

Dynamic priority servers

Dynamic scheduling algorithms vs. Fixed priority scheduling

Higher schedulability bounds

Processor better utilized

Higher capability of aperiodic server

Higher aperiodic responsiveness

Example - Server capability

Dynamic priority servers

Goal	Decreasing average response time for aperiodic tasks	
	Preserving the schedulability of periodic tasks	
Solutions	Adaptation of static servers (EDF instead of RM for periodic tasks)	Dynamic priority exchange server
		Improved priority exchange server
		Dynamic sporadic server
	Total Bandwidth Server	Whenever an aperiodic request enters the system the total bandwidth of the server is immediately assigned to it, whenever possible

Adaptation of static servers with EDF

Long period for the server

Execution of the aperiodic requests delayed significantly.

Then what about shortening the period for the server?

To keep the server utilization constant, the capacity has to be reduced proportionally

Increment of the run-time overhead of the algorithm because

More frequent replenishments

Higher number of context switches

An alternative – Total bandwidth server

- Dynamic priority server, used with EDF
 - Each aperiodic request is assigned a deadline so that the server demand does not exceed a given bandwidth $U_{\rm s}$
 - Aperiodic jobs are inserted in the ready queue and scheduled together with the hard tasks

Periodic tasks are guaranteed if and only if $U_p + U_s \le 1$

Total bandwidth server - Deadlines

- Deadline assignment
 - Job J_k with computation time C_k arriving at time r_k is assigned a deadline $d_k = r_k + C_k / U_s$
- To keep track of the bandwidth assigned to previous jobs, d_k must be computed as

$$d_k = \max (r_k, d_{k-1}) + C_k / U_s$$

Deadline used to assign priority

Total bandwidth server - Schedulability

Total bandwidth server – Example

Task	С	Т	а
τ1	1	4	0
τ2	3	6	0
ape 1	2		1
ape 2	1		3