WEB3CLUBS FOUNDATION LIMITED

Course Instructor: DR. Cyprian Omukhwaya Sakwa

PHONE: +254723584205 Email: cypriansakwa@gmail.com

Foundational Mathematics for Web3 Builders

Implemented in RUST

Lecture 46

August 26, 2024

Direct product of cyclic groups

- The direct product of cyclic groups is an essential concept in group theory, particularly in cryptography and other mathematical fields.
- In cryptography, the direct product of cyclic groups is used to create more complex groups for cryptographic protocols.
- For example, some cryptosystems employ product groups to integrate the security features of several smaller groups.
- The structure of the direct product of cyclic groups has the potential to impact the security of cryptographic algorithms.
- Understanding whether a product is cyclic or not can influence the design of secure protocols.

23.1 Properties of Direct Products of Cyclic Groups

- 1. If G_1 and G_2 are cyclic groups with orders n_1 and n_2 , respectively, the order of the direct product $G_1 \times G_2$ is $n_1 \times n_2$.
- 2. Let G and H be cyclic groups with |G|=n and |H|=m. Then $G\times H$ is cyclic if and only if m and n are relatively prime positive integers.
 - If m and n are not relatively prime positive integers, the direct product $G \times H$ is not cyclic but still forms a group with interesting structural properties.
- 3. The direct product can be extended to more than two cyclic groups. If G_1, G_2, \dots, G_k are cyclic groups with orders n_1, n_2, \dots, n_k the direct product $G_1 \times G_2 \times \dots \times G_k$ is cyclic if and only if the orders n_1, n_2, \dots, n_k are pairwise coprime.

Example 93

By determining a generator if it exists, show whether or not the following product groups are cyclic.

a)
$$\mathbb{Z}_2 imes \mathbb{Z}_3$$

b)
$$\mathbb{Z}_2 \times \mathbb{Z}_2$$

Solution

a) $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$. We check to see whether any of the six elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$ generates it. Indeed (0,0), (0,1), (0,2) and (1,0) cannot generate $\mathbb{Z}_2 \times \mathbb{Z}_3$. We check the (1,1) and (1,2). Clearly,

$$(1,1)^1 = (1,1)$$

$$(1,1)^2 = (1,1)(1,1) = (0,2)$$

$$(1,1)^3 = (0,2)(1,1) = (1,0)$$

Solution (conti...)

$$(1,1)^4 = (1,0)(1,1) = (0,1)$$

$$(1,1)^5 = (0,1)(1,1) = (1,2)$$

$$(1,1)^6 = (1,2)(1,1) = (0,0).$$

Thus $\langle (1,1) \rangle = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\} = \mathbb{Z}_2 \times \mathbb{Z}_3$. Therefore $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic since it is generated by (1,1).

Does (1,2) also generate $\mathbb{Z}_2 \times \mathbb{Z}_3$?

Note that the order of $1 \in \mathbb{Z}_2$ is 2 while the order of $2 \in \mathbb{Z}_3$ is 3 implying that |(1,2)| = lcm(2,3) = 6. So (1,2) generates $\mathbb{Z}_2 \times \mathbb{Z}_3$.

Solution (conti...)

b) $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$. Note that (0,0), (0,1) and (1,0) cannot generate $\mathbb{Z}_2 \times \mathbb{Z}_2$. Let us check (1,1.)

$$(1,1)^1 = (1,1)$$

$$(1,1)^2 = (1,1)(1,1) = (0,0)$$

$$(1,1)^3 = (0,0)(1,1) = (1,1)$$

Thus $\langle (1,1) \rangle = \{(0,0),(1,1)\} \neq \mathbb{Z}_2 \times \mathbb{Z}_2$. Thus (1,1) does not generate $\mathbb{Z}_2 \times \mathbb{Z}_2$ meaning that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

Notice that in the example above, $\mathbb{Z}_2 \times \mathbb{Z}_3$ was cyclic because the orders 2 and 3 are relatively prime. That is, $\gcd(2,3)=1$. However, $\mathbb{Z}_2 \times \mathbb{Z}_2$ was not cyclic because $\gcd(2,2)=2\neq 1$. That is, we can simply apply \gcd of orders of groups to determine if the direct product group is cyclic or not.

Example 94

Show that the group $\mathbb{Z}_5 \times \mathbb{Z}_7^*$ is cyclic.

Solution

 $\mid \mathbb{Z}_5 \mid = 5 \text{ and } \mid \mathbb{Z}_7^* \mid = 6.$

Therefore, $|\mathbb{Z}_5 \times \mathbb{Z}_7^*| = \operatorname{lcm}(5,6) = 30$.

The generators of $\mathbb{Z}_5 = \{1, 2, 3, 4\}$

The generators of $\mathbb{Z}_7^* = \{3, 5\}$

So, the generators of $\mathbb{Z}_5 \times \mathbb{Z}_7^*$ are (1, 5), (1, 3), (2, 5), (2, 3), (3, 5), (2, 3), (4, 5),

Solution (conti...)

Let us take (1,5) for instance,

We have $30(1,5) = (30 \cdot 1 \mod 5, 5^{30} \mod 7) = (0,1)$ as required.

For fun, we find $\mathbb{Z}_5 \times \mathbb{Z}_7^* = (0, 1) (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 4), (0, 5), (0, 6), (1, 4), (0, 5), (0, 6), (1, 4), (0, 6), (1, 4),$

$$1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6),(2, 1),(2, 2),(2, 3),(2, 4),(2, 4)$$

$$5),(2, 6),(3, 1), (3, 2),(3, 3),(3, 4),(3, 5),(3, 6),(4, 1),(4, 2),(4, 4)$$

Example 95

Show that $\mathbb{Z}_{11} \times \mathbb{Z}_{12}$ is cyclic.

Solution

Generators of $\mathbb{Z}_{11}=\{1,2,3,4,5,6,7,8,9,10\}$ Generators of $\mathbb{Z}_{12}=\{1,5,7,11\}$ Thus, the generators of $\mathbb{Z}_{11}\times\mathbb{Z}_{12}$ are (1,1),(1,5),(1,7),(1,11),(2,1),(2,5),(2,7),(2,11),(3,1),(3,5),(3,7),(3,11),(4,1),(4,5),(4,7),(4,11),(5,1),(5,5),(5,7),(5,11),(6,1),(6,5),(6,7),(6,11),(7,1),(7,5),(7,7),(7,11),(8,1),(8,5),(8,7),(8,11),(9,1),(9,5),(9,7),(9,11),(10,1),(10,5),(10,7),(10,11).

Providing just one of these is enough.

Let us pick (1,1) for instance

The order of $\mathbb{Z}_{11} \times \mathbb{Z}_{12}$ is 132.

Thus, 132(1,1) = (0,0) as required.

- The following program contains a Rust implementation for finding generators of the direct product of two cyclic groups $\mathbb{Z}_n \times \mathbb{Z}_m$.
- The primary use is to identify pairs of elements that generate the entire group, which can be useful in various mathematical and cryptographic applications.
- A cyclic group \mathbb{Z}_n is a group of integers modulo n, with the group operation being addition modulo n.
- The direct product $\mathbb{Z}_n \times \mathbb{Z}_m$ is the set of ordered pairs of elements from these two groups, with the group operation being component-wise addition.
- In this program, we define a structure (ZnZm') to represent the direct product of two cyclic groups \mathbb{Z}_n and \mathbb{Z}_m , and implement methods to find all generators of this product group.

```
1 struct ZnZm {
           n: u32,
           m: u32,
4 }
6 impl ZnZm {
          fn new(n: u32, m: u32) -> Self {
                   ZnZm { n, m }
10
           fn find_generators(&self) -> Vec<(u32, u32)> {
11
                   let mut generators = Vec::new();
12
13
                   for i in 0..self.n {
14
                           for j in 0..self.m {
15
                                    if self.is_generator(i, j) {
16
                                            generators.push((i, j));
17
18
19
20
21
22
                   generators
23
24
           fn is_generator(&self, a: u32, b: u32) -> bool {
25
                   let mut visited = vec! [vec! [false; self.m as usize]; self.m as usize];
26
27
                   let mut count = 0;
28
                   let mut x = 0;
29
                   let mut y = 0;
30
31
                   loop {
32
```

346/389

```
0
                               if visited[x as usize][y as usize] {
33
34
                                         break;
35
36
                               visited[x as usize][y as ysize] = true;
37
                               count += 1;
38
39
40
41
42
                               x = (x + a) \% self.n;
                               y = (y + b) \% self.m;
43
44
                      count == (self.n * self.m)
45
 46 }
 47
 48 fn main() {
             let group = ZnZm::new(11, 12);
 49
              let generators = group.find_generators();
 50
 51
             println!("Generators_{\square}of_{\square}Z11_{\square}x_{\square}Z12:_{\square}{:?}", generators);
 52
 53 }
```

Understanding the Rust code

- 1. We define a structure 'ZnZm' to represent the direct product of two cyclic groups \mathbb{Z}_n and \mathbb{Z}_m . The struct ZnZm contains two fields:
- n: u32: The order of the first cyclic group \mathbb{Z}_n .
- m: u32: The order of the second cyclic group \mathbb{Z}_m .
- (2) Implementation of ZnZm: The implementation block for ZnZm contains three methods:
 - Constructor: new (n: u32, m: u32) > Self
 - This function creates a new instance of the ZnZm struct with the provided values for n and m.
 - Example: $\mathbb{Z}_{n}\mathbb{Z}_{m}$:new(11, 12) creates a direct product group $\mathbb{Z}_{11} \times \mathbb{Z}_{12}$.

Understanding the Rust code (conti...)

- Finding Generators: find_generators(&self) > Vec < (u32, u32) >
 - This method finds and returns a vector of all generators of the group $\mathbb{Z}_n \times \mathbb{Z}_m$.
 - It iterates over all possible pairs (i, j) where i ranges from 0 to n-1 and j ranges from 0 to m-1.
 - For each pair (i, j), it checks whether this pair is a generator using the is_generator method.
- Checking Generators: is_generator(&self, a:u32,b:u32)->bool
 - This method checks if the pair (a,b) is a generator of the group $\mathbb{Z}_n \times \mathbb{Z}_m$.

Understanding the Rust code (conti...)

- A generator must visit every element in the group exactly once before repeating.
- The method uses a loop to simulate the group operation starting from (0,0) and moving to the next element by adding a to the first component and b to the second component (modulo n and m, respectively).
- If the loop visits all $n \cdot m$ elements exactly once before repeating, the pair (a,b) is a generator.

(3) main Function

- The main function creates an instance of the ZnZm struct representing $\mathbb{Z}_n \times \mathbb{Z}_m$.
- It then calls find_generators to find all generators of this group and prints them out.