TELECOM Nancy (1A) — Mathématiques Appliquées pour l'Informatique

Logique des propositions : clause, forme clausale, résolution, système formel, démonstration

Exercice 1

Soit P un ensemble de variables propositionnelles, on rappelle qu'une clause définie sur P est une formule de la forme $a_1 \vee \ldots a_k \vee \neg a_{k+1} \vee \neg a_{k+r}$ où les a_i pour $i \in [1, k+r]$ sont des variables propositionnelles deux à deux distinctes et $k \in \mathbb{N}$ et $r \in \mathbb{N}$.

- 1. Que pouvez vous dire sémantiquement de la formule $a \vee \mathcal{F}$ pour $a \in P$, en déduire la sémantique de la clause vide notée \square obtenue dans la définition en prenant k=r=0.
- 2. On rappelle qu'une formule de Prop(P) peut s'écrire sous forme clausale c'est-à-dire sous forme d'une conjonction de clauses. La forme clausale pour les formules de Prop(P) correspond à la forme conjonctive disjonctive des fonctions booléennes (deuxième forme de Lagrange). La forme clausale est donc $\bigwedge c_i$,

Que peut peut-on dire sémantiquement d'une formule de la forme $f \wedge \mathcal{V}$ où f est une formule quelconque de Prop(P)? En déduire la sémantique de $\bigwedge_{i \in I} c_i$ si $I = \emptyset$ et la conséquence de ce résultat.

Exercice 2

Mettre les formules suivantes sous forme clausale, (conjonction de clauses) et sous forme d'ensemble de clauses, dire de combien de clauses elles sont composées :

```
f_1 = p \Rightarrow q,
f_2 = \neg (p \Rightarrow q),
f_3 = p \Rightarrow (q \lor r),
f_4 = (p \wedge q) \vee r,
f_5 = (p \Rightarrow q) \land (q \Rightarrow r),
f_6 = (p \wedge r) \Rightarrow q ,

f_7 = \neg (p \Rightarrow q) \vee \neg (q \Rightarrow r),
f_8 = p \Leftrightarrow q
f_9 = p \Rightarrow p \lor q
```

où c_i sont des clauses.

Indications: éliminer le connecteur \Rightarrow en remplaçant la formule $p \Rightarrow q$ par la formule équivalente $\neg p \lor q$ et utiliser les propriétés faisant intervenir les connecteurs \neg , \land et \lor .

Exercice 3

Soit P un ensemble de variables propositionnelles et $\mathcal{C}(P)$ l'ensemble des clauses construites sur P. On considère le système formel de Robinson $(\mathcal{C}(P), \emptyset, \mathcal{R})$ où

$$\mathcal{R} = \{ \begin{array}{c} \frac{c_1 \vee \mathbf{a} \vee c_2, \quad c_3 \vee \neg \mathbf{a} \vee c_4}{c_1 \vee c_2 \vee c_3 \vee c_4} (resolution), \\ \frac{c_1 \vee \mathbf{a} \vee c_2 \vee \mathbf{a} \vee c_3}{c_1 \vee \mathbf{a} \vee c_2 \vee c_3} (fact^+), \\ \frac{c_1 \vee \neg \mathbf{a} \vee c_2 \vee \neg \mathbf{a} \vee c_3}{c_1 \vee \neg \mathbf{a} \vee c_2 \vee \neg \mathbf{a} \vee c_3} (fact^-) \\ \\ \} \end{array}$$

et c_1, c_2, c_3, c_4 sont des clauses et a est une variable propositionnelle.

On appelle réfutation dans un ensemble $\mathcal{H} \subset \mathcal{C}(P)$ une démonstration $(f_i)_{1 \le i \le n}$ avec hypothèses dans \mathcal{H} dont la dernière clause f_i est la clause vide, on parle aussi de réfutation de \mathcal{H} .

On considère l'ensemble $P = \{a, b, c, d, e, f\}$ de variable propositionnelles. Donner des réfutations des ensembles suivants:

1. $C_1 = {\neg a \lor \neg b \lor c, a, \neg c, b}$ 2. $C_2 = \{ \neg a \lor \neg b \lor c, \neg a \lor b, a, \neg c \}$ 3. $C_3 = \{ \neg a \lor \neg b, \neg c \lor a, c, \neg d \lor b, d \lor b \}$ 4. $C_4 = \{ \neg a \lor \neg b \lor c \lor d, \ \neg c \lor \neg e \lor \neg f, \ \neg a \lor \neg d, \ b \lor c, \ a \lor c, \ \neg c \lor e, \ \neg c \lor f \}$

Exercice 4

Soit $\{a_1, a_2, \ldots, a_n\}$ un ensemble de n variables propositionnelles, quel est le nombre de clauses différentes que l'on peut construire sachant qu'une variable propositionnelle n'apparaît pas plus d'une fois dans une clause. Ecrire toutes les clauses obtenues pour n=2.

Exercice 5

On considère l'ensemble C constitué des quatre clauses suivantes : $c_1 = \neg a \lor \neg b \lor c$, $c_2 = \neg b \lor \neg c$, $c_3 = \neg a \lor b$, $c_4 = a$.

- 1. Donner une réfutation de C.
- 2. Montrer que des clauses c_1 et c_3 on peut déduire $c_5 = \neg a \lor c$, mais que l'ensemble $\{c_2, c_4, c_5\}$ n'est pas réfutable. Que pouvez-vous conclure?

Exercice 6

Soit l'ensemble de clauses $C = \{a \lor \neg b, \neg a \lor b\}$, C est-il réfutable dans le système formel de Robinson?

Exercice 7

On considère le système formel $\mathcal S$ suivant sur le calcul des propositions :

$$S = (Prop(P), A, \mathcal{R}) \text{ tel que}$$

$$- A = \{\mathcal{V}, \neg \mathcal{F}, a_1, a_2, a_3, a_4\} \text{ où}$$

$$a_1 = x \Rightarrow (y \Rightarrow x),$$

$$a_2 = (x \Rightarrow (y \Rightarrow z)) \Rightarrow ((x \Rightarrow y) \Rightarrow (x \Rightarrow z)),$$

$$a_3 = x \Rightarrow (\neg x \Rightarrow y),$$

$$a_4 = (x \Rightarrow y) \Rightarrow ((\neg x \Rightarrow y) \Rightarrow y)$$

- $-\mathcal{R} = \{\frac{\alpha, \alpha \Rightarrow \beta}{\beta} (modus\ ponens), \frac{\alpha}{\sigma(\alpha)} (substitution) \}$, où dans la règle de substitution α est un axiome et σ est une substitution remplaçant respectivement les variables x, y et z par des formules quelconques γ_1, γ_2 et γ_3 .
- 1. Montrer que le système \mathcal{S} est valide.
- 2. Donner une démonstration de la formule $x \Rightarrow x$.
- 3. Montrer que $\mathcal{A} \cup \{\alpha\} \vdash_{\mathcal{S}} \beta$ si et seulement si $\mathcal{A} \vdash_{\mathcal{S}} \alpha \Rightarrow \beta$ (cette propriété est parfois appelée lemme de détachement).