Sunday, October 18, 2020

Arssed salution review

4. Consider the game between a criminal and the government described in this chapter.

Here is a game that illustrates how the government balances the social cost of crime with law-enforcement costs and how criminals balance the value of illegal activity with the probability of arrest. The game has two players: a criminal (C) and the government (G). The government selects a level of law enforcement, which is a number $x \ge 0$. The criminal selects a level of crime, $y \ge 0$. These choices are made simultaneously and independently. The government's payoff is given by $u_G = -xc^4 - y^2/x$ with the interpretation that $-y^2/x$ is the negative effect of crime on society (moderated by law enforcement) and c^4 is the cost of law enforcement, per unit of enforcement. The number c is a positive constant. The criminal's payoff is given by $u_C = y^{1/2}/(1+xy)$, with the interpretation that $y^{1/2}$ is the value of criminal activity when the criminal is not caught, whereas 1/(1+xy) is the probability that the criminal evades capture. Exercise 4 of this chapter asks you to compute the Nash equilibrium of this game.

(a) Write the first-order conditions that define the players' best-response functions and solve them to find the best-response functions. Graph the best-response functions.

(b) Compute the Nash equilibrium of this game.

$$\frac{dv}{dG} \Rightarrow x = \frac{y}{C^2}$$

$$\frac{y - x}{C^2}$$

$$\frac{y - \frac{1}{y}}{C^2}$$

$$\frac{x - \frac{1}{y}}{C}$$

(c) Explain how the equilibrium levels of crime and enforcement change as c increases.

As Costs cincrease, enforcement & decreases and creminal activity y increases