"Function Generator

[Project Report]

Bachelor of Technology
in
Electronics and Communication Engineering

By: -

Het Patel [22BEC050]

Hirpara Yagnesh [22BEC051]

Course: - Microcontroller and Interfacing

Course Code: - 2EC701

Abstract

This project presents the design and implementation of a versatile function generator using a microcontroller 89C52 (8052), along with supporting components such as respack 8, LCD display, keypad, DAC0808, op-amp, capacitors, and resistors. The primary goal of this project is to create a user-friendly device capable of generating various types of waveforms with high accuracy.

The function generator provides four different types of waves: sine, square, triangle, and sawtooth. Users can input the desired frequency and select the waveform type through a keypad interface. The selected waveform and corresponding frequency are displayed on an LCD screen for easy monitoring.

The heart of the system is the microcontroller 89C52, which orchestrates the generation of waveforms by controlling the DAC0808 digital-to-analog converter. The DAC0808 converts digital signals from the microcontroller into precise analog voltages, which are then amplified by an operational amplifier to produce the desired waveforms.

Keywords

Function Generator, Microcontroller 89C52 (8052), Waveform Generation, DAC0808, LCD Display, Keypad Interface, Operational Amplifier, User-friendly, High Accuracy, Electronics Experimentation

Introduction

In the world of electronics, making precise signals is really important. Whether it's for learning or practical use, having a reliable way to create different kinds of waves is crucial. This project is all about creating a Function Generator. It's a device that uses a microcontroller called the 89C52 along with some other parts like respack 8, a screen to show information, a keypad for input, and other components.

The main goal of this project is to make it easy for people to choose what kind of wave they want and how often it repeats (its frequency), and to make sure that the waves are made accurately. By putting together both hardware and software, this Function Generator tries to be something that's affordable and useful for both learning and for people who like to play with electronics.

This project is not just about making a cool gadget, it's also about understanding how signals work in electronics. By doing this project, people can learn a lot about how electronics work, and hopefully, have fun doing it too!

Diagram

This diagram illustrates the overall layout of the function generator circuit, showcasing the interconnection of components such as the microcontroller 89C52, respack 8, LCD display, keypad interface, DAC0808, operational amplifier, capacitors, and resistors. The Circuit is shown in **Figure 1.**

It visually presents how these components are interconnected to facilitate the generation of various waveforms with precise frequency control.

Figure 1

Working

The function generator project operates through a combination of hardware and software components to generate different types of waves with precise frequencies. Hardware Components:

- 1. **Microcontroller 89C52:** This serves as the brain of the system, controlling and coordinating the operation of other components. It executes the software instructions to generate digital signals corresponding to the desired waveforms and frequencies.
- 2. **Respack 8:** This component provides additional memory storage for the microcontroller, enabling it to store and execute the necessary program instructions efficiently.
- 3.**LCD Display:** The LCD screen serves as the user interface, displaying information such as the selected waveform type and frequency for easy monitoring and interaction.
- 4. **Keypad Interface:** Users can input the desired frequency and select the waveform type using the keypad interface. This input is processed by the microcontroller to adjust the waveform generation accordingly.
- 5.**DAC0808:** The Digital-to-Analog Converter (DAC0808) converts the digital signals generated by the microcontroller into precise analog voltages. These analog voltages represent the waveform shapes (sine, square, triangle, sawtooth) based on the digital inputs received.
- 6. Operational Amplifier: The operational amplifier (op-amp) amplifies the analog voltages produced by the DAC0808 to the required levels for waveform generation. It ensures that the output signals accurately reflect the desired waveform shapes and frequencies.
- 7. Capacitors and Resistors: These components are used for signal conditioning and filtering purposes, ensuring the stability and accuracy of the generated waveforms.

Flowchart

Start

User Input (Frequency, Waveform Type)

Display User Instructions on LCD

Get User Input from Keypad

Generate Digital Signal

~ Calculate Digital Signal for Selected Frequency and Waveform Type

Convert Digital Signal to Analog

~ DAC0808 Conversion

Amplify Analog Signal

~ Amplify Signal using Operational Amplifier

Output Signal

End

~ This flowchart illustrates the step-by-step process of the project. This flowchart provides a clear overview of how the project functions, from user input to output signal generation.

Results

Sine Wave:

The sine wave is generated by smoothly varying the voltage level over time, following the mathematical curve of the sine function. This is achieved by incrementally adjusting the output voltage in a sinusoidal pattern using the DAC0808 and amplifying it through the operational amplifier. The same is shown in **Figure 2.**

Figure 2

Sawtooth Wave:

The sawtooth wave is generated by rapidly increasing the voltage level to a peak value and then abruptly dropping back to a minimum value, creating a sharp, linear rise followed by a sudden fall. This sawtooth pattern is generated by the microcontroller sending digital signals to the DAC0808, which produces the sawtooth waveform, amplified by the operational amplifier. The same is shown in **Figure 3**.

Figure 3

Square Wave:

The square wave is created by alternately switching the output voltage between two levels, typically high and low, in a regular pattern. This on-off switching is controlled by the microcontroller, which sends digital signals to the DAC0808 to produce the square waveform, amplified by the operational amplifier. The same is shown in **Figure 4.**

Figure 3

Triangular Wave:

The triangle wave is formed by linearly increasing and decreasing the voltage level over time, resulting in a waveform that rises and falls at a constant rate. This linear voltage ramp is achieved by the microcontroller generating a sequence of digital signals to produce the triangle waveform through the DAC0808, which is then amplified by the operational amplifier. The same is shown in **Figure 4**.

Figure 4

Bill of Materials

Components	Price
uC 89c52	110Rs
DAC0808	90 R s
IC 741	10Rs
Respack 9	40Rs
Crystal Osc.	20Rs
Resistors	50Rs
Capacitors	30Rs
LCD Display	120Rs
4x4 Keypad	40Rs
Jumper wires	25Rs
Total	535Rs

Applications

The function generator project has a wide range of applications in both educational and practical settings. In educational institutions, it serves as a valuable tool for teaching and learning purposes in electronics and electrical engineering courses. Students can use the function generator to study and experiment with different types of waveforms, gaining practical insights into waveform generation, signal processing, and circuit design.

In laboratory settings, the function generator is utilized for various testing and measurement tasks. Engineers and technicians can use it to calibrate and test electronic circuits, analyze the behavior of components under different conditions, and troubleshoot signal processing systems. Its versatility in generating sine, square, triangle, and sawtooth waves makes it suitable for a wide range of applications, including audio signal testing, sensor calibration, and frequency response analysis.

Overall, the function generator project offers a valuable tool with diverse applications in education, research, and industry. Its versatility, accuracy, and user-friendly operation make it an essential asset for electronics enthusiasts, students, engineers, and technicians alike.

Conclusion

In conclusion, the development and implementation of the function generator project have demonstrated the successful integration of hardware and software components to achieve the objective of generating various waveforms with precision and user-friendly operation. By utilizing the microcontroller 89C52 along with supporting components such as the DAC0808, LCD display, and keypad interface, the project has provided a versatile tool for both educational and practical purposes in the field of electronics.

The function generator offers a cost-effective solution with high accuracy in waveform generation. The user-friendly interface allows users to easily select the desired waveform type and frequency, while the accurate generation of waveforms ensures reliable performance in a variety of applications.

Overall, the function generator project not only serves as a valuable educational tool for understanding the principles of waveform generation and signal processing but also showcases the practical application of electronics engineering concepts.

References

- [1] Mazidi, Muhammad Ali, Janice Gillispie Mazidi, and Rolin D. McKinlay. "The 8051 microcontroller and embedded systems using assembly and C." Pearson Education India, 2008.
- [2] Malik, Mazhar Ali, and Abdul Haseeb Ansari. "8051 Microcontroller: Hardware, Software, and Applications." Oxford University Press, 2019.
- [3] "8051 Microcontroller Datasheet." Atmel Corporation.
- [4] "DAC0808 Datasheet." National Semiconductor. https://www.ti.com/lit/ds/symlink/dac0808.pdf
- [5] Ibrahim, Dogan. "PIC Microcontroller Projects in C: Basic to Advanced." Newnes, 2008.