SM4加密算法

——可厉害的土豆

SMS4分组加密算法是中国无线标准中使用的分组加密算法,在2012年已经被国家商用密码管理局确定为国家密码行业标准,标准编号GM/T 0002-2012改名为SM4算法。

6.11.6.

SM4 密码算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法均采用非线性迭代结构,运算轮数均为 32 轮。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

2.6

字 word

长度为32比特的组(串)。

下列符号和缩略语适用于本文件:

⊕ 32 位异或

<<<i 32 位循环左移 i 位

Z₂ 比特长度为 n 的二进制序列集合

7.1 加密算法

本加密算法由 32 次迭代运算和 1 次反序变换 R 组成。

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in Z_2^{32}$, $i=0,1,2,\cdots,31$ 。加密算法的运算过程如下:

a) 32 次迭代运算见式(4):

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i), i = 0, 1, \dots, 31$$
(4)

b) 反序变换见式(5):

$$(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32}) \cdots (5)$$

加密运算过程的示例参见附录 A。

- 6 轮函数 F
- 6.1 轮函数结构

设输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,轮密钥为 $rk \in Z_2^{32}$,则轮函数 F 见式(1): $F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk) \quad \cdots (1)$

6.2 合成置换 T

 $T:Z_2^{32} \rightarrow Z_2^{32}$ 是一个可逆变换,由非线性变换 τ 和线性变换 L 复合而成,即 $T(.)=L(\tau(.))$ 。

a) 非线性变换 τ

τ由 4 个并行的 S 盒构成。

设输入为 $A = (a_0, a_1, a_2, a_3) \in (Z_2^8)^4$,输出为 $B = (b_0, b_1, b_2, b_3) \in (Z_2^8)^4$,则见式(2):

$$(b_0, b_1, b_2, b_3) = \tau(A) = (Sbox(a_0), Sbox(a_1), Sbox(a_2), Sbox(a_3))$$
(2)

式中,Sbox数据见表1。

表 1 Sbox 数据

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	D6	90	E9	FE	CC	E1	3D	В7	16	В6	14	C2	28	FB	2C	05
1	2B	67	9A	76	2A	BE	04	C3	AA	44	13	26	49	86	06	99
2	9C	42	50	F4	91	EF	98	7A	33	54	0B	43	ED	CF	AC	62
3	E4	В3	1C	A9	C9	08	E8	95	80	DF	94	FA	75	8F	3F	A 6
4	47	07	A7	FC	F3	73	17	BA	83	59	3C	19	E6	85	4F	A8
5	68	6B	81	B2	71	64	DA	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	D1	A2	25	22	7C	3B	01	21	78	87
7	D4	00	46	57	9F	D3	27	52	4C	36	02	E7	A0	C4	C8	9E
8	EA	BF	8A	D2	40	C7	38	B5	A3	F7	F2	CE	F9	61	15	A1
9	E0	AE	5D	A4	9B	34	1A	55	AD	93	32	30	F5	8C	B1	E3
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
A	1D	F6	E2	2E	82	66	CA	60	C0	29	23	AB	0D	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2F	03	FF	6A	72	6D	6C	5B	51
С	8D	1B	AF	92	BB	DD	BC	7F	11	D9	5C	41	1F	10	5A	D8
D	0A	C1	31	88	A 5	CD	7B	BD	2D	74	D0	12	B8	E 5	B4	B0
Е	89	69	97	4A	0C	96	77	7E	65	B 9	F1	09	C5	6E	C6	84
F	18	F0	7D	EC	3A	DC	4D	20	79	EE	5F	3E	D7	СВ	39	48

例如:输入'EF',则经S盒后的值为表中第E行和第F列的值,Sbox(EF)=84。

b) 线性变换 L

非线性变换 τ 的输出是线性变换 L 的输入。设输入为 $B \in \mathbb{Z}^{22}$,输出为 $C \in \mathbb{Z}^{22}$,则见式(3):

$$C = L(B) = B \oplus (B <<<2) \oplus (B <<<10) \oplus (B <<<18) \oplus (B <<<24) \cdots (3)$$

S. (1/2)

7.1 加密算法

本加密算法由 32 次迭代运算和 1 次反序变换 R 组成。

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in$

 Z_2^{32} , $i = 0, 1, 2, \dots, 31$ 。加密算法的运算过程如下:

a) 32 次迭代运算见式(4):

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i), i = 0, 1, \dots, 31$$
(4)

b) 反序变换见式(5):

$$(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32}) \cdots \cdots \cdots (5)$$

加密运算过程的示例参见附录 A。

11/16/1/15

5 密钥及密钥参量

密钥长度为 128 比特,表示为 $MK = (MK_0, MK_1, MK_2, MK_3)$,其中 $MK_i(i=0,1,2,3)$ 为字。 轮密钥表示为 $(rk_0, rk_1, \cdots, rk_{31})$,其中 $rk_i(i=0,\cdots,31)$ 为 32 比特字。轮密钥由密钥生成。 $FK = (FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK = (CK_0, CK_1, \cdots, CK_{31})$ 为固定参数,用于密钥扩展算法,其中 $FK_i(i=0,\cdots,3)$ 、 $CK_i(i=0,\cdots,31)$ 为字。

7.3 密钥扩展算法

加密过程使用的轮密钥由加密密钥生成,其中加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_3^2)^4$,加密过程中的轮密钥生成方法见式(6)和式(7):

$$(K_0, K_1, K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3) \quad \cdots \quad (6)$$

$$rk_{i} = K_{i+4} = K_{i} \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_{i}), i = 0, 1, \dots, 31 \dots (7)$$

式中:

a) T' 是将 6.2 中合成置换 T 的线性变换 L 替换为 L', 见式(8):

$$L'(B) = B \oplus (B <<<13) \oplus (B <<<23)$$
(8)

b) 系统参数 FK 的取值为:

$$FK_0 = (A3B1BAC6), FK_1 = (56AA3350), FK_2 = (677D9197), FK_3 = (B27022DC);$$

c) 固定参数 CK 取值方法为:

设 $ck_{i,j}$ 为 CK_i 的第 j 字节 $(i=0,1,\cdots,31;j=0,1,2,3)$,即 $CK_i=(ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3})$ \in $(Z_2^8)^4$,则 $ck_{i,j}=(4i+j)\times 7 \pmod{256}$ 。

固定参数 CK_i ($i=0,1,\dots,31$)具体值为:

00070E15, 1C232A31, 383F464D, 545B6269,

70777E85, 8C939AA1, A8AFB6BD, C4CBD2D9,

E0E7EEF5, FC030A11, 181F262D, 343B4249,

50575E65, 6C737A81, 888F969D, A4ABB2B9,

C0C7CED5, DCE3EAF1, F8FF060D, 141B2229,

30373E45, 4C535A61, 686F767D, 848B9299,

A0A7AEB5, BCC3CAD1, D8DFE6ED, F4FB0209,

10171E25, 2C333A41, 484F565D, 646B7279

解密密钥同加密密钥,解密使用的轮密钥由解密密钥生成,其轮密钥生成方法同加密过程的轮密钥生成方法。

本附录为 SM4 分组密码算法对一组明文进行加密的运算示例。

输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

轮密钥与每轮输出状态:

$$rk [0] = F12186F9$$
 $X[4] = 27FAD345$

$$rk[1] = 41662B61$$
 $X[5] = A18B4CB2$

$$rk[2] = 5A6AB19A$$
 $X[6] = 11C1E22A$

$$rk[3] = 7BA92077$$
 $X[7] = CC13E2EE$

$$rk \begin{bmatrix} 4 \end{bmatrix} = 367360F4$$
 $X \begin{bmatrix} 8 \end{bmatrix} = F87C5BD5$

$$rk[26] = 0E228AEB$$
 $X[30] = 893450AD$

$$rk[27] = F1780C81$$
 $X[31] = 7B938F4C$

$$rk[28] = 428D3654$$
 $X[32] = 536E4246$

$$rk[29] = 62293496$$
 $X[33] = 86B3E94F$

$$rk[30] = 01CF72E5$$
 $X[34] = D206965E$

rk[31] = 9124A012 X[35] = 681EDF34

输出密文: 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

参考资料

国家标准全文公开系统

国家标准委发布 —— 权威 及时 便捷 免费

首页

强制性国家标准

推荐性国家标准

标准号: GB/T 32907-2016

中文标准名称: 信息安全技术 SM4分组密码算法

英文标准名称: Information security technology—SM4 block cipher algorthm

标准状态:现行

在线预览

实施信息反馈

http://www.gb688.cn/bzgk/gb/index

"

感谢观看 祝你每顿饭都吃饱 每晚都睡好 身体健康 学业有成 工作顺利

-可厉害的土豆