Алгоритм двухуровневой оптимизации

1 Введение

Таблица 1: Travel time functions and improvement cost functions for the network

Route	Nodes	(Flow,	Travel time function	Improvement cost
		Capacity)		function
1	1, 2, 6	(x_1,c_1)	$t_1(x_1, c_1) = 20 + 0.15 \left(\frac{x_1}{c_1}\right)^4$	$g_1(c_1) = 100(c_1 - 50)^2$
2	1, 3, 6	(x_2,c_2)	$t_2(x_2, c_2) = 25 + 0.15 \left(\frac{x_2}{c_2}\right)^4$	$g_2(c_2) = 100(c_2 - 80)^2$
3	1, 4, 6	(x_3,c_3)	$t_3(x_1, c_3) = 18 + 0.15 \left(\frac{x_3}{c_3}\right)^4$	$g_3(c_3) = 100(c_3 - 70)^2$
4	1, 5, 6	(x_4,c_4)	$t_4(x_1, c_4) = 28 + 0.15 \left(\frac{x_4}{c_4}\right)^4$	$g_4(c_4) = 100(c_4 - 40)^2$

Constraints on capacities of available routes are given in Table 2.

Таблица 2: Lower and upper bounds of available capacities for the network

$i = \overline{1,4}$	c_1	c_2	c_3	c_4
Lower bound (l_i)	50	80	70	40
Upper bound (u_i)	80	100	95	70

Therefore, the manager faces the following bilevel optimization problem:

$$\min_{c} \sum_{i=1}^{4} t_i(x_i, c_i) x_i + 0.01 \sum_{i=1}^{4} g_i(c_i)$$
 (1)

subject to

$$\sum_{i=1}^{4} g_i(c_i) \le 200000,\tag{2}$$

$$50 \le c_1 \le 80, (3)$$

$$80 \le c_2 \le 100,\tag{4}$$

$$70 \le c_3 \le 95,$$
 (5)

$$40 \le c_4 \le 70, (6)$$

where

$$x = \arg\min_{x} \sum_{i=1}^{4} \int_{0}^{x_{i}} t_{i}(u, c_{i}) du,$$
 (7)

under constraints

$$\sum_{i=1}^{4} x_i = 1000, \tag{8}$$

$$x_i \ge 0 \quad \forall i = \overline{1,4}. \tag{9}$$