CHEM202

Stereochemistry

Lecture 1

Conformation, Rings & Ring Strain

Tips and Suggestions

Bring paper

Pyramidal learning structure... you snooze you lose!

If something is not clear get help

NEF, don't get caught up

Aims of the Course

1. How does molecular shape and orientation of groups influence chemical reactivity?

CHEM 191 - typical reactions of functional groups

CHEM 111 - molecular shape (configuration & conformation)

This course - molecular shape does exert a secondary influence on the reactivity of functional groups

Trans-isomer:

Has a less hindered equatorial OH, will esterify faster than *cis*-isomer (ax-OH)

Aims of the Course, cont...

- 2. Can stereochemical principles be used in the design of selective syntheses?
- formation of one specific stereoisomer (stereoselectivity)

manipulation of one of a set of potential reaction sites

(regioselectivity)

The story so far

- Mainly interested in the shape of small localised atoms (think methyl group, ketone etc)
- On larger scale, shape is not so easily defined, rotation about single bonds is possible => lots of possible shapes (conformations)

Flash back/quick review (Newman, saw-horse projections)

Conformation

Molecular shape dictated by:

- optimum bond lengths
- optimum bond angles for constituent atoms

e.g. C atom with 4 single bonds:

- bond angles ~109°
- C-C bonds ~1.54 Å

1.54Å

— bond in plane of page

— bond to back

— bond to front

Deviations indicate some strain

Within these constraints, most molecules adopt various shapes by rotation about single bonds – gives various *conformations*

Conformation and Configuration

Change **conformation** ⇒ new shape

When the energy barrier is small you cannot isolate individual conformations, *e.g.* butane:

- anti form is preferred
- at room temperature have free rotation
- properties are those of the mixture of various forms

Change **configuration** ⇒ new substance, a *stereoisomer*

- different forms can be isolated
- have some physical differences:
 - enantiomers non-identical mirror images have different effect on plane polarised light
 - diastereoisomers not mirror images differ in most physical properties

Putting it together

- Structures that can be interconverted simply by rotation are conformations of the same molecule.
- Structures that can interconverted only by breaking one or more bonds have different configurations, and are stereoisomers

The Border Between Conformation and Configuration - 1

If the energy barrier is large (> ~80 kJ mol⁻¹), the distinction between conformation and configuration blurs - *e.g.* biphenyl:

- Have free rotation about the C-C bond ⇒ many conformations
- But with large groups in the ortho-positions, rotation can be blocked

The Border Between Conformation and Configuration - 2

- If X ≠ Y and A ≠ B there is no plane of symmetry
- The molecule and its mirror image are enantiomers
- These enantiomers can only interconvert by rotation about the C-C bond
- If the energy barrier to rotation is large (large A, B, X and Y) enantiomers (conformations?) can be isolated

Rates and barriers: the guidelines (NEF!!)

- A barrier of 73 kJ/mol allows a rotation every second at 25 C
- Every 6 kJ/mol changes the rate at 25 C by a factor ~10
- To see signals in an NMR spectrum for two different conformations, they must interconvert <~1000 s-1 (a barrier of roughly 55 kJ/mol at 25 C)

Can you draw the expected 1H NMR spectrum of DMF?

Molecular Mechanics

For molecules with >1 bond capable of free rotation:

- Difficult to assess relative energies of conformations
- Use computer programs that perform molecular mechanics calculations
- Procedure:
 - Draw approximate structure
 - The computer then:
 - Calculates a strain energy
 - Makes small change to the geometry and calculates a new strain energy
 - Repeats the process until any further changes always result in an increase in strain E
- Have found a local minimum

Picture of all conformations available

- Local minima lie in depressions
- Most favoured conformation - global minimum

e.g. for butane (2 different C-C bonds):

Local

minimum

Energy Surface

To find global minimum:

- Use many different starting geometries
- Compare energies of all local minima obtained
- Called conformational searching

Cyclic Molecules

Represent as regular polygons

Each unspecified vertex is a C with enough H to give 4 bonds Name by adding *cyclo* to alkane name

Molecular shapes dictated by minimisation of:

- Bond Angle Strain bond angles will be as close as possible to the ideal
- Torsional Strain adjacent bonds will be as close to staggered as possible
- Van der Waals Interactions close approach of non-bonded atoms will be avoided if possible

(a) Bond Angle Strain

Only significant in smaller rings

Cyclopropane:

- must be planar
- bond angles within ring are 60° considerable strain

Cyclobutane:

- 90° bond angles if planar
- slight bending makes angles a little larger
- non-planar structure with considerable bond angle strain

Higher cycloalkanes:

- all non-planar
- relatively unstrained bond angles, close to 109°

(b) Torsional Strain - 1

Resistance to bond twisting

Cyclopropane:

- planar
- all bonds eclipsed
- high torsional strain

Cyclobutane - nearly planar, almost eclipsed

(b) Torsional Strain - 2

Cyclohexane:

chair form – ideal, all bonds staggered

boat - 2 sides with eclipsing bonds

Higher cycloalkanes:

- many conformations with most bonds staggered
- usually can't have all bonds fully staggered

(c) Van der Waals Interactions - 1

3 to 5 membered rings - no significant interactions between groups across the ring

Cyclohexane:

chair - 1,3-diaxial interactions

boat - stronger 1,4-flagpole interactions

(c) Van der Waals Interactions - 2

• 7 to 10-membered rings - quite severe interactions - *e.g.* cyclodecane:

- > 10 membered:
 - more space in centre of ring
 - interactions less severe

Strain Variation with Ring Size

Considerable variation in strain energy. For:

$$H_3C$$
 \leftarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \leftarrow CH_2 \leftarrow CH_2

Ring size	Calc ΔH _r /kJ mol ⁻¹
3	157.3
4	156.4
5	73.5
6	49.3
7	78.1
8	104.9
9	111.5
10	112.9
11	107.5

Striking feature – low strain energy of the cyclohexane ring system

6-membered rings feature very strongly in organic chemistry

Cyclopropanes Behave Like Alkenes

An alkene undergoes addition reactions:

$$H_2C = CH_2 + HBr \rightarrow CH_3 - CH_2Br$$

Typical alkanes do not:

Cyclopropane adds HBr:

Cubane – a Highly Strained Molecule

- First synthesised in 1964
- ~2x density of petrol
- Large amount of energy released on combustion
- Potential as a rocket fuel
- More recently octanitrocubane synthesised. One of the most potent explosives known

Favoured Ring Size Varies

The 6-membered ring is not always the most favoured Some influential factors:

- Atoms other than C may have different preferred bond angles
- Divalent ring atoms:
 - have no bonds to become involved in eclipsing
 - have no attached groupings less van der Waals interaction
 - planar conformations may be feasible
- Interactions between charged or partially charged centres
 Molecular modelling is again very helpful