Números Inteiros e Criptografia - Lista 1 Aluno: Luiz Rodrigo Lacé Rodrigues

DRE: 118049873

1)

a. Sempre que um número inteiro é par e maior que 2, ele é a soma de dois primos.

n = número inteiro

P(n) = inteiro par

M(n) = inteiro maior que 2

S(n) = inteiro que é a soma de dois números primos

$$\forall n(P(n) \land M(n)) \rightarrow S(n)$$

b)Todo dia eu como manga ou tomo leite, mas nunca ambos no mesmo dia.

x: dia

m(x): comer manga l(x): tomar leite

$$\forall x[(m(x) \land \neg I(x)) \lor (\neg m(x) \land I(x))]$$

2)

 $a)p \rightarrow (q \rightarrow p)$

q	р	$q \rightarrow p$	$p \to (q \to p)$
V	v	V	v
V	f	f	V
f	V	V	V
f	f	v	v

b) $[(p \rightarrow q) \ \land \ (r \rightarrow s)] \rightarrow [(p \ \lor \ r) \rightarrow (q \ \lor \ s)]$

р	q	r	v 1) → (C s	$p \rightarrow q$	$r \rightarrow s$	$\begin{array}{c} (p \rightarrow \\ q) \land \\ (r \rightarrow s) \end{array}$	pVr	q V s	$\begin{array}{c} (p \ \lor \\ r) \rightarrow \\ (q \ \lor \\ s) \end{array}$	$ \begin{array}{c} (p \rightarrow \\ q) \land \\ (r \rightarrow \\ s)] \rightarrow \\ [(p \lor \\ r) \rightarrow \\ (q \lor \\ s)] \end{array} $
٧	V	V	٧	٧	V	٧	V	٧	٧	٧
٧	V	V	f	٧	f	f	V	٧	٧	V
٧	V	f	٧	٧	V	٧	V	٧	٧	٧
V	V	f	f	٧	V	٧	V	٧	٧	٧
V	f	V	٧	f	V	f	V	٧	٧	٧
٧	f	V	f	f	f	f	V	f	f	٧
٧	f	f	٧	f	V	f	V	٧	٧	٧
٧	f	f	f	f	V	f	V	f	f	٧
f	V	V	٧	V	V	٧	V	٧	٧	٧
f	V	V	f	V	f	f	V	٧	٧	٧
f	V	f	٧	V	V	V	f	V	V	V
f	V	f	f	V	V	V	f	V	V	V
f	f	V	٧	V	V	V	V	V	V	V
f	f	V	f	V	f	f	V	f	f	V
f	f	f	٧	V	V	V	f	V	V	V
f	f	f	f	V	V	V	f	f	V	V

c) [p
$$\rightarrow$$
 (q \rightarrow r)] \longleftrightarrow [(p \land q) \rightarrow r]

р	q	r	(q->r)	(p^q)	(p->(q->r))	[(p^q)->r]	$[p \to (q \to r)]$ $\longleftrightarrow [(p \land q)$ $\to r]$
V	V	v	v	V	V	V	V
V	V	f	f	V	f	f	V
V	f	V	V	f	V	V	V
V	f	f	V	f	V	V	V
f	٧	V	V	f	V	V	V
f	٧	f	f	f	V	V	V
f	f	V	V	f	V	V	V
f	f	f	V	f	V	V	V

$$[b\ \lor\ (b\to d)]\to d$$

р	q	$p \rightarrow q$	$b \lor (b \to d)$	$[b \lor (b \to d)] \to d$
V	V	V	V	V
V	f	f	f	V
f	V	V	f	V
f	f	V	f	V

3)

a) Existem pelo menos dois x tais que $\varphi(x)$.

$$\exists \, x(\varphi(x)) \, \wedge \, \, \forall \, y \, \forall \, z[(\varphi(y) \, \wedge \, \, \varphi(z)) \rightarrow y =/=z].$$

b) Existem no máximo dois x tais que $\varphi(x)$

$$\exists \, x(\varphi(x)) \, \wedge \, \, \forall \, y \, \forall \, z \, \forall \, k[\{(\varphi(y) \, \wedge \, \varphi(z) \, \wedge \, \varphi(k))\} \quad \to y = /=z = k].$$

c) Existem exatamente dois x tais que $\phi(x)$.

$$\exists\, x(\varphi(x)) \,\, \wedge \,\, \forall\, y\, \forall\, z\, \forall\, k\, \forall\, q[\{(\varphi(y)\,\, \wedge \,\, \varphi(z)\,\, \wedge \,\, \varphi(k)\,\, \wedge \,\, \varphi(q)\} \quad \to q=y=/=z=k\,\,].$$

4)

a) Existe um número inteiro que é primo ou igual a 15

Todo número inteiro não é primo e difere e 15

b) Todo número real é o resultado da divisão de dois inteiros.

Existe um número real que não é resultado da divisão de dois inteiros.

c) Para qualquer número real não-nulo x existe um número real y tal que o produto de x e y é igual a 1.

Existe um número real-não nulo x para todo número real y tal que o produto de x e y não é igual a 1.

5) Considerando que

a as variáveis x e y sejam todas os carros.

R(x, y) significa "x é pelo menos tão rápido quanto y",

C(x, y) significa "x é pelo menos tão caro quanto y"

V (x, y) significa "x é pelo menos tão velho quanto y"

a) $\forall x \exists y [V(y, x) \land C(y, x) \land R(x, y)]$

O carro y é tão velho e caro quanto todos carros x, que são tão rápidos quanto ele.

b) $\exists x \forall y (V(y, x))$

Um carro x é tão velho quanto os carros y.

c) $\neg [\forall x \forall y (R(x, y) \longleftrightarrow C(x, y))]$

Ou todo carro x é tão rápido quanto y, mas não tão caro quanto ou todo carro x não é tão rápido quanto y, mas é tão caro quanto.

6-)Seja x um número real. Dizemos que x é gelatinoso se ele é fleumático e para todo número natural n existe algum número real y tal que y^2 encapsula superiormente x ou y + n encapsula inferiormente x. Como você caracterizaria um número real não-gelatinoso?

g(x): x é gelatinoso

f(x): x é fleumático

S(n,y): $\forall n \exists y[y^2 \text{ encapsula superiormente } x]$

I(n,y): $\forall n \exists y[y+n \text{ encapsula inferiormente } x]$

Então: $[F(x) \land (S(n,y) \lor I(n,y)] \rightarrow G(x)$

 $\neg G(x) \rightarrow \neg [F(x) \land (S(n,y) \lor I(n,y)]$

Podemos dizer que x não é gelatinoso se ele for não for fleumático ou existir pelo menos um número natural n para todo número real y tal que y^2 encapsula superiormente x e y+n encapsula inferiormente x.

7) (X \cup Y) \ X = Y \ (X \cap Y) = Y\ X.

 $(X \cup Y) \setminus X = Y \setminus (X \cap Y)$

 $\{n;\, n\!\in\! X\; v\; n\!\in\! Y\}^{\smallfrown}\{n;\, n\!\in\! X\} = \{n;\, n\!\in\! Y\}^{\smallfrown}\{n;\, n\!\in\! X\; ^{\smallfrown} n\!\in\! Y\}$

 $(X \vee Y) \wedge (\neg X) = (Y \wedge (\neg (x \wedge Y)))$

Х	у	XvY	¬ X	(X v Y) ^(¬ X)
V	V	V	f	f
V	f	V	f	f
f	V	V	V	V
f	f	f	V	f

х	у	x^Y	¬(x^Y)	(Y^(¬(x^Y)))
V	V	V	f	f
V	f	f	V	f
f	V	f	V	V
f	f	f	V	f

 $Y \setminus (X \cap Y) = Y \setminus X$.

 ${n; n \in Y} ^{n} {n; n \in X ^ n \in Y} = {n; n \in Y} ^{n} {n; n \in X}$

 $(Y^{\wedge}(\neg(X^{\wedge}Y))) = (Y^{\wedge}(\neg X))$

X	Υ	(X^Y)	¬(X^Y)	(Y^(¬(X^Y)))
V	V	V	f	f
v	f	f	V	f
f	V	f	V	V
f	f	f	V	f

Х	у	¬X	(Y ^(¬X))
V	v	f	f
V	f	f	f

f	v	V	V
f	f	V	f

$$\begin{split} &(X \cup Y) \setminus X = Y \setminus X \\ &\{n; \, n \in X \, v \, n \in Y\} \, ^\neg \, \{n; \, n \in X\} = \{n; \, n \in Y\} \, ^\neg \, \{n; \, n \in X\} \\ &(x \, v \, Y) \, ^\neg \, X = Y \, ^\neg X \end{split}$$

Х	у	хуу	¬X	(x v Y) ^¬ X
V	V	V	f	f
V	f	V	f	f
f	V	V	V	V
f	f	f	V	f

x	у	¬X	Y ^¬X
V	v	f	f
V	f	f	f
f	v	V	V
f	f	V	f

Como a tabela verdade resultou no mesmo resultado para todas as igualdades, provamos que as afirmações.

8) a)p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)

р	q	r	qVr	p ∧ (q ∨ r)
V	V	V	V	٧

V	V	f	V	V
V	f	V	V	V
V	f	f	f	f
f	V	V	V	f
f	V	f	V	f
f	f	V	V	f
f	f	f	f	f

р	q	r	pΛq	pΛr	(p ∧ q) ∨ (p ∧ r)
V	V	V	V	V	V
V	V	f	V	f	V
V	f	V	f	V	V
V	f	f	f	f	f
f	v	V	f	f	f
f	v	f	f	f	f
f	f	v	f	f	f
f	f	f	f	f	f

b)
$$P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R).$$
$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

Pela definição de união, sabemos que o elemento x qualquer está Q ou R, exatamente como $x \in Q$ v $x \in R$ $Q \cup R = \{x; x \in Q \ v \ x \in R\}$

Pela definição de intersecção, sabemos que o elemento x qualquer está P $(x \in P)$ e na união de Q com R $(x \in Q \ v \ x \in R)$

$$P \cap (Q \cup R) = \{x; x \in P \land (x \in Q \lor x \in R)\}$$

$$(P \cap Q) = \{x; x \in P \land x \in Q\}$$

 $(P \cap R) = \{x; x \in P^x \in R\}$

 $(P \cap Q) \cup (P \cap R) = \{x; x \in P^x \in Q\} \lor \{x; x \in P^x \in R\}$

 $P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R).$ $\{x; x \in P \land (x \in Q \lor x \in R)\} = \{x; x \in P \land x \in Q\} \lor \{x; x \in P \land x \in R\}$

Como podemos traduzir "P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)" para "{x; x \in P \wedge (x \in Q v x \in R)} = {x; x \in P \wedge x \in Q} v {x; x \in P \wedge x \in R}", observamos certa semelhança com a fórmula "p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)". Podemos assim, provar que "P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)" é verdadeira pelas tabelas verdade do item a)