Homework 7

Kevin Guillen MATH 202 — Algebra III — Spring 2021

Problem 14.7.4 Let $K = \mathbb{Q}(\sqrt[n]{\alpha})$, where $\alpha \in \mathbb{Q}$, $\alpha > 0$ and suppose $[K : \mathbb{Q}] = n$ (i.e., $x^n - \alpha$ is irreducible). Let E be any subfield of K and let $[E : \mathbb{Q}] = d$. Prove that $E = \mathbb{Q}(\sqrt[d]{\alpha})$. [Consider $N_{K/E}(\sqrt[n]{\alpha}) \in E$.]

Proof. First let $\delta = N_{K/E}$) $\sqrt[n]{a} = \prod_{Gal(K/E)} \sigma(\sqrt[n]{a})$. For all $\sigma \in Gal(K/E)$ we have $\sigma(\sqrt[n]{a}) = \zeta_{\sigma} \sqrt[n]{a}$ for some root of unity ζ_{σ} , and therefore

$$\delta = \left(\prod_{\text{Gal}(\text{K/E})} \zeta_{\sigma}\right) \sqrt[n]{\alpha}^{\frac{n}{d}} = \left(\prod_{\text{Gal}(\text{K/E})} \zeta_{\sigma}\right) \sqrt[d]{\alpha}.$$

Since $\delta \in E \subseteq \mathbb{Q}(\sqrt[n]{a}) \subseteq \mathbb{R}$ and the only real roots of unity are ± 1 we have that $\delta = \pm \sqrt[d]{a}$. Therefore we have that $\mathbb{Q}(\sqrt[d]{a}) \subseteq E$ with $\sqrt[d]{a}$ of degree d over \mathbb{Q} . Thus $E = \mathbb{Q}(\sqrt[d]{a})$ as desired.

Problem 14.7.5 Let K be as in the previous exercise. Prove that if n is odd then K has no nontrivial subfields which are Galois over \mathbb{Q} and if n is even then the only nontrivial subfield of K which is Galois over \mathbb{Q} is $\mathbb{Q}(\sqrt{a})$.

Proof. The minimal polynomial of $\sqrt[n]{a}$ is x^n-a , which has splitting field $\mathbb{Q}(\sqrt[n]{a},\zeta_n)$ for some primitive \mathfrak{n}^{th} root of unity ζ_n . For n>2 we have $\mathbb{Q}(\sqrt[n]{a})\neq \mathbb{Q}(\sqrt[n]{a},\zeta_n)$, so $\mathbb{Q}(\sqrt[n]{a})$ is Galois if and only if n=2. Then by the previous exercise we have that K has a subfield E that is Galois only when n is even, in which case it is $\mathbb{Q}(\sqrt{a})$.

Problem 14.7.6 Let L be the Galois closure of K in the previous two exercises (i.e., the splitting field of $\mathfrak{n}^n-\mathfrak{a}$). Prove that $[L:\mathbb{Q}]=\mathfrak{n}\phi(\mathfrak{n})$ or $\frac{1}{2}\mathfrak{n}\phi(\mathfrak{n})$. [Note that $\mathbb{Q}(\zeta_\mathfrak{n})\cap K$ is a Galois extension of \mathbb{Q} .]

Proof. First we consider the splittinf field of $x^n - a$ which is just $\mathbb{Q}(\sqrt[n]{a}, \zeta_n)$ where ζ_n is n^{th} primitive root of unity. We have then that,

$$[\mathbb{Q}(\sqrt[n]{a},\zeta_n):\mathbb{Q}]=\mathbb{Q}]=\frac{[\mathbb{Q}(\sqrt[n]{a}):\mathbb{Q}][\mathbb{Q}(\zeta_n):\mathbb{Q}]}{[\mathbb{Q}(\sqrt[n]{a}\cap\mathbb{Q}(\zeta_n)):\mathbb{Q}]}=\frac{n\phi(n)}{[\mathbb{Q}(\sqrt[n]{a})\cap\mathbb{Q}(\zeta_n):\mathbb{Q}]}.$$

Using what we have seen in the previous exercise we have that if n is odd then $[\mathbb{Q}(\sqrt[n]{a},\zeta_n):\mathbb{Q}]=n\phi(n) \text{ or } [\mathbb{Q}(\sqrt[n]{a},\zeta_n):\mathbb{Q}]=\frac{1}{2}n\phi(n) \text{ depending on if } \mathbb{Q}(\sqrt[n]{a})\cap \mathbb{Q}(\zeta_n)=\mathbb{Q}(\sqrt{a}).$

Problem 14.7.8 Let p, q, and r be primes in \mathbb{Z} with $q \neq r$. Let $\sqrt[p]{q}$ denote any root of $x^p - q$ and let $\sqrt[p]{r}$ denote any root of $x^p - r$. Prove that $\mathbb{Q}(\sqrt[p]{q}) \neq \mathbb{Q}(\sqrt[p]{r})$.

Proof. For this proof we can use the fact seen in exercise 7 part c, which in the context of this problem gives us that, $\mathbb{Q}(\sqrt[p]{q}) = \mathbb{Q}(\sqrt[p]{r})$ if and only if k/l, $m/n \in \mathbb{Q}$ with $i, j \in \mathbb{Z}$ such that

$$q=r^i\frac{k^p}{l^p} \qquad \qquad r=q^j\frac{m^p}{n^p}$$

Assuming though that k/l is in lowest terms we have that $l^p = r^i$ and $k^p = q$ which means that p = 1, but p is assumed to be prime in \mathbb{Z} , which is a contradiction!

Problem 14.7.9 (Artin-Schrier Extensions) Let F be a field of characteristic p and let K be a cyclic extension of F of degree p. Prove that $K = F(\alpha)$ where α is a root of the polynomial $x^p - x - \alpha$ for some $\alpha \in F$. [Note that $Tr_{K/F}(-1) = 0$ since F is characteristic p so that $-1 = \alpha - \sigma \alpha$ for some $\alpha \in K$ where σ is a generator of Gal(K/F) by exercise 26 of section 2. Show that $\alpha = \alpha^p - \alpha$ is an element of F.] Note that since F contains the p^{th} rot of unity (namely 1) that this completes the description of all cyclic extension of prime degree p over fields containing the p^{th} roots of unity in all characteristics.

Proof. Using the noted comment we have that $Tr_{K/F}(-1) = 0$, so there is some $\alpha \in K$ such that $\alpha - \sigma \alpha = -1$, therefore we have $\sigma \alpha = \alpha + 1$. Generalizing this we have that

$$\sigma^{i} \alpha = \alpha + i$$

Because F is of characteristic p the elements $\sigma^i \alpha$ are distinct for i = 0, ..., p-1 and thus $[F(\alpha) : F] = p$ so $K = F(\alpha)$.

We have,

$$\sigma(\alpha^p - \alpha) = \sigma(\alpha)^p - \sigma(\alpha) = (\alpha + 1)^p - \alpha + 1 = \alpha^p - \alpha$$

so $\alpha^p - \alpha$ is in the fixed field of σ which is F. Let $\alpha = \alpha^p - \alpha$ we have that α is a root of $x^p - x - \alpha$ as desired.

Problem 14.7.12 Let L be the Galois closure of the finite extension of $\mathbb{Q}(\alpha)$ of \mathbb{Q} . For any prime p dividing the order of $Gal(L/\mathbb{Q})$ prove there is a subfield F of L with [L:F]=p and $L=F(\alpha)$.

Proof. We have that p is prime dividing the order of $Gal(L/\mathbb{Q})$. Then by Cauchy's theorem G has a subgroup H and through the fundamental theorem it corresponds to a subfield F' of L where [L:F']=p. Suppose then that for all $\sigma\in G$ we have $\sigma(\alpha)\in F'$, then F'=L, which is a contradiction. So there must be a $\sigma\in G$ that satisfies $\sigma(\alpha)\notin F'$. Because p is prime and degree is multiplicative we have that $F'(\sigma(\alpha))=L$. So if we set $F=\sigma^{-1}(F')$ we have $F(\alpha)=L$ and [L:F]=p as desired.

Problem 14.7.13 Let F be subfield of the real numbers \mathbb{R} . let \mathfrak{a} be an element of F and let $K = F(\sqrt[n]{\mathfrak{a}})$ where $\sqrt[n]{\mathfrak{a}}$ denotes a real \mathfrak{n}^{th} root of \mathfrak{a} . Prove that if L is any Galois extension of F contained in K then $[L:F] \leqslant 2$.

Proof. Apply the arguments made in exercise 5, any Galois extension of F contained in K, as defined in the problem statement, is trivial if n is odd and if n is even the only non-trivial Galois extension will be $F(\sqrt{a})$. Thus the degree of any Galois extension of F contained in K is at most 2.

Problem 14.7.16 Let a be a nonzero rational number.

- (a) Determine when the extension $\mathbb{Q}(\sqrt{\mathfrak{ai}})(\mathfrak{i}^2=-1)$ is of degree 4 over $\mathbb{Q}.$
- (b) When $K=\mathbb{Q}(\sqrt{\mathfrak{a}\mathfrak{i}})$ is of degree 4 over \mathbb{Q} show that K is Galois over \mathbb{Q} with the Klein 4-group as Galois group. In this case determine the quadratic extensions of \mathbb{Q} contained in K.

(a) *Proof.* Note
$$\sqrt{\alpha i} = \frac{\sqrt{2|\alpha|}}{2} + \frac{\sqrt{2|\alpha|}}{2}i$$
 is a root of,

$$x^4 + a^2 = \prod_{j=0}^3 (x - i^j \sqrt{ai}).$$

This is an irreducible polynomial and is the minimal polynomial of \sqrt{ai} if and only if $\sqrt{2|a|}$ is irrational. This is because if it is not,

$$(x - \sqrt{\alpha i})(x + i\sqrt{\alpha i}) = x^2 + \sqrt{2\alpha} + \alpha \in \mathbb{Q}[x]$$

divides
$$x^4 + a^2$$
.

(b) *Proof.* Using the same description of the roots above we have that the Galois group is generated by,

$$\sqrt{ai} \mapsto -\sqrt{ai}$$
 $\sqrt{ai} \mapsto \overline{\sqrt{ai}}$

which are both of order 2. Therefore the Galois group is the Klein 4-group, and by the observations made, the quadratic extension is $\mathbb{Q}(\sqrt{2a})$.