Machine Learning com Python

Função de Ativação

Função de ativação

Permite que pequenas alterações no peso e bias resultem em pequenas modificações no resultado de saída.

Decide se o neurônio será ativado. Filtra se a informação é relevante.

Possibilita resoluções de problemas complexos, não lineares.

Existem várias funções de ativação e a escolha correta para cada aplicação é fundamental para atingir ótimos resultados.

Principais de Funções de Ativação

 Função de etapa Binária (Binary Step Function) ou função degrau ou função de Heaviside.

Utilizada para classificador binário.

$$\phi(x) = 1 \text{ para } x \ge 0$$

$$\phi(x) = 0 \text{ para } x < 0$$

2) Função Linear

Obedece a função: $\phi(x) = a.x + b$

3) Função Sigmóide

Funcionam melhor em classificadores.

Limitada a duas classes (atributo de saída).

Muito utilizado nos algoritmos.

$$\varphi(x) = \frac{1}{1 + e^{-ax}}$$

4) Função tanh (tangente hiperbólico)

Similar a função sigmóide, mas simétrico à origem.

$$\varphi(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

5) Função ReLu

Muito utilizada.

Não ativa todos os neurônios ao mesmo tempo.

Deve ser usada apenas nas camadas ocultas.

Normalmente é a primeira a ser testada.

$$\varphi(x) = \max(0, x)$$

6) Função Leaky ReLu

Evolução da função ReLU.

$$\varphi(x) = a.x$$
, se $x < 0$

$$\varphi(x) = x$$
, se $x \ge 0$

7) Função Softmax

Utilizada em problemas de classificação.

Sem limitação no número de classes (diferente da função sigmóide).

$$\varphi(x)_j = \frac{e^{x_j}}{\sum_{k=1}^k e^{x_k}} para j = 1, ..., k$$

