

Etude d'une roue

Le système étudié est composé :

- d'une barre S_1 qui tourne autour de l'axe $O(\overline{z_0})$
- d'un disque de centre A en liaison pivot glissant d'axe O $\overrightarrow{y_1}$ avec S1 tel que $\overrightarrow{OA}=-3t.\overrightarrow{y_1}$
- d'un point P tel que $\overrightarrow{AP} = R \cdot \cos \theta(t) \cdot \overrightarrow{x_2}$
- d'un point B tel que $\overrightarrow{AB} = L.\overrightarrow{x_2}$
- 1) Représenter les figures des rotations planes (changements de repères)
- 2) Déterminez $\overrightarrow{\Omega}_{R_1/R_0}$; $\overrightarrow{\Omega}_{R_2/R_1}$ et $\overrightarrow{\Omega}_{R_2/R_0}$
- 3) Calculer la vitesse du point P par rapport à R₂ par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 4) Calculer la vitesse du point P par rapport à R_1 par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 5) Calculer la vitesse du point P par rapport à R_0 par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 6) Calculer la vitesse du point B par rapport à R₂ par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 7) Calculer la vitesse du point B par rapport à R_1 par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 8) Calculer la vitesse du point B par rapport à R_1 par changement de point Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 9) Calculer la vitesse du point B par rapport à R_0 par dérivation Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$
- 10) Calculer la vitesse du point B par rapport à R_0 par changement de point Vous l'exprimerez dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$

