Margin Based Methods

Tuesday, April 25, 2017

Predict for logistic regression and LDA: $\hat{y} = 1\{x^T \hat{\beta} + \hat{\beta} \ge 0\}$

Empirical Risk Minimization min I I Rly., Xi, B) - yixiB + log(1+exib)

Lecture 8 Page 1

Recall 0-1 loss $l(y_i,x_i,\beta) = 2\{y_i \neq \hat{y}_i\}$ and re-encode $y_i \leftarrow 2y_i - 1$ so that $y_i \in \{-1,1\}$, and $\hat{y}_i = sign(x_i,\beta)$. Error if $y_i \cdot \hat{y}_i \neq 1 \Leftrightarrow y_i \cdot x_i,\beta \neq 0$ so $l_{on}(y_i,x_i,\beta) = 1\{y_i \cdot x_i,\beta \neq 0\}$ and $l_{sogi}(y_i,x_i,\beta) = \{log(1+e^{x_i,\beta}), y_i = 1\}$ $log(1+e^{x_i,\beta}), y_i = 1$ $log(1+e^{x_i,\beta}), y_i = 1$

You can also use square error loss,

$$l_2(y; x; \beta) = (y; -x; \beta)^2 = (1 - y; x; \beta)^2$$

square arrol

Support Vector Machines

Wednesday, April 26, 2017 12:04 P

Max-margin separating hyperplane

max
$$M = s.t. y:(x^T_{\beta}+\beta_{\delta}) \geq M \forall i$$

$$\equiv \max_{\beta,\beta_{\bullet}} M_{s,l}, \frac{1}{||\beta||} Y_{i}(x_{i}^{\dagger}\beta+\beta_{\bullet}) \geq M_{s,l}$$

Li can scale
$$\beta$$
 arbitrarily so set $\|\beta\| = \frac{1}{m}$

La Solution only dependent on "support vectors"

clf not linearly se parable then all "slack variable" 3:

min
$$||\beta|| < i1$$
, $|\beta| < i2$, $|\beta| + |\beta| > 1 - 3$; $|\beta| < 1$
 $|\beta| < 1$, $|\beta| < 1$, $|\beta| < 1$, $|\beta| < 1$

Lagrangian

min
$$\|\beta\|_{2}^{2} + Y \sum_{i} \xi_{i} + \xi_{i} + \xi_{i} = 1 - \xi_{i} + \xi_{i}$$

$$= \min_{\beta_{i}, \beta_{i} \geq 0} \sum_{i} \left[1 - y_{i} \left(x_{i}^{T} \beta_{i} \right) + \lambda \|\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2} \right]$$

where $\alpha_{+} = \left\{ \alpha_{+}, \alpha \geq 0 \right\}$

where $\alpha_{+} = \left\{ \alpha_{+}, \alpha \geq 0 \right\}$

Multiclass Classification

Wednesday, April 26, 2017

Encode K classes:
$$y_i \in \{0, 13^K \}$$

 $l_{0,1}(y_i, \hat{y}_i) = 1 - y_i^T \hat{y}_i$

Multiple linear separators: {Bk}.

$$\hat{y}_j = \begin{cases} 1, j = argmax \beta_k^T \times 0, & \text{otherwise} \end{cases}$$

Soft-angmax) ZERK is vector of scores

$$S(Z) = \left(\frac{e^{Z_1}}{Le^{Z_k}}, \frac{e^{Z_2}}{Le^{Z_k}}, \dots, \frac{e^{Z_k}}{Le^{Z_k}}\right)$$

Replace
$$\hat{g}_i = S(x_i^T \hat{\beta}_i, ..., x_i^T \hat{\beta}_K)$$
 then
$$y_i^T \hat{y}_i = e^{x_i^T \hat{\beta}_i} \quad \text{for } y_i = 1$$

$$y_{i}^{T}\hat{y}_{i} = \frac{e^{X_{i}^{T}\hat{\beta}_{i}}}{\sum_{k} e^{X_{i}^{T}\hat{\beta}_{k}}} \quad \text{for } y_{ij} = 1.$$

$$= \frac{e^{X_{i}^{T}\hat{\beta}_{i}} - \hat{\beta}_{k}}{1 + \sum_{k=1}^{K_{i}} e^{X_{i}^{T}\hat{\beta}_{k}} - \hat{\beta}_{k}} = P\{Class = j \mid X\}$$
for Legislic model

- b multiclass SVM predicts class with max margin/ smallest slack var.
- P Confusion matrix is KxK.