

Autoencoders

Advanced Institute for Artificial Intelligence – Al2

https://advancedinstitute.ai

Recap: The problem with standard autoencoders

- □ Asides from a few applications like denoising autoencoders, they are fairly limited:
- ☐ The latent space they convert their inputs to and where their encoded vectors lie, may not be continuous, or allow easy interpolation.
- ☐ For example, training an autoencoder on the MNIST dataset, and visualizing the encodings from a 2D latent space reveals the formation of distinct clusters:

Recap: The problem with standard autoencoders

- □ When building a generative model, you don't want to prepare to replicate the same image you put in:
 - Randomly sample from the latent space, or
 - Generate variations on an input image, from a continuous latent space;
- □ If the space has discontinuities and you sample/generate a variation from there, the decoder will simply generate an unrealistic output;
 - The decoder has no idea how to deal with that region of the latent space;
 - During training, it never saw encoded vectors coming from that region of latent space;

- □ Variational Autoencoders (VAEs) have one fundamentally unique property that separates them from regular autoencoders:
 - Their latent spaces are, by design, continuous;
 - The continuity of the latent space allows for easy random sampling and interpolation.
- \square Its encoder not output an encoding vector of size n;
- \square Instead, it outputs two vectors of size n:
 - a vector of means, μ , and
 - another vector of standard deviations, σ .
 - The mean and standard deviation of the i-th random variable, X_i from which we sample, to obtain the sampled encoding which we pass onward to the decoder;

Definitions

Figure: Variational Autoencoder with the μ and σ vectors

Image from Variational Autoencoder architecture by I

Example

In the scenario where we have an input signal with 500 features and we aim to reduce this signal to just 30, we could think of building a VAE just like this:

Figure: VAE that reduces a 500 dimensional input to a 30 dimensions latent space

Figure: How the forward pass works

- Stochastic generation of encoding vectors
 - For the same input, keeping the mean and standard deviation the same the actual encoding will vary on every single pass due to sampling.
- The mean vector controls where the encoding of an input should be centered;
- the standard deviation controls how much from the mean the encoding can vary (the area)

Figure: μ and σ to control the sampling

- □ Not only is a single point in latent space refers to a sample of that class.
- \square All nearby points refer to the same as well in a sigma-radius;
- ☐ The goal here is to try to create more homogeneous latent space, getting rid of the discontinuity;
 - The model is now exposed to a certain degree of local variation by varying the encoding of one sample;
 - We want overlap between samples that are not very similar too;
 - Interpolation between classes;

- \Box There are no limits on what values vectors μ and σ can take on:
 - Encoder can learn to generate very different μ for different classes, clustering them apart, and minimizing σ
 - Can come to a point that it looks like a single dot.
- □ Desirable: Encodings that are as close as possible while still being distinct, allowing smooth interpolation, and enabling the construction of new samples

Definitions

What we want, and what we may get:

Definitions - The KL Divergence

- ☐ Kullback–Leibler divergence [1]
- ☐ Measures how much they diverge from each other;
- \square For VAEs, the KL loss is equivalent to the sum of all the KL divergences between the component $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ and the standard normal.
 - This measure is minimized when $\mu_i=0$ and $\sigma_i=0$
- ☐ When the divergence is calculated between univariate distributions it can be simplified to:

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i^2) - 1$$

[1] Kullback-Leibler Divergence Explained

Definitions - The KL Divergence

- ☐ This loss forces the encoder to distribute all encodings evenly around the center of the latent space;
- Using purely KL loss results in a latent space results in encodings densely placed randomly, near the center of the latent space
- The decoder finds it impossible to decode anything meaningful from this space;

Figure: Latent space produced by VAE trained only with KL Loss

Putting it all together

- ☐ Use the KL divergence as a penalization mechanism;
- Optimizing the two together (reconstruction - e.g., crossentropy) and the KL divergence;
 - Generation of a latent space which maintains the similarity of nearby encodings;
 - Globally, is very densely packed near the latent space origin
 - Equilibrium reached by the cluster-forming nature of the reconstruction loss and the dense packing nature of the KL loss;

Figure: Using the composed loss