0.1 Integraler över allmänna områden (forts.)

Sats 1 (Volym mellan grafer). Om $f(x,y) \ge g(x,y)$ ges volymen av området mellan z = g(x,y) och z = f(x,y) där $(x,y) \in D$ ges av $\iint_D f(x,y) - g(x,y) dA$.

0.2 Dubbelintegraler och polära koordinater (15.3)

Exempel 1. Beräkna volymen av området mellan konen $x^2+y^2=z^2, z\geq 0$ och planet z=1.

Den första ekvationen ger en kon eftersom $z=\sqrt{x^2+y^2}$ där zär avståndet från (x,y) till origo.

Det beror inte på vinkeln θ i xy-planet, så vi kan rita z=r för ex. $\theta=0$, där är r=x, och sedan roterar vi kring z-axeln.

Ytorna $z=\sqrt{x^2+y^2}$ och z=1 skär varandra i $\sqrt{x^2+y^2}=1$, d.v.s. $x^2+y^2=1$ och z=1. Området mellan de här ytorna ges då av $\sqrt{x^2+y^2}\leq z\leq 1$, $(x,y)\in D=\{(x,y)\mid x^2+y^2\leq 1\}$. D sett som ett typ I-område begränsas av $y=\sqrt{1-x^2}$ och $y=-\sqrt{1-x^2}$. Alltså är $D=\{(x,y)\mid -1\leq x\leq 1,\ -\sqrt{1-x^2}\leq y\leq \sqrt{1-x^2}\}$.

Områdets volym blir då $\iint_D 1 - \sqrt{1-x^2} dA = \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 1 - \sqrt{x^2+y^2} dy dx$. Detta går att beräkna, men blir krångligt.

Idag ska vi snacka om ett betydligt enklare sätt att räkna ut detta.

0.2.1 Polära koordinater

En punkt $(x,y) \in \mathbb{R}^2$ kan beskrivas med polära koordinater (r,θ) genom $\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$ där θ är vinkeln mot x-axeln och r är avståndet från origo.

Exempel 2. Området $D = \{(x,y) \mid x^2 + y^2 \le 4, y \le x\}$ ser ut som följande:

Figur 1

I polära koordinater är $D = \{(r, \theta) \mid 0 \le r \le 2, -\frac{3\pi}{4} \le \theta \le \frac{\pi}{4}\}.$

Definition 1 (Polära rektanglar och deras area). Ett område är en polär rektangel om det i polära koordinater ges av $a \le r \le b$ och $\alpha \le \theta \le \beta$.

Figur 2

Arean för den rektangeln är $\frac{(b^2-a^2)(\beta-\alpha)}{2}$.

0.2.2 Integration i polära koordinater

Sats 2 (Integration av polära rektanglar). Låt D vara en polär rektangel som ges av $a \le r \le b, \alpha \le \theta \le \beta$, och anta att f är kontinuerlig på D.

Då är $\iint_D f dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos(\theta), r\sin(\theta)) \cdot r dr d\theta = \int_a^b \int_{\alpha}^{\beta} f(r\cos(\theta), r\sin(\theta)) \cdot r d\theta dr$

Obs. 1. Vänsterledet är en integral över ett allmänt område. Högerledet är upprepade integraler.

Man brukar ofta sammanfatta formlerna som $dA = rdrd\theta = rd\theta dr$ eller $dxdy = rdrd\theta = rd\theta dr$. Den första sammanfattningen används i formelbladet.

Bevis. Idén bakom beviset är samma som för ett "vanligt" koordinatsystem, men istället för att dela in i rektanglar delar vi in i polära rektanglar istället. Finns ganska komplett i föreläsningsslidesen. \Box

Exempel 3. Vi går tillbaka till exemplet i början av föreläsningen för att se om det blir enklare med polära koordinater.

Beräkna $\iint_D 1 - \sqrt{x^2 + y^2} \mathrm{d}A$ där $D = \{(x,y) \mid x^2 + y^2 \leq 1\}.$

I polära koordinater ges D av $0 \le r \le 1, 0 \le \theta \le 2\pi$. Vår funktion är då

$$f(x,y) = 1 - \sqrt{x^2 + y^2} = \sqrt{(r\cos(\theta))^2 + (r\sin(\theta))^2}$$
$$= \sqrt{r^2(\cos^2(\theta) + \sin^2(\theta))}$$
$$= \sqrt{r^2}$$
$$= r$$
$$= f(r, \theta).$$

Då blir
$$\iint_{D} 1 - \sqrt{x^{2} + y^{2}} dA = \iint_{D} 1 - r dA$$

$$= \int_{0}^{1} \int_{0}^{2\pi} (1 - r)r d\theta dr$$

$$= \int_{0}^{1} \left[(r - r^{2})\theta \right]_{\theta=0}^{2\pi} dr$$

$$= 2\pi \int_{0}^{1} r - r^{2} dr$$

$$= 2\pi \left[\frac{r^{2}}{2} - \frac{r^{3}}{3} \right]_{0}^{1}$$

$$= 2\pi (\frac{1}{2} - \frac{1}{3})$$