1

2

3

4

1

2

1

2

3

4

WHAT IS CLAIMED IS:

1	1. A method for designing an integrated circuit (IC) having IC parameters
2	including process, circuit, and environmental design parameters comprising the steps
3	of:
4	using design tools to layout and configure circuit macros making up said IC;
5	determining a leakage power for each of said circuit macros;
6	determining average leakage power sensitivities for said circuit macros to
7	variations in said IC parameters;
8	selecting first parameters from said IC parameters in response to analyzing
9	said average leakage power sensitivities; and
10	reducing a leakage power for one or more selected circuit macros of said
11	circuit macros of said IC by modifying one or more of said first parameters.

- 2. The method of claim 1, wherein said circuit macros are classified as timingnoncritical circuit macros and timing-critical circuit macros, wherein said timingnoncritical circuit macros may have said IC parameters modified without significantly affecting an overall IC performance.
- 3. The method of claim 1, wherein said one or more selected circuit macros correspond to timing-noncritical circuit macros.
 - 4. The method of claim 1 further comprising the step of determining a power dissipation margin as a difference between a first design power dissipation for said IC and a second power dissipation determined for said IC after said step of reducing said leakage power.

1	5. The method of claim 4 further comprising the step of redesigning one of said									
2	circuit macros corresponding to said timing-critical circuit macros using said power									
3	dissipation margin to improve a performance of said redesigned circuit macro while									
4	keeping said overall IC power substantially equal to or below said first design power									
5	dissipation for said IC.									
1	6. The method of claim 1, wherein said average leakage sensitivity is determined									
2	by a method comprising the steps of:									
3	determining occurrence probabilities for each input node of said circuit									
4	macros;									
5	calculating state occurrence probabilities for each cell within said circuit									
6	macros;									
7	retrieving predetermined leakage data and leakage sensitivity data as a									
8	function of said IC parameters for cell inputs for said circuit macros from the cell									
9	library;									
10	calculating an average leakage current for said circuit macros in response to									
11	said leakage data from said retrieving step, said occurrence probabilities for each of									
12	said input nodes of said circuit macro, and said state occurrence probabilities of each									
13	cell within said circuit macros;									
14	calculating an average leakage sensitivity for each circuit macro									
15	corresponding to each of said IC parameters in response to the leakage sensitivity									
16	data from said retrieving step, said occurrence probabilities for each of said input									
17	nodes of said circuit macro, and said state occurrence probabilities of each cell within									
18	said circuit macros; and									
19	saving average leakage current sensitivity data for each parameter for each									

circuit macro for use in optimizing said IC design.

1	7. The method of claim 6, wherein said leakage data and said leakage sensitivity									
2	data for said IC parameters for said cell inputs are predetermined by using circuit									
3	analysis and circuit simulation tools.									
1	8. The method of claim 6, wherein said step of calculating said average leakage									
2	current uses a method comprising the steps of:									
3	multiplying leakage currents for each logic state of each node of each cell of									
4	said circuit macro times corresponding logic state occurrence probabilities for each of									
5	said nodes generating a node leakage current for each node of each cell;									
6	summing said node leakage current across each node of said cell generating									
7	cell leakage currents; and									
8	summing said cell leakage currents across each cell generating said average									
9	macro leakage current.									
1	9. The method of claim 6, wherein said step of calculating said average leakage									
2	sensitivity for a parameter P of said IC parameters uses a method comprising the steps									
3	of:									
4	multiplying a leakage sensitivity for said parameter P for each logic state of									
5	each node of each cell of said circuit macro times corresponding logic state									
6	occurrence probabilities for each of said nodes generating a node leakage sensitivity									
7	for each node of each cell;									
8	summing said node leakage sensitivities across each node of said cell									
9	generating a cell leakage sensitivity for said parameter P; and									
10	summing said cell leakage sensitivities across each cell of said macro									
11	generating said average macro leakage sensitivity.									

- 1 10. The method of claim 6 further comprising the step of outputting said saved
- 2 leakage sensitivity data during IC design in response to a designer request to evaluate
- 3 affects of modifying said IC parameters to reduce a macro leakage current.

2

13.

1	11. A computer program product for determining an average macro leakage									
2	power sensitivity for an IC parameter, said computer program product embodied in a									
3	machine readable medium, including programming for a processor, said computer									
4	program comprising a program of instructions for performing the program steps of:									
5	using design tools to layout and configure circuit macros making up said IC;									
6	determining a leakage power for each of said circuit macros;									
7	determining average leakage power sensitivities for said circuit macros to									
8	variations in said IC parameters;									
9	selecting first parameters from said IC parameters in response to analyzing									
10	said average leakage power sensitivities; and									
11	reducing a leakage power for one or more selected circuit macros of said									
12	circuit macros of said IC by modifying one or more of said first parameters.									
1	12. The computer program product of claim 11, wherein said circuit macros are									
2	classified as timing-noncritical circuit macros and timing-critical circuit macros,									
3	wherein said timing-noncritical circuit macros may have said IC parameters modified									
4	without significantly affecting an overall IC performance.									

The computer program product of claim 11, wherein said one or more selected

circuit macros correspond to timing-noncritical circuit macros.

1	14. The computer program product of claim 11 further comprising the step of									
2	determining a power dissipation margin as a difference between a desired design									
3	power dissipation for said IC and a design power dissipation determined for said IC									
4	after said step of reducing said leakage power.									
1	15. The computer program product of claim 14 further comprising the step of									
2	redesigning one of said circuit macros corresponding to said timing-critical circuit									
3	macros using said power dissipation margin to improve a performance of said									
4	redesigned circuit macro while keeping said overall IC power substantially equal to or									
5	below said desired design power dissipation for said IC									
1	16. The computer program product of claim 11, wherein said average leakage									
2	sensitivity is determined by a method comprising the steps of:									
3	determining occurrence probabilities for each input node of said circuit									
4	macros;									
5	calculating state occurrence probabilities for each cell within said circuit									
6	macros;									
7	retrieving predetermined leakage data and leakage sensitivity data as a									
8	function of said IC parameters for cell inputs for said circuit macros from the cell									
9	library;									
10	calculating an average leakage current for said circuit macros in response to									
11	said leakage data from said retrieving step, said occurrence probabilities for each of									
12	said input nodes of said circuit macro, and said state occurrence probabilities of each									
13	cell within said circuit macros;									
14	calculating an average leakage sensitivity for each circuit macro									
15	corresponding to each of said IC parameters in response to the leakage sensitivity									

data from said retrieving step, said occurrence probabilities for each of said input

8

9

for each node of each cell;

17	nodes of said circuit macro, and said state occurrence probabilities of each cell within									
18	said circuit macros; and									
19	saving average leakage current sensitivity data for each parameter for each									
20	circuit macro for use in optimizing said IC design.									
1	17. The computer program product of claim 16, wherein said leakage data and									
2	said leakage sensitivity data for said IC parameters for said cell inputs are									
3	predetermined by using circuit analysis and circuit simulation tools.									
1	18. The computer program product of claim 16, wherein said step of calculating									
2	said average leakage current uses a method comprising the steps of:									
3	multiplying leakage currents for each logic state of each node of each cell of									
4	said circuit macro times corresponding logic state occurrence probabilities for each of									
5	said nodes generating a node leakage current for each node of each cell;									
6	summing said node leakage current across each node of said cell generating									
7	cell leakage currents; and									
8	summing said cell leakage currents across each cell generating said average									
9	macro leakage current.									
1	19. The computer program product of claim 16, wherein said step of calculating									
2	said average leakage sensitivity for a parameter P of said IC parameters uses a									
3	method comprising the steps of:									
4	multiplying a leakage sensitivity for said parameter P for each logic state of									
5	each node of each cell of said circuit macro times corresponding logic state									
6	occurrence probabilities for each of said nodes generating a node leakage sensitivity									

summing said node leakage sensitivities across each node of said cell

generating a cell leakage sensitivity for said parameter P; and

10	SI	umming	said	cell	leakage	sensitivities	across	each	cell	of	said	macro
11	generating said average macro leakage sensitivity.											

20. The computer program product of claim 16 further comprising the step of outputting said saved leakage sensitivity data during IC design in response to a designer request to evaluate affects of modifying said IC parameters to reduce a macro leakage current.