import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

df=pd.read_csv("/content/winequality-red.csv")
df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcohol	ŧ
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
	C1 (C4/44) 1 (C4	(4)	

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003

df.corr()

		fixed volat acidity acid		citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	!
	fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	
	volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	
	citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	
df.co	orr().quali	ty.sort_va	lues(ascen	ding=False)						

quality 1.000000 0.476166 alcohol sulphates 0.251397 citric acid 0.226373 fixed acidity 0.124052 residual sugar 0.013732 free sulfur dioxide -0.050656 -0.057731 chlorides -0.128907 ${\tt density}$ -0.174919 total sulfur dioxide -0.185100 volatile acidity -0.390558 Name: quality, dtype: float64

▼ Visualization

import seaborn as sns
from matplotlib import rcParams

sns.distplot(df['volatile acidity'])

<ipython-input-126-6077730c287e>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['volatile acidity'])
<Axes: xlabel='volatile acidity', ylabel='Density'>

sns.displot(df['citric acid'])

<seaborn.axisgrid.FacetGrid at 0x7cbb7c34e4a0>

plt.scatter(df['density'],df['alcohol'])

<matplotlib.collections.PathCollection at 0x7cbb7bf5e3e0>

sns.lineplot(x=df['pH'],y=df['alcohol'])

sns.jointplot(x=df['chlorides'],y=df['density'],data=df)

<seaborn.axisgrid.JointGrid at 0x7cbb7d2780a0>

sns.pairplot(df)

plt.figure(figsize = (16,5))
sns.heatmap(df.corr(),annot=True,linewidths=.5)

<Axes: >

fixed acidity -	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12
volatile acidity -	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39
citric acid -	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23
residual sugar -	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014
chlorides -	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13
free sulfur dioxide -	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051
total sulfur dioxide -	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19
density -	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17
pH -	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058
sulphates -	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25
alcohol -	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48
quality -	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	free sulfur dioxide -	otal sulfur dioxide -	density -	Hd.	sulphates -	alcohol -	quality -

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
# Column Non-Null Count Dtype
```

0	fixed acidity	1599	non-null	float64
1	volatile acidity	1599	non-null	float64
2	citric acid	1599	non-null	float64
3	residual sugar	1599	non-null	float64
4	chlorides	1599	non-null	float64
5	free sulfur dioxide	1599	non-null	float64
6	total sulfur dioxide	1599	non-null	float64
7	density	1599	non-null	float64
8	рН	1599	non-null	float64
9	sulphates	1599	non-null	float64
10	alcohol	1599	non-null	float64
11	quality	1599	non-null	int64
dtype	es: float64(11), int64	(1)		
memor	^y usage: 150.0 KB			

sns.boxplot(df['fixed acidity'])

sns.boxplot(df['volatile acidity'])

sns.boxplot(df['citric acid'])

sns.boxplot(df['residual sugar'])

sns.boxplot(df['chlorides'])

sns.boxplot(df['free sulfur dioxide'])

sns.boxplot(df['total sulfur dioxide'])

sns.boxplot(df['density'])

sns.boxplot(df['pH'])

sns.boxplot(df['sulphates'])

sns.boxplot(df['alcohol'])

sns.boxplot(df['quality'])

(1599, 12)

```
# outlier removal for fixed acidity
q1=df['fixed acidity'].quantile(0.25)
q3=df['fixed acidity'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
```

df=df[df['fixed acidity']<upper_limit]</pre>

sns.boxplot(df['fixed acidity'])


```
# outlier removal for volatile acidity
q1=df['volatile acidity'].quantile(0.25)
q3=df['volatile acidity'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[df['volatile acidity']<upper_limit]
sns.boxplot(df['volatile acidity'])</pre>
```


outlier removal for citric acid
q1=df['citric acid'].quantile(0.25)
q3=df['citric acid'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['citric acid']<upper_limit]</pre>

sns.boxplot(df['citric acid'])


```
# outlier removal for residual sugar
q1=df['residual sugar'].quantile(0.25)
q3=df['residual sugar'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['residual sugar']<upper_limit]
df=df[df['residual sugar']>lower_limit]
sns.boxplot(df['residual sugar'])
```


outlier removal for chlorides
q1=df['chlorides'].quantile(0.25)
q3=df['chlorides'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['chlorides']<upper_limit]
df=df[df['chlorides']>lower_limit]

sns.boxplot(df['chlorides'])


```
# outlier removal for free sulfur dioxide
q1=df['free sulfur dioxide'].quantile(0.25)
q3=df['free sulfur dioxide'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['free sulfur dioxide']<upper_limit]
sns.boxplot(df['free sulfur dioxide'])</pre>
```

```
<Axes: >
40 -
35 -
30 -
25 -
20 -
15 -
```

```
# outlier removal for total sulfur dioxide
q1=df['total sulfur dioxide'].quantile(0.25)
q3=df['total sulfur dioxide'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
```

df=df[df['total sulfur dioxide']<upper_limit]</pre>

sns.boxplot(df['total sulfur dioxide'])


```
# outlier removal for density
q1=df['density'].quantile(0.25)
q3=df['density'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['density']<upper_limit]
df=df[df['density']>lower_limit]
sns.boxplot(df['density'])
```

1

```
<Axes: >
      1.000
      0.999
      0.998
      0.997
# outlier removal for pH
q1=df['pH'].quantile(0.25)
q3=df['pH'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
      0.993 -
df=df[df['pH']<upper_limit]</pre>
df=df[df['pH']>lower_limit]
sns.boxplot(df['pH'])
     <Axes: >
      3.7 -
      3.6
      3.5
      3.4
      3.3 -
      3.2
      3.1
      3.0
                                            0
# outlier removal for sulphates
q1=df['sulphates'].quantile(0.25)
q3=df['sulphates'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[df['sulphates']<upper_limit]</pre>
```

sns.boxplot(df['sulphates'])


```
# outlier removal for quality
q1=df['quality'].quantile(0.25)
q3=df['quality'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR

df=df[df['quality']<upper_limit]
df=df[df['quality']>lower_limit]
sns.boxplot(df['quality'])
```

```
<Axes: >
      7.0 -
df.corr().quality.sort_values(ascending=False)
     quality
                             1.000000
     alcohol
                             0.486956
                             0.432689
     sulphates
     citric acid
                             0.222739
     fixed acidity
                             0.121988
     residual sugar
                             0.029713
     free sulfur dioxide
                             0.003212
                            -0.074664
     chlorides
                            -0.177568
     total sulfur dioxide
                            -0.184912
     density
                            -0.202988
     volatile acidity
                            -0.352500
     Name: quality, dtype: float64
```

→ Train test Split

```
x=df.drop(columns='quality',axis=1)
x.head()
```

				residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8

```
y=df['quality']
y.head()

0    5
1    5
2    5
3    6
4    5
Name: quality, dtype: int64

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.25,random_state=0)

x_train.shape
    (843, 11)

x_test.shape
    (281, 11)
```

▼ Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
model2= RandomForestClassifier()
model2.fit(x_train,y_train)
```

```
r RandomForestClassifier
RandomForestClassifier()
```

r_y_predict=model2.predict(x_test)

r_y_predict_train= model2.predict(x_train)

from sklearn.metrics import accuracy_score,classification_report,confusion_matrix

print("Testing accuracy", accuracy_score(y_test,r_y_predict))
print("Training accuracy", accuracy_score(y_train,r_y_predict_train))

Testing accuracy 0.7366548042704626
Training accuracy 1.0

pd.crosstab(y_test,r_y_predict)

col_0	5	6	7
quality			
4	8	3	0
5	104	18	0
6	32	83	2
7	1	10	20

print(classification_report(y_test,r_y_predict))

	precision	recall	f1-score	support
4 5	0.00	0.00	0.00	11
	0.72	0.85	0.78	122
6	0.73	0.71	0.72	117
7	0.91	0.65	0.75	31
accuracy			0.74	281
macro avg	0.59	0.55	0.56	281
weighted avg	0.71	0.74	0.72	281

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c _warn_prf(average, modifier, msg_start, len(result))

x_test.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoho
1095	9.4	0.40	0.47	2.5	0.087	6.0	20.0	0.99772	3.15	0.50	10.
1301	6.7	0.86	0.07	2.0	0.100	20.0	57.0	0.99598	3.60	0.74	11.
1507	7.5	0.38	0.57	2.3	0.106	5.0	12.0	0.99605	3.36	0.55	11.
1532	7.2	0.53	0.13	2.0	0.058	18.0	22.0	0.99573	3.21	0.68	9.

 $\label{local_pred} $$\operatorname{random_pred}=\operatorname{model2.predict}([[6.7,0.38,0.47,2.0,0.079,5.0,20.0,0.99598,3.21,0.68,9.8]])$$ $$\operatorname{random_pred}$$$

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassific warnings.warn(array([5])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassific warnings.warn(

array([5])