PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

1) International Patent Classification 7:		(11) International Publication Number:	WO 00/3452
C12Q 1/68, C07K 14/435	A1	(43) International Publication Date:	15 June 2000 (15.06.00
1) International Application Number: PCT/ 2) International Filing Date: 10 December 199	/US99/294 99 (10.12.9	DK, ES, FI, FR, GB, GR, IE, IT	tent (AT, BE, CH, CY, DI , LU, MC, NL, PT, SE).
0) Priority Data: 09/210,330 11 December 1998 (11.1	(2.98) U	Published With international search report	
1) Applicant: CLONTECH LABORATORIES, IN- -1020 East Meadow Drive, Palo Alto, CA 9430		5];	
2) Inventors: LUKYANOY, Sergey Anatolievich; binskaya 13/1-161, Moscow (RU). FRADK Fedorovich; ul. Dnepropetrovskaya, 35/2-1 113570 (RU). LABAS, Yulii Aleksandrovici erala Tyuleneva, 35-416, Moscow, 117465 (R Mikhail Vladimirovich; ul. Teplii stan, 7/2-2 117465 (RU).	OV, Arcadov 14, Mosco h; ul. Ge RU), MAT	dy w, n- Z,	4.
4) Agent: ADLER, Benjamin, A.; McGregor & Candle Ln., Houston, TX 77071 (US).	Adler, 80	11	
4) Title: FLUORESCENT PROTEINS FROM NON SUCH PROTEINS AND USES THEREOI		MINESCENT SPECIES OF CLASS ANTHOZ	ZOA, GENES ENCODIN
7) Abstract			
		! 6 bi-bi 6	
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote ence encod	ins from non-bioluminescent organisms from ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote ence encod	ins from non-bioluminescent organisms from ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote	ins from non-bioluminescent organisms from ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote	ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote	ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote	ing the fluorescent proteins and further analyz	the Class Anthozoa. Al
The present invention is directed to novel fluore sclosed are methods of identifying nucleic acid seque	scent prote	ing the fluorescent proteins and further analyz	the Class Anthozoa. Aling the proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ .	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	υz	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		·.
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia .	SG	Singapore		

PCT/US99/29405

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

5

10

15

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to the field of molecular biology. More specifically, this invention relates to novel fluorescent proteins, methods of identifying the DNA sequences encoding the proteins and uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. 20 Traditionally, a protein of interest is purified, then covalently conjugated fluorophore derivative. For in vivo studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, 25 however, make the process laborious and difficult to control. An alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β-galactosidase, firefly luciferase

15

20

25

WO 00/34526 PCT/US99/29405

and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for in vivo studies.

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in

15

20

WO 00/34526 PCT/US99/29405

general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current -Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. fluorescent proteins result in possible new colors, or produce pHdependent fluorescence. Other benefits of novel fluorescent proteins include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

SUMMARY OF THE INVENTION

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

15

25

WO 00/34526 PCT/US99/29405

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEO ID Nos. 55-63 in the cell; and measuring a fluorescence signal from the protein. This method further comprises a step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, the nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and the protein of interest in the cell. By identifying an further

15

20

25

WO 00/34526 PCT/US99/29405

intracellular location of the fluorescent protein, an intracellular location of the protein of interest is also identified.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers).

Figure 2A shows multiple alignment of novel fluorescent proteins. The numbering is based on Aequorea victoria green fluorescent protein (GFP). Two proteins from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps are represented by dots. In the sequence of A. victoria GFP, the stretches forming beta-sheets are underlined; the residues whose side chains form the interior of the beta-can are shaded (according to Yang et al., Nature Biotechnol. 14, 1246–1251 (1996).

Figure 2B shows the N-terminal part of cFP484, which has no homology with the other proteins. The putative signal peptide is underlined.

Figure 3 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia majano, amFP486.

15

20

25

WO 00/34526

PCT/US99/29405

Figure 4 shows the excitation and emission spectrum of the novel fluorescent protein from *Clavularia*, cFP484.

Figure 5 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP506.

Figure 6 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP538.

Figure 7 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma striata*, dsFP483.

Figure 8 shows the excitation and emission spectrum of 10 the novel fluorescent protein from Discosoma, drFP583.

Figure 9 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia sulcata, asFP600.

Figure 10 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dgFP512.

Figure 11 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dmFP592.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al., Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for

15

20

25

WO 00/34526 PCT/US99/29405

expression of the protein in human cells (Yang et al., Nucleic Acids Research 24 (1996), 4592-4593).

In accordance with the present invention there may be molecular microbiology, employed conventional biology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3'

20

25

WO 00/34526 PCT/US99/29405

(carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements detectable necessary to initiate transcription at levels above Within the promoter sequence will be found a background. initiation site, as well as protein binding transcription responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

25

WO 00/34526

PCT/US99/29405

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

"transformed" A cell has been or "transfected" exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

15

20

WO 00/34526 PCT/US99/29405

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a

20

WO 00/34526 PCT/US99/29405

fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63 in the cell; and measuring a fluorescence signal from the protein. This method further comprises a step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, the nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and further the protein of interest in the cell. By identifying intracellular location of the fluorescent protein, an intracellular location of the protein of interest is also identified.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

PCT/US99/29405

EXAMPLE 1

Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

10

TABLE 1

Anthozoa Species Used in This Study

Area of Origination	Fluorescent Color
Western Pacific	bright green tentacle tips
Western Pacific	bright green tentacles and
	oral disk
Western Pacific	green-yellow tentacles and
	oral disk
Western Pacific	orange-red spots oral disk
Western Pacific	blue-green stripes on oral
	disk
Western Pacific	faintly purple oral disk
Western Pacific	green spots on oral disk
	Western Pacific Western Pacific Western Pacific Western Pacific Western Pacific Western Pacific

PCT/US99/29405

"green"					
Anemonia	Mediterranean	purple	tentacle	tips	
sulcata					٠.

WO 00/34526

PCT/US99/29405

EXAMPLE 2

cDNA Preparation

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 μg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)₁₃, SEQ ID No. 1) (Table 2). Amplified cDNA samples were then prepared as described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 μM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 μl of this dilution was used in subsequent procedures.

PCT/US99/29405

TABLE 2

Oligos Used in cDNA Synthesis and RACE

TN3: 5

5'-CGCAGTCGACCG(T)₁₃

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃

(SEQ ID No. 17)

10

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT

(SEQ ID No. 2)

T7-TS:

15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT

(SEQ ID No. 18)

T7:

5'-GTAATACGACTCACTATAGGGC

(SEQ ID No. 19)

20

TS-oligo

5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGrG

(SEQ ID No. 53)

25

PCT/US99/29405

EXAMPLE 3

Oligo Design

To isolate fragments of novel fluorescent protein cDNAs, PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

PCT/US99/29405

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

5			
`			

Stretch Position	Amino Acid	:
according to	Sequence of	Degenerated Primer Name
A. victoria GFP (7)	the Key Stretch	and Sequence
• •	·	
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC
	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$
		CA (SEQ ID No. 4)
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)
	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG
		(SEQ ID No. 6)
		GEGb: 5'- GTT ACA GGT GA(A,G)
		GG(T,G) $GA(A,G)$ GG
	aman ta	(SEQ ID No. 7)
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)
	(SEQ ID No. 8)	GG(A,C) AA(C,T) GG
		(SEQ ID No. 9)
		GNGb: 5'- GTT ACA GGT GA(A,G)
		GG(T,G) AA(C,T) GG
107 121	CMATER	(SEQ ID No. 10)
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT
	(SEQ ID No. 11) GVNFP	(G,A)TG AA(C,T) TT(C,T) CC (SEQ ID NO. 13)
	(SEQ ID No. 12)	(SEQ ID NO. 13)
134-137	GPVM	PVMa: 5' CCT GCC (G,A)A(C,T)
134-137	(SEQ ID No. 14)	GGT CC(A,T,G,C) GT(A,C) ATG
	(520 10 140, 14)	(SEQ ID NO. 15)
		PVMb: 5' CCT GCC (G,A)A(C,T)
		GGT CC(A,T,G,C) GT(G,T) ATG
		(SEQ ID NO. 16)
		(

10

15

WO 00/34526

PCT/US99/29405

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

PCT/US99/29405

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

Species	First	Second Degenerate Primer
	Degenerate	
	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red"	NGH	GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

5

The first PCR reaction was performed as follows: 1 µl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

15

20

WO 00/34526 PCT/US99/29405

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 μ l of this dilution was added to a second PCR reaction, which contained 1X Advantage KlenTaq Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 μM dNTPs, 0.3 μM of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.; 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was cloned into PCR-Script vector (Stratagene) according the manufacturer's protocol.

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a combination of primers was found that resulted in specific amplification--meaning that a pronounced band of expected size (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on agarose gel after two PCR reactions. The primer combinations of choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification of fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified or to Aequorea victoria GFP.

10

15

20

25

WO 00/34526

PCT/US99/29405

EXAMPLE 5

Obtaining Full-Length cDNA Copies

Upon sequencing the obtained 3'-fragments novel fluorescent protein cDNAs, two nested 5'-directed primers were synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the nevel approach of "step-out PCR" was used to suppress background amplification. The step-out reaction mixture contained 1x Advantage KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 µM of the T7-TS primer (SEQ ID No. 18), 0.1 µM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one ul of this dilution was added to the second (nested) PCR. The reaction contained 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

PCT/US99/29405

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer
•		
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC
majano	(SEQ ID No. 20)	TGGTAGGAT
		(SEQ ID No. 21)
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC
sp.	(SEQ ID No. 22)	GTCTGGGT
		(SEQ ID No. 23)
Zoanthus	5'-	5'-GTCTACTATGTCTT
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT
	(SEQ ID No. 24)	(SEQ ID No. 25)
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC
sp. "red"	(SEQ ID No. 26)	TTCGTA
		(SEQ ID No. 27)
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG
striata	(SEQ ID No. 28)	GTCCAT
		(SEQ ID No. 29)
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT
sulcata	(SEQ ID No. 30)	GCGTAC
		(SEQ ID No. 31)
Discosoma	5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG
sp.	(SEQ ID No. 32)	GGTTCC
"magenta"		(SEQ ID No. 33)
Discosoma	5'-CCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA
sp. "green"	(SEQ ID No. 34)	TGGTTC
	·	(SEQ ID No. 35)

10

15

20

25

WO 00/34526

PCT/US99/29405

EXAMPLE 6

Expression of nFPs in E.coli

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Oiagen) in such a way that resulted in the fusion of reading frames of the vectorencoded 6xHis-tag and nFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing 1x Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 μM dNTPs, 0.2 μM of upstream primer and 0.2 µM of downstream primer, in a final total volume of 20 μ l. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' sequence according to standard protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium (supplemented with 100 μ g/ml of ampicillin) at 37°C overnight. 100 μ l

WO 00/34526 PCT/US99/29405

of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μ g/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

PCT/US99/29405

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacattttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtcttccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagtactcgagtccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

PCT/US99/29405

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

Seven cDNA full-length cDNAs encoding fluorescent proteins were obtained (SEQ ID Nos. 45-51), and seven novel fluorescent proteins were produced (SEQ ID Nos. 53-59). The spectral properties of the isolated novel fluorescent proteins are shown in Table 7,—and the emission and excitation spectra for the novel proteins are shown in Figures 3-11.

10

PCT/US99/29405

TABLE 7

Spectral Properties of the Isolated NFPs.

Species	NFP	Abs.	Emission	Maximum	Relative	Relative
	Name	Max.	Maximum	Extinction	Quantum	Brightness
		n m	n m	Coeff.	Yield*	**
Anemonia majano	amFP486	458	486	40,000	0.3	0.43
Clavularia sp.	cFP484	456	484	35,300	0.6	0.77
Zoanthus sp.	zFP506	496	506	35,600	0.79	1.02
Zoanthus sp.	zFP538	528	538	20,200	0.52	0.38
Discosoma sp. "red"	drFP583	558	583	22,500	0.29	0.24
Discosoma striata	dsFP483	443	483	23,900	0.57	0.50
Anemonia sulcata	asFP600	572	596	56,200	<0.001	-
Discosoma sp "green"	dgFP512	502	512	20,360	0.3	0.21
Discosoma sp. "magenta"	dmFP592	573	593	21,800	0.11	0.09

^{5 *}relative quantum yield was determined as compared to the quantum yield of A. victoria GFP.

^{**}relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

PCT/US99/29405

Multiple alignment of fluorescent proteins is shown in Figure 2A. The numbering is based on Aequorea victoria green fluorescent protein (GFP, SEQ ID No. 54). The amino acid sequences of the novel fluorescent proteins are labeled as SEQ ID Nos. 55-63. Two proteins from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps are represented by dots. In the sequence of A. victoria GFP, the stretches forming β -sheets are underlined; the residues whose side chains form the interior of the β -can are shaded. Figure 2B shows the N-terminal part of cFP484, which has no homology with the other proteins. The putative signal peptide is underlined.

The following references were cited herein.

- 1. Ormo et al., (1996) Science 273: 1392-1395.
- 15 2. Yang, F., et al., (1996) Nature Biotech 14: 1246-1251.
 - 3. Cormack, et al., (1996) Gene 173, 33-38.
 - 4. Haas, et al., (1996) Current Biology 6, 315-324.
 - 5. Yang, et al., (1996) Nucleic Acids Research 24, 4592-4593.
 - 6. Ghoda, et al.. (1990) J. Biol. Chem. 265: 11823-11826.
- 20 7. Prasher D.C. et al. (1992) Gene 111:229-33.
 - 8. Kain et al. (1995) Biotechniques 19(4):650-55.
 - 9. Chomczynski P., et al., (1987) Anal. Biochem. 162, 156-159.
 - 10. Frohman et al., (1998) PNAS USA, 85, 8998-9002.

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the 25 invention pertains. These patents publications and are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated bе incorporated by reference.

WO 00/34526 PCT/US99/29405

One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present examples along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.

PCT/US99/29405

WHAT IS CLAIMED IS:

1. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

10

15

25

5

2. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

- 3. A method of analyzing a fluorescent protein in a cell, 20 comprising the steps of:
 - a) expressing a nucleic acid sequence encoding a fluorescent protein in said cell, wherein said protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63; and
 - b) measuring a fluorescence signal from said protein.
 - 4. The method of claim 3, further comprising the step of:
 sorting said cell according to said signal.

WO 00/34526

PCT/US99/29405

- 5. The method of claim 4, wherein said step of sorting comprises sorting said cell by fluorescence activated cell sorting.
- 5 6. The method of claim 3, wherein said nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to said fluorescent protein, wherein said protein of interest is distinct from said fluorescent protein.
- 7. The method of claim 6, wherein the fluorescence signal indicates a presence of said gene of interest in said cell.
 - 8. The method of claim 7, wherein said cell further comprises a protein of interest fused to said fluorescent protein.
 - 9. The method of claim 8, further comprising the step of:
- identifying an intracellular location of said fluorescent protein, thereby identifying an intracellular location of said protein of 20 interest.
 - 10. An isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

PCT/US99/29405

PCT/US99/29405

10 20 30 40 50	
MSKGEELFTG. VVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT.GKLPVPW GFP	SEQ ID#
MAQQANGLIK, EMTMKYRMFCCVDCUVEUIMODO	54
MONONOVIRE, EMLIDENTEGRACIVE TVCVCVCVCVCVC	
M-ALY-K-N-TMVVLP-K-R-DYQ-SQELT-VSY dgFP	183 59
-RSNF-RFKVRMVEE-E-E-R-Y-HK-KA- drFP	612 62
MALSNKFIGD.DMKMTYHMDGCVNGHYFTVKGEGNGKPYEGTQTSTFKVTMANGGPLAFSF amfp	500 61
«KALTTMGVIKPDMKIKLKMEGNVNGHAFVIEGEGEGKPYDGTHTLNLEVKMAEGAPLPFSY CFP4	186 55 34 56
60 70 80	. 50
PTLVTTFSYGVQCFSRYPDHMKQHDFFKSAM:PEGYVQERTIFFKDDGNYKTRAEVKFEGD	
	GFP
G-KD-IK	zFP506
MIDCECEUIGNEAF VHHDINTD RVIVIAN	zFP538
HILCPQFQYGNKAFVHHPDDIPDYLKLSFPEGYTWERSMHFEDGGLCCITNDISLTGN DTTMRNY-EIF-QTCSGPNGS-Q-T-TYV-TA-SNVV-D	dsFP483
DSV-KNVV-D	dgFP512
DSVVTV-Q-SQDG	drFP583
"THUIDUITUANIFIKYVYCID NVERAGE -	dmFP592
HILSTSCMYGSKTFIKYVSGIPDYFKQSFPEGFTWERTTTYEDGGFLTAHQDTSLDGD DILSTVFKYGNRCFTAYPTSMPDYFKQAFPDGMSYERTFTYEDGGVATASWEISLKGN	asFP600
DILSNAFQYGNRALTKYPDDIADYFKQSFPEGYSWERTMTFEDKGIVKVKSDISMEED	amFP486
120 120	cFP484
TLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQL	GFP
CHITICS AF I GVNF PADGPVM KKMTDNWEDCORVET TOO	-
	zFP506 zFP538
CFNYDIKFTGLNFPPNGPVV.QKKTTGWEPSTERLYPRDGVLIGDIHHALTVEGGGHYV	
TH-M-ALDMMR-MKIMFEL-R-D-AMS-LLKR	dsFP483
I-KVI-VSDMM	dgFP512 drFP583
K-XSKMDI	dmFP592
CLVYKVKILGNNFPADGPVM.QNKAGRWEPATEIVYEVDGVLRGQSLMALKCPGGRHLT	
CFEHKSTFHGVNFPADGPVM.AKKTTGWDPSFEKMTVCDGILKGDVTAFLMLQGGGNYR SFIYEIRFDGMNFPPNGPVM.QKKTLKWEPSTEIMYVRDGVLVGDISHSLLLEGGGHYR	asEP600
THE POST OF AN . UKKI LKWEPSTEIMYV RDGVLVGDISHSI I I ECCOUNT	
TO TO TO THE BEAUTY OF THE BEA	amFP486
180 190 200 210	
180 190 200 210	amFP486 cFP484
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK COFDTVYKAKSV PREMEDWHELOWY TREES CONTOUR TO THE PROPERTY OF THE PROPERTY	amFP486
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK COFDTVYKAKSV PREMEDWHELOWY TREES CONTOUR TO THE PROPERTY OF THE PROPERTY	amFP486 cFP484
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP zFP506
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP zFP506 zFP538
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP zFP506 zFP538 dsFP483 dgFP512 drFP583
ADHYQQNTPIGDG.PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP zFP506 zFP538 dsFP483 dgFP512
ADHYQQNTPIGDG. PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPKKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP CDIKTVYQAKKPVKMPGYHYVDTKLVIRSNDKEFM. KVEEHEIAVARHHPLQSQ FE-I-KPN- VD-FHYIE-T-QQNYN VLT-V-EYSS-EKIGKSKA VEF-SI-MQLYSD-T-HNEDYT.IQY-RTEGLFL VEF-SI-MV PS-QLYSDMT-HNEDYT VQY-KTQFIKPLQ CHLHTTYRSKKPASALKMPGFHFEDHRIEIMEEVEKGK.CYKQYEAAVGRYCDAAPSKLGHN CQFHTSYKTKKPVTMPPNHVVEHBIAPTDIDEGGN.GNOVERANGETHAMAGITHGMDELYK	amFP486 cFP484 GFP zFP506 zFP538 dsFP483 dgFP512 drFP583
ADHYQQNTPIGDG. PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSVPKKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP CDIKTVYQAKKPVKMPGYHYVDTKLVIRSNDKEFM. KVEEHEIAVARHHPLQSQ FE-I-KPN- VD-FHYIE-T-QQNYN VLT-V-EYSS-EKIGKSKA VEF-SI-MQLYSD-T-HNEDYT.IQY-RTEGLFL VEF-SI-MV PS-QLYSDMT-HNEDYT VQY-KTQFIKPLQ CHLHTTYRSKKPASALKMPGFHFEDHRIEIMEEVEKGK.CYKQYEAAVGRYCDAAPSKLGHN CQFHTSYKTKKPVTMPPNHVVEHBIAPTDIDEGGN.GNOVERANGETHAMAGITHGMDELYK	amFP486 cFP484 GFP zFP506 zFP538 dsFP483 dgFP512 drFP583 dmFP592 asFP600 amFP486
ADHYQQNTPIGDG. PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK CQFDTVYKAKSV PRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	amFP486 cFP484 GFP zFP506 zFP538 dsFP483 dgFP512 drFP583 dmFP592 asFP600

FIG. 2A

MKCKFVFCLSFLVLAITNANIFLRNEADLEEKTLRIP

FIG. 2B 2/11 SUBSTITUTE SHEET (RULE 26)

PCT/US99/29405

3/11
SUBSTITUTE SHEET (RULE 26)

4/11
SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

PCT/US99/29405

8/11

SUBSTITUTE SHEET (RULE 26)

Fig. 10

10/11
SUBSTITUTE SHEET (RULE 26)

11/11
SUBSTITUTE SHEET (RULE 26)

	WO 00/34526	PCT/US99/29405
		SEQUENCE LISTING
	<110>	Lukyanov, Sergey A.
		Labas, Yulii A.
	•	Matz, Mikhail V.
5		Fradkov, Arcady F.
	<120>	Fluorescent proteins from non-bioluminescent
		species of Class Anthozoa, genes encoding such
		proteins and uses thereof
	<130>	D6196PCT
10	<141>	1999-12-10
	<150>	09/210,330
	<151>	1998-12-11
	<160>	63
15	<210>	1
	<211>	25
	<212>	DNA
	<213>	artificial sequence
	<220>	
20	<221>	primer_bind
	<223>	primer TN3 used in cDNA synthesis and RACE
	<400>	1
	cgcagtcgac	cgttttttt ttttt 25
25	<210>	2
	<211>	23
	<212>	DNA
	<213>	artificial sequence
	<220>	
30	<221>	primer_bind
	<223>	primer TS used in cDNA synthesis and RACE
	<400>	2
	aagcagtggt	atcaacgcag agt 23
35	<210>	3
رر	<210 <i>></i>	
	<211>	
	\Z12>	PRT

	WO 00/34526	F	PCT/US99/29405
	<213>	Aequorea victoria	
	<220>	110940104 71000114	
	<222>	21	
	<223>		on which
5		primer NGH is based; Xaa at position	
		represents unknown	
	<400>	3	
	Glv Xaa Val	. Asn Gly His	
	• •	5	
- 10		•	•
	<210>	4	
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
15	<220>		
	<221>	primer_bind	٠.
	<222>	12	
	<223>	primer NGH used for isolation of fluo	rescent
		protein; n at position 12 represents	any of the
20		four bases	
	<400>	4	
	gayggctgcg	tnaayggdca 20	٠
	<210>	5	
25	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		
20	<222>		
30	<223>		on which
	<400>	primers GEGa and GEGb are based 5	
	Gly Glu Gly		
		5	
35	242		٠,
	<210>		
	<211>	20	

	WO 00/34526	PCT/US99/29405
	<212>	DNA
	<213>	artificial sequence
	<220>	·
	<221>	primer_bind
5	<223>	primer GEGa used for isolation of fluorescent
		protein
	<400>	6
	gttacaggtg	arggmgargg 20
₁₀ .	<210>	7
	<211>	20
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind
	<223>	primer GEGb used for isolation of fluorescent
		protein
	<400>	. 7
	gttacaggtg	arggkgargg 20
20		
	<210>	8
	<211>	5
	<212>	PRT
	<213>	Aequorea victoria
25	<220>	
	<222>	3135
	<223>	amino acid sequence of a key stretch on which
		primers GNGa and GNGb are based
	<400>	8
30	Gly Glu Gly	y Asn Gly
		5
	<210>	9
	<211>	20
35	<212>	DNA
	<213>	artificial sequence
	<220>	·

	WO 00/34526	PCT/US99/29405
	<221>	primer_bind
	<223>	primer GNGa used for isolation of fluorescent
		protein
	<400>	9
5	gttacaggtg	arggmaaygg 20
,	gccacaggog	
	<210>	10
	<211>	20
	<212>	DNA
··· 10	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	primer GNGb used for isolation of fluorescent
		protein
15	<400>	10
	gttacaggtg	arggkaaygg 20
	<210>	
	<211>	. 5
20	<212>	PRT
	<213>	Aequorea victoria
	<220>	- -
	<222>	127131
	<223>	amino acid sequence of a key stretch on which
25	•	primer NFP is based
	<400>	11
	Gly Met Ası	n Phe Pro
		5
30	<210>	12
	<211>	5
	<212>	PRT
	<213>	Aequorea victoria
	<220>	
35	<222>	127131
	<223>	amino acid sequence of a key stretch on which
		primer NFP is based

	WO 00/34526	PCT/US99/29405
	<400>	12
		•
	Gly Val Asn Pl	ne Pro
		5
5	<210>	13
	<211>	20
	<212>	DNA
	<213>	artificial sequence
•	<220>	•
10	<221>	primer_bind
	<223>	primer NFP used for isolation of fluorescent
		protein
	<400>	13
	ttccayggtr tg	aayttycc 20
15		
	<210>	14
	<211>	4
	<212>	PRT
	<213>	Aequorea victoria
20	<220>	
	<222>	134137
	<223>	amino acid sequence of a key stretch on which
		primers PVMa and PVMb are based
	<400>	14
25	Gly Pro Val M	et
	<210>	15
	<211>	21
30	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<222>	15
35	<223>	primer PVMa used for isolation of fluorescent
		protein; n at position 15 represents any of the

	WO 00/34526	PCT/US99/29405	
		four bases	
	<400>	15	
	aataaaraya	gtccngtmat g 21	
	cccgccrayg	geedigeliae g 21	
5	<210>	16	
J	<211>	21	
	<212>	DNA	
	<213>		
	<220>		
10	<221>	primer_bind	
	<222>	15	
	<223>	primer PVMb used for isolation of fluorescent	
	•	protein; n at position 15 represents any of the	
		four bases	
15	<400>	16	•
		gtccngtkat g 21	
	cetgeerayg	gtccngtkat g 21	
	<210>	17	
	<211>		
20	<212>		
20	<213>		
	<220>		
	<221>	primer_bind	-
	<223>		
25	<400>	17	
			47
	gtaatacgac	tcactatagg gccgcagtcg accgtttttt ttttttt	4/
	<210>	18	
	<211>		
30	<212>		
J O ,	<213>		
	<220>	dreirioidi boquonoo	
	<221>	primer_bind	
	<223>		
35	<400>	18	
-		tcactatagg gcaagcagtg gtatcaacgc agagt	45

	WO 00/34526	PCT/US9	9/29405
	<210>	19	
	<211>	22	٠.
	<212>	DNA	• •
5	<213>	artificial sequence	
	. <220>		
	<221>	primer_bind	
	<223>	primer T7 used in cDNA synthesis and RACE	
	<400>	19	
10	gtaatacgac	tcactatagg gc 22	٠.
	-		
	<210>	20	
	<211>	21	•
	<212>	DNA	
15	<213>	artificial sequence	
	<220>		٠,
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
		Anemonia majano	
20	<400>	20	
	gaaatagtca	ggcatactgg t 21	
	<210>	21	
	<211>	20	
25	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	·.
30		Anemonia majano	
	<400>	21	
	gtcaggcata	ctggtaggat 20	
	<210>	22	
35	<211>	21	٠,

	WO 00/34526	PCT/US99/29405
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
5	<223>	gene-specific primer used for 5'-RACE for
		Clavularia sp.
	<400>	22
	cttgaaatag	tctgctatat c 21
		•
10	<210>	23
	<211>	19
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind .
	<223>	gene-specific primer used for 5'-RACE for
		Clavularia sp.
	<400>	23
	tctgctatat	cgtctgggt 19
20		
20	<210>	24
	<211>	•
	<212>	
	<213>	•.
25	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Zoanthus sp.
	<400>	24
30	gttcttgaaa	tagtctacta tgt 23
	<210>	25
	<211>	
	<212>	
35	<213>	

	WO 00/34526	PCT/US9	9/29405
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
		Zoanthus sp.	
5	<400>	25	
J		•	
	gtctactatg	tcttgaggat 20	٠.
	<210>	26	
	<211>	19	
10	<212>	DNA	
	<213>	artificial sequence	
	<220>		٠.
	<221>	primer_bind	•
	<223>	gene-specific primer used for 5'-RACE for	
15		Discosoma sp. "red"	
	<400>	26	
	caagcaaatg	gcaaaggtc 19	
	caagcaaacg	godddgg00	
	.010		٠.
00	<210>	27	
20	<211>	19	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
05	<221>	primer_bind	
25	<223>	gene-specific primer used for 5'-RACE for	••
	.400-	Discosoma sp. "red"	
	<400>	27	
	cggtattgtg	gccttcgta 19	
30	<210>	28	
	<211>	19	
	<212>	DNA	-
	<213>	artificial sequence	
	<220>		
35	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	

SEQ 9/28

	WO 00/34526		PCT/US99/29405
	٠.	Discosoma striata	
	<400>	28	٠.
	ttgtcttctt	ctgcacaac 1	.9
5	<210>	29	:
	<211>	17	
	<212>	DNA	
	<213>	artificial sequence	٠.
	<220>	· ·	
10	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RAG	CE for
		Discosoma striata	
	<400>	29	
	ctgcacaacg	ggtccat 1	.7
15			
	<210>	30	
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
20	<220>		
	<221>	primer_bind	٠,
	<223>	gene-specific primer used for 5'-RAG	CE for
		Anemonia sulcata	
	<400>	30	
25	cctctatctt	catttcctgc 20	1
	<210>	31	
	<211>		٠,
	<212>		
30	<213>		
	<220>	-	
	<221>	primer_bind	
	<223>	- —	CE for
		Anemonia sulcata	٠.
35	<400>	31	
	tatcttcatt	tcctgcgtac 20	l

	WO 00/34526	PCT/US	99/29405
	<210>	32	
	<211>	19	٠.
	<212>	DNA	
5	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
		Discosoma sp. "magenta"	
10	<400>	32	
	ttcagcaccc	catcacgag 19	
	_		
	<210>	33	
	<211>	19	
15	<212>	DNA	
	<213>	artificial sequence	٠.
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
20		Discosoma sp. "magenta"	
	<400>	33	
	acgctcagag	ctgggttcc 19	
			·•
	<210>	34	
25	<211>	22	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
30	<223>	gene-specific primer used for 5'-RACE for	
	·	Discosoma sp. "green"	
	<400>	34	
	ccctcagcaa	tccatcacgt tc 22	
2.5			
35	<210>	35	٠,
	<211>	20	
	<212>	DNA	

SEQ 11/28

	WO 00/34526	PCT/US99/29405
	013.	
	<213>	artificial sequence
	<220>	nuincu bind
	<221>	primer_bind
_	<223>	gene-specific primer used for 5'-RACE for
5	.400-	Discosoma sp. "green"
	<400>	35
	attatctcag	tggatggttc 20
	<210>	36
~ 10	~ <211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
15	<223>	upstream primer used to obtain full coding region
		of nFPs from Anemonia majano
	<400>	36
	acatggatcc	gctctttcaa acaagtttat c 31
20	<210>	37
	<211>	34
	<212>	DNA
	<213>	artificial sequence
	<220>	
25	<221>	primer_bind
	<223>	downstream primer used to obtain full coding
		region of nFPs from Anemonia majano
	<400>	37
	tagtactcga	gcttattcgt atttcagtga aatc 34
30		
	<210>	38
	<211>	29
	<212>	DNA
	<213>	artificial sequence
35	<220>	
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region

	WO 00/34526		PCT/US99	0/29405
		of nFPs from Clavularia sp.		•
	<400>	38		
			20	
	acatggatee	aacattttt tgagaaacg	29	
5	<210>	. 39	•	
•	<211>			٠.
	<212>			
	<213>			
	<220>	_		
10	<221>			
	<223>	•	in full coding	region
		of nFPs from Clavularia sp.		J ·
	<400>	39		٠.
	acatonaton	aaagctctaa ccaccatg	28	
	acatygatee	adagetetaa ecaccatg	20	
15			•	
	<210>			
	<211>		•	
	<212>			
	<213>	artificial sequence		•
20	<220>			
	<221>	<u> </u>		
	<223>	-		g
		region of nFPs from <i>Clavular</i>	ria sp.	
	<400>	40		
25	tagtactcga	gcaacacaaa ccctcagaca a	31	٠.
	<210>	41		
	<211>	•		
	<212>	DNA		
30	<213>	artificial sequence		
	<220>			
	<221>	primer_bind		•.
	<223>	upstream primer used to obta	in full coding	region
		of nFPs from Zoanthus sp.		
35	<400>	41	•	
	acatggatcc	gctcagtcaa agcacggt	28	

	WO 00/34526		PCT/US99/29405
	<210>		
	<211>		·
	<212>		
5	<213>	artificial sequence	•
	<220>		
	<221>	<u>-</u>	
	<223>	downstream primer used to	o obtain full coding
		region of nFPs from Zoan	thus sp.
10	 <400>	42	
	tagtactcga	ggttggaact acattettat ca	32
	<210>	43	
	<211>	31	
15	<212>	DNA	•
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
,	<223>	upstream primer used to	obtain full coding region
20		of nFPs from <i>Discosoma s</i>	p. "red"
	<400>	43	
	acatggatcc	aggtcttcca agaatgttat c	31
	<210>	44	
25	<211>	29	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		٠,
	<221>	primer_bind	
30	<223>	downstream primer used to	o obtain full coding
		region of nFPs from Disc	osoma sp. "red"
	<400>	44	
	tagtactcga	ggagccaagt tcagcctta	29
35	<210>	45	``
	<211>	28	
	<212>	DNA	

	WO 00/34526	PCT/US99/29405
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	•
5		of nFPs from <i>Discosoma striata</i>
	<400>	45
	acatggatcc	agttggtcca agagtgtg 28
	<210>	46
- 10	<211>	28
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
15	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma striata
	<400>	46
	tagcgagctc	tatcatgcct cgtcacct 28
20	<210>	47
	<211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	
25	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from Anemonia sulcata
	<400>	47
	acatggatcc	gcttcctttt taaagaagac t 31
30		
	<210>	48
	<211>	28
	<212>	
	<213>	-
35	<220>	
	<221>	· · · · · · · · · · · · · · · · · · ·
	<223>	downstream primer used to obtain full coding

	<400>	region of nFPs from <i>Anemonia sulcata</i>	
	tagtactcga	gtccttggga gcggcttg 28	
5	<210>	49	
	<211>	30	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
10	- <221>	primer_bind	
	<223>	upstream primer used to obtain full coding region	
		of nFPs from Discosoma sp. "magenta"	
	<400>	49	
	acatggatcc	agttgttcca agaatgtgat 30	
15			
	<210>	50	
	<211>	•	
	<212>		
	<213>	·	
20	<220>		
	<221>	primer_bind	
	<223>	downstream primer used to obtain full coding	
		region of nFPs from <i>Discosoma sp. "magenta"</i>	
	<400>		
25	tagtactcga	ggccattacg ctaatc 26	
	aug tu tugu	,	
	<210>	51	
	<211>	31	
	<212>	DNA	
30	<213>	artificial sequence	
	<220>	•	
	<221>	primer_bind	
	<223>	upstream primer used to obtain full coding region	
		of nFPs from Discosoma sp. "green"	
35	<400>	51	
	acatggatcc	agtgcactta aagaagaaat g 31	

	WO 00/34526			PCT/US99/29405
	<210>	52		
	<211>	29		
	<212>	DNA		
5	<213>	artificia	al sequence	-
	<220>			•.
	<221>	primer_b	ind	
	<223>	downstrea	am primer used	to obtain full coding
		region of	f nFPs from <i>Dis</i>	cosoma sp. "green"
. 10	<400>	52		•
	tagtactcga	gattcggttt aa	itgccttg	29
	212			
	<210>	-		
15	<211>			
13	<212> <213>		al sequence	•
	<220>		ar sequence	
	<221>		ind	
	<223>			ynthesis and RACE
20	<400>			, inchests and futer .
				22
	aagcagtggt	atcaacgcag ag	tacgergr grg	33
	<210>	54		
	<211>	238	•	
25	<212>	PRT		
	<213>	Aequorea	victoria	•
	<220>	·		
	<223>	amino aci	id sequence of	GFP
	<400>	54		
30	Met Ser Lys			Val Val Pro Ile Leu
	_	5	10	15
	Val Glu Le			: Lys Phe Ser Val Ser
	01 01 01	20	25	30
25	GIA GIA GIA			Lys Leu Thr Leu Lys
35	Pho Tlo Com	35	40	45
	rue ile Cy			. Pro Trp Pro Thr Leu
	•	50	55	60

	Val	Thr	Thr	Phe	Ser 65	Tyr	Gly	Val	Gln	Cys 70	Phe	Ser	Arg	Tyr	Pro
	Asp	His	Met	Lys		His	asA	Phe	Phe		Ser	Ala	Met	Pro	
				-	80		-			85					90
5	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	Asn
		-			95					100	_		_	_	105
	Tyr	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val
					110					115					120
	Asn	Arg	Ile	Glu	Leu	Lys	Gly	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn
10		-	• .		125					130					135
	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	Asn	Tyr	Asn	Ser	His	Asn	Val
					140					145					150
	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn	${\tt Gly}$	Ile	Lys	Val	Asn	Phe
					155					160					165
15	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	Val	Gln	Leu	Ala	Asp
					170					175					180
	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu
					185					190					195
	Pro	Asp	Asn	His		Leu	Ser	Thr	Gln		Ala	Leu	Ser	Lys	Asp
20					200					205					210
	Pro	Asn	Glu	Lys		Asp	His	Met	Val		Leu	Glu	Phe	Val	
					215				_	220	_	_	_		225 -
	Ala	Ala	Gly	IIe		His	GLY	Met	Asp		Leu	Tyr	Lys		
25					230					235					
		<2	10>		55										
		<2	11>		229									٠	
		<2	12>		PRT										
		<2	13>		Anem	onia	maj	ano							٠.
30		<2	20>												
		<2	23>		amin	o ac	id s	eque	nce	of a	mFP4	86			
		<4	00>		55										
	Met	Ala	Leu	Ser	Asn	Lys	Phe	Ile	Gly	Asp	Asp	Met	Lys	Met	Thr
					5					10					15
35	Tyr	His	Met	Asp	Gly	Cys	Val	Asn	Gly	His	Tyr	Phe	Thr	Val	Lys
					20					25					30
	Gly	Glu	Gly	Asn		Lys	Pro	Tyr	Glu		Thr	Gln	Thr	Ser	
					35					40					45

	Phe	Lys	Val	Thr	Met	Ala	Asn	Gly	Gly		Leu	Ala	Phe	Ser		
					50					55					60	
	Asp	Ile	Leu	Ser	Thr	Val	Phe	Lys	Tyr		Asn	Arg	Cys	Phe	Thr	٠.
					65					70					75	
5	Ala	Tyr	Pro	Thr	Ser	Met	Pro	Asp	Tyr	Phe	Lys	Gln	Ala	Phe	Pro	
					80					85					90	
	Asp	Gly	Met	Ser	Tyr	Glu	Arg	Thr	Phe	Thr	Tyr	Glu	Asp	Gly	Gly	
					95					100					105	
	Val	Ala	Thr	Ala	Ser	Trp	Glu	Ile	Ser	Leu	Lys	Gly	Asn	Cys	Phe	
10		-	•		110					115					120	٠.
	Glu	His	Lys	Ser	Thr	Phe	His	Gly	Val	Asn	Phe	Pro	Ala	Asp	Gly	
					125					130					135	
	Pro	Val	Met	Ala	Lys	Lys	Thr	Thr	Gly	Trp	Asp	Pro	Ser	Phe	Glu	
					140	•				145					150	
15	Lys	Met	Thr	Val	Суѕ	Asp	Gly	Ile	Leu	Lys	Gly	Asp	Val	Thr	Ala	
					155					. 160					165	
	Phe	Leu	Met	Leu	Gln	Gly	Gly	Gly	Asn		Arg	Cys	Gln	Phe		•
					170					175					180	
	Thr	Ser	Tyr	Lys	Thr	Lys	Lys	Pro	Val		Met	Pro	Pro	Asn		
20	_	_	_		185	_				190	_	_	_		195	
	Val	Val	Glu	His	Arg	Ile	Ala	Arg	Thr		Leu	Asp	Lys	Gly		
		_			200					205	- -	•			210	
	Asn	Ser	Val	GIn	Leu	Thr	GIu	His	Ala		Ala	His	He	Thr		٠.
25		1	_	_1	215					220					225	
25	Val	Val	Pro	Phe												
•																
		<2	10>		56											
		<2	11>		266											
30		<2	12>		PRT		,									٠.
		<2	13>		Clav	ular	ia s	p.								
		<2	20>													
			23>		amin	o ac	id s	eque	nce	of c	FP48	4				
			00>		56											
35	Met	Lys	Cys	Lys	Phe	Val	Phe	Cys	Leu		Phe	Leu	Val	Leu		
					5					10					15	

Ile Thr Asn Ala Asn Ile Phe Leu Arg Asn Glu Ala Asp Phe Glu

					20					25					30
	Glu	Lys	Thr	Phe	Arg	Ile	Pro	Lys	Ala	Leu	Thr	Thr	Met	Gly	Val
					35					40					45
	Ile	Lys	Pro	Asp	Met	Lys	Ile	Lys	Leu	Lys	Met	Glu	Gly	Asn	Val
5					50					55			-	•	60
	Asn	Gly	His	Ala	Phe	Val	Ile	Glu	Gly	Glu	Gly	Glu	Gly	Lys	Pro
	•				65					70	•				75
	Tyr	Asp	Gly	Thr	His	Thr	Leu	Asn	Leu		Val	Lys	Glu	Gly	
					80					85		_			90
10	Pro	Leu	Pro	Phe	Ser	Tyr	Asp	Ile	Leu		Asn	Ala	Phe	Gln	_
					95 -	 3	_	_	_	100				_	105
	GIY	Asn	Arg	Ala	Leu	Thr	гуѕ	туг	Pro	-	Asp	ше	Ala	Asp	_
	Dho	Tare	Cln	cor	110 Phe	Pro	Glu	Gly.	The same	115	m~~	Clu	7 ~~	mbx	120 Mot
15	LIIĆ	цуъ	GIII	Det	125	FIO	Giu	GIY	ıyı	130	ILD	Giu	Arg	IIIT	135
15	Thr	Phe	Glu	Asp	Lys	Glv	Ile	Val	Lvs		Lvs	Ser	Asp	Ile	
	1111		o_u	···D	140	0-1			_, _	145		501	p		150
	Met	Glu	Glu	Asp	Ser	Phe	Ile	Tyr	Glu		Arg	Phe	Asp	Gly	
				-	155			-		160	_		-	_	165
20	Asp	Phe	Pro	Pro	Asn	Gly	Pro	Val	Met	Gln	Lys	Lys	Thr	Leu	Lys
			•		170					175					180
	Trp	Glu	Pro	Ser	Thr	Glu	Ile	Met	Tyr	Val	Arg	Asp	Gly	Val	Leu
					185					190					195
	Val	Gly	Asp	Ile	Ser	His	Ser	Leu	Leu	Leu	Glu	Gly	Gly	Gly	His
25					200					205					210
	Tyr	Arg	Суѕ	Asp	Phe	Lys	Ser	Ile	Tyr		Ala	Lys	Lys	Val	
					215					220		_	_	_	225
	Lys	Leu	Pro	Asp	Tyr	His	Phe	Val	Asp		Arg	Ile	Glu	Ile	
20	3	***	•	•	230	m	•	.	**- 1	235	.	m	07		240
30	Asn	HIS	Asp	гуу	Asp	ıyr	Asn	гÀЗ	vaı		Leu	ıyr	GIU	Asn	
	Wa l	λla	λκα	Пъ гъ∽	245 Ser	T OU	Lou	Pro	cor	250	ת ת				255
	vaı	AIG	AIG	ığı	260	Dea	neu	FIO	Ser	265	ATG				
					200					200					
25		-0	1 0 -												
35			10> 11>		57 230										
			11> 12>		230 PRT							•			
		~2.	-4-		TILL										

				•											
		<2	13>		Zoan	thus	sp.								
		<2	20>		•										
		<2	23>		amin	o ac	id s	eque	nce	of z	FP50	6			
		<4	00>	•	57										
5	Ala	Gln	Ser	Lys	His	Gly	Leu	Thr	Lys	Glu	Met	Thr	Met	Lys	
					5					10					15
	Arg	Met	Glu	Gly	Cys 20	Val	Asp	Gly	His	Lys 25	Phe	Val	Ile	Thr	Gly 30
	Glu	Glv	Ile	Gly		Pro	Phe	Lys	Gly		Gln	Ala	Ile	Asn	
10		-		-	35			-	_	40					45
	Суѕ	Val	Val	Glu	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Glu	Asp	Ile	Leu
					50					55					60
	Ser	Ala	Ala	Phe		Tyr	Gly	Asn	Arg		Phe	Thr	Glu	Tyr	Pro
					65					70					75
15	Gln	Asp	Ile	Val		Tyr	Phe	Lys	Asn		Суѕ	Pro	Ala	Gly	_
					80					85	_		_		90
	Thr	Trp	Asp	Arg	Ser 95	Phe	Leu	Phe	Glu		Gly	Ala	Val	Суѕ	Ile 105
	Cara	7 cn	Ala	λαn		Ψh.x:	1721	Sor	17a]	100	Clu	λαη	Circ	Mot	
20	Суз	ASII	ALG	дел	110	1111	Val	561	Val	115	GIU	non	Суз	Mec	120
20	His	Glu	Ser	Lvs		Tvr	Glv	Val	Asn		Pro	Ala	Asp	Glv	
				-3 -	125	-4, -	2			130				1	135
	Val	Met	Lys	Lys		Thr	Asp	Asn	Trp		Pro	Ser	Cys	Glu	
			-	-	140		_		_	145			_		150
25	Ile	Ile	Pro	Val	Pro	Lys	Gln	Gly	Ile	Leu	Lys	Gly	Asp	Val	Ser
					155					160					165
	Met	Tyr	Leu	Leu	Leu	Lys	Asp	Gly	Gly	Arg	Leu	Arg	Cys	Gln	Phe
					170					175					180
	Asp	Thr	Val	Tyr	Lys	Ala	Lys	Ser	Val	Pro	Arg	Lys	Met	Pro	Asp
30					185					190					195
-	Trp	His	Phe	Ile	Gln	His	Lys	Leu	Thr	Arg	Glu	Asp	Arg	Ser	Asp
					200					205					210
	Ala	Lys	Asn	Gln		Trp	His	Leu	Thr		His	Ala	Ile	Ala	
25		_		_	215					220					225
35	Gly	Ser	Ala	Leu											
					230										

				•								•,			1100///
				,											
		<2	10>		58							•			
		<2	11>		230										
		<2	12>		PRT										
5		<2	13>		Zoan	thus	sp.						-	ī	
		<2	20>												
		<2	23>		amin	o ac	id s	eque	nce	of z	FP53	8			
		<4	00>		58										
	Met	Ala	His	Ser	Lys	His	Gly	Leu	Lys	Glu	Glu	Met	Thr	Met	Lys
10			-		5					10					15
	Tyr	His	Met	Glu	Gly	Cys	Val	Asn	Gly	His	Lys	Phe	Val	Ile	Thr
					20					25					30
	Gly	Glu	Gly	Ile	Gly	Tyr	Pro	Phe	Lys	Gly	Lys	Gln	Thr	Ile	Asn
					35					40					45
15	Leu	Cys	Val	Ile		Gly	Gly	Pro	Leu		Phe	Ser	Glu	Asp	Ile
					50					55					60
	Leu	Ser	Ala	Gly		Lys	Tyr	Gly	Asp		Ile	Phe	Thr	Glu	_
			_		65	_			_	70	_				75
00	Pro	Gln	Asp	Ile		Asp	Tyr	Phe	Lys		Ser	Cys	Pro	Ala	
20		ml			80	Dl	T	D1	63	85	G 3		77. T	Q	90
	ıyr	Thr	Trp	GIA		Pne	ьeu	Pne	GIU		GIA	Ala	vaı	Cys	
•	Cvc	λαη	Val	λαν	95 Tla	Thr	77 = 1	Ser	T/al	100	C1.,	λcn	Carc	Tlo	105
	Cys	ASII	vai	Asp	110	TIIL	Val	Ser	vaı	115	GIU	ASII	СуБ	116	120
25	His	Lvs	Ser	Tle		Asn	Glv	Met	Asn		Pro	Δĺa	Asn	Glv	
			501		125		OJ			130				027	135
	Val	Met	Lys	Lys		Thr	Thr	Asn	Trp		Ala	Ser	Cys	Glu	
			-	-	140				-	145			-		150
	Ile	Met	Pro	Val	Pro	Lys	Gln	Gly	Ile	Leu	Lys	Gly	Asp	Val	
30					155					160					165
	Met	Tyr	Leu	Leu	Leu	Lys	Asp	Gly	Gly	Arg	Tyr	Arg	Cys	Gln	Phe
					170					175					180
	Asp	Thr	Val	Tyr	Lys	Ala	Lys	Ser	Val	Pro	Ser	Lys	Met	Pro	Glu
					185					190					195
35	Trp	His	Phe	Ile	Gln	His	Lys	Leu	Leu	Arg	Glu	Asp	Arg	Ser	Asp
					200					205					210
	Ala	Lys	Asn	Gln		Trp	Gln	Leu	Thr	Glu	His	Ala	Ile	Ala	Phe
					215					220					225

25

WO 00/34526 PCT/US99/29405

Pro Ser Ala Leu Ala 230

 Met
 Ser
 Cys
 Ser
 Lys
 Ser
 Val
 Ile
 Lys
 Glu
 Glu
 Met
 Leu
 Ile
 Asp

 Leu
 His
 Leu
 Glu
 Gly
 Thr
 Phe
 Asn
 Gly
 His
 Tyr
 Phe
 Glu
 Ile
 Lys
 30
 30
 Gly
 Lys
 Gly
 Gly
 Glu
 Pro
 Asn
 Glu
 Gly
 Thr
 Val
 Thr
 Thr
 Asn
 40
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45

Pro Asp Asn Ile His Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly 80 85 90

Tyr Thr Trp Glu Arg Ser Met His Phe Glu Asp Gly Gly Leu Cys 95 100 105

Cys Ile Thr Asn Asp Ile Ser Leu Thr Gly Asn Cys Phe Tyr Tyr

110 115 120

Asp Ile Lys Phe Thr Gly Leu Asn Phe Pro Pro Asn Gly Pro Val

125 130 135
Val Gln Lys Lys Thr Thr Gly Trp Glu Pro Ser Thr Glu Arg Leu

140 Val Gin Lys Lys Thr Thr Gly Trp Glu Pro Ser Thr Glu Arg Leu

Tyr Pro Arg Asp Gly Val Leu Ile Gly Asp Ile His His Ala Leu 155 160 165

Thr Val Glu Gly Gly His Tyr Ala Cys Asp Ile Lys Thr Val

Tyr Arg Ala Lys Lys Ala Ala Leu Lys Met Pro Gly Tyr His Tyr

185

190

195

PCT/US99/29405

180

Val Asp Thr Lys Leu Val Ile Trp Asn Asp Lys Glu Phe Met 200 Lys Val Glu Glu His Glu Ile Ala Val Ala Arg His His Pro Phe 215 220 225 . Tyr Glu Pro Lys Lys Asp Lys 230 <210> 60 <211> 225 <212> 10 PRT <213> Discosoma sp. "red" <220> <223> amino acid sequence of drFP583 <400> Met Arg Ser Ser Lys Asn Val Ile Lys Glu Phe Met Arg Phe Lys 15 15 Val Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Glu 20 25 Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly His Asn Thr Val Lys 20 35 40 45 Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile 55 50 Leu Ser Pro Gln Phe Gln Tyr Gly Ser Lys Val Tyr Val Lys His 70 65 75 25 Pro Ala Asp Ile Pro Asp Tyr Lys Lys Leu Ser Phe Pro Glu Gly Phe Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val 95 100 105 Thr Val Thr Gln Asp Ser Ser Leu Gln Asp Gly Cys Phe Ile Tyr 30 115 110 120 Lys Val Lys Phe Ile Gly Val Asn Phe Pro Ser Asp Gly Pro Val 125 135 Met Gln Lys Lys Thr Met Gly Trp Glu Ala Ser Thr Glu Arg Leu 140 145 150 Tyr Pro Arg Asp Gly Val Leu Lys Gly Glu Ile His Lys Ala Leu 155 165 Lys Leu Lys Asp Gly Gly His Tyr Leu Val Glu Phe Lys Ser Ile 170

175

	Tyr	Met	Ala	Lys	Lys 185	Pro	Val	Gln	Leu	Pro 190	Gly	Tyr	Tyr	Tyr	Val 195
	Asp	Ser	Lys	Leu	Asp 200	Ile	Thr	Ser	His		Glu	Asp	Tyr	Thr	
5	Val	Glu	Gln	Tyr	Glu 215	Arg	Thr	Glu	Gly		His	His	Leu	Phe	
		<2	10>		61										
		<2	11>		232										
10	·- · · · · · · · · · · · · · · · · ·	_<2	12>		PRT		• •								
		<2.	13>		Anem	onia	sul	cata	!						
		<2	20>												
		<2	23>		amin	o ac	id s	eque	nce	of a	sFP6	00			
		<4	00>		61										
15	Met	Ala	Ser	Phe	Leu	Lys	Lys	Thr	Met	Pro	Phe	Lys	Thr	Thr	Ile
					5					10					15
	Glu	Gly	Thr	Val	Asn	Gly	His	Tyr	Phe	Lys	Cys	Thr	Gly	Lys	Gly
					20					25					30
	Glu	Gly	Asn	Pro	Phe	Glu	Gly	Thr	Gln	Glu	Met	Lys	Ile	Glu	Val
20					35					40				•	45
	Ile	Glu	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Phe	His	Ile	Leu	Ser	Thr
					50					55					60
	Ser	Cys	Met	Tyr	Gly	Ser	Lys	Thr	Phe	Ile	Lys	Tyr	Val	Ser	Gly
					65					70					75
25	Ile	Pro	Asp	Tyr	Phe	Lys	Gln	Ser	Phe	Pro	Glu	Gly	Phe	Thr	Trp
					80					85					90
	Glu	Arg	Thr	Thr	Thr	Tyr	Glu	Asp	Gly	Gly	Phe	Leu	Thr	Ala	His
					95					100	•				105
	Gln	Asp	Thr	Ser	Leu	Asp	Gly	Asp	Cys	Leu	Val	Tyr	Lys	Val	Lys
30					110					115					120
	Ile	Leu	Gly	Asn	Asn	Phe	Pro	Ala	Asp	Gly	Pro	Val	Met	Gln	Asn
					125					130					135
	Lys	Ala	Gly	Arg	Trp	Glu	Pro	Ala	Thr	Glu	Ile	Val	Tyr	Glu	Val
					140					145					150
35	Asp	Gly	Val	Leu	Arg	Gly	Gln	Ser	Leu	Met	Ala	Leu	Lys	Суѕ	Pro
					155					160					165
	Gly	Gly	Arg	His	Leu	Thr	Cys	His	Leu	His	Thr	Thr	Tyr	Arg	Ser
					170					175					180

Lys Lys Pro Ala Ser Ala Leu Lys Met Pro Gly Phe His Phe Glu

185

Asp His Arg Ile Glu Ile Met Glu Glu Val Glu Lys Gly Lys Cys
200

205

Tyr Lys Gln Tyr Glu Ala Ala Val Gly Arg Tyr Cys Asp Ala Ala
215

220

225

Pro Ser Lys Leu Gly His Asn
230

<210> 62 10 <211> 231 <212> PRT <213> Discosoma sp. "green" <220> amino acid sequence of dgFP512 15 <223> <400> 62 Met Ser Ala Leu Lys Glu Glu Met Lys Ile Asn Leu Thr Met Glu 5 10 Gly Val Val Asn Gly Leu Pro Phe Lys Ile Arg Gly Asp Gly Lys 20 25 20 Gly Lys Pro Tyr Gln Gly Ser Gln Glu Leu Thr Leu Thr Val Val 35 40 Lys Gly Gly Pro Leu Pro Phe Ser Tyr Asp Ile Leu Thr Thr Met

50

110

25

30

Phe Gln Tyr Gly Asn Arg Ala Phe Val Asn Tyr Pro Glu Asp Ile
65 70 75

Pro Asp Ile Phe Lys Gln Thr Cys Ser Gly Pro Asn Gly Gly Tyr
80 85 90

Ser Trp Gln Arg Thr Met Thr Tyr Glu Asp Gly Gly Val Cys Thr
95 100 105

Ala Thr Ser Asn Ile Ser Val Val Gly Asp Thr Phe Asn Tyr Asp

55

115

120

SEQ 26/28

WO 00/34526

PCT/US99/29405

Ile His Phe Met Gly Ala Asn Phe Pro Leu Asp Gly Pro Val Met Gln Lys Arg Thr Met Lys Trp Glu Pro Ser Thr Glu Ile Met Phe Glu Arg Asp Gly Met Leu Arg Gly Asp Ile Ala Met Ser Leu Leu Leu Lys Gly Gly His Tyr Arg Cys Asp Phe Glu Thr Ile Tyr Lys Pro Asn Lys Val Val Lys Met Pro Asp Tyr His Phe Val Asp His Cys Ile Glu Ile Thr Ser Gln Gln Asp Tyr Tyr Asn Val Val Glu Leu Thr Glu Val Ala Glu Ala Arg Tyr Ser Ser Leu Glu Lys Ile Gly Lys Ser Lys Ala <210> <211> <212> PRT <213> Discosoma sp. "magenta" <220> <223> amino acid sequence of dmFP592 <400> Met Ser Cys Ser Lys Asn Val Ile Lys Glu Phe Met Arg Phe Lys Val Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Lys Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly His Cys Ser Val Lys

	Leu	Met	Val	Thr	Lys	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Phe	Asp	Ile
					50					55					60
	Leu	Ser	Pro	Gln	Phe	Gln	Tyr	Gly	Ser	Lys	Val	Tyr	Val	Lys	His
					65					70			-	r	75
5	Pro	Ala	Asp	Ile	Pro	Asp	Tyr	Lys	Lys	Leu	Ser	Phe	Pro	Glu	Gly
					80					85					90
	Phe	Lys	Trp	Glu	Arg	Val	Met	Asn	Phe	Glu	Asp	Gly	Gly	Val	Val
	».	-			100					105					110
	Thr	Val	Ser	Gln	Asp	Ser	Ser	Leu	Lys	Asp	Gly	Cys	Phe	Ile	Tyr
10					115					120					125
	Glu	Val	Lys	Phe	Ile	Gly	Val	Asn	Phe	Pro	Ser	Asp	Gly	Pro	Val
	^				130					135					140
	Met	Gln	Arg	Arg	Thr	Arg	Gly	Trp	Glu	Ala	Ser	Ser	Glu	Arg	Leu
					145					150					155
15	Tyr	Pro	Arg	Asp	Gly	Val	Leu	Lys	Gly	Asp	Ile	His	Met	Ala	Leu
					160					165					170
	Arg	Leu	Glu	Gly	Gly	Gly	His	Tyr	Leu	Val	Glu	Phe	Lys	Ser	Ile
					175					180					185
	Tyr	Met	Val	Lys	Lys	Pro	Ser	Val	Gln	Leu	Pro	Gly	Tyr	Tyr	Tyr
20					190					195					200
	Val	Asp	Ser	Lys	Leu	Asp	Met	Thr	Ser	His	Asn	Glu	Asp	Tyr	Thr
					205					210					215
	Val	Val	Glu	Gln	Tyr	Glu	Lys	Thr	Gln	Gly	Arg	His	His	Pro	Phe
					220					225					230
25	Ile	Lys	Pro	Leu	Gln										
					235										

INTERNATIONAL SEARCH REPORT International application No. PCT/US99/29405 CLASSIFICATION OF SUBJECT MATTER IPC(7) :C12Q 1/68; C07K 14/435 US CL :435/6, 69.1; 530/350 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : 435/6, 69.1, 968; 530/350; 424/9.6, 436/172 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet. DOCUMENTS CONSIDERED TO BE RELEVANT Category 4 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. The sequence diskette submitted with the description was defective; thus the references listed below were obtained solely by a WORD search, and not by a search of the SEQ ID NOs. X, P Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology. October 1999, Volume 17, No. 10, pages 969-973, entire document. X, P DE 197 18 640 A1 (WIEDENMANN) 22 July 1999, entire document. Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step earlier document published on or after the international filing date ٠١.• docuaent which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other when the document is taken alone nent of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosura, use, exhibition or other document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **02 MAR 2000** 18 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer GABRIELE ELISABETH BGG Washington, D.C. 20231

Telephone No.

(703) 308-0196

Facsimile No.