Zadania do deklaracji (poniedziałek)

Zadanie 1 Znajdź promień zbieżności następujących szeregów potęgowych:

1.
$$\sum_{n=0}^{\infty} (2 + (-1)^n)^n x^n$$
 2. $\sum_{n=1}^{\infty} \frac{n^{1000}}{\sqrt{n!}} x^n$

2.
$$\sum_{n=1}^{\infty} \frac{n^{1000}}{\sqrt{n!}} x^n$$

$$3. \sum_{n=1}^{\infty} \frac{1}{\ln(2+n)} x^n$$

Zadanie 2 Znajdź sumy poniższych szeregów:

$$1. \sum_{n=0}^{\infty} n(n+1)x^n$$

$$2. \sum_{n=0}^{\infty} n^3 x^n$$

3.
$$\sum_{n=0}^{\infty} (-1)^n n^2 x^n$$

Zadanie 3 Udowodnij zbieżność jednostajną dla szeregu $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ na odcinku [-1,1].

Wskazówka: przeczytać przykład 7.4 w skrypcie.

Zadanie 4 Znaleźć postać ogólną funkcji f tożsamościowo spełniającej równanie

$$(1 - x^2)f''(x) - 2xf'(x) - \lambda f(x) = 0$$

gdzie $\lambda \in \mathbb{R}$ jest pewną liczbą rzeczywistą, zakładając, że f jest sumą pewnego szeregu potęgowego o środku w $x_0 = 0$.

Wskazówka: Rozwiązaniem będą wielomiany Legendre'a (Legendre polynomials), można o nich więcej poczytać w internecie

Zadania na zajęcia

Zadanie 5 Znajdź $f^{(n)}(0)$:

1.
$$f(x) = \frac{1}{2+3x^2}$$
, dla $x \in \mathbb{R}$, $n = 1001$,

2.
$$f(x) = \arctan x$$
, dla $x \in \mathbb{R}$, $n = 999$,

3.
$$f(x) = \frac{x}{(x-2)(x-3)}$$
, dla $x \in (-1;1)$, $n = 100$

Zadanie 6 Znaleźć postać ogólną funkcji f tożsamościowo spełniającej równanie

$$f''(x) + \lambda f(x) = 0$$

gdzie $\lambda \in \mathbb{R}$ jest pewną liczbą rzeczywistą, zakładając, że f jest sumą pewnego szeregu potęgowego o środku w $x_0 = 0$.

1

Zadanie 7* Niech $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Oblicz $\exp(iA)$.

Zadanie 8 Niech
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 dla $x \in \mathbb{R}$, $F(x) = \frac{f(x)}{1-x}$. Znaleźć $F^{(n)}(0)$.

Zadanie 9 Zbadać zbieżność punktową, jednostajną i niemal jednostajną ciągów funkcyjnych

- 1. $f_n(x) = x^n x^{n+1}$ na [0,1]
- 2. $f_n(x) = \sin\left(\frac{x}{n}\right)$ na \mathbb{R}
- 3. $f_n(x) = x \arctan(nx)$ na \mathbb{R}