2.b) Caractérisation des bases en dimension finie

Remarque 22. Regroupant plusieurs points vu précédement pour les reformuler, on peut dire la chose suivante :

Soit $\mathbb E$ un $\mathbb K$ -espace vectoriel de dimension finie n:

- Toute famille génératrice a au moins n éléments
- Toute famille libre a au plus n éléments
- Tout base a exactement n éléments

Théorème 4. Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$. On a :

- Toute famille libre de $\mathbb E$ avec n éléments est une base.
- Toute famille génératrice de \mathbb{E} avec n éléments est une base.

Démonstration 13.

Remarque 23. Autrement dit, en dimension finie, une famille est une base dès que :

- Elle a la bonne taille (son cardinal est la dimension de l'espace considéré)
- Elle est libre ou génératrice

Souvent, pour démontrer qu'une famille est une base, on se contentera du "plus facile" entre libre et génératrice suivant les cas, et de remarquer qu'on a le bon nombre de vecteurs.

Exemple 19. Dans \mathbb{R}^3 , considérons la famille (u, v, w) formée des vecteurs : u = (1, 1, 1), v = (1, 2, 1), w = (0, 1, 1). Montrons que c'est une base de \mathbb{R}^3 .

Comme la famille (u, v, w) contient 3 vecteurs et que \mathbb{R}^3 est de dimension 3, alors il suffit de montrer que la famille est libre.

Supposons que $\alpha u + \beta v + \gamma w = 0$, avec $(\alpha, \beta, \gamma) \in \mathbb{R}^3$. Alors on a

$$(\alpha + \beta, \alpha + 2\beta + \gamma, \beta + \gamma) = (0, 0, 0)$$

En résolvant le système on trouve $(\alpha, \beta, \gamma) = (0, 0, 0)$, donc la famille (u, v, w) est libre. C'est donc une base en vertu du théorème précédent.

Pour trouver les coordonnées d'un vecteur x (qui a pour coordonnées dans la base canonique (x_1, x_2, x_3)) dans cette base, il suffit déterminer $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tels que $\alpha u + \beta v + \gamma w = x$. On trouve par exemple pour $x = (1, 2, 3), (\alpha, \beta, \gamma) = (2, -1, 2)$.

Exemple 21. Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension 4, muni d'une base $\mathcal{B} = (e_1, e_2, e_3, e_4)$. Considérons $\mathcal{B}' = (f_1, f_2, f_3, f_4)$ la famille formée des vecteurs :

$$f_1 = e_2 + e_3 + e_4$$
, $f_2 = e_1 + e_3 + e_4$, $f_3 = e_1 + e_2 + e_4$, $f_4 = e_1 + e_2 + e_3$

Montrons que \mathcal{B}' est une base de \mathbb{E} puis exprimons les coordonnées de x dans la base \mathcal{B}' à partir de celles de la base \mathcal{B}

2.c) Théorème de la base incomplète

Théorème 5. Théorème de la base incomplète

Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$. Soient $\mathcal{L} = (l_1, \ldots, l_p)$ une famille libre de \mathbb{E} , et $\mathcal{G} = (g_1, \ldots, g_m)$ une famille génératrice de \mathbb{E} . Alors il existe n-p vecteurs de $\mathcal{G}: (g_{i_1}, g_{i_2}, \ldots, g_{i_{n-p}})$ tels que :

$$(l_1,\ldots,l_p,g_{i_1},g_{i_2},\ldots,g_{i_{n-p}})$$
 est une base de \mathbb{E}

De manière équivalente, on peut dire :

Toute famille libre non génératrice de \mathbb{E} peut être **complétée** en une base de \mathbb{E} .

Corollaire 1. De toute famille génératrice de \mathbb{E} , on peut extraire une base de \mathbb{E} .

2.d) Produit Cartésien

Proposition 13. Soient \mathbb{E} et \mathbb{F} deux \mathbb{K} -espaces vectoriels.

Le produit cartésien $\mathbb{E} \times \mathbb{F}$ est de dimension finie si et seulement si \mathbb{E} et \mathbb{F} le sont.

On a alors dans ce cas : $\dim(\mathbb{E} \times \mathbb{F}) = \dim(\mathbb{E}) + \dim(\mathbb{F})$.

Si de plus (e_1, \ldots, e_n) est une base de \mathbb{E} , et (f_1, \ldots, f_p) une base de \mathbb{F} , alors :

$$\{(e_1,0),(e_2,0),\ldots,(e_n,0),(0,f_1),(0,f_2),\ldots,(0,f_p)\}$$
 est une base de $\mathbb{E}\times\mathbb{F}$

2.e) Dimension des sous-espaces vectoriels

Proposition 14. Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension finie, et \mathbb{F} un sous-espace vectoriel de \mathbb{E} . Alors :

- \mathbb{F} est de dimension finie
- $\dim(\mathbb{F}) \leqslant \dim(\mathbb{E})$
- \mathbb{F} admet un supplémentaire de dimension finie dont la dimension est $\dim(\mathbb{E}) \dim(\mathbb{F})$.

Proposition 15. Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension finie, et \mathbb{F} , \mathbb{G} deux sous-espaces vectoriels de \mathbb{E} . Alors :

$$\begin{cases} \dim(\mathbb{F}) = \dim(\mathbb{G}) & \Longrightarrow \mathbb{F} = \mathbb{G} \\ \mathbb{F} \subset \mathbb{G} & \end{cases}$$

Théorème 6. Formules de Grassman

Soit $\mathbb E$ un $\mathbb K$ -espace vectoriel de dimension finie, et $\mathbb F$, $\mathbb G$ deux sous-espaces vectoriels de $\mathbb E$. Alors :

• $Si \mathbb{F} et \mathbb{G} sont en somme directe :$

$$\dim(\mathbb{F} \oplus \mathbb{G}) = \dim(\mathbb{F}) + \dim(\mathbb{G})$$

• Dans le cas général :

$$\dim(\mathbb{F} + \mathbb{G}) = \dim(\mathbb{F}) + \dim(\mathbb{G}) - \dim(\mathbb{F} \cap \mathbb{G})$$

Corollaire 2. Si $\dim(\mathbb{F} + \mathbb{G}) = \dim(\mathbb{F}) + \dim(\mathbb{G})$, alors \mathbb{F} et \mathbb{G} sont en somme directe. Spécifiquement :

$$\begin{cases} \mathbb{F} + \mathbb{G} = \mathbb{E} \\ \dim(\mathbb{F}) + \dim(\mathbb{G}) = \dim(\mathbb{E}) \end{cases} \implies \mathbb{F} \oplus \mathbb{G} = \mathbb{E}$$

Démonstration 15.

2.f) Rang d'une famille de vecteurs

Définition 25. Soit \mathbb{E} un \mathbb{K} -espace vectoriel, soit $\mathcal{F} = (e_1, e_2, \dots, e_p)$ une famille de vecteurs de \mathbb{E} . On appelle **rang** de la famille \mathcal{F} , noté $\operatorname{rg}(\mathcal{F})$, la dimension du sous-espace vectoriel de \mathbb{E} engendré par \mathcal{F} :

$$\operatorname{rg}(\mathcal{F}) = \dim(\operatorname{Vect}(e_1, e_2, \dots, e_p)) \leqslant p$$

Proposition 16. Soit \mathbb{E} un \mathbb{K} -espace vectoriel, soit $\mathcal{F} = (e_1, e_2, \dots, e_p)$ une famille de vecteurs de \mathbb{E} .

- $rg(\mathcal{F}) = p$ si et seulement si la famille \mathcal{F} est libre
- Si \mathbb{E} est de dimension finie n, soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ la matrice dont les *colonnes* sont les matrices des vecteurs de \mathcal{F} . Alors $\operatorname{rg}(\mathcal{F}) = \operatorname{rang}(A)$.

Remarque 24. Le deuxième point de la proposition précédente ne dépend pas du choix de la base...

Exemple 24. Calculons le rang de la famille $(e_1, e_2, e_3) \in \mathbb{R}^4$ avec :

$$e_1 = (1, 0, 2, 3), e_2 = (3, 2, 1, 0), e_3 = (6, 2, 7, 9)$$