

Общероссийский математический портал

Н. Н. Калиткин, Квадратуры Эйлера—Маклорена высоких порядков, *Матем. моделирование*, 2004, том 16, номер 10, 64–66

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 87.245.155.196

9 июня 2016 г., 13:29:12

КВАЛРАТУРЫ ЭЙЛЕРА-МАКЛОРЕНА ВЫСОКИХ ПОРЯЛКОВ

© Н.Н.Калиткин

Институт математического моделирования РАН, Москва

Работа поддержана грантами РФФИ 02-01-00066 и НШ-1918.2003.1

Предложен простой способ построения квадратурных формул Эйлера-Маклорена высоких порядков на базе квадратурных формул трапеций и средних прямоугольников. Вычислены первые шесть коэффициентов этих формул, что обеспечивает точность до $O(h^{14})$. Указано полезное применение к интегрированию периодических функций.

THE EULER-McLOREN FORMULAE OF HIGH ORDERS

N.N.Kalitkin

Institute for Mathematical Modelling of Rus. Acad. Sci., Moscow

The simple method was proposed to constructe the Euler-Mac Loren formulae of high orders for numerical integration. The first six terms of these formulae were found. This gave accuracy up to $O(h^{14})$. An interesting application was noticed for numerical integration of periodic functions.

1. Проблема. Пусть u(x) есть достаточно гладкая функция, то есть она имеет столько непрерывных ограниченных производных, сколько потребуется по ходу изложения. Рассмотрим равномерную сетку $w_N = \{x_0 + nh, \ 0 \le n \le N\}$. Простейшими квадратурными формулами на сетке являются формулы трапеций и средних (последняя использует середины интервалов $x_{n-1/2}$); они имеют точность $O(h^2)$. Как известно, небольшие поправки Эйлера–Маклорена к формуле трапеций

$$\int_{x_0}^{x_N} u(x)dx = h\left(\frac{u_0}{2} + \sum_{n=1}^{N-1} u_n + \frac{u_N}{2}\right) - \frac{h^2}{12}(u_N' - u_0') + \frac{h^4}{720}(u_N''' - u_0''') + \dots$$
 (1)

существенно повышают её порядок точности. Аналогичные поправки можно построить для квадратурной формулы средних.

Общий вид формулы Эйлера-Маклорена легко угадывается. Но способы вывода численных коэффициентов этой формулы, описанные в литературе, довольно громоздки. Ниже приведен простой способ их вывода и найдено достаточно много коэффициентов, чтобы обеспечить потребности практики.

2. Общая формула Эйлера-Маклорена на базе формулы трапеций пишется только для равномерной сетки. Формула с M-членами имеет следующий вид:

$$\int_{0}^{x_{N}} u(x)dx \approx h\left(\frac{u_{0}}{2} + \sum_{n=1}^{N} u_{n} + \frac{u_{N}}{2}\right) + \sum_{m=1}^{M} (-1)^{m} a_{m} h^{2m} \left[u_{N}^{(2m-1)} - u_{0}^{(2m-1)}\right]. \tag{2}$$

Она справедлива, если непрерывны и ограниченны все $u^{(p)}(x)$ при $p \le 2M$; если непрерывна и $u^{(2M+2)}(x)$, то погрешность формулы (2) есть $O(h^{2M+2})$. Построим простой способ вычисления коэффициентов a_m .

Значения этих коэффициентов не зависят ни от вида u(x), ни от шага h или числа интервалов N сетки. Выберем $u(x)=x^{2M}$, N=1, h=1, $x_0=0$, $x_N\equiv x_1=1$; подстановка этих величин в (2) дает соотношение

$$\frac{1}{2M+1} = \frac{1}{2} + \sum_{m=1}^{M} (-1)^m \frac{(2M)!}{(2M-2m+1)!} a_m.$$
 (3)

Положим здесь M=1; тогда (3) содержит только один неизвестный коэффициент a_1 , который отсюда вычисляется. Затем положим M=2 и, уже зная a_1 , вычислим a_2 . Так, последовательно увеличивая M на единицу, легко вычислить любое число коэффициентов. Было вычислено 6 коэффициентов; первые 5 приведены в табл.1, а 6-ой опущен ввиду громоздкости. Для первых пяти коэффициентов величина $1/a_m$ есть целое число, но для 6-го это дробь.

Таблица 1.

m	1	2	3	4	5	6
1/a _m	12	720	30240	1209600	47900160	
c_m	2	1	4/3	3	10	691/15
d_m	1	1	1	1	25/24	691/600
a_{m-1}/a_m		60	42	40	39.6	39.508
b_m/c_m	1/2	7/8	31/32	127/128	511/512	2047/2048

Вычисления можно еще заметно упростить, если ввести новые коэффициенты c_m , связанные со старыми соотношением

$$a_m = c_m/(2m+2)!$$
 (4)

Тогда формула (3) переписывается в виде соотношения

$$\sum_{m=1}^{M} (-1)^m C_{2m-1}^{2M} \frac{c_m}{m(m+1)(2m+1)} = -2\frac{2M-1}{2M+1};$$
(5)

здесь C_{2m-1}^{2M} — биноминальные коэффициенты (для удобства вычислений они приведены в табл.2). Полагая в (3) поочередно M=1,2, ..., получим c_m , приведенные в табл.1; они достаточно просто выглядят.

Таолица 2. Коэффициенты C_{2m-1}^{2M}

m	1	2	3	4	5	6
M						
1	2	!				
2	4	4				
3	6	20	6			
4	8	56	56	8		
5	10	120	252	120	10	
6	12	220	792	792	220	12

Любопытно отметить еще одно упрощение. Введем коэффициенты d_m с помощью соотношений

$$c_m = \frac{2}{m}(m-1)! d_m. (6)$$

Эти коэффициенты также приведены в табл.1. Первые четыре из них точно равны 1, а последующие начинают отклоняться от единицы, но довольно слабо.

В табл.1 приведено также отношение двух соседних коэффициентов a_{m-1}/a_m . Видно, что при возрастании m оно быстро стремится к пределу ~39.5. По-видимому, точное значение этого предела есть $4\pi^2$.

3. Уточнение средних. Для формулы средних (средних прямоугольников) на равномерной сетке также можно строить уточнение Эйлера-Маклорена. С учетом написанного выше, возьмем его в следующем виде:

$$\int_{x_0}^{x_N} u(x)dx \approx h \sum_{n=1}^N u_{n-1/2} - \sum_{m=1}^M (-1)^m \frac{b_m}{(2m+2)!} h^{2m} \left[u_N^{(2m-1)} - u_0^{(2m-1)} \right]. \tag{7}$$

Порядок ее точности и требование к гладкости функции аналогичны п.2. Такими же подстановками получим рекуррентную формулу для вычисления коэффициентов:

$$\frac{1}{2M+1} = \frac{1}{2^{2M}} - \sum_{m=1}^{M} (-1)^m C_{2m-1}^{2M} \frac{b_m}{2m(2m+1)(2m+2)}.$$
 (8)

Были вычислены шесть первых коэффициентов. В табл.1 приведены отношения b_m/c_m ; оно монотонно возрастает с увеличением m, быстро стремясь к 1. Легко угадывается общее выражение

$$b_m / c_m = 1 - 2^{1 - 2m}; (9)$$

однако доказать его не удалось.

Заметим также, что знаки поправок к формулам трапеций (2) и средних (8) противоположны, а в каждой из этих формул знаки в суммах чередуются.

4. Применение. Описанные формулы позволяют интегрировать достаточно гладкие функции с очень высокой точностью. Приведенные в табл.1 шесть коэффициентов уменьшают погрешность до $O(h^{14})$, что покрывает все потребности практики. Отметим еще одно интересное следствие.

Пусть u(x) – периодическая функция с периодом x_N-x_0 . Тогда для неё $u_N^{(q)}-u_0^{(q)}=0$, и все суммы в формулах Эйлера-Маклорена исчезают; остается только формула трапеций или средних соответственно. Это означает, что для интегрирования периодической функции на периоде формулы трапеций или средних на равномерной сетке имеют точность не $O(h^2)$, а гораздо более высокую: если существует непрерывная производная $u^{(p)}(x)$, то погрешность составляет $O(h^p)$. Такую же точность дают формулы левых и правых прямоугольников, которые для непериодических функций имеют точность лишь O(h). Разумеется, для неравномерной сетки эти соображения неприменимы.

Эти соображения существенны при вычислении коэффициентов разложения функции в тригонометрический ряд Фурье. При этом интегрируется на периоде произведение $u(x)\sin[2\pi(x-x_0)/(x_N-x_0)]$ или аналогичное выражение с косинусом. Видно, что использование формул средних, трапеций и даже левых или правых прямоугольников на равномерной сетке обеспечивает при этом очень высокую, причем одинаковую для всех этих формул точность. Порядок точности определяется только порядком гладкости u(x).