

a)
$$V_{1} \propto \sqrt{\frac{K}{m}}$$
b) $\frac{1}{2}mV_{1}^{2} = \frac{1}{2}Kx^{2}$
 $V_{1} = \sqrt{\frac{K}{m}(6l)^{2}}$
 $V_{2} = \frac{1}{2}Kx^{2}$
 $V_{3} = \frac{1}{2}(mtM)V_{2} = mV_{1}$
 $V_{2} = \frac{mV_{1}}{mtM}$
 $V_{3} = \frac{1}{2}(mtM)V_{3}^{2} - \frac{1}{2}(mtM)V_{2}^{2}) + (0 - (mtM)gh)$
 $V_{3} = \frac{1}{2}(mtM)V_{3}^{2} - \frac{1}{2}(mtM)V_{3}^{2}$
 $V_{3} = 2gh + \frac{36l^{2}km}{(mtM)^{2}}$
 $V_{3} = \sqrt{2gh} + \frac{36l^{2}km}{(mtM)^{2}}$
 $V_{3} = \sqrt{2gh} + \frac{36l^{2}km}{(mtM)^{2}}$
 $V_{3} = \sqrt{2gh} + \frac{36l^{2}km}{(mtM)^{2}}$