Visão Computacional Aula 13

Segmentação de Imagens Transformada Hough

Transformada Hough

- Processamento global para a detecção de linhas retas numa imagem
- Nenhum conhecimento é necessário a respeito da posição das linhas
- Método robusto que pode ser generalizado a outras formas geométricas

• Suponha que para uma imagem de *n* pontos queiramos encontrar subconjuntos destes pontos que sejam colineares:

<u>Ideia 1</u>: Encontrar todas as linhas determinadas por cada par de pontos e, então, encontrar todos os subconjuntos de pontos constituindo uma linha em particular.

10 retas

Complexidade: n(n-1)/2, i.e., $O(n^2)$ para se encontrar todas as linhas

e

n[n(n-1)/2], i.e., $O(n^3)$ para comparação de cada ponto com todas as linhas

<u>Idéia 2</u>: Transformada de Hough (1962)

• Considere um ponto (x_i, y_i) da imagem e a equação geral da reta:

$$y_i = ax_i + b$$

• Pelo ponto (x_i, y_i) passam infinitas retas (no plano contínuo) com valores de a e b variáveis.

Todas estas retas obedecem à equação $y_i = ax_i + b$, com $a \in b$ variáveis.

Assim, escrevendo a equação da reta na forma:

$$b = -x_i a + y_i ,$$

e considerando o plano ab (espaço de parâmetros), definimos uma reta de inclinação x_i e ponto de intersecção y_i

Um outro ponto (x_j, y_j) introduzido no plano xy também terá uma reta no espaço ab. Esta reta intersecciona a primeira no ponto (a', b') correspondente aos parâmetros da reta que une (x_i, y_i) a (x_i, y_i) .

Assim, todos os pontos pertencentes à mesma reta em *xy* têm intersecção, no plano *ab*, no ponto (a',b').

Implementação

• Subdivide-se o espaço de parâmetros em **células acumuladoras**

 (a_{\min},a_{\max}) e (b_{\min},b_{\max}) são os valores mínimos e máximos permitidos para a inclinação e intersecção das retas, respectivamente. Cada célula (i,j), com acumulador A(i,j), guarda o número de ocorrências de a_i,b_j .

- Inicialmente, estas células têm valor zero
- Para cada ponto x_k, y_k no plano xy, considera-se o parâmetro a igual aos valores possíveis de a (na subdivisão do espaço ab) e calcula-se b na equação:

$$b = -x_k a + y_k$$

- Se um valor de a_p resulta em b_q , então A(p,q) = A(p,q)+1
- No final, M valores em A(i,j) correspondem a uma reta com M pontos e parâmetros a_i,b_j isto é, $y=a_ix+b_j$

Obs.: Este método define *nk* computações, para *k* incrementos de *a* e *b* no plano *ab*, e *n* pontos da imagem.

Problema:

Os valores de *a* e *b* tendem para infinito à medida que as retas se tornam verticais.

Alternativa: Considerar a representação normal da reta (em coordenadas polares): $x\cos\theta + ysen\theta = \rho$

ho é a distância perpendicular da reta à origem do plano xy e

 θ é o ângulo desta reta perpendicular, em relação ao eixo x.

As curvas obtidas no espaço ho heta são senoidais ao invés de retas

Original Contornos

Exemplo 1

Contornos

Detecção de linhas

Original Contornos

Exemplo 2

Contornos

Detecção de linhas

Generalização

• A transformada de Hough pode ser aplicada a qualquer função da forma $g(\mathbf{v}, \mathbf{c}) = 0$, em que \mathbf{v} é um vetor de coordenadas e \mathbf{c} , o de coeficientes.

Por exemplo, a função

$$(x-c_1)^2 + (y-c_2)^2 = c_3^2$$

pode ser considerada para a determinação de círculos na imagem centrados em (c_1,c_2) e de raio c_3 . Neste caso, o espaço de parâmetros (c_1,c_2,c_3) define o plano tridimensional $c_1c_2c_3$.

• O processo de detecção é o mesmo definido anteriormente: a partir dos pontos x, y, considera-se, por exemplo, os valores de c_1 e c_2 para se encontrar c_3 no plano $c_1c_2c_3$ devidamente subdividido.

Redução da complexidade computacional

- Introduzir a informação do gradiente dos contornos Algoritmo:
- 1. A(a,b) = 0
- 2. calcular Δ_x e Δ_y (usando o operador Sobel, por exemplo)
- 3. Se magnitude do gradiente no ponto (x,y) > **Limiar**, calcular $a = \frac{\Delta_y}{\Delta_x}$
- 4. Calcular b = -ax + y
- 5. Incrementar acumulador: A(a,b)=A(a,b)+1
- 6. Repetir passos 3-5 para todos os pontos do contorno
- 7. Pontos de máximo (picos) em A(a,b) representam retas de parâmetro a,b

Próxima aula...

• Reconhecimento de Padrões