Computerversuch

Noah Hüsser <yatekii@yatekii.ch>

October 25, 2016

1 Arbeitsgrundlagen

Die Geschwindigkeit eines Objektes kann durch 1 berechnet werden.

$$v = \frac{s}{t} \tag{1}$$

2 Durchführung

Die Messwerte zu den einzelnen Versuchen wurden durch den Dozenten zur Verfügung gestellt. Sie sind alle im Anhang vorzufinden. Die zur Versuchsdurchführung verwendeten Tools beinhalten den Taschenrechner, Excel und Python mit diversen Libraries (Jupyter, Scipy, Pandas, Matplotlib, Seaborn).

3 Auswertung

Dieses Kapitel befasst sich mit den Möglichkeiten und Tricks der Fehlerrechnung. Normalerweise würde dieses Kapitel separat geführt, jedoch ist das Ziel dieses Versuches, die Fehlerrechnung näher kennenzulernen.

3.1 Schallgeschwindigkeit

Die Schallgeschwindigkeit soll durch die Mittlere Laufzeit über eine bekannte Strecke bestimmt werden.

3.1.1 Messwerte

Länge der Messstrecke : $s = 2.561 \pm 0.003m$

Raumtemparatur : $\theta = 23^{\circ}C$

Messung [1]	Laufzeit [s]	Messung [1]	Laufzeit [s]
1.0000	0.0076	11.0000	0.0074
2.0000	0.0072	12.0000	0.0076
3.0000	0.0070	13.0000	0.0070
4.0000	0.0076	14.0000	0.0072
5.0000	0.0068	15.0000	0.0069
6.0000	0.0070	16.0000	0.0072
7.0000	0.0077	17.0000	0.0073
8.0000	0.0072	18.0000	0.0072
9.0000	0.0073	19.0000	0.0080
10.0000	0.0077	20.0000	0.0076

3.1.2 Mittlere Laufzeit und ihre Unsicherheit laut Wikipedia

Wikipedia führt eine Formel 2 zur Berechnung der Schallgeschwindigkeit bei einer bestimmten Temperatur. Diese kann auch in *Horst Kuchlings Taschenbuch der Physik* gefunden werden.

$$c_{luft} = (331.3 + 0.606 \cdot \theta) \frac{m}{s} = (331.3 + 0.606 \cdot 23) \frac{m}{s} = 345.24 \frac{m}{s}$$
 (2)

3.1.3 Mittlere Laufzeit und ihre Unsicherheit

Mittlere Laufzeit :
$$\bar{t} = \frac{1}{20} \sum_{i=1}^{20} t_i = 7.32ms$$

Fehler der mittleren Laufzeit : $s_{\bar{i}} = \sqrt{\frac{\sum_{1}^{20} (t_i - \bar{t})^2}{20 \cdot 19}} = 0.000074ms$
Standardabweichung : $s = \sqrt{\frac{\sum_{1}^{20} (t_i - \bar{t})^2}{19}} = 0.00033ms$

Mithilfe des zuvor ermittelten Mittelwertes kann die Mittlere Schallgeschwindigkeit als:

$$\bar{c} = 349.74 \frac{m}{s}$$

festgestellt werden. Die Unicherheit des Mittelwertes der Schallgeschwindigkeit kann mithilfe des Gauss'schen Fehlerfortpflanzungsgesetztes ersichtlich in (1) errechnet werden.

$$R(x, y) = c(s, t) = \frac{s}{t}$$

$$S_{\overline{R}} = \sqrt{\left(\frac{\partial R}{\partial x}|_{\overline{R}} \cdot s_{\overline{x}}\right)^2 + \left(\frac{\partial R}{\partial y}|_{\overline{R}} \cdot s_{\overline{y}}\right)^2}$$

$$S_{\overline{R}} = \sqrt{\left(\frac{1}{t}s_{\overline{s}}\right)^2 + \left(-\frac{\overline{s}}{t^2}s_{\overline{t}}\right)^2}$$

$$s_{\overline{s}} = 3.54 \frac{m}{s}$$

Relativer Fehler der Zeit : 1.00% Relativer Fehler der Geschwidigkeit : 1.01%

Figure 1: Laufzeiten des Schalls

3.2 Eisengehalt

3.2.1 Messwerte

Messung [1]	Gehalt [%]	Absoluter Fehler [%]
1.0000	20.3000	1.2000
2.0000	21.9000	1.3000
3.0000	21.1000	1.1000
4.0000	19.6000	0.8000
5.0000	19.9000	1.3000
6.0000	18.0000	1.3000
7.0000	19.4000	1.0000
8.0000	23.2000	2.0000
9.0000	21.6000	0.8000

3.2.2 Einfacher Mittelwert

Der einfache Mittelwert und sein Fehler ergeben sich analog zu Aufgabe 1.

$$\overline{x} = 20.56\%$$
$$s_{\overline{x}} = 0.52\%$$

3.2.3 Gewichteter Mittelwert

Der gewichtete Mittelwert und sein Fehler werden als

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}} = 20.40\%$$

$$s_{\overline{x}} = \frac{1}{\sqrt{\sum_{i=1}^{n} g_{\overline{x_i}}}} = 0.36\%$$

bestummen.

Figure 2: Eisengehalt in einer Legierung

3.3 Federkonstante

3.3.1 Messwerte

Kraft [N]	Auslenkung [m]
4.1400	0.2000
6.3600	0.3500
7.9200	0.4200
9.8600	0.4600
11.1100	0.5100
11.7000	0.5400
12.7600	0.5900
14.2100	0.6700
15.2900	0.7100
16.9800	0.8000

3.3.2 Rechnung mittels Taschenrechner

3.3.3 Linear Regression

Mit dem Rechner Die Steigung der Regressionsgeraden und somit die Federkonstante *k* wird wie folgt erhalten:

$$k = \frac{\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{10} (x_i - \overline{x})^2} = 22.53 \frac{N}{m}$$

Der zugehörige Achsenabschnitt und somit die Ruhekraft F_0 errechnet sich aus:

$$F_0 = \overline{y} - k \cdot \overline{x} = -0.79N$$

Die empirische Korrelation ist:

$$r_{xy} = \frac{\sum_{1}^{10} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{1}^{10} (x_i - \overline{x})^2 \cdot \sum_{1}^{10} (y_i - \overline{y})^2}} = 0.9939$$

mit zugehörigem Bestimmtheitsmass:

$$R^2 = r_{xy}^2 = 0.9879$$

Mit scipy Der Fit errechnet die folgenden relevenanten Werte für das Experiment:

$$k = 22.53 \frac{N}{m}$$

$$F_0 = -0.79 N$$

$$r_{xy} = 0.9939$$

Figure 3: Federkraft im vorgespannten Zustand

3.4 Offset, Amplitude, Frequenz und Phase eines Pendels

Von einem Pendel ist die Auslenkung in y-Richtung zu verschiedenen Zeitpunkten t_i bekannt. Mithilfe der Methode der kleinsten Quadrate können Offset, Amplitude, Frequenz und Phase des Pendels bestimmt werden. Die Funktion des Pendels welche mit dem Fit angenähert wird schreibt sich wie folgt:

$$y(t) = A \cdot exp(-\Gamma \cdot t) \cdot sin(2 \cdot \pi \cdot f \cdot t - \delta) + y_0$$

3.4.1 Messwerte

Zeit [s]	Auslenkung [m]						
0.5000	-0.3520	12.0000	-0.2480	23.5000	0.4110	35.0000	-0.0860
1.0000	-0.2040	12.5000	-0.3530	24.0000	0.4720	35.5000	-0.1300
1.5000	0.1240	13.0000	-0.3920	24.5000	0.3810	36.0000	-0.0750
2.0000	0.2550	13.5000	-0.5760	25.0000	0.4480	36.5000	-0.0980
2.5000	0.3020	14.0000	-0.5430	25.5000	0.3790	37.0000	0.0560
3.0000	0.5160	14.5000	-0.4680	26.0000	0.3400	37.5000	0.0560
3.5000	0.7540	15.0000	-0.4960	26.5000	0.2030	38.0000	0.0720
4.0000	0.8190	15.5000	-0.5720	27.0000	0.1840	38.5000	0.0060
4.5000	0.8660	16.0000	-0.4390	27.5000	0.1110	39.0000	0.1360
5.0000	0.9160	16.5000	-0.3620	28.0000	0.0890	39.5000	0.1800
5.5000	1.0140	17.0000	-0.3940	28.5000	0.0940	40.0000	0.1100
6.0000	0.9420	17.5000	-0.2110	29.0000	0.1060	40.5000	0.0870
6.5000	0.9310	18.0000	-0.2920	29.5000	-0.0030	41.0000	0.2250
7.0000	0.8580	18.5000	-0.1220	30.0000	-0.0130	41.5000	0.1130
7.5000	0.6780	19.0000	-0.0080	30.5000	-0.0180	42.0000	0.1840
8.0000	0.6300	19.5000	0.0840	31.0000	-0.0410	42.5000	0.1670
8.5000	0.5380	20.0000	0.1260	31.5000	-0.1470	43.0000	0.1980
9.0000	0.4340	20.5000	0.1920	32.0000	-0.0950	43.5000	0.2120
9.5000	0.3230	21.0000	0.2000	32.5000	-0.1440	44.0000	0.1420
10.0000	0.1850	21.5000	0.2160	33.0000	-0.2320	44.5000	0.1280
10.5000	0.0680	22.0000	0.4000	33.5000	-0.1620	45.0000	0.1380
11.0000	-0.0730	22.5000	0.3290	34.0000	-0.1120		
11.5000	-0.2040	23.0000	0.4090	34.5000	-0.1710		

3.4.2 Value Fitting

Mit der Methode der Chi-Quadrate (nichtlineare Regression) wurden durch scipy die folgenden besten Werte ermittelt:

Figure 4: Auslenkung eines Pendels über Zeit

$$A = (1.22 \pm 0.03)m$$

$$\Gamma = (0.05 \pm 0.0017) \frac{1}{s}$$

$$f = (0.05 \pm 0.0002) Hz$$

$$\delta = (-5.77 \pm 0.02)$$

$$y_0 = (0.05 \pm 0.01) m$$

3.5 Tiefpass

3.5.1 Messwerte

$$U_e = 4V_{pp} => \pm 2.0 \hat{V}$$

$$R = 500 \Omega$$

Frequenz [Hz]	U_a [V]	Phase [°]
100.0000	4.0000	-3.2400
500.0000	3.8000	-16.9000
1000.0000	3.3000	-31.3000

Frequenz [Hz]	U_a [V]	Phase [°]
1500.0000	2.8000	-43.6000
1592.0000	2.7000	-44.0000
5000.0000	1.1400	-72.4000
10000.0000	0.5800	-82.5000
100000.0000	0.0750	-90.0000

3.5.2 Berechnung von C

Die Kapazität C kann durch zwei verschiedene Funktionen bestimmt werden:

$$\Delta_a = \frac{\Delta_e}{\sqrt{1 + (2\pi f C R)^2}}$$

$$\phi = \arctan(-\omega R C)$$

Die Kapazität kann mit einem Fit an die Ausgangsspannung \boldsymbol{U}_a auf

$$C = 216.84nF$$
$$s_C = 0.93nF$$

und mit einem Fit an die Phase ${\cal U}_a$ auf

$$C = 197.54nF$$
$$s_C = 3.08nF$$

bestimmt werden.

Figure 5: Spannung eines Tiefpasses

Figure 6: Phase eines Tiefpasses

4 Resultate und Diskussion

4.1 Schallgeschwindigkeit

4.1.1 Ergebnisse

Grösse Wert

Schallgeschwing gkeit in Luft $c_{luft,wikipedia}$ Mittelwer $649.74\frac{m}{s}$ \overline{c} Unsicherhei $54\frac{m}{s}$ des
Mittelwertes $s_{\overline{c(s,t)}}$ Schallgeschwing gkeit $c_{luft} = \pm \frac{1}{c_{luft}} \pm \frac{1}{s}$ $s_{\overline{c_{luft}}}$

Der experimentell bestimmte Wert hat somit eine Abweichung von 1.27% von Literaturwerten. Dies zeigt dass der Wert ziemlich genau bestummen werden konnte. Des weiteren sind zu den Literaturwerten keine Toleranzen bekannt. Dies lässt darauf schliessen dass diese schlichtweg unbekannt sind oder einfach weggelassen wurden. Somit kann es gut sein dass der errechnete Wert im Toleranzbereich liegt.

Ausserdem liegen 13 von 20 Messpunkten innerhalb des Standardabweichungsintervalles. Dies sind 65% was ziemlich gut dem erwarteten Wert von 68% entspricht. Mit zusätzlichen Experimenten und Messungen würde sich der Wert gut gegen 68% annähern.

Die Messresultate sind alles in allem plausibel und ergeben gute Werte.

4.2 Eisengehalt

	gewichtet	ungewichtet
Mittelwert	20.56%	20.40%
Unsicherheit	0.52%	0.36%
Eisengehalt	(20.56 + 0.52)%	(20.40 + 0.36)%

die Resultate des gewichteten sowie ungewichteten Mittelwert unterscheiden sich um lediglich 0.7532%. Ein Unterschied im Promillebereich. Jedoch beträgt die Unsicherheit beim gewichteten Mittelwert ganze 30.55% weniger, was ihn um einiges präziser als den ungewichten Mittelwert macht. Er wäre dem ungewichteten Mittelwert vorzuziehen für weitere Berechungen.

4.3 Federkonstante

	TI-89	linear Regression
Federkonstante k	$22.53 \frac{N}{m}$	$22.53\frac{N}{m}$
Vorspannung F_0	-0.79N	-0.79N

	TI-89	linear Regression
Empirische Korrelation r_{xy}	0.9939	0.9939
Bestimmtheitsmass R^2	0.9879%	0.9879%

Beide betrachteten Methoden – mit dem TI-89 sowie auch mit der linearen Regression von scipy wurden identische Ergebnisse erzielt. Es ist somit anzunehmen, dass die beiden Instrumente mit der gleichen Algorithmik (wahrscheinlich die Methode der kleinsten Quadrate) arbeitet.

4.4 Pendel

Mit einem Fit der Gleichung für das gedämpfte Pendel lassen sich die nachstehenden charakteristischen Werte für das schwingende Pendel bestimmen.

Grösse	Wert
Amplitude A	(1.22 ± 0.03) m
Dämpfung Γ	$(0.05 \pm 0.0017)^{\frac{1}{6}}$
Frequenz f	(0.05 ± 0.0002) Hz
Phasenverschiebung δ	(-5.77 ± 0.02)
Anfangsauslenkung y_0	(0.05 ± 0.01) m

Bei einem Vergleich der gefitteten Kurve mit der Kurve der gemessenen Werten lässt sich feststellen dass diese Werte alle plausibel sind. Gute Anfangswerte waren nicht notwendig, der Fit hat bestens ohne geklappt!

4.5 Tiefpass

Bei diesem Versuch wurde wiederum mit einem nichtlinearen Fit gearbeitet. Wiederum war es keine Notwenigkeit die Startwerte zu berechnen. Bei diesem Versuch standen jedoch zwei verschiedene Messreihen zur Verfügung um die gesuchte Kapazität C zu bestimmen.

	C per Spannungskurve	C per Phase
Kapazität C	(216.84 ± 0.93) nF	(197.54 ± 3.08) nF

Bei diesem Versuch liefern beide alternativen Methoden unterschiedliche werte. Wie man bei den Plots 6 und 5 fder Fitting Curves sehen kann ist die Kurve des Spannungsfits sehr passgenau an den Messpunkten angelegt. Dies ist bei der Kurve des Phasenfits nicht so gut der Fall. Hier ist anzunehmen, dass das Datenset für den Fit der Phase zu klein beziehungsweise ungünstig war und somit kein so guter Fit gemacht werden konnte. Alles in allem wäre dem Spannungsfit mehr zu vertrauen.