Trabalho Extra

Pedro Delfino

February 14, 2018

Primeira Questão [AS, exercício 3]

Sejam a, b, c, r constantes reais com $r \neq 0$, e considere a curva $\gamma : \mathbb{R} \to \mathbb{R}^3$ definida por:

$$\gamma(t) = (r\cos t, r\sin t, a\sin t + b\cos t + c)$$

- a) Prove que a curva é plana.
- b) Determine se é uma curva circular, isto é, se ela coincide com o arco de uma circuferência.

Proof.

Seja: $\gamma(t) = (r\cos t, r\sin t, a\sin t + b\cos t + c)$

Primeira derivada: $\gamma'(t) = (-r\sin t, r\cos t, a\cos t - b\sin t)$

Segunda derivada: $\gamma''(t) = (-r\cos t, -r\sin t, -a\sin t - b\cos t)$

Terceira derivada: $\gamma'''(t) = (r \sin t, -r \cos t, -a \cos t + b \sin t)$

A torção pode ser expressa por: $\tau = \frac{(r' \times r'') \cdot r'''}{\left\|r' \times r''\right\|^2}$

A fórmula acima não exige que a curva esteja parametrizada pelo cumprimento de arco Desenvolvendo os cálculos do numerador

O produto vetorial das duas primeiras derivadas é: $\gamma'(t) \times \gamma''(t) = (-rb, -ra, r^2)$

O produto escalar é o produto vetorial vezes a terceira derivada:

$$(-rb, -ra, r^2) \cdot \gamma'''(t)$$

$$(-rb, -ra, r^2) \cdot (r\sin t, -r\cos t, -a\cos t + b\sin t) = 0$$

O numerador é zero. Logo, a torção é zero.

 $\tau = 0$

Se a torção é zero, a curva é plana.

Proof.

A curvatura pode ser expressa por: $\kappa = \frac{\|\gamma' \times \gamma''\|}{\|\gamma'\|^3}$

A fórmula acima não exige que a curva esteja parametrizada pelo cumprimento de arco

A curvatura constante indica que a curva é circular

O produto vetorial das duas primeiras derivadas é: $\gamma'(t) \times \gamma''(t) = (-rb, -ra, r^2)$ O módulo do produto vetorial: $||\gamma' \times \gamma''|| = \sqrt{r^2b^2 + r^2a^2 + r^4}$

Como pode ser visto, o numerador só envolve constantes

O denominador, por sua vez, é: $||\gamma'||^3$

$$||\gamma'||^3 = (\sqrt{r^2 + a^2 \cos^2 t + b^2 \sin^2 t - ab^2 \cos t \sin t})^3$$

O denominador não é constante, estando em função de t. Portanto, $\gamma(t)$ não é uma curva circular

Preview:

Segunda Questão [Lista 5, exercício 4]

Provar que a interseção de uma quantidade finita de abertos é um conjunto aberto.

Proof.

Seja Λ uma família muito grande de conjuntos abertos u

$$\Lambda = \{u_1, u_2, u_3, ..., u_{\lambda}\}\$$

Seja x um ponto na interseção de todos esse conjuntos abertos

$$x\in u_1,u_2,u_3,...,u_{\lambda}$$

Como todos os conjuntos u_{λ} são abertos, existem valores:

$$r_1, r_2, r_3, ..., r_{\lambda} > 0$$

De modo que

$$B(x, r_1) \subseteq u_1, B(x, r_2) \subseteq u_2, ..., B(x, r_{\lambda}) \subseteq u_{\lambda}$$

Seja ε um número pequeno, maior que zero e definido pela função mínimo

$$\varepsilon = \min\{r_1, r_2, r_3, ..., r_{\lambda}\}$$

Assim, existe uma bola aberta contida na interseção:

$$B(x,\varepsilon) \subseteq \bigcap_{i=1}^{\lambda} u_i$$

Portanto, a interseção de uma quantidade finita de conjuntos abertos é um conjunto aberto.

Essa questão não exige simulação no geogebra.

Terceira Questão [Lista 1, exercício 12]

Seja $\alpha(t)$ uma curva regular que não passa pela origem. Se $\alpha(t_0)$ é o ponto do traço de α mais próximo da origem, mostre que o vetor posição $\alpha(t_0)$ é ortogonal a $\alpha'(t_0)$

Proof.

Seja $\alpha:I\to\mathbb{R}$ uma curva regular que não passa pela origem

 $\alpha(t_0)$: o ponto do traço de α mais próximo da origem

Se $\alpha(t_0) \perp \alpha'(t_0)$

Então $\alpha(t_0) \cdot \alpha'(t_0) = 0$

A função $t \to ||\alpha(t)||^2$ tem um mínimo em t_0

Logo, t_0 é um ponto crítico, isto é

$$\frac{d}{dt}|_{t=t_0} \qquad ||\alpha(t)||^2 = 0$$

Então, $2\alpha'(t_0)\alpha(t_0) = 0$

 $\alpha'(t_0)\alpha(t_0) = 0$

Essa questão não exige simulação no geogebra.

Quarta Questão [Lista 3, exercício 7]

Demonstrar que a curva $\alpha(t)=(t,\frac{1+t}{t},\frac{1-t^2}{t})$ está incluída num plano Proof.

Seja a equação geral do plano definida por:

$$a(x) + b(y) + c(z) = d$$

Inserido os parâmetros:

$$a(t) + b(\frac{1+t}{t}) + c(\frac{1-t^2}{t}) = d$$

$$a(t^2) + b(1+t) + c(1-t^2) = d(t)$$

Reorganizando:

$$t^{2}(a-c) + t(b-d) + (b+c) = 0$$

Para essa igualdade ser verdadeira é preciso que:

$$a - c = 0$$

$$b - d = 0$$

$$b + c = 0$$

Os coeficientes podem ficar em função de "a"

$$a = c = -b = -d$$

$$a(x) + b(y) + c(z) = d$$

$$a(x) + (-a)(y) + (a)(z) = (-a)$$

Dividindo tudo por "a"

$$1x - 1y + 1z = -1$$

O vetor normal que define o plano em que esta curva está inserida é (1,-1,1)

Preview:

Quinta Questão [Lista 4, exercício 13]

Provar que a evoluta da elipse $\gamma(t)=(a\cos t,b\sin t)$ com a,b>0 é a astróide: $\rho(t)=(\frac{(a^2-b^2)\cos^3 t}{a},\frac{(b^2-a^2)\sin^3 t}{b})$

Observação: Considerar que mesmo quando β não é parametrizada pelo comprimento de arco, $\alpha(\mathbf{t}) = \beta(\mathbf{t}) + \frac{n(t)}{\kappa}$ é a evoluta de β .

Proof.

Seja a curvatura de ρ :

$$\kappa = \frac{ab}{(a^2sen^2t + b^2cos^2t)^{\frac{3}{2}}} \neq 0$$

Seja o vetor normal:

$$n(t) = \frac{(-bcost, -asent)}{(a^{2}sen^{2}t + b^{2}cos^{2}t)^{\frac{1}{2}}}$$

Assim, $\beta(t)$

$$\beta(t) = (acost, bsent) + \frac{a^2sen^2t + b^2cos^2t}{ab}(-bcost, -asent)$$

$$\beta(t) = (\frac{(a^2 - b^2)cos^3t}{a}, \frac{(b^2 - a^2)sin^3t}{b})$$

Há de ser ressaltado que o traço da evoluta é descrito pela astroide:

$$(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 - b^2)^{\frac{2}{3}}$$

 $\beta(t)$ não é regular nos pontos para os seguintes valores de t

$$t=0=\frac{\pi}{2}=\frac{3\pi}{2}$$

Preview:

Sexta Questão [Lista 8, exercício 3]

Mostre que a quádrica $x^2 + 2y^2 + 6x - 4y + 3z = 7$ é uma superfície, exibindo um atlas.

Proof.

$$S = \{(x, y, z) \in \mathbb{R}/x^2 + 2y^2 + 6x - 4y + 3z - 7 = 0\}$$

Assim: $f^{-1}(0) = S$

$$\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

$$\nabla f = (2x + 6, 4y - 4, 3)$$

Assim:

$$\forall (x, y, z) \in \mathbb{R}$$

$$\nabla f \neq (0,0,0)$$

Logo, pelo teorema das superíficies de nível, S é uma superfície regular

Atlas
$$\sigma:(x,y)\rightarrow (x,y,-\frac{x^2}{3}-\frac{2y^2}{3}-2x+\frac{4}{3}y+\frac{7}{3})$$

Preview:

