1 / 5

2/5

CURRENT

HIGHER LASER CHARACTERISTICS 2 I'AVC \overline{P}_{2} LOWER TEMP 2 PAVE OPTICAL OUTPUT POWER

<u>q</u> q re (EXTINCTION RATIO)

FIG. 2 (PRIOR ART)

3 / 5

4 / 5

 I'_{MOD} (TOTAL) = I_{MOD} + K I_{AVC} (EXTINCTION RATIO) = $\frac{P_1}{P_0} \approx \frac{P'_1}{P'_0}$

FIG. 4

Extinction Ratio vs. Temperature

OPPENHEIMER WOLFF & DONNELLY LLP (650)320-4000
"CONTROLLING THE EXTINCTION RATIO
OF OPTICAL TRANSMITTERS"
Inventor: Martinez et al.
Docket No.: 60305-306501

5/5

Without Modulation Compensation modcomp=open With Modulation Compensation modcomp=1k

Temperature (°C)