1. Введение в машинное обучение

Зеленков Ю. А. (с) 2024

Содержание

- Краткое введение
- Виды данных и основные задачи.
- Инфраструктура машинного обучения.
- Статистические методы обучения на табличных данных.
- Предиктивные модели. Линейная регрессия.
- Предиктивные модели. Бинарная классификация.
- Экспланаторный анализ данных. Кластеризация

Оценим ваш бэкграунд

https://forms.gle/uUzGYChijJMVdvXo8

Содержание лекций

- 6.03: введение, линейные модели
- 13.03: деревья, нейронные сети, ансамбли, метрики
- 20.03: процесс решения задачи ML
- 27.03: глубокое обучение
- 29.03:
 - Обучение с подкреплением
 - AutoML
 - Интерпретация моделей
 - Каузальное моделирование

Рекомендуемая литература

- Флах, П. (2015) Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. ДМК Пресс.
- Шолле, Ф. (2022). Глубокое обучение на Python. Питер.
- Мишра, П. (2022). Объяснимые модели искусственного интеллекта на Python. ДМК Пресс.
- Рассел, С., & Норвиг, П. (2016). Искусственный интеллект: Современный подход. Вильямс.

Материалы курса

https://github.com/yzelenkov/ML_for_MBI/

Цикл технологического развития

Процесс принятия решений

Герберт Саймон (1916 - 2001)

Премия Тюринга — 1975 Нобелевская премия - 1978

Garbage Can Model

Искусственный интеллект как наука

^{*} термин АІ введен Дж. Маккарти в 1956 г.

Неструктурированные

Text

Image

Video

Sound

Machine Learning

Инфраструктура ML

Техническая архитектура

Architectural View of IPython's parallel machinery

Другие ядра

IRKernel

IJulia

Варианты использования

Все локально на компьютере разработчика

Статистические методы обучения на табличных данных

https://www.statlearning.com

Целью обучения является понимание и предвидение.

Статистический вывод (statistical inference) - это набор методов, которые позволяют формулировать суждения об общем (генеральная совокупность) на основании частного (выборка), оценивая меру уверенности в предсказании, вероятность ошибки.

Статистическая теория обучения имеет дело с задачами нахождения предсказательной функции на основе обучающего набора данных.

Формально

атрибуты M 182 89 F 165 58 M 176

- Пусть X векторное пространство *всех возможных* входных данных, а Y векторное пространство *всех возможных* выходов.
- Статистическая теория обучения предполагает, что имеется некое *неизвестное* распределение вероятности над произведением пространств $Z = X \times Y$, т. е. существует некоторая неизвестная функция p(z) = p(x, y).
- Обучающее множество данных состоит из n наблюдений, полученных из распределения p(z):

$$\mathcal{D} = \{z_1, \dots, z_n\} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

- Задача состоит в нахождении функции $f: X \to Y$ из функционального пространства \mathcal{F} , такой что $f(x,\theta) \sim y$. Здесь θ вектор параметров.
- Пусть $L(f(x,\theta),y)$ метрика (функция потерь), измеряющая разность между $f(x,\theta)$ и y.
- Тогда лучшая функция f это та, которая минимизирует эмпирический риск:

$$R(f) = \frac{1}{n} \sum_{i=1}^{n} L(f(x,\theta), y_i).$$

Метод статистического обучения

ДАННЫЕ

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

ПРОСТРАНСТВО ГИПОТЕЗ

$$f \in \mathcal{F}$$

ФУНКЦИЯ ПОТЕРЬ

$$L(f(x,\theta),y)$$

Алгоритм, оптимизирующий $L(f(x,\theta),y)$

ПРЕДИКТИВНАЯ ФУНКЦИЯ

$$f: X \to Y$$

Линейная регрессия

Результат

Базовый процесс ML

```
# Sklearn pipilene

□ ↑ ↓ ≛ ♀ ■

lr = LinearRgeression() # инициализируем объект, реализующий предиктивную модель

lr.fit(X, y) # обучаем модель

y_pred = lr.predict(X) # вычисляем предсказанные значения
```

Отличие от эконометрики

Эконометрика (статистика)

- Предполагается, что модель отражает каузальные связи в системе.
- Поэтому важно включить в модель все значимые факторы (и исключить незначимые).
- Величина коэффициентов регрессии имеет смысл это изменение y при изменении x на единицу.
- Качество модели оценивается через ошибку на обучающих данных.

Машинное обучение

- Важные предиктивная (обобщающие) способность модели.
- Каузальные связи между факторами не интерпретируются.
- Больше данных лучше модель.
- Качество модели оценивается как ошибка на данных, которые модель не видела.

Многомерная линейная регрессия

California Housing Dataset (20640 наблюдений, 8 атрибутов)

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal housing.html

Атрибуты:

MedInc медианный доход в квартале

HouseAge средний возраст дома в квартале

AveRooms среднее количество комнат на одно домохозяйство

AveBedrms среднее количество спален на одно домохозяйство

Population население квартала

А**veOccup** среднее количество членов домохозяйства

Latitude широта, на которой расположен квартал

Longitude долгота, на которой расположен квартал

Целевая переменная:

MedHouseVal медианная стоимость дома в квартале в сотнях тысяч долларов (\$100 000)

Посмотрим на данные

Результат

коэффициенты

Intercept : -35.497
MedInc : 0.444
HouseAge : 0.009
AveRooms : -0.120
AveBedrms : 0.638
Population: -0.000
AveOccup : -0.005
Latitude : -0.407
Longitude : -0.419

В ML эти значения интерпретируемого смысла не имеют!

Классификация

Регрессия и классификация

Чаще всего рассматриваются 2 класса, т.е. $Y \in \{0,1\}$ - бинарная классификация

Модель: логистическая регрессия

Логистическая регрессия (logit model) — статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём его сравнения с логистической кривой.

 $Y \in \{0,1\}$ - зависимая переменная , принимающая лишь одно из двух значений: 0 (событие не произошло) и 1 (событие произошло),

 $X \in \mathbb{R}^k$ - множество вещественных независимых переменных (признаков, предикторов, регрессоров), на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$z = \theta_0 + \theta_1 x_1 + \dots + \theta_k x_k$$

Функция потерь - 1

Вероятность позволяет нам предсказывать неизвестные результаты, основанные на известных параметрах: $P(x) = P(x|\theta)$

Правдоподобие позволяет нам оценивать неизвестные параметры, основанные на известных результатах.: $L(\theta) = L(\theta|x = X)$

Фу́нкция правдоподо́бия — это совместное распределение выборки из параметрического распределения, рассматриваемое как функция параметра.

Она позволяет оценить несколько распределений с разными параметрами и оценить для какого из них наблюдаемые значения наиболее вероятны.

Найти параметры θ , максимизирующие значение функции правдоподобия

$$L(\theta) = \prod_{i=1}^{n} P(y = y_i | x = x_i)$$

на обучающей выборке

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

Функция потерь - 2

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} L(\theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} P(y = y_i | x = x_i)$$

Максимизация функции эквивалента максимизации ее логарифма:

$$\ln L(\theta) = \sum_{i=1}^{n} \ln P(y = y_i | x = x_i) = \sum_{i=1}^{n} [y_i \ln f(x_i, \theta) + (1 - y_i) \ln (1 - f(x_i, \theta))]$$

Метод оптимизации: градиентный спуск

Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины f, значение которой меняется от одной точки пространства к другой, образуя скалярное поле.

По модулю (величине) ∇f равен скорости роста величины f в направлении вектора.

Если f функция k переменных $x_1, ... x_k$, то ее градиентом называется k-мерный вектор

$$\left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_k}\right)$$

Основная идея метода градиентного спуска ($\underline{npu\ muhumu3auuu}$) заключается в том, чтобы идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом $-\nabla f$

$$\theta^{|j+1|} = \theta^{|j|} - \lambda^{|j|} \nabla f(x,\theta)$$
, λ – скорость градиентного спуска

Пример: предсказание банкротств

Данные: 2457 компаний, из них 456 банкротов, 12 атрибутов

Финансовые коэффициенты					
	0	1	2	3	4
Коэффициент текущей ликвидности	1,855	2,195	0,546	2,075	0,328
Коэффициент быстрой ликвидности	0,495	1,760	0,501	1,739	0,203
Коэффициент абсолютной ликвидности	0,119	0,255	0,004	0,061	0,007
Коэффициент оборота задолженности	7,863	3,939	2,401	2,934	3,588
Коэффициент оборачиваемости средств	2,379	2,902	2,094	2,361	1,706
Соотношение собственных и заемных средств	10,701	1,073	1,624	1,506	-2,512
Коэффициент собственных оборотных средств	-0,393	-0,820	-0,956	0,310	-2,075
Коэффициент автономии	0,085	0,482	0,378	0,399	-0,622
Степень платежеспособности по текущим обязательствам	2,711	1,945	15,555	2,584	21,479
Рентабельность чистых активов по чистой прибыли	0,114	0,130	0,283	0,247	0,888
Рентабельность	0,158	0,167	0,286	0,308	1,030
Рентабельность продаж	0,040	0,165	0,253	0,051	0,119
Банкрот	0	0	0	0	0

Построение классификатора

```
logr = LogisticRegression(solver = 'liblinear', random_state = 1)
logr.fit(X_train, y_train)

y_pred_train = logr.predict(X_train)
y_pred_test = logr.predict(X_test)
```

Confusion Matrix / Матрица ошибок

Accuracy: Train 0.824 Test 0.837

Результат: confusion matrix

Accuracy: Train 0.824 Test 0.837

Результат: ROC AUC

Статистическое (машинное) обучение

Обучение с учителем Supervised Learning

Обучение без учителя Unsupervised Learning

Обучение без учителя. Кластеризация

Примеры:

- На какое количество классов делятся клиенты в зависимости от их покупок?
- Какие группы можно выделить среди предприятий региона?
- Как можно разделить сотрудников по их компетенциям?

Source: http://scikit-learn.org/stable/modules/clustering.html

Алгоритм k-means

Page, J. T., Liechty, Z. S., Huynh, M. D., & Udall, J. A. (2014). BamBam: genome sequence analysis tools for biologists. *BMC Research Notes*, 7(1), 829.

Простой пример

(1) Набор данных

(2) Определяем число кластеров,

используя метрику silhouette

(3) Результат

Реальный кейс

Recap: Что мы узнали?

Общая формулировка задачи ML

ДАННЫЕ

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

ПРОСТРАНСТВО ГИПОТЕЗ

$$f \in \mathcal{F}$$

ФУНКЦИЯ ПОТЕРЬ

$$L(f(x,\theta),y)$$

Алгоритм, оптимизирующий $L(f(x,\theta),y)$

ПРЕДИКТИВНАЯ ФУНКЦИЯ

$$f: X \to Y$$

Ограничения статистического обучения

- Предиктивная функция строится за счет статистически значимых ассоциаций между переменными.
- Наличие ассоциации между двумя переменными не означает, что между ними существует причинно-следственная связь!
- Поэтому интерпретация моделей ML (извлечение знаний) чаще всего невозможна или затруднена.

https://tylervigen.com

Вопросы?