Unit 4.3: Fourier Transforms for Circuit and LTI Systems Analysis

Contents

- Colophon
- Agenda
- The System Function
- Examples
- Solutions

Colophon

An annotatable worksheet for this presentation is available as Worksheet 7.

- The source code for this page is fourier_transform/3/ft3.md.
- You can view the notes for this presentation as a webpage (<u>Unit 4.3: Fourier Transforms for Circuit and LTI Systems Analysis</u>).
- This page is downloadable as a PDF file.

In this section we will apply what we have learned about Fourier transforms to some typical circuit problems. After a short introduction, the body of this chapter will form the basis of an examples class.

Agenda

- The system function
- Examples

The System Function

System response from system impulse response

Recall that the convolution integral of a system with impulse response h(t) and input u(t) is

$$h(t)*u(t) = \int_{-\infty}^{\infty} h(t- au) u(au) \, d au.$$

We let

$$g(t) = h(t) * u(t)$$

Then by the time convolution property

$$h(t)*u(t) = g(t) \Leftrightarrow G(\omega) = H(\omega).U(\omega)$$

The System Function

We call $H(\omega)$ the system function.

We note that the system function $H(\omega)$ and the impulse response h(t) form the Fourier transform pair

$$h(t) \Leftrightarrow H(\omega)$$

Obtaining system response

If we know the impulse resonse h(t), we can compute the system response g(t) of any input u(t) by multiplying the Fourier transforms of $H(\omega)$ and $U(\omega)$ to obtain $G(\omega)$. Then we take the inverse Fourier transform of $G(\omega)$ to obtain the response g(t).

- 1. Transform $h(t) o H(\omega)$
- 2. Transform $u(t) o U(\omega)$
- 3. Compute $G(\omega)=H(\omega).$ $U(\omega)$
- 4. Find $\mathcal{F}^{-1}\left\{G(\omega)\right\}
 ightarrow g(t)$

Examples

Example 1

Karris example 8.8: for the linear network shown below, the impulse response is $h(t)=3e^{-2t}$. Use the Fourier transform to compute the response y(t) when the input $u(t)=2[u_0(t)-u_0(t-3)]$. Verify the result with MATLAB.

Solution to example 1

Matlab verification of example 1


```
(3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t) + 1)*(exp(6*t) - 1))/2 - (3*exp(6*t) + 1)*(exp(6*t) + 1)*(exp(6*t) - 1))/2 - (3*exp(6*t) + 1)*(exp(6*t) +
```

Plot result

```
ezplot(y)
title('Solution to Example 1')
ylabel('y(y)')
xlabel('t [s]')
grid
```


See ft3_ex1.m

Result is equivalent to:

$$y = 3*heaviside(t) - 3*heaviside(t - 3) + 3*heaviside(t - 3)*exp(6 - 2)$$

Which after gathering terms gives

$$y(t) = 3(1 - 3e^{-2t})u_0(t) - 3(1 - 3e^{-2(t-3)})u_0(t-3)$$

Example 2

Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function $H(\omega)$ to compute $V_L(t)$. Assume $i_L(0^-)=0$. Verify the result with Matlab.

Solution of example 2

Matlab verification of example 2

Plot result

```
ezplot(vout)
title('Solution to Example 2')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
```


See ft3_ex2.m

Result is equivalent to:

```
vout = -5*exp(-3*t)*heaviside(t)*(2*exp(t) - 3)
```

Which after gathering terms gives

$$v_{
m out} = 5 \left(3e^{-3t} - 2e^{-2t} \right) u_0(t)$$

Example 3

Karris example 8.10: for the linear network shown below, the input-output relationship is:

$$rac{d}{dt}v_{
m out} + 4v_{
m out} = 10v_{
m in}$$

where $v_{\rm in}=3e^{-2t}$. Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $v_{\rm out}$. Verify the result with Matlab.

Solution to example 3

Matlab verification of example 3

Plot result

```
ezplot(vout)
title('Solution to Example 3')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
```


See ft3_ex3.m

Result is equiavlent to:

Which after gathering terms gives

$$v_{
m out}(t) = 15 \left(e^{-2t} - e^{-4t} \right) u_0(t)$$

Example 4

Karris example 8.11: the voltage across a 1 Ω resistor is known to be $V_R(t)=3e^{-2t}u_0(t)$. Compute the energy dissipated in the resistor for $0< t<\infty$, and verify the result using Parseval's theorem. Verify the result with Matlab.

Note from tables of integrals

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C.$$

$$V_R = 3e^{-2t} u_0(t)$$

Solution to example 4

Matlab	verifica	tion of	examp	ole 4

```
syms t w
```

Calcuate energy from time function

```
Vr = 3*exp(-2*t)*heaviside(t);
R = 1;
Pr = Vr^2/R
Wr = int(Pr,t,0,inf)
```

Pr =

9*exp(-4*t)*heaviside(t)^2

Wr =

9/4
Calculate using Parseval's theorem
<pre>Fw = fourier(Vr,t,w)</pre>
Fw =
3/(2 + w*1i)
<pre>Fw2 = simplify(abs(Fw)^2)</pre>
Fw2 =

See ft3_ex4.m

Solutions

- Example 1: ft3-ex1.pdf
- Example 2: ft3-ex2.pdf
- Example 3: ft3-ex3.pdf
- Example 3: ft3-ex4.pdf

Previous

4.2: Fourier transforms of commonly occurring signals

Introduction to Filters