# Основы дискретной математики. Комбинаторика.

### 1 Определения

**Опр. 1.1** (Покрытие  $\{X_i\}$  множества X).  $\bigcup X_i = X$ 

Опр. 1.2 (Разбиение).

$$\begin{cases} \bigcup X_i = X \\ X_i \cap X_j = \emptyset \\ X_i \neq \emptyset \end{cases}$$

Опр. 1.3 (Упорядоченное разбиение).

$$\begin{cases} & \text{разбиение} \\ & X_1 \preccurlyeq X_2 \preccurlyeq \dots \preccurlyeq X_n \end{cases}$$

Опр. 1.4 (Разделение).

$$\begin{cases} \quad \text{"почти" разбиение} \\ \quad X_i \approx \varnothing \\ \quad X_1 \preccurlyeq \ldots \preccurlyeq X_n \end{cases}$$

Опр. 1.5 (Декартова степень).

$$X^k = \{(x_1, ..., x_k) : x_i \in X, x_1 \leq ... \leq x_k\}$$

Oпр. 1.6 (k-мультимножество).

$$M_k(X) = \{(x_1, ..., x_k) : x_i \in X, x_1 \approx ... \approx x_k\}$$

**Опр. 1.7** (k-мультимножество (2)).

$$M_k = (X, \varphi)$$

$$\varphi : X \to \overline{0,k}$$

$$\sum \varphi(x_i) = k \quad \varphi(x_i) \in \overline{0,k}$$

**Опр. 1.8** (k-сочетание (без повторений)). неупорядоченное k-элементное подмножество n-элементного множества

**Опр. 1.9** (k-сочетание с повторениями).  $\approx k$ -мультимножество  $\approx k$  монеток в кармане

#### 2 Биномиальные коэффициенты

 $\binom{n}{k}$  — количество неупорядоченных k-элементных подмножеств n-элементного множества

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{(n)_k}{k!}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$\binom{n}{k} = 0 \qquad k > n$$
$$\binom{n}{0} = 1 \qquad n \geqslant 0$$

В самом общем виде:

$$\begin{pmatrix} q \\ k \end{pmatrix} = \begin{cases} \frac{n(n-1)\dots(n-k+1)}{k!}, & k \in \mathbb{N}, q \in \mathbb{C} \\ 1, & k = 0 \\ 0, & k < 0 \end{cases}$$

Рекуррентное свойство:

$$\binom{n}{k} = \binom{n}{n-k}$$



Рис. 2.1: Треугольник Паскаля

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 или...  $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$   $\binom{n+m}{k} = \sum_{i=0}^k \binom{n}{i} \binom{m}{k-i}$   $\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2$  ( $n$  белых  $+ n$  чёрных шаров... "свёртка Вандермонда")

$$\binom{n+1}{k+1} = \sum_{m=k}^{n} \binom{m}{k}$$
 сначала  $k$  штук  $+ x_{n+1}$ , потом  $k + x_n - x_{n+1}$  итд...

#### 3 Связь с биномом

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
$$2^n = \sum_{k=0}^n \binom{n}{k}$$
$$0 = \sum_{k=0}^n (-1)^k \binom{n}{k}$$

Т.е. число всех чётных подмножств равно числу всех нечётных (и равно  $2^n/2$ )<sup>1</sup>:

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

#### 4 Сочетания с повторениями

**Теор. 4.1.** Число способов выбрать с повторениями k элементов из n равно:

$$\binom{n}{k} = \binom{n+k-1}{k}$$

**Св-во** (Принцип биекции).  $f: X \to Y$  — биекция  $\implies |X| = |Y|$ 

$$\binom{q}{k} = \frac{q(q+1)...(q+k-1)}{k!} = \frac{q^{(k)}}{k!} \qquad \forall q \in \mathbb{C}, k \in \mathbb{N}$$

## 5 Шары, ящики, перегородки

Замечание<sup>2</sup>...

**Teop. 5.1.** Число способов разложить n одинаковых шаров в k упорядоченных ящиков так, чтобы пустых ящиков не было, равно  $\binom{n-1}{k-1}$ , причём  $n \geqslant k$ .

Доказательство. Между k ящиками " " "находятся k-1 перегородок " ${\bf f}$ ", между которыми закладываются n шаров " ${\bf w}$ ". Края конструкции обозначим вертикальными чертами:

Шары попадают либо между перегородками, либо между крайними перегородками и краями. Эти места соответствуют ящикам. Порядок перегородок не важен, но ящики

<sup>&</sup>lt;sup>1</sup> Комбинаторное доказательство этого факта можно найти по ссылке.

 $<sup>^{2}</sup>$  Описание meopuu mapos u neperopodok можно найти по ссылке.

упорядочены слева направо. Поскольку пустые ящики не допускаются, перегородки " $\mathbf{f}$ " можно вставлять только между шарами " $\mathbf{w}$ ". Таких мест будет n-1. Число способов вставить k-1 перегородок между ними будет  $\binom{n-1}{k-1}$ . При n-1 < k-1 получится ноль, отсюда условие  $n \ge k$ .

**Teop. 5.2.** Число способов разложить n одинаковых шаров в k упорядоченных ящиков так, что ящики могут быть пустыми, равно  $\binom{n+k-1}{n} = \binom{k}{n}$ .

Доказательство. Между k ящиками " " находятся k-1 перегородок " $\mathbf{f}$ ", между которыми закладываются n шаров " $\mathbf{w}$ ". Края конструкции обозначим вертикальными чертами:

Порядок перегородок не важен, но ящики упорядочены слева направо. Теперь допускается  $\forall$  перестановка шаров и перегородок. То есть n шаров и k-1 перегородок произвольно расставляются на n+k-1 посадочных мест. Число способов расставить шары будет  $\binom{n+k-1}{n} = \binom{n+k-1}{k-1}$ , после чего перегородки расставляются на оставшиеся места.

**Сл-е.** Есть предметы n различных сортов. Число способов выбрать k предметов, если предметы одного сорта неразличимы (иначе говоря, выбрать c повторениями k элементов из n) равно  $\binom{n}{k} = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$ .

Доказательство. k предметов — это "шары", а n сортов — "ящики", по которым их раскладываем. Получаем аналог задачи выше, но n и k поменялись местами.

#### 6 Перестановки

**Опр. 6.1** (k-перестановка (без повторений)). y-порядоченное k-элементное подмножество ( $x_1,...x_k$ ) n-элементного множества  $|X| = n, x_i \in X$ ; также называют k-размещением из n элементов; пример:  $\mathbb{N}^{0}$   $\mathbb{N}^{0}$  спортсменов на пьедестале (3-перестановка)

**Опр. 6.2** (k-перестановка с повторениями).  $\forall$  элемент декартовой степени  $X^k$  n-элементного множества |X|=n; пример:  $\mathbb{N}_2$  паспорта из 8 цифр  $\overline{0...9}$ 

**Св-во.** Число k-перестановок с повторениями из n равно  $n^k$ 

**Св-во.** Число k-перестановок без повторений из n равно

$$P(n,k) = (n)_k = n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$
$$P(n,k)\Big|_{n=k} = P(n,n) = P(n) = P_n = n!$$

#### 7 Схемы с урнами и ящиками

| Пред меты на<br>виходе | c bozbpany.                                                | dej bozbawy.        |
|------------------------|------------------------------------------------------------|---------------------|
| ynopegor.              | $V_{\kappa}$                                               | $(n)_{\kappa}$      |
| neynople.              | $\left( \begin{pmatrix} n \\ \kappa \end{pmatrix} \right)$ | $\binom{\kappa}{N}$ |

Рис. 7.1: Схемы с урнами (источник)

| Преднети    | Lujuky     | ∀кол-во                                                                           | ≤1                  |
|-------------|------------|-----------------------------------------------------------------------------------|---------------------|
| Paymounte   | poznururue | N <sub>K</sub>                                                                    | $(n)_{\kappa}$      |
| repenerance | pogramura  | $\left( \left( \begin{smallmatrix} \kappa \\ n \end{smallmatrix} \right) \right)$ | $\binom{\kappa}{v}$ |

Рис. 7.2: Схемы раскладок по ящикам (источник)

## 8 Количество отображений

**Опр. 8.1** (отображение). 
$$x_i \in X$$
  $f(x_i) \in Y$   $f \in F$   $|X| = n$   $|Y| = k$ 

**Опр. 8.2** (инъекция). 
$$\forall y \in Y: |f^{-1}(y) \subseteq X| = \overline{0,1}$$
  $f(x_1) = f(x_2) \implies x_1 = x_2$ 

**Опр. 8.3** (биекция). 
$$\forall y \in Y \exists ! f^{-1}(y) \in X$$
  $f(x_1) = f(x_2) \Longleftrightarrow x_1 = x_2$ 

**Опр. 8.4** (сюръекция). 
$$\forall \ y \in Y: \ |f^{-1}(y) \subseteq X| > 0$$
 ( $\nexists$  если  $|X| > |Y|$ )

$$|$$
отображение $| = k^n$   $|$ инъекция $| = (k)_n$   $|$ биекция $| = n!$   $|$ сюръекция $| = \hat{S}(n,k)$ 

$$\sum_{i=1}^k \hat{S}(n,i) \binom{k}{i} = k^n \qquad \text{или...}$$
 
$$\sum_{i=0}^n \hat{S}(n,i) \binom{k}{i} = k^n \qquad \text{т.к. } \hat{S}(n,0) = 0, \ \binom{k}{i} \Big|_{i>k} = 0$$

используя формулу обращения<sup>3</sup>

$$f_k = \sum_{i=0}^k \binom{k}{i} g_i \implies g_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f_i$$

получаем

$$\hat{S}(n,k) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^n$$
 причём  $\hat{S}(n,k)|_{k>n} = 0$ 

Отображения  $f: X_n \to Y_k$  "изоморфны"  $\longleftrightarrow k$ -разделениям X (1.4),  $|\{\mathcal{D}_k\}| = k^n$ . Сюръекции  $\longleftrightarrow$  упорядоченным k-разбиениям X (1.3),  $|\{\mathcal{B}_k\}| = \hat{S}(n,k)$ .



<sup>&</sup>lt;sup>3</sup>Немного о формулах обращения, например, см. здесь