T.D. V - Applications linéaires

Exercice 1. Les ensembles suivants sont-ils des espaces vectoriels?

1.
$$E_1 = \{(x_i)_{\in [1,n]} \in \mathbb{R}^n ; x_1 = 0 \text{ ET } x_2 = 0\}$$

2.
$$E_2 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 + x_2 = 0\}$$

3.
$$E_3 = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 \neq 0\}$$

4.
$$E_4 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 = x_2\}$$

5.
$$E_5 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 x_2 = 0\}$$

I - Applications linéaires

Exercice 2. Déterminer si les applications suivantes sont des applications linéaires. Le cas échéant, déterminer le noyau et l'image.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (-x + 2y, 2x - 3y + z)$$

2.
$$f_2: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (2x + y - z, x - y + 3z, 4x + y - z)$$

3.
$$f_3: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (y + z, x + y + z, x)$$

4.
$$f_4: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto z(x + y, x - y)$$

5.
$$f_5: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto 2(x + y + z, x - y)$$

Exercice 3. Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$. Montrer que $g \circ f = 0$ si et seulement si $\text{Im}(f) \subset \text{Ker}(g)$.

Exercice 4. Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ une application linéaire non nulle. Montrer que f est surjective.

Exercice 5. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle que pour tout $x \in \mathbb{R}^3$, la famille (x, f(x)) soit liée. On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Soit $(i, j) \in [1, 3]^2$.

- **1.** Montrer qu'il existe $a_i \in \mathbb{R}$ tel que $f(e_i) = a_i e_i$.
- **2.** Montrer qu'il existe $a_{i,j} \in \mathbb{R}$ tel que $f(e_i + e_j) = a_{i,j}(e_i + e_j)$.
- **3.** Montrer que, $a_i = a_j$ puis qu'il existe $a \in \mathbb{R}$ telle que $f = a \operatorname{Id}$.

Exercice 6. Soit $u \in \mathcal{L}(\mathbb{R}^n)$.

1. Montrer que, pour tout $k \in \mathbb{N}$, $\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^{k+1})$.

Pour tout $k \in \mathbb{N}$, on note $d_k = \operatorname{Ker}(u^k)$.

2. Montrer que la suite (d_k) est croissante et majorée. En déduire que la suite (d_k) est convergente.

On admettra que la suite (d_k) est stationnaire et on note $p \in \mathbb{N}$ tel que $d_{p-1} \neq d_p$ et, pour tout $k \geqslant p$, $d_k = d_p$.

3. Montrer que $\operatorname{Ker} u^{p-1} \neq \operatorname{Ker} u^p$ et, pour tout $k \geqslant p, \operatorname{Ker} u^k = \operatorname{Ker} u^p$.

II - Applications linéaires & Matrices

Exercice 7. Pour les applications linéaires f et les bases \mathcal{B} suivantes, déterminer la matrice de f dans la base \mathcal{B} .

1.
$$f_1:(x,y)\mapsto (x+y,3x-5y), \mathcal{B}=((1,0),(0,1)).$$

2.
$$f_2:(x,y)\mapsto (x+y,3x-5y), \mathcal{B}=((0,1),(1,0)).$$

3.
$$f_3:(x,y)\mapsto (2x+y,x-y), \mathcal{B}=((1,2),(3,4))$$

12

4.
$$f_4:(x,y,z)\mapsto(x+y,3x-z,y), \mathcal{B}=((1,0,0),(0,1,0),(1,1,1))$$

Exercice 8. Soit $\mathscr{B}_1 = ((1,2,1),(2,3,3),(3,7,1)),$ $\mathscr{B}_2 = ((3,1,4),(5,3,2),(1,-1,7))$ et $f:(x,y,z)\mapsto (2x+2y+z,3x+z,5z)$ Déterminer $\mathscr{M}_{\mathscr{B}_1,\mathscr{B}_2}(f)$.

Exercice 9. Soit $\mathscr{B} = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $f \in \mathscr{L}(\mathbb{R}^3)$ dont la matrice dans la base \mathscr{B} est $\begin{pmatrix} 0 & 1 & 2 \\ 3 & 5 & 4 \\ 1 & 0 & 3 \end{pmatrix}$. Déterminer la matrice de f dans la base $\mathscr{B}_1 = (e_3, e_2, e_1)$.

III - Calculs de puissances

Exercice 10. (Calcul de puissances) Soit $A = \begin{pmatrix} 3 & 2 & 1 \\ -4 & -3 & -1 \\ -4 & -2 & -2 \end{pmatrix}$. On note

u l'endomorphisme canoniquement associé à

- 1. Dterminer le rang de u.
- 2. Déterminer une base du noyau et de l'image de u. En déduire une nouvelle base $\mathscr{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbb{R}^3 .
- 3. Écrire la matrice de passage P de la base canonique à \mathscr{B} .
- **4.** Déterminer la matrice B de u dans la base \mathscr{B} .
- **5.** Écrire une relation entre les matrices A, P et B.
- **6.** Pour tout $n \in \mathbb{N}$, calculer B^n . En déduire la valeur de A^n .

Exercice 11. Soit $a, b \in \mathbb{R}$, $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,

B = A - bJ et $n \in \mathbb{N}$.

- 1. Déterminer J^n
- **2.** À l'aide de la formule du binôme de Newton, calculer A^n .

Exercice 12. Soit $\alpha, \beta, \gamma \in \mathbb{R}, A = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}, B = A - I_3 \text{ et } n \in \mathbb{N}.$

- **1.** Cacluler B^n .
- **2.** À l'aide de la formule du binôme de Newton, calculer A^n .

IV - Rangs de matrices

Exercice 13. Sans calcul, déterminer le rang des matrices suivantes :

1.
$$A_1 = \begin{pmatrix} 1 & 4 \\ 3 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 1 & 4 \end{pmatrix}$$

4.
$$A_4 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \\ 6 & 7 & 13 \end{pmatrix}$$

2.
$$A_2 = \begin{pmatrix} 1 & 4 & 1 & 4 \\ 2 & 8 & 2 & 8 \\ 2 & 8 & 2 & 8 \\ 5 & 20 & 5 & 20 \end{pmatrix}$$
 5. $A_5 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 6 \end{pmatrix}$

5.
$$A_5 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 6 \end{pmatrix}$$

3.
$$A_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
 6. $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$

$$\mathbf{6.} \ J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

Exercice 14. Déterminer le rang des matrices suivantes :

$$\mathbf{1.} \ A_1 = \begin{pmatrix} 3 & 2 & 1 \\ -4 & -3 & -1 \\ -4 & -2 & -2 \end{pmatrix}$$

1.
$$A_1 = \begin{pmatrix} 3 & 2 & 1 \\ -4 & -3 & -1 \\ -4 & -2 & -2 \end{pmatrix}$$
 3. $A_3 = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & -1 & 2 \\ 4 & 2 & 1 & -1 \\ 1 & 4 & 2 & 1 \end{pmatrix}$

2.
$$A_2 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix}$$

$$\mathbf{3.} \ A_3 = \begin{pmatrix} 2 & 1 & -1 & 2 \\ 4 & 2 & 1 & -1 \\ 1 & 4 & 2 & 1 \end{pmatrix}$$

V - Questions plus théoriques

Exercice 15. Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$ et φ l'application définie sur $\mathcal{M}_3(\mathbb{R})$

par $\varphi: M \mapsto MA$. On note $(E_{i,i})_{1 \le i,j \le 3}$ la base canonique de $\mathcal{M}_3(\mathbb{R})$.

- **1.** Montrer que φ est une application linéaire sur $\mathcal{M}_3(\mathbb{R})$.
- **2.** Écrire la matrice associée à φ dans la base canonique.

Exercice 16. Pour tout $1 \leq i, j \leq n$, on note $E_{i,j}$ la matrice carrée de taille n dont le coefficient d'indice (k, ℓ) vaut 1 si $(k, \ell) = (i, j)$ et vaut 0 sinon. On note

$$Z_n = \{ A \in \mathscr{M}_n(\mathbb{R}) ; \forall M \in \mathscr{M}_n(\mathbb{R}), AM = MA \}.$$

- 1. Montrer que Z_n est un espace vectoriel.
- **2.** Soit $A \in \mathbb{Z}_n$.
- **a)** Écrire les produits $E_{i,j}A$ et $AE_{i,j}$. En déduire que $a_{i,i}=a_{j,j}$ et $a_{k,i}=0$ si $k\neq i$ et $a_{i,k}=0$ si $k\neq j$.
 - **b)** En déduire qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I$.
- **3.** Déterminer Z_n .

Exercice 17. Une matrice A est antisymétrique si $A^T = -A$. Montrer que, pour toute matrice $M \in \mathscr{M}_n(\mathbb{R})$, il existe un unique couple (S, A) où S est symétrique et A est antisymétrique tel que M = S + A.

Exercice 18. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle $f^3 = 0$ et $f^2 \neq 0$.

- **1.** Montrer qu'il existe $x_0 \in \mathbb{R}^3$ tel que $f(x_0) \neq 0_{\mathbb{R}^3}$.
- **2.** Montrer que $\mathscr{B} = (x_0, f(x_0), f^2(x_0))$ forme une base de \mathbb{R}^3 .
- **3.** Déterminer $Mat_{\mathscr{B}}(f)$.
- **4.** Soit $g \in \mathcal{L}(\mathbb{R}^3)$ telle que $f \circ g = g \circ f$. Déterminer $\mathrm{Mat}_{\mathscr{B}}(g)$.
- **5.** En déduire que $g \in \mathcal{L}(\mathbb{R}^3)$ commute avec f si et seulement s'il existe $a, b, c \in \mathbb{R}$ tels que $g = af^2 + bf + c \operatorname{Id}$.

Exercice 19. Soit $A = (a_{ij})_{i,j \in [\![1,n]\!]} \in \mathscr{M}_n(\mathbb{R})$. On suppose que pour tout

$$i \in [\![1,n]\!], |a_{ii}| > \sum_{j \neq i} |a_{ij}|. \text{ Soit } X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ tel que } AX = 0.$$

1. Montrer que, pour tout $i \in [1, n]$, $a_{i,i}x_i = -\sum_{j \neq i} a_{i,j}x_j$.

On suppose $X \neq 0$ et on note i_0 un indice tel que

$$\forall k \in [1, n], |x_k| \leq |x_{i_0}|.$$

- **2.** Montrer que $|a_{i_0,i_0}| \leq \sum_{j \neq i_0} |a_{i_0,j}|$.
- **3.** En déduire que X=0 puis que A est inversible.