CS/MATH 111, Discrete Structures - Fall 2018. Discussion 02 - Proof by Induction, Logarithms, Asymptotic Notation and Execution Time.

Andres, Sara, Elena

University of California, Riverside

January 14, 2019

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

Use mathematical induction to show that

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

for all nonnegative integers n.

- 1. **Basis step:** For n = 0, $2^0 = 1 = 2^1 1$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$$

holds...

$$1 + 2 + 2^2 + \dots + 2^{k+1} = 2^{(k+1)+1} - 1$$

Use mathematical induction to show that

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

for all nonnegative integers n.

- 1. Basis step: For n = 0, $2^0 = 1 = 2^1 1$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$$

holds...

$$1 + 2 + 2^2 + \dots + 2^{k+1} = 2^{(k+1)+1} - 1$$

Use mathematical induction to show that

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

for all nonnegative integers n.

- 1. Basis step: For n = 0, $2^0 = 1 = 2^1 1$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$$

holds...

$$1 + 2 + 2^2 + \dots + 2^{k+1} = 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^2 + \dots + 2^{k+1} \stackrel{?}{=} 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+1} - 1 + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2 \cdot 2^{k+1} - 1 \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+2} - 1 = 2^{k+2} - 1$$

$$1 + 2 + 2^2 + \dots + 2^{k+1} \stackrel{?}{=} 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+1} - 1 + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2 \cdot 2^{k+1} - 1 \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+2} - 1 = 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k+1} \stackrel{?}{=} 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+1} - 1 + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2 \cdot 2^{k+1} - 1 \stackrel{?}{=} 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k+1} \stackrel{?}{=} 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+1} - 1 + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2 \cdot 2^{k+1} - 1 \stackrel{?}{=} 2^{k+2} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k+1} \stackrel{?}{=} 2^{(k+1)+1} - 1$$

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+1} - 1 + 2^{k+1} \stackrel{?}{=} 2^{k+2} - 1$$

$$2 \cdot 2^{k+1} - 1 \stackrel{?}{=} 2^{k+2} - 1$$

$$2^{k+2} - 1 = 2^{k+2} - 1$$

Prove the following statement by induction:

$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

- 1. Basis step: For n = 1, $1 = \frac{1 \times 2 \times 3}{6}$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2^2 + 3^2 + \dots + k^2 = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

holds...

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1) \cdot ((k+1) + 1) \cdot (2 \cdot (k+1) + 1)}{6}$$

Prove the following statement by induction:

$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

- 1. Basis step: For n = 1, $1 = \frac{1 \times 2 \times 3}{6}$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2^2 + 3^2 + \dots + k^2 = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

holds...

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1) \cdot ((k+1) + 1) \cdot (2 \cdot (k+1) + 1)}{6}$$

Prove the following statement by induction:

$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

- 1. Basis step: For n = 1, $1 = \frac{1 \times 2 \times 3}{6}$ is true!
- 2. Assumption step: Let n = k, so

$$1 + 2^2 + 3^2 + \dots + k^2 = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

holds...

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

$$1+2^{2}+3^{2}+\cdots+(k+1)^{2}\stackrel{?}{=}\frac{(k+1)\cdot((k+1)+1)\cdot(2\cdot(k+1)+1)}{6}$$

$$1+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2}\stackrel{?}{=}\frac{(k+1)\cdot(k+2)\cdot(2k+2+1)}{6}$$

$$\frac{k\cdot(k+1)\cdot(2k+1)}{6}+(k+1)^{2}\stackrel{?}{=}\frac{(k+1)\cdot(k+2)\cdot(2k+3)}{6}$$

$$\frac{k\cdot(k+1)\cdot(2k+1)+6(k+1)^{2}}{6}\stackrel{?}{=}\frac{(k+1)\cdot(k+2)\cdot(2k+3)}{6}$$

$$(k+1)\cdot(k\cdot(2k+1)+6(k+1))\stackrel{?}{=}(k+1)\cdot(k+2)\cdot(2k+3)$$

$$(k+1)\cdot(2k^{2}+7k+6)\stackrel{?}{=}(k+1)\cdot(k+2)\cdot(2k+3)$$

$$(k+1)\cdot(k+2)\cdot(2k+3)=(k+1)\cdot(k+2)\cdot(2k+3)$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

$$1 + 2^{2} + 3^{2} + \dots + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot ((k+1)+1) \cdot (2 \cdot (k+1)+1)}{6}$$

$$1 + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+2+1)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$\frac{k \cdot (k+1) \cdot (2k+1) + 6(k+1)^{2}}{6} \stackrel{?}{=} \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$(k+1) \cdot (k \cdot (2k+1) + 6(k+1)) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (2k^{2} + 7k + 6) \stackrel{?}{=} (k+1) \cdot (k+2) \cdot (2k+3)$$

$$(k+1) \cdot (k+2) \cdot (2k+3) = (k+1) \cdot (k+2) \cdot (2k+3)$$

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

Exponential functions

Logarithmic functions

Theorems

Theorem 1

Let b be a positive real number and x and y real numbers. Then,

- 1. $b^{x+y} = b^x \cdot b^y$, and
- 2. $(b^x)^y = b^{x \cdot y}$.

Theorems

Theorem 2

Let b be a real number greater than 1. Then,

- 1. $\log_b(xy) = \log_b x + \log_b y$ whenever x and y are positive real numbers, and
- 2. $\log_b(x^y) = y \log_b x$ whenever x is a positive real number and y is a real number.

Theorems

Theorem 3

Let a and b be real numbers greater than 1, and let x be a positive real number. Then,

1.
$$\log_a x = \frac{\log_b x}{\log_b a}$$
.

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

$Big-\mathcal{O}$ notation

Definition 3.1

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\mathcal{O}(g(x))$ if there are constants C and k such that,

$$|f(x)| \le C|g(x)|$$

whenever x > k. [This is read as "f(x) is big-oh of g(x)."]

Big- Ω notation

Definition 3.2

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are positive constants C and k such that,

$$|f(x)| \ge C|g(x)|$$

whenever x > k. [This is read as "f(x) is big-omega of g(x)."]

Big- Θ notation

Definition 3.3

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is O(g(x)).

Also note that f(x) is $\Theta(g(x))$ iif there are real numbers C_1 and C_2 and a positive real number k such that,

$$C_1|g(x)| \le |f(x)| \le C_2|g(x)|$$

whenever x > k. [This is read as "f(x) is big-theta of g(x)."]

Asymptotic notation ¹

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

Growth of functions

Complexity of algorithms

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.	
Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

▶ Give a big-O estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm.

$$t := 0$$

for $i := 1$ **to** 3
for $j := 1$ **to** 4
 $t := t + ij$

▶ The statement $\mathbf{t} := \mathbf{t} + \mathbf{i}\mathbf{j}$ is executed just 12 times, so the number of operations is $\mathcal{O}(1)$. (Specifically, thereare just 24 additions or multiplications.)

$$t := 0$$

for $i := 1$ **to** 3
for $j := 1$ **to** 4
 $t := t + ij$

▶ Give a big- \mathcal{O} estimate the number of operations, where an operation is a comparison or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the for loops, where a_1, a_2, \ldots, a_n are positive real numbers).

```
m := 0

for i := 1 to n

for j := i + 1 to n

m := \max(a_i a_j, m)
```

The nesting of the loops implies that the assignment statement is executed roughly $\frac{n^2}{2}$ times. Therefore the number of operations is $\mathcal{O}(n^2)$.

```
m := 0

for i := 1 to n

for j := i + 1 to n

m := \max(a_i a_j, m)
```

for i:=1 to n do
for j:=i to n do
write('OK');

- $ightharpoonup \mathcal{O}(n^2)$

Reference

- ➤ Discrete Mathematics and Its Applications. Rosen, K.H. 2012. McGraw-Hill.
 - Appendix 2: Exponential and Logarithmic functions.
 - Chapter 3: Algorithms.
 - Section 3.2: The Growth of Functions.
 - Section 3.3: Complexity of Algorithms.