Лабораторная работа № 2.05а

Определение удельной теплоты кристаллизации и изменения энтропии при охлаждении олова

Содержание

Введение
Экспериментальная установка
Проведение измерений
Обработка результатов
Контрольные вопросы
Список литературы
Приложение

Цели работы

- Определение изменения энтропии при фазовом переходе первого рода на примере кристаллизации олова из расплава при его охлаждении.
- Определение теплоты кристаллизации олова на основе закона сохранения энергии.

Задачи

- 1. Построить график зависимости температуры от времени.
- 2. Определеить температуру кристаллизации олова
- 3. Вычислить удельную теплоту кристаллизации и изменение энтропии.

Введение

Кристаллизация - процесс перехода вещества из жидкого состояния в твердое.

Это один из фазовых переходов первого рода. Фазовые переходы первого рода (плавление, испарение) сопровождаются теплотой перехода, это то количество теплоты, которое необходимо сообщить веществу, чтобы изотермически - изобарически перевести его из одной фазы в другую. Фазовые переходы второго рода происходят без теплообмена. Это, например, изменение кристаллической модификации, переход в сверхпроводящее состояние, в сверхтекучее состояние у жидкого гелия, переход ферромагнетика в парамагнетик.

Процесс кристаллизации связан с выделением количества теплоты, равного теплоте плавления. Для химически чистых веществ процесс кристаллизации протекает при постоянной температуре,

равной температуре плавления. В процессе кристаллизации упорядочивается движение частиц жидкости, постепенно прекращается перемещение молекул, возникают связанные тепловые колебания относительно узлов кристаллической решетки.

Для начала кристаллизации необходимо, чтобы в жидкости имелись центры кристаллизации - неоднородности, вокруг которых начинается процесс образования твердой фазы. Если в жидкости отсутствуют центры кристаллизации, то она может быть охлаждена до температуры более низкой, чем температура кристаллизации. В обычных условиях это, как правило, не происходит.

Количество теплоты, которое необходимо отвести от единицы массы жидкости при температуре кристаллизации для перехода жидкости в твердое состояние, называется удельной теплотой кристаллизации λ . Из первого начала термодинамики

$$-\lambda M_0 = U_{\text{TB}} - U_{\text{ж}} + p(V_{\text{TB}} - V_{\text{ж}}) \tag{1}$$

Здесь $U_{\rm TB}, U_{\rm ж}$ - внутренняя энергия вещества в твердом и жидком состоянии; $V_{\rm TB}$ и $V_{\rm ж}$ - объем твердой и жидкой фазы соответственно; p -давление в процессе кристаллизации. Поскольку при переходе из жидкого в твердое состояние объем олова практически не меняется, имеем

$$p(V_{\text{TB}} - V_{\text{ж}}) \ll U_{\text{TB}} - U_{\text{ж}}$$

В этом случае

$$-\lambda M_0 = U_{\rm TB} - U_{\rm W} \tag{2}$$

Энтропия - функция состояния термодинамической системы. Изменение энтропии в равновесном процессе равно отношению

количества теплоты, сообщенного системе, к её температуре:

$$\delta S = \frac{\delta Q}{T}.\tag{3}$$

Приращение энтропии при обратимом процессе

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T}.\tag{4}$$

В процессе кристаллизации температура олова остаётся постоянной. При этом количество теплоты, отданное окружающей среде, равно

$$Q = \lambda M_0, \tag{5}$$

где M_0 - масса олова. Так как Q - количество теплоты, полученное системой от окружающей среды, то $Q=-\lambda M_0$. Из (3) и (4) следует, что

$$S_2 - S_1 = -\frac{\lambda \cdot M_0}{T_{\text{kp}}} = \frac{U_{\text{TB}} - U_{\text{ж}}}{T_{\text{kp}}} \cdot M_0.$$
 (6)

В процессе кристаллизации происходит упорядочение структуры вещества, внутренняя энергия системы уменьшается, что и приводит к убыванию энтропии.

Вывод расчетных формул

Простейшей моделью охлаждения тела является охлаждение в среде с постоянной температурой T_0 (в термостате). Если процесс охлаждения происходит достаточно медленно, температуру произвольной точки тела в каждый момент времени можно считать одинаковой. Такой процесс охлаждения состоит из непрерывно следующих друг за другом равновесных состояний и, сле-

довательно, является квазистатическим обратимым процессом. Применим закон сохранения энергии к квазистатическому процессу охлаждения твердого олова после кристаллизации, тогда для любого значения температуры твердого олова T_i :

$$(c_0 \cdot M_0 + c_A \cdot M_{cT}) \cdot dT_i + \alpha \cdot S_{cT} \cdot (T_i - T_o) \cdot dt = 0. \tag{7}$$

Здесь $(c_0 \cdot M_0 + c_{\text{ст}} \cdot M_{\text{ст}}) \cdot dT_i < 0$ — количество теплоты, отданное телом среде при его охлаждении за малый интервал времени dt; $\alpha \cdot S_{\text{ст}} \cdot (T_i - T_o) \cdot dt > 0$ — количество теплоты, полученное окружающей средой через поверхность стакана, в котором находится олово, площадью $S_{\text{ст}}$ за время dt; $c_0, c_{\text{ст}}$ — удельные теплоемкости олова и материала стакана; $M_0, M_{\text{ст}}$ — масса олова и стакана; T_i — температура твердого олова; T_0 — температура окружающей среды; α — коэффициент теплопередачи с поверхности стакана в окружающую среду.

Применим закон сохранения энергии к процессу кристаллизации олова:

$$\lambda \cdot M_0 + \alpha \cdot S_{\text{cr}} \cdot (T_{\text{kp}} - T_0) \cdot \Delta t_{\text{kp}} = 0.$$
 (8)

Здесь λM_0 - количество теплоты, отданное оловом при его кристаллизации. $\alpha \cdot S_{\text{ст}} \cdot (T_{\text{кр}} - T_0) \cdot \Delta T_{\text{кр}}$ - количество теплоты, полученное окружающей средой через поверхность стакана за время кристаллизации $\Delta t_{\text{кр}}$. Разделив почленно (8) на (7) и выразив λ , получим:

$$\lambda = (c_0 \cdot M_0 + c_{\text{ct}} \cdot M_{\text{ct}}) \cdot \frac{\Delta t_{\text{KP}}}{M_0} \cdot \frac{(T_{\text{KP}} - T_0)}{T_i - T_0} \cdot \frac{dT_i}{dt}; \tag{9}$$

Обозначим множитель $\dfrac{dT_i}{dt(T_i-T_0)}$ через K и преобразуем его

следующим образом

$$K = \frac{dT_i}{dt(T_i - T_0)} = \frac{d(T_i - T_0)}{dt(T_i - T_0)} = \frac{d\ln(T_i - T_0)}{dt}.$$
 (10)

Окончательно имеем:

$$\lambda = \left(c_0 + c_{\text{ct}} \cdot \frac{M_{\text{ct}}}{M_0}\right) \cdot \Delta t_{\text{kp}} \cdot K(T_{\text{kp}} - T_0), \tag{11}$$

$$S_2 - S_1 = -\frac{\lambda M_0}{T_{\text{KD}}}. (12)$$

В данной работе:

$$M_0$$
=(150.00± 0.01)rp, M_{ct} =(55.00± 0.01)rp,

$$c_0 = (0.230 \pm 0.001) \frac{\text{K} \text{J} \text{m}}{\text{K} \text{\Gamma} \cdot K},$$
 $c_{\text{c} \text{T}} = (0.840 \pm 0.001) \frac{\text{K} \text{J} \text{m}}{\text{K} \text{\Gamma} \cdot K}.$

Экспериментальная методика

Итак, для вычисления S_2-S_1 необходимо определить температуру кристаллизации олова $T_{\rm kp}$, время кристаллизации $\Delta t_{\rm kp}$ и скорость изменения во времени натурального логарифма разности температур олова и окружающей среды на участке охлаждения твёрдого олова (коэффициент K). Первые две величины можно найти, построив график зависимости температуры T от времени охлаждения (см. рис. 1).

Рис.1. Определение температуры кристаллизации $T_{\kappa p}$ и времени кристаллизации $\Delta t_{\kappa p}$.

Рис.2. Определение скорости изменения $\ln(T-T_0)$ во времени в процессе охлаждения твердого олова.

Рис. 1. Определение температуры кристаллизации $T_{\rm кp}$ и времени кристаллизации $\Delta t_{\rm kp}$

На этом графике необходимо выделить три участка: I — охлаждение жидкого олова; II — кристаллизация; III — охлаждение твердого олова. Температуру кристаллизации $T_{\rm kp}$ определим через ординату $T_{\rm kp}$ середины участка кристаллизации, $\Delta t_{\rm kp}$ как время, соответствующее II участку.

Результаты измерений температуры от времени удобно наносить на график T(t). По таблице определяется T' разность между температурой олова и температурой окружающей среды T_0 .

Величину T_0 нужно измерить по лабораторному термометру. Температура олова T вычисляется как:

$$T = T' + T_0. (13)$$

В частности для температуры кристаллизации $T_{\rm кр}$ имеем:

$$T_{\mathrm{Kp}} = T'_{\mathrm{Kp}} + T_0. \tag{14}$$

Погрешность $\Delta T_{\rm kp}$ может быть определена графически как половина разности температур соответствующих ординатам нача-

ла «а» и конца «б» участка кристаллизации на рис. 1:

$$\Delta T_{\rm Kp} = \frac{1}{2} (T'(T_a) - T'(T_6)). \tag{15}$$

Для определения коэффициента K необходимо составить для участка III охлаждения олова таблицу значений натурального логарифма T' в зависимости от времени охлаждения t, построить график этой зависимости и определить тангенс угла его наклона к оси t (рис. 1). По мере того как разность температур олова и окружающей среды уменьшается, уменьшается и скорость охлаждения олова. Для того, чтобы максимально точно определить коэффициент K нужно выбрать небольшой участок графика — около трех минут после окончания кристаллизации. Погрешность коэффициента K будет определяться погрешностью определения угла наклона графика.

Подставив значения коэффициента K, времени кристаллизации $\Delta t_{\rm kp}$ и температуры кристаллизации $T_{\rm kp}$ в (11) и (12), вычислим удельную теплоту кристаллизации олова.

Относительные погрешности величин λ и $S_2 - S_1$ определяются по следующим формулам:

$$\frac{\Delta(S_2 - S_1)}{(S_2 - S_1)} = \sqrt{\left(\frac{\Delta\lambda}{\lambda}\right)^2 + \left(\frac{\Delta M_0}{M_0}\right)^2 + \left(\frac{\Delta T_{\kappa p}}{T_{\kappa p}}\right)^2},\tag{16}$$

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta t_{\rm KP}}{t_{\rm KP}}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta T_{\rm KP}}{T_{\rm KP} - T_0}\right)^2}.$$
 (17)

В последней формуле учтено, что вклад погрешностей величин $K, t_{\rm kp}$ и $T_{\rm kp}$ значительно превосходят вклады погрешностей c_0, M_0, C_A, M_A .

Экспериментальная установка

Стакан с оловом 6 (рис. 2) находится внутри стенда за защитным окошком. Внутри стакана находится металлическая трубкачехол с термопарой и нагревательный элемент. Запуск нагревательного элемента осуществляется тумблером «нагрев» 3. Регулировка мощности нагревателя производится ручкой 5. Температура олова выводится на дисплее 1. Для фиксации времени используется секундомер 7. Тумблер «сеть» 4 служит для подачи напряжения на стенд.

РИС. 2. Внешний вид экспериментальной установки.

Проведение измерений

1. Включить тумблер "сеть"4.

- 2. Включить нагреватель с помощью тумблера "нагрев"3. Мощность нагрева можно регулировать ручкой 5 под индикатаром напряжения/тока 2.
- 3. Проследить по показаниям термометра 1 за тем, как идет процесс нагревания и плавления олова 6. Плавление олова проиходит при постоянной температуре. При этом показания температуры практически не изменяются. Окончание процесса плавления можно определить как момент времени, после которого показания термометра начинают расти.
- 4. При достижении значения температуры $240^{\circ}C$ выключить нагрев.
- 5. Включить секундомер 7 и через каждые 15 секунд снимать показания температуры в таблицу 2. Измерения продолжать до тех пора, пока не будут пройдены:
 - область І область полного расплава (рис. 1),
 - область II область кристаллизации,
 - область III область охлаждения твердого олова.
- 6. Когда значение температуры упадет ниже $110^{\circ}C$, выключить стенд.

Обработка результатов

1. По данным измерений таблицы 2 построить график показаний T термометра как функцию от времени t. Определить по графику время $\Delta t_{\rm kp}$ кристаллизации олова и $T_{\rm kp}$, соответствующую значению $T'_{\rm kp}$ (см. рис. 1). Определить по лабораторному термометру температуру воздуха в помещении.

- По формуле (14) определить температуру кристаллизации $T_{\rm KP}$, вычислить погрешность $\Delta T_{\rm KP}$ согласно (15).
- 2. Для участка III составить таблицу значений $ln(T-T_0)$ в зависимости от времени t. Построить график этой зависимости и определить по нему значение коэффициента K (см. рис. 1).
- 3. По графику оценить погрешность ΔK .
- 4. Определить λ и S_2-S_1 по формулам (11) и (12) и оценить погрешности этих величин с помощью (16), (17). Сравнить экспериментально определенные характеристики олова с табличными значениями:

$$\lambda = 60,7 \frac{\mbox{кДж}}{\mbox{кг}} - \mbox{удельная теплота кристаллизации,} \ T_{\mbox{кр}} = (232 \pm 1)^{\circ} C - \mbox{температура кристаллизации.}$$

Требования к отчету

Помимо стандартных пунктов отчет должен содержать:

- ullet Таблицу экспериментальных данных зависимость T термометра от времени t на всем этапе охлаждения олова.
- График этой зависимости (рис 1).
- Таблицу зависимости натурального логарифма разности температур олова и окружающей среды от времени в процессе охлаждения кристаллического олова.
- График этой зависимости (рис. 1).
- Расчёт удельной теплоты кристаллизации олова и изменения энтропии в процессе кристаллизации и их погрешностей

Контрольные вопросы

- 1. Дайте определение процессу кристаллизации.
- 2. Почему в процессе кристаллизации происходит выделение теплоты?
- 3. Какой термодинамический процесс называется квазистатическим? Является ли таковым процесс охлаждения стакана с оловом в данной работе?
- 4. Почему по движению шарика мы судим о трении между слоями жидкости, а не о трении между шариком и жидкостью?
- 5. Дайте определение энтропии системы.
- 6. Почему говорят, что энтропия определена с точностью до постоянной? Сформулируйте третье начало термодинамики
- 7. Можно ли охладить расплавленное вещество ниже температуры кристаллизации без начала образования твердой фазы? Что происходит, когда переохлажденное вещество начинает кристаллизоваться?
- 8. Почему говорят, что энтропия определена с точностью до постоянной? Сформулируйте третье начало термодинамики.
- 9. Можно ли охладить расплавленное вещество ниже температуры кристаллизации без начала образования твердой фазы? Что происходит, когда переохлажденное вещество начинает кристаллизоваться?
- 10. Каким образом в данной работе определяется время кристаллизации и температура кристаллизации олова?

- 11. Почему построение зависимости ЭДС термопары от времени проводится в полулогарифмическом масштабе?
- 12. Что такое удельная теплота кристаллизации, каким образом ее величина определяется в данной работе?
- 13. Как изменяется энтропия системы в процессе кристаллизации? Каким образом в данной работе вычисляется изменение энтропии?
- 14. Как вычислить приращение энтропии при изобарном и изохорном нагревании идеального газа?
- 15. Как изменяется энтропия в ходе обратимого адиабатного процесса?
- 16. Как вычислить приращение энтропии идеального газа при необратимом процессе?
- 17. Как вычислить приращение энтропии при нагревании некоторого известного вещества (агрегатное состояние вещества в процессе нагревания не изменяется)?

Список литературы

- 1. Савельев И.В. Курс физики (в трех томах), т. 1,-М. Наука, 1990.
- 2. Детлаф А.А., Яворский Б.М. Курс физики, М. Высшая школа, 2000.
- 3. Трофимова Т.И. Курс физики: Учеб. пособие для вузов. -M.: Академия, 2005. 542 с.
- 4. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Метод. указания к лабораторным работам для студентов всех спец./ Под ред. В.А. Самолетова. СПб.: СПбГУНиПТ, 2003. 57 с.

Приложение

Таблица 1: Результаты прямых измерений ЭДС термопары в зависимости от времени

t, c	E , mB						
0		210		420		630	
15		225		435		645	
30		240		450		660	
45		255		465		675	
60		270		480		690	
75		285		495		705	
90		300		510		720	
105		315		525		735	
120		330		540		750	
135		345		555		765	
150		360		570		780	
165		375		585		795	
180		390		600		810	
195		405		615		825	

Таблица 2: Результаты прямых измерений температуры в зависимости от времени

t, c	T, °C	t, c	T, °C	t, c	T , $^{\circ}C$	t, c	T , ${}^{\circ}C$
0		210		420		630	
15		225		435		645	
30		240		450		660	
45		255		465		675	
60		270		480		690	
75		285		495		705	
90		300		510		720	
105		315		525		735	
120		330		540		750	
135		345		555		765	
150		360		570		780	
165		375		585		795	
180		390		600		810	
195		405		615		825	