Constantes do motor

A constante de tamanho do motor $(K_{\mathbf{M}})$ e constante de velocidade motora $(K_{\mathbf{v}})$, alternativamente chamada de constante <u>EMF traseira</u>) são valores usados para descrever características de motores elétricos.

Constante

 $K_{\mathbf{M}}$ é a constante do motor (à) (às vezes, constante de tamanho do motor). Em <u>unidades SI</u>, a constante do motor é expressa em <u>newton</u> metros por <u>watt</u> de raiz quadrada $(\mathbf{N} \cdot \mathbf{m}/\sqrt{\mathbf{W}})$:

$$K_{
m M}=rac{ au}{\sqrt{P}}$$

onde

- τ é o torque do motor (unidade SI: newton-metro)
- P é a perda de potência resistiva (unidade SI: watt)

A constante do motor é independente do enrolamento (desde que o mesmo material condutor seja usado para os fios); por exemplo, enrolar um motor com 6 voltas com 2 fios paralelos em vez de 12 voltas um único fio dobrará a constante de velocidade, K_{v} mas K_{M} permanece inalterado. K_{M} pode ser usado para selecionar o tamanho de um motor para usar em uma aplicação. K_{v} pode ser usado para selecionar o enrolamento a ser usado no motor.

Desde o torque au é atual $extbf{\emph{I}}$ multiplicado por $extbf{\emph{K}}_{ extbf{\emph{T}}}$ então $extbf{\emph{K}}_{ extbf{\emph{M}}}$ Fica

$$K_{\mathrm{M}} = rac{K_{\mathrm{T}}I}{\sqrt{P}} = rac{K_{\mathrm{T}}I}{\sqrt{I^{2}R}} = rac{K_{\mathrm{T}}}{\sqrt{R}}$$

onde

- I é a corrente (unidade SI, ampere)
- R é a resistência (unidade SI, ohm)
- K_T é a constante de torque do motor (unidade SI, newton-metro por ampère, N·m/A), veja abaixo

Se dois motores com o mesmo $K_{\mathbf{v}}$ e trabalho de torque em conjunto, com eixos rigidamente conectados, o $K_{\mathbf{v}}$ do sistema ainda é o mesmo supondo uma conexão elétrica paralela. O $K_{\mathbf{M}}$ do sistema combinado acrescido de $\sqrt{2}$, porque tanto o torque quanto as perdas dobram. Alternativamente, o sistema poderia funcionar com o mesmo torque de antes, com torque e corrente divididos igualmente entre os dois motores, o que reduz pela metade as perdas resistivas.

Unidades

A constante do motor pode ser fornecida em uma das várias unidades. A tabela abaixo fornece conversões entre unidades SI comuns

$k_t, rac{Nm}{A_{pk}}$	$k_t, rac{Nm}{A_{RMS}}$	$k_v, rac{V_{LL,pk}}{rac{rad}{s}}$	$k_v, rac{V_{LL,RMS}}{rac{rad}{s}}$	$k_v, rac{V_{LL,pk}}{rpm}$	$k_v, rac{V_{LL,RMS}}{rpm}$
1	$\sqrt{2}$	1	$\frac{1}{\sqrt{2}}$	$\frac{\pi}{30}$	$\frac{\pi}{30\sqrt{2}}$
$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\frac{\pi}{30\sqrt{2}}$	$\frac{\pi}{30}$
$\sqrt{2}$	2	$\sqrt{2}$	1	$\frac{\pi\sqrt{2}}{30}$	$\frac{\pi}{30}$
$\frac{30}{\pi}$	$\frac{30\sqrt{2}}{\pi}$	$\frac{30}{\pi}$	$\frac{30}{\pi\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$
$\frac{30\sqrt{2}}{\pi}$	$\frac{60}{\pi}$	$\frac{30\sqrt{2}}{\pi}$	$\frac{30}{\pi}$	$\sqrt{2}$	1

Constante de velocidade do motor, constante EMF traseira

 $K_{\mathbf{v}}$ é a velocidade do motor, ou velocidade do motor, [2] constante (não confundir com kV, o símbolo de *quilovolt*), medida em <u>rotações por</u> minuto (RPM) por volt ou radianos por volt segundo, rad/V·s: [3]

$$K_{
m v} = rac{\omega_{
m no ext{-load}}}{V_{
m peak}}$$

O K_v A classificação de um motor <u>sem escovas</u> é a razão entre a velocidade <u>de rotação</u> descarregada do motor (medida em RPM) e a tensão de pico (não RMS) nos fios conectados às <u>bobinas</u> (o <u>EMF traseiro</u>). Por exemplo, um motor descarregado de $K_v = 5.700$ rpm/V fornecido com 11,1 V funcionará a uma velocidade nominal de 63.270 rpm (= 5.700 rpm/V × 11,1 V).

O motor pode não atingir essa velocidade teórica porque há perdas mecânicas não lineares. Por outro lado, se o motor é acionado como um gerador, a tensão sem carga entre os terminais é perfeitamente proporcional ao RPM e fiel ao K_v do motor/gerador.

Os termos K_e , [2] K_b também são usados,[4] assim como os termos constante EMF de volta,[5][6] ou a constante elétrica genérica. [2] Em contraste com K_v o valor K_e é frequentemente expresso em unidades SI volt-segundos por radiano (V·s/rad), portanto, é uma medida inversa de K_v . [7] Por vezes, é expresso em unidades não SI volts por quilorrevolução por minuto (V/krpm). [8]

$$K_{
m e} = K_{
m b} = rac{V_{
m peak}}{\omega_{
m no-load}} = rac{1}{K_{
m v}}$$

O fluxo de campo também pode ser integrado na fórmula: [9]

$$K_{\omega} = rac{E_{
m b}}{\phi \omega}$$

onde $E_{\mathbf{b}}$ está de volta EMF, $K_{\boldsymbol{\omega}}$ é a constante, $\boldsymbol{\phi}$ é o fluxo, e $\boldsymbol{\omega}$ é a velocidade angular.

Pela lei de Lenz, um motor em funcionamento gera um back-EMF proporcional à velocidade. Uma vez que a velocidade de rotação do motor é tal que o back-EMF é igual à tensão da bateria (também chamada de tensão de linha DC), o motor atinge sua velocidade limite.

Constante de torque do motor

 $K_{\mathbf{T}}$ é o torque produzido dividido pela corrente de armadura. $\frac{[10]}{}$ Pode ser calculado a partir da constante de velocidade do motor $K_{\mathbf{v}}$.

$$K_{\mathrm{T}} = rac{ au}{I_{\mathrm{a}}} = rac{60}{2\pi K_{\mathrm{v(RPM)}}} = rac{1}{K_{\mathrm{v(SI)}}}$$

onde I_a é a corrente de <u>armadura</u> da máquina (unidade SI: <u>ampere</u>). K_T é usado principalmente para calcular a corrente de armadura para uma dada demanda de torque:

$$I_{
m a}=rac{ au}{K_{
m T}}$$

As unidades SI para a constante de torque são newton metros por ampere (N·m/A). Como 1 N·m = 1 J, e 1 A = 1 C/s, então 1 N·m/A = 1 J·s/C = 1 V·s (mesmas unidades da constante EMF posterior).

A relação entre K_T e $K_{\tt v}$ não é intuitivo, a ponto de muitas pessoas simplesmente afirmarem que torque e $K_{\tt v}$ não estão relacionados de forma alguma. Uma analogia com um hipotético motor linear pode ajudar a convencer que é verdade. Suponha que um motor linear tenha um $K_{\tt v}$ de 2 (m/s)/V, ou seja, o atuador linear gera um volt de back-EMF quando movido (ou acionado) a uma taxa de 2 m/s. Inversamente $s = VK_{\tt v}$ (s é a velocidade do motor linear, V é tensão).

The useful power of this linear motor is P = VI, P being the power, V the useful voltage (applied voltage minus back-EMF voltage), and I the current. But, since power is also equal to force multiplied by speed, the force F of the linear motor is $F = P/(VK_v)$ or $F = I/K_v$. The inverse relationship between force per unit current and K_v of a linear motor has been demonstrated.

To translate this model to a rotating motor, one can simply attribute an arbitrary diameter to the motor armature e.g. 2 m and assume for simplicity that all force is applied at the outer perimeter of the rotor, giving 1 m of leverage.

Now, supposing that $K_{\mathbf{v}}$ (angular speed per unit voltage) of the motor is 3600 rpm/V, it can be translated to "linear" by multiplying by 2π m (the perimeter of the rotor) and dividing by 60, since angular speed is per minute. This is linear $K_{\mathbf{v}} \approx 377 \, (\mathbf{m/s})/\mathbf{V}$.

Now, if this motor is fed with current of 2 A and assuming that back-EMF is exactly 2 V, it is rotating at 7200 rpm and the mechanical power is 4 W, and the force on rotor is $\frac{P}{V*K_{\mathbf{v}(\mathbf{SI})}} = \frac{4}{2*377}$ N or 0.0053 N. The torque on shaft is 0.0053 N·m at 2 A because of the assumed radius of the rotor (exactly 1 m). Assuming a different radius would change the linear $K_{\mathbf{v}}$ but would not change the final torque result. To check the result, remember that $P = \tau 2\pi \omega/60$.

So, a motor with $K_v = 3600 \text{ rpm/V} = 377 \text{ rad/V} \cdot \text{s}$ will generate 0.00265 N·m of torque per ampere of current, regardless of its size or other characteristics. This is exactly the value estimated by the K_T formula stated earlier.

EXAMPLE: Torque applied at different diameters, K_{v} (rpm/V) = 3600 $rpm/V \approx 377 \text{ rad/s/V}$, $K_{T} \approx 0.00265 \text{ N.m/A}$ (each calculation)

diameter = 2r	r = 0.5 m	r = 1 m	r = 2 m	Formula ($K_{ m v(rpm/V)}$)	Formula ($K_{ m v(rad/s/V)}$)
τ = motor torque (N.m/s)	0.005305 N·m	0.005305 N·m	0.005305 N·m	$\frac{30I}{\pi K_{ m v(rpm/V)}}$	$\frac{I}{K_{ m v(rad/s/V)}}$
linear K _▼ (m/s/V) @ diâmetro	188,5 (m/s)/V	377,0 (m/s)/V	754,0 (m/s)/V	$\frac{\pi r K_{\text{v(rpm/V)}}}{30}$	$ au K_{ m v(rad/s/V)}$
linear $K_{ m T}$ (N.m/A) @ diâmetro	0,005305 N·m/A	0,002653 N·m/A	0,001326 N·m/A	$\frac{30}{\pi r K_{\text{v(rpm/V)}}}$	$\frac{1}{rK_{\text{v(rad/s/V)}}}$
velocidade m/s @ diâmetro (velocidade linear)	377,0 m/s	754,0 m/s	1508,0 m/s	$rac{\pi r V K_{ m v(rpm/V)}}{30}$	$VrK_{ m v(zad/s/V)}$
velocidade km/h @ diâmetro (velocidade linear)	1357 km/h	2714 km/h	5429 km/h	$\frac{3\pi r V K_{\text{v(rpm/V)}}}{25}$	$3.6VrK_{ m v(rad/s/V)}$
torque (N.m) @ diâmetro (torque linear)	0,01061 N·m	0,005305 N·m	0,002653 N·m	$rac{30I}{\pi r K_{ ext{v(cpm/V)}}}$	$rac{I}{rK_{ m v(rad/s/V)}}$
taquigrafia	Meio diâmetro = meia velocidade * torque duplo	diâmetro total = velocidade máxima * torque total	diâmetro duplo = velocidade dupla * meio torque	$K_{ m v(rad/s/V)} = rac{2\pi K_{ m v(rpm/V)}}{60} K_{ m T(N.m/A)} = rac{60}{2\pi K_{ m v(rpm/V)}}$	$K_{ m v(rpm/V)} = rac{60 K_{ m v(rad/s/V)}}{2\pi} K_{ m T(N.m/A)} = rac{1}{K_{ m v(rad/s/V)}}$

Referências

- 1. "Cópia arquivada" (PDF). Arquivado do original (PDF) em 2021/04/13. Página visitada em 2014-01-04.
- 2. "Ficha Técnica do Motor Misterioso" (PDF), hades.mech.northwest.edu
- 3. "Motor sem escova Kv Constante Explicada LearningRC". 29 de julho de 2015.
- 4. "TERMINOLOGIA GERAL DE MOTORES" (PDF), www.smma.org
- 5. "Modelo de motor DC com características elétricas e de torque Simulink", www.mathworks.co.uk
- 6. "Technical Library > DC Motors Tutorials > Motor Calculations", www.micro-drives.com, arquivado do original em 2012-04-04
- 7. "Casa". www.precisionmicrodrives.com. Arquivado do original em 2014-10-28.
- 8. http://www.smma.org/pdf/SMMA_motor_glossary.pdf
- 9. "DC motor start and brake", iitd.vlab.co.in, arquivado do original em 2012-11-13
- 10. Entendendo as constantes de motor Kt e Kemf para comparar motores CC sem escova

Ligações externas

■ "Development of Electromotive Force" (PDF), biosystems.okstate.edu, arquivado do original (PDF) em 2010-06-04

 $Retrieved from \ "https://en.wikipedia.org/w/index.php?title=Motor_constants\&oldid=1160311652"$