Dataviz with R and ggplot2

Tony FujsLatin American Youth Center tony@layc-dc.org
@tonyfujs

The grammar of graphics:

In the grammar of graphics framework, a plot is made of the following elements:

	Elements of a plot	code
	coordinate system - ONE per plot	coord_xxxx
	scale - ONE per aesthetic	scale_xxxx
	facet – ONE per plot (optional)	
Layer At least one per foliate, possibly many	• data – ONE per layer (can be the same)	data
	aesthetic mappings	aes
	• geometric object – ONE per layer	geom_xxxx
	• position adjustment - ONE per layer	position
	Statistical transformation - ONE per layer	stat

Cheat sheet:

For more information please refer to the ggplot2 help page: http://docs.ggplot2.org/current/index.html

• Coordinate system:

coord_cartesian()	The Cartesian coordinate system is the most familiar, and common, type of coordinate system.
coord_polar()	The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in polar coordinates.
coord_flip()	Flipped cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal.
coord_map()	Map projection coordinate system

• Scale:

scale_x_continuous()	Continuous position scale for x
scale_y_continuous()	Continuous position scale for y
scale_colour_continuous()	Control the mapping of continuous variables to the color space
scale_color_discrete()	Control the mapping of discrete variables to the color space

• Aesthetics:

X	Map variable to geom position on the x axis
у	Map variable to geom position on the y axis
size	Map variable to size of geom
Color	Map variable to color of geom (exterior)
Fill	Map variable to color of geom (interior)
Shape	Map variable to shape of geom
Alpha	Map variable to transparency of geom

• Geometric object:

geom_bar()	The bar geom is used to produce 1d area plots: bar charts for categorical x, and histograms for continuous y.
geom_point()	The point geom is used to create scatterplots.
geom_line()	Connect observations, ordered by x value.
geom_path()	Connect observations in original order
geom_polygon()	Polygon, a filled path.
geom_text()	Textual annotations.
geom_smooth()	Add a smoothed conditional mean.

• Position adjustment:

identity	Don't adjust position
dodge	Adjust position by dodging overlaps to the side.
Stack	Stack overlapping objects on top of one another
fill	Stack overlapping objects on top of one another, and standardise to have equal height.

• Statistical transformation:

identity	No transformation	
smooth	Aids the eye in seeing patterns in the presence of overplotting. Add new columns to dataset: predicted values from a regression, confidence intervals, etc.	
Stack	Add a new column to dataset: # number of points in a specific bin	

R resources: Where do I start?

- 1. Download and install R: http://cran.r-project.org/
- 2. Install R Studio (A user friendly interface for R): http://www.rstudio.com/ide/download/
- 3. Become familiar with the R environment: http://tryr.codeschool.com/
- 4. Learn how to install packages with R Studio: http://www.youtube.com/watch?v=u1r5XTqrCTQ
- 5. Take a free on-line class:

Beginner: https://www.coursera.org/course/stats1

Intermediate: https://www.coursera.org/course/dataanalysis

Advanced: https://www.coursera.org/course/compdata

6. Get started with your own "toy project" and stick to it!

There is a wealth of resources on-line and it's easy to get overwhelmed.

- 7. Minimize frustration by copy-pasting existing code for your "toy project" Don't forget: "Google is your friend!"
- 8. Expect some frustration!

Additional resources:

- Download: http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- Getting starting with R? Chances are what you are trying to do has already been documented http://www.statmethods.net/ or http://www.cookbook-r.com/
- Watch Introduction to R, a video series by Google: http://www.youtube.com/playlist?list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP
- 2 minutes video series: http://www.twotorials.com/

Ggplot2 resources:

Free on the web:

- R cookbook: http://www.cookbook-r.com/Graphs/
 Good place to start. Many easy to follow examples with code.
- Official ggplot2 page: http://docs.ggplot2.org/current/

Most complete and up-to-date resource

SAPE webpage: http://sape.inf.usi.ch/quick-reference/ggplot2/
 Very complete and well organized resource

Books:

ggplot2 Elegant Graphics for Data Analysis by Hadley Wickam
 http://www.amazon.com/ggplot2-Elegant-Graphics-Data-Analysis/dp/0387981403

Other resources:

The grammar of graphics by Leland Wilkinson
 http://www.amazon.com/Grammar-Graphics-Statistics Computing/dp/0387245448/ref=sr 1 1?s=books&ie=UTF8&qid=1398460257&sr=1-1