0.1 点集的 Lebesgue 外测度

定义 0.1 (Lebesgue 外测度)

设 $E \subset \mathbb{R}^n$. 若 $\{I_k\}$ 是 \mathbb{R}^n 中的可数个开矩体,且有

$$E \subset \bigcup_{k>1} I_k$$

则称 $\{I_k\}$ 为 E 的一个 \mathbf{L} -**覆盖** (显然, 这样的覆盖有很多, 且每一个 L- 覆盖 $\{I_k\}$ 确定一个非负广义实值 $\sum_{k\geq 1} |I_k|$ (可以是 $+\infty$, $|I_k|$ 表示 I_k 的体积)). 称

$$m^*(E) = \inf \left\{ \sum_{k \geq 1} |I_k| : \{I_k\} \ 为E \ 的L - 覆盖 \right\}$$

为点集E的Lebesgue 外测度,简称外测度

注 显然, 若 E 的任意的 L- 覆盖 $\{I_k\}$ 均有

$$\sum_{k>1} |I_k| = +\infty,$$

则 $m^*(E) = +\infty$, 否则 $m^*(E) < +\infty$.

定理 0.1 (\mathbb{R}^n 中点集的外测度性质)

- (1) 非负性: $m^*(E) \ge 0$, $m^*(\emptyset) = 0$;
- (2) 单调性: 若 $E_1 \subset E_2$, 则 $m^*(E_1) \leq m^*(E_2)$;
- (3) 次可加性: $m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^*(E_k)$.

证明

- (1) 这可从定义直接得出.
- (2) 这是因为 E_2 的任一个 L- 覆盖都是 E_1 的 L- 覆盖.
- (3) 不妨设 $\sum_{k=1}^{\infty} m^*(E_k) < +\infty$. 对任意的 $\varepsilon > 0$ 以及每个自然数 k, 存在 E_k 的 L- 覆盖 $\{I_{k,l}\}$, 使得

$$E_k \subset \bigcup_{l=1}^{\infty} I_{k,l}, \quad \sum_{l=1}^{\infty} |I_{k,l}| < m^*(E_k) + \frac{\varepsilon}{2^k}.$$

由此可知

$$\bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k,l=1}^{\infty} I_{k,l}, \quad \sum_{k,l=1}^{\infty} |I_{k,l}| \leq \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon.$$

显然, $\{I_{k,l}: k, l=1,2,\cdots\}$ 是 $\bigcup_{k=1}^{\infty} E_k$ 的 L- 覆盖, 从而有

$$m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon.$$

由 ε 的任意性可知结论成立.

命题 0 1

 \mathbb{R}^n 中的单点集的外测度为零, 即 $m^*(\{x_0\}) = 0, x_0 \in \mathbb{R}^n$. 同理, \mathbb{R}^n 中的点集

$$\{x = (\xi_1, \xi_2, \dots, \xi_{i-1}, t_0, \xi_i, \dots, \xi_n) : a_j \le \xi_j \le b_j, j \ne i\}$$

(n-1 维超平面块) 的外测度也为零.

证明 这是因为可作一开矩体 I, 使得 $x_0 \in I$ 且 |I| 可任意地小.

推论 0.1

若 $E \subset \mathbb{R}^n$ 为可数点集,则 $m^*(E) = 0$.

 $\frac{1}{1}$ 由此可知有理点集的外测度 $m^*(\mathbb{Q}^n) = 0$. 这里我们看到了一个虽然处处稠密但外测度为零的可列点集. 证明 由外测度的次可加性不难证明.

命题 0.2

[0,1] 中的 Cantor 集 C 的外测度是零.

注 这个命题 0.2说明外测度为零的点集不一定是可列集.

证明 事实上, 因为 $C = \bigcap_{n=1}^{\infty} F_n$, 其中的 F_n (在构造 C 的过程中第 n 步所留存下来的) 是 2^n 个长度为 3^{-n} 的闭区间的并集, 所以我们有

$$m^*(C) \le m^*(F_n) \le 2^n \cdot 3^{-n}$$
,

从而得知 $m^*(C) = 0$.

命题 0.3

设 $I \in \mathbb{R}^n$ 中的开矩体, \overline{I} 是闭矩体, 则 $m^*(I) = m^*(\overline{I}) = |I|$.

证明 对任给的 $\varepsilon > 0$, 作一开矩体 J, 使得 $J \supset \overline{I}$ 且 $|J| < |I| + \varepsilon$, 从而由外测度的单调性有

$$m^*(\overline{I}) \le |J| < |I| + \varepsilon.$$

由 ε 的任意性可知 $m^*(\bar{I}) \leq |I|$. 现在设 $\{I_k\}$ 是 \bar{I} 的任意的L-覆盖,则因为 \bar{I} 是有界闭集,所以存在 $\{I_k\}$ 的有限子覆盖

$$\{I_{i_1},I_{i_2},\cdots,I_{i_l}\}, \quad \bigcup_{j=1}^l I_{i_j}\supset \overline{I}.$$

由外测度的单调性和次可加性可得

$$|I| \le \sum_{i=1}^{l} |I_{i_j}| \le \sum_{k=1}^{\infty} |I_k|,$$

再由下确界是最大的下界可得 $|I| \leq m^*(\overline{I})$, 从而我们有 $m^*(\overline{I}) = |I|$.

又因为 $I \subset \overline{I}$, 所以由外测度的单调性可得 $m^*(I) \leq m^*(\overline{I}) = |I|$. 同理可证 $|I| \leq m^*(I)$, 故 $m^*(I) = |I| = m^*(\overline{I})$.

引理 0.1

设 $E \subset \mathbb{R}^n$ 以及 $\delta > 0$. 令

$$m^*_{\delta}(E) = \inf \left\{ \sum_{k=1}^{\infty} |I_k| : \bigcup_{k=1}^{\infty} I_k \supset E,$$
 每个开矩体 I_k 的边长 $< \delta \right\}$,

则 $m_{\delta}^*(E) = m^*(E)$.

 $\stackrel{\bullet}{\mathbf{E}}$ **笔记** 这个引理告诉我们, 今后可以对点集 E 的 L-覆盖中的每个开矩体的边长做任意限制, 而不影响 E 的外测度的值.

证明 显然有 $m_{\delta}^*(E) \ge m^*(E)$. 为证明其反向不等式也成立, 不妨设 $m^*(E) < +∞$. 由外测度的定义可知, 对于任给

的 $\varepsilon > 0$, 存在E 的L- 覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| \le m^*(E) + \varepsilon.$$

对于每个 k, 我们把 I_k 分割成 l(k) 个开矩体:

$$I_{k,1}, I_{k,2}, \cdots, I_{k,l(k)},$$

它们互不相交且每个开矩体的边长都小于 $\delta/2$. 现在保持每个 $I_{k,i}$ 的中心不动, 边长扩大 $\lambda(1 < \lambda < 2)$ 倍做出开矩体, 并记为 $\lambda I_{k,i}$, 显然, 对每个 k, 有

$$\bigcup_{i=1}^{l(k)} \lambda I_{k,i} \supset I_k, \quad \sum_{i=1}^{l(k)} |\lambda I_{k,i}| = \lambda^n \sum_{i=1}^{l(k)} |I_{k,i}| = \lambda^n |I_k|.$$

易知 $\{\lambda I_{k,i}: i=1,2,\cdots,l(k); k=1,2,\cdots\}$ 是 E 的边长小于 δ 的 L- 覆盖,且有

$$\sum_{k=1}^{\infty} \sum_{i=1}^{l(k)} |\lambda I_{k,i}| = \lambda^n \sum_{k=1}^{\infty} |I_k| \le \lambda^n (m^*(E) + \varepsilon),$$

从而可知 $m_{\delta}^*(E) \leq \lambda^n(m^*(E) + \varepsilon)$. 令 $\lambda \to 1$ 并注意到 ε 的任意性, 我们得到 $m_{\delta}^*(E) \leq m^*(E)$. 这说明 $m_{\delta}^*(E) = m^*(E)$.

定理 0.2

设 E_1, E_2 是 \mathbb{R}^n 中的两个点集. 若 $d(E_1, E_2) > 0$, 则

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

证明 由外测度的次可加性可知, 只需证明 $m^*(E_1 \cup E_2) \ge m^*(E_1) + m^*(E_2)$ 即可. 为此, 不妨设 $m^*(E_1 \cup E_2) < +\infty$. 对任给的 $\varepsilon > 0$, 作 $E_1 \cup E_2$ 的 L — 覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m^*(E_1 \cup E_2) + \varepsilon,$$

其中 I_k 的边长都小于 $d(E_1, E_2)/\sqrt{n} (n \ge 2)$. 现在将 $\{I_k\}$ 分为如下两组:

$$(i)J_{i_1}, J_{i_2}, \cdots, \bigcup_{k \ge 1} J_{i_k} \supset E_1; \quad (ii)J_{l_1}, J_{l_2}, \cdots, \bigcup_{k \ge 1} J_{l_k} \supset E_2.$$

$$(1)$$

且其中任一矩体皆不能同时含有 E_1 与 E_2 中的点. 否则, 若对任意的 J_{i_1}, J_{i_2}, \cdots , $\bigcup_{k \geq 1} J_{i_k} \supset E_1$ 或 J_{i_1}, J_{i_2}, \cdots , $\bigcup_{k \geq 1} J_{i_k} \supset E_2$, 其中 $J_{i_k} \in \{I_k\}$,都存在 $m \in [1, k] \cap \mathbb{N}$,使得 J_{i_m} 中同时含有 E_1 和 E_2 中的点. 设 $x_1 \in J_{i_m} \cap E_1, x_2 \in J_{i_m} \cap E_2$,则由 $d(E_1, E_2) > 0$ 可知

$$d(x_1, x_2) \geqslant d(E_1, E_2) > 0.$$

又因为 I_k 的边长都小于 $d(E_1, E_2)/\sqrt{n} (n \ge 2)$, 所以

$$d(x_1, x_2) \leqslant \frac{\sqrt{2}d(E_1, E_2)}{\sqrt{n}} < d(E_1, E_2) < d(x_1, x_2).$$

上式显然矛盾!(最大的矩体应为正方体, $\frac{\sqrt{2}d(E_1,E_2)}{\sqrt{n}}$ 为最大的矩体的对角线长) 故(1)式成立. 从而得

$$m^*(E_1 \cup E_2) + \varepsilon > \sum_{k \ge 1} |I_k| = \sum_{k \ge 1} |J_{i_k}| + \sum_{k \ge 1} |J_{l_k}|$$

 $\ge m^*(E_1) + m^*(E_2).$

再由 ε 的任意性可知 $m^*(E_1 \cup E_2) \ge m^*(E_1) + m^*(E_2)$.

П

推论 0.2

设 E_1, E_2, \dots, E_n 是 \mathbb{R}^n 中的 n 个点集. 若 $d(E_i, E_j) > 0 (i \neq j)$, 则

$$m^*\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n m^*(E_i).$$

证明 当 n=1 时结论显然成立. 假设当 n=k 时结论成立, 现在考虑 n=k+1 的情形. 由点集间的距离的性质及 $d(E_i,E_j)>0 (i\neq j)$ 可知

$$d\left(E_{k+1}, \bigcup_{i=1}^{k} E_{i}\right) = \min_{i=1,2,\dots,k} d\left(E_{k+1}, E_{i}\right) > 0.$$

故再由定理 0.2和归纳假设可得

$$m^* \left(\bigcup_{i=1}^{k+1} E_i \right) = m^* \left(E_{k+1} \cup \bigcup_{i=1}^k E_i \right) = m^* \left(E_{k+1} \right) + m^* \left(\bigcup_{i=1}^k E_i \right)$$
$$= m^* \left(E_{k+1} \right) + \sum_{i=1}^k m^* (E_i) = \sum_{i=1}^{k+1} m^* (E_i).$$

因此由数学归纳法可知结论成立.

命题 0.4

设 $E \subset [a,b]$, $m^*(E) > 0$, $0 < c < m^*(E)$, 则存在 E 的子集 A, 使得 $m^*(A) = c$.

证明 记 $f(x) = m^*([a,x) \cap E)$, $a \le x \le b$, 则 f(a) = 0, $f(b) = m^*(E)$. 考查 x = 5 x + 5

$$[a, x + \Delta x) \cap E = ([a, x) \cap E) \cup ([x, x + \Delta x) \cap E)$$

可知 $f(x + \Delta x) \leq f(x) + \Delta x$, 即

$$f(x + \Delta x) - f(x) \le \Delta x$$
.

对 $\Delta x < 0$ 也可证得类似不等式. 总之, 我们有

$$|f(x + \Delta x) - f(x)| \le |\Delta x|, \quad a \le x \le b.$$

这说明 $f \in C([a,b])$. 根据连续函数中值定理, 对 f(a) < c < f(b), 存在 $\xi \in (a,b)$, 使得 $f(\xi) = c$. 取 $A = [a,\xi) \cap E$, 即得证.

定理 0.3 (外测度的平移不变性)

设 $E \subset \mathbb{R}^n, x_0 \in \mathbb{R}^n$. 记 $E + \{x_0\} = \{x + x_0, x \in E\}$, 则

$$m^*(E + \{x_0\}) = m^*(E).$$
 (2)

注 对集合做相同的平移并不会改变集合之间的关系 (交、并、差、补、子集等).

证明 首先,对于 \mathbb{R}^n 中的开矩体 I, 易知 $I + \{x_0\}$ 仍是一个开矩体且其相应边长均相等, $|I| = |I + \{x_0\}|$. 其次,对 E 的任意的 L- 覆盖 $\{I_k\}$, $\{I_k + \{x_0\}\}$ 仍是 $E + \{x_0\}$ 的 L- 覆盖. 从而由

$$m^*(E + \{x_0\}) \le \sum_{k=1}^{\infty} |I_k + \{x_0\}| = \sum_{k=1}^{\infty} |I_k|$$

可知(对一切 L-覆盖取下确界)

$$m^*(E + \{x_0\}) \le m^*(E).$$

反之, 考虑对 $E + x_0$ 作向量 $-x_0$ 的平移, 可得原点集 E. 同理又有

$$m^*(E) \le m^*(E + \{x_0\}).$$

定理 0.4 (外测度的数乘)

设 $E \subset \mathbb{R}$, $\lambda \in \mathbb{R}$, 记 $\lambda E = {\lambda x : x \in E}$, 则

$$m^*(\lambda E) = |\lambda| m^*(E).$$

证明 因为 $E \subset \bigcup_{n \geq 1} (a_n, b_n)$ 等价于 $\lambda E \subset \bigcup_{n \geq 1} \lambda(a_n, b_n), m^*([a_n, b_n]) = m^*((a_n, b_n)),$ 且对任一区间 $(\alpha, \beta),$ 有

$$m^*(\lambda(\alpha, \beta)) = |\lambda| m^*((\alpha, \beta)) = |\lambda|(\beta - \alpha),$$

所以按外测度定义可得 $m^*(\lambda E) = |\lambda| m^*(E)$.

定义 0.2 (集合上的外测度)

设X是一个非空集合, μ^* 是定义在幂集 $\mathcal{P}(X)$ 上的一个取广义实值的集合函数,且满足:

- (i) $\mu^*(\emptyset) = 0, \mu^*(E) \ge 0 (E \subset X);$
- (ii) $\not\equiv E_1, E_2 \subset X, E_1 \subset E_2, \ \emptyset \ \mu^*(E_1) \le \mu^*(E_2);$
- (iii) 若 $\{E_n\}$ 是 X 的子集列,则有

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} \mu^*(E_n),$$

那么称 μ^* 是 X 上的一个**外测度**.

若(X,d)是一个距离空间,且其上的外测度 μ^* 还满足**距离外测度性质**: 当 $d(E_1,E_2)>0$ 时,有

$$\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2),$$

那么称 μ^* 是 X 上的一个**距离外测度** (利用距离外测度性质可以证明开集的可测性).