

第07章数值微分

顾立平

045 导数

```
R Console
                                                      - - X
> # 定义一个函数f, 其功能是计算x的平方
> f=function(x) {x^2}
> # 定义一个函数g, 其功能是计算e的x次方
> g=function(x) {exp(x)}
> # 使用grad函数计算函数f在x=2处的梯度(即导数)
> grad(f,2)
[1] 4
> # 使用grad函数计算函数g在x=1处的梯度(即导数)
> grad(g,1)
[11 2.718282
> # 使用grad函数计算cos函数在x=n/2处的梯度(即导数)
> grad(cos, pi/2)
[1] -1
> # 设置R的输出精度为20位小数
> options(digits=20)
> # 再次使用grad函数计算cos函数在x=π/2处的梯度(即导数),但这次输出会有更高的$
> grad(cos, pi/2)
[1] -0.9999999999338151646
```


在商业领域的应用

分析成本收益, 计算边际成本、边际收益, 助力企业最优决策, 如确定价格策略。

通过导致研究/ 告按人与销售量关系,确定最佳广告投入时机和规模,优化预算,提升营销效率。

利用金融衍生品管理风险,进行资产定价,关注变化率,辅助金融决策。

经济学中的导数应 用

商业策略与导数

金融分析中的导数 工具

符号微分

符号微分原理

运用微分法则对函数符号表达式直接求导,得 出精确导数表达式,不依赖数值点。

与数值微分对比

与数值微分区别在于,它生成的导数表达式可 用于数学推导,不需具体数值。

应用领域

在数学软件如Matlab、Mathematica、 Maple等中广泛使用,自动进行符号微分操作。

优点展示

能够提供精确导数,便于进一步的数学处理 尤其在需要精确分析的场景中。

046 符号微分

```
R R Console
                                                          - - X
> # 输出m关于x的偏导数
> m.xp
function (x, y)
3 + \exp(y^2) + y/x
> # 对m关于x的偏导数进行微分,得到该偏导数关于y的导数
> Deriv(m.xp, "y")
function (x, y)
1/x + 2 * (y * exp(y^2))
> # 重新定义一个函数f, 它是一个正弦函数
> f=function(x) {sin(x)}
> # 定义一个函数f.np, 它接受一个参数n, 表示对f进行n次微分
> f.np=function(n) {Deriv(f,nderiv=n)}
>
> # 输出f的5阶导数
> f.np(5)
function (x)
cos(x)
> # 计算并输出f的5阶导数在x=n处的值
> f.np(5)(pi)
[1] -1
```


在科学领域的应用

物理学中的符号微分

用于推导物理定律,如牛顿 第二定律、电磁学和热力学 中的场方程。

工程学中的应用

在控制系统理论中分析系统 稳定性,结构优化设计中计 算灵敏度。

建立生物过程数学模型,如种群动态、疾病传播,分析参数变化率。

医学领域的应用

分析生理信号动态,如心电 图、脑电图信号处理,支持 疾病研究和诊断。

在商业领域的应用

经济学中的符号微分

用于推导经济模型,计算边际成本、边际收益变化率,辅助企业决策。

金融学中的应用 在金融衍生品定价、风险管理中,分析产品对市场因繁变

化的敏感度,支持风险评估。

03 商业分析中的符号微分

构建和优化业务模型,识别影响绩效的关键因素,为战略规划提供数据支持。

04 供应链管理中的应用

解决库存优化等复杂优化问题,帮助企业降低成本,提高运营效率。

查找最大点、最小点和拐点

数据集极值点分析

找出数值极端,确 定数据上限与下限, 帮助识别峰值和分 布范围,对峰值分

科学领域应用案例

物理学化学中找寻最大最小值优化实验,生物学通过拐点分析预测种群和疾病趋势,以指导防控策略。

拐点检测与应用

识别函数图像上二 阶导数变化点,判 断趋势转折,广泛 应用干趋势预测和

商业领域应用示例

市场分析中寻找销售和财务的高低点,预测行业趋势,制定策略以抓住机遇和应对挑战。

047 查找最大点、最小点和拐点

科学领域的应用

01

生物测量数据分析

利用正态分布分析身高、 体重等数据,着色异常 值,深入探究生物特征。 02

医学研究中的应用

通过正态分布曲线识别 疾病发病率,着色拐点 外数据,精准定位高风 险患者。 03

物理学与工程学中的应用

常用于描述测量误差和物理量分布,着色拐点外部,突出显示误差, 优化实验与分析。

商业领域的应用

销售数据分析

绘制正态分布曲线, 识别销售异常商品, 指导商家调整库存和 促销策略,提升盈利。

风险管理应用

金融领域中,通过正态 分布曲线突出高风险区域,辅助制定风险管理 策略,保障投资安全。

市场调研分析

利用正态分布曲线分 析消费者偏好,着色 拐点外部识别核心和 边缘群体,精准定位 市场和产品。

计算微分

微分基础概念

解释函数在某点的 变化率,即切线斜 率,描述函数值的 小变化。

一元函数微分

定义函数f(x)在x点的 微分,表示函数值因x 附近小变化而产生的 大致变化量。

微分计算方法

包括利用导数定义,运用各种导数法则,如链式法则、乘积法则和商的法则等。

048 绘制函数及其导数图像

科学领域的 应用

01

物理学中的微分应 用

计算速度、加速度,帮助解析物体运动规律,深入理解动力学现象。

工程学中的微分运 用

结构工程分析梁板弯曲, 电路设计中计算电流电 压变化率,微分计算不 可或缺。

生物学中的微分研究

预测种群增长趋势, 种群数量微分模型 在生态学中用于分 析种群动态。

商业领域的应用

- 经济学中的微分应用 分析成本收益,计算成本函数微分找最小化产量,利润函数微分确定最大化售价。
- 金融分析中的微分运用 期权定价,计算资产价格微分确定期权价值, 风险管理评估投资组合敏感性。
- 市场营销中的微分实践 预测销售趋势,分析销售数据微分,调整营销 策略依据消费者偏好微分变化。

049 绘制函数及其切线图形

050 绘制正态分布曲线并在拐点外部着色

符号微分

符号微分简介

解析函数表达式,利用数学法则推导导数,精确表示导数,避免数值误差。

求导步骤

先将函数转化为内部数 据结构,再应用求导法 则计算每个节点导数。

导数表达式简化

计算出的导数通过简化 操作,以得到最简明的 导数形式,便于理解。

051 计算微分

```
R Console
                                                       > # 定义一个函数f, 其功能是计算x的平方
> f=function(x) {x^2}
> # 定义一个函数g, 其功能是计算e的x次方
> g=function(x) {exp(x)}
> # 使用grad函数计算函数f在x=2处的梯度(即导数)
> grad(f, 2)
[1] 3.999999999740265544
> # 使用grad函数计算函数g在x=1处的梯度(即导数)
> grad(g,1)
[1] 2.7182818284426319977
> # 使用grad函数计算cos函数在x=n/2处的梯度(即导数)
> grad(cos, pi/2)
[1] -0.9999999999338151646
> # 设置R的输出精度为20位小数
> options(digits=20)
> # 再次使用grad函数计算cos函数在x=n/2处的梯度(即导数),但这次输出会有更高的$
> grad(cos, pi/2)
[11 -0.9999999999338151646
```


052 符号微分

```
- - X
R Console
> # 输出m关于x的偏导数
> m.xp
function (x, y)
3 + \exp(y^2) + y/x
> # 对m关于x的偏导数进行微分,得到该偏导数关于y的导数
> Deriv(m.xp, "y")
function (x, y)
1/x + 2 * (y * exp(y^2))
> # 重新定义一个函数f, 它是一个正弦函数
> f=function(x) {sin(x)}
> # 定义一个函数f.np, 它接受一个参数n, 表示对f进行n次微分
> f.np=function(n) {Deriv(f,nderiv=n)}
> # 输出f的5阶导数
> f.np(5)
function (x)
cos(x)
> # 计算并输出f的5阶导数在x=n处的值
> f.np(5)(pi)
[1] -1
```


053 查找最大点、最小点和拐点(与47相同)

科学领域的应用

物理学中的符号微分

用于推导物理定律,如牛顿第二定律的加速度表达式和麦克斯韦方程组。

工程学中的应用

在控制系统和结构工程中分析系统稳定性、应力变形等,帮助设计和计算。

数学与计算机科学中的应用

作为数学软件和编程语言的核心功能,自动计算导数、积分,处理复杂数学表达式。

商业领域的应用

金融建模与风险管理

运用符号微分推导金融 衍生品定价,计算投资 组合风险。

优化决策分析

通过符号微分计算目标 函数梯度,助力商业优 化算法。

DATA ANALYSIS

数据分析与机器学习

在推导算法公式和计算 梯度中发挥作用,辅助 机器学习。

054 绘制函数及其导数图像

055 绘制函数及其切线图形

056 绘制正态分布曲线并在拐点外部着色

数据科学R与Python实践

谢谢

gulp@mail.las.ac.cn