

Klasifikasi Ruangan di Gedung Pascasarjana PENS

Anggota Kelompok:
Silfiana Nur Hamida (1223800005)
Ambarwati Rizkia Putri (1123800008)
Firnanda Pristiana Nurmaida (1122800004)
Mochamad Riswandha Lazuardi (1123800006)

Pendahuluan

Melakukan Klasifikasi Gambar

Gambar diklasifikasikan dalam 6 macam, yaitu:

- Lift
- Tangga
- Koridor
- Buntu
- Toilet
- Pintu Darurat

Semua gambar yang didapatkan kemudian dibagi menjadi tiga bagian, yaitu data training, validation, dan test.

Code

Membuka direktori

%cd /content/drive/MyDrive/CNN_Image4_5

Membaca folder dataset

```
import os

base_dir = "/content/drive/MyDrive/CNN_Image4_5/dataset"

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'validation')

test_dir = os.path.join(base_dir, 'test')

folders=os.listdir(train_dir)
```

Melakukan preprocessing gambar dengan menggunakan ImageDataGenerator

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(100, 50), batch_size=1) validation_generator = val_datagen.flow_from_directory( validation_dir, target_size=(100, 50), batch_size=1)
```

Melakukan Identifikasi class train dan class validation

class_names_train = train_generator.class_indices class_names_validation = validation_generator.class_indices

print("Nama Kelas Train:", class_names_train)
print("Nama Kelas Validation:", class_names_validation)

Menggunakan keras dan import layers dan model

```
from tensorflow.keras import layers
from tensorflow.keras import Model
img_input = layers.lnput(shape=(100, 50, 3))
x = layers.Conv2D(16, 3, activation='relu')(img_input)
x = layers.MaxPooling2D(2)(x)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.MaxPooling2D(2)(x)
x = layers.Flatten()(x)
x = layers.Dense(50, activation='sigmoid')(x)
output = layers.Dense(5, activation='softmax')(x)
model = Model(img_input, output)
model.compile(loss='mean_squared_error', optimizer='SGD', metrics=['acc'])
```

Melakukan training data dengan 100 iterasi

history = model.fit_generator(
train_generator,
steps_per_epoch=70,
epochs=100,
validation_data=validation_generator,
validation_steps=20,
verbose=2)

Menampilkan hasil akurasi dan loss dari data training dan validation

import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, color='b', label='Train Accuracy') plt.plot(epochs, val_acc, color='r', label='Validation Accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, color='b', label='Train Loss') plt.plot(epochs, val_loss, color='r', label='Validation Loss') plt.title('Training and validation loss') plt.legend()

Menentukan nilai output (hasil prediksi). Penentuan kelas yaitu berdasarkan nilai prediksi tertinggi

```
from keras.preprocessing.image import img_to_array, load_img import numpy as np img = load_img(test_dir+'/20231109_183136.jpg', False, target_size=(100,50)) x = img_to_array(img) x = np.expand_dims(x, axis=0) preds = model.predict(x) print("Nilai Output Units:\n", preds) index_preds = np.argmax(preds) print("\nPredicted :", index_preds)
```


1/1 [=======] - 0s 19ms/step Nilai Output Units: [[0.00580255 0.0069457 0.9762245 0.00246838 0.00855886]]

Predicted: 2

Menentukan nilai output (hasil prediksi). Penentuan kelas yaitu berdasarkan nilai prediksi tertinggi

```
from keras.preprocessing.image import img_to_array, load_img import numpy as np img = load_img(test_dir+'/20231109_183454.jpg', False, target_size=(100,50)) x = img_to_array(img) x = np.expand_dims(x, axis=0) preds = model.predict(x) print("Nilai Output Units:\n", preds) index_preds = np.argmax(preds) print("\nPredicted :", index_preds)
```


Predicted: 3

Hasil (Perbandingan dataset sebelumnya dengan dataset saat ini)

Dataset Sebelumnya

Dataset Kelas

Dataset Kami

Percobaan ke 2 Menggunakan Yolo

Processing Using Yolo

```
from google.colab import drive
Q
            drive.mount('/content/drive')
            Mounted at /content/drive
{x}
       [ ] %cd /content/drive/MyDrive/YOLO_Vision
От
            /content/drive/MyDrive/YOLO Vision
[ ] #clone YOLOv5 and
            !git clone https://github.com/ultralytics/yolov5 # clone repo
            %cd yolov5
            %pip install --upgrade pip
            %pip install -r requirements.txt
            import torch
            import os
            from IPython.display import Image, clear output # to display images
            print(f"Setup complete. Using torch {torch. version } ({torch.cuda.get device properties(0).name if torch.cuda.is available(
            fatal: destination path 'yolov5' already exists and is not an empty directory.
<>
            /content/drive/MyDrive/YOLO Vision/yolov5
Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)
            Collecting pip
              Downloading pip-23.3.1-py3-none-any.whl (2.1 MB)
>_
                                                       - 2.1/2.1 MB 29.8 MB/s eta 0:00:00
```

Processing Using Yolo

```
!unzip dataset.zip -d /content/drive/MyDrive/YOLO Vision/yolov5
Archive: dataset.zip
  creating: /content/drive/MvDrive/YOLO Vision/volov5/dataset/images/
  creating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/20231109 183136.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/20231109 183151.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/20231109 183454.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/20231109 183459.jpg
 inflating: /content/drive/MyDrive/YOLO_Vision/yolov5/dataset/images/test/IMG_20231109_182120.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 182727.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 182840.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 182854.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/volov5/dataset/images/test/IMG 20231109 182927.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 182944.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 182952.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 183018.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 183104.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/test/IMG 20231109 183122.jpg
  creating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181321(1).jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181321.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181332.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181350.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181524.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181526.jpg
 inflating: /content/drive/MyDrive/YOLO_Vision/yolov5/dataset/images/train/20231109_181553.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181557.jpg
 inflating: /content/drive/MyDrive/YOLO Vision/yolov5/dataset/images/train/20231109 181621.jpg
```

Processing Using Yolo

%cd /content/drive/MyDrive/YOLO_Vision/yolov5

/content/drive/MyDrive/YOLO_Vision/yolov5

Epoch 158/349	GPU_mem 2.82G Class all	box_loss 0.02314 Images 20		_	Instances 15 R 0.805	416: 100% 5/5 [01:15<00:00, 15.12s/it] mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.53it/s]
Epoch 159/349	GPU_mem 2.82G Class all	0.02289	obj_loss 0.009525 Instances 31	0.003646	Instances 14 R 0.808	416: 100% 5/5 [01:31<00:00, 18.24s/it] mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.71it/s]
Epoch 160/349	GPU_mem 2.82G Class all	0.02378	obj_loss 0.01015 Instances 31	0.002336	Instances 17 R 0.859	416: 100% 5/5 [01:16<00:00, 15.33s/it] mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 2.69it/s]
Epoch 161/349	GPU_mem 2.82G Class all	0.02618	obj_loss 0.009896 Instances 31	0.001849	Instances 18 R 0.801	416: 100% 5/5 [01:27<00:00, 17.51s/it] mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.66it/s]
Epoch 162/349	GPU_mem 2.82G	box_loss 0.02481	obj_loss 0.009632	cls_loss 0.00197	Instances 47	

Feedle	CDII	h 1	-1-4 3	-1- 1	T	C1		
Epoch 234/349	GPU_mem 2.74G		obj_loss 0.00789				100% 5/5 [01:13<00:00, 14.76s/it]	
234/349	Class				14 R			
		20			0.798			2.291(/5]
	all	20	31	0.510	0.758	0.811	0.555	
Epoch	GPU mem	box loss	obj loss	cls loss	Instances	Size		
235/349	2.74G		0.008608				100% 5/5 [01:25<00:00, 17.05s/it]	
	Class		Instances				mAP50-95: 100% 1/1 [00:00<00:00,	
		20			0.801			
Epoch	GPU_mem	box_loss	obj_loss	cls_loss	Instances	Size		
236/349	2.74G	0.01847	0.009666	0.001218	24	416:	100% 5/5 [01:08<00:00, 13.69s/it]	
	Class	Images	Instances	P	R	mAP50	mAP50-95: 100% 1/1 [00:00<00:00,	1.42it/s]
	all	20	31	0.911	0.803	0.832	0.577	
Epoch	GPU_mem		obj_loss			Size		
237/349	2.74G		0.007652				100% 5/5 [01:27<00:00, 17.53s/it]	
	Class	_	Instances				mAP50-95: 100% 1/1 [00:00<00:00,	2.60it/s]
	all	20	31	0.908	0.804	0.829	0.571	
Epoch	GPU_mem		obj_loss			Size		
238/349	2.74G		0.00783				100% 5/5 [01:14<00:00, 14.80s/it]	
			Instances				mAP50-95: 100% 1/1 [00:00<00:00,	1.661t/s]
	all	20	31	0.896	0.82	0.833	0.581	
Enach	CDII mom	how loss	obi loss	ala losa	Tostonsos	Size		
Epoch	GPU_mem	DOX_1055	obj_loss	C12_1022	Instances	Size		

```
Validating runs/train/exp/weights/best.pt...
Fusing layers...
Model summary: 212 layers, 20873139 parameters, 0 gradients, 47.9 GFLOPs
                        Images Instances
                                                                          mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s]
                 all
                                                0.9
                                                        0.811
                                                                   0.86
                                                                             0.621
              koridor
                                              0.935
                                                                   0.802
                                                                             0.593
                lift
                                              0.941
                                                                   0.995
                                                                             0.637
        pintu darurat
                                              1
                                                        0.996
                                                                   0.995
                                                                             0.731
                            20
                                            0.92
                                                                             0.759
               tangga
                                                                  0.995
               toilet
                                              0.603
                                                                             0.669
                                                        0.667
                                                                  0.863
                                                        0.405
                                                                  0.511
                                                                             0.338
Results saved to runs/train/exp
```

Result with yolo

Perbandingan dengan metode yang digunakan kelompok lain

Kelompok	Metode	Dataset yang digunakan	Loss	Hasil Akurasi
Kelompok 1	CNN custom 2 layer	Ada 8 class names ['apar': 0, 'kelas': 1, 'koridor': 2, 'lift': 3, 'orang': 4, 'pintu_darurat': 5, 'pintu_ruang': 6, 'tangga': 7]	0.0169	0.936
	Yolo	Ada 6 class names: ["koridor", "lift", "pintu darurat", "tangga", "toilet", "apar"]	0.00077 49	0.83
Kelompok 2	CNN custom	Ada 5 class names: ["koridor", "lift", "pintu darurat", "pintu_ruangan", "tangga"]	0.02	0.98
Kelompok 3	VGG16	-	0.0645	0.982

LinkCode

cnncustom:https://colab.research.google.com/drive/17cvyHYcCU9Zd_8FAL 6VYJLNl-Y6mBq2C?usp=drive_link yolo: https://colab.research.google.com/drive/1_9hkuF6cve2F_V_5QUblb-

RFirSlYtTL#scrollTo=DZM4Mvp8j-gp

Terimakasih