Pracownia 1 z analizy numerycznej Zadanie 15

Krzysztof Wasielewski 322091

Listopad 2021

1 Wstęp

Interpolacja to zadanie polegające na skonstuowaniu funkcji na podstawie wartości funkcji w węzłach. Istnieje szereg metod, które pozwalają na efektywne wykorzystanie ograniczonej informacji o interpolowanej funkcji. Szerzej omówiona zostanie interpolacja za pomocą okresowej funkcji sklejanej III stopnia.

1.1 Funkcje sklejane

Definicja 1.1. Dla danych $n, n \in \mathbb{N}$, węzłów x_0, x_1, \ldots, x_n ($x_0 = a < x_1 < \cdots < x_n = b$) oraz funkcji f funkcją sklejaną interpolacyjną k-tego stopnia nazywamy funkcję s, taką że:

- 1. w każdym z przedziałów $[x_{i-1}, x_i](i = 1, 2, ..., n)$ funkcja s jest wielomianem stopnia co najwyżej k
- 2. $s(x_i) = f(x_i) \ (i = 0, 1, ..., n)$
- 3. funkcja s ma pochodne rzędu 0, 1, ..., k-1 ciagłe na przedziale [a, b] Dodatkowo funkcja s jest nazywana okresową, gdy $f(x_n) = f(x_0)$ oraz $s^{(i)}(a+0) = s^{(i)}(b-0)$ (i=0,1,...k-1)

Dla uproszczenia zapisu niech s_i oznacza $s|_{[x_i,x_{i+1}]}$.

Skonstruowanie funkcji sklejanej s polega na dobraniu współczynników kolejnych wielomianów, składających się na tę funcję. Odpowiednie ich dostrojenie sprawia, że funkcja s jest regularna tj. $s \in C^k[a,b]$.

Funkcja sklejana interpolacyjna III stopnia opisana jest jednoznacznie przez 4n współczynników. Należy zatem znaleźć tyle samo warunków, pozwalających na rozwiązanie problemu. Pierwsze 2n warunków pochodzi

z analizy równości $s_i(x_{i+1}) = f(x_{i+1}) = s_{i+1}(x_{i+1})$. Kolejne 2n-2 warunków pochodzi z równości $s_i^{(1)}(x_{i+1}) = s_{i+1}^{(1)}(x_{i+1})$ oraz $s_i^{(2)}(x_{i+1}) = s_{i+1}^{(2)}(x_{i+1})$, czyli przyrównania do siebie pochodnych pierwszego i drugiego rzędu sąsiednich wielomianów. Pozostałe dwa warunki, których wyprowadzenie nie jest tak jasne jak pozostałych, zostanie przedstawione w osobnym fragmencie sprawozdania, które referuje pełne wyprowadzenie obliczeń.

1.2 Krzywe parametryczne

Krzywe parametryczne jednego parametru są określane przez układy równań uzależnionych od parametru. Przykładowo równanie parametryczne dla okregu o środku S(0,0) i promieniu R dla parametru t wygląda następująco:

$$\begin{cases} x = R\cos(t) \\ y = R\sin(t) \end{cases} \tag{1}$$

1.3 Cel zadania

Dla zadanej zamkniętej krzywej parametrycznej (x=x(t), y=y(t)) należy skonstruować zamkniętą krzywą sklejaną interpolacyjną, przez wyznaczenie funkcji sklejanych interpolujących III stopnia $s_x(t)$, $s_y(t)$, takich że znaleziona krzywa ma przedstawienie $x=s_x(t)$, $y=s_y(t)$. Węzły, na podstawie których wyznaczone zostaną funkcje s_x oraz s_y , wybrane zostaną z dziedziny parametru t (próbka lub ustalony podzbiór np. równoodległych liczb)

2 Wyznaczanie funkcji sklejanej

2.1 Wyprowadzenie układu warunków

Do wyznaczenia parametrów krzywej sklejanej potrzebne jest wyznaczenie współczynników dla każdego s_i . Niech $h_i = x_{i+1} - x_i$, $s_i^{(2)}(x_i) = z_i$ oraz $s_i^{(2)}(x_{i+1}) = z_{i+1}$. Ponieważ s_i jest wielomianem stopnia co najwyżej 3 to $s_i^{(2)}$ jest funkcją liniową, dlatego

$$s_i^{(2)}(x) = \frac{z_i}{h_i}(x_{i+1} - x) + \frac{z_{i+1}}{h_i}(x - x_i)$$

Chcąc otrzymać współczynniki s_i powyższe równanie należy dwukrotnie scałkować.

$$s_i(x) = \frac{z_i}{6h_i}(x_{i+1} - x)^3 + \frac{z_{i+1}}{6h_i}(x - x_i)^3 + a(x - x_i) + b(x_{i+1} - x)$$

gdzie a i b są stałymi całkowania. Wyznaczyć je można z wartości w węzłach interpolacyjnych. Ponieważ zachodzi $s_i(x_i) = y_i$ oraz $s_i(x_{i+1}) = y_{i+1}$ otrzymujemy

$$s_i(x) = \frac{z_i}{6h_i}(x_{i+1} - x)^3 + \frac{z_{i+1}}{6h_i}(x - x_i)^3 + (\frac{y_{i+1}}{h_i} - \frac{z_{i+1}h_i}{6})(x - x_i) + (\frac{y_i}{h_i} - \frac{z_ih_i}{6})(x_{i+1} - x)$$

Różniczkując powyższe równanie i ewaluując je dla $x = x_i$

$$s_i^{(1)}(x_i) = -\frac{h_i}{3}z_i - \frac{h_i}{6}z_{i+1} - \frac{y_i}{h_i} + \frac{y_{i+1}}{h_i}$$

Analogicznie dla s_{i-1}

$$s_{i-1}^{(1)}(x_i) = -\frac{h_{i-1}}{3}z_{i-1} - \frac{h_{i-1}}{6}z_i - \frac{y_{i-1}}{h_{i-1}} + \frac{y_i}{h_{i-1}}$$

Ponieważ $s_{i-1}^{(1)}(x_i) = s_i^{(1)}(x_i)$

$$h_{i-1}z_{i-1} + 2(h_{i-1} + h_i) + h_i z_{i+1} = \frac{6}{h_i}(y_{i+1} - y_i) - \frac{6}{h_{i-1}}(y_i - y_{i-1})$$

dla i takiego że $1 \le i \le n$, gdzie $h_0 = h_n$ Do znalezienia z_i przydatna staje się notacja macierzowa układu równań

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 & \dots & h_0 \\ h_1 & 2(h_1 + h_2) & h_2 & & & \\ \vdots & & \ddots & & & \\ h_{n-1} & 2(h_{n-1} + h_n) & h_n & & \\ h_n & & & h_{n-1} & 2(h_{n-1} + h_n) \end{bmatrix} \begin{bmatrix} z_1 \\ z_1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{6}{h_1}(y_2 - y_1) - \frac{6}{h_0}(y_1 - y_0) \\ & & \\ \frac{6}{h_n}(y_1 - y_n) - \frac{6}{h_{n-1}}(y_n - y_{n-1}) \end{bmatrix}$$
(2)

Do rozwiązania takiego układu można wykorzystać np. eliminację Gaussa. Współczynnik z_0 otrzymujemy z równości $z_0=z_n$. Po wyznaczeniu z_i funkcja s_i prezentuje się natępująco

$$s_{i}(x) = y_{i} + (x - t_{i}) \left(-\frac{h_{i}}{6} (z_{i+1} + 2z_{i}) + \frac{1}{h_{i}} (y_{i+1} - y_{i}) + (x - y_{i}) \left(\frac{z_{i}}{2} + \frac{1}{6h_{i}} (x - t_{i}) (z_{i+1} - z_{i}) \right) \right)$$

$$(3)$$

2.2 Wyznaczanie zamkniętej krzywej sklejanej

Znając metodę wyznaczania okresowej funkcji sklejanej, można przystąpić do skonstruowania zamkniętej krzywej sklejanej interpolacyjnej. Ponieważ krzywe w tym zadaniu są dwuwymiarowe to potrzebne będą dwie funkcje sklejane. Każda z nich będzie uzależniała jedną ze współrzędnych od parametru t. Ciąg węzłów t_0, t_1, \ldots, t_n musi spełniać warunek $a \le t_i < t_{i+1} \le b$. Ponieważ końcami przedziału a i b można manipulować, nic nie stoi na przeszkodzie, by założyć dodatkowo, że $t_i + 1 = t_{i+1}$. Wówczas równanie (2) przyjmuje postać

$$\frac{1}{6} \begin{bmatrix} 4 & 1 & \dots & 1 \\ 1 & 4 & 1 & & \\ \vdots & & \ddots & & \\ & & 1 & 4 & 1 \\ 1 & & & 1 & 4 \end{bmatrix} \begin{bmatrix} z_1 \\ z_n \end{bmatrix} = \begin{bmatrix} y_2 + y_0 - 2y_1 \\ & & \\ y_1 + y_{n-1} - 2y_n \end{bmatrix}$$
(4)

co upraszcza implementację. Po wyznaczeniu funkcji sklejanych s_x , s_y zmodyfikowaną metodą poszukiwane krzywe można wyrysować, wyliczając punkty $(s_x(t), s_y(t))$ dla $t \in [a, b]$. Zauważmy, że macierz w (3) jest macierzą cykliczną. Rozwiązanie układu w postaci Cx = y, gdzie C jest macierzą cykliczną można otrzymać w następujący sposób: C jest macierzą diagonalizowalną przez znormalizowaną macierz Fouriera, czyli $C = Fdiag(\lambda_1, \ldots, \lambda_n)F^{-1}$ gdzie λ_i jest wartością własną macierzy C. Obliczanie odwrotności macierzy Fouriera można zastąpić przez policzenie F^* , gdzie operator * oznacza sprzężenie hermitowskie. Wówczas zachodzi $C = Fdiag(\lambda_1, \ldots, \lambda_n)F^*$. Rozwiązanie układu ma zatem postać $x = Fdiag(\lambda_1^{-1}, \ldots, \lambda_n^{-1})F^*y$.

3 Część obliczeniowa

Poznawszy sposób wyznaczania krzywych sklejanych interpolacyjnych, można przystąpić do zastosowania jej w przykładach.

3.1 Okrag

Do zadania wybrany został okrąg o przedstawieniu parametrycznym

$$\begin{cases} x = \cos(\frac{\pi}{10}t) \\ y = \sin(\frac{\pi}{10}t) \end{cases}$$
 (5)

Rysunek 1: Funkcja sklejana interpolująca $\cos(\frac{\pi}{10}t)$

Rysunek 2: Krzywa sklejana interpolująca okrąg

Kolejne przedziały $[t_i, t_{i+1}]$ zaznaczone są na rysunkach osobnym kolorem. Dzięki zastosowaniu okresowej funkcji sklejanej otrzymujemy efekt wizual-

nej gładkości funkcji (rozumianej nieformalnie, a nie jako relacja $f \in C^{\infty}$) nawet na końcach przedziału. Gdyby zastosować naturalną funkcję sklejaną do interpolacji krzywej zamkniętej to miejsce zapętlania się krzywej byłoby łatwo rozpoznawalne, bo pierwsze pochodne s_0 i s_n w punkcie $t_n = t_0$ nie zawsze byłyby równe, przez co powstawałby tam ostry kant.

Rysunek 3: Okrąg z widocznym błędem w otoczeniu punktu (1, 0)

3.2 Elipsa

Wybrana elipsa

$$\begin{cases} x = 3\cos(\frac{\pi}{10}t) \\ y = \frac{1}{2}\sin(\frac{\pi}{10}t) \end{cases}$$
 (6)

Rysunek 4: Krzywa sklejana interpolująca elipsę

3.3 Tajemnicza krzywa

Rysunek 5: Krzywa intepolująca granice Polski

3.4 Epitrochoida

Epitrochoida to krzywa parametryczna opisana układem równań

$$\begin{cases} x = (R+r)\cos(t) - h\cos(\frac{R+r}{r}t) \\ y = (R+r)\sin(t) - h\sin(\frac{R+r}{r}t) \end{cases}$$
 (7)

Jeśli $\frac{R}{r}$ jest liczbą wymierną to epitrochoida jest krzywą zamkniętą. Epitrochoida w tym zadaniu

$$\begin{cases} x = 7\cos(\frac{\pi}{20}t) - 3\cos(\frac{7}{2}\frac{\pi}{20}t) \\ y = 7\sin(\frac{\pi}{20}t) - 3\sin(\frac{7}{2}\frac{\pi}{20}t) \end{cases}$$
(8)

Rysunek 6: Przykładowa epitrochoida

3.5 Oszacowanie błędu

Do wykazania skuteczności metody obliczono pierwiastek z błędu średnio-kwadratowego, który ilustruje średnią odległość punktów na krzywej sklejanej od punktów wyliczonych z równań parametrycznych. Obliczenia wykonano w formatach Float64 i Complex64

	okrąg	elipsa	epitrochoida
RMSE	0.0010	0.0022	0.0017

4 Podsumowanie

Okresowość funkcji sklejanej w prosty sposób przekłada się na stosowalność tej metody interpolacji w przybliżaniu zamkniętych krzywych parametrycznych. Podobnie jak w przypadku naturalnych funkcji sklejanych, okresowe funkcje sklejane pozbywają się efektu Rungego, kosztem większej liczby parametrów do zapamiętania. Zastosowanie równoodległych węzłów parametru pozwala na zredukowanie złożoności obliczeniowej, wynikającej z rozwiązywania układu (2) eliminacją Gaussa, przez wykorzystanie macierzy Fouriera.

Literatura

- [1] David Kincaid, Ward Cheney (1991) Numerical Analysis: Mathematics of Scientific Computing
- [2] Mingkui Chen (1987) On the Solution of Circulant Linear Systems
- [3] Hans-Peter Moser (dostęp 19.11.2021) Periodic splines http://www.mosismath.com/PeriodicSplines/PeriodicSplines.html