

22nd May 2019 @ Robert Bosch AG #VDLM

The Organizers:

Alex Schindler AIT & TU Wien

Jan Schlüter OFAI & UTLN

Topics for Today

Introduction

Deep Learning for Predictive Quality & Predictive Maintenance

Daniel Ressi, Data Scientist – craftworks GmbH

Break

Advances in Automotive In-Cabin Monitoring: Present & Future

Florian Seitner, CEO and Michael Hödlmoser, CTO – emotion 3D

Hot Topics & Latest News

Alex Schindler

Networking and Discussion

Announcements

INTERSPEECH19

Speech, Music and Mind 2019

Detecting and Influencing Mental States with AudioTargeted as a Satellite Workshop of Interspeech 2019

14 SEPTEMBER, VIENNA AUSTRIA

Keynote Speakers

Prof. Carlos Busso Recabarren, University of Texas at Dallas

dhr. dr. J.A. (Ashley) Burgoyne

Alexander Schindler

Vienna University of Technology

Joao Cabral Trinity College Dublin

Important Dates

• 24 June 2019: Last date to submit your paper

 29 Jul 2019: Acceptance Notification 16 Aug 2019: Registration deadline

• 30 Aug 2019: Camera-ready papers due

Detecting stress, emotion or mental states of people from speech

- Multi-modal approaches: using other modes such as video and sensor data in addition to speech
- Relevance of language models for mental state detection
- Cross-corpus detection on non-acted speech databases in multiple languages and realistic environments

Effects of Audio on stress, emotion and mental states of people

- Audio-Visual Perception of music
- Analysis of brain signal responses to audio and visual stimulus
- Evaluation and Applications: augmented reality, art installations, music animations, computer games, etc

Other topics that are of interest in the context of stress, emotion and mental states

- Novel signal processing or machine learning techniques
- Sounds at inaudible frequencies
- Novel protocols for assessing mental states, inducing stress or emotion
- Applications related to the above topics

Break

Hot Topics & Latest News

a short block at every meetup to briefly present recent papers and news in Deep Learning

Send us contributions (<u>tom.lidy@gmail.com</u>) or come with slides to do a short block yourself!

Cross-Modal Retrieval

Media Query / Retrieval

- Features extracted for one modality do not describe the other
 - **⇒** Heterogenity Gap

Cross-Media Query / Retrieval

C	Categories					
	Traditional statistical correlation analysis					
	DNN-based					
	Cross-media graph					
Common	regularization					
Common	Metric learning					
space	Learning to rank					
learning	Dictionary learning					
	Cross-media hashing					
	Others					
Cross-media similarity	Graph-based					
measurement	Neighbor analysis					
	Relevance feedback					
Others	analysis					
Oulets	Multimodal					
	topic model					

Peng, Yuxin, Xin Huang, and Yunzhen Zhao. "An Overview of Cross-Media Retrieval: Concepts, Methodologies, Benchmarks, and Challenges." IEEE Transactions on circuits and systems for video technology 28.9 (2018): 2372-2385.

Basic Idea

The basic idea of heterogeneous metric learning, which learns projections using similar/dissimilar pairs.

Problem: Exclusive & Shared Information

Image Modality

Text Modality

Friends playing a game of Frisbee in a green park

Shared Information

- Friends
- Frisbee
- green
- Park

Exclusive Information

- Text: playing, game, stopwords (a, of, in)
- Image: black/blue shorts, red/white shirt, baseball cap, fence, autumn

Cross-Modal Hashing

Jiang, Qing-Yuan, and Wu-Jun Li. "Deep cross-modal hashing." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Triplet Loss / Hinge Loss

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 07–12–June, pp. 815–823). https://doi.org/10.1109/CVPR.2015.7298682

Adversarial Cross-Modal Retrieval

Results

- Metrics
- Projections
- No examples
- Generally promising results
- Huge improvements in recent years
- Huge potential

Task	Method	MIRFLICKR-25K			IAPR TC-12			NUS-WIDE		
lask		16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits
$I \to T$	DCMH	0.7410	0.7465	0.7485	0.4526	0.4732	0.4844	0.5903	0.6031	0.6093
	SePH	0.6573	0.6603	0.6616	0.4112	0.4158	0.4203	0.4787	0.4869	0.4888
	STMH	0.5921	0.5950	0.5980	0.3580	0.3732	0.3819	0.3973	0.4082	0.4153
	SCM	0.6290	0.6404	0.6480	0.3833	0.3898	0.3878	0.4650	0.4714	0.4822
	CMFH	0.5818	0.5808	0.5805	0.3683	0.3734	0.3786	0.3568	0.3624	0.3661
	CCA	0.5695	0.5663	0.5641	0.3345	0.3254	0.3193	0.3414	0.3336	0.3282
T o I	DCMH	0.7827	0.7900	0.7932	0.5185	0.5378	0.5468	0.6389	0.6511	0.6571
	SePH	0.6480	0.6521	0.6545	0.4024	0.4074	0.4131	0.4489	0.4539	0.4587
	STMH	0.5802	0.5846	0.5855	0.3445	0.3570	0.3690	0.3607	0.3738	0.3842
	SCM	0.6195	0.6302	0.6366	0.3698	0.3734	0.3696	0.4370	0.4428	0.4504
	CMFH	0.5787	0.5774	0.5784	0.3619	0.3687	0.3769	0.3623	0.3670	0.3723
	CCA	0.5690	0.5659	0.5639	0.3340	0.3255	0.3197	0.3392	0.3320	0.3272

Table 4. MAP. The best accuracy is shown in boldface. The baselines are based on CNN-F features.

Task	Method	MIRFLICKR-25K			IAPR TC-12			NUS-WIDE		
lask	Method	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits
	DCMH	0.7410	0.7465	0.7485	0.4526	0.4732	0.4844	0.5903	0.6031	0.6093
	SePH	0.7123	0.7194	0.7232	0.4442	0.4563	0.4639	0.6037	0.6136	0.6211
$I \rightarrow T$	STMH	0.6132	0.6219	0.6274	0.3775	0.4002	0.4130	0.4710	0.4864	0.4942
$I \rightarrow I$	SCM	0.6851	0.6921	0.7003	0.3692	0.3666	0.3802	0.5409	0.5485	0.5553
	CMFH	0.6377	0.6418	0.6451	0.4189	0.4234	0.4251	0.4900	0.5053	0.5097
	CCA	0.5719	0.5693	0.5672	0.3422	0.3361	0.3300	0.3604	0.3485	0.3390
	DCMH	0.7827	0.7900	0.7932	0.5185	0.5378	0.5468	0.6389	0.6511	0.6571
	SePH	0.7216	0.7261	0.7319	0.4423	0.4562	0.4648	0.5983	0.6025	0.6109
$T \to I$	STMH	0.6074	0.6153	0.6217	0.3687	0.3897	0.4044	0.4471	0.4677	0.4780
	SCM	0.6939	0.7012	0.7060	0.3453	0.3410	0.3470	0.5344	0.5412	0.5484
	CMFH	0.6365	0.6399	0.6429	0.4168	0.4212	0.4277	0.5031	0.5187	0.5225
	CCA	0.5742	0.5713	0.5691	0.3493	0.3438	0.3378	0.3614	0.3494	0.3395

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen
NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University
{tkarras, taila, slaine, jlehtinen}@nvidia.com

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras NVIDIA

tkarras@nvidia.com

Samuli Laine NVIDIA

slaine@nvidia.com

Timo Aila NVIDIA

taila@nvidia.com

Model generation Al

Idols created by AI

Al × Creative

Realize a society created with Al

Until now it has been said that it is difficult for AI to do creative work.

We are developing creative AI by applying deep learning.

AI stimulates the imagination of human creators and aims to be a society where people and AI co-create.

Final Announcements

VDLM on Github

https://github.com/vdlm/meetups

- all talks
- slides
- photos
- videos
- Wiki

#	Date	Place	Topic	Link	Video	Meetup.com
1	2016-04-07	Sector 5	intro	more		link
2	2016-05-09	Sector 5		more		link
3	2016-06-06	Sector 5		more		link
4	2016-07-07	TU Wien		more		link
5	2016-09-22	Automic Software GmbH		more		link
6	2016-10-12	Sector 5		more		link
7	2016-12-01	Agentur Virtual Identity		more		link
8	2017-01-17	TU Wien Informatik		more		link
9	2017-02-21	bwin.party services (Austria) GmbH		more		link

Meetup

VDLM Youtube Channel

https://www.youtube.com/ViennaDeepLearningMeetup

Montag, 24. Juni 2019

28th Deep Learning Meetup in Vienna

Veranstaltet von Alexander Schindler und 3 anderen Von Vienna Deep Learning Meetup Öffentliche Gruppe

- Montag, 24, Juni 2019 18:30 bis 22:30 Zum Kalender hinzufügen
- Talent Garden Austria Liechtensteinstraße 111-115 · Wien
- Deep Learning for Electrical Biosignals and their Application in Medical Products Franz Fürbass, Scientist in Biosignal Processing Group at Austrian Institute of Technology (AIT)
- Adversarial Machine Learning An Introduction to Backdoor, Evasion and Inversion Attacks Rudolf Mayer, Senior Researcher, SBA Research & Lector, TU Wien

Next Meetup: 24th June 2019 @ Talent Garden Austria

www.meetup.com/Vienna-Deep-Learning-Meetup

