474 Notation

Table N-5
Matrices Used in the Computer-Oriented Direct Stiffness Method (Chapters 4, 5, and 6)

Matrix	Definition
\mathbf{S}_{Mi}	Member stiffnesses (for both ends of member i) in directions of member axes
$\mathbf{S}_{M jj}$	Submatrix jj of S_{Mi}
$\mathbf{S}_{\mathtt{M}jk}$	Submatrix jk of S_{Mi}
$\mathbf{S}_{\mathbf{M}oldsymbol{k}oldsymbol{j}}$	Submatrix kj of S_{Mi}
\mathbf{S}_{Mkk}	Submatrix kk of S_{Mi}
$\mathbf{S}_{ ext{MS}i}$	Member stiffnesses (for both ends of member i) in directions of structural axes
$\mathbf{A}_{ ext{MS}i}$	Fixed-end actions (for both ends of member i) in directions of structural axes
$\mathbf{D}_{ ext{MS}i}$	Displacements (for both ends of member i) in directions of structural axes
$\mathbf{A}_{\mathbf{E}}$	Equivalent joint loads
\mathbf{A}_{C}	Combined joint loads
$\mathbf{A}_{ ext{FC}}$	Combined joint loads corresponding to D _F
$\mathbf{A}_{ ext{RC}}$	Combined joint loads corresponding to D _R
\mathbf{R}_{i}	Rotation matrix for member i
$\mathbf{R}_{\mathrm{T}i}$	Rotation transformation matrix for member i
$\mathbf{D}_{\mathrm{J}i}$	Joint displacements at ends of member i
$\mathbf{A}_{ ext{MD}i}$	End-actions (for both ends of member i) in member directions, due to joint displacements
$\mathbf{A}_{ ext{RD}}$	Support reactions due to joint displacements
\mathbf{T}_{MLi}	Transfer matrix for fixed-end actions due to unit values of concentrated loads
\mathbf{A}_{t_i}	Concentrated loads at point ℓ between the ends of member i
\mathbf{R}_{R}	Rotation transformation matrix for structure
\mathbf{A}_{p}	Actions at point p
\mathbf{A}_{q}	Actions at point q
\mathbf{T}_{pq}	Translation-of-axes transformation matrix
\mathbf{D}_{p}	Displacements at point p
\mathbf{D}_{q}	Displacements at point q
\mathbf{T}_{jk}	Specialization of T_{pq} to points j and k
$\mathbf{F}_{\mathbf{M} jj}$	Flexibilities for j end of member i (in member directions)
\mathbf{F}_{Mkk}	Flexibilities for k end of member i (in member directions)
$\mathbf{F}_{a\ell\ell}$	Flexibilities for ℓ end of segment $j\ell$ (in member directions)
$\mathbf{F}_{b\ell\ell}$	Flexibilities for ℓ end of segment ℓk (in member directions)
$\mathbf{A}_{ ext{MB}}$	Actions $\{A_p, A_q\}$ for rigid bodies
\mathbf{D}_{MB}	Displacements $\{\mathbf{D}_p, \mathbf{D}_q\}$ for rigid bodies
T	Combined translation-of-axes operator
C	Constraint matrix for frames
Q	Vector of axial forces in frames

Notation 475

Table N-6Matrices used in Chapter 7 and Appendix D

Matrix	Definition
0	Null matrix
A	Action vector (also coefficient matrix)
В	Strain-displacement matrix (and vector of constants)
C	Strain-stress matrix
D	Displacement vector
E	Stress-strain matrix
K	Element stiffness matrix
S	Stiffness matrix
T	Transformation matrix
U	Upper triangular matrix
X	Vector of unknowns
Y	Vector of unknowns
Z	Vector of unknowns
b	Vector of body forces for element
d	Linear differential operator for strain-displacement relationships
f	Matrix of displacement shape functions
р	Nodal load vector for element
q	Nodal displacement vector for element
u	Displacement vector for any point on an element