

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

CAMADA INTER-REDE (REDE)

- Controla as operações da sub-rede
- Efetua operações de funções características:
 - Mapeamento entre endereços de rede e endereços de enlace
 - Endereçamento
 - Utilização de endereços para identificação de usuários de forma não-ambígua
 - Roteamento
 - Estabelece e libera conexões de rede
 - Detecção e recuperação de erros

CAMADA INTER-REDE (REDE)

- Controla as operações da sub-rede
- Efetua operações de funções características:
 - Sequenciação
 - Controle de congestionamento
 - Seleção de qualidade de serviço
 - Especificação de parâmetros para garantir nível de qualidade de serviço (taxa de erro, disponibilidade do serviço, confiabilidade, throughput (vazão), atraso, etc.)
 - Multiplexação da conexão de rede
 - Várias conexões de rede em uma conexão de enlace

CAMADA DE INTER REDE (REDE)

Repasse

- Envolve transferência de um pacote do enlace de entrada ao enlace de saída
- Ação local realizada por um roteador para transferir um pacote da interface de entrada para a saída

Roteamento

- Envolve todos os roteadores de uma rede determinando o caminho (rotas) por onde os pacotes percorrem da origem ao destino
- Processo que determina os caminhos fim-a-fim que os pacotes percorrem da fonte ao destino

TABELA DE REPASSE

- Cada roteador tem uma tabela de repasse
- Roteador examina o valor do campo no cabeçalho do pacote que está chegando e utiliza esse valor para indexar sua tabela de repasse
- Identifica qual a interface deve ser repassado o pacote

INTERFACES

- Fronteira entre o hospedeiro (host) e o enlace físico
- O IP no host envia datagramas através das interfaces
- Um roteador tem múltiplas interfaces, uma para cada enlace
- Cada interface tem seu próprio endereçamento IP

ENDEREÇAMENTO IP

- O roteamento dos datagramas através das subredes são feitos baseados no seu endereço IP
- Números de 32 bits (4 bytes) normalmente escritos com quatro octetos (em decimal)
- 2³² endereços possíveis
 - Exemplo: 191,179,12,66
- Cada parte pode variar de 0 a 255

ENDEREÇAMENTO IP

- O endereço IP, com seus 32 bits, torna-se demasiado grande para a notação decimal
- Utilizada a notação decimal pontuada (separada por pontos)
- Os 32 bits são divididos em quatro grupos de 8 bits cada
- Exemplo:

ENDEREÇAMENTO IP

- Números são cuidadosamente escolhidos para realizar um roteamento eficiente
- Codifica a identificação da rede a qual um host conecta, ao mesmo tempo, identifica o host único na mesma rede
- Todo host tem seu único endereço para qualquer tipo de comunicação, sendo este endereço conhecido por todos os demais host´s envolvidos

ENDEREÇAMENTO IP

 A identificação das redes são atribuídas de forma única por uma autoridade central denominada
 IANA (Internet Assigned Numbers Authority)

https://www.iana.org/

 A atribuição dos números de estação (hosts) é feita pela entidade que receber um endereço de rede

- Regulamentação para atribuição de endereços:
 - No mundo: IANA (Internet Assigned Numbers Authority)
 delegou ao ICANN (Internet Corporation for Assigned
 Names and Numbers) controle numeração desde 1998.
 - América Latina
 - Registro Regional de Endereçamento IP para América Latina e Caribe (LACNIC)

www.lacnic.net

 No Brasil: registro.br (Comitê Gestor da Internet no Brasil -1995)

www.registro.br

ENDEREÇAMENTO IP

- O endereço IP é constituído basicamente de dois campos :
 - netid: identifica a Rede a qual este host pertence;
 - hostid: identifica o host na Rede.

 Máquinas dentro do mesmo NetId devem ter HostIds diferentes

ENDEREÇAMENTO IP

- A identificação de rede (endereço de rede)
 identifica os sistemas que estão localizados no
 mesmo segmento físico de rede na abrangência
 de roteadores IPs
- Todos os sistemas na mesma rede física devem ter a mesma identificação de rede
- A identificação de rede deve ser única na rede (exceto interfaces por trás de NATs – Network Address Translation)

ENDEREÇAMENTO IP

- A identificação de host (endereço de host)
 identifica uma estação de trabalho, servidor,
 roteador, ou outro host TCP/IP dentro de uma rede
- O endereço para cada host deve ser único para a identificação de rede

CLASSES ENDEREÇOS

- Os endereços IP são classificados em cinco classes que são:
 - Classe A
 - Classe B
 - Classe C
 - Classe D (Multicast)
 - Classe E (Reservado)

- Uma norma escrita pelo IANA (Internet Assigned Numbers Authority) recomenda o uso dos seguintes endereços para rede interna:
 - Classe A: 10.0.0.0 até 10.255.255.255
 - Classe **B:** 172.16.0.0 até 172.31.255.255
 - Classe C: 192.168.0.0 até a 192.168.255.255

CLASSES ENDEREÇOS

- Classe A
 - O bit mais significativo é 0
 - Os outros 7 bits do primeiro octeto identificam a rede
 - Os 24 bits restantes definem o host local
- Usada para redes de grande porte
- Os endereços de rede variam de 1 a 126
- Cada rede tem capacidade de endereçar cerca de 16 milhões de hosts

Class A

Classe do endereço	Primeiro endereço de rede	Último endereço de rede
Classe A	1.0.0.0	126.0.0.0

CLASSES ENDEREÇOS

- Classe B
 - Identificada pelos dois primeiros bits 10
 - Permite o endereçamento de 2^16 hosts
 - O endereçamento de classe B é indicada para redes de porte médio a grande
 - Variam na faixa de 128.1 até 191.255
 - Cada rede pode interligar cerca de 65 mil hosts

Classe do endereço	Primeiro endereço de rede	Último endereço de rede
Classe B	128.0.0.0	191.255.0.0

CLASSES ENDEREÇOS

- Classe C
 - O endereço host é representado pelos três primeiros bits 110
 - Demais 21 bits completam a identificação da rede
 - Os endereços de rede situam-se na faixa de 162.1.1 até 223.254.254
 - Cada rede pode endereçar 254 hosts
 - É indicada para redes locais

Classe do endereço	Primeiro endereço de rede	Último endereço de rede
Classe C	192.0.0.0	223.255.255.0

CLASSES ENDEREÇOS

- Classe D (Multicast)
 - Reservados para endereços de multcast IP
 - Os 4 bits de alta ordem são sempre 1110
 - Os bits restantes são para o endereço que os hosts interessados reconheçam
 - Faixa: 224.0.0.0 a 239.255.255.255

CLASSES ENDEREÇOS

- Classe E (Reservado)
 - São endereços experimentais reservados para uso futuro
 - Os 4 bits de alta ordem são sempre 1111
 - Faixa: 240.0.0.0 a 247.255.255.255

RESTRIÇÕES DE ENDEREÇOS

- O número zero significa a rede corrente
- O número 127.0.0.1 é um endereço de teste (loopback)
- O número 255 representa todos os hosts
- Os NetId de 224 a 254 estão reservados para protocolos especiais e não devem ser usados

MÁSCARA DA SUB-REDE

 Indica como separar o NetId do HostId, especificada em nível de bits

Máscara das Sub-Redes Padrões

Classe A: 255.0.0.0

Classe B: 255.255.0.0

- Classe C: 255.255.255.0

MÁSCARA DA SUB-REDE

Fonte: https://www.hardware.com.br/static/0000000/img-aafbd543.jpg

Classe do endereço IP	Bits da máscara de sub-rede			Máscara de sub-rede	
Classe A	11111111	00000000	00000000	00000000	255.0.0.0
Classe B	11111111	11111111	00000000	00000000	255.255.0.0
Classe C	11111111	11111111	11111111	00000000	255.255.255.0

MÁSCARA DA SUB-REDE

 Uma maneira de expressar uma máscara de subrede é a denotação do número de bits 1 que definem a identificação de rede:

/<número de bits> Notação barra

Classe do endereço IP	Bits da máscara de endereço IP			Prefixo de rede	
Classe A	11111111	00000000	00000000	00000000	/8
Classe B	11111111	11111111	00000000	00000000	/16
Classe C	11111111	11111111	11111111	00000000	/24

CONFIGURAÇÃO IP

– Resumindo:

Um computador qualquer em uma rede TCP/IP deve ser configurado com pelo menos estes três parâmetros:

- O seu endereço IP exclusivo
- A sua máscara de rede (que deve ser a mesma utilizada pelos demais computadores na mesma rede)
- O endereço IP do default gateway

COMO DESCOBRIR A IDENTIFICAÇÃO DE REDE

- O IP usa uma operação matemática chamada "comparação lógica E (and)"
- Numa comparação lógica E, o resultado de 2 itens comparados será verdadeiro somente quando ambos os itens comparados forem verdadeiros
- De qualquer outra forma, o resultado torna-se falso
- Aplicando o princípio dos bits, onde o valor 1 representa "verdadeiro" e 0 "falso", o resultado é 1, ou seja, verdadeiro, quando ambos os valores comparados forem 1, senão o resultado é 0

BIT1	BIT2	E
0	0	0
0	1	0
1	0	0
1	1	1

- Por exemplo, qual é a identificação de rede do IP 129.56.189.41 com a máscara de sub-rede de 255.255.240.0?
 - Para obter o resultado, transforme ambos os números na notação binária equivalente e alinhe-os
 - Então faça a operação E bit-a-bit escrevendo em baixo o resultado
 - O resultado da operação lógica "E" dos 32 bits do endereço IP e a máscara de sub-rede é a identificação de rede

- Por exemplo, qual é a identificação de rede do IP 129.56.189.41 com a máscara de sub-rede de 255.255.240.0?
 - 10000001 00111000 10111101 00101001 Endereço IP 11111111 1111111 11110000 00000000 Máscara de sub-rede 10000001 00111000 10110000 00000000 Ident de sub-rede
- Então faça a operação E bit-a-bit escrevendo em baixo o resultado.
 - O resultado da operação lógica "E" dos 32 bits do endereço IP e a máscara de sub-rede é a identificação de rede: 129.56.176.0.

 Quando a rede está isolada, ou seja, não está conectada à Internet ou a outras redes externas, através de links de comunicação de dados, apenas o número IP e a máscara de sub-rede são suficientes para que os computadores possam se comunicar e trocar informações

- Para equipamentos que fazem parte de uma rede, baseada no protocolo TCP/IP e conectada a outras redes ou a Internet, devemos configurar, no mínimo, os seguintes parâmetros:
 - Número IP
 - Máscara de sub-rede
 - Default Gateway

- Em redes empresarias existem outros parâmetros que precisam ser configurados
- Um dos parâmetros que deve ser informado é o número IP de um ou mais servidores DNS – Domain Name System
- O DNS é o serviço responsável pela resolução de nomes

- Existem aplicativos antigos que são baseados em um outro serviço de resolução de nomes conhecido como WINS – Windows Internet Name System
- O Windows NT Server 4.0 utilizava intensamente o serviço WINS para a resolução de nomes

- As configurações do protocolo TCP/IP podem ser definidas manualmente, isto é, configurando cada um dos equipamentos necessários
- Esta é uma solução razoável para pequenas redes, porém pode ser um problema para redes maiores, com um grande número de equipamentos conectados
- Para redes maiores é recomendado o uso do serviço
 DHCP Dynamic Host Configuration Protocol
- O serviço DHCP fornece todos os parâmetros de configuração do protocolo TCP/IP para os equipamentos conectados à rede

- VERIFICAR CONFIGURAÇÕES DO TCP/IP (Prompt de Comando)
 - Faça logon (login)
 - Abra o prompt de comando
 - Digite:

ipconfig

ipconfig /?

ipconfig /all


```
Promot de comando
                                                                       _ | D | ×
C:\Documents and Settings\Administrador>ipconfig /all
Configuração de IP do Windows
       Nome do host . . . . . . . . : RICARDO
       Sufixo DNS primário. . . . . . . .
       Tipo de nó . . . . . . . . . : híbrido
       Roteamento de IP ativado . . . . : não
       Proxy WINS ativado . . . . . . : não
Adaptador Ethernet Conexão de rede sem fio 3:
       Estado da mídia . . . . . . . . . : mídia desconectada
       Descrição . . . . . . . . . . . . . . . Atheros AR5004G Wireless Network A
dapter #2
       Adaptador Ethernet Conexão local:
       Sufixo DNS específico de conexão .:
       Descrição . . . . . . . . . . : Realtek RTL8139/810x Family Fast E
thernet NIC
       Endereco físico . . . . . . . . . . . : 00-A0-D1-DC-D6-2B
       DHCP ativado. . . . . . . . . . . . . . Sim
Configuração automática ativada . . : Sim
       Endereço IP . . . . . . . . . . . : 192.168.0.157
       Gateway padrão. . . . . . . . . . : 192.168.0.1
       Servidor DHCP . . . . . . . . . : 192.168.0.1
       Servidores DNS. . . . . . . . . : 200.165.132.154
                                         200.149.55.142
       200.149.55.142
Concessão obtida. . . . . . . : segunda-feira, 29 de outubro de 20
M7 M9:31:21
       Concessão expira. . . . . . . . . : segunda-feira, 5 de novembro de 20
07 09:31:21
```


- VERIFICAR CONFIGURAÇÕES DO TCP/IP (WINDOWS)
 - Faça logon (login)
 - Iniciar/Configurações/Conexões de Rede/Conexão Local (Propriedades)
 - Selecionar Protocolo TCP/IP Propriedades

Propriedades de Protocolo TCP/IP	Configurações TCP/IP avançadas
Geral Configuração alternativa	Configurações IP DNS WINS Opções
As configurações IP podem ser atribuídas automaticamente se a rede oferecer suporte a esse recurso. Caso contrário, você precisa solicitar a administrador de rede as configurações IP adequadas.	
⊕ Obter um endereço IP automaticamente	
C Usar o seguinte endereço IP:	
Endereço IP:	Adicionar Editar Remover
Máscara de sub-rede:	Gateways padrão:
Sateway padrão:	Gateway Custo
⊙ Obter o endereço dos servidores DNS	
Usar os seguintes endereços de ser <u>v</u> idor DNS:	
Servidor DNS preferencial:	Adicionar Editar Remo <u>v</u> er
Servidor DNS alternativo:	
	Métrica automática Métrica da interface; Cancelar
	OK Cancelar

- VERIFICAR CONFIGURAÇÕES DO TCP/IP (Shell LINUX)
 - ifconfig
 - ifconfig | more

CRIAÇÃO DE SUB-REDES

- Criar sub-redes eficientes, que reflitam as necessidades de sua rede, requer três procedimentos básicos:
 - 1°. Determinar o número de bits de host a serem usados para sub-redes
 - 2º. Listar as novas identificações de sub-redes
 - 3º. Listar os endereços IPs para cada nova identificação de sub-rede

1°. DETERMINAR O NÚMERO DE BITS DE HOST A SEREM USADOS NA SUB-REDE

- O número de bits de host usado para sub-redes determinará o número de sub-redes possíveis e o número de hosts por sub-rede
- Antes de escolher o número de bits de host, você deve avaliar o número de sub-redes e de hosts que você precisa ou precisará no futuro
- Quanto mais bits de host são usados para sub-redes, mais sub-redes (identificação de sub-redes) você terá, porém, com poucos hosts por sub-rede
- A utilização de muitos bits de host para sub-redes, permite o crescimento do número de sub-redes mas limita o crescimento do número de hosts
- Já a utilização de poucos bits de hosts para sub-redes permite o crescimento do número de hosts mas limita o crescimento do número de sub-redes

- Por exemplo, a figura ilustra a subdivisão utilizando até os primeiros bits de host de uma identificação de rede classe B.
 - Se você escolher um bit de host para sub-redes, você terá 2 identificações de sub-redes com 16.382 hosts por identificação de sub-rede.
 - Se você escolher 8 bits de host para sub-redes, você terá 256 identificações de sub-redes com 254 hosts por identificação de sub-rede.

- Na prática os administradores de rede definem o número máximo de hosts que eles querem em uma única rede.
- Lembre-se que todos os hosts em uma rede compartilham o mesmo tráfego de difusão (broadcast); eles residem no mesmo domínio de difusão.
- Portanto, o crescimento do número de sub-redes é favorável ao invés do crescimento do número de hosts por sub-rede.

Subdivisões de uma identificação de rede classe C.			
Numero de Numero de bits Máscara de sub-rede ho		Número de hosts por sub-rede	
1-2	1	255.255.255.128 ou /25	126
3-4	2	255.255.255.192 ou /26	62
5-8	3	255.255.255.224 ou /27	30
9-16	4	255.255.255.240 ou /28	14
17-32	5	255.255.255.248 ou /29	6
33-64	6	255.255.255.252 ou /30	2

• 2º. LISTAR AS NOVAS IDENTIFICAÇÕES DE SUB-REDES

- Para criar a lista enumerada de identificações de sub-rede utilizando o método binário siga os passos abaixo:
 - 1) Seja **n**, o número de bits de host escolhido para a subdivisão da rede (número de bits da sub-rede), crie uma tabela com três colunas com 2^n linhas.
 - A primeira coluna é o número da sub-rede (começando pelo 1), a segunda coluna é a representação binária da identificação de rede, e a terceira coluna é a representação decimal pontuada com o prefixo de sub-rede da identificação de sub-rede.
 - Para cada representação binária, os bits da identificação de rede permanecem fixo com seu valor original e os bits de host restantes são todos atribuídos com o valor zero.
 - Os bits de host escolhidos para a subdivisão vão variar.

Técnica binária para subdivisão para a identificação de rede 192.168.0.0.		
Sub-rede	Representação binária	Identificação de sub-rede
1	11000000.10101000. <u>000</u> 00000.00000000	
2	11000000.10101000. <u>001</u> 00000.00000000	
3	11000000.10101000. <u>010</u> 00000.00000000	
4	11000000.10101000. <u>011</u> 00000.00000000	
5	11000000.10101000. <u>100</u> 00000.00000000	
6	11000000.10101000. <u>101</u> 00000.00000000	
7	11000000.10101000. <u>110</u> 00000.00000000	
8	11000000.10101000. <u>111</u> 00000.00000000	

- 2º. Listar as novas identificações de sub-redes.
 - 2) Na primeira linha da tabela, defina os bits da sub-rede todos para zero e converta para a notação decimal pontuada com o prefixo de sub-rede na terceira coluna. A identificação de rede original é subdividida com sua nova máscara de sub-rede.

Técnica binária para subdivisão para a identificação de rede 192.168.0.0.		
Sub-rede	Representação binária	Identificação de sub-rede
1	11000000.10101000. <u>000</u> 00000.00000000	192.168.0.0/19
2	11000000.10101000. <u>001</u> 00000.00000000	
3	11000000.10101000. <u>010</u> 00000.00000000	
4	11000000.10101000. <u>011</u> 00000.00000000	
5	11000000.10101000. <u>100</u> 00000.00000000	
6	11000000.10101000. <u>101</u> 00000.00000000	
7	11000000.10101000. <u>110</u> 00000.00000000	
8	11000000.10101000. <u>111</u> 00000.00000000	

- 2º. Listar as novas identificações de sub-redes.
 - 3) Na próxima linha da tabela, incremente o valor dos bits da sub-rede.
 - 4) Converta o resultado binário para a notação decimal pontuada na terceira coluna.
 - 5) Repita os passos 3 e 4 até que a tabela esteja completa.

Técnica binária para subdivisão para a identificação de rede 192.168.0.0.		
Sub-rede	Representação binária	Identificação de sub-rede
1	11000000.10101000. <u>000</u> 00000.00000000	192.168.0.0/19
2	11000000.10101000. <u>001</u> 00000.00000000	192.168.32.0/19
3	11000000.10101000. <u>010</u> 00000.00000000	192.168.64.0/19
4	11000000.10101000. <u>011</u> 00000.00000000	192.168.96.0/19
5	11000000.10101000. <u>100</u> 00000.00000000	192.168.128.0/19
6	11000000.10101000. <u>101</u> 00000.00000000	192.168.160.0/19
7	11000000.10101000. <u>110</u> 00000.00000000	192.168.192.0/19
8	11000000.10101000. <u>111</u> 00000.00000000	192.168.224.0/19

3°. LISTAR OS ENDEREÇOS IPS PARA CADA NOVA IDENTIFICAÇÃO DE SUB-REDE

- Para criar a faixa de endereços IP usando o método binário siga os quatro passos abaixo:
 - 1. Seja n, o número de bits de host escolhido para a subdivisão da rede (número de bits da sub-rede), crie uma tabela com três colunas com 2^n linhas. A primeira coluna é o número da sub-rede (começando pelo 1), a segunda coluna é a representação binária do primeiro e do último endereço IP da identificação de sub-rede, e a terceira coluna é a representação decimal pontuada do primeiro e do último endereço IP da identificação de sub-rede. Alternativamente, você pode adicionar duas colunas na tabela anterior usada para listar as identificações de sub-rede.
 - 2. Para cada representação binária, **o primeiro endereço IP** é o endereço no qual todos os bits de host possuem o valor 0, exceto pelo último bit de host; bit da extrema direita com o valor 1. **O último endereço IP** é o endereço na qual todos os bits de host possuem o valor 1, exceto pelo último bit de host; bit da extrema direita com o valor 0.
 - 3. Converta a representação binária para a representação decimal pontuada na terceira coluna.
 - 4. Repita os passos 2 e 3 até que a tabela esteja completa.

	Listagem dos endereços IPs (representação binária)		
Sub- rede	Representação binária	Faixa de endereços <u>IPs</u>	
1	11000000.10101000. <u>000</u> 00000.00000001 - 11000000.10101000. <u>000</u> 11111.11111110	192.168.0.1 - 192.168.31.254	
2	11000000.10101000. <u>001</u> 00000.00000001 - 11000000.10101000. <u>001</u> 11111.11111110	192.168.32.1 - 192.168.63.254	

3	11000000.10101000. <u>010</u> 000000.00000001	192.168.64.1
3	11000000.10101000. <u>010</u> 11111.11111110	192.168.95.254
	11000000.10101000. <u>011</u> 00000.00000001	192.168.96.1
4	- 11000000.10101000. <u>011</u> 11111.1111110	- 192.168.127.254
5	11000000.10101000. <u>100</u> 00000.00000001	192.168.128.1
	- 11000000.10101000. <u>100</u> 11111.1111110	- 192.168.159.254
_	11000000.10101000. <u>101</u> 00000.00000001	192.168.160.1
6	- 11000000.10101000. <u>101</u> 11111.1111110	- 192.168.191.254

	11000000.10101000. <u>110</u> 00000.00000001	192.168.192.1
7	- 11000000.10101000. <u>110</u> 11111.1111110	- 192.168.223.254
	11000000.10101000. <u>111</u> 00000.00000001	192.168.224.1
8	- 11000000.10101000. <u>111</u> 11111.1111110	- 192.168.255.254

Address Resolution Protocol

- Utilizado para mapear endereço IP(Nível superior) para endereço físico (MAC)
- Permite que o host origem encontre o endereço MAC do host destino

Funções

- Determinar endereço físico
- Responder pedidos outros hosts

Funcionamento

- Antes de enviar:
 - Verifica cache
 - Se encontrar endereço, envia frame
 - Se não encontrar, envia broadcast pedido ARP

- O host A, cujo endereço IP é IA e endereço físico PA, deseja enviar dados ao host B, cujo IP é IB porém de endereço físico desconhecido
- O host A envia um datagrama especial em broadcast.

- Apenas o host B responde, pois o datagrama foi endereçado via IP
- O datagrama resposta é constituído do endereço IP (IB) mais o endereço físico PB
- A partir desse instante o host A passa a endereçar o host B apenas com seus endereços já conhecidos (PB e IB)

Rede Local

Fonte: https://i-technet.sec.s-msft.com/dynimg/IC196937.gif

Rede Remota

Verificação do Cache

- Fazer o logon (login)
- Abrir o prompt de comando
- Digite:

arp

arp -a

```
C:\Documents and Settings\Administrador\arp -a

Interface: 192.168.0.157 --- 0x3
Endereço IP Endereço físico Tipo
192.168.0.1 00-15-e9-e5-b0-49 dinâmico

C:\Documents and Settings\Administrador>
```


Pergunta: como obter o endereço MAC de B a partir do endereço IP de B?

- Cada nó IP (Host, Roteador) de uma LAN possui tabela ARP
- Tabela ARP: mapeamento de endereços IP/MAC para alguns nós da rede
 - < endereço IP; endereço MAC; TTL>
 - TTL (*Time To Live*): tempo a partir do qual o mapeamento de endereços será esquecido (valor típico de 20 min)

- A deseja enviar datagrama para B,
 e o endereço MAC de B não está
 na tabela ARP de A.
- A difunde o pacote de solicitação
 ARP, que contém o endereço IP de
 B
 - Endereço MAC destino = FF-FF-FF-FF-FF
 - todas as máquinas na LAN recebem a consulta do ARP
- B recebe o pacote ARP, responde a
 A com o seu (de B) endereço MAC
 - Quadro enviado para o endereço
 MAC (unicast) de A

- Uma memória cache
 (salva) o par de endereços
 IP-para-MAC na sua tabela
 ARP até que a informação
 fique antiga (expire)
 - 'soft state': informação que expira (vai embora) a menos que seja renovada
- ARP é "plug-and-play":
 - os nós criam suas tabelas
 ARP sem a intervenção do administrador da rede

passo a passo: envio de datagrama de A para B via R assuma que A conhece o endereço IP de B

 Duas tabelas ARP no roteador R, uma para cada rede IP (LAN)

- A cria datagrama com origem A, destino B
- A usa ARP para obter o endereço MAC de R para 111.111.111.110
- Este exemplo é muito importante!!!!!!
- A cria quadro da camada de enlace com o endereço MAC de R como destino, quadro contém datagrama IP de A para B
- O adaptador de A envia o quadro
- O adaptador de R recebe o quadro
- R remove o datagrama IP do quadro Ethernet, verifica que é destinado para B
- R usa ARP para obter o endereço MAC de B
- R cria quadro contendo datagrama IP de A para B e o envia para B

- Reverse Address Resolution Protocol
- O endereço IP de uma máquina é conservado em uma área de armazenamento secundário, no disco rígido
- Quando uma máquina sem disco necessitar seu endereço IP ela utiliza o RARP.

- Máquinas sem disco precisam saber seu IP
- Servidores RARP possuem um banco de dados com mapeamento IP x Ethernet
- Enviam requisição broadcast
- Recebe endereço IP fornecido por um servidor RARP
- Armazena em memória até o próximo reboot

 Host A sem disco envia um pedido RARP broadcast na rede que todos os hosts da mesma recebem

- Os hosts B e D que são servidores RARP, replicam o datagrama RARP, com todos os campos preenchidos endereçados à máquina
- O host A recebe duas respostas RARP mas apenas uma é suficiente

Topologia LAN

 Ao chegar um datagrama IP no roteador proveniente de outra rede LAN, o protocolo ARP envia uma mensagem de broadcast para todos os hosts para obter o endereço MAC do IP de destino.

ROTEADORES

- São equipamentos inteligentes que permitem que redes lógicas independentes se comuniquem e troquem mensagens
- Conecta redes logicamente separadas operando com o mesmo protocolo

Fonte: https://madonito12.files.wordpress.com/2010/11/conexion_de_un_red11.jpg

ROTEADORES

Fonte: https://assistentedeestudos.com/sistema/banco_imagens/imagens/cbfbdd336ad34449cf388c3e4f354b48c76dc8f8.jpg

ROTEADORES

Fonte: http://e.cdn-hardware.com.br/static/20111103/diagrama.png.500x279.auto.jpg?CmsZoomEnable

Características dos dispositivos

	HUBS	Roteadores	Switch
Isolamento de Tráfego	Não	Sim	Sim
Plug-and-Play	Sim	Não	Sim
Roteamento ótimo	Não	Sim	Não
Comutação acelerada	Sim	Não	Sim

ROTEAMENTO

- É a principal forma utilizada na Internet para a entrega de pacotes de dados entre hosts
- -São necessários dois elementos:
 - Tabelas de roteamento
 - Protocolos de roteamento

ENTREGA DE PACOTES

— ENTREGA DIRETA

 A máquina destino encontra-se na mesma rede física da máquina origem

ENTREGA DE PACOTES

— ENTREGA INDIRETA

 A máquina destino não encontra-se na mesma rede física da máquina origem

Roteamento

Roteamento

ricardo.souza@ifpa.edu.br

- Lista de Interfaces
 - Mostra as interfaces de rede (NIC Network Interface Card) existentes no computador

Prompt de comando				×
======================================	MS d3 47 Ath or de pacotes	======== TCP Loopback inte eros AR5004G Wire ltek RTL8139 Fami		
iniporta do amada ==================================	l		- 	======
Endereço de rede 0.0.0.0 127.0.0.0 192.168.0.0	Máscara 0.0.0.0 255.0.0.0 255.255.255.0	Ender. gateway 192.168.0.1 127.0.0.1 192.168.0.157		Custo 20 1 20
192.168.0.157 192.168.0.255 224.0.0.0 255.255.255.255	255.255.255.255 255.255.255.255 240.0.0.0 255.255.255.255	127.0.0.1 192.168.0.157 192.168.0.157 192.168.0.157	127.0.0.1 192.168.0.157 192.168.0.157 192.168.0.157	20 20 20 1
255.255.255.255 Gateway padrão: ======== Rotas persistentes	255.255.255 192.168.0.1 ===================================	192.168.0.157 =======	2 	1
Nenhuma C:∖>_				V

📴 Prompt de comando		×
		======
Lista de interfaces	40 TOD I	
0x1	1S TCP Loopback interface Atheros AR5004G Wireless Network Ada	ntan #2 - Mi
niporta do agendador de pacotes	icheros undobia mireiess Mecmory Haa	heet. #5 lit
	Realtek RTL8139 Family PCI Fast Ethe	rnet NIC - M
iniporta do agendador de pacotes		
=======================================	 ========	======
Rotas ativas: Para host 192.168.0.15	7 (Local Host)	======
Endereço de 1	Interface	Custo
0.0.0 0.0.0		20
127.0.0.0 255.0.0		1
/192.168.0.0 255.255.255.	.0 192.168.0.157 192.168.0.157	20
192.168.0.157 255.255.255.25		20
192.168.0.255 255.255.255.25		20
224.0.0.0 240.0.0. 255.255.255.255 255.255.255.25		20
255.255.255.255 255.255.255.25		1
Gateway padrão: 192.168.0		-
		=====
Rotas persistentes:		
Nenhuma		
C-13		Ţ.
0.4		

🚾 Prompt de comando	_ D ×
Lista de interfaces	
0x1 MS TCP Loopback int 0x200 90 96 bc d3 47 Atheros AR5004G Wir	terrace
niporta do agendador de pacotes	reless metwork huapter #2 - MI
0x300 a0 d1 dc d6 2b Realtek RTL8139 Fam	milu PCI Fast Ethernet NIC - M
iniporta do agendador de pacotes	113 101 1000 201011100 1110
=======================================	=======================================
=======================================	 ==========
Rotas ativas	
Endereço de Broadcast na rede 192.168.0.0	Interface Custo
127.0.0.0 255.0.0.0 127.0.0.1	192.168.0.157 20 127.0.0.1 1
127.0.0.0 255.0.0.0 127.0.0.1 192.168.0.0 255.255.255.0 192.168.0.157	
192.168.0.157 255.255.255 127.0.0.1	127.0.01 20
192.168.0.255 255.255.255 192.168.0.157	7 192.168.0.157 20
224.0.0.0 240.0.0.0 192.168.0.157	
255.255.255.255 255.255.255.255 192.168.0.157	
255.255.255.255 255.255.255.255 192.168.0.157	7 2 1
Gateway padrão: 192.168.0.1	
Rotas persistentes:	
Notas persistentes. Nenhuma	
Hollstone	
C:\>_	·

Prompt de comando		×
Lista de interfaces 0x1	ess Network Ada	
Rotas ativas: Endereço de Multcast 1/27.6 192.168.0.0 255.255.255.255 192.168.0.157 255.255.255.255 224.0.0.0 255.255.255.255 192.168.0.157 255.255.255.255 255.255.255.255	Interface 192.168.0.157 127.0.0.1 192.168.0.157 127.0.0.1 192.168.0.157 192.168.0.157 192.168.0.157	====== ===============================
255.255.255.255 255.255.255 192.168.0.157 Gateway padrão: 192.168.0.1 ==================================	ż	1 =======

rompt de comando	×
Lista de interfaces Øx1 MS TCP Loopback	intouface
0x200 90 96 bc d3 47 Atheros AR5004G	Wireless Network Adapter #2 - Mi
niporta do agendador de pacotes	nii o ioo no no na naapoor na nii
0x300 a0 d1 dc d6 2b Realtek RTL8139	Family PCI Fast Ethernet NIC — M
iniporta do agendador de pacotes	
	=======================================
Rotas ativas:	
Endereço /c	Interface Custo
Broadcast Limitado (DHCP Discovery)	192.168.0.157 20
12	127.0.0.1 1 192.168.0.157 20
192.168.0.157 255.255.255.255 127.0	
192.168.0.255 255.255.255 192.168.0	
<u>/ 224.0.0.0 240.0.0.0 192.168.0</u>	.157 192.168.0.157 20
255.255.255.255 255.255.255.255 192.168.0	
255.255.255.255 255.255.255 192.168.0	.157 2 1
Gateway padrão: 192.168.0.1	=======================================
Rotas persistentes:	
Nen hūma	
G:\>_	<u> </u>

ISP E BACKBONES DA INTERNET

- Sistemas finais se conectam à Internet por meio de uma rede de acesso
- ISP (Internet Service Providers)
- Internet é uma rede de redes
- ISP Classificados em niveis
 - Nível 1
 - Nível 2
 - Nível 3

IPS de Nível 1 (Tier 1)

- Conectam diretamente cada um dos outros ISPs de nível 1
- Conectam um grande número de ISPs de nível 2
- Tem cobertura internacional
- São conhecidos como backbone da Internet
- Empresas: Embratel, MCI, Sprint, AT&T, Cable and Wireless

IPS de Nível(Camada) 1 (Tier 1)

- ISPs de Nível(Camada) 2
 - Tem alcance regional ou nacional
 - Conecta-se apenas a uns poucos ISPs de nível 1
 - É denominado cliente de ISP de nível 1(provedor)
- ISPs de Nível(Camada) 3
 - ISPs de acesso
 - Próximas dos end systems

ISPs de Nível(Camada) 2

ISPs de Nível(Camada) 3

ricardo.souza@ifpa.edu.br

- Os ISPs podem vender serviços a usuários finais ou a outros níveis
- Quando dois ISPs estão ligados diretamente um ao outro são chamados de pares (peers)

CAMINHO DO PACOTE

ricardo.souza@ifpa.edu.br

Backbone Embratel (Nacional)

Obs: Redes ATM e E1 e dos protocolos TCP/IP, PPP e HDLC

Backbone Embratel (Internacional)

Referências

- FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores.
 4. ed. São Paulo: McGraw-Hill, 2008.
- KUROSE, Jim F. ROSS, Keith W. Redes de Computadores e a Internet. Uma nova abordagem. 3. ed. São Paulo: Addison Wesley, 2006.
- TANENBAUM, Andrew S. Redes de computadores. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. Projeto de Redes Top-down. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério. TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.
- Gigabit Ethernet White Paper by Gigabit Ethernet Alliance (1997) http://www.gigabit-ethernet.org/ technology/whitepapers/gige 0997/papers97 toc.html

Referências

- SPURGEON, Charles E. **Ethernet: o guia definitivo**. Rio de Janeiro: Campus, 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). Arquitetura de Redes de Computadores OSI e TCP/IP. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. **Interligação em rede com TCP/IP**. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. Comunicação de dados. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.
- DEFLER, Frank J. Tudo sobre cabeamento de redes. Rio de Janeiro: Campus, 1994
- www.laercio.com.br
- www.feiradeciencias.com.br