C.NIVEDHAN

G.PULLAIH COLLEGE OF ENGINEERING

3RD YEAR-EEE

```
# Major project-1
```

Choose any dataset of your choice and apply a suitable CLASSIFIER/REGRESSOR
importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

#1.Take the data and create dataframe
df = pd.read_csv("/content/archive (4).zip")
df

₽		Х	Υ	7
	0	1	3.888889	
	1	2	4.555556	
	2	3	5.222222	
	3	4	5.888889	
	4	5	6.555556	
	295	296	200.555556	
	296	297	201.222222	
	297	298	201.888889	
	298	299	1.888889	
	299	300	1.888889	

300 rows × 2 columns

df.head#Check the head()

<box< th=""><th>nd me</th><th>thod NDFrame.head</th><th>l of</th><th>Χ</th><th>Υ</th></box<>	nd me	thod NDFrame.head	l of	Χ	Υ
0	1	3.888889			
1	2	4.555556			
2	3	5.222222			
3	4	5.888889			
4	5	6.555556			
		• • •			
295	296	200.555556			
296	297	201.222222			
297	298	201.888889			
298	299	1.888889			
299	300	1.888889			

[300 rows x 2 columns]>

df.info()#Check the info()

type(df)# Check the type()

pandas.core.frame.DataFrame

Search for NAN values
df.isnull().sum()

X 0 Y 0 dtype: int64

...,

#3.Data Visualisation - creation of Graphs
plt.scatter(df['X'],df['Y'])

<matplotlib.collections.PathCollection at 0x7fdefb63c910>

From the above graph we can see come outliers at right corner #for more accuracy we have to remove them

so there are 298 and 299 rows have really small values compared to the previous ones print(df.tail())

df.drop([298, 299], inplace=True)

```
X = df["X"].to numpy().reshape(-1, 1)
Y = df["Y"].to numpy().reshape(-1, 1)
           Χ
     295 296 200.555556
     296 297 201.222222
     297 298 201.888889
     298 299
                 1.888889
                 1.888889
     299 300
# TRAIN and TEST VARIABLES
#sklearn.model_selection - package , train_test_split - library
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y, random_state = 0)
#Whatever data splitting /data allocation happens to the xtrain,x_test,ytrain,ytest va
#By default the training variables get 75 % and testing variables get 25%
print(X.shape) # 298 rows,1 column
print(X train.shape) # 199 rows,1 column
print(X_test.shape)# 99 rows,1 column
     (298, 1)
     (199, 1)
     (99, 1)
print(y.shape) # 298 rows and 1 col
print(y_train.shape) # 223 rows and 1 cols(75 %)
print(y_test.shape) #75rows and 1 col(25%)
     (298, 1)
     (223, 1)
     (75, 1)
#SCALING or NORMALISATION -DONE ONLY FOR INPUTS
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
#.RUN a CLASSIFIER/REGRESSOR/CLUSTERER
from sklearn.linear model import LinearRegression
model = LinearRegression()
#.MODEL FITTING
model.fit(x_train,y_train)
```

LinearRegression()

```
#9.PREDICT THE OUTPUT
```

 $y_pred = model.predict(x_test) #By taking the input testing data , we predict the output <math>y_pred #PREDICTED VALUES$

```
[158.64687977],
[196.49162863],
[ 43.76103501],
[103.23135465],
[162.0258752],
[136.3455099],
[ 60.65601218],
[ 35.65144597],
[ 82.95738205],
[168.10806698],
[189.73363776],
[ 43.08523592],
   5.91628615],
[ 99.17656013],
[144.45509895],
[128.91171995],
[149.86149164],
[122.82952817],
   3.8888889],
[159.99847794],
[150.53729073],
[127.56012178],
[ 23.4870624 ],
[151.8888889],
[121.47792999],
[192.43683411],
  5.24048706],
[ 30.92085236],
[ 70.1171994 ],
[157.97108068],
[116.0715373],
[ 68.76560122],
[ 37.67884323],
[191.08523594],
[113.36834095],
[ 18.08066971],
[ 45.11263318],
[201.2222224],
[155.26788433],
[ 91.06697109],
[ 40.38203958],
[197.16742772],
[191.76103502],
[ 55.24961949],
[ 73.49619483],
[114.04414004],
[148.50989347],
[ 14.02587519],
[ 31.59665145],
[112.69254187],
[152.56468799],
[119.45053273],
[ 18.7564688 ],
```

```
[141./519026 ],
[174.19025877],
[ 25.51445967],
[ 62.68340944]])
```

y_test #ACTUAL VALUES

```
[ --....,
[159.8888889],
[197.2222222],
[ 46.5555556],
[105.2222222 ],
[163.2222222],
[137.8888889],
[ 63.2222222],
[ 38.5555556],
[ 85.2222222],
[169.2222222],
[190.555556],
[ 45.88888889],
  9.2222222],
[101.2222222],
[145.8888889],
[130.5555556],
[151.2222222],
[124.5555556],
  7.2222222],
[161.2222222],
[151.8888889],
[129.2222222],
[ 26.5555556],
[153.2222222],
[123.2222222],
[193.2222222],
 8.5555556],
[ 33.88888889],
[ 72.5555556],
[159.2222222],
[117.8888889],
[ 71.2222222],
[ 40.5555556],
[191.8888889],
[115.2222222],
[ 21.2222222],
[ 47.88888889],
[201.8888889],
[156.555556],
[ 93.2222222],
[ 43.2222222],
[197.8888889],
[192.555556],
[ 57.88888889],
[ 75.8888889],
[115.8888889],
[149.8888889],
[ 17.2222222],
[ 34.5555556],
[114.5555556],
[153.8888889],
[121.2222222],
```

```
[ 21.88888889],
[143.2222222 ],
[175.2222222 ],
[ 28.5555556],
[ 65.22222222]])
```

```
print(x_train[10]) #these are scaled/normalised values
[0.91554054]
```

```
#INDIVIDUAL PREDICTION
model.predict([x_train[10]])
array([[184.55555557]])
```

Print Standardized sets

```
plt.figure(figsize=(4,3))
plt.title("Train set")
plt.scatter(x_train, y_train, c="#1597E5")

plt.figure(figsize=(4,3))
plt.title("Test set")
plt.scatter(x_test, y_test, c="#FF5F7E")
```

<matplotlib.collections.PathCollection at 0x7fdeee84ff50>

Train our model

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

```
model = LinearRegression().fit(x_train, y_train)
y_pred_test = model.predict(x_test)
y_pred_train = model.predict(x_train)
# Evaluate our model
```

```
print(f"R2 Score for Test set: ", r2_score(y_test, y_pred_test))
print(f"MSE for Test set: ", mean_squared_error(y_test, y_pred_test))
```

```
print(f"R2 Score for Train set: ", r2_score(y_train, y_pred_train))
print(f"MSE for Train set: ", mean_squared_error(y_train, y_pred_train))
```

R2 Score for Test set: 0.9986425280384631 MSE for Test set: 4.5909178863626305

R2 Score for Train set: 1.0

MSE for Train set: 3.864880498330617e-16

Plot out predictions

```
plt.figure(figsize=(4,3))
plt.title("Test set")
plt.scatter(x_test, y_test, c="#1597E5")
plt.plot(x_test, y_pred_test, c="#FF5F7E")

plt.figure(figsize=(4,3))
plt.title("Train set")
plt.scatter(x_train, y_train, c="#1597E5")
plt.plot(x_train, y_pred_train, c="#FF5F7E")
```

[<matplotlib.lines.Line2D at 0x7fdefe3daed0>]

As we can see the red line perfectly fits our test and train data

Colab paid products - Cancel contracts here

✓ 0s completed at 2:13 PM

×

```
# MAJOR-PROJECT 2
# Choose any dataset of your choice and apply K Means Clustering
#Import Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#Get the Data
#Read in the College_Data file using read_csv.

df=pd.read_csv("/content/College.csv",index_col=0)
df
```

Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P

Check the head of the data
df.head

<pre><bound \<="" accort="" ennall="" method="" ndframe.head="" of="" pre="" ton10nons=""></bound></pre>					Privat	e Apps	
Accept Enroll Top10perc \	V	1660	1222	72.	1	22	
Abilene Christian University		1660 2186	1232 1924	72: 51:		23 16	
Adelphi University Adrian College		2166 1428	1924	330		22	
9							
Agnes Scott College		417 193	349 146	13		60 1 <i>6</i>	
Alaska Pacific University	Yes	193	146	5! ••		16 	
Worcester State College	No	2197	1515	54:	3	4	
Xavier University	Yes	1959	1805	69	5	24	
Xavier University of Louisiana	Yes	2097	1915	69	5	34	
Yale University	Yes 1	0705	2453	131	7	95	
York College of Pennsylvania	Yes	2989	1855	69:	1	28	
	Top25perc	F.Unde	ergrad	P.Un	dergrad	Outstat	e \
Abilene Christian University	52		2885		537		.0
Adelphi University	29		2683		1227	1228	0
Adrian College	50		1036		99		
Agnes Scott College	89		510		63	1296	0
Alaska Pacific University	44		249		869	756	0
•••							
Worcester State College	26		3089		2029		
Xavier University	47		2849		1107	1152	0
Xavier University of Louisiana	61		2793		166	690	0
Yale University	99		5217		83	1984	.0
York College of Pennsylvania	63		2988		1726	499	0
	Room.Boar	d Books	. Pers	sonal	PhD T	erminal	\
Abilene Christian University	330	0 450)	2200	70	78	
Adelphi University	645	0 756)	1500	29	30	
Adrian College	375	0 400)	1165	53	66	
Agnes Scott College	545	0 450)	875	92	97	
Alaska Pacific University	412	0 806)	1500	76	72	
	• • •				• • •		
Worcester State College	390			1200	60	60	
Xavier University	496			1250	73	75	
Xavier University of Louisiana	420			781	67	75	
Yale University	651			2115	96	96	
York College of Pennsylvania	356	0 500)	1250	75	75	
	S.F.Ratio	•	alumni	-	nd Gra		
Abilene Christian University	18.1		12	704		60	
Adelphi University	12.2		16	105		56	
Adrian College	12.9		30	87		54	
Agnes Scott College	7.7		37	190:		59	
Alaska Pacific University	11.9		2	109		15	
 Worcester State College	21.0		14	44	 69	40	
Xavier University	13.3		31	918		83	
Xavier University of Louisiana	14.4		20	83		49	
Yale University	5.8		49	403		99	
York College of Pennsylvania	18.1		28	450		99	

[777 rows x 18 columns]>
Check the info()
df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 777 entries, Abilene Christian University to York College of Pennsylvania Data columns (total 18 columns):

#	Column	Non-	-Null Cour	nt Dtype
0	Private	777	non-null	object
1	Apps	777	non-null	int64
2	Accept	777	non-null	int64
3	Enroll	777	non-null	int64
4	Top10perc	777	non-null	int64
5	Top25perc	777	non-null	int64
6	F.Undergrad	777	non-null	int64
7	P.Undergrad	777	non-null	int64
8	Outstate	777	non-null	int64
9	Room.Board	777	non-null	int64
10	Books	777	non-null	int64
11	Personal	777	non-null	int64
12	PhD	777	non-null	int64
13	Terminal	777	non-null	int64
14	S.F.Ratio	777	non-null	float64
15	perc.alumni	777	non-null	int64
16	Expend	777	non-null	int64
17	Grad.Rate	777	non-null	int64
dtyp	es: float64(1), i	nt64(16),	object(1)

memory usage: 115.3+ KB

#Check the describe()
df.describe()

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad
count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000
mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336
std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531
min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000
25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000
50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000
75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000
max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000

N .

#Creating a scatterplot of Grad.Rate versus Room.Boarding where the points are colored

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:
 FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/regression.py:581: UserWarning: The warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid at 0x7fc66928e550>

Creating a scatterplot of F. Undergrad versus Outstate where the points are colored by

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:
 FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/regression.py:581: UserWarning: Th
 warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid at 0x7fc6691d9d50>

#Creating a stacked histogram showing Out of State Tuition based on the Private column

```
sns.set_style('darkgrid')
g = sns.FacetGrid(df,hue="Private",palette='coolwarm',size=6,aspect=2)
g = g.map(plt.hist,'Outstate',bins=20,alpha=0.7)
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The
 warnings.warn(msg, UserWarning)

Creating a similar histogram for the Grad.Rate column.

```
sns.set_style('darkgrid')
g = sns.FacetGrid(df,hue="Private",palette='coolwarm',size=6,aspect=2)
g = g.map(plt.hist,'Grad.Rate',bins=20,alpha=0.7)
```


Noticing how there seems to be a private school with a graduation rate of higher tha df[df['Grad.Rate'] > 100]

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Und
Cazenovia College	Yes	3847	3433	527	9	35	1010	
%								
4								•

lets Set that school's graduation rate to 100 so it makes sense.

df['Grad.Rate']['Cazenovia College'] = 100
df[df['Grad.Rate'] > 100]

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWa A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
This is separate from the ipykernel package so we can avoid doing imports until

Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad O

sns.set_style('darkgrid')
g = sns.FacetGrid(df,hue="Private",palette='coolwarm',size=6,aspect=2)

g = g.map(plt.hist, 'Grad.Rate', bins=20, alpha=0.7)

K Means Cluster Creation

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The warnings.warn(msg, UserWarning)


```
# Import KMeans from SciKit Learn
from sklearn.cluster import KMeans
#Creating an instance of a K Means model with 2 clusters.
kmeans=KMeans(n_clusters=2)
#Fitting the model to all the data except for the Private label.
kmeans.fit(df.drop('Private',axis=1))
     KMeans(n clusters=2)
kmeans.cluster_centers_
     array([[1.81323468e+03, 1.28716592e+03, 4.91044843e+02, 2.53094170e+01,
             5.34708520e+01, 2.18854858e+03, 5.95458894e+02, 1.03957085e+04,
             4.31136472e+03, 5.41982063e+02, 1.28033632e+03, 7.04424514e+01,
             7.78251121e+01, 1.40997010e+01, 2.31748879e+01, 8.93204634e+03,
             6.50926756e+01],
            [1.03631389e+04, 6.55089815e+03, 2.56972222e+03, 4.14907407e+01,
             7.02037037e+01, 1.30619352e+04, 2.46486111e+03, 1.07191759e+04,
             4.64347222e+03, 5.95212963e+02, 1.71420370e+03, 8.63981481e+01,
```

```
9.1333333e+01, 1.40277778e+01, 2.00740741e+01, 1.41705000e+04, 6.75925926e+01]])
```

Create a new column for df called 'Cluster', which is a 1 for a Private school, and

```
def converter(cluster):
    if cluster=='Yes':
        return 1
    else:
        return 0
```

df['Cluster'] = df['Private'].apply(converter)

df.head()

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Und
Abilene Christian University	Yes	1660	1232	721	23	52	2885	
Adelphi University	Yes	2186	1924	512	16	29	2683	
Adrian College	Yes	1428	1097	336	22	50	1036	
Agnes Scott College	Yes	417	349	137	60	89	510	
Alaska Pacific University	Yes	193	146	55	16	44	249	
7								

Create a confusion matrix and classification report to see how well the Kmeans clust-

from sklearn.metrics import confusion_matrix,classification_report
print(confusion_matrix(df['Cluster'],kmeans.labels_))
print(classification_report(df['Cluster'],kmeans.labels_))

[[138 [531	74] 34]]				
		precision	recall	f1-score	support
	0	0.21	0.65	0.31	212
	1	0.31	0.06	0.10	565
ac	curacy			0.22	777
mac	ro avg	0.26	0.36	0.21	777

weighted avg 0.29

0.22

0.16

777

its the final report

Colab paid products - Cancel contracts here

✓ 0s completed at 2:24 PM

×