2016-2017 学年第二学期数学分析 3-2 期末测试

命题人: 朱少红

- 1、已知 f(x,y) 在点(0,0)处二阶连续可微,求极限 $\lim_{h\to 0} \frac{f(h,h^2) f(e^h 1,\sin^2 h)}{h^2}$ 。
- 2、证明方程 $x^3 + y^3 + z^3 3xz 3yz = 0$ 在曲面 $z^2 = x + y$ 之外任何满足方程的点 (x_0, y_0) 的邻域内可以唯一确定函数 z = z(x, y),并求隐函数 z = z(x, y)的极值。
- 3、证明 $\iint_D f(xy) dx dy = 2 \ln 3 \int_1^2 f(x) dx$, 其中 D 为 xy = 1, xy = 2, y = x, y = 9x 围 成的区域。
- 4、 计算 $\iint_D (y^3 + x^2 + y^2 2x 2y + 1) dx dy$, 其中 D 代表 $1 \le (x 1)^2 + y^2 \le 4$ 与 $x^2 + y^2 \le 1$ 围成的区域。
- 5、计算 $\iiint_{V} (x^2 + z^2) dx dy dz$, 其中 V 代表 $z = x^2 + y^2 与 2 z = \sqrt{x^2 + y^2}$ 围成的部分。
- 6、【此题记忆可能不准确】设函数 $f\left(u,t\right)$ 在矩形 T 内满足 $\frac{\partial f}{\partial u} \frac{\partial^2 f}{\partial t^2} \geq 0$,记矩形 T 的边界 为 Γ , Γ 表示: $\left\{a \leq u \leq b, t = t_1 \vec{\mathrm{u}} t_2\right\} \cup \left\{t_1 \leq t \leq t_2, u = a \vec{\mathrm{u}} b\right\}$ 。证明: $f\left(u,t\right)$ 在 Γ 上取得最小值。