

Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2013/14.

Cuestiones

- 1. Mediante la fórmula de Newton para la interpolación de Lagrange (para nodos distintos), expresa el polinomio $p(x) = x^3 + x 3$ respecto de la correspondiente base de Newton.
- 2. Se sabe que la matriz de Gram para cierto problema de interpolación lineal, respecto de la base de \mathbb{P}_2 , $\{1, x, x(x-1)\}$ es:

$$G = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{array}\right)$$

Escribe, si es posible, la base de Lagrange para dicho problema.

- 3. Indica, y razona con brevedad, la verdad (con V) o falsedad (con F) para cada una de las afirmaciones siguientes:
 Todo sistema lineal, n × n, cuya matriz de coeficientes es de la forma, A = LU, admite solución única.
 Si calculamos la matriz de Gram asociada a la base de Newton para el problema de interpolación de Lagrange obtendremos un matriz triangular superior.
 Si aplicamos de Gauss-Seidel a cualquier sistema triangular inferior obtendremos la solución exacta en un solo paso.
 Si p(x) es el interpolante de Hermite (clásico) para 4 nodos distintos, entonces grado(p) = 7
- 4. Tras aplicar cierto número de iteraciones del método de las potencias a la matriz \mathbf{A}^{-1} hemos obtenido el valor propio dominante de \mathbf{A}^{-1} , $\lambda=2.5$. Da una estimación de uno de los valores propios de \mathbf{A} y explica qué relación puede tener con el resto de valores propios de \mathbf{A} .
- 5. Para aproximar el valor ln(2) se ha utilizado un polinomio de grado ≤ 3 que interpola f(x) y f'(x) en $x_i := \{1, e\}$ (f(x)) es una función apropiada). Deduce, sin calcular el polinomio, que el error (en valor absoluto) es menor que 0.13.
- 6. Si extendemos el concepto de matriz definida positiva a matrices reales no simétricas; a saber, **A** matriz real es definida positiva si, y sólo si, $\mathbf{x}^t \mathbf{A} \mathbf{x} > 0$ para todo $\mathbf{x} \in \mathbb{R}^n \{\vec{0}\}.$
 - a) Deduce que **A** es definida positiva si, y sólo si, lo es $\frac{\mathbf{A} + \mathbf{A}^t}{2}$
 - b) ¿Es cierta, en este caso, la caracterización que relaciona los determinantes principales con matrices definidas positivas?

Ejercicios

1. Se pretende obtener una estimación de la superficie que ocupa un terreno cuyo aspecto es el de la figura. Para ello se han tomado las medidas (en metros y tomadas desde el borde horizontal al borde curvo) siguientes:

x_i	-20	-10	0	10	20
y_i	30	25	25	35	40

Figura 1

- a) Calcula la mejor aproximación m.c.d. en el espacio $S_1(-20, 0, 20)$ para los datos considerados.
- b) Obtén el valor estimado de la superficie del terreno.
- 2. Considera el sistema lineal, $\mathbf{A}\mathbf{x} = \mathbf{b}$, con $\mathbf{A} = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 5 \\ -3 \\ -2 \end{pmatrix}$.
 - a) Resuelve el sistema mediante una descomposición $\mathbf{A} = \mathbf{L}\mathbf{U}$.
 - b) Da una estimación de la solución aplicando dos veces el método Gauss-Seidel con aproximación inicial, $\mathbf{x}^{(0)} = (0, 0, 0)^t$.
 - c) Calcula una aproximación del valor propio dominante para \mathbf{B}_g aplicando tres veces el método de las potencias partiendo de vector inicial, $\mathbf{x}^{(0)} = (0,6,6)^t$.
 - d) ¿Qué se puede asegurar sobre la convergencia del método de Gauss-seidel aplicado a este sistema?
- 3. Calcula el spline cúbico, s(x), del que se sabe que:

$$s''(x) = \begin{cases} x+1 & si & -1 \le x < 0 \\ 1-x/2 & si & 0 \le x \le 2 \end{cases} \quad y \quad s(0) = 0, \ s'(0) = -1.$$

2