Differentiable Dynamic Programming for Time Series Alignment

Тимур Гарипов, 517 группа Татьяна Шолохова, 517 группа Павел Коваленко, 517 группа Саня Щербаков, 522 группа

9 июня 2018

Постановка задачи

Рассматривается задача выравнивания временных рядов.

Дана нотная запись музыкальной композиции и аудиозапись этой композиции. Требуется каждому моменту времени в аудиозаписи сопоставить ноту, играемую в этот момент.

Описание датасета

В работе был использован датасет Bach 10, состоящий из 10 аудиозаписей фрагментов хоралов Баха, продолжительность фрагментов — от 25 до 40 секунд.

Каждая запись состоит из четырех дорожек, соответствующих четырем инструментам — скрипка, кларнет, саксофон и фагот. Есть как записи отдельных дорожек, так и сводная запись всех инструментов.

Для каждой дорожки дана ее идеальная нотная запись, однако фактическая игра от нее немного отклоняется. Также для всех дорожек дано правильное выравнивание аудио— и нотной записи. Для инструментов в выборке представлено от 15 до 25 различных нот.

Выравнивание

Для обеих последовательностей — нотной и аудиозаписи — выделим с равными интервалами ключевые точки, для которых будем искать выравнивание.

Обозначим за N_A число нот в последовательности, а в аудиозаписи возьмем N_B точек с равными интервалами. Тогда выравнивание можно представить в виде бинарной матрицы $Y \in \{0,1\}^{N_A \times N_B}$. Единица в позиции (i,j) означает, что в j-й момент времени проигрывалась i-я нота.

Выравнивание

Предположим, что последовательность нот при игре не изменилась и ни одна из нот не была пропущена. Тогда выравнивание можно представить в виде пути в матрице Y из клетки (1,1) в клетку (N_A,N_B) , при этом разрешены перемещения только вправо, вниз и вправо-вниз. Пример выравнивания — на рисунке ниже.

Метрика качества

Потребуем, чтобы N_B было больше N_A . Тогда можно потребовать, чтобы в каждый момент времени играла только одна нота, то есть для каждого момента времени требуется предсказать, какая нота сейчас играет.

Для матрицы это ограничение означает, что в каждом столбце может быть не больше одной единицы. Для пути в графе это ограничение равносильно запрету переходов вниз.

Метрика качества — $mean\ absolute\ deviation$ — суммарное (по моментам времени) отклонение индекса предсказанной ноты от истинного индекса.

Аудио признаки

В статье предложено использовать следующие признаки для аудиодорожки:

- MFCC признаки первые 5 коэффициентов.
- Root Mean Square Energy энергия фрейма.
- Spectral Centroid средняя частота спектра во фрейме.
- Spectral Bandwidth разброс частот спектра во фрейме.

Были использованы реализации этих признаков из библиотеки librosa.

Простое решение

Разбиваем датасет на две части. На первой части обучаем классификатор по числу различных нот — предсказываем вероятность того, что в момент времени t играет нота i.

Для второй части датасета построим матрицу $\theta \in \mathbb{R}^{N_A imes N_B}$. θ_{ij} соответствует невероятности того, что в момент времени j играет нота номер i, то есть штрафу за предсказание ноты i для момента времени j. Этот штраф можно получить из классификатора.

Теперь требуется найти в матрице путь из клетки (1,1) в клетку (N_A,N_B) с наименьшим суммарным штрафом. Эту задачу можно решить за $N_A \times N_B$ операций при помощи динамического программирования.

Поиск минимального пути

Дана матрица $N_A \times N_B$ штрафов. Нужно найти путь из клетки (1,1) в клетку (N_A,N_B) с наименьшим суммарным штрафом. На пути из клетки можно перемещаться в ее соседа справа или справа-снизу.

Заведем матрицу D размера $N_A \times N_B$. D_{ij} равно минимальному штрафу, за который можно проложить путь из (1,1) в (i,j). Будем заполнять эту матрицу по столбцам.

База динамики

$$D_{11} = \theta_{11}, \ D_{1j} = +\infty$$

Шаг динамики

$$D_{ij} = \min(D_{i-1,j}, D_{i-1,j-1}) + \theta_{ij}$$

Модель Тимура

Результаты экспериментов

Выборка была разбита на тренировочную и валидационную, по пять записей в каждой из частей.

Были рассмотрены три модели:

- Простая модель с логистической регрессией в качестве базового классификатора.
- Простая модель со случайным лесом в качестве базового классификатора.
- (Модель Тимура).

Инструмент	Модель 1	Модель 2	Модель 3
Скрипка	0.7804	0.4761	0
Кларнет	0.4527	0.2353	0
Саксофон	0.4930	0.4677	0
Фагот	0.6001	0.5650	0

Состав команды:

Тимур Гарипов, 517 группа Татьяна Шолохова, 517 группа Павел Коваленко, 517 группа Саня Щербаков, 522 группа