1. 两个均匀带电的同心球壳,半径分别为 R_a 和 R_b ,带电总量分别为 Q_a 和 Q_b ,求图中 I 、 II 、 II 区内的电势分布。

2. 一带电的半球壳,其电荷分布为 $\sigma=P\cos\theta$, θ 为球壳上一点的径矢与半球壳轴线的夹角,试计算球心中O点处的电场强度。

- 3. 如图所示三个平行平板导体A,B,C,其面积都为S,相距分别为 d_1 和 d_2 ,且 d_1 , d_2 << $S^{1/2}$,可忽略边缘效应,兹分别给A板和C板充以 Q_1 电量 Q_1 和 Q_2 ,B板不带电即电中性。
 - (1) 试求出三个平板其6个表面的面电荷密度 (σ_1, σ_2) , (σ_3, σ_4) , (σ_5, σ_6) 。
 - (2) 求电势差UAB和UBC。
 - (3) 合上电键K维持 U_{AC} 为恒定电压 $U_0 = 300 \text{ V}$, 试求出此时6个面的面电荷密度,并求出电势差 U_{AB} 和 U_{BC} 。

- 4. 如图所示,已知导电板上面电荷密度为 $\pm \sigma_0$,其间充满两层介质,其厚度和相对介电常数分别为 (d_1, ϵ_1) 和 (d_2, ϵ_2) ,忽略边缘效应,求:
- ① 两层介质中的场强E₁和E₂;
- ②两层介质中的极化强度P₁和P₂;
- ③导电板间的电势差UAB;
- ④三处极化面电荷密度 σ_1' , σ_2' 和 σ' 。

5、下图电路中 E_1 =18V, E_2 =9V, R_1 = R_2 =1 Ω , R_3 =4 Ω 。 求图中已经标示好的各支路电流。

- 6、请写出下面的问题的表达式,尝试按照提示在最后一问中分析电场作用下净电荷的存在问题。
- 1) 电流连续方程的积分形式和微分形式?
- 2) 欧姆定律的微分形式?
- 3) 静电场高斯定理的微分形式? (麦克斯韦方程的第一个方程)
- 4)将欧姆定律的微分形式结果代入电流连续方程微分形式中, 观察其与高斯定理微分形式的联系,尝试构造出电荷密度的常 微分方程并讨论之?

7. 设一无限大导体薄板,垂直于纸面放置,其中有方向垂直于纸面朝外的电流通过,垂直于电流方向单位长度的电流为j,求此平板周围的磁场分布?

8. 一块半导体样品的体积为 $a \times b \times c$, 如图所示, 沿x方向有电流I, 在Z轴方向加有均匀磁场B。这时实验测得数据为 $a=0.10~{\rm cm}, b=0.35~{\rm cm}, c=1.0~{\rm cm}, I=1.0~{\rm mA}$,

B = 3000 Gs,半导体片两侧的电势差

 $U_{AA'} = 6.55 \text{ mV}. \quad (e = 1.602 \times 10^{-19} \text{C}).$

(1) 问这个半导体是正电荷导电(p型)还是负电荷导电(n型)?

(2) 求载流子浓度(即单位体积内参加导电的带电粒子数)?

