# Osnove mehatronike Međuispit

## 19.04.2017

## 1. zadatak (10 bodova)

a) (5 bodova) Na slici 1 prikazan je elektromehanički sustav za koji je potrebno nacrtati odgovarajući vezni graf te na njemu naznačiti crtice kauzalnosti.



Slika 1: Slika uz a) dio zadatka 1

b) (5 bodova) Nacrtati vezni graf te označiti crtice kauzalnosti, za slučaj da se umjesto momenta tromosti J, spoji radni mehanizam prikazan slikom 2, koji se sastoji od 2 zamašne mase  $J_1$  i  $J_2$  koje su vezane elastičnom osovinom koeficijenta elastičnosti c i faktora prigušenja d. Pretpostavlja se da u ležajevima djeluje moment viskoznog trenja proporcionalan brzini vrtnje  $m_{tr1} = d_1 \cdot \omega_1$  i  $m_{tr2} = d_2 \cdot \omega_2$ . Dodatno pretpostavlja se da na radni mehanizam djeluje konstantan moment tereta  $m_t$ .



Slika 2: Slika uz b) dio zadatka 1

Podsjetnik: Moment na elastičnoj osovini dan je izrazom  $m = c \cdot (\phi_1 - \phi_2) + d \cdot (\omega_1 - \omega_2)$ , pri čemu  $\phi_1 - \phi_2$  predstavlja kut uvijanja.

## 2. zadatak (15 bodova)

Na slici 3 prikazan je elektromehanički sustav rotacijskog njihala koji se sastoji od štapa mase m, pripadnje duljine L, ruke duljine r i pripadnog momenta tromosti  $J_r$ . Elektromehanički sustav pogonjen je motorom koji na izlaznoj osovini daje moment  $M_n$  Uz poopćene koordinate  $\alpha$  i  $\theta$  (slika 3), potrebno je:

- a) (5 bodova) odrediti Lagrangian sustava,
- b) (5 bodova) korištenjem Lagrangove jednadžbe odrediti diferencijalne jednadžbe gibanja sustava,
- c) (5 bodova) odrediti diferencijalne jednadžbe gibanja sustava uz pretpostavku da postoji moment vizkoznog trenja  $d \cdot \dot{\alpha}$  koji djeluje oko točke hvatišta njihala (točka A). Moment tromosti tankog štapa, duljina L, oko osi rotacije iznosi  $J_{CM} = \frac{m \cdot L^2}{2}$



Slika 3: Slika uz zadatak 2

#### 3. zadatak (10 bodova)

Položaj mobilnog robota s diferencijalnim pogonom određen je koordinatama x, y i orjentacijom  $\theta$  (slika 4). Razmak između pogonskih kotača iznosi 2b=0.4m, a polumjer kotača iznosi R=0.1m.

Potrebno je odrediti položaj mobilnog robota (x, y,  $\theta$ ) u trenutku  $t_f=3s$ , ukoliko je u trenutku t=0, položaj mobilnog robota sljedeći:  $x_0=0m$ ,  $y_0=0m$  i  $\theta=0$  rad i vrijedi:

- a) (6 bodova) kutne brzine pogonskih kotača su konstantne i iznose  $\omega_L=1~rad/s$  i  $\omega_D=2~rad/s$ ,
- b) (4 bodova) pogonski kotači iz mirovanja jednoliko ubrzavaju kutnim ubrzanjima  $\alpha_L=2$   $rad/s^2,\,\alpha_D=1$   $rad/s^2.$



Slika 4: Slika uz zadatak 3