

Capacidade de Hospedagem de Sistemas Fotovoltaicos

Sistema IEEE 8500 Node

Eng. Eletric. Alcides Henrique L. Wroblewski Eng. Eletric. Vinicius M. Barbosa

Motivação

- Crescimento de instalação de GDs em sistemas de distribuição.
- Impactos negativos de operação para as distribuidoras elétrica.
 - Desvio de Tensão
 - Perdas
 - Reversão do fluxo de Potência

Alocação e dimensionamento das GDs de forma estratégica

Metodologia Proposta

Sistema IEEE8500 Node

- Impedância e Reatância pequenas
- Elementos de controle
- Definição do modelo de carga constante
- Configuração do consumo de carga em 30%

Metodologia Proposta

- Alocação e dimensionamento
 - Definição dos locais dos geradores
 - AddBusMarker bus=l3104830 color=yellow size=8 code=15
 - AddBusMarker bus=13010556 color=red size=8 code=15
 - AddBusMarker bus=n1136663 color= green size=8 code=15

Acréscimo de Potência da GD

Metodologia

- Desenvolvimento do script para efetuar as simulações
 - Python 3.7
 - Import py_dss_interface
 - Import pandas
 - Import numpay
 - Import numpay
 - Import sys
 - Import subprocess

Aplicação da Metodologia

Cenário	1	2	2	4
Nome do Gerador	GER01	GER02	GER03	GER03
BARRA GERAÇÃO	I3010556	l3104830	n1136663	l3010556, l3104830 e n1136663
Localização do Energy Metter	Line.ln5815900-1	Line.ln5815900-1	Line.ln5815900-1	Line.ln5815900-1
Pot. Inicial em KW	1.500	1.500	1.500	3x1500 = 4500
INCREMENTO DE GD	30%	30%	30%	30%
Limites de Sobretensão em P.U	<0,93	<0,93	<0,93	<0,93
Limites de Subtensão em P.U	>1,05	>1,05	>1,05	>1,05
Perfil de Carga	30%	30%	30%	30%
CARGAS VMIN/VMAX [pu]	1,25 / 0,75	1,25 / 0,75	1,25 / 0,75	1,25 / 0,75
CIRCUIT [pu]	1,04	1,04	1,04	1,04
Planejamento	5	5	5	5

Plotagem do circuito sem o Gerador Ligado

Plotagem do circuito com o Gerador Ligado

Plotagem do circuito com o Gerador Ligado

File Edit View About

| 12290000 - | 12250000 - | 12250000 - | 1650000 | 1650000 | 1700000

Plotagem do circuito com o Gerador Ligado

Plotagem do circuito sem o Gerador Ligado

Plotagem do circuito com o Gerador Ligado

Dados no local de instalação do GER03

Plotagem do circuito sem o Gerador Ligado

Plotagem do circuito com o Gerador Ligado

Dados no local de instalação do GER01 com o GER02 e GER03 ligados

Dados no local de instalação do GER02 com o GER01 e GER03 ligados

Dados no local de instalação do GER03 com o GER01 e GER02 ligados

File Edit View About Y IEEE8800:Power, max=4.07E003 12280000 12280000 12250000 1680000 1680000 1700000 X

Plotagem do circuito sem o Gerador Ligado

Plotagem do circuito com o Gerador Ligado

Conclusões

- ✓ A potencia de 1,8 MW é compatível para os casos analisados, pois mantem perdas e sobretensões em níveis aceitáveis para os casos concretos analisados.
- ✓ A concomitância dos 3 geradores no circuito na condição proposta gera prejuízos a operação do circuito, sendo necessária malha de controle, estando o sistema incapaz de acomodar a geração concomitante.
- ✓ O 2 º Cenário é o que possuir a maior capacidade de acomodação de 4,28 MW na condição proposta.
- ✓ Existe ganho substancial de tempo e otimização de recursos de trabalho quando comparamos o OpenDSS com o py_dss_interface na realização das analise.
- ✓ As analises podem ser expandidas para casos mais complexos, cabendo refinar as condições de contorno e operação.

Juntos.. Moldando o futuro da energia ®

