Графовые нейросети для анализа временных рядов

Исследовательский проект

Выполнил Тихонов Даниил Уминович, БПМИ221

Руководитель: Качан Олег Николаевич, рук. направления по анализу данных, Лаборатория ИИ Сбербанка

Объект исследования – графовые нейронные сети, применяемые для долгосрочного прогнозирования многомерных временных рядов.

Вершины соответствуют компонентам ряда, а ребра отражают наличие зависимости между ними во времени.

Для многомерного временного ряда необходимо научиться конструировать граф зависимостей, извлекать информативные признаки о его структуре и использовать их в качестве дополнительного описания на вход моделей.

Матрица корреляции задает полный граф со всеми возможными ребрами, что сильно усложняет задачу в случае высокой размерности. Более адекватно рассматривать разреженный граф, в котором ребра присутствуют только для статистически значимых коэффициентов корреляции.

Традиционные тесты на статистическую значимость коэффициента корреляции **r(X, Y)** предполагают, что реализации компоненты **X** независимы (аналогично для **Y**), что не выполняется для временных рядов.

Для построения графа предлагается использовать модифицированный тест с поправкой, учитывающей функцию автокорреляции компонент временного ряда. Экспериментальным путем проверяется гипотеза об увеличении точности моделей при использовании нового метода.

Цель проекта:

Проверить гипотезу об эффективности применения графовых нейронных сетей, основанных на подходах, при которых матрица зависимостей компонент временного ряда оценивается как матрица статистически значимых коэффициентов корреляции с учетом автокорреляционной функции.

Задачи проекта:

- Изучить существующие модели и подходы прогнозирования многомерных временных рядов и извлечения графовых признаков;
- Реализовать предложенный алгоритм для более корректной оценки матрицы корреляции между компонентами графа;
- Провести экспериментальную оценку качества на популярных бенчмарках в зависимости от архитектуры модели и стратегии построения графа, сравнить с существующими методами;
- Исследовать свойства графов, построенных новым методом.

Задача:

На вход подается **X** – N-мерный временной ряд в T временных отсчетов;

Графовые нейросети для

анализа временных рядов

- На его основе необходимо построить граф **G(X)**, отражающий зависимость между компонентами ряда за Т временных отсчетов;
- Извлечь признаки из полученной графовой структуры и использовать их вместе со значениями временного ряда в качестве входных данных для моделей прогнозирования.

$$X \in \mathbb{R}^{T imes N} o G(V, E) = G(X) o \hat{Y} = f_{ heta}(G, X)$$

Архитектуры, не использующие графы:

- LSTM, GRU (рекуррентные модели)
- Informer, LogTrans, Reformer (трансформеры)
- NLinear, DLinear (линейные модели с различными нормализациями)

Графовые подходы:

- Полный граф максимальное количество связей
- Фильтрация по порогу/стат. значимости корреляции простые статистические методы
- Обучаемая матрица смежности используется как часть модели

Классический тест на статистическую значимость при росте объема выборки становится "чрезмерно уверенным", что приводит к появлению мало информативных графов (почти полных).

анализа временных рядов

Предлагается использовать другую поправку для тестовой статистики: вместо размера выборки использовать Effective Sample Size (ESS) †, чтобы учесть функцию автокорреляции компонент временного ряда (то есть потерю степеней свободы при временных зависимостях) и более корректно оценить связь между парой компонент.

$$\sqrt{N-3} \ \mathrm{arctanh}(r) \sim \mathcal{N}(0,1) \longrightarrow \sqrt{{m
u}-3} \ \mathrm{arctanh}(r) \sim \mathcal{N}(0,1)$$

$$m{
u}pprox N\sqrt{rac{ ext{var}(\dot{x})+ ext{var}(\dot{y})}{2\pi}},$$
 где $\dot{z}=(z_2-z_1,\ldots,z_N-z_{N-1})$

† Johan Medrano, Abderrahmane Kheddar и Sofiane Ramdani. "Assessing Time Series Correlation Significance: A Parametric Approach with Application to Physiological Signals". B: arXiv preprint, arXiv:2401.02387 (2024).

† Soroosh Afyouni and Stephen M. Smith and Thomas E. Nichols. "Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation". B: NeuroImage Volume 199, Pages 609-625 (2019).

Для экспериментов использовались три наиболее популярных бенчмарка: ЕТТ* (7 компонентов – показатели трансформаторов), PEMS (170 компонентов – показатели трафика на дорогах Калифорнии с различных сенсоров) и ЕСL (370 компонентов – потребление электроэнергии клиентов в Португалии).

Графовые нейросети для

анализа временных рядов

Деление на тренировочную, валидационную и тестовую выборки брались стандартные (как и в статьях, с которыми сравниваются результаты) – для ЕТТ это деление на 12 / 4 / 4 месяцев, а для PEMS и ECL деление по 70 / 20 / 10 %.

В качестве метрик прогнозирования использовались средняя квадратичная (MSE) и абсолютная (МАЕ). Каждая из них считается усреднением сначала по горизонту предсказаний, а затем уже по обучающим временным рядам (объектам).

Для всех моделей фиксированная длина истории – 96 временных отсчетов. В каждом эксперименте проводится несколько обучений для разных длин горизонтов прогнозирования.

Сравниваются три стратегии выбора графа: полный граф со всеми связями, а также графы, полученные стандартным и модифицированным тестом статистической значимости коэффициентов корреляции.

В качестве архитектур моделей были выбраны две наиболее применяемые графовые модели: GCN (сверточная графовая нейросеть) и GAT (графовая нейросеть с механизмом внимания).

Сравниваются три способа извлечения признаков из построенных графов: спектральный (собственные вектора Лапласиана), DeepWalk и Node2Vec (максимизация правдоподобия соседних вершин). Для экспериментов в качестве архитектуры модели выбрана DLinear.

Лучшая по метрикам модель сравнивается с рядом трансформерных моделей †.

† Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong и Wancai Zhang. "Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting". B: arXiv preprint, 2012.07436 (2022).

Dataset	Horizon	GCN (ESS)		GCN (Vanilla)		GCN (Full)		GAT (ESS)		GAT (Vanilla)		GAT (Full)	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	24	0.58	0.52	0.60	0.54	0.60	0.55	0.65	0.62	0.70	0.66	0.59	0.54
ETTh1	48	0.69	0.58	0.68	0.61	0.69	0.58	0.75	0.65	0.80	0.68	0.70	0.60
ETTh1	168	0.93	0.68	0.93	0.69	0.95	0.71	1.02	0.72	1.10	0.77	0.95	0.68
ETTh1	336	1.13	0.89	1.19	0.90	1.17	0.90	1.35	0.83	1.45	0.88	1.26	0.78
ETTh2	24	0.70	0.65	0.73	0.64	0.76	0.67	0.80	0.87	0.85	0.81	0.73	0.66
ETTh2	48	1.48	0.99	1.42	1.0	1.45	1.03	1.59	1.17	1.52	1.21	1.50	1.12
ETTh2	168	2.91	1.61	2.96	1.68	3.06	1.67	3.03	1.72	3.12	1.77	2.94	1.67
ETTh2	336	3.39	1.51	3.33	1.44	3.33	1.46	4.36	1.83	4.48	1.89	3.45	1.57
ETTm1	24	0.55	0.54	0.57	0.52	0.57	0.55	0.62	0.59	0.67	0.63	0.70	0.61
ETTm1	48	0.68	0.58	0.71	0.61	0.66	0.57	0.77	0.65	0.84	0.70	0.89	0.77
ETTm1	96	0.85	0.62	0.86	0.61	0.87	0.64	0.96	0.70	1.05	0.75	1.03	0.72
ETTm2	24	0.54	0.51	0.53	0.53	0.55	0.52	0.61	0.58	0.66	0.62	0.70	0.65
ETTm2	48	0.67	0.57	0.70	0.60	0.69	0.56	0.76	0.64	0.83	0.69	0.85	0.68
ETTm2	96	0.89	0.65	0.88	0.62	0.86	0.63	0.95	0.69	1.04	0.74	1.09	0.80
ECL	48	0.33	0.38	0.36	0.41	0.35	0.40	0.40	0.45	0.45	0.50	0.45	0.48
ECL	168	0.37	0.41	0.38	0.40	0.39	0.43	0.46	0.50	0.52	0.56	0.50	0.58
ECL	336	0.37	0.44	0.42	0.48	0.40	0.46	0.48	0.53	0.55	0.59	0.54	0.58
ECL	720	0.40	0.54	0.45	0.58	0.40	0.55	0.55	0.63	0.60	0.68	0.61	0.70

Таблица 5.1: Метрики различных моделей и подходов к построению графа

Dataset	Horizon	GCN (ESS) †		Informer		LogTrans		Reformer		LSTMa		LSTnet	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	24	0.58	0.52	0.57	0.54	0.68	0.60	0.99	0.75	0.65	0.62	1.29	0.90
ETTh1	48	0.69	0.58	0.68	0.62	0.76	0.75	1.31	0.90	0.70	0.67	1.45	0.96
ETTh1	168	0.93	0.68	0.92	0.75	1.00	0.84	1.82	1.13	1.21	0.86	1.99	1.21
ETTh1	336	1.22	0.89	1.21	0.89	1.39	1.29	2.41	1.52	1.96	1.32	2.14	1.38
ETTh2	24	0.70	0.65	0.72	0.66	0.82	0.75	1.53	1.61	1.14	0.81	2.74	1.45
ETTh2	48	1.48	0.99	1.45	1.00	1.80	1.00	1.87	1.73	1.67	1.22	3.56	1.68
ETTh2	168	2.91	1.61	3.48	1.68	1.51	4.00	1.68	4.11	1.67	3.24	2.98	1.71
ETTh2	336	3.39	1.51	2.72	1.13	3.91	1.55	4.00	1.68	3.43	1.54	2.54	2.59
ECL	48	0.33	0.38	0.34	0.39	0.35	0.41	1.40	0.99	0.48	0.57	0.36	0.44
ECL	168	0.37	0.41	0.35	0.42	0.36	0.43	1.51	1.00	0.57	0.60	0.39	0.47
ECL	336	0.37	0.44	0.38	0.43	0.36	0.43	1.60	1.10	0.88	0.79	0.41	0.47
ECL	720	0.40	0.54	0.46	0.54	0.49	0.55	0.47	0.59	2.14	1.38	0.60	0.59

Таблица 5.2: Обученная модель в сравнении с трансформерными [13]

Dataset	Horizon	DL		$\mathrm{DL} + \mathrm{DeepWalk}$		$\mathrm{DL} + \mathrm{Spectral}$		DL + Node2Vec		DL -	+ All
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ECL	96	0.140	0.237	0.145	0.242	0.142	0.239	0.148	0.245	0.143	0.240
ECL	192	0.153	0.249	0.158	0.254	0.155	0.252	0.161	0.258	0.156	0.251
ECL	336	0.169	0.267	0.174	0.272	0.171	0.267	0.178	0.277	0.172	0.271
ECL	720	0.203	0.301	0.208	0.306	0.205	0.303	0.212	0.311	0.207	0.305
PEMS	96	0.410	0.282	0.415	0.287	0.412	0.284	0.418	0.290	0.413	0.285
PEMS	192	0.423	0.287	0.428	0.292	0.425	0.289	0.431	0.295	0.426	0.290
PEMS	336	0.436	0.296	0.441	0.301	0.434	0.298	0.446	0.305	0.439	0.299
PEMS	720	0.466	0.315	0.471	0.320	0.465	0.317	0.476	0.325	0.469	0.318
ETTh1	96	0.374	0.394	0.379	0.399	0.376	0.391	0.382	0.402	0.377	0.397
ETTh1	192	0.408	0.415	0.413	0.420	0.410	0.417	0.416	0.423	0.411	0.418
ETTh1	336	0.429	0.427	0.434	0.432	0.431	0.429	0.437	0.435	0.432	0.430
ETTh1	720	0.440	0.453	0.445	0.458	0.442	0.455	0.448	0.461	0.443	0.456

Графовые нейросети для

анализа временных рядов

Таблица 5.3: Метрики DLinear в зависимости от графовых признаков

Графовые нейросети для

анализа временных рядов

Рис. 5.4: Средние матрицы смежности при длине истории 336 (ESS).

Рис. 5.5: Средние матрицы смежности при длине истории 336 (Vanilla).

Основные результаты:

- Изучены существующие модели прогнозирования многомерных временных рядов, а также методы извлечения графовых признаков;
- Реализован и протестирован предложенный алгоритм для более корректной оценки матрицы корреляции между компонентами графа;
- Проведены эксперименты для сравнения различных архитектур моделей, стратегий построения графа и методов извлечения графовых признаков. Модифицированный метод показал ощутимый прирост качества моделей по сравнению со стандартным, что особенно проявляется на бенчмарках с большим числом компонентов;
- Исследованы свойства графов, построенных стандартным и модифицированным методом. Получено экспериментальное подтверждение "чрезмерной уверенности" стандартного метода с ростом объема выборки, а также решение этой проблемы при использовании ESS.

18

Перспективы развития проекта:

- Масштабирование экспериментов на более массивные датасеты из прикладных задач (не только модельные бенчмарки);
- Исследование более продвинутых методов извлечения признаков из графовой структуры (Weisfeiler-Leman Test, HOPE и др.);

