Transmissão de Dados

Conceito

- O que é transmissão de dados?
 - Processo de transmissão de dados de um ponto ao outro através de um meio de transmissão.
 - Confiável.
 - Conversão transmissão conversão.
 - É a base de toda comunicação.

Dados e Sinais

- Dados analógicos
 - Contínuos variam ao longo do tempo
 - Luz, som, etc.
- Dados digitais
 - Discretos em forma de bits 0s ou 1s
 - Texto, arquivos, etc.

- Sinais analógicos
 - Contínuos variam amplitude, frequência, fase.
 - · Ondas.
- Sinais digitais
 - Discretos valores finitos 0 ou 1
 - Pulsos.

Por que computadores utilizam sinais digitais?

Meios de Transmissão

- Físicos
 - Fios
 - Cobre
 - Cabos óticos
 - Ar
 - Micro-ondas
 - Rádio
 - Largura de banda, interferência, custos de implantação, etc
 - Meios Guiados / Não Guiados

- Simplex
 - Unicast
- Half-Duplex
 - Radio amador
 - Hub
- Full-Duplex
 - Switch
 - Telefone

Codificação de Sinais Digitais

• Representar os dados digitais (bits 0 e 1) em sinais que possam ser transmitidos por meios físicos digitais.

- Por que?
 - Adaptar ao meio físico formas de onda se propagam melhor.
 - Sincronização entre transmissão e receptor.
 - Detecção de erros.

- Tipos
 - NRZ (Non-Return-to-Zero)
 - Nível de tensão constante durante o período do bit
 - Simples de implementar
 - Possíveis problemas em grandes sequências de 0s ou 1s
 - Tensão positiva para 1s e negativa para 0s

- Tipos
 - RZ (Return-to-Zero)
 - Nível de tensão retorna ao zero no meio do bit.
 - Melhora a sincronização.
 - Dobro da largura de banda comparado com o NRZ

Codificação de Sinais Digitais

- Tipos
 - Manchester
 - Divide cada bit em duas metades iguais.
 - No meio do bit ocorre a transição do sinal elétrico.
 - A direção da variação determina se o bit é 0 ou 1.
 - 0 varia de baixo para cima
 - 1 varia de cima para baixo
 - A transição no meio do bit atua como um relógio.
 - O receptor usa esse "relógio" para se sincronizar com o transmissor.
 - Reduz a possibilidade de erros.
 - Versões mais antigas do Ethernet, RFID

Codificação de Sinais Digitais

- Tipos
 - Manchester Diferencial
 - Variação da codificação Manchester.
 - Mais robusta contra ruídos.
 - Capaz de manter a sincronização em ambientes com interferências
 - No meio do bit ocorre a transição do sinal elétrico.
 - Diferente da Manchester, a codificação é feita pela presença ou ausência de transação no início do intervalo do bit.
 - Bit 0 ocorre transição no intervalo do bit.
 - Bit 1 não ocorre a transição no intervalo do bit.
 - A transição no meio do bit atua como um relógio.
 - Utilizada em redes Token Ring e outras aplicações que exigem confiabilidade

- Processo de alteração das características do sinal analógico para representar dados digitais ou analógicos.
- É um processo fundamental na transmissão de dados através de meios analógicos.
- Por que?
 - Adaptação ao meio que será utilizado para a transmissão limitação do meio.
 - Multiplexação sinais transmitidos simultaneamente.
 - Eficiência reduzir a atenuação e a interferência

- Tipos
 - ASK (Amplitude Shift Keying)
 - Onda portadora: sinal analógico base da transmissão.
 - Sinal modulante: sinal a ser transmitido 0s e 1s
 - A amplitude do sinal portador é alterada enquanto a frequência e a fase permanecem constantes.
 - Amplitude identifica os 0s e 1s.
 - Ex. 5v para 1s e 0v para 0s.
 - Transmissões de rádio AM.
 - Simples de implementar.
 - Muito suscetível a interferências e ruídos.

- Tipos
 - FSK (Frequency Shift Keying)
 - Onda portadora: base da transmissão.
 - Sinal modulante: sinal a ser transmitido 0s e 1s.
 - A frequência do sinal portador é alterada enquanto a amplitude e a fase permanecem constantes.
 - Frequência da portadora é alterada para identificar o sinal.
 - 2KHz para 1s.
 - 1KHz para 0s.
 - Modems antigos.
 - Identificação de chamadas.
 - Rádio amador.
 - · Sistemas de telemetria.
 - Simples de implementar.
 - Imunidade a interferências e ruídos satisfatória.
 - Taxa de transmissão limitada
 - Maior largura de banda.

- Tipos
 - PSK (Phase Shift Keying)
 - Onda portadora: base da transmissão.
 - Sinal modulante: sinal a ser transmitido 0s e 1s.
 - A fase do sinal portador é alterada enquanto a amplitude e a frequência permanecem constantes.
 - A Variação da fase da portadora é alterada para identificar o sinal.
 - 180° para 1s.
 - 0° para 0s.
 - BPSK (Binary Phase Shift Keying) 2 fases (0 e 180°).
 - QPSK (Quadrature Phase Shift Keying) 4 fases (45, 135, 225 e 315°)
 - 8-PSK, 16-PSK, etc: 8, 16, etc fases para identificar o sinal.

- PSK (Phase Shift Keying)
 - Utilizada em modems modernos e de altas velocidades.
 - Comunicação via satélite.
 - Redes Wifi não confundir com **Pre-Shared Key.**
 - Mais eficiente que ASK e FSK.
 - Boa imunidade à ruídos e interferências.
 - Complexa de implementar.

Comparação

- Processo para converter dados digitais em sinais analógicos.
 - Transmitir através de um meio analógico através de uma portadora analógica alterando suas características.
 - Adaptar o sinal ao meio de transmissão.
 - Permitir a multiplexação. (?)

- Atenção:
 - Codificação: Digital para digital.
 - Modulação: Digital para analógico.

- Tipos
 - PAM (Pulse Amplitude Modulation)
 - Amplitude dos pulsos de sinal é alterada em intervalos espaçados em um sinal de mensagem analógico contínuo.
 - Codifica as mensagens na amplitude de uma séria de pulsos de sinal.
 - Sinal analógico é amostrado em intervalos regulares.
 - Frequência dos intervalos deve ser suficiente para que a se consiga recuperar todas as informações do sinal original.
 - A amplitude do pulso é ao valor da amostra do sinal analógico daquele momento.
 - No receptor é realizada a demodulação e a mensagem original é restaurada.

- Tipos
 - PAM (Pulse Amplitude Modulation)
 - Sinal modulante analógico.
 - Sinal modulado pulsos com amplitude variada.
 - A amplitude do pulso varia conforme o sinal modulante.
 - Frequência constante.
 - Sistemas de comunicação digital.
 - Ethernet sob par-trançado.
 - Simples de implementar.
 - Suscetível à ruídos e interferências.

- PWM (Pulse Width Modulation)
 - Largura dos pulsos de sinal são alteradas ao longo do sinal analógico.
 - Intervalos regulares e frequência constante.
 - Largura do sinal varia de acordo com o sinal analógico naquele instante.
 - Quanto maior o valor do sinal, maior a largura do pulso.
 - Quanto menor o valor do sinal, menor a largura do pulso.
 - No receptor o sinal é remontado e mensagem é restaurada.

- Tipos
 - PWM (Pulse Width Modulation)
 - Sinal modulante analógico.
 - Sinal modulado pulsos com largura variada.
 - A largura, ou duração, do pulso varia conforme o sinal modulante.
 - Frequência e amplitude constante.
 - Controle de potência de dispositivos eletrônicos.
 - Relativamente simples.
 - Comparada com a PAM é menos suscetível à ruídos e interferências.

Modulação de Sinais Digitais

- PPM (Pulse Position Modulation)
 - A posição do pulso do sinal é utilizada para codificar o sinal.
 - Pulsos de referência com intervalos regulares são utilizados como referência no deslocamento dos pulsos de sinal.
 - Os pulsos se deslocam para "frente" ou para "trás" para representar os dados.
 - A quantidade de deslocamento altera conforme a informação que está sendo transmitida.
 - Quanto maior a informação, maior o deslocamento e vice- versa.

- Tipos
 - PPM (Pulse Position Modulation)
 - Maior imunidade a ruídos.
 - Eficiência energética.
 - Utilizada em comunicação óptica, radio e controle remoto.

- Atenuação do sinal.
- Ruído e interferência.
- Distorção do sinal.
- Limitação de largura de banda.
- Latência e Jitter.
- Correção de erros.

- Atenuação do sinal.
 - Perda de intensidade de sinal ao longo da distância.
 - Dispersão e absorção do sinal pelo meio de transmissão.
 - Repetidores e amplificadores para aumentar a intensidade do sinal.
 - Alteração do meio de transmissão.
 - FO.

- Ruído e interferência.
 - Alteração do sinal original devido a sinais indesejados.
 - Interferências eletromagnéticas, ruídos térmicos, etc.
 - Utilização de meios blindados para diminuir a interferência eletromagnética.
 - Filtragem de sinais para remover os ruídos indesejados.
 - Modulação e codificação de sinais robustas.

- Distorção do Sinal.
 - Alteração do sinal original durante a transmissão.
 - Relativo a diferença de velocidade de propagação do sinal em diferentes frequências.
 - Equalização de sinais.
 - Utilização de meios de transmissão com menor distorção.

- Latência e Jitter
 - Latência tempo entre a transmissão e a recepção de um sinal.
 - Jitter variação da latência.
 - Congestionamento e atrasos em ativos de rede são as principais causas.
 - Utilizar redes com menor latência.
 - Mecanismos de controle de tráfego.
- Latência ou Jitter? Qual deles é pior para a rede?

- Correção de Erros
 - Checksum
 - CRC (Cyclic Redundancy Check)
 - Códigos de Hamming

Checksum

- Atua como uma assinatura digital dos dados.
- O objetivo é assegurar que os dados transmitidos não sejam alterados durante a transmissão.
- Quando um pacote é transmitido, o transmissor realiza um cálculo com base no conteúdo do pacote.
- O valor do checksum é adicionado no cabeçalho do pacote.
- Na recepção, o calculo é novamente realizado e comparado com o valor adicionado ao cabeçalho.
 - Valores diferentes indicam alteração no conteúdo.

Checksum Calculated Over Pseudo Header and TCP Segment

- Ajuda a garantir a integridade dos dados.
- Detectar erros de transmissão.
- Confiabilidade da transmissão.
- Protocolos de transporte TCP/UDP
- Protocolos de rede IP
- Não detecta todos os erros os mais sutis não são identificados.
- Não corrige os erros.
- Qual o problema do checksum?

- CRC Cyclic Redundancy Check
 - Amplamente utilizado em redes de computadores.
 - Mais eficiente que o checksum.
 - Pode detectar vários erros incluindo erros de burst bits corrompidos em sequência...
 - O objetivo é garantir a integridade dos dados durante a transmissão.

Error-Detecting Codes Cyclic Redundancy Check (CRC)

- O transmissor utiliza um polimônio pré-definido para calcular o CRC a partir dos dados do pacote a ser transmitido.
 - Operações matemáticas complexas são aplicadas no cálculo.
- O código é inserido no cabeçalho e o pacote é transmitido pela rede.
- O receptor recebe o pacote, faz novamente o cálculo e compara o valor anexado ao cabeçalho do pacote.

- Detecção de erros mais robustas.
- Garantia de integridade.
- Confiabilidade durante a transmissão.
- Utilizado em:
 - Camada de enlace de dados tanto em Ethernet quanto em Wifi verificar a integridade dos quadros.
 - Camada de transporte TCP e UDP
 - Outros Procotolos.
- Alta capacidade de detecção de erros.
- Implantação eficiente.
- Não corriges erros apenas detecta mas não corrige.
 - Retransmissão é uma técnica de correção dos erros detectados pelo CRC
- Cálculo mais complexo.

Desafios da Transmissão de Dados

- Códigos de Hamming
 - Desenvolvido na década de 50 por Richard Hamming
 - Utilizado em sistemas que exigem alta confiabilidade
 - Memórias de computador.
 - Armazenamento de arquivos.
 - Comunicação.
 - Permite além da detecção a correção dos erros.

Desafios da Transmissão de Dados

- São adicionados bits de paridade dos dados originais.
- O cálculo dos bits de paridades permitem detectar e corrigir erros.
- A quantidade de bits de paridade depende do tamanho dos dados.
- Os bits de paridade são posicionados nas posições potência de 2.
- Os bits de dados são posicionados nas posições restantes.
- Cada bit de paridade é calculado para verificar a paridade de um conjunto de bits.
 - A posição do bit de paridade indica o conjunto de dados verificado por ele.
- Ao receber os dados, o receptor refaz o cálculo e em caso de erros pode detectar a posição e corrigir o bit.

Desafios da Transmissão de Dados

- Pode corrigir erros causados:
 - · Por falha de hardware.
 - Por ruídos e interferências durante a transmissão.
 - Por falhas no armazenamento de dados devido a mídias com problemas.
- Permite a correção de erros de 1 bit.
- Eficiente devido a pequena quantidade de bits de paridade inseridos.
- Não podem corrigir erros de 2 ou mais bits.
- Grande quantidade de dados exitem cálculos complexos.

- Transmissão em Banda Base e Banda Larga.
- Multiplexação.
- Tecnologias de Acesso.
- Rede Móvel.

- Transmissão em Banda Base e Banda Larga.
 - Banda Base
 - Não existe modulação através de uma portadora.
 - Utilizada em redes locais.
 - Simplicidade e baixo custo.
 - Suscetível a ruídos.
 - Alcance limitado.

- Transmissão em Banda Base e Banda Larga.
 - Banda Larga
 - Sinais analógicos ou digitais modulados.
 - Multiplos sinais podem ser transmitidos simultaneamente.
 - Utilizada em WAN.
 - Maior alcance e capacidade de transmissão.
 - · Complexidade e custo.

- Multiplexação transmissão de múltiplos sinais através do mesmo meio de transmissão, simultaneamente.
 - FDM (Frequency Division Multiplexing): Divide a largura de banda do meio em canais de frequência diferentes, cada um utilizado para transmitir um sinal.
 - TDM (Time Division Multiplexing): Divide o tempo de transmissão em slots, cada um utilizado para transmitir um sinal.
 - WDM (Wavelength Division Multiplexing): Utiliza diferentes comprimentos de onda de luz para transmitir múltiplos sinais através de fibra óptica.

- Tecnologias de Acesso
 - xDSL (Digital Subscriber Line)
 - Utiliza linhas telefônicas para transmissão em alta velocidade.
 - Utiliza uma infraestrutura já existente.
 - Depende da distância da central telefônica
 - Velocidade limitada.

- Tecnologias de Acesso
 - Cable Modem
 - Utiliza os cabos de TV para transmissão em alta velocidade.
 - Utiliza uma infraestrutura já existente.
 - Velocidade compartilhada.

- Tecnologias de Acesso
 - FTTH (Fiber to the Home)
 - Utiliza fibra óptica para conexão entre residências e empresas a internet.
 - Alta confiabilidade.
 - Baixa latência.
 - Alta velocidade hoje a limitação está no ativo.
 - Alto custo de implantação.

- Tecnologias de Rede Móvel
 - ...4G e 5G
 - Utiliza as Ondas de rádio para transmissão de dados.
 - Alta velocidade.
 - Mobilidade e cobertura.
 - Velocidade pode variar de acordo com o local.
 - Depende da cobertura da rede.

- Alguns outros conceitos importantes
 - Redes de computadores transmitem sem série (bps).
 - Taxas de download são dadas em paralelo (B/s)
 - Taxas de transferência são teoricas na prática sofrem influência do ambiente e infraestrutura que estão utilizando.
 - Throughput taxa de transmissão prática de uma rede.
 - RTT Round Trip Time tempo de ida e volta.

Exemplos

- Banda base:
- Banda larga:
- xDSL:
- Cable modem:
- FTTH:
- 5G: