1) y 2) están en un ppt aparte.

3) a)

$$N_1 = 0 \text{ (el más chico)}$$

$$N_2 = 0,\underbrace{11111111}_{8 \text{ bits}} \text{ x } 2^{1111} = (1 - 2^{-8}) \text{ x } 2^{15} = (2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8}) \text{ x } 2^{15} \text{ (el más grande)}$$

 $N_3 = 0,00000001 \text{ x } 2^{0000} = 2^{-8} \text{ (el más cercano a } N_1)$ $N_4 = 0,11111110 \text{ x } 2^{1111} \text{ (el más cercano a } N_2)$

Rango =
$$[N_1; N_2] = [0; (1-2^{-8}) \times 2^{15}]$$

 R_1 = Resolución extremo inferior = $N_3 - N_1 = (0,00000001 - 0) \times 2^{0000} = 2^{-8}$

 R_2 = Resolución extremo superior = $N_2 - N_4$ = (0,11111111 – 0,11111110) x 2^{15} = $2^{-8} \cdot 2^{15}$ = 2^7

 $N_3 = 0,100000000000001 \text{ x } 2^{1000000000} = (2^{-1} + 2^{-15}) \text{ x } 2^{-511}$

 $\begin{array}{l} R_1 = Resolución \ extremo \ inferior = N_3 - N_1 = (0,100000000000001 - 0,1000000000000000) \\ = 0,0000000000001 \ x \ 2^{1000000000} = 2^{-15}.2^{-511} \end{array}$

Rango =
$$[N_1; N_2] = [0.5 \times 2^{-511}; (1 - 2^{-15}) \times 2^{+511}]$$

Como la mantisa está normalizada el 0 (cero) y una zona "cercana" a él, no están incluidos en el rango.

Exponente en exceso = 10000 + 10000 = 00000 (-16 en exceso)

$$N_3 = 0.0,100000000000001 \times 2^{00000} = + (2^{-1} + 2^{-15}) \times 2^{-16}$$
 (el más cercano a N_1)

$$R_1 = N_3 - N_1 = (2^{-1} + 2^{-15} - 2^{-1}) \times 2^{-16} = (2^{-15}) \times 2^{-16} = 2^{-31}$$

Rango =
$$[N_6, N_5]$$
 U $[N_1, N_2]$ = $[-(1 - 2^{-15}) \times 2^{+15}, -0.5 \times 2^{-16}]$ U $[+0.5 \times 2^{-16}, +(1 - 2^{-15}) \times 2^{+15}]$

d)

Rango = [- (1 -
$$2^{-N}$$
) x 2^{E1} ; - 0,5 x 2^{E2}] U [+ 0,5 x 2^{E2} ; + (1 - 2^{-15}) x 2^{E1}]

E1 = +
$$(2^{M-1} - 1)$$
 E2 = - (2^{M-1})

4)

0

Sin normalizar

 $0 = 0.0000000000 \times 2^{E}$ E puede ser cualquier exponente.

Normalizada

0 = No se puede representar. El cero no está en el rango.

Normalizada con bit implícito

0 = No se puede representar. El cero no está en el rango.

+ 1

Sin normalizar

Sin normalizar
$$1 = 0.0,100000000 \text{ x } 2^{00001} = 0.0,010000000 \text{ x } 2^{00010} = 0.0,0010000000 \text{ x } 2^{00011} = \dots$$
9 bits +1 Signo =10
$$0.0010000000$$

Normalizada

$$1 = 0.0, 100000000, x 2^{00001}$$
9 bits +1 Signo =10

ı			
	0	00001	100000000

Normalizada con bit implícito

$$1 = 0.0, 10000000000 \times 2^{000001}$$

$$10 \text{ bits } +1 \text{ Signo } =11$$

0	00001	000000000
---	-------	-----------

+9

Sin normalizar

$$9 = 0.0,100100000 \times 2^{00100} = + (2^{-1} + 2^{-4}) \times 2^{4} = + (0,5 + 0,0625) \times 16 = 9$$

$$9 = 0.0,010010000 \text{ x } 2^{00101} = + (2^{-2} + 2^{-5}) \text{ x } 2^{5} = + (0,25 + 0,03125) \text{ x } 32 = 9$$

$$9 = 0.0,001001000 \times 2^{00110} = + (2^{-3} + 2^{-6}) \times 2^{6} = + (0,125 + 0,015625) \times 64 = 9$$

0	00110	001001000
---	-------	-----------

Normalizada

$$9 = 0.0,100100000 \times 2^{00100} = + (2^{-1} + 2^{-4}) \times 2^{4} = + (0,5 + 0,0625) \times 16 = 9$$

	0	00100	100100000
--	---	-------	-----------

Normalizada con bit implícito

$$9 = 0.0,10010000000 \times 2^{00100} = + (2^{-1} + 2^{-4}) \times 2^{4} = + (0,5 + 0,0625) \times 16 = 9$$

	0	00100	001000000
--	---	-------	-----------

- 5,0625

Sin normalizar

- $-5,0625 = 1 \quad 101,000100 \text{ x } 2^0 = 1 \quad 0,101000100 \text{ x } 2^{00011} = -(2^{-1}+2^{-3}+2^{-7}) \text{ x } 2^3 = -0,6328125 \text{ x}8 = -5,0625$
- $-5,0625 = 1 0,010100010 \times 2^{00100} = -(2^{-2} + 2^{-4} + 2^{-8}) \times 2^{4} = -0,31640625 \times 16 = -5,0625$
- $-5,0625 = 1 \quad 0,001010001 \text{ x } 2^{00101} = -(2^{-3}+2^{-5}+2^{-9}) \text{ x } 2^{5} = -0,158203125 \text{ x } 32 = -5,0625$

1	00101	001010001
---	-------	-----------

Normalizada

 $-5,0625 = 10,101000100 \times 2^{00011} = -(2^{-1}+2^{-3}+2^{-7}) \times 2^{3} = -0,6328125 \times 8 = -5,0625$

1	00011	101000100
---	-------	-----------

Normalizada con bit implícito

 $-5.0625 = 1 \ 0.1010001000x \ 2^{00011} = -(2^{-1} + 2^{-3} + 2^{-7}) \ x \ 2^3 = -0.6328125 \ x8 = -5.0625$

1	00011	010001000
1	00011	010001000

+ 34000,5

Sin normalizar

Normalizada

Normalizada con bit implícito

 $0.0625 \times 2 = 0.125$ $0.125 \times 2 = 0.25$ $0.25 \times 2 = 0.5$ $0.5 \times 2 = 1.0$

 $0.0 \times 2 = 0.0$

Sin normalizar

 $+0.015625 = 0.000001000 \times 2^{0} = +(2^{-6}) \times 2^{0} = +0.015625 \times 1 = +0.015625$

 $+0.015625 = 0.000010000 \times 2^{-1} = + (2^{-5}) \times 2^{-1} = + 0.03125 \times 0.5 = + 0.015625 + 0.015625 = 0.000100000 \times 2^{-2} = + (2^{-4}) \times 2^{-2} = + 0.0625 \times 0.25 = + 0.015625$

Normalizada

 $+0.015625 = 0.01000000000 \times 2^{-5} = 0.01000000000 \times 2^{11011} = +0.5 \times 0.03125 = +0.015625$

0 | 11011 100000000

Normalizada con bit implícito

11011 00000000

Número máximo

Sin normalizar

0 01111 1111111111

Normalizada

0 | 01111 111111111

Normalizada con bit implícito

0 | 01111 111111111

Sin normalizar

El más chico = 1 0,1111111111 x
$$2^{01111}$$
 = - $(1 - 2^{-9})$ x 2^{15} = - $(0,998046875)$ x 32768 = - 32704

Normalizada

El más chico = 1 0,1111111111 x
$$2^{01111}$$
 = - $(1-2^{-9})$ x 2^{15} = - $(0,998046875)$ x 32768 = - 32704

Normalizada con bit implícito

6)
$$00001111 \ 00000011 + 00001000 \ 00000010 = 15 \ x \ 2^3 + 8 \ x \ 2^2 = 120 + 32 \ 152$$

$$011111111 \ 000000000 + 111111100 \ 10000001 = 127 \times 2^{0} + 252 \times 2^{-1} = 127 + 126 = 253$$

$$00000001 \ 00000111 + 00011100 \ 00000000 = 1 \times 2^7 + 28 \times 2^0 = 128 + 28 = 156$$

8,625

a) Mantisa fraccionaria normalizada de 5 bits BSS, exponente Ca2 4 bits.

$$8,625 = 1000,101 \times 2^0 = 0,1000101 \times 2^4$$
 Mantisa sólo con 5 bits, \longrightarrow 0,10001 x 2^4

$$= (2^{-1} + 2^{-5}) \times 2^4 = 8,5$$

El Nº que le sigue = (0.10001 + 0.00001) x $2^4 = 0.10010$ x $2^4 = (2^{-1} + 2^{-4})$ x $2^4 = 9$.

Error1 =
$$8,625 - 8,5 = 0,125$$
 Menor error (valor más cercano) es $8,5$ Error2 = $9 - 8,5 = 0,5$

8,625 no tiene una representación exacta en este sistema. 8,5 está más cerca que 9.

b) Mantisa fraccionaria normalizada de 10 bits BCS, exponente 3 bits Ca2.

$$8,625 = 0 \ 1000,101 \ x \ 2^0 = 0 \ 0,100010100 \ x \ 2^4$$

El exponente 4 no se puede expresar con 3 bits en Ca2

Éste sería el más cercano a 8,625.

0	011	111111111
---	-----	-----------

2,5

a)
$$2.5 = 10.1 \times 2^0 = 0.101 \times 2^2 = 0.10100 \times 2^{0010} = (2^{-1} + 2^{-3}) \times 2^2 = (0.5 + 0.125) \times 4 = 2.5$$

b)
$$2.5 = 0 \ 0.101000000 \ x \ 2^{010} = (2^{-1} + 2^{-3}) \ x \ 2^2 = (0.5 + 0.125) \ x \ 4 = 2.5$$

0	010	101000000
---	-----	-----------

0.4

a)
$$0.4 \times 2 = 0.8$$
 $0.4 \times 2^{-1} = 0.1100 \times 2^{0}$ corriendo la coma entra un dígito más $0.8 \times 2 = 1.6$ $0.11001 \times 2^{-1} = 0.11001 \times 2^{1111} = 0.390625$

$$0.8 \times 2 = 1.6$$
 $0.11001 \times 2^{-1} = 0.11001 \times 2^{1111} = 0.390623$

$$0.6 \times 2 = 1.2$$

$$0.2 \times 2 = 0.4$$

El que sigue =
$$0.11010 \times 2^{-1} = (0.5 + 0.25 + 0.0625) \times 0.5 = 0.40625$$

$$0.4 \times 2 = 0.8$$
 Esta representación es más cercana a 0.4 .

$$0.8 \times 2 = 1.6$$

Error1 =
$$0.4 - 0.390625 = 0.009375$$

Error2 = $0.40625 - 0.4 = 0.00625$

b) 0,4
$$\longrightarrow$$
 0 0,011001100 x 2^0
Normalizada = 0 0,110011001 x 2^{-1} = $(2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} + 2^{-9})$ x 0

Normalizada = 0 0,110011001 x
$$2^{-1} = (2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} + 2^{-9})$$
 x 0,5 = 0,399414062

$$0.4 \times 2 = 0.8$$

$$0.8 \times 2 = 1.6$$

$$0.6 \times 2 = 1.2$$

$$0.2 \times 2 = 0.4$$

$$0.4 \times 2 = 0.8$$

$$0.8 \times 2 = 1.6$$

$$0.6 \times 2 = 1.2$$

$$0.2 \times 2 = 0.4$$

$$0.4 \times 2 = 0.8$$

$$0.8 \times 2 = 1.6$$

El que sigue = $0.0,110011010 \times 2^{-1} = (2^{-1}+2^{-2}+2^{-5}+2^{-6}+2^{-8}) \times 0,5 = 0,400390625$

Error 1 = 0.4 - 0.399414062 = 0.000585938

Error2 =
$$0,400390625 - 0,4 = 0,000390625$$

0,400390625 está más cerca de 0,4 (menor error)

8,625 8)

a)
$$8.5 \le 8.625 \le (2^{-1} + 2^{-5}) \times 2^4 = 9$$

$$E_A = 9 - 8,625 = 0,375$$

$$E_R = E_A/N^o$$
 a representar = 0,125/8,625 ~ 0,0145

b) $E_A = 0$ Representación exacta

2,5

- a) $E_A = 0$ Representación exacta.
- Representación exacta. b) $E_A = 0$

0,4

$$E_A = 0.4 - 0.390625 = 0.009375$$

$$E_R = 0.00625/0.4 = 0.015625$$

$$E_A = 0.4 - 0.399414062 = 0.000585938$$

$$E_R = 0.000390625/0.4$$

10) Error

12)

13)

$$0.0625 = 0$$
 $0.0001000000.....00$ x $2^0 = 0$ $1.00000.......000$ x $2^4 = 0$ $1.000000.....000$ x $2^{10000011}$ E = 4 + 127 = 131 = 10000011 = (+4 en exceso 127)

ı			
	0	10000011	000000000000

0	10001110	001110001000000000	

$$+1 = 0$$
 1,00000......000 x $2^0 = 0$ 1,00000......000 x $2^{01111111}$ E = 0 +127 = 127 = 01111111 = (0 en exceso 127)

0	01111111	000000000000000000000000000000000000000
---	----------	---

+ 13 = 0 1101,00000...000 x $2^0 = 0$ 1,101000....000 x $2^{+3} = 0$ 1,101000....000 x $2^{10000010}$ E = 3 + 127 = 130 = 10000010 (+ 3 en exceso 127)

0	10000010	101000000000000000
---	----------	--------------------