

Aula 06 - Projetos de Circuitos Combinacionais

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Sumário

- Circuitos Somadores e Subtratores
- Multiplexadores e demultiplexadores

Problema

• Construir um circuito digital capaz de somar dois números 8 bits.

Meio Somador

a _o	b _o	s _o	c _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\mathbf{s}_0 = \mathbf{a}_0 \oplus \mathbf{b}_0$$
$$\mathbf{c}_{\mathsf{OUT}} = \mathbf{a}_0 \cdot \mathbf{b}_0$$

Somador Completo

Somador para os demais bits

a _n	b _n	C _n	S _n	c _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

a _n	b _n	C _n	S _n	c _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador Completo

Circuito Somador

Somador de 8 bits

Somador comercial -74LS283

Meio Subtrator

Meio Subtrator

a _o	b _o	s _o	c _{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$\mathbf{s}_0 = \mathbf{a}_0 \oplus \mathbf{b}_0$$

 $\mathbf{c}_{OUT} = \bar{\mathbf{a}}_0 \cdot \mathbf{b}_0$

Subtrator Completo

Subtrator para os demais bits

an	b _n	C _n	c _{out}	S _n
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

a _n	b _n	C _n	c _{out}	S _n
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Subtrator Completo

Circuito Subtrator

Subtrator de 8 bits

Multiplexadores

- A seleção de 2ⁿ entradas é feitas através de n linhas de controle que endereçam cada uma destas entradas para a saída.
- Cada entrada possui um endereço determinado, o qual é, em geral, associado a um mintermo.
- A saída recebe o valor da entrada correspondente ao endereço escolhido.
- Exemplo de um multiplexador/seletor de duas entradas e uma saída (mux 2->1)

MUX 4-1

Multiplexadores

• É possível construir multiplexadores para mais que quatro canais a partir de MUX 4-1

l1	12	13	14	15	16	17	18	C1	C2	С3	S
								0	0	0	l1
								0	0	1	12
								0	1	0	13
								0	1	1	14
								1	0	0	15
								1	0	1	16
								1	1	0	17
								1	1	1	18

MUX 8-1

MUX 8-1

MUX 4x1 (8 bits)

Demultiplexadores

 Permitem o roteamento de um único canal de informação para diferentes canais;

Multiplexador comercial - 74LS151

DEMUX 4-1

- 1	C1	C2	S1	S2	S3	S4
	0	0	ı			
	0	1		ı		
	1	0			ı	
	1	1				I

Demultiplexadores

 É possível construir demultiplexadores para mais que quatro canais a partir de DEMUX 1-4

1	C1	C2	С3	S1	S2	S3	S4	S5	S6	S7	S8
	0	0	0	1							
	0	0	1		ı						
	0	1	0			ı					
	0	1	1				ı				
	1	0	0					ı			
	1	0	1						1		
	1	1	0							1	
	1	1	1								ı

Demultiplexadores

- Da mesma forma que o Mux, no Demux o número de entradas está relacionado com o número de variáveis de seleção, ou seja:
 - \circ n = 2m
 - o n número de canais de saída;
 - m número de variáveis de seleção.
- Para:
 - m=2 o circuito possui quatro canais de saída,
 - o m=3 o circuito possui oito canais de saída
- Algumas aplicações do Demux:
 - o seleção de circuitos que devem receber uma determinada informação digital;
 - o conversão de informação serial em paralela;

DEMUX 1-8

DEMUX 1-8

Multiplexador comercial - 74LS138

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	A ₀ to A ₂	address inputs
4, 5	$\overline{\mathbb{E}}_1, \overline{\mathbb{E}}_2$	enable inputs (active LOW)
6	E ₃	enable input (active HIGH)
8	GND	ground (0 V)
15, 14, 13, 12, 11, 10, 9, 7	\overline{Y}_0 to \overline{Y}_7	outputs (active LOW)
16	Vcc	positive supply voltage

Multiplexador comercial - 74LS138

3-to-8 line decoder/demultiplexer; inverting

FUNCTION TABLE

	INPUTS						G C	300	OUT	PUTS	500		90.20
E ₁	E ₂	E ₃	A_0	A ₁	A ₂	\overline{Y}_0	<u>Y</u> 1	₹ ₂	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	₹ 6	₹ 7
H X X	X H X	X X L	X X X	X X X	X X X	H H H	H H H	H H H	H H H	H H H	H H H	H H H	H H H
L L L	L	H H H	L H L	L L H	L L L	L H H	H L H	H H L	H H	H H H	H H H	H H H	H H H
L L	L	H H H	H L H	H L	L H H	H H H	H H H	H H H	L H H	H L H	H	H H H	H H H
L L	L	H H	L H	H	H H	H H	H H	H H	H	H H	H	L H	H L

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Aula 06 - Projetos de Circuitos Combinacionais

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1