239 Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

I - Régularité d'une fonction définie par une intégrale à paramètre

Soient (X, \mathcal{A}, μ) un espace mesuré et $f: E \times X \to \mathbb{C}$ où (E, d) est un espace métrique. On pose $F: t \mapsto \int_X f(t, x) \, \mathrm{d}\mu(x)$.

1. Continuité

Théorème 1 (Continuité sous le signe intégral). On suppose :

[Z-Q] p. 312

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue en $t_0 \in E$.
- (iii) $\exists g \in L_1(X)$ positive telle que

$$|f(t,x)| \le g(x) \quad \forall t \in E, \text{pp. en } x \in X$$

Alors F est continue en t_0 .

Corollaire 2. On suppose:

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue sur E.
- (iii) $\forall K \subseteq E, \exists g_K \in L_1(X)$ positive telle que

$$|f(t,x)| \le g_K(x) \quad \forall t \in E, \text{pp. en } x$$

Alors *F* est continue sur *E*.

p. 318

Exemple 3. La fonction

$$\Gamma : \begin{array}{ccc} \mathbb{R}^+_* & \to & \mathbb{R}^+_* \\ t & \mapsto & \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t \end{array}$$

est bien définie et continue sur \mathbb{R}_*^+ .

Exemple 4. Soit $f : \mathbb{R}^+ \to \mathbb{C}$ intégrable. Alors,

[**G-K**] p. 104

$$\lambda \mapsto \int_0^{+\infty} e^{-\lambda t} f(t) dt$$

est bien définie et est continue sur \mathbb{R}^+ .

2. Dérivabilité

On suppose ici que E est un intervalle I ouvert de \mathbb{R} .

[Z-Q] p. 313

Théorème 5 (Dérivation sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t,x)$ est dérivable sur I. On notera $\frac{\partial f}{\partial t}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq I$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g_K(x) \quad \forall t \in I, \text{pp. en } x$$

Alors $\forall t \in I, x \mapsto \frac{\partial f}{\partial t}(x,t) \in L_1(X)$ et F est dérivable sur I avec

$$\forall t \in I, F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) \, \mathrm{d}\mu(x)$$

Remarque 6. — Si dans le Théorème 5, hypothèse (i), on remplace "dérivable" par " \mathscr{C}^1 ", alors la fonction F est de classe \mathscr{C}^1 .

— On a un résultat analogue pour les dérivées d'ordre supérieur.

Théorème 7 (k-ième dérivée sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t,x) \in \mathscr{C}^k(I)$. On notera $\left(\frac{\partial}{\partial t}\right)^j f$ la j-ième dérivée définie presque partout pour $j \in [0,k]$.
- (iii) $\forall j \in [0, k], \forall K \subseteq I \text{ compact}, \exists g_{j,K} \in L_1(X) \text{ positive telle que}$

$$\left| \left(\frac{\partial}{\partial t} \right)^j f(x, t) \right| \le g_{j,K}(x) \quad \forall t \in K, \text{pp. en } x$$

Alors $\forall j \in [0, k], \ \forall t \in I, \ x \mapsto \left(\frac{\partial}{\partial t}\right)^j f(x, t) \in L_1(X) \text{ et } F \in \mathscr{C}^k(I) \text{ avec}$

$$\forall j \in [0, k], \, \forall t \in I, \, F^{(j)}(t) = \int_X \left(\frac{\partial}{\partial t}\right)^j f(x, t) \, \mathrm{d}\mu(x)$$

Exemple 8. La fonction Γ de l'Exemple 3 est \mathscr{C}^{∞} sur \mathbb{R}_{*}^{+} .

p. 318

Lemme 9. La fonction Γ définie pour tout x > 0 par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ vérifie :

- (i) $\forall x \in \mathbb{R}^+_*$, $\Gamma(x+1) = x\Gamma(x)$.
- (ii) $\Gamma(1) = 1$.
- (iii) Γ est log-convexe sur \mathbb{R}_*^+ .

[DEV]

Théorème 10 (Bohr-Mollerup). Soit $f : \mathbb{R}^+_* \to \mathbb{R}^+$ vérifiant le Point (ii), le Point (ii) et le Point (iii) du Lemme 9. Alors $f = \Gamma$.

Exemple 11. On se place dans l'espace mesuré $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{card})$ et on considère (f_n) une suite de fonctions dérivables sur I telle que

$$\forall x \in \mathbb{R}, \ \sum_{n \in \mathbb{N}} |f_n(x)| + \sup_{x \in I} |f'_n(t)| < +\infty$$

Alors $x \mapsto \sum_{n \in \mathbb{N}} f_n(x)$ est dérivable sur I de dérivée $x \mapsto \sum_{n \in \mathbb{N}} f'_n(x)$.

Application 12 (Transformée de Fourier d'une Gaussienne). En résolvant une équation différentielle linéaire, on a

[**GOU20**] p. 169

p. 107

[B-P]

p. 149

$$\forall \alpha > 0, \forall x \in \mathbb{R}, \int_{\mathbb{R}} e^{-\alpha t^2} e^{-itx} dt = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{x^2}{\pi \alpha}}$$

[DEV]

Application 13 (Intégrale de Dirichlet). On pose $\forall x \ge 0$,

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$$

alors:

- (i) F est bien définie et est continue sur \mathbb{R}^+ .
- (ii) F est dérivable sur \mathbb{R}^+_* et $\forall x \in \mathbb{R}^+_*$, $F'(x) = -\frac{1}{1+x^2}$.
- (iii) $F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

3. Holomorphie

On suppose ici que E est un ouvert Ω de \mathbb{C} .

[**Z-Q**] p. 314

Théorème 14 (Holomorphie sous le signe intégral). On suppose :

- (i) $\forall z \in \Omega, x \mapsto f(z, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $z \mapsto f(z, x)$ est holomorphe dans Ω . On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.

agreg.skyost.eu

(iii) $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$|f(x,z)| \le g_K(x) \quad \forall z \in K$$
, pp. en x

Alors F est holomorphe dans Ω avec

$$\forall z \in \Omega, F'(z) = \int_{X} \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z)$$

Exemple 15. La fonction Γ de l'Exemple 3 est holomorphe dans l'ouvert $\{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$.

p. 318

[AMR08]

p. 75

II - Produit de convolution

1. Notion de convolée de deux fonctions

Définition 16. Soient f et g deux fonctions de \mathbb{R}^d dans \mathbb{R} . On dit que **la convolée** (ou **le produit de convolution**) de f et g en $x \in \mathbb{R}$ **existe** si la fonction

$$\mathbb{R} \to \mathbb{C}$$

$$t \mapsto f(x-t)g(t)$$

est intégrable sur \mathbb{R}^d pour la mesure de Lebesgue. On pose alors :

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - t)g(t) dt$$

Proposition 17. Dans $L_1(\mathbb{R}^d)$, le produit de convolution est commutatif, bilinéaire et associatif.

Théorème 18. Soient p, q > 0 et $f \in L_n(\mathbb{R}^d)$ et $g \in L_a(\mathbb{R}^d)$.

- (i) Si $p,q \in [1,+\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, alors (f*g)(x) existe pour tout $x \in \mathbb{R}^d$ et est uniformément continue. On a, $\|f*g\|_{\infty} \le \|f\|_p \|g\|_q$ et, si $p \ne 1, +\infty, f*g \in \mathscr{C}_0(\mathbb{R})$.
- (ii) Si p = 1 et $q = +\infty$, alors (f * g)(x) existe pour tout $x \in \mathbb{R}^d$ et $f * g \in \mathcal{C}_b(\mathbb{R})$.
- (iii) Si p=1 et $q\in [1,+\infty[$, alors (f*g)(x) existe $\underline{\mathrm{pp.}}$ en $x\in \mathbb{R}^d$ et $f*g\in L_q(\mathbb{R})$ telle que $\|f*g\|_q\leq \|f\|_1\|g\|_q$.
- (iv) Si p=1 et q=1, alors (f*g)(x) existe $\underline{\mathrm{pp.}}$ en $x\in\mathbb{R}^d$ et $f*g\in L_1(\mathbb{R})$ telle que $\|f*g\|_1\leq\|f\|_1\|g\|_1$.

Exemple 19. Soient $a < b \in \mathbb{R}^+_*$. Alors $\mathbb{1}_{[-a,a]} * \mathbb{1}_{[-b,b]}$ existe pour tout $x \in \mathbb{R}$ et

$$(\mathbb{1}_{[-a,a]} * \mathbb{1}_{[-b,b]})(x) = \begin{cases} 2a & \text{si } 0 \le |x| \le b - a \\ b + a - |x| & \text{si } b - a \le |x| \le b + a \\ 0 & \text{sinon} \end{cases}$$

Proposition 20. $L_1(\mathbb{R}^d)$ est une algèbre de Banach pour le produit de convolution.

p. 85

Remarque 21. Cette algèbre n'a pas d'élément neutre. Afin de pallier à ce manque, nous allons voir la notion d'approximation de l'identité dans la sous-section suivante.

2. Approximation de l'identité

Définition 22. On appelle **approximation de l'identité** toute suite (ρ_n) de fonctions mesurables de $L_1(\mathbb{R}^d)$ telles que

[**B-P**] p. 306

- (i) $\forall n \in \mathbb{N}, \int_{\mathbb{R}^d} \rho_n \, \mathrm{d}\lambda_d = 1.$
- (ii) $\sup_{n\geq 1} \|\rho_n\| < +\infty$.
- (iii) $\forall \epsilon > 0$, $\lim_{n \to +\infty} \int_{\mathbb{R} \backslash B(0,\epsilon)} \rho_n(x) \, \mathrm{d}x = 0$.

Remarque 23. Dans la définition précédente, (ii) implique (i) lorsque les fonctions ρ_n sont positives. Plutôt que des suites, on pourra considérer les familles indexées par \mathbb{R}^+_* .

Exemple 24. — Noyau de Laplace sur \mathbb{R} :

$$\forall t > 0, \, \rho_t(x) = \frac{1}{2t} e^{-\frac{|x|}{t}}$$

— Noyau de Cauchy sur \mathbb{R} :

$$\forall t > 0, \, \rho_t(x) = \frac{t}{\pi(t^2 + x^2)}$$

— Noyau de Gauss sur \mathbb{R} :

$$\forall t > 0, \, \rho_t(x) = \frac{1}{\sqrt{2\pi} t} e^{-\frac{|x|^2}{2t^2}}$$

Application 25 (Théorème de Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

[**GOU20**] p. 304

[B-P] p. 307

Théorème 26. Soit (ρ_n) une approximation de l'identité. Soient $p \in [1, +\infty[$ et $f \in L_p(\mathbb{R}^d)$, alors :

$$\forall n \ge 1, f * \rho_n \in L_p(\mathbb{R}^d)$$
 et $\|f * \rho_n - f\|_p \longrightarrow 0$

Théorème 27. Soient (ρ_n) une approximation de l'identité et $f \in L_{\infty}(\mathbb{R}^d)$. Alors :

- Si f est continue en $x_0 \in \mathbb{R}^d$, alors $(f * \rho_n)(x_0) \longrightarrow_{n \to +\infty} f(x_0)$.
- Si f est uniformément continue sur \mathbb{R}^d , alors $||f * \rho_n f||_{\infty} \longrightarrow_{n \to +\infty} 0$.
- Si f est continue sur un compact K, alors $\sup_{x \in K} |(f * \rho_n)(x) f(x)| \longrightarrow_{n \to +\infty} 0$.

Définition 28. On qualifie de **régularisante** toute suite (α_n) d'approximations de l'identité telle que $\forall n \in \mathbb{N}$, $\alpha_n \in \mathscr{C}^{\infty}_K(\mathbb{R}^d)$.

Exemple 29. Soit $\alpha \in \mathscr{C}_K^{\infty}(\mathbb{R}^d)$ une densité de probabilité. Alors la suite (α_n) définie pour tout $n \in \mathbb{N}$ par $\alpha_n : x \mapsto n\alpha(nx)$ est régularisante.

p. 274

[AMR08] p. 96

p. 109

Application 30. (i) $\mathscr{C}_K^{\infty}(\mathbb{R}^d)$ est dense dans $\mathscr{C}_K(\mathbb{R}^d)$ pour $\|.\|_{\infty}$.

(ii) $\mathscr{C}_K^{\infty}(\mathbb{R}^d)$ est dense dans $L_p(\mathbb{R}^d)$ pour $\|.\|_p$ avec $p \in [1, +\infty[$.

III - Transformée de Fourier

1. Sur $L_1(\mathbb{R}^d)$

Définition 31. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction mesurable. On définit, lorsque cela a un sens, sa **transformée de Fourier**, notée \hat{f} par

$$\widehat{f} : \begin{array}{ccc} \mathbb{R}^d & \to & \mathbb{C} \\ \xi & \mapsto & \int_{\mathbb{R}^d} f(x) e^{-i\langle x, \xi \rangle} \, \mathrm{d}x \end{array}$$

Lemme 32 (Riemann-Lebesgue). Soit $f \in L_1(\mathbb{R}^d)$, \widehat{f} existe et

$$\lim_{\|\xi\|\to+\infty}\widehat{f}(\xi)$$

Théorème 33. $\forall f \in L_1(\mathbb{R}^d)$, \widehat{f} est continue, bornée par $||f||_1$. Donc la transformation de

Fourier

$$\mathscr{F}: \begin{array}{ccc} L_1(\mathbb{R}^d) & \to & \mathscr{C}_0(\mathbb{R}^d) \\ f & \mapsto & \widehat{f} \end{array}$$

est bien définie.

Corollaire 34. La transformation de Fourier $\mathscr{F}: L_1(\mathbb{R}^d) \to \mathscr{C}_0(\mathbb{R}^d)$ est une application linéaire continue.

Exemple 35 (Densité de Poisson). On pose $\forall x \in \mathbb{R}$, $p(x) = \frac{1}{2}e^{-|x|}$. Alors $p \in L_1(\mathbb{R})$ et, $\forall \xi \in \mathbb{R}$, $\widehat{p}(\xi) = \frac{1}{1+\xi^2}$.

Exemple 36.

$$\forall \xi \in \mathbb{R}, \ \widehat{\mathbb{I}_{[-1,1]}}(\xi) = \begin{cases} \frac{2\sin(\xi)}{\xi} \text{ si } \xi \neq 0\\ 2 \text{ sinon} \end{cases}$$

Remarquons ici que la transformée de Fourier n'est pas intégrable.

Proposition 37.

$$\forall f,g \in L_1(\mathbb{R}^d), \widehat{f * g} = \widehat{f}\widehat{g}$$

Théorème 38 (Formule de dualité).

$$\forall f,g \in L_1(\mathbb{R}^d), \int_{\mathbb{R}^d} f(t) \widehat{g}(t) \, \mathrm{d}t = \int_{\mathbb{R}^d} \widehat{f}(t) g(t) \, \mathrm{d}t$$

Corollaire 39. La transformation de Fourier $\mathscr{F}: L_1(\mathbb{R}^d) \to \mathscr{C}_0(\mathbb{R}^d)$ est une application injective.

Application 40. Soient I un intervalle de \mathbb{R} et ρ une fonction poids. On considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I. On suppose qu'il existe a > 0 tel que

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

alors (P_n) est une base hilbertienne de $L_2(I, \rho)$ pour la norme $\|.\|_2$.

Théorème 41 (Formule d'inversion de Fourier). Si $f \in L_1(\mathbb{R}^d)$ est telle que $\hat{f} \in L_1(\mathbb{R}^d)$, alors

$$\widehat{\widehat{f}}(x) = (2\pi)^d f(x)$$
 pp. en $x \in \mathbb{R}^d$

p. 114

[AMR08] p. 116

[BMP]

p. 140

Proposition 42. Soient $g \in L_1(\mathbb{R}^d)$ et $f \in L_1(\mathbb{R}^d)$ telle que $\widehat{f} \in L_1(\mathbb{R}^d)$, alors

$$\widehat{fg} = \frac{1}{(2\pi)^d} \widehat{f} * \widehat{g}$$

2. Sur $L_2(\mathbb{R}^d)$

Théorème 43 (Plancherel-Parseval).

$$\forall f \in L_1(\mathbb{R}^d), \, \|\widehat{f}\|_2^2 = (2\pi)^d \|f\|_2^2$$

Théorème 44. Soit $f \in L_2(\mathbb{R}^d)$. Alors :

- (i) Il existe une suite (f_n) de $L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$ qui converge vers f dans $L_2(\mathbb{R}^d)$.
- (ii) Pour une telle suite (f_n) , la suite $(\widehat{f_n})$ converge dans $L_2(\mathbb{R}^d)$ vers une limite \widetilde{f} indépendante de la suite choisie.

Définition 45. La limite \tilde{f} est la **transformée de Fourier** de f dans $L_2(\mathbb{R}^d)$.

Proposition 46. Les transformations de Fourier $L_1(\mathbb{R}^d)$ et $L_2(\mathbb{R}^d)$ coïncident sur $L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$.

3. Application en probabilités

Définition 47. Soit X un vecteur aléatoire. On appelle **fonction caractéristique** de X, notée ϕ_X , la transformée de Fourier de la loi \mathbb{P}_X (définie à un signe près) :

$$\phi_X\colon t\mapsto \mathbb{E}(e^{i\langle t,x\rangle})$$

Théorème 48. Soient *X* et *Y* deux vecteurs aléatoires. Alors,

$$\phi_X = \phi_Y \iff \mathbb{P}_X = \mathbb{P}_Y$$

Corollaire 49. Soient X et Y deux vecteurs aléatoires tels que $\forall a \in \mathbb{R}^d$, $\langle X, a \rangle$ et $\langle Y, a \rangle$ ont même loi. Alors, X et Y ont même loi.

[**G-K**] p. 239

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2° éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Analyse [B-P]

Marc Briane et Gilles Pages. *Analyse. Théorie de l'intégration*. 8^e éd. De Boeck Supérieur, 29 août 2023.

https://www.deboecksuperieur.com/ouvrage/9782807359550-analyse-theorie-de-l-integration.

De l'intégration aux probabilités

[G-K]

Olivier GARET et Aline KURTZMANN. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. Éléments d'analyse réelle. 2e éd. EDP Sciences, 6 juin 2019.

https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Analyse pour l'agrégation

[Z-O

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques*. 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.