SPA

Solution to Assignment 2

1.

(a) We only show that \mathcal{F}_1 is a σ -field, since the result can be obtained in the same way for \mathcal{F}_2 . Set $A = \{1\}$. Then $\{2,3\}$ is A^c and it is obvious that \mathcal{F}_1 satisfies the first two conditions in the definition of a σ -field. As for $\bigcup_{i=1}^{\infty} A_i$, $A_i \in \mathcal{F}_1$, this union can only be A, A^c , \emptyset , Ω , all of which belong to \mathcal{F}_1 , verifying that \mathcal{F}_1 is a σ -field. Indeed, there are only the following 5 cases:

i. $A_i = \Omega$ for some i. Then $\bigcup_{i=1}^{\infty} A_i = \Omega$;

ii. $A_i = A$ and $A_j = A^c$ for some i, j. Then $\bigcup_{i=1}^{\infty} A_i = \Omega$;

iii. (i) and (ii) don't hold and $A_i = A$ for some i. Then $\bigcup_{i=1}^{\infty} A_i = A$;

iv. (i) and (ii) don't hold and $A_i = A^c$ for some i. Then $\bigcup_{i=1}^{\infty} A_i = A^c$;

v. (i),(ii),(iii) and (iv) don't hold. In this case $A_i = \emptyset$ for all i. So $\bigcup_{i=1}^{\infty} A_i = \emptyset$.

(b) $\{1,2\} \cap \{2,3\} = \{2\} \notin \Omega$, so $\mathcal{F}_1 \cap \mathcal{F}_2$ is not a σ -field.

2. We set $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$. So $A^c = \{4, 5\}$ and $B^c = \{1, 2\}$ and $A \cap B = \{3\}$. So $\sigma(\mathcal{U}) = \{\{1, 2, 3\}, \{3, 4, 5\}, \{4, 5\}, \{1, 2\}, \{3\}, \{1, 2, 4, 5\}, \Omega, \emptyset\}$.

3.

(a) For $a \in \mathbb{R}$ and $n \in \mathbb{N}$, we know that $(a, a + \frac{1}{n}] \in \mathcal{B}(\mathbb{R})$. So $\bigcap_{n=1}^{\infty} (a, a + \frac{1}{n}] = (a, a] = \emptyset$ is also in $\mathcal{B}(\mathbb{R})$.

(b) For $c \in \mathbb{R}$, since $\{c\} = \bigcap_{n=1}^{\infty} (c - \frac{1}{n}, c]$, it follows that $\{c\}$ is also in $\mathcal{B}(\mathbb{R})$.

(c) It holds that

$$(a,b) = (a,b] \setminus \{b\} \in \mathcal{B}(\mathbb{R})$$
$$[a,b] = (a,b] \cup \{a\} \in \mathcal{B}(\mathbb{R})$$

$$[a,b) = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b) \in \mathcal{B}(\mathbb{R}).$$

4.

- (a) Substitutubg $Y_{t-1} = \theta_0 + Y_{t-2} + e_{t-1}$ into $Y_t = \theta_0 + Y_{t-1} + e_t$ and repeating until we get e_1 , we obtain $Y_t = t\theta_0 + e_t + e_{t-1} + \dots + e_1$.
- (b) It holds

$$E[Y_t] = E[t\theta_0 + e_t + e_{t-1} + \dots + e_1] = t\theta_0.$$

(c) Suppose $k \geq 0$. The autocovariance function for (Y_t) is

$$Cov(Y_t, Y_{t-k}) = Cov(t\theta_0 + e_t + e_{t-1} + \dots + e_1, (t-k)\theta_0 + e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= Cov(e_t + e_{t-1} + \dots + e_1, e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= Var(e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= (t-k)\sigma_e^2.$$

Equivalently, we can write $Cov(Y_t, Y_s) = \min\{s, t\}, \quad s, t \ge 0.$

5. It holds

$$E[X_n] = E[\xi \cos(\lambda n) + \eta \sin(\lambda n)] = 0,$$

$$Cov(X_n, X_m) = E[X_n X_m] = E[(\xi \cos(\lambda n) + \eta \sin(\lambda n))(\xi \cos(\lambda m) + \eta \sin(\lambda m))]$$

$$= E[\xi^2 \cos(\lambda n) \cos(\lambda m) + \eta^2 \sin(\lambda n) \sin(\lambda m)]$$

$$= \sigma^2(\cos(\lambda n) \cos(\lambda m) + \sin(\lambda n) \sin(\lambda m))$$

$$= \sigma^2 \cos(\lambda (n - m)).$$

6. Consider $t_1 < t_2 < \cdots < t_n$. Set

$$A = \begin{bmatrix} \cos(\theta t_1) & \sin(\theta t_1) \\ \cos(\theta t_2) & \sin(\theta t_2) \\ \dots & \dots \\ \cos(\theta t_n) & \sin(\theta t_n) \end{bmatrix}.$$

Then

$$(X_{t_1}, X_{t_2}, ..., X_{t_n})^{\top} = A \times \begin{bmatrix} \xi \\ \eta \end{bmatrix}.$$

Sine (ξ, η) is a two-dimensional Gaussian vector, $(X_{t_1}, X_{t_2}, ..., X_{t_n})^{\top}$ is also a Gaussian

vector with expectation $\mathbf{0}$ and covariance matrix Σ , where

$$\begin{split} & \Sigma = AA^{\top} \\ & = \begin{bmatrix} \cos(\theta t_1) & \sin(\theta t_1) \\ \cos(\theta t_2) & \sin(\theta t_2) \\ \dots & \dots \\ \cos(\theta t_n) & \sin(\theta t_n) \end{bmatrix} \times \begin{bmatrix} \cos(\theta t_1) & \cos(\theta t_2) & \dots \\ \sin(\theta t_1) & \sin(\theta t_2) & \dots \end{bmatrix} \\ & = \begin{bmatrix} \cos^2(\theta t_1) + \sin^2(\theta t_1) & \cos(\theta t_1) \cos(\theta t_2) + \sin(\theta t_1) \sin(\theta t_2) & \dots \\ \cos(\theta t_2) \cos(\theta t_1) + \sin(\theta t_2) \sin(\theta t_1) & \cos^2(\theta t_2) + \sin^2(\theta t_2) & \dots \\ \dots & \dots & \dots & \dots \\ \cos(\theta t_n) \cos(\theta t_1) + \sin(\theta t_n) \sin(\theta t_1) & \dots & \cos^2(\theta t_n) + \sin^2(\theta t_n) \end{bmatrix} \\ & = \begin{bmatrix} 1 & \cos(\theta (t_1 - t_2)) & \dots \\ \cos(\theta (t_2 - t_1)) & 1 & \dots \\ \dots & \dots & \dots \\ \cos(\theta (t_n - t_1)) & \dots & 1 \end{bmatrix}. \end{split}$$

So the finite-dimensional distributions of $\{X_t : t \in \mathbb{R}\}$ are all Gaussian. This indicates that $\{X_t : t \in \mathbb{R}\}$ is a Gaussian process.