Modular Arithmetic

Andy Chong Sam

September 15, 2022

1 Remainder Quotient Formula

When performing an integer division we can document a quotient (q) and a remainder (r). In this document we will use the following notation to denote each:

$$a/b = q$$
$$a \mod b = r$$

Given a dividend a, and a divisor b that results in a quotient q and a remainder r, we can derive the following expression:

$$a = bq + r \tag{1}$$

Consider a simple integer division of 25 divided by 11. Since 25/11 = 2 and 25 mod 11 = 3, all pieces of the operation can be encapsulated as: 25 = (11)(2) + 3. Expression (1) can be used to demonstrate various properties in modular arithmetic.

2 Modular Arithmetic

2.1 Overview

A straightforward interpretation of the modulo operation (mod) is that its output is the remainder of the division between two integers. A cyclical pattern is observed by varying x in $x \mod s$, when s is left constant.

```
For x \mod 1, the set of all possible outcomes is \{0\}.
For x \mod 2, the set of all possible outcomes is \{0,1\}.
For x \mod 5, the set of all possible outcomes is \{0,1,2,3,4\}.
```

2.2 Negative Dividends

When the dividend is negative, the results are less intuitive. For example: $-11 \mod 3 = 1$. One way to visualize this outcome is by imagining a number line with an emphasis on the range of mod 3: $\{0, 1, 2\}$

In the case of $-11 \mod 3$ we can see that there are 4 skips needed to enter the modulo range. The distance between where the last skip lands and 0 is the modulo. In this case, this distance is 1.

In the case of 11 mod 3 we can see that there are 3 skips needed to enter the modulo range. The distance between where the last skip lands and 0 is the modulo. In this case, this distance is 2.

For the operation $a \mod b$ and if a is negative, then we can calculate the modulo using the following expression:

$$a + |\lfloor \frac{a}{b} \rfloor|(b) + b \tag{2}$$

2.3 Modular Addition

The property of modular addition is as follows:

$$(a+b) \mod c = ((a \mod c) + (b \mod c)) \mod c \tag{3}$$

This relationship can be derived by using expression (1). Recall that if a is divisible by c, and b is divisible by c, then a+b is divisible by c. We first start by restating a+b:

$$a = cq_1 + r_1 : a \mod c = r_1$$

 $b = cq_2 + r_2 : b \mod c = r_2$
 $a + b = (cq_1 + r_1 + cq_2 + r_2)$
 $a + b = c(q_1 + q_2) + r_1 + r_2$

Plugging the above result back into $(a + b) \mod c$ we get:

$$(c(q_1+q_2)+r_1+r_2) \mod c$$

We can apply the following rule to simplify the above expression. If we have an operation $a \mod b$, then we know that adding a multiple of b (say kb), will result in the same modulo value: $(a + kb) \mod b = a \mod b$. We can now simplify further:

$$(c(q_1 + q_2) + r_1 + r_2) \mod c$$

= $(r_1 + r_2) \mod c$

On the right hand side of expression (3) we can simplify further, using:

$$a = cq_1 + r_1 : a \mod c = r_1$$

 $b = cq_2 + r_2 : b \mod c = r_2$

So the right hand side becomes $(r_1 + r_2) \mod c$ as well.

2.4 Modular Multiplication

The property of modular multiplication is as follows:

$$(ab) \mod c = ((a \mod c) \ (b \mod c)) \mod c \tag{4}$$

This can be derived in a way similar to modular addition. The left hand side can be rewritten like so:

$$((cq_1 + r_1)(cq_2 + r_2)) \mod c$$

$$= (c^2q_1q_2 + cq_1r_2 + cq_2r_1 + r_1r_2) \mod c$$

$$= (c(cq_1q_2 + q_1r_2 + q_2r_1) + r_1r_2) \mod c$$

Since $c(cq_1q_2 + q_1r_2 + q_2r_1)$ is a multiple of c, we are left with:

$$(r_1r_2) \mod c$$

On to the right hand side of expression (4), using:

$$a = cq_1 + r_1 : a \mod c = r_1$$

 $b = cq_2 + r_2 : b \mod c = r_2$

We see that the right hand side of expression (4) becomes:

$$(r_1r_2) \mod c$$

2.5 Modular Exponentiation

Modular exponentiation takes the form of evaluation a problem like $a^x \mod b$. The challenge here is that a^x could easily become a very large number, causing errors on calculators. A commonly used technique to overcome this problem is known as "fast modular exponentiation" and it involves restating x using base-2. Suppose we are trying to evaluate $7^{15} \mod 17$. The first step is to translate the exponent into base-2. The number 15 thus becomes $(1111)_2$. We can expand this base-2 number with each term representing the binary symbol $\{0,1\}$ times 2 raised to the power of the place value it appears in:

$$15 = (1)(2)^3 + (1)(2)^2 + (1)(2)^1 + (1)(2)^0$$

With this expansion in mind, we can restate the original problem like so:

$$7^{15} \mod 17$$

$$= (7^{(1)2^3 + (1)2^2 + (1)2^1 + (1)2^0}) \mod 17$$

$$= (7^{8+4+2+1}) \mod 17$$

Finally, we can apply the algebraic rule of exponents and the property of modular multiplication:

$$(7^{8+4+2+1}) \mod 17$$
 = $((7^8 \mod 17) \ (7^4 \mod 17) \ (7^2 \mod 17) \ (7^1 \mod 17)) \mod 17$

We have now broken the problem into individual components, thus making calculations easier and reducing the likelikhood of overflow errors.

3 Euclidean Algorithm

3.1 GCD and Algorithm Steps

The Greatest Common Divisor (GCD) is the largest common divisor for a set of numbers.

The Euclidean Algorithm outlines a series of steps that can be followed to arrive at the GCD for two integers (say a and b). We start by taking the larger of the two numbers, let's say a, and rewrite it using the remainder quotient formula: $a = bq_1 + r_1$. We will then evaluate $b = r_1q_2 + r_2$. We could potentially evaluate $r_1 = r_2q_3 + r_3$.

We could encapsulate this recursive operation as $E(s,t) \to s = tq_n + r_n$. We stop when s or t becomes 0, and the non-zero value will be the GCD.

Ex. 1 Evaluate gcd(93, 42)

$$E(93,42) \rightarrow 93 = (2)(42) + 9$$

$$E(42,9) \rightarrow 42 = (4)(9) + 6$$

$$E(9,6) \rightarrow 9 = (6)(1) + 3$$

$$E(6,3) \rightarrow 6 = (3)(2) + 0$$

$$E(3,0)$$

Solution: gcd(93, 42) = 3

Ex. 2 Evaluate gcd(4278, 8602)

$$E(8602, 4278) \rightarrow 8602 = (4278)(2) + 96$$

 $E(4278, 96) \rightarrow 4278 = (46)(93) + 0$
 $E(46, 0)$

So gcd(4278, 8602) = 46

3.2 Bézout's Lemma

There are integers x and y such that gcd(a,b) = xa + yb. Matrices with elementary row operations can be used to find x and y. We will demonstrate the algorithm using the two examples above.

Ex. 3 Our claim is that there are integers x and y such that gcd(93, 42) = 93x + 42y.

State Matrix	Division	Elementary Row Operation	
$\begin{bmatrix} 1 & 0 & 93 \\ 0 & 1 & 42 \end{bmatrix}$	93/42 = 2 $93 \mod 42 = 9$	$R_1 - 2R_2 \to R_1$	
$\begin{bmatrix} 1 & -2 & 9 \\ 0 & 1 & 42 \end{bmatrix}$	$42/9 = 4$ $42 \mod 92 = 6$	$R_2 - 4R_{21} \rightarrow R_2$	

$$\begin{bmatrix} 1 & -2 & 9 \\ -4 & 9 & 6 \end{bmatrix} 9/6 = 1 R_1 - R_2 \to R_1$$

$$\begin{bmatrix} 5 & -11 & 3 \\ -4 & 9 & 6 \end{bmatrix}$$
 The stopping condition, that 6 mod $3 = 0$, has been reached.

Solution: So x = 5 and y = -11. We can verify this: (93)(5) + (42)(-11) = 3.

Ex. 4 Our claim is that there are integers x and y such that gcd(4278, 8602) = 8602x + 4278y.

State Matrix	Division	Elementary Row Operation			
$\begin{bmatrix} 1 & 0 & 8602 \\ 0 & 1 & 4278 \end{bmatrix}$	$8602/4278 = 2$ $8602 \mod 4278 = 46$	$R_1 - 2R_2 \to R_1$			
$\begin{bmatrix} 1 & -2 & 46 \\ 0 & 1 & 4278 \end{bmatrix}$	$4278/46 = 93$ $4278 \mod 46 = 0$	The stopping condition has been reached.			
Solution: So $x = 1$ and $y = -2$. We can verify this: $(8602)(1) + (4278)(-2) = 46$					

20 1 dia g 21 (10 dail (e11) dia (e002)(1) (1210)(2) 10

4 Congruence

4.1 Overview

The statement $a \equiv b \mod n$, is another way of stating $a \mod n = b \mod n$. For example, $7 \equiv 12 \mod 5$ is a true statement, since $7 \mod 5 = 2$ and $12 \mod 5 = 2$. We also find that $17 \mod 5 = 2$. These 3 integers belong to the same Congruence Class for mod 5.

Referring back to section 2.1, we know that the only possible outcomes of any integer x mod 5 is $\{0,1,2,3,4\}$. Therefore there are 5 different congruence classes for mod 5.

4.2 Solving Congruence Problems

Several strategies can be applied to solve the problems of the form $ax \equiv b \pmod{n}$. For the next few examples, we will use the following five propositions:

- (**p1**) If d divides n and we have $ad \equiv bd \pmod{n}$, we can simplify this to $a \equiv b \pmod{\frac{n}{d}}$
- (**p2**) If gcd(a, n) = 1 and we have $ad \equiv bd \pmod{n}$, we can simplify this to $a \equiv b \pmod{n}$
- **(p3)** There is a solution to $ax \equiv b \pmod{n}$ if gcd(a,b)|n
- (p4) For $a\bar{a} = 1 \pmod{n}$, the inverse \bar{a} exists if gcd(a, n) = 1
- (p5) For $ax \equiv b \pmod{n}$ where multiple solutions exist, the spread between solutions is $\frac{n}{\gcd(a,n)}$

Sometimes the solution to a problem is trivial and involves only algebra, consider the following two problems:

Ex. 5 Solve $8x \equiv 16 \pmod{5}$:

First, we observe that gcd(8,5) = 1. We can divide both sides of the congruence by 8 (applying **p2**).

 $x \equiv 2 \pmod{5}$

To verify our solution:

 $(8)(2) \equiv 16 \pmod{5}$

 $16 \equiv 16 \pmod{5}$

Solution: $x \equiv 2 \pmod{5}$

Ex. 6 Solve $2x \equiv 8 \pmod{3}$:

First, we observe that gcd(2,3) = 1. We can divide both sides of the congruence by 2 (applying **p2**).

 $x \equiv 4 \pmod{3}$

To verify our solution:

 $(2)(4) \equiv 8 \pmod{3}$

 $8 \equiv 8 \pmod{3}$

Solution: $4x \equiv (\mod 3)$

In some cases, algebra by itself will not work as the division on both sides of the congruence would not produce an integer. For these cases, we can first verify if a solution exists, and determine if a and n are coprime. If a and n are coprime, we we can use the modulo multiplicative inverse.

For a problem $ax \equiv b \pmod{n}$, we first check if gcd(a, n) = 1. If so, we we can evaluate $a\bar{a} \equiv 1 \pmod{n}$. Once we determine the value of \bar{a} . We can multiply both sides of the original congruence by \bar{a} :

$$a\bar{a}x \equiv \bar{a}b \pmod{n}$$

 $x \equiv \bar{a}b \pmod{n}$

Let's clarify what happens to the dropped coefficient on the left. The expression $a\bar{a}x \equiv \bar{a}b \pmod{n}$ can be restated as $a\bar{a}x \mod n = \bar{a}b \mod n$.

On the left hand side, \bar{a} is an integer, that when multiplied by ax and divided by n, produces a remainder of 1: $a\bar{a}x \mod n = 1$. This is functionally equivalent to saying $(1)(x) \mod n = 1$. We can now rewrite the left hand side:

$$a\bar{a}x \mod n = \bar{a}b \mod n$$

(1) $x \mod n = \bar{a}b \mod n$
 $x \equiv \bar{a}b \pmod n$

Let's consider a few examples:

Ex. 7 Solve $3x \equiv 7 \pmod{11}$

We first determine that gcd(3,11)=1, so the method can be applied. Since 1|11, an inverse \bar{a} exists. After some tests, we determine that \bar{a} is 4.

$$(3)(4) \mod 11 = 1$$
$$\therefore \bar{a} = 4,$$

We can now use \bar{a} to solve the original problem:

$$4x \equiv (4)(7)(\mod 11)$$
$$x \equiv 28(\mod 11)$$

We can improve the answer by reporting the smallest positive value. The spread is 11, so $x \equiv 6 \pmod{11}$ is the best answer. Finally, we can do a quick verification:

$$(3)(6) \mod 11$$

= 18 \quad \text{mod } 11
= 7

Solution: $x \equiv 6 \pmod{11}$

Ex. 8 Solve $21x \equiv 14 \pmod{91}$

We notice that gcd(21,91) = 7, so at first glance the inverse technique might not work. However, we can simplify the congruence by dividing both sides by 7, and also divide 91 by 7 (Applying **p1**):

$$21x \equiv 14 \pmod{91}$$
$$3x \equiv 2 \pmod{13}$$

We can now apply the technique. We find gcd(3,13) = 1, and since 1|13 an inverse exists. After testing some numbers we find:

$$(3)(9) \mod 13 = 1$$
$$\therefore \bar{a} = 9$$

We can now use \bar{a} to solve the original problem:

$$(9)(3)x \equiv (9)(2)(\mod 13)$$
$$x \equiv 18(\mod 13)$$

Like the previous problem, we can report a slightly better answer by using the spread, which is 13, leaving us with $x \equiv 5 \pmod{13}$. We can verify the answer:

$$(21)(5) \mod 91$$

= 105 \quad \text{mod } 91
= 14

Solution: $x \equiv 5 \pmod{13}$

Ex. 9 Solve $19x \equiv 4 \pmod{141}$

Since gcd(19,141) = 1 and 1|141, the inverse technique can be applied. First we find \bar{a} :

(19)(52) mod 141 = 1
∴
$$\bar{a} = 52$$

We can now use \bar{a} to solve the original problem:

$$(52)(19)x \equiv (52)(4) \pmod{141}$$

 $x \equiv 208 \pmod{141}$

Since the spread is 141, a better answer to report would be $x \equiv 67 \pmod{141}$. Let's verify the result:

$$(19)(67) \mod 141$$

= 1273 \quad \text{mod } 141
= 4

Solution: $x \equiv 67 \pmod{141}$

5 The Chinese Remainder Theorem

The Chinese remainder Theorem outlines an algorithm that can be used to solve a system of congruences. The steps are illustrated below using a system of three congruences. Suppose we want to solve the following:

$$x \equiv b_1 \pmod{c_1}$$

 $x \equiv b_2 \pmod{c_2}$
 $x \equiv b_3 \pmod{c_3}$

The theorem can be used if c_1, c_2, c_3 are coprime. We first calculate $N = (c_1)(c_2)(c_3)$. We then setup the following table:

b_i	N_i	\bar{a}	$b_i N_i a_i$
b_1	$N_1 = n_2 n_3$	\bar{a}_1	$b_1N_1a_1$
b_2	$N_2 = n_1 n_3$	\bar{a}_2	$b_2N_2a_2$
b_3	$N_3 = n_1 n_2$	\bar{a}_3	$b_3N_3a_3$

The column N_i represents the calculation $N_i = \frac{N}{n_i}$. The column \bar{a} is the solution to \bar{a} in $N_i \bar{a}_i \equiv 1 \pmod{c_i}$. The solution to the system is the sum of the last column mod N:

$$\left(\sum_{i=1}^{3} b_i N_i a_i\right) \mod N$$

Here is an example of the algorithm in action.

Ex. 10 Suppose that there is a group of students, and the instructor has a choice to group everyone into teams of 3, 4, or 5. If groups of 3 are created, there will be 2 students unassigned students left over. If groups of 4 are made, then there will be 3 students left over, and in the case of groups of 5, then there will be 1 student left over. We want to find a class size that would result in the above outcomes.

The problem can be summarized into the following system of congruences:

$$x \equiv 3 \pmod{4}$$

 $x \equiv 1 \pmod{5}$
 $x \equiv 2 \pmod{3}$

From the initial setup, we can see that N = (4)(5)(3) = 60. We can start to fill in some of the table details:

b_i	N_i	\bar{a}	$b_i N_i a_i$
3	15	\bar{a}_1	$b_1N_1a_1$
1	12	\bar{a}_2	$b_2N_2a_2$
2	20	\bar{a}_3	$b_3N_3a_3$

The next step is to figure out \bar{a}_i . After some trial and error, we determine the following:

$$(15)(3) \equiv 1 \pmod{15} : \bar{a}_1 = 3$$

 $(12)(3) \equiv 1 \pmod{12} : \bar{a}_2 = 3$
 $(20)(2) \equiv 1 \pmod{20} : \bar{a}_3 = 2$

We can now complete the table:

b_i	N_i	\bar{a}	$b_i N_i a_i$
3	15	3	135
1	12	3	36
2	20	2	80

The sum of the last column is 251. At this point, we have $x \equiv 251 \pmod{60}$. Since the spread is 60, the best reportable answer is $x \equiv 11 \pmod{60}$. We can verify this result:

11
$$\mod 4 = 3$$
 11 $\mod 5 = 1$ 11 $\mod 3 = 2$

So a class size of 15 meets the criteria, with 3 students left if groups of 4 are made, 1 student left if groups of 5 are made, and 2 left with groups of 3.

Ex. 11 Here is an additional example. solve the following system:

$$x \equiv 3 \pmod{5}$$

$$x \equiv 1 \pmod{7}$$

$$x \equiv 6 \pmod{8}$$

First, we determine that N = (5)(7)(8) = 280. We can partially fill our table:

b_i	N_i	\bar{a}	$b_i N_i a_i$
3	56	\bar{a}_1	$b_1N_1a_1$
1	40	\bar{a}_2	$b_2N_2a_2$
6	35	\bar{a}_3	$b_3N_3a_3$

The next step is to figure out \bar{a}_i . After some trial and error, we determine the following:

$$(56)(1) \equiv 1 \pmod{8} :: \bar{a}_1 = 1$$

$$(40)(5) \equiv 1 \pmod{7} :: \bar{a}_2 = 3$$

$$(40)(5) \equiv 1 \pmod{7} :: \bar{a}_3 = 3$$

We complete the table:

b_i	N_i	\bar{a}	$b_i N_i a_i$
3	56	1	168
1	40	3	120
6	35	3	630

Given the sum of the last column, we have $x \equiv 918 \pmod{280}$. Since the spread is 280, the best reportable answer is $x \equiv 78 \pmod{280}$