Genome Assembly and Annotation

Jason Stajich Univ of California, Riverside

Genome Assembly

Assembly approaches

De Brujin Graphs

Raw reads

Overlap Consensus

Annotation

- funannotate mask Identify repetitive sequences
 - RepeatMasker, tantan
- funannotate train Train gene predictors
 - Align mRNA transcripts to genome to identify exon/gene regions exonerate;
 - Align RNA-Seq reads to genome, assemble transcripts with Trinity
 - Refinement with PASA (Program to Assemble Spliced Alignments)
 - Train ab initio gene predictor from these spliced models

Annotation II

- funannotate predict
 - Align protein (and mRNA Transcripts) to genome as evidence to support predictions; refine alignment with exonerate to spliced exons
 - Gene prediction (augustus, SNAP, genemark, glimmerhmm)
 - Combine predictions with EVM

Annotation III

- funannotate update refine gene models with mRNA
 - Run PASA with models to extend Untranslated regions
 - Alternative Splicing

Annotation IV

- funannotate annotate align to databases to add functional info
 - BLAST against uniprot, swissprot, MEROPs database
 - HMM searches against Pfam, CAZyDB
 - Incorporate InterPro, AntiSMASH (secondary metabolite prediction)
 - Produces annotated genome files ready to upload to NCBI