Дебильник по предмету: «Математическая логика» Четвертый семестр.

Специальность 02.03.03.
Математическое обеспечение и администрирование информационных систем.
Преподаватель - Григорьева Татьяна Матвеевна.
Группа 244.
Санкт-Петербург 2020.

Фомина В.В. Набрано в **№Т_ЕХ**

Дата изменения: 20 июня 2020 г. 17:08

Содержание

1	Пропозициональные формулы. Таблицы истинности. Равносильные формулы. Основные равносильности. Тавтологии и противоречия.			
2	Теоремы о представимости пропозициональной формулы с помощью формул, содержащих только три, две или одну логическую связку.	4		
3	Теоремы о ДНФ и КНФ. Полином Жегалкина.	4		
4	Понятия исчисления и формальной теории. Вывод, выводимая формула, полнота и непротиворечивость. Допустимое правило.	4		
5	Секвенциальное исчисление высказываний. Допустимые правила секвенциального исчисления высказываний.	4		
6	Теоремы о семантическом обосновании секвенциального исчисления высказываний.	4		
7	Полнота и непротиворечивость секвенциального исчисления высказываний.	4		
8	Метод резолюций для исчисления высказываний. Обоснование доказательства следования A1, , An \Rightarrow B1, , Bk.	4		
9	Предикатные формулы: терм, атомарная формула, предикатная формула. Область действия квантора, свободные и связанные вхож дения предметной переменной в формулу. Терм, свободный для подстановки в формулу вместо свободных вхождений предметной переменной.	:-		
10	Интерпретации. Общезначимые и выполнимые формулы, противоречия.	7		
11	Смысл формулы с n свободными переменными в заданной интерпретации.	10		
12	Секвенциальное исчисление предикатов. Необходимость соблюдения ограничений на кванторные правила (примеры).	10		
13	Полнота и непротиворечивость секвенциального исчисления предикатов.	10		
14	Метод резолюций для исчисления предикатов. Обоснование доказательства следствия A1, , An \Rightarrow B1, , Bk.	10		

15	Понятие формальной теории. Формальные теории с равенством (примеры). Аксиомы для равенства и аксиомы согласования с равенством.	10
16	Формальная арифметика (аксиоматическая теория чисел).	10
17	Первая теорема Геделя.	10
18	Вторая теорема Геделя.	10
19	Консервативность расширения формальной арифметики бесконечно большими числами.	10
20	Парадокс Рассела в наивной теории множеств. Его отсутствие в аксиоматических теориях множеств.	10
21	Теория типов Рассела.	10
22	Аксиоматическая теория множеств Цермело-Френкеля.	10
23	Ординальные числа.	10
24	Конструктивные объекты. Формулы Бэкуса.	10
25	Примеры математических понятий алгоритма.	10

- 1 Пропозициональные формулы. Таблицы истинности. Равносильные формулы. Основные равносильности. Тавтологии и противоречия.
- 2 Теоремы о представимости пропозициональной формулы с помощью формул, содержащих только три, две или одну логическую связку.
- 3 Теоремы о ДНФ и КНФ. Полином Жегалкина.
- 4 Понятия исчисления и формальной теории. Вывод, выводимая формула, полнота и непротиворечивость. Допустимое правило.
- 5 Секвенциальное исчисление высказываний. Допустимые правила секвенциального исчисления высказываний.
- 6 Теоремы о семантическом обосновании секвенциального исчисления высказываний.
- 7 Полнота и непротиворечивость секвенциального исчисления высказываний.
- 8 Метод резолюций для исчисления высказываний. Обоснование доказательства следования $A1, \dots, An \Rightarrow B1, \dots, Bk.$

9 Предикатные формулы: терм, атомарная формула, предикатная формула. Область действия квантора, свободные и связанные вхождения предметной переменной в формулу. Терм, свободный для подстановки в формулу вместо свободных вхождений предметной переменной.

Определение 9.1.

Предметная константа - имя предмета.

Определение 9.2.

Предметная переменная - переменная, которая в качестве своих значений может принимать предметные константы.

Определение 9.3.

Символ F в формальном языке является функциональным символом, если для любого символа, представляющий объект в языке, F(X) снова является символом, представляющим объект на этом языке

Определение 9.4 (Терм).

- 1. Предметная константа является термом.
- 2. Предметная переменная является термом.
- 3. Если t_1, \ldots, t_n термы, f-n-местный функциональный символ, то выражение $f(t_1, \ldots, t_n)$ является термом.
- 4. Никакие выражения, кроме полученных в результате применения п.п. 1-3 этого определения, не являются термом.

Определение 9.5 (Атомарная формула).

- 1. Если t_1, \ldots, t_n термы, P-n-местный предикатный символ, то $P(t_1, \ldots, t_n)$ является атомарной формулой.
- 2. Никакие выражения, кроме полученных в результате применения п. 1 этого определения не являются атомарной формулой.

Определение 9.6 (Предикатная формула).

- 1. Атомарная формула является предикатной формулой.
- 2. Если A предикатная формула, то $\neg A$ является предикатной формулой.
- 3. Если A, B предикатные формулы, * бинарная логическая связка, то (A*B) является предикатной формулой.

- 4. Если A предикатная формула, x предметная переменная, то $\forall x A$ и $\exists x A$ являются предикатными формулами.
- 5. Никакие выражения, кроме полученных в результате применения п.п. 1 4 этого определения, не являются предикатными формулами.

Определение 9.7.

Кванторным комплексом называется выражение вида $\forall x$ или $\exists x$, где x – имя предметной переменной.

Определение 9.8.

Областью действия квантора называется формула, стоящая непосредственно вслед за кванторным комплексом, содержащим это вхождение квантора.

Пример 9.1.

$$\forall x \left(P\left(x, \ y, \ z \right) \ \rightarrow \ \exists y \ \forall z \ \underbrace{Q\left(x, \ y, \ z \right)}_{3} \right)$$

Цифрами 1, 2, и 3 отмечены области действия соответсвенно квантора всеобщности по переменной x, квантора существования по переменное y и квантора всеобщности по переменной z.

Определение 9.9.

Вхождение предметной переменной в формулу называется **связанным**, если оно находится в кванторном комплексе или в области действия квантора по этой переменной.

Определение 9.10.

Вхождения предметных переменных, не являющиеся связанными, называются свободными.

Пример 9.2.

Переменные, связанные одним и тем же квантором подчёркнуты одинаково.

$$\forall \underline{x}(P(\underline{x},\ y,\ z)) \rightarrow \ \exists \underline{y} \forall \underline{\underline{z}} Q(\underline{x},\ \underline{y},\ \underline{\underline{z}})$$

Первые два вхождения предметных переменных y и z являются свободными.

Определение 9.11.

Терм t называется **свободным для подстанвки в формулу F вместо свободных вхождений предметной переменной** x, если t не содержит переменных, в области действия кванторов по которым имеется свободное вхождение переменной x.

Определение 9.12.

Формула без свободных переменных называется замкнутой.

Определение 9.13.

Формула, у которой ни одна переменная не имеет как свободных, так и связанных вхождений, называется **чистой**.

10 Интерпретации. Общезначимые и выполнимые формулы, противоречия.

Значение предикатной формулы можно вычислить, проинтерпретировав входящие в неё символы, т.е. задав содержательный смысл предметным константам, функциональным и предикатным символам.

Определение 10.1.

Для того, чтобы задать интерпретацию формулы достаточно

- задать область интерпретации D множество констант;
- каждому n-местному функциональному символу f поставить в соответсвие конкретную функцию из D^n в D.
- каждому n-местному предикатному символу P поставить в соотвествие конкретное отношение над D^n .

Значение атомарной формулы в заданной интерпретаци на заданном наборе значений входящих в неё свободных переменных вычисляется в соответствии с заданной интерпретацией.

Если вычислены значения формул A и B в заданной интерпретации на заданном наборе значений входящих в них свободных переменных, то значения формул $\neg A$ и A*B вычисляются в соответсвие с таблицами истинности для логических связок \neg и *.

Если x, y_1, \ldots, y_m — список (быть может пустой) всех свободных переменных, входящих в формулу $P(x, y_1, \ldots, y_m)$, то для вычисления значения формулы $\forall x P(x, y_1, \ldots, y_m)$ ($\exists x P(x, y_1, \ldots, y_m)$) на наборе значений b_1, \ldots, b_m свободных переменных y_1, \ldots, y_m достаточно вычислить значения $P(a, b_1, \ldots, b_m)$ при $a \in D$. Если при всех значениях $a \in D$ эти формулы истинны, то $\forall x P(x, b_1, \ldots, b_m)$ истинна, в противном случае она ложна (соответсвенно если при всех значениях $a \in D$ эти формулы ложны, то $\exists x P(x, b_1, \ldots, b_m)$ ложна, в противном случае она истина).

Следствие 10.1.

Из способа вычисления значения предикатной формулы следует, что оно зависит только от значений свободных переменных.

Определение 10.2.

Формула называется **истинной (ложной)** в заданной интерпретации, если она истинна (ложна) на всех наборах значений из области интерпретации, подставляемых вместо свободных вхождений переменных этой формулы.

Определение 10.3. Формула называется **выполнимой** в заданной интерпретации, если она истинна хоть на одном наборе значений из области интерпретации, подставляемых вместо свободных вхождений предметных переменных этой формулы.

Определение 10.4.

Формула называется **общезначимой (противоречием)**, если она истинна (ложна) в любой интерпретации.

Определение 10.5.

Формула называется **выполнимой**, если она выполнима хоть в одной интерпретации.

- 11 Смысл формулы с n свободными переменными в заданной интерпретации.
- 12 Секвенциальное исчисление предикатов. Необходимость соблюдения ограничений на кванторные правила (примеры).
- 13 Полнота и непротиворечивость секвенциального исчисления предикатов.
- 14 Метод резолюций для исчисления предикатов. Обоснование доказательства следствия $A1, \dots, An \Rightarrow B1, \dots, Bk.$
- 15 Понятие формальной теории. Формальные теории с равенством (примеры). Аксиомы для равенства и аксиомы согласования с равенством.
- 16 Формальная арифметика (аксиоматическая теория чисел).
- 17 Первая теорема Геделя.
- 18 Вторая теорема Геделя.
- 19 Консервативность расширения формальной арифметики бесконечно большими числами.
- 20 Парадокс Рассела в наивной теории множеств. Его отсутствие в аксиоматических теориях множеств.
- 21 Теория типов Рассела.
- 22 Аксиоматическая теория множеств Цермело-Френкеля
- 23 Ординальные числа.
- 24 Конструктивные объекты. Формулы Бэкуса.
- 25 Примеры математических понятий алгоритма.