MAT157: Analysis I — Tutorial 7

Topics: Uniform Continuity.

Question 1.

- Briefly describe the differences between continuity and uniform continuity.
- Show that if $f: U \to \mathbb{R}$ is uniformly continuous, then f is continuous.
- Find a function $f: U \to \mathbb{R}$ that is continuous but not uniformly continuous.

Question 2. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Question 3. In lecture, you proved that continuous functions on closed and bounded intervals are uniformly continuous. We will examine why the conditions on the domain are necessary. Consider $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$, and $g:[0,\infty)\to\mathbb{R}$ defined by $g(x)=x^2$.

- (a) Prove that f and g are continuous. *Hint:* Limit laws.
- (b) Prove that f is *not* uniformly continuous.
- (c) Prove that q is not uniformly continuous.
- (d) **Bonus:** Given $\alpha, \beta > 0$, define $f_{\alpha} : (0, \alpha) \to \mathbb{R}$, $f_{\beta} : [\beta, \infty) \to \mathbb{R}$ by $f_{\alpha}(x)$, $f_{\beta}(x) = \frac{1}{x}$. Prove that f_{α} is *not* uniformly continuous for any $\alpha > 0$, and f_{β} is uniformly continuous for any $\beta > 0$.

Question 4. Prove that $f(x) = \sqrt{x^2 + 1}$ is uniformly continuous on (0,1). *Hint:* Make use of the theorem mentioned in Question 3.

Bonus Problem. Recall the following result from lecture: "If $f:[a,b] \to \mathbb{R}$ is continuous, then f is uniformly continuous." To prove this, for a given $\varepsilon > 0$ we defined the set

$$C_{\varepsilon} = \{c \in [a, b] : \exists \delta > 0, \forall x, y \in [a, c]; |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon\}$$

and you proved that $b = \sup C_{\varepsilon}$. We will complete the proof of the main result by showing that $b \in C_{\varepsilon}$, namely f is uniformly continuous on [a, b].

- (a) Argue that there is $\delta_1 > 0$ such that $|f(x) f(b)| < \frac{\varepsilon}{2}$ for all $x \in (b \delta_1, b]$.
- (b) Argue that there is $c_0 \in C_{\varepsilon}$ such that $b \frac{\delta_1}{2} < c \le b$, and conclude that there is $\delta_2 > 0$ such that $|f(x) f(y)| < \varepsilon$ for all $x, y \in [a, c_0]$ such that $|x y| < \delta_2$.
- (c) Define $\delta = \min\left\{\frac{\delta_1}{2}, \delta_2\right\}$, and fix $x, y \in [a, b]$ such that $|x y| < \delta$. If $x, y \in \left[a, b \frac{\delta_1}{2}\right]$, argue that $|f(x) f(y)| < \varepsilon$.
- (d) Assume, without loss of generality, that $x \in \left[b \frac{\delta_1}{2}, b\right]$. Argue that $|y b| < \delta_1$ and conclude that $|f(x) f(y)| < \varepsilon$.