Яблочкова К.С

Збірник задач з курсу Класична механіка

Посібник для самостійної роботи здобувачів освіти

Рекомендовано до друку вченою радою фізичного факультету Київського національного університету імені Тараса Шевченка, протокол $N\!\!\!_{2}$, від .

. .

Рецензенти:

доктор ф.-м. наук, професор кафедри експериментальної фізики Київського національного університету імені Тараса Шевченка, Єщенко О.А.

доктор ф.-м. наук, доцент кафедри теоретичної фізики Київського національного університету імені Тараса Шевченка, **Ледней М.Ф.**

Методична розробка містить задачі, що пропонуються у курсі "Класична механіка" для студентів навчальної програми Оптотехніка у якості домашніх завдань, матеріалів практичних занять, та коригуючих завдань. У виданні наводяться розв'язки усіх запропонованих задач. Видання може використовуватися як допоміжний засіб для асинхронного навчання або стати в нагоді викладачам, які починають читати курс «Класична механіка» та шукають добірку простих вправ та задач.

Зміст

Тема 1: Операції з векторами	3
Тема 2: Кінематика матеріальної точки	8
Тема 3: Динаміка матеріальної точки. Закони Ньютона	27
Тема 4: Лінійні гармонічні коливання і нормальні моди коли	вань43
Тема 5: Закони збереження: одномірний рух	67
Тема 6: Рух частинки у центральному полі	74
Тема 7: Механіка Лагранжа	85
Тема 8: Варіаційний принцип, механіка Гамільтона	104

Тема 1: Операції з векторами

Задачі

- **1.1.** Спростити вираз: $3(2\vec{a} 4\vec{b}) 2(2\vec{a} \vec{b})$.
- **1.2.** Дано: $\vec{a} = 2\vec{\imath} \vec{\jmath} + 2\vec{k}, \ \vec{b} = 4\vec{\imath} 3\vec{k}$ Знайти $\vec{a} \cdot \vec{b}$ та кут між векторами α .
- **1.3.** Дано: $\vec{v}=6\vec{\iota}-3\vec{j}+15\vec{k}$, $\vec{a}=2\vec{\iota}-\vec{j}-2\vec{k}$. Знайти проекцію вектора \vec{v} на вектор \vec{a} .
- **1.4.** Дано: $\vec{a} = 2\vec{\iota} \vec{j} + 2\vec{k}, \, \vec{b} = -\vec{\iota} 3\vec{k}$. Знайти
 - a) $\vec{a} \times \vec{b}$.
 - б) одиничний вектор, перпендикулярний до \vec{a} і \vec{b} .
- **1.5.** Дано: $\vec{a} = 5\vec{i} + 4\vec{k}, \vec{b} = 3\vec{i} 6\vec{j} + \vec{k}$. Знайти $\vec{a} \times \vec{b}$.
- **1.6.** Спростить вираз $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$
- **1.7.** Дано: $\vec{a}=2\vec{\imath}-\vec{\jmath}-2\vec{k}$, $\vec{b}=3\vec{\imath}-4\vec{k}$, $\vec{c}=\vec{\imath}-\overrightarrow{5j}+3\vec{k}$ Знайти
 - a) $3\vec{a} + 2\vec{b} 4\vec{c}$.
 - 6) $\left| \vec{a} \vec{b} \right|^2$.
 - в) проекцію \vec{c} на \vec{a} .
 - Γ) $\vec{a} \times \vec{b}$.
 - д) $\vec{a} \cdot (\vec{c} \times \vec{b})$.
- **1.8.** Дано $\vec{r} = (2t^2 5t)\vec{i} + (4t + 2)\vec{j} + (t^3)\vec{k}$. Знайти $\frac{d\vec{r}}{dt}$.

1.9. Дано
$$\vec{r} = (\sin t)\vec{i} + (\cos 2t)\vec{j} + (\ln t - e^{-2t})\vec{k}$$
. Знайти $\frac{d\vec{r}}{dt}$

1.10. Дано
$$\vec{r} = (t^2)\vec{\iota} - (\sin t)\vec{\jmath}$$
, $\vec{q} = 2\vec{\iota} + (\cos t)\vec{\jmath}$. Знайти $\frac{d}{dt}(\vec{r} \times \vec{q})$

1.11. Циклоїда задана параметричним рівнянням: $\begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \text{ , де } a \\ z = 0 \end{cases}$ - константа. Знайти вираз для вектору, дотичного до циклоїди, як функцію параметра θ .

Розв'язки

1.1.

$$3(2\vec{a}-4\vec{b})-2(2\vec{a}-\vec{b})=6\vec{a}-12\vec{b}-4\vec{a}+2\vec{b}=2\vec{a}-10\vec{b}$$

$$(\vec{a} \cdot \vec{b}) = \sum_{i} a_{i} b_{i}$$
$$(\vec{a} \cdot \vec{b}) = (2)(4) + (-1)(0) + (2)(-3) = 2$$

$$\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}, \ \vec{b} = 4\vec{i} - 3\vec{k}$$

$$\left(\vec{a} \cdot \vec{b}\right) = |\vec{a}| |\vec{b}| \cos \alpha$$
$$|\vec{a}| = \sqrt{(2)^2 + (-1)^2 + (2)^2} = 3$$

$$|\vec{b}| = \sqrt{(4)^2 + (0)^2 + (-3)^2} = 5$$

$$\alpha = \arccos \frac{\left(\vec{a} \cdot \vec{b}\right)}{\left|\vec{a}\right| \left|\vec{b}\right|} = \arccos \left(\frac{2}{3 \times 5}\right) = \arccos \left(\frac{2}{15}\right) = 82^{\circ}$$

$$v_{\vec{a}} = \frac{\left(\vec{v} \cdot \vec{a}\right)}{\left|\vec{a}\right|}$$

$$|\vec{a}| = \sqrt{(2)^2 + (-1)^2 + (-2)^2} = 3$$

$$v_{\vec{a}} = \frac{(6)(2) + (-3)(-1) + (15)(-2)}{3} = -5$$

1.4

a)
$$\vec{c} = \vec{a} \times \vec{b} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 2 \\ -1 & 0 & -3 \end{vmatrix} = 3\vec{i} + 4\vec{j} - \vec{k}$$

6)
$$\frac{\vec{c}}{|\vec{c}|} = \frac{3\vec{i} + 4\vec{j} - \vec{k}}{\sqrt{(3)^2 + (4)^2 + (1)^2}} = \frac{3}{26}\vec{i} + \frac{4}{26}\vec{j} - \frac{1}{26}\vec{k}$$

1.5

$$\vec{c} = \vec{a} \times \vec{b} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 0 & 4 \\ 3 & -6 & 1 \end{vmatrix} = 24\vec{i} + 7\vec{j} - 30\vec{k}$$

1.6

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (ab)(bd) - (ab)(bc)$$

a)
$$3\vec{a} + 2\vec{b} - 4\vec{c} = 3(2\vec{i} - \vec{j} - 2\vec{k}) + 2(3\vec{i} + 0\vec{j} - 4\vec{k}) - 4(1\vec{i} - 5\vec{j} + 3\vec{k}) =$$

= $8\vec{i} + 17\vec{j} - 26\vec{k}$

6)
$$\vec{a} - \vec{b} = (2\vec{i} - \vec{j} - 2\vec{k}) - (3\vec{i} + 0\vec{j} - 4\vec{k}) = -\vec{i} - \vec{j} + 2\vec{k}$$
;

$$\left| \vec{a} - \vec{b} \right|^2 = (-1)^2 + (-1)^2 + (2)^2 = 6$$

B)
$$c_{\vec{a}} = \frac{(\vec{a}\vec{c})}{|\vec{a}|} = \frac{1}{3}$$

r)
$$\vec{a} \times \vec{b} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & -2 \\ 3 & 0 & -4 \end{vmatrix} = 4\vec{i} + 2\vec{j} + 3\vec{k}$$

д)
$$\vec{c} \times \vec{b} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -5 & 3 \\ 3 & 0 & -4 \end{vmatrix} = 20\vec{i} + 5\vec{j} + 15\vec{k}$$
;

$$\vec{a} \cdot (\vec{c} \times \vec{b}) = (2)(20) + (-1)(13) + (-2)(15) = -3$$

1.8.

$$\frac{d\vec{r}}{dt} = (4t - 5)\vec{i} + (4)\vec{j} + (3t^2)\vec{k}$$

$$\frac{d\vec{r}}{dt} = (\cos t)\vec{i} + (-2\sin t)\vec{j} + \left(\frac{1}{t} + 2e^{-2t}\right)\vec{k}$$

$$\frac{d}{dt}(\vec{r} \times \vec{q}) = \vec{r} \times \frac{d\vec{q}}{dt} + \frac{d\vec{r}}{dt} \times \vec{q}$$

$$\frac{d\vec{r}}{dt} = (2t)\vec{i} + (-\cos t)\vec{j}$$

$$\frac{d\vec{q}}{dt} = (0)\vec{i} + (-\sin t)\vec{j}$$

$$\vec{r} \times \frac{d\vec{q}}{dt} = \det \begin{vmatrix} \vec{i} & \vec{j} \\ t^2 & -\sin t \\ 0 & \vdots \end{vmatrix}$$

$$\vec{r} \times \frac{d\vec{q}}{dt} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ t^2 & -\sin t & 0 \\ 0 & -\sin t & 0 \end{vmatrix} = \left(-t^2 \sin t\right) \vec{k}$$

$$\frac{d\vec{r}}{dt} \times \vec{q} = \det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2t & -\cos t & 0 \\ 2 & \cos t & 0 \end{vmatrix} = (2\cos t + 2t\cos t)\vec{k}$$

$$\vec{r} \times \frac{d\vec{q}}{dt} + \frac{d\vec{r}}{dt} \times \vec{q} = \left(-t^2 \sin t + 2t \cos t + 2\cos t\right) \vec{k}$$

$$\frac{d\vec{r}}{d\theta} = \vec{t}(\theta) \left| \frac{d\vec{r}}{d\theta} \right|$$

$$\frac{d\vec{r}}{d\theta} = (a - a\cos\theta)\vec{i} + (a\sin\theta)\vec{j}$$

$$\left| \frac{d\vec{r}}{d\theta} \right| = \sqrt{\left(a - a \cos \theta \right)^2 + \left(a \sin \theta \right)^2} = a\sqrt{2 - 2\cos \theta} = 2a \sin \frac{\theta}{2}$$

$$\vec{t}(\theta) = \frac{\frac{d\vec{r}}{d\theta}}{\left|\frac{d\vec{r}}{d\theta}\right|} = \frac{\left(a - a\cos\theta\right)\vec{i} + \left(a\sin\theta\right)\vec{j}}{2a\sin\frac{\theta}{2}} = \frac{\left(1 - \cos\theta\right)\vec{i} + \left(\sin\theta\right)\vec{j}}{2\sin\frac{\theta}{2}}$$

$$\vec{t}(\theta) = \frac{2\sin^2\frac{\theta}{2}\vec{i} + (\sin\theta)\vec{j}}{2\sin\frac{\theta}{2}} = \sin\frac{\theta}{2}\vec{i} + \cos\frac{\theta}{2}\vec{j}$$

Тема 2: Кінематика матеріальної точки

Задачі

- **2.1.** Положення частинки в момент часу t задається функцією $x = t^2 6t$, де x задано в метрах, а t в секундах. Знайти середню швидкість частинки в інтервалі часу $t \in [1; 3]$
- **2.2.** Положення частинки в момент часу t задається функцією $x = t^2 6t$, де x задано в метрах, а t в секундах. Знайти миттєву швидкість частинки в момент часу t = 1.
- **2.3.** Положення частинки в момент часу t задається функцією $x = t^3 6t^2 + 4$, де x задано в метрах, а t в секундах. Знайти
 - а) залежність швидкості частинки від часу.
 - б) залежність прискорення частинки від часу.
 - в) впевнитися, що існує момент часу, в який частинка зупиняється, і знайти її положення і прискорення в цей момент часу.
- **2.4** Положення частинки в момент часу t задається функцією $x = \cos 2t + t$, де x задано в метрах, а t в секундах. Знайти
 - а) миттєву швидкість частинки в момент часу $t=\frac{\pi}{2}$.
 - б) миттєве прискорення частинки в момент часу $t=\frac{\pi}{2}$.
 - в) середню швидкість частинки в інтервалі часу $t \in [0; \ \pi]$.
 - г) середнє прискорення частинки в інтервалі часу $t \in [0; \ \pi].$
- **2.5** Залежність прискорення частинки від часу задано виразом $a(t) = 30(5e^{5t} 6e^{-6t})$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 0 \end{cases}$ Знайти рівняння руху частинки у формі x(t). v = 0

- **2.6** Залежність прискорення частинки від часу задано виразом $a(t) = -8t^3$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 20 \end{cases}$. Знайти рівняння руху частинки у формі x(t). v = 30
- **2.7** Залежність прискорення частинки від часу задано виразом $a(t) = 3t^2 12t$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 1 \end{cases}$. Знайти рівняння руху частинки у формі x(t). v = 0
- **2.8.** Залежність прискорення частинки від швидкості задано виразом $a(v) = -\frac{v^3}{2}$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 0 \end{cases}$. Знайти рівняння руху частинки у формі x(t). v = 0.5
- **2.9** Залежність прискорення частинки від швидкості задано виразом $a(v) = e^{-v}$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 0 \end{cases}$ Знайти рівняння руху частинки у формі x(t). v = 0
- **2.10** Залежність прискорення частинки від швидкості задано виразом $a(v) = -\frac{v^3}{2}$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 0 \end{cases}$. Знайти залежність швидкості тіла від його положення v(x). v = 0,5
- **2.11** Залежність прискорення частинки від її положення задано виразом a(x) = 4x + 4 . Положення тіла і його швидкість в початковий момент

часу: $\begin{cases} t=0 \\ x=0. \end{cases}$ Знайти залежність положення частинки від часу та v=2 залежність швидкості частинки від часу.

- **2.12** Залежність прискорення частинки від її положення задано виразом $a(x) = 3(x+2)^5$. Положення тіла і його швидкість в початковий момент часу: $\begin{cases} t = 0 \\ x = 0 \end{cases}$ Знайти залежність положення частинки від часу. t = 0
- **2.13** Положення частинки P в просторі задано як $\vec{r} = (2t^2 3)\vec{\iota} + (4t + 4)\vec{\jmath} + (t^3 + t^2)\vec{k}$. Знайти
- а) відстань OP в момент часу t = 0.
- б) швидкість частинки в момент часу t = 1.
- в) прискорення частинки в момент часу t = 2.
- **2.14** Швидкість частинки залежить від часу як $\vec{v} = (3t^2)\vec{\iota} (4t^3)\vec{\jmath}$, початкові умови: x(0) = 0 і y(0) = 0. Знайти траєкторію руху частинки.
- **2.15** Швидкість частинки залежить від часу як $\vec{v} = (2t)\vec{\iota} (\sin 3t)\vec{\jmath}$, початкові умови: x(0) = 0 і y(0) = 0. Знайти траєкторію руху частинки.
- **2.16** Частинка рухається по колу, в момент часу t вона утворює кут θ з віссю x. Одиничні вектори задані як: $\begin{cases} \vec{n}_r = \cos\theta \, \vec{i} + \sin\theta \, \vec{j} \\ \vec{n}_\theta = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j} \end{cases}$ Показати, що

a)
$$\frac{d\vec{n}_r}{d\theta} = \vec{n}_{\theta}$$

6) $\frac{d\vec{n}_{\theta}}{d\theta} = -\vec{n}_r$

2.17 Частинка рухається за траєкторією $\begin{cases} r = be^{\Omega t}, \ de \ b, \ \Omega \ - \ dodathi \end{cases}$ константи. Знайти

- а) залежність швидкості частинки від часу.
- б) залежність прискорення частинки від часу.
- в) кут між векторами швидкості і прискорення.
- **2.18** Частинка рухається по колу радіуса b. В момент часу t = 0 частинка нерухома. Модуль швидкості частинки збільшується зі сталим прискоренням α . Знайти кут між швидкістю частинки і її прискоренням як функцію часу.
- **2.19** Частинка рухається по колу радіуса b. В певний момент часу її швидкість складає v, а прискорення утворює кут α з радіус-вектором частинки. Знайти модуль прискорення частинки в цей момент часу.
- **2.20** Коли математичний маятник утворю кут θ з вертикаллю, його швидкість дорівнює $v = \sqrt{2gb\cos\theta}$, де b довжина маятника, g додатня константа. Знайти залежність прискорення маятника від кута, який він утворює з вертикаллю.
- **2.21** Частинка ковзає по жолобу в площині, що обертається зі сталою кутовою швидкістю Ω . Відстань частинки від центра обертання описується виразом $r=b\cosh\Omega t$, де b додатня константа. Знайти
 - а) модуль швидкості частинки відносно нерухомої системи координат.
 - б) прискорення частинки і його напрямок.

Розв'язки

2.1.

$$\left\langle v_{x}\right\rangle =\frac{x(t_{2})-x(t_{1})}{t_{2}-t_{1}};$$

$$\langle v_x \rangle = \frac{\left((3)^2 - 6(3) \right) - \left(3(1)^2 - 6(1) \right)}{3 - 1} \text{ m/c} = -2 \text{ m/c}$$

$$v_x = \frac{dx}{dt};$$

$$v_x = 2t - 6;$$

$$v_x = (2(1) - 6) \text{ m/c} = -4 \text{ m/c}$$

2.3

$$\mathbf{a)} \ v_{x} = \frac{dx}{dt};$$

$$v_x = 3t^2 - 12t$$

$$\mathbf{6)} \ a_{x} = \frac{dv_{x}}{dt}$$

$$a_x = 6t - 12$$

в) В момент, який частинка зупиняться $v_x(t_{syn}) = 0$. Це можливо, бо рівняння $3t^2 - 12t = 0$ має невід'ємні корені: t = 0; t = 4 с

$$x(4) = ((4)^3 - 6(4)^2 + 4) M = -28 M;$$

$$a_x(4) = (6(4)-12) \text{ m/c}^2 = 12 \text{ m/c}^2$$

2.4

$$\mathbf{a)} \ v_{x} = \frac{dx}{dt};$$

$$v_{r} = -2\sin 2t + 1$$

$$v_x\left(\frac{\pi}{2}\right) = \left(-2\sin 2\left(\frac{\pi}{2}\right) + 1\right) \text{ m/c} = 1 \text{ m/c}$$

б)

$$a_x = \frac{dv_x}{dt}$$

$$a_{r} = -4\cos 2t$$

$$a_x \left(\frac{\pi}{2}\right) = \left(-4\cos 2\left(\frac{\pi}{2}\right)\right) \text{ m/c}^2 = 4 \text{ m/c}^2$$

B)
$$\langle v_x \rangle = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$
;

$$\langle v_x \rangle = \frac{\left(\cos(2\pi) + \pi\right) - \left(\left(\cos(0) + 0\right)\right)}{\pi - 0} \text{M/c} = 1 \text{ M/c}$$

$$\Gamma \rangle \langle a_x \rangle = \frac{v(t_2) - v(t_1)}{t_2 - t_1};$$

$$\langle a_x \rangle = \frac{(-2\sin(2\pi)+1)-(-2\sin(0)+1)}{\pi-0} \text{ m/c}^2 = 0 \text{ m/c}^2$$

$$a_x = \frac{dv_x}{dt}$$

$$\frac{dv_x}{dt} = 30(5e^{5t} - 6e^{-6t});$$

Розділяючи змінні:

$$dv_x = 30(5e^{5t} - 6e^{-6t})dt;$$

$$\int_{0}^{v_x} dv_x = 30 \int_{0}^{t} \left(5e^{5t} - 6e^{6t} \right) dt ;$$

$$v_x = 30(e^{5t} + e^{-6t}) - 60$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = 30(e^{5t} + e^{-6t}) - 60$$

Розділяючи змінні:
$$dx = (30(e^{5t} + e^{-6t}) - 60)dt$$
;

$$\int_{0}^{x} dx = \int_{0}^{t} \left(30(e^{5t} + e^{-6t}) - 60 \right) dt;$$

$$x - 0 = 30(\frac{1}{5}e^{5t} - \frac{1}{6}e^{-6t}t) - 30(\frac{1}{5}e^{5\times 0} - \frac{1}{6}e^{-6\times 0}) - \left(60t - 0\right);$$

$$x = 6e^{5t} - 5e^{-6t} - 60t - 1$$

$$a_x = \frac{dv_x}{dt}$$

$$\frac{dv_x}{dt} = -8t^3;$$

Розділяючи змінні:

$$dv_{x} = -8t^{3}dt;$$

$$\int_{30}^{v_x} dv_x = -8 \int_{0}^{t} t^3 dt \; ;$$

$$v_x - 30 = -8\left(\frac{t^4}{4} - 0\right);$$

$$v_x = -2t^4 + 30$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = -2t^4 + 30$$

Розділяючи змінні:
$$dx = (-2t^4 + 30)dt$$
;

$$\int_{20}^{x} dx = \int_{0}^{t} \left(-2t^{4} + 30 \right) dt ;$$

$$x - 20 = \left(-2\frac{t^{5}}{5} + 30t \right) - \left(-2\frac{0^{5}}{5} + 30 \times 0 \right) ;$$

$$x = -\frac{2t^{5}}{5} + 30t + 20$$

$$a_{x} = \frac{dv_{x}}{dt}$$

$$\frac{dv_x}{dt} = 3t^2 - 12t;$$

Розділяючи змінні:

$$dv_x = \left(3t^2 - 12t\right)dt;$$

$$\int_{0}^{v_{x}} dv_{x} = \int_{0}^{t} (3t^{2} - 12t) dt;$$

$$v_x - 0 = \left(3\frac{t^3}{3} - 12\frac{t^2}{2}\right) - \left(3\frac{0^3}{3} - 12\frac{0^2}{2}\right);$$

$$v_x = t^3 - 6t^2$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = t^3 - 6t^2$$

Розділяючи змінні: $dx = (t^3 - 6t^2)dt$;

$$\int_{1}^{x} dx = \int_{0}^{t} (t^{3} - 6t^{2}) dt;$$

$$x - 1 = \left(\frac{t^{4}}{4} - 6\frac{t^{3}}{3}\right) - \left(\frac{0^{4}}{4} - 6\frac{0^{3}}{3}\right)$$

$$x = 0.25t^4 - 2t^3 + 1$$

$$a_x = \frac{dv_x}{dt}$$
$$\frac{dv}{dt} = -\frac{v^3}{2};$$

Розділяючи змінні:

$$\frac{dv}{v^{3}} = -\frac{dt}{2};$$

$$\int_{0}^{v} v^{-3} dv = -\frac{1}{2} \int_{0}^{t} dt;$$

$$\left(\frac{v^{-3+1}}{(-3+1)}\right) - \left(\frac{(0,5)^{-3+1}}{(-3+1)}\right) = -\frac{1}{2}(t-0);$$

$$\frac{1}{v^2} = t + 4$$
;

$$v = \sqrt{\frac{1}{t+4}}$$
;

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = \sqrt{\frac{1}{t+4}}$$
;

Розділяючи змінні: $dx = (t+4)^{-\frac{1}{2}}dt$;

$$\int_{0}^{x} dx = \int_{0}^{t} (t+4)^{-\frac{1}{2}} dt;$$

$$x = 2(t+4)^{1/2} - 4$$

2.9

$$a_x = \frac{dv_x}{dt}$$

$$\frac{dv}{dt} = e^{-v};$$

Розділяючи змінні:

 $e^{v}dv=dt$;

$$\int_{0}^{v} e^{v} dv = \int_{0}^{t} dt ;$$

$$e^{v}-e^{0}=t-0$$

$$e^{v} = t + 1$$
;

$$\ln\left(e^{v}\right) = \ln\left(t+1\right);$$

$$v = \ln(t+1)$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = \ln(t+1);$$

Розділяючи змінні: $dx = \ln(t+1)dt$;

$$\int_{0}^{x} dx = \int_{0}^{t} \ln(t+1) dt;$$

$$x - 0 = ((t+1)\ln(t+1) - (t+1)) - ((0+1)\ln(0+1) - (0+1));$$

$$x = (t+1)\ln(t+1) - t$$

$$a_x = \frac{dv_x}{dt} = v_x \frac{dv_x}{dx}$$
$$v \frac{dv}{dx} = -\frac{v^3}{2};$$

Розділяючи змінні:

$$\frac{dv}{v^2} = -\frac{dx}{2};$$

$$\int_{0.5}^{v} v^{-2} dv = -\frac{1}{2} \int_{0}^{x} dx;$$

$$-\frac{1}{v} + \frac{1}{0.5} = -\frac{1}{2} (x - 0);$$

$$-\frac{1}{v} + 2 = -\frac{x}{2}$$

$$v = \frac{2}{x + 4}$$

2.11

$$a_{x} = \frac{dv_{x}}{dt} = v_{x} \frac{dv_{x}}{dx}$$
$$v \frac{dv}{dx} = 4x + 4;$$

Розділяючи змінні:

$$vdv = (4x + 4);$$

$$\int_{2}^{v} v dv = \int_{0}^{x} (4x + 4) dx;$$

$$\frac{v^2}{2} - \frac{2^2}{2} = \left(\frac{4x^2}{2} + 4x\right) - \left(\frac{4(0)^2}{2} + 4 \times 0\right)$$

$$v^2 = 4x^2 + 8x + 4$$

$$v^2 = (2x+2)^2$$

$$v = 2x + 2$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = 2x + 2$$
;

Розділяючи змінні: $\frac{dx}{x+1} = 2dt$

$$\int_{0}^{x} \frac{dx}{x+1} = \int_{0}^{t} 2dt ;$$

$$\ln(x+1) - \ln(1) = 2t - 0$$

$$e^{\ln(x+1)} = e^{2t}$$
:

$$x+1=e^{2t}$$
:

$$x = e^{2t} - 1$$
:

$$v_x = \frac{dx}{dt} = \frac{d}{dt} \left(e^{2t} - 1 \right);$$

$$v = 2e^{2t}$$

$$a_x = \frac{dv_x}{dt} = v_x \frac{dv_x}{dx}$$

$$v\frac{dv}{dx} = 3(x+2)^5;$$

Розділяючи змінні:

$$vdv = 3(x+2)^5 dx;$$

$$\int_{8}^{v} v dv = \int_{0}^{x} 3(x+2)^{5} dx;$$

$$\frac{v^2}{2} - \frac{8^2}{2} = \frac{3(x+2)^6}{6} - \frac{3(0+2)^6}{6};$$

$$v^2 = (x+2)^6$$

$$v_x = \frac{dx}{dt}$$
;

$$\frac{dx}{dt} = (x+2)^3;$$

Розділяючи змінні: $(x+2)^{-3} dx = dt$

$$\int_{0}^{x} (x+2)^{-3} dx = \int_{0}^{t} dt ;$$

$$-\frac{1}{2(x+2)^2}\bigg|_0^x = t-0$$

$$\frac{1}{2(x+2)^2} - \frac{1}{2 \times 2^2} = -t$$

$$x = \sqrt{\frac{4}{1 - 8t}} - 2$$

a)
$$OP = |\vec{r}_P(0)|$$
; $OP = \sqrt{(2(0)^2 - 3)^2 + (4(0) + 4)^2 + (0^3 + 0^2)} = 5$

6)
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$
;

$$\vec{v} = \frac{d\vec{r}}{dt} = (4t)\vec{i} + (4)\vec{j} + (3t^2 + 2t)\vec{k} =$$

$$\vec{v}(1) = (4(1))\vec{i} + (4)\vec{j} + (3(1)^2 + 2(1))\vec{k} = 4\vec{i} + 4\vec{j} + 5\vec{k}$$

B)
$$\vec{a} = \frac{d\vec{v}}{dt} = (4)\vec{i} + (0)\vec{j} + (6t+2)\vec{k}$$

$$\vec{a}(2) = \frac{d\vec{v}}{dt} = (4)\vec{i} + (0)\vec{j} + (6(2) + 2)\vec{k} = 4\vec{i} + 14\vec{k}$$

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} + \frac{dz}{dt} \vec{k}$$
;

3 дано
$$\frac{dx}{dt} = 3t^2$$

Розділяючи змінні та інтегруючи: $\int_{0}^{x} dx = \int_{0}^{t} 3t^{2} dt$;

$$x-0=\frac{3t^3}{3}-\frac{3(0)^3}{3}$$
;

$$x = t^3$$
;

3 дано
$$\frac{dy}{dt} = -4t^3$$

Розділяючи змінні та інтегруючи: $\int_{0}^{x} dy = \int_{0}^{t} -4t^{3} dt$;

$$y-0=-\frac{4t^4}{4}+\frac{4(0)^4}{4}$$
;

$$y = t^4$$
;

Для отримання рівняння траєкторії y(x), виразимо t з $x = t^3$ і підставимо у $y = t^4$:

$$t = x^{1/3}$$
;

$$y = (x^{1/3})^4 = x^{4/3}$$

2.15

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} + \frac{dz}{dt} \vec{k} ;$$

3 дано
$$\frac{dx}{dt} = 2t$$

Розділяючи змінні та інтегруючи: $\int_{0}^{x} dx = \int_{0}^{t} 2t dt$;

$$x-0=2\frac{t^2}{2}-2\frac{0^2}{2}$$
;

$$x = t^2$$
;

3 дано
$$\frac{dy}{dt} = -\sin 3t$$

Розділяючи змінні та інтегруючи: $\int_{0}^{y} dy = \int_{0}^{t} -\sin 3t dt;$

$$y-0=\frac{\cos 3t}{3}-\frac{\cos 3(0)}{3}$$

$$y = \frac{1}{3}(\cos 3t - 1)$$

Для отримання рівняння траєкторії y(x), виразимо t з $x = t^2$ і підставимо у вираз для y:

$$t = \sqrt{x};$$

$$y = \frac{1}{3} (\cos 3\sqrt{x} - 1)$$

2.16

$$\frac{d\vec{n}_r}{d\theta} = \frac{d}{d\theta} \left(\cos \theta \vec{i} + \sin \theta \vec{j} \right) = -\sin \theta \vec{i} + \cos \theta \vec{j} = \vec{n}_{\theta}$$

$$\frac{d\vec{n}_{\theta}}{d\theta} = \frac{d}{d\theta} \left(-\sin \theta \vec{i} + \cos \theta \vec{j} \right) = -\cos \theta \vec{i} - \sin \theta \vec{j} = -\vec{n}_{r}$$

2.17

3 дано:
$$\dot{r} = b\Omega e^{\Omega t}$$
, $\ddot{r} = b\Omega^2 e^{\Omega t}$; $\dot{\theta} = \Omega$, $\ddot{\theta} = 0$

$$\vec{v} = \dot{r}\vec{n}_r + r\dot{\theta}\vec{n}_\theta$$

$$\vec{v} = b\Omega e^{\Omega t}\vec{n}_r + be^{\Omega t}\Omega\vec{n}_\theta$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{n}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{n}_\theta$$

$$\vec{a} = (b\Omega^2 e^{\Omega t} - be^{\Omega t}(\Omega)^2)\vec{n}_r + (be^{\Omega t}0 + 2b\Omega e^{\Omega t}\Omega)\vec{n}_\theta = (0)\vec{n}_r + (2b\Omega^2 e^{\Omega t})\vec{n}_\theta$$

$$\cos \varphi = \frac{(\vec{v} \cdot \vec{a})}{|\vec{v}||\vec{a}|};$$

$$\cos \varphi = \frac{b\Omega e^{\Omega t} \times 0 + be^{\Omega t}\Omega \times (2b\Omega^2 e^{\Omega t})}{\sqrt{2}b\Omega e^{\Omega t} \times 2b\Omega^2 e^{\Omega t}} = \frac{1}{\sqrt{2}}$$

$$\varphi = a\cos\left(\frac{1}{\sqrt{2}}\right) = 45^\circ$$

Для руху по колу
$$r=b={\rm const},\; \dot{r}=0$$
 і $\ddot{r}=0$ $\vec{v}=\dot{r}\vec{n}_r+r\dot{\theta}\vec{n}_\theta=b\dot{\theta}\vec{n}_\theta$, тобто $v=b\dot{\theta}$

3 іншого боку, відповідно до дано $v = \alpha t$

$$b\dot{\theta} = \alpha t$$
, тобто $\dot{\theta} = \frac{\alpha}{h}t$ і $\ddot{\theta} = \frac{\alpha}{h}t$

Підставляючи отримані результати у вираз для прискорення:

$$\vec{a} = (\ddot{r} - r\dot{\theta}^{2})\vec{n}_{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{n}_{\theta} =$$

$$= \left(0 - b\left(\frac{\alpha t}{b}\right)^{2}\right)\vec{n}_{r} + \left(b\frac{\alpha}{b} + 2\times 0\times \frac{\alpha t}{b}\right)\vec{n}_{\theta} =$$

$$= \left(-\frac{\alpha^{2}t^{2}}{b}\right)\vec{n}_{r} + (\alpha)\vec{n}_{\theta};$$

$$\cos \varphi = \frac{(\vec{v} \cdot \vec{a})}{|\vec{v}||\vec{a}|};$$

$$\cos \varphi = \frac{0\times \left(-\frac{\alpha^{2}t^{2}}{b}\right) + b\frac{\alpha}{b}t\times\alpha}{b^{2}t\times\alpha} = \frac{b}{\sqrt{b^{2} + \alpha^{2}t^{4}}}$$

$$\varphi = a\cos\left(\frac{b}{\sqrt{b^{2} + \alpha^{2}t^{4}}}\right)$$

Для руху по колу
$$r=b={\rm const},\; \vec{r}=b\vec{n}_r\,,\; \dot{r}=0$$
 і $\ddot{r}=0$ і $\ddot{r$

$$\cos \varphi = \frac{b \times \dot{\theta}^2 b}{b|\vec{a}|}$$
, Виражаємо a :

$$\left| \vec{a} \right| = \frac{\dot{\theta}^2 b}{\cos \varphi} = \frac{v^2}{b \cos \varphi}$$

Для руху по колу $r=b={\rm const},\; \vec{r}=b\vec{n}_r,\; \dot{r}=0\; {\rm i}\; \ddot{r}=0$ Швидкість маятника дотична до його траєкторії = кола, тобто $\vec{v}=\dot{r}\vec{n}_r+r\dot{\theta}\vec{n}_\theta=(0)\vec{n}_r+\left(b\dot{\theta}\right)\vec{n}_\theta,$

$$v = b\dot{\theta} = \sqrt{2gb\cos\theta}$$

Звідси

$$\dot{\theta} = \sqrt{\frac{2g\cos\theta}{b}} i \ddot{\theta} = \sqrt{\frac{2g}{b}} \frac{1}{2\sqrt{\cos\theta}} (-\sin\theta)\dot{\theta} =$$

$$= \sqrt{\frac{2g}{b}} \frac{1}{2\sqrt{\cos\theta}} (-\sin\theta) \sqrt{\frac{2g\cos\theta}{b}} =$$

$$=-\frac{g}{h}\sin\theta$$

$$ec{a}=\left(-b\dot{ heta}^2
ight)ec{n}_r+\left(b\ddot{ heta}
ight)ec{n}_{ heta}$$
 . Підставляючи вирази для $\dot{ heta},~\ddot{ heta}$:

$$\vec{a} = \left(-b\left(\sqrt{\frac{2g\cos\theta}{b}}\right)^2\right)\vec{n}_r + \left(b\left(-\frac{g}{b}\sin\theta\right)\right)\vec{n}_\theta = -2g\cos\theta\vec{n}_r + -g\sin\theta\vec{n}_\theta$$

2.21

 $r = b \cosh \Omega t$, $\dot{r} = b \Omega \sinh \Omega t$, $\ddot{r} = b \Omega^2 \cosh \Omega t$

Оскільки кутова швидкість стала, то $\dot{\theta} = \Omega$, $\theta = \Omega t$, $\ddot{\theta} = 0$

Підставляємо ці результати в вирази для швидкості, прискорення:

$$\vec{v} = \dot{r}\vec{n}_r + r\dot{\theta}\vec{n}_\theta = \left(\Omega b \sinh \Omega t\right)\vec{n}_r + \left(\Omega b \cosh \Omega t\right)\vec{n}_\theta,$$

$$\left|\vec{v}\right| = \sqrt{\left(\Omega b \sinh \Omega t\right)^2 + \left(\Omega b \cosh \Omega t\right)^2} = \Omega b \sqrt{\cosh 2\Omega t}$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{n}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{n}_\theta =$$

 $=2\Omega^2 b \sinh\Omega t \vec{n}_{_{\varphi}}$. Напрямок прискорення — по дотичній до траєкторії частинки.

Тема 3: Динаміка матеріальної точки. Закони Ньютона

Задачі

- **3.1** Знайти швидкість, яку отримує частинка в результаті дії миттєвої сили $F_{\chi} = \alpha \delta(t-t_0)$, тут δ дельта-функція, α додатня константа. Початкова швидкість частинки дорівнює нулю.
- **3.2** Частинка масою m рухається в однорідному полі Землі. Сила опору, що діє на частинку, пропорційна її швидкості. В початковий момент часу частинка нерухома і знаходиться на висоті H. Знайти
 - а) залежність швидкості частинки від часу v(t).
 - б) залежність положення частинки від часу x(t).
 - в) побудувати графіки залежностей, знайдених в попередніх пунктах.
- **3.3** Частинка масою m рухається в однорідному полі Землі. Сила опору, що діє на частинку, пропорційна квадрату її швидкості. В початковий момент часу частинка нерухома і знаходиться на висоті H. Знайти
 - а) залежність швидкості частинки від часу v(t).
 - б) побудувати графік залежності швидкості частинки від часу.
- **3.4** Заряд +e рухається в електричному полі, заданому виразом $\vec{E}=E_0\sin\left(\frac{z}{n}\right)\vec{\imath}$, де n додатня константа. В початковий момент часу $\vec{r}=$

- 0 і . $\vec{v} = v_0 \vec{k}$. Знайти траєкторію руху тіла x(z) і зобразити її на графіку.
- **3.5** Частинка P рухається від дією сили всесвітнього тяжіння з боку тіла масою M, закріпленого на початку координат O. В момент часу t=0 частинка знаходиться на відстані R від початку координат і віддаляється від O зі швидкістю u.
 - а) Знайти умову того, що P віддалиться від O на нескінченність.
 - б) На яку максимальну відстань від O віддалиться частинка, якщо $u^2 = \frac{MG}{R}$ (G гравітаційна стала) і скільки часу це займе?
- **3.6** Частинка P підвішена від точки O на тонкій нерозтяжній нитці довжиною l і рухається під дією сили тяжіння. Знайти закон руху частинки. Розв'яжіть задачу в полярній системі координат.
- **3.7** Частинка масою m і зарядом +e рухається в однорідному магнітному полі $B_0\vec{k}$. Знайти траєкторію руху частинки у випадку, коли частинка влітає у поле зі швидкістю, що утворює довільний кут з вектором В.
- **3.8** Частинка масою m знаходиться в полі, що притягує її з силою $F = \frac{m\gamma}{r^3}$, де γ додатня константа. В момент часу t=0 частинка знаходиться на відстані l від початку координат і віддаляється від О зі швидкістю u. Показати, що частинка зможе "втекти" на нескінченність, якщо $u^2 > \frac{\gamma}{l^2}$.

3.9 Частинка масою m і зарядом +e потрапляє в однорідне гальмуюче електричне поле E зі швидкістю u, паралельною до поля. Знайти час, за який частинка повернеться в початкову точку.

Розв'язки

3.1

За означенням і властивостями дельта-функції:

$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases} i \int_{-\infty}^{\infty} \delta(t) dt = 1$$

За другим законом Ньютона:

$$\vec{F} = m \frac{d\vec{v}}{dt}$$
.

Підставляючи вираз для сили $F = \alpha \delta(t - t_0)$ та розділяючи змінні,

маємо

$$\frac{\alpha}{m}\delta(t-t_0)dt = dv$$

Інтергуємо:

$$\int_{0}^{\infty} \frac{\alpha}{m} \delta(t - t_0) dt = \int_{0}^{v} dv.$$

$$\frac{\alpha}{m} = v - 0$$
 i $v = \frac{m}{\alpha}$.

3.2

a)

На діаграмі нижче позначено сили, що діють на частинку.

Проектуємо сили на вісь y і застосовуємо 2й закон Ньютона: mg - kv = ma.

$$g - \frac{k}{m}v = a$$

Розділяємо зміні: $g - \frac{k}{m}v = \frac{dv}{dt}$;

$$dt = \frac{dv}{\left(g - \frac{k}{m}v\right)};$$

Інтегруємо: $\int_{0}^{t} dt = \int_{0}^{v} \frac{dv}{\left(g - \frac{k}{m}v\right)}.$

Використовуємо табличний інтеграл: $\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b|$

$$\frac{m}{k} \ln \left| \frac{\frac{k}{m} v - g}{-g} \right| = -t.$$

Звідси
$$\ln \left| \frac{\frac{k}{m}v - g}{-g} \right| = -\frac{k}{m}t$$
 і $\left| \frac{\frac{k}{m}v - g}{-g} \right| = e^{-\frac{k}{m}t}$.

Спрощуючи, отримуємо: $v = \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right)$

б)

Використовуючи попередній вираз:
$$v = \frac{dy}{dt} = \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right)$$

Розділяємо змінні: $dy = \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right) dt$.

Інтегруємо:
$$\int_{0}^{y} dy = \int_{0}^{t} \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right) dt;$$

$$\int_{0}^{y} dy = \frac{mg}{k} \left(\int_{0}^{t} dt - \int_{0}^{t} \left(e^{-\frac{k}{m}t} \right) dt \right)$$

$$y = \frac{mg}{k} \left(t - 0 - \left(-\frac{m}{k} \left(e^{-\frac{k}{m}t} - 1 \right) \right) \right)$$

$$y = \frac{mg}{k} \left(t + \frac{m}{k} e^{-\frac{k}{m}t} - \frac{m}{k} \right)$$

в)

3.3а)На діаграмі нижче позначено сили, що діють на частинку.

Проектуємо сили на вісь y і застосовуємо 2й закон Ньютона: $mg - kv^2 = ma \; .$

$$g - \frac{k}{m}v^2 = a$$

Розділяємо зміні: $g - \frac{k}{m}v^2 = \frac{dv}{dt}$;

$$dt = \frac{dv}{\left(g - \frac{k}{m}v^2\right)};$$

Інтегруємо: $\int_{0}^{t} dt = \int_{0}^{v} \frac{dv}{\left(g - \frac{k}{m}v^{2}\right)}.$

Використовуємо табличний інтеграл: $\int \frac{dx}{a^2 - x^2} = \frac{1}{a} arth \frac{x}{a}$

Перетворимо вираз: $\int_{0}^{t} dt = \frac{m}{k} \int_{0}^{v} \frac{dv}{\left(\frac{mg}{k} - v^{2}\right)}$

$$t - 0 = \frac{m}{k} \frac{1}{\sqrt{\frac{mg}{k}}} \left(arth \frac{v}{\sqrt{\frac{mg}{k}}} - 0 \right);$$

$$t = \sqrt{\frac{m}{kg}} \left(arth \frac{v}{\sqrt{mg/k}} \right);$$

Виразимо швидкість: $th\left(\sqrt{\frac{kg}{m}}t\right) = \frac{v}{\sqrt{\frac{mg}{k}}}$ і

$$v = \sqrt{\frac{mg}{k}} t h \left(\sqrt{\frac{kg}{m}} t \right)$$

3.4

В напрямку x на тіло діє сила з боку електричного поля: $F_x = eE_x$.

Застосуємо другий закон Ньютона: $F_x = m \frac{dv_x}{dt}$

$$E_0 e \sin \frac{z}{a} = m \frac{dv_x}{dt}.$$

Оскільки в напрямку z сили відсутні, тіло рухається рівномірно в цьому напрямку: $z = v_0 t$

$$E_0 e \sin \frac{v_0 t}{a} = m \frac{dv_x}{dt}$$

Розділяючи змінні, отримуємо:

$$\frac{E_0 e}{m} \sin \frac{v_0 t}{a} dt = dv_x;$$

Інтегруємо:
$$\frac{E_0 e}{m} \int_0^t \sin \frac{v_0 t}{a} dt = \int_0^{v_x} dv_x;$$

$$\frac{E_0 e}{m} \left(-\frac{a}{v_0} \left(\cos \frac{v_0 t}{a} - 1 \right) \right) = v_x; \ v_x = \frac{E_0 e a}{m v_0} \left(1 - \cos \frac{v_0 t}{a} \right).$$

Виражаємо швидкість через положення частинки вздовж х:

$$\frac{dx}{dt} = \frac{E_0 ea}{mv_0} \left(1 - \cos \frac{v_0 t}{a} \right)$$

Розділяючи змінні та інтегруючи: $\int\limits_0^x dx = \int\limits_0^t \frac{E_0 ea}{mv_0} \left(1 - \cos\frac{v_0 t}{a}\right) dt \; ;$

$$x = \frac{E_0 e a}{m v_0} \left(\left(t - 0 \right) - \frac{a}{v_0} \left(\sin \frac{v_0 t}{a} - 0 \right) \right);$$

$$x = \frac{E_0 ea}{mv_0} \left(\frac{z}{v_0} - \frac{a}{v_0} \sin \frac{z}{a} \right)$$

3.5

a)

Застосовуючи 2й закон Ньютона для руху частинки:

$$-G\frac{Mm}{x^2} = m\frac{dv}{dt}$$

Виражаючи прискорення через похідну по положенню частинки:

$$\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}.$$

Тоді:
$$-G\frac{Mm}{x^2} = mv\frac{dv}{dx}$$
 і $-G\frac{M}{x^2}dx = vdv$

Мінімальна швидкість, при якій частина віддаляється на нескінченність відповідає умові $x \to \infty$, v = 0

Інтегруючи, маємо:
$$-\int_{a}^{\infty} G \frac{M}{x^2} dx = \int_{u}^{0} v dv$$

$$-\left(-G\frac{M}{\infty}-\left(-G\frac{M}{a}\right)\right)=-\frac{u^2}{2};$$

Мінімальне значення швидкості: $u = \sqrt{\frac{2GM}{a}}$

б)

Повертаючись до інтегралу з пункту а) і заміняючи межі інтегрування:

$$-\int_{a}^{x_{\text{max}}} G \frac{M}{x^2} dx = \int_{\sqrt{GM/a}}^{0} v dv.$$

Отримуємо:
$$-\int_{a}^{x_{\text{max}}} G \frac{M}{x^2} dx = -\frac{GM}{2a}$$
;

Тоді

$$\frac{GM}{x_{\text{max}}} - \frac{GM}{a} = -\frac{GM}{2a} \text{ i } x_{\text{max}} = 2a$$

Для знаходження часу, за яке відбувається це переміщення, знову запишемо вираз

$$v^2 = \left(\frac{dx}{dt}\right)^2 = MG\left(\frac{2}{x} - \frac{1}{a}\right)$$

Звідси

$$\int_{a}^{2a} \sqrt{\frac{ax}{2a-x}} dx = \sqrt{MG} \int_{0}^{\tau} dt ;$$

Інтеграл можна взяти, використавши заміну

$$x = 2a\sin^2 \varphi$$
; $dx = 4a\sin \varphi \cos \varphi d\varphi$

$$\int_{a}^{2a} \sqrt{\frac{ax}{2a-x}} dx = \int_{a}^{2a} 4a\sqrt{a} \sin^{2} \varphi d\varphi = \int_{a}^{2a} 4a\sqrt{a} \left(\frac{1-\cos 2\varphi}{2}\right) d\varphi$$

3 цього виплива€, що

$$\tau = \frac{1}{\sqrt{MG}} a^{3/2} \left(1 + \frac{\pi}{2} \right)$$

3.6

Вираз для прискорення у полярних координатах:

$$\vec{a} = \left(\ddot{r} - r\dot{\theta}^2 \right) \vec{n}_r + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} \right) \vec{n}_{\theta}$$

Оскільки відстань до підвісу залишається сталою, то r=l=const і $\vec{a}=\left(-r\dot{\theta}^2\right)\vec{n}_r+\left(r\ddot{\theta}\right)\vec{n}_\theta$.

Застосовуємо другий закон Ньютона:

$$m\Big(\Big(-r\dot{\theta}^2\Big)\vec{n}_r + \Big(r\ddot{\theta}\Big)\vec{n}_\theta\Big) = -mg\vec{k} - T\vec{n}_r$$

або

$$\begin{cases} -ml\dot{\theta}^2 = mg\cos\theta - RT\\ ml\ddot{\theta} = -mg\sin\theta \end{cases}.$$

Аналізуючи друге рівняння: $\ddot{\theta}+\frac{g}{l}\sin\theta=0$. В наближенні малих коливань $\sin\theta\approx\theta$ і

$$\ddot{\theta} + \frac{g}{l}\theta = 0.$$

Розв'язком цього рівняння є вираз $\theta = \theta_{\text{max}} \cos \left(\sqrt{\frac{g}{l}} t - \varphi_0 \right)$

3.7

Сила, що діє на частинку, яка рухається у магнітному полі: $\vec{F} = e[\vec{v} \times \vec{B}]$.

Нехай напрямок поля вибраний як $\vec{B}=B_0\vec{k}$, частинка знаходиться на початку координат і рухається вздовж зі швидкістю $v=v_x\vec{i}+v_y\vec{j}+v_z\vec{k}$

За другим законом Ньютона $\vec{F} = m \frac{d\vec{v}}{dt}$

Спроектувавши силу на вісі, маємо:

$$\begin{cases} m\frac{dv_x}{dt} = eB_0v_y \\ m\frac{dv_y}{dt} = -eB_0v_x \\ m\frac{dv_z}{dt} = 0 \end{cases}$$

3 останнього рівняння випливає, що $v_z = const$, $z = v_{zo}t$

Для розв'язання системи рівнянь, що залишилася, продиференціюємо перше рівняння:

$$m\frac{d^2v_x}{dt^2} = eB_0 \frac{dv_y}{dt}$$

I підставимо у нього похідну $\frac{dv_y}{dt}$ з другого рівняння:

$$m\frac{d^2v_x}{dt^2} = eB_0\left(-\frac{eB_0}{m}v_x\right)$$
, отримавши рівняння гармонічних

коливань:

$$\frac{d^2v_x}{dt^2} + \left(\frac{eB_0}{m}\right)^2 v_x = 0.$$

Позначивши $\Omega = \frac{eB_0}{m}$, отримуємо

Звідси $v_x = A \sin(\Omega t + \varphi_0)$.

Для зручності введемо нове позначення $A = -R\Omega$, тоді

$$v_{x} = -R\Omega \sin(\Omega t + \varphi_{0}),$$

$$v_{x} = -R\Omega\cos\left(\Omega t + \varphi_{0}\right)$$

Проінтегрувавши вирази для компонент швидкостей, отримуємо для компонент положення частинки:

$$\begin{cases} x = R \cos \Omega t \\ y = -R \sin \Omega t \\ z = V_0 t \end{cases}$$

Траєкторія руху частинки – це спіраль.

3.8

Застосовуючи 2й закон Ньютона для руху частинки: $-\frac{\gamma m}{x^3} = m\frac{dv}{dt}$

Виражаючи прискорення через похідну по положенню частинки:

$$\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}.$$

Тоді:
$$-\frac{\gamma m}{x^3} = mv \frac{dv}{dx}$$
 і $-G \frac{M}{x^2} dx = v dv$

Мінімальна швидкість, при якій частина віддаляється на нескінченність відповідає умові $x \to \infty$

Інтегруючи, маємо:
$$-\int_{l}^{\infty} \frac{\gamma}{x^3} dx = \int_{u}^{v} v dv$$

$$\frac{v^2}{2} - \frac{u^2}{2} = -\frac{\gamma}{2l^2}$$

Мінімальна швидкість, коли це можливо, відповідає $u^2 \ge \frac{\gamma}{l^2}$

3.9

Застосовуючи 2й закон Ньютона для руху частинки: $-eE = m\frac{dv}{dt}$.

Дізнаємося, коли частинка повернеться у початкову точку:

Розділяємо змінні і інтегруємо: $-eE\int_{0}^{T}dt=\int_{0}^{v}mdv$;

$$v = -\frac{eE}{m}T + u.$$

Виразимо тепер $\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}$ і ще раз інтегруємо початковий вираз:

$$-eE = mv \frac{dv}{dx}$$

Розділяємо змінні ще раз: $-\int\limits_{L}^{L}eEdx=\int\limits_{u}^{v}mvdv$. Отримуємо:

$$0 = \frac{mv^2}{2} - \frac{mu^2}{2}$$
, тобто $v = -u$.

Підставляємо отримане співвідношення між швидкостями у

$$v = -\frac{eE}{m}T + u:$$

$$-u = -\frac{eE}{m}T + u.$$

Звідси
$$T = \frac{2um}{eE}$$

Тема 4: Лінійні гармонічні коливання і нормальні моди коливань

Задачі

- **4.1** Частинка масою m підвішена за легку пружинку. При цьому пружина розтягнулася на відстань b. Знайти період вільних вертикальних коливань такої частинки.
- **4.2** Рух осцилятора описується рівнянням $\ddot{x} + 3\dot{x} + 2x = 10\cos t$. В початковий момент часу частинка нерухома і знаходиться на початку координат. Знайти залежність x(t).
- **4.3** Знайти змушений відгук лінійного осцилятора, заданого наступним рівнянням

$$\ddot{x} + 2k\dot{x} + \Omega^2 x = \begin{cases} F_0, & 0 < t < \pi \\ -F_0, & -\pi < t < 0 \end{cases}$$

- **4.4** Частинка рухається за законом $\ddot{x} + 4x = 0$. В початковий момент часу частинка має координату $x = \sqrt{3}$ і рухається в напрямку початку координат зі швидкістю 2. Знайти закон руху частинки. Визначити амплітуду коливань частинки.
- **4.5** Рух осцилятора описується рівнянням $\ddot{x} + 10\dot{x} + 16x = 0$. В початковий момент часу x = 1, v = -u.
 - а) Знайти залежність x(t).
 - б) Показати, що частинка дістанеться початку координат, якщо $\frac{u-2}{u-8} = e^{6t}$
 - в) З'ясувати, наскільки великим має бути u, щоб частинка дісталася початку координат.

- **4.6** Блок масою 2 кг підвішено за пружину жорсткістю 2000 Н/м. На блок діє вертикальна змушуюча сила $36\cos pt$ Н. Розтяг пружини не повинен перевищувати 4 см. Знайти інтервал частот коливань пружини, які задовольняють цій умові.
- **4.7** Частинки масами m, зв'язані пружинами жорсткістю k, 2k і 4k, як показано на рисунку, здійснюють малі повздовжні коливання.

Визначити частоти власних коливань цієї системи та записати рівняння руху системи.

4.8 Частинки P і Q масами 2m і m закріплені на легкій нитці, під силою натягу T_0 між двома стінками, розташованими на відстані 4a. Частинки закріплені на нитці як показано на рис. нижче.

Розрахувати власні частоти малих поперечних коливань системи та записати рівняння руху системи.

4.9 Частинка масою m підвішена за невагому нерозтяжну нитку довжиною l. Друга частинка масою m підвішена до першої частинки за ще одну таку ж нитку. Система виведена з положення рівноваги і здійснює малі коливання. Знайти частоту власних коливань системи.

4.10 Частинка масою 3m підвішена за вертикальну пружину жорсткістю k. Друга частинка масою 2m підвішена до першої частинки за ще одну пружину жорсткістю k. Знайти частоти власних коливань системи.

4.11 Частинка масою 3m підвішена за невагому нерозтяжну нитку довжиною l. Друга частинка масою m підвішена до першої частинки за ще одну таку ж нитку. Система виведена з положення рівноваги і здійснює малі коливання. Показати, що рух системи описується

рівняннями
$$\begin{cases} 4\ddot{\theta} + \ddot{\varphi} + 4n^2\theta = 0 \\ \ddot{\theta} + \ddot{\varphi} + n^2\varphi = 0 \end{cases}.$$

Знайти рівняння руху системи $\theta(t)$, $\varphi(t)$ та частоти нормальних коливань. Вважати, що в початковий момент часу частинки зміщені в додатному напрямку на максимальну відстань та нерухомі.

4.12 Знайти змушений відгук лінійного осцилятора, заданого періодичною функцією $F(t) = F_{\max} t, -\pi < t < \pi$ з періодом 2π .

Розв'язки

4.1

У стані рівноваги сили, що діють на частинку збалансовані: mg - kb = 0. Тоді $k = \frac{mg}{b}$.

Пружинку розтягнули і відпустили. У довільний момент часу $mg - k(b+x) = m\ddot{x}$. Спрощуючи цей вираз:

$$mg - \frac{mg}{b}(b+x) = m\ddot{x};$$

$$mg - \frac{mg}{h}b - \frac{mg}{h}x = m\ddot{x};$$

$$\ddot{x} + \frac{g}{b}x = 0$$
; це рівняння вільних коливань з $\omega = \sqrt{\frac{g}{b}}$

$$\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{b}{g}}$$

4.2

Загальний розв'язок неоднорідного рівняння сума частинного розв'язку неоднорідного рівняння та загального розв'язку однорідного рівняння. $x = x_{yacm} + x_{o\partial h}$

Знайдемо загальний розв'язок однорідного рівняння $\ddot{x} + 3\dot{x} + 2x = 0$;

Шукаємо розв'язок у вигляді $x_{odu} = Ce^{\lambda t}$;

$$\lambda^2 + 3\lambda + 2 = 0;$$

$$\lambda = \frac{\pm\sqrt{3^2 - 4 \times 2 \times 1} - 3}{2} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

 $x_{_{O\!O\!H}} = Ae^{^{-t}} + Be^{^{-2t}}$, де константи визначаються з початкових умов.

Знайдемо частинний розв'язок неоднорідного рівняння $\ddot{x} + 3\dot{x} + 2x = 10\cos t$

Для цього розв'яжемо рівняння $\ddot{z} + 3\dot{z} + 2z = 10e^{it}$ і візьмемо дійсну частину x_{uacm} цього розв'язку $z = x_{uacm} + iy_{uacm}$.

Шукаємо розв'язок у вигляді $z = Ce^t$;

$$-Ce^{it} + 3iCe^{it} + 2Ce^{it} = 10e^{it}$$
;

$$C + 3iC = 10$$
;

$$C = \frac{10}{1+3i} = \frac{10(1-3i)}{(1+3i)(1-3i)} = \frac{10(1-3i)}{1-(3i)^2} = \frac{10(1-3i)}{10} = 1-3i$$

$$x_{_{vacm}} = \operatorname{Re}(z) = \operatorname{Re}((1-3i)e^{it}) = \operatorname{Re}((1-3i)(\cos t + i\sin t)) =$$

$$= \operatorname{Re}(\cos t + i\sin t - 3i\cos t + 3\sin t)$$

$$x = \cos t + 3\sin t.$$

Таким чином, $x = \cos t + 3\sin t + Ae^{-t} + Be^{-2t}$.

Знайдемо значення А і В з початкових умов:

Оскільки в початковий момент часу частинка нерухома і знаходиться на початку координат x(0) = 0, $\dot{x}(0) = 0$.

$$x(0) = \cos(0) + 3\sin(0) + Ae^{-(0)} + Be^{-2(0)}; \quad 0 = 1 + 0 + A + B;$$

$$\dot{x} = -\sin t + 3\cos t - Ae^{-t} - 2Be^{-2t}$$
:

$$\dot{x}(0) = -\sin(0) + 3\cos(0) - Ae^{-(0)} - 2Be^{-2(0)}; \ 0 = -0 + 3 \times 1 - A - 2B.$$

Розв'язком системи рівнянь
$$\begin{cases} A+B=-1\\ A+2B=3 \end{cases} \epsilon \ A=-5; \ B=4$$

Tomy $x = \cos t + 3\sin t - 5e^{-t} + 4e^{-2t}$

4.3

Розклад функції у ряд Фур'є: $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$, де

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt \quad i \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.$$

Розрахуємо значення коефіцієнтів a_n :

$$a_{n} = \frac{1}{\pi} \left(\int_{-\pi}^{0} f(t) \cos(nt) dt + \int_{0}^{\pi} f(t) \cos(nt) dt \right) =$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} (-F_{0}) \cos(nt) dt + \int_{0}^{\pi} (F_{0}) \cos(nt) dt \right) =$$

$$= \frac{1}{\pi} \left(-F_{0} \int_{-\pi}^{0} \cos(nt) dt + F_{0} \int_{0}^{\pi} \cos(nt) dt \right) =$$

Оскільки $\cos x$ парна функція, $\int_{-\pi}^{0} \cos(nt) dt = \int_{0}^{\pi} \cos(nt) dt$. Отже усі

коефіцієнти $a_n = 0$.

Розрахуємо значення коефіцієнтів b_n :

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \left(\int_{-\pi}^{0} f(t) \sin(nt) dt + \int_{0}^{\pi} f(t) \sin(nt) dt \right) =$$

$$= \frac{1}{\pi} \left(-F_{0} \int_{-\pi}^{0} \sin(nt) dt + F_{0} \int_{0}^{\pi} \sin(nt) dt \right)$$

Оскільки $\sin x$ непарна функція, $\int\limits_{-\pi}^{0} \sin \left(nt\right) dt = -\int\limits_{0}^{\pi} \sin \left(nt\right) dt$. Тоді

$$b_n = \frac{2F_0}{\pi} \int_0^{\pi} \sin(nt) dt;$$

$$b_n = \frac{2F_0}{\pi} \left[\frac{1 - \cos n\pi}{n} \right] = \frac{2F_0}{\pi} \left[\frac{1 - (-1)^n}{n} \right]$$

Тоді

$$F = \sum_{n=1}^{\infty} \left(b_n \sin nt \right) = \sum_{n=1}^{\infty} \left(\frac{2F_0}{\pi} \left[\frac{1 - (-1)^n}{n} \right] \sin nt \right)$$

Шукаємо

частинні

розв'язки

рівнянь

$$\ddot{x}_n + 2K\dot{x}_n + \omega^2 x_n = \frac{2F_0}{\pi} \left[\frac{1 - (-1)^n}{n} \right] \sin nt \quad (*)$$

I складаємо їх, щоб знайти вимушений відгук осцилятора: $x = \sum_{n=1}^{\infty} x_n$.

Для розв'язку (*) знайдемо уявну частину розв'язку рівняння $\ddot{z}_n + 2K\dot{z}_n + \omega^2 z_n = b_n e^{int}$, оскільки $e^{int} = \cos nt + i\sin nt$

Розв'язок цього рівняння шукаємо у формі $z_n = Ce^{int}$

$$\dot{z}_n = Cine^{int} \quad i \quad \ddot{z}_n = -Cn^2 e^{int}$$

$$-Cn^2 e^{int} + 2K(Cine^{int}) + \omega^2 C e^{int} = b_n e^{int} \quad ;$$

$$-Cn^2 + 2K(Cin) + \omega^2 C = b_n \quad .$$

$$C = \frac{b_n}{(\omega^2 - n^2) + i2Kn} = \frac{b_n((\omega^2 - n^2) - i2Kn)}{((\omega^2 - n^2) + i2Kn)((\omega^2 - n^2) - i2Kn)} = \frac{b_n((\omega^2 - n^2) - i2Kn)}{((\omega^2 - n^2)^2 + 4K^2n^2)}$$

$$x_n = \operatorname{Im}\left(\frac{b_n\left(\left(\omega^2 - n^2\right) - i2Kn\right)}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2}\left(\cos nt + i\sin nt\right)\right)$$

$$\begin{aligned} x_n &= b_n \frac{\left(\omega^2 - n^2\right) \sin nt - 2Kn \cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} & i \\ x &= \sum_{n=1}^{\infty} \frac{2F_0}{\pi} \left[\frac{1 - (-1)^n}{n} \right] \frac{\left(\omega^2 - n^2\right) \sin nt - 2Kn \cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} &= \\ &= \frac{2F_0}{\pi} \sum_{n=1}^{\infty} \left[\frac{1 - (-1)^n}{n} \right] \frac{\left(\omega^2 - n^2\right) \sin nt - 2Kn \cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} \end{aligned}$$

4.4

Згідно з законом руху частинки, вона здійснює вільні коливання циклічною частотою $\omega = \sqrt{4} = 2$ (од.). Закон руху частинки, що здійснює вільні коливання:

$$\dot{x} = -2A\sin 2t + 2B\cos 2t$$

Значення констант знайдемо з початкових умов: $x(0) = \sqrt{3}$; $\dot{x}(0) = -2$:

$$\begin{cases} \sqrt{3} = A\cos 2 \times 0 + B\sin 2 \times 0 \\ -2 = -2A\sin 2 \times 0 + 2B\cos 2 \times 0 \end{cases} \Leftrightarrow \begin{cases} \sqrt{3} = A \\ -2 = 2B \end{cases} \Leftrightarrow \begin{cases} A = \sqrt{3} \\ B = -1 \end{cases}$$

$$x = \sqrt{3}\cos 2t - \sin 2t$$

Амплітуда коливань цієї частинки: $C = \sqrt{A^2 + B^2} = \sqrt{\left(\sqrt{3}\right)^2 + \left(-1\right)^2} = 2 \, (\text{од.})$

4.5

а) Розв'язок рівняння для затухаючого осцилятора шукаємо у вигляді $x = Ce^{\lambda t}$

Оскільки $\dot{x} = C\lambda e^{\lambda t}$ $i \ \ddot{x} = C\lambda^2 e^{\lambda t}$, то підставляючи ці вирази у рівняння маємо

$$\lambda^2 + 10\lambda + 16 = 0$$
.

$$\lambda = \frac{\pm\sqrt{100-4\times1\times16}-10}{2}; \quad \lambda = \begin{bmatrix} -2\\ -8 \end{bmatrix}$$

Таким чином, $x = Ae^{-2t} + Be^{-8t}$.

Значення констант A і B визначаємо з початкових умов: $x(0) = 1; \dot{x}(0) = -u$

Оскільки $\dot{x} = -2Ae^{-2t} - 8Be^{-8t}$, маємо систему рівнянь:

$$\begin{cases} 1 = Ae^{-2\times 0} + Be^{-8\times 0} \\ -u = -2Ae^{-2\times 0} - 8Be^{-8\times 0} \end{cases} \Leftrightarrow \begin{cases} A + B = 1 \\ 2A + 8B = u \end{cases}.$$

Розв'язком цієї системи рівнянь $\epsilon \begin{cases} A = -\frac{u-8}{6} \\ B = \frac{u-2}{6} \end{cases}$.

Таким чином, $x = -\frac{u-8}{6}e^{-2t} + \frac{u-2}{6}e^{-8t}$

б) Частинка дістанеться початку координат, якщо в якийсь момент часу τ , $x(\tau) = 0$:

$$0 = -\frac{u-8}{6}e^{-2\tau} + \frac{u-2}{6}e^{-8\tau}.$$

Спрощуючи це вираз, отримуємо:

$$e^{6\tau} = \frac{u-2}{u-8}$$
, що і вимагалося показати.

в) Оскільки для будь-якого додатного значення $\tau \ e^{6\tau} \ge 1$

Частинка дістанеться початку координат, якщо $\frac{u-2}{u-8} \ge 1$.

Розв'язуючи цю нерівність, маємо $u \ge 8$

4.6

Рівняння, що описує вимушені коливання частинки на вертикальній пружинці: $m\ddot{x} + kx = 36\cos pt$

Підставляючи чисельні значення: $2\ddot{x} + 2000x = 36\cos pt$.

Для того, щоб знайти інтервал частот коливань достатньо знайти частинний розв'язок цього рівняння, який можна знайти у вигляді $x = A \cos pt$.

Підставляючи це рівняння у $2\ddot{x} + 2000x = 36\cos pt$, маємо

$$-2p^2A + 2000A = 36\cos pt;$$

$$A = \frac{18}{1000 - p^2} i$$

$$x = \frac{18}{1000 - p^2} \cos pt \ .$$

Амплітуда такого коливання складає $\left| \frac{18}{1000 - p^2} \right|$.

Частинка, підвішена до пружинки, у положенні рівноваги розтягне її на відстань b, чию величину можна знайти з рівняння mg-kb=0 . $(2 \text{ кг})(9.8 \text{ H/kr})-(2000 \text{ H/m})b=0 \Leftrightarrow b=0.01 \text{ м}$.

Сумарний розтяг пружини, тобто розтяг у положенні рівноваги + амплітуда коливань частинки не має перевищувати 0.04 м:

$$0.04 \ge \left| \frac{18}{1000 - p^2} \right| + 0.01.$$

Розв'язком нерівності $0.03 \ge \left| \frac{18}{1000 - p^2} \right| \epsilon$ 0 рад/с $\le p \le 20$ рад/с та $p \ge 40$ рад/с

4.7

Зсуваємо обидві частинки ліворуч. Записуємо сили, що діють на них

$$m\ddot{x}_1 = -\alpha x_1 + 2\alpha (x_2 - x_1)$$

$$m\ddot{x}_2 = -4\alpha x_2 - 2\alpha(x_2 - x_1)$$

Позначимо
$$n^2 = \frac{\alpha}{m}$$

$$\ddot{x}_1 + 3n^2x_1 - 2n^2x_2 = 0$$

$$\ddot{x}_2 - 2n^2x_1 + 6n^2x_2 = 0$$

Шукаємо розв'язки у вигляді $x_1 = A\cos(\omega t - \gamma)$ $x_2 = B\cos(\omega t - \gamma)$

$$\ddot{x}_1 = -A\omega^2 \cos(\omega t - \gamma)$$

$$\ddot{x}_2 = -B\omega^2 \cos(\omega t - \gamma)$$

$$\begin{cases} \ddot{x}_1 + 3n^2x_1 - 2n^2x_2 = 0 \\ \ddot{x}_2 - 2n^2x_1 + 6n^2x_2 = 0 \end{cases} \Leftrightarrow \begin{cases} (3n^2 - \omega^2)A - 2n^2B = 0 \\ -2n^2A + (6n^2 - \omega^2)B = 0 \end{cases}$$

Система має нетривіальний розв'язок, коли визначник матриці $|3n^2-\omega^2|-2n^2|$.

$$\begin{vmatrix} 3n^2 - \omega^2 & -2n^2 \\ -2n^2 & 6n^2 - \omega^2 \end{vmatrix}$$
 дорівнює 0.

$$(3n^2 - \omega^2)(6n^2 - \omega^2) - 4n^4 = 0;$$

$$\omega^4 + (-9n^2)\omega^2 + (14n^4) = 0;$$

Розв'язки цього рівняння: $\omega^2 = \begin{bmatrix} 2n^2 \\ 7n^2 \end{bmatrix}$.

1) Співвідношення амплітуд для повільної моди коливань:

$$\begin{cases} \left(3n^2 - \omega^2\right)A - 2n^2B = 0 \\ -2n^2A + \left(6n^2 - \omega^2\right)B = 0 \end{cases} \Leftrightarrow \begin{cases} \left(3n^2 - 2n^2\right)A - 2n^2B = 0 \\ -2n^2A + \left(6n^2 - 2n^2\right)B = 0 \end{cases} \Leftrightarrow \begin{cases} n^2A - 2n^2B = 0 \\ -2n^2A + 4n^2B = 0 \end{cases}$$
$$A = 2B$$
$$B = \delta$$
$$A = 2\delta$$
$$\left\{ x_1 = 2\delta\cos\left(\sqrt{2\frac{\alpha}{m}}t - \gamma\right) \right\}$$
$$x_2 = \delta\cos\left(\sqrt{2\frac{\alpha}{m}}t - \gamma\right)$$

2) Співвідношення амплітуд для швидкої моди коливань:

$$\begin{cases} \left(3n^2 - \omega^2\right)A - 2n^2B = 0 \\ -2n^2A + \left(6n^2 - \omega^2\right)B = 0 \end{cases} \Leftrightarrow \begin{cases} \left(3n^2 - 7n^2\right)A - 2n^2B = 0 \\ -2n^2A + \left(6n^2 - 7n^2\right)B = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -4n^2A - 2n^2B = 0 \\ -2n^2A - n^2B = 0 \end{cases}$$

$$A = -0.5B$$

$$A = \delta$$

$$B = -2\delta$$

$$\begin{cases} x_1 = \delta \cos(\sqrt{7\frac{\alpha}{m}}t - \gamma) \\ x_2 = -2\delta \cos(\sqrt{7\frac{\alpha}{m}}t - \gamma) \end{cases}$$

Таким чином, загальними рівняннями руху частинок системи є:

$$\begin{cases} X_1 = 2\delta_1 \cos(\sqrt{2\frac{\alpha}{m}}t - \gamma_1) + \delta_2 \cos(\sqrt{7\frac{\alpha}{m}}t - \gamma_2) \\ X_2 = \delta_1 \cos(\sqrt{2\frac{\alpha}{m}}t - \gamma_1) - 2\delta_2 \cos(\sqrt{7\frac{\alpha}{m}}t - \gamma_2) \end{cases}$$

4.8

Позначимо вертикальне зміщення легшої частинки від положення її рівноваги через x, а важчої — через y.

Натяг у нитці в усіх її частинах = T.

Повертаюча сила, що діє на частинки — вертикальна складова сили T.

Оскільки зміщення частинок малі, можна зробити наступні наближення:

$$\sin\theta \approx \tan\theta = \frac{x}{a};$$

$$\sin \varphi \approx \tan \varphi = \frac{y}{2a}$$

$$\sin \alpha \approx \tan \alpha = \frac{y - x}{a}$$

Рівняння руху для частинок:

$$\begin{cases} 2m\ddot{x} = -T_0 \frac{x}{a} + T_0 \frac{y - x}{a} \\ m\ddot{y} = -T_0 \frac{y - x}{a} - T_0 \frac{y}{2a} \end{cases}$$

Використаємо позначення $n^2 = \frac{T_0}{ma}$ і спростимо:

$$\begin{cases} 2\ddot{x} + 2n^2x - n^2y = 0\\ 2\ddot{y} - 2n^2x + 3n^2y = 0 \end{cases}$$

Шукаємо розв'язки у вигляді:

$$\begin{cases} x = A\cos(\omega t - \gamma) \\ y = B\cos(\omega t - \gamma) \end{cases}$$

Підставляючи ці вирази у систему рівнянь:

$$\begin{cases} \left(2n^2 - 2\omega^2\right)A - n^2B = 0\\ \left(-2n^2\right)A + \left(3n^2 - 2\omega^2\right)B = 0 \end{cases}$$

Система має нетривіальний розв'язок, коли визначник матриці

$$\begin{bmatrix} -2\omega^2 + 2n^2 & -n^2 \\ -2n^2 & 3n^2 - 2\omega^2 \end{bmatrix}$$
 дорівнює нулю:
$$(-2\omega^2 + 2n^2) (3n^2 - 2\omega^2) - (-n^2) (-2n^2) = 0;$$
$$2\omega^4 - 5n^2\omega^2 + 2n^4 = 0$$

Розв'язком цього рівняння є $\omega^2 = \frac{\pm \sqrt{25n^4 - 4 \times 2 \times 2n^4} + 5n^2}{2 \times 2}$

$$\omega^2 = \begin{bmatrix} 2n^2 \\ 0.5n^2 \end{bmatrix}$$
, тобто частоти нормальних коливань системи $\omega = \begin{bmatrix} \sqrt{2}n \\ \frac{1}{\sqrt{2}}n \end{bmatrix}$.

1) Співвідношення амплітуд для швидкої моди коливань:

$$(2n^2 - 2(\omega_{uu}^2))A - n^2B = 0;$$

$$(2n^2 - 2(2n^2))A - n^2B = 0 \Leftrightarrow A = -B/2 = \Delta$$

I розв'язком системи рівнянь $\epsilon \begin{cases} x = \Delta \cos\left(\sqrt{2}nt - \gamma\right) \\ y = -2\Delta \cos\left(\sqrt{2}nt - \gamma\right) \end{cases}$

2) Співвідношення амплітуд для повільної моди коливань:

$$(2n^2 - 2(\omega_n^2))A - n^2B = 0;$$

$$(2n^2 - 2(0.5n^2))A - n^2B = 0 \Leftrightarrow A = B = \Delta$$

I розв'язком системи рівнянь
$$\epsilon$$

$$\begin{cases} x = \Delta \cos\left(\frac{1}{\sqrt{2}}nt - \gamma\right) \\ y = \Delta \cos\left(\frac{1}{\sqrt{2}}nt - \gamma\right) \end{cases}.$$

Таким чином, загальними рівняннями руху частинок системи є:

$$\begin{cases} X = \Delta_1 \cos\left(\sqrt{2}nt - \gamma_1\right) + \Delta_2 \cos\left(\frac{1}{\sqrt{2}}nt - \gamma_2\right) \\ Y = -2\Delta_1 \cos\left(\sqrt{2}nt - \gamma_1\right) + \Delta_2 \cos\left(\frac{1}{\sqrt{2}}nt - \gamma_2\right) \end{cases}$$

4.9

Рівняння руху частинок:

$$\begin{cases} m\ddot{x}_1 = -T_1 \sin \theta + T_2 \sin \varphi \\ m\ddot{z}_1 = T_1 \cos \theta - T_2 \cos \varphi - mg \\ m\ddot{x}_2 = -T_2 \sin \varphi \\ m\ddot{z}_2 = T_2 \cos \varphi - mg \end{cases}$$

Оскільки коливання малі, можемо застосувати наступі наближення $\sin \varphi \approx \varphi, \sin \theta \approx \theta$ та $\cos \varphi \approx 1, \cos \theta \approx 1$.

Для зміщень частинок: $x_1 \approx l\theta$, $y_1 \approx 0$ та $x_2 \approx l(\theta + \varphi)$, $y_2 \approx 0$

Застосувавши ці наближення, отримуємо:

$$\begin{cases} ml\ddot{\theta} = -T_1\theta + T_2\varphi \\ 0 = T_2 - T_1 - mg \\ ml\left(\ddot{\theta} + \ddot{\varphi}\right) = -T_2\varphi \\ 0 = T_2 - mg \end{cases}$$

3 другого і четвертого рівнянь випливає, що $\,T_{_{2}}=mg\,,\,T_{_{1}}=2mg\,$, тому

$$\begin{cases} ml\ddot{\theta} = -2mg\theta + mg\varphi \\ ml(\ddot{\theta} + \ddot{\varphi}) = -mg\varphi \end{cases}$$

Вводимо заміну $\frac{g}{l} = n^2$

$$\begin{cases} \ddot{\theta} + 2n^2\theta - n^2\varphi = 0\\ \ddot{\theta} + \ddot{\varphi} + n^2\varphi = 0 \end{cases}$$

Шукаємо розв'язки у вигляді $\begin{cases} \theta = A\cos(\omega t - \gamma) \\ \varphi = B\cos(\omega t - \gamma) \end{cases}$

 $\dot{\theta} = -A\omega\sin\omega t; \ \ddot{\theta} = -A\omega^2\cos\omega t; \ \dot{\varphi} = -B\omega\sin\omega t; \ \ddot{\varphi} = -B\omega^2\cos\omega t :$

$$\begin{cases} -A\omega^2 + 2n^2A - n^2B = 0 \\ -A\omega^2 - B\omega^2 + n^2B = 0 \end{cases} \Leftrightarrow \begin{cases} \left(-\omega^2 + 2n^2\right)A + \left(-n^2\right)B = 0 \\ \left(-\omega^2\right)A + \left(-\omega^2 + n^2\right)B = 0 \end{cases}$$

Система має нетривіальний розв'язок, коли визначник матриці

$$\begin{bmatrix} -\omega^2 + 2n^2 & -n^2 \\ -\omega^2 & n^2 - \omega^2 \end{bmatrix}$$
 дорівнює нулю:
$$\left(-\omega^2 + 2n^2 \right) \left(n^2 - \omega^2 \right) - \left(n^2 \right) \left(-\omega^2 \right) = 0 ;$$

$$\omega^4 - 4n^2\omega^2 + 2n^2 = 0 ;$$

$$\omega^2 = \frac{\sqrt{16n^4 - 2 \times 4n^4} + 4n^2}{2}$$

Частота коливань системи:
$$\omega^2 = \frac{\pm 2n^2\sqrt{2} + 2n^2}{2} = n^2\left(\pm\sqrt{2} + 2\right),$$
 $\omega = \sqrt{\frac{g}{I}}\sqrt{\left(\pm\sqrt{2} + 2\right)}$

4.10

Позначимо вертикальне зміщення верхньої частинки від положення її рівноваги через y_1 , а нижньої, від положення її рівноваги, — через y_2 .

Рівняння руху частинок:

$$\begin{cases} -ky_1 + k(y_2 - y_1) = 3m\ddot{y}_1 \\ -k(y_2 - y_1) = 2m\ddot{y}_2 \end{cases}$$

Шукаємо розв'язки у вигляді:

$$\begin{cases} y_1 = A\cos(\omega t - \gamma) \\ y_2 = B\cos(\omega t - \gamma) \end{cases}$$

Підставляючи ці вирази у систему рівнянь:

$$\begin{cases} -kA + k(B-A) = -3m\omega^2 A \\ -k(B-A) = 2m\omega^2 B \end{cases} \Leftrightarrow \begin{cases} A(-3m\omega^2 + 2k) + B(-k) = 0 \\ A(-k) + B(k-2m\omega^2) = 0 \end{cases}$$

Система має нетривіальний розв'язок, коли визначник матриці

$$\begin{bmatrix} -3m\omega^2 + 2k & -k \\ -k & k - 2m\omega^2 \end{bmatrix}$$
 дорівнює нулю:

$$(-3m\omega^2 + 2k)(k-2m\omega^2) - (-k)(-k) = 0.$$

Спрощуючи: $6m^2\omega^4 - 7km\omega^2 + k^2 = 0$.

Розв'язком цього рівняння є $\omega^2 = \frac{\pm \sqrt{49k^2m^2 - 4 \times 6m^2 \times k^2} + 7mk}{2 \times 6}$

$$\omega^2 = \begin{bmatrix} \frac{k}{m} \\ \frac{k}{6m} \end{bmatrix}$$
, тобто частоти нормальних коливань системи $\omega = \begin{bmatrix} \sqrt{\frac{k}{m}} \\ \sqrt{\frac{k}{6m}} \end{bmatrix}$

.

3) Співвідношення амплітуд для швидкої моди коливань:

$$A\left(-3m\omega_{u}^{2}+2k\right)+B\left(-k\right)=0;$$

$$A\left(-3m\left(\frac{k}{m}\right)+2k\right)+B\left(-k\right)=0 \Leftrightarrow -A-B=0 \Leftrightarrow \Delta=A=-B$$

I розв'язком системи рівнянь ϵ $\begin{cases} y_1 = \Delta \cos \left(\sqrt{\frac{k}{m}} t - \gamma \right) \\ y_2 = -\Delta \cos \left(\sqrt{\frac{k}{m}} t - \gamma \right) \end{cases}.$

4) Співвідношення амплітуд для повільної моди коливань:

$$A\left(-3m\omega_n^2+2k\right)+B\left(-k\right)=0;$$

$$A\left(-3m\left(\frac{k}{6m}\right)+2k\right)+B\left(-k\right)=0 \Leftrightarrow 3A-2B=0 \Leftrightarrow \Delta=A=\frac{2}{3}B$$

I розв'язком системи рівнянь
$$\epsilon$$

$$\begin{cases} y_1 = 2\Delta \cos\left(\sqrt{\frac{k}{6m}}t - \gamma\right) \\ y_2 = 3\Delta \cos\left(\sqrt{\frac{k}{6m}}t - \gamma\right) \end{cases}.$$

Загальний розв'язок рівняння

$$\begin{cases} Y_1 = \Delta \cos\left(\sqrt{\frac{k}{m}}t - \gamma_1\right) + 2\Delta \cos\left(\sqrt{\frac{k}{6m}}t - \gamma_2\right) \\ Y_2 = -\Delta \cos\left(\sqrt{\frac{k}{m}}t - \gamma_1\right) + 3\Delta \cos\left(\sqrt{\frac{k}{6m}}t - \gamma_2\right) \end{cases}$$

4.11

Рівняння руху частинок:

$$\begin{cases} 3m\ddot{x}_1 = -T_1\sin\theta + T_2\sin\varphi \\ 3m\ddot{z}_1 = T_1\cos\theta - T_2\cos\varphi - 3mg \\ m\ddot{x}_2 = -T_2\sin\varphi \\ m\ddot{z}_2 = T_2\cos\varphi - mg \end{cases}$$

Оскільки коливання малі, можемо застосувати наступі наближення $\sin \varphi \approx \varphi$, $\sin \theta \approx \theta$ та $\cos \varphi \approx 1$, $\cos \theta \approx 1$.

Для зміщень частинок: $x_1 \approx l\theta$, $y_1 \approx 0$ та $x_2 \approx l(\theta + \varphi)$, $y_2 \approx 0$ Застосувавши ці наближення, отримуємо:

$$\begin{cases} 3ml\ddot{\theta} = -T_1\theta + T_2\varphi \\ 0 = T_2 - T_1 - 3mg \\ ml(\ddot{\theta} + \ddot{\varphi}) = -T_2\varphi \\ 0 = T_2 - mg \end{cases}$$

Вводимо заміну $\frac{g}{l} = n^2$

$$\begin{cases} 3\ddot{\theta} + 4n^2\theta - n^2\varphi = 0\\ \ddot{\theta} + \ddot{\varphi} + n^2\varphi = 0 \end{cases}$$

Шукаємо розв'язки у вигляді $\begin{cases} \theta = A\cos\left(\omega t - \gamma\right) \\ \varphi = B\cos\left(\omega t - \gamma\right) \end{cases}$

 $\dot{\theta} = -A\omega\sin\omega t; \ \ddot{\theta} = -A\omega^2\cos\omega t; \ \dot{\varphi} = -B\omega\sin\omega t; \ \ddot{\varphi} = -B\omega^2\cos\omega t$

Підставляючи ці вирази у систему рівнянь, маємо:

$$\begin{cases} -4A\omega^2 - B\omega^2 + 4n^2A = 0 \\ -A\omega^2 - B\omega^2 + n^2B = 0 \end{cases} \Leftrightarrow \begin{cases} A\left(-4\omega^2 + 4n^2\right) + B\left(-\omega^2\right) = 0 \\ A\left(-\omega^2\right) + B\left(n^2 - \omega^2\right) = 0 \end{cases}.$$

Система має нетривіальний розв'язок, коли визначник матриці

$$\begin{bmatrix} -4\omega^2 + 4n^2 & -\omega^2 \\ -\omega^2 & n^2 - \omega^2 \end{bmatrix}$$
 дорівнює нулю:

$$\left(-4\omega^2+4n^2\right)\left(n^2-\omega^2\right)-\left(-\omega^2\right)\left(-\omega^2\right)=0.$$

Спрощуючи: $3\omega^4 - 8n^2\omega^2 + 4n^4 = 0$.

Розв'язком цього рівняння є $\omega^2 = \frac{\pm \sqrt{64n^4 - 4 \times 3 \times 4n^2} + 8n^2}{2 \times 3}$

$$\omega^2 = \begin{bmatrix} 2n^2 \\ \frac{2}{3}n^2 \end{bmatrix}$$
, тобто частоти нормальних коливань системи $\omega = \begin{bmatrix} \sqrt{2}n \\ \sqrt{\frac{2}{3}}n \end{bmatrix}$

.

3) Співвідношення амплітуд для швидкої моди коливань:

$$A\left(-4\omega_{_{\!\mathit{u}}}^{^{2}}+4n^{^{2}}\right)+B\left(-\omega_{_{\!\mathit{u}}}^{^{2}}\right)=0\;;$$

$$A\left(-4\left(2n^{^{2}}\right)^{^{2}}+4n^{^{2}}\right)+B\left(-(2n^{^{2}})^{^{2}}\right)=0\Leftrightarrow -4A-2B=0\Leftrightarrow \Delta=A=-\frac{B}{2}$$
 I розв'язком системи рівнянь ϵ
$$\begin{cases} \theta=\Delta\cos\left(\sqrt{2}nt-\gamma\right)\\ \varphi=-2\Delta\cos\left(\sqrt{2}nt-\gamma\right) \end{cases}.$$

4) Співвідношення амплітуд для повільної моди коливань:

$$A\left(-4\omega_{n}^{2}+4n^{2}\right)+B\left(-\omega_{n}^{2}\right)=0;$$

$$A\left(-4\left(\frac{2}{3}n^{2}\right)^{2}+4n^{2}\right)+B\left(-\left(\frac{2}{3}n^{2}\right)^{2}\right)=0 \Leftrightarrow 4A-2B=0 \Leftrightarrow \Delta=A=\frac{B}{2}$$
I розв'язком системи рівнянь є
$$\begin{cases} \theta=\Delta\cos\left(\sqrt{\frac{2}{3}}nt-\gamma\right)\\ \varphi=2\Delta\cos\left(\sqrt{\frac{2}{3}}nt-\gamma\right) \end{cases}$$

$$\begin{split} x_1 &\approx l \left(\Delta \cos \left(\sqrt{2} n t \right) + \Delta \cos \left(\sqrt{\frac{2}{3}} n t \right) \right), \\ x_2 &\approx l \left(\Delta \cos \left(\sqrt{2} n t \right) + \Delta \cos \left(\sqrt{\frac{2}{3}} n t \right) + -2 \Delta \cos \left(\sqrt{2} n t \right) + 2 \Delta \cos \left(\sqrt{\frac{2}{3}} n t \right) \right) \end{split}$$

Розклад функції у ряд Фур'є: $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$, де

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
 i $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$.

Розрахуємо значення коефіцієнтів a_n :

$$a_n = rac{F_{ ext{max}}}{\pi} \int\limits_{-\pi}^{\pi} t \cos \left(nt
ight) dt = 0$$
, бо підінтегральна функція непарна.

Розрахуємо значення коефіцієнтів b_n :

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{F_{\text{max}}}{\pi} \int_{-\pi}^{\pi} x \sin(nt) dt = \frac{2F_{\text{max}}}{\pi} \int_{0}^{\pi} x \sin(nt) dt,$$

оскільки ця функція парна.

Застосовуючи правило $\int f dg = fg - \int g df$

$$b_n = \frac{2F_0}{\pi} \int_0^{\pi} t \sin\left(nt\right) dt = \frac{2F_0}{\pi} \left(t \left(\frac{-\cos nt}{n} \right) \Big|_0^{\pi} - \int_0^{\pi} \left(\frac{-\cos nt}{n} \right) dt \right);$$

$$b_n = \frac{2F_0(-1)^{n+1}}{n}$$

Тоді

$$F = \sum_{n=1}^{\infty} \left(\frac{2F_0(-1)^{n+1}}{n} \sin nt \right)$$

Шукаємо

частинні

розв'язки

рівнянь

$$\ddot{x}_n + 2K\dot{x}_n + \omega^2 x_n = \frac{2F_0(-1)^{n+1}}{n}\sin nt \quad (*)$$

I складаємо їх, щоб знайти вимушений відгук осцилятора: $x = \sum_{n=1}^{\infty} x_n$.

Для розв'язку (*) знайдемо уявну частину розв'язку рівняння $\ddot{z}_n + 2K\dot{z}_n + \omega^2 z_n = b_n e^{int}$, оскільки $e^{int} = \cos nt + i \sin nt$

Розв'язок цього рівняння шукаємо у формі $z_n = Ce^{int}$

$$\begin{split} \dot{z}_n &= Cine^{int} \ i \ \ddot{z}_n = -Cn^2e^{int} \\ &-Cn^2e^{int} + 2K\left(Cine^{int}\right) + \omega^2Ce^{int} = b_ne^{int} \ ; \\ &-Cn^2 + 2K\left(Cin\right) + \omega^2C = b_n \ . \\ C &= \frac{b_n}{\left(\omega^2 - n^2\right) + i2Kn} = \frac{b_n\left(\left(\omega^2 - n^2\right) - i2Kn\right)}{\left(\left(\omega^2 - n^2\right) + i2Kn\right)\left(\left(\omega^2 - n^2\right) - i2Kn\right)} = \\ &= \frac{b_n\left(\left(\omega^2 - n^2\right) - i2Kn\right)}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} \\ x_n &= \mathrm{Im}\left(\frac{b_n\left(\left(\omega^2 - n^2\right) - i2Kn\right)}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2}\left(\cos nt + i\sin nt\right)\right) \\ x_n &= b_n\frac{\left(\omega^2 - n^2\right)\sin nt + 2Kn\cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} \ i \\ x &= \sum_{n=1}^{\infty} \frac{2F_0(-1)^{n+1}}{n}\frac{\left(\omega^2 - n^2\right)\sin nt + 2Kn\cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} = \\ &= 2F_0\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\frac{\left(\omega^2 - n^2\right)\sin nt + 2Kn\cos nt}{\left(\omega^2 - n^2\right)^2 + 4K^2n^2} \end{split}$$

Тема 5: Закони збереження: одномірний рух

Задачі

- **5.1** Частинка масою m рухається під дією сили $F = -m\omega^2 x$. В початковий момент часу x = l, v = u. Користуючись законом збереження енергії, знайти:
 - а) амплітуду коливань частинки.
 - б) максимальну швидкість частинки.
- **5.2** Частинка масою *m* рухається під дією сили $F = \frac{36}{x^3} \frac{9}{x^2}$. В початковий момент часу x = 4 м, v = 0.5 м/с.
 - а) Показати, що рух частинки -- це або коливання, або необмежений рух з однією точкою екстремуму.
 - б) Знайти період коливань системи.
 - в) Знайти період малих коливань системи.
- **5.3** Частинка масою 2 кг рухається під дією сили $F = \frac{4}{x^2} 1$ Н. В початковий момент часу x = 4 м, v = 0 м/с. Знайти період руху частинки.
- **5.4** Частинка маси m рухається зі швидкістю u у додатньому напрямку через початку координат. В цей момент на неї починає діяти консервативна сила $F = -ax^2$, де a додатня константа. Знайти найбільшу відстань, на яку зможе віддалитися частинка.

5.5 Частинка масою m знаходиться в потенціальній ямі типу $U(x) = U_0 \sin \frac{2\pi x}{l}$. Знайти а) період малих коливань частинки поблизу дня ями та б) період коливань частинки, чия повна механічна енергія дорівнює U_0 .

Розв'язки

5.1

Вираз для повної механічної енергії частики: E = T + U Вираз для потенціальної енергії знайдемо з $U = -\int F dx$

$$U = -\int -m\omega^2 x dx = \frac{m\omega^2 x^2}{2} + Const$$

Толі

$$E = \frac{mv^2}{2} + \frac{m\omega^2 x^2}{2}$$

Оскільки на частинку діють лише консервативні сили, її повна механічна енергія зберігається.

3 початкових умов
$$E = \frac{mu^2}{2} + \frac{m\omega^2 l^2}{2}$$

Частинка має найбільшу швидкість, коли x = 0.

Отже, максимальна швидкість визначається з $E = \frac{mv_{\text{max}}^2}{2} + \frac{m\omega^2 x^2}{2}$

$$v_{\text{max}} = \sqrt{\frac{2E}{m}}$$

Натомість при найбільшому зміщенню з положення рівноваги v = 0:

$$E = \frac{m\omega^2 x_{\text{max}}^2}{2}.$$

Tomy
$$x_{\text{max}} = \sqrt{\frac{2E}{m\omega^2}}$$

5.2

a)

Вираз для потенціальної енергії:

$$U = -\int F dx.$$

$$U = -\int \left(\frac{36}{x^3} - \frac{9}{x^2}\right) dx = \frac{18}{x^2} - \frac{9}{x}$$

У випадку, якщо повна механічна енергія частинки додатня, рух частинки необмежений з однією точкою повороту.

У випадку, коли повна механічна енергія від'ємна, рух частинки — це коливання.

б)

За законом збереження:

$$\frac{1}{2}mv^2 + \frac{18}{x^2} - \frac{9}{x} = E$$

У точках повороту швидкість частинки 0:

$$\frac{18}{x^2} - \frac{9}{x} = -1$$

Розв'язками цього рівняння є

$$\begin{cases} x_{\min} = 3 \\ x_{\max} = 6 \end{cases}$$

Знайдемо значення Е з початкових умов

$$E = \frac{1}{2}mv^{2} + \frac{18}{x^{2}} - \frac{9}{x};$$
$$\frac{1}{2}(0.5)^{2} + \frac{18}{(4)^{2}} - \frac{9}{4} = -1$$

Повна механічна енергія частинки від'ємна, отже, частинка дійсно здійснює коливання.

Період коливань:

$$\tau = 2 \int_{r \min}^{r \max} \frac{dx}{\sqrt{\frac{2}{m} (E - U(x))}} = 2 \int_{3}^{6} \frac{dx}{\sqrt{\frac{2}{1} (-1) - (\frac{18}{x^{2}} - \frac{9}{x})}}$$

Спростимо інтеграл до вигляду

$$\tau = \sqrt{2} \int_{3}^{6} \frac{x dx}{\sqrt{(x-3)(x-6)}}$$

Це табличний інтеграл $I = \int_{a}^{b} \frac{x dx}{\sqrt{(x-a)(x-b)}} = \frac{\pi(a+b)}{2}$

$$\tau = \sqrt{2} \, \frac{\pi (3+6)}{2} = \frac{9\pi}{\sqrt{2}}$$

в)

Вираз для періоду коливань біля положення рівноваги

$$\tau = \frac{2\pi}{\omega} = \frac{2\pi}{\left(\sqrt{\frac{1}{m} \frac{d^2 U}{dx^2}\Big|_{x=a}}\right)}$$

$$\frac{d^2U}{dx^2}\Big|_{x=a} = \frac{108}{4^4} - \frac{18}{4^3} = \frac{9}{64}$$

Тоді
$$\tau = \frac{2\pi}{\sqrt{\left(\frac{1}{1}\frac{9}{64}\right)}} = \frac{16\pi}{3}$$

5.3

Вираз для потенціальної енергії:

$$U = -\int F dx.$$

$$U = -\int \left(\frac{4}{x^2} - 1\right) dx = \frac{4}{x} + x$$

Повна механічна енергія визначається з початкових умов

$$E = \frac{mv^2}{2} + U$$

$$E = T + U = 0 + \frac{4}{4} + 4 = 5$$
 Джс

У точках повороту швидкість частинки 0:

$$E = U = \frac{4}{x} + x = 5$$

Розв'язуючи
$$\frac{x^2 - 5x + 4}{x} = 0$$
, отримуємо $\begin{cases} x_{\min} = 1 \\ x_{\max} = 4 \end{cases}$

$$\tau = 2 \int_{x_{min}}^{x_{max}} \frac{dx}{\sqrt{\frac{2}{m} (E - U(x))}} = 2 \int_{1}^{4} \frac{dx}{\sqrt{\frac{2}{1} (E - (-\frac{4}{x} + x))}}$$

$$\tau = 2 \int_{1}^{4} \frac{\sqrt{x} dx}{\sqrt{(x-1)(4-x)}} \approx 9.69$$

5.4

Вираз для потенціальної енергії:

$$U = -\int F dx$$

$$U = -\int ax^2 dx = \frac{ax^3}{3}$$

Вираз для повної механічної енергії

$$E = \frac{1}{2}mv^2 + \frac{ax^3}{3};$$

Значення повної механічної енергії отримуємо з початкових умов:

$$E = \frac{1}{2}mu^2 + \frac{a(0)^3}{3} = \frac{1}{2}mu^2$$
, отже

$$\frac{1}{2}mv^2 + \frac{ax^3}{3} = \frac{1}{2}mu^2$$

Максимальне значення x досягається в момент, коли v = 0, тобто

$$\frac{ax_{\text{max}}^{3}}{3} = \frac{1}{2}mu^{2} i$$

$$x_{\text{max}} = \left(\frac{3}{2} \frac{mu^2}{a}\right)^{1/3}$$

5.5

Дно ями розташовано у точках, які визначаються умовою $\sin(\varphi) = -1$, отже

$$\frac{2\pi a}{l} = -\frac{\pi}{2}$$
 і одна з цих ям має координату $a = -\frac{l}{4}$

Для періоду малих коливань:

$$\tau = \frac{2\pi}{\omega} = \frac{2\pi}{\left(\sqrt{\frac{1}{m} \frac{d^2 U}{dx^2}\Big|_{x=a}}\right)}$$

$$\frac{dU}{dx} = \frac{d}{dx} \left(U_0 \sin \frac{2\pi x}{l} \right) = U_0 \frac{2\pi}{l} \cos \left(\frac{2\pi x}{l} \right);$$

$$\frac{d^2U}{dx^2} = -U_0 \left(\frac{2\pi}{l}\right)^2 \sin\left(\frac{2\pi x}{l}\right);$$

Звідси

$$\tau = \frac{2\pi}{\left(\sqrt{-\left(\frac{2\pi}{l}\right)^2 U_0 \sin\left(\frac{2\pi}{l}\left(-\frac{l}{4}\right)\right)}\right)} = \frac{2\pi}{\left(\sqrt{U_0\left(\frac{2\pi}{l}\right)^2 \sin\left(\frac{\pi}{2}\right)}\right)} = \frac{l}{\sqrt{U_0}}$$

$$\tau = 2 \int_{r \min}^{r \max} \frac{dx}{\sqrt{\frac{2}{m} (E - U(x))}}$$

Якщо $E = U_0$,

$$x_{\min} = \frac{l}{4} \text{ i } x_{\max} = \frac{5l}{4}$$

Отже, у квадратурах
$$\tau = 2\int_{\frac{l}{4}}^{\frac{5l}{4}} \frac{dx}{\sqrt{\frac{2}{m} \left(U_0 - U_0 \sin \frac{2\pi x}{l}\right)}} =$$

$$\sqrt{\frac{2m}{U_0}} \int_{\frac{l}{4}}^{\frac{3l}{4}} \frac{dx}{\sqrt{1-\sin\frac{2\pi x}{l}}}$$

Тема 6: Рух частинки у центральному полі

Задачі

- **6.1** Частинка рухається в полі $U = -U_0 e^{-\lambda^2 r^2}$.
- а) Вважаючи момент імпульсу частинки L відомим, знайти радіус стабільної колової орбіти частинки. Відповідь залиште у неявному вигляді.
- б) Для якого максимального значення L колова орбіта існує?
- **6.2** Частинка рухається в полі $U = br^k$, момент імпульсу частинки L відомий.
 - а) Знайти радіус колової орбіти частинки.
 - б) Знайти частоту коливань частинки на орбіті при малому зміщенні її з орбіти.
 - в) Як співвідноситься частота обертання частинки з відповіддю, отриманою в б)?
- **6.3** Частинка масою m рухається в полі $U = -\frac{c}{3r^3}$ з початковою швидкістю v_0 .
 - а) Знайти максимальне значення ефективного потенціалу.
 - б) Нехай прицільний параметр частинки дорівнює b. Через c, v_0 , m знайти максимальне значення параметру b, за якого центр захопить частинку.
- **6.4** Вважаючи момент імпульсу частинки L відомим, знайти форму U(r) для якого траєкторія частинки спіраль $r = Ae^{n\theta}$, де A і n константи.

- **6.5** Астероїд наближається до сонця з прицільним параметром p і швидкістю v_0 . Знайти кут, на який астероїд відхилиться від початкової траєкторії.
- **6.6** Частинка масою m рухається в полі сили $\vec{F} = -\frac{m\gamma}{r^2} \overrightarrow{n_r}$. В момент часу t=0 частинка знаходиться на відстані c=OC від центру притягання і рухається зі швидкістю $\sqrt{\frac{\gamma}{c}}$ під кутом α до лінії OC. Знайти точки повороту частинки на орбіті.
- **6.7** Частинка P рухається під дією сили $\vec{F} = -\frac{m\gamma}{r^2} \overrightarrow{n_r}$. В момент часу t = 0 P знаходиться в точці C, на відстані c від початку координат O і рухається зі швидкістю $\sqrt{\frac{3\gamma}{c}}$ перпендикулярно до OC.
 - а) Знайти рівняння траєкторії частинки і замалювати її.
 - б) Знайти кут між ОС і напрямком руху частинки після взаємодії з О.
- **6.8** Знайти диференціальний і повний переріз розсіяння частинок на пружній нерухомій кулі радіуса R.

Розв'язки

6.1

a)

Оскільки частинка рухається по коловій орбіті:

$$r = const = R, \dot{r} = 0$$

$$\frac{m}{2}(\dot{r})^2 + U^* = E$$

$$U^* = E$$

$$\frac{L^2}{2mr^2} - U_0 e^{-\lambda^2 r^2} = E$$

Для знаходження найбільшого значення беремо похідну:

$$\frac{d}{dr}\left(\frac{L^2}{2mr^2} - U_0 e^{-\lambda^2 r^2}\right) = 0$$

$$L^2 = \left(2U_0 m \lambda^2\right) R^4 e^{-\lambda^2 R^2}$$

б)

3 попереднього пункту

$$L^{2} = \left(2U_{0}m\lambda^{2}\right)r^{4}e^{-\lambda^{2}r^{2}} \text{ тобто } L = \sqrt{\left(2U_{0}m\lambda^{2}\right)}r^{2}e^{-\frac{\lambda^{2}}{2}r^{2}}$$

$$\frac{dL}{dr} = 0 \rightarrow r_{\text{max}}$$

$$r_{\text{max}}^2 = \frac{2}{\lambda^2}$$

$$r_{\text{max}} = \sqrt{\frac{2}{\lambda^2}}$$

$$L^{2} = \left(2U_{0}m\lambda^{2}\right)r^{4}e^{-\lambda^{2}r^{2}} = \left(2U_{0}m\lambda^{2}\right)\left(\frac{2}{\lambda^{2}}\right)^{2}e^{-2} = \frac{8U_{0}m}{\lambda^{2}e^{2}}$$

$$L = \sqrt{\frac{8U_0 m}{\lambda^2 e^2}}$$

6.2

Оскільки частинка рухається по коловій орбіті:

a)
$$r = const = R, \dot{r} = 0$$

$$\frac{m}{2}(\dot{r})^2 + U^* = E$$

$$U^* = E$$

За законом збереження енергії

$$\frac{L^2}{2mr^2} + br^k = E$$

$$\frac{d}{dr}\left(\frac{L^2}{2mr^2} + br^k\right) = 0$$

$$\frac{d}{dr}\left(\frac{L^2}{2mr^2} + br^k\right) = 0$$

$$bkr^{k-1} + \frac{L^2}{2m}(-2r^{-2-1}) = 0$$

$$bkr^{k-1} - \frac{L^2}{mr^3} = 0$$

$$r^{k+2} = \frac{L^2}{mbk}$$

Радіус колової орбіти:
$$R = \left(\frac{L^2}{mbk}\right)^{\frac{1}{k+2}}$$

б)

Циклічна частота малих коливань поблизу дна потенціальної ями

$$\omega = \sqrt{\frac{\left(\frac{d^2U^*}{dr^2}\right)_{\min}}{m}}$$

Вираз для ефективного потенціалу: $U^* = \frac{L^2}{2mr^2} + br^k$

$$\frac{dU^*}{dr} = -\frac{L^2}{mr^3} + kbr^{k-1}$$

$$\frac{d^2U^*}{dr^2} = \frac{3L^2}{mr^4} + k(k-1)br^{k-2} =$$

$$= \frac{1}{r^4} \left(\frac{3L^2}{m} + k(k-1)br^{k+2} \right)$$

Підставляючи
$$r = R = \left(\frac{L^2}{mbk}\right)^{\frac{1}{k+2}}$$

$$\frac{d^2U^*}{dr^2} = \frac{1}{R^4} \left(\frac{3L^2}{m} + k(k-1)b \left(\frac{L^2}{mbk} \right) \right),$$

Що можна спростити до

$$\frac{d^{2}U^{*}}{dr^{2}} = \frac{1}{R^{4}} \left(\frac{3L^{2}}{m} + \frac{L^{2}(k-1)}{m} \right) = \frac{1}{R^{4}} \left(\frac{L^{2}(k+2)}{m} \right)$$

Звідси
$$\omega = \frac{L\sqrt{k+2}}{mR^2} = \frac{L\sqrt{k+2}}{m} \left(\frac{L^2}{mbk}\right)^{-\frac{2}{k+2}}$$

B)

За означенням $\omega = \dot{\phi}$

Оскільки
$$L = mr^2 \dot{\phi}$$
, то $\dot{\phi} = \frac{L}{mr^2}$

i
$$\omega = \frac{L}{mR^2}$$

Порівнюючи з виразом для циклічної частоти малих коливань з б)

$$\omega_{\text{\tiny MAIN}} = \frac{L\sqrt{k+2}}{mR^2}$$

Для співвідношення отримуємо $\frac{\omega_{_{Max}}}{\omega_{_{een}}} = \sqrt{k+2}$

6.3

$$U^* = \frac{L^2}{2mr^2} - \frac{c}{3r^3}$$

$$\frac{dU}{dr} = -\frac{2L^2}{2mr^3} + \frac{3C}{3r^4} = 0$$

$$R_e = \frac{mC}{L^2}$$

$$U^* = \frac{L^2}{2mR_e^2} - \frac{c}{3R_e^3}$$

$$U^*_{\text{max}} = \frac{L^6}{6m^3c^2}$$

Частинка буде захоплена, якщо

$$E < U *_{\text{max}}$$

Спочатку частинка далеко від мішені, вся енергія кінетична $E = \frac{m{v_0}^2}{2}$

$$U_{\text{max}}^* = \frac{L^6}{6m^3c^2} = \frac{(mv_0b)^6}{6m^3c^2};$$

Виражаючи b з нерівності $\frac{m{v_0}^2}{2} < \frac{\left(m{v_0}b\right)^6}{6m^3c^2}$ отримаємо максимальне

значення b:

$$b = \left(\frac{3c^2}{m^2 v_0^4}\right)^{1/6}$$

6.4

Якщо
$$r = Ae^{n\theta}$$
 , то $\dot{r} = An\dot{\theta}e^{n\theta} = nAe^{n\theta}\frac{L}{mr^2} = \frac{nL}{mr}$

За законом збереження енергії $\frac{m}{2}(\dot{r})^2 + U + \frac{L^2}{2mr^2} = E$,

Підставляючи вирази для \dot{r} , маємо

$$U = E - \frac{m}{2} \left(\frac{nL}{mr}\right)^2 - \frac{L^2}{2mr^2} = E - \frac{\left(1 + n^2\right)L^2}{2mr^2}$$

6.5

3 початкових умов L = pV і $E = \frac{1}{2}mV^2$

Оскільки ${\rm E}>0$ траєкторія астероїда — гіпербола з пів-вісями

$$a = \frac{MG}{V^2} \text{ i } b = p.$$

3 діаграми
$$tg\alpha = \frac{b}{a} = \frac{pV^2}{MG}$$
 і $\beta = \pi - 2\alpha$.

6.6

Оскільки
$$F = -\vec{\nabla}U$$
 і $\vec{F} = -\frac{m\gamma}{r^2} \vec{n_r}$, $U = -\frac{m\gamma}{r}$

Вираз для моменту імпульсу частинки: $L = mvc \sin \alpha = m\sqrt{\gamma c} \sin \alpha$ Тоді вираз для ефективного потенціалу:

$$U^* = U + \frac{L^2}{2mr^2} = -\frac{m\gamma}{r} + \frac{m^2\gamma c \sin^2\alpha}{2mr^2}$$

$$U^* = -\frac{m\gamma}{r} + \frac{\gamma mc \sin^2 \alpha}{2r^2}$$

У точках повороту r_p виконується умова $\dot{r} = 0$, тому $U^* = E$ Вираз для повної механічної енергії знаходимо з початкових умов:

$$E = \frac{mv^2}{2} + U = \frac{m\gamma}{2c} - \frac{m\gamma}{c} = -\frac{m\gamma}{2c}$$

Підставляємо вираз для Е і U^* у рівність $U^* = E$

$$-\frac{m\gamma}{r_p} + \frac{\gamma mc \sin^2 \alpha}{2r_p^2} = -\frac{m\gamma}{2c}.$$

Приводимо до спільного знаменника і розв'язуємо для r_p

$$\frac{-2r_{p}c + c^{2}\sin^{2}\alpha + r_{p}^{2}}{2r_{p}^{2}c} = 0$$

$$r_p = \begin{bmatrix} c(1 - \cos \alpha) \\ c(1 + \cos \alpha) \end{bmatrix}$$

6.7

Оскільки
$$F = -\vec{\nabla}U$$
 і $\vec{F} = -\frac{m\gamma}{r^2} \vec{n_r}$, $U = -\frac{m\gamma}{r}$

Вираз для траєкторії частинки в Кулонівському потенціалі

$$r(\varphi) = \frac{p}{-\operatorname{sgn}(\alpha) + \varepsilon \cos(\varphi - \varphi_0)}$$

Де
$$p = \frac{L^2}{m|\alpha|}$$
, $\varepsilon = \sqrt{\frac{2EL^2}{m\alpha^2} + 1}$

Вираз для моменту імпульсу частинки: $L=mrv=mc\sqrt{\frac{3\gamma}{c}}=m\sqrt{3\gamma c}$,

тобто

$$p = \frac{L^2}{m|\alpha|} = \frac{m^2 3\gamma c}{mm\gamma} = 3c$$

Вираз для повної механічної енергії частинки

$$E = \frac{mv^2}{2} + U = \frac{m3\gamma}{2c} - \frac{m\gamma}{2c} = \frac{m\gamma}{2c}.$$

Звідси
$$\varepsilon = \sqrt{\frac{2EL^2}{m\alpha^2} + 1} = \sqrt{2\frac{m\gamma}{2c}\frac{\left(m^23\gamma c\right)}{m(m\gamma)^2} + 1} = \sqrt{1+3} = 2$$

Таким чином
$$r(\varphi) = \frac{3c}{1 + 2\cos(\varphi - \varphi_0)}$$

3 рисунку, частинка йде на нескінченність коли $1+2\cos\varphi=0$, тобто кут між ОС і напрямком руху частинки після взаємодії з центром 120° .

6.8

На рисунку нижче зображена траєкторія руху однієї частинки, що розсіюється на кулі. Кути, позначені •, рівні між собою.

Кут розсіяння: $\chi = \pi - 2\phi$ Диференційний переріз:

$$d\sigma(\chi) = 2\pi\rho \left| \frac{d\rho}{d\chi} \right| d\chi$$

3 прямокутного трикутника на рис. $\rho = R \sin\left(\frac{\pi}{2} - \frac{\chi}{2}\right)$ або

$$\rho = R \cos\left(\frac{\chi}{2}\right)$$

Беремо похідну:
$$\left| \frac{d\rho}{d\chi} \right| = \left| \frac{d}{\chi} \left(R \cos \left(\frac{\chi}{2} \right) \right) \right| = \frac{R}{2} \sin \left(\frac{\chi}{2} \right)$$

Тобто

$$d\sigma(\chi) = \frac{\pi R^2}{2} \sin \chi d\chi$$

Вираз для диференційного перерізу у тілесному куті:

$$d\sigma(\Omega) = \frac{1}{2\pi \sin \gamma} \frac{\pi R^2}{2} \sin \chi d\Omega = \frac{R^2}{4} d\Omega$$

Повних переріз розсіяння: $\sigma = \int d\sigma(\Omega)$

$$\sigma = \int\limits_0^{4\pi} {R^2 \over 4} d\Omega = {4\pi R^2 \over 4} = \pi R^2$$
, тобто розсіюються усі частинки, що

безпосередньо потрапили на сферу.

Тема 7: Механіка Лагранжа

Задачі

- **7.1** Частинка 1 рухається вздовж горизонтальної рельси, Частинка 2 зв'язана з нею нерозтяжним стержнем. Вибрати узагальнені координати для опису цієї системи.
- **7.2** Частинки 1, 2 і 3 ковзають по горизонтальній поверхні. Частинки 1 і 2 зв'язані між собою стержнем довжиною l. Частинки 2 і 3 зв'язані між собою стержнем довжиною b. Вибрати узагальнені координати для опису цієї системи.
- **7.3** Визначити кількість ступенів вільності наступних систем: а) математичний маятник, б) вхідні двері, в) мило, що ковзає по сферичній поверхні раковини, г) куля, що котиться по горизонтальній поверхні.
- **7.4** Записати вираз для кінетичної енергії для системи частинок з задачі 7.1.
- **7.5** Блок масою m ковзає без тертя по похилій площині масою М під кутом α . Похила площина, в свою чергу, ковзає без тертя по горизонтальній поверхні. Знайти
 - а) Лагранжіан системи.
 - б) прискорення блоку та прискорення похилої площини.
- 7.6 Знайти рівняння руху математичного маятника.

- **7.7** Знайти прискорення тягарців машини Атвуда, що складається з тягарців масами m і 3m та блоку радіуса R і масою 2m.
- **7.8** Знайти прискорення тягарців подвійної машини Атвуда, наведеної на рис. Блоки вважати легкими.

- **7.9** Стержень довжиною 2l лежить одним кінцем на гладкій поверхні. Другий кінець стержні підняли і відпустили без початкової швидкості. Показати, що центр мас стержні не рухається горизонтально.
- **7.10** Циліндр радіуса r ковзає по внутрішній поверхні циліндра радіуса R, R > r.
 - а) Записати рівняння Лагранжа для руху меншого циліндра.
 - б) Знайти період малих коливань циліндра.
- **7.11** Диск масою M і радіусом R котиться по горизонтальній поверхні. До центру мас диску прив'язано частинку масою m за легку нитку довжиною b.
 - а) Записати рівняння Лагранжа для руху частинки.
 - б) Знайти період малих коливань частинки.

- **7.12** Знайти прискорення маятника Максвела масою M, радіусом R, з радіусом намотки r.
- **7.13** Записати рівняння Лагранжа математичного маятника довжиною l, чия точка підвісу коливається у вертикальній площині за законом $z(t) = z_0 \cos pt$, де p константа.

Розв'язки

7.1

$$\begin{cases} \vec{r_1} = x\vec{i} \\ \vec{r_2} = (x + R\sin\varphi)\vec{i} + (-R\cos\varphi)\vec{j} \end{cases}$$

7.2

Для опису системи потрібно 4 узагальнені координати, наприклад x_1, y_1, ϕ_1, ϕ_2 (координати x, y частинки 1, а також кути стержні 12 і 23 утворюють з віссю x)

7.3

а) 1, б) 1, в) 2, г) 1 (без проковзування)

7.4

$$T = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}$$

Для обраних координат:

$$\begin{cases} \vec{r}_1 = x\vec{i} \\ \vec{r}_2 = (x + R\sin\phi)\vec{i} + (-R\cos\phi)\vec{j} \end{cases}$$

Вирази для швидкостей через узагальнені координати

$$\vec{v}_i = \sum_{j=1}^n \frac{\partial \vec{r}_i}{\partial q_j} \dot{q}_j$$

Для першої частинки: $\vec{v}_1 = \frac{\partial r_1}{\partial x} \dot{x} + \frac{\partial r_1}{\partial 0} \dot{\phi} = (1\vec{i}) \dot{x} + (0\vec{j}) \dot{\phi} = \dot{x}\vec{i}$

Для другої частинки:

$$\vec{v}_2 = \frac{\partial r_2}{\partial x} \dot{x} + \frac{\partial r_2}{\partial \phi} \dot{\phi} = \left(1\vec{i}\right) \dot{x} + (R\cos\phi\vec{i})\dot{\phi} + (R\sin\phi\vec{j})\dot{\phi}$$

$$\vec{v}_2 = (\dot{x} + R\dot{\varphi}\cos\varphi)\vec{i} + (R\dot{\varphi}\sin\varphi)\vec{j}$$

Підставляючи вирази для швидкості у вираз для кінетичної енергії

$$T = \frac{m_1 (\dot{x})^2}{2} + \frac{m_2 (\dot{x} + R\dot{\varphi}\cos\varphi)^2}{2} + \frac{m_2 (R\dot{\varphi}\sin\varphi)^2}{2}$$

$$T = \frac{m_1 (\dot{x})^2}{2} + \frac{m_2}{2} (\dot{x}^2 + 2R\dot{x}\dot{\phi}\cos\phi + R^2\dot{\phi}^2)$$

7.5

a)

У якості узагальнених координат виберемо x — положення вертикальної сторони похилої площини та у — положення блоку на похилій площині відносно найвищого можливого положення. Тоді, виражаючи положення похилої площини та блоку через узагальнені координати, маємо:

$$\begin{cases} X_1 = x \\ X_2 = x + y \cos \alpha \\ Y_2 = -y \sin \alpha \end{cases}$$

Вирази для похідних:

$$\begin{cases} \dot{X}_1 = x \\ \dot{X}_2 = \dot{x} + \dot{y}\cos\alpha \\ \dot{Y}_2 = -\dot{y}\sin\alpha \end{cases}$$

Кінетична енергія системи:

$$T = \frac{M(\dot{x})^2}{2} + \frac{m(\dot{x} + \dot{y}\cos\alpha)^2}{2} + \frac{m(-\dot{y}\sin\alpha)^2}{2}$$

Потенціальна енергія системи відносно найвищого положення блоку на похилій площині:

$$U = "mgh" = mg(-y\sin\alpha)$$

Тоді вираз для Лагранжіана L = T - U виглядає як

$$L = \frac{M(\dot{x})^2}{2} + \frac{m}{2}(\dot{x}^2 + \dot{y}^2 + 2\dot{x}\dot{y}\cos\alpha) + mgy\sin\alpha.$$

б)

Для кожної зі змінних складаємо рівняння Лагранжа 2-го роду:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \quad i \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} = 0$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{x}} = \frac{M2(\dot{x})}{2} + \frac{m}{2}(2\dot{x} + 2\dot{y}\cos\alpha) = M\dot{x} + m\dot{x} + m\dot{y}\cos\alpha;$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) = M\ddot{x} + m\ddot{x} + m\ddot{y}\cos\alpha;$$

$$\frac{\partial L}{\partial x} = 0$$
;

$$\frac{\partial L}{\partial \dot{y}} = \frac{m}{2} (2\dot{y} + 2\dot{x}\cos\alpha) = m\dot{y} + m\dot{x}\cos\alpha;$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{y}}\right) = m\ddot{y} + m\ddot{x}\cos\alpha$$

$$\frac{\partial L}{\partial y} = mg \sin \alpha .$$

Підставляючи ці похідні у рівняння Лагранжа, отримуємо систему диференційних рівнянь:

$$\begin{cases} m\ddot{y} + m\ddot{x}\cos\alpha - mg\sin\alpha = 0\\ \ddot{y} + \ddot{x}\cos\alpha - g\sin\alpha = 0 \end{cases}$$
abo
$$\begin{cases} \ddot{x}(M+m) + \ddot{y}(m\cos\alpha) = 0\\ \ddot{x}(m\cos\alpha) + \ddot{y}(m) = mg\sin\alpha \end{cases}$$

Розв'язуючи цю систему рівнянь відносно \ddot{x} , \ddot{y} , отримуємо

$$\begin{cases} \ddot{x} = \frac{mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha} \\ \ddot{y} = \frac{(M + m)g \sin \alpha}{M + m \sin^2 \alpha} \end{cases}$$

Остання система – вирази для прискорення похилої площини (вздовж підлоги) та блоку (вздовж похилої площини)

7.6

У якості узагальненої координати обираємо кут ф між маятником та вертикаллю.

Тоді для декартових координат частинки

$$\begin{cases} x = l \sin \varphi \\ y = -l \cos \varphi \end{cases}$$

А вирази для похідних по часу для цих величин:

$$\begin{cases} \dot{x} = (l\cos\varphi)\dot{\varphi} \\ \dot{y} = (l\sin\varphi)\dot{\varphi} \end{cases}$$

Тоді вираз для кінетичної енергії маятника:

$$T = \frac{mv^2}{2} = \frac{m\dot{x}^2}{2} + \frac{m\dot{y}^2}{2} = \frac{m}{2}(l\dot{\varphi})^2$$

А для потенціальної енергії відносно точки підвісу

$$U = "mgh" = mg(-l\cos\varphi)$$

Лагранжіан маятника:

$$L = T - U = \frac{m}{2} (l\dot{\varphi})^2 - (mg(-l\cos\varphi)) = \frac{m}{2} (l\dot{\varphi})^2 + (mgl\cos\varphi)$$

Для змінної ф складаємо рівняння Лагранжа 2-го роду:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) - \frac{\partial L}{\partial \varphi} = 0$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\frac{m}{2} (l\dot{\varphi})^2 + (mgl\cos\varphi) \right) = -mgl\sin\varphi;$$

$$\frac{\partial L}{\partial \dot{\varphi}} = \frac{\partial}{\partial \dot{\varphi}} \left(\frac{m}{2} (l\dot{\varphi})^2 + (mgl\cos\varphi) \right) = 2\dot{\varphi} \frac{m}{2} (l)^2 = ml^2 \dot{\varphi}$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\varphi}}\right) = \frac{d}{dt}\left(\dot{\varphi}m(l)^2\right) = ml^2\ddot{\varphi}$$

Тоді рівняння Лагранжа 2-го роду має вигляд:

$$ml^2\ddot{\varphi} - (-mgl\sin\varphi) = 0$$
 and $\ddot{\varphi} + \frac{g}{l}\sin\varphi = 0$

Для випадку малих коливань: $\ddot{\varphi} + \frac{g}{l} \varphi = 0$, чий розв'язок

$$\varphi = A\cos\left(\sqrt{\frac{g}{l}}t - \varphi_0\right)$$

7.7

У якості узагальненої координати обираємо кутове положення блоку ϕ .

Тоді положення лівого (1) і правого (2) тягарців можна виразити через φ як

$$\begin{cases} y_1 = R\varphi \\ y_2 = -R\varphi \end{cases}$$

А вирази для похідних по часу для цих величин:

$$\begin{cases} \dot{y}_1 = R\dot{\varphi} \\ \dot{y}_2 = -R\dot{\varphi} \end{cases}$$

Вираз для кінетичної енергії

$$T = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} + \frac{I_3 \omega_3^2}{2}$$

Де
$$I = \frac{MR^2}{2}$$
.

Підставляючи вирази для мас тягарців та блоку, маємо

$$T = \frac{m(R\dot{\varphi})^{2}}{2} + \frac{3m(-R\dot{\varphi})^{2}}{2} + \frac{(2mR^{2}/2)(\dot{\varphi})^{2}}{2} = \frac{5}{2}mR^{2}\dot{\varphi}^{2}$$

А для потенціальної енергії відносно підлоги

$$U = "mgh" = m_1 g y_1 + m_2 g y_2$$

$$U = mg(R\varphi) + 3mg(-R\varphi) = -2mgR\varphi$$

Лагранжіан системи:

$$L = T - U = \frac{5}{2} mR^{2} \dot{\varphi}^{2} - (-2mgR\varphi) = \frac{5}{2} mR^{2} \dot{\varphi}^{2} + 2mgR\varphi$$

Для змінної ф складаємо рівняння Лагранжа 2-го роду:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) - \frac{\partial L}{\partial \varphi} = 0$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{\varphi}} = \frac{5}{2} mR^2 2 \dot{\varphi} = 5mR^2 \dot{\varphi} \quad i \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) = 5mR^2 \ddot{\varphi} ;$$

$$\frac{\partial L}{\partial \varphi} = 2mgR \; ;$$

Тоді рівняння Лагранжа 2-го роду має вигляд: $5mR^2\ddot{\varphi} - 2mgR = 0$

Вираз для кутового прискорення блоку: $\ddot{\varphi} = \frac{2g}{5R}$

Отже, прискорення блоків машини Атвуда $\frac{2g}{5}$.

7.8

У якості узагальнених координат виберемо положення x тягарця 4m і правого блоку y.

Вирази для положення та швидкостей кожного з блоків, виражені через узагальнені координати, показані на рис. нижче.

Тоді вираз для кінетичної енергії:

$$T = \frac{{m_1 v_1}^2}{2} + \frac{{m_2 v_2}^2}{2} + \frac{{m_3 v_3}^2}{2} \,;$$

$$T = \frac{4m(\dot{x})^2}{2} + \frac{m(-\dot{x} + \dot{y})^2}{2} + \frac{5m(-\dot{x} - \dot{y})^2}{2} \,,$$
або після спрощення
$$T = m\left(5\dot{x}^2 + 4\dot{x}\dot{y} + 3\dot{y}^2\right)$$

Вираз для потенціальної енергії системи тягарців:

$$U = "mgh" = 4mgx + mg(-x + y) + 5mg(-x - y) =$$

= -2mgx - 4mgy

Лагранжіан має вигляд:

$$L = m(5\dot{x}^2 + 4\dot{x}\dot{y} + 3\dot{y}^2) + 2mgx + 4mgy$$

Для кожної зі змінних складаємо рівняння Лагранжа 2-го роду:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \quad i \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} = 0$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{x}} = 10m\dot{x} + 4m\dot{y} \text{ i } \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 10m\ddot{x} + 4m\ddot{y} ;$$

$$\frac{\partial L}{\partial x} = 2mg$$

$$\frac{\partial L}{\partial \dot{y}} = 4m\dot{x} + 6m\dot{y} \text{ i } \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) = 4m\ddot{x} + 6m\ddot{y} ;$$

$$\frac{\partial L}{\partial y} = 4mg$$

Підставляючи ці похідні у рівняння Лагранжа, отримуємо систему диференційних рівнянь:

$$\begin{cases} 5\ddot{x} + 2\ddot{y} - g = 0\\ 2\ddot{x} + 3\ddot{y} - 2g = 0 \end{cases}$$

Розв'язуючи систему відносно \ddot{x} , \ddot{y} , отримуємо

$$\begin{cases} \ddot{x} = -\frac{g}{11} \\ \ddot{y} = \frac{8g}{11} \end{cases}$$

Вирази для прискорень кожного з тягарців:

$$4m: \ddot{x} = -\frac{g}{11}$$

$$m: -\ddot{x} + \ddot{y} = \frac{9g}{11}$$

$$5m: -\ddot{x} - \ddot{y} = -\frac{7g}{11}$$

7.9

У якості узагальненої координати виберемо горизонтальне положення ц.м. стержня x та кут ϕ , який він утворює з вертикаллю.

Декартові координати ц.м. стержня записуються як

$$x = x$$

$$y = l \cos \varphi$$

а їхні похідні як

$$\dot{x} = \dot{x}$$

$$\dot{y} = (-l\sin\varphi)\dot{\varphi}$$

Вираз для потенціальної енергії:

$$T = \frac{mv^2}{2} = \frac{m\dot{x}^2}{2} + \frac{m\dot{y}^2}{2} = \frac{m}{2}(\dot{x}^2 + (-l\sin\varphi)^2\dot{\varphi}^2)$$

А потенціальної енергії, відносно підлоги

$$U = "mgh" = mgl\cos \varphi$$
.

Лагранжіан має вигляд:

$$L = T - U = \frac{m}{2} \left(\dot{x}^2 + \left(l \sin \varphi \right)^2 \dot{\varphi}^2 \right) - mgl \cos \varphi$$

Для змінної x складаємо рівняння Лагранжа 2-го роду:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} , \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = m\ddot{x} , \frac{\partial L}{\partial x} = 0$$

Підставляючи ці похідні у рівняння Лагранжа, отримуємо: $m\ddot{x} = 0$

Тобто прискорення ц.м. вздовж горизонталі відсутнє. Оскільки початкова швидкість стержня також 0, це означає, що ц.м. стержня не рухається горизонтально.

7.10

У якості узагальненої координати оберемо кут θ , який циліндр утворює з вертикаллю.

Оскільки циліндр котиться без проковзування, кутове положення циліндра ϕ при обертанні навколо власної вісі зв'язано з кутом θ як $(R-r)\theta=r\phi$.

Оскільки момент інерції диску при обертанні навколо власної вісі

$$I = \frac{mr^2}{2}$$

Тоді кінетична енергія може бути записана як

$$T = \frac{I\omega^{2}}{2} + \frac{mv^{2}}{2} = \frac{mr^{2}(\dot{\varphi})^{2}}{4} + \frac{m(R-r)^{2}(\dot{\theta})^{2}}{2};$$

$$T = \frac{mr^{2}(\dot{\theta})^{2}(R-r)^{2}}{4r^{2}} + \frac{m(R-r)^{2}(\dot{\theta})^{2}}{2} = \frac{3}{4}m(R-r)^{2}(\dot{\theta})^{2}$$

Потенціальна енергія диску, відносно найвищого можливого положення на рампі

$$U = -mg(R - r)\cos\theta$$

Лагранжіан має вигляд:

$$L = T - U = \frac{3}{4}m(R - r)^{2} \left(\dot{\theta}\right)^{2} + mg(R - r)\cos\theta.$$

б)

Рівняння Лагранжа приймає вигляд

$$\frac{d}{dt}\left(\frac{3}{4}m(R-r)^22(\dot{\theta})\right) + mg(R-r)\sin\theta = 0 \text{ i спрощується до вигляду}$$

$$\ddot{\theta} + \frac{2g}{3(R-r)}\sin\theta = 0$$

Для випадку малих коливань $\sin\theta \approx \theta$ і рівняння спрощується до

$$\ddot{\theta} + \frac{2g}{3(R-r)}\theta = 0$$

Це рівняння вільних коливань з циклічною частотою $\omega = \sqrt{\frac{2g}{3(R-r)}}$

і періодом

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{3(R-r)}{2g}}$$

7.11

a)

У якості узагальнених координат виберемо кутове положення диску ϕ при обертанні навколо власної вісі та кут θ , який частинка на нитці утворює з вертикаллю.

Декартові координати диску (x) та частинки (x_2, y_2) , та похідні від них, виражені через узагальнені координати:

$$\begin{cases} x = R\varphi \\ x_2 = x + b\sin\theta \\ y_2 = b(1 - \cos\theta) \end{cases}; \begin{cases} \dot{x} = R\dot{\varphi} \\ \dot{x}_2 = R\dot{\varphi} + b(\cos\theta)\dot{\theta}, \\ \dot{y}_2 = b(\sin\theta)\dot{\theta} \end{cases}$$

Де кутова швидкість диску: $\omega = \dot{\phi}$

Вираз для кінетичної енергії системи:

$$T = \frac{I\omega^2}{2} + \frac{M\dot{x}^2}{2} + \left(\frac{m(R\dot{\varphi} + b(\cos\theta)\dot{\theta})^2}{2} + \frac{m\dot{y}_2^2}{2}\right)$$
$$= \left(\frac{3MR^2}{4} + \frac{mR^2}{2}\right)\dot{\varphi}^2 + \frac{mb^2\dot{\theta}^2}{2} + mRb(\cos\theta)\dot{\theta}\dot{\varphi} =$$
$$= \frac{3MR^2\dot{\varphi}^2}{4} + \frac{m}{2}(R^2\dot{\varphi}^2 + (b\dot{\theta})^2 + 2bR\dot{\varphi}\dot{\theta}\cos\theta)$$

Потенціальна енергія частинки на нитці відносно столу $U = "mgh" = -mgb\cos\theta$

Лагранжіан системи: L = T - U

$$L = \frac{3MR^2\dot{\phi}^2}{4} + \left(\frac{m}{2}R^2\dot{\phi}^2 + \frac{m}{2}\left(b\dot{\theta}\right)^2 + mbR\dot{\phi}\dot{\theta}\cos\theta\right) + mgb\cos\theta$$

б)

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{\theta}} = mb^{2}\dot{\theta} + mbR\dot{\phi}\cos\theta; \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = mb^{2}\ddot{\theta} + mbR\left(\ddot{\phi}\cos\theta - \dot{\phi}\dot{\theta}\sin\theta\right)$$
$$\frac{\partial L}{\partial \theta} = -mbR\dot{\phi}\dot{\theta}\sin\theta - mgb\sin\theta$$

$$\begin{split} \frac{\partial L}{\partial \dot{\varphi}} &= \frac{3R^2 M \dot{\varphi}}{2} + mR^2 \dot{\varphi} + mbR \dot{\theta} \cos \theta ; \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) &= \frac{3R^2 M \ddot{\varphi}}{2} + mR^2 \ddot{\varphi} + mbR \left(\ddot{\theta} \cos \theta - \dot{\theta} \sin \theta \left(\dot{\theta} \right) \right) \\ \frac{\partial L}{\partial \varphi} &= 0 \end{split}$$

Система рівнянь Лагранжа 2го роду виглядає як

$$\begin{cases} b\ddot{\theta} + R(\ddot{\phi}\cos\theta) + mg\sin\theta = 0\\ mb^{2}\ddot{\theta} + mbR(\ddot{\phi}\cos\theta - \dot{\phi}\dot{\theta}\sin\theta) + mbR\dot{\phi}\dot{\theta}\sin\theta + mgb\sin\theta = 0 \end{cases}$$

Виражаючи з першого рівняння $\ddot{\phi}$ та підставляючи його у друге рівняння,

отримуємо

$$(3M + 2m\sin^2\theta)\ddot{\theta} + 2m\sin\theta\cos\theta(\dot{\theta})^2 + \frac{(3M + 2m)g}{b}\sin\theta = 0$$

Для малих коливань ($\sin \theta \approx \theta$, $\sin^2 \theta \approx 0$, $\sin \theta \cos \theta \dot{\theta}^2 \approx 0$) отримуємо

$$\ddot{\theta} + \frac{(3M + 2m)g}{3Mb}\theta = 0$$

Це рівняння вільних коливань з циклічною частотою

$$\omega = \sqrt{\frac{(3M + 2m)g}{3Mb}}$$
 і періодом

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{3Mb}{(3M+2m)g}}$$

7.12

У якості узагальненої координати виберемо кутове положення ф диску маятника Максвела.

Тоді положення диску вздовж вертикалі та похідна від нього по часу:

$$y = \varphi R \ i \ \dot{y} = \dot{\varphi} R$$

Оскільки момент інерції диску при обертанні навколо власної вісі

$$I = \frac{mr^2}{2}$$

Вираз для кінетичної енергії маятника

$$T = \frac{mv^2}{2} + \frac{I\omega^2}{2} = \frac{mr^2\dot{\varphi}^2}{2} + \frac{mR^2\dot{\varphi}^2}{4} = \frac{m\dot{\varphi}^2}{2} \left(r^2 + \frac{R^2}{2}\right)$$

І вираз для потенціальної енергії

$$U = -mgr\varphi$$

Лагранжіан:

$$L = \frac{m\dot{\varphi}^2}{2} \left(r^2 + R^2 \right) + mgr\varphi$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{\varphi}} = m\dot{\varphi} \left(r^2 + \frac{R^2}{2} \right); \ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) = m\ddot{\varphi} \left(r^2 + \frac{R^2}{2} \right)$$

$$\frac{\partial L}{\partial \varphi} = mgr$$

Рівняння Лагранжа, записане для змінної ф виглядає як

$$m\ddot{\varphi}\left(r^2 + \frac{R^2}{2}\right) - mgr = 0.$$

Звідси $\ddot{\phi} = \frac{gr}{\left(r^2 + \frac{R^2}{2}\right)}$, а лінійне прискорення маятника Максвела

$$a = \ddot{\varphi}r = \frac{2gr^2}{2r^2 + R^2}$$

7.13

У якості узагальненої координати виберемо кут ф, що маятник утворює з вертикаллю.

Тоді для декартових координат частинки та похідних від них:

$$\begin{cases} x = l \sin \varphi \\ y = (Z + l \cos \varphi) \end{cases}, \begin{cases} \dot{x} = (l \cos \varphi) \dot{\varphi} \\ \dot{y} = \dot{Z} - l \sin \varphi (\dot{\varphi}) \end{cases}$$

Вираз для кінетичної енергії маятника з підвісом, що рухається

$$T = \frac{mv^2}{2} = \frac{m\dot{x}^2}{2} + \frac{m\dot{y}^2}{2} = \frac{1}{2}m(l^2\dot{\varphi}^2 + \dot{Z}^2 - 2l\dot{\varphi}\dot{Z}\sin\varphi)$$

А для потенціальної енергії відносно точки підвісу

$$U = "mgh" = -mg(Z + l\cos\varphi)$$

Лагранжіан:

$$L = \frac{1}{2}m(l^2\dot{\varphi}^2 + \dot{Z}^2 - 2l\dot{\varphi}\dot{Z}\sin\varphi) + mg(Z + l\cos\varphi)$$

Вирази для похідних, що входять у рівняння Лагранжа 2-го роду:

$$\frac{\partial L}{\partial \dot{\varphi}} = m(l^2 \dot{\varphi} - l \dot{Z} \sin \varphi); \frac{\partial L}{\partial \varphi} = -ml \dot{\varphi} \dot{Z} \cos \varphi - mgl \sin \varphi$$

Рівняння Лагранжа, записане для змінної ф виглядає як

$$\frac{d}{dt}\left(m(l^2\dot{\varphi}^2 + l\dot{Z}\sin\varphi)\right) - ml\dot{\varphi}\dot{Z}\cos\varphi - mgl\sin\varphi = 0$$

Що спрощується до

$$\ddot{\varphi} + \left(\frac{g^2}{l^2} - \frac{\ddot{Z}}{l}\right) \sin \varphi = 0 \text{ alo}$$

$$\ddot{\varphi} + \left(\frac{g^2}{l^2} - \frac{z_0 p^2}{l} \cos pt\right) \sin \varphi = 0$$

Тема 8: Варіаційний принцип, механіка Гамільтона

Задачі

- **8.1** Знайдіть екстремаль функціоналу $J(x) = \int_1^2 \frac{\dot{x}^2}{4t} dt$, який задовільняє умові x(1) = 5 і x(2) = 11.
- **8.2** Дві довільні точки A і B з'єднані струною. Частинка, що знаходиться в A може ковзати по струні під дією сили тяжіння. Якої форми має бути AB, щоб час ковзання частинки від найвищої точки у найнижчу був би мінімальним?
- **8.3** Доведіть, що найкоротшим шляхом від точки A в точку B ϵ пряма лінія.
- **8.4** Мильна плівка натягнута між двома круглими дротами. Яка форма такої плівки?

- **8.5** Записати рівняння Лагранжа у гамільтоновій формі для руху частинки на орбіті Землі.
- **8.6** Розглянемо намистину масою m, що рухається вздовж вертикального параболічного дроту, чия форма задана рівнянням $y = 0.5 \ x^2$ в однорідному гравітаційному полі g. a) Записати канонічні рівняння Гамільтона б) Побудувати траєкторію частинки в фазовому просторі q, p.
- **8.7** Записати Гамільтоніан та рівняння Гамільтона для тіла, що рухається в однорідному полі тяжіння Землі.
- **8.8** Записати Гамільтоніан та рівняння Гамільтона для сферичного маятника.
- **8.9** Записати Гамільтоніан та рівняння Гамільтона для одномірного гармонічного осцилятора і побудувати траєкторію частинки в фазовому просторі.

8.10 Лагранжіан частинки, що рухається зі швидкістю близькою до швидкості світла, записується як $L=m_0c^2\left(1-\left(1-\frac{\dot{x}^2}{c^2}\right)\right)^{1/2}-V(x)$. Знайти H(x).

8.11 Записати рівняння Гамільтона для частинки масою m, що ковзає під дією сили тяжіння по гладкому стержню, чия форма задана формулами

$$\begin{cases} x = a\cos\theta \\ y = a\sin\theta; \ a, b = const > 0 \\ z = b\theta \end{cases}$$

8.12 Лагранжіан системи заданий виразом $L = \frac{\dot{q}^2}{4} - \frac{q^2}{9}$.Знайти Гамльтонів фазовий простір для руху системи.

Розв'язки

8.1

$$\frac{d}{dt}\frac{\partial F}{\partial \dot{x}} - \frac{\partial F}{\partial x} = 0 \text{ де } F = \frac{\dot{x}^2}{4t}$$

Знайдемо вирази для похідних:

$$\frac{\partial}{\partial \dot{x}} \left(\frac{\dot{x}^2}{4t} \right) = \frac{2\dot{x}}{4t} = \frac{\dot{x}}{2t} \quad i \quad \frac{\partial}{\partial x} \left(\frac{\dot{x}}{4t} \right) = 0$$

І підставимо їх у рівняння Ейлера-Лагранжа:

$$\frac{d}{dt}\left(\frac{2\dot{x}}{4t}\right) = 0,$$

$$\frac{2\dot{x}}{4t} = const = c \Leftrightarrow \dot{x} = 2ct$$

Інтегруємо

$$x = Ct^2 + D$$

Значення констант знайдемо з умов x(1)=5, x(2)=11:

$$\begin{cases} 5 = C(1)^2 + D \\ 11 = C(2)^2 + D \end{cases} \Leftrightarrow \begin{cases} C = 2 \\ D = 3 \end{cases}$$

Tобто
$$x = 2t^2 + 3$$

8.2

Запишемо закон збереження енергії для частинки, що спустилася на вертикальну відстань y, вибравши нульовий рівень потенціальної енергії у точці A:

$$0 = \frac{mv^2}{2} + mg\left(-y\right).$$

Звідси
$$v = \sqrt{2gy}$$

Миттєва швидкість частинки за означенням дотична до траєкторії і знаходиться як $v=\frac{dl}{dt}$, де $dl=\sqrt{dx^2+dy^2}$.

Відповідно
$$\sqrt{2gy} = \frac{\sqrt{dx^2 + dy^2}}{dt}$$
 і $dt = \frac{\sqrt{dx^2 + dy^2}}{\sqrt{2gy}}$

Час спуску частинки, що має бути мінімізований вибором траєкторії

задається як
$$T = \int dt = \int_{x_1}^{x_2} \frac{\sqrt{dx^2 + dy^2}}{\sqrt{2gy}} = \int_{x_1}^{x_2} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\sqrt{2gy}} dx$$
.

Позначивши
$$F = \frac{\sqrt{1 + (y')^2}}{\sqrt{y}}$$
.

Згідно формулою Ейлера-Лагранжа значення Т буде мінімальним для функції F що задовільняє рівнянню:

$$y'\frac{\partial F}{\partial y'} - F = const.$$

$$\frac{\partial F}{\partial y'} = \frac{1}{\sqrt{y}} \frac{2y'}{2\sqrt{1 + (y')^2}} = \frac{1}{\sqrt{y}} \frac{y'}{\sqrt{1 + (y')^2}}$$

Підставляючи у рівняння:

$$y' \frac{1}{\sqrt{y}} \frac{y'}{\sqrt{1+(y')^2}} - \frac{\sqrt{1+(y')^2}}{\sqrt{y}} = c.$$

Спрощуючи цей вираз і виражаючи з нього у' отримуємо:

$$y' = \frac{dy}{dx} = \pm \sqrt{\frac{cy - 1}{cy}}$$

Розділяючи змінні: $\int \sqrt{\frac{cy}{cy-1}} dy = \int \pm dx$

Заміна
$$y = \frac{c}{2}(1 - \cos \psi)$$
 і $dy = \frac{c}{2}\sin \psi d\psi$

$$=\pm\frac{c}{2}\int\sqrt{\frac{\left(1-\cos\psi\right)^2}{\left(1-\cos^2\psi\right)}}\sin\psi d\psi =\pm\frac{c}{2}\int\frac{\left(1-\cos\psi\right)}{\sin\psi}\sin\psi d\psi =$$

$$=\pm\frac{c}{2}\int (1-\cos\psi)d\psi =$$

$$\begin{cases} x = \pm \frac{c}{2} (\psi - \sin \psi) + d \\ y = \frac{c}{2} (1 - \cos \psi) \end{cases}$$

Що ϵ параметричним рівнянням циклоїди

8.3

Малий шматок траєкторії dl можна записати як

$$dl^{2} = dx^{2} + dy^{2}$$
$$dl = \sqrt{dx^{2} + dy^{2}}$$

Тоді довжина кривої, що з'єднує A і B і чию довжину необхідно мінімізувати:

$$L = \int dl = \int_{A}^{B} \sqrt{dx^2 + dy^2} = \int_{A}^{B} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Інтеграл буде мати найменше значення, якщо $F(y,x) = \sqrt{1 + (y')^2}$ задовольнятиме

$$y'\frac{\partial F}{\partial y'} - F = const.$$

$$\frac{\partial F}{\partial y'} = \frac{2y'}{2\sqrt{1+(y')^2}} = \frac{y'}{\sqrt{1+(y')^2}}, \text{ тобто}$$

$$\frac{y' \times y'}{\sqrt{1+(y')^2}} - \sqrt{1+(y')^2} = Const,$$

Спрощуючи отримуємо:

$$\frac{(y')^{2}}{\sqrt{1+(y')^{2}}} - \frac{1+(y')^{2}}{\sqrt{1+(y')^{2}}} = -\frac{1}{\sqrt{1+(y')^{2}}} = const$$

$$1+(y')^{2} = \left(-\frac{1}{const}\right)^{2} \Leftrightarrow (y')^{2} = Const$$

Що можливо лише якщо у'-- константа.

Отже
$$\frac{dy}{dx} = const$$

 $dy = \int C dx$
 $y = Cx + D$

Що ϵ рівнянням прямої.

8.4

Розділимо площу плівки на невеликі циліндри радіуса y і висотою dl.

$$dl^{2} = dx^{2} + dy^{2}$$
$$dl = \sqrt{dx^{2} + dy^{2}}$$

Тоді площу усієї плівки можна записати як

$$S = \int 2\pi y dl = \int_{A}^{B} 2\pi y \sqrt{dx^{2} + dy^{2}} = 2\pi \int_{A}^{B} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = 2\pi \int_{A}^{B} y \sqrt{1 + (y')^{2}} dx$$

Інтеграл буде мати найменше значення, якщо $F(y,x) = y\sqrt{1+(y')^2}$

задовольнятиме $y'\frac{\partial F}{\partial y'} - F = const$.

$$\frac{\partial F}{\partial y'} = y \frac{y'}{\sqrt{1 + (y')^2}}$$
 тоді

$$\left(y'y\frac{y'}{\sqrt{1+(y')^2}}\right) - y\sqrt{1+(y')^2} = const$$

Спрощуємо ліву частину рівняння:

$$y\left(\frac{y'^2}{\sqrt{1+(y')^2}} - \sqrt{1+y'^2}\right) = y\left(\frac{(y')^2}{\sqrt{1+(y')^2}} - \frac{1+(y')^2}{\sqrt{1+(y')^2}}\right) = -\frac{y}{\sqrt{1+(y')^2}} = c$$

$$y = C\sqrt{1+(y')^2}$$

Виражаємо у':

$$(y')^2 = \frac{y^2}{C^2} - 1$$

 $y' = \frac{dy}{dx} = \pm \sqrt{\frac{y^2}{C^2} - 1};$

Iнтегруємо:
$$\pm \int \frac{dy}{\sqrt{\frac{y^2}{C^2} - 1}} = \int dx$$

$$x = \pm C \left(\operatorname{ch}^{-1} \frac{y}{C} \right) + D i$$

 $y = C \operatorname{ch}\left(\frac{x-D}{C}\right)$. Форма кривої, що утворює плівка — косинус гіперболічний.

$$\begin{split} L &= \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - \left(-\frac{GmM}{r} \right) \\ \dot{p} &= \frac{\partial L}{\partial q} \\ p &= \frac{\partial L}{\partial \dot{q}} \\ \frac{\partial L}{\partial r} &= -\frac{GmM}{r^2} + mr\dot{\theta}^2 \equiv \dot{p}_r \,, \, \frac{\partial L}{\partial \dot{r}} = m\dot{r} \equiv p_r \\ \frac{\partial L}{\partial \Omega} &= 0 \equiv \dot{p}_\theta \,, \, \frac{\partial L}{\partial \dot{Q}} = mr^2 \dot{\theta} \equiv p_\theta \end{split}$$

$$\begin{cases} \dot{r} = \frac{p_r}{m} \\ \dot{\theta} = \frac{p_{\theta}}{mr^2} \\ \dot{p}_r = \frac{p_{\theta}^2}{mr^3} - \frac{GmM}{r^2} \\ \dot{p}_{\theta} = 0 \end{cases}$$

$$q = x; \quad y = \frac{x^2}{2}$$

$$\dot{y} = \frac{2x\dot{x}}{2} = x\dot{x}$$

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - mgy = \frac{1}{2}m\dot{x}^2(1+x^2) - mg\frac{x^2}{2}$$

$$p = \frac{\partial L}{\partial \dot{x}}; p = \dot{x}m(1+x^2)$$

$$\dot{x} = \frac{p}{m(1+x^2)}$$

$$H = p\dot{x} - L = \frac{p^2}{2m(1+x^2)} + \frac{mg}{2}x^2$$

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial a} \end{cases}$$

$$\dot{p} = -\frac{\partial H}{\partial q}$$

$$\begin{cases} \dot{x} = \frac{p}{m(1+x^2)} \\ \dot{p} = -mgx + \frac{xp^2}{m(1+x^2)^2} \end{cases}$$

8.7
$$T = \frac{m}{2} (\dot{x}^2 + \dot{y}^2)$$

$$U = mgy$$

$$L = T - U$$

$$L = \frac{m}{2} \dot{x}^2 + \frac{m}{2} \dot{y}^2 - mgy$$

$$H = T + U$$

$$H = \frac{m}{2} \dot{x}^2 + \frac{m}{2} \dot{y}^2 + mgy$$

$$\frac{\partial L}{\partial \dot{x}} = p_x, \quad \frac{\partial L}{\partial \dot{x}} = m\dot{x} = p_x,$$

$$\frac{\partial L}{\partial \dot{y}} = p_y, \quad \frac{\partial L}{\partial \dot{y}} = m\dot{y} = p_y$$

$$p_x = m\dot{x}, \quad \dot{x} = p_x / m$$

$$p_y = m\dot{y}, \quad \dot{y} = p_y / m$$

$$H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + mgy$$

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

$$\frac{\partial H}{\partial p_x} = \frac{p_x}{m}, \quad \frac{\partial H}{\partial p_y} = \frac{p_y}{m},$$

$$\frac{\partial H}{\partial x} = 0, \quad \frac{\partial H}{\partial y} = mg$$

$$\begin{cases} \dot{x} = \frac{p_x}{m} \\ \dot{y} = \frac{p_y}{m} \\ \dot{p}_x = 0 \\ \dot{p}_y = -mg \end{cases}$$

$$\dot{x} = l\dot{\theta}\cos\theta\cos\phi - l\dot{\phi}\sin\phi\sin\theta$$
$$\dot{y} = l\dot{\theta}\cos\theta\sin\phi + l\dot{\phi}\cos\phi\sin\theta$$

$$\begin{split} \dot{z} &= -l\dot{\theta}\sin\theta \\ L &= \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mgh = \frac{1}{2}ml^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2) - mgl(1 - \cos\theta) \\ H &= \frac{1}{2}ml^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2) + mgl(1 - \cos\theta) \\ \frac{\partial L}{\partial \dot{\theta}} &= ml^2\dot{\theta} = p_{\theta}, \iff \dot{\theta} = p_{\theta} / ml^2 \\ \frac{\partial L}{\partial \dot{\phi}} &= ml^2\sin^2\theta\dot{\phi} = p_{\phi}, \iff \dot{\phi} = p_{\phi} / ml^2\sin^2\theta \\ H &= \frac{1}{2}\frac{p_{\theta}^2}{ml^2} + \frac{1}{2}\frac{p_{\phi}^2}{ml^2\sin^2\theta} + mgl(1 - \cos\theta) \\ \frac{\partial H}{\partial p_{\phi}} &= \frac{p_{\phi}}{ml^2\sin^2\theta}, \quad \frac{\partial H}{\partial \phi} = 0 \\ \frac{\partial H}{\partial p_{\theta}} &= \frac{p_{\theta}}{ml^2}, \quad \frac{\partial H}{\partial \theta} = -\frac{p_{\phi}^2\cos\theta}{ml^2\sin^3\theta} + mgl\sin\theta \\ \dot{\phi} &= -\frac{\partial H}{\partial q} \\ \dot{\phi} &= \frac{p_{\theta}}{ml^2} \\ \dot{\phi} &= \frac{p_{\phi}}{ml^2\sin^3\theta} - mgl\sin\theta \\ \dot{p}_{\phi} &= 0 \end{split}$$

$$L = T - U$$

$$L = \frac{m\dot{x}^2}{2} - \frac{kx^2}{2}$$

$$H = \frac{m\dot{x}^2}{2} + \frac{kx^2}{2}$$

$$\frac{\partial L}{\partial \dot{q}} = p , \frac{\partial L}{\partial \dot{x}} = p$$

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} = p$$

$$\dot{x} = \frac{p}{m}$$

$$H = \frac{p^2}{2m} + \frac{kx^2}{2}$$

$$\frac{\partial H}{\partial p} = \frac{p}{m}, \frac{\partial H}{\partial x} = kx$$

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

$$\begin{cases} \dot{x} = \frac{p}{m} \\ \dot{p} = -kx \end{cases}$$

Траєкторія у фазовому просторі x-p визначається Гамільтоніаном системи. Оскільки $H=\frac{p^2}{2m}+\frac{kx^2}{2}$ то форма траєкторії — еліпс. (Порівняйте $1=\frac{x^2}{a^2}+\frac{y^2}{b^2}$ і $H=\frac{p^2}{2m}+\frac{kx^2}{2}$).

$$L = m_0 c^2 \left(1 - \left(1 - \frac{\dot{x}^2}{c^2} \right)^{1/2} \right) - U(x)$$

$$H = p\dot{x} - L$$

$$p = \frac{\partial L}{\partial \dot{x}}$$

$$\frac{\partial L}{\partial \dot{x}} = m_0 \dot{x} \left(1 - \frac{\dot{x}^2}{c^2} \right)^{-1/2}$$

Звідси
$$\dot{x} = cp \left(m_0^2 c^2 + p^2 \right)^{-1/2}$$

$$H = p\dot{x} - L =$$

$$= m_0 \left(cp \left(m_0^2 c^2 + p^2 \right)^{-1/2} \right) \left(1 - \frac{\left(cp \left(m_0^2 c^2 + p^2 \right)^{-1/2} \right)^2}{c^2} \right)^{-1/2} cp \left(m_0^2 c^2 + p^2 \right)^{-1/2} - \left(m_0 c^2 \left(1 - \left(1 - \frac{\left(cp \left(m_0^2 c^2 + p^2 \right)^{-1/2} \right)^2}{c^2} \right)^{-1/2} \right)^{-1/2} \right) - U(x) \right)$$

$$H = m_0^2 c^2 \left(1 + \left(\frac{p}{m_0 c} \right)^2 \right)^{1/2} - m_0 c^2 + U(x)$$

$$\begin{cases} x = a\cos\theta \\ y = a\sin\theta; \ a, b = const > 0 \Rightarrow \begin{cases} \dot{x} = -a\dot{\theta}\sin\theta \\ \dot{y} = a\dot{\theta}\cos\theta \end{cases} \\ \dot{z} = b\dot{\theta} \end{cases}$$

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mgz$$

$$L = \frac{1}{2}m((a\dot{\theta}\sin\theta)^2 + (a\dot{\theta}\cos\theta)^2 + (b\dot{\theta})^2) - mgb\theta$$

$$\frac{1}{2}m(a^2 + b^2)\dot{\theta}^2 - mgb\theta$$

$$L = \frac{1}{2}m(a^2 + b^2)\dot{\theta}^2 - mgb\theta$$

$$\frac{\partial L}{\partial \dot{\theta}} = m(a^2 + b^2)\dot{\theta} = p$$

$$H = \frac{1}{2}m(a^2 + b^2)\dot{\theta}^2 + mgb\theta$$

$$\dot{\theta} = \frac{p}{m(a^2 + b^2)}$$

$$H = \frac{1}{2}m(a^2 + b^2)\left(\frac{p}{m(a^2 + b^2)}\right)^2 + mgb\theta$$

$$H = \frac{1}{2} \frac{p^2}{m(a^2 + b^2)} + mgb\theta$$

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

$$\begin{vmatrix} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial p} \end{vmatrix}$$

$$\frac{\partial H}{\partial p} = \frac{p}{m(a^2 + b^2)}, \frac{\partial H}{\partial \theta} = mgb$$

$$\begin{cases} \dot{\theta} = \frac{p}{m(a^2 + b^2)} \\ \dot{p} = -mgb \end{cases}$$

Список використаної літератури

- 1. Gregory, R.D. (2006) *Classical Mechanics*, Cambridge, Cambridge University Press
- 2. Morin, D. (2008) *Introduction to Classical Mechanics with Problems and Solutions*, Cambridge, Cambridge University Press
- 3. Ледней, М.Ф., Романенко О.В. (2004) Збірник задач з класичної механіки, Київ, РВЦ «Київський університет»
- 4. Kamal, A.A (2011) 1000 Solved Problems in Classical Physics, Berlin, Springer Berlin