Von Neumann Stability Analysis
I dea is to caclantate the growth a of a wave- number over a swigle time step then ask whether a > 1 (unstable) or a < 1 (stable). The system is stable if a < 1 for all wavenum bers o < Keax< 1
Example: Euler time stepping and 2" order control differences, applied to
$\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = y \frac{\partial^2 f}{\partial x^2}$
discretized on a uniform grid of spacing D, 50 that or; = or + D. j at successive grid points.
Let $f'' = e^{iksc}$ and $f''' = G.e., n = himestop.$ and G is the gain amphification over the timestop.
$f^{MT} = af = ae^{ikx} = \frac{1}{2} e^{ikx} = 1$
ike ike ike (ike) + DAt (ike) + DAt (e) + DAT
fer 3/200 and 32/2002.
We can remove the common factor e and re-write the exponentials in terms of trig functions sin/cos
$C = 1 + (e\Delta t) \cdot i \sin(k\Delta x) - (V\Delta t) \cdot 2(1 - \cos(k\Delta x))$ and then (easier to test C > 1 tan C > 1)
$ G = 1 + (e\Delta t) \sin(k\Delta x) + 4(\nu\Delta t) + (1 - \cos(lc\Delta x))$
The wast cases are (a) convection form of $KDX = TI / 2$
and (b) diffusion at KDX = II, i.e when sin = 1 and 1-cosc) = 2 We can sheck how large we can make the CFL number (Courant, Friedrich) Lewy)
convection CDE and VDE viscous CFL Dx and Dx ² CFL

white shill satisfying stability, i.e. such that ICI2 < I for all 0 < Kax < TT (a) Pure diffusion (c=0, V>0) and ICDX=IT $G(=1+4(\lambda))(2)-4(\lambda)$ and we get the stability boundary by solving for |612=1) therefore $16\left(\frac{\lambda AE}{\lambda x^{2}}\right) - 8\left(\frac{\lambda AE}{\lambda x^{2}}\right) = 0$ $\left(\frac{\forall \Delta t}{\Delta x^2}\right) \left[\frac{1}{2} \frac{\forall \Delta t}{\Delta x^2} - 1\right] = 0$ solved g gives $\frac{VOt}{\Delta x^2} = \left(0 \quad \text{ar} \quad \frac{1}{2}\right)$ and $|a| \leq 1$ requires $0 \leq VAt \leq \frac{1}{D \times 2}$ fer stability. (b) Pure convection (e ≠ 0, V=0), kax=11/2 $|a| = 1 + (cot) \sin^2(k\Delta x)$ this is $|a|^2 > 1$ for any finite |a| > 0and o'< KOX < IT =) unconditionally unstable But, can be stabilised by adding a very small amount of 'artificial' viscosity, this is the basis of the har-Wendruff approach. (e) Small but finite viscosity (e \neq 0, \neq to but omall This approximates convection and is stabilized by small - but - finite viscosity, here $|A(k)| = |+(c\Delta t)\sin(k\Delta x) + 4(y\Delta t)(1-\cos(k\Delta x))$ + 4/20t) (1- cos (KAX))

