

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

⑤

Int. Cl. 2:

**A 61 B 17/36**

⑯ **BUNDESREPUBLIK DEUTSCHLAND**



Deutschland

**DE 28 23 291 A 1**

⑩

## **Offenlegungsschrift 28 23 291**

⑪

Aktenzeichen: P 28 23 291.9-35

⑫

Anmeldetag: 27. 5. 78

⑬

Offenlegungstag: 29. 11. 79

⑭

Unionspriorität:

⑮ ⑯ ⑰

—

⑯

Bezeichnung: Schaltung zur automatischen Einschaltung des Hochfrequenzstromes von Hochfrequenz-Koagulationsgeräten

—

Anmelder: Koch, Rainer, Ing.(grad.), 7800 Freiburg

⑰

Erfinder: gleich Anmelder

---

Prüfungsantrag gem. § 28 b PatG ist gestellt

**DE 28 23 291 A 1**

Rainer Koch  
Mathildenstraße 20  
7800 F r e i b u r g

I.) Patentansprüche

Schaltung zur automatischen Einschaltung des Hochfrequenzstromes von Hochfrequenz-Koagulationsgeräten,

gekennzeichnet durch:

Zwei Zuleitungen (1,2), von denen die Zuleitung (1) mit dem Potentiometer ( $P_1$ ) verbunden ist, das mit seinem anderen Anschluß an dem Potential von 9 V liegt, und von denen die Zuleitung (2) über den Widerstand ( $R_2$ ) an die Basis des Transistors ( $T_1$ ) führt. Von der Zuleitung (2) geht der Widerstand ( $R_3$ ) zur Nulleitung der Spannungsquelle. Die Basis des Transistors ( $T_1$ ) ist über den Kondensator ( $C_1$ ) geerdet. Der Kollektor des Transistors ( $T_1$ ) liegt über den Widerstand ( $R_1$ ) an + 9 V. Der Emitter des Transistors ( $T_1$ ) ist geerdet. Der Kollektor des Transistors ( $T_1$ ) ist über das Potentiometer ( $P_2$ ) und den Widerstand ( $R_4$ ) mit der Basis des Transistors ( $T_2$ ) verbunden. Der Kollektoranschuß dieses Transistors führt über das Relais (Rel) und die Diode ( $D_1$ ), die beide parallelgeschaltet sind, zum Kollektor des Transistors ( $T_1$ ) zurück. Der Emitter des Transistors ( $T_2$ ) liegt auf + 9 V. Der Verbindungspunkt des Potentiometers ( $P_2$ ) und des Widerstandes ( $R_4$ ) ist über den Kondensator ( $C_2$ ) geerdet.

II.) Verwendung der Schaltung nach Anspruch I zum Schalten von Hochfrequenzströmen in HF-Koagulationsgeräten.

ORIGINAL INSPECTED

909848/0460

Schaltung zur automatischen Einschaltung des Hochfrequenzstromes  
von Hochfrequenz-Koagulationsgeräten.

Die Erfindung betrifft eine Schaltung des Hochfrequenzstromes von Hochfrequenz-Koagulationsgeräten, die in der Chirurgie zum Verschließen von Blutgefäßen Verwendung finden (z.B. Bipolatoren). Bei den derzeit auf dem Markt befindlichen Geräten wird dabei der Koagulationsstrom stets durch mechanische Schalter eingeschaltet. Es handelt sich dabei entweder um Fußschalter oder um Schalter am Pinzettengriff.

Diese Art Schalter besitzen große Nachteile. Da der Fußschalter am Boden gelagert ist, muß er wie gesetzlich vorgeschrieben, explosionsgeschützt ausgeführt sein. Der Aufwand dafür ist erheblich, das Gerät verteuert sich, und die Bedienung führt, wie die Praxis gezeigt hat, besonders bei der Fußschalter-Ausführung zur Ermüdung des Betäigters. Der Nachteil des Schalters am Pinzettengriff liegt darin, daß die HF-Einschaltung nur bei einem bestimmten Abstand der Pinzettenschenkel möglich ist. Gefäße verschiedener Stärke können deshalb nicht optimal koaguliert werden. Ein weiterer Nachteil ist das erhöhte Gewicht der Pinzette, was die Handhabung besonders in der Mikrochirurgie erschwert. Ferner besteht die Gefahr der Kontaktoxidation.

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Schaltungsanordnung zu schaffen, die automatisch nach einer einstellbaren Verzögerung den Hochfrequenzstrom bei Gewebekontakt der Pinzettenspitzen am gewünschten Punkt einschaltet. Die integrierte Verzögerungsschaltung verhindert ein Einschalten bei unbeabsichtigtem kurzem Gewebekontakt der Pinzettenspitzen oder bei kurzen Manipulationen im Gewebe.

Die Aufgabe wird durch die im Anspruch I angegebene Erfindung gelöst. Die erfindungsgemäße Schaltung besitzt den Vorteil, daß sie einfach und damit billig herstellbar ist und eine optimale Handhabung der Koagulationspinzette gewährleistet.

Funktionsbeschreibung

Berühren die Pinzettenspitzen das zu verschließende Blutgefäß, so fließt über das Potentiometer ( $P_1$ ), durch das Gewebe und über den Widerstand ( $R_2$ ) ein Basissteuerstrom, der den Darlingtontransistor ( $T_1$ ) durchschaltet. Der maximale Gewebestrom beträgt dabei ca. 30  $\mu$ A.

Der negative Spannungssprung am Kollektor des Transistors ( $T_1$ ) wird erst nach einer entsprechenden Umladung des Kondensators ( $C_2$ ) über das Potentiometer ( $P_2$ ) und den Widerstand ( $R_4$ ) an der Basis des Transistors ( $T_2$ ) wirksam. Dieser Transistor schaltet nun ebenfalls nach einer mittels des Potentiometers ( $P_2$ ) einstellbaren Verzögerung durch, und es fließt so lange Strom durch das Relais (Rel) wie der Transistor ( $T_1$ ) infolge Gewebekontakt der Pinzettenspitzen durchgeschaltet ist. Wird die Pinzette aus dem Gewebe entfernt, so sperrt augenblicklich der Transistor ( $T_1$ ) und das Relais (Rel) fällt ab, obwohl der Transistor ( $T_2$ ) noch bis zur erneuten Umladung des Kondensators ( $C_2$ ) durchgeschaltet ist. Das Relais (Rel) schaltet über seine zugehörigen Kontakte den HF-Koagulator nur dann ein, wenn beide Transistoren durchgeschaltet sind, d.h. wenn die Pinzettenspitzen Gewebekontakt haben und eine einstellbare Verzögerungszeit abgelaufen ist. (UND-Funktion)

Die Widerstände ( $R_2$  u.  $R_3$ ) sowie der Kondensator ( $C_1$ ) begrenzen den HF-Strom bei eingeschaltetem Koagulator, der als Basisstrom des Transistors ( $T_1$ ) zusätzlich wirksam wird und verhindern einen "Halteeffekt" der Schaltung bei unterbrochenem Gewebekontakt der Pinzettenspitzen. Die Diode ( $D_1$ ) schützt den Transistor ( $T_2$ ) vor induktiven Ausschaltspannungsspitzen.

In einer bevorzugten Ausbildungsform ist die Schaltung wie folgt dimensioniert:

|       |   |          |       |   |             |       |   |                   |
|-------|---|----------|-------|---|-------------|-------|---|-------------------|
| $R_1$ | = | 2,2 KOhm | $P_1$ | = | 500 KOhm    | $T_1$ | = | BC 517 Darlington |
| $R_2$ | = | 47 KOhm  | $P_2$ | = | 100 KOhm    | $T_2$ | = | BC 251            |
| $R_3$ | = | 47 KOhm  | $C_1$ | = | 1 $\mu$ F   | Rel   | = | 8 V / 40 mA 1xEin |
| $R_4$ | = | 2,2 KOhm | $C_2$ | = | 100 $\mu$ F | $D_1$ | = | 1 N 4148          |

- 4 -

Leerseite

- 5 -

Nummer: 28 23 291  
Int. Cl. 2: A 61 B 17/36  
Anmeldetag: 27. Mai 1978  
Offenlegungstag: 29. November 1979

2823291



|                                                 |         |
|-------------------------------------------------|---------|
| Einschaltautomatik für<br>HF-Koagulationsgeräte |         |
| 10.5.78                                         | R. Müh. |

ORIGINAL INSPECTED

909848/0460