Table des matières

I	Dériva	abilité d'une fonction numérique	2
	I.1	Dérivabilité en un point	2
	I.2	Dérivabilité à gauche ou à droite en un point	3
	I.3	Opérations sur les applications dérivables en un point	4
II	Dériva	abilité sur un intervalle	5
	II.1	Applications dérivables, applications de classe C1	5
	II.2	Extremums d'une fonction dérivable	6
	II.3	Rolle et accroissements finis	7
	II.4	Monotonie des applications dérivables	8
III	Applie	cations de classe \mathcal{C}^k	9
	III.1	Dérivées successives	9
	III.2	Opérations sur les applications de classe \mathcal{C}^k	10
	III.3	Formules de Taylor	11
IV	Applications convexes		12
	IV.1	Définitions équivalentes de la convexité	12
	IV.2	Régularité des applications convexes	13
	IV.3	Inégalités de convexité	15

I Dérivabilité d'une fonction numérique

Dans tout ce chapitre, on considère des applications qui sont définies sur un intervalle I de \mathbb{R} non réduit à un point, et qui sont à valeurs dans \mathbb{R} .

I.1 Dérivabilité en un point

Définition (Nombre dérivé en un point)

On dit que f est dérivable en un point a de I si $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ existe dans \mathbb{R} . Cette limite est appelée nombre dérivé de f en a et est notée f'(a), ou D(f)(a), ou $\frac{\mathrm{d}f}{\mathrm{d}x}(a)$.

Interprétation géométrique

Soient A = (a, f(a)) et M(x, f(x)) sur la courbe représentative Γ de f.

Le taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ est le coefficient directeur de la corde AM.

Dire que f est dérivable en a, c'est dire que la corde AM possède une position limite non verticale Δ , de coefficient directeur f'(a), quand x tend vers a, c'est-à-dire quand M tend vers A sur Γ . On dit que Δ est la tangente à Γ en son point d'abscisse a.

Dire que f est dérivable en a, c'est donc dire que la courbe représentative Γ de f présente au point A(a, f(a)) une tangente Δ non verticale.

L'équation de Δ est y = f(a) + (x - a)f'(a).

Proposition (Une autre définition de la dérivabilité)

f est dérivable en un point a de I \Leftrightarrow il existe un réel ℓ et une application $x \mapsto \varepsilon(x)$ de I dans \mathbb{R} , vérifiant $\lim_{x\to a} \varepsilon(x) = 0$ et $\varepsilon(a) = 0$, et tels que :

$$\forall x \in I, \ f(x) = f(a) + (x - a)\ell + (x - a)\varepsilon(x)$$

Le réel ℓ est alors égal à f'(a).

La figure ci-dessus montre les quantités (x-a)f'(a) et $(x-a)\varepsilon(x)$, relatives à un point M(x, f(x)) assez "éloigné" de A. Au voisinage de A, et si $f'(a) \neq 0$ (c'est-à-dire si la tangente Δ n'est pas horizontale), alors $(x-a)\varepsilon(x)$ est négligeable devant (x-a)f'(a).

Remarques et exemples

- Une translation permet de se ramener à un calcul à l'origine : $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$.
- Si f dérivable en a, f est continue en a. La réciproque est fausse. Exemple : si f(0) = 0 et $f(x) = x \sin \frac{1}{x}$ si $x \neq 0$, f est continue mais non dérivable en 0.
- Si f est constante sur I, alors : $\forall a \in I$, f'(a) = 0.
- Si f est l'application $x \mapsto x^n$ (avec $n \in \mathbb{N}^*$) alors : $\forall a \in \mathbb{R}, f'(a) = na^{n-1}$.
- Pour tout $a \operatorname{de} \mathbb{R}$, $\exp'(a) = \exp(a)$ et $\ln'(a) = \frac{1}{a}$.
- Pout tout a de \mathbb{R} , $\sin'(a) = \cos(a)$ et $\cos'(a) = -\sin(a)$. Si $a \neq \frac{\pi}{2}(\pi)$, alors $\tan'(a) = 1 + \tan^2(a)$.

I.2 Dérivabilité à gauche ou à droite en un point

On complète les définitions précédentes avec la notion de nombre dérivé à gauche ou à droite.

Définition (Nombre dérivé à gauche)

Soit a un point de I, distinct de l'extrémité gauche de I.

On dit que f est dérivable à gauche en a si $\lim_{x\to a, x< a} \frac{f(x)-f(a)}{x-a}$ existe dans \mathbb{R} .

Cette limite est appelée nombre dérivé à gauche de f en a et est notée $f_g'(a)$.

Définition (Nombre dérivé à droite)

Soit a un point de I, distinct de l'extrémité droite de I.

On dit que f est dérivable à droite en a si $\lim_{x\to a,\,x>a} \frac{f(x)-f(a)}{x-a}$ existe dans \mathbb{R} .

Cette limite est appelée nombre dérivé à droite de f en a et est notée $f'_d(a)$.

Interprétation géométrique

Dire que f est dérivable à droite (resp. à gauche) en a, c'est dire que la courbe Γ de f admet au point A(a, f(a)) une demi-tangente à droite (resp. à gauche) non verticale.

Le coefficient directeur de cette demi-tangente est $f'_d(a)$ (resp. $f'_g(a)$.)

Sur l'exemple de gauche, f est dérivable à gauche et à droite en a, avec $f'_g(a) = -1$ (demi-tangente oblique, parallèle à y = -x) et $f'_d(a) = 0$ (demi-tangente horizontale.)

Sur l'exemple de droite, on a $f'_g(a) = 0$ (demi-tangente horizontale), mais f n'est pas dérivable à droite en a (il y a bien une demi-tangente mais elle est verticale).

Remarques

- Soit a un point de I qui ne soit pas une extrémité de I. f est dérivable en $a \Leftrightarrow$ elle est dérivable à gauche et à droite en a et $f'_g(a) = f'_d(a)$.

 On a alors $f'(a) = f'_g(a) = f'_d(a)$.
- Si f dérivable en a, alors f est continue en a. La réciproque est fausse (comme le montre l'exemple de $x \mapsto |x|$ en 0.) Si f est dérivable à gauche (resp. à droite) en a, elle y est continue à gauche (resp. à droite.)
- Si f coïncide en a et à droite de a avec une application g définie au voisinage de a et dérivable en a, alors f est dérivable à droite en a et $f'_d(a) = g'(a)$ (remarque analogue à gauche de a.)

 Par exemple, si f est définie par $f(x) = |x| + \exp(x)$, elle coïncide en 0 et à droite de 0 avec $g(x) = x + \exp(x)$ qui est telle que g'(0) = 2.

 De même f coïncide en 0 et à gauche de 0 avec $h(x) = -x + \exp(x)$ qui est telle que h'(0) = 0.

 On en déduit que f est dérivable à droite et à gauche en 0, avec $f'_d(0) = 2$ et $f'_g(0) = 0$.

I.3 Opérations sur les applications dérivables en un point

Proposition (Linéarité de la dérivation en un point)

Soient f et g deux applications dérivables au point a. Pour tous scalaires α, β , l'application $h = \alpha f + \beta g$ est dérivable en a et $h'(a) = \alpha f'(a) + \beta g'(a)$.

Proposition (Produit d'applications dérivables en un point)

Soient f et g deux applications dérivables en un point a. Alors l'application h = fg est dérivable en a et h'(a) = f'(a)g(a) + f(a)g'(a).

Proposition (Dérivée de l'inverse)

Si g est dérivable en a, avec $g(a) \neq 0$, alors $h = \frac{1}{g}$ est dérivable en a, et $h'(a) = -\frac{g'(a)}{g^2(a)}$. Supposons de plus que f soit dérivable en a. Alors $\frac{f}{a}$ est dérivable en a et $\left(\frac{f}{a}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$.

Proposition (Composition et dérivation)

Soit $f: I \to \mathbb{R}$, une application dérivable en un point a de I.

Soit J un intervalle contenant f(I) et non réduit à un point.

Soit $g: J \to \mathbb{R}$, une application dérivable au point b = f(a) de J.

Alors $g \circ f$ est dérivable au point a et $(g \circ f)'(a) = f'(a)(g' \circ f)(a)$.

Proposition (Dérivation et bijection réciproque)

Soit $f: I \to \mathbb{R}$ une application dérivable, strictement monotone.

f est donc bijective de I sur un intervalle J. Soit a dans I tel que $f'(a) \neq 0$.

Alors $g = f^{-1}$ est dérivable en b = f(a) et $g'(b) = \frac{1}{f'(a)} = \frac{1}{f' \circ f^{-1}(b)}$.

II Dérivabilité sur un intervalle

II.1 Applications dérivables, applications de classe C1

Définition

On dit que f est dérivable sur I si f est dérivable en tout point de I.

L'application $f': I \to \mathbb{R}$ qui à tout a associe f'(a) est appelée application dérivée de f.

Cette application est également notée Df ou $\frac{df}{dx}$.

On note $\mathcal{D}(I,\mathbb{R})$ l'ensemble des applications dérivables de I dans \mathbb{R} .

Définition (Applications de classe C^1)

On dit que f est de classe \mathcal{C}^1 sur I si f est dérivable sur I et si f' est continue sur I.

On note $\mathcal{C}^1(I,\mathbb{R})$ l'ensemble de ces applications.

Opérations sur applications dérivables sur un intervalle I

– Soient f et g deux applications dérivables sur l'intervalle I.

Pour tous α, β dans \mathbb{R} , $h = \alpha f + \beta g$ est dérivable sur I et $h' = \alpha f' + \beta g'$.

L'application fg est dérivable sur I et (fg)' = f'g + fg'.

Si
$$g$$
 ne s'annule pas sur I , alors $\left(\frac{1}{g}\right)'=-\frac{g'}{g^2}$ et $\left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}$

– Soit $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux applications dérivables, avec $f(I) \subset J$.

Alors $g \circ f$ est dérivable sur I et $(g \circ f)' = f' \cdot (g' \circ f)$

– Soit $f: I \to \mathbb{R}$ une application dérivable, strictement monotone.

L'application f réalise donc une bijection de I sur un intervalle J.

Si
$$f'$$
 ne s'annule pas sur I , alors $g = f^{-1}$ est dérivable sur J et $g' = \frac{1}{f' \circ f^{-1}}$.

- Tous les résultats précédents s'énoncent à l'identique pour des applications de classe \mathcal{C}^1 .

Dérivation des fonctions trigonométriques inverses

– La dérivée de $x\to\sin x$ sur $[-\frac{\pi}{2},\frac{\pi}{2}]$ est $x\to\cos x$, nulle en $\pm\frac{\pi}{2}$. On en déduit :

$$\forall x \in]-1,1[, \arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-x^2}}$$

– La dérivée de $x\to\cos x$ sur $[0,\pi]$ est $x\to\sin x$, nulle en x=0 et $x=\pi$. On en déduit :

$$\forall x \in]-1,1[,\arccos' x = \frac{1}{\cos'(\arccos x)} = \frac{-1}{\sin(\arccos x)} = \frac{-1}{\sqrt{1-x^2}}$$

– La dérivée de $x\to \tan x$ sur] $-\frac{\pi}{2}, \frac{\pi}{2}$ [est $x\to 1+\tan^2 x$, toujours non nulle. On en déduit :

$$\forall x \in \mathbb{R}, \ \operatorname{arctan}' x = \frac{1}{\tan'(\arctan x)} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

Dérivation des fonctions puissances

- Par récurrence sur $n \ge 1$, on sait que $(x^n)' = nx^{n-1}$ pour tout x de \mathbb{R} .
- Si *n* est un entier négatif, $(x^n)' = \left(\frac{1}{x^{-n}}\right)' = -\frac{-nx^{-n-1}}{x^{-2n}} = nx^{n-1}$.

L'égalité $(x^{\alpha})' = \alpha x^{\alpha-1}$ est donc vraie pour les exposants α de \mathbb{Z} .

- Soit $f: x \to \sqrt[n]{x}$, bijection réciproque de $g: \mathbb{R}^+ \to \mathbb{R}^+$ définie par $g(x) = x^n$.

L'application g est dérivable sur \mathbb{R}^+ et sa dérivée $g'(x) = nx^{n-1}$ est non nulle sur \mathbb{R}^{+*} .

Ainsi f est dérivable sur \mathbb{R}^{+*} et $f'(x) = \frac{1}{g'(\sqrt[n]{x})} = \frac{1}{nx^{\frac{n-1}{n}}} = \frac{1}{n}x^{\frac{1}{n}-1}$.

La formule $(x^{\alpha})' = \alpha x^{\alpha-1}$ est donc encore valable quand α est de la forme $\alpha = \frac{1}{n}$, où $n \in \mathbb{N}^*$.

Si
$$\alpha = \frac{p}{q} \ (p \in \mathbb{Z}, q \in \mathbb{N}^*)$$
, alors : $(x^{\alpha})' = ((x^p)^{1/q})' = \frac{1}{q} (x^p)' (x^p)^{\frac{1}{q}-1} = \frac{p}{q} x^{p-1+\frac{p}{q}-p} = \alpha x^{\alpha-1}$.

La formule $(x^{\alpha})' = \alpha x^{\alpha-1}$ est donc encore valable quand α est un rationnel.

– Dans le cas d'un exposant α quelconque, en particulier non rationnel :

$$\forall x > 0, \ (x^{\alpha})' = (\exp(\alpha \ln x))' = \frac{\alpha}{x} \exp(\alpha \ln x) = \frac{\alpha}{x} x^{\alpha} = \alpha x^{\alpha - 1}$$

II.2 Extremums d'une fonction dérivable

Proposition

Soit $f: I \to \mathbb{R}$ une application dérivable. Soit a un point intérieur à I.

 $\|$ Si f possède un extrémum local en a, alors f'(a) = 0.

Remarques

- La réciproque est fausse : si $f(x) = x^3$, f'(0) = 0 mais f n'a pas d'extrémum en 0.
- En fait, les extrémums locaux d'une application f sur un intervalle I doivent être recherchés parmi les points où f n'est pas dérivable, parmi les extrémités de I, et parmi les points intérieurs à I où f est dérivable de dérivée nulle.
- Le graphe ci-dessous montre quelques cas possibles :

II.3 Rolle et accroissements finis

Théorème (Théorème de Rolle)

Soit $f:[a,b] \to \mathbb{R}$ une application définie sur le segment [a,b], avec a < b, à valeurs réelles.

On suppose que f est continue sur [a, b], dérivable sur [a, b], et que f(a) = f(b).

Alors il existe c dans a, b tel que f'(c) = 0.

Théorème (Egalité des accroissements finis)

Soit $f:[a,b] \to \mathbb{R}$ une application définie sur le segment [a,b], avec a < b, à valeurs réelles.

On suppose que f est continue sur [a, b], dérivable sur [a, b].

Alors il existe c dans a, b tel que a (a) = a) a (a) = a) a

Propriétés et remarques

- Il n'y a pas nécessairement unicité du point c de a, b qui figure dans les deux théorèmes.
- Soit $f:[a,b] \to \mathbb{R}$ une application continue sur [a,b], dérivable sur [a,b] (a < b).

On suppose que : $\forall x \in]a, b[, m \leqslant f'(x) \leqslant M$. Alors $m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$.

- Si f est de classe \mathcal{C}^1 sur [a,b], alors $|f(b)-f(a)|\leqslant M\,|b-a|$, avec $M=\sup_{x\in[a,b]}|f'(x)|$.
- On peut aussi écrire, en posant b = a + h:

Soit f une application continue $sur\ [a,a+h]$ et dérivable $sur\]a,a+h[.$

Alors il existe θ dans]0,1[tel que $: f(a+h) = f(a) + hf'(a+\theta h).$

Dans cette version du "TAF", le signe de h est quelconque (si f est dérivable sur un voisiange de a) et on peut considérer θ comme une fonction de h.

Interprétation géométrique

Soit Γ la courbe de f. Soient A, B les points d'abscisse a, b de Γ .

Avec les hypothèses du théorème de Rolle, il y a un point de Γ où la tangente est horizontale.

Avec les hypothèses du théorème des accroissements finis, il existe un point de Γ où la tangente est parallèle à la corde AB.

Proposition (Caractérisation des applications lipschitziennes)

Soit f une application continue de I dans \mathbb{R} , dérivable sur l'intérieur de I.

 $|| f \text{ est } k\text{-lipschitzienne sur } I \Leftrightarrow \text{pour tout } x \text{ de } I, |f'(x)| \leqslant k.$

Proposition (Prolongement d'une application de classe C^1)

Soit f une application continue de [a, b] dans \mathbb{R} , de classe \mathcal{C}^1 sur [a, b].

On suppose que f' possède une limite finie ℓ en a à droite.

Alors f est de classe C^1 sur [a, b], avec $f'(a) = \ell$.

On a bien sûr un résultat analogue au point b.

Remarque

Soit $f:[a,b]\to\mathbb{R}$, continue sur [a,b[, de classe \mathcal{C}^1 sur]a,b[. On suppose que $\lim_{x\to a^+}f'(x)=\infty$.

Alors la courbe représentative de f admet au point (a, f(a)) une demi-tangente verticale.

II.4 Monotonie des applications dérivables

Proposition (Caractérisation des applications constantes)

Toute application constante f de I dans \mathbb{R} est dérivable sur I et $\forall x \in I$, f'(x) = 0.

Réciproquement, si f est continue sur I, dérivable sur l'intérieur de I et si f' est l'application nulle, alors f est constante sur I.

Proposition (Caractérisation des applications monotones)

Soit $f: I \to \mathbb{R}$ une application dérivable.

- L'application f est croissante sur $I \Leftrightarrow \forall x \in I, f'(x) \ge 0$.
- L'application f est décroissante sur $I \Leftrightarrow \forall x \in I, f'(x) \leq 0$.

Proposition (Caractérisation des applications strictement monotones)

Soit $f: I \to \mathbb{R}$ une application dérivable et monotone.

L'application f est strictement monotone sur I si et seulement si sa dérivée f' n'est identiquement nulle sur aucun sous-intervalle de I d'intérieur non vide (ou encore si et seulement si f' ne s'annule qu'en des points isolés de I.)

Proposition (Applications ayant la même dérivée)

Soient $f,g:I\to\mathbb{R},$ dérivables sur I. Les deux conditions suivantes sont équivalentes :

- Pour tout x de I, on a f'(x) = g'(x).
- Il existe une constante λ telle que : $\forall x \in I, \ g(x) = f(x) + \lambda$.

Remarque

Tout ce qui découle de Rolle est valable sur un intervalle, et pas sur une réunion d'intervalles.

Par exemple, si $f(x) = \frac{1}{x}$ alors $f'(x) = -\frac{1}{x^2} < 0$ sur \mathbb{R}^* , mais f n'est pas monotone sur \mathbb{R}^* .

De même, si deux applications dérivables sur \mathbb{R}^* vérifient f' = g' sur \mathbb{R}^* , alors elles diffèrent d'une constante λ sur \mathbb{R}^{-*} et d'une constante μ sur \mathbb{R}^{+*} .

III Applications de classe C^k

On rappelle que I désigne un intervalle de \mathbb{R} non réduit à un point.

III.1 Dérivées successives

Définition (Applications n fois dérivables sur un intervalle)

Soit f une application de I dans \mathbb{R} . On pose $f^{(0)} = f$.

On suppose que l'application $f^{(n-1)}$ existe et est dérivable de I dans \mathbb{R} .

On définit alors l'application $f^{(n)} = (f^{(n-1)})'$.

Si l'application $f^{(n)}: I \to \mathbb{R}$ existe, on dit que f est n fois dérivable sur l'intervalle I, et $f^{(n)}$ est appelée application dérivée n-ième de f sur I.

L'application $f^{(n)}$ est peut également être notée $D^n f$ ou encore $\frac{d^n f}{dx^n}$.

Remarques

- On note souvent f'' et f''' les applications dérivée seconde et dérivée troisième de f.
- Nombre dérivé n-ième en un point :

Soit f une application de I dans \mathbb{R} , a un point de I et n un entier naturel.

On dit que f est n fois dérivable en a si f est n-1 fois dérivable sur un voisinage de a et si $f^{(n-1)}$ est dérivable en a.

On note encore $f^{(n)}(a)$ cette dérivée, appelée nombre dérivé n-ième de f au point a de I (il n'est pas nécessaire que $f^{(n)}$ existe sur I tout entier.)

– Si f est n fois dérivable sur I, alors pour tout k de $\{0, \ldots, n\}$, l'application $f^{(k)}$ est n-k fois dérivable sur I (et en particulier continue si k < n).

Pour tout k de $\{0,\ldots,n\}$, on a alors l'égalité : $f^{(n)}=(f^{(k)})^{(n-k)}$.

Définition (Applications de classe C^k)

Soit f une application de I dans \mathbb{R} , k fois dérivable.

Si de plus l'application $f^{(k)}$ est continue sur I, on dit que f est de classe C^k sur I.

On note $C^k(I,\mathbb{R})$ l'ensemble des applications de classe C^k de I dans \mathbb{R} .

On dit que f est de classe \mathcal{C}^{∞} sur I si f est k fois dérivable sur I pour tout entier naturel k (c'est-à-dire en fait si f est de classe \mathcal{C}^k pour tout k).

On note $\mathcal{C}^{\infty}(I,\mathbb{R})$ l'ensemble de ces applications.

Remarques

 $-\mathcal{C}^0(I,\mathbb{R})$ désigne l'ensemble des applications continues de I dans \mathbb{R} .

On a les inclusions $C^0(I,\mathbb{R}) \supset C^1(I,\mathbb{R}) \supset \cdots \supset C^k(I,\mathbb{R}) \supset \cdots \supset C^{\infty}(I,\mathbb{R})$.

De même on a : $C^{\infty}(I, \mathbb{R}) = \bigcap_{k \in \mathbb{N}} C^k(I, \mathbb{R})$.

- On dit souvent d'une application de classe \mathcal{C}^k qu'elle est k fois continûment dérivable.
- On a $f^{(n)} \equiv 0$ sur $I \Leftrightarrow f$ est une application polynomiale de degré $\leqslant n-1$ sur I.

III.2 Opérations sur les applications de classe C^k

Dans les énoncés suivants, k est un élément de $\mathbb{N} \cup \{+\infty\}$.

Les propriétés de ce paragraphe pourraient être énoncées de façon analogue en termes de fonctions k fois dérivables sur un intervalle I.

Proposition (Combinaisons linéaires d'applications de classe C^k)

Soient f et g deux applications de classe \mathcal{C}^k de I dans \mathbb{R} . Soient α, β deux réels.

Alors $\alpha f + \beta g$ est de classe C^k sur I et : $(\alpha f + \beta g)^{(k)} = \alpha f^{(k)} + \beta g^{(k)}$.

Proposition (Formule de Leibniz)

Soit k un élément de $\mathbb{N} \cup \{+\infty\}$. Soient f et g deux applications de classe \mathcal{C}^k de I dans \mathbb{R} .

Alors fg est de classe \mathcal{C}^k sur I et : $(fg)^{(k)} = \sum_{j=0}^k {k \choose j} f^{(j)} g^{(k-j)}$.

Proposition (Inverse d'une application de classe C^k)

 $\parallel \operatorname{Si} f: I \to \mathbb{R}$ est de classe \mathcal{C}^k sur I et ne s'annule pas, alors $\frac{1}{f}$ est de classe \mathcal{C}^k sur I.

Proposition (Composition d'applications de classe C^k)

Soit f une application de classe C^k de I dans \mathbb{R} .

Soit J un intervalle de \mathbb{R} , non réduit à un point et contenant f(I).

Soit g une application de classe \mathcal{C}^k de J dans \mathbb{R} .

Alors l'application $g \circ f$ est de classe C^k de I dans \mathbb{R} .

Proposition (Bijection réciproque d'une application de classe C^k)

Soit f une application de classe C^k de I dans \mathbb{R} .

On suppose que f'(x) > 0 pour tout x de I, ou que f'(x) < 0 pour tout x de I.

L'application f réalise donc une bijection de I sur un intervalle J.

Dans ces condtions, la bijection réciproque f^{-1} est également de classe \mathcal{C}^k .

Exemples d'applications de classe \mathcal{C}^{∞}

- Les fonctions polynômiales sont de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - Il en est de même des fonctions rationnelles sur leur domaine de définition.
- L'application $x \mapsto \exp x$ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

L'application $x \mapsto \ln x$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} .

- De même les égalités $\sin' = \cos$ et $\cos' = -\sin$ montrent que les applications $x \mapsto \sin x$ et $x \mapsto \cos x$ sont de classe \mathcal{C}^{∞} sur \mathbb{R} . Il en découle que l'application $x \mapsto \tan x$ est de classe \mathcal{C}^{∞} sur son domaine de définition.
- Les applications $x \mapsto x^{\alpha}$ sont de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} .
- Les applications $x \mapsto \operatorname{ch} x$, $x \mapsto \operatorname{sh} x$ et $x \mapsto \operatorname{th} x$ sont de classe \mathcal{C}^{∞} sur \mathbb{R} .
- Les applications $x \mapsto \arcsin x$, et $x \mapsto \arccos x$ sont de classe \mathcal{C}^{∞} sur] 1, 1[. L'application $x \mapsto \arctan x$ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- Les fonctions qui se déduisent des précédentes par somme, produit, quotient, puissance et composition sont de classe \mathcal{C}^{∞} sur leur domaine de définition.

III.3 Formules de Taylor

Proposition (formule de Taylor avec reste intégral)

Soit $f: [a,b] \to \mathbb{R}$ une application de classe \mathcal{C}^{n+1} . On a l'égalité :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \underbrace{\int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt}_{B_n}.$$

 R_n est appelé le reste intégral d'ordre n de la formule de Taylor de f sur [a,b].

Proposition (inégalité de Taylor-Lagrange)

Soit $f: I \to \mathbb{R}$ une application de classe \mathcal{C}^{n+1} .

Soient a et b deux points de I.

Alors:
$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) \right| \le M \frac{|b-a|^{n+1}}{(n+1)!}$$
, où $M = \sup_{[a,b]} \left| f^{(n+1)} \right|$.

Exemples

- Pour n = 0, on retrouve l'inégalité des accroissements finis :

$$|f(b) - f(a)| \leq M_1 |b - a|$$
 où $M_1 = \sup_{[a,b]} |f'|$

Pour n = 1, on trouve :

$$|f(b) - f(a) - (b - a)f'(a)| \le M_2 \frac{(b - a)^2}{2!}$$
 où $M_2 = \sup_{[a,b]} |f''|$

- Voici des exemples d'application de l'inégalité de Taylor-Lagrange aux fonctions $t \mapsto \sin t$ et $t \mapsto \cos t$ sur l'intervalle [0, x]:

$$\left| \sin x - x \right| \leqslant \frac{|x|^3}{3!} \qquad \left| \sin x - x + \frac{x^3}{3!} \right| \leqslant \frac{|x|^5}{5!} \qquad \left| \sin x - x + \frac{x^3}{3!} - \frac{x^5}{5!} \right| \leqslant \frac{|x|^7}{7!}$$

$$\left| \cos x - 1 \right| \leqslant \frac{x^2}{2!} \qquad \left| \cos x - 1 + \frac{x^2}{2!} \right| \leqslant \frac{x^4}{4!} \qquad \left| \cos x - 1 + \frac{x^2}{2!} - \frac{x^4}{4!} \right| \leqslant \frac{x^6}{6!}$$

– En posant h=b-a, l'inégalité de Taylor-Lagrange au rang n s'écrit :

$$\left| f(a+h) - \sum_{k=0}^{n} \frac{h^k}{k!} f^{(k)}(a) \right| \le M \frac{|h|^{n+1}}{(n+1)!}, \text{ où } M = \sup_{[a,a+h]} \left| f^{(n+1)} \right|$$

Proposition (formule de Taylor-Young)

Soit f une application de classe C^n de I dans \mathbb{R} , et soit a un point de I.

Alors il existe une application ε définie sur I, telle que :

$$\forall x \in I, \ f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^n \varepsilon(x), \text{ avec } \lim_{x \to a} \varepsilon(x) = 0.$$

IV Applications convexes

IV.1 Définitions équivalentes de la convexité

Comme d'habitude, I désigne un intervalle de \mathbb{R} non vide et non réduit à un point.

Définition (application convexe)

Une application $f: I \to \mathbb{R}$ est dite *convexe* si: $\forall (a,b) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda a + (1-\lambda)b) \leqslant \lambda f(a) + (1-\lambda)f(b).$

Interprétation géométrique

Sur le schéma ci-dessous, on a fait figurer deux points A = (a, f(a)) et B = (b, f(b)) de la courbe Γ de f, ainsi que les points M_{λ} et N_{λ} d'abscisse $x_{\lambda} = \lambda a + (1 - \lambda)b$ et d'ordonnées respectives $f(x_{\lambda})$ et $\lambda f(a) + (1 - \lambda)f(b)$.

La convexité de f signifie que pour tout λ de [0,1], l'ordonnée de M_{λ} est inférieure ou égale à celle de N_{λ} . Or quand λ décrit [0,1], le point M_{λ} décrit l'arc (AB) de la courbe Γ , alors que le point N_{λ} (qui est le barycentre de A et B affectés des poids respectifs λ et $1-\lambda$) parcourt la corde [AB]:

Dire que l'application f est convexe sur I, c'est donc dire que pour tous points A(a, f(a)) et B(b, f(b)) de la courbe Γ de f, la corde [AB] est "au-dessus" de l'arc (AB) de Γ .

Exemples et remarques

– Une application $f: I \to \mathbb{R}$ est dite *concave* si l'application -f est convexe. Dans toute la suite de cette section on considérera surtout des applications convexes, les propriétés

des applications concaves s'en déduisant de manière évidente.

- L'application $x\mapsto \mid x\mid$ est convexe sur $\mathbb R$ car $\mid \lambda a+(1-\lambda)b\mid\leqslant\lambda\mid a\mid+(1-\lambda)\mid b\mid$
- Les fonctions affines $f: x \mapsto \alpha x + \beta$ sont à la fois convexes et concaves sur \mathbb{R} , car elles vérifient en effet $f(\lambda a + (1 \lambda)b) = \lambda f(a) + (1 \lambda)f(b)$. Réciproquement si une application est à la fois convexe et concave alors elle est affine (sa courbe représentative est une droite.)
- Soient f_1, f_2, \ldots, f_n des applications convexes, et $\alpha_1, \ldots, \alpha_n$ des réels ≥ 0 . Alors l'application $g = \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n$ est convexe.

Définition (partie convexe du plan)

Soit Ω une partie non vide du plan \mathbb{R}^2 . On dit que Ω est une partie *convexe* si, pour tous points M, N de Ω , le segment [M, N] est inclus dans Ω .

Proposition (caractérisation par la convexité de l'épigraphe)

Soit $f: I \to \mathbb{R}$ une application.

L'ensemble $\Omega = \{(x, y) \in \mathbb{R}^2, y \ge f(x)\}$ est appelé épigraphe de f sur I.

L'application f est convexe si et seulement si son épigraphe est une partie convexe de \mathbb{R}^2 .

On a représenté ici l'épigraphe Ω d'une application convexe f, deux points A et B de cet épigraphe, et le segment qui les joint, tout entier inclus dans Ω .

Remarque : f est concave sur $I \Leftrightarrow$ la partie située sous la courbe y = f(x) est convexe.

Proposition (une autre caractérisation de la convexité)

Une application $f: I \to \mathbb{R}$ est convexe si et seulement si :

Pour tout
$$a < b < c$$
 de I , $\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(c) - f(b)}{c - b}$

Le schéma ci-dessous illustre la propriété précédente : l'application f est convexe si et seulement si, pour tous points A, B, C de la courbe Γ (avec a < b < c), alors la pente de la corde [AB] est inférieure à celle de la corde [AC], elle même inférieure à la pente de la corde [BC].

Proposition (encore une caractérisation de la convexité)

Une application $f: I \to \mathbb{R}$ est convexe si et seulement si, pour tout a de I, l'application T_a définie sur $I \setminus \{a\}$ par $T_a(x) = \frac{f(x) - f(a)}{x - a}$ est croissante.

IV.2 Régularité des applications convexes

Proposition (dérivabilité à gauche et à droite)

Soit $f: I \to \mathbb{R}$ une application convexe. Soit a un point intérieur à I.

Alors f est dérivable à droite et à gauche au point a, et $f'_a(a) \leq f'_d(a)$.

De plus les applications f_g' et f_d' sont croissantes sur l'intérieur de I.

Proposition (continuité des applications convexes)

|| Soit $f: I \to \mathbb{R}$ une application convexe. Alors f est continue en tout point intérieur à I.

Un contre-exemple

Une application convexe sur un intervalle I peut ne pas être continue aux extrémités de I.

On le voit bien avec l'application f définie sur [0,1] par $\begin{cases} f(0)=f(1)=1\\ f(x)=0 \text{ si } x\in]0,1[\end{cases}$

Proposition (caractérisation de la convexité par la dérivée première)

Soit f une application dérivable de I dans \mathbb{R} .

Alors f est convexe si et seulement si f' est croissante sur I.

Proposition (Tangente à la courbe d'une application convexe)

Soit f une application dérivable et convexe de I dans \mathbb{R} .

Alors pour tout a de I, on $a : \forall x \in I, f(x) \ge f(a) + (x - a)f'(a)$.

Interprétation géométrique

La courbe représentative de f est, sur tout l'intervalle I, située "au-dessus" de n'importe laquelle de ses tangentes.

On a en fait un résultat plus général. On sait en effet qu'une application convexe sur I est dérivable à droite et à gauche en tout point intérieur à I. La courbe y = f(x) est alors partout au-dessus de chacune de ses demi-tangentes à gauche ou à droite.

Pour les applications concaves

- Une application concave sur I est continue en tous les points intérieurs à I.
- Si f est dérivable, f est concave $\Leftrightarrow f'$ est décroissante.
- Si f est dérivable et concave, la courbe y = f(x) est partout en dessous de ses tangentes.

Proposition (caractérisation de la convexité par la dérivée seconde)

Soit f une application deux fois dérivable de I dans \mathbb{R} .

Alors f est convexe si et seulement si $f''(x) \ge 0$ pour tout x de I.

Propriétés et remarques

- Une application $f: I \to \mathbb{R}$ deux fois dérivable est concave sur $I \Leftrightarrow \forall x \in I, f''(x) \leq 0$.
- L'application $x \mapsto e^x$ est convexe sur \mathbb{R} . L'application $x \mapsto \ln x$ est concave sur \mathbb{R}^{+*} .
- Les applications $x \mapsto a^x$ sont convexes sur \mathbb{R} . L'application $x \mapsto x^{\alpha}$ est concave si $\alpha \in [0, 1]$ et convexe si $\alpha \in \mathbb{R}^- \cup [1, +\infty[$.
- L'application $x \mapsto \sin x$ est concave sur $[0, \frac{\pi}{2}]$. Il en découle : $\forall x \in [0, \frac{\pi}{2}], \frac{2}{\pi} x \leqslant \sin x \leqslant x$.
- Soit $f: I \to \mathbb{R}$ une application deux fois dérivable. Soit a un point intérieur à I. On suppose que f'' s'annule et change de signe au point a.

Il y a donc un changement de concavité en a: la courbe y=f(x) "traverse" sa tangente. On dit que le point A(a,f(a)) est un point d'inflexion.

IV.3 Inégalités de convexité

Proposition

Soit $f: I \to \mathbb{R}$ une application convexe. Soit x_1, x_2, \dots, x_n une famille de n points de I. On se donne $\lambda_1, \dots, \lambda_n$ dans [0, 1] tels que $\sum_{k=1}^n \lambda_k = 1$. Alors $f\left(\sum_{k=1}^n \lambda_k x_k\right) \leqslant \sum_{k=1}^n \lambda_k f(x_k)$.

Remarques et exemples

- Cas particulier classique : $\lambda_k = \frac{1}{n}$ pour tout k. On obtient alors $f\left(\frac{1}{n}\sum_{k=1}^n x_k\right) \leqslant \frac{1}{n}\sum_{k=1}^n f(x_k)$.
- Si les $\lambda_k \geqslant 0$ et non tous nuls : $f\left(\frac{\sum\limits_{k=1}^n \lambda_k x_k}{\sum\limits_{k=1}^n \lambda_k}\right) \leqslant \frac{\sum\limits_{k=1}^n \lambda_k f(x_k)}{\sum\limits_{k=1}^n \lambda_k}$.
- Si f est concave, les inégalités sont dans l'autre sens.

Par exemple, l'application $x \mapsto \ln x$ est concave sur \mathbb{R}^{+*} .

On en déduit que pour tous x_1, x_2, \ldots, x_n de \mathbb{R}^{+*} , on a : $\ln\left(\frac{1}{n}\sum_{k=1}^n x_k\right) \geqslant \frac{1}{n}\sum_{k=1}^n \ln(x_k)$.

On en déduit $\frac{1}{n}\sum_{k=1}^n x_k \geqslant \left(\prod_{k=1}^n x_k\right)^{1/n}$ en prenant l'exponentielle membre à membre.

La moyenne arithmétique des x_k est donc supérieure ou égale à leur moyenne géométrique.

– Des arguments de convexité permettent de démontrer l'inégalité de Minkowski :

Pour tous x_k, y_k dans \mathbb{R}^{+*} et p > 1, on a : $\left(\sum_{k=1}^n (x_k + y_k)^p\right)^{1/p} \leqslant \left(\sum_{k=1}^n x_k^p\right)^{1/p} + \left(\sum_{k=1}^n y_k^p\right)^{1/p}$