ROB311 Quiz 1

Hanhee Lee

April 13, 2025

Contents

L	Intro
	1.1 Classification vs. Regression Problems
	1.2 Feature Spaces
2	PAC Learning
	2.1 Probably Approximately Correct (PAC) Estimations
	2.1.1 Hoeffding's Inequality
	2.2 PAC Learning
	2.2.1 Error
	2.2.2 Union Bound Theorem
	2.2.3 Generalization of Hoeffding's Inequality
	Decision Trees
	3.1 Structure
	3.2 Building a Decision Tree
	3.3 Special Case
	3.3.1 # of K-ary Questions Needed
	3.4 General Case
	3.4.1 Expected # of Questions
	3.4.2 Entropy, Conditional Entropy, and Information Gain

Learning Problems

1 Intro

Definition: Assume that there is some (unknown) relationship,

$$f: \mathcal{X} \to \mathcal{Y} \text{ s.t. } x \mapsto_f y$$

- \mathcal{X} : Input Space
- \mathcal{Y} : Output Space (i.e. information we desire about input)

Find $h: \mathcal{X} \to \mathcal{Y}$ (hypothesis) s.t. $h \approx f$, given some data about f:

$$\mathcal{D} = \left\{ \left(x^{(i)}, y_i \right), x^{(i)} \in \mathcal{X}, y_i = f\left(x^{(i)} \right) \in \mathcal{Y}, i = 1 \dots N \right\}$$

- $\operatorname{in}(\mathcal{D}) = \{x \text{ s.t. } (x, y) \in \mathcal{D}\}$
- $\operatorname{out}(\mathcal{D}) = \{ y \text{ s.t. } (x, y) \in \mathcal{D} \}$

Classification vs. Regression Problems 1.1

Definition:

- Classification Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{N}$ Regression Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{R}$

1.2 **Feature Spaces**

Definition: Easier to learn relationships from high-level features (instead of the raw input). Need mapping b/w input space and feature space:

$$\phi: \mathcal{X} \to \mathcal{F}$$

2 PAC Learning

2.1 Probably Approximately Correct (PAC) Estimations

Motivation: More than one fcn may be consistent w/ the data, how to find the best one?

2.1.1 Hoeffding's Inequality

Motivation: Bound $|\mu - \nu|$ w.r.t. N.

Definition: For any $\epsilon > 0$,

$$\mathbb{P}(|\nu - \mu| \ge \epsilon) \le 2e^{-2\epsilon^2 N} \tag{1}$$

• μ : Probability of an event.

• ν : Relative frequency in a sample size N.

• ϵ : Tolerance (i.e. how close we want ν to be to μ).

 $-\epsilon \to 0$: $\nu = \mu$

• $\mu \stackrel{:}{\approx} \nu$: μ is probably approximately equal to ν . As $N \to \infty$: $\nu \to \mu$

Warning: Approx. the true dist. w/ high prob. by taking a large enough N (i.e. empirical dist. converges to true dist.).

• i.e. Probability of a sig. deviation shrinks exp. w/N.

2.2 PAC Learning

2.2.1 Error

Definition:

• Out-Sample Error:

$$E_{\text{out}} = \mathbb{P}[f \neq h]$$

• In-Sample Error:

$$E_{\text{in}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[f(x^{(i)}) \neq h(x^{(i)})]$$

2.2.2 Union Bound Theorem

Theorem: The prob. of at least one of the events E_1, \ldots, E_M occurring is bounded by the sum of the prob. of each event occurring:

$$\mathbb{P}\left[E_1 \vee \dots \vee E_M\right] \leq \sum_{i=1}^M \mathbb{P}[E_i]$$

Notes:

- If the events are mutually exclusive, then the union bound is tight (i.e. equality holds).
- If the events are highly correlated, then the union bound is loose (i.e. inequality holds)
 - Some events may be more likely to occur together.

2.2.3 Generalization of Hoeffding's Inequality

Definition: Assuming that h is chosen from a set of hypotheses \mathcal{H} , derive a (loose) upper-bound on $|E_{\text{out}} - E_{\text{in}}|$:

$$\mathbb{P}\left[\bigvee_{h\in\mathcal{H}}\left(|E_{\text{out}} - E_{\text{in}}(h)| > \varepsilon\right)\right] \leq \sum_{h\in\mathcal{H}} \mathbb{P}\left[|E_{\text{out}} - E_{\text{in}}(h)| > \varepsilon\right]$$

$$\leq \sum_{h\in\mathcal{H}} 2e^{-2\varepsilon^{2}N}$$

$$= 2|\mathcal{H}|e^{-2\varepsilon^{2}N}$$

- Endow \mathcal{F} (i.e. fcn space) w/ prob. distribution, $P: \mathcal{X} \to [0,1]$, then
 - E_{out} (i.e. true error of a hyp. over entire dist. of data) is analogous to μ
 - $E_{\rm in}(h)$ (i.e. empirical error of hyp. on a finite sample) is analogous to ν .

Notes:

- $E_{\rm in}(h) \stackrel{?}{\approx} E_{\rm out}$ requires small $|\mathcal{H}|$ (generalization)
 - Look at inequality, small $|\mathcal{H}| \to \text{small } E_{\text{out}} E_{\text{in}}$ (i.e. prevents overfitting but leads to underfitting)
- $E_{\rm in}(h) \approx 0$ requires large $|\mathcal{H}|$ (discrimination)
 - Need large $|\mathcal{H}|$ to capture the true dist. (i.e. prevents underfitting but leads to overfitting)

Example:

- 1. Given: An opaque box containing red and blue balls. Take N IID samples.
 - μ : Probability of drawing a blue balls (unknown).
 - ν : Relative frequency of blue balls in the sample (known).
- 2. **Problem 1:** What is ν in this case? 8 balls total, 5 are blue.
- 3. Solution 1: $\nu = \frac{5}{8}$
- 4. Problem 2: How to partition \mathcal{F} into regions where f = h and $f \neq h$?
- 5. Solution 2:

Figure 1: LS h, MS f

- 6. **Problem 3:** What is the out-sample error?
- 7. Solution 3: In words, the probability of the hypothesis being wrong.

Figure 2

- 8. **Problem 4:** What is the in-sample error given this sample of 11 balls s.t. f = h, 1 ball s.t. $f \neq h$?
- 9. Solution 4: $E_{\rm in} = \frac{1}{12}$

3 **Decision Trees**

3.1 Structure

Definition: Each vertex in a decision tree is either:

- 1. A **condition vertex**: a vertex that sorts points based on a question.
- 2. A decision vertex: a vertex that assigns all points a specific class.

Notes: We want to find the minimum # of condition vertices (or questions) needed to "sufficiently discriminate" (identify the class of every point in \mathcal{D}).

- More condition vertices improve discrimination.
- Less condition vertices improve generalization.

3.2 Building a Decision Tree

Definition: Consider determining the class of a randomly chosen target point.

• If we ask a K-ary question abt. the pts. in \mathcal{D} , we can form K subsets, $\mathcal{D}^{(1)}, \ldots, \mathcal{D}^{(K)}$, using the answers s.t.

$$- |\mathcal{D}^{(k)}| \in \{0, \dots, |\mathcal{D}|\}$$

we ask a K-ary question
$$-|\mathcal{D}^{(k)}| \in \{0, \dots, |\mathcal{D}|\}$$
$$-|\mathcal{D}| = \sum_{k=1}^{K} |\mathcal{D}^{(k)}|$$

3.3 Special Case

Notes: Suppose each pt. belongs to a unique class (i.e. the # of classes is $|\mathcal{D}|$).

Figure 3

- 1. Before asking the question: $|\mathcal{D}|$ possible guesses for the target point's class.
- 2. After asking the question: Either
 - $|\mathcal{D}^{(1)}|, \dots, |\mathcal{D}^{(K-1)}|$ or
 - $\bullet |\mathcal{D}^{(K)}|$

guesses, depending on the answer for the target point.

- i.e. $|\mathcal{D}^{(K)}|$ if the target point belongs to class K (Yes) i.e. $|\mathcal{D}^{(1)}|, \ldots, |\mathcal{D}^{(K-1)}|$ if the target point belongs to class $1, \ldots, K-1$ (No)
- 3. Goal: Minimize the # of guesses needed in the worst-case, which would be

$$\max\{|\mathcal{D}^{(1)}|,\ldots,|\mathcal{D}^{(K)}|\}.$$

- i.e. Target point falls into the largest subset after a question is asked.
- 4. Given the constraints on $|\mathcal{D}^{(1)}|, \ldots, |\mathcal{D}^{(K)}|$, we can show that $\max\{|\mathcal{D}^{(1)}|, \ldots, |\mathcal{D}^{(K)}|\}$ is minimized when

$$|\mathcal{D}^{(K)}| \in \left\{ \left| \frac{|\mathcal{D}|}{K} \right|, \left\lceil \frac{|\mathcal{D}|}{K} \right\rceil \right\}.$$

Basically, the best question splits \mathcal{D} into K sets of (roughly) the same size.

Warning: Roughly due to floor/ceil.

3.3.1# of K-ary Questions Needed

Theorem: Given a classification data-set, \mathcal{D} , in which the class of each point is unique (i.e., $|\text{out}(\mathcal{D})| = |\mathcal{D}|$), the class of a randomly chosen target point can be determined within

$$\lceil \log_K(|\mathcal{D}|) \rceil$$

K-ary questions.

3.4 General Case

Motivation: Suppose points do not necessarily belong to a unique class.

- X is the class of a randomly chosen target point.
- Y is the answer to a K-ary question for X.

3.4.1 Expected # of Questions

Definition: Using the theorem above, since for each class, c, we can partition \mathcal{D} into $\lceil 1/p_c \rceil$ subsets, with a subset containing all class c points

• p_c : Proportion of class c points.

If the target point's class is c, we can confirm it w/in $\lceil \log_K(\lceil 1/p_c \rceil) \rceil$ K-ary questions.

Thus, the expected # of Qs needed is

$$\sum_{c} p_c \lceil \log_2(\lceil 1/p_c \rceil) \rceil.$$

Notes: i.e. Reduces to special cases with each subset containing a unique class.

3.4.2 Entropy, Conditional Entropy, and Information Gain

Definition: The **entropy** of a random variable X (in K-its) is defined as

$$H(X) = -\sum_{\forall x \in X} p_X(x) \log_K(p_X(x)).$$

The **conditional entropy** of a random variable, X, given a random variable Y, is

$$H(X|Y) = -\sum_{\forall y \in Y} \sum_{\forall x \in X} p_{X|Y}(x|y) \log_K(p_{X|Y}(x|y)).$$

The **information gain** from Y is:

$$IG(X|Y) = H(X) - H(X|Y).$$

• Maximize IG(X|Y) (i.e. choose the question to maximize the information gained).

Process:

- 1. Calculate H(X) (i.e. entropy before the split).
- 2. Calculate H(X|Y) (i.e. entropy after the split).
 - (a) Calculate entropy for each subset of X based on the question, Y.
 - (b) Calculate the weighted average of the entropies.
- 3. Calculate IG(X|Y) = H(X) H(X|Y).

Example: Consider a classification problem where $\mathcal{X} = \{0, \dots, 9\}^2$, $\mathcal{Y} = \{0, 1, 2\}$ and suppose we are given

$$\mathcal{D} = \left\{ \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 4 \\ 1 \end{bmatrix}, 1 \right), \left(\begin{bmatrix} 4 \\ 2 \end{bmatrix}, 1 \right), \left(\begin{bmatrix} 6 \\ 1 \end{bmatrix}, 2 \right), \left(\begin{bmatrix} 1 \\ 5 \end{bmatrix}, 2 \right), \left(\begin{bmatrix} 4 \\ 4 \end{bmatrix}, 2 \right), \left(\begin{bmatrix} 6 \\ 2 \end{bmatrix}, 2 \right), \left(\begin{bmatrix} 2 \\ 4 \end{bmatrix}, 2 \right) \right\}.$$

Figure 4

Hanhee Lee

Example: 2-Ary Question

1. **Given:**
$$X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \le 3 \\ 0, & \text{if } x_1 > 3 \end{cases}$$
 (Yes)

- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split:

i.
$$H(X \mid x_1 \le 3) = \frac{3}{5} \log_2 \left(\frac{5}{3}\right) + \frac{2}{5} \log_2 \left(\frac{5}{2}\right)$$

ii.
$$H(X \mid x_1 > 3) = \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{3}{5} \log_2 \left(\frac{5}{3}\right)$$
.

iii. Weighted Avg. Entropy:
$$H(X|Y) = \frac{5}{10}H(X \mid x_1 \le 3) + \frac{5}{10}H(X \mid x_1 > 3)$$

(c) IG(X|Y) = H(X) - H(X|Y)

Example: 2-Ary Question

1. Given:
$$X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_2 \le 3 \text{ (Yes)} \\ 0, & \text{if } x_2 > 3 \text{ (No)} \end{cases}$$

- 2. **Problem:** IG(X|Y) = ?
- - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split:

i.
$$H(X \mid x_2 > 3) = \frac{3}{3} \log_2 \left(\frac{3}{3}\right)$$

ii.
$$H(X \mid x_2 \le 3) = \frac{3}{5} \log_2 \left(\frac{5}{3}\right) + \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{2}{5} \log_2 \left(\frac{5}{2}\right)$$
.

iii. Weighted Avg. Entropy:
$$H(X|Y) = \frac{3}{10}H(X \mid x_2 > 3) + \frac{7}{10}H(X \mid x_2 \le 3)$$

(c) IG(X|Y) = H(X) - H(X|Y)

Example: 3-Ary Question

1. **Given:**
$$X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \leq 3 \text{ and } x_2 \leq 3 \\ 2, & \text{if } x_1 \leq 3 \text{ and } x_2 > 3 \\ 3, & \text{if } x_1 > 3 \end{cases}$$

- 2. Problem: IG(X|Y) = ?
- 3. Solution:

(a) Entropy before the split:
$$H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3} \right) + \frac{2}{10} \log_2 \left(\frac{10}{2} \right) + \frac{5}{10} \log_2 \left(\frac{10}{5} \right)$$

(b) Entropy after the split:

i.
$$H(X \mid x_1 \le 3 \text{ and } x_2 \le 3) = \frac{3}{3} \log_2 \left(\frac{3}{3}\right)$$

ii.
$$H(X \mid x_1 \le 3 \text{ and } x_2 > 3) = \frac{2}{2} \log_2 \left(\frac{2}{2}\right)$$

iii.
$$H(X \mid x_1 > 3) = \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{3}{5} \log_2 \left(\frac{5}{3}\right)$$

iv.
$$H(X|Y) = \frac{3}{10}H(X \mid x_1 \le 3 \text{ and } x_2 \le 3) + \frac{2}{10}H(X \mid x_1 \le 3 \text{ and } x_2 > 3) + \frac{5}{10}H(X \mid x_1 > 3)$$

(c) $IG(X|Y) = H(X) - H(X|Y)$

(c)
$$IG(X|Y) = H(\tilde{X}) - H(X|Y)$$

Example: Decision Tree

- 1. **Given:** $X = \{0, 1, 2\}$
- 2. **Problem:** Draw a decision tree using binary conditions of the form, $x_i \leq k$, where $i \in \{1, 2\}$ and $k \in \mathbb{Z}$, that maximizes the information gained at each level.
- 3. Solution (Level 1):
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right) = 1.485 [\text{bits}]$
 - (b) Entropy after the split and information gain (everything in base 2 since 2-ary).

Split Entropy

$$x_1 \le 1 \qquad H(X|Y) = \frac{3}{10} \left[\frac{2}{3} \log \left(\frac{3}{2} \right) + \frac{1}{3} \log \left(\frac{3}{1} \right) \right] + \frac{7}{10} \left[\frac{1}{7} \log \left(\frac{7}{1} \right) + \frac{2}{7} \log \left(\frac{7}{2} \right) + \frac{4}{7} \log \left(\frac{7}{4} \right) \right] = 1.241 \text{[bits]}$$

• IG(X|Y) = 1.485 - 1.241 = 0.244[bits]

$$x_1 \le 2, 3$$
 $H(X|Y) = \frac{5}{10} \left[\frac{3}{5} \log \left(\frac{5}{3} \right) + \frac{2}{5} \log \left(\frac{5}{2} \right) \right] + \frac{5}{10} \left[\frac{2}{5} \log \left(\frac{5}{2} \right) + \frac{3}{5} \log \left(\frac{5}{3} \right) \right] = 0.971 [\text{bits}]$

• IG(X|Y) = 1.485 - 0.971 = 0.514[bits]

$$x_1 \le 4, 5$$
 $H(X|Y) = \frac{8}{10} \left[\frac{3}{8} \log \left(\frac{8}{3} \right) + \frac{2}{8} \log \left(\frac{8}{2} \right) + \frac{3}{8} \log \left(\frac{8}{3} \right) \right] + \frac{2}{10} \left[\frac{2}{2} \log \left(\frac{2}{2} \right) \right] = 1.249 [\text{bits}]$

• IG(X|Y) = 1.485 - 1.249 = 0.236[bits]

$$x_1 \le 6$$
 $H(X|Y) = \frac{10}{10} \left[\frac{3}{10} \log \left(\frac{10}{3} \right) + \frac{2}{10} \log \left(\frac{10}{2} \right) + \frac{5}{10} \log \left(\frac{10}{5} \right) \right] = 1.485 \text{[bits]}$

• IG(X|Y) = 1.485 - 1.485 = 0[bits]

$$x_2 \le 1 \qquad H(X|Y) = \frac{4}{10} \left[\frac{2}{4} \log \left(\frac{4}{2} \right) + \frac{1}{4} \log \left(\frac{4}{1} \right) + \frac{1}{4} \log \left(\frac{4}{1} \right) \right] + \frac{6}{10} \left[2 \cdot \frac{1}{6} \log \left(\frac{6}{1} \right) + \frac{4}{6} \log \left(\frac{6}{4} \right) \right] = 1.351 \text{[bits]}$$

• IG(X|Y) = 1.485 - 1.351 = 0.134[bits]

$$x_2 \le 2, 3$$
 $H(X|Y) = \frac{7}{10} \left[\frac{3}{7} \log \left(\frac{7}{3} \right) + \frac{2}{7} \log \left(\frac{7}{2} \right) + \frac{2}{7} \log \left(\frac{7}{2} \right) \right] + \frac{3}{10} \left[\frac{3}{3} \log \left(\frac{3}{3} \right) \right] = 1.090 [\text{bits}]$

• IG(X|Y) = 1.485 - 1.090 = 0.395[bits]

$$x_2 \le 4$$
 $H(X|Y) = \frac{9}{10} \left[\frac{3}{9} \log \left(\frac{9}{3} \right) + \frac{2}{9} \log \left(\frac{9}{2} \right) + \frac{4}{9} \log \left(\frac{9}{4} \right) \right] + \frac{1}{10} \left[\frac{1}{1} \log \left(\frac{1}{1} \right) \right] = 1.377 [\text{bits}]$

• IG(X|Y) = 1.485 - 1.377 = 0.108[bits]

$$x_2 \le 5$$
 $H(X|Y) = \frac{10}{10} \left[\frac{3}{10} \log \left(\frac{10}{3} \right) + \frac{2}{10} \log \left(\frac{10}{2} \right) + \frac{5}{10} \log \left(\frac{10}{5} \right) \right] = 1.485 \text{[bits]}$

• IG(X|Y) = 1.485 - 1.485 = 0[bits]

Example: Decision Tree Continued:

4. Solution (Level 2): $x_1 \le 2,3$ has the highest information gain. For clarity, choose $x_1 \le 3$ as the question.

(a) Entropy before the split (treat as 2 indep. problems)

i.
$$H(X_L) = \frac{3}{5} \log \left(\frac{5}{3}\right) + \frac{2}{5} \log \left(\frac{5}{2}\right) = 0.971$$

ii.
$$H(X_R) = \frac{2}{5} \log \left(\frac{5}{2}\right) + \frac{3}{5} \log \left(\frac{5}{3}\right) = 0.971$$

(b) Entropy after the split and information gain (everything in base 2 since 2-ary).

Split Entropy

Left Split

$$x_1 \le 1$$
 $H(X_L|Y) = \frac{3}{5} \left[\frac{2}{3} \log \left(\frac{3}{2} \right) + \frac{1}{3} \log \left(\frac{3}{1} \right) \right] + \frac{2}{5} \left[\frac{1}{2} \log \left(\frac{1}{2} \right) + \frac{1}{2} \log \left(\frac{1}{2} \right) \right] = 0.151 \text{[bits]}$

• IG(X|Y) = 0.971 - 0.151 = 0.820[bits]

$$x_2 \le 1$$
 $H(X_L|Y) = \frac{2}{5} \left[\frac{2}{2} \log \left(\frac{2}{2} \right) \right] + \frac{3}{5} \left[\frac{1}{3} \log \left(\frac{3}{1} \right) + \frac{2}{3} \log \left(\frac{3}{2} \right) \right] = 0.551 \text{[bits]}$

• IG(X|Y) = 0.971 - 0.551 = 0.420[bits]

$$x_2 \le 2, 3$$
 $H(X_L|Y) = \frac{3}{5} \left[\frac{3}{3} \log \left(\frac{3}{3} \right) \right] + \frac{2}{5} \left[\frac{2}{2} \log \left(\frac{2}{2} \right) \right] = 0 \text{[bits]}$

• $IG(X_L|Y) = 0.971 - 0 = 0.971$ [bits]

Right Split

$$x_1 \le 4, 5$$
 $H(X_R|Y) = \frac{3}{5} \left[\frac{2}{3} \log \left(\frac{3}{2} \right) + \frac{1}{3} \log \left(\frac{3}{1} \right) \right] + \frac{2}{5} \left[\frac{2}{2} \log \left(\frac{2}{2} \right) \right] = 0.551 [\text{bits}]$

• $IG(X_L|Y) = 0.971 - 0.551 = 0.420$ [bits]

$$x_2 \le 1$$
 $H(X_R|Y) = \frac{2}{5} \left[\frac{1}{2} \log \left(\frac{2}{1} \right) + \frac{1}{2} \log \left(\frac{2}{1} \right) \right] + \frac{3}{5} \left[\frac{2}{3} \log \left(\frac{3}{2} \right) + \frac{1}{3} \log \left(\frac{3}{1} \right) \right] = 0.951 \text{[bits]}$

• $IG(X_L|Y) = 0.971 - 0.951 = 0.020$ [bits]

$$x_2 \le 2, 3$$
 $H(X_R|Y) = \frac{4}{5} \left[\frac{2}{4} \log \left(\frac{4}{2} \right) + \frac{2}{4} \log \left(\frac{4}{2} \right) \right] + \frac{1}{5} \left[\frac{1}{1} \log \left(\frac{1}{1} \right) \right] = 0.8 \text{[bits]}$

• $IG(X_L|Y) = 0.971 - 0.8 = 0.171[bits]$

Example: Decision Tree Continued:

- 5. Solution (Level 3): $x_2 \le 2, 3$ and $x_1 \le 4, 5$ has the highest information gain. For clarity, choose $x_2 \le 3$ as the question for the left split and choose $x_1 \le 5$ as the question for the right split.
 - (a) Since 3 are pure splits already, therefore, look at right-left side only.
 - (b) Entropy before the split for the right-left side

i.
$$H(X_{RL}) = \frac{2}{3} \log \left(\frac{3}{2}\right) + \frac{1}{3} \log \left(\frac{3}{1}\right) = 0.918$$
[bits]

(c) Entropy after the split and information gain (everything in base 2 since 2-ary).

Split Entropy

$$x_2 \le 1$$
 $H(X_{RL}|Y) = \frac{1}{3} \left[\frac{1}{1} \log \left(\frac{1}{1} \right) \right] + \frac{2}{3} \left[\frac{1}{2} \log \left(\frac{2}{1} \right) + \frac{1}{2} \log \left(\frac{2}{1} \right) \right] = 0.667 \text{[bits]}$

• IG(X|Y) = 0.971 - 0.667 = 0.304[bits]

$$x_2 \leq 2, 3 \quad H(X_{RL}|Y) = \frac{1}{3} \left[\frac{1}{1} \log \left(\frac{1}{1} \right) \right] + \frac{2}{3} \left[\frac{2}{2} \log \left(\frac{2}{2} \right) \right] = 0 [\text{bits}]$$

• IG(X|Y) = 0.971 - 0 = 0.971[bits]

6. Now all regions in our graph contain a pure set (one class). Note this took more questions than needed, but IG is a heuristic so its not perfect.

