TRƯỜNG ĐẠI HỌC MỎ - ĐỊA CHẤT $\label{eq:constraint} \mathbf{B} \mathbf{\hat{Q}} \ \mathbf{M} \mathbf{\hat{O}} \mathbf{N} \ \mathbf{TO} \mathbf{\hat{A}} \mathbf{N}$

ĐỀ THI OLYMPIC NĂM 2012 **MÔN THI: ĐẠI SỐ**

Thời gian: 180 phút

Câu 1. Tính định thức cấp n sau

$$\Delta_n = \begin{vmatrix} 3 & 2 & 0 & \dots & 0 & 0 \\ 1 & 3 & 2 & \dots & 0 & 0 \\ 0 & 1 & 3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 3 & 2 \\ 0 & 0 & 0 & \dots & 1 & 3 \end{vmatrix}.$$

Câu 2. Cho A là một ma trận vuông và I là ma trận đơn vị cùng cấp với A. Chứng minh rằng, nếu tồn tại $k \in N^*$ sao cho $A^k = 0$ thì det(A + I) = 1.

Câu 3. Tìm A^{2012} , trong đó

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Câu 4. Tìm điều kiện khả nghịch và ma trận nghịch đảo nếu có của ma trận vuông cấp n sau

$$A = \begin{pmatrix} 1+a & 1 & 1 & \dots & 1\\ 1 & 1+a & 1 & \dots & 1\\ 1 & 1 & 1+a & \dots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \dots & 1+a \end{pmatrix}.$$

Câu 5. Cho đa thức P(x) bậc n có n nghiệm thực phân biệt $x_1, x_2, ..., x_n$. Chứng minh rằng

$$\sum_{i=1}^n \frac{1}{P'(x_i)} = 0.$$

Câu 6. Tìm đa thức hệ số thực P(x) thỏa mãn

$$P(x + 2012) = P(x) + \frac{x}{2012} + 1.$$

MÔN THI: ĐẠI SỐ

BỘ MÔN TOÁN

Câu 1.Tínhđịnhthứccấp*n* sau

$$\Delta_n = \begin{vmatrix} 3 & 2 & 0 & \dots & 0 & 0 \\ 1 & 3 & 2 & \dots & 0 & 0 \\ 0 & 1 & 3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 3 & 2 \\ 0 & 0 & 0 & \dots & 1 & 3 \end{vmatrix}.$$

Lòigiải(4 điểm). Khaitriển định thức theo hàng 1 ta được

$$\Delta_n = 3\Delta_{n-1} - 2. \begin{vmatrix} 1 & 2 & 0 & \dots & 0 & 0 \\ 0 & 3 & 2 & \dots & 0 & 0 \\ 0 & 1 & 3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 3 & 2 \\ 0 & 0 & 0 & \dots & 1 & 3 \end{vmatrix}.$$

Khaitriểnđịnhthứctheocột 1 ta lạicó

$$\Delta_n = 3\Delta_{n-1} - 2\Delta_{n-2}.$$

Từ
đó, $\Delta_n - \Delta_{n-1} = 2(\Delta_{n-1} - \Delta_{n-2}),$ cứnhư
vậy ta được

$$\Delta_n - \Delta_{n-1} = 2(\Delta_{n-1} - \Delta_{n-2}) = 2^2(\Delta_{n-2} - \Delta_{n-3}) = \dots = 2^{n-2}(\Delta_2 - \Delta_1)$$
$$= 2^{n-2} \left(\begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} - 3 \right) = 4 \cdot 2^{n-2} = 2^n .$$

Do đó,
$$\Delta_n = (\Delta_n - \Delta_{n-1}) + (\Delta_{n-1} - \Delta_{n-2}) + \dots + (\Delta_2 - \Delta_1) + \Delta_1 =$$
$$= (2^n + 2^{n-1} + \dots + 2^2) + 3 = 2^{n+1} - 1.$$

Câu 2. Cho A là một ma trậnvuông vàI là ma trậnđơn vịc ùng cấp với A. Chứng minh rằng, nếu tồn tại $k \in N^*$ sao cho $A^k = 0$ thì $\det(A + I) = 1$.

Lờigiải (3 điểm). Giảsử λ là giá trị riêngcủa ma trậnA, khi đó tồntại $x \neq 0$ sao cho $Ax = \lambda x$. Bằng qui nạpsuyra $A^k x = \lambda^k x$. Do đó, $\lambda^n = 0$, nên mọigiátrị riêngcủaA đều bằng 0.

Vìvậy, đathức
đặctrưngcủaA phảicódạng $P_A(\lambda) = \det(A - \lambda I) = (-1)^n \cdot \lambda^n$

Cho $\lambda = -1$, ta suy ra, $P_A(-1) = \det(A + I) = (-1)^n \cdot (-1)^n = 1$.

Câu 3.Tìm A^{2012} , trong đó

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Lời giải (3 điểm). Phân tích A = 2.I + B với

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Do I là ma trận đơn vị nên nó giao hoán với mọi ma trận khác, còn ma trận B có tính chất

$$B^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad B^{k} = 0 \ (\forall k \ge 3).$$

$$A^{2012} = 2^{2012}I + 2012 \cdot 2^{2011} \cdot B + \frac{2011 \cdot 2012}{2} \cdot 2^{2010} \cdot B^2 = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$$

$$(a = 2^{2012}; b = 2012.2^{2011}; c = 2012.2011.2^{2009}).$$

 $\mathbf{C\hat{a}u}$ **4.**Tìm $\mathbf{d}i\hat{\mathbf{e}}u$ kiệnkhảnghịchvà ma trậnnghịch \mathbf{d} ảon $\hat{\mathbf{e}}u$ cócủa ma trậnvuông cấpn sau

$$A = \begin{pmatrix} 1+a & 1 & 1 & \dots & 1 \\ 1 & 1+a & 1 & \dots & 1 \\ 1 & 1 & 1+a & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1+a \end{pmatrix}.$$

Lờigiải (4 điểm).Lập ma trận(A|I). Cộnghàng 1 với tất các ách àng còn lại, ta thấy điều kiện cần để A khả nghịch là $a+n \neq 0$. Chia hàng 1 choa+n ta được hàng toàn 1.

Lấy cáchàng lần lượt trừ đihàng 1 ta có điều kiện cần tiếp theo là $a \neq 0$. Chia cáchàng thứ 2 trở đi choa, ta thấy trên đường chéo của A toàn 1.

Trừhàng 1 chotổngtấtcảcáchàngcònlại, ta được ma trậnnghịchđảolà

$$A^{-1} = \frac{-1}{a(a+n)} \begin{pmatrix} 1-a-n & 1 & 1 & \dots & 1\\ 1 & 1-a-n & 1 & \dots & 1\\ 1 & 1 & 1-a-n & \dots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \dots & 1-a-n \end{pmatrix}$$

Điều kiện khảng hịch: $a \neq 0$, $a \neq -n$.

Câu 5. Cho đathứcP(x) bậcn có n nghiệm thực phân biệt $x_1, x_2, ..., x_n$. Chứng minh rằng

$$\sum_{i=1}^n \frac{1}{P'(x_i)} = 0.$$

Lòigiải (3 điểm). Giảsửa là hệ sốđầucủaP(x), thì

$$P(x) = a(x - x_1)(x - x_2) \dots (x - x_n)$$

$$\rightarrow P'(x) = \sum_{i=1}^{n} w_i(x)$$
, $v \circ i w_i(x) = \frac{a}{(x - x_i)} \prod_{j=1}^{n} (x - x_j)$, $(i = \overline{1, n})$.

Xétđathứcbâc*n* − 1

$$G(x) = \sum_{i=1}^{n} \frac{w_i(x)}{w_i(x_i)} \to G(x_i) = 1 \ (i = \overline{1,n}) \to G(x) \equiv 1.$$

Đồng
nhấthệ
sốcủa \boldsymbol{x}^{n-1} ta được

$$\sum_{i=1}^{n} \frac{1}{w_i(x_i)} = \sum_{i=1}^{n} \frac{1}{P'(x_i)} = 0.$$

Câu 6.TìmđathứchệsốthựcP(x) thỏamãn

$$P(x + 2012) = P(x) + \frac{x}{2012} + 1.$$

Lờigiải (3 điểm). Đặt Q(x) = P(2012x), từ giả thiết ta có

$$Q\left(\frac{x}{2012} + 1\right) = Q\left(\frac{x}{2012}\right) + \frac{x}{2012} + 1 \rightarrow Q(x+1) = Q(x) + x + 1 \ (\forall x).$$

Do đó,
$$Q(n) = Q(n-1) + n = Q(n-2) + n + (n-1) = \cdots$$

... =
$$Q(0) + n + (n-1) + \dots + 1 = Q(0) + \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n + c \quad (\forall n \in \mathbb{N}^*).$$

Vìhaiđathứcbằngnhautại vô số điểm thì trùng nhaunên

$$Q(x) = \frac{1}{2}x^2 + \frac{1}{2}x + c \rightarrow P(x) = \frac{1}{2.2012^2}x^2 + \frac{1}{2.2012}x + c.$$

----- Hết -----