Lucian GHIRVU

Vizualizari 3D

- Cum reprezentam obiecte 3D pe ecrane 2D ?
 - utilizand conceptul de proiectie
 (geometrica planara) a unui obiect pe un plan de proiectie

Vizualizari 3D

- Cum reprezentam obiecte 3D pe ecrane 2D ?
 - utilizand conceptul de proiectie
 (geometrica planara) a unui obiect pe un plan de proiectie

dintr-un centru de proiectie COP pleaca raze de proiectie (drepte) care trec prin fiecare punct al obiectului si intersecteaza planul de proiectie pentru a forma proiectia

Proiectii geometrice planare

- Clasificarea proiectiilor geometrice planare (in fct. de distanta dintre COP si planul de proiectie)
 - distanta finitaperspectiva
 - distanta infinita -> paralele (dreptele de proiectie sunt paralele)

Proiectii geometrice perspectiva

Proiectii geometrice paralele

Proiectii perspectiva

- clasificarea acestor proiectii in functie de numarul punctelor de fuga axiale
 - -1,2,3 punct(e) de fuga axial(e)
 - exemple 1, 2 puncte de fuga axiale

planul de proiectie || Oxy

20

Proiectii paralele

- clasificarea acestor proiectii in functie de pozitia DOP in raport cu planul de proiectie
 - daca DOP este perpendiculara pe planul de proiectie -> ortografice
 - altfel, -> oblice

- Daca planul de proiectie este perpendicular pe
 - axa Ox -> laterala
 - axa Oy -> verticala
 - axa Oz -> frontala
- altfel, -> axonometrica
 - daca unghiurile (DOP, {Ox,Oy,Oz}) sunt egale -> izometrica
 - altele

Proiectii paralele oblice

- clasificarea acestor proiectii in functie de unghiul dintre DOP si planul de proiectie
 - cavaliera : 45° => lung.proiectiei unui seg.perp.pe pl.de pr.este egala cu lung.seg.
 - cabinet : arctan(2) => lung.proiectiei unui seg.perp.pe pl.de pr.este ½ din lung.seg.
 - altele

Proiectii paralele oblice

Subclasele proiectiilor geometrice planare

Exemplu

proiectie cavaliera unghi 30 grade

proiectie cavaliera unghi 45 grade

proiectie cabinet unghi 30 grade

proiectie cabinet unghi 45 grade

Proiectie paralela axonometrica izometrica

- Rezumat
 - definitie
 - clasificare: paralele/perspectiva,
 perspectiva 1/2/3 pfa, paralele
 ortografice/oblice, etc.
 - exemple

- Specificarea unei p.g.p. (terminologie PHIGS)
 - planul de vizualizare
 - VRP : view reference point
 - VPN: view plane normal
 - VUP: view up plane
 - aceste elemente determina un sistem de coordonate orientat drept VRC = (VRP, u, v, n) : view reference coordinate system

- Specificarea unei p.g.p. (terminologie PHIGS)
 - fereastra in planul de vizualizare
 - CW: centrul ferestrei
 - (umax, vmax) : coord.coltului din drp.sus
 - (umin, vmin) : coord.coltului din stg.jos

Specificarea ferestrei din planul de vizualizare

- Specificarea unei p.g.p. (terminologie PHIGS)
 - punctul de referinta al proiectiei
 - PRP: projection reference point
 - proiectie perspectiva => PRP = COP
 - proiectie paralela => (PRP,CW) = DOP

Specificarea PRP

- Specificarea unei p.g.p. (terminologie PHIGS)
 - volumului de vizualizare
 - doar (parti din) obiectele care (intersecteaza) sunt incluse in volumul de vizualizare vor fi afisate pe ecran
 - restul -> decupate ...

Specificarea volumului de vizualizare pentru proiectia perspectiva

Specificarea volumului de vizualizare pentru proiectia paralela

- Specificarea unei p.g.p. (terminologie PHIGS)
 - planelor de decupare
 - anterior si posterior => volum de vizualizare finit

Exemple PGP1

VRP (WCS)	(0,0,0)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(8,6,84)
Fereastra (VRC) = (um,uM,vm,vM)	(-50,50,-50,50)
Tip proiectie	perspectiva

• Exemple PGP2

VRP (WCS)	(0,0,54)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(8,6,30)
Fereastra (VRC) = (um,uM,vm,vM)	(-1,17,-1,17)
Tip proiectie	perspectiva

Proiectii geometrice planare

• Exemple PGP3

VRP (WCS)	(16,0,54)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(20,25,20)
Fereastra (VRC) = (um,uM,vm,vM)	(-20,20,-5,35)
Tip proiectie	perspectiva

81

Proiectii geometrice planare

• Exemple PGP4

VRP (WCS)	(16,0,54)
VPN (WCS)	(1,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	$(0,25,20\sqrt{2})$
Fereastra (VRC) = (um,uM,vm,vM)	(-20,20,-5,35)
Tip proiectie	perspectiva

82

Proiectii geometrice planare

• Exemple PGP5

VRP (WCS)	(0,0,0)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(8,8,100)
Fereastra (VRC) = (um,uM,vm,vM)	(-1,17,-1,17)
Tip proiectie	paralela

Grafica pe calculator

87

88

Proiectii geometrice planare

• Exemple PGP6

VRP (WCS)	(0,0,54)
VPN (WCS)	(1,0,0)
VUP (WCS)	(0,1,0)
PRP (VRC)	(12,8,16)
Fereastra (VRC) = (um,uM,vm,vM)	(-1,25,-5,21)
Tip proiectie	paralela

Grafica pe calculator

93

Proiectii geometrice planare

Exemple PGP7

VRP (WCS)	(16,0,54)
VPN (WCS)	(0,1,0)
VUP (WCS)	(-1,0,0)
PRP (VRC)	(12,8,30)
Fereastra (VRC) = (um,uM,vm,vM)	(-1,25,-5,21)
Tip proiectie	paralela

98

Proiectii geometrice planare

• Exemple PGP8

VRP (WCS)	(8,8,42)
VPN (WCS)	(1,1,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(0,0,10)
Fereastra (VRC) = (um,uM,vm,vM)	(-20,20,-20,20)
Tip proiectie	paralela

102

Proiectii geometrice planare

Exemple PGP9

VRP (WCS)	(8,8,54)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	$(\cos \alpha, \sin \alpha, 1)$
Fereastra (VRC) = (um,uM,vm,vM)	(-15,15,-15,15)
Tip proiectie	paralela

• Exemple PGP10

VRP (WCS)	(0,0,54)
VPN (WCS)	(0,0,1)
VUP (WCS)	(0,1,0)
PRP (VRC)	(8,6,30)
Fereastra (VRC) = (um,uM,vm,vM)	(-1,17,-1,17)
Tip proiectie	perspectiva
F (VRC)	1
B (VRC)	-23

Rezumat

- definitie
- clasificare: paralele/perspectiva, perspectiva 1/2/3 pfa, paralele ortografice/oblice, etc.
- exemple
- specificarea unei proiectii:
 - VRP, VPN, VUP, CW, umax, umin, vmax, vmin, PRP (COP, DOP), vol. vizualizare, B, F

- Descriere matematica
 - proiectia perspectiva
 - dat planul PL (|| (Ox,Oy)) la distanta d de origine (deci avand ecuatia z = d) si P(x,y,z) care sunt coordonatele punctului P1(x1,y1,z1), obtinut prin proiectia punctului P pe PL ? Consideram ca COP = O(0,0,0).

- Descriere matematica
 - proiectia perspectiva
 - M_{per} si omogenizare => P1(x/(z/d), y/(z/d), d, 1)

$$P1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{pmatrix} \cdot P$$

- Descriere matematica
 - proiectia perspectiva
 - dat planul PL (= (Ox,Oy), deci avand ecuatia z = 0) si P(x,y,z) care sunt coordonatele punctului P1(x1,y1,z1), obtinut prin proiectia punctului P pe PL ? Consideram ca COP(0,0,-d).

- Descriere matematica
 - proiectia perspectiva
 - M'_{per} si omogenizare =>
 P1(x/(z/d + 1), y/(z/d + 1), 0, 1)

$$P1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/d & 1 \end{pmatrix} \cdot P$$

- Descriere matematica
 - proiectia paralela ortografica
 - dat planul PL (= (Ox,Oy), deci avand ecuatia z = 0) si P(x,y,z) care sunt coordonatele punctului P1(x1,y1,z1), obtinut prin proiectia punctului P pe PL ? Consideram ca DOP = Oz.

- Descriere matematica
 - proiectia paralela ortografica

$$\lim_{d \to \infty} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/d & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Descriere matematica
 - proiectia generala
 - dat punctul P(x, y, z), planul PL
 (|| (Ox,Oy), z = z1), COP (dat prin
 distanta Q la punctul (0,0,z1) si prin
 vectorul d(dx, dy, dz) de lungime 1) care
 sunt coordonatele punctului
 P1(x1,y1,z1), obtinut prin proiectia
 punctului P pe PL ?

- Descriere matematica
 - proiectia generala
 - M_{general} si omogenizare

$$\begin{pmatrix}
1 & 0 & -\frac{dx}{dz} & z1 \cdot \frac{dx}{dz} \\
0 & 1 & -\frac{dy}{dz} & z1 \cdot \frac{dy}{dz} \\
0 & 0 & -\frac{z1}{Q \cdot dz} & \frac{z_1}{Q \cdot dz} + z1 \\
0 & 0 & -\frac{1}{Q \cdot dz} & \frac{z1}{Q \cdot dz} + 1
\end{pmatrix}$$

- Descriere matematica
 - particularizand M_{general} se obtin diverse proiectii

	z1	Q	(dx,dy,dz)
M _{ort}	0	∞	(0,0,-1)
M _{per}	d	d	(0,0,-1)
M' _{per}	0	d	(0,0,-1)
cavaliera	0	∞	(cos t, sin t, -1)
cabinet	0	∞	((cos t)/2, (sin t)/2, -1)

- Rezumat
 - definitie
 - clasificare
 - exemple
 - specificarea unei proiectii
 - descriere matematica

- Implementare
 - transformarea de normalizare
 - vol.de vizualizare arbitrare sunt transformate in vol.de viz. canonice
 - deoarece pentru aceste volume alg.de decupare sunt mai eficienti
 - transformarea vol.de viz.canonic pentru proiectia persp. in cel canonic pentru proiectia paralela

Transformarea de normalizare volume de vizualizare canonice

- Translatie VRP -> originea O
- Rotatie a.i. (VRP,u,v,n) sa coincida cu (O,x,y,z)
- Transformare de forfecare a.i. DOP || Oz
- Translatie si scalare in vol.de viz.canonic pentru pr.paralela

Npar = Spar • Tpar • SHpar • R • T(-VRP)

Grafica pe calculator

134

135

Transformarea de normalizare volume de vizualizare canonice

- Translatie VRP -> originea O
- Rotatie a.i. (VRP,u,v,n) sa coincida cu (O,x,y,z)
- Translatie a.i. PRP(COP) -> origine
- Transformare de forfecare
- Scalare in vol.de viz.canonic pentru pr.perspectiva

Nper = Sper • SHpar • T(-PRP) • R • T(-VRP)

Transformarea v.v.can.pr.perspectiva in v.v.can.pr.paralela

Transformarea v.v.can.pr.perspectiva in v.v.can.pr.paralela

$$M = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & \frac{1}{1+z_{min}} & \frac{-z_{min}}{1+z_{min}} \ 0 & 0 & -1 & 0 \end{pmatrix}$$

- Rezumat
 - definitie
 - clasificare
 - exemple
 - specificarea unei proiectii
 - descriere matematica
 - implementare : transformarea de normalizare, vol.de viz.can.

- Implementare
 - volum de vizualizare canonic pentru proiectia paralela
 - specificare viewport 3D : $[x_{v.min}, x_{v.max}] \times [y_{v.min}, y_{v.max}] \times [z_{v.min}, z_{v.max}] \text{ inclus in } [0,1]^3$
 - mapare fata z = 1 cu zona patratica c.m.mare care poate fi inscrisa in ecran
 - afisarea punctelor facand abstractie
 de coordonata z

Implementare

- translatie a.i. coltul (-1,-1,-1) al vol.de viz.can.pentru pr.par.sa ajunga in origine
- scalare a v.v.c.p.p. a.i. sa aiba dimensiunile viewport-ului 3D
- translatie a.i. v.v.c.p.p. modificat sa coincida cu viewport-ul 3D

- Rezumat
 - definitie
 - clasificare
 - exemple
 - specificarea unei proiectii
 - descriere matematica
 - implementare
 - transformarea de normalizare
 - transformarea de viewport

Vizualizare 3D

- Rezumat
 - proiectii geometrice planare
 - definitie
 - clasificare
 - exemple
 - specificarea unei proiectii
 - descriere matematica
 - implementare
 - transformarea de normalizare
 - transformarea de viewport

Vizualizare 3D

- Realizarea vizualizarii 3D in OpenGL
- problema
 - cum se realizeaza corespondenta intre un punct glvertex3D(x,y,z) specificat intr-un program care utilizeaza OpenGL si punctul care se afiseaza pe ecran ?

model-view matrix stack

projection matrix stack

normalized device coordinates
$$\begin{pmatrix} x_d \\ y_d \\ z_d \end{pmatrix} = \begin{pmatrix} x_c \\ w_c \\ y_c \\ w_c \\ z_c \\ w_c \end{pmatrix}$$

clip coordinates

perspective division

window coordinates

normalized device coordinates

$$\begin{pmatrix} x_w \\ y_w \\ z_w \end{pmatrix} = \begin{pmatrix} o_x + (p_x/2)x_d \\ o_y + (p_y/2)y_d \\ [(f-n)/2]z_d + (n+f)/2 \end{pmatrix}$$

viewport transformation

- glDepthRange(n, f)
- glViewport(x, y, w, h)

- Matricile de modelare/proiectie
 - selectare stiva; matricea curenta C
 este cea din varful stivei
 - glMatrixMode(GL_MODELVIEW)
 - glMatrixMode(GL_PROJECTION)
 - modificarea matricii curente
 - glLoadMatrix{fd}(T m[16])
 - este specificata o matrice 4x4 data pe coloane si care inlocuieste matricea curenta C

- Matricile de modelare/proiectie
 - modificarea matricii curente
 - glMultMatrix{fd}(T m[16])
 - este specificata o matrice M de 4x4 data pe coloane
 - $-C' = C \times M$
 - C' inlocuieste matricea curenta C
 - variante
 - glLoadTransposeMatrix(...)
 - glMultTransposeMatrix(...)

- Matricile de modelare/proiectie
 - modificarea matricii curente
 - glLoadIdentity()
 - matricea I₄ inlocuieste matricea curenta C
 - -glRotate{fd}(T t, T x, T y, T z)
 - calculeaza M matricea de rotatie cu unghiul t in jurul vectorului (x,y,z)
 - inlocuieste C cu C' = C x M

- Matricile de modelare/proiectie
 - $-glTranslate{fd}(T x, T y, T z)$
 - calculeaza M matricea de translatie T(x,y,z)
 - inlocuieste C cu C' = C x M
 - $-glScale{fd}(T x, T y, T z)$
 - calculeaza M matricea de scalare S(x,y,z)
 - inlocuieste C cu C' = C x M

proiectie perspectiva

- glFrustum(l, r, b, t, n, f)
 - coordonatele (I, b, -n) si (r, t, -n) specifica 2 puncte din planul de decupare anterior care sunt mapate in colturile din stanga jos si dreapta sus ale ferestrei (presupunand ca observatorul este plasat in punctul (0,0,0)). Parametrul f denota distanta dintre observator si planul de decupare posterior. Apar erori in unul din cazurile : n, f <= 0, l = r, b = t, n = f.
 - se calculeaza M matricea corespunzatoare
 - inlocuieste C cu C' = C x M

proiectie paralela

```
- glOrtho(l, r, b, t, n, f)
```

- coordonatele (l, b, -n) si (r, t, -n) specifica 2 puncte din planul de decupare anterior care sunt mapate in colturile din stanga jos si dreapta sus ale ferestrei (presupunand ca observatorul este plasat in punctul (0,0,0)). Parametrul f denota distanta dintre observator si planul de decupare posterior. Apar erori in unul din cazurile : l = r, b = t, n = f.
- se calculeaza M matricea corespunzatoare
- inlocuieste C cu C' = C x M

- Stivele de matrici
 - -glPushMatrix()
 - daca stiva S = CX atunci dupa executia comenzii S = CCX
 - eroare GL STACKOVERFLOW
 - -glPopMatrix()
 - daca stiva S = C'CX atunci dupa executia comenzii S = CX
 - eroare GL_STACKUNDERFLOW

Vizualizare 3D

- Rezumat
 - proiectii geometrice planare
 - definitie
 - clasificare
 - exemple
 - specificarea unei proiectii
 - descriere matematica
 - implementare
 - transformarea de normalizare
 - transformarea de viewport
 - OpenGL