Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа прикладной математики и информатики Кафедра вычислительных технологий и моделирования в геофизике и биоматематике

Выпускная квалификационная работа бакалавра

Блочный BiCGStab и его друзья

Автор:

Студент 101а группы Козлов Николай Андреевич

Научный руководитель:

н.с.,к.ф.-м.н. Желтков Дмитрий Александрович

Научный консультант:

научная степень Бисиджистабов Гмрез Арнольдивич

Аннотация

Блочный BiCGStab и его друзья $Kозлов \ Hиколай \ Aндреевич$

Краткое описание задачи и основных результатов, мотивирующее прочитать весь текст.

Abstract

Block BiCGStab and his friends

Содержание

1	Вве	едение и постановка задачи	4
	1.1	Преимущества блочных крыловских методов	4
	1.2	Блочные Крыловские методы	4
2	Оба	вор существующих решений	5
	2.1	CG	5
	2.2	BCG	5
	2.3	Блочный CG	5
	2.4	Блочный BCG	5
	2.5	BCGSTAB	5
	2.6	Блочный BCGSTAB	5
		2.6.1 Матричнозначные полиномы	5
3	Исс	следование и построение решения задачи	6
3	Ис о		6
3		Реортогонализация	
3	3.1	Реортогонализация	6
3	3.1 3.2	Реортогонализация	6 6
3	3.1 3.2 3.3 3.4	Реортогонализация Ортогонализация Отбор правых частей	6 6 6
	3.1 3.2 3.3 3.4	Реортогонализация Ортогонализация Отбор правых частей Проблемы	6 6 6 6
	3.1 3.2 3.3 3.4 Чис	Реортогонализация Ортогонализация Отбор правых частей Проблемы сленные эксперименты Тест 1	6 6 6 6
	3.1 3.2 3.3 3.4 Чи е 4.1	Реортогонализация Ортогонализация Отбор правых частей Проблемы	6 6 6 6 7

1 Введение и постановка задачи

В ряде приложений возникают большие линейные системы с многими правыми частями. такую задачу можно записать в блочном виде:

$$AX = B$$
,

где A - $N \times N$ невырожденная разреженная матрица системы; B - $N \times s$ невырожденная матрица, столбцы - правые части; X - $N \times s$ матрица, столбцы - решения для соответствующих правых частей. Также еще предполагаем, что $s \ll N$. Часто для решения таких задач используют прямые методы, однако Крыловские методы круче, да.

1.1 Преимущества блочных крыловских методов

Высокая производительность на вычислительных системах за счет блочных операций,

Более быстрая сходимость, по сравнению с неблочными методами [DIANNE O'LEARY] В задачах со структурированными системами (например МКЭ) БКМ не разрушают структуру, в отличие от прямых методов.

Чрезвычайно большие системы, которые не помещаются целиком в оперативную память можно решать с помощью блочных крыловских методов

1.2 Блочные Крыловские методы

2 Обзор существующих решений

Здесь надо рассмотреть все существующие решения поставленной задачи, но не просто пересказать, в чем там дело, а оценить степень их соответствия тем ограничениям, которые были сформулированы в постановке задачи.

2.1 CG

[YOUSEF SAAD ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS SECOND EDITION]

2.2 BCG

[YOUSEF SAAD ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS SECOND EDITION]

2.3 Блочный СС

[DIANNE P. O'LEARY THE BLOCK CONJUGATE GRADIENT ALGORYTHM AND RELATED METHODS]

2.4 Блочный ВСС

[DIANNE P. O'LEARY THE BLOCK CONJUGATE GRADIENT ALGORYTHM AND RELATED METHODS]

2.5 BCGSTAB

[VAN DER VORST BI-CGSTAB: A FAST AND SMOOTHLY CONVEGRING VARIANT OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR SYSTEMS]

2.6 Блочный BCGSTAB

[GUENNOUNI A BLOCK VERSION OF BCGSTAB FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES]

2.6.1 Матричнозначные полиномы

El Problema плохая сходимость, в следующем разделе мы предлагаем решение

3 Исследование и построение решения задачи

3.1 Реортогонализация

3.2 Ортогонализация

$$P_k = Q_P R_P$$

$$\tilde{R}_0$$

3.3 Отбор правых частей

график с сингулярными числами rrqr

3.4 Проблемы

Нескалярная омега возможные брейкдауны [GUENNOUNI] Все равно мало правых частей

4 Численные эксперименты

4.1 Tect 1

4 правые части, мы схоидмся, они нет, считаем в одинарной точности

4.2 Tect 2

15 правых частей, уменьшения числа итераций, считаем в двойной точности

4.3 Tect 3

более 30 правых частей, демонстрация отсутствия взрыва невязки

5 Заключение

Результаты Нерешенные проблемы редукции блока

Список литературы

- [1] Mott-Smith, H. The theory of collectors in gaseous discharges / H. Mott-Smith, I. Langmuir // Phys. Rev. 1926. Vol. 28.
- [2] *Морз*, *P.* Бесстолкновительный РІС-метод / Р. Морз // Вычислительные методы в физике плазмы / Еd. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974.
- [3] $\mathit{Kucen\"ee}$, A. A. Численное моделирование захвата ионов бесстолкновительной плазмы электрическим полем поглощающей сферы / A. A. Кисел\"eв, Долгоносов M. C., Красовский B. $\Pi.$ // Девятая ежегодная конференция «Физика плазмы в Солнечной системе». 2014.