4. Gamma and Beta Random Variables

Let $V_1 \sim \text{Gamma}(a, \lambda)$ be independent of $V_2 \sim \text{Gamma}(b, \lambda)$. These variables may be used to define the Beta, F^* and F distributions.

a) Define $S = V_1 + V_2$ and $X = V_1/(V_1 + V_2)$. Find the joint pdf for S and X and show that these are independent $Gamma(a + b, \lambda)$ and Beta(a, b) random variables. Explain what this implies about the waiting time for some number of Poisson events, and the proportion of that time spent waiting for the first event (e.g.). Give the analogous explanation in terms of squared, centered Normal random variables.

Jacobian Transformation: To go from
$$f_{v_1v_2}(v_1v_2) dv_1dv_2 + 0$$
 $f_{ex}(s_1x) dedx$

$$\frac{d(v_1,v_2)}{d(s_1x)} = \begin{pmatrix} \frac{dv_1}{ds} & \frac{dv_1}{dx} \\ \frac{dv_2}{ds} & \frac{dv_2}{ds} \end{pmatrix} = \begin{pmatrix} x & s \\ 1-x & -s \end{pmatrix} \therefore |det| = |-sx-s(1-x)| = 1-s1 = s$$

So
$$f_{N,NS}(n',NS) = f_{N'}(N)f_{NS}(nS) = \frac{1}{N} \frac{\alpha}{N} \frac{\alpha-1}{N} + \frac{1}{N} \frac{\alpha}{N} \frac{1}{N} \frac{1}{$$

$$b^{2X}(2^{!}X) = \frac{L(\alpha)}{\gamma_{\alpha}}(X2) \cdot G \cdot \left(\frac{L(P)}{\gamma_{\rho}}(2^{(1-X)}) \cdot G \cdot \frac{L(P)}{\gamma_{\rho}}\right)$$

SOI

$$\frac{P(a)P(b)}{P(abb)} :$$

$$\frac{P(abb)}{P(abb)} :$$

$$\frac{P(abb)}{P(a)P(b)} :$$

$$\frac{P(abb)}{P(abb)} :$$

$$V_1 \sim Gama(\alpha_1 \lambda) \rightarrow \alpha = \frac{m_1}{2} \rightarrow V_1 \sim X^2(m_1)$$

 $V_2 \sim Gamma(b_1 \lambda) \rightarrow b = \frac{m_2}{2} \rightarrow V_2 \sim X^2(m_2)$

	c) Sho	w that Ur	niform(0.	1) is a spec	cial ca	se of	the Bet	a distr	ibutio	on. A	s an	exam	ple o	f a U	nifor	m				
	vari	able, cons	sider the	joint pdf	of X	and Y	, the t	imes c	of the	first	and	secon	nd ev	ents	from	a				
		_	,	Y). Show									_			-				
				$=V_1+V_2$ onstant y ,									te no	ow A	Y =	y				
V1 V	z 109	Expon	ental	ە6 ~ (ىد	mmo	((1,2	2													
were	now	non	part C	x that																
				or Unit		(0.1		specu	~/ (~~	Casy		_	- ~ -						
	7117	20.0	((,,)	01.01.11	0,,,,		•	speci	3	ے مح	ω,	ierc		-0-	`					
Vi=h	ne v	VHI 181	even	+																
VZ=	tine	perwee	n 184 a	nd snd	ever	14														
				. (0.1)																
0,10,	4VZ =	€ ~	Uniforn	V (O'E)																
			\longrightarrow																	
		t																		
~ Z\$ (re Kona	on par	~ 1000 °	re total	. ev	en ts	1001	~ (v	1 +VZ	ω, د	(\ ve	. Ven	ow	<i>alo</i> c	sut	ever	14 I	115	ma	,
14. 1	appe	red at	SOME	boint p	etore	- t.	but a	((7111	es a	ne_	edi	Jan	1 114	1614	90		\sim	טווויטי	וואי נכ	נשונ
Hove	rer,																			
N	o+ tv	e same	208	V11V1	۷,	15	ΤΟΙΛ	Unifo	m.											
	17		-,.	ve do no	1					,od										
20	32	· umm																		
40	21	(00		it is mo																
	+-	m	t _	nos tuo	g No	1660	c on	ythre	per	me	t									
			U -,	so in t	his c	ઝક્ટ	V, 1\	1,ct i	~ EX1	χ) <i>ο</i> ς	2									

	$J_{(n)} < 1$. Use	$a \overset{\text{i.i.d.}}{\sim} \text{Unif}(0,1),$ a differential ar	, define $U_{(k)}$ rgument to s	to be the show that	k th order $U_{(k)} \sim \mathrm{B}\epsilon$	er statistie $ta(k, n -$	k + 1,	$0 < U_{(1)}$ for $k = 1$	$< \dots < \dots < \dots, n.$	
11	"ia Unif (011)									
		nstic (ie, u	Li=min(U,	, Un) a	nd Un=1	max(U,,	un)			
		E [u,u+du]								
	u wou	7								
(u	· (Inom, n.	= P(K-1 Uioca	a, I Ui EEu	r Lubrun	r-K Wis ?	(wotw				
		es could b			Tub					
note:	(k·i) choi	ces for the	lover k-1							
S. P(u	LV 6. T 11. 11. 11. 11.	~ ~ (n-1)	~ x-1(dv)	()- (u+a	מא)					
fux	c(u)du≈P	(Ux EEu, uto	(End							
qn-sc Im	and divid	e du then								
(11)	- " ("-") '	N-1 ()-11/N-16			8	plify to	w/wco	. 8010		
were,	= (N-1);(N-K-	2) ux-1 (1-u)	1-K							6(220)
	= (N-1); (N-K)	، سمر (۱۰۰	Nn-K		7	(K) L(N-	c+1)	P(K) P	(n-KH)	P(0+0)
		W+1) UX-1		د						
	P(K) P(
	(where a=	k and	10=n-K	+1				
	G Beta d									
		listribution ~ Beta (K,								