Errata to "Convergence of Sewing Conformal Blocks"

Bin Gui

October 2024

In Thm 6.3, one should add the extra assumption that \mathfrak{X} admits local coordinates η_{\bullet} . This condition ensures that $\mathscr{W}_{\mathfrak{X}}(\mathbb{W}_{\bullet}) \simeq \mathbb{W}_{\bullet} \otimes \mathscr{O}_{\mathcal{B}}$, and hence each stalk of $\mathscr{W}_{\mathfrak{X}}(\mathbb{W}_{\bullet})$ is generated by the global sections of $\mathscr{W}_{\mathfrak{X}}(\mathbb{W}_{\bullet})$.

In Rem. 10.3, it is not correct to say that $(\mathbb{M} \otimes \mathbb{M}' \otimes R)((\xi))[\log q]\{q\}$ is an $R((\xi))[\log q]\{q\}$ -module. (Not every two elements of $\mathbb{C}\{q\}$ can be multiplied.) The correct way to say this as follows. First, for each vector space W, we define $W\{q\}$ to be the set of formal series $\sum_{n \in \mathbb{C}} w_n q^n$ where $w_n \in W$ and $w_n = 0$ when $\Re(n) << 0$. (This lower truncation property was originally not assumed in the paper, but it is sufficient for the purpose of the paper.) Then $(\mathbb{M} \otimes \mathbb{M}' \otimes R)((\xi))[\log q]\{q\}$ is an $R((\xi))[\log q][[q]]$ -module. Thus, its elements can be multiplied by $f(\xi, q/\xi) \in R((\xi))[[q]]$.