MATH1220: Midterm 3 Practice Problems

The following are practice problems for the second exam.

1. Compute the following limits:

(a)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{\sin(\pi x)} = 0$$

(b)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{2\sin x} = 1$$

(c)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{2^x} = 0$$

(d)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

2. Evaluate the following integrals:

(a)
$$\int_{-\infty}^{1} e^{4x} dx = \frac{1}{4} e^4$$

(b)
$$\int_{5}^{\infty} \frac{x}{1+x^2} dx = \infty$$

(c)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+9)^2} = \frac{2\pi}{81}$$
 Obtain this answer using trig substitution.

(d)
$$\int_0^3 \frac{dx}{x^2 - 2x - 3} dx$$
 Answer: Diverges

(e)
$$\int_{-4}^{0} \frac{dx}{(x+3)^2}$$
 Answer: Diverges

3. Write an explicit formula for the n-th term of the sequence. Then determine whether the sequence converges or diverges. If it converges, find what number it converges to:

(a)
$$a_1 = 7$$
, $a_{n+1} = a_n \left(\frac{2}{3}\right)$ Answer: $a_n = 7(2/3)^{n-1}$

(b)
$$-1, 2, 5, 8, 11, \dots$$
 Answer: $a_n = -4 + 3n$

(c)
$$0, \frac{1}{4}, \frac{2}{6}, \frac{3}{8}, \frac{4}{10}, \frac{5}{12}, \frac{6}{14}, \dots$$
 Answer: $a_n = \frac{n-1}{2n}$

4. Find the limit of the sequence $a_n = \frac{2n^3}{5n^3 - 2n + 2} = \frac{2}{5}$.

5. Show that the sequence $a_n=\frac{n}{n+1}\left(2-\frac{1}{n^2}\right)$ converges using the monotone sequence theorem. Answer: a_n is an increasing sequence because $\frac{n}{n+1}$ is increasing as is $2-\frac{1}{n^2}$. Also, a_n is bounded above by 2 since $a_n=\frac{n}{n+1}\left(2-\frac{1}{n^2}\right)\leq 1\cdot 2=2$. Hence it converges.

- 6. Determine the convergence/divergence of the following series:
 - (a) $\sum_{n=1}^{\infty} \frac{n}{n+1}$ Answer: Diverges by the divergence test (the terms don't go to zero)
 - (b) $\sum_{k=1}^{\infty} \left[5 \left(\frac{1}{2} \right)^k 3 \left(\frac{1}{7} \right)^k \right]$ Answer: Converges because it's a difference of convergent geometric series. It converges to $\frac{5}{1-1/2} \frac{3}{1-1/7}$
 - (c) $\sum_{k=1}^{\infty} \frac{2}{(k+2)k}$ Answer: Converges by limit comparison test.
 - (d) $\sum_{k=1}^{\infty} \ln(k/(k+1))$ Answer: Diverges because it's a collapsing series and the partial sums don't converge.
 - (e) $\sum_{k=1}^{\infty} \frac{3}{2k^2+1}$ Answer: Converges by limit comparison test
 - (f) $\sum_{k=1}^{\infty} \frac{1000k^2}{1+k^3}$ Answer: Diverges by limit comparison test.
 - (g) $\sum_{k=1}^{\infty} k \sin(1/k)$ Answer: Diverges by the divergence test. $\lim_{k \to \infty} k \sin(1/k) = \lim_{k \to \infty} \frac{\sin(1/k)}{1/k} = \lim_{k \to \infty} \frac{\sin x}{x}$.
 - (h) $\sum_{k=1}^{\infty} \frac{\sqrt[5]{3n^4+3}}{n^2}$ Answer: Converges by limit comparison test.
 - (i) $\sum_{k=1}^{\infty} \frac{3^k + k}{k!}$ Answer: Converges by ratio test.
 - (j) $\sum_{k=1}^{\infty} \frac{\ln k}{2^k}$ Answer: Converges by ratio test.
 - (k) $\sum_{k=1}^{\infty} \frac{4^{2n}}{n!}$ Answer: Converges by ratio test.
 - (l) $\frac{\ln 2}{2^2} + \frac{\ln 3}{3^3} + \frac{\ln 4}{4^4} + \frac{\ln 5}{5^5} + \dots$ Answer: Converges by ratio test. Computing the limit is difficult because it involves several tricks.
- 7. Determine whether each of the following is absolutely convergent, conditionally convergent, or divergent:
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ Answer: Conditionally convergent by alternating series test and absolute ratio test.

- (b) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^2}{e^k}$ Answer: Absolutely convergent by absolute ratio test. (c) $\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n}$ Answer: Divergent by alternating series test (terms don't go to zero).