

Generated by elijahsheridan on 03 March 2020, 03:41:46

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents

1	Set	up	2
	1.1	Command history	2
	1.2	Configuration	7
2	Dat	easets	8
	2.1	signal	8
	2.2	bg_vbf_0_100	8
	2.3	bg_vbf_100_200	8
	2.4	bg_vbf_200_400	9
	2.5	bg_vbf_400_600	9
	2.6	bg_vbf_600_800	10
	2.7	bg_vbf_800_1200	10
	2.8	bg_vbf_1200_1600	10
	2.9	bg_vbf_1600_inf	11
	2.10	bg_dip_0_100	11
	2.11	bg_dip_100_200	12
	2.12	bg_dip_200_400	12
	2.13	bg_dip_400_600	12
	2.14	bg_dip_600_800	13
	2.15	bg_dip_800_1200	13
	2.16	bg_dip_1200_1600	14
	2.17	$\log_{\rm dip}_1600_{\rm inf}$	14
3	His	tos and cuts	15
	3.1	Cut 1	15
	3.2	Histogram 1	16
	3.3	Histogram 2	17
	3.4	Histogram 3	18
	3.5	Histogram 4	19
	3.6	Histogram 5	20
	3.7	Histogram 6	22
	3.8	Histogram 7	23
	3.9	Histogram 8	24
	3.10	Histogram 9	25
	3.11	Histogram 10	26
	3.12	Histogram 11	27
	3.13	Histogram 12	28
	3.14	Histogram 13	29
	3.15	Histogram 14	30
	3.16	Histogram 15	31
	3.17	Histogram 16	32
	3.18	Cut 2	33

4	Sur	mmary	34
	4.1	Cut-flow charts	34

1 Setup

1.1 Command history

```
ma5># set directory where running "./bin/ma5"; set lumi; define the signal significance
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data # need to
change this directory path -> exit and type "pwd" to get the path
ma5>set main.lumi = 40.0
ma5>set main.SBratio = 'S/sqrt(S+B)'
ma5># import samples -> change the path to the LHE file
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/axion_signal/axion_signal_gurrola_cuts_
as signal
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_0_100_merged.lhe.gz as bg_vbf_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_100_200_merged.lhe.gz as bg_vbf_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_200_400_merged.lhe.gz as bg_vbf_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_400_600_merged.lhe.gz as bg_vbf_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_600_800_merged.lhe.gz as bg_vbf_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_800_1200_merged.lhe.gz as bg_vbf_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_1200_1600_merged.lhe.gz as bg_vbf_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/vbf_diphoton_background_data/-
merged_lhe/vbf_diphoton_background_ht_1600_inf_merged.lhe.gz as bg_vbf_1600_inf
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_0_100_merged.lhe.gz as bg_dip_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_100_200_merged.lhe.gz as bg_dip_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_200_400_merged.lhe.gz as bg_dip_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_400_600_merged.lhe.gz as bg_dip_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_600_800_merged.lhe.gz as bg_dip_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_800_1200_merged.lhe.gz as bg_dip_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_1200_1600_merged.lhe.gz as bg_dip_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/diphoton_double_isr_background_data/-
merged_lhe/diphoton_double_isr_background_ht_1600_inf_merged.lhe.gz as bg_dip_1600_inf
ma5># define bg and signal samples
ma5>set signal.type = signal
ma5>set bg_vbf_0_100.type = background
ma5>set bg_vbf_100_200.type = background
ma5>set bg_vbf_200_400.type = background
ma5>set bg_vbf_400_600.type = background
```

```
ma5>set bg_vbf_600_800.type = background
ma5>set bg_vbf_800_1200.type = background
ma5>set bg_vbf_1200_1600.type = background
ma5>set bg_vbf_1600_inf.type = background
ma5>set bg_dip_0_100.type = background
ma5>set bg_dip_100_200.type = background
ma5>set bg_dip_200_400.type = background
ma5>set bg_dip_400_600.type = background
ma5>set bg_dip_600_800.type = background
ma5>set bg_dip_800_1200.type = background
ma5>set bg_dip_1200_1600.type = background
ma5>set bg_dip_1600_inf.type = background
ma5># define weights for the samples
ma5>#set sample_1.weight = 1
ma5>#set sample_2.weight = 1
ma5># line styles and colors
ma5>set signal.linecolor = red
ma5>set signal.linestyle = dashed
ma5>set signal.linewidth = 3
ma5>set bg_vbf_0_100.linecolor = blue-4
ma5>set bg_vbf_0_100.linestyle = dash-dotted
ma5>set bg_vbf_0_100.linewidth = 4
ma5>set bg_vbf_100_200.linecolor = blue-3
ma5>set bg_vbf_100_200.linestyle = dash-dotted
ma5>set bg_vbf_100_200.linewidth = 4
ma5>set bg_vbf_200_400.linecolor = blue-2
ma5>set bg_vbf_200_400.linestyle = dash-dotted
ma5>set bg_vbf_200_400.linewidth = 4
ma5>set bg_vbf_400_600.linecolor = blue-1
ma5>set bg_vbf_400_600.linestyle = dash-dotted
ma5>set bg_vbf_400_600.linewidth = 4
ma5>set bg_vbf_600_800.linecolor = blue
ma5>set bg_vbf_600_800.linestyle = dash-dotted
ma5>set bg_vbf_600_800.linewidth = 4
ma5>set bg_vbf_800_1200.linecolor = blue+1
ma5>set bg_vbf_800_1200.linestyle = dash-dotted
ma5>set bg_vbf_800_1200.linewidth = 4
ma5>set bg_vbf_1200_1600.linecolor = blue+2
ma5>set bg_vbf_1200_1600.linestyle = dash-dotted
ma5>set bg_vbf_1200_1600.linewidth = 4
ma5>set bg_vbf_1600_inf.linecolor = blue+3
ma5>set bg_vbf_1600_inf.linestyle = dash-dotted
ma5>set bg_vbf_1600_inf.linewidth = 4
ma5>set bg_dip_0_100.linecolor = green-4
ma5>set bg_dip_0_100.linestyle = dash-dotted
ma5>set bg_dip_0_100.linewidth = 4
ma5>set bg_dip_100_200.linecolor = green-3
ma5>set bg_dip_100_200.linestyle = dash-dotted
ma5>set bg_dip_100_200.linewidth = 4
```

```
ma5>set bg_dip_200_400.linecolor = green-2
ma5>set bg_dip_200_400.linestyle = dash-dotted
ma5>set bg_dip_200_400.linewidth = 4
ma5>set bg_dip_400_600.linecolor = green-1
ma5>set bg_dip_400_600.linestyle = dash-dotted
ma5>set bg_dip_400_600.linewidth = 4
ma5>set bg_dip_600_800.linecolor = green
ma5>set bg_dip_600_800.linestyle = dash-dotted
ma5>set bg_dip_600_800.linewidth = 4
ma5>set bg_dip_800_1200.linecolor = green+1
ma5>set bg_dip_800_1200.linestyle = dash-dotted
ma5>set bg_dip_800_1200.linewidth = 4
ma5>set bg_dip_1200_1600.linecolor = green+2
ma5>set bg_dip_1200_1600.linestyle = dash-dotted
ma5>set bg_dip_1200_1600.linewidth = 4
ma5>set bg_dip_1600_inf.linecolor = green+3
ma5>set bg_dip_1600_inf.linestyle = dash-dotted
ma5>set bg_dip_1600_inf.linewidth = 4
ma5># a jet can be from a light quark or b quark
ma5>define jets = j
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>define ta = ta+ ta-
ma5>define lept = e mu ta
ma5>define Zprime = 32 -32
ma5># reduce contribution from V+Zp ==> jj+Zp
ma5>select M(jets[1] jets[2]) > 120
ma5># define which plots to make
ma5>plot PT(jets[1])
ma5>plot ETA(jets[1])
ma5>plot PHI(jets[1])
ma5>plot PT(jets[2])
ma5>plot ETA(jets[2])
ma5>plot PHI(jets[2])
ma5>plot DELTAR(jets[1], jets[2])
ma5>plot M(jets[1] jets[2])
ma5>plot MET
ma5>plot sdETA(jets[1] jets[2])
ma5>plot M(a[1] a[2])
ma5>plot PT(a[1])
ma5>plot PT(a[2])
ma5>plot THT
ma5>plot MET
ma5>plot TET
ma5>#set the plot/graph parameters
ma5>set selection[2].xmax = 1000
ma5>set selection[2].xmin = 0
ma5>set selection[2].nbins = 200
ma5>set selection[2].logY = true
```

```
ma5>set selection[2].logX = false
ma5>set selection[2].rank = PTordering
ma5>#set selection[2].stacking_method = normalize2one
ma5>set selection[2].titleX = "p_{T}[j_{1}] (GeV)"
ma5>set selection[3].xmax = 8
ma5>set selection[3].xmin = -8
ma5>set selection[3].nbins = 160
ma5>set selection[3].logY = false
ma5>set selection[3].logX = false
ma5>set selection[3].rank = PTordering
ma5>#set selection[3].stacking_method = normalize2one
ma5>set selection[3].titleX = "#eta[j_{1}]"
ma5>set selection[4].xmax = 3.2
ma5>set selection[4].xmin = -3.2
ma5>set selection[4].nbins = 64
ma5>set selection[4].logY = false
ma5>set selection[4].logX = false
ma5>set selection[4].rank = PTordering
ma5>#set selection[4].stacking_method = normalize2one
ma5>set selection[4].titleX = "#phi[j_{1}]"
ma5>set selection[5].xmax = 500
ma5>set selection[5].xmin = 0
ma5>set selection[5].nbins = 100
ma5>set selection[5].logY = true
ma5>set selection[5].logX = false
ma5>set selection[5].rank = PTordering
ma5>#set selection[5].stacking_method = normalize2one
ma5>set selection[5].titleX = "p_{T}[j_{2}] (GeV)"
ma5>set selection[6].xmax = 8
ma5>set selection[6].xmin = -8
ma5>set selection[6].nbins = 160
ma5>set selection[6].logY = false
ma5>set selection[6].logX = false
ma5>set selection[6].rank = PTordering
ma5>#set selection[6].stacking_method = normalize2one
ma5>set selection[6].titleX = "#eta[j_{2}]"
ma5>set selection[7].xmax = 3.2
ma5>set selection[7].xmin = -3.2
ma5>set selection[7].nbins = 64
ma5>set selection[7].logY = false
ma5>set selection[7].logX = false
ma5>set selection[7].rank = PTordering
ma5>#set selection[7].stacking_method = normalize2one
ma5>set selection[7].titleX = "#phi[j_{2}]"
ma5>set selection[8].xmax = 15
ma5>set selection[8].xmin = 0
ma5>set selection[8].nbins = 75
ma5>set selection[8].logY = false
ma5>set selection[8].logX = false
```

```
ma5>set selection[8].rank = PTordering
ma5>#set selection[8].stacking_method = normalize2one
ma5>set selection[8].titleX = "#DeltaR[j_{1},j_{2}]"
ma5>set selection[9].xmax = 8000
ma5>set selection[9].xmin = 0
ma5>set selection[9].nbins = 160
ma5>set selection[9].logY = false
ma5>set selection[9].logX = false
ma5>set selection[9].rank = PTordering
ma5>#set selection[9].stacking_method = normalize2one
ma5>set selection[9].titleX = "M[j_{1},j_{2}] (GeV)"
ma5>set selection[10].xmax = 1000
ma5>set selection[10].xmin = 0
ma5>set selection[10].nbins = 100
ma5>set selection[10].logY = true
ma5>set selection[10].logX = false
ma5>set selection[10].rank = PTordering
ma5>#set selection[10].stacking_method = normalize2one
ma5>set selection[10].titleX = "#slash{E}_{T} (GeV)"
ma5>#set selection[11].stacking_method = normalize2one
ma5>set selection[11].titleX = "#Delta#eta(j_{1},j_{2})"
ma5>#set selection[12].xmax = 2000
ma5>#set selection[12].xmin = 0
ma5>set selection[12].nbins = 400
ma5>set selection[12].logY = true
ma5>set selection[12].logX = false
ma5>set selection[12].rank = PTordering
ma5>#set selection[12].stacking_method = normalize2one
ma5>set selection[12].titleX = "M[a_{1},a_{2}] (GeV)"
ma5>#set selection[13].xmax = 4
ma5>#set selection[13].xmin = -4
ma5>set selection[13].nbins = 80
ma5>set selection[13].logY = false
ma5>set selection[13].logX = false
ma5>set selection[13].rank = PTordering
ma5>#set selection[13].stacking_method = normalize2one
ma5>set selection[13].titleX = "p_{T}[a_{1}]"
ma5>#set selection[14].xmax = 2000
ma5>#set selection[14].xmin = 0
ma5>set selection[14].nbins = 400
ma5>set selection[14].logY = true
ma5>set selection[14].logX = false
ma5>set selection[14].rank = PTordering
ma5>#set selection[14].stacking_method = normalize2one
ma5>set selection[14].titleX = "p_{T}[a_{2}] (GeV)"
ma5>\#set selection[15].xmax = 4
ma5>#set selection[15].xmin = -4
ma5>set selection[15].nbins = 80
ma5>set selection[15].logY = false
```

```
ma5>set selection[15].logX = false
ma5>set selection[15].rank = PTordering
ma5>#set selection[15].stacking_method = normalize2one
ma5>set selection[15].titleX = "THT"
ma5>#set selection[16].xmax = 1000
ma5>#set selection[16].xmin = 0
ma5>set selection[16].nbins = 200
ma5>set selection[16].logY = true
ma5>set selection[16].logX = false
ma5>set selection[16].rank = PTordering
ma5>#set selection[16].stacking_method = normalize2one
ma5>set selection[16].titleX = "MET"
ma5>#set selection[17].xmax = 4
ma5>#set selection[17].xmin = -4
ma5>set selection[17].nbins = 80
ma5>set selection[17].logY = false
ma5>set selection[17].logX = false
ma5>set selection[17].rank = PTordering
ma5>#set selection[17].stacking_method = normalize2one
ma5>set selection[16].titleX = "TET"
ma5># apply selections
ma5>select sdETA(jets[1] jets[2]) > 5.1 and M(jets[1] jets[2]) > 750
ma5>submit analysis_deltaeta5.1_mmjj_750
```

1.2 Configuration

- MadAnalysis version 1.6.33 (2017/11/20).
- Histograms given for an integrated luminosity of 40.0fb⁻¹.

2 Datasets

2.1 signal

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: signal events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 4094+/- 2 events.

• Ratio (event weight): 0.0041.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$	1000000	0.102 @ 0.028%	0.0
axion_data/axion_signal/-	1000000	0.102 @ 0.02670	0.0
axion_signal_gurrola_cuts_1MeV.ll			

$2.2 \quad bg_vbf_0_100$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 12150+/- 24 events.

• Ratio (event weight): 0.012.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_data/-	1000000	0.304 @ 0.19%	0.0
vbf_diphoton_background_data/-			
merged_lhe/-			
vbf_diphoton_background_ht_0_1			

$2.3 \quad \mathrm{bg_vbf_100_200}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 965662 events.

 \bullet Normalization to the luminosity: 9695+/- 17 $\,$ events.

 \bullet Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_data/-	965662	0.242 @ 0.17%	0.0
vbf_diphoton_background_data/-	903002	0.242 @ 0.1770	0.0
$\mathrm{merged_lhe/-}$			
vbf_diphoton_background_ht_100_			

2.4 bg vbf 200 400

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 984165 events.

• Normalization to the luminosity: 5413+/- 11 events.

• Ratio (event weight): 0.0055.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	984165	0.135 @ 0.2%	0.0
vbf_diphoton_background_data/-	984100	0.155 @ 0.2%	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_200_			

$\mathbf{2.5} \quad \mathbf{bg_vbf_400_600}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 986+/- 2 events.

• Ratio (event weight): 0.00099 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	1000000	0.0247 @ 0.14%	0.0
vbf_diphoton_background_data/-	1000000	0.0247 @ 0.1470	0.0
$\mathrm{merged_lhe/-}$			
vbf_diphoton_background_ht_400_			

$\mathbf{2.6} \quad \mathbf{bg_vbf_600_800}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 252+/- 1 events.

• Ratio (event weight): 0.00025.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	1000000	0.0063 @ 0.13%	0.0
vbf_diphoton_background_data/-	1000000	0.0003 @ 0.13/0	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_600_			

2.7 bg vbf 800 1200

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

 \bullet Generated events: 400839 $\,$ events.

• Normalization to the luminosity: 114+/- 1 events.

• Ratio (event weight): 0.00028 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_data/-	400839	0.00287 @ 0.16%	0.0
vbf_diphoton_background_data/-	400033	0.00207 @ 0.1070	0.0
merged_lhe/-			
vbf_diphoton_background_ht_800_			

2.8 bg vbf 1200 1600

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 953803 events.

• Normalization to the luminosity: 20+/-1 events.

• Ratio (event weight): 2.1e-05 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	953803	0.000515 @ 0.16%	0.0
$vbf_diphoton_background_data/-$	900000	0.000313 @ 0.1070	0.0
merged_lhe/-			
vbf_diphoton_background_ht_1200			

2.9 bg vbf 1600 inf

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 270148 events.

• Normalization to the luminosity: 7+/-1 events.

• Ratio (event weight): 2.6e-05.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	270148	0.000191 @ 0.11%	0.0
vbf_diphoton_background_data/-	270140	0.000191 @ 0.1170	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_1600			

$2.10 \quad \mathrm{bg_dip_0_100}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 2710847+/- 4614 events.

• Ratio (event weight): 2.6 - warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	1040000	67.8 @ 0.17%	0.0
diphoton_double_isr_background_d	1040000	07.8 @ 0.17/0	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

$2.11 \quad bg_dip_100_200$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 1095362+/- 1528 events.
- Ratio (event weight): 1.1 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_data/-$	1040000	27.4 @ 0.14%	0.0
diphoton_double_isr_background_o	1040000	21.4 😡 0.14/0	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

2.12 bg dip 200 400

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 239548+/- 414 events.
- Ratio (event weight): 0.23 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_data/-	1040000	5.99 @ 0.17%	0.0
diphoton_double_isr_background_o	1040000	5.99 @ 0.1770	0.0
merged_lhe/-			
diphoton_double_isr_background_h			

2.13 bg dip 400 600

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 28798+/- 53 events.

 \bullet Ratio (event weight): 0.028 $\,$.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_data/-$	1040000	0.72 @ 0.18%	0.0
diphoton_double_isr_background_o	1040000	0.72 @ 0.1670	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_h			

2.14 bg dip 600 800

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 662009 events.

• Normalization to the luminosity: 6674+/- 28 events.

 \bullet Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/-			
axion_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	662009	0.167 @ 0.41%	0.0

2.15 bg_dip_800_1200

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 2942+/- 6 events.

• Ratio (event weight): 0.0028 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	1040000	0.0736 @ 0.17%	0.0
diphoton_double_isr_background_d	1040000	0.0730 @ 0.1770	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

$2.16 \quad \ \, \text{bg_dip_1200_1600}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 337115 events.

• Normalization to the luminosity: 513+/-3 events.

• Ratio (event weight): 0.0015 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	337115	0.0128 @ 0.51%	0.0
diphoton_double_isr_background_o	007110	0.0120 @ 0.0170	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

$2.17 \quad \mathrm{bg_dip_1600_inf}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_data/optimization .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 187+/- 1 events.

• Ratio (event weight): 0.00018 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_data/-	1040000	0.00469 @ 0.15%	0.0
diphoton_double_isr_background_d	1040000	0.00409 @ 0.15/0	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

3 Histos and cuts

3.1 Cut 1

* Cut: select M (jets[1] jets[2]) > 120.0

Dataset	Events kept: K	Rejected events:	Efficiency: K / (K +	Cumul. efficiency: K	
Dataset	Events kept. K	R	R)	/ Initial	
gignal	4094.04 +/- 1.14	0.04 +/- 0.20	1.00e+00 +/- 4.89e-	1.00e+00 +/- 4.89e-	
signal	4094.04 +/- 1.14	0.04 +/- 0.20	05	05	
bg_vbf_0_10	3934.7 +/- 52.1	8215.6 +/- 53.9	0.32384 + / - 0.00425	0.32384 + / - 0.00425	
bg_vbf_100_	8757.0 +/- 32.7	938.4 +/- 29.2	0.903 +/- 0.003	0.903 +/- 0.003	
bg_vbf_200_	5358.8 +/- 13.1	54.50 +/- 7.35	0.98993 + / - 0.00136	0.98993 + / - 0.00136	
bg_vbf_400_	983.78 +/- 2.22	3.07 + / - 1.75	0.99689 + / - 0.00177	0.99689 + / - 0.00177	
bg_vbf_600_	251.851 + / -0.571	0.226 + / - 0.475	0.99910 +/- 0.00189	0.99910 + / - 0.00189	
bg_vbf_800_	114.64 +/- 0.39	0.12 + / - 0.35	0.99895 + / - 0.00302	0.99895 + / - 0.00302	
bg_vbf_1200	20.553 +/- 0.209	0.0426 + / - 0.2061	1.00 +/- 0.01	1.00 +/- 0.01	
bg_vbf_1600	7.513 + / - 0.378	0.146 +/- 0.378	0.9810 +/- 0.0494	0.9810 +/- 0.0494	
l 0 - 10	bg_dip_0_10 714692 +/- 1416	1000154 + / 9479	0.263642 +/-	0.263642 +/-	
bg_dip_0_10	114092 +/- 1410	1996154 +/- 3473	0.000268	0.000268	
l 1: 100	055470 + / 1960	920000 1 / 546	0.781001 +/-	0.781001 +/-	
bg_dip_100_	855479 + / - 1268	239882 + / - 546	0.000395	0.000395	
bg_dip_200_	234627 + / - 411	4920.9 +/- 69.9	0.97946 + / - 0.00029	0.97946 + / - 0.00029	
by dip 400	28616.2 +/- 53.6	199 4 + / 19 5	0.993665 +/-	0.993665 +/-	
bg_dip_400_	20010.2 +/- 55.0	182.4 + / - 13.5	0.000468	0.000468	
by din 600	6658.9 +/- 27.8	15.43 +/- 3.92	0.997689 +/-	0.997689 +/-	
bg_dip_600_	0038.9 +/- 21.8	15.45 +/- 5.92	0.000588	0.000588	
ha din 000	2020 06 1 / 5 20	9 29 + / 1 54	0.999192 +/-	0.999192 +/-	
bg_dip_800_	2939.96 + /- 5.28	2.38 + / - 1.54	0.000524	0.000524	
hm din 1900	E12 24 + / 2 66	0.17 + / 0.41	0.999669 +/-	0.999669 +/-	
bg_dip_1200_	513.34 + / - 2.66	0.17 + / - 0.41	0.000803	0.000803	
bg_dip_1600	187.742 + / -0.345	0.0414 + / - 0.2034	0.99978 + / - 0.00108	0.99978 + / - 0.00108	

3.2 Histogram 1

* Plot: PT (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	445.82	317.0	0.0	6.28
bg_vbf_0_100	3934	1.0	46.784	11.01	0.0	0.0
bg_vbf_100_20	8756	1.0	87.0579	20.21	0.0	0.0
bg_vbf_200_40	5358	1.0	159.249	38.06	0.0	0.0
bg_vbf_400_60	983	1.0	274.434	50.77	0.0	0.0
bg_vbf_600_80	251	1.0	386.332	64.57	0.0	0.0
bg_vbf_800_12	114	1.0	524.594	93.61	0.0	0.1816
bg_vbf_1200_1	20.6	1.0	738.34	109.5	0.0	3.383
bg_vbf_1600_i	7.66	1.0	1048.57	221.9	0.0	46.27
bg_dip_0_100	714691	1.0	44.2861	11.5	0.0	0.0
bg_dip_100_20	855479	1.0	84.0902	19.87	0.0	0.0
bg_dip_200_40	234627	1.0	155.663	38.1	0.0	0.0
bg_dip_400_60	28616	1.0	272.939	53.09	0.0	0.0
bg_dip_600_80	6658	1.0	382.903	65.7	0.0	0.0
bg_dip_800_12	2939	1.0	517.996	90.51	0.0	0.2342
bg_dip_1200_1	513	1.0	728.639	100.1	0.0	2.272
bg_dip_1600_i	187	1.0	1036.29	211.5	0.0	43.96

Figure 1.

3.3 Histogram 2

* Plot: ETA (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	-0.0023996	1.616	0.0	0.0
bg_vbf_0_100	3934	1.0	-0.00133609	2.635	0.0	0.0
bg_vbf_100_20	8756	1.0	0.0043695	2.247	0.0	0.0
bg_vbf_200_40	5358	1.0	0.00194377	1.965	0.0	0.0
bg_vbf_400_60	983	1.0	- 0.000999715	1.682	0.0	0.0
bg_vbf_600_80	251	1.0	0.000513382	1.499	0.0	0.0
bg_vbf_800_12	114	1.0	-0.00310292	1.329	0.0	0.0
bg_vbf_1200_1	20.6	1.0	- 0.000169046	1.134	0.0	0.0
bg_vbf_1600_i	7.66	1.0	0.00127081	0.9541	0.0	0.0
bg_dip_0_100	714691	1.0	0.000508343	2.224	0.0	0.0
bg_dip_100_20	855479	1.0	0.00260979	1.71	0.0	0.0
bg_dip_200_40	234627	1.0	-0.0010006	1.468	0.0	0.0
bg_dip_400_60	28616	1.0	-0.00170173	1.279	0.0	0.0
bg_dip_600_80	6658	1.0	-0.0049065	1.157	0.0	0.0
bg_dip_800_12	2939	1.0	0.00133618	1.052	0.0	0.0
bg_dip_1200_1	513	1.0	-0.00486624	0.9226	0.0	0.0
bg_dip_1600_i	187	1.0	-0.00107396	0.8	0.0	0.0

Figure 2.

3.4 Histogram 3

* Plot: PHI (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	0.00102738	1.813	0.0	0.0
bg_vbf_0_100	3934	1.0	0.00419195	1.813	0.0	0.0
bg_vbf_100_20	8756	1.0	-0.00148977	1.814	0.0	0.0
bg_vbf_200_40	5358	1.0	0.00192437	1.814	0.0	0.0
bg_vbf_400_60	983	1.0	-0.00356173	1.813	0.0	0.0
bg_vbf_600_80	251	1.0	- 0.000882503	1.813	0.0	0.0
bg_vbf_800_12	114	1.0	-0.00348627	1.813	0.0	0.0
bg_vbf_1200_1	20.6	1.0	0.00205129	1.813	0.0	0.0
bg_vbf_1600_i	7.66	1.0	0.00218185	1.813	0.0	0.0
bg_dip_0_100	714691	1.0	-0.00108067	1.816	0.0	0.0
bg_dip_100_20	855479	1.0	0.00213448	1.814	0.0	0.0
bg_dip_200_40	234627	1.0	-0.00158683	1.812	0.0	0.0
bg_dip_400_60	28616	1.0	-0.00239958	1.813	0.0	0.0
bg_dip_600_80	6658	1.0	0.00121432	1.814	0.0	0.0
bg_dip_800_12	2939	1.0	0.000396081	1.814	0.0	0.0
bg_dip_1200_1	513	1.0	6.26217 e - 05	1.814	0.0	0.0
bg_dip_1600_i	187	1.0	0.0014267	1.814	0.0	0.0

Figure 3.

3.5 Histogram 4

* Plot: PT (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	161.87	136.0	0.0	3.02
bg_vbf_0_100	3934	1.0	31.2504	7.217	0.0	0.0
bg_vbf_100_20	8756	1.0	57.5348	16.74	0.0	0.0
bg_vbf_200_40	5358	1.0	111.536	32.69	0.0	0.0
bg_vbf_400_60	983	1.0	201.545	47.5	0.0	0.0
bg_vbf_600_80	251	1.0	293.986	62.63	0.0	0.0
bg_vbf_800_12	114	1.0	415.077	90.48	0.0	15.1
bg_vbf_1200_1	20.6	1.0	613.849	108.4	0.0	90.47
bg_vbf_1600_i	7.66	1.0	917.972	221.8	0.0	98.03
bg_dip_0_100	714691	1.0	29.8777	7.014	0.0	0.0
bg_dip_100_20	855479	1.0	54.688	15.89	0.0	0.0
bg_dip_200_40	234627	1.0	106.13	33.69	0.0	0.0
bg_dip_400_60	28616	1.0	201.059	51.01	0.0	0.0
bg_dip_600_80	6658	1.0	296.97	64.64	0.0	0.0
bg_dip_800_12	2939	1.0	421.627	88.69	0.0	16.13
bg_dip_1200_1	513	1.0	623.471	99.67	0.0	93.34
bg_dip_1600_i	187	1.0	926.302	210.5	0.0	98.92

Figure 4.

3.6 Histogram 5

* Plot: ETA (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	0.00500696	2.329	0.0	0.0
bg_vbf_0_100	3934	1.0	-0.0019532	2.674	0.0	0.0
bg_vbf_100_20	8756	1.0	-0.0066	2.371	0.0	0.0
bg_vbf_200_40	5358	1.0	0.000228824	2.132	0.0	0.0
bg_vbf_400_60	983	1.0	- 0.000744275	1.863	0.0	0.0
bg_vbf_600_80	251	1.0	-0.00168321	1.667	0.0	0.0
bg_vbf_800_12	114	1.0	- 0.000452317	1.473	0.0	0.0
bg_vbf_1200_1	20.6	1.0	0.000595874	1.238	0.0	0.0
bg_vbf_1600_i	7.66	1.0	-0.00207042	1.017	0.0	0.0
bg_dip_0_100	714691	1.0	1.01009e-05	2.147	0.0	0.0
bg_dip_100_20	855479	1.0	-0.00108977	1.645	0.0	0.0
bg_dip_200_40	234627	1.0	-0.00265008	1.446	0.0	0.0
bg_dip_400_60	28616	1.0	- 0.000387923	1.29	0.0	0.0
bg_dip_600_80	6658	1.0	- 0.000303381	1.182	0.0	0.0
bg_dip_800_12	2939	1.0	0.00119018	1.078	0.0	0.0
bg_dip_1200_1	513	1.0	- 0.000424092	0.9457	0.0	0.0
bg_dip_1600_i	187	1.0	0.000907805	0.8179	0.0	0.0

Figure 5.

3.7 Histogram 6

* Plot: PHI (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	-0.00274458	1.814	0.0	0.0
bg_vbf_0_100	3934	1.0	-0.00276363	1.814	0.0	0.0
bg_vbf_100_20	8756	1.0	-3.00875e-05	1.815	0.0	0.0
bg_vbf_200_40	5358	1.0	-0.00153572	1.814	0.0	0.0
bg_vbf_400_60	983	1.0	0.00312538	1.814	0.0	0.0
bg_vbf_600_80	251	1.0	0.00050346	1.815	0.0	0.0
bg_vbf_800_12	114	1.0	0.000132195	1.813	0.0	0.0
bg_vbf_1200_1	20.6	1.0	-0.0034209	1.815	0.0	0.0
bg_vbf_1600_i	7.66	1.0	-0.00282812	1.814	0.0	0.0
bg_dip_0_100	714691	1.0	0.00324102	1.813	0.0	0.0
bg_dip_100_20	855479	1.0	-0.00116298	1.815	0.0	0.0
bg_dip_200_40	234627	1.0	0.000793162	1.815	0.0	0.0
bg_dip_400_60	28616	1.0	-1.20627e-05	1.814	0.0	0.0
bg_dip_600_80	6658	1.0	-0.00250468	1.815	0.0	0.0
bg_dip_800_12	2939	1.0	- 0.000669513	1.813	0.0	0.0
bg_dip_1200_1	513	1.0	-0.00203746	1.813	0.0	0.0
bg_dip_1600_i	187	1.0	0.00234294	1.814	0.0	0.0

Figure 6.

3.8 Histogram 7

* Plot: DELTAR (jets[1] , jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	4.02835	1.056	0.0	0.0
bg_vbf_0_100	3934	1.0	5.21509	1.267	0.0	0.0
bg_vbf_100_20	8756	1.0	4.68485	1.264	0.0	0.0
bg_vbf_200_40	5358	1.0	4.4049	1.096	0.0	0.0
bg_vbf_400_60	983	1.0	4.11552	0.8948	0.0	0.0
bg_vbf_600_80	251	1.0	3.92644	0.7722	0.0	0.0
bg_vbf_800_12	114	1.0	3.75826	0.6584	0.0	0.0
bg_vbf_1200_1	20.6	1.0	3.58482	0.5257	0.0	0.0
bg_vbf_1600_i	7.66	1.0	3.44779	0.4108	0.0	0.0
bg_dip_0_100	714691	1.0	4.20916	0.7369	0.0	0.0
bg_dip_100_20	855479	1.0	3.45656	0.6833	0.0	0.0
bg_dip_200_40	234627	1.0	3.29993	0.6389	0.0	0.0
bg_dip_400_60	28616	1.0	3.28686	0.5815	0.0	0.0
bg_dip_600_80	6658	1.0	3.28486	0.5273	0.0	0.0
bg_dip_800_12	2939	1.0	3.28621	0.4662	0.0	0.0
bg_dip_1200_1	513	1.0	3.28098	0.3842	0.0	0.0
bg_dip_1600_i	187	1.0	3.26771	0.3022	0.0	0.0

Figure 7.

3.9 Histogram 8

* Plot: M (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	1376.2	772.9	0.0	0.0
bg_vbf_0_100	3934	1.0	469.964	412.4	0.0	0.0
bg_vbf_100_20	8756	1.0	609.152	529.4	0.0	0.0
bg_vbf_200_40	5358	1.0	888.626	671.3	0.0	0.0003082
bg_vbf_400_60	983	1.0	1211.77	761.1	0.0	0.0006018
bg_vbf_600_80	251	1.0	1465.23	805.1	0.0	0.001401
bg_vbf_800_12	114	1.0	1732.47	822.0	0.0	0.002495
bg_vbf_1200_1	20.6	1.0	2125.32	815.8	0.0	0.002832
bg_vbf_1600_i	7.66	1.0	2691.74	857.1	0.0	0.01037
bg_dip_0_100	714691	1.0	202.321	105.0	0.0	0.0
bg_dip_100_20	855479	1.0	222.194	129.4	0.0	0.0
bg_dip_200_40	234627	1.0	364.432	195.6	0.0	0.0
bg_dip_400_60	28616	1.0	626.063	277.8	0.0	0.0
bg_dip_600_80	6658	1.0	872.986	337.8	0.0	0.0
bg_dip_800_12	2939	1.0	1178.48	408.8	0.0	0.0
bg_dip_1200_1	513	1.0	1647.88	468.4	0.0	0.0
bg_dip_1600_i	187	1.0	2311.56	635.4	0.0	0.0001923

Figure 8.

3.10 Histogram 9

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	8.33083e-09	1.078e-08	0.0	0.0
bg_vbf_0_100	3934	1.0	5.97855e-10	4.233e-10	0.0	0.0
bg_vbf_100_20	8756	1.0	9.55638e-10	1.098e-09	0.0	0.0
bg_vbf_200_40	5358	1.0	3.23057e-09	2.219e-09	0.0	0.0
bg_vbf_400_60	983	1.0	4.52485e-09	2.611e-09	0.0	0.0
bg_vbf_600_80	251	1.0	4.90226e-09	2.72e-09	0.0	0.0
bg_vbf_800_12	114	1.0	5.15622e-09	2.979e-09	0.0	0.0
bg_vbf_1200_1	20.6	1.0	5.81971e-09	5.339e-09	0.0	0.0
bg_vbf_1600_i	7.66	1.0	1.30635e-08	1.639e-08	0.0	0.0
bg_dip_0_100	714691	1.0	5.87329e-10	4.134e-10	0.0	0.0
bg_dip_100_20	855479	1.0	8.95295e-10	1.036e-09	0.0	0.0
bg_dip_200_40	234627	1.0	3.11256e-09	2.186e-09	0.0	0.0
bg_dip_400_60	28616	1.0	4.43451e-09	2.58e-09	0.0	0.0
bg_dip_600_80	6658	1.0	4.80208e-09	2.678e-09	0.0	0.0
bg_dip_800_12	2939	1.0	5.06231e-09	3.026e-09	0.0	0.0
bg_dip_1200_1	513	1.0	5.58908e-09	4.823e-09	0.0	0.0
bg_dip_1600_i	187	1.0	1.25075e-08	1.605e-08	0.0	0.0

Figure 9.

3.11 Histogram 10

* Plot: sdETA (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	-0.00740656	3.704	0.2057	0.2022
bg_vbf_0_100	3934	1.0	0.000617109	4.726	0.5803	0.6083
bg_vbf_100_20	8756	1.0	0.0109695	4.015	0.1029	0.1176
bg_vbf_200_40	5358	1.0	0.00171495	3.569	0.004928	0.003696
bg_vbf_400_60	983	1.0	- 0.000255441	3.09	0.0	0.0
bg_vbf_600_80	251	1.0	0.00219659	2.754	0.0	0.0
bg_vbf_800_12	114	1.0	-0.0026506	2.428	0.0	0.0
bg_vbf_1200_1	20.6	1.0	-0.00076492	2.046	0.0	0.0
bg_vbf_1600_i	7.66	1.0	0.00334122	1.694	0.0	0.0
bg_dip_0_100	714691	1.0	0.000498242	3.363	0.0	0.0007299
bg_dip_100_20	855479	1.0	0.00369956	2.156	0.0001229	0.0
bg_dip_200_40	234627	1.0	0.00164949	1.795	0.0	0.0
bg_dip_400_60	28616	1.0	-0.00131381	1.639	0.0	0.0
bg_dip_600_80	6658	1.0	-0.00460312	1.539	0.0	0.0
bg_dip_800_12	2939	1.0	0.000145998	1.448	0.0	0.0
bg_dip_1200_1	513	1.0	-0.00444215	1.327	0.0	0.0
bg_dip_1600_i	187	1.0	-0.00198176	1.196	0.0	0.0

Figure 10.

3.12 Histogram 11

* Plot: M (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	950.206	725.5	0.0	36.84
bg_vbf_0_100	3934	1.0	59.2471	49.28	0.0	0.002778
bg_vbf_100_20	8756	1.0	70.2822	64.56	0.0	0.01548
bg_vbf_200_40	5358	1.0	92.2723	92.82	0.0	0.0622
bg_vbf_400_60	983	1.0	117.071	124.4	0.0	0.1777
bg_vbf_600_80	251	1.0	132.524	146.0	0.0	0.3347
bg_vbf_800_12	114	1.0	143.801	162.6	0.0	0.5078
bg_vbf_1200_1	20.6	1.0	153.519	177.9	0.0	0.6926
bg_vbf_1600_i	7.66	1.0	159.525	184.7	0.0	0.7897
bg_dip_0_100	714691	1.0	48.4767	39.08	0.0	0.002553
bg_dip_100_20	855479	1.0	55.4245	50.97	0.0	0.004558
bg_dip_200_40	234627	1.0	74.3979	76.83	0.0	0.0267
bg_dip_400_60	28616	1.0	95.1626	107.9	0.0	0.1108
bg_dip_600_80	6658	1.0	108.836	127.8	0.0	0.2203
bg_dip_800_12	2939	1.0	119.749	143.7	0.0	0.3484
bg_dip_1200_1	513	1.0	131.534	157.2	0.0	0.4736
bg_dip_1600_i	187	1.0	143.672	167.2	0.0	0.5656

Figure 11.

3.13 Histogram 12

* Plot: PT (a[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	588.092	368.7	0.0	12.98
bg_vbf_0_100	3934	1.0	33.0393	18.87	0.0	0.0
bg_vbf_100_20	8756	1.0	46.4939	31.54	0.0	0.0
bg_vbf_200_40	5358	1.0	72.005	60.42	0.0	0.000308
bg_vbf_400_60	983	1.0	106.886	103.6	0.0	0.002407
bg_vbf_600_80	251	1.0	132.381	141.7	0.0	0.009208
bg_vbf_800_12	114	1.0	154.148	182.0	0.0	0.3163
bg_vbf_1200_1	20.6	1.0	172.887	223.7	0.0	1.906
bg_vbf_1600_i	7.66	1.0	181.168	246.2	0.0	2.06
bg_dip_0_100	714691	1.0	29.8019	18.74	0.0	0.0
bg_dip_100_20	855479	1.0	42.2098	31.98	0.0	0.0001231
bg_dip_200_40	234627	1.0	67.1266	63.03	0.0	9.834e-05
bg_dip_400_60	28616	1.0	95.4197	106.8	0.0	0.001258
bg_dip_600_80	6658	1.0	113.382	139.4	0.0	0.00999
bg_dip_800_12	2939	1.0	126.721	168.3	0.0	0.3807
bg_dip_1200_1	513	1.0	138.701	193.4	0.0	1.426
bg_dip_1600_i	187	1.0	146.238	198.9	0.0	1.065

Figure 12.

3.14 Histogram 13

* Plot: PT (a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	334.941	290.0	0.0	3.619
bg_vbf_0_100	3934	1.0	18.2641	11.16	0.0	0.0
bg_vbf_100_20	8756	1.0	21.2596	15.54	0.0	0.0
bg_vbf_200_40	5358	1.0	25.9605	23.17	0.0	0.0002055
bg_vbf_400_60	983	1.0	31.2333	32.38	0.0	0.0009032
bg_vbf_600_80	251	1.0	34.5946	38.91	0.0	0.0001002
bg_vbf_800_12	114	1.0	37.1093	44.62	0.0	0.0009971
bg_vbf_1200_1	20.6	1.0	39.4356	49.91	0.0	0.002623
bg_vbf_1600_i	7.66	1.0	40.8098	52.8	0.0	0.004823
bg_dip_0_100	714691	1.0	16.5201	9.637	0.0	0.0
bg_dip_100_20	855479	1.0	18.8185	12.99	0.0	0.0
bg_dip_200_40	234627	1.0	22.8735	19.58	0.0	0.0
bg_dip_400_60	28616	1.0	26.8872	27.11	0.0	0.0001937
bg_dip_600_80	6658	1.0	29.3925	32.02	0.0	0.0003031
bg_dip_800_12	2939	1.0	31.3973	35.97	0.0	0.0007697
bg_dip_1200_1	513	1.0	33.6461	39.79	0.0	0.001184
bg_dip_1600_i	187	1.0	35.6015	42.32	0.0	0.002116

Figure 13.

3.15 Histogram 14

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	607.69	391.1	0.0	15.4
bg_vbf_0_100	3934	1.0	78.0345	14.32	0.0	0.0
bg_vbf_100_20	8756	1.0	144.593	27.95	0.0	0.0
bg_vbf_200_40	5358	1.0	270.786	53.37	0.0	0.0
bg_vbf_400_60	983	1.0	475.979	55.0	0.0	0.0
bg_vbf_600_80	251	1.0	680.318	55.83	0.0	0.0
bg_vbf_800_12	114	1.0	939.672	106.7	0.0	27.89
bg_vbf_1200_1	20.6	1.0	1352.19	109.7	0.0	100.0
bg_vbf_1600_i	7.66	1.0	1966.54	391.6	0.0	100.0
bg_dip_0_100	714691	1.0	74.1637	15.18	0.0	0.0
bg_dip_100_20	855479	1.0	138.778	26.45	0.0	0.0
bg_dip_200_40	234627	1.0	261.793	50.89	0.0	0.0
bg_dip_400_60	28616	1.0	473.998	54.59	0.0	0.0
bg_dip_600_80	6658	1.0	679.873	55.79	0.0	0.0
bg_dip_800_12	2939	1.0	939.623	106.7	0.0	27.8
bg_dip_1200_1	513	1.0	1352.11	109.8	0.0	100.0
bg_dip_1600_i	187	1.0	1962.59	386.0	0.0	100.0

Figure 14.

3.16 Histogram 15

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	8.33083e-09	1.078e-08	0.0	0.0
bg_vbf_0_100	3934	1.0	5.97855e-10	4.233e-10	0.0	0.0
bg_vbf_100_20	8756	1.0	9.55638e-10	1.098e-09	0.0	0.0
bg_vbf_200_40	5358	1.0	3.23057e-09	2.219e-09	0.0	0.0
bg_vbf_400_60	983	1.0	4.52485e-09	2.611e-09	0.0	0.0
bg_vbf_600_80	251	1.0	4.90226e-09	2.72e-09	0.0	0.0
bg_vbf_800_12	114	1.0	5.15622e-09	2.979e-09	0.0	0.0
bg_vbf_1200_1	20.6	1.0	5.81971e-09	5.339e-09	0.0	0.0
bg_vbf_1600_i	7.66	1.0	1.30635e-08	1.639e-08	0.0	0.0
bg_dip_0_100	714691	1.0	5.87329e-10	4.134e-10	0.0	0.0
bg_dip_100_20	855479	1.0	8.95295e-10	1.036e-09	0.0	0.0
bg_dip_200_40	234627	1.0	3.11256e-09	2.186e-09	0.0	0.0
bg_dip_400_60	28616	1.0	4.43451e-09	2.58e-09	0.0	0.0
bg_dip_600_80	6658	1.0	4.80208e-09	2.678e-09	0.0	0.0
bg_dip_800_12	2939	1.0	5.06231e-09	3.026e-09	0.0	0.0
bg_dip_1200_1	513	1.0	5.58908e-09	4.823e-09	0.0	0.0
bg_dip_1600_i	187	1.0	1.25075e-08	1.605e-08	0.0	0.0

Figure 15.

3.17 Histogram 16

* Plot: TET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	4094	1.0	1530.72	825.3	0.0	70.59
bg_vbf_0_100	3934	1.0	129.338	32.52	0.0	0.001235
bg_vbf_100_20	8756	1.0	212.346	54.5	0.0	0.00344
bg_vbf_200_40	5358	1.0	368.751	98.32	0.0	0.04948
bg_vbf_400_60	983	1.0	614.098	136.7	0.0	1.955
bg_vbf_600_80	251	1.0	847.293	172.9	0.0	15.03
bg_vbf_800_12	114	1.0	1130.93	233.4	0.0	66.91
bg_vbf_1200_1	20.6	1.0	1564.51	271.2	0.0	100.0
bg_vbf_1600_i	7.66	1.0	2188.52	475.9	0.0	100.0
bg_dip_0_100	714691	1.0	120.486	31.72	0.0	0.0
bg_dip_100_20	855479	1.0	199.807	52.08	0.0	0.0009859
bg_dip_200_40	234627	1.0	351.793	94.87	0.0	0.02749
bg_dip_400_60	28616	1.0	596.305	134.8	0.0	1.993
bg_dip_600_80	6658	1.0	822.647	165.9	0.0	10.92
bg_dip_800_12	2939	1.0	1097.74	215.8	0.0	61.64
bg_dip_1200_1	513	1.0	1524.46	238.7	0.0	100.0
bg_dip_1600_i	187	1.0	2144.43	445.2	0.0	100.0

Figure 16.

3.18 Cut 2 $* \mbox{ Cut: select sdETA (jets[1] jets[2])} > 5.1 \mbox{ and M (jets[1] jets[2])} > 750.0$

Dataset	Events kept: K	Rejected events:	Efficiency: K / (K +	Cumul. efficiency: K
		R	R)	/ Initial
signal	186.0 +/- 13.3	3908.1 +/- 13.4	0.04543 + / - 0.00325	0.04543 + / - 0.00325
bg_vbf_0_10	328.2 + / - 17.9	3606.5 + / -50.8	0.08342 + / - 0.00441	0.02701 + / - 0.00147
bg_vbf_100_	881.3 +/- 28.3	7875.6 +/- 40.7	0.10064 + / - 0.00321	0.09090 + / - 0.00292
bg_vbf_200_	321.3 +/- 17.4	5037.4 +/- 21.3	0.05996 + / - 0.00324	0.05936 + / - 0.00321
bg_vbf_400_	19.59 +/- 4.38	964.19 +/- 4.89	0.01992 + / - 0.00445	0.01985 + / - 0.00444
bg_vbf_600_	1.5 + /- 1.2	250.39 +/- 1.33	0.00580 +/- 0.00478	0.00579 +/- 0.00478
bg vbf 800	0.12 + / - 0.35	114.522 + / - 0.522	0.00105 + / - 0.00302	0.00105 +/- 0.00302
bg_vbf_1200_	,	20.552 +/- 0.213	8.29e-05 +/- 2.01e-03	8.27e-05 +/- 2.00e-
				03
bg_vbf_1600_	5.53e-05 +/- 7.44e-03	7.513 +/- 0.378	7.36e-06 +/- 9.90e-04	7.22e-06 +/- 9.71e-
				04
bg_dip_0_10	1668.1 +/- 40.9	713024 +/- 1413	2.33e-03 +/- 5.71e-05	6.15e-04 +/- 1.51e-
				05
bg_dip_100_	2541.6 +/- 50.5	852938 +/- 1265	2.97e-03 +/- 5.88e-05	2.32e-03 +/- 4.60e-
				05
1 1: 200	275.9 +/- 16.6	234351 +/- 411	1.18e-03 +/- 7.08e-05	1.15e-03 +/- 6.93e-
bg_dip_200_				05
bg_dip_400_	9.58 +/- 3.09	28606.7 +/- 53.7	0.000335 +/-	0.000333 +/-
			0.000108	0.000107
bg_dip_600_	0.736 +/- 0.858	6658.2 +/- 27.8	0.000111 +/-	0.00011 + / 0.00010
			0.000129	0.00011 +/- 0.00013
1 1: 000	0.102 +/- 0.319	2939.86 +/- 5.29	3.47e-05 +/- 1.09e-04	3.46e-05 +/- 1.08e-
bg_dip_800_				04
bg_dip_1200	0.00305 +/-	513.33 +/- 2.66	5.94e-06 +/- 1.08e-04	5.94e-06 +/- 1.08e-
	0.05521			04
bg_dip_1600_	0.0 +/- 0.0	187.742 +/ -0.345	0.0 +/- 0.0	0.0 +/- 0.0

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B) .
- \bullet Object definition selections are indicated in cyan.
- Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	4094.08 + / - 1.13	4113516 + / - 4877	2.01760 + / - 0.00132
SEL: M (jets[1] jets[2]	4094.04 +/- 1.14	1863145 +/- 1947	2.99607 +/- 0.00177
) > 120.0	1001.01 / 1.11	1000110 / 1011	2.00001 17 0.00111
SEL: sdETA (jets[1]			
$\mathrm{jets}[2]$) > 5.1 and M (186.0 +/- 13.3	6048.0 + /- 77.2	2.356 + / - 0.167
jets[