STAT GU4205/GR5205 (Section 004) Linear Regression Models

Fall 2019

PRACTICE QUESTIONS

1. Suppose that $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where x_i 's are constant and ε_i 's are independent normal random variables with mean 0 and variance σ^2 . Compute the likelihood at $(\beta_0, \beta_1) = (0.1, 1)$ when we have the following data.

observation	1	2	3
X	1	2	3
У	1.5	2	2

- 2. Suppose that the regression model is $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. We have n = 6 observations. The summary statistics are as follows: $\sum y_i = 8.5, \sum x_i = 6, \sum x_i^2 = 16, \sum x_i y_i = 15.5, \sum y_i^2 = 17.25$.
 - (a) Compute the least square point estimates of β_0 and β_1 .
 - (b) Calculate SSE and MSE.
 - (c) Use a 5% level of significance to conduct the test of $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$. Remark: t(0.95, 4) = 2.132, t(0.975, 4) = 2.776.
- 3. (a) (T/F) Suppose that the 95% confidence interval of β_1 is found to be [1, 2]. Then, the probability of β_1 lies in this interval is 0.95.
 - (b) (T/F) A useful tool for assessing the appropriateness of model assumptions is a residuals versus fitted values plot; if the model assumptions hold, this should resemble a null plot.