Methods for High-dimensional Inference, with Applications to Imaging Genetics

Dustin Pluta

28 Mar 2018

Acknowledgements

- **Gui Xue**, PI and data provider, Beijing Normal University, Center for Brain and Learning Sciences
- Chuansheng Chen, UCI, Dept. of Psychology and Social Behavior
- Hernando Ombao, KAUST, Dept. of Statistics
- Zhaoxia Yu, UCI, Dept. of Statistics
- Tong Shen, UCI, Dept. of Statistics (PhD Student)

Overview of Talk

- 1. Scientific background of **connectome genetics**.
- 2. **Mantel test** and metric-based association testing.
- 3. The **adaptive Mantel test** for penalized inference.
- 4. Application to test heritability of EEG coherence during a working memory task.

Scientific Background

Estimating Heritability with Variance Components Model

• Let X be an $n \times p$ matrix of single nucleotide polymorphism (SNP) data, and Y be an observed scalar phenotype.

$$Y=g+arepsilon,$$

where $g \sim N(0, \sigma_g^2 G)$, for $G = XX^T/p$, and $\varepsilon \sim N(0, \sigma_\varepsilon^2 I_n)$.

Narrow-sense heritability of the phenotype measured by *Y* can then be estimated as

$${\hat h}^2 = rac{{\hat \sigma}_g^2}{{\hat \sigma}_g^2 + {\hat \sigma}_arepsilon^2}.$$

$${\hat h}^2 = rac{{
m tr}\left({\hat \Sigma}_g
ight)}{{
m tr}\left({\hat \Sigma}_g
ight) + {
m tr}\left({\hat \Sigma}_arepsilon
ight)},$$

where $\hat{\Sigma}_g = \hat{\sigma}_g^2 G, \hat{\Sigma}_{arepsilon} = \hat{\sigma}_{arepsilon}^2 I_n$.

Metric-based Association Testing

The Inference Goal

Given observations of n subjects across two data modalities \mathbf{X} and \mathbf{Y} , is similarity in \mathbf{X} significantly associated with similarity in \mathbf{Y} ?

Setup

- In our application, $X \in X^n$ is an $n \times p$ matrix of SNP measurements, and $Y \in Y$ is an $n \times 1$ vector of scalar phenotype measurements.
- Assume X and Y have been column centered and scaled.
- A bounded, symmetric, positive semi-definite similarity function $\mathcal{K},$ e.g. $\mathcal{K}(u,v)=u^Tv.$

Association Testing Methods

- **Mantel's test** (Mantel 1967) uses the inner product of the pairwise distance/similarity matrices from *X* and *Y*.
- The **RV coefficient** (Escoufier 1976) uses a test statistic based on the multivariate correlation between *X* and *Y*.
- The **distance covariance** (dCov) test (Szekely, Rizzo, Bakirov, 2007) is defined as the covariance of distances between *X* and *Y*.
- Adaptive sum of powered score test (Xu et. al 2017).

• Given similarity functions $\mathcal{K}_X : \mathbb{R}^P \times \mathbb{R}^P \to \mathbb{R}$ and $\mathcal{K}_Y : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we can form two $n \times n$ Gram matrices K and H, where

$$K_{ij} = \mathcal{K}_X(X_i, X_j)$$

$$H_{ij} = \mathcal{K}_Y(Y_i, Y_j).$$

• The **correlation** of these distance matrices is

$$r(H,K) := rac{\langle K,H
angle}{\|K\|\cdot\|H\|},$$

How should we test the significance of the correlation?

Mantel's original approach (1967) is to **permute** rows and columns of one of the pairwise distance matrices to generate the reference distribution.

That is, for test statistic

$$T = \langle K, H
angle = \sum_{i=1}^n \sum_{j=1}^n K_{ij} H_{ij} = \mathrm{tr}(KH),$$

we compute the **permutation** *P***-value** by permuting *H* to approximate the reference distribution.

Similarity with Weighted Inner Products

For two vectors $u, v \in \mathbb{R}^p$, the **weighted inner product** $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ for some positive semi-definite matrix \mathcal{W} , is defined as

$$\langle u,v
angle_{\mathcal{W}}=u^T\mathcal{W}v.$$

The **Mantel Test Statistic** for similarity $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ is

$$T_{\mathcal{W}} = \operatorname{tr}(X\mathcal{W}X^TYY^T) = Y^TX\mathcal{W}X^TY.$$

Similarity with Weighted Inner Products

For two vectors $u, v \in \mathbb{R}^p$, the **weighted inner product** $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ for some positive semi-definite matrix \mathcal{W} , is defined as

$$\langle u,v
angle_{\mathcal{W}}=u^T\mathcal{W}v.$$

The **Mantel Test Statistic** for similarity $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ is

$$T_{\mathcal{W}} = \operatorname{tr}(X\mathcal{W}X^TYY^T) = Y^TX\mathcal{W}X^TY.$$

Question

How does the choice of weight matrix affect the test characteristics?

How should the weight matrix be chosen?

Euclidean Inner Product

• Choosing $W = I_p$ gives

$$K = XX^T$$
,

which is the Gram matrix for the standard Euclidean inner product.

Mahalanobis Similarity

• Choosing $W = (X^T X)^{-1}$ gives

$$K = X(X^T X)^{-1} X^T,$$

which is a similarity matrix related to the Mahalanobis distance.

Data generated from variance components model with $\sigma_b^2=1$

Comparing Similarity-Similarity Plots

Left Data generated from variance components model with $\sigma_b^2 = 1$. **Right** Data generated from fixed effects model with $\beta = (0.75, -0.75)$.

Can we compromise between the Mahalanobis and Euclidean metrics?

Goal

We want a weight matrix that adjusts for the correlation structure in the data like the Mahalanobis metric, but which is closer to the Euclidean metric.

Goal

We want a weight matrix that adjusts for the correlation structure in the data like the Mahalanobis metric, but which is closer to the Euclidean metric.

Solution: Penalize the Mahalanobis weight matrix.

• Let $\lambda \geq 0$. Consider the penalized weight matrix:

$$\mathcal{W}_{\lambda} = (X^TX + \lambda I_p)^{-1}.$$

- As $\lambda \to \infty$, the penalty term λI_p dominates X^TX , and so W_λ tends to a constant diagonal matrix.
- We call $\mathcal{K}(u,v) = u^T \mathcal{W}_{\lambda} v$ the **ridge kernel**.

• **Summarizing**, the Euclidean and Mahalanobis inner products are linked by the ridge kernel, where $W_{\lambda=0}$ gives the Mahalanobis metric, and $\lambda\to\infty$ gives the Euclidean metric.

Metric	Gram Matrix	Mantel Stat.
Mahalanobis	$K_F = X(X^TX)^{-1}X^T$	$T_F=\mathrm{tr}(K_FH)$
$\operatorname{Euclidean}$	$K_R=XX^T$	$T_R=\mathrm{tr}(K_R H)$
Ridge Kernel	$K_{\lambda} = X(X^TX + \lambda I)^{-1}X^T$	$T_\lambda=\operatorname{tr}(K_\lambda H)$

Correlation of Similarities

Assume $\operatorname{rank}(X) = r$ with singular value decomposition $X = U_{n \times r} D_{r \times r} V_{p \times r}^T$, where $\eta_j, j = 1, \dots, r$ are the squared singular values. Let $H = YY^T$ and $Z = U^T Y$.

Mahalanobis Metric
$$r(H,K_F)=rac{\sum_{j=1}^r z_j^2}{\sqrt{p}\sum_{i=1}^n y_i^2},$$

$$r(H,K_R) = rac{\sum_{j=1}^r \eta_j z_j^2}{\sqrt{\sum_{j=1}^r \eta_j^2} \sum_{i=1}^n y_i^2},$$

$$r(H,K_{\lambda}) = rac{\sum_{j=1}^r rac{\eta_j}{\lambda + \eta_j} z_j^2}{\sqrt{\sum_{j=1}^r \left(rac{\eta_j}{\eta_j + \lambda}
ight)^2} \sum_{i=1}^n y_i^2}.$$

Correlation of Similarities

Assume $\operatorname{rank}(X) = r$ with singular value decomposition $X = U_{n \times r} D_{r \times r} V_{p \times r}^T$, where $\eta_j, j = 1, \dots, r$ are the squared singular values. Let $H = YY^T$ and $Z = U^T Y$.

Mahalanobis Metric
$$r(H,K_F) \asymp \sum_{j=1}^r z_j^2 = \operatorname{tr}(HK_F) = T_F,$$

Euclidean Metric
$$r(H,K_R) symp \sum_{j=1}^r \eta_j z_j^2 = \operatorname{tr}(HK_R) = T_R,$$

Ridge Similarity
$$r(H,K_{\lambda}) \asymp \sum_{j=1}^{r} \frac{\eta_{j}}{\lambda + \eta_{j}} z_{j}^{2} = \operatorname{tr}(HK_{\lambda}) = T_{\lambda}.$$

Linear Model Definitions

Model Name	Definition	
Fixed	$Y \sim N(Xeta, \sigma_arepsilon^2 I_N)$	
Random	$Y \sim N(0, \sigma_b^2 G + \sigma_arepsilon^2 I_N),$	$G=XX^T/p$
Ridge	$Y \sim N(Xeta, \sigma_arepsilon^2 I_N),$	$\ eta\ _2^2 < c(\lambda)$

Linear Model Score Tests

Model	Score Stat.	Equivalent Stat.	Null Distribution
Fixed	$S_F = Z^T D (D^T D)^{-1} D^T Z \\$	$T_F=\operatorname{tr}(K_FH)$	$c_1\chi_p^2$
Random	$S_R=Z^TDD^TZ$	$T_R=\mathrm{tr}(K_R H)$	$c_2 \sum_{j=1}^r \eta_j \chi_1^2$
Ridge	$S_{\lambda} = Z^T D (D^T D + \lambda I_p)^{-1} D^T Z$	$T_\lambda=\operatorname{tr}(K_\lambda H)$	$c_3 \sum_{j=1}^r \frac{\eta_j}{\lambda + \eta_j} \chi_1^2$

Limiting Relationship

From the previous results, we get the following limiting relationships between the ridge test, and tests for the fixed effects and random effects models.

$$T_{\lambda=0}=T_F$$

$$T_{\lambda}symp \left\{\lambda \sum_{j=1}^r rac{\eta_j}{\lambda+\eta_j} z_j^2
ight\} egin{array}{c} \lambda
ightarrow\infty \
ightarrow T_R \end{array}$$

Similarly, for the matrix correlations

$$r(H,K_{\lambda=0})=r(H,K_F)$$

$$\lim_{\lambda o\infty} r(H,K_\lambda) = r(H,K_R)$$

Linear Model Score Tests

Geometric Interpretation

Consider $Z = U^T Y$, as the projection of Y into the column space of X.

- 1. The *Random Effects* model tests the **weighted Euclidean norm** of Z, where the jth component is weighted by the jth eigenvalue η_j .
- 2. The *Fixed Effects* model tests the **Euclidean norm** of *Z*
- 3. The *Ridge Penalization* weights the Euclidean norm of *Z* proportional to the eigenvalues, but these weights are now flattened by a factor of $(\lambda + \eta_j)^{-1}$.

Choosing a good penalty term for inference can be difficult, since we must control the type I error.

Interpretation of λ

- The best linear unbiased predictors for the regression coefficients in the random effects model result from $\lambda=\frac{\sigma_{\varepsilon}^2}{\sigma_b^2}$ as a ridge penalty term.
- Since the noise to signal ratio can be calculated from h^2 , a "reasonable" range for λ can be determined from a range for h^2

$$\lambda = rac{p(1-h^2)}{h^2}.$$

Idea

To simultaneously test a set of tuning parameters, use the **minimum** *P*-**value** across all parameters as the test statistic, and approximate the reference distribution using permutations.

Algorithm

- Input:
 - $\circ \ X, n \times p$ covariates, column centered and scaled
 - $\circ~Y, n \times 1$ response, centered and scaled
 - $egin{aligned} \circ \ \left\{\left(\mathcal{K}_m^{ ext{X}}, \mathcal{K}_m^{ ext{Y}}
 ight)
 ight\}, m=1,\cdots,M \end{aligned}$
- **Output:** P_{ADA} = adaptive Mantel P-value for global test of significant association

Algorithm

```
1: for m = 1, ..., M do
 2: K_m \leftarrow \delta_m^{\mathbf{X}}(X)
 3: H_m \leftarrow \delta_m^{\mathbf{Y}}(Y)
 4: Calculate Z_m^{(0)} \leftarrow Z_m := \operatorname{tr}(K_m H_m)
 5: end for
 6: Generate B permutations of H_m, labeled H_m^{(b)} \ \forall \ m = 1, \dots, M; b = 1, \dots, B
 7: Z_m^{(b)} \leftarrow \operatorname{tr}(K_m H_m^{(b)}) \ \forall \ m = 1, \dots, M; b = 1, \dots, B
 8: P_m^{(b)} \leftarrow \frac{1}{B+1} \sum_{b=0}^B I\left(Z_m^{(b)} \le Z_m^{(b')}\right) \quad \forall \ m = 1, \dots, M; b = 1, \dots, B
 9: P^{(b)} \leftarrow \min_{m=1,\dots,M} P_m^{(b)} \ \forall \ b = 1,\dots,B
10: P_{AMT} \leftarrow \frac{1}{B+1} \sum_{b=0}^{B} I\left(P^{(0)} \leq P^{(b)}\right)
```


Visual Working Memory Experiment

Visual Working Memory Experiment

Visual Working Memory Experiment

Data Description

- 350 Subjects from the BNU data set
- ~10 minute 64 channel EEG recording during VWM task
 - Preprocessed according to standard pipeline
 - Coherence measures for each channel pair was calculated by the FFT, and grouped into five frequency bands (in Hz):

$$\delta \ (1-4), \theta \ (4-8), \alpha \ (8-16), \beta \ (16-32), \gamma \ (32+)$$

- 13 SNPs selected for analysis, previously identified as potential factors for Alzheimer's disease risk
 - All 13 SNPs passed standard MAF and HWE quality control checks

Adaptive Mantel Test Results

- Results of adaptive Mantel test for association of AD SNPs and EEG Coherence at particular frequency bands
- Used L_2 similarity for SNPs, and ridge kernel similarity for coherence, with penalty terms $\Lambda = \{0.5, 1, 5, 10, 100, 1000, \infty\}$

Band	Channels	$P-{ m value}$
β	All	0.619
$_{-}$ $_{\beta}$	Frontal	0.517
α	All	0.075
α	${\bf Frontal}$	0.381
θ	All	0.416
θ	Frontal	0.081
δ	All	0.015
δ	Frontal	0.088

Links

- Adaptive Mantel Test Paper: arxiv.org/pdf/1712.07270.pdf
- Slides available: github.com/dspluta/Presentations/
- Adaptive Mantel R Package: github.com/dspluta/adamant

References

- Wu M., et al. Kernel Machine SNP-set Testing under Multiple Candidate Kernels. Genetic Epideomiology. 2013. 37(3): 267-275.
- Cai T., et al., Kernel Machine Approach to Testing the Significance of Multiple Genetic Markers for Risk Prediction. Biometrics. 2011. 67(3): 975-986.
- Ge T, et al. Massively Expedited Genome-Wide Heritability Analysis (MEGHA). PNAS. 2015. 112, 2479-2484.
- Xue G, et al. Functional Dissociations of Risk and Reward Processing in the Medial Prefrontal Cortex. Cerebral Cortex. 2009. 19, 1019-1027.
- Yang J, et al. GCTA: A Tool for Genome-wide Complex Trait Analysis. The American Journal of Human Genetics. (2011) 88, 76-82.
- Tzeng et al. (2009) Biometrics 65, 822.
- Visscher et al. (2014) Statistical power to detect genetic (co)variance of complex traits using SNP data. PLoS Genetics.
- GCTA Power, http://cnsgenomics.com/shiny/gctaPower/

Appendix

Computing the adaptive Mantel test can be done efficiently using either the SVD or a linear algebra trick, depending on the relative sizes of n and p.

SVD

- Computing the SVD $X = UDV^T$ can be completed in $O(np^2)$.
- When $rank(X) = r \le n$, the Mantel statistic can be then be computed in $O(n^2)$:

$$T=\sum_{i=1}^r \eta_i z_i^2$$

• Using B permutations gives a total complexity of $O(np^2 + Bn^2)$.

Linear Algebra Trick

When $p \gg n$, it is better to instead use the following reformulation for K:

$$K_{\lambda} = X(X^TX + \lambda I_p)^{\scriptscriptstyle 1} = (XX^T + \lambda I_n)^{-1}XX^T.$$

Calculating K_{λ} with this alternative form can be done in $O(n^2p)$, giving a total computational cost of $O\left(n^2(p+B)\right)$.

- The computation for the adaptive test scales this cost linear relative the number of tuning parameters included.
- The computations can be easily parallelized.

EEG Pre-processing

- EEG pre-processing:
 - 1. Downsample from 1024 Hz to 128 Hz
 - 2. Remove bad channels
 - 3. Band-pass filter from 1 Hz to 45 Hz
 - 4. Interpolate/re-reference bad channels
 - 5. ICA to remove eyeblinks and motion artifacts
 - 6. Remove remaining bad trials. Exclude subjects if > 5% of trials removed.
- Calculate coherence for all subjects and all channels using the FFT, and compute mean coherence by frequency band.