

32K X 8 BIT LOW POWER CMOS SRAM Rev. 2.5

REVISION HISTORY

Revision	<u>Description</u>	Issue Date
Rev. 1.0.	Initial Issue	Jul.25.2004
Rev. 2.0.	Revised Vcc Range(Vcc=4.5~5.5V => 2.7~5.5V)	May.4.2005
Rev. 2.1.	Revised I _{SB1}	May.13.2005
Rev. 2.2	Adding PKG type : skinny P-DIP	Aug.29.2005
Rev. 2.3	Revised V _{IH} (min)=2.4V, V _{IL} (max)=0.6V	Feb.24.2006
Rev. 2.4	Revised V _{IH} (min)=2.4V, V _{IL} (max)=0.6V (V _{CC} =2.7~3.6V)	Jul.31.2006
	V _{IH} (min)=2.4V, V _{IL} (max)=0.8V (V _{CC} =4.5~5.5V)	
Rev. 2.5	Revised STSOP Package Outline Dimension	Mar.26.2008

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

FEATURES

■ Fast access time : 35/55/70ns■ Low power consumption:

Operating current : 20/15/10mA (TYP.) Standby current : 1µA (TYP.) LL-version

■ Single 2.7~5.5V power supply

■ All inputs and outputs TTL compatible

■ Fully static operation

Tri-state outputData retention voltage : 1.5V (MIN.)

■ Lead free and green package available

■ Package : 28-pin 600 mil PDIP

28-pin 330 mil SOP

28-pin 8mm x 13.4mm STSOP 28-pin 300 mil Skinny P-DIP

GENERAL DESCRIPTION

The LY62256 is a 262,144-bit low power CMOS static random access memory organized as 32,768 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The LY62256 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The LY62256 operates from a single power supply of 2.7~5.5V and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range	Speed	Power D	issipation
Family	Temperature	v cc r ange	Оресси	Standby(IsB1,TYP.)	Operating(Icc,TYP.)
LY62256	0 ~ 70℃	2.7 ~ 5.5V	35/55/70ns	1μA(LL)	20/15/10mA
LY62256(E)	-20 ~ 80°C	2.7 ~ 5.5V	35/55/70ns	1μA(LL)	20/15/10mA
LY62256(I)	-40 ~ 85°C	2.7 ~ 5.5V	35/55/70ns	1μA(LL)	20/15/10mA

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A14	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground

Lyontek Inc. reserves the rights to change the specifications and products without notice.

40 Hsuch-Fu Rd., Hsinchu, Taiwan.

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

PIN CONFIGURATION

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Terminal Voltage with Respect to Vss	VTERM	-0.5 to 7.0	V
		0 to 70(C grade)	
Operating Temperature	TA	-20 to 80(E grade)	$^{\circ}\! \mathbb{C}$
		-40 to 85(I grade)	
Storage Temperature	Тѕтс	-65 to 150	\mathbb{C}
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA
Soldering Temperature (under 10 sec)	Tsolder	260	$^{\circ}\!\mathbb{C}$

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	High-Z	ISB,ISB1
Output Disable	L	Н	Н	High-Z	Icc,Icc1
Read	L	L	Н	Dout	Icc,Icc1
Write	L	Х	L	Din	lcc,lcc1

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

Rev. 2.5

32K X 8 BIT LOW POWER CMOS SRAM

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CON	NDITIO	N	MIN.	TYP. ^{^5}	MAX.	UNIT
Supply Voltage	Vcc				2.7	3.3	5.5	V
Input High Voltage	V _{IH} *1			<u>-</u>	2.4	-	Vcc+0.5	V
Input Low Voltage	V _{IL} *2	Vcc=2.7~3.6V			- 0.5	-	0.6	V
iliput Low Voltage	VIL	Vcc=4.5~5.5V			- 0.5	-	0.8	V
Input Leakage Current	ILI	$Vcc \ge Vin \ge Vss$			- 1	-	1	μA
Output Leakage Current	ILO	Vcc ≧ Voυτ ≧ Vss, Output Disabled			- 1	-	1	μA
Output High Voltage	Vон	Iон = -1mA			2.4	3.0	-	V
Output Low Voltage	Vol	I _{OL} = 2mA			-	-	0.4	V
	Icc	Cycle times - Min		-35	-	20	50	mA
		Cycle time = Min. CE# = V_{IL} , $I_{I/O}$ = 0	mΛ	-55	-	15	45	mA
Average Operating		-70		-70	-	10	40	mA
Power supply Current	Icc ₁	Cycle time = 1µs CE#≦0.2V and I _{I/O} = 0mA other pins at 0.2V or Vcc-0.2V		-	3	10	mA	
Standby Dower	IsB	CE# = V _{IH}			-	1	3	mA
Standby Power Supply Current	I _{SB1}	CF# ≥ Vcc - U 2V +	Vcc=2	7~3.6V	-	1	20*4*6	μA
Supply Current	ISB1		Vcc=2	7~5.5V	-	1	50 ^{^4}	μA

Notes:

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns.
- 2. VIL(min) = Vss 3.0V for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.
- 4. $10\mu A$ for special request
- 5. Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at Vcc = Vcc(TYP.) and T_A = 25℃
- 6. This value is measured at V_{CC} = 3.6V.

CAPACITANCE (TA = 25° C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 50pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

PARAMETER	SYM.	YM. LY62256-35		LY62256-55		LY62256-70		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	t RC	35	-	55	-	70	-	ns
Address Access Time	taa	-	35	-	55	-	70	ns
Chip Enable Access Time	t ACE	-	35	-	55	-	70	ns
Output Enable Access Time	toe	-	25	-	30	-	35	ns
Chip Enable to Output in Low-Z	tcLz*	10	-	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHz*	-	15	-	20	-	25	ns
Output Disable to Output in High-Z	tonz*	-	15	-	20	-	25	ns
Output Hold from Address Change	tон	10	-	10	-	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	LY62256-35		LY62256-55		LY62256-70		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	35	-	55	-	70	-	ns
Address Valid to End of Write	taw	30	-	50	-	60	-	ns
Chip Enable to End of Write	tcw	30	-	50	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	0	_	ns
Write Pulse Width	twp	25	-	45	-	55	_	ns
Write Recovery Time	twr	0	-	0	-	0	-	ns
Data to Write Time Overlap	tow	20	-	25	-	30	_	ns
Data Hold from End of Write Time	tон	0	-	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	5	_	ns
Write to Output in High-Z	twnz*	-	15	-	20	-	25	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

Notes:

- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low.
- 3.Address must be valid prior to or coincident with CE# = low,; otherwise tAA is the limiting parameter.
- 4.tclz, tolz, tchz and tohz are specified with CL = 5pF. Transition is measured ±500mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

Rev. 2.5

32K X 8 BIT LOW POWER CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

Notes

- 1.WE#, CE# must be high during all address transitions.
- 2.A write occurs during the overlap of a low CE#, low WE#.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHZ + tpw to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with C_L = 5pF. Transition is measured ± 500 mV from steady state.

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V _{DR}	$CE\# \ge V_{CC} - 0.2V$		1.5	-	5.5	V
Data Retention Current		V _{CC} = 2.0V CE# ≧ V _{CC} - 0.2V	-LL	-	0.5	20	μA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)		0	-	-	ns
Recovery Time	t _R			t RC∗	-	-	ns

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

PACKAGE OUTLINE DIMENSION

28 pin 600 mil PDIP Package Outline Dimension

Lyontek Inc.

SYM. UNIT	INCH.(BASE)	MM(REF)
A1	0.010 (MIN)	0.254 (MIN)
A2	0.150±0.005	3.810±0.127
В	0.020 (MAX)	0.508(MAX)
B1	0.055 (MAX)	1.397(MAX)
С	0.012 (MAX)	0.304 (MAX)
D	1.430 (MAX)	36.322 (MAX)
Е	0.6 (TYP)	15.24 (TYP)
E1	0.52 (MAX)	13.208 (MAX)
е	0.100 (TYP)	2.540(TYP)
eB	0.625 (MAX)	15.87 (MAX)
L	0.180(MAX)	4.572(MAX)
S	0.06 (MAX)	1.524 (MAX)
Q1	0.08(MAX)	2.032(MAX)
Θ	15°(MAX)	15°(MAX)

Rev. 2.5

32K X 8 BIT LOW POWER CMOS SRAM

28 pin 330 mil SOP Package Outline Dimension

SYM. UNIT	INCH(BASE)	MM(REF)
Α	0.120 (MAX)	3.048 (MAX)
A1	0.002(MIN)	0.05(MIN)
A2	0.098±0.005	2.489±0.127
b	0.016 (TYP)	0.406(TYP)
С	0.010 (TYP)	0.254(TYP)
D	0.728 (MAX)	18.491 (MAX)
Е	0.340 (MAX)	8.636 (MAX)
E1	0.465±0.012	11.811±0.305
е	0.050 (TYP)	1.270(TYP)
L	0.05 (MAX)	1.270 (MAX)
L1	0.067±0.008	1.702 ±0.203
S	0.047 (MAX)	1.194 (MAX)
у	0.003(MAX)	0.076(MAX)
Θ	0°~10°	0°~10°

Rev. 2.5

28 pin 8x13.4mm STSOP Package Outline Dimension

SYMBOLS	DIMENSIONS IN MILLIMETERS		DIMENSIONS IN INCHES			
STWIBOLS	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.10	1.20	0.040	0.043	0.047
A1	0.05	-	0.15	0.002	-	0.006
A2	0.91	1.00	1.05	0.036	0.039	0.041
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.10	0.15	0.20	0.004	0.006	0.008
HD	13.20	13.40	13.60	0.520	0.528	0.535
D	11.70	11.80	11.90	0.461	0.465	0.469
E	7.90	8.00	8.10	0.311	0.315	0.319
е	-	0.55	-	-	0.0216	-
L	0.30	0.50	0.70	0.012	0.020	0.028
L1	0.675	-	-	0.027	-	-
Υ	0.00	-	0.076	0.000	-	0.003
θ	0°	3°	5°	0°	3°	5°

28 pin 300 mil PDIP Package Outline Dimension

Lyontek Inc.

SYMBOLS	MIN.	NOR.	MAX.	
Α	ı	_	0.210	
A1	0.015	_	ı	
A2	0.125	0.130	0.135	
D	1.385	1.390	1.400	
Е	0.310 BSC			
E1	0.283	0.288	0.293	
L	0.115	0.130	0.150	
€ _B	0.330	0.350	0.370	
а	0	7	15	

UNIT: INCH

NOTE:

1.JEDEC OUTLINE : MS-D15 AH

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

ORDERING INFORMATION

32K X 8 BIT LOW POWER CMOS SRAM

Rev. 2.5

THIS PAGE IS LEFT BLANK INTENTIONALLY.