Week 2 Lesson 4

DATE: 2020-08-26

ANNOUNCEMENTS:

Assignment: Set 1.3 (1-6, 11-16, 23, 24)

0.1 Matrices and Matrix opperations

Definition 1 (Matrix). A rectangular array of numbers.

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 4 & 7 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Size: # Rows x # Columns

 $\begin{array}{l} A:2x3\\ B:3x2 \end{array}$

Example 1 (A General matrix). A is $m \times n$ elements

m-rows n-columns

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_1 n \\ a_{21} & a_{22} & a_{23} & \dots & a_2 n \\ \dots & \dots & \dots & \dots & \dots \\ a_{m_1} & a_{m_2} & a_{m_3} & \dots & a_{mn} \end{bmatrix}$$

0.1.1 Square matrix

Definition 2 (Square Matrix). a matrix where #rows = #columns

$$\begin{bmatrix} a_{11} & a_{22} & \dots & a1n \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m_1} & a_{m_2} & \dots & a_{mn} \end{bmatrix}$$

where $a_{11} \rightarrow a_{mn}$ is the main diagonal

0.1.2 Matrix Opperations

Theorem 1 (Matrix equality). Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.

0.1.3 addition and subtraction

Theorem 2. The sum of matrices A and B is written A + B and it is the matrix obtained by adding corresponding entries of two matrices of the same size.

Lesson 4

Example 2 (matrix addition).

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} + \begin{bmatrix} -3 & 4 & -7 & 8 \\ -1 & 0 & 5 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 6 & -4 & 12 \\ 4 & 6 & 12 & 17 \end{bmatrix}$$

Notation

Week 2

A - entire matrix

 a_{ij} - individual entries

 $(A+B)_{ij}$ - notation of entry addition $(A)_{ij}+(B)_{ij}$

$$(A - B)_{ij} - (A)_{ij-(B)_{ij}}$$

Example 3 (Matrix addition).

$$\begin{bmatrix} 1 & 3 & 4 \end{bmatrix} + \begin{bmatrix} -5 & -7 & 9 \end{bmatrix} = \begin{bmatrix} -4 & -4 & 13 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 4 \end{bmatrix} - \begin{bmatrix} -5 & -7 & 9 \end{bmatrix} = \begin{bmatrix} 6 & 10 & -5 \end{bmatrix}$$

0.1.4 Product of a scalar, c, and a Matrix, A

The product of a scalar and a matrix, cA, is produced by multiplying each entry of A by c.

$$(cA)_{ij} = c(A)_{ij}$$

Example 4.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 5 \\ -3 & 0 \\ 9 & 7 \end{bmatrix}$$

$$3A - B$$

$$\begin{bmatrix} 3 & 6 \\ 9 & 12 \\ 15 & 18 \end{bmatrix} - \begin{bmatrix} -1 & 5 \\ -3 & 0 \\ 9 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 12 & 12 \\ 6 & 11 \end{bmatrix}$$

0.1.5 Product of matrices

Definition 3. The producto of two matrices A and B, written AB, is only defined when the number of columns of matrix A is equal to the number of rows of matrix B.

$$A_{m \times r} B_{r \times r}$$

The size of the product will be the rows of A by the columns of B.

 $C_{m \times n}$

Example 5.

 $A_{3\times 5}$ and $B_{5\times 3}$

5 and 5: this can be done.

3 and 3: the size of the result

Getting the entries

To find the entries in Row i and Column j of AB, single out the ith row of A and the jth column of B, multiply their corresponding entries and add the results.

Example 6.

$$\begin{bmatrix} 3 & 4 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}_{3\times 2} \begin{bmatrix} -1 & 1 & 2 & 3 \\ 1 & 5 & -2 & 2 \end{bmatrix}_{2\times 4}$$

Solution 1.

$$\begin{bmatrix} 3 \cdot -1 + 4 \cdot 1 & 3 \cdot 1 + 4 \cdot 5 & 3 \cdot 2 + 4 \cdot 2 & 9 + 8 \\ -2 + 1 & 2 + 5 & 4 + 2 & 6 + 2 \\ -3 + 2 & 3 + 10 & 6 + 4 & 9 + 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 23 & 14 & 17 \\ -1 & 7 & 6 & 8 \\ -1 & 13 & 10 & 13 \end{bmatrix}$$

Example 7.

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 7 \\ 2 & 1 & 9 \end{bmatrix}$$
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$Ax$$

Solution 2.

$$Ax = \begin{bmatrix} 2x_1 + x_2 + 3x_3 \\ 4x_1 - x_2 + 7x_3 \\ 2x_1 + x_2 + 9x_3 \end{bmatrix}$$

Definition 4 (Transpose of a matrix). A^T is the matrix obtained when the rows and columns of A are interchanged.

Example 8.

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 9 & 3 & 1 \end{bmatrix}$$

Solution 3. $A^T = \begin{bmatrix} 1 & 9 \\ 2 & 3 \\ 5 & 1 \end{bmatrix}$