No aids allowed. Insufficient justification will result in a loss of marks.

1. [6 marks] Determine whether the following pairs of graphs are isomorphic. If so, give an isomorphism. If not, give a reason.

G and H are not isomorphic.

Here are some reasons (one is sufficient and there are others):

- G has 3 vertices of degree 2 whereas H has only 2 vertices of degree 2.
- The degree sequences of the two graphs are for G: (4, 4, 4, 2, 2, 2) and for H: (4, 4, 3, 3, 2, 2).

J and K are isomorphic.

Here is an isomorphism (there are others):

h: V(J) -> V(K) defined by h(1) = a, h(2) = c, h(3) = e, h(4) = b, h(5) = d, h(6) = f.

2. [3 marks] Draw the strongly connected components of the directed graph below.

This directed graph has three strongly connected components shown below:

(f)

- 3. [7 marks] Recall that the wheel W_n , $n \ge 3$, consists of the cycle C_n together with a vertex joined to each vertex of C_n .
 - (a) Draw W₆ twice.

If W₆ has an Euler circuit, mark it on your first picture.

If W₆ has a Hamilton cycle, mark it on your second picture.

 v_6 v_7 v_7 v_8 v_8 v_9 v_9

W₆ has no Euler circuit because it has odd-degree vertices

W₆ has a Hamilton cycle as shown v₁, v₂, v₃, v₄, v₅, v₆, v₇, v₁ (there are many)

(b) For what values of n does W_n have an Euler circuit? Explain briefly.

No values of n.

In order for a graph to have an Euler circuit, all vertices must have even degree.

In W_n , where the vertex of degree n is v_{n+1} , all other vertices have degree 3, so there is no Euler circuit.

(c) For what values of n does W_6 have an Hamilton cycle? Explain briefly.

All values of n.

In W_n , where the vertex of degree n is v_{n+1} , the following is a Hamilton cycle (there are others): v_1 , v_2 , ..., v_n , v_{n+1} , v_1

4. [4 marks]

- (a) Draw the 3-dimensional hypercube Q_3 with its vertices labelled with its vertices labelled appropriately with 01- strings of length 3.
- (b) Mark a Hamilton cycle in Q_3 . (One is marked in blue there are many)
- (c) Give a Gray code using your answers to (a) and (b).

Corresponding Gray code: 000 - 100 - 101 - 001 - 011 - 111 - 110 - 010 - 000