

1.1 Security Goals, Services, Mechanisms and attacks, The OSI security architecture, Network security model, Classical Encryption techniques, Symmetric cipher model, mono-alphabetic and polyalphabetic substitution techniques: Vigenere cipher, play fair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers, steganography.

Goals of security

Confidentiality is a set of rules that limits access to information

Integrity is the assurance that the information is trustworthy and accurate

Availability is guarantee of reliable access to the information by authorized people

Threat

A threat to a computing system is a set of circumstances that has the potential to cause loss or harm.

Network Security Model

Network Security Model

SECURITY SERVICES

Authentication

Prepared by Prof. Amit K. Nerurkar (AKN)

Encryption and Decryption

Encryption is a process which transforms the original information into an unrecognizable form.

Decryption is a process of converting encoded/**encrypted** data in a form that is readable and understood by a human or a computer.

Substitution

A: Mono Alphabetic Substitution

If 'A' is encrypted as 'D', for any number of occurrence in that plaintext, 'A' will always get encrypted to 'D'.

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Cipher text: WIRFRWAJUHYFTSDVFSFUUFYA

1. Ceaser Cipher:

B. Polyalphabetic Cipher

A polyalphabetic cipher is any cipher based on substitution, using multiple substitution alphabets.

1. Playfair cipher

The Playfair Cipher Encryption Algorithm:

The Algorithm consists of 2 steps

Generate the key Square(5×5):

For example:

The key is "monarchy"Thus the initial entires are 'm', 'o', 'n', 'a', 'r', 'c', 'h', 'y' followed by remaining characters of a-z(except 'j') in that order.

М	0	Ν	Α	R
С	I	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	X	Z

Algorithm to encrypt the plain text: The plaintext is split into pairs of two letters (digraphs). If there is an odd number of letters, a Z is added to the last letter.

For example:

PlainText: "instruments"

After Split: 'in' 'st' 'ru' 'me' 'nt' 'sz'

Rules for Encryption:

1. If both the letters are in the same column: Take the letter below each one (going back to the top if at the bottom).

For example:

Diagraph: "me" **Encrypted Text:** cl **Encryption:**

М	0	Ν	Α	R
С	Ι	Y	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	٧	W	Χ	Z

2. If both the letters are in the same row contact the letter to the right of each one (going back to the leftmost if at the rightmost position).

For example:

Diagraph: "st" **Encrypted Text:** tl **Encryption:**

М	0	Z	Α	R
С	Η	Υ	В	D
Е	F	G	_	K
L	Р	Q	S	Т
U	٧	W	X	Z

3. If neither of the above rules is true: Form a rectangle with the two letters and take the letters on the horizontal opposite corner of the rectangle.

For example:

Diagraph: "nt" **Encrypted Text:** rq **Encryption:**

$$n \rightarrow r$$

 $t \rightarrow q$

М	0	z	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Ø	S	Т
U	٧	W	X	Z

For example:

Plain Text: "instrumentsz" **Encrypted Text:** gatlmzclrqtx

st:

nt:

in:	М	0	N	A	R
	С	Н	Υ	В	D
	Е	F	G	L	K
	T	D		0	т

W

W

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	T
U	٧	W	Χ	Z

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	T
U	٧	W	Χ	Z

ru:

SZ:

me: Н Ē G

P

М	0	N	Α	F
С	Н	Υ	В	
Е	F	G	I	K
L	Р	Q	S	T
U	V	W pared b	X v Prof A	Z

M Н G Q S Ρ it K Nerurkar (AKN)

Decryption Technique

Rules for Decryption:

1. If both the letters are in the same column: Take the letter above each one (going back to the bottom if at the top).

For example:

Diagraph: "cl"
Decrypted Text: me
Decryption:

М	0	Z	Α	R
С	Ι	Y	В	D
Е	F	G	_	K
L	Р	Q	S	Т
U	٧	W	X	Z

2. If both the letters are in the same row: Take the letter to the left of each one (going back to the rightmost if at the leftmost position).

For example:

Diagraph: "tl"
Decrypted Text: st
Decryption:

t -> s | -> t

М	0	N	Α	R
C	Ι	Y	В	D
Е	F	G	1	K
L	Р	Q	S	Т
J	٧	W	X	Z

3. If neither of the above rules is true: Form a rectangle with the two letters and take the letters on the horizontal opposite corner of the rectangle.

Diagraph: "rq"
Decrypted Text: nt
Decryption:

$$r \rightarrow n$$

 $q \rightarrow t$

М	0	N	Α	R
O	H	Υ	В	О
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	Χ	Z

For example:

Plain Text: "gatlmzclrqtx"

Decrypted Text: instrumentsz

st:

nt:

in:	М	0	N	Α	R
	С	Н	Υ	В	D
	Е	F	G	1	K
	L	Р	Q	S	Т
	U	٧	W	Χ	Z

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G		K
L	Р	Q	S	T
U	٧	W	Х	Z

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	Х	Z

ru:

SZ:

me:	М	0	Z	Α	R
	O	Н	Υ	В	D
	Е	F	G	I	K
	L	Р	Q	S	Т
	U	٧	W	χ	Z

M O N A R
C H Y B D
E F G I K
L P Q S T
U V W X Z

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	T
U	٧	W	Χ	Z

2. Vigenère cipher

Plaintext-

Example: The plaintext is "NETWORK", and the key is "VIT".

To generate a new key, the given key is repeated in a circular manner, as long as the length of the plain text does not equal to the new key.

N	E	T	W	0	R	K
V	I	Т	V	I	Т	V

1	M	M	S	W	Т	F
V	I	Т	V	1	Т	V

3. Hill Cipher

Vidyalankar Institute of Technology Accredited A+ by NAAC

Encryption

We have to encrypt the message 'ACT' (n=3). The key is 'GYBNQKURP' which can be written as the nxn matrix:

The message 'ACT' is written as vector:

The enciphered vector is given as:

$$\begin{bmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 2 & 19 \end{bmatrix} = \begin{bmatrix} 67 \\ 222 \\ 319 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 7 \end{bmatrix} \pmod{26}$$

which corresponds to ciphertext of 'POH'

Decryption

For the previous Ciphertext 'POH':

which gives us back 'ACT'.

Transposition:

Keyed Transposition

Plain text	F	0	U	R	F	I	V	Е
Key	2	4	0	1	2	4	0	1
Positions	0	1	2	4	0	1	2	4
Cipher Text	U	R	F	0	V	E	F	l
Positions	0	1	2	4	0	1	2	4
Key	2	4	0	1	2	4	0	1
Plain text	F	0	U	R	F	I	V	Е

	Vidyalankar
\V/	Institute of
WIT	Technology
Accredited A-	

ρ. –	. 5	۶	C	U	R	1	τ	Ľ	
Key	9	7	- 4	2	ı	0	6	5	-
50L7	O	ı	2	4	5	6	7	9	
C · 7 ·	I	R	U	<u>_</u>	Y	Т	٤	5	
C·7	. 1	R	U	C	7	T	ع	5	
\$\PT.	O	ι	2	Ч	5	6	7	9	
Keg	9	7	4	2	l	0	6	5	
p ·7·	5	٤	\mathcal{L}	U	R	.	Τ	7	

Keyless Transposition Rail Fence algorithm. Encryption

Plaintext THISISASECRETMESSAGE

Rail Fence Encoding

key = 3

T				Ι				E				T				S			
	Н		S		S		S		С		E		M		S		A		E
		Ι				A				R				E				G	

Ciphertext TIETSHSSSCEMSAEIAREG

Decryption

Cipher	Т				I				Ε				Т				S			
		-		-		-		-		-		-		1		-		-		-
			-				-				-				-				-	

Cipher	Т				I				E				H				S			
		Н		S		S		S		С		Ε		М		S		Α		Ε
			-				-				-				-				-	

Cipher	Т				T				Ε				T				S			
		Н		S		S		S		C		E		M		S		A		E
			Ι				Α				R				Ε				G	

Steganography

Steganography is the technique of hiding secret data within an ordinary, non-secret, file or message in order to avoid detection; the secret data is then extracted at its destination. The use of steganography can be combined with encryption as an extra step for hiding or protecting data.

	STEGANOGRAPHY	CRYPTOGRAPHY					
Definition	It is a technique to hide the existence of communication	It's a technique to convert data into an incomprehensible form					
Purpose	Keep communication secure	Provide data protection					
Data Visibility	Never	Always					
Data Structure	Doesn't alter the overall structure of data	Alters the overall structure of data					
Key	Optional, but offers more security if used	Necessary requirement					
Failure	Once the presence of a secret message is discovered, anyone can use the secret data	If you possess the decryption key, then you can figure out original message from the ciphertext					

Thank You

Name: Amit K. Nerurkar

Designation: Assistant Professor

College: Vidyalankar Institute of Technology