Algoritmo VNS para o Problema de Roteamento Híbrido com Veículo-Drone para Serviço de Entrega e Coleta

Anderson Zudio

(azudio@id.uff.br)
Luiz Satoru Ochi e Igor Machado Coelho

Universidade Federal Fluminense – UFF, Instituto de Computação – IC

42° CSBC – III WBCI
Congresso da Sociedade Brasileira de Computação
Workshop Brasileiro Cidades Inteligentes
Niterói, RJ
1 de agosto, 2022

Universidade Federal Fluminense - Campus Praia Vermelha, Instituto de Computação.

Problema Alvo

Problema de roteamento híbrido veículo-drone para coleta e entrega

Consiste em servir vários clientes com demandas de coleta e entrega usando um veículo equipado com drones. O objetivo é minimizar o custo de travessia do veículo e dos drones para servir todos os clientes. Abreviado do inglês como HVDRP.

Fonte: Workhorse Group Inc.

Problema Alvo - Exemplo

Exemplo de instância do HVDRP com solução.

Problema Alvo - Resumo

- Somente drones podem servir os clientes;
- Os drones só podem ser despachados das estações;
- O mesmo drone pode sair de uma estação múltiplas vezes;
- Um drone pode servir vários clientes durante sua rota:
- 6 Cada drone é limitado por capacidade máxima e bateria;
- Diferentes drones podem ser despachados simultaneamente;
- O veículo só pode visitar cada estação uma única vez;
- O veículo não precisa visitar todas as estações;
- O drone pode voltar para qualquer estação na rota do veículo;
- Quando o drone volta para o veículo, a bateria é reposta;
- Se o drone chegar em uma estação antes do veículo, ele aguarda até o veículo chegar;
- O veículo não sai de uma estação sem carregar todos os drones que estão programados para voltar nela.

Motivação

- O problema é NP-Difícil.
- Formalizado recentemente (Karak 2020):
 - Não fornece as instâncias;
 - Não fornece implementação dos algoritmos;
 - Somente dois trabalhos na literatura (Zudio, Coelho, and Ochi 2021).
- Ampla aplicação no contexto de cidades inteligentes: (Moshref-Javadi and Winkenbach 2021).
 - Transporte de encomendas;
 - Vigilância;
 - Preservação de patrimônio público;
 - Monitoramento de acidentes.
- A formulação matemática requer alto tempo de execução em CPU e grande uso de memória para instâncias relativamente pequenas.

Contribuições Deste Trabalho

- Heurística baseada no VNS (Variable Neighborhood Search (Hansen, Mladenović, Todosijević, and Hanafi 2017).
- Conjunto de instâncias com soluções todas disponíveis publicamente.
- As soluções disponibilizadas para as instâncias com poucos clientes são exatas.
- Gerador de instância com a topologia proposta no trabalho original (Karak and Abdelghany 2019).

- VNS Variable Neighborhood Search (Hansen, Mladenović, Todosijević, and Hanafi 2017).
 - Solução inicial gerado com um algoritmo guloso;
 - Fase de pertubação usa estruturas de vizinhança que movimenta o veículo:
 - Processo de busca com VND (Variable Neighborhood Descent) e estruturas de vizinhança que movimenta os drones.

VNS Overview

Introdução

2 웃 웃 8/2/3 7/2/1 웃 9/0/2 웃 6/4/1 Depot

Introdução

Introdução

Introdução

Introdução

Introdução

Introdução

Shake – Vizinhanças para o Veículo

O K_{max} é fixo em 5. Durante avaliação, cada voo de drone que é inviável acarreta em uma penalidade. A ideia é variar a rota do veículo para ajustar os drones posteriormente.

Exemplo para adição e remoção de estações para o veículo.

Aplicada quando K=1. Seleciona uma estação para ser adicionada ou removida. A quantidade de vezes que é utilizada é a metade do número de estações.

Shake - Vizinhanças para o Veículo

O K_{max} é fixo em 5. Durante avaliação, cada voo de drone que é inviável acarreta em uma penalidade. A ideia é variar a rota do veículo para ajustar os drones posteriormente.

Exemplo da estrutura para troca de estações do veículo.

Aplicada quando $K \in [2,5]$. A quantidade de vezes que é aplicada é exatamente o número de estacões.

O VND clássico é utilizado com o objetivo de obter configurações boas de voo para o caminho atual do veículo. As seis vizinhanças são aplicadas sequencialmente em ordem aleatória.

Introdução

Exemplo para adição de cliente para uma rota de drone.

O movimento é adicionar um cliente em determinada rota. O drone que visitava o cliente originalmente é configurado para ignorá-lo. O VND clássico é utilizado com o objetivo de obter configurações boas de voo para o caminho atual do veículo. As seis vizinhanças são aplicadas sequencialmente em ordem aleatória.

Introdução

Exemplo da estrutura para troca de drones.

Como os drones podem ter configurações distintas, o movimento é trocar o drone que vai fazer rota.

O VND clássico é utilizado com o objetivo de obter configurações boas de voo para o caminho atual do veículo. As seis vizinhanças são aplicadas sequencialmente em ordem aleatória.

Introdução

Exemplo da estrutura para unir voos.

A ideia é juntar duas rotas mantendo o drone e as estações que geram a rota final de menor custo.

Busca – Vizinhanças para o Drone

O VND clássico é utilizado com o objetivo de obter configurações boas de voo para o caminho atual do veículo. As seis vizinhanças são aplicadas sequencialmente em ordem aleatória.

Exemplo da estrutura que troca a estação do fim da rota.

Estrutura que muda iterativamente o fim de cada rota para uma estação posterior. A estrutura que muda o começo funciona de forma análoga.

O VND clássico é utilizado com o objetivo de obter configurações boas de voo para o caminho atual do veículo. As seis vizinhanças são aplicadas seguencialmente em ordem aleatória.

Introdução

Exemplo de uma troca de clientes em uma mesma rota.

A ideia é realizar trocas entre clientes para explorar diferentes configurações dentro de uma mesma rota.

Configuração do Experimento Computacional

- Recurso computacional
 - Processador Intel Core i7-10700f @2.9 GHz;
 - 32 GB RAM;
 - Sistema Operacional Ubuntu 20.04 (x64).
- Teste com 10 instâncias categorizadas de A até D.
 - A-1 até A-5 com 6 clientes e 3 estações;
 - B-1 até B-5 com 50 clientes e 8 estações;
 - C-1 até C-5 com 50 clientes e 15 estações;
 - D-1 até D-5 com 50 clientes e 24 estações.

VNS proposto

Introdução

- Shake com vizinhanças que movimenta o veículo iterativamente:
- VND que aplica sequencialmente em ordem aleatória as estruturas de vizinhança para os drones.
- Parâmetros do BRKGA comparado
 - População máx Pop_{max} = 100;
 - TOP $\epsilon = 0.2$;
 - BOT $\omega = 0.15$;
 - Taxa de elite $\rho = 0.7$.
- Ambas implementadas em C++17 sequencial;
- Tempo limite de 5 segundo para as duas;
- Resultado de 30 execuções em ambiente controlado;
- Modelo de programação inteira mista (MILP) através do Gurobi Solver usando API em C++11 (Karak and Abdelghany 2019 e Zudio, Coelho, and Ochi 2021).

Resultados do Experimento Computacional

Resultados para as instâncias de categoria A.

Inst	MILP	VNS		BRKGA			
	Ótimo	Melhor	Média	Melhor	Média		
A-1	53,6	53,6	53,6	53,6	53,6		
A-2	49,2	49,2	49,2	49,2	49,2		
A-3	35,3	35,3	35,3	35,3	35,3		
A-4	46,3	46,3	46,3	46,3	46,3		
A-5	37,5	37,5	37,5	37,5	37,5		

Resultados para as instâncias das categoria B até D.

	۷N	IS	BRKGA	
Inst	Melhor	Média	Melhor	Média
B-1	199.0	201.7	201.7	202.0
B-2	198.5	198.5	198.5	199.0
B-3	177.0	179.2	179.1	181.4
B-4	202.9	203.9	204.0	204.8
B-5	231.8	231.9	231.8	233.1
C-1	219.0	221.2	221.1	223.5
C-2	255.0	255.1	258.8	260.0
C-3	237.5	238.0	237.5	238.1
C-4	237.7	237.7	237.7	237.7
C-5	240.7	243.3	243.9	245.8
D-1	347.5	352.3	351.3	360.8
D-2	397.1	405.3	400.1	410.5
D-3	330.2	349.1	335.4	352.2
D-4	237.7	238.9	237.7	240.1
D-5	329.2	331.2	330.4	335.0

Contribuições

- Segunda heurística para o problema pouco explorado.
- Extensão do conjunto base de instâncias.
- Melhora considerável em relação ao trabalho anterior Zudio, Coelho, and Ochi 2021.
- Todas as soluções e instâncias disponíveis publicamente.
- Gerador de instâncias que usa a topologia do trabalho original.

Trabalhos futuros

- Usar outras topologias para gerar instâncias maiores.
- Disponibilizar a implementação do método exato das heurísticas.
- Calibrar as heurísticas.
- Incrementar o VND e estudar o impacto das vizinhanças para a fase de busca.
- Construir uma heurística que utiliza bem os recursos de ambientes heterogêneos CPU-GPU.

- Hansen, Pierre, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi (2017). "Variable neighborhood search: basics and variants". In: *EURO Journal on Computational Optimization* 5.3, pages 423–454.
- Karak, Aline (2020). "Hybrid Vehicle-drone Routing Problem For Pick-up And Delivery Services Mathematical Formulation And Solution Methodology". PhD thesis. Dallas: Southern Methodist University, page 178.
- Karak, Aline and Khaled Abdelghany (2019). "The hybrid vehicle-drone routing problem for pick-up and delivery services". In: *Transportation Research Part C: Emerging Technologies* 102, pages 427–449.

(2021). "Applications and Research avenues for drone-based models in logistics: A classification and review". In: *Expert Systems with Applications* 177.

Zudio, A., I. M. Coelho, and L. S. Ochi (2021). "Biased Random Key Genetic Algorithm for the Hybrid Vehicle-drone Routing Problem for Pick-up and Delivery". In: XV Brazilian Congress on Computational Intelligence, 2021.

Obrigado!

