(1) (5\%, 1\% each) Consider two random variables $X(\mu)$ and $Y(\mu)$ with the joint density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right\}$$

with $|\rho| < 1$. Determine whether each of the following statements is TRUE or FALSE. No proof or explanation is necessary.

- Sol: Clearly, $X(\mu)$ and $Y(\mu)$ are jointly Gaussian with zero mean, unit variance, and correlation coefficient $\rho = E\{X(\mu)Y(\mu)\}$. Here, ρ is also the covariance between $X(\mu)$ and $Y(\mu)$.
- (a) If $E\{X(\mu)Y(\mu)\}=0$, then $X(\mu)$ is independent of $Y(\mu)$.
- Sol: TRUE. With $\rho = E\{X(\mu)Y(\mu)\} = 0$, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. Thus, $X(\mu)$ and $Y(\mu)$ are mutually independent.
- (b) It is true that $Var\{X(\mu) + Y(\mu)\} = 2$.

Sol: FALSE. Here is a counterexample. With $\rho \neq 0$,

$$Var{X(\mu) + Y(\mu)}$$
= $E{X^{2}(\mu)} + 2E{X(\mu)Y(\mu)} + E{Y^{2}(\mu)}$
= $2 + 2\rho$

can not be 2.

- (c) It is true that $E\{X^2(\mu)Y^2(\mu)\} = 1 + 2\rho^2$.
- Sol: TRUE. Because $X(\mu)$ and $Y(\mu)$ are jointly Gaussian random variables with mean zero,

$$E\{X^{2}(\mu)Y^{2}(\mu)\} = E\{X^{2}(\mu)\}E\{Y^{2}(\mu)\} + 2E^{2}\{X(\mu)Y(\mu)\}$$
$$= 1 + 2\rho^{2}.$$

- (d) If $X(\mu)$ is independent of $Y(\mu)$, then $\rho = 0$.
- Sol: TRUE. Because $X(\mu)$ and $Y(\mu)$ are mutually independent, they are uncorrelated with zero correlation coefficient. Thus, $\rho = 0$.
- (e) It is true that $Var\{X(\mu)|Y(\mu)\}=1-\rho^2$.
- Sol: TRUE. Recall that we have learned in class that if $X(\mu)$ and $Y(\mu)$ are two jointly Gaussian random variables, with mean $m_X = 0$ and $m_Y = 0$, variance $\sigma_X^2 = 1$ and $\sigma_Y^2 = 1$, and covariance $C_{XY} = C_{YX} = \rho$, then the conditional density of $X(\mu)$, given $Y(\mu)$, is also Gaussian with conditional variance

$$Var\{X(\mu)|Y(\mu)\} = \sigma_X^2 - \rho^2/\sigma_Y^2 = 1 - \rho^2.$$

(2) (3%, 1% each) Let $\{X_n(\mu); n = 0, 1, 2, ...\}$ be a Markov chain. Which of the following are Markov chains? No proof or explanation is necessary.

- (a) $\{X_{m+r}(\mu); r=0,1,...\}$ with m a positive integer.
- Sol: It is a Markov chain. Because $\{X_n(\mu); n = 0, 1, 2, ...\}$ is a Markov chain, we have $\Pr\{X_{m+r}(\mu)|X_{m+r-1}(\mu) = x_{m+r-1}, X_{m+r-2}(\mu) = x_{m+r-2}, ..., X_m(\mu) = x_m\} = \Pr\{X_{m+r}(\mu)|X_{m+r-1}(\mu) = x_{m+r-1}\}$. As a result, $\{X_{m+r}(\mu); r = 0, 1, ...\}$ is a Markov chain.
- (b) $\{X_{2m}(\mu); m = 0, 1, ...\}.$

Sol: It is a Markov chain. Let $\Gamma \triangleq \{X_{2m}(\mu); m = 0, 1, ..., r - 1\}$. Then,

$$\Pr\{X_{2r}(\mu)|\Gamma\} = \frac{\Pr\{X_{2r}(\mu), \Gamma\}}{\Pr\{\Gamma\}}
= \sum_{k} \frac{\Pr\{X_{2r}(\mu), X_{2r-1}(\mu) = k, \Gamma\}}{\Pr\{\Gamma\}}
= \sum_{k} \frac{\Pr\{X_{2r}(\mu)|X_{2r-1}(\mu) = k, \Gamma\} \Pr\{X_{2r-1}(\mu) = k, \Gamma\}}{\Pr\{\Gamma\}}
= \sum_{k} \frac{\Pr\{X_{2r}(\mu)|X_{2r-1}(\mu) = k\} \Pr\{X_{2r-1}(\mu) = k|\Gamma\} \Pr\{\Gamma\}}{\Pr\{\Gamma\}}
= \sum_{k} \Pr\{X_{2r}(\mu)|X_{2r-1}(\mu) = k\} \Pr\{X_{2r-1}(\mu) = k|X_{2r-2}(\mu) = x_{2r-2}\}
= \Pr\{X_{2r}(\mu)|X_{2r-2}(\mu) = x_{2r-2}\}.$$

As a result, $\{X_{2m}(\mu); m = 0, 1, ...\}$ is a Markov chain.

- (c) The sequence of pairs $\{(X_m(\mu), X_{m+1}(\mu)); m = 0, 1, ...\}$.
- Sol: It is a Markov chain. Let $Y_m(\mu) \triangleq (X_m(\mu), X_{m+1}(\mu))$ for m = 0, 1, ... Then, we have

Pr
$$\{Y_{m+1}(\mu) = (a,b)|Y_m(\mu) = (c,d), ..., Y_0(\mu) = (e,f)\}$$

= $\Pr\{X_{m+2}(\mu) = b|X_{m+1}(\mu) = a\} \times \mathbf{1}_{a=d}$
= $\Pr\{Y_{m+1}(\mu) = (a,b)|Y_m(\mu) = (c,d)\}$

where $\mathbf{1}_{a=d}$ is the indicator function. As a result, the sequence of pairs $\{(X_m(\mu), X_{m+1}(\mu)); m = 0, 1, ...\}$ is a Markov chain.

- (3) (2%, 1% each) Determine whether each of the following statements is TRUE or FALSE. No proof or explanation is necessary.
 - (a) The statistic of a Gaussian process can be completely characterized by its mean function and autocorrelation function.
 - Sol: TRUE. Knowing mean function and autocorrelation function suffices to describe the first two order statistics and thus the statistic of a Gaussian process.
 - (b) The statistic of a continuous-time Markov process can be completely characterized by its transition probability density.
 - Sol: FALSE. Knowing the first-order density and the transition probability density suffices to describe the statistic of a Markov process. Therefore, knowing the transition probability density only is not sufficient.

(4) (8%) Consider the hard limiter

$$g(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}.$$

Let $X(\mu)$ be a continuous random variable and $Y(\mu)$ be another discrete random variable defined from $X(\mu)$ through $Y(\mu) = g(X(\mu))$.

(a) (4%) Express the probability distribution function (i.e., $F_Y(y)$) and the probability density function of $Y(\mu)$ (i.e., $f_Y(y)$) in terms of the probability distribution function of $X(\mu)$ (i.e., $F_X(x)$). Your answer may be given with the aid of the unit step function u(y) defined by u(y) = 1 if $y \ge 0$ and u(y) = 0 otherwise, and the special relationship $\frac{d}{dy}u(y) = \delta(y)$ with $\delta(y)$ being the Dirac delta.

Sol: By definition,

$$F_Y(y) = \Pr\{Y(\mu) \le y\} = \begin{cases} 1, & y \ge 1 \\ 0, & y < -1 \\ \Pr\{X(\mu) < 0\}, & -1 \le y < 1 \end{cases}$$

$$= \begin{cases} 1, & y \ge 1 \\ 0, & y < -1 \\ F_X(0), & -1 \le y < 1 \end{cases}$$

$$= F_X(0) \cdot [u(y+1) - u(y-1)] + u(y-1)$$

$$= F_X(0) \cdot u(y+1) + (1 - F_X(0))u(y-1)$$

where u(y) is the unit step function defined by u(y) = 1 if $y \ge 0$ and u(y) = 0 otherwise. Now, by using the relationship of special functions, $du(y)/dy = \delta(y)$ with $\delta(y)$ being the Dirac delta function, i.e., $\delta(y) = \int_{-\infty}^{y} u(x)dx$, we can represent $f_Y(y) = dF_Y(y)/dy$

$$f_Y(y) = F_X(0) \cdot \delta(y+1) + (1 - F_X(0)) \cdot \delta(y-1).$$

(b) (4%) Let $X(\mu)$ be a Gaussian random variable with zero mean and unit variance. That is, the probability density function of $X(\mu)$ is

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}x^2\}.$$

Find the mean and variance of $Y(\mu)$.

Sol: Because

$$F_X(0) = \int_{-\infty}^0 f_X(x)dx = \int_0^\infty f_X(x)dx = 1/2$$

we have

$$f_Y(y) = \frac{1}{2} [\delta(y+1) + \delta(y-1)].$$

3

Thus, $E\{Y(\mu)\} = 0$ and $Var\{Y(\mu)\} = E\{Y^2(\mu)\} = 1$.

(5) (5%) Let $S_X(\omega)$ and $R_X(\tau)$ be the power spectrum and autocorrelation of a complexvalued wide-sense stationary random process $X(\mu, t)$. That is, $S_X(\omega)$ and $R_X(\tau)$ are a Fourier-transformable pair. Also, define $S_T(\mu, \omega)$ by

$$S_T(\mu, \omega) = \frac{1}{2T} |\int_{-T}^{T} X(\mu, t) \exp\{-j\omega t\} dt|^2$$

with $j = \sqrt{-1}$. Prove that

$$\lim_{T\to\infty} E\{S_T(\mu,\omega)\} = S_X(\omega).$$

Hints:

- The Fourier transform of a window function $U_T(t) = \begin{cases} 1, & |t| \leq 2T \\ 0, & |t| > 2T \end{cases}$ is $\mathcal{F}\{U_T(t)\}$ = $2\frac{\sin(2T\omega)}{\omega}$. Also, $\mathcal{F}\{(1-\frac{|t|}{2T})U_T(t)\} = \frac{2\sin^2(T\omega)}{T\omega^2}$.
- $\lim_{T\to\infty} \frac{2\sin^2(T\omega)}{T\omega^2} = 2\pi\delta(\omega)$, with $\delta(\omega)$ being a Dirac delta function.

Sol: By definition, $\lim_{T\to\infty} E\{S_T(\mu,\omega)\}\$ can be expressed as

$$\lim_{T \to \infty} E\{S_{T}(\mu, \omega)\} = \lim_{T \to \infty} E\{\frac{1}{2T} | \int_{-T}^{T} X(\mu, t) \exp\{-j\omega t\} dt|^{2}\}$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \int_{-T}^{T} R_{X}(t_{1} - t_{2}) \exp\{-j\omega(t_{1} - t_{2})\} dt_{1} dt_{2}$$

$$= \lim_{T \to \infty} \int_{-2T}^{2T} (1 - \frac{|\tau|}{2T}) R_{X}(\tau) \exp\{-j\omega\tau\} d\tau$$

$$= \lim_{T \to \infty} \mathcal{F}\{R_{X}(t) \cdot (1 - \frac{|t|}{2T}) U_{T}(t)\}$$

$$= \lim_{T \to \infty} \frac{1}{2\pi} \mathcal{F}\{R_{X}(t)\} * \mathcal{F}\{(1 - \frac{|t|}{2T}) U_{T}(t)\}$$

$$= \frac{1}{2\pi} S_{X}(\omega) * \lim_{T \to \infty} \mathcal{F}\{(1 - \frac{|t|}{2T}) U_{T}(t)\}$$

$$= \frac{1}{2\pi} S_{X}(\omega) * 2\pi\delta(\omega)$$

$$= S_{X}(\omega). \qquad Q.E.D.$$

(6) (4%) Define the random process $X(\mu, \omega)$ by

$$X(\mu,\omega) = \int_{-T}^{T} [f(t) + n(\mu,t)] \exp\{-j\omega t\} dt$$

i.e., a Fourier transform of the random process $f(t) + n(\mu, t)$ over the time interval (-T, T) with T > 0. Here, f(t) is deterministic with Fourier transform $F(\omega)$, i.e., $F(\omega) = \int_{-\infty}^{\infty} f(t) \exp\{-j\omega t\} dt$. $n(\mu, t)$ is a wide-sense stationary random noise with mean zero and power spectrum $S_n(\omega) = 1$. It is known that $\text{Var}\{X(\mu, \omega)\} = \alpha T$. Find α .

Sol: By definition, $E\{X(\mu,\omega)\}$ is derived as

$$E\{X(\mu,\omega)\} = E\{\int_{-T}^{T} [f(t) + n(\mu,t)] \exp\{-j\omega t\} dt\}$$

$$= \int_{-T}^{T} [f(t) + E\{n(\mu,t)\}] \exp\{-j\omega t\} dt$$

$$= \int_{-T}^{T} f(t) \exp\{-j\omega t\} dt.$$

Next, $Var\{X(\mu,\omega)\}$ is given by

$$\begin{aligned}
&\operatorname{Var}\{X(\mu,\omega)\} \\
&= E\{|X(\mu,\omega) - E\{X(\mu,\omega)\}|^2\} \\
&= E\{|\int_{-T}^{T} [f(t) + n(\mu,t)] \exp\{-j\omega t\} dt \\
&- \int_{-T}^{T} f(t) \exp\{-j\omega t\} dt|^2\} \\
&= E\{|\int_{-T}^{T} n(\mu,t)] \exp\{-j\omega t\} dt|^2\} \\
&= \int_{-T}^{T} \int_{-T}^{T} E\{n(\mu,t_1)n^*(\mu,t_2)\} \exp\{-j\omega(t_1-t_2)\} dt_1 dt_2 \\
&= \int_{-T}^{T} \int_{-T}^{T} \delta(t_1-t_2) \exp\{-j\omega(t_1-t_2)\} dt_1 dt_2 \\
&= 2T.
\end{aligned}$$

Thus, $\alpha = 2$.

(7) (7%) Let $Z(\mu, t)$ be the random signal obtained by switching between two values 0 and 1 according to the events in a counting process $N(\mu, t)$, $t \ge 0$. Let

$$\Pr\{N(\mu, t) = k\} = \frac{1}{1+t} \left(\frac{t}{1+t}\right)^k, \ k = 0, 1, \dots$$

with $N(\mu, 0) = 0$ by default. Suppose that $N(\mu, t)$ has stationary increments and that $\Pr\{Z(\mu, 0) = 0\} = \Pr\{Z(\mu, 0) = 1\} = \frac{1}{2}$. Answer the following.

(a) (3%) Find $Pr\{Z(\mu,t)=n\}$ for $n\in\{0,1\}$.

Sol: Now,

 $\Pr\{\text{There are even numbers of arrivals in }[0,t]\}$

$$= \sum_{k=0}^{\infty} \frac{1}{1+t} \left(\frac{t}{1+t}\right)^{2k}$$

$$= \frac{1}{1+t} \frac{1}{1-\left(\frac{t}{1+t}\right)^2}$$

$$(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ for } |x| < 1)$$

$$= \frac{1+t}{1+2t}$$

$$Pr\{There are odd numbers of arrivals in [0, t]\}$$

$$= 1 - Pr\{There are even numbers of arrivals in [0, t]\}$$

$$= \frac{t}{1 + 2t}.$$

Thus, for $t \geq 0$,

$$\begin{aligned} & \Pr\{Z(\mu,t) = 0\} \\ &= & \Pr\{Z(\mu,t) = 0 | Z(\mu,0) = 0\} \Pr\{Z(\mu,0) = 0\} + \\ & \Pr\{Z(\mu,t) = 0 | Z(\mu,0) = 1\} \Pr\{Z(\mu,0) = 1\} \\ &= & \frac{1}{2} (\frac{1+t}{1+2t}) + \frac{1}{2} \frac{t}{1+2t} \\ &= & \frac{1}{2} \end{aligned}$$

$$\Pr\{Z(\mu, t) = 1\} = 1 - \Pr\{Z(\mu, t) = 0\} = \frac{1}{2}.$$

(b) (2%) Find $E\{Z(\mu, t)\}\$ for $t \ge 0$.

Sol: $Z(\mu, t)$ has mean

$$E\{Z(\mu,t)\} = \Pr\{Z(\mu,t) = 1\} = \frac{1}{2}$$

(c) (2%) Find $E\{Z(\mu, t_1)Z(\mu, t_2)\}$ for $t_1, t_2 \ge 0$.

Sol: For $0 < t_1 \le t_2$,

$$E\{Z(\mu, t_1)Z(\mu, t_2)\}$$
= $\Pr\{Z(\mu, t_1) = 1, Z(\mu, t_2) = 1\}$
= $\Pr\{Z(\mu, t_2) = 1 | Z(\mu, t_1) = 1\} \Pr\{Z(\mu, t_1) = 1\}$
= $\Pr\{Z(\mu, t_2 - t_1) = 1 | Z(\mu, 0) = 1\} \Pr\{Z(\mu, t_1) = 1\}$
(because $N(\mu, t)$ has stationary increment.)
= $\frac{1}{2}(\frac{1 + t_2 - t_1}{1 + 2(t_2 - t_1)})$.

Similarly, for $0 < t_2 \le t_1$,

$$E\{Z(\mu, t_1)Z(\mu, t_2)\} = \frac{1}{2} \left(\frac{1 + t_1 - t_2}{1 + 2(t_1 - t_2)}\right).$$

Thus, we have

$$E\{Z(\mu, t_1)Z(\mu, t_2)\} = \frac{1 + |t_2 - t_1|}{2 + 4|t_2 - t_1|}$$

for $t_1, t_2 \ge 0$.

(8) (8%, 4% each) A shop has N machines in operation initially at time t=0 and one technician to repair them. A machine remains in the working state for an exponentially distributed time with mean $1/\beta$ and independently of the others. The technician works on one machine at a time, and it takes him an exponentially distributed time with mean $1/\alpha$ to repair each machine. Let $X(\mu, t)$ be the number of working machines at time t. It is known that $X(\mu, t)$ is a continuous-time homogeneous Markov chain. Answer the following:

(a) Let $W_n(\mu)$ be the time till the next breakdown of machine n, and $T(\mu)$ be the time till the next breakdown of any machine. Find the conditional density of $T(\mu)$ given that $X(\mu, t) = k$.

Sol: Now, we can express

$$T(\mu) = \min\{W_1(\mu), W_2(\mu), ..., W_k(\mu)\}\$$

when $X(\mu, t) = k$ and find its conditional distribution as

$$\Pr\{T(\mu) > t | X(\mu, t) = k\} = \Pr\{\min\{W_1(\mu), W_2(\mu), ..., W_k(\mu)\} > t\}$$

$$= \Pr\{W_1(\mu) > t, W_2(\mu) > t, ..., W_k(\mu) > t\}$$

$$= \Pr\{W_1(\mu) > t\} \Pr\{W_2(\mu) > t\} \cdots \Pr\{W_k(\mu) > t\}$$

$$(W_n(\mu)\text{'s are independent.})$$

$$= \exp\{-k\beta t\}.$$

$$(W_n(\mu)\text{'s are identically distributed with rate } \beta.)$$

Thus, if $X(\mu, t) = k$, then the time until the next machine breakdown is an exponentially distributed random variable with mean $1/(k\beta)$.

(b) Find the steady-state state probabilities p_i 's for $X(\mu, t)$.

Sol: Let $\gamma_{i,j}$ be the transition rate (of probability flow) at which $X(\mu, t)$ enters state j from state i. Then, we have

$$\gamma_{i,i+1} = \alpha \text{ for } i = 0, 1, ..., N - 1
\gamma_{i,i-1} = i\beta \text{ for } i = 1, 2, ..., N
\gamma_{i,j} = 0 \text{ otherwise.}$$

Using these transition rates, the global balance equations when $X(\mu, t)$ settles into steady state are given by

$$\alpha p_0 = \beta p_1$$

 $(\alpha + j\beta)p_j = \alpha p_{j-1} + (j+1)\beta p_{j+1} \text{ for } j = 1, 2, ..., N-1$
 $\alpha p_{N-1} = N\beta p_N.$

This set of global balance equations can be solved by first finding

$$p_j = \frac{\alpha}{i\beta} p_{j-1} = \frac{(\alpha/\beta)^j}{i!} p_0 \text{ for } j = 1, 2, ..., N$$

and then deriving

$$p_0 = \frac{1}{\sum_{j=0}^{N} \frac{(\alpha/\beta)^j}{j!}}$$

by using the identity $\sum_{j=0}^{N} p_j = 1$. Thus,

$$p_j = \frac{\frac{(\alpha/\beta)^j}{j!}}{\sum_{j=0}^N \frac{(\alpha/\beta)^j}{j!}} \text{ for } j = 0, 1, ..., N.$$

- (9) (6%) Let us consider a cell in a cellular phone system with the following system model:
 1) There are K channels available in the cell. 2) The interarrival times between initiating calls are independent and identically distributed (i.i.d.) and exponentially distributed with rate λ . 3) The (service) times that serviced calls occupy an assigned channel are i.i.d. and exponentially distributed with rate β . 4) Service times and interarrival times are mutually independent. Let us define the number of serviced calls as the state and model the single cell system as a mean-ergodic M/M/K/K queuing system. Assume that $\lambda < \beta$ and that the single cell system settles into steady state. Answer the following subquestions:
 - (a) (4%) Find the steady-state state probability of the event that there are k ($k \ge 0$) calls being serviced in terms of λ and β .
 - Sol: Let p_k denotes the steady-state state probability of the event that there are k calls being serviced. The global balance equations are given by

$$\lambda p_0 = \beta p_1$$

 $\lambda p_{j-1} + (j+1)\beta p_{j+1} = (\lambda + j\beta)p_j \quad j = 1, 2, ..., K-1$
 $\lambda p_{K-1} = K\beta p_K$

which have the solutions

$$p_j = \frac{\alpha^j}{j!} \left\{ \sum_{l=0}^K \frac{\alpha^l}{l!} \right\}^{-1} \text{ for } j = 0, 1, ..., K$$

with $\alpha = \frac{\lambda}{\beta}$.

- (b) (2%) Find the blocking probability that an initiating call finds no channel available and is rejected.
- Sol: Because an initiating call is blocked when it finds no channel available, the blocking probability is given by

$$p_{Block} = p_K = \frac{\alpha^K}{K!} \left\{ \sum_{l=0}^K \frac{\alpha^l}{l!} \right\}^{-1}.$$