Structuro-elasto-plasticity (StEP) model for plasticity in disordered solids

Ge Zhang, Sean Ridout, Hongyi Xiao, Robert Ivancic, Entao Yang, Robert Riggleman, Douglas Durian, and Andrea Liu

We study disordered solids made of soft particles

These soft disks repel each other when they overlap, and have no interaction otherwise

One model interaction:
$$v(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i + r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases}$$

Different disordered solids behave differently under shear. Why?

Under external force, some disordered solids form shear bands, and some doesn't. Those forming shear bands are usually more brittle.

Non shear-banding system

Color indicate rearrangements (particles changing neighbors)

A different shearbanding system [1]

Elasto-plastic models: rearrangement and strain interplay

A family of known model for these disordred solids are elasto-plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

Strain field

We want to consider another factor: local structure (softness)

Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I am soft, I have softness S>0

I am hard, I have S<0

Train softness using SVM

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Non-shear-banding system

[1] H. Xiao, R. Ivancic, and D. Durian, Soft matter, 16, 8226 (2020)