XRAM Acc No: C92-093729 XRPX Acc No: N92-155423

Photosensitive resin compsn. useful for radiation-sensitive resist - contains cpd. generating acid or base on irradiation and aryl cyclobutane

dicarboxylic acid ester based cpd. for high sensitivity

Patent Assignee: MITSUBISHI ELECTRIC CORP (MITQ) Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 4136856 19920511 JP 90262563 19900927 Α Α 199225 JP 2723350 B2 19980309 JP 90262563 19900927 A 199815

Priority Applications (No Type Date): JP 90262563 A 19900927

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 4136856 A 10 G03F-007/004

JP 2723350 B2 9 G03F-007/004 Previous Publ. patent JP 4136856

Abstract (Basic): JP 4136856 A

Compsn. contains (a) a cpd. which generates an acid or a base on irradiation, and (b) a cpd. consisting of units of formula (I). In (I), R1-R6 = H, alkyl, haloalkyl, alkoxy, alkenyl, alkynyl or opt. substd. phenyl or R2 and R3, R5 and R6 may combine to form each cyclic structure; and Ar = aromatic ring.

Cpd. (a) is, e.g., triphenylsulphonium tetrafluoroborate, triphenylsulphonium hexafluoroantimonate, 4-thiophenoxydiphenyl sulphonium tetrafluoroborate or tris(4-methylphenyl) sulphonium tetrafluoroborate. The ratio of cpd. (a) to (b) is 30:70 - 1:99, pref. 20:90 - 2:98 by wt. The compsn. opt. contains an alkali soluble polymer cpd., e.g., poly(meth)acrylic acid, polyuhydroxystyrene or polymethyl methacrylate, adhesion-improving agents, etc.. The solvent for the resist compsn., is, e.g., methylcellosolve, cyclopentanone or chlorobenzene.

USE/ADVANTAGE - The compsn. is useful for a radiation-sensitive resist. The compsn. has high sensitivity to exposure to radiation and high resolution.

Title Terms: PHOTOSENSITISER; RESIN; COMPOSITION; USEFUL; RADIATE; SENSITIVE; RESIST; CONTAIN; COMPOUND; GENERATE; ACID; BASE; IRRADIATE; ARYL; CYCLOBUTANE; DI; CARBOXYLIC; ACID; ESTER; BASED; COMPOUND; HIGH; SENSITIVE

Derwent Class: A14; A89; G06; L03; P84; U11

International Patent Class (Main): G03F-007/004 International Patent Class (Additional): G03F-007/038; G03F-007/039;

H01L-021/027

File Segment: CPI; EPI; EngPI

⑫ 公 開 特 許 公 報 (A) 平4-136856

⑤Int.Cl.5 識別記号 庁内整理番号 G 03 F 7/004 5 1 5 7124-2H 5 0 3 7124-2H ❸公開 平成4年(1992)5月11日

7124-2H 7124-2H 7352-4M H 01 L 21/30 3 0 1 R※ 審査請求 未請求 請求項の数 1 (全 10 頁)

会発明の名称 感光性樹脂組成物

②特 願 平2-262563

@出 願 平2(1990)9月27日

@発 明 者 熊 田 輝 彦 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社 材料研究所内

⑫発 明 者 田 中 祥 子 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社

材料研究所内

@発 明 者 堀 辺 英 夫 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社

材料研究所内

⑩発明者 久保田 繁 兵庫県尼崎市塚□本町8丁目1番1号 三菱電機株式会社

材料研究所内

⑪出 顋 人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

⑩代 理 人 弁理士 大岩 増雄 外2名

最終頁に続く

明 組 書

1. 発明の名称

感光性樹脂組成物

2. 特許請求の範囲

(1) 放射線に感光して酸または塩基を発生する化合物および一般式(j):

$$\begin{array}{c|c}
 & R^{1} \\
\hline
 & C0 - 0 - C - R^{2} \\
\hline
 & CH & R^{3} \\
\hline
 & CH & R^{4} \\
\hline
 & CO - C - R^{5} \\
 & R^{6}
\end{array}$$
(1)

(式中、 R¹ ~ R⁶ はそれぞれ水業原子、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルケニル基、アルキニル基、フェニル基または置

換フェニル基を示し、 R² と R³ 、 R⁵ と R⁶ がそれぞれ環構造をなしていてもよい、Arは芳香環を有する基を示す)で表わされる単位からなる化合物を含有することを特徴とする感光性樹脂組成物。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、たとえば超LSIなどの半導体デバイスの数観バターンを形成するために使用される放射線感応性レジストに用いる感光性樹脂組成物に関する。

(従来の技術・発明が解決しようとする課題)

従来から半導体デバイスの高集積化が求められており、それに対応して微細加工技術の開発が進められている。この技術を実現するためにいりつかの手法が検討されているが、なかでも光リソグラフィー技術で使用する光線で短波及化することや、大学干渉などの問題を無視できる電子線、X線を露光線源に使用した路光技術などが注目されてい

る。

従来、光リソグラフィー用のレジストとして、 ノボラック樹脂とナフトキノンアジドとからなる レジストが知られており、このレジストは高解像 度、ドライエッチング耐性、高級度などの優れた 特性を有しているが、露光線源の波提が短波投化 するにしたがって感光波及の不適合や、該短波及 の光に対するレジスト自体の透過率が低くなるな どの問題が生ずるため、エキシマレーザ、電子線 、X線を露光線源とするレジストとしては不適当で

そこで、超子線、X線用のレジストとして、ボリメタクリレート樹脂やポリオレフィンスルホン樹脂などからなるポジ型レジストや、クロメチル化ポリスチレンなどからなるネガ型レジストが開発されている。しかし、前者はドライエッチング耐性が低く低感度であるという欠点を育し、後記は現像液による膨利のために解像度が低下するという欠点を有している。

さらに、高感度のレジストをうるためのものと

- 3 -

ついて記載されているが、これらの組成物では解 重合による気体の発性が著しいために、生成する パターンの形状が悪化してしまう。

本発明は、前記のような従来の技術の問題点を解決し、放射線露光に対する高い感度を有し、露光された部分だけが忠実に医性溶媒に可溶化し、かつ非極性溶媒に不溶化して高解像度のパターンを形成しうるポジ型としても未が型としても使用しうる放射線感応レジストを提供することを目的とする。

[課題を解決するための手段]

本発明者らは、前記目的を達成すべく鋭意検討 を重ねた結果、放射線に感光して酸または塩基を 発生する化合物および一般式(I):

して、特別昭 60-175046 号公報には、露光前はアルカリ溶液に対して溶解抵抗性があり、放射線線の路光を受けるとその部分がアルカリ可溶性となる報成物であって、アルカリ可溶性フェノール協問と放射線感応性オニウム塩との組成物が開いた。 であり、特別昭 63-59181 号公報には、アルカリ可溶性の高分子化合物と、高エネルギー放射線の現るの制によってエステルが分解し、カルボン酸を生成するアルカリ不溶性有機酸エステルとの制成物が開示されている。

しかし、前配公報に開示されている組成物は、いずれも解像度、感度などの性能のある程度の向上はみられるものの、実用的なレベルにまで向上したものではない。

また、「ジャーナル オブ ザ エレクトロケミカルソサイアティ(J. Electrochem. Soc.) 136 (1)、p. 241 ~ 245 」には、トリフェニルスルホニウムヘキサフルオロアンチモネートが紫外線の照射を受けて酸を発生し、その酸によるポリ(クロロまたはブロモフタルアルデヒド)の解血合に

- 4 -

(式中、 R¹ ~ R⁸ はそれぞれ水素原子、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルケニル基、アルキニル基、フェニル甚または置換フェニル基を示し、また R² と R³ 、 R⁵ と R⁸ がそれぞれ機構造をなしていてもよい、Arは芳香環を含有する基を示す)で表わされる単位からなる化合物を含有することを特敵とする感光性樹脂組成物が、高感度で高解像度の放射線感応レジストとなることを見出し、本発明に到達した。

本発明の組成物に放射線が照射されると、放射 線に感光して酸または塩基を発生する化合物から 発生した酸または塩基が、アルカリ水溶液などの極性溶媒に不溶で非極性溶媒に可溶の一般式(I)で表わされる単位からなる化合物の一部を分解し、その部分を極性溶媒に可溶で非極性溶媒に不溶にする。その結果、極性溶媒を現像液に用いるとネガ型のバターンを形成することができる。

また、この分解反応を起こすために必要な酸または塩基を発生する化合物は、加熱することにより大幅に感度を向上させることが可能となるばあいが多い。

(実施例)

本発明の感光性樹脂組成物には、一般式(I): [以下余白]

- 7 -

チルアミノ茲、ジメチルアミノ茲、エチルアミノ茲、ジエチルアミノ茲、塩素原子、臭素原子、フッ素原子など置換された置換フェニル基である。 $R^1 \sim R^6$ はそれぞれ同種でもよく、異種でもよく、 R^2 と R^3 、 R^5 と R^6 がそれぞれ - Cli 2C H₂ Cli 2 Cli - Cli 2C H₂ Cli 2 Ch 2 Cli 2 Ch 3 Cli 3 Ch 4 Cli 3 Ch 4 Cli 3 Ch 4 Cli 3 Ch 5 Cli 4 Cl

$$\begin{array}{c|c}
 & R^{1} \\
\hline
 & CO - O - C - R^{2} \\
 & CH & R^{3}
\end{array}$$

$$\begin{array}{c|c}
 & CH & R^{4} \\
 & CO - O - C - R^{5} \\
 & R^{6}
\end{array}$$
(1)

で表わされる単位からなる化合物が用いられる。

一般式(I)中のRI~RBはそれぞれ水業原子ではまれたれ水業原子ではれば、プロピルは、プロロメチルは、トリクロロメチルは、トリクロコエチルは、トリクロオロロがン化アルキルは、メトキシは、アリルはなどのアルキニルは、アリルは、エチニルは、エチニルは、アリルは、エチニルは、アリルは、エチニルは、アリルは、ストロは、シアノは、ヒドロキシは、アミノは、メ

- 8 -

サソール、チオフェン、ペンソチオフェン、オキ サソール、イソオキサソール、チアソール、ベン ソチアソール、オキサソリン、オキサソリジン、 ベンソオキサチイン、イサチン、インドレニン、 ピペリドン、イソキノリン、アクリドン、トロ レン、ピロン、ピロリドン、 4H- ピラン-4- オン などから水衆原子などを除いた猛があげられる。 これらの中では単環芳香環が設ましい。

ドロキシ基:アミノ基:メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジェチルアミノ基などの屋換でミノ基などで置換されていてもよい。

前記一般式(I)で表わされる単位からなる化合物は、1種の単位からなっていてもよく、2種以上の単位からなっていてもよい。

一般式(I)で表わされる単位の綴り返し数は、 4~100 、 さらには10~50であるのが好ましい。 該数が10未満では成膜性が低下し、100 をこえると溶媒に解けにくくなる傾向がある。

前記一般式(1)で表わされる単位からなる化合物は、たとえば芳香族ジアルデヒドとマロン酸をピペラジンの存在下に脱水縮合させ、芳香族ジアクリル酸を合成し、これを常法によりエステル化することによってモノマーを合成したのち、このモノマーを高圧水銀灯の照射によって光重合させることによりうることができる。

本発明に用いられる放射線に感光して酸または 塩基を発生する化合物(以下、酸または塩基発生 化合物ともいう)のうち、酸を発生する化合物の

- 1 1 -

フェイト、4-tert- プチルフェニルジフェニルス ルホニウムトリフルオロスルホネイト、トリス(4 - メチルフェニル) スルホニウムテトラフルオロ ポレイト、トリス(4- メチルフェニル) スルホニ ウムヘキサフルオロアンチモネイト、トリス(4-メチルフェニル) スルホニウムヘキサフルオロア ルシネイト、トリス(4- メチルフェニル) スルホ ニウムヘキサフルオロホスフェイト、トリス(4~ メチルフェニル) スルホニウムトリフルオロスル ホネイト、トリス(4- メトキシフェニル) スルホ ニウムテトラフルオロボレイト、トリス(4- メト キシフェニル) スルホニウムヘキサフルオロアン チモネイト、トリス(4- メトキシフェニル) スル ホニウムヘキサフルオロアルシネイト、トリス(4 - メトキシフェニル) スルホニウムヘキサフルオ ロホスフェイト、トリス(4- メトキシフェニル) スルホニウムトリフルオロスルホネイト、ジフェ エルヨウドニウムテトラフルオロボレイト、ジフ ェニルヨウドニウムヘキサフルオロアンチモネイ ト、ジフェニルヨウドニウムヘキサフルオロアル

具体例としては、たとえばトリフェニルスルホニ ウムテトラフルオロポレイト、トリフェニルスル ホニウムヘキサフルオロアンチモネイト、トリフ ェニルスルポニウムヘキサフルオロアルシネイト、 トリフェニルスルホニウムヘキサフルオロホスフ ェイト、トリフェニルスルホニウムトリフルオロ スルホネイト、4-チオフェノキシジフェニルスル ホニウムテトラフルオロボレイト、4-チオフェノ キシジフェニルスルホニウムヘキサフルオロアン チモネイト、4-チオフェノキシジフェニルスルホ ニウムヘキサフルオロアルシネイト、4-チオフェ **ノキシジフェニルスルホニウムヘキサフルオロホ** スフェイト、4-チオフェノキシジフェニルスルホ ニウムトリフルオロスルホネイト、4-tert- ブチ ルフェニルジフェニルスルホニウムテトラフルオ ロボレイト、4-tert- プチルフェニルジフェニル スルホニウムヘキサフルオロアンチモネイト、4tert- プチルフェニルジフェニルスルホニウムへ キサフルオロアルシネイト、4-tert- プチルフェ ニルジフェニルスルホニウムヘキサフルオロホス

- 12 -

シネイト、ジフェニルヨウドニウムヘキサフルオ ロホスフェイト、ジフェニルヨウドニウムトリフ ルオロスルホネイト、3.3′- ジニトロジフェニル ョウドニウムテトラフルオロボレイト、8.3'- ジ ニトロジフェニルヨウドニウムヘキサフルオロア ンチモネイト、3.3′- ジニトロジフェニルヨウド ニウムヘキサフルオロアルシネイト、8.8'- ジニ トロジフェニルヨウドニウムヘキサフルオロホス フェイト、8.8'- ジニトロジフェニルヨウドニウ ムトリフルオロスルホネイト、4.4'- ジメチルジ フェニルョウドニウムテトラフルオロボレイト、 4.4'- ジメチルジフェニルヨウドニウムヘキサフ ルオロアンチモネイト、4.4 - ジメチルジフェニ ルョウドニウムヘキサフルオロアルシネイト、4. 4'- ジメチルジフェニルヨウドニウムヘキサフル オロホスフェイト、4.4'- ジメチルジフェニルヨ ウドニウムトリフルオロスルホネイト、4.4-ジ tert- プチルジフェニルヨウドニウムテトラフル オロボレイト、4.4-ジtert- ブチルジフェニルヨ ウドニウムヘキサフルオロアンチモネイト、4.4-

ジ lert- ブチルジフェニルョウドニウムヘキサフ ルオロアルシネイト、4.4-ジlerl- ブチルジフェ ニルヨウドニウムヘキサフルオロホスフェイト、 4.4-ジ tert- ブチルジフェニルヨウドニウムトリ フルオロスルホネイトなどのオニウム塩や、2.4. 8-トリス (トリクロロメチル) トリアジン、2-ア リル-4.8- ピス(トリクロロメチル)トリアジン、 α, α, α- トリプロモメチル- フェニルスルホ ン、α, α, α, α', α', α'-ヘキサクロロキシ リレン、 2・2-ビス (3・5- ジプロモ-4- ヒドロキシ フェニル)-1.1.1.3.3.3-ヘキサフルオロプロパン、 1,1,1-トリス(3.5- ジプロモ-4- ヒドロキシフェ ニル)エタンなどのハロゲン含有化合物や、(2-ニトロベンジルトシレイト、2.6-ジニトロベンジ ルトシレイト、2.4-ジニトロベンジルトシレイト、 メチルスルホン酸 2-二トロベンジルエステル、酢 酸 2-二トロペンジルエステル、p-ニトロペンジル -9.10-ジメトキシアントラセン-2- スルホネイト、 1,2,3-トリス (メタンスルホニルオキシ) ベンゼ ン、1,2,3-トリス(エタンスルホニルオキシ)ベ

- 15 -

もよい。

アルカリ可溶性の高分子化合物としてルルカリではでいる。 -Nh などののななができるならななの合合物のの合合物ののでは、カカを行いたのでは、からななができる。 このボリーの クリルル はい カリー スチレンス がり マクトスチルン アンスチャンス がい アンス がい アンカ に ない アンカ がい で おい で かい は 単独 で 用い で も よい 。

アルカリ可溶性高分子化合物の配合量は、--般式(I) で表わされる化合物との合計重量に対して80%以下が好ましい。配合量が80%より多くなるとえられるレジスト腺がアルカリ可溶性となり、

ンゼン、1.2.3-トリス (プロパンスルホニルオキシ) ベンゼンなどのスルホン酸エステルなどがあげられる。これらは単独で用いてもよく、2 様以上を併用してもよい。

また、塩基を発生する化合物の具体例としては、たとえばトリフェニルメタノール、その誘導体、o-ニトロベンジルカルバメートなどがあげられる。これらは単独で用いてもよく、2種以上を併用してもよい。

前記一般式(1)で表わされる単位からなる化合物と酸または塩基発生化合物の配合割合は、一般式(1)で表わされる単位からなる化合物/酸または塩基発生化合物が重量比で70/80~89/1、さらには80/20~98/2 であるのが好ましい。前記一般式(1)で表わされる化合物が99/1をこえるとバターニングが行ないにくくなる傾向があり、70/80未満では相溶性が低下して均一にしくくなり、形成されるバターンの不良が発生しやすくなる。

また、レジスト膜の形成をさらに容易にするために、アルカリ可溶性の高分子化合物を配合して

- 16 -

パターンの形成が困難になる。

本発明の樹脂組成物は、通常、削記の成分を溶媒に溶解させて、レジスト溶液として使用される。

前記レジスト溶液を、たとえばシリコンウェハ

などの孫板上にスピンコート法などの方法によって乾燥腹厚が 0.2 ~ 2 m程度になるように塗布し、ブリベイクし、UV光、ディーブUV光、軟 X 線、電子線などの放射線を照射したのち、 80~150 で程度で 30秒~ 20分間加熱し、ついで現像を行なうことによってパターンが形成される。

レジストの現像被としては、アルカリ性水溶液または有機溶媒を用いることができる。また、極性溶媒を用いるとボジ型のパターンを形成することができ、非極性溶媒を用いるとネガ型のパターンを形成することができる。

アルカリ性水溶液としては、たとえばアンモニア、トリエチルアミン、ジメチルアミノメタノー・ル、テトラメチルアンモニウムヒドロキサイド、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、コリンなどの水溶液があげられる。

また有機溶媒としてはジクロロメタン、クロロホルム、トリクロロエチレン、酢酸エチル、酢酸イソアミル、メタノール、イソプロパノール、これらの混合溶媒などがあげられる。

- 19 -

ったところ、0.30 um のラインアンドスペースのネガ型パターンが解像できた。

さらに前記レジスト腰に加速電圧 20k Vの電子線を1.5 μ C/cd で照射し、100 ℃で5分間加熱した。そののち、前記と同様にして 2.38% テトラメチルアンモニウムヒドロキシド水溶液またはクロロホルムノメタノールが 3 / 1 の混合溶媒で現像したところ、エキシマレーザを照射したときと同様に良好なポジ型パターンとネガ型パターンがえられた。

実施例2~32

第 J 表に示す基を有する一般式(1)で表わされる 単位からなる化合物(化合物 2 ~ 21)を用い、第 2 表に示す組成のレジスト溶液を調製したほかは 実施例 J と同様にしてレジスト膜を作製し、エキ シマレーザまたは加速電圧 20kVの電子線を露光し、 2.38%テトラメチルアンモニウムヒドロキシドま たはクロロホルム/メタノールが 3 / 1 の 混合溶 媒で現像を行なって、感度と解像度を調べた。 結 果を第 2 表に示す。 以下に本発明の組成物を実施例によってさらに 具体的に説明するが、本発明はこれらに限定されるものではない。

実施例1

第 1 表に示す甚を有する一般式(1) で表わされる単位からなるポリ(p- フェニレンジアクリル酸ジーtertーブチルエステル) (化合物 1) 2gとトリフェニルホスホニウムトリフレイト 0.1gを 10mlのシクロヘキサノンに溶解させて綱製したレジスト溶液を、シリコン基板上に 3000 rpm でスピンコートし、80℃で 15分間 加熱してレジスト 胰を作製に Kr エキシマレーザ光(8mJ/cf) をマスクを介して照射したのち、100 ℃で 5 分間 加熱した。

そののち 2.38% テトラメチルアンモニウムヒドロキシド水溶液で 80秒 間現像を行なったところ、0.30mmのラインアンドスペースのポジ型パクーンが解像できた。

また、現像液をクロロホルム/メタノールが 3/1 (容積比)の混合溶媒にかえて現像を行な

- 20 -

第2 設より、いずれの実施例でも0.50 mm 以下の解像度と30mJ/ ml以下の感度がえられていることがわかる。

第一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	表
--	---

				<i>a,</i> ,	44			
化合物 番 号	- A r-	R¹	R²	R ³	R4	R⁵	R e	数平均 分子量
1		- CII3	- CH3	- Ctf3	- CII3	- СН3	- CH3	6,500
2		- Clis	- CH3	- C113	- CII3	- СН3	- C II 3	11,000
3	\Diamond	- CH ₃	- CII3	- C ii 3	- С н з	- СП3	- CH3	5,000
1		- CH ₃	- CII3	- C ₂ II ₅	- CII3	- CH ₃	- C ₂ H ₅	3,800
5	"	- CII3	- C ₂ H ₅	- C2 II5	- CH ₃	- C ₂ H ₅	- C ₂ H ₅	4,200
6	"	- C 13 3	- C H 3	- CII = Cil 2	- CH3	- CII3	- CH = CH z	7,700
7	"	- CII3	- CII3	- C≡CII	- CH3	- CII3	- C≡CII	5,200
8	"	- CII3	- CH3		- CH3	- СН3		8,300
9	"	- CII 3	-CH2 CH2 (CII 2 CII 2 CII 2 —	- CII3	-CII2 CII	2 CH2 CH2 CH2-	6.600
10	"	-н	— СИ ₂ СИ ₂	Сиз сиз о-	~ 1}	— сн₂ с	II 2 C II 2 C II 2 O —	5,000
1 1	CH3	- CН ₃	- СН3	- CII₃	- CH3	- CH ₃	- СН₃	3,300
1 2	CH ₃	- СН3	- СП3	- СН3	- СИ3	- CR3	- СИз	4, 100
	00000							

\sim	~~~~	~~ <u>`</u>	~~	~~	\sim	\sim	~~~	~~~ <u> </u>
1 3	€ € € € € € € € € € € € € € € € € € €	-СН3	- СН3	- C113	- CH3	- CH3	- C II 3	3.700
14	0CH3	- CH3	- CH3	- CH3	- СИ3	~ CH3	- C II 3	5.100
15	011	- Cli ₃	- CH ₂	- CII3	- CII3	- C II 3	- C113	3,300
1 6		- CH3	- C II 3	- C FI 3	- CII3	CII3	- CII3	6,000
1 7		- CH ₃	- СН₃	- CII3	- СП3	- CII3	- CH3	5, 200
18	\sqrt{s}	- CH ₃	- CH3	- спз	- CH3	- CH3	- CH3	3,800
19	$\mathbb{Z}_{\mathfrak{o}}$	- CH3	- C∏3	- CH3	- CH ₃	- CII3	- CII3	2,900
2 0		- ČII3	- CH₃	- CII3	- C113	- CII3	- CH3	5,400
2 1	0=	- CH3	- CH ₃	- CII3	- СН3	- СИ3	- CH ₃	7,000

第	2	表
A.	2	**

3	_								·	
1	実	施例	化合物番号	敬またり	は塩基	宿	媒	添加ポリマー	感度	解像度
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	番	号	(g)	発生化合	物 (g)		1)	(g)	(mJ/cm²)	(m)
1		1	1 (2.0)	TPSTF*1	(0.1)	CH*7	(10)	_	R	0.30
3	- 1	2	1 (2.0)	MDICD#4	(0.1)	DC*8		_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		i nurt*³	(0.1)	Len		_		
The content of the		4	1 (2.0)	I TMCR [₹]	(n 1)	ES*9		_		
Columb	İ	5	1 (2.0)	TPM+3	(0.3)	DC				
Tensor		6		тири*6				_		
9		7		TPSTF				PVP*11 (0.5)		
9	1	8						CNOV*12 (0.3)		
10		9	2 (2.0)					_ (0.0)		
11	1	10	2 (1.5)	TPSTF				PVP (0.5)		
12	1]]	2 (1.8)	מאם ז	(0.2)	DG		CHON (U.S.)		
13	1	12	2 (1.8)	TPSTF		AA		PAA*13 (0.2)		
14		13	3 (2.0)	TPSTF				_ (1)		
15		14	3 (1.5)	TPSTF				PVP (0.5)		
16		15	4 (2.0)			CH		_ (*****)		
17		16	5 (2.0)	TPSTF		ES		_		
18		17	6 (2.0)	TPSTF		DG		_		
19		18	7 (1.7)	MPIFP	(0.2)	AA	(10)	CNOV (0.3)		
20	1	19	8 (1.8)	TPSTF	(0.i)	CH	(10)	PMA*14 (0.2)		
22		20	9 (2.0)	TPSTF	(0.2)	DC	(10)	- ' '		
23			10 (2.0)	DNBT	(0.1)	CH	(10)		15	0.45
24 13 (2.0) TPSTF (0.1) AA (10) 10 0.35 25 14 (2.0) TMSB (0.1) CII (10) 7 0.30 26 15 (2.0) TPM (0.3) DG (10) 30 0.50 27 16 (1.5) TPSTF (0.1) CII (10) PVP (0.5) 8 0.35 28 17 (1.8) MPIFP (0.1) ES (10) PMA (0.2) 12 0.40 29 18 (2.0) TPSTF (0.1) DG (10) 10 0.40			li (2.0)	TPSTF	(0.1)	ES	(10)	- 1	12	0.35
25				TPSTF	(0.2)	DC	(10)	PAA (0.2)	8	0.30
26 15 (2.0) TPM (0.3) DG (10) 30 0.50 27 16 (1.5) TPSTF (0.1) CII (10) PVP (0.5) 8 0.35 28 17 (1.8) MPIFP (0.1) ES (10) PMA (0.2) 12 0.40 29 18 (2.0) TPSTF (0.1) DG (10) 10 0.40				TPSTF	(0.1)	AA	(10)	-	10	0.35
27				TMSB	(0.1)	Cil	(10)	-	7	0.30
28 17 (1.8) MPIFP (0.1) ES (10) PMA (0.2) 12 0.40 29 18 (2.0) TPSTF (0.1) DG (10) - 10 0.40		26	15 (2.0)	TPM	(0.3)	DG	(10)		30	0.50
29 18 (2.0) TPSTF (0.1) DG (10) - 10 0.40	:	27	16 (1.5)	TPSTF	(0.1)	CII	(i0)	PVP (0.5)	8	0.35
29 18 (2.0) TPSTF (0.1) DG (10) - 10 0.40				MPIFP	(0.1)	ES	(10)	PMA (0.2)	12	0.40
				TPSTF	(0.1)	DG	(10)		10	
	:	30 [19 (2.0)	TPSTF	(0.1)	AA	(10)	-	9	0.30
31 20 (2.0) TMPH (0.2) CH (10) - 20 0.50			20 (2.0)		(0.2)	CH	(10)		20	0.50
32 21 (1.5) TPSTF (0.1) CH (10) PVP (0.5) 8 0.35	<u></u> :	32	21 (1.5)	TPSTF	(0.1)	CH	(10)	PVP (0.5)	8	0.35

[注] *1 : トリフェニルスルホニウムトリフレイト
 *2 : 4.4 ー ジメチルジフェニルョウドニウムヘキサフルオロホスフェイト
 *3 : 2.8 ージニトロベンジルトシレイト
 *4 : 1.2.3 ートリス (メタンスルホニルオキシ) ベンゼン
 *5 : トリフェニルメタノール
 *8 : トリス (p-メトキシフェニル) メタノール
 *7 : シクロヘキサノン
 *8 : ジグライム
 *9 : エチルセロソルブアセテイト
 *10 : 酢酸イソアミル
 *11 : ポリーp-ビニルフェノール

*11 : ポリ-p-ピニルフェノール *12 : クレゾールノボラック

*13:ポリアクリル酸 *14 :ポリメタクリル酸

*1~4 は感光して酸を発生する化合物、*5~6 は感光して塩基を発生する化合物 である。

(発明の効果)

本発明の感光性樹脂組成物は、放射線露光に対して高い感度と高い解像度を有する感光性樹脂組成物であり、放射線感応レジスト材料として極めて有用であり、微細パターンが必要とされる超LSIなどの半導体デバイスの製造にとくに有用である。

代理人 大岩堆堆

- 26 -

第1頁の続き

Sint. Cl. 5

識別記号

庁内整理番号

H 01 L 21/027

⑩発明者 肥塚 裕至 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社 材料研究所内