4. Stable range

Stable rank

Let A be an associative ring with unity. An n-column (b_i) is called unimodular if $\sum Ab_i = A$, i.e. $\sum a_ib_i = 1$ for some $a_i \in A$. The set of all unimodular n-columns is denoted by $\mathrm{Um}_n A$. The group $\mathrm{GL}_n A$ acts on $\mathrm{Um}_n A$ by matrix multiplication.

All columns of an invertible matrix are unimodular. The converse is not always true. The following condition was introduced by H. Bass.

 (\mathbf{A}_n) for every $(b_i) \in \mathrm{Um}_{n+1}A$, there are $c_i \in A$ such that $(b_i + c_i b_{n+1})_{1 \leq i \leq n} \in \mathrm{Um}_n A$.

Proposition 4.1. $(A_m) \Rightarrow (A_{m+1})$. Moreover, for any $n \geq m+1$ the condition (A_m) implies (A_n) with $c_i = 0$ for $i \ge m + 1$.

Proof. Let
$$b \in \operatorname{Um}_{n+1}A$$
 so $ab = 1$ for an $(n+1)$ -row a . We write $b = (b_i) = \begin{pmatrix} b' \\ b'' \\ b_{n+1} \end{pmatrix}$ with m -column b' and $(n-m)$ -column b'' . Similarly we write $a = (a', a'', a_{n+1})$, so $ab = a'b' + a''b'' + a_{n+1}b_{n+1} = 1$. By (A_m) applied to $\begin{pmatrix} b' \\ a''b'' + a_{n+1}b_{n+1} \end{pmatrix} \in \operatorname{Um}_{m+1}A$, there is an m -column d such that $b' + d(a''b'' + a_{n+1}b_{n+1}) \in \operatorname{Um}_m B$, hence $\begin{pmatrix} b' + d(a''b'' + a_{n+1}b_{n+1}) \\ b'' \end{pmatrix} \in \operatorname{Um}_n A$.

$$\begin{pmatrix} b' + d(a''b'' + a_{n+1}b_{n+1}) \\ b'' \end{pmatrix} \in \operatorname{Um}_n A.$$

Multiplying the last column by
$$\begin{pmatrix} 1 & -da'' \\ 0 & 1_{n-m} \end{pmatrix} \in E_n A$$
, we obtain that $\begin{pmatrix} b' + da_{n+1}b_{n+1} \\ b'' \end{pmatrix} \in \operatorname{Um}_n A$. QED.

Definition 4.2. We denote sr(A) the least integer n such that (A_n) holds. If no such n exists, $sr(A) = \infty$. It is not clear whether (A_n) makes sense when n = 0. It is reasonable to write sr(A) = 0 if and only if A = 0. This is consistent with defining the dimension of the empty topological space to be -1.

Example 4.3. It is clear that sr(A) = 1 for any local ring A (including any field or division algebra). More generally, Bass [B] showed that sr(A) = 1 when A/rad(A) is a direct product of matrix rings over division rings.

Example 4.4. Bass showed that if A is finitely generated as module over its center C and the space of maximal ideals in C is a finite union of noetherian subspaces of dimension < d, then sr(A) < d+1. Here the dimension is defined using chains of irreducible subspaces. A subspace is irreducible if it not a union of two closed proper subsets.

Example 4.5. It is an easy exercise, that $sr(\mathbf{Z}) = 2$. More generally, sr(A) = 2 for the ring of integers in any number field. Also sr(A) = 2 when A is the ring of Hurvitz or Lipschitz quaternions.

Example 4.6. It is an easy exercise, that sr(F[x]) = 2 for any field F. By [V14], $\operatorname{sr}(F[x_1,\ldots,x_d])=d+1$ for all d when F is a subfield of **R**. By [Su2], $\operatorname{sr}(\mathbf{C}[x_1,\ldots,x_d])=d+1$ for all d. By [VS], $\operatorname{sr}(F[x_1, \dots, x_d]) = d$ for $d \geq 2$ if F is a finite field.

Example 4.7. Vaserstein [V14] showed that if $A = \mathbf{R}^X$ is the ring of continuous real functions on a topological space X of dimension d, then sr(A) = d+1. Here the dimension is defined using maps $X \to \mathbf{R}^n$ with stable values. For example, for $X = \mathbf{R}^d$, A is the ring of continuous real functions in n variables and sr(A) = d + 1. The subrings of bounded or smooth functions have the same stable rank d + 1.

For the ring \mathbf{C}^X of complex-valued functions, we have $\operatorname{sr}(\mathbf{C}^X) = [d/2] + 1$ where [] means the integer part. See [V14], Theorem 7.

Here are four other nontrivial examples.

Example 4.8. For the Weyl algebra $A = \mathbf{C}[p_1, q_1, \dots, p_d, q_d]$ (where $p_i q_i - q_i p_i = 1$), sr(A) = 2 (Stafford [St]).

Example 4.9. For the disc algebra A (i.e., the ring of holomorphic functions on open disc, continuous on the closed disc), sr(A) = 1 [JMW].

Example 4.10. Let A be a right Bézout domain (see Example 2.9). We claim that $\operatorname{sr}(A) \leq 2$. By [V14], the stable rank is right-left symmetric. So we have to prove that for any unimodular row (a_1, a_2, a_3) over A there are $c_1, c_2 \in A$ such that the row $(a_1 + a_3c_1, a_2 + a_3c_2)$ is unimodular. As in Example 2.9, we can find a matrix $\alpha \in \operatorname{GL}_2 A$ such that $(a_1, a_2)\alpha = (a_0, 0)$ where $a_1 A + a_2 A = a_0 A$. Then (a_0, a_3) is unimodular hence $(a_0, a_3)\alpha^{-1}$ is unimodular. But $(a_0, a_3)\alpha^{-1} = (a_1, a_2) + (0, a_3)\alpha^{-1}$ so we can take $(c_1, c_2) = (0, 1)\alpha^{-1}$ (the second row of α^{-1}).

Example 4.11. Let A be a C^* -algebra with 1 (if A is commutative, $A = \mathbf{C}^X$ for a compact Hausdorff topological space X). Then $\mathrm{sr}(A)$ is the maximum of d such that $\mathrm{Um}_d A$ is dense in A^d [HV].

We will give more examples in the end of section. Now we extend the definition of stable rank to rings without 1.

For any ring A with 1 and any ideal B of A, let $\operatorname{Um}_n B$ denote the set of $(b_i) \in \operatorname{Um}_n A$ such that $b_1 - 1, b_i \in B$ for $i \geq 2$. For such a column b the condition $\sum_{i=1}^m Ab_i = A$ is equivalent to $\sum_{i=1}^m Bb_i = B$ so it is independent of A.

We define sr(B) to be the least n such that the condition (\mathbf{A}_n) holds for all $(b_i) \in \text{Um}_{n+1}B$.

It is easy to check that:

the condition (A_n) holds for all $(b_i) \in Um_{n+1}B$ and all $n \ge sr(B)$,

sr(B) depends only on B (independent of embedding B as an ideal in a ring with unity);

 $\operatorname{sr}(B_0) \leq \operatorname{sr}(B)$ for any ideal B_0 of B;

 $\operatorname{sr}(B') \leq \operatorname{sr}(B)$ for any factor ring B' of B.

The following result is not so trivial. It shows that the concept of stable rank is right-left symmetric.

Proposition 4.12. For any associative ring B, $sr(B) = sr(B^0)$ where B^0 is the opposite ring (with the same additive group but the multiplication reversed).

Proof. Since $(B^0)^0 = B$, it suffices to show that $\operatorname{sr}(B) \ge \operatorname{sr}(B^0)$ Let $\operatorname{sr}(B) = m$. We have to prove that if $\sum_{i=1}^{m+1} a_i b_i = 1$ where $a_1 - 1, b_1 - 1, a_i, b_i \in B$ for $i \ge 2$ then there are $u_i \in B$ such that $\sum_{i=1}^{m} (a_i + a_{m+1}u_i)B = B$.

Consider the matrix

$$\alpha = \begin{pmatrix} 1 & a \\ 0 & 1_{m+1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -b & 1_{m+1} \end{pmatrix} = \begin{pmatrix} 0 & a \\ -b & 1_{m+1} \end{pmatrix} \in \operatorname{GL}|_{m+2} A$$

(where A is an associative ring with 1 containing B as an ideal). Since sr(B) = m, there are $v_i, c_i \in B$ such that

$$\sum_{i=1}^{m} (b_i + v_i a_{m+1} b_{m+1}) = -b_{m+1}.$$

Then the matrix

$$\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1_m & 0 \\ 0 & c & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -v & 1_m & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1_m & va_{m+1} \\ 0 & 0 & 1 \end{pmatrix} \alpha$$

has the form

$$\beta = \begin{pmatrix} 0 & a \\ * & * & 0 \\ 0 & -u & 1 \end{pmatrix} \in \operatorname{GL}|_{m+2} A$$

where $v = (v_i) \in B^m$ is a column, $c = (c_i)$ is a row, and $u = (u_i)$ is a row with m entries in B. The matrix

$$\gamma = \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1_m & 0 \\ 0 & u & 1 \end{pmatrix}$$

has the form

$$\gamma = \begin{pmatrix} 0 & a' & a_{m+1} \\ * & * & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where $a' = (a_i + a_{m+1}u_i)_{1 \le i \le m}$ hence $\begin{pmatrix} 0 & a' \\ * & * \end{pmatrix} \in GL|_{m+2}A$ so $\sum_{i=1}^m a_i'A = A$, i.e., $\sum_{i=1}^{m} a_i' B = B.,$ QED.

Lemma 4.13. Let $n \geq \operatorname{sr}(B)$ and $(b_i) \in \operatorname{Um}_{n+1}B$. Then there are $c_i \in A$ such that $(b_i + c_i b_1)_{2 \le i \le n+1} \in \mathrm{Um}_n A.$

Proof. Let $\sum_{i=1}^{n+1} a_i b_i = 1$ with $a_i \in A$. Using addition operation, we see that

$$(a_{1}, a_{n+1}) \begin{pmatrix} b_{1} \\ b_{n+1} \end{pmatrix} = (a_{1} - a_{n+1}, a_{n+1}) \begin{pmatrix} b_{1} \\ b_{n+1} + b_{1} \end{pmatrix}$$

$$= ((1 - b_{1} - b_{n+1})(a_{1} - a_{n+1}), (1 - b_{1} - b_{n+1})a_{n+1} + 1) \begin{pmatrix} b_{1} \\ b_{n+1} + b_{1} \end{pmatrix}$$

$$= (1, (a_{1} - a_{n+1})(1 - b_{1} - b_{n+1})a_{n+1} + 1)) \begin{pmatrix} (1 - b_{1} - b_{n+1})(a_{1} - a_{n+1})b_{1} \\ b_{n+1} + b_{1} \end{pmatrix}$$

$$= 1 - \sum_{i=2}^{n} a_{i}b_{i}.$$
Therefore
$$\begin{pmatrix} (1 - b_{1} - b_{n+1})(a_{1} - a_{n+1})b_{1} \\ b' \\ b_{n+1} + b_{1} \end{pmatrix} \in \operatorname{Um}_{n+1}A \text{ where } b' = (b_{i})_{2 \leq i \leq n}. \text{ Since } b'$$

$$(b_{n+1} + b_{1}) \in \operatorname{Um}_{n+1}A \text{ where } b' = (b_{i})_{2 \leq i \leq n}.$$

$$B) \leq n, \text{ there is an } n\text{-column } d = \begin{pmatrix} d_{1} \\ d' \end{pmatrix} \text{ such that}$$

 $\operatorname{sr}(B) \leq n$, there is an *n*-column $d = \begin{pmatrix} d_1 \\ d' \end{pmatrix}$ such that

$$\begin{pmatrix}
b' + d'(1 - b_1 - b_{n+1})(a_1 - a_{n+1})b_1 \\
b_{n+1} + b_1 + d_1(1 - b_1 - b_{n+1})(a_1 - a_{n+1})b_1
\end{pmatrix} = \begin{pmatrix}
b' \\
b_{n+1}
\end{pmatrix} + cb_1 \in \mathrm{Um}_n A$$
where $c = \begin{pmatrix}
d'(1 - b_1 - b_{n+1})(a_1 - a_{n+1}) \\
1 + d_1(1 - b_1 - b_{n+1})(a_1 - a_{n+1})
\end{pmatrix}$. QED

Normal subgroups in stable range

Theorem 4.14. (Bass [B1]). If $n \ge \operatorname{sr}(B) + 1$, then

- (a) $GL_nB = E_n(A, B)GL_{n-1}B$;
- (b) $[\operatorname{GL}_n B, \operatorname{GE}_n A] \subset \operatorname{E}_n(A, B)$.

If $n \ge \operatorname{sr}(A) + 1$, then

(c) $E_n(A, B)$ is normal in GL_nA .

Proof. (a) Let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_nB$ where $a - 1_n \in M_nB, d - 1 \in B$, etc. We want to reduce α to $GL_{n-1}B$ by row addition operations.

By Lemma 4.13, there is an (n-1)-column b' such that $b+b'd \in \mathrm{Um}_{n-1}A$, so c'(b+b'd)=1 for an (n-1)-row c' over A. Then

$$\begin{pmatrix} 1_{n-1} & 0 \\ (1-d)c' & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & b' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b'c & b+b'd \\ c+(1-d)c' & 1 \end{pmatrix}.$$
Set
$$\beta = \begin{pmatrix} 1_{n-1} & -b' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ (1-d)c' & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & b' \\ 0 & 1 \end{pmatrix} \in \mathcal{E}_n(A,B).$$
Then $\beta \alpha = \begin{pmatrix} a'' & b'' \\ c'' & 1 \end{pmatrix}$ with $b'' = b + b'd - b', c'' = c + (1-d)c', a'' = a + b'c - b'c''.$

Now

$$\begin{pmatrix} 1_{n-1} & 0 \\ -c''(a'' - b''c'')^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & -b'' \\ 0 & 1 \end{pmatrix} \beta \alpha \in GL_{n-1}B \text{ and}$$

$$\begin{pmatrix} 1_{n-1} & 0 \\ -c''(a'' - b''c'')^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & -b'' \\ 0 & 1 \end{pmatrix} \in E_nB.$$

(b) Let $\alpha \in GL_nB$ and $\beta \in GE_nA$. We have to prove that $[\alpha, \beta] \in E_n(A, B)$. Recall that GE_nA by definition is generated by diagonal and elementary matrices. Since the diagonal matrices normalize the elementary matrices and using Whitehead lemma, every matrix in GE_nA is a product of elementary matrices and a matrix of the form $\delta = \begin{pmatrix} 1_{n-1} & 0 \\ 0 & d \end{pmatrix}$ with $d \in GL_1A$. Since all permutation matrices normalize both E_nA and $E_n(A, B)$ we can assume that either $\beta = a^{i,n}$ with $a \in A$ or $\beta = \delta$ as above.

By (a),
$$\alpha = \alpha_1 \alpha_2$$
 with $\alpha_1 \in E_n(A, B)$ and $\alpha_2 \in GL_{n-1}B$. So $[\alpha, \beta] = \alpha_1 \alpha_2 \beta \alpha_2^{-1} \alpha_1^{-1} \beta^{-1} = \alpha_1 [\alpha_2, \beta] \beta \alpha_1^{-1} \beta^{-1} \in E_n(A, B)$

because $\alpha_1, \beta \alpha_1^{-1} \beta^{-1} \in \mathbb{E}_n(A, B)$ and $[\alpha_2, \beta]$ has the form $\begin{pmatrix} 1_{n-1} & * \\ 0 & 1 \end{pmatrix} \in GL_nB$ hence $[\alpha_2, \beta] \in \mathbb{E}_n(A, B)$ too.

(c) We have to prove that $\alpha b^{i,j} \alpha^{-1} \in E_n(A, B)$ when $b \in B, 1 \leq i \neq j \leq n$ and $\alpha \in GL_nA$. Since $E_n(A, B)$ is invariant under conjugation by permutation matrices, it suffices to consider the case when (i, j) = (1, n).

By (a) with B = A, $\alpha = \alpha_1 \alpha_2$ with $\alpha_1 \in E_n A$ and $\alpha_2 \in GL_{n-1} A$. Since

$$\beta' := \alpha_2 b^{1,n} \alpha_2^{-1} = \begin{pmatrix} 1_{n-1} & * \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}_n B,$$
 it is clear that $\beta' \in \mathrm{E}_n B$, so $\alpha b^{1,n} \alpha^{-1} = \alpha_1 \beta' \alpha_1^{-1} \in \mathrm{E}_n (A, B)$. QED.

Now we generalize Lemma 1.6:

Lemma 4.15. Let A be an associative ring with 1 and B an additive subgroup of A. Assume that either $n \geq 3$ or n = 2 and B is generated by its elements of the form $\gamma b \gamma - b$ where $b \in B, \gamma \in GL_1A$. Then $[E_nB, E_nA] = E_n(A, B)$

Proof. If $n \geq 3$, our conclusion follows from the relations (1.7) and (1.11); in this case $E_n(A, B) = E_n(A, B')$ where B' is the ideal of A generated by B.

Let now
$$n = 2$$
. By (1.5), $\alpha = \begin{pmatrix} \gamma & 0 \\ 0 & 1/\gamma \end{pmatrix} \in E_2 A$ hence $(\gamma b \gamma - b)^{1,2} = [\alpha, b^{1,2}] \in [E_2 A, E_2 B]$ whenever $b \in B, \gamma \in GL_1 A$. QED.

Corollary 4.16. Under the conditions of Lemma 4,5, assume that $n \ge \operatorname{sr}(B) + 1$. Then

$$[\mathcal{E}_n A, \mathcal{E}_n B] = [\mathcal{E}_n A, \mathcal{GL}_n B] = \mathcal{E}_n (A, B).$$

Proof. Combine Theorem 4.4(b) and Lemma 4.5.

QED.

Theorem 4.17. If $n \ge \operatorname{sr}(B) + 1$, then the kernel of the Whitehead determinant wh: $\operatorname{GL}_n B \to \operatorname{K}_1(A, B)$

is $E_n(A, B)$, so $GL_nB/E_n(A, B) = K_1B$.

This theorem will be proved in the next section.

Corollary 4.18. Assume that $n \ge \operatorname{sr}(B) + 1$ and that $\operatorname{E}_n A$ is perfect. Then $[\operatorname{G}_n(A,B),\operatorname{E}_n A] \subset \operatorname{E}_n(A,B)$.

Therefore every subgroup H of $G_n(A, B)$ containing $E_n(A, B)$ is normalized by E_nA .

Proof. We have to prove that $[\alpha, \beta] \in E_n(A, B)$ when $\alpha \in G_n(A, B)$ and $\beta \in E_nA$.

We fix α and set

$$f(\beta) = [\beta^{-1}, \alpha] \in GL_n(A, B).$$

For $\beta_1, \beta_2 \in E_n A$,

$$f(\beta_1\beta_2) = \beta_2 f(\beta_1) \beta_2^{-1} f(\beta_2).$$

Since $f(\beta_1) \in GL_nB$, Theorem 4.4 (b) gives

 $[\beta_2, f(\beta_1)] \in \mathcal{E}_n(A, B)$. So reduction of f modulo $\mathcal{E}_n(A, B)$ gives a homomorphism $\mathcal{E}_n A \to GL_n B/\mathcal{E}_n(A, B)$.

By our condition, E_nA is perfect, and by Theorem 4.7 the target group is $K_1(A, B)$ which is a commutative group. Thus, the homomorphism is trivial, hence $f(\beta) = [\beta^{-1}, \alpha] \in E_n(A, B)$. QED.

Lemma 4.19. Let $n \geq 3$ and a matrix $\alpha \in GL_nA$ commutes with $1^{1,2}$ modulo the center $G_n(A,0)$. Then α commutes with $1^{1,2}$ hence all its off-diagonal entries in the first column and the second row are zeros.

Proof. Consider $1^{1,2}\alpha=\alpha 1^{1,2}c$ with $c\in C$, the center of A. Looking at the last column on the both sides, we conclude that

v'c=v' where $v=\begin{pmatrix}v_1\\v'\end{pmatrix}$ is the last column of α and $v_1\in A$. Similarly, $cu_1=u_1$ for the fist entry u_1 of the last row $u=(u_1,u')$ of α^{-1} . Now $1=uv=u_1v_1+u'v'=cu_1v_1+u'v'c=c$, so α commutes with $1^{1,2}$. Looking at the first row and the second column in $1^{1,2}\alpha=\alpha 1^{1,2}$, we complete our proof. QED.

Lemma 4.20. Assume that the group E_nA is perfect (e.g., $n \geq 3$) and that $[\beta, \alpha] \in$ $G_n(A,0)$ (the center of GL_nA) for a matrix $\alpha \in GL_nA$ and all $\beta \in E_nA$. Then $\alpha \in$ $G_n(A,0)$.

Proof. When $n \geq 3$, this is an easy consequence of Lemma 4.9. In general, we set $f(\beta) = [\beta, \alpha]$, so $\beta \alpha \beta^{-1} = f(\beta) \alpha$. Since $f(\beta)$ is center for $\beta \in E_n A$, this gives a homomorphism $f: E_n A \to G_n(A,0)$. Since the group $G_n(A,0)$ is commutative, $f([E_n A, E_n A]) = 0$, hence $f(\beta) = [\beta, \alpha] = 1$ for all $\beta \in E_n A = [E_n A, E_n A]$.

Proposition 4.21. Let $n \geq 3$, H a subgroup of GL_nA normalized by E_nA . Suppose that H contains a non-central matrix $\alpha = (\alpha_{i,j})$ such that either

(a)
$$\alpha_{n,n} \in GL_1A$$

or

(b)
$$\alpha_{n,n} - 1 \in \sum_{i=1}^{n-1} A \alpha_{i,n}$$

(b) $\alpha_{n,n} - 1 \in \sum_{i=1}^{n-1} A\alpha_{i,n}$. Then H contains $\mathbf{E}_n B$ for a nonzero ideal B of A.

Proof. In the case (a), if α has a zero in the last row or column we are done by Proposition 1.10. Otherwise we write

$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1_{n-1} & b' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ c' & 1 \end{pmatrix}$$

with

$$d = \alpha_{n,n}, b' = bd^{-1} \neq 0, c' = d^{-1}c, a' = a - bd^{-1}c \in GL_{n-1}A.$$

Since $b \neq 0$ and $n \geq 3$, there is an elementary matrix $\beta \in GL_{n-1}A$ such that $\beta b \neq b$, i.e., $\beta b' \neq b'$.

Now
$$\alpha_1 = \begin{bmatrix} \beta & 0 \\ 0 & 1 \end{bmatrix}, \alpha^{-1} \end{bmatrix}$$

$$= \begin{pmatrix} 1_{n-1} & b' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta a' \beta^{-1} & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ c' \beta^{-1} - c' & 1 \end{pmatrix} \begin{pmatrix} a' & 0 \\ 0 & d \end{pmatrix}^{-1} \begin{pmatrix} 1_{n-1} & -b' \\ 0 & 1 \end{pmatrix} \in H,$$

hence

$$\alpha_2 = \begin{pmatrix} 1_{n-1} & -b' \\ 0 & 1 \end{pmatrix} \alpha_1 \begin{pmatrix} 1_{n-1} & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1_{n-1} & \beta b' - b' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} [\beta, a'] & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1_{n-1} & 0 \\ c'' & 1 \end{pmatrix} \in H.$$

The last column $\binom{\beta b'-b'}{1}$ of α_2 has exactly two nonzero entries, so we are done by Proposition 1.10.

The case (b) can be reduced to the case (a) by conjugating α with a matrix of the form $\begin{pmatrix} 1_{n-1} & 0 \\ * & 1 \end{pmatrix} \in \mathbf{E}_n A$. QED.

Theorem 4.22 (Bass). Let B' be an ideal of A, sr(B') = m and $n \ge max(m+1,3)$. Then for every subgroup $H \subset G_n(A, B')$ which is normalized by E_nA we have

$$E_n(A,B) \subset H \subset G_n(A,B)$$

for an ideal B of A contained in B'.

Proof. Define $B = \{b \in A : b^{1,2} \in H\} \subset B_0$ (the lower level of H). By (1.7) and (1.11), B is an ideal of A and $E_n(A, B) \subset H$. We have to prove that $H \subset G_n(A, B)$.

Otherwise there is $\alpha \in H \setminus G_n(A, B)$. The image H' of H in $GL_n(A/B)$ is normalized by $E_n(A/B)$ of E_nA . The image α' of α in $GL_n(A/B)$ is not central.

By Lemma 4.20 applied to $\alpha' \in GL_n(A/B)$, we can assume that the commutator of α' with an elementary matrix is not central. Replacing α by a commutator, we can assume that $\alpha \in GL_nB'$.

Using that $\operatorname{sr}(B') \leq n-1$, we can conjugate α by a matrix of the form $\begin{pmatrix} 1_{n-1} & * \\ 0 & 1 \end{pmatrix}$ and arrange the following condition for $\alpha = (\alpha_{i,j})$:

$$\sum_{i=1}^{n-1} A\alpha_{i,1} = A.$$

Now we consider $\alpha_1 = [\alpha_1, 1^{1,2}]$ and its image α'_1 in $GL_n(A/B)$.

Applying Lemma 4.9 to $H' \subset GL_n(A, B)$, we conclude that either the (n, 1)-entry of α' is 0 or α'_1 is not central.

In the first case, $E_nB_1 \subset H'$ for a nonzero ideal B_1' of A/B by Proposition 1.10.

In the second case we have $\alpha_1 = (1_n + vu)(-1)^{1,2}$ where $v = \begin{pmatrix} v' \\ v_n \end{pmatrix}$ is the first column of α and $u = (u_1, \dots, u_n)$ is the second row of α^{-1} . Thus, the last column of α_1 has the form $\begin{pmatrix} v'u_n \\ 1 + v_n u_n \end{pmatrix}$ with $v' \in \text{Um}_n A$. Applying Proposition 4.11(b) to H', we conclude that $E_n B_1' \subset H'$ for a nonzero ideal B_1' of A/B.

Thus, in both the cases H contains a matrix α_2 of the form $\alpha_2 = (b_1)^{3,2}\alpha_3$ with $b_1 \in B' \setminus B$ and $\alpha_3 \in GL_nB$. We conclude our proof in the same way as that of Theorem 3.9 using the fact that $[E_nA, GL_nB] \subset E_n(A, B) \subset H$.

Stable rank one rings

The rings A with sr(A) = 1 have special properties which are not shared by rings of higher stable rank. Sometimes, it is convenient to embed a ring B to a ring with 1 as an ideal. Here is a way to do this: B_1 consists of the pairs (b, z) with $b \in B, z \in \mathbf{Z}$ with addition and multiplication given by

$$(b,z) + (b',z') = (b+b',z+z')$$
 and $(b,z)(b',z') = (bb'+zb'+bz',zz')$.

Proposition 4.23 (Kaplansky). Let B be an associate ring with sr(B) = 1 and $b \in B$. If B(1+b) = B or (1+b)B = B then $1+b \in GL_1B$.

Proof. Since $sr(B) = sr(B^0)$ by Proposition 4.12, it suffices to deal with the case B(1+b) = B. Thus, we have to prove that $Um_1B = GL_1B$.

Set $x = 1 + b \in B_1$. Let ax = 1. For d = 1 - xa we have Ba + Bd = B. So there is $t \in B$ such that Bu = B for u = a + td. Since dx = x - xax = x - x = 0, we obtain that 1 = ux, hence $u \in GL_1B$. Therefore $x, a \in GL_1B$.

Proposition 4.24. Let B be an associate ring with sr(B) = 1 and J is a left or right ideal of B. Then sr(J) = 1.

Proof. Since $\operatorname{sr}(B) = \operatorname{sr}(B^0)$ by Proposition 4.12, it suffices to deal with the case when $BJ \subset J$, i.e., $B_1J = J$. We have to prove that $\operatorname{sr}(J) = 1$.

Let
$$\binom{a}{b} \in \operatorname{Um}_2(J)$$
, i.e., $a-1, b \in J$ and $xa+yb=1$ for some $x, y \in B_1$. Set

$$x' = 1 + (1 - a)x \in 1 + J$$
 and $y' = (1 - a)y \in J$.

Then x'a + y'b = 1. Since sr(B) = 1, there are $s, t' \in B_1$ such that s(a + t'y'b) = 1. Set $t = t'y' \in B_1J \subset J$. Then $a + tb - 1 \in J$. Since s(a + tb) = 1, it follows that $s - 1 \in J$, hence $s \in J_1$.

Proposition 4.25. Let B be an associate ring with sr(B) = 1 and $p = p^2 \in B$. Then sr(pBp) = 1.

Proof. Let $a-1, b \in pBp = B'$ and B'a + B'b = B'. We claim that $\binom{a+1-p}{b} \in \text{Um}_2 B$. We have B'(1-p) = 0, hence $p \in B'a + B'b \subset R(a+1-p) + Rb$. On the other hand, (1-p)a = 0 = (1-p)b. So

$$1 - p = (1 - p)(a + 1 - p) + (1 - p)b \in R(a + 1 - p) + Rb.$$

Thus, $1 = p + 1 - p \in R(a + 1 - p) + Rb$.

Since sr(B) = 1, there is $t \in B$ such that B(a + tb + 1 - p) = B. We have

$$(1 - (1 - p)tb)(1 + (1 - p)tb) = 1 = (1 + (1 - p)tb)(1 - (1 - p)tb)$$

so 1 - (1 - p)tb(1 + (1 - p)) is a unit, hence

$$B = B(a + tb + 1 - p)(1 - (1 - p)tb) = RB(a + ptb + 1 - p).$$

Therefore B'(a + ptpb) = B' with $ptb \in B'$.

Now we give 3 more examples of rings A with stable rank 1.

Example 4.26. For the ring A of all algebraic integers in \mathbb{C} , $\operatorname{sr}(A) = 1$. More generally [V51], let A be a commutative ring with 1 such that the multiplicative group of A/Aa is torsion for every nonzero $a \in A$ and such that the equation $x^n + cx^{n-1} + d = 0$ has a solution for x in A whenever n is a natural number, and $c, d \in A$. Then $\operatorname{sr}(A) = 1$.

We will show now that actually this A satisfies the following stronger condition

(4.27) If $b_1, b_2 \in A$ and $Ab_1 + Ab_2 = A$ then there is a unit $u \in GL_1A$ such that $A(b_1 + ub_2) = A$.

More generally, we will prove (4.27) for any commutative ring A with 1 such that: the multiplicative group of A/Aa is torsion for every nonzero $a \in A$,

the equation $x^n + cx^{n-1} + dx + 1 = 0$ has a solution for x in A whenever $n \ge 3$ is a natural number, and $c, d \in A$.

Let $b_1, b_2 \in A$ and $Ab_1 + Ab_2 = A$. In the case $b_1 = 0$ or $b_2 = 0$ we have $A(b_1 + ub_2) = A$ with u = 1, so we assume now that $b_1b_2 \neq 0$.

We find an even natural number $n \ge 4$ such that $b_1^n - 1 \in Ab_2$ and $b_2^n - 1 \in Ab_1$. Then $b_1^n + b_2^n - 1 = bb_1b_2$ with $b \in A$. Since $Ab_1^{n-2} + Ab_2^{n-2} = A$, we can find $c, d \in A$ such that $cb_1^{n-2} + db_2^{n-2} = -b$.

Now we find a zero $u \in A$ of the polynomial $f(x) = x^n + cx^{n-1} + dx + 1 \in A[x]$, so $u^n + cu^{n-1} + du + 1 = 0$. Clearly, $u \in GL_1A$ (namely, $-1/u = u^{n-1} + cu^{n-2} + d$).

Then $b_2u \in A$ is a zero of the polynomial

$$q(x) = b_2^n f(x/b_2) = x^n + b_2 c x^{n-1} + b_2^{n-1} dx + b_2^n \in A[x],$$

i.e.,

$$(b_1 u)^n + b_2 c(b_1 u)^{n-1} + b_2^{n-1} d(b_2 u) + b_2^n = 0.$$

So $-b_1 + ub_2$ is a zero of the polynomial $h(x) = g(x + b_1)$. The constant term of h(x) is

$$h(0) = g(-b_1) = b_1^n + cb_1^{n-1}b_2 + db_1b_2^{n-1} + b_2^n$$

= $b_1^n + b_1b_2(cb_2^{n-2} + db_2^{n-2}) + b_2^n = b_1^n - bb_1b_2 + b_2^n = 1.$

Thus, $b_1 + b_2 u \in GL_1 A$.

Example 4.28. Let A is the ring of all algebraic integers in **R**. We will prove (4.27) for this A. Therefore sr(A) = 1.

Let $b_1, b_2 \in A$ and $Ab_1 + Ab_2 = A$. In the case $b_1 = 0$ or $b_2 = 0$ we have $A(b_1 + ub_2) = A$ with u = 1, so we assume now that $b_1b_2 \neq 0$.

We find $n \ge 1$ such that $b_1^n - 1 \in Ab_2$ and $b_2^n - 1 \in Ab_1$. Replacing, if necessary, even n by n/2 and multiplying n by an odd number, we are reduced to the following two cases:

Case 1. $b_1^n + b_2^n - 1 \in Ab_1b_2$ with odd $n \ge 3$,

Case 2: $b_1^n - b_2^n \pm 1 \in Ab_1b_2$ with $n \ge 3$.

In Case 1, as in Example 4.25, $b_1^n + b_2^n - 1 = bb_1b_0$ and $cb_1^{n-2} + db_2^{n-2} = -b$ with $b, c, d \in A$.

Now we find a real zero $u \in A$ of the polynomial $f(x) = x^n + cx^{n-1} + dx + 1 \in A[x]$. Then as in Example 4.25, $ub_2 - b_1$ is a root of a polynomial h(x) with constant term

$$h(0) = g(b_1) = b_1^n + cb_1^{n-1}b_2 + db_1b_2^{n-1} + b_2^n = 1,$$

hence $b_1 - ub_2 \in GL_1A$.

In Case 2, $b_1^n - b_2^n \pm 1 = bb_1b_0$ and $cb_1^{n-2} + db_2^{n-2} = -b$ with $b, c, d \in A$.

Now we find a real zero $u \in A$ of the polynomial $f(x) = x^n + cx^{n-1} + dx - 1 \in A[x]$. Then $ub_2 - b_1$ is a root of a polynomial h(x) with constant term

$$h(0) = g(b_1) = b_1^n + cb_1^{n-1}b_2 + db_1b_2^{n-1} - b_2^n = \pm 1,$$

hence $b_1 - ub_2 \in GL_1A$.

Example 4.29. For the ring A of all entire functions in one complex variables, sr(A) = 1 (L.A.Rubel [R]). However, this ring does not satisfy the stronger condition (4.27).

Exercises

1. Let A be a commutative ring with 1 and $n.m \ge 1$.

Prove that $(b_i^m) \in \mathrm{Um}_n A$ for any $(b_i) \in \mathrm{Um}_n A$

- 2. Let F be a field and A be the Grassmann algebra in x, y over F, i.e., $x^2 = y^2 = xy + yx = 0$. Set $B = Fx + Fy \subset A$. Show that B is not an ideal and that $H = \mathcal{E}_2 B$ is a subgroup of GL_2A which is normalized by \mathcal{E}_2A . Show that $\{a \in A : a^{1,2} \in \mathcal{E}_2 B\} = B$.
- 2. Let B be any ring, and $MB = \bigcup M_n B$ the ring of infinite matrices over B with finitely many nonzero entries in each. (So $GL_1(MB) = GLB$.) Show that sr(MB) = 1 if and only if sr(B) = 1. Show that for any $(1 + b_1, b_2) \in Um_2MB$ there are $c_1, c_2 \in MB$ such that $(1 + c_2)(b_2 + (1 + c_1)(1 + b_1)) = 1$.
- 4. Let $n \geq 2$. Prove that every matrix in GL_nA is $\alpha\beta\gamma$ with lower triangular α, γ and an upper triangular β if and only if sr(A) = 1 (Vaserstein-Wheland).
- 5. Give an example of a local ring A, an ideal B, and a subgroup H such that $E_n(A,B) \subset H \subset G_n(A,B)$ but H is not normal in GL_nA .
- 6. Show that the condition (A_n) for the first columns of all matrices in $E_{n+1}(A, B)$ implies the unrestricted (A_n) (for all unimodular columns in $Um_{n+1}B$).
 - 7. For any natural number n and any ring $B \neq 0$, show that

$$sr(M_n B) - 1 = -[-(sr(B) - 1)/n],$$

where [] means the integral part.

- 8. Let A be a commutative ring with 1 such that f(a) = 0 for all $a \in A$ where $f(x) \in \mathbf{Z}[x]$ is a primitive polynomial in one variable x with integer coefficients. An example is any Boolean ring where $f(x) = x^2 x$. Show that $\operatorname{sr}(A) = 1$.
- 9. Show that the condition (4.27) implies that every element of A is a sum of two units which in its turn implies that A has no ideals of index two.
 - 10. Let A be a semilocal ring without ideals of index two. Show that A satisfy (4.27).
- 11. Let a ring A be the direct product of a family A_i of rings. Show that $sr(A) = \sup sr(A_i)$.
- 12. Let A be a commutative ring with 1 and the row (a_1, a_2, a_3) is unimodular. Prove that the row (a_1^2, a_2, a_3) is the first row of an invertible matrix and that this row can be reduced to the row (a_1, a_2, a_3^2) by addition operations.
- 13. Let A be an associate ring with $1 \neq 0$. Show that the following condition is equivalent to the condition sr(A) = 1:

for any
$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \operatorname{Um}_2 A$$
 there are $a_1 \in \operatorname{GL}_1 A$ and $a_2 \in A$ such that $a_1 b_1 + a_2 b_2 = 1$.

14. Let A be an associate ring with 1. Show that the following condition is equivalent to the condition (4.27):

for any
$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \operatorname{Um}_2 A$$
 there are $a_1, a_2 \in \operatorname{GL}_1 A$ such that $a_1b_1 + a_2b_2 = 1$.

15. Let A be a commutative principal ideal domain and sr(A) = 1. Prove that A is a Euclidean ring. (Hint: define the Euclidean function N on A by N(0) = 0 and N(a) = k+1 when $a \neq 0$ and the product of k irreducible elements).