Notes on Topics in Analyis

Manjunath Krishnapur, Fall 2014

Indian Institute of Science

1. Isoperimetric Inequalities

Wiestrass Theorem:

(Real Analysis) If $f:[0,1] \to \mathbb{R}$ is a continuous function and $\epsilon > 0$ then \exists a polynomial P such that $|f(x) - P(x)| < \epsilon$, whenever $x \in [0,1]$.

(Functional Analysis) Let $C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is cts} \}$ and $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$ be the metric. If P = set of all polynomials, then P is dense in C[0,1].

Proof:

Let
$$f:[0,1]\to\mathbb{R}$$
 is continuous and $P_n(x)=\sum\limits_{k=0}^n\binom{n}{k}\;x^k(1-x)^{n-k}\;f\left(\frac{k}{n}\right)$ for $n\geq 1$.

Consider $P_{n,x}(k) = \binom{n}{k} x^k (1-x)^{n-k}$, this satisfies

$$P_{n,x}(k) \ge 0$$

$$\sum_{k=0}^{n} P_{n,x}(k) = 1$$

$$\sum_{k=0}^{n} \frac{k}{n} P_{n,x}(k) = x$$

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} P_{n,x}(k) = \frac{x(1-x)}{n} \le \frac{1}{4n}$$

For any $x \in [0, 1]$ and consider,

$$|f(x) - P_{n}(x)| = \left| \sum_{k=0}^{n} P_{n,x}(k) \left[f(x) - f\left(\frac{k}{n}\right) \right] \right|$$

$$\leq \sum_{k=0}^{n} P_{n,x}(k) \left| f(x) - f\left(\frac{k}{n}\right) \right|$$

$$\leq \sum_{k: \left|\frac{k}{n} - x\right| \leq \delta} P_{n,x}(k) \left| f(x) - f\left(\frac{k}{n}\right) \right| + \sum_{k: \left|\frac{k}{n} - x\right| > \delta} P_{n,x}(k) \left| f(x) - f\left(\frac{k}{n}\right) \right|$$

$$\leq \omega_{f}(\delta) \sum_{k: \left|\frac{k}{n} - x\right| \leq \delta} P_{n,x}(k) + 2\|f\|_{\sup} \sum_{k: \left|\frac{k}{n} - x\right| > \delta} P_{n,x}(k)$$

But we can also observe that,

$$1^{st} \text{ term } \leq \omega_f(\delta)$$

$$2^{nd} \text{ term } \leq \frac{2}{\delta^2} \|f\|_{\sup} \sum_{k: |\frac{k}{n} - x| > \delta} \left(\frac{k}{n} - x\right) P_{n,x}(k) \leq \frac{1}{2\delta^2 n} \|f|_{\sup} \qquad [\because \text{Chebyshev's Inequality}]$$

For a given $\epsilon > 0$, choose $\delta > 0$ such that $\omega_f(\delta) < \epsilon/2$ and pick n large such that $\frac{1}{2\delta^2 n} ||f||_{sup} < \epsilon/2$.

Feyer's Theorem:

The set of all trignometric polynomials is dense in $C(S^1)$.