A primeira Escola presencial gratuita de Inteligência Artificial do Brasil

Aula 03/03/2020: Estatística Básica

Professor: Eng. Rodolfo Magliari de Paiva

Apoio:

Objetivo da Aula

- Compreender a diferença entre Matemática e Estatística;
- Conhecer a História da Estatística;
- Áreas de Aplicação da Estatística;
- Efetuar uma boa Análise Exploratória de Dados, entendendo: Tipos de Dados, Gráficos Estatísticos, Coleta de Dados, Medidas de Tendência Central, Medidas de Dispersão, Medidas Separatrizes.

Um pouco da História da Matemática e da Estatística

- A **Matemática** é uma ciência bem mais antiga do que a **Estatística** formal que conhecemos hoje.
- É fato que só houveram (na origem), descobertas e avanços matemáticos em regiões que tinham a necessidade da agricultura.
- Aos poucos, os profissionais das ciências exatas foram surgindo (corda, balança, astros...), e com eles novas necessidades de descobertas junto com o desenvolvimento das cidades.
- A Matemática Primitiva teve quatro alicerces: Clima, Agricultura, Comércio e Registro.

A Ciência Estatal

Esteve presente entre os hebreus, chineses, egípcios, maias, romanos, hindus, persas e babilônios, povos que se organizaram ao redor de um Estado, que necessitavam de informações censitárias, informações essas que eram colhidas pelo **estadista**.

A Estatística

1858 – Florence Nightingale, com o trabalho:

"Notas sobre os Assuntos que Afetam a Eficiência da Saúde e Administração Hospitalar do Exército Britânico"

Nascida em 12 de Maio de 1820, Florence Nightingale era enfermeira britânica.

Com o passar do tempo a Estatística foi tomando forma, com os avanços de outros conteúdos matemáticos:

Tendo a atenção de estudiosos como: Christian Huygens, Pierre Fermat, Blaise Pascal, John Graunt, Jacques Bernoulli, Thomas Bayes, Poisson, Mary Somerville, entre outros...

No final do século XIX, com Francis Galton, Francis Ysidro Edgeworth, Karl Pearson e George Udny Yule, a Estatística ganhou sua aplicabilidade e operacionalidade, além do visual moderno.

Importância:

- Tomada de decisão;
- Quantificar incerteza;
- Levantamento de dados;
- Entendimento de um fenômeno;
- Etc...

Embora a Estatística Clássica se fez por conta de conteúdos da Matemática, hoje em dia sabemos que são **ciências distintas**, com algumas coisas em interseção.

Áreas de Aplicação

- Bioestatística;
- Ciência Atuarial;
- Demografia;
- Econometria;
- Epidemologia;
- Geoestatística;
- Controle da Qualidade;
- Data Science;
- B.I.;
- Etc...

Análise Exploratória de Dados

As ferramentas da Estatística Descritiva permitem uma boa Análise Exploratória de Dados de forma rápida e sem muita complicação!

Tipos de Dados

Os dados (variáveis), são classificados em dois grupos:

Quantitativo X Qualitativo

Quantitativo: Discreto = Números inteiros, contagem, é mensurável Contínuo = Conjunto dos Reais, também mensurável

Qualitativo: Ordinal = Apresenta hierarquia Nominal = Não apresenta hierarquia

Gráficos Estatísticos para Variáveis Qualitativas e Quantitativas

Gráficos auxiliam de uma forma rápida e prática que entendamos o comportamento de um fenômeno.

Exemplo:

Gráficos para Variáveis Qualitativas:

Gráfico de Setores ou Circular

Gráficos para Variáveis Quantitativas:

Dotplot ou Strip Chart

Histograma

Variável

Boxplot

Coleta e Organização de Dados

A coleta de dados é uma parte extremamente importante, pois sem dados não existe a possibilidade de ser feito qualquer tipo de estudo estatístico.

Para obter dados, a Estatística utiliza amostragens, que podem ser **probabilísticas** e **não probabilísticas**.

Tipos de Amostragem

Probabilística:

- Aleatória Simples;
- Sistemática;
- Estratificada;
- Conglomerados.

Não Probabilística:

- Intencional;
- Cotas;
- Conveniência.

Uma vez os dados coletados (dados brutos), a forma mais prática de organizá-los é por meio de **tabelas**.

Aparelho	Potência (KW)	Tempo de uso diário (horas)
Ar condicionado	1,5	8
Chuveiro elétrico	3,3	1/3
Freezer	0,2	10
Geladeira	0,35	10
Lâmpadas	0,10	6

Nº de pessoas que doaram	Valor Doado	
12	R\$ 5,00	
10	R\$ 7,00	
8	R\$ 10,00	
7	R\$ 12,00	
3	R\$ 15,00	

Com os dados observados, é possível extrair vários tipos de informações!

Frequência Relativa e Frequência Absoluta:

Estatura dos alunos (cm)	Freqüência simples f_i	Freqüência relativa <i>fir_i</i> (%)	Freqüência acumulada F_i	Freqüência acumulada relativa Fr_i (%)
150 154	4	10,0	4	10,0
154 158	9	22,5	13	32,5
158 162	11	27,5	24	60,0
162 166	8	20,0	32	80,0
166 170	5	12,5	37	92,5
170 174	3	7,5	40	(100,0)
Total ∑	40	(100,0)		

Medidas de Tendência Central

$$\overline{X} = \mu = \frac{\sum X_i}{n}$$

Moda:

Valor ou classe que mais se repete, podendo ser: Amodal, Unimodal, Bimodal, ... Representada por **Mo**

Mediana:

Elemento central (dados devem estar em rol)

$$M_e = \begin{bmatrix} X_{(\frac{n+1}{2})}, & \text{se "n" \'e impar} \\ X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)} \\ \hline 2, & \text{se "n" \'e par} \end{bmatrix}$$

Medidas de Dispersão

Amplitude:

$$R = X_{(n)} - X_{(1)}$$

Variância:

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{n-1} \qquad \sigma^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N}$$

Desvio Padrão (Desvio Médio):

$$s = \sqrt{s^2}$$
 $\sigma = \sqrt{\sigma^2}$

Coeficiente de Variação (CV):

$$CV = \frac{\sigma}{\mu} ou \frac{s}{\overline{x}}$$

*Normalmente multiplicamos o resultado por **100** para expressá-lo em %.

Medidas Separatrizes

Valores que dividem os dados em partes iguais:

- Quartis: Dividem os dados em 4 partes iguais;
- Decis: Dividem os dados em 10 partes iguais;
- Centis: Dividem os dados em 100 partes iguais.

Normalmente os quartis são os mais usados.

Quartis:

n = número total de elementos

$$j(n+1)/4$$
, para $j=1,2 e 3$

 $k = o \text{ maior inteiro } \leq j(n+1)/4$

$$Q_j = X_k + \left(\frac{j(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

1° Quartil:
$$Q_1 = X_1 + \left(\frac{n+1}{4} - k\right)(X_{k+1} - X_k)$$

2° Quartil:
$$Q_2 = X_3 + \left(\frac{2(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

3° Quartil:
$$Q_3 = X_5 + \left(\frac{3(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

Representação gráfica:

Retomando um Tópico

Conclusão

Com essas ferramentas de análise exploratória de dados da **Estatística Descritiva** é possível entender o comportamento de diversos fenômenos do dia a dia, basta **ter** ou **iniciar** a coleta de dados e na sequência:

APLICAR!

Exercícios

- **1-)** Defina com suas palavras, de acordo com o que foi falado em sala de aula, o que é Estatística e para que serve.
- **2-)** Qual a diferença entre dados brutos e dados em rol?
- **3-)** Como se dividem as Variáveis Quantitativas e Qualitativas? Dê um exemplo para cada.
- **4-)** O que é população e amostra dentro da Estatística?

- **5-)** Marque a alternativa <u>correta</u>.
- a-) A apresentação de dados estatísticos pode ser feita através de gráficos, como um histograma, setograma, entre outros.
- b-) Apenas observando as tabelas de frequências é possível dizer qual o Desvio Padrão.
- c-) São exemplos de Medidas de Tendência Central a moda, a mediana e a variância.
- d-) São exemplos de Medidas de Dispersão o desvio padrão, desvio médio e a média.
- e-) Se uma amostra possui um elemento que se repete várias vezes, dizemos que é uma amostra amodal.

6-) Complete a frase com as palavras que	faltam:
a-) Utilizamos a	_ quando queremos extrair a média entre
elementos que possuem um peso, ou sej	a uma frequência de aparição para cada
elemento.	
b-) Dizemos que uma amostra é	quando dois elementos
aparecem a mesma quantidade de vezes	a mais que os outros elementos da amostra.
c-) Entende-se por	como sendo o elemento central de uma
amostra.	

7-) Em uma sala de aula do 2º ano do ensino médio existem 20 alunos, dos quais foram tirados aleatoriamente 9 para serem analisadas as suas médias com relação à disciplina de Matemática, e os dados obtidos foram:

Com base nessas informações responda:

- a-) Qual a população?
- b-) Qual a amostra?
- c-) Qual a variável? Classifique-a.
- d-) Qual a moda?
- e-) Qual a mediana?
- f-) Qual a média?
- g-) Qual a variância?
- h-) Qual o desvio padrão?
- i-) Qual o coeficiente de variação?

Bibliografia

MONTGOMERY, Douglas C. e RUNGER, George C. **Estatística Aplicada e Probabilidade para Engenheiros**. 6ª Edição. Rio de Janeiro: GEN | LTC, 2016

Contatos

Prof. Eng. Rodolfo Magliari de Paiva

Cel.: (11) 9-6866-5501

E-mail: rodolfomagliari@gmail.com

LinkedIn: Rodolfo Magliari de Paiva

