прямоуголь		эол, вариант	7, обобщенная формула средних		
74110					
<mark>IAHO:</mark>					
$f(x) = \cot(x)$	$(x)-x^2$	a = 0.5	b := 1.4		
HAT 1. DLU	писпение знаг	ICUMO MUTECI	РАЛА I С ПОМОЩЬЮ		
	ЭЙ ФУНКЦИИ М		ANA I C HOMOЩЬЮ		
$f := \int_{-\infty}^{b} f(x) dx$	r = -0.152				
$\int_{a}^{\infty} \int_{a}^{\infty} (x) dx$	x = -0.152				
HAE 2. D. "	ПАСПЕННАЕ ЗНАЧ	ICHIAIA IALITEE	DATA TO OFOEHIELHOÙ ACDAVITE CETTU		
ДАГ 2: ВЫЧ ПРЯМОУГО			РАЛА ПО ОБОБЩЕННОЙ ФОРМУЛЕ СРЕДНИ		
$i \coloneqq 1 \dots 10$	диапазона дл	тя переменной	й $n_{_{k}}\!\coloneqq\!2^{k}$ значений n в зависимости о		
,			h_{\cdot}		
$a_k := \frac{b-a}{n}$	шаг интегрир зависимости	ования h в	$a_{_k} \coloneqq a + rac{h_{_k}}{2}$ левой границы интервала от k		
$\frac{n}{k}$	зависимости	от к	к 2 интервала от k		
		[0.400]			
$J_{\stackrel{\scriptstyle k}{\scriptstyle :=}} \sum_{i=0}^{n_{\stackrel{\scriptstyle k}{\scriptstyle -}} 1} \left(h_{\stackrel{\scriptstyle k}{\scriptstyle 0}} ight)$		$\begin{bmatrix} -0.162 \\ -0.155 \end{bmatrix}$	значения интеграла J_k		
		-0.153	суммирование значений		
		-0.153	функции f на различных		
	$f\left(a_{k}+i\cdot h_{k}\right)=$	-0.153	точках внутри каждого подинтервала, умноженных		
	//	-0.152	на соответствующий вес из		
		-0.152	вектора весов		
		-0.152			
		[-0.152]			
<u> ПАГЗ: ВЫ</u> Ч	числение аьсс	улютных вел	<mark>ЛИЧИН РАЗНОСТЕЙ ЗНАЧЕНИЙ ИНТЕГРАЛА</mark>		
	[0.009]				
	0.003				
Z := I - I	7.842 • 10 ⁻⁴ разности между точным				
	$1.994 \cdot 10^{-4}$	приолиженным значением 3 k			
	$= 5.006 \cdot 10^{-5}$				
$Z_k \coloneqq \left I - J_k \right $					
	$3.133 \cdot 10^{-6}$				
	$7.832 \cdot 10^{-7}$				
	$1.958 \cdot 10^{-7}$				
	$4.895 \cdot 10^{-8}$				

ШАГ 4: ОЦЕНКА ПОГРЕШНОСТИ МЕТОДОМ РУНГЕ $R_{k} \coloneqq \frac{\left|J_{k} - J_{k-1}\right|}{2}$ относительная величина изменения k = 2..10между приближенными значениями $R_{k-1} = \begin{bmatrix} 0 \\ 2.975 \\ 3.69 \\ 3.917 \\ 3.979 \\ 3.995 \\ 3.999 \\ A \end{bmatrix}$ Скорость сходимост 0.002 $7.194 \cdot 10^{-4}$ 0.002 $R_{k} = \begin{bmatrix} 7.194 \cdot 10 \\ 1.95 \cdot 10^{-4} \\ 4.977 \cdot 10^{-5} \\ 1.251 \cdot 10^{-5} \\ 3.132 \cdot 10^{-6} \\ 7.832 \cdot 10^{-7} \\ 1.958 \cdot 10^{-7} \\ 4.895 \cdot 10^{-8} \end{bmatrix}$ абсолютная величина разности сходимости ШАГ 5: ВЫЧИСЛЕНИЕ ПРИБЛИЖЕННОГО ЗНАЧЕНИЯ Ј ПО КВАДРАТУРНОЙ ФОРМУЛЕ ГАУССА кол-во узлов $j \coloneqq 0 \dots m-1$ $m \coloneqq 1$ a = 0.5b = 1.4 $x\!\coloneqq\! \begin{bmatrix} 0.5 \end{bmatrix}$ узлы $c\!\coloneqq\! \begin{bmatrix} 1 \end{bmatrix}$ коэффициенты $z_j\!\coloneqq\! a\!+\! (b\!-\!a)\!\cdot\! x_j\!=\! igl[0.95igr]$ узел интегрирования в формуле Гаусса $G1 \coloneqq (b-a) \cdot \sum_{j=0}^{m-1} {c \choose j} \cdot f(z \choose j) = -0.169$ численное приближение интеграла методом Гаусса $m\!\coloneqq\!2$ кол-во узлов $j\!\coloneqq\!0\dots m\!-\!1$ $a\!\coloneqq\!0.5$ b = 1.4 $x\!\coloneqq\!\begin{bmatrix}0.21132487\\0.78867513\end{bmatrix}$ узлы $c\!\coloneqq\!\begin{bmatrix}0.5\\0.5\end{bmatrix}$ коэффициенты $z_j = a + (b-a) \cdot x_j = egin{bmatrix} 0.69 \\ 1.21 \end{bmatrix}$ узел интегрирования в формуле Гаусса $G2 \coloneqq (b-a) \cdot \sum_{j=0}^{m-1} {c \choose j} \cdot f(z_j) = -0.158$ численное приближение интеграла методом Гаусо интеграла методом Гаусса $m \coloneqq 3$ кол-во узлов $j \coloneqq 0 \dots m-1$ a = 0.5b = 1.4

$x \coloneqq egin{bmatrix} 0.11270167 \\ 0.5 \\ 0.88729833 \end{bmatrix}$ узл	$c\coloneqq\begin{bmatrix} \frac{5}{18}\\ \frac{5}{9}\\ \frac{5}{18} \end{bmatrix}$ коэффициенты 601	
$z_{j} = a + (b - a) \cdot x_{j} = \begin{bmatrix} 0.6 \\ 0.9 \\ 1.2 \end{bmatrix}$	[18] [501] [95] узел интегрирования в ф	рормуле Гаусса
$G3 \coloneqq (b-a) \cdot \sum_{j=0}^{m-1} \left(c_j \cdot f\right)$	${\left({{z_j}} \right)} = - 0.172$ численное приблих интеграла методом	
$m\!\coloneqq\! 4$ кол-во узло	рв $j\!\coloneqq\!0\ldots m\!-\!1$ $a\!\coloneqq\!$	$=0.5$ $b \coloneqq 1.4$
$x \coloneqq \begin{bmatrix} 0.06943184 \\ 0.33000948 \\ 0.66999052 \\ 0.93056815 \end{bmatrix}$ узл	$c\coloneqq egin{bmatrix} 0.17392742 \\ 0.32607258 \\ 0.32607258 \\ 0.17392742 \end{bmatrix}$ коэффиция	ЭНТЫ
$z_{j} = a + (b - a) \cdot x_{j} = \begin{bmatrix} 0.5 \\ 0.7 \\ 1.1 \\ 1.5 \end{bmatrix}$	узел интегрирования в ф 338	рормуле Гаусса
$G4 \coloneqq (b-a) \cdot \sum_{j=0}^{m-1} \left(c_j \cdot f\right)$		
а:=5 кол-во узлов	$j\!\coloneqq\!0\dots m\!-\!1$ $a\!\coloneqq\!0.$.5 b:=1.4
[0.04691008] 0.23076534] := 0.5 узлы	$\begin{bmatrix} 0.11846344 \\ 0.23931433 \\ c \coloneqq 0.28444444 \end{bmatrix}$ коэффициент	-1.1
:= 0.5 0.76923466 0.95308992	0.23931433 0.11846344 коэффициент	
$\begin{bmatrix} 0.542 \\ 0.708 \\ 0.05 \end{bmatrix}$	узел интегрирования в	
$:= a + (b-a) \cdot x_{j} = \begin{bmatrix} 0.542 \\ 0.708 \\ 0.95 \\ 1.192 \\ 1.358 \end{bmatrix}$	формуле Гаусса	
$5 := (b-a) \cdot \sum_{j=0}^{m-1} \left(c_j \cdot f(z_j) \right)$) = -0.152 численное приближен интеграла методом Га	

$m\!\coloneqq\! 6$ кол-во узлов	$j\!\coloneqq\!0\ldots m\!-\!1$	a = 0.5	$b \coloneqq 1.4$
[0.03376524]	[0.08566225]		
0.16939531	0.18038079		
0.38069041	0.23395697		
$x \coloneqq \begin{vmatrix} 0.61930959 \\ 0.61930959 \end{vmatrix}$ узлы	$c \coloneqq \begin{vmatrix} 0.23393097 \\ 0.23395697 \end{vmatrix}$ коэффициенты		
0.83060469	0.18038079		
0.96623475	0.08566225		
	[0.06300223]		
$\begin{bmatrix} 0.53 \\ 0.650 \end{bmatrix}$			
0.652	узел интегри	ирования в	
$z_{j} = a + (b - a) \cdot x_{j} = \begin{vmatrix} 0.843 \\ 1.057 \end{vmatrix}$	формуле Гау	/cca	
1.248			
[1.37]			
m – 1			
$G6 \coloneqq (b-a) \cdot \sum_{j=0}^{m-1} \left(c_j \cdot f(z_j) \right)$	=-0.152 числен	ное приближение	
j=0 $j=0$ $j=0$	интегр	ала методом Гаусса	
	,G.P		
<mark>ШАГ 6: ВЫЧИСЛЕНИЕ АБСО</mark>	ОЛЮТНОЙ ВЕЛИЧИНЬ	І РАЗНОСТИ ЗНАЧЕНИЙ	
ИНТЕГРАЛА		I ASHOSINI SHA ILIMM	•
, III			
I = -0.152		0.003	1
	T (71 0 016	$7.842 \cdot 10^{-4}$	
G1 = -0.169	I - G1 = 0.016	$1.994 \cdot 10^{-4}$	
G2 = -0.158	I - G2 = 0.006	$5.006 \cdot 10^{-5}$	
G3 = -0.172	I - G3 = 0.019		
G4 = -0.153	$ I - G4 = 2.404 \cdot 10^{-5}$		
G5 = -0.152	$ I - G5 = 1.541 \cdot 10^{-6}$	3.133 • 10	
G6 = -0.152	$ I - G6 = 9.889 \cdot 10^{-8}$	$7.832 \cdot 10^{-7}$	
		$1.958 \cdot 10^{-7}$	
		$4.895 \cdot 10^{-8}$	3
		4	-