ESERCITAZIONE 2

Algebre di Boole e funzioni logiche Circuiti combinatori e sequenziali

Algebre di Boole e funzioni logiche (1)

1) Rappresentare le funzioni logiche F e G in termini delle variabili A, B e C, in forma normale congiuntiva e disgiuntiva e poi con solo operazioni NOR:

A	В	C	${f F}$	G
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Algebre di Boole e funzioni logiche (1) Soluzioni (1)

- Forma normale disgiuntiva
 - 1. Per ogni riga tavola verità con valore 1
 - Variabili con valore 0 in forma negata
 - Variabili con valore 1 in forma positiva
 - 3. Prodotto tra variabili
 - 2. Somma espressioni ottenute

- Forma normale congiuntiva
 - Per ogni riga tavola verità con valore 0
 - Variabili con valore 0 in forma positiva
 - Variabili con valore 1 in forma negata
 - 3. Somma tra variabili
 - 2. Prodotto espressioni ottenute

Algebre di Boole e funzioni logiche (3) Soluzioni (2)

- Forma normale disgiuntiva
 - ightharpoonup $F=(\bar{A}\ \bar{B}\ \bar{C}\) + ABC$
 - \blacksquare G = AB \bar{C}

Forma normale congiuntiva

F =
$$(A + B + \bar{C}) * (A + \bar{B} + C) * (A + \bar{B} + \bar{C}) *$$

* $(\bar{A} + B + C) * (\bar{A} + \bar{B} + C) * (\bar{A} + B + \bar{C})$
• $G = (A + B + C) * (A + B + \bar{C}) * (A + \bar{B} + C) * (A + \bar{B} + \bar{C}) * (\bar{A} + B + \bar{C}) * (\bar{A} + \bar{C}) * (\bar{A}$

Algebre di Boole e funzioni logiche (1) Soluzioni (3)

Passare da Forma normale congiuntiva (POS) a Forma NOR

Algebre di Boole e funzioni logiche (3) Soluzioni (4)

- F= ¬(A NOR B NOR \bar{c}) * ¬(A NOR \bar{B} NOR C) * ¬(A NOR \bar{B} NOR \bar{c}) * ¬(\bar{A} NOR B NOR C) * ¬(\bar{A} NOR B NOR \bar{c}) per (1)
- F = (A NOR B NOR \bar{c}) * (A NOR \bar{B} NOR C) * (A NOR \bar{B} NOR \bar{c}) * (\bar{A} NOR B NOR C) * (\bar{A} NOR B NOR \bar{c}) per (2)
- \rightarrow (3) A = A NOR A
- F = (A NOR B NOR (C NOR C)) NOR (A NOR B NOR C) NOR (A NOR (B NOR B) NOR (C NOR C)) NOR ((A NOR A) NOR B NOR C) NOR ((A NOR A) NOR B NOR (C NOR C))

Algebre di Boole e funzioni logiche (3) Soluzioni (5)

G=(A NOR B NOR C) NOR (A NOR B NOR (C NOR C)) NOR (A NOR (B NOR B) NOR C) NOR (A NOR B) NOR (C NOR C)) NOR ((A NOR A) NOR B NOR C) NOR ((A NOR A) NOR B NOR (C NOR C)) NOR ((A NOR A) NOR (B NOR B) NOR (C NOR C))

Algebre di Boole e funzioni logiche (2)

2) Rappresentare in forma minima la funzione logica \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D} + \overline{A} BCD

Algebre di Boole e funzioni logiche (2) Soluzioni (1)

Forma minima:

- Consenso tra coppie congiunzioni
- Tutte variabili uguali, a meno di una negata
- Genero nuova congiunzione con solo le variabili per cui vale il consenso
 - Esempio $\bar{A} \bar{B} + \bar{A} B \rightarrow \bar{A}$
- Itero il procedimento fino a che non è più possibile comprimere

Algebre di Boole e funzioni logiche (4) Soluzioni (2)

Nella colonna # c'è l'identificativo della congiunzione, definito dal suo valore binario.

#	A	В	С	D	CONSENT
0	0	0	0	0	SI
2	0	0	1	0	SI
4	0	1	0	0	SI
6	0	1	1	0	SI
7	0	1	1	1	SI

Algebre di Boole e funzioni logiche (4) Soluzioni (3)

Nella colonna # c'è l'identificativo delle congiunzioni che, consentendo, hanno definito una nuova congiunzione

#	A	В	C	D	CONSENT
0 2	0	0	-	0	SI
0 4	0	-	0	0	SI
2 6	0	-	0	0	SI
4 6	0	1	-	0	SI
6 7	0	1	1	-	NO

Algebre di Boole e funzioni logiche (4) Soluzioni (4)

Nella colonna # c'è l'identificativo delle congiunzioni che, consentendo, hanno definito una nuova congiunzione

#	A	В	C	D	CONSENT
(0 4) (2 6)	0	-	-	0	NO
(0 2) (4 6)	0	-	-	0	NO

Si ottengono $\bar{A} \bar{D}$ (cioè $(0 \mid 4) \mid (2 \mid 6)$) e \bar{A} BC (cioè $(6 \mid 7)$).

Algebre di Boole e funzioni logiche (4) Soluzioni (5)

Verificare se uno degli implicanti è dominato, cioè se tutte le congiunzioni originali che lo contengono contengano anche l'altro implicante. Nel caso in cui questo si verifichi, l'implicante dominato viene rimosso dalla forma minima.

	0	2	4	6	7
$ar{A} \ ar{D}$	Χ	X	Χ	Χ	
$ar{A}$ BC				Χ	Χ

Nessun implicante è dominato in questo caso. La forma minima, dunque è $\bar{A}\ \bar{D}\ + \bar{A}$ BC

Circuiti combinatori e sequenziali

15

Circuiti combinatori e sequenziali (1)

1) Si costruisca un circuito multiplexer con 8 dati in input, un output e 3 input di controllo, che sia effettivamente in grado di calcolare il valore di verità di una funzione booleana a quattro variabili.

La funzione da calcolare è la seguente: $\overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ B \ \overline{C} \ D + A \ \overline{B} \ \overline{C} \ \overline{D}$

Circuiti combinatori e sequenziali (1) Soluzioni (1)

Un multiplexer a 3 input di controllo può rappresentare qualsiasi tavola di verità di una funzione booleana a 3 variabili. Per forzarlo a calcolare una funzione booleana a quattro variabili si deve conoscere la sua struttura interna, illustrata in figura. Sul libro (**Architettura dei calcolatori**, Tanenbaum), si trova a pagina 144.

Circuiti combinatori e sequenziali (1) Soluzioni (2)

Circuiti combinatori e sequenziali (1) Soluzioni (3)

Si inserisca all'interno del circuito la variabile D (e il suo corrispettivo D), in modo tale da collegarla agli input corretti, per soddisfare la funzione richiesta. Tutti gli altri input vanno collegati a terra. Quindi si desidera collegare D all'ingresso D_2 , corrispondente alla porta relativa a $\bar{A}\bar{B}\bar{C}$ e \bar{D} agli ingressi D_0 e D_4 , corrispondenti alle porte relative a $\bar{A}\bar{B}$ \bar{C} e $A\bar{B}\bar{C}$. Il risultato sarà, dunque, quello illustrato in figura.

Circuiti combinatori e sequenziali (2)

2) Un chip MSI molto comune è il sommatore a 4 bit. È possibile agganciare quattro di questi chip per ottenere un sommatore a 16 bit? Disegnarlo, se possibile. Quanti pin avrà il nuovo sommatore?

Circuiti combinatori e sequenziali (2) Soluzioni (1)

L'adder a 4 bit altro non è che la giustapposizione di 4 circuiti full-adder a un bit (sul libro, si tratta di questo argomento alle pagine 149-150).

Circuiti combinatori e sequenziali (2) Soluzioni (2)

I valori in ingresso sono indicati come le coppie di 4 pin A_1 , A_2 , A_3 , A_4 e B_1 , B_2 , B_3 , B_4 , che rappresentano i bit dal meno al più significativo dei valori A e B. Gli output sono i 4 bit risultanti e marcati con le tag S_1 , ..., S_4 . I riporti, invece sono rappresentati dalle tag C_1 per quello in ingresso e C_0 per quello in uscita.

Circuiti combinatori e sequenziali (1) Soluzioni (3)

I valori in ingresso sono indicati come le coppie di 4 pin A₁, A₂, A₃, A₄ e B₁, B₂, B₃, B4, che rappresentano i bit dal meno al più significativo dei valori A e B. Gli output sono i 4 bit risultanti e marcati con le tag S₁, ..., S₄. I riporti, invece sono rappresentati dalle tag C₁ per quello in ingresso e C₀ per quello in uscita.

Ora, è ovviamente possibile applicare la stessa idea usata per creare un sommatore a 4 bit per crearne uno a 16 bit. Il numero totale di pin finale è facilmente calcolabile: ne occorrono 32 per i dati in input, 16 per la somma in output, 1 per il riporto in ingresso iniziale (collegato, come nella figura sovrastante, alla terra) e 1 per il riporto in uscita finale. La somma è pari a 50. Il circuito risultante è mostrato in figura.

Circuiti combinatori e sequenziali (3)

3) Si studi un circuito flip-flop pilotato dal fronte di salita del clock. Lo si modifichi in modo tale che sia pilotato dal fronte di discesa del clock.

Circuiti combinatori e sequenziali (3) Soluzioni (1)

Il circuito flip-flop pilotato dalla salita del clock è mostrato in figura.

Per tutti gli aspetti teorici relativi al funzionamento e all'utilizzo del flip-flop, vi consiglio di vedere, sempre sul Tanenbaum, la pagine 157 e successive. Nella domanda, si fa riferimento al flip-flop temporizzato, indicato sul libro come flip-flop D.

Circuiti combinatori e sequenziali (3) Soluzioni (2)

Può sembrare che la porta E riceva sempre un segnale negativo, ma questo non è completamente vero, grazie al ritardo nella propagazione del segnale causato dalla presenza della porta NOT. La porta E, quindi, avrà valore 1 per un breve istante nel momento in cui CK (il clock) passa dal valore 0 al valore 1 (fronte di salita del clock).

Il funzionamento è mostrato qui a fianco.

Circuiti combinatori e sequenziali (3) Soluzioni (3)

Viene richiesto, dunque, che la porta Ericeva il segnale alto quando CK passa da 1 a 0, invece che da 0 a 1. La soluzione è abbastanza semplice: si vuole che E abbia valore 1 esclusivamente quando sia CK che **CK** (opportunamente ritardato) abbiano valore 0. Intuitivamente, è facile vedere (anche dalla tavola di verità) che la porta logica che fa al caso nostro è una porta NOR. Il circuito risultante, dunque, è quello illustrato in figura.

Circuiti combinatori e sequenziali (3) Soluzioni (4)

Questa seconda figura mostra l'andamento dei segnali, giusto per verificare che quanto abbiamo detto sia corretto.

