Estatísticas da Lista 1

Para a lista 1, quatro exercícios aleatórios foram sorteados para correção. Os exercícios são: Ex.2, Ex.6, Ex.8 e Ex.10. A nota final da lista 1 é a nota máxima entre a média aritmética simples dos quatro exercícios e a média aritmética simples entre os exercícios (Ex.2, Ex.8 e Ex.10). Essa abordagem foi escolhida com o objetivo de melhorar as notas dos alunos, uma vez que a média da turma no Ex.6 foi baixa.

Lista 1 - Estatísticas					
	Ex.2	Ex.6	Ex.8	Ex.10	Nota Final
Mínimo	0	0	0	0	8.3
Máximo	100	100	100	100	100
Média	93	38	50	59	70
Mediana	100	0	66	90	79
Moda	100	0	0	100	33

Gabarito da Lista 1

 $\mathbf{Ex.1}$) Para mostrar que as expressões são equivalentes, podemos usar tabelasverdade.

Proof. Demonstração para (a) $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$: Vamos construir a tabela-verdade:

a	b	$a \wedge b$	$\neg(a \wedge b)$	$\neg a \lor \neg b$
V	V	V	F	F
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

Onde V representa "Verdadeiro" e F representa "Falso". Como as colunas para $\neg(a \land b)$ e $\neg a \lor \neg b$ são idênticas, a equivalência $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ é verdadeira.

Demonstração para (b) $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$: Vamos construir a tabelaverdade:

a	b	$a \lor b$	$\neg(a \lor b)$	$\neg a \wedge \neg b$
V	V	V	F	F
V	F	V	F	F
F	V	V	F	F
F	F	F	V	V

Onde V representa "Verdadeiro" e F representa "Falso". Como as colunas para $\neg(a \lor b)$ e $\neg a \land \neg b$ são idênticas, a equivalência $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ é verdadeira.

Portanto, as expressões em (a) e (b) são equivalentes de acordo com as leis de De Morgan. $\hfill\Box$

Ex.2)

Proof. Para provar que as proposições $p \to q$ e $\neg p \lor q$ são equivalentes, podemos considerar todas as combinações possíveis de valores-verdade de p e q e mostrar que, para cada combinação, as duas proposições têm o mesmo valor-verdade. Vamos construir uma tabela-verdade:

p	q	$p \rightarrow q$	$\neg p \vee q$
V	V	V	V
V	F	F	F
F	V	V	V
F	F	V	V

Onde V representa "Verdadeiro" e F representa "Falso". Analisando a tabela-verdade como $p \to q$ e $\neg p \lor q$ têm o mesmo valor-verdade em todas as possíveis combinações de valores-verdade de p e q, concluímos que $p \to q$ é equivalente a $\neg p \lor q$.

Ex.3)

Proof. Para encontrar uma expressão para f usando x_1, \ldots, x_5 e quaisquer conectivos, baseando-se nas linhas da tabela-verdade fornecida, podemos usar a forma normal disjuntiva (FND). A FND é uma forma de representar proposições lógicas como uma disjunção de conjunções. Dada a tabela-verdade, as linhas que terminam com f falso são:

- 1. (F, V, F, F, V, F)
- 2. (F, V, F, V, V, F)
- 3. (V, V, V, V, F, F)

Para cada linha onde f é falso, vamos criar uma conjunção que é verdadeira somente para essa linha e falsa para todas as outras. Posteriormente, vamos unir essas conjunções usando o conectivo de disjunção (OU) para obter a expressão desejada para f.

1. Para a linha (F, V, F, F, V, F), a conjunção é:

$$\neg x_1 \land x_2 \land \neg x_3 \land \neg x_4 \land x_5$$

2. Para a linha (F, V, F, V, V, F), a conjunção é:

$$\neg x_1 \land x_2 \land \neg x_3 \land x_4 \land x_5$$

3. Para a linha (V, V, V, V, F, F), a conjunção é:

$$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge \neg x_5$$

Agora, vamos unir essas conjunções usando o conectivo de disjunção (OU) para obter f:

$$f = (\neg x_1 \land x_2 \land \neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4 \land x_5) \lor (x_1 \land x_2 \land x_3 \land x_4 \land \neg x_5)$$

Porém, observe que esta é a expressão para quando f é falso. Como queremos uma expressão para f, precisamos negar toda a expressão:

$$f = \neg ((\neg x_1 \land x_2 \land \neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4 \land x_5) \lor (x_1 \land x_2 \land x_3 \land x_4 \land \neg x_5))$$

Ex.4)

Proof. Sejam P o conjunto de todos os professores (que já ministraram aula), A o conjunto de todos os alunos e P(x,y) o predicado "x já deu aula para y". Vamos traduzir e analisar cada afirmação:

1. $\forall x \in P(\forall y \in AP(x,y))$

Tradução: "Para todo professor, ele já deu aula para todos os alunos." **Verdadeira?** Não. Em qualquer sistema educacional realista, nenhum professor ensinou todos os alunos.

2. $\forall x \in P(\exists y \in AP(x,y))$

Tradução: "Para todo professor, existe pelo menos um aluno para o qual ele deu aula."

Verdadeira? Sim, se considerarmos que todos no conjunto P são professores que já ministraram aulas, então eles devem ter dado aula para pelo menos um aluno.

3. $\exists x \in P(\exists y \in A \neg P(x, y))$

Tradução: "Existe um professor que nunca deu aula para pelo menos um aluno."

Verdadeira? Sim. De fato, a maioria dos professores não ensinou a maioria dos alunos.

4. $\neg(\exists x \in P(\forall y \in AP(x,y)))$

Tradução: "Para todo professor existe pelo menos um aluno o qual ele não deu aula."

Verdadeira? Sim. Como mencionado anteriormente, em qualquer sistema educacional realista, nenhum professor ensinou todos os alunos.

5. $\exists x \in A(\exists y \in PP(x, y))$

Tradução: "Existe um aluno no qual já deu aula para pelo menos um professor."

Verdadeira? Sim. Se considerar que um professor também pode ser aluno.

6. $\exists ! x \in P(\exists y \in AP(x, y))$

Tradução: "Existe exatamente um professor que deu aula para pelo menos um aluno."

Verdadeira? Não. Há muitos professores que deram aulas para pelo menos um aluno.

Ex.5)

Proof. Para provar a distributividade do quantificador existencial sobre a disjunção usando a distributividade do quantificador universal sobre a conjunção, podemos usar a relação entre os quantificadores e a negação. Lembrando das seguintes equivalências:

- 1. $\neg \forall x P(x)$ é equivalente a $\exists x \neg P(x)$
- 2. $\neg \exists x P(x)$ é equivalente a $\forall x \neg P(x)$

Começaremos provando a direção da esquerda para a direita.

$$\exists x (P(x) \lor Q(x)) \Rightarrow (\exists x P(x)) \lor (\exists x Q(x))$$

Dado $\exists x(P(x) \lor Q(x))$, queremos provar $(\exists x P(x)) \lor (\exists x Q(x))$. Suponha que a afirmação da esquerda seja verdadeira, ou seja, $\exists x(P(x) \lor Q(x))$. Então, temos que $\neg \forall x \neg (P(x) \lor Q(x))$, usando a primeira equivalência acima. Aplicando a distributividade do quantificador universal sobre a conjunção, temos:

$$\neg(\forall x \neg P(x)) \lor \neg(\forall x \neg Q(x))$$

Usando a segunda equivalência, temos:

$$(\exists x P(x)) \lor (\exists x Q(x))$$

Agora, provando a direção da direita para a esquerda de

$$(\exists x P(x)) \lor (\exists x Q(x)) \Rightarrow \exists x (P(x) \lor Q(x))$$

Suponha que $(\exists x P(x)) \lor (\exists x Q(x))$ seja verdadeiro. Então, pelo menos uma das afirmações $\exists x P(x)$ ou $\exists x Q(x)$ é verdadeira. No caso de $\exists x P(x)$ ser verdadeiro, isso implica que para algum x, P(x) é verdadeiro. Isso, por sua vez, implica que $P(x) \lor Q(x)$ também é verdadeiro para esse x. Portanto, $\exists x (P(x) \lor Q(x))$ é verdadeiro. Similarmente, se $\exists x Q(x)$ é verdadeiro, isso implica que $\exists x (P(x) \lor Q(x))$ também é verdadeiro. Assim, em ambos os casos, temos $\exists x (P(x) \lor Q(x))$.

Combinando ambas as direções, temos a equivalência desejada:

$$\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$$

Ex.6)

Proof. Considere a seguinte afirmação em lógica de primeira ordem:

$$\phi = (\forall x.(K(x) \leftrightarrow \forall z. \neg A(x,z))) \land (\forall x.(H(x) \to \exists y.(B(x,y) \land D(x,y))))$$

Vamos encontrar a negação de ϕ . Para negar ϕ :

Passo 1: Distribua a negação sobre a conjunção:

$$\neg \phi = \neg (\forall x. (K(x) \leftrightarrow \forall z. \neg A(x, z))) \lor \neg (\forall x. (H(x) \to \exists y. (B(x, y) \land D(x, y))))$$

Passo 2: Use o fato de que a negação de um quantificador universal é um quantificador existencial (e vice-versa):

$$\neg \phi = (\exists x. \neg (K(x) \leftrightarrow \forall z. \neg A(x,z))) \lor (\exists x. \neg (H(x) \to \exists y. (B(x,y) \land D(x,y))))$$

Passo 3: Distribua a negação sobre o bicondicional e a implicação: Usando o fato de que:

$$\neg(p \leftrightarrow q) = (p \land \neg q) \lor (\neg p \land q)$$

е

$$\neg(p \to q) = (p \land \neg q)$$

Obtemos:

$$\neg \phi = (\exists x. (K(x) \land \exists z. A(x,z)) \lor (\neg K(x) \land \forall z. \neg A(x,z))) \lor (\exists x. (H(x) \land \forall y. \neg (B(x,y) \land D(x,y))))$$

Passo 4: Distribua a negação sobre a conjunção: Usando o fato de que:

$$\neg(p \land q) = \neg p \lor \neg q$$

Obtemos:

$$\neg \phi = (\exists x.(K(x) \land \exists z.A(x,z)) \lor (\neg K(x) \land \forall z. \neg A(x,z))) \lor (\exists x.(H(x) \land \forall y.(\neg B(x,y) \lor \neg D(x,y))))$$

Eessa é a negação da afirmação dada, sem negações aninhadas, exceto para negações diretas de predicados. $\hfill\Box$

Ex.7

Proof.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Seja x um elemento arbitrário. Vamos provar a igualdade mostrando que cada lado é um subconjunto do outro. (i) $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$:

Suponha que $x \in A \setminus (B \cap C)$. Isso significa que:

$$x \in A$$
 e $x \notin B \cap C$ (Definição de diferença de conjuntos)

Agora, $x \notin B \cap C$ implica que:

$$x \notin B$$
 ou $x \notin C$ (Definição de interseção)

Isso implica que $x \in A$ e $x \notin B$ ou $x \in A$ e $x \notin C$:

$$x \in A \setminus B$$
 ou $x \in A \setminus C$ (Definição de diferença de conjuntos)

Portanto:

$$x \in (A \setminus B) \cup (A \setminus C)$$
 (Definição de união)

Note que os passo dados seguindo a lógica de conjuntos, tomando $x \in A \setminus (B \cap C)$ até concluir que $x \in (A \setminus B) \cup (A \setminus C)$ são mais fortes que uma implicação, isto é, são uma equivalência. Portanto, fazendo o caminho de volta segue que (ii) $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$, ou seja, juntando (i) e (ii), temos a igualdade desejada.

Proof.
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

(i)
$$A \setminus (B \setminus C) \subseteq (A \setminus B) \cup (A \cap C)$$
:

Suponha que $x \in A \setminus (B \setminus C)$. Isso significa que:

$$x \in A$$
 e $x \notin B \setminus C$ (Definição de diferença de conjuntos)

Agora, $x \notin B \setminus C$ implica que:

$$x \notin B$$
 ou $x \in C$ (Definição de diferença de conjuntos)

Isso implica que $x \in A$ e $x \notin B$ ou $x \in A$ e $x \in C$:

 $x \in A \setminus B$ ou $x \in A \cap C$ (Definição de diferença e interseção de conjuntos)

Portanto:

$$x \in (A \setminus B) \cup (A \cap C)$$
 (Definição de união)

Do mesmo motivo do item a) segue que (ii) $(A \setminus B) \cup (A \cap C) \subseteq A \setminus (B \setminus C)$. Assim, juntando (i) e (ii), temos a igualdade desejada.

Ex.8 (a) Prova de que existe um único elemento identidade para a diferença simétrica.

Proof. Existência: Para que um conjunto X seja o elemento identidade para a diferença simétrica, a operação de $A\Delta X$ deve resultar em A para qualquer conjunto A. A diferença simétrica entre dois conjuntos é o conjunto de elementos que estão em um dos conjuntos, mas não em ambos. Portanto, o conjunto X não deve contribuir com nenhum elemento novo para A e também não deve remover nenhum elemento de A. O único conjunto que satisfaz essa condição é o conjunto vazio, denotado por \emptyset . Assim, para qualquer conjunto A,

$$A\Delta\emptyset = (A \setminus \emptyset) \cup (\emptyset \setminus A) = A \cup \emptyset = A.$$

Portanto, \emptyset é o único elemento identidade para a diferença simétrica.

Unicidade: Suponha que existam dois conjuntos, X_1 e X_2 , tais que para qualquer conjunto A, $A\Delta X_1 = A$ e $A\Delta X_2 = A$. Queremos mostrar que $X_1 = X_2$. Dado que $A\Delta X_1 = A$ e $A\Delta X_2 = A$, temos as seguintes equivalências:

$$A\Delta X_1 = A\Delta X_2 \iff (A\Delta A)\Delta X_1 = (A\Delta A)\Delta X_2$$

$$\iff (A\Delta A)\Delta X_1 = (A\Delta A)\Delta X_2$$

$$\iff \emptyset \Delta X_1 = \emptyset \Delta X_2$$

$$\iff X_1\Delta \emptyset = X_2\Delta \emptyset$$

$$\iff X_1 = X_2$$

Ex.8 (b) Prova de que cada conjunto tem um inverso único para a operação de diferença simétrica.

Proof. Existência: Para que um conjunto B seja o inverso de A em relação à diferença simétrica, a operação $A\Delta B$ deve resultar no conjunto identidade \emptyset . Isso significa que B deve conter exatamente os elementos que A não contém e vice-versa. Portanto, tome B=A. Assim,

$$A\Delta A = (A \setminus A) \cup (A \setminus A) = \emptyset \cup \emptyset = \emptyset.$$

Unicidade: Suponha que para um conjunto A, existam dois conjuntos, B_1 e B_2 , tais que $A\Delta B_1 = \emptyset$ e $A\Delta B_2 = \emptyset$. Queremos mostrar que $B_1 = B_2$. Temos:

$$B_1 = B_1 \Delta \emptyset = B_1 \Delta (A \Delta B_2) = (B_1 \Delta A) \Delta B_2 = (A \Delta B_1) \Delta B_2 = \emptyset \Delta B_2 = B_2 \Delta \emptyset = \emptyset.$$

Ex.8 (C) Prova de que, para quaisquer conjuntos A e B, existe um conjunto único C tal que $A\Delta C = B$.

Proof. Existência: Usando as propriedades da diferença simétrica, podemos expressar C em termos de A e B. Dado que a diferença simétrica é comutativa,

9

usando a associatividade da diferença simétrica e o fato de que $A\Delta A=\emptyset$, podemos expressar C como:

$$A\Delta C = B \iff C\Delta A = B \iff C\Delta A\Delta A = B\Delta A \iff C\Delta \emptyset = A\Delta B \iff C = A\Delta B$$

Unicidade: Suponha que existam dois conjuntos, C_1 e C_2 , tais que $A\Delta C_1 = B$ e $A\Delta C_2 = B$. Queremos mostrar que $C_1 = C_2$. Temos:

$$C_1 = \emptyset \Delta C_1 = (A\Delta A)\Delta C_1 = A\Delta (A\Delta C_1) = A\Delta (A\Delta C_2) = (A\Delta A)\Delta C_2 = \emptyset \Delta C_2 = C_2$$

Portanto, para quaisquer conjuntos A e B, o conjunto C que satisfaz $A\Delta C = B$ é $A\Delta B$.

Ex.9

Proof. Prova de que, para qualquer família de conjuntos \mathcal{F} , $| \cdot | \cdot | \mathcal{F} \subseteq | \cdot | \mathcal{F}$.

Seja x um elemento arbitrário de $\bigcup !\mathcal{F}$. Pela definição de $\bigcup !\mathcal{F}$, isso significa que existe um único conjunto A em \mathcal{F} tal que $x \in A$. Mas isso também implica que x pertence a pelo menos um conjunto em \mathcal{F} , o que, pela definição de $\bigcup \mathcal{F}$, significa que $x \in \bigcup \mathcal{F}$. Portanto, $\bigcup !\mathcal{F} \subseteq \bigcup \mathcal{F}$.

Proof. Prova de que, para qualquer família de conjuntos \mathcal{F} , $| \cdot | \cdot | \mathcal{F} = | \cdot | \mathcal{F}$ se e somente se \mathcal{F} é disjunta dois a dois.

- (i) Suponha que \mathcal{F} seja disjunta dois a dois. Isso significa que para quaisquer conjuntos A e B em \mathcal{F} com $A \neq B$, $A \cap B = \emptyset$. Agora, qualquer elemento x que pertença a $\bigcup \mathcal{F}$ pertence a exatamente um conjunto em \mathcal{F} porque os conjuntos são disjuntos dois a dois. Portanto, $\bigcup \mathcal{F} = \bigcup !\mathcal{F}$.
- (ii) Agora, suponha que $\bigcup !\mathcal{F} = \bigcup \mathcal{F}$. Isso significa que cada elemento de $\bigcup \mathcal{F}$ pertence a exatamente um conjunto em \mathcal{F} . Se houvesse dois conjuntos A e B em \mathcal{F} que não fossem disjuntos, então haveria pelo menos um elemento x que pertenceria a ambos A e B, contradizendo a definição de $\bigcup !\mathcal{F}$. Portanto, \mathcal{F} deve ser disjunta dois a dois.

Juntando (i) e (ii), temos que $\bigcup !\mathcal{F} = \bigcup \mathcal{F}$ se e somente se \mathcal{F} é disjunta dois a dois.

Ex.10

Proof. Suponha que a equação $ax^2 + bx + c = 0$ tenha uma raiz racional $x = \frac{p}{q}$, onde p e q são inteiros primos entre si (ou seja, p e q não têm fatores comuns além de 1) e $q \neq 0$. Substituindo $x = \frac{p}{q}$ na equação dada, obtemos:

$$a\left(\frac{p}{q}\right)^2 + b\left(\frac{p}{q}\right) + c = 0$$

Multiplicando todos os termos por q^2 , temos:

$$ap^2 + bpq + cq^2 = 0 \quad (1)$$

Agora, vamos considerar as três possíveis paridades de p e q (não é possivel o caso p par e q par, devido a hipótese de que p e q não têm fatores comuns além de 1, caso contrário o 2 seria um fator comum):

- 1. Se p é impar e q é impar: p^2 é impar, pq é impar e q^2 é impar.
- 2. Se p é impar e q é par: p^2 é impar, pq é par e q^2 é par.
- 3. Se p é par e q é impar: p^2 é par, pq é par e q^2 é impar.

Dado que $a, b \in c$ são todos ímpares, temos:

Caso 1 - p ímpar e q ímpar: os termos ap^2 , bpq e cq^2 na equação (1) são todos ímpares. No entanto, a soma de três números ímpares é ímpar, o que contradiz a equação (1) que afirma que a soma é 0 (um número par).

Caso 2 - p ímpar e q par: o termo ap^2 é ímpar, bpq é par e cq^2 é par. Somando os termos pares ainda continuamos com um termo par. Assim nos resta a soma de um número ímpar por um número par, o que resulta em um número ímpar. Isso contradiz a equação (1) que afirma que a soma é 0 (um número par). Note que o Caso 3 - p par e q ímpar é simétrico ao Caso 2 na equação (1), logo resulta na mesma conclusão.

Em todos os casos possíveis chegamos a uma contradição. Portanto, a equação $ax^2 + bx + c = 0$ não pode ter raízes racionais quando a, b e c são ímpares. \square

Ex.11)

Proof. Suponhamos, por contradição, que $\sqrt{2n}$ é racional para algum número natural ímpar n. Isso significa que podemos expressar $\sqrt{2n}$ como uma fração de dois inteiros:

$$\sqrt{2n} = \frac{p}{a}$$

onde p e q são inteiros, $q \neq 0$, e p e q não têm fatores comuns além de +1 e -1 (isto é, p e q são coprimos). Elevando ambos os lados ao quadrado, obtemos:

$$2n = \frac{p^2}{q^2}$$

$$\implies 2nq^2 = p^2$$

Desta equação, podemos inferir que p^2 é par, porque é 2 vezes algum inteiro. E se p^2 é par, então p também deve ser par. Representemos p como 2k, onde k é algum inteiro. Substituindo p=2k em nossa equação, obtemos:

$$2nq^{2} = (2k)^{2}$$

$$\implies 2nq^{2} = 4k^{2}$$

$$\implies nq^{2} = 2k^{2}$$

Agora, isso implica que nq^2 é par, e como n é ímpar (pela suposição inicial), q^2 deve ser par (usando o lema). Se q^2 é par, então q também é par. Mas isso é uma contradição! Supusemos que p e q são coprimos, o que significa que não podem ser ambos pares. Esta contradição significa que nossa suposição inicial de que $\sqrt{2n}$ é racional deve ser falsa. Portanto, se n é um número natural ímpar, então $\sqrt{2n}$ é irracional.

Ex.12:

Proof. Para provar esta proposição, procederemos em duas etapas:

- 1. Se z é par, então w, x, e y são pares.
- 2. Se w, x, e y são pares, então z é par.
- (1) Se z é par, então w, x, e y são pares: Suponha que z seja par. Podemos representar z como 2i para algum inteiro i. Elevando ambos os lados ao quadrado, temos:

$$z^2 = 4i^2$$

Dado que $w^2 + x^2 + y^2 = z^2$, temos:

$$w^2 + x^2 + y^2 = 4i^2 \quad (I)$$

O quadrado de um número par é divisível por 4 (por exemplo, $(2k)^2 = 4k^2$). E o quadrado de um número ímpar é da forma 4j + 1 (por exemplo, $(2k + 1)^2 = 4k^2 + 4k + 1$).

Se apenas um número entre w, x, y for ímpar e o resto for par, sem perda de generalidade na equação (I) teremos (4a+1)+4b+4c=4(a+b+c)+1, onde a,b,c são inteiros arbitrários. Seguindo o mesmo raciocínio sem perda

de generalidade para apenas um número par entre w, x, y e o resto for ímpar temos, (4a+1)+(4b+1)+4c=4(a+b+c)+2 e caso os três ímpares temos (4a+1)+(4b+1)+(4c+1)=4(a+b+c)+3. Ou seja, como nenhum dos valores w^2 , x^2 , ou y^2 pode ser ímpar (ou sua soma não será divisível por 4), todos os três devem ser pares. Logo, w, x, e y são pares.

(2) Se w, x, e y são pares, então z é par: Suponha que w, x, e y sejam pares. Podemos representá-los como 2a, 2b, e 2c, respectivamente, onde a, b, e c são inteiros. Elevando cada um ao quadrado, obtemos:

$$w^2 = 4a^2$$

$$x^2 = 4b^2$$

$$y^2 = 4c^2$$

Somando todos:

$$w^{2} + x^{2} + y^{2} = 4a^{2} + 4b^{2} + 4c^{2}$$
$$= 4(a^{2} + b^{2} + c^{2})$$

Como o lado esquerdo é z^2 , temos:

$$z^2 = 4(a^2 + b^2 + c^2)$$

Isso significa que z^2 é divisível por 4, e, portanto, z é par.

Combinando ambas as direções, provamos que z é par se e somente se $w,\,x,$ e y são pares. $\hfill \Box$