Diskrete Strukturen

Phillip Blum

1. Semester

Inhaltsverzeichnis

1	\mathbf{Log}	ik 3
	1.1	Logische Operatoren
	1.2	Venn Diagramme
	1.3	Quantoren, Gültigkeit und Erfüllbarkeit
		1.3.1 Quantoren
		1.3.2 Gültigkeit und Erfüllbarkeit
	1.4	Übersicht: Junktoren und Quantoren 4
2	Syll	ogismen 5
	2.1	Beschränkte Quantoren und Mengendiagramme 5
	2.2	Hinreichend vs. notwendig, A "impliziert" B
		2.2.1 If A then $B = (allgemein)gültig.$ Dann:
		2.2.2 $A \text{ gdw } B = \text{allgemeing\"{u}ltig. Dann: } \dots \dots 5$
3	Bev	veise 6
	3.1	Theorem, Lemma, Korollar, Definition, 6
		3.1.1 Begriffe
		3.1.2 Theorem-Beweiser Isabelle 6
	3.2	Wie schreibe ich einen Beweis?
		3.2.1 Anfang
		3.2.2 Anmerkungen
		3.2.3 Lange Beweise
		3.2.4 Ende
	3.3	Beweisstrategien
	3.3	3.3.1 Direkter Beweis
		3.3.2 Kontraposition
		3.3.3 Widerspruch
4	Mei	ngen 10
•	4.1	Basisvokabular
	4.2	Vergleiche von Mengen
	4.3	Operation auf Mengen
	4.4	Potenzmengen und Partitionen
	7.7	i occurrence and i armitonen

	4.5	Karnaugh-Veitch-Diagramme	12
	4.6	Übersicht: Symbole und Anwendung: Mengen	13
		4.6.1 Mengenterme	13
5	Tup	oel, Sequenzen, Folgen und Wörter	14
	5.1^{-}	Tupel	14
		5.1.1 Unterschied zu Mengen	14
		5.1.2 Länge von Tupeln	14
	5.2	Sequenzen/Folgen	14
	5.3	Kartesisches Produkt	14
	5.4	Wörter und Sprache	15
	5.5	Übersicht: Symbole für Tupel etc	16
		5.5.1 Tupel- und Wörterterme	16
6	Ind	uktion	17
7	Rel	ationen	17
	7.1	Grundbegriffe	17
	7.2	Join und Projektion	18
	7.3	Binäre Relationen	18
		7.3.1 Graphen	18
	7.4	Relationals Produkt	19
	7.5	Binäre Relationen auf einer Menge	19
	7.6	Eigenschaften von Binären Relationen	20
8	Äaı	nivalenzrelationen und Ordnungsrelationen	22
	8.1	Grundverständnis Äquivalenzrelationen	22
	8.2	Äquivalenzrelationen als Partitionen	22
	8.3	Ordnungsrelationen	23
9	Ges	amtübersicht	24
_	9.1	Tabellen	24
	9.2	Äquivalenzterme	25
	~ · _	9.2.1 Mengen	25
		9.2.2 Tupel Sequenzen Folgen Wörter	25

1 Logik

1.1 Logische Operatoren

Junktoren			\wedge	V	\rightarrow	\leftrightarrow	\oplus
Situation		nicht	A	A	Falls A	A	Entweder A
		A	und	oder	dann B	gdw (iff)	oder B
A	B		B	B		B	
falsch	falsch	wahr	falsch	falsch	wahr	wahr	falsch
falsch	wahr	wahr	falsch	wahr	wahr	falsch	wahr
wahr	falsch	falsch	falsch	wahr	falsch	falsch	wahr
wahr	wahr	falsch	wahr	wahr	wahr	wahr	falsch

1.2 Venn Diagramme

1.3 Quantoren, Gültigkeit und Erfüllbarkeit

1.3.1 Quantoren

Alle: $\forall x$

Einige/es gib ein: $\exists x$ Kein/es gibt kein: $\nexists x$

1.3.2 Gültigkeit und Erfüllbarkeit

Eine Aussage ist erfüllbar , falls es eine Situation gibt, in der sie wahr ist.

Eine Aussage ist (allgemein-)gültig, falls es keine Situation gibt, in der sie falsch ist.

Eine Aussage ist ungültig, falls es eine Situation gibt, in der sie falsch ist.

1.4 Übersicht: Junktoren und Quantoren

	formale Logik		C/Java
wahr	(triviale Tautologie)	wahr	true
falsch	(triviale Kontradiction)	falsch	false
nicht	Negation	$\neg A$! A
oder	Disjunction	$(A \vee B)$	(A B)
und	Konjunction	$(A \wedge B)$	(A&&B)
falls/wenn-dann	Konditional, Subjunction	$(A \to B)$	(!A B)
genau-dann-wenn	Biconditional	$(A \leftrightarrow B)$	(A==B)
entweder-oder	exklusives Oder, XOR	$(A \oplus B)$	(A!=B)
alle	Allquantor	$\forall xF$	
einige	Existenzquantor	$\exists xF$	
keine	Nichtexistenz	$\nexists xF$	

2 Syllogismen

2.1 Beschränkte Quantoren und Mengendiagramme

Alle x mit R(x) sind P(x) SYN Für alle $x, R(x) \to P(x)$

Einige x mit R(x) sind P(x) SYN Es gibt x, $R(x) \wedge P(x)$

Nicht alle x mit R(x) sind P(x) SYN Es gibt x, $R(x) \land \neg P(x)$

Kein x mit R(x) ist P(x), Für alle x, $R(x) \rightarrow \neg P(x)$

2.2 Hinreichend vs. notwendig, A "impliziert"B

2.2.1 If A then B = (allgemein)g"ultig. Dann:

B ist notwendig für A

Weil: Wenn B falsch dann muss A falsch

A ist hinreichend für B

Weil: Wenn A wahr dann muss B wahr

2.2.2 $A \text{ gdw } B = \text{allgemeing\"{u}ltig. Dann:}$

A hinreichend und notwendig für B

3 Beweise

3.1 Theorem, Lemma, Korollar, Definition, ...

3.1.1 Begriffe

Mit

- Proposition
- Lemma
- Theorem
- Satz
- Korollar
- und manchmal Fakt

weist man auf bewiesene Aussagen hin die wichtig für später sind.

3.1.2 Theorem-Beweiser Isabelle

- T: Theorem (Satz): wichtig, häufig verwendet und/oder nicht offensichtliches Resultat
- L: Lemma: weniger wichtig oder Hilfsresultat für Theorem
- C: Korollar: einfach zu beweisende Abwandlung von Theorem/Lemmata
- F: Fakt: offensichtliches Ergebnis
- D: Definition: eindeutige Begriffsabgrenzung/erklärung

3.2 Wie schreibe ich einen Beweis?

3.2.1 Anfang

- Beweistechnik und Strategie
- \bullet Übersicht über die Struktur \to "Wir benutzen einen Widerspruchsbeweis", "Der Beweis ist per Induktion"

3.2.2 Anmerkungen

- Roten Faden behalten (lineare Aufeinanderfolgungen)
- \bullet Beweis = Aufsatz
 - \to keine pure Berechnung, keine Rechenschritte ohne Erklärung, fliessender Text mit Gleichungen/Rechenschritte. Ganze Sätze benutzen
- Symbole nur wenn nötig, aber nicht mehr. Immer Text dazu
- Nachher verbessern und vereinfachen
- \bullet Offensichtlich für Autor \neq Offensichtlich für Leser

3.2.3 Lange Beweise

- Unterschriften
- Wiederholung von Argumenten: Als Lemma hinschreiben (und beweisen) und darauf verweisen

3.2.4 Ende

- Wie folgt aus den Beweisteilen die Aussage
 - \rightarrow Schlussfolgerung nicht immer offensichtlich

3.3 Beweisstrategien

3.3.1 Direkter Beweis

Für $A \to B$: Nimm A an, zeige mit Regeln der logischen Folgerung dass dann immer B wahr ist.

Beispiel: Wenn $0 \le x \le 2$, dann $-x^3 + 4x + 1 > 0$

- Wir nehmen an dass $0 \le x \le 2$
- Dann sind x, (2-x), (2+x) alle nichtnegativ.
- Dann ist das Produkt $x(2-x)(2+x) \ge 0$
- Wenn man zu einer nichtnegativen Zahl 1 addiert, ist die Summe positiv. Deswegen x(2-x)(2+x)+1>0
- Ausmultiplizieren zeigt $x(2-x)(2+x) + 1 = -x^3 + 4x + 1 > 0$

3.3.2 Kontraposition

Man zeigt $A \to B$ indem man $\neg B \to \neg A$ zeigt "Alle x mit P(x) sind Q(x)" SYN "Alle x mit nicht Q(x) sind nicht P(x)"

Beispiel: Wenn n eine ganze Zahl ist und 3n+2 ungerade ist, dann ist n ungerade

- Für jede gerade Zahl m gibt es eine ganze Zahl k sodass m = 2k
- Wir nehmen an dass n gerade ist. $(\neg B)$
- Dann gilt (einsetzen) 3n + 2 = 6k + 2 = 2(3k + 1)
- Das heisst 3n + 2 ist eine gerade Zahl $(\neg A)$

3.3.3 Widerspruch

Man zeigt A, indem man $\neg A \rightarrow$ falsch zeigt In anderen Worten:

- Wir nehmen an dass $\neg A$ gilt
- Dann Aussage die offensichtlich falsch ist $(B \wedge \neg B)$. Also Widerspruch.
- Widerspruch, also ist A wahr

Beispiel: $\sqrt{2}$ ist nicht rational

- Wir nehmen an: $\sqrt{2}$ ist rational
- Dann gibt es Zahlen m, n mit $\sqrt{2} = \frac{m}{n}$
- Wir dürfen annehmen, dass m,n keine gemeinsamer Teiler mehr haben. Also 1 der einzige positive gemeinsame Teiler von m,n
- Daher gilt $m^2 = 2n^2$
- $\bullet\,$ Daher ist 2 ein Teiler von m^2
- Daher ist 2 ein Teiler von m (Lemma von Euklid)
- Daher gilt m = 2k und damit auch $2k^2 = n^2$
- \bullet Daher ist 2 ein Teiler von n^2 und somit auch von n
- \bullet Da2auch ein Teiler von mist, ist folglich 1 nicht der einzige positive gemeinsame Teiler von m,n. Das ist ein Widerspruch

4 Mengen

4.1 Basisvokabular

 $x \in M$: Objekt x ist in der Menge M enthalten (x (ist) Element von M) $x \notin M$: Objekt x ist nicht in der Menge M enthalten (x (ist) kein Element von M)

explizierte Definition: $M := \{1, 2, 3\}$ implizierte Definition: $M := \{x \mid x \text{ gerade}\}$

Häufige Abkürzungen:

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{N} \}$

 $\emptyset \text{: leere Menge}$

Russelsche Antinomie (Widerspruch): $R \in R$ und $R \notin R$

4.2 Vergleiche von Mengen

 $M_1\subseteq M_2\colon M_1$ ist Teilmenge von M_2 (Jedes Element von M_1 auch Element von $M_2)$

 $M_1 \not\subseteq M_2$: M_1 ist keine Teilmenge von M_2 (Mindesten ein Element von M_1 kein Element von $M_2)$

 $M_1 \subsetneq M_2$: $M_1 \subseteq M_2$, aber auch $M_2 \backslash M_1$ hat mindestens ein Objekt

 $M_2\backslash M_1$: Differenz: M_2 ohne M_1 (Elemente von M_2 aber nicht von $M_1)$ $M_1\Delta M_2$: Symmetrische Differenz: $M_1\backslash M_2$ und $M_2\backslash M_1$

Beispiele:

- Jedes $M: \emptyset \subseteq M$
- Für $M: M \subseteq \emptyset$ wenn $M = \emptyset$
- $M_1 \subseteq M_2 \leftrightarrow M_1 \backslash M_2 = \emptyset$

 $\begin{aligned} M_1 &= M_2 \text{: } M_1 \subseteq M_2 \leftrightarrow M_2 \subseteq M_1 \\ M_1 &\neq M_2 \text{: } M_1 \subseteq M_2 \nleftrightarrow M_2 \subseteq M_1 \end{aligned}$

Kardinalität: $|{\cal M}|$: Anzahl der unterschiedlichen Elemente in ${\cal M}$

Endliche Menge: $|M| < \infty$: $n \in \mathbb{N} \to M = \{x_1, x_2, ..., x_n\}$

Unendliche Menge: $|M| = \infty$

4.3 Operation auf Mengen

 $M_1\cap M_2\text{: Schnitt: }x\in M_1\leftrightarrow x\in M_2$

 $M_1 \cup M_2 \text{: Vereinigung: } x \subseteq \{M_1, M_2\}$

Disjunkt: $M_1 \cap M_2 = \emptyset$

MengeS, deren Elemente Mengen sind:

Damit gilt: $M_1 \cap M_2 = \cap \{M_1, M_2\}$ und $M_1 \cup M_2 = \cup \{M_1, M_2\}$

Gilt $S = \{M_1, ..., M_k\}$ für ein $k \in \mathbb{N}$ dann:

$$\bigcup_{i=1}^k M_i := \cup S \bigcap_{i=1}^k M_i := \cap S$$

 $\Omega \text{:}\ Universum$

Ist Ω fixiert: Für $A \subseteq \Omega$ statt $\Omega \backslash A$ kurz \overline{A}

 \overline{A} ist das Komplement von A

4.4 Potenzmengen und Partitionen

Potenzmenge von $M: 2^M$ oder $\mathcal{P}(M)$

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Die Potenzmenge mit k Elementen hat die Kardinalität 2^k

Partition von M: Menge $P \subseteq \mathcal{P}(M)$ von disjunkten, nicht leeren Teilmengen von M, deren Vereinigung genau M ergibt: $M = \cup P$

Partitionen von $\{1, 2\}$:

 $\{1,2\}$ und $\{\{1\},\{2\}\}$

4.5 Karnaugh-Veitch-Diagramme

Allgemeines Verhalten der KV-Diagramme:

Bei 2 Mengen: Eine Menge bildet die Spalten und eine Die Zeilen.

Bei 3 Mengen: Die dritte Menge wird zur Spalte (oder Zeile) und sie selbst und die andere Spalte (oder Zeile) werden in der Breite verdoppelt.

Bei 4 Mengen: Die vierte Menge wird zur Zeile (oder Spalte) und sie selbst und die andere Zeile (oder Spalte) werden in der Breite verdoppelt.

Bei 5 Mengen: Die fünfte Menge wird wieder zur Spalte \dots in der Breite verdoppelt.

...

4.6 Übersicht: Symbole und Anwendung: Mengen

Symbol	Formale Schreibweise	Bedeutung	Anwendung
z.B x	Element		$x \in M$
z.B M	Menge		$x \in M$
\in	in	Element ist in Menge enthalten	$x \in M$
∈ ∉	nicht in	Element ist NICHT in Menge enthalten	$x \notin M$
	expliziete Definition	Ausgeschriebene Definition	$M := \{1, 2, 3\}$
	implizierte Definition	Definition durch Regeln	$M := \{x \mid x \text{ gerade }\}$
Ø	leere Menge	quasi "Nichts"	$\forall M(\emptyset \subseteq M)$
\subseteq	Teilmenge	Menge 1 ist Teilmenge von Menge 2	$M_1 \subseteq M_2$
⊈	keine Teilmenge	Menge 1 ist keine Teilmenge von Menge 2	$M_1 \nsubseteq M_2$
⊆ ⊈ Ç,	Teilmenge aber nicht gleich	$M_1 \subseteq M_2$ aber auch $M_2 \backslash M_1$ hat min. ein Objekt	$M_1 \subsetneq M_2$
\	Differenz	Menge 2 ohne Menge 1	$M_2 \backslash M_1$
Δ	Symmetrische Differenz	$M_1 \backslash M_2$ und $M_2 \backslash M_1$	$M_1\Delta M_2$
=	Gleich	Menge 1 gleich Menge 2	$M_1 = M_2$
≠	Ungleich	Menge 1 ungleich Menge 2	$M_1 \neq M_2$
z.B M	Kardinalität	Anzahl der unterschiedlichen Elemente in M	M
	Endliche Menge	$ M < \infty$	
	Unendliche Menge	$ M = \infty$	
\cap	$\operatorname{Schnitt}$	Menge mit Objekten die in Menge 1 und Menge 2 sind	$M_1 \cap M_2$
U	Vereinigung	Menge mit Objekten die in Menge 1 und oder Menge 2 sind	$M_1 \cup M_2$
	Disjunkt	Zwei Mengen haben keine gemeinsamen Elemente	$M_1 \cap M_2 = \emptyset$
$\cap S$	Mengenschnitt	Alle Objekte die in allen Mengen sind	$\bigcap_{M \in S} M \{ x \mid \forall M \in S(x \in M) \}$
$\cup S$	Mengenvereinigung	Alle Objekte die in einer der Mengen sind	$\bigcup_{M \in S} M \{ x \mid \exists M \in S(x \in M) \}$
Ω	Universum	Grundmenge	$A\subseteq\Omega$
z.B \overline{A}	Komplement	Das Gegenteil von z.B A	$\overline{A} = \Omega \backslash A$
$\mathcal{P}()$	Potenzmenge	Alle Teilmengen als Elemente	$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$
z.B $M = \cup P$	Partition	disjunkte, nicht leeren Teilmengen einer Menge	$P(\{1,2\}): \{\{1\},\{2\}\},\{1,2\}$

4.6.1 Mengenterme

Standardäquivalenz für Mengenvariablen A, B, C:

$$A = A \cup A \qquad A = A \cap A \qquad A = A \cup \emptyset \qquad \emptyset = A \cap \emptyset$$

$$A \cup B = B \cup A \qquad A \cap B = B \cap A \qquad A = A \cup (A \cap B) \qquad A = A \cap (A \cup B)$$

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C) \qquad A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \cup (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \cap \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = A \cap \overline{B}$$

$$A \cup \overline{A} = A \cap \overline{B}$$

5 Tupel, Sequenzen, Folgen und Wörter

5.1 Tupel

5.1.1 Unterschied zu Mengen

Mengen {}: Zusammenfassung von Objekten ohne Beachtung der Anordnung oder Vielfachheiten von beliebig vielen Objekten.

$${a,b,\emptyset,\{b,a\},a\} = \{\emptyset,\{a,b\},a,b\}}$$

Tupel (): Zusammenfassung einer festen, endlichen Anzahl von Objekten unter Beachtung der Anordnung/Auflistung der Objekte und Beachtung von Vielfachheiten.

$$(a, b, \emptyset, \{b, a\}, a) \neq (\emptyset, \{a, b\}, a, b)$$

5.1.2 Länge von Tupeln

Länge |t| eines Tupels t oder auch Anzahl $\sharp t$ der Komponenten/Einträge eines Tuples ist die Anzahl der zusammengefassten Objekte einschließlich Vielfachheiten.

$$|(a,(b,c))| = 2$$

k-Tupel für ein Tupel der Länge k.

Paar für 2-Tupel.

Zwei Tupel sind identisch, wenn die Länge und Einträge an den Positionen übereinstimmen.

5.2 Sequenzen/Folgen

Eine Sequenz/Folge ist ein unendliches Tupel welches seine Objekte nach aufsteigendem Index auflistet.

Es muss allerdings für jede kommende Position in der Folge auch einen Eintrag geben.

```
Notation: (Folge)<sub>Regel</sub> oder Folge := Regel
Für Index k \in \mathbb{N} definiert man [k] := \{1, 2, ..., k\} mit [0] = \emptyset
z.B: (i)_{i \in [k]} = (1, 2, 3, ..., k) oder a_i := cq^i für feste c, q \in \mathbb{R} = ...
```

5.3 Kartesisches Produkt

Wenn A,B Mengen, $A\times B$: Mengen aller Paare, wo erste Komponente ein Element aus A und zweite Komponente ein Element aus B ist. $A^k=A\times ...\times A$

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

$$A \times B \neq B \times A$$

$$A \times B \times C \neq (A \times B) \times C \neq A \times (B \times C)$$

Graphische Veranschaulichung für A^2 mit $A = \{a, b\}$, also $A \times A$

Eigenschaften:

Distributiv für:
$$\diamond \in \{ \cap, \cup, \setminus \}$$
:
 $A \times (B \diamond C) \equiv (A \times B) \diamond (A \times C)$ $(A \diamond B) \times C \equiv (A \times C) \diamond (B \times C)$

Nicht kommutativ für: $A \neq B$: $A \times B \neq B \times A$

Nicht assoziativ: $(A \times B) \times C \neq A \times B \times C \neq A \times (B \times C)$:

- $A \times B \times C = \{(a, b, c) \mid \ldots\}$
- $(A \times B) \times C = \{((a,b),c) \mid ...\}$
- $A \times (B \times C) = \{(a, (b, c)) \mid ...\}$

$$\begin{array}{l} A_1 \times B_1 \subseteq A_2 \times B_2 \leftrightarrow A_1 \subseteq A_2 \wedge B_1 \subseteq B_2 \\ A_1 \times B_1 = A_2 \times B_2 \leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \\ A, B \subseteq \Omega \colon \Omega \times \Omega \backslash A \times B = (A \times \overline{B}) \cup (\overline{A} \times B) \cup (\overline{A} \times \overline{B}) \end{array}$$

5.4 Wörter und Sprache

Tupel = Grundlage für Strings Üblich ist ein Menge von Grundzeichen (Alphabet(Häufig Σ oder Γ)) vorgegeben (z.B ASCII, UTF-8, ...)

D Wort: $(a_1, ..., a_k) \in \Sigma^k$ Menge der Wörter mit Länge $k: \Sigma^k$ Menge aller endlichen Wörter: Σ^* Also:

$$\Sigma^k := \begin{cases} \{a_1...a_k \mid a_i \in \Sigma \text{ für alle } i \in [k]\} & \text{für } k \geq 1 \\ \{\epsilon\} & \text{für } k = 0 \end{cases} \qquad \Sigma^* = \bigcup_{k \in \mathbb{N}_0} \Sigma^k$$

D Sprache (über Σ): $L \subseteq \Sigma^*$

Solange keine Missverständnisse: $a_1a_2...a_k$ kurz für $(a_1, a_2, ..., a_k)$ Leeres Wort: Für leere Tupel (): ϵ (empty Word) oder λ (leeres Wort) Konkatenation (Verkettung):

- Konkatenation xy für $(x_i, y_j \in \Sigma)$: $xy := x_1...x_iy_1...y_j$
- $x\epsilon = \epsilon x = x$ und |xy| = |x| + |y|
- Konkatenation zweier Tupel $(x_1,...x_k)$ und $(y_1,...,y_l)$ neues Tupel $(x_1,...,x_k,y_1,...,y_l)$

5.5 Übersicht: Symbole für Tupel etc.

Symbol	Formale Schreibweise	Bedeutung	Anwendung
{}	Mengen	Mengen werden durch geschweifte Klammern dargestellt	$M := \{1, 2, 3\}$
()	Tupel	Tupel werden durch runde Klammern dargestellt	T := (a, b)
t	Länge	Länge eines Tupels	(a,b) = 2
#t	Anzahl	Anzahl der Komponenten eines Tupels	#(a,b) = 2
	k-Tupel	Tupel der Länge k	
	Paar	2-Tupel	(a,b)
$z.B (Folge)_{Regel}$	Sequenz/Folge	Unendliches Tupel	$(i)_{i\in\mathbb{N}} = (1, 2,, \infty)$
z.B Folge := Regel	Sequenz/Folge	Unendliches Tupel	$a_i := cq^i$ für feste $c, q \in \mathbb{R} =$
z.B[k]	Index	Aufsteigender Index für eine Folge	$k \in \mathbb{N} \text{ mit } [0] = \emptyset$
X	Kartesisches Produkt	alle Paare mit gewissen Kombinationen	$A \times B\{(a,b) \mid a \in A, b \in B\}$
z.B A^k	k-Tupel mit Komponenten aus A	$A \times \times A \ (k\text{-mal})$	$A^0 := \{()\} \text{ und } A^1 := \{(a) \mid a \in A\} \neq A$
Häufig Σ oder Γ	Alphabet	Menge von Grundzeichen	
Σ^*	Menge aller endlichen Wörter		
Σ^k	Menge der Wörter mit Länge k		
	Wort	Tupel bestehend aus Grundzeichen aus einem Alphabet	$(a_1,, a_k) \in \Sigma^k$ $L \subseteq \Sigma^*$
	Sprache	Teilmenge eines Alphabets	$L \subseteq \Sigma^*$
z.B $a_1 a_2 a_k$		Abkürzung solange kein Missverständnis entsteht	
()	leeres Tupel		
ϵ oder λ	leeres Wort		
z.B xy	Konkatenation	Verkettung zweier Wörter/Tupel	$xy := x_1 x_k y_1 y_l$

5.5.1 Tupel- und Wörterterme

$$(a, b, \emptyset, \{b, a\}, a) \neq (\emptyset, \{a, b\}, a, b)$$

$$\begin{array}{ll} A\times B=\{(a,b)\mid a\in A,b\in B\} & A^0:=\{()\} & A^1:=\{(a)\mid a\in A\}\neq A\\ A\times B\neq B\times A & A\times B\times C\neq (A\times B)\times C\neq A\times (B\times C) \end{array}$$

Distributiv für:
$$\diamond \in \{ \cap, \cup, \setminus \}$$
: $A \times (B \diamond C) \equiv (A \times B) \diamond (A \times C)$ $(A \diamond B) \times C \equiv (A \times C) \diamond (B \times C)$

Nicht kommutativ für: $A \neq B$: $A \times B \neq B \times A$

Nicht assoziativ: $(A \times B) \times C \neq A \times B \times C \neq A \times (B \times C)$:

- $\bullet \ \ A \times B \times C = \{(a,b,c) \mid \ldots\}$
- $(A \times B) \times C = \{((a, b), c) \mid ...\}$
- $A \times (B \times C) = \{(a, (b, c)) \mid ...\}$

$$\begin{array}{l} A_1 \times B_1 \subseteq A_2 \times B_2 \leftrightarrow A_1 \subseteq A_2 \wedge B_1 \subseteq B_2 \\ A_1 \times B_1 = A_2 \times B_2 \leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \\ A, B \subseteq \Omega \colon \Omega \times \Omega \backslash A \times B = (A \times \overline{B}) \cup (\overline{A} \times B) \cup (\overline{A} \times \overline{B}) \end{array}$$

- $x\epsilon = \epsilon x = x$ und |xy| = |x| + |y|
- Konkatenation zweier Tupel $(x_1,...,x_k)$ und $(y_1,...,y_l)$ neues Tupel $(x_1,...,x_k,y_1,...,y_l)$

6 Induktion

Um "für alle $m \in \mathbb{N}_0 : P(m)$ " mittels Induktion nach n zu zeigen:

- Induktionsbasis (I.B.): Beweise P(0)
- Induktionsschritt (I.S.): Fixiere ein beliebiges $n \in \mathbb{N}_0$
- Induktionsannahme (I.A.): P(n) gilt für das fixierte n (starke Induktion: P(0), P(1), ..., P(n) gelten für das fixierte n)
- Induktionsbehauptung (I.Beh.): P(n+1) gilt für das fixierte n
- Induktionsbeweis (I.Bew.): Beweise P(n+1) unter den getroffenen Annahmen und der AnnahmeP(n) für das fixierte n

7 Relationen

7.1 Grundbegriffe

Mengen $A_1, A_2, ..., A_k$: $R \subseteq A_1 \times A_2 \times ... \times A_k$ eine (k-stellige) Relation oder Relation der Stelligkeit/Arität k.

 $(a_1, a_2, ..., a_k) \in \mathbb{R} \to \text{Die Objekte } a_1, a_2, ..., a_k \text{ stehen bzgl. } R \text{ in Relation.}$

(Vereinfacht) Grundlage für Datenbanken: Jede (klassische) Datenbank ist eine Menge von Datenbanktabellen, wo jede Tabelle eine Relation abspeichert.

A_{id}	$A_{Nachname}$	$A_{ m Vorname}$	$A_{ m id}$	$A_{\text{Matrikelnummer}}$	A_{id}	$A_{\text{Geschlecht}}$
1	Man	Spider	1	3141	1	m
2	Brot	Bernd	2	271828	2	b
3	Woman	Wonder	3	1701	3	W
4	Gaga	Lady	4	3694	4	w

7.2 Join und Projektion

Wichtigsten Datenbankoperatoren Join und Projektion:

Join: $R \bowtie_{i=j} S$ konkateniert (verkettet) jedes Tupel $(r_1, ..., r_k) \in R$ mit jedem Tupel $(s_1, ..., s_k) \in S$, soweit $r_i = s_j$:

$$R \bowtie_{i=j} S = \left\{ (r_1, ..., r_k, s_1, ..., s_l) \mid (s_1, ..., s_l) \in S, \\ r_i = s_j \right\}$$

Projektion: $\pi_{i_1,i_2,...,i_j}$ reduziert jedes Tupel $(r_1,...,r_k) \in \mathbb{R}$ auf die Einträge an den Positionen $1 \leq i_1,i_2,...,i_j \leq k$:

$$\pi_{i_1,i_2,...,i_j}(R) = \{(r_{i_1},r_{i_2},...,r_{i_j}) \mid (r_1,...,r_k) \in R\}$$

Damit kann man Datenbanktabellen verknüpfen und filtern, um damit Datenbankabfragen zu beantworten.

7.3 Binäre Relationen

Binäre Relation (2-stellige Relation): $R \subseteq A \times B$

Infixnotation: aRb für $(a,b) \in R$

Inverse Relation: $R^{-1} := \{(b, a) \mid (a, b) \in R\}$

7.3.1 Graphen

Gerichteter Graph (kurz: Digraph) G = (V, E) besteht aus:

- ullet Menge V Knotenmenge, Elemente von V entsprechend Knoten von G
- \bullet Binäre Relation $E\subseteq V\times V$ Kantenrelation/-menge, Elemente von Eentsprechend Kanten von G
- \bullet Digraph G endlich: V endlich, sonst G unendlich
- Digraph G bipartit: $V = A \cup B$ mit $A \cap B = \emptyset$ und $E \subseteq A \times B \cup B \times A$ (nur Kanten zwischen A und B)

Visualisierung eines (endlichen) Digraphen G = (V, E):

- $\bullet\,$ Für jeden Knoten $v\in V$: male einen Knubbel mit Namen v
- Für jede Kante (s,t): male einen Pfeil vom Knubbel s zum Knubbel t $(s=\text{source},\ t=\text{target})$ $s=t\to \text{mal Schleife}$

Falls G unendlich: nur schematische Skizze möglich.

Tupel $(v_0, v_1, ..., v_l)$ von Knoten $v_i \in V$ heißt Weg/Pfad falls $(v_{i-1}, v_i) \in E$ für jedes $i \in [l]$ gilt.

Also: je zwei aufeinanderfolgende Knoten sind durch eine Kante aus ${\cal E}$ verbunden.

- l: Länge eines Pfades $(v_0, v_1, ..., v_l)$: Anzahl der Kanten von v_0 bis v_l
- Einfacher Pfad: Keine Knoten kommen mehrmals in einem Pfad vor

7.4 Relationals Produkt

Sind $R \subseteq A \times B$ sowie $S \subseteq C \times D$ binäre Relationen, dann relationales Produkt von R und S die binäre Relation $RS \subseteq A \times D$ gegeben durch:

$$RS = \{(a,d) \mid \exists x \in B \cap C((a,x) \in R \land (x,d) \in S)\}\$$

oder kurz: $RS = \pi_{1,4}(R \bowtie_{2=1} S)$

 $B\cap C=\emptyset\to RS=\emptyset$

RS: Verkettung von R und S

7.5 Binäre Relationen auf einer Menge

Binäre Relationen $R\subseteq A\times A$, die auf einer Menge A definiert sind: Können mit sich selbst mittels relationalem Produkt mehrfach verknüpft werden: "Zusammenziehen der k-Schritt Pfade"

- $D R^0 := Id_A := \{(a, a) \mid a \in A\}$
- $R^1 := R = R^0 R$
- $R^2 := RR = R1R$
- $R^{k+1} := R^k R = RR^k = \underbrace{RR...R}_{k+\text{Imal}}$ für beliebiges $k \in \mathbb{N}_0$

Bemerkung: Obige Definition: induktive Definition

Die Definition ist (fast) ein Algorithmus, wie man \mathbb{R}^{k+1} mittels \mathbb{R} und \mathbb{R}^k rekursiv "berechnen" kann.

Für eine binäre Relation $R \subseteq A \times A$:

- Transitive Hülle: $R^+ := \bigcup_{k \in \mathbb{N}} R^k$ (alle Pfade, die min. einen Schritt machen)
- Reflexiv-transitive-Hülle: $R^* := \bigcup_{k \in \mathbb{N}_0} R^k = R^0 \cup R^+$
- v ist von u erreichbar, falls uR^*v
- $R^{\leq k} := \bigcup_{i=0}^k R^i$ (Erreichbarkeit in höchstens k Schritten)

Ist A endlich und n=|A| dann gilt $R^*=R^{\leq n-1}$ Jedes Element von R^* gehört zu $R^{\leq n-1}$, d.h. $R^*\subseteq R^{\leq n-1}$

7.6 Eigenschaften von Binären Relationen

$$(R^*)^* = (R^+)^* = (R^*)^+ = R^*$$

 $(R^+)^+ = R^+$

Für $R \subseteq A \times A$ auf einer Menge A

- reflexiv: $\mathrm{Id}_A\subseteq R$ Jeder Knoten hat eine Schleife
- symmetrisch: $(s,t) \in R \to (t,s) \in R$ Zwischen je zwei Knoten entweder beide Kanten oder Keine
- asymmetrisch: $(s,t) \in R \to (t,s) \notin R$ Keine Schleifen und zwischen je zwei verschiedenen Knoten höchstens eine Kante
- antisymmetrisch: $(s,t) \in R \land (t,s) \in R \rightarrow s = t$ Zwischen zwei verschiedenen Knoten existiert höchstens eine Kante
- transitiv: $(s,t) \in R \land (t,u) \in R \rightarrow (s,u) \in R$ Kommt man in genau zwei Schritten von s nach u dann auch mit genau einem

Weitere Beispiele:

- $=_{\mathbb{Z}}$: reflexiv,; symmetrisch; transitiv
- $\leq_{\mathbb{Z}}$: reflexiv,; antisymmetrisch; transitiv
- $<_{\mathbb{Z}}$: nicht reflexiv; asymmetrisch; transitiv
- $\neq_{\mathbb{Z}}$: nicht reflexiv,; symmetrisch; nicht transitiv
- $|_{\mathbb{Z}} \subseteq \mathbb{Z} \times \mathbb{Z}$ mit a|b definiert durch $\frac{b}{a} \in \mathbb{Z}$: nicht reflexiv; nicht symmetrisch; nicht asymmetrisch; nicht antisymmetrisch; transitiv
- $|_{\mathbb{N}} \subseteq \mathbb{N} \times \mathbb{N}$: reflexiv; antisymmetrisch; transitiv

- $\equiv_m \subseteq \mathbb{Z} \times \mathbb{Z}$ mit $a \equiv_m b$ definiert durch m | (a b) für festes $m \in \mathbb{N}$: reflexiv; symmetrisch; transitiv
- \subseteq auf $\mathcal{P}(\mathbb{Z})$: reflexiv; antisymmetrisch; transitiv
- Kongruenzbegriff auf Dreiecken: reflexiv; symmetrisch; transitiv

Für Wörter $u, v \in \Sigma *$

- u ist ein Präfix von v (kurz. $u \leq_p v$), falls es ein $w \in \Sigma^*$ mit uw = v gibt. \leq_p : reflexiv; antisymmetrisch; transitiv
- u ist ein Suffix von v (kurz. $u \leq_s v$), falls es ein $w \in \Sigma^*$ mit wu = v gibt. \leq_s : reflexiv; antisymmetrisch; transitiv
- u ist ein Infix (Faktor) von v (kurz. $u \leq_i v$), falls es $w, w' \in \Sigma^*$ mit wuw' = v gibt. \leq_i : reflexiv; antisymmetrisch; transitiv
- u und v sind konjugiert (kurz. $u \cong_c v$), falls es $w, w' \in \Sigma^*$ mit u = ww' und v = w'w gibt. \cong_c : reflexiv; symmetrisch; transitiv

Klassifikationen:

- $\leq_{\mathbb{Z}}, |_{\mathbb{N}}, \subseteq, \preceq_p, \preceq_s, \preceq_i$: Partielle Ordnungen: reflexiv, antisymmetrisch, transitiv
- $=_{\mathbb{Z}}, \equiv_m, \cong_c$, "Kongruenz von Dreiecken": Äquivalenzrelationen: reflexiv, symmetrisch, transitiv

8 Äquivalenzrelationen und Ordnungsrelationen

8.1 Grundverständnis Äquivalenzrelationen

Relationen: $=_{\mathbb{Z}}, \equiv_k, \cong_c$

Gemeinsamkeiten: reflexiv, symmetrisch, transitiv

Unterteilen/partionieren die Objekten des Universums nach verschiedenen "Äquivalenzbegriffen"

- $a =_{\mathbb{Z}} b$: a und b dieselbe/identische Zahl "Feinste" Partitionierung: $\{\{x\} \mid x \in \mathbb{Z}\}$
- $a \equiv_m b$: a und b derselbe Rest bei Division durch m Partitionierung: Menge der Restklassen $\{m\mathbb{Z}, m\mathbb{Z} + 1, ..., m\mathbb{Z} + (m-1)\}$ mit $m\mathbb{Z} = \{mz \mid z \in \mathbb{Z}\}$ "Gröbste" Partitionierung für $m = 1 : \{\mathbb{Z}\}$ (alles gleich)
- D Binäre Relation $R \subseteq A \times A$ über Menge A heißt Äquivalenzrelation falls:
 - R: reflexiv, symmetrisch und transitiv

Für $R \subseteq A \times A$ eine Äquivalenzrelation definiert man:

- Äquivalenzklasse eines Objekts a bzgl. R: $[a]_R = \{b \in A \mid aRb\}$ aka. ein Objekt a weißt auf eine Äquivalenzklasse $b \in A$
- \mathbf{F} $a \in [a]_R$ und $[a]_R = [b]_R$ für aRb $[a]_R \cap [b]_R = \emptyset$ für $(a,b) \notin R$
- Quotient von A bzgl. R als die Menge aller Äquivalenzklassen: $A/R = \{[a]_R \mid a \in A\}$
- F A/R ist eine Partition von A

8.2 Äquivalenzrelationen als Partitionen

Mögliche Äquivalenzrelationen bzgl. $A = [4] = \{1, 2, 3, 4\}$:

- $A/R = \{\{a\}, \{b\}, \{c\}, \{d\}\}\}$ ("Feinste"Partitionierung)
- $A/R = \{\{a\}, \{b\}, \{c, d\}\}\$ $A/R = \{\{a, b\}, \{c\}, \{d\}\}\$
- $A/R = \{\{a\}, \{b, c, d\}\}\$ $A/R = \{\{a, b, c\}, \{d\}\}\$
- $A/R = \{\{a,b\}, \{c,d\}\}\$ $A/R = \{\{a,c\}, \{b,d\}\}\$
- $A/R = \{\{a, b, c, d\}\}\$ ("Gröbste"Partitionierung)

8.3 Ordnungsrelationen

Beispiele: $\leq_{\mathbb{Z}}, |_{\mathbb{N}}, \subseteq, \preceq_p, \preceq_s, \preceq_i$

Gemeinsamkeiten: reflexiv, antisymmetrisch, transitiv Ordnen Objekte zumindest teilweise (partiell) an

Unterschiede:

- $a,b\in\mathbb{Z}$: $a\leq_{\mathbb{Z}}b\vee b\leq_{\mathbb{Z}}a$ d.h bzgl. $\leq_{\mathbb{Z}}$ sind alle ganzen Zahlen vergleichbar
- $\exists a, b \in \mathbb{N}(\neg(a|_{\mathbb{N}}b) \land \neg(b|_{\mathbb{N}}a))$ d.h bzgl. $|_{\mathbb{N}}$ gibt es unvergleichbare positive ganze Zahlen, z.B. Primzahlen.

Man definiert daher:

- $R \subseteq A \times A$ ist eine partielle Ordnung (Halbordnung) auf A falls
 - -R reflexiv, antisymmetrisch und transitiv
- $R \subseteq A \times A$ ist eine totale Ordnung (Totalordnung) auf A falls
 - -R eine partielle Ordnung auf A ist, und
 - a,b stets bzgl. R in Relation: $aRb \vee bRa$

9 Gesamtübersicht

9.1 Tabellen

Symbol	Formale Schreibweise	Bedeutung	Anwendung
z.B x	Element		$x \in M$
z.B M	Menge		$x \in M$
\in	in	Element ist in Menge enthalten	$x \in M$
∉	nicht in	Element ist NICHT in Menge enthalten	$x \notin M$
,	expliziete Definition	Ausgeschriebene Definition	$M := \{1, 2, 3\}$
	implizierte Definition	Definition durch Regeln	$M := \{x \mid x \text{ gerade } \}$
Ø	leere Menge	quasi "Nichts"	$\forall M(\emptyset \subseteq M)$
\subset	Teilmenge	Menge 1 ist Teilmenge von Menge 2	$M_1 \subseteq M_2$
$\overline{\not}$	keine Teilmenge	Menge 1 ist keine Teilmenge von Menge 2	$M_1 \overset{ au}{ otin} M_2$
/	Teilmenge aber nicht gleich	$M_1 \subseteq M_2$ aber auch $M_2 \backslash M_1$ hat min. ein Objekt	$M_1 \subsetneq M_2$
\emptyset $\bigcirc \not\subseteq \searrow \setminus \Delta$	Differenz	Menge 2 ohne Menge 1	$M_2 \ M_1$
À	Symmetrische Differenz	$M_1 \backslash M_2$ und $M_2 \backslash M_1$	$M_1 \overset{\sim}{\Delta} M_2$
_	Gleich	Menge 1 gleich Menge 2	$M_1 = M_2$
= ≠	Ungleich	Menge 1 ungleich Menge 2	$M_1 \neq M_2$
$z.\overset{'}{B} M $	Kardinalität	Anzahl der unterschiedlichen Elemente in M	M
~. <i>D</i> [111]	Endliche Menge	$ M < \infty$	1212
	Unendliche Menge	$ M = \infty$	
Ω	Schnitt	Menge mit Objekten die in Menge 1 und Menge 2 sind	$M_1 \cap M_2$
U	Vereinigung	Menge mit Objekten die in Menge 1 und oder Menge 2 sind	$M_1 \cup M_2$
Ü	Disjunkt	Zwei Mengen haben keine gemeinsamen Elemente	$M_1 \cap M_2 = \emptyset$
$\cap S$	Mengenschnitt	Alle Objekte die in allen Mengen sind	$\cap_{M \in S} M \{ x \mid \forall M \in S(x \in M) \}$
$\cup S$	Mengenvereinigung	Alle Objekte die in einer der Mengen sind	$\bigcup_{M \in S} M \{x \mid \exists M \in S(x \in M)\}\$
Ω	Universum	Grundmenge	$A \subseteq \Omega$
$z.B \overline{A}$	Komplement	Das Gegenteil von z.B A	$\overline{A} = \Omega \setminus A$
$\mathcal{P}()$	Potenzmenge	Alle Teilmengen als Elemente	$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$
$z.B M = \cup P$	Partition	disjunkte, nicht leeren Teilmengen einer Menge	$P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
{}	Mengen	Mengen werden durch geschweifte Klammern dargestellt	$M := \{1, 2, 3\}$
()	Tupel	Tupel werden durch runde Klammern dargestellt	$T := \{a, b\}$
t	Länge	Länge eines Tupels	(a,b) = 2
#t	Anzahl	Anzahl der Komponenten eines Tupels	#(a,b) = 2
// 0	k-Tupel	Tupel der Länge k	// (a, c) =
	Paar	2-Tupel	(a,b)
$z.B (Folge)_{Regel}$	Sequenz/Folge	Unendliches Tupel	$(i)_{i \in \mathbb{N}} = (1, 2,, \infty)$
z.B Folge := Regel	Sequenz/Folge	Unendliches Tupel	$a_i := cq^i$ für feste $c, q \in \mathbb{R} =$
z.B $[k]$	Index	Aufsteigender Index für eine Folge	$k \in \mathbb{N} \text{ mit } [0] = \emptyset$
Σ.Β [n] ×	Kartesisches Produkt	alle Paare mit gewissen Kombinationen	$A \times B\{(a,b) \mid a \in A, b \in B\}$
z.B A^k	k-Tupel mit Komponenten aus A	$A \times \times A $ $(k$ -mal $)$	$A^0 := \{()\} \text{ und } A^1 := \{(a) \mid a \in A\} \neq A$
Häufig Σ oder Γ	Alphabet	Menge von Grundzeichen	$II := \{(i)\} \text{ and } II := \{(a) \mid a \in II\} \neq II$
Σ^*	Menge aller endlichen Wörter	Wenge von Grundzeienen	
$\sum_{\sum k}$	Menge der Wörter mit Länge k		
_	Wort	Tupel bestehend aus Grundzeichen aus einem Alphabet	$(a_1, a_2) \in \Sigma^k$
	Sprache	Teilmenge eines Alphabets	$(a_1,,a_k) \in \Sigma^k$ $L \subseteq \Sigma^*$
z.B $a_1 a_2 a_k$	Spraciic	Abkürzung solange kein Missverständnis entsteht	2 <u>2</u> 2
()	leeres Tupel	Tionalizang solange kem missverstanding entstent	
$\epsilon \text{ oder } \lambda$	leeres Wort		
z.B xy	Konkatenation	Verkettung zweier Wörter/Tupel	$xy := x_1 x_k y_1 y_l$
L.D wy		removang zweler (torter) raper	$wg := w_1 w_k g_1 g_l$

9.2 Äquivalenzterme

9.2.1 Mengen

Standardäquivalenz für Mengenvariablen A, B, C:

$$\begin{array}{lll} A = A \cup A & A = A \cap A & A = A \cup \emptyset & \emptyset = A \cap \emptyset \\ A \cup B = B \cup A & A \cap B = B \cap A & A = A \cup (A \cap B) & A = A \cap (A \cup B) \end{array}$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cap B) \cap (A \cup C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \backslash (B \cup C) = (A \backslash B) \cap (A \backslash C)$$

$$A \Delta B = (A \backslash B) \cup (B \backslash A)$$

$$A \backslash (B \cap C) = (A \backslash B) \cup (A \backslash C)$$

Mit definiertem Universum Ω :

$$A \cap \overline{A} = \emptyset$$

$$A \cup \overline{A} = \Omega$$

$$A \setminus B = A \cap \overline{B}$$

$$\frac{\overline{\overline{A}} = A}{\overline{A} \cap B} = \overline{\overline{A}} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

9.2.2 Tupel, Sequenzen, Folgen, Wörter

 $(a, b, \emptyset, \{b, a\}, a) \neq (\emptyset, \{a, b\}, a, b)$

$$\begin{array}{ll} A\times B=\{(a,b)\mid a\in A,b\in B\} & A^0:=\{()\} & A^1:=\{(a)\mid a\in A\}\neq A\\ A\times B\neq B\times A & A\times B\times C\neq (A\times B)\times C\neq A\times (B\times C) \end{array}$$

Distributiv für:
$$\diamond \in \{\cap, \cup, \setminus\}$$
: $A \times (B \diamond C) \equiv (A \times B) \diamond (A \times C)$ $(A \diamond B) \times C \equiv (A \times C) \diamond (B \times C)$

Nicht kommutativ für: $A \neq B$: $A \times B \neq B \times A$

Nicht assoziativ: $(A \times B) \times C \neq A \times B \times C \neq A \times (B \times C)$:

- $A \times B \times C = \{(a, b, c) \mid ...\}$
- $(A \times B) \times C = \{((a, b), c) \mid ...\}$
- $A \times (B \times C) = \{(a, (b, c)) \mid ...\}$

$$A_1 \times B_1 \subseteq A_2 \times B_2 \leftrightarrow A_1 \subseteq A_2 \wedge B_1 \subseteq B_2$$

$$A_1 \times B_1 = A_2 \times B_2 \leftrightarrow A_1 = A_2 \wedge B_1 = B_2$$

$$A, B \subseteq \Omega \colon \Omega \times \Omega \backslash A \times B = (A \times \overline{B}) \cup (\overline{A} \times B) \cup (\overline{A} \times \overline{B})$$

- $x\epsilon = \epsilon x = x$ und |xy| = |x| + |y|
- Konkatenation zweier Tupel $(x_1,...x_k)$ und $(y_1,...,y_l)$ neues Tupel $(x_1,...,x_k,y_1,...,y_l)$