PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G07F 7/10

A1

(11) International Publication Number: WO 99/62036

(43) International Publication Date: 2 December 1999 (02.12.99)

(21) International Application Number: PCT/EP99/03429

(22) International Filing Date: 19 May 1999 (19.05.99)

(30) Priority Data:

981165

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON

26 May 1998 (26.05.98)

(71) Applicant: TELEPONAKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventor: ARKKO, Jari; Kauppalantie 25 A 7, FIN-02700 Kauniainen (FI).

(74) Agent: BORENIUS & CO. OY AB; Kansakoulukuja 3, FIN-00100 Helsinki (FI). (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD AND APPARATUS FOR CHARGING IN A COMMUNICATIONS NETWORK

(57) Abstract

A user terminal (1) is connected to the Internet (7) through a telephone network (3, 4, 5) and a Network Access Server (6) operated by an Internet Service Provider (ISP). A protocol converter (8) exists between the telephone network (3, 4, 5) and the Network Access Server (6), and the converter (8) and Network Access Server (6) are coupled through a telecommunication link (9). User data is sent between the converter (8) and the Network Access Server (6) using a circuit switched protocol. Charging data is sent to the converter (8) from a RADIUS server (11) operated by the ISP using Internet Protocol (IP). In response to receipt of this charging data, charging messages are sent from the converter (8) to a billing system (3) of the telecommunications network. On the basis of these messages, the operator of the telecommunications network is able to bill the user for the used ISP services.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHOD AND APPARATUS FOR CHARGING IN A COMMUNICATIONS NETWORK

Field of the Invention

5

10

The present invention relates to a method and apparatus for charging in a communications network. More particularly, though not necessarily, the invention relates to the provision of charging information to a telecommunications operator from a data network accessible to a subscriber of the telecommunications operator.

Background to the Invention

15

20

The conventional way for a home user of a personal computer (PC) to access the Internet is to set up a telephone call, via his telephone operator which provides a modem pool, to an Internet Service Provider (ISP). The access point for the user to the ISP is termed a Network Access Server (NAS). The NAS allocates an Internet Protocol (IP) address to the user PC for the duration of the connection and also acts as a protocol converter, converting the circuit switched data transmissions of the telephone network into IP packet switched transmissions and vice versa. A typical ISP may provide many NASs spread over the geographical area in which the ISP operates.

In order to collect billing information and to verify user access rights, the ISP may have a small number of so-called "RADIUS servers" also spread over its coverage area. One RADIUS server may serve a few tens of NASs. Communication between the RADIUS servers and the NASs is carried out using the secure RADIUS protocol (RADIUS

stands for Remote Authentication Dial-In User Service

and is defined in IETF standards RFC 2138/2139) A user, who is a subscriber of the ISP, may then be billed for accessing the Internet on the basis of the information collected by the RADIUS server(s).

5

The Internet access system described above requires that the user has an agreement with the ISP, such that the ISP has information required for charging such as the user's name, address, telephone number etc. This will obviously restrict the number of different ISPs which the user may use.

Summary of the Invention

15 It is an object of the invention to overcome or at least mitigate the disadvantages of known data network access charging systems. In particular it is an object of the present invention to provide for the combining of telephone and data network charging such that a user may 20 be provided with a single bill for both services.

According to a first aspect of the present invention there is provided a method of charging in a communication network in which a user terminal is connected to a data network through a telecommunications network and a Network Access Server, and in which a protocol converter exists between the telecommunications network and the Network Access Server, and the converter and the Network Access Server are coupled through a telecommunication link, the method comprising:

sending user data between said converter and the Network Access Server, via said telecommunication link, using a circuit switched protocol;

sending charging data from the data network to said converter using a packet switched protocol; and

in response to receipt of said charging data at said converter, sending from the converter to a billing

30

system of the telecommunications network charging messages on the basis of which the operator of the telecommunications network can bill the user.

Embodiments of the present invention provide a relatively straightforward means by which ISP charging information may be "repatriated" to a user's home telecommunications network. Thus, it is no longer necessary for a user to subscribe directly to an individual ISP, only that the home telecommunications network has an appropriate re-charging agreement with the ISP. As it is possible to incorporate ISP charges into a bill generated by the telecommunications network, it is possible to levy relatively small charges for ISP services.

Preferably, said data network comprises the Internet, and said converter between the telecommunications network and the Network Access Server also comprises an Internet link in addition to said telecommunication link. This allows said charging data to be sent to the converter using Internet Protocol.

More preferably, said data network comprises a Web server arranged in use to store information which is accessible to the user via the telecommunication network and the data network. The data network also comprises one or more charging servers arranged to record user access to the Web servers. Communication between the Web servers and the charging servers may be done using a secure protocol, e.g. RADIUS. Either the web servers, or the charging servers, may be the source of said charging data sent to said converter.

In a preferred embodiment of the present invention, said converter converts Signaling System 7 (SS7) and T.1/E.1

25

protocol transmissions in the telecommunication network to the Integrated Services Digital Network (ISDN) for transmission to the network access server over said telecommunication link and vice versa. Said converter also converts said charging data received from the data network in IP into SS7 protocol charging messages (CRG messages).

Alternatively, the data network may be a Local Area

10 Network (LAN) or a Wide Area Network (WAN).

According to a second aspect of the present invention there is provided apparatus for charging in a communication network in which a user terminal is connected to a data network through a telecommunications network and a Network Access Server, the apparatus comprising:

a protocol converter for placing between the telecommunications network and the Network Access Server, where the converter and the Network Access Server are coupled through a telecommunication link and are arranged to send user data, via said telecommunication link, using a circuit switched protocol; and

charging data generating means for connection to the data network and arranged to send charging data to said converter using a packet switched protocol,

the protocol converter being further arranged, in response to receipt of said charging data at said converter, to send to a billing system of the telecommunications network charging messages on the basis of which the operator of the telecommunications network can bill the user.

Preferably, said protocol converter provides a T.1/E.1:SS7-to-PRI protocol converter between the

telecommunications network and said telecommunication link, and a IP-to-SS7 protocol converter between the telecommunications network and an IP link coupling the converter to the data network. More preferably, the protocol converter is a physically discrete unit which is connected in use between an exchange of the telecommunications network and said telecommunication and IP links.

10 Brief Description of the Drawings

For a better understanding of the present invention and in order to show how the same may be carried into effect reference will now be made, by way of example, to the accompanying drawings, in which:

Figure 1 shows schematically a communications system embodying the present invention; and

Figure 2 shows a flow diagram illustrating the method of operation of the system of Figure 1.

20

25

30

Detailed Description of Embodiments

In the schematic diagram of Figure 1, a PC 1 belonging to a user is connected via a modem of the PC 1 to a subscriber telephone line 2 belonging to a public telephone network. The line 2 connects to an exchange 3 of the network and carries signals according to the Integrated Services Digital Network (ISDN) protocol. This protocol provides the user with two traffic channels (B-channels) and one signalling channel (D-channel).

The exchange 3 is coupled to other telephone exchanges including those belonging to the same network and exchanges belonging to other networks. In order to reach a final destination, a call from the user PC 1 may be routed via several exchanges including the local

exchange 3. Calls between the local exchange 3 are transmitted on 64Kbit/sec channels using E.1 protocol (a Time Division Multiple Access (TDMA) based protocol). Each channel is sub-divided into frames consisting of 31 segments and a single call from the user PC 1 may be allocated 1 segment per frame. As an alternative to the European E.1 protocol, the American T.1 protocol may be used.

A call between the local exchange and some other exchange 4 is set-up using a signalling protocol known as the Signalling System 7 protocol (indicated by reference numeral 5 in Figure 1). This protocol is defined by the ITU standards Q.761 to Q.764 and is carried by a channel made up of 1 segment per TDMA frame.

As has already been described above, in order for a subscriber to a public telephone network to access the 20 Internet, a call must first be set-up between the subscriber's PC 1 and a Network Access Server of an Internet Service Provider. In Figure 1, such a Network Access Server is indicated by the reference numeral 6 and the Internet is indicated by numeral 7. Logging on 25 to the Network Access Server 6 requires a call to be made from the user PC 1 to a telephone number (B-number) allocated by the telephone network to the Network Access Server 6. The call is routed through the local exchange 3 to the exchange 4 closest to the Network Access Server 6 using the SS7 signalling protocol as described above. The call is then routed through a converter unit 8 to a telephone line 9 connected to the Network Access Server 6 where access to the user PC 1 is granted on the basis of the subscriber number (A-number) transmitted as part of the call set-up procedure. Alternatively, access may be granted on the basis of a username and password entered by the subscriber.

In order to provide sufficient capacity to cope with a number of simultaneous Internet access requests, the telephone line 9 carries ISDN protocol signals according to the Primary Rate Interface (PRI), providing 30 B traffic channels and 1 D signalling channel. The Converter unit 8 therefore acts as an E.1/SS7-to-PRI protocol converter and vice versa.

Web pages and other information accessible to a user via the Internet 7. It will be appreciated that a large number of Network Access Servers and Web servers will be separately coupled to the Internet 7.

15

In addition to controlling the Network Access Server 6, and possibly a number of Web servers 10, the ISP also has control of a RADIUS server 11. The RADIUS server 11 is so-called because it communicates with the Web servers 10 using a secure communication protocol known as RADIUS (although any other suitable Authentication-Authorisation-Accounting (AAA) protocol may be used)). The RADIUS server 11 acts as a billing co-ordinator for the Network Access Server 6 and a group of Web servers More particularly, the RADIUS Server 11 receives caller identity information from the Network Access Server 6 (more particularly the access port ID of the subscriber into the Network Access Server and possibly the subscriber's A-number) together with call start and stop times. The RADIUS Server 11 also receives from the 30 Web Servers 10 charging information relating to specific services provided by the Web servers 10 to the user. These services may include accessing premium rate services such as Web pages giving up-to-the-minute sports and business information, or accessing Web 35 servers 10 located in a foreign country.

In order to allow the user to be billed on the basis of the information collected by the RADIUS server 11, the RADIUS Server 11 sends charging data to the converter unit 8 via an Internet link 12. The Converter unit 8 is for this purpose allocated an IP address and the link 12 uses the well known IP protocol. The IP address is sent to the RADIUS server 11 by the Network Access Server 6 during the initial connection phase. The protocol stack in this link comprises RADIUS over UDP over IP.

Upon receipt of the charging data from the RADIUS server
11, the converter unit 8 generates charging messages
which are transmitted via the exchange 4 to the
15 subscriber's local exchange 3 (or to some other billing
coordinator of the public telephone network). The
charging messages are in fact CRG messages as defined in
SS7 standard Q.762 (although for example conventional
charging "pulses" may be used instead). In addition to
20 providing a E.1:SS7-to-PRI protocol converter, the
converter unit 8 therefore also provides an IP-to-SS7
protocol converter.

It will be appreciated by the person of skill in the art
that various modifications may be made to the above
described embodiment without departing from the scope of
the present invention. For example, charging data may
be sent directly from the Web servers 10 to the
converter unit via the Internet link 12, rather than
through the RADIUS server 11. An Internet Service
Provider may also utilise a number of different RADIUS
Servers, each serving a particular group of Network
Access Servers and/or Web servers.

35 It will also be appreciated that whilst the embodiment described above considers the Web servers, RADIUS

servers, and Network Access Server to be connected together via the Internet, this need not be so. The connections may be made via some other data communication links, e.g. lines leased by the ISP from a telecommunications network or a LAN or WAN owned by the ISP. Similarly, the link between the RADIUS server 11 and the converter 8 may be made via a data link which does not form part of the open Internet network.

Claims

10

15

20

25

1. A method of charging in a communication network in which a user terminal is connected to a data network through a telecommunications network and a Network Access Server, and in which a protocol converter exists between the telecommunications network and the Network Access Server, and the converter and the Network Access Server are coupled through a telecommunication link, the method comprising:

sending user data between said converter and the Network Access Server, via said telecommunication link, using a circuit switched protocol;

sending charging data from the data network to said converter using a packet switched protocol; and

in response to receipt of said charging data at said converter, sending from the converter to a billing system of the telecommunications network charging messages on the basis of which the operator of the telecommunications network can bill the user.

- 2. A method according to claim 1, wherein said data network comprises the Internet, and said converter between the telecommunications network and the Network Access Server comprises an Internet link in addition to said telecommunication link, whereby said charging data is sent to said converter using Internet Protocol.
- 3. A method according to claim 2, wherein said data network comprises a Web server arranged in use to store information which is accessible to the user via the telecommunication network and the Internet.
 - 4. A method according to claim 3, wherein the data

 network comprises one or more charging servers arranged
 to record user access to the Web servers.

- 5. A method according to claim 4, wherein communications between the Web servers and the charging servers are done using a secure protocol.
- 6. A method according to claim 4 or 5, wherein either the web servers, or the charging servers, are the source of said charging data sent to said converter.
- 7. A method according to any one of the preceding claims, wherein said converter converts Signaling System 7 (SS7) and T.1/E.1 protocol transmissions in the telecommunication network to the Integrated Services Digital Network (ISDN) for transmission to the Network Access Server over said telecommunication link and vice versa.
 - 8. A method according to claim 7 when appended to claim 2, wherein said converter converts said charging data received from the data network in IP into SS7 protocol charging messages (CRG messages).
 - 9. Apparatus for charging in a communication network in which a user terminal (1) is connected to a data network (7) through a telecommunications network (3,4,5) and a Network Access Server (6), the apparatus comprising:
- a protocol converter (8) for placing between the telecommunications network (3,4,5) and the Network

 30 Access Server (6), where the converter (8) and the Network Access Server (6) are coupled through a telecommunication link (9) and are arranged to send user data, via said telecommunication link (9), using a circuit switched protocol; and
- 35 charging data generating means (11) for connection to the data network (7) and arranged to send charging

data to said converter (8) using a packet switched protocol,

the protocol converter (8) being further arranged, in response to receipt of said charging data at said converter (8), to send to a billing system (3) of the telecommunications network charging messages on the basis of which the operator of the telecommunications network can bill the user.

- 10 10. Apparatus according to claim 9, wherein said protocol converter (8) provides a T.1/E.1/SS7-to-PRI protocol converter between the telecommunications network (3,4,5) and said telecommunication link (9), and a TCP/IP-to-SS7 protocol converter between the telecommunications network (3,4,5) and an IP link (12) coupling the converter (8) to the data network (7).
 - 11. Apparatus according to claim 9, wherein the protocol converter (8) is a physically discrete unit which is connected in use between an exchange (4) of the telecommunications network (3,4,5) and said telecommunication and IP links (9,12).

Fig. 1

Fig. 2

INTERNATIONAL SEARCH REPORT

International Application No Pc./EP 99/03429

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G07F7/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 G07F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,A WO 99 08242 A (BRITISH TELECOMMUNICATIONS) 1-11 18 February 1999 (1999-02-18) page 4, line 13 - line 18 page 5, line 22 -page 6, line 29; figures P,A EP 0 848 361 A (NIXU) 1-11 17 June 1998 (1998-06-17) column 6, line 26 - line 38 column 10, line 22 - line 45 column 13, line 41 - line 48 abstract; figures 3-8 Α EP 0 765 068 A (AT&T) 1-11 26 March 1997 (1997-03-26) column 6, line 39 -column 7, line 56: figures 1-4 Further documents are listed in the continuation of box C. Patent family members are listed in annex. 2 Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 20 September 1999 29/09/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 · NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Neville, D Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No

0.6		Pui/EP 99/03429			
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category :	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	WO 96 37848 A (WALKER ASSET MANAGEMENT) 28 November 1996 (1996-11-28) page 13 page 15, line 22 -page 16, line 36; figures	1-11			
A	WO 97 03410 A (EGENDORF) 30 January 1997 (1997-01-30) page 3, line 11 - line 17 page 6, line 11 -page 7, line 3 page 9, line 1 -page 10, line 2; figures	1-11			
A	WO 97 19414 A (OXFORD MEDIA PROPRIETY) 29 May 1997 (1997-05-29) page 3, line 37 -page 5, line 4 page 12, line 3 - line 31	1-11			
A	WO 97 01920 A (TELECOM FINLAND) 16 January 1997 (1997-01-16) abstract; figures	1-11			
	·				
,					
		*			

1

INTERNATIONAL SEARCH REPORT

nformation on patent family members

International Application No

Pu./EP 99/03429

Patent document cited in search report		Publication date	Patent family		Publication date	
WO 9908242	Α	18-02-1999	AU	8637198 A	01-03-1999	
EP 848361	Α	17-06-1998	 AU	5224698 A	03-07-1998	
•			EP	0917327 A	19-05-1999	
			WO	9826381 A	18-06-1998	
			NO	992776 A	13-08-1999	
EP 765068	Α .	26-03-1997	US	5745556 A	28-04-1998	
		•	AU	6571896 A	27-03-1997	
			CA	2182818 A	23-03-1997	
			JP	9153964 A	10-06-1997	
			US	5864610 A	26-01-1999	
WO 9637848	Α	28-11-1996	AU	5922996 A	11-12-1996	
			BR	9606368 A	23-12-1997	
			CA	2195968 A	28-11-1996	
			EP	0782728 A	09-07-1997	
			JP	10507053 T	07-07-1998	
			US 	5737414 A	07-04-1998	
WO 9703410	Α	30-01-1997	US	5794221 A	11-08-1998	
			AU	5986596 A	10-02-1997	
			CA	2226253 A	30-01-1997	
			EP	0845125 A	03-06-1998	
WO 9719414	Α	29-05-1997	AU	7556596 A	11-06-1997	
WO 9701920	Α	16-01-1997	FI	953208 A	29-12-1996	
			EP	0872117 A	21-10-1998	