14. Construct a regular grammar for the RE, L = (a + b)*(aa + bb)(a + b)*. Solution: The NFA for the RE is

There are four states in the FA. So, in the regular grammar, there are four non-terminals. Let us take them as A (for q_0), B (for q_1), C (for q_2), and D (for q_3).

Now, we have to construct the production rules of the grammar.

For the state q_0 , the production rules are

A
$$\rightarrow$$
 aA, A \rightarrow bA, A \rightarrow aB, A \rightarrow bC.

For the state q_1 , the production rules are

$$B \rightarrow aD$$
, $B \rightarrow a$ (as D is the final state).

For the state q_2 , the production rules are

$$C \rightarrow b D, C \rightarrow b$$
 (as D is the final state).

Mehrshad Adham Example 14 & 16 Pages 285-288

For the state q_3 , the production rules are

$$D \rightarrow aD, \, D \rightarrow bD, \, D \rightarrow a/$$
 b.

The grammar $= \{V_N,\, \Sigma,\, P,\, S\}$

$$V_N=\{A,\,B,\,C,\,D\}\;\Sigma=\{a,\,b\}$$

 $\mathsf{P}:\mathsf{A}\to\mathsf{aA}/\mathsf{bA}/\mathsf{aB}/\mathsf{bC}$

 $\mathsf{B} \to \mathsf{a} \mathsf{D}/\mathsf{a}$

 $C \rightarrow bD/b$

 $\mathsf{D} \to \mathsf{a} \mathsf{D}/\mathsf{b} \mathsf{D}/\mathsf{a}/\mathsf{b}.$

16. Find the RE recognized by the finite state automaton of the following figure. [GATE 1994]

2/3

Mehrshad Adham Example 14 & 16 Pages 285-288

Solution: The equation for the FA is

$$A = 0A + \wedge \tag{1}$$

$$B = 1A + 1B \tag{2}$$

$$C = 0B + 0C + 1C \tag{3}$$

Solving the equation (1) using the Arden's theorem, we get $A = \wedge 0^* = 0^*$. Putting the value of A in equation (2), we get

$$B = 10* + 1B.$$

Using the Arden's theorem, we get

$$B = 10*1*$$
.

Both A and B are final states, and thus the string accepted by the FA is

$$0^* + 10^*1^*$$

= $0^* (\land + 11^*) = 0^*1^* (as \land + RR^* = R^*).$

3/3

Mehrshad Adham Example 14 & 16 Pages 285-288