5 The variation with potential difference (p.d.) V of current I for a semiconductor diode is shown in Fig. 5.1.

Fig. 5.1

(a)	Fig. 5.1 to describe the variation of the resistance of the diode between $V = -0.5 \text{V}$ and $V = 0.8 \text{V}$.
	[2

(b) On Fig. 5.2, sketch the variation with p.d. V of current I for a filament lamp. Numerical values are not required.

Fig. 5.2

(c) Fig. 5.3 shows a power supply of electromotive force (e.m.f.) 12V and internal resistance $0.50\,\Omega$ connected to a filament lamp and switch.

Fig. 5.3

The filament lamp has a power of 36W when the p.d. across it is 12V.

(i) Calculate the resistance of the lamp when the p.d. across it is 12V.

resistance =	Ω	[1	1	
--------------	---	----	---	--

(ii) The switch is closed and the current in the lamp is 2.8 A. Calculate the resistance of the lamp.

resistance =
$$\Omega$$
 [3]

(d) Explain how the two values of resistance calculated in (c) provide evidence for the shape of the sketch you have drawn in (b).

[1]