# LOGIKA DAN EKUIVALENSI LOGIKA

Bab 1 Sub-bab 1.1 - 1.3

## Tujuan Instruksional khusus

- Memahami tentang logika proposional
- Memahami tentang penggunaan operator logika pada proposisi
- Memahami tentang ekuivalensi pada logika proposional

# Logika

- Logika mempelajari penalaran (*reasoning*) secara benar
- Penalaran (berdasarkan kamus besar Bahasa Indonesia)
   yaitu cara berpikir dengan sesuatu berdasarkan akal budi dan bukan dengan perasaan atau pengalaman
- Fokus pada <u>relasi</u> antar pernyataan (*statement*) / kalimat (*sentence*).

Contoh: Dino adalah mahasiswa ITS.

Semua mahasiswa ITS pandai.

Dino orang pandai.

 Perhatikan bahwa logika tidak harus memperhatikan isi kalimat; jika diketahui bahwa dua kalimat pertama di atas benar, maka kalimat ketiga harus benar.

## Proposisi

- Proposisi merupakan sebuah pernyataan atau kalimat yang punya nilai kebenaran (benar = 1 / salah = 0). Proposisi disimbolkan dengan huruf p, q, dsb.
- Biasanya berbentuk kalimat deklaratif

#### Contoh proposisi:

- Bilangan bulat yang membagi habis 23 adalah 1 dan 23.
- Untuk setiap bilangan bulat n, ada bilangan prima yang lebih besar daripada n

#### Contoh bukan proposisi:

- Berapa harga tiket ke Malaysia?
- Silakan duduk.

## Konektif

- Jika p dan q adalah proposisi, dapat dibentuk proposisi baru (compound proposition/ kal. majemuk) dengan menggunakan konektif
- Macam-macam konektif:
  - AND (konjungsi)Simbol ^
  - OR (Inclusive OR /disjungsi)
     Simbol v
  - Exclusive OR Simbol ⊕
  - NOT (negasi)
     Simbol ¬, ~
  - ImplikasiSimbol →
  - Implikasi gandaSimbol ↔

# Tingkat Presedensi

- NEGASI (NOT)
- KONJUNGSI (AND)
- DISJUNGSI (OR, XOR)
- IMPLIKASI
- IMPLIKASI GANDA

Catatan: mengatasi tingkat presedensi dengan cara memberikan kurung di pada proposisi yang ingin didahulukan

# Tabel Kebenaran Konjungsi

| р | q | p ∧q |
|---|---|------|
| 0 | 0 | 0    |
| 0 | 1 | 0    |
| 1 | 0 | 0    |
| 1 | 1 | 1    |



#### Contoh:

- p = Harimau adalah binatang buas
- q = Malang adalah ibukota Jawa Timur
- p ^ q = Harimau adalah binatang buas dan Malang adalah ibukota Jawa Timur
- ▶ p ^ q salah.
- Perhatikan bahwa tidak perlu ada keterkaitan antara p dan q

#### Tabel Kebenaran Disjungsi (Inclusive OR)

| р | q | pvq |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |



#### Contoh:

- p = Jono seorang mahasiswa
- q = Mira seorang sarjana hukum
- p v q = Jono seorang mahasiswa atau Mira seorang sarjana hukum

## Tabel Kebenaran Exclusive Disjunction

• "Either p or q" (but not both), dengan simbol p  $\oplus$  q

| р | q | p ⊕ q |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |



- □ p ⊕ q bernilai benar hanya jika p benar dan q salah, atau p salah dan q benar
- p = "Pemenang mendapat hadiah mobil", q = "Pemenang mendapat hadiah uang"

## Tabel Kebenaran Negasi

| р | ¬р |  |
|---|----|--|
| 0 | 1  |  |
| 1 | 0  |  |
|   |    |  |

#### Contoh:

- p = Jono seorang mahasiswa
- $\mathbf{p} \mathbf{p} = \mathbf{Jono}$  bukan seorang mahasiswa

# Kalimat majemuk (compound statements)

- p, q, r merupakan kalimat / pernyataan sederhana (simple statements)
- Beberapa contoh bentukan compound statements, seperti:
  - (p∨q)^r
  - p∨(q^r)
  - (¬p)∨(¬q)
  - (p∨q)∧(¬ r)
  - o dll

# Tabel Kebenaran (p $\land \neg r$ ) $\lor q$

| р | q | r | (p ∧ ¬ r) ∨ q |
|---|---|---|---------------|
| 0 | 0 | 0 | 0             |
| 0 | 0 | 1 | 0             |
| 0 | 1 | 0 | 1             |
| 0 | 1 | 1 | 1             |
| 1 | 0 | 0 | 1             |
| 1 | 0 | 1 | 0             |
| 1 | 1 | 0 | 1             |
| 1 | 1 | 1 | 1             |

# **Implikasi**

Disebut juga proposisi kondisional (conditional proposition) dan berbentuk

"jika p maka q"

Notasi simboliknya :  $p \rightarrow q$ 

#### Contoh:

p = Jono seorang mahasiswa

q = Mira seorang sarjana hukum

 $p \rightarrow q = Jika Jono seorang mahasiswa maka$ 

Mira seorang sarjana hukum

## Tabel Kebenaran Implikasi

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 0 | 1 | 1                 |
| 1 | 0 | 0                 |
| 1 | 1 | 1                 |

## Hypotesa dan konklusi

Dalam implikasi p → q
 p disebut antecedent, hypothesis, premise
 q disebut konsekuensi atau konklusi
 (consequent, conclusion)

## Tabel kebenaran Implikasi Ganda

- Implikasi Ganda (double implication) dibaca "p jika dan hanya jika q"
- Notasi simboliknya  $p \leftrightarrow q$
- ▶ p  $\leftrightarrow$  q ekivalen dengan (p  $\rightarrow$  q)^(q  $\rightarrow$  p)

| р | q | $p \leftrightarrow q$ | $(p \rightarrow q) \land (q \rightarrow p)$ |
|---|---|-----------------------|---------------------------------------------|
| 0 | 0 | 1                     | 1                                           |
| 0 | 1 | 0                     | 0                                           |
| 1 | 0 | 0                     | 0                                           |
| 1 | 1 | 1                     | 1                                           |

# Ekivalensi Logikal

- Dua proposisi yang tabel kebenarannya identik disebut ekivalen (*logically equivalent*).
- □ Contoh: ¬p ∨ q ekivalen (*logically equivalent to*) p →

| р | q | $\neg p \lor q$ | $p \rightarrow q$ |
|---|---|-----------------|-------------------|
| 0 | 0 | 1               | 1                 |
| 0 | 1 | 1               | 1                 |
| 1 | 0 | 0               | 0                 |
| 1 | 1 | 1               | 1                 |

#### Konversi dan Inversi

- Nonversi dari  $p \rightarrow q$  adalah  $q \rightarrow p$
- ▶ Inversi dari  $p \rightarrow q$  adalah  $\neg p \rightarrow \neg q$
- $p \rightarrow q$  tidak ekivalen  $q \rightarrow p$
- ▶ p  $\rightarrow$  q tidak ekivalen  $\neg$  p  $\rightarrow$   $\neg$  q

| р | q | $p \rightarrow q$ | $q \rightarrow p$ | $\neg p \rightarrow \neg q$ |
|---|---|-------------------|-------------------|-----------------------------|
| 0 | 0 | 1                 | 1                 | 1                           |
| 0 | 1 | 1                 | 0                 | 0                           |
| 1 | 0 | 0                 | 1                 | 1                           |
| 1 | 1 | 1                 | 1                 | 1                           |

# Kontrapositif

- ▶ kontrapositif dari proposisi  $p \rightarrow q$  adalah  $\neg q \rightarrow \neg p$
- $p \rightarrow q dan \neg q \rightarrow \neg p ekivalen$

| р | q | $p \rightarrow q$ | $\neg q \rightarrow \neg p$ |
|---|---|-------------------|-----------------------------|
| 0 | 0 | 1                 | 1                           |
| 0 | 1 | 1                 | 1                           |
| 1 | 0 | 0                 | 0                           |
| 1 | 1 | 1                 | 1                           |

# Ekivalensi Logika

| Ekivalensi                                       | Nama                 |
|--------------------------------------------------|----------------------|
| $p \wedge T \equiv p$                            | Identity laws        |
| $p \vee F \equiv p$                              |                      |
| $p \vee T \equiv T$                              | Domination laws      |
| $p \wedge F \equiv F$                            |                      |
| $p \lor p \equiv p$                              | Idempotent laws      |
| $p \wedge p \equiv p$                            |                      |
| $\neg(\neg p) \equiv p$                          | Double negation laws |
| $p \lor q \equiv q \lor p$                       | Commutative laws     |
| $p \wedge q \equiv q \wedge p$                   |                      |
| $(p \lor q) \lor r \equiv p \lor (q \lor r)$     | Associative laws     |
| $(p \land q) \land r \equiv p \land (q \land r)$ |                      |

# Ekivalensi Logika

| Ekivalensi                                                                                                       | Nama              |
|------------------------------------------------------------------------------------------------------------------|-------------------|
| $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ | Distributive laws |
| $\neg(p \land q) \equiv (\neg p) \land (\neg q)$ $\neg(p \land q) \equiv (\neg p) \land (\neg q)$                | De Morgan's laws  |
| $b \wedge (b \wedge d) \equiv b$<br>$b \wedge (b \wedge d) \equiv b$                                             | Absorption laws   |
| $p \lor \neg p \equiv T$ $p \land \neg p \equiv F$                                                               | Negation laws     |

# Ekivalensi Logika

#### **Ekivalensi**

$$p \to q \equiv \neg p \vee q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \vee q \equiv \neg p \rightarrow q$$

$$p \wedge q \equiv \neg (p \rightarrow \neg q)$$

$$\neg(p \to q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

#### **Ekivalensi**

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

# **Tautology**

- Proposisi yang selalu bernilai benar (true) dalam keadaan apapun
- ▶ Contoh:  $p \rightarrow p \vee q$

| р | q | $p \rightarrow p v q$ |
|---|---|-----------------------|
| 0 | 0 | 1                     |
| 0 | 1 | 1                     |
| 1 | 0 | 1                     |
| 1 | 1 | 1                     |

## Kontradiksi

- Proposisi yang selalu bernilai salah (false) dalam keadaan apapun
- ▶ Contoh : p ^ ¬ p

| р | p ^ (¬ p) |
|---|-----------|
| 0 | 0         |
| 1 | 0         |

## Latihan

- Tentukan pernyataan manakah yang merupakan proposisi
  - A. 3+15=1
  - B. Untuk beberapa bilangan bulat n, 600 = n.15
  - C. Ambil 5 buah buku di atas meja
  - D. x + y = y + x untuk setiap pasangan dari bilangan real x dan y
  - E. Jam berapa sekarang?

## Latihan

- 2. p dan q adalah proposisi, dimana :
  - p: Iwan bisa berbahasa Inggris
  - q: Iwan bisa berbahasa Perancis
  - Rubahlah proposisi dibawah ini menjadi kalimat:
  - **A.** ¬p
  - B.  $p \vee q$
  - C.  $p \rightarrow q$
  - $D. \neg p \wedge \neg q$
  - E.  $\neg p \land (p \lor \neg q)$

## Latihan

- 3. Tentukan apakah ( $\neg p \land (p \rightarrow q)) \rightarrow \neg q$  adalah tautologi?
- 4. Tunjukkan bahwa p  $\leftrightarrow$  q dan (p  $\land$  q)  $\lor$  ( $\neg$ p  $\land$   $\neg$ q) adalah ekivalen

# Pekerjaan Rumah

- Pada Buku Teks: Discrete Mathematics and Its Applications, Kenneth H Rossen 7<sup>th</sup>, McGraw-Hill
  - Exercise 1.1 No. 18,42
  - Exercise 1.2 No. 18,40
  - Exercise 1.3 No. 8,10