Mixup模型实验结果报告

实验背景

Mixup由MIT和facebook提出,无论在学术界还是在工业界都有比较高的地位,成为数据增强的一种标配。

但经个人调研,网上实验结果都是基于英文数据集的,暂没发现基于中文数据集,所以决定用中文数据集(今日头条分类数据集)来实验,探讨Mixup的有效性。

实验中用到的算法来自论文: mixup: BEYOND EMPIRICAL RISK MINIMIZATION。

实验目的

探讨Mixup在小样本中文数据集下的增强效果。

实验Mixup采用策略

- 1. embed: 在embedding采用Mixup策略;
- 2. encoder: 在编码层采用Mixup策略;
- 3. sent: 在pool层采用Mixup策略。

实验数据

1. 全量数据分布

训练集总共15个类别,共计229612条数据。

测试集总共15个类别,共计76538条数据。

3. 实验训练数据

本次实验目的为探讨小样本数据增强效果,所以选择不同批次的小样本来进行实验。

总共8个批次,包括10,25,50,100,200,300,500,800。

10批次代表每个类别10条数据,15个类别总共就有150条数据,以此类推。

4. 实验测试数据

因本地gpu资源有限和任务次数较多,测试集从每个类别选取1500条数据(不足则选择该类别全部数据)。

实验测试数据总共15类别,共计20813条数据。

实验结果

为了验证 普通模型+Mixup 和 预训练模型+Mixup 的效果,分别采用了 TextCNN和chinese-base-bert 两个模型来训练, 每个模型分别采用了 none(无Mixup)、embed、encoder、sent 四种策略,分别在 10/cls、25/cls、50/cls、100/cls、200/cls、300/cls、500/cls、800/cls 共8种批次的数据集上分别训练,全部在1500/cls 批次的测试集上验证模型效果。

1. TextCNN + none

先看下TextCNN用不同批次训练数据集在测试集下的实验结果。

指标随着训练数据量的提升而增加。

2. TextCNN不同批次训练数据在测试集的结果

TextCNN 不同批次训练数据 在 none(无Mixup)、embed、encoder、sent 四种策略下的实验结果。

结果一览图:

model	train_num	none	embed	encoder	sent	up
TextCNN	10/cls	25.57	27.31	23.88	27.32	¹ 1.75
	25/cls	42.58	44.45	40.33	42.66	1.87
	50/cls	52.83	53.46	50.13	52.62	10.63
	100/cls	58.72	59.31	57.12	58.67	10.59
	200/cls	65.08	65.23	62.34	64.57	↑0.15
	300/cls	68.2	68.41	65.68	67.82	↑0.21
	500/cls	71.94	72.08	69.33	71.64	↑0.14
	800/cls	74	74.35	71.8	73.89	10.35

可以看出,TextCnn使用Mixup策略,效果都可以得到提升,并且embed策略提升最明显。

3. chinese-base-bert + none

看下chinese-base-bert用不同批次训练数据集在测试集下的实验结果。

和TextCNN一样,指标随着训练数据量的提升而增加。

4. chinese-base-bert不同批次训练数据在测试集的结果

chinese-base-bert 不同批次训练数据 在 none(无Mixup)、embed、encoder、sent 四种策略下的实验结果。

结果一览图:

model	train_num	none	embed	encoder	sent	up
Bert	10/cls	71.19	72.17	71.7	71.43	10.98
	25/cls	75.81	76.8	75.82	75.3	10.99
	50/cls	79.41	79.11	79.18	79.77	10.36
	100/cls	80.27	81.29	80.62	80.75	1.02
	200/cls	81.49	81.43	81.55	81.27	1006
	300/cls	82.3	82.41	81.88	82.23	↑0.11
	500/cls	83.28	83.25	83.15	83.13	↓0.03
	800/cls	83.89	84.05	84.02	84.13	10.25

可以看出,chinese-base-bert使用Mixup策略,效果基本都可以得到提升,但提升效果较TextCNN有减少,总体指标提升在 $0.12\sim1.5$ 个点。

实验结果

- 1. Mixup总会有效果,策略使用优先顺序为 embed->sent->encoder;
- 2. 训练数据量越小,使用Mixp策略,提升效果越好;
- 3. 预训练模型因有大量先验知识,提升效果没有无预训练模型效果好;
- 总之,为你的训练好的模型加上Mixup策略,你的模型效果总会得到提升。