IV. OPTICAL RESONATORS:

STABILITY CRITERIA FOR RESONATORS AND PERIODIC OPTICAL STRUCTURES BY RAY OPTIC ANALYSIS

Consider a prototypical periodic guiding lens system or an equivalent resonator.

Using the appropriate **ABCD** matrix with the indicated reference planes ¹⁷, we may write

$$_{m+1} = A$$
 $_m + B$ $_m$ [IV-1a]

and

$$_{m+1} = C$$
 $_m + D$ $_m$

Where for reference, we see that

From the first equation we write

$$_{m} = \frac{_{m+1} - A_{m}}{B}$$
 and $_{m+1} = \frac{_{m+2} - A_{m+1}}{B}$.

and substitute into Equation [IV-1b] to obtain

$$_{m+2} - [A + D]_{m+1} + [AD - BC]_{m+1} = 0$$
 [IV-2a]

The determinant of the coefficients |AD - BC| = 1 so that

$$_{m+2} - [A + D]_{m+1} + _{m+1} = 0$$
. [IV-2a]

We see that

$$\frac{A+D}{2} = -1 - \frac{d}{f_2} - \frac{d}{f_1} + \frac{d^2}{2f_1f_2} = -1 + 2 \cdot 1 - \frac{d}{2f_1} - 1 - \frac{d}{2f_2}$$
 [IV-3]

Thus, stable ray propagation may characterized by **bound solutions** of the form $_{m} = _{0} \exp(i m)$ which are possible if and only if

$$\exp(i) + \exp(-i) = 2\cos = A + D = 2$$
 or $\cos = [IV-4]$

Therefore propagation is stable -- i.e. the rays are confined -- when | 1 so that

$$0 \quad 1 - \frac{d}{2f_1} \quad 1 - \frac{d}{2f_2} \quad 1 \ . \tag{IV-5}$$

Ray stability of rays in a periodic system may be usefully characterized in terms of the variables $u_1 = 1 - \frac{d}{2 f_1}$ and $u_2 = 1 - \frac{d}{2 f_2}$ as follows:

Stability (Confinement) Diagram for Periodic Systems

STABILITY OF A SPHERICAL MIRROR RESONATORS -- USING SOLUTIONS OF THE PARAXIAL WAVE EQUATION:

Consider a Hermite-Gaussian mode confined in an **asymmetrical spherical cavity**:

In order to sustain a resonant mode in such a cavity, the beam's radius of curvature must match each mirror's radius of curvature at the mirror's surface and, thus, the following conditions must hold (see Equation [III-20]):

$$R_1 = z_1 + \frac{L_F^2}{z_1}$$
 and $R_2 = -z_2 - \frac{L_F^2}{z_2}$ [IV-5a]

where $d = z_1 + z_2$. Hence, we see that

$$z_1 = \frac{R_1 \pm \sqrt{R_1^2 - 4L_F^2}}{2}$$
 and $z_2 = \frac{-R_2 \pm \sqrt{R_2^2 - 4L_F^2}}{2}$. [IV-5b]

with a lot of algebra we can show that

$$L_{\rm F}^2 = -\frac{w^2(0)}{\left[u_1 R_1 - u_2 R_2\right]^2} = \frac{-du_1 u_2 R_1 R_2 \left[d + u_1 R_1 - u_2 R_2\right]}{\left[u_1 R_1 - u_2 R_2\right]^2}$$
 [IV-6]

where now $u_1 = 1 - d/R_1$ and $u_2 = 1 + d/R_2$.

For a **symmetric resonator** $R_2 = -R_1$ and $u_1 = u_2$

$$L_{\rm F}^2 = \frac{w^2(0)}{4}^2 = \frac{d[2R-d]}{4}$$
 [IV-7a]

and

$$w(z_1) = w(-z_2) = \frac{d}{2} \frac{1/2}{d(R-d/2)}$$
 [IV-7b]

For an asymmetric resonator, it can be shown with a bit more algebra that

$$w(z_1) = \frac{d}{u_1(1-u_1u_2)}^{y_2} \frac{u_2}{u_1(1-u_1u_2)}$$
 [IV-8a]

$$w(-z_2) = \frac{d}{u_1} \frac{u_1}{u_2(1 - u_1 u_2)}$$
 [IV-8b]

As a measure of the effect of resonator length and mirror radius on **diffraction loss** consider the ratio:

$$\frac{w(z_1)}{w_{\text{conf}}(z_1)} = \frac{w(-z_2)}{w_{\text{conf}}(-z_2)} = \frac{d}{R} 1 - \frac{d}{2R}$$
 [IV-9]

where $w_{\text{conf}}(z_1) = \sqrt{2} \ w(0)$ is beam width at the mirror for the confocal configuration -- *i.e.*, when both mirrors have their focal points at the mid-point of the cavity

Resonance Frequencies of the Optical Resonator:

From Equation [III-28], we see the the "round-trip" cold resonance condition for a Hermite-Gaussian mode is given by

$$k d - (n + m + 1) \left[\tan^{-1} \left(z_1 / L_F \right) + \tan^{-1} \left(z_2 / L_F \right) \right] = N$$
 [IV-10a]

where N is an integer. In terms of frequency, the resonce condition is

$$= \frac{c}{d} \left\{ N + (n + m + 1) \left[\tan^{-1} (z_1 / L_F) + \tan^{-1} (z_2 / L_F) \right] \right\}$$
 [IV-10b]

After much algebra, it can be shown that:

$$= \frac{c}{d} \left[N + (n+m+1)\cos\sqrt{u_1 u_2} \right]$$
 [IV-10b]