





# START WITH PANDAS







#### Pandas Introduction

- Pandas is a software library written for the Python programming language for data manipulation and analysis.
- It contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python.

$$\begin{array}{c} \mathsf{pandas} \\ y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it} \end{array}$$













#### Pandas Introduction

- While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data.
- Often,import convention for pandas:

```
In [1]: import pandas as pd
```

Import Series and DataFrame into the local namespace:

In [2]: from pandas import Series, DataFrame







- A Series is a one-dimensional array-like object containing a sequence of values (of similar types to NumPy types) and an associated array of data labels, index.
- Since not specifying an index for the data, a default one consisting of the **integers 0 through N 1** is created.

```
s = pd.Series(data, index=index)
```







#### From ndarray

```
s = pd.Series(np.random.randn(5), index=['a', 'b',
'c', 'd', 'e'])
```

```
a 2. 250327
```







#### From dict

```
d = {'a' : 0., 'b' : 1., 'c' : 2.}
pd.Series(d)
d1=pd.Series(d, index=['b', 'c', 'd', 'a'])
```

```
b 1.0
c 2.0
b 1.0
d NaN
c 2.0
dtype: float64
```







#### From scalar value

```
pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
```

```
a 5.0
b 5.0
c 5.0
d 5.0
e 5.0
```

dtype: float64







Series VS ndarray. In [1]: import numpy as np import pandas as pd np. array([[1, 1, 1], [2, 2, 2]]) Out[1]: array([[1, 1, 1], [2, 2, 2]In [2]: np. array([[1, 1, 1], [2, 2, 2]]). shape Out[2]: (2, 3) In [3]: pd. Series([[1, 1, 1], [2, 2, 2]]) Out[3]: 0 [1, 1, 1] [2, 2, 2]dtype: object In [5]: pd. Series([[1, 1, 1], [2, 2, 2]]). values. shape Out[5]: (2,)























☐ Series can use most of NumPy functions.

d 8
b 14
a -10
c 6
dtype: int64

obj2[obj2>obj2.median()]

d 4 b 7 dtype: int64









☐ Use labels in the index when **selecting single values** or **a set** of values:

obj2[['c', 'a', 'd']] 
$$\stackrel{d}{\longrightarrow} a \stackrel{-5}{\longrightarrow} obj2[obj2 > 0]$$

$$c \qquad 3$$

$$dtype: int64$$







☐ Also, series is dic-like.







- You can create a Series from a python dictionary.
- When only passing a dict, the index in the resulting Series will have the dict's keys in sorted order.

```
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon':
16000, 'Utah': 5000}
pd.Series(sdata)
```

Ohio 35000 Oregon 16000 Texas 71000 Utah 5000 dtype: int64









□ Passing **the dict keys** in the order you want them to appear in the resulting Series:







Using the terms "missing" or "NA" interchangeably to refer to missing data. The isnull and notnull functions in pandas is used to detect missing data:

```
In [32]: pd.isnull(obj4)
In [34]: obj4.isnull()
```

California True Ohio False Oregon False Texas False

dtype: bool







□ A useful Series feature:it automatically aligns by index label in arithmetic operations:

In 
$$[37]$$
: obj3 + obj4

| Ohio     | 35000 | C-1: C:      | N-N     | California   | NaN      |
|----------|-------|--------------|---------|--------------|----------|
|          |       | California   | NaN     | Ohio         | 70000.0  |
| Oregon   | 16000 | Ohio         | 35000.0 | Oregon       | 32000.0  |
| Texas    | 71000 | Oregon       | 16000.0 | Texas        | 142000.0 |
| Utah     | 5000  | Texas        | 71000.0 |              |          |
| dtype: i | n+64  | dtype: float | 64      | Utah         | NaN      |
| despe. 1 | 11001 | dtype. 110at | OT .    | dtype: float | 64       |







■ Both the **Series object itself** and **its index** have a name attribute, which integrates with other key areas of pandas functionality:

```
In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'

state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
```







☐ A Series's **index** can be **altered in-place** by assignment:

```
In [42]: obj4.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
```









- A DataFrame represents a rectangular table of data, which has both a row and column index.
- It contains an ordered collection of columns, which can be different value types.
- The data is stored as one or more two-dimensional blocks.







#### DataFrame vs Series











 Construct a DataFrame from a dict of equal-length lists or NumPy arrays:



|   | pop | state  | year |
|---|-----|--------|------|
| 0 | 1.5 | Ohio   | 2000 |
| 1 | 1.7 | Ohio   | 2001 |
| 2 | 3.6 | Ohio   | 2002 |
| 3 | 2.4 | Nevada | 2001 |
| 4 | 2.9 | Nevada | 2002 |
| 5 | 3.2 | Nevada | 2003 |







 Construct a DataFrame from a nested dict of dicts, the outer dict keys will be the columns and the inner keys as the row indices:

|      | Nevada | Ohio |
|------|--------|------|
| 2000 | NaN    | 1.5  |
| 2001 | 2.4    | 1.7  |
| 2002 | 2.9    | 3.6  |







Construct a DataFrame from Dicts of Series.

In [71]: pd.DataFrame(pdata)

|      | Nevada | Ohio |
|------|--------|------|
| 2000 | NaN    | 1.5  |
| 2001 | 2.4    | 1.7  |

|      | Nevada | Ohio |
|------|--------|------|
| 2000 | NaN    | 1.5  |
| 2001 | 2.4    | 1.7  |
| 2002 | 2.9    | 3.6  |







#### Possible data inputs to DataFrame constructor.

| Туре                             | Notes                                                                                                                                    |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2D ndarray                       | A matrix of data, passing optional row and column labels                                                                                 |
| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length                                                   |
| NumPy structured/record array    | Treated as the "dict of arrays" case                                                                                                     |
| dict of Series                   | Each value becomes a column; indexes from each Series are unioned together to form the result's row index if no explicit index is passed |
| dict of dicts                    | Each inner dict becomes a column; keys are unioned to form the row index as in the "dict of Series" case                                 |
| List of dicts or Series          | Each item becomes a row in the DataFrame; union of dict keys or Series indexes become the DataFrame's column labels                      |
| List of lists or tuples          | Treated as the "2D ndarray" case                                                                                                         |
| Another DataFrame                | The DataFrame's indexes are used unless different ones are passed                                                                        |
| NumPy MaskedArray                | Like the "2D ndarray" case except masked values become NA/missing in the DataFrame result                                                |







- □ For large DataFrames, the head method selects only the first five rows.
- □And the sequence of the DataFrame's columns can be specified.

```
In [41]: frame2=frame.head()
  pd. DataFrame(frame2, columns=['year', 'state', 'pop'])
```

| Orat | 41 |
|------|----|
| Out  | 4  |
| VUL  | TT |

|   | year | state  | pop |
|---|------|--------|-----|
| 0 | 2000 | Ohio   | 1.5 |
| 1 | 2001 | Ohio   | 1.7 |
| 2 | 2002 | Ohio   | 3.6 |
| 3 | 2001 | Nevada | 2.4 |
| 4 | 2002 | Nevada | 2.9 |







□ A column in a DataFrame can be retrieved as a Series.

```
In [51]: frame2['state']

0 Ohio
0 0000
1 Ohio
1 2001
2 Ohio
2 2002
3 Nevada
4 Nevada
Name: state, dtype: object

In [52]: frame2.year

0 2000
1 2001
2 2001
2 2002
Name: year, dtype: int64
```

NOTE: frame2 [column] works for any column name, but frame2.column only works when the column name is a valid Python variablename.







□Rows can also be retrieved by position or name with the loc attribute:







□ Assigning lists or arrays to a column, espeacially to the empty column.

| 59_   | year | state  | pop | N       |
|-------|------|--------|-----|---------|
| one   | 2000 | Ohio   | 1.5 |         |
| two   | 2001 | Ohio   | 1.7 |         |
| three | 2002 | Ohio   | 3.6 | <b></b> |
| four  | 2001 | Nevada | 2.4 |         |
| five  | 2002 | Nevada | 2.9 |         |
| six   | 2003 | Nevada | 3.2 |         |

|  |       | year | state  | pop | debt |
|--|-------|------|--------|-----|------|
|  | one   | 2000 | Ohio   | 1.5 | 16.5 |
|  | two   | 2001 | Ohio   | 1.7 | 16.5 |
|  | three | 2002 | Ohio   | 3.6 | 16.5 |
|  | four  | 2001 | Nevada | 2.4 | 16.5 |
|  | five  | 2002 | Nevada | 2.9 | 16.5 |
|  | six   | 2003 | Nevada | 3.2 | 16.5 |







|       | year | state  | pop |
|-------|------|--------|-----|
| one   | 2000 | Ohio   | 1.5 |
| two   | 2001 | Ohio   | 1.7 |
| three | 2002 | Ohio   | 3.6 |
| four  | 2001 | Nevada | 2.4 |
| five  | 2002 | Nevada | 2.9 |
| six   | 2003 | Nevada | 3.2 |









■We can delete columns using del keyword:

| 0     | year | state  | pop | debt |
|-------|------|--------|-----|------|
| one   | 2000 | Ohio   | 1.5 | NaN  |
| two   | 2001 | Ohio   | 1.7 | -1.2 |
| three | 2002 | Ohio   | 3.6 | NaN  |
| four  | 2001 | Nevada | 2.4 | -1.5 |
| five  | 2002 | Nevada | 2.9 | -1.7 |
| six   | 2003 | Nevada | 3.2 | NaN  |









□Also,We can use drop:

```
In [73]: frame3.drop(columns=['pop'])
  frame3.drop(['one', 'six'])
```

|       | year | state  | pop |       |      |        |
|-------|------|--------|-----|-------|------|--------|
| one   | 2000 | Ohio   | 1.5 | ¥2    | year | state  |
| two   | 2001 | Ohio   | 1.7 | two   | 2001 | Ohio   |
|       |      |        |     | three | 2002 | Ohio   |
| three | 2002 | Ohio   | 3.6 | four  | 2001 | Nevada |
| four  | 2001 | Nevada | 2.4 | five  | 2002 | Nevada |
| five  | 2002 | Nevada | 2.9 | live  | 2002 | Nevada |
| six   | 2003 | Nevada | 3.2 |       |      |        |







□A DataFrame's index and columns have their name attributes set , as the following:

```
In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'
```

| Nevada | Ohio       |
|--------|------------|
|        |            |
| NaN    | 1.5        |
| 2.4    | 1.7        |
| 2.9    | 3.6        |
|        | NaN<br>2.4 |







#### ☐ The DataFrame can swap rows and columns using

frame3.T:

|       | year | state  | pop | 20 |       |       |       |       |        |        |        |
|-------|------|--------|-----|----|-------|-------|-------|-------|--------|--------|--------|
| one   | 2000 | Ohio   | 1.5 |    |       | one   | three | two   | four   | five   | six    |
| three | 2001 | Ohio   | 1.7 | 9  | year  | 2000  | 2001  | 2002  | 2001   | 2002   | 2003   |
| two   | 2002 | Ohio   | 3.6 | >  | state | Ohio  | Ohio  |       | Nevada |        |        |
| four  | 2001 | Nevada | 2.4 |    | State | Offic | Offic | Offic | Nevaua | Nevaua | Nevaua |
| five  | 2002 | Nevada | 2.9 |    | pop   | 1.5   | 1.7   | 3.6   | 2.4    | 2.9    | 3.2    |
| elv   | 2003 | Nevada | 3 2 |    |       |       |       |       |        |        |        |







□ As with Series, the values attribute returns the data as a two-dimensional ndarray:

☐ If the DataFrame's columns are different dtypes, the dtype of the values array will be chosen to accommodate all of the columns.







#### **Excercise**

• For example: On the table, the data in one column contains two characteristic dimension. How can we split this column into two?

| <u> </u> | name | age&sex |   | name | age&sex | age | sex |
|----------|------|---------|---|------|---------|-----|-----|
| 0        | Tom  | 18 男    | 0 | Tom  | 18 男    | 18  | 男   |
| 1        | Joho | 20 女    | 1 | Joho | 20 女    | 20  | 女   |
| 2        | Tim  | 13 女    | 2 | Tim  | 13 女    | 13  | 女   |







#### Excercise

```
• df['age&sex'].str.split('|').values ?
```

```
• List = df['age&sex'].str.split('|').tolist() ?
```

```
• df['age'], df['sex'] = pd.Series(), pd.Series() ?
  df[['age', 'sex']] = List ?
```







- Pandas' s Index objects are responsible for holding the axis labels and other metadata.
  - □Any array or other sequence of labels you use when constructing a Series or DataFrame is internally converted to an Index:

```
In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])
In [77]: index = obj.index
In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object')
```

□Index objects are **immutable**, thus can't be modified by the user.







☐In addition to being array-like, an Index also behaves like a fixed-size set:







set in python:set \ frozenset

| Mathematical<br>Symbol | Python<br>Symbol | Description                                          |
|------------------------|------------------|------------------------------------------------------|
| €                      | in               | Is a member of                                       |
| ∉                      | not in           | Is not a member of union                             |
| =                      | ==               | Is equal to                                          |
| <b>≠</b>               | !=               | Is not equal to                                      |
| <b>C</b>               | <                | Is a (strict) subset of                              |
| ⊆                      | <=               | Is a subset of (includes improper subsets) intersect |
| $\supset$              | >                | Is a (strict) superset of                            |
| ⊇                      | >=               | Is a superset of (includes improper supersets)       |
| $\cap$                 | &                | Intersection                                         |
| U                      | 1                | Union                                                |
| - or \                 | -                | Difference or relative complement                    |
| Δ                      | ^                | Symmetric difference minus                           |







□Unlike Python sets, a **pandas Index** can contain **duplicate** labels:

```
In [89]: dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
In [90]: dup_labels
Out[90]: Index(['foo', 'foo', 'bar', 'bar'], dtype='object')
```







| Method       | Description                                                                               |
|--------------|-------------------------------------------------------------------------------------------|
| append       | Concatenate with additional Index objects, producing a new Index                          |
| difference   | Compute set difference as an Index                                                        |
| intersection | Compute set intersection                                                                  |
| union        | Compute set union                                                                         |
| isin         | Compute boolean array indicating whether each value is contained in the passed collection |
| delete       | Compute new Index with element at index i deleted                                         |
| drop         | Compute new Index by deleting passed values                                               |
| insert       | Compute new Index by inserting element at index i                                         |
| is_monotonic | Returns True if each element is greater than or equal to the previous element             |
| is_unique    | Returns True if the Index has no duplicate values                                         |
| unique       | Compute the array of unique values in the Index                                           |







 reindex means to rearrange the data according to the new index.

```
In [92]: obj
Out[92]:
 d 4.5
 b 7.2
 a -5.3
 c 3.6
dtype: float64
In [93]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
                       -5.3
                       7.2
                    c 3.6
                       4.5
                         NaN
                    dtype: float64
```







- For ordered data like time series, it may be desirable to do some interpolation or filling of values when reindexing.
- The method option allows us to do this, for example

vellow

dtype: object







• With DataFrame, **reindex** can alter either the (row) index, columns, or both.

|   | Ohio | Texas | California |   | Ohio | Texas | California |
|---|------|-------|------------|---|------|-------|------------|
| а | 0    | 1     | 2          | а | 0.0  | 1.0   | 2.0        |
| С | 3    | 4     | 5          | b | NaN  | NaN   | NaN        |
| d | 6    | 7     | 8          | С | 3.0  | 4.0   | 5.0        |
|   |      |       |            | d | 6.0  | 7.0   | 8.0        |







☐ The columns can be **reindexed** with the columns keyword:

```
In [102]: states = ['Texas', 'Utah', 'California']
In [103]: frame.reindex(columns=states)
```

|   | Ohio | Texas | California |     | Texas | Utah | California |
|---|------|-------|------------|-----|-------|------|------------|
| а | 0    | 1     | 2          | а   | 1     | NaN  | 2          |
| С | 3    | 4     | 5          | > c | 4     | NaN  | 5          |
| d | 6    | 7     | 8          | d   | 7     | NaN  | 8          |







☐ Also , you can label-indexing with loc.

In [104]: frame.loc[['a', 'b', 'c', 'd'], states]

|   | Texas | Utah | California |
|---|-------|------|------------|
| а | 1.0   | NaN  | 2.0        |
| b | NaN   | NaN  | NaN        |
| С | 4.0   | NaN  | 5.0        |
| d | 7.0   | NaN  | 8.0        |







#### Dropping Entries from an Axis

 drop method will return a new object with the indicated value or values deleted from an axis.

```
In [107]: new_obj = obj.drop('c')
```

```
a 0.0
b 1.0
c 2.0
d 3.0
e 4.0
dtype: float64
```







#### Dropping Entries from an Axis

 With DataFrame, index values can be deleted from either axis.

```
In [112]: data.drop(['Colorado', 'Ohio'])
In [114]: data.drop(['two', 'four'], axis='columns')
```

|          | one | two | three | four |  |
|----------|-----|-----|-------|------|--|
| Ohio     | 0   | 1   | 2     | 3    |  |
| Colorado | 4   | 5   | 6     | 7    |  |
| Utah     | 8   | 9   | 10    | 11   |  |
| New York | 12  | 13  | 14    | 15   |  |

|          | one | two | three | four |   |
|----------|-----|-----|-------|------|---|
| Utah     | 8   | 9   | 10    | 11   | , |
| New York | 12  | 13  | 14    | 15   |   |

|          | one | three | four |
|----------|-----|-------|------|
| Ohio     | 0   | 2     | 3    |
| Colorado | 4   | 6     | 7    |
| Utah     | 8   | 10    | 11   |
| New York | 12  | 14    | 15   |







#### Indexing, Selection, and Filtering

 Series indexing works analogously to NumPy array indexing, except youcan use the Series's index values instead of only integers.







#### Indexing, Selection, and Filtering

#### Slicing:

```
In [126]: obj['b':'c'] = 5
In [127]: obj
Out[127]:
a     0.0
b     5.0
c     5.0
d     3.0
dtype: float64
```







#### Indexing, Selection, and Filtering

Another use case: indexing with a boolean DataFrame.

```
In [134]: data < 5
Out[134]:
                    three
                           four
                 two
          one
Ohio
      True True True True
Colorado True False False False
     False False False
Utah
New York False False False
In [135]: data[data < 5] = 0
In [136]: data
Out[136]:
             two three
                        four
         one
Ohio
Colorado
Utah
                          11
                    10
New York
                    14
                          15
```







#### Selection with loc and iloc

• loc and iloc enable you to select a subset of the rows and columns from a DataFrame.

```
In [137]: data.loc['Colorado', ['two', 'three']]
    two 5
    three 6
```

Name: Colorado, dtype: int32







#### Selection with loc and iloc

```
In [139]: data.iloc[2]
```

Name: Utah, dtype: int32

11

one

two three four

In [140]: data.iloc[[1, 2], [3, 0, 1]]

|          | four | one | two |
|----------|------|-----|-----|
| Colorado | 7    | 4   | 5   |
| Utah     | 11   | 8   | 9   |

In [142]: data.iloc[:, :3][data.three > 5]

|          | one | two | three |
|----------|-----|-----|-------|
| Colorado | 4   | 5   | 6     |
| Utah     | 8   | 9   | 10    |
| New York | 12  | 13  | 14    |







## Arithmetic and Data Alignment

 When adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs.



introduce missing values in the label locations that don't overlap







#### Arithmetic and Data Alignment

 In the case of DataFrame, alignment is performed on both the rows and the columns:









#### Arithmetic and Data Alignment

 If you add DataFrame objects with no column or row labels in common, the result will contain all nulls:









• In arithmetic operations, when an axis label is found in one object but not the other, you might want to **fill with** a special value, like 0.

| df1 |     |     |      |      |  |
|-----|-----|-----|------|------|--|
|     | a   | b   | С    | d    |  |
| 0   | 0.0 | 1.0 | 2.0  | 3.0  |  |
| 1   | 4.0 | 5.0 | 6.0  | 7.0  |  |
| 2   | 8.0 | 9.0 | 10.0 | 11.0 |  |

| df2       |      |      |      |      |      |  |
|-----------|------|------|------|------|------|--|
| a b c d e |      |      |      |      |      |  |
| 0         | 0.0  | 1.0  | 2.0  | 3.0  | 4.0  |  |
| 1         | 5.0  | 6.0  | 7.0  | 8.0  | 9.0  |  |
| 2         | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 |  |
| 3         | 15.0 | 16.0 | 17.0 | 18.0 | 19.0 |  |







Method1: In [167]: df2.loc[1, 'b'] = np.nan

|   | a    | b    | C    | d    | е    |
|---|------|------|------|------|------|
| 0 | 0.0  | 1.0  | 2.0  | 3.0  | 4.0  |
| 1 | 5.0  | NaN  | 7.0  | 8.0  | 9.0  |
| 2 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 |
| 3 | 15.0 | 16.0 | 17.0 | 18.0 | 19.0 |

Method2: In [171]: df1.add(df2, fill\_value=0)

|   | a    | b    | C    | d    | е    |
|---|------|------|------|------|------|
| 0 | 0.0  | 2.0  | 4.0  | 6.0  | 4.0  |
| 1 | 9.0  | 11.0 | 13.0 | 15.0 | 9.0  |
| 2 | 18.0 | 20.0 | 22.0 | 24.0 | 14.0 |
| 3 | 15.0 | 16.0 | 17.0 | 18.0 | 19.0 |







 When reindexing a Series or DataFrame, you can also specify a different fill value.

In [174]: df1.reindex(columns=df2.columns, fill\_value=0)

|   | a   | b   | C    | d    | е |
|---|-----|-----|------|------|---|
| 0 | 0.0 | 1.0 | 2.0  | 3.0  | 0 |
| 1 | 4.0 | 5.0 | 6.0  | 7.0  | 0 |
| 2 | 8.0 | 9.0 | 10.0 | 11.0 | 0 |







#### Flexible arithmetic methods

| Method              | Description                     |  |  |
|---------------------|---------------------------------|--|--|
| add, radd           | Methods for addition (+)        |  |  |
| sub, rsub           | Methods for subtraction (-)     |  |  |
| div, rdiv           | Methods for division (/)        |  |  |
| floordiv, rfloordiv | Methods for floor division (//) |  |  |
| mul, rmul           | Methods for multiplication (*)  |  |  |
| pow, rpow           | Methods for exponentiation (**) |  |  |

## Operations between DataFrame and Series

Arithmetic between DataFrame andSeries is also defined.

Suppose: 
$$array([[0., 1., 2., 3.], [4., 5., 6., 7.], [8., 9., 10., 11.]])$$

$$arr-arr[0] \rightarrow array([[0., 0., 0., 0.], [4., 4., 4., 4.], [8., 8., 8., 8., 8.]])$$

## Operations between DataFrame and Series

 Like the above, operations between a DataFrame and a Series are similar.

| frame  |                                                |      |      | series                          |     |     |     |
|--------|------------------------------------------------|------|------|---------------------------------|-----|-----|-----|
| 10-    | b                                              | d    | е    |                                 |     |     |     |
| Utah   | 0.0                                            | 1.0  | 2.0  | b 0.0                           | V   |     |     |
| Ohio   | 3.0                                            | 4.0  | 5.0  | d 1.0<br>e 2.0                  | b   | d   | е   |
| Texas  | 6.0                                            | 7.0  | 8.0  | Name: Utah, dtype: float64 Utah | 0.0 | 0.0 | 0.0 |
| Oregon | 9.0                                            | 10.0 | 11.0 | Ohio                            | 3.0 | 3.0 | 3.0 |
| Match  | Match the index and broadcasting down the rows |      |      |                                 |     | 6.0 | 6.0 |
|        |                                                |      |      | Oregon                          | 9.0 | 9.0 | 9.0 |





 If an index value is **not found** in either the DataFrame's columns or the Series's index,the objects will be reindexed to form the union.



# Operations between DataFrame and Series

• If you want to match on the rows, not over the columns, the following methods will be used.









#### Function Application and Mapping

 NumPy ufuncs (element-wise array methods) also work with pandas objects, like the following:

```
In [192]: np.abs(frame)
```

 Another frequent operation is applying a function on one-dimensional arrays to each column or row.

```
In [193]: f = lambda x: x.max() - x.min()
In [194]: frame.apply(f)
```

|        | b         | d         | е         |         |     |                        |
|--------|-----------|-----------|-----------|---------|-----|------------------------|
| Utah   | -1.021910 | -0.152804 | -0.494643 |         | b   | 1. 408598              |
| Ohio   | -1.797998 | 1.155429  | 1.045093  | >       | d   | 1. 384777<br>1. 539736 |
| Texas  | -0.565406 | 0.848529  | -0.057742 |         | dty | pe: float64            |
| Oregon | -0.389400 | -0.229348 | -0.394567 | 018 Eal |     |                        |







## **Function Application and Mapping**

 The function passed to apply can also return a Series with multiple values.

| е         | d         | b         |     |
|-----------|-----------|-----------|-----|
| -0.494643 | -0.229348 | -1.797998 | min |
| 1.045093  | 1.155429  | -0.389400 | max |







## Function Application and Mapping

• Element-wise Python functions: Suppose you wanted to compute a formatted string from each floating-point value in frame. You can do this with applymap:

```
In [198]: format = lambda x: '%.2f' % x
In [199]: frame.applymap(format)
```

|        | b     | d     | е     |
|--------|-------|-------|-------|
| Utah   | -1.02 | -0.15 | -0.49 |
| Ohio   | -1.80 | 1.16  | 1.05  |
| Texas  | -0.57 | 0.85  | -0.06 |
| Oregon | -0.39 | -0.23 | -0.39 |







- Another important built-in operation:sort by row or column index, use the sort\_index, sort\_values method.
- With a DataFrame, you can sort by index on either axis.







```
      d
      0
      a
      1

      a
      1
      b
      2

      b
      2
      c
      3

      c
      3
      d
      0

      dtype:
      int64
      dtype:
      int64
```















- Ranking assigns ranks from one through the number of valid data points in an array.
- By default rank breaks ties by assigning each group the mean rank.

```
DataFrame.rank(axis=0, method='average',
numeric_only=None, na_option='keep',
ascending=True, pct=False)
```









#### Tie-breaking methods with rank

| Method    | Description                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| 'average' | Default: assign the average rank to each entry in the equal group                                                       |
| 'min'     | Use the minimum rank for the whole group                                                                                |
| 'max'     | Use the maximum rank for the whole group                                                                                |
| 'first'   | Assign ranks in the order the values appear in the data                                                                 |
| 'dense'   | Like method='min', but ranks always increase by 1 in between groups rather than the number of equal elements in a group |







```
In [215]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])
In [216]: obj.rank()
                              6.5
                              1.0
                              6.5
                              4.5
                              3.0
                              2.0
                              4.5
                         dtype: float64
In [218]: obj.rank(ascending=False, method='max')
                            0
                                 2.0
                                 7.0
                                 2.0
                                 4.0
                                 5.0
                                 6.0
                                 4.0
                        SSE dtype: float64
```







• DataFrame can compute ranks over the rows or the columns:

|   | a | b    | C    |                   |   | a   | b   | C   |
|---|---|------|------|-------------------|---|-----|-----|-----|
| 0 | 0 | 4.3  | -2.0 |                   | 0 | 2.0 | 3.0 | 1.0 |
| 1 | 1 | 7.0  | 5.0  | $\longrightarrow$ | 1 | 1.0 | 3.0 | 2.0 |
| 2 | 0 | -3.0 | 8.0  |                   | 2 | 2.0 | 1.0 | 3.0 |
| 3 | 1 | 2.0  | -2.5 |                   | 3 | 2.0 | 3.0 | 1.0 |
|   |   |      |      |                   |   |     |     | 1.0 |







## Axis Indexes with Duplicate Labels

- While many pandas functions (like reindex) require the unique labels, it's not mandatory.
- Consider a small Series with duplicate indices:



The output type from indexing can vary based on whether a label is repeated or not







 The same logic extends to indexing rows in a DataFrame:

```
In [227]: df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])
In [229]: df.loc['b']
```

| 55 | 0         | 1         | 2         |       |           |           |           |
|----|-----------|-----------|-----------|-------|-----------|-----------|-----------|
| а  | -0.175280 | 0.821154  | 0.209438  |       | 0         | 1         | 2         |
| a  | -0.446488 | 0.400457  | -0.115591 | <br>b | -1.629132 | -0.948003 | 0.400754  |
| b  | -1.629132 | -0.948003 | 0.400754  | b     | 0.662287  | -0.859950 | -0.738493 |
| b  | 0.662287  | -0.859950 | -0.738493 |       |           |           |           |



- Reductions or summary statistics methods extract a single value (like the sum or mean) from a Series or a Series of values from the rows or columns of a DataFrame.
- Calling DataFrame's sum method, df.sum(),
   df.mean(axis='columns', skipna=False) returns a Series
   containing column sums.





#### Options for reduction methods

| Method | Description                                                                |
|--------|----------------------------------------------------------------------------|
| axis   | Axis to reduce over; 0 for DataFrame's rows and 1 for columns              |
| skipna | Exclude missing values; True by default                                    |
| level  | Reduce grouped by level if the axis is hierarchically indexed (MultiIndex) |







 Some methods, like idxmin and idxmax, return indirect statistics like the index value where the minimum or maximum values are attained:

In [235]: df.idxmax()

|   | one  | two  |
|---|------|------|
| a | 1.40 | NaN  |
| b | 7.10 | -4.5 |
| С | NaN  | NaN  |
| d | 0.75 | -1.3 |







Other methods like accumulations.

In [236]: df.cumsum()

|   | one  | two  |
|---|------|------|
| a | 1.40 | NaN  |
| b | 8.50 | -4.5 |
| С | NaN  | NaN  |
| d | 9.25 | -5.8 |









 Another type of method, like describe, produce multiple summary statistics in one shot.

In [237]: df.describe()

| 2     | one      | two       |
|-------|----------|-----------|
| count | 3.000000 | 2.000000  |
| mean  | 3.083333 | -2.900000 |
| std   | 3.493685 | 2.262742  |
| min   | 0.750000 | -4.500000 |
| 25%   | 1.075000 | -3.700000 |
| 50%   | 1.400000 | -2.900000 |
| 75%   | 4.250000 | -2.100000 |
| max   | 7.100000 | -1.300000 |







 On non-numeric data, describe produces alternative summary statistics.

```
In [239]: obj.describe()
```

```
16
                    count
5
                    unique
      h
                    top
8
                    freq
                    dtype: object
10
dtype: object
```







- Let's consider some DataFrames of stock prices and volumes obtained from Yahoo!
- Finance using the add-on pandas-datareader package.







Price.head()

|            | AAPL      | GOOG       | IBM        | MSFT      |
|------------|-----------|------------|------------|-----------|
| Date       |           |            |            |           |
| 2010-01-04 | 27.990226 | 313.062468 | 113.304536 | 25.884104 |
| 2010-01-05 | 28.038618 | 311.683844 | 111.935822 | 25.892466 |
| 2010-01-06 | 27.592626 | 303.826685 | 111.208683 | 25.733566 |
| 2010-01-07 | 27.541619 | 296.753749 | 110.823732 | 25.465944 |
| 2010-01-08 | 27.724725 | 300.709808 | 111.935822 | 25.641571 |

Volumn.head()

|            | AAPL      | GOOG     | IBM     | MSFT     |
|------------|-----------|----------|---------|----------|
| Date       |           |          |         |          |
| 2010-01-04 | 123432400 | 3927000  | 6155300 | 38409100 |
| 2010-01-05 | 150476200 | 6031900  | 6841400 | 49749600 |
| 2010-01-06 | 138040000 | 7987100  | 5605300 | 58182400 |
| 2010-01-07 | 119282800 | 12876600 | 5840600 | 50559700 |
| 2010-01-08 | 111902700 | 9483900  | 4197200 | 51197400 |







Now compute percent changes of the prices.

```
In [242]: returns = price.pct_change()
```

In [243]: returns.tail()











- The corr method computes the correlation of the overlapping, non-NA, aligned-by-index values in two Series.
- cov computes the covariance.

```
In [244]: returns['MSFT'].corr(returns['IBM'])
Out[244]: 0.49976361144151144

In [245]: returns['MSFT'].cov(returns['IBM'])
Out[245]: 8.8706554797035462e-05
```







 DataFrame's corr and cov methods, return a full correlation or covariance matrix as a DataFrame, respectively.







#### Pearson r correlation:

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{E((X - \mu_{X})(Y - \mu_{Y}))}{\sigma_{X}\sigma_{Y}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^{2}) - E^{2}(X)}\sqrt{E(Y^{2}) - E^{2}(Y)}}$$

#### Suppose:

$$y = \alpha + \beta x + u$$

COV (u1\*u2) =0 ; independent variable ;  $Var(u|x)=\sigma^2$ 







#### Cohen's standard

|   |     | В   | В  |
|---|-----|-----|----|
|   |     | Yes | No |
| Α | Yes | 20  | 5  |
| Α | No  | 10  | 15 |

- Reader A said "Yes" to 25 applicants and "No" to 25 applicants. Thus reader A said "Yes" 50% of the time.
- Reader B said "Yes" to 30 applicants and "No" to 20 applicants. Thus reader B said "Yes" 60% of the time.

$$\kappa = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)} = \frac{0.70 - 0.50}{1 - 0.50} = 0.40$$







| In [37]: | returns | .corr('s | pearman') |          |          |
|----------|---------|----------|-----------|----------|----------|
| Out[37]: |         | AAPL     | GOOG      | IBM      | MSFT     |
|          | AAPL    | 1.000000 | 0.457218  | 0.379259 | 0.431567 |
|          | GOOG    | 0.457218 | 1.000000  | 0.455885 | 0.535769 |
|          | IBM     | 0.379259 | 0.455885  | 1.000000 | 0.509883 |
|          | MSFT    | 0.431567 | 0.535769  | 0.509883 | 1.000000 |
| In [38]: | returns | .corr('k | endall')  |          |          |
| Out[38]: |         | AAPL     | GOOG      | IBM      | MSFT     |
|          | AAPL    | 1.000000 | 0.324028  | 0.265168 | 0.305033 |
|          | GOOG    | 0.324028 | 1.000000  | 0.324124 | 0.386234 |
|          | IBM     | 0.265168 | 0.324124  | 1.000000 | 0.364763 |
|          | MSFT    | 0.305033 | 0.386234  | 0.364763 | 1.000000 |







- Using DataFrame's corrwith method, you can compute pairwise correlations between a DataFrame's columns or rows with another Series or DataFrame.
  - □ Passing a Series returns a Series with the correlation value computed for each column.
  - □ Passing a DataFrame computes the correlations of matching column names.







```
In [249]: returns.corrwith(returns.IBM)
Out[249]:
AAPL 0.386817
GOOG 0.405099
IBM 1.000000
MSFT 0.499764
dtype: float64
In [250]: returns.corrwith(volume)
Out[250]:
AAPL -0.075565
GOOG -0.007067
IBM -0.204849
MSFT -0.092950
dtype: float64
```



# Unique Values, Value Counts, and Membership

- Extract information about the values contained in a one-dimensional Series.
  - ☐ The first function is unique, which gives you an array of the unique values in a Series.
  - □value\_counts computes a Series containing value frequencies.
  - □isin performs a vectorized set membership check and can be useful in filtering a dataset.

# Unique Values, Value Counts, and Membership

 In some cases, you may want to compute a histogram on multiple related columns in a DataFrame.

```
In [265]: result = data.apply(pd.value_counts).fillna(0)
```

```
      Qu1
      Qu2
      Qu3

      0
      1
      2
      1
      1.0
      1.0
      1.0

      1
      3
      3
      5
      2
      0.0
      2.0
      1.0

      2
      4
      1
      2
      2.0
      2.0
      0.0

      3
      3
      2
      4
      4
      2.0
      0.0
      2.0

      4
      4
      3
      4
      5
      0.0
      0.0
      1.0
```

Will you give the picture?







#### Python2.xls is like the following:

| A          | В    | C              | D                | Е          |
|------------|------|----------------|------------------|------------|
| StuNO      | Name | Grade          | Major            |            |
| SA18225021 | 茶健豪  | 18级大数据与人工智能02班 | 大数据与人            | 工智能        |
| SA18225022 | 查顺考  | 18级大数据与人工智能01班 | 大数据与人            | 【工智能       |
| SA18225023 | 常承启  | 18级嵌入式系统设计01班  | 嵌入式系统            | 充设计        |
| SA18225036 | 陈旻   | 18级网络与信息安全02班  | 信息安全             | C程         |
| SA18225038 | 陈琦   | 18级大数据与人工智能02班 | 大数据与人            | 【工智能       |
| SA18225049 | 陈桢秀  | 18级嵌入式系统设计01班  | 嵌入式系统            | 充设计        |
| SA18225051 | 程伟   | 18级大数据与人工智能01班 | 大数据与人            | <b>工智能</b> |
| SA18225057 | 邓祥明  | 18级软件系统设计01班   | 软件系统证            | 设计         |
| SA18225065 | 段明非  | 18级软件系统设计01班   | 软件系统证            | 设计         |
| SA18225070 | 范广宝  | 18级网络与信息安全01班  | 信息安全             | [程         |
| SA18225074 | 方家辉  | 18级软件系统设计02班   | 软件系统设            | 设计         |
| SA18225084 | 甘朔   | 18级网络与信息安全02班  | 信息安全             | [程         |
| SA18225088 | 高冉   | 18级软件系统设计01班   | 软件系统证            | 设计         |
| SA18225091 | 高源   | 18级大数据与人工智能02班 | 大数据与             | 【工智能       |
| SA18225111 | 郝泳杰  | 18级软件系统设计01班   | 软件系统设            | 设计         |
| SA18225112 | 何红飞  | 18级网络与信息安全02班  | 信息安全             | C程         |
| SA18225117 | 何先华  | 18级软件系统设计02班   | 软件系统设            | 设计         |
| SA18225125 | 胡瑞云  | 18级网络与信息安全02班  | 信息安全             | [程         |
| SA18225132 | 黄康晋  | 18级网络与信息安全01班  | 信息安全             | [程         |
| SA18225134 | 黄磊   | 18级嵌入式系统设计02班  | 嵌入式系统            | 充设计        |
| SA18225137 | 黄婷   | 18级大数据与人工智能01班 | 大数据与人            | 【工智能       |
| SA18225141 | 季闽城  | 18级嵌入式系统设计01班  | 嵌入式系统            | 充设计        |
| SA18225157 | 柯浩   | 18级大数据与人工智能01班 | 大数据与             | <b>工智能</b> |
| SA18225161 | 孔维喆  | 18级大数据与人工智能02班 | 大数据与             | <b>工智能</b> |
| SA18225162 | 匡天宇  | 18级软件系统设计01班   | 软件系统设            | 设计         |
| SA18225183 | 李景福  | 18级嵌入式系统设计01班  | 嵌入式系统            | 充设计        |
| SA18225185 | 李军   | 18级软件系统设计01班   | 软件系统设            | 设计         |
| CA1000E10E | 木井田  | 10年米提一一十年9601年 | 十<br>茶<br>花<br>下 | T 40 66    |







```
import pandas as pd
f=open('D:/Python/Python2.xls','rb')
data=pd.read excel(f)
```

• When using data.shape (103,5) will return

|   | StuNO      | Name | Grade          | Major    |  |
|---|------------|------|----------------|----------|--|
| 0 | SA18225021 | 茶健豪  | 18级大数据与人工智能02班 | 大数据与人工智能 |  |
| 1 | SA18225022 | 查顺考  | 18级大数据与人工智能01班 | 大数据与人工智能 |  |
| 2 | SA18225023 | 常承启  | 18级嵌入式系统设计01班  | 嵌入式系统设计  |  |
| 3 | SA18225036 | 陈旻   | 18级网络与信息安全02班  | 信息安全工程   |  |
| 4 | SA18225038 | 陈琦   | 18级大数据与人工智能02班 | 大数据与人工智能 |  |







```
NO_set = set(data['StuNO'])
Name_set = set(data['Name'])
NO_list = []
Name_list = []
for each in NO_set:
    NO_list.append(each)
for each in Name_set:
    Name_list.append(each)
```

 NO\_list and Name\_list will contain the students' NO. and Students' Name on the table.







Also, we can insert one column into the table.

```
data['Score'] = pd.Series()
Score_list=range(0,103)
data['Score'] = Score_list
```

|   | StuNO      | Name | Grade          | Major    | Score |
|---|------------|------|----------------|----------|-------|
| 0 | SA18225021 | 茶健豪  | 18级大数据与人工智能02班 | 大数据与人工智能 | 0     |
| 1 | SA18225022 | 查顺考  | 18级大数据与人工智能01班 | 大数据与人工智能 | 1     |
| 2 | SA18225023 | 常承启  | 18级嵌入式系统设计01班  | 嵌入式系统设计  | 2     |
| 3 | SA18225036 | 陈旻   | 18级网络与信息安全02班  | 信息安全工程   | 3     |
| 4 | SA18225038 | 陈琦   | 18级大数据与人工智能02班 | 大数据与人工智能 | 4     |
| 5 | SA18225049 | 陈桢秀  | 18级嵌入式系统设计01班  | 嵌入式系统设计  | 5     |
| 6 | SA18225051 | 程伟   | 18级大数据与人工智能01班 | 大数据与人工智能 | 6     |
| 7 | SA18225057 | 邓祥明  | 18级软件系统设计01班   | 软件系统设计   | 7     |
| 8 | SA18225065 | 段明非  | 18级软件系统设计01班   | 软件系统设计   | 8     |
| 9 | SA18225070 | 范广宝  | 18级网络与信息安全01班  | 信息安全工程   | 9     |







## Think About...

- How can we write xls files from a word or txt file?
- How can we use pandas to visit a SQL database?
- How can we modify the dataset back to one database?

• ........

