Masked Face Detection?

B10615040 陳洛翔 Axot

B10530301 許書豪 Jack

M10815822 Hoan

Table of contents

- Introduction
- Mask Face Classifier Training
- Tracker
- Analysis/Visualization
- Demo

Introduction

- Objective
- GUI
- Flow chart
- Model we used

Objective

Our idea was to do something for this COVID-19 Era, creating a safe environment as we prepare for open facilities again, help people and their families free form harm, so then we want to do something that have more value and can have more extension.

Objective

So we did....

- Collect the people's' information while they get into/out a place e.g. convenience store, school, etc. And then we can do some analysis.
- With this analytic enables facility owners to know who enters their building with or without a required mask.
- People's' information contains
 - Wearing mask or not
 - Age
 - Gender
 - Timestamp

GUI

Flow Chart

Model we used

- Detection
 - Openvino pretrained model: face-detection-adas-0001
- Classifier
 - Openvino pretrained model: age-gender-recognition-retail-0013
 - Model we trained: MaskFaceClassifier

Mask Face Classifier Training

- Data source
- Model Structure
- Training Result
- Feature Map

Data source

https://www.kaggle.com/andrewmvd/face-mask-detection

Then we can get 716 with and without mask face

Model Structure

Total params:110,721

Training Result

Train acc: 0.9589

Val acc: 0.9930

Total training time: less than 1 min!

Feature map

Feature map

Feature map

Tracker

- Pros and Cons
- Detector and dlib.correlation_tracker
- Pyimagesearch CentroidTracker
- Performance

Pros and Cons

• Pros:

Have higher speed.

Detection is more computation expensive than tracker. (And we only have cpu.)

• Cons:

Have lower accuracy.

Tracker track the face by correlation of image

Detector and dlib.correlation tracker

Detector and dlib.correlation_tracker

- Every N Frames, Detector refreshs/tells correlation_tracker that where the faces actually are.
- Then correlation_tracker keep tracking the faces by the correlation of a sequence of frames

Pyimagesearch - CentroidTracker

Based on the track result (bounding box) from Detector and CorrelationTracker,
CentroidTracker decide to new an objects, delete objects and track objects

Pyimagesearch - CentroidTracker

1.

2.

3.

4.

t:spend: 0.02922s t:Call detector ~~~ t:spend: 0.073359s t:spend: 0.027943s t:spend: 0.025006999999999998s t:spend: 0.029967999999999998s t:spend: 0.029908999999999998s t:spend: 0.031874s t:spend: 0.040889999999999996s t:spend: 0.04588s t:Call detector ~~~ '-spend: 0.090750

t:spend: 0.027926s

Performance

- If we only have one face
- Detector:
- 0.070 ~ 0.09s per frame
- Correlation Tracker:
- 0.025 ~ 0.04s per frame
- Tracker is three times faster than Detector!

:spend: 0.151972s :spend: 0.158835s :spend: 0.146602999999999998s :spend: 0.139372s :spend: 0.144289s :spend: 0.137288s :spend: 0.144654s :spend: 0.195896s :spend: 0.148143s :spend: 0.149366s :spend: 0.15064s :spend: 0.148766999999999998s

:spend: 0.149844s

:spend: 0.186125999999999999

Performance

- If we have lots of face
- Detector:
- 0.18 ~ 0.19s per frame
- - Correlation Tracker:
- 0.14 ~ 0.16s per frame
- The affect is not that obvious.

Analysis/Visualization

- Data we collected
- What can we Analyze/Visualize?

Data we collected

- timestamp
- mask
- gender
- age

timestamp	mask	gender	age
1592786280	No Mask	Male	30
1592786282	Mask	Male	29
1592786282	No Mask	Male	48
1592786284	No Mask	Male	38
1592786289	No Mask	Male	29
1592786315	No Mask	Male	21
1592786317	No Mask	Male	40
1592786319	No Mask	Male	34
1592786323	No Mask	Male	37
1592786323	No Mask	Male	47
1592786327	No Mask	Male	28
1592786330	No Mask	Male	51
1592786339	No Mask	Male	50

What can we Analyze/Visualize

- Relationship between mask and (age, gender)
- Distribution of gender, age, (gender, age)
- People flow (by gender) (by age)
 - In the month distributed by "date"
 - Relationship with "isHoliday"
 - Stats for each hour
 - •
 - Combine all these stuff above
- If we are in a big building, then we can stats for each area in the building.
- Lots of work!

mask	gender	age	year	month	date	day	hour	isHoliday
No Mask	Female	68	2020	6	1	0	15	False
Mask	Female	32	2020	6	1	0	15	False
Mask	Male	37	2020	6	1	0	15	False
No Mask	Female	47	2020	6	1	0	16	False
Mask	Female	68	2020	6	1	0	16	False
Mask	Male	75	2020	7	1	2	6	False
No Mask	Female	67	2020	7	1	2	6	False
Mask	Male	36	2020	7	1	2	7	False
No Mask	Male	31	2020	7	1	2	7	False
Mask	Female	52	2020	7	1	2	7	False

Demo

End

https://github.com/AxotZero/NTUST--MaskFaceDetection