

Predicting Stock Trends With K-Nearest Neighbor

JASON ELLERBECK

ITCS - 5156

28 APRIL 2023

Motivation

- Create an application can that predict the stock market
- Uses easy-to-understand understand data
- Apply the content we learned to real world data and use cases

Problems & Challenges

- Limited understanding of stock trading
- Data collection
 - Getting features
- Unlike traditional programming
 - Output can be ambiguous
 - ▶ No code checks

Main Paper

- Stock Market Trend Prediction using Supervised Learning, 2019
 - Asad Masood Khattak, Habib Ullah, Hassan Ali Khalid, Ammara Habib, Muhammad Zubair Asghar, and Fazal Masud Kundi
- K-Nearest Neighbor model to predict stock trend using easy to understand features
 - Data Collection
 - Data Normalization
 - Applying KNN

Related Approaches

- A lot of research has gone into using machine learning for stock market investing
 - Requires an understanding of finical data and application

Even though I could not replicate a lot of these studies due to lack of knowledge in finance, machine learning concepts could still be applied to this project

Supporting Paper #1

- ▶ Application of Machine Learning in Stock Selection, 2022
 - ▶ Pengfei Li, Jungang Xu and, Mohammad Al-Hamami

- Comparison of different models predicting stocks
 - ▶ Feature Selection
 - ▶ How to compare model

Supporting Paper #2

- ► A comparative study of supervised machine learning algorithms for stock market trend prediction, 2018
 - ▶ Indu Kumar, Kiran Dogra, Chetna Utreja, and Premlata Yadav

- Step-by-Step
- Uses high level data
- Highlights important metrics to evaluate model

Replicating KNN Model

Data Collection

- ► https://www.ksestocks.com/QuotationsData
 - ▶ 8 years of daily data
 - ▶ Data going back to September 2022
- ▶ Nestle Csv file:
 - ► Stock Ticker Symbol
 - Date
 - Open price
 - ▶ Daily High
 - ▶ Daily Low
 - ► Close Price
 - ▶ Volume Traded

	Symbol	Date	Open	High	Low	Close	Volume
0	NESTLE	1-Sep-22	5780.00	5800.00	5711.0	5729.00	200
1	NESTLE	2-Sep-22	5638.13	5764.99	5620.0	5764.99	160
2	NESTLE	7-Sep-22	5760.00	5760.00	5760.0	5760.00	20
3	NESTLE	8-Sep-22	5760.00	5760.00	5760.0	5760.00	20
4	NESTLE	9-Sep-22	5760.00	5760.00	5760.0	5760.00	40
					•••		
114	NESTLE	31-Mar-23	5280.00	5280.00	5015.0	5017.50	60
115	NESTLE	4-Apr-23	5390.90	5390.90	4887.1	5115.00	60
116	NESTLE	5-Apr-23	4950.10	5125.00	4950.1	5125.00	360
117	NESTLE	6-Apr-23	5200.00	5225.00	5030.0	5198.20	460
118	NESTLE	7-Apr-23	5198.20	5199.00	5005.0	5071.33	80
119 r	119 rows × 7 columns						

- ▶ Target Feature:
 - Stock_return [1]

```
Stock_return = (current_day_closing_price - closing_price_of_previous_day) / previous_day_closing_price
```

Day to day if a stock went up or down

► Computation Z – Score:

$$Z - score = Open - \frac{Mean \ of \ Open}{Stdv \ of \ Open}$$

- ▶ Identifying Outliers:
 - ► IF(Z-Score > 1 OR Z-Score < -1) [1] mark as outlier

Concrete data for the model

	Symbol	Date	Open	High	Low	Close	Volume	Z-Score	Stock Return	isOutlier
1	NESTLE	2-Sep-22	5638.13	5764.99	5620.0	5764.99	160	0.336149	0.006282	0
2	NESTLE	7-Sep-22	5760.00	5760.00	5760.0	5760.00	20	0.737363	-0.000866	0
3	NESTLE	8-Sep-22	5760.00	5760.00	5760.0	5760.00	20	0.737363	0.000000	0
4	NESTLE	9-Sep-22	5760.00	5760.00	5760.0	5760.00	40	0.737363	0.000000	0
5	NESTLE	13-Sep-22	5760.00	5760.00	5760.0	5760.00	20	0.737363	0.000000	0
							•••		•••	
107	NESTLE	21-Mar-23	5490.00	5490.00	4752.0	5181.00	60	-0.151516	0.012903	0
109	NESTLE	24-Mar-23	5299.99	5300.00	5100.1	5100.10	240	-0.777056	0.019989	0
111	NESTLE	28-Mar-23	5300.00	5300.00	5200.1	5233.70	60	-0.777023	0.015257	0
114	NESTLE	31-Mar-23	5280.00	5280.00	5015.0	5017.50	60	-0.842866	0.008056	0
115	NESTLE	4-Apr-23	5390.90	5390.90	4887.1	5115.00	60	-0.477767	0.019432	0

- ▶ 72 rows of data
- ► Target:
 - Stock_return
- ▶ Features:
 - ▶ Open Price
 - Daily High
 - Daily Low
 - ▶ Close Price
- SciKitLearn train_test_split (80/20)

Applying KNN

SciKitLearn – KNeighborsRegressor

Parameter	Description		
Algorithm = 'auto'	Will attempt to decide the most appropriate algorithm based on the values passed to <u>fit</u> method.		
Leaf size = 30 (default = 30)	This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.		
Metric = 'minkowski'	The distance metric to be used for the tree. The default metric is minkowski.		
Metric prams = None	Additional keyword arguments for the metric function.		
n-Jobs = 1	The number of parallel jobs to run for neighbors' search.		
n-neighbors = n	Number of neighbors to be used by default for kneighbors queries.		
p = 2	For arbitrary p, minkowski_distance (l_p) is used.		
weight = 'uniform'	All points in each neighborhood are weighted equally.		

[1]

Evaluating Results

- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
- Compare error of normalized data and unnormalized data

Provided Results

Table 6: Prediction results on raw dataset					
Iteration	RMSE	MAE	Logcosh		
5	202955735.8	11976.81202	Inf		
11	188881104.5	11746.46341	Inf		
17	180075597.2	11570.63793	Inf		
23	174864623.6	11430.98562	Inf		
29	173025251.2	11378.50613	Inf		
35	171312709.5	11335.03967	Inf		
41	169612906.4	11275.85507	Inf		

Table 8: A sample listing of normalized dataset result

Iteration	RMSE	MAE	Logcosh
5	4.42E-05	0.004892914	0.003716503
11	6.07E-05	0.005722075	0.005097995
17	6.31E-05	0.005944986	0.005303328
23	6.64E-05	0.006160232	0.005573119
29	6.71E-05	0.006216439	0.005634309
35	6.94E-05	0.006315764	0.005827321
41	7.05E-05	0.006379043	0.005918586

My Results

	RSME	MAE	Iteration
0	0.000568	0.017331	3
1	0.000545	0.016856	5
2	0.000657	0.018510	7
3	0.000735	0.019139	9
4	0.000698	0.018612	11

Conclusion and Future Work

- Lessons learned:
 - Data collection
 - ▶ Formatting data
- Additional Models
 - ► SVM
 - Random Forest
 - ▶ Naïve Bayes
- Additional Metrics
 - Accuracy
 - ▶ F Measure
- Comparing the models

References

[1] Asad Masood Khattak, Habib Ullah, Hassan Ali Khalid, Ammara Habib, Muhammad Zubair Asghar, and Fazal Masud Kundi. 2019. Stock Market Trend Prediction using Supervised Learning. In Proceedings of the 10th International Symposium on Information and Communication Technology (SoICT '19). Association for Computing Machinery, New York, NY, USA, 85–91. https://doi.org/10.1145/3368926.3369680

[2] Li, Pengfei, Xu, Jungang and AI-Hamami, Mohammad. "Application of machine learning in stock selection" Applied Mathematics and Nonlinear Sciences, vol.0, no.0, 2022, pp.-. https://doi.org/10.2478/amns.2022.1.00025

[3] I. Kumar, K. Dogra, C. Utreja and P. Yadav, "A Comparative Study of Supervised Machine Learning Algorithms for Stock Market Trend Prediction," 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 1003-1007, doi: 10.1109/ICICCT.2018.8473214.