ABSTRACT

Polythiophenes of the formula

$$\begin{array}{c|c}
R & R' \\
\hline
 & S & y \\$$

wherein R and R' are side chains; A is a divalent linkage; x and y represent the number of unsubstituted thienylene units; z is 0 or 1, and wherein the sum of x and y is greater than zero; m represents the number of segments; and n represents the degree of polymerization.