

Факультет компьютерных наук Образовательная программа "Прикладная математика и информатика"

Neural network loss landscape

Выполнил: Разин Арслан Дмитриевич, БПМИ202

План

- Визуализация функции потерь нейронных сетей
- 2. Применение визуализации в методе Snapshot Ensembles
- 3. Применение визуализации в методе FGE
- 4. Выводы
- 5. Красивые картинки
- 6. Ответы на вопросы

Зачем визуализировать loss?

Почему вообще можно минимизировать сильно невыпуклые функции потерь?

Зачем визуализировать loss?

Немного математики

Одномерная линейная интерполяция

$$\theta(\alpha) = (1 - \alpha)\theta_1 + \alpha\theta_2$$
$$f(\alpha) = L(\theta(\alpha))$$

Примеры одномерной линейной интерполяции (здесь обучали SGD с разными параметрами)

Немного математики

Контурные графики по случайным направлениям

$$f(\alpha, \beta) = L(\theta^* + \alpha\delta + \beta\eta)$$

Примеры контурных графиков по случайным направлениям (здесь обучали SGD с разными параметрами)

Не забываем про нормализацию

Figure 11: 1D loss plots for VGG-9 without normalization. The first row has no weight decay and the second row uses weight decay 0.0005.

Графики без нормализации

Влияние глубины

Влияние глубины нейросети

Использование skip-connection

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

Зависимость от наличия skip-connections

Влияние ширины

Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom). The label k=2 means twice as many filters per layer. Test error is reported below each figure.

Влияние ширины нейросети

А что там с обобщаемостью?

Пример наихудшей обобщающей способности

Пример наилучшей обобщающей способности

А наш метод точно работает?

Figure 7: For each point in the filter-normalized surface plots, we calculate the maximum and minimum eigenvalue of the Hessian, and map the ratio of these two.

Проверка надежности описанного метода визуализации

Оптимизации метода

Проблема:

Figure 8: Ineffective visualizations of optimizer trajectories. These visualizations suffer from the orthogonality of random directions in high dimensions.

Проблема малоразмерных пространств оптимизации

Оптимизации метода

Решение: PCA (principal component analysis) - метод главных компонент

Figure 9: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in each subfigure uses batch size 128, and the right one uses batch size 8192.

Пример того, почему оптимизация работает

Практическое применение

Ссылки на статьи:

- Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs: https://arxiv.org/pdf/1802.10026.pdf
- 2) SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREE: https://arxiv.org/pdf/1704.00109.pdf

Snapshot Ensembling

Траектории градиентного спуска для Snapshot Ensembling

Snapshot Ensembling

t - номер итерации

Т – количество итераций

М – количество циклов

α₀ - начальный Ir

Данный метод является улучшением Snapshot Ensembling. В нём визуализация позволяет показать, почему в пространстве весов модели есть области, соединяющие локальные минимумы так, что функция потерь не сильно отличается от локальных минимумов.

$$t(i) = \frac{1}{c} (\operatorname{mod}(i-1,c) + 1)$$

Пример визуализации:

Наглядный пример того, что FGE работает (линии соединяют локальные минимумы)

Сравнение методов

Table 1: Error rates (%) on CIFAR-100 and CIFAR-10 datasets for different ensembling techniques and training budgets. The best results for each dataset, architecture, and budget are **bolded**.

		CIFAR-100			CIFAR-10		
DNN (Budget)	method	1B	2B	3B	1B	2B	3B
VGG-16 (200)	Ind SSE FGE	27.4 ± 0.1 26.4 ± 0.1 25.7 ± 0.1	25.28 25.16 24.11	24.45 24.69 23.54	6.75 ± 0.16 6.57 ± 0.12 6.48 ± 0.09	5.89 6.19 5.82	5.9 5.95 5.66
ResNet-164 (150)	Ind SSE FGE	21.5 ± 0.4 20.9 ± 0.2 $\mathbf{20.2 \pm 0.1}$	19.04 19.28 18.67	18.59 18.91 18.21	4.72 ± 0.1 4.66 ± 0.02 4.54 ± 0.05	4.1 4.37 4.21	3.77 4.3 3.98
WRN-28-10 (200)	Ind SSE FGE	19.2 ± 0.2 17.9 ± 0.2 17.7 ± 0.2	17.48 17.3 16.95	17.01 16.97 16.88	3.82 ± 0.1 3.73 ± 0.04 3.65 ± 0.1	3.4 3.54 3.38	3.31 3.55 3.52

In this section we compare the proposed Fast Geometric Ensembling (**FGE**) technique against ensembles of independently trained networks (**Ind**), and SnapShot Ensembles (**SSE**) [11], a recent state-of-the-art fast ensembling approach.

Выводы

Визуализировать функцию потерь нужно, чтобы специалист по нейронным сетям мог правильно выбрать:

- архитектуру нейросети
- оптимизатор
- размер батча

A также в таких методах, как FGE и Snapshot Ensembling визуализация помогает лучше понять суть метода.

Красивые картинки

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Красивые картинки

Figure 4: The loss surfaces of ResNet-110-noshort and DenseNet for CIFAR-10.

Higher School of Economics

Dropout visualizes

Higher School of Economics

LATENT visualizes the initial stages of the training of a Wasserstein GP GAN network.

Залипательный контент

Последние две картинки – результат моих экспериментов на сайте https://losslandscape.com/explorer. На нём много красоты, на которую можно смотреть часами.

А это красивое представление контурные графиков по случайным направлениям

Ответы на вопросы

У вас есть вопросы?

