Примеры решения задач линейного программирования симплекс-методом

Александр Катруца

Здесь использованы материалы из книги [1].

1. Решить задачу табличным симплекс методом:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 \le 20$

$$2x_2 + x_2 + 2x_3 \le 20$$

$$2x_1 + 2x_2 + x_3 \le 20$$

$$x_{1,2,3} \ge 0$$

Решение: по виду задачи ясно, что она не в канонической форме. Введём дополнительные переменные и запишем её в канонической форме:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
 s.t. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
$$2x_2 + x_2 + 2x_3 + x_5 = 20$$

$$2x_1 + 2x_2 + x_3 + x_6 = 20$$

$$x_{1,2,3,4,5,6} \ge 0$$

Заметим, что матрица $\mathbf{A} \in \mathbb{R}^{m \times n}$, где m=3 и n=6. Теперь нужно найти угловую точку допустимого множества, то есть такую точку, чтобы она лежала в множестве и существовало множество индексов $\mathcal{B} \subset \{1,\ldots,n\}$ мощностью $|\mathcal{B}|=m=3$, что матрица из столбцов матрицы \mathbf{A} с индексами из множества \mathcal{B} была невырождена, и координаты угловой точки с индексами не из множества \mathcal{B} были нулевыми. В данном случае достаточно очевидно, что $\mathbf{x}_0=(0,0,0,20,20,20)$, $\mathcal{B}_0=\{4,5,6\}$ и матрица базиса $\mathbf{B}_0=\mathbf{I}_m$ — невырождена. Если начальная угловая точка не так очевидна, необходимо выполнить двухфазный симплекс-метод или \mathbf{M} -метод. Такой пример будет приведён ниже.

Теперь составим таблицу 1 симплекс-метода, модифицируя которую получим решение поставленной задачи. Столбцы этой таблицы соответствуют столбцам матрицы A. Последние m=3 строк соответствуют базисным переменным с индексами из множества \mathcal{B}_0 . В m+1 строке с конца расположены оценки замещения для каждой переменной x_i , а в первом столбце отрицательное значение целевой функции.

Выберем столбец, оценка замещения которого отрицательна и индекс котрого минимален. Поэтому $j^*=1$. Тогда $\mathbf{u}=\mathbf{B}_0^{-1}\mathbf{a}_1=\mathbf{a}_1$. Так как $u_i>0$ для $i=\in\{1,2,3\}$, то $\theta^*=10$

Таблица 1: Первоначальная таблица симплекс-метода

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_0}^{T}\mathbf{x}_{\mathcal{B}_0}=0$	-10	-12	-12	0	0	0
$x_4 = 20$	1	2	2	1	0	0
$x_5 = 20$	2	1	2	0	1	0
$x_6 = 20$	2	2	1	0	0	1

и $\ell \in \{5,6\}$. В соответствии с правилом Бранда выберем $\ell = 5$. Таким образом, выбран ведущий элемент равный 2, он выделен жирным в таблице 1.

Далее с помощью элементарных преобразований получим базисную матрицу для новой угловой точки с базисом $\mathcal{B}_1 = \{4, 1, 6\}$. Прежде всего покажем, как изменится значение целевой функции. Для этого элементарным преобразованием занулим оценку замещения, соответствующую x_1 .

Таблица 2: Таблица симплекс-метода после первой итерации

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 100$	0	-7	-2	0	5	0
$x_4 = 10$	0	1.5	1	1	-0.5	0
$x_1 = 10$	1	0.5	1	0	0.5	0
$x_6 = 0$	0	1	-1	0	-1	1

Далее выбираем столбец x_2 , поскольку оценка замещения отрицательная и индекс минимален (2 < 3). Аналогично предыдущей итерации $u = \mathbf{a}_2$ и $\theta^* = 0$ при $\ell = 6$. Таким образом, заменяем x_6 на x_2 и ведущий элемент равен 1 (выделен жирным). Заметим, что текущее решение является вырожденным, так как $x_6 = 0$. Поэтому значение целевой функции не меняется при смене базиса. Зануляем оценку замещения для x_2 и строки в столбце x_2 кроме строки с ведущим элементом. Получили таблицу 3.

Таблица 3: Таблица симплекс-метода после второй итерации

	x_1	x_2	x_3	x_4	x_5	x_6	
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 100$	0	0	-9	0	-2	7	
$x_4 = 10$	0	0	2.5	1	1	-1.5	
$x_1 = 10$	1	0	1.5	0	1	-0.5	
$x_2 = 0$	0	1	-1	0	-1	1	

Далее выбираем стобец x_3 , так как его индекс минимален среди столбцов с отрицательной оценкой замещения. Аналогично предыдущей итерации $\mathbf{u}=\mathbf{a}_3$ и $\theta^*=\frac{x_4}{u_1}=4$ для $\ell=4$. Таким образом, заменяем x_4 на x_3 . Получим следующую таблицу 4.

Поскольку все оценки замещения неотрицательны, то решение найдено и оно является оптимальным. Найденное решение соответствует $(x_1, x_2, x_3) = (4, 4, 4)$ и находится в первом столбце и последних m = 3 строках. В первом столбце и m + 1 строке с конца находится отрицательное значение значения целевой функции, то есть оптимальное значение равно -136. Знаки — в ячейках таблицы означают, что значения в этих ячейках неважны и их можно не считать.

Таблица 4: Таблица симплекс-метода после третьей итерации

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 136$	0	0	0	3.6	1.6	1.6
$x_3 = 4$	0	0	1	0.4	0.4	-0.6
$x_1 = 4$	1	0	0	_	_	_
$x_2 = 4$	0	1	0	0.4	-0.6	0.4

2. В этой задаче показано, что симплекс-метод может зациклиться, и как это зацикливание может быть преодолено с помощью правила Бранда. Здесь описание переходов от таблице к таблице не будет описано столь подробно как в предыдущем примере, поскольку они полностью аналогичны. Ведущий элемент на каждой итерации будет выделен жирно.

$$\min_{\mathbf{x}} -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 \le 0$$

$$\frac{1}{2}x_2 - 12x_2 - \frac{1}{2}x_3 + 3x_4 \le 0$$

$$x_3 \le 1$$

$$x_{1,2,3,4} \ge 0$$

Преобразуем эту задачу к канонической форме:

$$\min_{\mathbf{x}} -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
 s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_2 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x_{1,2,3,4,5,6,7} \ge 0$$

Аналогично предыдущему примеру начальная угловая точка $\mathbf{x}_0 = (0,0,0,0,0,0,1)$. Ей соответствует такая таблица 5.

Таблица 5: Изначальная таблица симплекс-метода

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$-\mathbf{c}_{\mathcal{B}_1}^{T}\mathbf{x}_{\mathcal{B}_1} = 0$	-3/4	20	-1/2	6	0	0	0
$x_5 = 0$	1/4	-8	-1	9	1	0	0
$x_6 = 0$	1/2	-12	-1/2	3	0	1	0
$x_7 = 1$	0	0	1	0	0	0	1

При проведении симплекс-метода индексы будем выбирать так:

- столбец ведущего элемета определяется минимальным значением оценки замещения
- ведущий элемент определяется, как минимальный индекс, соответствующий θ^*

Список литературы

[1] Dimitris Bertsimas and John N. Tsitsiklis. *Introduction to linear optimization*, Belmont, MA: Athena Scientific, 1997, 5th edition