蓝牙终端-通信模组 BLE 通信协议

版本号	日期	修改记录	作者
V1.0	2020.7.20	Draft	Lane
V0.1	2020-08-11	修改	Allen
V0.2	2020-08-25	增加第2章"功能需求"	Allen

1. 概述

本协议为 APP 与蓝牙模组之间 BLE 通讯的规范。 蓝牙终端的连接示意图如下图所示:

蓝牙终端通信连接示意图

2. 功能需求

- 2.1. BLE 上电之后,默认在广播状态。
- 2.2. 当 BLE 无连接时,必须工作在低功耗状态。
- 2.3. 在广播包内容中必须包含 BLE 的 MAC 地址。
- 2.4. 必须支持修改广播包内容,包括 BLE 的名称,厂商等特征。
- 2.5. 必须支持扫描信标功能,无论在连接还是未连接的情况下。
- 2.6. 扫描信标的速度,必须要支持在 2 秒能够扫描到 10 个信标。

3. 协议定义

命令采取主从通信模式,蓝牙终端为主,BLE 模组为从,通信方式采用请求-应答方式, 所有命令都由蓝牙终端发起请求,蓝牙模组应答。

UUID 列表:

Service UUID:

0x14839AC4-7D7E-415C-9A42-167340CF2339 0x14839AC4-7D7E-415C-9A42-167340CF2339

Command Characteristic UUID: 0x8B00ACE7-EB0B-49B0-BBE9-9AEE0A26E1A3

Notify Characteristic UUID: 0X0734594A-A8E7-4B1A-A6B1-CD5243059A57

3.1. 帧格式如下

蓝牙终端和 BLE 模组之间的数据通讯的是以帧单位的。每帧的数据最长长度为 256 bytes。

帧格式定义:

LSB				MSB			
Head	Payload						
0x7E	CMD/RSP	CMD/RSP Data Length Data					
1 octet	1 octet	1 octet	Variable	1 octet			

- 1) 所有数据域以小端格式表示,即低字节先发送,高字节后发送。
- 2) Header: 0x7E,表示一帧数据的开始,后面是被传数据。
- 3) Tail: 0xFF,表示一帧数据的结束。
- 4) CMD/RSP: 命令或者响应。
- 5) Data Length: 传输的 Data 长度。
- 6) Data: 传输的数据。
- 7) 在发送方,如果 Payload 存在如下字节,必须要做转码处理,接收方接收到数据之后,必须做相反的转码处理。

字符	转码
0x7E	0x8C 0x81
0xFF	0x8C 0x00
0x8C	0x8C 0x73

4. 透传命令

4.1. BlePassthrough Cmd

BLE 模组接收到所有的命令(文件传输命令除外),都必须要透明转发到 MCU, MCU 返回应答,模组必须透明转发到蓝牙终端。

命令格式定义如下表所示:

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xXX	命令码
1	Data Length	UINT8	N	数据长度
2	data	UINT8[n]	-	数据

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xXX	命令码
1	Data Length	UINT8	N	数据长度
2	data	UINT8[n]	-	数据

5. 文件传输命令

5.1. FwUpdate Start (0x20)

文件传输开始请求

Request 定义:

request A	已入:			
Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x20	命令码
2	Length	UINT8	0x0D	数据包长度,不包含本身和 Cmd 字节
3	Target	UINT8		升级目标:
				1: 智能中控固件。
				2: 按键板固件。
				其他值:保留
4	Reserved	UINT8		保留
5-8	File Length	UINT32		文件长度
9	MainVer	UINT8		固件主版本号
10	SubVer	UINT8		固件子版本号
11	MinorVer	UINT8		固件修订版本号
12-15	BuildNum	UINT32		固件 Build 版本号
16	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x20	命令码
2	Length	UINT8	0x03	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

5.2. FwUpdate (0x21)

文件数据传输请求。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x21	命令码
2	Length	UINT8	132	数据包长度,不包含本身和 Cmd 字节
3-6	offset	UINT32		偏移
7-134	File Data	UINT8[128]		文件数据
135	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x21	命令码
2	Data Length	UINT8	0x01	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

5.3. FwUpdate Done (0x22)

文件传输结束请求。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x22	命令码
2	Length	UINT8	0x04	数据包长度,不包含本身和 Cmd 字节
3-6	CRC	UINT32		检验和
7	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x22	命令码
2	Data Length	UINT8	0x01	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

5.4. APPROM OTA 文件格式定义

APPROM 的文件格式定义如下: 文件的前段数据是纯的固件数据,文件将会被逻辑划分成若干个块,每个块的大小是 128 字节对齐,文件尾部不完整块用 00h 填充,文件的最后一个块包含文件的 CRC,文件有效长度信息,版本信息等。

说明:

- 1) BIN DATA CRC: 使用 CRC 校验算法对 BIN DATA 计算出一个 CRC 值, 不包含补位的数据。
- 2) BIN DATA LEN: BIN DATA 的长度,不包含补位的数据。
- 3) Firwware version: 固件的版本号。
- 4) FILE INFO CRC: 使用 CRC 校验算法对文件最后的一个区块字节,从 BIN DATA CRC 位置开始,长度为 128 4,计算出的 CRC 值,用于校验最后的区块是否是有效的内容。
- 5) CRC 算法如下:

```
Uint16_t crc16_compute(const uint8_t * p_data, uint32_t size, const uint16_t * p_crc) {
    uint32_t i;
    uin 电池仓 6_t crc = (p_crc == NULL) ? 0xfffff : *p_crc;

for (i = 0; i < size; i++)
    {
        crc = (unsigned char)(crc >> 8) | (crc << 8);
        crc ^= p_data[i];
        crc ^= (unsigned char)(crc & 0xff) >> 4;
```

```
crc ^= (crc << 8) << 4;
crc ^= ((crc & 0xff) << 4) << 1;
}
return crc;
}
```

附录 1: Firmware Version 定义

MCU Firmware version adopts **GNU** style(Including 4 parts):

Major_Version_Number.Minor_Version_Number.Revision_Number.Build_Number

- Main Version Number (主版号,1字节)
 从1开始,当项目在进行重大修改或局部修正较多,而导致项目整体发生全局变化时,主版本号加1.
- Minor Version Number (子版本号,1字节) 当项目在原有的基础上增加了部分功能时,主版本号不变,子版本号加 1,修正版本号复位成 0.
- Revision Number (修正版本号,1字节) 当项目进行了局部修改或 bug 修正时,主版本号和子版本号都不变,修正版本号加 1.
- Build Number **(编译版本号,4字节)**Build Number 是不断递增的。

附录 2: Hardware Version 定义

Hardware adopts the below version style(Including 2 parts):

Device_Typer. Major_Version_Number