PROJECT DEVELOPMENT PHASE SPRINT 1

Date	16 November 2022
Team ID	PNT2022TMID01346
Project Name	Developing a Flight Delay Prediction
	Model using Machine Learning
Marks	8 marks

DATA PREPROCESSING AND MODEL BUILDING:

In this Sprint development phase, we have create an model with the help of Preprocessed dataset. We have used Decision Tree Classifier Algorithm for model development. Also we have implement method to check the accuracy of our model and convert the model into pkl file by importing Pickle python library. With the help of pickle model file the prediction is performed by Flask App.

Jupyter Screenshots:

Importing Libraries:

```
import sys
import numpy as np #Linear Algebra
import pandas as pd #Data Processing
import seaborn as sns #Data Visualizaton.
import pickle
%matplotlib inline
from matplotlib import pyplot as plt
from sklearn.preprocessing import LabelEncoder #LabelEncoding From Sklearm
from sklearn.preprocessing import OneHotEncoder #One-Hot Encoding From Sklearn
from sklearn.model_selection import train_test_split #split Data in Train & Test Array
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier#mL Algorithm
from sklearn.metrics import accuracy_score #Calculate Accuracy Score
import sklearn.metrics as metrics #Confusion Matrix
```

Dataset:

```
dataset= pd.read_csv("/content/flightdata.csv")
```

Analyze the data:

```
dataset.info()
RangeIndex: 11231 entries, 0 to 11230
Data columns (total 26 columns):
   Column
                       Non-Null Count Dtype
                       -----
0
    YEAR
                       11231 non-null int64
1
   QUARTER
                      11231 non-null int64
                       11231 non-null int64
 2
    MONTH
 3
   DAY_OF_MONTH
                      11231 non-null int64
    DAY_OF_WEEK
                      11231 non-null int64
    UNIQUE_CARRIER
                      11231 non-null object
    TAIL_NUM
                       11231 non-null object
 7
    FL_NUM
                      11231 non-null int64
    ORIGIN_AIRPORT_ID 11231 non-null int64
 9
    ORIGIN
                     11231 non-null object
 10 DEST_AIRPORT_ID
                      11231 non-null int64
11 DEST
                      11231 non-null object
 12 CRS DEP TIME
                      11231 non-null int64
13 DEP_TIME
                      11124 non-null float64
 14 DEP_DELAY
                       11124 non-null float64
15 DEP_DEL15
                       11124 non-null float64
 16 CRS_ARR_TIME
                      11231 non-null int64
                      11116 non-null float64
17 ARR_TIME
                       11043 non-null float64
 18 ARR DELAY
19 ARR_DEL15
                      11043 non-null float64
 20 CANCELLED
                      11231 non-null float64
                      11231 non-null float64
 21 DIVERTED
 22 CRS_ELAPSED_TIME
                     11231 non-null float64
```

14	DEP_DELAY	11124 non-null	float64
15	DEP_DEL15	11124 non-null	float64
16	CRS_ARR_TIME	11231 non-null	int64
17	ARR_TIME	11116 non-null	float64
18	ARR_DELAY	11043 non-null	float64
19	ARR_DEL15	11043 non-null	float64
20	CANCELLED	11231 non-null	float64
21	DIVERTED	11231 non-null	float64
22	CRS_ELAPSED_TIME	11231 non-null	float64
23	ACTUAL_ELAPSED_TIME	11043 non-null	float64
24	DISTANCE	11231 non-null	float64
25	Unnamed: 25	0 non-null	float64

dtypes: float64(12), int64(10), object(4)

memory usage: 2.2+ MB

	YEAR	QUARTER	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	FL_NUM	ORIGIN_AIRPORT_ID	DEST_AIRPORT_ID	CRS_DEP_TIME	DEP_T
count	11231.0	11231.000000	11231.000000	11231.000000	11231.000000	11231.000000	11231.000000	11231.000000	11231.000000	11124.000
mean	2016.0	2.544475	6.628973	15.790758	3.960199	1334.325617	12334.516695	12302.274508	1320.798326	1327.189
std	0.0	1.090701	3.354678	8.782056	1.995257	811.875227	1595.026510	1601.988550	490.737845	500.306
min	2016.0	1.000000	1.000000	1.000000	1.000000	7.000000	10397.000000	10397.000000	10.000000	1.000
25%	2016.0	2.000000	4.000000	8.000000	2.000000	624.000000	10397.000000	10397.000000	905.000000	905.000
50%	2016.0	3.000000	7.000000	16.000000	4.000000	1267.000000	12478.000000	12478.000000	1320.000000	1324.000
75%	2016.0	3.000000	9.000000	23.000000	6.000000	2032.000000	13487.000000	13487.000000	1735.000000	1739.000
max	2016.0	4.000000	12.000000	31.000000	7.000000	2853.000000	14747.000000	14747.000000	2359.000000	2400.000

Handling Missing Values:

```
dataset.isnull().sum()
YEAR
                          0
                          0
QUARTER
MONTH
DAY_OF_MONTH
                          0
DAY_OF_WEEK
                          0
UNIQUE_CARRIER
                          0
TAIL_NUM
                          0
FL_NUM
                          0
ORIGIN_AIRPORT_ID
ORIGIN
DEST_AIRPORT_ID
                          0
DEST
                          0
CRS_DEP_TIME
                          0
DEP_TIME
                        107
DEP_DELAY
                        107
DEP_DEL15
                        107
CRS_ARR_TIME
                          0
ARR_TIME
                        115
ARR_DELAY
                        188
                        188
ARR_DEL15
CANCELLED
                          0
DIVERTED
                          0
CRS_ELAPSED_TIME
                          0
ACTUAL_ELAPSED_TIME
                        188
DISTANCE
                          0
Unnamed: 25
                      11231
dtype: int64
```

```
dataset['DEST'].unique()
array(['SEA', 'MSP', 'DTW', 'ATL', 'JFK'], dtype=object)
```

Data Visualization:

```
plt.scatter(dataset['ARR_DELAY'],dataset['ARR_DEL15'])
plt.xlabel('ARR_DELAY')
plt.ylabel('ARR_DEL15')
plt.title('scatter plot between ARR_DELAY and ARR_DEL15')
```

Text(0.5, 1.0, 'scatter plot between ARR_DELAY and ARR_DEL15')

sns.catplot(x="ARR_DEL15",y="ARR_DELAY",kind='bar',data=dataset)

sns.heatmap(dataset.corr())

Dropping Un Necessary Columns:

```
dataset=dataset.drop('Unnamed: 25',axis=1)
dataset.isnull().sum()
YEAR
                          0
QUARTER
                          0
MONTH
                          0
DAY_OF_MONTH
                          0
DAY_OF_WEEK
                          0
UNIQUE_CARRIER
                          0
TAIL_NUM
FL_NUM
                          0
ORIGIN_AIRPORT_ID
                         0
ORIGIN
                         0
DEST_AIRPORT_ID
                         0
DEST
                         0
                          0
CRS_DEP_TIME
DEP_TIME
                        107
DEP_DELAY
                        107
DEP DEL15
                        107
CRS_ARR_TIME
                          0
ARR_TIME
                        115
ARR_DELAY
                        188
ARR_DEL15
                       188
CANCELLED
                          0
DIVERTED
                          0
CRS_ELAPSED_TIME
                          0
ACTUAL_ELAPSED_TIME
                        188
DISTANCE
                          0
dtype: int64
```

```
dataset=dataset[["FL_NUM","MONTH","DAY_OF_MONTH","DAY_OF_WEEK","ORIGIN","DEST","CRS_ARR_TIME","DEP_DEL15","ARR_DEL15"]]
 dataset.isnull().sum()
FL_NUM
MONTH
                 0
DAY_OF_MONTH
DAY_OF_WEEK
ORIGIN
DEST
                0
CRS_ARR_TIME
                0
DEP_DEL15
               107
ARR_DEL15
               188
dtype: int64
```

```
dataset=dataset.fillna({'ARR_DEL15':1})
dataset=dataset.fillna({'DEP_DEL15':0})
dataset.iloc[177:185]
```

	FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	ORIGIN	DEST	CRS_ARR_TIME	DEP_DEL15	ARR_DEL15
177	2834	1	9	6	MSP	SEA	852	0.0	1.0
178	2839	1	9	6	DTW	JFK	1724	0.0	0.0
179	86	1	10	7	MSP	DTW	1632	0.0	1.0
180	87	1	10	7	DTW	MSP	1649	1.0	0.0
181	423	1	10	7	JFK	ATL	1600	0.0	0.0
182	440	1	10	7	JFK	ATL	849	0.0	0.0
183	485	1	10	7	JFK	SEA	1945	1.0	0.0
184	557	1	10	7	MSP	DTW	912	0.0	1.0

```
import math
for index, row in dataset.iterrows():
    dataset.loc[index,'CRS_ARR_TIME']=math.floor(row['CRS_ARR_TIME']/100)
dataset.head()
```

	FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	ORIGIN	DEST	CRS_ARR_TIME	DEP_DEL15	ARR_DEL15
0	1399	1	1	5	ATL	SEA	21	0.0	0.0
1	1476	1	1	5	DTW	MSP	14	0.0	0.0
2	1597	1	1	5	ATL	SEA	12	0.0	0.0
3	1768	1	1	5	SEA	MSP	13	0.0	0.0
4	1823	1	1	5	SEA	DTW	6	0.0	0.0

Label Encoding and One Hot Encoding:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
dataset['DEST']=le.fit_transform(dataset['DEST'])
dataset['ORIGIN']=le.fit_transform(dataset['ORIGIN'])
dataset.head(5)
  FL_NUM MONTH DAY_OF_MONTH DAY_OF_WEEK ORIGIN DEST CRS_ARR_TIME DEP_DEL15 ARR_DEL15
                                             5
0
     1399
                                                     0
                                                                        21
                                                                                   0.0
                                                                                             0.0
1
     1476
                                             5
                                                                        14
                                                                                   0.0
                                                                                             0.0
2
     1597
                                             5
                                                     0
                                                           4
                                                                                             0.0
                                                                        12
                                                                                   0.0
                                             5
3
     1768
                                                     4
                                                                        13
                                                                                   0.0
                                                                                             0.0
     1823
                                1
                                             5
                                                     4
                                                                         6
                                                                                   0.0
                                                                                             0.0
                1
                                                           1
```

Splitting The Dataset Into Dependent And Independent Variables:

	<pre>dataset=pd.get_dummies(dataset,columns=['ORIGIN','DEST']) dataset.head()</pre>												
	FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	CRS_ARR_TIME	DEP_DEL15	ARR_DEL15	ORIGIN_0	ORIGIN_1	ORIGIN_2	ORIGIN_3	ORIGIN_4	DEST
0	1399	1	1	5	21	0.0	0.0	1	0	0	0	0	
1	1476	1	1	5	14	0.0	0.0	0	1	0	0	0	
2	1597	1	1	5	12	0.0	0.0	1	0	0	0	0	
3	1768	1	1	5	13	0.0	0.0	0	0	0	0	1	
4	1823	1	1	5	6	0.0	0.0	0	0	0	0	1	
4)

```
x=dataset.iloc[:,0:8].values
 y=dataset.iloc[:,8:9].values
 from sklearn.preprocessing import OneHotEncoder
 oh= OneHotEncoder()
 z=oh.fit_transform(x[:,4:5]).toarray()
 t=oh.fit_transform(x[:,5:6]).toarray()
 Z
array([[0., 0., 0., ..., 1., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 1., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
 t
array([[1., 0.],
        [1., 0.],
        [1., 0.],
        [1., 0.],
        [1., 0.],
        [1., 0.]])
```

Split The Dataset Into Train Set And Test Set:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

x_test.shape

(2247, 8)

x_train.shape

(8984, 8)
```

```
y_test.shape
(2247, 1)
 y_train.shape
(8984, 1)
 from sklearn.preprocessing import StandardScaler
 sc= StandardScaler()
 x_train= sc.fit_transform(x_train)
 x_test=sc.transform(x_test)
!pip install imblearn
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: imblearn in /usr/local/lib/python3.7/dist-packages (0.0)
Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.7/dist-packages (from imblearn) (0.8.1)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from imbalanced-learn->imblearn) (1.2.0)
Requirement already satisfied: scipy>=0.19.1 in /usr/local/lib/python3.7/dist-packages (from imbalanced-learn->imblearn) (1.7.3)
Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/dist-packages (from imbalanced-learn->imblearn) (1.21.6)
Requirement already satisfied: scikit-learn>=0.24 in /usr/local/lib/python3.7/dist-packages (from imbalanced-learn->imblearn) (1.0.
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.24->imbalanced-l
earn->imblearn) (3.1.0)
 import imblearn
 from imblearn.over_sampling import SMOTE
 smote=SMOTE()
 x_train_smote,y_train_smote =smote.fit_resample(x_train,y_train)
 from sklearn.tree import DecisionTreeClassifier
 classifier =DecisionTreeClassifier(random_state=0)
 classifier.fit(x_train_smote,y_train_smote)
DecisionTreeClassifier(random_state=0)
 decisiontree = classifier.predict(x_test)
```

```
from sklearn.metrics import accuracy_score
acc = accuracy_score(y_test,decisiontree)
acc
```

0.9706275033377837

```
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,decisiontree)
```

```
cm
array([[1758, 44],
        [ 22, 423]])

import pickle
pickle.dump(classifier,open('flight.pkl','wb'))
```