Cryptography Foundations Solution Exercise 7

7.1 The Merkle-Damgård Construction

- a) An easy collision is given by x = 0 and y = (0,0). To see this note that $\hat{x} = \hat{y} = (0,\ldots,0) \in \{0,1\}^m$ and thus $h(x) = f(0,\ldots,0) = h(y)$.
- b) The winner of the collision-finding game for h outputs two messages $x \neq y$ such that h(x) = h(y). From this collision of h we need to compute a collision of f. Let d_x and d_y be the numbers of 0's that have to be appended to x and y, respectively, in order that we get strings that are multiples of m bits long. So, $d_x = -|x| \mod m$ and $d_y = -|y| \mod m$. This allows us to write

$$\hat{x} = x \parallel \underbrace{(0, \dots, 0)}_{d_x \text{ times}} \parallel \langle d_x \rangle \text{ and } \hat{y} = y \parallel \underbrace{(0, \dots, 0)}_{d_y \text{ times}} \parallel \langle d_y \rangle.$$

Moreover, let h_k^x , $1 \le k \le s = \frac{|x| + d_x}{m} + 1$, and h_k^y , $1 \le k \le t = \frac{|y| + d_y}{m} + 1$, be the outputs of f in the iterative evaluation of h(x) and h(y). We can assume without loss of generality that $t \ge s$. Note that, by definition,

$$h_s^x = h(x) = h(y) = h_t^y.$$

If there exists a $k \in \{1, \dots, s-1\}$ with $h_{s-k}^x \neq h_{t-k}^y$ and k is the smallest such number, then

$$f(h_{s-k}^x \parallel 1 \parallel \hat{x}_{s-(k-1)}) = h_{s-(k-1)}^x = h_{t-(k-1)}^y = f(h_{t-k}^y \parallel 1 \parallel \hat{y}_{t-(k-1)}),$$

which gives a collision of f. Therefore we can assume in the remainder of the proof that $h_{s-k}^x = h_{t-k}^y$ for all $0 \le k \le s-1$. We proceed by considering three cases. First suppose that $|x| \not\equiv |y| \pmod{m} \Leftrightarrow d_x \ne d_y$. Then the last compression stages in the evaluations of h(x) and h(y) already give a collision of f. Concretely,

$$f(\underbrace{h_{s-1}^x \parallel 1 \parallel \langle d_x \rangle}_{=x'}) = h_s^x = h(x) = h(y) = h_t^y = f(\underbrace{h_{t-1}^y \parallel 1 \parallel \langle d_y \rangle}_{=y'})$$

with $x' \neq y'$ as $d_x \neq d_y$. Next we turn to the case where $|x| \equiv |y| \pmod{m}$ but $|x| \neq |y|$. Here it follows that t > s and, with k = s - 1,

$$f((0,\ldots,0) \parallel 0 \parallel \hat{x}_1) = h_1^x = h_{s-k}^x = h_{t-k}^y = h_{t-(s-1)}^y = f(h_{t-s}^y \parallel 1 \parallel \hat{y}_{t-(s-1)}),$$

which again gives a collision of f. Finally, suppose |x| = |y|. In this case there is a $1 \le k \le t = s$ such that $\hat{x}_k \ne \hat{y}_k$. From this we get the collision

$$f((0,...,0) \parallel \hat{x}_1) = h_1^x = h_1^y = f((0,...,0) \parallel \hat{y}_1)$$

if k = 1 or else the collision

$$f(h_{k-1}^x \parallel 1 \parallel \hat{x}_k) = h_k^x = h_k^y = f(h_{k-1}^y \parallel 1 \parallel \hat{y}_k).$$

7.2 Search Problems

a) We have two random variables X and A, where X corresponds to the instance of the problem and is distributed according to P_X , and A is a random variable over deterministic algorithms. We denote the output of A on input x by A(x) (which is a random variable over \mathcal{W}). Then, the success probability of A is given by

$$\Pr[Q(X, A(X)) = 1].$$

- b) Since the success probability of an algorithm A is defined as the average success probability of A over all instances $x \in \mathcal{X}$, weighted according to P_X , A may perform much below its average success probability on some of the instances. Consider a computational problem with two instances x_0 and x_1 such that A always finds a witness given x_0 but never finds one given x_1 . If we have $\mathsf{P}_X(x_0) = \alpha$ and $\mathsf{P}_X(x_1) = 1 \alpha$, the success probability of A is α . In this case, the success probability of A' is also α . Obviously, the success probability of A' is at least as high as the one of A. Hence, the best lower bound on the success probability of A' is α .
- c) Let $\mathbb{G} = \langle g \rangle$, $|\mathbb{G}| = q$ be the group for which A can solve the discrete logarithm problem with probability α . Algorithm A' works as follows: Let c > 1 be some constant. On input $h = g^x \in \mathbb{G}$, the algorithm A' chooses $r \in \mathbb{Z}_q$ uniformly at random and invokes A on $h \cdot g^r = g^{x+r}$. Given the output g of g, it computes $g' := g r \mod g$. If $g' = g + r \mod g$ of the number of repetitions so far (including the first iteration) is less than $g = g + r \mod g$. If the number of repetitions equals $g = g + r \mod g$.

Note that if solver A succeeds on $h \cdot g^r$, then A' outputs a correct solution y' with $g^{y'} = h$. Since $h \cdot g^r$ is a uniform random element of \mathbb{G} , this happens with probability α . Hence, the success probability of A' is

$$1-(1-\alpha)^c > \alpha$$

for c > 1.

d) The crucial property of algorithm A' in subtask c) is that it invokes A each time on a uniformly random instance. In general, a problem instance cannot be transformed to a random instance such that a solution to the random instance can be transformed to a solution to the original instance. Problems that allow this are called $random\ self-reducible$.

7.3 Properties of the Statistical Distance

a) Using the independence of A and X and the one of A and X', and the triangle inequality for the absolute value, we obtain

$$\delta(A(X), A(Y)) = \frac{1}{2} \sum_{y \in \mathcal{Y}} \left| \operatorname{Pr}^{AX} [A(X) = y] - \operatorname{Pr}^{AX'} [A(X') = y] \right|$$

$$= \frac{1}{2} \sum_{y \in \mathcal{Y}} \left| \sum_{x \in \mathcal{X}} \operatorname{Pr}^{AX} [A(x) = y \wedge X = x] - \sum_{x \in \mathcal{X}} \operatorname{Pr}^{AX'} [A(x) = y \wedge X' = x] \right|$$

$$\stackrel{\text{indep.}}{=} \frac{1}{2} \sum_{y \in \mathcal{Y}} \left| \sum_{x \in \mathcal{X}} \operatorname{Pr}^{A} [A(x) = y] \cdot \operatorname{P}_{X}(x) - \sum_{x \in \mathcal{X}} \operatorname{Pr}^{A} [A(x) = y] \cdot \operatorname{P}_{X'}(x) \right|$$

$$= \frac{1}{2} \sum_{y \in \mathcal{Y}} \left| \sum_{x \in \mathcal{X}} \operatorname{Pr}^{A} [A(x) = y] \cdot \left| \operatorname{P}_{X}(x) - \operatorname{P}_{X'}(x) \right| \right|$$

$$\leq \frac{1}{2} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \operatorname{Pr}^{A} [A(x) = y] \cdot \left| \operatorname{P}_{X}(x) - \operatorname{P}_{X'}(x) \right|$$

$$= \frac{1}{2} \sum_{x \in \mathcal{X}} \left(\left| \operatorname{P}_{X}(x) - \operatorname{P}_{X'}(x) \right| \cdot \sum_{y \in \mathcal{Y}} \operatorname{Pr}^{A} [A(x) = y] \right)$$

$$= \delta(X, X').$$

b) The claim follows from the following calculation using the definition of the statistical distance and basic properties of the uniform distribution over a finite set:

$$\begin{split} \delta(X,Y) &= \frac{1}{2} \sum_{x \in I} |\mathsf{P}_X(x) - \mathsf{P}_Y(x)| \\ &= \frac{1}{2} \sum_{x \in J} |\mathsf{P}_X(x) - \mathsf{P}_Y(x)| + \frac{1}{2} \sum_{x \in I \setminus J} |\mathsf{P}_X(x) - \mathsf{P}_Y(x)| \\ &= \frac{1}{2} \sum_{x \in J} \left| \frac{1}{|I|} - \frac{1}{|J|} \right| + \frac{1}{2} \sum_{x \in I \setminus J} \left| \frac{1}{|I|} - 0 \right| \\ &= \frac{1}{2} \sum_{x \in J} \left(\frac{1}{|J|} - \frac{1}{|I|} \right) + \frac{1}{2} \sum_{x \in I \setminus J} \frac{1}{|I|} \\ &= \frac{1}{2} \left(\frac{|J|}{|J|} - \frac{|J|}{|I|} + \frac{|I| - |J|}{|I|} \right) \\ &= 1 - \frac{|J|}{|I|}. \end{split}$$