

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES

Centro de Ciencias Básicas

Estadística Descriptiva y Probabilidad

Departamento académico: Estadística

Ingeniería en Computación Inteligente Semestre 3°A

Trabajo: Esperanza de una variable aleatoria discreta

Fecha: 26 de octubre de 2022

Alumno

Sandoval Pérez José Luis 261731

Profesor. Netzahualcóyotl Castañeda Leyva

EJERCICIO 1

Sea la variable aleatoria X, con función de densidad de probabilidad

$$f(x) = P(X = x) = 0.25$$
; $para x = 1,2,3,4$ obtenga $EX, EX^2, VX y d. e(X)$

\boldsymbol{x}	f(x) = P(X = x)	$Ex = x \cdot f(x)$	$x^2 \cdot f(x)$	$(X - Ex)^2 \cdot f(x)$
1	0.25	0.25	0.25	0.5625
2	0.25	0.50	1.00	0.0625
3	0.25	0.75	2.25	0.0625
4	0.25	1.00	4.00	0.5625
	$\sum_{x=1}^{4} 0.25 = 1$	Ex = 2.5	$Ex^2 = 7.5$	Vx = 1.25

Representado en la fórmula es:

$$Ex = \mu = \sum_{x=1}^{4} x \cdot f(x) = 2.5$$

$$Ex^2 = x^2 \cdot f(x) = 7.5$$

$$\sigma^2 = \sum_{x=1}^4 (x - \mu)^2 \cdot f(x) = 1.25$$

$$\sigma = \sqrt{\sigma^2} = 1.11803$$

EJERCICIO 2

Sea la variable aleatoria X, con función de densidad de probabilidad

$$f(x) = P(X = x) = 0.2$$
; $para x = 0.1,2,3,4$ obtenga $EX, EX^2, VX y d. e(X)$

χ	f(x) = P(X = x)	$Ex = x \cdot f(x)$	$x^2 \cdot f(x)$	$(X - Ex)^2 \cdot f(x)$
0	0.2	0	0	0.8
1	0.2	0.2	0.25	0.5625
2	0.2	0.4	1.00	0.0625
3	0.2	0.6	2.25	0.0625
4	0.2	0.8	4.00	0.5625
	$\sum_{x=0}^{4} 0.2 = 1$	Ex = 2	$Ex^2 = 6$	Vx = 2

Representado en la fórmula es:

$$Ex = \mu = \sum_{x=0}^{4} x \cdot f(x) = 2$$

$$Ex^2 = \sum_{x=0}^4 x^2 \cdot f(x) = 6$$

$$\sigma^2 = \sum_{x=1}^4 (x - \mu)^2 \cdot f(x) = 2$$

$$\sigma = \sqrt{\sigma^2} = 1.4142$$