يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۳

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

الفبا

 Σ الفبای Σ یک مجموعه متناهی غیرتهی از سمبلهاست.

○ مثال:

$$\Sigma_1 = \{0, 1\}$$

$$\Sigma_2 = \{\texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}, \texttt{e}, \texttt{f}, \texttt{g}, \texttt{h}, \texttt{i}, \texttt{j}, \texttt{k}, \texttt{l}, \texttt{m}, \texttt{n}, \texttt{o}, \texttt{p}, \texttt{q}, \texttt{r}, \texttt{s}, \texttt{t}, \texttt{u}, \texttt{v}, \texttt{w}, \texttt{x}, \texttt{y}, \texttt{z}\}$$

$$\Gamma = \{\texttt{0}, \texttt{1}, \texttt{x}, \texttt{y}, \texttt{z}\}$$

رشته

○ به هر دنباله متناهی از سمبلهای الفبا، یک رشته روی الفبا گوییم.

○ مثال:

$$\Sigma_1 = \{0, 1\}$$
 — 01011

رشته

- به هر دنباله متناهی از سمبلهای الفبا، یک رشته روی الفبا گوییم.
 - ک نشان دهنده مجموعه همه رشتهها روی Σ^* است.
 - است. Σ^+ نشان دهنده مجموعه همه رشتههای غیرتهی روی Σ^+ \circ

- a, b مجموعه رشتههای متناهی بر روی (a,b * o
 - شامل رشته تهی ٤
 - a, aa, aaa شامل •
 - شامل b, bb, bbb •
 - ab, ababab, aaaaaaabbb شامل
 - شامل دنبالههای نامتناهی نیست
 - تعداد نامتناهی عضو

$$x = bab$$
, $y = abbaab$

Operation	Name	Example
x	Length	x =3
xy	Concatenation	xy = bababbaab
x^n	Repetition	$x^3 = babbabbab, x^0 = \lambda$
x^*	Kleene Star	$x^* = \{\lambda, bab, babbab, \ldots\}$
x^R	Reversal	$y^R = baabba$

زبان

- یک زبان صوری (روی الفبای Σ)، یک زیرمجموعه از Σ^* است.
- زبانها مسائل با جواب بله/خیر را که در نظر خواهیم گرفت نشان میدهند.

$$\Sigma_1 = \{a, b, \dots, z\}$$

o مثال: زبان L1 = همه رشتههای شامل زیررشته O

boss, body, fibo are in L1

 $L_1 = \{x \in \Sigma_1^* \mid x \text{ contains the substring "bo"}\}$

$$\Sigma_2 = \{0,1,...,9\}$$

$$L_2 = \{x \in \Sigma_2^* \mid x \text{ is dividable by 3}\}$$

$$\Sigma_3 = \{a, b\}$$

$$L_3 = \{ w \in \Sigma_2^* \mid |w| = 3 \}$$

 $L_3 = \{aaa, aab, aba, baa, baa, bab, abb, bbb\}$

IUT-ECE

عملگرهای روی زبان

۵ و زبان صوری۵ او زبان صوری

- Complement: $\overline{A} = \{ w \mid w \notin A \}$
- Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
- Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$
- Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$
- Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$
- Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$ = $\{ \epsilon \} \cup A \cup AA \cup AAA \cup AAAA \cup ...$

تشخیص زبان

○ مجموعه همه رشتههایی که به پذیرش منتهی میشوند، زبانی است که ماشین تشخیص میدهد.

مسائلی که در نظر میگیریم

- مسائلی که در این درس در نظر میگیریم اغلب از نوع تصمیم هستند (جواب بله/خیر):
 - آیا دو عدد a و b برابرند؟
 - آیا مقدار X در مجموعه S قرار دارد؟

○ مسائل دیگری نیز هستند، مانند «پیدا کنید» ها که ما کمتر به آنها میپردازیم.

- ما میخواهیم از ساده ترین فرمول بندی ریاضی برای محاسبه شروع کنیم؛ پس:
 - برای جعبه ماشین یک مدل ساده در نظر میگیریم.
 - تلاش میکنیم زبانی را که تشخیص میدهد مشخص کنیم.
- زبانهایی که این مدل ساده قادر به تشخیصشان نیست را تعیین کنیم.
 - ماشینمان را قوی تر کنیم تا این محدودیت را برطرف کنیم.

○ یک اتوموتن، یک مدل انتزاعی از یک کامپیوتر دیجیتال است.

○ یک اتوموتن، یک مدل انتزاعی از یک کامپیوتر دیجیتال است.

Finite Automata (FA)

مثال زیر را در نظر بگیرید:

- یک مدل ساده از محاسبات
- شامل چندین حالت و ورودیها به صورت رشته
 - تعداد حالتها متناهى
- خواندن ورودی سمبل به سمبل از چپ به راست و بروز کردن حالت بر اساس ورودی
 - ٥ در نهایت این اتوماتا با بله یا خیر جواب دهد (بپذیرد یا خیر).
 - آیا به همه سوالات جواب میدهد؟
 - o دو روش برای توصیف آن: دیاگرام حالت یا به صورت صوری O

$$\Sigma = \{0,1\}$$

دیاگرام حالت (مثال):

دیاگرام حالت (مثال):

$$\Sigma = \{0,1\}$$

ورودى 10111

دیاگرام حالت (مثال):

$$\Sigma = \{0,1\}$$

ورودى 011001

دیاگرام حالت (مثال):

$$\Sigma = \{0,1\}$$

ورودى 011001

تعریف صوری اتوماتای متناهی معین (DFA)

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²

اتوماتای متناهی معین (DFA)

• الفبا:

• حالتها:

• حالتهای پذیرش:

	$\Sigma = \{0, 1$
ورودی	

$$Q = \{q_0, q_1, q_2\}$$

$$q_0$$

$$F = \{q_0, q_1\}$$

 q_2

 q_2

 q_2

زبان یک DFA

کوییم DFA یک رشته x را می پذیرد اگر با شروع از حالت اولیه و خواندن x از چپ به راست، نهایتا در
یک حالت پایانی قرار گیرد.

این DFA رشتههای 0 و 011 را میپذیرد اما 10 و 0101 را نمیپذیرد.

زبان یک DFA

○ زبان یک DFA، مجموعه همه رشتههایی است که توسط آن DFA پذیرفته میشود.

این DFA رشتههای 0 و 011 را میپذیرد اما 10 و 0101 را نمیپذیرد.

رشتههای 0 و 011 در زبان این DFA هستند اما 10 و 0101 نه.

زبان یک DFA

○ فرض کنید M یک DFA است. زبانی را که توسط M تشخیص داده می شود به این صورت تعریف می کنیم:

$$L(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$$

○ زبان DFA زير را بيابيد (الفبا شامل DFA).

$$L = \{a^n b : n \ge 0\}.$$

○ یک DFA بسازید که فقط رشتههایی که شامل زیررشته 001 هستند را قبول کند (الفبای باینری).

○ یک DFA بسازید که فقط رشتههایی که با 00 شروع میشوند را قبول کند (الفبای باینری).

○ یک DFA بسازید که فقط رشتههایی که با 00 خاتمه مییابند را قبول کند (الفبای باینری).

یک DFA بسازید که فقط رشتههایی که یک در میان 0 و 1 هستند را قبول کند (الفبای باینری).

یک DFA بسازید که فقط رشتههایی که یک در میان 0 و 1 هستند را قبول کند (الفبای باینری).

