Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Test 20

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(2 - \frac{1}{2}\right)\left(3 - \frac{1}{3}\right)\left(4 - \frac{1}{4}\right): 15 = \frac{4 - 1}{2} \cdot \frac{9 - 1}{3} \cdot \frac{16 - 1}{4}: 15 = 15: 15 = 1$	3p 2p
		<i>2</i> p
2.	$f(x)-f(-x) = x^2 + 5 - ((-x)^2 + 5) =$	3p
	$= x^2 + 5 - x^2 - 5 = 0$, pentru orice număr real x	2p
3.	$4x-3=2x+1 \Rightarrow 2x=4$	3р
	x = 2, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Soluțiile ecuației $x^2 - 3x + 2 = 0$ sunt 1 și 2, care aparțin mulțimii A, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	1p
5.	$m_{AB} = \frac{0-3}{3-0} = -1$	2p
	Ecuația dreptei care trece prin $O(0,0)$ și este paralelă cu dreapta AB este $y=-x$	3 p
6.	$\mathcal{A}_{ABCD} = \frac{AC \cdot BD}{2} = \frac{6 \cdot 4}{2} =$	3р
	=12	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$B(0) = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix} \Rightarrow \det(B(0)) = \begin{vmatrix} 3 & -2 \\ 5 & -3 \end{vmatrix} = 3 \cdot (-3) - (-2) \cdot 5 =$	3p
	=-9+10=1	2 p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	3p
	$A \cdot A + I_2 = \begin{pmatrix} -1+1 & 0 \\ 0 & -1+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
c)	$B(x) = A - xI_2 = \begin{pmatrix} 3 - x & -2 \\ 5 & -3 - x \end{pmatrix} \Rightarrow \det(B(x)) = \begin{vmatrix} 3 - x & -2 \\ 5 & -3 - x \end{vmatrix} = -9 + x^2 + 10 =$	3 p
	$= x^2 + 1 \ge 1$, pentru orice număr real x	2 p
2.a)	$2020*(-1) = 2020\cdot(-1) + 2020 + (-1) + 4 =$	3р
	=-1+4=3	2 p
b)	x * y = xy + x + y + 1 + 3 =	3 p
	=x(y+1)+(y+1)+3=(x+1)(y+1)+3, pentru orice numere reale x și y	2p

Probă scrisă la matematică *M_tehnologic*

Test 20

Ī	c)	(m+1)(n+1)+3=2	2p	1
		(m+1)(n+1) = -1 și, cum m și n sunt numere întregi, obținem $(-2,0)$ și $(0,-2)$	3 p	

SUBIECTUL al III-lea (30 de puncte				
1.a)	$f'(x) = 8x^3 - 8x =$	3 p		
	$=8x(x^{2}-1)=8x(x-1)(x+1), x \in \mathbb{R}$	2p		
b)	f(1) = -5, $f'(1) = 0$	2p		
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -5$	3 p		
c)	$f'(-1) = f'(0) = f'(1) = 0$, $x \in [-1,0] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-1,0]$ și	2n		
	$x \in [0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[0,1]$	3p		
	Cum $f(-1) = f(1) = -5$ și $f(0) = -3 \Rightarrow -5 \le f(x) \le -3$, pentru orice $x \in [-1,1]$	2p		
2.a)	$\int_{1}^{4} \left(f(x) + \sqrt{x} \right) dx = \int_{1}^{4} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{4} =$	3p		
	$=\frac{64}{3}-\frac{1}{3}=21$	2p		
b)	$F'(x) = \left(\frac{x^3}{3} - \frac{2}{3} \cdot x^{\frac{3}{2}} + 2020\right)' = \frac{3x^2}{3} - \frac{2}{3} \cdot \frac{3}{2} \cdot x^{\frac{1}{2}} =$	3p		
	$=x^2-\sqrt{x}=f(x)$, pentru orice $x\in(0,+\infty)$, deci F este o primitivă a funcției f	2 p		
c)	$\int_{1}^{2} \left(f(x) + \sqrt{x} \right) e^{x} dx = \int_{1}^{2} x^{2} e^{x} dx = x^{2} e^{x} \begin{vmatrix} 2 - \frac{2}{1} \\ 1 - \frac{2}{1} \end{vmatrix} 2xe^{x} dx = 4e^{2} - e - 2\left(xe^{x} \begin{vmatrix} 2 - \frac{2}{1} \\ 1 - \frac{2}{1} \end{vmatrix} e^{x} dx \right) = 0$	3p		
	$=4e^{2}-e-2(2e^{2}-e)+2e^{x}\Big _{1}^{2}=2e^{2}-e=e(2e-1)$	2p		