实验专题

胡译文

January 31, 2020

若有bug请到github上提Issue。

目录

1	基本 1.1 1.2	······ 容器	3 3
		1.2.1 温度计	3 3 4
	1.3	1.3.1 干燥管	4 4
	1.4 1.5	其他	4 4 5
	1.6	1.5.2 启普发生器	5 5
		1.6.1 需要验漏的仪器	5 5
2	药品 2.1		6
		2.1.1 试剂瓶的选择	666
3	基本	· 操作	7
	3.1 3.2	仪器的洗涤	7
	3.3 3.4 3.5		7 7 7
	0.0	3.5.1 酸碱中和或氧化还原滴定 7	7 7
4	实验	8	8
	4.1	· 装置选取	888
	4.3 4.4 4.5	收集	8888
	4.6 4.7	尾气处理	888
5	物质 5.1	· · · · · · · · · · · · · · · · · · ·	9
			9

	5.3	官能团检验	C
6	物质 6.1	5分离提纯	1
		6.1.1 分液萃取	1
		6.1.2 过滤	
		6.1.3 蒸发和结晶	1
		6.1.4 蒸馏	
		6.1.5 升华	1
		6.1.6 渗析	1
	6.2	化学法	
		6.2.1 沉淀法	1
		6.2.2 氧化还原法	
		6.2.3 加热分解法	1

1 基本仪器

1.1 容器

- · 直接加热:
 - 试管:倾斜45°,加热时液体不超过1/3
 - 坩锅: 在泥三角上加热, 用坩埚钳夹取
 - 蒸发皿:玻璃棒搅拌,用坩埚钳夹取
- 隔网加热:
 - 烧杯
 - 烧瓶:圆底烧瓶(承装液体不超过2/3)、蒸馏烧瓶(有支管、用于蒸馏制气体)、平底烧瓶
 - 锥形瓶
- ・ 不能加热: 集气瓶

1.2 量器

・ 粗量仪器: 托盘天平、量筒、温度计

· 精量仪器: 容量瓶、滴定管

1.2.1 温度计

测反应混合物的温度 这种类型的实验需要测出反应混合物的准确温度,因此,应将温度计插入混合物中间。

- · 测物质溶解度
- · 实验室制乙烯

测蒸气的温度 这种类型的实验,多用于测量物质的沸点,由于液体在沸腾时,液体和蒸气的温度相同,所以只要测蒸气的温度。

- · 实验室蒸馏石油
- · 测定乙醇的沸点

测水浴温度 这种类型的实验,往往只要使反应物的温度保持相对稳定,所以利用水浴加热,温度计则插入水浴中。

- 温度对反应速率影响的反应
- · 苯的硝化反应

1.2.2 容量瓶

使用方法

- 1. 检漏:加水,塞好瓶塞,倒立,瓶塞周围无水漏出,将瓶正立并将瓶塞旋转180°后塞紧,再倒立,无水漏出
- 2. 计算
- 3. 称量(天平、药匙)或量取(量筒)
- 4. 溶解或稀释: 在烧杯中加适量水溶解或稀释, 玻璃棒搅拌, 冷却。
- 5. 移液:玻璃棒引流

- 6. 洗涤: 洗涤烧杯, 洗涤液也转移到容量瓶内, 次。
- 7. 定容: 先玻璃棒引流加水至刻度线下 $1\sim 2cm$ 处,然后用胶头滴管滴加至平视凹液面最低处与刻度线相平
- 8. 摇匀: 左手顶在瓶塞, 右手五指轻托平底, 反复颠倒上下摇匀

注意事项

- · 不能在容量瓶里进行溶质的溶解, 应将溶质在烧杯中溶解、冷却后转移
- 溶液不能超过容量瓶的标线, 一旦超过, 必须重新进行配制
- · 容量瓶不能进行加热
- ・ 选用时需要标明规格 $(1/2.5/5 \times 10^n mL)$

1.2.3 滴定管

- ・ 酸式滴定管(玻璃旋钮): 不能用于碱性物质
- ・ 碱式滴定管(橡胶管): 不能用于强氧化性物质和有机溶剂

1.3 分离仪器

- ・ 固液分离: 普通漏斗
- ・ 液液分离: 分液漏斗
- · 气气分离: 洗气瓶、干燥管

1.3.1 干燥管

种类 球形干燥管(固体干燥剂)、U形干燥管(液体或固体干燥剂)

常见干燥剂

- · 浓H₂SO₄: 酸性干燥剂
- · P2O5固体: 酸性干燥剂
- · 碱石灰: 碱性干燥剂
- ・ 无水CaCl₂: 中性干燥剂,不能干燥NH₃
- ・ 无水CuSO4: 中性干燥剂, 万能干燥剂
- · 无水MgSO₄: 中性干燥剂、有机干燥剂
- · 无水Na₂SO₄: 中性干燥剂、有机干燥剂

1.4 热源

· 酒精灯、酒精喷灯

1.5 其他

· 玻璃棒、胶头滴管、冷凝管、水槽、铁架台

1.5.1 冷凝管

・ 直形冷凝管: 必须斜用或平用

・ 球形冷凝管: 可以竖用, 用于冷凝回流一般气体

・ 蛇形冷凝管: 一般竖用, 用于冷凝回流沸点很低的有机物或冷 凝有毒气体

1.5.2 启普发生器

构造和工作原理 启普发生器由三部分构成: 1.球型漏斗 2.容器部分 3.带活塞的导管部分。以实验室制 氢气为例,使用时,开启活塞,酸由球形漏斗流入容器至其与锌粒接触,反应产生氢气。关闭活塞,由于氢气压强增大,酸被压回球形漏斗,与锌粒脱离接触,反应停止。

使用条件

- · 固液不加热
- · 反应不剧烈
- · 块状固体

气密性检验 关闭导气管上的活塞,从球形漏斗口处加入水,当水浸没球形漏斗下端后,继续加入水,球形漏斗内外会出现液面差,观察液面,在一段时间内不发生变化,表明气密性良好。

常见反应

- · HCI和FeS制取H2S
- · HCI和CaCO3制取CO2
- ・ H₂SO₄和金属制取H₂

1.6 总结

1.6.1 需要验漏的仪器

- 容量瓶
- · 分液漏斗
- ・ 滴定管

1.6.2 需要标注规格的仪器

- · 量筒
- 容量瓶

2 药品

2.1 保存

2.1.1 试剂瓶的选择

・ 固体: 广口瓶

・ 液体: 细口瓶

· 气体: 集气瓶

· 光解: 棕色瓶 (碘、硝酸银、溴化银、浓硝酸、稀硝酸、氯水、溴水、碘水、银氨溶液)

・ 玻璃塞: 不能用于碱性物质

・ 橡胶塞: 不能用于强氧化性物质和有机溶剂

2.2 危险标志

3 基本操作

- 3.1 仪器的洗涤
- 3.2 试纸的使用
- 3.3 药品的取用
- 3.4 配制溶液
- 3.5 测定
- 3.5.1 酸碱中和或氧化还原滴定
- 3.5.2 中和反应反应热测定

4 实验

- 4.1 Checklist
- 4.2 装置选取
- 4.3 实验现象
- 4.4 收集
- 4.5 性质探究与验证
- 4.6 尾气处理
- 4.7 事故处理
 - ・ 酸灼伤: 先用大量水冲洗, 再用稀NaHCO3浸洗。
 - ・ 碱灼伤: 先用大量水冲洗, 再用稀硼酸浸。

5 物质的检验

5.1 离子检验

离子	试剂和操作	现象		
1 -	CCl ₄ 、Cl ₂	先无现象,加入Cl ₂ 后溶液呈紫色		
	稀HNO ₃ 、AgNO ₃	产生黄色沉淀,不溶解		
Br -	CCl ₄ 、Cl ₂	先无现象,加入Cl ₂ 后溶液呈橙红色		
	稀HNO ₃ 、AgNO ₃	产生淡黄色沉淀,不溶解		
CI -	稀HNO ₃ 、AgNO ₃	产生白色沉淀,不溶解		
	KSCN	溶液变为血红色		
Fe ³⁺	K ₄ [Fe(CN) ₆]	产生普鲁士蓝沉淀		
	苯酚	溶液变为紫色		
	KSCN、CI ₂	溶液变为血红色		
Fe ²⁺	K ₃ [Fe(CN) ₆]	产生滕氏蓝沉淀		
	酸性高锰酸钾溶液	溶液褪色		
NH ₄ ⁺	浓NaOH加热,产生的气体用湿润红色石蕊 试纸	红色试纸变蓝		
SO ₄ ² -	HCI溶液、BaCl₂溶液、稀HNO₃	先无现象,加入HCI溶液后产生不溶白色沉 淀		
CO ₃ ^{2 -}	CaCl ₂ 溶液、HCl溶液、澄清石灰水	先产生白色沉淀,加入CaCl₂溶液后产生使 澄清石灰水浑浊的气体		
SO ₃ ²⁻	BaCl ₂ 溶液、HCl溶液、品红溶液	先产生白色沉淀,加入CaCl ₂ 溶液后产生无色刺激性气体,使品红溶液褪色		
Al ³⁺	NaOH溶液	先产生白沉,一会溶解		
Ag ⁺	CI -	产生白色沉淀,不溶解		
Na ⁺	用HCI清洗的洁净Pt丝蘸取溶液,	酒精灯外焰加热,观察到黄色火焰		
K ⁺	K ⁺ 用HCI清洗的洁净Pt丝蘸取溶液,酒精灯外焰加热,透过蓝色钴玻璃片观察到紫色火			

5.1.1 焰色反应

・ 锂盐: 深红色

· 钠盐: 黄色

· 钾盐: 紫色 (透过蓝色钴玻璃)

・ 钙盐: 砖红色

・ 锶盐: 洋红色・ 钡盐: 黄绿色

· 铜盐: 绿色

- 5.2 气体检验
- 5.3 官能团检验

6 物质分离提纯

6.1 物理法

6.1.1 分液萃取

萃取分液条件 萃取物质在两种溶剂中溶解度不同,萃取剂和原溶剂不相容,萃取剂和原溶质、原溶剂均不发生反应。

操作方法 萃取后先将下层液体从分液漏斗中放出,再将上层液体从上口放出。注意使瓶塞上的凹槽对准小孔以平衡气压。

- 6.1.2 过滤
- 6.1.3 蒸发和结晶
- 6.1.4 蒸馏
- 6.1.5 升华
- 6.1.6 渗析
- 6.2 化学法
- 6.2.1 沉淀法

Al₂O₃和MgO固体

1. NaOH溶液: 过滤得AI()和MgO固体

2. 稀HCI: 得氢氧化铝

3. 加热氢氧化铝: 得氧化铝

Fe₂O₃和SiO₂固体

1. 稀HCI: 得FeCI3溶液和SiO2固体

2. NaOH溶液: 得Fe(OH)3沉淀

3. 加热氢氧化铝: 得氧化铝

AICI3和FeCI3的混合溶液

1. NaOH溶液: 得Fe(OH)3沉淀和AICI3溶液

2. 稀HCI: 得FeCI3溶液

6.2.2 氧化还原法

6.2.3 加热分解法