Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento e Análise de Imagens Prof. Alexei Machado

Lista de Exercícios No. 2

- 1. Uma MLP possui 10 unidades de entrada, 50 unidades na camada escondida e 10 unidades na camada de saída (sem contar o bias). Deseja-se substituir a camada escondida por 2, cada uma com n unidades, sem aumentar o número total de pesos da rede original. Qual o valor máximo de n?
- 2. Considere uma rede padrão de 3 camadas cuja entrada x possui dimensão dx1, a primeira camada da rede possui d unidades de entrada e possui somente uma ativação linear do tipo f(x)=x, a camada escondida possui n_H unidades escondidas e a camada final possui c unidades de saída e o bias. Qual o número total de pesos que existem na rede?

- 3. Dado uma imagem de 300×300 pixels colorida (RGB) como entrada para alguns modelos, responda às questões abaixo.
 - a) Modelo 1: Suponha que você não esteja usando uma rede convolucional. Se a primeira camada oculta tiver 100 neurônios, cada um deles totalmente conectado à entrada, quantos parâmetros essa camada oculta possui (incluindo os parâmetros do bias)?
 - b) Modelo 2: Suponha agora que você use uma camada convolucional com 100 filtros de 5 x 5 cada. Quantos parâmetros essa camada oculta possui (incluindo os parâmetros de bias)?

4. Dado a imagem 7 x 7 abaixo, aplique um filtro que seja capaz de detectar somente os olhos dessa representação (quase perfeita) do rosto humano. Você deve pensar nos valores e no tamanho do filtro que irá utilizar, além de aplicá-lo à imagem e mostrar o resultado obtido. Assuma que os pixels brancos possuem valor igual a 0 e os pixels pretos possuem valor igual a 1.

- 5. Dado uma imagem em preto e branco de tamanho 8 x 8 pixels e um filtro de tamanho 3 x 3, indique as dimensões da matriz resultante da convolução e o tamanho do padding que deverá ser utilizado em cada um dos casos:
 - a) Valid padding
 - b) Same padding
- 6. Suponha uma entrada de tamanho 63 × 63 × 16. Ao aplicar uma convolução nessa entrada com 32 filtros de tamanho 7 × 7, usando stride igual a 2 e sem padding. Qual será o volume de saída?
- 7. Suponha uma entrada de tamanho $15 \times 15 \times 8$. Usando a operação de padding com p=2, qual é a dimensão do dado de saída após o padding?
- 8. Dado uma entrada de dimensão $63 \times 63 \times 16$ e uma convolução com 32 filtros de dimensão 7×7 cada e um stride igual a 1, qual deverá ser o tamanho do padding utilizado para que você obtenha uma saída com o mesmo tamanho da entrada (same padding)?

Pontifícia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento e Análise de Imagens Prof. Alexei Machado

- 9. Considere um volume de entrada 65×65×3 e um filtro 11×11×3. Quantas operações de multiplicação serão feitas em cada um dos casos:
 - a) Valid padding e stride = 1
 - b) Valid padding e stride = 3
 - c) Same padding e stride = 1
 - d) Same padding e stride = 3
- 10. Suponha uma entrada de tamanho 32 × 32 × 16. Seja a aplicação do max pooling com stride e tamanho de filtro iguais a 2. Quais são as dimensões da saída?
- 11. Suponha uma entrada de tamanho $6 \times 6 \times 3$. Seja a aplicação de um pooling (average ou max) com stride e tamanho de filtro iguais a 2. Responda:
 - a) Quais são as dimensões da saída?
 - b) Assumindo que os valores do primeiro canal estão mostrados na matriz abaixo, mostre o resultado obtido ao aplicar o seguinte Max pooling e Average pooling

[[4 9 2 5 8 3] [5 6 2 4 0 3] [2 4 5 4 5 2] [5 6 5 4 7 8] [5 7 7 9 2 1] [5 8 5 3 8 4]]

- 12. Suponha que a entrada para uma rede neural de convolução seja uma imagem colorida (RGB) 32 × 32. A primeira camada contém oito filtros 5 × 5 com três canais, utilizando Valid padding e stride = 2. Qual o formato da saída dessa camada?
- 13. Dado uma imagem de dimensão 224 x 224 com 3 canais (RGB), desenhe a rede convolucional, incluindo as dimensões das matrizes de entrada e saída, de acordo com as operações descritas abaixo.
 - a) Aplique uma convolução com "Valid padding" com 96 filtros de tamanho 7 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de A^[1].
 - b) Aplique uma convolução com "Valid padding" com 256 filtros de tamanho 5 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de A^[2].
 - c) Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de A^[3].
 - d) Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de A^[4].

Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento e Análise de Imagens Prof. Alexei Machado

- e) Aplique uma convolução com "Same padding" com 256 filtros de tamanho 3 e stride igual a 1. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de A^[5].
- f) Aplique uma camada fully-connected com 4096 n´os. A saída dessa camada será chamada de $A^{[6]}$.
- g) Aplique uma camada fully-connected com 4096 n'os. A saída dessa camada será chamada de $A^{[7]}$.
- h) Por fim, aplique uma softmax (aqui não é necessário se preocupar com a dimensão da saída). A saída dessa camada será chamada de A^[8].
- 14. Dada a função $f(x) = \cos \omega x$, definida no intervalo $0 \le x \le 2$:
- a) Gere um vetor contendo a amostragem da função nos pontos x=0 e x=1.
- b) Calcule a DFT sobre o vetor
- c) Baseado nos coeficientes encontrados, desenhe os componentes da série e a função reconstituída.
- 15. Faça o mesmo procedimento do item anterior para a função $f(x)=\cos 2\omega x$, definida no intervalo $0 \le x \le 4$ e amostrada nos pontos x=0, 1, 2 e 3. Compare os resultados obtidos.
- 16. Dados os espectros de Fourier abaixo, determine a imagem correspondente.

A	3.0	-0.5 + 0.69i	-0.5 + 0.16i	-0.5 - 0.16i	-0.5 - 0.69i

1.5 | -0.25 - | 0 | -0.25 + | 0.25i

17. Dadas as imagens abaixo, calcule a DFT correspondente. Compare as imagens e comente os resultados à luz da propriedade da translação.

A	0	1	0	0	0
---	---	---	---	---	---

B 0 0 1 0 0

18. Dadas as imagens abaixo, considerando pontos externos como possuindo valor 0:

A 1 2 0 2 1

В	3	2	1	2	3

С	1	2	
	2	3	

D	1	2	1
	2	8	2
	1	2	1

- a) Calcule A * B
- b) Calcule B * A
- c) Calcule C * D
- d) Calcule D * C
- e) Calcule a DFT para as imagens A e B. Calcule a DFT inversa sobre o resultado.

Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento e Análise de Imagens Prof. Alexei Machado

- f) Aplique filtros passa-baixa nas imagens **A e B** com frequência de corte |u|<2.
- g) Aplique filtros passa-alta nas imagens ${\bf A}$ e ${\bf B}$ com frequência de corte |u| > 1.
- 19. Para cada imagem abaixo, considerando pontos externos como indefinidos:

A	3	5	2	1	1
	1	4	6	2	1
	1	1	5	6	2
	1	1	1	1	1
	1	2	2	2	1

5	1	2	1	8
6	6	5	6	1
2	1	8	7	7
6	1	2	8	8
7	8	2	1	1

1	1	9	1	1
1	1	9	8	7
9	9	9	2	1
1	1	2	8	8
1	2	2	8	9

- a) Determine o histograma de freqüências
- b) Aplique um filtro de suavização 3x3 pela média
- c) Aplique um filtro de suavização 3x3 pela mediana
- d) Altere o contraste da imagem através da equalização do histograma. As novas intensidades devem variar entre 0 e 255.
- e) Realce as bordas da imagem, através de filtros de Sobel.
- 20. O gráfico abaixo representa a função de transformação de histograma aplicada à imagem A.

- a) Caracterize a imagem de saída quanto ao seu tamanho e conteúdo.
- b) Para que são usadas as funções de transformação de histograma?
- c) É possível aplicar uma transformação de histograma na qual 2 pixels de tons de cinza diferentes da imagem de entrada passem a ter o mesmo valor após a transformação? Justifique.

Pontifícia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento e Análise de Imagens Prof. Alexei Machado

21. Considere a imagem original A e as imagens B, C e D obtidas a partir de A:

- a) Indique os elementos de baixa freqüência presentes na imagem original A.
- b) Indique os elementos de alta freqüência presentes na imagem original A.
- c) Descreva o processo aplicado a A para se obter B. Justifique a resposta.
- d) Descreva o processo aplicado a A para se obter C. Justifique a resposta.
- e) Descreva o processo aplicado a A para se obter D. Justifique a resposta.