h da

Antje Jahn Multivariate Statistik Sommersemester 2018

Arbeitsblatt 3

A 1

Es sei $X = (X_1, X_2)$ zweidimensional normalverteilt mit Dichtefunktion

$$f_X(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1-\rho^2)}\right).$$

a) Zeigen Sie dass für die Randdichtefunktion von X_1 und X_2 , d.h.

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_X(x_1, x_2) dx_2$$
 und $f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_X(x_1, x_2) dx_1$

gilt

$$f_{X_i}(x_i) = \frac{1}{\sqrt{2\pi}} \exp(\frac{-x_i^2}{2})$$

Hinweis: Nutzen Sie dabei aus, dass für $a, b \in \mathbb{R}$

$$\frac{1}{\sqrt{2\pi b^2}} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-a)^2}{2b^2}\right)$$

als Integral der Dichte einer Normalverteilung 1 ist.

- b) Zeigen Sie mit dem Ergebnis aus a), dass X_1 und X_2 genau dann unabhängig sind, wenn $\rho=0,$ d.h. $Cor(X_1,X_2)=Cov(X_1,X_2)=0$ gilt.
- c) Was ist wahr: Für jede zweidimensionale Zufallsvariable $X = (X_1, X_2)$ gilt
 - i) Ist $Cov(X_1, X_2) = 0$, dann sind X_1, X_2 unabhängig [Unabhängigkeit ist eine notwendige Bedingung für Unkorreliertheit].
 - ii) Sind X_1, X_2 unabhängig, dann sind X_1 und X_2 unkorreliert [Unabhängigkeit ist eine hinreichende Bedingung für Unkorreliertheit].
 - iii) Weder i) noch ii) sind wahr.
 - iv) i) und ii) sind wahr.

A 2 Gegeben sei der Zufallsvektor $X = (X_1, X_2)^T$ mit $X_1 \sim \mathcal{N}(1; 2)$, $X_2 \sim \mathcal{N}(2; 8)$ und $\rho(X_1, X_2) = -0.5$.

- a) Geben Sie die Kovarianzmatrix von X an.
- b) Geben Sie die Dichtefunktion von X an.

A 3 X, Y sind unabhängig standardnormalverteilt. Z = X + Y, W = X - Y

- a) Sind Z und W unkorreliert?
- b) Sind Z und W unabhängig?
- c) Bestimmen Sie den bedingten Erwartungswert E(X+Y|X-Y=a).