Universidade Tecnológica Federal do Paraná (UTFPR)

Departamento Acadêmico de Elétrica (DAELE)

Curso de Engenharia de Computação

Modelagem do Transistor BJT no Domínio CA

Prof. Marcelo Flavio Guepfrih squepfrih@gmail.com

Pato Branco, Março de 2021.

Conteúdo

- 1) Princípios da Amplificação
- 2) Considerações para Análise
- 3) Resistência de entrada e Resistência de saída
- 4) Resistência de Entrada (R_i)
- 5) Resistência de Saída (R_o)
- 6) Características Intrínsecas do Emissor Comum
- 7) Características Intrínsecas do Base Comum
- 8) Modelo R_e
- 9) Modelo Híbrido
- 10) Modelo $R_e \times Modelo Híbrido$
- 11) Metodologia para determinação de Z_i e Z_o

13/07/202

ula 2

Princípios da Amplificação

— Como ocorre a separação do sinal CC do sinal CA?

- Em alta frequência, o capacitor é um curto-circuito
- Em tensão contínua, o capacitor é um circuito aberto

- $X_c = \frac{1}{2\pi f c}$
- A parte contínua fica "presa" dentro do circuito amplificador, através do capacitor C₂.
- O capacitor C₁ não deixa a parte contínua interferir na tensão de entrada.

Considerações para Análise

13/07/2021

- As análises efetuadas são válidas apenas para pequenos sinais
- O princípio de superposição é válido dada a consideração da linearidade imputada aos amplificadores — com isso é possível fazer a análise em CC separada da análise em CA
- Dada como verdadeira a superposição, isso permite estabelecer para as análises:
 - Fonte de tensão se transforma em curto-circuito
 - Fonte de corrente torna-se circuito aberto

- Serão considerados para afins de análise:
 - Modelo Re
 - Modelo Híbrido

13/07/2021 Aula 2

Modelo Híbrido Equivalente

Considera as características de um quadripolo

Utiliza os parâmetros h.

$$h_{11} = \frac{V_i}{I_i}\Big|_{V=0}$$
 \rightarrow impedância de entrada (Ω) $[h_i]$

$$\begin{array}{lll} h_{11} = \frac{V_i}{I_i}\bigg|_{V_o=0} & \to & \text{impedância de entrada } (\Omega) \ [h_i]. \\ \\ h_{12} = \frac{V_i}{V_o}\bigg|_{I_i=0} & \to & \text{razão de transferência reversa de tensão } [h_r]. \\ \\ h_{21} = \frac{I_o}{I_i}\bigg|_{V_o=0} & \to & \text{razão de transferência direta de corrente } [h_f]. \\ \\ h_{22} = \frac{I_o}{V_o}\bigg|_{I_i=0} & \to & \text{admitância de saída } (\mathfrak{F}) \ [h_o]. \end{array}$$

$$h_{21} = \frac{I_o}{I_i}$$
 \rightarrow razão de transferência direta de corrente $[h_f]$

$$h_{22} = \frac{I_o}{V_o}\Big|_{I_i=0}$$
 \rightarrow admitância de saída (\mho) $[h_o]$

Parâmetros do Modelo Híbrido

Aula 2 13/07/2021

Referências

- BOYLESTAD, Robert & NASHELSKY, Louis. Dispositivos Eletrônicos e Teoria de Circuitos – Rio de Janeiro, Editora Prentice-Hall do Brasil Ltda.
- MALVINO, Albert Paul. Eletrônica São Paulo, McGraw-Hill do Brasil. Vol. 2.
- PERTENCE JUNIOR, Antônio. Amplificadores operacionais e filtros ativos: teoria, projetos, aplicações e laboratório. São Paulo: Ed. Mc Graw-Hill, 1996.
- DUNN, William C. Introduction to instrumentation, sensors, and process control. Boston: Artech House, 2006.
- MOHAN, N., UNDELAND, T. M., and ROBBINS, W. P. Power Electronics: Converters, Applications, and design, 3a Edition, New York, John Wiley & Sons, 2002.
- JUNG, Walter G. Op amp applications handbook. Burlington, MA: Elsevier, 2006. xvi, 878 p. (analog devices series).
- MILLMAN, Jacob. Eletrônica: Dispositivos e Circuitos São Paulo, Editora McGraw-Hill do Brasil, 1981, 2 Vol;
- SEDRA, Adel S.; SMITH, Kenneth Carless. Microeletronica. 5.ed. São Paulo: Pearson Prentice Hall, 2007.
- WEBSTER, John G., editor-in-chief, THE MEASUREMENT, instrumentation, and sensors handbook. Boca Raton, Fla.: CRC, IEEE, c1999. 2 v (Electrical engineering handbook series).

13/07/2021

Aula 2

17

Universidade Tecnológica Federal do Paraná (UTFPR)

Departamento Acadêmico de Elétrica (DAELE)

Curso de Engenharia de Computação

UTFPR

Modelagem do Transistor BJT no Domínio CA

Prof. Marcelo Flavio Guepfrih squepfrih@gmail.com

Pato Branco, Março de 2021.