Package 'GeoTox'

November 15, 2024

```
Title Spatiotemporal Mixture Risk Assessment
Version 0.2.0
Description Connecting spatiotemporal exposure to individual and
      population-level risk via source-to-outcome continuum modeling. The package,
      methods, and case-studies are described in Messier, Reif, and Marvel (2024)
      <doi:10.1101/2024.09.23.24314096> and Eccles et al. (2023)
      <doi:10.1016/j.scitotenv.2022.158905>.
License MIT + file LICENSE
URL https://niehs.github.io/GeoTox/, https://github.com/NIEHS/GeoTox
Depends R (>= 4.4.0)
Imports dplyr, ggplot2, ggridges, rlang, sf, stats, stringr, tibble,
      tidyr, tidyselect, truncnorm, utils
Suggests ggpubr, httk, httr2, knitr, purrr, readr, readxl, rmarkdown,
      scales, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
BugReports https://github.com/NIEHS/GeoTox/issues
NeedsCompilation no
Author Skylar Marvel [aut] (<a href="https://orcid.org/0000-0002-2971-9743">https://orcid.org/0000-0002-2971-9743</a>),
      David Reif [aut] (<a href="https://orcid.org/0000-0001-7815-6767">https://orcid.org/0000-0001-7815-6767</a>),
      Kyle Messier [cre, aut] (<a href="https://orcid.org/0000-0001-9508-9623">https://orcid.org/0000-0001-9508-9623</a>),
      Spatiotemporal Exposures and Toxicology Group [cph]
Maintainer Kyle Messier < kyle.messier@nih.gov>
Repository CRAN
Date/Publication 2024-11-15 14:20:02 UTC
```

2 calculate_response

Contents

	calculate_response	2
	calc_concentration_response	3
	calc_independent_action	4
	calc_internal_dose	
	calc_invitro_concentration	7
	compute_sensitivity	8
	fit_hill	9
	GeoTox	10
	geo_tox_data	11
	get_fixed_age	12
	get_fixed_css	12
	get_fixed_obesity	13
	get_fixed_other	14
	get_fixed_params	15
	hill_conc	15
	hill_val	16
	plot_exposure	17
	plot_hill	18
	plot_resp	19
	plot_sensitivity	20
	resp_quantiles	21
	sample_Css	23
	sensitivity_analysis	
	set_boundaries	25
	set_hill_params	26
	simulate_age	26
	simulate_exposure	
	simulate_inhalation_rate	28
	simulate_obesity	
	simulate_population	30
Index		32

calculate_response Calculate response

Description

Calculate mixture response for GeoTox population data

Usage

```
calculate_response(x, ...)
```

Arguments

- x GeoTox object
- ... additional arguments passed to other functions. See details.

Details

Additional parameters include time, BW, and scaling for calc_internal_dose, and max_mult for calc_concentration_response.

Value

The same object with additional fields added or updated

See Also

calc_internal_dose, calc_invitro_concentration, calc_concentration_response

Examples

```
# Use a subset of the package data for demonstration purposes
set.seed(2357)
n <- 10 # Population size
m <- 5 # Number of regions
idx <- if (m < 100) sample(1:100, m) else 1:100
# Create GeoTox object and populate required fields
geoTox <- GeoTox() |>
  # Simulate populations for each region
  simulate_population(age = split(geo_tox_data$age, ~FIPS)[idx],
                      obesity = geo_tox_data$obesity[idx, ],
                      exposure = split(geo_tox_data$exposure, ~FIPS)[idx],
                      simulated_css = geo_tox_data$simulated_css,
                      n = n) >
  # Estimated Hill parameters
  set_hill_params(geo_tox_data$dose_response |>
                    fit_hill(assay = "endp", chem = "casn") |>
                    dplyr::filter(!tp.sd.imputed, !logAC50.sd.imputed))
# Response computations can now be done
geoTox <- geoTox |> calculate_response()
```

calc_concentration_response

Calculate the mixture response from one of three different approaches: IA, GCA, or Hazard Quotient

Description

Calculate the combined response of multiple chemicals. It calculates the generalized concentration addition response, the independent action response, and a hazard quotient

Usage

```
calc_concentration_response(
   C_invitro,
   hill_params,
   max_mult = 1.5,
   fixed = FALSE
)
```

Arguments

Value

list of data frames

Examples

```
calc_independent_action
```

Independent Action

Description

Calculate independent action response for a set of chemicals with Hill concentration-response curves.

Usage

```
calc_independent_action(conc, max, AC50, Emax, n = 1)
```

Arguments

conc	concentrations in regular space
max	maximal (asymptotic) responses
AC50	concentrations of half-maximal response
Emax	maximum mixture response
n	Hill coefficients (slopes)

Details

The concentration is computed as:

$$IA = E_{max} \times \left(1 - \prod_i \left(1 - \frac{x_i}{E_{max}}\right)\right),$$

where $x_i = hill_val(conc_i, max_i, AC50_i, n_i)$ is the Hill model response function for each chemical.

Value

response value

See Also

hill_val

```
n_chem <- 5
conc <- 10^sample(-1:4, n_chem, replace = TRUE)
max <- 80 * runif(n_chem)
AC50 <- 10^(5 * runif(n_chem) - 1)
Emax <- 100
calc_independent_action(conc, max, AC50, Emax)</pre>
```

6 calc_internal_dose

calc_internal_dose

Calculate internal chemical dose

Description

Estimate the internal dose from inhalation of a chemical given inhalation rate, time, and body weight

Usage

```
calc_internal_dose(C_ext, IR, time = 1, BW = 1, scaling = 1)
```

Arguments

C_ext	ambient chemical concentration in $\frac{mg}{m^3}$
IR	inhalation rate in $\frac{m^3}{day}$
time	total time in days
BW	body weight in kg
scaling	scaling factor encompassing any required unit adjustments

Details

Input C_ext must be a matrix or list of matrices. Input IR must be an atomic vector or list of atomic vectors. The time, BW and scaling arguments are scalars.

The internal dose is calculated as:

$$D_{int} = \frac{C_{ext} \times IR \times time}{BW} \times scaling$$

Value

list of matrices containing internal chemical doses in $\frac{mg}{kg}$

```
# Single population
C_ext <- matrix(1:15, ncol = 3)
IR <- 1:5
calc_internal_dose(C_ext, IR)

# Multiple populations
C_ext <- list(
    "a" = matrix(1:15 / 10, ncol = 3),
    "b" = matrix(1:8, ncol = 2)
)
IR <- list(1:5, 1:4 / 2)
calc_internal_dose(C_ext, IR)</pre>
```

calc_invitro_concentration

Calculate in vitro concentration

Description

Estimate the *in vitro* equivalent plasma concentration given internal chemical dose and steady-state plasma concentration.

Usage

```
calc_invitro_concentration(D_int, C_ss = NULL)
```

Arguments

D_int	internal chemical dose in $\frac{mg}{kg}$
C_ss	steady-state plasma concentration in $\frac{\mu M}{mg/kg}$

Details

Input D_int must be a matrix or list of matrices. Input C_ss must be a numeric atomic vector or matrix, or a list of those types.

The in vitro equivalent plasma concentration is calculated as:

$$C_{plasma} = C_{ss} \times D_{int}$$

Value

list of matrices containing concentrations in μM

```
# Single population
D_int <- matrix(1:15, ncol = 3)
C_ss <- 1:5
calc_invitro_concentration(D_int, C_ss)

# Multiple populations
D_int <- list(
    "a" = matrix(1:15 / 10, ncol = 3),
    "b" = matrix(1:8, ncol = 2)
)
C_ss <- list(1:5, 1:4 / 2)
calc_invitro_concentration(D_int, C_ss)</pre>
```

8 compute_sensitivity

compute_sensitivity Compute response sensitivity to parameter variation.

Description

Compute response sensitivity to parameter variation.

Usage

```
compute_sensitivity(
    x,
    vary = c("age", "obesity", "css_params", "fit_params", "C_ext"),
    max_mult = NULL
)
```

Arguments

```
x GeoTox object.
vary which parameter to vary.
max_mult input for calc_concentration_response step.
```

Value

output from calc_concentration_response

```
# Use a subset of the package data for demonstration purposes
set.seed(2357)
n <- 10 # Population size
m <- 5 # Number of regions
idx <- if (m < 100) sample(1:100, m) else 1:100
# Create GeoTox object and populate required fields
geoTox <- GeoTox() |>
  # Simulate populations for each region
  simulate_population(age = split(geo_tox_data$age, ~FIPS)[idx],
                      obesity = geo_tox_data$obesity[idx, ],
                      exposure = split(geo_tox_data$exposure, ~FIPS)[idx],
                      simulated_css = geo_tox_data$simulated_css,
                      n = n) >
  # Estimated Hill parameters
  set_hill_params(geo_tox_data$dose_response |>
                    fit_hill(assay = "endp", chem = "casn") |>
                    dplyr::filter(!tp.sd.imputed, !logAC50.sd.imputed))
# Sensitivity computations can now be done
age_resp <- geoTox |> compute_sensitivity()
obesity_resp <- geoTox |> compute_sensitivity(vary = "obesity")
```

fit_hill 9

fit_hill

Fit 2- or 3-parameter Hill model

Description

Fit 2- or 3-parameter Hill model

Usage

```
fit_hill(
    x,
    conc = "logc",
    resp = "resp",
    fixed_slope = TRUE,
    chem = NULL,
    assay = NULL
)
```

Arguments

x data frame of dose response data.

conc column name of base-10 log scaled concentration.

resp column name of response. fixed_slope if TRUE, slope is fixed at 1.

chem (optional) column name of chemical identifiers. assay (optional) column name of assay identifiers.

Details

Optional chem and assay identifiers can be used to fit multiple chemicals and/or assays. Returned columns tp is the top asymptote and logAC50 is the 50% response concentration. If the computation of the standard deviations of these two parameters fails, then the standard deviation is set equal to the parameter estimate and is indicated by the respective imputed flag being TRUE.

Value

data frame of fit parameters.

```
# Multiple assays, multiple chemicals
df <- geo_tox_data$dose_response
fit_hill(df, assay = "endp", chem = "casn")

# Single assay, multiple chemicals
df <- geo_tox_data$dose_response |>
    dplyr::filter(endp == "TOX21_H2AX_HTRF_CHO_Agonist_ratio")
```

10 GeoTox

GeoTox

GeoTox S3 object

Description

An S3 object that can be used to help organize the data and results of a GeoTox analysis.

Usage

```
GeoTox()
## S3 method for class 'GeoTox'
plot(x, type = c("resp", "hill", "exposure", "sensitivity"), ...)
```

Arguments

```
x GeoTox object.type type of plot.... arguments passed to subsequent methods.
```

Value

```
a GeoTox S3 object
```

See Also

```
plot_resp, plot_hill, plot_exposure, plot_sensitivity
```

```
# Use a subset of the package data for demonstration purposes
set.seed(2357)
n <- 10 # Population size
m <- 5 # Number of regions
idx <- if (m < 100) sample(1:100, m) else 1:100

geoTox <- GeoTox() |>
    # Set region and group boundaries (for plotting)
    set_boundaries(region = geo_tox_data$boundaries$county,
```

geo_tox_data 11

```
group = geo_tox_data$boundaries$state) |>
  # Simulate populations for each region
  simulate_population(age
                                   = split(geo_tox_data$age, ~FIPS)[idx],
                                   = geo_tox_data$obesity[idx, ],
                     obesity
                     exposure = split(geo_tox_data$exposure, ~FIPS)[idx],
                      simulated_css = geo_tox_data$simulated_css,
                                   = n) |>
  # Estimated Hill parameters
  set_hill_params(geo_tox_data$dose_response |>
                    fit_hill(assay = "endp", chem = "casn") |>
                    dplyr::filter(!tp.sd.imputed, !logAC50.sd.imputed)) |>
  # Calculate response
  calculate_response() |>
  # Perform sensitivity analysis
  sensitivity_analysis()
# Print GeoTox object
geoTox
# Plot hill fits
plot(geoTox, type = "hill")
# Plot exposure data
plot(geoTox, type = "exposure", ncol = 5)
# Plot response data
plot(geoTox)
plot(geoTox, assays = "TOX21_H2AX_HTRF_CH0_Agonist_ratio")
# Plot sensitivity data
plot(geoTox, type = "sensitivity")
plot(geoTox, type = "sensitivity", assay = "TOX21_H2AX_HTRF_CHO_Agonist_ratio")
```

geo_tox_data

GeoTox Data

Description

Sample data for use in vignettes and function examples. See the Package Data vignette, vignette("package_data", package = "GeoTox"), for details on how this data was gathered.

Usage

```
geo_tox_data
```

Format

A list with items:

exposure 2019 AirToxScreen exposure concentrations for a subset of chemicals in North Carolina counties.

dose_response Subset of chemicals curated by ICE cHTS as active within a set of assays.

12 get_fixed_css

age County population estimates for 7/1/2019 in North Carolina.

obesity CDC PLACES obesity data for North Carolina counties in 2020.

simulated_css Simulated steady-state plasma concentrations for various age groups and obesity status combinations.

boundaries County and state boundaries for North Carolina in 2019.

get_fixed_age

Get C_ss Data for Fixed Age

Description

```
Get C_ss Data for Fixed Age
```

Usage

```
get_fixed_age(simulated_css, age)
```

Arguments

age list of atomic vectors containing ages.

Value

list of matrices containing median C_ss values.

Examples

get_fixed_css

Get Fixed C_ss Data

Description

Get C_ss values for use in sensitivity_analysis and compute_sensitivity.

Usage

```
get_fixed_css(simulated_css, age, obesity, C_ss)
```

get_fixed_obesity 13

Arguments

```
simulated_css list of pre-generated C_ss data, for details see: vignette("package_data", package = "GeoTox").

age list of atomic vectors containing ages.

obesity list of atomic vectors containing obesity status.

C_ss list of matrices containing C_ss values.
```

Value

list of matrices or atomic vectors containing C_ss values.

Examples

get_fixed_obesity

Get C_ss Data for Fixed Obesity Status

Description

Get C_ss Data for Fixed Obesity Status

Usage

```
get_fixed_obesity(simulated_css, obesity)
```

Arguments

Value

list of matrices containing median C_ss values.

14 get_fixed_other

Examples

 get_fixed_other

Get median C_ss Values

Description

Get median C_ss Values

Usage

```
get_fixed_other(C_ss)
```

Arguments

 C_s

list of matrices containing C_ss data

Value

list of atomic vectors containing median C_ss values.

get_fixed_params 15

	£:	
get_	.тıxea.	_params

Get C_ss Data for Fixed C_ss Generation Parameters

Description

Get C_ss Data for Fixed C_ss Generation Parameters

Usage

```
get_fixed_params(simulated_css, age)
```

Arguments

```
simulated_css list of pre-generated C_ss data, for details see: vignette("package_data",
```

package = "GeoTox").

age list of atomic vectors containing ages.

Value

list of matrices containing C_ss values.

Examples

```
\label{eq:get_fixed_params} $$ \gcd_{css} = \gcd_{tox_{data}} simulated_{css}, $$ age = list(c(25, 35, 55), c(15, 60))) $$
```

hill_conc

Hill model concentration

Description

Calculate the concentration in regular space for a given response value.

Usage

```
hill_conc(resp, max, AC50, n)
```

Arguments

resp	response value
1 656	response varae

max maximal (asymptotic) response

AC50 concentration of half-maximal response

n Hill coefficient (slope)

16 hill_val

Details

This is a regular space version of tcpl::tcplHillConc().

The concentration is computed as:

$$conc = AC50*(\frac{max}{resp} - 1)^{-1/n}$$

Value

concentration in regular space

See Also

hill_val

Examples

```
\label{eq:hill_conc} \begin{array}{lllll} hill\_conc(c(0.2,\ 0.5,\ 0.75),\ 1,\ 0.01,\ 1) \\ hill\_conc(c(0.2,\ 0.5,\ 0.9),\ 1,\ c(0.1,\ 0.01,\ 0.001),\ 2) \end{array}
```

hill_val

Hill model response

Description

Calculate the response for a given concentration in regular space.

Usage

```
hill_val(conc, max, AC50, n)
```

Arguments

conc concentration in regular space max maximal (asymptotic) response

AC50 concentration of half-maximal response

n Hill coefficient (slope)

Details

This is a regular space version of tcpl::tcplHillVal().

The Hill model is defined as:

$$resp = \frac{max}{1 + (\frac{AC50}{conc})^n}$$

Value

response value

plot_exposure 17

See Also

```
hill_conc
```

Examples

```
hill_val(c(0.0025, 0.01, 0.03), 1, 0.01, 1)
hill_val(c(0.05, 0.01, 0.003), 1, c(0.1, 0.01, 0.001), 2)
```

plot_exposure

Plot exposure data.

Description

Plot exposure data.

Usage

```
plot_exposure(
  exposure,
  region_boundary,
  group_boundary = NULL,
  chem_label = "chnm",
  ncol = 2
)
```

Arguments

```
exposure list of exposure data named by region label.

region_boundary

"sf" data.frame mapping features to a "geometry" column. Used to color regions.

group_boundary (optional) "sf" data.frame containing a "geometry" column. Used to draw outlines.

chem_label label for facet_wrap.

ncol number of columns to wrap.
```

Value

ggplot2 object.

```
# Load package data
exposure <- split(geo_tox_data$exposure, ~FIPS)
region_boundary <- geo_tox_data$boundaries$county
group_boundary <- geo_tox_data$boundaries$state
# Plot county exposure data</pre>
```

18 plot_hill

plot_hill

Plot Hill equation fits.

Description

Plot Hill equation fits.

Usage

```
plot_hill(hill_params, xlim = c(-1, 4))
```

Arguments

```
hill_params output from fit_hill.

xlim log-10 scaled concentration limits.
```

Value

ggplot2 object.

plot_resp 19

plot_resp

Plot response data

Description

Plot response data

Usage

```
plot_resp(
   df,
   region_boundary,
   group_boundary = NULL,
   assay_quantiles = c(Median = 0.5),
   summary_quantiles = c(`10th percentile` = 0.1)
)
```

Arguments

```
df output from resp_quantiles.

region_boundary

"sf" data.frame mapping features to a "geometry" column. Used to color map regions.

group_boundary

"sf" data.frame containing a "geometry" column. Used to draw outlines around groups of regions.

assay_quantiles

named numeric vector of assay quantile labels.

summary_quantiles

named numeric vector of summary quantile labels.
```

Value

ggplot2 object.

```
# Use example boundary data from package
region_boundary <- geo_tox_data$boundaries$county
group_boundary <- geo_tox_data$boundaries$state
n <- nrow(region_boundary)</pre>
```

20 plot_sensitivity

```
# Single assay quantile
df <- data.frame(id = region_boundary$FIPS,</pre>
                 metric = "GCA.Eff",
                 assay_quantile = 0.5,
                 value = runif(n)^3
# Default plot
plot_resp(df, region_boundary)
# Add group boundary, a state border in this case
plot_resp(df, region_boundary, group_boundary)
# Change quantile label
plot_resp(df, region_boundary, group_boundary,
          assay_quantiles = c("Q50" = 0.5))
# Multiple assay quantiles
df <- data.frame(id = rep(region_boundary$FIPS, 2),</pre>
                 metric = "GCA.Eff",
                 assay_quantile = rep(c(0.25, 0.75), each = n),
                 value = c(runif(n)^3, runif(n)^3 + 0.15)
plot_resp(df, region_boundary, group_boundary,
          assay_quantiles = c("Q25" = 0.25, "Q75" = 0.75))
# Summary quantiles
df <- data.frame(id = rep(region_boundary$FIPS, 4),</pre>
                 assay_quantile = rep(rep(c(0.25, 0.75), each = n), 2),
                 summary_quantile = rep(c(0.05, 0.95), each = n * 2),
                 metric = "GCA.Eff",
                 value = c(runif(n)^3, runif(n)^3 + 0.15,
                           runif(n)^3 + 0.7, runif(n)^3 + 0.85)
plot_resp(df, region_boundary, group_boundary,
          assay_quantiles = c("A_Q25" = 0.25, "A_Q75" = 0.75),
          summary_quantiles = c("S_Q05" = 0.05, "S_Q95" = 0.95))
```

plot_sensitivity

Plot results of sensitivity analysis.

Description

Plot results of sensitivity analysis.

Usage

```
plot_sensitivity(
    x,
    metric = "GCA.Eff",
    assay = NULL,
    y = "",
    xlab = metric,
    ylab = ""
)
```

resp_quantiles 21

Arguments

```
x GeoTox object.

metric metric to plot. Valid choices are "GCA.Eff", "IA.Eff", "GCA.HQ.10", and "IA.HQ.10".

assay which assay to plot, if multiple exist.

y y value or text for bottom of ridge plot.

xlab x-axis label.

ylab y-axis label.
```

Value

ggplot2 object.

Examples

resp_quantiles

Get response quantiles

Description

Get response quantiles

Usage

```
resp_quantiles(
  resp,
  metric = c("GCA.Eff", "IA.Eff", "GCA.HQ.10", "IA.HQ.10"),
  assays = NULL,
  assay_summary = FALSE,
```

resp_quantiles

```
assay_quantiles = c(Median = 0.5),
summary_quantiles = c(`10th percentile` = 0.1)
)
```

Arguments

```
resp calculated mixture response output from calc_concentration_response.

metric response metric, one of "GCA.Eff", "IA.Eff", "GCA.HQ.10" or "IA.HQ.10".

assays assays to summarize. If NULL and multiple assays exist, then the first assay is used.

assay_summary boolean indicating whether to summarize across assays.

assay_quantiles numeric vector of assay quantiles.

summary_quantiles numeric vector of quantiles to compute across all assay quantiles.
```

Details

The columns of the returned data frame will vary based on the inputs. If assays is specified and assay_summary is FALSE, then the resulting data frame will have an assay column. If assay_summary is TRUE, then the data frame will have an summary_quantile column.

Value

data frame with computed response quantiles.

```
# Dummy response data
resp <- list(</pre>
 "r1" = data.frame(assay = c("a1", "a1", "a2", "a2"),
                    sample = c(1, 2, 1, 2),
                    GCA.Eff = c(1, 2, 3, 4),
                    IA.Eff = c(5, 6, 7, 8),
                    "GCA.HQ.10" = c(9, 10, 11, 12),
                    "IA.HQ.10" = c(13, 14, 15, 16))
# Summarize single assay
resp_quantiles(resp)
# Specify assay
resp_quantiles(resp, assays = "a1")
# Specify quantiles
resp_quantiles(resp, assays = "a1", assay_quantiles = c(0.25, 0.75))
# Specify metric
resp_quantiles(resp, assays = "a1", metric = "IA.HQ.10")
# Summarize across assays
resp_quantiles(resp, assay_summary = TRUE)
# Specify quantiles
suppressWarnings(
```

sample_Css 23

sample_Css

Sample from pre-generated C_ss data

Description

Sample from pre-generated C_ss data

Usage

```
sample_Css(simulated_css, age, obesity)
```

Arguments

Value

list of matrices containing C_ss values. Columns are sorted to have consistent order across functions.

24 sensitivity_analysis

Description

Perform sensitivity analysis

Usage

```
sensitivity_analysis(x, max_mult = list(NULL, NULL, NULL, 1.2, NULL))
```

Arguments

```
x GeoTox object.
```

max_mult numeric list of length 5 for each step of the sensitivity analysis.

Details

This wrapper function will sequentially call the compute_sensitivity function with inputs age, obesity, css_params, fit_params, and C_ext. The results will be returned as a named list and stored in the sensitivity field of the input GeoTox object.

Values of NULL in the max_mult input will use the default value stored in the GeoTox object (x*par*resp*max_mult). When a GeoTox object is created this is initialized at 1.5, but can be changed via the calculate response function or directly in the object.

Value

The same GeoTox object with added sensitivity field.

See Also

```
compute_sensitivity
```

set_boundaries 25

set_boundaries

Set GeoTox boundaries

Description

Set GeoTox boundaries

Usage

```
set_boundaries(x, region = NULL, group = NULL)
```

Arguments

x GeoTox object.

region "sf" data.frame mapping features to a "geometry" column. Used when coloring

map regions.

group "sf" data.frame containing a "geometry" column. Used to draw outlines around

groups of regions.

Value

same GeoTox object with boundaries set.

26 simulate_age

set_hill_params

Set Hill parameters for a GeoTox object.

Description

Set Hill parameters for a GeoTox object.

Usage

```
set_hill_params(x, hill_params)
```

Arguments

```
x GeoTox object.
hill_params output of fit_hill.
```

Value

same GeoTox object with Hill parameters set.

Examples

```
hill_params <- geo_tox_data$dose_response |>
  fit_hill(chem = "casn", assay = "endp") |>
  dplyr::filter(!tp.sd.imputed, !logAC50.sd.imputed)

geoTox <- GeoTox() |>
  set_hill_params(hill_params)
```

simulate_age

Simulate ages

Description

Simulate ages

Usage

```
simulate_age(x, n = 1000)
```

Arguments

x data frame or list of data frames containing population data for age groups. Each

data frame must contain columns "AGEGRP" and "TOT_POP".

n simulated sample size.

simulate_exposure 27

Details

Each data frame must contain 19 rows. The first row represents the total population of all age groups while the next 18 rows represent age groups from 0 to 89 in increments of 5 years.

Value

List of arrays containing simulated ages.

Examples

```
# Single data frame
x <- data.frame(AGEGRP = 0:18, TOT_POP = 0)
# populate only age range 40-44, set population total of all ages
x$TOT_POP[c(1, 10)] <- 100
simulate_age(x, 5)

# List of 2 data frames
y <- data.frame(AGEGRP = 0:18, TOT_POP = 0)
# populate age ranges 5-9 and 50-54
y$TOT_POP[c(3, 12)] <- 10
# set population total for all age groups
y$TOT_POP[1] <- sum(y$TOT_POP)
simulate_age(list(x = x, y = y), 15)</pre>
```

simulate_exposure

Simulate external exposure

Description

Simulate external exposure

Usage

```
simulate_exposure(
   x,
   expos_mean = "mean",
   expos_sd = "sd",
   expos_label = "casn",
   n = 1000
)
```

Arguments

```
    x data frame or list of data frames containing exposure data.
    expos_mean column name of mean values.
    expos_sd column name of standard deviations.
    expos_label column name of labeling term, required if x has more than one row.
    n simulated sample size.
```

Value

list of matrices containing inhalation rates. Matrix columns are named using the values in the expos_label column for more than one data frame row. Columns are sorted to have consistent order across functions.

Examples

simulate_inhalation_rate

Simulate inhalation rates

Description

Simulate inhalation rates

Usage

```
simulate_inhalation_rate(x, IR_params = NULL)
```

Arguments

x atomic vector or list of atomic vectors containing ages.

IR_params (optional) data frame with columns "age", "mean" and "sd". See details for more information.

Details

The age column of the optional IR_params data frame should be in ascending order and represent the lower value of age groups for the corresponding mean and sd values. When not provided, the default values will come from Table 6.7 of EPA's 2011 Exposure Factors Handbook using the mean of male and female values.

simulate_obesity 29

Value

List of atomic vectors containing inhalation rates.

Examples

simulate_obesity

Simulate obesity status

Description

Simulate obesity status

Usage

```
simulate_obesity(
   x,
   obes_prev = "OBESITY_CrudePrev",
   obes_sd = "OBESITY_SD",
   obes_label = "FIPS",
   n = 1000
)
```

Arguments

```
x data frame containing obesity data as a percentage from 0 to 100.

obes_prev column name of prevalence.

obes_sd column name of standard deviation.

obes_label column name of labeling term, required if x has more than one row.

n simulated sample size.
```

30 simulate_population

Value

List of arrays containing simulated obesity status.

Examples

simulate_population

Simulate population data

Description

Simulate population data for given input fields

Usage

```
simulate_population(
    x,
    age = NULL,
    obesity = NULL,
    exposure = NULL,
    simulated_css = NULL,
    ...
)
```

Arguments

```
x GeoTox object.

age input x to function simulate_age. After simulating ages, the inhalation rate is subsequently calculated using simulate_inhalation_rate.

obesity input x to function simulate_obesity.

exposure input x to function simulate_exposure.

simulated_css input simulated_css to functions sample_Css and get_fixed_css.

... additional arguments passed to other functions. See details.
```

simulate_population 31

Details

Additional parameters include n for sample size, IR_params for simulate_inhalation_rate, obes_prev, obes_sd, and obes_label for simulate_obesity, and expos_mean, expos_sd, and expos_label for simulate_exposure.

Value

The same object with simulated fields added.

Index

```
* datasets
    geo_tox_data, 11
calc_concentration_response, 3, 3, 8, 22
calc_independent_action, 4
calc_internal_dose, 3, 6
calc_invitro_concentration, 3, 7
calculate_response, 2, 24
compute_sensitivity, 8, 12, 24
fit_hill, 9, 18, 26
geo_tox_data, 11
GeoTox, 10
get_fixed_age, 12
get_fixed_css, 12, 30
get_fixed_obesity, 13
get_fixed_other, 14
get_fixed_params, 15
hill_conc, 15, 17
hill_val, 5, 16, 16
plot.GeoTox (GeoTox), 10
plot_exposure, 10, 17
plot_hill, 10, 18
plot_resp, 10, 19
plot_sensitivity, 10, 20
resp_quantiles, 19, 21
sample_Css, 23, 30
sensitivity_analysis, 12, 24
set_boundaries, 25
set\_hill\_params, 26
simulate_age, 26, 30
simulate_exposure, 27, 30, 31
simulate_inhalation_rate, 28, 30, 31
simulate_obesity, 29, 30, 31
simulate_population, 30
```