Title of the Exercise: Parallel RLC Circuit

Date: 4.9.2020

Aim: To Simulate the dynamic model of a RLC circuit and plots Voltage and current at various

terminals and also analyze theoretical results.

Tool used: MATLAB

Electrical Circuit:

Parameters used for the study:

Input: Rs = 50ohm, L = 0.1H, C = 1000e-6F, V=100 Volts

Theoretical Analysis: It's a transient circuit with a current source. We use transient circuit analysis to determine the values of current and volaage for the capacitor and inductor.

Calculations (Predetermination):

Theoretical Analysis

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \times \left(\frac{1}{1000}\right)}} = 1000$$

differentiating Vc w.r.t t

$$\frac{dV_{c}}{dt} = -10e^{-10t} (B_{1}\cos 99.5t + B_{2}\sin 99.5t)$$

$$+99.5 \times e^{-10t} (-B_{1}\sin 99.5t + B_{2}\cos 99.5t)$$

$$\frac{dt=0}{dt} = \frac{dv_c}{c} = 2000 \qquad |ic=cdv_c|$$

Procedure for simulation study:

<u>Step1</u>-Initialize the input parameters and write coding for the as per requirement of plots in m file and save it.

Step 2-open new Simulink and make mathematical modelling as per circuit diagram and save it.

Step 3-Run the m file first ,after that run Simulink file.

Step 4 - View the result in Scope.

Step 5- Again run m file and view the plots.

Step 6-Make various plots and write the Results.

Simulation Diagram and m.file coding:

M.file coding:

```
Rs = 50;
L= 0.1;
C= 1000e-6;
vS= 100;
tdealy= 0.05;
vCo= 0;
iLo= 0;
tstop=0.5;
disp('run simulation')
keyboard
%plot(figsize(10,6))
subplot (3,1,1)
nexttile
plot(out.y.signals.values(:,1),out.y.signals.values(:,2),'b--o')
title('source current')
ylabel('is in Amp')
nexttile
plot(out.y.signals.values(:,1),out.y.signals.values(:,3),'g.')
title('capacitor voltage')
ylabel('vC in volts')
nexttile
plot(out.y.signals.values(:,1),out.y.signals.values(:,4),'y--o')
title('inductor current')
ylabel('iL in Amp')
xlabel('time in secs')
%set(gcf, 'position', [0,0.1,400,600])
```

Results and Discussions:

This section contains both waveforms with respect to time along with the theoretical value.

Simulation rendered waveforms

Comparison (Observations):

Time	Theoretical Value(Ic)	Simulation(Ic)	Theoretical Value(Vc)	Simulation(Vc)
0	2	2	0	0
0.5	0.007673	0.007673	0.10337	0.10337
0.25	0.142	0.14199	0.6940	0.6940
0.025	1.5493	1.5493	0.6794	0.6794

Conclusion: The theoretical value is the same as the simulation results.

Inference: The analysis of the parallel RLC circuit dynamic model provides the following inferences:

- \square As the time increases, after a ertain amount of time the value of capacitor voltage and inductor current doesnt change
- \square The value of omega is less than the value of alpha therefore it is a critically underdamped circuit.

Reference:NIL