

Classe : CPI - 1 Matière : Electromagnétisme	Date : 10/05/2022 Durée : 2h
Enseignante : D. OMRI	Nb pages: 8
NOM: PRENOM: CIN:	
EXAMEN	
SESSION PRINCIPALE	
Identifiant secret	
Identifiant secret Note	Signatures des surveillants
Questions de cours (5 pts)	
Le théorème d'Ampère en magnétostatique est : La circulation du champ magnétique le long d'un contour (C) fermé et orient algébrique des intensités des courants enlacés par (C) multipliée par μ_0 . $\oint_C \vec{B} \cdot \vec{dl} = \mu_0 \sum_k I_k = \mu_0 I$	é est égale à la somme
1. Etablir la forme locale du théorème d'ampère dans un milieu contenant les	sources (ρ, \vec{J}) .
L'équation locale de la conservation de la charge : $div \vec{J} + \frac{\partial \rho}{\partial t} = 0$	
Discuter la cohérence du théorème d'ampère et de l'équation de conservation a. Dans le cas du régime stationnaire	on de la charge :
b. Dans le cas du régime variable	
3. En se basant sur la forme locale du théorème de Gauss, établir l'équation d	e Maxwell-Ampère.

NE RIEN ECRIRE ICI
4. Donner l'expression du courant de déplacement. Interpréter-là.
5. Justifier que le courant de déplacement est homogène à une densité de courant.
6. Donner les quatre équations de Maxwell dans un milieu contenant les sources $\left(\rho, \vec{J}\right)$ a. Forme locale des équations de Maxwell.
b. Forme intégrale des équations de Maxwell.
7. Quelle prédiction révolutionnaire Maxwell a-t-il pu faire à l'aide de ce système d'équations ?
$div(\overrightarrow{rot}\overrightarrow{X}) = 0$
Théorème de Stokes $\oint \overrightarrow{X} \cdot \overrightarrow{dl} = \iint_{S} \overrightarrow{rot}(\overrightarrow{X}) \cdot \overrightarrow{dS}$
Théorème de la divergence (Théorème de Green-Ostrogradski) $\oiint_S \overrightarrow{X} \cdot d\overrightarrow{S} = \iiint_V div \overrightarrow{X} dV$
Exercice N°1 (8 pts)
1. Donner brièvement la définition d'une onde plane monochromatique.

2. Est-ce que l'onde plane monochromatique physiquement existe ? Justifier votre réponse. Considérons un paquet d'ondes qui résulte de la superposition de plusieurs ondes planes monochromatiques. Ce paquet correspond à une onde électromagnétique « OEM » dont l'amplitude $[E_0(k)]$ dépend du nombre d'onde « $k = 2\pi/\lambda$ ». L'OEM est polarisée suivant \vec{U}_x . Toutes les ondes qui la composent se propagent selon la direction U_z d'un repère (Oxyz). L'expression, en forme complexe, du champ électrique de cette OEM est exprimée comme suit $\vec{E} = E_0(k)e^{i(\omega_0 t - kz)}\vec{U}_x$ En se place dans le vide où la relation de dispersion de l'OEM est $k_0 = \frac{\omega_0}{c}$. On suppose que l'ensemble d'ondes planes monochromatiques qui compose l'OEM ont la même amplitude. La distribution d'amplitude des ondes planes monochromatiques est exprimée par une fonction centrée en k_0 et de largeur Δk avec $\Delta k < k_0$: $E_0(k) = \begin{cases} E_0 & pour |k - k_0| < \frac{\Delta k}{2} \\ 0 & pour |k - k_0| > \frac{\Delta k}{2} \end{cases}$ 3. Tracer l'allure de la distribution d'amplitude $E_0(k)$. 4. Montrer que le champ électrique résultant créé par ce paquet d'ondes est donné par l'expression suivante : $\vec{E}(z,t) = E_0 \Delta k \left[\sin c \left(\frac{\Delta k \cdot z}{2} \right) \right] \exp i \left(\omega_0 t - k_0 z \right) \vec{U}_x \text{ avec } \sin c \left(\frac{\Delta k \cdot z}{2} \right) = \frac{\sin \left(\Delta k \cdot z / 2 \right)}{\Delta k \cdot z / 2}$

.....

L'allure de l'amplitude du champ électrique associé au paquet d'ondes de fréquences voisines à une fréquence centrale $f_0 = \frac{\omega_0}{2\pi}$ est donnée par la courbe suivante :

	Interpreter la variation de cette allure en se basant sur l'expression du champ electrique etabli dans la question précédente.
 6.	Déterminer l'expression du champ magnétique.
 7.	Discuter la structure du paquet d'ondes.
	1 1
 8.	Calculer la vitesse de phase du paquet d'ondes.

Classe: CPI - 1	Date: 10/05/2022
Matière: Electromagnétisme	Durée : 2h
Enseignante: D. OMRI	Nb pages: 8
Nom:Prenom:CIN	:
Identifiant secret	
Identifiant secret	Signatures des surveillants
 9. La valeur moyenne temporelle de la densité volumique d'énergie est dont suivante : \langle w_{em} \rangle = \frac{1}{2} \varepsilon_0 E_0^2 \Delta k^2 \sin c^2 \left(\frac{\Delta k \cdot z}{2} \right) \] a) En se basant sur l'expression \langle w_{em} \rangle, montrer que l'énergie du paquet d'on non étendue dans l'espace. Comparer-la avec l'énergie d'une onde plane. 	
b) Déduire l'expression de la valeur moyenne temporelle du vecteur de F d'ondes. Interpréter le résultat obtenu.	Poynting du paquet
Considérons deux positions z_1 et z_2 qui vérifient : $\Delta z = z_2 - z_1 = \frac{4\pi}{\Delta k} \ avec \begin{cases} z_1 : \frac{\Delta k \cdot z_1}{2} = -\pi \\ z_2 : \frac{\Delta k \cdot z_2}{2} = \pi \end{cases}$	
 c) Justifier que si Δk est faible alors le paquet n'est plus localisé et par co d'ondes est étendu dans l'espace. d) Justifier que si Δk est relativement grande alors le paquet est localisé dans l' 	

NE RIEN ECRIRE ICI

Exercice N°2 (7 pts)

Un pinceau lumineux monochromatique de longueur d'onde $\lambda = 630$ nm, parallèle à l'axe Oz éclaire un diaphragme opaque percé de trois trous-source S_1 , S_2 et S_3 équidistants $(S_1S_2 = S_2S_3 = a = 0.45 \, mm)$ et alignés sur une droite parallèle à l'axe du plan d'observation.

Les ondes diffractées par S₁, S₂ et S₃ ont même amplitude E₀. Le plan d'observation disposé suivant le plan xOy normal à l'axe Oz, est à grande distance D=3m des trois sources.

1. Sous quelle condition, on obtient une interférence des rayons lumineux proyenant de plusieurs.

	sources monochromatiques ?
	Dans notre cas, est-ce qu'il y aura une interférence des ondes lumineuses émises par les trois trous-source ? Justifier votre réponse.
3.	Calculer la différence de marche en M entre les ondes diffractées par a. les deux sources consécutives (S_1S_2)
	b. les deux sources consécutives (S ₂ S ₃)

4. L'onde diffractée par S_3 présente une avance de phase $(\varphi = cte)$ par rapport à l'onde diffractée par S_2 (prise comme origine de phase) et l'onde diffractée par S_1 présente un déphasage $-\varphi$

(déphasage retard) par rapport à l'onde diffractée par S2.

6/8

a. 	Exprimer φ en fonction de a, x, λ et D .
	Montrer que l'amplitude du champ électrique total au point M est égale à $E=E_0e^{-j\varphi}+E_0+E_0e^{j\varphi}$
5. a.	En se basant sur l'expression de l'amplitude du champ électrique total au point M Montrer que l'intensité lumineuse $(I = E.E^*)$ au point M est égale à $I = I_0 (1 + 2\cos\varphi)^2$. On pose que l'éclairement lumineux $I_0 = (E_0)^2$.
b.	Etablir la loi de variation $I(x)$ de l'intensité lumineuse au point M du plan d'observation.
 c.	Déterminer les positions des franges lumineuses (maximas de lumière) et des franges sombres (minimas de lumière).
	Calculer la distance d'interfrange.
	On ferme le trou-source S_2 . Montrer que la différence de marche entre S_1 et S_3 est égale $\delta \approx \frac{ax}{D}$.
 b.	Montrer que l'amplitude du champ électrique total au point M est égale à $E=2E_0\cos \varphi$.
• •	

E. Etablir la que $2\cos^2 a =$	nouvelle lo $= 1 + \cos(2a)$.	i de r	épartition	de l'inten	sité I'(x)	en <i>M</i> .	
l. Déterminer le (minimas de l	lumière).			maximas de			
e. Calculer la dis							
	es positions et					ч	$x < \frac{a}{a}$
en precionit	eo postaono eo	100 111001101	† Int	ensité ineuse			
$\frac{\lambda D}{a}$ $\frac{3\lambda D}{2a}$	$-\frac{\lambda D}{2a}$	$-\frac{\lambda D}{4a}$	0	$\frac{\lambda D}{4a}$	$\frac{\lambda D}{2a}$	$\frac{3\lambda D}{2a}$	$\frac{\lambda D}{a}$