PVF LEGAL

FIG. 1

FIG. 2

PVF LEGAL

$$X = [\underline{x}, \overline{x}] = \{x \in \Re^* | \underline{x} \le x \le \overline{x}]$$

$$Y = [\underline{y}, \overline{y}] = \{y \in \Re^* | \underline{y} \le y \le \overline{y} \}$$

(1)
$$X+Y = \left[\sqrt{x} + y, \uparrow \overline{x} + \overline{y}\right]$$

(2)
$$X-Y = \left[\sqrt{x} - \overline{y}, \uparrow \overline{x} - \underline{y}\right]$$

(3)
$$X \times Y = \left[\min(\sqrt{\underline{x}} \times \underline{y}, \underline{x} \times \underline{y}, \overline{x} \times \underline{y}, \overline{x} \times \overline{y}), \max(\sqrt{\underline{x}} \times \underline{y}, \underline{x} \times \underline{y}, \overline{x} \times \underline{y}, \overline{x} \times \underline{y}, \overline{x} \times \underline{y}) \right]$$

(4) X/Y =
$$\left[\min\left(\sqrt{x}/\underline{y}, \underline{x}/\overline{y}, \overline{x}/\underline{y}, \overline{x}/\overline{y}\right), \max\left(\sqrt{x}/\underline{y}, \underline{x}/\overline{y}, \overline{x}/\underline{y}, \overline{x}/\overline{y}\right)\right], \text{ if } 0 \notin Y$$

 $X/Y \subseteq \Re^*$, if $0 \in Y$

FIG. 5

START

FOR EACH BOX IN LIST L_i , APPLY TERM CONSISTENCY TO EACH OF THE INEQUALITY CONSTRAINTS $p_i(\mathbf{x}) \le 0$ (i=1, ..., m).

701

IF $f_{bar} < +\infty$, THEN FOR EACH BOX IN L_1 , APPLY TERM CONSISTENCY TO THE INEQUALITY $f \le f_{bar}$.

702

IF L_j IS EMPTY, GO TO STEP 742. OTHERWISE, SELECT THE BOX IN L_j FOR WHICH THE LOWER BOUND OF $f(\mathbf{X})$ IS SMALLEST. FOR LATER REFERENCE, DENOTE THIS BOX BY $\mathbf{X}^{(1)}$. DELETE \mathbf{X} FROM L_j .

APPLY TERM CONSISTENCY OVER
X TO EACH CONSTRAINT
INEQUALITY. IF X IS DELETED, GO
TO STEP 703.
704

COMPUTE AN APPROXIMATION xFOR THE CENTER m(X) OF X. IF $f(x) > f_bar$, GO TO STEP 708.

FOR FUTURE REFERENCE, DENOTE
THE BOX X by X⁽²⁾. DO A
CONSTRAINED LINE SEARCH TO
TRY TO REDUCE f_bar.
706

IF f_bar WAS NOT REDUCED IN STEP 706, GO TO STEP 709. 707

APPLY TERM CONSISTENCY TO THE INEQUALITY f(x) ≤ f_bar OVER THE CURRENT BOX X. IF X IS DELETED, GO TO STEP 703.

708

IF $w(\mathbf{X}) < \varepsilon_X$ AND $w[f(\mathbf{X})] < \varepsilon_F$, PUT \mathbf{X} IN LIST L_2 . OTHERWISE, IF \mathbf{X} IS SUFFICIENTLY REDUCED RELATIVE TO THE BOX $\mathbf{X}^{(1)}$, PUT \mathbf{X} IN L_1 AND GO TO STEP 703.

APPLY BOX CONSISTENCY TO EACH INEQUALITY CONSTRAINT. IF $f_bar < +\infty$, APPLY BOX CONSISTENCY TO THE INEQUALITY $f(\mathbf{x}) \le f_bar$. IF X IS DELETED, GO TO STEP 703.

IF THE UPPER BOUND OF $p_i(\mathbf{X}) \ge 0$ FOR ANY i=1, ..., n, GO TO STEP 726. 711

APPLY TERM CONSISTENCY TO g=0
FOR i=1, ..., n. IF THE RESULT FOR
ANY i=1, ..., n IS EMPTY,
GO TO STEP 703.
712

FIG. 7A

FIG. 7B

USE THE MATRIX B IN A NEWTON STEP TO TRY TO REDUCE f_bar.
725

COMPUTE AN APPROXIMATION xFOR THE CENTER m(X) OF X. IF $f(x)>f_bar$, GO TO STEP 703.

SKIP THIS STEP AND GO TO STEP 732 IF **X=X**⁽²⁾ IS THE SAME BOX FOR WHICH A LINE SEARCH WAS DONE IN STEP 706. OTHERWISE, DO A LINE SEARCH TO TRY TO REDUCE f_bar. IF f_bar IS NOT REDUCED, GO TO STEP 732.

FOR FUTURE REFERENCE DENOTE $\mathbf{X}^{(3)} = \mathbf{X}$. USE A LINEARIZATION TEST TO DECIDE WHETHER TO LINEARIZE AND "SOLVE" THE INEQUALITY $f(\mathbf{x}) \leq f_b a r$. If THE CRITERION IS NOT SATISFIED, GO TO STEP 732.
728

USE A LINEAR METHOD TO TRY TO REDUCE X USING THE INEQUALITY $f(x) \le f_bar$. IF X IS DELETED, GO TO STEP 703. OTHERWISE, IF THIS APPLICATION OF THE LINEAR METHOD DOES NOT SUFFICIENTLY REDUCE BOX $X^{(3)}$ GO TO STEP 731. 729

USE A QUADRATIC METHOD TO TRY TO REDUCE X USING THE INEQUALITY $f(x) \le f_bar$. IF X IS DELETED, GO TO STEP 703.

REPEAT STEP 709. 731

USE A LINEARIZATION TEST TO
DECIDE WHETHER TO LINEARIZE
AND "SOLVE" THE INEQUALITY
CONSTRAINTS. IF THE PROCEDURE
INDICATES THAT THE
LINEARIZATION
SHOULD NOT BE DONE,
GO TO STEP 739.
732

SELECT THE INEQUALITY CONSTRAINTS TO BE SOLVED IN LINEARIZED FORM, AND POSSIBLY ADD TO THIS SET THE INEQUALITY $f(\mathbf{x}) \leq f_bar$. IF NO INEQUALITIES ARE SELECTED, GO TO STEP 739. OTHERWISE, LINEARIZE THE RESULTING SET OF INEQUALITIES, AND SOLVE THE RESULTING SET OF LINEAR INEQUALITIES. IF THE SOLUTION SET IS EMPTY, GO TO STEP 703.

733

REPEAT STEP 709.
734

FIG. 7C

MODIFY THE JOHN CONDITIONS

BY OMITTING THOSE

CONSTRAINTS p_i FOR WHICH $p_i(\mathbf{X}) < 0$ (SINCE THEY ARE NOT

ACTIVE IN \mathbf{X}). APPLY ONE PASS OF

THE INTERVAL NEWTON METHOD

TO THE (MODIFIED)

JOHN CONDITIONS.

IF THE RESULT IS EMPTY,

GO TO STEP 703.

740

REPEAT STEP 709.

IN VARIOUS PREVIOUS STEPS,
GAPS MAY HAVE BEEN FORMED IN
COMPONENTS OF X. IF SO, MERGE
ANY OVERLAPPING GAPS. SPLIT X,
AND PLACE THE RESULTING
SUBBOXES IN L, AND
GO TO STEP 703.
742

IF $f_bar < +\infty$, APPLY TERM CONSISTENCY TO $f(x) \le f_bar$ FOR EACH BOX IN THE LIST L_2 . DENOTE THOSE THAT REMAIN BY $\mathbf{X}^{(1)}$, ..., $\mathbf{X}^{(s)}$ WHERE s IS THE NUMBER OF BOXES REMAINING... DETERMINE

 $\underline{F} = \min_{\text{Isiss}} \underline{f}(X^{(i)}) \text{ and } \overline{F} = \max_{\text{Isiss}} \overline{f}(X^{(i)})$ 743

TERMINATE.

FIG. 7D