Численное исследование процессов охлаждения и аэродинамического сопротивления оребренных трубчатых элементов

<u>Гиззатуллина А.Ф.</u>¹, Королева М.Р.², Чернова А.А.¹

¹ФГБОУ ВО Ижевский государственный технический университет имени М.Т. Калашникова

²ФГБУН Удмуртский федеральный исследовательский центр УрО РАН

Постановка задачи

Постановка задачи

Параметр	Значение			
Этиленгликоль				
Плотность	1200 кг/м ³			
Теплоемкость	2900 Дж/(кг*К)			
Кинематическая вязкость	0,2 мм ² /с			
Теплопроводность	0,32 Вт/(м*К)			
Воздух				
Теплоемкость	1004-1013 Дж/(кг*К)			
Динамическая вязкость	15,7-20,1 мкПа*с			
Теплопроводность	0,022-0,029 BT/(m*K)			
Алюминий				
Плотность	2697 кг/м ³			
Теплоемкость	880 Дж/(кг*К)			
Теплопроводность	220 Вт/(м*К)			

Дискретизация расчетной области

Математическая модель сопряженной задачи теплообмена

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \rho u_{i}}{\partial t} + \frac{\partial \rho u_{i} u_{j}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) - \frac{2}{3} \mu \frac{\partial u_{k}}{\partial x_{k}} \delta_{ij} \right) + F_{i}$$
 (2)

$$\frac{\partial \rho E}{\partial t} + \frac{\partial \rho E u_j}{\partial x_j} = -\frac{\partial \rho u_j}{\partial x_j} + \frac{\partial u_i \tau_{ij}}{\partial x_j} + \frac{\partial q_j}{\partial x_j} + F_i u_i \tag{3}$$

$$p = \rho RT$$
, (4)

$$\alpha_p \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T).$$
 (5)

Граничные условия

- во входном сечении и на верхней границе задавались скорость и температура набегающего потока;
- в выходном сечении условия нулевого градиента для скорости и температуры, фиксированное значение давления;
- на твердых поверхностях не участвующих в теплопередаче условия прилипания для скорости и нулевого градиента для температуры и давления;
- на границах сопряжения граничные условия 4 рода включающие равенство температур стенок и тепловых потоков.

Распределение температуры, скорости,

давления газа

№п/п	T*, ⁰ C	V, m/c	ΔT, ⁰
1	62,5	8,5	4,76
2	-28,4	1,3	6,14
3	62,5	8,5	3
4	62,5	8,5	5,1
5	-4,2	6,5	5,2
6	-22,9	3,7	4,4
7	62,5	8,5	5,73
8	-4,2	6,5	4,5
9	-22,9	3,7	4,8

Структура течения газа вокруг оребренной трубки

Распределение температуры и скорости за трубкой

Распределение температуры

Обобщенный температурный профиль в продольном сечении по ребру трубки

Заключение

- исследованы теплоэффективность и аэродинамические характеристики одиночного оребренного трубчатого элемента конвективного теплообменного аппарата при его эксплуатации на экстремальных режимах при контролируемом уровне потерь давления;
- описаны характерные топологические особенности реализуемых режимов обтекания потоком газа оребренного элемента;
- выявлена низкоскоростная область течения за оребренной трубкой, характеризующаяся повышением температуры газового потока;
- показано, что температурное поле в трубке и жидкости является результатом внешнего аэродинамического течения и заданным перепадом температур газ/хладагент;
- определены зоны максимального прогрева (теплоотдачи) трубки и охладителя.