STUDY for Calculate Valley Ranch Johave County, AZ Sa 2, Phases A & B

Prepared for:

Rhodes Homes Arizona, LLC.

2215 Hualapai Mountain Rd., Suite H Kingman, Arizona 86401

A Stanley Group Company Engineering, Environmental and Construction Services - Worldwide

Technical Drainage Study

For

Area 2, Phases A & B Golden Valley Ranch Mohave County, AZ

March 2006 SCI Project # 18449.00.00

Prepared for:

Rhodes Homes Arizona, LLC. 2215 Hualapai Mountain Road, Suite H Kingman, Arizona 86401

Prepared By:

STANLEY CONSULTANTS, INC. 5820 South Eastern Avenue, Suite 200 Las Vegas, Nevada 89119 (702)369-9396 Fax (702)369-9793

TABLE OF CONTENTS

1.	GENERAL LOCATION AND DEVELOPMENT DESCRIPTION	1	
1.1.	Introduction	1	
1.2.	Location	1	
1.3.	FEMA Flood Hazard Zone	1	
2.	SITE DESCRIPTION	1	
2.1.	Description of Property	1	
2.2.	Drainage Descriptions	4	
3.	METHODS AND CRITERIA	4	
3.1.	Methodology	4	
3.2.	Drainage Shed and Modeling Convention	6	
3.3.	Design Storm and Precipitation.	6	
3.4.	Soils	7	
3.5.	Model Data and Results	7	
4.	Drainage Improvements within the Public Right-of-Way	9	
5.	Comparison of Flows	9	
6.	FEMA Base Flood Elevations	12	
7.	SUMMARY		
Q	DEFEDENCES	13	

Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 4 of 111

GOLDEN VALLEY RANCH

LIST OF TABLES

Table 1 - Precipitation	7
Table 5 –Flow Summary	8
Table 3 – Flow Comparison	9
LIST OF FIGURES	
Figure 1 – Vicinity Map and Regional Drainage Scheme	2
Figure 2 - Flood Insurance Rate Map, Mohave County, Arizona	3
Figure 3 – Area 2 Drainage Shed Map	5
Figure 4 – Drainage Improvements within Public Right-of-Way	10
Figure 5 – Existing Runoff - Flow Comparison	11
Figure 6 – Base Flood Elevation (RFE)	13

APPENDICES

Appendix A Area 2 - Results and Data

- HEC-HMS 100-yr, 6-hr Simulation
- HEC-HMS 10-yr, 6-hr Simulation
- NOAA Atlas 14 Precipitation
- STANDARD FORM 4 Time of Concentration

Appendix B Drainage Infrastructure Calculations

- COMMON LOT O (P1-83)
- COMMON LOT F (J-C14)
- COMMON LOT E (J-C17)
- H STREET (J-C21)
- COMMON LOT D (J-C25)

Appendix CStreet Capacity (Local Streets)

Appendix D Public Right-of-Way Drainage Improvements

- INLET CALCULATIONS
- HYDRAULIC CALCULATIONS WEST LOOP ROAD
- CULVERT CAPACITY (J-C26, J-N5, J-N25, J-H, & J-N2)

Appendix F Plans - Not Included with this Study (See Grading Plans this Project

1. GENERAL LOCATION AND DEVELOPMENT DESCRIPTION

1.1. Introduction

This study is submitted as the technical drainage study for the proposed improvement plans of Area 2, Phases A & B of the Golden Valley Ranch residential development located in the Sacramento Valley of Mohave County, Arizona, more specifically on the south side of the Golden Valley Community, near Kingman. Area 2 comprises of approximately 205 acres of the total 5,800 acres of land located in the Golden Valley Ranch.

The purpose of this study is to accompany the storm drainage infrastructure of the proposed development for Area 2, Phase A only. Phase B improvements will be submitted at a later date. Documentation for Phase B is included to provide continuity in the infrastructure improvements.

This study is divided into four separate areas of consideration. They are as follows:

- A general overview of site drainage
- A detailed analysis of the proposed storm drainage infrastructure.
- An analysis of the drainage improvements in the Public Right-of-Way.
- An evaluation of interim facilities serving the site

1.2. Location

The Golden Valley Ranch project site consists of Taxpin Numbers 215-01-048, 215-01-075, 215-01-078, 215-01-079, 215-01-080, 215-01-084, 215-01-085, 215-01-092, & 215-15-005 within Township 20 North, Range 18 West and Township 21 North, and Range 18 West, G&SRM, Mohave County, Arizona (Figure 1 - Vicinity Map and Regional Drainage Scheme).

1.3. FEMA Flood Hazard Zone

Figure 2 is a representation of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Mohave County, AZ, map number 040058 2325C, dated October 20, 2000. Of the 205 acres of Area 1, 42 acres lies in Special Flood Hazard Zone A.

Zone A is the flood insurance rate zone that corresponds to the 100-year floodplains that are determined in the Flood Insurance Study (FIS) by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no Base Flood Elevations (BFE's) or depths are shown within this zone. Mandatory flood insurance purchase requirements apply.

2. SITE DESCRIPTION

2.1. Description of Property

The property is semiarid rangeland with a covering of desert shrub in poor condition. Area 2, Phases A & B is located primarily in the west half of Section 3, Township 20 North, Range 18

West, G&SRM, with minor portions in Sections 2 and 10. The project will be developed into a residential community consisting of single-family (7,000 square feet lots) residences, streets, golf course and open spaces.

2.2. Drainage Descriptions

Area 2, Phases A & B is situated between the Thirteen Miles Wash and the Holy Moses Wash. Small braided channels traverse the site and a diversion channel from the Holy Moses Wash (Diversion Wash 1) crosses in a southwesterly direction across the site. The project lies on westerly sloping alluvial fan originating from the Cerbat Mountains.

Rainfall runoff generated within the development travels from the individual residential lot or open space to the street. The street is the main mean of runoff conveyance until runoff exceeds the street capacity with an 8 inch depth. When that happens, runoff is received into an underground storm drainage system, into a drainage swale or channel. The storm drainage system is sized to convey a minimum of the 10-yr, 6-hr storm runoff. Runoff generally drains in a westerly direction toward one of six release points. Here, it is received into a storm drainage system and discharged into the golf course. Major runoff travels within the golf courses fairways to be collected and conveyed under the West Loop Road at the Areas southwest corner. It returns to an open channel and discharged into one of the braided washes draining into the Thirteen Mile Wash, a tributary of the Sacramento Wash.

Area 2, Phases A & B is divided into thirty-seven small sub-sheds, ranging in size from approximately 1 acre to 13 acres (See Figure 3). The sunken golf course encompasses the Area 2 development. Shed P2-67 discharges into the south leg of the golf course and travels south away from the site. The remaining 192.38 acres drain west in a westerly direction into the golf course at five points. Four of theses discharge into the west leg of the golf course (between Areas 1 & 2) and flow in a northerly direction to a culvert under the West Loop Road (south of the intersection of West Loop Rd and B2 Street). The other release point drains into the north leg of the golf course (paralleling West Loop Rd.), combining with runoff from Area 3, Shed P3-44 and future Areas 61 and 62. All releases into the golf course are through bubble-up structures with low flow drains tied into the golf course underdrain system. The fairway provides conveyance for major runoff and also storage to retard the peak flow. Runoff exits the golf course via a culvert under the West Loop Road and is conveyed to the Thirteen Mile Wash through an open channel.

3. METHODS AND CRITERIA

3.1. Methodology

The HEC-HMS model was used for the simulation of flood events in watersheds and river basins. This computer model simulates the surface runoff response of a drainage basin to precipitation by representing the basin as an interconnected system of hydrologic and hydraulic components. Each component models an aspect of the rainfall-runoff process within a portion of

the whole basin. This basin portion is referred to as a sub-basin. The runoff hydrographs of each sub-basin are then combined and a final discharge hydrograph is obtained. It was chosen as the hydrology model since it is the model used in a Preliminary Federal Insurance Study prepared for Mohave County Flood Control District, October 2005 for various watersheds in the Golden Valley and Kingman, AZ areas. This adds consistency and reliability in the methodology. Modified-Puls routing in the HEC-HMS model allows for retardation of peak flows within the broad flood way of the golf course.

HEC-RAS, another program from the COE, provides a steady state flow analysis to determine water surface elevations within a defined channel or flood plain. Volume computations within the HEC-RAS program were utilized in developing flow routing by Modified-Puls methods.

Water Surface Pressure Gradient (WSPG) program developed by the Los Angeles County Flood Control District. WSPG is a similar program to HEC-RAS in that it develops the water surface elevations and other channel parameters, but is better adapted to closed (pressure) conduit flow and is therefore used in the evaluation of the stormwater infrastructure system.

Calculations for street capacity are produced using the FlowMaster by Haestad Methods, Inc. Inlet calculations are performed using Federal Highway Administration's Visual Urban program for pavement drainage.

3.2. Drainage Shed and Modeling Convention

The basic naming convention of the basins for the exhibits and model are based around the individual drainage shed of the development. Sheds are labeled as P2-34, identifying Area 2, Shed 34. Junction points or points of runoff confluence are identified as J-N12, identifying that it is a junction point and a label. An R designates a routing of a shed or junction, therefore R-JN15 represents routing of junction JN15 to another point.

3.3. Design Storm and Precipitation

Local jurisdiction requires that water sheds less than 20 square miles be evaluated for the 6-hour local storm. Drainage sheds of 20 to 100 square miles are to be evaluated for both the 6-hour and 24-hour rainfall events. Areas from 20 square miles to 500 square miles are considered general storms and are evaluated for the 24-hour precipitation.

Maricopa County Flood Control District has developed storm distribution curves associated with drainage shed size. Since the total area of Area 2, Phases A & B is less than 1 square mile, Pattern 1 of the Maricopa County 6-Hour Mass Curve was utilized for the storm distribution. Precipitation values of 3.00-inches and 1.76-inches were taken from the National Oceanographic and Atmospheric Administration National Weather Service's Atlas 14. Table 1 provides the precipitation values from NOAA Atlas 14. Since the total area of Area 2 is 0.29 square miles (187 acres) the depth-area reduction factor was not applied.

Table 1 - Precipitation

Recurrence	5 min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr
Interval (yrs)								
10-yr	0.40	0.61	0.75	1.01	1.25	1.44	1.53	1.76
100-yr	0.65	0.98	1.22	1.64	2.03	2.44	2.67	3.00

3.4. Soils

Soils information is taken from the Natural Resources Conservation Service, Soil Data Mart. Soils within Area 1, Phases A & B consist of CACIQUE-BUCKLEBAR-ALKO (AZ039) type. These soils have a hydrologic soil type designation of "C".

3.5. Model Data and Results

Table 2 summarizes runoff at junction points and drainage sheds within Area 2, Phases A & B. Runoff values are rounded to the nearest 1 cfs.

Table 5 - Flow Summary

Element	Area	Peak	Peak	Element	Area	Peak	Peak
	(sq mi)	Discharge	Discharge		(sq mi)	Discharge	Discharge
	` '	100-yr (cfs)	10-yr (cfs)		` ' /	100-yr (cfs)	10-yr (cfs)
J-N10	0.0057	11.48	4.06	P2-58	0.0087	16.02	5.78
J-N11	0.0229	43.44	14.9	P2-59	0.0092	15.72	5.55
J-N12	0.0403	77.1	26.86	P2-60	0.0113	20.95	7.58
J-N13	0.0523	99.06	34.19	P2-61	0.0064	10.69	3.79
J-N14	0.0627	116.7	39.96	P2-62	0.0121	21.13	7.51
J-N15	0.0728	135.07	46.15	P2-63	0.0063	11.8	4.29
J-N18	0.0118	22.79	8.09	P2-64	0.0126	23.81	8.7
J-N19	0.0131	24.65	8.74	P2-65	0.0019	4.34	1.62
J-N20	0.0184	33.63	12.1	P2-66	0.0139	23.21	8.24
J-N21	0.0279	54.34	18.32	P2-67	0.0197	51.02	18.82
J-N22	0.0393	75.78	25.74	P2-68	0.0066	12.47	4.56
J-N23	0.0589	111.05	37.37	P2-69	0.009	16.41	5.9
J-N26	0.0134	26.39	9.63	P2-70	0.02	37.66	13.76
J-N27	0.0687	114.34	38.95	P2-71	0.0067	13.51	4.81
J-N30	0.0221	39.52	13.55	P2-72	0.0104	18.09	6.42
J-N31	0.0454	87.5	29.9	P2-73	0.0101	19	6.94
J-N32	0.0523	99.42	33.96	P2-74	0.0092	17.97	6.41
J-N6	0.0261	43.47	14.05	P2-75	0.0059	13.01	4.76
J-N7	0.0411	70.44	23.07	P2-76	0.0109	20.12	7.27
J-N8	0.0503	83.94	28.36	P2-77	0.0051	10.49	3.76
J-S17	0.016	29.75	10.85	P2-78	0.0076	17.06	6.3
J-S18	0.0311	57.82	20.99	P2-79	0.0064	14.34	5.29
J-S19	0.0581	107.35	37.57	P2-80	0.0034	7.27	2.63
J-S20	0.0781	136.47	47.93	P2-81	0.0172	32.11	11.66
J-S21	0.0131	26.89	9.85	P2-82	0.008	17.17	6.22
				P2-83	0.012	22.36	8.12
				P2-84	0.0094	19.77	7.12
			~~~	P2-85	0.0052	11.07	4
				P2-86	0.0024	5.19	1.88
				P2-87	0.0094	17.76	6.49
				P2-88	0.0013	2.34	0.84
				P2-89	0.0114	25.59	9.44
				P2-90	0.0071	15.51	5.65
				P2-91	0.0023	4.78	1.71
				P2-92	0.0082	16.62	5.93
				P2-93	0.0061	12.55	4.49
				P2-94	0.0069	15.55	5.75

It should be noted that the precipitation depths of the 100-yr, 6-hr event is 3-inches and that the precipitation depth of the 10-yr, 6-hr storm is 1.53-inches. The 100-yr precipitation is nearly twice for the 10-yr event. For the same events the amount of excess precipitation available for runoff is dependent on the runoff curve number, which is a function of soil type, land use, and antecedent moisture conditions. For this reason a larger portion of the 100-yr precipitation is available for runoff than for the smaller 10-yr storm and the ratio of peak runoff for the 100-yr precipitation to 10-yr precipitations is nearly 3.

All model results and input data are found in the Appendices of this study. They consist of the following:

- Appendix A Model Results and Data provides the input parameters and results for Area 2, Phases A & B sheds.
- Appendix B Drainage Infrastructure provides the storm drain inlet calculations open channel flow calculations through utility easements.
- Appendix C Street Capacity Calculations
- Appendix D Public Right-of-Way Drainage Improvements

## 4. Drainage Improvements within the Public Right-of-Way

Access to the project site is via Shinarump Road from the north to the new Aztec Road alignment and West Loop Road. Aztec Road will receive a culvert crossing at the Power line Easement to convey runoff from off-site areas to the Thirteen Mile Wash. The West Loop Road will have a pipe crossing from the Open Space area of Area 2, Phase 1 and convey this and other Area 2, Phases 1 & 2 runoff south, crossing a future portion of the West Loop Road and discharging into the golf course (See Figure 4). Discharge from Area 1, Phases A & B drainage sheds are discussed in Section 2.2 of the Drainage Study of Area 1, Phases A & B.

Appendix D contains street capacity calculations for the arterial roads and inlet capacity calculations.

#### 5. Comparison of Flows

The drainage shed characteristics change with development of existing lands. The pervious soils that formerly existed become less pervious with the addition of houses, streets, and sidewalks and the time for runoff to reach its release point shortens. From a drainage point of view, one of the major advantages to the adjacent golf course is that drainage runoff is routed through its fairway system. This not only allows for runoff of the major storm events, but also allows for the golf course to absorb some for the runoff volume, therefore reducing the peak flow. Figure 5 shows existing drainage as it relates to the Area 1-3 development and outside areas that will drain through the proposed system. Table 3 provides a comparison of existing flows to developed flow at major junction points. Note that runoff from the northern release point J-N5 exceeds its existing flow into the Thirteen Mile Wash, the collective flows from J-N5 and J-S26 less than existing due to detention provided within the golf course.

Table 3 – Flow Comparison

Shed	Area (acres)	Indirect Methods (cfs)	HEC- HMS (cfs)
J-H	73.26	191	211
J3-44	18.12	73	38
J-S5	69.79	184	187
J-S9	439.35	657	456
J-N5	369.78	582	621
J-S26	713.82	916	798





#### 6. FEMA Base Flood Elevations

The Holy Moses Diversion Wash #1 leaves the main channel east of the site. It travels in a westerly direction along the westerly sloping alluvial fan. The runoff generally remains within the washes banks, but as it reaches the channel edge it spills over into the surrounding dessert plain. Overtime the cresting and release of flow along with its sediment load has formed a channel with overbanks sloping away from the channel.

A HEC-RAS analysis provides the Base Flood Elevations (BFE) for this diversion wash. The base flood flow within Holy Moses Diversion Wash # 1 is based on derived flow from the Technical Drainage Study for Golden Valley Ranch, Mohave, Arizona, dated October 2005. Finish building grades are developed to remain 1 foot to 1.5 feet above the BFE. Figure 6 shows the BFE's for development in Areas 1-3.

#### 7. SUMMARY

This study develops specific criteria and flow for the development of Area 1, Phases A & B.

- The majority of the development runoff can be maintained and conveyed within the street right-of-way. Where street flow capacity is reached, a storm drainage system is required.
- The drainage infrastructure is capable of conveying the 10-yr, 6-hr storm event (minimum).
- The adjacent golf course services as runoff conveyance and storage.
- Total discharge from the collective Areas 1-3 to the Thirteen Mile Wash is less because of the use of runoff volume storage provided in the golf course.
- Conveyance of stormwater runoff within the golf course fairways allows for some ground water recharge.

#### 8. REFERENCES

- 1) Flood Insurance Rate Map, Community Panel Number 040058 2325 C, Mohave County, Arizona, effective October 20, 2002.
- 2) Highway Drainage Design Manual, Arizona Department of Transportation, Report Number FHWA-AZ93-281, Final Report, March, 1993
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydrology: Rainfall, Flood Control District of Maricopa County, November 2003



# **APPENDIX A**

# **AREA 2 - RESULTS AND DATA**

- HEC-HMS 100-YR, 6-HR SIMULATION
- HEC-HMS 10-YR, 6-HR SIMULATION
- NOAA ATLAS 14 PRECIPITATION
- STANDARD FORM 4

Project: Pod2_S_curve Simulation Run: Pod2-100yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD2

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(3.00in)

Execution Time: 15Mar2006, 10:40:05 Control Specifications: Control 1

Volume Units: AC-FT

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-N10	0.0057	11.48	01Jan3000, 05:10	0.57
J-N11	0.0229	43.44	01Jan3000, 05:15	2.31
J-N12	0.0403	77.10	01Jan3000, 05:15	4.07
J-N13	0.0523	99.06	01Jan3000, 05:15	5.28
J-N14	0.0627	116.70	01Jan3000, 05:15	6.34
J-N15	0.0728	135.07	01Jan3000, 05:15	7.36
J-N18	0.0118	22.79	01Jan3000, 05:15	1.19
J-N19	0.0131	24.65	01Jan3000, 05:15	1.32
J-N20	0.0184	33.63	01Jan3000, 05:15	1.85
J-N21	0.0279	54.34	01Jan3000, 05:15	2.81
J-N22	0.0393	75.78	01Jan3000, 05:10	3.96
J-N23	0.0589	111.05	01Jan3000, 05:15	5.96
J-N26	0.0134	26.39	01Jan3000, 05:10	1.35
J-N27	0.0687	114.34	01Jan3000, 05:15	6.92
J-N30	0.0221	39.52	01Jan3000, 05:15	2.23
J-N31	0.0454	87.50	01Jan3000, 05:10	4.58
J-N32	0.0523	99.42	01Jan3000, 05:10	5.29
J-N6	0.0261	43.47	01Jan3000, 05:15	2.63
J-N7	0.0411	70.44	01Jan3000, 05:15	4.14
J-N8	0.0503	83.94	01Jan3000, 05:20	5.06
J-S17	0.0160	29.75	01Jan3000, 05:15	1.61
J-S18	0.0311	57.82	01Jan3000, 05:15	3.13
J-S19	0.0581	107.35	01Jan3000, 05:15	5.85
J-S20	0.0781	136.47	01Jan3000, 05:15	7.85
J-S21	0.0131	26.89	01Jan3000, 05:10	1.32

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-58	0.0087	16.02	01Jan3000, 05:15	0.88
P2-59	0.0092	15.72	01Jan3000, 05:15	0.93
P2-60	0.0113	20.95	01Jan3000, 05:15	1.14
P2-61	0.0064	10.69	01Jan3000, 05:15	0.64
P2-62	0.0121	21.13	01Jan3000, 05:15	1.22
P2-63	0.0063	11.80	01Jan3000, 05:15	0.63
P2-64	0.0126	23.81	01Jan3000, 05:10	1.27
P2-65	0.0019	4.34	01Jan3000, 05:10	0.19
P2-66	0.0139	23.21	01Jan3000, 05:15	1.40
P2-67	0.0197	51.02	01Jan3000, 05:05	1.99
P2-68	0.0066	12.47	01Jan3000, 05:10	0.67
P2-69	0.0090	16.41	01Jan3000, 05:15	0.91
P2-70	0.0200	37.66	01Jan3000, 05:15	2.02
P2-71	0.0067	13.51	01Jan3000, 05:10	0.68
P2-72	0.0104	18.09	01Jan3000, 05:15	1.05
P2-73	0.0101	19.00	01Jan3000, 05:15	1.02
P2-74	0.0092	17.97	01Jan3000, 05:10	0.93
P2-75	0.0059	13.01	01Jan3000, 05:10	0.59
P2-76	0.0109	20.12	01Jan3000, 05:15	1.10
P2-77	0.0051	10.49	01Jan3000, 05:10	0.51
P2-78	0.0076	17.06	01Jan3000, 05:10	0.77
P2-79	0.0064	14.34	01Jan3000, 05:10	0.64
P2-80	0.0034	7.27	01Jan3000, 05:10	0.34
P2-81	0.0172	32.11	01Jan3000, 05:15	1.73
P2-82	0.0080	17.17	01Jan3000, 05:10	0.81
P2-83	0.0120	22.36	01Jan3000, 05:15	1.21
P2-84	0.0094	19.77	01Jan3000, 05:10	0.95
P2-85	0.0052	11.07	01Jan3000, 05:10	0.52
P2-86	0.0024	5.19	01Jan3000, 05:10	0.24
P2-87	0.0094	17.76	01Jan3000, 05:10	0.95
P2-88	0.0013	2.34	01Jan3000, 05:15	0.13
P2-89	0.0114	25.59	01Jan3000, 05:10	1.15

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-90	0.0071	15.51	01Jan3000, 05:10	0.72
P2-91	0.0023	4.78	01Jan3000, 05:10	0.23
P2-92	0.0082	16.62	01Jan3000, 05:10	0.83
P2-93	0.0061	12.55	01Jan3000, 05:10	0.61
P2-94	0.0069	15.55	01Jan3000, 05:10	0.70
R-JN10	0.0057	11.33	01Jan3000, 05:15	0.57
R-JN11	0.0229	42.95	01Jan3000, 05:15	2.31
R-JN12	0.0403	76.70	01Jan3000, 05:15	4.07
R-JN13	0.0523	98.60	01Jan3000, 05:15	5.29
R-JN14	0.0627	116.07	01Jan3000, 05:15	6.35
R-JN18	0.0118	22.31	01Jan3000, 05:15	1.19
R-JN19	0.0131	23.99	01Jan3000, 05:20	1.32
R-JN21	0.0279	54.14	01Jan3000, 05:15	2.82
R-JN22	0.0393	74.95	01Jan3000, 05:10	3.97
R-JN26	0.0134	26.31	01Jan3000, 05:15	1.35
R-JN31	0.0454	86.20	01Jan3000, 05:15	4.59
R-JN32	0.0523	98.61	01Jan3000, 05:15	5.29
R-JN6	0.0261	42.62	01Jan3000, 05:15	2.63
R-JN7	0.0411	68.85	01Jan3000, 05:20	4.13
R-JN8	0.0503	83.83	01Jan3000, 05:20	5.07
R-JS17	0.0160	29.65	01Jan3000, 05:15	1.61
R-JS18	0.0311	57.72	01Jan3000, 05:15	3.13
R-JS19	0.0581	104.46	01Jan3000, 05:20	5.84
R-JS21	0.0131	26.42	01Jan3000, 05:15	1.32
R-P260	0.0113	20.53	01Jan3000, 05:15	1.14
R-P261	0.0064	10.49	01Jan3000, 05:20	0.65
R-P265	0.0019	4.27	01Jan3000, 05:15	0.19
R-P279	0.0064	13.64	01Jan3000, 05:15	0.64
R-P282	0.0080	16.48	01Jan3000, 05:15	0.81
R-P285	0.0052	10.75	01Jan3000, 05:15	0.52
R-P286	0.0024	5.07	01Jan3000, 05:15	0.24
R-P291	0.0023	4.63	01Jan3000, 05:15	0.23

Project: Pod2_S_curve Simulation Run: Pod2-10yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD2

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(1.53in)

Execution Time: 15Mar2006, 10:40:16 Control Specifications: Control 1

Volume Units: AC-FT

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-N10	0.0057	4.06	01Jan3000, 05:15	0.20
J-N11	0.0229	14.90	01Jan3000, 05:15	0.80
J-N12	0.0403	26.86	01Jan3000, 05:15	1.41
J-N13	0.0523	34.19	01Jan3000, 05:15	1.83
J-N14	0.0627	39.96	01Jan3000, 05:15	2.19
J-N15	0.0728	46.15	01Jan3000, 05:15	2.55
J-N18	0.0118	8.09	01Jan3000, 05:15	0.41
J-N19	0.0131	8.74	01Jan3000, 05:20	0.46
J-N20	0.0184	12.10	01Jan3000, 05:15	0.64
J-N21	0.0279	18.32	01Jan3000, 05:15	0.97
J-N22	0.0393	25.74	01Jan3000, 05:15	1.37
J-N23	0.0589	37.37	01Jan3000, 05:15	2.06
J-N26	0.0134	9.63	01Jan3000, 05:15	0.47
J-N27	0.0687	38.95	01Jan3000, 05:20	2.40
J-N30	0.0221	13.55	01Jan3000, 05:20	0.77
J-N31	0.0454	29.90	01Jan3000, 05:15	1.59
J-N32	0.0523	33.96	01Jan3000, 05:15	1.83
J-N6	0.0261	14.05	01Jan3000, 05:20	0.91
J-N7	0.0411	23.07	01Jan3000, 05:15	1.43
J-N8	0.0503	28.36	01Jan3000, 05:20	1.75
J-S17	0.0160	10.85	01Jan3000, 05:15	0.56
J-S18	0.0311	20.99	01Jan3000, 05:15	1.08
J-S19	0.0581	37.57	01Jan3000, 05:20	2.03
J-S20	0.0781	47.93	01Jan3000, 05:20	2.73
J-S21	0.0131	9.85	01Jan3000, 05:15	0.46

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-58	0.0087	5.78	01Jan3000, 05:15	0.30
P2-59	0.0092	5.55	01Jan3000, 05:15	0.32
P2-60	0.0113	7.58	01Jan3000, 05:15	0.39
P2-61	0.0064	3.79	01Jan3000, 05:20	0.22
P2-62	0.0121	7.51	01Jan3000, 05:15	0.42
P2-63	0.0063	4.29	01Jan3000, 05:15	0.22
P2-64	0.0126	8.70	01Jan3000, 05:15	0.44
P2-65	0.0019	1.62	01Jan3000, 05:10	0.07
P2-66	0.0139	8.24	01Jan3000, 05:20	0.48
P2-67	0.0197	18.82	01Jan3000, 05:05	0.69
P2-68	0.0066	4.56	01Jan3000, 05:15	0.23
P2-69	0.0090	5.90	01Jan3000, 05:15	0.31
P2-70	0.0200	13.76	01Jan3000, 05:15	0.70
P2-71	0.0067	4.81	01Jan3000, 05:10	0.23
P2-72	0.0104	6.42	01Jan3000, 05:15	0.36
P2-73	0.0101	6.94	01Jan3000, 05:15	0.35
P2-74	0.0092	6.41	01Jan3000, 05:15	0.32
P2-75	0.0059	4.76	01Jan3000, 05:10	0.21
P2-76	0.0109	7.27	01Jan3000, 05:15	0.38
P2-77	0.0051	3.76	01Jan3000, 05:10	0.18
P2-78	0.0076	6.30	01Jan3000, 05:10	0.26
P2-79	0.0064	5.29	01Jan3000, 05:10	0.22
P2-80	0.0034	2.63	01Jan3000, 05:10	0.12
P2-81	0.0172	11.66	01Jan3000, 05:15	0.60
P2-82	0.0080	6.22	01Jan3000, 05:10	0.28
P2-83	0.0120	8.12	01Jan3000, 05:15	0.42
P2-84	0.0094	7.12	01Jan3000, 05:10	0.33
P2-85	0.0052	4.00	01Jan3000, 05:10	0.18
P2-86	0.0024	1.88	01Jan3000, 05:10	0.08
P2-87	0.0094	6.49	01Jan3000, 05:15	0.33
P2-88	0.0013	0.84	01Jan3000, 05:15	0.05
P2-89	0.0114	9.44	01Jan3000, 05:10	0.40

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
P2-90	0.0071	5.65	01Jan3000, 05:10	0.25
P2-91	0.0023	1.71	01Jan3000, 05:10	0.08
P2-92	0.0082	5.93	01Jan3000, 05:10	0.29
P2-93	0.0061	4.49	01Jan3000, 05:10	0.21
P2-94	0.0069	5.75	01Jan3000, 05:10	0.24
R-JN10	0.0057	4.01	01Jan3000, 05:20	0.20
R-JN11	0.0229	14.43	01Jan3000, 05:20	0.80
R-JN12	0.0403	26.07	01Jan3000, 05:15	1.41
R-JN13	0.0523	33.53	01Jan3000, 05:15	1.83
R-JN14	0.0627	39.21	01Jan3000, 05:15	2.20
R-JN18	0.0118	7.96	01Jan3000, 05:20	0.41
R-JN19	0.0131	8.36	01Jan3000, 05:25	0.46
R-JN21	0.0279	18.06	01Jan3000, 05:15	0.98
R-JN22	0.0393	25.61	01Jan3000, 05:15	1.37
R-JN26	0.0134	9.14	01Jan3000, 05:15	0.47
R-JN31	0.0454	29.35	01Jan3000, 05:15	1.59
R-JN32	0.0523	32.82	01Jan3000, 05:15	1.83
R-JN6	0.0261	14.01	01Jan3000, 05:20	0.91
R-JN7	0.0411	22.88	01Jan3000, 05:25	1.43
R-JN8	0.0503	28.04	01Jan3000, 05:20	1.76
R-JS17	0.0160	10.51	01Jan3000, 05:15	0.56
R-JS18	0.0311	20.66	01Jan3000, 05:20	1.08
R-JS19	0.0581	36.98	01Jan3000, 05:25	2.03
R-JS21	0.0131	9.64	01Jan3000, 05:15	0.46
R-P260	0.0113	7.28	01Jan3000, 05:20	0.39
R-P261	0.0064	3.77	01Jan3000, 05:25	0.22
R-P265	0.0019	1.56	01Jan3000, 05:20	0.07
R-P279	0.0064	5.15	01Jan3000, 05:15	0.22
R-P282	0.0080	6.11	01Jan3000, 05:15	0.28
R-P285	0.0052	3.87	01Jan3000, 05:15	0.18
R-P286	0.0024	1.80	01Jan3000, 05:20	0.08
R-P291	0.0023	1.68	01Jan3000, 05:15	0.08



# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 27 of 111 Precipitation

Time	100-yr, 6-hr	10-yr, 6-hr
01Jan3000, 01:05	0	0
01Jan3000, 01:20	0.024	0.012
01Jan3000, 01:35	0.048	0.024
01Jan3000, 01:50	0.075	0.038
01Jan3000, 02:05	0.099	0.05
01Jan3000, 02:20	0.123	0.063
01Jan3000, 02:35	0.15	0.077
01Jan3000, 02:50	0.174	0.089
01Jan3000, 03:05	0.198	0.101
01Jan3000, 03:20	0.222	0.113
01Jan3000, 03:35	0.261	0.133
01Jan3000, 03:50	0.297	0.151
01Jan3000, 04:05	0.354	. 0.181
01Jan3000, 04:20	0.414	0.211
01Jan3000, 04:35	0.648	0.33
01Jan3000, 04:50	1.131	0.577
01Jan3000, 05:05	2.502	1.276
01Jan3000, 05:20	2.733	1.394
01Jan3000, 05:35	2.793	1.424
01Jan3000, 05:50	2.85	1.454
01Jan3000, 06:05	2.886	1.472
01Jan3000, 06:20	2.916	1.487
01Jan3000, 06:35	2.949	1.504
01Jan3000, 06:50	2.973	1.516
01Jan3000, 07:05	3	1.53

# Shed Parameters - Pod 2

DEVELOPED CONDIT	TIONS				
Drainage Shed	Area (ac)	Length (feet)	Elev dn	Elev up	Slope (%)
P2- 58	5.5961	990	2538.8	2546.1	0.737374
P2- 59	5.8944	1580	2523.56	2536.1	0.793671
P2- 60	7.2323	1070	2532.3	2540.8	0.794393
P2- 61	4.1073	1260	2562.1	2565.1	0.238095
P2- 62	7.7728	1270	2549.1	2559.9	0.850394
P2- 63	4.0089	890	2537.6	2546.7	1.022472
P2- 64	8.0819	1210	2528.2	2541	1.057851
P2- 65	1.1909	310	2539.1	2542	0.935484
P2- 66	8.9217	1360	2537.4	2547	0.705882
P2- 67	12.5906	1780	2534.7	2552.2	0.983146
P2- 68	4.2450	1950	2518.5	2532.5	0.717949
P2- 69	5.7293	1060	2526.7	2533.4	0.632075
P2- 70	12.8051	1360	2532	2549.3	1.272059
P2- 71	4.2878	710	2539.5	2547.5	1.126761
P2- 72	6.6392	1300	2531.5	2539.5	0.615385
P2- 73	6.4605	890	2529.5	2537	0.842697
P2- 74	5.8580	810	2550.8	2557.8	0.864198
P2- 75	3.7809	680	2547.4	2557.7	1.514706
P2- 76	6.9868	1230	2552.7	2565.1	1.00813
P2- 77	3.2460	980	2552.9	2565.1	1.244898
P2- 78	4.8944	970	2527.7	2565.1	3.85567
P2- 79	4.0711	760	2544.6	2551.7	0.934211
P2- 80	2.1558	480	2548.5	2552.9	0.916667
P2- 81	11.0348	1470	2538.6	2554.8	1.102041
P2- 82	5.1358	700	2547.1	2555.2	1.157143
P2- 83	7.7059	1790	2533.9	2555.7	1.217877
P2- 84	6.0027	830	2535.1	2548.1	1.566265
P2- 85	3.3268	740	2540.3	2548.5	1.108108
P2- 86	1.5261	460	2550.1	2554.1	0.869565
P2- 87	5.9921	1100	2541.4	2549.1	0.7
P2- 88	0.8086	920	2534.9	2539.9	0.543478
P2- 89	7.2895	470	2527.6	2532	0.93617
P2- 90	4.5258	590	2521.7	2529.8	1.372881
P2- 91	1.4885	400	2553.4	2555.5	0.525
P2- 92	5.2481	810	2532.5	2540.1	0.938272

Statistic continue to the co	Г				$\overline{}$			_	-1	-	$\overline{}$	_	1	_	_	_	7	7	-	Т	η_	_	-	_			-	_	7	_	_	<del>-</del>		1	<del></del>	_	_	-	-				_
Stanicy Consultants			ants Inc	8		Remarks		Ta>≃10 for Non Urben	Tc>=5 for Urban																					10.00													
Stanicy Consultants		•	nsulta	e. Suite 21 89119		EC-INPUT	Drainage	(S, kg.	_		4	┺	ш	_	-	-	-			_	┺		1 1			ч.		ᅩ			i_		-4-				_			_			
Stanicy Consultants	1	M	႞ဒီ	stem Av Nevada	£ _	$\rightarrow$	Comp	_		$^+$	+	+	Н	_		┿	+	+	+	╈	+		m	╙	_	+	+	t	Н	_		+	+	+	1	Н	┝╼╅	_	7	+	+	+	1-
Stanicy Consultants	I	U)	ane	20 S. Ea s Vegas	2.305.3	${}^{-}$	و		┥	+	╁	⊢	Н	-	+	╀	+	╀	╁	╀	┿	H	Н	+	+	+	+	╁	H	+	+	+	+	╁	Н		┦	+	+	+	╬	╁	Н
Stanley Consultations   Stan			ᄶ	3 5 3		┪			- 1	+	+-	-	Н	+	+	+	+	+	+	┞	H	H	+	+	+	+	+-	╀	Н	+	+	+	╁	╁	Н	Н	$\dashv$	+	$\dashv$	-	+	+	Н
Stanley Consultants					Te Che	(Urbanized F			- 1		201	1219	1480	1470	8 8	775	3 5	9	980	1200	1480	890	1422	1055	086	000	1089	1995	812	840	1570	979	(65)	880	608	1175	1120	220	732	570	2 E	780	
Stanley Consultants			sign Manuel		-				+	į	11.23	8,11	18.94	9.02	6.18	7/1/2	10 40	11 18	8.8	9.03	7.81	4.96	10,81	ě	6.25	2 2	800	3.40	5.73	4,14	88.	5 5	2 2 2	5.16	4.07		+	4.01	3.84	3.4	00.9	3.00	
Stanley Consultants			Orainage Det						( <u>6</u>	185	+	Н	1.49	2.82	80 9	2 8	, E	t	╁	243	3.45	+	┪	┽		+	+	┞	Н	+	╀	╁	+	Н	Н	+	$\dashv$	-	+	+	╫	t	Н
Stanley Consultants			Criterie and			D amit lave			9	t	1.80	1.80	0.89	1.86	25 25	3 5	22.	200	1.80	1.61	2.28	2.14	88	38	1.88	200	2.25	3.67	1.85	1.93	212	23/4	2.53	2.13	1.88	1.89	1.49	1.85	2.37	1.48	8 5	5	
Stanley Consultants	o No. 0	Date: 0 ated by: 0	Hydrologia			-	~		<b>(9)</b>	12.0	0.79	0.79	0.24	283	2 2	3 3	12.0	0.98	0.79	0,63	1.27	1.13	0.62	8	88 4	5	2	3.86	0.83	0.92	0,10	2 2	157	1.11	0.87	0.70	35	4	3/	25 25	# C	0.89	
Stanley Consultants		Calcul	I District's					(lee)	8	Ugo	15.80	1070	1260	12.70	12.40	9	1360	1780	820	1060	1360	2.0	330	262	2 6	1230	88	970	760	989	2/2/2	<u>5</u>	830	740	Н	+	920	4/0		∤-	+	╁	
Stanley Consultants			Flood Contro			(E)		(MW) F	9	7.40	6.32	6.93	8.42	8.02	3 8	285	7.68	8.22	7.18	6.71	6.22	7.87	627	F	6.95	68/	6,19	6.34	4.09	81.7	) is	2 4	9.82	8.22	6.93	P. 4.9	8.02	5.67	97.9	9 5	5.52 8.22	6.47	
Stanley Consultants			Regional			Overland	<del></del> -		6	8	8	8	8	8	3 8	8	8	9,1	8	00	8	8	8 8	3 !	8 8	8	8	8	8	8 8	3 8	8	8	0.1	8	8	8	8 8	3 5	3 5	3 8	8	
Stanley Consultants			ark County			a l	-	<b>198</b>	€	Ę	ž	149	ŝ	8 8	2 2	2	183	210	£	041	120	8	2 5	2 5	5 5	8	4	125	25	8	3 5	2 /9	50	120	148	52	38	2 5	20	3 5	2 2	130	
Stanley Consultants			from the Cl				1	-1	ල	280	5.89	7.23	1.4	1	8	1 18	8.82	12.58	4.25	5.73	12.81	4 28	25 5		3.78	6.99	3.25	4.89	4.07	2 2	2,5	17.7	6.00	3.33	1.53	2.00	0.81	8 5	3	4	3 56	4.43	
Stanley Consultants	0		RD FORM			-Basin Data	A full	Ω	(S) CELON	20	0.78	0.78	0.78	2 2	820	0.78	0.78	0.78	0.78	0.78	0.79	0.78	0.78	2 2	0.78	0,78	0.78	0.78	0.78	2 6	0 28	0.78	0.78	0.78	0.78	20 1	97.0	2 20	2 2	0 20	0.78	0.78	
Stanley Consultants	nject:		odfåed STANDA			gns .		Designation			59	8	<u>.</u>	8	2	59	99	- 67	88	69	2	-	2 F	2 5	5 25	82	77	78	2	8 4	28	83	25	85	88 !	87	8 8	8 8	8 6	8	66	26	
Carve Numbers   Carve Number	n.	<del></del>	<u> </u>		П	Ť		aller .	3	8	⊢4.	ــاــ	_	_	-	_			-4	-	_	_	-	-	_		-	_	_	-	-		~	-	-	-	-	4-	л.	.I	$\perp$	ш	1
Care Numbers					!		ve # for logic Soils	Proup	۰ŀ	8	28	8	8	8	8	69	89	8	8	88	88	8 8	8 8	3 2	66	88 9	88	88	88 8	8 8	8	89	88	8	<b>2</b> 2	8 6	8 8	3 2	1 2	8	88	8	
Puring Control of Cont	l		Σξ				A P		L		_		Τ.	1 ~	"	3	ì	~		~	*				82	76 84			8 8	2 12	8	76 84	78 84	78 84	8 8 8 8	6 4	78 97	2 8	28	8	78	76 84	
Pullen   P		D	Stanley Consultant	5820 S. Eastern Ave. Suite 200 Las Vegas, Nevada 89119 702.369.9396	SCS Curve Numbers	Significant Paris			COVER 1 YES AND LIMITORDIS CONSISON	7,000 +/- resudebtuak kits	7,000 +/- resudebtuak kils	7,000 +/- resudeotuak kils	7 OCO 1. Trendential New	7.000 +/- resudebluek kits	7,000 +/- resudebtuek kits	7,000 +/- resudebtuak kits	7,000 +/- resudebtuek kils	7,000 +/- resudebluck kits	7 OOO +/- respectational Alles	7.000 +/- resudebtuek kits	7,000 +/- resudebtusk kils	7,000 +/- resudebtuak kils	7,000 +/- resudebtusk kits	7,000 +/- resudebluak kils	7,000 +/- resudebluek kits	7 DOG +/- resudebluek kits	7,000 +/- resudebtuak kits	7,000 +/- resudebtuak kils	7,000 +/- resudebtuek kits	7,000 +/- resudebtunk kits	7,000 +/- resudebtuek kits	7 000 44- rasudebtuak kita	7 OOO 4- LOSOGODINA KIIS	7 000 +/- nest deliveral Alle	7,000 +/- resudebtuak kils	7.000 +/- resudebtuek kila	7,000 +/- resudebluak kits	7,000 +/- resudebluak kits	7,000 +/- resudebluak kits				
0-1-0s   0				9 i.					Ц																																		
6-Hour Design Storm			Distribution					(Sq. M.)	SNS	0.0087	┱	+-	╁	0.0083	0.0128	0.0019	0.0139	$^{+}$	+	ORDO O	0.000	0.0104	0.0101	0.0092	H	0.0109	0.0051	0.000	2000	Н	0.0080	0.0120	0.0094	0.0052	0.0094	0.0013	0.0114	0.0071	0.0023	0.0082	0.0061	6900'0	0.3203
0 Pathoge	ĸ		Design Starm					Area (Acres)	ED CONDITIC	4	- -	╂-	L	Н	+	+	+	+	4.2450	17 BOE4	4.2878	⊢	Н	Ц	-4-	4	3.2460	4.034	╀	Н	5.1358	7.7059	8.0027	3.3288	5.9921	0.8086	7,2895	4.5258	1.4885	5.2481	3.84	4.43	
	<u> </u>		6-Hour E				Orginage	Name	DEVELOR	P2-58	85 -54 89 -64	P2-61	P2-62	P2-63	P2-64	22	8 2	2 1	69-69	2 2	P2-71	P2-72	P2-73	P2-74	P2-75	8	5 S	2 2	P2-80	P2-81	P2-82	P2-83	25 15 25 15 26 15	8 8	P2-87	P2-88	P2-89	P2-90	P2-91	P2- 92	P2-93	F2-82	

	Descriptions of Consultaneous	Significan podrugaci	20 21/20/12/14 OC = 1/4	VI = 20.2 (SV 100) 0.3	10 - 30 84/2/10000 B	CO (001 C) 000 - 24													
Generalized Manning's Equations	Printing Conditions	and the second	V1 = 14 8*(S/100\n0) 6	6:0 (00) 5:1 - 14	V2 = 28 4"(Stronwo 5	500 (car p) 100 - 20													
K = 0.0132*Cn-0.39 T = 1.8*(1.1-km; ~1/20//sw//3)																			
K = 0.0132*Cn-0.39																			
	68 79 86 89	48 89 79 84	39 61 74 80	88 88 96 88 88	88 88 88 88 88	83 89 92 93	76 85 89 91	72 82 87 89	89 92 94 95	81 88 91 93	5	80 87 90 92	76 B4 B9 91	73 82 88 90	81 75 83 87	57 72 81 86	54 70 80 85	51 68 79 84	48 65 77 82
URBAN AREAS	1.01 Open space - poor	1.02 Open space - fair	1,03 Open space/parks - good	1.04 Paved (excludes right-of-way)	1.05 Paved; curbs and storm drains	1.06 Paved: open ditches (includes RAV)	1.07 Gravel (Includes RW)	1.08 Dirt (Includes R/W)	1.11 Commercial & Business	1.12 Industriel	1.13 Apartments/Condos	1.14 Townhouses/<= 6000 sq. ft.	1.15 7000 sq. fl, lots	1,16 8000 sq. fl. lols	1,17 10,000 sq. ft. lots	1.18 14,000 sq. ft. lols	1.19 20,000 sq. ft. lots	1.20 40,000 sq. ft, lots	1.21 80,000 sq. ft. lots

Standard

1849 - Pod 2 G/18476 - P2/Drainage\Drainage Sturky18476P2SHEnrow

# Kinematic Routing

							Side
			Manning	Sub			Slope
Reach	Length (ft)	slope	"n"	reaches	Shape	Width	(xH:V)
R-JN10	1134	0.011	0.016	5	Trapezoid	60	0.5
R-JN11	260	0.006	0.016	5	Trapezoid	60	0.5
R-JN12	270	0.007	0.016	5	Trapezoid	60	0.5
R-JN13	180	0.006	0.016	5	Trapezoid	60	0.5
R-JN14	200	0.01	0.016	5	Trapezoid	60	0.5
R-JN18	1016	0.011	0.016	5	Trapezoid	60	0.5
R-JN19	490	0.005	0.016	5	Trapezoid	60	0.5
R-JN21	140	0.017	0.016	5	Trapezoid	60	0.5
R-JN22	130	0.0114	0.016	5	Trapezoid	60	0.5
R-JN26	490	0.005	0.016	5	Trapezoid	60	0.5
R-JN31	480	0.0079	0.016	5	Trapezoid	60	0.5
R-JN32	640	0.005	0.016	. 5	Trapezoid	60	0.5
R-JN6	1084	0.011	0.016	5	Trapezoid	60	0.5
R-JN7	1590	0.009	0.016	5	Trapezoid	60	0.5
R-JN8	137	0.014	0.016	5	Trapezoid	60	0.5
R-JS17	725	0.008	0.016	5	Trapezoid	60	0.5
R-JS18	1480	0.006	0.016	5	Trapezoid	60	0.5
R-JS19	1480	0.006	0.016	5	Trapezoid	60	0.5
R-JS21	230	0.005	0.016	5	Trapezoid	60	0.5
R-P260	730	0.015	0.016	5	Trapezoid	60	0.5
R-P261	1310	0.01	0.016	5	Trapezoid	60	0.5
R-P265	1238	0.007	0.016	5	Trapezoid	60	0.5
R-P279	811	0.005	0.016	5	Trapezoid	60	0.5
R-P282	915	0.008	0.016	5	Trapezoid	60	0.5
R-P285	850	0.008	0.016	5	Trapezoid	60	0.5
R-P286	900	0.008	0.016	5	Trapezoid	60	0.5
R-P291	590	0.01	0.016	5	Trapezoid	60	0.5

Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 32 of 111

GOLDEN VALLEY RANCH

# **APPENDIX B**

# DRAINAGE INFRASTRUCTURE CALCULATIONS

- COMMON LOT B (J-N23)
- COMMON LOT R (J-N30)
- COMMON LOT H (J-N15)
- COMMON LOT L (J-S20)
- COMMON LOT O (P2-67)



###########FILENAME#############

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 34 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0059
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	44.000
T	Width of Spread (ft)	32.77

#### Gutter Flow

Eo	Gutter Flow Ratio	0.131
đ	Depth of Flow (ft)	0.75
V	Average Velocity (ft/sec)	4.07

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	49.95 1.50	4.25 2.88	0.05 0.23 0.27	2.148 9.580 11.729	41.852 32.271 32.271	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 35 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET B

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
М.	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	43.000
T	Width of Spread (ft)	33.15
	Gutter Flow	
Eo	Gutter Flow Ratio	0.129
đ	Depth of Flow (ft)	0.76
v	Average Velocity (ft/sec)	3.89

#### Inlet Interception

•	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
_	Curb Opening	48.09	5.75	0.05	2.180	40.820	
	Parallel Bar P-1-7/8	1.50	4.38	0.36	14.644	26.176	
	Combination			0.39	16.824	26.176	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 36 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	36.000
Т	Width of Spread (ft)	31.00
	Gutter Flow	
17.0	Chatter Discounting	

Eo	Gutter Flow Ratio	0.138
d.	Depth of Flow (ft)	0.71
V	Average Velocity (ft/sec)	3.72

#### Inlet Interception

· _	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
į	Curb Opening Parallel Bar P-1-7/8 Combination	43.62 1.50	5.75 4.38	0.06 0.38 0.41	2.009 12.916 14.925	33.991 21.075 21.075	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 37 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	27.000
${f T}$	Width of Spread (ft)	27.80

#### Gutter Flow

	·····	
Eo	Gutter Flow Ratio	0.155
đ	Depth of Flow (ft)	0.65
V	Average Velocity (ft/sec)	3.46

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	37.19 1.50	5.75 4.38	0.07 0.42 0.45	1.764 10.501 12.264	25.236 14.736 14.736	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 38 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET E

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	22.000
T	Width of Spread (ft)	25.73

#### Gutter Flow

Eo	Gutter Flow Ratio	0.168
	Depth of Flow (ft)	0.61
V	Average Velocity (ft/sec)	3.29

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	Е	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	33.16 1.50	5.75 4.38	0.07 0.44 0.48	1.609 9.034 10.643	20.391 11.357 11.357	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 39 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET F

Inlets on Grade: Curb Opening, Grate Inlet

# Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	21.000
$\mathbf{T}$	Width of Spread (ft)	25.28

#### Gutter Flow

Eo	Gutter Flow Ratio	0.172
đ	Depth of Flow (ft)	0.60
V	Average Velocity (ft/sec)	3.25

## Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	32.30 1.50	4.25 2.88	0.08 0.31 0.36	1.576 5.974 7.550	19.424 13.450 13.450	
Combination			0.36	7.550	13	3.450

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 40 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS

MODIFIED "C" L-11.5

NODE J-NZ3 INLET 6

Inlets on Sag: Sweeper Combination Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

#### Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L		(ft) 5.75
H	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
${f T}$	Width of Spread (ft)	39.48
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	4.38
	Inlet Type *Sag*	Sweeper Combination
d_ave	Depth of Flow (ft)	0.526
d_curb	Depth at Curb (ft)	0.671
Qī	Intercepted Flow (cfs	11.000

# Worksheet for Triangular Channel

Project Description					
Worksheet	CON	MON LOT B - Drainage	Easement - Triangul		
Flow Element	Triangular Channel				
Method	Method Manning's Formula				
Solve For	Cha	nnel Depth			
Input Data					
Mannings Coefficient	0.02	) )			
Channel Slope	0.005000	ft/ft			
Left Side Slope	28.80	H:V			
Right Side Slope	28.80	H:V			
Discharge	25.00	cfs			
Results					
Depth	0.61	ft			
Flow Area	10.6	ft²			
Wetted Perimeter	34.89	ft			
Top Width	34.87	ft			
Critical Depth	0.54	ft			
Critical Slope	0.009014	ft/ft			
Velocity	2.37	ft/s			
Velocity Head	0.09	ft			
Specific Energy	0.69	ft			
Froude Number	0.76				
Flow Type	Subcritical				

NELOCITY X DEPTH

# **Cross Section for Triangular Channel**

Project Description						
Worksheet	COMMON LOT B - Drainage Easement -					
Flow Element Triangular Channel						
Method Manning's Formula						
Solve For	Channel Depth					
Section Data						
Mannings Coefficient	0.020					
Channel Slope	0.005000 ft/ft					
Depth	0.61 ft					
Left Side Slope	28.80 H:V					
Right Side Slope	28.80 H:V					
Discharge	25.00 cfs					



Gase 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 43 of 111 SLOPE 0.91 LEN I PIPE LEN 21.03 LOPE 0.38% Exisiting Grade Finish Grade HGL Stanley Consultants INC. REVISIONS DWN APVD APVD DATE DESIGNED <u>RJM</u> DRAWN <u>RN</u> SCALE 1:1 RHODES HOMES ARIZONA COMMON LOT B CHECKED _ APPROVED APPROVED GOLDEN VALLEY RANCH NO. NODE J-N23 REV. AREA 2 - PHASE A Α 0 DATE DATE

Q:\18449\dwg\design\SD_PRO\POD2\POD2_C_str.dwg, 3/16/2006 5:55:07 PM, \\lvg-ps1\hp5100-eng, 1:1

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN AT POD2 C STR J-N23.DAT

PAGE NO 3

DATE: 3/15/2006 TIME: 14: 9

G_i

; . } ; .

									F0515P											
					WATER	SURFACE	PROFI	LE -	CHANNEI	DBFI	NITION	LISTI	NG					PAGE	: 1	
CARD CODE	SECT NO	CHN TYPE	NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)	
CD	36	4			3.00															
CD	42	4			3.50															
CD	54	4			4.50															
CD	12	4			1.00															
CD	48	4			4.00															
CD	30	4			2.50															
CD	27	4			2.25															
CD	24	4			2.00															
CD	18	4.			1.50															
CD	21	4			1.75															

F 0 5 1 5 P

			r v S	131					PAGE NO	2
	'AW	TER SURFACE PROFILE	- ELEMENT C	ARD LISTING						
ELEMENT NO	1 IS A SYSTEM OU	TLET *	* *							
	U/S DATA	STATION INVERT	SECT			W S ELEV				
	.,.	100.00 2505.00				2511.50				
						2322130				
ELEMENT NO	2 IS A REACH	•	* *							
	U/S DATA	STATION INVERT		N			RADIUS	ANGLE	ANG PT	MAN H
		159.00 2511.00	42	0.013			0.00	0.00	0.00	
ELEMENT NO	2 70 7 200									
PTEMENT NO	3 IS A JUNCTION U/S DATA			*	*		*	*		
	U/S DATA	STATION INVERT 164.00 2511.05			Q3	Q4 INVERT-3				
		104.00 2311.03	42 U	0 0.013	0.0	0.0 0.00	0.00	0.00	0.00	
ELEMENT NO	4 IS A REACH	*	* *							
	U/S DATA	STATION INVERT	SECT	Ŋ			RADIUS	ANGLE	ANG PT	MAN U
		357.00 2512.44		0.013			0.00	0.00	0.00	MAN H
							5.00	0.00	0.00	v
ELEMENT NO	5 IS A JUNCTION	*	* *	*	*		*			
*	U/S DATA		SECT LAT-1	LAT-2 N	Q3	Q4 INVERT-3	INVERT-4	PHI 3	PHI 4	
		362.00 2512.46	42 18	0 0.013	11.0	0.0 2512.46	0.00	90.00	0.00	
ELEMENT NO	6 IS A REACH	• ,	* *							
BUBNEMI NO	U/S DATA	STATION INVERT		**						
	U/S DATA	411.00 2512.95		N 0.013			RADIUS	ANGLE	ANG PT	
		411.00 2512.55	12	0.013			0.00	0.00	0.00	0
ELEMENT NO	7 IS A JUNCTION	* ,	* * :	*	*		*			
	U/S DATA	STATION INVERT	SECT LAT-1	LAT-2 N	Q3	O4 INVERT-3	INVERT-4	DHI 3	PHT 4	
		416.00 2513.00	42 0	0 0.013	0.0	0.0 0.00			0.00	
ELEMENT NO	8 IS A REACH	* *								
	U/S DATA	STATION INVERT		N			RADIUS	ANGLE	ANG PT	MAN H
		687.00 2515.71	42	0.013			320.00	0.00	0.00	0
ELEMENT NO	9 IS A JUNCTION	. ,			*	_	_			
	U/S DATA		SECT LAT-1	LAT-2 N	03	O4 INVERT-3	**************************************	*		
	3/0 121111		DECT HAT-T	TUST - Z N	Q.J	O∗ INAEKI?	INVERT-4	PHI 3	PHI 4	

P 0 5 1 5 P

				TAW	ER SURFACE	PROFILE	- ELEM	ENT	CARI	LI	STING							
ELEMENT NO	10	IS	Α	REACH	*	*	*											
				U/S DATA	STATION	INVERT	SECT				N				RADIUS	ANGLE	ANG PT	MAN H
					747.00	2516.31	42				0.013				0.00	0.00	0.00	0
ELEMENT NO	11	IS	Α	JUNCTION	*	*	*		*			*		,	k	*		
				U/S DATA	STATION	INVERT	SECT	LAT-	1 14	T-2	N	Q3	04	INVERT-3	INVERT-4	PHI 3	PHI 4	
					752.00	2516.36	42	0	)	0	0.013	0.0	0.0	0.00	0.00	0.00	0.00	
ELEMENT NO	12	IS	Α	REACH	*	*	*											
				U/S DATA	STATION	INVERT	SECT				N				RADIUS	ANGLE	ANG PT	MAN H
					792.00	2516.46	42				0.013				0.00	0.00	0.00	0
ELEMENT NO	13	IS	Α	JUNCTION	*	*	*		*			*			r			
				U/S DATA	STATION	INVERT	SECT	LAT-	1 14	T-2	N	Q3	04	INVERT-3	INVERT-4	PHI 3	PHI 4	
					797.00	2516.51	42	18		0	0.013	12.0	0.0		0.00	90.00	0.00	
WARNING - AD	JAC	ENT	SE	CTIONS ARE	NOT IDENT:	ICAL - SE	E SECT	ION	NUMB	ERS	AND CHA	NNEL DEFIN	RITIONS					

PAGE NO 3

RADIUS ANGLE ANG PT MAN H

0.00

0.00

0.00

U/S DATA STATION INVERT SECT N 0.013 RADIUS ANGLE ANG PT MAN H 907.00 2517.61 ELEMENT NO 15 IS A JUNCTION

U/S DATA STATION INVERT SECT LAT-1 LAT-2 Q3 INVERT-3 INVERT-4 PHI 3 04 PHI 4 912.00 2517.66 36 18 0.013 17.0 2517.66 15.0 2517.66 90.00 45.00 ELEMENT NO 16 IS A REACH

974.00 2518.28 36 0.013 0.00 ELEMENT NO 17 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV

INVERT SECT

ELEMENT NO 14 IS A REACH

U/S DATA

STATION

974.00 2518.28

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW EEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

#### F0515P WATER SURFACE PROFILE LISTING

PAGE

1

GOLDEN VALLEY RANCH GOLDEN VALLEY

MAIN STORM DRAIN FILE J-N23.DAT

STATION INVERT DEPTH VEL ENERGY SUPER CRITICAL HGT/ BASE NO AVBPR RLEV OF FLOW VSC.TSI HEAD GRD.EL. ELEV DIA ID NO. PIER L/ELEM SO SF AVE NORM DEPTH 100.00 2505.00 6.500 2511.500 86.0 8.94 1.241 2512.741 0.00 0.00 0.00 0.00 14.20 0.10169 .007307 1.237 0.00 114.20 2506.44 5.162 2511.606 8.94 1.241 2512.847 0.00 2.887 3.50 0.00 0.00 0.00 HYDRAULIC JUMP 0.00 114.20 2506.44 1.594 2508.038 86.0 20.16 6.314 2514.352 0.00 2 887 3.50 0.00 0.00 4.86 0.10169 .038895 0.19 1.237 0.00 119.06 2506.94 1.628 2508.567 86.0 19.60 5.967 2514.534 0.00 2.887 3.50 0.00 0.00 0.00 7.22 0.10169 .035159 0.25 1.237 0.00 126.28 2507.67 1.690 2509.363 5.425 2514.788 0.00 2.887 3.50 0.00 0.00 0.00 6.07 0.10169 .030947 0.19 1.237 0.00 132-35 2508.29 1.754 2510.044 86.0 17.82 4.931 2514.975 0.00 2.887 3.50 0.00 0.00 0.00 5.12 0.10169 .027252 0 14 1.237 0.00 137.47 2508.81 1.821 2510.632 86.0 16.99 4.484 2515.116 0.00 2.887 0.00 0.00 0.00 4.33 0.10169 .024020 0.10 1.237 0.00 141.80 2509.25 1.892 2511.143 16.20 4.076 2515.219 0.00 2.887 3.50 0.00 0.00 0.00 3.69 0.10169 .021191 0.08 1.237 0.00 145.49 2509.63 1.966 2511.592 3.704 2515.296 86.0 15.45 0.00 2.887 3.50 0.00 0.00 0.00 3.10 0.10169 .018715 0.06 1.237 0.00 148.59 2509.94 2.045 2511.987 86.0 14.73 3.368 2515.355 0.00 2.887 3.50 0.00 0.00 0.00 2.63 0 10169 .016550 0.04 1.237 0.00 151.22 2510.21 2.128 2512.336 3.062 2515.398 0.00 2.887 3.50 0.00 0.00 0.00 2.18 0.10169 .014656 0.03 1.237 0.00

É

. '

Ĺ

<u>-</u> - 1

£:3

#### F0515P WATER SURFACE PROFILE LISTING

PAGE

2

GOLDEN VALLEY RANCH GOLDEN VALLEY MAIN STORM DRAIN FILE J-N23.DAT

STATION INVERT DEPTH w s VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH ID NO. L/ELEM SO SF AVE NORM DEPTH 153.40 2510.43 2.216 2512.647 86.0 13.39 2.784 2515.431 0.00 2.887 0.00 1.80 0.10169 .013001 0.02 1.237 0.00 155.20 2510.61 2.310 2512.923 86.0 12.77 2.530 2515.453 0.00 2.887 3.50 0.00 0.00 0.00 1,44 0,10169 .011557 0.02 1.237 0.00 156.64 2510.76 2.410 2513.170 86.0 12.17 2.301 2515.471 0.00 2.887 3.50 0.00 0.00 0.00 1.11 0.10169 .010299 0.01 1.237 0.00 157.75 2510.87 2.518 2513.390 86.0 11.61 2.092 2515.482 0.00 2.887 3.50 0.00 0.00 0.79 0.10169 .009209 0.01 1.237 0.00 158.54 2510.95 2.635 2513.588 86.0 11.07 1.901 2515.489 2.887 3.50 0.00 0.00 0.00 0.46 0.10169 .008275 1.237 0.00 159.00 2511.00 2.765 2513.765 10.55 1.729 2515.494 0.00 2.887 3.50 0.00 0.00 0.00 JUNCT STR 0.01000 .007535 0.04 0.00 164.00 2511.05 2.887 2513.937 86.0 10.13 1.594 2515.531 0.00 2.887 3.50 0.00 0.00 0.00 1.32 0.00720 .007215 0.01 2.891 0.00 165.32 2511.06 2.891 2513.951 86.0 10.12 1.590 2515.541 0.00 2.887 3.50 0.00 0.00 0.00 191.68 0.00720 .007204 1.38 2.891 0.00 357.00 2512.44 2.891 2515.331 10.12 1.590 2516.921 0.00 2.887 3.50 0.00 0.00 0.00 JUNCT STR 0.00400 .006382 0.03 0.00 362.00 2512.46 3.882 2516.342 75.0 7.80 0.944 2517.286 0.00 2.711 3.50 0.00 0.00 49.00 0.01000 .005557 0.27 2.251 0.00 411.00 2512.95 3,664 2516,614 75.0 7.80 0.944 2517.558 2.711 3.50 0.00 0.00 0.00 JUNCT STR 0.01000 .005557 0.00

#### F0515P WATER SURFACE PROFILE LISTING

PAGE

3

GOLDEN VALLEY RANCH GOLDEN VALLEY MAIN STORM DRAIN FILE J-N23.DAT

STATION INVERT DEPTH W.S. VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ NO AVBPR ELEV OF PLOW ELEV HEAD GRD.EL. ELEV DEPTH ID NO. PIER L/ELEM SO SF AVE NORM DEPTH 416.00 2513.00 3.642 2516.642 75.0 7.80 0.944 2517.586 0.00 2.711 0.00 31.88 0.01000 .005517 0.18 2.251 0.00 447.88 2513.32 3.500 2516.819 75.0 7.80 0.944 2517.763 0.00 2.711 3.50 0.00 0.00 0.00 42.80 0.01000 .005151 0.22 2.251 0.00 490.68 2513.75 3.217 2516.964 75.0 8.10 1.020 2517.984 0.00 2.711 3,50 0.00 0.00 0.00 HYDRAULIC JUMP 0.00 490.68 2513.75 2,270 2516.017 75.0 11.36 2.003 2518.020 0.00 2.711 0.00 0.00 37.04 0.01000 .009768 0.36 2.251 0.00 527.72 2514.12 2.270 2516.387 75.0 11.35 2.002 2518.389 0.00 2.711 3.50 0.00 0.00 0.00 107.66 0.01000 .009220 2.251 0.00 635.38 2515.19 2.368 2517.562 10.82 1.819 2519.381 0.00 2.711 3.50 0.00 0.00 0.00 34.27 0.01000 .008208 0.28 2.251 0.00 669.65 2515.54 2.472 2518.008 75.0 10.32 1.654 2519.662 0.00 2.711 3.50 0.00 0.00 13.62 0.01000 .007329 0.30 2.251 0.00 683.27 2515.67 2,586 2518,259 75.0 9.84 1.504 2519.763 0.00 2.711 3.50 0.00 0.00 0.00 3.73 0.01000 .006570 0.02 2.251 0.00 687.00 2515.71 2.711 2518.421 75.0 9.38 1.366 2519.787 0.00 2,711 3.50 0.00 0.00 0.00 JUNCT STR 0.01000 .004658 0.02 0.00 692.00 2515.76 3.844 2519.604 56.0 5.82 0.526 2520.130 0.00 2.343 3.50 0.00 0.00 49.91 0.01000 .003076 0.15 1.865 0.00 741.91 2516.26 3.500 2519.759 56.0 5.82 0.526 2520.285 2.343 3.50 0.00 0.00 0.00 5.09 0.01000 .002948 1.865 0.00

(5)

୍ରୀ

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH
GOLDEN VALLEY
MAIN STORM DRAIN FILE J-N23.DAT

STATION INVERT DEPTH W.S. Q VEL WET. ENERGY SUPER CRITICAL HGT/ BASE/ NO AVBPR HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L/ELEM SO SF AVE HP NORM DEPTH 747.00 2516.31 3.461 2519.771 56.0 5.83 0.528 2520.299 0.00 2.343 3.50 0.00 0.00 JUNCT STR 0.01000 .002801 0.01 0.00 752.00 2516.36 3.421 2519.781 56.0 5.85 0.532 2520.313 0.00 2.343 0.00 0.00 0.00 40.00 0.00250 .002770 0.11 3.500 0.00 792.00 2516.46 3.434 2519.894 56.0 5.85 0.531 2520.425 0.00 2.343 3.50 0.00 0.00 0.00 JUNCT STR 0.01000 .002347 0.01 0.00 797.00 2516.51 3.804 2520.314 44.0 6.22 0.602 2520.916 0.00 2.161 3.00 0.00 0.00 0.00 110.00 0.01000 .004352 0.48 1.780 0.00 907.00 2517.61 3,182 2520,792 0.602 2521.394 44.0 6.22 0.00 2.161 3.00 0.00 0.00 JUNCT STR 0.01000 .002338 0.01 0.00 912.00 2517.66 3.750 2521.410 12.0 1.70 0.045 2521.455 3.00 0.00 0.00 0.00 62.00 0.01000 .000324 0.02 0.860 0.00 974.00 2518.28 3.150 2521.430 0.045 2521.475 0.00 1.100 3.00 0.00 0.00 0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY MAIN STORM DRAIN FILE J-N23.DAT

100.0	1. 00	•				•		•					
111.0	06.		Сн		W	Е							. R
122.1		I		C H	W	E							. R
133.1 144.2		1	W W	СН	ī		E E						. R
155.3	32 .	_	I		Н		E						- R
166.3 177.4			Ι.	W	. с н		E						. R
188.5			1	ľ	W C	н : н	E E						. R
199.5	7 .			1	" W	С н	E						. R
210.6 221.7				I	W	C H	E						. R
232.7	6 .			I		W C H	E I E						. R
243.8 254.8					I	W C	H E						. R
265.9					I	W C	H E						. R
277.0	1.				I	WC WC	H E						. R
288.0 299.1					I I	х	H E						. R . JX
310.2	ο.				ī	X X							. R
321.2° 332.3													. R
343.3													
354.4	6.												•
365.51 376.51						I	х	H E					. дх
387.69	5.	•				I	c	H W	E				. R
398.71 409.71													•
420.84						I		* ****	_				
431.90						Ī	c	C HW	E E				. JX
442.96 454.03						_							. ĸ
465.09						I		с х	E				. R
476.15 487.22													:
498.28						I		a					
509.34						Ī		W C	H E				. R
520.41 531.47							_						
542.53						1	[	M C	H E				. R
553.59													
564.66 575.72													
586.78													•
597.85 608.91													
619.97													
631.04													
642.10 653.16							I		WC	H E			. R
664.23	•												•
675.29 686.35	•						I		WC	H E			. R
697.42							ĭ	r	WC X	H E H E			. R
708.48 719.54	•								c ^	ни	E		JX R
730.61													
741.67													
752.73 763.80								I	c				R
774.86								I	С	X C WH			Jχ
785.92 796.99									,	- wn	5		R
808.05								I			.E		JX
819.11								I	С	н	W E		R
830.18 841.24													
852.30												•	
863.37 874.43	•											•	
885.49	:												
896.56												•	
907.62 918.68									1	C	HW	в.	JX
929.75									1 0		H	х.	R
940.81												•	
951.87 962.94													
974.00									I	c		нх .	P
	•	•	•		•					٠.			R
	2505.00	2506.65	2508.29	2509.94	2511.59	2513.24	2514.88	2516.53	2518.1	8 2519	.83	2521.	48

N O T E S
1. GLOSSARY
I = INVERT ELEVATION

 $j_{\alpha} = j$ 20. 21.

- C = CRITICAL DEPTH
  W = WATER SURFACE ELEVATION
  H = HEIGHT OF CHANNEL
  E = ENERGY GRADE LINE
  X = CURVES CROSSING OVER
  B = BRIDGE ENTRANCE OR EXIT
  Y = WALL ENTRANCE OR EXIT
  2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY



# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 55 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" 1-17 5

MODIFIED "C" L-17.5
NODE J-N30 INLET A

J-N30 10LE-TA Common Lot R' Inlets on Sag: Sweeper Combination Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
$\mathbf{n}$	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

#### Inlet Interception

	Inlet Type *Sag*	Curb-Opening	_
L		(ft) 8.75	
H	Curb-Opening Height	(in) 6.00	
T WGR	<pre>Inlet Type *Sag* Width of Spread (ft) Grate Width (ft)</pre>		
L	Grate Length (ft)	1.50 7.38	
	Inlet Type *Sag* Depth of Flow (ft) Depth at Curb (ft) Intercepted Flow (cfs	Sweeper Combination 0.521 0.667 ) 15.000	

# Worksheet for Triangular Channel

Worksheet	COMMON LOT R - Drainage Easement - Triangu
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	· · · · · · · · · · · · · · · · · · ·
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft
Left Side Slope	28.80 H:V
Right Side Slope	28.80 H:V
Discharge	25.00 cfs
Results	
Depth	0.61 ft
Flow Area	10.6 ft²
Wetted Perimeter	34.89 ft
Top Width	34.87 ft
Critical Depth	0.54 ft
Critical Slope	0.009014 ft/ft
Velocity	2.37 ft/s
Velocity Head	0.09 ft
Specific Energy	0.69 ft
Froude Number	0.76
Flow Type	Subcritical

# **Cross Section Cross Section for Triangular Channel**

Project Description						
Worksheet	COMMON LOT R - Drainage Easement - Tria	angulai				
Flow Element	Flow Element Triangular Channel					
Method	Method Manning's Formula					
Solve For	Channel Depth					
Section Data						
Mannings Coefficient	0.020					
Channel Slope	0.005000 ft/ft					
Depth	0.61 ft					
Left Side Slope	28.80 H:V					
Right Side Slope	28.80 H:V					
Discharge	25.00 cfs					



Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34

Page 58 of 111

Q:\18449\dwg\design\SD_PRO\POD2\POD2_D1_D2.dwg, 3/16/2006 5:56:10 PM, \\\vg-ps1\hp5100-eng, 1:1

PAGE NO 3

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30

DATE: 3/14/2006 TIME: 9:19

F0515P

WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

PAGE

CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH

CD 24 4 2.00

F 0 5 1 5 P

PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

SYSTEM OUTLET *
U/S DATA STATION ELEMENT NO 1 IS A SYSTEM OUTLET ATION INVERT SECT 100.00 2517.00 24 W S ELEV 2521.24 2 IS A REACH U/S DATA STATION INVERT SECT N 0.013 RADIUS ANGLE ANG PT MAN H 181.00 2519.72 0.00 0.00 ELEMENT NO 3 IS A JUNCTION ATION INVERT SECT LAT-1 LAT-2 186.00 2519.84 24 0 0 U/S DATA STATION INVERT-3 INVERT-4 PHI 3 Q3 PHI 4 0 0.013 0.0 0.0 0.00 0.00 ELEMENT NO 4 IS A REACH INVERT SECT U/S DATA STATION RADIUS ANGLE ANG PT MAN H 308.00 2522.22 0.013 24 0.00 0.00 0.00 ELEMENT NO 5 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

#### F0515P WATER SURFACE PROFILE LISTING

PAGE

1

GOLDEN VALLEY RANCH GOLDEN VALLEY

STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30

STATION INVERT DEPTH wc VEL. SEET ENERGY SUPER CRITICAL HGT/ BASE/ NO AVEPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L/ELEM SO SF AVE HE NORM DEPTH 100.00 2517.00 4.240 2521.240 15.0 4.77 0.354 2521.594 0.00 1.396 2.00 0.00 0.00 76.76 0.03358 .004354 0.33 0.830 0.00 176.76 2519.58 2,000 2521,577 15.0 4.77 0.354 2521.931 0.00 1.396 2.00 0.00 0.00 0.00 0.46 0.03358 .004354 0.830 0.00 177.22 2519.59 2.000 2521.593 0.354 2521.947 0.00 1.396 2.00 0.00 0.00 0.00 HYDRAULIC JUMP 0.00 177.22 2519.59 0.954 2520.547 15.0 10.14 1,597 2522.144 0.00 1.396 2.00 0.00 0.00 3.78 0.03358 . 020151 0.08 0.830 0.00 181.00 2519.72 0.968 2520.688 15.0 9,95 1.538 2522.226 0.00 1.396 2.00 0.00 0.00 0.00 JUNCT STR 0.02400 .019366 0.10 0.00 186.00 2519.84 0.976 2520.816 15.0 9.85 1.506 2522.322 0.00 1.396 2.00 0.00 0.00 0.00 1.34 0.01951 .019085 0.03 0.970 0.00 187.34 2519.87 0.976 2520.842 1.504 2522.346 15.0 9.84 0.00 1.396 2.00 0.00 0.00 0.00 0.01951 .017930 1.13 0.970 0.00 250.58 2521.10 1.013 2522.113 15.0 9.39 1.368 2523.481 0.00 1.396 0.00 0.00 0.00 22.98 0.01951 .015793 0.36 0.970 0.00 273.56 2521.55 1.052 2522.600 15.0 8.95 1.244 2523.844 0.00 1.396 2.00 0.00 0.00 0.00 12.91 0.01951 .013924 0.18 0.970 0.00 286.47 2521.80 1.093 2522.893 15.0 8.53 1.130 2524.023 0.00 1.396 2.00 0.00 0.00 0.00 8.28 0.01951 .012286 0.00 0.10 0.970 294.75 2521.96 1.136 2523.097 15.0 8.13 1.027 2524.124 0.00 1.396 0.00 0.00 0.00 5.48 0.01951 .010856 0.970 0.00

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH
GOLDEN VALLEY
STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL,	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZĻ	NO PIER	AVBPR
L/ELEM	50	*****	*******			SF AVE	HF		N	ORM DEPTH			ZR		
	******	*****	******	*******	*****	*****	******	******	******	******	*****	******	****	****	****
300.23	2522.07	1.182	2523.250	15.0	7.76	0.934	2524.184	0.00	1.396		2.00	0.00	0.00	0	0.00
3.73	0.01951					.009604	0.04			0.970			0.00		
303.96	2522.14	1.230	2523.371	15.0	7.40	0.849	2524.220	0.00	1.396		2.00	0.00	0.00	0	0.00
2.38	0.01951					.008507	0.02			0.970			0.00		
306.34	2522.19	1.281	2523.469	15.0	7.05	0.772	2524.241	0.00	1.396		2.00	0.00	0.00	0	0.00
1.28	0.01951					.007550	0.01			0.970			0.00		
307.62	2522.21	1.336	2523.548	15.0	6.72	0.702	2524.250	0.00	1.396		2.00	0.00	0.00	0	0.00
0.38	0.01951					.006712	0.00			0.970			0.00		
308.00	2522.22	1.396	2523.616	15.0	6.40	0.637	2524.253	0.00	1.396		2.00	0.00	0.00	0	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY STORM DRAIN IN POD 2 ON DZ STREET FOR 19 CFS J-N30



# NOTES 1. GLOSSARY

# 15 h

I = INVERT ELEVATION

C = CRITICAL DEPTH
W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT

^{2.} STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY



SHORESHORESHOP THE NAME SHORESHOP SHOP SHORESHOP SHOP SHORESHOP SHORESHOP SHORESHOP SHORESHOP SHORESHOP SHORESHOP SH

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 66 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0104
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	44.000
${f T}$	Width of Spread (ft)	29.44

#### Gutter Flow

Eo	Gutter Flow Ratio	0.146
d	Depth of Flow (ft)	0.68
V	Average Velocity (ft/sec)	5.03

#### Inlet Interception

}	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
]_	Curb Opening	57.06	4.25	0.04	1.883	42.117	
	Parallel Bar P-1-7/8	1.50	2.88	0.21	9.054	33.062	
	Combination			0.25	10.938	33.062	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 67 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET B

Inlets on Grade: Curb Opening, Grate Inlet

# Roadway and Discharge Data

	oss Slope	Composite
S Lo	ngitudinal Slope (ft/ft)	0.0104
Sx Par	vement Cross Slope (ft/ft)	0.0200
	ter Cross Slope (ft/ft)	0.0833
n Mar	ning's Coefficient	0.016
W Gut	ter Width (ft)	1.50
a Gut	ter Depression (inch)	2.00
Q Dis	scharge (cfs)	45.000
T Wid	ith of Spread (ft)	29.69

#### Gutter Flow

Eo	Gutter Flow Ratio	0.145
d	Depth of Flow (ft)	0.69
V	Average Velocity (ft/sec)	5.06

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	57.77 1.50	4.25 2.88	0.04 0.21 0.25	1.903 9.184 11.086	43.097 33.914 33.914	_

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 68 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2,00
Q	Discharge (cfs)	48.000
Т	Width of Spread (ft)	30.60

### Gutter Flow

EO	Gutter Flow Ratio	0.140
đ	Depth of Flow (ft)	0.71
V	Average Velocity (ft/sec)	5.09

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8	59.46 1.50	4.25	0.04	1.972	46.028 36.444	
Combination	_,,,	2.00	0.24	11.556	36.444	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 69 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's. Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	47.000
T	Width of Spread (ft)	30.35

#### Gutter Flow

Eo	Gutter Flow Ratio	0.142
d	Depth of Flow (ft)	0.70
V	Average Velocity (ft/sec)	5.06

#### Inlet Interception

•	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
_	Curb Opening	58 <b>.7</b> 7	5.75	0.04	1.954	45.046	—
	Parallel Bar P-1-7/8	1.50	4.38	0.30	13.416	31.631	
	Combination			0.33	15.369	31.631	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 70 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET E

Inlets on Grade: Curb Opening, Grate Inlet

# Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx		0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
, n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	34.000
T	Width of Spread (ft)	26.85

### Gutter Flow

Eo	Cutton Dia Datia	
EO	Gutter Flow Ratio	0.161
d	Depth of Flow (ft)	0.63
V	Average Velocity (ft/sec)	4.67

#### Inlet Interception

, ]	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
,	Curb Opening Parallel Bar P-1-7/8 Combination	49.09 1.50	4.25 2.88	0.05 0.24 0.28	1.689 7.698 9.386	32.311 24.614 24.614	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 71 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET F

Inlets on Grade: Curb Opening, Grate Inlet

# Roadway and Discharge Data

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0050
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	33.000
${f T}$	Width of Spread (ft)	30.33

#### Gutter Flow

Eo	Gutter Flow Ratio	0.142
đ	Depth of Flow (ft)	0.70
V	Average Velocity (ft/sec)	3.56

### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	41.02 1.50	5.75 4.38	0.06 0.40 0.43	1.957 12.308 14.266	31.043 18.734 18.734	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 72 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" L-17.5 NODE J-NIS INLET G

Inlets on Sag: Sweeper Combination Inlet

## Roadway and Discharge Data

	Cross Slope		Composite/Dep
$\mathbf{s}$	Pavement Cross Slope	(ft/ft)	0.0100
Sw	Gutter Cross Slope	(ft/ft)	0.0833
n	Manning's Coefficient		0.016
W	Gutter Width (ft)		1.50
a	Gutter Depression (in	ch)	2.00

#### Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L		(ft) 8.75
H	Curb-Opening Height	(in) 6.00
T WGR L	Inlet Type *Sag* Width of Spread (ft) Grate Width (ft) Grate Length (ft)	Parallel Bar P-1-7/8 39.00 1.50 7.38
	Inlet Type *Sag* Depth of Flow (ft) Depth at Curb (ft) Intercepted Flow (cfs	Sweeper Combination 0.521 0.667 )

#### Worksheet

# Worksheet for Triangular Channel

<del> </del>					
Project Description					
Worksheet	COM	MON LOT H	- I	 Dı	Drainage
Flow Element		ular Chann			
Method		ng's Formul			
Solve For		nel Depth			
Input Data		<del></del>			
Mannings Coefficient	0.020				
Channel Slope	0.010000	ft/ft			
Left Side Slope	28.80	H:V			
Right Side Slope	28.80	H : V			
Discharge	48.00	cfs			
Results	<del></del>		j		
Depth	0.68	ft			
Flow Area	13.3	ft²			
Wetted Perimeter	39.12	ft			
Top Width	39.10	ft			
Critical Depth	0.70	ft			
Critical Slope	0.008264	ft/ft			
Velocity	3.62	ft/s			
Velocity Head	0.20	ft			
Specific Energy	0.88	ft			
Froude Number	1.09				
Flow Type	Supercritical				

VELOCITY × DEPTH 3.6

# **Cross Section Cross Section for Triangular Channel**

Project Description	
Worksheet	COMMON LOT H - Drainage Easement - Triangular
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Section Data	· · · · · · · · · · · · · · · · · · ·
<del></del>	0.020
Mannings Coefficient	0.010000 ft/ft
Channel Slope	***************************************
Depth	0.68 ft
Left Side Slope	28.80 H:V
Right Side Slope	28.80 H:V
Discharge	48.00 cfs





F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 77 of 111

DATE: 3/15/2006 TIME: 14:35

13

					WATER	SURFACE	PROFI		0515P CHANNE	L DEFI	NITION	LISTI	NG					PAGE	1
CARD CODE	SECT NO	CHN TYPE	NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)
CD	48	4			4-00														
CD	60	4			5.00														
CD	54	4			4.50														
CD	36	4			3.00														
CD	66	3	0	0.00	4.00	6.00	0.00	0.00	0.00										
CD	30	4			2.50														
CD	18	4			1.50														
CD	42	4			3.50														

F 0 5 1 5 P

PAGE NO 2

	WAT	TER SURFACE PROFILE	- ELEMENT CARD LI	STING		
ELEMENT NO	1 IS A SYSTEM OUT U/S DATA	TLET * * STATION INVERT 100.00 2519.70	SECT 48		W S ELEV 2526.70	
ELEMENT NO	2 IS A REACH U/S DATA	* STATION INVERT	* SECT 48	N 0.013	RADIUS 0.00	
ELEMENT NO	3 IS A JUNCTION U/S DATA	* * * * * * * * * * * * * * * * * * *	SECT LAT-1 LAT-2	N Q3 0.013 0.0	V Q4 INVERT-3 INVERT-4 0.0 0.00 0.00	
ELEMENT NO	4 IS A REACH U/S DATA		* SECT 48	N 0.013	RADIUS 0.00	
ELEMENT NO	5 IS A JUNCTION U/S DATA	* * STATION INVERT 313.00 2521.93	* * SECT LAT-1 LAT-2 48 18 0		* Q4 INVERT-3 INVERT-4 0.0 2521.93 0.00	
ELEMENT NO	6 IS A REACH U/S DATA	* * * STATION INVERT 353.00 2522.33	* SECT 48	N 0.013	RADIUS 0.00	
ELEMENT NO	7 IS A JUNCTION U/S DATA	* * * * * * * * * * * * * * * * * * *	SECT LAT-1 LAT-2		Q4 INVERT-3 INVERT-4 14.0 2522.38 2522.38	
ELEMENT NO	8 IS A REACH U/S DATA		SECT	N 0.013	RADIUS	
ELEMENT NO	9 IS A JUNCTION U/S DATA	* * STATION INVERT 508.00 2523.88			X Q4 INVERT-3 INVERT-4 15.0 2523.88 2523.88	

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 10 IS A REACH

STATION INVERT SECT

0.013 583.00 2524.63 48

RADIUS ANGLE ANG PT MAN H

ELEMENT NO 11 IS A SYSTEM HEADWORKS

U/S DATA STATION

0.00 0.00

INVERT SECT

W S ELEV

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P WATER SURFACE PROFILE LISTING

PAGE

1

GOLDEN VALLEY RANCH GOLDEN VALLEY

STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

STATION INVERT DEPTH VEL ENERGY SHEER CRITTCAL. HCT/ BASE/ ELEV OF RLOW ELEV HEAD GRD.EL. EFEA DEPTH DIA ID NO. PIER L/ELEM SO NORM DEPTH 100.00 2519.70 7,000 2526,700 87.0 6.92 0.744 2527.444 4.00 0.00 0.00 0.00 70.00 0.01000 .003668 2.246 0.00 170.00 2520.40 6.680 2527.080 6.92 0.744 2527.824 0.00 2.828 4.00 0.00 0.00 JUNCT STR 0.01000 .003668 0.02 175.00 2520.45 6.648 2527.098 87.0 6.92 0.744 2527.842 0.00 2.828 4.00 0.00 0.00 0.00 133.00 0.01075 .003668 0.49 2.196 0.00 308.00 2521.88 5.706 2527.586 87.0 6.92 0.744 2528.330 4.00 0.00 0.00 0.00 JUNCT STR 0.01000 .003090 0.00 313.00 2521.93 6.140 2528.070 72.0 0.510 2528.580 0.00 2.566 4.00 0.00 0.00 0.00 40.00 0.01000 .002512 0.10 2.002 0.00 353.00 2522.33 5.841 2528.171 72.0 5.73 0.510 2528.681 0.00 2.566 4.00 0.00 0.00 0.00 JUNCT STR 0.01000 .001838 0.03 0.00 358.00 2522.38 6,267 2528.647 49.0 3.90 0.236 2528.883 0.00 2.099 4.00 0.00 0.00 0.00 145-00 0.01000 .001164 0.17 1.610 0.00 503.00 2523.83 4.986 2528.816 49.0 3.90 0.236 2529.052 0.00 2.099 4.00 0.00 0.00 0.00 JUNCT STR 0.01000 .000700 0.00 0.00 508.00 2523.88 5.316 2529.196 22.0 1.75 0.048 2529.244 0.00 1.383 4.00 0.00 0.00 75.00 0.01000 .000235 0.02 1.057 0.00 583.00 2524.63 4.584 2529.214 22.0 1.75 0.048 2529.262 4.00 0.00 0.00 0.00

77.1

ι.,

r La

٠..

GOLDEN VALLEY RANCH GOLDEN VALLEY STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

	:	-		-		-			•			
100.00	- I			C	H			W	E			R
109.86	•											
119.71	•											
129.57												
139.43	•											
149.29												
159.14											•	
169.00											•	
178.86		I			С	H			W E		•	JX
188.71		I			-c	н			w I		•	R
198.57					-					-	•	R
208.43	_										-	
218.29	_										•	
228.14	-										-	
238.00	•										•	
247.86	•										•	
257.71	•											
267.57	•											
277.43	•										•	
	•										•	
287.29 297.14	•											
	•										-	
307.00	•		_								-	
316.86	•		I			C	H		W	E		ĴΧ
326.71	•		ı			С	1	H		W E		R
336.57	•											
346.43	•	•		_								
356.29	•			I		C		H		W E		JX
366.14	•			I		c		н		W E		R
376.00												
385.86	•											
395.71	-											
405.57												
415.43	•											
425.29	•											
435.14	•											
445.00											_	
454.86												
464.71											-	
474.57											•	
484.43	-										•	
494.29											-	
504.14					1		(	,	н	W		JX
514.00	-				I		c `	-	H	"	х.	R
523.86	-				-		~		n		Α.	ĸ
533.71											•	
543.57	_										•	
553.43	-										•	
563.29	-										•	
573.14	-											
583.00	•							_				_
202.00	•					1		С		н	х.	R
	•	•	•	•	•	•	•	•	-	٠	•	
	2519.70	2520.66	2521.61	2522.57	2523.53	2524.48	2525.44	2526.39	2527.35	2528.31	2529.26	ŝ

NOTES 1. GLOSSARY

^{1.} GLOSSARY

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL

E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT

Y = WALL ENTRANCE OR EXIT

2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY



## Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 83 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S I	Congitudinal Slope (ft/ft)	0.0247
Sx I	Pavement Cross Slope (ft/ft)	0.0200
Sw (	Sutter Cross Slope (ft/ft)	0.0833
n N	Manning's Coefficient	0.016
W C	Sutter Width (ft)	1.50
a (	Sutter Depression (inch)	2.00
Q I	Discharge (cfs)	54.000
T V	Width of Spread (ft)	27.01
	Gutter Flow	

EO	Gutter Flow Ratio	0.160
đ	Depth of Flow (ft)	0.64
V	Average Velocity (ft/sec)	7.33

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	78.13 1.50	7.25 5.88	0.03 0.31 0.33	1.692 16.398 18.090	52.308 35.910 35.910	_

## Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 84 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET B

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0247
sx	= (±c/±c/	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	54.000
T	Width of Spread (ft)	27.01

#### Gutter Flow

77 -	C. 1	
FO	Gutter Flow Ratio	0.160
ď	Depth of Flow (ft)	0.64
V	Average Velocity (ft/sec)	7.33

#### Inlet Interception

INLET	LT or WGR	L	E	Qi	Qb
INTERCEPTION	(ft)	(ft)		(cfs)	(cfs)
Curb Opening Parallel Bar P-1-7/8 Combination	78.13 1.50	7.25 5.88	0.03 0.31 0.33	1.692 16.398 18.090	52.308 35.910 35.910

## Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 85 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

Gutter	Flow	23.56
con or opieda (ic)		
lth of Spread (ft)		24.000
charge (cfs)		34.000
ter Depression (i	nch)	2.00
ter Width (ft)		1.50
ming's Coefficient		0.016
ter Cross Slope	(ft/ft)	0.0833
rement Cross Slope		0.0200
_		0.0197
ss Slope		Composite
	ngitudinal Slope	gitudinal Slope (ft/ft)

Eo	Gutter Flow Ratio	0.185
đ	Depth of Flow (ft)	0.57
V	Average Velocity (ft/sec)	6.05

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening	57.08	7.25	0.04	1.455	32.545	
Parallel Bar P-1-7/8	1.50	5.88	0.38	12.427	20.118	
Combination			0.41	13.882	20.118	

# Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 86 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0209
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	34.000
T	Width of Spread (ft)	23.30

#### Gutter Flow

Eo	Gutter Flow Ratio	0.187
đ	Depth of Flow (ft)	0.56
V	Average Velocity (ft/sec)	6.18

#### Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	57.84 1.50	7.25 5.88	0.04 0.38 0.40	1.436 12.297 13.733	32.564 20.267 20.267	

#### Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 87 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" L-14.5
BOOG J-SZO INLET E

Inlets on Sag: Sweeper Combination Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00

#### Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L		(ft) 5.75
Н	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
T	Width of Spread (ft)	39.39
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	5.88
•	Inlet Type *Sag*	Sweeper Combination
d ave	Depth of Flow (ft)	0.525
a_carb	Depth at Curb (ft) Intercepted Flow (cfs)	0.671
QI	Intercepted Flow (cfs)	12.000

#### **Worksheet for Triangular Channel**

Project Description	<del>" ==</del>	
Worksheet	CON	MMON LOT L - Drainage Easement - Triange
Flow Element	Tria	angular Channel
Method		nning's Formula
Solve For	Cha	annel Depth
Input Data		
Mannings Coefficient	0.020	20
Channel Slope	0.005000	00 ft/ft
Left Side Slope	28.80	30 H:V
Right Side Slope	28.80	0 H:V
Discharge	60.00	0 cfs
Results		
Depth	0.84	ft
Flow Area	20.4	· ft²
Wetted Perimeter	48.46	i ft
Worker Chilleten		
Top Width	48.43	π
	48.43 0.77	**
Top Width		ft
Top Width Critical Depth	0.77	ft ft/ft
Top Width Critical Depth Critical Slope	0.77 0.008018	ft ft/ft ft/fs
Top Width Critical Depth Critical Slope Velocity	0.77 0.008018 2.95	ft ft/ft ft/s ft/s
Top Width Critical Depth Critical Slope Velocity Velocity Head	0.77 0.008018 2.95 0.13	ft ft/ft ft/s ft ft

VELOCITY X DEPTH 3.0 X 0.8 = 2.4 < 6.0

# **Cross Section for Triangular Channel**

Project Description	
Worksheet	COMMON LOT L - Drainage Easement - Triangul
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.020
Section Data	
Channel Slope	0.005000 ft/ft
•	0.005000 1t/ft 0.84 ft
Depth	
Channel Slope Depth Left Side Slope Right Side Slope	0.84 ft



Page 1 of 1



F 0 5 1 5 P

PAGE NO 3

HEADING LINE NO 1 IS -

WATER SURFACE PROFILE - TITLE CARD LISTING

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH FLOW 36CFS JS20 AT POD2 J - G1 STR

DATE: 3/15/2006 TIME: 14:49

F0515P
£0212F

				WATER	SURFACE	PROFII	LE -	CHANNEL	DEFI	NITION	LISTI	NG					PAGE	
CARD CODE	SECT NO	CHN TYPE	 AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y (9)	

CODE	NO	TYPE	PIERS	WIDTH	DIAMETER	WIDTH	
CD	48	4			4.00		
CD	30	4			2.50		
CD	18	4			1.50		
CD	21	4			1.75		

F 0 5 1 5 P

PAGE NO 2

WATER	SURFACE	PROFILE	~	ELEMENT	CARD	LISTING

		,,,,,	on commen	1.001111	- Habitania	ari canco ui	0.21110							
ELEMENT NO	1 IS A S	SYSTEM OUT	LET *	*	*									
		U/S DATA	STATION	INVERT	SECT					W S ELEV				
	•	.,		2524.00	48					2530.50				
			100.00	ESET. CO	10					2330.30				
ELEMENT NO	2 IS A F	REACH	*	*	*									
	υ	J/S DATA	STATION	INVERT	SECT		N				RADIUS	ANGLE	ANG PT	MAN H
		•	345.00	2526.79	48		0.013				0.00	0.00	0.00	
											0.00	0.40	0.00	٠
ELEMENT NO	3 IS A J	JUNCTION	*		*	*		*			*	*		
	τ	J/S DATA	STATION	INVERT	SECT L	AT-1 LAT-2	N	Q3	04	INVERT-3	INVERT-4	PHI 3	PHI 4	
			345.00	2526.85	48	18 0	0.013	12.0		2526.85			0.00	
						•	*****			2520105	0.00	20.00	0.00	
ELEMENT NO	4 IS A R	REACH	*	*	*									
	υ	J/S DATA	STATION	INVERT	SECT		N				RADIUS	ANGLE	ANG PT	MAN H
			405.00	2527.57	48		0.013				0.00	0.00	0.00	0
							• • • • •				*****	0.00	0.00	•
ELEMENT NO	5 IS A J	JUNCTION	*	*		*		*		,	•	*		
	u	J/S DATA	STATION	INVERT	SECT L	AT-1 LAT-2	N	Q3	04	INVERT-3	INVERT-4	PHI 3	PHI 4	
	_		405.00	2527.63	48	21 21	0.013	14.0			2527.63		90.00	
WARNING - ADJ	ACENT SEC	TIONS ARE									2327.03	20.00	30.00	
·						011 1101122112	1212		1 1111110110					
ELEMENT NO	6 IS A R	REACH	*	*	*									
	υ	I/S DATA	STATION	INVERT	SECT		N				RADIUS	ANGLE	ANG PT	MAN H
		,		2528.77	30		0.013				0.00	0.00	0.00	0
			515105	2320111			0.015				0.00	0.00	0.00	v
ELEMENT NO	7 IS A S	YSTEM HEAL	OWORKS		*			*						
*	υ	I/S DATA	STATION	INVERT	SECT					W S ELEV				
				2528.77	30					0.00				
NO EDIT ERROR	S ENCOUNT	ERED-COMPL								0.00				
** WARNING NO	). 2 ** -	WATER SURF	FACE ELEVAT	TION GIVE	N IS DE	SS THAN OR	FOURTS	INVERT	ELEVATION.	IN HOWKES	9.77 P W S	TMS	* DC	

LICENSEE: STANLEY CONSULTANTS, INC.

#### F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH
GOLDEN VALLEY
LATERAL WITH FLOW 35CFS J-C21

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH	L	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so		*******			SF AVE	HF			NORM DEPTH		*****	ZR		
								******	*******		******	******	****	*****	****
100.00	2524.00	6.500	2530.500	76.0	6.05	0.568	2531.068	0.00	2.639		4.00	0.00	0.00	0	0.00
245.00	0.01139					.002799	0.69			1.990			0.00		
345.00	2526.79	4.396	2531.186	76.0	6.05	0.568	2531.754	0.00	2.639		4.00	0.00	0.00	0	0.00
JUNCT STR	0.00000					.002392	0.00						0.00		
345.00	2526.85	4.666	2531.516	64.0	5.09	0.403	2531.919	0.00	2.414		4.00	0.00	0.00	0	0.00
60.00	0.01200					.001985	0.12			1.775			0.00		
405.00	2527.57	4.065	2531.635	64.0	5.09	0.403	2532.038	0.00	2.414		4.00	0.00	0.00	0	0.00
JUNCT STR	0.00000					.001306	0.00						0.00		
405.00	2527.63	4.556	2532.186	36.0	7.33	0.835	2533.021	0.00	2.035		2.50	0.00	0.00	0	0.00
95.00	0.01200					.007703	0.73			1.692			0.00		
500.00	2528.77	4.148	2532.918	36.0	7.33	0.835	2533.753	0.00	2.035		2.50	0.00	0.00	0	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH FLOW 35CFS J-C21

	:	•	•			-		-	•		-	
100.00	·I			С	н			W E			•	R
108.16	•										-	
116.33	•										-	
124.49	•											
132.65	•										-	
140.82	•										-	
148.98	-											
157.14	-											
165.31	-										-	
173.47	•											
181.63	•											
189.80	•											
197.96	•											
206.12	•											
214.29												
222.45	-											
230.61	-										-	
238.78											_	
246.94											-	
255.10	•											
263.27	-											
271.43	-											
279.59												
287.76												
295.92											_	
304.08											_	
312.24												
320.41												
328.57												
336.73	-											
344.90											•	
353.06				I		c	!	H W	E			JХ
361.22				I		С		H	WE		•	R
369.39						_					-	•
377.55											•	
385.71											•	
393.88											•	
402.04											•	
410.20	-				I		c		HM E		•	JХ
418.37							C H		W	E		R
426.53							~		•	-	-	Α.
434.69											•	
442.86											•	
451.02	-										•	
459.18	_										•	
467.35											•	
475.51											•	
483.67	-											
491.84	-										•	
500.00	i					I		с н		1.3	E.	
200.00		_				4		СН		W		R
	•	•	•	•	•	•	•	•		•	•	
	2524.00	2524.98	2525.95	2526.93	2527.90	2528.88	2529.85	2530.83	2531.80	2532.78	2533.7	5

NOTES 1. GLOSSARY

^{1.} GLOSSARY

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL

E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT

Y = WALL ENTRANCE OR EXIT

2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY



#### Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 97 of 111

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS
MODIFIED "C" L-17.5
SHED PZ-67 INLET A

Common Lot "O"

Inlets on Sag: Sweeper Combination Inlet

#### Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

#### Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 8.75
H	Curb-Opening Height	(in) 6.00
T WGR	Inlet Type *Sag* Width of Spread (ft) Grate Width (ft)	Parallel Bar P-1-7/8 39.00
L	Grate Length (ft)	1.50 7.38
	Inlet Type *Sag*	Sweeper Combination
	Depth of Flow (ft)	0.521
d_curb	Depth at Curb (ft)	0.667
Qī	Intercepted Flow (cfs	15.000

# **Worksheet for Triangular Channel**

-					
Project Description					
Worksheet	COI	MON LOT	Γ 0 - Dr	rain	age
Flow Element		ngular Chai			•
Method	Man	ning's Forn	nula		
Solve For	Cha	nnel Depth	)		_
Input Data			_		
Mannings Coefficient	0.02	0			
Channel Slope	0.005000	O ft/ft			
Left Side Slope	28.8	0 H:V			
Right Side Slope	28.86	V:H 0			
Discharge	36.00	O cfs			
Results	· · · · · · · · · · · · · · · · · · ·		•		
Depth	0.69	ft			
Flow Area	13.9	ft²			
Wetted Perimeter	40.01	ft			
Top Width	39.99	ft			
Critical Depth	0.63	ft			
Critical Slope	0.008577	ft/ft			
Velocity	2.59	ft/s			
Velocity Head	0.10	ft			
Specific Energy	0.80	ft			
Froude Number	0.78				
Flow Type	Subcritical				

VELOCITY × DEPTH
2.6 × 0.7 = 1.8 4 6.0

# **Cross Section Cross Section for Triangular Channel**

Worksheet	COMMON LOT 0 - Drainage Easement - Triangul
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
	<del></del>
Mannings Coefficient	0.020
•	0.020 0.005000 ft/ft
Channel Slope	*
Channel Slope Depth	0.005000 ft/ft
Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope	0.005000 ft/ft 0.69 ft





F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

DATE: 3/10/2006 TIME: 10: 5

F0515P
WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE CODE NO TYPE PIERS WIDTH DIAMETER WIDTH ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) ZL

F 0 5 1 5 P

PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION

INVERT SECT

W S ELEV 2521.00

100.00 2516.50

2 IS A REACH STATION U/S DATA

ATION INVERT SECT 350.00 2530.65 18

N 0.013

RADIUS ANGLE ANG PT MAN H

ELEMENT NO 3 IS A SYSTEM HEADWORKS

ELEMENT NO

U/S DATA STATION INVERT SECT W S ELEV

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

LICENSEE: STANLEY CONSULTANTS, INC.

# F0515P WATER SURFACE PROFILE LISTING

PAGE

COLDEN VALLEY RANCH
COLDEN VALLEY
LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPTH			ZR		
								*****	*********	*****	*****	*****	*****	****	****
100.00	2516.50	4.500	2521.000	48.0	15.28	3.624	2524.624	0.00	1.977		2.00	0.00	0.00	0	0.00
114.81	0.05660					.045020	5.17			1.470			0.00		
214.81	2523.00	3.175	2526.173	48.0	15.28	3.624	2529.797	0.00	1.977		2.00	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
214.81	2523.00	1.525	2524.523	48.0	18.68	5.417	2529.940	0.00	1.977		2.00	0.00	0.00	0	0.00
23.89	0.05660					.051681	1.23			1.470			0.00		
238.70	2524.35	1.536	2525.886	48.0	18.53	5.329	2531.215	0.00	1.977		2.00	0.00	0.00	0	0.00
51.86	0.05660					.048759	2.53			1.470			0.00		
290.56	2527.29	1.614	2528.900	48.0	17.67	4.846	2533.746	0.00	1.977		2.00	0.00	0.00	0	0.00
28.67	0.05660					.044302	1.27			1.470			0.00		
319.23	2528.91	1.702	2530.610	48.0	16.84	4.405	2535.015	0.00	1.977		2.00	0.00	0.00	0	0.00
18.72	0.05660					.040872	0.77			1.470			0.00		
337.95	2529.97	1.808	2531.776	48.0	16.06	4.004	2535.780	0.00	1.977		2.00	0.00	0.00	0	0.00
12.05	0.05660					.040349	0.49			1.470			0.00		
350.00	2530.65	1.977	2532.627	48.0	15.31	3.640	2536.267	0.00	1.977		2.00	0.00	0.00	0	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

			_										
100.00	. I	x	W		E			•	•	•	•	•	. R
105.10	-				_								
110.20													•
115.31													•
120.41	-												•
125.51	•												•
130.61	•												•
135.71	-												•
	-												•
140.82	•												-
145.92	•												
151.02	-												
156.12	-												
161.22													
166.33													
171.43													
176.53	-												
181.63													
186.73													-
191.84													
196.94													
202.04												•	
207.14													
212.24												•	•
217.35				T	СН	W			E			•	, 10
222.45	_			I	W CH	••			E			-	. R . R
227.55				-	n 041							-	. к
232.65		-										-	
237.76	•												
242.86	•				I	w x			•	1			_
247.96	-					пΛ			E	1			R
253.06	•											•	
258.16	•											-	
263.27	•												
268.37	•												
	•											٠	
273.47	•												
278.57	•												
283.67	•												
288.78	. •												
293.88	•						I	wx			E		R
298.98													
304.08	-												
309.18													
314.29	-												
319.39								I	WX		E		R
324.49													
329.59													
334.69													
339.80									İ	WX		Е.	R
344.90									-				••
350.00									I	x		Ε.	R
		-										٠.	
								=	•	•	-	•	
	2516.50	2518.48	2520.45	2522.43	2524.41	2526	. 38	2528.36	2530.34	2532.31	2534.29	2536	. 27
										222.31	2004.69	2000	/

# NOTES

- 1. GLOSSARY
  I = INVERT ELEVATION
  C = CRITICAL DEPTH
  W = WATER SURFACE ELEVATION
  H = HEIGHT OF CHANNEL
  E = ENERGY GRADE LINE
  X = CURVES CROSSING OVER
  B = BRIDGE ENTRANCE OR EXIT
  Y = WALL ENTRANCE OR EXIT
  2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

Case 09-14814-gwz Doc 1232-2 Entered 08/13/10 14:10:34 Page 106 of 111

GOLDEN VALLEY RANCH

# **APPENDIX C**

STREET CAPACITY (LOCAL STREETS)

# Cross Section Cross Section for Irregular Channel

Secret and property

Project Description		
Worksheet	Local Str 50'PU	۲
Flow Element	Irregular Chani	=
Method	Manning's Forr	Ē
Solve For	Discharge	
		ı
Section Data		
Mannings Coefficier	0.014	
Channel Slope	0.005000 ft/ft	ft/ft
Water Surface Elev.	100.67	#
Elevation Range	3.00 to 100.67	
Discharge	68.88 cfs	cts



Project Engineer: Information Services FlowMaster v7.0 [7.0005] Page 1 of 1

Stanley Consultants, Inc © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666

q:\18449\drainage calcs\street flow.fm2 12/30/05 11:35:56 AM

## **Rating Table for Irregular Channel**

Project Description	
Worksheet	Local Str 50'Pl
Flow Element	Irregular Chanı
Method	Manning's Forr
Solve For	Discharge

Input Data

Water Surface Elev. 00.67 ft

Options

Current Roughness Methoved Lotter's Method Open Channel Weighting wed Lotter's Method Closed Channel Weighting Horton's Method

Attribute	Minimum	Maximum	Increment	
Channel Slope (ft/ft)	0.005000	0.020000	0.000100	

Channel Slope (ft/ft)	Discharge (cfs)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
0.005000	68.88	3.73	18.5	50.12	50.00
0.005100	69.57	3.76	18.5	50.12	50.00
0.005200	70.25	3.80	18.5	50.12	50.00
0.005300	70.92	3.84	18.5	50.12	50.00
0.005400	71.59	3.87	18.5	50.12	50.00
0.005500	72.25	3.91	18.5	50.12	50.00
0.005600	72.90	3.94	18.5	50.12	50.00
0.005700	73.55	3.98	18.5	50.12	50.00
0.005800	74.19	4.01	18.5	50.12	50.00
0.005900	74.83	4.05	18.5	50.12	50.00
0.006000	75.46	4.08	18.5	50.12	50.00
0.006100	76.09	4.12	18.5	50.12	50.00
0.006200	76.71	4.15	18.5	50.12	50.00
0.006300	77.32	4.18	18.5	50.12	50.00
0.006400	77.93	4.22	18.5	50.12	50.00
0.006500	78.54	4.25	18.5	50.12	50.00
0.006600	79.14	4.28	18.5	50.12	50.00
0.006700	79.74	4.31	18.5	50.12	50.00
0.006800	80.33	4.35	18.5	50.12	50.00
0.006900	80.92	4.38	18.5	50.12	50.00
0.007000	81.51	4.41	18.5	50.12	50.00
0.007100	82.09	4.44	18.5	50.12	50.00
0.007200	82.66	4.47	18.5	50.12	50.00
0.007300	83.23	4.50	18.5	50.12	50.00
0.007400	83.80	4.53	18.5	50.12	50.00
0.007500	84.37	4.56	18.5	50.12	50.00
0.007600	84.93	4.60	18.5	50.12	50.00
0.007700	85.48	4.63	18.5	50.12	50.00
0.007800	86.04	4.66	18.5	50.12	50.00
0.007900	86.59	4.69	18.5	50.12	50.00
0.008000	87.13	4.71	18.5	50.12	50.00
0.008100	87.68	4.74	18.5	50.12	50.00
0.008200	88.22	4.77	18.5	50.12	50.00
0.008300	88.75	4.80	18.5	50.12	50.00

Project Engineer: Information Services FlowMaster v7.0 [7.0005]

# Rating Table for Irregular Channel

Channel Slope	Discharge (cfs)	Velocity (ft/s)	Flow Area	Wetted Perimeter	Top Width
(ft/ft)	, ,		(ft²)	(ft)	(ft)
0.008400	89.28	4.83	18.5	50.12	50.00
0.008500	89.81	4.86	18.5	50.12	50.00
0.008600	90.34	4.89	18.5	50.12	50.00
0.008700	90.87	4.92	18.5	50.12	50.00
0.008800.0	91.39	4.94	18.5	50.12	50.00
0.008900	91.90	4.97	18.5	50.12	50.00
000000.0	92.42	5.00	18.5	50.12	50.00
0.009100	92.93	5.03	18.5	50.12	50.00
0.009200	93.44	5.06	18.5	50.12	50.00
0.009300	93.95	5.08	18.5	50.12	50.00
0.009400	94.45	5.11	18.5	50.12	50.00
0.009500	94.95	5.14	18.5	50.12	50.00
0.009600	95.45	5.16	18.5	50.12	50.00
0.009700	95.95	5.19	18.5	50.12	50.00
0.009800	96.44	5.22	18.5	50.12	50.00
0.009900	96.93	5.24	18.5	50.12	50.00
0.010000	97.42	5.27	18.5	50.12	50.00
0.010100	97.90	5.30	18.5	50.12	50.00
0.010200	98.39	5.32	18.5	50.12	50.00
0.010300	98.87	5.35	18.5	50.12	50.00
0.010400	99.35	5.38	18.5	50.12	50.00
0.010500	99.82	5.40	18.5	. 50.12	50.00
0.010600	100.30	5.43	18.5	50.12	50.00
0.010700	100.77	5.45	18.5	50.12	50.00
0.010800	101.24	5.48	18.5	50.12	50.00
0.010900	101.71	5.50	18.5	50.12	50.00
0.011000	102.17	5.53	18.5	50.12	50.00
0.011100	102.64	5.55	18.5	50.12	50.00
0.011200	103.10	5.58	18.5	50.12	50.00
0.011300	103.56	5.60	18.5	50.12	50.00
0.011400	104.01	5.63	18.5	50.12	50.00
0.011500	104.47	5.65	18.5	50.12	50.00
0.011600	104.92	5.68	18.5	50.12	50.00
0.011700	105.37	5.70	18.5	50.12	50.00
0.011800	105.82	5.73	18.5	50.12	50.00
0.011900	106.27	5.75	18.5	50.12	50.00
0.012000	106.72	5.77	18.5	50.12	50.00
0.012100	107.16	5.80	18.5	50.12	50.00
0.012200	107.60	5.82	18.5	50.12	50.00
0.012300	108.04	5.85	18.5	50.12	50.00
0.012400	108.48	5.87	18.5	50.12	50.00
0.012500	108.92	5.89	18.5	50.12	50.00
0.012600	109.35	5.92	18.5	50.12	50.00
0.012700	109.78	5.94	18.5	50.12	50.00
0.012800	110.22	5.96	18.5	50.12	50.00
0.012900	110.65	5.99	18.5	50.12	50.00
0.013000	111.07	6.01	18.5	50.12	50.00
2.013100	111.50	6.03	18.5	50.12	50.00
0.013200	111.92	6.06	18.5	50.12	50.00
0.013300	112.35	6.08	18.5	50.12	50.00
0.013400	112.77	6,10	18.5	50.12	50.00
0.013500	113.19	6.12	18.5	50.12	50.00
0.013600	113.61	6.15	18.5	50.12	50.00

Project Engineer: Information Services

# Rating Table for Irregular Channel

Channal	Discharge	Velocity	Flow	Wetted	Top
Channel Slope (ft/ft)	(cfs)	(ft/s)		Perimeter (ft)	Width (ft)
<u> </u>				- ' '	
0.013700	114.02	6.17	18.5	50.12	50.00
0.013800	114.44	6.19	18.5	50.12	50.00
0.013900	114.85	6.21	18.5	50.12	50.00
0.014000	115.27	6.24	18.5	50.12	50.00
0.014100	115.68	6.26	18.5	50.12	50.00
0.014200	116.09	6.28	18.5	50.12	50.00
0.014300	116.49	6.30	18.5	50.12	50.00
0.014400	116.90	6.33	18.5	50.12	50.00
0.014500	117.31	6.35	18.5	50.12	50.00
0.014600	117.71	6.37	18.5	50.12	50.00
0.014700	118.11	6.39	18.5	50.12	50.00
0.014800	118.51	6.41	18.5	50.12	50.00
0.014900	118.91	6.43	18.5	50.12	50.00
0.015000	119.31	6.46	18.5	50.12	50.00
0.015100	119.71	6.48	18.5	50.12	50.00
0.015200	120.10	6.50	18.5	50.12	50.00
0.015300	120.50	6.52	18.5	50.12	50.00
0.015400	120.89	6.54	18.5	50.12	50.00
0.015500	121.28	6.56	18.5	50.12	50.00
0.015600	121.67	6.58	18.5	50.12	50.00
0.015700	122.06	6.60	18.5	50.12	50.00
0.015800	122.45	6.63	18.5	50.12	50.00
0.015900	122.84	6.65	18.5	50.12	50.00
0.016000	123.22	6.67	18.5	50.12	50.00
0.016100	123.61	6.69	18.5	50.12	50.00
0.016200	123.99	6.71	18.5	1	50.00
0.016300	124.37	6.73	18.5		50.00
0.016400		6.75	18.5	E .	50.00
0.016500		6.77	18.5		50.00
0.016600	125.51	6.79	18.5	1	50.00
0.016700	i i	6.81	18.5	1	i
0.016800		6.83	18.5		50.00
3.016900		6.85	18.5		50.00
0.010900	1	6.87	18.5		50.00
3.017100			18.5		1
0.017100	1		18.5		
0.017200	Į.		1	1	1
0.017400	l .	1			1
0.017500		6.97	18.5		
0.017600	1	6.99		1	1
0.017700		7.01	i	1	1
		7.03			1
0.017800		i		1	1
0.017900		l	1	1	1
0.018000			1		1 .
0.018100		1			1
0.018200		1	18.5		
0.018300					
0.018400				1	1
0.018500			ŀ	1	l
0.018600	1	ł .	1	į.	1
0.018700		ł.	1		1
0.018800	4		1	1	1
0.018900	133.93	7.25	18.5	50.12	50.00

## Entered 08/13/10 14:10:34 Page 111 of 111 Table Case 09-14814-gwz Doc 1232-2

# Rating Table for Irregular Channel

Channel Slope (ft/ft)	Discharge (cfs)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
0.019000	134.28	7.27	18.5	50.12	50.00
0.019100	134.63	7.28	18.5	50.12	50.00
0.019200	134.99	7.30	18.5	50.12	50.00
0.019300	135.34	7.32	18.5	50.12	50.00
0.019400	135.69	7.34	18.5	50.12	50.00
0.019500	136.04	7.36	18.5	50.12	50.00
0.019600	136.38	7.38	18.5	50.12	50.00
0.019700	136.73	7.40	18.5	50.12	50.00
0.019800	137.08	7.42	18.5	50.12	50.00
0.019900	137.42	7.44	18.5	50.12	50.00
0.020000	137.77	7.45	18.5	50.12	50.00