

## ECUACIONES DIFERENCIALES 1er Semestre 2020

# 1. Información General del Curso

#### Libro de Texto:

- Zill, Dennis. Ecuaciones Diferenciales. Editorial Cengage Learning. Décima Edición. México, 2013. ISBN: 978-607-519-446-2
- Cualquier otro texto de Ecuaciones Diferenciales (Boyce y DiPrima, Rainville, etc.) se puede utilizar como texto de apoyo.

Requisito: Álgebra Lineal

Se recomienda utilizar una calculadora ó un software como Desmos, Wolfram, o Geogebra para realizar ejercicios y laboratorios.

## 2. Descripción del Curso

El curso comprende cuatro unidades: en la primera se abordan las ecuaciones diferenciales de primer orden; en la segunda se modelan fenómenos físicos con ecuaciones diferenciales, en la tercera se resuelven ecuaciones diferenciales de orden superior; por último, se presentan métodos adicionales como la Transformada de Laplace y Sistemas de Ecuaciones Lineales. Para lograr comprender estos temas, es necesario que el estudiante comprenda los temas de Cálculo Diferencial, Integral y Álgebra Lineal.

Este curso está organizado en línea por medio de la plataforma MiU. En esta plataforma voy a hacer anuncios, mantener comunicación electrónica y publicar materiales del curso como notas de clase, laboratorios, soluciones de exámenes, etc.

# 3. Objetivos

Objetivo General: Proporcionar al estudiante una sólida base conceptual y práctica en el cálculo multivariable que le permita profundizar en las áreas de su competencia y estar capacitado para abordar áreas afines.

#### Objetivos Específicos

- Entender el concepto de un vector, operaciones vectoriales y aplicaciones de los vectores.
- Conocer y resolver problemas que involucren funciones vectoriales.
- Conocer el concepto de derivadas parciales y aplicarlas para resolver problemas aplicados a la ingeniería.
- Resolver problemas de optimización de varias variables y con restricciones.
- Conocer el concepto de integrales múltiples y aplicarlas en diversos contextos de ingeniería.



## 4. Evaluación

Se impartirán clases teóricas 2 días por semana y un día de laboratorio.

El curso tiene dos modalidades de evaluación. En la Modalidad A se entregan tareas por 10 pts. para tener un final de 20 pts, mientras que en la Modalidad B no se realizan tareas y se tiene un final de 30 pts.

| Actividad              | Modalidad A | Modalidad B |
|------------------------|-------------|-------------|
| Exámenes Cortos (10)   | 10 %        | 10          |
| Tareas (10)            | 10%         | 0           |
| Exámenes Parciales (3) | 60%         | 45          |
| Examen Final           | 20%         | 30          |
| TOTAL                  | 100%        | 100         |

**Exámenes Cortos:** Los exámenes cortos se pueden programarán los días miércoles. El contenido de estos exámenes consistirá de los temas de clase y tareas vistos en los días anteriores. El viernes previo a los exámenes parciales, habrá un parcial de simulacro de 80 minutos. Van a haber más de diez exámenes cortos, por lo que sólo las diez notas más altas entre todos los cortos se tomarán en cuenta.

**Tareas:** Los estudiantes completarán una serie de ejercicios sobre temas que se vieron en la semana anterior de clases. El estudiante deberá trabajar su laboratorio de manera individual pero puede recibir ayuda por parte del instructor. Van a haber más de 10 laboratorios, por lo que sólo las 10 notas más altas se tomarán en cuenta.

**Exámenes Parciales:** Van a haber tres exámenes parciales en las fechas y horarios listadas abajo. Los contenidos específicos de cada examen parcial serán anunciados con anticipación.

Examen Parcial 1: Viernes, 21 de febrero, 11:30 AM Examen Parcial 2: Viernes, 3 de abril, 11:30 AM Examen Parcial 3: Lunes, 4 de mayo, 1:00 PM

Examen Final: Jueves, 14 de mayo,

Una vez entregado el examen parcial el estudiante tiene un período posterior de 2 DÍAS para solicitar la revisión del mismo.

## 5. Temas

- 1. Ecuaciones Diferenciales de Primer Orden
- 2. Modelado con Ecuaciones Diferenciales
- 3. Ecuaciones Diferenciales de Orden Superior
- 4. Transformadas de Laplace
- 5. Sistemas de Ecuaciones Diferenciales

Algunos temas se pueden presentar en un orden diferente o con un enfoque diferente al del libro de texto (Consulte el cronograma tentativo en la página 3.)



## CRONOGRAMA

| Sesión | Dia | Fecha  | Tema                                        |  |
|--------|-----|--------|---------------------------------------------|--|
| 01     | Lun | 06 Ene | 1.1 Definiciones y Terminología             |  |
| 02     | Mie | 08 Ene | 2.2 Variables Separables                    |  |
| 03     | Lun | 13 Ene | 2.3 Ecuaciones Lineales                     |  |
| 04     | Mie | 15 Ene | 2.4 Ecuaciones Exactas                      |  |
| 05     | Lun | 20 Ene | 2.5 Ecuaciones Homogéneas                   |  |
| 06     | Mie | 22 Ene | 3.1 Modelos Lineales                        |  |
| 07     | Lun | 27 Ene | 3.2 Modelos No Lineales                     |  |
| 08     | Mie | 29 Ene | 3.3 Mezclas y Redes Eléctricas              |  |
| 09     | Lun | 03 Feb | 4.1.1 Ecuaciones Homogéneas                 |  |
| 10     | Mie | 05 Feb | 4.1.2 Ecuaciones No Homogéneas              |  |
| 11     | Lun | 10 Feb | 4.2 Reducción de Orden                      |  |
| 12     | Mie | 12 Feb | 4.3 Ecuaciones Lineales Homogéneas          |  |
| 13     | Lun | 17 Feb | 4.4 Coeficientes Indeterminados             |  |
| 14     | Mie | 19 Feb | Repaso                                      |  |
|        | Vie | 21 Feb | EXAMEN PARCIAL 1                            |  |
| 15     | Lun | 24 Feb | 4.6 Variación de Parámetros                 |  |
| 16     | Mie | 26 Feb | 4.7 Ecuación de Cauchy-Euler                |  |
| 17     | Lun | 02 Mar | 5.1.1 Sistemas Resorte-Masa                 |  |
| 18     | Mie | 04 Mar | 5.1.3 Movimiento Forzado                    |  |
| 19     | Lun | 09 Mar | 5.2 Problemas en la Frontera                |  |
| 20     | Mie | 11 Mar | 5.3 Modelos No Lineales                     |  |
| 21     | Lun | 16 Mar | 7.1 Transformadas de Laplace                |  |
| 22     | Mie | 18 Mar | 7.2 Transformadas Inversas                  |  |
| 23     | Lun | 23 Mar | 7.3 Propiedades de Traslación               |  |
| 24     | Mie | 25 Mar | 7.4 Transformadas de Derivadas e Integrales |  |
| 25     | Lun | 30 Mar | 7.5 Función Delta de Dirac                  |  |
| 26     | Mie | 01 Abr | Repaso                                      |  |
|        | Vie | 03 Abr | EXAMEN PARCIAL 2                            |  |
|        |     |        | Semana Santa 6-10 abril                     |  |
| 27     | Lun | 13 Abr | 8.1 Sistemas Lineales                       |  |
| 28     | Mie | 15 Abr | 8.2.1 Eigenvalores reales distintos         |  |
| 29     | Lun | 20 Abr | 8.2.2 Eigenvalores reales repetidos         |  |
| 30     | Mie | 22 Abr | 8.2.3 Eigenvalores complejos                |  |
| 31     | Lun | 27 Abr | 8.3 Sistemas Lineales no Homogéneos         |  |
| 32     | Mie | 29 Abr | Repaso                                      |  |
| 33     | Vie | 01 May | EXAMEN PARCIAL 3                            |  |
| 34     | Mie | 06 May | Repaso                                      |  |
|        | Mie | 14 May | EXAMEN FINAL                                |  |



## 6. Políticas del Curso

- Cambio de Fechas: Cualquier cambio a las fechas y contenidos de los exámenes será notificada por escrito por parte del catedrático.
- Exámenes Cortos o Laboratorios: No habrá reposición de exámenes cortos o laboratorios en caso el estudiante se ausente estos días.
- Exámenes Extemporáneos: En caso de una ausencia a un examen parcial o final, ésta deberá ser debidamente justificada por el estudiante y el estudiante deberá solicitar un examen extemporáneo en la Facultad de Ciencias Económicas. Posteriormente el estudiante y el catedrático deberán acordar una fecha para realizar el examen extemporáneo.
- **Derecho a Examen Final:** Para tener derecho a examen final el estudiante deberá tener una zona de por lo menos 41 puntos.
- Exoneración de Examen Final: Para que un estudiante tenga derecho a examen final deberá tener una zona mayor o igual a 74 puntos (no se redondearán zonas entre 73.5 y 73.9 puntos), ó de 66 pts si su zona es de 70 pts. La exoneración consistirá en una nota de examen final correspondiente al 90%. En caso un estudiante exonerado quiera optar a un punteo mayor en el examen final, puedo realizarlo pero pierde el derecho de exoneración al entregar el examen final).
- Aprobación del Curso: Para aprobar el curso el estudiante deberá tener una nota final mayor a igual a 61 puntos (no se redondearán notas finales entre 60.5 y 60.9 puntos). Una vez publicadas las notas finales, el estudiante puede solicitar una revisión de examen final en la Facultad de Ciencias Económicas.
- Puede haber algunos temas que el catedrático pueda asignar para que sean estudiados por cuenta del estudiante, dicho material también se evaluará.