Федеральное государственное автономное учреждение высшего профессионального образования

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)»

Конспект лекций

по механике сплошных сред (механика твердого и деформируемого тела)

Москва 2017

Предисловие

Оглавление

Введение.	
Лекция 1.	
1.1	Теория конечных деформаций
Лекция 2.	
2.1	Простой сдвиг
2.2	Расстяжение и сжатие в некотором направле-
	нии (сложный сдвиг)
2.3	Малые деформации и скоростные дефформаци-
	онные велечины
Лекция 3.	
3.1	Уравнения совместности

Введение

Постулируется непрерывность преобразования из одного состояния в другое. И не может быть так, что часть конечного объема после трансформации стала бесконечной. Если есть последовательность состояний тела и эта последовательность имела предел, то так будет и в любом другом состоянии системы. Это и есть сплошность, фактически, непрерывность.

Итак, принципиальнео различие механики сплошных сред (МСС) от механики дискретных сред (МДС) состоит в том, что вещество в МДС представляется в виде набора материальных точек в конкретных точках пространства, в то время как в МСС материальные точки полностьб заполняют предоставленный объем: свойства задаются не для конкретной точки, а для набора, т.е. для некоторого объема.

Как и в механике дискретных сред, масса тела неизменна, положительна, если объем положителен, и аддитивна т.е. если части тела не пересекаются или пересекаются по множеству нулевой меры, то масса всех этих частей равна сумме масс этих частей в отдельности. Важное понятие, используемое нами в дальнейшем — отсчётное описание. Это способ идентификации материальных точек (в дальнейшем \mathbf{mt}). Среди всех состояний (конфигураций) тела в какой-то момент времени t существует одно, которе мы мысленно фиксируем. Эту конфигурацию будем называть **отсчетной** и обозначать \varkappa , она неизменна. Остальные же конфигурации зависят от времени, поэтому **актуальную** конфигурацию (в данный момент времени) обозначим $\chi(t)$. Местоположение мт в отсчетной конфигурации служит «именем» этой мт.

Выбирается некоторое состояние тела (отсчетная конфигурация) в какой-то момент времени t, именами точек служит радиус-векторы.

Этот метод похож на учет населения с помощью постоянной прописки. Для того, чтобы узнать текущую (актуальную) конфигурацию, для обозначения которой мы будем использовать $\chi(t)$ мы должны задаться отображением:

$$\vec{r} = \vec{r}(\vec{x}, t) \tag{1}$$

Движение материальной точки — это отображение \vec{r} при фиксированном \vec{x} . В дальнейшем предполагается, что $\vec{r} \in C^2$, или хотя бы кусочно-непрерывно дифференцируемо по \vec{x} . И действительно, рассмотрим стержень, одну часть которого расстянем, а другую сожьмем. Градиент тут будет разрывен, по-этому естественно, что в МСС присутствуеют разрывы производных.

Лекция 1

Введем градиент \vec{r} по \vec{x} :

$$F(\vec{x},t) \equiv \nabla_{\varkappa} \otimes \vec{r}(\vec{x},t) \tag{1.2}$$

Индекс при векторе набла указывает, что дифференцирование идет по \vec{x} т. е. по радиусу вектору отсчетной конфигурации. Что означает на самом деле формула (1.2)? Вспомнив определение дифференциала, не трудно понять, что F — это линейный оператор, отображающий \vec{dx} в \vec{dr} .

$$d\vec{r} = d\vec{x} \cdot F$$

В этом градиенте сожержится все, что происходит с окрестностью точки. Договоримся, что $\det F$ — коэффициент преобразования объема. В дальнейшем будем считать, что $\det F \neq 0$, иными словами:

$$d\vec{x} = d\vec{r} \cdot F^{-1}$$

Раз определитель отличен от 0 и по нашему договору все меняется непрерывно, то детерминант не может менять знак (иначе он обратился бы в 0 в какой-то момент). Какой же он, больше или меньше нуля? Если $\vec{r}_{\text{отс}} = \vec{x} \Rightarrow F \equiv I$, $\det I = 1 > 0$.

Мы всегда будем полагать, что определитель больше нуля, тогда это к тому же и коэффициент преобразования объема:

$$dV = (\det F) dV_{\varkappa}$$

Предположения о массе сделанные выше влекут за собой сооброжения о потности массы. Масса есть интеграл этой плотности по окрестности $dm = \rho_{\varkappa} dV_{\varkappa} = \rho dV = \rho \det F \, dV_{\varkappa}$:

$$\rho_{\varkappa}(\vec{x}) = \rho(\vec{x}, t) \det F(\vec{x}, t)$$
(1.3)

Есть два типа описания физических величин:

Отсчетное описание физической величины $\vec{r} = \vec{r}(\vec{x}, t)$:

$$\Psi = \Psi \left(\vec{x}, t \right)$$

Пространственное описание, выражающееся формулами от t и \vec{r} , чаще всего такое описание используется в гидромеханике. Мы тоже будем иногда прибегать к такому способу. Для этого вводится специальная функция

$$\Psi = \Psi \left(\vec{r}, t \right)$$

Производную по времени будем называть материальной производной:

$$\dot{\Psi} = \left(\frac{\partial \Psi}{\partial t}\right)_{\vec{r}}$$

Пространственной поизводной будем называть величину:

$$\left(\frac{\partial \Psi}{\partial t}\right)_{\vec{r}}$$

Чтобы понять в чем разница, можно привести пример с рекой и температурой. Если ставить термометр на якорь, то это все равно, что пространственная производная, то есть фиксировано положение термометра в реке и измеряется температура конкретной точки пространства. Если термометр пустить по течению, то будет измерятся температура конкретной точки реки, это соответствует временной производной. Заметим, что $\dot{\vec{r}} = \vec{v}\left(\vec{x},t\right)$. Найдем связь между временной и пространственной производной (формула Эйлера):

$$\dot{\Psi} \equiv \left(\frac{\partial \Psi}{\partial t}\right)_{\vec{x}} = \left(\frac{\partial \Psi}{\partial t}\right)_{\vec{r}} + \vec{v} \cdot \nabla \otimes \Psi$$

Формула получается применением дифференцирования сложной функции, если подставить в выражение $\Psi = \Psi \left(\vec{x}, t \right)$ формулу (1).

$$\Psi = \Psi \left(\vec{r} \left(\vec{x}, t \right), t \right)$$

В частности:

$$\dot{\vec{v}} = \left(\frac{\partial \vec{v}}{\partial t}\right)_{\vec{r}} + \vec{v} \cdot \nabla \otimes \vec{v}$$

В стационарном течении получаем $\dot{\vec{v}} = \vec{v} \cdot \nabla \otimes \vec{v}$, так же можно рассмотреть сдвиговое течение (ярким примером которого может служить скосившаяся стопка бумаг или колода карт), тогда $\vec{v} \cdot \nabla \otimes \vec{v}$ Найдем связь между градиентами в отсчетной и актуальной конфигурациях:

$$(d\Psi)_t = d\vec{x} \cdot \nabla_{\varkappa} \otimes \Psi = d\vec{r} \cdot \nabla \otimes \Psi \stackrel{\text{(1)}}{=} d\vec{x} \cdot F \cdot \nabla \otimes \Psi$$
$$\nabla_{\varkappa} = F \cdot \nabla \tag{1.4}$$

Вспомним о независимости порядка дифференцирования независимых переменных и получим выражение, которое понядобится нам для вывода закона сохранения массы (ЗСМ):

$$\dot{F}(\vec{x},t) = (\nabla_{\varkappa} \otimes \vec{r}(\vec{x},t)) = \nabla_{\varkappa} \otimes \dot{\vec{r}}(\vec{x},t) = \nabla_{\varkappa} \otimes \vec{v}(\vec{x},t)$$
(1.5)

Также, перед выводом ЗСМ полезно вспомнить следующую формулу:

$$(\det F)^{\cdot} = \dot{F} : \det F \left(F^{-1} \right)^{T} \tag{1.6}$$

Теперь у нас есть все, для вывода ЗСМ. Продифференцируем выражение (1.3):

$$\dot{\rho} \det F + \rho \left(\det F \right) = 0$$

Вспомнив выражение (1.6) получаем:

$$\dot{\rho} \det F + \rho \left(\det F \right) \dot{F} : \left(F^{-1} \right)^T = 0$$

Так как мы обговаривали что определитель считаем положительным, то на него можно подклить, так же вспомнив про выражение (1.5) приходим к равенству:

$$\dot{\rho} + \rho \nabla_{\varkappa} \otimes \dot{\vec{v}} : (F^{-1})^T = 0$$

Из тензарной алгебры известно соотношение $A:B=I:(A\cdot B^T)=I:(B^T\cdot A)$, тогда наше выражение примет вид:

$$\dot{\rho} + \rho I : F^{-1} \cdot \nabla_{\varkappa} \otimes \vec{v} = 0$$

Если вспомнить соотношение между градиентами (формула (1.4)) и свойства двойного скалярного произведения, мы получим окончательно:

$$\left(\frac{\partial \rho}{\partial t}\right)_{\vec{r}} + \vec{v} \cdot \nabla \rho + \rho \nabla \cdot \vec{v} = 0$$

Займемся выводом еще одной интересной формулы (скорость изменения объема) $(\det F)^{\cdot} = (\det F) \nabla \cdot \vec{v}$. Пусть тело занимает в актуальной конфигурации область B.

$$V(t) = \int_{B} dV = \int_{B_{\varkappa}} (\det F) dV_{\varkappa}$$

$$\dot{V}(t) = \left(\int_{B} dV\right) \cdot = \left(\int_{B_{\varkappa}} (\det F) \, dV_{\varkappa}\right) \cdot =$$

$$= \int_{B_{\varkappa}} (\det F) \cdot dV_{\varkappa} = \int_{B_{\varkappa}} (\det F \, \nabla \cdot \vec{v}) \, \frac{dV_{\varkappa}}{dV} =$$

$$= \int_{B_{\varkappa}} \nabla \cdot \vec{v} \, dV = \int_{\partial B} (\vec{n} \cdot \vec{v}) \, d\Sigma$$

1.1 Теория конечных деформаций

Вспомним теорему Коши о полярном разложении

$$F = U \cdot R = R \cdot U',$$

где U — симметричный положительно определенный тензор, а R — ортоганальный. Если представить U в главных осях, то его детерминант будет произведением собственных чисел ($\det U = u_1 u_2 u_3$):

$$U = u_1 \vec{e}_1 \otimes \vec{e}_1 + u_2 \vec{e}_2 \otimes \vec{e}_2 + u_3 \vec{e}_3 \otimes \vec{e}_3$$

Так как U положительно определенный, то и его собственные чисила положительны, тогда:

 $\det F = \det U \det R > 0 \Rightarrow \det R > 0 \Rightarrow \det R = 1$ т.к. R ортоганален.

Вспомним как связаны между собой U' и U:

$$U' = R^T U R = U * R \Rightarrow$$

$$\Rightarrow U' = u_1 \vec{e_1}' \otimes \vec{e_1}' + u_2 \vec{e_2}' \otimes \vec{e_2}' + u_3 \vec{e_3}' \otimes \vec{e_3}',$$

где $\vec{e_i}' = \vec{e_i} \cdot R$. Вспоминая формулу (1) можем получить: $d\vec{r} = d\vec{x} \cdot F = d\vec{x} \cdot UR = d\vec{x} \cdot RU'$. Тогда можно дать следующую физическую интерпретацию. U — левый тензор чистого растяжения (растяжение происходит вдоль осей $\vec{e_i}$ — осей растяжения в актуальной конфигурации, с коэффициентом u_i), R — тензор поворота. U' — правый тензор чистого растяжения (растяжение происходит вдоль осей $\vec{e_i}'$ — осей растяжения в отсчетной конфигурации, с коэффициентом u_i).

Пусть $d\vec{x} = |d\vec{x}|\vec{e_i}$, тогда:

$$d\vec{r} = |d\vec{x}| \vec{e_i} \cdot F = |d\vec{x}| \cdot UR = |d\vec{x}| u_i \vec{e_i} \cdot R = |d\vec{x}| u_i' \vec{e_i}$$

А что если $d\vec{x} \not \mid \vec{e_i}$? Какой будет коэффициент растяжения? Введем два тензора $F \cdot F^T = U \cdot R \cdot R^T \cdot U = U^2$ — левый тензор Коши-Грина. Аналогично $F \cdot F^T = {U'}^2$ — правый тензор Коши-Грина. Возьмем направленный вектор $d\vec{x} = |d\vec{x}| \, \vec{e}$.

$$\begin{aligned} |d\vec{r}|^2 &= d\vec{r} \cdot d\vec{r} = d\vec{x} \cdot F \cdot d\vec{x} \cdot F = d\vec{x} \cdot F \cdot F^T \cdot d\vec{x} = d\vec{x} \cdot U^2 \cdot d\vec{x} = |d\vec{x}|^2 \vec{e} \cdot U^2 \cdot \vec{e} \\ \frac{|d\vec{r}|}{|d\vec{x}|} &= \sqrt{\vec{e} \cdot F \cdot F^T \cdot \vec{e}} \end{aligned}$$

Введем понятие угла сдвига. Возьмем в отсчетной конфигурации два взаимно-ортогональных элемента $d\vec{x}$ и $d\vec{x}'$, тогда:

$$d\vec{r} \cdot d\vec{r}' = |d\vec{r}| |d\vec{r}'| \cos \alpha = |d\vec{r}| |d\vec{r}'| \sin \gamma$$

С другой стороны:

$$d\vec{r} \cdot d\vec{r}' = d\vec{x} \cdot F \cdot d\vec{x}' \cdot F = d\vec{x} \cdot F \cdot F^T \cdot d\vec{x}' =$$

$$= |d\vec{x}| |d\vec{x}'| \vec{e} \cdot F \cdot F^T \cdot \vec{e}' = |d\vec{r}| |d\vec{r}'| \sin \gamma$$

Таким образом получаем выражение для синуса угла сдвига:

$$\sin \gamma = \frac{\vec{e} \cdot F \cdot F^T \cdot \vec{e}'}{|d\vec{r}| |d\vec{r}'|} \cdot |d\vec{x}| |d\vec{x}'| = \frac{\vec{e} \cdot F \cdot F^T \cdot \vec{e}'}{\frac{|d\vec{r}|}{|d\vec{x}|} \frac{|d\vec{r}'|}{|d\vec{x}'|}}$$

$$\sin \gamma = \frac{\vec{e} \cdot F \cdot F^T \cdot \vec{e}'}{\sqrt{\vec{e} \cdot F \cdot F^T \cdot \vec{e}} \sqrt{\vec{e}' \cdot F \cdot F^T \cdot \vec{e}'}}$$
(1.7)

Если $\vec{e} = \vec{e}_1, \vec{e}' = \vec{e}_2$, тогда в выражении (1.7) будет стоять 0. Таким образом, главные векторы только поворачиваются, а углы между ними не меняются.

Получим тензор конечных деформаций. Для этого введем понятие вектора смещения $\vec{w}(\vec{x}) = \vec{r}(\vec{x}) - \vec{x}$. Выразим из него вектор \vec{r} и подставим в (1.2).

$$F = I + \nabla_{\varkappa} \otimes w , F^{T} = I + (\nabla_{\varkappa} \otimes w)^{T}$$
$$F \cdot F^{T} = I + \nabla_{\varkappa} \otimes w + (\nabla_{\varkappa} \otimes w)^{T} + \nabla_{\varkappa} \otimes w \cdot (\nabla_{\varkappa} \otimes w)^{T}$$

И тензором конечных деформаций назовем величину:

$$\frac{F \cdot F^T - I}{2} = \frac{1}{2} \left(\nabla_{\varkappa} \otimes w + (\nabla_{\varkappa} \otimes w)^T + \nabla_{\varkappa} \otimes w \cdot (\nabla_{\varkappa} \otimes w)^T \right)$$

Лекция 2

Продолжим тему предыдущей лекции. $\vec{r}(\vec{x}) = \vec{x}_0 + (\vec{x} - \vec{x}_0) R_0 + \vec{w}_0$, где тензор R_0 —тензор поворота(без параллельного переноса). Что происходит с точкой \vec{x}_0 ? Если $\vec{x} = \vec{x}_0$, то $\vec{r}_=(\vec{x}_0) \vec{x}_0 + \vec{w}_0 = \vec{r}_0 (\vec{x}_0)$. Получим поле смещений:

$$\vec{w}(\vec{x}) = \vec{r}(\vec{x}) - \vec{x} = (\vec{x} - \vec{x}_0) \cdot (R_0 - I) + \vec{w}_0$$
$$\nabla_{\varkappa} \otimes \vec{w}(\vec{x}) = R_0 - I$$

Будем называть трансформацию однородной, если ее градиент постоянен. Заменим поворот тензором F_0 , в смысол которого вложим и поворот и расстяжение. Для этого тензора справедливо полярное разложение Коши.

$$\vec{r}(\vec{x}) = \vec{x}_0 + (\vec{x} - \vec{x}_0) F_0 + \vec{w}_0 = \vec{r}_0 + (\vec{x} - \vec{x}_0) F_0.$$

Рассмотрим два вида дефформаций.

2.1 Простой сдвиг

Для лучшего понимания и представление возьмем стопку бумаг, которую мы однородно перекосим. Это и будет простым сдвигом. Будем считать, что параллельный перенос $\vec{w}_0 = 0$, он не интересен.

Обозначим за направление смещения единичный вектор \vec{m} , который будет перпендиуклярный нормали к поверхности бумаги \vec{n} . Тогда запишем смещение:

$$\vec{w}(\vec{x}) = [(\vec{x} - \vec{x}_0) \cdot \vec{n}] \, \vec{m}\gamma = (\vec{x} - \vec{x}_0) \cdot (\gamma \vec{n} \otimes \vec{m})$$
$$\nabla_{\varkappa} \otimes \vec{w} = \gamma \vec{n} \otimes \vec{m} = \vec{n} \otimes (\gamma \vec{m}),$$

где вектор $\gamma \vec{m}$ — вектор вдоль которого смещается плоскость, находящаяся на единичном расстоянии от опорной плоскости. Тензор сдвига будет соответственно выглядеть:

$$F = I + \gamma \vec{n} \otimes \vec{n} \tag{2.8}$$

2.2 Расстяжение и сжатие в некотором направлении (сложный сдвиг)

Будем пользоваться той же моделью (стопкой бумаг). Введем базис $\{\vec{e_i}\}$ так, чтобы третья ось была соноправленна с нормальею к поверхности, тогда

$$\vec{r}(\vec{x}) = \vec{x}_0 + (\vec{x} - \vec{x}_0) \cdot (\vec{e}_1 \otimes \vec{e}_1 + \vec{e}_2 \otimes \vec{e}_2 + (1 + \varepsilon) \vec{n} \otimes \vec{n}) = I + \varepsilon \vec{n} \otimes \vec{n}.$$

Последнее выражение описывает трансформацию расстяжения или сжатия в направлении вектора нормали на величину ε . Тогда поле смещений:

$$\vec{w}(\vec{x}) = (\vec{x} - \vec{x}_0) \, \varepsilon \vec{n} \otimes \vec{n} = (\vec{x} - \vec{x}_0) \, (F_0 - I) = (\vec{x} - \vec{x}_0) \, \vec{n} \otimes \varepsilon \vec{n}.$$

$$\nabla_{\varkappa} \otimes \vec{w}(\vec{x}) = \vec{n} \otimes (\varepsilon \vec{n}) \, .$$

Таким образом тензор растяжений выглядет следующим образом:

$$F = I + \varepsilon \vec{n} \otimes \vec{n}. \tag{2.9}$$

Когда градиент поля смещений диада, как в этом случае, то такую трансформацию мы назовем диадной. Вектор $\varepsilon \vec{n}$ — вектор смещения плоскости, находящейся на единичном расстоянии от опорной плоскости на кэффициент ε .

Если трансформации осуществлять последовательно, то соответствующии им тензоры будут перемножаться. Это легко доказать, $d\vec{x} \cdot F = d\vec{r}$, $d\vec{r} \cdot F' = d\vec{r}' = d\vec{x} \cdot F \cdot F'$. Если теперь перемножить (2.8) и (2.9) (сдвиг на растяжение), то мы получим комбинацию (тензор, который отвечает и за сдвиг и за растяжение). Будем считать что мы работаем с малыми дефформациями и отбрасывать члены, содержащии произведение коэффициентов сдвига и расстяжения γ и ε .

$$\begin{split} F &= (I + \gamma \left[\vec{n} \otimes \vec{m} \right]) \cdot (I + \varepsilon \left[\vec{n} \otimes \vec{n} \right]) = \\ &= I + \varepsilon \vec{n} \otimes \vec{n} + \gamma \vec{n} \otimes \vec{m} + 0 = \\ &= I + \vec{n} \otimes (\varepsilon \vec{n} + \gamma \vec{m}) \\ \nabla_{\varkappa} \otimes \vec{w} &= \vec{n} \otimes (\gamma \vec{m} + \varepsilon \vec{n}) \,. \end{split}$$

Получили комбинацию сдвига и деформации, которая так же является диадной трансформацией. Чем более сложные примеры мы будем выбирать, тем проще будут формулы.

Будем теперь продолжать мысль со стопкой бумаги, но, если раньше мы с ней аккуратно обращались (сдвигали, утолщали или сжимали) какими-то упорядоченными однородными движениями, то теперь произведем над стопкой беспорядочные действия: в одном месте сдвинем в одну сторону, в другом в другую, в третьем в третью, гдето сожмем, где-то утолщим... Тогда с этой системой опорных плоскостей произойдет какая-то линейная комбинация движений, но в каждом тонком слое своя. А все это записывается такой формулой:

$$\vec{w}(\vec{x}) = \vec{f}((\vec{x} - \vec{x}_0) \cdot \vec{n}).$$

То есть все зависит от аругмента $((\vec{x} - \vec{x}_0) \cdot \vec{n})$, который можно назвать z. Этот z задает ту или иную плоскость в системе опорных плоскостей. И для каждой плоскости будет свой вектор смещения. Давайте убедимся в том, что локально это есть комбинация сдвига и растяжения. Найдем $\nabla_{\varkappa} \otimes \vec{w}$:

$$\vec{w}(\vec{x}) = dz \cdot \vec{f}'(z) = (d\vec{x} \cdot \vec{n}) \cdot \vec{f}'(\vec{x} \cdot \vec{n}) = d\vec{x} \cdot \vec{n} \otimes \vec{f}'(\vec{x} \cdot \vec{n})$$
$$\nabla_{\varkappa} \otimes \vec{w} = \vec{n} \otimes \vec{f}'(\vec{x} \cdot \vec{n}) = \vec{n} \otimes (\gamma(z)\vec{m}(z) + \varepsilon(z)\vec{n}).$$

Усложним задачу еще: возьмем другую гладкую поверхность (не являющуюся плоскостью), каждый слой которой так же будет иметь свое смещение. Например, для сферы: $(\vec{x} - \vec{x}_0) \cdot (\vec{x} - \vec{x}_0) = a^2$. Теперь, если мы будем менять a, получим систему концентрических сфер с центром в x_0 . На самом деле, любая система повехностей можеть быть задана аналогичным образом, а именно: $\varphi(\vec{x}) = \alpha$. И при изменении α получим систему непересекающихся поверхностей, каждая из которых задается своим значением α . А теперь для этого случая зададим поле смещения примерно так же, как и раньше, только вместо $(\vec{x} \cdot \vec{n})$ зададим $\varphi(\vec{x})$. Тогда опишем трансформацию:

$$\vec{w}(\vec{x}) = \vec{f}(\varphi(\vec{x}))$$

$$\nabla_{\varkappa} \otimes \vec{w}(\vec{x}) = \nabla_{\varkappa} \varphi(\vec{x}) \otimes \vec{f}'(\varphi(\vec{x}))$$

$$\nabla_{\varkappa} \varphi(\vec{x}) = \vec{n}(\vec{x}) |\nabla_{\varkappa} \varphi \nabla_{\varkappa} \otimes \vec{w}(\vec{x})|$$

$$\nabla_{\varkappa} \otimes \vec{w}(\vec{x}) = \vec{n}(\vec{x}) \otimes \{ |\nabla_{\varkappa} \varphi(\vec{x})| |\vec{f}' \}$$

$$\nabla_{\varkappa} \otimes \vec{w}(\vec{x}) = \vec{n}(\vec{x}) \otimes (\gamma(\vec{x}) \vec{m}(\vec{x}) + \varepsilon(\vec{x}) \vec{n}(\vec{x})).$$

Последнее выражение показывает, что каждый тонкий слой, прилегающий к поверхности, притерпевает комбинацию сдвигов и расстяжений.

2.3 Малые деформации и скоростные дефформационные велечины

Перейдем к другому вопросу, связанному с малыми деформациями и скоростными дефформационными велечинами, которые характеризуют то, что происходит в окрестности данного состояния. Представим, что есть некоторое состояние и некоторе движение, в процессе которого это состояние изменяется мало. Во многих случаях интересно именно то, как этот процесс происходит. Для рассмотрения этого строится некая интересная теория, которую мы с вами сейчас и рассмотрим.

Пежде всего введем относительный градиент деформации. Сначала введем его формально, а потом разберем геометрический смысл. Все, что сейчас будет рассматриваться, будет относиться к точке с одинаковым \vec{x} , но к разным значениям t, поэтому аргумент \vec{x} будем опускать

$$F\left(t\right) \equiv F\left(t, \vec{x}\right)$$

Зафиксируем состояние в некоторый, вообще говоря, любой, момент t_0 . Относительным градиентом трансформации будем называть величину

$$F_{t_0}(t) = (F(t_0))^{-1} \cdot F(t)$$

Сразу очевидно, что при $t = t_0 F_{t_o}(t_0) = I$. Фактически это градиент трансформации относительно новой конфигурации, которая

совпадает с актуальной в момент времени t_0 .

$$d\vec{r}(t) = d\vec{x} \cdot F(t)$$

$$d\vec{r}(t_0) = d\vec{x} \cdot F(t_0)$$

$$d\vec{x} = d\vec{r}(t_0) \cdot (F(t_0))^{-1}$$

$$d\vec{r}(t) = d\vec{r}(t_0) \cdot (F(t_0))^{-1} \cdot F(t) = d\vec{r}(t_0) \cdot F_{t_0}(t)$$

Проделаем теперь некоторые манипуляции, подразумевая в дальнейшем под $F_{t_0}(t)$ тензор (относительный градиент трансформации), отображающий $d\vec{r}(t_0)$ в $d\vec{r}(t)$. Чтобы был более понятен смысл, давайте продифференцируем полученную ранее формулу

$$d\vec{r}(t) = d\vec{r}(t_0) \cdot \dot{F}_{t_0}(t)$$

Получили скорость изменения элемента $d\vec{r}$ и от чего она зависит. Сразу напришивается вопрос, что же будет в момент времени t_0 . Эта формула будет так же справедлива

$$d\vec{r}(t)|_{t=t_0} = d\vec{r}(t_0) \cdot \dot{F}_{t_0}(t)|_{t=t_0}$$
 (2.10)

Эти манипуляции можно определить как случай, когда актуальная конфигурация берется за начало отсчета.

Теперь давайте проделаем некоторые вычисления, связанные с этим дифференцированием. Сначала просто продифференцируем $F_{t_0}(t)$, а потом положим $t=t_0$. Но прежде чем мы начнем это делать, мы запишем некоторые формулы, а именно: для относительного градиента, который является невырожденным тензором с положительным детерминантом, мы можем записать полярное разложение Коши таким образом

$$F_{t_0} = U_{t_0}(t) \cdot R_{t_0}(t)$$

Тензор U является симметричным положительно определенным, а тензор R является тензором ортогональным. Но если помнить, что

в момент времени $t=t_0$ $F_{t_o}(t_0)=I,$ то для I полярное разложение имеет вид $I\cdot I,$ то есть

$$U_{t_0}(t_0) = I; R_{t_0}(t_0) = I$$

$$F_{t_0}(t_0) = I = U_{t_0}(t_0) \cdot R_{t_0}(t_0) = I \cdot I$$
(2.11)

Теперь давайте дифференцировать, но пока что при произвольном t

$$\dot{F}_{t_0}(t) = \dot{U}_{t_0}(t) \cdot R_{t_0}(t) + U_{t_0}(t) \cdot \dot{R}_{t_0}(t)$$

С учетом (2.11) в момент времени t_0

$$\dot{F}_{t_0}(t)|_{t=t_0} = \dot{U}_{t_0}(t)|_{t=t_0} + \dot{R}_{t_0}(t)|_{t=t_0}$$

 U_{t_0} при любом t является симметричным тензором, значит, его производная по скалярному аргументу является им тоже. Его мы будем обозначать $\dot{\varepsilon}(t_0)$. Он характеризует скорость дефформаций, и, соответственно, называется тензором скоростей деформаций. Второе же слагаемое — тензор антисимметричный, потому что является производной ортогонального тензора при том его значении, когда он сам равняется I. Это можно получить дифференцированием по времени тождества $R \cdot R^T = I$. Этот антисимметричный тензор мы обозначим $\dot{\omega}(t_0)$ и будем называть тензором скоростей поворота. Их сумму, то есть вектор $\dot{F}_{t_0}(t)|_{t=t_0}$, обозначим за $\dot{H}(t_0)$ и назовем тензором скоростей дисторсий. Теперь становится видно, что все перечисенные величины относятся к одному и тому же моменту времени t_0 , который, вообще говоря, совершенно произвольный, поэтому мы могли бы писать здесть не t_0 , а t: $\dot{\varepsilon}(t)$, $\dot{\omega}(t)$, $\dot{H}(t)$.

Поскольку мы с вами знаем, что представление произвольного тензора второго ранга в виде суммы симметричного и антисимметричного тензоров единственно. Тогда можно записать $\dot{H}=\dot{\varepsilon}+\dot{\omega}$ в любой момент времени и

$$\dot{\varepsilon} = \frac{1}{2} \left(\dot{H} + \dot{H}^T \right) \qquad \qquad \dot{\omega} = \frac{1}{2} \left(\dot{H} - \dot{H}^T \right).$$

Это не является определением, но, тем не менее, является свойством тензоров $\dot{\varepsilon}(t)$ и $\dot{\omega}(t)$.

Продолжая формулу (2.10), можно записать

$$d\vec{r}(t)|_{t=t_0} = d\vec{r}(t_0) \cdot \dot{F}_{t_0}(t)|_{t=t_0} = d\vec{r}(t_0) \cdot \dot{H}(t_0)$$
 (2.12)

А так как величины относятся к одному и тому же моменту времени в одной материальной точке, то, отбросив «внутренность», заметим, что все сводится к $d\vec{r} = d\vec{r} \cdot \dot{H}$.

Попробуем выразить \dot{H} и, соответственно, $\dot{\varepsilon}$ и $\dot{\omega}$ через поле скоростей. Раз это скоростные величины, наверное, они как-то связаны с полем скоростей. Это действительно так, и мы с вами сейчас эту зависимость получим.

В какой-то мемент времени t

$$\dot{H} = F^{-1} \cdot \dot{F}$$

 \dot{F} найдем из соотношения (1.2) путем дифференцирования по времени:

$$(F(\vec{x},t)) = (\nabla_{\varkappa} \otimes \vec{r}(\vec{x},t)) = \nabla_{\varkappa} \otimes \dot{\vec{r}}(\vec{x},t) = \nabla_{\varkappa} \otimes \vec{v}(\vec{x},t)$$

Таким образом, используя связь между отсчетным и пространственным градиентом, получаем:

$$\dot{H} = \dot{\varepsilon} + \dot{\omega} = F^{-1} \cdot \dot{F} = F^{-1} \cdot \nabla_{\varkappa} \otimes \vec{v} \, (\vec{x}, t) = \nabla \otimes \vec{v}$$
 (2.13)

Значит, \dot{H} есть градиент \vec{v} . Тогда, $\dot{\varepsilon}$ — симметризованный градиент \vec{v}

$$\dot{\varepsilon} = \nabla \overset{s}{\otimes} \vec{v}$$

А $\dot{\omega}$ — антисимметризованный градиент \vec{v} . Теперь можно ввести еще одну величину. Мы знаем, что с любым антисимметричным тензором связан вектор, например вот так:

$$\underline{\dot{\omega}} = \nabla \overset{a}{\otimes} \vec{v} = E \cdot \dot{\vec{\varphi}} = \dot{\vec{\varphi}} \cdot E$$

Этот вектор $\dot{\vec{\varphi}}$ называется вектором угловой скорости. Давайте выразим его через $\dot{\omega}$, а потом через \dot{H} . Для этого умножим подчеркнутое равенство двойным скалярным произведением слева на альтернирующий тензор E

$$E: \dot{\omega} = E: E \cdot \dot{\vec{\varphi}} = 2I \cdot \dot{\vec{\varphi}} = 2\dot{\vec{\varphi}}$$

Заметим, что выражение $E:\dot{\varepsilon}=0$, так как является произведением антисимметричного и симментричного тензоров. Поэтому, без ограничения общности, в следующее выражение можно добавить $\dot{\varepsilon}$

$$\dot{\vec{\varphi}} = \frac{1}{2}E : \dot{\omega} = \frac{1}{2}E : (\dot{\omega} + \dot{\varepsilon}) = \frac{1}{2}E : \dot{H} = \frac{1}{2}E : \nabla \otimes \vec{v}$$

Продолжая цепочку рассуждений (2.10) и (2.12), с учетом того, что все величины относятся к одному и тому же моменту времени, можно записать

$$d\vec{r} = d\vec{r} \cdot \dot{H} = d\vec{r} \cdot \dot{\varepsilon} + d\vec{r} \cdot \dot{\omega} = d\vec{r} \cdot \dot{\varepsilon} + d\vec{r} \cdot E \cdot \dot{\vec{\varphi}}$$

Это выражение показывает, что происходит м
гновенно с элементом $d\vec{r}$

$$d\vec{r} = d\vec{r} \cdot \dot{\varepsilon} + \dot{\vec{\varphi}} \times d\vec{r}$$

Скорость изменения элемента $d\vec{r}$ складывается из двух слагаемых. Первое связано с действием тензора скоростей деформаций, а другое связано с вращением, с угловой скоростью $\dot{\vec{\varphi}}$.

Как уже говорилось ранее, теория деформаций является линеаризацией теории больших деформаций около отсчетной конфигурации. А то, что мы делали сейчас, есть не что иное как линеаризация всех возможных соотношений около актуальной конфигурации. Мы по-

лучили скоростные характеристики

$$\dot{H} = \nabla \otimes \vec{v}$$

$$\dot{\varepsilon} = \nabla \overset{s}{\otimes} \vec{v}$$

$$\dot{\omega} = \nabla \overset{a}{\otimes} \vec{v}$$

Если обе части любого из этих выражений мы умножим на δt , то мы получим уже не скорости, а приращения. Можно ввести тензор $\delta t \cdot \dot{H} = \delta H = \nabla \otimes \delta \vec{w}$ — тензор малых дисторсий, где $\delta \vec{w}$ — вектор малого смещения. И тем же образом $\delta \varepsilon = \nabla \overset{s}{\otimes} \delta \vec{w}$ — тензор малых деформаций относительной актуальной конфигурации, $\delta \omega = \nabla \overset{a}{\otimes} \delta \vec{w}$ — тензор малых поворотов. Очевидно, что все эти величины, называемые инкрементальными, при $\vec{v} = 0$ обратятся в нуль. Можно записать

$$\delta (d\vec{r}) = d\vec{r} \cdot \delta\varepsilon + \dot{\vec{\varphi}} \times d\vec{r} = d\vec{r} \cdot \delta\varepsilon + d\vec{r} \cdot \delta\omega$$

Пусть $\vec{e_i}$ — ОНБ, тогда для симметричного тензора существуею спектральное разложение по базису: $\dot{\varepsilon} = \dot{\varepsilon}_1 \, \vec{e_1} \otimes \vec{e_1} + \dot{\varepsilon}_2 \, \vec{e_2} \otimes \vec{e_2} + \dot{\varepsilon}_3 \, \vec{e_3} \otimes \vec{e_3}$, где $\dot{\varepsilon}_i$ — собственные числа тензора скоростей деформаций, называемыт главные скорости деформации, $\dot{e_i}$ — главные оси деформаций. Так же можно записать и для $\delta \varepsilon$:

$$\delta\varepsilon = \sum_{i=1}^{3} \delta\varepsilon_{i} \vec{e_{i}} \otimes \vec{e_{i}}$$

Найдем для начала скорость изменения длины элемента $d\vec{r}$. Для этого продифференцируем по времени квадрат его модуля $|d\vec{r}\,|^2 = d\vec{r}\cdot d\vec{r}$

$$2 |d\vec{r}| |d\vec{r}| = d\vec{r} \cdot d\vec{r} + d\vec{r} \cdot \dot{\vec{r}} =$$

$$= d\vec{r} \cdot \dot{H} \cdot d\vec{r} + d\vec{r} \cdot \dot{H}^T \cdot d\vec{r} = d\vec{r} \cdot \left(\dot{H} + \dot{H}^T \right) \cdot d\vec{r} =$$

$$= d\vec{r} \cdot 2\dot{\varepsilon} \cdot d\vec{r}.$$

Отсюда относительная скорость удлиннения элемента $d\vec{r}$, которая не зависит от длины, а только от направляющего вектора

$$\frac{|d\vec{r}|\dot{}}{|d\vec{r}|} = \frac{d\vec{r} \cdot 2\dot{\varepsilon} \cdot d\vec{r}}{|d\vec{r}|^2} = \vec{e} \cdot \dot{\varepsilon} \cdot \vec{e} \Leftrightarrow \frac{\delta |d\vec{r}|}{|d\vec{r}|} = \vec{e} \cdot \delta \varepsilon \cdot \vec{e}$$

$$\frac{|d\vec{r}|}{|d\vec{r}|} = \vec{e_i} \cdot \dot{\varepsilon} \cdot \vec{e_i} = \dot{\varepsilon_i}$$

Главные оси растяжения это ни что иное как относительные скорости удлиннения для переменных, направленных по главным осям. Они испытывают растяжение с такими относительными скоростями $\dot{\varepsilon_1}$, $\dot{\varepsilon_2}$, $\dot{\varepsilon_3}$

Лекция 3

 $\gamma\left(t\right)=0,\,\gamma\left(t+\tau\right)\neq0$. Найдем скорость изменения объема:

$$\frac{(dV)'}{dV} = \frac{dV_{\varkappa} (\det F)'}{dV_{\varkappa} (\det F)} =
= \nabla \cdot \vec{v} = I : \dot{H} = I : (\dot{\varepsilon} + \dot{\omega}) =
= I : \dot{\varepsilon} = \dot{\varepsilon}_1 + \dot{\varepsilon}_2 + \dot{\varepsilon}_3$$

А теперь скорость сдвига. С одной стороны

$$\begin{aligned} d\vec{r}_{1} \cdot d\vec{r}_{2} + d\vec{r}_{1} \cdot \dot{\vec{r}}_{2} &= \left| d\vec{r}_{1} \right| |d\vec{r}_{2}| \sin \gamma + \\ &+ |d\vec{r}_{1}| \left| d\dot{\vec{r}}_{2} \right| \sin \gamma + |d\vec{r}_{1}| |d\vec{r}_{2}| \dot{\gamma} \cos \gamma = |d\vec{r}_{1}| |d\vec{r}_{2}| \dot{\gamma} \end{aligned}$$

С другой стороны:

$$d\vec{r}_1 \cdot d\vec{r}_2 + d\vec{r}_1 \cdot \dot{\vec{r}}_2 = d\vec{r}_1 \cdot \dot{H} \cdot d\vec{r}_2 + d\vec{r}_1 \cdot \vec{r}_2 \cdot \dot{H} =$$

$$= d\vec{r}_1 \cdot \left(\dot{H} + \dot{H}^T\right) \cdot d\vec{r}_2$$

Таким образом:

$$\dot{\gamma} = \frac{d\vec{r}_1 \cdot \left(\dot{H} + \dot{H}^T\right) \cdot d\vec{r}_2}{|d\vec{r}_1| |d\vec{r}_2|}$$

3.1 Уравнения совместности

Умножим выражение (2.13) векторно слева на вектор набла:

$$\nabla \times \dot{H} \left(\vec{r} \right) \equiv 0$$

Только такие поля могут быть полями скоростей дисторсии. Основной задачей этой лекции является вывод уравнений совместности и доказательство теоремы Чизара, но сначала придется доказать некоторые равенства и утверждения.

Для достижении нашей цели в первую очередь на надо вспомнить утверждение прошлого семестра, потому что им мы будем активно пользоваться в этой лекции:

$$\nabla \otimes \left(L\left(\vec{r}\right)^{(i_1 i_2 \dots i_k)} \right) = \nabla \otimes L^{(1(i_1+1)(i_2+1)\dots(i_k+1))}$$
 (3.14)

Тогда применим формулу (3.14) к следующим выражениям:

$$\nabla \otimes \left(\nabla \otimes \vec{v}^{T}\right) = \nabla \otimes \left(\nabla \otimes \vec{v}^{(21)}\right) = \nabla \otimes \nabla \otimes \vec{v}^{(132)}$$

$$\nabla \otimes \dot{\varepsilon} = \frac{1}{2} \left(\nabla \otimes \nabla \otimes \vec{v} + \nabla \otimes \nabla \otimes \vec{v}^{(132)}\right)$$

$$\nabla \otimes \dot{\varepsilon}^{(132)} = \nabla \otimes \dot{\varepsilon}$$

Последнее выражение является следствием симметрии тензора скоростей деформаций. Тогда разных изомеров будет всего 3: $\nabla \otimes \dot{\varepsilon}^{(132)} = \nabla \otimes \dot{\varepsilon}$, $\nabla \otimes \dot{\varepsilon}^{(213)} = \nabla \otimes \dot{\varepsilon}^{(312)}$, $\nabla \otimes \dot{\varepsilon}^{(321)} = \nabla \otimes \dot{\varepsilon}^{(231)}$. Аналагочино для' \vec{v} : $\nabla \otimes \vec{v}^{(213)} = \nabla \otimes \vec{v}$, $\nabla \otimes \vec{v}^{(321)} = \nabla \otimes \vec{v}^{(312)}$, $\nabla \otimes \vec{v}^{(132)} = \nabla \otimes \vec{v}^{(231)}$. Запишим выражения для разных изомеров градиента тензора скоростей деформации:

$$\nabla \otimes \dot{\varepsilon} = \frac{1}{2} \left(\nabla \otimes \nabla \otimes \vec{v} + \nabla \otimes \nabla \otimes \vec{v}^{(132)} \right)$$

$$\nabla \otimes \dot{\varepsilon}^{(213)} = \frac{1}{2} \left(\nabla \otimes \nabla \otimes \vec{v} + \nabla \otimes \nabla \otimes \vec{v}^{(312)} \right)$$

$$\nabla \otimes \dot{\varepsilon}^{(231)} = \frac{1}{2} \left(\nabla \otimes \nabla \otimes \vec{v}^{(231)} + \nabla \otimes \nabla \otimes \vec{v}^{(321)} \right)$$

Сложим первую и вторую строчки и вычтем первую:

$$\nabla \otimes \dot{\varepsilon} + \nabla \otimes \dot{\varepsilon}^{(213)} - \nabla \otimes \dot{\varepsilon}^{(231)} = \nabla \otimes \nabla \otimes \vec{v} \tag{3.15}$$

Получается, что если тензор скоростей трансформации тождественный ноль, то его градиент и подавно, но тогда $\nabla \otimes \vec{v}(\vec{r}) = const = \dot{\omega}(\vec{r}) = \dot{\omega}_0$. Тогда получаем формулу Эйлера, которая пользуется большой популярностью в аналитической механики:

$$\vec{v}(\vec{r}) = \vec{v}_0 + (\vec{r} - \vec{r}_0) \cdot \dot{\omega}_0 = \vec{v}_0 + (\vec{r} - \vec{r}_0) \cdot E \cdot \dot{\vec{\varphi}}_0 = \vec{v}_0 + \dot{\vec{\varphi}}_0 \times (\vec{r} - \vec{r}_0)$$

Возьмем еще один градиент от выражения (3.15) и умножим слева и справа двойным скалярным произведением на альтеннирующий

тензор:

$$E: \nabla \otimes \nabla \otimes \dot{\varepsilon} : E + E: \nabla \otimes \nabla \otimes \dot{\varepsilon}^{(1324)} : E - - E: \nabla \otimes \nabla \otimes \dot{\varepsilon}^{(1342)} : E = E: \nabla \otimes \nabla \otimes \nabla \otimes \vec{v} : E$$

Первое слогаемое и правая часть равенства равно нулю как произведение антисимметричных и симметричного тензора, по свойствам альтернирующего тензора E=-E (213), тогда:

$$E: \nabla \otimes \nabla \otimes \dot{\varepsilon}^{(1342)}: E=E: \nabla \otimes \nabla \otimes \dot{\varepsilon}^{(1324)}: E^{(213)}.$$

В итоге получим уравнение совместности:

$$E: \nabla \otimes \nabla \otimes \dot{\varepsilon}^{(1324)}: E = 0 \tag{3.16}$$

В другой форме уравнение запишется следующим образом:

$$\nabla \times (\nabla \times \dot{\varepsilon})^T = 0$$

Теперь мы готовы сформулировать и доказать теорему Чизара.

Теорема 3.1.1 (**Чизара**). Необходимым и достаточным условием существования поля скоростей является выражение (3.16).

Попытаемся построить еще одно такое антисимметричное поле, чтобы в сумме их градиент удовлетворял уравнению ротор суммы равен нулю из чего будет следовать по теореме об потенциальности нужное утверждение:

$$E: \nabla \otimes \left(\nabla \otimes \dot{\varepsilon}^{(213)} : E\right)$$
$$\nabla \times \left(\nabla \otimes \dot{\varepsilon}^{(213)} : E\right) = 0$$

$$\nabla \otimes \dot{\varepsilon}^{213} : E = \nabla \otimes \dot{\vec{\varphi}}$$

$$\nabla \otimes \dot{\omega} = \nabla \otimes \dot{\vec{\varphi}} \cdot E = \nabla \otimes \dot{\varepsilon}^{213} : E \cdot E =$$

$$= \nabla \otimes \dot{\varepsilon}^{213} : (\mathbf{1} - \mathbf{1}^{\mathbf{T}}) = \nabla \otimes \dot{\varepsilon}^{213} - \nabla \otimes \dot{\varepsilon}^{231} \quad (3.17)$$

Умножим градиент тензора скоростей дисторсии слева дважды скалярно на альтернирующий тензор:

$$E: \left(\nabla \otimes \dot{\varepsilon} + \nabla \otimes \dot{\omega}\right) \stackrel{\text{(3.17)}}{=} E: \left(\nabla \otimes \dot{\varepsilon} + \nabla \otimes \dot{\varepsilon}^{213} - \nabla \otimes \dot{\varepsilon}^{231}\right) = 0$$

Первое и второе слогаемое равны, но противоположны по знаку, а третье равно нулю, как произведение антисимметричного тензора на симметричный. Следовательно, $\exists \vec{v}(\vec{r})$:

$$\dot{\varepsilon} + \dot{\omega} = \nabla \otimes \vec{v} \left(\vec{r} \right)$$