MATHEMATIQUES

Ordre dans R

Capacités attendues

- Maitriser les différentes techniques de comparaison de deux nombres (ou expressions) et utiliser la technique convenable selon la situation étudiée.
- Représenter sur la droite numérique les différentes relations relatives à l'ordre.
- Reconnaitre et déterminer avec une précision donnée, une approximation d'un nombre (ou d'une expression).
- Effectuer des majorations ou des minorations d'expressions algébriques.
- Utiliser la calculatrice pour déterminer des valeurs approchées d'un nombre réel.

Tronc commun scientifique

Rachid El Manssouri

CHAPITRE 05 : Ordre dans R

Contenu du chapitre 05

I.	Ordres et opérations1
	1. Orbre et comparaison
	2. Ordre et addition
	3. Ordre et multiplication
	4. Ordre et inverse
	5. Orbre et carré
II.	Intervalles de R
III.	Valeur absolue d'un nombre
ıν.	Approximations, Approximations décimales
	1. Approximation par défaut - Approximation par excès 5
	2. Valeur approchée
	3. Approximations décimales

I. Ordres et opérations

1. Ordre et comparaison

Comparer deux nombres réels a et b, c'est chercher à savoir quel est le plus grand (ou s'ils sont égaux).

Définition 1:

Soient a et b deux nombres réels.

- \triangleright On dit que a est **inférieur ou égale** à b, et on écrit $a \le b$ si et seulement si $a b \le 0$.
- \Rightarrow On dit que a est inférieur strictement à b, et on écrit a < b si et seulement si a b < 0.

Remarques:

- On a la même définition pour supérieur ou égale et strictement supérieur.
- $a \le b$ signifie que (a < b ou a = b).
- Si a < b alors $a \le b$ (la réciproque est fausse).
- Pour comparer deux nombres ou deux expressions, on étudie généralement leur différence.

Propriété 1 :

Soient a. b et c trois nombres réels.

Si: $(a \le b \text{ et } b \le c)$ alors $a \le c$.

Application 1:

Soit *n* un entier naturel.

Comparer les nombres x et y dans chacun des cas suivants :

1.
$$x = (n+5)^2$$
; $y = n^2 + 5^2$

2.
$$x = \frac{n}{n+1}$$
; $y = \frac{n+1}{n+2}$

3.
$$x = \frac{\sqrt{n}}{\sqrt{n} + 1}$$
; $y = \frac{\sqrt{n} + 5}{\sqrt{n} + 4}$

Définition 2 :

Soient a, b et x trois nombres réels tels que a < b.

Chaque inégalité parmi les doubles inégalités suivantes : $a \le x \le b$; $a \le x < b$; $a < x \le b$ et a < x < best appelée **encadrement** de x.

2. Ordre et addition

Propriété 2 :

Soient a, b, c, d et k des nombres réels.

- \triangleright Si: a < b alors a + k < b + k.
- ightharpoonup Si: $(a \le b \text{ et } c \le d)$ alors $a + c \le b + d$.

Remarque:

Si: $(a \le b \text{ et } c < d)$ alors a + c < b + d.

3. Ordre et multiplication

Propriété 3 :

Soient a, b, c, d et k des nombres réels.

- \triangleright Si: $(a \le b \text{ et } k > 0)$ alors $ak \leq bk$.
- \triangleright Si: $(a \le b \text{ et } k < 0)$ alors ak > bk.
- ightharpoonup Si: (0 < a < b et 0 < c < d) alors ac < bd.

CHAPITRE 05 : Ordre dans R

Conséquences:

Soient a, b, c, d, x, y et k des nombres réels.

- ightharpoonup Si: $(a \le x \le b \text{ et } k > 0)$ alors $ka \le kx \le kb$.
- ightharpoonup Si: $(a \le x \le b \text{ et } k < 0)$ alors $kb \le kx \le ka$.
- ightharpoonup Si: $(0 \le a \le x \le b \text{ et } 0 \le c \le y \le d)$ alors $ac \le xy \le bd$.

4. Ordre et inverse

Propriété 4 :

Soient *a* et *b* deux nombres réels non nuls et ayant le même signe.

Si:
$$a \le b$$
 alors $\frac{1}{b} \le \frac{1}{a}$.

Conséquences:

Soient *a*, *b* et *x* trois nombres réels.

- $ightharpoonup \text{Si}: 0 < a \le x \le b \text{ alors } \frac{1}{b} \le \frac{1}{x} \le \frac{1}{a}$
- \Rightarrow Si: $a \le x \le b < 0$ alors $\frac{1}{b} \le \frac{1}{c} \le \frac{1}{a}$

5. Ordre et carré

Propriété 5 :

Soient a et b deux nombres réels positifs.

- ightharpoonup Si: a < b alors $\sqrt{a} < \sqrt{b}$.
- ightharpoonup Si: a < b alors $a^2 < b^2$.

Conséquences:

Soient *a*, *b* et *x* trois nombres réels.

- ightharpoonup Si: 0 < a < x < b alors $\sqrt{a} < \sqrt{x} < \sqrt{b}$.
- ightharpoonup Si: 0 < a < x < b alors $a^2 < x^2 < b^2$.
- ightharpoonup Si: a < x < b < 0 alors $b^2 < x^2 < a^2$.

Application 2:

Comparer les nombres x et y dans chacun des cas suivants :

1.
$$x = 3\sqrt{5}$$
; $y = 5\sqrt{3}$

2.
$$x = \sqrt{10 - 4\sqrt{5}}$$
; $y = \sqrt{5} - 3$

3.
$$x = \sqrt{3} - 2$$
; $y = \sqrt{7 - 4\sqrt{2}}$

1.
$$x = 3\sqrt{5}$$
; $y = 5\sqrt{3}$ 2. $x = \sqrt{10 - 4\sqrt{5}}$; $y = \sqrt{5} - 2$ 3. $x = \sqrt{3} - 2$; $y = \sqrt{7 - 4\sqrt{2}}$
4. $x = \frac{\sqrt{2} + 2}{2}$; $y = \frac{\sqrt{2} + 1}{\sqrt{2}}$ 5. $x = a^2 + b^2$; $y = 2ab$ 6. $x = \sqrt{a + b}$; $y = \sqrt{a} + \sqrt{b}$

5.
$$x = a^2 + b^2$$
; $y = 2ab$

6.
$$x = \sqrt{a+b}$$
; $y = \sqrt{a} + \sqrt{b}$

Application 3:

Soient *x* et *y* deux nombres réels tels que : $1 < x \le 4$ et $-3 < y \le -1$ Donner un encadrement aux nombres suivants :

$5\sqrt{x} + y$	x - y	2x - 3y	$x^2 + y^2$
$x^{2}-y^{2}$	<i>x</i> . <i>y</i>	$(\sqrt{x}-1)(y+3)$	(x-5)(y-2)
$\frac{1}{x}$	$\frac{1}{y}$	$\frac{-2y}{x+3}$	$\frac{3x}{y-1}$

~ 2 ~

CHAPITRE 05 : Ordre dans R

Résumé:

		alors	$a - b \le 0$
	et $b \le c$	alors	$a \le c$
Si . ~ _ h	et $k \in \mathbb{R}$	alors	$a+k \leq b+k$
$Si: a \leq b$	et $c \leq d$	alors	$a+c \le b+d$
	et $k > 0$	alors	$ak \le bk$
	et $k < 0$	alors	$ak \ge bk$
		alors	$\sqrt{a} \le \sqrt{b}$
$Si: 0 \le a \le b$		alors	$a^2 \le b^2$
	et $0 \le c \le d$	alors	$ac \leq bd$
$Si: a \le b \le 0$		alors	$a^2 \ge b^2$
$Si: 0 < a \le b$		alors	$\frac{1}{a} \ge \frac{1}{b}$
$Si: a \le b < 0$		alors	$\frac{1}{a} \ge \frac{1}{b}$

II. Intervalles de $\mathbb R$

Définition 3:

Soient a et b deux nombres réels tels que a < b.

Inégalités	Notation (Intervalle)	Représentation sur la droite numérique	Vocabulaire	
$a \le x \le b$	[a; b]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Intervalle fermé d'extrémités a et b	
$a < x \le b$]a; b]		Intervalle semi ouvert à gauche d'extrémités a et b	
$a \le x < b$	[a; b[Intervalle semi ouvert à droite d'extrémités a et b	
a < x < b]a; b[Intervalle ouvert d'extrémités a et b	
$x \ge a$	[a; +∞[0 1 2 3 4 5 6 7 a	Intervalle " a ; plus l'infini " fermé en a	
x > a] <i>a</i> ; +∞[0 1 2 3 4 5 6 7	fermé en a Intervalle "a; plus l'infini" ouvert en a	
$x \le b$]-∞; <i>b</i>]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Intervalle " moins l'infini ; b " fermé en b Intervalle	
<i>x</i> < <i>b</i>]-∞; <i>b</i> [-2 -1 0 1 2 3 4 b 5 6	Intervalle " moins l'infini ; b " ouvert en b	
Transcription - Deskil Til Manageri				

CHAPITRE 05 : Ordre dans R

Remarques:

- Les symboles $-\infty$ et $+\infty$ ne représentent pas des nombres réels.
- $\mathbb{R}^+ = [0; +\infty[; \mathbb{R}^+_* =]0; +\infty[; \mathbb{R}^- =]-\infty; 0]; \mathbb{R}^-_* =]-\infty; 0[; \mathbb{R} =]-\infty; +\infty[.$

Définition 4:

Soient I et I deux intervalles de \mathbb{R} .

- **>** L'**intersection** de I et J, notée I ∩ J, est l'ensemble des éléments communs entre I et J et on a : I ∩ J = { $x \in \mathbb{R} / x \in I$ et $x \in J$ }
- ▶ La **réunion** de I et J, notée I ∪ J, est l'ensemble des éléments communs et non communs entre I et J et on a : I ∪ J = { $x \in \mathbb{R} / x \in I$ ou $x \in J$ }

Application 4:

Déterminer les intervalles correspondants aux inégalités suivantes :

1.	$-2 \le x \le 5$	et $1 \le x \le 8$	2.	$-2 \le x \le 5$	ou $1 \le x \le 8$
3.	$0 < x \le 4$	et $-1 \le x < 9$	4.	$0 < x \le 4$	ou $-1 \le x < 9$
5.	$x \le 2$	et $0 \le x < 7$	6.	$x \le 2$	ou $0 \le x < 7$
7.	$-3 \le x \le 0$	et $0 < x < 2$	8.	$-3 \le x \le 0$	ou $0 < x < 2$
9.	<i>x</i> < 7	et $x \ge 4$	10.	<i>x</i> < 7	ou $x \ge 4$

III. Valeur absolue d'un nombre

Définition 5:

Soit x un nombre réel et M le point d'abscisse x sur une droite graduée $\Delta(0; I)$.

La **valeur absolue** de x notée par |x| est égale à la distance OM.

On écrit :
$$|x| = 0$$
M, et on a :
$$\begin{cases} |x| = x; & \text{si } x \ge 0 \\ |x| = -x; & \text{si } x \le 0 \end{cases}$$

Si
$$x \ge 0$$
: OM = $|x| = x$ O I M M Si $x \ge 0$: OM = $|x| = x$ O I

Si
$$x \le 0$$
: OM = $|x| = -x$ $\frac{M}{-5}$ $\frac{O}{-4}$ $\frac{I}{x-3}$ $\frac{O}{-2}$ $\frac{I}{-1}$ $\frac{I}{0}$ $\frac{I}{1}$ $\frac{I}{2}$ $\frac{I}{3}$ $\frac{I}{4}$

Propriété 6:

Soient *a* et *b* deux nombres réels.

$ a \ge 0$	$\triangleright a \ge a$		ightharpoonup -a = a
$ > \sqrt{a^2} = a $	$\triangleright a ^2 = a^2 = a^2$		$\triangleright a ^n = a^n \text{ ou } n \in \mathbb{Z}^*$
$ ightharpoonup a \cdot b = a \cdot b $	$\geqslant \frac{ a }{ b } = \left \frac{a}{b}\right \text{ ou } b \neq 0$		$ a+b \le a + b $
a = 0 est équivalent à $a = 0$		a = b est équivalent à $(a = b ou a = -b)$	

CHAPITRE 05 : Ordre dans R

Application 5:

1. Simplifier et exprimer les nombres suivants sans valeur absolue :

$$|\pi - 2|$$
; $|2\pi - 9|$; $|-\sqrt{3} - 2|$; $|3\sqrt{5} - 7|$; $\sqrt{(2 - \sqrt{3})^2}$; $\sqrt{(1 - \sqrt{7})^2}$

2. Déterminer l'ensemble des solutions des équations suivantes :

$$|4x - 20| = 0$$
; $|x + 9| \cdot |x - 2| = 0$; $|5x + 8| = |2x - 1|$; $|x^2 + 3x + 6| = |x^2 - 6|$

Propriété 7:

Soient x et r deux nombres réels tel que $r \ge 0$, on a :

|x| = r est équivalent à (x = r ou x = -r).

 $|x| \le r$ est équivalent à $-r \le x \le r$.

 $|x| \ge r$ est équivalent à $(x \le -r \text{ ou } x \ge r)$.

Application 6:

1. Résoudre dans \mathbb{R} les équations suivantes :

$$|x-4|=3$$
; $|3x+2|=5$; $|7x+8|=-1$

2. Résoudre dans \mathbb{R} les inéquations suivantes :

$$|x-3| \le 5$$
; $|2x+5| < 7$; $|x-3| > 5$; $|2x+5| \ge 7$

Définition 6:

Soit I un intervalle borné d'extrémités a et b.

ightharpoonup Le nombre $c=rac{a+b}{2}$ est appelé **centre** de l'intervalle I.

ightharpoonup Le nombre l=|a-b| est appelée **longueur** ou **amplitude** de l'intervalle I.

▶ Le nombre $r = \frac{|a-b|}{2}$ est appelé **rayon** de l'intervalle I.

Application 7:

1. Déterminer le centre, l'amplitude et le rayon de l'intervalle [-3; 7[.

2. Déterminer l'intervalle fermé de centre 5 et de rayon 2.

3. Déterminer l'intervalle ouvert de centre −3 et l'un de ses extrémités est 1.

IV. Approximations, Approximations décimales

1. Approximation par défaut - Approximation par excès

Définition 7 :

Soient a, b et x trois réels tels que : $a \le x \le b$ ou $a \le x \le b$ ou $a < x \le b$ ou $a < x \le b$.

 \triangleright Le nombre a est appelé **approximation par défaut** de $x \ a \ b - a$ prés.

 \triangleright Le nombre b est appelé **approximation par excès** de $x \ a \ b-a$ prés.

CHAPITRE 05 : Ordre dans R

Exemple:

On a: $3,141592 \le \pi \le 3,141593$.

Le nombre 3,141592 est une approximation par défaut de π à 3,141593 – 3,141592 = 10^{-6} prés. Le nombre 3,141593 est une approximation par excès de π à 10^{-6} prés.

2. Valeur approchée

Définition 8:

Soient *x* un nombre réel et *r* un réel strictement positif.

Tout nombre réel a vérifiant : $|x - a| \le r$ ou |x - a| < r est appelé une **valeur approchée** de x à r prés (ou à la précision r prés).

Autrement dit:

a est une valeur approchée de x à r prés si et seulement si les nombres a-r et a+r encadrent x.

Exemple:

On a: $3,141 \le \pi \le 3,142$

Donc: $3,1415 - 0,0005 \le \pi \le 3,1415 + 0,0005$

Donc: $-0.0005 \le \pi - 3.1415 \le 0.0005$

Donc: $|\pi - 3,1415| \le 5 \times 10^{-4}$

Ainsi : 3,1415 est une valeur approchée de π à 5×10^{-4} prés.

Remarque:

Si $a \le x \le b$ alors $\frac{b+a}{2}$ est une valeur approchée de x à $\frac{b-a}{2}$ prés.

3. Approximations décimales

Définition 9:

Soit *x* un nombre réel tel que $N \times 10^{-p} \le x \le (N+1) \times 10^{-p}$ avec $p \in \mathbb{N}$ et $N \in \mathbb{Z}$.

▶ Le nombre $N \times 10^{-p}$ est appelé l'approximation décimale par défaut de x à 10^{-p} prés.

▶ Le nombre $(N+1) \times 10^{-p}$ est appelé l'**approximation décimale par excès** de x à 10^{-p} prés.

Application 8:

Donner l'approximation décimale par défaut et par excès à $10^{-3}\,$ et $10^{-5}\,$ prés des nombres suivants :

$$\sqrt{3}$$
; $\sqrt{2}$; π ; $\frac{3}{7}$; $\frac{23}{13}$.

~ 6 ~