Zadanie 1. Podaj:

- (a) przykład grafu spójnego, który nie ma cyklu Eulera,
- (b) przykład grafu o wierzchołkach parzystego stopnia, który ma cykl Eulera,
- (c) przykład grafu o wierzchołkach parzystego stopnia, który nie ma cyklu Eulera.

Zadanie 2. Które z grafów mają cykle Eulera, a które nie mają i dlaczego? Podaj przykładowy cykl Eulera dla grafów, które je posiadają.

Zadanie 3. Niech dany będzie graf G: $V(G)=\{u, v, w, x, y, z\}$, $E(G)=\{\{u, w\}, \{w, w\}, \{w, x\}, \{x, y\}, \{y, y\}, \{y, v\}, \{v, z\}, \{u, z\}\}$. Czy graf G ma drogę lub cykl Eulera? Odpowiedź uzasadnij.

Zadanie 4. Które z grafów mają drogi Eulera, a które nie mają i dlaczego? Podaj przykładową drogę Eulera dla grafów, które je posiadają.

Zadanie 5. Które z poniższych grafów sa spójne? Które mają cykl Eulera? Które mają drogę Eulera?

Zadanie 6. Czy można tak przejść dany dom, aby przez każde drzwi przejść dokładnie raz? Odpowiedź uzasadnij. Jak zmieni się odpowiedź w podpunkcie b), jeśli drzwi między dwoma dużymi pokojami będą zamknięte?

a)

Zadanie 7. Narysuj grafy wielościanów foremnych: czworościanu, sześcianu, ośmiościanu. Które z tych grafów są eulerowskie, które zaś hamiltonowskie.

Dla którego z powyższych grafów kryterium Diraca nie jest rozstrzygające?

Zadanie 8.

- a) Narysuj grafy będące kołem dla 3<=n<=6. Które grafy Wn (koła) są eulerowskie, które zaś hamiltonowskie.
- b) Narysuj grafy pełne Kn dla n<=6, które są eulerowskie, a które hamiltonowskie.

Zdanie 9. Narysuj dwa grafy dwudzielne: jeden, który nie jest pełny i drugi, który jest pełny:

- (a) o sześciu wierzchołkach, które nie mają drogi Hamiltona,
- (b) o siedmiu wierzchołkach, które mają drogę Hamiltona, ale nie mają cyklu Hamiltona,
- (c) o sześciu wierzchołkach, które mają cykl Hamiltona.

W podpunktach (b) i (c) wyznacz odpowiednio jedną drogę i jeden cykl Hamiltona.

Zadanie 10. Czy istnieje graf eulerowski (hamiltonowski), który ma:

- a) nieparzystą liczbę wierzchołków i nieparzystą liczbę krawędzi
- b) nieparzystą liczbę wierzchołków i parzystą liczbę krawędzi
- c) parzystą liczbę wierzchołków i nieparzystą liczbę krawędzi
- d) parzystą liczbę wierzchołków i parzystą liczbę krawędzi.

Zadanie 11. Znajdź lub uzasadnij, że nie istnieje graf, który:

- a) nie ma cyklu Eulera i nie ma cyklu Hamiltona
- b) nie ma cyklu Eulera i ma cykl Hamiltona
- c) ma cykl Eulera i nie ma cyklu Hamiltona
- d) ma cykl Eulera i ma cykl Hamiltona.

Zadanie 12. Rozpatrzmy grafy z poniższego rysunku. Zestaw I:

- a) Podaj cykl Hamiltona lub wyjaśnij, dlaczego żaden taki cykl nie istnieje.
- b) Czy grafy, które nie są tu hamiltonowskie maja drogę Hamiltona?
- c) Który z grafów jest dwudzielny?