https://repositori.usu.ac.id

Department of Computer Science

Undergraduate Theses

2023

Klasifikasi Penyakit pada Daun Mangga dengan Menggunakan Metode Convolutional Neural Network (CNN)

Nugraha, Abid Tondi

Universitas Sumatera Utara

https://repositori.usu.ac.id/handle/123456789/91296

Downloaded from Repositori Institusi USU, Universitas Sumatera Utara

KLASIFIKASI PENYAKIT PADA DAUN MANGGA DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

SKRIPSI

ABID TONDI NUGRAHA 191401001

PROGRAM STUDI S-1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2023

KLASIFIKASI PENYAKIT PADA DAUN MANGGA DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh ijazah
Sarjana Ilmu Komputer

ABID TONDI NUGRAHA 191401001

PROGRAM STUDI S-1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN

2023

PERSETUJUAN

Judul : KLASIFIKASI PENYAKIT PADA DAUN MANGGA DENGAN

MENGGUNAKAN METODE CONVOLUTIONAL NEURAL

NETWORK (CNN)

Kategori : SKRIPSI

Nama : ABID TONDI NUGRAHA

:

Nomor Induk Mahasiswa : 191401001

Program Studi : SARJANA (S-1) ILMU KOMPUTER

Fakultas : ILMU KOMPUTER DAN TEKNOLOGI

INFORMASI

Medan, 06 Desember 2023

Komisi Pembimbing

Dosen Pembimbing II

Dosen Pembimbing I

Desilia Selvida, S.Kom., M.Kom.

NIP 198912052020012001

Dr. Ir. Elviawaty Muisa Zamzami, S.T., M.T., M.M.

NIP 197007162005012002

Diketahui/disetujui oleh

Program Studi S1 Ilmu Komputer

Dr. Amalia, S.T., M.T.

NIP 197812212014042001

PERNYATAAN

KLASIFIKASI PENYAKIT PADA DAUN MANGGA DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil karya saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing telah disebutkan sumbernya

Medan, Desember 2023

Abid Tondi Nugraha 191401001

PENGHARGAAN

Alhamdulillah, Segala puji bagi Allah SWT. Tuhan Semesta Alam, yang telah memberikan kenikmatan berupa Iman, Islam, keselamatan, rahmat, dan juga kesehatan serta kekuatan kepada penulis, sehingga penulis dapat menyelesaikan penyusunan skripsi ini sebagai syarat untuk memperoleh gelar Sarjana Komputer di Program Studi S-1 Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara.

Selanjutnya, *shalawat* dan *salam* kepada Baginda Nabi Muhammad SAW. yang telah mengajarkan ajaran Islam dengan sempurna dan menyempurnakan sifat & akhlak manusia di muka bumi ini.

Dengan kerendahan hati dan rasa syukur, penulis ingin menyampaikan rasa hormat dan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Prof. Dr. Muryanto Amin, S.Sos, M.Si selaku Rektor Universitas Sumatera Utara
- 2. Ibu Dr. Maya Silvi Lydia, B.Sc., M.Sc., selaku Dekan Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara.
- 3. Ibu Dr. Amalia, ST. MT., selaku Kepala Program Studi S-1 Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara.
- 4. Ibu Anandhini Medianty Nababan, S.Kom., M.T., selaku Dosen Pembimbing Akademik yang telah banyak memberikan bimbingan, saran dan dukungan akademisi selama kuliah hingga pengerjaan skripsi ini.
- 5. Ibu Dr. Ir. Elviawaty Muisa Zamzami, S.T., M.T., M.M., selaku Dosen Pembimbing I yang telah banyak memberikan bimbingan, saran, masukan dan dukungan dalam pengerjaan skripsi ini.
- 6. Ibu Desilia Selvida, S.Kom., M.Kom., selaku Dosen Pembimbing II yang telah banyak memberikan bimbingan, saran, masukan dan dukungan dalam pengerjaan skripsi ini.

- 7. Dr. T. Henny Febriana Harumy, S.Kom., M.Kom., selaku Dosen Penguji I yang telah memberikan arahan, saran, masukan dan dukungan dalam pengerjaan skripsi ini.
- 8. Dr. Amalia, ST., M.T., selaku Dosen Penguji II yang telah memberikan arahan, saran, masukan dan dukungan dalam pengerjaan skripsi ini.
- 9. Seluruh tenaga pengajar dan pegawai Program Studi S-1 Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara.
- 10. Keluarga tersayang yaitu Ayahanda Hadi Susiono, M.Pd dan Ibunda Nurhati Ritonga, M.A., serta saudara kandung penulis, yaitu Kakanda Asri Maulida Ramadhani, M.Pd., Abangda Arif Faisaluddin, S.P., dan Kakanda Khairani Zahra, S.AP.. Terima kasih untuk segala dukungan doa, nasihat, motivasi, dukungan dan kerja kerasnya kepada penulis hingga saat ini.
- 11. Teman-teman seperjuangan skripsi S1 Ilmu Komputer USU stambuk 2019, terkhusus untuk Kom A, yang sudah menemani dan melengkapi penulis dalam proses belajar di program studi S-1 Ilmu Komputer USU.
- 12. Keluarga besar IMILKOM USU, PEMA Fasilkom-TI USU dan UKMI Al-Khuwarizmi Fasilkom-TI USU, yang telah memberikan pengalaman organisasi kepada penulis selama satu periode kepengurusan.
- 13. Dan semua pihak yang telah banyak membantu dan mendukung penulis yang tidak bisa disebutkan satu per satu.

Semoga seluruh kebaikan yang telah diberikan akan kembali kepada pihak yang memberi dengan tulus juga dari Allah SWT. Semoga skripsi ini dapat memberikan manfaat yang baik kedepannya.

Medan, Desember 2023

Penulis

ABSTRAK

Mangga (Mangifera Indica) merupakan salah satu tanaman yang sangat populer dan

disukai oleh masyarakat Indonesia. Adanya serangan hama, virus atau jamur pada

tanaman mangga menghasilkan kondisi buah mangga yang tidak maksimal dan busuk,

yang memberikan kerugian pada produktif buah, maka dibutuhkanlah sebuah sistem

yang mampu mengidentifikasi jenis penyakit pada tanaman mangga dengan melakukan

klasifikasi gambar penyakit pada daun mangga. Sistem klasifikasi penyakit pada daun

mangga dibangun dengan menggunakan Metode Convolutional Neural Network dan

berbasis website, menggunakan Library Flask. Metode Convolution Neural Network

dengan arsitektur VGG-16 mampu mendeteksi gambar penyakit pada daun mangga

sangat baik, dengan proses pelatihan model sebanyak 15 epoch & 8 steps untuk jumlah

data sebanyak 1500 data, dengan durasi waktu 13.225 detik atau setara dengan 3 jam

40 Menit 55 detik, serta hasil akurasi yang diperoleh selama proses pelatihan secara

keseluruhan adalah mencapai 0,986.

Kata Kunci: Penyakit Tanaman Mangga, Klasifikasi Gambar, Convolutional Neural

Network, Website

Universitas Sumatera Utara

CLASSIFICATION OF DISEASES ON MANGO LEAVES USING THE CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD

ABSTRACT

Mango (*Mangifera Indica*) is one of the plants that is very popular and favored by the people of Indonesia. The attack of pests, viruses or fungi on mango plants results in the condition of mango fruit that is not optimal and rotten, which provides a loss in fruit productivity, so a system is needed that is able to identify the type of disease in mango plants by classifying disease images on mango leaves. The disease classification system on mango leaves is built using the Convolutional Neural Network Method and is web-based, using the Flask Library. The Convolution Neural Network method with VGG-16 architecture is able to detect disease images on mango leaves very well, with a model training process of 15 epochs & 8 steps for the amount of data as much as 1500 data, with a duration of 13,225 seconds or equivalent to 3 hours 40 minutes 55 seconds, and the accuracy results obtained during the training process as a whole is 0.986.

Keywords: Mango Plant Disease, Image Classification, Convolutional Neural Network, Website

DAFTAR ISI

PERSETU	JUAN	ii
PERNYAT	ΓΑΑΝ	iii
PENGHAI	RGAAN	iv
ABSTRAK	ζ	vi
DAFTAR 1	ISI	viii
DAFTAR 7	TABEL	xi
DAFTAR (GAMBAR	xii
DAFTAR 1	LAMPIRAN	xiv
BAB 1 PEN	NDAHULUAN	1
1.1. Lata	ar Belakang Masalah	1
1.2. Rum	nusan Masalah	3
1.3. Bata	asan Masalah	3
1.4. Tuju	ıan Penelitian	3
1.5. Man	nfaat Penelitian	3
1.6. Meto	odologi Penelitian	4
1.7. Siste	ematika Penelitian	4
BAB 2 LA	NDASAN TEORI	6
2.1. Man	ngga	6
2.1.1.	Deskripsi Mangga	6
2.1.2.	Klasifikasi Tanaman Mangga	7
2.1.3.	Penyakit pada Tanaman Mangga	7

2.2. Machine Learning	11
2.2.1. Supervised Learning	11
2.2.2. Unsupervised Learning	11
2.2.3. Reinforcement Learning	12
2.3. Deep Learning	12
2.4. Convolutional Neural Network	13
2.4.1. CNN Layer	14
2.4.2. Visual Geometry Group (VGG) 16	18
2.5. Penelitian Relevan	20
BAB 3 ANALISIS DAN PERANCANGAN	22
3. 1. Analisis Sistem	22
3.1.1. Analisis Masalah	22
3.1.2. Analisis Data	23
3.1.3. Analisis Kebutuhan	24
3.2 Arsitektur Umum	24
3.3. Pemodelan Sistem	26
3.3.1. Use Case Diagram	26
3.3.2. Activity Diagram	27
3.3.3. Sequence Diagram	28
3.3.4. Flowchart (Diagram Alir)	28
3.4 Perancangan Antarmuka	30
3.4.1. Desain Halaman Beranda	31
3.4.2. Desain Halaman Deteksi	32
3.4.3. Desain Halaman Bantuan	34

3.4.4. Desain Halaman Tentang	35
BAB 4 IMPLEMENTASI DAN PENGUJIAN	36
4.1. Implementasi Sistem	36
4.1.1. Halaman Beranda	36
4.1.2. Halaman Deteksi	37
4.1.3. Halaman Bantuan	38
4.1.4. Halaman Tentang	39
4.2. Pengujian Sistem	40
4.2.1. Tahap Pelatihan Model	40
4.2.2. Tahap Integrasi	52
BAB 5 KESIMPULAN DAN SARAN	58
5.1. Kesimpulan	58
5.2. Saran	59
DAFTAR PUSTAKA	60

DAFTAR TABEL

Tabel 4. 1. Hasil Precision, Recall dan F1-Score	43
Tabel 4. 2. Hasil dari Accuracy, Loss & Training Time	44
Tabel 4. 3. Hasil dari Percobaan Prediksi	45
Tabel 4. 4. Hasil Pengujian	55

DAFTAR GAMBAR

Gambar 2. 1 (a) Daun dan Buah Mangga, (b) Pohon Mangga	7
Gambar 2. 2 Kutu Putih	8
Gambar 2. 3 Embun Jelaga	9
Gambar 2. 4 Antraknosa	10
Gambar 2. 5 Penyakit Gloeosporium	10
Gambar 2. 6 Kelas dari <i>Machine Learning</i> (Goodfellow et al. 2016)	11
Gambar 2. 7 Arsitektur dari CNN (Ghimire et al., 2022)	13
Gambar 2. 8 Cara Kerja dari CNN	14
Gambar 2. 9 Perhitungan Convolutional Layer	15
Gambar 2. 10 Jenis-Jenis Pooling	16
Gambar 2. 13 Bentuk Kurva dari ReLU Function	17
Gambar 2. 14 Fully Connected Layer	18
Gambar 2. 15 Bentuk Lapisan VGG16	19
Gambar 3. 1 Diagram Ishikawa	22
Gambar 3. 2 Jumlah data masing-masing kelas untuk training dan testing	23
Gambar 3. 3 Beberapa Gambar Daun dari Dataset Training	23
Gambar 3. 4 Arsitektur Umum Sistem	25
Gambar 3. 5 Use Case Diagram Sistem	26
Gambar 3. 6 Activity Diagram Sistem	27
Gambar 3. 7 Sequence Diagram Sistem	28
Gambar 3. 8 Flowchart Pelatihan Model CNN	29
Gambar 3. 9 Flowchart Sistem	30
Gambar 3. 10 Rancangan Tampilan Beranda	31
Gambar 3. 11 Rancangan Tampilan Deteksi	32
Gambar 3. 12 Rancangan Tampilan Hasil Deteksi	33
Gambar 3. 13 Rancangan Tampilan Bantuan	34
Gambar 3. 14 Rancangan Tampilan Tentang	35
Gambar 4. 1 Halaman Beranda	36

Gambar 4. 2 Halaman Deteksi	37
Gambar 4. 3 Halaman Hasil Deteksi	38
Gambar 4. 4 Halaman Bantuan	39
Gambar 4. 5 Halaman Tentang	40
Gambar 4. 6 Kode Program Koneksi Dataset	40
Gambar 4. 7 Kode Program Akses Data Train	41
Gambar 4. 8 Lapisan pada Pelatihan Model	42
Gambar 4. 9 Kode Program Mulai Pelatihan	46
Gambar 4. 10 Proses Pelatihan Model	47
Gambar 4. 11 Hasil Akhir Pelatihan Model	48
Gambar 4. 12 Hasil Confusion Matrix	48
Gambar 4. 13 Grafik Accuracy & Loss	49
Gambar 4. 14 Memanggil <i>Library</i> yang dibutuhkan	52
Gambar 4. 15 Tahap Deklarasi (Insialisasi)	52
Gambar 4. 16 Fungsi Memanggil Model	53
Gambar 4. 17 Fungsi Utama Integrasi	53
Gambar 4. 18 Fungsi Mengirim Hasil dari Model	54
Cambar 4 10 Kode HTMI Menampilkan Hasil dari Model	54

DAFTAR LAMPIRAN

	Halaman
Curriculum Vitae	A-1