AOS 2 - Deep learning

Lecture 02: Training Neural Networks

Sylvain Rousseau

Data Preprocessing

Training data $\mathcal{D} = \{ \mathbf{x}_1, \dots, \mathbf{x}_N \}, \ \mathbf{x}_i \in \mathbb{R}^n$

• Centered: $\mathbf{x}_i^{\text{centered}} = \mathbf{x}_i - \overline{\mathbf{x}}$

$$ullet$$
 Normalized $oldsymbol{x}_{i}^{ ext{norm}} = oldsymbol{x}_{i}^{ ext{centered}} / \sqrt{rac{1}{N} \sum_{i=1}^{N} \left(oldsymbol{x}_{i} - \overline{oldsymbol{x}}
ight)^{2}}$

(entry-wise operations)

Example with N = 500 and n = 2

Why centering?

• Data generating model that is not centered

$$\circ Y = \langle X - \mu, \mathbf{u} \rangle + \varepsilon
\circ X \sim \mathcal{N}(\mu, \Sigma), \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

• Fit a single neuron on that data (linear regression)

- \circ Learn ${\it w}$ such that ${\it Y} pprox \langle {\it X}, {\it w}
 angle$
- Expected squared error loss

$$\circ \ \ell(\mathbf{w}) = \mathbb{E}\left(Y - \langle X, \mathbf{w} \rangle\right)^2$$

Why centering?

ullet Shape of quadratic function is controlled by Σ and $oldsymbol{\mu}$

$$\begin{split} \ell &= \mathbb{E} \left(Y - \langle X, \mathbf{w} \rangle \right)^2 \\ &= \mathbf{w}^T \left(\Sigma + \mu \mu^T \right) \mathbf{w} + \text{linear term in } \mathbf{w} + \sigma^2 \end{split}$$

• If we recenter and rescale before learning: $X \leftrightarrow \widehat{D}(X - \widehat{\mu})$

$$\begin{split} \ell &= \mathbb{E}\left(Y - \left\langle \widehat{D}(X - \widehat{\boldsymbol{\mu}}), \boldsymbol{w} \right\rangle \right)^2 \\ &= \boldsymbol{w}^T \Big(\widehat{D}\Sigma \widehat{D} + \widehat{D}(\boldsymbol{\mu} - \widehat{\boldsymbol{\mu}})(\boldsymbol{\mu} - \widehat{\boldsymbol{\mu}})^T \widehat{D} \Big) \boldsymbol{w} \\ &+ \text{linear term in } \boldsymbol{w} + \sigma^2 \end{split}$$

ullet If $\widehat{oldsymbol{\mu}}$ estimates $oldsymbol{\mu}$ and $\widehat{oldsymbol{D}}$ estimates $\left(\operatorname{diag}\Sigma\right)^{-1/2}$

Optimization

Stochastic gradient descent (SGD)

- Training samples $\mathcal{T} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ iid and drawn from \mathcal{D} , loss ℓ , neural network F_{θ}
- Empirical risk minimization (ERM)

$$\mathcal{L}_{\mathsf{emp}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

- Computing $\nabla_{\theta} \mathcal{L}_{emp}(\theta)$ requires computing $\nabla_{\theta} \ell(F_{\theta}(\mathbf{x}_i), y_i)$ for all i = 1, ..., N!
- Does not scale well training set size

• Empirical loss on full training set

$$\mathcal{L}_{emp}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

• Take a training sample (x_i, y_i) randomly from \mathcal{T}

$$\mathcal{L}_{(\mathbf{x}_i, y_i)}(\boldsymbol{\theta}) = \ell(F_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i)$$

• We use $\nabla_{\theta} \ell(F_{\theta}(\mathbf{x}_i), y_i)$ instead of $\nabla_{\theta} \mathcal{L}_{emp}(\theta)$

Minibatch stochastic gradient descent (SGD)

• Empirical loss on full training set

$$\mathcal{L}_{emp}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

ullet Minibatch loss where $\mathcal{B}\subset\mathcal{T}$ chosen randomly with $|\mathcal{B}|\ll N$

$$\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta}) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{B}} \ell(F_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{y})$$

ullet We use $abla_{m{ heta}} \mathcal{L}_{\mathcal{B}}(m{ heta})$ instead of $abla_{m{ heta}} \mathcal{L}_{\mathsf{emp}}(m{ heta})$

Why does that work?

• What we really want to minimize is the expected risk

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \underset{\boldsymbol{x}, \boldsymbol{y} \sim \mathcal{D}}{\mathbb{E}} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y})$$

ullet Applying the gradient operator $abla_{m{ heta}}$ yields

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \underset{\boldsymbol{x}, y \sim \mathcal{D}}{\mathbb{E}} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}), y)$$
$$= \underset{\boldsymbol{x}, y \sim \mathcal{D}}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}), y)$$

- So $\nabla_{\theta} \ell(F_{\theta}(\mathbf{x}), \mathbf{y})$ is an unbiased estimator of $\nabla_{\theta} \mathcal{L}_{\mathcal{D}}(\theta)$
- So every $\nabla_{\theta} \ell(F_{\theta}(\mathbf{x}_i), y_i)$ is an unbiased estimate of $\nabla_{\theta} \mathcal{L}_{\mathcal{D}}(\theta)$

Why does that work?

Practical considerations

- Easy to get an observation of $\nabla_{\theta} \ell(F_{\theta}(\mathbf{x}), y)$
- Unbiased but possibly of high variance
- Combining unbiased estimator to reduce variance

$$\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta}) = \frac{1}{|\mathcal{B}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{B}} \ell(F_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y})$$

- $\nabla_{\theta} \mathcal{L}_{\mathcal{B}}$ is an unbiased estimate of $\nabla_{\theta} \mathcal{L}_{\mathcal{D}}$
- $\mathbb{E}_{\mathcal{B}} \nabla_{\theta} \mathcal{L}_{\mathcal{B}} = \nabla_{\theta} \mathcal{L}_{\mathcal{D}}$
- ullet Size of minibatch $|\mathcal{B}|$ is a trade-off term between good estimate of the gradient and cheap computations

- Practically minibatches are not drawn randomly with replacement but randomly without replacement
- ullet Training set is divided into disjoint minibatches $\mathcal{T}=\mathcal{B}_1\sqcup\cdots\sqcup\mathcal{B}_p$
- Training over all minibatches (one pass of the training set) is called an epoch
- ullet For next epoch we have a different set of minibatches $\mathcal{T}=\mathcal{B}_1'\sqcup\cdots\sqcup\mathcal{B}_p'$

9

Toy model

• Data model $Y = \langle \mathbf{w}_0, X \rangle + \varepsilon$ with $\circ \ X \sim \mathcal{N}(0, \Sigma)$ $\circ \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$

• Minimization problem

$$\operatorname*{arg\,min}_{\boldsymbol{w}\in\mathbb{R}^{p}}\mathbb{E}\left(Y-\langle\boldsymbol{w},X\rangle\right)^{2}$$

ullet Expected loss is an ellipsoid centered at $oldsymbol{w}_0$

$$\mathbb{E}\left(Y - \langle \mathbf{w}, X \rangle\right)^2 = \left(\mathbf{w} - \mathbf{w}_0\right)^T \Sigma(\mathbf{w} - \mathbf{w}_0) + \sigma^2$$

• Empirical loss is close to expected loss

$$\sum_{i=1}^{N} (\mathbf{y}_i - \langle \mathbf{w}, \mathbf{x}_i \rangle)^2 \approx (\mathbf{w} - \mathbf{w}_0)^T \Sigma (\mathbf{w} - \mathbf{w}_0) + \sigma^2$$

Stochastic gradient descent path

• Gradient descent for first minibatches, theoretical loss is $\mathcal{L}_{\mathcal{D}} = \mathbb{E}\left(Y - \langle \mathbf{w}, X \rangle\right)^2$

• What SGD is really seeing through minibatches, loss is $\mathcal{L}_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}, y) \in \mathcal{B}} (y - \langle \mathbf{w}, \mathbf{x} \rangle)^2$

Influence of learning rate

Influence of minibatch size

Gradient descent

• Starting point θ_0

Update rule

$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta
abla_{oldsymbol{ heta}_t} \mathcal{L}$$

- Steps orthogonal to level lines
- Update only depends on \mathcal{L} at θ_t : no memory!
- Problematic if gradient is noisy

Gradient descent

• If learning rate is high or loss landscape is bumpy SGD (and GD) trajectory might be erratic

Polyak momentum

Momentum in action (GD)

- Starting point θ_0
- Update rule

$$\mathbf{v}_{t+1} = \mu \mathbf{v}_t - \eta \nabla_{\boldsymbol{\theta}_t} \mathcal{L}$$
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \mathbf{v}_{t+1}$$

with $\mathbf{v}_0 = 0$

• Exponentially weighted average on past gradients

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \sum_{i=0}^t \mu^i \nabla_{\boldsymbol{\theta}_{t-i}} \mathcal{L}$$

(a) $\eta=0.1$, no momentum. Gradients are abruptly changing

(b) $\eta = 0.1$, momentum = 0.5. Gradients change is smoothed out

Nesterov accelerated momentum

Problem with SGD (with momentum)

- ullet Starting point $oldsymbol{ heta}_0$
- Update rule

$$\theta_{t+1/2} = \theta_t + \mu \mathbf{v}_t$$

$$\mathbf{v}_{t+1} = \mu \mathbf{v}_t - \eta \nabla_{\theta_{t+1/2}} \mathcal{L}$$

$$\theta_{t+1} = \theta_t + \mathbf{v}_{t+1}$$

with $\mathbf{v}_0 = 0$

• Exponentially weighted average on past gradients

$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta \sum_{i=0}^t \mu^i
abla_{oldsymbol{ heta}_{t-i+1/2}} \mathcal{L}$$

(a) SGD + momentum favors *y*-axis over *x*-axis

(b) More direct path toward minimum

Adagrad (Adaptive Gradient) from Duchi, Hazan, and Singer 2011

RMSprop from Tieleman and Hinton 2012

Normalize gradient coordinate-wise

- Starting point θ_0 , $\mathbf{g}_0 = 0$
- Update rule

$$\begin{split} \boldsymbol{g}_{t+1} &= \boldsymbol{g}_t + \nabla_{\boldsymbol{\theta}_t} \mathcal{L} \odot \nabla_{\boldsymbol{\theta}_t} \mathcal{L} \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta \frac{\nabla_{\boldsymbol{\theta}_t} \mathcal{L}}{\sqrt{\boldsymbol{g}_{t+1} + \varepsilon}} \end{aligned} \qquad \text{(\odot is entrywise product)}$$

- Add ε for numerical reasons
- Current gradient are rescaled to match average magnitude of all past gradients

Adagrad + exponentially weighted average on past gradients

- Starting point θ_0 , $\mathbf{g}_0 = 0$, $\beta = 0.99$ by default
- Update rule

$$\begin{split} \mathbf{g}_{t+1} &= \beta \mathbf{g}_t + (1-\beta) \nabla_{\theta_t} \mathcal{L} \odot \nabla_{\theta_t} \mathcal{L} \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta \frac{\nabla_{\theta_t} \mathcal{L}}{\sqrt{\mathbf{g}_{t+1} + \varepsilon}} \end{split}$$

(⊙ is entrywise product)

21

Adam (Adaptive moment estimation) from Kingma and Ba 2015

 $\mathsf{RMSprop} + \mathsf{momentum} + \mathsf{bias} \ \mathsf{correction}$

- Starting point θ_0 , $\mathbf{v}_0 = 0$, $\mathbf{g}_0 = 0$, $\beta_1 = 0.9$, $\beta_2 = 0.999$
- Update rule

$$\begin{split} \mathbf{v}_{t+1} &= \beta_1 \mathbf{v}_t + (1-\beta_1) \nabla_{\boldsymbol{\theta}_t} \mathcal{L} & \text{(momentum)} \\ \boldsymbol{g}_{t+1} &= \beta_2 \boldsymbol{g}_t + (1-\beta_2) \nabla_{\boldsymbol{\theta}_t} \mathcal{L} \odot \nabla_{\boldsymbol{\theta}_t} \mathcal{L} \\ \tilde{\mathbf{v}}_{t+1} &= \mathbf{v}_{t+1} / (1-\beta_1^t) \\ \tilde{\boldsymbol{g}}_{t+1} &= \boldsymbol{g}_{t+1} / (1-\beta_2^t) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \eta \frac{\tilde{\mathbf{v}}_{t+1}}{\sqrt{\tilde{\boldsymbol{g}}_{t+1} + \varepsilon}} \end{split} \tag{bias correction}$$

• Bias correction to compensate $\mathbf{v}_0 = 0$ and $\mathbf{g}_0 = 0$ If $\nabla_{\theta_t} \mathcal{L}$ is constant, we should have $\mathbf{v}_t = \nabla_{\theta_t} \mathcal{L}$ and $\mathbf{g}_t = \nabla_{\theta_t} \mathcal{L} \odot \nabla_{\theta_t} \mathcal{L}$

Weight initialization

Weights and biases need to be initialized to some value

- Weights initialized to zero means no learning at all
- Constant initialization means no diversification
- Biases can be initialized to zero

Random initialization

- Centered
- Constant variance per layer
- Which variance?

Effect of variance

Le Cun's initialization from LeCun et al. 1998

Neural network

- 7 layers deep
- 1024 wide
- tanh activation

Distribution of outputs at layer 3

- With $\mathbf{w} \sim \mathcal{N}(0, \sigma^2)$
- Saturate or collapse

Make variance of outputs constant across layers: $\operatorname{Var}\left(m{x}_{i}^{(k)}\right) = \operatorname{Var}\left(m{x}_{i}^{(k-1)}\right)$

• Suppose $\pmb{x}_i^{(k-1)}$ iid centered, $\pmb{w}_i^{(k)}$ iid centered and $\sigma \simeq \operatorname{Id}$ (tanh) then from $\pmb{x}_i^{(k)} = \sigma\Big(\Big\langle \pmb{w}_i^{(k)}, \pmb{x}^{(k-1)}\Big\rangle + \pmb{b}_i^{(k)}\Big)$ we have

$$\operatorname{Var}\left(\boldsymbol{x}_{i}^{(k)}\right) = n_{k-1} \operatorname{Var}\left(\boldsymbol{w}_{ij}^{(k)} \boldsymbol{x}_{j}^{(k-1)}\right)$$
$$= n_{k-1} \operatorname{Var}\left(\boldsymbol{w}_{ij}^{(k)}\right) \mathbb{E}\left(\left(\boldsymbol{x}_{j}^{(k-1)}\right)^{2}\right)$$
$$= n_{k-1} \sigma^{2} \operatorname{Var}\left(\boldsymbol{x}_{j}^{(k-1)}\right)$$

- We have $\operatorname{Var}\left(\boldsymbol{w}_{ij}^{(k)}\right) = \frac{1}{n_{k-1}}$
- $\mathbf{w}_{ij}^{(k)} \sim \mathcal{N}(0, 1/n_{k-1})$

Glorot's initialization from Glorot and Bengio 2010

He's initialization from He et al. 2015

- From Le Cun's initialization we have $\sigma^2 = 1/n_{k-1}$
- Constant variance on gradients as well

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{i}^{(k-1)}} = \sum_{j=1}^{n_{k}} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_{j}^{(k)}} \frac{\partial \mathbf{x}_{j}^{(k)}}{\partial \mathbf{z}_{j}^{(k)}} \frac{\partial \mathbf{z}_{j}^{(k)}}{\partial \mathbf{x}_{i}^{(k-1)}} \simeq \sum_{j=1}^{n_{k}} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_{j}^{(k)}} \mathbf{w}_{ji}^{(k)} \qquad \left(\frac{\partial \mathbf{x}_{j}^{(k)}}{\partial \mathbf{z}_{j}^{(k)}} = \sigma'\left(\mathbf{z}_{j}^{(k)}\right) \simeq 1\right)$$

• $\operatorname{Var}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{i}^{(k-1)}}\right) = \operatorname{Var}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{i}^{(k)}}\right) \text{ gives } \sigma^{2} = 1/n_{k}$

 $\mathbf{w}_{ij}^{(k)} \sim \mathcal{N}\left(0, \frac{2}{n_{k-1} + n_k}\right)$

- Harmonic mean of $1/n_k$ and $1/n_{k-1}$ gives $\sigma^2 = 2/(n_{k-1} + n_k)$
- Normally distributed

Uniformly distributed

$$\mathbf{w}_{ij}^{(k)} \sim \mathcal{U}\left(-\sqrt{\frac{6}{n_{k-1}+n_k}}, \sqrt{\frac{6}{n_{k-1}+n_k}}\right)$$

Make variance of preactivation constant across layers $\mathrm{Var}\left(\mathbf{z}_{i}^{(k)}\right) = \mathrm{Var}\left(\mathbf{z}_{j}^{(k-1)}\right)$

$$\operatorname{Var}\left(\mathbf{z}_{i}^{(k)}\right) = n_{k-1} \operatorname{Var}\left(\mathbf{w}_{ij}^{(k)} \mathbf{x}_{j}^{(k-1)}\right)$$

$$= n_{k-1} \operatorname{Var}\left(\mathbf{w}_{ij}^{(k)}\right) \mathbb{E}\left(\left(\mathbf{x}_{j}^{(k-1)}\right)^{2}\right)$$

$$= n_{k-1} \operatorname{Var}\left(\mathbf{w}_{ij}^{(k)}\right) \mathbb{E}\left(\operatorname{ReLU}\left(\mathbf{z}_{j}^{(k-1)}\right)^{2}\right)$$

$$= n_{k-1} \sigma^{2} \frac{1}{2} \operatorname{Var}\left(\mathbf{z}_{j}^{(k-1)}\right)$$

We then have $\sigma^2 = 2/n_{k-1}$

• Normally distributed

$$\mathbf{w}_{ij}^{(k)} \sim \mathcal{N}\left(0, \frac{2}{n_{k-1} + n_k}\right)$$

• Uniformly distributed

$$\mathbf{w}_{ij}^{(k)} \sim \mathcal{U}\left(-\sqrt{\frac{6}{n_{k-1}+n_k}}, \sqrt{\frac{6}{n_{k-1}+n_k}}\right)$$

Illustration of He's initialization

Batch normalization from loffe and Szegedy 2015

• mult is an additional ratio wrt He's initialization: $\sigma^2 = \text{mult} \cdot 2/n_{k-1}$

• Normalize each pre-activation independently from the minibatch statistics

$$\boldsymbol{\mu}^{(k)} = \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x}^{(k)} \in \mathcal{B}^{(k)}} \mathbf{z}^{(k)}$$
$$\sigma_i^{(k)} = \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x}^{(k)} \in \mathcal{B}^{(k)}} \left(\mathbf{z}_i^{(k)} - \boldsymbol{\mu}_i^{(k)} \right)^2$$

ullet For each element in the minibatch, replace $\mathbf{z}_i^{(k)}$ and $oldsymbol{x}_i^{(k+1)}$ by

$$ilde{\mathbf{z}}_i^{(k)} = rac{\mathbf{z}_i^{(k)} - oldsymbol{\mu}_i^{(k)}}{\sigma_i^{(k)}} \qquad ilde{\mathbf{x}}_i^{(k)} = \sigma\Big(oldsymbol{\gamma}_i^{(k)} ilde{\mathbf{z}}_i^{(k)} + oldsymbol{eta}_i^{(k)}\Big)$$

- $\gamma_i^{(k)}$ and $\beta_i^{(k)}$ are $2n_k$ extra parameters
- ullet The $m{b}_i$'s from $\mathbf{z}_i^{(k)} = \left\langle m{w}_i^{(k)}, m{x}^{(k)}
 ight
 angle + m{b}_i^{(k)}$ are useless $(ilde{\mathbf{z}}_i^{(k)}$ does not depend on $m{b}_i)$

Batch normalization

Normalize minibatch just like it is a mini-dataset before preprocessing

• Allow to learn a common rescaling

ullet At test time $\mu^{(k)}$ and $\sigma^{(k)}$ are replaced by estimations from a running average

Regularization

Toy dataset

Standard neural network classification

- 200 samples, 2 classes
- Gaussian mixture model
- Bayes decision boundary

- Neural network
 - 1 hidden layer with50 units
 - $\circ \sim 200$ parameters
- SGD algorithm
 - $\circ \ \ \text{learning rate:} \ 0.1$
 - $\circ \ \ \text{momentum:} \ 0.9$

Regularizing the ERM

Weight decay: an example

• Empirical risk minimization (ERM)

$$\underset{\theta \in \Theta}{\arg\min} \, \mathcal{L}_{\mathcal{B}} = \underset{\theta \in \Theta}{\arg\min} \, \frac{1}{|\mathcal{B}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{B}} \ell(F_{\Theta}(\boldsymbol{x}), \boldsymbol{y})$$

• L₂ penalizing term

$$\underset{\theta \in \Theta}{\operatorname{arg\,min}} \mathcal{L}_{\mathcal{R}} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{1}{|\mathcal{B}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{B}} \ell(F_{\Theta}(\boldsymbol{x}), \boldsymbol{y}) + \lambda \sum_{k=1}^{K} \left\| W^{(k)} \right\|_{F}$$

- Biases terms are not regularized
- $\bullet~\lambda$ is the tradeoff parameter called weight decay

• SGD algorithm

learning rate: 0.1momentum: 0.9

 \bullet weight decay: 10^{-4}

Weight decay: an example

Weight decay: an example

 SGD algorithm \circ learning rate: 0.1

 \circ momentum: 0.9

• weight decay: 10^{-3}

- SGD algorithm
 - \circ learning rate: 0.1
 - \circ momentum: 0.9
- weight decay: 10^{-2}

Weight decay: gradient

Dropout from Srivastava et al. 2014

• One extra term in the loss

$$\mathcal{L}_{\mathcal{R}} = \mathcal{L}_{\mathcal{B}} + \lambda \sum_{k=1}^{K} \left\| W^{(k)} \right\|_{F}$$

• Gradient is easy to get

$$\frac{\partial \mathcal{L}_{\mathcal{R}}}{\partial \mathbf{w}_{ij}^{(k)}} = \frac{\partial \mathcal{L}_{\mathcal{B}}}{\partial \mathbf{w}_{ij}^{(k)}} + 2\lambda \mathbf{w}_{ij}^{(k)}$$

• Gradients w.r.t. $\boldsymbol{b}_{i}^{(k)}$ are unchanged

• Randomly kill nodes in layers during training time

$$\mathbf{x}^{(k+1)} = \sigma \left(\left(W^{(k+1)} \right)^T \left(\mathbf{x}^{(k)} \odot \mathbf{h}^{(k)} \right) + \mathbf{b}^{(k+1)} \right)$$

with $\mathbf{h}^{(k)} \in \{0,1\}^{n_k}$

- ullet Bernoulli distribution $\mathbf{h}^{(k)} \sim \mathcal{B}(h)^{\otimes n_k}$
- *h* is the dropout rate
- Prevent "co-adaptation" of neurons, encourage redundancy

layer k layer k+1

- Output is stochastic
- Replace pre-activation by expected pre-activation

$$\mathbb{E}_{\mathbf{h}^{(k)}}\left(\mathbf{z}^{(k+1)}\right) = \mathbb{E}\left(\left(W^{(k+1)}\right)^{T}\left(\mathbf{x}^{(k)}\odot\mathbf{h}^{(k)}\right) + \mathbf{b}^{(k+1)}\right)$$

$$= \left(W^{(k+1)}\right)^{T}\left(\mathbf{x}^{(k)}\odot\mathbb{E}\left(\mathbf{h}^{(k)}\right)\right) + \mathbf{b}^{(k+1)}$$

$$= \left(W^{(k+1)}\right)^{T}\left(h\mathbf{x}^{(k)}\right) + \mathbf{b}^{(k+1)}$$

• At test-time, no dropout but rescale output by h

- SGD algorithm
 - \circ learning rate: 0.1 \circ momentum: 0.9
- dropout rate: 0.7
- Mostly present at
 - Fully connected layers
 - Embeddings
- Usually h = 0.5

)

.

Step learning rate decay

- Milestones: m_1, \ldots, m_l
- Learning rate decays at each milestone

$$\eta_t = \eta \cdot \gamma^{\#\{i, \, m_i \leqslant t\}}$$

- Example
 - \circ Learning rate: $\eta = 0.1$
 - \circ Learning rate decay: $\gamma = 1/2$
 - o Milestones: $m_i = 10i$

Cosine Annealing Learning Rate Decay from Loshchilov and Hutter 2017

- Cosine between η_{\min} and η_{\max}
- Example
 - \circ $\eta_{\min} = 0.01$
 - $\circ \ \eta_{\rm max} = 0.1$

Cosine Annealing Learning Rate Decay from Loshchilov and Hutter 2017

- ullet Cosine between η_{\min} and η_{\max}
- Example
 - $\circ~\eta_{\rm min} = 0.01$
 - $\circ \ \eta_{\mathsf{max}} = 0.1$
- Cycle length is increasing by a factor

