多视图立体匹配与三维重建

章国锋 浙江大学CAD&CG国家重点实验室

深度恢复技术

Overview

■双视图立体匹配

Overview

- ■双视图立体匹配
- ■多视图立体匹配

Overview

- ■双视图立体匹配
- ■多视图立体匹配
- ■三维几何重建

立体视觉

- ■立体匹配
 - 从两幅或多副图像中恢复出稠密的深度信息

- □通常的流程
 - □运动推断结构:恢复出摄像机参数
 - □逐像素匹配
 - □计算深度

立体视觉

极线几何约束

- □只需要在极线上进行匹配
- □二维搜索变成一维搜索
- □极大地减小匹配代价

图像矫正

- ■标准的配置
 - □左右相机的方向一致且 它们的中心连线垂直
- ■矫正方法
 - □将左右视图投影到一 个公共平面上

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

像素匹配

每一条扫描线:

左视图上的每一个像素:

- 跟右视图上的同扫描线上的每一个像素进行比较
- 选出颜色最相似的像素作为匹配点

单像素匹配很容易受噪声影响

改进: 基于窗口的匹配

基于窗口的匹配

右视图

SSD: Sum of Squared Distance

窗口大小的选择

W = 5*5

W= 11*11

- ■不同窗口大小的影响
 - 匹配窗口很小时,起不到很好的平滑作用
 - 窗口取得比较大的时候,一些细小结构和不连 续边界附近的深度会变得不准确
- ■自适应的窗口匹配方法

立体匹配方法的评测

D. Scharstein and R. Szeliski. "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," *International Journal of Computer Vision,* **47** (2002), pp. 7-42.

Scene

Ground truth

Scharstein and Szeliski

全局优化方法

Energy Function

Data Term

$$E(a) = \sum_{x \in A} (x, a)$$

□ Smoothness Term

$$E_{S}(A) = \sum_{X \in Y \in (X)} (A_{X}, A_{Y})$$

- Optimization
 - □ Graph Cuts
 - □ Belief Propagation

Graph Cuts

■定义

- □ 对于一个图 G = (V, E) ,其中 V 为节点集合,包括源点s和终点t、以及其他诸多中间节点集合V',E 为连接这些节点的边,每条边附有容量c(u, v) 代表节点u通过这条边流向节点v所能承受的最大流量。
- □ Graph cuts的目的在于找到图的 Min-cut,Cut将 V'分割为两个部分,去掉这些边将使舍得图中的任意一个节点只与s或t相连通,而 Min-cut是所有cut中边的能量值总和最小的一个。

Graph Cuts

- Recommended Paper
 - □ Yuri Boykov, Olga Veksler, Ramin Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11): 1222-1239, 2001.
- Graph Cuts Home Page
 - □ http://www.cs.cornell.edu/~rdz/graphcuts.html
- Source code:

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

м

Multi-Label Graph-Cuts

- CESwap
 - □ Semi-metric

$$V(\alpha, \beta) = V(\beta, \alpha) \ge 0$$
 and $V(\alpha, \beta) = 0 \Leftrightarrow \alpha = \beta$.

æexpar

□ Metric

If V also satisfies the triangle inequality

$$V(\alpha, \beta) \le V(\alpha, \gamma) + V(\gamma, \beta)$$

Comparison

The Result with Window-based Matching

The Result with Graph Cuts

Stereo Matching with Belief Propagation

Stereo results for the Tsukuba image pair

M

Belief Propagation

- Recommended Paper:
 - □ Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Belief Propagation for Early Vision. International Journal of Computer Vision, Vol. 70, No. 1, October 2006.
- Source Code:
 - □ http://people.cs.uchicago.edu/~pff/bp/

Multi-View Stereo

A Brief Review

Voxel-based Approaches

□ Voxel Coloring [Seitz & Dyer 97], Space carving [Kutulakos & Seitz 98], Faugeras & Keriven 98, Paris et al. 04, Pons et al. 05, Tran & Davis 06, Vogiatzis et al. 05, ...

Volumetric Stereo

Discrete Formulation

Calibrated Image Acquisition

CalibratedTurntable

360° rotation (21 images)

Selected Dinosaur Images

Selected Flower Images

(Alexei Efros)

Voxel Coloring Results

Dinosaur Reconstruction
72 K voxels colored
7.6 M voxels tested
7 min. to compute
on a 250MHz SGI

Flower Reconstruction
70 K voxels colored
7.6 M voxels tested
7 min. to compute
on a 250MHz SGI

(Alexei Efros)

A Brief Review

- Approaches based on Deformable Polygonal Meshes
 - □ Esteban & Schmitt 04, Zaharescu et al. 07, Furukawa & Ponce 08, ...

Visual Hull

A Result of Visual Hull

http://www.cs.washington.edu/homes/furukawa/research/visual_hull/index.html

A Brief Review

Patch-based Method

☐ Furukawa & Ponce 07, 10

<u>Yasutaka Furukawa</u>, Jean Ponce: Accurate, Dense, and Robust Multiview Stereopsis. <u>IEEE Trans. Pattern Anal. Mach. Intell. 32</u>(8): 1362-1376 (2010)

Patch-Based Multi-View Stereo

Patch-based Multi-view Stereo Software (PMVS - Version 2)

http://grail.cs.washington.edu/software/pmvs/

Software developped and distributed by

<u>Yasutaka Furukawa</u> - University of Washington <u>Jean Ponce</u> - Ecole Normale Supérieure

A Brief Review

- Approaches based on Multiple Depth Maps
 - Goesele et al. 06, Strecha et al. 06, Bradley et al. 08, Zhang et al. 09, ...

Consistent Depth Recovery

- Key Issues
 - □ Image noise
 - □ Textureless regions
 - □ Occlusions

Cost Aggregation -

Smoothness Constraint

Incorporating Segmentation

Visibility Labeling

Image noise

Textureless regions

Occlusions

Typical Solutions

- Window-based Aggregation
 - Make estimated depths less accurate
 - Introduce artifacts around boundaries

- Smoothness Constraint
 - Make optimization complex
 - □ Require a good starting point

м

Typical Solutions

- Segmentation-based Approaches
 - Less accurate in textured region
 - □ Introduce segmentation errors

- Binary Visibility Labeling
 - ☐ Hand tune the threshold
 - □ Difficult to distinguish between noise & occlusions
 - Make optimization difficult

Image noise

Occlusions

Estimation Error

Image noise

Occlusions

Estimation Error

Image noise

Occlusions

Estimation Error

All can be regarded as temporal noise!

A unified framework for handling them

Framework Overview

Structure from Motion

□ Recover the camera parameters

Depth Initialization

- □ Initialize depths without using segmentation
- Refine the initialized depths with segmentation
- Bundle Optimization

Bundle Optimization

$$E(\hat{D}; \hat{I}) = \sum_{t=1}^{n} \left(E_d(D_t; \hat{I}, \hat{D} \backslash D_t) + E_s(D_t) \right)$$

- $\blacksquare E_d$: Data Term
 - □ Color constancy constraint
 - □ Geometric coherence constraint
- $\blacksquare E_{\varsigma}$: Smoothness Term
 - Encodes the spatial smoothness

10

Bundle Optimization

$$E(\hat{D}; \hat{I}) = \sum_{t=1}^{n} \left(E_d(D_t; \hat{I}, \hat{D} \backslash D_t) + E_s(D_t) \right)$$

- $\blacksquare E_d$: Data Term
 - □ Color constancy constraint
 - □ Geometric coherence constraint
- \blacksquare E_s : Smoothness Term
 - Encodes the spatial smoothness

Geometric Coherence Constraint

м

Data Term Definition

- Essential role in energy minimization
 - Unreliable cost makes optimization problematic!
- The disparity likelihood
 - Combining color and geometry constraints
 - □ Complement each other

$$L(\mathbf{x}, d) = \sum_{t'} p_c(\mathbf{x}, d, I_t, I_{t'}) \cdot p_v(\mathbf{x}, d, D_{t'})$$

color constancy geometric coherence

M

Energy Definition

The Complete Data Term

$$E_d(D_t; \hat{I}, \hat{D} \backslash D_t) = \sum_{\mathbf{x}} 1 - u(\mathbf{x}) \cdot L(\mathbf{x}, D_t(\mathbf{x}))$$

The Smoothness Term

$$E_s(D_t) = \sum_{\mathbf{x}} \sum_{\mathbf{y} \in N(\mathbf{x})} \lambda(\mathbf{x}, \mathbf{y}) \cdot \min\{|D_t(\mathbf{x}) - D_t(\mathbf{y})|, \eta\}$$

м

How to Solve it?

$$E(\hat{D}; \hat{I}) = \sum_{t=1}^{n} \left(E_d(D_t; \hat{I}, \hat{D} \backslash D_t) + E_s(D_t) \right)$$

- Directly Solving the energy is intractable
 - □ Require Initial depth maps

- Iterative Optimization Scheme
 - □ Initialization
 - □ Iterative Refinement

Initialization

- Remove geometric coherence constraint
 - □ The disparity likelihood is reformed

$$L_{init}(\mathbf{x}, D_t(\mathbf{x})) = \sum_{t'} p_c(\mathbf{x}, D_t(\mathbf{x}), I_t, I_{t'})$$

Estimate each frame independently

$$E_{init}^{t}(D_{t}; \hat{I}) = \sum_{\mathbf{x}} \left(1 - u(\mathbf{x}) \cdot L_{init}(\mathbf{x}, D_{t}(\mathbf{x})) + \sum_{\mathbf{y} \in N(\mathbf{x})} \lambda(\mathbf{x}, \mathbf{y}) \cdot \rho(D_{t}(\mathbf{x}), D_{t}(\mathbf{y})) \right)$$

- Incorporate segmentation
 - Improve disparity values in textureless regions

м

Iterative Optimization

- Solve the energy
 - □ Using loopy belief propagation.

$$E(\hat{D}; \hat{I}) = \sum_{t=1}^{n} \left(E_d(D_t; \hat{I}, \hat{D} \backslash D_t) + E_s(D_t) \right)$$

- Process frames from 1 to n:
 - \Box For each frame t, fix disparities in other frames and refine D_t
- Repeat the above step for 2~3 passes.

Results

High-Quality Depth Recovery of Dynamic Scenes

 Traditional methods require quite a number of synchronized cameras

High-Quality Depth Recovery of Dynamic Scenes

- Our methods
 - □ Trinocular Cameras

or

□ Few Handheld Cameras

Consistent Depth Maps Recovery from a Trinocular Video Sequence

Consistent Depth Maps Recovery from a Trinocular Video Sequence Paper ID: 1055 Submitted to CVPR 2012

3D Reconstruction of Dynamic Scenes with Multiple Handheld Cameras

3D Reconstruction of Dynamic Scenes with Multiple Handheld Cameras

Paper ID: 607

Submitted to ECCV 2012

3D Reconstruction

Generate Point Samples from Depth Maps

3D Reconstruction

Reconstructing 3D Surfaces from Point Samples

Poisson Surface Reconstruction http://www.cs.jhu.edu/~misha/Code/PoissonRecon/

3D Reconstruction

Texture Mapping

More Result

More Result

Applications

- Motion Capture
- Video Editing
- Spatio-Temporal Segmentation
- Motion Retargeting

Applications

- Motion Capture
- Video Editing
- Spatio-Temporal Segmentation
- Motion Retargeting

Motion Capture

м

Applications

- Motion Capture
- Video Editing
- Spatio-Temporal Segmentation
- Motion Retargeting

Refilming with Depth-Inferred Videos

Re-filming with Depth-inferred Videos

More Results

More Results

Applications

- Motion Capture
- Video Editing
- Spatio-Temporal Segmentation
- Motion Retargeting

Spatio-Temporal Segmentation

Applications

- Motion Capture
- Video Editing
- Spatio-Temporal Segmentation
- Motion Retargeting

Motion Retargeting

Motion Imitation with a Handheld Camera

Conclusions

- Facilitate many applications
 - □ 3D modeling, augmented reality, video editing, video segmentation,...
 - □ Also may be applicable to other fields:
 - video compression, analysis, and understanding

Thank you!