2019 Putnam A1

Tristan Shin

7 Dec 2019

(filler)

The answers are any integer n with $\nu_3(n) \neq 1$. Let $D(A, B, C) = A^3 + B^3 + C^3 - 3ABC$. These constructions suffice:

$$D(0,0,0) = 0$$

$$D(k+2, k+1, k) = 9k + 9$$

$$D(k+1, k, k) = 3k + 1$$

$$D(k+1, k+1, k) = 3k + 2$$

Clearly D(A, B, C) is a nonnegative integer (AM-GM, \mathbb{Z} is a ring). So it suffices to show that $D \equiv 3, 6 \pmod{9}$ is impossible.

Assume that $3 \mid D$. If $3 \mid ABC$ then $D \equiv A^3 + B^3 \pmod{9}$, so $D \equiv 0 \pmod{9}$. So $3 \nmid ABC$. Then $A^3 + B^3 + C^3$ is divisible by 3, so $(A, B, C) \equiv \pm (1, 1, 1) \pmod{3}$. But then $D \equiv 0 \pmod{9}$.