#### Team ID:PNT2022TMID43114

# SMART WASTE MANAGEMENT SYSTEM FOR METROPOLITAN CITIES

#### **INTRODUCTION**

#### 1.1 Project Overview

Today big cities around the world are facing a common problem, managing the city waste effectively without making city unclean. Today's waste management systems involve a large number of employees being appointed to attend a certain number of dumpsters this is done every day periodically. This leads to a very inefficient and unclean system in which some dumpsters will be overflowing some dumpsters might not be even half full. This is caused by variation in population density in the city or some other random factor this makes it impossible to determine which part needs immediate attention. Here a waste management system is introduced in which each dumpster is embedded in a monitoring system that will notify the corresponding personal if the dumpster is full. In this system, it is also possible to separate wet and dry waste into two separate containers. This system provides an effective solution to the waste management problem

#### 1.2 Purpose

A waste management system is the strategy an organization uses to dispose, reduce, reuse, and prevent waste. Possible waste disposal methods are recycling, composting, incineration, landfills, bioremediation, waste to energy, and waste minimization.

#### LITERATURE SURVEY

#### 2.1 Existing Problem

Indiscriminate disposal of solid waste is a major issue in urban centers of most developing countries and it poses a serious threat to healthy living of the citizens. Access to reliable data on the state of solid waste at different locations within the city will help both the local authorities and the citizens to effectively manage the menace.

#### 2.2 Reference

- 1. Municipal Solid Waste Collection Problems: A Literature Review, Jeroen Beliën, Liesje De Boeck, Jonas Van Ackere
- 2. Nuortio, T., Kytojoki, J., Niska, H., Braysy, O.: Improved route planning and scheduling of waste collection and transport. Journal of Expert Systems with Applications 30(2), 223–232 (2006) CrossRef
- 3. Zamorano, M., Molero, E., Grindlay, A., Rondriquez, M.L., Hurtado, A., Calvo, and F.J.: A planning scenario for the application of geographical information systems in municipal Waste
- 4. sigrenEa. Connectivity for smart recycling.
- 5. <u>Moba corporation. Smart Waste Management with Sensor</u> Technology 4.0

#### 2.3 Problem Statement Definition

Depending on the fill level, the system sends appropriate notification message to alert relevant authorities and concerned citizen for necessary action. Also, the fill level is monitored on ThingSpeak in real-time. The system performance shows that the proposed solution may be found useful for efficient waste management in smart and connected communities.

#### **Customer Problem Statement:**



| Problem<br>Statement<br>(PS) | (Customer)           | I'm trying to                      | But                                                     | Because                   | Which<br>makes me<br>feel |
|------------------------------|----------------------|------------------------------------|---------------------------------------------------------|---------------------------|---------------------------|
| PS-1                         | Garbage<br>Collector | Collect<br>Overflowing bins        | Does not<br>know where<br>the nearest<br>bin to collect | The area is wide to visit | Depressed                 |
| PS-2                         | Garbage<br>collector | Know the<br>different bin<br>level | I have to<br>visit the<br>bins<br>directly              | The are is wide to visit  | Tired                     |

## **IDEATION & PROPOSED SOLUTION**

# 3.1 Empathy Map Canvas



## 3.2 Ideation & Brainstorming



## 3.3 Proposed Solution



#### 3.4 Problem Solution Fit

#### **Proposed Solution Template:**

Project team shall fill the following information in proposed solution template.

| S.No | Parameter                                | Description                                                                            |
|------|------------------------------------------|----------------------------------------------------------------------------------------|
| 1.   | Problem Statement (Problem to be solved) | Developing a smart bin to detect the bin<br>level                                      |
| 2.   | Idea / Solution description              | Using Dijkstra's algorithm to find the<br>nearest overflowing bin to be collected      |
| 3.   | Novelty / Uniqueness                     | Website with the map that shows bin level<br>along with its location                   |
| 4.   | Social Impact / Customer Satisfaction    | The bin can be picked up once it filled and<br>hence keep the environment clean        |
| 5.   | Business Model (Revenue Model)           | The Website showing different bin level<br>and notifying when it is full to get picked |
| 6.   | Scalability of the Solution              | Specific bin can be selected and details can<br>be viewed.                             |

# **REQUIREMENT ANALYSIS**

# **4.1 Functional Requirement**

#### **Functional Requirements:**

Following are the functional requirements of the proposed solution.

| FR NO. | Functional Requirement (Epic) | Sub Requirement (Story/Sub-Task)                                                                                                                                                                                            |
|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR-1   | Website                       | Visiting website to Taking sensor reading from the sensor circuit. Visiting website to check the locations of the Bin. Visiting website to check overflowing bin locations                                                  |
| FR-2   | Searching                     | The Administrator Should be able to access the system as an administrator, add bins, view the bin dashboard, view all the bins on the map, View the fill levels of bins in real time and their locations on the google map. |
| FR - 3 | Notifying                     | It sends an Message Alert to the garbage collector on duty when a bin is full.                                                                                                                                              |

# **4.2 Non-Functional Requirement**

#### Non - functional Requirements:

Following are the non – functional requirements of the proposed solution.

| FR NO.  | Non – functional<br>Requirement | Description                                                  |
|---------|---------------------------------|--------------------------------------------------------------|
| NFR - 1 | Usability                       | The UI should be simple enough for everyone to<br>understand |
| NFR - 2 | Security                        | The website must be secure enough to trust by the users      |
| NFR - 3 | Reliability                     | The UI should be able to withstand any errors in the data    |
| NFR - 4 | Performance                     | The live map for the bin in specified areas are shown        |
| NFR - 5 | Availability                    | The UI should respond to the users within 2 seconds          |
| NFR-6   | Scalability                     | Dijkstra's Algorithm is used to estimate the nearest path    |

## **PROJECT DESIGN**

## **5.1 Data Flow Diagrams**



# **5.2 Solution & Technical Requirement**

#### **User Stories:**

| User<br>Type         | Functional<br>Requirem<br>ent (Epic) | User<br>Story<br>Number | User Story/<br>Task                                                        | Acceptance<br>Criteria                                        | Priority | Release    |
|----------------------|--------------------------------------|-------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|----------|------------|
| Garbage<br>collector | Visit<br>website                     | USN - 1                 | As a user, I can visit website                                             | I can visit the website                                       | high     | Sprint - 1 |
|                      |                                      | USN - 2                 | As a user, I can<br>monitor the bin<br>level of different<br>bins          | I can get<br>notification of<br>overflowing bins              | high     | Sprint – 1 |
|                      | 5                                    | USN – 3                 | AS a user, I can<br>monitor the bin's<br>location                          | I can get location of bins                                    | high     | Sprint – 1 |
|                      |                                      | USN - 4                 | As a user, I can view the shortest path to the next bin.                   | I can see the<br>next nearest bin<br>to be picked.            | high     | Sprint - 2 |
| Municipal<br>officer | Visit<br>website                     | USN - 5                 | As a user, I can<br>monitor bin level<br>and location of<br>different bins | I can intimidate<br>garbage<br>collectors about<br>bin levels | high     | Sprint - 1 |

## **5.3 User Stories**

#### **Technical Architecture:**



## **PROJECT PLANNING & SCHEDULING**

# **6.1 Sprint Planning & Estimation**

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                                                                                                                                    | Story Points | Priority | Team<br>Members |
|----------|----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------|
| Sprint-1 | Login                            | USN-1                | As an Administrator, I need to give user id<br>and passoode forever workers over there in<br>municipality                                                                            | 10           | High     | Abinesh         |
| Sprint-1 | Login                            | USN-2                | As a Co-Admin, I'll control the waste level by<br>monitoring them via real time web portal. Once<br>the filling happens, I'll notify trash truck with<br>location of bin with bin ID |              | High     | Ganesh Kumar    |
| Sprint-2 | Dashboard                        | USN-3                | As a Truck Driver, I'll follow Co-Admin's<br>instruction to reach the filling bin in short roots<br>and save time                                                                    | 20           | Low      | Alexpandiyan    |
| Sprint-3 | Dashboard                        | USN-4                | As a Local Garbage Collector, I'll gather all the<br>waste from the garbage, load it onto a garbage<br>truck, and deliver it to Landfills                                            | 20           | Medium   | Barkavi         |
| Sprint-4 | Dashboard                        | USN-5                | As a Municipality officer, I'll make sure<br>everything is proceeding as planned and<br>without any problems                                                                         | 20           | High     | Abirami         |

# **6.2 Sprint Delivery Schedule**

Project Tracker, Velocity & Burndown Chart; (4 Marks)

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | (Planned)   | Story Points<br>Completed (as on<br>Planned End Date) | Sprint Release Date<br>(Actual) |
|----------|-----------------------|----------|-------------------|-------------|-------------------------------------------------------|---------------------------------|
| Spont-1  | 20                    | 6 Days   | 27 Oct 2022       | 02 Nov2022  | 20                                                    | 02 Nov 2022                     |
| Sprint-2 | 20                    | 6 Days   | 03 Nov 2022       | 08 Nov 2022 | 20                                                    | 08 Nov 2022                     |
| Sprint-3 | 20                    | 6 Days   | 08 Nov 2022       | 13 Nov 2022 | 20                                                    | 13 Nov 2022                     |
| Spirit-4 | 20                    | 6 Days   | 13 Nov 2022       | 18 Nov 2022 | 20                                                    | 18 Nov 2022                     |
|          |                       |          |                   |             |                                                       |                                 |
|          | - 31                  |          |                   |             |                                                       |                                 |
|          | - 2                   |          |                   |             |                                                       |                                 |
|          |                       |          | 1                 |             |                                                       |                                 |

Velocity:
Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint \, duration}{velocity} = \frac{20}{10} = 2$$

## **6.3 Report From JIRA**



## **CODING & SOLUTIONING**

#### **7.1 Feature 1**

import time

import sys

import ibmiotf.application

import ibmiotf.device

#provide your IBM Watson Device Credentials

Organization="80bbqy"

Device Type="cse2019"

deviceId="ganesh1601"

authMethod="token"

authToken="!8-vkyUJA+QxM-l+uf"

#Initialize GPIO

def myCommandCallback(cmd);

print("Command received:%s" %cmd.data['command'])

```
status=cmd.data['command']
if status=="lighton":
       print("led is on")
else
        print("led is off")
#print(cmd)
try:
        deviceOptions={"org": organization, "type":deviceType,"id":
device,"auth-method": authMethod, "auth-token": authToken}
deviceCli =ibmiotf.device.Client(deviceOptions)
#.....
Except Exception as e:
       Print("Caught exception connecting device: %s" %str(e))
       Sys.exit()
#Connect and send an datapoint "hello" with value "world" into the cloud as an event type "greeting" 10 times
deviceCli.connect()
while true:
       #Get sensor data from DHT11
       level=random.randint(0,100)
       weight=random.randint(0,100)
       data={'level':level,'weight':weight}
#print data
       Def myOnPublishCallback():
       Print("Published level=%sC"%level,"weight=%s%%"%weight,"to IBM Watson")
       Success=deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on publish=myOnPublishCallback)
       if not success:
               print("Not Connected to IoTF")
       time.sleep(1)
       deviceCli.commandCallback = myCommandCallback
```

#### 7.2 Feature 2

//pir pin

```
#include <WiFi.h>
                               // library for wifi #include
<PubSubClient.h>
                                   // library for MQTT
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 20, 4);
//----- credentials of IBM Accounts ------
#define ORG "80bbqy"
                              // IBM organisation id
#define DEVICE_TYPE "cse2019"
                                  // Device type mentioned in ibm watson iot platform
#define DEVICE_ID "ganesh1601"
                                 // Device ID mentioned in ibm watson iot platform
#define TOKEN "12345678"
                              // Token
//----- customise above values -----
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
                                                                   // server name
char publishTopic[] = "iot-2/evt/data/fmt/json";
                                                           // topic name and type of event perform and format in
which data to be send
char topic[] = "iot-2/cmd/led/fmt/String";
                                                        // cmd Represent type and command is test format of
strings
char authMethod[] = "use-token-auth";
                                                        // authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
                                                              //Client id
WiFiClient wifiClient;
                                             // creating instance for wificlient
PubSubClient client(server, 1883, wifiClient);
#define ECHO_PIN 12
#define TRIG_PIN 13
float dist;
void setup()
 Serial.begin(115200);
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(TRIG PIN, OUTPUT);
 pinMode(ECHO_PIN, INPUT);
```

```
pinMode(34, INPUT);
//ledpins
 pinMode(23, OUTPUT);
 pinMode(2, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(15, OUTPUT);
 lcd.init(); lcd.backlight();
 lcd.setCursor(1, 0);
 lcd.print("");
 wifiConnect();
 mqttConnect();
}
float readcmCM()
 digitalWrite(TRIG_PIN, LOW);
 delayMicroseconds(2);
 digitalWrite(TRIG_PIN, HIGH);
 delayMicroseconds(10);
 digitalWrite(TRIG_PIN, LOW);
 int duration = pulseIn(ECHO_PIN, HIGH);
 return duration * 0.034 / 2;
}
void loop()
{
lcd.clear();
publishData();
delay(500);
 if (!client.loop())
                                 // function call to connect to IBM
  mqttConnect();
 }
/* -----*/
void wifiConnect()
 Serial.print("Connecting to ");
 Serial.print("Wifi");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED)
 {
```

```
delay(500);
   Serial.print(".");
  }
 Serial.print("WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());
}
void mqttConnect()
  if (!client.connected())
   {
    Serial.print("Reconnecting MQTT client to ");
    Serial.println(server);
    while (!client.connect(clientId, authMethod, token))
      Serial.print(".");
      delay(500);
     }
    initManagedDevice();
    Serial.println();
   }
 }
void initManagedDevice()
 {
  if (client.subscribe(topic))
    Serial.println("IBM subscribe to cmd OK");
   }
 else
   {
    Serial.println("subscribe to cmd FAILED");
   }
 }
void publishData()
 float cm = readcmCM();
if(digitalRead(34))
                                     //pir motion detection
  Serial.println("Motion Detected");
 Serial.println("Lid Opened");
 digitalWrite(15, HIGH);
```

```
if(digitalRead(34)== true)
{
if(cm <= 60)
                                       //Bin level detection
{
 digitalWrite(2, HIGH);
 Serial.println("High Alert!!!,Trash bin is about to be full");
 Serial.println("Lid Closed");
 lcd.print("Full! Don't use");
 delay(2000);
 lcd.clear(); digitalWrite(4,
 LOW); digitalWrite(23,
 LOW);
else if(cm > 60 && cm < 120)
 digitalWrite(4, HIGH);
 Serial.println("Warning!!,Trash is about to cross 50% of bin level");
 digitalWrite(2, LOW);
 digitalWrite(23, LOW);
}
else if(cm > 120)
{
 digitalWrite(23, HIGH);
 Serial.println("Bin is available");
 digitalWrite(2,LOW); digitalWrite(4,
 LOW);
 delay(10000); Serial.println("Lid
 Closed");
}
else
 Serial.println("No motion detected");
 digitalWrite(2, LOW); digitalWrite(15,
 LOW); digitalWrite(4, LOW);
 digitalWrite(23, LOW);
}
}
```

```
digitalWrite(15, LOW);
  }
if(cm <= 60)
{
digitalWrite(21,HIGH);
String payload = "{\"High_Alert\":";
payload += cm;
payload += " }"; Serial.print("\n");
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str()))
                                                             // if data is uploaded to cloud successfully, prints publish ok
else prints publish failed
{
Serial.println("Publish OK");
}
}
else if(cm <= 120)
{
digitalWrite(22,HIGH);
String payload = "{\"Warning\":";
payload += cm;
payload += " }";
Serial.print("\n");
Serial.print("Sending payload: ");
Serial.println(payload);
if(client.publish(publishTopic, (char*) payload.c_str()))
{
Serial.println("Publish OK");
}
else
{
Serial.println("Publish FAILED");
}
}
else
Serial.println();
```

else

```
}
float inches = (cm / 2.54);
                                                //print on lcd
 lcd.setCursor(0,0);
 lcd.print("Inches");
 lcd.setCursor(4,0);
 lcd.setCursor(12,0);
 lcd.print("cm");
 lcd.setCursor(1,1);
 lcd.print(inches, 1);
 lcd.setCursor(11,1);
 lcd.print(cm, 1);
 lcd.setCursor(14,1);
 delay(1000);
 lcd.clear();
}
```

# 8. Testing

## 8.1 Test cases:

| Date                       |                      |                                 |                                      | 18-Nov-22                                                                                                              |                   |                                               |                        |             |                                                                                    |                |  |
|----------------------------|----------------------|---------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------|------------------------|-------------|------------------------------------------------------------------------------------|----------------|--|
|                            | Team ID              |                                 |                                      |                                                                                                                        | PNT2022TMID43114  |                                               |                        |             |                                                                                    |                |  |
|                            | Project Na           | ame                             |                                      |                                                                                                                        | Smart Wast        | e Management Syste                            | m for Metropolit       | an Cities · | -IOT                                                                               |                |  |
|                            | Maximum M            | larks                           |                                      |                                                                                                                        |                   | 4 mar                                         | ks                     |             |                                                                                    |                |  |
| Feature Type-<br>Bin Level | Componen<br>t        | Test Case<br>Scenario           | Pre-Requisite                        | Availability                                                                                                           | Test<br>Condition | Expected<br>Result                            | Actual<br>Result       | Statu<br>s  | Comments                                                                           | Accessed<br>By |  |
| Empty                      | Ultrasonic<br>Sensor | When Bin is empty               | Ultrasoncic sensor<br>, Garbage Bins | Bin is accessible to users                                                                                             | Bin Level == 0    | Displays Bin level<br>and space left          | Working as<br>expected | Pass        |                                                                                    | User           |  |
| Accessible                 | Ultrasonic<br>Sensor | When bin level is<br>below 50 % | Ultrasoncic sensor<br>, Garbage Bins | Bin is accessible to users                                                                                             | Bin Level < 50    | Displays Bin level<br>and space left          | Working as<br>expected | Pass        |                                                                                    | User           |  |
| Accessible                 | Ultrasonic<br>Sensor | When bin level is<br>above 50   | Ultrasoncic sensor<br>, Garbage Bins | Bin is accessible to users and the admin gets warning about the bin leuel Bin is accessible to                         | Bin Level > 50    | Displays Bin level<br>and space left          | Working as<br>expected | Pass        |                                                                                    | User           |  |
| Accessible                 | Ultrasonic<br>Sensor | When bin level is<br>below 75 % | Ultrasoncic sensor<br>, Garbage Bins | Bin is accessible to users and the admin gets warning about                                                            | Bin Level < 75    | Displays Bin level<br>and space left          | Working as<br>expected | Pass        |                                                                                    | User           |  |
| Limit exceeded             | Ultrasonic<br>Sensor | When bin level is above 75 %    | Ultrasoncic sensor<br>, Garbage Bins | Bin is not accessible<br>to the users, the<br>admin recieves High<br>alert and seals the the<br>bin to avoid overflow. | Bin Level > 75    | Displays Bin is<br>FULL and Seals<br>the bin. | Working as<br>expected | Pass        | The system<br>starts to sense<br>the level once<br>the Bin is<br>emptied partially | User/Admin     |  |

# **8.2 User Acceptance Testing:**

| Resolution     | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Subtota |
|----------------|------------|------------|------------|------------|---------|
| By Design      | 10         | 4          | 3          | 3          | 20      |
| Duplicate      | 1          | 0          | 3          | 0          | 4       |
| External       | 2          | 3          | 0          | 1          | 6       |
| Fixed          | 11         | 2          | 4          | 20         | 37      |
| Not Reproduced | 0          | 0          | 1          | 0          | 1       |
| Skipped        | 0          | 0          | 1          | 1          | 2       |
| Won't Fix      | 0          | 5          | 2          | 1          | 8       |
| Totals         | 24         | 14         | 13         | 26         | 78      |

## 9.Result:

## 9.1 Performance metrics:

| Section             | Total Cases | Not Tested | Fail | Pass |
|---------------------|-------------|------------|------|------|
| Print Engine        | 7           | 0          | 0    | 7    |
| Client Application  | 51          | 0          | 0    | 51   |
| Security            | 2           | 0          | 0    | 2    |
| Outsource Shipping  | 3           | 0          | 0    | 3    |
| Exception Reporting | 9           | 0          | 0    | 9    |
| Final Report Output | 4           | 0          | 0    | 4    |
| Version Control     | 2           | 0          | 0    | 2    |

# 10. Advantages and disadvantages:

# 10.1 Advantages

- > Improve Productivity and Performance.
- ➤ Increase Profitability.
- ➤ Boost Sustainability.
- > Superior Customer Engagement.
- Become a Smart City.
- > Enhance Safety.

# 10.2 Disadvantages

- ➤ Process is not always cost-effective
- > The resultant Product has a short life
- ➤ Need More Global Buy-in
- ➤ The site are often dangerous

#### 11.Conclusion

In the system advocated above, the fusion of sensors, identification technology, and internet connectivity will lead to a uniquely smart disposal trash bin. Together with the cloud, these trash bins would become irreplaceable elements in the waste management cycle where the collection, transportation, storage, and recycling of waste could be automated. The use of RFID technology in waste collection services not only increases the efficiency of waste management through automation but also increases environmental responsibility which is one of the pillars of the Smart City.

## 12.Future Scope

Total of approximately 143,449 MT of municipal waste is generated daily. However, only 35,062 tons of waste is treated. A report from MNRE says that waste generation is expected to reach. Under the business-as-usual scenario, the amount of E-Waste will be more than doubled by 2050; "The complicated nature of production, use, and disposal of electronics require significant changes in order for the processes to become sustainable".

Putting efforts into optimising collection, processing and treatment of recyclables and waste is not enough; we need to reach out to the production sector and help them create products that are optimally recyclable to the highest possible extent once consumers decide to generate their end-of-life products as waste.

## 13.Appendix

#### 13.1. GitHub Account Link:

https://github.com/IBM-EPBL/IBM-Project-37921-1660364834

## 13.2 Project Demo Link:

https://drive.google.com/file/d/1VxL0FVF5wKa5zprFjk1PA9-nKAXIgzyI/view?usp=sharing