Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе:

Исследование систем массового обслуживания на марковских моделях

По предмету: Моделирование

Вариант 20/10

Студенты:

Андрейченко Леонид Вадимович

Степанов Михаил Алексеевич

Группа Р34301

Преподаватель:

Алиев Тауфик Измайлович

Санкт-Петербург

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

Исходные данные

Таблица 1. Параметры структурной и функциональной организации исследуемых систем

Danwayer	Сист	ема 1	Сист	ема 2	Критерий
Вариант	П	EH	П	EH	эффект.
20	3(H2)	0/0/1	2	0/3	(д)

- Система 1 имеет три обслуживающих прибора и в одном из них длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации 2. Емкость накопителя перед последним прибором 1, перед другими отсутствует.
- Система 2 имеет два обслуживающих прибора. Емкость накопителя перед первым прибором отсутствует, емкость накопителя перед вторым прибором 3.
- Критерий эффективности минимальная суммарная длина очередей заявок.

Таблица 2. Параметры нагрузки

Вариант	Интенс. потока	Ср.длит. обслуж.	Вероятно	сти занятия	прибора
	λ, 1/c	b, c	П1	П2	П3
10	1	2	0,6	0,3	0,1

- Интенсивность потока: $\lambda = 1 c^{-1}$
- Средняя длительность обслуживания: b = 2 с
- Интенсивность обслуживания: $\mu = 0.5 \, c^{-1}$
- Вероятность занятия прибора в системе 1: p1 = 0.6, p2 = 0.3, p3 = 0.1
- Вероятность занятия прибора в системе 2: p1 = 0.6, p2 = 0.4

Параметр
$$q \le \frac{2}{1+\nu^2} = \frac{2}{1+2^2} = \frac{2}{5} = 0.4$$
. Выбираем $q = 0.2$

$$b_1' = \left[1 + \sqrt{\frac{1 - q}{2q}(v^2 - 1)}\right] b = \left[1 + \sqrt{\frac{1 - 0.2}{2 \cdot 0.2}(2^2 - 1)}\right] \cdot 2 \approx 6.9 \rightarrow \mu_1' = 0.14$$

$$b_2' = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right]b = \left[1 - \sqrt{\frac{0.2}{2 \cdot (1 - 0.2)}(2^2 - 1)}\right] \cdot 2 \approx 0.77 \rightarrow \mu_2' = 1.3$$

Проверка условия $qb_1' + (1-q)b_2' = b \rightarrow 0.2 \cdot 6.9 + (1-0.2)0.77 = 2$

Рисунок 1. Графическое представление СИСТЕМЫ 1

Рисунок 2. Графическое представление СИСТЕМЫ 2

Выполнение

Принятые обозначения

- П1 описывает, обрабатывает заявку (1) или нет (0) первый прибор.
- П2 описывает, обрабатывает заявку (1) или нет (0) второй прибор.
- ПЗ описывает, обрабатывает заявку (1) или нет (0) третий прибор.
- Е2 описывает, емкость накопителя второго прибора
- ЕЗ описывает, емкость накопителя третьего прибора

Таблица 3. Состояния Марковского процесса (СИСТЕМА 1 и СИСТЕМА 2)

	Система 1	Система 2
Номер состояния	П1/П2/П3/Е3	П1/П2/Е2
E ₀	0/0/0/0	0/0/0
E_1	1/0/0/0	1/0/0
E_2	0/1/0/0	0/1/0
E ₃	0/0/11/0	0/1/1
E ₄	0/0/12/0	0/1/2
E ₅	0/0/11/1	0/1/3
E_6	0/0/1 ₂ /1	1/1/0
E ₇	1/1/0/0	1/1/1
E ₈	1/0/11/0	1/1/2
E ₉	1/0/1 ₂ /0	1/1/3
E ₁₀	1/0/1 ₁ /1	
E ₁₁	1/0/1 ₂ /1	
E ₁₂	0/1/1 ₁ /0	
E ₁₃	0/1/1 ₂ /0	
E ₁₄	0/1/1 ₁ /1	
E ₁₅	0/1/1 ₂ /1	
E ₁₆	1/1/1 ₁ /0	
E ₁₇	1/1/1 ₂ /0	
E ₁₈	1/1/1 ₁ /1	
E ₁₉	1/1/1 ₂ /1	

Рисунок 3. Граф переходов Марковского процесса (СИСТЕМА_1)

Рисунок 4. Граф переходов Марковского процесса (СИСТЕМА_2)

Таблица 4. Матрица интенсивностей переходов (СИСТЕМА 1)

<u> 1 аол</u> т	uųa 4.	Man	<i>ірица</i>	і инте	нсивн	остеі	i nepe	<i>x0006</i>	3(CH)	$\cup I EM$	$A_{\perp}I)$									
C1	EO	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19
E0	-1	0,6	0,3	0,02	0,08															
E1	0,5	-0,9						0,3	0,02	0,08										
E2	0,5		-1,2					0,6					0,02	0,08						
E3	0,14			-1,14		0,1			0,6				0,3							
E4	1,3				-2,3		0,1			0,6				0,3						
E5				0,028	0,11	-1,04					0,6				0,3					
E6					1,04		-1,94					0,6				0,3				
E7		0,5	0,5					-1,1									0,02	0,08		
E8		0,14		0,5					-1,04		0,1						0,3			
E9		1,3			0,5					-2,2		0,1						0,3		
E10						0,5			0,028	0,112	- 0,94								0,3	
E11							0,5		0,26	1,04		-2,1								0,3
E12			0,14	0,5									- 1,34		0,1		0,6			
E13			1,3		0,5									-2,5		0,1		0,6		
E14						0,5							0,02 8		- 1,24				0,6	
E15							0,5						0,26	1,04		-2,4				0,6
E16								0,14	0,5				0,5				- 1,24		0,1	
E17								1,3		0,5				0,5				-2,4		0,1
E18											0,5				0,5		0,02 8	0,11 2	- 1,14	
E19												0,5				0,5	0,26	1,04		-2,3
Таблі	<u>uua 5</u>	Man	าทนนด	инте	нсивн	остеі	ĭ nene	ходов	з (СИ	СТЕМ	\overline{A} 2)		•							

Таблица 5. Матрица интенсивностей переходов (СИСТЕМА_2)

C1	EO	E1	E2	E3	E4	E5	E6	E7	E8	E9
EO	-1	0,6	0,4							
E1	0,5	-0,9					0,4			
E2	0,5		-1,5	0,4			0,6			
E3			0,5	-1,5	0,4			0,6		
E4				0,5	-1,5	0,4			0,6	

E5				0,5	-1,1				0,6
E6	0,5	0,5				-1,4	0,4		
E7			0,5			0,5	-1,4	0,4	
E8				0,5			0,5	-1,4	0,4
E9					0,5			0,5	-1

Рассчитаем значения стационарных вероятностей, используя программу MARK.

Таблица 6. Стационарные вероятности состояний (СИСТЕМА_1 и СИСТЕМА_2)

Номер	Сист	ема 1	Сис	гема 2
состояния	П1/П2/П3/Е3	Вероятность	П1/П2/Е2	Вероятность
1	0/0/0/0	0,2306	0/0/0	0,1352
2	1/0/0/0	0,2764	1/0/0	0,1623
3	0/1/0/0	0,1373	0/1/0	0,1082
4	0/0/11/0	0,0265	0/1/1	0,0865
5	0/0/12/0	0,0154	0/1/2	0,0692
6	0/0/11/1	0,0161	0/1/3	0,0554
7	0/0/12/1	0,0014	1/1/0	0,1298
8	1/1/0/0	0,1650	1/1/1	0,1038
9	1/0/11/0	0,0282	1/1/2	0,0831
10	1/0/12/0	0,0184	1/1/3	0,0665
11	1/0/1 ₁ /1	0,0191		
12	1/0/1 ₂ /1	0,0015		
13	0/1/11/0	0,0085		
14	0/1/12/0	0,0091		
15	0/1/1 ₁ /1	0,0090		
16	0/1/1 ₂ /1	0,0007		
17	1/1/1 ₁ /0	0,0140		
18	1/1/12/0	0,0110		
19	1/1/1 ₁ /1	0,0110		
20	1/1/1 ₂ /1	0,0009		

Характеристики систем

Таблица 7. Характеристики СИСТЕМЫ_1 и СИСТЕМЫ_2

Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2
	П1	$\lambda / \mu imes P_1$	1,2	-
II.	П2	$\lambda / \mu imes P_2$	0,6	-
Нагрузка	П3	$\mathcal{N}\mu imes P_3$	0,2	-
	СУММ	y 1= λ / μ	2	-

	П1	$\lambda/\mu \times P_1$	-	1,2
	П2	$\lambda \mu \times P_2$	-	0,8
	СУММ	Y ₂ = λ / μ	-	2
	П1	$P_{11}=1-(P_1+P_3+P_4+P_5+P_6+P_7+P_{13} + P_{14}+P_{15}+P_{16})$	0,5727	-
	П2	$P_{12}=1 - (P_1 + P_2 + P_4 + P_5 + P_6 + P_7 + P_9 + P_{10} + P_{11} + P_{12})$	0,3664	-
2	П3	$P_{13} = 1 - (P_1 + P_2 + P_3 + P_8)$	0,1907	-
Загрузка	СУММ	$P_1 = (P_{11} + P_{12} + P_{13}) / 3$	0,3776	-
	П1	$P_{21}=1-(P_1+P_3+P_4+P_5+P_6)$	-	0,5455
	П2	$P_{22}=1-(P_1+P_2)$	-	0,70
	СУММ	$P_2 = (P_{21} + P_{22}) / 2$	-	0,6227
	П1	L ₁₁	0	-
	П2	L ₁₂	0	-
Длина	П3	$L_{13} = (P_6 + P_7 + P_{11} + P_{12} + P_{15} + P_{16} + P_{19} + P_{20})$	0,0597	-
очереди	СУММ	$L_1 = L_{11} + L_{12} + L_{13}$	0,0597	-
-	П1	L_{21}	-	0
	П2	$L_{22}=(P_4+P_8)+2(P_5+P_9)+3(P_6+P_{10})$	-	0,8606
	СУММ	$L_2 = L_{21} + L_{21}$	-	0,8606
	П1	$M_{11} = L_{11} + P_{11}$	0,5727	ı
	П2	$M_{12} = L_{12} + P_{12}$	0,3664	ı
	П3	$M_{13} = L_{13} + P_{13}$	0,2504	-
Число заявок	СУММ	$M_1 = M_{11} + M_{12} + M_{13}$	1.1	-
	П1	$M_{21} = L_{21} + P_{21}$	-	0,5455
	П2	$M_{22} = L_{22} + P_{22}$	-	1,5086
	СУММ	$M_2 = M_{21} + M_{22}$	-	2,0541
	П1	$\mathbf{W}_{11} = \mathbf{L}_{11} / \lambda_{11}'$	0	-
	П2	$W_{12} = L_{12} / \lambda'_{12}$	0	-
Desarg	П3	$W_{13} = L_{13} / \lambda'_{13}$	0,0634	-
Время ожидания	СУММ	$\mathbf{W}_1 = \mathbf{L}_1 / \boldsymbol{\lambda}_1'$	0,1072	-
ожидания	П1	$W_{21} = L_{21} / \lambda'_{21}$	-	0
	П2	$W_{22} = L_{22} / \lambda'_{22}$	-	2,4504
	СУММ	$W_2 = L_2 / \lambda_2'$	-	1,3946
	П1	$U_{11} = M_{11} / \lambda'_{11}$	1,2600	-
	П2	$U_{12} = M_{12} / \lambda'_{12}$	0,5783	-
Pnova	П3	$U_{13} = M_{13} / \lambda'_{13}$	0,2663	-
Время пребывания	СУММ	$U_1 = M_1 / \lambda_1'$	1,9756	-
1	П1	$U_{21} = M_{21} / \lambda'_{21}$	-	2,0003
	П2	$U_{22} = M_{22} / \lambda'_{22}$	-	4,2955
	СУММ	$U_2 = M_2 / \lambda_2'$	-	3,3286
Вероятность	П1	$\pi_{11} = P_2 + P_8 + P_9 + P_{10} + P_{11} + P_{12} + P_{17} + P_{18} + P_{19} + P_{20}$	0,5455	-
потери	П2	$\pi_{12} = P_3 + P_8 + P_{13} + P_{14} + P_{15} + P_{16} + P_{17} + P_{18} + P_{19} + P_{20}$	0,3665	-

	П3	$\pi_{13} = (P_6 + P_7 + P_{11} + P_{12} + P_{15} + P_{16} + P_{19} + P_{20})$	0,0597	-
	СУММ	$\pi_1 = P_{11} * \pi_{11} + P_{12} * \pi_{12} + P_{13} * \pi_{13}$	0,4432	-
	П1	$\pi_{21} = (P_2 + P_7 + P_8 + P_9 + P_{10})$	-	0,5455
	П2	$\pi_{22} = (P_6 + P_{10})$	-	0,1219
	СУММ	$\pi_2 = P_{21} * \pi_{21} + P_{22} * \pi_{22}$	-	0,3829
	П1	$\lambda'_{11} = \lambda * P * (1 - \pi_{11})$	0,4545	-
	П2	$\lambda'_{12} = \lambda * P * (1 - \pi_{12})$	0,6335	-
	П3	$\lambda'_{13} = \lambda * P * (1 - \pi_{13})$	0,9403	-
Производите льность	СУММ	$\lambda_1' = \lambda * (1 - \pi_1)$	0,5568	-
льность	П1	$\lambda'_{21} = \lambda * P * (1 - \pi_{21})$	-	0,2727
	П2	$\lambda'_{22} = \lambda * P * (1 - \pi_{22})$	-	0,3512
	СУММ	$\lambda_2' = \lambda * (1 - \pi_2)$	-	0,6171

Рисунок 5. Сравнение рассчитанных характеристик систем

Сравнение

Сравним полученные характеристики обеих систем:

- Системы имеют одинаковую нагрузку, что ожидаемо при одинаковых параметрах нагрузки, заданных по варианту.
- Система 1 имеет меньшее значение загрузки, чем система 2. (39% разница)
- Система 1 имеет меньше значение длины очереди, чем система 2. (93% разница). Так как данный параметр является критерием эффективности, стоит выбрать первую систему.

- Система 1 имеет меньше число заявок в системе, чем система 2.(46% разница)
- Система 1 имеет меньше время ожидания, чем система 2. Это говорит о том, что система 1 значительно быстрее обрабатывает заявки. (93% разница)
- Система 1 имеет меньшее время пребывания заявки в системе, чем система 2. (41% разница)
- Система 2 имеет меньше вероятность потери заявки, чем система 1. (14% разница)
- Система 2 имеет больше производительность, чем система 1. (8,2% разница)

Выводы

В начале выполнения УИР были проанализированы состояния марковских процессов для систем 1 и 2. На их основе были построены графы переходов марковских процессов, а впоследствии и матрицы интенсивностей переходов. С помощью программы МАКК были получены значения стационарных вероятностей, используя полученые матрицы интенсивностей переходов. Получив значения стационарных вероятностей, можно было приступать к этапу расчета характеристик для систем 1 и 2. Полученные характеристики для систем 1 и 2 были сопоставлены. В результате выяснилось, что система 1 имеет наименьшую суммарную длину очереди заявок. Именно поэтому ей было отдано предпочтение при выборе наилучшей реализации из данных двух.