BECA / Dr. Huson / Geometry October 3, 2018 Name:

Pre-test: Constructions

Section 1: Show your knowledge of Euclid's Elements.

Make the required construction using only a compass and straightedge Extra: State the steps of the construction

Construct a perpendicular bisector of the given line segment

 \overline{A} \overline{B}

Construct an angle bisector of the given angle.

BECA / Dr. Huson / Geometry
October 3, 2018

Name:

Section 2: Vocabular	Section	2:	Voca	bulary
----------------------	---------	----	------	--------

Write the term that best completes each statement.

1.	Points that are all located on the same line are
2.	A flat surface is a(n)
3.	The sum of the measures of supplementary angles is
4.	Two angles with a common side and vertex, but no overlap are called In other words, they are next to each other.
5.	Two or more line segments of equal measure are
6.	A(n) is a portion of a line that includes two points and all of the collinear points between the two points.
7.	A(n) is a portion of a line that begins with a single point and extends infinitely in the single point and extends in the single point a
8.	The measures of complementary angle sum to
9.	Two or more lines located in the same plane are

Homework: Pre-Quiz problems

1. In the figure, given that $\overline{AB} \cong \overline{BC}$, AB = x + 7, BC = 11. Solve for x, AB, and BC. Show each step.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra:

$$x =$$
 (1 pt)

$$AB =$$
 (1 pt)

$$BC = (1 pt)$$

Check (1 pt):

2. Given two complementary angles, $\angle ABC$ and $\angle DEF$. If $m\angle DEF = 55^{\circ}$ then solve for the measure of $\angle ABC$. Show the steps.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra (1 pt):

 $m\angle ABC =$

Check (1 pt):

3) Given the figure, $m \angle ABE = x$ and $m \angle DBE = 2x + 30$. Solve for x and the angle measures. Show each the step.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra:

$$x = (1 \text{ pt})$$

$$m\angle ABE = (1 \text{ pt})$$

$$m\angle DBE = (1 \text{ pt})$$

Check (1 pt):

4) Given that JK = 5x, KL = x + 2, and JL = 20. Find the value of x, JK, and KL. Show steps.

Geometry (1 pt):

J K L

Substitute (1 pt):

Solve algebra:

$$x =$$
 (1 pt)

$$JK =$$
 (1 pt)

$$KL =$$
 (1 pt)

Check (1 pt):

18) $\angle ABC$ and $\angle DEF$ are congruent angles.	$m \angle ABC = 3x - 20$, and $m \angle DEF = 2x + 10$	Find x and
the measure of each angle.			

Geometry:

Substitute:

Solve algebra:

$$x =$$

$$m\angle ABC =$$

$$m\angle DEF =$$

Check:

19) Given $m \angle 1 = 10x + 40$, $m \angle 2 = 2x + 20$ as shown in the figure. Solve for x and the measures of the two angles. Show the steps and check your result.

Geometry:

Substitute:

Solve algebra:

$$x =$$

$$m \angle 1 =$$

$$m\angle 2 =$$

Check: