Interpolacion

Juan Pablo Pinasco (jpinasco@dm.uba.ar//gmail.com)

Departamento de Matemática e IMAS, FCEyN, UBA - CONICET

2020

https://globalmathproject.org/personal-polynomial/

Hoy:

- Interpolacion de Lagrange
- Newton, diferencias divididas

Próxima:

• Chebyshev: 97-104

Hermite y Splines: 104-109

1.- Problema

Dada una tabla de datos (puntos en el plano, o todavía algo más general), queremos encontrar una función que los describa.

Tenemos dos caminos posibles, que vamos a desarrollar en las próximas cuatro clases:

- Hallar una función que pasa exactamente por cada punto (interpolar).
- Hallar una función en una clase dada (polinomios, exponenciales) que minimice algún error (cuadrados mínimos).

Parte I

Interpolación

2.- Interpolación

Problema: dada una tabla de puntos $\{x_i\}_{i=0:n}$ y valores que toma una función f en ellos, $\{y_i=f(x_i)\}_{i=0:n}$, hallar un polinomio p de grado menor o igual a n tal que $p(x_i)=f(x_i)$.

La primera pregunta es: ¿existe el polinomio?

Rta: sí, podemos armar un polinomio genérico de grado n,

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

y evaluando en x_i conseguimos n+1 ecuaciones lineales para n+1 incógnitas.

Tendríamos que ver que el sistema es compatible determinado, pero eso es más o menos fácil, ya que tenemos

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

3.- Interpolación

Acá la clave es la matriz de Vandermonde (1735-1796),

$$V(x_0, \dots, c_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

que por esas cosas de la vida, resulta que es inversible si los x_i son todos distintos!

Ok, no es obvio, veamos por qué:

Si no es inversible, hay un vector (b_0,\ldots,b_n) en el núcleo, y al multiplicarlo por la matriz da 0.

Entonces

$$b_0 + b_1 x_j + \dots + b_{n-1} x_j^{n-1} + b_n x_j^n = 0$$

para todo j = 0 : n.

Eso quiere decir que el polinomio $q(x) = b_0 + b_1 x + \cdots + b_{n-1} x^{n-1} + b_n x^n$ tiene n+1 raíces, no puede ser, un polinomio de grado n tiene exactamente n raíces (posiblemente, algunas complejas).

4.- Interpolación

En principio, podríamos resolver el sistema para hallar los a_i .

NO! cuesta $O(n^3)$ operaciones sólo invertir la matriz, y se comenten muchos errores (¿ven ese 1 en la primer columna, y ese x_j^n en la última? ¿qué les parece que da la condición de una matriz así? ¿cuántas cifras significativas se pierden de una punta a la otra?)

Hay alternativas mejores:

- Lagrange
- Newton (diferencias divididas)

Otra pregunta: ¿Y por qué perdimos tiempo mencionando Vandermonde?

Por la Transformada de Fourier Discreta: queda la misma matriz, pero $x_i=\omega_n^i=e^{-i2\pi/n}$, raíces n-ésimas de la unidad, y resulta que la inversa es su conjugada dividida por n. Es MUY útil.

[Tal vez la recuerden del truco para multiplicar números que mencionamos en la clase 2: ahora se ve por qué es tan rápido interpolar en ese caso]

5.- Interpolación de Lagrange:

Base de Lagrange: dados $\{x_i\}_{i=0:n}$, definimos los polinomios $\{L_i\}_{i=0:n}$,

$$L_i(x) = \prod_{k \neq i} \frac{x - x_k}{x_i - x_k}$$

Teorema

Los L_i son de grado n, $L_i(x_k) = 0$ si $i \neq k$, y $L_i(x_i) = 1$.

Dem: se multiplican n cosas de la forma (x-a)/b. Como un factor es $x-x_k$, $L(x_k)=0$. Evaluando en x_i queda

$$L_i(x_i) = \prod_{k \neq i} \frac{x_i - x_k}{x_i - x_k} = \prod_{k \neq i} 1$$

6.- Interpolación de Lagrange:

Teorema

Los polinomios $\{L_i\}_{i=0:n}$ son una base para los polinomios de grado menor o igual a n.

Dem: Como un polinomio genérico de grado n es $a_0 + a_1x + \cdots + a_nx^n$, este subespacio tiene dimensión n + 1.

Como tenemos n+1 polinomios dentro de este subespacio, si son l. i. son una base. Supongamos que tenemos una combinación lineal que nos da el polinomio 0,

$$0 = \sum c_i L_i(x).$$

Evaluando en x_j , tenemos

$$0 = \sum c_i L_i(x_j) = c_j,$$

y como esto vale para todo j = 0 : n, tenemos $c_j = 0$ para todo j.

7.- Interpolación de Lagrange

Ya podemos resolver el

Problema: dada una tabla de puntos $\{x_i\}_{i=0:n}$ y valores que toma una función f en ellos, $\{y_i=f(x_i)\}_{i=0:n}$, hallar un polinomio p de grado menor o igual a n tal que $p(x_i)=f(x_i)$.

Solución: $p(x) = \sum_{i=0}^{n} y_i L_i(x)$

Otro problema: ¿es único?

Sí: son una base, la escritura es única. Otra: Vandermonde decía que la matriz era inversible, así que hay una única solución.

Además, si $p \neq q$, y ambos cumplen, la resta r(x) = p(x) - q(x) sería un polinomio de grado n, con n+1 ceros.

8.- Error de interpolación

Si usamos p en vez de f, nos interesa saber el error que cometemos al evaluar en un $x \in [1,b]$,

$$E_n(x) = f(x) - p_n(x)$$

Definimos $W_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$.

Teorema

Sea $f\in C^{m+1}[a,b]$, p_n el polinomio interpolador en $\{x_i\}_{i=0:n}$. Para todo $x\in [a,b]$ existe $\xi(x)\in [a,b]$ tal que

$$E_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} W_{n+1}(x).$$

9.- Error de interpolación

Dem: sea *x* fijo,y definamos

$$F(t) = f(t) - p_n(t) - \left(\frac{f(x) - p_n(x)}{W_{n+1}(x)}\right) W_{n+1}(t).$$

Observemos que F(x) = 0, y $F(x_i) = 0$ para i = 0 : n.

Entonces, F tiene al menos n+2 ceros en [a,b], y por el Teorema de Rolle, la derivada n+1 tiene por lo menos un cero ξ .

Entonces,

$$F^{(n+1)}(t) = f^{(n+1)}(t) - (n+1)! \left(\frac{f(x) - p_n(x)}{W_{n+1}(x)}\right),$$

Evaluando en ξ , el cero de $F^{(n+1)}$, y despejando, tenemos

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} W_{n+1}(x).$$

10.- El fenómeno de Runge

Si tomamos puntos equiespaciados, y la función $1/(1+25x^2)$, el polinomio interpolador no converge:

Hay que probar que $|W| \approx n! \left(\frac{2}{n}\right)^n$, y que $f^{(n+1)} \approx (n+1)! 5^{n+1}$, con lo cual el error crece con n.

https://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab_11/html/lab_11.html

11.- Diferencias divididas

Definimos:

$$f[x_j] = f(x_j)$$

$$f[x_j, x_{j+1}] = \frac{f[x_{j+1}] - f[x_j]}{x_{j+1} - x_j}$$

$$f[x_j, x_{j+1}, x_{j+2}] = \frac{f[x_{j+1}, x_{j+2}] - f[x_j, x_{j+1}]}{x_{j+2} - x_j}$$

$$\cdots$$

$$f[x_j, \dots, x_{j+k}] = \frac{f[x_{j+1}, \dots, x_{j+k}] - f[x_j, \dots, x_{j+k-1}]}{x_{j+k} - x_j}$$

Fórmula de Newton:

$$p_n(x) = \sum_{i=0}^n f[x_0, \dots, x_i] \left(\prod_{j=0}^{i-1} (x - x_j) \right)$$

= $f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0) + \dots + f[x_0, x_1, \dots,$

12.- Diferencias divididas

No la vamos a demostrar, sale por inducción. También planteando la llamada base de Newton y resolviendo el sistema

$$\begin{pmatrix} 1 & 0 & & \cdots & 0 \\ 1 & x_1 - x_0 & 0 & \cdots & 0 \\ 1 & x_2 - x_0 & (x_2 - x_0)(x_2 - x_1) & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 1 & x_n - x_0 & (x_n - x_0)(x_n - x_1) & \cdots & \prod_{j=0}^{n-1} (x_n - x_j) \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_n \end{pmatrix}$$

Se puede ver más fácil que tenemos una base

$$\{1,(x-x_0),(x-x_0)(x-x_1),\ldots,(x-x_0)(x-x_1)\cdots(x-x_{n-1})\}$$

La gran ventaja es que si agregamos puntos, podemos agregar términos al polinomio fácilmente.