Zum Beweisen

Seien A und B zwei Aussagen gegeben. Wir wollwn $A \Rightarrow B$ zeigen. Dazu gibt es drei Beweis Arten.

Direkter Beweis

$$A \Rightarrow ... \Rightarrow ... \Rightarrow B$$

Kontraposition

$$\neg B \Rightarrow \dots \Rightarrow \dots \Rightarrow \neg A$$

Widerspruchs Beweis

$$A \wedge \neg B \Rightarrow ... \Rightarrow ... \Rightarrow \mathscr{I}$$

0.1Bsp

Satz aus der Vorlesung:

Sind f, g differenzierbare Funktionen, dann sind auch $f + g, f - g, f \cdot g, f \circ g$ differenzierbar, sowie $\frac{f}{g}$ falls $g(x) > 0 \forall x$

Aufgabe:

Sei $f, g: (0, \infty) \to (0, \infty)$.

Zeige f und g differenzierbar ist äquivalent zu $f+g^2$ und $f-g^2$ differen zierbar.

Beweis: Wir zeigen zwei Richtungen:

"⇒"Sind f und g differenzierbar, so ist nach dem Satz aus der Vorlesung auch g^2 sowie sowie $f+g^2$ und $f-g^2$ differenzierbar "

—"Sind nun $f+g^2$ und $f-g^2$ differenzierbar, so sind auch $\frac{1}{2}\left(f+g^2\right)+\frac{1}{2}\left(f-g^2\right)=f$ und $\frac{1}{2}\left(f+g^2\right)-\frac{1}{2}\left(f-g^2\right)=g^2$ differenzierbar. Da nach der Vorlesung die Wurzelfunktion differenzierbar und $g\left(x\right)>0$ ist

auch $\sqrt{g(x)} = g(x)$ differenzierbar.

Stetig differenzierbare Funktion

 $C^n((a,b)) = \{f : (a,b) \to \mathbb{R} | f \text{ ist } n \text{ mal differenzierbar und } f^{(i)} \text{ ist stetig in } (a,b) \}$ $C^n([a,b]) = \{f: (a,b) \to \mathbb{R} | f \text{ ist } n \text{ mal stetig difference} \text{ in } (a,b) \text{ und } f^{(i)}, i=0,...,n \text{ ist stetig in } (a,b) \text{ and } f^{(i)}, i=0,...,n \text{ ist stetig in } (a,b$

1

Aufgabe mit dem Taylor

- a) Zeige: $u'(x) = \frac{u(x+h)-u(x)}{h} + o(h)$ d.h.: Es gib $r : \mathbb{R} \to \mathbb{R}$ mit $u'(x) = \frac{u(x+h)-u(x)}{h} + r(h)$
 - wobei $\frac{r(h)}{h} \to 0$ für $h \to 0$
- b) Zeige $u'(x) = \frac{u(x+h) u(x-h)}{2h} + o(h^2)$
- c) Zeige $-u''(x) = \frac{2u(x) u(x+h) u(x-h)}{h^2} + o(h^2)$

1.1 Lösung

a) Mit dem Satz von Taylor folgt:

$$u(x+h) = u(x) + u'(x)h + o(h) \Leftrightarrow u'(x) = \frac{u(x+h) - u(x)}{h} + o(h)$$

- b)
- c) Mit dem Satz von Taylor folgt:

$$u(x+h) = u(x) + u'(x)h + \frac{1}{2}u''(x)h^{2}$$

$$u(x-h) = u(x) - u'(x)h + \frac{1}{2}u''(x)(-h)^{2} + o(h^{2}) = u(x) - u'(x)h + \frac{1}{2}u''(x)h^{2} + o(h^{2})$$

Subtrahieren liefert:

$$u(x+h) - u(x-h) = 0 + 2u'(x)h + 0 + o(h^2) \Leftrightarrow b$$

Addieren liefert c)

$$\frac{2r(h)}{h^2} \to 0$$

 $o(h^2) \pm o(h^2) = o(h^2)$