GNN Applications: Graph for Protein Design

Jiaxuan You
Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall

https://ulab-uiuc.github.io/CS598/

Logistics: Submission Task Due

- The deadline for the submission task is Nov 21 (Thu), 11:59 PM CT.
- We expect a minimum length of 6 pages in ICLR 2025 format for the draft submission.
 - For the draft version, you are expected to include at least sections such as related work, methods, and experiment settings.
 - We will use the OpenReview to receive submissions:
 https://openreview.net/group?id=illinois.edu/UIUC/Fall_2024/CS598_DLG.

Logistics: Submission Task Due

- The submission task counts towards 15% (writing) + 15% (implementation) = 30% of your final grade.
 - For the 15% of writing, only 5% is determined by the draft version (due on Nov 21) and 10% is determined by the final version (due on Dec 8).
 - The 15% of implementation is determined by the code you provide for the final version (due on Dec 8).

GNN Applications: Graph for Protein Design Basics of Protein Design

Ill. Niklas Elmehed © Nobel Prize Outreach

David Baker

Prize share: 1/2

Ill. Niklas Elmehed © Nobel Prize Outreach

Demis Hassabis

Prize share: 1/4

Ill. Niklas Elmehed © Nobel Prize Outreach

John Jumper

Prize share: 1/4

The Nobel Prize in Chemistry 2024 was divided, one half awarded to David Baker "for computational protein design", the other half jointly to Demis Hassabis and John Jumper "for protein structure prediction"

The Nobel Prize in Chemistry 2024

- The Nobel Prize in Chemistry 2024 is about proteins, life's ingenious chemical tools. David Baker has succeeded with the almost impossible feat of building entirely new kinds of proteins. Demis Hassabis and John Jumper have developed an AI model to solve a 50-year-old problem: predicting proteins' complex structures. These discoveries hold enormous potential. ...
- Life could not exist without proteins. That we can now predict protein structures and design our own proteins confers the greatest beneft to humankind.

De Novo Protein Design Workflow

• Backbones must be (1) physically realizable, (2) functional, and (3) diverse

Protein Folding & Inverse Folding

- Folding: given amino acid sequence, predict protein structure
- Inverse folding: given desired protein structure, find amino acid sequence

"LQPYT..."

amino acid sequence

Stable? Binds efficiently? Soluble?

The Key Dataset: PDB

Ligands 3 Unique						
ID	Chains Name / Formula / InChl Key 2D Diagram & Interactions		ons	3D Interactions		
ATP Query on ATP Download SDF File Download CCD File	A, B, C, D	ADENOSINE-5'-TRIPHOSPHATE C ₁₀ H ₁₆ N ₅ O ₁₃ P ₃ ZKHQWZAMYRWXGA-KQYNXXCUSA-N		2/3/2	Ligand Explorer NGL Binding Pocket (JSmol) Electron Density (JSmol)	
CIR Query on CIR Download SDF File Download CCD File	A, B, C, D	CITRULLINE C ₆ H ₁₃ N ₃ O ₃ RHGKLRLOHDJJDR-BYPYZUCNSA-N	NH4 ₂		Ligand Explorer NGL Binding Pocket (JSmol) Electron Density (JSmol)	
ASP Query on ASP Download SDF File Download CCD File	A	ASPARTIC ACID C ₄ H ₇ N O ₄ CKLJMWTZIZZHCS-REOHCLBHSA-N	OH OH OH		Ligand Explorer NGL Binding Pocket (JSmol) Electron Density (JSmol)	

PDB Example

	id	type	x	Y	Z		
MOTA	1	N N . VAL A 1 1	? 6.204	16.869	4.854	1.00 49.05 ? 1	VAL A N 1
MOTA	2	C CA . VAL A 1 1	? 6.913	17.759	4.607	1.00 43.14 ? 1	VAL A CA 1
MOTA	3	C C . VAL A 1 1	? 8.504	17.378	4.797	1.00 24.80 ? 1	VAL A C 1
MOTA	4	0 0 . VAL A 1 1	? 8.805	17.011	5.943	1.00 37.68 ? 1	VAL A O 1
MOTA	5	C CB . VAL A 1 1	? 6.369	19.044	5.810	1.00 72.12 ? 1	VAL A CB 1
MOTA	6	C CG1 . VAL A 1 1	? 7.009	20.127	5.418	1.00 61.79 ? 1	VAL A CG1 1
ATOM	7	C CG2 . VAL A 1 1	? 5.246	18.533	5.681	1.00 80.12 ? 1	VAL A CG2 1

Proteins as Geometric graphs

Each node is:

- embedded in Euclidean space e.g. atoms in 3D
- decorated with geometric attributes s.a. velocity

Real-world Geometric Graphs

Small Molecules

Proteins

DNA/RNA

Inorganic Crystals

Catalysis Systems

Transportation & Logistics

Robotic Navigation

3D Computer Vision

GNN Applications: Graph for Protein Design Inverse Protein Folding: ProteinMPNN

ProteinMPNN

RESEARCH

PROTEIN DESIGN

Robust deep learning-based protein sequence design using ProteinMPNN

- J. Dauparas^{1,2}, I. Anishchenko^{1,2}, N. Bennett^{1,2,3}, H. Bai^{1,2,4}, R. J. Ragotte^{1,2}, L. F. Milles^{1,2}, B. I. M. Wicky^{1,2}, A. Courbet^{1,2,4}, R. J. de Haas⁵, N. Bethel^{1,2,4}, P. J. Y. Leung^{1,2,3}, T. F. Huddy^{1,2}, S. Pellock^{1,2}, D. Tischer^{1,2}, F. Chan^{1,2}, B. Koepnick^{1,2}, H. Nguyen^{1,2}, A. Kang^{1,2}, B. Sankaran⁶, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4}*
- ProteinMPNN is to protein design what AlphaFold was to protein structure prediction – David Baker

ProteinMPNN's Empirical Verification

RESEARCH

PROTEIN DESIGN

Hallucinating symmetric protein assemblies

```
B. I. M. Wicky<sup>1,2</sup>†, L. F. Milles<sup>1,2</sup>†, A. Courbet<sup>1,2,3</sup>†, R. J. Ragotte<sup>1,2</sup>, J. Dauparas<sup>1,2</sup>, E. Kinfu<sup>1,2</sup>, S. Tipps<sup>1,2</sup>, R. D. Kibler<sup>1,2</sup>, M. Baek<sup>1,2</sup>, F. DiMaio<sup>1,2</sup>, X. Li<sup>1,2</sup>, L. Carter<sup>1,2</sup>, A. Kang<sup>1,2</sup>, H. Nguyen<sup>1,2</sup>, A. K. Bera<sup>1,2</sup>, D. Baker<sup>1,2,3</sup>*
```

 ProteinMPNN together with the other new machine learning tools could reliably generate proteins that functioned in the laboratory

ProteinMPNN's Potential

NEWS | 15 September 2022 | Correction <u>21 September 2022</u>

Scientists are using AI to dream up revolutionary new proteins

Huge advances in artificial intelligence mean researchers can design completely original

molecules in seconds instead of months.

ProteinMPNN Framework

Structure

Sequence

Background: Protein Backbones

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe

Background: Levels of Protein Structure

Input Featurization in ProteinMPNN

Structure Encoder in ProteinMPNN

Pseudocode of ProteinMPNN Encoder

3-layer encoder -> 3-hop information

Pseudocode for the encoder layer (V - node features, E - edge features):

```
 def \ encoder\_layer\_forward(V, E): \\ M\_ij = MLP[V\_i, V\_j, E\_ij] \qquad \qquad Get \ intermediate \ representation or "message" based on information of neighbors and edges for node i \\ dV\_i = Sum\_j \ [M\_ij] \qquad Sum \ messages \ across \ all \ neighbors \\ V\_i = LayerNorm[V\_i + Dropout(dV\_i)] \\ dV\_i = FeedForward[V\_i] \qquad Updates \ node \ representations \\ V\_i = LayerNorm[V\_i + Dropout(dV\_i)] \\ dE\_ij = MLP[V\_i, V\_j, E\_ij] \qquad Updates \ edges \ representations \ based \ on \ new \ node \ representations \\ E\_ij = LayerNorm[E\_ij + Dropout(dE\_ij)] \qquad Updates \ edges \ representations \ based \ on \ new \ node \ representations \ edges \ representations \ based \ on \ new \ node \ representations \ edges \ representations \ based \ on \ new \ node \ representations \ edges \ representations \ based \ on \ new \ node \ representations \ edges \ representations \ deges \ representations
```

Autoregressive Decoder in ProteinMPNN

Pseudocode of ProteinMPNN Decoder

3-layer decoder -> additional 3-hop information

Pseudocode for the decoder layer (V - node features, E - edge features, S - sequence features, mask - autoregressive mask):

Use information about previous time step to predict at current step

ProteinMPNN Uses Random Decoding Order

- Due to graph permutation equivariance
 - Recall in GraphRNN, BFS order could be better than random order

Fixed left to right decoding

ProteinMPNN Uses Positional Coupling for Multichain Predictions

Ensure certain residues have the same output

Add Noise to Backbone during Training

- Noise added to input edge features
 - Residue distances

How was ProteinMPNN Trained

- Data from PDB (X-ray or cryoEM)
- Random train/val/test split (23358/1464/1529)
 - Different chains from 1 protein must belong to the same split no leakage
- Training
 - Pick a protein sequence
 - Given the sequence, pick a conformation (coordinates)
 - Loss: classification loss of the residual type
 - Metric: accuracy, runtime

ProteinMPNN Code

- ProteinMPNN code
- https://github.com/dauparas/ProteinMPNN/tree/main

- Demo Let's dive into the code!
- https://github.com/dauparas/ProteinMPNN/blob/8907e6671bfbfc9230
 3b5f79c4b5e6ce47cdef57/protein mpnn utils.py#L1019
- It's fun to learn that they implemented MPNN without PyG

ProteinMPNN Results

Adding distances as edge features are helpful

	Ingraham et. al	Ingraham et. al					
Noise level when training: 0.00 Å/0.02 Å	Modification	Number of parameters in millions	PDB test accuracy (%)	PDB test perplexity	AlphaFold model accuracy (%)		
Baseline model	None	1.381	41.2/40.1	6.51/6.77	41.4/41.4		
Experiment 1	Add N, Cα, C, Cβ, O distances	1.430	49.0/46.1	5.03/5.54	45.7/47.4		
Experiment 2	Update encoder edges	1.629	43.1/42.0	6.12/6.37	43.3/43.0		
Experiment 3	Combine 1 and 2	1.678	50.5/47.3	4.82/5.36	46.3/47.9		
Experiment 4	Experiment 3 with random decoding	1.678	50.8/47.9	4.74/5.25	46.9/48.5		

ProteinMPNN is Better than Classic Methods

- Sequence recovery: 54.29% vs. 32.9%
- Run time: 1.2s vs. 258.8s (1
 CPU for 100 residues)

In Silico Evaluation of ProteinMPNN

Experimental Validation of ProteinMPNN

- Network hallucination by AlphaFold to produce backbone set
- Monte Carlo to generate variety of AlphaFold sequences
- ProteinMPNN to generate sequences
- 4. Express these proteins in E. coli

Rescure Failed Design with ProteinMPNN

Summary

- MPNN is effective in protein inverse folding task
 - Node distances as edge features
 - Node & edge embedding update after each layer
 - Encoder decoder design
- ProteinMPNN has yielded significant real-world impact
 - Used in combination with AlphaFold (folding) in protein design
 - Verified in real-world experiments
 - Dr. Baker & AlphaFold won Nobel Prize in Chemistry 2024 together