Information Retrieval and Text Mining

Assessment in Information Retrieval

Nuno Escudeiro (<u>nfe@isep.ipp.pt</u>)

Ricardo Almeida (ral@isep.ipp.pt)

Session outline

- 1. Assessment in IR
 - Precision, Recall
 - Precision/Recall curve
 - F_β Score
 - F₁ Score
 - Confusion Matrix
 - ROC curve, AUC

Learning outcomes

At the end of this session we will be able to:

- Compute and explain precision, recall and F_{β} score
- Represent and analyze Precision/Recall curves
- Represent and analyze ROC curves and AUC

1. Assessment in IR

A general overview of the IR assessment: precision, recall, F_{β} and F_{1} score. Graphically representing ROC curve, AUC, Precision/Recall curve

Precision and Recall

- Precision, Recall calculation:
 - **Precision**: number of retrieved docs, from all that were obtained, that are relevant to the user's information need

$$\frac{\textit{Precision} = \frac{\textit{Number of Relevant Documents Retrieved}}{\textit{Total Number of Documents Retrieved}}$$

Recall: number of relevant docs in collection that are retrieved

$$\mathbf{Recall} = \frac{\textit{Number of Relevant Documents Retrieved}}{\textit{Total Number of Relevant Documents in the Corpus}}$$

Precision and Recall

- Let us consider the following situation:
 - A group of human experts identified R1, the set of documents that are deemed relevant for a given query Q1: R1={d3, d5, d8, d23, d33, d48, d50, d66, d74, d92}
 - Using an automatic retrieval algorithm for the same query Q1 over the same corpus, the ranking obtained was the following:

1	d74	6	d33	11	d101
2	d21	7	d123	12	d90
3	d48	8	d5	13	d92
4	d24	9	d22	14	d100
5	d18	10	d12	15	d1

The retrieved documents that are relevant to Q1 are represented in bold.

Precision and Recall

1	d74	6	d33	11	d101
2	d21	7	d123	12	d90
3	d48	8	d 5	13	d92
4	d24	9	d22	14	d100
5	d18	10	d12	15	d1

- Since the first element of the result set obtained with the retrieval algorithm is relevant $(d74 \in R1)$ the precision after assessing the first document retrieved is 1/1 (100%) and the corresponding recall is 1/10 (10%).
- The second relevant element that was retrieved is in the third position of the result set; at this stage, after assessing the top three retrieved documents, we have a precision of 2/3 (66,6%) and a recall of 2/10 (20%)
- The third relevant element is found at the sixth position in the result set; after assessing the first six results retrieved, we have a precision of 3/6 (50%) and a recall of 3/10 (30%)
- What about the precision and recall of the 4th and 5th relevant document?

Precision/Recall curve

R	Р
0	100
10	100
20	66,6
30	50
40	50
50	38
60	0
70	0
80	0
90	0
100	0

Performance of classification.

- Confusion Matrix: is a table used to evaluate the performance of a classification model.
- It allows visualization of the performance of a model by comparing predicted class labels with true class labels.
- The matrix is particularly useful for assessing the accuracy of a model's predictions.

- How to compute a Confusion Matrix:
 - You need a test dataset or a validation dataset with expected outcome values
 - 2. Make a prediction for each row in your test dataset
 - 3. From the expected outcomes and predictions count:
 - 1. The number of correct predictions for each class
 - 2. The number of incorrect predictions for each class, organized by the class that was predicted
 - These numbers are then organized into a table, or a matrix as follows:
 - Expected down the side: Each row of the matrix corresponds to a predicted class
 - Predicted across the top: Each column of the matrix corresponds to an actual class

EMAIL	Actual category (labelled by an expert)	Classifier prediction
1	Spam	Spam
2	Non spam	Non spam
3	Non spam	Non spam
4	Non spam	Non spam
5	Non spam	Non spam
6	Spam	Non spam
7	Spam	Non spam
8	Non spam	Non spam
9	Non spam	Spam
10	Spam	Spam

	Predicted Non Spam	Predicted Spam
Actual Non Spam	5	1
Actual Spam	2	2

	Predicted Spam	Predicted Non Spam
Actual Spam	2	2
Actual Non Spam	1	5

	Positive Prediction	Negative Prediction
Positive Class	True (Positive)	False (Negative)
Negative Class	False (Positive)	True (Negative)

1.3 F-score

Recall and Precision aggregated.

F_B Score

• F_β score:

- Is a metric used in information retrieval to evaluate the performance of ranking algorithms, particularly in relevance feedback scenarios.
- It's an extension of the F₁ score, which combines precision and recall into a single measure.
- $F_{\beta} = (1 + \beta^2) x \frac{Precision \times Recall}{(\beta^2 \times Precision) + Recall}$ where:
 - β is a parameter that controls the relative importance of precision and recall.
 - Precision is the ratio of relevant documents retrieved to the total number of documents retrieved.
 - Recall is the ratio of relevant documents retrieved to the total number of relevant documents.
 - The beta parameter represents the ratio of recall importance to precision importance. beta > 1 gives more weight to recall, while beta < 1 favors precision
 - For example, beta = 2 makes recall twice as important as precision, while beta = 0.5 does the opposite. Asymptotically, beta -> +inf considers only recall, and beta -> 0 only precision.

F₁ Score

- **F**₁ **score:** Is a metric used to evaluate the performance of a classification model, particularly when dealing with imbalanced classes. It is the harmonic mean of precision and recall, providing a single measure that balances both metrics.
 - It is very used in IR

•
$$F_1=2 \times \frac{Precision \times Recall}{Precision + Recall}$$
 onder

	Predicted Non Spam	Predicted Spam
Actual Non Spam	5	1
Actual Spam	2	2

F₁ Score

• Example:

 Suppose that we are trying to classify emails as either spam (positive) or non-spam (negative). After applying a classification algorithm, we obtain the following confusion matrix:

	Predicted Spam	Predicted Non Spam
Actual SPAM	1150	150
Actual Non Spam	200	8500

- True (Positives) (TP) = 1150 (number of correctly classified spam emails)
- False (Positives) (FP) = 200 (number of non-spam emails incorrectly classified as spam)
- False (Negatives) (FN) = 150 (number of spam emails incorrectly classified as non-spam)

F₁ Score

	Predicted Spam	Predicted Non Spam
Actual SPAM	1150 (TP)	150 (FN)
Actual Non Spam	200 (FP)	8500 (TN)

• Precision=
$$\frac{1150}{1150+200} = \frac{1150}{1350} \approx 0.852$$

• Recall=
$$\frac{1150}{1150+150} = \frac{1150}{1300} \approx 0.885$$

• F1=2 x
$$\frac{0.852 \times 0.885}{0.852 + 0.885} = \frac{1.506}{1.737} \approx 0.866$$

1.4 ROC curve

Binary classifier performance analysis.

- Is a graphical plot that summarizes the performance of a binary classification model on the positive class across various threshold settings
- In IR are commonly used to evaluate the performance of binary classifiers
- Visualizes the trade-off between True Positive Rate (also known as recall) and False Positive Rate
- The x-axis indicates the False Positive Rate and the y-axis indicates the True Positive Rate.

- How to calculate True Positive and False Positive Rates
 - TPR= $\frac{TP}{TP+FN}$
 - FPR= $\frac{FP}{FP+TN}$

Receiver Operating Characteristic(ROC) Curve - Example

EMAIL	Actual category (labelled by an expert)	Classifier prediction
1	Spam	Spam
2	Non spam	Non spam
3	Non spam	Non spam
4	Non spam	Non spam
5	Non spam	Non spam
6	Spam	Non spam
7	Spam	Non spam
8	Non spam	Non spam
9	Non spam	Spam
10	Spam	Spam

Perfect Scenario

Worst Scenario

ROC Area Under Curve (AUC) Score

- ROC AUC is a score that shows the quality (performance) of the classifier across all possible classification thresholds.
- To get the score, you must measure the area under the ROC curve.
- The ROC AUC score range from 0 to 1, with 0,5 indicating random guessing
- Shows how well the classifier distinguishes positive and negative classes

References

- https://users.dcc.uchile.cl/~rbaeza/mir2ed/
- https://machinelearningmastery.com/
- https://www.evidentlyai.com/classification-metrics/explain-roc-curve