

Machine Learning Fundamentals – DTSC102

Lecture 7 ML Diagnostics + PCA

Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- ➤ Machine Learning Diagnostics
- ➤ Regularization & Bias/Variance
- ➤ Learning Curves
- ➤ Principle Component Analysis PCA

- So far we agreed that more data is always better...
- Are more features always better too?

Let's weight the options:

YES because:

> Better fitting accuracy, i.e.: better prediction

No because:

There is a strong risk of overfitting, i.e.: learning something expressive rather than something general

So it is a trade-off that we need to balance, how to??

Occam's Razor

 A principle attributed to the 14th century English logician William of Ockham, states that:

"All other things being equal, the simplest solution is the best"

In other words:

When multiple competing hypothesis are equal in other aspects, select the hypothesis that introduces the fewest assumptions and postulates the fewest entities

In fewer words:

➤ Prefer the simplest hypothesis that fits the data

Occam's Razor

- ➤ Prefer the simplest hypothesis that fits the data: Regularization
- The idea is to add a "Penalty Term" that increases with the complexity of the hypothesis to the optimization problem

Thus:

➤ Complex Hypothesis incur High penalty and thus are rejected

Unless:

Complex Hypothesis incurs a big decrease in the error function then it will be accepted

Keep all Features but reduce the parameters of some features

How

Add a regularization term to the cost function

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 + \left(\frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2 \right)$$

What is the best value for λ

- Very small value of λ will cause over fitting in complicated Hypothesis
- Very large value of λ will cause under fitting

Regularization Term

Regularization with Gradient Descent

Repeat until convergence:

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^i)$$

$$\theta_{j} = \theta_{j} - \frac{\alpha}{m} \left(\left(\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{i}) \cdot x_{j}^{(i)} \right) + \lambda \theta_{j} \right)$$

$$\theta_j = \theta_j \left(1 - \frac{\alpha \lambda}{m} \right) - \frac{\alpha}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^i \right) \cdot x_j^{(i)}$$

Regularization and Bias/Variance

For linear regression with regularization

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

- For large λ , $\theta_1 \approx 0$, $\theta_2 \approx 0$, ... so $h_{\theta}(x) = \theta_0$
- \triangleright For small λ , regularization term is almost 0

Regularization and Bias/Variance

How to choose Regularization Factor **\lambda**

- \triangleright Create a list of lambdas (i.e. $\lambda \in \{0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28,2.56,5.12,10.24\});$
- > Create a set of models with different degrees or any other variants.
- \triangleright Iterate through the λ s and for each λ go through all the models to learn θ .
- \triangleright Compute the cross validation error using the learned θ (computed with λ) on the $J_{cv}(\theta)$ without regularization or $\lambda = 0$: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) y_{cv}^{(i)} \right)^2$
- > Select the best combo that produces the lowest error on the cross validation set.
- \triangleright Using the best combo θ and λ , apply it on $J_{test}(\theta)$ to see if it has a good generalization of the problem.
- For large λ , $\theta_1 \approx 0$, $\theta_2 \approx 0$, ... so $h_{\theta}(x) = \theta_0$
- \triangleright For small λ , regularization term is almost 0

Regularization and Bias/Variance

Learning Curves

- Representing the error in $J_{Train}(\theta)$ and $J_{CV}(\theta)$ while varying the training set size m
- When m is **small**:
 - Few training examples, easy to fit them all so $J_{Train}(\theta)$ will be low
 - \triangleright Hypothesis doesn't generalize well to other data, so $J_{CV}(\theta)$ will be high
- When *m* is **large**:
 - \triangleright Many training examples, harder to fit them all so $J_{Train}(\theta)$ will be high
 - \triangleright Hypothesis generalize well to other data, so $J_{CV}(\theta)$ will be low

Training Set Size

Learning Curves - High Bias

Example: $h_{\theta}(x) = \theta_0 + \theta_1 x$

- Results in high error values for both $J_{Train}(\theta)$ and $J_{CV}(\theta)$
- If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

Learning Curves - High Variance

Example: $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$

- Results in high error values for both $J_{Train}(\theta)$ and $J_{CV}(\theta)$
- If a learning algorithm is suffering from high variance, getting more training data is likely to help

Machine Learning Fundamentals – DTSC102

Lecture 7 Principle Component Analysis - PCA

Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- ➤ Importance of PCA
- ➤ Dimensionality Reduction
- **≻**Linear Transformation
- ➤ PCA Steps

Correlation

Main Questions

- > How to remove correlation?
- > What are the dimensions with the most information?
- > How can we provide a better scaling or normalization?

Principal Component Analysis

To identify the principal directions in which the data varies

- □Better data representation
 - > Reduce the number of features
 - > Reduce the relation between features
- □Eliminate non principal data
- □Can be used for compression applications

Principal Component Analysis 2D Example

Dimensionality Reduction

We are interested to find a linear transformation from an m dimension to n dimension (reduce the number of features from m to n

Linear Transformation

$$x = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \dots & x_m^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \dots & x_m^{(2)} \\ x_1^{(3)} & x_2^{(3)} & x_3^{(3)} & \dots & x_m^{(3)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \dots & x_m^{(n)} \end{bmatrix} \qquad W = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & \dots & w_{1,k} \\ w_{2,1} & w_{2,2} & w_{2,3} & \dots & w_{2,k} \\ w_{3,1} & w_{3,2} & w_{3,3} & \dots & w_{3,k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w_{m,1} & w_{m,2} & w_{m,2} & \dots & w_{m,k} \end{bmatrix}$$

Transformation matrix

Data Matrix

Transform into nxk

K features N data points

M features N data points

Example

$$x = \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -1 & -2 \end{bmatrix} \qquad w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.6$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

Finding the right Transformation

- Let us first forget about reducing the dimensions and focus on reducing the relation between features
- Relation between features is described by the covariance matrix
- $\rightarrow Cov(x,x) = x^Tx$
- > The best transformation would give no relation between any two features
 - (this means that the covariance matrix an identity matrix)
 - $-Cov(z,z) = z^T z = I$

Finding the right Transformation

Correlated M features

nxk

$$Z$$

$$Z^{T}Z = I$$

Uncorrelated K features

$$z^{T}z = w^{T}x^{T}xw = I$$

How to Choose K?

- > Iteratively increase k from 1 to n and calculate the error
- > Pick the k that ensures an error that is smaller that predefined value
- Luckily the eigen values returned for the case of the covariance matrix provides the contribution of each feature and hence it provides the same value as the calculating the error