Notes on the Elvis Problem

1 Preliminaries.

The philosophy of so-called *Convex Analysis* is that sets and functions are treated with equal attention. Let me explain.

Recall a set $F \subseteq \mathbb{R}^n$ is convex provided

$$x, y \in F, 0 \le \lambda \le 1 \implies \lambda x + (1 - \lambda)y \in F.$$
 (1)

The set of all nonempty, closed and convex sets is denoted by \mathcal{C} .

The epigraph epi(f) of an extended-valued function $f: \mathbb{R}^n \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ is defined as

$$epi(f) := \{(x, r) : r \ge f(x)\},\$$

which is a subset in \mathbb{R}^{n+1} . Then $f(\cdot)$ is (1) lower semicontinuous (lsc) provided epi(f) is closed, (2) convex provided epi(f) is a convex set (in \mathbb{R}^{n+1}), and (3) proper if epi(f) $\neq \emptyset$ and contains no vertical lines (a vertical line at $x \in \mathbb{R}^n$ occurs when $f(x) = -\infty$). The set of all lsc, convex and proper functions is denoted by \mathcal{F} .

Exercise 1.1. Suppose $f: \mathbb{R}^n \to \overline{\mathbb{R}}$.

- (a) The effective domain of $f(\cdot)$ is defined by $dom(f) := \{x : f(x) < \infty\}$. Show if $f(\cdot) \in \mathcal{F}$, then dom(f) is a convex set. Give an example for which $f(\cdot) \in \mathcal{F}$ but dom(f) is not closed.
- (b) If $dom(f) = \mathbb{R}^n$, show that $f \in \mathcal{F}$ if and only if

$$f(x_{\lambda}) \le (1 - \lambda)f(x_0) + \lambda f(x_1) \tag{2}$$

for all $x_0, x_1 \in \mathbb{R}^n$ and $0 \le \lambda \le 1$, and where $x_{\lambda} := (1 - \lambda) x_0 + \lambda x_1$.

(c) Define an arithmetic and an order relation on $\overline{\mathbb{R}}$ so that the property that a lsc $f(\cdot)$ is convex is characterized by (2).

Associated to any set $S \subseteq \mathbb{R}^n$ is the indicator function $I_S : \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by

$$I_S(x) = \begin{cases} 0 & \text{if } x \in S \\ +\infty & \text{if } x \notin S. \end{cases}$$

Exercise 1.2. Suppose $S \subseteq \mathbb{R}^n$. Show $I_S(\cdot)$

- (a) is lsc if and only if S is closed;
- (b) is a convex function if and only if S is a convex set; and

(c) belongs to \mathcal{F} if and only if S belongs to \mathcal{C} .

One of the most important properties of convex sets is the fact that there are two ways to characterize them. The first is the direct definition given above in (1). A second, or *dual* way, is through so-called separation as explained in the following theorem.

Theorem 1.1 (Separation Theorem). Suppose F is closed and convex and $v \notin F$. Then there exists $\vec{n} \in \mathbb{R}^n$ so that

$$\sup\{\langle v', \vec{n} \rangle : \ v' \in F\} < \langle v, \vec{n} \rangle \tag{3}$$

Proof. Please see the Primer on Convex Analysis file.

The (closed) half space (with normal vector $\vec{n} \in \mathbb{R}^n$, $\vec{n} \neq 0$, and at level $r \in \mathbb{R}$) is defined by

$$\mathcal{H}_{\vec{n},r} := \left\{ v : \langle \vec{n}, v \rangle \le r \right\}$$

Exercise 1.3. Show that F is closed and convex if and only if

$$F = \bigcap \left\{ \mathcal{H}_{\vec{n},r} : \vec{n} \in \mathbb{R}^n, r \in \mathbb{R} \text{ are such that } F \subseteq \mathcal{H}_{\vec{n},r} \right\}$$

2 The *polar* of a set

Definition 2.1. The polar F° of a set $F \in \mathcal{C}$ is the set

$$F^{\circ} := \{ \zeta \in \mathbb{R}^n \ : \ \langle \zeta, v \rangle \le 1 \ \forall v \in F \}.$$

A set F is bounded if there exists a constant $m \ge 0$ so that $v \in F \Rightarrow |v| \le m$. Let

$$C_0 := \{ F \in C : F \text{ is bounded and } \mathbf{0} \in \text{int} F \}.$$

Exercise 2.1. Show the following.

- (a) For any nonempty set $F \subseteq \mathbb{R}^n$, one has F° belonging to \mathcal{C} .
- (b) $F \in \mathcal{C}$ is bounded if and only if $\mathbf{0} \in \operatorname{int}(F^{\circ})$.
- (c) $F \in \mathcal{C}_0$ if and only if $F^{\circ} \in \mathcal{C}_0$.
- (d) If $F = r\overline{\mathbb{B}}$ for some r > 0, then $F^{\circ} = \frac{1}{r}\overline{\mathbb{B}}$.
- (e) With n = 2 and positive constants a, b, if

$$F = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \quad then \quad F^{\circ} = \left\{ \begin{pmatrix} \zeta \\ \xi \end{pmatrix} : a^2 \zeta^2 + b^2 \xi^2 \le 1 \right\}.$$

(f) For $1 \leq p < +\infty$, the p - norm is defined on \mathbb{R}^n by

$$\|\mathbf{x}\|_p := \sqrt[p]{\sum_{i=1}^n |x_i|^p} \quad and \quad \|\mathbf{x}\|_{\infty} := \max\{|x_i|: 1 \le i \le n\}, \quad where \ \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n.$$

The p unit ball is the set $\overline{\mathbb{B}}_p := \{\mathbf{x} : \|\mathbf{x}\|_p \leq 1\}$, which belongs to C_0 . If $F = \overline{\mathbb{B}}_p$, then $F^{\circ} = \overline{\mathbb{B}}_q$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Actually one should think of F° belonging to the so called *dual* space of \mathbb{R}^n , but since \mathbb{R}^n is its own dual, the dual space can be identified with \mathbb{R}^n itself. Nonetheless, one should be cognizant of the three ways elements of \mathbb{R}^n are being used: (1) as so-called state vectors x lying in the ambient space \mathbb{R}^n , (2) as "pointers" or velocity vectors $v \in F$ describing perhaps the direction and speed a state vector is moving, and (3) linear functionals that act on the state vectors through an inner product. Let's elaborate on (3): Suppose $\zeta \in \mathbb{R}^n$, and define the map $\ell_{\zeta}(\cdot) : \mathbb{R}^n \to \mathbb{R}^n$ by $\ell_{\zeta}(x) = \langle \zeta, x \rangle$. Then $\ell(\cdot) := \ell_{\zeta}(\cdot)$ satisfies the linearity property

$$\ell(x_1 + rx_2) = \ell(x_1) + r\ell(x_2). \tag{4}$$

Any function $\ell(\cdot)$ satisfying (4) is called a linear functional, and the dual space of \mathbb{R}^n is the set of all linear functionals. The following exercise is the manner in which the dual space can be identified with \mathbb{R}^n

Exercise 2.2. Suppose $\ell(\cdot)$ is a linear functional. Show \exists a unique $\zeta \in \mathbb{R}^n$ with $\ell(\cdot) = \ell_{\zeta}(\cdot)$.

In this way, we usually abuse notation by just writing ζ for the linear map $\ell_{\zeta}(\cdot)$. The point is that elements of \mathbb{R}^n can be viewed in two distinct ways: (1) as the usual coordinate vector with n real components, and (2) in a way that says how it "operates" on the space \mathbb{R}^n by taking an inner product. The definition of F° consists of describing how its elements are acting on elements in \mathbb{R}^n , which is why we said it should be thought of as a subset of the dual space. The same applies to the vector ζ in Theorem 1.1.

3 Gauge functions

Suppose $F \in \mathcal{C}$ is given. The gauge function $\gamma_F : X \to [0, \infty]$ is defined by

$$\gamma_F(x) = \inf \left\{ t \ge 0 : \frac{1}{t} \ x \in F \right\}.$$

By convention, if $rx \notin F$ for all r > 0, then $\gamma_F(x) = +\infty$. We mainly will be interested in only the case where $F \in \mathcal{C}_0$.

Exercise 3.1. Let $F \in \mathcal{C}$ with $\mathbf{0} \in F$. Show the following:

(a) $v \in F$ if and only if $\gamma_F(x) \leq 1$.

- (b) $\gamma_F(\cdot)$ is positively homogeneous: that is, $\gamma_F(rv) = r\gamma_F(v) \quad \forall v \in \mathbb{R}^n, \ r \geq 0.$
- (c) $\gamma_F(\cdot) \in \mathcal{F}$, and is finite-valued if and only if $\mathbf{0} \in \text{int}(F)$.

A converse of some of the statements above is given next.

Exercise 3.2. Suppose $\gamma(\cdot): \mathbb{R}^n \to [0, +\infty]$ belongs to \mathcal{C} and is also positively homogeneous. Define $F := \{x \in \mathbb{R}^n : \gamma(x) \leq 1\}$. Show $F \in \mathcal{C}$ and $\gamma(\cdot) = \gamma_F(\cdot)$. Furthermore, show $\gamma(\cdot)$ is finite-valued if and only if $\mathbf{0} \in \text{int}(F)$.

4 Differentiablility concepts of convex objects

For a proper convex function $f: X \to (-\infty, +\infty]$, the subgradient $\partial f(x)$ at a point $x \in \text{dom} f$ is given by

$$\partial f(x) := \{ \xi \in X : f(y) \ge f(x) + \langle \xi, y - x \rangle \ \forall y \in X \}. \tag{5}$$

The analogous concept for a set $F \in \mathcal{C}$ is the normal cone: For $v \in F$, the normal cone $N_F(v)$ is given by

$$N_F(v) := \{ \zeta : \langle \zeta, v' - v \rangle \le 0 \quad \forall v' \in F \}.$$

Exercise 4.1.

(a) For $f(\cdot) \in \mathcal{F}$, show that

$$\zeta \in \partial f(x) \iff (\zeta, -1) \in N_{\operatorname{epi}(f)}(x, f(x)).$$
 (6)

(b) For $F \in \mathcal{C}$, show that

$$\zeta \in \partial I_F(x) \iff \zeta \in N_F(v).$$
 (7)

The general Elvis problem relies on the following relationships of the gauge functions for both the velocity set $F \in \mathcal{C}_0$ and its polar F° .

Exercise 4.2. Suppose $F \in \mathcal{C}_0$. Show that the following statements are equivalent for any $x, \zeta \in \mathbb{R}^n$.

- (a) $\langle \zeta, x \rangle = \gamma_F(x) \gamma_{F^{\circ}}(\zeta)$.
- (b) $\frac{x}{\gamma_F(x)}$ attains the max over $v \in F$ of the map $v \to \langle \zeta, v \rangle$.
- (c) $\zeta \in N_F\left(\frac{x}{\gamma_F(x)}\right)$.
- (d) $\frac{\zeta}{\gamma_{F^{\circ}(\zeta)}}$ attains the max over $\xi \in F^{\circ}$ of the map $\xi \to \langle \xi, x \rangle$.
- (e) $x \in N_{F^{\circ}}\left(\frac{\zeta}{\gamma_{F^{\circ}}(\zeta)}\right)$.

- (f) $\frac{\zeta}{\gamma_{F^{\circ}}(\zeta)} \in \partial \gamma_F(x)$.
- $(g) \frac{x}{\gamma_F(x)} \in \partial \gamma_{F^{\circ}}(\zeta).$

A convex set $F \subseteq \mathbb{R}^n$ is *strictly* convex if whenever x and y belong to F ($x \neq y$) and $0 < \lambda < 1$, then $\lambda x + (1 - \lambda)y \in \text{int}F$. The so-called dual concept is having a "smooth" boundary. A closed convex set has a smooth boundary if and only if $N_F(x)$ is of the form $\{r\zeta_x : r \geq 0\}$ for some vector ζ_x with $|\zeta_x| = 1$, and the map $x \mapsto \zeta_x$ is continuous on bdry F.

Exercise 4.3. Show that F is strictly convex if and only if F° has a smooth boundary.

Given $F \in \mathcal{C}$, the support function $\sigma_F(\cdot) : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\sigma_F(\zeta) = \sup\{\langle \zeta, v \rangle : v \in F\}$$

Exercise 4.4. Suppose $F \in \mathcal{C}$.

- (a) Show $\sigma_F(\cdot) \in \mathcal{F}$.
- (b) If $\sigma_F(\zeta) < +\infty$, show there exists at least one $v \in F$ so that

$$\sigma_F(\zeta) = \langle \zeta, v \rangle,$$

and is unique if F is strictly convex. Give an example where there may be more than one such v.

- (c) Show that $\sigma_F(\zeta) < \infty$ for all $\zeta \in \mathbb{R}^n$ if and only if $\mathbf{0} \in \operatorname{int}(F)$.
- (d) Suppose $x \notin F$. Show there exists a unique $v \in F$ so that

$$||x - v|| = \min\{||x - v'|| : v' \in F\}.$$

Such a v is called the projection of x into F, and is denoted by $\operatorname{proj}_{F}(x)$.

(e) Suppose $x \notin F$, and let $v = \operatorname{proj}_F(x)$ and $\zeta := x - v$. Show $\zeta \in N_F(v)$ and $\sigma_F(\zeta) = \langle \zeta, v \rangle$.

Suppose $f(\cdot) \in \mathcal{F}$. It is obvious from (5) that a point $\bar{x} \in \mathbb{R}^n$ solves the problem

$$\min f(x)$$
 over $x \in \mathbb{R}^n$ (\mathcal{P})

if and only if $\mathbf{0} \in \partial f(\bar{x})$. Our Elvis problem will entail a problem like (\mathcal{P}) where $f(\cdot)$ is of the form $f(x) = g(x) + \mathcal{I}_{\Sigma}(x)$ where $g(\cdot) \in \mathcal{F}$ is finite-valued and $\Sigma \in \mathcal{C}$. In this case, problem (\mathcal{P}) is equivalent to both of

$$\min g(x) \quad \text{over } x \in \Sigma$$
 (\mathcal{P}')

$$\min \left\{ g(x) + \mathcal{I}_{\Sigma}(x) \right\} \quad \text{over } x \in \mathbb{R}^n.$$
 (\mathcal{P}'')

Considering the form of (\mathcal{P}'') , the necessary and sufficient optimality condition that \bar{x} solves (\mathcal{P}'') is that

$$\mathbf{0} \in \partial \big\{ g(\cdot) + \mathcal{I}_{\Sigma}(\cdot) \big\} (\bar{x}). \tag{8}$$

Now it would be nice if we knew that the subgradient of a sum of two elements in \mathcal{F} was the sum of its subgrdients (in some sense). This is akin to the well-known linearity property of ordinary differentiation. It is not true in general:

Exercise 4.5. With n = 1, let

$$f_1(x) = \begin{cases} -\sqrt{x} & \text{if } x \ge 0 \\ +\infty & \text{if } x < 0 \end{cases}$$
 and $f_2(x) = \begin{cases} -\sqrt{-x} & \text{if } x \le 0 \\ +\infty & \text{if } x > 0 \end{cases}$

Show that $f_1(\cdot)$, $f_2(\cdot) \in \mathcal{F}$, $\partial f_1(\mathbf{0}) = \partial f_2(\mathbf{0}) = \emptyset$ and $\partial (f_1(\cdot) + f_2(\cdot))(\mathbf{0}) = \mathbb{R}$,

So a "sum rule" cannot be expected to hold in all cases, but in the case that will be of most interest to us, it does hold. The following is a special case that we will use below.

Theorem 4.1 (Rockafellar, Convex Analysis, Theorem 23.8). Suppose $f(\cdot)$, $g(\cdot) \in \mathcal{F}$ and $dom(g) = \mathbb{R}^n$ (that is, $g(\cdot)$ is finite-valued). Then for all $x \in dom(f)$, we have

$$\partial \bigg(f(\cdot) + g(\cdot) \bigg)(x) = \partial f(x) + \partial g(x) := \big\{ \zeta + \xi : \zeta \in \partial f(x), \ \xi \in \partial g(x) \big\}$$

Exercise 4.6. Consider (\mathcal{P}'') with $g(\cdot) \in \mathcal{F}$ and $\Sigma \in \mathcal{C}$. Suppose further that $dom(g) = \mathbb{R}^n$. Show \bar{x} solves (\mathcal{P}'') if and only if there exists $\zeta \in \partial q(\bar{x})$ satisfying $-\zeta \in N_{\Sigma}(\bar{x})$.

Exercise 4.7. Suppose $f(\cdot) \in \mathcal{F}$ and $g(\cdot)$ is defined by g(x) = f(-x). Show that $\zeta \in \partial g(x)$ if and only if $-\zeta \in \partial f(-x)$. Explain why this is a special case of the Chain Rule for convex functions.