CLAIMS

What is claimed is:

1. An apparatus for the rapid screening of potential reactants, catalysts or reaction conditions, the apparatus comprising:

a reaction substrate comprising at least one substrate reservoir, said reaction substrate having a first temperature; and

a head plate positioned to provide a sealed headspace adjacent to said substrate reservoir, said head plate having a second temperature and said headspace having an adjustable pressure.

2. The apparatus of claim 1, further comprising a controller in communication with said reaction substrate and said head plate, wherein said controller maintains said reaction substrate at said first temperature and said head plate at said second temperature.

3. The apparatus of claim 1, further comprising;
a thermal unit in communication with said reaction substrate and
a controller in communication with said reaction substrate and said
head plate, wherein said controller adjusts the temperature of said thermal unit to
maintain said reaction substrate at said first temperature and wherein said controller
adjusts the temperature of said head plate to maintain said head plate at said second
temperature.

4. The apparatus of claim 1, further comprising a gas source in communication with said headspace, wherein said gas source includes at least one gas.

5. The apparatus of claim 1, wherein said adjustable pressure comprises a range of between about 1 atmosphere and about 50 atmosphere.

5

25

25

30

- 6. The apparatus of claim 5, wherein said adjustable pressure comprises a range of between about 1 atmosphere and about 45 atmosphere.
- 7. The apparatus of claim 6, wherein said adjustable pressure comprises a range of between about 1 atmosphere and about 20 atmosphere.
 - 8. The apparatus of claim 1, further comprising at least one reactant system within a least one substrate reservoir, said reactant system being at least partially embodied in a liquid.
 - 9. The apparatus of claim 8, wherein said at least one reactant system comprises a film having a thickness L.
 - 10. The apparatus of claim 9, wherein said thickness L is sufficient to allow the reaction to be independent of the mass transport rate of a gas into said liquid.
 - 11. The apparatus of claim 9, wherein said thickness L is independent of the effects of evaporation of said liquid.
 - 12. The apparatus of claim 1, wherein at least one reactant is partially embodied in a gas.
 - 13. The apparatus of claim 12, wherein said at least one reactant system comprises the atmosphere in said headspace.
 - 14. An apparatus for the rapid screening of potential reactants, catalysts and reaction conditions, the apparatus comprising:
 - a reaction substrate comprising a plurality of substrate reservoirs;
 - a thermal unit in communication with said substrate reservoir to adjustably heat and cool said reaction substrate;

5

The first of the first of the second of the 15

a head plate positioned to provide a sealed headspace adjacent to said plurality of substrate reservoirs, wherein said sealed headspace comprises a high pressure seal between said head plate and said reaction substrate and wherein said headspace comprises an adjustable pressure;

a plurality of temperature detectors, wherein at least one of said plurality of temperature detectors is positioned within each of said reaction substrate and said head plate;

a controller in communication with said plurality of temperature detectors, wherein said controlled adjusts a temperature of said thermal unit to maintain said reaction substrate at a first temperature, and wherein said controller maintains said head plate at a second temperature; and

a plurality of reactant systems wherein each one of said plurality of reactant systems is positioned within a corresponding one of said plurality of substrate reservoirs, and wherein each of the plurality of reactant systems is at least partly embodied in a liquid film having a thickness L.

- The apparatus of claim 14, further comprising a gas source in 15. communication with said headspace, wherein said gas source includes at least one gas.
- The apparatus of claim 14, wherein said headspace comprises a 16. pressure ranging from about 1 atmosphere to about 50 atmosphere.
- The apparatus of claim 16, wherein said headspace comprises a 17. pressure ranging from about 1 atmosphere to about 45 atmosphere.
- The apparatus of claim 17, wherein said headspace comprises a 18. pressure ranging from about 1 atmosphere to about 20 atmosphere.
- The apparatus of claim 14, wherein at least one reactant is partially embodied in a gas.

The apparatus of claim 19, wherein said thickness L is sufficient to 20. allow the reaction to be independent of the mass transport rate of said gas into said liquid and evaporation of said liquid.

5

10

method for rapid screening of potential reactants, catalysis and 21. reaction conditions, the method comprising:

adding a plurality of reactant systems at least partially embodied in liquid to a reaction substrate comprising a plurality of substrate reservoirs, wherein the reaction substrate has an adjustable first temperature;

maintaining an adjustable pressure in a sealed headspace in communication with the reactant system;

adding a gas to the sealed headspace wherein the gas equilibrates with each of the plurality of liquid reactant systems; and

maintaining said headspace at a second temperature.

15

The method of claim 21, wherein the second temperature is greater 22. than the first temperature.

The method of claim 21, further comprising providing an external 23. controller, wherein the controller maintains the reaction substrate at said first temperature and the headspace at the second temperature.

The method of claim 21, wherein said plurality of reactant systems 24. each comprises reactants dissolved, suspended, submersed, or entrained in said liquid.

- The method of claim 21, wherein the adjustable pressure in said sealed 25. headspace is in the range of between about 1 atmosphere and about 50 atmosphere.
- The method of claim 25, wherein the adjustable pressure in said sealed 26. headspace is in the range of between about 1 atmosphere and about 45 atmosphere. 30

- The method of claim 26, wherein the adjustable pressure in said sealed 27. headspace is in the range of between about 1 atmosphere and about 20 atmosphere.
- 28. The method of claim 21, wherein at least one reactant system is partially embodied in said gas.
- 29. The method of claim 21, wherein the gaseous reactant comprises the atmosphere in the headspace over the reaction substrate.
- The method of claim 21, wherein said plurality of reactant systems 30. partially embodied in a liquid each comprises a film having a thickness L.
- The method of claim 30, wherein said thickness L is sufficient to allow 31. the reaction to be independent of the mass transport rate of a gaseous reactant into the liquid reactant system.
- The method of claim 30, wherein said thickness L is sufficient to allow 32. the reaction to be independent of affects of evaporation of the liquid reactant system.
- A method for rapid screening of potential reactants, catalysis and 33. reaction conditions, the method comprising:

adding a plurality of reactant systems to a reaction substrate, wherein the reaction substrate has an adjustable first remperature, and each of the plurality of reactant systems is at least partly embodied in a liquid film having a thickness L, wherein said thickness L is sufficient to allow the reaction to be independent of evaporation of the liquid film and the mass transport rate of a gas into the liquid;

maintaining an adjustable pressure in a sealed headspace in communication with the reactant system;

adding said gas to the sealed headspace, wherein said gas equilibrates with each of the plurality of liquid reactant systems; and

10

15

20

THE TO THE WE WILL

maintaining the sealed headspace at an adjustable second temperature wherein the second temperature of the headspace is greater than the first temperature of the substrate reservoir;

- The method of claim 33, further comprising externally controlling said 5 34. first and second temperatures.
 - 35. The method of claim 33, wherein said defined pressure in said enclosed headspace is in the range of between about 1 atmosphere and about 50 atmosphere.
 - 36. The method of claim 35, wherein said defined pressure in said enclosed headspace is in the range of between about 1 atmosphere and about 45 atmosphere.
 - 37. The method of claim 36, wherein said defined pressure in said enclosed headspace is in the range of between about 1 atmosphere and about 20 atmosphere.
 - The method of claim 33, further comprising at least one reactant partially embodied in said gas

10 The first far. (17) or (17) to the gas first start and the same start