# Лабораторная работа 5.5.1 Измерение коэффициента ослабления потока $\gamma$ -лучей в веществе и определение их энергии

Иван Сладков

19 февраля 2022 г.

### 1 Аннотация

В данной работе проводится измерение линейных коэффициентов ослабления потока  $\gamma$ -лучей в свинце, железе и алюминии с помощью сцинтилляционного счетчика; по их величине определяется энергия  $\gamma$ -квантов.

## 2 Теоретические сведения

 $\gamma$ -лучи возникают при переходе возбужденных ядер из одного энергетического состояния в другое, более низкое. Энергия у-квантов обычно заключена между несколькими десятками килоэлектронвольт и несколькими миллионами электрон-вольт.  $\gamma$ -кванты не несут электрического заряда, их масса равна нулю. Проходя через вещество, пучок у-квантов постепенно ослабляется. Ослабление происходит по экспоненциальному закону, который может быть записан следующим образом:

$$I = I_0 \exp(-\mu l),\tag{1}$$

где I и  $I_0$  – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком  $\gamma$ -лучей,  $\mu$  – константа, зависящая от вещества, с размерностью см $^{-1}$ .

Ослабление потока  $\gamma$ -лучей, происходящее при прохождении среды, связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянном и с генерацией электрон-позитронных пар.

При столкновении  $\gamma$ -квантов с электронами внутренних атомных оболочек может происходить поглощение квантов. Энергия  $\gamma$ -кванта передается соответствующему электрону, а импульс делится между этим электроном и оставшимся после его вылета ионом. Свободный электрон не может поглотить  $\gamma$ -квант, так как при этом невозможно одновременно удовлетворить законам сохранения энергии и импульса. Наружные электроны не принимают участия в фотоэлектрическом поглощении, потому что они слабо связаны в атоме, так что нх практически можно считать свободными. Вероятность  $dP_{\Phi}$  фотоэлектрического поглощения  $\gamma$ -квантов пропорциональна длине пути l и плотности электронов в среде (в расчет должны приниматься только электроны, принадлежащие внутренним оболочкам атомов):

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl,$$

где  $n_1$  – плотность внутренних электронов, а  $\sigma_{\Phi}$  – поперечное сечение фотоэлектрического поглощения. Оно характеризует вероятность фотоэффекта, рассчитанную на одни электрон. Тогда для поглощения, связанного с фотоэффектом, получаем

$$\mu_{\Phi} = \sigma_{\Phi} n_1.$$

Аналогично вычисляется коэффициент поглощения для эффекта Комптона:

$$\mu_{\rm K} = \sigma_{\rm K} n_2,$$

$$\sigma_{\rm K} = \pi r^2 \frac{mc^2}{\hbar \omega} \left( \ln \frac{2\hbar \omega}{mc^2} + \frac{1}{2} \right).$$

Все эти эффекты сложным образом зависят от энергии  $\gamma$ -кванта, а суммарный коэффициент поглощения является суммой коэффициентов в соответствующих явлениях. Для свинца, железа и аллюминия эта зависимость представлена на рис. 1.



Рис. 1: Зависимость полного коэффициента поглощения от энергии  $\gamma$ -кванта



Рис. 2: Схема экспериментальной установки

#### 2.1 Расчётные формулы

В данной работе коэффициент ослабления  $\mu$  измеряется в хорошей геометрии, т. е. в условиях, когда исследуется прохождение сквозь вещество узкого параллельного пучка  $\gamma$ -лучей.. Из формулы (1) имеем

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{2}$$

Энергию кванта можно определить по рис. 1.

# 3 Оборудование и инструментальные погрешности

Схема экспериментальной установки отображена на рис. 2. Свинцовый коллиматор выделяет узкий почти параллельный пучок  $\gamma$ -квантов, проходящий через набор поглотителей  $\Pi$  и регистрируемый сцинтилляционным счетчиком. Сигналы от счетчика усиливаются и регистрируются пересчетным прибором  $\Pi\Pi$ . Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счетчика. Поглотители располагаются на расстоянии друг от друга во избежание многократного взаимодействия с ними  $\gamma$ -квантов.

В работе используются:

Источник  $\gamma$ -квантов со свинцовым коллиматором Набор поглотителей из различных материалов Сцинтилляционный счётчик Пересчётный прибор



Рис. 3: Зависимость  $\ln \frac{N_0}{N}(h)$  для аллюминия

## 4 Результаты измерений и обработка данных

По результатам проведения опыта получены данные табл. 4. Далее необходимо усреднить результаты повторных опытов и найти статистические погрешности отдельного опыта. Учтём наличие фона и соответствующие погрешности. В результате получим данные для построения графиков в табл. 1. Так как требуется график вида  $\ln N_0/N(h)$ , погрешность  $\ln N_0/N$  найдём по формуле:

$$\sigma_{log} = \sqrt{\frac{\sigma_N^2}{N^2} + \frac{\sigma_{N_0}^2}{N_0^2}} \tag{3}$$

Из графиков на рис. 3, 4, 5 найдём коэффициенты  $\mu$ :

$$\mu_{Al} = 0.0203 \pm 2 * 10^{-4} \text{ mm}^{-1},$$
 
$$\mu_{Fe} = 0.0566 \pm 1 * 10^{-4} \text{ mm}^{-1},$$
 
$$\mu_{Pb} = 0.118 \pm 0.002 \text{ mm}^{-1}.$$

Так как при выполнении лабораторной работы не были замерены диаметры образцов поглотителей, расчёт константы  $\mu' = \mu l/m_1$  не представляется возможным.

По причине невнимательного прочтения лабника, так же был проведён прямой расчёт по формуле (2). По его результатам,

$$\mu_{Al} = 0.0211 \pm 4 * 10^{-4} \text{ mm}^{-1},$$
 
$$\mu_{Fe} = 0.0581 \pm 7 * 10^{-4} \text{ mm}^{-1},$$
 
$$\mu_{Pb} = 0.120 \pm 0.008 \text{ mm}^{-1}.$$

Эти значения приблизительно совпадают с полученными по методу хи-квадрат. Полного совпадения нет, так как расчёт погрешностей по формуле стандартной ошибки среднего даёт более правильный результат при большем количестве опытов.



Рис. 4: Зависимость  $\ln \frac{N_0}{N}(h)$  для железа

| Материал  | Толщина h | Среднее число $\gamma$ -квантов, $N$ | Погрешность среднего, $\sigma_N$ |
|-----------|-----------|--------------------------------------|----------------------------------|
| Аллюминий | 20.2      | $6.65\mathrm{E}{+4}$                 | $2\mathrm{E}{+2}$                |
|           | 39.9      | $4{,}40\mathrm{E}{+}4$               | $6\mathrm{E}\!+\!1$              |
|           | 60.0      | $2,93\mathrm{E}{+4}$                 | 9E+1                             |
|           | 80.0      | $1,94 	ext{E} + 4$                   | $1\mathrm{E}{+2}$                |
|           | 100.0     | $1{,}31E{+}4$                        | $5\mathrm{E}{+}1$                |
| Железо    | 10.0      | $5,\!68\mathrm{E}{+4}$               | $1\mathrm{E}{+2}$                |
|           | 19.9      | $3{,}24\mathrm{E}{+}4$               | 8E+1                             |
|           | 30.0      | 1,83E+4                              | $5\mathrm{E}{+}1$                |
|           | 40.0      | 1,03E+4                              | $4\mathrm{E}{+}1$                |
|           | 50.0      | $5,92\mathrm{E}{+3}$                 | $_{ m 4E+1}$                     |
| Свинец    | 5.0       | $5,\!66\mathrm{E}{+4}$               | $1\mathrm{E}{+2}$                |
|           | 9.1       | $3{,}43\mathrm{E}{+4}$               | 9E+1                             |
|           | 13.5      | 1,99E+4                              | $7\mathrm{E}{+}1$                |
|           | 18.2      | $1{,}16E{+}4$                        | $7\mathrm{E}{+}1$                |
|           | 22.8      | 7,02E+3                              | 3E+1                             |

Таблица 1: Данные для построения графиков



Рис. 5: Зависимость  $\ln \frac{N_0}{N}(h)$  для свинца

Из табл. на стр. 480 [3], средняя энергия  $\gamma$ -квантов достигала

$$E \approx 0.6 \div 0.8 \text{ M} \cdot \text{B}.$$

Эти значения подтверждают точность полученных данных, так как  $\mu_{Al}, \, \mu_{Fe}$  и  $\mu_{Pb}$  соответствуют этой энергии.

#### 4.1 Оценка погрешностей

В данной лабораторной по возможности производился учёт всех доступных погрешностей, вне зависимости от их значения. Расчёт наилучшей прямой по методу хи-квадрат с учётом погрешности по обеим осям проведён в OriginLab. Расчётные формулы для погрешностей косвенных измерений найдены аналитически в пакете  $Wolfram\ Mathematica$  по общей формуле

$$\sigma_u^2 = f_x'^2 \sigma_x^2 + f_x'^2 \sigma_x^2 + \dots$$

#### 5 Вывод

По результатам лабораторной работы получили с хорошей точностью линейные коэффициенты затухания потока  $\gamma$ -квантов в различных поглотителях; приблизительно оценили среднюю энергию одиночного  $\gamma$ -кванта.

## А Необработанные результаты опытов

Таблица 2: Оценка фона

| Число <i>ү</i> -квантов | 103578 | 103663 | 103895 | 103753 | 103895 |
|-------------------------|--------|--------|--------|--------|--------|
|-------------------------|--------|--------|--------|--------|--------|

Таблица 3: Оценка числа падающих  $\gamma$ -квантов без учёта фона

| Материал  | Толщина h | Число <i>ү</i> -квантов |       |       |       |       |  |
|-----------|-----------|-------------------------|-------|-------|-------|-------|--|
| Аллюминий | 20.2      | 66630                   | 66799 | 66902 | 67231 | 66185 |  |
|           | 39.9      | 44415                   | 44323 | 44348 | 44040 | 44250 |  |
|           | 60.0      | 29521                   | 29463 | 29566 | 29974 | 29583 |  |
|           | 80.0      | 19515                   | 19842 | 19389 | 19758 | 19882 |  |
|           | 100.0     | 13533                   | 13480 | 13465 | 13254 | 13374 |  |
|           | 10.0      | 57257                   | 57187 | 56841 | 56771 | 57318 |  |
|           | 19.9      | 32497                   | 32432 | 32786 | 32821 | 32696 |  |
| Железо    | 30.0      | 18527                   | 18480 | 18517 | 18696 | 18695 |  |
|           | 40.0      | 10654                   | 10713 | 10454 | 10637 | 10595 |  |
|           | 50.0      | 6122                    | 6259  | 6301  | 6123  | 6205  |  |
| Свинец    | 5.0       | 56924                   | 56927 | 56663 | 57145 | 56567 |  |
|           | 9.1       | 34639                   | 34559 | 34534 | 34404 | 34963 |  |
|           | 13.5      | 20302                   | 20349 | 20240 | 20197 | 19946 |  |
|           | 18.2      | 11890                   | 11837 | 12046 | 11680 | 11712 |  |
|           | 22.8      | 7221                    | 7286  | 7395  | 7325  | 7283  |  |

Таблица 4: Результат эксперимента (сырые данные)

## Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 5, 1989
- [2] Фаддеев М. А., Чупрунов Е. В. Лекции по атомной физике, 2008
- [3] Игошин Ф. Ф., Самарский Ю. А., Ципешок Ю. М. ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ ФИЗИКЕ. Квантовая физика: Учеб, пособие для вузов; Под ред. Ципенюка Ю.М.