Mouvement d'un point

#chapitre7 #mecanique #cinematique #dynamique

Mécanique

Etude du mouvement des corps matériels

Cinématique

Etude des mouvements indépendamment de ses causes

Dynamique

Lien entre le mouvement et ses causes

Repère d'espace et référentiel

Repère

Système de coordonnées permettant définir la position des points

Référentielle

Définie par un repère spatial et un temporelle

Système cartésienne $(\vec{e_x}, \vec{e_y}, \vec{e_x})$

Système polaire

$$egin{aligned} r \in \mathbb{R}^+ \; heta \in [0, 2\pi] \ ec{OM} = ec{r} = rec{e_r} \end{aligned}$$

Passer de repérage polaire à cartésienne

$$egin{aligned} x &= r\cos(heta),\, y = r\sin(heta),\, r = \sqrt{x^2 + y^2} \ ec{e_r} &= \cos(heta)ec{e_x} + \sin(heta)ec{e_y},\, ec{e_ heta} &= -\sin(heta)ec{e_x} + \cos(heta)ec{e_y} \end{aligned}$$

Système cylindrique $(\vec{e_r}, \vec{e_{ heta}}, \vec{e_z})$

$$ec{OM} = ec{r} = rec{e_r} + zec{e_z}$$

Système sphérique $(\vec{e_r}, \vec{e_{ heta}}, \vec{e_z})$

$$r\in\mathbb{R}^+$$
 , $heta\in[0,\pi]$, $arphi\in[0,2\pi]$ $ec{OM}=ec{r}=rec{e_r}$

Cinématique du point

vecteur position

$$ec{OM}(t) = x(t) ec{e_x} + y(t) ec{e_y} z(t) ec{e_z}$$

Trajectoire

Courbe décrit par les positions successive de ${\cal M}$

Vecteur vitesse

$$\Delta ec{OM} = M(t) ec{M(t+\Delta t)}$$

repère cartésien: $ec{v}=\dot{x}ec{e_x}+\dot{y}ec{e_y}$

repère cylindrique: $ec{v}=\dot{r}ec{e_r}+r\dot{ heta}ec{e_ heta}+zec{e_z}$

$$\dot{ec{e_r}}=\dot{ heta}ec{e_ heta}$$

Vecteur accélération

$$ec{a}(t)=rac{dec{v}}{dt}$$

repère cartésien: $\vec{a} = \ddot{x}\vec{e_x} + \ddot{y}\vec{e_y} + \ddot{z}\vec{e_z}$

repère cylindrique: $ec{a}=(\ddot{r}-r\dot{ heta}^2)ec{e_r}+(2\dot{r}\dot{ heta}+r\ddot{ heta})ec{e_ heta}+\ddot{z}ec{e_z}$

$$\dot{ec{e_{ heta}}} = -\dot{ heta}ec{e_r}$$

Mouvement à vecteur accélération constant

$$egin{cases} \overrightarrow{a} = \overrightarrow{g} \ \overrightarrow{v}(t) = \overrightarrow{g}t + \overrightarrow{v_0} \ \overrightarrow{r}(t) = rac{1}{2}\overrightarrow{g}t^2 + \overrightarrow{v_0}t + \overrightarrow{r_0} \end{cases}$$
 avec $\overrightarrow{v_0} = egin{pmatrix} v_0\cos(lpha) \ v_0\sin(lpha) \end{pmatrix}$

Trajectoire

$$y=-x^2rac{g}{2v_0^2\cos^2(lpha)}+x an(lpha)$$

Mouvement circulaire

$$\overrightarrow{v} = R \, \omega \, \overrightarrow{e_{ heta}}$$

Mouvement uniforme

$$ullet v_0 = R \, \omega = cst$$

$$ullet$$
 $\overrightarrow{a}=-R\, heta^2\overrightarrow{e_r}$

Mouvement non uniforme

$$\overrightarrow{a}=egin{cases} -R\omega^2 \ R\dot{\omega} \end{cases}$$

Base de Frenet

$$ullet$$
 $\overrightarrow{v} = \overrightarrow{vT}$

$$ullet \overrightarrow{a} = rac{v^2}{R} \overrightarrow{N} + \dot{v} \overrightarrow{T}$$