Resister color codes

Resistor calculations

Mnemonic (A **mnemonic** is a memory aid that helps you remember information):

Remember: Better Be Right Or Your Great Big Venture Goes West

How to Read Resistor Color Codes

Reading Resistor Color Codes

Step 1: Identify the Color Bands

A typical resistor has four, five, or six color bands. The most common type is the four-band resistor.

Step 2: Learn the Color Code Chart

Memorize the following color code chart. Each color corresponds to a number:

Significant Digits:

• Use a color code chart to translate the first two bands into numerical values.

Each color corresponds to a specific digit or multiplier:

Color	Digit	Multiplier	Tolerance	Temperature Coefficient
Black	0	1		
Brown	1	10	±1%	100 ppm/K
Red	2	100	±2%	50 ppm/K
Orange	3	1,000		15 ppm/K
Yellow	4	10,000		25 ppm/K
Green	5	100,000	±0.5%	
Blue	6	1,000,000	±0.25%	
Violet	7	10,000,000	±0.1%	
Gray	8	100,000,000	±0.05%	
White	9	1,000,000,000		
Gold		0.1	±5%	
Silver		0.01	±10%	
None			±20%	

The full form of ppm/K is parts per million per kelvin.

Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

Multiplier:

• The third band indicates the multiplier.

Color	Multiplier
Black	10^{0}
Brown	10^{1}
Red	10^{2}
Orange	10^{3}
Yellow	10^{4}
Green	10^{5}
Blue	10^{6}
Violet	10^{7}
Gray	10^{8}
White	10^{9}
Gold	10^{-1}
Silver	10^{-2}

Black: ×1

• Brown: $\times 10$

• Red: $\times 100$

• Orange: $\times 1,000$ (or 10^3)

• Yellow: $\times 10,000$ (or 10^4)

• Green: $\times 100,000$ (or 10^5)

• Blue: $\times 1,000,000$ (or 10^6)

• Violet: $\times 10,000,000$ (or 10^7)

• Gray: $\times 100,000,000$ (or 10^8)

• White: $\times 1,000,000,000$ (or 10^9)

• Gold: $\times 0.1$ (or 10^{-1})

• Silver: $\times 0.01$ (or 10^{-2})

Tolerance:

• The fourth band indicates the tolerance.

Color	Tolerance
Brown	±1%
Red	±2%
Green	±0.5%
Blue	±0.25%
Violet	±0.1%
Gray	±0.05%
Gold	±5%
Silver	±10%
No Band	±20%

Step 3: Determine the Value Using the Bands

1-Band Resistor

• **First Band**: Significant digit (This is not standard and typically not used as it provides very limited information).

2-Band Resistor

- **First Band**: First significant digit.
- Second Band: Second significant digit.

3-Band Resistor

- **First Band**: First significant digit.
- **Second Band**: Second significant digit.
- **Third Band**: Multiplier (number of zeros to add).

4. Four-Band Resistors:

- o The first two bands represent the first two digits.
- o The third band is the multiplier.
- The fourth band is the tolerance.

5. Five-Band Resistors:

- o The first three bands represent the first three digits.
- o The fourth band is the multiplier.
- o The fifth band is the tolerance.

6. Six-Band Resistors:

- o The first three bands represent the first three digits.
- o The fourth band is the multiplier.
- The fifth band is the tolerance.
- o The sixth band indicates the temperature coefficient.

Ohm's Law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It is usually stated as:

$$V = I \times R$$

where:

- ullet V is the voltage across the circuit (in volts, V),
- I is the current flowing through the circuit (in amperes, A),
- R is the resistance of the circuit (in ohms, Ω).

Understanding Ohm's Law:

- Voltage (V): This is the electrical potential difference between two points. It drives the current through the circuit.
- 2. Current (I): This is the flow of electric charge through the circuit. It is measured in amperes (A).
- 3. Resistance (R): This is the opposition to the flow of current in the circuit. It is measured in ohms (Ω) .

Using Ohm's Law:

To solve for any one of the three variables, you rearrange the formula:

• To find Voltage (V):

$$V = I \times R$$

To find Current (I):

$$I = \frac{V}{R}$$

• To find Resistance (R):

$$R = \frac{V}{I}$$

Example Calculations:

1. If you know the voltage and resistance, and you want to find the current:

Suppose
$$V=12~\mathrm{V}$$
 and $R=4~\Omega$.

$$I = \frac{V}{R} = \frac{12 \text{ V}}{4 \Omega} = 3 \text{ A}$$

2. If you know the current and resistance, and you want to find the voltage:

Suppose
$$I=2~\mathrm{A}$$
 and $R=10~\Omega$.

$$V = I \times R = 2 \text{ A} \times 10 \Omega = 20 \text{ V}$$

3. If you know the voltage and current, and you want to find the resistance:

Suppose
$$V = 9 \text{ V}$$
 and $I = 3 \text{ A}$.

$$R = \frac{V}{I} = \frac{9 \text{ V}}{3 \text{ A}} = 3 \Omega$$

Ohm's Law is a fundamental tool for analyzing electrical circuits and understanding how changes in voltage, current, or resistance affect each other.

1. Converting Kilo Ohms to Ohms

- 1. Identify the value in kilo ohms $(k\Omega)$.
 - Example: 4.7 kΩ
- Multiply by 1,000 to convert to ohms (Ω).
 - Calculation: $4.7\,\mathrm{k}\Omega imes 1,\!000 = 4,\!700\,\Omega$

So, 4.7 kilo ohms is 4,700 ohms.

2. Converting Ohms to Kilo Ohms

- 1. Identify the value in ohms (Ω).
 - Example: 2,200 Ω
- 2. Divide by 1,000 to convert to kilo ohms ($k\Omega$).
 - Calculation: $\frac{2,200\,\Omega}{1,000}=2.2\,\mathrm{k}\Omega$

So, 2,200 ohms is 2.2 kilo ohms.

Conversion Between Amperes and Milliamperes:

- 1. From Amperes to Milliamperes:
 - · To convert from amperes to milliamperes, multiply by 1,000.
 - Formula: $mA = A \times 1,000$

Example:

- $2 A = 2 \times 1,000 = 2,000 \text{ mA}$
- 2. From Milliamperes to Amperes:
 - · To convert from milliamperes to amperes, divide by 1,000.
 - Formula: $A = mA \div 1,000$

Example:

• $250 \text{ mA} = 250 \div 1,000 = 0.250 \text{ A}$

Practical Context:

• Small Devices:

- Many small electronic devices, like LEDs and small sensors, operate on currents measured in milliamperes.
- o Example: An LED might require 20 mA to operate.

• Larger Appliances:

- Larger electrical appliances, like toasters or microwaves, operate on currents measured in amperes.
- o Example: A microwave might use 10 A.

Visual Representation:

Imagine water flowing through pipes:

- Amperes (A): Represents a large pipe where a lot of water (electric charge) flows through per second.
- **Milliamperes** (**mA**): Represents a smaller pipe where a smaller amount of water (electric charge) flows through per second.

Summary

- Amperes (A): Unit of electric current, where 1 A = 1 coulomb/second.
- Milliamperes (mA): One-thousandth of an ampere, where 1 mA = 0.001 A.
- Conversion:
 - 1 A = 1,000 mA
 - 1 mA = 0.001 A
- Use in Circuits:
 - Milliamperes are used for small electronic devices.
 - Amperes are used for larger electrical appliances.

Understanding these units and their conversion helps in designing and analyzing electrical circuits effectively.

Tolerance:

• The fourth band indicates the tolerance.

Color	Tolerance
Brown	±1%
Red	±2%
Green	±0.5%
Blue	±0.25%
Violet	±0.1%
Gray	±0.05%
Gold	±5%
Silver	±10%
No Band	±20%

The full form of ppm/K is parts per million per kelvin.

Each color corresponds to a specific digit or multiplier:

Color	Digit	Multiplier	Tolerance	Temperature Coefficient
Black	0	1		
Brown	1	10	±1%	100 ppm/K
Red	2	100	±2%	50 ppm/K
Orange	3	1,000		15 ppm/K
Yellow	4	10,000		25 ppm/K
Green	5	100,000	±0.5%	
Blue	6	1,000,000	±0.25%	
Violet	7	10,000,000	±0.1%	
Gray	8	100,000,000	±0.05%	
White	9	1,000,000,000		
Gold		0.1	±5%	
Silver		0.01	±10%	
None			±20%	

Explanation:

• **ppm** (**parts per million**): This is a unit of measurement that describes the concentration or the ratio of one part of a substance to one million parts of the total mixture or solution.

 \mathbf{r}

• **K** (**kelvin**): This is the unit of absolute temperature in the International System of Units (SI).

Context in Resistors:

In the context of resistors, ppm/K indicates the temperature coefficient of resistance (TCR), which describes how much the resistance of the resistor changes with temperature. For example, a TCR of 50 ppm/K means that for every 1 kelvin (K) change in temperature, the resistance of

the resistor changes by 50 parts per million of its value. This is crucial for precision app ppm/°C (parts per million per degree Centigrade)

Temperature Coefficient (Temp Coeff) Explained in a Simple and Easy Way

The temperature coefficient (Temp Coeff) of a resistor indicates how its resistance changes with temperature. Here's how to understand and use it with the given information:

1. Identify the Temperature Coefficient:

For the 6-band resistor, the temperature coefficient is given as **100 ppm/°C** (parts per million per degree Celsius).

2. Understand the Temperature Coefficient:

• **Temperature Coefficient (TC):** 100 ppm/°C means that for every degree Celsius change in temperature, the resistance will change by 100 parts per million.

3. Calculate the Change in Resistance:

To calculate how much the resistance will change with a temperature change, use the following formula:

3. Calculate the Change in Resistance:

To calculate how much the resistance will change with a temperature change, use the following formula:

$$\Delta R = R \times TC \times \Delta T$$

Where:

- ΔR = Change in resistance
- R = Nominal resistance value
- TC = Temperature coefficient (in ppm/°C)
- \(\Delta T = \text{Change in temperature (in °C)} \)

- \square ΔR : Represents a change in resistance.
- \Box Δ T: Represents a change in temperature.

The symbol " Δ " is called the **delta** symbol. In mathematics and science, it is commonly used to represent a **change** or **difference** in a particular quantity.

4. Example Calculation:

Let's calculate the change in resistance for a 10°C temperature change:

- Nominal Resistance (R): 6,800 ohms
- Temperature Coefficient (TC): 100 ppm/°C (which is 100 × 10⁻⁶ or 0.0001)
- Temperature Change (ΔT): 10°C

Plug these values into the formula:

Plug these values into the formula:

$$\Delta R = 6,800 \, \mathrm{ohms} \times 0.0001 \times 10$$

$$\Delta R = 6,800 \times 0.001$$

$$\Delta R = 6.8 \, \mathrm{ohms}$$

5. Result:

With a temperature change of 10°C, the resistance of the resistor will change by 6.8 ohms.

In summary, the temperature coefficient tells you how much the resistance of a resistor will vary with changes in temperature. For the given resistor, each degree Celsius change in temperature will cause a 100 ppm change in resistance.

To calculate the tolerance of a resistor, follow these steps:

- To calculate the tolerance of a resistor, follow these steps:
 - 1. Identify the resistor value and tolerance:
 - Value: 4,700 ohms (or 4.7 kΩ)
 - Tolerance: ±5%
 - 2. Calculate the tolerance range:
 - Tolerance Amount: 5% of the resistor value.
 - 3. Calculate the tolerance amount:

Tolerance Amount = Resistor Value \times Tolerance Percentage

Tolerance Amount =
$$4,700 \, \text{ohms} \times 0.05$$

Tolerance Amount
$$= 235 \, \text{ohms}$$

- 4. Determine the range of possible resistor values:
 - Minimum Value:

$$Minimum Value = Resistor Value - Tolerance Amount$$

Minimum Value =
$$4,700 \, \text{ohms} - 235 \, \text{ohms}$$

Minimum Value
$$= 4,465 \, \text{ohms}$$

• Maximum Value:

Maximum Value = Resistor Value + Tolerance Amount

Maximum Value = 4,700 ohms + 235 ohms

Maximum Value $= 4,935 \, \text{ohms}$

5. Result:

The resistor with a value of 4,700 ohms and a tolerance of $\pm 5\%$ can actually be anywhere between 4,465 ohms and 4,935 ohms.