Fragments of ESO and linear-time computation

Joel Rybicki

Finite model theory seminar

20 April 2012

Outline

Existential second-order logic

Random access machines

ESO and polynomial non-deterministic time

Classifying graph problems
Positive results
Negative results

Conclusions

Open problems

Existential second-order logic

- Extend FO with second-order existential quantification of relation and function symbols
- ▶ Let $\sigma \cap \tau = \emptyset$ and $\psi \in FO^{\sigma \cup \tau}$. Then

$$\langle M, \tau \rangle \models \exists \sigma \psi$$

iff there exists a model \mathcal{M}^* such that

$$\mathcal{M}^* = \langle M, \tau, \sigma \rangle \models \psi$$

Fragments of ESO

Definition

Let $k, d \in \mathbb{N}_+$ and τ be a vocabulary. We say that

$$\varphi \in \mathrm{ESO}^{\tau}[\#k, \forall d]$$

if it holds that

- $\blacktriangleright \#\sigma \leq k$
- $\psi \in FO^{\sigma \cup \tau}$ is quantifier-free

We focus on $ESO[\#1, \forall 1]$.

Skolemization

Theorem (Skolem normal-form)

Every ESO-formula $\varphi \equiv \exists \sigma \psi$ where $\psi \in FO$ is logically equivalent to an ESO-formula

$$\varphi^* \equiv \exists f_0 \cdots \exists f_n \forall x_0 \cdots \forall x_m \psi'$$

where ψ' is a quantifier-free FO-formula and f_0, \ldots, f_n are function symbols.

Skolemization 2

Lemma

Let σ be a vocabulary such that $\#\sigma \leq 1$. Any formula

$$\varphi \equiv \exists \sigma \forall x_0 \exists x_1 \cdots \exists x_m \psi$$

where ψ is quantifier-free first-order formula can be expressed in ESO[#1, \forall 1].

Random access machines

Let τ be a finite vocabulary. A τ -machine decides a property of a finite τ -structure:

- ▶ Input: A finite τ -structure \mathcal{M} where $Dom(\mathcal{M}) = [n]$.
- Output: Accept or reject.

Solves decision problems such as

"Is the input graph $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$ Hamiltonian?"

RAM: Memory

Turing machines use tape, τ -RAMs use *registers*.

- ▶ Cardinality register N initialized to n.
- ▶ Input register s for each $s \in \tau$.
- ▶ Accumulators $A, B_0, \ldots, B_{\#r}$ for accessing input.
- ▶ Working memory: $R_0, R_1, ...$

Example input

$$\mathcal{G} = \langle \{0, 1, 2, 3\}, E^{\mathcal{G}} \rangle$$

i/j	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2	0	1	0	1
3	0	1	1	0

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$
- 5. $A \leftarrow R_A$

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$
- 5. $A \leftarrow R_A$
- 6. $B_i \leftarrow A$ where $i \in [\#\tau + 1]$
- 7. $R_A \leftarrow B_i$ where $i \in [\#\tau + 1]$

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$
- 5. $A \leftarrow R_A$
- 6. $B_i \leftarrow A$ where $i \in [\#\tau + 1]$
- 7. $R_A \leftarrow B_i$ where $i \in [\#\tau + 1]$
- 8. guess(A) guess an integer bounded by O(n)

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$
- 5. $A \leftarrow R_A$
- 6. $B_i \leftarrow A$ where $i \in [\#\tau + 1]$
- 7. $R_A \leftarrow B_i$ where $i \in [\#\tau + 1]$
- 8. guess(A) guess an integer bounded by O(n)
- 9. if $A=B_i$ then jump to I_a else jump to I_b , where $a,b\in [k+1]$

- 1. $A \leftarrow N$
- 2. $A \leftarrow s[B_0, \dots, B_q]$ where q = #s
- 3. $A \leftarrow 0$
- **4.** $A \leftarrow A + 1$
- 5. $A \leftarrow R_A$
- 6. $B_i \leftarrow A$ where $i \in [\#\tau + 1]$
- 7. $R_A \leftarrow B_i$ where $i \in [\#\tau + 1]$
- 8. guess(A) guess an integer bounded by O(n)
- 9. if $A=B_i$ then jump to I_a else jump to I_b , where $a,b\in [k+1]$
- 10. accept
- 11. reject

Time complexity

Definition

A τ -problem $P \subseteq Str(\tau)$ belongs to NTIME[T(n)] if

- ▶ there exists a τ -NRAM that recognizes P
- for all finite τ -structures the running time is bounded by $O\big(T(n)\big)$

A refinement of Fagin's theorem

Theorem (Fagin, 1973)

 $ESO \equiv NP.$

A refinement of Fagin's theorem

Theorem (Fagin, 1973)

 $ESO \equiv NP.$

Theorem (Grandjean and Olive, 2004)

Let τ be a vocabulary and $d \in \mathbb{N}_+$, then

$$ESO[\#d, \forall d] \equiv NTIME[n^d].$$

Degree of the polynomial = number of FO-variables!

A proof?

Theorem (Grandjean and Olive, 2004)

Let $d \in \mathbb{N}_+$, then

$$ESO[\#d, \forall d] \equiv NTIME[n^d].$$

How to prove the case for d = 1?

- Similar to proof of Fagin's theorem
- ▶ Proving $ESO[#1, \forall 1] \subseteq NTIME[n]$ is straightforward
- ▶ Showing NTIME[n] \subseteq ESO[#1, \forall 1] is not..

$$ESO[\#d, \forall d] \subseteq NTIME[n]$$

Let $\varphi \equiv \exists \sigma \forall x_0 \cdots \forall x_{d-1} \psi$ and suppose $\mathcal{M} = \langle [n], \tau \rangle$ is the input structure.

- ▶ Guess interpretations for symbols in $s \in \sigma$
 - ► For function symbols, guess $n^{\#s}$ values (the image)
 - ► For relation symbols, guess $n^{\#s}$ bits

$$ESO[\#d, \forall d] \subseteq NTIME[n]$$

Let $\varphi \equiv \exists \sigma \forall x_0 \cdots \forall x_{d-1} \psi$ and suppose $\mathcal{M} = \langle [n], \tau \rangle$ is the input structure.

- ▶ Guess interpretations for symbols in $s \in \sigma$
 - ► For function symbols, guess $n^{\#s}$ values (the image)
 - ► For relation symbols, guess $n^{\#s}$ bits
- ▶ Iteratively check that $\langle [n], \tau, \sigma \rangle \models \forall x_0 \cdots \forall x_{d-1} \psi$
 - ► Check n^d assignments for symbols x_0, \ldots, x_{d-1}

$$ESO[\#d, \forall d] \subseteq NTIME[n]$$

Let $\varphi \equiv \exists \sigma \forall x_0 \cdots \forall x_{d-1} \psi$ and suppose $\mathcal{M} = \langle [n], \tau \rangle$ is the input structure.

- ▶ Guess interpretations for symbols in $s \in \sigma$
 - ► For function symbols, guess $n^{\#s}$ values (the image)
 - ▶ For relation symbols, guess $n^{\#s}$ bits
- ▶ Iteratively check that $\langle [n], \tau, \sigma \rangle \models \forall x_0 \cdots \forall x_{d-1} \psi$
 - ► Check n^d assignments for symbols x_0, \ldots, x_{d-1}
- ▶ Running time is $O(|\sigma|n^d) + O(n^d)$

$NTIME[n] \subseteq ESO[\#1, \forall 1]$

Theorem

$$ESO[\#1, \forall 1] \equiv NTIME[n].$$

We need..

- ▶ A formula that simulates a τ -NRAM with O(n) running time
- \blacktriangleright We need to refer to cn time steps using n elements
- ▶ A linear order over the domain
 - ► Easy if $d \ge 3$.. non-trivial if d = 1.

A linear order using a single FO-variable

Theorem (Grandjean 1990)

The class of structures definable in $\mathrm{ESO}[\#1, \forall 1]$ is not enlarged by the addition of a second-order quantifier $\exists_{\mathit{ord}} < \mathit{which}$ states that the symbol < is a linear order over the domain.

- ► Construct a v-formula $\Phi \equiv \bigwedge_{1 \le i \le 20} \varphi_i$
- ▶ Defines a so-called arithmetical n-structure using only one universal quantification
- ▶ Use ESO-quantification $\exists v$ and replace $x_i < x_j$ with a formula $\operatorname{order}(x_i.x_j)$ that gives a linear order

Summary of the story so far

- A family of logics that capture polynomial non-deterministic time on RAMs
- ▶ Properties definable in ESO[#1, \forall 1] can be checked in O(n) time where n is the cardinality of the input structure
- NRAMs are slightly more powerful than Turing machines but a natural model of computation

Classifying graph problems

Graphs as structures

Definition

A relational structure $\mathcal{G} = \langle [n], E \rangle$ is a graph if

- ▶ The relation symbol E is binary, i.e., #E = 2
- ► The interpretation of *E* is anti-reflexive and symmetric

Many properties are very easy in $\mathrm{ESO}[\#1, \forall \mathbf{2}]$

Many properties are very easy in $ESO[\#1, \forall 2]$

▶ independent sets

Many properties are very easy in $\mathrm{ESO}[\#1, \forall \mathbf{2}]$

▶ independent sets, cliques

Many properties are very easy in $ESO[\#1, \forall 2]$

► independent sets, cliques, dominating sets

Many properties are very easy in $\mathrm{ESO}[\#1, \forall \mathbf{2}]$

independent sets, cliques, dominating sets, vertex covers

Many properties are very easy in $ESO[\#1, \forall 2]$

▶ independent sets, cliques, dominating sets, vertex covers, k-colouring

What about $ESO[\#1, \forall \mathbf{1}]$?

What about $ESO[\#1, \forall 1]$?

▶ It has been shown (Durand et al., 2004) that if the $\#\tau \le 1$, then

$$\mathrm{ESO}^{\tau}[\#1, \forall 1] \equiv \mathrm{ESO}^{\tau}[\#1, \forall 2].$$

The complexity of graph problems

What about $ESO[\#1, \forall 1]$?

▶ It has been shown (Durand et al., 2004) that if the $\#\tau \le 1$, then

$$\mathrm{ESO}^{\tau}[\#1, \forall 1] \equiv \mathrm{ESO}^{\tau}[\#1, \forall 2].$$

▶ But $\#\tau = 2$ for graphs!

Nondeterministic vertex-linear time

Definition (Vertex-linear time)

The class NVLIN is the set of graph problems solvable in linear time on a NRAM.

- ► A graph property definable in ESO[#1, ∀1] can be decided in vertex-linear time
- If we have $\omega(n)$ edges, then the problem is solvable in sublinear time in the size of the graph

Positive results

- ► Recall that we can use the \exists_{ord} operator in $ESO[\#1, \forall 1]$
- ► The same theorem gives us a successor function S and the first element 0
- ▶ Denote $\exists_{\text{ord}}(<, S, \mathbf{0})$ as the quantification of the linear order and a corresponding successor function

Hamiltonicity of graphs

Definition

A *Hamiltonian cycle* of graph \mathcal{G} is a cycle that spans \mathcal{G} .

The following sentence defines the existence of a Hamiltonian cycle:

$$\exists \, (<,S) \forall x \Big(E \big(x, S(x) \big) \Big)$$

Dominating sets

Definition

A dominating set of $\mathcal{G}=\langle V,E\rangle$ is a subset $D\subseteq V$ such that for all $v\in V$ either $v\in D$ or there exists $(u,v)\in E$ such that $u\in D$.

The decision problem:

- ▶ Input: A graph \mathcal{G} and $k \in \mathbb{N}_+$
- Output: A bit indicating if G has a dominating set of size at most k
- ► To encode k, add a unary relation K such that |K| = k

Dominating sets

$$\exists D \exists h \forall x \Big[\exists y [x = h(y)] \\ \land D(x) \to K(h(x)) \\ \land \Big(D(x) \lor \exists z \big(D(z) \land E(x, z) \big) \Big) \Big]$$

There is a set D and a function h such that

- ▶ h is a bijection
- $ightharpoonup |D| \le |K|$
- ▶ D is a dominating set

Lower bounds

- ► Class NVLIN contains NP-complete problems
 - Hamiltonian cycles
 - Dominating sets
 - Spanning tree isomorphism

Lower bounds

- ► Class NVLIN contains NP-complete problems
 - Hamiltonian cycles
 - Dominating sets
 - Spanning tree isomorphism
- ► At the same time, many problems of low deterministic complexity reside outside NVLIN
 - is the graph a tree (cycle-free)?
 - is the graph Eulerian?

Lower bounds

- ► Class NVLIN contains NP-complete problems
 - ► Hamiltonian cycles
 - Dominating sets
 - Spanning tree isomorphism
- ➤ At the same time, many problems of low deterministic complexity reside outside NVLIN
 - is the graph a tree (cycle-free)?
 - is the graph Eulerian?
- Reason: A linear time NRAM cannot check all possible edges!

The lower bound lemma

Lemma

Let P be a graph problem. If there exists an infinite set

$$A = \{ (\mathcal{G}_n, F_n) \colon \mathcal{G}_n = \langle V, E \rangle, |V| = n, F_n \cap E = \emptyset \},$$

such that for any $(G_n, F_n) \in A$ the following properties hold:

- $ightharpoonup \mathcal{G}_n \in P$
- $ightharpoonup |F_n| \in \Omega(n^2)$
- ▶ $G + e \notin P$ for any $e \in F_n$,

then $P \notin NVLIN$.

Negative results

Many properties cannot be checked in vertex-linear time..

- ▶ *G* is a tree
- \triangleright \mathcal{G} is not a tree
- G does not have a Hamiltonian cycle
- ▶ G graph has a vertex cover of size at most k
- ► See Grandjean and Olive, 2004 for more.

A corollary

Corollary

The class NVLIN is not closed under complement.

Proof:

- ► Hamiltonicity is in NVLIN
- ▶ Non-Hamiltonicity is not in NVLIN

Conclusions

All formulas we have seen are of the form

$$\exists \sigma \forall x \varphi$$

where $\varphi \in FO^{\sigma \cup \tau}$ is quantifier-free.

- ► Positive results for non-deterministic linear time via ESO[#1, ∀1]
- Non-expressibilty results for ESO[#1, ∀1] via NRAMs
- Several NP-complete problems are of low non-deterministic complexity..
- ..while many problems in P cannot be solved in non-deterministic linear time

Open problems

- ▶ The problems studied are solvable either in O(n) time or require $\Omega(n^2)$ time.
- Are there natural graph problems that reside between these two?

Open problems 2

- ► Are there strict hierarchies between different logics $ESO[\#k, \forall d]$?
- ► Conjecture: If $\#\tau \le 1$, then $\mathrm{ESO}[\#1, \forall d] \equiv \mathrm{ESO}[\forall 1]$ holds.
 - ▶ It is known that $ESO[\#d, \forall d] \equiv ESO[\forall d] \equiv ESO[Var\ d]$

Open problems 2

- ▶ Are there strict hierarchies between different logics $ESO[\#k, \forall d]$?
- ► Conjecture: If $\#\tau \le 1$, then $\mathrm{ESO}[\#1, \forall d] \equiv \mathrm{ESO}[\forall 1]$ holds.
 - ▶ It is known that $ESO[\#d, \forall d] \equiv ESO[\forall d] \equiv ESO[Var\ d]$
- ► Corollary: If the conjecture holds, for all k and τ , ESO^{τ}[#k, \forall *] \subseteq ESO^{τ}[#k + 1, \forall *].

References

- ► Etienne Grandjean (1990). First-order spectra with one variable.
- Etienne Grandjean and Frédéric Olive (2004). Graph properties checkable in linear time in the number of vertices.
- Arnaud, Durand, Etienne Grandjean, and Frédéric Olive (2004). New results on arity vs. number of variables.