#### **LECTURE 8**

• Readings: Section 3.1-3.3

#### Lecture outline

- Probability density functions
- Cumulative distribution functions
- Normal random variables

### Continuous Random Variables Probability Density Function (PDF)



$$\mathbf{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

• 
$$P(x \le X \le x + \delta) \approx f_X(x) \cdot \delta$$

$$\bullet \int_{-\infty}^{\infty} f_X(x) dx = 1$$

### **Means and Variance**

• 
$$\mathbf{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

• 
$$\mathbf{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

• 
$$\operatorname{var}(X) = \sigma_X^2$$

$$= \int_{-\infty}^{\infty} (x - \mathbf{E}[X])^2 \cdot f_X(x) dx$$

## **Example: Uniform PDF**



• 
$$f_X(x) = \frac{1}{b-a}$$
  $a \le x \le b$ 

$$a \le x \le b$$

$$\bullet \ \mathbf{E}[X] = \frac{a+b}{2}$$

• 
$$\sigma_X^2 = \int_a^b \left(x - \frac{a+b}{2}\right)^2 \frac{1}{b-a} dx = \frac{(b-a)^2}{12}$$

#### **Cumulative Distribution Function**

• CDF:

$$F_X(x) = \mathbf{P}(X \le x) = \int_{-\infty}^x f_X(t)dt$$

Uniform Example:





### CDF for Discrete r.v.'s

$$F_X(x) = \mathbf{P}(X \le x) = \sum_{k \le x} p_X(k)$$

Example:



## Standard Gaussian (Normal) PDF

• Standard Normal: N(0,1)

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

• 
$$E[X] = 0$$

• 
$$\operatorname{var}(X) = 1$$



# **General Gaussian (Normal) PDF**

• General Normal:  $N(\mu, \sigma^2)$ 

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2}\sigma^2$$

• It turns out that:

$$\mathbf{E}[X] = \mu \qquad \text{var}(X) = \sigma^2$$

• Let Y = aX + b then:

$$\mathbf{E}[Y] = \operatorname{var}(Y) =$$

• Fact:  $Y \sim N(a\mu + b, a^2\sigma^2)$ 

### **Calculating Normal Probabilities**

- No closed form available for CDF.
  - But, there are tables (for standard normal).

• If 
$$X \sim N(\mu, \sigma^2)$$
 then  $\frac{X - \mu}{\sigma} \sim N($ 

• If  $X \sim N(2, 16)$ :

$$P(X \le 3) = P\left(\frac{X-2}{4} \le \frac{3-2}{4}\right) = CDF(0.25)$$