CS 325: Private Data Analysis

Fall 2022

Lecture 6: Advanced Composition Theorem

Lecturer: Di Wang Scribes: Di Wang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Advanced Composition Theorem

Theorem 6.1 (Composition Theorem for ϵ **-DP)** Let $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_k$ be a sequence of randomized algorithms, where $\mathcal{A}_1 : \mathcal{X}^n \mapsto \mathcal{Y}_1, \ \mathcal{A}_2 : \mathcal{Y}_1 \times \mathcal{X}^n \mapsto \mathcal{Y}_2, \dots, \mathcal{A}_k : \mathcal{Y}_1 \times \mathcal{Y}_2 \times \mathcal{Y}_{k-1} \times \mathcal{X}^n \mapsto \mathcal{Y}_k$. Suppose for every $i \in [k]$ and $a_1 \in \mathcal{Y}_1, a_2 \in \mathcal{Y}_2, \dots, a_k \mathcal{Y}_k$ we have $\mathcal{A}_i(a_1, \dots, a_{i-1}, \cdot) : \mathcal{X}^n \mapsto \mathcal{Y}_i$ is ϵ_i -DP. Then the algorithm $\mathcal{A} : \mathcal{X} \mapsto \mathcal{Y}_1 \times \mathcal{Y}_2 \times \dots \mathcal{Y}_k$ that runs the algorithms \mathcal{A}_i sequentially is ϵ -DP for $\epsilon = \sum_{i=1}^k \epsilon_i$.

Theorem 6.2 (Composition Theorem for (ϵ, δ) -**DP)** Let $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_k$ be a sequence of randomized algorithms, where $\mathcal{A}_1 : \mathcal{X}^n \mapsto \mathcal{Y}_1, \mathcal{A}_2 : \mathcal{Y}_1 \times \mathcal{X}^n \mapsto \mathcal{Y}_2, \dots, \mathcal{A}_k : \mathcal{Y}_1 \times \mathcal{Y}_2 \times \mathcal{Y}_{k-1} \times \mathcal{X}^n \mapsto \mathcal{Y}_k$. Suppose for every $i \in [k]$ and $a_1 \in \mathcal{Y}_1, a_2 \in \mathcal{Y}_2, \dots, a_k \mathcal{Y}_k$ we have $\mathcal{A}_i(a_1, \dots, a_{i-1}, \cdot) : \mathcal{X}^n \mapsto \mathcal{Y}_i$ is (ϵ_i, δ_i) -DP. Then the algorithm $\mathcal{A} : \mathcal{X} \mapsto \mathcal{Y}_1 \times \mathcal{Y}_2 \times \dots \mathcal{Y}_k$ that runs the algorithms \mathcal{A}_i sequentially is (ϵ, δ) -DP for $\epsilon = \sum_{i=1}^k \epsilon_i$ and $\delta = \sum_{i=1}^k \delta_i$.

Thus, if each algorithm is (ϵ, δ) -DP, then the whole algorithm will be $(k\epsilon, k\delta)$ -DP. In today's lecture, we will show that we can improve this guarantee.

Theorem 6.3 (Advanced Composition Theorem) For all $\epsilon, \delta \geq 0$ and $\delta' > 0$, the adaptive composition of k algorithms, each of which is (ϵ, δ) -DP, is $(\tilde{\epsilon}, \tilde{\delta})$ -DP where

$$\tilde{\epsilon} = \epsilon \sqrt{2k \ln \frac{1}{\delta'}} + k\epsilon \frac{e^{\epsilon} - 1}{e^{\epsilon} + 1}, \tilde{\delta} = k\delta + \delta'$$
(6.1)

When ϵ is not too big (say at most 1), the quantity $\frac{e^{\epsilon}-1}{e^{\epsilon}+1}$ is close to $\frac{\epsilon}{2}$, so the final privacy parameter $\tilde{\epsilon}$ is $\Theta(\epsilon\sqrt{k\ln(1/\delta)}+k\epsilon^2)$ if we take $\delta'=\delta$. Moreover, suppose we want the final privacy guarantee to be at most 1, then we need $\epsilon^2k<1$. In that range we have $\sqrt{k}\epsilon>\epsilon^2k$, so

$$\tilde{\epsilon} = \Theta(\epsilon \sqrt{k \ln(1/\delta)}). \tag{6.2}$$

Corollary 6.4 Given target privacy parameters $0 < \epsilon < 1$ and $0 < \delta < 1$, to ensure $(\epsilon, k\delta' + \delta)$ -DP over k mechanisms, it suffices that each mechanism is (ϵ', δ') -DP, where $\epsilon' = \frac{\epsilon}{2\sqrt{2k\ln(2/\delta)}}$ and $\delta' = \frac{\delta}{2k}$.

Now consider we have k-adaptive count queries $f_i: \mathcal{X}^n \to \mathbb{R}$ with $\Delta_i = 1$. Then compare with the four composition theorems:

• Laplace+Basic Composition: Noise should be $O(\frac{k}{\tilde{\epsilon}})$.

- Laplace+Advanced Composition: Noise should be $O(\frac{\sqrt{k\ln(1/\tilde{\delta})}}{\tilde{\epsilon}})$.
- Gaussian+Basic Composition: Noise should be $O(\frac{k\sqrt{\ln(k/\tilde{\delta})}}{\tilde{\epsilon}})$.
- Gaussian+Advanced Composition: Noise should be $O(\frac{\sqrt{k \ln(k/\tilde{\delta} \ln(1/\tilde{\delta})}}{\tilde{\epsilon}})$.

6.2 Proof

Recall in the previous lecture we define the privacy loss as a random variable. For a neighboring datasets $D \sim D'$, if we denote $p_{A(D)}(y)$ and $p_{A(D')}(y)$ as the density function of A(D) and A(D') respectively. And we denote the privacy loss as $\ell_{D,D'}(y) = \ln(\frac{p_{A(D)}(y)}{p_{A(D')}(y)})$. We could think $L_{D,D'} = \ell_{D,D'}(Y)$ as the transformation of the output random variable Y = A(D).

For the whole composite algorithm $A: \mathcal{X}^n \mapsto \mathcal{Y}_1 \times \cdots \mathcal{Y}_k$, if we can show that

$$\mathbb{P}_{Y \sim A(D)}(L_{D,D'}(Y) > \tilde{\epsilon}) \le \tilde{\delta}. \tag{6.3}$$

Then by Lemma 6.14, we can see A is $(\tilde{\epsilon}, \tilde{\delta})$ -DP.

Now we denote $y = (y_1, y_2, \dots, y_k) \in \mathcal{Y}_1 \times \dots \mathcal{Y}_k$. Then we have

$$p_{A(D)}(y) = p_{A_1(D)}(y_1) \times p_{A_2(D,y_1)}(y_2) \times \dots \times p_{A_k(D,y_1,\dots,y_{k-1})}(y_k). \tag{6.4}$$

Thus,

$$L_{D,D'}(y) = \ln \frac{p_{A_1(D)}(y_1)}{p_{A_1(D')}(y_1)} + \ln \frac{p_{A_2(D,y_1)}(y_2)}{p_{A_2(D',y_1)}(y_2)} + \dots + \ln \frac{p_{A_k(D,y_1,\dots,y_{k-1})}(y_k)}{p_{A_k(D',y_1,\dots,y_{k-1})}(y_k)}.$$
 (6.5)

We can see each of them is a privacy loss. Denote $L_{D,D'}(y_1, \dots, y_{k-1}) = \frac{p_{A_k(D,y_1,\dots,y_{k-1})}(y_k)}{p_{A_k(D',y_1,\dots,y_{k-1})}(y_k)}$.

To prove the strong composition theorem for (ϵ, δ) -DP, we want to take advantage of the fact that there is some cancelation in this sum. We know that each term is contained in the interval $[-\epsilon, \epsilon]$ with high probability. But it turns out that their average is generally at most ϵ^2 . When many of them are added, that is the behavior which dominates.

To get a sense of that, we can compute this privacy loss for a few example of mechanisms and how it is distributed.

Gaussian Noise: Suppose each A_i is an instance of the Gaussian Mechanism from the last lecture, we have that $L_{D,D'}(Y) \sim \mathcal{N}(\frac{\Delta^2}{2\sigma^2}, \frac{\Delta^2}{\sigma^2})$ where $\Delta = \|f(D) - f(D')\|_2$. We choose $\sigma = O(\frac{\Delta\sqrt{\ln\frac{1}{\delta}}}{\epsilon})$. Thus, the privacy loss for this mechanism has expectation $O(\epsilon^2)$.

Randomized Response: In this mechanism, each data record $x_i \in \{0,1\}$ is randomized with a value

$$Y_{i} = \begin{cases} x_{i}, \text{ w.p. } \frac{e^{\epsilon}}{e^{\epsilon} + 1} \\ 1 - x_{i}, \text{ w.p. } \frac{1}{e^{\epsilon} + 1}. \end{cases}$$
 (6.6)

For every two neighboring data D, D', the privacy loss $L_{D,D'}$ is ϵ with probability $\frac{e^{\epsilon}}{e^{\epsilon}+1}$, and $-\epsilon$ with probability $\frac{1}{e^{\epsilon}+1}$. Its expectation is $\epsilon \frac{e^{\epsilon}-1}{e^{\epsilon}+1} = \Theta(\epsilon^2)$.

We have seen two examples, but how can we show for all the privacy losses? We will actually show that once we fix two neighboring datasets, every (ϵ, δ) -DP algorithm's behavior is captured by a very "leaky" variant of randomized response.

If X and Y are random variables, and taking values in the same set, we denote $X \approx_{\epsilon, \delta} Y$ if for every event E, $\mathbb{P}_X(E) \leq e^{\epsilon} \mathbb{P}_Y(E) + \delta$ and $\mathbb{P}_Y(E) \leq e^{\epsilon} \mathbb{P}_X(E) + \delta$.

As a starting point, we imagine the simplest pair of random variables that satisfies the relationship. It seems like we need one type of outcome to capture the δ additive difference in probabilities, and another type that captures the e^{ϵ} multiplicative change. Consider the following two special random variables, U and V taking values in the set $\{0,1,\text{ "I am U" , "I am V" }\}$ with probabilities:

Outcome	P_U	P_V
0	$\frac{e^{\varepsilon}(1-\delta)}{e^{\varepsilon}+1}$	$\frac{1-\delta}{e^{\varepsilon}+1}$
1	$\frac{1-\delta}{e^{\varepsilon}+1}$	$\frac{e^{\varepsilon}(1-\delta)}{e^{\varepsilon}+1}$
"I am U"	δ	0
"I am V"	0	δ

Now, we claim that this simple pair of random variables is sufficient to express any pair of random variables with a bounded privacy loss.

Lemma 6.5 ([1]) For every pair of random variables X, Y such that $X \approx_{\epsilon, \delta} Y$, then there exists a randomized map F such that $F(U) \sim X$ and $F(V) \sim Y$.

For every fixed vector $y_{1:i-1} = (y_1, \dots, y_{i-1})$ we have $A_i(D, y_{1:i-1}) \approx_{\epsilon, \delta} A_i(D', y_{1:i-1})$. Thus, there exists a map F_i such that $A_i(D, y_{1:i-1}) \sim F_i(U)$ and $A_i(D', y_{1:i-1}) \sim F_i(V)$. This allow us to show the following lemma

Lemma 6.6 There is a randomized map F^* such that the composed algorithms A satisfies

$$A(D) \sim F^*(U_1, \dots, U_k), \text{ where } U_1, \dots U_k \sim_{i.i.d.} U$$
 (6.7)

$$A(D') \sim F^*(V_1, \dots, V_k), \text{ where } V_1, \dots V_k \sim_{i,i,d} V$$
 (6.8)

Proof: For z_1, \dots, z_k , we define $(y_1, \dots, y_k) = F^*(z_1, \dots, z_k)$ where $y_i = F_i(z_i)$. Since $F_i(U_i)$ has the same distribution as $A_i(D, y_{1:i-1})$, the overall distribution of $F^*(U_1, \dots, U_k)$ is the same as A(D).

Thus, to prove A is $(\tilde{\epsilon}, \tilde{\delta})$ -DP, it is suffice, by closure under postprocessing, to prove that $(U_1, U_2, \dots, U_k) \approx_{\tilde{\epsilon}, \tilde{\delta}} (V_1, V_2, \dots, V_k)$.

Lemma 6.7 $(U_1, U_2, \cdots, U_k) \approx_{\tilde{\epsilon} \tilde{\delta}} (V_1, V_2, \cdots, V_k)$.

Proof: We consider two bad events: B_1 and B_2 . The first B_1 is when we see a clear signal that the input was drawn according to U:

$$B_1 = \{z : \text{ at least one } z_i \text{ is "I am U"} \}. \tag{6.9}$$

From the definition of U we can see $\mathbb{P}_U(B_1) = 1 - (1 - \delta)^k \leq k\delta$.

If $z \sim (U_1, \dots, U_k)$ conditioned on \bar{B}_1 , then we have $z \in \{0, 1\}^k$. The probability of z is non-zero under both U and V, and we can compute the density ratio by taking the advantage of independence:

$$\ln \frac{P_{(U_1,\dots,U_k)}(z)}{P_{(V_1,\dots,V_k)}(z)} = \sum_{j=1}^k \ln \frac{P_U(z_j)}{P_V(z_j)} = \sum_{j=1}^k \ln \frac{\frac{(1-\delta)\exp(\epsilon(1-z_j))}{\exp(\epsilon)+1}}{\frac{(1-\delta)\exp(\epsilon(z_j))}{\exp(\epsilon)+1}} = \sum_{j=1}^k \epsilon(1-2z_j).$$
(6.10)

Thus

$$\mathbb{E}\left[\ln \frac{P_{(U_1,\dots,U_k)}(z)}{P_{(V_1,\dots,V_k)}(z)}|\bar{B}_1\right] = k\epsilon \mathbb{E}\left[(1-2z)|z = \{0,1\}\right] = k\epsilon \frac{e^{\epsilon}-1}{e^{\epsilon}+1}.$$
(6.11)

Now we recall the Chernoff Lemma

Lemma 6.8 For k independent random variables Z_1, Z_2, \dots, Z_k in the range of [l, u], we have

$$\mathbb{P}(\sum_{i=1}^{k} Z_i \ge \sum_{i=1}^{k} \mathbb{E}[Z_i] + t) \le \exp(-\frac{2t^2}{k(u-l)^2}). \tag{6.12}$$

Since for each $\ln \frac{P_U(z_j)}{P_V(z_j)} \in [-\epsilon, \epsilon]$ conditioned on \bar{B}_1 and $\mathbb{E}[\ln \frac{P_U(z_j)}{P_V(z_j)} | \bar{B}_1] = \epsilon \frac{e^{\epsilon} - 1}{e^{\epsilon} + 1}$. we have

$$\mathbb{P}\left(\ln \frac{P_{(U_1,\dots,U_k)}(z)}{P_{(V_1,\dots,V_k)}(z)} > k\epsilon \frac{e^{\epsilon} - 1}{e^{\epsilon} + 1} + t\epsilon\sqrt{k}|\bar{B}_1\right) \le \exp\left(-\frac{t^2}{2}\right). \tag{6.13}$$

Denote the event $B_2 = \{z \in \{0,1\}^k | \ln \frac{P_{(U_1,\cdots,U_k)}(z)}{P_{(V_1,\cdots,V_k)}(z)} > k\epsilon \frac{e^{\epsilon}-1}{e^{\epsilon}+1} + t\epsilon \sqrt{k} \}$, then we have $\mathbb{P}(\bar{B}_1 \cap B_2) \leq \exp(-\frac{t^2}{2})$. Note that conditioned on $\bar{B}_1 \cap \bar{B}_2$ we have ration of $P_U(z)$ and $P_V(z)$ is bounded. Thus, for every event E we have

$$\begin{split} P_{U}(E) &\leq P_{U}(E \cap \bar{B}_{1} \cap \bar{B}_{2}) + P_{U}(E \cap B_{1}) + P_{U}(E \cap \bar{B}_{1} \cap B_{2}) \\ &\leq P_{U}(E \cap \bar{B}_{1} \cap \bar{B}_{2}) + P_{U}(B_{1}) + P_{U}(\bar{B}_{1} \cap B_{2}) \\ &= \leq P_{U}(E \cap \bar{B}_{1} \cap \bar{B}_{2}) + P_{U}(B_{1}) + P_{U}(B_{2}|\bar{B}_{1})P_{U}(\bar{B}_{1}) \\ &\leq e^{\tilde{\epsilon}}P_{V}(E \cap \bar{B}_{1} \cap \bar{B}_{2}) + k\delta + \exp(-\frac{t^{2}}{2}) \\ &\leq e^{\tilde{\epsilon}}P_{V}(E) + k\delta + \exp(-\frac{t^{2}}{2}). \end{split}$$

Take $t = \sqrt{2\ln(\frac{1}{\delta'})}$ we complete the proof.

References

[1] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 51–60. IEEE, 2010.