Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1. Consider using this encoder-decoder model for machine translation.

1/1 points

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

False

Correct

\leftarrow	Sequence models & Attention mechanism				10/10 points (100%)			
·	Quiz, 10 questions 2.	In beam search, if you increase the beam width \emph{B} , which of the following work expect to be true? Check all that apply.	-	Ů	₽			
	1 / 1 points	Beam search will run more slowly.						
		Correct						
		Beam search will use up more memory.						
		Beam search will generally find better solutions (i.e. do a better job n $P(y \mid x)$)	naximizin	ıg				
		Correct						
		Beam search will converge after fewer steps.						
		Un-selected is correct						
	✓ 3.	In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.						
	1 / 1 points	True						
		Correct						
		False						

✓ 4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the			
Sequence mod 1/1 Quiz, 10 questions points	from audio clip x to a text transcript y . Your algorithm uses beam search to try to find the lels & Attention mechanism 10/10 points (100%) value of y that maximizes $P(y \mid x)$.			
points	On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y} =$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^* =$ "I'm building an Al system in Silicon Valley."			
	According to your model, $P(\mathring{y} \mid x) = 1.09 * 10^{-7}$ $P(y^* \mid x) = 7.21 * 10^{-8}$			
	Would you expect increasing the beam width B to help correct this example?			
	No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.			
	Correct			
	No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.			
	Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.			
	Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.			
✓ 5.	Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.			
	Correct			
	Correct			
	False.			

Consider the attention model for machine translation.

Sequence models & Attention mechanism

10/10 points (100%)

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

Correct

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Un-selected is correct

 $\sum_{t} \alpha^{\langle t,t' \rangle} = 1 \text{ (Note the summation is over } t.)$

Un-selected is correct

 $\sum_{t'} \alpha^{< t, t'>} = 1 \text{ (Note the summation is over } t'.)$

Correct

←	✓ Sequence	7. mod	ne network learns where to "pay attention" by learning the values $e^{\langle t,t' \rangle}$, which are small neural network. See Alternion mechanism 10/10 points (100%)		
	1 / 1 Quiz, 10 questior points		We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. Th $s^{< t>}$ depends on $a^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time evalute this network, we haven't computed $s^{< t>}$ yet.	is is because	
			Correct True		
			False		
	1/1 points	8.	Compared to the encoder-decoder model shown in Question 1 of this quiz not use an attention mechanism), we expect the attention model to have to advantage when: The input sequence length $T_{\it x}$ is large.		
			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		
	1/1	9.	Under the CTC model, identical repeated characters not separated by the 'character (_) are collapsed. Under the CTC model, what does the following to?		
	points		_c_oo_o_kkb_oooooookkk cokbok		
			Correct		
			Cook book		
			coookkbooooookkk		

	✓ 10.	In trigg	ger word detection, $x^{< t>}$ is:	
←	Sequence mod Quiz, 1/1 Quiz, 10 questions	els&	Attention mechanism Features of the audio (such as spectrogram features) at time t .	10/10 points (100%)
		Corr	ect	
		0	The \emph{t} -th input word, represented as either a one-hot vector or a word embedding.	d
		\bigcirc	Whether the trigger word is being said at time $oldsymbol{t}$.	
		\bigcirc	Whether someone has just finished saying the trigger word at time t .	