

Repaso: Otras técnicas de Factorización

Grado 9 2021

Contenido

i. Factorización: trinomios no-perfectos ii.Factorización: binomio de un cubo iii.Ejemplos

Trinomios no-perfectos

Aplica para trinomios:

- Coeficiente del primer término es 1.
- La letra del segundo término es la misma que la del primero, con exponente a la mitad.
- Tercer término carece de letra.

$$(x+r)(x+s)=x^2+(r+s)x + rs$$

= x^2+bx+c

 La factorización requiere dominio de la multiplicación de y atención a los signos.

Cubo de un binomio

- Aplica para expresiones cuando:
- Hay 4 términos. Los signos son todos (+) o se alternan (+/-).
- Primer y último término deben tener raíz cúbica exacta.
- El segundo término es ... 3a²b
- El tercer término es ... 3ab²

Cubo de un binomio

Herramienta necesaria: la raíz cúbica de un monomio.

 La raíz cúbica de un monomio se obtiene extrayendo la raíz cúbica

$$\sqrt[3]{27x^3} = 3x$$
, porque $(3x) \cdot (3x) \cdot (3x) = ...$

$$\sqrt[3]{-64p^6h^9} = -4p^2h^3$$
, porque $(-4p^2h^3) \cdot (-4p^2h^3) \cdot (-4p^2h^3) = \dots$

La técnica de factorización se centra en la verificación de las cuatro condiciones.

$$a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$$

Resumen productos notables

Producto notable		Expresión algebraica	Nombre
$(a + b)^2$	=	a ² + 2ab + b ²	Binomio al cuadrado
(a + b) ³	=	a ³ + 3a ² b + 3ab ² + b ³	Binomio al cubo
a2-b2	=	(a + b) (a – b)	Diferencia de cuadrados
$a^3 - b^3$	-	$(a - b) (a^2 + b^2 + ab)$	Diferencia de cubos
a ³ + b ³	=	(a + b) (a ² + b ² – ab)	Suma de cubos
a ⁴ - b ⁴	-	(a + b) (a - b) (a ² + b ²)	Diferencia cuarta
(a + b + c) ²	=	a ² + b ² + c ² + 2ab + 2ac + 2bc	Trinomio al cuadrado

Ejemplos

Factorizar (si es posible) cada expresión algebraica.

$$c^{2} + 5c - 25 =$$

$$a^{2} + 7a + 6 =$$

$$12 - 8n + n^{2} =$$

$$a^{2} + 10x + 21 =$$

$$8 + 36x + 54 x^{2} - 27 x^{3} =$$

 $125 \text{ m}^{3} - 150 \text{ m}^{2} \text{ n} + 60 \text{ m} \text{ n}^{2} - 8 \text{ n}^{3} =$

Referencias

- [1] ¿Por qué se utiliza Criptografía de Curva Elíptica en Bitcoin? ECDSA (VI). Recuperado el, 4 de febrero de 2021 de https://www.oroyfinanzas.com/2014/01/criptografia-curva-elipticabitcoin-por-que-utiliza-ecdsa/
- [2] Productos Notables Y Factorizacion. Recuperado el, 5 de febrero de 2021 de https://sites.google.com/site/lauracecyte26/unidad/productosnotables-y-factorizacion
- > [3] Baldor, A. (1983). Álgebra de Baldor.
- [4] Factorización, Recuperado el, 14 de febrero de 2021 de https://es.wikipedia.org/wiki/Factorizaci%C3%B3n