

A Real-time ENVIRONMENTAL SOUND RECOGNITION SYSTEM using Machine Learning Techniques.

Asiel Aldana Ortiz

Motivation:

✓ SOUND RECOGNITION for environmental sounds classification

Objective:

- Obtain a model based on a CONVOLUTIONAL NEURAL NETWORK for environmental sound classification.
- Develop a DISTRIBUTED(or EMBEDDED) COMPUTING ARCHITECTURE for real-time classification of environmental sounds.

URBAN SOUND DATASET

	Samples	Duration (avg)	In foreground
class			
air_conditioner	1000	3.99 s	56 %
car_horn	429	$2.46 \mathrm{\ s}$	35 %
children_playing	1000	$3.96 \mathrm{\ s}$	58 %
dog_bark	1000	3.15 s	64 %
drilling	1000	$3.55 \mathrm{\ s}$	90 %
engine_idling	1000	$3.94 \mathrm{\ s}$	91 %
gun shot	374	$1.65 {\rm \ s}$	81 %
jackhammer	1000	$3.61 \mathrm{\ s}$	73 %
siren	929	$3.91 \mathrm{\ s}$	28 %
street music	1000	$4.00 \ s$	62 %

- 8732(Annotations+Records)
- <=4s
- 10 Class

www.freesound.org

Environment Sound

ESC-50 Dataset warblrb10k

2000 (lb+rec)
 8000 (lb+rec)

Freesound.org

Urban Sound Dataset

- 8732(lb+rec)
- <=4s
- 10 class

AudioSet Dataset

632 class(lb+rec)

Bird Sound

Bird Sounds

T-SNE

Working plan:

MACHINE LEARNING TECHNIQUES.

- Classification.
- Training process.

NEURAL NETWORKS

- Multi-Layer Perceptron.
- Convolutional Neural Network(CNN).
- Convolutional Recurrent Neural Network.
- Efficient CNNs for Image Classification.

AUDIO CLASSIFICATION

- Digital sound.
- Audio Signal Preprocessing Techniques.
 - Spectrogram.
 - Mel-spectrogram.
 - Data augmentation.
 - Normalization.
 - Analysis Windows.
- Weak labeling.
- Efficient CNNs for Sounds Classification.

4. ENVIRONMENTAL SOUND RECOGNITION(ESR)

- Datasets.
- Feature Extraction.
 - Stationary "ESR" Techniques:
 - Zero-crossing Rate (ZCR).
 - Short-time Energy (STE)
 - MFCCs
 - Non-stationary "ESR" Techniques:
 - Wavelet-based methods.
 - Power-spectrum-based methods.
 - Sparse-representation-based methods.

5. DATABASE

- Warblrb10k.
- Bird Sounds
- Urban Sound Dataset.

COMPUTATIONAL ARCHITECTURE

- Multilayer Computing Architecture.
- Audio Streaming.

SIGNAL REPRESENTATION (Feature extraction)

♪ Amplitude/Frequency

SIGNAL REPRESENTATION (Feature extraction)

100263-2-0-121.wav

Mel Frequency Cepstrum(MFC):
 Is a representation of
 the Short-Term Power

Spectrum of a sound.

100263-2-0-121.wav(20 Coefficients per frame)

Mel Frequency Cepstral Coefficients (MFCCs)

Are coefficients that

collectively make up an MFC.

Power to Decibel

MODEL

Data Augmentation

Time Stretch Class 6 (122690-6-0-0TS108_c6.wav)

0.82, 0.94 \rightarrow 90 increased samples (30/34)

Data Augmentation

Pitch Shift Class 6 (122690-6-0-0mfccPS2_c6.wav)

-2, -1, 1 ->120 increased samples (30/34)

TESTS

Learning rate	Epochs	Batch_size	N_Test
0.01-0.001	20-100	100-128	479

Learning rate	Epochs	Batch_size	N_Test
0.001	55	100	479

loss="categorical_crossentropy"

optimizers.Adamax

optimizers.Adam

optimizers.RMSprop

RESULTS MFC/MFCCs

Learning rate	Epochs	Batch_size	N_Test
0.001	55	100	479

Confusion matrix MFC

Confusion matrix MFCCs

0.65<Acc<= 0.70

Training/Validation

RESULTS MFC/MFCCs

	Acc0	Acc1
MFC	0.813	0.882
MFCCs	0.679	0.721

Acc0: Mean accuracy (not increased)

Acc1: Mean accuracy (increased)

0.70588235, 0.78571429, 0.47761194, 0.57894737, 0.8

0.76666667, 0. , 0.82978723, 0.81967213, 0.66666667

■ MFC ■ MFCCs

0.86956522, 0.9375 , 0.76691729, 0.82352941, 0.8034188 , 0.89393939, 0.8 , 0.85365854, 0.86868687, 0.80263158

0.70588235, 0.73333333, 0.57657658, 0.59459459, 0.69064748, 0.74193548, 0. , 0.82978723, 0.83333333, 0.64596273

Asiel Aldana Ortiz

<asiel.aldana89@gmail.com/>

<www.onclix.tech/>