Jive plus GMD

Ilias Moysidis and Jing Ma

Fred Hutchinson Cancer Research Center

Abstract

1 Methodology

1.1 General Matrix Decomposition (GMD)

In this section we will describe the GMD problem for a matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$. Let $\mathbf{Q} = \mathbf{\Delta}^{-1}$ and $\mathbf{R} = \mathbf{\Sigma}^{-1}$, where $\mathbf{\Delta} \in \mathbb{R}^{n \times n}$, $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ and $\mathbf{\Delta}, \mathbf{\Sigma} \succ \mathbf{0}$. We define the matrix norm $\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}} = \sqrt{\operatorname{tr}(\mathbf{Q}\mathbf{X}\mathbf{R}\mathbf{X}^{\intercal})}$ which we call \mathbf{Q},\mathbf{R} -norm. The GMD optimization problem is the best rank-s approximation to the data with respect to the \mathbf{Q},\mathbf{R} -norm:

$$\begin{split} & \text{minimize } \|\mathbf{X} - \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}\|_{\mathbf{Q},\mathbf{R}}^2, \\ & \text{subject to } \mathbf{U}^{\intercal}\mathbf{Q}\mathbf{U} = \mathbf{I}_s, \, \mathbf{V}^{\intercal}\mathbf{R}\mathbf{V} = \mathbf{I}_s, \, \mathbf{D} \text{ is diagonal and } \mathbf{D} \succ \mathbf{0}. \end{split}$$

Let $\|\cdot\|_F$ denote the Frobenius norm. The aforementioned problem can be recast as a classic singular value decomposition (SVD) optimization problem, since it is equivalent to

$$\text{minimize } \|\mathbf{Q}^{1/2}\mathbf{X}\mathbf{R}^{1/2} - (\mathbf{Q}^{1/2}\mathbf{U})\mathbf{D}(\mathbf{R}^{1/2}\mathbf{V})^\intercal\|_F^2,$$

subject to $(\mathbf{Q}^{1/2}\mathbf{U})^\intercal(\mathbf{Q}^{1/2}\mathbf{U}) = \mathbf{I}_s, \ (\mathbf{R}^{1/2}\mathbf{V})^\intercal(\mathbf{R}^{1/2}\mathbf{V}) = \mathbf{I}_s, \ \mathbf{D}$ is diagonal and $\mathbf{D} \succ \mathbf{0}$.

Therefore, the GMD problem for \mathbf{X} is equivalent to the SVD problem for $\mathbf{Q}^{1/2}\mathbf{X}\mathbf{R}^{1/2}$. If $\mathbf{U}^*, \mathbf{V}^*, \mathbf{D}^*$ is the solution of the SVD for $\mathbf{Q}^{1/2}\mathbf{X}\mathbf{R}^{1/2}$, then the solution of the equivalent GMD is $\mathbf{U} = \mathbf{Q}^{-1/2}\mathbf{U}^*, \mathbf{V} = \mathbf{R}^{-1/2}\mathbf{V}^*, \mathbf{D} = \mathbf{D}^*$.

1.2 Model

Let $\mathbf{X}_k \in \mathbb{R}^{n \times p_k}$ be the data matrix of dataset k, for k = 1, ..., K and define $p = \sum_{k=1}^{K} p_k$. Without loss of generality we assume that these data matrices are normalized, i.e.

$$\sum_{i=1}^{n} X_{k,ij} = 0 \text{ and } \|\mathbf{X}_{k}\|_{\mathbf{Q},\mathbf{R}_{k}} = 1$$

for all k, j.

Let $\Sigma \in \mathbb{R}^{n \times n}$ be the covariance matrix between the samples and $\Delta_k \in \mathbb{R}^{p_k \times p_k}$ be the covariance between the variables of the k-th category. Define the precision matrices $\mathbf{Q} = \Sigma^{-1}$, $\mathbf{R}_k = \Delta_k$ and the block diagonal matrices

$$\Delta = \text{block. diag}(\Delta_1, \dots, \Delta_K)$$
 and $\mathbf{R} = \text{block. diag}(\mathbf{R}_1, \dots, \mathbf{R}_K)$.

We begin by defining the joint structure matrix. Let $\mathbf{J} = \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}$, where:

- 1. $\mathbf{D} \in \mathbb{R}^{r \times r}$ is a positive definite, diagonal matrix,
- 2. $\mathbf{U} \in \mathbb{R}^{n \times r}$ satisfies $\mathbf{U}^\intercal \mathbf{Q} \mathbf{U} = \mathbf{I}_r$, and
- 3. $\mathbf{V} \in \mathbb{R}^{p \times r}$ satisfies $\mathbf{V}^{\intercal} \mathbf{R} \mathbf{V} = \mathbf{I}_r$.

If we write the right-singular vector matrix of the joint structure as

$$\mathbf{V} = (\mathbf{V}_1^\intercal \dots \mathbf{V}_K^\intercal)^\intercal, \quad \mathbf{V}_k \in \mathbb{R}^{p_k \times r}$$

we can write the joint structure in the form $\mathbf{J} = (\mathbf{J}_1 \dots \mathbf{J}_K)$, where $\mathbf{J}_k = \mathbf{U} \mathbf{D} \mathbf{V}_k^{\mathsf{T}}$.

Let $\mathbf{A}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{W}_k^{\mathsf{T}}$ be the individual structure matrix, where:

- 1. $\mathbf{D}_k \in \mathbb{R}^{r_k \times r_k}$ is a positive definite, diagonal matrix,
- 2. $\mathbf{U}_k \in \mathbb{R}^{n \times r_k}$ satisfies $\mathbf{U}_k^\intercal \mathbf{Q} \mathbf{U}_k = \mathbf{I}_{r_k}$, and
- 3. $\mathbf{W}_k \in \mathbb{R}^{p_k \times r}$ satisfies $\mathbf{W}_k^{\mathsf{T}} \mathbf{R}_k \mathbf{W}_k = \mathbf{I}_{r_k}$.

We define the concatenated individual structure matrix $\mathbf{A} = (\mathbf{A}_1 \dots \mathbf{A}_K)$.

Finally, we define the matrix-normal noise matrices $\mathbf{E}_k \sim \mathcal{MN}_{n \times p_k}(\mathbf{0}, \mathbf{\Sigma}, \mathbf{\Delta}_k)$ such that $\mathbf{E}_i \perp \mathbf{E}_j$ for $i \neq j$. If $\mathbf{E} = (\mathbf{E}_1 \dots \mathbf{E}_K)$ is the concatenated noise matrix, then $\mathbf{E} \sim \mathcal{MN}_{n \times p}(\mathbf{0}, \mathbf{\Sigma}, \mathbf{\Delta})$.

The basic assumption of this paper is that the observed data follow the model

$$\mathbf{X}_k = \mathbf{J}_k + \mathbf{A}_k + \mathbf{E}_k, \quad k = 1, \dots, K.$$

For identifiability reasons, we demand that the columns of joint and individual structure are orthogonal, i.e.

$$\mathbf{J}^{\mathsf{T}}\mathbf{Q}\mathbf{A}=\mathbf{0}.$$

This assumption is not restrictive since for every pair of matrices \mathbf{J}, \mathbf{A} there exist unique $\tilde{\mathbf{J}}, \tilde{\mathbf{A}}$ such that

$$\mathbf{J} + \mathbf{A} = \tilde{\mathbf{J}} + \tilde{\mathbf{A}}$$
 and $\tilde{\mathbf{J}}^{\dagger} \mathbf{Q} \tilde{\mathbf{A}} = \mathbf{0}$.

2 Algorithms for estimating J and A

2.1 GJIVE

Suppose that we know the matrices \mathbf{X} , \mathbf{A} . Then, \mathbf{J} is the best rank-r approximation of $\mathbf{X} - \mathbf{A}$. Similarly, suppose that we know the matrices \mathbf{X}_k , \mathbf{J}_k . Then, \mathbf{A}_k is the best

rank- r_k approximation of $\mathbf{X}_k - \mathbf{J}_k$.

To estimate the matrices J, A we use the following algorithm:

- 1. Set A = 0
- 2. Solve

minimize
$$\|\mathbf{X} - \mathbf{A} - \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\|_{\mathbf{Q},\mathbf{R}}$$

subject to $\mathbf{U}^{\mathsf{T}}\mathbf{Q}\mathbf{U} = \mathbf{I}_r$, $\mathbf{V}^{\mathsf{T}}\mathbf{R}\mathbf{V} = \mathbf{I}_r$, $\mathbf{D} \succ \mathbf{0}$, diagonal matrix.

3. Set $\mathbf{J}_k = \mathbf{U}\mathbf{D}\mathbf{V}_k^\intercal$ and solve minimize $\|\mathbf{X}_k - \mathbf{J}_k - \mathbf{U}_k\mathbf{D}_k\mathbf{W}_k^\intercal\|_{\mathbf{Q},\mathbf{R}_k}$

subject to $\mathbf{U}_k^{\mathsf{T}} \mathbf{Q} \mathbf{U}_k = \mathbf{I}_{r_k}, \quad \mathbf{W}_k^{\mathsf{T}} \mathbf{R}_k \mathbf{W}_k = \mathbf{I}_{r_k}, \quad \mathbf{D}_k \succ \mathbf{0}, \text{ diagonal matrix.}$

4. Set
$$\mathbf{A} = (\mathbf{U}_1 \mathbf{D}_1 \mathbf{W}_1^{\mathsf{T}} \dots \mathbf{U}_K \mathbf{D}_K \mathbf{W}_K^{\mathsf{T}}).$$

5. Repeat steps 2-4 until convergence.

2.2 Decorelatted JIVE

To estimate the matrices J, A we use the following algorithm:

- 1. Set A = 0
- 2. Solve

minimize
$$\|\mathbf{Q}^{1/2}(\mathbf{X} - \mathbf{A})\mathbf{R}^{1/2} - \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}\|_{F}$$

subject to $\mathbf{U}^{\intercal}\mathbf{U} = \mathbf{I}_{r}$, $\mathbf{V}^{\intercal}\mathbf{V} = \mathbf{I}_{r}$, $\mathbf{D} \succ \mathbf{0}$, diagonal matrix.

3. Set $\mathbf{J}_k = \mathbf{\Sigma}^{1/2} \mathbf{U} \mathbf{D} \mathbf{V}_k^{\intercal} \mathbf{\Delta}_k^{1/2}$ and solve minimize $\|\mathbf{Q}^{1/2} (\mathbf{X}_k - \mathbf{J}_k) \mathbf{R}_k^{1/2} - \mathbf{U}_k \mathbf{D}_k \mathbf{W}_k^{\intercal} \|_F$ subject to $\mathbf{U}_k^{\intercal} \mathbf{U}_k = \mathbf{I}_{r_k}$, $\mathbf{W}_k^{\intercal} \mathbf{W}_k = \mathbf{I}_{r_k}$, $\mathbf{D}_k \succ \mathbf{0}$, diagonal matrix.

- 4. Set $\mathbf{A} = (\mathbf{\Sigma}^{1/2} \mathbf{U}_1 \mathbf{D}_1 \mathbf{W}_1^{\mathsf{T}} \mathbf{\Delta}_1^{1/2} \dots \mathbf{\Sigma}^{1/2} \mathbf{U}_K \mathbf{D}_K \mathbf{W}_K^{\mathsf{T}} \mathbf{\Delta}_K^{1/2}).$
- 5. Repeat steps 2-4 until convergence.

2.3 GAJIVE

Suppose we have $\mathbf{X}_1 \in \mathbb{R}^{n \times p_1}$ and $\mathbf{X}_2 \in \mathbb{R}^{n \times p_2}$ of rank r_1 and r_2 respectively. The joint structure is the linear subspace

$$col(\mathbf{X}_1) \cap col(\mathbf{X}_2)$$

If
$$GMD_{r_i}(\mathbf{X}_i, \mathbf{Q}, \mathbf{R}_i) = (\mathbf{U}_i, \mathbf{\Sigma}_i, \mathbf{V}_i), i = 1, 2$$
, then

$$col(\mathbf{X}_1) \cap col(\mathbf{X}_2) = col(\mathbf{U}_1) \cap col(\mathbf{U}_2)$$

Define $\tilde{\mathbf{U}} = (\mathbf{U}_1, \mathbf{U}_2)$ and $s = \min(r_1, r_2)$. Let $GMD_s(\tilde{\mathbf{U}}, \mathbf{Q}, \mathbf{I}_s) = (\mathbf{H}, \mathbf{D}, \mathbf{W})$. The principal angles $\theta_1, \dots, \theta_s$ in increasing order are

$$\arccos(d_1^2-1), \ldots, \arccos(d_s^2-1).$$

Suppose $\theta_1 = \ldots = \theta_l = 0$. Then the first l columns of \mathbf{H} form an orthonormal basis \mathbf{G} for the joint structure. Define the projection matrix $\mathbf{P} = \mathbf{G}\mathbf{G}^{\intercal}\mathbf{Q}$. Then

$$\mathbf{J} = \mathbf{P}(\mathbf{X}_1, \mathbf{X}_2), \quad \mathbf{A} = (\mathbf{I} - \mathbf{P})(\mathbf{X}_1, \mathbf{X}_2).$$

2.4 SUM-GMD

Let $\mathbf{X} = (\mathbf{X}_1 \dots \mathbf{X}_K) \in \mathbb{R}^{n \times p}$. We only assume a joint structure \mathbf{J} for \mathbf{X} . Define $s = \sum_{k=1}^K r_k$. To estimate \mathbf{J} we solve

minimize
$$\|\mathbf{X} - \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}\|_{F}$$

subject to $\mathbf{U}^{\mathsf{T}}\mathbf{Q}\mathbf{U} = \mathbf{I}_r$, $\mathbf{V}^{\mathsf{T}}\mathbf{R}\mathbf{V} = \mathbf{I}_s$, $\mathbf{D} \succ \mathbf{0}$, diagonal matrix.

3 Related PCA Model

Define $\mathbf{M} = \mathbf{J} + \mathbf{A}$. Then,

$$\mathbf{Y} := (\mathbf{X} - \mathbf{M})\mathbf{R}^{1/2} \sim \mathcal{MN}_{n \times p}(\mathbf{0}, \mathbf{\Sigma}, \mathbf{I}_p),$$

$$\mathbf{Z} := \mathbf{Q}^{1/2}(\mathbf{X} - \mathbf{M}) \sim \mathcal{MN}_{n imes p}(\mathbf{0}, \mathbf{I}_n, \boldsymbol{\Delta})$$

If \mathbf{Y}_i denotes the j-th column of \mathbf{Y} and \mathbf{Z}_i denotes the i-th row of \mathbf{Z} , then

$$\mathbf{Y}_1, \dots, \mathbf{Y}_p \overset{i.i.d.}{\sim} \mathcal{N}_n(\mathbf{0}, \mathbf{\Sigma}),$$

$$\mathbf{Z}_1,\ldots,\mathbf{Z}_n \overset{i.i.d.}{\sim} \mathcal{N}_p(\mathbf{0},\boldsymbol{\Delta}).$$

Suppose $\mathbf{A} \in \mathbb{R}^{n \times r}$, $\mathbf{A}_i \in \mathbb{R}^{p_i \times r_i}$ are full rank matrices and $\mathbf{G} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_r)$, $\mathbf{G}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{r_i})$. Suppose furthermore $\mathbf{E} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, $\mathbf{E}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_{p_i})$ and define $\mathbf{Y} = \mathbf{A}\mathbf{G} + \mathbf{E}$, $\mathbf{Z}_i = \mathbf{A}_i\mathbf{G}_i + \mathbf{E}_i$. Then

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^2 \mathbf{I}_n)$$
 and $\mathbf{Z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{A}_i \mathbf{A}_i^{\mathsf{T}} + \sigma^2 \mathbf{I}_{p_i})$

The maximum likelihood estimator of A is

$$\hat{\mathbf{A}} = \hat{\mathbf{U}}(\hat{\mathbf{\Lambda}} - \hat{\sigma}^2 \mathbf{I})^{1/2} \hat{\mathbf{S}}^{\dagger},$$

where $(\hat{\mathbf{U}}, \hat{\mathbf{\Lambda}})$ is the eigenvalue decomposition of the sample covariance matrix $\hat{\mathbf{\Sigma}}$, and \mathbf{S} is an arbitrary orthonormal matrix. Similarly for \mathbf{A}_i .

To connect the two models, we have to assume

$$\mathbf{X}_i \sim \mathcal{MN}_{n imes p_i} (\mathbf{U} \mathbf{D} \mathbf{V}_i^\intercal + \mathbf{U}_i \mathbf{D}_i \mathbf{W}_i^\intercal, \mathbf{U} \mathbf{L} \mathbf{U}^\intercal, \mathbf{U}_i \mathbf{L}_i \mathbf{U}_i^\intercal)$$

4 Matrix Normal PCA model

Let the full rank matrices $\mathbf{A} \in \mathbb{R}^{n \times r}$, $\mathbf{B}_i \in \mathbb{R}^{p_i \times r_i}$ and the random variables $\mathbf{Y}_i \sim \mathcal{MN}_{r \times p_i}(\mathbf{0}, \mathbf{I}_r, \mathbf{I}_{p_i})$, $\mathbf{Z}_i \sim \mathcal{MN}_{n \times r_i}(\mathbf{0}, \mathbf{I}_n, \mathbf{I}_{r_i})$, $\mathbf{E}_i \sim \mathcal{MN}_{n \times p_i}(\mathbf{0}, \sigma^2 \mathbf{I}_n, \sigma^2 \mathbf{I}_{p_i})$ and suppose

$$\mathbf{X}_i = \mathbf{A}\mathbf{Y}_i + \mathbf{Z}_i\mathbf{B}_i^\intercal + \mathbf{E}_i.$$

Then

$$\mathbf{X}_i \sim \mathcal{MN}_{n \times p_i}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^2 \mathbf{I}_n, \mathbf{B}_i \mathbf{B}_i^{\mathsf{T}} + \sigma^2 \mathbf{I}_{p_i}), \quad i = 1, \dots, K.$$

Proof. Define $\mathbf{B} = \text{block. diag}(\mathbf{B}_1, \dots, \mathbf{B}_K)$. The negative log-likelihood up to a constant is

$$l(\mathbf{A}, \mathbf{B}, \sigma | \mathbf{X}) = \operatorname{tr} \left[\left(\mathbf{B} \mathbf{B}^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{p} \right)^{-1} \mathbf{X}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{n} \right)^{-1} \mathbf{X} \right]$$
$$+ n \log \det \left(\mathbf{B} \mathbf{B}^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{p} \right) + p \log \det \left(\mathbf{A} \mathbf{A}^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{n} \right).$$

The partial derivatives are

$$\frac{\partial l(\mathbf{A}, \mathbf{B}, \sigma | \mathbf{X})}{\partial \mathbf{A}} = -2(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{X}(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{A}
+ 2p(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{A}$$

$$\frac{\partial l(\mathbf{A}, \mathbf{B}, \sigma | \mathbf{X})}{\partial \mathbf{B}} = -2(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{X}(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{B}$$

$$+ 2n(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{B},$$

$$\frac{\partial l(\mathbf{A}, \mathbf{B}, \sigma | \mathbf{X})}{\partial \sigma} = 2\sigma \operatorname{tr} \left[(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-2}\mathbf{X}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{X} \right]$$

$$+ 2\sigma \operatorname{tr} \left[(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-2}\mathbf{X}(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{X}^{\mathsf{T}} \right]$$

$$+ 2n\sigma \operatorname{tr} \left[(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1} \right] + 2p\sigma \operatorname{tr} \left[(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1} \right]$$

One class of stationary points are given by the equations

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n} - \frac{1}{p}\mathbf{X}(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{X}^{\mathsf{T}} = \mathbf{0},$$

$$\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p} - \frac{1}{n}\mathbf{X}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{X} = \mathbf{0},$$

$$n \operatorname{tr} \left[(\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{p})^{-1} \right] + p \operatorname{tr} \left[(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^{2}\mathbf{I}_{n})^{-1} \right] = \mathbf{0}.$$

$$(4.1)$$

Suppose $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{D}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\mathsf{T}}$, $\mathbf{B} = \mathbf{U}_{\mathbf{B}} \mathbf{D}_{\mathbf{B}} \mathbf{V}_{\mathbf{B}}^{\mathsf{T}}$ are the singular value decompositions of \mathbf{A} and \mathbf{B} , such that $\mathbf{U}_{\mathbf{A}}^{\mathsf{T}} \mathbf{U}_{\mathbf{A}} = \mathbf{U}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{\mathsf{T}} = \mathbf{I}_n$, $\mathbf{U}_{\mathbf{B}}^{\mathsf{T}} \mathbf{U}_{\mathbf{B}} = \mathbf{U}_{\mathbf{B}} \mathbf{U}_{\mathbf{B}}^{\mathsf{T}} = \mathbf{I}_p$ and $\mathbf{D}_{\mathbf{A}}$, $\mathbf{D}_{\mathbf{B}}$ are

rectangular diagonal matrices. Define the diagonal matrices $\mathbf{\Lambda}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} \mathbf{D}_{\mathbf{A}}^{\mathsf{T}} + \sigma^2 \mathbf{I}_n$, $\mathbf{\Lambda}_{\mathbf{B}} = \mathbf{D}_{\mathbf{B}} \mathbf{D}_{\mathbf{B}}^{\mathsf{T}} + \sigma^2 \mathbf{I}_p$. Then (4.1) becomes

$$\mathbf{U}_{\mathbf{A}} \boldsymbol{\Lambda}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{\mathsf{T}} - \frac{1}{p} \mathbf{X} \mathbf{U}_{\mathbf{B}} \boldsymbol{\Lambda}_{\mathbf{B}}^{-1} \mathbf{U}_{\mathbf{B}}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} = \mathbf{0},$$

$$\mathbf{U}_{\mathbf{B}} \boldsymbol{\Lambda}_{\mathbf{B}} \mathbf{U}_{\mathbf{B}}^{\mathsf{T}} - \frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{U}_{\mathbf{A}} \boldsymbol{\Lambda}_{\mathbf{A}}^{-1} \mathbf{U}_{\mathbf{A}}^{\mathsf{T}} \mathbf{X} = \mathbf{0},$$

$$n \operatorname{tr}(\boldsymbol{\Lambda}_{\mathbf{B}}^{-1}) + p \operatorname{tr}(\boldsymbol{\Lambda}_{\mathbf{A}}^{-1}) = \mathbf{0}.$$

$$(4.2)$$

Let $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\sigma}^2)$ be the solution of (4.2). Define the

$$\hat{\Sigma} = \hat{\mathbf{A}}\hat{\mathbf{A}}^{\mathsf{T}}, \quad \tilde{\Sigma} = \hat{\Sigma} + \hat{\sigma}^{2}\mathbf{I}_{n},$$

$$\hat{\Delta} = \hat{\mathbf{B}}\hat{\mathbf{B}}^{\mathsf{T}}, \quad \tilde{\Delta} = \hat{\Delta} + \hat{\sigma}^{2}\mathbf{I}_{p}.$$

From (4.2) we see that in order to find $\hat{\mathbf{A}}, \hat{\mathbf{B}}$ we first need to find matrices $\tilde{\boldsymbol{\Sigma}}, \tilde{\boldsymbol{\Delta}}$ such that

$$\tilde{\Sigma} = \frac{1}{p} \mathbf{X} \tilde{\Delta}^{-1} \mathbf{X}^{\mathsf{T}},$$
$$\tilde{\Delta} = \frac{1}{n} \mathbf{X}^{\mathsf{T}} \tilde{\Sigma}^{-1} \mathbf{X}.$$

We then perform eigenvalue decomposition on $\tilde{\Sigma}$, $\tilde{\Delta}$ to find $(\hat{\mathbf{U}}_{\mathbf{A}}, \hat{\Lambda}_{\mathbf{A}})$, $(\hat{\mathbf{U}}_{\mathbf{B}}, \hat{\Lambda}_{\mathbf{B}})$. After that we find $\hat{\sigma}^2$ by solving

$$n \operatorname{tr} \left(\hat{\mathbf{\Lambda}}_{\mathbf{B}}^{-1} \right) + p \operatorname{tr} \left(\hat{\mathbf{\Lambda}}_{\mathbf{A}}^{-1} \right) = \mathbf{0}.$$

Finally,

$$\hat{\mathbf{\Delta}}_{\mathbf{A}} = \hat{\mathbf{\Lambda}}_{\mathbf{A}}^{1/2} - \hat{\sigma}^2 \mathbf{I}_n,$$

$$\hat{\mathbf{\Delta}}_{\mathbf{B}} = \hat{\mathbf{\Lambda}}_{\mathbf{B}}^{1/2} - \hat{\sigma}^2 \mathbf{I}_p.$$

5 Simulation

5.1 Constructing row and column covariance matrices

For $i, j \in \mathbb{N} \cup \{0\}$, we define the following metrics:

$$d(i,j) = |i - j|,$$

$$d_1(i,j) = \frac{d(i,j)}{1 + d(i,j)},$$

$$d_2(i,j) = \log(1 + d(i,j)),$$

$$d_3(i,j) = \begin{cases} \max\{i,j\}, & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}.$$

We choose $\rho \in (0,1)$ and define the row covariance matrix $\Sigma = (\Sigma_{ij})$ such that

$$\Sigma_{ij} = \rho^{d(i,j)}.$$

For each category k, we define the column covariance matrix $\Delta_k = (\Delta_{k,ij})$ such that

$$\Delta_{k,ij} = \rho^{d_{k \text{mod}3}(i,j)}$$
.

5.2 Constructing joint and individual structure

The goal of this section is to construct the joint structure $\mathbf{J} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ and the individual structures $\mathbf{A}_k = \mathbf{U}_k\mathbf{D}_k\mathbf{V}_k^{\mathsf{T}}, k = 1, \dots, K$. We start by generating a random orthonormal basis

$$\mathbf{B} = (\mathbf{e}_1 \quad \dots \quad \mathbf{e}_n) \in \mathbb{R}^{n \times n}.$$

We construct the left-singular matrices such that

$$\mathbf{U} = \mathbf{\Sigma}^{1/2}(egin{array}{cccc} \mathbf{e}_1 & \dots & \mathbf{e}_r \end{array}),$$

$$egin{aligned} \mathbf{U}_1 &= \mathbf{\Sigma}^{1/2} (\ \mathbf{e}_{r+1} \ \ \dots \ \mathbf{e}_{r+r_1} \), \ &dots \ \end{aligned}$$
 \vdots $\mathbf{U}_K &= \mathbf{\Sigma}^{1/2} (\ \mathbf{e}_{r+r_1+\dots+r_{K-1}+1} \ \ \dots \ \mathbf{e}_{r+r_1+\dots+r_K} \). \end{aligned}$

This way we make sure that

$$\mathbf{U}^{\intercal}\mathbf{Q}\mathbf{U} = \mathbf{I}_r, \quad \mathbf{U}_k^{\intercal}\mathbf{Q}\mathbf{U}_k = \mathbf{I}_{r_k}.$$

Furthermore, we guarante that the intersection of the column spaces of \mathbf{J} and $\mathbf{A}_1, \dots, \mathbf{A}_K$ is the zero vector since

$$\mathbf{J}^{\mathsf{T}}\mathbf{Q}\mathbf{A}_k = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{J} \perp \mathbf{A}_k, \quad k = 1, \dots, K.$$

This means that the individual structures are truly individual because they do not share a common subspace with the joint space. In addition, we make sure that the intersection of the column spaces of $\mathbf{A}_1, \dots, \mathbf{A}_K$ is the zero vector since

$$\mathbf{A}_i^{\mathsf{T}} \mathbf{Q} \mathbf{A}_j = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{A}_j \perp \mathbf{A}_i, \quad i \neq j$$

This means that there is no common structure inside the individual structures.

Let Δ be a block diagonal matrix with blocks $\Delta_1, \ldots, \Delta_K$. We construct the right-singular matrices $\mathbf{V}, \mathbf{V}_1, \ldots, \mathbf{V}_K$ such that

$$\mathbf{V} = \mathbf{\Delta}^{1/2} \mathbf{C},$$
 $\mathbf{V}_1 = \mathbf{\Delta}^{1/2} \mathbf{C}_1,$
 \vdots
 $\mathbf{V}_K = \mathbf{\Delta}^{1/2} \mathbf{C}_K,$

where C, C_1, \ldots, C_K are orthonormal matrices. This way we make sure that

$$\mathbf{V}^{\mathsf{T}}\mathbf{R}\mathbf{V} = \mathbf{I}_r, \quad \mathbf{V}_k^{\mathsf{T}}\mathbf{R}_k\mathbf{V}_k = \mathbf{I}_{r_k}, \quad k = 1, \dots, K,$$

where $\mathbf{R} = \mathbf{\Delta}^1$ and $\mathbf{R}_k = \mathbf{\Delta}_k^{-1}$.

Finally, we randomly choose numbers $\lambda_1, \ldots, \lambda_{r+r_1+\ldots+r_K}$ such that $1 \leq \lambda_i \leq 20$ and

$$\lambda_1 \ge \dots \ge \lambda_r,$$

$$\lambda_{r+1} \ge \dots \ge \lambda_{r+r_1},$$

$$\vdots$$

$$\lambda_{r+r_1+\dots r_{K-1}+1} \ge \dots \ge \lambda_{r+r_1+\dots r_K}.$$

With these number we construct the matrices

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r \end{pmatrix},$$

$$\mathbf{D}_1 = \begin{pmatrix} \lambda_{r+1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{r+r_1} \end{pmatrix},$$

$$\vdots$$

$$\mathbf{D}_K = \begin{pmatrix} \lambda_{r+r_1+\dots+r_{k-1}+1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{r+r_1+\dots+r_K} \end{pmatrix}.$$

Let $s \leq \min\{n, p\}$. We first describe how to construct a matrix $\mathbf{U} \in \mathbb{R}^{n \times s}$ such that $\mathbf{U}^{\mathsf{T}} \mathbf{Q} \mathbf{U} = \mathbf{I}_s$ for $\mathbf{Q} \in \mathbb{R}^{n \times n}$, $\mathbf{Q} \succ \mathbf{0}$. Choose $\mathbf{e}_1, \dots, \mathbf{e}_s \in \mathbb{R}^n$ such that $\mathbf{e}_i^{\mathsf{T}} \mathbf{e}_j = \delta_{ij}$, where δ_{ij} is the Kroneker delta. There are many ways to construct such vectors. An easy way is to find a known orthonormal basis of \mathbb{R}^s and then attach n-s zeros at the end of each vector. A second approach in the same line of though would be to choose a known basis of \mathbb{R}^n and simply remove n-s vectors from it. Another way is to arbitrarily choose s linearly independent vectors of \mathbb{R}^n and then apply the Gram-Schmidt process on them. The second step of this process is to define $\mathbf{U} = \mathbf{Q}^{-1/2}(\mathbf{e}_1 \dots \mathbf{e}_s)$. Then,

$$(\mathbf{e}_1 \ldots \mathbf{e}_s)^\intercal (\mathbf{e}_1 \ldots \mathbf{e}_s) = \mathbf{I}_s \Leftrightarrow (\mathbf{Q}^{1/2}\mathbf{U})^\intercal (\mathbf{Q}^{1/2}\mathbf{U}) = \mathbf{I}_s \Leftrightarrow \mathbf{U}^\intercal \mathbf{Q} \mathbf{U} = \mathbf{I}_s.$$

Similarly, we construct a matrix $\mathbf{V} \in \mathbb{R}^{p \times s}$ such that $\mathbf{V}^{\mathsf{T}} \mathbf{R} \mathbf{V} = \mathbf{I}_s$. Finally, we simply define a diagonal positive definite matrix $\mathbf{D} \in \mathbb{R}^{s \times s}$. We define the joint structure to be

$$J = UDV^{\dagger}$$
.

Let $s_k \leq \min\{n, p_k\}$. Similarly like before, we construct matrices $\mathbf{U}_k \in \mathbb{R}^{n \times s_k}, \mathbf{D}_k \in \mathbb{R}^{s_k \times s_k}, \mathbf{W}_k \in \mathbb{R}^{p_k \times s_k}$ such that $\mathbf{U}_k^{\mathsf{T}} \mathbf{Q} \mathbf{U}_k = \mathbf{I}_{s_k}, \mathbf{W}_k^{\mathsf{T}} \mathbf{R}_k \mathbf{W}_k = \mathbf{I}_{s_k}$ and \mathbf{D}_k is a positive definite diagonal matrix. We define the individual structure to be

$$\mathbf{A}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{W}_k^{\intercal}.$$

We repeat this process K times to construct the concatenated matrix $\mathbf{A} = (\mathbf{A}_1 \dots \mathbf{A}_k)$. To ensure identifiability we require that $\mathbf{J}^T \mathbf{Q} \mathbf{A}_k = \mathbf{0}$ and $\mathbf{A}_i^{\mathsf{T}} \mathbf{Q} \mathbf{A}_j = \mathbf{0}$ for $i \neq j$.

In order to ensure identifiability we need to generate **U** and **U**_k by choosing different vectors from the same basis. A necessary condition for this to happen is $n \geq r + \sum_{k} r_{k}$.

Having constructed the common and individual structure, we define the observed data matrix to be

$$X = J + A + E,$$

where **E** is drawn from a matrix normal distribution $MN_{n,p}(\mathbf{0},\mathbf{Q}^{-1},\mathbf{R}^{-1})$.

6 Principal angles between subspaces of \mathbb{R}^n

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and positive definite matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ define the inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{Q}} = \mathbf{x}^{\dagger} \mathbf{Q} \mathbf{y}.$$

Let L, M be subspaces in $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbf{Q}})$. Without loss of generality we assume

$$\dim L = l \le m = \dim M$$

The principal angles between L and M, $0 \le \theta_1 \le \theta_2 \le \ldots \le \theta_l \le \pi/2$ are defined by

$$\cos \theta_i = \frac{\langle \mathbf{x}_i, \mathbf{y}_i \rangle_{\mathbf{Q}}}{\|\mathbf{x}_i\|_{\mathbf{Q}} \|\mathbf{y}_i\|_{\mathbf{Q}}} = \operatorname{argmax} \left\{ \frac{\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{Q}}}{\|\mathbf{x}\|_{\mathbf{Q}} \|\mathbf{y}\|_{\mathbf{Q}}} : \begin{array}{c} \mathbf{x} \in L, & \mathbf{x} \perp \mathbf{x}_k, \\ \mathbf{y} \in M, & \mathbf{y} \perp \mathbf{y}_k, \end{array} \right. k = 1 \dots, i - 1 \right\}.$$

Note that

$$\theta_1 = \ldots = \theta_k = 0 < \theta_{k+1} \quad \Leftrightarrow \quad \dim L \cap M = k > 0.$$

Lemma 1. Let the columns of $\mathbf{G}_L \in \mathbb{R}^{n \times l}$ and $\mathbf{G}_M \in \mathbb{R}^{n \times m}$ be orthonormal bases for L and M respectively, and let

$$\sigma_1 > \sigma_2 > \ldots > \sigma_l > 0$$

be the singular values of $\mathbf{G}_L^{\intercal}\mathbf{Q}\mathbf{G}_M$. Then

$$\cos \theta_i = \sigma_i, \quad i = 1, \dots, l,$$

and

$$\sigma_1 = \ldots = \sigma_k = 1 > \sigma_{k+1} \quad \Leftrightarrow \quad \dim L \cap M = k > 0.$$

Proof. Define

$$\mathbf{s} = \mathbf{G}_L \mathbf{y}, \quad \mathbf{t} = \mathbf{G}_M \mathbf{z}.$$

Then,

$$\mathbf{s}^\intercal \mathbf{Q} \mathbf{s} = \mathbf{y}^\intercal \mathbf{G}_L^\intercal \mathbf{Q} \mathbf{G}_L \mathbf{y} = \mathbf{y}^\intercal \mathbf{y},$$
 $\mathbf{t}^\intercal \mathbf{Q} \mathbf{t} = \mathbf{z}^\intercal \mathbf{G}_M^\intercal \mathbf{Q} \mathbf{G}_M \mathbf{z} = \mathbf{z}^\intercal \mathbf{z}.$

Therefore, the problem

$$\mathbf{y}_{k}^{\mathsf{T}}\mathbf{G}_{L}^{\mathsf{T}}\mathbf{Q}\mathbf{G}_{M}\mathbf{z}_{k} = \operatorname{argmax} \left\{ \begin{aligned} \mathbf{y} \in \mathbb{R}^{l}, \mathbf{z} \in \mathbb{R}^{m}, \\ \mathbf{y}^{\mathsf{T}}\mathbf{G}_{L}^{\mathsf{T}}\mathbf{Q}\mathbf{G}_{M}\mathbf{z} : & \|\mathbf{y}\|_{2} = \|\mathbf{z}\|_{2} = 1, & i = 1, \dots, k - 1 \\ \mathbf{y}^{\mathsf{T}}\mathbf{y}_{i} = \mathbf{z}^{\mathsf{T}}\mathbf{z}_{i} = 0, \end{aligned} \right\}$$

can be rewritten as

$$\mathbf{s}_{k}^{\mathsf{T}}\mathbf{Q}\mathbf{t}_{k} = \operatorname{argmax} \left\{ \mathbf{s}^{\mathsf{T}}\mathbf{Q}\mathbf{t} : \|\mathbf{s}\|_{\mathbf{Q}} = \|\mathbf{t}\|_{\mathbf{Q}} = 1, i = 1, \dots, k - 1 \right\}.$$

$$\mathbf{s}^{\mathsf{T}}\mathbf{Q}\mathbf{s}_{i} = \mathbf{t}^{\mathsf{T}}\mathbf{Q}\mathbf{t}_{i} = 0,$$

Lemma 1 shows that the principal angle problem of L, M in $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbf{Q}})$ is equivalent to the problem of singular value decomposition of $\mathbf{G}_L^{\mathsf{T}}\mathbf{Q}\mathbf{G}_M$ in $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_2)$

Theorem 1. Let the columns of $\mathbf{G}_L \in \mathbb{R}^{n \times l}$ and $\mathbf{G}_M \in \mathbb{R}^{n \times m}$ be orthonormal bases for L and M respectively, and denote

$$\mathbf{G} = (\mathbf{G}_L, \mathbf{G}_M).$$

Let the singular values of $\mathbf{G}_L^{\intercal}\mathbf{Q}\mathbf{G}_M$ be

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_l \geq 0.$$

Then the singular values of $GMD(\mathbf{G}, \mathbf{Q}, \mathbf{I}_{l+m})$ in decreasing order are

$$\sqrt{1+\sigma_1},\ldots,\sqrt{1+\sigma_l},\underbrace{1,\ldots,1}_{m-l},\sqrt{1-\sigma_l},\ldots,\sqrt{1-\sigma_1}.$$

Proof. Since

$$\mathbf{G}^\intercal \mathbf{Q} \mathbf{G} = \left(egin{array}{cc} \mathbf{I}_l & \mathbf{G}_L^\intercal \mathbf{Q} \mathbf{G}_M \ \mathbf{G}_M^\intercal \mathbf{Q} \mathbf{G}_L & \mathbf{I}_m \end{array}
ight) = \mathbf{I}_{l+m} + \left(egin{array}{cc} \mathbf{0} & \mathbf{G}_L^\intercal \mathbf{Q} \mathbf{G}_M \ \mathbf{G}_M^\intercal \mathbf{Q} \mathbf{G}_L & \mathbf{0} \end{array}
ight)$$

By Lemma 1 there exist $\mathbf{U} \in \mathbb{R}^{l \times l}$, $\mathbf{\Sigma} \in \mathbb{R}^{l \times l}$ and $\mathbf{V} \in \mathbf{R}^{m \times l}$ such that

$$\mathbf{G}_L^{\intercal}\mathbf{Q}\mathbf{G}_M = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\intercal}$$

and

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}_{l}, \quad \mathbf{\Sigma} = \mathrm{diag}(\sigma_{1}, \dots, \sigma_{l}).$$

We can write the SVD in its complete form by including the singular vectors that correspond to the zero singular values, i.e.

$$\mathbf{G}_L^\intercal \mathbf{Q} \mathbf{G}_M = \mathbf{U} (\mathbf{\Sigma} \quad \mathbf{0}_{l imes (m-l)}) \left(egin{array}{c} \mathbf{V}^\intercal \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ & & \ &$$

where $(\mathbf{V} \quad \tilde{\mathbf{V}})$ is an orthonormal basis of \mathbf{R}^m . Define

$$\mathbf{W} = \left(egin{array}{ccc} rac{1}{\sqrt{2}}\mathbf{U} & \mathbf{0} & -rac{1}{\sqrt{2}}\mathbf{U} \ rac{1}{\sqrt{2}}\mathbf{V} & ilde{\mathbf{V}} & rac{1}{\sqrt{2}}\mathbf{V} \end{array}
ight).$$

Then

$$\left(egin{array}{ccc} \mathbf{0} & \mathbf{G}_L^\intercal \mathbf{Q} \mathbf{G}_M \ \mathbf{G}_M^\intercal \mathbf{Q} \mathbf{G}_L & \mathbf{0} \end{array}
ight) = \mathbf{W} \left(egin{array}{ccc} \mathbf{\Sigma} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & -\mathbf{\Sigma} \end{array}
ight) \mathbf{W}^\intercal \quad ext{and} \quad \mathbf{W}^\intercal \mathbf{W} = \mathbf{W} \mathbf{W}^\intercal = \mathbf{I}_{l+m}.$$

Therefore,

$$\mathbf{G}^{\intercal}\mathbf{Q}\mathbf{G}=\mathbf{W}\left(egin{array}{ccc} \mathbf{I}_l+\mathbf{\Sigma} & \mathbf{0} & \mathbf{0} \ & \mathbf{0} & \mathbf{I}_{m-l} & \mathbf{0} \ & \mathbf{0} & \mathbf{0} & \mathbf{I}_l-\mathbf{\Sigma} \end{array}
ight)\mathbf{W}^{\intercal}.$$

Suppose the generalized matrix decomposition of G is XDY^{\dagger} , where

$$\mathbf{X} \in \mathbb{R}^{n \times (l+m)}, \quad \mathbf{X}^{\mathsf{T}} \mathbf{Q} \mathbf{X} = \mathbf{I}_{l+m},$$

$$\mathbf{D} = \operatorname{diag}(d_1, \dots, d_{l+m}),$$

$$\mathbf{Y} \in \mathbb{R}^{(l+m) \times (l+m)}, \quad \mathbf{Y}^{\mathsf{T}} \mathbf{Y} = \mathbf{Y} \mathbf{Y}^{\mathsf{T}} = \mathbf{I}_{l+m}.$$

Then

$$\mathbf{G}^{\mathsf{T}}\mathbf{Q}\mathbf{G} = \mathbf{Y}\mathbf{D}\mathbf{X}^{\mathsf{T}}\mathbf{Q}\mathbf{X}\mathbf{D}\mathbf{Y}^{\mathsf{T}} = \mathbf{Y}\mathbf{D}^{2}\mathbf{Y}^{\mathsf{T}},$$

which implies that

$$d_i^2 = \begin{cases} 1 + \sigma_i, & 1 \le i \le l \\ 1, & l + 1 \le i \le m \\ 1 - \sigma_i, & m + 1 \le l \le m + l \end{cases}$$

Theorem 1 shows that the principal angle problem of L, M in $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbf{Q}})$ is equivalent to the $\mathrm{GMD}(\mathbf{G}, \mathbf{Q}, \mathbf{I}_{l+m})$

Let $\mathbf{X}_1 \in \mathbb{R}^{n \times p_1}$ and $\mathbf{X}_2 \in \mathbb{R}^{n \times p_2}$ of rank r_1 and r_2 respectively. Without loss of generality we assume $r_1 \leq r_2$. Let the generalized matrix decomposition of \mathbf{X}_k be

$$\mathbf{X}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{V}_k^{\mathsf{T}}, \quad k = 1, 2,$$

where $\mathbf{U}_k^{\intercal}\mathbf{Q}\mathbf{U}_k = \mathbf{I}_{r_k}$ and $\mathbf{V}_k^{\intercal}\mathbf{R}_k\mathbf{V}_k = \mathbf{I}_{r_k}$.

Lemma 2. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ and suppose $GMD_r(\mathbf{X}, \mathbf{Q}, \mathbf{R}) = (\mathbf{U}, \mathbf{\Sigma}, \mathbf{V})$. Then the column space of \mathbf{X} is equal to the column space of \mathbf{U} .

Proof. Define $\mathbf{S} = (\mathbf{\Sigma} \quad \mathbf{0}) \in \mathbb{R}^{r \times p}$. There exists matrix \mathbf{V}^* such that $\tilde{\mathbf{V}}^{\dagger} \mathbf{R} \tilde{\mathbf{V}} = \mathbf{I}_p$, where $\tilde{\mathbf{V}} = (\mathbf{V} \quad \mathbf{V}^*) \in \mathbb{R}^{p \times p}$.

The inverse of $\tilde{\mathbf{V}}$ exists. Indeed,

$$\mathbf{I}_p = (\mathbf{R}^{1/2} \tilde{\mathbf{V}})^\intercal (\mathbf{R}^{1/2} \tilde{\mathbf{V}}) \Rightarrow (\mathbf{R}^{1/2} \tilde{\mathbf{V}})^{-1} = \tilde{\mathbf{V}}^\intercal \mathbf{R}^{1/2} \Rightarrow \tilde{\mathbf{V}}^{-1} = \tilde{\mathbf{V}}^\intercal \mathbf{R}$$

It is a know fact that for \mathbf{A}, \mathbf{B} such that \mathbf{B}^{-1} exists we have

$$col(\mathbf{AB}) = col(\mathbf{A}).$$

Thus,

$$\operatorname{col}(\mathbf{X}) = \operatorname{col}(\mathbf{U}\mathbf{S}\tilde{\mathbf{V}}^{\intercal}) = \operatorname{col}(\mathbf{U}\mathbf{S}) = \operatorname{col}(\mathbf{U}\mathbf{\Sigma}) = \operatorname{col}(\mathbf{U}).$$

Lemma 2 implies that the column space of the joint structure is equal to

$$\operatorname{col}(\mathbf{X}_1) \cap \operatorname{col}(\mathbf{X}_2) = \operatorname{col}(\mathbf{U}_1) \cap \operatorname{col}(\mathbf{U}_2).$$

Define $\tilde{\mathbf{U}} = (\mathbf{U}_1, \mathbf{U}_2)$. Let $\mathbf{W} \mathbf{\Lambda} \mathbf{Y}^{\dagger}$ be the r_1 -rank generalized matrix decomposition of $\tilde{\mathbf{U}}$, such that $\mathbf{W}^{\dagger} \mathbf{Q} \mathbf{W} = \mathbf{I}_{r_1}$ and $\mathbf{Y}^{\dagger} \mathbf{Y} = \mathbf{I}_{r_1}$. By Theorem 1 the singular values of $\mathrm{GMD}(\tilde{\mathbf{U}}, \mathbf{Q}, \mathbf{I}_{r_1})$ in decreasing order are

$$\sqrt{1+\cos\theta_1},\ldots,\sqrt{1+\cos\theta_{r_1}}.$$

Define $\lambda_i = \sqrt{1 + \cos \theta_i}$. Thus, the principal angles of \mathbf{U}_1 and \mathbf{U}_2 in increasing order are

$$0 \le \theta_1 = \arccos(\lambda_1^2 - 1) \le \ldots \le \theta_{r_1} = \arccos(\lambda_{r_1}^2 - 1) \le \frac{\pi}{2}.$$

Let $\mathbf{W} = (\mathbf{w}_1 \dots \mathbf{w}_{r_1})$. Suppose $\theta_1 = \dots = \theta_s = 0$. Then $\tilde{\mathbf{W}} = (\mathbf{w}_1 \dots \mathbf{w}_s)$ is the orthonormal basis of the joint structure. Define the projection matrix $\mathbf{P} = \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\mathsf{T}} \mathbf{Q}$. The joint structure and the individual structure of $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ are given by $\mathbf{P} \mathbf{X}$ and $(\mathbf{I} - \mathbf{P}) \mathbf{X}$ respectively.

7 Metrics

To compare the methods we are using two different metrics. Let \mathbf{J}, \mathbf{A} be the true joint and individual structure matrices, and $\hat{\mathbf{J}}, \hat{\mathbf{A}}$ be the estimated joint and individual structure matrices. To compare the estimation error we use

$$\frac{\|\mathbf{J} - \hat{\mathbf{J}}\|_{\mathbf{Q},\mathbf{R}}}{\|\mathbf{J}\|_{\mathbf{Q},\mathbf{R}}} + \frac{\|\mathbf{A} - \hat{\mathbf{A}}\|_{\mathbf{Q},\mathbf{R}}}{\|\mathbf{A}\|_{\mathbf{Q},\mathbf{R}}}.$$

The covariance matrices \mathbf{Q} , \mathbf{R} are chosen so that they are in accordance with the assumptions for the estimator. For example if we are dealing with the JIVE method we use $\mathbf{Q} = \mathbf{I}_n$, $\mathbf{R} = \mathbf{I}_p$. On the other hand if we are dealing with the iterative JIVE estimators we use the given non-trivial \mathbf{Q} , \mathbf{R} .

The second metric that we use has to do with subspace recovery. Suppose $\mathbf{J} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ and $\hat{\mathbf{J}} = \hat{\mathbf{U}}\hat{\mathbf{D}}\hat{\mathbf{V}}^{\mathsf{T}}$. The projection onto the true joint column space is given by $\mathbf{P} = \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{Q}$ and onto the estimated joint column space is given by $\hat{\mathbf{P}} = \hat{\mathbf{U}}\hat{\mathbf{U}}^{\mathsf{T}}\mathbf{Q}$. The subspace recovery error is given by

$$\|\mathbf{P} - \hat{\mathbf{P}}\|_F$$
.

Again **Q** is chosen in accordance with the assumptions about the space and it can be different between the true and the estimated space.

8 Metric for variation

Let \mathbf{J} and \mathbf{A} be defined as above. Then,

$$\begin{split} \|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2 &= \operatorname{tr}(\mathbf{Q}\mathbf{X}\mathbf{R}\mathbf{X}^{\intercal}) \\ &= \operatorname{tr}[\mathbf{Q}(\mathbf{J} + \mathbf{A})\mathbf{R}(\mathbf{J} + \mathbf{A})^{\intercal}] \\ &= \operatorname{tr}(\mathbf{Q}\mathbf{J}\mathbf{R}\mathbf{J}^{\intercal}) + 2\operatorname{tr}(\mathbf{Q}\mathbf{J}\mathbf{R}\mathbf{A}^{\intercal}) + \operatorname{tr}(\mathbf{Q}\mathbf{A}\mathbf{R}\mathbf{A}^{\intercal}). \end{split}$$

By assumption, $\mathbf{J}^{\mathsf{T}}\mathbf{Q}\mathbf{A} = \mathbf{0}$. Therefore,

$$\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2 = \operatorname{tr}(\mathbf{Q}\mathbf{J}\mathbf{R}\mathbf{J}^\intercal) + \operatorname{tr}(\mathbf{Q}\mathbf{A}\mathbf{R}\mathbf{A}^\intercal) = \|\mathbf{J}\|_{\mathbf{Q},\mathbf{R}}^2 + \|\mathbf{A}\|_{\mathbf{Q},\mathbf{R}}^2.$$

Let the solution of GMD for J be UDV^{\intercal} . Then,

$$\|\mathbf{J}\|_{\mathbf{Q},\mathbf{R}}^2 = \operatorname{tr}(\mathbf{Q}\mathbf{U}\mathbf{D}\mathbf{V}^\intercal\mathbf{R}\mathbf{V}\mathbf{D}\mathbf{U}^\intercal) = \operatorname{tr}(\mathbf{Q}\mathbf{U}\mathbf{D}^2\mathbf{U}^\intercal) = \operatorname{tr}(\mathbf{D}^2\mathbf{U}^\intercal\mathbf{Q}\mathbf{U}) = \operatorname{tr}(\mathbf{D}^2).$$

Writing **A** in its concatenated form $(\mathbf{A}_1 \dots \mathbf{A}_K)$ we get,

$$\|\mathbf{A}\|_{\mathbf{Q},\mathbf{R}}^2 = \operatorname{tr}(\mathbf{Q}\mathbf{A}\mathbf{R}\mathbf{A}^{\intercal}) = \sum_{k=1}^K \operatorname{tr}(\mathbf{Q}\mathbf{A}_k\mathbf{R}_k\mathbf{A}_k^{\intercal}) = \sum_{k=1}^K \|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2.$$

Let the solution of GMD for \mathbf{A}_k be $\mathbf{U}_k \mathbf{D}_k \mathbf{W}_k^{\mathsf{T}}$. Then,

$$\begin{aligned} \|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 &= \operatorname{tr}(\mathbf{Q}\mathbf{U}_k\mathbf{D}_k\mathbf{W}_k^{\intercal}\mathbf{R}_k\mathbf{W}_k\mathbf{D}_k\mathbf{U}_k^{\intercal}) \\ &= \operatorname{tr}(\mathbf{Q}\mathbf{U}_k\mathbf{D}_k^2\mathbf{U}_k^{\intercal}) \\ &= \operatorname{tr}(\mathbf{D}_k^2\mathbf{U}_k^{\intercal}\mathbf{Q}\mathbf{U}_k) \\ &= \operatorname{tr}(\mathbf{D}_k^2). \end{aligned}$$

Therefore,

$$\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2 = \operatorname{tr}(\mathbf{D}^2) + \sum_{k=1}^K \operatorname{tr}(\mathbf{D}_k^2).$$

From the above, we deduce that the quantities $\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2$, $\|\mathbf{J}\|_{\mathbf{Q},\mathbf{R}}^2$ and $\|\mathbf{A}\|_{\mathbf{Q},\mathbf{R}}^2$ express a form of variation. In particular, $\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2$ expresses the total squared variation

of the generalized joint matrix decomposition. If we write \mathbf{X} and \mathbf{J} in their concatenated forms $(\mathbf{X}_1 \dots \mathbf{X}_K)$ and $(\mathbf{J}_1 \dots \mathbf{J}_K)^{\intercal}$ respectively, we get

$$\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^{2} = \operatorname{tr}(\mathbf{Q}\mathbf{X}\mathbf{R}\mathbf{X}^{\mathsf{T}}) = \sum_{k=1}^{K} \operatorname{tr}(\mathbf{Q}\mathbf{X}_{k}\mathbf{R}_{k}\mathbf{X}_{k}^{\mathsf{T}}) = \sum_{k=1}^{K} \|\mathbf{X}_{k}\|_{\mathbf{Q},\mathbf{R}_{k}}^{2},$$
$$\|\mathbf{J}\|_{\mathbf{Q},\mathbf{R}}^{2} = \operatorname{tr}(\mathbf{Q}\mathbf{J}\mathbf{R}\mathbf{J}^{\mathsf{T}}) = \sum_{k=1}^{K} \operatorname{tr}(\mathbf{Q}\mathbf{J}_{k}\mathbf{R}_{k}\mathbf{J}_{k}^{\mathsf{T}}) = \sum_{k=1}^{K} \|\mathbf{J}_{k}\|_{\mathbf{Q},\mathbf{R}_{k}}^{2}$$

Hence,

$$\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2 = \sum_{k=1}^K \|\mathbf{X}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 = \sum_{k=1}^K \left(\|\mathbf{J}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 + \|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 \right).$$

From this we conclude that $\|\mathbf{X}_k\|_{\mathbf{Q},\mathbf{R}_k}^2$ expresses the squared variation of the k-th dataset. Finally, since

$$\sum_{k=1}^K \|\mathbf{J}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 = \operatorname{tr}(\mathbf{D}^2) \quad \text{and} \quad \sum_{k=1}^K \|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2 = \sum_{k=1}^K \operatorname{tr}(\mathbf{D}_k^2),$$

we can further decompose the squared variation of $\|\mathbf{X}_k\|_{\mathbf{Q},\mathbf{R}_k}^2$ into the squared variation $\|\mathbf{J}_k\|_{\mathbf{Q},\mathbf{R}_k}^2$ explained by the joint component and the squared variation $\|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2$ explained by the individual component. In summary, the statistics that we are interested in are

$$\frac{\|\mathbf{J}_k\|_{\mathbf{Q},\mathbf{R}_k}^2}{\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2} \quad \text{and} \quad \frac{\|\mathbf{A}_k\|_{\mathbf{Q},\mathbf{R}_k}^2}{\|\mathbf{X}\|_{\mathbf{Q},\mathbf{R}}^2}.$$

9 Supplementary

Theorem 2. 1) If $\mathbf{U}^{\mathsf{T}}\mathbf{Q}\mathbf{U}_{i} = \mathbf{0}$, then $\mathbf{J}^{\mathsf{T}}\mathbf{Q}\mathbf{A}_{i} = \mathbf{0}$. 2) For $i \neq j$, if $\mathbf{U}_{i}^{\mathsf{T}}\mathbf{Q}\mathbf{U}_{j} = \mathbf{0}$, then $\mathbf{U}_{i}^{\mathsf{T}}\mathbf{Q}\mathbf{U}_{j} = \mathbf{0}$.

Proof. We will only prove 1 because 2 is proved similarly.

$$\mathbf{J}^\intercal \mathbf{Q} \mathbf{A}_i = \mathbf{V} \mathbf{D} \mathbf{U}^\intercal \mathbf{Q} \mathbf{U}_i \mathbf{D}_i \mathbf{W}_i^\intercal = \mathbf{0}.$$

Corollary 1. Let $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ be an orthonormal basis of \mathbb{R}^n and $\mathbf{U} = \mathbf{Q}^{-1/2}(\mathbf{e}_{l_1} \dots \mathbf{e}_{l_s})$, $\mathbf{U}_i = \mathbf{Q}^{-1/2}(\mathbf{e}_{m_1} \dots \mathbf{e}_{m_{r_i}})$, $\mathbf{U}_j = \mathbf{Q}^{-1/2}(\mathbf{e}_{h_1} \dots \mathbf{e}_{h_{r_j}})$. If

1.
$$\{l_1,\ldots,l_s\}\cap\{m_1,\ldots,m_{r_i}\}=\emptyset$$
, then $\mathbf{J}^{\intercal}\mathbf{Q}\mathbf{A}_i=\mathbf{0}$,

2.
$$\{m_1,\ldots,m_{r_i}\}\cap\{h_1,\ldots,h_{r_j}\}=\emptyset$$
, then $\mathbf{U}_i^{\mathsf{T}}\mathbf{Q}\mathbf{U}_j=\mathbf{0}$.

Proof. We will only prove 1. By Theorem 2, if $\mathbf{U}^{\intercal}\mathbf{Q}\mathbf{U}_{i}=\mathbf{0}$, then $\mathbf{J}^{\intercal}\mathbf{Q}\mathbf{A}_{i}=\mathbf{0}$. If $\{l_{1},\ldots,l_{s}\}\cap\{m_{1},\ldots,m_{r_{i}}\}=\emptyset$, then

$$\mathbf{U}^\intercal \mathbf{Q} \mathbf{U}_i = \left(egin{array}{c} \mathbf{e}_{l_1}^\intercal \ dots \ \mathbf{e}_{l_s}^\intercal \end{array}
ight) \left(\mathbf{e}_{m_1} \dots \mathbf{e}_{m_{r_i}}
ight) = \left(egin{array}{ccc} \mathbf{e}_{l_1}^\intercal \mathbf{e}_{m_1} & \dots & \mathbf{e}_{l_1}^\intercal \mathbf{e}_{m_{r_i}} \ dots & \ddots & dots \ \mathbf{e}_{l_s} \mathbf{e}_{m_1} & \dots & \mathbf{e}_{l_s} \mathbf{e}_{m_{r_i}} \end{array}
ight) = \mathbf{0}.$$

Theorem 3. Assume that $\bigcap_{k=1}^K \operatorname{col}(\mathbf{X}_k) \neq \{\mathbf{0}\}$. Then, there exist $\mathbf{J}_k, \mathbf{A}_k$ such that

1.
$$\mathbf{X}_k = \mathbf{J}_k + \mathbf{A}_k$$
,

2. $\operatorname{col}(\mathbf{J}_k) = \operatorname{col}(\mathbf{J}),$

3.
$$\operatorname{col}(\mathbf{J}_k) \perp \operatorname{col}(\mathbf{A}_k)$$
,

4.
$$\bigcap_{k=1}^{K} \operatorname{col}(\mathbf{A}_k) = \{\mathbf{0}\}.$$

Proof. 1. Define

$$\operatorname{col}(\mathbf{J}) = \bigcap_{k=1}^{K} \operatorname{col}(\mathbf{X}_k) \subset \operatorname{col}(\mathbf{X}_k) \subset \mathbb{R}^n.$$

Then, there exists $\mathbf{V} \in \mathbf{R}^{n \times r}$ such that $\mathbf{V}^{\intercal} \mathbf{V} = \mathbf{I}_r$ and $\operatorname{col}(\mathbf{J}) = \operatorname{span}(V)$. Define the projection matrix $\mathbf{P} = \mathbf{V} \mathbf{V}^{\intercal} \in \mathbb{R}^{n \times n}$. Then, we can write

$$\mathbf{X}_k = \mathbf{P}\mathbf{X}_k + (\mathbf{I} - \mathbf{P})\mathbf{X}_k.$$

Define $\mathbf{J}_k = \mathbf{P}\mathbf{X}_k$ and $\mathbf{A}_k = (\mathbf{I} - \mathbf{P})\mathbf{X}_k$. Then,

$$col(\mathbf{X}_k) = (col(\mathbf{X}_k) \cap ran(\mathbf{P})) \oplus (col(\mathbf{X}_k) \cap ran(\mathbf{I} - \mathbf{P}))$$
$$= col(\mathbf{J}) \oplus (col(\mathbf{X}_k) \cap ran(\mathbf{I} - \mathbf{P}))$$

.

Thus, $col(\mathbf{J}_k) = col(\mathbf{J})$ and $col(\mathbf{A}_k) = col(\mathbf{X}_k) \cap ran(\mathbf{I} - \mathbf{P})$.

In addition,

$$col(\mathbf{J}_k) = ran(\mathbf{P}) \text{ and } col(\mathbf{A}_k) \subset ran(\mathbf{I} - \mathbf{P}) \Rightarrow col(\mathbf{J}_k) \perp col(\mathbf{A}_k).$$

Finally,

$$\bigcap_{k=1}^{K} (\operatorname{col}(\mathbf{X}_k) \cap \operatorname{ran}(\mathbf{I} - \mathbf{P})) = \left(\bigcap_{k=1}^{K} \operatorname{col}(\mathbf{X}_k) \cap \operatorname{ran}(\mathbf{I} - \mathbf{P})\right)$$
$$= \operatorname{ran}(\mathbf{P}) \cap \operatorname{ran}(\mathbf{I} - \mathbf{P})$$
$$= \{\mathbf{0}\}.$$

References