

# **TSX711, TSX711A, TSX712**

# Low-power, precision, rail-to-rail, 2.7 MHz, 16 V CMOS operational amplifiers

Datasheet - production data



#### **Features**

- Low input offset voltage: 200 μV max.
- Rail-to-rail input and output
- Low current consumption: 800 μA max.
- Gain bandwidth product: 2.7 MHz
- Low supply voltage: 2.7 16 V
- Unity gain stable
- Low input bias current: 50 pA max.
- High ESD tolerance: 4 kV HBM
- Extended temp. range: -40 °C to 125 °C
- Automotive qualification

# **Related products**

- See the TSX7191 and TSX7192 for higher speeds with similar precision
- See the TSX561 and TSX562 for low-power features
- See the TSX631 and TSX632 for micropower features

See the TSX921 and TSX922 for higher speeds

### **Applications**

- Battery-powered instrumentation
- Instrumentation amplifier
- Active filtering
- DAC buffer
- High-impedance sensor interface
- Current sensing (high and low side)

### **Description**

The TSX711, TSX711A, and TSX712 series of operational amplifiers (op amps) offer high precision functioning with low input offset voltage down to a maximum of 200  $\mu V$  at 25 °C. In addition, their rail-to-rail input and output functionality allow these products to be used on full range input and output without limitation. This is particularly useful for a low-voltage supply such as 2.7 V that the TSX71x is able to operate with.

Thus, the TSX71x has the great advantage of offering a large span of supply voltages, ranging from 2.7 V to 16 V. They can be used in multiple applications with a unique reference.

Low input bias current performance makes the TSX71x perfect when used for signal conditioning in sensor interface applications. In addition, low-side and high-side current measurements can be easily made thanks to rail-to-rail functionality.

High ESD tolerance (4 kV HBM) and a wide temperature range are also good arguments to use the TSX71x in the automotive market segment.

# **Contents**

| 1 | Package   | e pin connections                           | 3  |
|---|-----------|---------------------------------------------|----|
| 2 | Absolut   | e maximum ratings and operating conditions  | 4  |
| 3 |           | al characteristics                          |    |
| 4 | Electrica | al characteristic curves                    | 11 |
| 5 | Applicat  | tion information                            | 17 |
|   | 5.1       | Operating voltages                          | 17 |
|   | 5.2       | Input pin voltage ranges                    | 17 |
|   | 5.3       | Rail-to-rail input                          | 17 |
|   | 5.4       | Rail-to-rail output                         | 17 |
|   | 5.5       | Input offset voltage drift over temperature | 18 |
|   | 5.6       | Long term input offset voltage drift        | 18 |
|   | 5.7       | High values of input differential voltage   | 20 |
|   | 5.8       | Capacitive load                             | 20 |
|   | 5.9       | PCB layout recommendations                  | 21 |
|   | 5.10      | Optimized application recommendation        | 21 |
|   | 5.11      | Application examples                        | 22 |
|   |           | 5.11.1 Oxygen sensor                        | 22 |
|   |           | 5.11.2 Low-side current sensing             |    |
| 6 | Package   | e information                               | 25 |
|   | 6.1       | SOT23-5 package information                 | 26 |
|   | 6.2       | MiniSO8 package information                 | 27 |
|   | 6.3       | SO8 package information                     | 28 |
| 7 | Ordering  | g information                               | 29 |
| Ω | Pavisia   | n history                                   | 30 |

# 1 Package pin connections

Figure 1: Pin connections (top view)



# 2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

| Symbol           | Parameter                                      |         | Value                        | Unit |
|------------------|------------------------------------------------|---------|------------------------------|------|
| Vcc              | Supply voltage (1)                             | 18      | V                            |      |
| Vid              | Differential input voltage (2)                 |         | ±Vcc                         | mV   |
| Vin              | Input voltage                                  |         | (Vcc-) - 0.2 to (Vcc+) + 0.2 | V    |
| l <sub>in</sub>  | Input current (3)                              |         | 10                           | mA   |
| T <sub>stg</sub> | Storage temperature                            |         | -65 to 150                   | °C   |
|                  |                                                | SOT23-5 | 250                          | °C/W |
| $R_{thja}$       | Thermal resistance junction to ambient (4) (5) | MiniSO8 | 190                          |      |
|                  |                                                | SO8     | 125                          |      |
| $T_{j}$          | Maximum junction temperature                   |         | 150                          | °C   |
|                  | HBM: human body model <sup>(6)</sup>           |         | 4000                         |      |
| ESD              | MM: machine model (7)                          | 100     | V                            |      |
|                  | CDM: charged device model <sup>(8)</sup>       | 1500    |                              |      |
|                  | Latch-up immunity                              |         | 200                          | mA   |

**Table 2: Operating conditions** 

| Symbol | Parameter                            | Value                                  | Unit |
|--------|--------------------------------------|----------------------------------------|------|
| Vcc    | Supply voltage                       | 2.7 to 16                              | \/   |
| Vicm   | Common mode input voltage range      | $(V_{CC-})$ - 0.1 to $(V_{CC+})$ + 0.1 | V    |
| Toper  | Operating free air temperature range | -40 to 125                             | °C   |



<sup>&</sup>lt;sup>(1)</sup>All voltage values, except the differential voltage are with respect to the network ground terminal.

<sup>&</sup>lt;sup>(2)</sup>Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See *Section* 5.7 for the precautions to follow when using the TSX711, TSX711A, and TSX712 with a high differential input voltage

<sup>&</sup>lt;sup>(3)</sup>Input current must be limited by a resistor in series with the inputs.

<sup>(4)</sup>Rth are typical values.

 $<sup>^{(5)}</sup>$ Short-circuits can cause excessive heating and destructive dissipation.

<sup>&</sup>lt;sup>(6)</sup>According to JEDEC standard JESD22-A114F.

<sup>&</sup>lt;sup>(7)</sup>According to JEDEC standard JESD22-A115A.

<sup>(8)</sup> According to ANSI/ESD STM5.3.1

Table 3: Electrical characteristics at  $V_{CC+}=4$  V with  $V_{CC-}=0$  V,  $V_{icm}=V_{CC}/2$ ,  $T_{amb}=25$  ° C, and  $R_L>10$  k $\Omega$  connected to  $V_{CC}/2$  (unless otherwise specified)

| Symbol                       | Parameter                                          | Conditions                                                          | Min. | Тур. | Max. | Unit                      |  |
|------------------------------|----------------------------------------------------|---------------------------------------------------------------------|------|------|------|---------------------------|--|
| V <sub>io</sub>              |                                                    | V <sub>icm</sub> = V <sub>CC</sub> /2                               |      |      | 200  |                           |  |
| (TSX711,                     |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                          |      |      | 365  |                           |  |
| TSX712)                      | land offertualtens                                 | T <sub>min</sub> < T <sub>op</sub> < 125 °C                         |      |      | 450  | \/                        |  |
| V <sub>io</sub><br>(TSX711A) | Input offset voltage                               | V <sub>icm</sub> = V <sub>CC</sub> /2                               |      |      | 100  | μV                        |  |
|                              |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                          |      |      | 265  |                           |  |
| (TOXTTIT)                    |                                                    | T <sub>min</sub> < T <sub>op</sub> < 125 °C                         |      |      | 350  |                           |  |
| ΔV <sub>io</sub> /ΔΤ         | Input offset voltage drift (1)                     |                                                                     |      |      | 2.5  | μV/°C                     |  |
| $\Delta V_{io}$              | Long term input offset voltage drift (2)           | T = 25 °C                                                           |      | 1    |      | $\frac{nV}{\sqrt{month}}$ |  |
|                              |                                                    | V <sub>out</sub> = V <sub>CC</sub> /2                               |      | 1    | 50   |                           |  |
| l <sub>ib</sub>              | Input bias current (1)                             | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>               |      |      | 200  |                           |  |
|                              |                                                    | V <sub>out</sub> = V <sub>CC</sub> /2                               |      | 1    | 50   | рА                        |  |
| lio                          | Input offset current (1)                           | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>               |      |      | 200  | 1                         |  |
| Rın                          | Input resistance                                   |                                                                     |      | 1    |      | ΤΩ                        |  |
| C <sub>IN</sub>              | Input capacitance                                  |                                                                     |      | 12.5 |      | pF                        |  |
|                              |                                                    | $V_{icm} = -0.1 \text{ to } 4.1 \text{ V, } V_{out} = V_{CC}/2$     | 84   | 102  |      |                           |  |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                        | 83   |      |      |                           |  |
| (TSX711,<br>TSX711A)         |                                                    | $V_{icm} = -0.1$ to 2 V, $V_{out} = V_{CC}/2$                       | 100  | 122  |      |                           |  |
|                              | Common mode rejection                              | $T_{min} < T_{op} < T_{max}$                                        | 94   |      |      |                           |  |
|                              | ratio 20 log (ΔV <sub>ic</sub> /ΔV <sub>io</sub> ) | $V_{icm} = -0.1 \text{ to } 4.1 \text{ V, } V_{out} = V_{CC}/2$     | 80   | 98   |      |                           |  |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                        | 78   |      |      | dB                        |  |
| (TSX712)                     |                                                    | $V_{icm} = -0.1$ to 2 V, $V_{out} = V_{CC}/2$                       | 91   | 103  |      | uБ                        |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                        | 86   |      |      |                           |  |
|                              |                                                    | $R_L = 2 k\Omega$ , $V_{out} = 0.3 \text{ to } 3.7 \text{ V}$       | 110  | 136  |      |                           |  |
| A <sub>vd</sub>              | Large signal voltage gain                          | $T_{min} < T_{op} < T_{max}$                                        | 96   |      |      |                           |  |
| Avd                          | Large signal voltage gain                          | $R_L = 10 \text{ k}\Omega, V_{out} = 0.2 \text{ to } 3.8 \text{ V}$ | 110  | 140  |      |                           |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                        | 96   |      |      |                           |  |
|                              |                                                    | $R_L= 2 k\Omega$ to $V_{CC}/2$                                      |      | 28   | 50   |                           |  |
| Vон                          | High level output voltage                          | $T_{min} < T_{op} < T_{max}$                                        |      |      | 60   | m\/                       |  |
| VOH                          | (voltage drop from V <sub>CC+</sub> )              | $R_L=10 \text{ k}\Omega$ to $V_{CC}/2$                              |      | 6    | 15   | mV                        |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                        |      |      | 20   |                           |  |

#### TSX711, TSX711A, TSX712

| Symbol               | Parameter                         | Conditions                                                                                                                                | Min. | Тур.  | Max. | Unit             |
|----------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|------------------|
|                      |                                   | R <sub>L</sub> = 2 kΩ to V <sub>CC</sub> /2                                                                                               |      | 23    | 50   |                  |
| N/                   | Low level output voltege          | $T_{min} < T_{op} < T_{max}$                                                                                                              |      |       | 60   | \                |
| Vol                  | Low level output voltage          | $R_L=10 \text{ k}\Omega \text{ to V}_{CC}/2$                                                                                              |      | 5     | 15   | mV               |
|                      |                                   | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                                                                         |      |       | 20   |                  |
|                      | 1                                 | $V_{out} = V_{CC}$                                                                                                                        | 35   | 45    |      |                  |
| l <sub>out</sub>     | Isink                             | $T_{min} < T_{op} < T_{max}$                                                                                                              | 20   |       |      |                  |
| (TSX711,<br>TSX711A) | 1                                 | V <sub>out</sub> = 0 V                                                                                                                    | 35   | 45    |      |                  |
| ,                    | Isource                           | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                                                                         | 20   |       |      | A                |
|                      |                                   | V <sub>out</sub> = V <sub>CC</sub>                                                                                                        | 25   | 37    |      | mA               |
| lout                 | Isink                             | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>                                                                                     | 15   |       |      |                  |
| (TSX712)             |                                   | V <sub>out</sub> = 0 V                                                                                                                    | 35   | 45    |      |                  |
|                      | Isource                           | $T_{min} < T_{op} < T_{max}$                                                                                                              | 20   |       |      |                  |
|                      | Supply current per                | No load, V <sub>out</sub> = V <sub>CC</sub> /2                                                                                            |      | 570   | 800  |                  |
| Icc                  | amplifier                         | $T_{min} < T_{op} < T_{max}$                                                                                                              |      |       | 900  | μΑ               |
| GBP                  | Gain bandwidth product            | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                                                          | 1.9  | 2.7   |      | MHz              |
| φm                   | Phase margin                      | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                                                          |      | 50    |      | Degrees          |
| Gm                   | Gain margin                       | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                                                          |      | 15    |      | dB               |
| SRn                  | Negative slew rate                | Av = 1, V <sub>out</sub> = 3 V <sub>PP</sub> , 10 % to 90 %                                                                               | 0.6  | 0.85  |      |                  |
|                      |                                   | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>                                                                                     | 0.5  |       |      | \ //             |
| SRp                  | Positive slew rate                | Av = 1, V <sub>out</sub> = 3V <sub>PP</sub> , 10 % to 90 %                                                                                | 1.0  | 1.4   |      | V/µs             |
|                      |                                   | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>                                                                                     | 0.9  |       |      |                  |
|                      |                                   | f = 1 kHz                                                                                                                                 |      | 22    |      | nV               |
| en                   | Equivalent input noise voltage    | f = 10 kHz                                                                                                                                |      | 19    |      | <u>nV</u><br>√Hz |
| THD+N                | Total harmonic distortion + noise | $f = 1 \text{ kHz}, \text{ Av} = 1, \text{ R}_L = 10 \text{ k}\Omega, \\ \text{BW} = 22 \text{ kHz}, \text{ V}_{in} = 0.8 \text{ V}_{PP}$ |      | 0.001 |      | %                |

<sup>&</sup>lt;sup>(1)</sup>Maximum values are guaranteed by design.

<sup>&</sup>lt;sup>(2)</sup>Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).

Table 4: Electrical characteristics at  $V_{CC+}=10~V$  with  $V_{CC-}=0~V$ ,  $V_{icm}=V_{CC}/2$ ,  $T_{amb}=25~^{\circ}C$ , and  $R_L>10~k\Omega$  connected to  $V_{CC}/2$  (unless otherwise specified)

| Symbol                       | Parameter                                          | Conditions                                                       | Min. | Тур. | Max. | Unit                      |
|------------------------------|----------------------------------------------------|------------------------------------------------------------------|------|------|------|---------------------------|
| Vio                          |                                                    | V <sub>icm</sub> = V <sub>CC</sub> /2                            |      |      | 200  |                           |
| (TSX711,                     |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                       |      |      | 365  |                           |
| TSX712)                      |                                                    | T <sub>min</sub> < T <sub>op</sub> < 125 °C                      |      |      | 450  |                           |
|                              | Input offset voltage                               | V <sub>icm</sub> = V <sub>CC</sub> /2                            |      |      | 100  | μV                        |
| V <sub>io</sub><br>(TSX711A) |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                       |      |      | 265  |                           |
| (13//11/4)                   |                                                    | T <sub>min</sub> < T <sub>op</sub> < 125 °C                      |      |      | 350  |                           |
| ΔV <sub>io</sub> /ΔΤ         | Input offset voltage drift (1)                     |                                                                  |      |      | 2.5  | μV/°C                     |
| $\Delta V_{io}$              | Long term input offset voltage drift (2)           | T = 25 °C                                                        |      | 25   |      | $\frac{nV}{\sqrt{month}}$ |
|                              | Lagrand Indian account (1)                         | V <sub>out</sub> = V <sub>CC</sub> /2                            |      | 1    | 50   |                           |
| l <sub>ib</sub>              | Input bias current (1)                             | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>            |      |      | 200  |                           |
|                              | l                                                  | V <sub>out</sub> = V <sub>CC</sub> /2                            |      | 1    | 50   | рА                        |
| lio                          | Input offset current (1)                           | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>            |      |      | 200  |                           |
| R <sub>IN</sub>              | Input resistance                                   |                                                                  |      | 1    |      | ΤΩ                        |
| CIN                          | Input capacitance                                  |                                                                  |      | 12.5 |      | pF                        |
|                              | Common mode rejection                              | $V_{icm} = -0.1 \text{ to } 10.1 \text{ V, } V_{out} = V_{CC}/2$ | 90   | 102  |      |                           |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                     | 86   |      |      |                           |
| (TSX711,<br>TSX711A)         |                                                    | $V_{icm} = -0.1 \text{ to } 8 \text{ V}, V_{out} = V_{CC}/2$     | 105  | 117  |      |                           |
| ,                            |                                                    | $T_{min} < T_{op} < T_{max}$                                     | 95   |      |      |                           |
|                              | ratio 20 log (ΔV <sub>ic</sub> /ΔV <sub>io</sub> ) | $V_{icm} = -0.1 \text{ to } 10.1 \text{ V}, V_{out} = V_{CC}/2$  | 88   | 100  |      |                           |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                     | 84   |      |      | ٩D                        |
| (TSX712)                     |                                                    | $V_{icm} = -0.1$ to 8 V, $V_{out} = V_{CC}/2$                    | 98   | 106  |      | dB                        |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                     | 92   |      |      |                           |
|                              |                                                    | $R_L$ = 2 k $\Omega$ , $V_{out}$ = 0.3 to 9.7 V                  | 110  | 140  |      |                           |
| Λ.                           | Lorgo signal voltago goin                          | $T_{min} < T_{op} < T_{max}$                                     | 100  |      |      |                           |
| A <sub>vd</sub>              | Large signal voltage gain                          | $R_L$ = 10 k $\Omega$ , $V_{out}$ = 0.2 to 9.8 V                 | 110  |      |      |                           |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                     | 100  |      |      |                           |
|                              |                                                    | R <sub>L</sub> = 2 kΩ o V <sub>CC</sub> /2                       |      | 45   | 70   |                           |
| \/                           | High level output voltage                          | $T_{min} < T_{op} < T_{max}$                                     |      |      | 80   |                           |
| V <sub>OH</sub>              | (voltage drop from V <sub>CC+</sub> )              | R <sub>L</sub> = 10 kΩ o V <sub>CC</sub> /2                      |      | 10   | 30   |                           |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                     |      |      | 40   | 1                         |
|                              |                                                    | R <sub>L</sub> = 2 kΩ o V <sub>CC</sub> /2                       |      | 42   | 70   | mV                        |
| \/-:                         | Low lovel output veltage                           | $T_{min} < T_{op} < T_{max}$                                     |      |      | 80   |                           |
| V <sub>OL</sub>              | Low level output voltage                           | R <sub>L</sub> = 10 kΩ o V <sub>CC</sub> /2                      |      | 9    | 30   |                           |
|                              |                                                    | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>            |      |      | 40   |                           |



#### TSX711, TSX711A, TSX712

| Symbol               | Parameter                         | Conditions                                                                                              | Min. | Тур.   | Max. | Unit             |  |
|----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|------|--------|------|------------------|--|
|                      | 1                                 | V <sub>out</sub> = V <sub>CC</sub>                                                                      | 50   | 70     |      |                  |  |
| l <sub>out</sub>     | Isink                             | $T_{min} < T_{op} < T_{max}$                                                                            | 40   |        |      |                  |  |
| (TSX711,<br>TSX711A) |                                   | V <sub>out</sub> = 0 V                                                                                  | 50   | 69     |      |                  |  |
| ,                    | Isource                           | $T_{min} < T_{op} < T_{max}$                                                                            | 40   |        |      | mA               |  |
|                      | L                                 | $V_{out} = V_{CC}$                                                                                      | 30   | 39     |      | IIIA             |  |
| lout                 | Isink                             | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>                                                   | 15   |        |      |                  |  |
| (TSX712)             |                                   | V <sub>out</sub> = 0 V                                                                                  | 50   | 69     |      |                  |  |
|                      | Isource                           | $T_{min} < T_{op} < T_{max}$                                                                            | 40   |        |      |                  |  |
|                      | Supply current per                | No load, V <sub>out</sub> = V <sub>CC</sub> /2                                                          |      | 630    | 850  |                  |  |
| Icc                  | amplifier                         | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>                                                   |      |        | 1000 | μΑ               |  |
| GBP                  | Gain bandwidth product            | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                        | 1.9  | 2.7    |      | MHz              |  |
| φm                   | Phase margin                      | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                        |      | 53     |      | Degrees          |  |
| Gm                   | Gain margin                       | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                        |      | 15     |      | dB               |  |
| SRn                  | Negative slew rate                | Av = 1, V <sub>out</sub> = 8 V <sub>PP</sub> , 10 % to 90 %                                             | 0.8  | 1      |      |                  |  |
|                      |                                   | $T_{min} < T_{op} < T_{max}$                                                                            | 0.7  |        |      | \//uo            |  |
| SRp                  | Positive slew rate                | Av = 1, V <sub>out</sub> = 8 V <sub>PP</sub> , 10 % to 90 %                                             | 1.0  | 1.3    |      | V/µs             |  |
|                      |                                   | $T_{min} < T_{op} < T_{max}$                                                                            | 0.9  |        |      |                  |  |
|                      |                                   | f = 1 kHz                                                                                               |      | 22     |      | nV               |  |
| en                   | Equivalent input noise voltage    | f = 10 kHz                                                                                              |      | 19     |      | <u>nV</u><br>√Hz |  |
| THD+N                | Total harmonic distortion + noise | $f = 1 \text{ kHz, Av} = 1, R_L = 10 \text{ k}\Omega,$ $BW = 22 \text{ kHz, V}_{in} = 5 \text{ V}_{PP}$ |      | 0.0003 |      | %                |  |

<sup>&</sup>lt;sup>(1)</sup>Maximum values are guaranteed by design.

<sup>&</sup>lt;sup>(2)</sup>Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).

Table 5: Electrical characteristics at  $V_{CC+}=16~V$  with  $V_{CC-}=0~V$ ,  $V_{icm}=V_{CC}/2$ ,  $T_{amb}=25~^{\circ}C$ , and  $R_L>10~k\Omega$  connected to  $V_{CC}/2$  (unless otherwise specified)

| Symbol                       | Parameter                                          | Conditions                                                      | Min. | Тур. | Max. | Unit                      |  |
|------------------------------|----------------------------------------------------|-----------------------------------------------------------------|------|------|------|---------------------------|--|
| Vio                          |                                                    | V <sub>icm</sub> = V <sub>CC</sub> /2                           |      |      | 200  |                           |  |
| (TSX711,                     |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                      |      |      | 365  |                           |  |
| TSX712)                      |                                                    | T <sub>min</sub> < T <sub>op</sub> < 125 °C                     |      |      | 450  | ,                         |  |
| V <sub>io</sub><br>(TSX711A) | Input offset voltage                               | V <sub>icm</sub> = V <sub>CC</sub> /2                           |      |      | 100  | μV                        |  |
|                              |                                                    | T <sub>min</sub> < T <sub>op</sub> < 85 °C                      |      |      | 265  |                           |  |
| (IOX/IIA)                    |                                                    | T <sub>min</sub> < T <sub>op</sub> < 125 °C                     |      |      | 350  |                           |  |
| ΔV <sub>io</sub> /ΔΤ         | Input offset voltage drift (1)                     |                                                                 |      |      | 2.5  | μV/°C                     |  |
| $\Delta V_{io}$              | Long term input offset voltage drift (2)           | T = 25 °C                                                       |      | 500  |      | $\frac{nV}{\sqrt{month}}$ |  |
|                              |                                                    | V <sub>out</sub> = V <sub>CC</sub> /2                           |      | 1    | 50   |                           |  |
| l <sub>ib</sub>              | Input bias current (1)                             | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>           |      |      | 200  |                           |  |
|                              | Lames 4 - 4 - 4 - 4 (1)                            | V <sub>out</sub> = V <sub>CC</sub> /2                           |      | 1    | 50   | рА                        |  |
| l <sub>io</sub>              | Input offset current (1)                           | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub>           |      |      | 200  |                           |  |
| R <sub>IN</sub>              | Input resistance                                   |                                                                 |      | 1    |      | ΤΩ                        |  |
| CIN                          | Input capacitance                                  |                                                                 |      | 12.5 |      | pF                        |  |
|                              |                                                    | $V_{icm} = -0.1 \text{ to } 16.1 \text{ V}, V_{out} = V_{CC}/2$ | 94   | 113  |      |                           |  |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                    | 90   |      |      |                           |  |
| (TSX711,<br>TSX711A)         |                                                    | $V_{icm} = -0.1$ to 14 V, $V_{out} = V_{CC}/2$                  | 110  | 116  |      |                           |  |
| •                            | Common mode rejection                              | $T_{min} < T_{op} < T_{max}$                                    | 96   |      |      |                           |  |
|                              | ratio 20 log (ΔV <sub>ic</sub> /ΔV <sub>io</sub> ) | $V_{icm} = -0.1 \text{ to } 16.1 \text{ V}, V_{out} = V_{CC}/2$ | 94   | 107  |      |                           |  |
| CMRR                         |                                                    | $T_{min} < T_{op} < T_{max}$                                    | 90   |      |      |                           |  |
| (TSX712)                     |                                                    | $V_{icm} = -0.1$ to 14 V, $V_{out} = V_{CC}/2$                  | 100  | 107  |      | dB                        |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                    | 90   |      |      | uБ                        |  |
| SVRR                         | Supply voltage rejection                           | V <sub>cc</sub> = 4 to 16 V                                     | 100  | 131  |      |                           |  |
| SVKK                         | ratio 20 log (ΔV <sub>cc</sub> /ΔV <sub>io</sub> ) | $T_{min} < T_{op} < T_{max}$                                    | 90   |      |      |                           |  |
|                              |                                                    | $R_L$ = 2 k $\Omega$ , $V_{out}$ = 0.3 to 15.7 V                | 110  | 146  |      |                           |  |
| Λ.                           | Large signal voltage gain                          | $T_{min} < T_{op} < T_{max}$                                    | 100  |      |      |                           |  |
| $A_{vd}$                     | Large signal voltage gain                          | $R_L$ = 10 k $\Omega$ , $V_{out}$ = 0.2 to 15.8 V               | 110  | 149  |      |                           |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                    | 100  |      |      |                           |  |
|                              |                                                    | R <sub>L</sub> = 2 kΩ (TSX711, TSX711A)                         |      | 100  | 130  |                           |  |
|                              |                                                    | R <sub>L</sub> = 2 kΩ (TSX712)                                  |      | 70   | 130  |                           |  |
| Vон                          | High level output voltage (voltage drop from Vcc+) | $T_{min} < T_{op} < T_{max}$                                    |      |      | 150  | mV                        |  |
|                              |                                                    | R <sub>L</sub> = 10 kΩ                                          |      | 16   | 40   |                           |  |
|                              |                                                    | $T_{min} < T_{op} < T_{max}$                                    |      |      | 50   |                           |  |



#### **TSX711, TSX711A, TSX712**

| Symbol               | Parameter                         | Conditions                                                                                      | Min. | Тур.   | Max. | Unit             |
|----------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|------|--------|------|------------------|
|                      |                                   | R <sub>L</sub> = 2 kΩ                                                                           |      | 70     | 130  |                  |
| Vol                  | Law lawal autout valtage          | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                               |      |        | 150  | \/               |
|                      | Low level output voltage          | R <sub>L</sub> = 10 kΩ                                                                          |      | 15     | 40   | mV               |
|                      |                                   | $T_{min} < T_{op} < T_{max}$                                                                    |      |        | 50   |                  |
|                      | 1                                 | $V_{out} = V_{CC}$                                                                              | 50   | 71     |      |                  |
| l <sub>out</sub>     | Isink                             | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                               | 45   |        |      |                  |
| (TSX711,<br>TSX711A) | 1                                 | V <sub>out</sub> = 0 V                                                                          | 50   | 68     |      |                  |
| ,                    | Isource                           | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                               | 45   |        |      | A                |
|                      |                                   | V <sub>out</sub> = V <sub>CC</sub>                                                              | 30   | 40     |      | mA               |
| lout                 | Isink                             | $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$                                               | 15   |        |      |                  |
| (TSX712)             |                                   | V <sub>out</sub> = 0 V                                                                          | 50   | 68     |      |                  |
|                      | Isource                           | $T_{min} < T_{op} < T_{max}$                                                                    | 45   |        |      |                  |
|                      | Supply current per amplifier      | No load, V <sub>out</sub> = V <sub>CC</sub> /2                                                  |      | 660    | 900  |                  |
| Icc                  |                                   | nplifier $T_{min} < T_{op} < T_{max}$                                                           |      |        | 1000 | μA<br>MHz        |
| GBP                  | Gain bandwidth product            | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                | 1.9  | 2.7    |      | MHz              |
| φm                   | Phase margin                      | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                |      | 55     |      | Degrees          |
| Gm                   | Gain margin                       | $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$                                                |      | 15     |      | dB               |
| SRn                  | Negative slew rate                | Av = 1, V <sub>out</sub> = 10 V <sub>PP</sub> , 10 % to 90 %                                    | 0.7  | 0.95   |      |                  |
|                      |                                   | $T_{min} < T_{op} < T_{max}$                                                                    | 0.6  |        |      | \ //             |
| SRp                  | Positive slew rate                | Av = 1, V <sub>out</sub> = 10 V <sub>PP</sub> , 10 % to 90 %                                    | 1    | 1.4    |      | V/µs             |
| ·                    |                                   | $T_{min} < T_{op} < T_{max}$                                                                    | 0.9  |        |      |                  |
|                      |                                   | f = 1 kHz                                                                                       |      | 22     |      | nV               |
| en                   | Equivalent input noise voltage    | f = 10 kHz                                                                                      |      | 19     |      | <u>nV</u><br>√Hz |
| THD+N                | Total harmonic distortion + Noise | $f=1 \text{ kHz, Av}=1, R_L=10 \text{ k}\Omega, \\ BW=22 \text{ kHz, V}_{in}=10 \text{ V}_{PP}$ |      | 0.0002 |      | %                |

<sup>&</sup>lt;sup>(1)</sup>Maximum values are guaranteed by design.

<sup>&</sup>lt;sup>(2)</sup>Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).

### 4 Electrical characteristic curves

















Figure 10: Output current vs. output voltage at  $V_{CC} = 2.7 \text{ V}$  (TSX711, TSX711A)







Figure 14: Output low voltage vs. supply voltage

30

25

Rei 10KD to Vcc/2

T=-40°C

Figure 15: Output high voltage (drop from  $V_{CC+}$ ) vs. supply voltage

Figure 16: Output voltage vs. input voltage close to the rail at  $V_{CC} = 16 \text{ V}$ 16.00 15.95 15.90 Output voltage (V) 15.85 ر15.80 0.15 0.10 Vcc=16V Follower configuration 0.05 0.00 0.10 900 0.05 5.80 Input voltage (V)































# 5 Application information

### 5.1 Operating voltages

The TSX711, TSX711A, and TSX712 devices can operate from 2.7 to 16 V. The parameters are fully specified for 4 V, 10 V, and 16 V power supplies. However, the parameters are very stable in the full  $V_{\rm CC}$  range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 °C.

# 5.2 Input pin voltage ranges

The TSX711, TSX711A, and TSX712 devices have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in *Figure 33: "Input current limitation"*.

V<sub>in</sub> -V<sub>out</sub>

Figure 33: Input current limitation

# 5.3 Rail-to-rail input

The TSX711, TSX711A, and TSX712 devices have a rail-to-rail input, and the input common mode range is extended from  $(V_{CC-})$  - 0.1 V to  $(V_{CC+})$  + 0.1 V.

# 5.4 Rail-to-rail output

The operational amplifier output levels can go close to the rails: to a maximum of 40 mV above and below the rail when connected to a 10 k $\Omega$  resistive load to V<sub>CC</sub>/2.

### 5.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

#### **Equation 1**

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25 \, ^{\circ}\text{C})}{T - 25 \, ^{\circ}\text{C}} \right|$$

Where T = -40 °C and 125 °C.

The TSX711, TSX711A, and TSX712 datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a  $C_{pk}$  (process capability index) greater than 1.3.

### 5.6 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

#### **Equation 2**

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A<sub>FV</sub> is the voltage acceleration factor

 $\beta$  is the voltage acceleration constant in 1/V, constant technology parameter ( $\beta$  = 1)

Vs is the stress voltage used for the accelerated test

 $V_{\text{U}}$  is the voltage used for the application  $% \left( V_{\text{U}}\right) =V_{\text{U}}$ 

The temperature acceleration is driven by the Arrhenius model, and is defined in *Equation 3*.

#### **Equation 3**

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

AFT is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10<sup>-5</sup> eV.K<sup>-1</sup>)

 $T_U$  is the temperature of the die when  $V_U$  is used (K)

Ts is the temperature of the die under temperature stress (K)

The final acceleration factor,  $A_F$ , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

#### **Equation 4**

$$A_F = A_{FT} \times A_{FV}$$

 $A_F$  is calculated using the temperature and voltage defined in the mission profile of the product. The  $A_F$  value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

#### **Equation 5**

Months = 
$$A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$$

To evaluate the op amp reliability, a follower stress condition is used where V<sub>CC</sub> is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The  $V_{io}$  drift (in  $\mu V$ ) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

#### **Equation 6**

$$V_{CC} = maxV_{op}$$
 with  $V_{icm} = V_{CC}/2$ 

The long term drift parameter ( $\Delta V_{io}$ ), estimating the reliability performance of the product, is obtained using the ratio of the  $V_{io}$  (input offset voltage value) drift over the square root of the calculated number of months (*Equation 7*).

#### **Equation 7**

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month s)}}$$

Where  $V_{io}$  drift is the measured drift value in the specified test conditions after 1000 h stress duration.

### 5.7 High values of input differential voltage

In a closed loop configuration, which represents the typical use of an op amp, the input differential voltage is low (close to  $V_{io}$ ). However, some specific conditions can lead to higher input differential values, such as:

- operation in an output saturation state
- operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.
- use of the amplifier in a comparator configuration, hence in open loop

Use of the TSX711, TSX711A, or TSX712 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of  $V_{\text{io}}$ .

### 5.8 Capacitive load

Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.

Figure 34: "Stability criteria with a serial resistor at different supply voltage" shows the serial resistor that must be added to the output, to make a system stable. Figure 35: "Test configuration for Riso" shows the test configuration using an isolation resistor, Riso.



Figure 34: Stability criteria with a serial resistor at different supply voltage

 $V_{\text{IN}}$ Riso  $C_{\text{load}}$   $V_{\text{OUT}}$   $C_{\text{load}}$   $V_{\text{OUT}}$ 

Figure 35: Test configuration for Riso

### 5.9 PCB layout recommendations

Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

### 5.10 Optimized application recommendation

It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help to reduce electromagnetic interference impact.

## 5.11 Application examples

### 5.11.1 Oxygen sensor

The electrochemical sensor creates a current proportional to the concentration of the gas being measured. This current is converted into voltage thanks to R resistance. This voltage is then amplified by the TSX711, TSX711A, or the TSX712 (see *Figure 36: "Oxygen sensor principle schematic"*).

Figure 36: Oxygen sensor principle schematic



The output voltage is calculated using *Equation 8*:

#### **Equation 8**

$$V_{out} = (I \times R - V_{io}) \times \left(\frac{R_2}{R_1} + 1\right)$$

As the current delivered by the O2 sensor is extremely low, the impact of the  $V_{io}$  can become significant with a traditional operational amplifier. The use of a precision amplifier like the TSX711, TSX711A, TSX712 is perfect for this application.

In addition, using the TSX711, TSX711A, TSX712 for the O2 sensor application ensures that the measurement of O2 concentration is stable, even at different temperatures, thanks to a small  $\Delta V_{io}/\Delta T$ .

#### 5.11.2 Low-side current sensing

Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using the TSX711, TSX711A, or TSX712 (see *Figure 37: "Low-side current sensing schematic"*).

Rg1 Rf1 Vout

Figure 37: Low-side current sensing schematic

Vout can be expressed as follows:

#### **Equation 9**

$$V_{out} = R_{shunt} \, \mathbf{x} \, \, I \, \Big( 1 \, - \frac{R_{g2}}{R_{g2} + R_{f2}} \Big) \Big( 1 \, + \frac{R_{f1}}{R_{g1}} \Big) + \, I_p \Big( \frac{R_{g2} \, \mathbf{x} \, \, R_{f2}}{R_{g2} + R_{f2}} \Big) \\ \mathbf{x} \, \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) - \, I_n \, \mathbf{x} \, R_{f1} \, - \, V_{io} \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) + \, I_p \Big( \frac{R_{g2} \, \mathbf{x} \, \, R_{f2}}{R_{g2} + R_{f2}} \Big) \\ \mathbf{x} \, \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) - \, I_n \, \mathbf{x} \, R_{f1} \, - \, V_{io} \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) + \, I_p \Big( \frac{R_{g2} \, \mathbf{x} \, \, R_{f2}}{R_{g2} + R_{f2}} \Big) \\ \mathbf{x} \, \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) - \, I_n \, \mathbf{x} \, R_{f1} \, - \, V_{io} \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) + \, I_p \Big( \frac{R_{g2} \, \mathbf{x} \, \, R_{f2}}{R_{g2} + R_{f2}} \Big) \Big) \\ \mathbf{x} \, \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) - \, I_n \, \mathbf{x} \, R_{f1} \, - \, V_{io} \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big) \Big( 1 \, + \, \frac{R_{f1}}{R_{g1}} \Big) \Big( 1 \, + \, \frac{R_$$

Assuming that  $R_{f2} = R_{f1} = R_f$  and  $R_{g2} = R_{g1} = R_g$ , *Equation 9* can be simplified as follows:

#### **Equation 10**

$$V_{out} = R_{shunt} \times I\left(\frac{R_f}{R_g}\right) - V_{io}\left(1 + \frac{R_f}{R_g}\right) + R_f \times I_{io}$$

The main advantage of using a precision amplifier like the TSX711, TSX711A, or TSX712, for a low-side current sensing, is that the errors due to  $V_{io}$  and  $I_{io}$  are extremely low and may be neglected.

Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost.

Particular attention must be paid on the matching and precision of  $R_{g1}$ ,  $R_{g2}$ ,  $R_{f1}$ , and  $R_{f2}$ , to maximize the accuracy of the measurement.

Taking into consideration the resistor inaccuracies, the maximum and minimum output voltage of the operational amplifier can be calculated respectively using *Equation 11* and *Equation 12*.

#### **Equation 11**

$$\text{Maximum Vout} = \text{Rshunt} \times \text{I} \times \left(\frac{\text{Rf}}{\text{Rg}}\right) \! \times \left(1 + \epsilon \text{rs} + 2\epsilon \text{r}\right) + \text{Vio} \times \left(1 + \frac{\text{Rf}}{\text{Rg}}\right) + \text{Rf} \times \text{Iio}$$

#### **Equation 12**

#### Where:

- εrs is the shunt resistor inaccuracy (example, 1 %)
- Er is the inaccuracy of the Rf and Rg resistors (example, 0.1 %)

# 6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

# 6.1 SOT23-5 package information



Figure 38: SOT23-5 package outline

Table 6: SOT23-5 mechanical data

|      | Dimensions |           |            |           |       |            |  |
|------|------------|-----------|------------|-----------|-------|------------|--|
| Ref. |            | Millimete | rs         | Inches    |       |            |  |
|      | Min.       | Тур.      | Max.       | Min.      | Тур.  | Max.       |  |
| Α    | 0.90       | 1.20      | 1.45       | 0.035     | 0.047 | 0.057      |  |
| A1   |            |           | 0.15       |           |       | 0.006      |  |
| A2   | 0.90       | 1.05      | 1.30       | 0.035     | 0.041 | 0.051      |  |
| В    | 0.35       | 0.40      | 0.50       | 0.014     | 0.016 | 0.020      |  |
| С    | 0.09       | 0.15      | 0.20       | 0.004     | 0.006 | 0.008      |  |
| D    | 2.80       | 2.90      | 3.00       | 0.110     | 0.114 | 0.118      |  |
| D1   |            | 1.90      |            |           | 0.075 |            |  |
| е    |            | 0.95      |            |           | 0.037 |            |  |
| Е    | 2.60       | 2.80      | 3.00       | 0.102     | 0.110 | 0.118      |  |
| F    | 1.50       | 1.60      | 1.75       | 0.059     | 0.063 | 0.069      |  |
| L    | 0.10       | 0.35      | 0.60       | 0.004     | 0.014 | 0.024      |  |
| K    | 0 degrees  |           | 10 degrees | 0 degrees |       | 10 degrees |  |

# 6.2 MiniSO8 package information

Figure 39: MiniSO8 package outline

Table 7: MiniSO8 mechanical data

|      |      |             | Dir  | nensions |       |       |
|------|------|-------------|------|----------|-------|-------|
| Ref. |      | Millimeters |      |          |       |       |
|      | Min. | Тур.        | Max. | Min.     | Тур.  | Max.  |
| А    |      |             | 1.1  |          |       | 0.043 |
| A1   | 0    |             | 0.15 | 0        |       | 0.006 |
| A2   | 0.75 | 0.85        | 0.95 | 0.030    | 0.033 | 0.037 |
| b    | 0.22 |             | 0.40 | 0.009    |       | 0.016 |
| С    | 0.08 |             | 0.23 | 0.003    |       | 0.009 |
| D    | 2.80 | 3.00        | 3.20 | 0.11     | 0.118 | 0.126 |
| Е    | 4.65 | 4.90        | 5.15 | 0.183    | 0.193 | 0.203 |
| E1   | 2.80 | 3.00        | 3.10 | 0.11     | 0.118 | 0.122 |
| е    |      | 0.65        |      |          | 0.026 |       |
| L    | 0.40 | 0.60        | 0.80 | 0.016    | 0.024 | 0.031 |
| L1   |      | 0.95        |      |          | 0.037 |       |
| L2   |      | 0.25        |      |          | 0.010 |       |
| k    | 0°   |             | 8°   | 0°       |       | 8°    |
| ccc  |      |             | 0.10 |          |       | 0.004 |

# 6.3 SO8 package information

SEATING PLANE

O,25 mm

GAGE PLANE

Figure 40: SO8 package outline

Table 8: SO8 mechanical data

|      |      |             | Dir  | nensions |        |       |  |  |
|------|------|-------------|------|----------|--------|-------|--|--|
| Ref. |      | Millimeters |      |          | Inches |       |  |  |
|      | Min. | Тур.        | Max. | Min.     | Тур.   | Max   |  |  |
| Α    |      |             | 1.75 |          |        | 0.069 |  |  |
| A1   | 0.10 |             | 0.25 | 0.004    |        | 0.010 |  |  |
| A2   | 1.25 |             |      | 0.049    |        |       |  |  |
| b    | 0.28 |             | 0.48 | 0.011    |        | 0.019 |  |  |
| С    | 0.17 |             | 0.23 | 0.007    |        | 0.010 |  |  |
| D    | 4.80 | 4.90        | 5.00 | 0.189    | 0.193  | 0.197 |  |  |
| Е    | 5.80 | 6.00        | 6.20 | 0.228    | 0.236  | 0.244 |  |  |
| E1   | 3.80 | 3.90        | 4.00 | 0.150    | 0.154  | 0.157 |  |  |
| е    |      | 1.27        |      |          | 0.050  |       |  |  |
| h    | 0.25 |             | 0.50 | 0.010    |        | 0.020 |  |  |
| L    | 0.40 |             | 1.27 | 0.016    |        | 0.050 |  |  |
| L1   |      | 1.04        |      |          | 0.040  |       |  |  |
| k    | 0°   |             | 8°   | 0°       |        | 8°    |  |  |
| ccc  |      |             | 0.10 |          |        | 0.004 |  |  |

# 7 Ordering information

Table 9: Order codes

| Order code      | Temperature range                   | Package | Packaging     | Marking |
|-----------------|-------------------------------------|---------|---------------|---------|
| TSX711ILT       | -40 to 125 °C                       | SOT23-5 | Tape and reel | K29     |
| TSX711AILT      |                                     |         |               | K195    |
| TSX711IYLT (1)  | -40 to 125 °C<br>(automotive grade) |         |               | K197    |
| TSX711AIYLT (1) |                                     |         |               | K198    |
| TSX712IDT       | -40 to 125 °C                       | SO8     |               | TSX712  |
| TSX712IST       |                                     | MiniSO8 |               | K211    |
| TSX712IYDT (1)  | -40 to 125 °C<br>(automotive grade) | SO8     |               | TSX712Y |
| TSX712IYST (1)  |                                     | MiniSO8 |               | K212    |

 $<sup>^{(1)}</sup>$ Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

# 8 Revision history

Table 10: Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 27-Feb-2014 | 1        | Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 19-Mar-2014 | 2        | Table 1: updated ESD data for MM (machine model)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 25-Jul-2014 | 3        | Table 3: updated $I_{out}$ ( $I_{sink}$ ) values.  Table 3, Table 4, and Table 5: updated $V_{io}$ values, updated $\Delta V_{io}/\Delta T$ .  Table 5: updated $V_{OL}$ values  Table 6: updated "inches" dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 26-Jan-2016 | 4        | TSX711 datasheet merged with TSX712 datasheet. Reworked the following sections: Cover image, Related products, Description, Section 1: "Package pin connections", Section 2: "Absolute maximum ratings and operating conditions", Section 3: "Electrical characteristics", Section 4: "Electrical characteristic curves", Section 5.1: "Operating voltages", Section 5.2: "Input pin voltage ranges", Section 5.3: "Rail-to- rail input", Section 5.4: "Rail-to-rail output", Section 5.5: "Input offset voltage drift over temperature", Section 5.7: "High values of input differential voltage", Section 5.11.1: "Oxygen sensor", Section 5.11.2: "Low-side current sensing", Section 7: "Ordering information".  Added: Section 6.2: "MiniSO8 package information" and Section 6.3: "SO8 package information". |  |
| 21-Mar-2017 | 5        | Added part number TSX711A  Table 9: "Order codes": updated footnotes with respect to TSX711IYLT, TSX711AIYLT, TSX712IYDT, and TSX712IYST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved



# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# STMicroelectronics:

 $\frac{\mathsf{TSV630AIQ1T}}{\mathsf{TSX711ILT}} \ \underline{\mathsf{TSX711AILT}} \ \underline{\mathsf{TSX712IST}} \ \underline{\mathsf{TSX712IYST}} \ \underline{\mathsf{TSX712IDT}} \ \underline{\mathsf{TSX712IYDT}} \ \underline{\mathsf{TSX711AIYLT}}$