Cheat Sheet: Linear and Logistic Regression

Comparing different regression types

Companing united types			
Model Name	Description	Code Syntax	
Simple linear regression	Parpase: To profict a dependent variable based on one independent variable. Proc. Early to implement, interpret, and efficient for small datasets. Clear Not variable for complex relationships: prome to underfritting. Modelling equations: y = b ₁ + b ₁ x	from where linear model import LinearEmpression and $f(t,x)$ (in the second of $f(t,x)$) greater()	
Polynomial regression	Parpase: To option notificate relationships between variables. Proc. Botto of fitting notificate data companed to linear regression. Cases Proce to confirm give high-degree polynomia. Modelling equations: $y = b_1 x + b_2 x^2 +$	From this proper conting input the possibilities from this principle continues are subject to the continues and input the interference poly - why continues and input the continues are continued as a finite continue of the continues are continued as a finite for the continued as a finit	
Multiple linear regrension	Purpose: To prodict a dependent variable based on multiple independent variables. Press: Accounts for multiple factors influencing the cutomor. Case: Assumes a literal reliaborably between predictors and target. Modelling equations: Y = b ₁ x + b ₂ x +	from tilear_linear_ennel import lineartegression ennel.fil(f, f) ennel.fil(f, f)	
Logistic regression	Pargues: To predict probabilities of categorical outcomes. Pract Efficient for binary classification problems. Constructions a literal retinosubple between independent variables and log-odds. Modelling equation: logify(1-p) = hp = hyx +	from attern.linear_model import inpiriticEngression engagementsEngression() endel.fi(i)	
Consisted Constitution commands and			

Associated functions commonly used			
Function/Method Name	Brief Description	Code Syntax	
train_test_uplic	Splits the dataset into training and testing subsets to evaluate the model's performance.	for alternand, selection teper tries, Set_split.	
SundardScaler	Standardizes features by removing the mean and scaling to unit variance.	for a blane-proposation paper Standar-Gooker source - Standar-Gooker X_stalad = scalar-fit_transfer(t)	
log_loss	Calculates the logarithmic loss, a performance metric for classification models.	from sklaero.matrics import log_loss loss = log_loss(g_trum_, y_pred_preds)	
mean_absolute_error	Calculates the mean absolute error between actual and predicted values.	From Allermatrics (topics easy, Stollate, prior ass = ease_abstillet_error(t_t_true, y_pred)	
mean_squared_error	Computes the mean squared error between actual and predicted values.	for allesmentatics toper management prove man = management prove(p,tree, p,pres)	
root_mean_squared_error	Calculates the nost mean squared error (RASE), a commonly used metric for regression tasks.	from sklavn-matrick input man_squared_error ress = np.ngr(man_upured_error(y_trus, y_prot))	
d_score	Computes the Resquired value, indicating how well the model explains the variability of the target variable.	For Milan-Antica Neger 52, New 55 - 12, Accret (2, Start)	

Function/Nethold Name Code Systax

Author(s)

Jeff Grossman Abhishek Gagnei

