Laurea in Informatica A.A. 2021-2022

Corso "Base di Dati"

Esercitazione Normalizzazione

Prof. Massimiliano de Leoni

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

- 1. Mostrare tutte le chiavi di R e motivare perché ognuna è chiave.
- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

1. Mostrare tutte le chiavi di R e motivare perché ognuna è chiave.

B+= {B, C, A, D} e C+= {C, A, D}. Quindi, B è chiave perché la sua chiusura contiene tutti gli attributi della relazione

- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

B è chiave.

- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- C → D e C → A violano BCNF perché C non è una superchiave della relazione
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

B è chiave.

2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.

3. Decomporre in BCNF

Usando C \rightarrow D, si ottiene $R_1(\underline{C},D)$ e, togliendo D da R, si ottiene $\underline{R}(A,B,C)$

Usando C \rightarrow A, si ottiene $R_2(\underline{C},A)$ e, togliendo A da \underline{R} , si ottiene $R_3(\underline{B},C)$

Quindi si ottengo tre relazioni: $R_1(\underline{C},D)$, $R_2(\underline{C},A)$ e $R_3(\underline{B},C)$.

È anche possibile ricomporre R_1 e R_2 ottenendo $R_4(\underline{C},A,D)$ e $R_3(\underline{B},C)$.

Considerare uno schema di relazione R (E, N, L, C, S, D, M, P, A) con le seguenti dipendenze funzionali:

$$E \rightarrow NS$$
,
 $NL \rightarrow EMD$,
 $EN \rightarrow LCD$,
 $C \rightarrow S$,
 $D \rightarrow M$,
 $M \rightarrow D$,
 $EPD \rightarrow A$,
 $NLCP \rightarrow A$.

Calcolare una **copertura ridotta** per tale insieme e decomporre la relazione in **terza forma normale**.

Terza Forma Normale

Una relazione R con chiavi $K_1,...,K_n$ è in Terza Forma Normale se:

Per ogni dipendenza funzionale non banale $X \rightarrow Y$, almeno una delle seguenti condizioni sono valide:

- X è superchiave (BCNF)
- ogni attributo in Y è contenuto in almeno una tra le chiavi K₁,..., K_n.

Compertura Ridotta

- Un insieme di dipendenze F è una copertura ridotta:
 - non ridondante se non esiste dipendenza f ∈ F tale che F
 – {f} implica f;
 - ridotto se
 - non ridondante se non esiste dipendenza f ∈ F tale che F – {f} implica f;
 - non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio (parte in rosso rimovibile):
 - $\{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$ è ridondante;
 - {A → B; AB → C} non è ridondante né ridotto;
 - $\{A \rightarrow B; A \rightarrow C\}$ è ridotto

Algoritmo per la copertura ridotta (Reminder)

I passi per calcolare la copertura ridotta di una relazione sono i seguenti:

- Sostituzione dell'insieme dato con quello <u>equivalente</u> che ha tutti i <u>secondi</u> <u>membri</u> costituiti da <u>singoli attributi</u>;
- 2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> <u>membro;</u>
- Eliminazione delle <u>dipendenze ridondanti</u>.

Esercizio 2 (passo 1)

1. Sostituzione dell'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi

 $E \rightarrow NS$ $NL \rightarrow EMD$ $EN \rightarrow LCD$ $C \rightarrow S$

 $D \rightarrow M$

 $\mathsf{M} \to \mathsf{D}$

 $EPD \rightarrow A$

 $NLCP \rightarrow A$

Esercizio 2 (passo 1)

1. Sostituzione dell'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi

$$E \rightarrow NS$$

$$NL \rightarrow EMD$$

$$EN \rightarrow LCD$$

$$\mathsf{C} \to \mathsf{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$EPD \rightarrow A$$

$$NLCP \rightarrow A$$

$$E \rightarrow S$$

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$EN \rightarrow L$$

$$EN \rightarrow C$$

$$EN \rightarrow D$$

$$\mathsf{C} \to \mathsf{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$EPD \rightarrow A$$

$$NLCP \rightarrow A$$

Esercizio 2 (passo 2)

2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> membro

$$E \rightarrow S$$

$$\mathsf{E} \to \mathsf{N}$$

$$\mathsf{NL}\to\mathsf{E}$$

$$NL \rightarrow M$$

 $EN \rightarrow D$

 $C \rightarrow S$

 $D \rightarrow M$

 $\mathsf{M}\to\mathsf{D}$

 $EPD \rightarrow A$

 $NLCP \rightarrow A$

Esercizio 2 (passo 2)

2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> membro

$E \to S$	$E \rightarrow S$	
$E \rightarrow N$	$E \to N$	
L /II NL → E	$NL \to E$	
$NL \rightarrow L$ $NL \rightarrow M$	$NL \to M$	
	$NL \rightarrow D$	
$NL \rightarrow D$	E o L	$(EN \to L,E \to N)$
EN → L	E o C	$(EN \rightarrow C, E \rightarrow N)$
EN → C	$E \to D$	$(EN \rightarrow D, E \rightarrow N)$
$EN \rightarrow D$	$C \rightarrow S$	
$C \rightarrow S$	D o M	
$D \to M$	$M \rightarrow D$	
$M \to D$		(EDD
$EPD \to A$	$EP \to A$	$(EPD \to A \;,\; E \to D)$
$NLCP \to A$	$NLP \rightarrow A$	$(NLCP \rightarrow A, NL \rightarrow E, E \rightarrow C)$

Esercizio 2 (passo 3)

3. Eliminazione delle dipendenze ridondanti

$$\mathsf{E} \to \mathsf{S}$$

$$\mathsf{E} \to \mathsf{N}$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$\mathsf{E} \to \mathsf{L}$$

$$\mathsf{E} \to \mathsf{C}$$

$$\mathsf{E}\to\mathsf{D}$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$EP \rightarrow A$$

$$NLP \rightarrow A$$

Esercizio 2 (passo 3)

3. Eliminazione delle dipendenze ridondanti

$$E \rightarrow S$$

$$\mathsf{E} \to \mathsf{N}$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$\mathsf{E} \to \mathsf{L}$$

$$\mathsf{E} \to \mathsf{C}$$

$$\mathsf{E} \to \mathsf{D}$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$\mathsf{M} \to \mathsf{D}$$

$$EP \rightarrow A$$

$$NLP \rightarrow A$$

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$E \rightarrow D$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$NLP \rightarrow A$$

Ho ottenuto una copertura ridotta

- $\boldsymbol{E} \to \boldsymbol{N}$
- $\textbf{NL} \to \textbf{E}$
- $E \rightarrow L$
- $\boldsymbol{E} \to \boldsymbol{C}$
- $\boldsymbol{E} \to \boldsymbol{D}$
- $\boldsymbol{C} \to \boldsymbol{S}$
- $D \rightarrow M$
- $\boldsymbol{M} \to \boldsymbol{D}$
- $NLP \rightarrow A$

Non abbiamo le chiavi → Occorre Individuare le chiavi partendo dalla copertura ridotta

F	\rightarrow	Ν
	_	1.4

 $NL \rightarrow E$

$$E \rightarrow L$$

 $\mathbf{E} \to \mathbf{C}$

$$\mathbf{E} \to \mathbf{D}$$

 $\boldsymbol{C} \to \boldsymbol{S}$

 $\boldsymbol{D} \to \boldsymbol{M}$

 $\boldsymbol{M} \to \boldsymbol{D}$

$$\textbf{NLP} \to \textbf{A}$$

Eseguo le chiusure dei primi membri

E+

NL+

 C^+

D⁺

M⁺

NLP+

Non abbiamo le chiavi → Occorre Individuare le chiavi partendo dalla copertura ridotta

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$E \rightarrow D$$

$$\boldsymbol{C} \to \boldsymbol{S}$$

$$D \rightarrow M$$

$$\mathbf{M} \to \mathbf{D}$$

$$NLP \rightarrow A$$

Eseguo le chiusure dei primi membri

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

Non abbiamo le chiavi → Occorre Individuare le chiavi partendo dalla copertura ridotta

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$E \rightarrow D$$

$$\boldsymbol{C} \to \boldsymbol{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$NLP \rightarrow A$$

Eseguo le chiusure dei primi membri

$$E^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

Individuare le chiavi partendo dalla copertura ridotta

 $E \rightarrow N$

 $NL \rightarrow E$

 $\textbf{E} \rightarrow \textbf{L}$

 $E \rightarrow C$

 $E \rightarrow D$

 $\mathbf{C} \to \mathbf{S}$

 $D \rightarrow M$

 $\mathbf{M} \to \mathbf{D}$

 $NLP \rightarrow A$

Eseguo le chiusure dei primi membri

 $NLP^+ = \{N,L,P,A,E,D,C,S,M\}$ è **chiave**

 $EP + = \{E,N,L,D,C,S,M,P,A\}$ anche questa è chiave!

Ho ottenuto una copertura ridotta

|--|

 $NL \rightarrow E$

 $E \rightarrow L$

 $E \rightarrow C$

 $\mathbf{E} \to \mathbf{D}$

 $\boldsymbol{C} \to \boldsymbol{S}$

 $D \rightarrow M$

 $\mathbf{M} \to \mathbf{D}$

 $NLP \rightarrow A$

Chiavi NLP, EP

Sintesi di schema in terza forma normale

Sintesi di schema in 3NF (Reminder)

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, ..., K_n$

- Viene calcolata una copertura ridotta G di F
- 2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A e Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$
- 3. Viene costruita una relazione per ogni sotto-insieme
- 4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata
- 5. Se, per qualche i, non esiste una relazione S(X) con $K_i \subseteq X$, viene aggiunta una relazione $T(K_i)$

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A$ e $Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$\mathsf{E} \to \mathsf{N}$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$\mathbf{E} \to \mathbf{C}$$

$$E \rightarrow D$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$NLP \rightarrow A$$

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A e Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$egin{array}{c} E
ightarrow N \ E
ightarrow L \ E
ightarrow C \ E
ightarrow D \end{array}$$

$$NL \rightarrow E$$

$$NL^{+}=\{E, N, L, C, D, S, M\}$$

$$C \rightarrow S$$

$$CS^+=\{C,S\}$$

$$\begin{array}{c} D \to M \\ M \to D \end{array}$$

$$D^+=\{ D, M \} ; M^+=\{ D, M \}$$

$$NLP \rightarrow A$$

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A e Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$egin{array}{cccc} E
ightarrow N & & & \\ E
ightarrow L & & & \\ E
ightarrow C & & & \\ E
ightarrow D & & & \\ \end{array}$$

CHIUSURE COINCIDONO

$$NL \rightarrow E$$

$$NL^{+} = \{ E, N, L, C, D, S, M \}$$

$$C \rightarrow S$$

$$C^+ = \{ C, S \}$$

$$\begin{array}{c} D \to M \\ M \to D \end{array}$$

$$D^+ = \{ D, M \} ; M^+ = \{ D, M \}$$

$$NLP \rightarrow A$$

$$NLP^{+} = \{ E, N, L, C, D, C, S, M, A \}$$

3. Viene costruita una relazione per ogni sotto-insieme

3. Viene costruita una relazione per ogni sotto-insieme

4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata

5. Se, per qualche i, non esiste una relazione S(X) con $K_i \subseteq X$, viene aggiunta una relazione $T(K_i)$ Chiavi NLP, EP

Le chiavi delle relazioni sono sottolineate:

Dato schema R(A, B, C, D, E, F) con dipendenze:

$$CE \rightarrow A$$
, $C\rightarrow D$, $A\rightarrow B$, $D\rightarrow BE$, $B\rightarrow F$, $AD\rightarrow CF$

- 1. Trovare copertura ridotta G
- 2. Trovare tutte le chiavi
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare lo schema in 3NF
- 5. Lo schema normalizzato al punto 4 è anche in BCNF?

Dato schema R(A, B, C, D, E, F) con dipendenze: $CE \rightarrow A$, $C\rightarrow D$, $A\rightarrow B$, $D\rightarrow BE$, $B\rightarrow F$, $AD\rightarrow CF$

- Trovare copertura ridotta G
 C →A, C→D, A→B, D→B, D→E, B→F, AD→C
- 2. Trovare tutte le chiavi
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare lo schema in 3NF

Dato schema R(A, B, C, D, E, F) con dipendenze:
$$CE \rightarrow A$$
, $C\rightarrow D$, $A\rightarrow B$, $D\rightarrow BE$, $B\rightarrow F$, $AD\rightarrow CF$

- Trovare copertura ridotta G
 C →A, C→D, A→B, D→B, D→E, B→F, AD→C
- Trovare tutte le chiavi AD, C
- 3. Dire se ci sono e quali dipendenze violano 3NF
- Normalizzare lo schema in 3NF
- Indicare e spiegare se o meno la normalizzazione produce uno schema anche in BCNF

Dato schema R(A, B, C, D, E, F) con dipendenze: $CE \rightarrow A$, $C\rightarrow D$, $A\rightarrow B$, $D\rightarrow BE$, $B\rightarrow F$, $AD\rightarrow CF$

- Trovare copertura ridotta G
 C →A, C→D, A→B, D→B, D→E, B→F, AD→C
- 2. Trovare tutte le chiavi AD, C
- 3. Dire se ci sono (ed eventualmente quali) dipendenze che violano 3NF. <u>Ricordiamo</u> che 3NF richiede che per ogni FD X→Y sia soddisfatto:
 - 1. X contiene chiave K di r oppure
 - 2. ogni attributo in Y è contenuto in almeno una chiave di r
- 4. Normalizzare lo schema in 3NF
- Indicare e spiegare se o meno la normalizzazione produce uno schema anche in BCNF

Ho:

 $C \rightarrow A$, $C \rightarrow D$, $A \rightarrow B$, $D \rightarrow B$, $D \rightarrow E$, $B \rightarrow F$, $AD \rightarrow C$

Con chiavi: AD, C

Dire se ci sono e quali dipendenze violano 3NF, per ogni FD $X \rightarrow Y$:

- a. X contiene chiave K di r
- b. ogni attributo in Y è contenuto in almeno una chiave di r

Ho:

C→A, non viola 3NF

C→D, non viola 3NF

A→B, viola (A non super chiave e B non presente in chiave)

D→B, viola (D non super chiave e B non presente in chiave)

D→E, viola (D non super chiave e E non presente in chiave)

B→F, viola (B non super chiave e F non presente in chiave)

AD→C non viola 3NF

Con chiavi: AD, C

Non è in 3NF

4. Normalizzare lo schema in 3NF

 $C \rightarrow A$, $C \rightarrow D$, $A \rightarrow B$, $D \rightarrow B$, $D \rightarrow E$, $B \rightarrow F$, $AD \rightarrow C$

Con chiavi: AD, C

4. Normalizzare lo schema in 3NF

Calcolo la chiusura dei primi membri:

$$C^{+}=\{A, B, C, D, E, F\}$$

$$C \rightarrow D$$
,

$$A^{+}=\{A, B, F\}$$

$$B^{+}=\{B, F\}$$

$$AD \rightarrow C$$

$$AD^{+}=\{A, B, C, D, E, F\}$$

4. Normalizzare lo schema in 3NF

$$C \rightarrow A$$
, $C^+=\{$ **A**, **B**, **C**, **D**, **E**, **F** $\}$

$$A \rightarrow B$$
, $A^+=\{A, B, F\}$

$$D \rightarrow B$$
, $D^+=\{D, B, F, E\}$
 $D \rightarrow E$,

$$B \rightarrow F$$
, $B^+=\{B, F\}$

$$AD\rightarrow C$$
 $AD^+=\{A,B,C,D,E,F\}$

Le chiusure di C e AD coincidono, quindi vanno considerati nella stessa partizione

4. Normalizzare lo schema in 3NF

C-	→A,
C-	→D.

 $\mathsf{AD} {\rightarrow} \mathsf{C}$

$$D \rightarrow B$$
, $D \rightarrow E$,

4. Normalizzare lo schema in 3NF

$C \rightarrow A$, $C \rightarrow D$, $AD \rightarrow C$	R1 (C, A, D)	chiavi C, AD
А→В,	R2 (A, B)	chiave A
D→B, D→E,	R3 (B, E, D)	chiave D
B→F,	R4 (B, F)	chiave B

5. Indicare e spiegare se o meno la normalizzazione produce uno schema anche in BCNF

$C \rightarrow A$, $C \rightarrow D$, $AD \rightarrow C$	R1 (C, A, D)	chiavi C, AD
А→В,	R2 (A, B)	chiave A
D→B, D→E,	R3 (B, E, D)	chiave D
B→F,	R4 (B, F)	chiave B

Tutte le dipendenze funzionali non violano BCNF:

- C→A e C→D si applicano su R1 dove C è chiave
- AD→C si applica su R1 dove AD è chiave.
- A→B si applica su R2 dove A è chiave

Dato lo schema R (A, B, C, D, E, F, **G**)

Con dipendenze:

$$AF \rightarrow BE$$
, $EF \rightarrow BCD$, $A \rightarrow F$, $B \rightarrow C$

- 1. Trovare copertura ridotta
- 2. Trovare tutte le altre chiavi, in aggiunta alla chiave primaria data
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare in 3NF

con:

$$AF \rightarrow BE$$
, $EF \rightarrow BCD$, $A \rightarrow F$, $B \rightarrow C$

1. Trovare copertura ridotta

Calcolo chiusure transitiva:

$$A^{+}=\{A, B, E, F, D, C\}, B^{+}=\{B, C\}, EF^{+}=\{B, D, C, E, F\},\$$

Otteniamo quindi:

$$A \rightarrow B$$
, $A \rightarrow E$, $EF \rightarrow B$, $EF \rightarrow D$, $A \rightarrow F$, $B \rightarrow C$

- 2. Trovare tutte le chiavi
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare in 3NF

R (A, B, C, D, E, F, **G**)

con:

$$AF \rightarrow BE$$
, $EF \rightarrow BCD$, $A \rightarrow F$, $B \rightarrow C$

1. Trovare copertura ridotta

$$A \rightarrow B$$
, $A \rightarrow E$, $EF \rightarrow B$, $EF \rightarrow D$, $A \rightarrow F$, $B \rightarrow C$

2. Trovare tutte le chiavi

A+ contiene tutti gli attributi, inoltre G è già una chiave Quindi le chiavi sono: A, G

- 3. Dire se ci sono e quali dipendenze violano 3NF
- Normalizzare in 3NF

con:

$$AF \rightarrow BE$$
, $EF \rightarrow BCD$, $A \rightarrow F$, $B \rightarrow C$

1. Trovare copertura ridotta

$$A \rightarrow B$$
, $A \rightarrow E$, $EF \rightarrow B$, $EF \rightarrow D$, $A \rightarrow F$, $B \rightarrow C$

2. Trovare tutte le chiavi

- 3. Dire se ci sono e quali dipendenze violano 3NF. <u>Ricordiamo</u> che 3NF richiede che per ogni FD X→Y sia soddisfatto:
 - 1. X contiene chiave K di r oppure
 - 2. ogni attributo in Y è contenuto in almeno una chiave di r
- Normalizzare in 3NF

R (A, B, C, D, E, F, **G**)

con:

A→B,

A→E,

EF→B,

EF→D,

A→F,

 $B \rightarrow C$

Con chiavi: A, G

Dire se ci sono e quali dipendenze violano 3NF, per ogni FD $X\rightarrow Y$:

- a. X contiene chiave K di r
- b. ogni attributo in Y è contenuto in almeno una chiave di r

R (A, B, C, D, E, F, **G**)

con:

A→B, non viola 3NF

A→E, non viola 3NF

EF→B, viola (EF non super chiave e B non presente in chiave)

EF→D, viola (EF non super chiave e D non presente in chiave)

 $A \rightarrow F$, non viola 3NF

B→C viola (B non super chiave e C non presente in chiave)

Con chiavi: A, G

Non è in 3NF

R (A, B, C, D, E, F, G)

- Normalizzare in 3NF
 - 1. Copertura Ridotta D di F:

$$A \rightarrow B$$
, $A \rightarrow E$, $EF \rightarrow B$, $EF \rightarrow D$, $A \rightarrow F$, $B \rightarrow C$

2. G viene partizionato in sottoinsiemi tali che due dipendenze

funzionali $X \rightarrow A e Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$\{A->B, A\rightarrow E, A\rightarrow F\}, \{EF\rightarrow B, EF\rightarrow D\}, \{B\rightarrow C\}$$

3. Viene costruita una relazione per ogni sotto insieme:

Abbiamo una chiave per relazione:

$$R_1(\underline{A}, B, E, F), R_2(\underline{E}, \underline{F}, B, D), R_3(\underline{B}, C)$$

R (A, B, C, D, E, F, G)

- 4. Normalizzare in 3NF
 - 3. Viene costruita una relazione per ogni sotto insieme:

$$R_1(\underline{A}, B, E, F), R_2(\underline{E}, \underline{F}, B, D), R_3(\underline{B}, C)$$

4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata

Non accade, quindi stesse relazioni.

$$R_1(A, B, E, F), R_2(E, F, B, D), R_3(B, C)$$

R (A, B, C, D, E, F, G)

Normalizzare in 3NF

4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata

Non accade, quindi stesse relazioni.

$$R_1(A, B, E, F), R_2(E, F, B, D), R_3(B, C)$$

5. Se, per qualche i, non esiste una relazione S(X) con $K_i \subseteq X$, viene aggiunta una relazione $T(K_i)$

Nessuna relazione contiene G, aggiungiamo una relazione

$$R_1(A, B, E, F), R_2(E, F, B, D), R_3(B, C), R_4(G)$$