James Norcross

```
> install.packages(c("easypackages","MASS","ISLR","arm"))
Error in install.packages: Updating loaded packages
> install.packages(c("easypackages", "MASS", "ISLR", "arm"))
Warning in install.packages:
 packages 'easypackages', 'MASS', 'ISLR', 'arm' are in use and will not be installed
> library(easypackages)
> libraries("arm","MASS","ISLR")
All packages loaded successfully
> ## Load datasets from MASS and ISLR packages
> attach(Boston)
The following objects are masked from Boston (pos = 5):
  age, black, chas, crim, dis, indus, lstat, medv, nox, ptratio, rad, rm, tax, zn
> ### Simple linear regression
> names(Boston)
                    "indus" "chas" "nox" "rm"
[1] "crim" "zn"
                                                      "age"
                                                              "dis"
                                                                      "rad"
                                                                              "tax"
"ptratio"
[12] "black" "lstat" "medv"
> # What is the Boston dataset?
> ?Boston
> plot(medv~lstat,Boston, pch=20, cex=.8, col="steelblue")
```



```
> fit1=lm(medv~lstat,data=Boston)
> fit1
```

Call:

 $lm(formula = medv \sim lstat, data = Boston)$

Coefficients:

(Intercept) lstat 34.55 -0.95

> summary(fit1)

Call:

 $lm(formula = medv \sim lstat, data = Boston)$

Residuals:

Min 1Q Median 3Q Max -15.168 -3.990 -1.318 2.034 24.500

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 34.55384 0.56263 61.41 <2e-16 *** lstat -0.95005 0.03873 -24.53 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 6.216 on 504 degrees of freedom Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432 F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

> abline(fit1,col="firebrick")

> names(fit1)

```
[1] "coefficients" "residuals"
                               "effects"
                                           "rank"
                                                       "fitted.values" "assign"
                                                                                  "qr"
[8] "df.residual" "xlevels"
                              "call"
                                         "terms"
                                                      "model"
> confint(fit1) # confidence intervals
         2.5 %
                 97.5 %
(Intercept) 33.448457 35.6592247
lstat
       -1.026148 -0.8739505
> # Predictions using values in 1stat
> predict(fit1,data.frame(lstat=c(0,5,10,15)),interval="confidence") # confidence intervals
    fit
         lwr
                upr
1 34.55384 33.44846 35.65922
2 29.80359 29.00741 30.59978
3 25.05335 24.47413 25.63256
4 20.30310 19.73159 20.87461
> predict(fit1,data.frame(lstat=c(0,5,10,15)),interval="prediction") # prediction intervals
   fit
          lwr
                upr
1 34.55384 22.291923 46.81576
2 29.80359 17.565675 42.04151
3 25.05335 12.827626 37.27907
4 20.30310 8.077742 32.52846
> ### Multiple linear regression
> fit2=lm(medv~lstat+age,data=Boston)
> summary(fit2)
Call:
lm(formula = medv \sim lstat + age, data = Boston)
Residuals:
  Min
         10 Median
                        3Q
                             Max
-15.981 -3.978 -1.283 1.968 23.158
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.22276  0.73085  45.458 < 2e-16 ***
       -1.03207 0.04819 -21.416 < 2e-16 ***
Istat
         age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 6.173 on 503 degrees of freedom
Multiple R-squared: 0.5513, Adjusted R-squared: 0.5495
F-statistic: 309 on 2 and 503 DF, p-value: < 2.2e-16
> fit3=lm(medv~.,Boston)
> summary(fit3)
Call:
```

```
lm(formula = medv \sim ., data = Boston)
```

Residuals:

```
Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
        -1.080e-01 3.286e-02 -3.287 0.001087 **
        4.642e-02 1.373e-02 3.382 0.000778 ***
zn
         2.056e-02 6.150e-02 0.334 0.738288
indus
         2.687e+00 8.616e-01 3.118 0.001925 **
chas
        -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
nox
        3.810e+00 4.179e-01 9.116 < 2e-16 ***
rm
        6.922e-04 1.321e-02 0.052 0.958229
age
dis
       -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
        3.060e-01 6.635e-02 4.613 5.07e-06 ***
rad
       -1.233e-02 3.760e-03 -3.280 0.001112 **
tax
ptratio
        -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
         9.312e-03 2.686e-03 3.467 0.000573 ***
black
       -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
lstat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

```
> par(mfrow=c(2,2))
> plot(fit3,pch=20, cex=.8, col="steelblue")
> mtext("fit3", side = 3, line = - 2, cex = 2, outer = TRUE)
```

fit3

- > # Update function to re-specify the model, i.e. include all but age and indus variables
- > fit4=update(fit3,~.-age-indus)
- > summary(fit4)

Call:

$$lm(formula = medv \sim crim + zn + chas + nox + rm + dis + rad + \\ tax + ptratio + black + lstat, data = Boston)$$

Residuals:

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.341145 5.067492 7.171 2.73e-12 ***
crim -0.108413 0.032779 -3.307 0.001010 **

```
zn
       2.718716  0.854240  3.183  0.001551 **
chas
       -17.376023 3.535243 -4.915 1.21e-06 ***
nox
       3.801579  0.406316  9.356  < 2e-16 ***
rm
      dis
       rad
       tax
       ptratio
        0.009291  0.002674  3.475  0.000557 ***
black
lstat
      -0.522553 0.047424 -11.019 < 2e-16 ***
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 4.736 on 494 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7348
F-statistic: 128.2 on 11 and 494 DF, p-value: < 2.2e-16
> # Set the next plot configuration
> par(mfrow=c(2,2), main="fit4")
Warning message:
In par(mfrow = c(2, 2), main = "fit4"):
 "main" is not a graphical parameter
> plot(fit4,pch=20, cex=.8, col="steelblue")
> mtext("fit4", side = 3, line = -2, cex = 2, outer = TRUE)
```


- > # Uses coefplot to plot coefficients. Note the line at 0.
- > par(mfrow=c(1,1))
- > arm::coefplot(fit4)

- > ### Nonlinear terms and Interactions
- > fit5=lm(medv~lstat*age,Boston) # include both variables and the interaction term x1:x2
- > summary(fit5)

Call:

 $lm(formula = medv \sim lstat * age, data = Boston)$

Residuals:

Min 1Q Median 3Q Max -15.806 -4.045 -1.333 2.085 27.552

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 *** lstat -1.3921168 0.1674555 -8.313 8.78e-16 *** age -0.0007209 0.0198792 -0.036 0.9711

```
lstat:age 0.0041560 0.0018518 2.244 0.0252 * ---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.149 on 502 degrees of freedom Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531 F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

- > ## I() identity function for squared term to interpret as-is
- > ## Combine two command lines with semicolon
- > fit6=lm(medv~lstat +I(lstat^2),Boston); summary(fit6)

Call:

 $lm(formula = medv \sim lstat + I(lstat^2), data = Boston)$

Residuals:

Min 1Q Median 3Q Max -15.2834 -3.8313 -0.5295 2.3095 25.4148

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.862007 0.872084 49.15 <2e-16 ***
lstat -2.332821 0.123803 -18.84 <2e-16 ***
I(lstat^2) 0.043547 0.003745 11.63 <2e-16 ***
--Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 5.524 on 503 degrees of freedom Multiple R-squared: 0.6407, Adjusted R-squared: 0.6393 F-statistic: 448.5 on 2 and 503 DF, p-value: < 2.2e-16

> par(mfrow=c(1,1)) > plot(medv~lstat, pch=20, col="forestgreen")

> points(lstat,fitted(fit6),col="firebrick",pch=20)

> fit7=lm(medv~poly(lstat,4)) > points(lstat,fitted(fit7),col="steelblue",pch=20)

> ###Qualitative predictors

> names(Carseats)

[1] "Sales" "CompPrice" "Income" "Advertising" "Population" "Price" "ShelveLoc" "Age"

[9] "Education" "Urban" "US"

> summary(Carseats)

Sales CompPrice Income Advertising Population Price ShelveLoc Min.: 0.000 Min.: 77 Min.: 21.00 Min.: 0.000 Min.: 10.0 Min.: 24.0 Bad: 96

1st Qu.: 5.390 1st Qu.:115 1st Qu.: 42.75 1st Qu.: 0.000 1st Qu.:139.0 1st Qu.:100.0 Good: 85

Median: 7.490 Median: 125 Median: 69.00 Median: 5.000 Median: 272.0 Median: 117.0 Medium: 219

Mean : 7.496 Mean : 125 Mean : 68.66 Mean : 6.635 Mean : 264.8 Mean : 115.8 3rd Qu.: 9.320 3rd Qu.: 135 3rd Qu.: 91.00 3rd Qu.: 12.000 3rd Qu.: 398.5 3rd Qu.: 131.0 Max. : 16.270 Max. : 175 Max. : 120.00 Max. : 29.000 Max. : 509.0 Max. : 191.0

```
Age
            Education Urban
                                 US
Min. :25.00 Min. :10.0 No:118 No:142
1st Qu.:39.75 1st Qu.:12.0 Yes:282 Yes:258
Median: 54.50 Median: 14.0
Mean :53.32 Mean :13.9
3rd Qu.:66.00 3rd Qu.:16.0
Max. :80.00 Max. :18.0
> fit1=lm(Sales~.+Income:Advertising+Age:Price,Carseats) # add two interaction terms
> summary(fit1)
Call:
lm(formula = Sales ~ . + Income: Advertising + Age: Price, data = Carseats)
Residuals:
  Min
         1Q Median
                       3Q Max
-2.9208 -0.7503 0.0177 0.6754 3.3413
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              6.5755654 1.0087470 6.519 2.22e-10 ***
CompPrice
                0.0929371 0.0041183 22.567 < 2e-16 ***
Income
              0.0108940 0.0026044 4.183 3.57e-05 ***
Advertising
               0.0702462 0.0226091 3.107 0.002030 **
               0.0001592 \ 0.0003679 \ 0.433 \ 0.665330
Population
            -0.1008064 0.0074399 -13.549 < 2e-16 ***
Price
ShelveLocGood
                  4.8486762 0.1528378 31.724 < 2e-16 ***
ShelveLocMedium
                    1.9532620 0.1257682 15.531 < 2e-16 ***
            -0.0579466 0.0159506 -3.633 0.000318 ***
Age
              -0.0208525 0.0196131 -1.063 0.288361
Education
```

UrbanYes 0.1401597 0.1124019 1.247 0.213171 -0.1575571 0.1489234 -1.058 0.290729 **USYes**

Income: Advertising 0.0007510 0.0002784 2.698 0.007290 **

Price:Age 0.0001068 0.0001333 0.801 0.423812

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1.011 on 386 degrees of freedom Multiple R-squared: 0.8761, Adjusted R-squared: 0.8719 F-statistic: 210 on 13 and 386 DF, p-value: < 2.2e-16

> attach(Carseats)

The following objects are masked from Carseats (pos = 4):

Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, Urban, US

The following objects are masked from Carseats (pos = 5):

> regplot(Price, Sales)

Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, Urban, US

```
> contrasts(Carseats$ShelveLoc) # what is contrasts function?
    Good Medium
Bad
        0
            0
Good
         1
             0
Medium 0
> ?contrasts
> ### Writing an R function to combine the lm, plot and abline functions to
> ### create a one step regression fit plot function
> regplot=function(x,y){
+ fit=lm(y\sim x)
+ plot(x,y, pch=20)
+ abline(fit,col="firebrick")
> ### Writing an R function to combine the lm, plot and abline functions to
> ### create a one step regression fit plot function
> regplot=function(x,y){
+ fit=lm(v\sim x)
+ plot(x,y, pch=20)
+ abline(fit,col="firebrick")
+ }
> attach(Carseats)
The following objects are masked from Carseats (pos = 3):
  Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, Urban,
US
The following objects are masked from Carseats (pos = 5):
  Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, Urban,
US
The following objects are masked from Carseats (pos = 6):
  Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, Urban,
US
```



```
> regplot=function(x,y,...){
+ fit=lm(y~x)
+ plot(x,y,...)
+ abline(fit,col="firebrick")
+ }
> regplot(Price,Sales,xlab="Price",ylab="Sales",col="steelblue",pch=20)
```


- > ## Additional note: try out the coefplot2 package to finetune the coefplots
- > ## Additional note: try out the coefplot2 package to finetune the coefplots
- > ##install.packages("coefplot2", repos="http://www.math.mcmaster.ca/bolker/R", type="source")

`

- > # Exercise
- > # Exercise
- > # Try other combination of interactive terms
- > # Exercise
- > # Try other combination of interactive terms
- > # How to interpret interactive terms?
- > # Exercise
- > # Try other combination of interactive terms
- > # How to interpret interactive terms?
- > # Read: Brambor, T., Clark, W.R. and Golder, M., 2006. Understanding interaction models: Improving empirical analyses. Political analysis, 14(1), pp.63-82.

- > # Exercise
- > # Try other combination of interactive terms
- > # How to interpret interactive terms?
- > # Read: Brambor, T., Clark, W.R. and Golder, M., 2006. Understanding interaction models: Improving empirical analyses. Political analysis, 14(1), pp.63-82.
- > # What are qualitative variables? What class should they be?

TEDS_2016 Data examination

- > library(haven)
- > TEDS_2016 <- read_dta("C:/Users/jsnor/OneDrive/Desktop/SCHOOL/UT-

Dallas/Courses/EPPS6323/Data/TEDS_2016.dta")

- > View(TEDS_2016)
- > glm.vt=glm(votetsai~female, data=TEDS_2016, family=binomial)
- > summary(glm.vt)

Call:

glm(formula = votetsai ~ female, family = binomial, data = TEDS_2016)

Deviance Residuals:

Min 1Q Median 3Q Max -1.4180 -1.3889 0.9546 0.9797 0.9797

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 0.54971 0.08245 6.667 2.61e-11 *** female -0.06517 0.11644 -0.560 0.576

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1666.5 on 1260 degrees of freedom Residual deviance: 1666.2 on 1259 degrees of freedom

(429 observations deleted due to missingness)

AIC: 1670.2

Number of Fisher Scoring iterations: 4

Are female voters more likely to vote for President Tsai? Why or Why not?

While the results do not indicate a significant correlation, it does appear that 57% would not vote for President Tsai

4. Add party ID variables (KMT, DPP) and other demographic variables (age, edu, income) to improve the model.

What do you find? Which group of variables work better in explaining/predicting votetsai?

R-suite continued to not recognize variables in dataset unable to run further regressions

5. Try adding the following variables

Variables not recognized by R-suite

6. Run the model in STATA

. logit votetsai Independence Econ_worse Govt_dont_car Minnan_father Mainland_father Taiwanese KMT DPP age edu fema > le

```
Iteration 0: log likelihood = -830.8794
Iteration 1: log likelihood = -394.71949
Iteration 2: log likelihood = -391.07779
Iteration 3: log likelihood = -383.77114
Iteration 4: log likelihood = -383.74545
Iteration 5: log likelihood = -383.74545
```

Logistic regression

Number of obs = 1,257 LR chi2(11) = 894.27 Prob > chi2 = 0.0000 Pseudo R2 = 0.5381

Log likelihood = -383.74545

votetsai	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Independence	1.020472	.2514934	4.06	0.000	.5275539	1.51339
Econ_worse	.3029434	.1886537	1.61	0.108	066811	.6726979
Govt_dont_care	0108799	.1886126	-0.06	0.954	3805538	.3587941
Minnan_father	2508963	.2541558	-0.99	0.324	7490325	.2472399
Mainland_father	-1.091122	.3965396	-2.75	0.006	-1.868326	3139191
Taiwanese	.9053165	.1988531	4.55	0.000	.5155715	1.295061
KMT	-2.908613	.258022	-11.27	0.000	-3.414327	-2.402899
DPP	2.475992	.2751241	9.00	0.000	1.936759	3.015226
age	.0034895	.0078776	0.44	0.658	0119503	.0189293
edu	0762936	.0860751	-0.89	0.375	2449977	.0924106
female	0949213	.1897555	-0.50	0.617	4668353	.2769928
_cons	.0366225	.6742767	0.05	0.957	-1.284936	1.358181

With regards to the first questioned asked about female voting, it appears that approximately 62% of the female population surveyed for this study would not vote for President Tsai. Also, the logit regression on STATA is cleaner and responsive. Stata as a software, cleans the outl