#### Seri bahan kuliah Algeo #7

# Aplikasi Metode Eliminasi Gauss di dalam Metode Numerik

Bahan Kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

# Apa itu Metode Numerik?

- Numerik: berhubungan dengan angka
- Metode: cara yang sistematis untuk menyelesaikan persoalan guna mencapai tujuan yang ditentukan

 Metode numerik: cara sistematis untuk menyelesaikan persoalan matematika dengan operasi angka (+, -, \*, /)

- Cara penyelesaian persoalan matematika ada dua:
  - 1. Secara analitik → solusinya eksak (tepat)
  - 2. Secara numeric  $\rightarrow$  solusinya hampiran (aproksimasi)
- Secara analitik: menggunakan rumus dan teorema yang sudah baku di dalam matematika → metode analitik

 Secara numerik: menggunakan pendekatan aproksimasi untuk mencari solusi hanya dengan operasi aritmetika biasa → metode numerik. • Contoh: Menghitung integral  $\int_{-1}^{1} (4-x^2) dx$ 

#### Metode analitik:

Rumus: 
$$\int ax^n dx = \frac{1}{n+1} ax^{n+1} + C$$

$$\int_{-1}^{1} (4 - x^2) dx = \left[ 4x - \frac{1}{3} x^3 \right]_{x = -1}^{x = 1}$$
$$= \left[ 4(1) - \frac{1}{3} (1) \right] - \left[ 4(-1) - \frac{1}{3} (-1) \right] = 22/3 = 7.33$$

#### Metode numerik

Nilai integral = luas daerah di bawah kurva



$$\int_{-1}^{1} (4-x^2) dx \approx p + q + r + s \approx \{ [f(-1) + f(-1/2)] \times 0.5/2 \} + \{ [f(-1/2) + f(0)] \times 0.5/2 \} + \{ [f(0) + f(1/2)] \times 0.5/2 \} + \{ [f(1/2) + f(1)] \times 0.5/2 \}$$

$$\approx 0.5/2 \{ f(-1) + 2f(-1/2) + 2f(0) + 2f(1/2) + f(1) \}$$

$$\approx 0.5/2 \{ 3 + 7.5 + 8 + 7.5 + 3 \}$$

$$\approx 7.25$$

- Solusi dengan metode numerik adalah solusi hampiran (aproksimasi)
- Hampiran terhadap solusi eksak
- Oleh karena itu, solusi numerik mengandung galat.
- Galat ( $\varepsilon$ ): perbedaan antara solusi eksak dengan solusi hampiran.
- Definisi:  $\varepsilon = a \hat{a}$
- Salah satu sumber galat adalah galat pembulatan (rounding error).

# Interpolasi

**Persoalan**: Diberikan n+1 buah titik berbeda,  $(x_0, y_0)$ ,  $(x_1, y_1)$ , ...,  $(x_n, y_n)$ . Tentukan polinom  $p_n(x)$  yang melalui semua titik-titik tersebut sedemikian sehingga

$$y_i = p_n(x_i)$$
 untuk  $i = 0, 1, 2, ..., n$ 

Setelah polinom interpolasi  $p_n(x)$  ditemukan,  $p_n(x)$  dapat digunakan untuk menghitung perkiraan nilai y di x = a, yaitu  $y = p_n(a)$ .



### **Contoh persoalan interpolasi:**

Sebuah pengukuran fisika telah dilakukan untuk menentukan hubungan antara tegangan yang diberikan kepada baja tahan-karat dan waktu yang diperlukan hingga baja tersebut patah. Delapan nilai tegangan yang berbeda dicobakan, dan data yang dihasilkan adalah [CHA91]:

| Tegangan yang diterapkan, x, kg/mm² | 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
|-------------------------------------|----|----|----|----|----|----|----|----|
| Waktu patah, y, jam                 | 40 | 30 | 25 | 40 | 18 | 20 | 22 | 15 |

Persoalan: Berapa waktu patah y jika tegangan x yang diberikan kepada baja adalah 12 kg/mm<sup>2</sup>.

• Polinom interpolasi derajat n yang melalui titik-titik  $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$  adalah

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$



#### 1. Interpolasi Linier

- Interpolasi linier adalah interpolasi dua buah titik dengan sebuah garis lurus.
- Misal diberikan dua buah titik,  $(x_0, y_0)$  dan  $(x_1, y_1)$ . Polinom yang menginterpolasi kedua titik itu adalah

$$p_1(x) = a_0 + a_1 x$$



$$y_0 = a_0 + a_1 x_0$$
  
 $y_1 = a_0 + a_1 x_1$ 

Pecahkan SPL ini dengan metode eliminasi Gauss untuk memperoleh nilai a<sub>0</sub> dan a<sub>1</sub>

## 2. Interpolasi Kuadratik

- Misal diberikan tiga buah titik data,  $(x_0, y_0)$ ,  $(x_1, y_1)$ , dan  $(x_2, y_2)$ .
- Polinom yang menginterpolasi ketiga buah titik itu adalah polinom kuadrat yang berbentuk:

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

• Bila digambar, kurva polinom kuadrat berbentuk parabola



- Polinom  $p_2(x)$  ditentukan dengan cara berikut:
  - 1) Sulihkan  $(x_i, y_i)$  ke dalam persamaan  $p_2(x)$ , i = 0, 1, 2. Dari sini diperoleh tiga buah persamaan dengan tiga buah parameter yang tidak diketahui, yaitu  $a_0$ ,  $a_1$ , dan  $a_2$ :

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

$$a_0 + a_1 x_0 + a_2 x_0^2 = y_0$$

$$a_0 + a_1 x_1 + a_2 x_1^2 = y_1$$

$$a_0 + a_1 x_2 + a_2 x_2^2 = y_2$$

2) hitung  $a_0$ ,  $a_1$ ,  $a_2$  dari sistem persamaan tersebut dengan metode eliminasi Gauss.

**Contoh**: Diberikan titik (8.0, 2.0794), (9.0, 2.1972), dan (9.5, 2.2513). Tentukan polinom interpolasi kuadratik dan estimasi nilai fungsi di x = 9.2.

#### Penyelesaian:

Sisten persamaan lanjar yang terbentuk adalah

$$a_0 + 8.0a_1 + 64.00a_2 = 2.0794$$

$$a_0 + 9.0a_1 + 81.00a_2 = 2.1972$$

$$a_0 + 9.5a_1 + 90.25a_2 = 2.2513$$

Penyelesaian sistem persamaan dengan metode eliminasi Gauss menghasilkan

$$a_0 = 0.6762$$
,  $a_1 = 0.2266$ , dan  $a_3 = -0.0064$ .

Polinom kuadratnya adalah

$$p_2(x) = 0.6762 + 0.2266x - 0.0064x^2$$

sehingga

$$p_2(9.2) = 2.2192$$

## 3. Interpolasi Kubik

- Misal diberikan empat buah titik data,  $(x_0, y_0)$ ,  $(x_1, y_1)$ ,  $(x_2, y_2)$ , dan  $(x_3, y_3)$ .
- Polinom yang menginterpolasi keempat buah titik itu adalah polinom kubik yang berbentuk:

$$p_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$



- Polinom  $p_3(x)$  ditentukan dengan cara berikut:
  - 1) sulihkan  $(x_i, y_i)$  ke dalam persamaan (P.5.9), i = 0, 1, 2, 3. Dari sini diperoleh empat buah persamaan dengan empat buah parameter yang tidak diketahui, yaitu  $a_0$ ,  $a_1$ ,  $a_2$ , dan  $a_3$ :

$$a_0 + a_1 x_0 + a_2 x_0^2 + a_3 x_0^3 = y_0$$

$$a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 = y_1$$

$$a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3 = y_2$$

$$a_0 + a_1 x_3 + a_2 x_3^2 + a_3 x_3^3 = y_3$$

2) hitung  $a_0$ ,  $a_1$ ,  $a_2$ , dan  $a_3$  dari sistem persamaan tersebut dengan metode eliminasi Gauss.

 Dengan cara yang sama kita dapat membuat polinom interpolasi berderajat n untuk n yang lebih tinggi:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

asalkan tersedia (n+1) buah titik data.

• Dengan menyulihkan  $(x_i, y_i)$  ke dalam persamaan polinom di atas  $y = p_n(x)$  untuk i = 0, 1, 2, ..., n, akan diperoleh n + 1 buah persamaan lanjar dalam  $a_0, a_1, a_2, ..., a_n$ ,

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n} = y_{0}$$

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n} = y_{1}$$

$$a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n}x_{2}^{n} = y_{2}$$

$$\dots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n} = y_{n}$$

 Solusi sistem persamaan lanjar ini diperoleh dengan menggunakan metode eliminasi Gauss yang sudah anda pelajari.