STAT 333 - APPLIED PROBABILITY

FANTASTIC THEOREMS AND HOW TO PROVE THEM

Jose Luis Avilez
Faculty of Mathematics
University of Waterloo

Chapter 1

Review of Probability

Definition 1.1. A sample space S is the set of all possible outcomes in an experiment. In an experiment one, and only one, outcome can occur (that is, they are mutually disjoint). An event A is a subset of the sample space $A \subseteq S$.

Definition 1.2. Kolmogorov's Axioms. For each event A, P(A) is defined as the probability of A satisfying the following properties:

- 1. $0 \le P(A) \le 1$
- 2. $P(S) = 1, P(\emptyset) = 0$
- 3. For $n \in \mathbb{Z}^+$,

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i)$$

if the sequence $\{A_i\}_{i=1}^n$ is mutually exclusive.

Definition 1.3. Events A and B are said to be **independent** if and only if $P(A \cap B) = P(A)P(B)$. The events are said to be **dependent** if they are not independent.

Theorem 1.4. If $A \subseteq B$, then $P(A) \leq P(B)$.

Proof. Create partition of B through A and then use property 1 of Definition 1.2.

Definition 1.5. The **conditional probability** of A given B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided that P(B) > 0.

Theorem 1.6. If A and B are independent then P(A|B) = P(A).

Proof. Duh.

Theorem 1.7. If A and B are dependent, then either (i) P(A|B) > P(A) and P(B|A) > P(B) or (ii) P(A|B) < P(A) and P(B|A) < P(B).

Definition 1.8. We say that a collection of events A_1, A_2, \ldots, A_k is a **partition** of S if it satisfies:

- 1. $A_i \cap A_j = \emptyset$ for all $i \neq j$
- 2. $\bigcup_{i=1}^{k} A_i = S$

Theorem 1.9. For any event $B \subseteq S$ and partition $\{A_i\}_{1 \le i \le k}$, we have

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \ldots \cup (B \cap A_k)$$

Proof. Follows trivially from Definition 1.8 and set algebra.

Theorem 1.10. Law of total probability. For some event B and partition $\{A_i\}_{i=1}^k$, we have:

$$P(B) = \sum_{i=1}^{k} P(A_i)P(B|A_i)$$

Proof. By Theorem 1.9, we can express B as the disjoint union

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \ldots \cup (B \cap A_k)$$

By Axiom 3 and the definition of conditional probability, we have that

$$P(B) = P(B \cap A_1) + \ldots + P(B \cap A_k) = \sum_{i=1}^{k} P(A_i)P(B|A_i)$$

Theorem 1.11. Bayes' Rule.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{k} P(A_i)P(B|A_i)}$$

Proof. Follows from Theorem 1.10 and the definition of conditional probability.

Example 1.12. In the Monty Hall problem, we can use Bayes' rule to prove that the optimal strategy is choosing to switch doors.

Chapter 2

Random Variables

Definition 2.1. A random variable $X: S \to \mathbb{R}$ is a function that maps points on the sample space to real numbers.

Definition 2.2. A random variable X is said to be **discrete** if the range of X is countable.

Definition 2.3. A random variables X is said to be **continuous** if the range is uncountable.

Definition 2.4. We say that a process is a **Bernouilli trial** if it satisfies the following three conditions:

- 1. There are two possible outcomes.
- 2. The trials are independent.
- 3. The probability of a success remains constant over time.

Definition 2.5. We define a **probability mass function** using the diabolical notation:

$$p(x) = P(X = x) = P(\{e \in S | X(e) = x\})$$

Definition 2.6. The cumulative distribution function of a random variable X is

$$F(x) = P(X \le x) = P(\{e \in S | X(e) \le x\})$$

Definition 2.7. A Bernouilli random variable is defined as

$$X = \begin{cases} 1 & \text{if there is a success} \\ 0 & \text{if there is a failure} \end{cases}$$

with p.m.f. $p(x) = p^{x}(1-p)^{x}$.

Theorem 2.8. For a Bernouilli random variable X, E(X) = p and Var(X) = p(1-p).

Definition 2.9. A binomial random variable is defined as the number of successes in n Bernouilli trials. We say $X \sim \text{Bin}(n,p)$. Notice that this is the sum of n Bernouilli random variables. The p.m.f. is given by $p(x) = \binom{n}{x} p^x (1-p)^x$.

Theorem 2.10. For a binomial random variable X, E(X) = np and Var(X) = np(1-p)

Definition 2.11. We say that X is a geometric random variable if it records the number of trials required until a first success. We say that $X \sim \text{Geo}(p)$. It has p.m.f. $p(x) = (1-p)^{x-1}p$.

Theorem 2.12. For a geometric random variable X, $E(X) = \frac{1}{p}$ and $Var(X) = \frac{(1-p)}{p^2}$.

Proof. I'll post it later.

Definition 2.13. A negative binomial random variable is defined as the number of trials until the k-th success is observed. The range is $\{k, k+1, k+2, \ldots\}$. Its p.m.f. is given by $p(x) = \binom{x-1}{k-1} p^k (1-p)^{x-k}$

Theorem 2.14. A negative binomial random variable X has $E(X) = \frac{k}{p}$ and $Var(X) = \frac{k(1-p)}{p^2}$.

Proof. Use linearity over sum of geometric random variables.

Definition 2.15. We say that a random variable X is **Poisson** if it counts the number of events occurring randomly through time t at constant rate λ . We say that $X \sim \text{Po}(\lambda t)$ which has a (provable) p.m.f. $p(x) = \frac{e^{\lambda}(\lambda t)^x}{x!}$.

Theorem 2.16. For a Poisson random variable X, $E(X) = Var(X) = \lambda t$.

Proof. Use the Changbao tricks from STAT 240.

Definition 2.17. The probability density function of a random variable X is defined to be $f(x) = \frac{d}{dx}F(x)$ where F is the cumulative distribution of X.

Definition 2.18. We say that a random variable X is uniform, and denote $X \sim U(a, b)$ if it has p.d.f. $f(x) = \frac{1}{b-a}$ with $x \in (a, b)$.

Theorem 2.19. The c.d.f. of a uniform random variable X is

$$F(x) = \begin{cases} \frac{x-a}{b-a} & x \in (a,b) \\ 0 & x \le a \\ 1 & x \ge b \end{cases}$$

the expectation of X is $E(X) = \frac{a+b}{2}$; the variance is $Var(X) = \frac{(b-a)^2}{12}$.

Proof. Follows from STAT 240.

Definition 2.20. A random variable X is said to be **exponential** if it records the amount of time elapsed between events in a Poisson process with rate λ . Its range is $(0, \infty)$.

Theorem 2.21. An exponential random variable X has p.d.f. $f(x) = \lambda e^{-\lambda x}$, $E(X) = \frac{1}{\lambda}$; $Var(X) = \frac{1}{\lambda^2}$; and has the memoryless property: P(X > t + s | X > s) = P(X > t).

Proof. The c.d.f. of X is given by

$$F(x) = 1 - P(\text{no events in } (0,x)) = 1 - e^{-\lambda x}$$

where the second equality follows since it is the probability of no events in a Poisson distribution with rate λ and time x. Taking its derivative yields the desired result. The remaining facts follow from STAT 240.

Definition 2.22. We say that a random variable X follows a gamma distribution if its p.d.f. is

$$f(x) = \frac{e^{-\lambda x} \lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)}$$

where,

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

Note that $\Gamma(\alpha) = (\alpha - 1)!$ if $\alpha \in \mathbb{Z}^+$.

Example 2.23. The gamma distribution can be used to model the waiting time for α events in a Poisson process with rate λ if $\alpha \in \mathbb{Z}^+$. If $\alpha = 1$, the gamma distribution reduces to the exponential distribution.

Definition 2.24. We say that a random variable X follows a normal distribution if its p.d.f. is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Definition 2.25. For two random variables X, Y we can define the following:

- 1. The **joint cumulative distribution** of X and Y is $F(x,y) = P(X \le x, Y \le y)$.
- 2. The joint probability mass function of x, y is p(x, y) = P(X = x, Y = y). The joint probability density function of x, y is $\frac{\partial^2}{\partial x \partial y} F(x, y)$ (for now assume that $F \in C^2$, ask on Piazza later).
- 3. The marginal probability mass function is $p_X(x) = \sum_y p(x,y)$. The probability density function is $f_X(x) = \int_y f(x,y) dy$.

Definition 2.26. We say that X and Y are **independent** if and only if $f(x,y) = f_X(x)f_Y(y)$ for all x,y.

Definition 2.27. We define the expectation of a transformation g of X as $E(g(X)) = \int_{\mathcal{X}} g(x) f(x)$.

Definition 2.28. The variance of a random variable is defined as $Var(X) = E(X^2) - E(X)^2$.

Theorem 2.29. Expectation is linear.

Proof. Follows from the linearity of summation and integration.

Definition 2.30. For multiple variables, we say:

- 1. $E(g(X,Y)) = \int \int g(x,y)f(x,y)dxdy$
- 2. Cov(X, Y) = E(XY) E(X)E(Y)

Theorem 2.31. Linear combinations. Say X_1, \ldots, X_n have means μ_1, \ldots, μ_n and variances $\sigma_1^2, \ldots, \sigma_n^2$, respectively. Let $Y = \sum_{i=1}^n a_i X_i$ where $a_i \in \mathbb{R}$. Then

- 1. $E(Y) = \sum_{i=1}^{n} a_i \mu_i$
- 2. $\operatorname{Var}(Y) = \sum_{i=1}^{n} a_i^2 \sigma_i^2 + 2 \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j)$

Proof. Part 1 follows by linearity of expectation. Part 2 follows by Definition 2.30 and induction.

Definition 2.32. We say that I_A is an indicator variable if

$$I_A = \begin{cases} 1 & \text{if } A \\ 0 & \text{otherwise} \end{cases}$$

where A is an event.

Theorem 2.33. The expectation of an indicator variable I_A is $E(I_A) = P(A)$; the variance of an indicator variable is $Var(I_A) = P(A)[1 - P(A)]$; the covariance of I_A and I_B is

$$Cov(I_A, I_B) = \mathbb{E}[I_A I_B] - \mathbb{E}[I_A] \mathbb{E}[I_B] = P(A \cap B) - P(A)P(B)$$

Proof. Expectation and variance follow from the Bernouilli distribution. For the covariance, drawing a joint distribution will convince us of that.

Example 2.34. Suppose a fair 6-sided die is rolled n times. Let X be the number of unrolled faces after n rolls. Find the mean and variance of X.

If we let X_i be an indicator variable signalling whether the number i has been rolled after n rolls. Then $\mathrm{E}[X_i] = \left(\frac{5}{6}\right)^n$. Thus, by linearity of expectation, $\mathrm{E}[X] = 6 \times \mathrm{E}[X_i] = 6 \times \left(\frac{5}{6}\right)^n$.

For the variance of the indicator we don't have to do any work: $\operatorname{Var}(X_i) = \left(\frac{5}{6}\right)^n \left[1 - \left(\frac{5}{6}\right)^n\right]$. For the variance of X, we do, unfortunately. We begin by tackling the covariance of two indicator variables. We have, for $i \neq j$,

$$Cov(X_i, X_j) = E[X_i X_j] - E[X_i] E[X_j] = \left(\frac{2}{3}\right)^n - \left(\frac{5}{6}\right)^{2n}$$

Thus, we obtain,

$$Var(X) = \sum_{i=1}^{6} Var(X_i) + 2 \sum_{i < j} Cov(X_i, X_j) = 6 \times \left(\frac{5}{6}\right)^n \left[1 - \left(\frac{5}{6}\right)^n\right] + 2 + \binom{6}{2} \left(\frac{2}{3}\right)^n - \left(\frac{5}{6}\right)^{2n}$$

Ta-da!

Definition 2.35. We say that a waiting time random variable is **proper** if $P(X < \infty) = 1$. An **improper** random variable is one where $P(X < \infty) < 1$.

Theorem 2.36. An improper random variable has non-finite expectation.

Remark. Note that a proper random variable does not necessarily have a finite mean.

Definition 2.37. A **short proper** random variable is a proper waiting time variable with finite mean. A **long proper** random variable is a proper waiting time variable with infinite mean.

Example 2.38. Examples for short proper variables are a dime a dozen. For long proper variables, we can use $f(x) = \frac{c}{r^2}$ for some $c \in \mathbb{R}^+$ and this works both in the continuous and discrete case.

Definition 2.39. The moment generating function (m.g.f.) of a random variable X is

$$\phi_X(t) = \mathrm{E}\left[e^{tX}\right]$$

Theorem 2.40. We can use the moment generating function to generate moments! That is, $\phi^{(n)}(0) = E[X^n]$.

Proof. Using the Taylor series expansion for e^{tX} , we find that

$$\phi_X(t) = \mathrm{E}\left[e^{tX}\right] = \mathrm{E}\left[\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}\right]$$

Since our probability function is bounded, by the Lebesgue Dominated Convergence Theorem, we can commute the differentiation operator and the infinite sum to obtain,

$$\phi_X^{(n)}(t) = E\left[\sum_{k=n}^{\infty} \frac{k^{(n)} X^n (tX)^{(k-n)}}{k!}\right] = E\left[X^n + t(\ldots)\right]$$

Thus
$$\phi_X^{(n)}(0) = E[X^n].$$

Theorem 2.41. The moment generating function, under some mild regularity conditions, uniquely determines the pdf.

Theorem 2.42. If X and Y are independent random variables, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

Proof. The independence of X and Y implies the independence of e^{tX} and e^{tY} ; the remainder of the proof follows from expectation algebra.

Definition 2.43. The **probability generating function** (p.g.f.) of a discrete random variable on $\{0, 1, 2, ...\}$ is

$$G_X(s) = \mathbb{E}\left[s^X\right] = \phi_X\left(\log(S)\right) = \sum_{x=0}^{\infty} s^x p(x)$$

Chapter 3

Conditional Probability and Conditional Expectation

Definition 3.1. If X and Y are both discrete random variables with joint p.m.f. p(x, y) and marginal p.m.f.s $p_X(x)$ and $p_Y(y)$, then, we denote the conditional distribution of X given Y as X|Y=y and its conditional p.m.f. is:

$$P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

Theorem 3.2. The following are facts of life related to conditional distributions:

- 1. $p_{X|Y}(x|y) \ge 0$
- 2. $\sum_{x} p_{X|Y}(x|y) = 1$
- 3. If X and Y are independent, then the conditional distributions are simply the parent distributions.

Definition 3.3. The **conditional mean** of X|(Y=y) is

$$\mathrm{E}\left[X|Y=y\right] = \sum_{x} x p_{X|Y}(x|y)$$

Theorem 3.4. If g, h are arbitrary real valued functions, then,

- 1. $E[g(X)|Y = y] = \sum_{x} g(X)p_{X|Y}(x|y)$
- 2. Conditional expectation is linear.
- 3. E[g(X)h(Y)] = h(y)E[g(X)|Y = y]

Proof. The first point is the law of the unconscious statistician. Point 2 is trivial. Point three is proven as follows:

$$\mathrm{E}\left[g(X)h(Y)\right] = \mathrm{E}\left[g(X)h(y)\right] = h(y)\mathrm{E}\left[g(X)|Y=y\right]$$

because Y is fixed and thus h(Y) = h(y), a constant.

Theorem 3.5. If X and Y are independent, then E[X|Y=y] = E[X].

Definition 3.6. We define the random variable $E[X|Y] = E[X|Y = y]_{y=Y} = v(Y)$. We thus define the expectation of E[X|Y] as

$$E[v(Y)] = E[E[X|Y]] = \sum_{y} v(y)p_{y}(y) = \sum_{y} E[X|Y = y] p_{y}(y)$$

Theorem 3.7. Law of total expectation. For random variables X and Y, we have E[X] = E[E[X|Y]].

Proof. This follows by a few algebraic tricks:

$$E[E[X|Y]] = \sum_{y} E[X|Y = y] p_{Y}(y)$$

$$= \sum_{y} \left(\sum_{x} xp(x|y)\right) p_{Y}(y)$$

$$= \sum_{y} \sum_{x} xp(x|y) p_{Y}(y)$$

$$= \sum_{x} \sum_{y} xp(x|y) p_{Y}(y)$$

$$= \sum_{x} x \sum_{y} p(x|y) p_{Y}(y)$$

$$= \sum_{x} x \sum_{y} p(x,y)$$

$$= \sum_{x} xp_{X}(x)$$

$$= E[X]$$