Algorithms 2223: Assignment #2 Report

 $Eltibakh \ 2:00pm$

Ted Meyer

 $March\ 27,\ 2013$

Contents

Question 1	3
Question 2	4
Master Theorum	
Problem 1	4
Problem 2	
Problem 3	
Problem 4	
Question 3	f

Question 1

to run:

1. merge sort: java Main 1

2. quick sort: java Main 2

Page 3 of 6

Question 2

Master Theorum

$$T(n) = aT(\frac{n}{b}) + n^{c}$$

$$case1: f(n) = \theta(n^{c}) \quad where \quad c < log_{b}(a)$$

$$T(n) = \theta(n^{log_{b}(a)})$$

$$case2: f(n) = \theta(n^{c}) \quad where \quad c = log_{b}(a)$$

$$T(n) = \theta(n^{c}log(n))$$

$$case3: f(n) = \theta(n^{c}) \quad where \quad c > log_{b}(a)$$

$$T(n) = \theta(n^{c})$$

Problem 1

$$T(n) = T(\frac{n}{2}) + O(1)$$

$$a = 1, b = 2, c = 0$$

$$c = log_b(a)$$

$$T(n) = O(log(n))$$

$$binary search$$

Problem 2

$$T(n) = 2T(\frac{n}{2}) + O(n)$$

$$a = 2, b = 2, c = 1$$

$$c = log_b(a)$$

$$T(n) = O(n * log(n))$$

$$merge sort$$

Problem 3

$$T(n) = 4T(\frac{n}{2}) + O(n)$$

$$a = 4, b = 2, c = 1$$

$$c < log_b(a)$$

$$T(n) = O(n^2)$$

Problem 4

$$T(n) = 7T(\frac{n}{2}) + O(n^2)$$

$$a = 7, b = 2, c = 2$$

$$c < log_b(a)$$

$$T(n) = O(n^{2.81})$$

Question 3

$$T(n) = T(n-1) + O(n + \log_2(n))$$

 $Master\ Theorum:$

this recurrence is not applicable to the master theorum

 $Tree\ Based\ Method$

 $n \ elements$ $n + log_2(n) \ operations$

n-1 elements $n-1+log_2(n-1)$ operations

n-2 elements $n-2+log_2(n-2)$ operations

n-3 elements $n-3+log_2(n-3)$ operations

•••

 $1\ element \ 1\ operation$

summed together this makes n lines of $n + log_2(n)$ operations each

$$n*(n+log_2(n)) = n^2 + nlog_2(n)$$

$$O(n^2 + nlog_2(n)) = O(n^2)$$