windows).

5. A ZIP file in the form of **id1_id2.zip** (where id1 and id2 are the identification number of the submitters, and id1 < id2) must be upload to Moodle only by id1 student. The ZIP file will contain:

Directory	Contains	Comments
VHDL	Project VHDL files	Only VHDL files, excluding test bench
		Note: your project files must be well
		compiled without errors as a basic
		condition before submission
TB	VHDL files that are used for test bench	
SIM	ModelSim project and DO files	Do not place files that are not relevant for
		compilation or is a result of compilation
DOC	Project documentation	Readme.txt and PDF report file

Table 2: Directory Structure

Figure 4: Clouds over the waveform

7. Grading Policy

Weight	Task	Description
10%	Documentation	The "clear" way in which you presented the requirements and the analysis and conclusions on the work you've done
90%	Analysis and Test	The correct analysis of the system (under the requirements)

Table 1: Grading

Under the above policies you'll be also evaluated using common sense:

- Your files will be compiled and checked, the system must work.
- Your design and architecture must be intelligent, minimal, effective and well organized.

For a late submission the penalty is 2^{days}

	7	
-	-/-	-