Cattle Movement Network of Germany and its Relation to Epidemic Spreading:

Simulation, Overview, Future

by Jason Bassett March 19, 2019, Freie Universität, Berlin

Non-transmissible to humans

Non-transmissible to humans

Non-transmissible to humans

Contact-based transmission

Non-transmissible to humans

Contact-based transmission

Breeding-based transmission

Non-transmissible to humans

Contact-based transmission

Breeding-based transmission

Persistently infected animals

Non-transmissible to humans

Contact-based transmission

Breeding-based transmission

Persistently infected animals

Loss of cattle and milk yield

animals classified as PI among all newborn calves (2011 - 2016; %)

animals classified as PI among all newborn calves (2011 - 2016; %)

 $\sim 10^7$ animals

in 2016

animals classified as PI among all newborn calves (2011 - 2016; %)

0.24 0.14 0.06 0.03 0.02

 $\sim 10^7$ animals

in 2016

K. Wernike et al., Pathogens, 6(4):50, 2017.

Six Years (2011--2016) of Mandatory Nationwide Bovine Viral Diarrhea Control in Germany -- A Success Story

animals classified as PI among all newborn calves (2011 - 2016; %)

0.24 0.14 0.06 0.03 0.02

 $\sim 10^7$ animals

in 2016

K. Wernike et al., Pathogens, 6(4):50, 2017.

Six Years (2011--2016) of Mandatory Nationwide Bovine Viral Diarrhea Control in Germany -- A Success Story

BUT WE CAN DO

Hierarchical agent-based

Hierarchical agent-based

Stochastic (breeding + infectious features)

Hierarchical agent-based

Stochastic (breeding + infectious features)

Event-driven

Hierarchical agent-based

Stochastic (breeding + infectious features)

Event-driven

Animal source + Animal sink

Hierarchical agent-based

Stochastic (breeding + infectious features)

Event-driven

Animal source + Animal sink

Farms and their populations (data-driven)

Hierarchical agent-based

Stochastic (breeding + infectious features)

Event-driven

Animal source + Animal sink

Farms and their populations (data-driven)

Supply/demand network structure (filters) following fixed population per farm rule

Baseline (in-Farm) Dynamics (SIR... mostly)

Infected = Transiently + Persistently

System Dynamics (SIRP for BVD)

Horizontal Transmissions

$$S + P \xrightarrow{\beta_P} I + P$$

$$\gamma \rightarrow R + P$$

$$R \xrightarrow{\mu} S$$
 calf mature

System Dynamics (SIRP for BVD)

Horizontal Transmissions

$$\beta_I$$

$$\longrightarrow$$
 R + R

$$S + P \xrightarrow{\beta_P} I + P$$

$$\gamma \rightarrow R + P$$

$$\begin{array}{ccc}
R & \xrightarrow{\mu} & S \\
\hline
\text{calf} & \text{mature}
\end{array}$$

Vertical Transmissions

pregnant

mother calf

$$\begin{array}{c}
k, \tau, \tau_1, \tau_2, \gamma \\
R + R \\
R \longrightarrow R + R
\end{array}$$

$$k, \tau$$
 \rightarrow P + P

Farms/Premises as nodes

Farms/Premises as nodes

Animal movements as edges

Farms/Premises as nodes

Animal movements as edges

Constant quota mechanism + Market = network config.

Farms/Premises as nodes

Animal movements as edges

Constant quota mechanism + Market = network config.

Additional features

- Ag + Ab Testing (sensitivity analysis for TP)
- Vaccination (sensitivity analysis)
- Farm quarantine

Farms/Premises as nodes

Animal movements as edges

Constant quota mechanism + Market = network config. Bassett J., Blunk P., Isele T., Gethmann J. and Hövel P.; An agent-based model for bovine viral diarrhea; 2018; arXiv: submit/2509648

Additional features

- Ag + Ab Testing (sensitivity analysis for TP)
- Vaccination (sensitivity analysis)
- Farm quarantine

Model Setup and Initialisation

Farm size distribution of TH magnitude (≈350,000 animals / ≈1,600 farms)

≈55 years of simulation≈11 cows' life-cycles

2% PI-infected farms at start

Expert opinion and literature for parameters

Simulation Plan

Some individual state programmes

Scenarios	Timeline (in days)					
	0	10,000	12,006	12,373	12,738	20,000
1	STR 1					
2	STR 2					
3		STR 3				
4		STR 1				
5		STR 4				
6		STR 5a				
7		STR 5b				
8		STR 6a				
9		STR 6b				
10				STR 7		
11				STR 8		
12				STR4	ST	`R8
13				STR4	ST	TR9

13 Scenarios made of 11 strategies (STR)

With J. Gethmann And C. Probst (FLI)

Simulation Plan

Some individual state programmes Fee

Federal programme

13 Scenarios made of 11 strategies (STR)

With J. Gethmann And C. Probst (FLI)

Simulation Plan

13 Scenarios made of 11 strategies (STR)

With J. Gethmann And C. Probst (FLI)

Infectious Global Population Fractions

PI Distribution per Farm at Final State

Publish the results (further statistical analysis)!

Publish the results (further statistical analysis)!

Risk analysis of network

Publish the results (further statistical analysis)!

Risk analysis of network

Extend code (e.g. system as one farm, farm weights for trading, unit testing)

Publish the results (further statistical analysis)!

Risk analysis of network

Extend code (e.g. system as one farm, farm weights for trading, unit testing)

Further sensitivity analysis

Publish the results (further statistical analysis)!

Risk analysis of network

Extend code (e.g. system as one farm, farm weights for trading, unit testing)

Further sensitivity analysis

Heuristic methods for network rewiring

Publish the results (further statistical analysis)!

Risk analysis of network

Extend code (e.g. system as one farm, farm weights for trading, unit testing)

Further sensitivity analysis

Heuristic methods for network rewiring

More (E.U.) countries?

For Contributions (C++)...

Thank you for your attention! Questions?

Supported by the FLI, TU Berlin and the DFG in the framework of the collaborative Research Centre 910

FRIEDRICH-LOEFFLER-INSTITUT

Bundesforschungsinstitut für Tiergesundheit
Federal Research Institute for Animal Health

