Monte-Carlo. Part 1

Anton Makarov

FMASC. Unversity of Luxembourg

January 6, 2025

Motivation

We often need to estimate integrals because they are often not easy to calculate analytically.

One obvious example is of course the expectation of a random variable.

Thus, we need an approach to estimate integrals, and the most popular one is Monte-Carlo.

Signed measure and Radon-Nikodym derivative

Definition (Signed measure)

Let (\mathcal{X}, Σ) be a measurable space. Then $\nu : \Sigma \to [-\infty, +\infty]$ is called a signed measure if $\nu(\varnothing) = 0$ and ν is σ -additive.

Definition (Radon-Nikodym derivative)

Let (\mathcal{X}, Σ) be a measurable space, ν a signed measure on it, and μ a measure on it. A measurable function f is called the Radon-Nikodym derivative of ν with respect to μ if for $\forall A \in \Sigma$, $\nu(A) = \int_A f d\mu$. The notaion for it is $\frac{d\nu}{d\mu}$.

Absolute continuity

Definition

Let (\mathcal{X}, Σ) be a measurable space, ν a signed measure on it, and μ a measure on it. ν is called absolutely continuous w.r.t. μ if $\mu(A) = 0$ implies $\nu(A) = 0$.

The notation for it is $\nu \prec \mu$.

Theorem

Let (\mathcal{X}, Σ) be a measurable space, ν a signed measure on it, and μ a measure on it.

The Radon-Nikodym derivative of ν with respect to μ exists iff ν is absolutely continuous w.r.t. μ . Moreover, the derivative is unique μ -a.s.

Monte-Carlo for evaluation of integrals. General case

Let (\mathcal{X}, Σ) be a measurable space, ν a finite signed measure on it. Let's say we want to evaluate $I = \nu(\mathcal{X})$

Consider a probability space (Ω, \mathcal{F}) and a random variable $\xi : (\Omega, \mathcal{F}) \to (\mathcal{X}, \Sigma)$. Denote the distribution of ξ as \mathcal{P}_{ξ} .

Let ν have the Radon-Nikodym derivative w.r.t. \mathcal{P}_{ξ} and denote it as f. Then

$$\mathbb{E}(f(\xi)) = \int_{\mathcal{X}} f d\mathcal{P}_{\xi} =
u(\mathcal{X})$$

Then, if we have a sequence of i.i.d. ξ_i , by the WLLN:

$$\hat{l}_n = \frac{f(\xi_1) + ... + f(\xi_n)}{n} \stackrel{\mathbb{P}}{\to} \nu(\mathcal{X})$$

Confidence Intervals

Assume,

$$\mathbb{E}f(\xi)^2 < \infty, \ \sigma^2 = Var(f(\xi)) < \infty$$

Then, by the CLT,

$$\frac{\sqrt{n}(\hat{I}_n - I)}{\sigma} \xrightarrow{d} N(0, 1)$$

It implies,

$$\mathbb{P}\left(|\hat{I}_n - I| < \frac{\sigma x}{\sqrt{n}}\right) \to \Phi(x) - \Phi(-x)$$

$$\mathbb{P}\left(\hat{l}_n - \frac{\sigma x_\alpha}{\sqrt{n}} < I < \hat{l}_n + \frac{\sigma x_\alpha}{\sqrt{n}}\right) \to 1 - \alpha$$

, where x_{α} is the solution of $\Phi(x) - \Phi(-x) = 1 - \alpha$

A. Makarov

 σ is then replaced by a consistent estimator

Complexity

To obtain $\mathbb{P}\left(|\hat{I}_n - I| < \epsilon\right) \approx 1 - \alpha$ we need $n = \frac{\sigma^2 x_\alpha^2}{\epsilon^2}$.

Thus, to estimate I we need to simulate ξ_i and calculate $f(\xi_i)$ $\frac{\sigma^2 x_\alpha^2}{\epsilon^2}$ times. If t_ξ is the average time needed to simulate ξ_i and t_f is the average time needed to calculate $f(\xi_i)$, then the total time needed is:

$$n(t_{\xi}+t_f)=\frac{\sigma^2(t_{\xi}+t_f)x_{\alpha}^2}{\epsilon^2}$$

Simultaneous estimation of multiple integrals

Let (\mathcal{X}, Σ) be a measurable space, $\nu_1, ..., \nu_m$ finite signed measures on it. Let's say we want to evaluate $I^{(1)} = \nu_1(\mathcal{X}), ..., I^{(m)} = \nu_m(\mathcal{X})$

Suppose we can simulate a random variable ξ such that every signed measure ν_i is absolutely continuous w.r.t. the distribution of ξ .

Thus, we can use the same r.v. to estimate $(I^{(i)})_i^m$ and obtain $(\hat{I_n}^{(i)})_i^m$

Denote $\mathcal{I} = (I^{(i)})_i^m$, vector of integrals and $\hat{\mathcal{I}}_n = (\hat{I}_n^{(i)})_i^m$ vector of estimators.

By the CLT:

$$\sqrt{n}(\hat{\mathcal{I}}_n - \mathcal{I}) \xrightarrow{d} N(0, \mathbb{V})$$

Interestingly, big absolute values of $corr(m_k(\xi_i), m_s(\xi_i))$ make estimation a bit easier, but we are not going to talk about it now. (Part 2)

References

• V. Nekrutkin. Basics of Monte-Carlo. 2018.