Question set 3 continued [Core Code Programming Academy]
3. Newton's law of gravitation:
Let 'mi' be the mass of object 1.
Set 'm2' be the mass of object 2.
And let 'r' be the distance between them.
The gravitational force of attraction is given by
$F = G. m_1. m_2 / r^2$
where G is a universal constant of gravitation.
$G = 6.67 \times 10^{-11}$
Write a program which will accept m1, m2 and r from
user and print the gravitational force.
Do the validity check for m1, m2 and r.
[Hint: m1, m2 and r should be positive]
4. Coloumb's Law: A particle can be positively charged,
negatively charged or neutral. Coloumbis law governs
the force between the charged particles. Like charges (+++ or
-,-) repeleach other and opposite charges (-,+ or
+,-) attract each other. The magnitude of force of
attraction or repusion is governed by the following
equation
$F = k \cdot q_1 \cdot q_2 / r^2 \cdot \text{where}$
R = Coloumb's constant = 8.988×10
91,92 = Changes on particles with sign. [Positively
charged particle will have positive sign & the negatively

Changed particle will have negative sign]
r = distance between the charges.
Write a program which will—
(a) accept 91,92 (with sign) & r from usen
(b) Print the magnitude of the force
(C) State whether the force is that of attraction or
neput sion.
[Do validity checks wherever necessary].
5. Quadratic Equation Solver:
Quadratic eqn of a single variable is stated as follows
$0x^2 + bx + C = 0$ where a, b, c are real numbers
and $a \neq 0$.
The roots of the equation are governed by the following
formula:
$r_1 - b + \sqrt{b^2 - 4ac}$ $r_2 = -b - \sqrt{b^2 - 4ac}$
$r_1 - b + \sqrt{b^2 - 4ac}$ $r_2 = -b - \sqrt{b^2 - 4ac}$ $2a$
write a program which will
(a) accept a, b, C from user.
(b) print the roots of the eqn.
(c) do the validity checks.
Cl: $a \neq 0$
C2: b^2 -4ac >0 [If this condition is not met
then print the message as follows-
"the eqn $ax^2 + bx + c = 0$ does not have roots
in real" and exit from the code 7.

[Additional Him: Use Sqrt() function to compute the Square ron]

G. Let BABC be any triangle. By convention the length of

the side opporto angle A is denoted by a, that of angle B is by b and that of angle C is by c.

-The perimeter of a triangle is governed by formula- $Perimeter(\Delta ABC) = a + b + C.$

- The area of the triangle is governed by formula -

Area (
$$\Delta ABC$$
) = $\sqrt{8.(8-a).(8-b).(8-c)}$

where S = Semi-perimeter of a triangle.

$$mLA$$
 (in radions) = $cos^{-1}\left(\frac{b^2+c^2-a^2}{2bc}\right)$

$$mLB$$
 (in radians) = $cos^{-1}\left(\frac{c^2+a^2-b^2}{2\cdot c\cdot a}\right)$

$$mLC$$
 (in radians) - cos^{-1} $\left(\frac{a^2+b^2-c^2}{2ab}\right)$

Write a program which will

[a] Sides of a triangle a, b, c from user.

[b] Compute and print the perimeter of a triangle.

[C] Compute and print the avea of a triangle.

[d] Compute and print the measures of all angles of a triangle in radians, in degrees.

Led Validity checks:
a>0,b>0,c>0
Sides of any two sides of a triangle 15
greater than the third.
If any of the above condition is violated then
proint the appropriate error message and exit.
[Hint: Use pow() function to compute power
Use a cos() function to compute Gos-1.
Use Sqrt() function to compute the square ross.
P-7: Set DABCD be any quadrilateral.
Let $l(AB)=a$, $l(BC)=b$, $l(cD)=c$, $l(DA)=d$
Perimeter ([ABCD] = a+b+c+d
d, Area ([ABCD) = ((S-a). (S-b) (S-d). (S-d).
Write a program which will
(a) Accept lengths of sides of quadrilateral from user.
(5) Print the perimeter of the quadrilateral.
(c) Puint the avea of the quadrilateral
(d) Do the validity checks:
C1: a>0, b>0, c>0, d>0
C2: Sum of any three sides of a trainingle is greater
than the fourth side.
P-8: Consider a circle with radius r.
9ts circumeference is given by formula = 2. Tir.
\cup

