- N-1	_		_	_	•
170	•	п	11	ш	•

Enrolment No:

Nos. of page(s)

Batch: B41 and B42

UPES Class Test 1

Programme Name: B.Tech

Course Name: Discrete Mathematical Structure

Semester: III

Time: 40 Min.

Course Code : CSEG2006 Max. Marks:

Instructions: Do all questions.

: 1

S. No.		Marks	CO
Q 1	Show that $\forall x (P(x) \lor Q(x)) \rightarrow \forall x P(x) \lor \exists Q(x)$ using indirect method.		
Q 2	Show that $[(p \lor q) \land \sim (\sim p \land (\sim q \lor \sim r))] \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$ is tautology by using laws of logic.		
Q 3	Which elements of the poset ({2,4,5,10,12,20,25},) are maximal and which are minimal.		
Q 4	Prove the following equivalence by using laws of propositional algebra. (a) $(p \to q) \to q \equiv p \lor q$ (b) $p \to (q \lor r) \equiv (p \to q) \lor (p \to r)$		
Q 5	Show that the mapping $f: R \to R$ be defined by $f(x) = ax + b$, where $a, b, x \in R, a \neq 0$ is invertible. Define its inverse.		