Classification Performance Metrics

Part One: Confusion Matrix Basics

Presented by: Shreyas Shukla

Ever heard of terms:

"false positive" or "false negative" or "accuracy"?

and

Ritvij Bharat Private Limited (RBPL)

Presented by: Shreyas Shukla

Say we've developed model to detect presence of a virus infection in a person based on some biological feature.

Assume this is a Logistic Regression, predicting:

- 0 Not Infected (Tests Negative)
- 1 Infected (Tests Positive)

Shreyas Shukla

Unlikely that our model will perform perfectly. This means there are 4 possible outcomes:

- Infected person tests positive.
- Healthy person tests negative.
 - Note, these are the outcomes we want! But it is unlikely our test is perfect...

Shreyas Shukla

- Infected person tests positive.
- Healthy person tests negative.
- Infected person tests negative.
- Healthy person tests positive.

Presented by: Shreyas Shukla

Based off these 4 possibilities, there are many error metrics we can calculate.

iHUB Divya Sampark, IIT Roorkee and

Ritvij Bharat Private Limited (RBPL)

Presented by: Shreyas Shukla

Confusion Matrix

	ACTUAL		
	INFECTED	HEALTHY	
Ritvij Bl	harat Privat	te Limited ((RBPL)
	Present	ted by:	
	Shreyas	Shukla	

Confusion Matrix

PREDICTED

INFECTED HEALTHY

INFECTED HEALTHY

HEALTHY

Presented by

Shreyas Shukia

Confusion Matrix

PREDICTED

ACTUAL

INFECTED HEALTHY

INFECTED TRUE
POSITIVE

HEALTHY

Shreyas Shukia

Confusion Matrix

	ACTUAL			orkee
		INFECTED	HEALTHY	
PREDICTED	INFECTED	TRUE POSITIVE	te Limited (RBPL
	HEALTHY	Present	TRUE NEGATIVE	
		Shreyas	Shukla	

Confusion Matrix

	ACTUAL			
		INFECTED	HEALTHY	
PREDICTED	INFECTED	TRUE POSITIVE	FALSE POSITIVE	RBPL
	HEALTHY	Present	TRUE NEGATIVE	
		Shreyas	Shukla	

Confusion Matrix

PREDICTED

	ACTUAL		
	INFECTED	HEALTHY	
INFECTED	TRUE POSITIVE	FALSE POSITIVE	
HEALTHY	FALSE NEGATIVE	TRUE NEGATIVI	

An Introduction to Machine Learning with Python Programming

- Imagine a test group of 100 people
- 5 are infected. 95 are healthy.

		ACTUAL		
		INFECTED HEALTHY		
PREDICTED	INFECTED	narat Private Limited	RBPL	
	HEALTHY	Presented by:		
		Shreyas Shukla	-	

We tested all of them and got these results:

	ACTUAL		
	INFECTED	HEALTHY	
INFECTED	harat 4 rivat	e Limited (RE
HEALTHY	Present	ed by:	

PREDICTED

Shreyas Shukla

Accuracy?

		ACTUAL		
		INFECTED	HEALTHY	
PREDICTED	INFECTED	arat 4 rival	te Lingited (
	HEALTHY	Present	ted by:	
		21	61 11	

Shreyas Shukla

• Accuracy:

How often is the model correct?

$$Acc = (TP+TN)/Total$$

Calculating accuracy:

		ACTUAL		
	111011	INFECTED	HEALTHY	
PREDICTED	INFECTED	4	te Lingited (
	HEALTHY	Present	93	

Accuracy:

How often is the model correct?

$$Acc = (TP+TN)/Total$$

(4+93)/100 = 97% Accuracy Is this a good value for accuracy?

The accuracy paradox...

		ACTUAL		
	111000	INFECTED	HEALTHY	
PREDICTED	INFECTED	4	e Lingited (
	HEALTHY	Present	93	

(4+93)/100 = 97% Accuracy

Accuracy:

How often is the model correct?

$$Acc = (TP+TN)/Total$$

Imagine we **always** report back "healthy"

PREDICTED

	ACTUAL		
	INFECTED	HEALTHY	
INFECTED	arat <mark>P</mark> rival	te Lingited (RB.
HEALTHY	Present	ed by:	

Shreyas Shukla

Imagine we always report back "healthy"

		ACTUAL	
	1110101	INFECTED	HEALTHY
PREDICTED	INFECTED	harat ₀ Prival	te Limited ()
	HEALTHY	Present	ed by:
		Character	Charlela

(0+95)/100 = 95% Accuracy

- Accuracy:
 - How often is the model correct?

95% accuracy for a model that always returns "healthy"!

This is the accuracy paradox!

- Classifiers dealing with imbalanced classes has to confront the issue of the accuracy paradox.
- Imbalanced classes will always result in a distorted accuracy reflecting better performance than what is truly warranted.

Imbalanced classes are often found in real world data sets.

Conducted by:

- Medical conditions can affect small portions of the population.
- Fraud is not common (e.g. Real vs. Fraud credit card usage).ed by:
 Shreyas Shukla

- If a class is only a small percentage (n%), then a classifier that always predicts the majority class will always have an accuracy of (1-n).
- In our previous example we saw infected were only 5% of the data.
- Allowing the accuracy to be 95%.

Shreyas Shukla

This means we shouldn't solely rely on accuracy as a metric!

This is where precision, recall, and f1-score will come in.

Presented by: Shreyas Shukla

Classification Performance Metrics

Part Two: Precision and Recall

Presented by: Shreyas Shukla

- We already know how to calculate accuracy and its associated paradox.
- Let's explore three more metrics that can help give a clearer picture of performance:
 - Recall (a.k.a. sensitivity)
 - Precision Presented by:
 - o F1-Score Shreyas Shukla

Let's begin with recall.

PREDICTED

INFECTED

INFECTED

INFECTED

HEALTHY

PREDICTED

Recall = Shukla

(TP)/Total Actual Positives

• Recall:

When it actually is a positive case, how often is it correct?

Recall:

When it actually is a positive case, how often is it correct?

INFECTED HEALTHY

INFECTED 4 2

HEALTHY 1 93

Presented by

PREDICTED

Recall = 0.8

• Recall:

How many relevant cases are found?

What's the recall if we always classify as "healthy"?

ACTUAL INFECTED HEALTHY harat orivale Limited **INFECTED PREDICTED** Presented by: **HEALTHY**

Recall = Shukla

(TP)/Total Actual Positives

Recall:

How many relevant cases are found?

- What's the recall if we always classify as "healthy"?
- A recall of 0 alerts you the model isn't catching cases!

		ACTUAL	
		INFECTED	HEALTHY
PREDICTED	INFECTED	harat <mark>P</mark> rival	e Limited (
	HEALTHY	Present	ed by:
		Recall = (0)/5!	

Recall:

How many relevant cases are found?

Now let's explore **precision**.

• Precision:

When prediction is positive, how often is it correct?

(TP)/Total Predicted
Positives

• Precision:

When prediction is positive, how often is it correct?

(TP)/Total Predicted
Positives

ACTUAL

What's the **precision** if we always classify as "healthy"?

PREDICTED

	Divva Samnark, III R		
	INFECTED	HEALTHY	
INFECTED	harat ₀ rivat	e Limite	
НЕАLТНҮ	Present	ed by:	

Precision =
(TP)/Total Predicted Positives
= 0/0

• Precision:

When prediction is positive, how often is it correct?

(TP)/Total Predicted Positives

- Recall and Precision can help illuminate our performance specifically in regards to the relevant or positive case.
- Depending on the model, there is typically a trade-off between precision and recall, which we will explore later on with the ROC curve.

Shreyas Shukla

Since precision and recall are related to each other through the numerator (TP), we also report the F1-Score, which is the harmonic mean of precision and recall.

The harmonic mean (instead of the normal mean) allows the entire harmonic mean to go to zero if **either** precision or recall ends up being zero.

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

		True cond				
Predicted condition	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma}{\Sigma}$ True positive	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma}{\Sigma}$ False positive $\frac{\Sigma}{\Sigma}$ Condition negative	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$	F ₁ score = 2 · Precision · Recall Precision + Recall
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$		

Shreyas Shukla

Finally, let's explore a way to visualize the relationships between metrics such as precision and recall with curves.

Ritvij Bharat Private Limited (RBPL)

Presented by: Shreyas Shukla

Classification Performance Metrics

Part Three: ROC Curves

Presented by: Shreyas Shukla

• There can be a trade-off between True Positives and False Positives.

Our previous infection test.

Actual Status

Negative
Positive

• Fit logistic regression model.

Actual Status

Negative
Positive

- Given X we predict 0 or 1.
- Default is to choose 0.5 as cut-off.

How many TP vs FP?

124

Actual Status

RNA Level

12**Z**

- In certain situations, we accept more false positives to reduce false negatives.
- Imagine a dangerous virus test, we would much rather produce false positives and later do more stringent examination than accidentally release a false negative!

 Presented by:

Shreyas Shukla

RNA Level

Chart the True vs. False positives for various cut-offs for the ROC curve.

By changing the cut-off limit, we can adjust our True vs. False Positives!

A perfect model would have a zero FPR. Random guessing is the red line.

Realistically with smaller data sets the ROC curves are not as smooth.

AUC - Area Under the Curve, allows us to compare ROCs for different models.

Can also create precision vs. recall curves:

