Outras Classes de Complexidade

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Assumindo que $\mathcal{P} \neq \mathcal{NP}$, as classes classes \mathcal{P} e \mathcal{NP} -Completo são disjuntas

■ Também $P \cup \mathcal{NP}$ -Completo $\neq \mathcal{NP}$ (NPI (intermediário))

- Entre \mathcal{P} e \mathcal{NP} (NPI)
 - Linguagens recursivas são as linguagens que podem ser reconhecidas por uma Máquina de Turing determinística (não necessariamente em tempo polinomial) que pára para todas as entradas
 - Seja B é uma linguagens recursiva tal que $B \notin \mathcal{P}$.
 - $m{ ilde{P}}$ Seja $D\in\mathcal{P}$ uma linguagem reconhecida em tempo polinomial
 - Seja $A=D\cap B$, tal que $A\not\in\mathcal{P}$, então $A\varpropto B$ e $B\not\varpropto A$

- **9** Entre \mathcal{P} e $\mathcal{N}\mathcal{P}$ (NPI)
 - Se B é uma linguagem em \mathcal{NP} -Completo, se $\mathcal{P} \neq \mathcal{NP}$ então $B \not\in \mathcal{P}$
 - Se $B \not \propto A$, então $A \not \in \mathcal{NP}$ -Completo
 - Se a linguagem $A \notin \mathcal{P}$, então $A \in \mathsf{NPI}$

- Exemplo: Isomorfismo em Grafos
 - Dados dois grafos G = (V, E) e G' = (V, E')
 - G e G' são isomórficos? Ou seja, Há uma função $f:V\times V$ tal que $\{u,v\}\in E$ sse $\{f(u),f(v)\}\in E'$?
- É um de apenas dois, dos 12 totais, problemas listados em Garey e Johnson (1979) cuja complexidade está por se resolver

- Classe co- \mathcal{NP}
 - Como citado anteriormente a classe \mathcal{NP} não é fechada com relação a complementação
 - Ou seja, um problema $\Pi \in \mathcal{NP} \not\Rightarrow \Pi^c \in \mathcal{NP}$
 - A classe de linguagens ou problemas co- \mathcal{NP} é formada pelas linguagens ou problemas de decisão cujo complemento pertence a \mathcal{NP}

$$\operatorname{co-}\mathcal{NP} = \{\Pi^c | \Pi \in \mathcal{NP} \}$$

ou em termos de linguagem:

 $\text{co-}\mathcal{NP} = \{\Sigma^* - L | L \text{ \'e uma linguagem sobre o alfabeto } \Sigma \text{ e } L \in \mathcal{NP} \}$

- A medida que muitos problemas que estão em co- \mathcal{NP} parecem não estar em \mathcal{NP} , é possível conjecturar que $\mathcal{NP} \neq \text{co-}\mathcal{NP}$
 - esta é uma conjectura forte de que $P \neq \mathcal{NP}$
 - A classe \mathcal{P} é fechada com relação a complementação ($\mathcal{P} = \text{co-}\mathcal{P}$)
 - Não é sabido se a classe \mathcal{NP} o é (aparentemente $\mathcal{NP} \neq$ co- \mathcal{NP}), o que poderia implicar $\mathcal{P} \neq \mathcal{NP}$
 - Porém $P \neq \mathcal{NP}$ pode ser verdade mesmo que $\mathcal{NP} = \text{co-}\mathcal{NP}$
 - m extstyle extstyle

Pode ou não ser o caso que $\mathcal{P} = \mathcal{NP} \cap$ co- \mathcal{NP}

- Exemplo: Números compostos
 - claramente em \mathcal{NP}
 - Complemento: números primos
 - ightharpoonup demonstrado estar em \mathcal{NP} (Pratt, 1975)

- Exemplo: USAT (insatisfazível) complemento de SAT
 - Considera todas as fórmulas bem formadas que não são satisfazíveis e também todas as fórmulas que não são bem formadas
 - Suspeita-se que USAT não esteja em \mathcal{NP} , mas não há provas

- Até o momento apenas a complexidade de tempo (medida em número de passos) foi considerada
- Pode-se considerar outra classe de problemas que inclui todos os problemas \mathcal{NP} e parece incluir outros mais
- A classe PS é definida como a classe de problemas onde uma MT usa um montante de espaço polinomial em função do tamanho da entrada, não importando a quantidade de tempo que ela usa.
 - Poderia-se distinguir então duas classes a PS e NPS?
 - Teorema de Savitch PS = NPS

