Knot Surgery and Integer Characterizing Slopes

Gabriel Agostini, Sophia Chen, Christian Serio, Cecilia Wang, Anton Wu, and Kexin Wu Advisors: Kyle Hayden and Aliakbar Daemi

Columbia University

August 1, 2019

Knots and links in the 3-sphere

Definition

A $knot\ K$ is the image of a smooth embedding of the circle S^1 into a 3-manifold, usually the 3-sphere S^3 . In particular, K is diffeomorphic to S^1 . A $link\ L$ is a disjoint union of knots, which may be knotted together.

Definition

Let M,N be manifolds and $g,h\colon N\to M$ embeddings. An ambient isotopy of M carrying g to h is a continuous map $F\colon M\times [0,1]\to M$, such that $F_t=F(\cdot,t)$ is a homeomorphism of M for each $t\in [0,1],\ F_0=\mathbb{1}$, and $F_1\circ g=h$.

- We regard two knots $K, K' \subset S^3$ to be equivalent if they differ by an ambient isotopy of S^3 . We write $K \simeq K'$.
- ullet Equivalently, we can view knots as subsets of \mathbb{R}^3 rather than S^3 .

Knot diagrams

- We can study a knot $K \subset \mathbb{R}^3$ by projecting it onto a hyperplane \mathbb{R}^2 .
- If $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ is a projection such that $\pi(K)$ is an embedded curve except at finitely many *crossing points*, then $\pi(K)$ is a *diagram* for K.
- The crossing number c(K) is the minimum number of crossings in a diagram of K.

Figure: Knots with $c(K) \le 7$

Figure: Hopf link

Reidemeister moves

Theorem (Reidemeister)

Two knots K, K' are isotopic if and only if they have diagrams that differ by a sequence of planar isotopies and Reidemeister moves.

Crossings

- If we orient a knot K, then we can define a sign for each crossing by the right-hand rule.
- For a two-component link $L = K \cup K'$, the *linking number* lk(L) is one half the sum of the signs of the crossings between K and K' in a diagram of L.

Unknotting number and band move

Definition

The unknotting number u(K) of a knot K is the minimal number of crossing changes that are required to change some diagram of K into a diagram of the unknot.

• If u(K)=0, then K is an unknot.

Definition

Let K be any knot(or link) in S^3 and let $b \subset S^3$ be any embedded band where one pair of sides lie along arcs in K and where b is otherwise disjoint from K. Join K to itself by deleting the arcs $K \cap b$ and adding the arcs forming the other side of b. The resulting knot(or link) K' is obtained from K by a band move along b.

Example of band move and band presentation

Example of band move:
 The Stevedore knot 6₁ is obtained from a band move on two unknots:

- If K can be obtained from another knot(or link) K' by a single band move, then we say K has a band presentation.
- If K can be obtained from a Hopf link by a single band move, then K has a banded Hopf link presentation.

Example of banded Hopf link presentation

Theorem

If K has u(K) = 1, then it is obtained from the Hopf link by a single band move.

Example: banded Hopf link presentation of Trefoil:

Twist knots and Twisted whitehead double

Definition

A *twist knot* K is a knot obtained by repeatedly twisting an unknot and linking the ends together.

Definition

A knot K is a *twisted Whitehead double* if there exists a band presentation for K in which the band does not cross either component of the Hopf link.

• Note: twist knots are twisted Whitehead doubles, but not all twisted Whitehead doubles are twist knots.

Simple Closed Curves

Definition

A simple closed curve (s.c.c.) is a submanifold of a smooth manifold X, with itself diffeomorphic to S^1 .

- By definition, a s.c.c. is embedded in some smooth manifold and is intuitively a 1-dimensional curve diffeomorphic to S^1 without any self-intersection.
- In particular, we can embed s.c.c.'s in a manifold such as a torus T^2 . An alternate definition for a knot $K \subset S^3$ is a simple closed curve in S^3 .

Embedded s.c.c.'s on T^2

Definition

A s.c.c. $\gamma \subset T^2$ is called *non-separating* if $T^2 - \gamma$ is connected.

- Every non-sperating s.c.c. in T^2 bounds a disc.
- Any two oriented and non-separating s.c.c's $\gamma, \gamma' \subset T^2$ are isotopic if and only if their signed intersection, the sum of their local intersections, is 0.

Definition

Any two s.c.c.'s $\gamma, \gamma' \subset T^2$ form a *basis* if they are non-separating and intersecting in a single point.

Preferred meridian and longitude pair for a knot $K \subset S^3$

Definition

Given a knot $K \subset S^3$, $N(K) \cong S^1 \times D^2 \cong$ a solid torus $\mathbb T$ where $\partial N(K) \cong$ a torus T^2 , we define a *meridian* μ of K to be an unknot $\partial D^2 \times 1 \subset \partial N(K) \cong T^2$ that bounds a disc which K crosses exactly once. Then we choose a longitude of K as a circle $\lambda = 1 \times S^1 \subset \partial N(K) \cong T^2$, which is a parallel copy of K on $\partial N(K)$.

• Note that our choice of the longitude λ for K intersects the meridian μ non-tangentially in exactly one point, and thus (μ, λ) form a basis of T^2 .

Isotopy classes of s.c.c.'s on T^2

- If a preferred basis of a torus T^2 is (m, l), then any s.c.c $\gamma \subset T^2$ can be determined (up to isotopy) by two numbers, $p := |n(\gamma \cap m)|$ and $q := |n(\gamma \cap l)|$ where $n(a \cap b)$ is the signed intersection between the two oriented simple closed curves a and b on T^2 .
- Further, isotopy classes s.c.c's on a torus are classified by the set of extended rational numbers $\mathbb{Q} \cup \{\infty\}$.
- Hence, given a knot $K \in S^3$ where $\partial N(K) \cong$ a torus T^2 , any $p/q \in \mathbb{Q} \cup \{\infty\}$ determines a s.c.c β on $\partial N(K)$ that is well-defined up to isotopy. Intuitively, p (and q resp.) is the number of of times that β goes around the meridian (and longitude resp.) that we choose for K.
- We use β to define a 3-manifold $S^3_{p/q}(K)$, called p/q-surgery on K.

Surgery on a knot: drilling then filling

Definition

Given a knot $K\subset S^3$, the *exterior* of K, denoted X(K), is a manifold with boundary obtained by removing the interior of $N(K)=S^1\times D^2\cong$ a solid torus $\mathbb T$ from S^3 . Then $\partial X(K)=\partial N(K)\cong$ a torus T^2 . Let β be the s.c.c on T^2 determined (up to isotopy) by some extended rational number $p/q\in\mathbb Q\cup\{\infty\}$. Then the p/q-surgery on K, a 3-manifold denoted $S^3_{p/q}(K)$, is obtained by gluing another solid torus $\mathbb T'$ back to X(K) so that the meridian of $\mathbb T'$ is identified with the curve β .

Examples of p/q-surgery on a knot

- Example: $\pm 1/0$ -surgery on a knot K gives back S^3 trivially. Thus any nontrivial surgery on a knot K has rational slopes.
- Example: $S^3_{1/n}(u) \cong S^3$ where u is an unknot and $n \in \mathbb{Z}$.

Surgery on a link

Definition

Similarly, given a link L in S^3 s.t. $\exists p/q \in \mathbb{Q} \cup \{\infty\}$ associated to each component of L, we can do surgery on L by doing surgery along each of its component. Any such link is called a *framed* link.

• Example: for any integer n, (n,0)-surgery on a Hopf link K yields S^3 .

Theorem

Any oriented, connected 3-manifold can be obtained by doing surgery along a framed link. So we can think of any 3-manifold in terms of a diagram for a framed link. Any such diagram is called a surgery diagram.

Example of surgery on a link

Theorem

For any integer n and any knot K with an unknot c as its meridian, (n,0)-surgery on $K \cup c$ yields S^3 . Such a pair of K and c forms a cancelling pair that can be deleted without changing the 3-manifold described by the surgery diagram.

Surgery dual to a knot

• Note that K is given by $S^1 \times 0$ inside $N(K) = S^1 \times D^2 \cong$ a solid torus \mathbb{T} . i.e. K is the core curve of the solid torus N(K).

Definition

When doing p/q-surgery on a knot $K \in S^3$, the new solid torus $\mathbb{T}' \cong S^1 \times D^2$ that we glue back in X(K) to produce $S^3_{p/q}(K)$ also has a core curve $S^1 \times 0$, which specifies a knot γ in $S^3_{p/q}(K)$. Call γ the surgery dual of K.

Surgery dual to a knot (cont.)

• For any knot K and any integer n, the surgery dual to K in $S_n^3(K)$ can be represented as a meridian to K in the surgery diagram.

Lemma

Surgery duality for knots in S^3 is symmetric.

Surgery dual link to a framed link

Definition

A surgery dual link to a framed link $L = \bigcup_{i=1}^{N} L_i \in S^3$ is a link $L' = \bigcup_{i=1}^{N} L'_i$, where each component L'_i is the surgery dual to L_i in the surgered manifold Y that we obtain after doing surgery on L.

Piccirillo's construction: Knots with the same surgery

Theorem (Piccirillo 2018)

Let $L = R \cup G \cup B$ be a surgery diagram for some 3-manifold Y such that:

- R is a zero-framed unknot, B and G have integral framings.
- 2 Ignoring B, R is isotopic to a meridian of G.
- Ignoring G, R is isotopic to a meridian of B.
- B and G have linking number 0.

Then, there exist knots K and K' such that $Y \cong S_n^3(K) \cong S_n^3(K')$.

 Piccirillo's construction comes from an older construction, the dualizable patterns construction, to produce knots with the same surgery.

Piccirillo's construction (cont.)

Figure: Diagram of a link L used by Piccirillo on her original paper. The colors (red, blue, and green) match the component letters R, B, G.

Baker-Motegi: Knots with the same surgery

- We adapted the following construction from Baker and Motegi (2018).
- Let K be a knot, and suppose we can take an unknot c linked with K such that (0,0)-surgery on $K \cup c$ is S^3 .
- Baker-Motegi present a method for producing knots K'_n with $S^3_n(K) \cong S^3_n(K'_n)$ from this link.
- Define K' to be the surgery dual to c in $S^3 = S^3_{(0,0)}(K \cup c)$.
- Then K' has the same 0-surgery as K.

Baker-Motegi (cont.)

- Also define c' to be the surgery dual to K in S^3 .
- After some Kirby calculus, we find that in the surgered manifold $S^3 = S^3_{(0,0)}(K \cup c)$, c' is an unknot linked with K'.
- Let K'_n be the result of twisting K' through c', n times.
- We say that $\{K'_n\}$ forms a *twist family*.
- Then K'_n has the same *n*-surgery as K for all n.
- Moreover, if c is not a meridian to K, then $K \simeq K'_n$ for at most finitely many n.

Baker-Motegi Illustration

Obtaining a link $K \cup c$ when u(K) = 1 (Piccirillo)

- In the special case where K has unknotting number one, we can use a band presentation for K.
- We start with a Hopf link $R \cup B$ and slide one component over the other according to the band presentation for K.
- R remains an unknot, which we rename c, and B becomes K.

Lemma

Let $K \cup c$ be the link obtained by the handle slide above. Then (0,0)-surgery on $K \cup c$ gives S^3 .

Obtaining $K \cup c$ when u(K) > 1

- We do not have a systematic way of finding a link $K \cup c$ for a given knot K with u(K) > 1.
- If we perform multiple slides on a Hopf link, then we obtain a link $K \cup c$ for some knot K with higher unknotting number, but we have no way of predicting what K will be.
- Example: 10₁₂₅

Applications of the construction

- We have produced a banded Hopf link presentation for all the 78 unknotting number one knots K with $c(K) \leq 10$.
- We followed the above procedure to manually produce a diagram for a knot K' that has the same zero-surgery as K, using a software called KLO which can perform Kirby calculus on link diagrams.
- Using a software called SnapPy, we were able to verify that whenever
 K was not a twist knot, K' was not isotopic to K. Thus, zero was
 not a characterizing slope.
- We can use a similar process to check whether any integer slope is characterizing.
- Question: Can we classify all integer slopes once we have the link $K \cup c$, with finitely many computations?

Ruling Out Integer Characterizing Slopes

- We developed an algorithm that can be carried out by a computer script to rule out the integer characterizing slopes of some knot K, once we have manually produced the link $L = K \cup c$.
- Given a link L, run SnapPy commands to find out the volume of the knot K, the volume of the manifold $Z = S_0^3(c)$, and the length of the Seifert longitude in Z.
- ② Using these values, apply the theorems of hyperbolic Dehn surgery to find the bound N such that any integer |n| > N is a characterizing slope for K.
- **③** For the remaining 2N + 1 cases, verify if the volume of the knot with the same *n*-surgery as K matches the volume of K.
 - We use the DT code of the link, which uniquely describes all links that we deal with, up to isotopy.

Findings

Theorem (Low-Crossing Knots)

Regarding the integer slopes of knots K such that $c(K) \leq 10$:

- If K has unknotting number u(K) = 1 and K is not a twist knot, then K has at most one integer characterizing slope, namely ± 2 .
- If K is the twist knot 8₁, then K has at most one integer characterizing slope, namely 0.
- If K is one of the u(K) = 2 knots 8_4 , 8_6 , 8_{10} , 8_{12} , 8_{16} , 10_{148} , 10_{149} , or 10_{150} , K has no possible integer characterizing slope.
- If K is one of the u(K) = 2 knots 8_3 , 10_{125} , or 10_{126} , K has at most one integer characterizing slope.

Main theorem

Theorem

If a knot K has unknotting number u(K)=1 and is not a twisted Whitehead double, then K has at most finitely many integer characterizing slopes.

Proof of theorem

Proposition

Let K be a knot in S^3 . Suppose we can take an unknot c linked with K so that (0,0)-surgery on $K \cup c$ yields S^3 and c is not a meridian of K. Then K has at most finitely many integer characterizing slopes.

- This is a strengthened form of a result proven by Baker-Motegi, which we proved using symmetry of surgical duality.
- Part of the proof of this proposition guarantees that our adapted version of Baker-Motegi construction yields the desired K'_n that shares the same n-surgery as K from purely theoretical grounds of duality.
- We can apply this proposition to prove our main theorem, which admits more concrete conditions on K than the hypothesis in the proposition.

Proof of theorem (cont.)

- Recall that for K with u(K) = 1, we could obtain a link $K \cup c$ as in Baker-Motegi with (0,0)-surgery S^3 by sliding over a Hopf link according to the band presentation for K.
- It remains to show that if K is not a twisted Whitehead double, then
 c is not a meridian to K after the handle slide.
- In this case, in any band presentation for K, the band must cross the disc bounded by one of the components of the Hopf link.

Lemma

Let $R \cup B$ be a Hopf link, and consider a handle slide of R over B yielding a link L in which R remains a meridian to B. Then there exists a handle slide of R over B, yielding a link isotopic to L, along a band that does not cross either of the discs bounded by R or B.

Extension of theorem

- How can we drop the condition on twisted Whitehead doubles? And on unknotting number?
- Can we produce an algorithm to find links $L = K \cup c$ from handle slides on a Hopf link?

Conjecture

If K is a knot with unknotting number u(K) = 1 and K is not a twist knot, then K has at most one integer characterizing slope: ± 2 .

Next Steps

- Rigorously prove the lemma on band presentations.
- Keep experimenting with handle slides in order to expand the list on Theorem 1.2.
- Attempt to use other tools to prove a version of Theorem 1.1 for Twisted Whitehead Doubles.
- Look into our final conjecture.