Lógica Computacional

Aula Teórica 9

Resolução proposicional: Propriedades e estratégias de prova

Ricardo Gonçalves

Departamento de Informática

13 de outubro de 2023

Correcção e Completude da Resolução

Resolução: aplicações

Teorema da Correção e Completude da Resolução

Dada $\varphi \in F_P$ com $FNC(\varphi)$, então:

 $\emptyset \in Res^*(\varphi)$ se e só se φ é contraditória

resolvente da fórmula toda

Estratégias de resolução

Verificação de natureza da fórmula

Qual a natureza de $\varphi \in F_P$?

- Colocar na FNC
- 2 Aplicar Lema das disjunções para verificar se é válida
- 3 Se não for válida, usar Resolução para verificar se é possível ou contraditória

Resolução e Validade

Objetivo do algoritmo de Resolução

Verificar se uma dada fórmula é contraditória ou não.

Resolução para verificar validade

Podemos usar Resolução para verificar a validade de fórmula?

Proposição

 φ é válida se e só se $\neg \varphi$ é contraditória

Corolário

Dada uma fórmula $\varphi \in F_P$, tem-se que:

 φ é válida se e só se $\emptyset \in \operatorname{Res}^*(\neg \varphi)$

Resolução e Consequência Semântica

Resolução para verificar Consequência Semântica

Podemos usar Resolução para verificar Consequência Semântica?

Proposição

Resolução: aplicações

$$\{\psi_1,\dots,\psi_n\}\models arphi$$
 se e só se $(igwedge_{i=1}^n\psi_i)\wedge (\lnotarphi)$ é contraditória

Corolário

Dadas fórmulas $\psi_1, \ldots, \psi_n, \varphi \in F_P$, tem-se que:

$$\{\psi_1,\dots,\psi_n\}\models\varphi\quad\text{se e só se}\quad\emptyset\in\mathrm{Res}^*((\textstyle\bigwedge_{i=1}^n\psi_i)\wedge(\neg\varphi))$$

Objectivo

Resolução: aplicações

Procedimento automático

- Pretende-se encontrar formas de implementar o método de resolução, de forma a que seja mais eficiente.
- No caso de uma fórmula φ ser contraditória:
 - não queremos ter de calcular todo o conjunto $Res^*(\varphi)$
 - queremos uma prova simples que mostre que $\emptyset \in Res^*(\varphi)$
 - com que ordem calculamos os resolventes de forma a obter \emptyset ?
 - estratégias ad-hoc não são (necessariamente) eficientes

Estratégias de resolução

Sistemas de prova

Sistema de prova

Um sistema de prova sobre F_P é um conjunto de regras de inferência.

Prova formal ou derivação

Dado um sistema de prova sobre F_P , uma prova formal ou derivação de uma fórmula φ a partir de um conjunto de fórmulas $\mathcal C$ é uma sequência finita de fórmulas de F_P tal que:

- ullet o último elemento da sequência é φ
- cada elemento da sequência é:
 - um elemento de C ou
 - obtido de anteriores usando uma das regras de inferência

Estratégias de resolução

Resolução

Sistema \mathcal{R}

 \emptyset pode ser derivado no Sistema \mathcal{R} a partir de um conjunto \mathcal{C} de cláusulas se existir uma sequência finita de cláusulas tal que:

- a última cláusula da sequência é ∅
- cada cláusula da sequência é:
 - uma cláusula de C ou
 - obtido de duas cláusulas anteriores usando Resolução

A sequência é uma prova no Sistema \mathcal{R} de \emptyset a partir de \mathcal{C} . É também chamada uma *refutação* por Resolução de $\mathcal{C}.$

Notas

- Em cada passo colocamos a justificação para esse passo
- Numeramos a sequência para ser mais fácil referir um elemento anterior

Exemplo de prova por resolução

Seja
$$\mathcal{C} = \{\{p,q, \neg r\}, \{p, \neg q\}, \{\neg p\}, \{p,q,r\}\}$$

Passo	Dedução	Justificação
1	$\{p,q,\neg r\}$	C_1
2	$\{p,q,r\}$	C_4
3	$\{p,q\}$	Res: 1 e 2
4	$\{p, \neg q\}$	C_2
5	$\{p\}$	Res: 3 e 4
6	$\{\neg p\}$	C_3
7	Ø	Res: 5 e 6

Resultados

Resolução: aplicações

Teorema

Seja $\varphi \in F_P$ tal que $FNC(\varphi)$.

Se existe uma prova no Sistema \mathcal{R} de \emptyset a partir do conjunto de cláusulas que representa φ , então $\emptyset \in \text{Res}^*(\varphi)$.

Aplicação

Pelo Teorema da Correção do algoritmo de Resolução, podemos mostrar que uma formula φ é contraditória fazendo uma prova no Sistema \mathcal{R} de \emptyset a partir do conjunto das cláusulas de φ .

Corolário - Correção do Sistema \mathcal{R}

Seja $\varphi \in F_P$ tal que $FNC(\varphi)$.

Se existe uma prova no Sistema \mathcal{R} de \emptyset a partir do conjunto de cláusulas que representa φ , então φ é contraditória.

Estratégias de resolução

•000000000

Estratégias de resolução

Com que ordem/estratégia aplicamos a regra da Resolução para derivar ∅?

Uma estratégia de Resolução

Resolução Negativa

Diz-se que uma prova por Resolução segue a estratégia de Resolução Negativa ou Resolução-N, se em todas as aplicações da regra da Resolução nessa prova pelo uma das cláusulas só tem literais negativos.

Estratégias de resolução

00000000

Exemplo de Resolução-N

$$\mathcal{C} = \{ \{p, q\}, \{\neg p, r\}, \{\neg q, s\}, \{\neg r\}, \{\neg s\} \}$$

Resolução-N, solução 1 Dedução Justificação Passo C_4 $\{\neg r\}$ $\{\neg p, r\}$ C_2 3 $\{\neg p\}$ Res: 1 e 2 $\{p,q\}$ C_1 5 $\{q\}$ Res: 3 e 4 6 $\{\neg s\}$ C_5 $\{\neg q, s\}$ C_3 8 $\{\neg q\}$ Res: 6 e 7 Res: 5 e 8

Outro exemplo de Resolução-N

$$\mathcal{C} = \{ \{p, q\}, \{\neg p, r\}, \{\neg q, s\}, \{\neg r\}, \{\neg s\} \}$$

Resolução-N, solução 2

Resolução: aplicações

Passo	Dedução	Justificação
1	$\{\neg s\}$	C_5
2	$\{\neg q, s\}$	C_3
3	$\{\neg q\}$	Res: 1 e 2
4	$\{\neg r\}$	C_4
5	$\{\neg p, r\}$	C_2
6	$\{\neg p\}$	Res: 4 e 5
7	$\{p,q\}$	C_1
8	$\{q\}$	Res: 6 e 7
9	Ø	Res: 3 e 8

Propriedade da Resolução-N

Teorema da Completude da Resolução-N

Seja $\varphi \in F_P$ tal que $FNC(\varphi)$. Então,

$$\emptyset \in \mathsf{Res}^*(\varphi)$$

se e só se

 \emptyset pode ser derivado por Resolução-N a partir de φ

Outra estratégia de Resolução

Resolução Linear

Diz-se que uma prova por Resolução segue a estratégia de Resolução Linear ou Resolução-L, se cada aplicações da regra da Resolução é aplicada ao resolvente obtido no passo anterior.

6

8

Exemplo de Resolução-L

$$\mathcal{C} = \{ \{p, q\}, \{\neg p, r\}, \{\neg q, s\}, \{\neg r\}, \{\neg s\} \}$$

 C_3

 C_5

Res: 5 e 6

Res: 7 e 8

Resolução-L, solução 1 Dedução Justificação Passo $\{\neg p, r\}$ C_2 C_{4} 3 Res: 1 e 2 $\{\neg p\}$ $\{p,q\}$ C_1 5 $\{q\}$ Res: 3 e 4

 $\{\neg q, s\}$

 $\{s\}$

 $\{\neg s\}$

Resolução: aplicações

$$\mathcal{C} = \{\{p,q\}, \{\neg p,r\}, \{\neg q,s\}, \{\neg r\}, \{\neg s\}\}$$

Resolução-L, solução 2			
Passo	Dedução	Justificação	
1	$\{\neg q, s\}$	C_3	
2	$\{\neg s\}$	C_5	
3	$\{\neg q\}$	Res: 1 e 2	
4	$\{p,q\}$	C_1	
5	$\{p\}$	Res: 3 e 4	
6	$\{\neg p, r\}$	C_2	
7	$\{r\}$	Res: 5 e 6	
8	$\{\neg r\}$	C_4	
9	Ø	Res: 7 e 8	

Este e a anterior são provas por Resolução-N?

Propriedade da Resolução-L

Teorema da Completude da Resolução-L

Seja $\varphi \in F_P$ tal que $FNC(\varphi)$. Então,

$$\emptyset \in \mathsf{Res}^*(\varphi)$$

se e só se

 \emptyset pode ser derivado por Resolução-L a partir de φ

Resolução-LN

Será que podemos combinar as duas estratégias?

Podemos sempre fazer Resolução-LN?

Exemplo: $C = \{ \{p, q\}, \{\neg p, r\}, \{\neg q, s\}, \{\neg s\}, \{\neg r\} \} \}$

Resolução-LN?

Pela estratégia N temos de começar de C_4 ou de C_5 .

- Começando com C_4 : juntamente com C_3 obtém-se $\{\neg q\}$. Depois usamos C_1 e obtemos $\{p\}$. Teríamos de usar C_2 . Falha a estratégia N
- Começando com C_5 : juntamente com C_2 obtém-se $\{\neg p\}$. Depois usamos C_1 e obtemos $\{q\}$. Teríamos de usar C_3 . Falha a estratégia N

Por Resolução-LN não dá.

A estratégia LN não é universal!

Fórmulas de Horn

Recordar

Seja $\varphi \in F_P$ tal que FNC(φ). Se cada cláusula em φ contém no máximo um literal positivo, então φ diz-se uma fórmula de Horn.

Teorema

Seja $\varphi \in F_P$ tal que FNC(φ). Se φ é uma fórmula de Horn então

$$\emptyset \in \mathsf{Res}^*(\varphi)$$

se e só se

 \emptyset pode ser derivado por Resolução-LN a partir de φ

Resolução-SLD

Terminologia

- Cláusula só com literais negativos diz-se objetivo
- Cláusula só com um literal positivo diz-se determinada
- Na aplicação de Resolução-N temos de escolher, de uma cláusula objetivo, que literal negativo vai se usado para calcular o próximo resolvente
- Chama-se função de seleção a uma estratégia de escolha do literal negativo a usar
- A função de seleção deve ser invariante para qualquer função de substituição (não pode depender dos símbolos).

Resolução-SLD

A Resolução-SLD (Linear e Determinada, com Selector) é a Resolução-LN com uma função de seleção.

Exemplo de Resolução-SLD

A Resolução-SLD está na base da programação em lógica.

Teorema

Resolução: aplicações

Seja $\varphi \in F_P$ tal que FNC(φ). Se φ é uma fórmula de Horn então

$$\emptyset \in \mathsf{Res}^*(\varphi)$$

se e só se

 \emptyset pode ser derivado por Resolução-SLD a partir de φ

igual ao slide 21, em vez de Resolução-SLD está Resolução-LN (ver slide 20 que diz que uma é outra???)

Exemplo de Resolução-SLD

Resolução: aplicações

 $\mathcal{C} = \{ \{\neg p, s\}, \{p, \neg q\}, \{q\}, \{\neg r, \neg s\}, \{r, \neg t\}, \{t\} \}$ É fórmula de Horn. Vamos usar Resolução-SLD com seletor "à direita" (selecionar o literal mais à direita):

Passo	Dedução	Justificação
1	$\{\neg r, \underline{\neg s}\}$	C_4
2	$\{\neg p, s\}$	C_1
3	$\{\neg p, \underline{\neg r}\}$	Res: 1 e 2
4	$\{r, \neg t\}$	C_5
5	$\{\neg p, \underline{\neg t}\}$	Res: 3 e 4
6	$\{t\}$	C_6
7	$\{\neg p\}$	Res: 5 e 6
8	$\{\overline{p}, \neg q\}$	C_2
9	$\{\neg q\}$	Res: 7 e 8
10	${\overline{q}}$	C_3
11	Ø	Res: 9 e 10

Outro exemplo de Resolução-SLD

$$\mathcal{C} = \{ \{\neg p, \neg q, t\}, \{p\}, \{\neg p, q\}, \{\neg t\} \}$$
 É fórmula de Horn. Vamos usar Resolução-SLD co

Resolução como sistema de prova

É fórmula de Horn. Vamos usar Resolução-SLD com seletor "à esquerda" (selecionar o literal mais à esquerda):

Passo	Dedução	Justificação
1	$\{\underline{\neg t}\}$	C_4
2	$\{\neg p, \neg q, t\}$	C_1
3	$\{\neg p, \neg q\}$	Res: 1 e 2
4	${\overline{p}}$	C_2
5	$\{\neg q\}$	Res: 3 e 4
6	$\{\overline{\neg p},q\}$	C_3
7	$\{\neg p\}$	Res: 5 e 6
8	${\overline{p}}$	C_2
9	Ø	Res: 7 e 8

Verificação de natureza da fórmula

Qual a natureza de $\varphi \in F_P$?

Colocar na FNC.

Resolução: aplicações

- 2 Aplicar Lema das disjunções para verificar se é válida
- 3 Se não for válida, usar Resolução para verificar se é possível ou contraditória:
 - Se suspeitarmos que a fórmula é contraditória, podemos tentar usar o Sistema \mathcal{R} :
 - Se for fórmula de Horn usamos Resolução-SLD
 - Caso contrário podemos usar Resolução-N ou Resolução-L
 - Em caso de dúvida, podemos sempre calcular Res*

Exercícios

Qual a natureza das seguintes fórmulas?

- $\bullet \ (p \to (r \land q)) \land ((s \land q) \to r) \land \neg (r \to p)$
- $\bullet \ (p \to q) \land \neg (p \to (r \lor q))$