Lecture 5: "Simple Neural Networks"

Dr. Ehab Essa

Computer Science Department, Mansoura University

Today

- Hebb nets
- Perceptron
- Adaline

- Lecture Notes:
 - ▶ **Chapter 2**, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications by Laurene Fausett

General architecture

Single layer

net input to Y:
$$y_i = b + \sum_{i=1}^n x_i w_i$$

bias ${m b}$ is treated as the weight from a special unit with constant output 1. threshold ${m heta}$ related to ${m Y}$

output
$$y = f(y_in) = \begin{cases} 1 & \text{if } y_in \ge \theta \\ -1 & \text{if } y_in < \theta \end{cases}$$

classify (x_1, \dots, x_n) into one of the two classes

Decision region/boundary

n = 2, b != 0,
$$\theta$$
 = 0
 $\mathbf{b} + \mathbf{x}_1 \mathbf{w}_1 + \mathbf{x}_2 \mathbf{w}_2 = 0$ or
 $\mathbf{x}_2 = -\frac{\mathbf{w}_1}{\mathbf{w}_2} \mathbf{x}_1 - \frac{\mathbf{b}}{\mathbf{w}_2}$

is a line, called *decision boundary*, which partitions the plane into two decision regions

If a point/pattern (x_1, x_2) is in the positive region, then $b + x_1w_1 + x_2w_2 \ge 0$, and the output is one (belongs to class one) Otherwise, $b + x_1w_1 + x_2w_2 < 0$, output -1 (belongs to class two)

n = 2, b = 0, $\theta != 0$ would result a similar partition

Hebb Nets

- Hebb, in his influential book The organization of Behavior (1949), claimed
 - lacktriangleright Behavior changes are primarily due to the changes of synaptic strengths ($m{w}_{ij}$) between neurons I and j
 - \mathbf{w}_{ii} increases only when both I and j are "on": the **Hebbian learning law**
 - In ANN, Hebbian law can be stated: w_{ij} increases only if the outputs of both units x_i and y_i have the same sign.
 - In our simple network (one output and n input units)

$$w_{ij}(new) = w_{ij}(old) + x_i y$$

Hebb Nets

► Hebb net (supervised) learning algorithm (p.49)

```
Step 0. Initialization: b = 0, w_i = 0, i = 1 to n

Step 1. For each of the training sample s:t do steps 2 -4

/* s is the input pattern, t the target output of the sample */

Step 2. x_i := s_i, (i = 1 \text{ to } n) /* set s to input units */

Step 3. y := t /* set y to the target */

Step 4. w_i := w_i + x_i * y, (i = 1 \text{ to } n) /* update weight */

b := b + y /* update bias */
```

Notes:

- 1) each training sample is used only once.
- 2) Weight change can be written $\Delta w_{ij} = x_i y$

$$w_{ij}(new) = w_{ij}(old) + \Delta w_{ij}$$

 Activation function If binary data: binary step function If bipolar data: bipolar sign function

bias unit

▶ Hebb net for **and function**: binary input and output

Input	target	Weight changes			weights			
(x1,x2,1)	Y=t	Δw1	Δw2	Δb	w1	w2	b	
					0	0	0	
(1,1,1)	1							
(1,0,1)	0							
(0,1,1)	0							
(0,0,1)	0							
†								

$$\Delta w_{ij} = x_i y$$

Hebb net for <u>and function</u>: binary input and output

$$w_{ij}(new) = w_{ij}(old) + \Delta w_{ij}$$

Input	target	We	eight cha	nges	weights			
(x1,x2,1)	Y=t	Δw1	Δw2	Δb	w1	w2	b	
					0	0	0	
(1,1,1)	1	1	1	1	1	1	1	
(1,0,1)	0	0	0	0	1	1	1	
(0,1,1)	0	0	0	0	1	1	1	
(0,0,1)	0	0	0	0	1	1	1	

bias unit

- Is it correctly learned after using each sample once?
- Testing second pattern
- (1,0): x1=1,,, x2=0,,, w1=1,, w2=1,, b=1,, $\theta=0$
- ► $X1*w1 + x2*w2 + b = 1 + 0 + 1 = 2 > \theta$ → output = 1 which is wrong

▶ Bipolar units (1, -1)

Input	target	Weight changes			weights				
(x1,x2,1)	Y=t	Δw1	Δw2	Δb	w1	w2	b		
					0	0	0		
(1,1,1)	1	1	1	1	1	1	1		
(1,-1,1)	-1	-1	1	-1	0	2	0		
(-1,1,1)	-1	1	-1	-1	1	1	-1		
(-1,-1,1)	-1	1	1	-1	2	2	-2		

Testing (1,1):
$$x1=1$$
 ,,, $x2=1$,,, $w1=2$,, $w2=2$,, $b=-2$,, $\theta=0$ X1w1 + x2w2 + b = 2 + 2 - 2 = 2 → 0 → output = 1

Testing (1,-1):
$$x1=1$$
 ,,, $x = 2 = -1$,,, $x = 2 = -1$,, $x = 2 = -1$, $x = 2 = -1$

▶ Bipolar units (1, -1)

Input	target	Weight changes			weights				
(x1,x2,1)	Y=t	Δw1	Δw2	Δb	w1	w2	b		
					0	0	0		
(1,1,1)	1	1	1	1	1	1	1		
(1,-1,1)	-1	-1	1	-1	0	2	0		
(-1,1,1)	-1	1	-1	-1	1	1	-1		
(-1,-1,1)	-1	1	1	-1	2	2	-2		

A correct boundary -1 + x1 + x2 = 0is successfully learned

Testing (-1,1):
$$x1=-1$$
 ,,, $x = 2 = 1$,,, $y = 2 = 2$,, $y = 2 = 2$,, $y = 0$
 $x_1y_1 + x_2y_2 + y_3 = -2 + 2 - 2 = -2$ $x = 0$ output $y = -1$

Testing (-1,-1):
$$\times 1 = -1$$
 ,,, $\times 2 = -1$,,, $\times 1 = 2$,, $\times 1 =$

$$X1w1 + x2w2 + b = -2 - 2 - 2 = -6 < \theta \rightarrow output = -1$$

Examples: Character Recognition

Convert the patterns to input vectors by replace each # with 1 and . with -1

▶ The correct response for the first pattern is +1 and the second pattern is -1

Hebb Nets

- It will fail to learn $x1 \wedge x2 \wedge x3$, even though the function is linearly separable.
- Stronger learning methods are needed.
 - ▶ **Error driven**: for each sample s:t, compute y from s based on current W and b, then compare y and t
 - Use training samples repeatedly, and each time only change weights slightly (a << 1)</p>
 - ▶ Learning methods of Perceptron and Adaline are good examples

Perceptrons

- By Rosenblatt (1958,1962)
 - ▶ Three layers of units: **S**ensory, **A**ssociation, and **R**esponse
 - Learning occurs only on weights from **A** units to **R** units (weights from **S** units to **A** units are fixed).
 - ▶ Simple perceptron used binary or bipolar activations for the sensory and associator units and activation of +1, 0 or -1 for response unit:

$$f(y_in) = \begin{cases} 1 & \text{if } y_in > \theta \\ 0 & \text{if } -\theta \le y_in \le \theta \\ -1 & \text{if } y_in < -\theta \end{cases}$$

► For a given training sample s:t, change weights only if the computed output y is different from the target output t (thus **error driven**)

Architecture for simple Perceptron

- The output from the associator units was binary.
- Since only the weights from the associator units to the output unit could be adjusted, we limit our consideration to the single layer net.

Perceptron learning algorithm (p.62)

```
Step 0. Initialization: b = 0, w_i = 0, i = 1 to n
Step 1. While stop condition is false do steps 2-5
```

Step 2. For each of the training sample s:t do steps 3 -5 Step 3. $xi := s_i$, i = 1 to n Step 4. compute y

$$y_{in} = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 & , & y_{in} > \theta \\ 0 & , & -\theta < = y_{in} < = \theta \\ -1 & , & y_{in} < -\theta \end{cases}$$

Step 5. If error occurs (y = t) update weight $w_i := w_i + \alpha * x_i * t$, i = 1 to n $b := b + \alpha * t$

Perceptrons

- Notes:
 - Learning occurs only when a sample has y != t
 - Two loops, a completion of the inner loop (each sample is used once) is called an epoch
- Stop condition
 - When no weight is changed in the current epoch, or
 - When pre-determined number of epochs is reached

$$W_i := W_i + \alpha * X_i * \dagger$$

- Example and function: binary input and bipolar target a = 1, $\theta = 0.2$
- First epoch

Input	y_in	У	target	Weig	ıht cha	nges	weights		
(x1,x2,1)			t	Δw1	Δw2	Δb	wl	w2	b
							0	0	0
(1,1,1)	0	0	1	1	1	1	1	1	1
(1,0,1)	2	1	-1	-1	0	-1	0	1	0
(0,1,1)	1	1	-1	0	-1	-1	0	0	-1
(0,0,1)	-1	-1	-1	0	0	0	0	0	-1

Second epoch

Input	y_in	У	target	Weight changes			weights		
(x1,x2,1)			Y=t	Δw1	Δw2	Δb	wl	w2	b
							0	0	-1
(1,1,1)	-1	-1	1	1	1	1	1	1	0
(1,0,1)	1	1	-1	-1	0	-1	0	1	-1
(0,1,1)	0	0	-1	0	-1	-1	0	0	-2
(0,0,1)	-2	-1	-1	0	0	0	0	0	-2

Tenth epoch

Input	y_in	У	target	Weight changes			weights		
(x1,x2,1)			Y=t	Δw1	Δw2	Δb	wl	w2	b
							2	3	-4
(1,1,1)	1	1	1	0	0	0	2	3	-4
(1,0,1)	-2	-1	-1	0	0	0	2	3	-4
(0,1,1)	-1	-1	-1	0	0	0	2	3	-4
(0,0,1)	-4	-1	-1	0	0	0	2	3	-4

Adaline (Adaptive Linear Neuron)

- By Widrow and Hoff (1960)
 - ▶ The same architecture of our simple network
 - Usually uses bipolar activations for its input and output target.
 - During training, the activation of the unit is its net input, i.e., the activation function is the identity function.
 - ▶ Learning method: **delta rule** (another way of error driven), also called Widrow-Hoff learning rule
 - ▶ $b := b + \alpha * (t y_in)$
 - $\triangleright w_i := w_i + \alpha * (t y_in) * x_i$
 - ▶ Delta rule is a consequence of trying to reduce the squared error of an arbitrary training pattern.

Derivation of the delta rule

► Error for all P training samples: mean square error

$$E = \frac{1}{P} \sum_{p=1}^{P} (t(p) - y_in(p))^2$$
 E is a function of W = {w1, ... wn}

Learning takes gradient descent approach to reduce E by modify W

▶ the gradient of E:
$$\nabla E = (\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n})$$

▶ $\Delta w_i \propto -\frac{\partial E}{\partial w_i}$
 $\frac{\partial E}{\partial w_i} = [\frac{2}{P} \sum_{p=1}^{P} (t(p) - y_i n(p))] \frac{\partial}{\partial w_i} (t(p) - y_i n(p))$
 $= -[\frac{2}{P} \sum_{p=1}^{P} (t(p) - y_i n(p))] x_i$

▶ There for $\Delta w_i \propto -\frac{\partial E}{\partial w_i} = [\frac{2}{P} \sum_{p=1}^{P} (t(p) - y_i n(p))] x_i$

Adaline algorithm

- Step 0. Initialize weights.
 (Small random values are usually used.)
 Set learning rate α.
 (See comments following algorithm.)
- Step 1. While stopping condition is false, do Steps 2-6.

 Step 2. For each bipolar training pair s:t, do Steps 3-5.

 Step 3. Set activations of input units, i = 1, ..., n: $x_i = s_i.$ $x_i = s_i.$ Compute net input to output unit: $y_in = b + \sum_i x_i w_i.$ $y_in = b + \sum_i x_i w_i.$ Update bias and weights, i = 1, ..., n: $b(\text{new}) = b(\text{old}) + \alpha(t y_in).$
 - Step 6. Test for stopping condition:

 If the largest weight change that occurred in Step 2 is smaller than a specified tolerance, then stop; otherwise continue.

 $w_i(\text{new}) = w_i(\text{old}) + \alpha(t - y_in)x_i$

MADALine [1960,1987]

- MADALine consists of many Adaline neurons arranged in a multilayer net.
- There are two training algorithms (MR and MRII).
 - In MR, only weights for the hidden Adalines ($Z_1 \& Z_2$) are adjusted, the weights for the output unit are fixed.
 - ▶ In MRII, all the weights in the net are adjusted.
- Thresholding activation function is used during training and testing.

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0; \\ -1 & \text{if } x < 0. \end{cases}$$

