Claims:

- 1. Vaccine for preventing viral infections comprising
- an antigen,
- a peptide comprising a sequence R_1 -XZXZ_NXZX- R_2 , whereby N is a whole number between 3 and 7, preferably 5, X is a positively charged natural and/or non-natural amino acid residue, Z is an amino acid residue selected from the group consisting of L, V, I, F and/or W, and R_1 and R_2 are selected independantly one from the other from the group consisting of -H, -NH₂, -COCH₃, -COH, a peptide with up to 20 amino acid residues or a peptide reactive group or a peptide linker with or without a peptide; X- R_2 may be an amide, ester or thioester of the C-terminal amino acid residue of the peptide ("Peptide A"), and
- an immunostimulatory oligodeoxynucleic acid molecule (ODN) having the structure according to the formula (I)

B—NUC—NMP_a—
$$X_3$$
— P — X_4 — CH_2 R1
$$-X_1$$

$$NMP_b$$
—E

wherein

R1 is selected from hypoxanthine and uracile, any X is O or S,

any NMP is a 2' deoxynucleoside monophosphate or monothiophosphate, selected from the group consisting of deoxyadenosine-, deoxyguanosine-, deoxyguanosine-, deoxyguanosine-, deoxyguanosine-,

deoxythymidine-, 2-methyl-deoxyinosine-, 5-methyl-deoxycytosine-, deoxypseudouridine-, deoxyribosepurine-, 2-amino-deoxyribosepurine-, 6-S-deoxyguanine-, 2-dimethyl-deoxyguanosine- or N-isopentenyl-deoxyadenosine-monophosphate or -monothiophosphate,

NUC is a 2' deoxynucleoside, selected from the group consisting of deoxyadenosine-, deoxyguanosine-, deoxyinosine-, deoxycytosine-, deoxycytosine-, deoxythymidine-, 2-methyl-deoxycytosine-, deoxypseudouridine-, deoxyribosepurine-, 2-amino-deoxyribosepurine-, 6-S-deoxyguanine-, 2-dimethyl-deoxyguanosine- or N-isopentenyl-deoxyadenosine,

a and b are integers from 0 to 100 with the proviso that a+b is between 4 and 150, and B and E are common groups for 5' or 3' ends of nucleic acid molecules ("I-/U-ODN").

- 2. Vaccine according to claim 1, characterised in that it further contains an Al(OH)₃ adjuvant.
- 3. Vaccine according to claim 1 or 2, characterised in that said antigen is a viral antigen, preferably an influenza, especially a haemagglutinin antigen or a neuraminidase antigen, HCV or HBV, HIV, HPV or JEV antigen, a combined antigen or a combination of one or more of these antigens.
- 4. Vaccine according to any one of claims 1 to 3, characterised in that it further contains a polycationic peptide.
- 5. Vaccine according to any one of claims 1 to 4, characterised in that said Peptide A is $KLKL_5KLK$ and said I-/U-ODN is oligo $d(IC)_{13}$.

- 6. Vaccine according to any one of claims 1 to 5, characterised in that it further contains an oligodeoxynucleotide containing a CpG-motif.
- 7. Vaccine according to any one of claims 1 to 6, characterised in that it further contains a polycationic peptide and an oligodeoxynucleotide containing a CpG-motif.
- 8. Use of a combination of Peptide A and a I-/U-ODN, both as defined in claim 1, to improve the protective efficacy of a vaccine against viral infection, especially against an infection with influenza virus, HBV, HCV, HPV, HIV or JEV.
- 9. Use of a combination of Peptide A and a I-/U-ODN, both as defined in claim 1, to improve the antigen-specific type 1 response, especially IgG2-antibody response or IFN-gamma response, of a vaccine against viral infections, especially infections with influenza virus, HBV, HCV, HIV, HPV or JEV, and at the same time preserving or preferably also increasing the type 2 response, especially IgG1-antibody response or interleukin 4 (IL 4) response, of said vaccine.