

滑轮

初露锋芒

学习目标

&

重难点

- 1. 知道定滑轮的定义,掌握定滑轮的特点
- 2. 知道动滑轮的定义,掌握动滑轮的特点
- 3. 理解定滑动,动滑轮的区别,掌握各自的应用
- 1. 定滑轮的特点及其应用
- 2. 动滑轮的特点及其应用

根深蒂固

一、滑轮

1、滑轮:周边有 ,能绕着轴 的小轮,叫做滑轮。本质上是一种变形的 。

【答案】1、槽;转动;杠杆

二、定滑轮

绳子自由端移动距离 S_F (或速度 V_F)_____重物移动的距离 S_G (或速度 V_G)

2、定滑轮特点: 不_____,但能_____的方向。

【答案】1、固定不动;等臂杠杆;=;=

2、省力;改变用力

三、动滑轮

1、使用时,轴 的滑轮叫做动滑轮。动滑轮的五要素如下左图所示,动力臂是阻力 臂的两倍,所以动力 F 是阻力的一半,故动滑轮的本质是。 理想的动滑轮: F= G(不计轴间摩擦和动滑轮重力) $F = (G_{\eta} + G_{\eta})$ (只忽略轮轴间的摩擦则拉力); 绳子自由端移动距离 S_F (或 V_F) = 倍的重物移动的距离 S_G (或 V_G)

2、动滑轮特点: 能_____,但不省距离,也不能

【答案】1、随物体一起移动;省力杠杆;1/2;1/2;2

2、省力;改变用力方向

一、定滑轮

知识点一: 定滑轮定义

【例1】(多选)下图所示各滑轮中属于定滑轮的是 ()

【难度】★★

【答案】BD

【解析】轴固定不动的是定滑轮,A、C选项里的滑轮与物体一起移动是动滑轮,故选B、D。

【例 2】是非题,判断下列说法是"对"还是"错"。

- (1) 旗杆顶上装有滑轮,升旗时可以省力 ()
- (2) 滑轮是变形的杠杆, 所以使用滑轮不一定省力 (

【难度】★

【答案】错;对

【解析】(1) 旗杆顶上的滑轮是定滑轮,定滑轮不可以省力,可以改变力的方向,故说法错误;

(2) 能绕固定点转动的硬棒是杠杆,滑轮是变形的杠杆。滑轮分为动滑轮和定滑轮,动滑轮省力,定滑 轮可以改变力的方向,不省力,所以定滑轮不一定省力是正确的。

知识点二: 定滑轮特点

【例 3】使用定滑轮提升重物,当分别在 A 方向、B 方向和 C 方向拉重物时 (

- A. A 方向拉力最小
- B. B 方向拉力最小
- C. C 方向拉力最小
- D. 三个方向拉力都一样

【难度】★

【答案】D

【解析】定滑轮的特点:不省力,但可以改变力的方向,所以A、B、C三个方向上的拉力大小应该相等, 故选 D。

【例4】不考虑滑轮与轻绳之间的摩擦,米袋总重为800N,而绳上吊着的静止的"绅士"重500N,则地面 对米袋的支持力为 ()

- A. 500N B. 250N C. 300N

- D. 800N

【难度】★

【答案】C

【解析】定滑轮的特点:不省力,但可以改变力的方向。

- ::这个人是通过定滑轮拉重物的
- ∴对重物的拉力 F=G ↓=500N
- 又: 米袋静止在地面上, 处于静止状态
- ∴F+N=G * 则: N=G *-F=800N-500N=300N
- ∴压力 F′=N=300N,选 C

知识点三: 定滑轮特点应用

【例 5】在如图所示的装置中,某人将重为300牛的货物匀速提升2米,所用时间为10秒。

求: (1) 手对绳的拉力 F;

(2) 货物移动的速度是多少?

【难度】★

【答案】300牛; 0.2m/s

【解析】(1)滑轮为定滑轮,力的大小不改变,F=G=300N

(2) 货物移动的速度 v=h/t=2m/10s=0.2m/s

【例6】小张同学用一个距离手3m 高的定滑轮拉住重100N 的物体,从滑轮正下方沿水平向缓慢移动了4m,如图所示,若不计绳重和摩擦,他用的拉力为 N,物体上升了 米。 "我"

【难度】★★

【答案】100; 2

【解析】滑轮为定滑轮,不省力,不省距离。不计绳重和摩擦,则拉力 F=G=100N;利用勾股定理计算绳子现在的长度 L=5m,则绳子被拉力拉长了 l=5m-3m=2m

【例7】如图所示装置,用滑轮一物体在水平面上做匀速运动,物体重50N,水平面与物体间的摩擦力为 18N,(不考虑其他摩擦)则 F_1 = N。

【难度】★

【答案】18

【解析】图中滑轮为定滑轮,不改变力的大小。物体在水平面上匀速向左运动,受到水平向左的拉力和水平向右的摩擦力,且拉力大小等于物体与水平面间的摩擦力18N,故绳上的力为18N,即拉力 F_1 =18N。

解题步骤:

(1) 先判断滑轮的种类,是否是定滑轮;

(2) 如果是定滑轮,利用定滑轮的特点解题;

(3) 定滑轮的特点:

使用定滑轮不省力,不省距离,但可以改变用力的方向

F_拉=G_物; S_绳=h_物

二、动滑轮

知识	占一.	动滑轮定义
$\Delta H M \sim$	AT .	

【难度】★

【答案】定;用力方向;动;等臂;省力

【解析】定滑轮不省力,但能改变力的方向,是等臂杠杆;动滑轮可以省力,不省距离,不能改变力的方向,动力臂大于阻力臂,是省力杠杆。

【例 2】将两个滑轮装配成如图所示的样子,用力 F 拉动绳端时,物体会向______移动。其中 A 是____ 滑轮,B 是 滑轮。若物重为 50N,物体与地面间的摩擦力为 10N,则拉力至少为 N。

\$ A F

【难度】★★

【答案】左;动;定;5

【解析】用力 F 拉动绳端时, B 的位置不动, 是定滑轮, A 的位置会随物体一起向左移动, 是动滑轮。若物体与地面间的摩擦力为 10N,则根据动滑轮的使用特点可知:拉力 F=f/2=10N/2=5N

知识点二: 动滑轮特点

【例3】如图所示,A是____滑轮。利用这样的装置把物体举高,用力的方向应向____(选填"上"、"下")。 如果 A 重 2 牛,要提起 50 牛的物体,至少要用____牛的拉力。若要使物体上升 2 米,应将绳的自由端拉动 米。

【难度】★★

【答案】动;上;26;4

【解析】由图中,是动滑轮,由于不能改变力的方向,要将物体举高,应向上用力;

A C

【例 4】如图所示,当 F=100N 时,物体匀速运动,则物体所受的摩擦力 ()

A. 100N

B. 200N

C. 50N

D. 150N

【难度】★★

【答案】C

【解析】图中滑轮为动滑轮,能省一半的力。绳子上的拉力是 F 的一半,则绳子上的拉力为50N,同一根绳子上的力相等,即物体受到水平向右的50N 的拉力。物体在水平面上匀速向右运动,水平方向只受向右的拉力和向左的摩擦力,则摩擦力大小等于拉力大小,即物体所受的摩擦力为50N,答案选 C。

【例5】如图所示小海同学"研究定滑轮和动滑轮特点"的实验装置。他按图示提起钩码时注意保持测力 计匀速移动,分别测得一组数据如下表所示:

	钩码重	钩码升高	测力计示	测力计移
	G/N	高度 h/m	数 F/N	动距离 S/m
甲	0.98	0.2	0.98	0.2
乙	0.98	0.2	1.02	0.2
丙	0.98	0.2	0.55	0.4

- (1) 比较测力计示数的大小,可知:使用动滑轮的好处是
- (2) 比较测力计拉力的方向,可知:使用定滑轮的好处是
- (3) 把钩码升高相同的高度,比较乙和丙拉力端移动的距离,可知: 使用动滑轮

【难度】★

【答案】(1)能省力(2)可以改变力的方向(3)费距离

【解析】(1) 在丙中,测力计示数 F=0.55N < G=0.98N,故使用动滑轮时省力;

- (2) 在甲、乙中, 拉力 F 大小很接近, 但是向下用力, 故使用定滑轮可以改变用力的方向;
- (3) 乙中拉力移动的距离为0.2m, 丙中拉力移动的距离为0.4m, 故使用动滑轮费距离;

知识点三: 动滑轮特点应用

【例 6】如图所示,物体 A 在水平拉力 F 的作用下,沿水平面以 0.4m/s 的速度运动了 2s,弹簧测力计的 示数为 5N。物体 A 受到的摩擦力为 N,方向 ,绳端移动的距离为 m。

【解析】滑轮为动滑轮,拉力 F 大小等于弹簧测力计的示数为 5N,则连接物体 A 和动滑轮的绳子上的力 为 10N; 物体 A 匀速向右运动,受到水平向右的拉力和水平向左的摩擦力,且大小相等,故物体 A 摩擦 力大小为 10N: 根据动滑轮的特点可知: 绳端移动距离是物体移动距离的两倍, 物体移动的距离 s=vt=0.4m/s ×2s=0.8m,则绳端移动的距离为 1.6m。

【例 7】某同学研究动滑轮的使用特点,他每次都匀速提起钩码,研究过程如图所示,请仔细观察图中的操作和测量结果(不计滑轮的重力),然后归纳得出初步结论。

(1) 比较 A、B 两图可知: ________

(2) 比较 B、C 两图可知:

【难度】★★★

【答案】(1)使用动滑轮匀速提起重物时,能省一半力,但不能改变用力方向

(2) 使用动滑轮匀速提起重物时,拉力端移动距离是重物端移动距离的两倍

【解析】(1) A 图是显示直接用手提起两个钩码用的力,测力计指针指在 0.4n 处,B 图是显示使用动滑轮提起两个钩码用的力,测力计指针指在 0.2n 处,所以使用动滑轮匀速提起重物时,能省一半的力,但不能改变力的方向;

(2)图 B、C 对比,可知物体被提升了 0.1m,而人手提高的 0.2m,这说明使用动滑轮匀速提起重物时,拉力端移动距离是重物端移动距离的两倍,费距离

解题步骤:

方法与技

- (1) 先判断滑轮的种类,是否是动滑轮;
- (2) 如果是动滑轮,利用动滑轮的特点解题;
- (3) 动滑轮的特点:

使用动滑轮可以省一半的力,但多一倍的距离,不可以改变力的方向

F=G_物/2 (钩码重力和摩擦忽略); F= (G_物+G_动)/2; S_编=2h_物

随堂检测

- 1、旗杆顶上的滑轮,其作用叙述正确的是 ()
 - A. 省力杠杆,可改变力作用方向
- B. 费力杠杆,可改变力作用方向
- C. 等臂杠杆,可改变力作用方向
- D. 以上说法都正确

【难度】★【答案】C

- 2、如图所示,动滑轮重为1N,拉力F为5N,则重物G和弹簧秤读数为 ()
 - A. G为4N,弹簧秤读数为5N
 - B. G为9N,弹簧秤读数为10N
 - C. G为10N,弹簧秤读数为5N
 - D. G为9N,弹簧秤读数为5N

【答案】D

- 3、如图所示,在竖直向上大小为10N的力F的作用下,重物A沿竖直方向匀速上升。已知重物A上升速度为0.2m/s,不计滑轮重、绳重及绳与滑轮间的摩擦,则物体的重力大小和滑轮上升的速度分别为 ()
 - A. 20N; 0.4m/s
- B. 20N; 0.1m/s
- C. 5N; 0.4m/s
- D. 5N; 0.1m/s

【难度】★★

【答案】D

- 4、如图所示, 当右端挂5N 的物体 A 时, 物体 B 在平面桌上恰好能向右做匀速直线运动, 若现在要使物体 B 向左做匀速直线运动,则应对物体 B 施加的力为 ()
 - A. 水平向左,5N

B. 水平向右,5N

- C. 水平向左, 10N
- D. 水平向右, 10N

【难度】★★★

【答案】C

- 5、不计滑轮重, $G_1=100$ 牛, $G_2=500$ 牛, 若弹簧秤的读数为 F_1 , 物体 G_2 对地面的压力为 F_2 , 则(
 - A. F₁=200 牛

B. F₂=300 牛

C. F₁=400 牛

D. F₂=200 牛

【难度】★★★

【答案】A

【难度】★

【答案】=; =; 相等

6、甲物重5N,乙物重3N,甲、2	乙均保持静止状态,不计	弹簧测力计自重。则甲受到	到的合力和弹簧测力计的示
数分别是 ()		4	
A. 0; 3N	B. 0; 5N	6	4~~
C. 2N; 5N	D. 2N; 3N		$_{Z_{1}}\overset{\perp}{\sqcup}$
【难度】★★★【答案】A		甲	
7、如图所示,用 F=100N 的力拉	i着木块匀速前进,则木均	中与支持面间的摩擦力为_	N.
F A			
【难度】★★【答案】200			
8、如图所示,当物体所受重力等擦)。	等于 120N,物体对地面的	压力为零时,拉力 F 应等	于N(不计绳重与摩
【难度】★			$\overline{\triangle}$
【答案】120			F.
9、用如图的滑轮匀速提升重物,	若物体重 G=200N, 滑车	。 2. 全重不计,则滑轮挂钩承受	B的拉力是 N,拉绳的
力 F 为N; 若滑轮重为 20N			
 【难度】★★			_
【答案】200; 100; 200; 110			φ ė
10、如图所示,物重 $G=30N$,约	黾的一端拴在地面,拉力	F 使滑轮匀速上升。	F
(1) 若滑轮重不计,滑轮向上移	;动 20cm,则拉力 <i>F</i> =	N,物体上升cm	
(2) 若滑轮重为 2N, 使物体上	升 20cm,则拉力 F=	N,滑轮向上移动	_cm。
【难度】★★			
【答案】(1)60;40(2)62;1	0		Apparella Constant
11、利用定滑轮提起重物,沿着如	图所示方向的F ₁ 、F ₂ 、F ₃ 来	施力拉绳子时拉力大小的	关系是F ₁ F ₂ F ₃
(以上两空选填"="或"≠"),			

G

_			
	实验次数	物重 G/N	弹簧测力计的示数 F/N
	1	1.0	0.7
	2	1.5	1.0
	3	2.0	1.3

【难度】★★

【答案】动滑轮具有重力;动滑轮与轴之间存在摩擦;竖直向上匀速拉动

13、某个小组同学研究动滑轮的使用特点,他们先用弹簧测力计缓慢提起钩码,如图(a)所示,再分别用重力不同的动滑轮甲、乙、丙($G_{\mathfrak{p}}$ > $G_{\mathbb{Z}}$ > $G_{\mathfrak{p}}$)缓慢提起相同钩码,如图(b)、(c)、(d)所示。请仔细观察图中的操作和弹簧测力计的示数,然后归纳得出结论。

- (1) 比较图 (a) 与 (b) 或 (a) 与 (c) 或 (a) 与 (d) 两图可得:
- (2) 比较图(b)与(c)与(d)三图可得:

【难度】★★★

【答案】(1)缓慢提起相同重物,使用动滑轮能省力,但不能改变用力方向

(2) 使用动滑轮缓慢提起相同重物时,动滑轮的重力越小,所用的拉力越小

14、如图所示,绳及滑轮重不计,滑轮转动时的摩擦不计。物体 A 重 800N、B 重 100N,B 在运动时受地面的摩擦力是 f_B =20N。当拉力 F=200N 时,物体 A 以 3m/s 的速度沿水平面匀速运动。求:

- (1) 物体 B 运动的速度;
- (2) 物体 A 所受的摩擦力 fA。

【难度】★★★

【答案】(1) 6m/s (2) 160N

15、某小组同学研究"使用动滑轮匀速提起物体时,所用竖直向上拉力 F 的大小与哪些因素有关"。他按图所示方式用两个重力不同的滑轮连行实验,并将相应的滑轮重 $G_{\it ph}$ 、物体重 $G_{\it ph}$ 和拉力 F 的大小记录在表一、二中。为了进一步研究,他们计算了每次实验中物体所受重力的变化量 $\Delta G_{\it ph}$ 与所用拉力的变化量 ΔF ,并将结果记录在表一、二的后两列中。

表一: G 滑=2牛					表二: G 滑=4牛				
实验	G _物	F	ΔG 物	ΔF	实验	G _物	F	ΔG 物	ΔF
序号	(牛)	(牛)	(牛)	(牛)	序号	(牛)	(牛)	(牛)	(牛)
1	1	1.5	0	0	6	2	3.0	0	0
2	2	2.0	1	0.5	7	4	4.0	2	1.0
3	4	3.0	3	1.5	8	6	5.0	4	2.0
4	6	4.0	5	2.5	9	8	6.0	6	3.0
5	8	5.0	7	3.5	10	10	7.0	8	4.0

(1)分析比较表一或表二中F与 G_{ϑ} 的数据及相关条件,可得出的初步结论是:使用动滑轮匀速提起物体,

(2) 分析比较实验序号	的数据及相关条件,	可得出的初步结论是:	使用动滑轮匀速提
起物体,当G _物 相等时,G _流 越大,F越大。			

(3)根据表一、二中前三列的数据及条件,请判断:按图所示方式使用动滑轮匀速提起物体,若要省力,需满足的条件是。

(4) 进一步分析比较表一、二中 ΔF 与 ΔG 物的数据及相关条件	,可发现其满足的数学关系式为	,
由此可得出的初步结论是: 使用功滑轮匀速提起物体,	成正比。	

【难度】★★★

【答案】(1) 当 $G_{\mathbb{R}}$ 相等时, $G_{\mathbb{R}}$ 越大,F 越大

- (2) 2与6; 3与7; 4与8; 5与9
- (3) G_物大于 G_物
- (4) △F=0.5△G_物; △F与G_物

瓜熟蒂落

1、如图所示,用三个滑轮分别拉同一个物体,沿同一水平面做匀速直线运动,所用的拉力分别是 F_1 、 F_2 、 F_3 , 比较它们的大小应是 ()

- A. $F_1 > F_2 > F_3$ B. $F_1 < F_2 < F_3$ C. $F_2 > F_1 > F_3$ D. $F_2 < F_1 < F_3$

【难度】★

【答案】D

2、工人们为了搬运一个笨重的机器进入厂房,他们设计了如图所示的四种方案(机器下方的小圆表示并排放 置的圆形钢管的横截面)。其中最省力的方案是

【难度】★

【答案】C

3、两个滑轮完全相同,其重力均为20N。分别用图所示的两种方式,将重400N的物体以相同的速度匀速提升, 不计摩擦和绳重,则下列判断正确的是 ()

- A. F₁大于 F₂
- B. $F_1=F_2$
- C. F₁小于 F₂
- D. F₁和 F₂大小无法确定

【难度】★

【答案】A

4、如图所示,把重20N的物体匀速向上拉起,弹簧测力计的示数为12N,若不计摩擦,则拉力F和动滑轮的 重力分别是 (

- A. 10N, 4N
- B. 12N, 24N
- C. 12N, 4N
- D. 24N, 12N

【难度】★★

【答案】C

5、杠杆在我国古代就有了许多巧妙的应用,护城河上安装使用的吊桥就是一个杠杆,由右图可知它的支点是点____(填"A"、"B"或"C"),在拉起时它属于一个____杠杆(选填"省力"或"费力")。由图中还可看出通过定滑轮 D 起到的作用是

【难度】★★

【答案】C; 省力; 改变力的方向

6、如图所示,动滑轮下面挂一个重 G=20N 的物体,挂物体的绳子承受_____N 的力,拉力 F=_____N (动滑轮的重力及摩擦不计)。

【难度】★

【答案】20;10

7、如图所示,物体重 G=10N,且处于静止状态(不计摩擦),该滑轮是______滑轮,手拉弹簧测力计 F_1 示数为______N,若手拉弹簧测力计在三个不同位置时的拉力分别是 F_1 、 F_2 、 F_3 ,则它们的大小关系是:

【难度】★

【答案】定; 10; =; =

8、如图所示,不计动滑轮的重力及摩擦,当竖直向上的拉力 F=10N 时,恰能使重物 G 匀速上升,则重物 $G=_{N}$,绳固定端的拉力为_____N,重物上升10cm,拉力 F 向上移动_____cm。

【难度】★★

【答案】5;5;5

9、如图所示,物体 A 以2厘米/秒的速度,在水平地面上做匀速直线运动,此时弹簧测力计的示数为3牛,水平 拉力 F= N,物体 A 受到的摩擦力 f= N(不计滑轮重力以及轮与绳之间的摩擦)。

【难度】★

【答案】3;6

10、如图所示,物体 A 重20牛,静止在水平面上,滑轮重2牛,弹簧测力计的示数为18牛。那么, B 物重_____N,水平面对物体 A 的支持力是 N。 \P

【难度】★★★

【答案】8;12

11、如图所示,某人用滑轮先后以甲、乙两种不同的方式来匀速提升重物。如果该人的体重为800N、手臂所能发挥的最大拉力为1000N,滑轮重和摩擦均忽略不计,则:以图甲方式最多可提升重为_____N的物体;而以图乙方式最多可提升重为_____N的物体。

【难度】★★【答案】800; 2000

12、在探究动滑轮使用特点:

由图 (b) (c) 可得: _____

【难度】★★

【答案】使用动滑轮提起同一重物时,拉力与竖直方向夹角越大,拉力越大

13、为了探究滑轮在不同工作情况时的使用特点,某小组同学利用不同的滑轮将重为10牛的物体匀速提起,滑轮的工作情况和实验数据如下表所示。

实验序号	1	2	3	4	5	6	7	8	9
	定滑轮			动滑轮					
滑轮工作情况									
滑轮重力 (牛)	1	1	1	1	2	3	3	3	3
拉力(牛)	10	10	10	5.5	6.0	6.5	7.2		8.0

(1)	分析比较实验序号	可得出的初步结论是:	使用定滑轮匀速提升重物时,	不改变力的大小,
可以	改变用力方向。			
(2)	分析比较实验序号4、	5和6可得出的初步结论是:		o
(3)	分析比较实验序号6、	7和9可以得到的结论是:		o
(4)	依据第(3)小题的结	论可推断实验序号8中拉力大小的?	范围为	
【难	度】★★			
【答	案】(1)1、2和3			
(2)	使用动滑轮匀速提升相	目同重物时,滑轮的重力越大,拉定	力越大	

能力提升

(4) 7.2~8.0

1、如图所示,装置处于静止状态,如果物体的重力为 G_1 和 G_2 ,在不计滑轮重及绳子摩擦的情况下, G_1 : G_2 为

()

A. 1:2

B. 1:1

C. 2:1

(3) 使用动滑轮匀速提升重物时,重物重力不变,拉力与竖直方向夹角越大,拉力越大

D. 3:1

【难度】★★

【答案】C

【解析】图中是一定一动的滑轮组,可以将 G_2 由于重力而对绳子施加的拉力看作是绳子末端的拉力(该拉力等于 G_2),最后一段绳子是由定滑轮引出的,绳子股数是2,不计摩擦及滑轮重,即理想状况下,F=G/2,所以 $G_2=G_1/2$,即 $G_1:G_2=2:1$ 。故选 C

【难度】★★★

【答案】2:4

【解析】A、B 物体的重力分别是4N 和2N,据此能判断出,它们都处于平衡状态,即表明此时绳子上的拉力是2N(看动滑轮,有两端绳子吊着4N 的物体,即每段绳子上的力是2N;看定滑轮,由于 B 重2N,所以吊着定滑轮的两端绳子上的力都是2N);对于测力计 D 来说,受到两段绳子向下的力,故此时 D 的示数是 $F=2N\times2=4N$;对于测力计 C 来说,只受到一段绳子的拉力,故 C 的示数是2N。

3、如图所示,动滑轮重为0.5N,物体 G 重3.5N,当 OA=2OB 时,为使轻质杠杆 AB 保持水平平衡,在 A 端 施加的最小力为(不计摩擦) ()

- A. 0.5N
- B. 1N
- C. 2N
- D. 4N

【答案】B

【解析】::不计摩擦,

$$F_{\rm B} = \frac{G_{\rm BS} + G_{\rm BS}}{2} = \frac{0.5N + 3.5N}{2} = 2N$$

- ∴杠杆 B 端受到的力:
- ∵杠杆平衡,OA 为最大力臂,A端所需施加的力最小,方向竖直向下
- $\therefore FB \times OB = F \times OA$,

$$F = \frac{F_B + OB}{OA} = \frac{2N \times 1}{2} = 1N$$

- A. 绳子对 m2的拉力大小为 m2g
- B. 绳子对 m₁的拉力大小为 m₁g
- C. 弹簧中拉力大小为 (m_1-m_2) g
- D. 地面对 m_3 的支持力大小为 $(m_2+m_3-m_1)$ g

【难度】★★★

【答案】A

【解析】如图, m₁看成绳端,处于静止状态,故绳子的拉力大小等于 m₁g;

对 m_2 ,受到重力 m_1g ,绳子竖直向上的拉力 m_1g ,由于 $m_1>m_2$,所以 m_2 还受到弹簧竖直向上的支持力,大小为 (m_1-m_2) g,弹簧处于拉伸状态;

对 m_3 ,受到重力 G_3 = m_3 g,弹簧竖直向上的拉力 T=(m_1 — m_2)g,地面对物体的支持力 N。处于静止状态,故 N= G_3 -T=(m_2 + m_3 — m_1)g;

故A选项说法错误