2.6. Экспоненциальный класс распределений

Определение: Семейство распределений $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$ принадлежит экспоненциальному классу, если плотность $p_{\theta}(x)$ имеет вид

$$p_{ heta}(x) = rac{g(x)}{h(heta)} e^{a(heta)^T u(x)},$$

где $g(x)>0,\;u(x)$ — произвольные борелевские функции, $h(heta)=\int\limits_{\mathscr X}g(x)e^{a(heta)^Tu(x)}\,dx$ — нормировочная константа.

Если a(heta)= heta, будем говорить что параметризация естественная

Пример: $\mathcal{P} = \{\mathcal{N}(a, \sigma^2 | a \in \mathbb{R}, \sigma > 0\}$. Перейдем к естественным параметрам:

$$p(x)=rac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-rac{(x-a)^2}{2\sigma^2}
ight)=rac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-rac{x^2}{2\sigma^2}+rac{xa}{\sigma^2}-rac{a^2}{2\sigma^2}
ight).$$

Введем параметры $heta=(heta_1, heta_2)$: $heta_1=-rac{1}{2\sigma^2},\ heta_2=rac{a}{\sigma^2}.$

$$p(x) = \sqrt{-rac{ heta_1}{\pi}}e^{ heta_1 x^2 + heta_2 x + rac{ heta_2^2}{4 heta_1}}.$$

$$u(x)=inom{x^2}{x}, a(heta)= heta,\ g(x)=1,\ h(heta)=\sqrt{-rac{ heta_1}{\pi}}e^{rac{ heta_2^2}{4 heta_1}}.$$

Найдем достаточные статистики для семейства \mathcal{P} :

$$p_{ heta}(x_1,\ldots,x_n) = h^{-n}(heta) \prod_{i=1}^n g(x_i) e^{a(heta)^T \sum\limits_{i=1}^n u(x_i)}.$$

По критерию факторизации Неймана-Фишера $S(X) = \sum u(X_i)$ — достаточная статистика.

Замечание: S(X) — статистика фиксированной размерности.

Теорема: Пусть $\mathcal{P}=\{P_{\theta}|\theta\in\Theta\}$ — семейство распределений т.ч. плотность $p_{\theta}(x)$ непрерывно дифференцируема по x и носитель не зависит от θ . Пусть также S(X) — достаточная статистика фиксированной размерности m. Тогад семейство $\mathcal P$ принадлежит экспоненциальному классу.

Следствие: Если плотность достаточно хорошая, то только семейства из экспоненциального класса допускают сжатие данных с помощю достаточных статистик.

Примеры:

- 1. $\mathcal{P} = \{$ Коши со сдвигом $\}$ не лежит в экспоненциальном классе \implies нет достаточных статистик фиксированного размера.
- 2. $\mathcal{P}=\{U[0, heta]\}$ носитель зависит от heta. Однако достаточная статистика фикс. размера существует: $S(X)=X_{(n)}$.

Далее потребуем некоторые условия:

- 1. Параметризация естественная
- 2. g(x), u(x) непрерывны
- 3. Условие равномерной сходимости интеграла по параметру:

$$orall s \ orall j \leqslant k \ \exists arphi(x) : orall heta \in \Theta \ |g(x)u_s^j(x)e^{ heta u(x)}| \leqslant arphi(x),$$

и при этом $\int\limits_{\mathscr{X}} \varphi(x) dx$ сходится.

Следствия:

- 1. h(heta) непрерывно дифференцируема k раз
- 2. $p_{ heta}(x)$ непрерывно дифференцируема k раз по heta
- 3. Можно менять местами $\frac{\partial}{\partial \theta}$ и \int

Утверждение 1:

1.
$$E_{ heta}u(X) =
abla \ln h(heta) = \left(rac{\partial}{\partial heta} \ln h(heta)
ight)$$

2.
$$D_{ heta}u(X)=
abla^2\ln h(heta)=\left(rac{\partial^2}{\partial heta^2}\ln h(heta)
ight)_{ik}$$

△ (1):

$$\frac{\partial h(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta} \int\limits_{\mathscr{X}} g(x) e^{\theta^T u(x)} dx = \{\text{следствие } 3\} = \int\limits_{\mathscr{X}} u_j(x) g(x) e^{\theta^T u(x)} dx = h(\theta) \int\limits_{\mathscr{X}} \frac{u_j(x)}{h(\theta)} g(x) e^{\theta^T u(x)} dx = h(\theta) E_\theta u_j(X_1).$$

$$E_\theta u_j(X_1) = \frac{\partial h(\theta)/\partial \theta_j}{h(\theta)} = \frac{\partial \ln h(\theta)}{\partial \theta} \qquad \Box.$$

Утверждение: Если Θ — выпуклое множество, то ОМП существует и единственна.

$$riangle$$
 $abla
abla \ln h(heta) = D_{ heta} u(X_1) \geqslant 0 \implies \ln h(heta)$ выпукла.

$$l_X(heta) = \underbrace{\sum_{ ext{не зависит от } heta} l_X(x_i)}_{ ext{не зависит от } heta} - n \overline{\ln h(heta)}_{ ext{вогнута}} + \underbrace{ heta \sum_{ ext{линейна по } heta} u(X_i)}_{ ext{линейна по } heta} \implies l_X(heta)$$
 вогнута.

Утверждение: Если Θ — выпуклое открытое множество, то выполнены условия L5-L9.

 \triangle L5-L7 выполнены из следствий 1-3

L8:
$$rac{\partial \ln p_{ heta}(x)}{\partial heta} = rac{\partial}{\partial heta} (\ln g(x) - n \ln h(heta) + heta u(x)) = rac{\partial h(heta)}{h(heta)} + u(x)$$

 $i(heta) = E_{ heta} (rac{\partial \ln p_{ heta}(X_1)}{\partial heta})^2$ по утверждению 1 существует и конечна

L9 следует из того, что $\frac{\partial^2 \ln p_{\theta}(X_1)}{\partial \theta^2}$ не зависит от θ \Box .

2.7. Сравнение оценок

Ранее было:

$$X_1,\ldots,X_n\sim Exp(\theta)$$
.

$$\hat{ heta}_1=1/\overline{X},~\hat{ heta}_2=-\ln\overline{I\{X>1\}}$$
 — (сильно) состоятельная, а. н. оценка $heta$. Хотим построить оценку для $au(heta)\in\mathbb{R}^d$.

Определение: Функция $L: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}_+$, которая характеризует степень отклонения оценки от au(heta), называется функцией потерь (loss function).

Примеры:

- 1. $L(x,y)=(x-y)^2$ квадратичная функция потерь
- 2. L(x,y) = |x-y| абсолютная функция потерь
- 3. $L(x,y) = \log(1+|x-y|)$

многомерный случай:

4.
$$L(x,y)=(x-y)^TA(x-y)$$
, A — симметричная, полож. определенная матрица если $A=I_d:L(x,y)=\sum\limits_{j=1}^d(x_j-y_j)^2.$

Пусть $\hat{\theta}$ — оценка $\tau(\theta)$, θ — истинное значение параметра. Тогда $L(\hat{\theta},\theta)$ — штраф при оценивании $\tau(\theta)$ оценкой $\hat{\theta}$. Проблема: штраф случаен

Определение: Функция риска

$$R_{\hat{ heta}, au}(heta) = E_{ heta}L(\hat{ heta}, au(heta)).$$

Примеры:

- ullet $ext{MSE}_{\hat{ heta}, au}(heta)=E_{ heta}(\hat{ heta}- au(heta))^2$ среднеквадратичная ошибка
- ullet М $ext{AE}_{\hat{ heta}\, au}(heta) = E_{ heta}|\hat{ heta}- au(heta)|$ средняя абсолютная ошибка

Замечание: если au(heta) = heta, то индекс au опускаем.

Задача: X_1,\dots,X_n — выборка. $\hat{ heta}_1=X_1,\;\hat{ heta}_2=\overline{X}$ — оценки $au(heta)=E_{ heta}(X_1)$. Посчитать MSE.

$$\triangle \quad \mathrm{MSE}_{\hat{\theta}_1,\tau}(\theta) = E_{\theta}(X_1 - E_{\theta}X_1)^2 = D_{\theta}X_1 \\ \quad \mathrm{MSE}_{\hat{\theta}_2,\tau}(\theta) = E_{\theta}(\overline{X} - E_{\theta}\overline{X})^2 = D_{\theta}\overline{X} = \frac{1}{n}D_{\theta}X_1.$$

Вывод: усреднение уменьшает среднеквадратичный риск в n раз.

Подходы к сравнению оценок:

1. Равномерный

- ullet $\widehat{ heta}_1$ не хуже $\widehat{ heta}_2$, если $orall heta R_{\widehat{ heta}_1, au(heta)} \leqslant R_{\widehat{ heta}_2, au(heta)}.$
- ullet $\hat{ heta}_1$ лучше $\hat{ heta}_2$, если, кроме того, $\exists heta: R_{\hat{ heta}_1, au(heta)} < R_{\hat{ heta}_2, au(heta)}.$
- ullet Пусть ${\mathscr K}$ множество оценок. $\hat{ heta}$ наилучшая в ${\mathscr K}$, если она лучше всех оценок из ${\mathscr K}$.
- ullet Если $L(x,y)=(x-y)^2$, то подход называется среднеквадратичным.

Утверждение: Наилучшей оценки может не существовать.

$$\triangle \quad \mathscr{K} = \{\hat{\theta}_1 \equiv 1, \hat{\theta}_2 \equiv 2\}$$

$$ext{MSE}_{\hat{ heta}_1}(heta) = E_{ heta}(heta-1)^2 = (heta-1)^2$$

$$\mathrm{MSE}_{\hat{ heta}_2}(heta) = E_{ heta}(heta-2)^2 = (heta-2)^2$$

Если heta < 1.5, то $ext{MSE}_{\hat{ heta}_1}(heta) < ext{MSE}_{\hat{ heta}_2}(heta)$; если heta > 1.5, то $ext{MSE}_{\hat{ heta}_2}(heta) < ext{MSE}_{\hat{ heta}_1}(heta)$

Утверждение: Справедливо bias-variance разложение:

$$\underbrace{\mathrm{MSE}_{\hat{\theta},\tau}(\theta)}_{error} = \underbrace{D_{\theta}\hat{\theta}}_{variance} + \underbrace{(E_{\theta}\hat{\theta} - \theta)^2}_{bias^2}.$$

$$\triangle \quad \mathrm{MSE}_{\hat{\theta},\tau}(\theta) = E_{\theta}(\hat{\theta} - \tau(\theta))^2 = E_{\theta}((\hat{\theta} - E_{\theta}\hat{\theta}) + (E_{\theta}\hat{\theta} - \tau(\theta))^2 = E_{\theta}(\hat{\theta} - E_{\theta}(\hat{\theta}))^2 + 2E_{\theta}(\hat{\theta} - E_{\theta}\hat{\theta})(E_{\theta}\hat{\theta} - \tau(\theta)) + (E_{\theta}(\hat{\theta}) - \tau(\theta))^2$$

Второе слагаемое равно нулю, следовательно, получаем требуемое.

Следствие: Среди все несмещенных оценок наилучшей будет та, у которой меньше дисперсия.

2. Байесовский

Пусть Q — некоторое распределение на Θ . Тогда $\hat{ heta}_1$ не хуже $\hat{ heta}_2$, если $E_Q R_{\hat{ heta}_1}(heta) \leqslant E_Q R_{\hat{ heta}_2}(heta)$.

3. Минимаксный

$$\hat{ heta}_1$$
 не хуже $\hat{ heta}_2$, если $\sup_{ heta \in \Theta} R_{\hat{ heta}_1}(heta) \leqslant \sup_{ heta \in \Theta} R_{\hat{ heta}_2}(heta).$

4. Асимптотический (для а.н.о)

Пусть $\hat{ heta}_1,\hat{ heta}_2$ — а.н.о. au(heta) с асимпт. дисперсией σ_1^2 и σ_2^2 . Тогда

- $\hat{ heta}_1$ не хуже $\hat{ heta}_2$, если $\sigma_1(heta) \leqslant \sigma_2(heta) \ orall heta \in \Theta.$
- ullet $\hat{ heta}_1$ лучше $\hat{ heta}_2$, если, кроме того $\exists heta \in \Theta: \ \sigma_1(heta) < \sigma_2(heta).$
- ullet Относительная асимптотическая эффективность: $ext{ARE}^ au_{\hat{ heta}_1,\hat{ heta}_2}(heta)=rac{\sigma_2^2}{\sigma_1^2}$ показывает, насколько $\hat{ heta}_1$ лучше $\hat{ heta}_2$.

 $\hat{ heta}_1$ не хуже $\hat{ heta}_2$, если $ext{ARE}^{ au}_{\hat{ heta}_1,\hat{ heta}_2}(heta)\geqslant 1 orall heta \in \Theta$.

Определение: Оценка $\hat{ heta}$ называется *асимптотически* эффективной оценкой au(heta), если она имеет наименьшую асимптотическую дисперсию среди всех а.н.о. au(heta) с непрерывной а. д.

Утверждение: Если выполнены условия L1-L9, то ОМП асимптотически эффективна.

Пример: $X_1, \ldots, X_n \sim \mathcal{N}(\theta, 1)$.

- ОМП: $\hat{\theta}_1=\overline{X}$ а.н.о θ с а.д. $\sigma_1^2=1$. Теор. о выборочной медиане: $\hat{\theta}_2=\widehat{\mu}$ а.н.о θ с а.д. $\sigma_2^2=\frac{2\pi}{4}=\frac{\pi}{2}$.

$$ARE_{\overline{X},\widehat{\mu}}(\theta) = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)} = \frac{\pi}{2} \approx 1.57.$$