Interrogation écrite n°03

NOM: Prénom: Note:

1. Déterminer les éléments propres (valeurs propres et sous-espaces propres) de la matrice $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$.

Le polynôme caractéristique est $\chi_A = X^2 - tr(A)X + det(A) = X^2 - 6X + 5 = (X-1)(X-5)$. Ainsi $Sp(A) = \{1, 5\}$. De plus,

$$E_{1}(A) = \operatorname{Ker}(A - I_{2}) = \operatorname{Ker}\begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} = \operatorname{vect}\begin{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \end{pmatrix}$$
$$E_{5}(A) = \operatorname{Ker}(A - 5I_{2}) = \operatorname{Ker}\begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix} = \operatorname{vect}\begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

2. Déterminer l'ordre de la permutation $\sigma \in S_5$ définie par

 $\sigma(1) = 4$

 $\sigma(2) = 3$

 $\sigma(3) = 2$

 $\sigma(4) = 5$

 $\sigma(5) = 1$

Remarquons que $\sigma = (1,4,5)(2,3)$. Comme (1,4,5) et (2,3) sont d'ordres respectifs 2 et 3 et commutent, $\sigma^6 = \operatorname{Id}_{S_5}$. Ainsi l'ordre de c divise 6 et vaut donc 1, 2, 3 ou 6. De plus,

 $\sigma \neq Id_{S_5}$

 $\sigma^2 = (1, 5, 4) \neq Id_{S_{\epsilon}}$

 $\sigma^3 = (2,3) \neq \mathrm{Id}_{S_{\varepsilon}}$

Donc l'ordre de σ *est* 6.

Remarque. De manière générale, si x et y sont deux éléments qui commutent d'ordres respectifs p et q et si $p \land q = 1$, xy est d'ordre pq.

Remarque. On aurait aussi pu calculer σ^k pour $k \in [1, 6]$ mais c'était un peu plus fastidieux.

3. On considère $\overline{9}$ comme un élément du groupe ($\mathbb{Z}/12\mathbb{Z}$, +). Déterminer son ordre.

Il est clair que $4 \cdot \overline{9} = \overline{36} = \overline{0}$ donc l'ordre de $\overline{9}$ divise 4. Or $\overline{9} \neq \overline{0}$ et $2 \cdot \overline{9} = \overline{18} = \overline{6} \neq \overline{0}$. Ainsi l'ordre de $\overline{9}$ est 4.

Remarque. A nouveau, on aurait pu calculer les mutiples successifs de $\frac{1}{4}$ jusqu'à obtenir $\frac{1}{4}$

4. On fixe $P \in GL_n(\mathbb{K})$. Montrer que l'application $\varphi \colon M \in GL_n(\mathbb{K}) \mapsto P^{-1}MP$ est un automorphisme de groupe.

Remarquons que φ est bien à valeurs dans $GL_n(\mathbb{K})$ car le groupe $GL_n(\mathbb{K})$ est stable par produit. Soit $(M, N) \in GL_n(\mathbb{K})^2$. Alors

$$\phi(M)\phi(N) = P^{-1}MPP^{-1}NP = P^{-1}MNP = \phi(MN)$$

Enfin, en posant $\psi : M \in GL_n(\mathbb{K}) \mapsto PMP^{-1}$, on vérifie que $\psi \circ \varphi = \varphi \circ \psi = Id_{GL_n(\mathbb{K})}$ donc φ est bijective. On en conclut que φ est bien un automorphisme du groupe $GL_n(\mathbb{K})$.

5. Soient F et G deux sous-espaces vectoriels supplémentaires non nuls d'un espace vectoriel E. On note *p* le projecteur sur F parallélement à G. Déterminer les éléments propres de *p* (valeurs propres et sous-espaces propres).

Soit λ une éventuelle valeur propre de p. Il existe $x \in E$ non nul tel que $p(x) = \lambda x$. Alors $p^2(x) = \lambda^2 x$. Comme $p^2 = p$, $\lambda^2 x = \lambda x$ puis $\lambda^2 = \lambda$ car $x \neq 0_E$. Ainsi $\lambda \in \{0, 1\}$. Ensuite

$$Ker(p) = G$$
 $Ker(p - Id_E) = F$

Donc $Sp(p) = \{0, 1\}$ et les sous-espaces propres associés aux valeurs propres 0 et 1 sont respectivement G et F.

6. Soient F et G deux sous-espaces vectoriels supplémentaires non nuls d'un espace vectoriel E. On note *s* la symétrie par rapport à F parallélement à G. Déterminer les éléments propres de *s* (valeurs propres et sous-espaces propres).

Soit λ une éventuelle valeur propre de s. Il existe $x \in E$ non nul tel que $s(x) = \lambda x$. Alors $s^2(x) = \lambda^2 x$. Comme $s^2 = \operatorname{Id}_E$, $\lambda^2 x = x$ puis $\lambda^2 = 1$ car $x \neq 0_E$. Ainsi $\lambda \in \{-1, 1\}$. Ensuite

$$Ker(s - Id_E) = F$$
 $Ker(s + Id_E) = G$

 $Donc \operatorname{Sp}(s) = \{-1, 1\}$ et les sous-espaces propres associés aux valeurs propres -1 et 1 sont respectivement F et G.