Digital Design and Computer Architecture LU

Lab Protocol

Exercise IV

Group?

Klaus Botschen, Matr. Nr. 8625499

klaus.botschen@student.tuwien.ac.at

Manuel Fischer, Matr. Nr. 11905171

manuel.fischer@tuwien.ac.at

Vienna, June 28, 2021

Forwarding Simulation

Figure 1: Simulation screenshot for Listing 1.

Make sure that at least the following signals are visible in Figure 1: the program counter in the fetch stage, the instruction being fetched, the content of registers x1 and x2 as well as the signals wraddr, wrdata and regwrite of the register file.

Listing 1: Assembler example with forwarding

Branch Hazards Simulation

Figure 2: Simulation screenshot for Listing 2.

Make sure that at least the following signals are visible in Figure 2: the program counter in the fetch stage, the instruction being fetched, the content of registers x1, x2 and x3 as well as the signals wraddr, wrdata and regwrite of the register file.

Listing 2: Assembler example for branches

Cache Simulation

Table 1: Resource usage by entity, including resources used by sub-entities.

	LC Combinationals	LC Registers	Memory Bits
Fetch Stage	82	16	0
Decode Stage	165	47	2048
– Register File	149	162	2048
Execute Stage	336	152	0
$- \mathrm{ALU}$	696	0	0
Memory Stage	88	113	0
– Memory Unit	85	0	0
Write-Back Stage	87	88	0
Forwarding Unit	15	0	0
Control Unit			
Sum			

Question: What is the maximum frequency of your design?

Answer: 92MHz with aggressive optimization at 85 \hat{A} °C; with balanced mode $f_{max} = 84.36MHz$.

Question: Where is the critical path of your design?

Answer: The critical path is mostly due to the forwarding, e.g. from WB wb_next register via the EXEC forwarding mux through the ALU bit shift combinatorial logic finally to the alu_next register in the MEM stage.