bivariate regression

adam.okulicz.kozaryn@gmail.com

this version: Tuesday 30th January, 2024 08:19

<u>outline</u>

bivariate regression

stat significance (hypothesis testing)

basic measurement

discussions

- everyone saw discussion i posted on canvas?
- post stuff too!

math

- today math
- important you understand it
- memorizing formulas is not enough to pass this class
- again, start working on this and ask questions early!
- good idea to go over slides again and again
- note hats: $\hat{\beta}$ v β
- instead of $\sum_{i=1}^{n}$ i may just use \sum

<u>outline</u>

bivariate regression

stat significance (hypothesis testing)

basic measurement

bivariate regression

the idea

- $Y \leftarrow X$, there is a directional relationship, an effect
- like correlation, but here there is a direction
- o (almost causality, but causality need research design!)
- outcome Y, dependent variable (dv)
- predictor X, independent variable (iv)

bivariate regression 6/

why regression?

- ols is the most fundamental technique for soc sci
- o anova, t-test, z-test, chi-sq test, etc are obsolete!
- just run regression!
- o from qm1 only use des sta esp graphs
- want to figure out what predicts something? ols!
- o eg what will make you live longer
- lexp=f(diet, exercise, smoking, etc)
- lexp=50+2*(veggie serv/day)+3*(hrs at gym)-10*(packs of cigarettes per day)

http://ianayres.yale.edu/prediction-tools

bivariate regression 7/45

"regression" sounds scary

- its easy (yes, tedious math), but all it does it fits a line that
- minimizes the sum of the squared vertical distances (between the line and points aka residuals) in a scatter plot
- o hence "OLS"
- that's it! will just use some math to fit this line

bivariate regression 8/

regression function

• $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$ $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + e_i$

• (e_i) are errors of prediction

bivariate regression 9/45

first guess

• (1) $Y_i = 2 + X_i \rightarrow \sum e_i^2 = 3$

bivariate regression 10/45

second guess

•

- (1) $Y_i = 2 + X_i \rightarrow \sum e_i^2 = 3$
- (2) $Y_i = 0 + 2X_i \rightarrow \sum_{i=1}^{n} e_i^2 = 1$

bivariate regression

ols - cannot beat it!

- (1) $Y_i = 2 + X_i \rightarrow \sum_{i=1}^{n} e_i^2 = 3$
- (2) $Y_i = 0 + 2X_i \rightarrow \sum e_i^2 = 1$ • (3) $Y_i = 0.33 + 2X_i \rightarrow \sum e_i^2 = 0.67$

dofile: guessing can use these est to predict like lexp ex

ols

- $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + e_i \rightarrow e_i = Y_i \hat{\beta}_1 \hat{\beta}_2 X_i$
- chose estimators to minimize

$$\sum e_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$

• [*] for elaboration and derivations see gujarati

bivariate regression 13/45

intercept and slope

$$\hat{eta}_1 = ar{\mathsf{Y}} - \hat{eta}_2 ar{\mathsf{X}}$$

$$\bullet \quad \hat{\beta}_2 = \frac{\sum_{i=1}^n Y_i X_i - n\bar{X}\bar{Y}}{(\sum_{i=1}^n X_i^2 - n\bar{X}^2)}$$

$$\hat{\beta}_2 = \frac{\sum Y_i X_i - n \bar{Y} \bar{X}}{\sum X_i^2 - n \bar{X}^2}$$

$$\hat{\beta}_2 = \frac{\sum (Y_i - \bar{Y})(X_i - \bar{X})}{\sum (X_i - \bar{X})^2}$$

•
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2}$$
 $y_i = Y_i - \bar{Y}$ $x_i = X_i - \bar{X}$

 slope is the covariance of Y and X divided by the variance of X; variance is always positive, so the numerator (the covariance) determines the sign of the slope

bivariate regression 14/45

solving the problem [blackboard]

	Y_{i}	X_{i}	$ \left(Y_i - \overline{Y}\right) \\ = y_i $	$(X_i - \overline{X})$ $= x_i$	y_i^2	x_i^2	$y_i x_i$
	2	1	-2.33	-1	5.53	1	2.33
	5	2	0.67	0	0.45	0	0
	6	3	1.67	1	2.79	1	1.67
Σ	13	6	0	0	8.67	2	4
mean	4.33	2					

•
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{4}{2} = 2$$

•
$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X} = 4.33 - (2)(2) = 0.33$$

bivariate regression 15/45

ex: age(18-80) and fear(0-15) [NOblackboard]

The Data		= 232	Deviations from the means							
X_i	Y_{i}	$X = \frac{1}{5}$	Obs	x_i	x_i^2	y_i	y_i^2	$x_i y_i$		
22	2	16.1	1	-24.4	595.36	-6.4	40.96	156.16		
35	7	= 46.4	2	-11.4	129.96	-1.4	1.96	15.96		
47	6		3	0.6	0.36	-2.4	5.76	-1.44		
56	14	- 42	4	9.6	92.16	5.6	31.36	53.76		
72	13	$Y = \frac{1}{5}$	5	25.6	655.36	4.6	21.16	117.76		
232	42	-84	\sum	0	1473.2	0	101.2	342.2		
	X _i 22 35 47 56 72	$ \begin{array}{c cccc} X_i & Y_i \\ \hline 22 & 2 \\ \hline 35 & 7 \\ \hline 47 & 6 \\ \hline 56 & 14 \\ \hline 72 & 13 \\ \hline \end{array} $	$ \begin{array}{c cccc} X_i & Y_i & X = \frac{232}{5} \\ 22 & 2 & & \\ 35 & 7 & & = 46.4 \\ 47 & 6 & & \\ 56 & 14 & & \\ 72 & 13 & & \overline{Y} = \frac{42}{5} \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{342}{1473} = .232$$

•
$$\hat{\beta}_1 = \overline{\bar{Y}} - \hat{\beta}_2 \bar{X} = 8.4 - (.232)(46.4) = -2.365$$

•
$$\hat{Y}_i = \hat{\beta}_1 + \beta_2 X_i = -2.365 + .232 X_i$$

interpretation?

bivariate regression 16/45

the estimated regression line

bivariate regression 17/45

variance and std error of regression

- ok, we know how to calculate betas and fit the line (that min the sum of the squared resid)
- but some lines fit better and some worse
- need a measure of uncertatinty, ie how line fits
- the fit is measured with residuals
- so our measure of uncertainty has to do with residuals!

•
$$s^2 = \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n-2}}$$

the mean of the residuals is 0 so \bar{e} drops out

• s measures spread of the points around the regression line

bivariate regression 18/45

from \hat{Y} to s (se of reg) to $s_{\hat{\beta}_2}$ (se of slope)

o | 21.713 calc yh
yahts ir

1.793

calc yhats and se of betayahts important! like our lexp we predicted earlier

• $t = \frac{\hat{\beta}}{s_{\hat{\alpha}}}$

bivariate regression

14.339

-1.339

Standard Error of the Slope Coefficient Numerator -- variance of disturbance term

ucla: hands-on dofile

- https://stats.idre.ucla.edu/stata/webbooks/reg
- let's just see a first reg output (you'll do it for ps2)
- what is bivariate regression command?
- \circ where is β_1 and β_2
- excellent for self study!!
- do it at home; and do ask me questions about it
- this is especially an excellent resource for final paper

bivariate regression 21/45

outline

bivariate regression

stat significance (hypothesis testing)

basic measurement

calculations again at home; dofile

Υ	Χ	У	y2	х	x2	ху
1	17					
3	13					
5	8					
7	10					
9	2					
Sum:						
25	50					

$$\bar{Y} = 5$$
 $\bar{X} = 10$

the coefficients-interpretation

 Beta hat two is the slope coefficient. Thus, a one unit change in X leads to a 0.524 decrease in Y. Beta hat one is the intercept term. It is the predicted value for Y when X is equal to zero.

predicted val and resid at home; dofile

- $\bullet \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$
- for obs 1:
- $\hat{Y}_1 = 10.24 + (-0.524)(17) = 1.332$
- $e_1 = 1 1.33 = -0.33$

regression plot again

sampling distribution of the slope

probability distribution of $\hat{\beta}_2$ is centered on the true value of the parameter (i.e. unbiased) and is normally distributed with variance:

hypothesis test dofile

- the null is that slope ("the unobserved true parameter")
- o is zero (ie no effect)
- H_0 : $\beta_2 = 0$
- H_A : $\beta_2 \neq 0$
- $t = \frac{\hat{\beta}_2 \beta_2}{s_{\hat{\beta}_2}} = \frac{\hat{\beta}_2}{s_{\hat{\beta}_2}}$
- CI: $\hat{\beta}_2 \pm (t_{n-2,\frac{\alpha}{2}})(s_{\hat{\beta}_2})$
- lets do it and calculate all by hand! incl crit val

accounting for variation in Y

- before regression $E[Y] = \overline{Y}$
- TSS total sum of squares [like RSS before reg; we were off by this much!]

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
• after regression

- $E[Y|X_i] = \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$
- ESS explained sum of squares $ESS = \sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- RSS residual sum of squares $RSS = \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$
- TSS = ESS + RSS

R^2 variation explained

- TSS = ESS + RSS
- $1 = \frac{ESS}{TSS} + \frac{RSS}{TSS}$
- $R^2 = \frac{ESS}{TSS} = 1 \frac{RSS}{TSS} = 1 \frac{\sum e_i^2}{\sum y_i^2}$
- R²: the fraction of the variance in the dependent variable explained by the model

partitioning variance in Y dofile

- before regression $E[Y_i] = \bar{Y}$
- $TSS = \sum (Y_i \bar{Y})^2 = \sum y_i^2 = 40$
- after regression $E[Y_i|X_i] = \hat{Y}_i$
- $RSS = \sum_{i=0}^{n} (Y_i \hat{Y}_i)^2 = \sum_{i=0}^{n} e_i^2 = 5.43$
- $\circ ESS = TSS RSS = 40 5.4 = 34.57$
- $R^2 = 1 \frac{\sum e_i^2}{\sum y_i^2}$
- proportion of the total variance in the Y explained by Xs
- $0 \le R^2 \le 1$

TSS

RSS

reliability of predict val (se of E(Y|X)

- the further from the mean of X, the wider the confidence interval around the predicted value
- leave it to software, no need to know the formula

se of E(Y|X) illustration **dofile**

anatomy of stata output [biv] dofile: outlier

. regress DV IV

Source	 	SS	df	MS	Number of	obs = n
Model	ESS =	$\sum \left(\hat{Y_i} - \overline{Y} \right)$	1		F(1, n-2)	=
D: d1	!	` ,		$2 s^2 = \frac{RSS}{r}$	Prob > F	=
Residual	i KSS	$=\sum e_i$	n –	$2 s = \frac{1}{n-2}$	R-squared	$= r^2$
Т-4-1	TCC	$\nabla (\mathbf{v} \cdot \mathbf{v})^2$	2	$\frac{1}{1}$ $\frac{2}{1}$ $\frac{TSS}{1}$	Adj R-Squa	red =
Total	133 =	$\sum (Y_i - Y)$	n –	$1 s_Y^2 = \frac{TSS}{n-1}$	Root MSE	= s
DV	Coef.	Std.Err.	t	P> t	[95% Conf.	Interval]
IV	$\hat{oldsymbol{eta}}_2$	$S_{\hat{oldsymbol{eta}}_2}$	$\left(rac{\hat{oldsymbol{eta}}_2}{s_{\hat{eta}_2}} ight)$	p val. for H_0 that $\beta_2 = 0$	$\hat{m{eta}}_2 - t_{0.025} s_{\hat{m{eta}}_2}$	$\hat{\beta}_2 + t_{0.025} s_{\hat{\beta}_2}$
Intercept	$\hat{eta}_{_{1}}$	$S_{\hat{eta}_1}$	$\left(\frac{\hat{\beta}_1}{s_{\hat{a}}}\right)$	p val. for H_0 that $\beta_1 = 0$	$\hat{\beta}_1 - t_{0.025} s_{\hat{\beta}_1}$	$\hat{\beta}_1 + t_{0.025} s_{\hat{\beta}_1}$

<u>outline</u>

bivariate regressior

stat significance (hypothesis testing)

basic measurement

basic measurement 37/45

intuition

- what happens to betas if we change variables' measurement?
- o millions of dollars as opposed to dollars
- o curved grades (each person gets extra 10 points)
- o proportion of people in poverty v percent in poverty
- income per capita v income per 100k people

basic measurement 38/45

add constant c to X or Y (say curved grades)

- if you add c to each obs, mean of var would change by that much
- but demeaned var doesn't change:
- $x_{i}^{'} = (X_{i}^{'} \bar{X}^{'}) = [(X_{i} + c) (\bar{X} + c)] = x_{i}$ same for Y
- $\hat{\beta}_2 = \frac{\sum y_i x_i'}{\sum x_i'^2} = \frac{\sum y_i x_i}{\sum x_i^2}$ only demeaned vars so no change
- and nobody cares about intercept anyway

basic measurement 39/

multiply X or Y by constant (say months, not years)

- think about it, assume some example
- o say year of educ produces \$2 increase in wage
- how about a month of educ? should be 1/12 of \$2!
- to convert yr to mo, multiply years by 12
- o if a person has 2yr of educ, that's 24mo
- so if i multiply X by c, say 12, I need to divide $\hat{\beta}_2$ by 12
- what if multiply Y?
- o again, say year of educ produces \$2 increase in wage
- o ...or 200 cent increase in wage
- to get cents from dollars, I multiply dollars by 100
- o so if I multiply Y by 100, i get β_2 100x bigger

basic measurement 40/45

fun fact1: correlation v bivariate regression

$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = r(\frac{s_Y}{s_X})$$

basic measurement

education and wages dofile

. sum wage educ	3				
Variable	Obs	Mean	Std. Dev.	Min	Max
	534	9.023939	5.138876	1	44.5
educ	534	13.01873	2.615373	2	18

basic measurement 42/45

education and wages dofile

regress wage educ

Source	ss	đ£			Number of obs		
Model Residual	2053.22494	1 2053 532 22.59	.22494 982396		F(1, 532) Prob > F R-squared	=	0.0000 0.1459
	14075.4884				Adj R-squared Root MSE		
wage		Std. Err.			[95% Conf.		=
educ _cons		.07873	9.532 -0.714	0.000	.5957891 -2.799576	. 9	9051086 .307678

The estimated regression line:

$$\widehat{wage}_i = \hat{\beta}_1 + \hat{\beta}_2 educ_i = -0.75 + 0.75 educ_i$$

Interpret the coefficients.

basic measurement 43/45

fun fact2: Z scores bivariate regression=correlation

• $z_{Yi} = \beta_1 + \beta_2 z_{Xi} + u_i$ $z_{Xi} = \frac{X_i - \bar{X}}{s_X} = \frac{x_i}{s_X}$ $z_{Yi} = \frac{Y_i - \bar{Y}}{s_{Yi}} = \frac{y_i}{s_Y}$

• z scores always have a mean of 0 and a variance and std dev of 1:

$$\hat{\beta}_2 = r_{Z_Y Z_X} \frac{s_{Z_Y}}{s_{Z_X}} = r_{YX}$$

$$\hat{\beta}_1 = \bar{z}_Y - \hat{\beta}_2 \bar{z}_X = 0 - r(0) = 0$$

 Thus, a regression of the z scores of Y on the z scores of X produces a slope equal to the correlation coefficient of X and Y and a zero intercept.

basic measurement 44/

exercise 2: if no time do at home: see dofile

- confirm the above in stata using our simple data we started today's lecture with
- run regression of Y on X
- modify X or Y and check what happened

pasic measurement 45/4