An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory

Michael J. Kearns Umesh V. Vazirani

The MIT Press
Cambridge, Massachusetts
London, England

©1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was typeset by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Kearns, Michael J.

An introduction to computational learning theory / Michael J. Kearns, Umesh V. Vazirani.

p. cm.

Includes bibliographical references and index.

ISBN 0-262-11193-4

- 1. Machine learning. 2. Artificial intelligence. 3. Algorithms.
- 4. Neural networks. I. Vazirani, Umesh Virkumar. II. Title.

Q325.5.K44 1994

006.3—dc20 94-16588

CIP

109876

Contents

Preface			xi
1	The	Probably Approximately Correct Learning Model	1
	1.1	A Rectangle Learning Game	1
	1.2	A General Model	6
		1.2.1 Definition of the PAC Model	7
		1.2.2 Representation Size and Instance Dimension	12
	1.3	Learning Boolean Conjunctions	16
	1.4	Intractability of Learning 3-Term DNF Formulae	18
	1.5	Using 3-CNF Formulae to Avoid Intractability	22
	1.6	Exercises	26
	1.7	Bibliographic Notes	28
2	Occ	am's Razor	31
	2.1	Occam Learning and Succinctness	33

	2.2	Improving the Sample Size for Learning Conjunctions	37
	2.3	Learning Conjunctions with Few Relevant Variables	38
	2.4	Learning Decision Lists	42
	2.5	Exercises	44
	2.6	Bibliographic Notes	46
3	The	Vapnik-Chervonenkis Dimension	49
	3.1	When Can Infinite Classes Be Learned with a Finite Sample?	49
	3.2	The Vapnik-Chervonenkis Dimension	5 0
	3.3	Examples of the VC Dimension	51
	3.4	A Polynomial Bound on $ \Pi_{\mathcal{C}}(S) $	54
	3.5	A Polynomial Bound on the Sample Size for PAC Learning	57
		3.5.1 The Importance of ϵ -Nets	57
		3.5.2 A Small ϵ -Net from Random Sampling	59
	3.6	Sample Size Lower Bounds	62
	3.7	An Application to Neural Networks	64
	3.8	Exercises	67
	3.9	Bibliographic Notes	70
4	Wea	ak and Strong Learning	73
	4.1	A Relaxed Definition of Learning?	73
	4.2	Boosting the Confidence	76

Contents	vi

	4.3	Boosting the Accuracy		78
		4.3.1	A Modest Accuracy Boosting Procedure	79
		4.3.2	Error Analysis for the Modest Procedure	81
		4.3.3	A Recursive Accuracy Boosting Algorithm	85
		4.3.4	Bounding the Depth of the Recursion	88
		4.3.5	Analysis of Filtering Efficiency	89
		4.3.6	Finishing Up	96
	4.4	4 Exercises		101
	4.5	Biblio	graphic Notes	102
5	Lea	Learning in the Presence of Noise		
	5.1	The C	Classification Noise Model	104
	5.2	An Algorithm for Learning Conjunctions from Statistics		106
	5.3	The Statistical Query Learning Model		108
	5.4	Simulating Statistical Queries in the Presence of Noise		111
		5.4.1	A Nice Decomposition of P_{χ}	112
		5.4.2	Solving for an Estimate of P_{χ}	114
		5.4.3	Guessing and Verifying the Noise Rate	115
		5.4.4	Description of the Simulation Algorithm	117
	5.5	5.5 Exercises		119
	5.6	Biblio	graphic Notes	121

viii Contents

6	Inh	erent Unpredictability	123	
	6.1	6.1 Representation Dependent and Independent Hardness		
	6.2	The Discrete Cube Root Problem	124	
		6.2.1 The Difficulty of Discrete Cube Roots	126	
		6.2.2 Discrete Cube Roots as a Learning Problem	128	
	6.3	Small Boolean Circuits Are Inherently Unpredictable	131	
	6.4	Reducing the Depth of Inherently Unpredictable Circuits	133	
		6.4.1 Expanding the Input	135	
	6.5	A General Method and Its Application to Neural Networks	139	
	6.6	Exercises	140	
	6.7	Bibliographic Notes	141	
7	Red	ucibility in PAC Learning	143	
	7.1	Reducing DNF to Monotone DNF	144	
	7.2	A General Method for Reducibility	147	
	7.3	Reducing Boolean Formulae to Finite Automata	149	
	7.4	Exercises	153	
	7.5	Bibliographic Notes	154	
8	Lea	rning Finite Automata by Experimentation	155	
	8.1	Active and Passive Learning	155	
	8.2	Exact Learning Using Queries	158	

Contents

	8.3	Exact Learning of Finite Automata		160
		8.3.1	Access Strings and Distinguishing Strings	160
		8.3.2	An Efficiently Computable State Partition	162
		8.3.3	The Tentative Hypothesis \hat{M}	164
		8.3.4	Using a Counterexample	166
		8.3.5	The Algorithm for Learning Finite Automata	169
		8.3.6	Running Time Analysis	171
	8.4	Learni	ing without a Reset	174
		8.4.1	Using a Homing Sequence to Learn	176
		8.4.2	Building a Homing Sequence Using Oversized Generalized Classification Trees	178
		8.4.3	The No-Reset Algorithm	181
		8.4.4	Making Sure L_{σ} Builds Generalized Classification Trees	182
	8.5	Exerc	ises	185
	8.6	Bibliographic Notes		186
)	App	pendix	: Some Tools for Probabilistic Analysis	189
	9.1	The U	Inion Bound	189
	9.2	Marko	ov's Inequality	189
	9.3	Chern	off Bounds	190

x	Contents
Bibliography	193
Index	205

Preface

In the Fall term of 1990, we jointly taught a graduate seminar in computational learning theory in the computer science department of the University of California at Berkeley. The material that is presented here has its origins in that course, both in content and exposition. Rather than attempt to give an exhaustive overview of this rapidly expanding and changing area of research, we have tried to carefully select fundamental topics that demonstrate important principles that may be applicable in a wider setting than the one examined here. In the technical sections, we have tried to emphasize intuition whenever possible, while still providing precise arguments.

The book is intended for researchers and students in artificial intelligence, neural networks, theoretical computer science and statistics, and anyone else interested in mathematical models of learning. It is appropriate for use as the central text in a specialized seminar course, or as a supplemental text in a broader course that perhaps also studies the viewpoints taken by artificial intelligence and neural networks. While Chapter 1 lays a common foundation for all the subsequent material, the later chapters are essentially self-contained and may be read selectively and in any order. Exercises are provided at the end of each chapter.

Some brief comments on the expected background of the reader are appropriate here. Familiarity with some basic tools of the formal analysis of algorithms is necessary, as is familiarity with only the most elementary notions of complexity theory, such as *NP*-completeness. For the

xii Preface

reader unfamiliar with these topics, the books of Cormen, Leiserson and Rivest [27], Garey and Johnson [38] and Aho, Hopcroft and Ullman [2] provide classic background reading. Some background in probability theory and statistics is desirable but not necessary. In an Appendix in Chapter 9 we have gathered in one place the simple tools of probability theory that we will invoke repeatedly throughout our study.

We are deeply indebted to many colleagues for the advice, feedback and support they gave to us during the writing of this book. We are especially grateful to Ron Rivest of M.I.T. for using preliminary versions of the book for two years as a text in his machine learning course. The comments that resulted from this course were invaluable, and we thank Jay Alsam of M.I.T. for improving several derivations.

We give warm thanks to Dana Angluin of Yale for a detailed critique of a preliminary version. We incorporated practically all of her suggestions, and they greatly improved the presentation. We are very grateful to Les Valiant of Harvard for his many comments and continuing support of the project.

For many suggested improvements and discussions of the material, we thank Scott Decatur of Harvard, John Denker of Bell Labs, Sally Goldman of Washington University, David Haussler of U.C. Santa Cruz, Esther Levin of Bell Labs, Marina Meila of M.I.T., Fernando Pereira of Bell Labs, Stuart Russell of U.C. Berkeley, Rob Schapire of Bell Labs, Donna Slonim of M.I.T., and Manfred Warmuth of U.C. Santa Cruz. Thanks to Danuta Sowinska-Khan and the Art Department of Bell Labs for their preparation of the figures.

We give warm thanks to Terry Ehling of The MIT Press for bringing this project to fruition, and for her enthusiastic support from beginning to end.

An Introduction to Computational Learning Theory