WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DER UNIVERSITÄT ZÜRICH PROFESSUR FÜR MATHEMATIK DER WIRTSCHAFTSWISSENSCHAFTEN ÜBUNGEN ZUR VORLESUNG MATHEMATIK II

Serie 4 ab 11.03.2019 FS 2019

Es werden die Aufgaben 2(c), 3, 4(a), 5(a) und 11 in den Tutorien besprochen.

Aufgabe 1 (Eine unbekannte Matrix)

Sie haben von einer Matrix $A = [\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3]$, $\mathbf{a}^i \in \mathbb{R}^2$, folgende Informationen gegeben:

$$1. A = \left(\begin{array}{ccc} 1 & 2 & d \\ a & 7 & g \end{array}\right),$$

$$2. A^T = \begin{pmatrix} b & 5 \\ c & e \\ 4 & f \end{pmatrix},$$

3.
$$(\mathbf{a}^3)^T \mathbf{a}^3 = 25$$
.

Bestimmen Sie anhand dieser Informationen eine mögliche Matrix A. Das heisst, bestimmen Sie mögliche Werte für a,b,c,d,e,f und g.

Aufgabe 2 (Klassifizierung von Matrizen)

(a) Betrachten Sie die Matrix

$$A = \left(\begin{array}{ccc} 5 & -1 & 7 \\ 0 & 4 & 9 \\ 3 & 2 & 0 \end{array}\right)$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \Box wahr
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch

 \square falsch

- (3) Die Matrix ist eine Diagonalmatrix. \square wahr \square falsch
- (4) 4 ist ein Element der Hauptdiagonalen. □ wahr □ falsch

(b) Betrachten Sie die Matrix

$$B = \left(\begin{array}{rrr} 3 & -1 & 4 \\ -1 & 0 & 9 \\ 4 & 9 & 3 \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \square wahr \square falsch
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix. \square wahr \square falsch
- (4) 4 ist ein Element der Hauptdiagonalen. \square wahr \square falsch

(c) Betrachten Sie die Matrix

$$C = \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & \pi \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \square wahr \square falsch
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix. \square wahr \square falsch
- (4) Die Matrix hat eine Nullzeile. \square wahr \square falsch
- (d) Betrachten Sie die Matrix

$$D = \left(\begin{array}{cc} 7 & 0 \\ 3 & 2 \\ 0 & 1 \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \square wahr \square falsch
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix. \square wahr \square falsch
- (4) 2 ist ein Element der Hauptdiagonalen. \square wahr \square falsch
- (e) Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.
 - (1) Jede Diagonalmatrix ist eine Einheitsmatrix. \square wahr \square falsch
 - (2) Jede Diagonalmatrix ist symmetrisch. \square wahr \square falsch
 - (3) Jede Einheitsmatrix ist eine Diagonalmatrix. \square wahr \square falsch
 - (4) Jede Diagonalmatrix ist quadratisch. \square wahr \square falsch

Aufgabe 3 (Linearkombinationen mit Hilfe von Matrizen)

Gegeben seien $\mathbf{a}^1 = (-3,3)^T$ und $\mathbf{a}^2 = (-6,-6)^T$ und die Matrix

$$A = [\mathbf{a}^1, \mathbf{a}^2] = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix}.$$

Berechnen Sie:

$$A \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix}, A \cdot \begin{pmatrix} 0 \\ -2 \end{pmatrix}, A \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}, A \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix}, A \cdot \begin{pmatrix} 2 & 0 & 2 & 1 \\ 0 & -2 & 1 & -2 \end{pmatrix}.$$

Vergleichen Sie ihre Ergebnisse mit den Resultaten der Aufgabe 1(a) aus Serie 1.

Aufgabe 4 (Rechnen mit Matrizen)

(a) Gegeben seien die Matrizen A, B, C und der Vektor **d**:

$$A = \begin{pmatrix} 5 & -1 & 7 \\ 0 & 4 & 9 \\ 3 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 5 \end{pmatrix}, C = \begin{pmatrix} 7 & 0 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}, \mathbf{d} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Berechnen Sie, falls möglich (andernfalls vermerken Sie "existiert nicht"):

$$3A$$
, AB , BA , BC , CB , B^TA^T , $C \cdot \mathbf{d}$, $\mathbf{d}^T \cdot C^T$, AI , IA .

(b) Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ -2 & 3 & 2 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & -1 \end{pmatrix}.$$

Berechnen Sie, falls möglich, die Produkte AB, BA und B^TA .

Aufgabe 5 (Matrizenmultiplikation)

Seien $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ und A die 3×3 -Matrix,

$$A = \left(\begin{array}{ccc} 3 & 5 & 4 \\ 5 & 9 & 2 \\ 4 & 2 & 3 \end{array}\right).$$

- (a) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für $\mathbf{x} = (1, 2, 3)^T$.
- (b) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für $\mathbf{x} = (x_1, x_2, x_3)^T$.
- (c) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für einen allgemeinen Vektor $\mathbf{x} = (x_1, x_2, x_3)^T$ und eine allgemeine Matrix

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right).$$

(d) Berechnen Sie $\mathbf{x}^T \begin{pmatrix} 3 & 10 & 8 \\ 0 & 9 & 4 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$ für $\mathbf{x} = (1, 2, 3)^T$.

Aufgabe 6 (Eine symmetrische Matrix)

Eine 3×3 -Matrix A sei gegeben durch

$$a_{ij} = \begin{cases} i - j & \text{für } i > j \\ j - i & \text{für } i \le j. \end{cases}$$

- (a) Zeigen Sie, dass A symmetrisch ist.
- (b) Berechnen Sie die Matrix AA^T und A^2 .

Aufgabe 7 (Matrizen in der Telekommunikation)

Ein Telekommunikationsunternehmen hat einen Kunden K_1 mit offenen Rechnungen über

- 1 monatl. Grundgebühr,
- 10 Minuten Ausland (innerhalb Europas),
- 60 Minuten Ausland (ausserhalb Europas),
- 3 MB Daten (innerhalb Europas),
- 0 MB Daten (ausserhalb Europas).

Die Preise belaufen sich auf

- 20 CHF pro Monat für die Grundgebühr,
- 1 CHF pro Minuten Ausland (innerhalb Europas),
- 2 CHF pro Minuten Ausland (ausserhalb Europas),
- 1.5 CHF pro MB Daten (innerhalb Europas),
- 3 CHF pro MB Daten (ausserhalb Europas).
- (a) Fassen Sie die Preise in einem Spaltenvektor \mathbf{p} (dem Preisvektor) und den Verbrauch des Kunden K_1 in einem Zeilenvektor \mathbf{z}_1 (dem Nutzungsvektor) zusammen.
- (b) Wie kann man das Produkt $\mathbf{z}_1 \cdot \mathbf{p}$ interpretieren?
- (c) Betrachten Sie nun weitere Kunden K_2 , K_3 und K_4 mit folgenden Nutzungsvektoren $\mathbf{z}_2 = (2,0,120,0,100)$, $\mathbf{z}_3 = (1,50,1,500,0.1)$ und $\mathbf{z}_4 = (1,120,180,150,500)$. Fassen Sie die Nutzungsdaten der Kunden K_1, K_2, K_3 und K_4 in einer Matrix Z mit Zeilen $z_i, i = 1,2,3,4$ zusammen.
- (d) Berechnen sie $Z \cdot \mathbf{p}$. Interpretieren Sie das Ergebnis im Kontext der Aufgabe.

Aufgabe 8 (Modellierung von Flugverbindungen)

Die untenstehende Abbildung

zeigt die Anzahl der täglichen Flugverbindungen zwischen grösseren Flughäfen in drei verschiedenen Ländern. Die den Pfeilen zugeordneten Zahlen zeigen die Anzahl der Flüge zwischen den verschiedenen Flughäfen. Zum Beispiel gibt es von Flughafen b_3 vier Flüge zu Flughafen c_3 und einen Flug zum Flughafen c_1 , aber es gibt keinen Flug von b_3 zu Flughafen c_2 .

(a) Finden Sie die Matrix $P = (p_{ij})$ vom Typ 2×4 mit p_{ij} =Anzahl der Flüge von a_i zu b_j , sowie die 4×3 -Matrix $Q = (q_{ij})$ mit q_{ij} =Anzahl der Flüge von b_i zu c_j .

(b) Finden Sie die Matrix $R = (r_{ij})$, deren Element r_{ij} die Anzahl der Flugmöglichkeiten von a_i nach c_j darstellt. Von welchem Typ ist die Matrix R?

(c) Wie kann man die Einträge von P^T und Q^T interpretieren? Berechnen Sie Q^TP^T . Was beschreibt diese Matrix?

Aufgabe 9 (Modellierung in der Automobilindustrie)

Ein Zulieferer der Automobilindustrie produziert Zwischenprodukte z_1, z_2, z_3, z_4 aus den Rohstoffen r_1, r_2, r_3 , und ein Automobilproduzent fabriziert dann aus den Zwischenprodukten Autos der Marken m_1, m_2, m_3 . In den folgenden Tabellen ist angegeben, wie viele Einheiten der Rohstoffe jeweils für eine Einheit der Zwischenprodukte bzw. wie viele Einheiten der Zwischenprodukte jeweils für die Produktion eines Autos der Marke m_i benötigt werden.

	r_1	r_2	<i>r</i> ₃
<i>z</i> ₁	2	1	5
<i>z</i> ₂	4	2	3
<i>Z</i> 3	3	5	0
<i>Z</i> 4	0	2	2

	m_1	m_2	m_3
z_1	1	3	2
<i>z</i> ₂	3	3	0
<i>Z</i> 3	4	0	2
<i>Z</i> 4	1	1	3

- (a) Interpretieren Sie die erste Spalte der linken Tabelle.
- (b) Angenommen Sie brauchen 2 Einheiten des Zwischenproduktes z_1 , 3 Einheiten von z_2 , 1 Einheit von z_3 und 5 Einheiten von z_4 . Berechnen Sie jeweils die Gesamtanzahl an Rohstoffen r_1 , r_2 und r_3 , die dafür benötigt werden.
- (c) Bestimmen Sie durch Berechnung einer geeigneten Matrizenmultiplikation, wie viele Einheiten der einzelnen Rohstoffe r_i , i = 1, 2, 3, jeweils benötigt werden für die Herstellung eines Autos der Marke m_i , j = 1, 2, 3.

Aufgabe 10 (Modellierung einer Produktion mit Hilfe von Matrizen I)

Ein Unternehmen produziert aus drei Rohstoffen R_1 , R_2 , R_3 drei Zwischenprodukte Z_1 , Z_2 , Z_3 und daraus zwei Endprodukte E_1 , E_2 . In der nachfolgenden Grafik gibt die Pfeilgewichtung an, wie viele Mengeneinheiten jeweils zur Herstellung benötigt werden.

Somit benötigt beispielsweise die Produktion des Zwischenprodukts Z_2 genau 3 Einheiten von Rohstoff R_1 , eine Einheit von Rohstoff R_2 und 4 Einheiten von Rohstoff R_3 .

(a) Bestimmen Sie die Matrizen $A = (a_{ij})_{i=1,2,3, j=1,2,3}$ und $B = (b_{ij})_{i=1,2,3, j=1,2}$ mit

 a_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von Z_j ,

 b_{ij} = Anzahl der Einheiten von Z_i zur Herstellung einer Einheit von E_j .

Bestimmen und interpretieren Sie das Produkt AB.

- (b) Berechnen Sie die Anzahl an Rohstoffen und Zwischenprodukten, die benötigt werden, um jeweils 100 Einheiten von E_1 bzw. E_2 herzustellen.
- (c) Nehmen Sie nun an, eine Einheit von Rohstoff R_1 kostet 1 CHF, eine Einheit von Rohstoff R_2 kostet 2 CHF und eine Einheit von Rohstoff R_3 kostet wieder 1 CHF. Diese Kosten fassen wir mit Hilfe eines Kostenvektors \mathbf{k}^1 wie folgt zusammen:

Beschaffungskosten (in CHF) je Rohstoffeinheit:
$$\mathbf{k}^1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
.

Um das Zwischenprodukt Z_1 herzustellen, fallen, zusätzlich zu den Rohstoffkosten, Produktionskosten an. Genaugenommen sind es 4 CHF für eine Einheit Z_1 , 2 CHF für eine Einheit Z_2 und 3 CHF für eine Einheit Z_3 . Diese Kosten fassen wir mit Hilfe eines Kostenvektors \mathbf{k}^2 wie folgt zusammen:

Produktionskosten (in CHF) je Zwischenprodukteinheit:
$$\mathbf{k}^2 = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$
.

Analog fallen auch Produktionskosten für die Fertigung der Endprodukte E_1 und E_2 an, welche wir mit Hilfe eines Kostenvektors \mathbf{k}^3 wie folgt zusammenfassen:

Produktionskosten (in CHF) je Endprodukteinheit aus den Zwischenprodukten: $\mathbf{k}^3 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$.

Berechnen Sie die Gesamtkosten für jeweils 100 Einheiten von E_1 und E_2 .

Aufgabe 11 (Modellierung einer Produktion mit Hilfe von Matrizen II)

Eine Firma stellt aus vier Rohprodukten $R_1,...,R_4$ drei Zwischenprodukte Z_1,Z_2,Z_3 und aus diesen Zwischenprodukten vier Endprodukte $E_1,...,E_4$ her.

- Für die Herstellung einer Einheit von E_1 benötigt man: $2Z_1$, $1Z_2$, $2Z_3$
- Für eine Einheit von E_2 benötigt man: $3Z_2$, $2Z_3$.
- Für eine Einheit von E_3 benötigt man: $2Z_1$, $2Z_2$, $3Z_3$.
- Für eine Einheit von E_4 benötigt man: $3Z_1$, $4Z_3$.
- Für die Herstellung einer Einheit von Z_1 benötigt man: $3R_1$, $1R_2$, $4R_4$.
- Für eine Einheit von Z_2 benötigt man: $3R_1$, $2R_2$, $4R_3$, $1R_4$.

- Für eine Einheit von Z_3 benötigt man: $1R_2$, $3R_3$.
- (a) Stellen Sie jeweils die Matrix A, B und C auf, sodass:
 - a_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von Z_j ,
 - b_{ij} = Anzahl der Einheiten von Z_i zur Herstellung einer Einheit von E_j ,
 - c_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von E_j .
- (b) Wie viele Einheiten der Rohprodukte $R_1, ..., R_4$ benötigt man, um eine Einheit von E_1 bzw. zwei Einheiten von E_3 zu produzieren?
- (c) Welche Menge von R_2 benötigt man, um zwei Einheiten von E_1 , eine Einheit von E_2 und drei Einheiten von E_4 herzustellen?

Notieren Sie die Ansätze jeweils in Matrixnotation und berechnen Sie anschliessend die Ergebnisse.