

Computer Network | BCS015

Assignment 05

Faculty:	Faculty of Data Science
Major:	Computer Science
Name:	Yuchen Shi Jason
Student ID:	D23090120503

Thursday 26^{th} September, 2024

Contents

1	习题		3
	1.1	ARP-1	3
	1.2	ARP-2	3
	1.3	路由器转发表	4
	1.4	最大/最小 IP	6
	1.5	数据报	6

1 习题

1.1 ARP-1

问:

- I 试解释为什么 ARP 高速缓存每存入一个项目就要设置 10~20 分钟的超时计时器。这个时间设置得太大或太小会出现什么问题?
- II 至少举出两种不需要发送 ARP 请求分组的情况(即不需要请求将某个目的 IP 地址解析为相应的 MAC 地址)。

答:

- I 根据 ARP 协议,我们可以将已知的 IP 地址转换为对应的 MAC 地址,当网络中的 IP 地址与 MAC 地址的映射关系发生变化时 ARP cache 中就会发生更改。若时间设置得太大,当网络中的 IP 地址与 MAC 地址的映射关系发生变化时 ARP cache 中的信息就会过时,导致无法通信。若时间设置得太小,ARP cache 中的信息就会频繁更新,导致网络负载过大。
- II 至少有两种不需要发送 ARP 请求分组的情况:
 - (a) 源主机的 ARP cache 中已经存有目标 IP 地址对应的 MAC 地址,那么就不需要再发送 ARP 请求。缓存中的信息可以直接用于数据包的发送。
 - (b) 源主机和目的主机使用点对点连接,不需要经过交换机或路由器,那么就不需要发送 ARP 请求。
 - (c) 源主机使用广播分组时,会发送至所有主机,不需要知道特定的 MAC 地址,所以不需要发送 ARP 请求。

1.2 ARP-2

问: 主机 A 发送 IP 数据报给主机 B, 途中经过了 5 个路由器。试问在 IP 数据报的发送过程中总共使用了几次 ARP?

答: 6次,每经过一个路由器转发 IP 数据报就会使用一次 ARP,主机发送数据报时会使用一次。

1.3 路由器转发表

问: 设某路由器建立了转发表1:

前缀匹配	下一跳
192.4.153.0/26	R_3
128.96.39.0/25	接口 m_0
128.96.39.128/25	接口 m_1
128.96.40.0 / 25	R_2
192.4.153.0/26	R_3
* (默认)	R_4

表 1: 转发表

现共收到 5 个分组,其目的地址分别为:

- (1) 128.96.39.10
- (2) 128.96.40.12
- (3) 128.96.40.151
- (4) 192.4.153.17
- (5) 192.4.153.90

试分别计算其下一跳。

答:

(1) 与转发表第二行匹配,下一跳为接口 m_0

目的地址	128.96.39.10
32 位 IP 地址	10000000.01100000.00100111.00001010
转发表第二行子网掩码	11111111.11111111.11111111.10000000
与运算	10000000.01100000.00100111.00000000
IP	128.96.39.0

表 2: 128.96.39.10

(2) 与转发表第四行匹配,下一跳为 R_2

目的地址	128.96.40.12
32 位 IP 地址	10000000.01100000.00101000.00001100
转发表第四行子网掩码	11111111.111111111.11111111.10000000
与运算	10000000.01100000.00101000.00000000
IP	128.96.40

表 3: 128.96.40.12

(3) 检查转发表第四行,结果不匹配,下一跳为默认接口 R_4

目的地址	128.96.40.151
32 位 IP 地址	10000000.01100000.00101000.10010111
转发表第四行子网掩码	11111111.11111111.111111111.10000000
与运算	10000000.01100000.00101000.10000000
IP	128.96.40.128

表 4: 128.96.10.151

(4) 与转发表第一行匹配,下一跳为 R_3

目的地址	192.4.153.17
32 位 IP 地址	11000000.00000100.10011001.00010001
转发表第一行子网掩码	11111111.11111111.11111111.11000000
与运算	11000000.00000100.10011001.00000000
IP	192.4.153.0

表 5: 192.4.153.17

(5) 检查转发表第一行,结果不匹配,下一跳为默认接口 R_4

目的地址	192.4.153.90
32 位 IP 地址	11000000.00000100.10011001.01011010
转发表第一行子网掩码	11111111.11111111.11111111.11000000
与运算	11000000.00000100.10011001.01000000
IP	192.4.153.64

表 6: 192.4.153.90

1.4 最大/最小 IP

问:某单位分配到一个地址块 129.250/16。该单位有 4000 台计算机,平均分布在 16 个不同的地点。试给每一个地点分配一个地址块,并算出每个地址块中 IP 地址的最小值和最大值。

答: 4000 台计算机平均分布在 16 个地点,每个地点有 4000/16 = 250 台计算机。 $2^8 = 256$ 所以主机号需要 8 位即可,网络前缀就为 24 位。16 个地点,需要 16 个地址块,每个地址块有 $2^8 = 256$ 个 1P 地址。所以每个地址块的地址范围如下:

地址块	IP 地址范围
129.250.1/24	129.250.1.0 - 129.205.1.255
129.250.2/24	129.250.2.0 - 129.250.2.255
129.250.3/24	129.250.3.0 - 129.250.3.255
129.250.4/24	129.250.4.0 - 129.250.4.255
129.250.5/24	129.250.5.0 - 129.250.5.255
129.250.6/24	129.250.6.0 - 129.250.6.255
:	: :
129.250.15/24	129.250.15.0 - 129.250.15.255
129.250.16/24	129.250.16.0 - 129.250.16.255

表 7: IP 地址范围

1.5 数据报

问:一个数据报长度为 4000 字节(固定首部长度)。现在经过一个网络传送,但此网络能够传送的最大数据长度为 1500 字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和 MF 标志应为何数值?

答: IP 首部长度固定为 20 字节,则数据部分的长度为 4000 - 20 = 3980B,由于网络能够传送的最大数据长度为 1500 字节,所以每个数据报片的数据字段长度为 1500 - 20 = 1480B。划分出一个数据报片为 3980 - 1480 = 2500B,因其长度大于 MTU 所以还应再划分,即 2500 - 1480 = 1020B。共划分 3 个数据报片,每个数据报片的数据字段的长度分别为: 1480B, 1480B, 1020B。

片偏移字段分别为: $0, \frac{1480}{8} = 185, \frac{2 \times 1480}{8} = 370$ 。MF 表示分片后是否还有数据报,1 表示还有数据报,0 表示已是最后一个数据报片。所以,MF 标志分别为: 1, 1, 0。