Universidade Federal do Rio Grande do Norte Departamento de Engenharia Elétrica ELE0606 - TOPICOS ESPECIAIS EM INTELIGENCIA ARTIFICIAL

Classificação da Base de Dados Wine com kNN

Aluno: Pedro Artur F. Varela de Lira Professor: José Alfredo Ferreira Costa

Conteúdo

1	Introdução e Contexto	1
2	Metodologia	1
3	Pseudocódigo	2
4	Resultados	4
5	Conclusão e Discussões	6

1 Introdução e Contexto

A análise e classificação de vinhos desempenham um papel fundamental na indústria vinícola, ajudando a identificar a qualidade e as características dos vinhos com base em diversos atributos. Neste relatório, descreveremos um experimento de classificação de vinhos utilizando o algoritmo k-Nearest Neighbors (kNN) implementado com a biblioteca Scikit-Learn em Python.

Para este experimento, utilizamos o Wine Dataset, uma base de dados amplamente conhecida e utilizada na área de aprendizado de máquina. Este conjunto de dados contém informações sobre vinhos de três diferentes classes, representando três cultivares de uvas da região da Itália. Cada amostra é caracterizada por 13 atributos, incluindo teores de álcool, acidez málica e intensidade de cor. O objetivo é treinar um modelo de classificação capaz de distinguir as três classes de vinhos com base nessas características.

O algoritmo k-Nearest Neighbors é um método de aprendizado de máquina supervisionado que se baseia na proximidade entre os pontos de dados. A ideia central do kNN é classificar um novo ponto de dados com base na maioria das classes dos k pontos mais próximos a ele no espaço de atributos. Isso significa que o kNN toma decisões com base na vizinhança dos dados e não requer uma fase de treinamento complexa.

O algoritmo k-Nearest Neighbors é uma abordagem intuitiva e versátil para problemas de classificação e regressão. Sua simplicidade reside na ideia de que objetos semelhantes tendem a estar próximos no espaço de atributos. Ao determinar as k instâncias mais próximas de um novo ponto de dados a ser classificado, o kNN toma decisões com base na votação da maioria dessas instâncias vizinhas. O valor de k é um hiperparâmetro crucial, pois afeta a sensibilidade do modelo a ruídos e pode influenciar a sua capacidade de generalização. Este algoritmo é especialmente útil quando a distribuição dos dados é complexa ou não linear, permitindo que ele se adapte a padrões intrincados nos dados de forma natural. Durante este experimento, exploraremos como ajustar o valor de k e examinaremos seu impacto no desempenho do modelo de classificação de vinhos.

O objetivo principal deste experimento é aplicar o algoritmo kNN para classificar corretamente as amostras de vinho em suas respectivas classes.

2 Metodologia

A fim de aplicar o algoritmo kNN para classificar corretamente as amostras de vinho em suas respectivas classes, realizaremos as seguintes etapas:

- Pré-processamento de Dados: Faremos uma análise exploratória dos dados, verificando se há valores ausentes, normalizando os atributos e dividindo o conjunto de dados em conjuntos de treinamento e teste.
- Treinamento do Modelo kNN: Implementaremos o algoritmo kNN com o Scikit-Learn e ajustaremos o modelo utilizando o conjunto de treinamento.
- Avaliação do Modelo: Usaremos o conjunto de teste para avaliar o desempenho do modelo kNN em termos de métricas de classificação, como precisão, recall e F1-score. Também podemos ajustar o valor de k para otimizar o desempenho.
- Visualização dos Resultados: Utilizaremos gráficos e visualizações para apresentar os resultados de forma clara e interpretável.

3 Pseudocódigo

O pseudocódigo abaixo reflete as principais etapas do código implementado no experimento, desde a importação das bibliotecas até a análise dos resultados com diferentes configurações de normalização e valores de k para o kNN.

```
1 # Importacao das bibliotecas necesscrias
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6 from sklearn.datasets import load_wine
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.model_selection import train_test_split
9 from sklearn.neighbors import KNeighborsClassifier
10 from sklearn.metrics import accuracy_score, confusion_matrix
12 # Carregamento do conjunto de dados Wine
vine_data = load_wine()
vine_df = pd.DataFrame(data=wine_data['data'], columns=
     wine_data['feature_names'])
wine_df['target'] = wine_data['target']
17 # Analise exploratoria dos dados
18 wine_df.info()
19 wine_df.describe()
21 # Visualizacao da correlacao entre os atributos
22 corr = wine_df.corr()
```

```
23 mask = np.zeros_like(corr)
24 mask[np.triu_indices_from(mask)] = True
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Pre-processamento dos dados
wine_df.drop(['ash'], axis=1, inplace=True)
result = wine_df['target']
wine_df.drop(['target'], axis=1, inplace=True)
32 # Normalizacao dos dados usando escalonamento linear
normalized_wine_df = wine_df.apply(escalonamento_linear)
35 # Divisao dos dados em conjuntos de treinamento e teste
36 X_train, X_test, Y_train, Y_test = train_test_split(
     normalized_wine_df, result, test_size=0.30, random_state
38 # Treinamento do modelo k-Nearest Neighbors (kNN)
39 k = 5
40 pred_knn = apply_knn(k)
41 print(f'A acuracia do modelo para K={k} e de {accuracy_score(
     Y_test, pred_knn):.4f}')
43 # Analise dos resultados
44 \text{ k\_values} = [1, 3, 5, 7, 9]
45 execution_counts = [10, 20, 30, 40, 50]
47 result_df = pd.DataFrame(columns=k_values, index=
     execution_counts)
49 for exec_count in execution_counts:
      x_train, x_test, y_train, y_test = train_test_split(
     normalized_wine_df , result , train_size=0.0056 * exec_count
     , random_state=11)
      y_train = y_train.to_numpy()
51
      x_train = x_train.to_numpy()
52
      x_test = x_test.to_numpy()
      y_test = y_test.to_numpy()
     for k in k_values:
55
          knn = KNeighborsClassifier(n_neighbors=k, weights=')
     uniform')
          knn.fit(x_train, y_train)
57
          pred_knn = knn.predict(x_test)
58
          acc = accuracy_score(y_test, pred_knn)
          result_df.at[exec_count, k] = acc
62 # Matriz de Confusao
63 cm = confusion_matrix(Y_test, apply_knn(3))
```

```
# Normalizacao Z-score dos dados
66 normalized_wine_df = wine_df.apply(z_score_normalize_column)
 # Analise dos resultados com normalizacao Z-score
69 result_df = pd.DataFrame(columns=k_values, index=
     execution_counts)
70
71 for exec_count in execution_counts:
      x_train, x_test, y_train, y_test = train_test_split(
     normalized_wine_df, result, train_size=0.0056 * exec_count
     , random_state=11)
      y_train = y_train.to_numpy()
73
      x_train = x_train.to_numpy()
74
      x_test = x_test.to_numpy()
      y_test = y_test.to_numpy()
      for k in k_values:
77
          knn = KNeighborsClassifier(n_neighbors=k, weights='
     uniform')
          knn.fit(x_train, y_train)
79
          pred_knn = knn.predict(x_test)
80
          acc = accuracy_score(y_test, pred_knn)
81
          result_df.at[exec_count, k] = acc
```

Listing 1: Pseudocódigo

É importante ressaltar que o pseudocódigo não foi implementado para funcionar efetivamente como solução do problema, mas sim como um meio de representar facilmente as etapas principais realizadas no Jupyter Notebook. O código para o projeto completo e o resultados estão no link: https://github.com/pedro-varela1/Arquivos_ELE-606/blob/main/Atividade_2_kNN_ELE606.ipynb.

4 Resultados

Para realizar a validação geral do modelo, foram realocados 70% o dataset Wine para treinamento e 30% para teste e a acurácia foi medida para cada elemento presente nos dados de teste e treinamento variando o valor de K.

No gráfico da Figura 1, vemos que, tanto a quantidade de pacotes de treinamento quanto a valor de k influenciaram significativamente na acurácia, mas, claramente, nos dados de treinamento, a acurácio sempre foi maior, já que o modelo de kNN já tem acesso a esses dados. No gráfico, observa-se que, dentre os valores de k utilizados, o que obteve a acurácia mais alta foi k=3. Com valores de K mais altos, houve uma menor acurácia devido a um possível overfitting. O modelo não generalizou bem para k>3. Já para k=1 houve uma melhor adequação que k>3, mais pior que para k=3,

isso pode mostrar um underfitting do modelo.

Figura 1: Acurácia do k-NN variando o número de K

Foi realizado, também, a construção de uma tabela que expôe as acurácias variando tanto o número de K, quanto o número de pacotes ou linhas do dataset utilizadas no treinamento. Essa tabela mostra que o valor de K não influenciou significativamente para muitos pacotes de treinamento, mas em geral, sua melhor acurácia foi entre k=3 e k=5. Além disso, observa-se um resultado melhor no geral para um valor de k menor. Porém, o máximo valor de acurácia permaneceu na mesma faixa, quando comparado ao outro tipo de normalização.

	1	3	5	7	9
Número de Pacotes Utilizados no Treinamento					
10	0.721893	0.621302	0.384615	0.384615	0.384615
20	0.930818	0.955975	0.955975	0.880503	0.672956
30	0.932886	0.939597	0.95302	0.946309	0.885906
40	0.942446	0.935252	0.94964	0.942446	0.935252
50	0.96124	0.968992	0.968992	0.945736	0.937984

Figura 2: Acurácia do k-NN variando o número de K e com o número de pacotes de treinamento

Por fim, uma matriz de confusão foi feita (Figura 3), mostrando que, dentre 54 linhas de teste, 52 vinhos foram classificados corretamente. Apenas 1 vinho da Classe 0 foi classificado incorretamente como da Classe 1 e um

vinho da Classe 2 foi incorretamente classificado como integrante da Classe 1. O ideal é que essa matriz fosse diagonal, ou seja, 100% dos dados classificados corretamente.

		Classe 0	Classe 1	Classe 2
Classe	0	21	0	0
Classe	1	1	20	1
Classe	2	0	0	11

Figura 3: Matriz de Confusão

5 Conclusão e Discussões

Os resultados obtidos neste estudo sobre o conjunto de dados Wine usando o algoritmo k-NN fornecem insights valiosos sobre como o modelo se comporta em diferentes configurações. Alguns pontos de discussão a serem considerados incluem:

- Escolha de K: o fato de K=3 ter produzido o melhor desempenho sugere que considerar um número intermediário de vizinhos mais próximos foi mais benéfico em comparação com valores muito altos ou muito baixos. Isso destaca a importância de ajustar cuidadosamente o hiperparâmetro K ao usar o k-NN.
- Overfitting vs. Underfitting: a análise dos resultados para diferentes valores de K também indicou a possibilidade de overfitting (para valores altos de K) e underfitting (para K=1). Encontrar um equilíbrio é crucial para obter um modelo que generalize bem para dados não vistos.
- Impacto do Tamanho do Conjunto de Treinamento: a variação no tamanho do conjunto de treinamento não teve um impacto significativo na escolha de K, mas mostrou que um valor menor de K tende a produzir resultados melhores em geral. Isso sugere que um modelo treinado com uma quantidade menor de vizinhos pode ser mais eficaz.
- Matriz de Confusão: embora a acurácia geral tenha sido alta, a matriz de confusão destacou as classes em que o modelo teve dificuldades. É importante considerar o contexto em que esses erros ocorreram, pois eles podem ter implicações práticas, dependendo do problema real.

Bibliografia

IBM. (s.d.). k-Nearest Neighbors (kNN). Disponível em: https://www.ibm.com/topics/knn.Acessoem:18/09/2023.

SCIKIT-LEARN. (s.d.). sklearn.datasets.load_wine. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html. Acesso em: 18/09/2023.