Mathematical Induction and Binomial Theorem

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

- The larger of $99^{50} + 100^{50}$ and 101^{50} is
 - (1982 2 Marks)
- 2. The sum of the coefficients of the plynomial $(1 + x - 3x^2)^{2163}$ (1982 - 2 Marks)
- 3. If $(1 + ax)^n = 1 + 8x + 24x^2 + \dots$ then $a = \dots$ and $n = \dots$ (1983 - 2 Marks)
- Let n be positive integer. If the coefficients of 2nd, 3rd, and 4th terms in the expansion of $(1 + x)^n$ are in A.P., then the value of n is (1994 - 2 Marks)
- The sum of the rational terms in the expansion of 5. $(\sqrt{2} + 3^{1/5})^{10}$ is (1997 - 2 Marks)

MCQs with One Correct Answer

- 1. Given positive integers r > 1, n > 2 and that the coefficient of (3r)th and (r + 2)th terms in the binomial expansion of $(1+x)^{2n}$ are equal. Then (1983 - 1 Mark)
 - (a) n=2r
- (c) n = 2r + 1
- (c) n=3r
- (d) none of these
- The coefficient of x^4 in $\left(\frac{x}{2} \frac{3}{x^2}\right)^{10}$ is (1983 1 Mark)

- (d) none of these
- The expression $\left(x + (x^3 1)^{\frac{1}{2}}\right)^5 + \left(x (x^3 1)^{\frac{1}{2}}\right)^5$ is a
 - (1992 2 Marks) polynomial of degree (c) 7 (a) 5 (b) 6 (d) 8
- If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and – 6 respectively, then m is (1999 - 2 Marks)
- For $2 \le r \le n$, $\binom{n}{r} + 2 \binom{n}{r-1} + \binom{n}{r-2} =$ (2000S)
 - (a) $\binom{n+1}{r-1}$ (b) $2\binom{n+1}{r+1}$ (c) $2\binom{n+2}{r}$ (d) $\binom{n+2}{r}$
- In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of the 5th and 6^{th} terms is zero. Then a/b equals

- (a) (n-5)/6
- (b) (n-4)/5
- (c) 5/(n-4)
- (d) 6/(n-5)
- The sum $\sum_{i=1}^{m} {10 \choose i} {20 \choose m-i}$, (where ${p \choose q} = 0$ if p < q) is
 - (2002S)maximum when m is (c) 15 (d) 20
- (b) 10 (a) 5 Coefficient of t^{24} in $(1+t^2)^{12}(1+t^{12})(1+t^{24})$ is
- (a) $^{12}C_6 + 3$ (b) $^{12}C_6 + 1$ (c) $^{12}C_6$ (d) $^{12}C_6 + 2$ If $^{n-1}C_r = (k^2 3) \, ^nC_{r+1}$, then $k \in (2004S)$
- (a) $(-\infty, -2]$ (b) $[2, \infty)$ (c) $[-\sqrt{3}, \sqrt{3}]$ (d) $(\sqrt{3}, 2]$
- The value of
 - $\binom{30}{0}\binom{30}{10} \binom{30}{1}\binom{30}{11} + \binom{30}{2}\binom{30}{12} + \dots + \binom{30}{20}\binom{30}{30}$ is where
 - $\binom{n}{r} = {}^{n}C_{r}$ (2005S)
 - (a) $\begin{pmatrix} 30 \\ 10 \end{pmatrix}$ (b) $\begin{pmatrix} 30 \\ 15 \end{pmatrix}$ (c) $\begin{pmatrix} 60 \\ 30 \end{pmatrix}$ (d) $\begin{pmatrix} 31 \\ 10 \end{pmatrix}$
- 11. For r = 0, 1, ..., 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}$, (2010)
 - $(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r C_{10}A_r)$ is equal to
 - (a) $B_{10} C_{10}$ (c) 0
- (b) $A_{10}(B^2_{10}C_{10}A_{10})$ (d) $C_{10}-B_{10}$
- 12. Coefficient of x^{11} in the expansion of
 - $(1+x^2)^4(1+x^3)^7(1+x^4)^{12}$ is
 - (JEE Adv. 2014)
 - (a) 1051 (b) 1106
- (c) 1113
- (d) 1120

D MCQs with One or More than One Correct

If C_r stands for nC_r , then the sum of the series

$$\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!}\left[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n(n+1)C_n^2\right],$$

where n is an even positive integer, is equal to

(1986 - 2 Marks)

(a) 0

- (b) $(-1)^{n/2}(n+1)$
- (c) $(-1)^{n/2}(n+2)$
- (d) $(-1)^n n$
- (e) none of these.

- If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals (1998 2 Marks)
- (c) $\frac{1}{2} na$
- (d) None of the above

Subjective Problems

- $C_1 + 2C_2x + 3C_3x^2 + \dots + 2nC_{2n}x^{2n-1} = 2n(1+x)^{2n-1}$
 - where $C_r = \frac{(2n)!}{r!(2n-r)!}$ $r = 0, 1, 2, \dots, 2n$

- Prove that $C_1^2 2C_2^2 + 3C_3^2 \dots 2nC_{2n}^2 = (-1)^n n C_n$. Prove that $7^{2n} + (2^{3n-3})(3^{n-1})$ is divisible by 25 for any
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$ then show that the sum of the products of the C_1 's taken two at a time,
 - represented by $\sum_{0 \le i < j \le n} \sum_{j \le n} C_i C_j$ is equal to $2^{2n-1} \frac{(2n)!}{2(n!)^2}$

Use mathematical Induction to prove: If n is any odd

- positive integer, then $n(n^2 1)$ is divisible by 24. If p be a natural number then prove that $p^{n+1} + (p+1)^{2n-1}$
- is divisible by $p^2 + p + 1$ for every positive integer n. (1984 - 4 Marks)
- Given $s_n = 1 + q + q^2 + \dots + q^n$:
 - $S_n = 1 + \frac{q+1}{2} + \left(\frac{q+1}{2}\right)^2 + \dots + \left(\frac{q+1}{2}\right)^n, q \neq 1$ Prove that
 - $^{n+1}C_1 + ^{n+1}C_2s_1 + ^{n+1}C_3s_2 + \dots + ^{n+1}C_ns_n = 2^nS_n$

Use method of mathematical induction $2.7^n + 3.5^n - 5$ is

- divisible by 24 for all n > 0
- Prove by mathematical induction that (1987 3 Marks)
 - $\frac{(2n)!}{2^{2n}(n!)^2} \le \frac{1}{(3n+1)^{1/2}} \text{ for all positive Integers n.}$
- Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R [R], where [] denotes the greatest integer function. Prove that $Rf = 4^{2n+4}$

Using mathematical induction, prove that (1989 - 3 Marks) ${}^{m}C_{0}{}^{n}C_{k} + {}^{m}C_{1}{}^{n}C_{k-1} + \dots {}^{m}C_{k}{}^{n}C_{0} = {}^{(m+n)}C_{k},$

where m, n, k are positive integers, and ${}^{p}C_{q} = 0$ for p < q.

Prove that

 $C_0 - 2^2 C_1 + 3^2 C_2 - \dots + (-1)^n (n+1)^2 C_n = 0$ n > 2, where $C_{\nu} = {}^{n}C_{\nu}$.

12. Prove that $\frac{n^7}{7} + \frac{n^5}{5} + \frac{2n^3}{3} - \frac{n}{105}$ is an integer for every positive integer n.

Using induction or otherwise, prove that for any non-

$$\sum_{m=0}^{k} (n-m) \frac{(r+m)!}{m!} = \frac{(r+k+1)!}{k!} \left[\frac{n}{r+1} - \frac{k}{r+2} \right]$$

14. If $\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$ and $a_k = 1$ for all

 $k \ge n$, then show that $b_n = {}^{2n+1}C_{n+1}$ (1992 - 6 Marks)

- 15. Let $p \ge 3$ be an integer and α , β be the roots of $x^2 - (p+1)x + 1 = 0$ using mathematical induction show that $\alpha^n + \beta^n$.
 - (i) is an integer and
- (ii) is not divisible by p
- Using mathematical induction, prove that $\tan^{-1}(1/3) + \tan^{-1}(1/7) + \dots + \tan^{-1}\{1/(n^2 + n + 1)\}\$ $= \tan^{-1} \{n/(n+2)\}\$
- 17. Prove that $\sum_{r=1}^{k} (-3)^{r-1-3n} C_{2r-1} = 0$, where k = (3n)/2 and

If x is not an integral multiple of 2π use mathematical induction to prove that:

$$\cos x + \cos 2x + \dots + \cos nx = \cos \frac{n+1}{2} x \sin \frac{nx}{2} \csc \frac{x}{2}$$

Let n be a positive integer and $(1+x+x^2)^n = a_0 + a_1 x + \dots + a_{2n} x^{2n}$ Show that $a_0^2 - a_1^2 + a_2^2 + \dots + a_{2n}^2 = a_n$ Using mathematical induction prove that for every integer

 $n \ge 1$, $(3^{2n}-1)$ is divisible by 2^{n+2} but not by 2^{n+3}

(1996 - 3 Marks)

Let $0 < A_i < \pi$ for i = 1, 2, ..., n. Use mathematical induction to prove that

$$\sin A_1 + \sin A_2 \dots + \sin A_n \le n \sin \left(\frac{A_1 + A_2 + \dots + A_n}{n} \right)$$

where ≥ 1 is a natural number.

{You may use the fact that

$$p\sin x + (1-p)\sin y \le \sin [px + (1-p)y],$$

where $0 \le p \le 1$ and $0 \le x, y \le \pi$. (1997 - 5 Marks)

Let p be a prime and m a positive integer. By mathematical induction on m, or otherwise, prove that whenever r is an integer such that p does not divide r, p divides mpC_p ,

[**Hint:** You may use the fact that $(1+x)^{(m+1)p} = (1+x)^p (1+x)^{mp}$] Let n be any positive integer. Prove that

$$\sum_{k=0}^{m} \frac{\binom{2n-k}{k}}{\binom{2n-k}{n}} \cdot \frac{(2n-4k+1)}{(2n-2k+1)} 2^{n-2k} = \frac{\binom{n}{m}}{\binom{2n-2m}{n-m}} 2^{n-2m}$$

for each non-be gatuve integer $m \le n$. $\left(\operatorname{Here} \begin{pmatrix} p \\ q \end{pmatrix} = {}^{p}C_{q} \right)$.

- 24. For any positive integer m, n (with $n \ge m$), let $\binom{n}{m} = {}^{n}C_{m}$. Prove that $\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{m}{m} = \binom{n+1}{m+2}$ $\binom{n}{m} + 2\binom{n-1}{m} + 3\binom{n-2}{m} + \dots + (n-m+1)\binom{m}{m} = \binom{n+2}{m+2}.$
- 25. For every positive integer n, prove that $\sqrt{(4n+1)} < \sqrt{n} + \sqrt{n+1} < \sqrt{4n+2}$. Hence or otherwise, prove that $[\sqrt{n} + \sqrt{(n+1)}] = [\sqrt{4n+1}]$, where [x] denotes the greatest integer not exceeding x. (2000 - 6 Marks) 26. Let a, b, c be positive real numbers such that $b^2 - 4ac > 0$
- and let $\alpha_1 = c$. Prove by induction that $\alpha_{n+1} = \frac{a\alpha_n^2}{\left(b^2 - 2a(\alpha_1 + \alpha_2 + ... + \alpha_n)\right)}$ is well – defined and $\alpha_{n+1} < \frac{\alpha_n}{2}$ for all n = 1, 2, ... (Here, 'well – defined' means that the denominator in the expression for α_{n+1} is not zero.)
- Use mathematical induction to show that $(25)^{n+1} - 24n + 5735$ is divisible by $(24)^2$ for all $n = 1, 2, \dots$ (2002 - 5 Marks) (2003 - 2 Marks) 28. Prove that
 - $2^{k} \binom{n}{0} \binom{n}{k} 2^{k-1} \binom{n}{2} \binom{n}{1} \binom{n-1}{k-1}$ $+2^{k-2}\binom{n-2}{k-2}-\dots(-1)^k\binom{n}{k}\binom{n-k}{0}=\binom{n}{k}$

- 29. A coin has probability p of showing head when tossed. It is tossed n times. Let p_n denote the probability that no two (or more) consecutive heads occur. Prove that $p_1=1$, $p_2=1-p^2$ and $p_n = (1-p)$. $p_{n-1} + p(1-p) p_{n-2}$ for all $n \ge 3$.
 - Prove by induction on n, that $p_n = A\alpha^n + B\beta^n$ for all $n \ge 1$, where α and β are the roots of quadratic equation
 - x^{2} (1-p)x-p(1-p)=0 and $A = \frac{p^{2} + \beta 1}{\alpha\beta \alpha^{2}}$, $B = \frac{p^{2} + \alpha 1}{\alpha\beta \beta^{2}}$.

 (2000 5 Marks)

Integer Value Correct Type

- The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio 5:10:14. Then n =(JEE Adv. 2013)
 - Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1+x)^2 + (1+x)^3 + ... + (1+x)^{49} + (1+mx)^{50}$ is $(3n+1)^{51}C_3$ for some positive integer n. Then the value of n is integer n. Then the value of n is
- $X = ({}^{10}C_1)^2 + 2({}^{10}C_2)^2 + 3({}^{10}C_3)^2 + \dots + 10({}^{10}C_{10})^2,$ where ${}^{10}C_r$, $r \in \{1, 2, \dots, 10\}$ denote binomial coefficients.
- Then, the value of $\frac{1}{1430}$ X is _____. (JEE Adv. 2018) Suppose
 - $\det \begin{vmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} {}^{n}C_{k}k^{2} \\ \sum_{k=0}^{n} {}^{n}C_{k}k & \sum_{k=0}^{n} {}^{n}C_{k}3^{k} \end{vmatrix} = 0$

holds for some positive integer n. The $\sum_{k=0}^{n} {n \choose k}$ equals (JEE Adv. 2019)

Section-B

- The coefficients of x^p and x^q in the expansion of $(1+x)^{p+q}$
 - (a) equal
 - (b) equal with opposite signs
 - (c) reciprocals of each other
 - (d) none of these
- If the sum of the coefficients in the expansion of $(a + b)^n$ is 4096, then the greatest coeficient in the expansion is
- (a) 1594 (b) 792 (c) 924 (d) 2924The positive integer just greater than $(1 + 0.0001)^{10000}$ is
- (c) 2 r and n are positive integers r > 1, n > 2 and coefficient of r and n are positive integers r > 1, n = 2 and n = n = n are (r+2)th term and 3rth term in the expansion of $(1+x)^{2n}$ are [2002]
- equal, then n equals (a) 3r (b) 3r+1 (c) 2r
- If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ haing n radical signs then by methods of mathematical induction which is true [2002]
 - (a) $a_n > 7 \forall n \ge 1$
- (b) $a_n < 7 \ \forall \ n \ge 1$
- (d) $a_n < 3 \ \forall \ n \ge 1$
- (c) $a_n < 4 \ \forall \ n \ge 1$ (d) $a_n < 3 \ \forall \ n \ge 1$ If x is positive, the first negative term in the expansion of
 - 120031 $(1+x)^{27/5}$ is
 - (a) 6th term (b) 7th term (c) 5th term (d) 8th term.

- The number of integral terms in the expansion of
 - $(\sqrt{3} + \sqrt[8]{5})^{256}$ is (a) 35 (b) 32
- (c) 33 (d) 34
- Let $S(K) = 1 + 3 + 5... + (2K 1) = 3 + K^2$. Then which of the following is true
 - Principle of mathematical induction can be used to prove the formula
 - (b) $S(K) \Rightarrow S(K+1)$
 - (c) $S(K) \Rightarrow S(K+1)$
 - (d) S(1) is correct
- The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if α equals

- (a) $\frac{3}{5}$ (b) $\frac{10}{3}$ (c) $\frac{-3}{10}$ (d) $\frac{-5}{3}$ 10. The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is
 - (a) $(-1)^{n-1}n$
- (b) $(-1)^n (1-n)$
- (c) $(-1)^{n-1}(n-1)^2$ (d) (n-1)
- 11. The value of ${}^{50}C_4 + \sum_{10}^{6} {}^{56}C_{10} = 0$ is The value of ${}^{50}C_4 + \sum_{r=1}^{56} {}^{56}C_r C_3$ is [20]
 (a) ${}^{55}C_4$ (b) ${}^{55}C_3$ (c) ${}^{56}C_3$ (d) ${}^{56}C_4$

- If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, by the principle of mathematical induction
- (b) $A^n = 2^{n-1}A (n-1)I$
- (c) $A^n = nA + (n-1)I$
- (d) $A^n = 2^{n-1} A + (n-1) I$
- If the coefficient of x^7 in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the

coefficient of x^{-7} in $\left[ax - \left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy

- (a) a b = 1
- (b) a+b=1

- If x is so small that x^3 and higher powers of x may be

neglected, then $\frac{(1+x)^{\frac{3}{2}} - \left(1 + \frac{1}{2}x\right)^3}{(1-x)^{\frac{1}{2}}}$ may be approximated as

(a) $1 - \frac{3}{2}x^2$ (b) $3x + \frac{3}{8}x^2$ [2005]

- (c) $-\frac{3}{9}x^2$
- If the expansion in powers of x of the function $\frac{1}{(1-ax)(1-bx)}$ is $a_0 + a_1x + a_2x^2 + a_3x^3$ then a_n is
 - (a) $\frac{b^n a^n}{b a}$
- (b) $\frac{a^n b^n}{b a}$ [2006]

- For natural numbers m, n if $(1-y)^m (1+y)^n = 1 + a_1 y + a_2 y^2 + \dots$ and $a_1 = a_2 = 10$, then (m, n) is (a) (20, 45) (b) (35, 20)
 - (c) (45,35)
- (d) (35,45)
- In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of 5^{th} and 6th terms is zero, then a/b equals
 - (a) $\frac{n-5}{6}$ (b) $\frac{n-4}{5}$ (c) $\frac{5}{n-4}$ (d) $\frac{6}{n-5}$.
- The sum of the series $^{20}C_0 - ^{20}C_1 + ^{20}C_2 - ^{20}C_3 + \dots + ^{20}C_{10}$ is

 - (a) 0 (b) ${}^{20}C_{10}$ (c) ${}^{-20}C_{10}$ (d) $\frac{1}{2}{}^{20}C_{10}$
- Statement -1: $\sum_{r=0}^{n} (r+1)^{-n} C_r = (n+2)2^{n-1}$.

Statement-2: $\sum_{r=0}^{n} (r+1)^{-n} C_r x^r = (1+x)^n + nx(1+x)^{n-1}$

- (a) Statement -1 is false, Statement-2 is true
- (b) Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
- Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
- (d) Statement -1 is true, Statement-2 is false

- The remainder left out when $8^{2n} (62)^{2n+1}$ is divided by 9
 - (b) 7 (a) 2

- 21. Let $S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$, $S_2 = \sum_{j=1}^{10} j^{10} C_j$ and $S_3 = \sum_{j=1}^{10} j^{2} {}^{10} C_j$.

Statement-1: $S_3 = 55 \times 2^9$. Statement-2: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$. [2010] (a) Statement -1 is true, Statement -2 is true; Statement -2

- is not a correct explanation for Statement -1.
- Statement -1 is true, Statement -2 is false.
- Statement -1 is false, Statement -2 is true
- Statement 1 is true, Statement 2 is true; Statement -2 is a correct explanation for Statement -1.
- The coefficient of \hat{x}^7 in the expansion of $(1-x-x^2+x^3)^6$ is
 - (a) -132 (b) -144
- (c) 132
- If *n* is a positive integer, then $(\sqrt{3}+1)^{2n}-(\sqrt{3}-1)^{2n}$ is:
 - (a) an irrational number
 - (b) an odd positive integer
 - (c) an even positive integer
 - (d) a rational number other than positive integers
- The term independent of x in expansion of

- $(1+ax+bx^2)(1-2x)^{18}$ in powers of x are both zero, then (a, b) is equal to:
 - (a) $\left(14, \frac{272}{3}\right)$ (b) $\left(16, \frac{272}{3}\right)$ (c) $\left(16, \frac{251}{3}\right)$ (d) $\left(14, \frac{251}{3}\right)$
- The sum of coefficients of integral power of x in the binomial expansion $(1-2\sqrt{x})^{50}$ is: [JEE M 2015]
 - (a) $\frac{1}{2}(3^{50}-1)$
- (b) $\frac{1}{2}(2^{50}+1)$
- (c) $\frac{1}{2}(3^{50}+1)$
- (d) $\frac{1}{2}(3^{50})$
- If the number of terms in the expansion of $\left(1 \frac{2}{x} + \frac{4}{\sqrt{2}}\right)^n$, $x \neq 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is: [JEEM 2016] (a) 243 (c) 64
- (b) 729 28. The value of
 - $({}^{21}C_1 {}^{10}C_1) + ({}^{21}C_2 {}^{10}C_2) + ({}^{21}C_3 {}^{10}C_3) + ({}^{21}C_4 {}^{10}C_4)$
- - +....+ $(^{21}C_{10} ^{10}C_{10})$ is: (a) $2^{20} - 2^{10}$ (c) $2^{21} - 2^{10}$
- (b) $2^{21} 2^{11}$ (d) $2^{20} 2^9$

- 29. The sum of the co-efficients of all odd degree terms in the expansion of

 $(x+\sqrt{x^3-1})^5+(x-\sqrt{x^3-1})^5, (x>1)$ is: [JEE M 2018]

- If the fourth term in the Binomial expansion of $\left(\frac{2}{x} + x^{\log 8x}\right)^6$ (x > 0) is 20×8^7 , then a value of x is: [JEE M 2019 - 9 April (M)]
 - (a) 8^3 (b) 8^2
 - (c) 8
- (d) 8^{-2}