

ECOLE SUPÉRIEURE POLYTECHNIQUE INTERNATIONALE PRIVÉE DE SFAX

Solution of examples

Dr. Ing. Yasmine KOUBAAPhd in electrical engineering

Academic year 2023-204

Binary, octal and hexadecimal to decimal conversion

SOLUTION

Binary → Decimal

$$(101)_2 = (?)_{10}$$

Binary number	1	0	1
Positional weights	2	1	0

$$1.2^{2} + 0.2^{1} + 1.2^{0} = 4 + 0 + 1 = (5)_{10}$$

$$\longrightarrow$$
 (101)₂ = (5)₁₀

SOLUTION

Binary → Decimal

$$(11010)_2 = (?)_{10}$$

Binary number	1	1	0	1	0
Positional weights	4	3	2	1	0

$$1.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 0.2^0 = 16 + 8 + 2 = (26)_{10}$$

$$\longrightarrow (11010)_2 = (26)_{10}$$

SOLUTION

Binary — Decimal

$$(1111)_2 = (?)_{10}$$

Binary number	1	1	1	1
Positional weights	3	2	1	0

$$1.2^3 + 1.2^2 + 1.2^1 + 1.2^0 = 8 + 4 + 2 + 1 = (15)_{10}$$

$$\longrightarrow$$
 (1111)₂ = (15)₁₀

SOLUTION

Octal → Decimal

$$(12)_8 = (?)_{10}$$

Octal number	1	2
Positional weights	1	0

$$1.8^{1} + 2.8^{0} = 8 + 2 = (10)_{10}$$

$$\longrightarrow$$
 (12)₈ = (10)₁₀

SOLUTION

Octal → Decimal

$$(107)_8 = (?)_{10}$$

Octal number	1	0	7
Positional weights	2	1	0

$$1.8^2 + 0.8^1 + 7.8^0 = 64 + 7 = (71)_{10}$$

$$\longrightarrow$$
 (107)₈ = (71)₁₀

SOLUTION

Octal → Decimal

$$(200)_8 = (?)_{10}$$

Octal number	2	0	0
Positional weights	2	1	0

$$2.8^2 + 0.8^1 + 0.8^0 = 2X6 = (128)_{10}$$

$$\longrightarrow$$
 (200)₈ = (128)₁₀

SOLUTION

Hexadecimal —— Decimal

$$(15)_{16} = (?)_{10}$$

Hexadecimal number	1	5
Positional weights	1	0

$$1.16^{1} + 5.16^{0} = 16 + 5 = (21)_{10}$$

$$\longrightarrow$$
 (15)₁₆ = (21)₁₀

SOLUTION

Hexadecimal —— Decimal

$$(FF)_{16} = (?)_{10}$$

Hexadecimal number	F	F
Positional weights	1	0

$$15.\frac{16^1}{16^1} + 15.\frac{16^0}{16^0} = 240 + 15 = (255)_{10}$$

$$\longrightarrow$$
 (FF)₁₆ = (255)₁₀

SOLUTION

Hexadecimal —— Decimal

$$(2C0)_{16} = (?)_{10}$$

Hexadecimal number	2	С	0
Positional weights	2	1	0

$$2.16^{2} + 12.16^{1} + 0.16^{0} = 512 + 192 = (704)_{10}$$

$$\longrightarrow$$
 (2C0)₁₆ = (704)₁₀

Decimal to binary conversion

$$(24)_{10} = ()_2$$

 $24 = 16 + 8 = 2^4 + 2^3 = (11000)_2$

Division	Quotient	Generated remainder
24/2	12	0
12/2	6	0
6/2	3	0
2/2	1	1
1/2	0	1

$$(24)_{10} = (11000)_2$$

SOLUTION

Decimal → Binary

$$(9)_{10} = ()_2$$

$$9 = 8 + 1 = 2^3 + 2^0 = (1001)_2$$

Division	Quotient	Generated remainder
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

$$(9)_{10} = (1001)_2$$

SOLUTION

Decimal → Binary

$$(43)_{10} = ()_2$$

$$43 = 32 + 8 + 2 + 1 = 2^5 + 2^3 + 2^1 + 2^0 = (101011)_2$$

Division	Quotient	Generated remainder
43/2	21	1 🛉
21/2	10	1
10/2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

$$(43)_{10} = (101011)_2$$

$$(24)_{10} = ()_2$$

 $24 = 16 + 8 = 2^4 + 2^3 = (11000)_2$

Division	Quotient	Generated remainder		
24/2	12	0 🕇		
12/2	6	0		
6/2	3	0		
3/2	1	1		
1/2	0	1		

$$(24)_{10} = (11000)_2$$

$$(33)_{10} = ()_2$$

 $33 = 32 + 1 = 2^5 + 2^0 = (100001)_2$

Division	Quotient	Generated remainder
33/2	16	1 †
16/2	8	0
8/2	4	0
4/2	2	0
2/2	1	0
1/2	0	1

$$(33)_{10} = (100001)_2$$

$$(256)_{10} = ()_2$$

 $256 = 2^8 = (10000000)_2$

$$(256)_{10} = (100000000)_2$$

From a Binary to Octal Number and Vice Versa

SOLUTION

Binary ← → Octal

$$(100101)_2 = (?)_8$$

$$A=100=2^2=4$$

 $B=101=2^2+2^0=5$

$$(10010110)_2 = ($$
 ? $)_8$

$$\begin{array}{c|cccc}
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
 & A & B & C & & & \\
A = 0 & 1 & 0 = 2^1 & = 2 \\
B = 0 & 1 & 0 = 2^1 & = 2
\end{array}$$

C=110=
$$2^2 + 2^1 = 6$$

(10010110)₂ = (226)₈

SOLUTION

Binary ← → Octal

$$(45)_8 = (?)_2$$

4			5				
1	0	0	1	0	1		

2				2		6			
0	1	0	0	1	0	1	1	0	

From a Binary to Hexadecimal Number and Vice Versa

Binary ← → **Hexadecimal**

$$(D3)_{16} = (?)_{2}$$

D				3				
1	1	0	1	0	0	1	1	

Binary ← → **Hexadecimal**

$$(1111011011)_2 = (?)_{16}$$

ABC

A=0011=
$$2^1$$
+ 2^0 =3
B=1101= 2^3 + 2^2 + 2^0 = 13 = D
C=1011= 2^3 + 2^1 + 2^0 =11=B

$$(1111011011)_2 = (3DB)_{16}$$

$$(3DB)_{16} = (?)_{2}$$

3			D				В			
0	0 1	1	1	1	0	1	1	0	1	1

From an Octal to Hexadecimal Number and Vice Versa

Octal ← Hexadecimal

$$(15)_{16} = (?)_{8}$$

$$(15)_{16} = (25)_8$$

Octal ← Hexadecimal

$$(6401)_8 = ()_{16}$$

$$(6401)_8 = (D01)_{16}$$

$$(D01)_{16} = (?)_{8}$$

$$(D01)_{16} = (6401)_{8}$$

From a decimal to an Octal to an Hexadecimal Number and Vice Versa

Decimal
$$\longleftrightarrow$$
 Octal \longleftrightarrow Hexadecimal $(68)_{10} = (?)_8 = (?)_{16}$
 $68 = 64 + 4 = 2^6 + 2^2 = (1000100)_2$
 $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$
 $(104)_8$
 $0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$
 $(68)_{10} = (104)_8 = (44)_{16}$

$$(45)_{10} = (?)_{8} = (?)_{16}$$

$$45 = 32 + 13 = 32 + 8 + 4 + 1 = 2^{5} + 2^{3} + 2^{2} + 2^{0} = (101101)^{2}$$

$$1 \ 0 \ 1 \ 0 \$$