

UNIT - III Artificial Intelligence

III / II IT, R 16 - JNTUK

Ms. M. Rajya Lakshmi VVIT

Contents

Logic concepts:

- Propositional calculus
- Propositional logic
- Natural deduction system
- Axiomatic system
- Semantic tableau system in proportional logic
- Resolution refutation in proportional logic
- Predicate logic

Propositional Calculus

- A set of rules are used to combine simple propositions to form compound propositions
- Few logical operators are used, which are known as connectives
- E.g. not(~), and(∧), or(∀), implies(->), etc.
- A well formed formula is defined as a symbol or a string of symbols generated by the formal grammar of a formal language

Truth table

- A Truth Table is used to provide operational definitions of important logical operators
- The logical constants in PC are true and false,
 these are represented as T and F
- The truth values of well formed formulae are calculated by using the truth table approach

A	В	~A	AAB	AVB	$A \rightarrow B$	A ↔ B
T .	T	F	T	Т	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F.	T	F	F	T	T

Equivalence laws

- Equivalence laws are used to reduce or simplify given well formed formula
- Or to derive a new formula from the existing formula
- These laws can be verified using the truth table approach

Table 4.3 Equivalence Laws

Name of Relation	Equivalence Relations
Commutative Law	$A \vee B \equiv B \vee A$ $A \wedge B \equiv B \wedge A$
Associative Law	$A \lor (B \lor C) \equiv (A \lor B) \lor C$ $A \land (B \land C) \equiv (A \land B) \land C$
Double Negation	~(~A) ≡ A
Distributive Laws	$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$ $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
De Morgan's Laws	$-(A \lor B) \cong -A \land -B$ $-(A \land B) \cong -A \lor -B$

Table 4.3 (Contd.)

Name of Relation	Equivalence Relations
Absorption Laws	$A \vee (A \wedge B) \equiv A$
	$A \wedge (A \vee B) \cong A$
	$A \vee (-A \wedge B) \cong A \vee B$
	$A \wedge (-A \vee B) \equiv A \wedge B$
Idempotence	$A \vee A \equiv A$
	$A \wedge A \cong A$
Excluded Middle Law	$A \lor \sim A \cong T \text{ (True)}$
Contradiction Law	$A \wedge \neg A \equiv F \text{ (False)}$.
Commonly used equivalence relations	$A \vee F \equiv A$
	$A \vee T \cong T$
	$A \wedge T = A$
	$A \wedge F \cong F$
	$A \rightarrow B \cong \neg A \vee B$
	$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$
	$\cong (A \wedge B) \vee (\neg A \wedge \neg B)$

Propositional logic

- It deals with the validity, satisfiability (also known as consistency), and unsatisfiability of a formula and the derivation of a new formula using equivalence laws
- A formula α is said to be tautology iff the value of α is true for all its interpretations
- The validity, satisfiability, and unsatisfiability of a formula may be determined as follows:

- A formula α is said to be valid iff it is tautology
- A formula α is said to be satisfiable if there exists at least one interpretation for which α is true
- A formula α is said to be unsatisfiable if the value of α is false under all interpretations
- E.g. if it is humid then it will rain and since it is humid today it will rain

Solution:

- A: It is humid
- B: It will rain

• The formula α corresponding to the given sentence is α : $[(A->B)^A]->B$

A		В	$A \to B = (X)$	$X \wedge A = (Y)$	$Y \rightarrow B$
T		T	T	. T	T
T		F	F	F	T
F		T	T	F	T
F	-	F	T	P	1

- Truth table approach is easy for evaluating consistency, validity, etc. of a formula
- But the size of truth table grows exponentially
- If a formula contains n atoms, then the truth table will contain 2ⁿ entries
- Some other methods are concerned are:
 - Natural deduction system
 - Axiomatic system
 - Semantic tableau method
 - Resolution refutation method

Natural deduction system

- It mimics the pattern of natural reasoning
- Follows forward chaining
- The system is based on a set of deductive inference rules
- Assuming that A_1 , A_2 ,... A_k , where 1<=k<=n, are set of atoms and α_j , where 1<=j<=m, and β are well formed formula
- The inference rules may be stated as in table

Table 4.6 NDS Rules Table

Rule Name	Symbol	Rule	Description
Introducing A	(I:Λ)	If A_1, \dots, A_n then $A_1 \wedge \dots \wedge A_n$	If $A_1,, A_n$ are true, then their conjunction $A_1 \wedge \wedge A_n$ is also true.
Eliminating A	(E:Λ)	If $A_1 \wedge \wedge A_n$ then $A_i (1 \le i \le n)$	If $A_1 \wedge \wedge A_n$ is true, then any A_i is also true.
Introducing V	(I:V)	If any A_i $(1 \le i \le n)$ then $A_1 \lor \lor A_n$	If any A_i $(1 \le i \le n)$ is true, then $A_1 \lor \lor A_n$ is also true.
Eliminating V	(E:V)	If $A_1 \vee \vee A_n, A_1 \rightarrow A$, , $A_n \rightarrow A$ then A	If $A_1 \vee \vee A_m A_1 \rightarrow A$, $A_2 \rightarrow A$,, and $A_n \rightarrow A$ are true, then A is true.
Introducing →	$(I: \rightarrow)$	If from $\alpha_1,, \alpha_n$ infer β is proved then $\alpha_1 \wedge \wedge \alpha_n$ $\rightarrow \beta$ is proved Ms. M. Raiva Lakshmi	If given that $\alpha_1, \alpha_2,,$ and α_n are true and from these we deduce β then $\alpha_1 \wedge \wedge \alpha_n \rightarrow \beta$ is also true.

Table 4.6 (Contd.)

Rule Name	Symbol	Rule	Description
Eliminating →	(E: →)	If $A_1 \rightarrow A$, A_1 , then A	If $A_1 \rightarrow A$ and A_1 are true then A is also true. This is called <i>Modus Ponen</i> rule.
Introducing ↔	(1: ↔)	If $A_1 \rightarrow A_2$, $A_2 \rightarrow A_1$ then $A_1 \leftrightarrow A_2$	If $A_1 \rightarrow A_2$ and $A_2 \rightarrow A_1$ are true then $A_1 \leftrightarrow A_2$ is also true.
Elimination ↔	(<i>E</i> : ↔)	If $A_1 \leftrightarrow A_2$ then $A_1 \to A_2, A_2 \to A_1$	If $A_1 \leftrightarrow A_2$ is true then $A_1 \rightarrow A_2$ and $A_2 \rightarrow A_1$ are true
Introducing ~	(1: ~)	If from A infer A ₁ A -A ₁ is proved then -A is proved	If from A (which is true), a contradiction is proved then truth of -A is also proved
Eliminating ~	(E: ~)	If from $\sim A$ infer $A_1 \land \sim A_1$ is proved then A is proved	If from -A, a contradiction is proved then truth of A is also proved

- A theorem in NDS written as, from $\alpha 1,...$ $\alpha 2$ infer β leads to the interpretation that β is deduced from a set of hypotheses $\{\alpha 1,...$ $\alpha 2\}$ are assumed to be true in a given context
- Therefore the theorem β is also true in the same context
- Thus we can conclude that β is consistent
- A theorem that is written as infer β implies that there are no hypotheses and β is true under all interpretations, i.e. β is a tautology

- E.g. prove that A \wedge (B $^{\vee}$ C) is deduced from A $^{\wedge}$ B
- Solution: The theorem in NDS can be written as from A^hB infer $A^h(B^hC)$ in NDS

	Table 4.7	Proof of the Theorem for Example 4.3	Maria Salan Andrews
Description		Formula	Comments
Theorem		from A A B infer A A (B V C)	To be proved
Hypothesis (given)		ΑΛΒ	1
E: Λ (1)		A	2
E: A (1)		В	3
I: Y (3)		BVC	4
<i>I</i> : Λ (2, 4)		AΛ(B V C)	Proved

Axiomatic system

- It is based on a set of three axioms and one rule of deduction
- A forward chaining approach
- It is as powerful as Truth table & NDS approach
- In this, a guess is required in selection of appropriate axiom(s)
- In this, only two logical operators, not(~) and implication(->) are allowed to forma a formula
- Any formula can be written using the ~ and ->

- E.g.
 - $-A^{A}B \equiv (^{A}A^{A}B) \equiv (A->^{B})$
 - $-A^{\vee}B \equiv {}^{\sim}A > B$
 - $A < -> B \equiv (A -> B)^{\land}(B -> A) \equiv \sim [(A -> B) -> \sim (B -> A)]$
- In axiomatic system, there are three axioms, which are always true(or valid), and one rule is called Modus Ponen (MP) as follows:
 - Axiom1: A->(B->A)
 - Axiom2: [A->(B->C)]-> [(A->B)->(A->C)]
 - $Axiom3: (^A->^B)->(B->A)$
 - Rule: Hypothesis: A->B and A; consequent: B

- Interpretation of Modus Ponen's rule:
 - Given that A->B and A are hypotheses (assumed to be true), B is inferred (i.e., true) as a consequent
- E.g. Establish A->C is a deductive sequence of {A->B,
 B->C}, i.e. {A->B,B->C} |- (A->C)

Table 4.9 Proof of the theorem $\{A \to B, B \to C\} \vdash (A \to C)$

Formula	Comment
$\{A \to B, B \to C\} -(A \to C)$	Prove
$A \rightarrow E$	1
$B \rightarrow C$	
$(B \to C) \to [A \to (B \to C)]$	3
$[A \rightarrow (B \rightarrow C)]$	4
$[A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]$	
The same of the sa	
(4 → €)	Proved
	$\{A \to B, B \to C\} - (A \to C)$ $A \to B$ $B \to C$ $(B \to C) \to [A \to (B \to C)]$ $[A \to (B \to C)]$ $[A \to (B \to C)] \to [(A \to B) \to (A \to C)]$ $(A \to B) \to (A \to C)$

Hence, we can conclude that $A \to C$ is a deductive consequence of $\{A \to B, B \to C\}$.

Semantic tableau system

- A backward chaining approach
- A set of rules are applied systematically on a formula/ a set of formulae in order to establish consistency or inconsistency
- Semantic Tableau is a binary tree constructed by using semantic tableau rules with a formula as a root

Semantic Tableau rules

Rule No.	Tableau tree	Explanation
Rule 1	$\alpha \wedge \beta$ is true if both α and β are true $\alpha \wedge \beta$ $\begin{vmatrix} \alpha \\ \beta \end{vmatrix}$	A tableau for a formula $(\alpha \land \beta)$ is constructed by adding both α and β to the same path (branch)
Rule 2	$\sim (\alpha \land \beta)$ is true if either $-\alpha$ or $-\beta$ is true $-(\alpha \land \beta)$ $-\alpha \qquad -\beta$	A tableau for a formula $\sim(\alpha \Lambda \beta)$ is constructed by adding two new paths: one containing $\sim\alpha$ and the other containing $\sim\beta$
Rule 3	$\alpha \vee \beta$ is true if either α or β is true $\alpha \vee \beta$ $\alpha \vee \beta$	A tableau for a formula $(\alpha \lor \beta)$ is constructed by adding two new paths: one containing α and the other containing β

Rule No.	Tableau tree	Explanation
Rule 8	$\alpha \leftrightarrow \beta$ is true then $(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$ is true $\alpha \leftrightarrow \beta$ $\alpha \land \beta \qquad \neg \alpha \land \neg \beta$	A tableau for a formula $\alpha \leftrightarrow \beta$ is constructed by adding two new paths, one containing $\alpha \land \beta$ and other $\sim \alpha \land \sim \beta$ which are further expanded
Rule 9	$\sim (\alpha \leftrightarrow \beta)$ is true then $(\alpha \land \sim \beta) \lor (\sim \alpha \land \beta)$ is true $\begin{array}{c} \sim (\alpha \leftrightarrow \beta) \\ \alpha \land \sim \beta \\ -\alpha \land \beta \end{array}$	A tableau for a formula $\sim (\alpha \leftrightarrow \beta)$ is constructed by adding two new paths: one containing $\alpha \land \sim \beta$ and the other $\sim \alpha \land \beta$ which are further expanded

E.g. construct a semantic tableau for a formula $(A^{\wedge}B)^{\wedge}$ ($^{\sim}B->C$)

	Table 4.12 Semantic Tableau for Example 4.7	7
Description	Fermula	Line number
Tableau root	$(A \land \sim B) \land (\sim B \rightarrow C)$. 1
Rule 1 (1)	A ∧ ~B	2
	$\sim B \rightarrow C$	3
Rule 1 (2)	A 1	4
	$\sim B$	5 IMG_0786.
Rule 6 (3)	~(~B) C	6
Rule 3 (6)	$B \qquad \sqrt{\text{(open)}}$	
	v× (closed) (B, ~B) i	A company of the second

Description	Formula	. L	ne number
Tableau root	$\sim (A \vee B) \wedge (C \rightarrow B) \wedge (A \vee C)$		1
Rule 1 (1)	~(A V B)		2
	$(C \to B)$	THE STATE OF THE S	3
	(A V C)		4
Ruie 4 (2)	~A		
	-B		
Rule 3 (4)	A C		
Rule 6 (3)	$\times \{A, \sim A\}$ $\sim C$ B		

Table 4.15 Tableau Method for Example 4.11 Line number Formula Description $\sim (A \vee B) \wedge (B \rightarrow C) \wedge (A \vee C)$ Tableau root $\sim (A \vee B)$ Rule-1 (1) $(B \rightarrow C)$ (AVC) Rule 4 (2) ~B Rule 3 (4) $\times \{A, \sim A\}$ Rule 6 (3)

Resolution refutation

- This method is used to derive a goal from a given set of clauses by contradiction
- Clause denotes a special formula containing the Boolean operators ~ and ^V
- This is used to develop computer-basedsystems that can be used to prove theorems automatically
- Uses a single inference rule, 'resolution based on modus ponen inference rule'

Table 4.17 Tableau Method for Example 4.13

Description	Formula	Line number
	$\sim (B V \sim (A \rightarrow B) V \sim A)$	1
Tableau root		
Rule 4 (1)	~ <i>E</i>	2
	1	
	$\sim [\sim (A \rightarrow B) \ V \sim A]$. 3
Rule 4 (3)	$\sim [\sim (A \to B) \ V \sim A]$ $\sim [\sim (A \to B)].$	4
	~(~A)	5
Rule 5 (5)	A	. 6
Rule 5 (4)	$A \rightarrow B$	
Rule 6 (7)	~A B	7
	MSXMARajya Lakshon(BywB)	

Predicate logic

- Propositional logic has many limitations
- E.g. John is a boy, Paul is a boy, Peter is a boy
 - It can be symbolized by A,B, & C respectively in propositional logic
 - But no conclusions can be drawn similarities among boys, i.e. A, B, C cannot represent boys
- So, a general statement boy(X), where X is bound with John, Paul, Peter
- These facts are called instances of a boy(X)
- Here, boy(X) is called a Predicate statement or expression, boy is predicate symbol, X is argument

- When a variable X gets bound to its actual value then the predicate statement boy(X) becomes either true or false
- E.g. boy(Peter) = true, boy(Marry) = false
- Predicate logic is a logical extension of Propositional logic
- Predicate calculus is the study of predicate systems
- When inference rules are added to predicate calculus, it becomes predicate logic