COURSE 0000 Joon H. Ro

Class 3: Hypothesis Testing for a Mean and Significance of Regression Coefficients

Table of Contents / Agenda

1 Review: Regression and Interpretation of Regression Results
2 Sampling Distribution and Variance of the Sample Mean
3 Hypothesis Testing for a Mean
4 Significance of Regression Coefficients
6

1 Review: Regression and Interpretation of Regression Results

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_K x_{i,K} \varepsilon_i$$

• Last class, we talked about how to interpret regression results

1.1 Model Level

• R^2 : How much variation in y can my model explain?

$$R^2 = 1 - \frac{SS_{error}}{SS_{total}}$$

• We use **adjusted** R^2 to compare regressions with different numbers of independent variables

1.2 Variable Level (Coefficients)

- How does x_1 affects y?
- β_1 : How *y* changes if x_1 is increased by 1 unit

1.3 Significance

- How do we know if those coefficients are significant?
- Does x_1 affects y?
 - We do hypothesis testing for each of the coefficients separately

2 Sampling Distribution and Variance of the Sample Mean

- Suppose we can *repeatedly* draw random samples of size *n* from the population
- Then calculate the mean for *each* sample:
 - e.g., \bar{x}_1 : mean of the first sample, \bar{x}_2 : mean of the second sample, ...
- Computation of variance of these means:

$$s_{\bar{x}}^2 = \frac{s^2}{n} \begin{cases} \uparrow & \text{increases with increasing sample variance}(s^2) \\ \downarrow & \text{decreases with increasing sample size}(n) \end{cases}$$

2.1 How reliable is the sample mean as the sample size increases?

- The histogram of <u>sample means</u> will eventually look like a normal distribution when *n* becomes larger and larger. (Central-Limit Theorem)
- The histogram will also be "thinner" as *n* goes larger.

(these are generated with 1,000 draws of samples with size n - that is, we have 1,000 independent samples each with n observations)

2.2 Sample Mean and Standard Error

Sample mean \bar{x}

Sample size n

Accuracy of sample mean depends on:

Sample variance
$$s_x^2$$

Standard Error
$$SE_{\overline{x}} = \sqrt{\frac{S_{\overline{x}}^2}{n}}$$

2.3 Standard Deviation VS. Standard Error

Standard deviation (s_x) Describes the spread of values in the sample

- The sample standard deviation, s_x is a random quantity it varies from sample to sample
- Becomes more accurate representation of the population standard deviation when the sample size increases

Standard error of the mean ($SE_{\bar{x}}$) the standard deviation of the sample mean \bar{x}

- Describes \bar{x} 's accuracy as an estimate of the population mean, μ
- When the sample size increases, the estimator is based on more information and becomes more accurate, so its standard error decreases

2.4 Margin of error: Confidence interval of the mean

- What is a 95% confidence interval?
 - If we would draw samples of the same size <u>over and over again</u>, then in 95% of the times this interval covers the mean.
 - So it is a measure of reliability
 - $[\bar{x} 1.96SE_{\bar{x}}, \bar{x} + 1.96SE_{\bar{x}}]$
- It does <u>not</u> mean that "there is a 95% chance that the population mean is in this specific confidence interval" (See textbook page 277)

3 Hypothesis Testing for a Mean

Statements

- People think that the quality of food at our restaurant is above average (5)
- College head coaches' winning percentages affects their compensation levels (Regression)

3.1 Testing Hypothesis about a Single Mean

- People think that the quality of food at our restaurant is above average (5)
- Null hypothesis:
 - There is no difference or effect H_0 : Average rating of food quality is 5 or, H_0 : Rating $f_{oodquality} = 5$
- Alternative hypothesis:
 - That there is a difference (or an effect)
 - Two-sided
 - * The average rating of food quality is not 5

 H_a rating $f_{oodquality} \neq 5$

- * No discrimination of the direction of difference
- H_0 : $rating_{foodquality} = 5$
- H_a : $rating_{foodquality} \neq 5$ or $rating_{foodquality} > 5$
- Average rating from 100 respondents: 6.5, Variance: 4
- Is the difference (5 VS. 6.5) statistically significant?

- One-sided

* The average rating of food quality is higher than 5

 H_a rating foodquality > 5

* Some idea of the direction of difference

3.2 z-test vs. t-test

• Rule of thumb:

"Use a z-test when the variance of the distribution is known, otherwise use a t-test"

- For a large sample, t-test is equivalent to a z-test
 - Mostly fine with Regression

As *n* increase, the t-distribution approaches the standard normal distribution

3.3 Recall

- Sample mean: \bar{x}
- Accuracy of sample mean depends on:
 - Sample variance: s_x^2

- Sample size: *n*

• Standard Error:
$$SE_{\overline{x}} = \sqrt{\frac{s_{\overline{x}}^2}{n}}$$

Hence, with the example,

•
$$\overline{x} = 6.5$$
, $s_x^2 = 4$, $n = 100$

•
$$SE_{\overline{x}} = \sqrt{\frac{s_x^2}{n}} = \sqrt{\frac{4}{100}} = .2$$

3.4 Computing t-statistic

•
$$H_0: \overline{x} = \overline{x}_0$$
 (6.5 = 5)

•
$$H_a: \overline{x} \neq \overline{x}_0 \quad (6.5 \neq 5)$$
 or $H_a: \overline{x} > \overline{x}_0 \quad (6.5 > 5)$

•
$$t = \frac{\overline{x} - \overline{x}_0}{SE_{\overline{x}}}$$
, where $\frac{\overline{x} - \overline{x}_0 = 1.5}{SE_{\overline{x}} = .2} = 7.5$

•
$$t \uparrow \Rightarrow \text{p-value} \downarrow$$

- p-value: the probability of finding the observed results when
$$H_0$$
 is true

3.5 t-critical

• How large must *t* be to reject the null hypothesis:

- t must be larger than $t_{critical}$ (threshold)
- Since the mean of *t*-distribution is zero, larger the value, smaller the probability

• *t_{critical}* depends on:

- Significance level α (typically $\alpha = 0.05$)
- Degrees of freedom: total sample size-1 → n-1
- Whether test is one sided or two sided
- Use t-tables. For large n, you can use normal distribution (z)

• For two-sided test:

-
$$t_{Critical} = t_{\alpha/2,n-1}$$

* For large
$$n$$
, $t_{0.025} = 1.96$

– Reject the null if
$$|t| > t_{Critical}$$

- Fail to reject the null if
$$|t| < t_{Critical}$$

• For one-sided test:

-
$$t_{Critical} = t_{\alpha,n-1}$$

* For large
$$n$$
, $t_{0.05} = 1.65$

- Reject the null if
$$t > t_{Critical}$$

- Fail to reject the null if
$$t < t_{Critical}$$

• In both cases, rejecting the null means p-value $< \alpha$

3.6 The conclusion is

$$H_a: rating_{foodquality} \neq 5$$
 $H_a: rating_{foodquality} > 5$ $|t| = 7.5 > t_{critical} = 1.96 \Rightarrow \text{Reject } H_0$ $t = 7.5 > t_{critical} = 1.65 \Rightarrow \text{Reject } H_0$

4 Significance of Regression Coefficients

• We do hypothesis testing for a mean for each coefficient separately

4.1 Null and Alternative Hypotheses

• The null hypothesis is that there is *no* effect:

$$- H_0: \beta_k = 0 \qquad H_A: \beta_k \neq 0$$

- Null hypothesis:
 - H_0 : Winning Percentage of a head coach does not affect his compensation

-
$$H_0$$
: $\beta_{WinPercentage} = 0$

- Alternative hypothesis:
 - College head coaches' winning percentages affects their compensation levels
 - H_a : $\beta_{WinPercentage} \neq 0$

4.2 Regression Results

- t Stat: $\frac{\hat{\beta}_k}{SE_k}$ (because $H_0: \beta_k = 0$): Reject the null if T > |1.96|
- P-value: the probability of observing $\hat{\beta}_k$ if the null hypothesis is true: reject the null if P-value $< 0.05 (= \alpha)$
- 95% ($(1 \alpha) \times 100\%$) Confidence interval: will not include 0 if $\hat{\beta}_k$ is significant