Definitionen

- **1. Gruppe:** Eine Menge $(\mathbb{G},\cdot,1)$ mit der Operation \cdot und dem Element 1 ist eine Gruppe, wenn gilt:
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Assoziativität
 - $x \cdot 1 = x$ Neutralität der 1
 - $x \cdot x^{-1} = 1$ Existenz von inversen x^{-1} für $x \neq 0$

Dabei heißt eine Gruppe kommutativ, wenn zusätzlich gilt:

- $x \cdot y = y \cdot x$ Kommutativität
 - 2. Halbgruppe: Eine Halbgruppe ist eine Verallgemeinerung einer Gruppe, der die Assoziativität genügt.
- **3. Körper:** Ein Körper $(\mathbb{K}, +, 0, \cdot, 1)$ ist eine Menge \mathbb{K} , welche mit zwei zweistelligen Verknüpfungen versehen ist und folgende Eigenschaften besitzt:
 - $(\mathbb{K}, +, 0)$ ist eine kommutative Gruppe, wobei 0 das neutrale Element der Addition ist.
 - $(\mathbb{K}\setminus\{0\},\cdot,1)$ ist eine kommutative Gruppe, wobei 1 das neutrale Element der Multiplikation ist.
 - Des weiteren gilt das Distributivgesetz: x(y+z) = xy + xz
 - **4. Ring:** Ein Ring $(\mathbb{P}, +, 0, \cdot, 1)$ besitzt folgende Eigenschaften:
 - $(\mathbb{P}, +, 0)$ ist eine Gruppe.
 - $(\mathbb{P}\setminus\{0\},\cdot,1)$ ist eine Halbgruppe.
 - Es gelten die Distributivgesetze.

Ein Ring heißt kommutativ, wenn die Addition kommutativ ist. $(\mathbb{P}, +, 0)$ also eine kommutative Gruppe ist.

- **5. Unitärer Ring:** Ein unitärer Ring besitzt ein multiplikativ neutrales Element. $(\rightarrow 1)$
- **6. komplexe Zahl:** Eine Komplexe Zahl z ist definiert als $z = a + b \cdot i$ mit $a, b \in \mathbb{R}$.

Dabei ist a der Realteil und b der Imaginärteil von z.

7. Exponentialdarstellung: Eine komplexe Zahl lässt sich auch mit Hilfe der komplexen e-Funktion darstellen:

$$z = r \cdot e^{i\phi} = r \cdot (\cos(\phi) + i \cdot \sin(\phi))$$

Dabei ist

$$sin(\phi) = Im(z)$$

$$cos(\phi) = Re(z)$$

Rechengesetze Imaginäre Zahlen

Addition:
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Subtraktion:
$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

Betrag Exponential form:
$$r = \sqrt{|a|^2 + |b|^2}$$

Winkel Exponential form:
$$\phi = arctan(\frac{Im}{Re})$$

Multiplikation:
$$(r_1 \cdot e^{i\phi_1}) \cdot (r_2 \cdot e^{i\phi_2}) = r_1 \cdot r_2 \cdot e^{i(\phi_1 + \phi_2)}$$

Disvision:
$$\frac{r_1 \cdot e^{i\phi_1}}{r_2 \cdot e^{i\phi_2}} = \frac{r_1}{r_2} \cdot e^{i(\phi_1 - \phi_2)}$$