Sieci Rozproszone

Laboratorium nr 5

Cel ćwiczenia: Celem ćwiczenia jest poznanie metod konfiguracji tras statycznych w protokole IPv6. Pod względem zakresu poruszanych tematów ćwiczenie jest tożsame z ćwiczeniem nr 3. Dzięki temu student ma możliwość porównania zasad konfiguracji routingu statycznego w IPv4 jak i IPv6.

Krok 1. Konfiguracja adresów IPv6 na interfejsach routerów.

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface GigabitEthernet0/1
Router(config-if) # ipv6 address 2001:DB8:ACAD:A::/64 eui-64
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
Router(config-if) # interface serial 0/0/1
Router(config-if) # ipv6 address FC00::1/64
Router(config-if) # no shutdown
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to down
Router(config-if) #exit
Router(config)#
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/1, changed state to up
```

Konfiguracja interfejsów sieciowych routera R1.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface GigabitEthernet0/1
Router(config-if) # ipv6 address 2001:DB8:ACAD:B::/64 eui-64
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to
%LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/1, changed state to up
Router(config-if) # interface serial 0/0/1
Router(config-if) # interface serial 0/0/0
Router(config-if) # ipv6 address FC00::2/64
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
Router (config) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0,
changed state to up
```

Konfiguracja interfejsów sieciowych routera R3.

f. Z komputera PC-A i PC-C, sprawdź działanie polecenia ping na adres link-local bramy domyślnej.

Czy test ping zakończył się sukcesem?

```
dla PC-A - Tak
```

dla PC_C - Tak

g. Wykonaj test ping z PC-A do PC-C.

Czy ping zakończył działanie z sukcesem ? Uzasadnij odpowiedź ?

Test ping zakończył się niepowodzeniem, ponieważ nie zostały skonfigurowane odpowiednie trasy routingu.

Krok 2. Weryfikacja ustawień IPv6 na routerach.

a. Sprawdź status interfejsów na R1 za pomocą polecenia show ipv6 interface brief. Odpowiedz na poniższe pytania.

```
Router#show ipv6 int brief
GigabitEthernet0/0
                          [administratively down/down]
GigabitEthernet0/1
                           [up/up]
    FE80::260:5CFF:FE1B:3202
    2001:DB8:ACAD:A:260:5CFF:FE1B:3202
                          [administratively down/down]
GigabitEthernet0/2
Serial0/0/0
                           [administratively down/down]
Serial0/0/1
                           [up/up]
    FE80::260:5CFF:FE1B:3201
    FC00::1
Vlan1
                           [administratively down/down]
```

Jakie dwa adresy IPv6 są zarejestrowane na interfejsie G0/1 i jakiego typu są to adresy?

```
FE80::260:5CFF:FE1B:3202 - link-local 2001:DB8:ACAD:A:260:5CFF:FE1B:3202 - globalny adres unicast
```

Jakie dwa adresy IPv6 są zarejestrowane na interfejsie S0/0/1 i jakiego typu są to adresy?

```
FE80::260:5CFF:FE1B:3201 - link-local FC00::1 - unique-local
```

b. W celu otrzymania szczegółowszych informacji o ustawieniach IPv6 interfejsów routera R1, wydaj polecenie show ipv6 interface . Odpowiedz na poniższe pytania.

Czy do któregoś interfejsu przypisany jest adres multicastowy FF02::1 a jeśli tak to do którego i do czego jest wykorzystywany ?

Jest on przypisany do interfejsu GigabitEthernet/0/1 oraz Serial/0/0/1. Identyfikuje on hosty w siei lokalnej.

Czy do któregoś interfejsu przypisany jest adres multicastowy FF02::2 a jeśli tak to do którego i do czego jest wykorzystywany?

Jest on przypisany do interfejsu GigabitEthernet/0/1 oraz Serial/0/0/1. Identyfikuje on hosty w siei lokalnej.

Do czego służą adresy multicastowe FF02::1:FF00:1 oraz FF02::1:FF0D:1A60?

FF02::1:FF00:1 - prefiks adresu solicited-node FF02::1:FF0D:1A60 - adres solicited-node

c. Wyświetl tablicę routingu IPv6 na routerze R1 za pomocą polecenia show ipv6 route.

Czy na podstawie wyświetlonych informacji można uzasadnić niepowodzenie testu ping z PC-A do PC-C ? Jeśli tak, to proszę podać to uzasadnienie poniżej.

Test ping zakończył się niepowodzeniem, ponieważ nie zostały skonfigurowane odpowiednie trasy routingu.

Krok 3. Konfiguracja tras statycznych IPv6.

- 1. Konfiguracja trasy statycznej typu directly connected.
- b. Umieść w sprawozdaniu tablicę routingu dla R1.

```
Router(config) # ipv6 route 2001:DB8:ACAD:B::/64 serial 0/0/1
Router(config) #exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
show ipv6 int brief
GigabitEthernet0/0
                            [administratively down/down]
GigabitEthernet0/1
                            [up/up]
    FE80::260:5CFF:FE1B:3202
    2001:DB8:ACAD:A:260:5CFF:FE1B:3202
                     [administratively down/down]
[administratively down/down]
GigabitEthernet0/2
Serial0/0/0
SerialO/0/1
                            [up/up]
    FE80::260:5CFF:FE1B:3201
    FC00::1
Vlan1
                            [administratively down/down]
Router#
```

d. Wykonaj test ping pomiędzy PC-A i PC-C. Czy zakończył się on sukcesem? Uzasadnij odpowiedź.

Tak, test ping zakończył się powodzeniem, ponieważ trasy statyczne zostały wcześniej skonfigurowane.

2. Konfiguracja trasy statycznej typu recursive.

```
Router*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) # no ipv6 route 2001:DB8:ACAD:B::/64 serial 0/0/1
Router(config) # ipv6 route 2001:DB8:ACAD:B::/64 FC00::2
Router(config) # exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
```

c. Umieść w sprawozdaniu tablicę routingu dla R3.

```
Router#sh ipv6 int brief
GigabitEthernet0/0
                          [administratively down/down]
GigabitEthernet0/1
                          [up/up]
   FE80::201:C7FF:FE0C:7202
   2001:DB8:ACAD:B:201:C7FF:FE0C:7202
GigabitEthernet0/2
                          [administratively down/down]
Serial0/0/0
                          [up/up]
   FE80::201:C7FF:FE0C:7201
   FC00::2
Serial0/0/1
                          [administratively down/down]
Vlan1
                          [administratively down/down]
Router#
```

d. Wykonaj test ping pomiędzy PC-A i PC-C. Czy zakończył się on sukcesem?

Tak.

3. Konfiguracja trasy statycznej typu default.

c. Umieść w sprawozdaniu tablicę routingu dla R3.

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #no ipv6 route 2001:DB8:ACAD:A::/64 FC00::1
Router(config) # ipv6 route ::/0 serial 0/0/0
Router(config) #exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
sh ipv6 int brief
                          [administratively down/down]
GigabitEthernet0/0
GigabitEthernet0/1
                          [up/up]
   FE80::201:C7FF:FE0C:7202
    2001:DB8:ACAD:B:201:C7FF:FE0C:7202
GigabitEthernet0/2
                         [administratively down/down]
Serial0/0/0
                          [up/up]
   FE80::201:C7FF:FE0C:7201
   FC00::2
Serial0/0/1
                          [administratively down/down]
Vlan1
                          [administratively down/down]
```

d. Wykonaj test ping pomiędzy PC-A i PC-C. Czy zakończył się on sukcesem?

Tak.

Przedstaw szczegółowo (według reguł umieszczonych we wstępie do instrukcji) proces sumaryzacji dwóch sieci IPv6:

2001:CC1E:2AB3:1A3C::/64 2001:CC1E:2AB3:1A4D::/64

Krok 1. Wylistuj wszystkie adresy (prefiksy) i zidentyfikuj te części, które się różnią.

2001:CC1E:2AB3:1A3C::/64 2001:CC1E:2AB3:1A4D::/64

Różniące się prefiksy zostały zapisane kolorem czerwonym.

Krok 2. Usuń wszystkie skrócone formy zapisu (jeśli występują) i zamień różniące się fragmenty (hekstety) z zapisu szesnastkowego do binarnego.

 $1A3C_{(H)} = 0001\ 1010\ 0011\ 1100_{(B)}$ $1A4D_{(H)} = 0001\ 1010\ 0100\ 1101_{(B)}$

Krok 3. Wyznacz od lewej liczbę bitów "niezmieniających się" by określić długość prefiksu dla trasy sumarycznej.

0001 1010 0011 1100 **0001 1010 0**100 1101

Bity które się nie zmieniły zostały pogrubione. Jest 9 takich bitów.

Krok 4. Skopiuj wszystkie "niezmieniające się" bity i dodaj bity zerowe by określić adres zsumaryzowany (prefix).

0001 1010 0000 0000 16 + 16 + 16 + 9 = 57

Krok 5. Zamień adres z postaci binarnej do szesnastkowej zgodnej z konwencją zapisu adresów IPv6.

 $0001\ 1010\ 0000\ 0000_{(B)} = 1A00_{(H)}$

Zsumarvzowany adres: 2001:CC1E:2AB3:1A00::/57