Лабораторная работа № 14

Модели обработки заказов

Демидова Екатерина Алексеевна

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Модель оформления заказов клиентов одним оператором	6
		3.1.1 Упражнение	9
	3.2	Построение гистограммы распределения заявок в очереди	13
	3.3	Модель обслуживания двух типов заказов от клиентов в интернет-	
		магазине	17
		3.3.1 Упражнение	21
	3.4	Модель оформления заказов несколькими операторами	24
		3.4.1 Упражнение	28
4	Выв	воды	32

Список иллюстраций

3.1	Модель оформления заказов клиентов одним операторомз	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с распре-	
	делением поступления заказов Norm(3.14, 1.7) и времени оформ-	
	ления клиентов Norm(6.66, 1.7)	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с	
	распределением поступления заказов Norm(3.14, 1.7) и времени	
	оформления клиентов Norm(6.66, 1.7)	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистграммы распределения заявок в очереди	14
3.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистграммы распределения заявок в очереди	15
3.8	Гистограмма распределения заявок в очереди	17
3.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	18
3.10	Отчёт по модели оформления заказов двух типов	19
3.11	Модель обслуживания двух типов заказов с условием их распреде-	
	ления 3 к 7	21
3.12	Отчёт по модели оформления заказов двух типов заказов с услови-	
	ем их распределения 3 к 7	22
3.13	Модель оформления заказов несколькими операторами	25
3.14	Отчет по модели оформления заказов несколькими операторами	26
3.15	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	29
3.16	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	30

1 Цель работы

Реализовать разные модели обслуживания клиентов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором с разными входными данными
- построение гистограммы распределения заявок в очереди
- модель обслуживания двух типов заказов от клиентов в интернет-магазине
- одель оформления заказов несколькими операторами

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начи- нается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем(рис. [3.1]).

Рис. 3.1: Модель оформления заказов клиентов одним операторомѕ

После запуска симуляции получаем отчёт(рис. [3.2]).

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=1 – в очереди находилось не более одной ожидающей заявки от клиента; - CONT=0 – на момент завершения моделирования очередь была пуста; - ENTRIES=32 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=31 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди; - AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=0, 671 минут в среднем заявки от клиентов провели в очередь (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях: - XN=33 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=489, 786 – время назначенного события, связанного с данным транзактом; - ASSEM=33 – номер семейства транзактов; - CURRENT=5 – номер блока, в котором находится транзакт; - NEXT=6 – номер блока, в который должен войти транзакт.

3.1.1 Упражнение

Изменим интервалы постпуления заказов и время оформления клиентов(рис. [3.3], [3.4]).

Рис. 3.3: Модель оформления заказов клиентов одним оператором с распределением поступления заказов Norm(3.14, 1.7) и времени оформления клиентов Norm(6.66, 1.7)

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с распределением поступления заказов Norm(3.14, 1.7) и времени оформления клиентов Norm(6.66, 1.7)

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=82 – в очереди находилось не более двух ожидающих заявок от клиента; - CONT=82 – на момент завершения моделирования в очереди было два клиента; - ENTRIES=82 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=1 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=39,096 заявок от клиентов в среднем были в очереди; - AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=123,279 минут в среднем заявки от клиентов провели в очередь).

В конце отчёта идёт информация о будущих событиях: - XN=71 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=480,405 – время назначенного события, связанного с данным транзактом; - ASSEM=71 – номер семейства транзактов; - CURRENT=5 – номер блока, в котором находится транзакт; - NEXT=6 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name – метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. [3.5]).

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Проанализируем отчет симуляции(рис. [3.6], [3.7]).

GI	PSS World	Simulation R	eport – labl	4_1.8.1		
	воскр	есенье, мая 1	9, 2024 12:5	6:15		
	0.000	END T 330.	973 10			2
NH CUSTNU FIN OPERAT OPERAT WAITTI	AME JM TOR TOR_Q TME		VALUE 10002.000 10.000 10003.000 10001.000 10000.000			
LABEL	1 2 3 4 5 6 7 8	BLOCK TYPE GENERATE TEST SAVEVALUE ASSIGN QUEUE SEIZE DEPART ADVANCE RELEASE	103 103 51 51 51 49	0 0 0 2 0 0	0 0 0 0 0 0	
FIN	10	TERMINATE		0	0	
					INTER RETRY DEL	
QUEUE OPERATOR_Q	MAX C	ONT. ENTRY EN	TRY(0) AVE.C 1 1.6	ONT. AVE.TIM 51 10.71	E AVE.(-0) RET: 2 10.926 0	RY

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистграммы распределения заявок в очереди

TABLE WAITTIME	MEAN 10.869	STD.DEV. 2.662	RAN	GE	RETRY FREQUEN	CY CUM.%
			-	0.000	1	2.04
		0	.000 -	2.000	0	2.04
		2	.000 -	4.000	1	4.08
		4	.000 -	6.000	0	4.08
		6	.000 -	8.000	2	8.16
		8	.000 -	10.000	10	28.57
		10	.000 -	12.000	15	59.18
		12	.000 -	14.000	18	95.92
		14	.000 -	16.000	2	100.00
SAVEVALUE	RI	ETRY	VALUE			
CUSTNUM		0	51.000			
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT PARAM	ETER VALUE	
97 0	333.42	27 97	8	9		
				CUSTN	UM 49.000	
104 0	333.7	53 104	0	1		

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистграммы распределения заявок в очереди

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=330.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 103;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 97 заказов от клиентов (значение поля OWNER=97), но оператор успел принять в обработку до окончания рабочего времени только 49 (значение поля ENTRIES=49). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,667 мин.

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=2 – в очереди находилось не более двух ожидающих заявок от клиента; - CONT=2 – на момент завершения моделирования в очереди было два клиента; - ENTRIES=51 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=1 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=1,651 заявок от клиентов в среднем были в очереди; - AVE.TIME=10.712 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=10,926 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограмы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0(как мы и задавали). Наибольшее количество заявок(18) обрабатывалось 12-14 минут, чуть меньше (15) – 10-12 минут, ещё меньше(10) – 8-10 минут, в остальных диапазонах 0-2 заявки.

В конце отчёта идёт информация о будущих событиях: - XN=97 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=333,427 – время назначенного события, связанного с данным транзактом; - ASSEM=97 – номер семейства транзактов; - CURRENT=8 – номер блока, в котором находится транзакт; - NEXT=9 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

Проанализируем гистограмму(рис. [3.8]).

Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0(как мы и задавали). Наибольшее количество заявок(18) обрабатывалось 12-14 минут, чуть меньше (15) – 10-12 минут, ещё меньше(10) – 8-10 минут, в остальных диапазонах 0-2 заявки.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие(рис. [3.9], [3.10]).

```
<u>File Edit Search View Command Window H</u>elp
 ; order
 GENERATE 15,4
 QUEUE operator_q
 SEIZE operator
 DEPART operator q
 ADVANCE 10,2
 RELEASE operator
 TERMINATE 0
 ; order and service package
 GENERATE 30,8
 QUEUE operator_q
 SEIZE operator
 DEPART operator_q
 ADVANCE 5,2
 ADVANCE 10,2
 RELEASE operator
 TERMINATE 0
 ;timer
 GENERATE 480
 TERMINATE 1
 START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

7				GP	SS World - [Untit	tled Model 2.1.1 -	REPORTJ
<u>File Edit Sear</u>			elp				
	Pa Ba S	№ ?					
s	TART TIME	END	TIME BLOCKS	FACILITIES	STORAGES		
	0.000	480	.000 17	1	0		
	NAME		VALUE				
	ERATOR		10001.000				
OP.	ERATOR_Q		10000.000				
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY		
		GENERATE		0			
		QUEUE	32	4	0		
	3	SEIZE	28	0	0		
	_	DEPART	28	0	_		
		ADVANCE	28	1			
		RELEASE	27	0	-		
		TERMINATE		0	-		
		GENERATE	15	0			
		QUEUE	15	3			
		SEIZE	12	0	_		
		DEPART ADVANCE	12 12	0			
		ADVANCE	12	0			
		RELEASE	12	0			
		TERMINATE		0			
		GENERATE	1	0			
		TERMINATE	1	0	_		
FACILITY OPERATOR	ENTRIES 40	UTIL. AV	E. TIME AVAIL 11.365 1	. OWNER PEND	INTER RETRY	DELAY 7	
QUEUE	MAX C	ONT. ENTRY E	NTRY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY	
OPERATOR_Q	8	7 47	2 3.3	55 34.26	1 35.784	0	
FEC XN PRI			CURRENT NEX	T PARAMETER	VALUE		
42 0		825 42	5 6				
50 0		164 50					
49 0		562 49	0 8 0 16				
51 0	960.	000 51	0 16				

Рис. 3.10: Отчёт по модели оформления заказов двух типов

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок певрого типа заказов с начала

процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обарботано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=8 – в очереди находилось не более двух ожидающих заявок от клиента; - CONT=7 – на момент завершения моделирования в очереди было 7 клиентов; - ENTRIES=47 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=2 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=3,355 заявок от клиентов в среднем были в очереди; - AVE.TIME=34.261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях: - XN=42 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=487,825 – время назначенного события, связанного с данным транзактом; - ASSEM=42 – номер семейства транзактов; - CURRENT=5 – номер блока, в котором находится транзакт; - NEXT=6 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

3.3.1 Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSER, в котором укажем, что с вероятность 0.7 происходит обработка заявки(пере ход к блоку noserv RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты и только после этого является обработанным(рис. [3.11]).

Рис. 3.11: Модель обслуживания двух типов заказов с условием их распределения 3 к 7

Проанализируем результаты моделирования(рис. [3.12]).

						GPSS Wo	orld - [Untit	led Model 2.2	.1 - REPORT]
<u>F</u> ile <u>E</u> di	Search	View Comm	and Window H	elp					
) 🚅 🖫		a / 6 / 8	№ ?						
	0.	JJ NOLIU	JIMUIU CION	Nepolo on	TOTOTCO HOUCE	2.2.1			
		воскр	есенье, мая	19, 2024 13	3:10:50				
					(S FACILITIE				
	STAR	TIME	END	TIME BLOCK	S FACILITIE	S STO	RAGES		
		0.000	400	.000 11	1		U		
		AME		VALUE					
	NOSERV	7 FOR		8.000					
		TOR Q		10001.000					
	SERV	OR_U		7.000					
	SERV			,.000					
		100	DIOGN TUTT	mump	OUNE CURE		DETEN		
LABEL		LUC	GENERATE	ENTRY C	COUNT CURRENT	COUNT	RETRY		
		2	OUEUE	33		0	0		
			SEIZE	33		0	0		
		4	DEPART	33	3	0	0		
		5	ADVANCE	33	J	0	0		
		6	TRANSFER	33	3	0	0		
SERV		7	ADVANCE	8	3	1	0		
NOSERV			RELEASE	32	2	0	0		
			TERMINATE			0	0		
			GENERATE	1		0	0		
		11	TERMINATE	1		0	0		
					AIL. OWNER PE				
OPERATO	DR	33	0.766	11.146 1	34	0	0 0	0	
QUEUE		MAX C	ONT. ENTRY E	NTRY(0) AVE	C.CONT. AVE.T	IME I	AVE.(-0)	RETRY	
OPERATO	DR_Q	1	0 33	25 0	.054 0.	781	3.220	0	
	PRI				NEXT PARAMET	ER '	VALUE		
	0	482. 487.	925 34 726 35	7	8				
	0		726 35 000 36						
30	•	500.	36	0 1					

Рис. 3.12: Отчёт по модели оформления заказов двух типов заказов с условием их распределения 3 к 7

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33(их стало меньше, так как раньше второго типа заказов было почти 50% и они генерировались дополнительно к обыным, а теперь это они "выбираются" из обычных), при этом из них второго типа(с дополнительными услугами) ENTRY COUNT = 8, это не 30%, а 0,24%, что свя-

зано с погрешностью при генерации заявок(стремится к 30%); обарботано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=1 – в очереди находилось не более двух ожидающих заявок от клиента; - CONT=0 – на момент завершения моделирования в очереди было ноль клиентов; - ENTRIES=33 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=25 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=0,054 заявок от клиентов в среднем были в очереди; - AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях: - XN=34 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=482,925 – время назначенного события, связанного с данным транзактом; - ASSEM=34 – номер семейства транзактов; - CURRENT=7 – номер блока, в котором находится транзакт; - NEXT=8 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений(рис. [3.13], [~ 3.14]).

Untitled Model 3

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.13: Модель оформления заказов несколькими операторами

Рис. 3.14: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; - количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; - количество многоканальных устройств, использованных в

текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обарботан 91 заказ;

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=1 – в очереди находилось не более двух ожидающих заявок от клиента; - CONT=0 – на момент завершения моделирования в очереди было ноль клиентов; - ENTRIES=93 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=93 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=0,000 – заявок от клиентов в среднем были в очереди; - AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов (значение поля OWNER=93), но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимум не занято 4 оператора, минимум – 0.

В конце отчёта идёт информация о будущих событиях: - XN=95 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=480,457 – время назначенного события, связанного с данным транзактом; - ASSEM=95 – номер семейства транзактов; - CURRENT=0 – номер блока, в котором находится транзакт; - NEXT=1 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

3.4.1 Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 25 ± 2 мин., чтобы проверить результаты изменений модели(рис. [3.15]).

Рис. 3.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проаналзируем полученный отчет(рис. [~ 3.16]).

Рис. 3.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

6 0

75 6 76 6 77 6

BDT ASSEM CURRENT NEX 480.620 95 0 1 485.578 75 6 7

485.578 490.372 499.165

502.904 78 960.000 96

BDT ASSEM CURRENT NEXT PARAMETER VALUE

FEC XN PRI

95 0

75 0 76 0 77 0

78 0 96 0

Результаты работы модели: - модельное время в начале моделирования: START TIME=0.0; - абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; - количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; - количество одноканальных устройств, использованных в модели к моменту завершения моделиро-

вания: FACILITIES=1; - количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обарботано 73 заказа;

Далее информация об очереди: - QUEUE=operator_q – имя объекта типа «очередь»; - MAX=3 – в очереди находилось не более трех ожидающих заявок от клиента(как и было указано); - CONT=3 – на момент завершения моделирования в очереди было ноль клиентов; - ENTRIES=80 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; - ENTRIES(O)=4 – число заявок от клиентов, попавших к оператору без ожидания в очереди; - AVE.CONT=2,562 – заявок от клиентов в среднем были в очереди; - AVE.TIME=15.369 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); - AVE.(-0)=16,178 минут в среднем заявки от клиентов провели в очередь).

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к операторам попало 77 заказов от клиентов (значение поля OWNER=93). Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимум не занято 4 оператора, минимум – 0.

В конце отчёта идёт информация о будущих событиях: - XN=95 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; - PRI=0 – все клиенты (из заявки) равноправны; - BDT=480,620 – время назначенного события, связанного с данным транзактом; - ASSEM=95 – номер семейства транзактов; - CURRENT=0 – номер блока, в котором находится транзакт; - NEXT=1 – номер блока, в который должен войти транзакт.

Аналогичные поля для остальных.

4 Выводы

В результате выполнения работы были реализованы с помощью gpss: - модель оформления заказов клиентов одним оператором с разными входными данными - построение гистограммы распределения заявок в очереди - модель обслуживания двух типов заказов от клиентов в интернет-магазине - одель оформления заказов несколькими операторами