第七章 卤代烃 (4)

主要内容

- 卤代烃与金属的反应,金属有机化合物的类型及制法
- Grignard试剂的制备,反应条件的要求, Grignard试剂的
 - 一些主要反应及其在合成上的应用
- 二烷基铜锂试剂的一些主要反应及应用
- ■不饱和卤代烃的化学性质

■复习:卤代烃的消除反应

$$\frac{-\frac{H}{c}}{\frac{1}{c}} = \frac{1}{c} + \frac$$

卤代烃与活泼金属的反应

金属有机化合物

- 1. 类型(根据化学键的极性进行分类)
 - 强离子键(与碱金属形成的化合物)

▶弱离子键(与碱土金属形成的化合物)

金属	电负性	
Li	1.0	
Mg	1.2	
Cd	1.7	
Cu	1.9	

R-MgX 烷基卤化镁 (Grignard试剂,格氏试剂,格林雅试剂)

▶极性共价键(与第Ⅲ, IV主族金属形成的化合物) R₃AI 三烷基铝

▶非极性共价键(与过渡金属形成的化合物)

R₂CuLi 二烷基铜锂

R₂Cd 烷基镉

2. 金属有机化合物的制备

●直接法

较活泼金属可与 RX 直接反应

▶反应活性: RI > RBr > RCI

脂肪族卤代物 > 芳香族卤代物和烯基卤代物

•交换法

较不活泼金属, 用交换法

2 RLi + Cul
$$\longrightarrow$$
 R₂CuLi + Lil
2 RMgCl + CdCl₂ \longrightarrow R₂Cd + 2 MgCl₂

3. 烷基卤化镁 (Grignard试剂) 的性质

• 基本性质:活泼,不太稳定

▶遇氧气发生反应(本身还原性很强)

$$2 R-MgX + O_2 \longrightarrow 2 R-OMgX \longrightarrow R-OH$$

诺贝尔化学奖 (**1912**)

Victor Grignard (1875 ~1935)

• Grignard 作为碱(极易和能提供质子的化合物反应生成烃)

化合物	pKa	共轭碱	化合物	pKa	共轭碱
(CH ₃) ₃ C–H	71	(CH ₃) ₃ C [⊙]	H ₂ N–H	36	H₂N [⊙]
CH₃CH₂−H	62	CH₃CH₂ [⊙]	HC≡C–H	26	HC≡C⊖
CH ₃ –H	60	CH₃ [⊙]	CH ₃ CH ₂ O-H	16	CH ₃ CH ₂ O [©]
			HO–H	15.7	НО⊖

提示

- ▶制备Grignard试剂应在无水(无氧)条件下进行。
- ▶底物中不能有活泼氢存在。

➤应用:通过Grignard试剂制备氘代化合物或还原卤代烷至烷烃

$$R-X$$
 \xrightarrow{Mg} $R-MgX$ $\xrightarrow{D_2O}$ $R-D$ 氘代 $\xrightarrow{\mathbb{R}}$ \mathbb{R}

Grignard 作为亲核试剂

> 与卤代烷的亲核取代

例:
$$RCH=CHCH_2-MgX + RCH=CHCH_2-X - \longrightarrow$$
 $RCH=CHCH_2-CH_2CH=CHR + MgX_2$

提示:制备活泼卤代烷的Grignard试剂时, 应采用低温和稀溶液反应,以防偶联发生。

> 与环氧乙烷衍生物的反应

提示: 合成上用于制备比卤代烷多2个碳的醇类化合物

▶ 与醛酮的亲核加成反应(了解)

提示:合成 上用于制备 醇类化合物。 ▶ 与酯类加成 (了解)

$$R'-C-OEt \xrightarrow{2 R-MgX} H_2O \xrightarrow{R+C-R'}$$

> 与CO₂加成 (掌握)

制备多1个碳的羧酸

Grignard 试剂在合成中应用小结

4. 有机锂的主要性质

$$CH_3(CH_2)_2CH_2Br$$
 + 2 Li $\frac{Z$ 醚 $CH_3(CH_2)_2CH_2Li$ + LiBr

烷基锂的化学活性高于Grignard试剂,易于被空气氧化, 遇水、酸、醇、氨等含活泼氢的化合物则分解,因此在 制备和使用时,通常在无水无氧条件下,使用惰性气体 保护,所用溶剂必须特别干燥。

R-Li活泼,亲核性能强,体积小

$$(CH_3)_3C-CO-C(CH_3)_3 + (CH_3)_3C-Li \xrightarrow{Et_2O} [(CH_3)_3C]_3C-OH$$

5. 二烷基铜锂的主要性质

➤ 对比: Wurtz反应 (1885)

•混合卤代烃的反应产物复杂

$$RX + R'X \xrightarrow{Na} R-R + R-R' + R'-R'$$

Wurtz反应只能制备对称烷烃,不同卤代烷反应生成混合产物

✓ Wurtz反应中间体可能是烷基钠

$$RX + Na$$
 \longrightarrow $\begin{bmatrix} R \ominus Na \oplus \end{bmatrix}$ $\begin{bmatrix} R-X \\ BB \end{bmatrix}$ $R-R$ 烷基钠

不饱和卤代烃的化学性质

I. 卤代烯烃

一. 卤代烯烃的分类

按照X与不饱和碳的相对位置, 卤代烯烃可分为三类:

例: CICH=CHCH₂Cl 既是乙烯型卤代烯烃, 1,3-二氯丙烯 又是烯丙型卤代烯烃

双键位置对卤原子活泼性的影响

X与C=C的相对位置不同,化学性质大为不同。卤原子活泼性顺序为:

RCH=CHCH
$$_2$$
X > RCH=CH $(CH_2)_n$ X > RCH=CHX
烯丙型 隔离型 乙烯型

例2:

$$CH_2=CHCH_2X$$
 $\xrightarrow{NaOH/H_2O}$ \rightarrow $CH=CHCH_2OH$ (快于饱和卤烃) $CH_2=CHCH_2CH_2X$ $\xrightarrow{NaOH/H_2O}$ \rightarrow $CH_2=CHCH_2CH_2OH$ (与饱和卤烃相当) $CH_2=CHX$ $\xrightarrow{NaOH/H_2O}$ \rightarrow 很难! Why ?

(1) 乙烯型卤代烃

以氯乙烯为例:

共轭结果:

离域, 键长平均化。

键n/ m

0. 138 0. 172

(0.134) (0.177)

CC-1键解短稳性

CC-1铵烷!

乙烯型卤代烯烃的化学性质:难取代,难消除。

乙烯型卤代烯烃中卤原子的不活泼性是相对的,在一定条件下,也可发生反应:

氯乙烯分子中的双键的性质仍然保留,可发生加成和聚合 反应:

(2) 烯丙型卤代烃

烯丙型卤代烯烃中的C-X键易断。例:

烯丙型卤代烯烃的特殊活泼性是由于亲 核取代反应的中间体或过渡态稳定。

对于双分子反应:

过渡态中心碳原子与邻位的π键有共 轭稳定作用,有利于降低活化能,使 反应迅速完成。

α-C,sp²杂化

对于单分子反应:

$$CH_2 = CH - CH_2^+ \implies H_{\text{H}} = C - CH_2^+ + C$$

缺电子 $p-\pi$ 共轭, $\alpha-C$ 上正电荷得以分散、离域,体系能量

生成的中间体碳正离子存在着p-π共轭体系而有相当好的稳定性,容易生成。

用共振论的观点:

$$CH_2 = CH - \overset{+}{C}H_2 \longrightarrow \overset{+}{C}H_2 - CH = CH_2$$
 $\mathbb{D}: \overset{\delta^+}{C}H_2 - CH = CH_2$

例1:

中间体:
$$CH_3CH=CHCH_2$$
 \longrightarrow $CH_3CH=CH_2$ \longrightarrow $OH^ \longrightarrow$ $OH^ \longrightarrow$

例2:

$$\left(\begin{array}{c} \text{CH}_2 = \text{CH} - \overset{+}{\text{CH}} - \text{C} \left(\text{CH}_3 \right)_3 \xrightarrow{-\text{CH}_3 \text{迁}8} \\ & \text{CH}_2 = \text{CH} - \overset{+}{\text{CH}} - \overset{+}{\text{C}} \left(\text{CH}_3 \right)_2 \xrightarrow{-\text{H}^+} \right) \\ & \text{CH}_3 & \text{CH}_3 \\ & \text{C} + \text{CH}_3 & \text{C} + \text{CH}_2 = \text{CH} - \text{C} = \text{C} \left(\text{CH}_3 \right)_2 \\ & \text{CH}_3 & \text{C} + \text{CH}_3 & \text{C} + \text{$$

例3:

(3) 隔离型卤代烃

例:

II. 卤苯

芳环上的亲核取代反应 | ——加成 - 消除机理

>一般条件下芳环上的亲核取代较难发生

■含硝基芳香卤代物的取代

■ 取代反应的机理 —— 加成 – 消除机理

实验证据:

- i. 动力学证据:双分子反应
- ii. NO2在间位时反应难发生
- iii. X 为 CI, Br, I 时反应的速率接近
- iv. X = F 时反应速率较快
- v. 邻对位硝基增加, 反应更加容易

芳环上的亲核取代反应Ⅱ —— 苯炔机理

>两种不同的反应情况

一般性亲核能力的亲核试剂在常温常压不反应

机理?

■ 苯炔机理 (消除 - 加成机理)

■苯炔的结构

■ 苯炔的性质:

活泼、易反应(不能分离、可捕获)

■苯炔机理的实验证据:

(i) 环上有标记时生成两种产物

如果通过其它机理,产物可能有什么不同?

(ii) 同位素效应

取代反应速率:

同位素效应

(iii) 离去基团X的邻位无 α 氢时,反应不发生

H₃C OCH₃ NH₂ No Reaction NH₃

说明机理中可能 有夺氢步骤

(iv) 环上有强吸电子基时,产物单一

苯炔机理的解释

说明了什么?

本次课小结:

- ▶卤代烃与金属的反应
- 有机金属化合物的类型及制法
- ➤ Grignard试剂的制备,Grignard试剂的一些主要反应及 其在合成上的应用
- 二烷基铜锂试剂的一些主要反应及应用
- ➤不饱和卤代烃的化学性质

作业: P 269页

8-2 (2) (3) (4) (7) (8) (12); 8-3 (1) (5) (6) (7) (9); 8-6 (1);8-7(3);

8-8 (2); 8-12 (1); 8-13 (1) (3); 8-14 (1) (3); 8-18.