deletion cost 1, substitution cost 1) of "leda" to "deal".

Purparer au edit distancer quid to complete your work.

Solution: To calculate edit distance, we take dynamic appulach.

This dynamic appulach to calculate edit distance is

Levenentein formula:

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 & Deletion \\ D(i,j-1) + 1 & Tusewion \end{cases}$$

$$D(i-1,j-1) + cost \quad Substitution.$$

The cost operations included here au —

$$COST = \begin{cases} 0, & \text{if } A[i-1] = B[j-1] \\ 1, & \text{if } A[i-1] \neq B[j-1], \end{cases}$$

and B be the targer stowing, i.e, A = "bda".

Here, ?. ?! the number of characters of A ("leda")
and ; ?! the number of characters of B ("deal"),
i.e., ? vions and j columns.

The edit distance qui'd will be (i+1) x (j+1), i.e. 5x5.

		0	1	2	3	4		
		-	d	e	a	L		
0		0	1	2	3	A	9 (8.1)
1	l	1		(61)4				
2	e	2						
3	9	3						
1	a	4						

Calculating now by now: Row-1 (1:1): [comparing "1" with each character in "deal" \]. Compute tue edin ditrance (with .'. Cost =1. $D(1,1) = \min \left\{ \begin{array}{l} D(0,1) + 1 \\ D(1,0) + 1 \end{array} \right\}$ romenent = min St 2 1-1) a 2 min = (1) a - 110) + (1-101f-1) or The con- openations included belles are -2) L + exitations but morning morning to the $D(1,2) = \min_{D(1,1)+1} SD(0,2) + 1$ " old " = A sei, quint (D(QOD) + cost of A res cumbe there is it the number of charge fine of A ("Leas") ond j' is the number of enouscent of & ("deal"). = 2. IMMUND ; but 1 1911 3) & Lot a (11) x (11) so will brug conorth also en $D(1/3) = min \begin{cases} D(0/3)+1 \\ D(1/2)+1 \end{cases}$ = min \ \\ 3 23.

$$D(2,1) = \min \begin{cases} D(1,1) + 1 \\ D(2,0) + 1 \\ D(1,0) + 0.01 \end{cases}$$

: Distance guv'd - de a l - 0 1 2 3 4 e 2 2 " dea" 07

Row-3 (1=3): [Compairing "d" withe even character in

i) d = d.

-', Cost = 0.

D(3,1) 2 min $\begin{cases} D(2,1) + 1 \\ D(3,0) + 1 \\ D(2,0) + cost \end{cases}$

 $= \min \begin{cases} 3 \\ 4 \\ 2 \end{cases}$

2) 9 (d te.

.. Cost =1

$$D(3,2) = mm \begin{cases} D(2,2) + 1 \\ D(3,1) + 1 \end{cases}$$

 $= \min \begin{cases} \frac{2}{3} = 2. \end{cases}$

$$D(3,3) = \min \begin{cases} D(2,3)+1 \\ D(3,2)+1 \\ D(2,2)+1 \end{cases}$$

$$= \min \begin{cases} 3 \\ 3 \\ 2 \end{cases}$$

4)
$$d \neq l$$
.

= 2.

: Cost = 1.

D(3,4) = num $D(3,3) \neq 1$
 $D(3,3) \neq 1$

=
$$\min \begin{cases} 4 \\ 3 \\ 3 \\ 1 + (0.6) \\ 6 \end{cases}$$

$$= 3.7163 + (0.6) \\ 6$$

$$= 3.7163 + (0.6) \\ 6$$

Row -4 (i=4): [companing "a" with seals chancelly in odes!]

1)
$$a \neq d$$
.

1) $a \neq d$.

1) $a \neq d$.

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

2) $a \neq e$.

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

4

2) $a \neq e$.

2) $a \neq e$.

3) $a = a$:

4

2) $a \neq e$.

3) $a = a$:

4

3) $a = a$:

4

4

5) $a \neq a$:

6) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

2) $a \neq e$.

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

4

3) $a = a$:

2) $a \neq e$.

3) $a = a$:

3) $a = a$:

4) $a \neq a$:

5) $a \neq a$:

6) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

2) $a \neq a$:

3) $a = a$:

1) $a \neq a$:

2) $a \neq a$:

3) $a = a$:

2) $a \neq a$:

3) $a = a$:

3) $a = a$:

4) $a \neq a$:

5) $a \neq a$:

6) $a \neq a$:

6) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

1) $a \neq a$:

2) $a \neq a$:

3) $a = a$:

2) $a \neq a$:

3) $a = a$:

4) $a \neq a$:

5) $a \neq a$:

6) $a \neq a$:

8) $a \Rightarrow a$:

9) $a \Rightarrow a$:

1) $a \Rightarrow a$:

2) $a \Rightarrow a$:

2) $a \Rightarrow a$:

3) $a \Rightarrow a$:

4) $a \Rightarrow a$:

2) $a \Rightarrow a$:

3) $a \Rightarrow a$:

4) $a \Rightarrow a$:

4)

$$D(A,A) = \min_{x \in A} \begin{cases} D(3,A)+1 \\ D(4,3)+1 \end{cases}$$

$$= \min_{x \in A} \begin{cases} A(4,3)+1 \\ D(3,3)+1 \end{cases}$$

= 3.

is 3 uns.

1) 2.5). Find our whether the "duive" ? le closer to "buief"
our to "divens" and what eair destance is to each. You
may use any vention of distance that you like.

Courion: To carculate the edit distance of "duive" to

"buief" and "divers", we use Levenshtein distance
method, which is an example of dynamic purguamning

D(i,j): nuin SD(i-1,j)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1 Deletion SD(i,j-1)+1

 $COST = \begin{cases} 0, A[i-1] = B[j-1] \\ 1, A[i-1] \neq B[i-1]. \end{cases}$

Ler us staur with an empty distance govid of oveder (i+1 x j+1) i.e, of ourder 6 x 6.

Here, A = duive, source

and B = buief, tanger.

0 - 0 - 2 3 4 5 may will any vousers it directes was the pass somether violente for agrees an is nower boxes 1+(1,1-1) = Prim = (1,1) 0 1200 + (1-11-7) 0) 3000 - [1-1] 9 = [1-1] A . O } = 4200 1) d + b. -. [4]0 + [6] A . 1 " Cost =1. = min \$ 2 - 10 gust + 10 and = 81 byo 2) d f H.

83

: cost =1.

$$D(1/2) = \min \begin{cases} D(0/2) + 1 \\ D(1/1) + 1 \\ D(0/1) + 1 \end{cases}$$

$$= \min \begin{cases} 3 \\ 2 \\ 2 \end{cases}$$

3)
$$d \neq i$$
.

 $D(1,3) = \min_{x \in \mathbb{Z}} \int D(0,3) + 1$
 $D(1,3) = \min_{x \in \mathbb{Z}} \int D(0,2) + 1$
 $D(0,2) + 1$
 $\sum_{x \in \mathbb{Z}} \int D(0,4) + 1$
 $D(1,4) = \min_{x \in \mathbb{Z}} \int D(0,4) + 1$
 $D(1,4) = \min_{x \in \mathbb{Z}} \int D(0,4) + 1$

4)
$$d \neq e$$
.
 $D(1/4) = min \begin{cases} D(0/4) + 1 \\ D(1/3) + 1 \\ D(0/3) + 1 \end{cases}$

= min $\begin{cases} 4\\3\\3 \end{cases}$

.'. cost = 1.

$$D(1,5) = min$$
 $\begin{cases} D(0,5)+1 \\ D(1,4)+1 \\ D(0,4)+1 \end{cases}$

= 5

1) 4 \$ 6.

$$D(2,1) = min$$

$$\begin{cases} D(1,1)+1 \\ D(2,0)+1 \\ D(1,0)+1 \end{cases}$$

$$= \min \begin{cases} \frac{2}{3} \\ \frac{2}{3} \end{cases}$$

2 2. 14(8.6) 4 2

: cost = 0.

$$\frac{1}{2} \cdot \cos(t - 20)$$

$$\frac{1}{2} \cdot (2, 2) = \min \begin{cases} D(1/2) + 1 \\ D(2, 1) + 1 \end{cases}$$

$$\frac{1}{2} \cdot (2, 1) + 0$$

$$\frac{1}{2} \cdot (2, 1) + 0$$

3)
$$u \neq i$$
.

 $cot + = 1$.

 $D(2,3) = win \begin{cases} D(1,3) + 1 \\ D(2,2) + 1 \\ D(1,2) + 1 \end{cases}$
 $= win \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{cases}$
 $= 2$.

4) $u \neq e$.

 $D(2,4) = win \begin{cases} D(1,4) + 1 \\ D(2,3) + 1 \\ D(1,3) + 1 \end{cases}$
 $= win \begin{cases} \frac{5}{3} \\ 4 \end{cases}$
 $= 3$.

5) $u \neq f$.

 $cot + = 1$.

= 4. So for mus =

Distance gould
$$-\frac{2}{6}$$
 $\frac{3}{6}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{4}{5}$ $\frac{4}{5}$

2 (2,4) = NUM & D(2,5)+1

$$D(3,1) = min \begin{cases} D(2,1)+1 \\ D(3,0)+1 \end{cases}$$

$$D(3,2) = \min \begin{cases} D(2,2)+1 \\ D(3,1)+1 \\ D(2,1)+1 \end{cases}$$

$$= \min \begin{cases} 2 \\ 4 \\ 3 \end{cases} = 2.$$

1+ (8,0) ª

F WUN ?

.. cost 21.

$$D(A,1) = \min \begin{cases} D(3,1)+1 \\ D(4,0)+1 \\ D(3,0)+1 \end{cases}$$

= mim \$ 1/5 4 (+(215)=>

= 4. I+(A.E) E

2) v + W.

: Cost = 1.

$$D(4.2) = \min \begin{cases} D(3.2) + 1 \\ D(4.1) + 1 \\ D(3.1) + 1 \end{cases}$$

$$= \min \begin{cases} 3 \\ 5 \\ 4 \end{cases} = 3.$$

3)
$$v \neq i$$
.

 $v = 1$.

 v

= 3.

1+(1,0)0

1+ (ME) & min = (ALA) E

1) e+6.

$$D(5,1) = win 9 D(5,0)+1$$

$$D(4,0)+1$$

2)e + w.

:
$$Cost = 1$$
.

D $(5,2) = win \begin{cases} D(4,2) + 1 \\ D(5,1) + 1 \end{cases}$

D $(4,1) + 1$

3)
$$e \neq 1$$
.

 $cost = 1$.

 $D(5,3) = min \begin{cases} D(4,3)+1 \\ D(5,2)+1 \\ D(4,2)+1 \end{cases}$
 $= min \begin{cases} 3 \\ 5 \\ 4 \end{cases}$

4) $e = e$.

 $cost = 0$.

4)
$$e = e$$
.
... $cost = 0$.
 $D(5,4) = min \begin{cases} D(4,4) + 1 \\ D(5,3) + 1 \\ D(4,3) + 0 \end{cases}$.

5)
$$e \neq f$$
.

: $cost = 1$.

$$D(5,5) = min$$
 $D(5,4) + 1$ $D(4,4) + 1$

=
$$nuim$$
 $\begin{cases} 4 \\ 4 \\ 3 \end{cases}$

: 3.

Distance guid — 2 3 4 5 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 1

in the edit distance of "duive" to "buief" is

Non, let A = "duive" = source = and, B = "divers" = tanget.

0 1 2 3 4 5 6 - d 1 V e UH 9

0 - 0 1 2 3 4 5 6

1 d 1

2 UH 2

3 1 3

4 V 4

$$D(111) = \min_{x \in \mathbb{R}} \begin{cases} D(0,1) + 1 \\ D(1,0) + 1 \end{cases}$$

$$D(0,0) + 0.$$

$$= \min \begin{cases} \frac{2}{2} & = 0, \\ 0 & = 0. \end{cases}$$

$$D(1:2) = min \begin{cases} D(0:2)+1 \\ D(1:1)+1 \\ D(0:1)+1 \end{cases}$$

1+(210) 0 3 min = (211) +1

1 + 1 ()

$$2 \text{ min } \begin{cases} 3 \\ 1 \end{cases} = 1.$$

(1, (3,0) d) }

1+(2,0)0

$$D(1,3) = min \begin{cases} D(0,3)+1 \\ D(1,2)+1 \end{cases}$$

4)
$$d \neq e$$
.

$$\frac{1}{2} \cdot \cot t = 1$$

$$D(1,4) = \min \begin{cases} D(0,4) + 1 \\ D(0,3) + 1 \end{cases}$$

$$= \min \begin{cases} \frac{1}{3} = 3 \\ \frac{1}{4} \end{cases}$$

$$= \min \begin{cases} D(0,4) + 1 \\ D(1,4) + 1 \\ D(0,4) + 1 \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \min \begin{cases} \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \\ \frac{1}{4} \cdot \cot t \end{cases}$$

$$= \frac{1}{4} \cdot \cot t$$

2 (2,4): NUM } D(1,4)+1

1) 1 w #d.

$$\begin{array}{c} \text{Colt} = 1. \\ \text{D}(2,1) = \text{min} \\ \text{D}(2,0) + 1 \\ \text{D}(1,0) + 1 \end{array}$$

= min \\ 3 = 1.

2) w + ?.

$$D(2,2) = min \begin{cases} D(1,2)+1 \\ D(2,1)+1 \end{cases}$$

 $\frac{2}{2}$

1+(1,0) 1

Cost=1.

$$D(2,3) = min \begin{cases} D(1,3)+1 \\ D(2,2)+1 \\ D(1,2)+1 \end{cases}$$

$$= \min \begin{cases} \frac{3}{2} & 22. \\ \frac{2}{2} & \frac{3}{2} \end{cases}$$

$$D(2,4) = \min \begin{cases} D(1,4)+1 \\ D(2,3)+1 \\ D(1,3)+1 \end{cases}$$

$$\frac{1}{3}$$
 $\frac{3}{3}$ $\frac{3}$

$$D(2,5) = min \begin{cases} D(1,5)+1 \\ D(2,4)+1 \\ D(1,4)+0 \end{cases}$$

:.
$$cost = 1$$
.

 $D(2,6) = win \begin{cases} D(1,6)+1 \\ D(2,5)+1 \\ D(1,5)+1 \end{cases}$

· b + 10 & (

-1 = 1105 %

Rm-3 (1:3):

$$P \neq d$$
.
 $P = 0.01 + 1 = 1$.
 $P = 0.01 + 1 = 0.01 + 1 = 0.01 + 1 = 0.01 = 0.$

$$D(3,3) = \min \begin{cases} D(2,3)+1 \\ D(3,2)+1 \end{cases} = \min \begin{cases} 3 \\ 0 \\ 2 \end{cases} = 2$$

$$D(3,5) = min$$
 $D(2,5)+1$ $= min$ $A = 4$. $D(3,4)+1$ $D(2,4)+1$.

$$D(3,6) = win \begin{cases} D(2,6)+1 \\ D(3,5)+1 \end{cases}$$
 swin $\begin{cases} 5 \\ 5 \\ 5 \end{cases}$ = 14

$$D(4,1) = \min \begin{cases} D(3,1)+1 \\ D(4,0)+1 \\ D(3,0)+1 \end{cases} = \min \begin{cases} 3 \\ 5 \\ 4 \end{cases}$$

1+(0,0)00

mium = (8,8)4

$$D(412) = min \begin{cases} D(3,2)+1 \\ D(4,1)+1 \\ D(3,1)+1 \end{cases}$$

$$= min \begin{cases} 32 \\ 43 \end{cases} = 2.52.$$

$$D(4,3) = min \begin{cases} D(3,3)+1 \\ D(4,2)+1 \end{cases} = min \begin{cases} 3 \\ 4 \end{cases} = 1$$

· b + 3 (1

9 6 4 6

0 = 1105

4 8 8 10 3 6 8 4

v+e.

$$v \neq e$$
.

 $cost = 1$.

 $D(3,4)+1$
 $D(4,44) = num$
 $D(4,3)+1 = num$
 $D(3,3)+1 = num$
 $D(3,3)+1 = num$
 $D(3,3)+1 = num$
 $D(3,3)+1 = num$

5) v + w.

$$V \neq W$$
.

1. $COSET = 11$:

 $D(4,5) = win \begin{cases} D(3,5)+1 \\ D(4,4)+1 \end{cases} = num \begin{cases} 5 \\ 3 \end{cases}$
 $D(3,4)+1 \end{cases} = 0$

6) v \$ 1.

			- North	0	3	4	5	6
		10	1	2	-			
		_	4	0	V	e	M	1
		0	1	2	3	4	5	6
0				113	2	3	4	5
1	d		0	1	(1+5		1	
2	ч	2	-1	1	2	3	3	54
3	0	3	2	91	2	3	4	§ 4
4	v	4	3	2	19	20	3	84.
5	e	5						
	3.43				8) (

$$D(5,1) = min \begin{cases} D(4,1)+1 \\ D(5,0)+1 \end{cases}$$
 is min $\begin{cases} 4 \\ 5 \end{cases}$ 24.

$$D(5,2) = min$$
 $D(4,2)+1$ $D(5,1)+1$ $D(4,1)+1$ $D(4,1)+1$

$$D(5,3) = \min \begin{cases} D(4,3)+1 \\ D(5,2)+1 \end{cases} = \min \begin{cases} 2 \\ 5 \end{cases}$$

5)
$$e \neq u_1$$
.
 $\therefore col + = 1$.
 $D(5,5) = min \begin{cases} D(4,5) + 1 \\ D(5,4) + 1 \end{cases} = min \begin{cases} 4 \\ 2 \end{cases}$
 $D(4,4) + 1 \end{cases}$

$$Coll-21$$
.

 $D(5,6) = min \begin{cases} D(4,6)+1 \\ D(5,5)+1 \end{cases} = min \begin{cases} 53 \\ 54 \end{cases}$