

Olimpiada Naţională de Matematică Etapa Naţională, Bucureşti, 7 aprilie 2015

CLASA a XI-a - Soluții și bareme orientative

Problema 1. Să se determine funcțiile derivabile $f: \mathbb{R} \to \mathbb{R}$ care verifică simultan condițiile:

- i) f'(x) = 0, pentru orice $x \in \mathbb{Z}$;
- ii) pentru $x \in \mathbb{R}$, dacă f'(x) = 0, atunci f(x) = 0.

$$f(x_1) \le f(x) \le f(x_2), \ \forall \ x \in [k, k+1].$$

Dacă $f(x_0) > 0$, atunci $f(x_2) > 0$. Deci $x_2 \in (k, k+1)$ este un punct de maxim local pentru f, de unde, conform Teoremei lui Fermat, $f'(x_2) = 0$. Atunci, conform (ii), $f(x_2) = 0$. Contradicție. Dacă $f(x_0) < 0$, atunci $f(x_1) < 0$. Dar $x_1 \in (k, k+1)$ este un punct de minim local pentru f, deci $f'(x_1) = 0$, de unde $f(x_1) = 0$. Contradicție.

Deci funcția identic nulă este unica funcție care satisface condițiile din enunț.2 puncte

Problema 2. Fie $A \in \mathcal{M}_5(\mathbb{C})$ o matrice cu tr(A) = 0 și cu proprietatea că $I_5 - A$ este inversabilă. Să se arate că $A^5 \neq I_5$.

$$\begin{cases} a+b+c+d=5\\ a\varepsilon+b\varepsilon^2+c\varepsilon^3+d\varepsilon^4=0 \end{cases}$$

Observație. Argumentul din finalul demonstrației se poate obține ș folosind proprietatea că polinomul nenul de grad minim, cu coeficienți întregi, care are ca rădăcină pe ε este polinomul ciclotomic $X^4 + X^3 + X^2 + X + 1$.

Problema 3. Fie $a \ge 0$ şi $(x_n)_{n\ge 1}$ un şir de numere reale. Să se arate că dacă şirul $(\frac{x_1+\cdots+x_n}{n^a})_{n\ge 1}$ este mărginit, atunci şirul $(y_n)_{n\ge 1}$, definit prin $y_n = \frac{x_1}{1^b} + \frac{x_2}{2^b} + \cdots + \frac{x_n}{n^b}$, este convergent pentru orice b > a.

$$|y_{n+p} - y_n| = \left| \sum_{k=n+1}^{n+p} \frac{x_k}{k^b} \right| = \left| \sum_{k=n+1}^{n+p} \frac{S_k - S_{k-1}}{k^b} \right| =$$

$$= \left| \frac{S_{n+p}}{(n+p+1)^b} - \frac{S_n}{(n+1)^b} + \sum_{k=n+1}^{n+p} S_k \left(\frac{1}{k^b} - \frac{1}{(k+1)^b} \right) \right| \le$$

$$\le \frac{|S_{n+p}|}{(n+p+1)^b} + \frac{|S_n|}{(n+1)^b} + \sum_{k=n+1}^{n+p} |S_k| \left(\frac{1}{k^b} - \frac{1}{(k+1)^b} \right) \le$$

$$\le c \left[\frac{2}{n^{b-a}} + \sum_{k=n+1}^{n+p} k^a \left(\frac{1}{k^b} - \frac{1}{(k+1)^b} \right) \right].$$

Aplicând Teorema lui Lagrage funcției $f(x)=x^{-\alpha},\ x>0$ pe [i,i+1], unde $\alpha,i>0,$ obținem inegalitatea dublă

$$\frac{\alpha}{(i+1)^{\alpha+1}} < \frac{1}{i^{\alpha}} - \frac{1}{(i+1)^{\alpha}} < \frac{\alpha}{i^{\alpha+1}}.$$

 \hat{I} n particular, cum b, b-a>0, avem

$$\frac{1}{k^b} - \frac{1}{(k+1)^b} < \frac{b}{k^{b+1}} \text{ si } \frac{b-a}{k^{b-a+1}} < \frac{1}{(k-1)^{b-a}} - \frac{1}{k^{b-a}}, \ \forall k \in \mathbb{N}, \ k \ge 2.$$

Atunci

$$\sum_{k=n+1}^{n+p} k^a \left(\frac{1}{k^b} - \frac{1}{(k+1)^b} \right) < \sum_{k=n+1}^{n+p} \frac{bk^a}{k^{b+1}} = \frac{b}{b-a} \sum_{k=n+1}^{n+p} \frac{b-a}{k^{b-a+1}} < < \frac{b}{b-a} \sum_{k=n+1}^{n+p} \left(\frac{1}{(k-1)^{b-a}} - \frac{1}{k^{b-a}} \right) = \frac{b}{b-a} \left(\frac{1}{n^{b-a}} - \frac{1}{(n+p)^{b-a}} \right) < \frac{b}{(b-a)n^{b-a}}.$$

Rezultă

$$|y_{n+p} - y_n| < c\left(2 + \frac{b}{b-a}\right) \frac{1}{n^{b-a}}, \ \forall n, p \in \mathbb{N}^*.$$

Ca urmare, din $\lim_{n\to\infty} n^{-(b-a)}=0$, deducem că șirul $(y_n)_{n\geq 1}$ este fundamental, deci convergent.1 punct

Problema 4. Matricele $A \in \mathcal{M}_{m,n}(\mathbb{C}), B \in \mathcal{M}_{n,m}(\mathbb{C})$, unde $m \geq n \geq 2$, au proprietatea că există $k \in \mathbb{N}^*$ și $a_0, a_1, \ldots, a_k \in \mathbb{C}$ astfel încât

$$a_k(AB)^k + a_{k-1}(AB)^{k-1} + \dots + a_1(AB) + a_0I_m = O_m,$$

iar

$$a_k(BA)^k + a_{k-1}(BA)^{k-1} + \dots + a_1(BA) + a_0I_n \neq O_n.$$

Demonstrați că $a_0 = 0$.

Soluţie. Presupunem că $a_0 \neq 0$. Scriind egalitatea din ipoteză sub forma

$$AB\left(-\frac{a_k}{a_0}(AB)^{k-1} - \frac{a_{k-1}}{a_0}(AB)^{k-2} - \dots - \frac{a_1}{a_0}I_m\right) = I_m$$

$$m = \text{rang}(AB) \le \min \{\text{rangA}, \text{rangB}\} \le n.$$

$$a_k(AB)^k + a_{k-1}(AB)^{k-1} + \dots + a_1(AB) + a_0I_n = O_n$$

la stânga cu B și la dreapta cu A obținem

$$a_k(BA)^{k+1} + a_{k-1}(BA)^k + \dots + a_0(BA) = O_n.$$

Prin înmulțire (la stânga sau la dreapta) cu $(BA)^{-1}$ rezultă

$$a_k(BA)^k + a_{k-1}(BA)^{k-1} + \dots + a_0I_n = O_n,$$