Team Contest Reference

Hello KITty Karlsruhe Institute of Technology

26. November 2017

1 Datenstrukturen

1.1 Union-Find

```
1 // Laufzeit: O(n*alpha(n))
2 // "height" ist obere Schranke für die Höhe der Bäume. Sobald
3 // Pfadkompression angewendet wurde, ist die genaue Höhe nicht mehr
4 // effizient berechenbar.
5 vector<int> parent; // Initialisiere mit Index im Array.
  vector<int> height; // Initialisiere mit 0.
  int findSet(int n) { // Pfadkompression
    if (parent[n] != n) parent[n] = findSet(parent[n]);
    return parent[n];
11 }
  void linkSets(int a, int b) { // Union by rank.
    if (height[a] < height[b]) parent[a] = b;</pre>
    else if (height[b] < height[a]) parent[b] = a;</pre>
16
17
      parent[a] = b;
18
      height[b]++;
19 }}
  void unionSets(int a, int b) { // Diese Funktion aufrufen.
   if (findSet(a) != findSet(b)) linkSets(findSet(a), findSet(b));
```

1.2 Segmentbaum

```
1 // Laufzeit: init: O(n), query: O(log n), update: O(log n)
  // Berechnet das Maximum im Array.
3 int a[MAX_N], m[4 * MAX_N];
5 int query(int x, int y, int k = 0, int X = 0, int Y = MAX_N - 1) {
   if (x <= X && Y <= y) return m[k];
    if (y < X || Y < x) return -INF; // Ein "neutrales" Element.</pre>
    int M = (X + Y) / 2;
    return max(query(x, y, 2*k+1, X, M), query(x, y, 2*k+2, M+1, Y));
10
11
  void update(int i, int v, int k = 0, int X = 0, int Y = MAX_N - 1) {
   if (i < X || Y < i) return;
   if (X == Y) { m[k] = v; a[i] = v; return; }
   int M = (X + Y) / 2;
    update(i, v, 2 * k + 1, X, M);
17
    update(i, v, 2 * k + 2, M + 1, Y);
    m[k] = max(m[2 * k + 1], m[2 * k + 2]);
19
21 void init(int k = 0, int X = 0, int Y = MAX_N - 1) {
22 if (X == Y) { m[k] = a[X]; return; }
```

1.3 2D-Segmentbaum

```
1 // 1-indiziert. Array t: [4*n][4*m]. Nur die _x-Varianten aufrufen.
2 // Laufzeit: build: O(n*m), update, sum: O(log(n)*log(m))
3 void build_y(int vx, int lx, int rx, int vy, int ly, int ry) {
    if (lv == rv) {
      if (lx == rx)vt[vx][vy] = a[lx][ly];
       else t[vx][vy] = t[vx*2][vy] + t[vx*2+1][vy];
    } else {
      int my = (ly + ry) / 2;
      build_v(vx, lx, rx, vy*2, ly, my);
      build_y(vx, lx, rx, vy*2+1, my+1, ry);
11
      t[vx][vy] = t[vx][vy*2] + t[vx][vy*2+1];
12 }}
13
14 void build_x(int vx = 1, int 1x = 0, int rx = N-1) {
   if (lx != rx) {
      int mx = (lx + rx) / 2;
17
      build x(vx*2. lx. mx):
18
      build x(vx*2+1. mx+1. rx):
19
20
    build_y(vx, lx, rx, 1, 0, m-1);
21 }
23 int sum_y(int vx, int vy, int tly, int try_, int ly, int ry) {
   if (lv > rv) return 0:
   if (ly == tly && try_ == ry) return t[vx][vy];
   int tmy = (tly + try_) / 2;
    return sum_y(vx, vy*2, tly, tmy, ly, min(ry,tmy))
28
      + sum_y(vx, vy*2+1, tmy+1, try_, max(ly,tmy+1), ry);
29 }
30
31 int sum_x(int vx=1, int tlx=0, int trx=n-1, int lx, int rx, int ly, int ry) {
    if (lx > rx) return 0;
    if (lx == tlx && trx == rx) return sum_y(vx, 1, 0, m-1, ly, ry);
    int tmx = (tlx + trx) / 2;
    return sum_x(vx*2, tlx, tmx, lx, min(rx,tmx), ly, ry)
36
      + sum_x(vx*2+1, tmx+1, trx, max(lx,tmx+1), rx, ly, ry);
37 }
39 void update_v(int vx, int lx, int rx, int vy, int ly, int ry,
      int x, int y, int new_val) {
41
    if (ly == ry) {
42
      if (lx == rx) t[vx][vy] = new_val;
      else t[vx][vy] = t[vx*2][vy] + t[vx*2+1][vy];
```

```
} else {
45
      int my = (ly + ry) / 2;
      if (y <= my) update_y(vx, lx, rx, vy*2, ly, my, x, y, new_val);</pre>
47
      else update_y(vx, lx, rx, vy*2+1, my+1, ry, x, y, new_val);
       t[vx][vy] = t[vx][vy*2] + t[vx][vy*2+1];
49 }}
50
51
  void update_x(int vx=1, int lx=0, int rx=n-1, int x, int y, int new_val) {
    if (lx != rx) {
53
      int mx = (lx + rx) / 2;
      if (x <= mx) update_x(vx*2, lx, mx, x, y, new_val);</pre>
55
      else update_x(vx*2+1, mx+1, rx, x, y, new_val);
56
57
    update_y(vx, lx, rx, 1, 0, m-1, x, y, new_val);
```

1.4 Fenwick Tree

```
1 vector<int> FT; // Fenwick-Tree
2 int n:
3
4 // Addiert val zum Element an Index i. O(log(n)).
5 void updateFT(int i, int val) {
   i++; while(i <= n) { FT[i] += val; i += (i & (-i)); }
7 }
   // Baut Baum auf. O(n*log(n)).
10 void buildFenwickTree(vector<int>& a) {
11 n = a.size():
12 FT.assign(n+1,0);
13
   for(int i = 0; i < n; i++) updateFT(i,a[i]);</pre>
14 }
15
16 // Präfix-Summe über das Intervall [0..i]. O(log(n)).
17 int prefix_sum(int i) {
   int sum = 0; i++;
    while(i > 0) { sum += FT[i]; i -= (i & (-i)); }
20
   return sum;
21 }
```

```
const int n = 10000; // ALL INDICES START AT 1 WITH THIS CODE!!

// mode 1: update indices, read prefixes
void update_idx(int tree[], int i, int val) { // v[i] += val
for (; i <= n; i += i & -i) tree[i] += val;
}

int read_prefix(int tree[], int i) { // get sum v[1..i]
    int sum = 0;
    for (; i > 0; i -= i & -i) sum += tree[i];
    return sum;
}

int kth(int k) { // find kth element in tree (1-based index)
    int ans = 0;
    for (int i = maxl; i >= 0; --i) // maxl = largest i s.t. (1<<i) <= n
    if (ans + (1<<i) <= n && tree[ans + (1<<i)] < k) {
        ans += 1<<i;
}</pre>
```

```
k -= tree[ans];
18
19
    return ans+1;
20 }
21
22 // mode 2: update prefixes, read indices
23 void update_prefix(int tree[], int i, int val) { // v[1..i] += val
   for (; i > 0; i -= i & -i) tree[i] += val;
26 int read_idx(int tree[], int i) { // get v[i]
   int sum = 0:
   for (; i <= n; i += i & -i) sum += tree[i];</pre>
   return sum:
30 }
32 // mode 3: range-update range-query
33 const int maxn = 100100:
34 int n:
35 11 mul[maxn]. add[maxn]:
37 void update_idx(ll tree[], int x, ll val) {
   for (int i = x; i <= n; i += i & -i) tree[i] += val;</pre>
40 void update_prefix(int x, ll val) { // v[x] += val
41 update_idx(mul, 1, val);
    update_idx(mul, x + 1, -val);
    update_idx(add, x + 1, x * val);
44 }
45 | ll read_prefix(int x) { // get sum v[1..x]
46 | 11 a = 0, b = 0;
   for (int i = x; i > 0; i -= i \& -i) a += mul[i], b += add[i];
   return a * x + b;
49 }
50 void update_range(int 1, int r, 11 val) { // v[1..r] += val
    update prefix(l - 1. -val):
    update prefix(r. val):
53 }
54 | 11 read range(int 1. int r) \{ // \text{ get sum } v[1..r] \}
   return read_prefix(r) - read_prefix(l - 1);
56 }
```

1.5 Sparse Table

```
1 struct SparseTable {
    int st[MAX_N][MAX_LOG + 1], log[MAX_N + 1]; // Achtung: 2^MAX_LOG > MAX_N
    vector<int> *a;
    // Funktion muss idempotent sein! Hier Minimum.
    bool better(int lidx, int ridx) { return a->at(lidx) <= a->at(ridx); }
    void init(vector<int> *vec) {
10
      for (int i = 0; i < (int)a -> size(); i++) st[i][0] = i;
11
       for (int j = 1; j <= MAX_LOG; j++) {</pre>
12
        for (int i = 0; i + (1 << j) <= (int)a->size(); i++) {
13
          st[i][j] = better(st[i][j-1], st[i+(1 << (j-1))][j-1])
14
               ? st[i][j-1] : st[i+(1 << (j-1))][j-1];
```

```
}}
16
17
18
       for (int i = 2; i <= MAX_N; i++) log[i] = log[i/2] + 1;</pre>
19
20
     // Gibt Index des Ergebnisses in [l,r]. Laufzeit: 0(1)
22
     int queryIdempotent(int 1, int r) {
      int i = \log[r - l + 1];
23
24
      return better(st[l][j], st[r - (1 << j) + 1][j])</pre>
25
           ? st[1][j] : st[r - (1 << j) + 1][j];
26
27 | };
```

1.6 STL-Tree

1.7 STL-Rope (Implicit Cartesian Tree)

```
#include <ext/rope>
using namespace __gnu_cxx;
rope<int> v; // Wie normaler Container.

v.push_back(num); // 0(log(n))
rope<int> sub = v.substr(start, length); // 0(log(n))
v.erase(start, length); // 0(log(n))
v.insert(v.mutable_begin() + offset, sub); // 0(log(n))
for(auto it = v.mutable_begin(); it != v.mutable_end(); it++) {...}
```

1.8 Treap (Cartesian Tree)

```
1 struct item {
2    int key, prior;
3    item *1, *r;
4    item() {}
5    item(int key, int prior) : key(key), prior(prior), l(NULL), r(NULL) {}
6    };
7    void split(item *t, int key, item *l, item *r) {
9     if (!t) l = r = NULL;
10    else if (key < t->key) split(t->l, key, l, t->l), r = t;
11    else split(t->r, key, t->r, r), l = t;
12 }
```

```
14 void insert(item *t, item *it) {
15 if (!t) t = it;
    else if (it->prior > t->prior) split(t, it->key, it->l, it->r), t = it;
    else insert(it->key < t->key ? t->l : t->r, it);
18 }
19
20 void merge(item *t, item *l, item *r) {
21 if (!1 || !r) t = 1 ? 1 : r:
    else if (1-\text{prior} > r-\text{prior}) merge(1-\text{prior}, 1-\text{prior}), t = 1;
    else merge(r->1, 1, r->1), t = r;
24 }
25
26 void erase(item *t, int key) {
    if (t->key == key) merge (t, t->l, t->r);
     else erase(key < t->key ? t->l : t->r, key);
29 }
30
31 | item *unite(item *l. item *r) {
   if (!l || !r) return l ? l : r;
    if (l->prior < r->prior) swap(l, r);
    item * lt, rt;
    split(r, l->key, lt, rt);
   1->1 = unite(1->1, lt);
   1->r = unite(1->r, rt);
38
    return 1;
39 }
```

1.9 Skew Heap

```
1 // Skew Heap, verschmelzbare Priority Oueue.
2 // Laufzeit: Merging, Inserting, DeleteMin: O(log(n)) amortisiert
3 struct node{
   int key;
    node *lc, *rc;
    node(int k) : key(k), lc(0), rc(0) {}
7 \mid \} *root = 0;
8 \mid int \text{ size} = 0:
10 node* merge(node *x, node *y) {
11 if (!x) return v:
   if (!y) return x;
    if (x->key > y->key) swap(x,y);
    x->rc = merge(x->rc, y);
    swap(x->lc, x->rc);
15
16
    return x;
17 }
18
19 void insert(int x) { root = merge(root, new node(x)); size++; }
21 int delmin() {
   if (!root) return -1;
    int ret = root->key;
    node *troot = merge(root->lc, root->rc);
25
     delete root;
26
     root = troot;
     size--:
```

```
28 return ret;
29 }
```

2 Graphen

2.1 Kürzeste Wege

```
// Laufzeit: 0((|E|+|V|)*log |V|)
  void dijkstra(int start) {
     priority_queue<ii, vector<ii>, greater<ii> > pq;
     vector<int> dist(NUM_VERTICES, INF), parent(NUM_VERTICES, -1);
     dist[start] = 0; pq.push(ii(0, start));
     while (!pq.empty()) {
      ii front = pq.top(); pq.pop();
      int curNode = front.second, curDist = front.first;
      if (curDist > dist[curNode]) continue; // WICHTIG!
11
12
       for (auto n : adjlist[curNode]) {
13
         int nextNode = n.first, nextDist = curDist + n.second;
14
         if (nextDist < dist[nextNode]) {</pre>
15
           dist[nextNode] = nextDist; parent[nextNode] = curNode;
16
           pq.push(ii(nextDist, nextNode));
17 | }}}
```

```
// Laufzeit: 0(|V|*|E|)
2 vector<edge> edges; // Kanten einfügen!
  vector<int> dist, parent;
   void bellmannFord() {
    dist.assign(NUM_VERTICES, INF); dist[0] = 0;
    parent.assign(NUM_VERTICES, -1);
    for (int i = 0; i < NUM_VERTICES - 1; i++) {</pre>
       for (auto &e : edges) {
10
         if (dist[e.from] + e.cost < dist[e.to]) {</pre>
11
           dist[e.to] = dist[e.from] + e.cost;
12
           parent[e.to] = e.from;
13
    }}}
15
    // "dist" und "parent" sind korrekte kürzeste Pfade.
    // Folgende Zeilen prüfen nur negative Kreise.
17
    for (auto &e : edges) {
18
      if (dist[e.from] + e.cost < dist[e.to]) {</pre>
19
         // Negativer Kreis gefunden.
20 | }}}
```

Floyd Warshall:

- Nur negative Werte sollten die Nullen bei Schlingen überschreiben.
- Von parallelen Kanten sollte nur die günstigste gespeichert werden.
- i liegt genau dann auf einem negativen Kreis, wenn dist[i][i] < 0 ist.
- Wenn für c gilt, dass dist[u][c] != INF && dist[c][v] != INF && dist[c][c] < 0, wird der u-v-Pfad beliebig kurz.

2.2 Strongly Connected Components (Tarjans-Algorithmus)

```
1 // Laufzeit: 0(|V|+|E|)
```

```
2 int counter, sccCounter;
3 vector<bool> visited, inStack;
4 | vector < vector < int > > adjlist;
5 vector<int> d, low, sccs; // sccs enthält den Index der SCC pro Knoten.
 6 stack<int> s;
 8 void visit(int v) {
    visited[v] = true;
     d[v] = low[v] = counter++;
     s.push(v); inStack[v] = true;
     for (auto u : adjlist[v]) {
14
      if (!visited[u]) {
15
         visit(u);
16
         low[v] = min(low[v], low[u]);
17
      } else if (inStack[u]) {
18
         low[v] = min(low[v], low[u]);
19
    }}
20
21
     if (d[v] == low[v]) {
22
       int u:
23
       do {
24
         u = s.top(); s.pop(); inStack[u] = false;
25
         sccs[u] = sccCounter;
26
       } while (u != v);
27
       sccCounter++;
28 | } }
29
30 void scc() {
    visited.assign(adjlist.size(), false);
    d.assign(adjlist.size(), -1);
    low.assign(adjlist.size(), -1);
    inStack.assign(adjlist.size(), false);
     sccs.resize(adjlist.size(), -1);
     counter = sccCounter = 0:
    for (int i = 0; i < (int)adjlist.size(); i++) {</pre>
      if (!visited[i]) {
40
         visit(i);
41 | } } }
```

2.3 Artikulationspunkte und Brücken

```
1 // Laufzeit: 0(|V|+|E|)
2 | vector < vector < int >> adilist;
3 vector<bool> isArt;
 4 vector<int> d, low;
5 int counter, root, rootCount; // rootCount >= 2 <=> root Artikulationspunkt
  vector<ii> bridges; // Nur fuer Brücken.
   void dfs(int v, int parent = -1) {
     d[v] = low[v] = ++counter;
    if (parent == root) ++rootCount;
11
12
     for (auto w : adjlist[v]) {
13
      if (!d[w]) {
14
         dfs(w, v);
```

```
if (low[w] >= d[v] \&\& v != root) isArt[v] = true;
16
         if (low[w] > d[v]) bridges.push_back(ii(v, w));
17
         low[v] = min(low[v], low[w]);
18
      } else if (w != parent) {
19
         low[v] = min(low[v], d[w]);
20 \ } }
21
22
   void findArticulationPoints() {
    counter = 0:
    low.resize(adjlist.size());
    d.assign(adjlist.size(), 0);
    isArt.assign(adjlist.size(), false);
    bridges.clear(); //nur fuer Bruecken
28
    for (int v = 0; v < (int)adjlist.size(); v++) {</pre>
      if (!d[v]) {
30
         root = v; rootCount = 0;
31
         dfs(v);
32
         if (rootCount > 1) isArt[v] = true;
33 | } } }
```

2.4 Eulertouren

- Zyklus existiert, wenn jeder Knoten geraden Grad hat (ungerichtet), bzw. bei jedem Knoten Ein- und Ausgangsgrad übereinstimmen (gerichtet).
- Pfad existiert, wenn alle bis auf (maximal) zwei Knoten geraden Grad haben (ungerichtet), bzw. bei allen Knoten bis auf zwei Ein- und Ausgangsgrad übereinstimmen, wobei einer eine Ausgangskante mehr hat (Startknoten) und einer eine Eingangskante mehr hat (Endknoten).
- Je nach Aufgabenstellung überprüfen, wie isolierte Punkte interpretiert werden sollen.
- Der Code unten läuft in Linearzeit. Wenn das nicht notwenidg ist (oder bestimmte Sortierungen verlangt werden), gehts mit einem set einfacher.
- Algorithmus schlägt nicht fehl, falls kein Eulerzyklus existiert. Die Existenz muss separat geprüft werden.

```
VISIT(v):
forall e=(v,w) in E
delete e from E
VISIT(w)
print e
```

```
1    // Laufzeit: 0(|V|+|E|)
2    vector< vector<int> > adjlist, otherIdx;
vector<int> cycle, validIdx;
4
5    // Vertauscht Kanten mit Indizes a und b von Knoten n.
void swapEdges(int n, int a, int b) {
    int neighA = adjlist[n][a], neighB = adjlist[n][b];
    int idxNeighA = otherIdx[n][a], idxNeighB = otherIdx[n][b];
    swap(adjlist[n][a], adjlist[n][b]);
    swap(otherIdx[n][a], otherIdx[n][b]);
    otherIdx[neighA][idxNeighA] = b;
    otherIdx[neighB][idxNeighB] = a;
}
14
```

```
15 // Entfernt Kante i von Knoten n (und die zugehörige Rückwärtskante).
16 void removeEdge(int n, int i) {
    int other = adjlist[n][i];
    if (other == n) { //Schlingen.
19
      validIdx[n]++;
20
      return:
21
22
    int otherIndex = otherIdx[n][i];
    validIdx[n]++:
    if (otherIndex != validIdx[other]) {
24
25
       swapEdges(other, otherIndex, validIdx[other]);
26
27
    validIdx[other]++;
28 }
30 // Findet Eulerzyklus an Knoten n startend.
31 // Teste vorher, dass Graph zusammenhängend ist! Isolierten Knoten?
32 // Teste vorher, ob Eulerzyklus überhaupt existiert!
33 void euler(int n) {
    while (validIdx[n] < (int)adjlist[n].size()) {</pre>
       int nn = adjlist[n][validIdx[n]];
35
36
      removeEdge(n, validIdx[n]);
       euler(nn);
38
    cycle.push_back(n); // Zyklus in cycle in umgekehrter Reihenfolge.
40 }
```

2.5 Lowest Common Ancestor

```
1 struct LCA {
    vector<int> depth. visited. first:
    int idx:
    SparseTable st;
     void init(vector<vector<int>> &g, int root) { // Laufzeit: 0(|V|)
       depth.assign(2 * g.size(), 0);
      visited.assign(2 * g.size(), -1);
      first.assign(g.size(), 2 * g.size());
10
11
      visit(g, root, 0);
12
       st.init(&depth);
13
14
    void visit(vector<vector<int>>> &g, int v, int d) {
      visited[idx] = v, depth[idx] = d, first[v] = min(idx, first[v]), idx++;
16
17
18
       for (int w : q[v]) {
        if (first[w] == 2 * (int)g.size()) {
19
20
           visit(g, w, d + 1);
21
           visited[idx] = v, depth[idx] = d, idx++;
22
    }}}
23
    int getLCA(int a, int b) { // Laufzeit: 0(1)
24
      if (first[a] > first[b]) swap(a, b);
26
       return visited[st.queryIdempotent(first[a], first[b])];
27
28 };
```

2.6 Max-Flow

2.6.1 Capacity Scaling

Gut bei dünn besetzten Graphen.

```
1 // Ford Fulkerson mit Capacity Scaling. Laufzeit: 0(|E|^2*log(C))
2 static const int MAX_N = 500; // #Knoten, egal für die Laufzeit.
3 struct edge { int dest, rev; ll cap, flow; };
4 vector<edge> adjlist[MAX_N];
5 int visited[MAX N], target, dfsCounter:
6 11 capacity:
8 bool dfs(int x) {
    if (x == target) return 1;
   if (visited[x] == dfsCounter) return 0;
   visited[x] = dfsCounter;
    for (edge &e : adjlist[x]) {
12
13
      if (e.cap >= capacity && dfs(e.dest)) {
         e.cap -= capacity; adjlist[e.dest][e.rev].cap += capacity;
14
15
         e.flow += capacity; adjlist[e.dest][e.rev].flow -= capacity;
         return 1:
16
17
    }}
18
    return 0;
19
20
   void addEdge(int u, int v, ll c) {
    adjlist[u].push_back(edge {v, (int)adjlist[v].size(), c, 0});
22
23
    adjlist[v].push_back(edge {u, (int)adjlist[u].size() - 1, 0, 0});
24
25
26
   11 maxFlow(int s, int t) {
    capacity = 1L << 62;
    target = t;
    11 \text{ flow} = 0L:
30
    while (capacity) {
31
      while (dfsCounter++, dfs(s)) flow += capacity;
32
      capacity /= 2;
33
    }
34
    return flow;
35 | }
```

2.6.2 Dinic's Algorithm mit Capacity Scaling

Nochmal ca. Faktor 2 schneller als Ford Fulkerson mit Capacity Scaling.

```
// Laufzeit: 0(|V|^2*|E|)
// Knoten müssen von 0 nummeriert sein.
const int INF = 0x3FFFFFFFF, MAXN = 500;
struct edge { int a, b; ll f, c; };
int n, m, pt[MAXN], d[MAXN], s, t;
vector<edge> e;
vector<int> g[MAXN];
ll flow = 0, lim;
```

```
9 | queue < int > q;
10
11 void addEdge(int a, int b, ll c) {
     g[a].push_back(e.size());
     e.push_back(edge {a, b, 0, c});
     g[b].push_back(e.size());
     e.push_back(edge {b, a, 0, 0});
16 }
17
18 bool bfs() {
    for (int i = 0; i < n; i++) d[i] = INF;
20
     d[s] = 0;
21
     q.push(s);
     while (!q.empty() && d[t] == INF) {
      int cur = q.front(); q.pop();
24
       for (int i = 0; i < (int)g[cur].size(); i++) {
25
         int id = a[cur][i]. to = e[id].b:
26
         if (d[to] == INF && e[id].c - e[id].f >= lim) {
27
           d[to] = d[cur] + 1;
28
           q.push(to);
29
30
      }
31
32
     while (!q.empty()) q.pop();
33
     return d[t] != INF;
34 }
35
   bool dfs(int v, ll flow) {
    if (flow == 0) return false;
     if (v == t) return true;
     for (; pt[v] < (int)g[v].size(); pt[v]++) {</pre>
       int id = q[v][pt[v]], to = e[id].b;
41
       if (d[to] == d[v] + 1 && e[id].c - e[id].f >= flow) {
42
         int pushed = dfs(to, flow);
43
         if (pushed) {
44
           e[id].f += flow:
45
           e[id ^ 1].f -= flow;
46
           return true;
47
48
      }
49
    return false:
51 }
52
53 // Nicht vergessen, s und t zu setzen!
54 void dinic() {
55
     for (lim = (1LL << 62); lim >= 1;) {
      if (!bfs()) { lim /= 2; continue; }
57
       for (int i = 0; i < n; i++) pt[i] = 0;
       int pushed;
59
       while ((pushed = dfs(s, lim))) flow += lim;
60
61 }
```

2.6.3 Anwendungen

• Maximum Edge Disjoint Paths

Finde die maximale Anzahl Pfade von s nach t, die keine Kante teilen.

- 1. Setze *s* als Quelle, *t* als Senke und die Kapazität jeder Kante auf 1.
- Der maximale Fluss entspricht den unterschiedlichen Pfaden ohne gemeinsame Kanten.

• Maximum Independent Paths

Finde die maximale Anzahl an Pfaden von s nach t, die keinen Knoten teilen.

- 1. Setze s als Quelle, t als Senke und die Kapazität jeder Kante und jedes Knotens auf 1.
- 2. Der maximale Fluss entspricht den unterschiedlichen Pfaden ohne gemeinsame Knoten.

• Min-Cut

Der maximale Fluss ist gleich dem minimalen Schnitt. Bei Quelle s und Senke t, partitioniere in S und T. Zu S gehören alle Knoten, die im Residualgraphen von s aus erreichbar sind (Rückwärtskanten beachten).

2.7 Min-Cost-Max-Flow

```
static const ll flowlimit = 1LL << 60; // Größer als der maximale Fluss.
   struct MinCostFlow { // Mit new erstellen!
    static const int maxn = 400; // Größer als die Anzahl der Knoten.
    static const int maxm = 5000; // Größer als die Anzahhl der Kanten.
    struct edge { int node, next; ll flow, value; } edges[maxm << 1];</pre>
    int graph[maxn], queue[maxn], pre[maxn], con[maxn];
    int n, m, source, target, top;
    bool inqueue[maxn];
    11 maxflow, mincost, dis[maxn];
11
    MinCostFlow() { memset(graph, -1, sizeof(graph)); top = 0; }
13
    inline int inverse(int x) { return 1 + ((x >> 1) << 2) - x; }
15
    // Directed edge from u to v, capacity c, weight w.
    inline int addedge(int u, int v, int c, int w) {
16
17
      edges[top].value = w; edges[top].flow = c; edges[top].node = v;
      edges[top].next = graph[u]; graph[u] = top++;
18
19
      edges[top].value = -w; edges[top].flow = 0; edges[top].node = u;
       edges[top].next = graph[v]; graph[v] = top++;
20
21
      return top - 2;
22
23
24
    bool SPFA() {
25
      int point, node, now, head = 0, tail = 1;
26
      memset(pre, -1, sizeof(pre));
27
      memset(inqueue, 0, sizeof(inqueue));
28
       memset(dis, 0x7F, sizeof(dis));
29
       dis[source] = 0; queue[0] = source;
30
       pre[source] = source; inqueue[source] = true;
31
32
       while (head != tail) {
33
        now = queue[head++];
34
         point = graph[now];
35
         inqueue[now] = false;
         head %= maxn:
```

```
38
         while (point != -1) {
39
           node = edges[point].node;
40
           if (edges[point].flow > 0 &&
               dis[node] > dis[now] + edges[point].value) {
41
42
             dis[node] = dis[now] + edges[point].value;
             pre[node] = now; con[node] = point;
44
             if (!inqueue[node]) {
45
               inqueue[node] = true; gueue[tail++] = node;
               tail %= maxn:
46
48
           point = edges[point].next;
49
      }}
50
      return pre[target] != -1;
51
52
     void extend() {
      11 w = flowlimit:
      for (int u = target; pre[u] != u; u = pre[u])
56
        w = min(w, edges[con[u]].flow);
57
       maxflow += w:
58
       mincost += dis[target] * w;
       for (int u = target; pre[u] != u; u = pre[u]) {
60
         edges[con[u]].flow -= w;
         edges[inverse(con[u])].flow += w;
61
    }}
62
63
     void mincostflow() {
      maxflow = mincost = 0;
       while (SPFA()) extend();
68 };
```

2.8 Maximal Cardinatlity Bipartite Matching

```
1 // Laufzeit: 0(n*min(ans^2, |E|))
 2 // Kanten von links nach rechts. Die ersten n Knoten sind links, die anderen
        rechts.
 3 vector < vector < int >> adilist:
 4 vector<int> pairs; // Der gematchte Knoten oder -1.
 5 vector<bool> visited:
 7 bool dfs(int v) {
    if (visited[v]) return false;
    visited[v] = true;
    for (auto w : adjlist[v]) if (pairs[w] < 0 || dfs(pairs[w])) {</pre>
11
      pairs[w] = v; pairs[v] = w; return true;
12
13
    return false;
14 }
15
16 int kuhn(int n) { // n = #Knoten links.
    pairs.assign(adjlist.size(), -1);
18 int ans = 0;
   // Greedy Matching. Optionale Beschleunigung.
    for (int i = 0; i < n; i++) for (auto w : adjlist[i])
       if (pairs[w] == -1) { pairs[i] = w; pairs[w] = i; ans++; break; }
```

```
1 // Laufzeit: 0(sqrt(|V|)*|E|)
2 // Kanten von links nach rechts.
3 // 0: dummy Knoten, 1..n: linke Knoten, n+1..n+m: rechte Knoten
4 vector < vector < int >> adjlist;
  vector<int> match, dist;
7 bool bfs(int n) {
    queue<int> q;
    dist[0] = INF;
    for(int i = 1; i <= n; i++) {</pre>
11
      if(match[i] == 0) { dist[i] = 0; q.push(i); }
12
       else dist[i] = INF;
13
14
    while(!q.empty()) {
15
      int u = q.front(); q.pop();
      if(dist[u] < dist[0]) for (int v : adjlist[u])</pre>
16
17
         if(dist[match[v]] == INF) {
18
           dist[match[v]] = dist[u] + 1;
19
           q.push(match[v]);
20
21
22
    return dist[0] != INF;
23
24
25 bool dfs(int u) {
26
    if(u != 0) {
27
      for (int v : adjlist[u])
28
         if(dist[match[v]] == dist[u] + 1)
29
           if(dfs(match[v])) { match[v] = u; match[u] = v; return true; }
30
       dist[u] = INF;
31
      return false:
32
33
    return true;
34
35
  int hopcroft_karp(int n) { // n = #Knoten links
    int ans = 0;
    match.assign(adjlist.size(), 0);
    dist.resize(adjlist.size());
    // Greedy Matching, optionale Beschleunigung.
41
    for (int i = 1: i <= n: i++) for (int w : adilist[i])</pre>
42
      if (match[w] == 0) { match[i] = w; match[w] = i; ans++; break; }
43
    while(bfs(n)) for(int i = 1: i \le n: i++)
44
      if(match[i] == 0 && dfs(i)) ans++;
45
   return ans:
46 }
```

```
1 // Laufzeit: 0(|V|^3)
2 int costs[N_LEFT][N_RIGHT];
4 // Es muss l<=r sein. ansonsten terminiert der Algorithmus nicht.
5 int match(int 1. int r) {
    vector < int > xy(1, -1), yx(r, -1), lx(1), ly(r, 0), augmenting(r);
    vector<bool> s(1);
    vector<ii> slack(r, ii(0,0));
10
    for (int x = 0; x < 1; x++) lx[x] = *max_element(costs[x], costs[x] + r);
11
    for (int root = 0; root < 1; root++) {</pre>
12
      fill(augmenting.begin(), augmenting.end(), -1);
13
      fill(s.begin(), s.end(), false);
14
       s[root] = true;
15
       for (int y = 0; y < r; y++) {
16
         slack[y] = ii(lx[root] + ly[y] - costs[root][y], root);
17
18
      int y = -1;
19
       for (;;) {
20
         int delta = INT_MAX, x = -1;
21
         for (int yy = 0; yy < r; yy++) {
22
          if (augmenting[yy] == -1) {
23
             if (slack[yy].first < delta) {</pre>
24
               delta = slack[yy].first;
25
               x = slack[yy].second;
26
               y = yy;
27
         }}}
28
         if (delta > 0) {
29
           for (int x = 0; x < 1; x++) if (s[x]) lx[x] -= delta;
30
           for (int v = 0: v < r: v++) {
             if (augmenting[y] > -1) ly[y] += delta;
31
32
             else slack[v].first -= delta;
33
         }}
34
         augmenting[y] = x;
35
         x = yx[y];
         if (x == -1) break;
         s[x] = true;
37
         for (int y = 0; y < r; y++) {
38
39
          if (augmenting[v] == -1) {
40
             ii alt = ii(lx[x] + ly[y] - costs[x][y], x);
41
             if (slack[v].first > alt.first) {
42
               slack[y] = alt;
43
      }}}}
       while (v != -1) {
45
         // Jede Iteration vergrößert Matching um 1 (können 0-Kanten sein!).
46
         int x = augmenting[y];
47
         int prec = xy[x];
48
         yx[y] = x;
49
         xy[x] = y;
50
         y = prec;
    return accumulate(lx.begin(), lx.end(), 0) +
53
            accumulate(ly.begin(), ly.end(), 0); // Wert des Matchings.
54 }
```

2.10 Wert des maximalen Matchings

```
1 // Fehlerwahrscheinlichkeit: (n / MOD)^I
2 const int N=200, MOD=1000000007, I=10;
3 int n, adj[N][N], a[N][N];
  int rank() {
   int r = 0;
    for (int j = 0; j < n; j++) {
      int k = r:
       while (k < n \&\& !a[k][j]) ++k;
10
      if (k == n) continue;
11
       swap(a[r], a[k]);
12
      int inv = powmod(a[r][j], MOD - 2);
13
       for (int i = j; i < n; i++)
14
         a[r][i] = 1LL * a[r][i] * inv % MOD;
15
       for (int u = r + 1; u < n; u++)
16
         for (int v = j; v < n; v++)
17
           a[u][v] = (a[u][v] - 1LL * a[r][v] * a[u][j] % MOD + MOD) % MOD;
18
19
20
    return r;
21
23
  int max_matching() {
24
    int ans = 0;
25
    for (int _ = 0; _ < I; _++) {</pre>
      for (int i = 0; i < n; i++) {</pre>
26
27
         for (int j = 0; j < i; j++) {
28
           if (adi[i][i]) {
29
             a[i][j] = rand() \% (MOD - 1) + 1;
30
             a[j][i] = MOD - a[i][j];
31
32
       ans = \max(ans, rank()/2);
33
34
    return ans:
35
```

2.11 2-SAT

```
struct sat2 {
    vector<vector<int>>> adjlist, sccs;
    vector<bool> visited, inStack;
    int n, sccCounter, dfsCounter;
     vector<int> d, low, idx, sol;
     stack<int> s;
     sat2(int vars) : n(vars*2) { adjlist.resize(n); };
     static int var(int i) { return i << 1; }</pre>
11
12
     void addImpl(int v1, int v2) {
13
      adjlist[v1].push_back(v2);
14
       adilist[1^v2].push_back(1^v1);
15
    void addEquiv(int v1, int v2) { addImpl(v1, v2); addImpl(v2, v1); }
    void addOr(int v1, int v2) { addImpl(1^v1, v2); }
```

```
void addXor(int v1, int v2) { add0r(v1, v2); add0r(1^v1, 1^v2); }
     void addTrue(int v1) { addImpl(1^v1, v1); }
     void addFalse(int v1) { addTrue(1^v1); }
21
     void addAnd(int v1, int v2) { addTrue(v1); addTrue(v2); }
     void addNand(int v1, int v2) { addOr(1^v1, 1^v2); }
23
24
     void dfs(int v) {
25
      visited[v] = true;
      d[v] = low[v] = dfsCounter++;
26
27
      s.push(v); inStack[v] = true;
28
29
       for (auto w : adjlist[v]) {
30
        if (!visited[w]) {
31
           dfs(w);
32
           low[v] = min(low[v], low[w]);
33
         } else if (inStack[w]) low[v] = min(low[v], low[w]);
34
35
       if (d[v] == low[v]) {
37
         sccs.push_back(vector<int>());
38
         int w:
39
         do {
40
           w = s.top(); s.pop(); inStack[w] = false;
41
           idx[w] = sccCounter;
42
           sccs[sccCounter].push_back(w);
43
         } while (w != v);
44
         sccCounter++;
45
    }}
46
47
     bool solvable() {
      visited.assign(n, false);
49
      inStack.assign(n, false);
50
      d.assign(n, -1);
51
      low.assign(n, -1);
52
      idx.assign(n, -1);
53
       sccCounter = dfsCounter = 0:
54
       for (int i = 0; i < n; i++) if (!visited[i]) dfs(i);</pre>
55
      for (int i = 0; i < n; i += 2) if (idx[i] == idx[i + 1]) return false;</pre>
56
      return true:
57
58
     void assign() {
       sol.assign(n, -1);
61
       for (int i = 0; i < sccCounter; i++) {
         if (sol[sccs[i][0]] == -1) {
63
           for (int v : sccs[i]) {
64
             sol[v] = 1;
65
             sol[1^v] = 0;
66
   }}}}
67 | };
```

2.12 Bitonic TSP

```
// Laufzeit: 0(n^2)
vector<vector<double>> dp, dist; // Entfernungen zwischen Punkten.

double get(int p1, int p2) {
```

```
int v = max(p1, p2) + 1;
    if (v == dist.size()) return dist[p1][v - 1] + dist[p2][v - 1];
    if (dp[p1][p2] >= 0.0) return dp[p1][p2];
    double tryLR = dist[p1][v] + get(v, p2);
    double tryRL = dist[p2][v] + get(p1, v);
10
    return dp[p1][p2] = min(tryLR, tryRL);
11
12
13
   void bitonicTour() {
    dp.assign(dist.size(), vector<double>(dist.size(), -1));
    get(0, 0); // return dp[0][0]; // Länger der Tour
16
    vector < int > lr = {0}, rl = {0};
17
    for (int p1 = 0, p2 = 0, v; (v = max(p1, p2) + 1) < dist.size();) {
18
      if (dp[p1][p2] == dist[p1][v] + dp[v][p2]) {
19
        lr.push_back(v); p1 = v;
20
      } else {
21
        rl.push back(v): p2 = v:
22
   lr.insert(lr.end(), rl.rbegin(), rl.rend()); // Tour, Knoten 0 doppelt.
```

3 Geometrie

3.1 Closest Pair

```
1 double squaredDist(pt a, pt b) {
    return (a.fst-b.fst) * (a.fst-b.fst) + (a.snd-b.snd) * (a.snd-b.snd);
  bool compY(pt a, pt b) {
    if (a.snd == b.snd) return a.fst < b.fst:</pre>
    return a.snd < b.snd:</pre>
  // points.size() > 1 und alle Punkte müssen verschieden sein!
11 double shortestDist(vector<pt> &points) {
    set<pt, bool(*)(pt, pt)> status(compY);
    sort(points.begin(), points.end());
    double opt = 1e30. sartOpt = <math>1e15:
    auto left = points.begin(), right = points.begin();
15
     status.insert(*right): right++:
17
18
     while (right != points.end()) {
      if (fabs(left->fst - right->fst) >= sqrt0pt) {
19
20
         status.erase(*(left++));
21
      } else {
22
         auto lower = status.lower_bound(pt(-1e20, right->snd - sqrt0pt));
23
         auto upper = status.upper_bound(pt(-1e20, right->snd + sqrt0pt));
24
         while (lower != upper) {
25
           double cand = squaredDist(*right, *lower);
26
           if (cand < opt) {</pre>
27
             opt = cand;
28
             sqrtOpt = sqrt(opt);
29
           }
30
           ++lower;
31
         status.insert(*(right++));
```

3.2 Geraden

```
1 // Nicht complex<double> benutzen. Eigene struct schreiben.
   double a, b, c; // ax + by + c = 0; vertikale Line: b = 0, sonst: b = 1
4 };
 6 line pointsToLine(pt p1, pt p2) {
    line 1:
    if (fabs(p1.x - p2.x) < EPSILON) {</pre>
    l.a = 1; l.b = 0.0; l.c = -p1.x;
10 } else {
     1.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
11
12
     1.b = 1.0;
13
     1.c = -(double)(1.a * p1.x) - p1.y;
14
   }
15
   return 1:
16 }
17
18 bool areParallel(line 11. line 12) {
    return (fabs(11.a - 12.a) < EPSILON) && (fabs(11.b - 12.b) < EPSILON);</pre>
20 }
21
22 bool areSame(line 11. line 12) {
   return areParallel(11. 12) && (fabs(11.c - 12.c) < EPSILON):
24 }
26 bool areIntersect(line 11, line 12, pt &p) {
if (areParallel(11, 12)) return false;
   p.x = (12.b * 11.c - 11.b * 12.c) / (12.a * 11.b - 11.a * 12.b);
   if (fabs(11.b) > EPSILON) p.y = -(11.a * p.x + 11.c);
    else p.y = -(12.a * p.x + 12.c);
31
   return true:
```

3.3 Konvexe Hülle

```
1 // Laufzeit: O(n*log(n))
2 11 cross(const pt p, const pt a, const pt b) {
3 return (a.x - p.x) * (b.y - p.y) - (a.y - p.y) * (b.x - p.x);
 6 // Punkte auf der konvexen Hülle, gegen den Uhrzeigersinn sortiert.
7 // Kollineare Punkte nicht enthalten, entferne dafür "=" im CCW-Test.
8 // Achtung: Der erste und letzte Punkt im Ergebnis sind gleich.
9 // Achtung: Alle Punkte müssen verschieden sein.
10 | vector<pt> convexHull(vector<pt> p){
int n = p.size(), k = 0;
12 | vector<pt> h(2 * n);
     sort(p.begin(), p.end());
     for (int i = 0; i < n; i++) { // Untere Hülle.
       while (k \ge 2 \& cross(h[k - 2], h[k - 1], p[i]) \le 0.0) k--;
15
16
      h\lceil k++\rceil = p\lceil i\rceil:
```

3.4 Formeln - std::complex

```
1 // Komplexe Zahlen als Darstellung für Punkte. Wenn immer möglich
2 // complex <int> verwenden. Funktionen wie abs() geben dann int zurück.
3 typedef complex<double> pt:
5 // Winkel zwischen Punkt und x-Achse in [0, 2 * PI).
6 double angle = arg(a);
8 // Punkt rotiert um Winkel theta.
9 pt a_rotated = a * exp(pt(0, theta));
11 // Mittelpunkt des Dreiecks abc.
12 pt centroid = (a + b + c) / 3.0;
14 // Skalarprodukt.
15 double dot(pt a, pt b) { return real(conj(a) * b); }
17 // Kreuzprodukt, 0, falls kollinear.
18 double cross(pt a, pt b) { return imag(conj(a) * b); }
19
20 // Flächeninhalt eines Dreicks bei bekannten Eckpunkten.
21 double areaOfTriangle(pt a, pt b, pt c) {
  return abs(cross(b - a, c - a)) / 2.0:
23 }
  // Flächeninhalt eines Dreiecks bei bekannten Seitenlängen.
26 double areaOfTriangle(double a. double b. double c) {
    double s = (a + b + c) / 2:
   return sgrt(s * (s-a) * (s-b) * (s-c)):
29 }
30
31 // Sind die Dreiecke a1, b1, c1, and a2, b2, c2 ähnlich?
32 // Erste Zeile testet Ähnlichkeit mit gleicher Orientierung.
33 // zweite Zeile testet Ähnlichkeit mit unterschiedlicher Orientierung
34 bool similar (pt a1, pt b1, pt c1, pt a2, pt b2, pt c2) {
35
   return (
36
      (b2-a2) * (c1-a1) == (b1-a1) * (c2-a2) | |
37
      (b2-a2) * (conj(c1)-conj(a1)) == (conj(b1)-conj(a1)) * (c2-a2)
38
    );
39
  // -1 => gegen den Uhrzeigersinn, 0 => kolliniear, 1 => im Uhrzeigersinn.
42 // Einschränken der Rückgabe auf [-1,1] ist sicherer gegen Overflows.
43 double orientation(pt a, pt b, pt c) {
44 double orien = cross(b - a, c - a);
  if (abs(orien) < EPSILON) return 0; // Braucht großes EPSILON: ~1e-6
46 return orien < 0 ? -1 : 1:
```

```
47 | }
48
49 // Test auf Streckenschnitt zwischen a-b und c-d.
50 bool lineSegmentIntersection(pt a, pt b, pt c, pt d) {
    if (orientation(a, b, c) == 0 && orientation(a, b, d) == 0) {
       double dist = abs(a - b);
53
       return (abs(a - c) <= dist && abs(b - c) <= dist) ||
54
              (abs(a - d) \le dist \&\& abs(b - d) \le dist);
55
56
     return orientation(a, b, c) * orientation(a, b, d) <= 0 &&
            orientation(c, d, a) * orientation(c, d, b) <= 0:
58 }
59
60 // Berechnet die Schnittpunkte der Strecken a-b und c-d. Enthält entweder
61 // keinen Punkt, den einzigen Schnittpunkt oder die Endpunkte der
62 // Schnittstrecke. operator<. min. max müssen noch geschrieben werden!
63 vector<pt> lineSegmentIntersection(pt a. pt b. pt c. pt d) {
     vector<pt> result:
     if (orientation(a, b, c) == 0 && orientation(a, b, d) == 0 &&
         orientation(c, d, a) == 0 && orientation(c, d, b) == 0) {
67
       pt minAB = min(a, b), maxAB = max(a, b);
       pt minCD = min(c, d), maxCD = max(c, d);
       if (minAB < minCD && maxAB < minCD) return result;</pre>
70
       if (minCD < minAB && maxCD < minAB) return result;</pre>
71
       pt start = max(minAB, minCD), end = min(maxAB, maxCD);
72
       result.push_back(start);
73
       if (start != end) result.push_back(end);
74
       return result;
75
76
     double x1 = real(b) - real(a), y1 = imag(b) - imag(a);
     double x2 = real(d) - real(c), y2 = imag(d) - imag(c);
     double u1 = (-y1 * (real(a) - real(c)) + x1 * (imag(a) - imag(c))) /
79
         (-x2 * y1 + x1 * y2);
     double u2 = (x2 * (imag(a) - imag(c)) - y2 * (real(a) - real(c))) /
81
         (-x2 * v1 + x1 * v2):
     if (u1 >= 0 && u1 <= 1 && u2 >= 0 && u2 <= 1) {
       double x = real(a) + u2 * x1, y = imag(a) + u2 * y1;
       result.push_back(pt(x, y));
85
86
    return result:
87 }
89 // Entfernung von Punkt p zur Gearden durch a-b.
90 double distToLine(pt a, pt b, pt p) {
    return abs(cross(p - a, b - a)) / abs(b - a);
93
94 // Liegt p auf der Geraden a-b?
95 bool pointOnLine(pt a, pt b, pt p) {
    return orientation(a, b, p) == 0;
97 }
99 // Liegt p auf der Strecke a-b?
100 bool pointOnLineSegment(pt a, pt b, pt p) {
101 if (orientation(a, b, p) != 0) return false;
    return real(p) >= min(real(a), real(b)) &&
```

```
103
             real(p) \le max(real(a), real(b)) &&
104
             imag(p) >= min(imag(a), imag(b)) &&
105
             imag(p) <= max(imag(a), imag(b));</pre>
106 }
107
   // Entfernung von Punkt p zur Strecke a-b.
   double distToSegment(pt a, pt b, pt p) {
110
    if (a == b) return abs(p - a);
     double segLength = abs(a - b);
111
     double u = ((real(p) - real(a)) * (real(b) - real(a)) +
112
113
         (imag(p) - imag(a)) * (imag(b) - imag(a))) /
114
         (segLength * segLength);
115
     pt projection(real(a) + u * (real(b) - real(a)),
116
         imag(a) + u * (imag(b) - imag(a)));
     double projectionDist = abs(p - projection);
117
118
     if (!pointOnLineSegment(a, b, projection)) projectionDist = 1e30:
     return min(projectionDist. min(abs(p - a), abs(p - b))):
119
120 }
121
122
   // Kürzeste Entfernung zwischen den Strecken a-b und c-d.
   double distBetweenSegments(pt a, pt b, pt c, pt d) {
    if (lineSegmentIntersection(a, b, c, d)) return 0.0;
     double result = distToSegment(a, b, c);
126
    result = min(result, distToSegment(a, b, d));
127
     result = min(result, distToSegment(c, d, a));
128
     return min(result, distToSegment(c, d, b));
129 }
130
131
   // Liegt d in der gleichen Ebene wie a, b, und c?
132 bool isCoplanar(pt a, pt b, pt c, pt d) {
133
     return abs((b - a) * (c - a) * (d - a)) < EPSILON;
134 }
135
136 // Berechnet den Flächeninhalt eines Polygons (nicht selbstschneidend).
137 // Punkte gegen den Uhrzeigersinn: positiv. sonst negativ.
138 double areaOfPolygon(vector<pt> &polygon) { // Jeder Eckpunkt nur einmal.
     double res = 0; int n = polygon.size();
139
140
    for (int i = 0: i < n: i++)
141
       res += real(polygon[i]) * imag(polygon[(i + 1) % n]) -
               real(polygon[(i + 1) % n]) * imag(polygon[i]);
142
143
     return 0.5 * res;
144 }
145
   // Schneiden sich (p1, p2) und (p3, p4) (gegenüberliegende Ecken).
147 bool rectIntersection(pt p1, pt p2, pt p3, pt p4) {
     double minx12=min(real(p1), real(p2)), maxx12=max(real(p1), real(p2));
148
149
     double minx34=min(real(p3), real(p4)), maxx34=max(real(p3), real(p4));
150
     double miny12=min(imag(p1), imag(p2)), maxy12=max(imag(p1), imag(p2));
151
     double miny34=min(imag(p3), imag(p4)), maxy34=max(imag(p3), imag(p4));
152
     return (maxx12 >= minx34) && (maxx34 >= minx12) &&
153
             (\max_{y \neq 1} 12) = \min_{y \neq 1} 34 & (\max_{y \neq 1} 34) = \min_{y \neq 1} 12;
154 }
155
156 // Testet, ob ein Punkt im Polygon liegt (beliebige Polygone).
157 bool pointInPolygon(pt p, vector<pt> &polygon) { // Punkte nur einmal.
158 pt rayEnd = p + pt(1, 1000000);
```

```
159     int counter = 0, n = polygon.size();
160     for (int i = 0; i < n; i++) {
161         pt start = polygon[i], end = polygon[(i + 1) % n];
162         if (lineSegmentIntersection(p, rayEnd, start, end)) counter++;
163     }
164     return counter & 1;
165 }</pre>
```

4 Mathe

4.1 ggT, kgV, erweiterter euklidischer Algorithmus

```
1  // Laufzeiten: O(log(a) + log(b))
2  ll gcd(ll a, ll b) { return b == 0 ? a : gcd (b, a % b); }
3  ll lcm(ll a, ll b) { return a * (b / gcd(a, b)); }

1  ll extendedEuclid(ll a, ll b, ll &x, ll &y) { // a*x + b*y = ggt(a, b).
2  if (a == 0) { x = 0; y = 1; return b; }
3  ll x1, y1, d = extendedEuclid(b % a, a, x1, y1);
4  x = y1 - (b / a) * x1; y = x1;
5  return d;
6  }
```

Lemma von Bézou Sei (x, y) eine Lösung für ax + by = d. Dann lassen sich wie folgt alle Lösungen berechnen:

$$\left(x + k \frac{b}{ggT(a,b)}, y - k \frac{a}{ggT(a,b)}\right)$$

Multiplikatives Inverses von x **in** $\mathbb{Z}/n\mathbb{Z}$ Sei $0 \le x < n$. Definiere d := ggT(x, n).

Falls d = 1:

- Erweiterter euklidischer Algorithmus liefert α und β mit $\alpha x + \beta n = 1$.
- Nach Kongruenz gilt $\alpha x + \beta n \equiv \alpha x \equiv 1 \mod n$.
- $x^{-1} :\equiv \alpha \mod n$

Falls $d \neq 1$: Es existiert kein x^{-1} .

4.2 Mod-Exponent über \mathbb{F}_p

```
1  // Laufzeit: O(log(b))
2  ll powMod(ll a, ll b, ll n) {
3    if(b == 0) return 1;
4    if(b == 1) return a % n;
5    if(b & 1) return (powMod(a, b - 1, n) * a) % n;
6    else return powMod((a * a) % n, b / 2, n);
7  }
```

Iterativ:

4.3 Chinesischer Restsatz

- Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
- Direkte Formel für zwei Kongruenzen $x \equiv a \mod n$, $x \equiv b \mod m$:

$$x \equiv a - y * n * \frac{a - b}{d} \mod \frac{mn}{d}$$
 mit $d := ggT(n, m) = yn + zm$

Formel kann auch für nicht teilerfremde Moduli verwendet werden. Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung, wenn $a \equiv b \mod ggT(m,n)$. In diesem Fall sind keine Faktoren auf der linken Seite erlaubt.

```
// Laufzeit: O(n * log(n)), n := Anzahl der Kongruenzen
  // Nur für teilerfremde Moduli. Berechnet das kleinste, nicht negative x,
3 // das alle Kongruenzen simultan löst. Alle Lösungen sind kongruent zum
  // kgV der Moduli (Produkt, falls alle teilerfremd sind).
  struct ChineseRemainder {
    typedef int128 lll:
    vector<lll> lhs, rhs, mods, inv;
    111 M: // Produkt über die Moduli. Kann leicht überlaufen.
    11 g(vector<ll1> &vec) {
11
      lll res = 0:
12
      for (int i = 0; i < (int)vec.size(); i++) {</pre>
13
        res += (vec[i] * inv[i]) % M:
14
        res %= M:
15
16
      return res:
17
18
19
    // Fügt Kongruenz l * x = r (mod m) hinzu.
20
     void addEquation(ll l, ll r, ll m) {
21
      lhs.push_back(1);
22
      rhs.push_back(r);
23
      mods.push_back(m);
24
26
    // Löst das System.
    11 solve() {
28
      M = accumulate(mods.begin(), mods.end(), 111(1), multiplies<111>());
      inv.resize(lhs.size());
30
       for (int i = 0; i < (int)lhs.size(); i++) {</pre>
31
        lll x = (M / mods[i]) \% mods[i];
         inv[i] = (multInv(x, mods[i]) * (M / mods[i]));
```

4.4 Primzahltest & Faktorisierung

```
1 bool isPrime(ll n) { // Miller Rabin Primzahltest. O(log n)
   if(n == 2) return true;
   if(n < 2 \mid \mid n \% 2 == 0) return false;
   11 d = n - 1, j = 0;
    while (d \% 2 == 0) d >>= 1, j++;
    for(int a = 2; a \le min((11)37, n - 1); a++) {
      11 v = powMod(a, d, n); // Implementierung von oben.
      if(v == 1 || v == n - 1) continue;
      for(int i = 1; i <= j; i++) {
       v = (v * v) % n;
        if(v == n - 1 || v <= 1) break;
11
      if(v != n - 1) return false:
13
14
    return true:
16 }
18 | 11 rho(11 n) { // Findet Faktor < n, nicht unbedingt prim.
19 if (~n & 1) return 2;
   11 c = rand() % n. x = rand() % n. v = x. d = 1:
    while (d == 1) {
21
      x = ((x * x) % n + c) % n;
23
      y = ((y * y) % n + c) % n;
24
      d = gcd(abs(x - y), n); // Implementierung von oben.
25
26
    return d == n ? rho(n) : d;
27 }
28
29 void factor(ll n, map<ll, int> &facts) {
   if (n == 1) return;
    if (isPrime(n)) {
      facts[n]++;
33
      return:
34
   ll f = rho(n);
    factor(n / f, facts);
    factor(f, facts);
```

4.5 Primzahlsieb von Eratosthenes

```
// Laufzeit: O(n * log log n)
// Kann erweitert werden: Für jede Zahl den kleinsten Primfaktor.
// Dabei vorsicht: Nicht kleinere Faktoren überschreiben.
#define N 1000000000 // Bis 10^8 in unter 64MB Speicher.
bitset<N / 2> isNotPrime;

inline bool isPrime(int x) { // Diese Methode zum Lookup verwenden.
if (x < 2) return false;
else if (x == 2) return true;</pre>
```

```
else if (!(x & 1)) return false;
11
    else return !isNotPrime[x / 2];
12 }
13
  inline int primeSieve() { // Rückgabe: Anzahl der Primzahlen < N.
    int counter = 1; // Die 2, die sonst vergessen w\u00fcrde.
    for (int i = 3; i < N; i += 2) {
17
      if (!isNotPrime[i / 2]) {
         for (int j = i * i; j < N; j+= 2 * i) isNotPrime[j / 2] = 1;</pre>
18
19
         counter++:
20
    }}
21
    return counter;
```

4.6 Eulersche φ -Funktion

- Zählt die relativ primen Zahlen $\leq n$.
- Multiplikativ: $gcd(a, b) = 1 \Longrightarrow \varphi(a) \cdot \varphi(b) = \varphi(ab)$
- $p \text{ prim}, k \in \mathbb{N}$: $\varphi(p^k) = p^k p^{k-1}$
- $n = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}$: $\varphi(n) = n \cdot \left(1 \frac{1}{p_1}\right) \cdot \dots \cdot \left(1 \frac{1}{p_k}\right)$ Evtl. ist es sinnvoll obgien Code zum Faktorisieren zu benutzen und dann diese Formel anzuwenden.
- EULER'S Theorem: Seien a und m teilerfremd. Dann: $a^{\varphi(m)} \equiv 1 \mod m$ Falls m prim ist, liefert das den kleinen Satz von Fermat: $a^m \equiv a \mod m$

```
ll phi(ll n) { // Laufzeit: 0(sqrt(n))
    // Optimierung: Falls n prim, n - 1 zurückgeben (Miller-Rabin/Sieb).
    ll result = n;
    for(int i = 2; i * i <= n; ++i) {</pre>
      if(n % i == 0) { // Optimierung: Nur über Primzahlen iterieren.
         while (n \% i == 0)n /= i;
         result -= result / i:
      }
    if(n > 1) result -= result / n;
    return result:
12 }
13
  // Sieb, falls alle Werte benötigt werden. Laufzeit: O(N*log(log(N)))
15 for (int i = 1; i <= N; i++) phi[i] = i;
16 for (int i = 2; i <= N; i++) if (phi[i] == i) {
17
   for (int j = i; j <= N; j += i) {
18
      phi[j] /= i;
19
      phi[j] *= i - 1;
20 }}
```

4.7 Primitivwurzeln

- Primitivwurzel modulo *n* existiert genau dann wenn:
 - *n* ist 1, 2 oder 4, oder
 - n ist Potenz einer ungeraden Primzahl, oder
 - *n* ist das Doppelte einer Potenz einer ungeraden Primzahl.
- Sei *g* Primitivwurzel modulo *n*. Dann gilt: Das kleinste *k*, sodass $g^k \equiv 1 \mod n$, ist $k = \varphi(n)$.

```
1 // Ist g Primitivwurzel modulo p. Teste zufällige g, um eine zu finden.
```

```
2|bool is_primitive(ll g, ll p) {
   map<ll, int> facs;
   factor(p - 1, facs);
   for (auto &f : facs)
    if (1 == powMod(q, (p - 1) / f.first, p)) return false;
    return true:
8 }
10 // Alternativ: Generator zum Finden. -1 falls keine existiert.
11 | ll generator (ll p) { // Laufzeit: O(ans*log(phi(n))*log(n))
    map<ll. int> facs:
    factor(n, facs);
    11 phi = phi(p), n = phi;
    for (11 res = 2; res <= p; res++) {</pre>
      bool ok = true:
      for (auto &f : facs)
19
        ok &= powMod(res, phi / f.first, p) != 1;
      if (ok) return res;
21
    return -1;
23 }
```

4.8 Diskreter Logarithmus

```
1 // Bestimmt Lösung x für a^x=b mod m.
2 | 11 solve (11 a, 11 b, 11 m) { // Laufzeit: 0(sqrt(m)*log(m))
map<11,11> vals;
    for (int i = n; i >= 1; i--) vals[powMod(a, i * n, m)] = i;
    for (int i = 0; i <= n; i++) {
      11 \text{ cur} = (powMod(a, i, m) * b) \% m;
      if (vals.count(cur)) {
        ll ans = vals[cur] * n - i;
10
        if (ans < m) return ans:</pre>
11
   }}
12
    return -1;
13 | }
```

4.9 Binomialkoeffizienten

4.10 LGS über \mathbb{F}_p

```
1 // Laufzeit: 0(n^3)
void swapLines(int n, int 11, int 12) {
```

```
for (int i = 0; i <= n; i++) swap(mat[l1][i], mat[l2][i]);</pre>
   void normalLine(int n, int line, ll p) {
    11 factor = multInv(mat[line][line], p); // Implementierung von oben.
    for (int i = 0; i <= n; i++) {
      mat[line][i] *= factor;
10
       mat[line][i] %= p;
11 | }}
12
13 void takeAll(int n, int line, ll p) {
    for (int i = 0; i < n; i++) {
15
      if (i == line) continue;
      ll diff = mat[i][line];
16
17
       for (int j = 0; j <= n; j++) {
18
         mat[i][j] -= (diff * mat[line][j]) % p;
19
         mat[i][j] %= p;
20
         if (mat[i][j] < 0) mat[i][j] += p;</pre>
21 | } } }
22
  void gauss(int n, ll p) { // nx(n+1)-Matrix, Körper F_p.
24
    for (int line = 0; line < n; line++) {</pre>
25
      int swappee = line;
26
       while (mat[swappee][line] == 0) swappee++;
27
       swapLines(n, line, swappee);
28
       normalLine(n, line, p);
29
       takeAll(n, line, p);
```

4.11 LGS über $\mathbb R$

```
1 // Laufzeit: 0(n^3)
2 void swapLines(int n. int 11. int 12) {
    for (int i = 0; i <= n; i++) swap(mat[l1][i], mat[l2][i]);</pre>
  void normalLine(int n, int line) {
    double factor = mat[line][line]:
7
    for (int i = 0; i <= n; i++) {
      mat[line][i] /= factor;
10 | }}
11
12 void takeAll(int n, int line) {
13
    for (int i = 0; i < n; i++) {
14
      if (i == line) continue;
15
      double diff = mat[i][line];
16
      for (int j = 0; j <= n; j++) {
17
         mat[i][j] -= diff * mat[line][j];
18 | } }
19
20 int gauss(int n) { // Gibt zurück, ob das System (eindeutig) lösbar ist.
    vector<bool> done(n, false);
22
    for (int i = 0; i < n; i++) {
      int swappee = i; // Sucht Pivotzeile für bessere Stabilität.
24
      for (int j = 0; j < n; j++) {
25
         if (done[j]) continue;
         if (abs(mat[j][i]) > abs(mat[i][i])) swappee = j;
```

```
28
       swapLines(n, i, swappee);
29
       if (abs(mat[i][i]) > EPSILON) {
30
         normalLine(n, i);
31
         takeAll(n, i);
32
         done[i] = true;
    }} // Ab jetzt nur noch checks bzgl. Eindeutigkeit/Existenz der Lösung.
     for (int i = 0; i < n; i++) {</pre>
      bool allZero = true:
       for (int j = i; j < n; j++)
37
         if (abs(mat[i][j]) > EPSILON) allZero = false;
       if (allZero && abs(mat[i][n]) > EPSILON) return INCONSISTENT;
39
      if (allZero && abs(mat[i][n]) < EPSILON) return MULTIPLE;</pre>
40
    return UNIQUE;
42 }
```

4.12 Polynome & FFT

Multipliziert Polynome *A* und *B*.

- $\bullet \ \deg(A * B) = \deg(A) + \deg(B)$
- Vektoren a und b müssen mindestens Größe deg(A * B) + 1 haben. Größe muss eine Zweierpotenz sein.
- Für ganzzahlige Koeffizienten: (int)round(real(a[i]))

```
1 // Laufzeit: O(n log(n)).
2 typedef complex < double > cplx; // Eigene Implementierung ist schneller.
4 // a.size() muss eine Zweierpotenz sein!
  vector<cplx> fft(const vector<cplx> &a, bool inverse = 0) {
    int logn = 1. n = a.size():
     vector < cplx > A(n);
     while ((1 << logn) < n) logn++:
     for (int i = 0; i < n; i++) {
10
      int i = 0:
11
       for (int k = 0; k < logn; k++) j = (j << 1) | ((i >> k) & 1);
12
      A[j] = a[i];
13
    for (int s = 2; s <= n; s <<= 1) {
       double angle = 2 * PI / s * (inverse ? -1 : 1);
15
       cplx ws(cos(angle), sin(angle));
17
       for (int j = 0; j < n; j+= s) {
18
         cplx w = 1:
19
         for (int k = 0; k < s / 2; k++) {
20
           cplx u = A[j + k], t = A[j + s / 2 + k];
21
           A[i + k] = u + w * t;
22
           A[j + s / 2 + k] = u - w * t;
23
           if (inverse) A[i + k] /= 2, A[i + s / 2 + k] /= 2;
24
           w *= ws;
25
    }}}
26
    return A;
27 }
28
29 // Polynome: a[0] = a_0, a[1] = a_1, ... und b[0] = b_0, b[1] = b_1, ...
30 // Bei Integern: Runde Koeffizienten: (int)round(a[i].real())
31 \mid \text{vector} < \text{cplx} > a = \{0,0,0,0,0,1,2,3,4\}, b = \{0,0,0,0,2,3,0,1\};
32 \mid a = fft(a); b = fft(b);
```

```
33 | for (int i = 0; i < (int)a.size(); i++) a[i] *= b[i];
34 | a = fft(a,1); // a = a * b
```

4.13 Numerisch Integrieren, Simpsonregel

```
double f(double x) { return x; }

double simps(double a, double b) {
   return (f(a) + 4.0 * f((a + b) / 2.0) + f(b)) * (b - a) / 6.0;
}

double integrate(double a, double b) {
   double m = (a + b) / 2.0;
   double l = simps(a, m), r = simps(m, b), tot = simps(a, b);
   if (abs(l + r - tot) < EPSILON) return tot;
   return integrate(a, m) + integrate(m, b);
}</pre>
```

4.14 3D-Kugeln

```
1 // Great Cirlce Distance mit Längen- und Breitengrad.
2 double gcDist(
       double pLat, double pLon, double qLat, double qLon, double radius) {
    pLat *= PI / 180; pLon *= PI / 180; qLat *= PI / 180; qLon *= PI / 180;
    return radius * acos(cos(pLat) * cos(pLon) * cos(qLat) * cos(qLon) +
                          cos(pLat) * sin(pLon) * cos(qLat) * sin(qLon) +
                          sin(pLat) * sin(qLat));
  // Great Cirlce Distance mit kartesischen Koordinaten.
  double gcDist(point p, point q) {
    return acos(p.x * q.x + p.y * q.y + p.z * q.z);
12
13 }
15
  // 3D Punkt in kartesischen Koordinaten.
16 struct point {
17
    double x, y, z;
    point() {}
19
    point(double x, double y, double z) : x(x), y(y), z(z) {}
   point(double lat, double lon) {
     lat *= PI / 180.0; lon *= PI / 180.0;
22
      x = cos(lat) * sin(lon); y = cos(lat) * cos(lon); z = sin(lat);
23
24 \ \ \ ;
```

4.15 Longest Increasing Subsequence

```
vector<int> longestIncreasingSubsequence(vector<int> &seq) {
   int n = seq.size(), lisLength = 0, lisEnd = 0;
   vector<int> L(n), L_id(n), parents(n);
   for (int i = 0; i < n; i++) {
      int pos =
        lower_bound(L.begin(), L.begin() + lisLength, seq[i]) - L.begin();
      L[pos] = seq[i];
      L_id[pos] = i;
      parents[i] = pos ? L_id[pos - 1] : -1;</pre>
```

```
if (pos + 1 > lisLength) {
11
        lisLength = pos + 1;
12
        lisEnd = i;
13
    }}
    // Ab hier Rekonstruktion der Sequenz.
14
    vector<int> result(lisLength);
    int pos = lisLength - 1, x = lisEnd;
    while (parents[x] >= 0) {
      result[pos--] = x;
19
      x = parents[x];
20
   result[0] = x;
    return result; // Liste mit Indizes einer LIS.
23 }
```

4.16 Inversionszahl und Mergesort

```
1 // Laufzeit: O(n*log(n))
2 11 merge(vector<11> &v, vector<11> &left, vector<11> &right) {
    int a = 0, b = 0, i = 0;
    ll inv = 0:
     while (a < (int)left.size() && b < (int)right.size()) {</pre>
      if (left[a] < right[b]) v[i++] = left[a++];</pre>
       else {
8
         inv += left.size() - a;
         v[i++] = right[b++];
10
11
    while (a < (int)left.size()) v[i++] = left[a++];</pre>
    while (b < (int)right.size()) v[i++] = right[b++];</pre>
14
    return inv:
15 }
16
17 | 11 mergeSort(vector<11> &v) { // Sortiert v und gibt Inversionszahl zurück.
    int n = v.size();
    vector<ll> left(n / 2), right((n + 1) / 2);
    for (int i = 0; i < n / 2; i++) left[i] = v[i];</pre>
    for (int i = n / 2; i < n; i++) right[i - n / 2] = v[i];
    11 result = 0;
    if (left.size() > 1) result += mergeSort(left);
    if (right.size() > 1) result += mergeSort(right);
26
    return result + merge(v, left, right);
```

4.17 Satz von Sprague-Grundy

Weise jedem Zustand X wie folgt eine Grundy-Zahl g(X) zu:

```
g(X) := \min \{ \mathbb{Z}_0^+ \setminus \{ g(Y) \mid Y \text{ von } X \text{ aus direkt erreichbar} \} \}
```

X ist genau dann gewonnen, wenn g(X) > 0 ist.

Wenn man k Spiele in den Zuständen X_1, \ldots, X_k hat, dann ist die Grundy-Zahl des Gesamtzustandes $g(X_1) \oplus \ldots \oplus g(X_k)$.

4.18 Legendre-Symbol

Sei $p \ge 3$ eine Primzahl, $a \in \mathbb{Z}$:

```
int legendre(ll a, ll p) {
    a %= p;
    if (a == 0) return 0;
    if (a == 1 || p == 2) return 1;
     if (a == 2) return (((p * p - 1) / 8) & 1) ? -1 : 1;
     if (isPrime(a)) {
       return legendre(p, a) * ((((p - 1) * (a - 1) / 4) & 1) ? -1 : 1);
     } else {
       map<ll, int> facts;
10
       factor(a, facts);
       int res = 1;
12
       for (auto f : facts)
13
         if (f.second & 1)
14
           res *= legendre(f.first, p);
15
       return res;
16
17 | }
```

4.19 Möbius-Funktion und Möbius-Inversion

• Seien $f, g : \mathbb{N} \to \mathbb{N}$ und $g(n) := \sum_{d|n} f(d)$. Dann ist $f(n) = \sum_{d|n} g(d)\mu(\frac{n}{d})$.

•
$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{falls } n = 1 \\ 0 & \text{sonst} \end{cases}$$

Beispiel Inklusion/Exklusion: Gegeben sein eine Sequenz $A = a_1, \dots, a_n$ von Zahlen, $1 \le a_i \le N$. Zähle die Anzahl der *coprime subsequences*.

Lösung: Für jedes x, sei cnt[x] die Anzahl der Vielfachen von x in A. Es gibt $2^{cnt[x]} - 1$ nicht leere Subsequences in A, die nur Vielfache von x enthalten. Die Anzahl der Subsequences mit ggT = 1 ist gegeben durch $\sum_{i=1}^{N} \mu(i) \cdot (2^{cnt[i]} - 1)$.

```
1
// Laufzeit: O(N*log(log(N)))
int mu[N+1]; mu[1] = 1;
for (int i = 1; i <= N; i++) {
   for (int j = 2 * i; j <= N; j += i) mu[j] -= mu[i];
}</pre>
```

4.20 Kombinatorik

Berühmte Zahlen		
Fibonacci	f(0) = 0 $f(1) = 1$ $f(n+2) = f(n+1) + f(n)$	
Catalan	$C_0 = 1$ $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n} = \frac{2(2n-1)}{n+1} \cdot C_{n-1}$	
Euler I	$\binom{n}{0} = \binom{n}{n-1} = 1 \qquad \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$	
Euler II	$\left\langle \binom{n}{0} \right\rangle = 1 \left\langle \binom{n}{n} \right\rangle = 0 \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (2n-k-1) \left\langle \binom{n-1}{k-1} \right\rangle$	
Stirling I	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0 \qquad \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$	
Stirling II	${n \brace 1} = {n \brace n} = 1 \qquad {n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$	
Bell	$B_1 = 1$ $B_n = \sum_{k=0}^{n-1} B_k \binom{n-1}{k} = \sum_{k=0}^{n} \binom{n}{k}$	
Partitions	$f(0,0) = 1$ $f(n,k) = 0$ für $k > n$ oder $n \le 0$ oder $k \le 0$	
	f(n,k) = f(n-k,k) + f(n-1,k-1)	

Zeckendorfs Theorem Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer verschiedener Fibonacci-Zahlen geschrieben werden, sodass keine zwei aufeinanderfolgenden Fibonacci-Zahlen in der Summe vorkommen.

Lösung: Greedy, nimm immer die größte Fibonacci-Zahl, die noch hineinpasst.

CATALAN-Zahlen

- Die erste und dritte angegebene Formel sind relativ sicher gegen Overflows.
- Die erste Formel kann auch zur Berechnung der Catalan-Zahlen bezüglich eines Moduls genutzt werden.
- Die Catalan-Zahlen geben an: $C_n =$
 - Anzahl der Binärbäume mit *n* nicht unterscheidbaren Knoten.
 - Anzahl der validen Klammerausdrücke mit *n* Klammerpaaren.
 - Anzahl der korrekten Klammerungen von n + 1 Faktoren.
 - Anzahl der Möglichkeiten ein konvexes Polygon mit n + 2 Ecken in Dreiecke zu zerlegen.
 - Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in einem $n \times n$ -Gitter, die nicht die Diagonale kreuzen.

EULER-Zahlen 1. Ordnung Die Anzahl der Permutationen von $\{1, ..., n\}$ mit genau k Anstiegen. Für die n-te Zahl gibt es n mögliche Positionen zum Einfügen. Dabei wird entweder ein Ansteig in zwei gesplitted oder ein Anstieg um n ergänzt.

Euler-Zahlen 2. Ordnung Die Anzahl der Permutationen von $\{1, 1, ..., n, n\}$ mit genau k Anstiegen.

Stirling-Zahlen 1. Ordnung Die Anzahl der Permutationen von $\{1, ..., n\}$ mit genau k Zyklen. Es gibt zwei Möglichkeiten für die n-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden.

STIRLING-Zahlen 2. Ordnung Die Anzahl der Möglichkeiten n Elemente in k nichtleere Teilmengen zu zerlegen. Es gibt k Möglichkeiten die n in eine n-1-Partition einzuordnen. Dazu kommt der Fall, dass die n in ihrer eigenen Teilmenge (alleine) steht.

Bell-Zahlen Anzahl der Partitionen von $\{1, ..., n\}$. Wie Strilling-Zahlen 2. Ordnung ohne Limit durch k.

Integer Partitions Anzahl der Teilmengen von \mathbb{N} , die sich zu n aufaddieren mit maximalem Elment $\leq k$.

	Binomialkoeffiz	ienten
$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$	$\sum_{k=0}^{n} {r+k \choose k} = {r+n+1 \choose n}$
$\sum_{k=0}^{n} \binom{n}{k} = 2^n$	$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$	$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$
$\binom{n}{k} = \binom{n}{n-k}$	$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$	$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$
$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$	$\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n}$	$\sum_{i=1}^{n} {n \choose i} F_i = F_{2n} F_n = n\text{-th Fib.}$

Reihen

$$\begin{array}{c|c} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} & \left| \sum_{i=1}^{n} i^2 = \frac{n(n+1)(n+2)}{6} \right| & \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{n} c^i = \frac{c^{n+1}-1}{c-1} & c \neq 1 & \sum_{i=0}^{\infty} c^i = \frac{1}{1-c} & |c| < 1 & \sum_{i=1}^{\infty} c^i = \frac{c}{1-c} & |c| < 1 \\ \sum_{i=0}^{n} ic^i = \frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^2} & c \neq 1 & \sum_{i=0}^{\infty} ic^i = \frac{c}{(1-c)^2} & |c| < 1 \\ H_n = \sum_{i=1}^{n} \frac{1}{i} & \left| \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4} \right| \\ \sum_{i=1}^{n} H_i = (n+1)H_n - n & \sum_{i=1}^{n} \binom{i}{m}H_i = \binom{n+1}{m+1} \binom{H_{n+1} - \frac{1}{m+1}}{1} \end{array}$$

Wahrscheinlichkeitstheorie (*A*, *B* Ereignisse und *X*, *Y* Variablen)

E(X + Y) = E(X) + E(Y)	$E(\alpha X) = \alpha E(X)$
X, Y unabh. $\Leftrightarrow E(XY) = E(X) \cdot E(Y)$	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B]$

Bertrand's Ballot Theorem (Kandidaten A und $B, k \in \mathbb{N}$)

#A > k#B	$Pr = \frac{a-kb}{a+b}$	$\#B - \#A \le k$	$Pr = 1 - \frac{a!b!}{(a+k+1)!(b-k-1)!}$
$\#A \ge k\#B$	$Pr = \frac{a+1-kb}{a+1}$	$\#A \ge \#B + k$	$Pr = 1 - \frac{a!b!}{(a+k+1)!(b-k-1)!}$ $Num = \frac{a-k+1-b}{a-k+1} \binom{a+b-k}{b}$

The Twelvefold Way (verteile n Bälle auf k Boxen)				
Bälle Boxen	identisch identisch	unterscheidbar identisch	identisch unterscheidbar	unterscheidbar unterscheidbar
-	$p_k(n)$	$\sum_{i=0}^{k} {n \brace i}$	$\binom{n+k-1}{k-1}$	k^n
$size \ge 1$	p(n,k)	$\binom{n}{k}$	$\binom{n-1}{k-1}$	$k! \binom{n}{k}$
size ≤ 1	$[n \le k]$	$[n \le k]$	$\binom{k}{n}$	$n! \binom{k}{n}$

18

 $p_k(n)$: #Anzahl der Partitionen von n in $\leq k$ positive Summanden. p(n,k): #Anzahl der Partitionen von n in genau k positive Summanden. [Bedingung]: **return** Bedingung ? 1 : 0;

Platonische Körper				
Übersicht	Seiten	Ecken	Kanten	dual zu
Tetraeder	4	4	6	Tetraeder
Würfel/Hexaeder	6	8	12	Oktaeder
Oktaeder	8	6	12	Würfel/Hexaeder
Dodekaeder	12	20	30	Ikosaeder
Ikosaeder	20	12	30	Dodekaeder

Färbungen mit maximal *n* Farben (bis auf Isomorphie)

Ecken vom Oktaeder/Seiten vom Würfel	$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$
Ecken vom Würfel/Seiten vom Oktaeder	$(n^8 + 17n^4 + 6n^2)/24$
Kanten vom Würfel/Oktaeder	$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$
Ecken/Seiten vom Tetraeder	$(n^4 + 11n^2)/12$
Kanten vom Tetraeder	$(n^6 + 3n^4 + 8n^2)/12$
Ecken vom Ikosaeder/Seiten vom Dodekaeder	$(n^{12} + 15n^6 + 44n^4)/60$
Ecken vom Dodekaeder/Seiten vom Ikosaeder	$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$
Kanten vom Dodekaeder/Ikosaeder (evtl. falsch)	$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$

Verschiedenes	
Türme von Hanoi, minimale Schirttzahl:	$T_n = 2^n - 1$
#Regionen zwischen n Gearden	$\frac{\frac{n(n+1)}{2} + 1}{\frac{n^2 - 3n + 2}{2}} + 1$ n^{n-1}
#geschlossene Regionen zwischen n Geraden	$\frac{n^2 - 3n + 2}{2}$
#markierte, gewurzelte Bäume	$n^{n-\overline{1}}$
#markierte, nicht gewurzelte Bäume	n^{n-2}
#Wälder mit k gewurzelten Bäumen	$\frac{k}{n} \binom{n}{k} n^{n-k}$
Derangements	!n = (n-1)(!(n-1)+!(n-2))
	$!n = \left \frac{n!}{e} + \frac{1}{2} \right $
	$\lim_{n\to\infty}\frac{\frac{!n}{n!}}{n!}=\frac{1}{e}$

Beschreibung	er gewinnt (normal), 2 letzter verliert) Strategie
$M = [pile_i]$ $[x] := \{1, \dots, x\}$	$SG = \bigoplus_{i=1}^{n} pile_i$ Nimm von einem Stapel, sodass SG 0 wird. Genauso. Außer: Bleiben nur noch Stapel der Größe 1, erzeuge ungerade Anzahl solcher Stapel.
$M = \{a^m \mid m \ge 0\}$	a ungerade: $SG_n = n\%2$ a gerade: $SG_n = 2$, falls $n \equiv a \mod (a+1)$ $SG_n = n\%(a+1)\%2$, sonst.
$M_{\odot} = \left[\frac{pile_i}{2}\right]$ $M_{\odot} = \left\{\left[\frac{pile_i}{2}\right], pile_i\right\}$	① $SG_{2n} = n$, $SG_{2n+1} = SG_n$ ② $SG_0 = 0$, $SG_n = [\log_2 n] + 1$
M_{\odot} = Teiler von $pile_i$ M_{\odot} = echte Teiler von $pile_i$	① $SG_0 = 0$, $SG_n = SG_{\mathfrak{D},n} + 1$ ② $ST_1 = 0$, $SG_n = \#$ Nullen am Ende von n_{bin}
$M_{\odot} = [k]$ $M_{\odot} = S$, (S endlich) $M_{\odot} = S \cup \{pile_i\}$	$SG_{\mathfrak{D},n} = n \mod (k+1)$ • Niederlage bei $SG = 0$ • Niederlage bei $SG = 1$ $SG_{\mathfrak{D},n} = SG_{\mathfrak{D},n} + 1$
Für jedes endliche M ist SG eines	s Stapels irgendwann periodisch.
Moore's Nim: Beliebige Zahl von maximal <i>k</i> Stapeln.	1 Schreibe $pile_i$ binär. Addiere ohne Übertrag zur Basis $k + 1$. Niederlage, falls Ergebnis gleich 0. 2 Wenn alle Stapel 1 sind: Niederlage, wenn $n \equiv 1 \mod (k + 1)$. Sonst wie in 0 .
Staircase Nim: n Stapel in einer Reihe. Beliebige Zahl von Stapel i nach Stapel $i-1$.	Niederlage, wenn Nim der ungeraden Spiele verloren ist: $\bigoplus_{i=0}^{(n-1)/2} pile_{2i+1} = 0$
Lasker's Nim: Zwei mögliche Züge: 1) Nehme beliebige Zahl. 2) Teile Stapel in zwei Stapel (ohne Entnahme).	$SG_n = n$, falls $n \equiv 1, 2 \mod 4$ $SG_n = n + 1$, falls $n \equiv 3 \mod 4$ $SG_n = n - 1$, falls $n \equiv 0 \mod 4$
Kayles' Nim: Zwei mögliche Züge: 1) Nehme beliebige Zahl. 2) Teile Stapel in zwei Stapel (mit Entnahme).	Berechne SG_n für kleine n rekursiv. $n \in [72,83]: 4,1,2,8,1,4,7,2,1,8,2,7$ Periode ab $n = 72$ der Länge 12.

5 Strings

5.1 Knuth-Morris-Pratt-Algorithmus

```
1 // Laufzeit: O(n + m), n = #Text, m = #Pattern
```

```
2 | vector<int> kmpPreprocessing(string &sub) {
    vector<int> b(sub.length() + 1);
    b[0] = -1;
    int i = 0, j = -1;
     while (i < (int)sub.length()) {</pre>
      while (j >= 0 && sub[i] != sub[j]) j = b[j];
      i++; j++;
      b[i] = j;
10
11
    return b;
12 }
13
14 vector<int> kmpSearch(string &s, string &sub) {
    vector<int> pre = kmpPreprocessing(sub), result;
    int i = 0, j = 0;
     while (i < (int)s.length()) {</pre>
17
      while (j >= 0 && s[i] != sub[j]) j = pre[j];
      i++; j++;
      if (j == (int)sub.length()) {
21
         result.push_back(i - j);
22
         j = pre[j];
23
    }}
24
    return result;
25 }
```

5.2 Aho-Corasick-Automat

```
1 // Laufzeit: O(n + m + z), n = \#Text, m = Summe \#Pattern, z = \#Matches
2 // Findet mehrere Patterns gleichzeitig in einem String.
3 // 1) Wurzel erstellen: aho.push_back(vertex());
4 // 2) Mit addString(0, pattern, idx); Patterns hinzufügen.
5 // 3) finishAutomaton(0) aufrufen.
6 // 4) Mit state = go(state, c) in nächsten Zustand wechseln.
        DANACH: Wenn patterns-Vektor nicht leer ist: Hier enden alle
8 //
         enthaltenen Patterns.
9 // ACHTUNG: Die Zahlenwerte der auftretenden Buchstaben müssen
10 // zusammenhängend sein und bei 0 beginnen!
11 struct vertex {
12 int next[ALPHABET_SIZE], failure;
    int character:
    vector<int> patterns; // Indizes der Patterns, die hier enden.
    vertex() { for (int i = 0; i < ALPHABET_SIZE; i++) next[i] = -1; }</pre>
16 };
17 | vector < vertex > aho;
18
19 void addString(int v, vector<int> &pattern, int patternIdx) {
    for (int i = 0; i < (int)pattern.size(); i++) {</pre>
      if (aho[v].next[pattern[i]] == -1) {
21
22
         aho[v].next[pattern[i]] = aho.size();
23
         aho.push_back(vertex());
24
         aho.back().character = pattern[i];
25
26
      v = aho[v].next[pattern[i]];
27
28
    aho[v].patterns.push_back(patternIdx);
29 }
30
```

```
31 | void finishAutomaton(int v) {
    for (int i = 0; i < ALPHABET_SIZE; i++)</pre>
33
      if (aho[v].next[i] == -1) aho[v].next[i] = v;
34
35
    queue < int > q;
36
     for (int i = 0; i < ALPHABET_SIZE; i++) {</pre>
37
      if (aho[v].next[i] != v) {
38
         aho[aho[v].next[i]].failure = v;
39
         q.push(aho[v].next[i]);
40
    }}
41
     while (!q.empty()) {
42
      int r = q.front(); q.pop();
43
       for (int i = 0; i < ALPHABET_SIZE; i++) {</pre>
44
         if (aho[r].next[i] != -1) {
45
           q.push(aho[r].next[i]);
46
           int f = aho[r].failure;
           while (aho[f].next[i] == -1) f = aho[f].failure;
47
48
           aho[aho[r].next[i]].failure = aho[f].next[i];
49
           for (int j = 0; j < (int)aho[aho[f].next[i]].patterns.size(); j++) {</pre>
50
             aho[aho[r].next[i]].patterns.push_back(
51
                 aho[aho[f].next[i]].patterns[j]);
52
  }}}}
53
54 int qo(int v, int c) {
   if (aho[v].next[c] != -1) return aho[v].next[c];
   else return qo(aho[v].failure, c);
```

5.3 Trie

```
1 // Zahlenwerte müssen bei 0 beginnen und zusammenhängend sein.
2 struct node {
3
    int children[ALPHABET_SIZE], c; // c = #Wörter, die hier enden.
    node () {
      idx = -1;
6
      for (int i = 0; i < ALPHABET_SIZE; i++) children[i] = -1;</pre>
7
8 };
  vector<node> trie; // Anlegen mit trie.push_back(node());
11 void insert(int vert, vector<int> &txt, int s) { // Laufzeit: 0(|txt|)
   if (s == (int)txt.size()) { trie[vert].c++; return; }
12
   if (trie[vert].children[txt[s]] == -1) {
13
14
      trie[vert].children[txt[s]] = trie.size();
15
      trie.push back(node()):
16
17
    insert(trie[vert].children[txt[s]], txt, s + 1);
18
19
20 int contains(int vert, vector<int> &txt, int s) { // Laufzeit: 0(|txt|)
   if (s == (int)txt.size()) return trie[vert].c;
   if (trie[vert].children[txt[s]] != -1) {
23
      return contains(trie[vert].children[txt[s]], txt, s + 1);
24
  } else return 0:
25 }
```

5.4 Suffix-Baum

```
1 // Baut Suffixbaum online auf. Laufzeit: O(n)
2 // Einmal initSuffixTree() aufrufen und dann extend für jeden Buchstaben.
3 // '\0'-Zeichen (oder ähnliches) an den Text anhängen!
4 string s:
5 int root, lastIdx, needsSuffix, pos, remainder, curVert, curEdge, curLen;
 6 struct Vert {
    int start, end, suffix; // Kante [start,end)
    map<char. int> next:
    int len() { return min(end, pos + 1) - start; }
10 | };
11 | vector < Vert > tree:
13 int newVert(int start, int end) {
15 v.start = start:
   v.end = end:
16
    v.suffix = 0;
    tree.push_back(v);
    return ++lastIdx;
19
20 }
21
22 void addSuffixLink(int vert) {
   if (needsSuffix) tree[needsSuffix].suffix = vert;
24
    needsSuffix = vert;
25 }
26
27 bool fullImplicitEdge(int vert) {
    if (curLen >= tree[vert].len()) {
       curEdge += tree[vert].len():
30
       curLen -= tree[vert].len();
31
       curVert = vert:
32
       return true:
33
34
    return false;
35 }
36
37 void initSuffixTree() {
   needsSuffix = remainder = curEdge = curLen = 0;
    lastIdx = pos = -1:
    root = curVert = newVert(-1, -1);
41 }
42
43 void extend() {
    pos++;
    needsSuffix = 0;
46
     remainder++;
     while (remainder) {
      if (curLen == 0) curEdge = pos;
      if (!tree[curVert].next.count(s[curEdge])) {
50
         int leaf = newVert(pos, s.size());
51
         tree[curVert].next[s[curEdge]] = leaf;
52
         tree[curVert].next[s[curEdge]] = leaf;
53
         addSuffixLink(curVert);
54
       } else {
55
         int nxt = tree[curVert].next[s[curEdge]];
```

```
56
57
         if (fullImplicitEdge(nxt)) continue;
         if (s[tree[nxt].start + curLen] == s[pos]) {
58
           curLen++:
           addSuffixLink(curVert);
59
60
           break:
61
62
         int split = newVert(tree[nxt].start, tree[nxt].start + curLen);
63
         tree[curVert].next[s[curEdge]] = split;
         int leaf = newVert(pos, s.size());
64
65
         tree[split].next[s[pos]] = leaf;
66
         tree[nxt].start += curLen:
67
         tree[split].next[s[tree[nxt].start]] = nxt;
68
         addSuffixLink(split);
69
70
       remainder--:
71
      if (curVert == root && curLen) {
72
         curLen--:
73
         curEdge = pos - remainder + 1;
74
75
         curVert = tree[curVert].suffix ? tree[curVert].suffix : root;
76
77
    }
```

5.5 Suffix-Array

```
1 struct SuffixArray { // MAX_LG = ceil(log2(MAX_N))
     static const int MAX_N = 100010, MAX_LG = 17;
    pair<pair<int, int>, int> L[MAX_N];
     int P[MAX_LG + 1][MAX_N], n, step, count;
     int suffixArray[MAX_N], lcpArray[MAX_N];
     SuffixArray(const string &s): n(s.size()) { // Laufzeit: 0(n*log^2(n))
       for (int i = 0; i < n; i++) P[0][i] = s[i];
       suffixArray[0] = 0; // Falls n == 1.
10
      for (step = 1, count = 1; count < n; step++, count <<= 1) {</pre>
11
         for (int i = 0; i < n; i++) L[i] =</pre>
12
             {{P[step-1][i], i+count < n ? P[step-1][i+count] : -1}, i};
13
         sort(L. L + n):
         for (int i = 0; i < n; i++) P[step][L[i].second] = i > 0 &&
14
15
            L[i].first == L[i-1].first ? P[step][L[i-1].second] : i;
16
17
       for (int i = 0; i < n; i++) suffixArray[i] = L[i].second;</pre>
18
      for (int i = 1; i < n; i++)
19
         lcpArray[i] = lcp(suffixArray[i - 1], suffixArray[i]);
20
21
22
    // x und y sind Indizes im String, nicht im Suffixarray.
23
     int lcp(int x, int y) { // Laufzeit: 0(log(n))
24
      int k, ret = 0;
25
      if (x == y) return n - x;
26
      for (k = step - 1; k >= 0 && x < n && y < n; k--)
27
        if (P[k][x] == P[k][y])
28
           x += 1 << k, y += 1 << k, ret += 1 << k;
29
      return ret;
30
31 };
```

5.6 Suffix-Automaton

```
1 #define ALPHABET_SIZE 26
 2 struct SuffixAutomaton {
    struct State {
      int length; int link; int next[ALPHABET_SIZE];
       State() { memset(next, 0, sizeof(next)); }
     static const int MAX_N = 100000; // Maximale Länge des Strings.
     State states[2 * MAX_N];
     int size. last:
10
11
     SuffixAutomaton(string &s) { // Laufzeit: 0(|s|)
       size = 1: last = 0:
13
       states[0].length = 0;
14
       states[0].link = -1;
15
       for (auto c : s) extend(c);
16
    }
17
     void extend(char c) {
18
19
      c -= 'a'; // Werte von c müssen bei 0 beginnen.
20
       int current = size++;
21
       states[current].length = states[last].length + 1;
22
       int pos = last;
23
       while (pos != -1 && !states[pos].next[(int)c]) {
         states[pos].next[(int)c] = current;
24
25
         pos = states[pos].link;
26
27
       if (pos == -1) states[current].link = 0:
28
29
         int q = states[pos].next[(int)c];
30
         if (states[pos].length + 1 == states[q].length) {
31
           states[current].link = q;
32
         } else {
33
           int clone = size++:
34
           states[clone].length = states[pos].length + 1;
35
           states[clone].link = states[g].link:
36
           memcpy(states[clone].next, states[q].next,
37
               sizeof(states[q].next));
38
           while (pos != -1 && states[pos].next[(int)c] == q) {
39
             states[pos].next[(int)c] = clone;
40
             pos = states[pos].link;
41
42
           states[q].link = states[current].link = clone;
43
44
      last = current;
45
46
    // Paar mit Startposition und Länge des LCS. Index in Parameter s.
     ii longestCommonSubstring(string &s) { // Laufzeit: 0(|s|)
      int v = 0, l = 0, best = 0, bestpos = 0;
       for (int i = 0; i < (int)s.size(); i++) {
51
         int c = s[i] - 'a';
52
         while (v && !states[v].next[c]) {
53
          v = states[v].link:
```

```
l = states[v].length;
55
56
         if (states[v].next[c]) { v = states[v].next[c]; l++; }
57
         if (1 > best) { best = 1; bestpos = i; }
58
59
       return ii(bestpos - best + 1, best);
60
61
     // Berechnet die Terminale des Automaten.
62
    vector<int> calculateTerminals() {
64
       vector<int> terminals:
65
      int pos = last;
       while (pos != -1) {
66
67
         terminals.push_back(pos);
68
         pos = states[pos].link;
69
70
      return terminals:
71
72 | };
```

- Ist w Substring von s? Baue Automaten für s und wende ihn auf w an. Wenn alle Übergänge vorhanden sind, ist w Substring von s.
- Ist w Suffix von s? Wie oben. Überprüfe am Ende, ob aktueller Zustand ein Terminal ist.
- Anzahl verschiedener Substrings. Jeder Pfad im Automaten entspricht einem Substring. Für einen Knoten ist die Anzahl der ausgehenden Pfade gleich der Summe über die Anzahlen der Kindknoten plus 1. Der letzte Summand ist der Pfad, der in diesem Knoten endet.
- Wie oft taucht w in s auf? Sei p der Zustand nach Abarbeitung von w. Lösung ist Anzahl der Pfade, die in p starten und in einem Terminal enden. Diese Zahl lässt sich wie oben rekursiv berechnen. Bei jedem Knoten darf nur dann plus 1 gerechnet werden, wenn es ein Terminal ist.

5.7 Longest Common Subsequence

```
// Laufzeit: 0(|a|*|b|)
  string lcss(string &a, string &b) {
    int m[a.length() + 1][b.length() + 1], x=0, y=0;
     memset(m, 0, sizeof(m));
     for(int y = a.length() - 1; y >= 0; y--) {
      for(int x = b.length() - 1; x >= 0; x--) {
         if(a[y] == b[x]) m[y][x] = 1 + m[y+1][x+1];
         else m[y][x] = max(m[y+1][x], m[y][x+1]);
    }} // Für die Länge: return m[0][0];
     string res;
11
    while(x < b.length() && y < a.length()) {</pre>
      if(a[y] == b[x]) res += a[y++], x++;
13
      else if(m[y][x+1] > m[y+1][x+1]) x++;
14
      else y++;
15
    return res:
17 | }
```

5.8 Rolling Hash

```
1 | 11 q = 31; // Größer als Alphabetgröße. q=31,53,311
```

```
2 struct Hasher {
     string s;
     11 mod;
     vector<ll> power, pref;
     Hasher(const string& s, ll mod) : s(s), mod(mod) {
       power.push_back(1);
       for (int i = 1; i < (int)s.size(); i++)</pre>
         power.push_back(power.back() * q % mod);
10
       pref.push_back(0);
11
       for (int i = 0; i < (int)s.size(); i++)</pre>
12
         pref.push_back((pref.back() * q % mod + s[i]) % mod);
13
14
    // Berechnet hash(s[1..r]). l,r inklusive.
    ll hash(int 1, int r) {
       return (pref[r+1] - power[r-l+1] * pref[l] % mod + mod) % mod;
18
19 };
```

5.9 Manacher's Algorithm, Longest Palindrome

```
1 char input[MAX_N];
  char s[2 * MAX_N + 1];
3 int longest[2 * MAX_N + 1];
   void setDots() {
    s[0] = '.';
    int j = 1;
    for (int i = 0; i < (int)strlen(input); i++) {</pre>
      s[j++] = input[i];
       s[i++] = '.';
11
    s[j] = ' \setminus 0';
13 }
14
   void manacher() {
    int center = 0, last = 0, n = strlen(s);
     memset(longest, 0, sizeof(longest));
18
19
    for (int i = 1; i < n - 1; i++) {
       int i2 = 2 * center - i;
20
21
       longest[i] = (last > i) ? min(last - i, longest[i2]) : 0;
22
       while (i + longest[i] + 1 < n \&\& i - longest[i] - 1 >= 0 \&\&
23
           s[i + longest[i] + 1] == s[i - longest[i] - 1]) longest[i]++;
24
       if (i + longest[i] > last) {
25
         center = i;
26
         last = i + longest[i];
27
28
    for (int i = 0; i < n; i++) longest[i] = 2 * longest[i] + 1;</pre>
```

6 Sonstiges

6.1 Zeileneingabe

```
1 // Zerlegt s anhand aller Zeichen in delim.
```

```
vector<string> split(string &s, string delim) {
  vector<string> result; char *token;
  token = strtok((char*)s.c_str(), (char*)delim.c_str());
  while (token != NULL) {
    result.push_back(string(token));
    token = strtok(NULL, (char*)delim.c_str());
  }
  return result;
}
```

6.2 Bit Operations

```
1 // Bit an Position j auslesen.
2 (a & (1 << j)) != 0
3 // Bit an Position j setzen.
4 \mid a \mid = (1 << j)
5 // Bit an Position j löschen.
6 \mid a \& = \sim (1 << i)
7 // Bit an Position j umkehren.
8 \mid a = (1 << j)
9 // Wert des niedrigsten gesetzten Bits.
10 (a & -a)
11 // Setzt alle Bits auf 1.
13 // Setzt die ersten n Bits auf 1. Achtung: Overflows.
|14|a = (1 << n) - 1
15 // Iteriert über alle Teilmengen einer Bitmaske (außer der leeren Menge).
16 for (int subset = bitmask: subset > 0: subset = (subset - 1) & bitmask)
17 // Anzahl der gesetzten Bits.
18 int __builtin_popcount(unsigned int x);
19 int __builtin_popcountll(unsigned long long x);
20 // Anzahl der führenden 0-Bits.
21 int __builtin_clz(unsigned int x);
22 int __builtin_clzll(unsigned long long x);
```

6.3 Rekursiver Abstieg und Abstrakter Syntaxbaum

```
1 struct Token { // In globalem Vektor, Zugriff über globale Variable.
   int type: // Definiere Konstanten.
    double value:
    Token(int type) : type(type) {}
    Token(int type, int value) : type(type), value(value) {}
6 };
7
   struct Expression { // Die folgenden Klassen nur für den AST.
    virtual ~Expression() {};
    virtual double getValue() = 0;
11 | };
12
13 struct Atom : public Expression {
    double value;
    Atom(int value) : value(value) {};
    double getValue() { return value; }
17 | };
19 struct BinaryExpression : public Expression {
20 Expression *lhs, *rhs;
```

```
BinaryExpression(Expression *lhs, Expression *rhs): lhs(lhs), rhs(rhs) {}
    ~BinaryExpression() { delete lhs; delete rhs; }
23 };
24
25 struct Addition : public BinaryExpression {
    Addition(Expression *lhs, Expression *rhs) : BinaryExpression(lhs, rhs) {}
    double getValue() { return lhs->getValue() + rhs->getValue(); }
28 };
29
30 Expression* parseF() {
    Expression *lhs:
     switch(tokens[token].type) {
       case NUMBER: return new Atom(tokens[token++].value);
34
       case LEFT PAR:
35
        token++:
36
        lhs = parseA():
37
        token++:
38
        return lhs:
39
       default:
40
        return NULL;
41 }}
42
43 Expression* parseA_(Expression *lhs) {
    Expression *plus, *minus;
    if (token >= (int)tokens.size()) return lhs;
     switch(tokens[token].type) {
47
       case ADDITION:
48
        token++;
49
         plus = new Addition(lhs, parseS());
50
        return parseA_(plus);
51
       case SUBTRACTION:
52
        token++;
53
         minus = new Subtraction(lhs, parseS());
54
         return parseA_(minus);
55
       default:
56
        return lhs:
57 }}
59 Expression* parseA() {
   Expression *lhs = parseS(); return parseA_(lhs);
```

6.4 Sonstiges

```
// Alles-Header.
// Alles-Header.
// Schnelle Ein-/Ausgabe mit cin/cout.
ios::sync_with_stdio(false);
cin.tie(NULL);
// Set mit eigener Sortierfunktion.
set<point2, decltype(comp)> set1(comp);
// PI
#define PI (2*acos(0))
// STL-Debugging, Compiler flags.
-D_GLIBCXX_DEBUG
// 128-Bit Integer/Float. Zum Einlesen/Ausgeben in long long casten.
-int128, __float128
```

6.5 Josephus-Problem

n Personen im Kreis, jeder *k*-te wird erschossen.

Spezialfall k=2: Betrachte Binärdarstellung von n. Für $n=1b_1b_2b_3...b_n$ ist $b_1b_2b_3...b_n$ 1 die Position des letzten Überlebenden. (Rotiere n um eine Stelle nach links)

```
int rotateLeft(int n) { // Der letzte Überlebende, 1-basiert.

for (int i = 31; i >= 0; i--)
    if (n & (1 << i)) {
        n &= ~(1 << i);
        break;
    }
    n <<= 1; n++; return n;
}</pre>
```

Allgemein: Sei F(n,k) die Position des letzten Überlebenden. Nummeriere die Personen mit $0,1,\ldots,n-1$. Nach Erschießen der k-ten Person, hat der Kreis noch Größe n-1 und die Position des Überlebenden ist jetzt F(n-1,k). Also: F(n,k)=(F(n-1,k)+k)%n. Basisfall: F(1,k)=0.

```
int josephus(int n, int k) { // Der letzte Überlebende, 0-basiert.
if (n == 1) return 0;
return (josephus(n - 1, k) + k) % n;
}
```

Beachte bei der Ausgabe, dass die Personen im ersten Fall von 1, ..., n nummeriert sind, im zweiten Fall von 0, ..., n-1!

6.6 Gemischtes

- Johnsons Reweighting Algorithmus: Füge neue Quelle S hinzu, mit Kanten mit Gewicht 0 zu allen Knoten. Nutze Bellmann-Ford zum Betsimmen der Entfernungen d[i] von S zu allen anderen Knoten. Stoppe, wenn es negative Zyklen gibt. Sonst ändere die gewichte von allen Kanten (u,v) im ursprünglichen Graphen zu d[u]+w[u,v]-d[v]. Dann sind alle Kantengewichte nichtnegativ, Dijkstra kann angewendet werden.
- System von Differenzbeschränkungen: Ändere alle Bedingungen in die Form *a* − *b* ≤ *c*. Für jede Bedingung füge eine Kante (b,a) mit Gweicht c ein. Füge Quelle s hinzu, mit Kanten zu allen Knoten mit Gewicht 0. Nutze Bellmann-Ford, um die kürzesten Pfade von s aus zu finden. d[v] ist mögliche Lösung für v.
- Min-Weight-Vertex-Cover im bipartiten Graph: Partitioniere in A, B und füge Kanten s
 -> A mit Gewicht w(A) und Kanten B -> t mit Gewicht w(B) hinzu. Füge Kanten mit Kapazität ∞ von A nach B hinzu, wo im originalen Graphen Kanten waren. Max-Flow ist die Lösung.

Im Residualgraphen:

- Das Vertex-Cover sind die Knoten inzident zu den Brücken. oder
- Die Knoten in A, die nicht von s erreichber sind und die Knoten in B, die von erreichber sind.
- Allgemeiner Graph: Das Komplement eines Vertex-Cover ist ein Independent Set. ⇒ Max Weight Independent Set ist Komplement von Min Weight Vertex Cover.
- **Bipartiter Graph:** Min Vertex Cover (kleinste Menge Kanten, die alle Knoten berühren) = Max Matching.

- **Bipartites Matching mit Gewichten auf linken Knoten:** Minimiere Matchinggewicht. Lösung: Sortiere Knoten links aufsteigend nach Gewicht, danach nutze normlen Algorithmus (Kuhn, Seite 7)
- Satz von Pick: Sei *A* der Flächeninhalt eines einfachen Gitterpolygons, *I* die Anzahl der Gitterpunkte im Inneren und *R* die Anzahl der Gitterpunkte auf dem Rand. Es gilt:

$$A = I + \frac{R}{2} - 1$$

• **Lemma von Burnside:** Sei G eine endliche Gruppe, die auf der Menge X operiert. Für jedes $g \in G$ sei X^g die Menge der Fixpunkte bei Operation durch g, also $X^g = \{x \in X \mid g \bullet x = x\}$. Dann gilt für die Anzahl der Bahnen [X/G] der Operation:

$$[X/G] = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

• **Polya Counting:** Sei π eine Permutation der Menge X. Die Elemente von X können mit einer von m Farben gefärbt werden. Die Anzahl der Färbungen, die Fixpunkte von π sind, ist $m^{\#(\pi)}$, wobei $\#(\pi)$ die Anzahl der Zyklen von π ist. Die Anzahl der Färbungen von Objekten einer Menge X mit m Farben unter einer Symmetriegruppe G is gegeben durch:

$$[X/G] = \frac{1}{|G|} \sum_{g \in G} m^{\#(g)}$$

- Verteilung von Primzahlen: Für alle $n \in \mathbb{N}$ gilt: Ex existiert eine Primzahl p mit $n \le p \le 2n$.
- Satz von Kirchhoff: Sei *G* ein zusammenhängender, ungerichteter Graph evtl. mit Mehrfachkanten. Sei *A* die Adjazenzmatrix von *G*. Dabei ist *a_{ij}* die Anzahl der Kanten zwischen Knoten *i* und *j*. Sei *B* eine Diagonalmatrix, *b_{ii}* sei der Grad von Knoten *i*. Definiere *R* = *B* − *A*. Alle Kofaktoren von *R* sind gleich und die Anzahl der Spannbäume von *G*. Entferne letzte Zeile und Spalte und berechne Betrag der Determinante.
- **DILWORTH's-Theorem:** Sei S eine Menge und \leq eine partielle Ordnung (S ist ein Poset). Eine *Kette* ist eine Teilmenge $\{x_1, \ldots, x_n\}$ mit $x_1 \leq \ldots \leq x_n$. Eine *Partition* ist eine Menge von Ketten, sodass jedes $s \in S$ in genau einer Kette ist. Eine *Antikette* ist eine Menge von Elementen, die paarweise nicht vergleichbar sind.
 - Es gilt: Die Größe der längsten Antikette gleicht der Größe der kleinsten Partition. \Rightarrow Weite des Poset.
 - Berechnung: Maximales Matching in bipartitem Graphen. Dupliziere jedes $s \in S$ in u_s und v_s . Falls $x \le y$, füge Kante $u_x \to v_y$ hinzu. Wenn Matching zu langsam ist, versuche Struktur des Posets auszunutzen und evtl. anders eine maximale Anitkette zu finden.
- Mo's Algorithm: SQRT-Decomposition auf n Intervall Queries [l,r]. Gruppiere Queries in \sqrt{n} Blöcke nach linker Grenze l. Sortiere nach Block und bei gleichem Block nach rechter Grenze r. Beantworte Queries offline durch schrittweise Vergrößern/Verkleinern des aktuellen Intervalls. Laufzeit: $O(n \cdot \sqrt{n})$. (Anzahl der Blöcke als Konstante in Code schreiben.)
- Centroids of a Tree: Ein *Centroid* ist ein Konten, der einen Baum in Komponenten der maximalen Größe $\frac{|V|}{2}$ splitted. Es kann 2 Centroids geben! Centroid Decomposition: Wähle zufälligen Knoten und mache DFS. Verschiebe ausgewählten Knoten in Richtung des tiefsten Teilbaums, bis Centroid gefunden. Entferne Knoten, mache rekursiv in Teilbäumen weiter. Laufzeit: $O(|V|\log(|V|))$.

Hello KITty

25

• Kreuzprodukt

$$a \times b = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

6.7 Tipps & Tricks

- Run Tim Error:
 - Array-Grenzen überprüfen. Indizierung bei 0 oder bei 1 beginnen?
 - Abbruchbedingung bei Rekursion?
 - Evtl. Memory Limit Exceeded?
 - *n* und *m* verwechselt?
- Gleitkommazahlen:
 - Nan? Evtl. ungültige Werte für mathematische Funktionen, z.B. acos(1.0000000000001)
 - Flasches Runden bei negativen Zahlen? Abschneiden ≠ Abrunden!
 - Output in wissenschaftlicher Notation (1e-25)?
 - Kann -0.000 ausgegeben werden?
- Wrong Answer:
 - Lies Aufgabe erneut. Sorgfältig!
 - Mehrere Testfälle in einer Datei? Probiere gleichen Testcase mehrfach hintereinander.
 - Integer Overflow? Teste maximale Eingabegrößen und mache Überschlagsrechnung.
 - Einabegrößen überprüfen. Sonderfälle ausprobieren.
 - * n = 0, n = -1, n = 1, $n = 2^{31} 1$, $n = -2^{31} = 2147483648$
 - * n gerade/ungerade
 - * Graph ist leer/enthält nur einen Knoten.
 - * Graph ist Multigraph (enthält Schleifen/Mehrfachkanten).
 - * Sind Kanten gerichtet/ungerichtet?
 - * Polygon ist konkav/selbstschneidend.
 - Bei DP/Rekursion: Stimmt Basisfall?
 - Unsicher bei benutzten STL-Funktionen?