Attacking Face Recognition With TShirts: Database, Vulnerability Assessment, and Detection

AUTHORS: MATHIAS IBSEN, CHRISTIAN RATHGEB, FABIAN BRECHTEL, RUBEN KLEPP, KATRIN PÖPPELMANN, ANJITH GEORGE, SÉBASTIEN MARCEL AND CHRISTOPH BUSCH

Published Date:5/06/2023 **Published in IEEE Access.**

Type: Journal

Presented by: Rohit Kumar Scholar No: 24204041120

Course: M. Tech in Agile Software Engineering

Contents

- I. Introduction
- **II. T-Shirt Presentation Attack**
- III. T-Shirt Face Presentation Attack (TFPA) Database
- IV. Vulnerability Assessment of Face Recognition Systems
- V. Proposed Detection Methods
- VI. Results
- VII. Conclusion

Introduction to Face Recognition and Presentation Attacks (PAs)

 Face Recognition: It widely used in personal, industrial, and governmental security applications.

 Presentation Attacks (PAs): Attempts to deceive recognition systems by presenting modified or artificial input (e.g., masks).

• **Challenge:** Performance can drop with changes in lighting, angles, or low image quality, making it difficult to recognize faces consistently.

T-Shirt Presentation Attack

Concept: Using T-shirts with printed faces to fool face recognition systems.

 Motivation: Such T-shirt-based attacks are low-cost, easy to conceal, and can bypass face recognition systems.

• **Goal of Study**: Estimate the vulnerability of face recognition systems to T-shirt PAs and propose detection methods.

T-Shirt Presentation Attack

Figure 1. Can T-shirts with faces printed on them be used to attack face recognition systems?

T-Shirt Face Presentation Attack (TFPA) Database

Database Details

Capturing Scenarios

Significance

Database Details

Property	Description			
Attack type:	Impersonation attack			
Attack creation:	Synthetic face printed on T-shirt			
Face generation methods:	StyleGAN & InterFaceGAN			
No. of spectrums:	2 (visible, depth)			
No. of attacks:	1608			
No. of PAIs:	100			
No. of subjects:	Real (8), generated (100)			
Capturing device:	Intel RealSense Depth Camera D435			
Environment:	Controlled indoor with white background			

Table 1. An overview of the proposed T-shirt face presentation attack (TFPA) database.

Capturing Scenarios

FIGURE 2. The eight different capturing scenarios.

Results:

 To evaluate this, three open-source algorithms were used, namely RetinaFace [6], MTCNN [7], and dlib [5]

• The results show that the T-shirt faces are successfully detected in almost all cases with an average estimated detection rate for the three algorithms > 99% across all eight poses.

		dlib		MTCNN		RetinaFace Avg.		Avg.
Scenario	Face type	Success %	Avg. score	Success. %	Avg. score	Success %	Avg. score	Success %
Name of	real	100	0.60	100	1.00	100	0.98	100
Normal	T-shirt	100	0.56	100	1.00	100	0.98	100
F	real	0.50	0.01	10.45	0.41	11.94	0.67	7.63
Face covered	T-shirt	98.01	0.50	99.50	1.00	100	0.97	99.17
T 1 1 C	real	88.56	0.30	100	1.00	100	0.98	96.19
Look left	T-shirt	100	0.52	100	1.00	100	0.98	100
T 1	real	95.02	0.43	100	1.00	100	0.98	98.34
Look right	T-shirt	100	0.53	100	1.00	100	0.98	100
C I T. I.	real	100	0.59	100	1.00	100	0.97	100
Stretch T-shirt	T-shirt	100	0.60	100	1.00	100	0.98	100
- 1 1	real	92.04	0.17	100	1.00	100	0.98	97.35
Facial mask	T-shirt	99.50	0.56	100	1.00	100	0.98	99.83
	real	88.56	0.34	100	1.00	100	0.98	96.19
Look down	T-shirt	100	0.56	100	1.00	100	0.98	100
r 1	real	89.55	89.55 0.31 99 0.99 100 0.99	96.18				
Look up	T-shirt	100	0.55	100	1.00	100	0.98	100

Table 2. Detection accuracy and average detection scores across algorithms and capturing scenarios for T-shirt and real faces.

Vulnerability Assessment of Face Recognition Systems

- Many face detection algorithms can detect faces on T-shirts as real faces.
- IAPMR > 92.6% [9]
- Both open-source and commercial systems show high vulnerability, especially in scenarios where attackers conceal their real faces.

Proposed Detection Methods

Depth Map Analysis

Anomaly Detection

Fusion Approach

Experimental Setup and Matrics

Training and Testing: DV and AD models were trained on controlled reference images and more uncontrolled probe images from the FRGCv2 [8] database.

Matrics

- Attack Presentation Classification Error Rate (APCER): Measures the proportion of attacks incorrectly classified as real. means system incorrectly detect fake face is real.
- Bona Fide Presentation Classification Error Rate (BPCER): Measures the proportion of real images wrongly classified as attacks. Its recognize real face is fake.

Results:

TABLE 2. D-EER, BPCER10, and BPCER20 in % for the different PAD algorithms.

PAD Algorithm	D-EER	BPCER10	BPCER20
CMFL (RGBD)	26.14	50.41	62.77
CMFL (RGB)	24.18	52.34	63.32
VIT	25.82	56.59	72.25
DV	16.34	25.55	33.52
AD	21.70	33.24	42.72
DV + AD (fusion)	12.52	13.46	18.54

FIGURE 3. DET curves showing PAD performance on TFPA.

Conclusion

- Summary: T-shirt PAs present a serious risk to face recognition systems, which are highly vulnerable without adaptive PAD methods.
- **Key Contribution**: Introduction of a T-shirt PA database and new detection methods.
- Potential Future Solutions: Explore new datasets and more adaptive PAD systems

Reference

[1] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "ArcFace: Additive angular margin loss for deep face recognition," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4685-4694.

[2] Q. Meng, S. Zhao, Z. Huang, and F. Zhou, "MagFace: A universal representation for face recognition and quality assessment," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14220-14229.

[3] R. Raghavendra, K. B. Raja, and C. Busch, "Presentation attack detection for face recognition using light field camera," IEEE Trans. ImageProcess., vol. 24, no. 3, pp. 1060-1075, Mar. 2015.[23]

[4] C.Chen, A.Dantcheva, T.Swearingen, and A.Ross, "Spoofing faces using makeup: An investigative study," in Proc. IEEE Int. Conf. Identity, Secur. Behav. Anal. (ISBA), Feb. 2017, pp. 1-8. [36]

[5] D. King, "Dlib-ml: A machine learning toolkit," J. Mach. Learn. Res., vol. 10, pp. 1755-1758, Dec. 2009. [51]

[6] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, "RetinaFace: Single-shot multi-level face localisation in the wild," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5202-5211. [53]

[7] K.Zhang,Z.Zhang,Z.Li,andY.Qiao,"Jointfacedetectionandalignment using multitask cascaded convolutional networks," IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499-1503, Oct. 2016. [52]

[8] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, "Overview of the face recognition grand challenge," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005, pp. 947-954. 54

[9] Information Technology Biometric Presentation Attack Detection—Part 3: Testing and Reporting, Standard ISO/IEC JTC1 SC37 Biometrics, ISO/IEC 30107-3, International Organization for Standardization, 2017. [56]

[10] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and M. Grundmann, "MediaPipe: A framework for perceiving and processing reality," in Proc. 3rd Workshop Comput. Vis. AR/VR IEEE Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1-4. [57]

THANK YOU

Questions