Cours - Graphes

Louis Thevenet

Table des matières

1.	Degré	. 2
	1.1. Corollaire 1.2.3	
2.	Sous graphes, graphes partiels, cliques	. 2
	2.1. Exercise 1.4.4	
3.	Connexité	. 2
	3.1. Exmeple 2.2.9	
	3.2. Exemple 2.2.3	
	3.3. Exercice 2.2.4	
	3.4. Preuve 2.2.11	. 2

X

1. Degré

1.1. Corollaire 1.2.3

Soit N la somme des degrés de tous les sommets et n le nombdre d'arêtes du graphe. Supposons que le nombre de sommets de degré impair soit pair. D'après le lemme,

$$N = 2n = \underbrace{\sum_{v_k \text{ de degr\'e pair}} \delta(v_k)}_{\text{pair}} + \underbrace{\sum_{v_k \text{ de degr\'e impair}} \delta(v_k)}_{}$$

2. Sous graphes, graphes partiels, cliques

2.1. Exercice 1.4.4

3. Connexité

3.1. Exmeple 2.2.9

• $v = s_1$

$$\quad \text{CFC} = \{ \{s_1, s_2, s_7, s_6, s_{10}, s_9, s_5, s_4, s_3\}, \{s_8\} \}$$

3.2. Exemple 2.2.3

1. Sommets : espions de chaque pays. Une arrête relie deux sommets si les espions s'espionnent

$$\begin{pmatrix} s_{11} & s_{12} & s_{21} & s_{22} & s_{31} & s_{32} \\ s_{11} & 0 & 0 & 1 & 1 & 1 & 1 \\ s_{12} & 0 & 0 & 1 & 1 & 1 & 1 \\ s_{21} & 1 & 1 & 0 & 0 & 1 & 1 \\ s_{22} & 1 & 1 & 0 & 0 & 1 & 1 \\ s_{31} & 1 & 1 & 1 & 1 & 0 & 0 \\ s_{32} & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$
 2. Le graphe n'est pas complet car deux espions d'un même pays ne sont pas reliés.

- 3. $\forall v \in S, \deg(v) = 4$
- Il y a $\frac{4*6}{2} = 12$ arêtes.

- 3. Il n'est pas connexe
- 4. Il serait connexe

3.4. Preuve 2.2.11

• Vrai pour n=1 car il y a $0 \le 1-1=0$ arête.

Supposons que $\forall n \geq 1$, un graphe sans cycle contient au plus n-1 arêtes. Soit G un graphe sans cycle à n+1 sommets. Soit $v \in S$

 $G\{v\}$ est un graphe sans cycle à n sommets, donc il y a au plus n-1 arêtes (noté |A|). On ajoute v et ça ne crée pas de cycle. Forcément, $\deg(v)=1$, donc il y a $|A|+1\leq (n-1)+1$

Propriété vraie pour n+1