Компьютерные сети

Принципы передачи информации.

Частотная и амплитудная модуляция:

$$S(t) = (1 + a \cos \omega_m t) \cos \omega_c t$$

$$S(t) = \cos \omega_c t + \frac{1}{2} a \cos \left(\omega_c + \omega_m\right) t + \frac{1}{2} a \cos \left(\omega_c - \omega_m\right) t$$

Полоса пропускания

для передачи аудио информации: 20 КГц д **Полоса**пропускания для передачи видео - информации:

1440x900x75/cek=

97.2МГц

Фактически (пока) 8МГц Передача сигнала, представляющего ASCII код символа 'b': 0110 0010 (98).

Спектр мощности сигнала.

Ряд Фурье:

$$f(t) = \frac{1}{2}c + \sum_{k=1}^{\infty} a_k \sin(2\pi k\omega t) + \sum_{k=1}^{\infty} b_k \cos(2\pi k\omega t)$$

$$n := 1...8$$

$$a_n := \frac{1}{\pi \cdot n} \cdot \left(\cos \left(\pi \cdot \frac{n}{4} \right) - \cos \left(3 \cdot \frac{\pi \cdot n}{4} \right) + \cos \left(6\pi \cdot \frac{n}{4} \right) - \cos \left(7 \cdot \frac{\pi \cdot n}{4} \right) \right)$$

$$b_n \coloneqq \frac{1}{\pi \cdot n} \cdot \left(\sin \left(3 \cdot \frac{\pi \cdot n}{4} \right) - \sin \left(\pi \cdot \frac{n}{4} \right) + \sin \left(7 \cdot \frac{\pi \cdot n}{4} \right) - \sin \left(6\pi \cdot \frac{n}{4} \right) \right)$$

$$R(t) := a_1 \cdot \sin(2 \cdot \pi \cdot t) + b_1 \cdot \cos(2 \cdot \pi \cdot t)$$

$$\mathbb{R}(t) := \mathbf{e} \left(a_{\mathbf{k}} \cdot \sin(2 \cdot \pi \cdot \mathbf{k} \cdot t) + b_{\mathbf{k}} \cdot \cos(2 \cdot \pi \cdot \mathbf{k} \cdot t) \right)$$

Полоса пропускания должна быть не меньше минимального диапазона частот, необходимого для восстановления сигнала.

Пусть С - скорость передачи данных, F — полоса пропускания (частота среза).

T=8/C — время, необходимое для передачи 8 бит => f0=C/8

Частота k-ой гармоники равна k*f0 => максимальное число гармоник k=F/f0=8F/C

Если полагать достаточным для восстановления сигнала 4-х гармоник, то получаем, что C<=2F

Формулы Найквиста и Шеннона:

Ps, Pn — мощности сигнала и шума, S — число дискретных уровней сигнала

Сетевое аппаратное обеспечение:

- кабели (коаксиал, UTP, оптоволокно ...)
- сетевые адаптеры, модемы, *DSL модемы, WiFi адаптеры ...
- хабы, коммутаторы, свитчи
- мосты, маршрутизаторы

Топология сетей

«Шинная»

«Кольцевая»

Сети «Ethernet»

Основной принцип Ethernet: возможность общего доступа к среде передачи данных и разрешение коллизий в случае одновременного запроса.

Этому требованию удовлетворяют топологии «шины» и «звезды».

Существует несколько стандартов Ethernet, основанных на разном аппаратном обеспечении: Ethernet на коаксиальном кабеле, на витой паре (*UTP*), радио-Ethernet.

Формат кадра Ethernet:

	МАС-адрес отправителя	Тип Eth	Данные	CRC
6 байт	6	2	46 - 15000	4

Абстрактная модель OSI (Open Systems Interconnection)

Физический уровень	передача необработанных битов по каналу связи; задачи связаны с разработкой и
JPozeme	настройкой аппаратуры
Уровень передачи данных	передача данных последовательно с разбивкой на кадры и подтверждением
Сетевой уровень	маршрутизация пакетов – доставка от источника к получателю
Транспортный уровень	доставка сообщений в неповрежденном виде, в правильном порядке и без дублирования
Сеансовый уровень	контроль над соединениями и потоками данных — порядок ведения диалога, механизм контрольных точек; аутентификация и регистрация в системе

Уровень	способы обработки данных – шифрование,
представления	кодирование, форматирование, сжатие
Прикладной	набор сетевых протоколов, сетевые службы
уровень	

Стек протоколов *TCP/IP*

Уровень доступа к сети	сетевые адаптеры, модемы, кабельная	
	система; формирование пакетов,	
	целостность данных	
Межсетевой уровень	маршрутизация, адресация, сетевое	
	подключение	
Межузловой уровень	целостность пакетов, потоковая	
	передача	
Прикладной уровень	регистрация, безопасность,	
	контрольные точки; преобразование	
	данных; АРІ-функции	