- GRADUAÇÃO

DOMAIN DRIVEN DESIGN

Prof. Me. Thiago T. I. Yamamoto

#01 - ORIENTAÇÃO A OBJETOS

TRAJETÓRIA

Orientação a Objetos

- Apresentação da disciplina
- Orientação a Objetos
- Classes
 - Atributos e Comportamentos
- Relação de classes com objetos
- Modelo Visual

PROFESSOR – SHORT BIO

THIAGO T. I. YAMAMOTO

Mestre em Ciências, Gestão e Informática em Saúde pela Universidade Federal de São Paulo. Pósgraduado em Engenharia de Sistemas. Bacharel em Ciências da Computação pela Universidade Estadual Paulista - Unesp/Bauru. Mais de 10 anos de experiência na área de TI, como desenvolvedor de sistemas nas empresas: Autbank, UOL e Ericsson Telecomunicações. Professor em curso graduação e pós-graduação da FIAP - ministra várias disciplinas de desenvolvimento de sistemas. Certificado ITIL V3, PSM I e OCJA.

Apaixonado por ensinar!

DOMAIN DRIVEN DESIGN

OBJETIVOS

- Preparar o professional para o Mercado de Trabalho;
- Aprender os conceitos de Programação Orientada a Objetos com a linguagem Java;
- Desenvolver back end de aplicações Java;

CONTEÚDO PROGRAMÁTICO

- Programação orientada a objetos;
- Plataforma Java;
- Ambiente de execução: Compile/Runtime;
- Detalhes da linguagem:
 - Tipos primitivos, operadores, controle de fluxo, loops e etc.;
- Java Beans;
- Arrays/Collections Framework;
- Tratamento de Erros;
- JDBC;
- Design Patterns;

METODOLOGIA

- Aulas "Hands On";
- Projetos no Github;
 - http://www.github.com/thiagoyama
 - Git é um versionador de arquivos, será abordado em outra disciplina;

ORIENTAÇÃO A OBJETOS

ORIENTAÇÃO A OBJETOS

• O que é Programação Orientada a Objetos?

O QUE É A PROGRAMAÇÃO ORIENTADA A OBJETOS?

Programação

- Uma linguagem de programação é um método padronizado para expressar instruções para um computador;
- É um conjunto de **regras sintáticas** (gramatical) e **semânticas** (significado) usadas para definir um programa de computador;

Objeto

- Um objeto representa uma entidade que pode ser física, conceitual ou de software;
- Programação Orientada a Objetos
 - É um paradigma de análise, projeto e programação de sistemas de informação, baseado na composição e interação entre diversas unidades de software chamadas de objetos;

EXEMPLOS DO COTIDIANO

- Cadeira (material, cor, tem braço?, tem rodas?, etc.)
 - Praia (alumínio, pano, de deitar, etc.);
 - Escritório (ferro, estofado macio, preta, com braço, etc.);
 - Rodas (ferro, branca, com rodas, automática, manual, etc.);
 - Banco
 - Carro (couro, preto, regulável, etc.);
 - Praça (tijolo, verde, com encosto, etc.);
- Bola (material, formato, cor, etc.)
 - Futebol (couro, redonda, 40cm de diâmetro, branca, etc.);
 - Tênis (tecido, redonda, 5cm de diâmetro, amarela, etc.);
 - Ping-Pong (pvc, redonda, 1.5cm de diâmetro, branca, etc.);
 - Futebol Americado (couro, oval, 50cm de largura, marron, etc.);

EXEMPLOS DO COTIDIANO

Bola (material, formato, cor, etc.) -Características ou Propriedades Material: couro; **Futebol** Formato: redondo: Tamanho: 40cm; Cor: Branca; Material: tecido; **Tênis** Formato: redondo: Tamanho: 5cm: Cor: Amarela; Material: couro; **Futebol Americano** Formato: oval; Tamanho: 50cm; Cor: Marron; Material: couro; Basquete Formato: redondo: Tamanho: 60cm; Cor: Laranja;

- Busque ao menos 3 exemplos do cotidiano;
- Descreva as propriedades dos exemplos encontrados;

ANALOGIA COM A INFORMÁTICA

Sistema de Caixa Eletrônico

- Objeto: Cliente
 - Nome
 - Endereço
 - CPF
 - RG

- Agência
- Número
- Saldo
- Cliente

ANALOGIA COM A INFORMÁTICA

Sistema de E-Commerce

- Objeto: Produto -
 - Nome
 - Descrição
 - Valor
- Objeto: Estoque
 - Produto ←—
 - Quantidade
 - Prazo de Validade
- Objeto: Cliente
 - Cadastro
 - Senha do Cadastro
 - Nome
 - Endereço
 - CPF
 - RG

CLASSES

As abstrações são representadas pelas classes;

 Uma classe deve conter apenas os elementos necessários para resolver um aspecto bem definido do sistema;

 A classe é uma descrição nomeada para um grupo de entidades (chamadas de objetos ou instâncias de classe) que têm as mesmas características;

Cachorro Tamanho Raça Nome Latir()

Uma classe cachorro, vários objetos

- Estas características são os atributos (propriedades, campos de dados) e as operações (comportamentos, métodos, funções) que podem ser executadas nestes objetos;
- Em outros termos, uma classe descreve os serviços providos por seus objetos e quais informações eles podem armazenar;
- Na programação orientada a objetos a classe é a unidade básica de programação;
- Todos os programas são escritos como um conjunto de classes, e todos os códigos que você escrever devem fazer parte de uma classe;

- Uma classe é a descrição de um conjunto de objetos que compartilham os mesmos atributos, operações, relações, e semânticas;
 - Um objeto é uma instância de uma classe;
- Uma classe é uma abstração, uma vez que:
 - Enfatiza características relevantes;
 - Suprime outras características;

EXEMPLO DE CLASSE

Classe Curso

Propriedades

Nome

Local

Dias oferecidos

Carga horária

Hora de Início

Hora de Término

Comportamentos

Adicionar um aluno

Excluir um aluno

Obter lista de alunos

Verificar se está cheio

REPRESENTAÇÃO GRÁFICA DE UMA CLASSE

- É possível representar graficamente uma classe através de um diagrama de classes (UML), este diagrama é uma representação da estrutura e relações das classes que servem de modelo para objetos;
- Uma classe é representada através de um retângulo com três compartimentos;

ATRIBUTO

Um atributo é o nome que se dá à propriedade de uma classe;

- O atributo descreve o tipo de valores que a propriedade possui;
 - Um classe pode ter qualquer número de atributos ou nenhum atributo;

OPERAÇÃO/MÉTODOS

 Operação é um serviço que pode ser solicitado a partir de um objeto para executar de comportamento. Uma operação tem uma assinatura, que pode restringir os parâmetros reais que são possíveis;

Um classe pode ter qualquer número de operações ou nenhuma operação

I RELAÇÃO ENTRE CLASSES E OBJETOS

A classe Pessoa possui os seguintes atributos e operações:

Pessoa

- nome : String
- sexo : String
- idade : int
- casa : Casa
- carro : Carro
- + exibirDadosPessoais(): void
- + exibirPatrimonio(): void

RELAÇÃO ENTRE CLASSES E OBJETOS

A classe Pessoa pode gerar vários objetos:

Objeto #1

nome = "Pedro"

idade = 52

sexo = "Masculino"

casa = 🐴

carro =

exibirDadosPessoais()
exibirPatrimonio()

Objeto #2

nome = "Telma"

idade = 25

sexo = "Feminino"

casa =

carro =

exibirDadosPessoais()
exibirPatrimonio()

Objeto #3

nome = "Julio"

idade = 20

sexo = "Masculino"

casa =

carro =

exibirDadosPessoais()
exibirPatrimonio()

RELAÇÃO ENTRE CLASSES E OBJETOS

- Uma classe é uma definição abstrata de um objeto;
 - Ela define a estrutura e comportamento de cada objeto da classe;
 - Ela serve como um modelo para a criação de objetos;

Classes não são coleções de objetos;

RELAÇÃO ENTRE CLASSES E OBJETOS

Atributos em classes e objetos:

Aluno

- nome : String

- endereco : String

- idMatricula : int

dataNascimento : Date

<u>: Aluno</u>

nome = José da Silva endereco = Rua: Esmeralda, 98 idMatricula = 96325 dataNascimento = 03/08/1992

<u>: Aluno</u>

nome = Maria Souza Cruz endereco = Av. Paulista, 1432 idMatricula = 43269 dataNascimento = 27/11/1970

DEFINIÇÃO - ORIENTAÇÃO A OBJETOS

- Um conjunto de princípios (abstração, encapsulamento, herança e polimorfismo) guiando a construção do software, em conjunto com linguagens, bancos de dados e outras ferramentas que suportam esses princípios. (Object Technology A Manager's Guide, Taylor, 1997.)
- Vantagens da orientação a objetos:
 - Facilidades arquiteturais e reuso de código;
 - Reflete em modelos de mundo real;
 - Incentiva a estabilidade;
 - É adaptável à mudanças;

O QUE É UM MODELO VISUAL?

• Um modelo é a simplificação da realidade;

PERGUNTA

• É possível construir um prédio sem a maquete, as plantas, a estruturação total de elétrica, gás e hidráulica?

Sim é possível(heheh), mas NÃO faça isto!

SENÃO...

POR QUE PRECISAMOS DE UM MODELO VISUAL?

- Modelagem atinge quatro objetivos:
 - Ajuda a visualizar um sistema como deseja que ele seja;
 - Permite especificar a estrutura ou o comportamento de um sistema;
 - Disponibiliza um modelo que orienta na construção de um sistema;
 - Documenta as decisões realizadas;
- Os modelos de sistemas são construídos porque não é possível compreender o sistema em sua totalidade;
- Os modelos são construídos para melhor entendimento do sistema que está sendo desenvolvido;

A IMPORTÂNCIA DA MODELAGEM

- Um candidato no contexto de uma agência de empregos;
- Um médico no contexto de um hospital;
- Um piloto no contexto de uma corrida de Fórmula 1;

Sistema de e-Commerce para venda de livros digitais (e-book)

Com o intuito de fazer um estudo prévio você ficou responsável por identificar as classes relacionadas aos seguintes processos:

- O cliente encontra um e-book e então o coloca num carrinho de compras;
- Conforme o cliente informa outros e-books, estes devem ser adicionados ao carrinho de compras;
- Ao finalizar a compra o cliente deve informar como quer obter seu e-book, as opções são: download ou e-mail;
- Se o cliente n\u00e3o possuir cadastro, o mesmo deve ser realizado na finaliza\u00e7\u00e3o da compra;
- O cliente pode ser uma pessoa física ou jurídica, caso seja uma pessoa jurídica será necessário cadastrar também o nome e telefone de uma pessoa para contato;

Com base no case anterior:

- Realizar a abstração para encontrar as classes;
- Montar as classes com os atributos, definido os seus tipos:
 - String para texto
 - int para número inteiro
 - double para número real
 - Date para data
 - boolean para verdadeiro/falso
- Montar as classes com operações;

Copyright © 2020 - 2023 Prof. Thiago T. I. Yamamoto

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).