Química Primórdios da Mecânica Quântica

Prof. Diego J. Raposo UPE – Poli 2025.2

Ondas

- Para entender melhor a natureza do átomo e como suas partículas estão organizadas é necessário entender os conceitos de onda e de luz.
- Ondas são oscilações em uma grandeza y periódicas no espaço (x)
 e no tempo (t);
- y é representada por funções trigonométricas, sendo y(x,t) chamada de função de onda.

Ondas

 Existem ondas progressivas (se propagam com velocidade v ao longo de um eixo) e estacionárias (confinadas numa região do espaço);

A periodicidade no espaço e no tempo é caracterizada pelos parâmetros λ (comprimento de onda) e T

(período), respectivamente;

Comprimento de onda: distância a partir da qual há uma repetição na função no espaço. Em unidade de comprimento (m)

Período da onda: tempo que leva para voltar para posição inicial (para andar 1 comprimento de onda). Em unidade de tempo (s)

Ondas

• Em ondas progressivas T e λ estão relacionados a ν :

$$v = \frac{\Delta x}{\Delta t} \quad \xrightarrow{\textit{Em um ciclo}} \quad v = \frac{\lambda}{T} = \lambda \cdot \frac{1}{T}$$

• Define-se a frequência *f* como:

$$f = \frac{1}{T}$$

Em unidades de (tempo)⁻¹. Se tempo = s, define-se a unidade $Hz = s^{-1}$;

- A frequência mede a quantidade de ciclos por unidade de tempo;
- Juntando essas informações, vemos que para ondas progressivas:

$$v = \lambda f$$

Radiação eletromagnética

- A luz é uma onda que se propaga em diferentes meios, inclusive no vácuo, com velocidade constante c = 3 · 10⁸ m/s:
- Como é onda: $c=\lambda f$
- Ela é resultado da oscilação de campos elétricos e magnéticos, por isso é chamada de radiação eletromagnética;
- A radiação eletromagnética pode ser monocromática (um comprimento de onda) ou policromática (vários comprimentos de onda).

policromática

Radiação eletromagnética

A faixa de todos os possíveis comprimentos de onda é chamada de espectro eletromagnético.

Radiação eletromagnética

• Quando λ aumenta, f diminui, e vice-versa, para manter a velocidade c constante.

 $c = \lambda f$

Exercícios

- 1) Calcule a frequência da luz vermelha (750 nm) em Hz.
- 2) Calcule o comprimento de onda da luz com 10¹⁶ Hz em Å.
- 3) Qual laser possui maior comprimento de onda, o verde ou o vermelho? Qual possui maior frequência?

Fenômenos anômalos

• A mecânica quântica surgiu para explicar fenômenos que a física clássica (leis de Newton e equações de Maxwell) não conseguiam descrever corretamente. São sobretudo:

Radiação do corpo negro

Efeito fotoelétrico

Linhas espectrais

Radiação do corpo negro

- Corpos aquecidos emitem luz;
- Corpos negros ideais n\u00e3o refletem ou emitem outro tipo de luz, por isso \u00e9 chamada de radia\u00e7\u00e3o do corpo negro;
- Observou-se que quanto maior a temperatura maior a frequência da luz emitida, do infravermelho (moderadas) até uma pequena parte do ultravioleta (altas);
- Pode-se usar tal fenômeno para estimar temperatura pela cor.

Radiação do corpo negro

- Para explicar tal fenômeno Max Planck assumiu que as ondas eletromagnéticas eram formadas pela vibração dos átomos no sólido aquecido. Sobre essas vibrações ele propôs duas hipóteses revolucionárias:
 - 1) Hipótese quântica: a energia das vibrações não é contínua (pode variar arbitrariamente) e sim discreta, em que a energia total é a soma de um número inteiro (n) de pacotes ("quantum") de energia. Essa energia, portanto, é um múltiplo inteiro de uma energia mínima diferente de zero:

$$E_{\rm vib} = nE_{\rm min}$$

 2) Relação com a frequência: a energia das vibrações é proporcional a frequência de vibração dos átomos:

$$E_{\rm vib} = h f_{\rm vib}$$

• Onde h é chamada de constante de Planck, $6,63 \cdot 10^{-34}$ J s.

Efeito fotoelétrico

- É possível arrancar elétrons de metais pela incidência de luz;
- Observa-se que abaixo de certa frequência (que depende do tipo de metal) isso não ocorre;
- A partir dela, elétrons são removidos, e quanto maior a frequência da luz maior a energia cinética (velocidade) desses elétrons;

(vídeo faz contrário)

(medindo energia cinética dos elétrons)

Efeito fotoelétrico

- Einstein pôde explicar esse comportamento seguindo as mesmas hipóteses propostas por Planck, mas aplicadas à oscilações da luz ao invés de átomos em um sólido:
- 1) Hipótese quântica: A energia da radiação eletromagnética é discreta, sendo a soma de um número inteiro de uma energia mínima:

$$E_{\text{luz}} = nE_{\text{min}}$$

Isso equivale a um sistema de partículas com energia mesma energia mínima, a energia de uma partícula chamada fóton:

$$E_{\min} = E_{\text{fóton}}$$

 2) Relação com a frequência: a energia de um fóton é proporcional a frequência da luz, seguindo a equação de Planck:

$$E_{\text{fóton}} = h f_{\text{fóton}}$$

Efeito fotoelétrico

- Com isso ele deduziu que a energia do fóton é usada para dois fins:
- **a)** retirar o elétron do metal, o que só acontece se ele tiver uma energia superior a uma energia mínima chamada função trabalho, ϕ , associada a uma frequência mínima:

$$\phi = h f_0$$

b) caso a frequência seja maior a mínima, a energia restante é usada para fornecer energia cinética ao elétron, tão maior quanto a frequência do fóton:

$$hf_{\text{fóton}} = \phi + E_{\text{cin}} = hf_0 + m_e v^2 / 2$$

$$E_{\rm cin} = h f_{\rm fóton} - \phi$$

Exemplos

• 4) Sendo um metal aquecido até que sua coloração fique amarelada (luz com comprimento de onda de 590 nm), responda: a) qual a temperatura do metal? b) qual a energia dos fótons, em elétron-volt (1 eV = 1,6 · 10⁻¹⁹ J)?

- 5) A luz laranja possui comprimento de onda de 641 nm. Qual a energia de um fóton dessa luz? Se um pulso de laser emite 1,3 10⁻² J de energia por pulso, quantos fótons são emitidos?
- 6) São necessários 258 kJ para ejetar e⁻ de uma certa superfície metálica. Qual o maior comprimento de onda da luz (em nm) que pode ser usado para ejetar elétrons da superfície do metal via efeito fotoelétrico?
- 7) Quais os metais 1 e 2?

Metal	W (eV)
Ouro	5,3
Prata	4,7
Neodímio	3,3
Césio	2,0

Bons estudos!

Apêndices

PARA ENTENDER ME HOR A NATURERO DO ATOMO E

COMO SUAS PARTÍCULAS ESTÃO ARRANGADAS É NECESSARIO
ENTENPER O CONCEITO DE ONDA E DE LUZ

ONPAS

· ONPAS SÃO OSCILAÇÕES EM UMA GRANDELA Y PERIÓDICA NO ESPAÇO (X) E NO TEMPO (T)

EX .: AD: CORDA, AD: ONDADO MAR, 3D: SOM

· Y & REPRESENTADA POR FUNÇÕES TRICONOMÉTRICAS.
Y(X,T) & CHAMADA DE FUNÇÃO DE ONDA.

· EXISTEM ONTAS PROGRESSIVAS (SE PROFIGAM COM VELOCION-DE N) E ESTACIONÁRIAS (CONFINADAS EM UMA REGIÃO DO ESTACO DX)

PERIODICIDADE NO ESPACO E NO TEMPO É CARACTELIENDA PE-LOS PARÂMETIOS À (COMPRIMENTO DE ONDA) E T (PERÍODO), RESPECTIVAMENTE

· EN ONDAS PROGRESSIVAS TO A ESTATO RECACHOLADOS A T

AGALU OF JUM

2 ADIACÃO ELETROMAGNÉTICA

. A LUZ & UMA CHOA DUE SE PROPAGA EM DIFERENTES MEIOS, INCLUSIVE NO VÁCUO, COM VELOCIDADO CONSTANTE CE 3 10º m/s

COMO É ONDA: 7= 2f => [c= xf]

· ELA É RESULTADO DA OSCILLAÇÃO DE CAMPOS ELÚTRICOS E MACNÉTICOS POR 1550 É CHAMADA DE RAPLAÇÃO ELETROMAGNÉTICA

EXERCÍCIOS

1) CALCULE A FREQUENCIA DA LUZ VEILMELHII

- 2) CALWLE O COMPRIMENTO DE ONDA DA WZ COM 101/12
- 3) QUAL LASER POSSUI O MAIGH COMPTIMENTO DE DNDA,
 O VERDE OU O VERMELIO? DUAL POSSUI MAIOR FREQUÊNCIA?