

The Internet – an example

The Internet – an example

DNS [1]

- Global, distributed name space
- Nodes form a tree:
 - Hierarchical delegation
- Domain:
 - single IP network, e.g.: cs.ucl.ac.uk
 - multiple IP networks: ibm.com
- DNS servers:
 - servers for each domain

DNS [2]

- Query to local server:
 - iterative mode
 - recursive
- Authoritative answer:
 - from domain server
- Non-authoritative answer:
 - from cache at local server

204.146.18.33

- Resource Records:
 - A (address): gives IP address for a host name
 - PTR (pointer): gives host name for an IP address
 - MX (mail) : give name of mail server for a host name

root server

IPv4 addresses: original assignment

e.g. marston.cs.ucl.ac.uk: 128.16.20.1 (class B)

Not all addresses available -- some addresses are "lost" inside a network, e.g. *cs.ucl.ac.uk* has class B addresses with 64K host ids, many of which are not used, but can't be used by any other network.

IP addresses for dial-up users

- Internet Assigned Numbers Authority (IANA)
 - Regional Internet Registry (RIR)
 - ARIN, RIPE, APNIC, LACNIC, AfriNIC
- ISP: fewer active users than subscribers
- Do not need unique IP address per subscriber
- Pool of addresses:
 - user allocated IP address from pool
 - IP address used for dial-up session
 - returned to pool at end of session
 - next session may be using different address

Addresses and Networks

Number of bits assigned to network id

- Modern usage classless addressing
 - Explicit prefix length e.g. 128.16.48.0/20
 - Network mask e.g. 255.255.240.0

- "IP Network" or "IP Subnet"
 - Set of hosts with same network prefix
- Inter-subnet traffic must go via a router
- Intra-subnet traffic must not

The Internet Protocol v4

IP Forwarding

IP Forwarding - detail

H ₄			P	Prefix	Interface	Next hop
	Prefix	Next hop	1\2	220.20.4.0/24	2	local
	default	220.20.4.50		220.20.5.0/24	1	local
	220.20.4/24	local		128.16.0.0/16	1	220.20.5.20

IP Forwarding – detail

R ₁	Prefix	Interface	Next hop
	220.20.4.0/24	1	220.20.5.30
	220.20.5.0/24	1	local
	128.16.0.0/16	2	local

How do IP Datagrams Travel?

- Ethernet understands Ethernet frames and Ethernet addresses
- ATM understands ATM addresses, cells and VCs
- No network technologies understand IP addresses
- No network technologies understand IP datagram headers
- IP datagrams must be treated as data
 - Encapsulation
- We must have "physical addresses"
 - Ethernet addresses, ATM addresses etc.
 - Address resolution: IP address → "physical address"

Encapsulation - three examples

Note: ATM is a virtual circuit technology & a VC has to be set up before IP datagrams can be sent.

Address Resolution: ARP on a LAN

- ARP results are cached
 - Timeout if not "refreshed"
- All hosts learn mapping for requestor

Summary so far

- IP connectionless service, global addresses, no guarantees about delivery, may deliver out of order, normally no QoS guarantees
- Routers
- Mappings to network technologies LANs, WANs etc.
- Suppose we want reliable sequenced delivery?
 - TCP
- Suppose we don't?
 - UDP

Transmission Control Protocol - TCP

- Reliable, sequenced delivery
 - ARQ operation
 - Connection oriented
- Flow control
 - Variable window
- "End-to-end" routers are not aware of TCP

TCP (and UDP) Ports

- IP addresses identify hosts
- Ports identify processes
 - Like telephone extension numbers
 - When packet arrives OS looks at ports and chooses process
- "Well-known" ports
 - HTTP (WWW server) 80
 - FTP (FTP server) 21
 - Telnet (Remote rlogin) 23
 - SMTP (Email) 25
 - Rlogin (Unix remote login) 513

TCP Example – The WWW

- To retrieve text, images etc. we need reliable, sequenced delivery
- Separate TCP connection for each component (in parallel)
 - Use IP address of server, TCP port 80

URL Format

col>://<domain name>/<path name>

protocol: http, https, ftp

Domain name: name of host e.g. sonic.cs.ucl.ac.uk

Note: www.cs.ucl.ac.uk identifies web server at cs.ucl.ac.uk

Path name: used by target to identify page requested

Note: port number determined by protocol: 80 for http

TCP and Network Congestion

- Routers can become congested
 - Packets delayed, eventually some are dropped
- TCP knows about dropped packets retransmits
- TCP implementations slow down (reduce the window)
- Congestion is avoided

The End