Advanced Systems Lab

${\bf Homework}~{\bf 4}$

Albert Cerfeda (20-980-272)

Contents

4.1	4.1 Stride access (30 pts)				
	a)	Direct-mapped cache, $s = 1$ $n = 8$	1		
	b)	Direct-mapped cache, $s=2$ $n=16$	1		
	c)	2-way associatice cache, $s=2$ $n=16$	1		
4.2	Cache	mechanics (20 pts)	1		
	a)	Access patterns and state of direct-mapped cache	1		
	b)	Access patterns and state of 2-way associative cache	3		
4.3	Roofli	nes (40 pts)	3		
4 4	Cache miss analysis (25 nts)				

9.04.2024 Eidgenössische Technische Hochschule Zürich D-INFK Department Switzerland

4.1 Stride access (30 pts)

a) Direct-mapped cache, s = 1 n = 8

The cache is direct-mapped, has blocks of size 32 bytes and a total capacity of 1 KiB. This means that there are $\frac{2^{10}}{32} = 32$ cache blocks. Each cache block/line contains 32 bytes (4 doubles).

The access pattern of matrix O is the following: Each element is accessed sequentially from row 0 to row n-3=5. Therefore in total there are 12 compulsory cache misses, two for each row of O.

Regarding the access pattern of A instead, at each iteration, the corresponding elements at row i-1 and i+1 are accessed. Similar to before we only have 16 compulsory cache misses, two for each row of A.

We have a total of 192 memory accesses. 28 of which are compulsory cache misses, after which all the rows of A and O are in the cache. Therefore the cache miss rate is $\frac{28}{192} = 14.583333\%$.

b) Direct-mapped cache, s = 2 n = 16

The cache structure is analogous as before. The main difference is that since matrix A and O are 16×16 , the cache can only store exactly half of one of them at a time. Therefore, elements from A and O with the same coordinates map to the same cache location.

By increasing the stride to 2, not every element of A is accessed. In fact, the columns are covered in an alternating pattern, resulting in only half of the elements being accessed. Matrix O is still accessed in a sequential manner.

In the first 4 iterations, the cache gets repeatedly evicted because the first 4 elements of O share the same cache block as the first elements of A. After the initial 4 iterations, this light form of thrashing stops, resulting only in compulsory cache misses.

We have 112 iterations and a total of 448 memory accesses, 107 of which are cache misses, therefore the cache miss rate is $\frac{107}{448} = 23.883929\%$.

c) 2-way associative cache, s = 2 n = 16

Since the cache is 2-way associative, it has 16 sets with 2 cache lines each. Each row of A and O is 16 doubles, meaning that two cache blocks are needed to store one full row.

We have 112 iterations and a total of 448 memory accesses, 92 of which are cache misses, therefore the cache miss rate is $\frac{92}{448} = 20.535714\%$.

4.2 Cache mechanics (20 pts)

a) Access patterns and state of direct-mapped cache

i. Cache at line 18

-i = 0

x: **MMM**

 $y: \mathbf{MMM}$

Set	Block 0	
0	$y_2.a$ $y_2.b$	
1	-	
2	-	
3	-	
4	$x_2.a$ $x_2.b$	
5	-	
6	-	
7	-	

- i = 1 x: HHH

y: \mathbf{MHH}

Set	Block 0	
0	$y_2.a y_2.b$	
1	-	
2	$y_2.a$ $y_2.b$	
3	-	
4	$x_2.a$ $x_2.b$	
5	-	
6	-	
7	-	

ii. Cache at line $30\,$

-i = 0

 $x: \mathbf{MMM}$

y: **MMM**

Set	Block 0	
0	$y_2.a$	$y_2.b$
1	$y_5.c$	$y_5.d$
2	$y_2.a$	$y_2.b$
3	$x_5.c$	$x_5.d$
4	$x_2.a$	$x_2.b$
5	$y_0.c$	$y_0.d$
6	-	-
7		_

- i = 1 $x: \mathbf{MMM}$

y: **MHM**

Set	Block 0	
0	$y_2.a$	$y_2.b$
1	$y_5.c$	$y_5.d$
2	$y_2.a$	$y_2.b$
3	$y_5.c$	$y_5.d$
4	$x_2.a$	$x_2.b$
5	$x_2.c$	$x_2.d$
6	-	-
7	-	_

b) Access patterns and state of 2-way associative cache

i. Cache at line 18

- i = 0

 $x: \mathbf{MMM}$

y: **MMM**

Set	Block 0	Block 1
0	$x_2.a$ $x_2.b$	$y_2.a$ $y_2.b$
1	-	-
2	-	-
3	-	-

-i = 1

x: **HHH**

y: **MHH**

S	et	Block 0		Block 1	
)	$x_2.a$	$x_2.b$	$y_2.a$	$y_2.b$
	1	-		-	
4	2	$y_2.a$	$y_2.b$	-	-
:	3	-	-	-	-

ii. Cache at line 30

-i = 0

 $x: \mathbf{MMM}$

y: **MMM**

Set	Block 0	Block 1
0	$x_2.a$ $x_2.b$	$y_2.a$ $y_2.b$
1	$y_5.c$ $y_5.d$	$y_0.c$ $y_0.d$
2	$y_2.a$ $y_2.b$	-
3	$x_5.c$ $x_5.d$	-

-i = 1

 $x: \mathbf{MMH}$

y: \mathbf{MMH}

Set	Block 0	Block 1
0	$x_2.a x_2.b$	$y_2.a$ $y_2.b$
1	$x_2.c x_2.d$	$y_2.c$ $y_2.d$
2	$y_2.a y_2.b$	-
3	$x_5.c$ $x_5.d$	$y_6.c$ $y_6.d$

4.3 Rooflines (40 pts)

4.4 Cache miss analysis (25 pts)