Name: Zhu Jin Shun

Student ID: 22101071d

Subject code: AMA1131

Subject lecturer: Dr Bob He

Assignment 1

C)
$$f(x) = \frac{\sqrt{9-x^2}}{x}$$
 $g(x) = avccos(x)$
 $fg = \sqrt{9-x^2}$ $avccos(x) = \frac{\sqrt{9-x^2} \cdot avccos(x)}{x}$

d)
$$\frac{9}{7} = \frac{\operatorname{arcos}(x)}{\sqrt{9-x^2}} = \frac{\operatorname{arccos}(x)-x}{\sqrt{9-x^2}}$$

e)
$$f \circ g$$

$$= f cg(x)$$

$$= f (avcos(4))$$

$$= g (4(x))$$

$$= g (4(x))$$

$$=\frac{\sqrt{9-\cos sC_4^2}}{\arccos (4)}$$

$$=\frac{\sqrt{9-\cos sC_4^2}}{\arccos (4)}$$

$$=arcus(\frac{\sqrt{9-x^2}}{4})$$

$$fog = \frac{\sqrt{q - arccos (f_q)^2}}{arccos (f_q)} = arcos (\frac{\sqrt{q - x^2}}{4x})$$

Let
$$\theta = \operatorname{arcton}(C_{\overline{A}})$$
, hypotenuse = h

 $h = \sqrt{3^2 + 5^2} = \sqrt{34}$

Graph: χ

Sin (20)= 2
$$\sin(\theta)$$
 cos (0)
= 2 $\times \frac{3}{54}$ $\times \frac{1}{134}$

3)
$$f(x) = \frac{3x-2}{x+1}$$
 Find $f'(y) = \frac{3x-2}{x+1}$ Find

Find
$$f''(y)$$
 $g = f(x) = \frac{3x-2}{x+1}$
 $g = \frac{3x-2}{x+1}$
 g

4)
$$f(x) = \sin(x^{2})$$
 -> prove $\lim_{h \to 0} = \frac{f(xth) - f(x)}{h} = 2x \cos(x^{2})$

Substitute: $\Rightarrow \lim_{h \to 0} = \frac{\sin((xth)^{2}) - \sin x^{2}}{h}$
 $\Rightarrow \sin(x^{2} + 2xh + h^{2}) - \sin x^{2}$

If $\lim_{h \to 0} = \frac{2\cos(x^{2} + xh + \frac{h^{2}}{2})}{h} = \sin(x + \frac{h^{2}}{2})$

As $h \to 0 = \frac{2\cos(x^{2} + xh + \frac{h^{2}}{2})}{h} \Rightarrow x^{2}$

Sin $(xh + \frac{h^{2}}{2}) - xh + \frac{h^{2}}{2} \Rightarrow x^{2}$

Sin $(xh + \frac{h^{2}}{2}) - xh + \frac{h^{2}}{2} \Rightarrow x^{2}$

Sondwich Principle

Find $\lim_{h \to 0} \frac{2\cos(x^{2}) \cdot (xh + \frac{h^{2}}{2})}{h} \Rightarrow \lim_{h \to 0} \frac{\sin(\theta)}{\theta} = 0$
 $\lim_{h \to 0} \frac{2\cos(x^{2}) \cdot h(x + \frac{h^{2}}{2})}{h} \Rightarrow \lim_{h \to 0} \frac{2\cos(x^{2}) \cdot h(x + \frac{h^{2}}{2})}{h} \Rightarrow \lim_{h \to 0} \frac{\sin(\theta)}{h} = 0$

As $h \to 0 = xh + \frac{h^{2}}{2} \Rightarrow x$

$$\lim_{h \to 0} \frac{f(xth) - f(h)}{h} = 2x \cos(x^{2}) \text{ as } f(x) = \sin(x^{2})$$

6)

G)
$$f(o) \times = 0 = 7 f(x) = 3x$$
 $3 \times 0 = 0$
 $x + (0) = 0$

$$x + (0) = 0$$

$$x + (0) = 0$$

$$x + (0) = 0 =$$

7) a)
$$\log_{2}(x-2) = 3 - \log_{3}(x-1)$$
 $\log_{3}(x-2) + \log_{3}(x-1) = 3$
b) $\log_{16}(2x+3) + \log_{16}(x+5)$
 $\log_{2}(x-2) + (x-1) = 3$
 $(x-2)(x-1) = 2^{3}$
 $\log_{16}(2x+3) + (x+5) = \log_{4}(x)$
 $(x^{2} - 3x + 2) = 8$
 $(x^{2} - 3x + 2) = 8$
 $(x^{2} - 3x - 6) = 0$
 $\log_{4}(x+3) + (x+5) = \log_{4}(x)$
 $(2x+3) +$

3-
$$\log_2 (x-1)$$

1) = 3 b) $\log_{16}(2x+3) + \log_{16}(x+5)$

= 3 $\log_4(x)$
 $\log_4(x)$
 $\log_4(x+3) + (x+5) = \log_4(x)$
 $\log_4(x+3) + (x+5) = \log_4(x)$
 $\log_4(x+3) + (x+5) = \log_4(x)$
 $\log_4(x+3) + (x+5) = \log_4(x^2)$
 $(2x+3) + (x+5) = \log_4(x^2)$
 $(2x+3) + (x+5) = x^2$
 $2x^2 + (3x + 15) = x^2$
 $2x^2 + (3x + 15) = 0$
 $3 - \log_4(x+3) + (x+5) = \log_4(x+5)$
 $3 - \log_4(x+3) + (x+5) = \log_4(x+5)$
 $3 - \log_4(x+5) = x^2$
 $3 - \log_4(x+5) = \log_4(x+5)$
 3

8) Petine
$$f(x)=3x-(lt tan^{-1}(x) t sin(x)) \in CO, 1)$$

As $x=0$
 $f(0)=3(0)-(lt tan^{-1}(0) t sin(0))=0-(lt0+0)=-1$

As $x=1$
 $f(1)=3(1)-(lt tan^{-1}(1) t sin(1))=3-(lt \frac{\pi}{4}t 0.8411) \approx 0.3731$
 $f(0)=-(lt tan^{-1}(1) t sin(1))=3-(lt \frac{\pi}{4}t 0.8411) \approx 0.3731$
 $f(0)=-(lt tan^{-1}(1) t sin(1))=3-(lt \frac{\pi}{4}t 0.8411) \approx 0.3731$
 $f(0)=-(lt tan^{-1}(1) t sin(1)) is a polynomial and thus is continuous on $f(0)=0.3731 t sin(1)$. It is a polynomial and thus $f(0)=0.3731 t sin(1) t sin(1)$. There exists at least one solution to the equation $f(0)=0.3731 t sin(1) t sin(1) t sin(1) t sin(1)$.

There exists at least one solution to the equation $f(0)=0.3731 t sin(1) t$$

9)

a)
$$\lim_{x\to 2} t \ln (x^2 - x + 1) \frac{\sin(x^2 - x^2)}{2(x^2 - 2)}$$
b) $\lim_{x\to 2} \frac{x \cos x}{(x^2 + 1) + \sin^2 x}$
 $\lim_{x\to 2} \frac{x^2 - x + 1}{x^2 + 1} = \frac{4 - 2 + 1}{3} = 3 \quad \text{i.} \quad$

d)
$$\lim_{R^{2} \to 0} (\sqrt{4x^{2} - x + 1} + 2x)$$

$$= (\sqrt{4x^{2} - x + 1} + 2x) \cdot \sqrt{4x^{2} - x + 1} - 2x$$

$$= \frac{4x^{2} - x + 1}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{4x^{2} - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{$$

10) At
$$x=0$$
 $f(x) = \frac{1}{4}$

As $x \to 0^+$
 $f(x) = \frac{1}{2} - \frac{\sin(4\pi \circ)}{16\pi \circ} = \frac{1}{2} - 0 = \frac{1}{2}$
 $f(x) = \frac{1}{4}$
 $f(x) = \frac{1}{4} - \frac{\sin(4\pi \circ)}{16\pi \circ} = \frac{1}{2} - 0 = \frac{1}{2}$

At $x = 0$

At $x = 0$

At $x = 0$
 $f(x) = \sqrt{16\pi \circ 12} = \sqrt{16\pi \circ 16}$

As $x \to 0$
 $f(x) = \frac{1}{4} - \frac{\sin(4\pi \circ)}{16\pi \circ 1} = \frac{1}{2} - \frac{\sin(4\pi \circ)}{16} = \frac{1}{$