IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s) : Wei et al.

U.S. Serial No. : 10/650,365

Confirmation No. : 7677

Filed : August 28, 2003

Examiner : Jegatheesan Seharaseyon

Art Unit : 1647

For : RECOMBINANT SUPER-COMPOUND INTERFERON

Law Offices of Albert Wai-Kit Chan, LLC

World Plaza, Suite 604 141-07 20th Avenue Whitestone, New York 11357

July 3, 2007

Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir/Madam:

SUPPLEMENTAL RESPONSE TO AUGUST 23, 2005 OFFICE ACTION

This Amendment is being submitted as a Supplemental Response to the August 23, 2005 Office Action which was issued by the United States Patent and Trademark Office (USPTO) in connection with the above-identified application.

Priority

The Examiner acknowledged Applicants' claim for foreign priority based on an application filed in China on February 28, 2001. However, the Examiner also noted that Applicants did not file a Applicant(s) : Wei et al. U.S. Serial No.: 10/650,365 Filed : August 28, 2003

Page : 2

translated copy of the Application No. CHINA 01104367.9. Therefore the priority is set forth as the filing date of the instant application. Consequently, Applicants respectfully submit Exhibit 1 (16 pages), which is the European counterpart of Applicant's International application referring to the same invention. It serves as the English translation of PCT/CN02/00128 and claims priority to Chinese Patent CN 01104367.9, filed on February 28, 2001.

If a telephone interview would be of assistance in advancing the prosecution of the subject application, Applicants' undersigned attorney invites the Examiner to telephone him at the number provided below. If any additional fee is required, authorization is hereby given to charge the amount of any such fee to Deposit Account No. 50-1891.

Respectfully submitted, Others. Wai Kit Che

Albert Wai-Kit Chan
Registration No. 36,479
Attorney for Applicant(s)
Law Offices of
Albert Wai-Kit Chan, PLLC
World Plaza, Suite 604
141-07 20th Avenue
Whitestone, New York 11357
Tel: (718) 799-1000
Fax: (718) 357-8615
E-mail: chank@kitchanlaw.com

EXHIBIT 1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 17.12.2003 Bulletin 2003/51
- (21) Application number: 02702211.0
- (22) Date of filing; 28,02,2002

- (51) Int Ct.7: A61K 38/21, A61P 1/16. A61P 31/12, C12N 15/20, C12N 15/63, C12N 15/70
- (86) International application number: PCT/CN02/00128
- (87) International publication number: WO 02/080958 (17.10.2002 Gazette 2002/42)
- (84) Designated Contracting States: AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 28,02,2001 CN 01104367
- (71) Applicant: Sichuan Biotechnology Research Center Chengdu City, Sichuan 610017 (CN)

- (72) inventors:
 - · WEI. Guangwen ChengduCity, Sichuan 610017 (CN)
 - · GUO, Ronabina ChengduCity, Sichuan 610017 (CN)
 - · ZHANG, Renhual Chengdu City, Sichuan 610017 (CN)
- (74) Representative: Capasso, Olga et al de Simone & Partners Via Vincenzo Bellini, 20 00198 Roma (IT)
- (54)RECOMBINATION SUPER COMPOUND INTERFERON USED AS HEPATITIS B SURFACE ANTIGEN AND E ANTIGEN INHIBITOR
- The present invention relates to the use of recombination super compound interferon (rSIFN-co) as

hepatitis B surface antigen and e antigen inhibitor, in which the dimensional structure of said interferon protein has been changed.

Pioure 1

5.				11			¥23				31			43			51				
+3	74	c	D	L	P	٥	T	н	8	L	0	10	Ħ	2	а	ī.	1	L	L	A	
- 1	200	100	WAL.	PP 7	MT	w	San	TYC	2777	N	mer.	nna	P . B	roon	No a	m	***	YOU'T	*	TGCTG	ana
_	100	12.0			++4	100	return.	be	The		din h	-		ocor		VAD.		cm.		ACCAC	don
	***	٠,,,	~~		***			~		,.	,,,,	,	***	GWW			Righ		~~	ecces.	
۶٠				71			83				91			1			11				
-1	•	N	D		τ	8	91 P	P	А	r	т.	×	n	٠.	17	n	•	a		D	
67	ä	300	ŵ	•~~	m.	mer.	-000	n	-	.~	***	cer.		***	٦n.		ź	~	٠.	ocurr	ann
																				CONN	
	œ	YIW.	CMC	MA C	XO	w	KKKK	Cal	WI.	ruu	NLU	UAL	-24	rex	ar c	ag	AC.	CAN	. oc	COUVY	gac.
														•							
	_	_		**			y 41	٠.		-	٠.		-	94	-	-		٠		_	
+1	_9					<u> </u>		٧.	٠	- 9	K	٠.	. 2	_ A			×.	L	и.	TGCAC	
137	24	MARK.	AMA	SE A	Cu	RYU	MUAR	CL	344	Lic	CRU	N	Har	TOM	3G C	ZAA:	CZC	TO	· AC	TECNO	GVV.
	GT	Cr	CT	CA A	OC.	wb	207.7	ad	27	MG	axc	443	PCX2	AGTO	20 0	277	ONG	MCA	. 70	ACGTG	CTT
5.				91			N				2l			21			31				
+3		ı x	Q	Q	7	F	N	I,	₽	8	- 1	×				λ		**	D	R	
181	. 20	CAD	CCA	vc i	KGN.	ccx	TUA	ιco	220	TEL	TĈC	AC:	KAZ	AGA	CA C	CT	1700	TGC	77	QCCAC	GAA
	TA	CTA	TOD	T\3 7	CP	DOM:	רינוסה	a	ac	KAA	Agg	761	177	TOTAL CO.	ar c	YIM	arv	an	64	CCCTG	CHAN.
5.				SI.			82 ¥				71			51			91				
+1	9	τ.	z.		ĸ		v	T	R	r.		n	^	T.	20	n	T.				
241		CTT	THEY	YYO I	veza.	MOT	erre i	Č	100	200	cross	700	·~·	000	27.5	man'	~	-		wacx	2000
	ME	23.0	~	000		TVTE.	MARC	0	MA		CAC		-	men.	20.	070	-	~~	90	TTCOL	100
	**					•		,		***	unc	^**	1031	COL		u.r.	. IGC 3	- COU		ricur	AU, LA
61				21			21				31			41			-				
+1		r	ο	8	v	0		2	29	т	₋ -				17					A	
201	e e			~		-	-		~~~				::			~_					

CATTAGOTOC TYCHACCACA TOTTCTCTUA DUCCACTACT TECAGCTGAG

Description

10

15

FIELD OF THE INVENTION

[0001] This invention is related to a recombinant super-compound interferon (rSIFN-co) with changed dimensional structure. The characteristic of rSIFN-co in this invention is that it cannot only inhibit DNA (deoxyribonucleic acid) duplication of the hepatitis 5 virue but also the secretion of HBsAg and HBsAg.

BACKGROUND OF THE INVENTION

[0002] rSIFN-co is a new interferon molecule constructed with the most popular conservative amino sold found in natural human or-IPN subtypes using genetic engineering methods. United States Patent Nos. 4,685,623 and 4,897,471 have described it. rSIFN-co not been proved to have bread-epsectrum IFN settify and virus—and tumor-inhibition and natural killer cell activity. United States Patent No. 5,372,806 by Amgen, Inc. addresses treatment rSIFN-co. Chinese Patent No. 9713500.8 by Amgen, Inc. addresses re-treatment of rSIFN-co on hopsitile C. Chinese Patent No. 99114683.5 by Shenzhen Jlusheng Blo-engineering Ltd. addresses treatment of rSIFN-co on Forestite S and hepstitis C.

[9003] The United States Food and Medicine Administration (FDA) authorized Amgen Ltd. to produce rSIFN-co with E. Coli. for clinical hepatitis C treatment at the end of 1997.

[0004] Hepatitis B patients can be identified when detecting HBsAg and the HBsAg. o.IFN is commonly used in clinics to treat hepatitis B. IFN binds superficial cell membrane receptors, inhibiting DNA and RNA (ribonucleic acid) duplication, including inducing some enzymes to prevent duplication of the virus in hepatitis-infected cells. All IFNs can inhibit only the DNA duplication of viruses, not the e and a antigen.

5 DETAILED DESCRIPTION OF THE INVENTION

Invention Component

[0005] It was surprising to find that rSIFN-cc, the dimensional structure of which has been changed, is not only a preparation to inhibit the DNA duplication of hepatitis B, but to inhibit the secretion of HBsAg and HBsAg.

[0006] The objective of this invention is to offer a preparation of rSIFN-co to inhibit the DNA duplication of hepatitis B witness and the secretion of HBaAg and HBaAg of hepatitis B and decrease them to normal levels.

[0007] Results of this invention: The production of ISIFN-oo with recombinant techniques. On the condition of fixed amino acid sequence, the IFN DNA was redesigned according to the E. Colf. codon usage and then the ISIFN-oo gene was artificially synthesized.

[0068] "SIFN-co cDNA was cloned into the high-expression vector of *E. Coll* by DNA recombinant techniques, and a high expression of rSIFN-co was gained by using of induce/activate-mechanism of L-arabinose to activate the transcription of P_{BAD} promoter.

[0099] Compared with usual thermo-induction, pH induction and IPTG induction systems of genetic engineering, arabinose induction/activation systems has some advantages: (1) Common systems relieve promoter function by ore-aiting a "derepression" plattern. Promoters then induce downstream gene expression. So temperature and pH change and the addition of IPTG cannot activate promoters directly. In the system disclosed herein, Larabinose not only denotivates and represses but also activates the transcription of Papa Promoter which induce a high expression of rSIRN-co. Therefore, the arabinose obset induction/activation system is a more effective expression system. (2) The relation between Exogenous and Larabinose obset geis linearity. This means the concentration of arabinose can be changed to adjust the expression level of the exogenous gene. Therefore, it is easier to control the exogenous gene expression level in Exocity by arabinose shan by changing temperature and pH visitus. This characteristic is significant for the formation of inclusion bodies. (3) Larabinose obset is resourceful cheap and safe, which, on the contrary, are the disadvantages of other inducers such as IPTG.

[0010] This invaniton creates an effective and resistant rSIFN-co-expressing E. Coll, engineering strain with an Larabinese induction/activation system. The strain is autivated and formanced under suitable conditions to harvest the bacterial bodies. Inclusion bodies are then purified after descripting bacteria and washing repeatedly. The and result, mass of high-purity, dimensional-structure-changed GIFN-co-protein for this invention and for clinical treatment, was gained from denaturation and renaturation of inclusion bodies and a series of purification steps.

[0011] The following are some rSiFN-co preparations: tablets, capsules, oral liquids, pastes, nijections, sprays, suppositories, and solutions, injections are recommended, it is common to suboutaneously inject or vein-inject the medicine. The medicine carrier could be any acceptance medicine carrier, including carbohydrate, cellulosum, adhesive, collapse, emoillent, filling, add-dissolve agent, amoritzation, preservative, add-thick agent, matching, dot.

DETAILED DESCRIPTION OF THE FIGURE

[0012] Figure 1, DNA coding sequence and deduced amino acid sequence of rSIFN-co

5 EXPERIMENTAL DETAILS

Embodiment experience:

[0013] The Invention disclosed herein also experimentally verifies that the dimensional-structure-changed rSIFN-co can inhibit HBV-DNA duplication and secretion of HBsAq and HBeAq.

Materials

[0014] Solvent and Dispensing Method: Add 1ml sailne into each yiel, dissolve, and mix with MEM culture medium at different concentrations. Mix on the spot.

[0015] Control drugs: IFN-a2b (Intron A) as lyophilized, purchased from Schering Plough. 5×10⁶U each, mix to 3×10⁸U/mi with culture medium; INFERGEN (Illquid solution), purchased from Amgen, 9ug, 0.3ml each, aqual to 9×10⁸U, and mix with 9×10⁸U/mid culture medium preserve at 4°C; 2.2.15 cell; 2.2.15 cell line of hepatoma (Hep G2) cloned and fransfected by HBV DNA, constructed by Mount Shal Medical Center.

[0016] Reagent: MEM powder, Gibco American Ltd. cattle fetal blood serum, HyotoneLab American Ltd. G-418(Geneticin); MEM dispensing, Gibco American Ltd.; L-Ghistmyl, Imported and packaged by JINOX KE Chemical Ltd.; HBsAg and HBsAg old-phase radio/munroessey box, Northward Reagent Institute of Chinese isotope Ltd.; Biograncetine, Northward Chine Medicine; And Lipotectin, Gibco American Ltd.

[0017] Experimental goods and equipment: culture bottle, Denmark Tuncton™; 24-well and 96-well culture board, Coming American Ltd.; AlEM culture medium 100ml: 10% cattle fetal blood serum, 3% Glutarnyi1%, C418 980µ/ml. blograncetinaE0Uml.

Method:

20

50

[0018] 2.2.15 cell culture: Added 0.26% pancreatic enzyme into culture box with full of 2.2.15 cell, digest at 37°C for 3 minutes, and acto culture medium to stop digest and disturb it to disperse the cells, reproduce with ratio of 1.3. They will reach full growth in 10 days.

[0019] Medicine toxicity test: In this test, set groups of different medicine concentrations and a control group in which cell is not acted on with medicine. Digest cell, and dispense to a 100,000 cellwin solution. Inoculate to 96-well culture board, 2004 each well, culture at 37°C for 24% with 5% CO₂. Test when simple cell layer grows.

[0020] Dispense rSIFN-co to 1.8×107/L/ml solution than prepare a series of solutions diluted at two-fold gradients. Add Into 88-well culture board, 3 wells per concentration. Change the solution every 4 days. Test cytopathic effect by microscope after 8 days. Fully destroy as 4, 75% as 3, 50% as 2, 25% as 1, zero as 0, Calculate average cell lesion and inhibition rate of different concentrations. Calculate TCS0 and TCS according to the Read Muench method.

TC50 = Antilog (B +
$$\frac{50-B}{A-B}$$
 × C)

A∞log >50 % medicine concentration, B∞log<50 % medicine concentration, C∞log dilution power

[0021] Inhibition test for HBeAg and HBeAg: Separate into positive and negative HBeAg and HBeAg contrast groups, call contrast group and medicine concentration groups, incoulate 700,000 cellerin of 2.2.15 cell into 6-well culture board, 3 ml each well, culture at 57°C for 24h with 6% CO₂, then prepare 6 gradethy diluted solutions with 3-fold as the grade (Prepare 5 solutions, each with a different protein concentration. The concentration of Solution 12 is 3 times lower than that of Solution 1, each with a different protein concentration. The concentration of Solution 3 is 5 times lower than that of Solution 2, etc.) 4.5×10⁶U/ml, 1,5×10⁶U/ml, 0.5×10⁶U/ml, 0.5×10⁶U

[0022] Medicinal effects calculation: Calculate opin mean value of contrast groups and different-concentration groups and their standard deviation, P/N value such as Inhibition rate, IC50 and SI.

1) Antigen inhibition rate (%) =
$$\frac{A-B}{A} \times 100$$

[0023] A = cpm of control group; B = cpm of test group; 2) Counting the half-efficiency concentration of the medicine

Antigen inhibition IC50 ≈ Antilog (B + 50-B × C)

A=log>50% medicine concentration, B=log<50 % medicine concentration, C=log dilution power
3) Si of interspace-conformation changed rSIFN-co effect on HBsAg and HBsAg in 2.2.15 cell culture:

 $Sl = \frac{TC50}{IC50}$

4) Estimate the differences in cpm of each dilution degree from the control group using student ritest

F00241 Southern blot: (1) HBV-DNA extract in 2.2.15 cell: Culturo cell 8 days. Exsuetion culture medium (Separate cells from culture medium by means of draining the culture medium.) Add lysis buffer to break cells, then extract 2 times with a mixture of phenol, chilorform and isosamy alsocial (1:11), 10,000 gentrifuge. Collect the superater adding anhydrous alcohol to deposit nucleic acid. Vecuum draw, realisable into 20µTE buffer. (2) Electrophoresis: Add eXDNA loading buffer, ielectrophoresis or 1.5% egarose gel. IV/cm, at fixed pressure for 1.4-18h. (3) Denaturation and hydridization: respectively dip gel into HCI, denaturation buffer and neutralization buffer. (4) Transmembrane. Take, hydridize and expose with dot blot hybridization. Scan and analyze relative density with gel-pro software. Calculate inhibition rate and ICSP.

Besults

25 [0025] Results from Tables 1, 2 and 3 show: After maximum innocuous concentration exponent culturing for 8 days with 2.2.15 cell, the maximus in Cultox109/LVml and the everage inhibition rate of maximum innocuous concentration. ASIFN-co to HBaAg is 40.55.25% (Pc-0.001), IGS0 is 4.645.132×109/LVml, Si is 3.96; rate to HBsAg is 44.85.85%, IGS0 is 6.48±0.42×109/LVml, Si is 2.77. This shows that YSIFN-co can significantly inhibit the activity of HBsAg and HBsAg, but that the IFN of the contrast group and INFERGEN cannot. It has also been proved in clinic that YSIFN-co can decrease HBsAg and HBsAg or return them to normal levels.

[0026] The following are some examples for the preparation of rSIFN-co:

Example 1: Preparation of lyophilized Injection

55 [0027]

a) rSiFN-co 3 × 108 IU

b) citric acid 0.2 mg

c) dibasic sodium phosphate 2,5 mg

d) NaCl 4.0 mg

e) dextran 20 mg

f) Polyoxyethelene anhydrosorbitol monoelaeo-acids ester 0.1 ml

g) inject water to a level of 1.0 ml

5 [0028] Preparation technique: Weigh materials according to recipe. Dissolve with sterile and pyrogen-free water. Filter through 0.22µm membrane to de-bactorialize, preserve at 6-10°C. Fill in visits after affirming it is sterile and pyrogen-free. Add 1.0 ml solution to each bottle, and typolitize in freeze dayer.

Example 2: Preparation of liquid injection

[0029]

a) rSIFN-co 3 × 108 IU

b) citric acid 0.2 mg

c) dibasic sodium phosphate 2.5 mg

d) NaCl 4.0 mg

e) dextran

f) Polyoxyethelene anhydrosorbitol monoelaeo-acids ester 0.1 ml

g) inject water to a level of 1.0 ml

10

[0030] Preparation technique: Weigh materials according to recipe. Dissolve with sterile and pyrogen-free water. Filter through 0.22µm membrane to de-backerialize, preserve at 6-10°C. Fill in airtight vial after affirming it is sterile and non-pyrogen at 1.0 ml por vial. Store and product at 2-0°C, and protect from light.

Table 1. Results of inhibition rate of rEIFN-co to HBsAg and HBsAg First batch: (rEIFN-co)

35

					Inhibition	Inhibition effect to Hearg	, HBeAg				-
Concentration	First	Second	Third	Inh	Inhibition rate	tte	Average			Accumulated	_
(×10'IU/ml)	well	Well	we13	First well	Second well	Third well	inhibition	Accumulation	Accumulation	inhibition	-
900	9026	9268	9470T	0.436227	0.43935	0.345659	0.407079	0.945909	0.592921	0.614693546	_
300	9196	12082	36001	0.3993754	0.245347	0.369269	0.337997	0.5388299	1.254924	0.300382323	_
100	9822	1,6002	12800	0.386508	0.0008	0.2005	0.195836	0.200833	2.059088	0.08867188	
33.3333	15770	15306	16824	0.014991	0	0	0.004997	0.0049969	3.054091	0.001633453	
11111111	19172	22270	18934	0	0	0		0	4.054091		
Control	Ce]]	16010		Blank	0		Dilution	3	ICSO	607 74446016	_
		4	Yuk	Inhibition effect to HBBAg	ect to IBs.	Ag					-
Concentration	First	Second	Third	H.	Inhibition rate	te	Average			Accumilated	_
(x10*TU/m1)	we11	well	well	First	Second	Third	inhibition	Accumulation	Accumulation	inhibition	
900	2706	7240	7114	0.342155	0.381936	0.392693	0.372261	0.922258	0.627739	0.495006426	_
300	9886	7778	3475	0.2439816	0.336008	0.191053	0.257014	0.5499972	1.370724	0.286349224	-
100	10818	10720	10330	0.07649	0.084856	0.118149	0.093165	0.292983	2.27756	0.113977019	-
33,3333	10744	11114	10570	0.082807	0.051221	199260.0	0.07723	0.1998179	3.20033	0.058767408	 -
11.1111	10672	9352	10810	0.088953	0.201639	0.077173	0.122588	0.122588	4.077742	0.02918541	
Control	cell	11714		Blank	0		Dilution ,	3	ICSO	641.7736749	

Second batch: (rsIFM-co)

				Zuhibs	Inhibition effect to MBeAg	ot to MBeAg				
Concentration	First	Second	Third	qu	Inhibition rate	te.	Average			Accommisted
(×10*IU/m1)	well	well	well	First well	Second well	Third well	inhibition	Accumulation	Accumulation	inhibition
900	7818	9158	9350	0.554378	0.514592	0.467054	0.512008	1.371181	0.487992	0.737521972
300	10344	10628	93.60	0.4103967	0.394209	0.477884	0.427497	0.8591731	1.060496	0.447563245
100	12296	14228	13262	0.299134	0.18901	0.244072	0.244072	0.4316522	1.816423	0.19201839
33.3333	15384	17414	16188	0.124259	0.00741	0.77291	0.069653	0.1876045	2.74677	0.063933386
11.1111	17386	13632	15406	0.009006	0.222983	0.121865	0.117951	0.117951	3.628819	0.03148073
Control	Ce11	16962		Blank	a		Dilution	-	ICSO	365.9357845
			Inhi	Inhibition effect to HBsAg	ect to HBB1	Ag		ľ		
Concentration	Piret	Serond	mb i mg	dal	Inhibition rate	te	Average			Accumulated
(x104IU/m1)	well	well	re II	Pirst well	Second well	Third well	inhibition rate	Accumilation	Accumulation	inhibition
900	5784	6198	57.92	0.498265	0.462353	0.497571	0.486063	0.893477	0.513937	0.634835847
300	7150	8534	8318	0.37977I	0.259715	0.278452	0.30598	0.4074138	1.207957	0.252210647
100	0686	11313	10210	0.147294	0.027412	0.11433	0.096345	0.101434	2.111612	0.04583464
33.3333	13942	89821	13478	0			0	0.0050891	3.111612	0.001632835
11.1111	12418	11634	11352	0	0	0.015267	0.005089	0.005089	4.106523	0.001237728
Control	Cell			Blank	.o		Dilution	3	ICSO	611.0919568

.

Third batch: (rSiFW-co)

20

25

35

50

				Inhib	Inhibition effect to HBeAg	ot to HBeA	9			
Concentration	First	Second	Third	qu <u>I</u>	Inhibition rate	re-	Average	Account 1 at in	4	Accumulated
(×10,10/m1)	we11	well	well	First well	Second	Third	inhibitio n rate	T T	Accumulation	inhibition
900	9702	9614	8110	0.428016	0.433204	0.52187	0.461031	1.316983	0.538969	0.709599543
300	8914	16032	8870	0.4744723	0.40856	0.47706	0.453366	0.8559525	1.085603	0.440859127
100	1.631.2	12688	13934	0.038321	0.251975	0.17851	0.156271	0.402586	1.929332	0.172641621
33.3333	15080	12814	13288	4.110954	0.244547	0.21660	107061.0	0.2463153	2.738631	0.082519156
1111111	21928	15366	15728	9	0.094093	0.07275	0.0055615	0.055615	3.683017	0.014875633
Control	Cell	17544		Blank			Dilution	3	ICSO	382.0496935
			Inhibi	Inhibition effect to HBsAg	to HBsAg					
Concentration	First	Second	Third	Inh	Inhibition rate		Average	Accumus 1 at in	-1	Accumilated
(×10*IU/ml)	well	well	well	First well	Second	Third	inhibitio n rate		Accumulation	inhibition
D06	5616	6228	5346	0.496864	0.442035	0.52105	0.486651	0.763125	0.513349	0.897838293
300	8542	8590	7096	0.234725	0.230425	0.36427	0.276474	0.2764738	1.236875	0.182690031
100	11420	11360	11394	0	0	0		0	2.236875	0
33.3333	12656	11582	13110	0	0	Б	0	0		0
11.1111	13142	12336	13342	0		0		0	4.236875	0
Control	Ce1.1	11528		Blank	0		Dilution	n	ICSO	694.7027149
HeeAq: Average IC50:		450.2434	SD:	132,315479						

HBeAg: Average IC50: 450.2434 SD: 132.315479 HBaAg: Average IC50: 649.1894 SD: 42.29580

Table 2: Results of imbibition rate of Intron A(IFN-q2b) to MBSAg and MBeAg

					Inhibition effect to HBeAg	effect to	HBeAg			
Concentration	First	Second	Third	TP.	Inhibition rate	ite	Average			Accumulated
(×10'IU/ml)	well	well	we11	First Well	Second well	Third	inhibition	Accumulation	Accumulation	inhibition
300	14918	11724	0566	•	0.029711	0.176529	0.068747	0.068747	0.933253	0.058746724
100	14868	16890	15182	a	0	0	0		1.931253	0
33.33333	16760	21716	16400		0	0	0	0	2.931253	0
11.1111	20854	15042	16168		0	0	0	0	3.931253	
3.703704	12083	12083	12083	0	0	0	0	0	4.931253	0
Control	Cell	17544		Blank	0		Dilution	6	ICSO	PALSE
			Inhi	Inhibition effect to HBSAg	ect to HBS	Ag.				
Concentration	Piret	Second	Third	TEL TEL	Inhibition rate	ite	Average			Accumlated
(x104IU/ml)	wel]	well	we]]	First well	Second well	Third	inhibition rate	Accumulation	Accumulation	inhibition
300	9226	9136	. 8596	0.152489	0.247106	0.521054	0.1708	0.189295	0.8292	0.185857736
100	10946	10340	10828	٥	0.050136	0.050156 0.364272	0.018495	0.0184947	1.810705	0.010110817
33.3333	12250	12980	13934	0	0		0	0	2.810705	0
11.111	12634	12342	12000	0	0		٥	0	3.810705	0
3.703704	10886	10886	10886	0		ه.	0	o	4.810705	0
Control	Ce11	10886		Blank	0		Dilution	3	ICSO	PALSE
									-	

Table 3: Mesults of inhibition rate of Infergen to MBsAg and Heady First batch: (Infergen)

	/Heeven	-								
				1	Inhibition effect to HBsAc	effect to	RBeAg			
Concentration	1770		1	Int	Inhihition rave	40	The state of			
	22774	200000	THIL	ı	10000		Sprane		•	Account ated
(x104IU/ml)	well	well	we11	First	Second	Third	inhibition rate	Accumulation	Accumulation	Inhibition
006	14172	12156	17306	0.091655	0.220869	0	0.104175	0.306787	20000	7400
300	13390	12288	16252	0.1417767	0.212409		130061		0.633043	0.254710274
100	14364	14364 18834	14194	0 079348			-	0.4043621	1.777784	0.102024519
12 22223	10000				>	0.090245	0.056531	0.083921	2.721232	0.029916678
	2		19360	9	0		•	0.0273897	3.721232	0.007306592
21.1111	17504	17652	14320	0	0	0.082169	0.02739	0.02739	4 603043	
Control	Cell	15602		Blank	c		The Trade Com			1/5700500.0
			1		,		VIIIIC1ON	-	1030	FALSE
				and plan ellect to HBsAg	et to HBs	g				
Concentration	Pirst	Second	Third		Inhibition rate	te.	Average			Accumulation
(x10,III/mI)	well	well.	well	First	Second	Third	inhibition	Accumulation		inhibition
				Well	well	well	rate		Accumilation	rate
900	12080	11692	12234	0	0.01275		0.00425	0.075163	n bacte	
300	12840	11484	12350		0,030313	0	0.010104	0.000126	2000	1771 EB #20 0
100	12894	14696	15086					207.00	T. 303040	0.010422073
33,33333	15015	12020			,	,	,	0.010808	2.985646	0.003606955
		2000		-		0	0	0.0108081	3.985646	0.002704416
11.11.11	11734	11984	11508	0.604137	0	0.028267 0.010808	0.010808	0.010808	4.974837	0.002167838
Control	Cell	11843		Blank	0		Dilution	3	10.40	20140
										TOTAL OF

Second batch: (Infergen)

			-	Tabita	it ion order	Tabibition offices to smeat				
					STORE STATE	CC CO DEEME				
Concentration	First	Second	Third		Inhibition rate	tte	Average			Accumulated
(x10*1U/ml)	we11	well	well	First well	Second	Third	inhibition	Accumulation	Accumulation	inhibition
900	6278	9459	6408	0.200051	0.187564	+-	0.190367	0 274636	200000	
300	2692	2606	6394	0.0158777	0	0.18527		0190790	200000	V. 23.2530303
100	8960	7474	8190	0	0.047655		0.015885	0.025000	7 27576	0.046161005
33.3333	9530	8144	9682	0	0		0	0	2 4453553	0.002794855
11.111	7848	7848	7848	0	0				4 725365	
Control	GET.	7848		Blank			Dilution		2022	Dat co
			Inh	Inhibition effect to HBSAq	ect to HBs	9				2000
Concentration	First	Second	Third	dal	Inhibition rate	te	Average			Accountlated
(×10*TU/ml)	well	well	ie H	First	Second Well	Third well	inhibition	Accumulation	1- Accumulation	inhibition
900	12364	12268	12274	0.036171	3655	0.043187	0.041604	0.140162	0.958996	0 12751773
300	11590	12708	31751	0.0965076	0.009355	0	0.035287	0.0991581	1.923709	O. De 90128.6
100	12448	13468	13982	0.029623		0	0.009874	0.063871	2.913834	0.02144964
33.33333	12616	11346	12444	0.016526	0.115529	0.029935	0.053996	0.0539965	3.859838	0.013796309
11.1111	12828	12828	12828	٥	٥	0	0		4.859838	
Control	Cell	12828		Blank	0		Dilution	m	ICSO	PALSE
						-		7		

Third batch: (Infergen)

30

50

55

			-							
				Inhibit	ion effec	Inhibition effect to HBeAg				
Concentration	Pirch	Serond	Ţ.	Tub.	Inhibition rate	ate	Average			Acoumilate
(×10*IU/ml)	we11	well	well	First well	Second well	Third	inhibitio n rate	Accumulation	Accumulatio	d inhibition
300	7240	6642	6158	0.064599	0.1418	0.20439	0.136951	0.217399	0.863049	0.20121173
300	11072	8786	6902	0		0.10826	0.03609	0.0804479	1.82596	0.04217656
100	7015	9726	7552	0.09354	6	0.02428	0.039276	0.044358	2,787683	0.01566301
33.3333	7622	8866	8676	0.015245	0		0.005082	0.0050818	3.782601	0.00134167
11.1111	7740	7740	7740	0						1
Control	811	7740		Blank].		Dilution	,	4.782501	0
			Inhibition	Inhibition effect to HBsAg	2 HBSAG				1030	FALSE
Concentration	almia			Inh	Inhibition rate		Paroma de			Acresses 1 at-
(xio,in/m1)	well	well	well	First	Second	Third	inhibitio	Accumulatio n	Accumulatio	Inhibition
900	110%	11055	1						,	rate
100		2007	41302	0.04775			0.015917	0.015917	0.984083	6.01591679
200	13454	12896	11798	0	•	0		٥	1.984083	
100	12846	13160	12546	0				0	T	
33.3333	12680	12458	12360	0	0		0	0	†	
11.1111	11602	11602	11602				0	0	†	
Control	Ce II	11602		Blank	0		Dilution		YORK	10.11
Stanton American						1		-	2000	T STATES

HBeAg: Average IC50: 0 SD: 0

Claims

- A recombinant super-compound interferon (rSIFN-co) with changed 3-dimensional structure and improved efficacy
 which can inhibit the DNA duplication and secretion of HBsAg and HBsAg of HBV.
- The interferon of claim 1, wherein the 3-dimensional change was the result of changes of its production techniques, and efficacy gains not seen in interferon described in U.S. Patent Nos. 4,896,823 and 4,897,471.
- A super-compound interferon of claim 1 or claim 2, wherein it has its unique secondary and tertiary structure which elicit its special efficacies.
 - A super-compound interferon of claim 1 or claim 2, produced by a highly efficient express system which is constructed with a special promoter.
- The super-compound interferon of claim 4, wherein the promoter is Pape.
 - The super-compound interferon of claim 4, wherein its gene is artificially synthesized cDNA, adjusted according to codon preference of E. Coll.
- A process for production of recombinant super-compound interferon recited in claim 1 or 2.
 - The process for production of claim 7, comprising extraction of super-compound interferon from fermentation broth, collection of inclusion body, denaturation and renaturation of the harvested protein.
- The process of claim 7, wherein the process maintains the high efficacy even when the super-compound interferon
 is used with an agent and in a particular concentration.
 - The process of claim 7, comprising separation and purification of the super-compound interferon.
- 30 11. The process of claim 7, comprising lyophilization of purified super-compound interferon.
 - 12. The process of claim 7, comprising production of liquid injection of super-compound interferon.
 - 13. Uses of super-compound interferon in preparing medicines for inhibition of HBV-DNA, HBsAg and HBeAg, wherein the virus diseases comprising hepatitis A, hepatitis B, hepatitis C, other types of hepatitis, infections of viruses such as: Epstein-Barr virus, HIV, herpes wiruses (Epstein-Barr virus, Cyomeogladvirus, herpes simplex viruses), papovaviruses, poxviruses, picomaviruses, adenoviruses, rihnoviruses, human T cell leukaemia viruses II, or human T cell leukaemia viruses II.
- 14. Uses of claim 1 and 2, wherein the super-compound interferon selected for interferon is α, β, γ such as, IFN-1a,
 IFN-2b or other mutants.
 - Uses of claim 13, wherein super-compound interferon was administered via oral, vein injection, muscle injection, subcutaneous injection, nasal, or mucosal administration.
 - 16. Uses of claim 13, wherein super-compound interferor was administered following the protocol as follows; injection 9 µg or 15 µg per day, 3 times a week, total 24 weeks.

Figure 1

5'				11			21			3	31			41			51				
+1	М	C	g	L	P	Q	T	H	S	L	G	N	R	R	A	L	r	L	L	A	
1	ATG	TGT	GAT	T T	ACC	TC	AAAC	TC.	ATT	CTO	TT	GGT	AA	CGT	e e	CGC	TCT	GAT	TC	TGCTC	GCA
	TAC	AC	CTA	A A	TGC	AG1	PTT	AG	TAA	GAC	AA	CCA	TT	GCA	G C	GCG	AGA	CTA	AG	ACGAC	CCT
							81														
							P														
61																				GCTT	
	GTC	TAC	GCA	IG C	ATA	AAC	3GGG	CA	AA'I	CGA	1CG	GAC	TT	rctg	G C	AGI	GCT	GAA	GC	CGAAJ	AGGC
51				31			41				51			61			71				
+1	0	E	E	F	D	G	N	0	F	0	ĸ	A	0	- A	т	S	v	T.	н	15	
																				TGCA	CGAA
																				ACGTO	
				91			1			3	11			21			31				
							N														
	ATO	TAE	CCA	AC A	GA	CT	TCAA	. cc	TGI	TT:	rcc	AC'	'AA	AGAC	A G	CT	TGC	TGC	TT	GGGA	
	ATO	TAE	CCA	AC A	GA	CT	TCAA	. cc	TGI	TT:	rcc	AC'	'AA	AGAC	A G	CT	TGC	TGC	TT		
183	YAT OAT	TAE	CCA GT	AC A	GA	CT GA	TCAA AGTT	GG GG	TGT	TT!	rcc Agg	ACT TGA	TT	AGAC	A C	GAC	TGC	TGC	AA	GGGA	
183	TAC	TAE	CCA GT	AC A IG T	GA(CT KJA	TCAA AGTT 61	GG GG	TG1 ACA	TTT: AAJ	rcc AGG	ACT TGA	TT	AGAC FCTG	A C	GAC	TGC ACG	TGC	AA	GGGA(CCCT(
183 5'	TAC	TAE TAC	CCA GT	AC A IG T 51 E	GA CTC	CT GA	TCAA AGTT 61 Y	GG T	TGT ACA	TTT AAA 7	rcc AGG	ACT TGA	TAA	AGAC FCTG 81 L	TA C	GAC D	TGC ACG 91 L	TGC ACG	TT AA	GGGA(CCCTC	CTT
183 5'	TAC	TAE CAT:	CCA SGT' L GCT	AC A IG T 51 E GG A	GA CTC	CCT EGA: F	TÇAA AGTT 61 Y TCTA	GG T CA	TGT ACA E CTC	TTT: AAA 7 L	PCC AGG 1 Y CTG	ACT TGA	PAA.	AGAC FCTG 81 L	A G	GAG	FIGO FACG 91 L	TGC ACG E CCT	AA AGG	GGGA(CCCT(C AAGC!	ectt atgc
183 5'	TAC	TAE CAT:	CCA SGT' L GCT	AC A IG T 51 E GG A	GA CTC	CCT EGA: F	TÇAA AGTT 61 Y TCTA	GG T CA	TGT ACA E CTC	TTT: AAA 7 L	PCC AGG 1 Y CTG	ACT TGA	PAA.	AGAC FCTG 81 L	A G	GAG	FIGO FACG 91 L	TGC ACG E CCT	AA AGG	GGGA(CCCTC	ectt atgc
5' +3 243	TAC	L L TTO	CCA GGT L GGT	AC A IG T 51 E GG A CC T	CTC K	F AGT	TCAA AGTT 61 Y TCTA AGAT	GT	TGT ACA E CTG	TTT	PCC AGG '1 Y CTG SAC	ACT TGA Q TATA	Q CA	AGAC FCTG 81 L GCAG	A G	GAC CTI	TGC IACG 91 L CGA	TGC ACG E CCT GGA	AA AGG	GGGA(CCCT(C AAGC!	ectt atgc
5' +3 243 5' +1	TAC S. AGC TCC	L CTTC	L SCT CGA	AC A IG T 51 E GG A CC T	CTC K GAI	F AGT CA	TCAA AGTT 61 Y TCTA AGAT 21 V	GT E	TGT ACA E CTC GAC	TTTC	rcc AGG '1 Y CTG GAC	ACT TGA Q TATA ATA	Q CAC	AGAC FCTG 81 L GCAG CGTC 41 N	A G	D CT1	TGC ACG 91 L CGA GCT 51	TGC ACG E CCT GGA	AA GG	GGGAG CCCTC C AAGCA TTCGT	ATGC TACG
5' +3 243 5' +1	TAC TAC S. AGC TCC	L L TAC TAA	CCA EGT EGT EGA	AC A IG T 51 E GG A CC T 11 E .GG A	K GA CT V	F AGT CA	TCAA AGTT 61 Y TCTA AGAT 21 V GTGT	CC GG	E GAC	T SAG	PCC AGG 1 Y CTG GAC 31 P	Q TATA	Q CA	AGAC FCTG 81 L SCAG CGTC 41 N GATG	A G	D CTT	91 L CGA GCT 51 S	TGC ACG E CCT GGA	A GG CC	GGGAG CCCTC C AAGCA TTCGT	ATGC TACG
5' +3 243 5' +1	TAC TAC S. AGC TCC	L L TAC TAA	CCA EGT EGT EGA	AC A IG T 51 E GG A CC T 11 E .GG A	K GA CT V	F AGT CA	TCAA AGTT 61 Y TCTA AGAT 21 V GTGT	CC GG	E GAC	T SAG	PCC AGG 1 Y CTG GAC 31 P	Q TATA	Q CA	AGAC FCTG 81 L SCAG CGTC 41 N GATG	A G	D CTT	91 L CGA GCT 51 S	TGC ACG E CCT GGA	A GG CC	GGGAG CCCTC C AAGCA TTCGT	ATGC TACG
5' +3 243 5' +1	TAC TAC S. AGC TCC	L L TAC TAA	CCA EGT EGT EGA	AC A IG T 51 E GG A CC T 11 E .GG A	K GA CT V	F AGT CA	TCAA AGTT 61 Y TCTA AGAT 21 V GTGT	CC GG	E GAC	T SAG	PCC AGG 1 Y CTG GAC 31 P	Q TATA	Q CA	AGAC FCTG 81 L SCAG CGTC 41 N GATG	A G	D CTT	91 L CGA GCT 51 S	TGC ACG E CCT GGA	A GG CC	GGGAG CCCTC C AAGCA TTCGT	ATGC TACG
5' +3 243 5' +1	TAC TAC S. AGC TCC	L L TAC TAA	CCA EGT EGT EGA	AC A IG T 51 E GG A CC T 11 E .GG A	K GA CT V	F AGT CA	TCAA AGTT 61 Y TCTA AGAT 21 V GTGT	CC GG	E GAC	T SAG	PCC AGG 1 Y CTG GAC 31 P	Q TATA	Q CA	AGAC FCTG 81 L SCAG CGTC 41 N GATG	A G	D CTT	91 L CGA GCT 51 S	TGC ACG E CCT GGA	A GG CC	GGGAG CCCTC C AAGCA TTCGT	ATGC TACG

INTERNATIONAL SEARCH REPORT

sternational application No. PCT/CN02/00128

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: A61K38/21, A61P1/16, A61P31/12, C12N15/20, C12N15/63, C12N15/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: A61K38/21, A61P1/16, A61P31/12, C12N15/20, C12N15/63, C12N15/70

Documentation sourched other than minimum documentation to the extent that such documents are included in the fields sourched

Chinese Patnets, Chinese Scientific and Technical Journals

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPOQUE, BA, MEDI, INF.

see abstract A WO8304053(AMGEN INC et al), 24, Nov. 1983	
see abstract	1-16
"	

- Further documents are listed in the continuation of Box C. M See patent family surex.
- Special categories of cited documents: "A" document defining the general state of the art which is not
- considered to be of particular relevance "E" earlier application or patent but published on or after the
- international filing date "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority data claimed
- Date of the actual completion of the international search

23. July, 2002(23. 07, 02) Name and mailing address of the ISA/CN

6 Xitucheng Rd., Jimon Bridge, Haldian District, 100088 Beijing, China esimile No. 86-10-62019451

Form PCT/ISA/210 (second sheet) (July 1998)

- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention connect he considered movel or compet be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person
- skilled in the srt "&" document member of the same patent family

Date of mailing of the international search report 0 8 AUG 2002 (0 8. 0 8. 0 2)

Authorized officer

SUN, guangziu Telephone No. 86-10-62093884

TERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/CN02/09128

			1 01/01/02/00/128
Patent decument	Publication	Patent family	Publication
oited in search report	date	members	date
WO 9321229	1993-10-28	US5372808	1994-12-13
		EP0641359	1995-03-08
		CN1081909	1994-02-16
		JP7505894T	1995-06-29
WO 8304053	1983-11-24	EP0108128	1984-05-16
		JP59501097T	1984-06-28
		US4897471	1990-01-30

Form PCT/ISA/210 (patent family annex) (July 1998)