Exercise 1 Theoretic Modelling

Task 1 Mechanic System

Given is a mechanic system with 2 gyrating masses, one rotational damper, one torsional spring, as well as one mass, one spring and one damper. The system transfers rotational movement into translational movement.

Image 1: mechanic system

Simplifying Assumptions:

- All axles are massless and inflexible.
- The damper transmits torque proportional to the difference in revolution speed.

The outer torque M is connected to the gyrating mass J_1 . The gyrating mass J_2 has the radius r and a gear ring. S is a massless gear rod which can be moved in vertical direction. The movement of the mass m relative to the position of rest is x. In the position of rest $\varphi_1 = \varphi_2 = 0$ holds.

a) State the balance of angular momentum for gyrating mass J_1 ! Specify the time derivative $d\omega_1/dt$ as function of M, ω_1 , ω_2 and correspondent constants.

- b) State the balance of angular momentum for gyrating mass J_2 ! Introduce therefor the internal force F_S , which acts at the contact point between gear ring of J_2 and gear rod of S. With this state the time derivative $d\omega_2/dt$ as function of ω_1 , ω_2 , φ_2 and F_S plus correspondent constants.
- c) State the balance of impulses for mass m. Introduce the speed v = dx/dt and state the time derivative dv/dt as function of F_S , v, x and correspondent constants.
- d) What are the relationship between the displacement x and the angle of rotation φ_2 , respectively the speed v and the angular velocity ω_2 ?
- e) State the time derivative $d\omega_2/dt$ as function of ω_1 , ω_2 , φ_2 and correspondent constants without F_S . Use for this the results of b), c) and d).

Task 2 Mechanical System

Given is following "inverted pendulum"

Image 2: inverted pendulum

F(l)	outer force
r	displacement of the cart out of the setting point
$m_{ m W}$	mass of the cart
l_{S}	distance between focus S to the bearing
$m_{ m S}$	mass of the bar
$J_{ m S}$	mass moment of inertia of the bar relative to the focus S of
	the bar
φ	angle of the pendulum relative to vertical

In the mathematical modelling the dynamic behaviour of the pendulum shall be replicated. Following assumptions hold:

- The cart only moves horizontal (x-direction).
- The bar is pivot-mounted at the cart.
- The bar is homogenous which means the focus is in the middle.
- There is no friction.
- a) Separate the complete system into 2 subsystems "cart" and "bar". Draw all active forces. Separate the force which is active in the support point into two components. These forces F_X und F_Y , shall act in x- and y-direction.

- b) State the balance of impulse for the subsystem "cart" in x-direction.
- c) State the balance of impulse for the subsystem "bar" in x- and y-direction. Hint: Consider for the balance of impulse just the movement of the focus S. The speed of the focus in x-direction is v_X , in y-direction v_Y !
- d) State the balance of angular momentum for the rotation around the focus S of the bar.
- e) Derive the differential equation $\ddot{\varphi} = f(\varphi, \ddot{r})$ for the angle of the pendulum. Hint: Replace v_X and v_Y with functions of angle φ .

Task 3 Thermal System

Given the tank with den material A and B:

Image 3: stirred tank reactor

$q_{\scriptscriptstyle A}$	mass inflow material A
Q A ab	mass outflow material A
q_B	mass inflow material B
Q _{B ab}	mass outflow material B
q_{ab}	total mass outflow
C_A	specific heat capacity of material A
C_B	specific heat capacity of material B
T_A	absolute temperature of material A
T_B	absolute temperature of material B
m_A	mass of A in tank
m_B	mass of B in tank
$m_{\rm ges}$	total mass of A and B in tank
E_A , R , k_R	constants
Τ	mixing temperature in the tank
g	resulting free specific energy
_	

In the tank an exothermal reaction takes place. In this reaction material A is converted into material B. With

$$r_{AB} = \frac{m_A}{m_{ges}} e^{-\frac{E_A}{RT}} \frac{kg}{s}$$

as per time unit converted A from B.

Per converted mass of A following resulting free specific energy is produced:

$$g = k_R \left(1 - e^{-\frac{m_A}{m_{\text{ges}}}} \right).$$

- a) Is the reaction from A into B with increasing temperature faster or slower? Justify your statement!
- b) State the balance of mass separately for m_A and m_B .
- c) State the total mass balance (m_{ges}) for the tank.
- d) Determine with support of the balance of enthalpy

$$T = f(T, q_A, q_B, c_A, m_A, m_B, q_B, c_B, T_A, T_B, g, r_{AB})$$

- e) Under which conditions linearisation of a model is reasonable in control?
- f) Linearise the function around the known working point T_0 :

$$\dot{T} = T(a + be^{-\frac{1}{T}}) + ce^{-\frac{1}{T}} + d$$
a, b, c, d are constants.

Task 4 Thermal System

The heating of water in a kettle is to be modelled with theoretic analysis. The physical analogous model is build up by the steel bottom with mass M_S and specific heat capacity c_S . This steel body is heated by a constant heat j_P .

$$M_{S} = 0.2 \text{ kg}$$
 $c_{S} = 500 \text{ Jkg}^{-1}\text{K}^{-1}$
 $j_{P} = 2000 \text{ W}$
 $M_{W} = 1 \text{ kg}$
 $c_{W} = 4200 \text{ Jkg}^{-1}\text{K}^{-1}$

Image 4. The physical analogous model oft he kettle

The heating power j_P is 2000 watt, if the kettle is turned on (u(t) = 1, u(t) = 0 else). The kettle is filled with one litre water with the mass M_W and the specific heat capacity c_W . The heat flow j_A goes from the steel bottom of the kettle into the water. The kettle is ideally isolated.

- a) State the energy balances for the steel bottom of the kettle and the water inside. State the differential equations for the steel temperature T_S and the water temperature T_W .
- b) Express a phenomenological law for the heat flow j_A under following assumptions:

The heat flow is proportional to the difference in temperature between steel bottom and water.

At the difference in temperature of 15° C between steel bottom and water the heat flow is 1,5 kW.

- c) Build a state space model of the kettle with the results of a) and b). Use the state vector $\underline{x} = [T_S T_W]^T$ and the input u(t). Output should be T_W .
- d) Draw the generalised electrical network for the dynamic system kettle corresponding to image 1. Insert all potential and flow variables and state all component sizes.

Generalised Network Analysis

System	\	/ariable
	Strom f	Spannung e
elektrisch	el. Strom [f] = A	el. Spannung [e] = V
translatorisch mechanisch	Kraft [f] = N	Geschwindigkeit $[e] = \frac{m}{s}$
rotatorisch mechanisch	Drehmoment [f] = Nm	Winkelgeschwindigkeit $[e] = \frac{\text{rad}}{\text{s}}$
hydraulisch	Volumenstrom $[f] = \frac{m^3}{s}$	Druck $[e] = \frac{N}{m^2}$
pneumatisch	Gasstrom $[f] = \frac{kg}{s}$	Druck $[e] = \frac{N}{m^2}$
thermisch	Wärmestrom $[f] = \frac{Nm}{s} = W$	Temperatur [e] = K

Eigenschaften:

E1: f ist die Ableitung einer mengenartigen Größe nach der Zeit

E2: e ist nicht mengenartig

E3: e•f ist eine Leistung

System	Variable		Bauelemente		
	Strom f	Spannung e	Widerstand R	Kapazität C	Induktivität L
elektrisch	el. Strom	el. Spannung [e] = V	Ohm'scher Widerstand $[R] = \Omega = \frac{V}{\Delta}$	Kondensator $[C] = F = \frac{As}{V}$	Spule $[L] = H = \frac{Vs}{\Delta}$
translatorisch mechanisch	Kraft [f] = N	Geschwindig- keit $[e] = \frac{m}{s}$	Reziproke Reibkonstante $[R] = \frac{m}{Ns}$	Masse [C] = kg	Reziproke Federkonstante $[L] = \frac{m}{N}$
rotatorisch mechanisch	Drehmoment [f] = Nm	Winkelge- schwindigkeit $[e] = \frac{\text{rad}}{\text{s}}$	Reziproke Reibkonstante $[R] = \frac{1}{Nms}$	Trägheits- moment [C] = kg m ²	Reziproke Steifigkeit $[L] = \frac{1}{Nm}$
hydraulisch	Volumen- Strom $[f] = \frac{m^3}{s}$	Druck $[e] = \frac{N}{m^2}$	Laminar- oder Turbulenz- widerstand $[R] = \frac{Ns}{m^5}$ pneumat.	Volumen- speicher $[C] = \frac{m^5}{N}$	Trägheit $[L] = \frac{kg}{m^4}$
pneumatisch		Druck $[e] = \frac{N}{m^2}$	pneumat. Widerstand $[R] = \frac{1}{ms}$	Masse- speicher $[C] = \frac{\text{kg m}^2}{N}$	-
thermisch	Wärmestrom $[f] = \frac{Nm}{s} = W$	•	Wärme- widerstand $[R] = \frac{K}{W}$	Wärme- kapazität $[C] = \frac{Ws}{K}$	-

Appendix: Linerarisation

Why is linearization important?

- The most control approaches are based on linear system models.
- The real systems in practice are often nonlinear systems, which are difficult to handle.
- In many problems, the main task of the controller is to compensate the influence of the disturbances on the system behaviour at some given working points.
- The basic idea of linearization is to approximate the original nonlinear system by considering the deviations from the working point.

Linearization at some given working point

Nonlinear function:

$$y = f(u)$$

Working point:

$$(u_P, y_P)$$

Deviation:

$$(\Delta u, \Delta y)$$

Approximation:

$$u = u_A + \Delta u$$

$$y = y_A + \Delta y$$

Given a dynamic system by nonlinear differential equations

$$\dot{x} = f(x, u)$$

At the equilibrium (x_e, u_e) , the state vector doesn't change with time any more, i.e.

$$\dot{x} = f(x, u) = 0$$
 at (x_e, u_e)

Denote

$$x=x_e+\Delta x,\ u=u_e+\Delta u,$$

According to the Taylor expansion,

$$\Delta \dot{x} = f(x_e + \Delta x, u_e + \Delta u) = f(x_e, u_e) + \frac{\partial f}{\partial x} \Big|_{\substack{x = x_e, \\ u = u_e}} \Delta x + \frac{\partial f}{\partial u} \Big|_{\substack{x = x_e, \\ u = u_e}} \Delta u + \cdots$$

Hence, the nonlinear system can be approximated by

$$\Delta \dot{x} = A \Delta x + B \Delta u$$
.

$$A = \frac{\partial f}{\partial x} \bigg|_{\substack{x = x_e \\ u = u_e}}, \quad B = \frac{\partial f}{\partial u} \bigg|_{\substack{x = x_e, \\ u = u_e}}$$