成 绩

课程名: 概率论与数理统计B 课程号: 01014017 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	 =	四	五.	六	七	八
得分							

得分	评卷人

- 一、填空题(每格2分, 共20分)
- 1. 袋中有黑球和白球各2个. 现每次从袋中仟取一个球, 有放回地取两次, 则抽到 是黑白球各一个的概率等于; 若是无放回地取两次, 则抽到黑白球各一 个的概率则是 .
- 2. 设X服从泊松分布, 并已知 $P\{X=0\}=\frac{1}{2}$. 则对于 $k=0,1,2,\cdots$, $P\{X = k\} = ____; E(X) = ___.$
- 3. 设(X,Y)的联合分布函数为F(x,y),则X的边缘分布函数为 $F_X(x)$ = 条件概率 $P\{Y < y | X < x\} =$.
- 4. 二维正态随机向量 $(X,Y) \sim N(1,2,4,9,-0.5)$,则 $D(1-2X) = _____,$ Cov(3X, -Y) = .
- 5. (X_1, X_2, \dots, X_n) 为取自正态总体 $N(\mu, \sigma^2)$ 的一组样本, \overline{X} 和 S^2 为样本均值和样 本方差. 则 $E(S^2) = _____; E(\overline{X}S^2) = _____.$

得分	评卷人

二、判别题(请在括号中填入**✓**或**X**. 每题2分, 5题共10分)

- 1. 设A, B为两个事件, 则有P(A B) = P(A) P(B). ()
- 2. 记随机变量X的分布函数为F(x),则 $P\{X = c\} = F(c) F(c 0)$. ()
- 3. *X*和*Y*相互独立, 且均服从正态分布, 那么(*X*, *Y*)将服从二维正态分布. (
- 4. 如果D(X + Y) = D(X) + D(Y),则X与Y互不相关.()
- 5. 对于一个未知参数 θ , 其估计量的方差越小越有效. ()

得分	评卷人

三、选择题(每题2分,5题共10分)

- 1. A, B, C为三个事件, 那么事件 $AB \cup AC \cup BC$ 表示这三个事件()

 - (A) 至少有一个不发生 (B) 至多有一个不发生

 - (C) 三个都发生 (D) 恰好有两个发生
- 2. 设 $X \sim b(100, 0.01)$, 则与X的分布最相似的分布是()
- (A) $\pi(1)$ (B) b(10, 0.1) (C) U(0, 100)
- (D) N(0,1)
- 3. 设 X_1, X_2, \dots, X_n 独立同分布, 其分布函数均为 $1 \exp\{-x\}, x > 0$. 那么 当x > 0时, $\min_{1 \le i \le n} X_i$ 的分布函数为 ()
 - (A) $(1 \exp\{-x\})^n$ (B) $(1 \exp\{-x\})^{\frac{1}{n}}$
 - (C) $1 \exp\{-nx\}$ (D) $n \exp\{-nx\}$
- 4. X 与 Y 互不相关,且具有相同的方差,则对于不全为零的常数<math>a和b. aX + bY = bX + aY的相关系数等于()
 - (A) $\frac{ab}{a^2+b^2}$ (B) $\frac{a^2}{a^2+b^2}$ (C) $\frac{b^2}{a^2+b^2}$ (D) $\frac{2ab}{a^2+b^2}$

- 5. 设X, Y独立同分布于 $N(\mu, \sigma^2)$, 下列随机变量中哪一个服从 $\chi^2(1)$ ()

 - (A) $\frac{1}{\sigma^2}X^2$ (B) $\frac{1}{2\sigma^2}(X-Y)^2$ (C) $\frac{1}{2\sigma^2}(X+Y)^2$ (D) $\frac{1}{\sigma^2}XY$

得分 评卷人

四、(10分). 有同样规格的产品六箱, 其中三箱是甲厂生产的,

次品率为 1/20; 两箱是乙厂生产的, 次品率为 1/15; 一箱是丙厂生产的, 次品率为 1/10. 现从 六箱中任选一箱, 并从中随机取一件产品,

- 1. (6分) 求取到的那件是次品的概率;
- 2. (4分) 如果取到的那件是次品, 问它由哪家厂生产的概率最大.

五、(15分). 已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ a + \frac{1}{2}x, & -1 \le x < 0 \\ b + cx^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

求:

- 1. (5分) 常数a, b, c的值;
- 2. (5分) X的概率密度函数f(x);
- 3. (5分) $P\left\{-\frac{1}{2} < X < \frac{1}{2}\right\}$.

得分	评卷人			

六、(15分). 设(X,Y)的联合分布律为:

X Y	-1	0	1
-1	0	0.2	0.2
1	0.3	0.2	0.1

- 1. (5分) 求X与Y中至少有一个大于0的概率;
- 2. (5分) 求X = 1时, Y的条件分布律;
- 3. (5分) 写出Z = X + Y的分布律.

得分	评卷人			

七、(10分). 设样本 X_1, X_2, \cdots, X_n 取自 $[0, \theta]$ 上的均匀总体,求:

- 1. (5分) θ的矩估计量;
- 2. (5分) θ的最大似然估计量.

得分 评卷人

八、(10分). 在每包食品中食品添加剂含量有一定的波动(假设

服从正态分布). 根据规定整批食品中添加剂含量的均值不得超过1 mg/kg. 现从该批食品中随机抽取25袋,测得添加剂的平均含量 $\overline{x}=1.08 \text{mg/kg}$,样本标准差s=0.23 mg/kg.

- 1. (5分) 在 $\alpha = 0.05$ 显著性水平下, 能否认为这批食品添加剂含量的均值超标?
- 2. (5分) 求该批食品添加剂含量方差的90%的区间估计.

χ^2 -分布和t-分布分位点表

α	0.975	0.950	0.900	0.100	0.050	0.025
$\chi^2_{\alpha}(24)$	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641
$\chi^2_{\alpha}(25)$	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465
$\chi^2_{\alpha}(26)$	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232
$t_{\alpha}(24)$	-2.0639	-1.7109	-1.3178	1.3178	1.7109	2.0639
$t_{\alpha}(25)$	-2.0595	-1.7081	-1.3163	1.3163	1.7081	2.0595
$t_{\alpha}(26)$	-2.0555	-1.7056	-1.3150	1.3150	1.7056	2.0555