

The effect of visco-elasticity on the stability of inertial cavitation

David Sinden, E. Stride & N. Saffari

Department of Mechanical Engineering University College London.

9th International Conference on Therapeutic Ultrasound, Congress Centre, Aix-en-Provence,

September 23rd-26th 2009.

- 1. Outline
- 2. Past Work
- 3. Current Work

Visco-elasticity
Shape oscillations

4. Future Work

Control of Cavitation Future Challenges

Modelling Cavitation

Modified Rayleigh-Plesset equation¹

$$\rho\left(\ddot{R}R+\frac{3}{2}\dot{R}^{2}\right)=p_{g}\left(T,c\right)+p_{v}-p\left(t\right)-\frac{2\sigma}{R}-\frac{4\mu\dot{R}}{R}-\frac{R}{c}\frac{\mathrm{d}}{\mathrm{d}t}\left(p_{g}-p\right)$$

The equation needs to be modified in a number of ways:

Incident wave

Visco-elasticity

П

Shape instability

Rectified diffusion

- Temperature & pressure

Brenner, M.P., Hilgenfeldt, S. and Lohse, D., Single-bubble sonoluminescence, Rev. Mod. Phys. (2002) 74,

What is an appropriate model?

A 4-parameter Oldroyd model¹

$$\frac{4\mu\dot{R}}{R}\mapsto\frac{4\mu\dot{R}}{R}-S_1-\left(2\alpha-1\right)S_2\quad\text{if and only if}\quad\alpha=1/2\text{ or }1$$

$$\dot{S}_1=-\left(\frac{1}{\lambda}+\frac{4\alpha\dot{R}}{R}\right)S_1-\frac{2\mu_p\dot{R}}{\alpha\lambda R}$$

$$\dot{S}_1=\frac{1}{2}\left(\frac{1}{\lambda}+\frac{\dot{R}}{R}\right)S_1-\frac{2\mu_p\dot{R}}{R}$$

$$\dot{S}_2 = -\left(\frac{1}{\lambda} + \frac{\dot{R}}{R}\right) S_2 - \frac{2\mu_p \dot{R}}{\lambda R}$$

¹ Jiménez-Fernández, J. and Crespo, A., Bubble oscillation and inertial cavitation in viscoelastic fluids,

What is an appropriate model?

Another model is the linear Voigt model¹

$$\frac{4\mu\dot{R}}{R}\mapsto\frac{4\mu\dot{R}}{R}-\frac{4G}{3R^3}\left(R^3-R_0^3\right)$$

Changes the Blake threshold radius and the natural frequency:

$$R_c = \sqrt{\frac{3\tilde{G} + 4R_0^3 G}{2\sigma}}$$

and

$$\omega_0 = \frac{1}{\rho} \left(\frac{3\kappa \left(p_{\infty} - p_v \right) R_0}{R_0^3 - a^3} + 2\sigma \left(\frac{3\kappa}{R_0^3 - a^3} - \frac{1}{R_0^3} \right) + 4G \right).$$

¹Yang, X. and Church, C., A model for the dynamics of gas bubbles in soft tissue, J. Acoust. Soc. Am. 118 (2005), no. 6, p. 3595–3606.

Visco-elasticity

What is an appropriate model?

Finally the Jefferies model¹

$$\frac{4\mu\dot{R}}{R}\mapsto V$$

$$V+\lambda_{1}\left(\frac{\mathrm{d}V}{\mathrm{d}t}+\frac{\dot{R}}{R}\tau_{rr}\left(R\right)\right)=\frac{4}{3}\mu_{p}\left(\frac{\dot{R}}{R}+\lambda_{2}\left(\frac{2\dot{R}^{2}+R\ddot{R}}{R^{2}}\right)\right),$$

$$\tau_{rr}\left(R\right)+\lambda_{1}\frac{\mathrm{d}\tau_{rr}\left(R\right)}{\mathrm{d}t}=4\mu_{p}\left(\frac{\dot{R}}{R}+\lambda_{2}\left(\frac{2\dot{R}^{2}+R\ddot{R}}{R^{2}}\right)\right).$$

Allen, J. S. and Roy, R. A. Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity, J. Acoust. Soc. Am. 107 (2000), no. 6, p. 3167-3178.

Visco-elasticity

- Maximum amplitude of bubble increases
- Collapse less pronounced
- Afterbounces less damped: increased likelihood of instability.
- How realistic are models compared to observations? Do the models allow for periodic oscillations? etc.

Shape oscillations

Linear Shape oscillations¹

$$R(t) \mapsto R(t) + a_n(t) Y_n \Rightarrow \ddot{a}_n + B_n(t) \dot{a}_n + A_n(t) a_n = 0$$

- The model is not robust and relies on assumptions which are not experimentally verifiable: irrotational flow, inviscid and incompressible liquid. Often instability criteria appears arbitary
- What is the effect of visco-elasticity do bubbles move translationally? Is toroidal component of vorticity non-negligible?
- Truncation ensures Rayleigh-Plesset equation decouples from mode equations: is this valid?

Hao, Y. and Prosperetti, A., The effect of viscosity on the spherical stability of oscillating gas bubbles, Phys. Fluids 11 (1999), no. 6, p. 1309–1317.

Can cavitation be controlled?

Whether cavitation can enhance or inhibit treatment is an open question; however it may be an empty question - mathematical techniques exist which can control¹ a reduce version of the Rayleigh-Plesset equation using multiple driving frequencies to either enhance or inhibit resonant frequencies . . .

- Mathematical challenge: incorporation of control techniques into an effective reduced model of the full multi-bubble problem. Can growth of bubble cloud be controlled?
- Practical challenge: transducer capabilities, prediction of small amplitude wave propagation

Ott, E., Grebogi, C. and Yorke, J. A., *Controlling chaos*, Phys. Rev. Lett. **64** (1990), no. 11, p. 1196–1199.

Challenges

- 'Rectified diffusion' for both temperature and concentration.
 - ullet Two processes are not equivalent: there exists a saturation concentration c_{∞} but for temperature the equilibrium temperature T_{∞} may change with time
- Gas and vapour content: effect on boundary layers?
- Incorporate viscous heating into energy equation
- ullet Slowly evolving parameters: $C_v\left(T
 ight)$, $C_p\left(T
 ight)$, . . .
- Effect of possible confining surfaces
- Multiple bubble model:
 - Rectified diffusion in multibubble model: complicated concentration profile
 - Primary and secondary Bjerknes force coupled to propagation equations