CT/JP00/03899

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

FEC'D 0⁰4⁴ AUG 2000

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年 8月24日

出 願 番 号 Application Number:

平成11年特許願第237508号

イビデン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 7月21日

出証番号 出証特2000-3057472

特平11-2375

【書類名】 特許願

【整理番号】 P991043

【提出日】 平成11年 8月24日

【あて先】 特許庁長官殿

【国際特許分類】 C04B 38/00

【発明者】

【住所又は居所】 岐阜県揖斐郡揖斐川町北方1の1 イビデン 株式

会社 大垣北工場 内

【発明者】

【住所又は居所】 岐阜県揖斐郡揖斐川町北方1の1 イビデン 株式

会社 大垣北工場 内

【氏名】 馬嶋 一隆

【特許出願人】

【識別番号】 000000158

【氏名又は名称】 イビデン 株式会社

【代理人】

【識別番号】 100068755

【住所又は居所】 岐阜市大宮町2丁目12番地の1

【弁理士】

【氏名又は名称】 恩田 博宣

【電話番号】 058-265-1810

【選任した代理人】

【識別番号】 100105957

【住所又は居所】 東京都渋谷区代々木二丁目10番4号 新宿辻ビル8

階

【弁理士】

【氏名又は名称】 恩田 誠

【電話番号】 03-5365-3057

【手数料の表示】

【予納台帳番号】 002956

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9720908

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ウェハ研磨装置用テーブル

【特許請求の範囲】

【請求項1】

複数枚の基材を積層してなる積層構造物の上部に、ウェハ研磨装置を構成しているウェハ保持プレートの保持面に保持されている半導体ウェハが摺接される研磨面を有し、かつ前記基材の界面に流体流路を備えるテーブルにおいて、前記積層構造物の最上部に位置する基材を少なくともセラミックス製とし、そのセラミックス製基材の裏面側に前記流体流路の一部をなす溝を形成したことを特徴とするウェハ研磨装置用テーブル。

【請求項2】

複数枚のセラミックス製基材を積層してなる積層構造物の上部に、ウェハ研磨装置を構成しているウェハ保持プレートの保持面に保持されている半導体ウェハが摺接される研磨面を有し、かつ前記基材の界面に流体流路を備えるテーブルにおいて、前記積層構造物の最上部に位置するセラミックス製基材の裏面側に、前記流体流路の一部をなす溝を形成したことを特徴とするウェハ研磨装置用テーブル。

【請求項3】

前記溝の深さは前記セラミックス製基材の厚さの1/3~1/2であることを 特徴とする請求項1または2に記載のウェハ研磨装置用テーブル。

【請求項4】

前記溝は、断面のコーナーのRが0.3~5である矩形状を呈していることを 特徴とする請求項1乃至3のいずれか1項に記載のウェハ研磨装置用テーブル。

【請求項5】

前記溝は前記セラミックス製基材の焼成前に研削加工により形成されたもので あることを特徴とする請求項4に記載のウェハ研磨装置用テーブル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

[0002]

【従来の技術】

一般的に、鏡面を有するミラーウェハは、単結晶シリコンのインゴットを薄くスライスした後、それをラッピング工程及びポリッシング工程を経て研磨することにより得ることができる。特にラッピング工程後かつポリッシング工程前にエピタキシャル成長層形成工程を行った場合には、エピタキシャルウェハと呼ばれるものを得ることができる。そして、これらのベアウェハに対しては、続くウェハ処理工程において酸化、エッチング、不純物拡散等の各種工程が繰り返して行われ、最終的に半導体デバイスが製造されるようになっている。

[0003]

上記の一連の工程においては、半導体ウェハのデバイス形成面を何らかの手段 を用いて研磨する必要がある。そこで、従来から各種のウェハ研磨装置(ラッピ ングマシンやポリッシングマシン等)が提案されるに至っている。

[0004]

通常のウェハ研磨装置は、テーブル、プッシャプレート、冷却ジャケット等を備えている。アルミナ等からなるテーブルは、冷却ジャケットの上部に固定されている。冷却ジャケット内に設けられた流路には冷却水が循環される。プッシャプレートの保持面には、半導体ウェハが熱可塑性ワックスを用いて貼付けられる。回転するプッシャプレートに保持された半導体ウェハは、テーブルの研磨面に対して上方から押し付けられる。その結果、研磨面に半導体ウェハが摺接し、ウェハの片側面が均一に研磨される。そして、このときウェハに発生した熱は、テーブルを介して冷却ジャケットに伝導し、かつ流路を循環する冷却水により装置の外部に持ち去られる。

[0005]

【発明が解決しようとする課題】

ところで、大口径・高品質のウェハを実現するためには、テーブル自体の耐熱 性、耐熱衝撃性、耐摩耗性等の向上に加え、テーブル内の温度バラツキを極力小 さくすること、即ちテーブルの均熱性の向上が必要である。そこで、本発明者ら は、2枚のセラミックス製基材からなる積層構造物の界面に冷却用水路を形成したテーブルを想到するに至っている。下側基材の上面には水路の一部をなす溝が加工形成されていて、この基材に上側基材を積層することにより、両者の界面に水路ができるようになっている。

[0006]

しかしながら、このテーブル構造の場合、水路を流れる冷却水に対する伝熱面である上側基材の裏面側がフラットになっているため、伝熱面積が十分に確保されているとはいい難かった。ゆえに、テーブルの均熱性を向上させるためには、より効率よく冷却水に熱を伝える何らかの改良が必要であると考えられていた。

[0007]

本発明は上記の課題を解決するためなされたものであり、その目的は、テーブル均熱性に優れ、半導体ウェハの大口径化・高品質化に対応可能なウェハ研磨装置用テーブルを提供することにある。

[0008]

【課題を解決するための手段】

上記の課題を解決するために、請求項1に記載の発明では、複数枚の基材を積層してなる積層構造物の上部に、ウェハ研磨装置を構成しているウェハ保持プレートの保持面に保持されている半導体ウェハが摺接される研磨面を有し、かつ前記基材の界面に流体流路を備えるテーブルにおいて、前記積層構造物の最上部に位置する基材を少なくともセラミックス製とし、そのセラミックス製基材の裏面側に前記流体流路の一部をなす溝を形成したことを特徴とするウェハ研磨装置用テーブルをその要旨とする。

[0009]

請求項2に記載の発明によると、複数枚のセラミックス製基材を積層してなる 積層構造物の上部に、ウェハ研磨装置を構成しているウェハ保持プレートの保持 面に保持されている半導体ウェハが摺接される研磨面を有し、かつ前記基材の界 面に流体流路を備えるテーブルにおいて、前記積層構造物の最上部に位置するセ ラミックス製基材の裏面側に、前記流体流路の一部をなす溝を形成したことを特 徴とするウェハ研磨装置用テーブルをその要旨とする。

請求項3に記載の発明は、請求項1または2において、前記溝の深さは前記セラミックス製基材の厚さの1/3~1/2であるとした。

請求項4に記載の発明は、請求項1乃至3のいずれか1項において、前記溝は 、断面のコーナーのRが0.3~5である矩形状を呈しているとした。

[0011]

請求項5に記載の発明は、請求項4において、前記溝は前記セラミックス製基 材の焼成前に研削加工により形成されたものであるとした。

以下、本発明の「作用」について説明する。

[0012]

請求項1~5に記載の発明によると、積層構造物の最上部に位置するセラミックス製基材の裏面側に流体流路の一部をなす溝を形成したことにより、当該面に凹凸ができ、十分な伝熱面積が確保される。ゆえに、より効率よく流体に熱が伝わるようになり、テーブルの均熱性が向上する。

[0013]

請求項3に記載の発明によると、溝の深さを上記好適範囲内に設定することにより、テーブルの強度低下を回避しつつ十分な伝熱面積及び流路断面積を確保することができる。この溝が浅すぎると、セラミックス製基材の裏面側にできる凹凸が小さくなり、十分な伝熱面積及び流路断面積を確保することができなくなる。逆に、この溝を深く形成しようとすると、基材の剛性が損なわれやすくなり、材料によっては押圧力付加時に基材が変形し、場合によっては破壊するおそれがある。

[0014]

請求項4に記載の発明によると、溝の断面のコーナーのRが上記好適範囲内であることから、基材の破壊を回避しつつ十分な流路断面積を確保することができる。なお、Rが0.3未満であると、応力集中による割れや加工による割れが発生しやすくなる。逆に、Rが5を超えると、流路断面積が不足してしまう。

[0015]

請求項5に記載の発明によると、研削加工により形成された溝は、コーナーの

Rが上記好適範囲内となりやすい。また、セラミックス製基材の焼成前に形成された溝であれば、加工変質層の発生による強度低下の心配がない。しかも、硬質なセラミックスであっても焼成前の状態であれば、深い溝を簡単に形成できる。

[0016]

【発明の実施の形態】

以下、本発明を具体化した一実施形態のウェハ研磨装置1を図1,図2に基づき詳細に説明する。

[0017]

図1には、本実施形態のウェハ研磨装置1が概略的に示されている。同ウェハ研磨装置1を構成しているテーブル2は円盤状である。テーブル2の上面は、半導体ウェハ5を研磨するための研磨面2aになっている。この研磨面2aには図示しない研磨クロスが貼り付けられている。本実施形態のテーブル2は、冷却ジャケットを用いることなく、円柱状をした回転軸4の上端面に対して水平にかつ直接的に固定されている。従って、回転軸4を回転駆動させると、その回転軸4とともにテーブル2が一体的に回転する。

[0018]

図1に示されるように、このウェハ研磨装置1は、複数(図1では図示の便宜上2つ)のウェハ保持プレート6を備えている。プレート6の形成材料としては、例えばガラスや、アルミナ等のセラミックス材料や、ステンレス等の金属材料などが採用される。各ウェハ保持プレート6の片側面(非保持面6b)の中心部には、プッシャ棒7が固定されている。各プッシャ棒7はテーブル2の上方に位置するとともに、図示しない駆動手段に連結されている。各プッシャ棒7は各ウェハ保持プレート6を水平に支持している。このとき、保持面6aはテーブル2の研磨面2aに対向した状態となる。また、各プッシャ棒7はウェハ保持プレート6とともに回転することができるばかりでなく、所定範囲だけ上下動することができる。プレート6側を上下動させる方式に代え、テーブル2側を上下動させる構造を採用しても構わない。ウェハ保持プレート6の保持面6aには、シリコンからなる半導体ウェハ5が例えば熱可塑性ワックス等を用いて貼着される。半導体ウェハ5は、保持面6aに対して真空引きによりまたは静電的に吸着されて

[0019]

この装置 1 がラッピングマシン、即ちベアウェハプロセスにおけるスライス工程を経たものに対する研磨を行う装置である場合、ウェハ保持プレート 6 は以下のようなものであることがよい。即ち、前記プレート 6 は、研磨面 2 a に対して所定の押圧力を印加した状態で半導体ウェハ 5 を摺接させるものであることがよい。このようなウェハ保持プレート 6 (つまりプッシャプレート)により押圧力を印加しても、エピタキシャル成長層が形成されていないことから、同層の剥離を心配する必要がないからである。この装置 1 がミラーウェハ製造用のポリッシングマシン、即ち前記ラッピング工程を経たものに対してエピタキシャル成長工程を実施することなく研磨を行う装置である場合も、同様である。

[0020]

一方、この装置1がエピタキシャルウェハ製造用のポリッシングマシン、即ち前記ラッピング工程を経たものに対してエピタキシャル成長工程を実施したうえで研磨を行う装置である場合には、プレート6は以下のようなものであることがよい。即ち、プレート6は、研磨面2aに対して押圧力を殆ど印加しない状態で半導体ウェハ5を摺接させるものであることがよい。シリコンエピタキシャル成長層は、単結晶シリコンと比べて剥離しやすいからである。この装置1が各種膜形成工程後にケミカルメカニカルポリッシング(CMP)を行うためのマシンである場合も、基本的には同様である。

[0021]

次に、テーブル2の構成について詳細に説明する。

図1,図2に示されるように、本実施形態のテーブル2は、複数枚(ここでは 2枚)のセラミックス製基材11A,11Bを積層してなる積層セラミックス構造体である。2枚の基材11A,11Bのうち上側のもの(上側基材11A)の裏面側には、流体流路である冷却用水路12の一部を構成する溝13が所定パターン状に形成されている。一方、下側基材11Bのほうには、このような溝13は特に形成されていない。2枚の基材11A,11B同士は、金属系接着層とし

ての口ウ材層14を介して互いに接合されることにより、一体化されている。その結果、基材11A,11Bの接合界面に前記水路12が形成される。下側基材11Bの略中心部は、貫通孔15が形成されている。これらの貫通孔15は、回転軸4内に設けられた流路4aと、前記水路12とを連通させている。

[0022]

各々の基材11A,11Bを構成しているセラミックス材料は、珪化物セラミックスまたは炭化物セラミックスであることがよい。特に本実施形態においては、上記セラミックス材料として、炭化珪素粉末を出発材料とする炭化珪素焼結体(SiC焼結体)を選択している。従って、本実施形態では、2枚の基材11A,11Bの両方について同種のセラミックス材料が用いられていることになる。なお、炭化珪素焼結体は、上記セラミックスのなかでも、とりわけ熱伝導性、耐熱性、耐熱衝撃性、耐摩耗性、剛性等に優れている点で好ましい。

[0023]

上側基材11Aの熱伝導率は、下側基材11Bの熱伝導率と同等の値またはそれよりも大きい値に設定されることがよい。よって、本実施形態では、結晶粒子間の結合が強くてしかも気孔が極めて少ない緻密体を、上側基材11Aとして選択している。これに対して、多くの気孔を有する多孔質体を、下側基材11Bとして選択している。また、両基材11A,11Bの熱膨張係数は、ほぼ等しく設定されていることがよい。

[0024]

また、上側基材11Aの厚さは、下側基材11Bの厚さよりも薄くなっている。これにより、上側基材11Aの熱抵抗は、下側基材11Bの熱抵抗よりも確実に小さくなる。本実施形態において、上側基材11Aの厚さは3mm~20mmに設定されている。下側基材11Bの厚さは10mm~50mmに設定されている。

[0025]

上記炭化珪素粉末としては、α型炭化珪素粉末、β型炭化珪素粉末、非晶質炭化珪素粉末等が用いられる。この場合、一種の粉末のみを単独で用いてもよいほか、2種以上の粉末を組み合わせて(α型+β型、α型+非晶質、β型+非晶質

[0026]

炭化珪素焼結体製の上側基材11Aの熱伝導率は40W/mK以上であることがよく、さらには80W/mK~300W/mKであることが望ましい。熱伝導率が小さすぎると焼結体内に温度バラツキが生じやすくなり、半導体ウェハ5の大口径化・高品質化を妨げる原因となるからである。逆に、熱伝導率は大きいほど好適である反面、300W/mKを超えるものについては、安価かつ安定的な材料供給が難しくなるからである。なお、下側基材11Bの熱伝導率は5W/mK以上であることがよく、さらには10W/mK~80W/mKであることが望ましい。その理由は、冷却用水路12にて構成される冷却部よりも下の放熱を防止することにより、研磨面2aの温度制御をしやすくするためである。

[0027]

ロウ材層14は、チタンを含むロウ材を用いて形成されたものであることがよい。炭化珪素焼結体を基材11A,11Bとして選択したとき、チタンを含むロウ材を用いることにより、ロウ材層14に高い熱伝導率を確保しながら高い接合強度を得ることが可能だからである。なお、チタンはロウ付け時に焼結体の気孔内に拡散しやすいため、現時点ではこの性質が接合強度向上をもたらす主な要因であると考えられている。

[0028]

本実施形態では、基材11A,11B同士の接合に際してTi-Ag-Cu(チタン-銀-銅)系のロウ材を用いている。このロウ材におけるチタンの含有量は0.1重量%~10重量%程度であり、その溶融温度は約850℃である。また、ロウ材層14の厚さは10μm~50μm程度に設定されることがよい。

[0029]

水路12の一部を構成する溝13の深さは、上側基材11Aの厚さ(本実施形

態では $3 \text{ mm} \sim 2 \text{ 0 mm}$) $01/3 \sim 1/2$ であることが好ましい。

この溝13が浅すぎると、上側基材11Aの裏面側にできる凹凸が小さくなって、十分な伝熱面積を確保できなくなる。また、十分な流路断面積も確保できなくなるため、水路12に流すことができる冷却水Wの量も制限される。ゆえに、テーブル2の均熱性を十分に向上できなくなるおそれがある。逆に、この溝13を深く形成しようとすると、部分的に肉薄な箇所ができることによって、基材11Aの剛性が損なわれやすくなる。その結果、材料の選択の如何によっては、プレート6の押圧力が付加した時に、基材11Aが破壊するおそれがある。

[0030]

溝13の断面形状は、図2において概略的に示されるように、矩形状であることがよく、具体的には断面のコーナーのRが0.3~5であることがよい。Rが0.3未満であると、応力集中による割れや加工による割れが発生し、テーブル2が破壊しやすくなるからである。逆に、Rが5を超えると、流路断面積が不足してしまい、テーブル2の均熱性の向上が図れなくなるからである。

[0031]

また、前記溝13は、上側基材11Aの裏面側を砥石を用いて研削加工することにより形成された研削溝であることが好ましい。研削加工により形成される溝13は、コーナーのRが上記好適範囲内になりやすく、好ましい断面形状になるからである。しかも、研削加工であれば、炭化珪素焼結体のような硬質なセラミックスに対しても、深い溝13を困難なく形成することが可能だからである。

[0032]

ここで、テーブル2を製造する手順を簡単に説明する。

まず、炭化珪素粉末に少量の焼結助剤を添加したものを均一に混合する。焼結助剤としては、ほう素及びその化合物、アルミニウム及びその化合物、炭素などが選択される。この種の焼結助剤が少量添加されていると、炭化珪素の結晶成長速度が増加し、焼結体の緻密化・高熱伝導化につながるからである。

[0033]

次いで、上記混合物を材料として用いて金型成形を行うことにより、円盤状の 成形体を作製する。さらに、この成形体を1800℃~2400℃の温度範囲内

[0034]

続いて、上側基材11Aの底面を砥石を用いて研削加工することにより、同面のほぼ全域に所定幅・所定深さの溝13を形成する。さらに、2枚の基材11A, 11B間に適量の口ウ材を配置した状態で、両者11A, 11Bを積層する。このような状態で2枚の基材11A, 11Bを加熱し、基材11A, 11B同士を口ウ付けする。そして最後に、上側基材11Aの表面を研磨加工することにより、半導体ウェハ5の研磨に適した面粗度の研磨面2aを形成する。このような表面研磨工程は、接着工程または溝加工工程の前に実施されてもよい。本実施形態のテーブル2は、以上の手順を経て完成する。

以下、本実施形態をより具体化した実施例を紹介する。

[実施例]

上側基材11Aの作製においては、94.6重量%のβ型結晶を含む炭化珪素粉末として、イビデン株式会社製「ベータランダム(商品名)」を用いた。この炭化珪素粉末は、1.3μmという結晶粒径の平均値を有し、かつ1.5重量%のほう素及び3.6重量%の遊離炭素を含有していた。

[0035]

まず、この炭化珪素粉末100重量部に対し、ポリビニルアルコール5重量部、水300重量部を配合した後、ボールミル中にて5時間混合することにより、均一な混合物を得た。この混合物を所定時間乾燥して水分をある程度除去した後、その乾燥混合物を適量採取しかつ顆粒化した。次いで、前記混合物の顆粒を、金属製押し型を用いて50kg/cm²のプレス圧力で成形した。得られた円盤状の生成形体の密度は1.2g/cm³であった。

[0036]

次いで、外気を遮断することができる黒鉛製ルツボに前記生成形体を装入し、 タンマン型焼成炉を使用してその焼成を行なった。焼成は1気圧のアルゴンガス 雰囲気中において実施した。また、焼成時においては10℃/分の昇温速度で最高温度である2300℃まで加熱し、その後はその温度で2時間保持することとした。得られた上側基材11Aを観察してみたところ、板状結晶が多方向に絡み合った極めて緻密な三次元網目構造を呈していた。また、上側基材11Aの密度は3.1g/cm³であり、熱伝導率は150W/mKであった。上側基材11Aに含まれているほう素は0.4重量%、遊離炭素は1.8重量%であった。ここでは、上側基材11Aの寸法を、直径600mmかつ厚さ5mmに設定した。

[0037]

[0038]

続いて、研削装置を用いて研削加工を行い、深さ5mmかつ幅10mmであって、コーナーのR=1mmの溝13を上側基材11Aの裏面側に形成した。従って、この溝13の深さは基材11Aの厚さの1/2になっている。その後、ロウ付けによって2枚の基材11A,11Bを一体化した。ここではチタンを含む箔状の銀口ウ材を用い、ロウ材層14の厚さを20μmに設定することとした。

[0039]

ロウ付け工程の後、さらに上側基材11Aの表面に研磨加工を施すことにより、最終的に半導体ウェハ5の研磨に適した面粗度の研磨面2aを有するテーブル 2を完成した。

このようにして得られた実施例のテーブル2を上記各種の研磨装置1にセットし、冷却水Wを常時循環させつつ、各種サイズの半導体ウェハ (シリコンウェハ) 5の研磨を行なった。その際、研磨面2の複数の点における温度を測定したところ、テーブル2内の温度バラツキは極めて小さく (具体的には40℃で±2℃以内)、高い均熱性が付与されていた。また、各種の研磨装置1による研磨を経て得られたウェハ5を観察したところ、ウェハサイズの如何を問わず、反りや傷のない好適なウェハ5を得ることができた。つまり、本実施例のテーブル2を用い

従って、本実施形態の実施例によれば、以下のような効果を得ることができる

(1) このウェハ研磨装置1のテーブル2では、炭化珪素製基材11A,11 Bの接合界面に水路12を形成したものである。従って、研磨面2a側の熱は、 テーブル2の内部を伝導し、水路12内を流れる冷却水Wに確実に受け渡される 。よって、冷却ジャケットにテーブル2を載せて間接的に冷却を行う従来装置に 比べ、熱をテーブル2から直接かつ効率よく逃がすことができる。ゆえに、テー ブル2内の温度バラツキも小さくなり、テーブル2の均熱性向上が図られる。

[0041]

(2) このテーブル2では、2枚の基材11A, 11Bからなる積層構造が採用されている。よって、水路12の一部をなす溝13をあらかじめいずれかの基材11A, 11Bに形成した後で、両者を接合することができる。従って、基材11A, 11Bの界面に水路12を比較的簡単に形成することができる。よって、テーブル2の製造に特に困難を伴うことがないという利点がある。さらに、この構造であると、接合界面に配管構造を追加する必要もないので、構造の複雑化や高コスト化も回避される。

[0042]

(3) テーブル2において水路12の一部をなす溝13は、積層セラミックス構造物における上側基材11Aの裏面側に形成されている。よって、上側基材11Aの裏面側に凹凸ができ、十分な伝熱面積が確保される結果、従来に比べてより効率よく水Wに熱が伝わるようになる。このため、テーブル2の均熱性が向上し、流体供給による温度制御を比較的容易に行うことができるようになる。従って、ウェハ5を高い精度で加工することができ、ウェハ5の大口径化・高品質化に対応可能となる。

[0043]

(4) このテーブル2では、溝13の深さを上記の好適範囲内に設定している。このため、テーブル2の強度低下を回避しつつ十分な伝熱面積及び流路断面積

を確保することができる。従って、耐久性及び均熱性の向上を図ることができる

[0044]

(5) このテーブル2では、矩形状をなす溝13の断面のコーナーのRを上記 好適範囲内に設定している。そのため、同じ深さの丸い断面形状の溝よりも大き な流路断面積が確保される。このことは均熱性のさらなる向上に貢献する。

[0045]

(6) このテーブル2における基材11A, 11Bは、炭化珪素焼結体の緻密体からなる。従って、テーブル2に好適な熱伝導性、耐熱性、耐熱衝撃性、耐摩耗性を付与することができる。勿論、このことは半導体ウェハ5の大口径化・高品質化にも寄与する。なお、炭化珪素焼結体は極めて硬質であることに鑑みて、本実施形態では溝13の形成を研削加工により行っている。ゆえに、矩形状の断面形状であって十分な深さの溝13を、困難なく形成することができる。

[0046]

(7) テーブル2を構成する2枚の基材11A, 11B同士は、ロウ材層14を介したロウ付けにより強固に接合されている。そのため、ロウ材層14を介在させずに積層した場合とは異なり、接合界面に高い接合強度を確保することができる。また、上記のごとくテーブル2に熱応力が発生しにくくなることで、接合界面におけるクラック破壊も確実に回避される。従って、破壊しにくい高強度のテーブル2とすることができる。また、クラックによる破壊が回避される結果、接合界面からの水漏れも未然に防止することができる。

[0047]

(8) このテーブル2を用いたウェハ研磨装置1の場合、冷却ジャケット自体が不要になることから、装置全体の構造が簡単になる。

なお、本発明の実施形態は以下のように変更してもよい。

[0048]

・ 溝13は上側基材11Aの焼成工程の前に形成されてもよい。このような溝13であれば、溝内壁面における加工変質層の発生を回避することができ、テーブル2の強度低下の心配もなくなるからである。従って、破壊しにくくて強度

[0049]

・ 基材11A, 11B同士は、必ずしも接着層を介して接着されていなくて もよく、例えば接着層を省略する代わりに、基材11A, 11B同士をボルトと ナットとの締結によって一体化しても構わない。

[0050]

- ・ 2層構造をなす実施形態のテーブル2に代えて、3層構造をなすテーブル に具体化してもよい。勿論、4層以上の積層構造にしても構わない。
- . 溝13は研削加工により形成されたものに限定されることはなく、例えばサンドブラスト等のような噴射加工により形成されたものでもよい。また、溝13の断面形状も、実施形態のような略矩形状かつ角張ったもののみに限定されず、略V字状や半円状などであっても構わない。

[0051]

・ 実施形態においては、炭化珪素焼結体の緻密体を用いて上側基材11Aを 形成し、かつ炭化珪素焼結体の多孔質体を用いて下側基材11Bを形成していた 。勿論、このような組み合わせに限定されることはなく、例えば炭化珪素焼結体 の緻密体を用いて両基材11A, 11Bを形成したり、炭化珪素焼結体の多孔質 体を用いて両基材11A, 11Bを形成したりしてもよい。

[0052]

・ 炭化珪素以外の珪化物セラミックスとして、例えば窒化珪素(Si_3N_4)やサイアロン等を選択してもよく、炭化珪素以外の炭化物セラミックスとして、例えば炭化ホウ素(B_4C)等を選択してもよい。さらに、この種のセラミックスのみならず、例えばアルミナ等に代表される酸化物セラミックスを用いて両基材 11A, 11Bを形成することも可能である。下側基材 11Bついては、さらにセラミックス以外の材料、例えば金属材料等を用いることが許容される。

[0053]

・ 本実施形態のテーブル2の使用にあたって、水路12内に水以外の液体を

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想をその効果とともに以下に列挙する。

[0054]

(1) 2枚の炭化珪素焼結体製基材を接着層を介して接合してなる積層セラミックス構造物の上部に、ウェハ研磨装置を構成しているウェハ保持プレートの保持面に保持されている半導体ウェハが摺接される研磨面を有し、かつ前記基材の接合界面に流体流路を備えるテーブルにおいて、前記構造物を構成する上側基材の裏面側に、前記流体流路の一部をなす研削加工溝を形成したことを特徴とするウェハ研磨装置用テーブル。

[0055]

(2) 請求項1乃至5,技術的思想1のいずれか1つに記載のテーブルを用いた研磨方法であって、前記流体流路に冷却用流体を流しながら、前記テーブルの研磨面に対して前記半導体ウェハを回転させつつ摺接させることにより、前記半導体ウェハの研磨を行うことを特徴とする半導体ウェハの研磨方法。従って、この技術的思想2に記載の発明によれば、研磨時にウェハが熱の悪影響を受けにくくなる結果、ウェハを正確に研磨することが可能となり、大口径・高品質のウェハを得ることができる。

[0056]

(3) 請求項1乃至5,技術的思想1のいずれか1つに記載のテーブルを用いた製造方法であって、前記流体流路に冷却用流体を流しながら、前記テーブルの研磨面に対して前記半導体ウェハを回転させつつ摺接させることにより、前記半導体ウェハの研磨を行う工程を、少なくとも含むことを特徴とする半導体ウェハの製造方法。従って、この技術的思想3に記載の発明によれば、研磨時にウェハが熱の悪影響を受けにくくなり、大口径・高品質のウェハを得ることができる

[0057]

【発明の効果】

以上詳述したように、請求項1~5に記載の発明によれば、テーブル均熱性に

[0058]

請求項3に記載の発明によれば、耐久性及び均熱性の向上を図ることができる

請求項4に記載の発明によれば、均熱性のさらなる向上を図ることができる。

[0059]

請求項5に記載の発明によれば、強度に優れかつ困難なく製造可能なテーブルとすることができる。

【図面の簡単な説明】

- 【図1】本発明を具体化した一実施形態におけるウェハ研磨装置を示す概略 図。
 - 【図2】実施形態のウェハ研磨装置に用いられるテーブルの要部拡大断面図

【符号の説明】

1…ウェハ研磨装置、2…ウェハ研磨装置用テーブル、2a…研磨面、5…半 導体ウェハ、6…ウェハ保持プレート、6a…保持面、11A,11B…基材、 12…流体流路としての水路、13…溝。

【図1】

【図2】

【要約】

【課題】 テーブル均熱性に優れ、半導体ウェハの大口径化・高品質化に対応可能なウェハ研磨装置用テーブルを提供すること。

【解決手段】 ウェハ研磨装置1は、テーブル2及びウェハ保持プレート6を備える。プレート6の保持面6aに保持されている半導体ウェハ5は、テーブル2の上部にある研磨面2aに摺接される。テーブル2は積層構造物であって、その最上部に位置するセラミックス製基材11Aの裏面側には、流体流路12の一部をなす溝13が形成されている。

【選択図】 図1

識別番号

[000000158]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住 所 岐阜県大垣市神田町2丁目1番地

氏 名 イビデン株式会社

THIS PAGE BLANK (USPTO)