국가기술자격 실기시험문제지

2022년도 제1회 기사 필답형 실기시험

자 격 종 목	시험시간	문제수	수험번호	성명	
소방설비기사(기계)	3시간	16	044-865-0063	다산에듀	

문제 01 [배점] 6점

피난기구에 대한 다음 각 물음에 답하시오.

- (1) 3층 및 4층 이상 10층 이하의 의료시설에 설치해야 할 피난기구를 쓰시오.
 - ① 3층:
 - ② 4층 이상 10층 이하 :
- (2) 피난기구 설치 시 개구부에 관련되는 사항으로 () 안에 알맞은 답을 쓰시오.

피난기구는 계단 · 피난구 기타 피난시설로부터 적당한 거리에 있는 안전한 구조로 된 피난 또는 소화 활동상 유효한 개구부[가로 (①)m 이상, 세로 (②)m 이상인 것을 말한다. 이 경우 개구부 하단이 바닥에서 (③)m 이상 이면 발판 등을 설치해야 하고, 밀폐된 창문은 쉽게 파괴할 수 있는 파괴장치를 비치해야 한다.)에 고정하여 설치하거나 필요한 때에 신속하고 유효하게 설치할 수 있는 상태에 둘 것

문제 02 [배점] 5점

다음과 같은 특정소방대상물에 소화수조 및 저수조를 설치하고자 한다. 다음 각 물음에 답하시오.

구분	지하 2층	지하 1층	지상 1층	지상 2층	지상 3층
바닥면적[m²]	2500	2500	13,500	13,500	6500

- (1) 소화용수의 저수량은 몇 m³인가?
 - 계산과정 :
 - 답 :
- (2) 흡수관투입구 및 채수구는 몇 개 이상으로 설치해야 하는가?
- (3) 가압송수장치의 1분당 양수량은 몇 L 이상으로 해야 하는가?

문제 03 [배점] 7점

그림은 어느 판매장의 무창층에 대한 제연설비 중 연기배출풍도와 배출 FAN을 나타내고 있는 평면도이다. 주어진 조건을 이용하여 풍도에 설치되어야 할 제어댐퍼를 가장 적합한 지점에 표기한 다음 물음에 답하시오.

[조건]

- ① 건물의 주요구조부는 모두 내화구조이다.
- ② 각 실은 불연성 구조물로 구획되어 있다.
- ③ 복도의 내부면은 모두 불연재이고, 복도 내에 가연물을 두는 일은 없다.
- ④ 각 실에 대한 연기배출방식에서 공동배출구역방식은 없다.
- ⑤ 이 판매장에는 음식점은 없다.
- (1) 제어댐퍼의 설치를 그림에 표시하시오. (단, 댐퍼의 표기는 "⊘"모양으로 하고 번호(예, A₁, B₁, C₁, ······)를 부여, 문제 본문 그림에 직접 표시할 것)

- (2) 각 실(A, B, C, D, E, F)의 최소 소요배출량은 얼마인가?
 - ① A실
 - ② B실
 - ③ C실
 - ④ D실
 - ⑤ E실
 - ⑥ F실
- (3) 배출 FAN의 최소 소요배출용량은 얼마인가?
- (4) C실에 화재가 발생했을 경우 제어댐퍼의 작동상황(개폐 여부)이 어떻게 되어야 하는지 (1)에서 부여한 댐퍼의 번호를 이용하여 쓰시오.설명하시오.
 - ① 폐쇄댐퍼 :
 - ② 개방댐퍼:

문제 04 [배점] 6점

다음 소방시설의 도시기호에 대한 명칭을 쓰시오.

번호	1)	2	3	4	5	6
도시기호	WS			—		H

문제 05 [배점] 8점

아래와 같은 조건으로 전역방출방식의 고압식 이산화탄소소화설비를 설치하였을 경우 각 물음에 답하시오.

[조건]

- ① 방호구역의 크기는 가로 10m. 세로 20m, 높이 5m이다.
- ② 개구부의 조건

개구부의 크기	자동폐쇄장치 설치여부
가로 2.4m × 세로 1.8m	미설치
가로 1.2m × 세로 0.8m	설치

- ③ 개구부의 상태에 따라 개구부 면적 $1m^2$ 당 가산하는 소화약제의 양은 5kg으로 한다.
- ④ 설치된 분사헤드의 방사율은 1개당 1.05kg/(mm²·min)으로 하며 CO₂ 방출시간은 1분을 기준으로 한다.
- ⑤ CO₂ 저장용기는 내용적으로 68L. 충전량으로 45kg용의 것을 사용하는 것으로 한다.
- ⑥ 분사헤드의 분구면적은 1개당 51mm²이다.
- ⑦ 소화약제의 산정기준 및 기타 필요한 사항은 국가화재안전기술기준에 따른다.
- (1) 필요한 소화약제의 양은 몇 kg인지 산출하시오.
 - 계산과정 :
 - 답 :
- (2) 용기저장소에 저장해야 할 소화약제의 용기수는 얼마인가?
 - 계산과정 :
 - 답 :
- (3) 선택밸브 직후의 유량은 몇 kg/s인가?
 - 계산과정 :
 - 답 :
- (4) 설치해야 할 헤드 수는 모두 몇 개인지 구하시오.(단, 실제방출 병 수로 계산한다.)
 - 계산과정 :
 - 답 :

문제 06 [배점] 7점

다음 제연설비의 조건을 참조하여 각 물음에 답하시오.

[조건]

- ① 국가화재안전기준에 따른 제연설비를 설치한다.
- ② 주덕트의 높이 제한은 600㎜이다.(단, 강판두께, 덕트플랜지 및 보온두께는 고려하지 않는다.)
- ③ 예상제연구역의 설계풍량은 45,000m³/h이다.
- ④ 배출기는 원심식 다익형이다.
- ⑤ 기타 조건은 무시한다.
- (1) 배출기의 흡입측 주덕트의 최소폭[m]을 구하시오.
 - 계산과정 :
 - 답 :
- (2) 배출기의 배출측 주덕트의 최소폭[m]을 구하시오.
 - 계산과정 :
 - 답 :
- (3) 준공 후 풍량시험을 한 결과 풍량은 $36{,}000{\rm m}^3/{\rm h}$, 회전수 $600{\rm rpm}$, 축동력 $7.5{\rm kWz}$ 측정되었다. 배출량 $45{,}000{\rm m}^3/{\rm h}$ 를 만족시키기 위한 배출기의 회전수[rpm]를 계산하시오.
 - 계산과정 :
 - 답 :
- (4) 회전수를 높여서 배출량을 만족시킬 경우의 예상축동력[kW]을 계산하시오.
 - 계산과정 :
 - 답 :

문제 07 [배점] 8점

습식 스프링클러설비를 아래의 조건을 이용하여 그림과 같이 8층의 백화점 건물에 시공할 경우 다음 물음에 답하시오.

[조건]

- ① 배관 및 부속류의 총마찰손실은 펌프 자연 낙차압의 40%이다.
- ② 펌프의 진공계 눈금은 500mHg이다.
- ③ 펌프의 체적효율 $(\eta_v)=0.95$, 기계효율 $(\eta_m)=0.85$, 수력효율 $(\eta_n)=0.75$ 이다.
- ④ 전동기의 전달계수(K)는 1.2이다.
- (1) 주펌프의 양정[m]을 구하시오.
- (2) 주펌프의 토출량[L/min]을 구하시오.(단, 스프링클러혜드는 최대 기준개수 이상 설치되는 기준이다.)
- (3) 주펌프의 전효율[%]을 구하시오.
- (4) 주펌프의 모터동력[kW]을 구하시오.
- (5) 폐쇄형 스프링클러헤드의 선정은 설치장소의 최고주위온도와 선정된 헤드의 표시온도를 고려해야 한다. 다음 표의 설치 장소의 최고주위온도에 대한 표시온도를 쓰시오.

설치장소의 최고주위온도	표시온도
39℃ 미만	79℃ 미만
39℃ 이상 64℃ 미만	①
64℃ 이상 106℃ 미만	2
 106℃ 이상	162℃ 이상

문제 08 [배점] 5점

그림과 같이 바닥면이 자갈로 되어 있는 절연유 봉입변압기에 물분무소화설비를 설치하고자 한다. 물분무소화설비의 화재안전기술 기준(NFTC 104)을 참고하여 다음 각 물음에 답하시오.

- (1) 소화펌프의 최소토출량[L/min]을 구하시오.
 - 계산과정 :
 - 답 :
- (2) 필요한 최소수원의 양[m³]을 구하시오.
 - 계산과정 :
 - 답 :

문제 09 [배점] 5점

다음 그림과 같은 벤츄리관에 유량이 5.6m³/min으로 물이 흐르고 있다. 내경이 36㎝인 본관에 내경이 13㎝인 벤츄리미터가 설치되어 있다. 압력차(P1-P2)[kPa]를 구하시오. (단, 벤츄리관 송출계수(유량계수)는 0.86이라고 가정한다.)

- 계산과정 :
- 답 :

문제 10 [배점] 4점

할로겐화합물 및 불활성기체 소화설비에 압력배관용탄소강관(KS D 3562)을 사용할 때 다음 조건을 참조하여 관의 두께[㎜]를 계산하시오.

[조건]

- ① 압력배관용탄소강관(KS D 3562)의 인장강도는 400MPa, 항복점은 인장강도의 80%이다.
- ② 최대허용압력은 15MPa이다.
- ③ 배관이음효율은 가열맞대기 용접배관을 적용한다.
- ④ 배관의 최대허용응력(SE)은 배관재질 인장강도의 1/4값과 항복점의 2/3값 중 작은 값(o)을 기준으로 다음의 식을 적용한다.

$$SE = \sigma \times$$
 배관이음효율 $\times 1.2$

- ⑤ 적용되는 배관의 바깥지름은 65㎜이다.
- ⑥ 나사이음, 홈이음 등의 허용 값[mm](헤드설치부분은 제외)은 무시한다.

문제 11 [배점] 6점

다음은 포소화설비의 수동식 기동장치의 설치기준이다. () 안에 알맞은 답을 쓰시오.

- (1) 직접조작 또는 원격조작에 따라 (①)ㆍ수동식개방밸브 및 소화약제 혼합장치를 기동할 수 있는 것으로 할 것
- (2) 2 이상의 (②)을 가진 포소화설비에는 방사구역을 선택할 수 있는 구조로 할 것
- (3) 기동장치의 조작부는 화재 시 쉽게 접근할 수 있는 곳에 설치하되, 바닥으로부터 (③)m 이상 (④)m 이하의 위 치에 설치하고, 유효한 보호장치를 설치할 것
- (4) 기동장치의 조작부 및 호스접결구에는 가까운 곳의 보기 쉬운 곳에 각각 "기동장치의 조작부" 및 "(⑤)"라고 표시한 표지를 설치할 것
- (5) 차고 또는 주차장에 설치하는 포소화설비의 수동식 기동장치는 방사구역마다 1개 이상 설치할 것
- (6) 항공기격납고에 설치하는 포소화설비의 수동식 기동장치는 각 방사구역마다 2개 이상 설치하되, 그 중 1개는 각 방사구역으로부터 가장 가까운 곳 또는 조작에 편리한 장소에 설치하고, 1개는 화재감지기의 (⑥)를 설치한 감시실 등에 설치할 것

문제 12 [배점] 10점

다음과 같이 휘발유탱크 1기와 경유탱크 1기를 1개의 방유제에 설치하는 옥외탱크저장소에 대하여 각 물음에 답하시오. (단, 그림에서 길이의 단위는 ㎜이다.)

[조건]

① 탱크용량 및 형태

- 휘발유탱크 : 2000m³(지정수량의 20,000배) 부상지붕구조의 플루팅루프탱크(탱크 내 측면과 굽도리판(foam dam) 사이의 거리는 0.6m이다.)

- 경유탱크 : 콘루프탱크

② 고정포방출구

- 경유탱크 : II형, 휘발유탱크 : 설계자가 선정하도록 한다.

③ 포소화약제의 종류 : 수성막포 3% ④ 보조포소화전 : 쌍구형×2개 설치

⑤ 포소화약제의 저장탱크의 종류 : 700L, 750L, 800L, 900L, 1000L, 1200L(단, 포소화약제의 저장탱크의 용량은 포소화약제 의 저장량을 말한다.)

⑤ 참고 법규

- 옥외탱크저장소의 보유공지

저장 또는 취급하는 위험물의 최대수량	공지의 너비
지정수량의 500배 이하	3m 이상
지정수량의 500배 초과 1000배 이하	5m 이상
지정수량의 1000배 초과 2000배 이하	9m 이상
지정수량의 2000배 초과 3000배 이하	12m 이상
지정수량의 3000배 초과 4000배 이하	15m 이상
지정수량의 4000배 초과	해당 탱크 수평단면의 최대지름(가로형인 경우에는 긴 변)과 높이 중 큰 것과 같은 거리 이상. 다만, 30m 초과의 경우에는 30m 이상으로 할 수 있고, 15m 미만의 경우는 15m 이상으로 해야 한다.

- 고정포방출구의 방출량 및 방사시간

포방출구의	اةِ	형	II s	형	특	형	lli ⁻	형	IV	형
종류	포수용	방출율	포수용	방출율	포수용	방출율	포수용	방출율	포수용	방출율
위험물의	액량	[L/m ²	액량	[L/m ²	액량	[L/m ²	액량	[L/m ²	액량	[L/m ²
구분	[L/m ²]	·min]	[L/m ²]	·min]	[L/m ²]	·min]	$[L/m^2]$	·min]	[L/m ²]	·min]
제4류 위험물 중 인화점이 2 1℃ 미만인 것	120	4	220	4	240	8	220	4	220	4
제4류 위험물 중 인화점이 2 1℃ 이상 70℃ 미만인 것	80	4	120	4	160	8	120	4	120	4
제4류 위험물 중 인화점이 7 0℃ 이상인 것	60	4	100	4	120	8	100	4	100	4

(1) 다음 A, B, C 및 D의 법적으로 최소 가능한 거리를 정하시오.(단, 탱크 측판두께의 보온두께는 무시한다.)

- ① A(휘발유탱크 측판과 방유제 내측거리[m])
- ② B(휘발유탱크 측판과 경유탱크 측판 사이 거리[m])

(단. 휘발유탱크만 보유공지 단축을 위한 기준에 적합한 물분무소화설비가 설치됨)

- ③ C(경유탱크 측판과 방유제 내측거리[m])
- ④ D(방유제의 세로폭[m])
- (2) 다음에서 요구하는 각 장비의 용량을 구하시오.
 - ① 포저장탱크의 용량[L](단, 75A 이상의 배관의 길이는 50m이고, 배관 크기는 100A이다.)
 - ② 소화설비의 수원(저수량[m³]) (단, 소수점 이하는 절삭하여 정수로 표시한다.)
 - ③ 가압송수장치(펌프)의 유량[LPM]
- (3) 포소화약제의 혼합방식은 펌프와 발포기 중간에 설치된 벤추리관의 벤추리 작용과 펌프 가압수의 포소화약제 저장탱크에 대한 압력에 의하여 포소화약제를 흡입·혼합하는 방식이다. 포소화약제의 혼합방식 명칭을 쓰시오.

문제 13 [배점] 5점

다음 그림은 어느 건축물의 평면도이다. 이 실들 중 A실에 급기가압을 하고 \mathbb{C} A_4 , A_5 , A_6 는 외기와 접해있을 경우 조건을 참조하여 각 물음에 답하시오.

[조건]

- ① 모든 개구부 틈새면적은 0.01m²으로 동일하다.
- ② 각 실은 출입문 이외의 틈새는 없다.
- ③ 임의의 어느 실에 대한 급기량 Q[m³/s]와 얻고자하는 기압차[Pa]의 관계식은 $Q=0.827 \times A \times \sqrt{P}$ 이다.
- (1) A실을 기준으로 외기와의 유효개구부 틈새면적을 소수점 5째 자리까지 구하시오.
 - 계산과정 :
 - 답 :
- (2) A실과 외부간에 270Pa의 기압차를 얻기 위하여 A실에 급기시켜야 할 풍량[m³/s]은 얼마가 되겠는가?
 - 계산과정 :
 - 답 :

문제 14

그림과 같은 배관을 통하여 유량이 80L/s로 흐르고 있다. B, C배관의 마찰손실수두는 서로 동일하고 B배관의 유량은 30L/min일 때 아래 조건을 참조하여 C배관의 구경[m]을 계산하시오.

[조건]

• 하겐-윌리엄즈 공식은 다음과 같다.

$$\Delta P = \frac{6.053 \times 10^4 \times Q^{1.85}}{C^{1.85} \times D^{4.87}}$$

여기서, ΔP : 배관 1m당 마찰손실압력[MPa]

Q : 배관 내 유수량[L/min]

C : 조도[무차원] D : 배관 내경[㎜]

[배점] 5점

문제 15 [배점] 7점

그림과 같은 옥내소화전설비를 아래의 조건에 따라 설치하려고 한다. 이때 다음 물음에 답하시오.

[조건]

P₁: 옥내소화전펌프
P₂: 잡용수 양수펌프

- ③ 펌프의 후드밸브로부터 5층 옥내소화전함 호스 접결구까지의 마찰손실 및 저항손실수두는 실양정의 30%로 한다.
- ④ 펌프의 효율은 65%이다.
- ⑤ 옥내소화전의 개수는 각층 3개씩이다.
- ⑥ 소방호스의 마찰손실수두는 6m이다.
- (1) 펌프의 양정은 몇 m인가?
 - 계산과정 :
 - 답 :
- (2) 펌프의 최소유량은 몇 L/min인가?
 - 계산과정 :
 - 답 :
- (3) 펌프의 토출측 주배관의 호칭구경을 구하시오. (단, 배관의 구경은 다음 표를 참고한다.)

호칭구경	40A	50A	65A	80A	100A
내경[mm]	42	53	69	81	105

- 계산과정:
- 답 :

문제 16 [배점] 6점

가로 15m, 세로 12m, 높이 5m인 전산실에 할론소화설비를 설치할 경우 다음 각 물음에 답하시오. (단, 저장용기의 내용적은 68L이다.)

- (1) 전산실에 가장 적합한 할론 소화약제명을 적으시오.
- (2) 전산실에 필요한 최소 약제소요량은 몇 kg인가?
 - 계산과정 :
 - 답 :
- (3) 1병당 최대로 저장할 수 있는 약제량은 몇 kg인가?
 - 계산과정 :
 - 답 :
- (4) 필요한 최소 저장용기 수를 구하시오.
 - 계산과정 :
 - 답 :

[정답지]

1.

- (1) ① 3층 : 미끄럼대, 구조대, 피난교, 피난용트랩, 다수인피난장비, 승강식 피난기
 - ② 4층 이상 10층 이하 : 구조대, 피난교, 피난용트랩, 다수인피난장비, 승강식 피난기
- (2) 0.5
 - 2 1
 - 3 1.2

2.

- (1) 소화용수의 저수량
 - 계산과정 : $K = \frac{38,500}{7500} = 5.13 = 6(절상)$

$$Q = K \times 20 \text{m}^3 = 6 \times 20 \text{m}^3 = 120 \text{m}^3$$

- 답 : 120m³
- (2) ① 흡수관투입구 : 2개 이상
 - ② 채수구 : 3개
- (3) 3300L/min 이상

3.

(1) 제연댐퍼 설치도

- (2) 400m^2 미만과 400m^2 이상의 기준을 이용
 - ① A실 : $(5m \times 6m) \times 1m^3/(m^2 \cdot min) \times 60min/h = 1800m^3/h \Rightarrow 5000m^3/h(최저배출량)$
 - ② B실 : $(10m \times 6m) \times 1m^3/(m^2 \cdot min) \times 60min/h = 3600m^3/h \Rightarrow 5000m^3/h(최저배출량)$
 - ③ C실 : $(25m \times 6m) \times 1m^3/(m^2 \cdot min) \times 60min/h = 9000m^3/h$
 - ④ D실 : $(5m \times 4m) \times 1m^3/(m^2 \cdot min) \times 60min/h = 1200m^3/h \Rightarrow 5000m^3/h(최저배출량)$
 - ⑤ E실 : $(15m \times 15m) \times 1m^3/(m^2 \cdot min) \times 60min/h = 13,500m^3/h$
 - ⑥ F실 : $15\text{m} \times 30\text{m} = 450\text{m}^2$ 이므로 대각선의 직경(길이) $L = \sqrt{30^2 + 15^2} = 33.54\text{m}$
 - ∴ 400m^2 이상이고 직경 40m 원 안에 있으므로 배출량은 $40,000\text{m}^3/\text{h}$ 이다.
- $(3) 40.000 \text{m}^3/\text{h}$
- (4) ① 폐쇄댐퍼 : A₁, B₁, D₁, E₁, F₁
 - ② 개방댐퍼 : C₁, C₂

4.

① 물분무배관

② 플러그

③ 포헤드(입면도)

④ 가스체크밸브

⑤ 경보밸브(습식)

⑥ 옥외소화전

5.

- (1) 필요한 소화약제의 양
 - 계산과정 : $Q = (10 \times 20 \times 5) \text{m}^3 \times 0.8 \text{kg/m}^3 + (2.4 \times 1.8) \text{m}^2 \times 5 \text{kg/m}^2 = 821.6 \text{kg}$
 - 답 : 821.6kg
- (2) 소화약제의 용기수
 - 계산과정 : $N=rac{821.6 \mathrm{kg}}{45 \mathrm{kg/병}}=18.26=19 \mathrm{g}$ (절상)
 - 답 : 19병
- (3) 선택밸브 직후의 유량
 - 계산과정 : $Q = \frac{19 \, \text{병} \times 45 \text{kg}}{60 \text{s}} = 14.25 \text{kg/s}$
 - 답 : 14.25kg/s
- (4) 설치해야 할 헤드 수
 - 계산과정 : $N = \frac{19 \, \text{병} \times 45 \text{kg}}{1.05 \text{kg/(mm}^2 \cdot \text{min}) \times 51 \text{mm}^2 \times 1 \, \text{min}} = 15.97 = 16 \, \text{개(절상)}$
 - 답 : 16개

6.

- (1) 흡입측 주덕트의 최소 폭
 - 계산과정 : 12.5m³/s = 15m/s × (0.6m × L)

$$L = \frac{12.5 \text{m}^3/\text{s}}{15 \text{m/s} \times 0.6 \text{m}} = 1.39 \text{m}$$

- 답 : 1.39m
- (2) 배출측 주덕트의 최소 폭
 - 계산과정 : $12.5 \text{m}^3/\text{s} = 20 \text{m/s} \times (0.6 \text{m} \times \text{L})$

$$L = \frac{12.5 \text{m}^3/\text{s}}{20 \text{m/s} \times 0.6 \text{m}} = 1.04 \text{m}$$

- 답 : 1.04m
- (3) 배출구 회전수
 - 계산과정 : $N_2 = 600 \mathrm{rpm} imes \frac{45,000 \mathrm{m}^3 / \mathrm{h}}{36,000 \mathrm{m}^3 / \mathrm{h}} = 750 \mathrm{rpm}$
 - 답: 750rpm
- (4) 축동력
 - 계산과정 : $P_2=7.5 \mathrm{kW} imes \left(\frac{750 \mathrm{rpm}}{600 \mathrm{rpm}}\right)^3=14.65 \mathrm{kW}$
 - 답 : 14.65kW

7.

- (1) 양정
 - 계산과정 : $h_1=\left(\frac{500 \mathrm{mmHg}}{760 \mathrm{mmHg}} \times 10.332 \mathrm{m}\right) + 40 \mathrm{m} = 46.8 \mathrm{m}$ $h_2=(40+5) \mathrm{m} \times 0.4 = 18 \mathrm{m}$ \therefore 전양정 $H=46.8 \mathrm{m} + 18 \mathrm{m} + 10 \mathrm{m} = 74.8 \mathrm{m}$
 - 답 : 74.8m
- (2) 토출량
 - 계산과정 : Q=30개 $\times 80$ L/min =2400L/min
 - 답 : 2400L/min

(3) 전효율

• 계산과정 : $\eta_T = 0.95 \times 0.85 \times 0.75 = 0.60562 = 60.56\%$

• 답 : 60.56%

(4) 모터동력

• 계산과정 : $P = \frac{0.163 \times 2.4 \text{m}^3/\text{min} \times 74.8 \text{m}}{0.6056} \times 1.2 = 57.98 \text{kW}$

• 답 : 57.98kW

(5) ① 79℃ 이상 121℃ 미만

② 121℃ 이상 162℃ 미만

8.

(1) 소화펌프의 최소토출량

• 계산과정 : $A=(5\text{m}\times3\text{m}\times1\text{면})+(5\text{m}\times1.5\text{m}\times2\text{면})+(3\text{m}\times1.5\text{m}\times2\text{면})=39\text{m}^2$ $Q=39\text{m}^2\times10\text{L}/(\text{m}^2\times\text{min})=390\text{L}/\text{min}$

• 답 : 390L/min

(2) 필요한 최소수원의 양

• 계산과정 : $Q = 390 \text{L/min} \times 20 \text{min} = 7800 \text{L} = 7.8 \text{m}^3$

• 답 : 7.8m³

9.

• 계산과정 :
$$v_1=rac{Q}{A_1}=rac{\dfrac{5.6 ext{m}^3/60 ext{s}}{0.86}}{\dfrac{\pi}{4} imes(0.36 ext{m})^2}=1.0662\, ext{m/s}}$$
 $=5.6 ext{m}^3/60 ext{s}$

$$v_2 = \frac{Q}{A_2} = \frac{\frac{5.6 \text{m}^3/60 \text{s}}{0.86}}{\frac{\pi}{4} \times (0.13 \text{m})^2} = 8.1764 \text{m/s}$$

$$P_1 - P_2 = \frac{9.8 \text{kN/m}^3}{2 \times 9.8 \text{m/s}^2} \times \left\{ (8.1764 \text{m/s})^2 - (1.0662 \text{m/s})^2 \right\} = 32.86 \text{kN/m}^2 = 32.86 \text{kPa}$$

• 답 : 32.86kPa

10.

• 계산과정 : 인장강도의 1/4값 $= 400 \mathrm{MPa} imes rac{1}{4} = 100 \mathrm{MPa}$

항복점의 2/3값 = $(400 \text{MPa} \times 0.8) \times \frac{2}{3} = 213.33 \text{MPa}$

 $SE = 100 \text{MPa} \times 0.6 \times 1.2 = 72 \text{MPa}$

 $t = \frac{15\text{MPa} \times 65\text{mm}}{2 \times 72\text{MPa}} + 0 = 6.77\text{mm}$

• 답: 6.77mm

11.

① 가압송수장치

② 방사구역

3 0.8

4 1.5

⑤ 접결구

⑥ 수신기

12.

- (1) A, B, C, D의 거리
 - ① A거리 = 탱크높이 $\times \frac{1}{2} = 12$ m $\times \frac{1}{2} = 6$ m
 - ② B거리 = 8m
 - 휘발유 = $16m \times \frac{1}{2} = 8m$
 - 경우 $Q = \frac{\pi}{4} \times (10 \text{m})^2 \times (12 0.5) \text{m} = 903.21 \text{m}^3$, $\frac{903.21 \text{m}^3 \times 1000 \text{L/m}^3}{1000 \text{L}} = 903 ext{케}$ $\therefore 5 \text{m}$
 - ③ C거리 = 탱크높이 $\times \frac{1}{3} = 12m \times \frac{1}{3} = 4m$
 - ④ 방유제 세로폭 = 6m(A의 거리) + 16m(탱크지름) + 6m(A의 거리) = 28m
- (2) 각 장비의 용량
 - ① 포 저장탱크의 용량
 - 계산과정
 - ⊙ 휘발유탱크
 - 고정포방출구 약제저장량

$$Q_1 = \frac{\pi}{4} \times \left\{ (16\text{m})^2 - (14.8\text{m})^2 \right\} \times 8\text{L} / (\text{m}^2 \cdot \text{min}) \times 30\text{min} \times 0.03 = 209\text{L}$$

- 보조포소화전 약제저장량

$$Q_2 = 37\% \times 0.03 \times 8000L = 720L$$

- 배관보정량

$$Q_3 = \frac{\pi}{4} \times (0.1 \text{m})^2 \times 50 \text{m} \times 0.03 = 0.01178 \text{m}^3 = 11.78 \text{L}$$

- \therefore 휘발유탱크의 저장량 $Q_T=Q_1+Q_2+Q_3=209 \mathrm{L}+720 \mathrm{L}+11.78 \mathrm{L}=940.78 \mathrm{L}$
- (L) 경유탱크
 - 고정포방출구 약제저장량

$$Q_1 = \frac{\pi}{4} \times (10\text{m})^2 \times 4\text{L}/(\text{m}^2 \cdot \text{min}) \times 30\text{min} \times 0.03 = 282.74\text{L}$$

- 보조포소화전 약제저장량

$$Q_2 = 37 \text{H} \times 0.03 \times 8000 \text{L} = 720 \text{L}$$

- 배관보정량

$$Q_3 = \frac{\pi}{4} \times (0.1 \text{m})^2 \times 50 \text{m} \times 0.03 = 0.011775 \text{m}^3 = 11.78 \text{L}$$

 \therefore 경유탱크의 저장량 $Q_T=Q_1+Q_2+Q_3=282.74 \mathrm{L}+720 \mathrm{L}+11.78 \mathrm{L}=1014.52 \mathrm{L}$

휘발유의 저장량은 940.58L, 경유의 저장량은 1014.52L인데 이 중 큰것은 경유로서 1014.52L인데 표에서 탱크용량을 보면 1200L로 해야 한다.

- 답 : 1200L
- ② 수원(저수량)
 - 계산과정
 - 고정포방출구 저수량

$$Q_1 = \frac{\pi}{4} \times (10\text{m})^2 \times 4\text{L}/(\text{m}^2 \cdot \text{min}) \times 30\text{min} \times 0.97 = 9142.03\text{L}$$

- 보조포소화전 저수량

$$Q_2 = 37 \text{H} \times 0.97 \times 8000 \text{L} = 23,280 \text{L}$$

- 배관보정량

$$Q_3 = \frac{\pi}{4} \times (0.1 \text{m})^2 \times 50 \text{m} \times 0.97 = 0.38092 \text{m}^3 = 380.92 \text{L}$$

$$\therefore$$
 수원의 양 $Q_T=Q_1+Q_2+Q_3=9142.03$ L $+23,280$ L $+380.92$ L $=32,802.95$ L $=32.8$ m $^3=32$

• 답 : 32m³

- ③ 가압송수장치의 유량
 - 계산과정
 - 고정포방출구

$$Q_1 = \frac{\pi}{4} \times (10\text{m})^2 \times 4\text{L}/(\text{m}^2 \cdot \text{min}) \times 1 = 314.16\text{L/min}$$

- 보조포소화전

$$Q_2 = 37$$
 $\times 1 \times 400$ L/min = 1200 L/min

- \therefore 펌프토출량 $Q_T = Q_1 + Q_2 = 314.16 \text{L/min} + 1200 \text{L/min} = 1514.16 \text{L/min} \text{(LPM)}$
- 답: 1514.16LPM
- (3) 프레져 프로포셔너방식

13.

(1) 유효개구부 틈새면적

• 계산과정 :
$$A_{4\sim6}=0.01\mathrm{m}^2+0.01\mathrm{m}^2+0.01\mathrm{m}^2=0.03\mathrm{m}^2$$

$$A_{2\sim3}=0.01\mathrm{m}^2+0.01\mathrm{m}^2=0.02\mathrm{m}^2$$

$$A_{1\sim6}=\frac{1}{\sqrt{\frac{1}{(0.01\mathrm{m}^2)^2}+\frac{1}{(0.02\mathrm{m}^2)^2}+\frac{1}{(0.02\mathrm{m}^2)^2}}}=0.00857\mathrm{m}^2$$

- 답 : 0.00857m²
- (2) 풍량
 - 계산과정 : $Q = 0.827 \times 0.00857 \text{m}^2 \times \sqrt{270 \text{Pa}} = 0.12 \text{m}^3/\text{s}$
 - 답: 0.12m³/s

14.

• 계산과정 : 관로망에서 배관마찰손실을 서로 동일하므로

$$\begin{split} Q_B &= 30 \text{L/min}, \quad Q_C = (80 - 30) = 50 \text{L/min}, \quad \Delta P_B = \Delta P_C \text{이다}, \\ \frac{6.053 \times 10^4 \times (30 \text{L/min})^{1.85}}{C^{1.85} \times (196 \text{mm})^{4.87}} \times 300 \text{m} = \frac{6.053 \times 10^4 \times (50 \text{L/min})^{1.85}}{C^{1.85} \times D^{4.87}} \times 350 \text{m} \text{이 } \text{L}, \\ \frac{(30 \text{L/min})^{1.85}}{(196 \text{mm})^{4.87}} \times 300 \text{m} = \frac{(50 \text{L/min})^{1.85}}{D^{4.87}} \times 350 \text{m} \text{O } \text{L}, \\ D^{4.87} &= \frac{(196 \text{mm})^{4.87} \times (50 \text{L/min})^{1.85} \times 350 \text{m}}{(30 \text{L/min})^{1.85} \times 350 \text{m}} = 4.3717 \times 10^{11} \end{split}$$

 $D = \left(4.3717 \times 10^{11}\right)^{\frac{1}{4.87}} = 245.63 \text{mm}$

• 답 : 245.63mm

15.

(1) 펌프의 양정

• 계산과정 :
$$h_1=(0.8\mathrm{m}+1\mathrm{m})+(3\mathrm{m}\times5$$
개층) $+2\mathrm{m}=18.8\mathrm{m}$ $h_2=18.8\mathrm{m}\times0.3=5.64\mathrm{m}$ $h_3=6\mathrm{m}$ $H=18.8\mathrm{m}+5.64\mathrm{m}+6\mathrm{m}+17\mathrm{m}=47.44\mathrm{m}$

- 답 : 47.44m
- (2) 펌프의 최소유량
 - 계산과정 : Q = 2개 × 130L/min = 260L/min
 - 답: 260L/min

(3) 펌프의 토출측 주배관의 호칭구경

• 계산과정 :
$$d = \sqrt{\frac{4 \times 0.26 \mathrm{m}^3/60 \mathrm{s}}{\pi \times 4 \mathrm{m/s}}} \times 1000 = 37.14 \mathrm{mm}$$

• 답 : 40A

16.

(1) 할론 1301

(2) 최소 약제소요량

• 계산과정 : $Q = (15 \times 12 \times 5) \text{m}^3 \times 0.32 \text{kg/m}^3 = 288 \text{kg}$

• 답 : 288kg

(3) 한 병당 최대로 저장할 수 있는 약제량

• 계산과정 : 할론 1301의 충전비(C)는 0.9 이상 1.6 이하이므로

한 병당 최소 저장량
$$G = \frac{68L}{1.6} = 42.5 kg$$

한 병당 최대 저장량 $G = \frac{68L}{0.9} = 75.56$ kg

• 답 : 75.56kg

(4) 필요한 최소 저장용기 수

• 계산과정 : $Q = \frac{288 \mathrm{kg}}{75.56 \mathrm{kg/병}} = 3.81 = 4 병(절상)$

• 답 : 4병