Lecture 22 3 Oct 2023

Different subsets of effector CD4+ T cells

Naive CD4+ T cells may differentiate into distinct subsets of effector cells in response to antigen, costimulators, and cytokines. The columns to the right list the major differences between the best-defined subsets.

T_H1 subsets of effector CD4+ T cells

- IL-12 produced by dendritic cells and macrophages in response to microbes, including intracellular microbes, and
- IFN-γ produced by NK cells (all part of the early innate immune response to the microbes) activate the transcription factors T-bet, STAT1, and STAT4, which stimulate the differentiation of naive CD4+ T cells to the T_H1 subset.
- IFN- γ produced by the T_H1 cells amplifies this response and inhibits the development of T_H2 and T_H17 cells.

T_H2 subsets of effector CD4+ T cells

- IL-4 produced by activated T cells themselves or by mast cells and eosinophils, especially in response to helminths, activates the transcription factors GATA-3 and STAT6, which stimulate the differentiation of naive CD4+ T cells to the T_H2 subset.
- IL-4 produced by the T_H2 cells amplifies this response and inhibits the development of T_H1 and T_H17 cells.

T_H17 subsets of effector CD4+ T cells

- IL-1 and IL-6 produced by APCs and transforming growth factor- β (TGF- β) produced by various cells activate the transcription factors ROR γ t and STAT3, which stimulate the differentiation of naive CD4+ T cells to the T_H17 subset.
- IL-23, which is also produced by APCs, especially in response to fungi, stabilizes the T_H17 cells. TGF-β may promote T_H17 responses indirectly by suppressing T_H1 and T_H2 cells, both of which inhibit T_H17 differentiation (not shown in the figure).
- IL-21 produced by the T_H17 cells amplifies this response.

B-Cell Development, Activation, and Differentiation

B Cells

- Provides antibody mediated immunity constitute 10-15% of blood lymphocytes.
- B lymphocytes mature within the bone marrow; when they leave it, each expresses a unique antigen binding receptor on its membrane
- Plasma cells live for only a few days, they secrete enormous amounts of antibody (2000/sec)

B-cell generation and development

- In many vertebrates, including humans and mice, B cells generation occurs in bone marrow
 - Antigen-independent phase
 - Ig-gene rearrangement to create antigen-specificity

Bone marrow

Pro-B cell → precursor B cell
 →Stromal cell in bone marrow
 secrete IL-7 that help development
 into immature B cells

B-cell generation and development

Pro-B Cell

• Undergo Ig Heavy chain rearrangement (express Ig α / Ig β that forms BCR)

Pre-B cell

• Translation of heavy chain genes, Light chain rearrangement

Immature B cell

- Is now committed to antigenic specificity and produces IgM
- B cell not fully functional, must first express both IgM and IgD on membrane
- Recognize self antigens and develops **tolerance** to self antigens.

B-cell generation and development

- 90% of B cells produced everyday die without ever leaving bone marrow
 - Negative selection due to cells that express auto-antibodies against self antigen in the marrow

Lecture 23 5 Oct 2023

Development of B cells

- Immature B cell bearing IgD/M on membrane leaves bone marrow to peripheral lymphoid organs
 - NAÏVE B cells have not encountered antigen
 - Matures to express both IgM and IgD with single antigen specificity
- Encounter antigen in secondary lymphoid tissue
 - Differentiate into plasma cells and memory cells
 - Class switching

Figure 11-1
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

B cell Activation

- Antigens that activate B cells fall into two categories:
- ✓ Thymus-independent antigens (TI)
 - These antigens activate B cells by T independent means
 - Type I (TI-1) lipopolysaccharide
 - Type 2 (TI-2) highly repetitious molecules (bacterial flagella)
- ✓ Thymus-dependent (TD) antigens
 - B cell required direct contact with T_H cell

• T_H cells play essential role in B cell responses

- (a) Antigen cross-links mlg, generating signal 1, which leads to increased expression of class II MHC and co-stimulatory B7.
 Antigen-antibody complexes are internalized by receptor-mediated endocytosis and degraded to peptides, some of which are bound by class II MHC and presented on the membrane as peptide–MHC complexes.
- (b) T_H cell recognizes antigen-class II MHC on B-cell membrane. This plus costimulatory signal activates T_H cell.
- (c) 1. T_H cell begins to express CD40L.
 - 2. Interaction of CD40 and CD40L provides signal (2).
 - 3. B7-CD28 interactions provide costimulation to the T_H cell.
- (d) 1. B cell begins to express receptors for various cytokines.
 - Binding of cytokines released from T_H cell in a directed fashion sends signals that support the progression of the B cell to DNA synthesis and to differentiation.

B cell proliferation and differentiation

• After B cell activation by TD and TI mechanisms, they undergo proliferation and differentiation at the germinal centers into centroblasts and then to centrocytes.

3 events in germinal centers

- Affinity maturation
 - Result of somatic hypermutation
- Class switching
- Formation of plasma and memory B cells

• This centrocytes will later differentiate into plasma cells and memory cells.

Figure 11-18

Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

- B cells develop in bone marrow and undergo antigen induced activation and differentiation in the periphery
- Activated B cells can give rise to antibody-secreting plasma cells or memory B cells

PLASMA CELL

- Antibody secreting cell, oval, eccentrically placed oval nucleus, large block of chromatin peripherally.
- Structurally immunoglobulin production
- End cells
- Short life span

MEMORY CELL

- Keeps immunological memory
- Non antibody producing
- Long life span
- Helps in faster secondary response.

Class Switching

- Dependent on cytokines to switch from IgM to other isotypes
 - Thymus-dependent antigens
 - Interaction of CD40 on B cell and CD40L on T cell
 - X-linked hyper-M syndrome
 - T_H cells don't express CD40L, patients only produce IgM
 - No memory cell populations, no germinal centers

Figure 11-22
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

Humoral Response – Primary vs Secondary

Figure 11-16

Kuby IMMUNOLOGY, Sixth Edition

© 2007 W. H. Freeman and Company

Property	Primary response	Secondary response
Responding B cell	Naive (virgin) B cell	Memory B cell
Lag period following antigen administration	Generally 4–7 days	Generally 1–3 days
Time of peak response	7–10 days	3-5 days
Magnitude of peak antibody response	Varies depending on antigen	Generally 100–1000 times higher than primary response
Isotype produced	IgM predominates early in the response	lgG predominates
Antigens	Thymus-dependent and thymus- independent	Thymus-dependent
Antibody affinity	Lower	Higher

Regulation of B-cell

 Humoral and cell-mediated branches must be heavily regulated

- Cytokines play an important role
- This is important to save over acting immune system.
- Antigenic competition
 Previous encounter with antigen can render animal tolerant or may result in formation of memory cells
- Presence of antibody can suppress response to antigen

T cells versus B cells

