MATH 20700 (Honors Analysis in \mathbb{R}^n I) Problem Sets

Steven Labalme

November 1, 2021

Contents

1	Matrix Basics and Linear Systems	1
2	Eigenvalues and Eigenvectors	14
3	Inner Product Spaces	23
4	Inner Product Phenomena and Intro to Bilinear Forms	38
5	Definiteness, Dual Spaces, and Advanced Spectral Theory	53
\mathbf{R}	eferences	60

1 Matrix Basics and Linear Systems

From Treil (2017).

Chapter 1

10/4: **1.2.** Which of the following sets (with natural addition and multiplication by a scalar) are vector spaces? Justify your answer.

a) The set of all continuous functions on the interval [0, 1].

Answer. This IS a vector space.

Commutativity: If f, g are continuous functions on [0, 1], then f + g is continuous on [0, 1] with f + g = g + f.

Associativity: If f, g, h are continuous functions on [0, 1], then (f + g) + h and f + (g + h) are continuous functions on [0, 1] with (f + g) + h = f + (g + h).

Zero vector: Let $\mathbf{0}:[0,1] \to [0,1]$ be defined by $\mathbf{0}(x)=0$ for all $x \in [0,1]$. Then if f is any continuous function on [0,1], $f+\mathbf{0}=f$.

Additive inverse: Let f be a continuous function on [0,1]. Define $g:[0,1] \to [0,1]$ by g(x) = -f(x) for all $x \in [0,1]$. Clearly g is still continuous on [0,1], and $f+g=\mathbf{0}$.

Multiplicative identity: Let f be a continuous function on [0,1]. Then naturally 1f = f.

Multiplicative associativity: Let f be a continuous function on [0,1], and let $\alpha, \beta \in \mathbb{F}$. Then $(\alpha\beta)f = \alpha(\beta f)$.

Distributive (vectors): Let f, g be continuous on [0, 1], and let $\alpha \in \mathbb{F}$. Then $\alpha(f + g)$ and $\alpha f + \alpha g$ are continuous on [0, 1] and equal.

Distributive (scalars): Let f be continuous on [0,1], and let $\alpha, \beta \in \mathbb{F}$. Then $(\alpha + \beta)f$ and $\alpha f + \beta f$ are continuous on [0,1] and equal.

b) The set of all non-negative functions on the interval [0,1].

Answer. This IS NOT a vector space.

Not closed under inverses — $f:[0,1] \to \mathbb{R}$ defined by f(x)=1 for all x would be a non-negative function on this interval, and $g:[0,1] \to \mathbb{R}$ defined by g(x)=-1 for all x is naturally its inverse, but not an element of the set.

c) The set of all polynomials of degree exactly n.

Answer. This IS NOT a vector space.

Not closed under summation — the inverse of x^n is $-x^n$, but their sum is 0, a polynomial of degree 0.

d) The set of all symmetric $n \times n$ matrices, i.e., the set of matrices $A = \{a_{j,k}\}_{j,k=1}^n$ such that $A^T = A$.

Answer. This IS a vector space.

The condition for symmetric is $a_{j,k} = a_{k,j}$. Assume this is true for A and B. Then naturally

$$(a + b)_{j,k} = a_{j,k} + b_{j,k}$$

= $a_{k,j} + b_{k,j}$
= $(a + b)_{k,j}$

A symmetric argument verifies scalar multiplication.

- **1.3.** True or false:
 - a) Every vector space contains a zero vector.

	Answer. True. By definition. \Box
b)	A vector space can have more than one zero vector.
	Answer. False. Suppose for the sake of contradiction that $0,0'$ are two distinct zero vectors. Then
	0 = 0 + 0' = 0'
	a contradiction. $\hfill\Box$
c)	An $m \times n$ matrix has m rows and n columns.
	Answer. True. By definition. $\hfill\Box$
d)	If f and g are polynomials of degree n , then $f+g$ is also a polynomial of degree n .
	Answer. False. x^n and $-x^n$ are both polynomials of degree n , but their sum (0) is a polynomial of degree n . \square
e)	If f and g are polynomials of degree at most n , then $f+g$ is also a polynomial of degree at most n .
	Answer. True. Suppose for the sake of contradiction that there exist f,g of degree at most n such that $f+g$ has degree $m>n$. Then $f+g$ has an ax^m term. Since f has degree n , it has no bx^m term. Thus, $(f+g)-f=g$ retains the ax^m term, and is of degree $m>n$, a contradiction.
2.2. True	e or false:
a)	Any set containing a zero vector is linearly dependent.
	Answer. True. Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a list of vectors. If $\mathbf{v}_i = 0$, then
	$0\mathbf{v}_1 + \dots + 0\mathbf{v}_{i-1} + 1\mathbf{v}_i + 0\mathbf{v}_{i+1} + \dots + 0\mathbf{v}_n = 0$
	even though one of the coefficients isn't 0. Thus, the list is linearly dependent. $\hfill\Box$
b)	A basis must contain 0 .
	Answer. False. $\{1\} \text{ is a basis of } \mathbb{R}^1.$
c)	Subsets of linearly dependent sets are linearly dependent.
	<i>Proof.</i> False. $\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}$ is linearly dependent, but $\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}$ is linearly independent. \Box
d)	Subsets of linearly independent sets are linearly independent.
	Proof. True. Suppose for the sake of contradiction that there exists a linearly dependent subset of a linearly independent list. Then there are nonzero coefficients that make a linear combination of the linearly dependent equal to zero. Thus, if we pair these coefficients to their respective vectors in a sum of the whole list, and use zero everywhere else, we will have a set of coefficients, not all zero, that make the supposedly linearly independent list sum to zero, a contradiction

e) If $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$, then all scalars α_k are zero.

Answer. False.

Let $\mathbf{v}_1, \mathbf{v}_2$ be defined by

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Then
$$1\mathbf{v}_1 + 1\mathbf{v}_2 = \mathbf{0}$$
.

2.5. Let a system of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be linearly independent but not generating. Show that it is possible to find a vector \mathbf{v}_{r+1} such that the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ is linearly independent. (Hint: Take for \mathbf{v}_{r+1} any vector that cannot be represented as a linear combination $\sum_{k=1}^r \alpha_k \mathbf{v}_k$ and show that the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ is linearly independent.)

Answer. Let \mathbf{v}_{r+1} be any vector that cannot be represented as a linear combination $\sum_{k=1}^{r} \alpha_k \mathbf{v}_k$ (we are guaranteed that one exists, because otherwise $\mathbf{v}_1, \dots, \mathbf{v}_r$ would be generating). Now suppose for the sake of contradiction that the new list is linearly dependent. Then there exist coefficients $\alpha_1, \dots, \alpha_{r+1}$, not all zero, such that

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_{r+1} \mathbf{v}_{r+1} = \mathbf{0}$$

We divide into two cases $(\alpha_{r+1} = 0 \text{ and } \alpha_{r+1} \neq 0)$. If $\alpha_{r+1} = 0$, then it must be at least one of $\alpha_1, \ldots, \alpha_r$ is nonzero by hypothesis. But then

$$\mathbf{0} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r + \alpha_{r+1} \mathbf{v}_{r+1}$$
$$\mathbf{0} - 0 \mathbf{v}_{r+1} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r$$
$$\mathbf{0} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r$$

for a set of coefficients $\alpha_1, \ldots, \alpha_r \in \mathbb{F}$, not all zero, contradicting the fact that $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are linearly independent. On the other hand, if $\alpha_{r+1} \neq 0$, then

$$\mathbf{v}_{r+1} = -\frac{\alpha_1}{\alpha_{r+1}} \mathbf{v}_1 - \dots - \frac{\alpha_r}{\alpha_{r+1}} \mathbf{v}_r$$

so \mathbf{v}_{r+1} can be expressed as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_r$, a contradiction.

2.6. Is it possible that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, but the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3, \mathbf{w}_3 = \mathbf{v}_3 + \mathbf{v}_1$ are linearly independent?

Answer. No.

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent. Then there exist coefficients $\alpha_1, \alpha_2, \alpha_3$, not all zero, such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}$$

To prove that $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ must be linearly dependent, as defined, it will suffice to show that there exist coefficients $\beta_1, \beta_2, \beta_3$, not all zero, such that

$$\beta_1 \mathbf{w}_1 + \beta_2 \mathbf{w}_2 + \beta_3 \mathbf{w}_3 = \mathbf{0}$$

But we have that

$$\beta_1 \mathbf{w}_1 + \beta_2 \mathbf{w}_2 + \beta_3 \mathbf{w}_3 = \beta_1 (\mathbf{v}_1 + \mathbf{v}_2) + \beta_2 (\mathbf{v}_2 + \mathbf{v}_3) + \beta_3 (\mathbf{v}_3 + \mathbf{v}_1)$$

= $(\beta_1 + \beta_3) \mathbf{v}_1 + (\beta_1 + \beta_2) \mathbf{v}_2 + (\beta_2 + \beta_3) \mathbf{v}_3$

so to have $(\beta_1 + \beta_3)\mathbf{v}_1 + (\beta_1 + \beta_2)\mathbf{v}_2 + (\beta_2 + \beta_3)\mathbf{v}_3 = \mathbf{0}$, we need only require that

$$\beta_1 + \beta_3 = \alpha_1 \qquad \qquad \beta_1 + \beta_2 = \alpha_2 \qquad \qquad \beta_2 + \beta_3 = \alpha_3$$

Thus, choose

$$\beta_1 = \frac{1}{2}(\alpha_1 + \alpha_2 - \alpha_3)$$
 $\beta_2 = \frac{1}{2}(-\alpha_1 + \alpha_2 + \alpha_3)$ $\beta_3 = \frac{1}{2}(\alpha_1 - \alpha_2 + \alpha_3)$

Lastly, note that we do not have $\beta_1 = \beta_2 = \beta_3 = 0$ because if we did, we could prove from that condition that $\alpha_1 = \alpha_2 = \alpha_3 = 0$, a contradiction.

- **3.3.** For each linear transformation below, find its matrix.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y)^T = (x+2y,2x-5y,7y)^T$.

Answer.

$$\begin{pmatrix} 1 & 2 \\ 2 & -5 \\ 0 & 7 \end{pmatrix}$$

b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3, x_4)^T = (x_1 + x_2 + x_3 + x_4, x_2 - x_4, x_1 + 3x_2 + 6x_4)^T$.

Answer.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 3 & 0 & 6 \end{pmatrix}$$

c) $T: \mathbb{P}_n \to \mathbb{P}_n$ defined by Tf(t) = f'(t) (find the matrix with respect to the standard basis $1, t, t^2, \dots, t^n$).

Answer.

$$\begin{pmatrix} 0 & 1 & 0 & & & 0 \\ 0 & 0 & 2 & & & 0 \\ & & & \ddots & & \\ 0 & 0 & 0 & & & n \\ 0 & 0 & 0 & & & 0 \end{pmatrix}$$

d) $T: \mathbb{P}_n \to \mathbb{P}_n$ defined by Tf(t) = 2f(t) + 3f'(t) - 4f''(t) (again with respect to the standard basis $1, t, t^2, \dots, t^n$).

Answer.

$$\begin{pmatrix} 2 & 3 & -8 & & 0 \\ 0 & 2 & 6 & \ddots & 0 \\ 0 & 0 & 2 & \ddots & -4n(n-1) \\ \vdots & \vdots & & \ddots & 3n \\ 0 & 0 & 0 & & 2 \end{pmatrix}$$

- **3.6.** The set \mathbb{C} of complex numbers can be canonically identified with the space \mathbb{R}^2 by treating each $z = x + iy \in \mathbb{C}$ as a column $(x, y)^T \in \mathbb{R}^2$.
 - a) Treating $\mathbb C$ as a complex vector space, show that the multiplication by $\alpha = a + ib \in \mathbb C$ is a linear transformation in $\mathbb C$. What is its matrix?

Labalme 4

Answer. Let $T: \mathbb{C} \to \mathbb{C}$ be defined by $Tx = \alpha x$. Then

$$T(x+y) = \alpha(x+y)$$
 $T(\beta x) = \alpha(\beta x)$
= $\alpha x + \alpha y$ = $\beta(\alpha x)$
= $Tx + Ty$ = βTx

so T is linear. The matrix of T is $[\alpha]$.

b) Treating \mathbb{C} as the real vector space \mathbb{R}^2 , show that the multiplication by $\alpha = a + ib$ defines a linear transformation there. What is its matrix?

Answer. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x,y)^T = (ax - by, ay + bx)^T$. Then

$$\begin{split} T\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) &= T\left(\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}\right) & T\left(c\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) &= T\left(\begin{pmatrix} cx_1 \\ cx_2 \end{pmatrix}\right) \\ &= \begin{pmatrix} a(x_1 + y_1) - b(x_2 + y_2) \\ a(x_2 + y_2) + b(x_1 + y_1) \end{pmatrix} &= \begin{pmatrix} a(cx_1) - b(cx_2) \\ a(cx_2) + b(cx_1) \end{pmatrix} \\ &= \begin{pmatrix} ax_1 - bx_2 \\ ax_2 + bx_1 \end{pmatrix} + \begin{pmatrix} ay_1 - by_2 \\ ay_2 + by_1 \end{pmatrix} &= c\begin{pmatrix} ax_1 - bx_2 \\ ax_2 + bx_1 \end{pmatrix} \\ &= T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + T\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} &= cT\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{split}$$

so T is linear. The matrix of T is

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

c) Define T(x+iy) = 2x - y + i(x-3y). Show that this transformation is not a linear transformation in the complex vector space \mathbb{C} , but if we treat \mathbb{C} as the real vector space \mathbb{R}^2 , then it is a linear transformation there (i.e., that T is a real linear but not a complex linear transformation). Find the matrix of the real linear transformation T.

Answer. To prove that T is not complex linear, note that

$$T(i \cdot 1) = T(i) = -1 - 3i \neq -1 + 2i = i(2+i) = iT(1)$$

We can verify the T is real linear with the following.

$$\begin{split} T\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) &= T\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} & T\left(c\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) &= T\begin{pmatrix} cx_1 \\ cx_2 \end{pmatrix} \\ &= \begin{pmatrix} 2(x_1 + y_1) - (x_2 + y_2) \\ (x_1 + y_1) - 3(x_2 + y_2) \end{pmatrix} &= \begin{pmatrix} 2(cx_1) - (cx_2) \\ (cx_1) - 3(cx_2) \end{pmatrix} \\ &= \begin{pmatrix} 2x_1 - x_2 \\ x_1 - 3x_2 \end{pmatrix} + \begin{pmatrix} 2y_1 - y_2 \\ y_1 - 3y_2 \end{pmatrix} &= c \begin{pmatrix} 2x_1 - x_2 \\ x_1 - 3x_2 \end{pmatrix} \\ &= cT\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{split}$$

The matrix of the real linear transformation is the following.

$$\begin{pmatrix} 2 & -1 \\ 1 & -3 \end{pmatrix}$$

5.3. Multiply two rotation matrices T_{α} and T_{β} (it is a rare case when the multiplication is commutative, i.e., $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$, so the order is not essential). Deduce formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ from here.

Labalme 5

Answer.

$$\begin{split} T_{\alpha}T_{\beta} &= \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \\ &= \begin{pmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & -\cos\alpha\sin\beta - \sin\alpha\cos\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & -\sin\alpha\sin\beta + \cos\alpha\cos\beta \end{pmatrix} \end{split}$$

Since $T_{\alpha+\beta} = T_{\alpha}T_{\beta}$, we have that

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

5.5. Find linear transformations $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.

Answer. Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$

Then

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad BA = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

5.8. Find the matrix of the reflection through the line y = -2x/3. Perform all the multiplications.

Answer. The reflection matrix T can be obtained by composing a rotation of \mathbb{R}^2 such that y = -2x/3 lines up with the x-axis, a reflection over the x-axis (a super simple reflection), and a rotation back. Let γ be the angle between the x-axis and the line y = -2x/3. Then

$$T = R_{-\gamma} T_0 R_{\gamma}$$

$$= \begin{pmatrix} \cos(-\gamma) & -\sin(-\gamma) \\ \sin(-\gamma) & \cos(-\gamma) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$$

$$= \begin{pmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & -\frac{3}{\sqrt{13}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ -\frac{12}{13} & -\frac{5}{13} \end{pmatrix}$$

6.3. Find all left inverses of the column $(1,2,3)^T$.

Answer. The set of all left inverses of $(1,2,3)^T$ is the set of all 1×3 matrices (a,b,c) such that $(a,b,c) \cdot (1,2,3)^T = (1)$. In other words, it's the set of all (a,b,c) such that a+2b+3c=1.

6.6. Suppose the product AB is invertible. Show that A is right invertible and B is left invertible. (Hint: You can just write formulas for right and left inverses.)

Answer. If AB is invertible, then there exists $(AB)^{-1}$. It follows that $(AB)(AB)^{-1} = A(B(AB)^{-1}) = I$, so A is right invertible, and $(AB)^{-1}(AB) = ((AB)^{-1}A)B = I$, so B is left invertible.

6.8. Let A be an $n \times n$ matrix. Prove that if $A^2 = \mathbf{0}$, then A is not invertible.

Answer. Suppose for the sake of contradiction there exists an A^{-1} . Then

$$I = AAA^{-1}A^{-1} = A^2A^{-2} = \mathbf{0}A^{-2} = \mathbf{0}$$

a contradiction. \Box

6.10. Write matrices of the linear transformations T_1 and T_2 in \mathbb{F}^5 , defined as follows: T_1 interchanges the coordinates x_2 and x_4 of the vector \mathbf{x} , and T_2 just adds to the coordinate x_2 the quantity a times the coordinate x_4 , and does not change other coordinates, i.e.,

$$T_{1} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{4} \\ x_{3} \\ x_{2} \\ x_{5} \end{pmatrix} \qquad T_{2} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} + ax_{4} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix}$$

where a is some fixed number. Show that T_1 and T_2 are invertible transformations, and write the matrices of the inverses. (Hint: It may be simpler, if you first describe the inverse transformation, and then find its matrix, rather than trying to guess [or compute] the inverses of the matrices T_1, T_2 .)

Answer.

$$T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & a & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The inverse transformation of T_1 exchanges x_2 and x_4 back, leaving everything else the same. The inverse transformation of T_2 subtracts ax_4 from the second slot, leaving everything else the same. Thus,

$$T_1^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_2^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -a & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

6.13. Let A be an invertible symmetric $(A^T = A)$ matrix. Is the inverse of A symmetric? Justify.

Answer. We have that

$$A^{-1} = ((A^{-1})^T)^T$$
$$= ((A^T)^{-1})^T$$
$$= (A^{-1})^T$$

as desired. \Box

	7.3.	Let X	be a subspa	ce of a vector	r space V	, and let	$\mathbf{v} \in V$, v	$\mathbf{v} \notin X$.	Prove that	if $\mathbf{x} \in X$.	, then $\mathbf{x} + \mathbf{v}$	$\notin X$
--	------	---------	-------------	----------------	-------------	-----------	------------------------	-------------------------	------------	-------------------------	----------------------------------	------------

Answer. Suppose for the sake of contradiction that $\mathbf{x} + \mathbf{v} \in X$. Then $\mathbf{x} + \mathbf{v}$ can be expressed as a linear combination of a basis of X. Similarly, \mathbf{x} can be expressed as a linear combination of a basis of X. But this implies that $\mathbf{v} = \mathbf{x} + \mathbf{v} - \mathbf{x}$ can be written as a linear combination of the basis of X, a contradiction since $\mathbf{v} \notin X$, so it shouldn't be able to be written as a linear combination of a basis of X.

7.4. Let X and Y be subspaces of a vector space V. Using the previous exercise, show that $X \cup Y$ is a subspace if and only if $X \subset Y$ or $Y \subset X$.

Answer. Suppose that $X \cup Y$ is a subspace of V. Suppose for the sake of contradiction that $X \not\subset Y$ and $Y \not\subset X$. Then there exists $\mathbf{x} \in X$ such that $\mathbf{x} \notin Y$ and $\mathbf{y} \in Y$ such that $\mathbf{y} \notin X$. Consider $\mathbf{x} + \mathbf{y}$. Since $\mathbf{x} \in X$ and $\mathbf{y} \notin X$, we have by 7.3 that $\mathbf{x} + \mathbf{y} \notin X$. Similarly, we have that $\mathbf{x} + \mathbf{y} \notin Y$. But this implies that $\mathbf{x} + \mathbf{y} \notin X \cup Y$, contradiction the hypothesis that $X \cup Y$ is a subspace (and thus closed under addition).

Suppose that $X \subset Y$. To prove that $X \cup Y$ is a subspace, it will suffice to check that $\mathbf{v} \in X \cup Y$ implies $\alpha \mathbf{v} \in X \cup Y$, and $\mathbf{v}, \mathbf{w} \in X \cup Y$ implies $\mathbf{v} + \mathbf{w} \in X \cup Y$. Let $\mathbf{v} \in X \cup Y$. Then $\mathbf{v} \in X$ or $\mathbf{v} \in Y$. Either way, the fact that X and Y are subspaces guarantees that $\alpha \mathbf{v} \in X \cup Y$. Now let $\mathbf{v}, \mathbf{w} \in X \cup Y$. Since $X \subset Y$, this implies that $\mathbf{v}, \mathbf{w} \in Y$, so $\mathbf{v} + \mathbf{w} \in Y$, so $\mathbf{v} + \mathbf{w} \in X \cup Y$. The proof is symmetric if $Y \subset X$.

7.5. What is the smallest subspace of the space of 4×4 matrices which contains all upper triangular matrices $(a_{j,k} = 0 \text{ for all } j > k)$, and all symmetric matrices $(A = A^T)$? What is the largest subspace contained in both of those subspaces?

Answer. Out of the vector space V of 4×4 matrices, the smallest subspace which contains all upper triangular matrices and all symmetric matrices is V, itself. This is because any matrix can be decomposed into the sum of a symmetric matrix and an upper triangular matrix (fix the values in the lower triangle, and modify the upper triangle as needed with the upper triangular matrix), so every 4×4 matrix is in this subspace.

The largest subspace contained in both the subspace of upper triangular matrices and the subspace of all symmetric matrices is the subspace of all diagonal matrices. Adding another dimension by making a value below the diagonal nonzero makes the matrix in question not upper triangular, and adding another dimension by making a value above the diagonal nonzero makes the matrix not symmetric (as we would have to add a value below the diagonal to make it so and that would run into the problem described first).

Chapter 2

3.4. Do the polynomials $x^3 + 2x$, $x^2 + x + 1$, $x^3 + 5$ generate (span) \mathbb{P}_3 ? Justify your answer.

Answer. $1, x, x^2, x^3$ is the standard basis of \mathbb{P}_3 . Thus, it spans \mathbb{P}_3 . But since the given list has fewer vectors, Proposition 3.5 asserts that it cannot span \mathbb{P}_3 .

3.5. Can 5 vectors in \mathbb{F}^4 be linearly independent? Justify your answer.

Answer. No — see Proposition 3.2.

3.7. Prove or disprove: If the columns of a square $(n \times n)$ matrix A are linearly independent, so are the rows of $A^3 = AAA$.

Answer. Suppose A is $n \times n$ with linearly independent columns. Then by Proposition 3.1, A_e has a pivot in every column. But since A_e is square, this means it also has a pivot in every row. It follows by 3.6 that A is invertible. Thus A^{-1} exists. Consequently, A^{-3} is the inverse of A^3 since

$$A^{3}A^{-3} = AAAA^{-1}A^{-1}A^{-1} = I A^{-3}A^{3} = A^{-1}A^{-1}A^{-1}AAA = I$$

so A^3 is invertible. Thus, 3.6 implies A_e^3 has a pivot in every row and column. But this implies that $(A^3)^T$ has a pivot in every row and column, meaning by 3.1 that the columns of $(A^3)^T$ are linearly independent, i.e., the rows of A^3 are linearly independent.

5.1. True or false:

\mathbf{a}	Every	vector	space	that	is	generated	bv	a	finite	set	has	a	basis.
--------------	-------	--------	-------	------	----	-----------	----	---	--------	-----	-----	---	--------

Answer. True.

See Proposition 2.8, Chapter 1.

b) Every vector space has a (finite) basis.

Answer. False.

Consider the vector space of polynomials of any degree.

c) A vector space cannot have more than one basis.

Answer. False.

Both 1 and 2 are bases of \mathbb{R}^1 .

d) If a vector space has a finite basis, then the number of vectors in every basis is the same.

Answer. True.

See Proposition 3.3, Chapter 2

e) The dimension of \mathbb{P}_n is n.

Answer. False.

The standard basis of \mathbb{P}_n is $1, t, t^2, \dots, t^n$, which has n+1 vectors. Thus, dim $\mathbb{P}_n = n+1$.

f) The dimension on $M_{m \times n}$ is m + n.

Answer. False.

The standard basis of $M_{m \times n}$ is the set of all matrices with a 1 in one slot and a 0 everywhere else. Thus, $\dim M_{m \times n} = m \times n$.

g) If vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ generate (span) the vector space V, then every vector in V can be written as a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in only one way.

Answer. False.

The vectors $1, 2 \in \mathbb{R}^1$ span \mathbb{R}^1 , but 3 = 1 + 2 and 3 = -1(1) + 2(2).

h) Every subspace of a finite-dimensional space is finite-dimensional.

Answer. True.

See Theorem 5.5. \Box

i) If V is a vector space having dimension n, then V has exactly one subspace of dimension 0 and exactly one subspace of dimension n.

Answer. True.

 $\{0\}$ is THE unique VS of dimension 0 and a subspace of every vector space, so that part is true. On the other hand, any subspace of dim n has a basis consisting of n linearly independent, spanning elements of V. But any such list is also a basis of V, so the subspace is V.

5.2.	Prove that if V is a vector space having dimension n, then a system of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in	V	is
	linearly independent if and only if it spans V .		

Answer. Suppose first that $\mathbf{v}_1, \dots, \mathbf{v}_n$ is linearly independent. Then the $n \times n$ matrix A with these vectors as columns has a pivot in every column by 3.1. But since A is square, this means that it has a pivot in every row. Thus, by 3.1 again, the columns (i.e, the list $\mathbf{v}_1, \dots, \mathbf{v}_n$) spans V.

The proof is the same in the reverse direction.

- **5.6.** Consider in the space \mathbb{R}^5 vectors $\mathbf{v}_1 = (2, -1, 1, 5, -3)^T$, $\mathbf{v}_2 = (3, -2, 0, 0, 0)^T$, $\mathbf{v}_3 = (1, 1, 50, -921, 0)^T$. (Hint: If you do part (b) first, you can do everything without any computations.)
 - a) Prove that these vectors are linearly independent.

Answer. If we add in e_1 and e_3 to the mix, then we can create the matrix

$$A = \begin{pmatrix} 1 & 3 & 0 & 1 & 2 \\ 0 & -2 & 0 & 1 & -1 \\ 0 & 0 & 1 & 50 & 1 \\ 0 & 0 & 0 & -921 & 5 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix}$$

A is already in eschelon form $(A = A_e)$ and $A = A_e$ has a pivot in every column, so 3.1 implies that the vectors of A are linearly independent.

b) Complete the system of vectors to a basis.

Answer. Using the same matrix as above, we can see that A has a pivot in every row and column, so 3.1 implies that its columns form a basis. Thus, the two vectors we added complete the system to a basis of \mathbb{R}^5 .

- **6.1.** True or false:
 - a) Any system of linear equations has at least one solution.

Answer. False.

y = x and y = x + 1 has no solution.

b) Any system of linear equations has at most one solution.

Answer. False.

y = x and y = x has infinite solutions.

c) Any homogeneous system of linear equations has at least one solution.

Answer. True.

0 is always a solution.

d) Any system of n linear equations in n unknowns has at least one solution.

Answer. False.

y=x and y=x+1 is a system of 2 linear equations in 2 unknowns but has no solution.

e) Any system of n linear equations in n unknowns has at most one solution.

Answer. False.

y = x and y = x is a system of 2 linear equations in 2 unknowns but has infinite solutions.

f) If the homogeneous system corresponding to a given system of linear equations has a solution, then the given system has a solution.

Answer. False. y = x and y = x is the homogeneous system corresponding to y = x and y = x + 1, and it has a solution, but the system itself does not. g) If the coefficient matrix of a homogeneous system of n linear equations in n unknowns is invertible, then the system has no non-zero solutions. Answer. True. Invertible implies pivots in every row/column by 3.1. This implies that A_{re} gives **0** as a particular solution, and the only solution to $A\mathbf{x} = \mathbf{b} = \mathbf{0}$. Thus, 6.1 implies that the set of all solutions is $\{\mathbf{x} + \mathbf{y} : \mathbf{x} \in \{\mathbf{0}\}, \mathbf{y} \in \{\mathbf{0}\}\} = \{\mathbf{0}\}.$ h) The solution set of any system of m equations in n unknowns is a subspace of \mathbb{R}^n . Answer. False. The system x + y = 1 and 2x + y = 1 has one solution in \mathbb{R}^2 , namely $\binom{0}{1}$. Since $\mathbf{0} \notin \binom{0}{1}$, the solution set is not a *subspace* of \mathbb{R}^2 , a contradiction. i) The solution set of any homogeneous system of m equations in n unknowns is a subspace of \mathbb{R}^n . Answer. True. Let X be the solution set and let A be the coefficient matrix. The answer to Problem 6.1c shows that $\mathbf{0} \in X$. If $\mathbf{x} \in X$ and $\alpha \in \mathbb{F}$, then $A(\alpha \mathbf{x}) = \alpha A \mathbf{x} = \alpha \mathbf{0} = \mathbf{0}$, so $\alpha \mathbf{x} \in X$. If $\mathbf{x}, \mathbf{y} \in X$, then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$, so $\mathbf{x} + \mathbf{y} \in X$. **7.1.** True or false: a) The rank of a matrix is equal to the number of its non-zero columns. The rank of a matrix is equal to the number of its pivot columns since each pivot column of A is a vector in the basis of Ran A. In particular, note that non-zero columns can still be linearly dependent. b) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0. Answer. True. Suppose for the sake of contradiction that there exists a nonzero matrix with rank 0. The first column from the left with a nonzero entry will be a pivot column. Thus, this column will be part of the basis of Ran A. But since this column exists, Ran $A \geq 1$, a contradiction. c) Elementary row operations preserve rank. Answer. True. Elementary row operations, as left multiplications by invertible matrices, do not affect linear independence. d) Elementary column operations do not necessarily preserve rank. Answer. False. Elementary column operations are the same as elementary row operations on the transpose, which we know preserve rank by the above. e) The rank of a matrix is equal to the maximum number of linearly independent columns in the matrix.

Each pivot column is linearly independent, and the rank is equal to the number of pivot columns.

Answer. True.

Labalme 11

f) The rank of a matrix is equal to the maximum n	umber of linearly independent rows in th	ne matrix.
---	--	------------

Answer. True.

Each pivot row is linearly independent, and the rank is equal to the number of pivot rows/columns.

g) The rank of an $n \times n$ matrix is at most n.

Answer. True.

Each linearly independent column contributes +1 to the rank, and since an $n \times n$ matrix can have at most n columns, it certainly cannot have more than n linearly independent columns.

h) An $n \times n$ matrix having rank n is invertible.

Answer. True.

If an $n \times n$ matrix has rank n, then it has n pivot columns. But this implies by 3.6 that it is invertible.

7.4. Prove that if $A: X \to Y$ and V is a subspace of X, then $\dim AV \le \operatorname{rank} A$. (AV here means the subspace V transformed by the transformation A, i.e., any vector in AV can be represented as $A\mathbf{v}$, $\mathbf{v} \in V$.) Deduce from here that $\operatorname{rank} AB \le \operatorname{rank} A$. (Remark: Here, one can use the fact that if $V \subset W$, then $\dim V \le \dim W$. Do you understand why it is true?)

Answer. We have that $AV \subset AX$, and that $AX = \operatorname{Ran} A$. Thus, by the hint, since $AV \subset \operatorname{Ran} A$, we have that $\dim AV \leq \dim \operatorname{Ran} A$. But this implies that $\dim AV \leq \operatorname{rank} A$, as desired.

The column space of B will be a subspace of X. Additionally, we naturally have that $\operatorname{Ran} AB = A \cdot C(B)$, where C(B) is the column space of B ($AB\mathbf{x} \in A \cdot C(B)$ since $B\mathbf{x} \in C(B)$ and vice versa). Thus, by the previous result, rank $AB = \dim \operatorname{Ran} AB = \dim A \cdot C(B) \leq \operatorname{rank} A$, as desired. \square

7.6. Prove that if the product AB of two $n \times n$ matrices is invertible, then both A and B are invertible. Even if you know about determinants, do not use them (we did not cover them yet). (Hint: Use the previous 2 problems.)

Answer. If AB is invertible, then it has a pivot in every column and row. Thus, rank AB = n. It follows by Problem 7.4 that $n = \operatorname{rank} AB \le \operatorname{rank} A \le n$, implying that rank A = n. Similarly, Problem 7.5 implies that rank B = n. But these two results imply that A and B both have pivots in every column and row, i.e., both are invertible.

7.9. If A has the same four fundamental subspaces as B, does A = B?

Answer. No — consider the following two matrices.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Both of these matrices have

$$\operatorname{Ker} X = \{\mathbf{0}\}$$
 $\operatorname{Ran} X = \mathbb{R}^2$ $\operatorname{Ker} X^T = \{\mathbf{0}\}$ $\operatorname{Ran} X^T = \mathbb{R}^2$

where X = A or B. However, we also clearly have $A \neq B$.

7.14. Is it possible for a real matrix A that Ran $A = \operatorname{Ker} A^T$? Is it possible for a complex A?

Answer. Suppose for the sake of contradiction that for a real $m \times n$ matrix $A : V \to W$, Ran $A = \operatorname{Ker} A^T$. Then $A\mathbf{v} \in \operatorname{Ran} A = \operatorname{Ker} A^T$ for all $\mathbf{v} \in V$. It follows that $A^T(A\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in V$. Thus, $A^T A = 0$. Consequently,

$$0 = \operatorname{tr}(0)$$

$$= \operatorname{tr}(A^T A)$$

$$= \sum_{j=1}^{n} (A^T A)_{ii}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} A_{ij}^2$$

It follows that $A_{ij} = 0$ for all i, j, i.e., that A = 0. But this implies that $\operatorname{Ran} A = \{\mathbf{0}\} \neq W = \operatorname{Ker} A^T$, a contradiction.

It is possible for a complex matrix: Consider

$$A = \begin{pmatrix} 0 & 1 \\ 0 & i \end{pmatrix}$$

Clearly

$$\operatorname{Ran} A = \operatorname{span} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

and it can be shown that $\operatorname{Ker} A^T$ is the same.

8.3. Find the change of coordinates matrix that changes the coordinates in the basis 1, 1 + t in \mathbb{P}_1 to the coordinates in the basis 1 - t, 2t.

Answer. Let $\mathcal{A} = \{1, 1+t\}$, $\mathcal{B} = \{1-t, 2t\}$, and $\mathcal{S} = \{1, t\}$. Then following the procedure from Treil (2017), we have that

$$[I]_{\mathcal{SA}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad [I]_{\mathcal{SB}} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

SO

$$\begin{split} [I]_{\mathcal{B}\mathcal{A}} &= [I]_{\mathcal{B}\mathcal{S}}[I]_{\mathcal{S}\mathcal{A}} \\ &= ([I]_{\mathcal{S}\mathcal{B}})^{-1}[I]_{\mathcal{S}\mathcal{A}} \\ &= \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix} \end{split}$$

8.6. Are the matrices $\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 0 & 2 \\ 4 & 2 \end{pmatrix}$ similar? Justify.

Answer. We will first prove that if A and B are similar, then tr(A) = tr(B). Let A, B be similar. Then $A = Q^{-1}BQ$, so

$$tr(A) = tr(Q^{-1}BQ)$$
$$= tr(Q^{-1}QB)$$
$$= tr(B)$$

as desired.

Now observe that $\operatorname{tr}\left(\frac{1}{2}\frac{3}{2}\right)=3$ while $\operatorname{tr}\left(\frac{0}{4}\frac{2}{2}\right)=2$. Thus, by the contrapositive of the lemma, we have that the two matrices aren't similar.

Labalme 13

2 Eigenvalues and Eigenvectors

From Treil (2017).

Chapter 4

10/11: **1.1.** True or false:

a) Every linear operator in an n-dimensional vector space has n distinct eigenvalues.

Answer. False

The identity linear operator I_2 in \mathbb{R}^2 has the sole eigenvalue $\lambda = 1$, since $I_2 \mathbf{x} = 1 \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^2$.

b) If a matrix has one eigenvector, it has infinitely many eigenvectors.

Answer. True.

Let $A\mathbf{x} = \lambda \mathbf{x}$. Then $\alpha \mathbf{x}$ is also an eigenvector of A for any $\alpha \in \mathbb{F}$ since

$$A(\alpha \mathbf{x}) = \alpha A \mathbf{x} = \alpha \lambda \mathbf{x} = \lambda(\alpha \mathbf{x})$$

c) There exists a square real matrix with no real eigenvalues.

Answer. True.

Consider

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

for which we have $\lambda = 1 \pm 2i$. Since the two eigenvalues 1 + 2i and 1 - 2i are distinct, and the square matrix given is 2×2 , there are no more eigenvalues. Therefore, every eigenvalue of this matrix is not real.

d) There exists a square matrix with no (complex) eigenvectors.

Answer. False.

Let \mathbf{x} be an eigenvector of A. If \mathbf{x} is complex, then we are done. If \mathbf{x} is real, then multiply \mathbf{x} by the scalar i. It follows by the proof of part (b) that $i\mathbf{x}$ is an eigenvector if A.

e) Similar matrices always have the same eigenvalues.

Answer. True.

The characteristic polynomials of similar matrices coincide.

f) Similar matrices always have the same eigenvectors.

Answer. False.

The matrix

$$\begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$$

has eigenvectors

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

while its similar matrix

$$\begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}$$

has eigenvectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Note that since similar matrices refer to the same linear transformation, a single linear transformation technically only has one set of eigenvectors (albeit possibly expressed in different bases). \Box

g) A non-zero sum of two eigenvectors of a matrix A is always an eigenvector.

Answer. False.

Consider

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

with eigenvalues $\lambda = 1, 2$ and respective eigenvectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Note that

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

where the "b" vector is not a scalar multiple of the "x" vector.

h) A non-zero sum of two eigenvectors of a matrix A corresponding to the same eigenvalue λ is always an eigenvector.

Answer. True.

Let $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = \lambda \mathbf{y}$. Then

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$$
$$= \alpha \lambda \mathbf{x} + \beta \lambda \mathbf{y}$$
$$= \lambda (\alpha \mathbf{x} + \beta \mathbf{y})$$

as desired. \Box

1.3. Compute eigenvalues and eigenvectors of the rotation matrix

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Note that the eigenvalues (and eigenvectors) do not need to be real.

Answer. The characteristic polynomial of $A - \lambda I$ is

$$0 = \det(A - \lambda I)$$

$$= (\cos \alpha - \lambda)^2 + \sin^2 \alpha$$

$$-\sin^2 \alpha = (\cos \alpha - \lambda)^2$$

$$\pm i \sin \alpha = \pm \cos \alpha - \lambda$$

$$\lambda = \cos \alpha + i \sin \alpha = e^{i\alpha}$$

$$= \cos \alpha - i \sin \alpha = e^{-i\alpha}$$

Thus, $\lambda = e^{i\alpha}$, $e^{-i\alpha}$. It follows by solving the systems of equations

$$x_1 \cos \alpha - x_2 \sin \alpha = e^{i\alpha} x_1$$
 $y_1 \cos \alpha - y_2 \sin \alpha = e^{-i\alpha} y_1$
 $x_1 \sin \alpha + x_2 \cos \alpha = e^{i\alpha} x_2$ $y_1 \sin \alpha + y_2 \cos \alpha = e^{-i\alpha} y_2$

that the eigenvectors are

$$x = \begin{pmatrix} 1 \\ -i \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

1.5. Prove that eigenvalues (counting multiplicities) of a triangular matrix coincide with its diagonal entries.

Answer. Since the determinant of a triangular matrix is the product of its diagonal entries, we have that

$$\det(A - \lambda I) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdots (a_{n,n} - \lambda)$$

But this polynomial is zero only if and only if λ is a diagonal entry, so the eigenvalues must be the diagonal entries.

1.6. An operator A is called **nilpotent** if $A^k = \mathbf{0}$ for some k. Prove that if A is nilpotent, then $\sigma(A) = \{0\}$ (i.e., that 0 is the only eigenvalue of A).

Answer. Suppose for the sake of contradiction that λ is a nonzero eigenvalue of A with corresponding eigenvector \mathbf{x} . Then since $A\mathbf{x} = \lambda \mathbf{x}$, $A^k \mathbf{x} = \lambda^k \mathbf{x} \neq \mathbf{0} = 0\mathbf{x}$, so $A^k \neq 0$, a contradiction.

1.7. Show that the characteristic polynomial of a block triangular matrix

$$\begin{pmatrix} A & * \\ \mathbf{0} & B \end{pmatrix}$$

where A and B are square matrices coincides with $\det(A - \lambda I) \det(B - \lambda I)$. (Hint: Use Exercise 3.11 from Chapter 3.)

Answer. It follows from Chapter 3, Exercise 3.11 that

$$\det\begin{pmatrix} \begin{pmatrix} A & * \\ \mathbf{0} & B \end{pmatrix} - \lambda I \end{pmatrix} = \det\begin{pmatrix} A - \lambda I & * \\ \mathbf{0} & B - \lambda I \end{pmatrix}$$
$$= \det(A - \lambda I) \det(B - \lambda I)$$

as desired. \Box

1.8. Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a basis in a vector space V. Assume also that the first k vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ of the basis are eigenvectors of an operator A, corresponding to an eigenvalue λ (i.e., that $A\mathbf{v}_j = \lambda \mathbf{v}_j$, $j = 1, \dots, k$). Show that in this basis, the matrix of the operator A has block triangular form

$$\begin{pmatrix} \lambda I_k & * \\ \mathbf{0} & B \end{pmatrix}$$

where I_k is the $k \times k$ identity matrix and B is some $(n-k) \times (n-k)$ matrix.

Answer. We will first show that if \mathbf{v}_i is an eigenvector of A and a part of the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ of V, then it's matrix with respect to $\mathbf{v}_1, \dots, \mathbf{v}_n$ has zeros in every slot except the i^{th} slot, which is 1. This is easily shown as follows.

$$A\mathbf{v}_{i} = \lambda \mathbf{v}_{i}$$

$$A\mathbf{v}_{i} = \lambda(0\mathbf{v}_{1} + \dots + 0\mathbf{v}_{i-1} + 1\mathbf{v}_{i} + 0\mathbf{v}_{i+1} + \dots + 0\mathbf{v}_{n})$$

This combined with the observations that the i^{th} column of A is equal to $A\mathbf{v}_i$ and $A\mathbf{v}_i = \lambda \mathbf{v}_i$ proves that

$$A = (A\mathbf{v}_1 \quad \cdots \quad A\mathbf{v}_n) = (\lambda \mathbf{v}_1 \quad \cdots \quad \lambda \mathbf{v}_k \quad A\mathbf{v}_{k+1} \quad \cdots \quad A\mathbf{v}_n) = \begin{pmatrix} \lambda I_k & * \\ \mathbf{0} & B \end{pmatrix}$$

as desired. \Box

1.10. Prove that the determinant of a matrix A is the product of its eigenvalues (counting multiplicities). (Hint: First show that $\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$, where $\lambda_1, \ldots, \lambda_n$ are eigenvalues (counting multiplicities). Then compare the free terms (terms without λ) or plug in $\lambda = 0$ to get the conclusion.)

Answer. We know that the roots of the characteristic polynomial $\det(A - \lambda I)$ of A are exactly the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A. In other words, $\det(A - \lambda I)$ must go to zero exactly when $\lambda = \lambda_i$ for some i. Thus, $\det(A - \lambda I)$ must be of the form

$$c(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

for some $c \in \mathbb{F}$. But since λ only occurs in $A - \lambda I$ with the coefficient -1, and the λ^n term is solely generated by the term in the permutation sum that is the product of the diagonal entries, the λ^n term must have coefficient $(-1)^n$. Additionally, the polynomial above will have λ^n have coefficient $(-1)^n$. Thus, we must have c = 1, and we have proven the hint. Therefore,

$$\det A = \det(A - 0I)$$

$$= (\lambda_1 - 0) \cdots (\lambda_n - 0)$$

$$= \lambda_1 \cdots \lambda_n$$

as desired. \Box

1.11. Prove that the trace of a matrix equals the sum of its eigenvalues in three steps. First, compute the coefficient of λ^{n-1} in the right side of the equality

$$\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

Then show that $det(A - \lambda I)$ can be represented as

$$\det(A - \lambda I) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdots (a_{n,n} - \lambda) + q(\lambda)$$

where $q(\lambda)$ is a polynomial of degree at most n-2. And finally, compare the coefficients of λ^{n-1} to get the conclusion.

Answer. Consider $(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$. We have that every λ^{n-1} term in the expansion of this product must take the λ from n-1 of the terms and the λ_i from the remaining term. Thus, our expansion should contain the terms $\lambda_1 \lambda^{n-1}, \ldots, \lambda_n \lambda^{n-1}$, which, when we sum, gives $(-1)^n (\lambda_1 + \cdots + \lambda_n) \lambda^{n-1}$.

In the permutation sum form of the determinant, we have that $(a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdots (a_{n,n} - \lambda)$ will be one of the terms in the sum. In particular, it is the *only* term to contain all the λ -containing entries in the matrix, so it solely determines the λ^n term. Additionally, the term containing the next-highest number of λ 's must contain n-2 λ 's, not n-1, since any product with n-1 diagonal entries and 1 non-diagonal entry necessarily contains two terms that are in the same row or column. Thus, the term given solely determines the λ^{n-1} term as well. All of the other terms, having degree at most λ^{n-2} , can be defined equal to $q(\lambda)$.

Therefore, since the first part of the proof gives

$$(\lambda_1 + \cdots + \lambda_n)\lambda^{n-1}$$

as the λ^{n-1} term, and the second part of the proof (by a similar argument) gives

$$(a_{1,1} + a_{2,2} + \dots + a_{n,n})\lambda^{n-1}$$

as the λ^{n-1} term, we have by comparing terms (rigorously, subtract all terms of other degrees to preserve the equality) that

$$\operatorname{tr} A = a_{1,1} + a_{2,2} + \dots + a_{n,n} = \lambda_1 + \dots + \lambda_n$$

as desired. \Box

- **2.1.** Let A be an $n \times n$ matrix. True or false (justify your conclusions):
 - a) A^T has the same eigenvalues as A.

Answer. True.

Since $\det B = \det B^T$ for any matrix B and the transpose operation does not affect the diagonal, we have that

$$\det(A - \lambda I) = \det((A - \lambda I)^T)$$
$$= \det(A^T - (\lambda I)^T)$$
$$= \det(A^T - \lambda I)$$

as desired.

b) A^T has the same eigenvectors as A.

Answer. False.

Let

$$A = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$$

Then we can calculate that A has eigenvectors

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$

but A^T has eigenvectors

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$

c) If A is diagonalizable, then so is A^T .

Answer. True.

Suppose $A = SDS^{-1}$. Then

$$A^{T} = (SDS^{-1})^{T}$$

$$= (S^{-1})^{T}D^{T}S^{T}$$

$$= (S^{-1})^{T}D((S^{-1})^{T})^{-1}$$

as desired. \Box

2.2. Let A be a square matrix with real entries, and let λ be its complex eigenvalue. Suppose $\mathbf{v} = (v_1, \dots, v_n)^T$ is a corresponding eigenvector, i.e., $A\mathbf{v} = \lambda \mathbf{v}$. Prove that the $\bar{\lambda}$ is an eigenvalue of A and $A\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$, where $\bar{\mathbf{v}} = (\bar{v}_1, \dots, \bar{v}_n)^T$ is the complex conjugate of the vector \mathbf{v} .

Answer. Let $\mathbf{v} = \mathbf{a} + i\mathbf{b}$ where $a_j = \operatorname{Re} v_j$ and $b_j = \operatorname{Im} v_j$. It follows that

$$A\mathbf{a} + iA\mathbf{b} = A\mathbf{v} = \lambda\mathbf{v} = \lambda\mathbf{a} + i\lambda\mathbf{b}$$

This combined with the fact that all entries in A, \mathbf{a} , \mathbf{b} are real implies by matching corresponding parts that

$$A\mathbf{a} = \lambda \mathbf{a}$$
 $A\mathbf{b} = \lambda \mathbf{b}$

Therefore,

$$A\bar{\mathbf{v}} = A(\mathbf{a} - i\mathbf{b}) = A\mathbf{a} - iA\mathbf{b} = \lambda \mathbf{a} - i\lambda \mathbf{b} = \lambda(\mathbf{a} - i\mathbf{b}) = \lambda \bar{\mathbf{v}}$$

as desired. \Box

2.3. Let

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$$

Find A^{2004} by diagonalizing A.

Answer. We have that

$$0 = \det(A - \lambda I)$$

$$= (4 - \lambda)(2 - \lambda) - 3$$

$$= \lambda^2 - 6\lambda + 5$$

$$= (\lambda - 5)(\lambda - 1)$$

Thus, $\lambda = 5, 1$. It follows by inspection that

$$x_1 = \begin{pmatrix} -1\\1 \end{pmatrix} \qquad \qquad x_2 = \begin{pmatrix} 3\\1 \end{pmatrix}$$

Consequently,

$$S = \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \qquad \qquad S^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix}$$

Hence

$$A = \frac{1}{4} \begin{pmatrix} -1 & 3\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & 3\\ 1 & 1 \end{pmatrix}$$

Therefore,

$$\begin{split} A^{2004} &= \frac{1}{4} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5^{2004} \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 5^{2004} & 5^{2004} \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 1 + 3 \cdot 5^{2004} & -3 + 3 \cdot 5^{2004} \\ -1 + 5^{2004} & 3 + 5^{2004} \end{pmatrix} \end{split}$$

2.4. Construct a matrix A with eigenvalues 1 and 3 and corresponding eigenvectors $(1,2)^T$ and $(1,1)^T$. Is such a matrix unique?

Answer. Let

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 6 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$$

Suppose A' has eigenvalues 1,3 with corresponding eigenvectors $(1,2)^T$ and $(1,1)^T$. Then since the eigenvectors are linearly independent and form a basis of \mathbb{R}^2 , Theorem 2.1 implies that A' is diagonal with diagonal matrix equal to the middle matrix in the first line above and change of basis matrices equal to the other two in the first line above. Therefore, A = A'.

2.6. Consider the matrix

$$A = \begin{pmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{pmatrix}$$

a) Find its eigenvalues. Is it possible to find the eigenvalues without computing?

Answer. It's eigenvalues are $\lambda = 2, 5, 4$, since this is an upper-triangular matrix and those are the diagonal entries.

b) Is this matrix diagonalizable? Find out without computing anything.

Answer. Yes. Since the eigenvalues are all distinct and there are 3 for this 3×3 matrix, Corollary 2.3 implies that A is diagonalizable.

c) If the matrix is diagonalizable, diagonalize it.

Answer. If $\lambda_1 = 2$, $\lambda_2 = 5$, and $\lambda_3 = 4$, then the corresponding eigenvectors are

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad x_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \qquad \qquad x_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

It follows that

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

2.8. Find all square roots of the matrix

$$A = \begin{pmatrix} 5 & 2 \\ -3 & 0 \end{pmatrix}$$

i.e., find all matrices B such that $B^2 = A$. (Hint: Finding a square root of a diagonal matrix is easy. You can leave your answer as a product.)

Answer. We have that

$$A = \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

Therefore, we have four possibilities for B:

$$B_{1} = \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$B_{2} = \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -\sqrt{3} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$B_{3} = \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$B_{4} = \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -\sqrt{3} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

2.10. Let A be a 5×5 matrix with 3 eigenvalues (not counting multiplicities). Suppose we know that one eigenspace is three-dimensional. Can you say if A is diagonalizable?

Answer. Yes, it is diagonalizable. Let $\lambda_1, \lambda_2, \lambda_3$ be the 3 eigenvalues of A, let $\mathbf{v}_1, \mathbf{v}_2$ be the eigenvectors corresponding to λ_1, λ_2 , and let $\mathbf{v}_{3a}, \mathbf{v}_{3b}, \mathbf{v}_{3c}$ be a basis of the eigenvectors corresponding to λ_3 . Since the eigenspace of λ_3 is three dimensional, we know that $\mathbf{v}_{3a}, \mathbf{v}_{3b}, \mathbf{v}_{3c}$ is linearly independent. Additionally, we have by consecutive applications of Theorem 2.2 that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_{3a}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_{3b}$, and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_{3c}$ are linearly independent lists. Hence $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_{3a}, \mathbf{v}_{3b}, \mathbf{v}_{3c}$ is a linearly independent list of length 5, so it must form a basis of \mathbb{F}^5 . Therefore, by Theorem 2.1, A is diagonalizable.

2.11. Give an example of a 3×3 matrix which cannot be diagonalized. After you construct the matrix, can you make it "generic," so no special structure of the matrix can be seen?

Answer. Generalizing from the given example, we can show that

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

is not diagonalizable. Applying row operations can put the matrix in the more generic form

$$\begin{pmatrix} 0 & 1 & 4 \\ 1 & 2 & 3 \\ -1 & 0 & 4 \end{pmatrix}$$

2.13. Eigenvalues of a transposition:

a) Consider the transformation T in the space $M_{2\times 2}$ of 2×2 matrices defined by $T(A)=A^T$. Find all its eigenvalues and eigenvectors. Is it possible to diagonalize this transformation? (Hint: While it is possible to write a matrix of this linear transformation in some basis, compute the characteristic polynomial, and so on, it is easier to find eigenvalues and eigenvectors directly from the definition.)

Answer. The symmetric matrices are eigenvectors of this transformation with eigenvalue 1. A basis of them would be

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The antisymmetric matrices are eigenvectors of this transformation with eigenvalue -1. A basis of them would be

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Since these four matrices are linearly independent, there exists a basis of $M_{2\times 2}$ of eigenvectors of T. Therefore, T is diagonalizable.

b) Can you do the same problem but in the space of $n \times n$ matrices?

Answer. Yes. A basis of the $n \times n$ symmetric matrices includes all of the matrices that are zero everywhere except for one 1 in a diagonal entry, and all of the matrices that are zero everywhere except for two 1's in off-diagonal symmetric positions. There are $\frac{n}{2}(n+1)$ of these basis "vectors." A basis of the $n \times n$ antisymmetric matrices includes all of the matrices that are zero everywhere except for a -1 in an off-diagonal position in the upper triangle and a 1 in the symmetric position in the lower triangle. There are $\frac{n}{2}(n-1)$ of these. Together, we have

$$\frac{n}{2}(n+1) + \frac{n}{2}(n-1) = n^2$$

basis "vectors," meaning that we have a complete eigenbasis of $M_{n\times n}$.

2.14. Prove that two subspaces V_1 and V_2 are linearly independent if and only if $V_1 \cap V_2 = \{0\}$.

Answer. Suppose first that V_1, V_2 are linearly independent. Let $\mathbf{v}_{11}, \dots, \mathbf{v}_{1n}$ be a basis of V_1 , and let $\mathbf{v}_{21}, \dots, \mathbf{v}_{2m}$ be a basis of V_2 . Then by Lemma 2.7, $\mathbf{v}_{11}, \dots, \mathbf{v}_{1n}, \mathbf{v}_{21}, \dots, \mathbf{v}_{2m}$ is linearly independent. Now suppose $\mathbf{v} \in V_1 \cap V_2$. Since $\mathbf{v} \in V_1, \mathbf{v} = \alpha_{11}\mathbf{v}_{11} + \dots + \alpha_{1n}\mathbf{v}_{1n}$. Similarly, $\mathbf{v} = \alpha_{21}\mathbf{v}_{21} + \dots + \alpha_{2m}\mathbf{v}_{2m}$. Thus,

$$\mathbf{0} = \mathbf{v} - \mathbf{v} = \alpha_{11}\mathbf{v}_{11} + \dots + \alpha_{1n}\mathbf{v}_{1n} - \alpha_{21}\mathbf{v}_{21} - \dots - \alpha_{2m}\mathbf{v}_{2m}$$

But since $\mathbf{v}_{11}, \dots, \mathbf{v}_{1n}, \mathbf{v}_{21}, \dots, \mathbf{v}_{2m}$ is linearly independent, it follows that all the α 's are 0. Therefore, $\mathbf{v} = 0\mathbf{v}_{11} + \dots + 0\mathbf{v}_{1n} = \mathbf{0}$, so $V_1 \cap V_2 \subset \{\mathbf{0}\}$. The inclusion in the other direction is obvious, since V_1, V_2 are subspaces.

Now suppose that $V_1 \cap V_2 = \{\mathbf{0}\}$. To prove that V_1, V_2 are linearly independent, it will suffice to show that $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}$ where $\mathbf{v}_i \in V_i$ for all i implies $\mathbf{v}_i = \mathbf{0}$ for all i. Let $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}$ where $\mathbf{v}_i \in V_i$ for all i. Suppose for the sake of contradiction that $\mathbf{v}_1 \neq \mathbf{0}$. Then we must have $\mathbf{v}_2 = -\mathbf{v}_1 \neq \mathbf{0}$. But by closure under scalar multiplication, this implies that $-1 \cdot -\mathbf{v}_1 = \mathbf{v}_1 \in V_2$ since $\mathbf{v}_2 \in V_2$. Therefore, $\mathbf{v}_1 \in V_1 \cap V_2$ as well, a contradiction. The proof is symmetric if we let $\mathbf{v}_2 \neq \mathbf{0}$ first.

3 Inner Product Spaces

From Treil (2017).

Chapter 5

10/18: **3.2.** Apply Gram-Schmidt orthogonalization to the system of vectors $(1,2,3)^T$, $(1,3,1)^T$. Write the matrix of the orthogonal projection onto the 2-dimensional subspace spanned by these vectors.

Answer. We define

$$\mathbf{v}_{1} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} \qquad \mathbf{v}_{2} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} - \frac{((1,3,1)^{T}, (1,2,3)^{T})}{\|(1,2,3)^{T}\|^{2}} \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\3\\1 \end{pmatrix} - \frac{10}{14} \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
$$= \frac{1}{7} \begin{pmatrix} 2\\11\\-8 \end{pmatrix}$$

Thus, we have that

$$P_{\{\mathbf{v}_1, \mathbf{v}_2\}} = \sum_{k=1}^{2} \frac{1}{\|\mathbf{v}_k\|^2} \mathbf{v}_k \mathbf{v}_k^*$$

$$= \frac{1}{1^2 + 2^2 + 3^2} \begin{pmatrix} 1\\2\\3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} + \frac{1}{2^2 + 11^2 + (-8)^2} \begin{pmatrix} 2\\11\\-8 \end{pmatrix} \begin{pmatrix} 2 & 11 & -8 \end{pmatrix}$$

$$= \frac{1}{14} \begin{pmatrix} 1 & 2 & 3\\2 & 4 & 6\\3 & 6 & 9 \end{pmatrix} + \frac{1}{189} \begin{pmatrix} 4 & 22 & -16\\22 & 121 & -88\\-16 & -88 & 64 \end{pmatrix}$$

$$= \frac{1}{54} \begin{pmatrix} 5 & 14 & 7\\14 & 50 & -2\\7 & -2 & 53 \end{pmatrix}$$

3.5. Find the orthogonal projection of a vector $(1, 1, 1, 1)^T$ onto the subspace spanned by the vectors $\mathbf{v}_1 = (1, 3, 1, 1)^T$ and $\mathbf{v}_2 = (2, -1, 1, 0)^T$ (note that $\mathbf{v}_1 \perp \mathbf{v}_2$).

Answer. If $\mathbf{v} = (1, 1, 1, 1)^T$,

$$P_{\{\mathbf{v}_1, \mathbf{v}_2\}} \mathbf{v} = \sum_{k=1}^{2} \frac{(\mathbf{v}, \mathbf{v}_k)}{\|\mathbf{v}_k\|^2} \mathbf{v}_k$$

$$= \frac{((1, 1, 1, 1)^T, (1, 3, 1, 1)^T)}{1^2 + 3^2 + 1^2 + 1^2} \begin{pmatrix} 1\\3\\1\\1 \end{pmatrix} + \frac{((1, 1, 1, 1)^T, (2, -1, 1, 0)^T)}{2^2 + (-1)^2 + 1^2 + 0^2} \begin{pmatrix} 2\\-1\\1\\0 \end{pmatrix}$$

$$= \frac{6}{12} \begin{pmatrix} 1\\3\\1\\1 \end{pmatrix} + \frac{2}{6} \begin{pmatrix} 2\\-1\\1\\0 \end{pmatrix}$$

$$=\frac{1}{6} \begin{pmatrix} 7\\7\\5\\3 \end{pmatrix}$$

3.6. Find the distance from a vector $(1, 2, 3, 4)^T$ to the subspace spanned by the vectors $\mathbf{v}_1 = (1, -1, 1, 0)^T$ and $\mathbf{v}_2 = (1, 2, 1, 1)^T$ (note that $\mathbf{v}_1 \perp \mathbf{v}_2$). Can you find the distance without actually computing the projection? That would simplify the calculations.

Answer. Let $\mathbf{v} = (1, 2, 3, 4)^T$. Suppose $\mathbf{v} = \mathbf{u} + \mathbf{w}$, where $\mathbf{u} \in \text{span}(\mathbf{v}_1, \mathbf{v}_2)$ and $\mathbf{w} \perp \text{span}(\mathbf{v}_1, \mathbf{v}_2)$. Clearly $\mathbf{u} \perp \mathbf{w}$. Consequently, by the Pythagorean theorem,

$$\left\|\mathbf{v}\right\|^2 = \left\|\mathbf{u}\right\|^2 + \left\|\mathbf{w}\right\|^2$$

where $\|\mathbf{w}\|$ is the desired distance from \mathbf{v} to $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2)$. $\|\mathbf{v}\|$ is easy to find, but $\|\mathbf{u}\|$ presents a bit more of a challenge. However, since $\mathbf{v}_1 \perp \mathbf{v}_2$, we can project \mathbf{v} onto \mathbf{v}_1 and \mathbf{v}_2 separately (an easier process than computing the whole projection), and know that

$$\|\mathbf{u}\|^2 = \|\alpha_1 \mathbf{v}_1\|^2 + \|\alpha_2 \mathbf{v}_2\|^2$$

Combining the above two equations, we have that

$$\|\mathbf{v}\|^2 = \|\alpha_1 \mathbf{v}_1\|^2 + \|\alpha_2 \mathbf{v}_2\|^2 + \|\mathbf{w}\|^2$$

But since $\alpha_k = (\mathbf{v}, \mathbf{v}_k)/\|\mathbf{v}_k\|^2$ for k = 1, 2, we have that

$$\|\mathbf{w}\| = \sqrt{\|\mathbf{v}\|^2 - \left\| \frac{(\mathbf{v}, \mathbf{v}_1)}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 \right\|^2 - \left\| \frac{(\mathbf{v}, \mathbf{v}_2)}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 \right\|^2}$$

$$= \sqrt{\|\mathbf{v}\|^2 - \frac{(\mathbf{v}, \mathbf{v}_1)^2}{\|\mathbf{v}_1\|^2} - \frac{(\mathbf{v}, \mathbf{v}_2)^2}{\|\mathbf{v}_2\|^2}}$$

$$= \sqrt{30 - \frac{2^2}{3} - \frac{12^2}{7}}$$

$$= \sqrt{170/21}$$

3.7. True or false: If E is a subspace of V, then $\dim E + \dim(E^{\perp}) = \dim V$. Justify.

Answer. True.

Let E be a subspace of V with orthonormal basis $\mathbf{v}_1, \dots, \mathbf{v}_n$, and let E^{\perp} have orthonormal basis $\mathbf{w}_1, \dots, \mathbf{w}_m$. To prove that $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w}_1, \dots, \mathbf{w}_n$ is a basis of V, it will suffice to show that the list is linearly independent and spanning. Let $k \in [m]$. Since $\mathbf{w}_k \in E^{\perp}$ and $\mathbf{v}_1, \dots, vm_n \in E$, we have that $\mathbf{w}_k \perp \mathbf{v}_l$ for each $l = 1, \dots, n$. Thus, by Corollary 2.6, $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w}_k$ is linearly independent. It follows by combining these k results that $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w}_1, \dots, \mathbf{v}_m$ is linearly independent, as desired. On the other hand, by definition any vector $\mathbf{u} \in V$ admits a unique representation $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ where $\mathbf{u}_1 \in E$ and $\mathbf{u}_2 \in E^{\perp}$. Additionally, $\mathbf{u}_1 = \sum_{k=1}^n \alpha_k \mathbf{v}_k$ for some $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ and $\mathbf{u}_2 = \sum_{k=1}^m \beta \mathbf{w}_k$ for some $\beta_1, \dots, \beta_n \in \mathbb{F}$. Thus, $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ can be expressed as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w}_1, \dots, \mathbf{w}_n$, so the list is spanning, as desired.

3.8. Let P be the orthogonal projection onto a subspace E of an inner product space V, let $\dim V = n$, and let $\dim E = r$. Find the eigenvalues and the eigenvectors (eigenspaces). Find the algebraic and geometric multiplicities of each eigenvalue.

Answer. The eigenvalues are 1 and 0, with corresponding eigenspaces E and E^{\perp} . It follows that the geometric multiplicity of 1 is r, and the geometric multiplicity of 0 is n-r. We will now prove that the algebraic multiplicities are the same. First off, Proposition 1.1 (Chapter 4) states that the algebraic multiplicity is greater than or equal to the geometric multiplicity. It follows that the algebraic multiplicity of 1 is greater than or equal to r and the algebraic multiplicity of 0 is greater than or equal to r-r. But since the total multiplicity cannot exceed r and r-r+r=r, we must have that the algebraic multiplicity of 1 is equal to r, and likewise for 0 and r-r.

- **3.9.** Using eigenvalues to compute determinants:
 - a) Find the matrix of the orthogonal projection onto the one-dimensional subspace in \mathbb{R}^n spanned by the vector $(1, \dots, 1)^T$.

Answer. We have that

$$P_{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|^2} \mathbf{v} \mathbf{v}^*$$

$$= \frac{1}{\sum_{i=1}^n 1^2} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}$$

$$= \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

In other words, the desired matrix is the $n \times n$ matrix with $a_{i,j} = \frac{1}{n}$ for each $i, j = 1, \ldots, n$.

b) Let A be the $n \times n$ matrix with all entries equal to 1. Compute its eigenvalues and their multiplicities (use the previous problem).

Answer. We have that $A = nP_{\mathbf{v}}$ where $P_{\mathbf{v}}$ is the matrix defined in part (a). Since $P_{\mathbf{v}}$ is a projection matrix, the only two kinds of vectors that it scales are vectors in the subspace onto which it is projecting (these get mapped to themselves, i.e., scaled by 1) and vectors perpendicular to the subspace onto which it is projecting (these get scaled by 0 to 0). Thus, since dim span $\{\mathbf{v}\} = 1$ and dim span $\{\mathbf{v}\}^{\perp} = n - 1$, we have that

$$A\mathbf{x} = nP_{\mathbf{v}}\mathbf{x} = n \cdot 1\mathbf{x} = n\mathbf{x}$$

for all $\mathbf{x} \in \text{span}\{\mathbf{v}\}$ and that

$$A\mathbf{x} = nP_{\mathbf{v}}\mathbf{x} = n \cdot 0\mathbf{x} = 0\mathbf{x}$$

for all $\mathbf{x} \in \text{span}\{\mathbf{v}\}^{\perp}$. Therefore, the eigenvalues of A are n and 0, with respective geometric and algebraic multiplicities 1 and n-1.

c) Compute eigenvalues (and multiplicities) of the matrix A - I, i.e., of the matrix with zeroes on the main diagonal and ones everywhere else.

Answer. Adapting from the part (c), if $A\mathbf{x} = n\mathbf{x}$, then

$$(A-I)\mathbf{x} = A\mathbf{x} - I\mathbf{x} = n\mathbf{x} - 1\mathbf{x} = (n-1)\mathbf{x}$$

Similarly, if $A\mathbf{x} = 0\mathbf{x}$, then

$$(A - I)\mathbf{x} = A\mathbf{x} - I\mathbf{x} = 0\mathbf{x} - 1\mathbf{x} = -1\mathbf{x}$$

Now suppose for the sake of contradiction that $-1 \neq \lambda \neq n-1$ is an eigenvalue of A-I with corresponding eigenvector \mathbf{x} . Then

$$A\mathbf{x} = (A - I)\mathbf{x} + I\mathbf{x} = \lambda\mathbf{x} + 1\mathbf{x} = (\lambda + 1)\mathbf{x}$$

so $\lambda + 1$ is an eigenvalue of A. But this contradicts part (b). Therefore, n - 1 and -1, with respective geometric and algebraic multiplicities 1 and n - 1, are the only eigenvalues of A - I. \square

d) Compute $\det(A - I)$.

Answer. By part (b), $det(A - \lambda I) = (n - \lambda)^{1}(0 - \lambda)^{n-1}$. Thus,

$$\det(A - I) = (n - 1)(-1)^{n - 1}$$

as desired. \Box

- **3.11.** Let $P = P_E$ be the matrix of an orthogonal projection onto a subspace E. Show that
 - a) The matrix P is self-adjoint, meaning that $P^* = P$.

Answer. Suppose p_{ij} is the entry in the i^{th} row and j^{th} column of P and $\mathbf{v}_1, \dots, \mathbf{v}_r$ is a basis of E. Let \mathbf{v}_{k_i} denote the i^{th} coordinate of \mathbf{v}_k . Then we have that

$$\begin{aligned} p_{ij} &= \sum_{k=1}^{r} \frac{\mathbf{v}_{k_i} \bar{\mathbf{v}}_{k_j}}{\|\mathbf{v}_k\|} \\ &= \sum_{k=1}^{r} \frac{\bar{\mathbf{v}}_{k_j} \bar{\bar{\mathbf{v}}}_{k_i}}{\|\mathbf{v}_k\|} \\ &= \sum_{k=1}^{r} \frac{\overline{\mathbf{v}}_{k_j} \bar{\mathbf{v}}_{k_i}}{\|\mathbf{v}_k\|} \\ &= \sum_{k=1}^{r} \frac{\mathbf{v}_{k_j} \bar{\mathbf{v}}_{k_i}}{\|\mathbf{v}_k\|} \\ &= \bar{p}_{ji} \end{aligned}$$

as desired. \Box

b) $P^2 = P$.

Answer. Let $\mathbf{v} = \mathbf{u} + \mathbf{w}$ where $\mathbf{u} \in E$ and $\mathbf{w} \in E^{\perp}$. Then

$$P^2\mathbf{v} = P(P\mathbf{v}) = P\mathbf{u} = \mathbf{u} = P\mathbf{v}$$

as desired. \Box

- **3.13.** Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E^{\perp} .
 - a) What are P + Q and PQ?

Answer. Let $\mathbf{v} = \mathbf{u} + \mathbf{w}$, where $\mathbf{u} \in E$ and $\mathbf{w} \in E^{\perp}$. Then

$$(P+Q)\mathbf{v} = P\mathbf{v} + Q\mathbf{v}$$
 $(PQ)\mathbf{v} = P(Q\mathbf{v})$
 $= \mathbf{u} + \mathbf{w}$ $= P\mathbf{w}$
 $= \mathbf{v}$ $= \mathbf{0}$
 $= I\mathbf{v}$ $= 0\mathbf{v}$

so P + Q = I and PQ = 0.

b) Show that P-Q is its own inverse.

Answer. To show that P - Q is its own inverse, it will suffice to show that $(P - Q)^2 = I$. Let $\mathbf{v} = \mathbf{u} + \mathbf{w}$ as in part (a). Then

$$(P-Q)^{2}\mathbf{v} = (P-Q)(P\mathbf{v} - Q\mathbf{v})$$

$$= (P-Q)(\mathbf{u} - \mathbf{w})$$

$$= P(\mathbf{u} - \mathbf{w}) - Q(\mathbf{u} - \mathbf{w})$$

$$= \mathbf{u} - (-\mathbf{w})$$

$$= \mathbf{v}$$

$$= I\mathbf{v}$$

as desired. \Box

4.2. Find the matrix of the orthogonal projection P onto the column space of

$$\begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix}$$

Use two methods: Gram-Schmidt orthogonalization and the formula for the projection. Compare the results.

 $Answer. \ \ Gram\text{-}Schmidt \ orthogonalization: \ We \ have \ that$

$$\mathbf{v}_{1} = \begin{pmatrix} 1\\2\\-2 \end{pmatrix} \qquad \mathbf{v}_{2} = \begin{pmatrix} 1\\-1\\4 \end{pmatrix} - \frac{((1,-1,4)^{T},(1,2,-2)^{T})}{\|(1,2,-2)^{T}\|^{2}} \begin{pmatrix} 1\\2\\-2 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\-1\\4 \end{pmatrix} - \frac{-9}{9} \begin{pmatrix} 1\\2\\-2 \end{pmatrix}$$
$$= \begin{pmatrix} 2\\1\\2 \end{pmatrix}$$

so that

$$P = \sum_{k=1}^{2} \frac{1}{\|\mathbf{v}_{k}\|^{2}} \mathbf{v}_{k} \mathbf{v}_{k}^{*}$$

$$= \frac{1}{1^{2} + 2^{2} + (-2)^{2}} \begin{pmatrix} 1\\2\\-2 \end{pmatrix} (1 \quad 2 \quad -2) + \frac{1}{2^{2} + 1^{2} + 2^{2}} \begin{pmatrix} 2\\1\\2 \end{pmatrix} (2 \quad 1 \quad 2)$$

$$= \frac{1}{9} \begin{pmatrix} 1 & 2 & -2\\2 & 4 & -4\\-2 & -4 & 4 \end{pmatrix} + \frac{1}{9} \begin{pmatrix} 4 & 2 & 4\\2 & 1 & 2\\4 & 2 & 4 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 5 & 4 & 2\\4 & 5 & -2\\2 & -2 & 8 \end{pmatrix}$$

Formula: We have that

$$P = A(A^*A)^{-1}A^*$$

$$= \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 9 & -9 \\ -9 & 18 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{pmatrix}$$

The results are identical in both cases.

4.4. Fit a plane z = a + bx + cy to four points (1, 1, 3), (0, 3, 6), (2, 1, 5), and (0, 0, 0). To do that

a) Find 4 equations with 3 unknowns a, b, c such that the plane passes through all 4 points (this system does not have to have a solution).

Answer.

$$3 = a + 1b + 1c$$
$$6 = a + 0b + 3c$$
$$5 = a + 2b + 1c$$

0 = a + 0b + 0c

b) Find the least squares solution of the system.

Answer. Consider the system

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} a \\ b \\ c \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} 3 \\ 6 \\ 5 \\ 0 \end{pmatrix}}_{\mathbf{b}}$$

It follows from solving the normal equation that the least squares solution is

$$\mathbf{x} = (A^*A)^{-1}A^*\mathbf{b}$$

$$= \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 5 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 3 & 5 \\ 3 & 5 & 3 \\ 4 & 3 & 8 \end{pmatrix}^{-1} \begin{pmatrix} 14 \\ 13 \\ 26 \end{pmatrix}$$

$$= \frac{1}{33} \begin{pmatrix} 31 & -9 & -16 \\ -12 & 12 & 3 \\ -11 & 0 & 11 \end{pmatrix} \begin{pmatrix} 14 \\ 13 \\ 26 \end{pmatrix}$$

$$= \frac{1}{50} \begin{pmatrix} -6 \\ 73 \\ 101 \end{pmatrix}$$

- **4.5.** Minimal norm solution. Let an equation $A\mathbf{x} = \mathbf{b}$ have a solution, and let A have a non-trivial kernel (so the solution is not unique). Prove that
 - a) There exists a unique solution \mathbf{x}_0 of $A\mathbf{x} = \mathbf{b}$ minimizing the norm $\|\mathbf{x}\|$, i.e., that there exists a unique \mathbf{x}_0 such that $A\mathbf{x}_0 = \mathbf{b}$ and $\|\mathbf{x}_0\| \le \|\mathbf{x}\|$ for any \mathbf{x} satisfying $A\mathbf{x} = \mathbf{b}$.

Answer. Let \mathbf{x} be a solution to $A\mathbf{x} = \mathbf{b}$, and choose $\mathbf{x}_0 = P_{(\ker A)^{\perp}}\mathbf{x}$. Then by Definition 3.1, $\mathbf{x} - \mathbf{x}_0 \in ((\ker A)^{\perp})^{\perp} = \ker A$. Thus, since

$$\mathbf{b} = A\mathbf{x}$$

$$= A(\mathbf{x} - \mathbf{x}_0 + \mathbf{x}_0)$$

$$= A(\mathbf{x} - \mathbf{x}_0) + A\mathbf{x}_0$$

$$= A\mathbf{x}_0$$

we know that \mathbf{x}_0 is a solution of the equation $A\mathbf{x} = \mathbf{b}$. Now let $\mathbf{x}_h \in \ker A$. Then $\mathbf{x}_0 + \mathbf{x}_h$ is a solution to $A\mathbf{x} = \mathbf{b}$. Additionally, since $\mathbf{x}_0 \in (\ker A)^{\perp}$ by definition, we have by the Pythagorean theorem that

$$\|\mathbf{x}\|^2 = \|\mathbf{x}_0\|^2 + \|\mathbf{x}_h\|^2 \ge \|\mathbf{x}_0\|$$

so \mathbf{x}_0 is the unique minimal norm solution (any solution is of the form $\mathbf{x}_0 + \mathbf{x}_h$) because any other solution with a nontrivial \mathbf{x}_h necessarily has a greater norm.

b) $\mathbf{x}_0 = P_{(\ker A)^{\perp}} \mathbf{x}$ for any \mathbf{x} satisfying $A\mathbf{x} = \mathbf{b}$.

Answer. See part (a).
$$\Box$$

5.2. Find matrices of orthogonal projections onto all 4 fundamental subspaces of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$$

Note that you only really need to compute 2 of the projections. If you pick an appropriate 2, the other 2 are easy to obtain from them (recall how the projections onto E and E^{\perp} are related).

Answer. We can observe that dim range A=2, so dim ker A=1. Similarly, dim range $A^*=2$, so dim ker $A^*=1$. Since neither matrix is full rank, A^*A is singular so we cannot use the projection formula for any projection. Thus, we will use the Gram-Schmidt orthogonalization method to find the matrices of the projections onto ker A and ker A^* (since they're of lower dimension), and then we will invoke

$$I = P_{\ker A} + P_{(\ker A)^{\perp}}$$
 $I = P_{\ker A^*} + P_{(\ker A^*)^{\perp}}$ Exercise 5.3.13
= $P_{\ker A} + P_{\operatorname{range} A^*}$ = $P_{\ker A^*} + P_{\operatorname{range} A}$ Theorem 5.1

to find the other two. Let's begin.

First off, we have that

$$\ker A = \left\{ \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \right\} \qquad \qquad \ker A^* = \left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}$$

Thus, we have from the Gram-Schmidt orthogonalization formula in the one-dimensional case that

$$P_{\ker A} = \frac{1}{(-1)^2 + (-1)^2 + 2^2} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \end{pmatrix} \quad P_{\ker A^*} = \frac{1}{(-1)^2 + (-1)^2 + 1^2} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix} \qquad \qquad = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

It follows that

$$P_{\text{range }A^*} = \frac{1}{6} \begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} \qquad P_{\text{range }A} = \frac{1}{3} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

5.3. Let A be an $m \times n$ matrix. Show that $\ker A = \ker(A^*A)$. (Hint: To do this, you need to prove 2 inclusions, namely $\ker(A^*A) \subset \ker A$ and $\ker A \subset \ker(A^*A)$. One of the inclusions is trivial, and for the other one, use the fact that $||A\mathbf{x}||^2 = (A\mathbf{x}, A\mathbf{x}) = (A^*A\mathbf{x}, \mathbf{x})$.)

Answer. Suppose $\mathbf{x} \in \ker A$. Then $A\mathbf{x} = \mathbf{0}$. It follows that $A^*A\mathbf{x} = A^*\mathbf{0} = \mathbf{0}$, so $\mathbf{x} \in \ker(A^*A)$, as desired.

Now suppose that $\mathbf{x} \in \ker(A^*A)$. Then $A^*A\mathbf{x} = \mathbf{0}$. It follows that

$$0 = (\mathbf{0}, \mathbf{x}) = (A^* A \mathbf{x}, \mathbf{x}) = (A \mathbf{x}, A \mathbf{x}) = ||A \mathbf{x}||^2$$

But this implies that $A\mathbf{x} = 0$, so $\mathbf{x} \in \ker A$, as desired.

- **5.4.** Use the equality $\ker A = \ker(A^*A)$ to prove that
 - a) $\operatorname{rank} A = \operatorname{rank}(A^*A)$.

Answer. Let A be $m \times n$. Then by consecutive applications of the rank theorem,

$$\dim \ker A + \operatorname{rank} A = n$$
 $\dim \ker(A^*A) + \operatorname{rank}(A^*A) = n$

It follows since $\ker A = \ker(A^*A)$ that

$$\operatorname{rank} A = n - \dim \ker A = n - \dim \ker (A^*A) = \operatorname{rank}(A^*A)$$

as desired. \Box

b) If $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, A is left invertible. (Hint: You can just write a formula for the left inverse.)

Answer. If $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then A is full rank. It follows by the above that A^*A is full rank. Additionally, however, A^*A is square, so A^*A is invertible. Therefore, there exists a matrix $(A^*A)^{-1}$ such that $(A^*A)^{-1}A^*A = I$, but this implies that the left inverse of A is just $(A^*A)^{-1}A^*$.

5.6. Let a matrix P be self-adjoint $(P^* = P)$ and let $P^2 = P$. Show that P is the matrix of an orthogonal projection. (Hint: Consider the decomposition $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, $\mathbf{x}_1 \in \text{range } P$ and $\mathbf{x}_2 \perp \text{range } P$, and show that $P\mathbf{x}_1 = \mathbf{x}_1$, $P\mathbf{x}_2 = \mathbf{0}$. For one of the equalities, you will need self-adjointness; for the other one, the property $P^2 = P$.)

Answer. We will prove that $P: V \to V$ self-adjoint and satisfying $P^2 = P$ is the matrix of the orthogonal projection onto range P. Let $\mathbf{x} \in V$. Then since $V = \operatorname{range} P \oplus (\operatorname{range} P)^{\perp}$, we may let $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ where $\mathbf{x}_1 \in \operatorname{range} P$ and $\mathbf{x}_2 \in (\operatorname{range} P)^{\perp}$. Taking the hint, we now prove that $P\mathbf{x}_1 = \mathbf{x}_1$ and $P\mathbf{x}_2 = \mathbf{0}$. Let's begin.

Since $\mathbf{x}_1 \in \text{range } P$, we have that $\mathbf{x}_1 = P\mathbf{y}$ for some $\mathbf{y} \in V$. But since $P^2 = P$, we have that

$$\mathbf{x}_1 = P\mathbf{y} = P^2\mathbf{y} = P(P\mathbf{y}) = P\mathbf{x}_1$$

as desired.

On the other hand, $\mathbf{x}_2 \in (\text{range } P)^{\perp} = (\text{range } P^*)^{\perp} = \ker P \text{ by Theorem 5.1, so naturally } P\mathbf{x}_2 = \mathbf{0}.$ Therefore,

$$P\mathbf{x} = P(\mathbf{x}_1 + \mathbf{x}_2) = P\mathbf{x}_1 + P\mathbf{x}_2 = \mathbf{x}_1$$

as desired for an orthogonal projection onto range P.

6.1. Orthogonally diagonalize the following matrices

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

i.e., for each matrix A, find a unitary matrix U and a diagonal matrix D such that $A = UDU^*$.

Answer. The leftmost matrix has eigenvalues $\lambda = 3, -1$ and corresponding orthonormal eigenvectors

$$x_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \qquad \qquad x_2 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

Therefore,

$$\begin{pmatrix}1&2\\2&1\end{pmatrix}=\begin{pmatrix}1/\sqrt{2}&-1/\sqrt{2}\\1/\sqrt{2}&1/\sqrt{2}\end{pmatrix}\begin{pmatrix}3&0\\0&-1\end{pmatrix}\begin{pmatrix}1/\sqrt{2}&1/\sqrt{2}\\-1/\sqrt{2}&1/\sqrt{2}\end{pmatrix}$$

The middle matrix has eigenvalues $\lambda = i, -i$ and corresponding orthonormal eigenvectors

$$x_1 = \begin{pmatrix} i/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \qquad \qquad x_2 = \begin{pmatrix} -i/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} i/\sqrt{2} & -i/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} -i/\sqrt{2} & 1/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

The right matrix has eigenvalues $\lambda = -2, 4$ (-2 having multiplicity 2) and corresponding orthonormal eigenvectors

$$x_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \qquad x_2 = \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ \sqrt{6}/3 \end{pmatrix} \qquad x_3 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & \sqrt{6}/3 & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{6} & -1/\sqrt{6} & \sqrt{6}/3 \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}$$

6.2. True or false: A matrix is unitarily equivalent to a diagonal one if and only if it has an orthogonal basis of eigenvectors.

Answer. True.

See Proposition 6.5. \Box

- **6.5.** Let $U: X \to X$ be a linear transformation on a finite-dimensional inner product space. True or false:
 - a) If $||U\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in X$, then U is unitary.

Answer. True.

By Proposition 6.3 — the fact that $||U\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in X$ makes U an isometry; clearly $\dim X = \dim X$.

b) If $||U\mathbf{e}_k|| = ||\mathbf{e}_k||$ for each k = 1, ..., n for some orthonormal basis $\mathbf{e}_1, ..., \mathbf{e}_n$, then U is unitary.

Answer. False.

Let $U\mathbf{e}_k = \mathbf{e}_1$ for all k = 1, ..., n. Then the identity holds. However, $U\mathbf{e}_1, ..., U\mathbf{e}_n$ is not an orthonormal basis of X, so U cannot be unitary.

- **6.6.** Let A and B be unitarily equivalent $n \times n$ matrices.
 - a) Prove that $tr(A^*A) = tr(B^*B)$.

Answer. Let $A = UBU^*$. Then

$$tr(A^*A) = tr((UBU^*)^*(UBU^*))$$

$$= tr((U^*)^*B^*U^*UBU^*)$$

$$= tr(UB^*IBU^*)$$

$$= tr(B^*BUU^*)$$

$$= tr(B^*BI)$$

$$= tr(B^*B)$$

as desired.

b) Use (a) to prove that

$$\sum_{j,k=1}^{n} |A_{j,k}|^2 = \sum_{j,k=1}^{n} |B_{j,k}|^2$$

Answer. By the definition of the adjoint, we have that

$$|A_{j,k}|^2 = \overline{A_{j,k}} A_{j,k} = A_{k,j}^* A_{j,k}$$

This allows us to show that

$$(A^*A)_{k,k} = \sum_{j=1}^n A_{k,j}^* A_{j,k} = \sum_{j=1}^n |A_{j,k}|^2$$

Therefore, we have that

$$\sum_{j,k=1}^{n} |A_{j,k}|^2 = \sum_{k=1}^{n} \sum_{j=1}^{n} |A_{j,k}|^2$$

$$= \sum_{k=1}^{n} (A^*A)_{k,k}$$

$$= \operatorname{tr}(A^*A)$$

$$= \operatorname{tr}(B^*B)$$

$$= \sum_{k=1}^{n} (B^*B)_{k,k}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} |B_{j,k}|^2$$

$$= \sum_{j,k=1}^{n} |A_{j,k}|^2$$

as desired

c) Use (b) to prove that the matrices

$$\begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix} \qquad \begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$$

are not unitarily equivalent.

Answer. We have that

$$\sum_{j,k=1}^{2} |A_{j,k}|^2 = |1|^2 + |2|^2 + |2|^2 + |i|^2 \qquad \sum_{j,k=1}^{n} |B_{j,k}|^2 = |i|^2 + |4|^2 + |1|^2 + |1|^2$$

$$= 10 \qquad = 19$$

Therefore, by part (b), the above matrices are not unitarily equivalent.

6.7. Which of the following pairs of matrices are unitarily equivalent? (Hint: It is easy to eliminate matrices that are not unitarily equivalent: Remember that unitarily equivalent matrices are similar, and recall that the trace, determinant, and eigenvalues of similar matrices coincide. Also, the previous problem helps in eliminating non-unitarily equivalent matrices. Finally, a matrix is unitarily equivalent to a diagonal one if and only if it has an orthogonal basis of eigenvectors.)

a)

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Answer. Not unitarily equivalent.

The traces of the two matrices above differ.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}$$

Answer. Not unitarily equivalent.

The determinants of the two matrices above differ.

c)

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Answer. Not unitarily equivalent.

The eigenvalues of the two matrices above differ.

d)

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & i \end{pmatrix}$$

Answer. Unitarily equivalent.

We have that

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -i/\sqrt{2} & i/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & i \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ i/\sqrt{2} & 1/\sqrt{2} & 0 \\ -i/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}$$

e)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Answer. Not unitarily equivalent. The sums from Problem 6.6b are not equal.

6.8. Let U be a 2×2 orthogonal matrix with det U = 1. Prove that U is a rotation matrix.

Answer. Since U is orthogonal and real, $U^T = U^* = U^{-1}$. It follows that

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
$$= \begin{pmatrix} a^2 + b^2 & ac + bd \\ ca + db & c^2 + d^2 \end{pmatrix}$$

If $a^2 + b^2 = 1$, then we must have $a = \cos \gamma$, $b = -\sin \gamma$ for some γ . Similarly, we must have $c = \cos \theta$ and $d = \sin \theta$. We have now expressed our four variables in terms of two. To get it down to one, we apply the determinant condition:

$$1 = \det U$$

$$= ad - bc$$

$$= \cos \gamma \sin \theta + \sin \gamma \cos \theta$$

$$= \sin(\theta + \gamma)$$

$$\theta + \gamma = \frac{\pi}{2} + 2\pi n$$

$$\theta = \frac{\pi}{2} - \gamma + 2\pi n$$

where $n \in \mathbb{Z}$. It follows that

$$c = \cos \theta$$

$$= \cos \left(\frac{\pi}{2} - \gamma + 2\pi n\right)$$

$$= \sin(\gamma + 2\pi n)$$

$$= \sin \gamma$$

$$d = \sin \theta$$

$$= \sin \left(\frac{\pi}{2} - \gamma + 2\pi n\right)$$

$$= \cos(\gamma + 2\pi n)$$

$$= \cos \gamma$$

Therefore,

$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} = R_{\gamma}$$

as desired.

- **6.9.** Let U be a 3×3 orthogonal matrix with det U = 1. Prove that
 - a) 1 is an eigenvalue of U.

Answer. Let λ be an eigenvalue of U with corresponding eigenvector x. Then

$$|\lambda| \|\mathbf{x}\| = \|\lambda\mathbf{x}\| = \|U\mathbf{x}\| = \|\mathbf{x}\|$$

 $|\lambda| = 1$

It follows that

$$\lambda_1 = e^{ix_1} \qquad \qquad \lambda_2 = e^{ix_2} \qquad \qquad \lambda_3 = e^{ix_3}$$

We know that if any eigenvalue is complex, its complex conjugate must also be an eigenvalue. Thus, WLOG let $x_2 = -x_1$ so

$$\lambda_1 = e^{ix_1} \qquad \qquad \lambda_2 = e^{-ix_1} \qquad \qquad \lambda_3 = e^{ix_3}$$

Then

$$1 = \det U = \lambda_1 \lambda_2 \lambda_3 = e^{ix_1} e^{-ix_1} e^{ix_3} = e^{ix_3} = \lambda_3$$

as desired. \Box

b) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is an orthonormal basis, such that $U\mathbf{v}_1 = \mathbf{v}_1$ (remember that 1 is an eigenvalue), then in this basis, the matrix of U is

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix}$$

where α is some angle. (Hint: Show that since \mathbf{v}_1 is an eigenvector of U, all entries below 1 must be zero, and since \mathbf{v}_1 is also an eigenvector of U^* [why?], all entries right of 1 must also be zero. Then show that the lower right 2×2 matrix is an orthogonal one with determinant 1, and use the previous problem.)

Answer. Since

$$U\mathbf{v}_1 = \mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$$

we must have that the first column of U with respect to $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Additionally, since

$$\mathbf{v}_1 = I\mathbf{v}_1 = U^*U\mathbf{v}_1 = U^*\mathbf{v}_1$$

we know that \mathbf{v}_1 is an eigenvector of U^* with corresponding eigenvalue 1. Thus, by the above, the first column of U^* is also

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

meaning that the first row of U is

$$(1 \quad 0 \quad 0)$$

Thus, if we block diagonalize U, we have that

$$\begin{pmatrix} 1 & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix}^* \begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & L^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix}$$

so $L^*L = I$. Thus, by Lemma 6.2, L is an isometry. Additionally, by Proposition 6.3, L is unitary. Furthermore, since U is orthogonal, i.e., has all real values, L must have all real values and must be orthogonal, too. Lastly, since det U = 1, we have by the method of cofactor expansion that

$$1 = \det U = 1 \cdot \det L = \det L$$

Therefore, since L is a 2×2 orthogonal matrix with det L = 1, Exercise 6.8 implies that $U = R_{\alpha}$ for some α , as desired.

8.1. Prove the following formula.

$$(\mathbf{x}, \mathbf{y})_{\mathbb{R}} = \operatorname{Re}(\mathbf{x}, \mathbf{y})_{\mathbb{C}}$$

Namely, show that if

$$\mathbf{x} = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \qquad \qquad \mathbf{y} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

where $z_k = x_k + iy_k$, $w_k = u_k + iv_k$, $x_k, y_k, u_k, v_k \in \mathbb{R}$, then

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_k \bar{w}_k\right) = \sum_{k=1}^{n} x_k u_k + \sum_{k=1}^{n} y_k v_k$$

Answer. We have that

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k} \overline{w}_{k}\right) = \operatorname{Re}\left(\sum_{k=1}^{n} (x_{k} + iy_{k})(u_{k} - iv_{k})\right)$$

$$= \operatorname{Re}\left(\sum_{k=1}^{n} [x_{k} u_{k} + y_{k} v_{k} + i(y_{k} u_{k} - x_{k} v_{k})]\right)$$

$$= \sum_{k=1}^{n} [x_{k} u_{k} + y_{k} v_{k}]$$

$$= \sum_{k=1}^{n} x_{k} u_{k} + \sum_{k=1}^{n} y_{k} v_{k}$$

as desired.

8.4. Show that if U is an orthogonal transformation satisfying $U^2 = -I$, then $U^* = -U$.

Answer. Suppose $U^2 = -I$. This combined with the fact that $U^*U = I$ implies that

$$U^*U + UU = 0$$
$$(U^* + U)U = 0$$
$$(U^* + U)UU^{-1} = 0U^{-1}$$
$$U^* + U = 0$$
$$U^* = -U$$

as desired.

4 Inner Product Phenomena and Intro to Bilinear Forms

From Treil (2017).

Chapter 6

10/25: **1.1.** Use the upper-triangular representation of an operator to give an alternative proof of the fact that the determinant is the product and the trace is the sum of the eigenvalues counting multiplicities.

Answer. Let $A:V\to V$ be an operator. Then by Theorem 6.1.1, there exists a basis of V such that the matrix of A with respect to this basis is upper triangular. Since this matrix is upper triangular, the eigenvalues of A are exactly its diagonal entries. This combined with the fact that the determinant of an upper triangular matrix is the product of its diagonal entries proves that the determinant of A is the product of its eigenvalues. Similarly, the trace of A as the sum of the diagonal entries of A must be the sum of the eigenvalues of A, as desired.

2.1. True or false:

a) Every unitary operator $U: X \to X$ is normal.

Answer. True.

Let $U: X \to X$ be unitary. Then

$$U^*U = I = UU^*$$

as desired.

b) A matrix is unitary if and only if it is invertible.

Answer. False.

Consider the matrix

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

A is invertible with inverse

$$A^{-1} = \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix}$$

but A is not unitary since A is not an isometry:

$$||A\mathbf{x}|| = ||2\mathbf{x}|| = 2||\mathbf{x}|| \neq ||\mathbf{x}||$$

c) If two matrices are unitarily equivalent, then they are also similar.

Answer. True.

for any $\mathbf{x} \in \mathbb{F}^2$.

Suppose that $A = UBU^*$. Then since $U^* = U^{-1}$, $A = UBU^{-1}$, so A, B are similar.

d) The sum of self-adjoint operators is self-adjoint.

Answer. True.

If $A = A^*$ and $B = B^*$, then

$$(A+B)^* = A^* + B^* = A + B$$

e) The adjoint of a unitary operator is unitary.

Answer. True.

as desired.

See property 2 of unitary operators (Treil, 2017, p. 148).

f) The adjoint of a normal operator is normal.

Answer. True.

Let N be normal. Then $N^*N = NN^*$. This combined with the fact that $N = (N^*)^*$ implies that

$$(N^*)^*N^* = NN^* = N^*N = N^*(N^*)^*$$

as desired.

g) If all eigenvalues of a linear operator are 1, then the operator must be unitary or orthogonal.

Answer. False.

Consider the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Clearly all eigenvalues of this matrix are 1. However,

$$A^*A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \neq I$$

so A is not unitary.

h) If all eigenvalues of a normal operator are 1, then the operator is the identity.

Answer. True.

Suppose N is a normal operator with all eigenvalues equal to 1. Then by Theorem 6.2.4, $N = UDU^*$ where D = I (because of the condition on the eigenvalues). It follows that

$$N = UIU^* = UU^* = I$$

as desired. \Box

i) A linear operator may preserve norm but not the inner product.

Answer. False.

Suppose U is a linear operator that preserves norm. Then U is an isometry. It follows by Theorem 5.6.1 that U preserves the inner product.

2.2. True or false (justify your conclusion): The sum of normal operators is normal.

Answer. False.

Let

$$N = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \qquad M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

We know that N, M are normal since

$$NN^* = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= N^*N$$

$$MM^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= M^*M$$

Then we have

$$(N+M)(N+M)^* = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\neq \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
$$= (N+M)^*(N+M)$$

2.3. Show that an operator that is unitarily equivalent to a diagonal one is normal.

Answer. Let $A = UDU^*$. Then

$$NN^* = (UDU^*)(UDU^*)^*$$
 $N^*N = (UDU^*)^*(UDU^*)$
= $(UDU^*)(UD^*U^*)$ = $(UD^*U^*)(UDU^*)$
= UDD^*U^*

Additionally, we have that $D^*D = DD^*$ (Treil, 2017, p. 167), completing the proof.

2.5. True or false (justify): Any self-adjoint matrix has a self-adjoint square root.

Answer. False.

Consider the trivially self-adjoint matrix

$$(-1)$$

The square roots of this matrix are (i) and (-i), neither of which is self-adjoint.

2.6. Orthogonally diagonalize the matrix

$$A = \begin{pmatrix} 7 & 2 \\ 2 & 4 \end{pmatrix}$$

i.e., represent it as $A = UDU^*$, where D is diagonal and U is unitary. Additionally, among all square roots of A, i.e., among all matrices B such that $B^2 = A$, find one that has positive eigenvalues. You can leave B as a product.

Answer. From the characteristic polynomial, we find that $\lambda_1 = 8$ and $\lambda_2 = 3$. It follows by inspection that the corresponding eigenvectors are

$$\mathbf{x}_1 = \begin{pmatrix} 2\\1 \end{pmatrix} \qquad \qquad \mathbf{x}_2 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

These vectors are already orthogonal, so we need only normalize them to get

$$U = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

Therefore, we have that

$$A = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

From here, we can easily let

$$B = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

2.7. True or false (justify your conclusions):

a) A product of two self-adjoint matrices is self-adjoint.

Answer. False

Let

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Clearly $A = A^*$ and $B = B^*$. However,

$$AB = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} = (AB)^*$$

b) If A is self-adjoint, then A^k is self-adjoint.

Answer. True.

Suppose $A = A^*$. Then

$$(A^k)^* = (\underbrace{A \cdots A}_{k \text{ times}})^* = \underbrace{A^* \cdots A^*}_{k \text{ times}} = \underbrace{A \cdots A}_{k \text{ times}} = A^k$$

as desired.

2.8. Let A be an $m \times n$ matrix. Prove that

a) A*A is self-adjoint.

Answer. We have that

$$(A^*A)^* = A^*(A^*)^* = A^*A$$

as desired.

b) All eigenvalues of A^*A are nonnegative.

Answer. Let λ be an eigenvalue of A^*A with corresponding nonzero eigenvector \mathbf{x} . Then

$$0 \le (A\mathbf{x}, A\mathbf{x}) = (A^*A\mathbf{x}, \mathbf{x}) = (\lambda\mathbf{x}, \mathbf{x}) = \lambda(\mathbf{x}, \mathbf{x}) = \lambda \|\mathbf{x}\|^2$$
$$\frac{0}{\|\mathbf{x}\|^2} = 0 \le \lambda$$

as desired.

c) $A^*A + I$ is invertible.

Answer. To show that $A^*A + I$ is invertible, it will suffice to show that $\ker(A^*A + I) = \{0\}$. One inclusion is obvious. However, for the other one, suppose $(A^*A + I)\mathbf{x} = \mathbf{0}$. Then

$$0 = (\mathbf{0}, \mathbf{x})$$

$$= ((A^*A + I)\mathbf{x}, \mathbf{x})$$

$$= (A^*A\mathbf{x} + \mathbf{x}, \mathbf{x})$$

$$= (A^*A\mathbf{x}, \mathbf{x}) + (\mathbf{x}, \mathbf{x})$$

$$= (A\mathbf{x}, A\mathbf{x}) + (\mathbf{x}, \mathbf{x})$$

$$= ||A\mathbf{x}||^2 + ||\mathbf{x}||^2$$

Therefore, $\|\mathbf{x}\| = 0$, so $\mathbf{x} = \mathbf{0}$, so $\mathbf{x} \in \{\mathbf{0}\}$, as desired.

2.10. Orthogonally diagonalize the rotation matrix

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

where α is not a multiple of π . Note that you will get complex eigenvalues in this case.

Answer. We have from Problem 4.1.3 that $\lambda_1 = e^{i\alpha}$ and $\lambda_2 = e^{-i\alpha}$, and that

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix} \qquad \qquad \mathbf{x}_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

where $\mathbf{x}_1, \mathbf{x}_2$ are already orthogonal. Thus, normalizing gives us

$$R_{\alpha} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -i/\sqrt{2} & i/\sqrt{2} \end{pmatrix} \begin{pmatrix} \mathrm{e}^{i\alpha} & 0 \\ 0 & \mathrm{e}^{-i\alpha} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ 1/\sqrt{2} & -i/\sqrt{2} \end{pmatrix}$$

2.13. Prove that a normal operator with unimodular eigenvalues (i.e., with all eigenvalues satisfying $|\lambda_k| = 1$) is unitary. (Hint: Consider diagonalization.)

Answer. Let N be normal with unimodular eigenvalues. To prove that N is unitary, it will suffice to show that $NN^* = I$. First off, we have by Theorem 6.2.4 that $N = UDU^*$ where U is unitary and D is diagonal. Thus,

$$NN^* = UDU^*(UDU^*)^* = UDU^*UD^*U^* = UDD^*U = UIU^* = I$$

as desired. Note that $DD^* = I$ since each value along the diagonal of DD^* has $d_{jj}\bar{d}_{jj} = |d_{jj}|^2 = 1$. \square

2.14. Prove that a normal operator with real eigenvalues is self-adjoint.

Answer. Let N be normal with all real eigenvalues. By Theorem 6.2.4, $N=UDU^*$ where D is real. Then

$$N^* = (UDU^*)^* = UD^*U^* = UDU^* = N$$

as desired. \Box

- **2.15.** Show by example that the conclusion of Theorem 2.2 fails for *complex* symmetric matrices. Namely,
 - a) Construct a (diagonalizable) 2×2 complex symmetric matrix not admitting an orthogonal basis of eigenvectors.

Answer. Suppose A is our final matrix. We will apply the constraints sequentially to narrow down possible values of A and then pick one. Let's begin.

Since A is diagonalizable, $A = SDS^{-1}$ where D is a diagonal matrix and S is a matrix of eigenvectors of A. Since A is symmetric, $A = A^{T}$. It follows from these two conditions that

$$SDS^{-1} = (SDS^{-1})^T$$

$$SDS^{-1} = (S^T)^{-1}D^TS^T$$

$$S^TSD = DS^TS$$

Since $(S^TS)^T = S^T(S^T)^T = S^TS$ (so S^TS is symmetric), D is diagonal, and both are 2×2 , we can represent them as

$$S^T S = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \qquad \qquad D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$

for some $a, b, c, d_1, d_2 \in \mathbb{C}$. Thus, the above condition implies that

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
$$\begin{pmatrix} ad_1 & bd_2 \\ bd_1 & cd_2 \end{pmatrix} = \begin{pmatrix} ad_1 & bd_1 \\ bd_2 & cd_2 \end{pmatrix}$$

i.e., that $bd_1 = bd_2$. It follows that either $d_1 = d_2$, or b = 0. Since we would like the freedom to choose distinct values, we will choose a solution for which b = 0. The overall conclusion is that $S^T S$ is diagonal, which implies that $\mathbf{x}_2^T \mathbf{x}_1 = 0$.

We now invoke the last given condition: that the eigenvectors $\mathbf{x}_1, \mathbf{x}_2$ are not orthogonal, i.e., $\mathbf{x}_2^* \mathbf{x}_1 \neq 0$.

To summarize, our final matrix is of the form

$$A = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix}^{-1}$$

We need to choose $\mathbf{x}_1, \mathbf{x}_2$ such that $\mathbf{x}_2^T \mathbf{x}_1 = 0$, $\mathbf{x}_2^* \mathbf{x}_1 \neq 0$, and (of course) $\mathbf{x}_1, \mathbf{x}_2$ are linearly independent. And we need to choose d_1, d_2 such that the final matrix is complex (and it'd be nice if they put A in an easily readable form). For the eigenvectors, we can find the following two satisfactory eigenvectors by inspection.

$$\mathbf{x}_1 = \begin{pmatrix} 2\\i \end{pmatrix} \qquad \qquad \mathbf{x}_2 = \begin{pmatrix} 1\\2i \end{pmatrix}$$

For the corresponding eigenvalues, it is easy to see that 3 and -3 nicely fit the bill, yielding

$$A = \begin{pmatrix} 2 & 1 \\ i & 2i \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ i & 2i \end{pmatrix}^{-1} = \begin{pmatrix} 5 & 4i \\ 4i & -5 \end{pmatrix}$$

as our final diagonalizable 2×2 complex symmetric matrix that does not admit an orthogonal basis of eigenvectors.

b) Construct a 2×2 complex symmetric matrix which cannot be diagonalized.

Answer. We have

$$\begin{pmatrix} 0 & 1 \\ 1 & i \end{pmatrix}$$

as a complex symmetric matrix that cannot be diagonalized.

3.1. Show that the number of nonzero singular values of a matrix A coincides with its rank.

Answer. By Problem 5.5.4a, rank $A = \operatorname{rank} A^*A$. Additionally, since A^*A is self-adjoint by Problem 6.2.8a, we have by Theorem 6.2.1 that A^*A is similar to a diagonal matrix D. Since similar matrices have the same rank, $\operatorname{rank}(A^*A) = \operatorname{rank}(D)$. But $\operatorname{rank}(D)$ is just the number of nonzero entries on the diagonal, i.e., the number of eigenvalues of A^*A . Therefore, since the singular values of A are the square roots of the eigenvalues of A^*A , the number of nonzero eigenvalues of A equals the number of nonzero eigenvalues of A^*A .

3.2. Find Schmidt decompositions $A = \sum_{k=1}^{r} s_k \mathbf{w}_k \mathbf{v}_k^*$ for the following matrices A.

$$\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$$

Answer. Left matrix: We have

$$A^*A = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 13 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix} \begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

so that $\sigma_1 = 4$ and $\sigma_2 = 1$, and

$$\mathbf{v}_1 = \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix} \qquad \qquad \mathbf{v}_2 = \begin{pmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}$$

Then

$$\mathbf{w}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1}$$

$$= \frac{1}{4} \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$$

$$= \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}$$

$$= \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}$$

$$= \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$$

Thus, we have as a Schmidt decomposition

$$\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} = 4 \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} + 1 \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

Middle matrix: We have

$$A^*A = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 90 & 0 \\ 0 & 10 \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

so that $\sigma_1 = 3\sqrt{10}$ and $\sigma_2 = \sqrt{10}$, and

$$\mathbf{v}_1 = \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix} \qquad \qquad \mathbf{v}_2 = \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$$

Then

$$\mathbf{w}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \qquad \qquad \mathbf{w}_2 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

Thus, we have as a Schmidt decomposition

$$\begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix} = 3\sqrt{10} \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \left(2/\sqrt{5} & 1/\sqrt{5} \right) + \sqrt{10} \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \left(-1/\sqrt{5} & 2/\sqrt{5} \right)$$

Right matrix: We have

$$A^*A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so that $\sigma_1 = \sqrt{2}$ and $\sigma_2 = \sqrt{3}$, and

$$\mathbf{v}_1 = \mathbf{e}_1 \qquad \qquad \mathbf{v}_2 = \mathbf{e}_2$$

Then

$$\mathbf{w}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} \qquad \qquad \mathbf{w}_2 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

Thus, we have as a Schmidt decomposition

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} (1 \quad 0) + \sqrt{3} \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix} (0 \quad 1)$$

3.3. Let A be an invertible matrix, and let $A = W\Sigma V^*$ be its singular value decomposition. Find a singular value decomposition for A^* and A^{-1} .

Answer. Observe that

$$A^* = (W\Sigma V^*)^* = (V^*)^*\Sigma^*W^* = V\Sigma W^*$$

where $\Sigma^* = \Sigma$ since all singular values are real numbers. Also observe that if Σ^{-1} is the matrix equal to Σ except with all diagonal entries inverted (which leaves them as real numbers), then

$$(W\Sigma V^*)(V\Sigma^{-1}W^*) = I \qquad (V\Sigma^{-1}W^*)(W\Sigma V^*) = I$$

Thus, we have that

$$A^* = V\Sigma W^* \qquad \qquad A^{-1} = V\Sigma^{-1}W^*$$

3.5. Find the singular value decomposition of the matrix

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$

Answer. We have from Problem 6.3.2 that a Schmidt decomposition of A is

$$A = 4 \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix} \left(1/\sqrt{5} \quad 2/\sqrt{5} \right) + 1 \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix} \left(-2/\sqrt{5} \quad 1/\sqrt{5} \right)$$

Thus, the singular value decomposition is

$$A = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

Use it to find

a) $\max_{\|\mathbf{x}\| \leq 1} \|A\mathbf{x}\|$ and the vectors where the maximum is attained.

Answer. We have that $\max_{\|\mathbf{x}\| \le 1} \|A\mathbf{x}\| = \|A\| = 4$. We know that the unit vector that maximizes Σ is $\pm \mathbf{e}_1$, so we want to find \mathbf{x} such that $V^*\mathbf{x} = \pm \mathbf{e}_1$. But then $\mathbf{x} = \pm V\mathbf{e}_1$, i.e., \mathbf{x} equals plus or minus the first column of V. Therefore, the vectors where the maximum is attained are

$$\mathbf{x}_1 = \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix} \qquad \qquad \mathbf{x}_2 = \begin{pmatrix} -1/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix}$$

b) $\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$ and the vectors where the minimum is attained.

Answer. By a similar argument to before, $\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = 1$ and

$$\mathbf{y}_1 = \begin{pmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix} \qquad \qquad \mathbf{y}_2 = \begin{pmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{pmatrix}$$

c) The image A(B) of the closed unit ball $B = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| \le 1 \}$ in \mathbb{R}^2 . Describe A(B) geometrically.

Answer. A(B) will be an ellipse in \mathbb{R}^2 centered at the origin with half-axes of length 4 and 1 pointing in the directions $\mathbf{x}_1, \mathbf{x}_2$ and $\mathbf{y}_1, \mathbf{y}_2$, respectively.

3.6. Show that for a square matrix A, $|\det A| = \det |A|$.

Answer. By Theorem 6.3.5, A = U|A| where U is an isometry. Note that U is unitary in this case as well since U is square (see Proposition 5.6.3). Also note that $\det |A|$ is nonnegative since every eigenvalue of |A| (i.e., the singular values) are nonnegative by definition. Thus,

$$\begin{split} |\det A| &= |\det(U|A|)| \\ &= |\det U| \cdot |\det |A|| & \text{Theorem 3.3.5} \\ &= 1 \cdot |\det |A|| & \text{Proposition 5.6.4} \\ &= \det |A| & \end{split}$$

as desired. \Box

3.7. True or false:

a) The singular values of a matrix are also eigenvalues of the matrix.

Answer. False.

Consider the left matrix in Problem 6.3.2. Since this matrix is upper triangular, it is clear that it's eigenvalue is 2. However, we computed its singular values to be 4 and 1. \Box

b) The singular values of a matrix A are eigenvalues of A^*A .

Answer. False.

Consider the left matrix in Problem 6.3.2. By the diagonalization of A^*A performed in the answer to that question, the eigenvalues of A^*A are 16 and 1. However, we computed its singular values to be 4 and 1.

c) If s is a singular value of a matrix A and c is a scalar, then |c|s is a singular value of cA.

Answer. True.

Suppose s is a singular value of A. Then s^2 is an eigenvalue of A^*A , i.e., there exists a nonzero vector \mathbf{v} such that $A^*A\mathbf{v} = s^2\mathbf{v}$. It follows that

$$(cA)^*(cA)\mathbf{v} = c^2 A^* A \mathbf{v} = c^2 s^2 \mathbf{v}$$

so c^2s^2 is an eigenvalue of $(cA)^*(cA)$. Therefore, $\sqrt{c^2s^2} = |c|s$ is a singular value of cA, as desired.

d) The singular values of any linear operator are nonnegative.

Answer. True.

By definition. \Box

e) The singular values of a self-adjoint matrix coincide with its eigenvalues.

Answer. False.

Consider the self-adjoint 1×1 matrix

$$A = (-1)$$

The eigenvalue of A is -1, but the singular value is 1.

3.8. Let A be an $m \times n$ matrix. Prove that *nonzero* eigenvalues of the matrices A^*A and AA^* (counting multiplicities) coincide. Can you say when zero eigenvalues of A^*A and zero eigenvalues of AA^* have the same multiplicity?

Answer. Let A be an $m \times n$ matrix with SVD $A = W \Sigma V^*$, and let $\sigma_1, \ldots, \sigma_n$ be the singular values of A arranged such that $\sigma_1, \ldots, \sigma_r$ are the nonzero singular values. Then

$$A^*A = (W\Sigma V^*)^*(W\Sigma V^*)$$

$$= (V^*)^*\Sigma^*W^*W\Sigma V^*$$

$$= V\Sigma^*\Sigma V^*$$

$$= W\Sigma V^*V\Sigma^*W^*$$

$$= W\Sigma \Sigma^*W^*$$

Let's investigate the structure of $\Sigma^*\Sigma$ and $\Sigma\Sigma^*$. By definition, Σ is of the form

It is thus easy to see that

i.e., that $\Sigma^*\Sigma$ and $\Sigma\Sigma^*$ are proper diagonal matrices whose entries are the squares of the singular values. This combined with the fact that V,W are unitary means that $V(\Sigma^*\Sigma)V^*$ and $W(\Sigma\Sigma^*)W$ are orthogonal diagonalizations of A^*A and AA^* , respectively. Hence the diagonal entries of $\Sigma^*\Sigma$ are the eigenvalues of A^*A and the diagonal entries of $\Sigma\Sigma^*$ are the the eigenvalues of AA^* . Therefore, from the last equations above, it is clear that the nonzero eigenvalues of A^*A and AA^* always coincide, and the zero eigenvalues of A^*A and AA^* coincide iff m=n.

3.9. Let s be the largest singular value of an operator A, and let λ be the eigenvalue of A with the largest absolute value. Show that $|\lambda| \leq s$.

Answer. Let v be the normal eigenvector corresponding to λ . Then we have that

$$|\lambda| = |\lambda| \|\mathbf{v}\| = \|\lambda\mathbf{v}\| = \|A\mathbf{v}\| \le \|A\| \cdot \|\mathbf{v}\| = s$$

as desired. \Box

3.11. Show that the operator norm of a matrix A coincides with its Frobenius norm if and only if the matrix has rank one. (Hint: The previous problem might help.)

Answer. Let $\sigma_1, \ldots, \sigma_n$ be the singular values of A arranged in descending order.

Suppose first that the $||A|| = ||A||_2$. Then

$$\sigma_1^2 = ||A||^2 = ||A||_2^2 = \operatorname{tr}(A^*A) = \sum_{k=1}^n \sigma_k^2$$

It follows that $\sigma_2, \ldots, \sigma_n$ are all zero. Therefore, since A only has one nonzero singular value, Problem 6.3.1 asserts that A has rank one.

The proof is symmetric in the other direction.

3.12. For the matrix

$$A = \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix}$$

describe the inverse image of the unit ball, i.e., the set of all $\mathbf{x} \in \mathbb{R}^2$ such that $||A\mathbf{x}|| \leq 1$. Use its singular value decomposition.

Answer. The inverse image of the unit ball under A is equal to the image of the unit ball under A^{-1} . We have that

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$

Thus, by problem 6.3.5, the SVD of A^{-1} is

$$A^{-1} = \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

Thus, the inverse image will be an ellipse in \mathbb{R}^2 with half-axes 1 and $\frac{1}{4}$ pointing in the directions $(\frac{1}{2})$ and $(\frac{-2}{4})$, respectively.

4.2. Let A be a normal operator, and let $\lambda_1, \ldots, \lambda_n$ be its eigenvalues (counting multiplicities). Show that singular values of A are $|\lambda_1|, \ldots, |\lambda_n|$.

Answer. Since A is normal, we have by Theorem 6.2.4 that $A = UDU^*$ where U is unitary and D is diagonal. It follows that

$$A^*A = (UDU^*)^*(UDU^*) = UD^*DU^*$$

Consider λ_j for some $j \in \{1, ..., n\}$. We know that λ_j is a diagonal entry of D. Thus, $\bar{\lambda_j}\lambda_j = |\lambda_j|^2$ is the corresponding diagonal entry of D^*D . It follows since the singular values of A are the eigenvalues of $|A| = \sqrt{A^*A}$, i.e., the square roots of the eigenvalues of A^*A that $\sigma_j = \sqrt{|\lambda_j|^2} = |\lambda_j|$, as desired. \square

4.3. Find the singular values, norm, and condition number of the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

You can do this problem with practically no computations if you use the previous problem and can answer the following questions:

- a) What are singular values (eigenvalues) of an orthogonal projection P_E onto some subspace E?

 Answer. 1 and 0, with respective multiplicities dim E and dim E^{\perp} . Note that the singular values and eigenvalues coincide here because P_E is self-adjoint.
- b) What is the matrix of the orthogonal projection onto the subspace spanned by the vector $(1,1,1)^T$?

Answer. From Problem 5.3.9a, the matrix of this projection is

$$\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

c) How are the eigenvalues of the operators T and aT + bI where $a, b \in \mathbb{F}$ related?

Answer. Suppose λ is an eigenvalue of T. Then there exists a nonzero vector \mathbf{v} such that $T\mathbf{v} = \lambda \mathbf{v}$. It follows that

$$(aT + bI)\mathbf{v} = aT\mathbf{v} + b\mathbf{v}$$
$$= a\lambda\mathbf{v} + b\mathbf{v}$$
$$= (a\lambda + b)\mathbf{v}$$

i.e., that $a\lambda + b$ is an eigenvalue of aT + bI.

Of course you can also just honestly do the computations.

Answer. Let P_E denote the matrix provided as an answer to question (b) above. Then $A = 3P_E + 1I$. Therefore, since question (a) provides the eigenvalues to P_E as 1 and 0 (with multiplicities 2 and 1, respectively), question (c) posits that the eigenvalues of A are 3(1) + 1 = 4 and 3(0) + 1 = 1 (with multiplicities 2 and 1, respectively), and that these values are in fact the singular values.

It follows that ||A|| = 4 and the condition number is $||A|| \cdot ||A^{-1}|| = 4/1 = 4$.

6.1. Let R_{α} be the rotation through α , so its matrix in the standard basis is

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Find the matrix of R_{α} in the basis $\mathbf{v}_1, \mathbf{v}_2$ where $\mathbf{v}_1 = \mathbf{e}_2, \mathbf{v}_2 = \mathbf{e}_1$.

Answer. We define

$$[I]_{\mathcal{EV}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

It follows that

$$[I]_{\mathcal{V}\mathcal{E}} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

Therefore,

$$\begin{split} [R_{\alpha}]_{\mathcal{V}\mathcal{V}} &= [I]_{\mathcal{V}\mathcal{E}}[R_{\alpha}]_{\mathcal{E}\mathcal{E}}[I]_{\mathcal{E}\mathcal{V}} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \end{split}$$

6.2. Let R_{α} be the rotation matrix

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Show that the 2×2 identity matrix I_2 can be continuously transformed through invertible matrices into R_{α} .

Answer. Let V(t) be defined by

$$V(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

Choose a=0 and $b=\alpha$. Then V(t) is continuous because each component is continuous, the inverse of V(t) is V(-t), and clearly V(a)=V(0)=I and $V(b)=V(\alpha)=R_{\alpha}$.

6.3. Let U be an $n \times n$ orthogonal matrix with det U > 0. Show that the $n \times n$ identity matrix I_n can be continuously transformed through invertible matrices into U. (Hint: Use the previous problem and the representation of a rotation in \mathbb{R}^n as a product of planar rotations [see Section 5].)

Answer. Since U is an orthogonal matrix with det U = 1 > 0, Theorem 6.5.1 asserts that there exists a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ such that the matrix of U in this basis has the block diagonal form

$$V(t) = \begin{pmatrix} R_{\varphi_1} & & 0 \\ & \ddots & \\ & & R_{\varphi_k} \\ 0 & & I_{n-2k} \end{pmatrix}$$

Thus, let V(t) be defined by

$$V(t) = \begin{pmatrix} R_{\varphi_1 t} & & 0 \\ & \ddots & \\ & & R_{\varphi_k t} \\ 0 & & I_{n-2k} \end{pmatrix}$$

Choose a=0 and b=1. It will follow from Problem 6.6.2 that V is a continuous transformation satisfying all the necessary properties.

Chapter 7

1.1. Find the matrix of the bilinear form L on \mathbb{R}^3 defined by

$$L(\mathbf{x}, \mathbf{y}) = x_1 y_1 + 2x_1 y_2 + 14x_1 y_3 - 5x_2 y_1 + 2x_2 y_2 - 3x_2 y_3 + 8x_3 y_1 + 19x_3 y_2 - 2x_3 y_3$$

Answer. We have that

$$= x_1y_1 + 2x_1y_2 + 14x_1y_3 - 5x_2y_1 + 2x_2y_2 - 3x_2y_3 + 8x_3y_1 + 19x_3y_2 - 2x_3y_3$$

$$= L(\mathbf{x}, \mathbf{y})$$

$$= \mathbf{y}^T A \mathbf{x}$$

$$= \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (y_1 \quad y_2 \quad y_3) \begin{pmatrix} a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 \\ a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 \\ a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 \end{pmatrix}$$

$$= y_1a_{1,1}x_1 + y_1a_{1,2}x_2 + y_1a_{1,3}x_3 + y_2a_{2,1}x_1 + y_2a_{2,2}x_2 + y_2a_{2,3}x_3 + y_3a_{3,1}x_1 + y_3a_{3,2}x_2 + y_3a_{3,3}x_3$$

$$= a_{1,1}x_1y_1 + a_{2,1}x_1y_2 + a_{3,1}x_1y_3 + a_{1,2}x_2y_1 + a_{2,2}x_2y_2 + a_{3,2}x_2y_3 + a_{1,3}x_3y_1 + a_{2,3}x_3y_2 + a_{3,3}x_3y_3$$

It follows from comparing terms that

$$A = \begin{pmatrix} 1 & -5 & 8 \\ 2 & 2 & 19 \\ 14 & -3 & -2 \end{pmatrix}$$

1.2. Define the bilinear form L on \mathbb{R}^2 by

$$L(\mathbf{x}, \mathbf{y}) = \det[\mathbf{x}, \mathbf{y}]$$

i.e., to compute $L(\mathbf{x}, \mathbf{y})$, we form a 2×2 matrix with columns \mathbf{x}, \mathbf{y} and compute its determinant. Find the matrix of L.

Answer. We have that

$$= a_{1,1}x_1y_1 + a_{2,1}x_1y_2 + a_{1,2}x_2y_1 + a_{2,2}x_2y_2$$

$$= \mathbf{y}^T A \mathbf{x}$$

$$= L(\mathbf{x}, \mathbf{y})$$

$$= \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$

$$= x_1y_2 - y_1x_2$$

$$= 0x_1y_1 + 1x_1y_2 - 1x_2y_1 + 0x_2y_2$$

It follows from comparing terms that

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

1.3. Find the matrix of the quadratic form Q on \mathbb{R}^3 defined by

$$Q[\mathbf{x}] = x_1^2 + 2x_1x_2 - 3x_1x_3 - 9x_2^2 + 6x_2x_3 + 13x_3^2$$

Answer. We have that

$$= x_1^2 + 2x_1x_2 - 3x_1x_3 - 9x_2^2 + 6x_2x_3 + 13x_3^2$$

$$= Q[\mathbf{x}]$$

$$= (A\mathbf{x}, \mathbf{x})$$

$$= (x_1 \quad x_2 \quad x_3) \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{1,2} & a_{2,2} & a_{2,3} \\ a_{1,3} & a_{2,3} & a_{3,3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (x_1 \quad x_2 \quad x_3) \begin{pmatrix} a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 \\ a_{1,2}x_1 + a_{2,2}x_2 + a_{2,3}x_3 \\ a_{1,3}x_1 + a_{2,3}x_2 + a_{3,3}x_3 \end{pmatrix}$$

$$=x_1a_{1,1}x_1+x_1a_{1,2}x_2+x_1a_{1,3}x_3+x_2a_{1,2}x_1+x_2a_{2,2}x_2+x_2a_{2,3}x_3+x_3a_{1,3}x_1+x_3a_{2,3}x_2+x_3a_{3,3}x_3\\=a_{1,1}x_1^2+2a_{1,2}x_1x_2+2a_{1,3}x_1x_3+a_{2,2}x_2^2+2a_{2,3}x_2x_3+a_{3,3}x_3^2$$

It follows from comparing terms that

$$A = \begin{pmatrix} 1 & 1 & -3/2 \\ 1 & -9 & 3 \\ -3/2 & 3 & 13 \end{pmatrix}$$

2.1. Diagonalize the quadratic form with the matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Use two methods: completion of squares and row operations. Which one do you like better? Can you say if the matrix A is positive definite or not?

Labalme 51

Answer. Completion of squares: If A has the above form, then

$$Q[\mathbf{x}] = (A\mathbf{x}, \mathbf{x})$$

$$= a_{1,1}x_1^2 + 2a_{1,2}x_1x_2 + 2a_{1,3}x_1x_3 + a_{2,2}x_2^2 + 2a_{2,3}x_2x_3 + a_{3,3}x_3^2$$

$$= x_1^2 + 4x_1x_2 + 2x_1x_3 + 3x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + 2x_2 + x_3)^2 - x_2^2$$

$$= y_1^2 - y_2^2$$

where $y_1 = x_1 + 2x_2 + x_3$, $y_2 = x_2$, and $y_3 = 0$. It follows that

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$S^* = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

the latter equation coming from the fact that $\mathbf{y} = S^*\mathbf{x}$.

Row operations: We can row reduce

$$(A|I) = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

to

$$(D|S^*) = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

getting the same result as before.

Right now, I believe I prefer completion of squares. The matrix is not positive definite since it has an eigenvalue (diagonal entry) less than zero. \Box

5 Definiteness, Dual Spaces, and Advanced Spectral Theory

From Treil (2017).

Chapter 7

11/1: **4.1.** Using Silvester's Criterion of Positivity, check if the matrices

$$A = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 4 & -2 \\ 2 & -2 & 2 \end{pmatrix}$$

are positive definite or not. Are the matrices -A, A^3 , A^{-1} , $A + B^{-1}$, A + B, and A - B positive definite?

Answer. A: We have that

$$\det A_1 = \det (4) \qquad \det A_2 = \det \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix} \qquad \det A_3 = \det \begin{pmatrix} 4 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$= 4 \qquad = 8 \qquad = 5$$

Thus, since $A = A^*$ and det $A_k > 0$ for k = 1, 2, 3, Silvester's Criterion of Positivity implies that A is positive definite.

B: We have that

$$\det B_1 = \det (3) \qquad \det B_2 = \det \begin{pmatrix} 3 & -1 \\ -1 & 4 \end{pmatrix} \qquad \det B_3 = \det \begin{pmatrix} 3 & -1 & 2 \\ -1 & 4 & -2 \\ 2 & -2 & 2 \end{pmatrix}$$

$$= 3 \qquad = 11 \qquad = 2$$

Thus, since $B = B^*$ and det $B_k > 0$ for k = 1, 2, 3, Silvester's Criterion of Positivity implies that B is positive definite.

-A: We have that

$$\det(-A)_1 = \det(-4) = -4 \geqslant 0$$

Thus, Silvester's Criterion of Positivity implies that B is not positive definite.

 $\underline{A^3}$: Since $A = A^*$, Theorem 6.2.2 implies that $A = UDU^*$ where U is unitary and $D = \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3\}$ with each λ_k real. Moreover, since A is positive definite, Theorem 7.4.1 implies that each $\lambda_k > 0$. Thus, since $A^3 = UD^3U^*$, A^3 is Hermitian, $D^3 = \operatorname{diag}\{\lambda_1^3, \lambda_2^3, \lambda_3^3\}$ where each λ_k^3 is an eigenvalue of A^3 , and naturally each $\lambda_k^3 > 0$, Theorem 7.4.1 implies that A^3 is positive definite.

 A^{-1} : By a symmetric argument to the one used for A^3 , we have that A^{-1} is positive definite.

 $\underline{A+B^{-1}}$: Since A is positive definite, by definition, $(A\mathbf{x}, \mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$. By a symmetric argument to the one used for A^{-1} , B^{-1} is positive definite. Thus, similarly, $(B^{-1}\mathbf{x}, \mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$. It follows by combining the previous results that if $\mathbf{x} \neq \mathbf{0}$, then

$$0 < (A\mathbf{x}, \mathbf{x}) < (A\mathbf{x}, \mathbf{x}) + (B^{-1}\mathbf{x}, \mathbf{x}) = ((A + B^{-1})\mathbf{x}, \mathbf{x})$$

so $A + B^{-1}$ is positive definite.

 $\underline{A+B}$: By a symmetric argument to the one used for $A+B^{-1}$, we have that A+B is positive definite. $\underline{A-B}$: We have that

$$\det(A - B)_2 = \det\begin{pmatrix} 1 & 3\\ 3 & -1 \end{pmatrix} = -10 \not > 0$$

Thus, Silvester's Criterion of Positivity implies that A - B is not positive definite.

4.2. True or false:

a) If A is positive definite, then A^5 is positive definite.

Answer. True.

If A is positive definite, then $A = A^*$. It follows that $A = UDU^*$. Additionally, Theorem 7.4.1 implies that $\lambda_k > 0$ for all λ_k along the diagonal of D. Thus, $A^5 = UD^5U^*$ where D^5 has all positive diagonal entries because D has all positive diagonal entries. Thus, by Theorem 7.4.1 again, A^5 is positive definite.

b) If A is negative definite, then A^8 is negative definite.

Answer. False.

If A is negative definite, then as before, $A = UDU^*$ and $A^8 = UD^8U^*$. But if every entry along the diagonal of D is negative (Theorem 7.4.1), then every diagonal along $D^8 = (D^2)^4$ will be positive, so A^8 is not negative definite (it is, in fact, positive definite).

c) If A is negative definite, then A^{12} is positive definite.

Answer. True.

See the explanation to part (b).

d) If A is positive definite and B is negative semidefinite, then A - B is positive definite.

Answer. True.

If A is positive definite, then $(A\mathbf{x}, \mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$. Similarly, $(B\mathbf{x}, \mathbf{x}) \leq 0$ for all \mathbf{x} . To prove that A - B is positive definite, it will suffice to show that $((A - B)\mathbf{x}, \mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$. Let $\mathbf{x} \neq 0$ be arbitrary. Then

$$0 < (A\mathbf{x}, \mathbf{x}) \le (A\mathbf{x}, \mathbf{x}) - (B\mathbf{x}, \mathbf{x}) = (A\mathbf{x} - B\mathbf{x}, \mathbf{x}) = ((A - B)\mathbf{x}, \mathbf{x})$$

as desired. \Box

e) If A is indefinite, and B is positive definite, then A + B is indefinite.

Answer. False.

Let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

By Theorem 7.4.1, A is indefinite and B is positive definite. However,

$$A + B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

which is positive semidefinite by Theorem 7.4.1.

4.3. Let A be a 2×2 Hermitian matrix such that $a_{1,1} > 0$, det $A \ge 0$. Prove that A is positive semidefinite.

Answer. We have by the given constraints that A is of the form

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ \bar{a}_{1,2} & a_{2,2} \end{pmatrix}$$

Additionally, we have that

$$0 \le \det A = a_{1,1}a_{2,2} - a_{1,2}\bar{a}_{1,2} = a_{1,1}a_{2,2} - |a_{1,2}|^2$$
$$|a_{1,2}|^2 \le a_{1,1}a_{2,2}$$

from which it follows since $|a_{1,2}|^2 \ge 0$ that

$$0 \le |a_{1,2}|^2 \le a_{1,1}a_{2,2}$$

This combined with the fact that $a_{1,1} > 0$ implies that $a_{2,2} \ge 0$. Thus,

$$\operatorname{tr} A = a_{1,1} + a_{2,2} \ge a_{1,1} + 0 > 0$$

Now let λ_1, λ_2 be the eigenvalues of A. It follows from the above since tr $A = \lambda_1 + \lambda_2$ that WLOG we may let $\lambda_1 > 0$. It follows that

$$0 \le \det A = \lambda_1 \lambda_2$$
$$0 \le \lambda_2$$

Therefore, having shown that each $\lambda_k \geq 0$, Theorem 7.4.1 implies that A is positive semidefinite, as desired.

4.4. Find a real symmetric $n \times n$ matrix such that $a_{1,1} > 0$ and $\det A_k \ge 0$ for all k = 2, ..., n, but the matrix A is not positive semidefinite. Try to find an example for the minimal possible $n^{[1]}$.

Answer. Let

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Then $a_{1,1} = 1 > 0$, det $A_2 = 0 \ge 0$, and det $A_3 = 0 \ge 0$. However, we have that its eigenvalues are $\lambda = -1, 0, 2$, so A is actually indefinite. Also, we know that this is the answer for the minimal possible n since Problem 7.4.3 proves that the conditions actually do imply A is positive semidefinite for n = 2.

4.5. Let A be an $n \times n$ Hermitian matrix such that det $A_k > 0$ for all $k = 1, \ldots, n-1$ and det $A \ge 0$. Prove that A is positive semidefinite.

Answer. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, and let μ_1, \ldots, μ_{n-1} be the eigenvalues of A_{n-1} , both sets taken in decreasing order. By Silvester's Criterion of Positivity, the hypothesis that det $A_k > 0$ for each $k = 1, \ldots, n-1$ implies that A_{n-1} is positive definite. Thus, by Theorem 7.4.1, each $\mu_k > 0$. It follows by Corollary 7.4.4 that

$$\lambda_k \ge \mu_{n-1} > 0$$

for each $k = 1, \ldots, n - 1$. Thus,

$$0 \le \det A = \lambda_1 \cdots \lambda_{n-1} \lambda_n$$
$$0 \le \lambda_n$$

Therefore, since each $\lambda_k \geq 0$, Theorem 7.4.1 implies that A is positive semidefinite, as desired.

4.6. Find a real symmetric 3×3 matrix A such that $a_{1,1} > 0$, $\det A_k \ge 0$ for k = 2, 3, but the matrix A is not positive semidefinite.

Answer. Using the same matrix from Problem 7.4.4, we have

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

¹The statement of this problem has been modified as per Chloé's instructions in the 10/28 problem session.

Chapter 8

1.1. Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be a system of vectors in X such that there exists a system $\mathbf{v}_1', \dots, \mathbf{v}_r'$ of linear functionals such that

$$\mathbf{v}_k'(\mathbf{v}_j) = \delta_{jk}$$

a) Show that the system $\mathbf{v}_1, \dots, \mathbf{v}_r$ is linearly independent.

Answer. To prove that $\mathbf{v}_1, \dots, \mathbf{v}_r$ is linearly independent, it will suffice to show that if $\alpha_1, \dots, \alpha_r \in \mathbb{F}$ make $\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = 0$, then $\alpha_1 = \dots = \alpha_r = 0$. Suppose that $\alpha_1, \dots, \alpha_r \in \mathbb{F}$ make

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = 0$$

It follows by linearity and the definition of the dual basis that

$$0 = \mathbf{v}'_k(\mathbf{0})$$

$$= \mathbf{v}'_k(\alpha_1\mathbf{v}_1 + \dots + \alpha_r\mathbf{v}_r)$$

$$= \alpha_1\mathbf{v}'_k(\mathbf{v}_1) + \dots + \alpha_r\mathbf{v}'_k(\mathbf{v}_r)$$

$$= \alpha_1 \cdot 0 + \dots + \alpha_{k-1} \cdot 0 + \alpha_k \cdot 1 + \alpha_{k+1} \cdot 0 + \dots + \alpha_r \cdot 0$$

$$= \alpha_k$$

for each k = 1, ..., r, as desired.

b) Show that if the system $\mathbf{v}_1, \dots, \mathbf{v}_r$ is not generating, then the "biorthogonal" system $\mathbf{v}_1', \dots, \mathbf{v}_r'$ is not unique. (Hint: Probably the easiest way to prove that is to complete the system $\mathbf{v}_1, \dots, \mathbf{v}_r$ to a basis [see Proposition 2.5.4].)

Answer. By Proposition 2.5.4, we can complete the linearly independent list $\mathbf{v}_1, \dots, \mathbf{v}_r$ to a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ where n > r since $\mathbf{v}_1, \dots, \mathbf{v}_r$ is not generating by hypothesis. Consider $\mathbf{v}'_1, \dots, \mathbf{v}'_r$. These linear functionals' behavior on $\mathbf{v}_1, \dots, \mathbf{v}_r$ is completely defined by the given condition; however, since they act on all of X and not just $\operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq X$, we can define an arbitrary linear behavior for each \mathbf{v}'_k on $\operatorname{span}\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$. Clearly, more than one such behavior exists (take, for example, being the zero map on that span and being the identity map on that span), so $\mathbf{v}'_1, \dots, \mathbf{v}'_n$ is not unique.

3.1. Prove that if for linear transformations $T, T_1: X \to Y$

$$\langle T\mathbf{x}, \mathbf{y}' \rangle = \langle T_1\mathbf{x}, \mathbf{y}' \rangle$$

for all $\mathbf{x} \in X$ and for all $\mathbf{y}' \in Y'$, then $T = T_1$. (Hint: Probably one of the easiest ways of proving this is to use Lemma 8.1.3.)

Answer. Let $\mathbf{x} \in X$ be arbitrary. If $\langle T\mathbf{x}, \mathbf{y}' \rangle = \langle T_1\mathbf{x}, \mathbf{y}' \rangle$ for all $\mathbf{y}' \in Y'$, then $\mathbf{y}'(T\mathbf{x}) = \mathbf{y}'(T_1\mathbf{x})$ for all $\mathbf{x} \in X$ and for all $\mathbf{y}' \in Y'$. Thus, since every linear functional in the dual space maps the vectors $T\mathbf{x}$ and $T_1\mathbf{x}$ the same way, Lemma 8.1.3 implies that $T\mathbf{x} = T_1\mathbf{x}$. But since we let \mathbf{x} be arbitrary, $T\mathbf{x} = T_1\mathbf{x}$ for all $\mathbf{x} \in X$, i.e., $T = T_1$.

3.2. Combine the Riesz Representation Theorem (Theorem 8.2.1) with the reasoning in Section 3.1.3 above to present a coordinate-free definition of the Hermitian adjoint of an operator in an inner product space.

Answer. Let $A \in \mathcal{L}(V, W)$. We seek to define A^* as the unique element of $\mathcal{L}(W, V)$ satisfying

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y})$$

for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$. Let's begin.

Let \mathbf{y} be an arbitrary element of W. We can think of \mathbf{y}^* as a $1 \times \dim W$ matrix, or indeed a linear transformation $\mathbf{y}^* : W \to \mathbb{F}$. This combined with the fact that $A : V \to W$ implies that $\mathbf{y}^*A : V \to \mathbb{F}$ is a well-defined linear functional. It follows by the Riesz Representation Theorem that there exists a unique $\mathbf{z} \in V$ such that $(\mathbf{y}^*A)(\mathbf{x}) = (\mathbf{x}, \mathbf{z})$ for all $\mathbf{x} \in V$. Define $A^*\mathbf{y} := \mathbf{z}$.

Since \mathbf{z} is unique by the Riesz Representation Theorem, A^* is a well-defined function for this \mathbf{y} . Moreover, since we let $\mathbf{y} \in W$ be arbitrary, we can define $A^*\mathbf{y}$ in the same way for $any \ \mathbf{y} \in W$. Thus, $A^*: W \to Z$ (as defined) is a well-defined function on W.

We now seek to prove that A^* is linear. Let $\mathbf{y}_1, \mathbf{y}_2 \in W$ and $\alpha_1, \alpha_2 \in \mathbb{F}$. We know that $A^*\mathbf{y}_1$ is the unique vector $\mathbf{z}_1 \in V$ such that $(\mathbf{y}_1^*A)(\mathbf{x}) = (\mathbf{x}, \mathbf{z}_1)$ for all $\mathbf{x} \in V$. We also know that $A^*\mathbf{y}_2$ is the unique vector $\mathbf{z}_2 \in V$ such that $(\mathbf{y}_2^*A)(\mathbf{x}) = (\mathbf{x}, \mathbf{z}_2)$ for all $\mathbf{x} \in V$. Lastly, we know that $A^*(\alpha_1\mathbf{y}_1 + \alpha_2\mathbf{y}_2)$ is the unique vector $\mathbf{z} \in V$ such that $[(\alpha_1\mathbf{y}_1 + \alpha_2\mathbf{y}_2)^*A](\mathbf{x}) = (\mathbf{x}, \mathbf{z})$ for all $\mathbf{x} \in V$. It follows that

$$(\mathbf{x}, A^*(\alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2)) = (\mathbf{x}, \mathbf{z})$$

$$= [(\alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2)^* A](\mathbf{x})$$

$$= \bar{\alpha}_1 (\mathbf{y}_1^* A)(\mathbf{x}) + \bar{\alpha}_2 (\mathbf{y}_2^* A)(\mathbf{x})$$

$$= \bar{\alpha}_1 (\mathbf{x}, \mathbf{z}_1) + \bar{\alpha}_2 (\mathbf{x}, \mathbf{z}_2)$$

$$= (\mathbf{x}, \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2)$$

$$= (\mathbf{x}, \alpha_1 A^* \mathbf{y}_1 + \alpha_2 A^* \mathbf{y}_2)$$

for all $\mathbf{x} \in V$. Thus, by Lemma 8.1.3

$$A^*(\alpha_1\mathbf{y}_1 + \alpha_2\mathbf{y}_2) = \alpha_1A^*\mathbf{y}_1 + \alpha_2A^*\mathbf{y}_2$$

as desired.

We now show that A^* satisfies the desired identity: If $\mathbf{x} \in V$ and $\mathbf{y} \in W$, then we have by the definition of A^* that

$$(\mathbf{x}, A^*\mathbf{y}) = (\mathbf{y}^*A)(\mathbf{x}) = \mathbf{y}^*(A\mathbf{x}) = (A\mathbf{x}, \mathbf{y})$$

as desired.

Lastly, we prove that A^* is the unique linear map satisfying the above identity. Suppose A^*, \tilde{A}^* are linear maps such that

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y}) \qquad (A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \tilde{A}^*\mathbf{y})$$

for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$. Let $\mathbf{y} \in W$ be arbitrary. Then

$$(\mathbf{x}, A^*\mathbf{y}) = (A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \tilde{A}^*\mathbf{y})$$

for all $\mathbf{x} \in V$. It follows by Lemma 8.1.3 that $A^*\mathbf{y} = \tilde{A}^*\mathbf{y}$. Furthermore, since we let \mathbf{y} be arbitrary, we know that $A^*\mathbf{y} = \tilde{A}^*\mathbf{y}$ for every $\mathbf{y} \in W$. Therefore, $A^* = \tilde{A}^*$, so A^* is unique, as desired.

3.3. Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a basis in X and let $\mathbf{v}'_1, \dots, \mathbf{v}'_n$ be its dual basis. Let $E = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ for r < n. Prove that $E^{\perp} = \text{span}\{\mathbf{v}'_{r+1}, \dots, \mathbf{v}'_n\}$. (This problem gives a way to prove Proposition 8.3.6.)

Answer. Suppose first that $\mathbf{v}' \in E^{\perp}$. Then by the definition of the annihilator, $\mathbf{v}' \in X'$ and $\langle \mathbf{x}, \mathbf{v}' \rangle = 0$ for all $\mathbf{x} \in E$. It follows from the first condition that

$$\mathbf{v}' = \alpha_1 \mathbf{v}_1' + \dots + \alpha_n \mathbf{v}_n'$$

for some $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$. It follows from the second condition that

$$0 = \langle \mathbf{v}_k, \mathbf{v}' \rangle$$

= $\alpha_1 \mathbf{v}'_1(\mathbf{v}_k) + \dots + \alpha_n \mathbf{v}'_n(\mathbf{v}_k)$
= α_k

for each $k = 1, \ldots, r$. Therefore,

$$\mathbf{v}' = \alpha_{r+1}\mathbf{v}'_{r+1} + \dots + \alpha_n\mathbf{v}'_n$$

so $\mathbf{v} \in \operatorname{span}\{\mathbf{v}'_{r+1}, \dots, \mathbf{v}'_n\}$, as desired.

Now suppose that $\mathbf{v}' \in \text{span}\{\mathbf{v}'_{r+1}, \dots, \mathbf{v}'_n\}$. In particular, let $\mathbf{v}' = \alpha_{r+1}\mathbf{v}'_{r+1} + \dots + \alpha_n\mathbf{v}'_n$ for some $\alpha_{r+1}, \dots, \alpha_n \in \mathbb{F}$. To prove that $\mathbf{v}' \in E^{\perp}$, it will suffice to show that $\langle \mathbf{x}, \mathbf{v}' \rangle = 0$ for all $\mathbf{x} \in E$. Let \mathbf{x} be an arbitrary element of E. Then by the definition of E, $\mathbf{x} = \beta_1\mathbf{v}_1 + \dots + \beta_r\mathbf{v}_r$. It follows by the definition of \mathbf{v}' and the dual basis that

$$\langle \mathbf{x}, \mathbf{v}' \rangle = \alpha_{r+1} \mathbf{v}'_{r+1} (\beta_1 \mathbf{v}_1 + \dots + \beta_r \mathbf{v}_r) + \dots + \alpha_n \mathbf{v}'_n (\beta_1 \mathbf{v}_1 + \dots + \beta_r \mathbf{v}_r)$$
$$= \alpha_{r+1} \cdot 0 + \dots + \alpha_n \cdot 0$$
$$= 0$$

as desired.

Chapter 9

1.1. (Cayley-Hamilton Theorem for diagonalizable matrices). As discussed in Section 9.1, the Cayley-Hamilton theorem states that if A is a square matrix and

$$p(\lambda) = \det(A - \lambda I) = \sum_{k=0}^{n} c_k \lambda^k$$

is its characteristic polynomial, then $p(A) = \sum_{k=0}^{n} c_k A^k = \mathbf{0}$ (assuming that by definition, $A^0 = I$). Prove this theorem for the special case when A is similar to a diagonal matrix, i.e., $A = SDS^{-1}$. (Hint: If $D = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$ and p is any polynomial, can you compute p(D)? What about p(A)?)

Answer. Suppose $A = SDS^{-1}$, and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Since $D = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$, we have by the properties of diagonal matrix exponentiation, scalar multiplication, and addition, and Exercise 4.1.10 that

$$p(D) = \sum_{k=0}^{n} c_k D^k$$

$$= \sum_{k=0}^{n} c_k \operatorname{diag}\{\lambda_1^k, \dots, \lambda_n^k\}$$

$$= \sum_{k=0}^{n} \operatorname{diag}\{c_k \lambda_1^k, \dots, c_k \lambda_n^k\}$$

$$= \operatorname{diag}\left\{\sum_{k=0}^{n} c_k \lambda_1^k, \dots, \sum_{k=0}^{n} c_k \lambda_n^k\right\}$$

$$= \operatorname{diag}\{p(\lambda_1), \dots, p(\lambda_n)\}$$

$$= \operatorname{diag}\{0, \dots, 0\}$$

$$= 0$$

It follows that

$$\begin{split} p(A) &= p(SDS^{-1}) \\ &= \sum_{k=0}^{n} c_k (SDS^{-1})^k \\ &= \sum_{k=0}^{n} c_k SD^k S^{-1} \\ &= S\left[\sum_{k=0}^{n} c_k D^k\right] S^{-1} \\ &= S[p(D)]S^{-1} \\ &= S0S^{-1} \\ &= 0 \end{split}$$

as desired. \Box

2.1. An operator A is called **nilpotent** if $A^k = \mathbf{0}$ for some k. Prove that if A is nilpotent, then $\sigma(A) = \{0\}$ (i.e., that 0 is the only eigenvalue of A). Can you do it without using the spectral mapping theorem?

Answer. Suppose for the sake of contradiction that $\lambda \neq 0$ for some eigenvalue λ of A. Then if \mathbf{v} is a nonzero eigenvector corresponding to λ , $A\mathbf{v} = \lambda \mathbf{v}$ so $A^k \mathbf{v} = \lambda^k \mathbf{v}$. But since $\lambda^k \mathbf{v} \neq \mathbf{0}$, $A^k \neq 0$, a contradiction.

References MATH 20700

References

Treil, S. (2017). Linear algebra done wrong [http://www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf].