DAIS Internship Manager

Piattaforma per la gestione dei tirocini universitari

Giacomo De Liberali

Relatore: Filippo Bergamasco

Dipartimento di Scienze Ambientali, Informatica e Statistica Università Ca' Foscari Venezia

Laurea in Informatica

Abstract

This is where you write your abstract ...

Indice

El	enco	delle fig	gure	vii
El	enco	delle ta	belle	ix
1	Intr	oduzior	ne	1
	1.1	Da do	ve nasce questo progetto	1
	1.2	Scelte	e vincoli tecnici	2
	1.3	Tecno	logie adottate	2
		1.3.1	MongoDB	2
		1.3.2	<i>Node.js</i>	4
		1.3.3	Express.js	5
		1.3.4	Angular	6
	1.4	Attori	del sistema	7
		1.4.1	Azienda	7
		1.4.2	Professore	7
		1.4.3	Studente	7
		1.4.4	Admin	7
2	Arc	hitettur	a	9
	2.1	Archit	ettura lato server	9
	2.2	Archie	etettura lato client	11
		2.2.1	Angular	11
		2.2.2	Supporto multi lingua	11
3	Casi	i d'uso	e workflow	13
	3.1	Casi d	'uso	13
		3.1.1	Creazione di un'utente	13
		3 1 2	UC-2: Login di un'utente	13

vi Indice

4	API			15		
	4.1	Autent	ticazione	. 15		
		4.1.1	Server side			
		4.1.2	Client side	. 15		
	4.2	Endpo	ints			
		4.2.1	Controller base			
		4.2.2	Internships	. 16		
		4.2.3	InternshipProposals	. 16		
		4.2.4	Roles			
		4.2.5	Users	. 16		
		4.2.6	Companies	. 16		
		4.2.7	Auth	. 16		
5	Esen	npi e sc	ereenshot	17		
	5.1	Screen	nshot workflow	. 17		
6	Con	clusioni	i	19		
	6.1	Conclu	udioni	. 19		
	6.2	2 Sviluppi futuri e nuove integrazioni				
Bi	bliogr	afia		21		
Те	rmini	ed abb	previazioni	23		
Gl	lossari	io		25		

Elenco delle figure

Elenco delle tabelle

1.1	Confronto modello query e indicizzazione di $MongoDB$ e altri database ^[3] .	4
4.1	Endpoint rest API	15

Introduzione

1.1 Da dove nasce questo progetto

Nella carriera universitaria di uno studente è prevista dal piano di studi l'inclusione di un tirocinio (internship) che permetterà allo studente di collaborare con un'azienda in un progetto che sia al di fuori delle mura dell'ateneo. Vi sono due diversi tipi di tirocini, curriculare ed extra-curriculare; il primo permette il riconoscimento di crediti formativi universitari (CFU), mentre il secondo mira solamente a fornire un'esperienza lavorativa allo studente.

Per avviare un tirocinio bisogna quindi mettere in comunicazione soggetti eterogenei, ovvero aziende, professori e studenti. Permettere un'efficace collaborazione tra questi attori che appartengono a categorie e ambienti diversi non è semplice e necessita di un controllo granulare e centralizzato.

Il progetto *DAIS Internship Manager* nasce proprio con l'intento di semplificare il processo di gestione degli stage universitari. Il sistema correntemente adottato dall'ateneo non permette un'efficace fruizione dei contenuti né da parte degli studenti né tanto meno dal punto di vista dei professori e delle aziende. L'intero sistema è una semplice interfaccia web che mostra agli studenti autenticati tutte le offerte pubblicate.

Il workflow da seguire per inserire, cercare e candidarsi ad un'offerta di tirocinio è piuttosto macchinoso. Se un'azienda desidera proporre un'offerta di tirocinio prima di tutto deve essere convenzionata con l'ateneo, dopodiché deve inviare un'email alla segreteria che provvederà, una volta validato il contenuto dell'offerta, alla pubblicazione della stessa. Una volta pubblicata l'offerta sarà visibile dagli studenti che potranno candidarsi contattando prima il professore e in seguito l'azienda, sempre mediante un rapporto basato su email.

Risulta quindi necessaria una soluzione che permetta di automatizzare il più possibile questo processo, che tenga traccia dell'andamento del tirocinio e ne monitori lo stato.

2 Introduzione

1.2 Scelte e vincoli tecnici

La soluzione deve essere fruibile da quanti più dispositivi possibili e per raggiungere questo obbiettivo ho scelto di sviluppare un'applicazione web. Appoggiandosi infatti all'accessibilità offerta dal web sarà sufficiente mantenere un solo codebase per raggiungere tutti i dispositivi — computers, smartphones e tablets.

Un requisito di fondamentale importanza è quindi la responsività dell'applicazione, data la diversità dei dispositivi che si intende supportare. Inoltre, per favorire l'accessibilità dell'applicazione, essa dovrà essere multi lingua e in questa prima versione dovrà supportare almeno l'italiano e l'inglese.

1.3 Tecnologie adottate

Dal momento che ho deciso di puntare su un applicazione web, le tecnologie che andrò ad utilizzare per il *front-end* della soluzione saranno sicuramente web-based, in particolare lo stack *MongoDB*, *Express*, *Angular & Node.js (MEAN)*. Questo insieme applicativo è composto da

- 1. Un DBMS basato su un database documentale NoSQL (MongoDB)
- 2. Un framework server-side per la creazione di applicazione web e rest API (Express.js)
- 3. Un framework client-side (Angular)

1.3.1 *MongoDB*

MongoDB è un Database Management System (DBMS) non relazionale, orientato ai documenti classificato come No Structured Query Language (NoSQL). Questo significa che rispetto ai tradizionali sistemi relazionali *MongoDB* si basa sul concetto di documento e collezione.

Il documento rappresenta un oggetto che si intende memorizzare, mentre una collezione è un insieme di documenti (una tabella se paragonata ai sistemi relazionali). *MongoDB* memorizza i dati in con una rappresentazione binaria chiamata BSON (Binary JSON). Questa codifica estente la popolare rappresentazione Javascript Object Notation (JSON) per includere tipi di dato addizionali, come *int, long, date, floating point e decimal 128*. I documenti BSON possono contenere uno o più campi, ognuno dei quali contiene il valore di uno specifico tipo di dato, inclusi array, dati binari o sotto-documenti.

Un esempio di paragone JSON-BSON è il seguente:

```
// JSON = {"hello":"world"}
1
2
3
 BSON:
4
    \x16\x00\x00\x00
                                       // dimensione totale documento
5
    \x02
                                       // 0x02 = tipo String
    hello\x00
                                       // nome campo. \xspace \xspace \xspace \xspace = terminatore
6
7
    \x06\x00\x00\x00world\x00
                                       // valore campo
8
                                       // (dimensione valore, valore,
                                           terminatore)
9
    \x00
                                        // 0x00 = tipo E00 ('end of object')
```

Rispetto a JSON, BSON è progettato per essere efficiente sia nello spazio di archiviazione che nella velocità di scansione. Gli elementi in un documento BSON sono preceduti da un campo lunghezza per facilitare la scansione e questo in alcuni casi, quando il documento è piccolo, porterà BSON ad utilizzare più spazio di JSON proprio a causa dei prefissi di lunghezza e degli indici di array espliciti.

I documenti BSON di *MongoDB* sono concettualmente allineati alla struttura di un oggetto nei linguaggi di programmazione OOP. Questo rende più semplice e veloce per gli sviluppatori modellare la struttura dati dell'applicazione. Tendono infatti ad raggruppare tutti i dati di un record in un un unico documento, in opposizione al sistema relazionale tradizionale in cui le informazioni sarebbero distribuite su diverse tabelle. Questa sorta di aggregazione del dato riduce drammaticamente il bisogno di operazioni di JOIN su tabelle diverse, ottenendo performance superiori grazie ad una singola lettura per ottenere l'intero documento desiderato.

I documenti *MongoDB* possono variare nella struttura. Ad esempio, tutti i documenti che descrivono i clienti potrebbero contenere l'ID cliente e la data in cui hanno acquistato i nostri prodotti o servizi, ma solo alcuni potrebbero contenere il collegamento ai social media dell'utente o i dati sulla posizione dalla nostra applicazione mobile. I campi possono variare da un documento all'altro; non è necessario dichiarare la struttura dei documenti al sistema — essi sono auto-descrittivi. Se è necessario aggiungere un nuovo campo a un documento, è possibile crearlo senza influire sugli altri documenti nel sistema.

Le collezioni sono un insieme di documenti per definizione schema-less, ovvero contengono documenti con tipologie eventualmente diverse (non è considerata una best-practise). Rapportate al sistema relazionale rappresentano una tabella.

MongoDB, essendo basato sul modello NoSQL non utilizza il linguaggio di interrogazione proprio dei sistemi relazionali, ma ne propone uno proprio.

4 Introduzione

```
1
  // SQL
2 INSERT INTO users
                                     SELECT * FROM users
       (name, age, gender)
                                     WHERE
4 VALUES
                                         age < 25
5
       ('Jack', 22, 'M')
6
7
   // NoSQL
                                     db.users.find(
8
  db.users.insert({
9
       name: 'Jack',
                                         age: {
                                              $1t: 25 // $1t = less than
10
       age: 22,
       gander: 'M'
                                         }
11
                                    })
12 })
```

MongoDB presenta alcune funzionalità non previste dalle altre architetture di database. Una comparazione delle features più interessanti tra *MongoDB* e altri tipi di database è raffigurata nella tabella sottostante.

Tabella 1.1 Confronto modello query e indicizzazione di *MongoDB* e altri database [3]

	MongoDB	Database relazionale	Database Key-value
Query Key-value	Si	Si	Si
Indici secondari	Si	Si	No
Intersezione indici	Si	Si	No
Range queries	Si	Si	No
Query geospaziali	Si	Aggiunta costosa	No
Faceted Search	Si	No	No
Aggregazione e trasformazione	Si	Si	No
Equi e Nonequi JOIN	Si	Si	No
Graph processing	Si	No	Si

1.3.2 *Node.js*

Node.js è un ambiente open source e cross platform sviluppato a partire dal 2009 che permette di eseguire codice javascript lato server.

«Node.js® è un runtime javascript costruito sul motore javascript V8 di Chrome. Node.js usa un modello I/O non bloccante e ad eventi, che lo rende un framework leggero ed efficiente. L'ecosistema dei pacchetti di Node.js, npm, è il più grande ecosistema di librerie open source al mondo.»^[1]

Storicamente javascript era utilizzato solamente per scripting client-side, spesso incluso all'interno delle pagine web dove veniva eseguito client-side nel browser dell'utente. *No*-

de.js permette agli sviluppatori di utilizzare scriping server-side, eseguendo comandi che producono contenuto dinamico prima che venga inviato al browser client-side. *Node.js* rappresenta il paradigma «javascript everywhere»^[2], unificando lo sviluppo di applicazioni web attorno ad un unico linguaggio di programmazione piuttosto che separando linguaggi per client e server-side.

La sua architettura è basata sul modello orientato agli eventi (EDA), ciò significa che *Node.js* richiede al sistema operativo su cui è in esecuzione di ricevere notifiche al verificarsi di determinati eventi, rimanendo in stato di *sleep* fino al ricevimento di tale notifica. Questo pattern architetturale permette una forma di comunicazione non bloccante basata sull' *asynchronous I/O* che per il programmatore finale si traduce nell'utilizzo di *callback*. Per segnalare la conclusione di un *task I/O* infatti, *Node.js* invoca la corrispondende *callback*, una semplice funzione, alla quale vengono passati i risultati dell'operazione appena conclusa. *Node.js* opera in un processo single-thread utilizzando il pattern *Observer* per la sottoscrizione e la gestione degli eventi, ottenendo così performance adatte ad applicazioni altamente realtime. Processa le richieste in arrivo in un ciclo, chiamato *event-loop*, dove ogni connessione è una piccola allocazione di memoria heap anziché un nuovo processo o thread. Alla fine della registrazione della *callback* il server rientra in modo automatico nell'*event-loop*, a differenza di altri server orientati agli eventi e vi esce solo quando non vi sono ulteriori *callback* da eseguire.

I vantaggi che hanno portato *Node.js* ad avere una diffusione così ampia sono molti. Sicuramente possiamo notare che javascript è un linguaggio ben conosciuto e largamente utilizzato, quindi la curva di apprendimento di questa tecnologia è molto più breve; offrendo inoltre la programmazione orientata agli eventi permette agli sviluppatori di creare server in grado di gestire un alto numero di richieste simultanee che siano facilmente scalabili senza l'utilizzo del *threading*. Lo svantaggio principale di *Node.js* è la mancanza al supporto per la scalabilità verticale, determinata dalla sua architettura single-thread.

1.3.3 Express.js

Express.js è un framework per costruire applicazioni web ed API basato sulla piattaforma Node.js. Nel corso del tempo è devenuto lo standard de facto per i framework server di Node.js. Si presenta in modo minimale, offrendo un sottile livello applicativo che punti a velocizzare lo sviluppo senza tuttavia oscurare le funzionalità di Node.js. Express.js è diviso in diversi moduli che possono essere innestati uno spora l'altro, rendendolo adatto ad ogni tipo di applicazione. Le sue funzionalità principali sono:

(a) Un sistema di routing: contenuto all'interno del pacchetto 'express-router', è il modulo

6 Introduzione

per la gestione e la manipolazioni delle routes. Permette di definire in modo gerarchico un insieme di *URL*, alle quali associare una specifica azione. Un'azione è un metodo che viene invocato e che produce una risposta.

- (b) *HTTP* helpers, come redirect o sistemi di caching: contenuto all'interno del modulo core, mette a disposizione alcune utility class che facilitano operazioni ripetitive oppure forniscono strumenti aggiuntivi utili ad ogni tipologia di sistema che si intende sviluppare
- (c) Supporto a diversi template engines. Dal momento che si possono anche realizzare applicazioni che ritornano del contenuto, ad esempio un applicazione *Model-View-Controller (MVC)*, è necessario un interprete del template che permetta l'inserimento dinamico di contenuto all'interno di esso. Un esempio di quelli che *Express.js* supporta out of the box sono *Pug (Jade)*, *Haml.js*, *React*, *Blade* e altri.

Un esempio di un'applicazione *Express.js* che una volta avviata risponde 'Hello World!' è la seguente:

```
import { express } from 'express';

const app = express()

app.get('/', (req: Request, res: Response) => {
   res.send('Hello World')
})

app.listen(3000)
```

Qui possiamo vedere che una volta creata l'applicazione (riga 3), viene registrata una nuova route (riga 5) alla quale viene associata una *callback*. Questa *callback* riceve due parametri, la richiesta e la risposta. Il processo di *Node.js* resterà in stato di sleep fino a che una nuova richiesta verrà inoltrata nella route appena definita (quindi fino a che non verrà eseguita una chiamata in *HTTP GET* all'indirizzo dove è in esecuzione l'applicazione). Una volta ricevuta la notifica *Node.js* entrerà nell'*event-loop* per gestirla e una volta completata l'operazione eseguirà la *callback* registrata, rispondendo al client che ha effettuato la connessione con la stringa 'Hello World!'.

1.3.4 Angular

Angular è un framework sviluppato da Google per lo sviluppo front-end di applicazioni web basato su typescript.

1.4 Attori del sistema 7

1.4 Attori del sistema

Dal momento che vi sono più soggetti diversi che accedono alla piattaforma è necessario definire i ruoli dei soggetti coinvolti. Il sistema prevede la gestione di quattro tipi di account, ognuno con permessi diversi, e la personalizzazione dell'interfaccia in base all'utente correntemente autenticato.

1.4.1 Azienda

Inserisce le offerte di tirocinio presso una delle proprie sedi, visualizza le candidature ricevute e approva l'inizio di uno stage

1.4.2 Professore

Approva le offerte inserite dalle aziende prima che vengano pubblicate, approva e visualizza le richieste di candidatura degli studenti che li coinvolgono come referenti

1.4.3 Studente

Visualizza le offerte di tirocinio pubblicate e propone una candidatura indicando un professore

1.4.4 Admin

Ricopre il ruolo di amministratore dei dati, è l'unico soggetto a non avere restrizioni sulla modifica o la cancellazione dei dati

Architettura

2.1 Architettura lato server

Express

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed vitae laoreet lectus. Donec lacus quam, malesuada ut erat vel, consectetur eleifend tellus. Aliquam non feugiat lacus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Quisque a dolor sit amet dui malesuada malesuada id ac metus. Phasellus posuere egestas mauris, sed porta arcu vulputate ut. Donec arcu erat, ultrices et nisl ut, ultricies facilisis urna. Quisque iaculis, lorem non maximus pretium, dui eros auctor quam, sed sodales libero felis vel orci. Aliquam neque nunc, elementum id accumsan eu, varius eu enim. Aliquam blandit ante et ligula tempor pharetra. Donec molestie porttitor commodo. Integer rutrum turpis ac erat tristique cursus. Sed venenatis urna vel tempus venenatis. Nam eu rhoncus eros, et condimentum elit. Quisque risus turpis, aliquam eget euismod id, gravida in odio. Nunc elementum nibh risus, ut faucibus mauris molestie eu. Vivamus quis nunc nec nisl vulputate fringilla. Duis tempus libero ac justo laoreet tincidunt. Fusce sagittis gravida magna, pharetra venenatis mauris semper at. Nullam eleifend felis a elementum sagittis. In vel turpis eu metus euismod tempus eget sit amet tortor. Donec eu rhoncus libero, quis iaculis lectus. Aliquam erat volutpat. Proin id ullamcorper tortor. Fusce vestibulum a enim non volutpat. Nam ut interdum nulla. Proin lacinia felis malesuada arcu aliquet fringilla. Aliquam condimentum, tellus eget maximus porttitor, quam sem luctus massa, eu fermentum arcu diam ac massa. Praesent ut quam id leo molestie rhoncus. Praesent nec odio eget turpis bibendum eleifend non sit amet mi. Curabitur placerat finibus velit, eu ultricies risus imperdiet ut. Suspendisse lorem orci, luctus porta eros a, commodo maximus nisi.

10 Architettura

Nunc et dolor diam. Phasellus eu justo vitae diam vehicula tristique. Vestibulum vulputate cursus turpis nec commodo. Etiam elementum sit amet erat et pellentesque. In eu augue sed tortor mollis tincidunt. Mauris eros dui, sagittis vestibulum vestibulum vitae, molestie a velit. Donec non felis ut velit aliquam convallis sit amet sit amet velit. Aliquam vulputate, elit in lacinia lacinia, odio lacus consectetur quam, sit amet facilisis mi justo id magna. Curabitur aliquet pulvinar eros. Cras metus enim, tristique ut magna a, interdum egestas nibh. Aenean lorem odio, varius a sollicitudin non, cursus a odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

- 1. The first topic is dull
- 2. The second topic is duller
 - (a) The first subtopic is silly
 - (b) The second subtopic is stupid
- 3. The third topic is the dullest

Morbi bibendum est aliquam, hendrerit dolor ac, pretium sem. Nunc molestie, dui in euismod finibus, nunc enim viverra enim, eu mattis mi metus id libero. Cras sed accumsan justo, ut volutpat ipsum. Nam faucibus auctor molestie. Morbi sit amet eros a justo pretium aliquet. Maecenas tempor risus sit amet tincidunt tincidunt. Curabitur dapibus gravida gravida. Vivamus porta ullamcorper nisi eu molestie. Ut pretium nisl eu facilisis tempor. Nulla rutrum tincidunt justo, id placerat lacus laoreet et. Sed cursus lobortis vehicula. Donec sed tortor et est cursus pellentesque sit amet sed velit. Proin efficitur posuere felis, porta auctor nunc. Etiam non porta risus. Pellentesque lacinia eros at ante iaculis, sed aliquet ipsum volutpat. Suspendisse potenti.

Ut ultrices lectus sed sagittis varius. Nulla facilisi. Nullam tortor sem, placerat nec condimentum eu, tristique eget ex. Nullam pretium tellus ut nibh accumsan elementum. Aliquam posuere gravida tellus, id imperdiet nulla rutrum imperdiet. Nulla pretium ullamcorper quam, non iaculis orci consectetur eget. Curabitur non laoreet nisl. Maecenas lacinia, lorem vel tincidunt cursus, odio lorem aliquet est, gravida auctor arcu urna id enim. Morbi accumsan bibendum ipsum, ut maximus dui placerat vitae. Nullam pretium ac tortor nec venenatis. Nunc non aliquet neque.

2.2 Archietettura lato client

2.2.1 Angular

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed vitae laoreet lectus. Donec lacus quam, malesuada ut erat vel, consectetur eleifend tellus. Aliquam non feugiat lacus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Quisque a dolor sit amet dui malesuada malesuada id ac metus. Phasellus posuere egestas mauris, sed porta arcu vulputate ut. Donec arcu erat, ultrices et nisl ut, ultricies facilisis urna. Quisque iaculis, lorem non maximus pretium, dui eros auctor quam, sed sodales libero felis vel orci. Aliquam neque nunc, elementum id accumsan eu, varius eu enim. Aliquam blandit ante et ligula tempor pharetra. Donec molestie porttitor commodo. Integer rutrum turpis ac erat tristique cursus. Sed venenatis urna vel tempus venenatis. Nam eu rhoncus eros, et condimentum elit. Quisque risus turpis, aliquam eget euismod id, gravida in odio. Nunc elementum nibh risus, ut faucibus mauris molestie eu. Vivamus quis nunc nec nisl vulputate fringilla. Duis tempus libero ac justo laoreet tincidunt. Fusce sagittis gravida magna, pharetra venenatis mauris semper at. Nullam eleifend felis a elementum sagittis. In vel turpis eu metus euismod tempus eget sit amet tortor. Donec eu rhoncus libero, quis iaculis lectus. Aliquam erat volutpat. Proin id ullamcorper tortor. Fusce vestibulum a enim non volutpat. Nam ut interdum nulla. Proin lacinia felis malesuada arcu aliquet fringilla. Aliquam condimentum, tellus eget maximus porttitor, quam sem luctus massa, eu fermentum arcu diam ac massa. Praesent ut quam id leo molestie rhoncus. Praesent nec odio eget turpis bibendum eleifend non sit amet mi. Curabitur placerat finibus velit, eu ultricies risus imperdiet ut. Suspendisse lorem orci, luctus porta eros a, commodo maximus nisi.

2.2.2 Supporto multi lingua

Casi d'uso e workflow

3.1 Casi d'uso

And now I begin my third chapter here

3.1.1 Creazione di un'utente

Deve essere possibile creare (ovvero registrare) un nuovo utente nella piattaforma.

3.1.2 UC-2: Login di un'utente

... and some more ...

API

4.1 Autenticazione

Express middleware, auth controller

4.1.1 Server side

Utilizzo JWT per gestire lo stato del sistema

4.1.2 Client side

Utilizzo JWT per gestire lo stato del sistema

4.2 Endpoints

4.2.1 Controller base

Descrizione controller base

Tabella 4.1 Endpoint rest API

URL	Metodo	Parametri	Risposta
/api/internship	GET		ApiResponseDto <array<internship></array<internship>
I1LL	7.48	0.56	8.7
I2MD	3.99	0.63	4.2
I2LL	6.81	0.02	6.66
CMD	13.47	0.09	10.55
CBL	11.88	0.05	13.11

16 API

4.2.2 Internships

Metodi custom

4.2.3 InternshipProposals

Metodi custom

4.2.4 Roles

Metodi custom

4.2.5 Users

Metodi custom

4.2.6 Companies

Metodi custom

4.2.7 Auth

Metodi custom

Esempi e screenshot

5.1 Screenshot workflow

Conclusioni

- 6.1 Concludioni
- 6.2 Sviluppi futuri e nuove integrazioni

Bibliografia

- [1] Node.js Foundation. Node.js, 2018. URL https://nodejs.org/it/.
- [2] Wikimedia Foundation. Node.js wikipedia, 2018. URL https://en.wikipedia.org/wiki/Node.js.
- [3] MongoDB Inc. Mongodb architecture, 2018. URL https://www.mongodb.com/mongodb-architecture.
- [4] MongoDB Inc. Sql to mongodb mapping chart, 2018. URL https://docs.mongodb.com/manual/reference/sql-comparison/.

Arconimi

API Application Programming Interface. 2, 5, 21, 23, *Glossario:* Application Programming Interface

BSON Binary JSON. 2, 3, 21, 23, Glossario: Binary JSON

DBMS Database Management System. 2, 21, 23, Glossario: Database Management System

EDA Event-driver architecture. 5, 21, 23, *Glossario:* Event-driver architecture

HTTP Hyper Text Transfer Protocol. 6, 21, 23, Glossario: Hyper Text Transfer Protocol

JSON Javascript Object Notation. 2, 3, 21, 23, 25, Glossario: Javascript Object Notation

MEAN MongoDB, Express, Angular & Node.js. 2, 21, 23, *Glossario:* MongoDB, Express, Angular & Node.js

MVC Model-View-Controller. 6, 21, 23, Glossario: Model-View-Controller

NoSQL No Structured Query Language. 2, 3, 21, 23, *Glossario:* No Structured Query Language

Observer Observer pattern. 5, 21, 23, *Glossario*: Observer pattern

OOP Object-oriented programming. 3, 21, 23, *Glossario:* Object-oriented programming

URL Uniform Resource Locator. 6, 21, 23, Glossario: Uniform Resource Locator

Glossario

- **Application Programming Interface** Un insieme di definizioni di metodi, protocolli e strumenti per la creazione di software applicativo. In termini generali, si tratta di un insieme di metodi di comunicazione definiti in modo chiaro tra i vari componenti software. 21, 23
- **Back-end** Si intende la parte di applicazione non visibile all'utente finale che manipola, gestisce e fornsce i dati alla parte di front-end . 21
- Binary JSON Una rappresentazione binaria di JSON. 21, 23
- **Callback** Rappresenta un codice eseguibile che viene passato come argomento ad un altra funzione da cui ci si aspetta che venga richiamata (eseguita) in un dato momento. L'esecuzione potrebbe essere immediata come nei callbacks sincroni oppure potrebbe verificarsi in un momento successivo, come nel caso dei callbacks asincroni . 5, 6, 21
- **Database Management System** Un sistema software progettato per consentire la creazione, la manipolazione e l'interrogazione efficiente di database. 2, 21, 23
- **Event-driver architecture** Un pattern di architettura software che promuove la produzione, l'individuazione, il consumo e la reazione agli eventi. 21, 23
- **Event-loop** Un costrutto di programmazione che attende e invia eventi o messaggi in un programma . 5, 6, 21
- **Framework** Fornisce un modo standard per creare e distribuire applicazioni . 5, 6, 21
- **Front-end** Si intende la parte di applicazione visibile all'utente finale, che nasconde i dettagli implementetivi . 2, 6, 21, 25

26 Glossario

Hyper Text Transfer Protocol Protocollo di comunicazione che sta alla base del World Wide Web, Supporta diversi metodi, detti verbi, quali *GET*, *PUT*, *POST*, *PATCH*, *DELETE*, *OPTIONS*, *HEAD*. 21, 23

- **Javascript** Un linguaggio di scripting orientato agli oggetti e agli eventi, comunemente utilizzato nella programmazione Web lato client per la creazione, in siti web e applicazioni web, di effetti dinamici interattivi . 4, 5, 21, 26
- **Javascript Object Notation** Una rappresentazione testuale che permette di codificare un oggetto javascript. 2, 21, 23
- **JOIN** Una clausola del linguaggio SQL che serve a combinare le tuple di due o più relazioni di un database tramite l'operazione di congiunzione dell'algebra relazionale . 3, 4, 21
- **Model-View-Controller** Un pattern architetturale comunemente usato per lo sviluppo di software che divide un'applicazione in tre parti interconnesse. Separa le rappresentazioni interne delle informazioni dal modo in cui vengono presentate all'utente. Il modello di progettazione MVC disaccoppia questi componenti principali consentendo un riutilizzo efficiente del codice. 6, 21, 23
- **MongoDB, Express, Angular & Node.js** Uno stack di tencologie utilizzate insieme al fine di creare applicazioni web. 2, 21, 23
- **No Structured Query Language** Archivi di dati che il più delle volte non richiedono uno schema fisso (schemaless), evitano spesso le operazioni di giunzione (join) e puntano a scalare in modo orizzontale. 2, 21, 23
- **Object-oriented programming** Un paradigma di programmazione che permette di definire oggetti software in grado si interagire gli uni con gli altri attraverso uno scambio di messaggi. 21, 23
- **Observer pattern** Un design pattern in cui un oggetto, chiamato *subject*, mantiene un elenco dei suoi dipendenti, chiamati *observers* e li notifica automaticamente di qualsiasi cambiamento di stato, di solito chiamando uno dei loro metodi. 21, 23
- **Typescript** Un linguaggio programmazione open-source sviluppato di Microsoft, super-set di javascript, estende la sintassi di javascript introducento lo static typing . 6, 21
- **Uniform Resource Locator** Rappresenta una referenza ad una risorsa web. Specifica la sua posizione nella rete e il meccanismo per recuperarla. 21, 23