Übungsblatt 10

Sei
$$0 < r < R$$
. Sei $\mathbb{T}^2_{r,R} := \{(x,y,z)^T \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2\}.$

Aufgabe 28. Zeigen Sie, dass $\mathbb{T}^2_{r,R}$ (Definition oben) eine Untermannigfaltigkeit ist, skizzieren Sie diese und bestimmen Sie das Volumen von $A := \{(x,y,z)^T \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - R)^2 + z^2 \leq r^2\} \subset \mathbb{R}^3$.

Aufgabe 29. Sei

$$F: U := (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3$$
$$(\phi, \theta) \mapsto \begin{pmatrix} (R + r\cos\phi)\cos\theta \\ (R + r\cos\phi)\sin\theta \\ r\sin\phi \end{pmatrix}$$

Überprüfen Sie, dass F eine lokale Parametrisierung von $\mathbb{T}^2_{r,R}$ (Definition oben) ist. Bestimmen Sie $\mathbb{T}^2_{r,R} \setminus F(U)$ und das Volumen der Untermannigfaltigkeit $F(U) \subset \mathbb{T}^2_{r,R}$. Argumentieren Sie, dass $\mathbb{T}^2_{r,R} \setminus F(U) \subset \mathbb{T}^2_{r,R}$ als Teilmenge der Untermannigfaltigkeit $\mathbb{T}^2_{r,R}$ Volumen Null hat.

Aufgabe 30 (2+1+2). Berechnen Sie folgende Integrale

- (i) $\int_M x dvol$, wobei M der Teil der Sphäre $x^2 + y^2 + z^2 = R^2$ ist, welcher im ersten Oktanten liegt.
- (ii) $\int_M y \mathrm{d}\mathrm{vol},$ wobe
iMdie obere Hemnisphäre der Sphäre $x^2+y^2+z^2=R^2$ ist.
- (iii) $\int_M \frac{1}{\sigma^2} d\text{vol}$, wobei M der Teil des Zylinders $x^2 + y^2 = R^2$ zwischen den Ebenen z = 0 und z = H ist und σ die Funktion auf M ist, welche in jedem Punkt den Abstand zum Ursprung misst.

Abgabe bis Mittwoch 18.01.23 8:00 Uhr online oder in den Briefkasten im Untergeschoss

 $^{^{1}\}text{Es geht also um das Integral }\int_{\mathbb{T}^{2}_{r,R}}1_{\mathbb{T}^{2}_{r,R}\backslash F(U)}\text{dvol für die charakteristische Funktion }1_{\mathbb{T}^{2}_{r,R}\backslash F(U)}:\mathbb{T}^{2}_{r,R}\to\mathbb{R}.$