Fila

Algoritmos e Estruturas de Dados I

Fila

- O que é?
- Para que serve?

- Problema: automação de uma biblioteca
 - Todos os livros devem ser cadastrados
 - O sistema deve informar se um livro está disponível ou não nas estantes
 - Caso o livro não esteja disponível, o usuário pode aguardar em uma fila de espera
 - Quando o livro for devolvido, o primeiro da fila de espera pode retirá-lo
- Sua tarefa: desenvolver esse sistema

- 1º passo: abstração
 - Identificar os elementos do mundo real que são relevantes para a solução do problema

Quais são eles?

fila de espera para o livro	livros do acervo	disponível?
ultimo>	trigonometria	não
último>	química inorgânica	não
fila vazia!	estruturas de dados	sim

Elementos relevantes

- Um cadastro de livros
- Indicação da disponibilidade dos livros
- Uma fila de espera para cada livro, com indicação da ordem das pessoas
 - Primeiro e último da fila
- Cadastro de pessoas: nome, endereço e telefone

- 2º passo: quais são as operações possíveis nas filas?
 - Entrar na fila
 - Quem entra, entra onde?
 - Sair da fila
 - Quem sai, sai de onde?
 - Outras?

Fila (queue)

Oque é?

- É uma estrutura para armazenar um conjunto de elementos, que funciona da seguinte forma
 - Novos elementos sempre entram no fim da fila
 - O único elemento que se pode retirar da fila em um dado momento é seu primeiro elemento

Para que serve?

- Modelar situações em que é preciso armazenar um conjunto ordenado de elementos, no qual o primeiro elemento a entrar no conjunto será também o primeiro elemento a sair do conjunto, e assim por diante
- F.I.F.O
 - First In, First Out

Aplicações de fila

- Biblioteca
 - Lista de espera para livros
- Impressão
 - Documentos a serem impressos
- Aeroporto
 - Lista de espera para vôos
- Tarefas (Jobs) do Sistema Operacional
- Outras?

Operações

- Cria(F): cria uma fila F vazia
- Entra(F,X): X entra no fim da fila F
- Sai(F,X): o primeiro elemento da fila F é retirado da fila e atribuído a X
- IsEmpty(F): verdade se a fila estivar vazia; caso contrário, falso
- IsFull(F): verdade se a fila estiver cheia; caso contrário, falso

operação	fila	resultado
cria(F)	1° DA FILA>	
entra(F, a)	1º DA FILA> a	
entra(F,b)	1º DA FILA> a, b	
entra(F,c)	1º DA FILA> a, b, c	
sai(F,X)	1º DA FILA> b, c	X=a
entra(F,d)	1°DA FILA> b, c, d	
sai(F,X)	1º DA FILA> c, d	X=b

Alocação seqüencial

 Os elementos da fila ficam, necessariamente, em seqüência (um ao lado do outro) na memória

Alocação estática

- Todo o espaço de memória a ser utilizado pela fila é reservado (alocado) em tempo de compilação
- Todo o espaço reservado permanece reservado durante todo o tempo de execução do programa, independentemente de estar sendo efetivamente usado ou não

- Início aponta para/indica o primeiro da fila, ou seja, o primeiro elemento a sair
- Fim aponta para/indica o fim da fila, ou seja, onde o próximo elemento entrará

- Qual a condição inicial, quando a fila é criada?
- Qual a condição para fila vazia?
- Qual a condição para fila cheia?

- Qual a condição inicial, quando a fila é criada?
 - Início=0, fim=1 (fim= índice adiantado do (próximo) lugar para inserção)
- Qual a condição para fila vazia?
- Qual a condição para fila cheia?

- Qual a condição inicial, quando a fila é criada?
 - Início=0, fim=1
- Qual a condição para fila vazia?
 - Início=0, fim=1 ?
- Qual a condição para fila cheia?

- Qual a condição inicial, quando a fila é criada?
 - Início=0, fim=1
- Qual a condição para fila vazia?
 - Início=0, fim=1 ?
- Qual a condição para fila cheia?
 - fim=tamanho do array+1?

Criação da fila

entra(F,A), entra(F,B), entra(F,C)

- entra(F,Z), entra(F,R), entra(F,S)
 - IsFull=TRUE

- sai(F,X), sai(F,X)
 - IsFull=TRUE !!!!

Como inserir mais elementos?

Qual o problema com a fila?

Fila

Como reutilizar os espaços do início da fila?

Fila

- Como reutilizar os espaços do início da fila?
 - Outra forma de implementação
 - Melhor aproveitamento da representação utilizada

Fila vista como um ANEL

- Qual a condição para fila vazia?
- Qual a condição para fila cheia?
- Qual a condição inicial (quando a fila é criada)?

- Qual a condição para fila vazia?
- Qual a condição para fila cheia?
- Qual a condição inicial (quando a fila é criada)?

Difícil! Perde-se um pouco do sentido com essa representação

Solução: campo extra para guardar número de elementos

Qual a condição para fila vazia?

Qual a condição para fila cheia?

Qual a condição inicial (quando a fila é criada)?

- Qual a condição para fila vazia?
 - Total=0
- Qual a condição para fila cheia?

Qual a condição inicial (quando a fila é criada)?

- Qual a condição para fila vazia?
 - Total=0
- Qual a condição para fila cheia?
 - Total=tamanho do array
- Qual a condição inicial (quando a fila é criada)?

- Qual a condição para fila vazia?
 - Total=0
- Qual a condição para fila cheia?
 - Total=tamanho da fila
- Qual a condição inicial (quando a fila é criada)?
 - Total=0, início=1, fim=1

- Fila criada
 - início=1, fim=1, total=0

Entra A

■ início=1, fim= fim+1=2, total=1

Entra B

■ início=1, fim=fim+1=3, total=2

Entra C

■ início=1, fim=fim+1=4, total=3

- Sai primeiro
 - início= início+1=2, fim=4, total=2

- Sai primeiro
 - início=início+1=3, fim=4, total=1

Entra D

■ início=3, fim=fim+1=5, total=2

Entra E

■ início=3, fim=fim+1=6, total=3

Entra F

■ início=3, fim= (fim+1) % 6 =1, total=4

Entra G

■ Início=3, fim=fim+1=(fim+1) % 6 =2, total=5

Passo a passo para Entra e Sai

- Entra elemento no fim da fila
 - Se não estiver cheia (Total = tamanho array):
 - vetor[fim]=elemento
 - avança fim ("módulo tamanho do array" para "fazer a curva", se preciso)
 - atualiza total
- Sai primeiro elemento
 - Se não estiver vazia (Total ≠ 0):
 - elemento=vetor[início]
 - avança início ("módulo tamanho do array" para "fazer a curva", se preciso)
 - atualiza total

Implementação da fila

Declaração em C

Operações sobre a fila

- Implementar as operações
 - Create
 - Empty
 - IsEmpty
 - IsFull
 - Entra
 - Sai
- Atenção: considerações sobre TAD
 - Arquivos .c e .h, parâmetros

Interface do TAD Fila (.h)

```
#define TRUE 1 /*define tipo boleano*/
#define FALSE 0
#define boolean int
#define TamFila 100
typedef char elem;
typedef struct {
                     int inicio, fim, total;
                     elem A[TamFila];
} Fila;
void Create(Fila*);
void Empty(Fila*);
boolean IsEmpty(Fila*);
boolean IsFull(Fila*);
boolean Entra(Fila*, elem*);
boolean Sai(Fila*, elem*);
```

Implementando as operações: Fila como Anel (.c)

```
#include "fila.h"
#define TRUE 1 /*define tipo boleano*/
#define FALSE 0
#define boolean int
void Create(Fila *F) { /* inicializa fila F como vazia */
   F->inicio=0;
   F->fim=0;
   F->total=0;
   return:
void Empty(Fila *F) { /* esvazia logicamente a fila F */
   F->inicio=0;
   F->fim=0;
   F->total=0;
   return;
```

```
boolean IsEmpty(Fila *F) { /*verifica se F está vazia */
  return (F->total==0);
boolean IsFull(Fila *F) {/*verifica se array está cheio */
  return (F->total==TamFila-1);
boolean Entra(Fila *F, elem *X) { /*insere X no início da Fila F, se não estiver cheia*/
   if (!IsFull(F)) {
      F->total++;
      F->A[F->fim]=*X;
      F->fim = (F->fim +1) % TamFila;
      return TRUE;
   return FALSE;
```

Análise da Complexidade – Fila Sequencial (Anel)

- Acesso a elemento
 - Apenas no início: tempo constante (via índice "início") –
 O(1)
- Inserção
 - Apenas no fim: tempo constante (via índice "fim") O(1)
- Eliminação
 - Apenas no início: tempo constante (via índice "início") –
 O(1)
- → Portanto, toda operação tem custo independente do tamanho da fila
- Espaço: exatamente o necessário para armazenar o número de elementos da fila
- Desvantagem: espaço máximo fixado pelo tamanho do array pode ser excessivo ou insuficiente

Exercício

- Faça uma função para verificar se os elementos de uma fila estão ordenados de forma crescente
- Faça uma função que inverta uma fila F1, criando-se uma nova fila F2

Exercício

- Implemente o sistema para a biblioteca usando o TAD fila
 - Cada livro deve ser representado por um registro
 - Nome do livro, disponibilidade, fila de espera
 - Ao requisitar um livro, a pessoa entra na fila de espera se o livro não estiver disponível
 - Quando um livro fica disponível, o primeiro da fila de espera do livro deve receber o livro
 - Implemente as demais funcionalidades (cadastra livro, retira livro, etc.) que julgar necessárias

Filas de Prioridade

- Filas em que a prioridade de remoção não é cronológica
 - Maior prioridade não é do elemento que ingressou primeiro
- Exemplos de Aplicações
 - Vôos lotados (standby flyers)
 - Listas de espera em geral (p. ex. transplantes)
 - Fila de processos para o Sistema Operacional

TAD Fila de Prioridade

- Armazena Itens
- Item: par (chave, informação) chave determina prioridade
 - p.ex. a idade de uma pessoa na fila do banco
- Operações principais:
 - Insere no fim e remove o de maior prioridade (tem que fazer uma busca antes da remoção),
 OU
 - Insere de acordo com a prioridade (buscando o lugar correto onde inserir) e remove do Início