資料探勘研究與實務期末專題-中文手寫數字辨識

第三組

0753431 吳伯揚 0753425 李嘉晨

0753440 吳肇堉 0753423 劉奕辰

目錄

<u> </u>	主題與動機1
=,	資料集敘述2
≡.	分析工具3
四、	實作與評估方法6
五、	流程7
六、	分析結果與結論

一、主題與動機

▶ 主題:中文手寫數字辨識。

▶ 動機:現今數字圖像辨識技術已相當普及,然而大部分開發出的都是以辨識阿拉伯、羅馬數字等為主;為比較適用於西方國家的文字辨識系統。
因此,我們決定使用 Keras 框架做出一款以辨識中文(國字)數字的模型。

二、資料集敘述

透過與同學、朋友進行合作提供手寫數字資料,匯集製作而成,資料範例如下:

訓練資料約 12383 個圖片檔(小格子),驗證資料為 5308 個,為 70%:30%的比例。

0	1	2	3	4	5	6	7	8	9
+	_	=	Ξ	170	五	à	t	/\	ħ
+	_	_	=	177)	五	à	t	/\	え
+	_	-	111	17	五	え	t	/\	た
+	_).)):	[11)	五	À	t	/\	K
+	-	=	E		五	X	t	/\	×
+	_	=	Ξ	四	玉	>	t	/\	ħ
+	-	_	Ti-	0	五	<u>\</u>	t	/	カ
+	~	-	1	四	五	<u>\</u>	t	/\	カ
+	-	=	Ξ	<u>m</u>	五	六	T	/\	カ
+	_	_	Ξ	D	五	六	七	/\	カ
+	-	=	11		五	六	t	/\	ナ
+	_	_	111	TD)	五	1	t	~	Fi

■訓練資料集

```
驗證檔案 12383
訓練檔案 5308
x_train_image: (12383, 190, 190)
y_train_label: (12383,)
x_img_test: (5308, 190, 190)
y_label_test: (5308,)
```

三、 分析工具

- ▶ 開發工具:Spyder。
- ▶ 開發環境:Python3.6。
- ▶ 使用技術:Keras、Pandas、Matplotlib 套件。

四、 實作與評估方法

- ▶ 實作模型:使用 CNN 模型。
- ▶ 實作方法:建立模型後,首先使用約 12400 筆訓練資料進行模型的訓練後,再對約 5300 筆的測試資料進行預測。
- ▶ 評估方法:使用 Accuracy、Loss、Confusion Matrix等…對預測的結果進行評估,並將評估結果以視覺化的圖表呈現。

五、 流程

- ▶ 建立 CNN 模型,並設定相關參數。
 - 1. **卷積層(Convolution)**: 輸入的矩陣大小為 190x190, 並產生 16 個 Filter, 每個 Filter 大小為 5x5,使 用 ReLU 當作激活函數。
 - 2. 池化層(Pooling): 縮小尺寸,將萃取出的特徵矩陣 降維成 5x5。
 - 第二個卷積層(Convolution):輸入的矩陣大小為
 5x5,並產生 36 個 Filter,每個 Filter 大小為
 5x5,使用 ReLU 當作激活函數。
 - 4. 第二個池化層(Pooling):縮小尺寸,將萃取出的特徵矩陣降維成 2x2。
 - 5. Dropout 層: 隨機捨棄 25% 特徵,避免預測結果Overfitting。
 - 6. 平坦層(Flatten):將矩陣轉為一維陣列當作輸入。
 - 7. 隱藏層:隨機產生神經元。
 - 8. 印出預測結果。

■ 模型架構

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	190, 190, 16)	416
max_pooling2d_1 (MaxPooling2	(None,	38, 38, 16)	0
conv2d_2 (Conv2D)	(None,	38, 38, 36)	14436
max_pooling2d_2 (MaxPooling2	(None,	19, 19, 36)	0
dropout_1 (Dropout)	(None,	19, 19, 36)	0
flatten_1 (Flatten)	(None,	12996)	0
dense_1 (Dense)	(None,	128)	1663616
dropout_2 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	10)	1290
Total params: 1,679,758 Trainable params: 1,679,758 Non-trainable params: 0			

模型架構總覧

六、 分析結果與結論

▶ 視覺化分析結果

Confusion Matrix

> 結論

- → Accuracy 的數據圖中,可以發現 Epoch 越高的時候,不 論是 train 或是 validation 都會有更高的 Accuracy。
- ↓ Loss 的數據圖中,隨著 Epoch 越高,train 跟 validation 都會有越來越低的 Loss。
- → 最後,Confusion Matrix 中有比較特別的現象,我們可 以發現 Model 最容易辨識錯的三個情形是:
 - (1) 把十誤認成七
 - (2) 把二誤認成三
 - (3) 把一誤認成二

以一般的觀察來說,這幾個錯誤的判斷都在於字體間本身就有較高的相似度,算是在我們可以理解的範疇之中,未來會再調整各種參數以增進我們的 Model 品質。