$$\chi_{c2}(1P)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

See the Review on " $\psi(2S)$ and χ_c branching ratios" before the $\chi_{c0}(1P)$ Listings.

$\chi_{c2}(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3556.20 ± 0.09	OUR AVERAGE			
$3555.3 \pm \ 0.6$	± 2.2 2.5k	UEHARA	08 BELL	$\gamma \gamma ightarrow $ hadrons
3555.70 ± 0.59	± 0.39	ABLIKIM	05G BES2	$\psi(2S) \rightarrow \gamma \chi_{c2}$
3556.173± 0.123	3 ± 0.020	ANDREOTTI	05A E835	$p\overline{p} \rightarrow e^+e^-\gamma$
3559.9 ± 2.9		EISENSTEIN	01 CLE2	e^+e^{\cdot}
				e $^+$ e $^-\chi_{c2}$
3556.4 ± 0.7		BAI	99B BES	$\psi(2S) o \ \gamma X$
3556.22 ± 0.131	1 ± 0.020 585	¹ ARMSTRONG	92 E760	$\overline{p}p \rightarrow e^+e^-\gamma$
3556.9 ± 0.4	± 0.5 50	BAGLIN	86B SPEC	$\overline{p}p \rightarrow e^+e^-X$
3557.8 ± 0.2	± 4	² GAISER	86 CBAL	ψ (2 S) $ ightarrow ~\gamma$ X
3553.4 ± 2.2	66	³ LEMOIGNE	82 GOLI	185 π^- Be \rightarrow
		4		$\gamma \mu^+ \mu^- A$
3555.9 ± 0.7		⁴ OREGLIA	82 CBAL	. , , , ,
3557 ± 1.5	69	⁵ HIMEL	80 MRK2	$e^+e^- \rightarrow J/\psi 2\gamma$
3551 ± 11	15	BRANDELIK	79B DASP	$e^+e^- o J/\psi 2\gamma$
3553 \pm 4		⁵ BARTEL	78B CNTR	$e^+e^- ightarrow~J/\psi2\gamma$
3553 ± 4	± 4	^{5,6} TANENBAUM	78 MRK1	e^+e^-
3563 ± 7	360	⁵ BIDDICK	77 CNTR	$e^+e^- ightarrow \gamma X$
\bullet \bullet We do not	use the following	data for averages, fits	s, limits, etc.	• • •
$3555.4 \pm \ 1.3$	53	UEHARA	13 BELL	$\gamma\gamma \rightarrow K_S^0 K_S^0$
3543 ± 10	4	WHITAKER	76 MRK1	$e^+e^- o J/\psi2\gamma$

$\chi_{c2}(1P)$ WIDTH

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1.93 ± 0.11 OUR FIT 1.95 ± 0.13 OUR AVE					
$1.915 \!\pm\! 0.188 \!\pm\! 0.013$		ANDREOTTI	05A	E835	$p\overline{p} \rightarrow e^+e^-\gamma$
$1.96 \pm 0.17 \pm 0.07$	585	$^{ m 1}$ ARMSTRONG	92	E760	$\overline{p}p \rightarrow e^+e^-\gamma$
$2.6 \begin{array}{c} +1.4 \\ -1.0 \end{array}$	50	BAGLIN	86 B	SPEC	$\overline{p}p \rightarrow e^+e^-X$
$\begin{array}{ccc} 2.8 & +2.1 \\ -2.0 & \end{array}$		² GAISER	86	CBAL	ψ (2S) $ ightarrow \gamma X$

¹Recalculated by ANDREOTTI 05A.

¹ Recalculated by ANDREOTTI 05A, using the value of $\psi(2S)$ mass from AULCHENKO 03. Using mass of $\psi(2S)=3686.0$ MeV. $3J/\psi(1S)$ mass constrained to 3097 MeV. 4 Assuming $\psi(2S)$ mass =3686 MeV and $J/\psi(1S)$ mass =3097 MeV. 5 Mass value shifted by us by amount appropriate for $\psi(2S)$ mass =3686 MeV and $J/\psi(1S)$ mass =3097 MeV. 6 Erom a simultaneous fit to redictive and $J/\psi(1S)$ mass =3097 MeV.

⁶ From a simultaneous fit to radiative and hadronic decay channels.

² Errors correspond to 90% confidence level; authors give only width range.

$\chi_{c2}(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
	Hadronic de	ecavs	
Γ_1	$2(\pi^{+}\pi^{-})$	(1.07±0.10) %	
Γ_2	$_{\pi^{+}\pi^{-}\pi^{0}\pi^{0}}^{ ho}$		
Γ ₃		$(1.91\pm0.25)\%$	
Γ_4	$\rho^{+} \pi^{-} \pi^{0} + \text{c.c.}$	(2.3 \pm 0.4) %	_
Γ_5	$4\pi^0$	$(1.16\pm0.16)\times1$	
Γ_6	$K^{+}K^{-}\pi^{0}\pi^{0}$	($2.2~\pm0.4$) \times 1	$^{0-3}$
Γ_7	$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$	$(1.44\pm0.21)\%$	2
Γ ₈	$\rho^- K^+ \overline{K}{}^0 + \text{c.c.}$	(4.3 ± 1.3) \times 1	
Γ ₉	$K^*(892)^0 K^- \pi^+ \to$	($3.1~\pm0.8$) $ imes$ 1	0-3
г	$K^-\pi^+K^0\pi^0$ + c.c. $K^*(892)^0\overline{K}^0\pi^0 \to$	(, , , , , , , , , , , , , , , , , , ,	3
Γ ₁₀		(4.0 ± 0.9) $ imes 1$	0-3
Γ ₁₁	$K^+\pi^-\overline{K}^0\pi^0+\text{c.c.}$ $K^*(892)^-K^+\pi^0 \rightarrow$	($3.9~\pm0.9~) imes1$	n-3
' 11	$K = K + \pi - \overline{K^0} \pi^0 + \text{c.c.}$	(3.9 ±0.9) × 1	O
Γ_{12}	$K^*(892)^+\overline{K}{}^0\pi^- \rightarrow$	($3.1~\pm0.8~) imes1$	0-3
12	$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	()	
Γ_{13}	$K^+K^-\eta\pi^0$	(1.3 ± 0.5) \times 1	0-3
	$K^+K^-\pi^+\pi^-$	(8.9 ± 1.0) \times 1	0-3
Γ_{15}	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.17\pm0.13)\%$	
Γ_{16}	$K^0_S K^\pm \pi^\mp \pi^+ \pi^-$	(7.3 \pm 0.8) $ imes$ 1	0-3
Γ_{17}	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	($2.2~\pm1.1$) $ imes1$	0-3
Γ ₁₈	$K^*(892)^0 \overline{K}^*(892)^0$	($2.4~\pm0.5$) $ imes1$	0-3
	$3(\pi^{+}\pi^{-})$	($8.6~\pm1.8~) imes 1$	
Γ_{20}	$\phi\phi$	$(1.12\pm0.10) \times 1$	0-3
Γ_{21}	$\omega \omega$	(8.8 ± 1.1) $ imes 1$	0^{-4}
Γ_{22}	ω K ⁺ K ⁻	(7.3 \pm 0.9) $ imes$ 1	0^{-4}
Γ_{23}	$\omega \phi$		_
Γ ₂₄	$\pi\pi$	$(2.33\pm0.12)\times1$	
Γ ₂₅	$\rho^0\pi^+\pi^-$	(3.8 ± 1.6) $ imes 1$	
	$\pi^+\pi^-\eta$	(5.0 ± 1.3) $ imes 1$	
	$\pi^+\pi^-\eta'$	(5.2 ± 1.9) $ imes 1$	
Γ ₂₈	$\eta\eta$	(5.7 ± 0.5) \times 1	
Γ ₂₉	K+ K-	$(1.05\pm0.07)\times1$	
I ₃₀	$\frac{K_{S}^{0}}{K_{S}^{0}}$	(5.5 ± 0.4) \times 1	
Γ ₃₁	$\overline{K}^{0}K^{+}\pi^{-}$ + c.c.	$(1.34 \pm 0.19) \times 1$	
I 32	$K^+K^-\pi^0$	(3.2 ± 0.8) \times 1	
I 33	$K^+K^-\eta$		0 ⁻⁴ 90%
	$K^{+}_{'}K^{-}\eta'(958)$	$(1.94\pm0.34)\times1$	
	$\eta \eta'$		0^{-5} 90%
I 36	$\eta'\eta'$	< 1.0 × 1	0 ⁻⁴ 90%

F	_+ \(\nu_0\) \(\nu_0\)	(00 106) 10-3	
I 37	$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.3 \pm 0.6) \times 10^{-3}$	000/
I 38	$K^+K^-K^0_5K^0_5$	$< 4 \times 10^{-4}$	90%
I 39	K+K-K+K-	$(1.73\pm0.21)\times10^{-3}$	
I ₄₀	$K^+K^-\phi$	$(1.48\pm0.31)\times10^{-3}$	
I ₄₁	$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$	
Γ ₄₂	$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$	
	$\phi \pi^+ \pi^- \pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$	
Γ_{44}	p p	$(7.5 \pm 0.4) \times 10^{-5}$	
Γ ₄₅	$p\overline{p}\pi^0$	$(4.9 \pm 0.4) \times 10^{-4}$	
	$p\overline{p}\eta$	$(1.82\pm0.26)\times10^{-4}$	
	$p\overline{p}\omega$	$(3.8 \pm 0.5) \times 10^{-4}$	
	$p\overline{p}\phi$	$(2.9 \pm 0.9) \times 10^{-5}$	
Γ ₄₉	$p\overline{p}\pi^{+}\pi^{-}$	$(1.32\pm0.34)\times10^{-3}$	
Γ ₅₀	$p\overline{p}\pi^0\pi^0$	$(8.2 \pm 2.5) \times 10^{-4}$	
Γ ₅₁	$p\overline{p}K^+K^-$ (non-resonant)	$(2.00\pm0.34)\times10^{-4}$	
Γ ₅₂	$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	90%
	$p\overline{n}\pi^-$	$(8.9 \pm 1.0) \times 10^{-4}$	
Γ ₅₄	$\overline{p}n\pi^+$	$(9.3 \pm 0.9) \times 10^{-4}$	
Γ ₅₅	$p\overline{n}\pi^-\pi^0$	$(2.27\pm0.19)\times10^{-3}$	
	$\overline{p}\underline{n}\pi^{+}\pi^{0}$	$(2.21\pm0.20)\times10^{-3}$	
Γ ₅₇	$\Lambda\underline{\Lambda}$	$(1.92\pm0.16)\times10^{-4}$	
50	$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.31\pm0.17)\times10^{-3}$	
Γ ₅₉	$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.9 \pm 1.6) \times 10^{-4}$	
Γ ₆₀	$\Sigma(1385)^+\overline{\Lambda}\pi^{}+{ m c.c.}$	$< 4 \times 10^{-4}$	90%
Γ_{61}	$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$	$< 6 \times 10^{-4}$	90%
Γ_{62}	$K^+_{,} \overline{p} \Lambda + \text{c.c.}$	$(8.1 \pm 0.6) \times 10^{-4}$	
Γ ₆₃	$K^+\overline{p}\Lambda(1520)$ + c.c.	$(2.9 \pm 0.7) \times 10^{-4}$	
Γ ₆₄	$\Lambda(1520)\overline{\Lambda}(1520)$	$(4.8 \pm 1.5) \times 10^{-4}$	
Γ ₆₅	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	$< 6 \times 10^{-5}$	90%
Γ ₆₆	$\Sigma^{+}\overline{\Sigma}^{-}$	$< 7 \times 10^{-5}$	90%
Γ ₆₇	$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 1.6 \times 10^{-4}$	90%
Γ ₆₈	$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	$<$ 8 \times 10 ⁻⁵	90%
Γ ₆₉	$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.84\pm0.34)\times10^{-4}$	
Γ_{70}	=0 $=0$	$< 1.1 \times 10^{-4}$	90%
Γ_{71}	$K^{-} \Lambda \overline{\Xi}^{+} + \text{c.c.}$ $\Xi^{0} \overline{\Xi}^{0}$ $\Xi^{-} \overline{\Xi}^{+}$	$(1.48\pm0.33)\times10^{-4}$	
Γ_{72}	$J/\psi(1S)\pi^+\pi^-\pi^0$	< 1.5 %	90%
	$\pi^0 \eta_c$	$< 3.2 \times 10^{-3}$	90%
Γ ₇₄	$\eta_c(1S)\pi^+\pi^-$	$< 5.4 \times 10^{-3}$	90%
	Radiative do	ecays	
Гъг	$\sim 1/\psi(1S)$	(19.2 + 0.7)%	

$$\Gamma_{75} \quad \gamma J/\psi(1S)$$
 (19.2 ±0.7)% $<$ 2.0 × 10⁻⁵ 90%

Γ_{77}	$\gamma \omega$	< 6	\times 10 ⁻⁶	90%
Γ ₇₈	$\gamma\phi$	< 8	$\times 10^{-6}$	90%
Γ ₇₉	$\gamma \gamma$	(2.7	$(4\pm0.14)\times10^{-4}$	

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{c1}(1P)$, $\chi_{c0}(1P)$, $\chi_{c2}(1P)$, and $\psi(2S)$ with 4 total widths, a partial width, 25 combinations of partial widths obtained from integrated cross section, and 84 branching ratios uses 239 measurements to determine 49 parameters. The overall fit has a $\chi^2=342.4$ for 190 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\mathsf{total}}$.

	ı									
<i>x</i> ₁₄	13									
<i>x</i> ₁₇	3	21								
<i>x</i> ₁₈	8	7	1							
<i>x</i> ₂₀	14	12	3	7						
<i>x</i> ₂₄	19	16	3	10	24					
<i>x</i> ₂₅	19	3	1	2	3	4				
<i>x</i> ₂₈	11	9	2	6	14	27	2			
<i>x</i> ₂₉	14	12	3	7	17	33	3	19		
<i>x</i> ₃₀	13	11	2	6	15	28	3	17	20	
<i>x</i> ₃₁	7	6	1	4	8	16	1	9	11	10
<i>x</i> 39	9	8	2	5	10	18	2	10	13	11
<i>x</i> ₄₄	16	13	3	8	16	24	4	14	17	15
<i>×</i> 57	11	9	2	6	14	28	2	16	20	17
<i>×</i> 75	24	21	4	12	29	55	5	32	40	34
<i>×</i> 79	-8	-6	-1	-3	1	19	-2	13	13	10
Γ	-28	-23	-5	-14	-28	-43	-6	-25	-32	-28
	x_1	<i>×</i> 14	×17	<i>x</i> ₁₈	<i>x</i> ₂₀	<i>x</i> ₂₄	^x 25	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> 30
<i>x</i> 39	6									
<i>x</i> ₄₄	8	10								
<i>×</i> 57	9	11	14							
<i>×</i> 75	19	22	19	33						
<i>×</i> 79	6	4	26	13	30					
Γ	-15	-19	-54	-25	-61	-52				
	<i>x</i> ₃₁	<i>x</i> 39	×44	×57	<i>x</i> ₇₅	×79				

$\chi_{c2}(1P)$ PARTIAL WIDTHS

χ_{c2} (1*P*) Γ(i)Γ($\gamma J/\psi(1S)$)/Γ(total) χ_{c2}

$\Gamma(p)$	\overline{p}	×	Γ($(\gamma J$	$/\psi$	(1S))/	/Γ _t	otal
-------------	----------------	---	----	-------------	---------	------	----	-----------------	------

 $\Gamma_{44}\Gamma_{75}/\Gamma$

VALUE (eV)	DOCUMENT ID	TECN	COMMENT
27.9±1.3 OUR FIT			
27.5 ± 1.5 OUR AVERAGE			
$27.0 \pm 1.5 \pm 1.1$	¹ ANDREOTTI 0)5A E835	$p \overline{p} ightarrow e^+ e^- \gamma$
$27.7 \pm 1.5 \pm 2.0$	^{1,2} ARMSTRONG 9	2 E760	$\overline{p}p \rightarrow e^+e^-\gamma$
36 ±8	¹ BAGLIN 8	86B SPEC	$\overline{p}p \rightarrow e^+e^-X$
¹ Calculated by us using B(J_{I}		$0.0593 \pm 0.$	0010.

²Recalculated by ANDREOTTI 05A.

 $\Gamma(\gamma\gamma) \times \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$

 $\Gamma_{79}\Gamma_{75}/\Gamma$

, , ,				
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT
102± 5 OUR FI	Т			
117± 10 OUR A	VERAGE			
$111\pm 12\pm 9$	147 ± 15	¹ DOBBS	06 CLE3	$10.4 e^+ e^- \rightarrow e^+ e^- \chi_{c2}$
		1.0		$e^+e^-\chi_{c2}$
$114\pm 11\pm 9$	136 ± 13.3	1,2 ABE	02T BELL	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$139 \pm 55 \pm 21$		^{1,3} ACCIARRI	99E L3	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$242 \pm 65 \pm 51$		^{1,4} ACKER,K	98 OPAL	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$150 \pm 42 \pm 36$		1,5 DOMINICK	94 CLE2	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
$470 \pm 240 \pm 120$		^{1,6} BAUER	93 TPC	$e^+e^- \rightarrow e^+e^-\chi_{c2}$
				· · ·

¹ Calculated by us using B($J/\psi \rightarrow \ell^+\ell^-$) = 0.1187 \pm 0.0008.

----- χ_{c2} (1P) Γ(i)Γ($\gamma\gamma$)/Γ(total) -----

$\Gamma(2(\pi^+\pi^-)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$

 $\Gamma_1\Gamma_{79}/\Gamma$

VALUE (EV)	LVIJ	DOCUMENT ID		TLCIV	COMMENT
5.7 ±0.5 OUR FIT					
5.2 \pm 0.7 OUR AVERA	IGE				
$5.01\pm0.44\pm0.55$ 1597	7 ± 138	UEHARA	80	BELL	$\gamma \gamma \rightarrow \chi_{c2} \rightarrow 2(\pi^+\pi^-)$
$6.4\ \pm 1.8\ \pm 0.8$		EISENSTEIN	01	CLE2	$e^+e^- \rightarrow e^+e^-\chi_{c2}$

² All systematic errors added in quadrature.

³ The value for $\Gamma(\chi_{c2} \to \gamma \gamma)$ reported in ACCIARRI 99E is derived using B($\chi_{c2} \to \gamma J/\psi(1S)$)×B($J/\psi(1S) \to \ell^+\ell^-$) = 0.0162 \pm 0.0014.

⁴ The value for $\Gamma(\chi_{c2} \to \gamma \gamma)$ reported in ACKERSTAFF,K 98 is derived using B($\chi_{c2} \to \gamma J/\psi(1S)$) = 0.135 ± 0.011 and B($J/\psi(1S) \to \ell^+\ell^-$) = 0.1203 ± 0.0038.

⁵ The value for Γ($\chi_{c2} \to \gamma \gamma$) reported in DOMINICK 94 is derived using B($\chi_{c2} \to \gamma J/\psi(1S)$)= 0.135 ± 0.011, B($J/\psi(1S) \to e^+e^-$) = 0.0627 ± 0.0020, and B($J/\psi(1S) \to \mu^+\mu^-$) = 0.0597 ± 0.0025.

⁶ The value for Γ($\chi_{c2} \rightarrow \gamma \gamma$) reported in BAUER 93 is derived using B($\chi_{c2} \rightarrow \gamma J/\psi(1S)$)= 0.135 ± 0.011, B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0627 ± 0.0020, and B($J/\psi(1S) \rightarrow \mu^+\mu^-$) = 0.0597 ± 0.0025.

```
\Gamma(\rho\rho) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                        \Gamma_2\Gamma_{79}/\Gamma
                                            DOCUMENT ID
                                                                        TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                        BELL \gamma\gamma \rightarrow \chi_{c2} \rightarrow 2(\pi^+\pi^-)
                            < 598
< 7.8
                     90
                                            UEHARA
                                                                 80
\Gamma(K^+K^-\pi^+\pi^-) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{14}\Gamma_{79}/\Gamma
                                         DOCUMENT ID TECN COMMENT
4.7 \pm0.5 OUR FIT
                                                           08 BELL \gamma\gamma \rightarrow \chi_{c2} \rightarrow K^+K^-\pi^+\pi^-
4.42 \pm 0.42 \pm 0.53 780 \pm 74
                                        UEHARA
\Gamma(K^+K^-\pi^+\pi^-\pi^0) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{15}\Gamma_{79}/\Gamma
                                             DOCUMENT ID TECN COMMENT
                          EVTS
                                             DEL-AMO-SA..11M BABR \gamma\gamma \to \kappa^+ \kappa^- \pi^+ \pi^- \pi^0
6.5\pm0.9\pm1.5
                             1250
\Gamma(K^*(892)^0\overline{K}^*(892)^0) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{18}\Gamma_{79}/\Gamma
                                                                 TECN COMMENT
VALUE (eV)
                                         DOCUMENT ID
                              EVTS
1.26±0.24 OUR FIT
                                        UEHARA 08 BELL \gamma \gamma \rightarrow \chi_{c2} \rightarrow K^+ K^- \pi^+ \pi^-
0.8 \pm0.17\pm0.27 151 \pm 30
\Gamma(\phi\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{20}\Gamma_{79}/\Gamma
VALUE (eV)
                                           DOCUMENT ID TECN COMMENT
0.59 ± 0.05 OUR FIT
0.62 \pm 0.07 \pm 0.05 89 \pm 11 1 LIU
                                                                12B BELL \gamma \gamma \rightarrow 2(K^+K^-)
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.58 \pm 0.18 \pm 0.16 26.5 \pm 8.1
                                           UEHARA
                                                                08 BELL \gamma\gamma \rightarrow \chi_{C2} \rightarrow 2(K^+K^-)
   <sup>1</sup> Supersedes UEHARA 08. Using B(\phi \rightarrow K^+K^-) = (48.9 \pm 0.5)%.
\Gamma(\omega\omega) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{21}\Gamma_{79}/\Gamma
                                               DOCUMENT ID _____ TECN COMMENT
VALUE (eV)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                 90
                                             ^{1} LIU
                                                                    12B BELL \gamma \gamma \rightarrow 2(\pi^+\pi^-\pi^0)
   <sup>1</sup> Using B(\omega \to \pi^+ \pi^- \pi^0) = (89.2 ± 0.7)%.
\Gamma(\omega \phi) \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}
                                                                                                       \Gamma_{23}\Gamma_{79}/\Gamma
                                           DOCUMENT ID TECN COMMENT
VALUE (eV)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>1</sup> LIU
                                                           12B BELL \gamma \gamma \rightarrow K^+K^-\pi^+\pi^-\pi^0
  <sup>1</sup> Using B(\phi \to K^+K^-) = (48.9 \pm 0.5)% and B(\omega \to \pi^+\pi^-\pi^0) = (89.2 \pm 0.7)%.
\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{24}\Gamma_{79}/\Gamma
VALUE (eV)
                                                                  TECN COMMENT
1.23 ± 0.08 OUR FIT
1.18±0.25 OUR AVERAGE
                                                              09 BELL 10.6 e^+e^- \rightarrow e^+e^-\pi^0\pi^0
                                         <sup>1</sup> UEHARA
1.44 \pm 0.54 \pm 0.47 34 \pm 13
                                         ^2 NAKAZAWA 05 BELL 10.6 e^+e^- \rightarrow e^+e^-\pi^+\pi^-
1.14 \pm 0.21 \pm 0.17 54 ± 10
   <sup>1</sup>We multiplied the measurement by 3 to convert from \pi^0\pi^0 to \pi\pi. Interference with
     the continuum included.
   <sup>2</sup>We have multiplied \pi^+\pi^- measurement by 3/2 to obtain \pi\pi.
```

$\Gamma(ho^0\pi^+\pi^-)$ ×	$\Gamma(\gamma\gamma)/\Gamma_{ m tc}$	otal				Γ ₂₅ Γ ₇₉ /Γ
VALUE (eV)		DOCUMENT ID		TECN	COMMENT	
2.0±0.9 OUR FIT						
3.2±1.9±0.5	986 ± 578	UEHARA	80	BELL	$\gamma\gamma \rightarrow \chi_{c2}$	\rightarrow 2($\pi^+\pi^-$)
$\Gamma(\eta\eta) \times \Gamma(\gamma\gamma)$	/F _{total}					$\Gamma_{28}\Gamma_{79}/\Gamma$
VALUE (eV)		DOCUMENT ID		TECN	COMMENT	- 20- 19/
0.53±0.22±0.09		¹ UEHARA				$\rightarrow e^+e^-nn$
¹ Interference wit				DELL	10.0 0	
						Г. Г. /Г
$\Gamma(K^+K^-) \times \Gamma$						$\Gamma_{29}\Gamma_{79}/\Gamma$
<u>VALUE (eV)</u> 0.56±0.04 OUR FI	<u>EV15</u>	DOCUMENT ID	<u>IEC</u>	<u>.N CO</u>	MMENI	
$0.44 \pm 0.11 \pm 0.07$		NAKAZAWA 0	5 BEI	LL 10.	.6 $e^+e^- \rightarrow e^-$	e ⁺ e ⁻ K ⁺ K ⁻
$\Gamma(\kappa_0 \kappa_0) \sim \Gamma(\kappa_0 \kappa_0)$	ر مرمر) \ر	_				ГааГ-а /Г
$\Gamma(K_S^0K_S^0) \times \Gamma($			F 10	TF (OMMENT	Γ ₃₀ Γ ₇₉ /Γ
VALUE (eV) 0.291±0.025 OUR	EIT	<u>DOCUMEN I</u>	ID	IEC	N COMMENT	
$0.27 \begin{array}{l} +0.07 \\ -0.06 \end{array} \pm 0.03$		¹ UEHARA	1	ıs RFI	$1 \gamma \gamma \rightarrow K$	0 _K 0
-0.06 ±0.05 • • • We do not us						s '`s
		_	_			+ -
$0.31 \pm 0.05 \pm 0.03$		CHEN	(NR BEI	_L e'e →	$e \cdot e \chi_{c2}$
¹ Supersedes CHE	Ξ N 07 B.					
$\Gamma(\overline{K}^0K^+\pi^-+c$.c.) \times $\Gamma(\gamma$	$(\gamma)/\Gamma_{total}$				Γ ₃₁ Γ ₇₉ /Γ
		DOCUMENT	ID	TEC	N COMMENT	
0.71±0.11 OUR FI		1				O+ +
		¹ DEL-AMO-				$SK^{\pm}\pi^{\mp}$
$^{ m 1}$ We have multip	lied $\overline{K}K\pi$ b	y 2/3 to obtain \overline{I}	₹ ⁰ κ+	$\pi^{-} +$	c.c.	
Γ(K+K-K+K-	$^{-}) \times \Gamma(\gamma^{\prime})$	$\gamma)/\Gamma_{\rm total}$				Γ ₃₉ Γ ₇₉ /Γ
VALUE (eV)		DOCUMENT ID		TECN	COMMENT	
0.91±0.12 OUR FI	T					
$1.10\pm0.21\pm0.15$	126 ± 24	UEHARA	80	BELL	$\gamma \gamma \rightarrow \chi_{c2}$	$\rightarrow 2(K^+K^-)$
	Г()/Factor				Γ ₇₄ Γ ₇₉ /Γ
$\Gamma(\eta_c(1S)\pi^+\pi^-)$	$)$ $ imes$ \mathbf{I} ($\gamma\gamma$	//·totai				
$\Gamma(\eta_c(1S)\pi^+\pi^-)$ VALUE (eV)	• •			TECN	COMMENT	
VALUE (eV)	• •		12AE	<i>TECN</i> BABR	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow e^+}$	$e^{-}\pi^{+}\pi^{-}\eta_{c}$
VALUE (eV)	90	DOCUMENT ID LEES	12AE	BABR	$e^+e^- \rightarrow e^+$	$e^{-}\pi^{+}\pi^{-}\eta_{C}$
VALUE (eV)	90		12AE	BABR	$e^+e^- \rightarrow e^+$	$e^-\pi^+\pi^-\eta_C$
VALUE (eV)	90 Xc2	DOCUMENT ID LEES	12AE	BABR RATIO	$e^+e^- \rightarrow e^+$	$-e^{-\pi^{+}\pi^{-}\eta_{c}}$
VALUE (eV) <15.7	CL% 90 Xc2 (DOCUMENT ID LEES (1P) BRANCH	12AE	BABR RATIO	$e^+e^- \rightarrow e^+$	
$\frac{\text{VALUE (eV)}}{<15.7}$ $\Gamma(2(\pi^{+}\pi^{-}))/\Gamma_{\text{tot}}$	20	DOCUMENT ID LEES (1P) BRANCH HADRONIC I	12AE	BABR RATIO	$e^+e^- \rightarrow e^+$	- e ⁻ π ⁺ π ⁻ η _c
VALUE (eV) <15.7	20	DOCUMENT ID LEES (1P) BRANCH	12AE	BABR RATIO	$e^+e^- \rightarrow e^+$	

 $\Gamma(\rho^0\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$ Γ_{25}/Γ_1 TECN COMMENT 0.36 ± 0.15 OUR FIT

 0.31 ± 0.17

TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c2}$

 $\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\text{total}}$ $1.91 \pm 0.24 \pm 0.07$

 1 HE 08B reports 1.87 \pm 0.07 \pm 0.22 \pm 0.13 % from a measurement of $[\Gamma(\chi_{c2}(1P)
ightarrow$ $\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\mathsf{total}}]\times [\mathsf{B}(\psi(2S)\to \gamma\chi_{\mathcal{C}2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S)\to \gamma\chi_{\mathcal{C}2}(1P))=0$ $(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value B $(\psi(2S)\to\gamma\chi_{c2}(1P))$ $= (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\rho^+\pi^-\pi^0+\text{c.c.})/\Gamma_{\text{total}}$ $2.28\pm0.35\pm0.08$

 1 HE 08B reports 2.23 \pm 0.11 \pm 0.32 \pm 0.16 % from a measurement of $[\Gamma(\chi_{c2}(1P)
ightarrow$ $ho^+\pi^-\pi^0+ \text{ c.c.})/\Gamma_{ ext{total}}] imes [\mathsf{B}(\psi(2S) o \gamma\chi_{c2}(1P))] ext{ assuming } \mathsf{B}(\psi(2S) o \gamma\chi_{c2}(1P))$ $\gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c2}(1P) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Calculated by us. We have added the values from HE 08B for $ho^+\pi^-\pi^0$ and $ho^-\pi^+\pi^0$ decays assuming uncorrelated statistical and fully correlated systematic uncertainties.

 $\Gamma(4\pi^0)/\Gamma_{\text{total}}$

 $\frac{\textit{DOCUMENT ID}}{1 \text{ ABLIKIM}} \qquad \frac{\textit{TECN}}{11 \text{ ABES3}} \quad \frac{\textit{COMMENT}}{e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c2}}$ VALUE (units 10^{-3}) EVTS

 1 ABLIKIM 11A reports (1.21 \pm 0.05 \pm 0.16) \times 10 $^{-3}$ from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow$ $(4\pi^0)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P))]$ assuming $\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P)) = (8.74 \pm 1.0)$ $0.35) imes 10^{-2}$, which we rescale to our best value B($\psi(2S)
ightarrow \gamma \chi_{c2}(1P)$) = $(9.11 \pm$ $0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-\pi^0\pi^0)/\Gamma_{\text{total}}$ $0.22\pm0.04\pm0.01$

 1 HE 08B reports 0.21 \pm 0.03 \pm 0.03 \pm 0.01 % from a measurement of $[\Gamma(\chi_{c2}(1P)
ightarrow$ $K^+K^-\pi^0\pi^0)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma\chi_{c2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma\chi_{c2}(1P))$ = $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) = $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0} + \text{c.c.})/\Gamma_{\text{total}}$ 1 HE $1.44 \pm 0.20 \pm 0.05$ 211.6

¹ HE 08B reports $1.41 \pm 0.11 \pm 0.16 \pm 0.10$ % from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\rho^- K^+ \overline{K}^0 + \text{c.c.})/\Gamma_{\text{total}}$ VALUE (%) VALUE (%)

 1 HE 08B reports 0.42 \pm 0.11 \pm 0.06 \pm 0.03 % from a measurement of $[\Gamma(\chi_{c2}(1P)\to\rho^{-}K^{+}\overline{K}^{0}+\text{ c.c.})/\Gamma_{\text{total}}]\times[B(\psi(2S)\to\gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 1 HE 08B reports 0.30 \pm 0.07 \pm 0.04 \pm 0.02 % from a measurement of $[\Gamma(\chi_{c2}(1P)\to K^*(892)^0\,K^-\pi^+\to K^-\pi^+K^0\pi^0+{\rm c.c.})/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^*(892)^0\overline{K}^0\pi^0 \to K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.})/\Gamma_{\text{total}}$ $\Gamma_{10}/\Gamma_{\text{total}}$ $\Gamma_{10}/\Gamma_{\text{total}}$

 1 HE 08B reports 0.39 \pm 0.07 \pm 0.05 \pm 0.03 % from a measurement of $[\Gamma(\chi_{c2}(1P)\to K^*(892)^0\overline{K}^0\pi^0\to K^+\pi^-\overline{K}^0\pi^0+{\rm c.c.})/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 1 HE 08B reports 0.38 \pm 0.07 \pm 0.04 \pm 0.03 % from a measurement of $[\Gamma(\chi_{c2}(1P)\to K^*(892)^-K^+\pi^0\to K^+\pi^-\overline{K}^0\pi^0+{\rm c.c.})/\Gamma_{\rm total}]\times [B(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 1 HE 08B reports 0.30 \pm 0.07 \pm 0.04 \pm 0.02 % from a measurement of $[\Gamma(\chi_{C2}(1P)
ightarrow$ $K^*(892)^+\overline{K}^0\pi^- \rightarrow K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.})/\Gamma_{\text{total}} \times [B(\psi(2S) \rightarrow \gamma\chi_{C2}(1P))]$ assuming B($\psi(2S) \to \gamma \chi_{C2}(1P)$) = $(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c2}(1P)$) = $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-\eta\pi^0)/\Gamma_{\text{total}}$ 1 HE 08B reports 0.13 \pm 0.04 \pm 0.02 \pm 0.01 % from a measurement of $[\Gamma(\chi_{c2}(1P)
ightarrow$

 $\textit{K}^+\textit{K}^-\eta\pi^0)/\Gamma_{\text{total}}]\times [\texttt{B}(\psi(2S)\to\gamma\chi_{c2}(1P))] \text{ assuming } \texttt{B}(\psi(2S)\to\gamma\chi_{c2}(1P))=0$ $(9.33\pm0.14\pm0.61) imes10^{-2}$, which we rescale to our best value B $(\psi(2S) o\gamma\chi_{C2}(1P))$ = $(9.11\pm0.31) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

VALUE (units 10^{-3})

DOCUMENT ID 8.9±1.0 OUR FIT

 $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$

 Γ_{15}/Γ

VALUE (units 10^{-3}) EVTSDOCUMENT ID TECN COMMENT ¹ ABLIKIM 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c2}$ 11.69±0.13±1.31 11k $^{1}\, \rm Using~1.06 \times 10^{8}~ \psi(2S)~mesons~and~B(\psi(2S) \rightarrow~\chi_{\it C2}\, \gamma) = (8.72\,\pm\,0.34)\%.$

 $\Gamma(K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-})/\Gamma_{\text{total}}$

 Γ_{16}/Γ

 $1 \frac{\textit{DOCUMENT ID}}{\textit{ABLIKIM}}$ 13B BES3 $e^+e^-
ightarrow \psi(2S)
ightarrow \gamma \chi_{c2}$ VALUE (units 10^{-3}) EVTS 1 Using $1.06\times10^{8}~\psi(2S)$ mesons and B($\psi(2S)\rightarrow~\chi_{\it C2}\gamma)=$ (8.72 \pm 0.34)%.

 $\Gamma(K^+\overline{K}^*(892)^0\pi^- + \text{c.c.})/\Gamma(K^+K^-\pi^+\pi^-)$

 Γ_{17}/Γ_{14}

VALUE

0.25 ± 0.13 OUR FIT 0.25 ± 0.13

TANENBAUM 78 MRK1 $\psi(2S)
ightarrow \gamma \chi_{c2}$

 $\Gamma(K^+\overline{K}^*(892)^0\pi^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-4})

DOCUMENT ID

22+11 OUR FIT

 $\Gamma(K^*(892)^0\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{18}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-3})

DOCUMENT ID

2.4±0.5 OUR FIT

 $\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{19}/Γ VALUE (units 10^{-3}) **8.6±1.8 OUR EVALUATION** Treating systematic error as correlated. 8.6±1.8 OUR AVERAGE ¹ BAI $8.6 \pm 0.9 \pm 1.6$ 99B BES $\psi(2S) \rightarrow \gamma \chi_{c2}$ 1 TANENBAUM 78 MRK1 $\psi(2S)
ightarrow \gamma \chi_{c2}$ $8.7 \pm 5.9 \pm 0.4$ ¹Rescaled by us using B($\psi(2S) \rightarrow$ $\gamma \chi_{c2}$)= (8.3 \pm 0.4)% and B(ψ (2S) ightarrow $J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.$ Multiplied by a factor of 2 to convert from $K_S^0 K^+ \pi^-$ to $K^0 K^+ \pi^-$ decay. $\Gamma(\phi\phi)/\Gamma_{\text{total}}$ Γ_{20}/Γ VALUE (units 10^{-3}) DOCUMENT ID 1.12±0.10 OUR FIT $\Gamma(\omega\omega)/\Gamma_{\text{total}}$ Γ_{21}/Γ VALUE (units 10^{-3}) 0.88 ± 0.11 OUR AVERAGE ¹ ABLIKIM 11K BES3 $\psi(2S)
ightarrow \gamma$ hadrons $0.85\!\pm\!0.10\!\pm\!0.03$ 762 ² ABLIKIM 05N BES2 $\psi(2S)
ightarrow \gamma \chi_{C2}
ightarrow \gamma 6\pi$ $1.8 \pm 0.6 \pm 0.1$ 27.7 ± 7.4 1 ABLIKIM 11K reports (8.9 \pm 0.3 \pm 1.1) imes 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c2}(1P)
ightarrow$ $(\omega\omega)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{\mathcal{C}2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{\mathcal{C}2}(1P)) = (8.74 \pm 1.0)$ $0.35) imes 10^{-2}$, which we rescale to our best value B($\psi(2S)
ightarrow \gamma \chi_{c2}(1P)$) = $(9.11 \pm$ $(0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² ABLIKIM 05N reports $\left[\Gamma\left(\chi_{c2}(1P) \rightarrow \omega\omega\right)/\Gamma_{\text{total}}\right] \times \left[B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P))\right] =$ (0.165 \pm 0.044 \pm 0.032) imes 10^{-3} which we divide by our best value B($\psi(2S)$ ightarrow $\gamma \chi_{c2}(1P)$) = $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\omega K^+ K^-)/\Gamma_{\text{total}}$ Γ_{22}/Γ VALUE (units 10^{-3}) EVTS 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{C2}$ ¹ ABLIKIM $0.73\pm0.04\pm0.08$ 512 1 Using $1.06\times 10^8~\psi(2S)$ mesons and B($\psi(2S)\rightarrow~\chi_{\it C2}\gamma)=$ (8.72 $\pm~0.34)\%$. $\Gamma(\omega\phi)/\Gamma_{\text{total}}$ Γ_{23}/Γ VALUE (units 10^{-5}) TECN COMMENT <1.9 1 ABLIKIM 11K reports $< 2 \times 10^{-5}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow ~\omega \, \phi)/\Gamma_{\rm total}]$ $\times \left[\mathsf{B}(\psi(2S)\to \gamma\chi_{\mathcal{C}2}(1P))\right] \text{ assuming } \mathsf{B}(\psi(2S)\to \gamma\chi_{\mathcal{C}2}(1P)) = (8.74\pm0.35)\times10^{-2}$ which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{C2}(1P)$) = 9.11 × 10⁻². $\Gamma(\pi\pi)/\Gamma_{\text{total}}$ Γ_{24}/Γ VALUE (units 10^{-3}) DOCUMENT ID 2.33 ± 0.12 OUR FIT

$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ m total}$						Γ ₂₅ /Γ
VALUE (units 10^{-4})		DOCUMENT ID				
38±16 OUR FIT						
$\Gamma ig(\pi^+\pi^-\etaig)/\Gamma_{total}$						Γ_{26}/Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
$0.50\pm0.13\pm0.02$		¹ ATHAR			, , , , ,	$^{+}h^{-}h^{0}$
• • • We do not use the	_	_				
<1.5					$\psi(2S) \rightarrow \gamma \chi$	
1 ATHAR 07 reports (0 $\pi^{+}\pi^{-}\eta)/\Gamma_{\mathrm{total}}] \times (9.33 \pm 0.14 \pm 0.61) \times = (9.11 \pm 0.31) \times 10^{\circ}$ is the systematic error 2 ABLIKIM 06R reports $\Gamma_{\mathrm{total}}] \times [\mathrm{B}(\psi(2S) - 10^{-2})$ which we reconstitute 2	$[B(\psi(2S)$ \times 10^-2, whom the contraction of the contraction o	$\gamma \chi_{c2}(1P)$ ich we rescale to irst error is their ng our best value (0^{-3}) from a mea (P) assuming B	assumed as ϕ our because ϕ our because ϕ as ϕ as ϕ	ming B(pest value iment's ent of [I 5) $\rightarrow \gamma$:	$\psi(2S) \rightarrow \gamma \chi_{c}$ e B $(\psi(2S) \rightarrow \gamma)$ error and our sec $(\chi_{c2}(1P) \rightarrow \pi)$ $\chi_{c2}(1P) = (8.3)$	$\chi_{c2}(1P) = \chi_{c2}(1P)$ cond error $(-+\pi^-\eta)/(1\pm 0.4) \times$
10^{-2} , which we resca $\Gamma(\pi^+\pi^-\eta')/\Gamma_{ ext{total}}$	ale to our l	best value B(ψ (2	25) →	$\gamma \chi_{c2}$	$(1P)) = 9.11 \times$	¹⁰ ² . Γ ₂₇ /Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	. 21/.
0.52 \pm 0.19 \pm 0.02 ¹ ATHAR 07 reports (0 $\pi^+\pi^-\eta')/\Gamma_{total}$] \times (9.33 \pm 0.14 \pm 0.61) \times	$.51\pm0.18$ $[\mathrm{B}(\psi(2S)$ 10^{-2} , wh	1 ATHAR \pm 0.06) $ imes$ 10 $^{-3}$ $ ightarrow$ $\gamma \chi_{c2}(1P)$ ich we rescale to	07 from] assu o our b	CLEO a measu ming B(est value	$\psi(2S) ightarrow \gamma h^{-1}$ prement of $[\Gamma(\chi_{c})]$ $\psi(2S) ightarrow \gamma \chi_{c}$ $\psi(2S) ightarrow \gamma \chi_{c}$ $\psi(2S) ightarrow \gamma \chi_{c}$	$\chi_{c2}(1P) \rightarrow \chi_{c2}(1P) = \chi_{c2}(1P)$
$= (9.11 \pm 0.31) imes 10^{\circ}$ is the systematic error	^{—2} . Our fi r from usir	irst error is their ng our best value	exper e.	iment's	error and our se	cond error
$\Gamma(\eta\eta)/\Gamma_{total}$						Γ_{28}/Γ
VALUE (units 10^{-4})		DOCUMENT ID				
5.7±0.5 OUR FIT						
Γ(K ⁺ K ⁻)/Γ _{total} <u>VALUE (units 10⁻³)</u> 1.05±0.07 OUR FIT		DOCUMENT ID				Γ ₂₉ /Γ
1.05±0.07 OOK FIT						
$\Gamma(K_S^0K_S^0)/\Gamma_{total}$						Γ_{30}/Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID				
0.55±0.04 OUR FIT		•				
$\Gamma(K_S^0 K_S^0)/\Gamma(\pi\pi)$		DOCUMENT ID		TECN	COMMENT	Γ_{30}/Γ_{24}
0.235±0.019 OUR FIT • • • We do not use the	following	•				
$0.27 \pm 0.07 \pm 0.04$	1,	² CHEN	07 B	BELL	$e^+e^- ightarrow~e^+$	$e^-\chi_{c2}$
1 Using $\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)$ by $3/2$ to convert to 2 Not independent from	$)/\Gamma_{total}$ from $\pi\pi$.	om the $\pi^+\pi^-$ n				
HTTP://PDG.LBL.G	OV	Page 12		Crea	ted: 5/30/201	17 17:21

 Γ_{30}/Γ_{29} TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • 07B BELL $e^+e^- \rightarrow e^+e^-\chi_{C2}$ 1,2 CHEN $0.70 \pm 0.21 \pm 0.12$ 1 Using $\Gamma(K^{+}K^{-})~\times~\Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$ from NAKAZAWA 05. ²Not independent from other measurements. $\Gamma(K^+K^-\pi^0)/\Gamma_{\text{total}}$ Γ_{32}/Γ $1 \frac{\textit{DOCUMENT ID}}{\textit{ATHAR}}$ 07 $\frac{\textit{TECN}}{\textit{CLEO}}$ $\frac{\textit{COMMENT}}{\psi(2S)
ightarrow \gamma \, h^+ \, h^- \, h^0}$ *VALUE* (units 10^{-3}) $0.32 \pm 0.08 \pm 0.01$ 1 ATHAR 07 reports (0.31 \pm 0.07 \pm 0.04) \times 10 $^{-3}$ from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow$ $K^+K^-\pi^0)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P)) = 0$ $(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{C2}(1P)$) $= (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(K^+K^-\eta)/\Gamma_{\text{total}}$ DOCUMENT IDTECNCOMMENTATHAR07CLEO $\psi(2S) \rightarrow \gamma h^+ h^- h^0$ VALUE (units 10^{-3}) < 0.34 1 ATHAR 07 reports < 0.33 \times 10^{-3} from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow \ \ K^+ \ K^- \ \eta)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \ \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \ \gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \ \gamma \chi_{c2}(1P)) = (1.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \ \gamma \chi_{c2}(1P)) = (1.14 \pm 0.61) \times 10^{-2}$ 9.11×10^{-2} $\Gamma(K^+K^-\eta'(958))/\Gamma_{\text{total}}$ Γ_{34}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) EVTS14J BES3 $\psi(2S) \to \gamma K^+ K^- \eta'(958)$ ¹ ABLIKIM 1.94 ± 0.34 ¹ Derived using B($\psi(2S) \to \gamma \chi_{c2}$) = (8.72±0.34)%. Uncertainty includes both statistical and systematic contributions combined in quadrature. $\Gamma(\eta \eta')/\Gamma_{\text{total}}$ Γ_{35}/Γ VALUE (units 10^{-4}) ¹ ASNER CLEO $\psi(2S) \rightarrow \gamma \eta \eta'$ 90 3.3 + 8.009 • • • We do not use the following data for averages, fits, limits, etc. • • • ² ADAMS 07 CLEO $\psi(2S) \rightarrow \gamma \chi_{C2}$ < 2.4 1 ASNER 09 reports < 0.6 \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow \eta \eta')/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times (9.31 \pm 0.14 \pm 0.01) \times (9.31 \pm 0.14 \pm 0.01)$ 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) = 9.11×10^{-2} . 2 Superseded by ASNER 09. ADAMS 07 reports $< 2.3 \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \to \eta \eta')/\Gamma_{\text{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P))]$ assuming $\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P)) = 0.0933 \pm 0.0014 \pm 0.0061$, which we rescale to our best value $\mathsf{B}(\psi(2S) \to \chi_{c2}(1P)) = 0.0933 \pm 0.0014 \pm 0.0061$

 $\gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}$.

 $\Gamma(\eta'\eta')/\Gamma_{\text{total}}$ Γ_{36}/Γ VALUE (units 10^{-4}) 90 12 ± 7 ¹ ASNER CLEO $\psi(2S) \rightarrow \gamma \eta' \eta'$ <1.0 09 • • • We do not use the following data for averages, fits, limits, etc. • • • ² ADAMS 07 CLEO $\psi(2S) \rightarrow \gamma \chi_{c2}$ 1 ASNER 09 reports < 1.0 \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow ~\eta' ~\eta') / \Gamma_{total}] \times [B(\psi(2S) \rightarrow ~\gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow ~\gamma\chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times (9.33 \pm 0.14 \pm 0.14) \times (9.33 \pm 0.14) \times (9.33 \pm 0.14) \times (9.33 \pm 0.14) \times (9.33$ 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) = 9.11×10^{-2} . 2 Superseded by ASNER 09. ADAMS 07 reports $<3.1 imes10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \to \eta' \eta')/\Gamma_{\text{total}}] \times [B(\psi(2S) \to \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c2}(1P)) = 0.0933 \pm 0.0014 \pm 0.0061$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c2}(1P))$ $\gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}$. $\Gamma(\pi^+\pi^-K^0_SK^0_S)/\Gamma_{\text{total}}$ Γ_{37}/Γ VALUE (units 10^{-3}) 050 BES2 $\psi(2S) \rightarrow \gamma \chi_{C2}$ ¹ ABLIKIM $2.3\pm0.6\pm0.1$ $^{1}\text{ABLIKIM 050 reports } [\Gamma(\chi_{c2}(1P) \ \rightarrow \ \pi^{+}\,\pi^{-}\,K^{0}_{S}\,K^{0}_{S})/\Gamma_{\text{total}}] \ \times \ [\text{B}(\psi(2S) \ \rightarrow \ \pi^{+}\,\pi^{-}\,K^{0}_{S}\,K^{0}_{S})/\Gamma_{\text{total}}]$ $\gamma \chi_{c2}(1P))]=(0.207\pm0.039\pm0.033)\times10^{-3}$ which we divide by our best value $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(K^+K^-K^0_SK^0_S)/\Gamma_{\text{total}}$ Γ_{38}/Γ 2.3 ± 2.2 1 ABLIKIM 050 BES2 $e^+e^- \rightarrow \chi_{c2}\gamma$ $^{1}\text{ABLIKIM 050 reports } [\Gamma(\chi_{c2}(1P) \rightarrow K^{+}K^{-}K^{0}_{S}K^{0}_{S})/\Gamma_{\text{total}}] \times [\text{B}(\psi(2S) \rightarrow K^{+}K^{-}K^{0}_{S}K^{0}_{S})/\Gamma_{\text{total}}]$ $\gamma \chi_{c2}(1P))] < 3.5 \times 10^{-5}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) $= 9.11 \times 10^{-2}$ $\Gamma(K^+K^-K^+K^-)/\Gamma_{\text{total}}$ Γ_{39}/Γ *VALUE* (units 10^{-3}) DOCUMENT ID 1.73 ± 0.21 OUR FIT $\Gamma(K^+K^-\phi)/\Gamma_{\text{total}}$ Γ_{40}/Γ DOCUMENT ID *VALUE* (units 10^{-3}) **EVTS** TECN COMMENT $1.48 \pm 0.31 \pm 0.05$ ¹ ABLIKIM 06T BES2 $\psi(2S) \rightarrow \gamma 2K^{+}2K^{-}$ 52 ¹ ABLIKIM 06T reports $(1.67\pm0.26\pm0.24)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\rightarrow$ $(K^+ K^- \phi)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c2}(1P)) = 0$ $(8.1\pm0.4) imes10^{-2}$, which we rescale to our best value B($\psi(2S) o \gamma\chi_{c2}(1P)$) = $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\overline{K}^0K^+\pi^-\phi + \text{c.c.})/\Gamma_{\text{total}}$ Γ_{41}/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 15M BES3 $\psi(2S) \rightarrow \gamma \chi_{C2}$

 $4.83\pm0.32\pm0.66$

Created: 5/30/2017 17:21

ABLIKIM

$\mathbf{r}(\mathbf{v} + \mathbf{v} = 0) / \mathbf{r}$					F /F
$\Gamma(K^+K^-\pi^0\phi)/\Gamma_{\text{total}}$					Γ_{42}/Γ
VALUE (units 10 ⁻³)	DOCUMENT ID			COMMENT	
$2.74\pm0.16\pm0.44$	ABLIKIM	15M	BES3	$\psi(2S) \rightarrow \gamma \chi$	<i>c</i> 2
$\Gamma(\phi\pi^+\pi^-\pi^0)/\Gamma_{ ext{total}}$					Γ ₄₃ /Γ
$VALUE$ (units 10^{-3}) $EVTS$	DOCUMENT ID				
0.93±0.06±0.10 408	¹ ABLIKIM 13F	BES	63 e ⁺	$e^- ightarrow ~\psi(2S)$	$\rightarrow \gamma \chi_{c2}$
1 Using $1.06 imes10^8~\psi(2S)$ m	nesons and $B(\psi(2\mathcal{S})$ -	$\rightarrow \chi_{c}$	$(2\gamma) = ($	$(8.72 \pm 0.34)\%$	
Г/≘= \/Г					F/F
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$					Γ ₄₄ /Γ
VALUE (units 10 ⁻⁴) 0.75±0.04 OUR FIT	DOCUMENT ID	_			
0.75±0.04 OUR FIT					
$\Gamma(ho\overline{ ho}\pi^0)/\Gamma_{ m total}$					Γ ₄₅ /Γ
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT	
0.49±0.04 OUR AVERAGE	·				
$0.49 \pm 0.04 \pm 0.02$	¹ ONYISI	10		$\psi(2S) \rightarrow \gamma p$	
$0.45 \pm 0.09 \pm 0.02$	² ATHAR			ψ (2S) $ ightarrow \gamma h$	
¹ ONYISI 10 reports (4.83	\pm 0.25 \pm 0.35 \pm 0	.31) ×	< 10 ^{−4}	from a measu	rement of
$[\Gamma(\chi_{c2}(1P) ightarrow p\overline{p}\pi^0)/\Gamma$	$[total] \times [B(\psi(2S) -$	$\rightarrow \gamma \gamma$	$\chi_{c2}(1P)$))] assuming B	$(\psi(2S) \rightarrow$
$\gamma \chi_{c2}(1P)) = (9.33 \pm 0.14)$	\pm 0.61) $ imes$ 10 $^{-2}$, which	we res	scale to	our best value B	$S(\psi(2S) \rightarrow$
$\gamma \chi_{c2}(1P)) = (9.11 \pm 0.3)$ second error is the systema	1) \times 10 ⁻² . Our first	error i	s their e	experiment's err	or and our
second error is the systema	atic error from using o	our bes	st value.		(4.5)
² ATHAR 07 reports (0.44 \pm					
$p\overline{p}\pi^0)/\Gamma_{total}] \times [B(\psi(2.1))]$	$\gamma \chi_{c2}(1P)$	assum	ing B(y	$b(2S) \rightarrow \gamma \chi_{c}$	$_{:2}(1P)) =$
$(9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$					
$= (9.11 \pm 0.31) \times 10^{-2}$. is the systematic error from	Our first error is their	experi	ment's	error and our se	cond error
is the systematic error from	ii usiiig our best value	5.			
$\Gamma(p\overline{p}\eta)/\Gamma_{total}$					Г ₄₆ /Г
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
0.182±0.026 OUR AVERAGE					
$0.180\pm0.027\pm0.006$	¹ ONYISI	10		$\psi(2S) \rightarrow \gamma p$	
$0.19 \pm 0.07 \pm 0.01$	² ATHAR			$\psi(2S) \rightarrow \gamma h$	
1 ONYISI 10 reports (1.76	\pm 0.23 \pm 0.14 \pm 0	.11) ×	< 10 ^{−4}	from a measu	rement of
$[\Gamma(\chi_{c2}(1P) \rightarrow p\overline{p}\eta)/\Gamma_{t}]$					
(10) (0.22 0.14	10611110-2		1 .		1//(0.0)

 $\gamma \chi_{c2}(1P) \rightarrow pp\eta/\Gamma_{total} \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² ATHAR 07 reports $(0.19 \pm 0.07 \pm 0.02) \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow p\overline{p}\eta)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (0.11 \pm 0.01) \times 10^{-2}$.

 $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ Γ_{47}/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT**0.38±0.04±0.01**1 ONYISI10 CLE3 $\psi(2S) \rightarrow \gamma p \overline{p} X$

 1 ONYISI 10 reports (3.68 \pm 0.35 \pm 0.26 \pm 0.24) \times 10^{-4} from a measurement of $[\Gamma(\chi_{c2}(1P)\to p\overline{\rho}\omega)/\Gamma_{total}]\times [B(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\phi)/\Gamma_{\text{total}}$ Γ_{48}/Γ

VALUE (units 10^{-5})EVTSDOCUMENT IDTECNCOMMENT**2.9±0.9±0.1** 24 ± 7 1 ABLIKIM11FBES3 $\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$

 1 ABLIKIM 11F reports $(3.04\pm0.85\pm0.43)\times10^{-5}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\to p\overline{p}\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(8.74\pm0.35)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE (units 10⁻³) DOCUMENT ID TECN COMMENT

1.32 ± 0.34 OUR EVALUATION Treating systematic error as correlated.

1.3 \pm **0.4 OUR AVERAGE** Error includes scale factor of 1.3.

 $\Gamma(\rho \overline{\rho} \pi^0 \pi^0)/\Gamma_{\text{total}}$

<u>VALUE (%)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.082 ± 0.024 ± 0.003** 29.2 1 HE 08B CLEO $^{+}e^{-}$ → $^{-}\gamma h^{+}h^{-}h^{0}h^{0}$

¹ HE 08B reports $0.08 \pm 0.02 \pm 0.01 \pm 0.01$ % from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow p\overline{p}\pi^0\pi^0)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}K^+K^-(\text{non-resonant}))/\Gamma_{\text{total}}$

 Γ_{51}/Γ

Created: 5/30/2017 17:21

<u>VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT</u>
2.00±0.33±0.07 131 ± 12 1 ABLIKIM 11F BES3 ψ(2S) → $γρ\overline{ρ}K^+K^-$

 1 ABLIKIM 11F reports $(2.08\pm0.19\pm0.30)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\to p\overline{p}K^+K^-\text{(non-resonant)})/\Gamma_{\text{total}}]\times[\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming $\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(8.74\pm0.35)\times10^{-2},$ which we rescale to our best value $\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Rescaled by us using B($\psi(2S) \rightarrow \gamma \chi_{c2}$)= (8.3 \pm 0.4)% and B($\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-$) = (32.6 \pm 0.5)%. Multiplied by a factor of 2 to convert from $K_S^0K^+\pi^-$ to $K_S^0K^+\pi^-$ decay.

 $\Gamma(p\overline{p}K_S^0K_S^0)/\Gamma_{\text{total}}$

 Γ_{52}/Γ

(, , , , , , , , , , , , , , , , , , ,						U
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<7.9	90	$^{ m 1}$ ABLIKIM	06 D	BES2	$\psi(2S) \rightarrow \chi_{c2} \gamma$	
1 Using B $(\psi(2S) ightarrow$	$\chi_{c2}\gamma$) =	$= (9.3 \pm 0.6)\%.$				

 $\Gamma(p\overline{n}\pi^{-})/\Gamma_{\text{total}}$ VALUE (units 10^{-4})

 Γ_{53}/Γ

8.9±1.0 OUR AVE	RAGE				
$8.8 \pm 1.0 \pm 0.3$	3309	$^{ m 1}$ ABLIKIM	12 J	BES3	$\psi(2S) \rightarrow \gamma \rho \overline{n} \pi^-$
$10.6\!\pm\!3.6\!\pm\!0.4$		² ABLIKIM	061	BES2	$\psi(2S) \rightarrow \gamma p \pi^- X$
¹ ABLIKIM 12J re	ports $[\Gamma(\chi_{c2})]$	$(1P) \rightarrow p \overline{n} \pi^-$	$/\Gamma_{total}$] × [B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P))] =$

DOCUMENT ID

TECN

COMMENT

EVTS

- ¹ ABLIKIM 12J reports $[\Gamma(\chi_{c2}(1P) \to p \overline{n} \pi^-)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c2}(1P))] = (0.80 \pm 0.02 \pm 0.09) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² ABLIKIM 06I reports $[\Gamma(\chi_{c2}(1P) \to p\overline{n}\pi^-)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c2}(1P))] = (0.97 \pm 0.20 \pm 0.26) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma\chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\overline{p}n\pi^+)/\Gamma_{\text{total}}$

 Γ_{54}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
9.3±0.8±0.3	3732	¹ ABLIKIM	12J	BES3	$\psi(2S) \rightarrow \gamma \overline{p} n \pi^+$

¹ ABLIKIM 12J reports $[\Gamma(\chi_{c2}(1P) \to \overline{p}n\pi^+)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c2}(1P))] = (0.85 \pm 0.02 \pm 0.07) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma\chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{n}\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{55}/Γ

<i>VALUE</i> (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
22.7±1.8±0.8	2128	¹ ABLIKIM	12J	BES3	$\overline{\psi(2S)} \to \gamma p \overline{n} \pi^- \pi^0$

 1 ABLIKIM 12J reports $[\Gamma\big(\chi_{c2}(1P)\to p\overline{n}\pi^-\pi^0\big)/\Gamma_{\rm total}]\times [{\sf B}(\psi(2S)\to \gamma\chi_{c2}(1P))]=(2.07\pm0.06\pm0.15)\times 10^{-4}$ which we divide by our best value ${\sf B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\overline{p}n\pi^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{56}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
22.1±1.9±0.8	2352	¹ ABLIKIM 1	L2J	BES3	$\overline{\psi(2S)} \rightarrow \gamma \overline{\rho} n \pi^+ \pi^0$
1	,	. 0			

 1 ABLIKIM 12J reports $[\Gamma\big(\chi_{c2}(1P)\to \overline{p}\,n\pi^+\pi^0\big)/\Gamma_{\rm total}]\times [{\sf B}(\psi(2S)\to \gamma\chi_{c2}(1P))]=(2.01\pm0.06\pm0.16)\times 10^{-4}$ which we divide by our best value ${\sf B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.11\pm0.31)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\Lambda \overline{\Lambda})/\Gamma_{\text{total}}$

 Γ_{57}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4})

DOCUMENT ID

1.92±0.16 OUR FIT

$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{58}/Γ

 $VALUE (units 10^{-5})$ ¹ ABLIKIM 12I BES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^ 131 \pm 16 \pm 5$ 371 • • • We do not use the following data for averages, fits, limits, etc. • • •

² ABLIKIM 06D BES2 $\psi(2S) \rightarrow \chi_{C2} \gamma$

$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^- (\text{non-resonant})) / \Gamma_{\text{total}}$

 Γ_{59}/Γ

VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID		TECN	COMMENT
69±16±2	36	¹ ABLIKIM	121	BES3	$\overline{\psi(2S)} \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^-$
		_			

 $^{^1}$ ABLIKIM 12I reports (71.8 \pm 14.5 \pm 8.2) \times 10 $^{-5}$ from a measurement of [$\Gamma(\chi_{c2}(1P) \rightarrow$ $\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant))/ Γ_{total}] \times [B($\psi(2S) \to \gamma \chi_{c2}(1P)$)] assuming B($\psi(2S) \to \gamma \chi_{c2}(1P)$) = (8.72 \pm 0.34) \times 10⁻², which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c2}(1P)$) $\gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}+\text{c.c.})/\Gamma_{\text{total}}$

 Γ_{60}/Γ

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<40	90	1 ABLIKIM	121	BES3	$\overline{\psi(2S)} \rightarrow \gamma \Sigma(1385)^{+} \overline{\Lambda} \pi^{-}$
¹ ABLIKIM 12ı	reports	$<$ 42 \times 10 ⁻⁵	from	a meas	surement of $[\Gamma(\chi_{c2}(1P) \rightarrow$
$\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}$	+ c.c.)	$/\Gamma_{total}] \times [B(\psi)]$	2 <i>S</i>) →	$\gamma \chi_{c2}$	(1P))] assuming $B(\psi(2S) \rightarrow$
			ich we	rescale	to our best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c2}(1P)) =$	9.11×10^{-1}	0^{-2} .			

$\Gamma(\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.})/\Gamma_{\text{total}}$

 Γ_{61}/Γ

<60	90	1 ABLIKIM	121	BES3	$\overline{\psi(2S)} \rightarrow \gamma \Sigma (1385)^{-} \overline{\Lambda} \pi^{+}$
¹ ABLIKIM 12	21 reports	$<$ 61 \times 10 ⁻⁵	from	a mea	surement of $[\Gamma(\chi_{c2}(1P) \rightarrow$
$\Sigma(1385)^{-}\overline{\Lambda}\tau$	τ ⁺ + c.c.)	$/\Gamma_{total}] \times [B(\psi($	2 <i>S</i>) →	$\gamma \chi_{c2}$	$(1P))]$ assuming $B(\psi(2S) ightarrow$
			ich we	rescale	to our best value B($\psi(2S) ightarrow$
$\gamma \chi_{c2}(1P)) =$	$=9.11\times10$	0^{-2} .			

TECN

COMMENT

DOCUMENT ID

$\Gamma(K^{+}\overline{p}\Lambda + c.c.)/\Gamma_{total}$

VALUE (units 10^{-5})

 Γ_{62}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
8.1±0.6 OUR AVERAG	E				
$8.0 \pm 0.6 \pm 0.3$	5k	^{1,2} ABLIKIM	13 D	BES3	$\psi(2S) \rightarrow \gamma \Lambda \overline{p} K^+$
$8.7 \pm 1.7 \pm 0.3$		³ ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$

 $^{^1}$ ABLIKIM 12I reports (137.0 \pm 7.6 \pm 15.7) \times 10 $^{-5}$ from a measurement of [$\Gamma(\chi_{C2}(1P) \rightarrow$ $\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{\mathcal{C}2}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{\mathcal{C}2}(1P)) = 0$ $(8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) = $(9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\psi(2S) \to \chi_{c2} \gamma$) = (9.3 ± 0.6)%.

¹ ABLIKIM 13D reports $(8.4 \pm 0.3 \pm 0.6) \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow K^+ \overline{p} \Lambda + \text{c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (8.72 \pm 0.34) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\Lambda \rightarrow p\pi^-$) = 63.9%.

³ATHAR 07 reports $(8.5 \pm 1.4 \pm 1.0) \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \rightarrow K^+ \overline{p} \Lambda + \text{c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.33 \pm 0.14 \pm 0.61) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+\overline{p}\Lambda(1520) + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{63}/Γ

*	*				
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.9 \pm 0.7 \pm 0.1$	79 ± 13	¹ ABLIKIM	11F	BES3	$\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$
¹ ABLIKIM 11F rep	orts (3.06 \pm 0	$0.50 \pm 0.54) \times 10^{-4}$	from	a meası	rement of $[\Gamma(\chi_{c2}(1P) \rightarrow$
] assuming B($\psi(2S)$ \rightarrow
					ir best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c2}(1P)) = (9.$	$11 \pm 0.31)$	$ imes$ 10^{-2} . Our first ϵ	error i	s their e	xperiment's error and our
second error is th	e systematic	error from using o	ur bes	st value.	

$\Gamma(\Lambda(1520)\overline{\Lambda}(1520))/\Gamma_{\text{total}}$

 Γ_{64}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$4.8 \pm 1.5 \pm 0.2$	29 ± 7	¹ ABLIKIM	11F	BES3	$\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$

¹ ABLIKIM 11F reports $(5.05 \pm 1.29 \pm 0.93) \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \to \Lambda(1520)\overline{\Lambda}(1520))/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S) \to \gamma\chi_{c2}(1P)) = (8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma\chi_{c2}(1P)) = (9.11 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{\mathsf{total}}$

 Γ_{65}/Γ

$VALUE$ (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<0.6	90		¹ ABLIKIM	13H	BES3	$\psi(2S) \rightarrow \gamma \Sigma^{0} \overline{\Sigma}^{0}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.8 90 7.5
$$\pm$$
 3.4 2 NAIK 08 CLEO $\psi(2S)
ightarrow \gamma \Sigma^{m{0}} \overline{\Sigma}{}^{m{0}}$

$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}$

 Γ_{66}/Γ

$VALUE$ (units 10^{-4})	CL%	EVTS	DOCUMENT I	D	TECN	COMMENT
<0.7	90	4.0 ± 3.5	$^{ m 1}$ NAIK	80	CLEO	$\psi(2S) \rightarrow \gamma \Sigma^{+} \overline{\Sigma}^{-}$
● ● We do not	use t	he following	data for averages	s, fits, lin	nits, etc.	. • • •
< 0.8	90		² ABLIKIM	13H	BES3	$\psi(2S) \rightarrow \gamma \Sigma^{+} \overline{\Sigma}^{-}$

HTTP://PDG.LBL.GOV

Page 19

 $^{^1}$ ABLIKIM 13H reports $<0.65\times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\to \Sigma^0\overline{\Sigma}^0)/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(8.74\pm0.35)\times 10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c2}(1P))=9.11\times 10^{-2}.$

 $^{^2}$ NAIK 08 reports $<0.75\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\to\Sigma^0\overline{\Sigma}^0)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c2}(1P))]$ assuming ${\rm B}(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c2}(1P))=9.11\times10^{-2}.$

 1 NAIK 08 reports < 0.67 \times 10^{-4} from a measurement of $[\Gamma(\chi_{c2}(1P)\to \Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}]\times [\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))]$ assuming $\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2S)\to \gamma\chi_{c2}(1P))=9.11\times10^{-2}$.

² ABLIKIM 13H reports $< 0.88 \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P) \to \Sigma^+ \overline{\Sigma}^-)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c2}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c2}(1P)) = (8.74 \pm 0.35) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}$.

$\Gamma(\Sigma(1385)^+\overline{\Sigma}(1385)^-)/\Gamma_{\text{total}}$

 Γ_{67}/Γ

$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+})/\Gamma_{total}$

 Γ_{68}/Γ

$\Gamma(K^-\Lambda \overline{\Xi}^+ + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{69}/Γ

$\Gamma(\Xi^0\overline{\Xi}{}^0)/\Gamma_{total}$

 Γ_{70}/Γ

VALUE (units 10 ⁻⁴)	CL%	<u>EVTS</u>	<u>DOCUMENT ID</u>)	TECN	COMMENT
<1.1	90	2.9 ± 1.7	1 NAIK	08	CLEO	$\psi(2S) \rightarrow \gamma \overline{\Xi}^0 \overline{\Xi}^0$

 $^{^1}$ NAIK 08 reports $<1.06\times10^{-4}$ from a measurement of $[\Gamma(\chi_{C2}(1P)\to \Xi^0\overline{\Xi}^0)/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{C2}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{C2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to \gamma\chi_{C2}(1P))=9.11\times10^{-2}.$

$\Gamma(\overline{\Xi}^{-}\overline{\Xi}^{+})/\Gamma_{\text{total}}$

 Γ_{71}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4})CL%EVTSDOCUMENT IDTECNCOMMENT1.48 ± 0.33 ± 0.0529 ± 5 1 NAIK08CLEO $\psi(2S) \rightarrow \gamma \equiv ^{+} \equiv ^{-}$ • • • We do not use the following data for averages, fits, limits, etc.• • •< 3.7</td>90 2 ABLIKIM06DBES2 $\psi(2S) \rightarrow \chi_{C2} \gamma$

¹ NAIK 08 reports $(1.45\pm0.30\pm0.15)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c2}(1P)\to\Xi^-\overline{\Xi}^+)/\Gamma_{\text{total}}]\times[B(\psi(2S)\to\gamma\chi_{c2}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.33\pm0.14\pm0.61)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c2}(1P))=(9.11\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\psi(2S) \to \chi_{c2} \gamma$) = (9.3 ± 0.6)%.

$\Gamma(J/\psi(1S)\pi^+\pi^-$	$\pi^0)/\Gamma_{ m total}$				Γ ₇₂ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.015	90	BARATE	81	SPEC	190 GeV π^- Be $ ightarrow~2\pi2\mu$

 $\Gamma(\eta_c(1S)\pi^+\pi^-)/\Gamma_{\text{total}}$ VALUE CL% OCCUMENT ID OCCUMENT

<1.2 \times 10 $^{-2}$ 90 1,3 ABLIKIM 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c2}$

$\Gamma(\eta_c(1S)\pi^+\pi^-)/\Gamma(\overline{K}^0K^+\pi^-+\text{c.c.})$

 Γ_{74}/Γ_{31}

Created: 5/30/2017 17:21

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<16.4	90	¹ LEES	12AE BABR	$e^+e^- \rightarrow$	$e^+e^-\pi^+\pi^-\eta_c$

 $^{^1\,\}mathrm{We}$ divided the reported limit by 2 to take into account the $K^0_I\,K^+\,\pi^-$ mode.

—— RADIATIVE DECAYS —

 $\Gamma(\gamma J/\psi(1S))/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{75}}/\Gamma$

0.192±0.007 OUR FIT

• • • We do not use the following data for averages, fits, limits, etc. • •

 1 Uses B($\psi(2S)\to \gamma\chi_{c2}\to \gamma\gamma J/\psi)$ from ADAM 05A and B($\psi(2S)\to \gamma\chi_{c2})$ from ATHAR 04.

 $\Gamma(\gamma
ho^0)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{76}}/\Gamma$

VALUE (units
$$10^{-6}$$
) CL% EVTS DOCUMENT ID TECN COMMENT

<20 90 13 ± 11 1 ABLIKIM 11E BES3 $\psi(2S) \rightarrow \gamma \gamma \rho^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •
<40 90 17.2 ± 6.8 2 BENNETT 08A CLEO $\psi(2S) \rightarrow \gamma \gamma \rho^0$

¹ Using $1.06 \times 10^8 \ \psi(2S)$ mesons and $B(\psi(2S) \to \chi_{c2} \gamma) = (8.72 \pm 0.34)\%$.

 $^{^2}$ From the $\eta_c
ightarrow ~K^0_{\, {
m S}} \, K^{\pm} \, \pi^{\mp}$ decays.

³ From the $\eta_C \rightarrow K^+ K^- \pi^0$ decays.

```
^1 ABLIKIM 11E reports <20.8\times10^{-6} from a measurement of [\Gamma(\chi_{\rm C2}(1P)\to~\gamma\rho^0)/~\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to~\gamma\chi_{\rm C2}(1P))] assuming {\rm B}(\psi(2S)\to~\gamma\chi_{\rm C2}(1P))=(8.74\pm0.35)\times10^{-6}
           10^{-2}, which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}.
      ^2 BENNETT 08A reports < 50 \times 10^{-6} from a measurement of [ \Gamma(\chi_{c2}(1P) \rightarrow~\gamma \rho^0)/
           \Gamma_{	ext{total}}] \times [B(\psi(2S) \to \gamma \chi_{c2}(1P))] \text{ assuming } B(\psi(2S) \to \gamma \chi_{c2}(1P)) = (8.1 \pm 0.4) \times (1.1 \pm 0.4) \times
           10^{-2}, which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}.
\Gamma(\gamma\omega)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                     \Gamma_{77}/\Gamma
VALUE (units 10^{-6})
                                                                                                                     DOCUMENT ID
                                                       90
                                                                                                                <sup>1</sup> ABLIKIM
                                                                                                                                                                11E BES3 \psi(2S) \rightarrow \gamma \gamma \omega
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                               <sup>2</sup> BENNETT
                                                                      0.0 \pm 1.8
                                                                                                                                                                08A CLEO \psi(2S) 
ightarrow \gamma \gamma \omega
      ^1\,\mathrm{ABLIKIM} 11E reports <6.1\times10^{-6} from a measurement of [\Gamma\big(\chi_{\it C2}(1P)\to~\gamma\omega\big)/\Gamma_{\rm total}]
           \times [B(\psi(2S) \to \gamma \chi_{c2}(1P))] assuming B(\psi(2S) \to \gamma \chi_{c2}(1P)) = (8.74 ± 0.35) × 10<sup>-2</sup>,
           which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{C2}(1P)) = 9.11 × 10<sup>-2</sup>.
      <sup>2</sup>BENNETT 08A reports < 7.0 \times 10^{-6} from a measurement of [\Gamma(\chi_{c2}(1P) \rightarrow \gamma \omega)/
           \Gamma_{\text{total}}] × [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))] assuming B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (8.1 ± 0.4)×
           10^{-2}, which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = 9.11 \times 10^{-2}.
\Gamma(\gamma\phi)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                     \Gamma_{78}/\Gamma
VALUE (units 10^{-6})
                                                                                                               <sup>1</sup> ABLIKIM
                                                                                                                                                                11E BES3 \psi(2S) \rightarrow \gamma \gamma \phi
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                      1.3\,\pm\,2.5
                                                                                                                <sup>2</sup> BENNETT
                                                                                                                                                                08A CLEO \psi(2S) \rightarrow \gamma \gamma \phi
                                                       90
      ^1\, \rm ABLIKIM~11E~reports < 8.1 \times 10^{-6}~from~a~measurement~of~ [\Gamma(\chi_{\it C2}(1P) \rightarrow ~\gamma \phi)/\Gamma_{\rm tota]}]
           \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))] assuming B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (8.74 ± 0.35) \times 10<sup>-2</sup>
           which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{C2}(1P)) = 9.11 × 10<sup>-2</sup>.
      ^2 BENNETT 08A reports <13\times10^{-6} from a measurement of [\Gamma(\chi_{\it C2}(1P)\to~\gamma\phi)/\Gamma_{\rm total}]
           \times [B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))] assuming B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = (8.1 \pm 0.4) \times 10<sup>-2</sup>,
           which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{c2}(1P)) = 9.11 × 10<sup>-2</sup>.
\Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                     \Gamma_{79}/\Gamma
VALUE (units 10^{-4})
                                                                                                      DOCUMENT ID
2.74±0.14 OUR FIT
\Gamma(\gamma\gamma)/\Gamma(\gamma J/\psi(1S))
                                                                                                                                                                                                                              \Gamma_{79}/\Gamma_{75}
VALUE (units 10^{-3})
                                                                                                                                                     TECN
                                                                                                                                                                           COMMENT
                                                                                           DOCUMENT ID
1.43±0.08 OUR FIT
                                                                                      <sup>1</sup> AMBROGIANI 00B E835 \overline{p}p \rightarrow \chi_{c2} \rightarrow \gamma \gamma, \gamma J/\psi
0.99 \pm 0.18
       <sup>1</sup> Calculated by us using B(J/\psi(1S) \rightarrow e^+e^-) = 0.0593 \pm 0.0010.
\Gamma(\gamma\gamma)/\Gamma_{\text{total}} \times \Gamma(p\overline{p})/\Gamma_{\text{total}}
                                                                                                                                                                                                         \Gamma_{79}/\Gamma \times \Gamma_{44}/\Gamma
VALUE (units 10<sup>-8</sup>)
                                                                                                      DOCUMENT ID
                                                                                                                                                                                      COMMENT
                                                                                                                                                                 TECN
2.06 ± 0.16 OUR FIT
1.7 \pm0.4 OUR AVERAGE
1.60 \pm 0.42
                                                                                                      ARMSTRONG 93
                                                                                                                                                                E760
9.9\ \pm 4.5
                                                                                                      BAGLIN
                                                                                                                                                 87B SPEC \overline{p}p \rightarrow \gamma \gamma X
```

$\chi_{c2}(1P)$ CROSS-PARTICLE BRANCHING RATIOS

$\Gamma(\chi_{c2}(1P) \rightarrow K^+K^-\pi^+$	π^-)/ $\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))$
$J/\psi(1S)\pi^+\pi^-)$	$\Gamma_{14}/\Gamma imes \Gamma_{136}^{\psi(25)}/\Gamma_{11}^{\psi(25)}$
$VALUE$ (units 10^{-3})	DOCUMENT ID TECN COMMENT
2.34±0.26 OUR FIT	
	Error includes scale factor of 2.3.
$1.90 \pm 0.14 \pm 0.44$	BAI 99B BES $\psi(2S) ightarrow \gamma \chi_{c2}$ 1 TANENBAUM 78 MRK1 $\psi(2S) ightarrow \gamma \chi_{c2}$
3.8 ± 0.67	
	red using B($\psi(2S) \rightarrow \pi^+\pi^- J/\psi$) \times B($J/\psi \rightarrow \ell^+\ell^-$) = by us using B($J/\psi \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.
$\Gamma(\chi_{c2}(1P) \rightarrow K^*(892)^{\circ}K$	$(7*(892)^0)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/$
Γ _{total}	$\Gamma_{18}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$
<i>VALUE</i> (units 10 ⁻⁴)	DOCUMENT ID TECN COMMENT
2.2 ±0.4 OUR FIT	
$3.11 \pm 0.36 \pm 0.48$	ABLIKIM 04H BES2 $\psi(2S) ightarrow \gamma \chi_{c2}$
$\Gamma(\chi_{c2}(1P) \to p\overline{p})/\Gamma_{total}$	$\times \ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma(\psi(2S) \to$
$J/\psi(1S)\pi^+\pi^-)$	$\Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$
	, 190 , 11
<u>VALUE (units 10⁻⁵)</u> 1.98±0.10 OUR FIT	DOCUMENT ID TECN COMMENT
1.4 ±1.1	1 BAI 98I BES $\psi(2S) ightarrow \gamma \chi_{c2} ightarrow \gamma \overline{p} p$
	$\gamma = \gamma =$
	ue for B($\chi_{c2} \rightarrow p\overline{p}$) reported in BAI 981 is derived using
[BAI 98D].	\pm 0.8)% and B($\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}$) = (32.4 \pm 2.6)%
[BAI 98D].	$ imes \Gamma(\psi(2S) o \gamma \chi_{c2}(1P))/\Gamma_{total}$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to p\overline{p})/\Gamma_{\text{total}}$	$ imes \Gamma(\psi(2S) o \gamma \chi_{c2}(1P))/\Gamma_{total} \ \Gamma_{44}/\Gamma imes \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ VALUE (units 10^{-6}) EVTS	$ imes \Gamma(\psi(2S) o \gamma \chi_{c2}(1P))/\Gamma_{total}$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$	$ imes \Gamma(\psi(2S) ightarrow \gamma \chi_{c2}(1P))/\Gamma_{ ext{total}} \ \Gamma_{44}/\Gamma imes \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} \ frac{DOCUMENT ID}{}{}$ TECN COMMENT
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \rightarrow \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$ 7.1 $\pm 0.5 \text{ OUR AVERAGE}$	$ imes \Gamma(\psi(2S) o \gamma \chi_{c2}(1P))/\Gamma_{ ext{total}} \ \Gamma_{44}/\Gamma imes \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} \ o DOCUMENT ID TECN COMMENT$ Error includes scale factor of 1.2.
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to p\overline{p})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$ 7.1 $\pm 0.5 \text{ OUR AVERAGE}$ 7.3 $\pm 0.4 \pm 0.3$ 405	$ imes \Gamma(\psi(2S) ightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{44}/\Gamma imes \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ $\underline{DOCUMENT\ ID}$ \underline{TECN} $\underline{COMMENT}$ Error includes scale factor of 1.2. ABLIKIM 13V BES3 $\psi(2S) ightarrow \gamma p \overline{p}$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to p\overline{p})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$ 7.1 ± 0.5 OUR AVERAGE 7.3 ± 0.4 ± 0.3 405 7.2 ± 0.7 ± 0.4 121 \pm 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \rightarrow \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$ 7.1 ± 0.5 OUR AVERAGE 7.3 $\pm 0.4 \pm 0.3$ 405 7.2 $\pm 0.7 \pm 0.4$ 121 \pm 12 4.4 $+1.6 \pm 0.6$ 14.3 $+5.2 \pm 0.7$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \rightarrow \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ 7.1 ± 0.5 OUR AVERAGE 7.3 $\pm 0.4 \pm 0.3$ 405 7.2 $\pm 0.7 \pm 0.4$ 121 \pm 12 4.4 $+1.6 \pm 0.6$ 14.3 $+5.2 \pm 0.7$ Calculated by us. NAIK 08	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
[BAI 98D]. $\Gamma\left(\chi_{c2}(1P) \to \rho \overline{\rho}\right)/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-6}) \qquad EVTS}{6.85 \pm 0.33 \text{OUR FIT}}$ 7.1 $\pm 0.5 \text{OUR AVERAGE}$ 7.3 $\pm 0.4 \pm 0.3 \qquad 405$ 7.2 $\pm 0.7 \pm 0.4 \qquad 121 \pm 12$ 4.4 $+ 1.6 \pm 0.6 \qquad 14.3 + 5.2 -4.7$ Calculated by us. NAIK 08 using $B(\psi(2S) \to \gamma \chi_{c2})$	$ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $ $ \underline{\text{DOCUMENT ID}} \underline{\text{TECN}} \underline{\text{COMMENT}} $ Error includes scale factor of 1.2. ABLIKIM 13V BES3 $ \psi(2S) \to \gamma p \overline{p} $ 1 NAIK 08 CLEO $ \psi(2S) \to \gamma p \overline{p} $ BAI 04F BES $ \psi(2S) \to \gamma \chi_{c2}(1P) \to \gamma \overline{p} p $ 3 reports $ B(\chi_{c2} \to p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5} = (9.33 \pm 0.14 \pm 0.61)\%. $
[BAI 98D]. $\Gamma\left(\chi_{c2}(1P) \to \rho \overline{\rho}\right)/\Gamma_{\text{total}}$ $\frac{VALUE (\text{units } 10^{-6}) \qquad EVTS}{6.85 \pm 0.33 \text{OUR FIT}}$ 7.1 $\pm 0.5 \text{OUR AVERAGE}$ 7.3 $\pm 0.4 \pm 0.3 \qquad 405$ 7.2 $\pm 0.7 \pm 0.4 \qquad 121 \pm 12$ 4.4 $+ 1.6 \pm 0.6 \qquad 14.3 + 5.2 -4.7$ Calculated by us. NAIK 08 using $B(\psi(2S) \to \gamma \chi_{c2})$	$ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $ $ \underline{DOCUMENT\ ID} \underline{TECN} \underline{COMMENT} $ Error includes scale factor of 1.2. $ ABLIKIM 13V \text{ BES3} \psi(2S) \to \gamma p \overline{p} $ $ 1 \text{ NAIK} 08 \text{CLEO} \psi(2S) \to \gamma p \overline{p} $ $ BAI 04F \text{ BES} \psi(2S) \to \gamma \chi_{c2}(1P) \to \gamma \overline{p} p $ $ 3 \text{ reports } B(\chi_{c2} \to p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5} $ $ = (9.33 \pm 0.14 \pm 0.61)\%. $ $ \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33 \text{ OUR FIT}}$ 7.1 ± 0.5 OUR AVERAGE 7.3 $\pm 0.4 \pm 0.3$ 405 7.2 $\pm 0.7 \pm 0.4$ 121 \pm 12 4.4 $+1.6 \pm 0.6$ 14.3 $+5.2 \pm 0.7$ Calculated by us. NAIK 08 using B($\psi(2S) \to \gamma \chi_{c2}$) $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{\text{total}}$	$ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $ $ \underline{DOCUMENT\ ID} \underline{TECN} \underline{COMMENT} $ Error includes scale factor of 1.2. $ ABLIKIM 13V \text{ BES3} \psi(2S) \to \gamma p \overline{p} $ $ 1 \text{ NAIK} 08 \text{CLEO} \psi(2S) \to \gamma p \overline{p} $ $ BAI 04F \text{ BES} \psi(2S) \to \gamma \chi_{c2}(1P) \to \gamma \overline{p} p $ $ 3 \text{ reports } B(\chi_{c2} \to p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5} $ $ = (9.33 \pm 0.14 \pm 0.61)\%. $ $ \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ 7.1 ± 0.5 OUR AVERAGE 7.3 $\pm 0.4 \pm 0.3$ 405 7.2 $\pm 0.7 \pm 0.4$ 121 \pm 12 4.4 $+1.6 \pm 0.6$ 14.3 $+5.2 \pm 0.7$ Calculated by us. NAIK 08 using B($\psi(2S) \to \gamma \chi_{c2}$) $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-6})}{}$	$ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $ $ \underline{DOCUMENT\ ID} \underline{TECN} \underline{COMMENT} $ Error includes scale factor of 1.2. $ ABLIKIM 13V \text{ BES3} \psi(2S) \to \gamma p \overline{p} $ $ 1 \text{ NAIK} 08 \text{CLEO} \psi(2S) \to \gamma p \overline{p} $ $ BAI 04F \text{ BES} \psi(2S) \to \gamma \chi_{c2}(1P) \to \gamma \overline{p} p $ $ 3 \text{ reports } B(\chi_{c2} \to p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5} $ $ = (9.33 \pm 0.14 \pm 0.61)\%. $ $ \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ 7.1 ± 0.5 OUR AVERAGE 7.3 $\pm 0.4 \pm 0.3$ 405 7.2 $\pm 0.7 \pm 0.4$ 121 ± 12 4.4 $+1.6 \pm 0.6$ 14.3 $+5.2 \pm 0.4$ 1 Calculated by us. NAIK 08 using $B(\psi(2S) \to \gamma \chi_{c2})$ $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-6})}{17.5 \pm 1.3} \text{ OUR FIT}$	$ \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $ $ \underline{DOCUMENT\ ID} \underline{TECN} \underline{COMMENT} $ Error includes scale factor of 1.2. $ ABLIKIM 13V \text{ BES3} \psi(2S) \to \gamma p \overline{p} $ $ 1 \text{ NAIK} 08 \text{CLEO} \psi(2S) \to \gamma p \overline{p} $ $ BAI 04F \text{ BES} \psi(2S) \to \gamma \chi_{c2}(1P) \to \gamma \overline{p} p $ $ 3 \text{ reports } B(\chi_{c2} \to p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5} $ $ = (9.33 \pm 0.14 \pm 0.61)\%. $ $ \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} $ $ \Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} $
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ $7.1 \pm 0.5 \text{ OUR AVERAGE}$ $7.3 \pm 0.4 \pm 0.3 \qquad 405$ $7.2 \pm 0.7 \pm 0.4 \qquad 121 \pm 12$ $4.4 + \frac{1.6}{-1.4} \pm 0.6 \qquad 14.3 + \frac{5.2}{-4.7}$ $^{1} \text{ Calculated by us. NAIK 08 using B}(\psi(2S) \to \gamma \chi_{c2})$ $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{17.5 \pm 1.3} \text{ OUR FIT}$ $17.4 \pm 1.4 \text{ OUR AVERAGE}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ $7.1 \pm 0.5 \text{ OUR AVERAGE}$ $7.3 \pm 0.4 \pm 0.3 \qquad 405$ $7.2 \pm 0.7 \pm 0.4 \qquad 121 \pm 12$ $4.4 + \frac{1.6}{-1.4} \pm 0.6 \qquad 14.3 + \frac{5.2}{-4.7}$ ${}^{1}\text{ Calculated by us. NAIK 08 using B}(\psi(2S) \to \gamma \chi_{c2})$ $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{17.5 \pm 1.3 \text{ OUR FIT}}$ $17.4 \pm 1.4 \text{ OUR AVERAGE}$ $18.2 \pm 1.4 \pm 0.9 \qquad 2$	× $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ DOCUMENT ID TECN COMMENT Error includes scale factor of 1.2. ABLIKIM 13V BES3 $\psi(2S) \rightarrow \gamma p \overline{p}$ 1 NAIK 08 CLEO $\psi(2S) \rightarrow \gamma p \overline{p}$ BAI 04F BES $\psi(2S) \rightarrow \gamma \chi_{c2}(1P) \rightarrow \gamma \overline{p} p$ 3 reports $B(\chi_{c2} \rightarrow p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ $= (9.33 \pm 0.14 \pm 0.61)\%$. × $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ TS DOCUMENT ID TECN COMMENT
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ $7.1 \pm 0.5 \text{ OUR AVERAGE}$ $7.3 \pm 0.4 \pm 0.3 \qquad 405$ $7.2 \pm 0.7 \pm 0.4 \qquad 121 \pm 12$ $4.4 + \frac{1.6}{-1.4} \pm 0.6 \qquad 14.3 + \frac{5.2}{-4.7}$ $^{1} \text{ Calculated by us. NAIK 08 using B}(\psi(2S) \to \gamma \chi_{c2})$ $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{17.5 \pm 1.3} \text{ OUR FIT}$ $17.4 \pm 1.4 \text{ OUR AVERAGE}$	× $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ DOCUMENT ID TECN COMMENT Error includes scale factor of 1.2. ABLIKIM 13V BES3 $\psi(2S) \rightarrow \gamma p \overline{p}$ 1 NAIK 08 CLEO $\psi(2S) \rightarrow \gamma p \overline{p}$ BAI 04F BES $\psi(2S) \rightarrow \gamma \chi_{c2}(1P) \rightarrow \gamma \overline{p} p$ 3 reports $B(\chi_{c2} \rightarrow p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ $= (9.33 \pm 0.14 \pm 0.61)\%$. × $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ TS DOCUMENT ID TECN COMMENT
[BAI 98D]. $\Gamma(\chi_{c2}(1P) \to \rho \overline{\rho})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{6.85 \pm 0.33} \text{ OUR FIT}$ $7.1 \pm 0.5 \text{ OUR AVERAGE}$ $7.3 \pm 0.4 \pm 0.3 \qquad 405$ $7.2 \pm 0.7 \pm 0.4 \qquad 121 \pm 12$ $4.4 + \frac{1.6}{-1.4} \pm 0.6 \qquad 14.3 + \frac{5.2}{-4.7}$ ${}^{1}\text{ Calculated by us. NAIK 08 using B}(\psi(2S) \to \gamma \chi_{c2})$ $\Gamma(\chi_{c2}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{total}$ $\frac{VALUE \text{ (units } 10^{-6})}{17.5 \pm 1.3 \text{ OUR FIT}}$ $17.4 \pm 1.4 \text{ OUR AVERAGE}$ $18.2 \pm 1.4 \pm 0.9 \qquad 2$	× $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{44}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ DOCUMENT ID TECN COMMENT Error includes scale factor of 1.2. ABLIKIM 13V BES3 $\psi(2S) \rightarrow \gamma p \overline{p}$ 1 NAIK 08 CLEO $\psi(2S) \rightarrow \gamma p \overline{p}$ BAI 04F BES $\psi(2S) \rightarrow \gamma \chi_{c2}(1P) \rightarrow \gamma \overline{p} p$ 3 reports $B(\chi_{c2} \rightarrow p \overline{p}) = (7.7 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ $= (9.33 \pm 0.14 \pm 0.61)\%$. × $\Gamma(\psi(2S) \rightarrow \gamma \chi_{c2}(1P))/\Gamma_{total}$ $\Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$ TS DOCUMENT ID TECN COMMENT

² Calculated by us. NAIK 08 reports B($\chi_{c2} \to \Lambda \overline{\Lambda}$) = (17.0 \pm 2.2 \pm 1.1 \pm 1.1) \times 10⁻⁵ using B(ψ (2S) $\to ~\gamma \chi_{c2}$) = (9.33 \pm 0.14 \pm 0.61)%.

$$\begin{split} \Gamma\big(\chi_{c2}(1P) \to \Lambda \overline{\Lambda}\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(\psi(2S) \to \, \gamma \, \chi_{c2}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S) \, \pi^+ \, \pi^-\big) & \Gamma_{57}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10⁻⁵) EVTS DOCUMENT ID TECN

5.1 ± 0.4 OUR FIT

$$7.1^{+3.1}_{-2.9}\pm1.3$$

$$8.3^{+3.7}_{-3.4}$$
 ¹ BAI

03E BES
$$\psi(2S)
ightarrow \gamma \Lambda \overline{\Lambda}$$

Created: 5/30/2017 17:21

 1 BAI 03E reports [B($\chi_{c2} \to \Lambda \overline{\Lambda})$ B($\psi(2S) \to \gamma \chi_{c2})$ / B($\psi(2S) \to J/\psi \, \pi^{+} \, \pi^{-})$] \times [B 2 ($\Lambda \to \pi^{-} \, p)$ / B($J/\psi \to p \, \overline{p})$] = (1.33 $^{+}_{-0.55} \pm 0.25)\%$. We calculate from this measurement the presented value using B($\Lambda \to \pi^{-} \, p)$ = (63.9 \pm 0.5)% and B($J/\psi \to p \, \overline{p}$) = (2.17 \pm 0.07) \times 10 $^{-3}$.

$\Gamma(\chi_{c2}(1P) \to \pi\pi)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\chi_{c2}(1P))/\Gamma_{\text{total}}$ $\Gamma_{24}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

2.12±0.08 OUR FIT 2.17±0.09 OUR AVERAGE

 3 Calculated by us. ASNER 09 reports B($\chi_{c2} \rightarrow \pi^0 \pi^0$) = (0.68 \pm 0.03 \pm 0.07 \pm 0.04) \times 10 $^{-3}$ using B($\psi(2S) \rightarrow \gamma \chi_{c2}$) = (9.33 \pm 0.14 \pm 0.61)%. We have multiplied the $\pi^0 \pi^0$ measurement by 3 to obtain $\pi\pi$.

$$\begin{split} \Gamma\big(\chi_{c2}(1P) \to \pi\pi\big)/\Gamma_{\mathsf{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma\chi_{c2}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S)\pi^+\pi^-\big) & \Gamma_{24}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

0.615 ± 0.023 OUR FIT 0.54 ± 0.06 OUR AVERAGE

0.66
$$\pm$$
0.18 \pm 0.37 21 \pm 6 1 BAI 03C BES $\psi(2S) \rightarrow \gamma \pi^0 \pi^0$ 0.54 \pm 0.05 \pm 0.04 185 \pm 16 2 BAI 98I BES $\psi(2S) \rightarrow \gamma \pi^+ \pi^-$

 $^{^{1}}$ Calculated by us. ABLIKIM 13H reports B($\chi_{c2} \rightarrow \Lambda \overline{\Lambda}) = (20.8 \pm 1.6 \pm 2.3) \times 10^{-5}$ from a measurement of B($\chi_{c2} \rightarrow \Lambda \overline{\Lambda}) \times$ B($\psi(2S) \rightarrow \gamma \chi_{c2}$) assuming B($\psi(2S) \rightarrow \gamma \chi_{c2}$) = (8.74 \pm 0.35)%.

 $^{^1}$ Calculated by us. ABLIKIM 10A reports B($\chi_{c2} \to \pi^0 \pi^0$) = (0.88 \pm 0.02 \pm 0.06 \pm 0.04) \times 10 $^{-3}$ using B($\psi(2S) \to \gamma \chi_{c2}$) = (8.3 \pm 0.4)%. We have multiplied the $\pi^0 \pi^0$ measurement by 3 to obtain $\pi\pi$.

² Calculated by us. ASNER 09 reports B($\chi_{c2} \rightarrow \pi^+\pi^-$) = (1.59 \pm 0.04 \pm 0.07 \pm 0.10) \times 10⁻³ using B($\psi(2S) \rightarrow \gamma \chi_{c2}$) = (9.33 \pm 0.14 \pm 0.61)%. We have multiplied the $\pi^+\pi^-$ measurement by 3/2 to obtain $\pi\pi$.

 $^{^{1}}$ We have multiplied $\pi^{0}\pi^{0}$ measurement by 3 to obtain $\pi\pi$.

² Calculated by us. The value for B($\chi_{C2} \rightarrow \pi^+\pi^-$) reported by BAI 98I is derived using B($\psi(2S) \rightarrow \gamma \chi_{C2}$) = (7.8 ± 0.8)% and B($\psi(2S) \rightarrow J/\psi \pi^+\pi^-$) = (32.4 ± 2.6)% [BAI 98D]. We have multiplied $\pi^+\pi^-$ measurement by 3/2 to obtain $\pi\pi$.

$\Gamma(\chi_{c2}(1P) \to \eta \eta)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}}$ $\Gamma_{28}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10^{-4}) CL% EVTSTECN COMMENT 0.52 ± 0.04 OUR FIT 0.52 ± 0.04 OUR AVERAGE ¹ ABLIKIM 10A BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow$ $0.54 \pm 0.03 \pm 0.04$ 156 **ASNER** CLEO $\psi(2S) \rightarrow \gamma \eta \eta$ $0.47 \pm 0.05 \pm 0.05$ • • We do not use the following data for averages, fits, limits, etc. ² ADAMS 90 07 CLEO $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \eta \eta \rightarrow 5\gamma$ < 3 90 BAI 03C BES $0.62\!\pm\!0.31\!\pm\!0.19$ LEE 85 CBAL $\psi(2S) \rightarrow$ photons

$\Gamma(\chi_{c2}(1P) \to K^+K^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} \Gamma_{29}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$

Calculated by us. ASNER 09 reports $B(\chi_{c2} \to K^+K^-) = (1.13 \pm 0.03 \pm 0.06 \pm 0.07) \times 10^{-3}$ using $B(\psi(2S) \to \gamma \chi_{c2}) = (9.33 \pm 0.14 \pm 0.61)\%$.

$$\begin{split} \Gamma\big(\chi_{c2}(1P) \to \, \textit{K}^+\,\textit{K}^-\big) / \Gamma_{\rm total} \, \times \, \Gamma\big(\psi(2S) \to \, \gamma \, \chi_{c2}(1P)\big) / \Gamma\big(\psi(2S) \to \\ \textit{J}/\psi(1S) \, \pi^+ \, \pi^-\big) & \Gamma_{29} / \Gamma \times \Gamma_{136}^{\psi(2S)} / \Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10^{-3}) *EVTS DOCUMENT ID TECN COMMENT* **0.277 ± 0.017 OUR FIT 0.190 ± 0.034 ± 0.019** 115 ± 13 ¹ BAI 98I BES $ψ(2S) → γK^+K^-$

$$\begin{split} \Gamma\big(\chi_{c2}(1P) \to \, K_S^0 \, K_S^0\big) / \Gamma_{\rm total} \, \times \, \Gamma\big(\psi(2S) \to \gamma \chi_{c2}(1P)\big) / \Gamma_{\rm total} \\ \Gamma_{30} / \Gamma \times \Gamma_{136}^{\psi(2S)} / \Gamma^{\psi(2S)} \end{split}$$

VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN COMMENT **5.0 ±0.4 OUR FIT 5.0 ±0.4 OUR AVERAGE**4.9 ±0.3 ±0.3 373 ±20 ¹ ASNER 09 CLEO $ψ(2S) → γκ_S^0κ_S^0$

4.9 $\pm 0.3 \pm 0.3$ 373 ± 20 1 ASNER 09 CLEO $\psi(2S) \rightarrow \gamma K_S^0 K_S^0$ 5.72 $\pm 0.76 \pm 0.63$ 65 ABLIKIM 050 BES2 $\psi(2S) \rightarrow \gamma K_S^0 K_S^0$

¹ Calculated by us. ABLIKIM 10A reports B($\chi_{c2} \to \eta \eta$) = $(0.65 \pm 0.04 \pm 0.05 \pm 0.03) \times 10^{-3}$ using B($\psi(2S) \to \gamma \chi_{c2}$) = $(8.3 \pm 0.4)\%$.

² Superseded by ASNER 09.

¹ Calculated by us. The value for B($\chi_{c2} \rightarrow K^+ K^-$) reported by BAI 98I is derived using B($\psi(2S) \rightarrow \gamma \chi_{c2}$) = (7.8 \pm 0.8)% and B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$) = (32.4 \pm 2.6)% [BAI 98D].

¹ Calculated by us. ASNER 09 reports B($\chi_{c2} \rightarrow \kappa_S^0 \kappa_S^0$) = (0.53 ± 0.03 ± 0.03) × 10⁻³ using B($\psi(2S) \rightarrow \gamma \chi_{c2}$) = (9.33 ± 0.14 ± 0.61)%.

 $\Gamma(\chi_{c2}(1P) \to K_S^0 K_S^0) / \Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P)) / \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))$ $\Gamma_{30}/\Gamma \times \Gamma_{136}^{\psi(25)}/\Gamma_{11}^{\psi(25)}$ $J/\psi(1S)\pi^{+}\pi^{-}$

VALUE (units 10^{-5})

14.5 ± 1.1 OUR FIT 14.7±4.1±3.3

¹ BAI

99B BES $\psi(2S) \rightarrow \gamma K_S^0 K_S^0$

 1 Calculated by us. The value of B($\chi_{c2} o K^0_S K^0_S$) reported by BAI 99B was derived using $B(\psi(2S) \to \gamma \chi_{C2}(1P)) = (7.8 \pm 0.8)\%$ and $B(\psi(2S) \to J/\psi \pi^+ \pi^-) = (32.4 \pm 2.6)\%$

 $\Gamma(\chi_{c2}(1P) \to \overline{K}^0 K^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}}$ $\Gamma_{31}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10^{-4})

1.22 ± 0.17 OUR FIT

1.15 ± 0.18 OUR AVERAGE

 $1.21\pm0.19\pm0.09$

37

 $\begin{array}{lll} ^{1} \ \text{ATHAR} & \quad & \text{O7} \quad \text{CLEO} \quad \psi(2S) \rightarrow \ \gamma \, K_{S}^{0} \, K^{\pm} \, \pi^{\mp} \\ ^{2} \ \text{ABLIKIM} & \quad & \text{O6R} \quad \text{BES2} \quad \psi(2S) \rightarrow \ \gamma \, K_{S}^{0} \, K^{\pm} \, \pi^{\mp} \\ \end{array}$ $0.97 \pm 0.32 \pm 0.13$ 28 1 Calculated by us. ATHAR 07 reports B($\chi_{C2} \rightarrow \overline{K}{}^{0}\,K^{+}\,\pi^{-} + {\rm c.c.}) = (1.3 \pm 0.2 \pm 0.$

 0.1 ± 0.1) × 10^{-3} using B($\psi(2S) \rightarrow \gamma \chi_{C2}$) = (9.33 ± 0.14 ± 0.61)%.

 2 Calculated by us. ABLIKIM 06R reports B($\chi_{\rm C2} \rightarrow~K_S^0~K^\pm \pi^\mp) = (0.6 \pm 0.2 \pm 0.1) \times$ 10^{-3} using B($\psi(2S) \rightarrow \gamma \chi_{C2}$) = (8.1 \pm 0.6)%. We have multiplied by 2 to obtain $\overline{K}^0 K^+ \pi^- + \text{c.c.}$ from $K_S^0 K^{\pm} \pi^{\mp}$.

 $\Gamma(\chi_{c2}(1P) \to 2(\pi^+\pi^-))/\Gamma_{\mathsf{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))$ $\Gamma_1/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$ $J/\psi(1S)\pi^{+}\pi^{-}$

VALUE (units 10^{-3})

2.83 ± 0.27 OUR FIT

3.1 \pm **1.0 OUR AVERAGE** Error includes scale factor of 2.5.

 $2.3 \pm 0.1 \pm 0.5$

99B BES

 $\psi(2S) \rightarrow \gamma \chi_{c2}$

 4.3 ± 0.6

² TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c2}$

 1 Calculated by us. The value for B($\chi_{c2}
ightarrow 2\pi^+ 2\pi^-$) reported in BAI 99B is derived using $B(\psi(2S) \to \gamma \chi_{c2}) = (7.8 \pm 0.8)\%$ and $B(\psi(2S) \to J/\psi(1S) \pi^+ \pi^-) = (32.4 \pm 2.6)\%$ [BAI 98D].

² The value for B($\psi(2S) \to \gamma \chi_{c2}$)×B($\chi_{c2} \to 2\pi^+\pi^-$) reported in TANENBAUM 78 is derived using B($\psi(2S) \to J/\psi(1S)\pi^+\pi^-$)×B($J/\psi(1S)\ell^+\ell^-$) = (4.6 ± 0.7)%. Calculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

 $\Gamma(\chi_{c2}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}}$ $\Gamma_{39}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10^{-4}) **EVTS**

DOCUMENT ID

TECN COMMENT

1.57±0.19 OUR FIT

 $1.76 \pm 0.16 \pm 0.24$

¹ ABLIKIM 160

06T BES2 $\psi(2S) \rightarrow \gamma 2K^{+}2K^{-}$

¹ Calculated by us. The value of B($\chi_{c2} \rightarrow 2K^+2K^-$) reported by ABLIKIM 06T was derived using B($\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$) = (8.1 \pm 0.4)%.

```
Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
\Gamma(\chi_{c2}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))
                                                                                                  \Gamma_{39}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}
\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-)
VALUE (units 10^{-4})
                                                          DOCUMENT ID
4.6±0.5 OUR FIT
                                                       ^{1} BAI
                                                                                   99B BES \psi(2S) \rightarrow \gamma 2K^{+}2K^{-}
3.6\pm0.6\pm0.6
    ^1 Calculated by us. The value of B(\chi_{c2} 
ightarrow 2 K^+ 2 K^-) reported by BAI 99B was derived
      using B(\psi(2S) \rightarrow \gamma \chi_{C2}(1P)) = (7.8 ± 0.8)% and B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-) = (32.4 ±
      2.6)% [BAI 98D].
\Gamma(\chi_{c2}(1P) \to \phi \phi)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma_{\text{total}}
                                                                                                  \Gamma_{20}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)}
VALUE (units 10^{-4}) EVTS
                                                                                           TECN COMMENT
1.02 ± 0.08 OUR FIT
0.98±0.13 OUR AVERAGE Error includes scale factor of 1.3.
                                                       <sup>1</sup> ABLIKIM
                                         849
                                                                                   11K BES3 \psi(2S) 
ightarrow \gamma hadrons
0.94 \pm 0.03 \pm 0.10
                                                       <sup>2</sup> ABLIKIM
                                                                                  06T BES2 \psi(2S) \rightarrow \gamma 2K^+ 2K^-
1.38 \pm 0.24 \pm 0.23
    ^1 Calculated by us. The value of B(\chi_{C2} \to \phi \phi) reported by ABLIKIM 11K was derived using B(\psi(2S) \to \gamma \chi_{C2}(1P)) = (8.74 \pm 0.35)%.
    <sup>2</sup> Calculated by us. The value of B(\chi_{c2} \to \phi \phi) reported by ABLIKIM 06T was derived using B(\psi(2S) \to \gamma \chi_{c2}(1P)) = (8.1 ± 0.4)%.
\Gamma(\chi_{c2}(1P) 	o \phi \phi)/\Gamma_{\text{total}} \, 	imes \, \Gamma(\psi(2S) 	o \gamma \chi_{c2}(1P))/\Gamma(\psi(2S) 	o
                                                                                                  \Gamma_{20}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}
J/\psi(1S)\pi^{+}\pi^{-}
VALUE (units 10^{-4})
                                                                                           TECN COMMENT
                                                          DOCUMENT ID
2.95 ± 0.24 OUR FIT
                                                                                  99B BES \psi(2S) \rightarrow \gamma 2K^{+}2K^{-}
                                                       <sup>1</sup> BAI
4.8 \pm 1.3 \pm 1.3
    ^1Calculated by us. The value of B(\chi_{c2} 
ightarrow \phi \phi) reported by BAI 99B was derived using
       \mathsf{B}(\psi(2S) \to \gamma \chi_{\mathcal{C}2}(1P)) = (7.8 \pm 0.8)\% and \mathsf{B}(\psi(2S) \to J/\psi \pi^+ \pi^-) = (32.4 \pm 2.6)\%
      [BAI 98D].
\begin{split} \Gamma\big(\chi_{c2}(1P) \to \gamma J/\psi(1S)\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma \chi_{c2}(1P)\big)/\Gamma_{\text{total}} \\ \Gamma_{75}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} \end{split}
```

VALUI	E (units 10	$)^{-2}$	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.75	±0.04	OUR FIT					
1.52	± 0.15	OUR AVE	RAGE Er	ror includes scale	factor	of 2.6.	See the ideogram below.
1.874	± 0.007	± 0.102	76k	ABLIKIM	120	BES3	$\psi(2S) \rightarrow \gamma \chi_{c2}$
1.62	± 0.04	± 0.12	5.8k	BAI	041	BES2	$\psi(2S) \rightarrow J/\psi \gamma \gamma$
0.99	± 0.10	± 0.08		GAISER	86	CBAL	$\psi(2S) ightarrow \gamma X$
1.47	± 0.17			¹ OREGLIA			$\psi(2S) \rightarrow \gamma \chi_{c2}$
1.8	± 0.5			² BRANDELIK	79 B	DASP	$\psi(2S) \rightarrow \gamma \chi_{c2}$
1.2	± 0.2			² BARTEL	78 B	CNTR	$\psi(2S) \rightarrow \gamma \chi_{c2}$
2.2	± 1.2			³ BIDDICK	77	CNTR	$e^+e^- \rightarrow \gamma X$
1.2	± 0.7			$^{ m 1}$ WHITAKER	76	MRK1	e^+e^-
• • •	• We do	not use th	e following	data for averages	, fits,	limits, e	etc. • • •
1.95	± 0.02	± 0.07	12.4k	4 MENDEZ	80	CLEO	$\psi(2S) \rightarrow \gamma \chi_{c2}$
1.85	± 0.04	±0.07	1.9k	⁵ ADAM	05A	CLEO	Repl. by MENDEZ 08

⁵ Not independent from other values reported by ADAM 05A.

$$\Gamma\Big(\chi_{c2}(1P)\to \gamma J/\psi(1S)\Big)/\Gamma_{\mathsf{total}}\times \Gamma\Big(\psi(2S)\to \gamma \chi_{c2}(1P)\Big)/\Gamma_{\mathsf{total}} \ (\mathsf{units}\ \mathsf{D}^{-2})$$

$$\begin{split} &\Gamma\big(\chi_{c2}(1P)\to\gamma J/\psi(1S)\big)/\Gamma_{total}\,\times\,\Gamma\big(\psi(2S)\to\gamma\chi_{c2}(1P)\big)/\Gamma\big(\psi(2S)\to\\ &J/\psi(1S)\,\text{anything}\big) \qquad \qquad \Gamma_{75}/\Gamma\,\times\,\Gamma_{136}^{\psi(2S)}/\Gamma_9^{\psi(2S)}\\ &\Gamma_{75}/\Gamma\,\times\,\Gamma_{136}^{\psi(2S)}/\Gamma_9^{\psi(2S)} = \Gamma_{75}/\Gamma\,\times\,\Gamma_{136}^{\psi(2S)}/(\Gamma_{11}^{\psi(2S)}+\Gamma_{12}^{\psi(2S)}+\Gamma_{13}^{\psi(2S)}+\\ &0.339\Gamma_{135}^{\psi(2S)}+0.192\Gamma_{136}^{\psi(2S)}\big) \end{split}$$

VALUE (units 10^{-2}) EVTS DOCUMENT ID

D TECN COMMENT

Created: 5/30/2017 17:21

2.87±0.07 OUR FIT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $3.12\pm0.03\pm0.09$ 12.4k ¹ MENDEZ 08 CLEO $\psi(2S) \rightarrow \gamma \chi_{c2}$ $3.11\pm0.07\pm0.07$ 1.9k ADAM 05A CLEO Repl. by MENDEZ 08

¹ Recalculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

²Recalculated by us using B($J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$) = 0.0588 \pm 0.0010.

³ Assumes isotropic gamma distribution.

⁴Not independent from other measurements of MENDEZ 08.

¹ Not independent from other measurements of MENDEZ 08.

$\Gamma(\chi_{c2}(1P) \to \gamma J/\psi(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c2}(1P))/\Gamma(\psi(2S) \to J/\psi(1S)\pi^{+}\pi^{-})$ $\Gamma_{75}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$

VALUE (units 10^{-2}) TECN COMMENT **EVTS** 5.08 ± 0.12 OUR FIT 5.53±0.17 OUR AVERAGE $5.56 \pm 0.05 \pm 0.16$ 12.4k **MENDEZ** 08 CLEO $\psi(2S) \rightarrow \gamma \chi_{C2}$ ¹ ABLIKIM 1.3k 04B BES $\psi(2S) \rightarrow J/\psi X$ 6.0 ± 2.8 ² HIMEL 3.9 ± 1.2 MRK2 $\psi(2S) \rightarrow \gamma \chi_{C2}$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet1.9k ³ ADAM $5.52\pm0.13\pm0.13$ 05A CLEO Repl. by MENDEZ 08

 1 From a fit to the J/ψ recoil mass spectra.

$$\begin{split} \Gamma\big(\chi_{c2}(1P) \to \gamma\gamma\big)/\Gamma_{\mathsf{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma\chi_{c2}(1P)\big)/\Gamma_{\mathsf{total}} \\ \Gamma_{\mathsf{79}}/\Gamma \times \Gamma_{136}^{\psi(2S)}/\Gamma^{\psi(2S)} \end{split}$$

VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
2.50±0.13 OUR FIT					
2.78±0.18 OUR AVE	RAGE				
$2.81\!\pm\!0.17\!\pm\!0.15$	1.1k	$^{ m 1}$ ABLIKIM	12A	BES3	$\psi(2S) \rightarrow \gamma \chi_{c2} \rightarrow 3\gamma$
$2.68\!\pm\!0.28\!\pm\!0.15$	0.3k	ECKLUND	08A	CLEO	$\psi(2S) \rightarrow \gamma \chi_{c2} \rightarrow 3\gamma$
$7.0 \pm 2.1 \pm 2.0$		LEE	85	CBAL	$\psi(2S) \rightarrow \gamma \chi_{c2}$

¹ ABLIKIM 12A measures the ratio of two-photon partial widths for the helicity $\lambda=0$ and helicity $\lambda=2$ components to be $f_{0/2}=\Gamma_{\gamma\gamma}^{\lambda=0}/\Gamma_{\gamma\gamma}^{\lambda=2}=0.00\pm0.02\pm0.02$.

$\Gamma(\chi_{c2}(1P) \rightarrow \gamma \gamma)/\Gamma(\chi_{c0}(1P) \rightarrow \gamma \gamma)$ VALUE0.273 ± 0.035 OUR AVERAGE $\Gamma_{79}/\Gamma_{89}^{\chi_{c0}(1P)}$ $\Gamma_{79}/\Gamma_{89}^{\chi_{c0}(1P)}$

MULTIPOLE AMPLITUDES IN $\chi_{c2}(1P) ightarrow \gamma J/\psi(1S)$ RADIATIVE DECAY

$a_2 = M2/\sqrt{E1^2 + M2^2 + E3^2}$ Magnetic quadrupole fractional transition amplitude

VALUE (units 10 ⁻²)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
-10.0± 1.5 OUR A	WERAGE				
$-~9.3\!\pm~1.6\!\pm\!0.3$	19.8k	¹ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$-9.3^{+3.9}_{-4.1}\!\pm\!0.6$	5.9k	$^{2}\mathrm{AMBROGIANI}$	02	E835	$p\overline{p} \to \chi_{c2} \to J/\psi\gamma$
$-14~\pm~6$	1.9k	² ARMSTRONG	93E	E760	$p\overline{p} \rightarrow \chi_{c2} \rightarrow J/\psi \gamma$
$-33.3^{+11.6}_{-29.2}$	441	² OREGLIA	82	CBAL	$\psi(2S) \rightarrow \chi_{c1} \gamma \rightarrow J/\psi \gamma \gamma$
• • • We do not use	e the follo	wing data for ave	rages	, fits, lim	nits, etc. • • •

- 7.9 \pm 1.9 \pm 0.3 19.8k 3 ARTUSO 09 CLEO $\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

² The value for B($\psi(2S) \to \gamma \chi_{c2}$)×B($\chi_{c2} \to \gamma J/\psi(1S)$) reported in HIMEL 80 is derived using B($\psi(2S) \to J/\psi(1S) \pi^+ \pi^-$) = (33 ± 3)% and B($J/\psi(1S) \to \ell^+ \ell^-$) = 0.138 ± 0.018. Calculated by us using B($J/\psi(1S) \to \ell^+ \ell^-$) = (0.1181 ± 0.0020).

³ Not independent from other values reported by ADAM 05A.

 $^{^1}$ Not independent from the values of $\Gamma(\chi_{c0},\,\chi_{c2})$ and ${\rm B}(\psi(2S)\to~\chi_{c0},\,\chi_{c2}).$

$a_3 = E_3/\sqrt{E_1^2 + M_2^2 + E_3^2}$ Electric octupole fractional transition amplitude

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.6±1.3 OUR AVE	RAGE				
$1.7\!\pm\!1.4\!\pm\!0.3$	19.8k	¹ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$2.0^{igoplus 5.5}_{-4.4}\!\pm\!0.9$	5908	AMBROGIANI (02	E835	$p\overline{p} \rightarrow \chi_{c2} \rightarrow J/\psi \gamma$
$0 \begin{array}{c} +6 \\ -5 \end{array}$	1904	ARMSTRONG 9	93E	E760	$p\overline{p} \rightarrow \chi_{c2} \rightarrow J/\psi \gamma$

¹ From a fit with floating M2 and E3 amplitudes a_2 , b_2 , and a_3 , and b_3 .

MULTIPOLE AMPLITUDES IN $\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$ RADIATIVE DECAY

$b_2 = M2/\sqrt{E1^2 + M2^2 + E3^2}$ Magnetic quadrupole fractional transition amplitude

$VALUE$ (units 10^{-2})		DOCUMENT II	D	TECN	COMMENT
2.2±1.8 OUR	AVERAGE	Error includes	scale	factor c	of 1.7. See the ideogram below.
$4.6\!\pm\!1.0\!\pm\!1.3$	13.8k				$\psi(2S) \rightarrow \gamma \pi^+ \pi^-, \gamma K^+ K^-$
$0.2\!\pm\!1.5\!\pm\!0.4$	19.8k	² ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$-5.1^{+5.4}_{-3.6}$	721	¹ ABLIKIM	041	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$, $\gamma K^+ K^-$
$13.2^{\displaystyle +9.8}_{\displaystyle -7.5}$	441	³ OREGLIA	82	CBAL	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.0\pm1.3\pm0.3$ 19.8k ³ ARTUSO 09 CLEO $\psi(2S) \rightarrow \gamma\gamma\ell^+\ell^-$

WEIGHTED AVERAGE 2.2±1.8 (Error scaled by 1.7)

 $b_2 = M2/\sqrt{E1^2 + M2^2 + E3^2}$ Magnetic quadrupole fractional transition amplitude (units 10^{-2})

¹ From a fit with floating M2 amplitudes a_2 and b_2 , and fixed E3 amplitudes $a_3=b_3=0$.

² Assuming $a_2=0$

³ From a fit with floating M2 and E3 amplitudes a_2 , b_2 , and a_3 , and b_3 .

$b_3 = E3/\sqrt{E1^2 + M2^2 + E3^2}$ Electric octupole fractional transition amplitude

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT II	D	TECN	COMMENT
-0.3±1.0 OUR A	WERAGE				
$1.5\!\pm\!0.8\!\pm\!1.8$	13.8k	$^{ m 1}$ ABLIKIM	111	BES3	$\psi(2S) \rightarrow \gamma \pi^+ \pi^-, \gamma K^+ K^-$
$-0.8\!\pm\!1.2\!\pm\!0.2$	19.8k	ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$-2.7^{ightarrow 4.3}_{-2.9}$	721	¹ ABLIKIM	041	BES2	ψ (2S) $\rightarrow \gamma \pi^+ \pi^-$, $\gamma K^+ K^-$

 $^{^{1}}$ From a fit with floating $\it{M2}$ and $\it{E3}$ amplitudes \it{b}_{2} and \it{b}_{3} .

MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS $\psi(2S) \rightarrow \gamma \chi_{c2}(1P)$ and $\chi_{c2} \rightarrow \gamma J/\psi(1S)$

b_2/a_2 Magnetic quadrupole transition amplitude ratio

<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
-11^{+14}_{-15}	19.8k	¹ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

 $^{^1}$ Statistical and systematic errors combined. From a fit with floating $\it M2$ amplitudes $\it a_2$ and $\it b_2$, and fixed $\it E3$ amplitudes $\it a_3=\it b_3=0$. Not independent of values for $\it a_2(\chi_{c2}(1P))$ and $\it b_2(\chi_{c2}(1P))$ from ARTUSO 09.

$\chi_{c2}(1P)$ REFERENCES

HTTP://PDG.LBL.GOV

Page 31

¹ From a fit with floating M2 and E3 amplitudes b_2 and b_3 .

² From a fit with floating M2 and E3 amplitudes a_2 , b_2 , and a_3 , and b_3 .

³ From a fit with floating M2 amplitudes a_2 and b_2 , and fixed E3 amplitudes $a_3 = b_3 = 0$.

OBENTARN 05	LIELLADA	00	ED L CE2 1	6 11 1	(DELLE C. II.I.)
ATHAR 07 PR D75 032002 S.B. Athar et al. (CLEO Collab.) ABLIKIM 06D PR D73 052006 M. Ablikim et al. (BES Collab.) ABLIKIM 06R PR D74 012004 M. Ablikim et al. (BES Collab.) ABLIKIM 06R PR D74 072001 M. Ablikim et al. (BES Collab.) ABLIKIM 06R PR D73 071101 S. Dobbs et al. (CLEO Collab.) ABLIKIM 05R PR D73 071101 S. Dobbs et al. (CLEO Collab.) ABLIKIM 05R PR D73 071101 S. Dobbs et al. (CLEO Collab.) ABLIKIM 05R PR D73 071101 S. Dobbs et al. (CLEO Collab.) ABLIKIM 05R PR D71 092002 M. Ablikim et al. (BES Collab.) ABLIKIM 05R PR B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05R PR B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05R PR B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 05R PR PM 94 232002 N. E. Adam et al. (CLEO Collab.) ANDREOTTI 05A NP B717 34 M. Andreotti et al. (BES Collab.) ANDREOTTI 05A NP B717 34 M. Andreotti et al. (BES Collab.) ABLIKIM 04B PR D70 012003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092003 M.	UEHARA	08	EPJ C53 1	S. Uehara <i>et al.</i>	(BELLE Collab.)
CHEN 07B PL B651 15 W.T. Chen et al. (BELLE Collab.) ABLIKIM 06D PR D73 052006 M. Ablikim et al. (BES Collab.) ABLIKIM 061 PR D74 012004 M. Ablikim et al. (BES Collab.) ABLIKIM 067 PL B642 197 M. Ablikim et al. (BES Collab.) ABLIKIM 067 PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 7 M. Ablikim et al. (BES Collab.) ADAM 55 PL B630 7 M. Ablikim et al. (BES Collab.) ANDROTITI 050 PL B630 7 M. Ablikim et al. (BES Collab.) ANDROTITI 050 PL B630 7 M. Ablikim et al. (BES Collab.) ANDROTITI 050 PL B630 7 M. Ablikim et al. (BES Collab.) ADLIKIM 041 PR D70 012003 M. Ablikim et al. (BES					
ABLIKIM 061 PR D74 012004 M. Ablikim et al. (BES Collab.) ABLIKIM 068 PR D74 072001 M. Ablikim et al. (BES Collab.) ABLIKIM 067 PL B642 197 M. Ablikim et al. (BES Collab.) ABLIKIM 057 PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PR D73 071101 S. Dobbs et al. (CLC Collab.) ABLIKIM 050 PR D630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ADAM 054 PR P4 232002 N.E. Adam et al. (CLC Collab.) ANDREOTTI 155 NP B717 34 M. Andreotti et al. (BES Collab.) ANDREOTTI 156 NP B717 34 M. Andreotti et al. (BES Collab.) ABLIKIM 049 PR D70 012003 M. Ablikim et al. (BES Collab.) ABLIKIM 049 PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 040 PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 041 PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 044 PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 044 PR D70 092004 M. Ablikim et al. (BES Collab.) ATHAR 04 PR D70 102006 M. Ablikim et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 092006 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 092006 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D67 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR D68 032004 M. Ablikim et al. (BES Collab.) BAI 03C PR					,
ABLIKIM 06R PR D74 012004 ABLIKIM 06R PR D74 072001 ABLIKIM 06R PR D74 072001 ABLIKIM 06R PR D74 072001 ABLIKIM 06T PL B642 197 M. Ablikim et al. (BES Collab.) DOBBS 06 PR D73 071101 S. Dobbs et al. (CLEO Collab.) ABLIKIM 050 PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 050 PL B630 21 M. Ablikim et al. (BES Collab.) ADAM 05A PRL 94 232002 ABLIKIM 04B PR D70 012003 ABLIKIM 04B PR D70 092004 ABLIKIM 04B PR D70 092004 ABLIKIM 04B PR D70 092004 ABLIKIM 04B PR D70 012005 ABLIKIM 04B PR D70 012005 ABLIKIM 04B PR D70 012005 ABLIKIM 04B PR D70 012006 ABLIKIM 04B PR D	-				,
ABLIKIM 06T PL 6842 197 M. Ablikim et al. (BES Collab.) ABLIKIM 05T PL 6842 197 M. Ablikim et al. (BES Collab.) ABLIKIM 05T PL 6830 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL 6830 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL 6830 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL 6830 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL 8630 21 M. Ablikim et al. (BES Collab.) ADAM 05A PRL 94 232002 N. E. Adam et al. (CLCO Collab.) ANDREOTTI 05A NP 8717 34 M. Andrectti et al. (FNAL E835 Collab.) ANDREOTTI 05A NP 8717 34 M. Andrectti et al. (FNAL E835 Collab.) ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092004 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092000 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092001 J.Z. Bai et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D68 092005 J.Z. Bai et al. (BES Collab.) BAI 03C PR D68 092005 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092007 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092007 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092007 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092008 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092009 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092009 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092009 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092009 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 092009 J.Z. Bai et al. (BES Co					
ABLIKIM OFF PL B642 197 S. Dobbs et al. (CLEO Collab.)					
DOBBS O					
ABLIKIM 05N PL B630 7 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL B630 21 M. Ablikim et al. (BES Collab.) ABLIKIM 05N PL B630 21 M. Ablikim et al. (BES Collab.) ADAM 05A PRL 94 232002 N.E. Adam et al. (BES Collab.) ADAM 05A PRL 94 232002 N.E. Adam et al. (BES Collab.) ANDREOTTI 05A N. B 8717 34 M. Andreotti et al. (FNAL E335 Collab.) ANAKAZAWA 05 PL B615 39 H. Nakazawa et al. (BELLE Collab.) ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092004 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 102005 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 102006 J.Z. Bai et al. (BES Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04I PR D70 102006 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) ABBE 02T PL B540 33 K. Abe et al. (BES Collab.) ABBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (BES Collab.) EISENSTEIN 01 PRL 87 061801 B.I. Eisenstein et al. (FNAL E335 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) BAI 99B PR D60 072001 J.Z. B					(BES Collab.)
ABLIKIM					
ABLIKIM 050 PL B630 21 M. Ablikim et al. (CLEO Collab.) ANDREOTTI 05A PRL 94 232002 N.E. Adam et al. (CLEO Collab.) ANDREOTTI 05A NP B717 34 M. Andrectti et al. (FNAL E835 Collab.) ANAKAZAWA 05 PL B615 39 H. Nakazawa et al. (BELLE Collab.) ABLIKIM 04B PR D70 012003 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092004 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 092004 M. Ablikim et al. (BES Collab.) ABLIKIM 04H PR D70 112002 S.B. Athar et al. (CLEO Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04F PR D70 112000 J.Z. Bai et al. (BES Collab.) BAI 04F PR D70 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 18001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D68 052002 M. Ambrogiani et al. (BELLE Collab.) BAI 03C PR D68 052002 M. Ambrogiani et al. (FNAL E835 Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BELLE Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BELLE Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BELLE Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BELLE Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BELLE Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 03C PR D69 072001 J.Z. Bai et al. (BES Collab.) BAI 04C PR D69 072001 J.Z. Bai et al.	ABLIKIM				,
ADAM ADNECOTTI ADAM ANDRECOTTI AN					
ANDREOTTI 05A NP B717 34	ABLIKIM	05O	PL B630 21		(BES Collab.)
NAKAZAWA 05	ADAM	05A	PRL 94 232002	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ABLIKIM	ANDREOTTI	05A	NP B717 34	M. Andreotti <i>et al.</i>	(FNAL E835 Collab.)
ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.) ABLIKIM 04I PR D70 092004 M. Ablikim et al. (BES Collab.) ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) AULCHENKO 03 PL B573 63 V.M. Aulchenko et al. (KEDR Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) ABE 02T PL B540 33 K. Abe et al. (BES Collab.) AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E P B D60 072001 J.Z. Bai et al. (BES Collab.) ACKERK 98 PL B439 197 K. Ackerstaff	NAKAZAWA	05	PL B615 39	H. Nakazawa <i>et al.</i>	
ABLIKIM 04I PR D70 092004 M. Ablikim et al. (BES Collab.) ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.) BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.) BAI 04I PR D70 012006 J.Z. Bai et al. (BES Collab.) BAI 04I PR D70 012006 J.Z. Bai et al. (BES Collab.) BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.) BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.) ABBROGIANI 02T PL B540 33 K. Abe et al. (BELLE Collab.) AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKER 98 PL B433 197 K. Ackerstaff et al. (DPAL Collab.) BAI 98D PR D50 4265 J. Dominick et al. (BES Collab.) BAI	ABLIKIM	04B	PR D70 012003	M. Ablikim <i>et al.</i>	(BES Collab.)
ATHAR	ABLIKIM	04H	PR D70 092003	M. Ablikim et al.	(BES Collab.)
BAI 04F	ABLIKIM	04I	PR D70 092004	M. Ablikim et al.	(BES Collab.)
BAI 04 PR D70 012006 J.Z. Bai et al. (REDR Collab.)	ATHAR	04	PR D70 112002	S.B. Athar et al.	(CLEO Collab.)
BAI 04 PR D70 012006 J.Z. Bai et al. (BES Collab.)	BAI	04F	PR D69 092001	J.Z. Bai <i>et al.</i>	`(BES Collab.)
BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.) BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.) ABE 02T PL B540 33 K. Abe et al. (BELLE Collab.) AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) AMBROGIANI 01 PRL 87 061801 B.I. Eisenstein et al. (CLEO Collab.) AMBROGIANI 09 PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99 PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99 PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKERK 98 PL B453 73 M. Acciarri et al. (DAL Collab.) ACKERK 98 PL B453 73 M. Acciarri et al. (BES Collab.) ACKERK 98 PR D60 072001 J.Z. Bai et al. (DAL Collab.) ACKERK 98 PR D439 197 K. Ackerstaff et al. (OPAL Collab.) ACKERK 98 PR D78 034020	BAI	041	PR D70 012006	J.Z. Bai <i>et al.</i>	
BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.) ABE 02T PL B540 33 K. Abe et al. (BELLE Collab.) AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) EISENSTEIN 01 PRL 87 061801 B.I. Eisenstein et al. (CLEO Collab.) AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) ACKER,K 98 PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKER,K 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D50 092006 J.Z. Bai et al. (BES Collab.) BAI 98D PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL-E760 Collab.) ARMSTRONG 93 PL B302 345 D.A. Bauer et al. (FNAL-E760 Collab.) AKINGARIA 98 PL B18	AULCHENKO	03	PL B573 63	V.M. Aulchenko et al.	(KEDR Collab.)
BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.) ABE 02T PL B540 33 K. Abe et al. (BELLE Collab.) AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (CLEO Collab.) AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKER,K 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D50 092006 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93 PR D48 3037 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al	BAI	03C	PR D67 032004	J.Z. Bai <i>et al.</i>	(BES Collab.)
AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.) EISENSTEIN 01 PRR 87 061801 B.I. Eisenstein et al. (CLEO Collab.) AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.) ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKER,K 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D50 092006 J.Z. Bai et al. (BES Collab.) BAI 98D PR D50 4265 J. Dominick et al. (CLEO Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (FNAL E760 Collab.) ARMSTRONG 93 PRR 70 2988 T.A. Armstrong et al. (FNAL F6760 Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) ALSO PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) AGLIN 87B P L B187	BAI	03E	PR D67 112001	J.Z. Bai <i>et al.</i>	
EISENSTEIN 01	ABE	02T	PL B540 33	K. Abe <i>et al.</i>	(BÈLLE Collab.)
EISENSTEIN 01	AMBROGIANI	02	PR D65 052002	M. Ambrogiani et al.	(FNAL E835 Collab.)
ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKERK 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.) BAI 98I PR L 81 3091 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93 PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 86B PL B187 191 C. Baglin et al. (Crystal Ball Collab.) BAGLIN 86B PL B187 191 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Le	EISENSTEIN	01		B.I. Eisenstein et al.	` (CLEO Collab.)
ACCIARRI 99E PL B453 73 M. Acciarri et al. (L3 Collab.) BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.) ACKERK 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.) BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) OREGLIA 82 PL 113B 509 Y. Lemoigne et al.	AMBROGIANI	00B	PR D62 052002	M. Ambrogiani et al.	(FNAL E835 Collab.)
ACKER,K 98 PL B439 197 K. Ackerstaff et al. (OPAL Collab.) BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.) BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93 PR D48 3037 T.A. Armstrong et al. (FNAL E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PR B187 191 C. Baglin et al. (FNAL, FERR, GENO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SLAC) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SLAC, SHMP+)	ACCIARRI	99E	PL B453 73	M. Acciarri et al.	(L3 Collab.)
BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.) BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93 PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (FNAL, FERR, GENO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) LEMOIGNE 82 PL 1138 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) Also Private Comm. M.J. Oreglia (SACL, L	BAI	99B	PR D60 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.) DOMINICK 94 PR D50 4265 J. Dominick et al. (CLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (FNAL, FERR, GENO+) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia (SACL, CIT, HARV+) Also Private Comm. M.J. Oreglia (SACL, LOIC, SHMP,	ACKER,K	98	PL B439 197	K. Ackerstaff et al.	(OPAL Collab.)
DOMINICK 94 PR D50 4265 J. Dominick et al. (ČLEO Collab.) ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin et al. (Crystal Ball Collab.) BAGLIN 86B PL B172 455 C. Baglin et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SLAC, CIT, HARV+) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. G. Trilling (LBL, U	BAI	98D	PR D58 092006	J.Z. Bai <i>et al.</i>	(BES Collab.)
ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.) ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SCACL, LOIC, SHMP+) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (DASP Collab.)	BAI	98I	PRL 81 3091	J.Z. Bai <i>et al.</i>	(BES Collab.)
ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.) BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SLAC) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, USB) BANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) <td>DOMINICK</td> <td>94</td> <td>PR D50 4265</td> <td>J. Dominick <i>et al.</i></td> <td>(CLEO Collab.)</td>	DOMINICK	94	PR D50 4265	J. Dominick <i>et al.</i>	(CLEO Collab.)
BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.) ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SLAC) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, UCB) BANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)	ARMSTRONG	93	PRL 70 2988	T.A. Armstrong et al.	(FNAL E760 Collab.)
ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+) Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia (EFI) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)	ARMSTRONG	93E	PR D48 3037	T.A. Armstrong et al.	(FNAL-E760 Collab.)
Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+) BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SLAC) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia (EFI) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	-			D.A. Bauer et al.	
BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.) BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) OREGLIA 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB)	ARMSTRONG	92		T.A. Armstrong <i>et al.</i>	
BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+) GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia (EFI) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PR L 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BARTEL 78B PL 79B 492 W. Bartel et al. (DASP Collab.) Also PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)				<u> </u>	$(FNAL,\ FERR,\ GENO+)$
GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.) LEE 85 SLAC 282 R.A. Lee (SACL, LOIC, SHMP+) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	BAGLIN				
LEE 85 SLAC 282 R.A. Lee (SLAC) LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)				•	
LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+) OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia et al. (SACL, LOIC, SHMP, CERN+) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	GAISER				(Crystal Ball Collab.)
OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+) Also Private Comm. M.J. Oreglia (EFI) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, CIT, HARV+) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)					
Also Private Comm. M.J. Oreglia (EFI) BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)				<u> </u>	,
BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+) HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	OREGLIA	82	PR D25 2259	M.J. Oreglia <i>et al.</i>	$(SLAC,\ CIT,\ HARV+)$
HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC) Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	Also			M.J. Oreglia	
Also Private Comm. G. Trilling (LBL, UCB) BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)		81			(SACL, LOIC, SHMP, CERN+)
BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.) BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)	HIMEL	80	PRL 44 920		(LBL, SLAC)
BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP) TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)				O .	
TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL) Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)					
Also Private Comm. G. Trilling (LBL, UCB) BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)					`
BIDDICK 77 PRL 38 1324 C.J. Biddick et al. (UCSD, UMD, PAVI+)		78			
WHITAKER 16 PRL 31 1596 J.S. Whitaker et al. (SLAC, LBL)					
	WHITAKER	76	PKL 3/ 1596	J.S. Whitaker <i>et al.</i>	(SLAC, LBL)