xw2501

Written assignments

For a fixed point (x_0, y_0) in the (x, y)-image space, the line equation is

$$x_0 \sin(\theta) - y_0 \cos(\theta) + \rho = 0$$

$$\rho = y_0 \cos(\theta) - x_0 \sin(\theta)$$

$$\rho = \sqrt{y_0^2 + x_0^2} \left(\frac{y_0}{\sqrt{y_0^2 + x_0^2}} \cos(\theta) - \frac{x_0}{\sqrt{y_0^2 + x_0^2}} \sin(\theta)\right)$$

$$\rho = \sqrt{y_0^2 + x_0^2} \cos(\theta + \varphi) = \sqrt{y_0^2 + x_0^2} \sin\left(\theta + \varphi + \frac{\pi}{2}\right)$$

Where
$$\cos(\varphi) = \frac{y_0}{\sqrt{y_0^2 + x_0^2}}$$
 and $\sin(\varphi) = \frac{x_0}{\sqrt{y_0^2 + x_0^2}}$.

Thus a point in image space results in a sinusoid in Hough space.

The amplitude is
$$\sqrt{{y_0}^2+{x_0}^2}$$
 and the phase is $\varphi+\frac{\pi}{2}$ (where $\cos(\varphi)=\frac{y_0}{\sqrt{{y_0}^2+{x_0}^2}}$ and $\sin(\varphi)=\frac{x_0}{\sqrt{{y_0}^2+{x_0}^2}}$).

The period does not change when the position of the image point moves. In a sinuous function $f(x) = Asin(\omega\theta + \varphi)$ the period depends only on parameter ω . As shown in the equation above, ω is independent of x and y and in thie case ω is always 1, thus the period does not change.