F.75 Ergärzy zu Bemerkez

7 (FXEA: BEX) (=> XXEA: 7 (BEX)

(=> BFX

(=> XEBV x,b midt varglidlen

F.77 Rew Sch 1

[2.7: HASM: (A+p , A while)

A boritet en mar. Eli, d.h.:

HNEW YACM: IAI= n -> A britt en max. Eli]

T.A .: N=1.

[2.7.: YACM: |A|= n -> A boritet en max. Eli]
Sui ACM. B. geller |A|= n = 1. Dann ex.
ein XEM wit A= SX7. Insbesonder int X
ein max. Bl. m A.

I.S.: Sui ME/N. E. gette:

(I.V.) YACM: IAI= n -> A borist en max. El.

[17: YACM: |A|= n+1 -> A britt en max. El.] Sui ACM. Es gells: |A|= n+1.

Will x & A und Site A':- A\(X).

Dare int A' \sum Mad |A'| = N.

Noch (I.V.) buth A' in nax. El. b.

1. Fall: 6 EX. Dan it x in wax. Fel. on A.

2. Fall: b & X, d.L. X [b other b, x sind width rengliablem. Dan into b and nax. Fl. on A.

T.65

 \bigcirc

O Si M ordlid.

[2.7.: [= (= N)*]

Su. (xy & [(=> x [3)

1. Fall: X=y. Dann int $(X_iy) = (X_iX) \in (\mathbb{E}^N)^*$, da $(\mathbb{E}^N)^*$ reflects ist.

2. Fall: X+y. Insbesondne it X [g.

[2.7:]mf//]xn,..., xm-n & M:

 $X \subset X_1 \subset X_2 \subset X_2 \subset X_3 \subset X_4 \subset X_5 \subset X_6 \subset$

Def.: Ein Kette von x nad g it in Teilmage K = {x_0,...,x_n} EM

mit x0 = x , x4 = y ud

XUE XI E XI C... C Xu-1 C Xu I ME/N.

Setre Ja:= [KSM | Kint Keller m x nach y].

Dan it KS (P(M), E) endlich, da Mudlil. A Buch it Kto, da [xiv] & K. Dait brith K nad

 $y = k_1 = k_2 = k_1$

 $X = k_0 = k_0 = k_0$

Sah 1 on F. 77 lie mar. El.

Konax = Sko, ..., xn) on K bigli de

Tillunger- Ardney (5" and PIM).

Für Knax gill sogar

(*) X= Ko CX, CX, CX, CX, CX, CX, = y.

Ann: (x) gilt midt. Dann ex. ein i G [1,..., m]

nit xi-n [xi . Nach Def. 4 ["

ex. ein 7 f M net xi-n [7 C X].

Dann int

Konax & Skop... (Xi-n, 7, Xi, ..., Xn) & Kw zur Maximalität om Kmax.

Da (EN)* houritrist, int (X,6) E(EN)*.

Da. Satiz

@ [271. 4 6,6 + M:

(b größen Et. on A 1 b größen Et. on A => b=b')
Sien bil GM. Es gelt: bib sied größe Et. on A.

- Da b griphs Fel. on A int, gill!

 X Eb f.a. X & A. Da b' griphs El. von A int,

 int b' & A. Mho gill! b' E b.

 Andog gilt: b = b'. Da E autisymmetrical int,

 gill!

 Sill!

 Sill!
- (2) [2.7: 4 66 M: 6 griphs Fel. on A => 6 max. Fel. on A]

 Sie 6 M. B. yeller: 6 int griphs El. on A.

 [1.7: 6 max. Fel. on A, dil.:

 (i) 6 A (ii) \(\forall \times A : \(\left \) \(\sigma \) \(\sigma \)
 - (i) Da 6 griphs El. on A int, gill: 6+A.
 - (ii) Sei x F A. Es gelh: $b \subseteq x$.

 Da b griphs El. vm A int, gills $x' \subseteq b$ f.c. $x' \in A$.

 Insbusoida int $x \subseteq b$. Da \subseteq autisymanhical int, gill: x = b.

f.83 $M := \{1,2,3,4,5,6\} \cup \{a_1b_1, a_1, 8, 9\}$ $A := \{1,2,3\}$

der Schraken n A (OU))1 4,5,6 | 4,5,6,7,8,5 unter Schracker von A (U(A)): ober amzen vn A uhr Consu van A ex nicht ex widt Infima on A