

IIC2433 - Minería de datos

Árbol de decisión Hernán Valdivieso hfvaldivieso@uc.cl

Árboles de decisión

- Técnica de Clasificación supervisada.
- Nodos internos del árbol representan atributos.
- Cada nodo realiza un test basado en los valores del atributo al cual representa.

¿Qué haremos?

- Revisar conceptos claves como entropía y ganancia.
- Dado un dataset que contiene datos categóricos y numéricos, construir nuestro árbol de decisión a mano.

Descripción del dataset

Cada fila es una **solicitud** realizada por un alumno para **inscribir un curso** de forma excepcional.

- creditos: indica la cantidad de créditos que tiene inscrito el alumno.
- otra_solicitud: Indica si el alumno solicitó otro curso más para inscribir de forma excepcional.
- **consecuencias**: indica que puede pasar si no le dan el curso solicitado.
- aceptado: indica si la solicitud del alumno fue aceptada o no.

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
10	No	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
50	No	Ninguna	No
60	Si	Se atrasa la licenciatura	No

Árbol de decisión - Sólo 1 hoja

División: No tiene

Dist: Si (4) - No (7)

Entropía: XXXX

Respuesta: **No**

¿Cómo calcular la entropía?

$$H(columna) = -\sum_{c=1}^{\#Clases} p_c \cdot log_2(p_c)$$

 p_c Es la proporción de la clase c en la columna indicada.

Para este caso, la columna indicada es la clase objetivo (aceptada)

¿Cómo calcular la entropía?

División: No tiene

Dist: Si (4) - No (7)

Entropía: 0.95

Respuesta: No

$$H(columna) = -\sum_{c=1}^{\#Clases} p_c \cdot log_2(p_c)$$

$$H(aceptado) = -(p_{si} \cdot log_2(p_{si}) + p_{no} \cdot log_2(p_{no}))$$

$$H(aceptado) = -(\frac{4}{11} \cdot log_2(\frac{4}{11}) + \frac{7}{11} \cdot log_2(\frac{7}{11}))$$

H(aceptado) es aproximadamente 0.95

Disclaimer:
$$log_2 \frac{x}{y} == log_2(\frac{x}{y})$$

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
10	No	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
50	No	Ninguna	No
60	Si	Se atrasa la licenciatura	No

¿Cómo hacemos una división?

Podemos hacer una división por cualquiera de las columnas:

- créditos
- otra_solicitud
- consecuencias

¡Tenemos que ver cuál columna otorga mayor ganancia!

¿Cómo calcular la ganancia?

$$Ganancia(atributo) = H(nodo\ padre) - \sum_{c=1}^{\#Clases} \frac{\#filas\ con\ atributo = c}{\#filas} \cdot H(clase\ objetivo|atributo = c)$$

¿Cómo calcular la ganancia?

Entropía del nuevo dataset formado por sólo escoger las filas donde el atributo tiene valor c

 $Ganancia(atributo) = H(nodo\ padre) - \sum_{c=1}^{\#Clases} \frac{\#filas\ con\ atributo = c}{\#filas} \cdot H(clase\ objetivo|atributo = c)$

Entropía del nodo al cual le aplicaremos la división.

Proporción del atributo con valor c

Calcular ganancia con otra_solicitud

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
60	Si	Se atrasa la licenciatura	No

Si	División: otra Dist: Si (4) - N Entropía: 0.95 Respuesta:	o (7)	No
División: Es Dist: Si (1) - Entropía: XX Respuesta:	No (5) (XX	Dist: Si	n: Ēs hoja (3) - No (2) 'a: XXXX esta: Si

creditos	otra_solicitud	consecuencias	aceptado
10	No	Se atrasa un semestre	Si
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	No	Ninguna	No

- 1. Se genera una posible división.
- 2. Se obtienen los nuevos *dataset* basados en dicha división.
- 3. Se calcula la entropía de los nuevos 2 nodos.
- 4. Se calcula la ganancia otorgada gracias a esa división.

Calcular entropía con otra_solicitud

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
60	Si	Se atrasa la licenciatura	No

$$\begin{split} H(aceptado|otra_solicitud = Si) &= -(p_{si} \cdot log_2(p_{si}) + p_{no} \cdot log_2(p_{no})) \\ H(aceptado|otra_solicitud = Si) &= -(\frac{1}{6} \cdot log_2(\frac{1}{6}) + \frac{5}{6} \cdot log_2\frac{5}{6})) \\ H(aceptado|otra_solicitud = Si) &= 0.65 \end{split}$$

creditos	otra_solicitud	consecuencias	aceptado
10	No	Se atrasa un semestre	Si
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	No	Ninguna	No

$$\begin{split} H(aceptado|otra_solicitud = No) &= -(p_{si} \cdot log_2(p_{si}) + p_{no} \cdot log_2(p_{no})) \\ H(aceptado|otra_solicitud = No) &= -(\frac{3}{5} \cdot log_2(\frac{2}{5}) + \frac{5}{6} \cdot log_2\frac{5}{6})) \\ H(aceptado|otra_solicitud = No) &= 0.97 \end{split}$$

Calcular ganancia con otra_solicitud

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
60	Si	Se atrasa la licenciatura	No

Si			No
División: Es Dist: Si (1) Entropía: C Respuesta	- No (5)).67	Dis En	

creditos	otra_solicitud	consecuencias	aceptado
10	No	Se atrasa un semestre	Si
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	No	Ninguna	No

- 1. Se genera una posible división.
- 2. Se obtienen los nuevos dataset basados en dicha división.
- 3. Se calcula la entropía de los nuevos 2 nodos.
- 4. Se calcula la ganancia otorgada gracias a esa división.

Calcular ganancia con otra_solicitud

$$Ganancia(atributo) = H(nodo\ padre) - \sum_{c=1}^{\#Clases} \frac{\#filas\ con\ atributo = c}{\#filas} \cdot H(clase\ objetivo|atributo = c)$$

$$0.95 - (\frac{^{\#filas\ otra_solicitud=Si}}{^{\#filas}} \cdot H(aceptado|otra_solicitud = Si) + \frac{^{\#filas\ otra_solicitud=No}}{^{\#filas}} \cdot H(aceptado|otra_solicitud = No))$$

$$0.95 - (\frac{6}{11} \cdot 0.65 + \frac{5}{11} \cdot 0.97) = 0.15$$

Calcular ganancia con consecuencias

Ninguna

División: Es hoja Dist: Si (**0**) - No (**4**) Entropía: XXXX

Respuesta: No

consecuencias	aceptado
Ninguna	No

División: consecuencias

Dist: Si (4) - No (7)

Entropía: 0.95

Respuesta: ---

Se atrasa un semestre

División: Es hoja

Dist: Si (3) - No (0)

Entropía: XXXX

Respuesta: Si

consecuencias	aceptado
Se atrasa un semestre	Si
Se atrasa un semestre	Si
Se atrasa un semestre	Si

Se atrasa la licenciatura

División: Es hoja

Dist: Si (1) - No (3)

Entropía: XXXX

Respuesta: No

consecuencias	aceptado
Se atrasa la licenciatura	No
Se atrasa la licenciatura	Si
Se atrasa la licenciatura	No
Se atrasa la licenciatura	No

Calcular ganancia con consecuencias

$$-(\frac{0}{4} \cdot log_2(\frac{0}{4}) + \frac{4}{4} \cdot log_2(\frac{4}{4})) = 0 \quad -(\frac{3}{3} \cdot log_2(\frac{3}{3}) + \frac{0}{3} \cdot log_2(\frac{3}{3})) = 0 \quad -(\frac{1}{4} \cdot log_2(\frac{1}{4}) + \frac{3}{4} \cdot log_2(\frac{3}{4})) = 0.81$$

Calcular ganancia con consecuencias

$$-(\frac{0}{4} \cdot log_2(\frac{0}{4}) + \frac{4}{4} \cdot log_2(\frac{4}{4})) = 0 \quad -(\frac{3}{3} \cdot log_2(\frac{3}{3}) + \frac{0}{3} \cdot log_2(\frac{3}{3})) = 0 \quad -(\frac{1}{4} \cdot log_2(\frac{1}{4}) + \frac{3}{4} \cdot log_2(\frac{3}{4})) = 0.81$$

$$Ganancia(atributo) = H(nodo\ padre) - \sum_{c=1}^{\#Clases} \frac{\#filas\ con\ atributo = c}{\#filas} \cdot H(clase\ objetivo|atributo = c)$$

$$0.95 - \left(\frac{4}{11} \cdot 0 + \frac{3}{11} \cdot 0 + \frac{4}{11} \cdot 0.81\right) = 0.66$$

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

1. Tenemos que pasarlo a una forma categórica.

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

- 1. Tenemos que pasarlo a una forma categórica. Para eso, se defina alguna división tales como:
 - >= **50**: Se generan 2 grupos, aquellos con 50 o más créditos y aquellos con menos de 50 créditos.
 - == **30**: Se generan 2 grupos, aquellos con justo 30 créditos y aquellos que tienen menos o más.

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

- 1. Tenemos que pasarlo a una forma categórica. Para eso, se defina alguna división tales como:
 - >= 50: Se generan 2 grupos, aquellos con 50 o más créditos y aquellos con menos de 50 créditos.
 - == 30: Se generan 2 grupos, aquellos con justo 30 créditos y aquellos que tienen menos o más.
 - También se pueden hacer 3 grupos con la siguiente división:
 - o <= 20
 - \circ > 20 and <= 40
 - o > 40.

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

- 1. Tenemos que pasarlo a una forma categórica. Para eso, se defina alguna división tales como:
 - >= 50: Se generan 2 grupos, aquellos con 50 o más créditos y aquellos con menos de 50 créditos.
 - == 30: Se generan 2 grupos, aquellos con justo 30 créditos y aquellos que tienen menos o más.
 - También se pueden hacer 3 grupos con la siguiente división:
 - o <= 20
 - o > 20 and <= 40
 - o > 40.

La división debe generar 2 o más conjuntos cuya intersección sea vacía. Hacer una división como créditos <= 20 VS créditos <= 40 hará que una dato con 20 créditos esté en ambos conjunto y eso no es posible.

Pero...; No es un dato categórico! ¿cómo calculamos la ganancia?

- 1. Tenemos que pasarlo a una forma categórica. Para eso, se defina alguna división tales como:
 - >= **50**: Se generan 2 grupos, aquellos con 50 o más créditos y aquellos con menos de 50 créditos.
 - == **30**: Se generan 2 grupos, aquellos con justo 30 créditos y aquellos que tienen menos o más.
 - También se pueden hacer 3 grupos con la siguiente división:
 - o <= 20
 - > 20 and <= 40</p>
 - o > 40.

La división debe generar 2 o más conjuntos cuya intersección sea vacía. Hacer una división como créditos <= 20 | créditos <= 40 hará que una dato con 20 créditos esté en ambos conjunto y eso no es posible.

2. Calcular la ganancia como si fuera un dato categórico.

$$-(\frac{3}{5} \cdot log_2(\frac{3}{5}) + \frac{2}{5} \cdot log_2(\frac{2}{5})) = 0.97 \qquad -(\frac{1}{5} \cdot log_2(\frac{1}{5}) + \frac{4}{5} \cdot log_2(\frac{4}{5})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{1}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.73 \qquad -(\frac{1}{1} \cdot log_2(\frac{0}{1}) + \frac{0}{1} \cdot log_2(\frac{0}{1})) = 0.7$$

$$Ganancia(atributo) = H(nodo\ padre) - \sum_{c=1}^{\#Clases} \frac{\#filas\ con\ atributo = c}{\#filas} \cdot H(clase\ objetivo|atributo = c)$$

$$0.95 - (\frac{5}{11} \cdot 0.97 + \frac{5}{11} \cdot 0.73 + \frac{1}{11} \cdot 0) = 0.18$$

¿Con qué división me quedo?

Probamos 3 divisiones:

- 1. Dividir por la columna otra_solicitud. Ganancia = 0.15
- 2. Dividir por la columna consecuencias. Ganancia = 0.66
- 3. Dividir por la columna creditos con 3 categorías posibles. Ganancia = 0.18

¿Con qué división me quedo?

Probamos 3 divisiones:

- 1. Dividir por la columna otra_solicitud. Ganancia = 0.15
- 2. Dividir por la columna consecuencias. Ganancia = 0.66
- 3. Dividir por la columna creditos con 3 categorías posibles. Ganancia = 0.18

Nos quedamos con la que da mayor ganancia.

Todavía se puede dividir otro nodo.

Nos mudamos a dicho nodo, observamos sólo los datos que corresponden a dicha división y volvemos a empezar.

creditos	otra_solicitud	consecuencias	aceptado
10	Si	Ninguna	No
10	Si	Se atrasa un semestre	Si
10	No	Se atrasa un semestre	Si
30	Si	Se atrasa la licenciatura	No
30	No	Se atrasa la licenciatura	Si
40	No	Ninguna	No
40	No	Se atrasa un semestre	Si
50	Si	Se atrasa la licenciatura	No
50	Si	Ninguna	No
50	No	Ninguna	No
60	Si	Se atrasa la licenciatura	No

creditos	otra_solicitud	consecuencias	aceptado
30	Si	Se atrasa la licenciatura	No
30	No	Se atrasa la licenciatura	Si
50	Si	Se atrasa la licenciatura	No
60	Si	Se atrasa la licenciatura	No

Todavía se puede dividir otro nodo.

Nos mudamos a dicho nodo, observamos sólo los datos que corresponden a dicha división y volvemos a empezar

Entre las columnas disponibles, ¿cuál nos da mayor ganancia?

creditos	otra_solicitud	consecuencias	aceptado
30	Si	Se atrasa la licenciatura	No
30	No	Se atrasa la licenciatura	Si
50	Si	Se atrasa la licenciatura	No
60	Si	Se atrasa la licenciatura	No

¿Que sigue? - Resultado final

Preguntas frecuentes

¿Qué pasa si un nodo hoja no tiene entropía 0?

> Se responde con la clase más presenta o buscar otra métrica/criterio para tomar la decisión.

¿Qué pasa si un nodo hoja tiene entropía 1? (empate de clases)

> Se puede setear (harcodear) para que diga una clase específica o buscar otra métrica/criterio para tomar la decisión.

1. Otra métrica puede ser <u>Information ratio gain</u>.

2. En ambos casos deben asegurar **determinismo**, es decir, ante N datos de entrada **exactamente iguales**, se debe responder siempre la misma clase.

División: Es hoja Dist: Si (**1**) - No (**4**)

Entropía: 0.73

Respuesta: **No**

División: Es hoja

Dist: Si (3) - No (3)

Entropía: 1

Respuesta: ???

IIC2433 - Minería de datos

Árbol de decisión Hernán Valdivieso hfvaldivieso@uc.cl