GAME THEORY

Game theory attempts to mathematically capture behavior in strategic situations, or *games*, in which an individual's success in making choices depends on the choices of others

Myerson, 1991

GAME THEORY

- Zero-sum / Non-zero-sum games
 - When a player gains something, another player may lose something
 - The total sum of gainings and losses is 0 / may be anything

- Cooperative / Non-cooperative games
 - Players cooperate / everyone plays for its own

MODEL SETTING

- Strategic Game:
 - A set of players
 - For each player, a set of strategies, each defining the action to perform in a certain situation, based on the actions of all the players
 - Ordinal preferences among the strategies (Player 1 prefers a to b)
- Time is absent from the model
 - All the players choose simultaneously

- Rationality assumption
 - Each player makes her best choice

- Two suspects are held in separate cells.
- There is enough evidence to convict each of them of a minor offense, but not enough to convict either of them of the major crime, unless one of them finks.
- If they both stay quiet, each will be convicted of the minor offense and spend 1 year in prison.
- If only one of them finks, he/she will be set free and used as a witness against the other, who will spend 3 years in prison.
- If they both fink, each will spend 2 years in prison.

- Players: the two suspects S1 and S2
- Actions: Either Quiet or Fink, for both players
- Preferences among strategies:
 - $S1: \{F,Q\} (payoff 0) > \{Q,Q\} (-1) > \{F,F\} (-2) > \{Q,F\} (-3)$
 - $S2: \{Q,F\} (0) > \{Q,Q\} (-1) > \{F,F\} (-2) > \{F,Q\} (-3)$

	Q	F
Q	(-1,-1)	(-3,0)
F	(0,-3)	(-2,-2)

	Q	F
Q	(-1,-1)	(-3,0)
F	(0,-3)	(-2,-2)

- How would you act if you were suspect \$1?
- How would you act if you were suspect S2?
- How would you act if you were one of the suspects and you could speak with the other?

NASH EQUILIBRIUM

- A state of the game (a set of strategies, one for each player), such that no player has incentive to unilaterally change action
 - Each player is making the best decision, taking into account the decisions of the others.
- Nash equilibria are used to analyze the outcome of the strategic interaction of several decision makers
 - There could be zero, one, or more than one Nash equilibria
 - If it is only one, then the outcome is certain
- We cannot predict the result of the choices of multiple decision makers if we analyze those decisions in isolation

NASH EQUILIBRIUM — PARETO OTPIMUM

A Nash Equilibrium is not necessarily the best solution for everyone

• In a Nash equilibrium no player can improve his outcome by using a different strategy, but a set of players can improve the global outcome by changing their strategies simultaneously

- Nash equilibrium <> Pareto Optimum
 - None of them implies the other

	Q	F
Q	(-1,-1)	(-3,0)
F	(0,-3)	(-2,-2)

- How many Nash Equilibria?
- What is the best global solution?
 - Is it a Nash Equilibrium?

MATCHING PENNIES

	Н	T
Н	(1,-1)	(-1,1)
Т	(-1,1)	(1,-1)

- How many Nash Equilibria?
- What is the best global solution?
 - Is it a Nash Equilibrium?

SAY THE SAME

	A	В
A	(1,1)	(0,0)
В	(0,0)	(1,1)

- How many Nash Equilibria?
- What is the best global solution?
 - Is it a Nash Equilibrium?

SAY THE SAME

	A	В
A	(2,1)	(0,0)
В	(0,0)	(1,2)

- How many Nash Equilibria?
- What is the best global solution?
 - Is it a Nash Equilibrium?

SAY THE SAME

	A	В
Α	(2,2)	(0,0)
В	(0,0)	(1,1)

- How many Nash Equilibria?
- What is the best global solution?
 - Is it a Nash Equilibrium?

MIXED STRATEGIES

 Instead of simply choosing an action, players choose probability distributions over the set of available actions

- Such distributions can be represented by a function that assigns a real number to each strategy
 - von Neumann-Morgenstern utility function

 One lottery is preferred to another if it results in a higher expected value of this utility function

NASH THEOREM

Every finite game with mixed strategies has at least one Nash equilibrium

Finite game: finite number of players and strategies

MATCHING PENNIES — MIXED STRATEGIES

	Н	T
Н	(1,-1)	(-1,1)
Т	(-1,1)	(1,-1)

A mixed strategy in which both players choose A with probability ½
 and B with probability ½ is a Nash Equlibrium

COMMUTING PROBLEM

- How do you choose your way to work/uni?
 - Shortest?
 - Fastest?
 - Less traffic?
 - Nicer?
 - Flatter?
 - Passing in front of a cigarette shop?
 - Taking into account how much additional traffic you generate for the others?
 - If this is not your choice, then you are selfish

MOTIVATION

- Large real-world systems cannot be administrated centrally
 - Internet
 - Road traffic

- Each agent is autonomous and tries to maximize its own benefit
 - The benefit of an agent depends on the behavior of the other agents

The behavior of all agents determines a social benefit

SELFISH ROUTING

- It is usually not possible to enforce a centralized strategy in a realworld network, as users make their own choices selfishly
 - We cannot act centrally to maximize the social benefit

 In general, the result of a local optimization by selfish users is (significantly) worse than the global optimum that could be obtained if they cooperated

SELFISH ROUTING: PIGOU'S EXAMPLE

- One road is short but small
- One road is large but long
- x is the percentage [0,...,1] of traffic passing through a road

SELFISH ROUTING: PIGOU'S EXAMPLE

- Everyone wants to use the short road, and it takes 1 hour for all
- If they split (half-half), then it takes ½ hour for half of them and 1 for the others

Price of Anarchy = 4/3

SELFISH ROUTING AS A GAME

- Everyone wants to use the short road, and it takes 1 hour for all
 - Situation that is reached when everyone plays selfishly
 - Nash Equilibrium
- If they split (half-half), then it takes ½ hour for half of them and 1 for the others
 - Optimal solution when a central entity can coordinate
 - Pareto Optimum
- Price of Anarchy = $\frac{cost(NE)}{cost(PO)}$

SELFISH ROUTING AS A GAME

 In the Pareto Optimum (half long – half short), a single car going the long way (cost 1) would prefer to move to the short way (cost 0,5 + a small amount), so this is not a Nash Equilibrium

- The traffic splits into half-half, both in the NE and in the PO
- It takes 1,5 hours for everyone, PoA = 1

 To improve the traffic, the government builds a very large and very short road

What is it going to happen?

Selfish users want to use the brand new road...

It now takes 2 hours for everyone!

Price of Anarchy = 4/3

- The optimal centralized solution is better than the selfish one for everyone
 - In the Pigou's example only half of the users were improving in the centralized solution

- It may be worse to have more alternatives
 - Should we close some roads?

SELFISH ROUTING: MODEL

- A directed graph with many (source-target) pairs, each exchanging a certain amount of (splittable) flow
 - Multi-commodity flow

- Each edge is equipped with a latency function l(x), where x is the total traffic passing through it
 - Continuous and non-decreasing, usually linear or at least convex

 For each pair, we want a path between source and target with minimal total latency

- What is the (worst-case) ratio between the total latency of a flow in a Nash equilibrium and in an optimal centralized solution?
 - The Price of Anarchy

- The first question is whether a Nash Equilibrium exists at all
 - In this case: yes, and it is unique (they can be more, but cost the same)

- In a flow at Nash equilibrium, all the paths between a pair sourcedestination with a positive amount of flow have equal latency
 - Otherwise, one single car would prefer to change route

- Hence, to compute the Nash Equilibrium, it is enough to consider all the possible source-destination paths and solve a linear equation system
 - They can be many!

- \mathbf{x}_1 cars use the short way, and pay \mathbf{x}_1 each
- x₂ cars use the long way, and pay 1 each
- Equations are $x_1=1$ and $x_1+x_2=1$
 - Solution is $x_1=1$, so in the NE all the traffic is through the short way

- \mathbf{x}_1 cars use the upper way, and pay $1 + \mathbf{x}_1$ each
- x_2 cars use the lower way, and pay $1 + x_2$ each
- Equations are $1 + x_1 = 1 + x_2$ and $x_1 + x_2 = 1$
 - Solution is $x_1 = x_2 = 0.5$, so in the NE the traffic splits

- x_1 pay $(x_1 + x_2) + 1$
- x_2 pay $(x_1 + x_2) + 0 + (x_2 + x_4)$
- x_3 pay 1 + 0 + 1
- x_4 pay $1 + (x_2 + x_4)$
- $x_1 + x_2 + x_3 + x_4 = 1$

- x_1 pay $(x_1 + x_2) + 1$
- x_2 pay $(x_1 + x_2) + 0 + (x_2 + x_4)$
- x_3 pay 1 + 0 + 1
- x_4 pay $1 + (x_2 + x_4)$
- $x_1 + x_2 + x_3 + x_4 = 1$

• Solution $x_2 = 1$, x_1 , x_3 , $x_4 = 0$

COMPUTING THE PARETO OPTIMUM

 The marginal cost of an edge describes the additional latency that is due to letting an additional amount of traffic through it

• In a Nash equilibrium, the marginal benefit of decreasing traffic through the edges of an s,t-path is at most the same as the marginal cost of increasing the traffic through the edges of any other s,t-path

COMPUTING THE PARETO OPTIMUM

Theorem:

Let G be a network in which all the latency functions are convex. Let G* be the network obtained by replacing each latency function with its corresponding marginal cost.

Then, a flow is optimal for G if and only if it corresponds to a Nash equilibrium for G*

(you charge the burden that a car causes to the others as part of its own cost, and then you let it minimize its cost. Since the function is convex, a local optimum is also global)

COMPUTING THE PARETO OPTIMUM

- In the Nash Equilibrium of the marginal-cost network, we have $x_1 = x_2 = \frac{1}{2}$ as a solution to the equation system
- The traffic splits half and half

- x_1 cars use the upper way, and pay $1 + 2x_1$ each
- x_2 cars use the lower way, and pay $1 + 2x_2$ each
- Equations are $1 + 2x_1 = 1 + 2x_2$ and $x_1 + x_2 = 1$
 - Solution is $x_1 = x_2 = 0.5$, so also in the PO the traffic splits

- x_1 pay $2(x_1 + x_2) + 1$
- x_2 pay $2(x_1 + x_2) + 0 + 2(x_2 + x_4)$
- x_3 pay 1 + 0 + 1
- x_4 pay $1 + 2(x_2 + x_4)$
- $x_1 + x_2 + x_3 + x_4 = 1$

• Solution $x_1 = x_4 = \frac{1}{2}$, x_2 , $x_3 = 0$

COMPUTING THE PRICE OF ANARCHY

- 1. Compute the flow in the Nash Equilibrium of the network
- 2. Compute the total cost of this flow

- 3. Compute the flow in the Nash Equilibrium of the marginal-cost network
- 4. Compute the total cost of this flow in the original network

5. Divide the two costs

- **Theorem**: if each latency function is linear, then the price of anarchy is at most 4/3
 - Pigou and Bräß examples match the worst case
 - Latency $l(e) = a_e x + b_e$ and marginal cost $m(e) = 2a_e x + b_e$

 Theorem: if each latency function is a polynomius of degree d, then the price of anarchy is at most

$$[1-d \cdot (d+1)^{-(d+1)/d}]^{-1}$$

■ $d \rightarrow \infty$ implies PoA $\rightarrow \infty$

In a Nash Equilibrium, all cars use the upper path

The total cost of NE is 1

In a Nash Equilibrium of the marginal-cost network, $x_1 = (d+1)^{-1/d}$ cars use the upper path and $x_2 = 1 - x_1$ use the lower

Total cost:
$$x_1 * x_1^d + (1-x_1) * 1 = 1-d(d+1)^{-(d+1)/d}$$

 $d \to \infty$ implies cost -> 0 and thus PoA -> ∞

- **Theorem**: if each latency function is continuous and nondecreasing, then the total latency in a Nash equilibrium is at most the same as the optimal latency in the setting in which the flow between every pair (source, target) is doubled
 - To solve traffic issues, just make all roads larger!

LITERATURE

- G. Owen. *Game Theory*. Academic Press, 1995. Third Edition
- Algorithmic Game Theory
 - http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521872820
 - Chapters 17 and 18 are devoted to selfish routing
 - http://theory.stanford.edu/~tim/books.html
- E. Koutsoupias, C. Papadimitriou. Worst-case Equilibria. Computer Science Review. 3 (2): 65–69. 2009.