Universidad Nacional de San Antonio Abad del Cusco

FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA

ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA

CIRCUITOS ELECTRÓNICOS I

Trabajo final Diseño de un amplificador

Docente:

Ing. Milton Jhon Velasquez Curo

Estudiantes: Códigos:

ROLY SANDRO GUTIERREZ BENITO 182967

Edison Abado Ancco 145012

Alberto Arturo Quiñones Pacco 160901

CUSCO-PERÚ 2022

${\rm \acute{I}ndice}$

1.	Dise	enar e	implementar un amplificador de senales	2
2.	Etaj	pas de	l amplificador	2
	2.1.	Pream	aplificador	2
	2.2.	Diseño	y cálculos para la primera etapa	2
		2.2.1.	Gráficas del punto de operación	3
		2.2.2.	Rectas de carga en DC y AC	3
		2.2.3.	Gráfica de Bode	3
		2.2.4.	Potencia	3
	2.3.	Diseño	o y cálculos para la segunda etapa	3
		2.3.1.	Gráficas del punto de operación	3
		2.3.2.	Rectas de carga en DC y AC	3
		2.3.3.	Gráfica de Bode	3
		2.3.4.	Potencia	3
	2.4.	Ampli	ficador de potencia	4
		2.4.1.	Diseño y cálculos	4
		2.4.2.	Gráficas del punto de operación	4
		2.4.3.	Rectas de carga en DC y AC	4
		2.4.4.	Gráfica de Bode	4
		2.4.5.	Potencia	4

1. Diseñar e implementar un amplificador de señales

Las características del amplificador de señales son los siguientes:

- Señal de entrada pico $V_{ip} = 0.1 1 \text{ mV}$
- Ganancia de voltaje $A_v = 80 \text{ dB}$
- Impedancia de salida $Z_o = 8 \Omega$
- Rango de frecuencias $f_l = 40 \text{Hz}, f_h = 40 \text{ kHz}$

2. Etapas del amplificador

2.1. Preamplificador

Para esta etapa, se hizo uso de un amplificador multietapa.

Primera etapa

- Polarización universal en emisor común.
- Transistor BC548

• Segunda etapa

- Polarización universal en emisor común.
- Transistor BC548

2.2. Diseño y cálculos para la primera etapa

Dado el siguiente circuito en polarización universal en emisor común:

Figura 1: Primera etapa del preamplificador con polarización universal EC

- 2.2.1. Gráficas del punto de operación
- 2.2.2. Rectas de carga en DC y AC
- 2.2.3. Gráfica de Bode
- 2.2.4. Potencia
- 2.3. Diseño y cálculos para la segunda etapa
- 2.3.1. Gráficas del punto de operación
- 2.3.2. Rectas de carga en DC y AC
- 2.3.3. Gráfica de Bode
- 2.3.4. Potencia

2.4. Amplificador de potencia

En esta etapa, se tienen las siguientes características:

- Amplificador clase B
- 2.4.1. Diseño y cálculos
- 2.4.2. Gráficas del punto de operación
- 2.4.3. Rectas de carga en DC y AC
- 2.4.4. Gráfica de Bode
- 2.4.5. Potencia