1. Fie variabila aleatoare discretă
$$X: \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 3p & 4p & 2p & p & p \end{pmatrix}$$
, $p \in \mathbb{R}$. Să se determine:

a) parametrul real p
b) funcția de repartiție a variabilei aleatoare X și să se reprezinte grafic.
c) media și dispersia variabilelor $16X - 23$ și $3X - 2$.

$$E(X) = 0, 6 \qquad E(Y^2) = 1$$

$$0, 5 \qquad 0, 5 \qquad 1$$

$$E(Y) = 0 \qquad E(Y^2) = 1$$

$$0, 5 \qquad 0, 5 \qquad 1$$
1. Fie variabila aleatoare discretă $X: \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 3p & 4p & 2p & p & p \end{pmatrix}$, $p \in \mathbb{R}$. Să se determine:

a) parametrul real p
b) funcția de repartiție a variabilei aleatoare X și să se reprezinte grafic.
c) media și dispersia variabilelor $16X - 23$ și $3X - 2$.

2. Calculați media și dispersia următoarelor variabile aleatoare:
a) $X: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 6p & p & 4p^2 & 2p & 3p^2 & 3p^2 & pq^{p-1} & \dots \end{pmatrix}$, $p, q \in \mathbb{R}$

$$X: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 6p & p & 4p^2 & 2p & 3p^2 & 3p^2 & pq^{p-1} & \dots \end{pmatrix}$$
, $p, q \in \mathbb{R}$

a) $X: \begin{bmatrix} 6p & p & 4p^2 & 2p & 3p^2 & 3p^2 \end{bmatrix}$, $p \in \mathbb{R}$ b) $X: \begin{bmatrix} 1 & 2 & 3 & \dots n \dots \\ p & pq & pq^2 & pq^{n-1} & \dots \end{bmatrix}$ $X : Y : \begin{bmatrix} 0 \cdot (-1) & 0 \cdot 1 & 1 & 1 & 1 \\ 0 \cdot 5 - K & K - 0 \cdot 1 & K & 0 \cdot 6 - K \end{bmatrix}$ V = X : (X) = (X)

$$X \cdot Y : \begin{pmatrix} -1 & 0 & 1 \\ \kappa & 0, 4 & 0, 6-k \end{pmatrix}$$
 $E(X \cdot Y) = -\kappa + 0 + 0, 6-\kappa = 0, 6-2\kappa$

$$\mathcal{S}(x,y) = \frac{\mathcal{E}(x,y) - \mathcal{E}(x) \cdot \mathcal{E}(y)}{\sqrt{\text{Var}(x) \cdot \text{Var}(y)}} = \frac{0,6 - 2\kappa - 0,6 \cdot 0}{\sqrt{0,24 \cdot 1}} = \frac{0,6 - 2\kappa}{\sqrt{0,24}}$$

c) X, y necorelate (=) S(x, y)=0 (=) 0, 6-2k = 0 (=) [K=0,3]

Probabilităti

Lucru cu v.a. discrete unidimensionale și bidimensionale

a)
$$X: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 6p & p & 4p^2 & 2p & 3p^2 & 3p^2 \end{pmatrix}, p \in \mathbb{R}$$
 b) $X: \begin{pmatrix} 1 & 2 & 3 & \dots n \dots \\ p & pq & pq^2 & pq^{n-1} & \dots \end{pmatrix}, p, q \in \mathbb{R}$ c) $X: \begin{pmatrix} 0 & 1 & 2 & 3 & \dots n \dots \\ p & p & p & p & p \end{pmatrix}, p \in \mathbb{R}$ d) $X: \begin{pmatrix} n \\ p \end{pmatrix}, n \in \mathbb{N}, p \in \mathbb{R}$

3. Se dau variabilele aleatoare discrete
$$X : \begin{pmatrix} 0 & 1 \\ 0.4 & 0.6 \end{pmatrix}$$
 și $Y : \begin{pmatrix} -1 & 1 \\ 0.5 & 0.5 \end{pmatrix}$.

- Fie k = P(X = 1, Y = -1). Să se determine:
- √ a) repartiția comună a variabilelor aleatoare X şi Y

variabila aleatoare X - Y să aibă dispersia egală cu $\frac{4}{9}$

- (b) coeficientul de corelație al variabilelor X și Y
- $_{\bigvee}$ c) valorile parametrului $_{h}$ pentru care X și $\overset{.}{Y}$ sunt necorelate; în acest caz să se testeze dacă X si Y sunt independente.

3. Se dau variabilele aleatoare independente:
$$X: \begin{pmatrix} a & 1 & 2 \\ \frac{1}{3} & p & q \end{pmatrix}$$
 şi $Y: \begin{pmatrix} a+1 & 1 & 2 \\ \frac{1}{3} & \frac{2}{3}-q & p \end{pmatrix}$, $p,q,a\in\mathbb{R}$. Să se determine parametrul real a astfel încât

Stabiliți dacă valoarea parametrului real a influențează valoarea coeficientului de corelație dintre X și Y.

4. Fie variabila aleatoare discretă $X: \begin{pmatrix} -2 & 3 & 4 & 6 \\ 6p & 2p & 9p & p \end{pmatrix}, p \in \mathbb{R}$. Să se determine

parametrii reali a și b astfel încât variabila aleatoare Y = aX + b să aibă media egală cu 57 și dispersia egală cu 75. Construiți apoi funcția de repartiție a variabilei aleatoare X și reprezentați-o grafic.

5. Se dau variabilele aleatoare discrete $X: \begin{pmatrix} -2 & 1 \\ 0.4 & 0.6 \end{pmatrix}$ şi $Y: \begin{pmatrix} -1 & 3 \\ 0.3 & 0.7 \end{pmatrix}$

Fie k = P(X = -2, Y = 3).

- a) Să se construiască repartiția comună a variabilelor aleatoare X și Y. b) Să se determine parametrul real k astfel încât cele două variabile să fie
- c) Pentru k de la punctul anterior să se verifice dacă variabilele X și Y sunt independente.
- 6. Fie variabila aleatoare discretă:

 $X: \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 3p & 4p & 2p & p & p \end{pmatrix}, \ p \in \mathbb{R}$

a) Determinați valoarea parametrului $p \in \mathbb{R}$

b) Construiți funcția de repartiție a lui X și realizați graficul acesteia c) Calculați E(3X-2), Var(6X-3), $E(X+X^2)$

d) Calculați $P(|X| < \frac{1}{2} / -1.25 < X < 0.75)$

7. Se consideră variabila aleatoare bidimensională (X,Y), având repartiția:

X Y	-2	0	9	$P(X=X_i)$
-1	b	2b	0	
0	3b	4b	5 <i>b</i>	
$P(Y=Y_j)$				

unde $b \in \mathbf{R}$. (a) Să se determine tabloul repartiției variabilei aleatoare bidimensionale (X,Y) și repartițiile marginale.

(b) Să se studieze independența variabilelor aleatoare X și Y și să se

(c) Să se calculeze dispersia variabilei aleatoare 3X-2Y.

8. Fie X și Y două v.a. discrete a căror repartiție comună incompletă este dată

Y	-2	-1	0	1	p _i
X					
-1	1/80	2/80	3/80		1/4
0	2/80	3/80	14/80	1/80	
1	3/80		1/80	2/80	1/4
2			2/80		
a.	1/4			1/4	

Să se determine:

a) repartiția comună a lui X și Y(de completat tabelul!) și repartițiile marginale ale acestora

b) coeficientul de corelație dintre X și Y

c) v.a. condiționate X|Y=0 și Y|X=2 și mediile acestora d) Var(-3Y+3)

e) P(X<1,Y>-1)

9. Fie X și Y două v.a. discrete a căror repartiție comună incompletă este dată

Y	-2	-1	0	1	2	p_i
$X \setminus$						
-1	1/10	1/50	3/50	1/50	1/10	
0		3/25		3/25		
1	2/25	1/50	7/50	1/50	2/25	
q_j	11/50		6/25		11/50	

b) coeficientul de corelație dintre X și Y

a) repartiția comună a lui X și Y(de completat tabelul!) și repartițiile marginale ale acestora

c) v.a. condiționate X|Y=0 și Y|X=1 și mediile acestora d) Var(3X+5)e) P(X<1,Y>0)

10. Fie X și Y două v.a. discrete a căror repartiție comună incompletă este dată

√ a) repartiția comună a lui X şi Y(de completat tabelul!) şi repartițiile

 $X: \begin{pmatrix} 0 & 1 & 2 & 3 \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \end{pmatrix} \qquad E(X) = \frac{1}{7} \begin{pmatrix} 1+2+3 \end{pmatrix} = \frac{2}{7} = \frac{3}{2} \qquad \text{Vor}(X) = E(X^2) - E(X) = \frac{2}{7} - \frac{9}{7} = \frac{5}{7} \\ E(X^2) = \frac{1}{7} \begin{pmatrix} 1^2 + 2^2 + 3^2 \end{pmatrix} = \frac{7}{7} = \frac{7}{2} \qquad \text{Vor}(Y) = E(Y^2) - E(Y) = \frac{3}{7} = \frac{5}{7} = \frac{5}{7}$

 $E(\gamma^2) = \frac{1}{9} \left(1^2 + 2^2 + 3^2 + 5^2 \right) = \frac{30}{9} = \frac{15}{2}$

 $E(x-y) = 0 + 1 \cdot \frac{1}{5_0} + 2 \cdot \frac{5}{5_0} + 3 \cdot \frac{3}{5_0} + 4 \cdot \frac{2}{5_0} + 2 \cdot \frac{2}{5_0} + 4 \cdot \frac{1}{5_0} + 6 \cdot \frac{5}{5_0} + 3 \cdot \frac{3}{5_0} + 3 \cdot \frac{3}{5_0} + 6 \cdot \frac{2}{5_0} + 9 \cdot \frac{1}{5_0} + 12 \cdot \frac{4}{5_0}$

 $E(x\cdot y) = \frac{160}{90} = 9$

11. Fie X variabila aleatoare ce indică numărul de puncte obținute la aruncarea unui zar. Să se determine parametrii reali a și b astfel încat momentul centrat de ordin 2 al variabilei aleatoare Y = aX + b să fie egal cu 1.

- 12. Se aruncă o monedă de 10 ori și se notează cu X variabila aleatoare care indică numărul de apariții al stemei în cele 10 aruncări. Să se determine: a) repartiția variabilei aleatoare X
- b) valoarea medie și dispersia variabilei aleatoare X

Să se determine:

√ d) Var(-X+5) \vee e) P(X<1,Y>3)

marginale ale acestora

√ b) coeficientul de corelație dintre X şi Y

✓ c) v.a. condiționate X|Y=3 şi Y|X=1 şi mediile acestora

c) funcția de repartiție a variabilei aleatoare X

 $S(X,Y) = \frac{E(\times Y) - E(X) \cdot E(Y)}{\sqrt{\text{Vor}(X) \cdot \text{Vor}(Y)}} = \frac{4 - \frac{3}{2} \cdot \frac{5}{2}}{\sqrt{\frac{5}{2}}} = \frac{4 - \frac{15}{4}}{\frac{5}{4}} = \frac{1}{5} = 0,2 = 0,2 = 0,X/Y \text{ sunt slab corelate}$

d) $Vor(-x+5) = (-1)^2 \cdot Vor(x) = \frac{5}{4}$

e)
$$P(x < 1, y > 3) = \frac{1}{40}$$