Matemática Discreta l Clase 2 - Ordenando los enteros

FAMAF / UNC

18 de marzo de 2021

- El orden natural de los enteros es tan importante como sus propiedades aritméticas.
- Expresamos la idea de orden formalmente diciendo que existe una relación que indicamos "<".
- Solo cuatro axiomas se necesitan para especificar las propiedades básicas del símbolo <.

Observación

Si $a, b \in \mathbb{Z}$, a < b se lee:

a es menor que b o también b es mayor que a.

Axiomas de orden

18) Ley de tricotomía. Vale una y sólo una de las relaciones siguientes:

$$a < b$$
, $a = b$, $b < a$.

- 19) Ley transitiva. Si a < b y b < c, entonces a < c.
- **110)** Compatibilidad de la suma con el orden. Si a < b, entonces a + c < b + c.
- **I11)** Compatibilidad del producto con el orden. Si a < b y 0 < c, entonces ac < bc.

Esta claro que podemos definir los otros símbolos de orden >, \leq y \geq , en términos de los símbolos < e =.

- o (>) Diremos que m > n si n < m.
- o (\leq) Diremos que $m \leq n$ si m < n o m = n.
- o (\geq) Diremos que $m \geq n$ si m > n o m = n.

Es importante notar que el axioma (I11) tiene una versión valedera para estos nuevos símbolos.

- (>) Si a > b y c > 0, entonces ac > bc.
- ∘ (≤) Si $a \le b$ y $0 \le c$, entonces $ac \le bc$.
- ∘ (≥) Si $a \ge b$ y $c \ge 0$, entonces $ac \ge bc$.

Usando las definiciones de \geq , <, > y el axioma (I11) original es muy sencillo demostrar estas variantes.

El axioma (I11) tiene nuevas variantes cuando consideramos la multiplicación de una desigualdád por enteros negativos.

Proposición

Sean $a, b, c \in \mathbb{Z}$.

- a) Si c < 0, entonces 0 < -c.
- b) Si a < b y c < 0, entonces ac > bc.

La demostración pueden verla en el apunte (proposición 1.2.1).

Usando esta proposición y la definición de >, \le , \ge podemos hacer más variantes del axioma (I11) (¡16 en total!). Todas ellas bastante obvias.

Ejemplo

Sean $a, b, c \in \mathbb{Z}$. Entonces,

$$a \ge b \land c < 0 \implies ac \le bc$$
.

Demostración

Como $a \ge b$, tenemos que a > b o a = b.

Si
$$a > b$$
, entonces $b < a$. Como $c < 0 \Rightarrow bc > ac \Rightarrow ac < bc \Rightarrow ac \leq bc$.

Si
$$a = b$$
, entonces $ac = bc \Rightarrow ac \leq bc$.

Ya hemos usado (en axioma 14) el símbolo \neq que denota "no es igual a" o bien "es distinto a". En general, cuando tachemos un símbolo, estamos indicando la negación de la relación que define. Por ejemplo, $a \not< b$ denota "a no es menor que b".

Observación

Demostremos que $a \not< b$ es equivalente a $a \ge b$: por la ley de tricotomía axioma (18) tenemos que solo vale una y solo una de las siguientes afirmaciones

$$a < b$$
, $a = b$, $b < a$.

Como $a \not< b$, entonces vale una de las dos afirmaciones siguientes, a = b o b < a, es decir vale que $a \ge b$. De forma análoga se prueba que $a \not\le b$ si y sólo si a > b, $a \not> b$ si y sólo si a < b y $a \not\ge b$ si y sólo si a < b.

< es una relación de orden

Sean a, b y c enteros arbitrarios. Es posible demostrar las siguiente propiedades de \leq :

- **O1)** Reflexividad. $a \le a$.
- **O2)** Antisimetría. Si $a \le b$ y $b \le a$, entonces a = b.
- **O3)** Transitividad. Si $a \le b$ y $b \le c$, entonces $a \le c$.

Las demostraciones no son difíciles y las dejamos como ejercicios (se encuentran en el apunte).

Una relación que satisfaga las tres propiedades anteriores (reflexividad, antisimetría y transitividad) es llamada una relación de orden.

Observar que < no es una relación de orden, en el sentido de la definición anterior.

A primera vista podría parecer que ya tenemos todas las propiedades que necesitamos de \mathbb{Z} , pero, sorprendentemente, aún falta un axioma de vital importancia.

Observemos, que todos los axiomas que enunciamos también los cumplen los números racionales $\mathbb Q$ y los números reales $\mathbb R$.

¿Cuál es la diferencia fundamental entre \mathbb{Z} y \mathbb{Q} o \mathbb{R} ?

Figura: El dibujo correcto de \mathbb{Z} .

Figura: El dibujo incorrecto de \mathbb{Z} .

Axioma de buena ordenación

Supongamos que X es un subconjunto de \mathbb{Z} ; entonces diremos que el entero b es una cota inferior de X si

$$b \le x$$
 para todo $x \in X$.

Algunos subconjuntos no tienen cotas inferiores: por ejemplo, el conjunto de los enteros negativos $-1, -2, -3, \ldots$, claramente no tiene cota inferior.

Definición

Una cota inferior de un conjunto X que es a su vez es un elemento de X, es conocido como el *mínimo* de X.

Axioma de buena ordenación

Nuestro último axioma para $\mathbb Z$ afirma algo que es (aparentemente) una propiedad obvia.

I12) Si X es un subconjunto de \mathbb{Z} que no es vacío y tiene una cota inferior, entonces X tiene un mínimo.

El axioma (I12) es conocido como el axioma de buena ordenación o axioma del buen orden o principio de buena ordenación.

Observar que $\mathbb Q$ o $\mathbb R$ con < *no* satisfacen el axioma de buena ordenación.

El hecho de que haya espacios vacíos entre los enteros nos lleva a decir que el conjunto $\mathbb Z$ es *discreto* y es esta propiedad la que da origen al nombre "matemática discreta".

En cálculo y análisis, los procesos de límite son de fundamental importancia, y es preciso usar aquellos sistemas numéricos que son *continuos*, en vez de los discretos.

Repitamos los gráficos de la p. 10

Figura: El dibujo correcto de \mathbb{Z} .

Figura: El dibujo incorrecto de \mathbb{Z} .

El siguiente resultado es obvio, pero debe ser demostrado.

Proposición

1 es el menor entero mayor que 0.

Es posible hacer la demostración con las herramientas que ya poseemos (si no ¡faltaría algún axioma!).

Sin embargo, la demostración es relativamente compleja y el estudiante interesado la puede ver en el apunte.