IOWA STATE UNIVERSITY

Department of Computer Science

COM S 573: Machine Learning

Lecture 3: Linear Regression

Data is line,

Linear Models

- Linear regression: predict a scalar
 - House price
 - Weight of a planet
- Linear perceptron: classifier
 - Predict an animal is a dog or not
 - Predict an image contains a square or not
- Logistic regression: classifier based on a probability
 - Predict how likely a team win
 - Predict how likely tomorrow is sunny

Linear Regression

Predict a scalar based on input features

What does "LINEAR" mean?

Linear Regression: Intuitions

- Given an input like house
- We extract some features from it:
 - For example: [size, #bedrooms, #floors, ...]

$$\boldsymbol{x} = [x_0, x_1, \cdots, x_d]^T \in \mathbb{R}^d$$

• We want to get an aggregation result by giving these features different weights.

$$y = 1 + 3 * size + 4 * \#bedrooms + 5 * \#floors + \dots$$

Linear Regression

 Linear regression is a linear approach to modeling the relationship between a scalar response and one or more independent variables

Three Components of Learning

Linear Regression

- Given a training example $< m{x}, y>$
- Each \boldsymbol{x} has d features x_1, \dots, x_d
- The prediction is computed

$$\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_d x_{i,d}$$

Linear Regression: Example

- Predict house price
 - x = [size, distance]
 - y = price

Training Sample	Size (sq.ft.)	Distance (miles)	Price (\$)
1	498	10	600
2	267	9	455
3	399	7.8	546
		•••	

Linear Regression: Representation

• For each training sample $\langle x_i, y_i \rangle$

•
$$\hat{y_i} = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_d x_{i,d}$$

• Suppose $\mathbf{w} = [w_0, w_1, \dots, w_d]^T$

- $\hat{y}_i = \mathbf{w}^T \mathbf{x}_i$

What is in
$$x_i$$
? $w: u+1$

Linear Regression: Representation

- For each training sample $< \boldsymbol{x}_i, y_i >$
- $\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_d x_{i,d}$
- Suppose $\boldsymbol{w} = [w_0, w_1, \cdots, w_d]^T$

$$\hat{y}_i = w^T x_i$$

What is in
$$\boldsymbol{x_i}$$
 ? $\boldsymbol{x_i} = ([1,]x_1,\cdots,x_d]^T$

10

Linear Regression: Representation

• For all training sample $\langle x_1, y_1 \rangle, \cdots, \langle x_n, y_n \rangle$

$$\hat{y}_{i} = w_{0} + w_{1}x_{i,1} + w_{2}x_{i,2} + \dots + w_{d}x_{i,d}$$

$$\begin{bmatrix} \hat{y}_{1} \\ \hat{y}_{2} \end{bmatrix} \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,d} \end{bmatrix}$$

$$egin{aligned} oldsymbol{\hat{y}_1} & \hat{y}_2 \ \hat{y}_n \end{bmatrix} = egin{bmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,d} \ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,d} \ \dots & & & & & \end{bmatrix} oldsymbol{w} \ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,d} \end{bmatrix} oldsymbol{w}$$

•
$$\hat{y} = Xw = hx$$

 $y = Xw = hx$
What's the dimension of X?

Three Components of Learning

Linear Regression: Evaluation

• Residual Squares $(y_i - {m w}_i^T {m x}_i)^2$

Linear Regression: Evaluation

Residual Sum of Squares (RSS)

$$RSS(\boldsymbol{w}) \left(= \sum_{i=1}^{n} (y_i - \hat{y_i})^2 \right)$$

Equivalently

$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) \boldsymbol{V}$$

Why?

14

$$(RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

• Find the minimal $RSS(\boldsymbol{w})$

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

- Find the minimal $RSS(\boldsymbol{w})$
- When the first derivative of a function equals zero, the minimum of a function is achieved.

$$\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = 0$$

• The optimal $oldsymbol{w}$ is obtained by solving this equation.

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

 $= \boldsymbol{y}^T \boldsymbol{y} - (\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w})$
 $= \boldsymbol{y}^T \boldsymbol{y} - 2\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

 $= \boldsymbol{y}^T\boldsymbol{y} - \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{y}^T\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$
 $= \boldsymbol{y}^T\boldsymbol{y} - 2\boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$

•
$$\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = ?$$

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

$$= \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$$

$$= \boldsymbol{y}^T \boldsymbol{y} - 2\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$$
• $\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = ?$

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

$$= \boldsymbol{y}^T\boldsymbol{y} - \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{y}^T\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$$

$$= \boldsymbol{y}^T\boldsymbol{y} - 2\boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$$
• $\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = ?$

$$0$$
?

•
$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^T \mathbf{y} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X}\mathbf{w}$$

$$= \mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X}\mathbf{w}$$
• $\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}} = ?$

$$0$$

$$-2\mathbf{X}^T \mathbf{y}$$

$$? = (\chi^T \chi^T \chi)^T$$

•
$$RSS(w) = (y - Xw)^{T}(y - Xw)$$

$$= y^{T}y - w^{T}X^{T}y - y^{T}Xw + w^{T}X^{T}Xw$$

$$= y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw$$
• $\frac{\partial RSS(w)}{\partial w} = ?$

$$0 \rightarrow \frac{1}{2} \qquad -2X^{T}y + 2X^{T}Xw = 2X^{T}y$$

$$\chi^{\tau}\chi \mathcal{N} - \chi^{\tau}\mathcal{I} = 0 \qquad \chi^{\tau}\chi^{2}$$

•
$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

 $= \boldsymbol{y}^T\boldsymbol{y} - \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{y}^T\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$
 $= \boldsymbol{y}^T\boldsymbol{y} - 2\boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{y} + \boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}$

•
$$\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = -2\boldsymbol{X}^T\boldsymbol{y} + 2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w} = 0$$

•
$$\boldsymbol{w}^* = (\boldsymbol{X^TX})^{-1}\boldsymbol{X^Ty}$$
 $\begin{pmatrix} \boldsymbol{v} & \boldsymbol{v} & \boldsymbol{v} \\ \boldsymbol{v} & \boldsymbol{v} \end{pmatrix}$

Any protentional issue?

• w^* are global optima?

- w^* are global optima? Yes
- RSS(w) is a convex function

• What is convex?

- w^* are global optima? Yes
- RSS(w) is a convex function

- What is convex?
- Convex is a property that a line joining any two points on its graph lies on or above the graph.

27

- w^* are global optima? Yes
- RSS(w) is a convex function

- What is convex?
- How to prove a function is convex?

- w^* are global optima? Yes
- RSS(w) is a convex function

$$H(\boldsymbol{w}) = \frac{\partial^2 RSS(\boldsymbol{w})}{\partial \boldsymbol{w}^2}$$

• For every $oldsymbol{u} \in \mathbb{R}^d$, we have

$$\boldsymbol{u}^T H(\boldsymbol{w}) \boldsymbol{u} >= 0$$

Linear Regression: Summary

Representation

$$\hat{y_i} = oldsymbol{w} oldsymbol{x}_i^T$$

Predict a continuous scalar.

Evaluation

$$RSS(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T$$

Optimization

$$\frac{\partial RSS(\boldsymbol{w})}{\partial \boldsymbol{w}} = 0 \to \boldsymbol{w}^* = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}$$

Linear Models: Next

- Linear regression: predict a scalar
 - House price
 - Weight of a planet
- Linear perceptron: classifier of discrete prediction
 - Predict an animal is a dog or not
 - Predict an image contains a square or not
- Logistic regression: classifier based on a probability
 - Predict how likely a team win
 - Predict how likely tomorrow is sunny