Risque réel

Bruno Bouzy

bruno.bouzy@u-paris.fr

Cours apprentissage machine

Janvier 2022

Objectif

- Visualiser le risque réel de l'approximation de 4 fonctions cibles de « complexité » croissante
- Le risque réel correspond à l'erreur commise dans la réalité.
- On ne connaît pas la réalité, on l'approxime par l'espace des hypothèses.
- Théoriquement, le risque réel est inconnu.
- On connaît et on travaille dans l'espace des hypothèses.
- Le risque empirique est mesuré effectivement dans l'espace des hypothèses et il correspond à l'erreur commise dans cet espace.
- Ici, pour visualiser le risque réel, on triche : on suppose que la réalité est une discrétisation haute de l'intervalle [0, 1] avec M=100 000 points.
- Et que l'espace des hypothèses utilise des discrétisations avec N points et N = M/2, M/4, M/8, etc tant que N>2
- On veut montrer que le risque réel diminue lorsque N augmente

Les 4 fonctions cibles

- $f: [0, 1] \rightarrow [0, 1]$
 - f(x) = 1-x
 - f(x) = x avec 2 premiers chiffres inversés
 - f(x) = fdecale(x)
 - La ieme décimale de f(x) est la jième décimale de x
 - Avec j = i + di/3
 - Avec di : ième décimale de x
 - f(x) = random()

$$f(x) = 1-x$$

Risque Réel

inverser les 2 premiers chiffres

fdecale(x)

Fdecale sur [0.3, 0.4]

Fdecale sur [0.6, 0.7]

Fdecale sur [0.9, 1]

Fdecale sur [0.60, 0.61]

f(x)=random()

Risque réel

Conclusion

- Pour les 3 premières fonctions
 - Biais = 0
 - Le risque réel tend vers 0 lorsque N tend vers l'infini
 - Plus ou moins vite selon la complexité de f
- Pour fdecale :
 - Fdecale est une fonction cible très « compliquée visuellement »
 - Mais le biais d'approximation avec des fonctions constantes par intervalles est cependant nul
- Pour la fonction random()
 - Biais = 0.3
 - Le risque réel est constant