CAPITAL BIKESHARE Name: Ze Weng Ng Imperial Business School

Introduction – Capital Bikeshare Bike Rental Data

- The dataset I used was obtained from Data Science Dojo. I will be exploring contains the daily count of rental bikes between years 2011 and 2012 collected by Washing based bicycle sharing company <u>Capital Bikeshare</u> as shown in the table preview below. See appendix 1 for column definitions.
- The bike-sharing rental process is understood to be highly correlated to the environmental and seasonal settings so this dataset contains primarily data about the season, weather conditions, humidity etc.
- I will be using this dataset to identify opportunities for growth and suggestions on how Capital Bikeshare can use this data to make better business decisions.

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	6	0	2	0.344167	0.363625	0.805833	0.160446	331	654	985
1	2	2011-01-02	1	0	1	0	0	0	2	0.363478	0.353739	0.696087	0.248539	131	670	801
2	3	2011-01-03	1	0	1	0	1	1	1	0.196364	0.189405	0.437273	0.248309	120	1229	1349
3	4	2011-01-04	1	0	1	0	2	1	1	0.200000	0.212122	0.590435	0.160296	108	1454	1562
4	5	2011-01-05	1	0	1	0	3	1	1	0.226957	0.229270	0.436957	0.186900	82	1518	1600

Correlation between Bike Rentals and Temperature

- It was observed in the dataset that temperature and 'feeling temperature' (how we experience the temperature) have the highest correlation to the number of bike rentals on a particular day with each variable having a positive correlation of 0.63. Refer to Appendix 2 for further information on other correlation values.
- The relationship between temperature and number of bike rentals can be illustrated using a scatterplot as shown in figure 1 where we observe a positive relationship between temperature and number of bike rentals.

Figure 1. Temperature Vs Number of Bike Rentals Scatterplot

When do we observe the highest bike rentals?

 I performed an analysis of the average bike rentals in the different seasons throughout the year and found that spring tends to has the lowest average number of bike rentals as shown in figure 2. This can be explained by figure 3 which shows that spring has the lowest average temperature (surprisingly not winter) and this is inline with my observation that temperature has a high positive correlation with number of bike rentals.

Business Suggestion:

- Based on the observations made on temperature, I think there is
 potential to grow the number of bike renters in Spring. Since we know
 that temperature plays a big influence on whether someone decides to
 cycle, I would suggest that during spring we could tailor our social
 media post to teach people how to keep warm while cycling this winter
 season.
- We may also explore the possibility of partnering with outdoor companies such as North Face to get exclusive discounts for Capital Bikeshare users on winter cycling equipment like cycling jackets and socks to encourage people to cycle during colder months.

Figure 2. Bar Chart showing the average bike rentals in different seasons

Figure 3. Bar Chart showing the average temperature in different seasons

Machine Learning Prediction

- I've also utilized Machine Learning techniques to create an application on Streamlit that can be used to predict the number of bike rentals based on the environmental and seasonal setting as shown in figure 4. (Linked here)
- Through my investigation, I determined that the Random Forest Regressor Model with a max depth of 10 yielded the best R² value of 0.59 and root mean squared error of ±1373.29 which was then used to develop the Streamlit app.

Business Suggestion:

- Using this app, Capital Bikeshare will be able to predict the number of bike rental based on weather forecast data and plan the number of bikes a certain region will need. For example, if region A is forecasted to be raining heavily and have lower temperatures compared to region B which is forecasted to have sunny warm weather, we can use this app to predict the demand in both regions and then allocate resources accordingly to meet the higher predicted demand in region B.
- This model can also be useful when Capital Bikeshare needs to perform repairs/updates to the bikes and may choose the days with lower demand to perform maintenance on bikes without compromising the ability to meet the demand for bicycles.

Figure 4. Preview of my Streamlit App

Predict Bike Rentals 🚴

Determine the scenario:

Conclusion

- Based on my analysis, I determined that temperature plays the most significant factor in determining the number of bike rentals for a particular day.
 I believe that there is potential to capture more cyclist during colder months and Capital Bikeshare can use this insight to adapt their social media marketing strategy during colder months like winter and spring while exploring potential partnerships with outdoor winter clothing companies to encourage users to rent bicycles during colder months and increase demand.
- Using the Random Forest Regressor Model, I developed an application that the business can use to predict the number of bike rentals for a particular day thus allowing Capital Bikeshare to deploy their resources productively. (see <u>link</u>)
- For further information on the analysis that was performed please feel free to inspect my Jupyter Notebook file name 'Predicting Bike Rental (Capstone)' linked here.

Appendix 1 – Data Dictionary

Data Dictionary

Column Position	Atrribute Name	Definition	Data Type	Example	% Nul Ratios
1	instant	Record Index	Quantitative	190, 7, 17180	0
2	dteday	Date (Format: YYYY-MM-DD)	Quantitative	2012-12-23, 2012-01-01, 2012-06-24	0
3	season	Season (1: springer, 2: summer, 3: fall, 4: winter)	Quantitative	1, 2, 4	0
4	yr	Year (0: 2011, 1:2012)	Quantitative	0, 1	0
5	mnth	Month (1 to 12)	Quantitative	1, 6, 12	0
6	hr	Hour (0 to 23) - Not in day.csv dataset	Quantitative	4, 6, 14	0
7	holiday	Weather day is holiday or not	Quantitative	0, 1	0
8	weekday	Day of the week	Quantitative	0, 6, 3	0
9	workingday	Working Day: If day is neither weekend nor holiday is 1, otherwise is 0	Quantitative	0, 1	0
10	weathersit	Weather Situation (1: Clear, Few clouds, Partly cloudy, Partly cloudy; 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist; 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds, 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog)	Quantitative	1, 2, 3	0
11	temp	Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-8, t_max=+39 (only in hourly scale)	Quantitative	0.08, 0.22, 0.34	0
12	atemp	Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-16, t_max=+50 (only in hourly scale)	Quantitative	0.0909, 0.2727, 0.303	0
13	hum	Normalized humidity. The values are divided to 100 (max)	Quantitative	0.53, 0.8, 0.31	0
14	windspeed	Normalized wind speed. The values are divided to 67 (max)	Quantitative	0.194, 0, 0.2985	0
15	casual	Count of casual users	Quantitative	0, 2, 57	0
16	registered	Count of registered users	Quantitative	1, 0, 118	0
17	cnt	Count of total rental bikes including both casual and registered	Quantitative	1, 2, 175	0

Appendix 2- Correlation Heatmap

