

让枯燥无味 的数学变得"有趣、 有味、有黑"

等源号配置 部外野 有线电

中南大学数学与统计学院 易昆南

13787317587; ykn_88@163.com

摘要

本文探讨了在MATLAB实验教学中, 通过"音乐与数学有关吗?"问题的设计, 揭示了音乐信号是由一系列振幅和频率不 一的正弦波叠加且自带包络修饰形成的, 进而采用曲线拟合来定包络, 傅里叶变换 来研究音乐的合成, 从数学的角度生动直 观的展示了数学与音乐结合的无穷魅力。 从而激发学生的学习兴趣,以提升学生综 合素质与创新能力。

从哆来咪开始

一、从哆来咪开始 让我们从头开始学习, 从这儿开始真有趣, 你要念书就先学abc, 你要唱歌就先学哆来咪。

从哆来咪开始

《哆来咪》是美国电影《音乐之声》中的插曲。旋律优美流畅,内容生动有趣。

1. 问题是: 音乐与数学有关吗?

2. 《月光曲》的播放

步骤1: 下载mp3格式的《月光曲》。

步骤2: 下载音频转换器,将mp3格式的《月光曲》

转换为wav格式。

步骤3: 在MATLAB命令窗口中键入:

y=wavread('H:\yueguang.wav');

wavplay(y,44100)

plot(y)

2. 《月光曲》的播放

《月光曲》原名《升C小调钢琴奏鸣曲》, 又名《月光奏鸣曲》,创作于1801年,接近 于贝多芬创作的成熟期。这部作品有三个乐章:第一乐章,那支叹息的主题融入了他的 耳聋疾患,忧郁的思绪。

而第二乐章表现了那种回忆的甜梦, 也像憧憬未来的蓝图。第三乐章激动的 急板。好象激烈的海水拍打着岸上的礁 石...汹涌澎湃...

合唱团交响乐

3.合唱团交响乐的播放

load handel

sound(y,Fs)

你可以听一段韩德尔的哈利路亚合唱团的音乐。

合唱团交响乐

二.声音的构成

声音频率决定音调;

声音振幅决定大小;

声音谐波决定音色。

声音的三要素

音乐是一系列振幅和频率不一的正弦波叠 加形成的!

1.声音频率决定音调;

(1). 乐音的频率比

声音是由振动物体发出的,振动频率越高,音调越高,比如,音乐中 1(do), 2(re), 3(mi), 4(fa), 5(sol), 6(la), 7(si), 1(do)

这8个音(用简谱表示)一个比一个高,就是说它们的频率一个比一个高.

(2) 问题是: 已经知道高八度的 1的频率是 1的2倍, 那么, 2, 3, 4, 5, 6, 7的频率分别是1的多少倍呢?

从1到 1 要经过12个半度音,假设所有的音的地位平等,每升高半度,频率乘以同一个倍数k,从1到 1 经过12个半度,频率变成2倍,可见 $k^{12}=2$, $k=2^{\frac{1}{12}}$

上述8个音中,从3到4升高半度,从7到 1 升高半度,其余相邻的音都相差两个半度

故各音的频率(以音1的频率为1个单位) 应依次为:

1,
$$2^{1/6}$$
, $2^{1/3}$, $2^{5/12}$, $2^{7/12}$, $2^{3/4}$, $2^{11/12}$, $2^{11/12}$

(3) 听声音,做音阶

如何给出钢琴5组的音阶的程序呢?

t=0.1:0.1:200; y1=sin(t); wavplay(y,11025)

```
t=0.1:0.1:200; i=1/8;% yinjie.m
for k=1:5
y1=\sin(i*t); y1s=\sin(2^{(1/12)*i*t});
y=[y1,y1s,y2,y2s,y3,y4,y4s,y5,y5s,y6,y6s,y7];
wavplay(y,11025)
i=i*2;
end
```

(4) 声音的长短

```
t=0:0.1:8000;
z1=sin(t);y1=z1(1:20000);x1=z1(1:40000);
yb1=z1(1:30000);d1=z1(1:10000);
```

(5) 简单音乐的合成

```
1 \cdot 2 | 3 \cdot 1 | 3 \cdot 1 | 3 - |
y=[yb1,d2,yb3,d1,y3,y1,x3];,
wavplay(y,44100)
```

《哆来咪》的编程

2. 声音振幅决定大小;

t=0:0.1:2000; y1=sin(t); wavplay(y,44100)

(1) 给音乐加上节奏

y=[yb1,0.2*d2,yb3,0.2*d1,y3,0.2*y1,x3];, wavplay(y,44100)

(2) 听听《哆来咪》的编程的音乐

% dlm912.m 1 · <u>2</u> | 3 · <u>1</u> | 3 · 1 | 3 – | 思考: 如何合成交响音乐

《纺织姑娘》的编程

(3) 听听《纺织姑娘》的编程的<u>音乐</u> % fzgn4.m

1=D 6/8		纺织姑娘									俄罗斯民歌 何桃生译 章枚 配				
5	3	6	5	5	5.	4.	5	7	2	6	5	16.	3	Q	1
在她姓	那年那	矮轻伶	小又俐	ers ers	屋美头	型. 酮. 鳞.	灯椒思	火色想	在的多	闪眼深	着	光, 晴.			
1	3	5	i	2	VY	M. 8	la	7	£	5	7	II.	ì	Ω	I
年金你	轻	的黄在	纺色幻	织的想	始解什	娘子. 子么,		坐垂美	在在層	密府姑	П	旁。 止。 娘?			
1	3	5	ż	2	 2 .	í.	7	6	6	5	7	í.	ì	Q	1
年金你	轻	的黄在	纺色幻	织的粗	站鄉什	娘子.	从垂美	在在图	89	窗府站	П	旁。上。			

乐理知识介绍

乐理知识介绍 基波频率

每个指定音调的唱名都对应固定的基波信号频率。所谓唱名是指平日读乐谱唱出的1(do)、2(re)、3(mi)······,每个唱名并未固定基波频率。当指定乐曲的音调时才知道此时唱名对应的频率值。如C调"1"的基波频率为261.63 Hz,F调"1"的基波频率为174.61Hz。

情深谊长

步骤1: 决定抽样频率,确定音高

fs=8000; t=1/fs:1/fs:0.5;(0.5为一拍的长度)

y719=sin(2*pi*174.61*t); sound(y719,8000);

其中174.61为F调的1对应的频率(乘以2*pi)

F调: 1(do), 2(re), 3(mi), 4(fa), 5(sol),

6(la), 7(si), 1(do) 对应的数字为

174.6100 195.9931 219.9948 233.0764 261.6194 293.6578 329.619

步骤2: 建立乐谱音高矩阵

例如 $1 \cdot 2 \mid 3 \cdot 1 \mid 3 \mid 1 \mid 3 \mid -1$

A=[1231313]

步骤3: 建立乐音长短矩阵

P=0.5;B=P*[1.5 1/2 1.5 1/2 1 1 2]

```
fs=8000;
A=[174.6100 195.9931 219.9948 233.0764
261.6194 293.6578 329.619];
pu=[1 2 3 1 3 1 3];
p=0.5;B=p*[ 1.5 1/2 1.5 1/2 1 1 2];
N=length(B);
f=zeros(1,N);
for i=1:N
f(i)=A(pu(i));
end
```

```
%各个乐音的抽样点数
point=fs*B;
total_point=sum(point);
y=zeros(1,total_point);
m=1;
for num=1:N
  t=1/fs:1/fs:point(num)/fs;
  y(m:m+point(num)-1)=sin(2*pi*f(num)*t);
  m=m+point(num);
end
sound(y,8000)
```

步骤4: 给乐音加包络

我们来看看上述乐曲一拍长度下画出的图形:

图 (

该图形至少提供了两个信息:

- (1) 该音色由多个正弦波叠加而成。
- (2) 该图形的小图为蓝色长方形块包络。 下面通过改进包络形状来消噪音。 比较科学的包络如下图所示,每个乐音 都经过冲激、衰减、持续、消失四个阶段。

该图形谐波 决定音色

而块到的这相续高长包有杂是位产频方络"声由不生分形听啪,于连了量。

x²分布密度曲线可能更好

按上述曲线构成的单音包络:

3. 声音谐波决定音色——谐波频谱

在音乐领域中称谐波为"泛音",由谐波产生的作用称为音色变化。当指定音调之后,仅指定了乐音信号的基波频率,谐波情况并未说明。各种乐器,如钢琴或单簧管,都可以发出某一音调下的唱名,而人的听觉会明显感觉两者不同,这是由于谐波成分有所区别,频谱结构各异。

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t + \varphi_n)$$
单边频谱 $\begin{cases} \text{幅度频谱} & (A_n \sim n\omega_0) \\ \text{相位频谱} & (\varphi_n \sim n\omega_0) \end{cases}$

傅里叶级数

以T为周期的周期信号f(t),若满足狄里赫勒条件:

- (1) 在一个周期内只有有限个不连续点;
- (2) 在一个周期内只有有限个极大值、极小值;
- (3) 在一个周期内绝对可积,即 $\int_{-\frac{T}{2}}^{\frac{1}{2}} |f(t)| dt < \infty$

则可以展开为三角型傅里叶级数

其中
$$a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$$

$$a_0 = \frac{1}{T} \int_T f(t) dt$$

$$a_n = \frac{2}{T} \int_T f(t) \cos n\omega_0 t dt \qquad n = 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_T f(t) \sin n\omega_0 t dt \qquad n = 1, 2, \dots$$

其中

 $\omega_0 = \frac{2\pi}{T}$ 为基波频率, $n\omega_0$ 为谐波频率, a_n 和 b_n 为傅里叶系数,

 $\int_{T} [\cdot] dt$ 表示从任意起始点开始,取一个周期T为积分区间。

因为 $a_n \cos n\omega_0 t + b_n \sin n\omega_0 t = A_n \cos(n\omega_0 t + \varphi_n)$

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t + \varphi_n)$$

其中

$$A_0 = a_0$$
 直流分量
$$A_n = \sqrt{a_n^2 + b_n^2} \qquad n$$
次谐波振幅
$$\varphi_n = arctg(-\frac{b_n}{a_n}) \qquad n$$
次谐波初相

例: 试将图示周期矩形脉冲 信号f(t)展开为三角型傅里 叶级数。

解:(1) f(t)是偶函数,故只含有常数项和余弦项。

$$a_0 = \frac{1}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t)dt = \frac{2}{T} \int_{0}^{\frac{\tau}{2}} Adt = \frac{A\tau}{T}$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cos n\omega_0 t dt = \frac{4}{T} \int_{0}^{\frac{\tau}{2}} A \cos n\omega_0 t dt$$

$$= \frac{4A}{n\omega_0 T} \sin(\frac{n\omega_0 \tau}{2}) = \frac{2A}{n\pi} \sin(\frac{n\omega_0 \tau}{2})$$

$$\therefore f(t) = \frac{A\tau}{T} + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin(\frac{n\omega_0\tau}{2}) \cos n\omega_0 t$$

不同的周期信号,其傅里叶级数的区别在于:由于 T 不同,所以基波频率 $\omega_0 = \frac{2\pi}{T}$ 不同,谐波频率 $n\omega_0$ 也不同。

例如某周期信号的傅里叶级数为

$$f(t) = A_0 + A_1 \cos(\omega_0 t + \varphi_1) + A_2 \cos(2\omega_0 t + \varphi_2)$$

单边频谱:

谱线只在基波的整数倍处出现。

关于傅里叶变换与频谱

x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t));

关于傅里叶变换与频谱

Fs = 1000; % Sampling frequency T = 1/Fs; % Sample time

L = 1000; % Length of signal

t = (0:L-1)*T; % Time vector Sum of a 50

% Hz sinusoid and a 120 Hz sinusoid

x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

y = x + 2*randn(size(t)); % Sinusoids plus noise plot(Fs*t(1:50),y(1:50)) title('Signal Corrupted with Zero-Mean Random Noise') xlabel('time (milliseconds)')

关于傅里叶变换与频谱

```
NFFT = 2<sup>n</sup>extpow2(L); % Next power of 2 from
% length of y
Y = fft(y, NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1); % Plot single-
% sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
```

关于傅里叶变换与频谱

$$x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);$$

 $y = x + 2*randn(size(t));$

步骤1: 录制某种乐器的单音 例如钢琴的C调: 1(do), 2(re), 3(mi), 4(fa), 5(sol), 6(la), 7(si).将钢琴do、re、mi、fa四个音用wavread读 出并直接画出图像 [y1,fs]=wavread('do.wav'); [y2,fs]=wavread('re.wav'); [y3,fs]=wavread('mi.wav'); [y4,fs]=wavread('fa.wav');

可以看出钢琴的发音的包络线是一致的。

步骤2:采用MATLAB 软件对录制某种乐器的单音乐进行分析、处理,求得这段音乐的基频、谐波分量、频带宽度等数据;

例如对钢琴Do的分析

具体数据如下表:

表 1

	一次谐波		二次谐波		三次谐波		四次谐波	
	频率	振幅(e-3)	频率	振幅	频率	振幅	频率	振幅
				(e-3)		(e-3)		(e-3)
do	521.0	2.4778	1041.5	1.3408	1566.5	1.5066	2095.5	1.0678
re	490.5	11.00	983.0	1.76	1477.5	1.25	1975.5	2.04
mi	437.0	12.8000	874.5	4.4433	1315.0	0.0618	1756.5	0.5395
fa	347.0	31.1400	693.0	4.5281	1040.5	2.4651	1389.5	1.0091

听听钢琴DO的声音

再按傅里叶变换公式:

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t + \varphi_n)$$

写出基于傅里叶变换的音乐曲谱

```
fs=8000; t=1/fs:1/fs:0.5; %gangqinyindo
do = 10^(-3)*2.4778*sin(2*pi* 521.0*t) + 10^(-3)*
1.3408*sin(2*pi* 1041.5*t)+ 10^(-3)* 1.5066*
sin(2*pi* 1566.5*t) + 10^(-3)* 1.0678*
sin(2*pi* 2095.5*t);
sound(do,8000);
```


弦乐四重奏——情深意长

步骤1: 录制各种提琴的单音

例如小提琴的C调: 1(do), 2(re), 3(mi), 4(fa), 5(sol), 6(la), 7(si)。

步骤2:采用MATLAB 软件对录制小提琴的单音乐进行分析、处理,求得这段音乐的基频、谐波分量、频带宽度等数据;

弦乐四重奏——情深意长

步骤3: 从各种提琴的单音图获取包络。

步骤4: 分工合作完成情深意长乐谱的编程。

听听情深意长乐曲的合成音乐。

音乐与数学有关吗

衷心感谢各位老师的 莅临斧正!

Thank you!

音乐与数学有关吗? 中南大学易昆南 2013年8月