Goodness of Fit

Shyamalkumar, N. D.

Dept. of Statistics and Actuarial Science, The University of Iowa, Iowa City, USA.

The Goodness of Fit Problem

- We discussed a small subset of count distributions
- None of them may be a good/useful model for the data at hand
 - ► Goodness of Fit Problem determining if one is adequate
- Need for a method to make sound decision on the fit
 - Introducing one such is the goal of the section
- We do so via an example

Example: Singapore Automobile Data

- ▶ A 1993 portfolio from a major insurance company in Singapore
- ▶ 7,483 automobile insurance policies
- ▶ Policy level data count variable is the number of accidents
- Maximum of 3 accidents per policy observed
- ▶ Average of 69.89 accidents per 1,000 policies ($\overline{N} = 0.06989$)

Observed Accident Counts per Policy

Count	Observed
(k)	(m_k)
0	6,996
1	455
2	28
3	4
Total	7, 483

Fitting a Poisson

- With the Poisson distribution
 - ▶ The MLE of λ is $\widehat{\lambda} = \overline{N}$.
 - Fitted probabilities \widehat{p}_k below use $\widehat{\lambda}$
 - ▶ Fitted counts are 7,483 times the fitted probabilities
- ► Created a cell for counts ≥ 4
 - To account for remaining fitted probability

Table. Comparison of Observed to Fitted Counts

Count	Observed	Fitted Counts using the
(k)	(m_k)	Poisson Distribution $(n\widehat{p}_k)$
0	6, 996	6, 977.86
1	455	487.70
2	28	17.04
3	4	0.40
≥ 4	0	0.01
Total	7, 483	7, 483.00

Adequacy of the Poisson Model

► For goodness of fit, consider *Pearson's chi-square statistic*

$$\sum_{k} \frac{\left(m_{k} - n\widehat{p}_{k}\right)^{2}}{n\widehat{p}_{k}}.$$

- Has an asymptotic chi-square distribution
 - ▶ If the Poisson distribution is the correct model
- ightharpoonup The degrees of freedom (df) equals
 - the number of cells minus one minus the number of estimated parameters.
- ► For the Singapore data
 - ightharpoonup df = 5 1 1 = 3; 99-th %ile equals 11.34487
 - ▶ The Pearson's statistic equals 41.98 (> 11.34487)
 - ► The basic Poisson model is **inadequate**
- ▶ In the exercise below, you will fit a zero-inflated Poisson