

V2.1 2009.11.23

ICDAM-7021 模块 ICDAM-7022 模块 ICDAM-7023 模块 ICDAM-7024 模块

用户手册

北京首英智诚科技有限责任公司

1. 概述

ICDAM-7000 系列是基于 RS-485 网络的数据采集和控制模块。它们提供了模拟量输入、模拟量输出、数字量输入/输出、定时器/计数器、交流电量采集、无线通讯等功能。这些模块可以由命令远程控制。

ICDAM-7021、ICDAM-7022、ICDAM-7024 模块的特性如下:

- 3000 VDC 光隔模拟量输出
- 上电模拟量输出值可编程
- 输出斜率可编程
- 软件校准

ICDAM-7021 是 12 位输出并有当前值回读功能的模拟量输出模块

ICDAM-7022 是 2 路模拟量输出模块

ICDAM-7024 是 4 路模拟量输出模块

1.1 端子分布

1.2 特性

ICDAM-7021	ICDAM-7022
模拟量输出	模拟量输出
输出通道: 1	输出通道: 2
输出类型: mA,V	输出类型: mA,V
精确度: ±0.1% FSR	精确度: ±0.1% FSR
分辨率: ±0.02% FSR	分辨率: ±0.02% FSR
回读精确度: ±1% FSR	回读精确度: ±1% FSR
零点漂移:	零点漂移:
电压输出: ±30uV/℃	电压输出: ±30uV/℃
电流输出: ±0.2uA/℃	电流输出: ±0.2uA/℃
温度系数: ±25ppm/℃	温度系数: ±25ppm/℃
可编程输出斜率:	可编程输出斜率:
0.125 ~ 2048mA/S	0.125 ~ 2048mA/S
0.0625 ~ 1024V/S	0.0625 ~ 1024V/S
电压输出:最大 10V	电压输出:最大 10V
电流负载阻抗:	电流负载阻抗:
内部电源: 500 ohms	内部电源: 500 ohms
外部 24V: 1050 ohms	外部 24V: 1050 ohms
隔离: 3000VDC	隔离: 3000VDC
	通道之间是隔离的
输入: +10~+30VDC	输入: +10~+30VDC
功耗: 1.7W	功耗: 3.0W
温度: -20℃ ~70℃; 湿度: 5%~9	0%,无凝露

ICDAM-7023	ICDAM-7024				
模拟量输出	模拟量输出				
输出通道: 3	输出通道: 4				
输出类型: mA,V	输出类型: mA,V				
精确度: ±0.1% FSR	精确度: ±0.1% FSR				
分辨率: ±0.02% FSR	分辨率: ±0.02% FSR				
零点漂移:	零点漂移:				
电压输出±30uV/℃	电压输出±30uV/℃				
电流输出±0.2uA/℃	电流输出±0.2uA/℃				
温度系数: ±20ppm/℃	温度系数: ±20ppm/℃				
可编程输出斜率:	可编程输出斜率:				
0.125 ~ 2048mA/S	0.125 ~ 2048mA/S				
0.0625 ~ 1024V/S	0.0625 ~ 1024V/S				
电压输出:最大10V	电压输出:最大 10V				
电流负载阻抗:外部 24V: 1050 ohms	电流负载阻抗:外部 24V: 1050 ohms				
隔离: 3000VDC	隔离: 3000VDC				
电源	电源				
输入: +10~+30VDC	输入: +10~+30VDC				
功耗: 2.3W	功耗: 2.3W				
温度: -20℃ ~ 70℃ 湿度: 5% ~	温度: -20℃ ~70℃ 湿度: 5% ~ 90%,				
90%,无凝露	无凝露				

1.3 结构图

1.4 跳线设置

ICDAM-7021 电流输出时,所需电源可通过跳线选择:

- 1. 选择模块的内部电源: 默认设置,可以驱动负载达 500ohms
- 2. 选择模块的外部电源:可以驱动更大的负载,24V电源,可以驱动1050ohms

ICDAM-7022 电流输出时,所需电源可通过跳线选择:

- 1. 0 通道的设置为 JP1, 1 通道的设置为 JP2
- 2. 选择模块的内部电源,可以驱动负载达 500ohms
- 3. 选择模块的外部电源,可以驱动负载 1050ohms, 24VDC 电源

1.5 接线说明

ICDAM-7021、ICDAM-7022 电压输出接线说明

ICDAM-7021、ICDAM-7022 电流输出接线说明

ICDAM-7024 电压输出接线说明

ICDAM-7024 电流输出接线说明

1.6 默认设置

ICDAM-7021/7022/7024 默认设置

- 地址: 01
- 模拟量输出类型: 0~+10V
- 波特率: 9600bps
- 校验和:禁止
- 数据格式:工程单位
- 输出方式:瞬时改变
- ICDAM-7021/7022 电流输出电源跳线设置: 内部电源

1.7 校准

在没有真正理解校准含义之前,请不要执行校准

ICDAM-7021 电流输出校准顺序:

1. 设置跳线 1 选择内部电源,连接 mA 表到模块的输出位置,如果没有 mA 表,可以用电压表并联一个 250 欧姆 1%的电阻来计算 mA 值(I=V/250)。

- 2. 预热 30 分钟
- 3. 设置类型为 30 (0-20 mA)
- 4. 输出 4mA
- 5. 通过微调命令来检测仪表和校准输出使之和 0mA 匹配
- 6. 执行 4mA 校准命令
- 7. 输出 20mA
- 8. 通过微调命令来检测仪表和校准输出使之和 20mA 匹配
- 9. 执行 20mA 校准命令

ICDAM-7021 电压输出校准顺序:

1. 连接电压表到模块的电压输出位置

2. 使当前的电流输出端子短路,获取回读请求

- 3. 预热 30 分钟
- 4. 设置类型为 32 (0~10V)
- 5. 输出 10V
- 6. 通过微调命令来检测仪表和校准输出使之和 10V 匹配
- 7. 执行 10V 校准命令

ICDAM-7022 电流输出校准顺序:

1. 设置跳线 1 选择内部电源,连接 mA 表到模块的输出位置通道 0,如果没有mA 表,可以用电压表并联一个 250 欧姆 1%的电阻来计算 mA 值(I=V/250)。

- 2. 预热 30 分钟
- 3. 设置类型为 30 (0-20 mA)
- 4. 输出 4mA
- 5. 通过微调命令来检测仪表和校准输出使之和 0mA 匹配
- 6. 执行 4mA 校准命令
- 7. 输出 20mA
- 8. 通过微调命令来检测仪表和校准输出使之和 20mA 匹配
- 9. 执行 20mA 校准命令
- 10. 连接通道 1 重复步骤 1~9

ICDAM-7022 电压输出校准顺序:

1. 连接电压表到模块的电压输出通道 0

使当前的电流输出端子短路, 获取回读请求

- 2. 预热 30 分钟
- 3. 设置类型为 32 (0~10V)
- 4. 输出 10V
- 5. 通过微调命令来检测仪表和校准输出使之和 10V 匹配
- 6. 执行 10V 校准命令
- 7. 连接通道 1 重复步骤 1~6

ICDAM-7024 电流输出校准顺序:

1. 连接仪表和外部电源到模块的电流输出通道 0

2. 预热 30 分钟

- 3. 设置类型为 30 (0~20mA)
- 4. 输出 20mA
- 5. 通过微调命令来检测仪表和校准输出使之和 20mA 匹配
- 6. 执行 20mA 校准命令
- 7. 对通道1,2,3重复1到6步

ICDAM-7024 电压输出校准顺序:

1. 连接电压表到模块的电压输出通道 0。

- 2. 预热 30 分钟
- 3. 设置类型为 32 (0V~10V)
- 4. 输出 0V
- 5. 通过零点微调命令来调节校准输出使之和 0V 匹配
- 6. 执行零点校准命令
- 7. 输出 10V
- 8. 通过满量程微调命令来调节校准输出使之和 10V 匹配
- 9. 执行 10V 校准命令
- 10. 分别对通道 1, 2, 3 重复 1 到 9 步

1.7 设置列表

波特率设定 (CC)

代码	03	04	05	06	07	08	09	0A
波特率	1200	2400	4800	9600	19200	38400	57600	115200

模拟量输出类型设置(TT)

类型代码	30	31	32
最小输出	0mA	4mA	0V
最大输出	20mA	20mA	10V

数据格式设置(FF)

7	6	5	4	3	2	1	0
0	*1		*2				3

*1: 校验位: 0= 禁止 1=允许

*2: 斜率控制: C-7024

*3: 00 = 工程单位格式

01 = 百分比格式

10 = 16 进制格式

C-7024 的斜率								
	V/Secon	mA/Sec		V/Seco	mA/Second			
	d	ond		nd	IIIA/Secolid			
0000	瞬时	改变	1000	8.0	16.0			
0001	0.0625	0.125	1001	16.0	32.0			
0010	0.125	0.25	1010	32.0	64.0			
0011	0.25	0.5	1011	64.0	128.0			
0100	0.5	1.0	1100	128.0	256.0			
0101	1.0	2.0	1101	256.0	512.0			
0110	2.0	4.0	1110	512.0	1024.0			
0111	4.0	8.0	1111	1024.0	2048.0			

模拟输出类型和数据格式(C-7024)						
类型代码 输出范围 数据格式 最大 最小						
30	0 ~ 20mA	工程量单位	+20.000	+00.000		
31	4 ~ 20mA	工程量单位	+20.000	+04.000		
32	0 ~ +10V	工程量单位	+10.000	00.000		

2. 命令

命令格式: (Leading) (Address)(Command)(CHK)(cr)

响应格式: (Leading) (Address)(Data)(CHK)(cr)

[CHK] 2 字符校验

[cr] 命令结束符,字符返回(0x0D)

计算校验和:

1. 计算命令或回答字符串中除 cr 以外所有字符 ASCII 值的和。

2. 累加和应在 00~FFH 之间。

示例:

命令字符串: \$012(cr)

命令字符串校验和如下计算:

校验和= '\$' + '0' + '1' + '2'

= 24h + 30h + 31h + 32h

= B7h

回答字符串校验和是 B7h 即[CHK]="B7"

带校验和的回答字符串: \$012B7(cr)

回答字符串: !01300600(cr)

校验和= '!' + '0' + '1' + '3' + '0' + '0' + '6' + '0' + '0'

= 21h + 30h + 31h + 33h + 30h + 30h + 36h + 30h + 30h

= 1ABh

回答字符串校验和是 ABh 即[CHK] = "AB"

带校验和的回答字符串: !01300600AB(cr)

通用命令集							
命令	回 答	说明	备注				
%AANNTTCCFF	!AA	模块设置	2.1				
\$AA2	!AATTCCFF	读配置信息	2.2				
\$AA5	!AAS	读复位状态	2.3				
\$AAF	!AA(数据)	读固件版本	2.4				
\$AAM	!AA(数据)	读模块名称	2.5				
~AAO(数据)	!AA	设置模块名 称	2.6				

C-702	C-7024 模拟量输出命令集						
命令	回答	说明	备注				
			注				
#AAN(数据)	>	输出模拟量值	2.15				
\$AA0N	!AA	零点校准	2.16				
\$AAZNVV	!AA	零点微调	2.16.1				
\$AA1N	!AA	20mA/10V 校准	2.17				
\$AA3NVV	!AA	满量程微调	2.18				
\$AA4N	!AA	设置上电值	2.19				
\$AA6N	!AA(数	最新输出命令值	2.20				
ŞAAOIN	据)	回读					
\$AA7N	!AA	读取上电值	2.21.2				
\$AA8N	!AA(数	当前输出值回读	2.22				
,	据)						

	主机看门狗命令集							
命令	回 答	说明	备 注					
~**	无回答	主机 OK	2.23					
~AA0	!AASS	读模块状态	2.24					
~AA1	!AA	复位模块状态	2.25					
~AA2	!AAVV	读主机看门狗超时 溢出时间	2.26					
~AA3EVV	!AA	设置主机看门狗超时 溢出时间	2.27					
~AA4	!AA(数据)	读安全值	2.28					
~AA4N	!AA(数据)	读通道N安全值	2.29					
~AA5	!AA	设定安全值	2.30					
~AA5N	!AA	设定通道N安全值	2.31					

2.1 %AANNTTCCFF

说明:设定模块配置信息

语法: %AANNTTCCFF[CHK](cr)

定界符 %

模块地址 (00~FF) AA

NN 设定模块的新地址(00~FF)

设定模块类型 TT

设置模块新的波特率 CC 设定模块新的数据格式 FF

当改变波特率或校验和时,把 INIT*端接地

回答: 有效命令: !AA[CHK] (cr) 无效命令: ?AA[CHK] (cr) 语法错误或通讯错误可能无法得到响应

有效命令的定界符

无效命令的定界符

模块地址(00~FF) AA

示例:

?

命令: %0102300600 接收: !02 改变模块地址 01 到 02, 返回成功

相关命令: 2.2 节 \$AA2

相关主题: 1.8 节设置列表, 3.1 节 INIT* 端子操作

2.2 \$AA2

说明:读配置信息 语法: \$AA2[CHK](cr)

定界符 \$

模块地址 (00~FF) AA 读配置信息命令

回答:有效命令: !AATTCCFF[CHK](cr)

> 无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

有效命令定界符

无效命令定界符

AA 模块地址 (00~FF)

TT 模块的类型代码

CC 模块的波特率代码

FF 模块的数据格式

示例:

命令: \$012 接收: !01300600

读地址为 01 的状态返回模拟输出 0 到 20mA,波特率 9600,无校验和,工程量单位格式,输出瞬时改变

相关命令: 2.1 节 %AANNTTCCFF

相关主题: 1.8 节设置列表, 3.1 节 INIT*端子操作模式

2.3 \$AA5

说明: 读复位状态 语法: \$AA5[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

5 读复位状态命令

回答:有效命令: !AAS[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

S 复位状态,1=模块被复位,0=模块没有被复位

示例:

命令: \$015 接收: !011

读地址为01的复位状态,返回:模块已发生复位,第一次读取状态

命令: \$015 接收: !010

读地址为01的复位状态,返回:无复位发生

相关主题: 3.4 节 复位状态

2.4 \$AAF

说明: 读模块版本

语法: \$AAF[CHK](cr)

\$ 定界符

AA 模块地址(00~FF)

F 读模块版本命令

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

数据 模块的版本

示例:

命令: \$01F 接收: !01050101

读地址为01的模块版本数据,返回版本050101

命令: \$02F 接收: !02040101

读地址为02的模块版本数据,返回版本040101

2.5 \$AAM

说明: 读模块名称

语法: \$AAM[CHK](cr)

\$ 定界符

AA 模块地址(00~FF)

M 读模块名称命令

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

数据 模块名称

示例:

命令: \$01M 接收: !017021

读地址为01的模块名称,返回名称7021

相关命令: 2.6 节 ~AAO(数据)

2.6~AAO(数据)

说明: 设置模块名称

语法: ~AAO(数据)[CHK](cr)

~ 定界符

AA 模块地址(00~FF)

O 设置模块名称

数据 模块新名称,最大6个字符

回答:有效命令: !AA[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例:

命令: ~0107021 接收: !01

设置地址 01 模块名称为 7021, 返回成功

命令: \$01M 接收: !017021

读地址 01 模块名称, 返回名称 7021

ICDAM-7021/22/23/24 系列模块用户手册

相关命令: 2.5 节 \$AAM

2.7 #AAN

说明:通道 N 模拟量输出值

语法: #AAN [CHK](cr)

定界符

AA 模块地址(00~FF)

N 通道 (0~3)

回答: 有效命令: >(数据) [CHK](cr)

?[CHK](cr) 超范围: 忽略命令: ![CHK](cr)

语法错误或通讯错误可能无法得到响应

有效命令定界符 >

表示输出数据超范围,模块将输出一个在其量程内最接近被输出值的值

表示主看门狗溢出标志被设置,输出命令将被忽略,输出将被设成安全

模拟量输出值 数据

示例: (C-7024)

接收: !01300600 命令: \$012

读地址为 01 的设置,返回类型 0 到 20mA,9600 波特率,工程量单位数据 格式,输出瞬时改变

命令: #010+05.000 接收:>

输出地址 01 通道为 0 的值 5.0mA, 返回成功

命令: #010+25.000 接收: ?01

输出地址 01 通道为 0 的值 25.0mA, 返回超范围, 通道 0 的输出值被设成 20.0mA

相关命令: 2.1 节 %AANNTTCCFF, 2.2 节\$AA2 相关主题: 1.8 节设置列表, 3.5 节模拟量输出

2.8 \$AA1N

说明: ICDAM-7024: 对通道 N 执行 20mA/+10V 校准

语法: \$AA1N[CHK](cr)

定界符 \$

模块地址(00~FF) AA

执行 20mA 校准命令(+10V)

通道 (ICDAM-7022: 0~1; ICDAM-7024: 0~3) N

回答:有效命令: !AA [CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

有效命令定界符

无效命令定界符

模块地址(00~FF) AA

示例:

命令: \$0111 接收: !01

执行地址为01通道1的校准命令,返回成功

(ICDAM-7022: 20mA; ICDAM-7024: 20mA or 10.0V)

相关命令: 2.16 节 \$AA0N, 2.18 节 \$AA3NVV 相关主题: 1.7 节校准

相天王题: 1.7 节校: 注意: **C-7024** 有效

2.9 \$AA3NVV

说明:对通道 N 进行微调 **语法**: \$AA3NVV[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

3 满量程微调命令

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

VV 二进制补码形式微调模拟量输出值,可以从 00~5F 增加 0~95 个单位,从 FF~A1,减少 1~95 个单位,每个变化的单位是 2.44uA 或 1.22mV(ICDAM-7024), 0.3uA 或

0.15mV(ICDAM-7022)

回答: 有效命令: !AA[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例:

命令: \$01321F 接收: !01

微调地址 01 通道 2 的输出值 31 个计量单位,返回成功

相关命令: 2.16 节 \$AA0N, 2.17 节 \$AA1N

相关主题: 1.7 节校准 注意: **C-7024** 有效

2.10 \$AA4N

说明: 设置通道 N 的上电值

语法: \$AA4N[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

4 设置上电值,把当前输出值作为上电值

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

回答: 有效命令: !AA [CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例:

命令:#012+00.000 接收:>

设置地址 01 通道 2 的输出值为 0.0mA, 返回为成功

命令: \$0142 接收: !01

设置地址 01 通道 2 上电值, 返回为成功, 通道 2 上电值变为 0.0mA

相关命令: 2.15 节 #AAN(数据), 2.21 节 \$AA7N

相关主题: 1.8 节 设置列表, 3.5 模拟量输出

注意: C-7024 有效

2.11 \$AA6N

说明: 通道 N 最新输出命令值回读

语法: \$AA6N[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

6 最新输出命令值回读命令

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

数据 最新输出命令值回读命令

示例: (ICDAM-7024)

命令: #013+05.000 接收: !01

设置地址 01 通道 3 输出值为 5.0, 返回为成功

命令: \$0163 接收: !01+05.000

读地址 01 通道 3 最新输出命令值,返回 5.000

相关命令: 2.15 节 #AAN(数据), 2.22 节 \$AA8N

相关主题: 3.7 节 电流值回读

注意: C-7024 有效

2.12 \$AA7N

说明:读通道 N 的上电值 **语法**: \$AA7N[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

7 读上电值

N 通道号 (0~3)

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

数据 上电输出值

示例:

命令: #0170 接收: !01+10.000 读地址 01 通道 0 的上电值,返回为+10.000

相关命令: 2.19 节 #AA4N 注意: **ICDAM-7024** 有效

2.13 \$AA8N

说明:通道 N 的当前值回读

语法: \$AA8N[CHK](cr)

\$ 定界符

AA 模块地址 (00~FF)

8 当前值回读命令

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

数据 当前输出值

示例: (ICDAM-7024)

命令: \$012 接收: !01320614 读地址 01 设置,返回输出类型 0 到 10V,9600 波特率,工程量单位格式,斜率是 1.0V/秒

命令: #010+05.000 接收: !01 设置地址 01 通道 0 的输出值 5.0V,返回成功

命令: \$0160 接收: !01+05.000 读地址 01 通道 0 的最新输出值,返回 5.000

命令: \$0180 接收: !01+02.000 读地址 01 通道 0 的当前值,返回 02.000V

命令: \$0180 接收: !01+03.500 读地址 01 通道 0 的当前值,返回 3.5V

相关命令: 2.15 节 #AAN(数据), 2.20 节 \$AA6N

相关主题: 3.7 节 当前值回读

注意: C-7024 有效

2.14 ~**

说明: 主机 OK

主机把 "Host OK"的信息送到所有的模块

语法: ~**[CHK](cr)

~ 一个定界符

** 向所有模块发命令

回答: 无

示例:

命令: ~** 接收: 无

相关命令: 2.26 节~AA0, 2.27 节~AA1, 2.28 节~AA2,

2.29 节~AA3EVV, 2.30 节~AA4, 2.31 节~AA4N, 2.32 节~AA5, 2.33 节~AA5N

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

2.15 ~AA0

说明: 读模块状态

语法: ~AA0[CHK](cr)

定界符

AA 模块地址 (00~FF)

0 读模块状态

回答:有效命令: !AASS[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址 (00~F)

SS 模块状态,状态将被存到 EEPROM,它只可以被~AA1 命令复位。

7	6	5	4	3	2	1	0
*1		保留			*2	保	留

*1: 主看门狗允许标志: 0=禁止 1=开启

*2: 主看门狗超时标志: 0=清除 1=设置

示例:

命令: ~010 接收: !0104

读地址 01 模块状态,返回 04,主看门狗超时标志被设置

相关命令: 2.27 节 ~AA1, 2.29 节 ~AA3EVV

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

2.16 ~AA1

说明: 复位模块状态

语法: ~AA1 [CHK](cr)

~ 定界符

AA 模块地址(00~FF)

1 读模块状态

回答: 有效命令: !AA[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例:

命令: ~010 接收: !0104

读地址 01 模块状态,返回 04,主看门狗超时标志被设置

命令: ~011 接收: !01

复位地址 01 模块状态,返回成功命令:~010 接收:!0100

读地址 01 模块状态,返回 00,模块状态被清除

相关命令: 2.25 节 ~**, 2.26 节 ~AA0

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

2.17 ~AA2

说明:读主看门狗溢出时间

语法:~AA2[CHK](cr)

~ 定界符

AA 模块地址(00~FF)

2 读主看门狗溢出时间

回答:有效命令: !AAEVV[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

E 主看门狗允许状态, 1 = 开启 0= 关闭

VV 以十六进制表示的溢出时间,1 个数字代表 0.1 秒 01 = 0.1 秒,FF = 25.5 秒

示例:

命令: ~012 接收: !010FF

读地址 01 主看门狗溢出时间,返回主看门狗失效,时间间隔 25.5 秒

相关命令: 2.25 节~**, 2.26 节~AA0, 2.27 节~AA1,

2.29 节~AA3EVV, 2.30 节~AA4,

2.31 节~AA4N, 2.32 节~AA5, 2.33 节~AA5N

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

2.18 ~AA3EVV

说明:设置主看门狗溢出时间

语法: ~AA3EVV[CHK](cr)

~ 定界符

AA 模块地址(00~FF)

3 设置主看门狗溢出时间

0 读模块状态

E 1 = 开启主看门狗, 0=关闭主看门狗

VV 溢出时间,从 01 到 FF, 1 个数字代表 0.1 秒

回答: 有效命令: !AA[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例:

命令: ~010 接收: !0100

读地址 01 模块状态,返回时主看门狗溢出时间被清除,主看门狗被禁用

命令: ~013164 接收: !01

设置地址 01 主看门狗溢出时间为 10 秒,并且主看门狗开启,返回成功

命令: ~012 接收: !0164

读地址 01 主看门狗溢出时间,返回时主看门狗开启,时间间隔为 10 秒

命令: ~** 接收: 无

复位主看门狗定时器。等大约 10 秒并且不发送~**命令,模块的 LED 指示灯开始闪烁,它表示主看门狗溢出时间被设置

命令: ~010 接收: !0104 读地址 01 模块状态,返回为主看门狗溢出时间被设置,主看门狗被禁用

命令:~011 接收:!01 复位地址 01 主看门狗溢出时间,返回为成功

相关命令: 2.25 节~**, 2.26 节~AA0, 2.27 节~AA1,

2.28 节~AA2,2.30 节~AA4,2.31 节~AA4N,2.32 节~AA5,2.33 节~AA5N

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

2.19 ~AA4N

说明: 读通道 N 的安全值

语法: ~AA4N [CHK](cr)

~ 定界符

AA 模块地址(00~FF)

4 读安全值

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

回答: 有效命令: !AA(数据)[CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

数据 安全值

示例:

命令: ~0140 接收: !01+00.000 读地址 01 通道 0 的安全值,返回为+0.0

相关命令: 2.25 节~**, 2.26 节~AA0, 2.27 节~AA1,

2.28 节~AA2, 2.29 节~AA3EVV, 2.33 节~AA5N

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

注意: C-7024 有效

2.20 ~AA5N

说明:设置通道 N 安全值

语法: ~AA5N[CHK](cr)

定界符

AA 模块地址 (00~FF)

5 把当前输出作为安全值

N 通道(ICDAM-7022: 0~1; ICDAM-7024: 0~3)

回答: 有效命令: !AA [CHK](cr)

无效命令: ?AA[CHK](cr)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

示例: (ICDAM-7024)

命令: #010+05.000 接收: !01

输出地址 01 通道 0 的值为+5.0, 返回为成功

命令: ~0150 接收: !01

设置地址01通道0的安全值,返回为成功

相关命令: 2.25 节~**, 2.26 节~AA0, 2.27 节~AA1,

2.28 节~AA2, 2.29 节~AA3EVV, 2.31 节~AA4N

相关主题: 3.2 节 模块状态, 3.3 节 双看门狗操作

注意: C-7024 有效

3 应用注释

3.1 INIT* 端子操作

每个 ICDAM-7000 模块都有一个内置的 EEPROM,用来保存模块的配置信息。例如地址、波特率、信号类型、以及其他参数。有时,用户可能遗忘了模块的配置,因此,ICDAM-7000 系列有一个特殊的模式 "INIT 模式",它可以帮助用户解决这一问题,"INIT 模式"下模块将被强行设置为 Address = 00, baudrate = 9600, no checksum。

要激活 INIT 模式,只需按以下方法做:

- 1. 模块断电
- 2. 将 INIT*端和 GND 短接
- 3. 模块上电
- 4. 在 9600bps 下发送命令\$002(cr), 此时将从 EEPROM 中读取模块的配置信息

3.2 模块状态

重新上电将导致当前输出值变成上电值,而模块输出值可以通过接收主机命令设定。

主看门狗超时溢出时,模块的当前输出将变成安全值。看门狗超时溢出时间将被置位,模块的 LED 灯将开始闪烁,用户必须通过命令使模块变到正常操作状态。

3.3 双看门狗操作

双看门狗 = 模块看门狗 + 主看门狗

模块看门狗指模块内硬件复位电路,当工作在恶劣或干扰严重的环境中时,这个硬件电路将使模块在受到干扰时,及时复位,保证模块永远不"死机",提高可靠性。

主看门狗指模块内软件实现的看门狗,它主要防止网络通讯出现问题或主机死机。当主看门狗溢出时,模块将输出已设定的"安全值",这样就可以保证控制对象不发生意外。

ICDAM-7000 系列模块的双看门狗功能将保证系统更加可靠和安全。

3.4 复位状态

复位状态在模块上电或模块看门狗复位时被置位,当用读复位状态命令(\$AA5)时,复位状态被清除,这对使用者检查模块工作状态是有用处的。当模块复位状态被置位时,说明模块复位过,并且模块输出值可能为上电值。当复位状态被清除,说明模块没有被复位过,输出也没有被改变。

3.5 模拟量输出

模块的输出有3个不同的条件:

1. 安全值

如果主看门狗超时溢出,模块状态被置位,输出将被自动设定为安全值,此

时输出命令例如#AA(数据)或#AAN(数据)将被模块忽略,响应回答"!",也就是用输出命令不能改变输出值了。主看门狗溢出后的这种状态将被储存在EEPROM,只能通过~AA1命令清除这种状态。如果用户想改变输出值,首先必须清除主看门狗超时溢出时间,然后再发送输出命令改变输出值。

2. 上电值

只有模块被重新上电,模块输出将被置成设定的上电值。

3. 输出命令值

如果主看门狗溢出时间被清除,用户发出#AA(数据)或#AAN(数据)命令改变模块输出值,模块将返回成功(接收>),假如用户设定的输出值超过模块的最大输出值,输出值将变成模块的最大值,并且返回超范围状态(接收?AA)。假如用户设定的输出值小于模块的最小输出值,输出值将变成模块的最小值,并且返回超范围状态(接收?AA)。

3.6 斜率控制

斜率控制是用来调整输出坡度的,大多数模拟量输出都是瞬时改变的,在大多数应用中,这种特性并不适合,而逐步变化的斜率控制输出更为合适。

C-7024 允许对输出斜率进行编程,当输出命令被送到模块中改变模拟量输出值时,输出将自动按新设定的斜率变化,每秒可以改变 100 次输出,输出将平稳的到达最后的输出值。

3.7 当前输出值回读

ICDAM-7024 没有 AD 变换器监测当前输出信号,但是 ICDAM-7024 可以响应送到 DAC 上的当前输出值,它并不能反映真正的 DAC 值,也不能检测到连线或负载的异常错误。