Notas de las notas de mate 5:

Funciones de singularidad

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

Rampa unitaria:
$$r(t) = \begin{cases} 0 & t \leq 0 \\ t & t > 0 \end{cases}$$

notar:
$$r(t) = \int_{-\infty}^{t} u(s)ds$$

Parábola unitaria:
$$p(t) = \begin{cases} 0 & t \leq 0 \\ \frac{t^2}{2} & t > 0 \end{cases}$$

$$p(t) = \int_{-\infty}^{t} r(s)ds$$

notar

Pulso unitario:
$$\Pi(t) = \begin{cases} 1 & |\mathbf{t}| \le \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$

Triangular unitaria:
$$A(t) = \begin{cases} 1 - |t| & |t| < 1 \\ 0 & |t| \ge 1 \end{cases}$$

Son funciones de singularidad porque en algún punto del dominio no existen las derivadas de algún orden.

Energía y potencia

Señales de energía:

$$Ex = \lim_{t \to +\infty} \int_{-T}^{T} |x(t)|^2 dt \text{ donde } 0 < Ex < \infty$$

Señales de potencia:

$$Px = \begin{array}{cc} l \acute{n} m & \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \text{ donde } 0 < Px < \infty \end{array}$$

Propiedades de señales de energía y potencia:

Desplazamiento:

sea $y(t) = x(t+t_0)$ con x(t) señal de energía se puede probar entonces que $E_y = E_x$ sea $y(t) = x(t+t_0)$ con x(t) señal de potencia se puede probar entonces que $P_y = P_x$

Efecto de escalamiento por un $\alpha \neq 0$:

supongamos x una señal de energía con energía Ex se puede probar que

si
$$y(t) = x(\alpha t)$$
 entonces $Ey = \frac{Ex}{|\alpha|}$

supongamos x una señal de potencia con potencia Px se puede probar

si
$$y(t) = x(\alpha t)$$
 entonces $Py = Px$

Funciones generalizadas empieza en la nota 1 página 16 hasta el final de la nota lo dejo para leer después pero dejo un ejemplo útil:

1

Ejemplo 18 Evaluemos la siguiente integral:

$$\int_{a}^{b} \delta^{(n)}(t-\tau)g(t)dt,$$

siendo g(t) una función n veces derivable con continuidad. Supondremos además que $a \neq \tau \neq b$. Consideremos la función

$$\chi_{(a,b)}(t) = \begin{cases} 1 & \text{si} \quad t \in (a,b) \\ 0 & \text{en otro caso} \end{cases}$$

Entonces $\chi_{(a,b)}(t)g(t)$ es una función n-veces derivable con continuidad, salvo en los puntos a y b, donde no es continua. Por tanto, de acuerdo con lo dicho anteriormente, tenemos

$$\int_{a}^{b} \delta^{(n)}(t-\tau)g(t)dt = \int_{-\infty}^{\infty} \delta^{(n)}(t-\tau)\chi_{(a,b)}(t)g(t)dt
= (-1)^{n} \int_{-\infty}^{\infty} \delta(t-\tau)\chi_{(a,b)}(t)g^{(n)}(t)dt
= (-1)^{n}\chi_{(a,b)}(t)g^{(n)}(t)|_{t=\tau}
= \begin{cases} (-1)^{n}g^{(n)}(\tau) & \text{si } \tau \in (a,b) \\ 0 & \text{en otro caso} \end{cases}$$
(29)

Aquí hemos utilizado el hecho que $(\chi_{(a,b)}g)^{(n)}(t) = \chi_{(a,b)}(t)g^{(n)}(t) \ \forall t \neq a,b.$

Nota 2:

Serie exponencial de Fourier:

$$x(t) \sim \sum_{k \in \mathbb{Z}} X_k e^{ik\omega_0 t}$$

donde:

$$X_k = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) e^{-ik\omega_0 t} dt \ \forall k \in \mathbb{Z}$$

Igualdad de parserval para la exponencial de fourier:

$$\sum_{k \in \mathbb{Z}} |X_k|^2 = \frac{1}{T} \int_{t_0}^{t_0 + T} |x(t)|^2 dt$$

Serie trigonométrica:

$$a_0 = \int_{t_0}^{t_0+T} x(t) dt$$

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) cos(n\omega_0 t) dt \ n \in \mathbb{N}$$

$$a_0 = \int_{t_0}^{t_0+T} x(t)dt$$

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t)cos(n\omega_0 t)dt \ n \in \mathbb{N}$$

$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t)sen(n\omega_0 t)dt \ n \in \mathbb{N}$$

En cuanto a la igualdad de parserval:

$$|a_0|^2 + \sum_{n \in \mathbb{N}} |a_n|^2 + |b_n|^2 = \frac{2}{T} \int_{t_0}^{t_0 + T} |x(t)|^2 dt$$

Coeficientes de las series exponencial:

Desplazamiento τ :

Sea x(t) periódica de período T y supongamos que $\{X_n, n \in \mathbb{Z}\}$ coef de la s. exponencial y sea y(t)=x(t+\tau) entonces:

$$Y_n = X_n e^{in\omega_0 \tau}$$

Relaciones y valor medio de la señal:

 $\mathbf{x}(t)$ periódica de período \mathbf{T} , $\{X_n, n\in\mathbb{Z}\}\{a_0, a_n, b_n, n\in\mathbb{N}\}$ sus coef.

$$X_0 = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t) dt = a_0$$

 X_0 se denomina el valor medio de la señal x(t)

$$X_n = \frac{1}{2}(a_n - ib_n) \text{ y } X_{-n} = \frac{1}{2}(a_n + ib_n) n \in \mathbb{N}$$

Si x(t) es una señal real:

$$X_n = X_{-n} = X_n^* \forall n \in \mathbb{N}$$

Si x(t) es una señal par entonces $b_n = 0$

 $X_n = X_{-n} = \frac{a_n}{2} \ \forall n \in \mathbb{N}$ (no hace falta que sea real)

Si x(t) es una señal impar entonces $a_n = 0$

$$X_n = -X_{-n} = -i\frac{b_n}{2} \ \forall n \in \mathbb{N}$$

FALTA ESPECTRO UNILATERAL Y BILATERAL DE FUNCIONES REALES

Convergencia de las series de Fourier:

Consideraremos señales $x:[t_0,t_0+T]\to K$, no necesariamente continuas, con la convención que τ es una discontinuidad de x(t) si $\tau\in(t_0,t_0+T)$ o de la extensión periódica de x(t) si $\tau=t_0$ o $\tau=t_0+T$.

Definimos en la forma usual los *límites laterales por derecha e izquierda* como $x(\tau^+) = \lim_{t \to \tau, t > \tau} x(t)$ y $x(\tau^-) = \lim_{t \to \tau, t < \tau} x(t)$ respectivamente.

Una discontinuidad τ de x(t) tal que $x(\tau^+)$ y $x(\tau^-)$ existen es una discontinuidad de salto o de primera especie.

Una señal $x:[t_0,t_0+T]\to K$ es continua a trozos si en cada $[a,b]\subset [t_0,t_0+T]$, x tiene una cantidad finita de discontinuidades y estas son salto.

Las derivadas latereales por derecha e izquierda se definen, cuando los límites involucrados existen, como

$$x'(\tau^+) = \lim_{h \to 0^+} \frac{x(\tau + h) - x(\tau^+)}{h} \quad \text{y} \quad x'(\tau^-) = \lim_{h \to 0^+} \frac{x(\tau^-) - x(\tau - h)}{h}.$$

Observación 6 x es derivable en τ si y sólo si $x(\tau^-) = x(\tau^+) = x(\tau)$ y $x'(\tau^+)$ y $x'(\tau^-)$ existen y son iguales.

Teorema 3 (Teorema de la convergencia puntual) sea $x:[t_0,t_0+T]\to K$ continua a trozos con una discontinuidad de tipo salto en τ y supongamos que $x'(\tau^+)$ y $x'(\tau^-)$ existen. Entonces la serie de Fourier evaluada en τ converge a

$$\frac{x(\tau^+) + x(\tau^-)}{2}.$$

En particular, si x es derivable en τ , la serie de Fourier converge en τ a $x(\tau)$.

Muy importante para este teorema que $\exists x'(\tau^+)$, $\exists x'(\tau^-)$ y $x'(\tau^+) = x'(\tau^-)!!!!!$

Teorema 4 (Teorema de la convergencia uniforme) Sea $x : [t_0, t_0 + T] \to K$ continua tal que $x(t_0) = x(t_0 + T)$ y que x' es continua a trozos en $[t_0, t_0 + T]$. Entonces la serie de Fourier de x converge a x absoluta y uniformemente en $[t_0, t_0 + T]$.

Teorema 5 (Teorema de la derivación) Sea $x:[t_0,t_0+T]\to K$ continua tal que $x(t_0)=x(t_0+T)$ y que x' es continua a trozos en $[t_0,t_0+T]$, y sean $\{c_n,n\in\mathbb{Z}\}$ los coeficientes de la serie exponencial de Fourier de x. Entonces en cada punto $\tau\in[t_0,t_0+T]$ donde existan $x''(\tau^+)$ y $x''(\tau^-)$, se tiene que

$$\frac{x'(\tau^{+}) + x'(\tau^{-})}{2} = \sum_{n \neq 0} i \, n \, \omega_0 \, c_n e^{in\omega_0 \tau}.$$

En otras palabras, la serie de Fourier de x' se obtiene derivando término a término la serie de Fourier de x.

Teorema 6 (Teorema de la integración) Sea $x : [t_0, t_0 + T] \to K$ continua a trozos, y sean $\{c_n, n \in \mathbb{Z}\}$ los coeficientes de la serie exponencial de Fourier de x. Entonces para todo $t \in [t_0, t_0 + T]$,

$$\int_{t_0}^t x(\tau)d\tau = c_0(t - t_0) + \sum_{n \neq 0} \frac{c_n}{in\omega_0} \left(e^{in\omega_0 t} - e^{in\omega_0 t_0} \right).$$

Nota 3:

Definición 1 Sea $x: \mathbb{R} \to K$. Dado $f \in \mathbb{R}$, se define la Transformada de Fourier de x en f como

$$\mathcal{F}[x(t)](f) = X(f) = \int_{-\infty}^{\infty} x(t)e^{-i2\pi ft}dt,$$
(8)

cuando esta integral exista, y la Transformada inversa de Fourier de X(f) a

$$\mathcal{F}^{-1}[X(f)](t) = \int_{-\infty}^{\infty} X(f)e^{i2\pi ft}df,$$
(9)

también cuando esta integral exista.

Observación 1

- 1. Utilizaremos indistintamente las notaciones $\mathcal{F}[x(t)](f)$, X(f) y $\hat{x}(f)$.
- 2. Notar que no hemos escrito $x(t) = \mathcal{F}^{-1}[X(f)](t)$, ya que aún en el caso de que la integral exista, no podemos aseverar la igualdad. Al igual que en el caso de las Series de Fourier, la notación que adoptaremos, y con el mismo significado que antes, es

$$x(t) \sim \mathcal{F}^{-1}\left[X(f)\right](t) = \int_{-\infty}^{\infty} X(f)e^{i2\pi ft}df.$$
(10)

1.2. La existencia de la Transformada de Fourier

Notaremos $\mathcal{L}^1 = \{x : \mathbb{R} \to K, \text{ con } \int_{-\infty}^{\infty} |x(t)| dt < \infty \}$ y $\mathcal{L}^2 = \{x : \mathbb{R} \to K, \text{ con } \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \}$. Reconocemos en \mathcal{L}^2 al conjunto de señales de energía.

Teorema 1 Si $x(t) \in \mathcal{L}^1$, su Transformada de Fourier X(f) existe para todo $f \in \mathbb{R}$ y $X : \mathbb{R} \to K$ es una función uniformemente continua.

sean $x(t), y(t) \in \mathcal{L}^2$ con Transformada de Fourier X(f) e Y(f) respectivamente. Entonces valen las siguientes igualdades, cuya demostración omitimos.

$$\int_{-\infty}^{\infty} X(f)Y^*(f)df = \int_{-\infty}^{\infty} x(t)y^*(t)dt, \quad (f\'{o}rmula \ de \ Parseval)$$
 (11)

$$\int_{-\infty}^{\infty} X(s)y^*(s)ds = \int_{-\infty}^{\infty} x(s)Y^*(s)ds.$$
 (12)

Seguidamente enunciaremos un teorema, cuya demostración se omite que da condiciones que indican el significado del símbolo \sim en (10).

Teorema 2 Sea x(t) con Transformada de Fourier X(f). Entonces

1. si $X(f) \in \mathcal{L}^2$,

$$\lim_{L \to \infty} \int_{-\infty}^{\infty} \left| x(t) - \int_{-L}^{L} X(f) e^{i2\pi f t} df \right|^2 dt = 0.$$
 (13)

2. Si $x(t) \in \mathcal{L}^1$ o $x(t) \in \mathcal{L}^2$ y tiene una discontinuidad de tipo salto en τ y si además $x'(\tau^+)$ y $x'(\tau^-)$ existen,

$$\frac{x(\tau^{+}) + x(\tau^{-})}{2} = \lim_{L \to \infty} \int_{-L}^{L} X(f) e^{i2\pi f \tau} df.$$
 (14)

Observación 3 La igualdad (13) debe entenderse en el siguiente sentido:

$$\lim_{L \to \infty} \int_{-L}^{L} X(f)e^{i2\pi ft} df = x(t) + n(t) \ \forall t \in \mathbb{R},$$

con n(t) que verifica

$$\int_{-\infty}^{\infty} |n(t)|^2 dt = 0.$$

1.3. Propiedades de la Transformada de Fourier

A. Propiedad de la dualidad:

si
$$\mathcal{F}[x](f) = X(f)$$
, entonces $\mathcal{F}[X](f) = x(-f) = (T_{(-1,0)}x)(f)$, es decir, $\mathcal{F}[X] = T_{(-1,0)}x$.

1. x es tal que en (10) se puede reemplazar \sim por =, es decir que $x(t) = \mathcal{F}^{-1}[X](t)$:

$$F[X(t)](f) = \int_{-\infty}^{\infty} X(t) e^{-i2\pi f t} dt = \int_{-\infty}^{\infty} X(t) e^{i2\pi(-f)t} dt = x(-f).$$

Notemos que en este caso, se podrá escribir $\hat{x}(t) = x(-t)$, o sea $\hat{x} = T_{(-1,0)}x$.

Si en particular x es una señal par y si $\mathcal{F}[x] = X$ entonce $\mathcal{F}[X] = x$.

2. xes una función generalizada y ϕ es una función de prueba arbitraria:

$$\langle \mathcal{F} [X], \phi \rangle = \langle X, \hat{\phi} \rangle = \langle x, \hat{\phi} \rangle = \langle x, T_{(-1,0)} \phi \rangle$$

$$= \langle T_{(-1,0)} x, \phi \rangle,$$

ya que se puede probar que ϕ cumple las hipótesis de 1.

Después de esto es básicamente fijarse en la tabla

Transformada de Fourier de funciones periódicas

Sean x(t) una función continua a trozos, periódica de período T y tal que en toda discontinuidad de x existan las derivadas laterales. Sea además $f_0 = 1/T$ y $\{X_n, n \in \mathbb{Z}\}$ sus coeficientes en serie exponencial de Fourier. Como por hipótesis x es una función generalizada regular y además en cada intervalo de longitud T vale la igualdad

$$x(t) = \sum_{n \in \mathbb{Z}} X_n e^{i2\pi n f_0 t},\tag{19}$$

salvo en una cantidad finita de puntos, (19) valdrá como igualdad de funciones generalizadas. Por lo tanto,

$$\mathcal{F}[x(t)](f) = \mathcal{F}\left[\sum_{n\in\mathbb{Z}} X_n e^{i2\pi n f_0 t}\right] = \sum_{n\in\mathbb{Z}} X_n \mathcal{F}\left[e^{i2\pi n f_0 t}\right](f)$$
$$= \sum_{n\in\mathbb{Z}} X_n \delta(f - n f_0). \tag{20}$$

Transformada de una periódica con tren de deltas:

Observación 8 Se puede derivar la expresión de la Transformada de Fourier de una función periódica a partir del siguiente resultado, que no demostraremos.

Consideremos el tren de deltas de período T:

$$\delta_T(t) = \sum_{n \in \mathbb{Z}} \delta(t - nT).$$

Si $f_0 = 1/T$, su Transformada de Fourier viene dada por:

$$\mathcal{F}\left[\delta_{T}(t)\right] = \frac{1}{T} \sum_{n \in \mathbb{Z}} \delta(f - nf_{0}).$$

Consideremos ahora x(t) periódica de período T, y sea y(t) dada por

$$y(t) = \begin{cases} x(t) & \text{si} \quad |t| < \frac{T}{2} \\ 0 & \text{si} \quad \frac{T}{2} \le |t|, \end{cases}$$

Por lo tanto, excepto quizá en los puntos de la forma $kT/2, k \in \mathbb{Z}, k \neq 0, x(t)$ es la extensión periódica de período T de y(t). Por lo tanto, es fácil ver que $x(t) = (y * \delta_T)(t)$, y entonces si $\mathcal{F}[y(t)](f) = Y(f)$,

$$\mathcal{F}[x(t)](f) = \mathcal{F}[(y * \delta_T)(t)](f) = Y(f) \frac{1}{T} \sum_{n \in \mathbb{Z}} \delta(f - nf_0)$$

$$= \frac{1}{T} \sum_{n \in \mathbb{Z}} Y(nf_0) \delta(f - nf_0). \tag{22}$$

Pero

$$Y(f) = \int_{-\infty}^{\infty} y(t)e^{-i2\pi ft}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-i2\pi ft}dt, \Rightarrow$$

$$\frac{1}{T}Y(nf_0) = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-i2\pi nf_0t}dt = X_n,$$

con lo cual (20) y (22) expresan el mismo resultado.

Falta densidad espectral de energía, de potencia y edos.

Por ahora no considero importante la primera y edos es relativamente sencillo.

Nota 4: