CUDA Programming

Outline

- **□**GPU
- □CUDA Introduction
 - **□What is CUDA**
 - □CUDA Programming Model
 - **□**Advantages & Limitations
- □**CUDA** Programming
- ☐Future Work

GPU

- GPUs are massively multithreaded many core chips
 - ☐ handle computation only for computer graphics
 - ☐ Hundreds of processors
 - ☐ Tens of thousands of concurrent threads
 - ☐TFLOPs peak performance
 - ☐ Fine-grained data-parallel computation

☐ Users across science & engineering disciplines are achieving tenfold and higher speedups on GPU

GPGPU

- What is GPGPU?
 - General purpose computing on GPUs
 - GPGPU is the use of a GPU, which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).
- Why GPGPU?
 - Massively parallel computing power
 - Inexpensive

GPGPU

• How?

– CUDA

– OpenCL

DirectCompute

What is CUDA?

- □ CUDA is the acronym for Compute Unified Device Architecture.
 □ A parallel computing architecture developed by NVIDIA.
 □ Heterogeneous serial-parallel computing
 □ The computing engine in GPU.
 □ CUDA can be accessible to software developers through industry standard programming languages.
- ☐ CUDA gives developers access to the instruction set and memory of the parallel computation elements in GPUs.

Heterogeneous Computing

- Terminology:
 - Host The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Device

Heterogeneous Computing

```
#include <iostream>
#include <algorithm>
using namespace std;
#define RADIUS 3
#define BLOCK_SIZE 16
 global void stencil 1d(int *in, int *out) {
          __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
         int gindex = threadIdx.x + blockIdx.x * blockDim.x;
         int lindex = threadldx.x + RADIUS;
         temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
                 temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
         // Synchronize (ensure all the data is available)
          _syncthreads();
         // Apply the stencil
         int result = 0:
         for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                 result += temp[lindex + offset];
         out[gindex] = result;
void fill_ints(int *x, int n) {
         fill n(x, n, 1):
int main(void) {
    int *in, *out;
                            // host copies of a, b, c
         int *d_in, *d_out;
                                 // device copies of a. b. c
         int size = (N + 2*RADIUS) * sizeof(int);
        // Alloc space for host copies and setup values in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
         out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
         // Alloc space for device copies
        cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);
         cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
         cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
         // Launch stencil 1d() kernel on GPLI
         stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
         // Copy result back to host
         cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
         free(in); free(out);
         cudaFree(d_in); cudaFree(d_out);
         return 0:
```


CUDA Kernels and Threads

☐ Parallel portions of an application are executed on the device as kernels

- ☐ A Kernel is a Function that runs on a device
 - ☐ One kernel is executed at a time
 - ☐ Many threads execute each kernel

- ☐ Differences between CUDA and CPU threads
 - □ CUDA threads are extremely lightweight
 - **□** Very little creation overhead
 - ☐ Instant switching

- ☐ A kernel is executed by a grid of thread blocks
- □ A thread block is a batch of threads that can cooperate with each other by:
 - ☐ Sharing data through shared memory
 - **□**Synchronizing their execution

☐ Threads from different blocks cannot cooperate

- All threads within a block can
 - Share data through 'Shared Memory'
 - Synchronize using '_syncthreads()'
- Threads and Blocks have unique IDs
 - Available through special variables

SIMT (Single Instruction Multiple Threads)
 Execution

Threads run in groups of 32 called warps

Every thread in a warp executes the same instruction at a time

© NVIDIA Corporation

Single Instruction Multiple Thread (SIMT) Execution:

- Groups of 32 threads formed into warps
 - always executing same instruction
 - share instruction fetch/dispatch
 - some become inactive when code path diverges
 - hardware automatically handles divergence
- Warps are primitive unit of scheduling
 - · all warps from all active blocks are time-sliced

Control Flow Divergence

Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

- Types of device memory
 - Registers read/write per-thread
 - Local Memory read/write per-thread
 - Shared Memory read/write per-block
 - Global Memory read/write across grids
 - Constant Memory read across grids
 - Texture Memory read across grids

© NVIDIA Corporation

There are 6 Memory Types:

Registers

- on chip
- fast access
- per thread
- o limited amount
- o 32 bit

- Registers
- Local Memory
 - o in DRAM
 - slow
 - o non-cached
 - per thread
 - o relative large

- Registers
- Local Memory
- Shared Memory
 - on chip
 - o fast access
 - o per block
 - 16 KByte
 - synchronize between threads

- Registers
- Local Memory
- Shared Memory
- Global Memory
 - o in DRAM
 - o slow
 - non-cached
 - o per grid
 - communicate between grids

- Registers
- Local Memory
- Shared Memory
- Global Memory
- Constant Memory
 - o in DRAM
 - cached
 - per grid
 - o read-only

- Registers
- Local Memory
- Shared Memory
- Global Memory
- Constant Memory
- Texture Memory
 - o in DRAM
 - cached
 - per grid
 - read-only

- Registers
- Shared Memory
 - on chip
- Local Memory
- Global Memory
- Constant Memory
- Texture Memory
 - in Device Memory

- Global Memory
- Constant Memory
- Texture Memory
 - managed by host code
 - o persistent across kernels

Advantages of CUDA

- □CUDA has several advantages over traditional general purpose computation on GPUs:
 - □Scattered reads code can read from arbitrary addresses in memory.
 - □Shared memory CUDA exposes a fast shared memory region (16KB in size) that can be shared amongst threads.

Limitations of CUDA

□ CUDA has several limitations over traditional general purpose computation on GPUs:
 □ A single process must run spread across multiple disjoint memory spaces, unlike other C language runtime environments.
 □ The bus bandwidth and latency between the CPU and the GPU may be a bottleneck.
 □ CUDA-enabled GPUs are only available from NVIDIA.