

WHAT IS CLAIMED IS:

- 1 1. A method of operating a transistor device comprising:
2 floating a gate electrode of the transistor device;
3 applying a voltage between a drain and a source electrode of the transistor device
4 to cause a burned region in a channel region of the transistor device, even after the voltage is
5 removed.

- 1 2. The method of claim 1 wherein the burned region provides a low
2 impedance path between the drain and source electrodes.

- 1 3. The method of claim 1 wherein the burned region extends from the drain
2 to the source and has a deeper depth closer to the drain than the source electrode.

- 1 4. The method of claim 1 wherein an impedance for the transistor device is
2 about five times or greater than that for transistor device with the burned region.

- 1 5. A semiconductor device comprising:
2 a source region formed in a substrate;
3 a drain region formed in the substrate;
4 a polysilicon gate formed on the substrate and positioned between the drain and
5 source regions;
6 a burned region, formed after a burning operation, formed beneath the polysilicon
7 in the substrate between the drain and source, wherein the burned region provides a low-
8 impedance path between the drain and source, even when the polysilicon gate is floating.

- 1 6. The semiconductor device of claim 5 wherein an impedance for the
2 semiconductor device from drain to source is about five times or greater than that for the
3 semiconductor device without the burned region.

- 1 7. The semiconductor device of claim 5 wherein the low-impedance path
2 provides an impedance of about 660 ohms or less.

1 8. The semiconductor device of claim 5 wherein a channel length of the
2 semiconductor device is about the same as a length of the burned region, and a depth of the
3 burned region is deeper closer to the drain than closer to the source.

1 9. The semiconductor device of claim 5 wherein the burned region comprises
2 more defects and dislocations than before forming the burned region.

1 10. A read-only memory integrated circuit comprising memory cells formed
2 using the semiconductor device recited in claim 5.

1 11. An electronic system comprising semiconductor devices as recited in
2 claim 5.

1 12. A method of operating an electronic system comprising programming one
2 or more transistor devices according to the method recited in claim 1.

1 13. An integrated circuit comprising:
2 a plurality of row lines and column lines arranged in rows and columns;
3 an array of memory cells, each memory cell comprising a drain electrode coupled
4 to one of the plurality of column lines and a source electrode coupled to one of the plurality of
5 row lines, wherein a memory cell has a first state where the memory cell has a burned region in
6 its channel to provide a lower impedance path than when the memory cell is in a second state;
7 and

8 a decoder circuit, coupled to the plurality of row lines, to select a row in the array
9 of memory cells.

1 14. An integrated circuit comprising:
2 a first interconnect line;
3 a second interconnect line;
4 a programmable switch comprising a transistor coupled between the first and
5 second interconnect lines, wherein the programmable switch has a first state and a second state,
6 and in the second state, the transistor has a burned region in its channel region, providing a lower

7 impedance path between the first interconnect line and the second interconnect line in the second
8 state than in the first state.

1 15. The integrated circuit of claim 13 wherein the memory cells are at least
2 one of MOSFET transistors, n-type MOSFET transistors, or p-type MOSFET transistors.

1 16. The integrated circuit of claim 14 wherein in the second state, the memory
2 cell has an impedance of about 660 ohms or less.

1 17. The integrated circuit of claim 14 wherein in the first state, the memory
2 cell has an impedance of about 3 mega ohms or greater.

1 18. The method of claim 1 wherein the transistor device has a width of 0.22
2 microns or less and a length of 0.13 microns or less.

1 19. The method of claim 1 wherein the transistor device is at least one of a
2 MOSFET transistor, n-type MOSFET transistor, or p-type MOSFET transistor.

1 20. The method of claim 1 wherein the applying a voltage comprises:
2 applying a breakdown voltage to the drain electrode of the transistor device; and
3 after applying the breakdown voltage, applying a burning voltage to the drain
4 electrode of the transistor device, wherein the burning voltage is greater than the breakdown
5 voltage.

1 21. A circuit comprising:
2 an operational amplifier circuit having inputs and an output;
3 a transistor, coupled between an input and the output, having a programmable
4 resistance and a first state and a second state, wherein in the second state, the transistor has a
5 burned region in its channel region, providing a lower impedance path between the input and the
6 output in the first state.

1 22. A circuit comprising:
2 a first line and a second line;
3 a transistor, coupled between the first and second lines, having a programmable
4 resistance and a first state and a second state, wherein in the second state, the transistor has a

5 burned region in its channel region, providing a lower impedance path between the input and the
6 output in the first state.