

TD2 : résolution des équations de récurrence

Exercice 1 : Méthode de l'arbre récursif

Résoudre:

1.
$$c(n) = 2c(n-1) + 2c(n-2)$$

2.
$$c(n) = 4c(\frac{n}{2}) + n$$

Exercice 2 : Equations de récurrences linéaires

Résoudre:

1.
$$c(n) = 3c(n-1) + 2$$
, $c(0) = 0$

2.
$$c(n) = 2c(n-1) + c(n-2), c(1) = c(0) = 1$$

3.
$$c(n) = 4c(n-1) - 4c(n-2), c(0) = 1, c(1) = 6$$

4.
$$c(n) = 5c(n-1) - 8c(n-2) + 4c(n-3) + c(1) = 3$$
, $c(2) = 11$, $c(3) = 31$

Exercice 3: Equations de partition

Résoudre:

1.
$$c(n) = 4c(\frac{n}{2}) + n$$

2.
$$c(n) = 4c(\frac{n}{2}) + n^2$$

3.
$$c(n) = 4c(\frac{n}{2}) + n^3$$

4.
$$c(n) = 4c(\frac{n}{2}) + n^2 \log n$$

Exercice 4: Autour de Fibonacci

On rappelle l'équation récursive bien connue de Fibonacci:

$$\begin{cases} f(1) &= 1 \\ f(2) &= 1 \\ f(n) &= f(n-1) + f(n-2), n > 1 \end{cases}$$

Q 4.1 Donner l'équation de récurrence c(n) mesurant le nombre d'appels récursifs nécessaires au calcul de f(n)

Q 4.2 Montrer que $c(n) \ge 1 + 2c(n-2)$.

Q 4.3 En déduire que $c(n) = \Omega(2^{\frac{n}{2}})$.

Q 4.4 Montrez que $c(n) \le 1 + 2c(n-1)$.

Q 4.5 En déduire que $c(n) = \mathcal{O}(2^n)$.

Q 4.6 Resoudre directement l'équation de récurrence c(n).

Exercice 5: Un peu plus dur

Résoudre l'équation

$$c(n) = 2c(\sqrt{n}) + \log n$$

(cela nécessitera deux changements de variable).