

CAB203: Discrete Structures Summary

Author not responsible for consequences caused by any innacuracies.

Markdown Setup

Open in Visual Studio Code and install Markdown Preview Enhanced: https://marketplace.visualstudio.com/items?itemName=shd101wyy.markdown-preview-enhanced

Typesetting Powered by KATEX

 $K^{A}T_{E}X$ documentation: https://katex.org/which uses $I^{A}T_{E}X$ -like syntax to display mathematical syxbols

Axioms

Natural Numbers

If x, y and z are natural numbers:

- 1. 0 is a natural number
- $2. \ x=x$
- 3. if x = y then y = x
- 4. if x = y and y = z then x = z
- 5. if x = w then w is a natural number
- 6. S(y) is a natural number
- 7. S(x) = S(y) then x = y

8. S(x) = 0 is always false

Other Axioms

WIP

Equivalence

- **Equals:** =
- Greater than:
- Greater than or equal to:
- Less than: <
- Less than or equal to: \leq
- Not equal to: \neq

Division

- $\cdot a \mid b$
- a divides b
- b is divisible by a
- there exists some integer c such that ac = b

Definitions

May either replace term with its definition, or replace definition with its term:

- the term $2 \cdot 3 = 6$ may be replaced by $2 \mid 6$, while 3 becomes c
- the definition 2 \mid 6 may be replaced with "there is some integer c such that 2c=6"

Parity

Integers have one of two parities:

- x is even means $2 \mid x$
- $x ext{ is } odd ext{ means } 2 \mid (x-1)$

Properties:

- even \pm even = even
- even \pm odd = odd
- odd \pm odd = even

Therefore, two numbers have same parity if difference is even.

Clock Arithmetic

- $10 \ o'clock + 5h = 3 \ o'clock$
- the o'clock remains unaffected by multiples of 12h

Modular Arithmetic

 $Modular\ arithmetic$ is an abstraction of parity and clock arithmetic.

- parity is arithmetic mod 2
- clocks use arithmetic mod 12
- generally, can have $arithmetic \mod n$ for any positive integer n

Modular arithmetic extends upon integers by adding a new relation (modular equivalence)

Modular Equivalence

Modular arithmetic works by replacing equality with $modular\ equivalence$, also called $modular\ congruence$:

if $n \mid (a-b)$, then a and b are equivalent modulo n, such that $a \equiv b \pmod n$

if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then:

- $a+c \equiv b+d$
- $a-c \equiv b-d \pmod{n}$
- $ac \equiv bd \pmod{n}$

Mod Operator

 $a \mod n$ is the smallest non-negative b such that $a \equiv b \pmod n$

- Equivalently, $a \mod n$ is the remainder from $\frac{a}{n}$
- $example : 17 \mod 4 = 1 \text{ because } 17 = 4(4) + 1$

Python:

```
print(17 % 4) # Prints 1 to the console
# 1
```

Modulo Lemma

A lemma is a short statement that is true in mathematical theory, derived from its axioms. We can show that it is true by using a proof that shows the steps from the axioms to the statement. Other axioms with existing proofs may be used in the proof.

Proof of Lemma

Let integers a and b be given such that $a \mod b = 0$. Then from the definition of the mod operator:

$$a \equiv 0 \pmod{b}$$

From the definition of modular equivalence:

$$b | (a - 0)$$

From a well known lemma observe that a - 0 = a for any integer, so $b \mid a$.

This is frequently used to determine divisibility or test if a number is even when programming.

Exponents

- a^3 means $a \cdot a \cdot a$
- a^n means multiply a together n times
 - \circ a is called the base
 - \circ n is called the exponent

Laws of Exponents

•
$$(ab)^n = a^n \cdot b^n$$

•
$$a^m \cdot a^n = a^{m+n}$$

•
$$a^{m-n}=rac{a^m}{a^n} \quad (ext{when } a
eq 0)$$

$$oldsymbol{\cdot} \ a^{-n} = rac{1}{a^n} \quad ext{(when } a
eq 0)$$

•
$$a^0 = 1$$

•
$$(a^m)=a^{m\cdot n}$$

Exponents in Computer Science

• kilo: 2¹⁰

• mega: $2^{20} = (2^{10})^2$

• **giga:** $2^{30} = (2^{10})^3$

• tera: $2^{40} = (2^{10})^4$

• **peta:** $2^{50} = (2^{10})^5$

• exa: $2^{60} = (2^{10})^6$

For example, one kilobit is $1024=2^{10}$ bits.

- $2^3 = 8$ bits in a byte
- $2^{10} = 1024$ bytes in a kilobyte
- $2^{10} \cdot 2^3 = 2^{10+3}$ bits in a kilobyte
- $32 = 2^5$ or $64 = 2^6$ bit processors
- $256 = 2^8 = 2^{2^3}$ possible 8-bit characters

Logarithms

- logarithms are the *inverse* of exponents
- if $n = \log_a x$ then $a^n = x$
- so \log_a tells what exponent is needed to make x from a :

$$a^{\log_a x} = x$$

Laws of Logarithms

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(x \cdot y) = \log_a x + \log_a y$
- $\log_a x^y = y \log_a x$
- $\log_a \frac{1}{y} = -\log_a y$
- $\log_a \frac{x}{y}$
- $\log_b x = (\log_b a) \cdot \log_a x$

Base Transformation Law

- $\log_a x = \frac{\log_b x}{\log_b a}$
- use base transformation to calculate \log_2 , etc...

Ceiling and Floor

- Ceiling, round up: [a] is the next integer above a
- Floor, round down: $\lfloor a \rfloor$ is the next integer below a
- $\lceil \log_2 5000 \rceil = 13$ address lines

Exponent and Logs in Python

Operators

An operator is a mathematical object that transforms other objects:

- ullet + is a binary operator (transforms two objects, ie: 1+2 into 3)
- combines two operators
 - $\,\circ\,\,$ As a binary operator: 1-2
 - \circ As a unary operator: -1 (negative number)

Bits

Bit String Notation

- String: \overline{x}
- The set of all strings of length n (aka n-bit strings) is: $\{0,1\}^n$
- All bit strings of all length are members of: $\{0,1\}^*$
- The jth bit in \overline{x} is: \overline{x}_j (j goes from 0 to n-1)
- Bit strings are most often counted from the right, so the furthest right is: \overline{x}_0
- 2^n possible bit strings of length n

Bit Operations

Two types of bit operations:

- · Operations on a single bit or pairs of bits
- · operations on bit strings

NOT

NOT, aka bit flip: 0 becomes 1 and vice versa.

$$\begin{array}{c|cc}
x & \sim x \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}$$

AND

AND is similar to multiplication.

x	y	x & y
0	0	0
0	1	0
1	0	0
1	1	1

OR

OR is similar to addition, yet 2 is condensed to 1.

x	y	$x \mid y$
0	0	0
0	1	1
1	0	1
1	1	1

XOR

XOR is also similar to addition, yet 2 is now condensed to 0, like parity.

x	y	$x \wedge y$
0	0	0
0	1	1
1	0	1
1	1	0

Bitwise Operations

Bit operations may be applied bitwise to strings of the same length.

if $\overline{x} \& \overline{y}$ then

$$\overline{z}_j = \overline{x}_j \ \& \ \overline{y}_j$$

Operations are performed on pairs of bits.

Concatonation

if \overline{x} is an *n*-bit string and \overline{y} is a *m*-bit string, then $\overline{z} = \overline{xy}$ is a (n+m)-bit string

Lexicographic Ordering

- 0 before 1
- · Compare strings one bit at a time, left to right
- · At first bit where strings differ, 0 goes first
- Shorter strings are padded with empty spaces to the right

ASCII

- 7 bit strings
- · 128 characters
- Upper, lower case Latin chars, numbers, punctuation, maths symbols, space, newline, etc
- · Special characters BEL, ESC, NUL, etc
- Relational blocks
- · Upper vs lower is just one bit
- · Letters and numbers ordered lexicographically

USASCII Code Chart

$b_7 {\rightarrow}$	$b_6 o$	$b_5 o$	\implies	\implies	000	001	010	011	100	101	110	111
$b_4\!\!\downarrow$	b_3 ↓	$b_2 \downarrow$	$b_1 \!\!\downarrow$	$r\!\!\downarrow\!\! c\!\! ightarrow$	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	Р	6	р
0	0	0	1	1	SOH	DC1	!	1	Α	Q	a	q
0	0	1	0	2	STX	DC2	"	2	В	R	b	r
0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
0	1	0	0	4	EOT	DC4	\$	4	E	Т	d	t
0	1	0	1	5	ENQ	NAK	%	5	F	U	e	u
0	1	1	0	6	ACK	SYN	&	6	G	V	f	V
0	1	1	1	7	BEL	ETB	,	7	Н	W	g	W
1	0	0	0	8	BS	CAN	(8	I	Χ	h	X
1	0	0	1	9	HT	EM)	9	J	Υ	i	у
1	0	1	0	10	LF	SUB	*	:	K	Z	j	Z
1	0	1	1	11	VT	ESC	+	;	L	[k	{
1	1	0	0	12	FF	FS	,	<	M	\	I	
1	1	0	1	13	CR	GS	_	=	N]	m	}
1	1	1	0	14	SO	RS	•	>	0	^	n	\sim
1	1	1	1	15	SI	US	/	?	Q	_	0	END

UNICODE

- · About 137 000 characters
- · Most modern and some historic writing systems
- · Mathematical symbols, punctuation, emoji, etc
- Multiple encodings for a common set of characters

UNICODE Encodings

Unicode assigns a code point (a hexidecimal string) for each character. There are several different encodings from code points to bit strings:

- UTF32 uses 32 bits for each character, encoding code points directly
- UTF16 uses one or two 16-bit strings per code point, making it a variable length encoding
- UTF8 uses between one and four 8-bit stings per code point, and is hence also a variable length encoding.
- It is backwards compatible with ASCII for the original 7-bit ASCII character set
 - UTF8 is the most common encoding. Python strings are UTF-8 encoded by default.

UTF-8 in Python

```
>>> ord('A')  # Convert character to UTF code point
# 65
>>> chr(65)  # Convert UTF code point to character
# 'A'
```

Numbers

Binary Representation

Binary numbers are analogous to base-10 notation:

- Starts at position 0, the right-most numeral
- Position j gets a multiplier of 2^j
- · Add up all values

Example, 1010, starting from position 0:

- 0 has multiplier of $2^0 = 1$
- 1 has multiplier of $2^1 = 2$
- 0 has multiplier of $2^2 = 4$

- 1 has multiplier of $2^3 = 8$
- total is 10

4-Bit Binary

base-10	base-2	base-10	base-2
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

8-Bit Binary

Storing positive numbers (0...255), as 8-bit strings:

$$\sum_{j=0}^7 \, 2^j \overline{x}_j$$

Adding Binary Numbers

Adding two 1-bit numbers:

$$0 + 0 = 0 \tag{1}$$

$$1 + 0 = 1 \tag{2}$$

$$0+1=1 \tag{3}$$

$$1 + 1 = 10 \tag{4}$$

Bit Operations

Given two 1-bit numbers, \overline{x} and \overline{y} , their binary sum is a 2-bit string \overline{z} where:

$$\overline{z}_0 = \overline{x}_0 \wedge \overline{y}_0 \tag{5}$$

$$\overline{z}_1 = \overline{x}_0 \& \overline{y}_0 \tag{6}$$

For n-bit binary numbers \overline{x} and \overline{y} , the sum in binary \overline{z} is a n+1-bit binary number where:

$$\overline{z}_j = \overline{x}_j \wedge \overline{y}_j \wedge \overline{c}_j \tag{7}$$

$$\overline{c}_{j+1} = (\overline{x}_j \& \overline{y}_j) \mid (\overline{x}_j \& \overline{c}_j) \mid (\overline{y}_j \& \overline{c}_j)$$
(8)

The string \overline{c} is the carry bits (take \overline{c}_0 to be 0). The equation for \overline{c}_{j+1} says it is 1 when $\overline{x}_j+\overline{y}_j+\overline{c}_j$ is 2 or 3.

Negative Numbers

Properties of 2's complement:

- For n bits, can represent -2^{n-1} through to $2^{n-1}-1$
- Leftmost bit is $\boldsymbol{1}$ for negative numbers
- Addition is $\mod 2^n$
- Positive numbers 0 to $2^{n-1}-1$ are unchanged

3-Bit 2's Complement

bit string	2's comp interpretation	binary interpretation
000	0	0
001	1	1
010	2	2
011	3	3
100	-4	4
101	-3	5
110	-2	6
111	-1	7

Hexadecimal

- Base-64 number system number in position j gets a multiplier of 16^j .
- Compact method for writing bit strings

4-Bit Hex

symbol	bit string	base-10	symbol	bit string	base-10
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	А	1010	10
3	0011	3	В	1011	11
4	0100	4	С	1100	12
5	0101	5	D	1101	13
6	0110	6	Е	1110	14
7	0111	7	F	1111	15

Interpreting Hex

```
given:
```

```
4F = 4 \rightarrow 0100 \text{ and } F \rightarrow 1111 = 01001111
```

then:

```
4F = 01001111
```

- Shorter than bit strings
- · One hex numeral is always exactly 4 bits
- · Easy to work with individual bits

Python Hex

```
>>> hex(65532)  # Hex string from integer
# '0xfffc'
>>> "The number is {:x}".format(65532) # Alternative method
# 'The number is fffc'
>>> 0xfffc  # Hex literal integer
# 65532
```

Scientific Notation

$$\pm a.bc \times 10^e \tag{9}$$

· Sign: \pm

• Significant digits: a.bc

• Exponent: 6

• **Base:** 10

The base is always shared across the significant digits

Scientific Notation in Base 2

- Significant digits are bits
- · Exponent is written in binary

Floting Point Numbers

Computers represent scientific notation as floating point numbers, encoding in binary:

- · Significant digits
- Exponent
- Sign (positive or negative)
- · With base 2

IEEE Half-Precision

IEEE 754 floating point standard for 16 bits:

$$\stackrel{s}{0} 101011010101010$$
(11)

• **Sign:** s (1-bit)

• **Exponent:** e (5 bits)

• **Significant digits:** f (10 bits dropping leading 1)

Python Numers

Basic number types:

- int
- Arbitrary length integers
- \circ Special base- 2^{30}
- float
- IEEE 754 double precision
 - 64-bit floating point

```
>>> 9/2  # Regular division always returns float
# 4.5
>>> 9//2  # Floor division returns integer
# 4
```

Recursion

Recursive Definitions

Factorial function on \mathbb{N} defined as:

$$n! = \prod_{j=1}^{n} j = 1 \cdot 2 \cdots (n-1) \cdot n$$
 (12)

Also *n*! recursively:

$$n! = \begin{cases} 1 & : n = 1 \\ n(n-1)! & : n > 1 \end{cases}$$
 (13)

Two main parts:

- Base case: evaluated without reference to object
 - · Required, though potentially multiple
- · Recursive case: refer back to object definition
 - More complex than base

Fibonacci Sequence

Fibonacci sequence is classic example of recursion:

$$f(n) = \begin{cases} 1 & : n = 1 \\ 1 & : n = 2 \\ f(n-1) + f(n-2) & : n > 2 \end{cases}$$
 (14)

Fibonacci in Python

```
def F(n):
    if n == 1: return 1
    elif n == 2: return 1
    else: return F(n-1) + F(n-2)
```

Arithmetic Expression

Programming languages often expressed as multiple types in recursion:

$$EXPR := \begin{cases} VALUE \\ EXPR "+" VALUE \\ EXPR "-" VALUE \end{cases}$$

$$VALUE := \begin{cases} CONSTANT \\ VARIABLE \end{cases}$$

$$(15)$$

$$VALUE := \begin{cases} CONSTANT \\ VARIABLE \end{cases} \tag{16}$$

Propositional Logic

- · Propositions are true or false statements
- Logical connectives use propositions to build larger ones
- p and q often represent propositions

Atomic and Compound Propositions

• Atomic: "It is raining"

• Compound: "It is raining and cloudy"

Logical Operators

• NOT, negates truth: \neg

• AND, requires both: \wedge

• OR, allows either: \lor

• XOR, requires either:

• $IF..THEN: \rightarrow$

• IF AND ONLY IF: \leftrightarrow

IF..THEN

• $p \rightarrow q$ means q must be true whenever p is, regardless of p

- When p is false, p o q is always true
- $(p \rightarrow q) = (\text{if } p \text{ then } q) = (p \text{ implies } q)$

p	q	p o q
T	T	T
T	F	F
F	T	T
F	F	T

IF AND ONLY IF

- $oldsymbol{\cdot}\hspace{0.1cm} p \leftrightarrow q$ means both must have the same truth value
- $oldsymbol{\cdot} \ (p \leftrightarrow q) \ = \ ((p
 ightarrow q) \wedge (q
 ightarrow p)) \ = \ (p ext{ if and only if } q)$

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Formulas

 $Boolean \ formulas$ are strings of symbols to build compond propositions.

Formula rules (listed by precedence):

- $\,\cdot\,\, T$, F and lower case letters are all formulas
- ullet If A and B are formulas then so are:
 - \circ (A)
 - $\circ \neg A$
 - $\circ A \oplus B$
 - $\circ A \wedge B$

$$\begin{array}{ccc} \circ & A \vee B \\ \circ & A \to B \\ \circ & A \leftrightarrow B \end{array}$$

· No other strings are formulas

Formula Truth Value

- · Fill in truth table
- · Evaluate logical connectives from innermost parentheses outwards

When p = T and q = F:

$$(p \lor q) \to (q \oplus p) = (T \lor F) \to (F \oplus T)$$

$$= T \to T$$

$$= T$$

$$(17)$$

Formula Classification

• Tautologies: always T

• Contradictions: always F

Contingent formulas: T OR F depending on variables

Satisfiable formulas: tautologies OR contingent formulas

Logical Equivalence

$$A \to B \equiv \neg A \lor B \tag{18}$$

 $A \equiv B$ is the same as stating: " $A \leftrightarrow B$ is a tautology"

$$A \to B \equiv \neg A \land B$$

$$\equiv B \land \neg A$$

$$\equiv \neg (\neg B) \land \neg A$$

$$\equiv \neg B \to \neg A$$

$$(19)$$

Set Theory

• **Set:** S

· In set: \in

• **Not in set:** ∉

Set listing:

$$SMALLPRIMES = \{1, 2, 3, 5, 7\}$$
 (20)

Implied pattern:
$$(bad\ practice)$$

$$EVENS = \{ 2, 4, 6, 8, \dots \}$$
(21)

Setbuilder notation: "set comprehension"

Subset of elements, that match a condition

$$\{ x \in S : \phi(x) \} \tag{22}$$

$$SQUARES = \{ x \in \mathbb{Z} : x = y^2 \text{ for some } y \in \mathbb{Z} \}$$
 (23)

Setbuilder notation: "replacement"

Apply a theory to each member and collect results

$$\{f(x): x \in S\} \tag{24}$$

$$SQUARES = \{ x^2 : x \in \mathbb{Z} \}$$
 (25)

Set Equality

S=T when:

- $\bullet \ \ \text{Every element} \ x \in S \ \text{is in} \ T$
- Every element $x \in T$ is in S
- Regardless of order, repetition, and representation:

$$\{1,2,3\} = \{3,2,1\} \tag{26}$$

$$\{1,1,1\} = \{1\} \tag{27}$$

$$\{x \in \mathbb{Z} : x^2 = 4\} = \{2, -2\}$$
 (28)

Set Size

$$|\{1,2,3\}| = 3 \tag{29}$$

$$|\{1,1,1\}| = 1 \tag{30}$$

Sub Sets

• Subset: every $x \in A$ is in B: $A \subseteq B$

• **Proper subset:** A is subset of, yet not equal to $B: A \subset B$

• Equality through subsets: $S \subseteq T \& T \subseteq S$

Subset equivalence:

$$A \subset B \equiv A \subseteq B \land A \neq B \tag{31}$$

The set of all subsets of a set S is called the $power\ set$ of S:

$$P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$
(32)

Set Operations

Union: everything in either

Must define $A \cup B$ to be the smallest set, such that $A \subseteq S \& B \subseteq S$

$$A \cup B = \{ x : x \in A \lor x \in B \}$$
 (33)

Intersection: everything in *both* sides

$$A \cup B = \{ x \in A : x \in B \} \tag{34}$$

Difference: remove items in one set from the other

$$A \setminus B = \{ x \in A : x \notin B \} \tag{35}$$

Universe Sets

- The universe U is the set containing all elements of concern
- · Enables definition of complements:

$$\overline{S} = \{ x \in U : x \notin S \} \tag{36}$$

Set comprehensions without specifying the set, as with $U=\mathbb{Z}^+$:

$$COMPOSITES = \overline{PRIMES} \tag{37}$$

$$EVENS = \{ x : x = 2y \} \tag{38}$$

$$ODDS = \overline{EVENS} \tag{39}$$

Characteristic Vectors

Universes of manageable size may be represented as bit strings (characteristic vectors):

- Let n = |U|
- Number elements like so, $U = \{e_1, e_2, \dots e_n\}$
- $XS = XS_1XS_2\dots XS_n$ where:

$$XS_j = \begin{cases} 0 & e_j \notin S \\ 1 & e_j \in S \end{cases} \tag{40}$$

 \circ Example: $U=\{\,1,2,3\,\}$ then $\,X_{\{\,1,3\,\}}=$ 101, $\,X_{\{\,2\,\}}=$ 010

 $\circ~$ Set operations such as \cup and \cap become bitwise operators

Python Sets

```
>>> S = {1,2,3}; T = {1,3,5} # Braces define sets
>>> S.add(4); print(S)
                             # Sets are mutable
# {1, 2, 3, 4}
>>> S.remove(4); print(S)
# {1, 2, 3}
>>> 1 in S
                             # Testing membership
# True
>>> 4 in S
# False
>>> S.issubset({1,2,3,4,5})  # Testing subset
# True
>>> S <= {1,2,3,4,5}
                              # Alternative subset test
# True
>>> S.union(T)
                              # Using union
# {1, 2, 3, 5}
>>> S | T
                               # Alternative union
# {1, 2, 3, 5}
>>> S.union(T, {8,9}, {10,11}) # Multiple union
# {1, 2, 3, 5, 8, 9, 10, 11}
>>> someSets = [S, T, {8,9}, {10,11}]
>>> set.union(*someSets)
                         # Splat operator
# {1, 2, 3, 5, 8, 9, 10, 11}
                        # Splat and multi-sets would also work
>>> S.intersection(T)
# {1, 3}
                               # Alternative intersection
>>> S & T
# {1, 3}
>>> S - T
                               # Testing difference
# {2}
>>> S.isdisjoint(T) # is S & T empty?
# False
                          # Size of S
>>> len(S)
# 3
# Setbuilder notation combines of comprehension and replacement:
>>> S = \{0, 2, 4, 6, 8\}
>>> def p(x): return x % 2 == 0
>>> def p(x): return x * 5
```

```
>>> { f(x) for x in S if p(x) }
# {0, 40, 10, 20, 30}
>>> { s * 5 for s in range(0, 10) if s % 2 == 0 }
# {0, 40, 10, 20, 30}
```

Zermelo-Fraenkel Set Theory

ZF set theory, seven axioms to define set behaviour:

- 1. Two sets containing same elements are equal
- 2. Every set S other than \emptyset contains at least one element y, also S and y are disjoint
- 3. If S is a set and $\phi(x)$ is a formula, then there is a set that contains exactly the elements of S that satisfies $\phi(x)$
- 4. If S_1, S_2, \ldots are sets, then there is a set that contains all of the elements of every S_i
 - Allows unions
- 5. If S is a set and f(x) is a function, then there is a set that contains f(x) for every $x \in S$
 - $\circ \ \ Allows \ replacements \ such \ as: \{ \ f(x) : x \in S \ \}$
- 6. Given $S_0=\emptyset$ and $S_j=S_{j-1}$, there is a set that contains every S_j
- 7. For a set S, there is a set containing every possible subset of S

Replacements From ZF Axioms

ZF replacements from axioms 1, 3, and 5:

- Start with set S and function f(x)
- Use axiom 5 to obtain set A containing f(x) whenever $x \in S$
- Create formula $\phi(y)$ so $x \in S$, such that f(x) = y
- Use axiom 3 to obtain set A' containing every $y \in A$ such that $\phi(y)$ is true

A' is the resulting set.

$\mathbb{Z}_{>0}$ From Set Theory

Peano's axioms to construct set of non-negative integers:

```
· What is 0
```

- A successor function $S(\cdot)$ that takes a number to the next one: $S(1)=2, S(2)=3\dots$

Define empty set, \emptyset , as 0 and define a successor function by $S(n) = n \cup \{n\}$:

```
• "0" := \emptyset = \{\}
```

• "1" :=
$$S("0") = "0" \cup \{\emptyset\} = \{\{\}\}$$

• "2" :=
$$S("1") = "1" \cup \{"1"\} = \{\emptyset, \{\emptyset\}\} = \{\{\}, \{\{\}\}\}\}$$

•

•
$$S(n) = n \cup \{n\}$$

Syllogisms

Syllogisms are deductive reasoning upon sets:

- Start with premises (statements), taken to be true
- Apply valid form of argument
- Draw conclusion
- If *premises* are true, then impossible for conclusion to be false:

All humans are mortal
$$(major\ premise)$$
Socrates is human $(minor\ premise)$
Socrates is mortal $(conclusion)$ (41)

Set Theoric Syllogisms

$$HUMANS \subseteq MORTALS$$

$$s \in HUMANS$$

$$s \in MORTALS$$
(42)

Syllogism Types

Abstracted to *syllogism type:*

$$\begin{array}{c}
A \subseteq B \\
x \in A \\
\hline
x \in B
\end{array} \tag{43}$$

This is valid type, so works for any A,B,x provided the premises are true 24 valid sylligism types in total, such as:

All trees are plants
$$(A \subseteq B)$$

Some trees are tall $(A \cap C \neq \emptyset)$
Some plants are tall $(B \cap C \neq \emptyset)$ (44)

All cats are mammals
$$(A \subseteq B \text{ and } A \neq \emptyset)$$
All cats are carnivores $(A \subseteq C)$
Some mammals are carnivores $(B \cap C \neq \emptyset)$ (45)

Logical Implication

• From $A \wedge B$, can conclude A

• From $(A o B)\wedge A$, can conclude B

• Implication: $A \models B$

If from A, can conclude B, then $A \models B$, then $A \to B$ is a tautology

Whenever A is true, so is $A \vee B$, thus $A \models A \vee B$:

Given $A \models A \land B$, then $A \rightarrow A \lor B$ is a tautology

A	B	$A \lor B$	A o A ee B
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

Implication Substitutions

- Given $A \wedge B \models A$, if just $A \wedge B$ is true, then may replace with A
- From "it is cloudy and raining", can conclude "it is raining"

Proofs

Given:

- Socrates is mortal or Socrates is not human
- · Socrates is human

...then conclude:

- · Socrates is not human or Socrates is mortal
 - equivalence
- · Socrates is mortal
 - logical implication

A proof is a list of formulas starting with premises and every formula must be:

- · Logically equivalent to a formula above
- · Logically implied by a formula above
- The AND of some formulas above
- Logicaly implied by the $AND\,$

A proof produces $P \models Q$, where:

- $oldsymbol{\cdot}$ P is the AND of all premises
- ullet Q is the last line of the proof

Proof says: assuming all premises are true, the conclusion is also true

Socrates proof: $(M \vee \neg H) \wedge H \models M$:

Predicate Logic

Parameters and Predicates

Generalise propositions by allowing *parameters*:

$$A(x) = x \text{ is a cat} \tag{47}$$

$$B(x,y) = x$$
 and y have the same birthday (48)

$$C(x,y) = x = y + 1 \tag{49}$$

- Parameters allow generic references to propositions that share a common form and meaning
- · Predicates are propositions with one or more variables

Form complex predicates from smaller ones:

- $A(x) \wedge B(x)$ understood that x is the same for both
- $A(x) \vee B(y)$ can have different parameters
- $A(x) \rightarrow B(x)$
- $A((x) o B(y)) \wedge A(x)$

To evaluate truths, must fill parameters:

- Suppose A(x) is $x^2=1$.
 - \circ Then A(1) is True, but A(2) is False.
- Suppose A(x) is x is a flower $\to x$ smells nice.
 - \circ Then A(rose) is True, but A(raffelesia) is False.
- Suppose A(x) is if x is human then x is mortal.
 - \circ Then A(Socrates) is True

Predicates with all variables defined, become regular propositions with truth values

Quantifiers

Quantifiers are symbols that refer to parameters within predicates:

- Existential quantification, there exists: \exists
- Universal quantification, for all: \forall

Quantifiers allow propositions out of predicates without parameter values

Existential Quantification

$$\exists x \in \mathbb{Z}(x^2=4)$$
 there exists an x from \mathbb{Z} such that $x^2=4$

$$\exists x \in S \ p(x)$$
 there exists an x in S such that $p(x)$ is True (51)

$$\exists x \in ANIMALS(x \text{ is a fish})$$
 there exists an x in $ANIMALS$ such that x is a fish (52)

$$\exists x \in \mathbb{R} (x \in \mathbb{Z})$$
 there exists some real number x such that x is an integer (53)

Universal Quantification

$$\forall x \in \mathbb{Z}(x^2)$$
 for every x in \mathbb{Z} , x^2 is non-negative $\tag{54}$

$$\forall x \in S \ p(x)$$
 for all x from $S, \ p(x)$ is True $\tag{55}$

$$\forall x \in ANIMALS(x \text{ is a fish})$$
 for all x in $ANIMALS$, x is a fish (56)

$$\forall x \in \mathbb{Z}(x \in \mathbb{R})$$
 all integers are real numbers (57)

Quantify Over Sets

Explicit set specification, to quantify over S:

$$\forall x \in S \ p(x) \tag{58}$$

Implicit set specification, to quantify over a set, out of context:

$$\forall x \ p(x) \tag{59}$$

Parameters in Predicates

Given $\exists x \ p(x)$

- The x is filled in by the $\exists x$, so no values allowed
- · Either:
- \circ there exists an x that makes p(x) True (making $\exists x p(x)$ True)
- or there does not (making it False)

Free Parameters

Given $A(y) = \exists x \ p(x,y)$:

- The parameter \boldsymbol{x} is quantified over, so no values allowed

- The parameter y is not quantified over, so values are allowed
- Truth value of A(y) depends on value of y
- Here y is a free parameter
- When no free parameters, predicate is fully quantified

Fully Quantified Truth Values

Checking all values of fully quantified finite set:

$$\frac{\forall x \in \{0,1\}(x^2 = x)}{0^2 = 0}$$

$$1^2 = 1$$

$$thus, True$$
(60)

Existential Truth Values

Ensuring only one value works for existential quantifiers to be True:

$$\frac{\exists x \in \{0,1\}(x^2 = 1)}{1^2 = 1}$$
thus, True (61)

Yet requiring all values to be tested to prove False:

$$\frac{\exists x \in \{0,1\}(x^{2} = 2)}{0^{2} \neq 2}$$

$$1^{2} \neq 2$$

$$thus, True$$
(62)

Both of these cases are the opposite when dealing with universal quantifiers

Existential Quantifiers Over Infinite Sets

$$\exists x \in \mathbb{Z}(x^2 = -1) \tag{63}$$

...is False, as for every $x\in\mathbb{Z},\;x^2\geq 0$, and hence $x^2
eq -1$

Order of Quantifiers

Order impacts multiple quantifiers as with universe \mathbb{Z} :

$$\forall y \exists x (x+y=0) \tag{64}$$

True, as can use x = -y

$$\exists x \forall y (x+y=0) \tag{65}$$

False, as for any x, can use y = x + 1,

so
$$x + y = 1 \neq 0$$

IF.. THEN Quantified

Let h(x) be x is human and m(x) be x is mortal, then:

$$\forall x \in BEINGS(h(x) \to m(x))$$
 (66)

Necessary and Sufficient Conditions

Given
$$\forall x (p(x \to q(x)))$$
: (67)

p(x) is a *sufficient* condition for q(x)

q(x) is a necessary condition for p(x)

Given
$$\forall x (p(x \leftrightarrow q(x)))$$
: (68)

p(x) is necessary and sufficient for q(x)

q(x) is necessary and sufficient for p(x)

Boolean Formulas Quantified

given A(x, y) is a Boolean formula with x and y some propositions, then:

$$A ext{ is a tautology means } \forall x, y A(x, y)$$
 (69)

$$A ext{ is a contradiction means } \forall x, y \neg A(x, y)$$
 (70)

$$A ext{ is a contradiction means } \exists x, y A(x, y)$$
 (71)

here, the universe is $\{T, F\}$

Logic with Predicates

All equivalences and implications work for predicates

Python Predicates and Quantifiers

```
>>> def p(x,y):
                     # Any function that returns T/F to be used as predicate
  return x >= y
>>> p(2,1)
# True
>>> def p(x): return x >= 0
>>> S = \{ -1, 0, 1 \}; T = \{ 0, 1, 2 \}
>>> Sp = [p(x) for x in S] # List of booleans
\Rightarrow Tp = [ p(x) for x in T ] # List of booleans
                             # Check for all: ALL True
>>> all(Tp)
# True
                              # Check there exists: at least ONE True
>>> all(Sp)
# True
>>> any(p(x) for x in S) # Generator expression
# True
```