ρ -CP: Open Source Dislocation Density Based Crystal Plasticity Framework for Simulating Temperatureand Strain Rate-Dependent Deformation

Anirban Patra**, Suketa Chaudhary, Namit Pai, Tarakram Ramgopal, Sarthak Khandelwal, Adwitiya Rao

Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Mumbai, MH 400076, India **Corresponding author:anirbanpatra@iitb.ac.in

David L. McDowell

School of Materials Science and Engineering, GWW School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA
david.mcdowell@me.gatech.edu

This document provides a reference for the material properties/parameters used in the crystal plasticity model. Please refer to [1] for details of the constitutive model. The values for magnesium are given in Mg_props.in, those for copper are given in fcc_props.in, while those for tantalum are given in bcc_props.in in the respective simulation folders. Please refer to the line number corresponding to the material property/parameter. Note that in DDCPStressUpdate.C and DDCPHCPStressUpdate.C, the units of stress are in MPa, while those for dislocation density are in mm^{-2} . Please convert the units appropriately, while using them in the crystal plasticity model.

If the user desires to modify/add new parameters, this can be doing in DDCPStressUpdate::assignProperties() and DDCPHCPStressUpdate::assignProperties().

Table 1: Anisotropic elastic constants for hcp magnesium [2], fcc OFHC copper [3, 4] and bcc tantalum [5]. Note that temperature effects on the elastic constants are only considered for tantalum, while the room temperature values are presented for magnesium and OFHC copper.

Parameter	Magnesium	line no.	Copper line no.		Tantalum	line no.	
		(Mg_props.in)		(fcc_props.in)		(bcc_props.in)	
$C_{11}(GPa)$	59.4	1	170.0	1	268.2	1	
$\frac{dC_{11}}{dT}\left(\frac{GPa}{K}\right)$	-	2	-	2	0.024	2	
$C_{12}\left(GPa\right)$	25.6	3	124.0	3	159.6	3	
$\frac{dC_{12}}{dT}\left(\frac{GPa}{K}\right)$	-	4	-	4	0.011	4	
$C_{13}\left(GPa\right)$	21.4	5	-	-	-	-	
$\frac{dC_{13}}{dT}\left(\frac{GPa}{K}\right)$	-	6	-	-	-	-	
$C_{33}\left(GPa\right)$	61.6	7	-	-	-	-	
$\frac{dC_{33}}{dT}\left(\frac{GPa}{K}\right)$	-	8	-	-	-	-	
$C_{44}\left(GPa\right)$	16.4	9	75.0	6	87.1	5	
$\frac{dC_{44}}{dT} \left(\frac{GPa}{K} \right)$ $G\left(GPa \right)$	-	10	-	6	0.015	6	
$\overset{a_1}{G}(\overset{.}{G}\overset{.}{P}\overset{.}{a})'$	16.4	11	41.5	7	87.1	7	
$\frac{dG}{dT} \left(\frac{GPa}{K} \right)$	-	12	-	8	0.015	8	

Table 2: Constitutive model parameters for magnesium (Mg_props.in).

Parameter	Basal	line no.	Prismatic	line no.	Pyramidal $\langle a \rangle$	line no.	Pyramidal $\langle c+a \rangle$	line no.	Tensile twin	line no.
$b^{\alpha}(nm)$	0.321	14	0.321	36	0.612	58	0.612	80	-	-
$\dot{\gamma}_{0s}^{\alpha}\left(s^{-1}\right)$	1.0	15	1.0×10^{-2}	37	40	59	1.0×10^{-3}	81	-	-
ΔF^{lpha}	$0.11 \; Gb^3$	16	$0.2 \; Gb^3$	38	$1.43 \; Gb^3$	60	$0.1 \; Gb^3$	82	-	-
p^{α}	0.2	17	0.2	39	0.3	61	0.2	83	-	-
q^{α}	1.7	18	1.7	40	1.5	62	1.7	84	-	-
$\tau_{0s}^{\alpha} \left(\text{MPa} \right)$	2.0	19	21.0	41	50.0	63	38.0	85	-	-
$s_t^{\alpha}(\mathrm{MPa})$	5.0	22	21.0	44	100.0	66	5.0	88	-	-
$k_{ ho}^{lpha}$	0.35	24	0.535	46	0.35	68	0.35	90	-	-
$A^{\alpha\alpha}, A^{\alpha\zeta}$	1.0, 0.2	26	1.0, 0.2	48	1.0, 0.2	70	1.0, 0.2	92	-	-
$\rho_m^0 (m^{-2})$	1×10^{10}	27	1×10^{10}	49	1×10^{10}	71	1×10^{10}	93	-	-
$\rho_i^0(m^{-2})$	1×10^{10}	28	1×10^{10}	50	1×10^{10}	72	1×10^{10}	93	-	-
k_M^{lpha}	0.0017	30	1.0	52	1.0	74	3.5	96	-	-
$\vec{R_c^{\alpha}}(nm)$	19.386	31	19.386	53	19.386	75	36.462	97	-	-
k_I^{lpha}	0.0015	25	0.98	47	0.8	69	3.4	91		
$k_D^{'\alpha}$	0.5	33	180	55	500	77	350	99	-	-
$\dot{\gamma}_{0t}^{\alpha}\left(s^{-1}\right)$	-	-	-	-	-	-	-	-	1.0×10^{-3}	104
$\tau_{0t}^{\alpha} (\mathrm{MPa})$	-	-	-	-	-	-	=	-	2.0	102
D_0^{α} (MPa)	-	-	-	-	-	-	=	-	10.0	103
m^{lpha}	-	-	-	-	-	-	=	-	20	105
γ^{lpha}_{tw}	-	-	-	-	-	-	-	-	0.1289	106
$h_0^{\alpha}(\mathrm{MPa})$	-	-	-	-	-	-	-	-	1000	108
m_{th}^{lpha}	-	-		-	-	-	-	-	10	109

Table 3: Constitutive model parameters for OFHC copper (fcc_props.in) and tantalum (bcc_props.in). Note that the tantalum model was not calibrated to any cyclic loading experiments and it was assumed that slip system-level backstress is not present.

Parameter	Copper	Tantalum	line no.
$b^{\alpha}(nm)$	0.256	0.286	9
$\dot{\gamma}_{0s}^{\alpha}\left(s^{-1}\right)$	4×10^6	1.73×10^{7}	10
ΔF^{lpha}	$0.25Gb^{3}$	$0.2Gb^{3}$	11
p^{α}	0.35	0.28	12
q^{lpha}	1.3	1.38	13
$\tau_{0s}^{\alpha} \left(\text{MPa} \right)$	0.0	24	14
s_t^{α} (MPa)	38	386	17
k_{ρ}^{α}	0.2	0.3	19
$A^{\alpha\alpha}, A^{\alpha\zeta}$	1, 0.1	1, 0.1	21
$\rho_m^0 \left(m^{-2} \right)$	5×10^{11}	1×10^{11}	22
$\rho_i^0 (m^{-2})$	5×10^{11}	1×10^{11}	23
k_M^{lpha}	0.13	0.05	25
$R_c^{\alpha}(nm)$	1.53	1.488	26
k_I^{lpha}	0.12	0.045	20
$k_D^{\dot{lpha}}$	40	20	28
$k_{\chi 1}^{\alpha}$	1100	-	29
$k_{\chi 2}^{\widehat{lpha}}$	1000	-	30

References

- [1] Anirban Patra, Suketa Chaudhary, Namit Pai, Tarakram Ramgopal, Sarthak Khandelwal, Adwitiya Rao, and David L McDowell. ρ-cp: Open source dislocation density based crystal plasticity framework for simulating temperature-and strain rate-dependent deformation. *Computational Materials Science*, 224:112182, 2023.
- [2] Jing Zhang and Shailendra P Joshi. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. *Journal of the Mechanics and Physics of Solids*, 60(5):945–972, 2012.
- [3] Gene Simmons. Single crystal elastic constants and caluculated aggregate properties. A handbook, 4, 1971.
- [4] PD Wu, KW Neale, and Erik Van der Giessen. Simulation of the behaviour of fcc polycrystals during reversed torsion. *International Journal of Plasticity*, 12(9):1199–1219, 1996.
- [5] M Kothari and L Anand. Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum. *Journal of the Mechanics and Physics of Solids*, 46(1):51–83, 1998.