Modelos Actuariales

Actuarial 3

Marcelino Sánchez

24/9/23

Nota Técnica

- 1. Descripción de la cobertura del seguro
- a. Tipo de seguro

Es un seguro dotal mixto.

b. Temporalidad

El seguro tiene una vigencia de 19 años con primas niveladas por 4 años anticipadamente.

c. Población asegurada

La edad de los asegurados es de 46 años y son 100 asegurados.

2. Hipótesis demográficas y financieras

a. Hipótesis demográfica

Utilizaremos la tabla proporcionada por la aseguradora. La cual para una persona de 46 años se ve de la siguiente manera:

b. Hipótesis sobre costos

Dados los valores observados por la aseguradora tendremos los siguientes gastos.

Los gastos asociados a la prima son \$1000 más 40% de la prima en la emisión, \$500 más 20% de la prima los siguientes dos años y \$100 más 5% de la prima para el resto de los años donde se paga prima. Los gastos asociados a la liquidación son \$3,000 mas 0.3% de la suma asegurada en caso de muerte y \$1,000 mas 0.1% de la suma asegurada en caso de supervivencia.

c. Hipótesis sobre tasa de interés

La tasa base será del 5%, porque actualmente existe la expectativa de disminución en la tasa de interés. Esto debido a que la inflación está disminuyendo, y la política de BM es bajar las tasas de interés una vez controlada la inflación. Además, como el seguro tiene una vigencia de 19 años esperamos que disminuya aún más manteniendose en promedio del 5%.

3. Procedimientos técnicos

a. Prima neta

(Fórmula para el cálculo y valor obtenido)

La prima neta está dada por la siguiente fórmula:

$$P = \frac{(2\times 10^6)A_{46:\overline{19}|} + (10^6)_{19}E_{46}}{\ddot{a}_{46:\overline{4}|}}$$

$$=\frac{(2\times 10^6)(\sum_{k=0}^{18}v^{k+1}\frac{d_{46+k}}{\ell_{46}})+(10^6)v^{19}\frac{\ell_{65}}{\ell_{46}}}{\sum_{k=0}^{18}v^k\frac{\ell_{46+k}}{\ell_{46}}}$$

Con lo cual el valor de la prima neta es de $$1.3299687 \times 10^{5}$.

b. Prima recargada

(Fórmula para el cálculo y valor obtenido)

El valor de la prima recargada proviene de despejar G de la siguiente ecuación:

$$(3000 + (1.003)(SA_M))A_{46:\overline{19}}^1 + (1000 + (1.001)(SA_S))_{19}E_{46} =$$

$$-1000 + .6G + (-500 + .8G)(\ddot{a}_{46:\overline{3}} - 1) + (-100 + .95G)\ddot{a}_{49:\overline{1}}(_{3}E_{46})$$

Es decir, tenemos que:

$$G = \frac{(3000 + (1.003)(SA_M))A_{46:\overline{19}|}^1 + (1000 + (1.001)(SA_S))_{19}E_{46} + 1000 + 500((\ddot{a}_{46:\overline{3}|} - 1)) + 100(\ddot{a}_{49:\overline{1}|})(_3E_{46})}{.6 + .8(\ddot{a}_{46:\overline{3}|} - 1) + .95\ddot{a}_{49:\overline{1}|}(_3E_{46})}$$

Con lo cual el valor de la prima recargada es de \$1.7153866 \times 10⁵.

c. Valores póliza asociados a la prima neta

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

Las fórmulas teóricas son las siguientes, pero para efectos prácticos las calcularemos con la fórmula recursiva de Fackler.

Para k = 0, ..., mPrimas - 1

$$_{k}V_{46:\overline{19}|}=\frac{1}{_{k}E_{46}}(P\ddot{a}_{46:\overline{k}|}-(SA_{M})A_{46:\overline{k}|}^{1})$$

Para k = mPrimas, ..., 19

$$_{k}V_{46:\overline{19}|}=\frac{1}{_{k}E_{46}}(P\ddot{a}_{46:\overline{4}|}-(SA_{M})A_{46:\overline{k}|}^{1})$$

```
k
             Vx
1
    0
            0.0
2
    1
       133457.2
3
    2 273577.0
4
      420809.3
5
       575585.0
6
      598117.7
7
      621394.4
8
       645481.1
9
       670360.3
    8
10
   9
       696102.8
11 10
       722699.1
12 11
       750184.1
13 12
       778529.1
14 13
       807735.1
15 14
       837741.3
16 15
       868503.5
17 16
       900018.9
18 17
       932340.1
19 18
       965623.9
20 19 1000000.0
```

Valores póliza asociados a la prima neta

d. Valores póliza asociados a la prima recargada

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

Las fórmulas teóricas son las siguientes, pero para efectos prácticos las calcularemos con la fórmula recursiva de Fackler.

Para k=0

$$_{k}V_{46:\overline{19}}=0$$

Para k=1

$$_{k}V_{46:\overline{19}|}=\frac{1}{_{k}E_{46}}(-1000+.6G-(3000+1.003SA_{M})A_{46:\overline{k}|}^{1})$$

Para k=2,3

$$_{k}V_{46:\overline{19}|}=\frac{1}{_{k}E_{46}}(-1000+.6G+(-500+.8G)(\ddot{a}_{46:\overline{k}|}-1)-(3000+1.003SA_{M})A_{46:\overline{k}|}^{1})$$

Para k = 4, ..., 19

$${}_{k}V_{46:\overline{19}|} = \frac{1}{{}_{k}E_{46}}(-1000 + .6G + (-500 + .8G)(\ddot{a}_{46:\overline{3}|} - 1) + (-100 + .95G)(\ddot{a}_{49:\overline{1}|})({}_{3}E_{46}) \\ - (3000 + 1.003SA_{M})A^{\,1}_{46:\overline{k}})$$

```
v
    k
1
    0
            0.0
2
       100691.3
    1
3
    2 242951.3
      392428.8
    4 577112.6
      599688.5
7
      623008.3
8
    7
       647137.8
9
       672059.3
10
   9
       697843.5
11 10
       724480.3
12 11
       752004.8
13 12
      780387.2
       809628.1
14 13
15 14
       839665.9
16 15
      870454.9
17 16
      901991.9
18 17
       934328.4
19 18
       967621.4
20 19 1002000.0
```

Valores póliza asociados a la prima recargada

e. Valores garantizados

(Fórmula para el cálculo y valores obtenidos mientras haya pago de primas)

Calculado retrospectivamente obtenemos la siguiente fórmula:

Los valores garantizados para la prima neta son:

- k Vx
- 1 1 106765.8
- 2 2 218861.6
- 3 3 378728.4

Los valores garantizados para la prima recargada son:

- k Vx
- 1 1 61063.38
- 2 2 147829.68
- 3 3 268757.44

Profit testing

1. Análisis determinista

a. Hipótesis demográficas y financieras

(Elige las variables a analizar, mínimo 2, y los supuestos realistas que vas a utilizar)

Vamos a analizar las variables de tasa de interés y de tabla de mortalidad y sus efectos en las medidas de VPN y MU.

Nuestro mejor estimador de estas variables es que la tasa de interés con la que traeremos a valor presente todos los flujos será de 7.5%, porque se espera que las tasas de interés bajen paulatinamente y considerando que actualmente nos encontramos con tasas altísimas del 11% aproximadamente.

Así mismo consideramos que la tabla de mortalidad será una Gamma(8, 1/4), esto porque suponemos que la tala de mortalidad se comporta como una normal y queremos además modelar mayores sobrevivientes que llegan a tener 100 años.

Esta gráfica se ve la siguiene forma:

b. Valor Presente Neto (VPN)

(Fórmula para el cálculo y valor obtenido)

$$VPN(r) = \sum_{k=1}^{19} F_k v_r^k$$

donde F_k representa los flujos vencidos de cada año (solo durante ese año) hasta la vigencia, tomando en cuenta el final de la vigencia.

Es decir $F_k = Ingreso_k(1+i^*) - Egreso_k - Reserva_k$

Donde

 $Ingreso_k(1+i^*)$: es el ingreso (menos gatos) y la reserva obtenidas al inicio del año y traídas a valor futuro que corresponde al final del año con la tasa de costo de capital. (CHECAR)

 $Egreso_k$: es el egreso obtenido al final del año (por muertes).

 $Reserva_k$: es la reserva que se debe componer al final del año.

Con lo que con las hipótesis planteadas obtenemos un VPN de $$1.0307039 \times 10^{7}$.

c. Margen de Utilidad (MU)

(Fórmula para el cálculo y valor obtenido)

$$MU(r) = \frac{VPN(r)}{\sum_{k=1}^{19} R_k v_r^k}$$

Con lo cual obtenemos un MU de 0.1851135.

2. Análisis estocástico

a. Análisis stress-testing para el VPN y MU

(Escoge 2 variables y realiza el stress testing)

Escogemos las variables de tasa de interés y de tabla de mortalidad y realizamos el stress testing para el VPN y MU.

Variamos primero la tasa de interés de 3% a 10% dejando los supuestos base fijos.

VPN vs tasa de interés

MU vs tasa de interés

Ahora variaremos la tabla de mortalidad cambiando los valores del parámetro α . El efecto de estos cambios en la tabla se ven de esta forma:

Función de Supervivencia Gamma variando alpha

Y con lo cual los cambios en VPN y MU se ven gráficamente de la siguiente forma:

VPN vs tabla de mortalidad

MU vs tabla de mortalidad

b. Análisis por escenarios para el VPN y MU

(Plantea 5 escenarios para realizar el análisis)

Ahora plantearemos 5 escenarios para realizar el análisis.

Los escenarios serán los siguientes:

Descripción detallada de los escenarios:

- 1. Escenario 1 (Pesimista): Tasa de interés del 3% y tabla de mortalidad con alfa=4.
- 2. Escenario 2 (Conservador): Tasa de interés del 5% y tabla de mortalidad con alfa=6.5.
- 3. Escenario 3 (Estimado): Tasa de interés del 7.5% y tabla de mortalidad con alfa=8.
- 4. Escenario 4 (Optimista): Tasa de interés del 10% y tabla de mortalidad con alfa=9. 5.- Escenario 5 (Base): Tasa de interés del 5% y tabla de mortalidad base con la que calculamos las reservas.

Los resultados de VPN y MU de los primeros 4 escenarios se muestran en la siguiente tabla:

		VPN	MU
Escenario	1	-18803185.2	-0.337703592
Escenario	2	460352.7	0.008267895
Escenario	3	10307039 4	0 185113542

En el quinto escenario obviamente obtenemos MU=VPN=0

c. Análisis por simulación

c.1. Hipótesis para la simulación de las variables a analizar

Elegiremos tasa de interés y tabla de mortalidad como las variables a analizar.

Realizaremos simulaciones para la tasa de interés y la tabla de mortalidad, con la finalidad de obtener una distribución de los valores que pueden obtener VPN y MU conjuntamente.

Para la tasa de interés, supondremos que sigue una distribución normal recortada en 0 con media de 7.5% y desviación estándar de 1.5%.

Para la tabla de mortalidad, supondremos que la α de nuestro modelo Gamma sigue una distribución normal recortada en 0.

c.2. Histograma de 1000 realizaciones de VPN y MU

Procedemos a mostrar los histogramas de las 1000 realizaciones estocásticas sobre tasa de interés y tabla de mortalidad de VPN y MU. (Nota: se fijó una semilla de 191654)

Tabla 1: Promedio y desviación estándar de las 1000 realizaciones de VPN y MU

Medida	Promedio	Desviacion_Estandar
VPN	9212913.8223	5653516.7487
MU	0.1655	0.1015

c.3. Promedio y desviación estándar de las 1000 realizaciones de VPN y MU

Valor de MU

0.0

Los promedios y desviación estándar son los siguientes:

Para una cartera de 100 asegurados: Fondo Total

-0.5

1. Asset-share

0

-1.0

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza) Utilizaremos la fórmula recursiva para calcular el Asset-share:

$$_{k+1}AS = \frac{[_{k}AS + G_{k}(1-c_{k}) - e_{k}](1+i_{k,k+1}) - q_{x+k}(b_{k+1}(1+propb_{k}) + E_{k+1}))}{p_{x+k}}$$

```
kTemp assetShare
1
       0
                0.00
2
           80535.42
       1
3
       2
          222023.81
4
       3
          365818.87
5
       4
          568709.46
6
       5
          620547.61
7
       6
          672815.88
8
       7
          736056.25
9
          791620.52
       8
10
       9
          852776.79
          943511.52
11
      10
12
          998588.76
13
      12 1131869.56
      13 1251268.81
14
15
      14 1365588.71
16
      15 1498978.09
17
      16 1605144.91
18
      17 1796289.78
19
      18 1932990.62
      19 2173739.91
20
```

2. Estimación del Fondo Total mediante el Asset-share

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

$$_{k}FT = \ell_{x\ k}^{O}AS$$

	kTemp	${\tt assetShare}$	fondo_total
1	0	0.00	0
2	1	80535.42	7624233
3	2	222023.81	20942991
4	3	365818.87	34373842
5	4	568709.46	53217211
6	5	620547.61	57808788
7	6	672815.88	62377465
8	7	736056.25	67889488
9	8	791620.52	72608902
10	9	852776.79	77752322
11	10	943511.52	85472254
12	11	998588.76	89836530

Tabla 2: Utilidades por año

k	Utilidades
0	0.0000
1	-24367.7143
2	-33289.3582
3	-48167.0221
4	-44273.5290
5	-21185.0682
6	747.9789
7	30837.2683
8	52173.4785
9	76483.9424
10	124215.0096
11	138622.7706
12	216432.8854
13	278283.8600
14	331607.8508
15	395467.2543
16	432455.9863
17	528917.0703
18	576482.6533
19	692181.1074

13	12	1131869.56	101062868
14	13	1251268.81	110810643
15	14	1365588.71	119854359
16	15	1498978.09	130269024
17	16	1605144.91	137983442
18	17	1796289.78	152578833
19	18	1932990.62	162070377
20	19	2173739.91	179721289

Análisis de Rentabilidad

1. Utilidades

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

2. VPN

(Fórmula para el cálculo y valor obtenido)

Con lo cual la medida de rentabilidad de VPN para este producto dado lo observado es de $3.1619864\times10^5.$

3. MU

(Fórmula para el cálculo y valor obtenido)

Con lo cual la medida de rentabilidad de MU para este producto dado lo observado es de 0.56789.