Linear Algebra, Four Fundamental Subspaces Computational Intelligence, Lecture 2

by Sergei Savin

Fall 2020

Content

- Motivating questions
- Four Fundamental Subspaces
- Null space
- Row space
- Homework

Motivating questions

You have a linear operator **A**. Try to answer the following questions:

- What are all vectors this operator can produce as outputs? How to find them?
- Are there two inputs that make it produce the same output?
- Are there inputs that produce zero as an output?
- Are there outputs that cannot be produced?
- How to find all inputs that produce a unique output?

These questions are directly related to the idea of fundamental subspaces of a linear operator.

Four Fundamental Subspaces

One of the key ideas in the linear algebra is that every linear operator has four fundamental subspaces:

- Null space
- Row space
- Column space
- Left null space

Our goal is to understand them. The usefulness of this understating is enormous.

Null space

Consider the following task: find all solutions to the system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$.

It can be re-formulated as follows: find all elements of the null space of \mathbf{A} .

Definition 1

Null space of A is the set of all vectors x that A maps to 0

We will denote null space as $\mathcal{N}(\mathbf{A})$. In the literature, it is often denoted as $\ker(\mathbf{A})$.

Null space Example

Now we can find all solutions to the system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ by using functions that generate an *orthonormal basis* in the null space of \mathbf{A} . In MATLAB it is function null:

N = null(A).

That is it! Space of solutions of $\mathbf{A}\mathbf{x} = \mathbf{0}$ is the span of the columns of \mathbf{N} , and all solutions \mathbf{x}^* can be represented as $\mathbf{x}^* = \mathbf{N}\mathbf{z}$; for any \mathbf{z} we get a unique solution, and for any solution - a unique \mathbf{z} .

Consider another task: find all solutions to the system of equations Ax = y.

Assume we have two solutions to the system: \mathbf{x}_1 and \mathbf{x}_2 . We know that $\mathbf{A}\mathbf{x}_1 = \mathbf{A}\mathbf{x}_2 = \mathbf{y}$, hence $\mathbf{A}(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}$. In other words, the difference between any two solutions lies in the null space of \mathbf{A} .

On the other hand, let \mathbf{x}^* be a solution, and $\mathbf{x}^N \in \mathcal{N}(\mathbf{A})$ be a vector in the null space of **A**. Then $\mathbf{x}^* + \mathbf{x}^N$ is also a solution, since $\mathbf{A}(\mathbf{x}^* + \mathbf{x}^N) = \mathbf{A}\mathbf{x}^* + \mathbf{A}\mathbf{x}^N = \mathbf{A}\mathbf{x}^* = \mathbf{v}$.

Therefore, the solution space is given by a single particular solution $\mathbf{x}^p \notin \mathcal{N}(\mathbf{A})$ and the whole null space of \mathbf{A} .

There are infinitely many ways to chose \mathbf{x}^p , since if $\mathbf{x}^p \notin \mathcal{N}(\mathbf{A})$, then $(\mathbf{x}^p + \mathbf{x}^N) \notin \mathcal{N}(\mathbf{A})$, if $\mathbf{x}^N \in \mathcal{N}(\mathbf{A})$. However:

Statement 1

we can find only a single \mathbf{x}^p , such that $\mathbf{x}^p \cdot \mathbf{x}^N = 0$, $\forall \mathbf{x}^N \in \mathcal{N}(\mathbf{A})$, while $\mathbf{A}(\mathbf{x}^p + \mathbf{x}^N) = \mathbf{y}$.

Such \mathbf{x}^p lies in the row space of \mathbf{A} .

Definition 2

Row space of A is the set of all inputs to A that have a zero projection onto its null space.

Row space Example

Assuming $\mathbf{A}\mathbf{x} = \mathbf{y}$ has at least one solution, we can find it by solving *least squares* problem, or equivalently, using a pseudo-inverse:

$$xp = pinv(A)*y.$$

Now all solutions to the original problem are given as $\mathbf{x}^* = \mathbf{x}^p + \mathbf{N}\mathbf{z}$, using previous notation.

Homework

- Prove Statement 1.
- Come up with a way to check if a vector is in the row space of **A**.

Lecture slides are available via Moodle.

 $You\ can\ help\ improve\ these\ slides\ at:$ github.com/SergeiSa/Computational-Intelligence-Slides-Fall-2020

Check Moodle for additional links, videos, textbook suggestions.