$ au_1^{\#2}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{-r_1 + 2r_3 + r_5} + \frac{6k^2}{t_1}$ $2(k+2k^3)^2$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1^{+}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\iota_{1^{+}\alpha\beta}^{\#1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} +^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{#2} +^{\alpha}$	$t_{1}^{\#1} \dagger^{\alpha}$	$t_{1}^{#2} +^{\alpha}$

_	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-lpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt</u> 3
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2 k^2 t_1}{3}$
1							

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	$\omega_{2}^{#1}$ †	.αβ .αβ	$\frac{t_1}{2}$ $\frac{i k t_1}{\sqrt{2}}$
$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	$\omega_2^{#1} + c$	αβχ	0
$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} = \frac{1}{(1+2k^2)^2}$	0	$\omega_{0^{+}}^{\#1}$ †	6 k	
	$^{1}_{+}$ $^{+}$ $^{\alpha\beta}$	$\begin{bmatrix} r_{2}^{\#1} + \alpha \beta \end{bmatrix}$	$_{1}+_{\alpha eta \chi }$	$f_{0+}^{#1} \dagger$		0
	σ_2^*	£2	$\sigma_2^{\#1}$	$\omega_{0}^{#1}$ †		0

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-\overline{t}_1$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{i k t_1}{\sqrt{2}}$

 $k^2 t_1$

0

0

0

	#	1	T	3	3	3	2	16
Source constraints	SO(3) irreps	$t_0^{#2} == 0$	$t_0^{\#1} == 0$	$t_{1}^{\#2}{}^{\alpha} + 2ik o_{1}^{\#2}{}^{\alpha} == 0$	0 =	$\tau_{1}^{\#1}{}^{\alpha\beta}+ik\;\sigma_{1}^{\#2}{}^{\alpha\beta}==0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 i k $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:

	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0	0	0
$ au_{0^{+}}^{\#1} +$	0	0	0	0
$ au_{0^{+}}^{#2} +$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

