Review Final Exam Math 2331

Name Id

Read carefully each problem. Show all your work. Credits will be given mainly depending on your work, not just an answer. Put a box around the final answer to a question. Use the back of the page if necessary.

- (1) Which of the following equations are linear?
 - a) xy + 3y = 1
 - b) 3x y + z = 9w
 - c) $x \cos 15^{\circ} + (2 y) \sin 15^{\circ} = \sqrt{17}$
 - d) $5e^x 11e^y = 0$
 - $e^{5} e^{5} x e^{11} y = 0$
 - f(x+y)(x-y) = -3
- (2) Write down the coefficient and the augmented matrices for the linear system.

a)

$$\begin{cases} 2x_1 & +x_2 & +x_3 & +2x_4 = 0 \\ x_1 & -x_2 & +5x_4 = 3 \\ x_1 & -5x_2 & +x_3 & -x_4 = -2 \end{cases}$$

- b) Solve the system of equations
- (3) Write the system of linear equations in the form $A\mathbf{x} = \mathbf{b}$ and solve the matrix equation for $\mathbf{x} = [\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}]$ using either Gaussian elimination with back-substitution.

a)

 $\begin{cases} 3x_1 & +12x_3 = -6\\ -9x_1 & -35x_3 = 2\\ 18x_1 & +x_2 & +70x_3 = 8 \end{cases}$ $\begin{cases} 3x_1 & +12x_3 = -3\\ -9x_1 & -35x_3 = 1\\ 18x_1 & +x_2 & +70x_3 = 4 \end{cases}$ *b*)

- (4) a) Write the coefficient matrix A of the system in **3**(a)
 - b) Find reduced row-echelon form for A using elementary row reductions. Record the elementary matrices E_1, E_2, \ldots, E_k corresponding to these elementary row reductions.
 - c) Find the inverses $E_1^{-1}, E_2^{-1}, \dots, E_k^{-1}$.

(Hint: There are only three kinds of elementary matrices, each of their inverses is easily known; check the Notes or Text if you are not sure)

- d) Express A as a product of elementary matrices. (Hint: Because $A^{-1} = E_k E_{k-1} \dots E_2 E_1$, we have $A = E_1^{-1} E_2^{-1} \dots E_k^{-1}$)
- (5) Find the inverse of the matrix (if it exists).

a)
$$\begin{pmatrix} 10 & -5 \\ 5 & -3 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & 0 & -2 \\ 1 & -3 & 1 \\ 0 & 1 & -1 \end{pmatrix}$
c) $\begin{pmatrix} 1 & -2 & -1 \\ 3 & -5 & -2 \\ 2 & -5 & -2 \end{pmatrix}$

(6) Solve the inhomogeneous system

$$\begin{cases} x & -2z = 3 \\ x & -3y & +z = -6 \\ y & -z = 3 \end{cases}$$

(7) Compute the determinants.

a)

$$\left|\begin{array}{ccc|c} 1 & 1 & 2 \\ 4 & 5 & 6 \\ 2 & 3 & -1 \end{array}\right|$$

b)

$$\left|\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 0 & 1 & \lambda & 0 \\ 0 & \lambda & 1 & 0 \\ 4 & 3 & 2 & 1 \end{array}\right|$$

(8) Find the adjoint $\mathbf{ad}(\mathbf{M})$ of the matrix $M = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 3 & 1 \\ 3 & 1 & -1 \end{pmatrix}$.

Verify that $Mad(M) = ad(M)M = det(M)I_3$.

- (9) (i) Which of the following sets of vectors $x = [x_1, x_2, x_3, x_4]^T$ are subspace of \mathbf{R}^4 ?
 - a) All x such that $x_1 + x_2 = 7x_3$
 - (b) All x such that $x_3 = 0$
 - c) All x such that $x_1 + x_4 = -12$
 - d) All x such that each x_i component is positive, that is, the first "I-quadrant" set = $\{x_i \ge 0, i = 1, 2, 3, 4\}$.
 - (ii) We know that $P_3 = \{f : fis \ a \ polynomial \ of \ degree \leq 3\}$ is a vector space. Which set of functions satisfying the following properties constitutes a subspace of P_3 ?

a)
$$f(-x) = f(x)$$
 b) $f(0) + f(1) = 5$ c) $f'(0) = 0$

(10) Which of the following vectors, if any, is in the null space of

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & 0 & 2 & 2 \end{pmatrix} ?$$

- a) $[-1 \ 0 \ 1 \ 0]^T$ b) $[0 \ 2 \ 1 \ -1]^T$ c) $[0 \ 4 \ 2 \ -2]^T$
- (11) Determine which of the following statements are equivalent to the fact that a matrix A of size $n \times n$ is invertible?
 - a) A is nonsingular
 - b) The row space of A has dimension n
 - c) The column space of A has dimension n
 - d) The determinant of A is nonzero
 - e) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for any given \mathbf{b} in \mathbf{R}^n
 - f) The system $A\mathbf{x} = \mathbf{0}$ has nonzero solution
 - g) The dimension of the null space of A is zero
 - h) The rows of A are linear independent
 - i) The columns of A are linear independent
 - j) The rank of A is n
 - \vec{k}) A is row-equivalent to an identity matrix
 - l) All eigenvalues of A are nonzero
 - m) A has n linear independent eigenvectors
 - n) A is similar to an diagonal matrix
 - $o)\ A\ can\ be\ written\ as\ the\ product\ of\ elementary\ matrices.$
- (12) The matrix $A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ row reduces to $C = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
 - a) Find the rank and nullity of A.
 - b) Find a basis of the row space and the column space of A respectively.
 - c) Find a basis of the null space of A
 - d) Does the system $A\mathbf{x} = \begin{pmatrix} 109 \\ -217 \\ 66 \end{pmatrix}$ have a solution? (Hint:

You can draw a conclusion from the fact that dimension of column space is 3, without having to solve the system. Recall that rank(A) = dim(Col(A)) = dim(Row(A))

e) What is the relation between rank, dim(null(A)) ?(Hint: The theorem states that rank(A) + dim(null(A)) = n, the number of columns)

(13) Find all the eigenvalues of the given matrix.

a)
$$\begin{pmatrix} 1 & -2 & 0 \\ -3 & 1 & 0 \\ -4 & -5 & 1 \end{pmatrix}$$
b)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- (14) The matrix $A = \begin{pmatrix} 6 & 1 & 1 \\ 1 & 6 & 1 \\ 1 & 1 & 6 \end{pmatrix}$ has eigenvalues 5 and 8.
 - a) Find the eigenspaces E_5' and E_8 by solving $(\lambda I A)x = 0$.
 - b) By the theorem in Section 7.3 we know that a symmetric matrix of size n by n is always diagonalizable, equivalently speaking, always has n linear independent eigenvectors. Find an ordered basis consisting of eigenvectors of A.
 - c) Specify the matrices P and D in the diagonalization $P^{-1}AP = D$
 - d^*) (optional) Find an orthogonal matrix U such that $U^{-1}AU = D$ (Hint: An (real) orthogonal matrix means $U^{-1} = U^T$ or equivalently $U^TU = UU^T = I_n$).
- (15) a) Give three distinct examples of elementary matrices and explain how they correspond to row operations for a given matrix of 3 by 3.
 - b) Factor the matrix into a product of elementary matrices.

$$A = \begin{pmatrix} 1 & 6 \\ 6 & 1 \end{pmatrix}$$

Solutions

(3) a)
$$[62, 12, -16]$$
 b) $[31, 6, -8]$

$$(4) \ a) \left(\begin{array}{ccc} 3 & 0 & 12 \\ -9 & 0 & -35 \\ 18 & 1 & 70 \end{array} \right)$$

b) The factorization or decomposition of a matrix is not unique in gen-

eral. Here is an example of the answer.
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$
,

$$E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_{3} = \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_{4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, E_{5} = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c) In consistent with the answer in (b), we have
$$E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$
,

$$E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_3^{-1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_4^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

$$E_5^{-1} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}'$$

$$d) A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(5) (b) not invertible; (c) Form the matrix
$$[A|I_3] = \begin{pmatrix} 1 & -2 & -1 & | & 1 & 0 & 0 \\ 3 & -5 & -2 & | & 0 & 1 & 0 \\ 2 & -5 & -2 & | & 0 & 0 & 1 \end{pmatrix}$$

Then use row operation to reduce to $[I_3|B]$. Hence the inverse equal

$$B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & -1 \\ -5 & 1 & 1 \end{pmatrix}$$

6) From 5(b) we know that the coefficient matrix is not invertible, so either the system has no solution or it has infinitely manly solutions.

Row reductions for the augmented matrix $\begin{pmatrix} 1 & 0 & -2 & | & 3 \\ 1 & -3 & 1 & | & -6 \\ 0 & 1 & -1 & | & 3 \end{pmatrix}$ give

$$\begin{pmatrix} 1 & 0 & -2 & | & 3 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} Back-substitution shows \\ x = 3 + 2t, \\ y = 3 + t, \\ z = t,$$

where t is a parameter of any real values. By the way observe that the augmented matrix is consistent with the coefficient matrix because they have the SAME RANK.

7) (a)
$$-3$$
 (b) $15(\lambda^2 - 1)$

8)
$$ad(M) = transpose \ of \begin{pmatrix} -4 & 3 & -9 \\ 3 & -5 & 4 \\ -5 & 1 & 3 \end{pmatrix}$$

A straight forward computation shows $Mad(M) = -11I_3$.

(12) a) rank(A) = 3 (number of leading 1's in C), nullity of A = 1

b) A basis of
$$Row(A)$$
 consists of $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$.

A basis of
$$Col(A)$$
 consists of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$
c) $\begin{pmatrix} 1\\1\\-1\\0 \end{pmatrix}$
d) Yes.
(13) a) $|\lambda I - A| = (\lambda - 1)(\lambda^2 - 2\lambda - 5)$
(14) a) $E_5 = span\{\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\}$, $E_8 = span\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}\}$
c) $P = \begin{pmatrix} -1 & -1 & 1\\1 & 0 & 1\\0 & 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 5 & 0 & 0\\0 & 5 & 0\\0 & 0 & 8 \end{pmatrix}$