WHAT IS CLAIMED IS:

5

10

20

1. The present invention relates to a variety of compounds which are useful according to the present invention. These compounds are represented by the following Formula A:

$$R^{7}$$
 R^{1}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{4}

wherein \mathbf{R} , \mathbf{R}^1 and \mathbf{R}^2 are independently chosen from hydrogen, C_{1-4} alkyl; \mathbf{R}^3 is selected from hydrogen, C_{1-4} alkyl, or \mathbf{R}^2 and \mathbf{R}^3 can complete a pyrrolidine or piperidine ring, which can be substituted with C_{1-4} alkyl;

R⁴ is hydrogen, halogen, C₁₋₄alkyl;

 \mathbf{R}^{5} and \mathbf{R}^{6} are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkyl substituted with halogen;

R⁷ is chosen from C=OR⁹; S(O)_mR¹⁰; NR¹-(C=O)-R¹¹; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H, CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from an oxazole such as oxazol-2-yl, 4,5-dihydro-oxazol-2-yl, or benzoxazol-2-yl, an oxazine such as 5,6-dihydro-[1,3]oxazin-2-yl, a thiazole such as thiazol-2-yl, 4,5-dihydro-thiazol-2-yl, or benzothiazol-2-yl, an imidazole such as imidazol-2-yl, or imidazolidin-2-yl, [1,2,4]oxadiazol-5-yl, [1,2,4]oxadiazol-3-yl, [1,2,4]thiadiazol-5-yl, or [1,2,4]thiadiazol-3-yl which and the substituted with C: 6alkyl, C₁₋₆alkoxy, phenyl or pyridinyl, or C₁₋₆alkyl substituted with phenyl or pyridinyl;

but R⁷ cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;

 \mathbb{R}^8 is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $NR^1(C=O)C_{1-6}$ alkyl, or halogen;

 R^9 is chosen from hydroxyl; $C_{1\text{-6}}$ alkoxy; $C_{1\text{-6}}$ alkoxy substituted with phenyl or pyridinyl which can be substituted with $C_{1\text{-4}}$ alkoxy or halogen; $NR^{16}R^{17}$; $C_{1\text{-6}}$ alkyl; or $C_{1\text{-6}}$ alkyl substituted with hydroxyl, $C_{1\text{-6}}$ alkoxy, $NR^{12}R^{13}$, CO_2H , $CO_2C_{1\text{-6}}$ alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkoxy, halogen, halo $C_{1\text{-4}}$ alkyl;

 R^{10} is chosen from $NR^{12}R^{13}$; C_{1-6} alkyl; CH_2 phenyl or CH_2 pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or C_{2-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, $NR^{12}R^{13}$, CO_2H , CO_2C_{1-6} alkyl, phenyl, pyridinyl or imidazolyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl;

R¹¹ is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

15

R¹² and R¹³ are independently selected from hydrogen; C₁₋₆alkyl; CH₂Z, where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, NR¹COC₁₋₆alkyl, or halogen; or R¹², R¹³, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C₁₋₄alkyl or C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkoxy or halogen;

 R^{14} and R^{15} are independently selected from hydrogen, C_{1-6} alkyl, hydroxyl, C_{1-6} alkoxy, $(C=O)-R^{11}$, $S(O)_mR^8$, phenyl or pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are

attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with C_{1-6} alkyl, phenyl, or pyridinyl;

 \mathbf{R}^{16} and \mathbf{R}^{17} are independently selected from hydrogen; C_{1-6} alkyl; hydroxyl; C_{1-6} alkoxy; CH₂Z, where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, 5 or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, halogen, $NR^{1}(C=O)C_{1-6}$ alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl, an imidazole such as imidazo-2-yl or imidazo-4-yl, a morpholine such as morpholin-3-yl, a piperidine such as piperidin-4-yl, oxazolyl, isoxazolyl, thiazolyl, tetrazolyl, pyridinyl, which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, 10 halogen, haloC₁₋₄alkyl, phenylC₁₋₄alkyl, oxo (=0); or R¹⁶, R¹⁷, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C_{1-4} alkyl or C_{1-4} alkyl substituted with hydroxy, oxo (=O), C₁₋₄alkoxy, or phenyl; 15

m is 0 - 2;

20

25

A is N or CH; and

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

2. The method of claim 1, wherein for the compound of Formula A:

R, \mathbb{R}^1 and \mathbb{R}^2 are independently chosen from hydrogen, C_{1-4} alkyl; \mathbb{R}^3 is selected from hydrogen, C_{1-4} alkyl, or \mathbb{R}^2 and \mathbb{R}^3 can complete a pyrrolidine or piperidine ring, which can be substituted with C_{1-4} alkyl;

 \mathbb{R}^4 is hydrogen, C_{1-4} alkyl;

 \mathbf{R}^5 and \mathbf{R}^6 are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkylsulfoxide with halogen;

R⁷ is chosen from C=OR⁹; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H, CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from an oxazole such as oxazol-2-yl, 4,5-dihydro-oxazol-2-yl, or benzoxazol-2-yl, an oxazine such as 5,6-dihydro-[1,3]oxazin-2-yl, a thiazole such as thiazol-2-yl, 4,5-dihydro-thiazol-2-yl, or benzothiazol-2-yl, an imidazole such as imidazol-2-yl, or imidazolidin-2-yl, [1,2,4]oxadiazol-5-yl, [1,2,4]oxadiazol-5-yl, [1,2,4]thiadiazol-5-yl, or [1,2,4]thiadiazol-3-yl which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, phenyl or pyridinyl, or C₁₋₆alkyl substituted with phenyl or pyridinyl;

but \mathbb{R}^7 cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;

 \mathbb{R}^8 is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $N\mathbb{R}^1(C=O)C_{1-6}$ alkyl, or halogen;

 ${f R}^9$ is chosen from hydroxyl; $C_{1\text{-6}}$ alkoxy; $C_{1\text{-6}}$ alkoxy substituted with phenyl or pyridinyl which can be substituted with $C_{1\text{-4}}$ alkoxy or halogen; $NR^{16}R^{17}$; $C_{1\text{-6}}$ alkyl; or $C_{1\text{-6}}$ alkyl substituted with hydroxyl, $C_{1\text{-6}}$ alkoxy, $NR^{12}R^{13}$, CO_2H , $CO_2C_{1\text{-6}}$ alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkoxy, halogen, halo $C_{1\text{-4}}$ alkyl;

20

25

R¹¹ is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

 ${f R}^{12}$ and ${f R}^{13}$ are independently selected from hydrogen; $C_{1\text{-}6}$ alkyl; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halogen, or halo $C_{1\text{-}4}$ alkyl; $C_{2\text{-}6}$ alkyl

substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, NR¹COC₁₋₆alkyl, or halogen; or R¹², R¹³, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C₁₋₄alkyl or C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkoxy or halogen;

 \mathbf{R}^{14} and \mathbf{R}^{15} are independently selected from hydrogen, C_{1-6} alkyl, hydroxyl, C_{1-6} alkoxy, $(C=O)-R^{11}$, $S(O)_mR^8$, phenyl or pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with C_{1-6} alkyl, phenyl, or pyridinyl;

 R^{16} and R^{17} are independently selected from hydrogen; C_{1-6} alkyl; hydroxyl; C_{1-6} alkoxy; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; C_{2-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, halogen,

NR¹(C=O)C₁₋₆alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl, an imidazole such as imidazo-2-yl or imidazo-4-yl, a morpholine such as morpholin-3-yl, a piperidine such as piperidin-4-yl, oxazolyl, isoxazolyl, thiazolyl, tetrazolyl, pyridinyl, which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl, phenyl C_{1-4} alkyl, oxo (=O); or R^{16} , R^{17} , and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine, piperidine, piperazine, unsubstituted or substituted with C_{1-4} alkyl or C_{1-4} alkyl substituted with hydroxy, oxo (=O), C_{1-4} alkoxy, or phenyl;

m is 0 - 2;

A is N; and

10

20

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

- 3. The method of claim 2, wherein the compound of Formula A is:
- 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid amide;
- 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid methyl amide fumarate;
- 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (1-hydroxy-cyclopropylmethyl)-amide; or
- 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.
 - 4. The method of claim 3, wherein the compound of Formula A is 1-(S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.
 - 5. A compound of Formula A:

10

20

wherein \mathbf{R} , \mathbf{R}^1 and \mathbf{R}^2 are independently chosen from hydrogen, C_1 -alkyl;

 \mathbb{R}^3 is selected from hydrogen, C_{1-4} alkyl, or \mathbb{R}^2 and \mathbb{R}^3 can complete a pyrrolidine or piperidine ring, which can be substituted with C_{1-4} alkyl;

 \mathbb{R}^4 is hydrogen, halogen, C_{1-4} alkyl;

15

20

25

 \mathbf{R}^5 and \mathbf{R}^6 are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkylsulfoxide with halogen;

 R^7 is chosen from C=OR⁹; S(O)_mR¹⁰; NR¹-(C=O)-R¹¹; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H, CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵,

- phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from an oxazole such as oxazol-2-yl, 4,5-dihydro-oxazol-2-yl, or benzoxazol-2-yl, an oxazine such as 5,6-dihydro-[1,3]oxazin-2-yl, a thiazole such as thiazol-2-yl, 4,5-dihydro-thiazol-2-yl, or benzothiazol-2-yl, an imidazole such as imidazol-2-yl, or imidazolidin-2-yl, [1,2,4]oxadiazol-5-yl, [1,2,4]oxadiazol-3-yl, [1,2,4]thiadiazol-5-yl, or [1,2,4]thiadiazol-3-yl which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, phenyl or pyridinyl, or C₁₋₆alkyl substituted with phenyl or pyridinyl;
 - but R⁷ cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;
 - \mathbf{R}^8 is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $NR^1(C=O)C_{1-6}$ alkyl, or halogen;
 - R^9 is chosen from hydroxyl; C_{1-6} alkoxy; C_{1-6} alkoxy substituted with phenyl or pyridinyl which can be substituted with C_{1-4} alkoxy or halogen; $NR^{16}R^{17}$; C_{1-6} alkyl; or C_{1-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, $NR^{12}R^{13}$, CO_2H , CO_2C_{1-6} alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl;
 - R^{10} is chosen from $NR^{12}R^{13}$; C_{1_c} alkvl: CH_{2} pinenvl or CH_{2} pyridinyl which can be substituted with C_{1_6} alkyl, C_{1_6} alkoxy, halogen, or halo C_{1_4} alkyl; or C_{2_6} alkyl substituted with hydroxyl, C_{1_6} alkoxy, $NR^{12}R^{13}$, $CO_{2}H$, $CO_{2}C_{1_6}$ alkyl, phenyl, pyridinyl or imidazolyl which can be substituted with C_{1_6} alkyl, C_{1_6} alkoxy, halogen, halo C_{1_4} alkyl;

 R^{11} is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

R¹² and R¹³ are independently selected from hydrogen; C₁₋₆alkyl; CH₂Z, where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, NR¹COC₁₋₆alkyl, or halogen; or R¹², R¹³, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C₁₋₄alkyl or C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkoxy or halogen;

 \mathbf{R}^{14} and \mathbf{R}^{15} are independently selected from hydrogen, C_{1-6} alkyl, hydroxyl, C_{1-6} alkoxy, (C=0)- \mathbf{R}^{11} , $S(O)_m R^8$, phenyl or pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with C_{1-6} alkyl, phenyl, or pyridinyl;

R¹⁶ and R¹⁷ are independently selected from hydrogen; C₁₋₆alkyl; hydroxyl; C₁₋₆alkoxy; CH₂Z, where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, halogen, NR¹(C=O)C₁₋₆alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl, an imidazole such as imidazo-2-yl or imidazo-4-yl, a morpholine such as morpholin-3-yl, a piperidine such as piperidin-4-yl, oxazolyl, isoxazolyl, thiazolyl, tetacolyl, pyridinyl, which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenylC₁₋₄alkyl, oxo (=O); or R¹⁶, R¹⁷, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine, piperidine,

piperazine, unsubstituted or substituted with C_{1-4} alkyl or C_{1-4} alkyl substituted with hydroxy, oxo (=0), C_{1-4} alkoxy, or phenyl;

m is 0 - 2;

A is N or CH; and

- X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.
 - 6. The compound of claim 5, wherein for Formula A: wherein \mathbf{R} , \mathbf{R}^1 and \mathbf{R}^2 are independently chosen from hydrogen, C_{1-4} alkyl;
- \mathbf{R}^3 is selected from hydrogen, C_{1-4} alkyl, or \mathbf{R}^2 and \mathbf{R}^3 can complete a pyrrolidine or piperidine ring, which can be substituted with C_{1-4} alkyl; \mathbf{R}^4 is hydrogen, C_{1-4} alkyl;
 - \mathbf{R}^5 and \mathbf{R}^6 are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkyl substituted with halogen;
- R⁷ is chosen from C=OR⁹; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H, CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from an oxazole such as oxazol-2-yl, 4,5-dihydro-oxazol-2-yl, or benzoxazol-2-yl, an oxazine such as 5,6-dihydro-[1,3]oxazin-2-yl, a thiazole such as thiazol-2-yl, 4,5-dihydro-thiazol-2-yl, or benzothiazol-2-yl, an imidazole such as imidazol-2-yl, or imidazolidin-2-yl, [1,2,4]oxadiazol-5-yl, [1,2,4]oxadiazol-3-yl, [1,2,4]thiadiazol-5-yl, or [1,2,4]thiadiazol-3-yl which can be unsubstituted or substituted or pyridinyl;
 - but \mathbb{R}^7 cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;

 \mathbf{R}^{8} is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $NR^{1}(C=O)C_{1-6}$ alkyl, or halogen;

 ${f R}^9$ is chosen from hydroxyl; $C_{1\text{-}6}$ alkoxy; $C_{1\text{-}6}$ alkoxy substituted with phenyl or pyridinyl which can be substituted with $C_{1\text{-}4}$ alkoxy or halogen; $NR^{16}R^{17}$; $C_{1\text{-}6}$ alkyl; or $C_{1\text{-}6}$ alkyl substituted with hydroxyl, $C_{1\text{-}6}$ alkoxy, $NR^{12}R^{13}$, CO_2H , $CO_2C_{1\text{-}6}$ alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halogen, halo $C_{1\text{-}4}$ alkyl;

5

10

15

20

25

 R^{11} is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

R¹² and R¹³ are independently selected from hydrogen; C₁₋₆alkyl; CH₂Z, where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, NR¹COC₁₋₆alkyl, or halogen; or R¹², R¹³, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C₁₋₄alkyl or C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkoxy or halogen;

 \mathbf{R}^{14} and \mathbf{R}^{15} are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, hydroxyl, $C_{1\text{-}6}$ alkoxy, (C=O)- R^{11} , $S(O)_m R^8$, phenyl or pyridinyl which can be substituted with $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$. alkoxy, halogen, or halo $C_{1\text{-}4}$ alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with $C_{1\text{-}6}$ alkyl, phenyl, or pyridinyl;

 \mathbb{R}^{16} and \mathbb{R}^{17} are independently selected from hydrogen; C_{1-6} alkyl; hydroxyl; C_{1-6} alkoxy; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen,

or haloC₁₋₄alkyl; C₂₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, halogen, NR¹(C=O)C₁₋₆alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl, an imidazole such as imidazo-2-yl or imidazo-4-yl, a morpholine such as morpholin-3-yl, a piperidine such as piperidin-4-yl, oxazolyl, isoxazolyl, thiazolyl, tetrazolyl, pyridinyl, which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenylC₁₋₄alkyl, oxo (=O); or R¹⁶, R¹⁷, and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C₁₋₄alkyl or C₁₋₄alkyl substituted with hydroxy, oxo (=O), C₁₋₄alkoxy, or phenyl;

m is 0 - 2;

10

15

A is N; and

X and Y are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

- 7. The compound of claim 6, wherein for Formula A: R^7 is not a substituted C_{1-6} alkyl.
- 8. The compound of claim 7, wherein the compound is:
- 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid amide;
 - 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid methyl amide fumarate;
 - 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (1-hydroxy-cyclopropylmethyl)-amide; or
 - 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.

9. The compound of claim 8, wherein the compound is 1-((S)-2-Aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.