Approche par bornes stochastiques et histogrammes pour l'analyse de performance des réseaux ¹

Farah AIT SALAHT 1

Sous la direction de : H. Castel, J.M. Fourneau et N. Pekergin

¹PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles France

10ème Atelier en Evaluation de Performances, 11-13 juin 2014

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

 Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles

- Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles
 - Problème:

- Chaînes de Markov à espace d'état très grand
- Solution exacte est très difficile voir impossible
- Calcul numérique rapide impossible (complexité)

 Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles

Problème :

Motivation

- Chaînes de Markov à espace d'état très grand
- Solution exacte est très difficile voir impossible
- Calcul numérique rapide impossible (complexité)

Approches existantes :

- Modélisation par une loi de probabilité connue
- Représentation non fidèle du comportement du réseau
- Résultats inexacts et approximatifs

- Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles
 - Problème:

- Chaînes de Markov à espace d'état très grand
- Solution exacte est très difficile voir impossible
- Calcul numérique rapide impossible (complexité)
- **Proposition:**

Utiliser l'approche par histogramme et Réduire la taille des distributions en employant des bornes stochastiques

- Borne stochastique \Longrightarrow le résultat est une borne de la distribution exacte
 - ⇒ Bornes sur les mesures de performance
- Contrôler la taille des distributions ⇒ Contrôler la complexité
- Compromis entre la qualité des bornes et la complexité du calcul.

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Description du modèle de file d'attente

► Trace du trafic utilisé comme exemple :

- Trace du trafic MAWI correspondant à une heure de mesure de trafic IP 9 janvier 2007 entre 12h et 13h
- Échantillonnage avec une période de 40 ms

► Trace du trafic utilisé comme exemple :

- Trace du trafic MAWI correspondant à une heure de mesure de trafic IP 9 janvier 2007 entre 12h et 13h
- Échantillonnage avec une période de 40 ms

- Représentation en histogramme
- Nombre de bins est de 80511

Description du modèle de file d'attente

► Modèle de file d'attente :

Le trafic en entrée est stationnaire et i.i.d. (A(t) = A).

Équations d'évolution

► Équation de récurrence sur la longueur du tampon :

$$Q(k) = \min(B, (Q(k-1) + A - S)^+), \quad k \in \mathbb{N}.$$
(1)

▶ Distribution de sortie :

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (2)

► Chaîne de Markov à temps discret.

Hypothèse : chaînes de Markov ergodiques.

► Modèle de file d'attente :

Le trafic en entrée est stationnaire et i.i.d. (A(t) = A).

Équations d'évolution

▶ Équation de récurrence sur la longueur du tampon :

$$Q(k) = \min(B, (Q(k-1) + A - S)^+), \quad k \in \mathbb{N}.$$
(1)

▶ Distribution de sortie :

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (2)

▶ Inconvénients : Calcul trop coûteux → Histogramme trop grand

Description du modèle de file d'attente

- Distributions empiriques avec un grand nombre de bins (plusieurs milliers)
- Opérations élémentaires : la convolution augmente considérablement la taille de la description du résultat
- La taille de $A \otimes B$ est bornée par la taille(A) * taille(B)

Description du modèle de file d'attente

- Distributions empiriques avec un grand nombre de bins (plusieurs milliers)
- Opérations élémentaires : la convolution augmente considérablement la taille de la description du résultat
- La taille de $A \otimes B$ est bornée par la taille(A) * taille(B)

Exemple de Convolution

- Deux distributions X et Y définies respectivement sur \mathcal{G}_X et \mathcal{G}_Y ; avec $G_X = \{1, 3, 5\}$ et $G_Y = \{2, 5\}$; et des distributions de probabilités : $p_X = [0.2, 0.5, 0.3]$ et $p_Y = [0.6, 0.4]$.
- Distribution Résultante $p_Z = p_X \otimes p_Y = [0.12, 0.3, 0.08, 0.18, 0.2, 0.12]$ définie sur $G_7 = \{3, 5, 6, 7, 8, 10\}.$

La convolution requière $O(|\mathcal{G}_X| \times |\mathcal{G}_Y|)$ operations (+) et au plus $|\mathcal{G}_X| \times |\mathcal{G}_Y|$ états pour la distribution résultante.

⇒ Explosion de la taille de l'espace d'état.

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Bornes stochastiques

- $\triangleright \mathcal{G} = \{1, 2, ..., n\}$ un espace fini. $\triangleright X, Y$: distributions discrètes à valeur sur \mathcal{G} ;
- $\triangleright p_X(i) = prob(X = i)$ et $p_Y(i) = prob(Y = i)$ pour $i \in \mathcal{G}$.

Ordre stochastique sur les distribution \leq_{st}

- Définition de l'ordre \leq_{st} : $X \leq_{st} Y$ ssi $\sum_{k=1}^{n} p_X(k) \leq \sum_{k=1}^{n} p_Y(k)$, $\forall i$.
- Comparaison de fonctions non décroissantes :

$$X \leq_{st} Y \iff \mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$$

pour toutes les fonctions non décroissantes f. pour lesquelles l'espérance existent.

Soient F_X et F_Y leurs fonctions de répartition. Alors

$$X <_{st} Y \Leftrightarrow F_X(a) > F_Y(a), \forall a \in \mathcal{G}$$

Bornes stochastiques

Exemple : $\mathcal{G} = \{1, 2, \dots, 7\}, \, \boldsymbol{p}_X = [0.1, \, 0.2, \, 0.1, \, 0.2, \, 0.05, \, 0.1, \, 0.25] \text{ et } \boldsymbol{p}_Y = [0, \, 0.25, \, 0.05, \, 0.1, \, 0.15, \, 0.15, \, 0.3].$

The pmf of a discrete distributions X and Y

Cumulative distribution functions

Bornes sur les histogrammes

- On a une distribution **d** et **r**: fonction de récompense positive croissante. $R[\mathbf{d}] = \sum \mathbf{r}(i)\mathbf{d}(i).$
- Hypothèse : ordre total sur l'espace \mathcal{H} , de taille N;
- Déterminer d1 et d2 tel que :
 - 1. $d2 \leq_{st} d \leq_{st} d1$;
 - 2. **d1** et **d2** ont exactement $K \ll N$ états (pas nécessairement le même). **d1** a comme support \mathcal{H}^{u} . **d2** a comme support \mathcal{H}^{I} .
 - 3. $\sum_{i \in \mathcal{H}} \mathbf{r}(i) \mathbf{d}(i) \sum_{i \in \mathcal{H}^l} \mathbf{r}(i) \mathbf{d2}(i)$ est minimal pour les distributions bornes inférieures de **d** avec K états:
 - 4. $\sum_{i \in \mathcal{H}^u} \mathbf{r}(i) \mathbf{d} 1(i) \sum_{i \in \mathcal{H}} \mathbf{r}(i) \mathbf{d}(i)$ est minimal pour les distributions bornes supérieures **d** avec K états:

Bornes sur les histogrammes de trafic

Bornes optimales, programmation dynamique

- Problème de théorie des graphes.
- On considère un graphe pondéré G = (V, E) avec :
 - ▶ Borne inférieure : $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(j) r(u))$
 - ▶ Borne supérieure : $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(v) r(j))$
- Calcul de la borne optimale \equiv Calculer le plus court chemin dans le graphe G avec K nœuds (K << N). Complexité : $O(N^2 K)$
- La masse de probabilités des nœuds supprimés est sommée avec
 - ▶ Borne inférieure : Les prédécesseurs immédiats
 - ▶ Borne supérieure : Les successeurs immédiats

Exemple: Borne supérieure optimale

On considère

- Distribution discrète A = (A, p(A)) avec support $A = \{0, 2, 3, 5, 7\}$ et probabilités $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$
- Fonction de récompense r: $\forall a_i \in A$, $r(a_i) = a_i$, $R[A] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15.$
- ▶ Calculer la borne optimale supérieure \overline{A} sur 3 états tel que la variation de R est minimale.

On considère

- Distribution discrète A = (A, p(A)) avec support $A = \{0, 2, 3, 5, 7\}$ et probabilités $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$
- Fonction de récompense $r: \forall a_i \in A, r(a_i) = a_i$ $R[A] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15.$
- ▶ Calculer la borne optimale supérieure \overline{A} sur 3 états tel que la variation de R est minimale.

Distribution bornante [0.35, 0.35, 0.3] avec support {2, 5, 7}

Objectif : Bornes stochastiques sur le processus d'entrée ⇒ bornes sur les mesures de performance.

Nous avons montré le résultat important suivant :

Monotonie

Si
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $Q(k) \leq_{st} Q^U(k), \forall k \geq 0$

et

Si
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $D(k) \leq_{st} D^U(k), \forall k \geq 0$.

Également vrai pour les processus stationnaires.

Autre algorithme possible

 Une approche approximative divisant l'espace d'états H en K sous ensembles de même mesure et en calculant la somme des probabilités sur ces sous-ensembles (approche de Hernàndez et al. 2007, appelée HBSP).

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Exemples à partir de traces réelles

Objectif:

Comparer les différentes méthodes (résultat exact, méthode HBSP et nos bornes).

1- File simple

- Influence du nombre de bins sur la précision des résultats
- Relation entre la taille du tampon et certaines mesures de performance

2- Réseau de files d'attente

On considère le réseau en tandem suivant

Nombre de bins vs précision : Paramètres QoS en utilisant la trace de trafic MAWI

1- File simple

(a) Probabilités de blocage

(b) Moyenne de la longueur du tampon

Distribution de probabilités cumulée (cdf) de la longueur du tampon sous la trace MAWI

(c) bins=20

(d) bins=100

Influence du nombre de bins sur la précision des résultats

Distribution de probabilités cumulée (cdf) de la longueur du tampon sous la trace MAWI

(e) bins=20

(f) bins=100

Temps de calcul pour bins = 100:

Exacte: 1897 **s**

HBSP: 0.007 **s**, **BI**: 0.35 **s**

BS: 0.33 s

Paramètres QoS en utilisant la trace de trafic CAIDA OC-48

16/18

- Hypothèse : indépendance (approximation)
- Chaque file est analysée séparément
- Monotonie ⇒ bornes à chaque étape intermédiaire

17/18

2- Réseau de file d'attente : Réseau en tandem

- Hypothèse : indépendance (approximation)
 - Chaque file est analysée séparément
- Monotonie ⇒ bornes à chaque étape intermédiaire

Distribution de probabilités cumulée de la longueur du tampon de la file 3.

bins=500

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

Conclusion

- Proposer une nouvelle approche fondée sur les bornes stochastiques;
- Deriver des bornes sur différentes mesures de performance : probabilités de blocage, occupation du tampon...
- Les bornes sur les performances sont très pertinentes pour le dimensionnement d'une file d'attente.

Notre méthode nous permet de

- Contrôler la taille des distributions;
- Compromis entre la précision et la complexité en changent la taille des distributions.

Exemples à partir de traces réelles

Merci pour votre attention