BrainWatchers

Capstone Project presentation 08.09.2022

The BrainWatcher's team

Leonardo Ranasinghe Physicist

Mathematician

Valentin Schoop Biochemist

Tamara Pallien

Biologist

Introduction - Alzheimer's disease (AD)

- progressive brain disease
- Symptoms: apathy, depression, disorientation, behavioural changes

Diagnosis of Alzheimer's disease

Some common diagnostic methods include:

- Cognitive assessment test (e.g. MMSE) (non-invasive)
- Brain scans (e.g. MRI, PET or CT) (**non-invasive**)
- Spinal fluid biomarker protein analysis (invasive)

How good are doctors in predicting Alzheimer's based on MRI

images? (Lombardi et al. 2020)

Correct classifications = 72%

Fraction of missed demented cases = 27%

Our aim

Develop a robust model that can predict Alzheimer's based on MRI images.

Who would use our model?

Neurologists

What the model could help with:

- Provide a second opinion about the diagnosis
- Save money and time for further tests

Datasets

OASIS (oasis-brains.org)

- 2D and 3D MRI images of 416 subjects
- Demographic and social data

ADNI (adni.loni.usc.edu)

- 3D MRI images of 826 subjects
- Demographic and medical test results

	demographic				medical assessm.			cognitive tests			brain meas.			
	Sex	Age	Educ	Social	APOE	ABETA		MMSE	ADAS11	CDR	 Ventr	Hippoc		
OASIS	1	1	1	1	×	×		1	×	1	 ×	×		
ADNI	1	1	1	×	1	1		1	1	1	 1	1		

Overview of the data: demographic

CN = cognitively normal

MCI = mild cognitive impairment

AD = Alzheimer's disease

Overview of the data: demographic

CN = cognitively normal

MCI = mild cognitive impairment

AD = Alzheimer's disease

Images

Our Approach: Preprocessing

OASIS:

- already scaled to Atlas"standard brain" coordinates

ADNI:

- centered to same locations as OASIS
- cropped to same dimensions

Preprocessing: Input selection

Preprocessing: Segmentation

The modeling process

VGG16 is a convolutional neural network that is trained on more than a million images from the ImageNet database

The modeling process

The modeling process

Final model:

• Correct classification in 76% of cases

Healthy diagnosed as healthy

24%

Demented diagnosed as demented

52%

Final model:

- Correct classification in 76% of cases
- Fraction of missed demented cases = 6%

Healthy diagnosed as healthy

24%

Demented diagnosed as healthy

3%

Demented diagnosed as demented

52%

Final model:

- Correct classification in 76% of cases
- Fraction of missed demented cases = 6%

Error analysis:

undetected instances are all mild cases=> MCl is very hard to detect

Missed Alzheimer cases

Detected Alzheimer cases

Final model:

- Correct classification in 76% of cases
- Fraction of missed demented cases = 6%

Error analysis:

- undetected instances are all mild cases=> MCl is very hard to detect
- age related degeneration=> older healthy brains misclassified

Final model:

- Correct classification in 76% of cases
- Fraction of missed demented cases = 6%

Error analysis:

- undetected instances are all mild cases=> MCl is very hard to detect
- age related degeneration=> older healthy brains misclassified

10 20 30 40 50 60 70 80 90 100

Alzheimer's degeneration

Age related degeneration

#1 reason for misdiagnosis by professionals

2 / 317

Summary

- robust model trained on high-variance data
- works well with only three 2D slices
- 4% increase in accuracy
- Fraction of missed MCI/AD cases decreased by 21%

2 / 317

Summary

- robust model trained on high-variance data
- works well with only three 2D slices
- 4% increase in accuracy

Fraction of missed MCI/AD cases decreased by 21%

Outlook

- Harness the power of the cloud
 - => develop 3D convolutional network
 - => automated Atlas correction and denoising

