MODULE - 3

DATA PROTECTION – RAID

Module 3: Data Protection – RAID

Upon completion of this module, you should be able to:

- Describe RAID implementation methods
- Describe the three RAID techniques
- Describe commonly used RAID levels
- Describe the impact of RAID on performance
- Compare RAID levels based on their cost, performance, and protection

Module 3: Data Protection – RAID

Lesson 1: RAID Overview

During this lesson the following topics are covered:

- RAID Implementation methods
- RAID array components
- RAID techniques

RAID

It is a technique that combines multiple disk drives into a logical unit (RAID set) and provides protection, performance, or both.

- Due to mechanical components in a disk drive it offers limited performance
- An individual drive has a certain life expectancy and is measured in MTBF (Mean Time Between Failure):
 - For example: If the MTBF of a drive is 750,000 hours, and there are 1000 drives in the array, then the MTBF of the array is 750 hours (750,000/1000)
- RAID was introduced to mitigate these problems
 Patterson, Gibson, Katz 《A Case for Redundant Arrays of Inexpensive Disks (RAID)》_University of California Berkeley, 1987

RAID Implementation Methods

- Software RAID implementation
 - Uses host-based software to provide RAID functionality
 - Limitations
 - Use host CPU cycles to perform RAID calculations, hence impact overall system performance
 - Support limited RAID levels
 - RAID software and OS can be upgraded only if they are compatible
- Hardware RAID Implementation
 - Uses a specialized hardware controller installed either on a host or on an array

RAID Array Components

RAID Techniques

• Three key techniques used for RAID are:

- Striping
- Mirroring
- Parity

RAID Technique – Striping

RAID Technique – Mirroring

RAID Technique – Parity

Actual parity calculation is a bitwise XOR operation

Data Recovery in Parity Technique

Module 3: Data Protection – RAID

Lesson 2: RAID Levels

During this lesson the following topics are covered:

- Commonly used RAID levels
- RAID impacts on performance
- RAID comparison
- Hot spare

RAID Levels

- Commonly used RAID levels are:
 - ▶ RAID 0 Striped set with no fault tolerance
 - ▶ RAID 1 − Disk mirroring
 - ▶ RAID 1 + 0 − Nested RAID
 - ▶ RAID 3 Striped set with parallel access and dedicated parity disk
 - RAID 5 Striped set with independent disk access and a distributed parity
 - ▶ RAID 6 Striped set with independent disk access and dual distributed parity

School of software ,BUAA

Distributed Parity

Dual Distributed Parity

RAID Impacts on Performance

RAID Controller

- In RAID 5, every write (update) to a disk manifests as four I/O operations (2 disk reads and 2 disk writes)
- In RAID 6, every write (update) to a disk manifests as six I/O operations (3 disk reads and 3 disk writes)
- In RAID 1, every write manifests as two I/O operations (2 disk writes)

RAID Penalty Calculation Example

- Total IOPS(Input/Output Per Second) at peak workload is 1200
- Read/Write ratio 2:1
- Calculate disk load at peak activity for:
 - RAID 1/0
 - RAID 5

Solution: RAID Penalty

For RAID 1/0, the disk load (read + write)

$$= (1200 \times 2/3) + (1200 \times (1/3) \times 2)$$

- = 800 + 800
- = 1600 IOPS
- For RAID 5, the disk load (read + write)

$$= (1200 \times 2/3) + (1200 \times (1/3) \times 4)$$

- = 800 + 1600
- = 2400 IOPS

RAID Comparison

RAI D level	Min disks	Available storage capacity (%)	Read performance	Write performance	Write penalty	Protection
1	2	50	Better than single disk	Slower than single disk, because every write must be committed to all disks	Moderate	Mirror
1+0	4	50	Good	Good	Moderate	Mirror
3	3	[(n-1)/n]*100	Fair for random reads and good for sequential reads	Poor to fair for small random writes fair for large, sequential writes	High	Parity (Supports single disk failure)
5	3	[(n-1)/n]*100	Good for random and sequential reads	Fair for random and sequential writes	High	Parity (Supports single disk failure)
6	4	[(n-2)/n]*100	Good for random and sequential reads	Poor to fair for random and sequential writes	Very High	Parity (Supports two disk failures)

where n = number of disks

Suitable RAID Levels for Different Applications

- RAID 1+0
 - Suitable for applications with small, random, and write intensive (writes typically greater than 30%) I/O profile
 - Example: OLTP, RDBMS Temp space
- RAID 3
 - Large, sequential read and write
 - Example: data backup and multimedia streaming
- RAID 5 and 6
 - Small, random workload (writes typically less than 30%)
 - Example: email, RDBMS Data entry

Hot Spare

Module 3: Summary

Key points covered in this module:

- RAID implementation methods and techniques
- Common RAID levels
- RAID write penalty
- Compare RAID levels based on their cost and performance

Exercise 1: RAID

- A company is planning to reconfigure storage for their accounting application for high availability
 - Current configuration and challenges
 - Application performs 15% random writes and 85% random reads
 - >> Currently deployed with five disk RAID 0 configuration
 - ▶ Each disk has an advertised formatted capacity of 200 GB
 - Total size of accounting application's data is 730 GB which is unlikely to change over 6 months
 - Approaching end of financial year, buying even one disk is not possible
- Task
 - Recommend a RAID level that the company can use to restructure their environment fulfilling their needs
 - Justify your choice based on cost, performance, and availability

Exercise 2: RAID

- A company (same as discussed in exercise 1) is now planning to reconfigure storage for their database application for HA
 - Current configuration and challenges
 - ➤ The application performs 40% writes and 60% reads
 - Currently deployed on six disk RAID 0 configuration with advertised capacity of each disk being 200 GB
 - >> Size of the database is 900 GB and amount of data is likely to change by 30% over the next 6 months
 - >> It is a new financial year and the company has an increased budget
- Task
 - Recommend a suitable RAID level to fulfill company's needs
 - Estimate the cost of the new solution (200GB disk costs \$1000)
 - Justify your choice based on cost, performance, and availability

知识测验 - 1

- 关于软件 RAID 实现,以下哪项描述是正确的?
 - A. 操作系统升级不需要验证与 RAID 软件的兼容性
 - B. 其成本高于硬件 RAID 实现
 - C. 支持所有 RAID 级别
 - D. 使用主机 CPU 周期执行 RAID 计算 ♥
- 一个应用程序生成 400 个小型随机 IOPS, 读写比为 3:1。 用于 RAID 5 的磁盘上 RAID 更正的 IOPS 是多少?
 - A. 400
 - B. 500
 - c. 700 🤎
 - D. 900

模块 3: 数据保护 - RAID

知识测验 - 2

- 用于小型随机 I/O 的 RAID 6 配置中的写性能损失是多少?
 - A. 2
 - B. 3
 - C. 4
 - D. 6 💚
- 以下哪个应用程序可通过使用 RAID 3 获得最大效益?
 - A. 备份 🧡
 - B. OLTP
 - C. 电子商务
 - D. 电子邮件

知识测验 - 3

- 一个具有 64 KB 条块大小且包含五个磁盘的奇偶校验 RAID 5 集的条带大小是多少?
 - A. 64 KB
 - B. 128 KB
 - C. 256 KB < ■</p>
 - D. 320 KB
- 假如有3块73G SAS磁盘, 2块146G磁盘组成RAID5阵列最后逻辑磁盘的总容量是多少?
 - A. 292

- B. 365
- C. 511
- D. 438

作业

Scenario:

一个业务场景,实际IOPS是4800,读cache命中率是30%,读写比: 3: 2;磁盘个数为60,计算采用RAID5与RAID10磁盘的IOPS,分析那种方案更合适该场景。