

Lecture 16: Goodness of Fit Tests Continued: Kolmogorov-Smirnov test, Kolmogorov-Lilliefors test,

<u>Course</u> > <u>Unit 4 Hypothesis testing</u> > <u>Quantile-Quantile Plots</u>

- 8. Kolmogorov-Smirnov Test
- > Statistic Pivotal Under Null

8. Kolmogorov-Smirnov Test Statistic Pivotal Under Null Non-asymptotic Distribution, Generating Data from a Given Distribution

you don't have to go to the asymptotic, no matter what n is, the distribution of tn does not depend on any parameter of your specific test at hand.

It does not depend on the unknown f, nor does it depend on f not.

In particular, it means that you can go into

and compute its p values, or its critical values.

OK?

13:16 / 13:16 X CC ▶ 1.0x End of transcript. Skip to the start.

Video Download video file

Transcripts <u>Download SubRip (.srt) file</u> Download Text (.txt) file

CDF as a Random Function

3/3 points (graded)

Let X be a random varible with invertible cdf F_{X} . Define another random variable $\mathit{Y}=\mathit{F}_{X}\left(X\right)$. Find the cdf F_{Y} of Y .

For t < 0:

$$F_{Y}\left(t
ight)=egin{bmatrix}0& & & & \\ 0& & & & \\ 0& & & & \\ \end{pmatrix}$$
 Answer: 0

For $t \geq 1$:

$$F_{Y}\left(t
ight)=egin{bmatrix}1\ 1\ \end{bmatrix}$$
 Answer: 1

For $0 \leq t < 1$:

$$F_{Y}\left(t
ight)=egin{bmatrix} t & & & \\ t &$$

(What is the distribution of Y?)

STANDARD NOTATION

Solution:

Given $Y = F_X(X)$ where F_X is a cdf, Y only takes values between 0 and 1. This means that $F_Y(t) = 0$ for all $t \leq 0$ and $F_Y(t) = 1$ for all t > 1.

In the region $0 \leq t < 1$

$$F_{Y}\left(t
ight) \,=\, P\left(F_{X}\left(X
ight) \leq t
ight) \,=\, P\left(X \leq F^{-1}\left(t
ight)
ight) \,=\, F\left(F^{-1}\left(t
ight)
ight) \,=\, t.$$

We see that the cdf of Y is that of a uniform distribution with support in [0,1], i.e. $Y \sim \mathsf{Unif}(0,1)$.

Remark 1: Note that $Y = F_X(X) \sim \mathsf{Unif}(0,1)$ regardless of the distribution of X as long as F_X is invertible. In the case when F_X is not invertible, modifications can be made to obtain similar result.

Remark 2: Inverting the result gives $X \sim F_X^{-1}(Y)$ where $Y \sim \mathsf{Unif}(0,1)$. This is useful for simulating data from a given distribution with cdf F_X . Start by sampling from $\mathsf{Unif}(0,1)$, and apply F_X^{-1} to the sample. The resulting sample will be from a distribution with cdf F_X .

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Kolmogorov-Smirnov Test Statistic as a Pivotal Distribution Under Null Hypothesis

Let X_1,\ldots,X_n be iid samples with unknown cdf F_X . For simplicity, restrict to the cases when F_X is invertible.

Recall the goal of the Kolmogorov-Smirnov Test goodness of fit test is to decide between the hypotheses

$$H_0$$
 : $F_X = F^0$

$$H_1 : F_X \neq F^0$$
.

Recall also the Kolmogorov-Smirnov test statistic:

$$T_{n} \, = \, \sqrt{n} \sup_{t \in \mathbb{R}} \left| F_{n} \left(t
ight) - F^{0} \left(t
ight)
ight|$$

Assuming H_0 is true, then T_n becomes

$$T_{n} \, = \, \sqrt{n} \sup_{t \in \mathbb{R}} \left| F_{n} \left(t
ight) - F_{X} \left(t
ight)
ight|$$

We will see that under the null hypothesis, the distribution of T_n does not depend on the distribution of the data X_i , i.e. T_n is pivotal, and this is true for any n, not only for large n.

The trick is to make a change of variables. Let $ilde{t}=F_{X}\left(t
ight), ext{ then } t=F_{X}^{-1}\left(ilde{t}
ight).$ We have

$$egin{aligned} T_n &=& \sqrt{n} \sup_{t \in \mathbb{R}} |F_n\left(t
ight) - F_X\left(t
ight)| \ &=& \sqrt{n} \sup_{t \in \mathbb{R}} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1}\left(X_i \leq t
ight)
ight) - F_X\left(t
ight)
ight| \qquad ext{(definition of empirical cdf)} \ &=& \sqrt{n} \sup_{t \in \mathbb{R}} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1}\left(F_X\left(X_i
ight) \leq F_X\left(t
ight)
ight) - F_X\left(t
ight)
ight| \qquad ext{(apply F_X to both sides of inequality)} \end{aligned}$$

$$= \left| \sqrt{n} \sup_{ ilde{t} \in (0,1)} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1} \left(Y_i \leq ilde{t}
ight)
ight) - ilde{t}
ight| \qquad ext{where } Y_i \sim \mathsf{Unif} \left(0,1
ight).$$

Discussion

Show Discussion

Topic: Unit 4 Hypothesis testing:Lecture 16: Goodness of Fit Tests Continued: Kolmogorov-Smirnov test, Kolmogorov-Lilliefors test, Quantile-Quantile Plots / 8. Kolmogorov-Smirnov Test Statistic Pivotal Under Null

© All Rights Reserved