

Computer Science Fundamentals

Channel Coding – Hamming Codes / Checksums

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Fakultät für Informatik J. Schmidt CSF – Channel Coding – Hamming 1

Overview

- Hamming Codes
- Non-binary checksums

Hamming Codes

Hamming Codes

- Developed by R. Hamming (1950)
 - Binary Hamming codes are 1-error-correcting
 - with a Hamming distance of 3
- Idea
 - Mixes (even) parity bits with the original data at defined positions (powers of two)
 - Uses check bits during decoding, whose binary coding indicates
 - = $0 \rightarrow \text{error-free transmission}$
 - $> 0 \rightarrow$ the location of the erroneous bit
 - All Hamming codes have length 2^r 1 bits, with r ≥ 2
 - r parity bits (which will be used to generate the check bits during decoding) at positions 2^0 , 2^1 , 2^2 , ..., 2^{r-1} .
 - $2^r 1 r$ data bits

(7, 4) Hamming Code

Shortest non-trivial Hamming code

- block code of length $2^3 1 = 7$ bits
- 3 parity bits at positions 2^0 , 2^1 , $2^2 \rightarrow$ we can encode 7 error positions
- 4 data bits

we count bits right to left as usual you'll often see this from left to right this is just a convention

 7
 6
 5
 4
 3
 2
 1
 Parity bit at position

 D
 D
 D
 P
 D
 P
 P
 position

 D
 D
 P
 20

 D
 D
 D
 P
 21

 D
 D
 D
 P
 22

we start counting at 1 (not at 0 as usual – 0 indicates "no error")

D ... Data bit

P... Parity bit

(7, 4) Hamming Code – Example

We want to transmit $1101 \rightarrow$ the transmitted bit sequence is 1100110

7	6	5	4	3	2	1
1	1	0	0	1	1	0
1	-	0	ì	1	1	0
1	1	-	-	1	1	-
1	1	0	0	1	1	-

When one of the bits 1 to 7 is changed \rightarrow one or more of the three parity bits are affected

• Error in bit 7

→ affects all three parity bits

• Error in bit 6

→ affects only parity bits 2 and 4

• Error in a parity bit

→ affects only this bit

(7, 4) Hamming Code

Decimal	D	D	D	Р	D	Р	Р
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	1	1	0	0	1
3	0	0	1	1	1	1	0
4	0	1	0	1	0	1	0
5	0	1	0	1	1	0	1
6	0	1	1	0	0	1	1
7	0	1	1	0	1	0	0
8	1	0	0	1	0	1	1
9	1	0	0	1	1	0	0
10	1	0	1	0	0	1	0
11	1	0	1	0	1	0	1
12	1	1	0	0	0	0	1
13	1	1	0	0	1	1	0
14	1	1	1	1	0	0	0
15	1	1	1	1	1	1	1

All Hamming codes are perfect

- They are as dense as possible for a 1-error-correcting code and can always be decoded uniquely.
- Every possible word is either actually a code word or
- has a distance of 1 to an actual code word.

(7, 4) Hamming Code – Decoding Example

The sent bit sequence was 1100110; bit 6 changes an we receive 1000110

7	6	5	4	3	2	1	Parity bit	Check bit
1	0	0	0	1	1	0		
1	-	0	-	1	-	0	correct	0 🕇
1	0	-	-	1	1	-	incorrect	1
1	0	0	0	-	-	1	incorrect	1

- The check bits written bottom to top = left to right encode the position of the erroneous bit in binary.
- Here: Binary number $110_2 = 6_{10} \rightarrow \text{error in bit at position 6}$.
- Just invert this bit \rightarrow we obtain the nearest correct code word.

Hamming Codes – Exercise

• You receive the following (7, 4) Hamming code word: 1000111

Was the transmission error-free?

If no: correct the code word!

Decode: Which decimal number was sent?

Hamming Codes are Linear

Using row vectors:
$$c = oG$$

Using row vectors:
$$\mathbf{c} = \mathbf{o}\mathbf{G}$$

Generator for (7, 4) code: $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

maps 7-bit F

Check matrix for (7, 4) code: Hc^T

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} D & D & P & - \\ matches the table exactly! \\ \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{array}$$

maps 4 data bits to 7-bit Hamming code word

7 D	6 D	5 D	4 P	3 D	2 P	1 P
D	-	D	-	D	-	Р
D	D	-	-	D	Р	-
D	D	D	Р	ı		ı

Hamming Codes are Linear – Example

We want to encode 1101

$$c = oG = (1 \quad 1 \quad 0 \quad 1) \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} = (1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0)$$

The sender receives the (correct) code word 1100110 and checks for errors:

$$\boldsymbol{H}\boldsymbol{c}^T = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \text{no error detected}$$

remember: it's all mod 2

Hamming Codes are Linear – Example

The sender receives the (incorrect) code word 1000110 and checks for errors:

$$\boldsymbol{H}\boldsymbol{c}^T = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad \rightarrow \text{error detected at position 6}$$

remember: it's all mod 2

Hamming Codes are Linear

In fact, we can choose the order of the columns of **H** any way we like

- this will give us a different, but equivalent Hamming code
- in particular, we can use the standard form
 - this way, the parities are no longer mixed in between the data bits
 - the generator has to be changed accordingly

Example: (7, 4) code:

Hamming Codes are Linear – Example Revisited

We want to encode 1101

We want to encode 1101
$$c = oG_S = (1 \quad 1 \quad 0 \quad 1) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}}_{\text{original data - much easier to separate from parities by receiver after correction}$$

The sender receives the (correct) code word 1101010 and checks for errors:

$$\boldsymbol{H}_{S}\boldsymbol{c}^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \text{no error detected}$$

remember: it's all mod 2

Hamming Codes are Linear – Example Revisited

The sender receives the (incorrect) code word 1001010 and checks for errors:

$$\boldsymbol{H}_{S}\boldsymbol{c}^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \longrightarrow \text{error detected at position 6}$$

remember: it's all mod 2

(15, 11) Hamming Code

15 bits total

- 4 parities
- 11 data bits

							2 ³				2 ²		21	20
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D	D	D	D	D	D	D	P	D	D	D	P	D	P	P
D	_	D	-	D	•	D	-	D	-	D	-	D	-	Р
D	D	-	-	D	D	-	-	D	D	-	-	D	Р	-
D	D	D	D	-	_	-	-	D	D	D	Р	-	-	-
D	D	D	D	D	D	D	Р	-	-	_	-	-	-	-

D ... Data bit

P ... Parity bit

Checksums

Checksums

- Humans handling sequences of (mostly decimal) digits are prone to make mistakes
 - e.g., when entering order numbers or product codes into computers
- We will look at codes that add checksums to cope with incorrect inputs
- Simple method: **Digit Sum** (*Quersumme*)
 - Add up all digits, reduce modulo 10 to get a single decimal digit (check digit, Prüfziffer)
 - Append at the end of the sequence
 - Incorrect inputs can be detected by comparing the resulting check digit with the expected one
 - Drawback: permutations of correct digits result in the same check digit
 - Possible solution: Weigh digits when summing

Checksums – ISBN-10

International Standard Book Number

Calculation of p:

- weighted sum: $10a_1 + 9a_2 + 8a_3 + 7a_4 + 6a_5 + 5a_6 + 4a_7 + 3a_8 + 2a_9$
- Determine p such that the total sum including p is divisible by 11 without remainder

Result:

- $0 \le p \le 10$ the two-digit remainder 10 is replaced by the single character X
- For a correct ISBN-10 we have: $(10a_1 + 9a_2 + 8a_3 + 7a_4 + 6a_5 + 5a_6 + 4a_7 + 3a_8 + 2a_9 + p) \mod 11 = 0$
- Both, incorrectly entered digits as well as transposed digits can be detected

ISBN-10 — Exercise

Check the following ISBN: 3-528-25717-2

Is it correct?

Checksums – IBAN

International Bank Account Number

- up to 34 characters, usually shorter
- in Germany: 22 characters

 $\mathsf{DE}\;\mathsf{p}_1\;\mathsf{p}_2\;\mathsf{b}_1\mathsf{b}_2\mathsf{b}_3\mathsf{b}_4\mathsf{b}_5\mathsf{b}_6\mathsf{b}_7\mathsf{b}_8\;\mathsf{k}_1\mathsf{k}_2\mathsf{k}_3\mathsf{k}_4\mathsf{k}_5\mathsf{k}_6\mathsf{k}_7\mathsf{k}_8\mathsf{k}_9\mathsf{k}_{10}$

 $k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10}$: former account number

 $b_1b_2b_3b_4b_5b_6b_7b_8$: former bank code

 $p_1 p_2$: checksum

DE: country code

Checksums – IBAN Checksum Calculation

- Initialize $p_1 p_2 = 00$
- Move country code and p₁ p₂ to the right:

$$b_1b_2b_3b_4b_5b_6b_7b_8 k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10}$$
 DE 00

• Replace country code by the positions of the characters in the alphabet + 9 (A=10, B=11, ...):

$$b_1b_2b_3b_4b_5b_6b_7b_8$$
 $k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10}$ **13 14** 00

- Calculate remainder of division by 97
- Choose p₁ p₂ such that the remainder is 1

IBAN Checksum Calculation – Example

Bank code: 711 500 00, account number: 215 632

• Combination, country code/checksum on the right:

711500000000215632**DE00**

• Replace country code by the positions in alphabet + 9:

71150000000215632**1314**00

 Remainder of division by 97: 711500000000215632131400 mod 97 = 49

• Checksum is: 98 - 49 = 49

• IBAN: DE 49 7115 0000 0000 2156 32

IBAN Checksum Validation – Example

IBAN: DE 49 7115 0000 0000 2156 32

• country code/checksum on the right:

711500000000215632**DE49**

Replace country code by the positions in alphabet + 9 :

711500000000215632**1314**49

• Remainder of division by 97:

711500000000215632131449 mod 97 = 1

 \rightarrow IBAN correct

IBAN – Questions

- 1. Is this a weighted sum that we use with IBAN?
- 2. We use integers with up to 36 decimal digits with standard data types in typical programming languages, we have up to 64 bits:
 - How many bits would be required for (unsigned) integer arithmetic with 36 decimal places?
 - Nevertheless: How can we perform the calculations using standard types? Or can't we?
- 3. Why mod 97? And not 98, 99, 100? We would still get two-digit checksums.

Checksums in General

Check the (decimal) sequence $z_n \dots z_i \dots z_0$ (including check digits) using weights g_i

$$\sum_{i=0}^{n} g_i z_i \mod m = 0$$

- Detection of single incorrect digits is guaranteed if all weights g_i and m are relatively prime (teilerfremd): $gcd(g_i, m) = 1$
- Detection of the transposition (*Vertauschung*) of two digits z_i and z_k is guaranteed, if $g_i g_k$ and m are relatively prime.
- \rightarrow using prime numbers for m makes sense