KIMBALL (L ROBERT) AND ASSOCIATES EBENSBURG PA F/6 13/13 NATIONAL DAM INSPECTION PROGRAM, KEHLY RUN DAM NUMBER 3 (NDS ID--ETC(U) MAR 80 R J KIMBALT AD-A083 747 UNCLASSIFIED NL 1 or 2 40 408 3 747

OF

AD 4083747

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU (% STANDARDS 1963-)

AD A O 837

SUSQUEHANNA RIVER BASIN KEHLY RUN. SCHUYLKILL COUNTY

PENNSYLVANIA

KEHLY RUN DAM NO. 3

NDS ID NO. PA-657 DER ID NO. 54-17

SHENANDOAH MUNICIPAL AUTHORITY

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

T IS BEST QUALITY PRACTICABLE.

ORNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY. Prepared By

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS EBENSBURG, PENNSYLVANIA 15931

FOR

This document has been approve for public release and sale; its distribution is unlimited.

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT CORPS OF ENGINEERS BALTIMORE, MARYLAND 21203

ORIGINAL CONTAINS COLOR PLATES: ALL DDG REPRODUCTIONS WILL BE IN BLACK AND WHITE.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SUSQUEHANNA RIVER BASIN KEHLY RUN. SCHUYLKILL COUNTY PENNSYLVANIA National Dan Insim Hor tress KEHLY RUN DAM NO. 3 Namber NDS ID NA PA-657 Sucquerons River Basin, Kenly Run, Scroylkill Gunty SHENANDOAH MUNICIPAL AUTHORITY + was Alvania PHASE I INSPECTION BEPORT NATIONAL DAM INSPECTION PROGRAM R. Jossia /Kimball PACW 3, This document has been on tor Public reloces and saling L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS distribution is unlimited. EBENSBURG, PENNSYLVANIA 15931 FOR DEPARTMENT OF THE ARMY BALTIMORE, MARYLAND 21203

BALTIMORE DISTRICT CORPS OF ENGINEERS

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

NAME OF DAM
STATE LOCATED
COUNTY LOCATED
STREAM
DATE OF INSPECTION

Kehly Run Dam No. 3 Pennsylvania Schuylkill Kehly Run November 7 and 16, 1979

ASSESSMENT

The assessment of Kehly Run Dam No. 3 is based upon visual observations made at the time of inspection, review of available records and data, hydraulic and hydrologic computations and past operational performance.

Kehly Run Dam No. 3 appears to be in fair condition. Several areas of "possible past instability" are apparent on the downstream slope. In addition, extensive seepage areas have been reported in the past but may be obscurred by the tailwater. Maintenance of the dam and operating facilities is considered poor.

Kehly Run Dam No. 3 is a high hazard-small size dam. The spillway design flood is the PMF (probable maximum flood). The spillway and reservoir are capable of controlling approximately 17% of the PMF without overtopping the embankment. Based on criteria established by the Corps of Engineers the spillway is termed inadequate, but not seriously inadequate.

The following recommendations and remedial measures should be instituted immediately.

- l. A detailed hydrologic and hydraulic study should be conducted by a professional engineer knowledgeable in dam design to develop plans to increase spillway capacity. The exit channel and spillway wingwall should be evaluated to determine whether improvements are required. Many of the reservoirs in the Kehly Run system do not control the PMF, thus all spillways in the system should be studied and upgraded because of the severe consequence of failure of reservoirs in series and the location of the Borough of Shenandoah downstream.
- 2. The trees and large vegetation on embankment slopes and in the spillway should be cleared at the direction of a professional engineer knowledgeable in the design and construction of dams.
- 3. Some means of positive closure of the drainline should be developed in case of emergencies.

- 4. Exercise and lubricate all valves on a regular basis.
- 5. A detailed study should be conducted by a registered professional engineer knowledgeable in earth dams to evaluate the seepage, possible slope instability and source of discharge from the swimming pool on the stability of the structure.
- 6. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.
- 7. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel.
- 8. A subsidence investigation should be conducted by the owner or his engineer to determine the effects of past and present mining beneath the reservoir.

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS AND ARCHITECTS

March 18, 1980

R. Jeffrey Kimball, P.E.

APPROVED BY:

25 Mars 1980 Date

JAMES W. PECK

Colonel, Corps of Engineers

District Engineer

Accession For

NTIS Ganal
DDC TAB
Unannounced
Justification full
From intime
Aveilability Codes
Availand/or
Dist special

. 16

111

Overview of Kehly Kun Dam No. 3. Downstream of Kehly Kun Dam No. 3 is the swimming pool (formerly Kehly Run Dam No. 2). Note upstream dams (Kehly Run Dam No.'s 4, 5, and 6) in upper left corner.

TABLE OF CONTENTS

		PAGE
SECT	ION 1 - PROJECT INFORMATION	1
1.1	General	1
1.2	Description of Project	1
1.3	Pertinent Data	2
SECT	ION 2 - ENGINEERING DATA	4
	Design	4
	Construction	4
2.3	Operation	4
2.4	Evaluation	4
SECT	ION 3 - VISUAL INSPECTION	5
3.1	Findings	5
3.2	Evaluation	6
SECT	ION 4 - OPERATIONAL PROCEDURES	7
4.1	Procedures	7
4.2	Maintenance of Dam	7
4.3	Maintenance of Operating Facilities	7
4.4	Warning System in Effect	7
SECT	ION 5 - HYDRAULICS AND HYDROLOGY	8
	Evaluation of Features	8
	Evaluation Assumptions	8
	Summary of Overtopping analysis	9
5.4	Summary of Dam Breach Analysis	9
SECT	ION 6 - STRUCTURAL STABILITY	10
6.1	Evaluation of Structural Stability	10
SECT	ION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES	11
7.1	Dam Assessment	11
7 2	Passamondations/Paradial Massures	11

V

N. K. Jakes

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGY AND HYDRAULICS

APPENDIX E - DRAWINGS APPENDIX F - GEOLOGY

PHASE I NATIONAL DAM INSPECTION PROGRAM KEHLY RUN DAM NO. 3 NDI. I.D. NO. PA 657 DER I.D. NO. 54-17

SECTION 1 PROJECT INFORMATION

1.1 General.

- a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. Purpose. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Kehly Run Dam No. 3 is an earth and rockfill dam 442 feet long and approximately 33 feet high. The upstream slope is 1H:1V and covered with hand placed riprap. The downstream slope is 1.5H:1V and covered with rock rubble. The reservoir drain consists of a 10" cast iron pipe under the embankment.

The spillway is an open cut channel located on the left abutment. A stone masonry wall forms the junction between the spillway and the embankment. The left abutment hillside forms the left portion of the spillway. The spillway crest has a total length of 35 feet and has an irregular bottom. The spillway discharge channel winds along the left abutment and is confined by a stone rubble dike.

Immediately downtream of Kehly Run Dam No. 3 is a swimming pool which forms tailwater on the dam. This swimming pool is formerly Kehly Run Dam No. 2. Upstream of Kehly Run Dam No. 3 are three reservoirs (Kehly Run Dams No. 4, 5, 6).

- b. Location. The dam is located on Kehly Run, one-half mile north of Shenandoah, Schuylkill County, Pennsylvania. Kehly Run Dam No. 3 can be located on the Shenandoah, U.S.G.S. 7.5 minute quadrangle.
- c. Size Classification. Kehly Run Dam No. 3 is a small size structure (33 feet high, 40 acre-feet).

- d. <u>Hazard Classification</u>. Kehly Run Dam No. 3 is a high hazard dam. Downstream conditions indicate that loss of more than a few lives is probable should the structure fail (See Section 3.1e).
- e. Ownership. Kehly Run Dam No. 3 is owned by The Shenandoah Municipal Authority. Correspondence should be addressed to:

Shenandoah Municipal Authority 26 West Lloyd Street Shenandoah, PA 17976 Attention: Charles Dallazia, Manager 717-462-1904

- f. Purpose of Dam. Kehly Run Dam No. 3 is used for water supply.
- g. Design and Construction History. The dam was built in approximately 1872. No information is available on the design or construction of the original dam. No drawings are available on the dam. The spillway was originally located in the center portion of the embankment but was moved to the left abutment prior to 1920.
- h. Normal Operating Procedure. The reservoir is maintained at the spillway crest elevation 1495.0. Excess inflow is discharged over the spillway crest. Water is drawn off Kehly Run Dam No. 3 through the outlet works into the water system. It is believed that the outlet works pipe is used as the reservoir drain.

1.3 Pertinent Data.

a. Drainage Area.

1.01 square miles

b. Discharge at Dam Site (cfs).

Maximum known flood at dam site Spillway capacity at top of dam Reservoir drain Unknown 490 Unknown

c. Elevation (U.S.G.S. Datum) (feet). - Field survey based on pool elevation 1495 shown on USGS 7.5 minute quadrangle.

Top of dam - low point 1497.6

Top of dam - design height Unknown

Maximum pool - PMF 1498.9

Full flood control pool Not applicable

Normal pool 1495.0

Spillway crest 1495.0

	Streambed at centerline of dam Tailwater on day of inspection Toe of dam	1465.2 1464.1 1465.2
d.	Reservoir (feet).	
	Length of maximum pool (PMF) Length of normal pool	600 400
e.	Storage (acre-feet).	
	Normal pool Top of dam	33 40
f.	Reservoir Surface (acres).	
	Top of dam Normal pool Spillway crest	2.7 2.4 2.4
g.	Dam.	
	Type Length Height Top width Side slopes - upstream - downstream Zoning Impervious core Cutoff	Earth and rockfill 442' 33' 16' 1H: 1V 1.5H: 1V Unknown Unknown Unknown
h.	Reservoir Drain.	
	Type Length Closure Access Regulating facilities	10" CIP Approximately 110' Valve at toe None Valve at toe
i.	Spillway.	
	Type Weir Length Crest elevation Upstream channel Downstream channel	Open cut channel 35' 1495' Unrestricted Narrow open channel

SECTION 2 ENGINEERING DATA

- 2.1 <u>Design</u>. Review of information in the files of the Commonwealth of Pennsylvania, Department of Environmental Resources revealed that inspection reports, permits, photographs and correspondence were available for review. No design reports or original design drawings or construction data was available. The data that was available was reviewed for this study.
- 2.2 Construction. No data is available on construction of the dam.
- 2.3 Operation. No operating records are maintained.

2.4 Evaluation.

- a. Availability. Engineering data were provided by PennDER, Bureau of Dams and Waterway Management and the owner. The manager of the Municipal Authority was interviewed to obtain data on operation and maintenance of the dam. The owner did not provide any information on past deep mining activities in the area of the dam and reservoir.
- b. Adequacy. A detailed analysis cannot be made because of the lack of detailed design information or drawings. This Phase I Report is based upon available data, visual inspection, and a hydrologic and hydraulic analysis.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

- a. General. The onsite inspection of Kehly Run Dam No. 3 was conducted by personnel of L. Robert Kimball and Associates on November 7 and 16, 1979. The inspection consisted of:
 - Visual inspection of the retaining structure, abutments and toe.
 - Examination of the spillway facilities, exposed portion of any outlet works and other appurtenant works.
 - 3. Observations affecting the runoff potential of the drainage basin.
 - 4. Evaluation of the downstream area hazard potential.
- The dam appears to be in fair condition. From a brief survey conducted during the inspection, it was noted that a low spot was present adjacent to the spillway. The upstream slope was measured to be 1H:1V and covered with hand placed masonry. The downstream slope was measured to be 1.5H:1V and covered with stone rubble. The crest width is 16 feet. The upstream slope was covered with small trees and brush and the downstream slope was covered with larger trees and brush. The downstream slope showed two areas (one located near the center of the embankment, the other located near the left abutment) that have either had new material added or showed signs of possible slope movement. A small amount of seepage was present along the left abutment. This seepage was partially obscurred by the presence of large boulders dumped on this abutment. The swimming pool located at the toe of dam (formerly a dam named Kehly Run Dam No. 2) may have partially obscured this seepage and obscured viewing the toe of dam.
- c. Appurtenant Structures. The open cut spillway is located on the left abutment. The junction of the spillway and the embankment is formed by a masonry wall. This masonry wall is in need of repair. The weir has an irregular crest caused by the severe deterioration of the concrete. The weir is 19 feet long at elevation 1495.0. The weir gains an additional 16 feet of width (total 35 feet) by gently sloping upward to meet the natural hillside. The spillway exit channel is narrow and very irregular. The channel follows the left abutment hillside and is formed by a stone rubble dike (See photographs, Appendix C).

The 10" cast iron pipe outlet works was not observed during the inspection. The valve to control flow through the outlet works is below the toe of dam. No upstream shutoff is provided.

- d. Reservoir Area. The watershed is covered mostly with woodland. The reservoir slopes are moderately steep but are not susceptible to landslides which would affect the storage volume of the reservoir or overtopping of the dam by displacing water.
- e. Downstream Channel. The channel downstream of Kehly Run Dam No. 3 is narrow for approximately 1800 feet until it fans out into the Borough of Shenandoah.
- 3.2 Evaluation. In general, the embankment and appurtenant structures appear to be in fair condition but poorly maintained.

SECTION 4 OPERATIONAL PROCEDURES

- 4.1 Procedures. The reservoir is maintained at the spillway crest elevation 1495.0. The valve in the outlet works remains open so that water enters the water system. The excess inflow discharges over the spillway crest. The valve is reportedly operated on a regular basis.
- 4.2 <u>Maintenance of the Dam</u>. No planned maintenance schedule exists. Maintenance of the dam is performed by the Municipal Authority staff. Maintenance of the dam is considered poor.
- 4.3 Maintenance of Operating Facilities. Maintenance of the spillway and outlet works is considered poor. The valve on the outlet works is reportedly operated regularly.
- 4.4 Warning System in Effect. There is no warning system in effect to warn downstream residents of large spillway discharges or imminent failure of the dam.
- 4.5 Evaluation. Maintenance of the dam and operating facilities is considered poor. There is no system in effect to warn downstream residents of large spillway discharges or failure of the dam.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

- a. Design Data. No calculations or design data pertaining to hydrology were available.
- b. Experience Data. No rainfall, runoff or reservoir level data were available. The spillway has reportedly functioned adequately in the past.
- c. <u>Visual Observations</u>. The spillway appeared to be in poor condition. The spillway crest is badly deteriorated, sedimentation and debris has destroyed the original overflow channel. The discharge channel is narrow and flow is partially restricted by occassional large boulders.

A low spot was noted on the dam embankment adjacent to the right spillway wingwall. This area could easily be filled to increase the top of dam elevation.

d. Overtopping Potential. Overtopping potential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway.

The Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D.

- 5.2 Evaluation Assumptions. To enable us to complete the hydraulic and hydrologic analysis for this structure, it was necessary to make the following assumptions.
- 1. The pool elevation in the reservoir prior to the storm is 1495 feet.
- 2. For the overtoppping analysis a top of dam elevation of 1497.6 feet (low spot) was assumed for the entire length of the crest of 442 feet. Field survey measurements taken during the inspection indicate that the top of dam varies from 1497.6 feet to 1498.6 feet.
- 3. For the dam breach analysis it was assumed that dam failure would begin when the water level in the reservoir reached elevation 1497.9 or 0.30 feet over the top of the dam.

- 4. The flood was routed through all upstream reservoirs.
- 5.3 Summary of Overtopping Analysis. Complete summary sheets for the computer output are presented in Appendix D.

Peak inflow (PMF) 2764 cfs Spillway capacity 446 cfs

a. Spillway Adequacy Rating. The Spillway Design Flood (SDF) for this dam is the PMF. The SDF is based on the hazard and size classification of the dam. Based on the following definition provided by the Corps of Engineers, the spillway is rated as inadequate as a result of our hydrologic analysis.

Inadequate - All high hazard dams which do not pass the SDF (PMF), but where failure due to overtopping does not significantly increase the hazard potential for loss of life downstream.

The spillway and reservoir are capable of controlling approximately 17% of the PMF without overtopping the dam (based on low spot).

5.4 Summary of Dam Breach Analysis. As the subject dam cannot satisfactorily pass 50% of the PMF (based on our analyses) it was necessary to perform a breach analysis and downstream routing of the flood wave. This analyses determines the degree of increased flooding due to dam failure.

The water level in the reservoir at the time of dam failure was assumed to be at 1497.9 feet (0.30 feet over the top of dam low spot) based on the evaluating engineers judgement. The 30% PMF was routed through the reservoir and downstream.

The flood wave was routed downstream with and without embankment failure conditions considered. The flood was not routed through the swimming pool because of its small size.

Results of the Dam Breach analysis indicate that downstream flooding is not significantly increased. Since flooding downstream is not significantly increased due to dam failure, the spillway is not considered seriously inadequate. Therefore, this spillway is rated as "inadequate".

Note: Future development within the watershed, at the dam, or downstream may change the characeristics and assumptions made for this study and different results are likely. Future development downstream may also greatly increase the potential for loss of life due to failure of the structure.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. <u>Visual Observations</u>. Two locations on the downstream embankment slope showed possible signs of instability. These two areas appear as if some of the rock rubble has recently moved downslope. These areas are not vegetated. These areas are located approximately 160 feet from the right abutment and adjacent to the spillway.

A very small amount of seepage was present approximately 150 feet to the right of the spillway at the toe of dam. It is reported in the correspondence that Kehly Run Dam No. 2 (swimming pool) was constructed to collect seepage. However, because of the swimming pool and the presence of large rock boulders on the left abutment this seepage is obscured. The swimming pool at the toe of dam may be obscuring the presence of a large quantity of seepage. The outflow from the swimming pool is several hundred gallons per minute. Past history indicates a large amount of seepage near the toe of dam.

- b. Design and Construction Data. No stability analyses are on record for this dam. No data on the design or construction is available.
 - c. Operating Records. No operating records are maintained.
- d. <u>Post Construction Changes</u>. No post construction changes are known other than reconstruction of the spillway on the left abutment and construction of Kehly Run Dam No. 2, downstream of Kehly Run Dam No. 3.
- e. <u>Seismic Stability</u>. The dam is located in seismic zone l. No seismic stability analyses has been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected loading.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

- a. <u>Safety</u>. The dam appears to be in fair condition. There is evidence that slow movement is taking place or has recently taken place on portions of the downstream slope. A small amount of seepage was in evidence during the inspection. In addition, past inspections report a considerable amount of seepage at the toe of dam prior to construction of Kehly Run Dam No. 2. The tailwater may be obscuring a high seepage rate. The visual observations, review of available information, hydrologic and hydraulic calculations and past operations and performance indicate that Kehly Run Dam No. 3's spillway is inadequate but not seriously inadequate. The spillway is capable of controlling 17% of the PMF without overtopping the earth embankment. No adequate stability analysis has been performed for this structure. The long term affect of the seepage is unknown.
- b. Adequacy of Information. Detailed analyses of the structure cannot be made because of the lack of any design or construction data. This Phase I Report is based upon visual observations, review of available data, hydrologic and hydraulic calculations and past operations and performance.
- c. Urgency. The recommendations suggested below should be implemented immediately.
- d. Necessity for Further Investigation. To complete some of the recommendations/remedial measures outlined below, additional investigations are required.

7.2 Recommendations/Remedial Measures.

- 1. A detailed hydrologic and hydraulic study should be conducted by a professional engineer knowledgeable in dam design to develop plans to increase spillway capacity. The exit channel and spillway wingwall should be evaluated to determine whether improvements are required. Many of the reservoirs in the Kehly Run system do not control the PMF, thus all spillways in the system should be studied and upgraded because of the severe consequence of failure of reservoirs in series and the location of the Borough of Shenandoah downstream.
- 2. The trees and large vegetation on embankment slopes and in the spillway should be cleared at the direction of a professional engineer knowledgeable in the design and construction of dams.

- 3. Some means of positive closure of the drainline should be developed in case of emergencies.
 - 4. Exercise and lubricate all valves on a regular basis.
- 5. A detailed study should be conducted by a registered professional engineer knowledgeable in earth dams to evaluate the seepage, possible slope instability and source of discharge from the swimming pool on the stability of the structure.
- 6. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.
- 7. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel.
- 8. A subsidence investigation should be conducted by the owner or his engineer to determine the effects of past and present mining beneath the reservoir.

APPENDIX A CHECKLIST, VISUAL INSPECTION, PHASE I

CHECK LIST VISUAL INSPECTION PHASE I

The state of the s

1D# PA 657	200	ION 1464.2 M.S.L.			
STATE Pennsylvania ID# PA 657 HAZARD CATEGORY High	TEMPERATURE	TAILWATER AT TIME OF INSPECTION 1464.2 M.S.L.		ates	
NAME OF DAM Kehly Run Dam No. 3 COUNTY Schuylkill TYPE OF DAM Earth and rockfill	DATE(s) INSPECTIONNOV. 7 and 16, 197 WEATHER Cloudy, warm	POOL ELEVATION AT TIME OF INSPECTION 1495.0 H.S.L. TAILWAT	INSPECTION PERSONNEL:	R. Jeffrey Kimball, P.E L. Robert Kimball and Associates	James T. Hockensmith - L. Robert Kimball and Associates O.T. McConnell - L. Robert Kimball and Associates

_ RECORDER

James T. Hockensmith

EMBANKMENT

-	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
		None noted in embankment.	
	SURFACE CRACKS		
A-2	UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None noted.	
	SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Two areas, 150 feet from right abutment, and adjacent to spillway, appear to have had recent slope movement and recently placed material added.	
	VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Horizontal alignment appears to be good. Vertical, low spot on the spillway.	
ليحسميا	RIPRAP PAILURES	None.	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION	Small trees and brush on upstream slope. Trees and brush on downstream slope.	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLMAY AND DAM	Appears to be good. Masonry wall at embankment -spillway contact in need of repair.	, t
ANY NOTICEABLE SEEPAGE	Minor amount of seepage noted at junction of left abutment and toe of dam. However, considerable amount of seepage may be present beneath the tailwater.	lerable :a11-
STAFF GAUGE AND RECORDER	None.	
DRAINS	None.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	Not applicable.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Not applicable.	
DRAINS	Not applicable.	
WATER PASSAGES	Not applicable.	
FOUNDATION	Not applicable.	

CONCRETE/MASONRY DAMS

DO NOTHINAMINA TANDA	ORSPRVATIONS	REMARKS OR RECOMMENDATIONS
VISUAL EARTINGTION OF	Not applicable.	
SURFACE CRACKS CONCRETE SURPACES		
STRUCTURAL CRACKING	Not applicable.	
VERTICAL AND HORIZONTAL ALIGNMENT	Not applicable.	
MONOLITH JOINTS	Not applicable.	
CONSTRUCTION JOINTS	Not applicable.	
STAFF CAUGE OR RECORDER	Not applicable.	

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURPACES IN OUTLET CONDUIT	Outlet works unobserved during inspection.	
INTAKE STRUCTURE	Unobserved during inspection.	
OUTLET STRUCTURE	None.	
OUTLET CHANNEL	None.	
EMERGENCY GATE	Valve beyond toe of dam. Not operated during inspection.	

UNGATED SPILLWAY

_	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	CONCRETE WEIR	Very irregular weir surface. Right wall of spillway shows considerable deterioration.	
	APPROACH CHANNEL	Lake.	
A-7	DISCHARGE CHANNEL	Stone rubble dike forms the discharge channel.	
	BRIDGE AND PIERS	None.	

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Not applicable.	
APPROACH CHANNEL	Not applicable.	
DISCHARGE CHANNEL	Not applicable.	
BRIDGE AND PIERS	Not applicable.	
GATES AND OPERATION EQUIPMENT	Not applicable.	

DOWNSTREAM CHANNEL

ķ

_	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
<u></u>	CONDITION (OBSTRUCTIONS,	Narrow confined channel.	
	DEBRIS, ETC.)		
A-9	SIOPES	Appear to be stable.	
)	ON STANTAGE	Approximately 400 homes - 1600 people.	
	OF HOMES AND POPULATION		

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Steep but appear to be stable.	
SEDIMENTATION	Does not appear to be excessive because of upstream reservoirs.	

INSTRUMENTATION

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
other	None.	

All commen

West Bearing

APPENDIX B
CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION,
PHASE I

√25€ Note 1. .

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I

The second of the second of the second of

NAME OF DAM Kehly Run Dam No. 3

ID# PA 657

· Se was a

L	TERM	REMARKS
	DESIGN REPORTS	None.
	GEOLOGY REPORTS	None.
B-2	DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
	MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Unknown.
	POST-CONSTRUCTION SURVEYS OF DAM	Unknown.
	BORROW SOURCES	Unknown.

	ITEM	REMARKS
	MONITORING SYSTEMS	None.
	MODIFICATIONS	Unknown.
B-3	HIGH POOL RECORDS	None.
3	POST CONSTRUCTION ENCINEERING STUDIES AND REPORTS	None.
	PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Unknown.
	MAINTENANCE OPERATION RECORDS	None.

Ĺ		BEMARKS
L	LIEM	
		None
	SPILLWAY PLAN	
	SECTIONS	
	DETAILS	
L	OPERATING EQUIPMENT PLANS & DETAILS	None.
_		

APPENDIX C PHOTOGRAPHS

KEHLY RUN DAM NO. 3

Photograph Descriptions

Sheet 1. Front

- (1) Upper left Spillway on Kehly Run Dam No. 4.
- (2) Upper right Upstream slope of Kehly Run Dam No. 3.
- (3) Lower left View of crest of Kehly Run Dam No. 4 (upstream dam). In background is downstream slope of Kehly Run Dam No. 5.
- (4) Lower right Downstream slope of Kehly Run Dam No. 3.

Sheet 1. Back

(5) Upper right - Downstream exposure (Shenandoah Borough).

Coal refuse embankment in foreground.

Sheet 2. Front

- (6) Upper left Spillway weir.
- (7) Upper right Spillway discharge channel along swimming pool.
- (8) Lower left Upstream slope and spillway entrance.
- (9) Lower right Spillway discharge channel.

APPENDIX D
HYDROLOGY AND HYDRAULICS

1 A cheese

APPENDIX D HYDROLOGY AND HYDRAULICS

Methodology. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Investigation), September, 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analysis is presented below.

l. <u>Precipitation</u>. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 40" prepared by the U.S. Weather Bureau.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. <u>Inflow Hydrograph</u>. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
Ct	Coefficient representing variations of watershed	From Corps of Engineers*
Ĺ	Length of main stream channel miles	From U.S.G.S. 7.5 minute topographic
Lca	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
Ср	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic

^{*}Developed by the Corps of Engineers on a regional basis for Pennsylvania.

3. Routing. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

- 4. <u>Dam Overtopping</u>. Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.
- 5. Dam Breach and Downstream Routing. The computer program is equipped to determine the increase in downstream flooding due to failure of the dam caused by overtopping. This is accomplished by routing both the pre-failure peak flow and the peak flow through the breach (calculated by the computer with given input assumptions) at a given point in time and determining the water depth in the downstream channel. Channel cross-sections taken from U.S.G.S. 7.5 minute topographic maps were used in the downstream flood wave routing. Pre and post failure water depths are calculated at locations where cross-sections are input.

HYDROLOGY AND HYDRAULICS ANALYSIS DATA BASE

NAME OF DAM: Kehly Run Dam No. 3

PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.2 (1.005) = 22.3"

STATION	1	2	3	4
Station Description	Kehly No. 6	Kehly No. 5	Kehly No.	4 Kehly No. 3
Drainage Area	0.20	0.11	0.04	0.67
(square miles)	0.29	0.11	0.04	0.57
Cumulative Drainage Are	a			
(square miles)	0.29	0.40	0.44	1.01
Adjustment of PMF for				
Drainage Area $(7)^{(1)}$			_	
6 hours	117	117	117	117
12 hours	127	127	127	127
24 hours	136	136	136	136
48 hours	143	143	143	143
72 hours	145	145	145	145
Snyder Hydrograph				
Parameters				
Zone (2) Cp (3)	13	13	13	13
Cp (3)	0.50	0.50	0.50	0.50
Ct (3)	1.85	1.85	1.85	1.85
L (miles) (4) Lca (miles) (4)	0.40 0.20	0.40 0.20	0.19 0.10	0.85 0.40
tp = $Ct(LxLca)$ 0.3 hrs	• 0.87	0.20	0.10	1.34
th = ct(frace)	0.07	0.07	0.30	1.34
Spillway Data	Lt. Rt.			
Crest Length (ft)	9 26	39	10	35
Freeboard (ft)	3.5	3.1	3.0	2.6
Discharge Coefficient	3.1 C'=0.95	C'=0.95	C'=0.95	C'=0.95
Exponent	1.5 N/A	N/A	N/A	N/A

⁽¹⁾ Hydrometeorological Report 40 (Figure 1), U.S. Army Corps of Engineers, 1965.

⁽²⁾ Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's coefficients (Cp and Ct).

⁽³⁾Snyder's Coefficients.
(4)L=Length of longest water course from outlet to basin divide. Lca-Length of water course from outlet to point opposite the centroid of drainage area.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE ARI	EA CHARACTERISTICS: D.A. =1.01 mi ² Wooded Steep Slopes
#7 #71 A #7 O \ #6	OR NORMAL BOOK (CHORACE CARACTER). 33 ac fr
ELEVATION TO	OP NORMAL POOL (STORAGE CAPACITY):33 ac.ft.
ELEVATION TO	OP FLOOD CONTROL POOL (STORAGE CAPACITY): 40 ac.ft.
ELEVATION MA	AXIMUM DESIGN POOL: Unknown
ELEVATION TO	OP DAM:1497.6 feet
SPILLWAY CR	EST:
a. F14	evation 1495 feet
h. Tur	Trapezoidal ith 35 feet - bottom Channel approximately 200' cation Spillover Left abutment
c. Wid	1th 35 feet - bottom
d. Lei	Channel approximately 200'
e. Loc	cation Spillover Left abutment
f. Nur	mber and Type of Gates None
OUTLET WORKS	
	pe10" CIP
b. Loc	trance invertsUnknown
c. Ent	trance invertsunknown
d. Ex	it invertsUnknown
e. Em	ergency draindown facilities 10" CIP
HYDROMETEOR	OLOGICAL GAUGES:
a. Ty	peNone
	cationNone
c. Rec	cordsNone
MAXIMUM NON-	-DAMAGING DISCHARGE: Unknown

DAM NAME KEHLY RUN No. 3

I.D. NUMBER 54-17

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
PENNSYLVANIA

BY OTM DATE 1-23-80

LOSS RATE AND BASE FLOW PARAMETERS

AS CECOMMENDED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT.

STRTL : 1 INCH CNSTL : 0.05 IN/HR STRTQ: 1.5 cfs/m;2 QRCSN : 0.05 (5% OF PEAK FLOW) RTIOR : 2.0

ELEVATION-AREA-CAPACITY RELATIONSHIPS

FROM U.S.G.S. 7.5 MIN. QUAD, DER FILES AND FIELD INSPECTION DATA.

AT SPILLWAY CREST ELEVATION = 1495'
INITIAL STORAGE = 33.2 Ac.FT.
POND SURFACE AREA = 2.4 ACRES

AT ELEV. 1500', AREA = 3.7 ACRES AT ELEV. 1520', AREA = 6.4 ACRES

FROM CONIC METHOD FOR RESERVOIR YOLUME .
FLOOD HYDROGRAPH PACKAGE (HEC-1),
DAM SAFETY YERSION (USERS MANUAL).

H = 3 Y /A = 3 (33.2) / 2.4 = 99.6 / 2.4 = 41.5'

ELEVATION WHERE AREA EQUALS ZERO;

1495'- 41.5'= 1453.5'

AREA	#A	0	2.4	3.7	6.4
ELEY.	#E	1453.5	1495	1500	1520

DAM NAME KEHLY QUN No. 3

I.D. NUMBER 54-17

CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG PENNSYLVANIA

DAM NAME KEHLY QUN No. 3

I.D. NUMBER 54-17

SHEET NO. 2 OF C

BY OTH DATE 2-26-80

(NOT TO SCALE)

LEFT S	PILLWAY	RIGHT	SPILLWAY	2 DISCHARGE
h. (=1)	Qi (cts)	hp (Ft)	Qz (cfs)	Q (cfs)
0	O	0	O	0
/	<i>2</i> 8	/	78	110
z	79	2	227	310
3	/45	3	428	570
3.5	183	3.5	545	730
4	223	+	674	900
5	3/2	5	965	1230
10	88 Z	10	3053	3940
15	1621	15	6213	7830
	h. (FT) 0 2 3 5 4 5 10	(FT) (cfs) 0 0 / 28 2 79 3 /45 3.5 /83 4 223 5 3/2 /0 882	h Qi (cfs) (FT) O O O / 28 / 2 79 2 3 /45 3 3.5 /83 3.5 4 223 4 5 3/2 5 /0 882 /0	h Qi (cfs) (cfs) (cfs) O O O O / 28 / 78 2 79 2 227 3 /45 3 428 3,5 /83 3.5 545 4 223 4 674 5 3/2 5 965 /0 882 /0 3053

^{*} VALUES ROUNDED TO NEAREST 10 cfs.

W

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS = EBENSBURG

DAM NAME KEHLY RUN No. 3 54-17 I.D. NUMBER ___

SHEET NO. 3 OF BY OTH DATE 2-26-80

DISCHARGE RATING CURVE (KEHLY RUN No. 5)

ELEV.	hP	*Q
(FT.)	(FT)	(cfs)
1660 1660.5 1661 1661.5 1662.5 1663 1664 1665	0515253450	0 40 /20 230 370 530 720 //80 //40 6240

1663.1_ (NOT TO SCALE) 1660 -

*VALUES ROUNDED TO NEAREST 10 CS.

> B = 39' Z: 4 6' = 0.95

DISCHARGE RATING CURVE (KEHLY RUN No. 4)

1646 _ (NOT TO SCALE) 1643 -- 10' -

* VALUES POUNDED TO NEAREST 10 cfs.

> B = 10' 三三1 6' = 0.95

L. ROBERT KIMBALL & ASSOCIATES

I.D. NUMBER S4-17

SHEET NO. 4 OF 6

BY OTM DATE /-24-80

CONSULTING ENGINEERS & ARCHITECTS DENSSURG PENNSYLVANIA

DISCHARGE RATING CURVE (KEHLY RUN No. 3)

ELE V.	hp	* Q
(FT.)	(FT.)	(cfs)
1495 1495.5 1496 1496.5 1497 1497.5 1498	0 5 / 5 5 5 5 5 5	0 40 /00 /90 300 420 550 /200
1505	/o	3560
1510	/5	68 4 0

* VALUES ROUNDED To NEAREST 10 cfs.

From: Q = B.03 c'hy 12 (hp-hy) [B+2(hp-hy)]

WHERE hy = 3(2 = hp+B) - (16 = 2 hp + 16 = Bhp + 9 B2) 1/2

SOURCE: WATER & WASTEWATER ENGINEERING
by FAIR, GEYER & OKUM 1966 P.(11-14) & (11-15)

LOW DAMS

by NATIONAL RESOURCES COMMITTEE WASH. DC.

1938 Eq. (7) \$ (8)

DAM NAME KEHLY RUN No. 3 M 54-17 I.D. NUMBER ____ L ROBERT KIMBALL & ASSOCIATES SHEET NO. ____ OF ___ CONSULTING ENGINEERS & ARCHITECTS BY OTM DATE 1-24-80 = EBENSBURG PENNSYLVANIA OVERTOP PARAMETERS TOP OF DAM ELEV. (LOW SPOT) = 1497.6 LENGTH OF DAM (EXCLUDING SPILLWAY) = 442 COEFFICIENT OF DISCHARGE (C) = 3.0 (BROAD CREST) \$LMAX = N/A ? ASSUMED ENTIRE CREST \$ YMAX = N/A) ELEV. 1497.6' PROGRAM SCHEDULE - UPSTREAM DAM CONSIDERATION INFLOW KEHLY NO. 6 ROUTE KEHLY No. 6 INFLOW KEHLY NO. 5 COMBINE INFLOW KEHLY No. 4 POUTE KEHLY No. 5 ROUTE KEHLY No. 4 REACH No. 1 COMBINE INFLOW KEHLY NO. 3 REACH No. Z COMBINE ROUTE

KEHLY No. 3

ENO

DAM NAME KENLY RUN DAM NO. 3

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS
EBENSSURG

DAM NAME KENLY RUN DAM NO. 3

L.D. NUMBER

54-17

SHEET NO. 6 OF 6

EBENSSURG

BY OTM DATE 1-80

DAM BREACH PARAMETERS

RATIO OF PMF (RTIO) = 0.30 SIDE SLOPE OF BREACH (E) = 0.5 FALURE TIME (TFAIL) = 2 HRS.

CHANNEL ROUTING

CHANNEL CROSS SECTIONS OBTAINED FROM U.S.G.S. QUAD.

CHANNEL MANNING'S 7, QN(2) = 0.05

OVERBANK MANNING'S R, QN(1) . 0.06

D 10 .

- ALCOHOL: STATE OF S	FLOOD HYDROGRAPH PACKAGE	FLOOD HYDROGRAPH PACKAGE (MEC-1)										-		
LAST MODIFICATION 26 FEB 79 sets the state of the 1978	26 F	JULY 1978 26 FEB 79 ************************************	B •											
~~~	722	RAT	ANALYSIS OF HYDROLOGIC- RATIOS OF P	AMALYSIS OF DAM OVERLY WYDROLIC RATIOS OF PMF ROUTED		OPPING USING ANALYSIS OF 1 THROUGH THE	SAFETY OF RESERVOTA	KEHL) PA.	FUN NO. 3					
•	<b>a</b> 2	882	0	13	1 '		P		- D	D	P			
9	ר	, ,	9	1		į	İ							
•	5 ×	, 0	r -	¢.	•	•	-	-						
	.5		INFLOW TO	RESERVOIR	IR' NO. 6		-		-	•	•		•	
10	<b>Z</b> Q.	-	22.3	0.29	127	136	143	145						
12	-						•	0.1	0.09					
10	P ×	100	1610	0.0										
	· ×	-	~											
01	1	ROC	TE THRO	KEHLT	ROUTE THRO KEHLT RESERVOTH NO.	N NO. 6	-							
<u> </u>	<b>→</b> 5	-			~	-		-1474	7	•				
	f	1675	9/91	1191	1678	16.7869	1679	1680	- 1881	DASI				
20	23	00	110	310	5.70	730	006	1280	3940	7830				
	\$E-1	1669	1675	1580	196					.				
23	\$5 1675	675		•							•		-	
24	19108	5.0	3.0	105	1200						`			
	. 2	INFLOW	, 2	RESERVOIR	1R NO. 5			•						•
27	Z	-	1	0,11					!	~				
53	۰.		6663	•		967	6		\$0.					٠
30	3	0.87	0.50			1.								
	4 ¥	. ~	5	>		•.		-						
33	K1.	COM	COMBINE		٠		į	•					-	•
<b>.</b>	4 <b>2</b> :	ROUTE	TE THRU	RESERVOIR	NC.	. \$		-		•		***	# AP   description	
3.0	-				-	-		21237	17					
<b>.</b> .	:::	1666	1660.9	1991	1661.5	1662	1662.5	1663	1664	1665	0191			
07	75	90	}	23	063	310	230	27/	0011		0470			
41	SE1639.7	139.7	1660	1680										•
63	\$01663.	3.1	3.0	10.5	1150									
<b>* *</b>	׎	<b>1</b> €	6 CHANNEL ROL	ROUT ING -	MUD PULS	S REACH	-	-						
97	> 5	-				,								
. 4		•0•	•09	90•	1618	1660	850	0.0471						
<b>A</b>	<b>~</b>	0	1660	047	1640	004	17,20	707		707				

12 in 19.

8

· 14

252

70.5

--------IAUTO RY 184P 0.00 VUL- 1.00 0 LOCAL NSTAN ISTAGE ALSHX 0.00 APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SAYDER CP AND TP ARE IC- 3-67 AND R- 4-76 INTERVALS • 50 **TSAME** 8.0°C J PR T INAME .87 HOURS, CP. CNST. ******** ANALYSIS OF DIM OVERTOPPING USING RATTOS OF PMF HYDROLOGIC-MYDRAULIC ANALYSIS OF SAFETY OF KEMLY RUN NO. RATIOS OF PMF ROUTED THROUGH THE RESERVOIR PA. 54-19 WONST_0 R72 145.00 121 JPRI STRTC 1.00 MULTI-PLAN ANALYSES TO BE PERFORMED MPLANG I MRTIDG 6 LR1704 I +00 0 RATIO 6.000 R12 R24 R46 127.00 136.00 143.00 METRC 4 2 TRACE - 136 SUB-AREA RUNOFF COMPUTATION ERAIN STRKS RYTOK U-UG U-UG 1-00 UNIT HYDROGRAPH DATA HYDROGRAPH DATA TRSDA TRSPC •29 0.00 JOB SPECIFICATION UNIT HYDROGRAPH 28 END-OF-PERIOD URDINATES, LAG. RECESSION DATA 2087 CF# .50 ******** PRECIP DATA ITAPE 2 IECON ~ -1.50 SALA 000 INFLOW TO RESERVOIR NO. 6 TRSPC COMPUTED BY THE PROGRAM IS . 600 105. JOPER IDAY <u>-</u> 1CCNP 30.4 ******** • 29 TAREA Z ISTAO DCTKN 0.00 • 70 346 FLOOD HYDRE (APH PACKAGE (11EC-1)
DAH SAFETY VERSION JULY 1978 Ĭ JULY 1978 LAST MODIFICATION 26 FEB 79 AT 105-STRKR 0.00 THYDE 35 ********* KUN DATE# 40/01/24. TIME# 05.35.34.

Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio

		IAUTO	
		STAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO	
		INAME	
		JPRI	
¥2.		JPLT	
HYDROGRAPH ROUTING		ITAPE	PROUTING DATA
HYDROGR	R NO. 6	I ECON 0	PROTING
	KEHLY RESERVOIR NO. 6	I COMP	*
	RU KEHLY	ISTAG	
	ROUTE TH		
, ,			

•

## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158  ## 158				0.056	CI.055 0.000	00°0		I SAME	100	IRES ISAME TOPT IPMP		LSTR			V	
675.00 1675.00 1677.00 1678.00 1679.00 1680.00 1685.00  U.OU IIU.OU 310.0U 570.0U 730.0U 1280.0U 1280.0U 3940.0U  O. 21. 46. 92.  O. 21. 46. 92.  O. 21. 46. 92.  IGES. 1675. 1580.  IGES. 1675. 1680.  IMPER ELEVE COUL CAREA EXPL  DAM DATA  DAM DATA  1675.U U.O U.U U.O U.U U.O U.U  1675.U A.O U.O U.O U.O U.O U.O U.O U.O U.O U.O U					NSTPS 1	NSTDL 0	LAG	AMSKK U.OUO	000°0 .	TSK U.UUU	STORA -1675.	ISPRAT -1	•			i
0.00 110.00 310.00 570.00 730.00 900.00 1280.00 3940.00  0. 21. 46. 92.  0. 42. 205. 1559.  1669. 1675. 1680. 1700.  CREL SPWID CUUW EXPW ELEVL COUL CAREA EXPL  CREL SPWID CUUW EXPW ELEVL COUL CAREA EXPL  DAM DATA  1675.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U	STAGE	( (	75.00	1676.00		17,00	1678.00		78.50	1679.00		80.00	1689-00	1690.00		ĺ
0. 21. 46. 92.  0. 42. 205. 1559.  1669. 1675. 1680. 1700.  CREL SPWID CUGW EXPW ELEVL COML CAREA  CREL SPWID CUGW EXPW ELEVL COML CAREA  1675.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 U	FLOR		00.0	110.00		10.00	270.00		30.00	900.00		80.00	3940-00	7830.00		1
1669. 1675. 1680. 1700.  CREL SPWID CUOW EXPW ELEVL COUL CAREA 1675.0 U.0 U.0 U.0 U.0  TOPEL COON EXPD DAMBID 1678.5 3.0 1.5 1200.	SURF ACE	AREA-	ô		11.	.94	92.									
1669. 1675. 1680. 1700.  CREL SPWID CUOW EXPW ELEVL COUL CAREA 1675.0 U.O U.O U.O U.O U.O  DAM DATA 1078.0 140.0 1.5 1200.	<b>V</b> ,	ACITK.	•	•	.2.	205.	1559.				٠					
SPWID CUOW EXPW ELEVL COUL CAREA  U.O U.O U.O U.O U.O U.O  DAM DATA  TOPEL COON EXPO DAMHID  16/8.5 3.0 1.5 1200.	ELEV	/ATTON-	1669.	167		•089	1700.								-	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		•		3				PW EL				ХРL				
COON DATA				1673			١.	9		1		0.0				1.
3-0 LXPD		:				•		DAM	DATA							
	Ť						16/8.5	000	EXPO	DAMBID				•		

						12%				F.X.					.			İ
						8												
				1			-								·	·		1
				<u> </u>		7												
				İ		! !	-		•							-		
	•						-								!			
į			+	İ		1									İ	2	٦	
į				!				20			1	<i>}</i>	£ 0	-	<u> </u>	8		
l					ŀ	•		ı		LOCAL			RT IMP 0.00			15.00	7.	
								D I I D		2			ALSWX 0.00	<u> </u>	ALS	٧٥٠.		
				] }						1SAME	R96 U.00		¥°		2.00 4.76 INTERVALS	.90		
								2					CNSTL .05		82	3		
						! !	190	- D		ONSI.	872 145.00		-		2.00	.87 HOURS. CP. 23.		
	•.			-			1 9	3		22			37R7L 1.00	0	ALLOR-	17 HO		
						SUB-AREA RUNOFF COMPUIATION	ģ			0.000	R48		]	R I A		•		
-	•					TO AN			ATA	745PC 0 • 00	1 1	•	1.00 1.00	E C		.AG.	-	CND-OF-PERTOD FLOW
						ē.	1 404		HYDROGRAPH DATA	20	R24 136.00	DATA	₩8	ROGRAPH CP= .50	KECESSION DATA ORCSN= And 1P ake TC=	f.S. (		R100
						RUNOF	l		COGRA	11.	<b>E</b> i	.055	STR O	TY DRO	ESST PRCSN	18A1	; :	E-PE
						REA	1 200				PREC R12 127-00		ERAÍN STAKS	N17 187	P ANL	85		0-QKJ
						V-905	9 9	Þ		000	K6 117.00		සු <b>ව</b>		1.50 ER C	UNIT HYDRUGRAPH 28 END-OF-PERIOD ORDINAIES, LAG- 20, 34, 40, 35, 21	5. 1.	
-							INFLOW TO RESERVOUR NO. 3			< -	1 1		1.00	=	SNYD	-0f-		-
1							MESERV	2		1 A K E A	PMS 22 - 30				IVEN	B END	 	
						·	5 2			2 ~ 2		00	0.00		M 0	7H 2B		
	!						5			2	300		Ì		115	UGRA!		
							F			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3	0.00		3	HY UKC	•	
					٠.,					<b>E</b> .		Ĕ Z	•		J 30	3		
			·		·				ļ				CROPT		NRK C	•	•	
		•										9			3			•
												5	-		( I MAT			
				į	~					•	1448		,		APPROXIMATE CLARK COEFFICILNIS FROM GIVEN SNYDER CP AND 19 ARE 1C= 3.67			 
				•				1.	}	•		-			<u> </u>			ξ.

١ .						1	1		
		1	-					1	[
	I						1		
	-			ļ				1	1
1/2			.			-			
				l					
			.			•			Ì
				- 1				1	l
	- !		ĺ						
Ļ	1.						ŀ	1	
							:		r
	•						t	1	1
	ì					•			
ł	•	IAUTO				ŀ			į.
ļ	!	¥ .							ŀ
	i	VGE 0	LSTR	Y O					
	}	51,	ا تا	Š				1	
		INAME ISTAGE		STORA ISPRAT	,		1		
İ	•	AE I		S.S.				-	
1	i :	ž	.	STC			Ĺ.		1
	;								ļ
	į	JPR1 0	₫ <b>.</b>	15K					ŀ
	1	5	=				[		Ė
	İ							1	
	i	JPLT	100	X 0°00°0				1	
<b>9</b> .	i	٩	2	) 0					. "
Ē	j		< ·				1		
5	ì	M 0	Z # -	AMSKK U.000			)		۔ ا
Ŧ		Ĭ	5 A	MS				1	8
HYDROGRAPH ROUTING	Z.	IECON ITAPE 0 0	Ē.					1	138
5	PULS REACH	20	2 2 -	9 <b>Y</b> 3				ļ	
2	امّ	ĚČ	~	ن			r .	1	RLNTH
	3						-		2
	- 1			20			<b>4</b> ·		×
	3	COME	AV 0 0 0 0 0	NSTDI					1
	1	_				1	Ę	1	ELMAX
	N	20	20	<b>9</b> -			-		1
1	5	ISTAU 6	CL055 0.000	NSTPS 1					GN(3) ELNYT
1	CHANNEL ROUTING - MOD	-	""	Z					4
			80			ŀ		1	-
	3		0.0					g :	=
	٥							HORMAL DEPTH CHANNEL ROUTIN	3
					E35		*	8	
1						1			(2)80
.						Į			8
						1		¥!	1
	-					1	<u>.</u>	E	SIE
						1	ľ	<u>E</u>	1 3
			.			1		F	
	-		-		4.	l		Ħ.	
							1	<b>E</b>	1
	-		İ		}	İ	-	Γ'	

	36
	RLNTH
	ONIS) ELNYT ELMAK RLNTH SE
·	ELNYT
	ON133
	QN(2) QN(3) ELNYT
	9411

	0.00 1660, 605.00 1620.	00.088 00.	0.00 1660.00 350.00 1640.00 600.00 1650.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 1650.00	5 5EL 10 COMMINICATION OF THE CENTRAL CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION OF THE CONTRACTION O	00 *00 00	1618.00			
STORAGE	00 • 0	•19	1.01	5.79	12-13	20.83	31.89	45.31	61.09	,
	99,73	172,86	1 48 66	177.71	209.43	244.00	281.64	321074	366.89	
COTFLOW	00.0	67.19	67.19 694.61	302000	7939.39	16199.05	16199-05 28470-22	45370.36	45370.36 67471.72	
***************************************	129368.25	168673.32	215815.92	271392.95	335972.05	410108-72	494345.67	>89213.05	695229.08	
Elengesta .		;	6	•					77. 76.74	
STAGE	1618-00	1020-51	1077.07	1024-63	10.000	5004791	1031060	1003001	10.2501	
00.09919	1640-11	1642,32	1644,53	1646.74	1646.95	1651-16	1653.37	1655.58	1657.79	
FLOW	00.0	67-19	694.61	3020+89	7939.39	16199-05	28470+22	45370.36	67477.72	
***************************************	129388.25	1	168673-32. 215815.92	271332.95	271372.95 335972.05 410108.72 494345.67 569213.05 695229.08	410108-72	494345.67	50.513.05	90:6ZZ569	

	CHANNEL QLOSS 0.0				,						
	CHANNEL OLOSS 0.0			HYDROGRA	HYDROGRAPH ROUTING	2					٠
	0.055	ROUTING	HOD	PULS REACH 2	2						
	0000	15TA0 10	1COMP	JECON	JIAPE	JPL I	JPRT	INAME I	JSTAGE 0	1AUTO 0	
		CL055 0.000	AV6 00.00	ROUT I IRES	ROUTING DATA IES ISAME 1 1	1001	9H4		LSTR , 0		
	•										
					•	[	,				
		MSTPS 1	NSTOL	00°	AMSKK C.0000	×0000	15K	STORA U.	ISPRAT		
			ī								
WHAL DEPTH CHANNEL ROUTING	0011W6					,	,*	-			
QN(1) QN(2)	ON(3)	ELNVT 1498.0	ELMAX 1540.0	RLNTH 1600	SEL •07500						
SS SECTION	COUNTINE	ESE=SIA	ELEVISTA	IELEV==ETI	•			10. 404 U. Aug			
205.00 1500.00 350.00 1520.00 200.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1	0.056 00.0	0 1520.UG	390.00	1540.00			- 1				
00.0	<b>,6.</b>	*	2.11	6.17		12.51	21.15		32.07	45.28	60.70
19.26	120.39		143,30	167.39	61	192.64	119505	*	246.63	275-38	305,30
0010	46139		07.603	2273633	200	2015 995	¥2×26211	1941	19471104	30716.07	49359413
86364.10	115821044		149424.58	187209.00	229227.01		275542.52	326227.59		381360-18	441022.59
	1400.21		1502.42	1504.63		1506.84	1509.05	151	1511.26	1513.47	1515.68
1520.11	1522032			3		1528.95	91-1641	153	1533.37	1535.58	1537.79
00.00	84.39	}	03.70	2273.33		5663,02	11252.24	!	19471.04	30716.07	5359-13
86364.10	115821.44		149424.58	187209:00	10*152622		275542:54	326227.59	1	361360418	441022.59

			INFLOW TO RESERVOIR NO. 3  INFLOW TO RESERVOIR NO. 3  ISTAU ICOMP TECON ITAPE JPLI JPRI INAME ISTAUE TAUTO  11 0 0 0 0 0 0	SPE PMS RAPES   12   1   1   1   1   1   1   1   1	LROPT STRKR DLTKN RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX RTIMP U 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 UNIT HYDROGRAFII DATA TP= 1.34 CP= .50 NTA= 0	APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDEN CP AND TP ARE TC= 5.89 AND R* 7.21 INTERVALS
--	--	--	----------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------

£

		<u>-</u>			-								
		Ź	.4.										
				,	-	-	1505.00	3560.00				:	
	. ,			IAUTO 0			1300.00	1200.00					
				ME 151AGE	CSTR 0	14951	1498.00	550.00				EXPL 0.0	
				JPRT TRAME 0	0 digd1	15K STORA 0.000 -1495.	1497.50	420.00				COOL CAREA	DAMWID
		ROUT ING		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1001	X X X	1497a00	300.00			٠	0.0 0.0 0.0 0.0	EXPO
-		HYDROGRAPH ROUTING	3	IECON TTAPE O 0 0 ROUTING DATA	IRES ISAME	LAG AMSKK 0 0.000	1496.50	190.091	• 0	148.	1520.	EXPW	TOPEL COGD
				Γ	00.00	NSTOL 0	1496.00	00*001		43.		nen oen	
			ROUTE THRU RESERVOIR NO.	15TAU 13	00000 0000	NSTPS 1	1495650	*0°00	• 7	33.	1495.	CREL 5	
			nou ·	-	5		1495.00	0000	•0	•0	1454.		
			•				STAGE 149	FLOW Pf6840.00	SURFACE AREAS	CAPACITY	ELE VAT I ON"		

•	_						· .			
	PEAK FLOW AND	STORAG	FLOWS IN CUBIC	: 3	SUMMARY FI	OR MULTIPLE	E PLAN-RATI	D ECONOMIC SECONDI	NO SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FEET PER SECOND ICUBIC METERS PER SECONDI	
				AKEA IN SUI	CARE MICES	SOCARE MILES ISOCARE KILOMETERST	ICOMETERST			
OPERATION	STATION	AREA	PLAN	RATIO 1	RAT 10 2	RAT105 API RAT10 3	RATIOS APPLIED TO FLOWS RATIO 3 RATIO 4 RAI .50 .70	\$ 01.	RATIO 6 1.00	
HYDROGRAPH AT	-	•29	-	102.	306.	511.	7115.	919.	1021.	
ROUTED TO	~	167.	-	600	1661	344.	13,991	641.	117.	
HYDROGRAPH AT	6	.11	4	39.	3.7911	. 194.	271.	349.	387.	
2 COMBINED	*	1.00.1		2.4771	282.	486.	697.	1119.62	1012.	
POUTED TO	•	1.00.1	-	84.	276.	478.	687.	906.	1012.	
ROUTED TO	9	19091	-	2.3711	276.	478.	687.	905.	1015.	
HYDROGRAPH AT	-	•00.	-	18.	53.	1880	123.	154.	175.	
ROUTED TO	8	•04	7	1407	103211	7.02.2	301811	145.	160.	
2 COMBINED	6	191°I	-	73.5	305.	529.	71.55611	1020.	1139.	
ROUTED TO	01	19101	-	2.6311	305.	528.	7165571	1017.	37.561	
HYDROGRAPH AT	111	18991	1	161.	13.721	807. 77.8611	1130.	1453.	1615.	
2 COMBINED	12	1.01	-	246. 6.9711	769.	37.221	1866.	11.85.69	78.2611	
ROUTED TO	13	1.01	~	245.	769.	1315.	1866.	2469.	2767.	

•	
_	
- 7	
- 1	
=	
A S	
z	
•	
_	
•	
,	
-	
SAFEIY	
7	
-	
•	
v	
DAM	
-	
•	
_	
_	
٠.	
-	
P	
_	
-	
¥¥.	
⋖	
Σ	
₹	
-	
Ş	

		INITIAL	TIAL VALUE	SPILLWAY CREST		OF DAM		
	STORAGE	42. 0.	0.0	42.	-	143.	•	
RATIO OF	MAXIMUM	MAXIMUM DEPTH	MAX I MUM STORAGE	MAX I MUM OUTF LOW	DURATION OVER TOP	TIME OF	TIME OF	
	W.S.ELEV	OVER DAM	ACSFT	CUS	HOURS	HOURS	HOURS	
•10	1675-55	0.00	54.	•09	00•0	42.25	0000	
08.	1676.49	0000	•/-	199	0.00	42.00	0000	
06.	16//013	300	97.	94¢.	00.0	41.75	00.0	•
	0101101	0000	1120	4930	00.0	41.75	00.0	
00.1	1678,46	0000	153.	717	00.0	41.75	00.0	
				-				
	: .		•		-			

	35	SUMMARY OF DA	DAM SAFETY ANALYSIS	LYSIS	· •		•	
MULLEN STEE	INITIAL	VALUE	SPILLWAY CREST	2	UF DAM			
STORAGE		0.	12.		17.			
RATIO MAXIMUM OF RESERVOIR	MAXIMUM DEPTH	MAX IMUM STORAGE	MAXIMUM OUTFLUM	DURATION OVER TOP	TIME OF MAX OUTFLOW	TIME OF FAILURE		·
W-S-KLEV 16+3-60	OVER DAM	ACept 13.	24.	NOURS 0.00	HOURS 40.75	0.00		
1646.27	0000	15.	78.	00.0	06.04	00.0	•	
1645-75	0000	17.	150.	00.0		0000		
	ā	PLAN 1	STATION	01				
	RATIO	FLOW CP S	FTAGE .FT	TIME				
	30	305.	1500.2	41.50				
	1.00	1017.		41.00 41.00				

B.S.	, ,	,				 I		f	1	
		•		-	· i					
										•
		ľ	ļ							1.
				-	٠.				ŀ	ľ
1				ŀ						
								İ	•	1
			Ì							
		•	•	ŀ						
			į							1
		!	TIME OF FAILURE	e	0	2 8	9	88		١.
	i '		3	HOOKS	0000	0000	0.00	0000		
			===	Γ.			•			ľ
		•	. ≥					-		-
1		-	TIME OF MAX OUTFLOW	6		~ ~	S	9 9		
	•		TIME OF X OUTFL	HOOKS	41.25	25	41.25	90.1		
ı	₩ 09	• 9 • •	Ex	F	•	# #	•		•	
	P OF DAI	. 4	3						İ	
	10P OF DAM 1497.60		2.0					) 		1
	-		DURATION OVER TOP	2	0.00	3.50	7.50	3.75		
SIS	.		VER		ċ	-	-			1
SUMMARY OF DAM SAFETY ANALYSIS	EST		25	Γ	• .					
Ž	SPILLWAY CREST 1495.00	936				_	_		]	1
1	1AY	_	MAX I MUM OUTF LOW	9 1	45	1315.	9	2767,		
AFE		·	X5	F	(4)	7=	=	F 22	İ	1
S	SPI	_	123		٠.					1.
\ \d			. <b>.</b>		•	İ	•		Ì	
8			1 2 5 X		9	7	£3		ł	
R ×	ı,		MAX I MUM STORAGE	N.	•				İ	
1	11AL VALUE 1495.00	33.	"							
3	1AL		<b>x</b>	E						
1	INIT		TACE TACE	UAR	8	•35	.91	22	1	
+	=		MAXIM	DVER	0					
			-	F					-	.
Ì	ĕ ŏ				:					
	ATI	AGE LOW	35		75	76	3	==		ŀ
	Ē	STORAGE	MAXIMUM ESERVOI	e secte	1496.75	1498.24	96	600		
		90	MAX1MUM RESERVOIR		=		=			
		7	-		,					
		,	0			L	_		`	-
			RAT10	Ē	5.	500	200	28	ł	
'	•		~					<b>.</b>		
1.		<u>.</u>								
,			1						İ	
ľ	z								1	
	PLAN	- 1	1		•					1
•	-		1						1	
		`			*					
건.		5.	I			1			L -	•

4:

1670. 1618 0691 1830 1665 909 HATTO OF PRF REGITED HAROUGH, THE RESERVOIN AND DOWNSTREAM ENUNSTREAM CONDITION DUE TO OVERTOP (KEHLY RUN NO. 3 - 54-19) PLAN I ASSUMES BREACH. PLAN 2 ASSUMES NO BREACH 0.05 -1 1685 3940 •05 1664 1618 1280 145 1.00 -1660 1663 720 109 0.047 606 143 1662.5 530 1620 5.9 1660 167865 1100 136 1662 370 MOD PULS REACH ROUTE TARU REHLY RESERVOTE NO. \$70 9.37 9.37 9.37 1661.5 171 121 1150 16.16 16.40 16.40 1200 ROUTE THRU RESERVOIR NO. Š RESERVOÍR.NO. 0-11 RESERVOTA 0.27 • 320 200 7 2.0 1.5 1680 1661 120 - 23 1689. 350 CHANNEL ROUTING INFLOW TO 6 1676 110 21 21 1673 INFLOW TO • 03 3.0 0.50 27.53 1660 1660 1620 1620 1660.5 3 COMB I NE FEGOD HYDROGRAPH PACKAGE (HEC-1)
ONM SAFETY VERSION JOLY 1978 LAST MODIFICATION 26 FFU 79 JULY, TYRE 20 \$£1639.7 \$\$ 1660 11.0 \$\$ 1675 \$016785 1669 0.87 =1.5 605 A N 1300 1640 90• 501653.1 ERSS X X 2 4 Ę 47 22 7 4 53 37

一九

		•		,,									X
	0	INFLOW TO	RESERVOIR	NO.			-	•					
E 473		22.3	0.04	127	136	143	145 1•0	0.05	<b>-</b>				,
	6.1	0° 20 05	2.0				-	*	•		,		
65		THR	U RESERVO	1K NO. 4	-								
	V. 104.	10.10		09	06	1645-5	180	34.0	1650	1560		<b>: :</b>	
	SE1614-6 5\$ 1643 50 1646		1660	450									
		18403					-						
		CHANNEL	RODITING -	- MOIG PUL:	J I I						-		
75	02		90° 90° 350	1498 1520 1520	200 200 390	1500 1500 1540	201	1498	204	1498		•	
77	0 1	INFLOW TO	RESERVOIR 0.57	R NO. 3			<b>-</b>		-				
		6.52	111	121	136	143	145	. 60.0					
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		l gwo	2.0				-	-					
	K 1	ROUTE THRU	IS THRU RESERVOIR	1K NO. 3	•					-			
89 90 91	VI 1495 V5 1495 V5 0	=	1446	1496.5	1497	1497.5	-1495 1498 550	1500	1505	1510			
4 A	\$6145307 \$5145307	2.4	1500	1520		•					-	. `	
0. 2. D	I.	6	1464.2	79.5	1495	1497.9				-			
60	1 X	CHANNEL ROUTING	1	MOD-PULS F	REACH NO		-						. "

ż. **TAUTO** RT1NP 0.00 VOL# 1.00 NSTAN ISTAGE ALSMX C.00 CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND 1P ARE TC" 3.67 AND R" 4.16 INTERVALS .50 SAME 896 0.00 IPRI RATAU OF PHF ROUTED THROUGH THE RESERVOIR AND DUMMSTREAM DOWNSTREAM CONDITION DUE TO OVERTOP (KEMLY RUN NO. 3 - 54-19) PLAN I ASSUMES BREACH, PLAN 2 ASSUMES HU BREACH INAME CMSYC 605 *# HOURS (PE ******* SNOW H72 145.00 1PLT JPRI <u>•</u> MULTI-PLAN ANALYSES TO BE PENFORMED NPLANS & MATTON I LATTON I STRFC 0 RATTO 0.000 TRACE 127.00 136.00 143.00 METRO SUB-AREA RUNOFF COMPUTATION アピ LOSS DATA UNIT HYBROGRAPH BATA JOB SPECIFICATION HYDROGRAPH DATA TRSDA TRSPC -29 0.00 UNIT HYDROGRAPH 28 END-OF-PURIOD ORDINATIS. LAGE 52. 91. 105. 75 RECESSION DATA LRbpi ********* PRECIP DATA CP= .50 ITAPE RIZ Z 0 LECON 18. 3.5 ERATH SNAP R6 117.00 JOPER IDAY INFLOW TO RESERVOIR NO. LOMP 4 RTIOL 1. CU ******* • 59 SPFE RMS
0.00 22.30
TRSPC COMPUTED BY THE PROGRAM IS .800 "TAREA Z I ZZ ISTAG • 30 U.DU U.DU TUHE 非有意意的 医自由者及自由者有非常有非正常有非常的是非常的 FLOOD HYDROGRAPH PACKAGE (HEC-1) Z Z JUCY 1978 LAST MODIFICATION 26 FEB 79 RT 105* HYDG 2 8 ******** CROBT O •... FLM DATE+ 80/01/28. *** APPROXIMATE ia e

	1/3												
						1690.00	7830.00	· - ·	-				
-		IAUTO				1685.00	3940•00						
		INAME ISTAGE		LSTR	STORA ISPRAT -16751	1680.00	1280.00	•			EXPL 0.0		-
		I INDE		. objet	15K S 0.000.0	1679.00	00.006				L CAREA	CLAMACI	1200.
	);	JPL T 0	SAME	1001	. 0.00.0	1678.50	730.00				0.0 0.0		1.5
•	HYDROGRAPH ROUTING IR NO. 6	N ITAPE	ALL PLANS HAVE SAME ROUTING DATA	IRES TSAME 1 1	S U.UOU		570.00	•	•	•	EXPW EL	ŏ	2.00
	HYDR	ICOMP IECON	ALLP	AVG IRE	NSTDL LAG	1678.00		92.	1559.	1700.	0.0	TOPEL	1678
**	NOUTE THRU KEHLY RESERVOIR NO. 6	ISTAU FCC		000000	NSTPS NS	1677.00	310,00	46.	205	1680.	SPWID		
	COUTE THRU			0.00	2	1676.00	110.00	21.	42.	1675.	CREL 1675.0		
	12					1675.00	0000	•	0	1669.			-
						STAGE 167	FLOW	SURFACE AREA	CAPACITY	FLEVATION.			•

	!	!		-						
	-									
						-				
. <u>4.3</u> 1.4 p			•	HYDROGE	HYDROCKAPH ROUTING	•				,
		RUUTE THRU	THRU RESERVOIR NO.	۲۵. ۶		-				SZ.
			15142 1COMP 5 1	UECON 1	114C 34X11	NT THE	INAME 151A6E	1 Auto		
D		}	CLOSS AVG	1	ALL PLANS HAVE SAME ROUTING DATA IRES ISAME 10PT	дм д І	LSTR			
-34		0 · ·		t .	AMSKK X	J SK	2			
			ı		1	0.00	ĺ			
STAGE 16	1660.00	1660.50	1661.00	1661.50	1662.00	1662.50	1663.00	1664.00	1665.00	
FLOW #6240.00	0000	40,00	120.00	230.00	370.00	230.06	120.00	1180.00	1740.00	
SURFACE AREA		8.	23.							
CAPACITY	• •	54.	351.		•					• •
ELEVATION=	1640.	1660.	1680.							
		CREL 1660.0	SPW1D U.U	COUM EX	LXPW FLEVL C	COUL CAREA	Expl 0°0			
				13d07 1663e1	0AM DATA	DAMETE 1150.				
74.				STATION	PLA	RATIO 1				
				END-OF-PE	END-OF-PERTUD HYDROGRAPH ORDINATES	+ ORDINATES	-		•	
	•0	•	•	o . • o	OUTFICK U.	• 3	•	0.	• 0	,
Programme and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	1	-		-			F			

•					HYDROGRA	HYDROGRAPH ROUTING	TNG							*
•	•	CHANNEL ROUTING		- MOD PUL	PULS REACH.		!	•				·		2
			151AU 6	I COMP	1ECON 0	ITAPÉ 0	JPLT	1445 0	INAME	15TA64.	1AUT0 0		-	
					ALL PLANS	PLANS HAVE SA	SAME					-		
		0.055	000°0	0.00	TRES	I SAME 1	1d01	dWd.		LSTR				
			NSTPS 1	NSTOL	LAG	AMSKK U.GGU	× 0000	TSK 0.000	STORA 0.	ISPRAT 0				-
HOKMAL DEP	DEPTH CHANNEL ROUTING	XUT I NG	-											
						-								
	ON(1) ON(2)	.0600 16	ECNVT 1618.0 16	EEMAX 1660.0	RLNTH ESOC	SEL •04710						•		
35 <u>-</u>	•					•								·
<b>J</b> .	ROSS SECTION	COORD INATES-	STA+EL	EV 05 [Ao	ELEVE70	t. ·								
	605.00 1620.00 850.00 1640.00 1100.00 1650.00	00.058 00.	1640.00 1100.	1100.00	1620.00 1660.00	1	<b>601.00 1518.00</b>	1	604-00 1618-60					
776279.23		<b>A</b> 7.	ſ.	1891	\$1.05	1	120.55	50.03		31489	15.64	60 • 19		
16*10*9//	99.73	122.86	14.	149.06	177.71	20,	209.43	244.00	28	281.44	321.74	364.89		
OUTFLOW	00.0	61.19	769	694.61	3020.89	1930	1939.39	16199.05	7847	28470.22	45370.36	67477-72		
812900.73	129588025	164673.32	215815.92		271392.95	335972.05		410108.72	494345.67		589213.05	695229.08		
STAGE //1637.89	1618.00	1620.21	1622,42	245	1624.63	16 20	1676.84	1629.05	163	1631.26	1633.47	1635-68		
//1660.00	1640.11	76.52.41	1941	1544.53	1645.1	1641	56.88.91	1657.16	163	1653631	1659.58	1657.19		-
FL 0W	00.0	67.19	169	19º u69	3320.89	193	1939, 39	16199-05"	ł	28470.27	45370.36	21.11		
<b>4</b> 72337•84	129388.75	168673.32	(1.4H15.4)											

													•	2/2
				3	SUR-AREA RUNOFF COMPUTATION	UNOFF CO	MPUTATIC	Z						
D-36		INFLO	M TO RESE	KVOJR	4 0				] [	1 1		-		
			<			100 2	5		I INVERT		1 T			- -
	-1	IHYDG 1	1UHG T.	TAREA :	HÝDR SNAP TH O•UO	HYDROGRAPH DATA THSDA TRSPC • U4 U• U0		RA110 15 U.U.U	I SNOW IS	I SAML L	LOCAL			
		võ		FMS		a				R96				
0.00 TPSPC CUMPUTED BY THE PROGRAM IS	BY THE I	PRUCKAM	*	22.30 III	.00 127.00	00 <b>136.</b> 00	00- <b>6+1</b> 00	.00 145.00		۵•۰۵				
	LROPT	STRKR U.UU	DL TKR USCL	RT10L 1,00	ERAIN U. U.	COSS DATA STHKS U.00	RT JUK 1,000	STRTL 1.00	CNSTL .05	ALSMX 0.00	RT [MP 0.00			
				1P=	. 1	UNIT HYDRUGRAPH DATA	H DATA	0 <b>*</b>						
5TRT G* - STRT G*	KRK COEFF	FTC LENIS	ST FROM GT	RIG	REC 1.00 C ER CP AND	RECESSION DATA  •••0 ORLEW= ••05 RTIOR= 2.00  R CPTAND TPTARE IC= 2.35 AID R= 3.03 INTERVALS	ATA 05 TC= 2.3	RT TOR=	2.00 3.03 IN	TFRVALS-				÷
	CA1	T HY DRUG	RAPH 18	UNIT HYDROGRAPH 18 LNU-OF-PL		KIUD ORDINATES, LAG*	LA6*	.56 HOURS. CF=	₹\$• CP#	. 50 VC	.50 VOL# 1.00			
	9 2	8	17		17.	12.	<b>,</b>	• e		* =	3.	۲.		-

									1			
				нүркобили	1100 H-W			•				
-			•	<u>.</u>		-						N.
		ROUTE THRU RESERVOIR	- Z	• •				• ,				
		1STAQ B	AQ ICOMP 8 1	IECON 0	ITAPE 0	JPL1 0	JPRT	INAME 1	ISTAGE 0	1AUT0 0		
				· ALL PLANS HAVE ROUTING DAT	S HAVE SA	SAME						
		000°0 0°0	0.00	IRES	I SAME 1	1001	0 0		LSTR			
		NSTPS	NSTDL 1 0	O .	AMSKK U.000	00000	15K	STORA 1	ISPRAI -1			
SYAGE 164 //1650.00	00.6321	1643.50	1644.00	1644.50	5.791	1645.00	1645.50	1646.00	00.5	1648.00	1650.00	
F. 60.00	0.00	00.01	30.00	00.09	16	00°06	140.00	18(	00.081	00.077	810.00	
SURFACE AREA-	0	1:	7.	-								
. CAPACITY=	0.	12.	74.								-	
ELEVATION.	1615.	1643.	1660•									
-	-	CRE1 1643.0	SPWID U.U	MAXAMOGU	11	FVL CD01	I CARFA	A FYPL	0.1			
				TOPFI.	COUD EX	2 4	DAMMIU			•		

A company is

		1 1				
			1505.00	3560•00		
	TAUTO		1800-00	1200-00	-	-
	ISTAGE 0		SPRAT O SPRAT Be 00	00		
	INAME IS		3	550•00	EXPL	FAILE1 497-90
	AT DAGE		15K STURA 99000 - 1895	00.07.	CAREA	-
					0.00	14.9
	UTING	3	2	300,00	ELEYL 0.0	COOD EXPO 3.0 1.5 DAM RRFACH DATA FLHM TFAIL 1.664.210 2.00
	HYDROGRAPH ROUTING    TECON ITAPE  U  O	MLANS HAVE S	AMSKK 14000		EAPW E	7400 3.0 3.0 5.0 5.0 1.46211
	HYDROGI 3 1ECON	ALL PLANS HAVE	LAG 1496.50	190-00	024	1497.6
	OIR NO.		8 3	• 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	COCW COCW	BHW10
	U RESERVE TSTAG 1		1,596.00	100,000	1506. SPW10	<b>E</b> -
	MOUTE THRU RESERVOIR N	[No. 1] March	역 🎉 🕺	33.	1495. 1495.U	
-	, One		0.0	•		
			1+95.00	0.00		
					- ECLVATIONS	
			87A6E	FLOW TAGGODO OF THE SAME AND CAPACITY	A LECTOR	
		D-40				

COMPUTATIONS	
PEAK FLOW AND STORAGE (END OF PERTUD) SUMMANY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS	FLOWS IN CUBIC FEEL SECOND (CREEK SECOND)

AYDROGRAPH AT 1  ROUTED TO 5  ROUTED TO 6  HYDROGRAPH AT 7  HYDROGRAPH AT 7  HYDROGRAPH AT 7  HYDROGRAPH AT 7	
HYDROGRAPH AT   1 .29   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 306.   1 30	
ROUTED TO 6 .040 1  ROUTED TO 6 .040 1  ROUTED TO 6 .040 1  ROUTED TO 6 .040 1  ROUTED TO 6 .040 1  ROUTED TO 6 .040 1  ROUTED TO 6 .040 1	
ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1  ROUTED TO 640 1	
#TPRUGRRUPH*AT 7 .004 1  EQUTED TO 6 .40 1  ROUTED TO 6 .40 1  HYDROGRAPH AT 7 .004 1  ROUTED TO 6 .004 1  ROUTED TO 6 .004 1	
# PROUTED TO 6 .40 1  EQUTED TO 6 .40 1  ROUTED TO 6 .40 1  HYDROGRAPH AT 7 .04 1  ROUTED TO 6 .40 1  ROUTED TO 6 .40 1  ROUTED TO 6 .40 1	
2 COMBINED 4 .40 1  ROUTED TO 5 .40 1  ROUTED TO 6 .40 1  HYDROGRAPH AT 7 .04 1  ROUTED TO 6 .04 1	
ROUTED TO 5 .40 1 ROUTED TO 6 .40 1 ROUTED TO 6 .40 1 HYDROGRAPH AT 7 .004 1 ROUTED TO 6 .004 1	•
ROUTED TO 540 1 ROUTED TO 640 1 HYDROGRAPH AT 704 1 ROUTED TO 804 1 ROUTED TO 804 1	
ROUTED TO 6 .440 1 27 27 1 .041 2 27 27 1 .041 2 27 27 1 .041 2 2 27 27 1 .041 2 2 27 27 1 .041 1 .041 2 2 27 27 1 .041 1 .041 2 2 27 27 27 27 27 27 27 27 27 27 27 27	
ROUTED TO 6 1.041 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
HYDROGRAPH AT 7 .004 1	
ROUTED TO 6 .04 1	
ROUTED TO 6 .04 1 ( .101 (	
,	
1 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) ( 104) (	
ROUTED 10	

		SUMMA	KY OF DAM	SUMMAKY OF DAM SAFETY ANALYSIS	LvSis			
						. WYO JO GOL		
PLAN 1	FLEVATION	INITIAL VAL	a H	SPILLMAY CREST		16.78.50		
	STORAGE	•0		0		730.		
	MAXIMUM	MAXIMUM	MAY I MUM	MAXIMUM	DURATION OVER TOP	TIME OF	TIME OF FAILURE	
06.	WeSekVolk WeSekLEV 1676-45		AC=F7	1990	HOURS 0.00	42.00	0.00	
				SPILLWAY CREST		TOP OF DAM		-
PLAN 2	STORAGE OUTFLOW	1675-00 42. 0.		16/9400		730.		
D-43	* MAXI MUM RESERVOIR W. S. S. ELEV	MAXIMUM DEPTH OVER DAM	MAX I MUM STORAGE AC-FT	MAXIMUM UNIFCON	OURATION OVER TOP HOURS	TIME OF HAX UNIFERM	TIME OF FAILURE HOURS	
D.E.	1676-45	າລ•ລ	17.	188	00.0	00.54	0.00	
						A see		
								•
					-	-	-	
				, m c				-

		שמששעו מי טאיי			•		
PLAN 1	INITIAL	L GE	SPILLWAY CREST		10P OF DAM 1663-10		
STORYCE STORYCE ON FLOW		• 0	0.0		82. 766.		
0	MAXIMUM DEPTH	돌빛	MAXIMUM COUTFLUM	DURATION OVER TOP	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS	
7. T. T. T. T. T. T. T. T. T. T. T. T. T.	0VER DAM 0.00	AC=F 1	276.	00.0	41.75	0.00	
PLAN 2 STORAGE STORAGE OUTFLOW	INITIAL		SPILLWAY CREST 1560400		10P OF DAM 1663.10 82. 766.		,
RATIO MAXIMUM OF TRESERVOIR PMF W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAX LININ STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS	
	00.00	68.	276•	00.0	41-12	0.00	
	RATIO	PLAN 1 HUM HAY IMUM FLOWS CFS	MAX1MUM STAGE OF T	11ME HOURS			
	930	276.	1620.9	42.00		-	
		PLAR 2	STATION	•	•		
	• RA110	MAX IMUM FLUM*CFS	MAXIMUM SIAGE »FI	T1ME HOURS			}
	•30	275.	1620.9	42.00			

			13	SUMMARY OF DI	DAM SAFFTY ANALYSIS	. 515411				
							•	. !		
PLAN I	•	ELEVATION	INITIAL VALUE	VALUE • 00	SPILLWAY CREST 1643.00		TOP OF DAM 1646.00			
		STORAGE		• 7. 0.	12. 0.		180.			
	KAT10 0F	MAXIMUM RESERVOIR	MAX1MUM DEPTH	MAX1MUM STURAGE	MAX14UM OUTFLOW	DURATION OVER TOP	TIME OF MAX OUTFLOW	TIME OF FAILURE		
	30,	#650EEEV 1666.27	UNER DAM	14-24	46.	HOURS 0.00	HOURS 40.50	HOURS.		
PLAN 2	99		INITIAL VALUE	VALUL	SPILLWAY CREST		TOP OF DAM			
		STURAGE DUTELOW	1643.00 12. 0.	3.00 12. 0.	1643-00 12• 0•		17. 17. 180.			
	PATIO OF PMF	MAXINUM MESERVOIR W.S.ELEV	MAXIMUM UEPTH OVER DAM	MAX I MUP STORAGE AC-FT	MAXIMUM CFS	DURATION DVER TOP HOURS	TIME OF MAX COUPLOIS	TIME OF FATEURE		
	.30	1044021	00.0	• 5 ]	40.	00.0	60.50	00.00	·	
,				PEAN	SIKTIÖN	10				
			KATIO	MAX IMUM FLUWSCFS	MAXIMUM STAGE OFT	TIME		•		
			• 30	305	1501.1	41.75			•	
			ā	PLAN 2	STATION	10				
		·	, KATIU	MAXIMUM FLOM•CFS	MAXIMUM S STACE FT	1 TIME I HOURS				
			• 30	305	1501-1	1. 41.75			!	٠

朝

· 76

>

· ...

APPENDIX E DRAWINGS

4 4

and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th

Many



APPENDIX F GEOLOGY

KIMBALL (L ROBERT) AND ASSOCIATES EBENSBURG PA
NATIONAL DAM INSPECTION PROGRAM, KEHLY RUN DAM NUMBER 3 (NDS ID--ETC(U)
MAR 80 R J KIMBALL AD-A083 747 NL

UNCLASSIFIED





## Kehly Run Dam No. 3 - General Geology

Kehly Run Dam No. 3 is located in the Appalachian Mountain Section of the Valley and Ridge Physiographic Province. This province is typified by numerous synclinal and anticlinal features. Some minor faulting is indicated to the south of the reservoir. The bedrock underlying the dam consists of the Pennsylvanian aged Pottsville Group. This unit consists of light to dark gray, fine grained to conglomeratic sandstone, with lesser amounts of shale, siltstone, limestone, coal and underclay. The bedding is generally well developed with the sandstones and siltstones often cross-bedded. Joints are usually regular and moderately well formed.

Both deep mining and surface mining of anthracite coal have taken place in the vicinity of this dam. The extent of any deep mining is unknown without extensive research.



# GEOLOGIC MAP OF THE AREA SURROUNDING RAVEN RUN DAMS NO. 2 AND 3, KEHLY RUN DAMS NO.3 AND 5, BRANDONVILLE PUMPING STATION RESERVOIR



Pottsville Group
Predominantly and stones and congrower
ates with the shales and coals, some sale
minimable to only.

#### ANTHRACITE REGION



#### Post-Pottsville Formations

Brown or grow and stores and stores with some conformerate and summer us need able conts.



#### Pottsville Group

Light way to white, course persons of a stone cand course realists of the course to said to said the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the said that the

### **MISSISSIPPIAN**



#### Mauch Chunk Formation

Markets Charles For that the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the Constraint of the C

SCALE 1:250,000

