CS-206: Assignments 1, 2

Soumen Pradhan – 1912176

14 . 02 . 2021

1.
$$L^*$$
 — ab aa baa ab aa aa baa aa baa aa baa aa

$$L^4$$
 — aa aa baa aa baa aa baa aa baa ah aa

2. Given,

$$\Sigma = \{a, b\}$$

$$L = \{aa, bb\}$$

So,

$$\overline{L} = \Sigma^* - L = \{a, b\}^* - \{aa, bb\}$$

3. a)
$$P: S \to bS \mid Sb \mid a$$

$$G = (\{S\}, \{a,b\}, S, P)$$

b)
$$P: S \to aS \mid bS \mid Sb \mid a$$

 $G = (\{S\}, \{a, b\}, S, P)$

- 4. a) $P: S \to aSb \mid Sb \mid b$ $G = (\{S\}, \{a, b\}, S, P)$
 - b) $P: S \to aSbb \mid \lambda$ $G = (\{S\}, \{a, b\}, S, P)$
 - c) $P: S \to aSb \mid aa$ $G = (\{S\}, \{a, b\}, S, P)$
 - d) $P: S \to aSb \mid aaa$ $G = (\{S\}, \{a, b\}, S, P)$
 - e) P: $S \to S_1 S_2 B$ $S_1 \to a S_1 b \mid S_1 b \mid b$ $S_2 \to a S_2 b b \mid \lambda$ $G = (\{S, S_1, S_2\}, \{a, b, \lambda\}, S, P)$

 $G = (\{S\}, \{a, b, \lambda\}, S, P)$

f) It can be observed that all elements of a^nb^{2n} are part of a^nb^m except λ . Hence $L_1 \cup L_2 = L_1 \cup \{\lambda\}$. $P: S \to aSb \mid Sb \mid b \mid \lambda$

5. grammar

- 6. a)
- 7. dfa