Fonctions afffines et inéquations M01

Exercice 1

1. Parmi les inéquations suivantes, lesquelles acceptent le nombre 9 comme solution:

(a.)
$$-3x + 2 \ge 0$$

(b.)
$$5(x+9) > 0$$

(c.)
$$\frac{x+1}{4} \ge -3 \times \frac{x-2}{3}$$
 (d.) $2 > x$

(d.)
$$2 > a$$

2. Résoudre les inéquations suivantes

(a.)
$$-3x + 7 \le x + 2$$
 (b.) $-6x + 1 > 0$

(b.)
$$-6x + 1 > 0$$

(c.)
$$-\frac{x}{4} < 5$$

(e.)
$$-3x + 7 \le 9 - x$$

(e.)
$$-3x + 7 \le 9 - x$$
 (f.) $\frac{x-1}{6} + \frac{x+1}{3} < 2$

(g.)
$$x + \frac{x}{2} - \frac{x}{6} \le \frac{x+1}{3} + \frac{2x-3}{6}$$

Exercice 2

Résoudre les inéquations suivantes:

a.
$$(x+1)^2 > 0$$

a.
$$(x+1)^2 > 0$$
 b. $(x+1)^2 \ge 0$

c.
$$(x+1)^2 < 0$$
 d. $x^2 + 1 \le 0$

d.
$$x^2 + 1 \le 0$$

e.
$$x^2 - 4 < (x+2)^2$$

e.
$$x^2 - 4 < (x+2)^2$$
 f. $(x+1)^2 - (x-1)^2 \ge 0$

Exercice 3

Soit n un entier relatif $(n \in \mathbb{Z})$. Déterminer l'ensemble des solutions de l'équation:

$$-3 \cdot n^2 + 5 > -13$$

Exercice 4

Résoudre les inéquations suivantes, donner l'ensemble des solutions sous la forme d'intervalle et le représenter sur une droite graduée:

a.
$$3x + 3 \ge 1$$

a.
$$3x + 3 \ge 1$$
 b. $\frac{3x - 1}{4} \le -1$

c.
$$x^2 + x + 1 \ge (x+1)(x-1)$$