PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-252501 (43)Date of publication of application : 14.09.2000

(51)Int.Cl. H01L 31/04

(21)Application number : 11-050590 (71)Applicant : KANEGAFUCHI CHEM IND CO

LTD

(22)Date of filing: 26.02.1999 (72)Inventor: YOSHIMI MASASHI

TAMAMOTO KENJI

(54) MANUFACTURE OF SILICON THIN FILM OPTOELECTRIC TRANSDUCER DEVICE (57)Abstract:

PROBLEM TO BE SOLVED: To provide a method capable of forming a transparent electrode of controlled and rugged surface structure on a substrate and improving a manufactured silicon thin film optoelectric transducer in efficiency.

SOLUTION: A transparent electrode 2, a polycrystalline silicon thin film optoelectric transducer unit 11 which comprises a certain conductivity—type layer 111, a substantially intrinsic semiconductor polycrystalline silicon optoelectric transducer layer 112, and an opposite conductivity—type layer 113, and a back electrode 12 which includes a light reflecting metal electrode 122 are successively formed on a substrate 1 for the formation of a silloon thin film optoelectric transducer device, where the transparent electrode 2 is formed of ZnO through an

MOCVD method at a base temperature of 200° C or below, 0.3 to 3 1 m in average film thickness, and possessed of a roughened surface which is 50 to 500 nm in average height difference.

LEGAL STATUS

[Date of request for examination] 06.02.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

http://www19.ipdl.ncipi.go.jp/PA1/result/detail/main/wAAApHaWcaDA412252501P1.htm

2006/08/31

Received Sep-04-06 20:10 From-81662265278

To-Hogan & Hartson LLP

Page 008

(19)日本因特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2000-252501 (P2000-252501A)

(43)公開日 平成12年9月14日(2000.9.14)

(51) Int.CL7 HOIL 31/04 識別記号

FΙ HOIL 31/04

テーマコート*(参考) H 5F051

病売請求 宗請求 請求項の数3 OL (全 5 回)

(21)出職番号	特徽平11-50590	(71)出職人 000000941
		篇派化学工業株式会社
(22)出難日	平成11年2月26日(1999.2.26)	大阪府大阪市北区中之島3丁目2巻4号
		(72) 發明者 言見 雅士
		兵庫県神戸市須藤区北落合1丁目1-324
		-403
		(72)発明省 山本 患治
		兵庫県神戸市西区美賀多台1丁目2-W
		1406
		1122
		(74)代理人 100058479
		弁理士 鈴江 武彦 (外5名)
		Fターム(参考) 5F051 AA03 AA04 AA05 BA14 CA02
		CA03 CA04 CB12 DA15 PA02
		PAIS FAIS FAIT PAID

(54) 【発明の名称】 シリコン系裁議光電変流装置の製造方法

(57)【要約】

【課題】 基板上に表面凹凸構造の剝削された透明電極 を形成することができ、製造されるシリコン系薄膜光電 変換装置の効率を改善できる方法を提供する。

【解決手段】 芸板(1)上に、透明電棒(2)と、一 導電型層 (111)、実質的に真性半導体の多結晶シリ コン系光電変換層(112)および遊導電型層(11

- 3)を含む多結晶シリコン系薄膜光電変換ユニット (1 1) と、光反射性金属電板(122)を含む裏面電板
- (12)とを順次形成したシリコン系藻膜光電変換装置 を製造するにあたり、下地温度が200℃以下の条件で MOCV D法により、平均膜厚が 0.3~3 μm. 表面 凹凸の平均高低差が50~500 nmである2nOから なる透明電極(2)を形成する。

【特践精業の範囲】

【請求項1】 事板上に、適明電福と、一導電型層、実 質的に真性半導体の多結晶シリコン系光電変換層および 逆導電型圧を含む多結晶シリコン系薄頭光電変換ユニュ トと 光短射性金属電腦を含む裏面電極とを順次形成し たシリコン系薄膜光電室換装置を製造するにあたり、 前記透明電極を、下途温度が200 C以下の条件でMO CVD法により形成することを特徴とするシリコン系薄

膜光電変換装置の製造方法。 【請求項2】 前記透明電極は、平均騰厚が0、3~3 19 かし、これらの光電交換装置では、透明電極が激しい表 μm. 表面凹凸の平均高低差が50~500 nmである 2 n Oからなることを特徴とする請求項1記載のシリコ

ン系藻膜光電変換装置の製造方法。 【講求項3】 前記一導電型屋、結晶翼シリコン系光電 変換層および遊響電型層を含む光電変換ユニットに加え て、一導電型層、非晶質シリコン系光電変換層および逆 導電型層を含む光電変換ユニットが積層されたタンデム 型であることを特徴とする籍求項1重をは2部離のシリ

【発明の詳細な説明】

コン系環膜光電変換接層の製造方法。

[0001]

【発明の属する技術分野】本発明はシリコン系薄膜光電 変換練騰の製造方法に関し、特に製造されるシリコン系 遭職光震変換装置の特性を改善できる方法に関する。な お、本頼明細書において、「結晶質」および「微結晶」 の用語は、部分的に非晶質を含む場合をも意味するもの

とする。 [0002]

【従来の技術】近年、たとえば多結晶シリコンや微結晶 シリコンのような結晶質シリコンを含む薄膜を利用した 30 光電変換装置の開発が精力的に行なわれている。これら の光電変換装置の開発では、安価な基板上に低温プロセ スで良質の結晶雑シリコン疎臚を形成することによる低 コスト化と高性能化の両立が目的となっている。こうし た光電変換装置は、太陽電池、光センサなど、さまざま な用途への応用が期待されている。

【0003】光電変換装置の一例として、基板上に、透 明電板と、一導電型層、結晶質シリコン系光電変換層お よび選導電型階を含む光電変換ユニットと、光反射性金 履電極を含む裏面電極とを順次形成した構造を有するも 40 ○○nmであるZnOからなることが好ましい。 のが知られている。この光電変換装置では、光電変換層 が薄いと光吸収係数が小さい長波長領域の光が十分に吸 収されないため、光電変換量は本質的に光電変換層の膜 厚によって制約を受ける。そこで、光電変換層を含む光 電変換ユニットに入射した光をより有効に利用するため に、光入射側の透明電極に表面凹凸(表面テクスチャ) 権治を誇けて光を光電容換ユニット内へ散乱させ さら に金属電極で反射した光を乱反射させる工夫がなされて いる。

ガラス基板上に表面凹凸を育する透明電極が形成された もの(例えば組硝子社製のU-type SnOz膜な ど) が広く用いられている。しかし、このようなガラス 基板は透明電板を形成するために400℃以上の高温ブ 口セスを要するなどの理由によりコストが高い。

【0005】また、表面テクスチャ構造をなす透明電極 を具備した光電変換装置は、たとえば特公平6-128 40号公報、特開平7-283432号公銀などに開示 されており、効率が向上することが記載されている。し 面凹凸構造、具体的には凹凸の高低差が大きく凹凸のビ ッチが小さい表面凹凸構造を有し、凹凸形状により得ち れる光閉込め効果が十分でないことがわかってきた。

【0006】さらに、ガラス基板上の適明電極として、 MOCVD法により形成された2nの瞬を用いる非晶質 シリコン系薄膜光電変換終置が知られている。しかし、 2nの順の表面凹凸構造を制御できたとしても、非晶質 シリコンは赤外光に感度を持たないので、やはり光関込 め効果の声で不十分である。

26 [0007]

(2)

【発明が解決しようとする課題】本発明の目的は、基板 上に表面凹凸緯造の制御された透明電便を形成すること ができ、製造されるシリコン系薄膜光電変換装置の効率 を改善できる方法を提供することにある。 100081

【課題を解決するための手段】 本発明者らは、華板上の 透明電腦を形成する際に、下地温度が200℃以下の条 件でMOCVD法を用いれば、表面凹凸構造の制御され た透明電極を形成することができることを見出した。

【0009】すなわち、本発明のシリコン系薄膜光電変 換続層の製造方法は、基板上に、透明電極と、一導電型 歴 実質的に真性半導体の多結晶シリコン系光電変換層 および逆導電型層を含む多結晶シリコン系薄膜光電変換 ユニットと、光反射性金属電極を含む裏面電極とを順次 形成したシリコン系薄膜光電変換装置を製造するにあた り、前記透明電極を、下地温度が200℃以下の条件で MOCVD法により形成することを特徴とする。

【0010】本発明において、前記透明電極は、平均膜 厚がり、3~3μm、表面凹凸の平均高低差が50~5

【0011】本発明において、シリコン系薄膜光電変換 ユニットとしては、 結晶質シリコン系光電変換層を含む p-i-n接合を形成することが好ましい。また、シリ コン系薄膜光電変換ユニットは、一導電型層、結晶質シ リコン系光電変換層および遊導電型層を含む光電変換ユ ニットに加えて、一導電型層、非晶質シリコン系光電変 **後層および逆導業型層を含む光震変換ユニットが構層さ** れたタンデム型であってもよい。

【0012】本発明のように、下絶温度が200°C以下 【0004】従来、シリコン系薄膜光電変換差置には、 50 の条件でMOCVD法を用いて透明電便を形成すれば、

その表面凹凸形状を容易に制御でき、このような透明電 極上に赤外光に感度を有する多緒品シリコン系薄膜光電 変換ユニットを形成したときに光閉じ込めに適した表面 凹凸構造を得ることができる。したがって、製造される 多結晶シリコン系薄膜光電変換装置の効率を改善でき

[0013]

【発明の実施の形態】以下、本発明をより詳細に説明す

【0014】図1に示す断面図を参照して、本発明に係 10 不純物原子としてポロンをドープしたp型シリコン系薄 るシリコン系疎勝光電変換装置の一例を説明する。この シリコン系薄膜光電変操装置は、基板1上に、透明電標 2と、一導電型層 1 1 1、結晶質シリコン系光電変換層 112および遊婆電型屋113を含む光電変換ユニット 11と、透明導電性酸化膜121および光反射性金属電 極122を含む裏面電極12とを順久積層した構造を有 する。この光電変換装置に対しては、光電変換されるペ き光11 vは基板1側から入射される。

【0015】 芸板1としては、有機フィルム、セラミッ クス、または低融点の安価なガラスなどの透明基板を用 26 いることができる。

【0016】基板1上に配置される透明電接2の材料 は、500~1200nmの液長の光に対して80%以 上の高い透過率を有することが好ましく、ITO Sn Ozおよび Zn Oから選択される 1以上の層を含む透明 濃電性酸化腫が用いられる。

【0017】本発明においては、下地温度が200℃以 下の条件でMOCVD法により形成することにより、平 均膜厚が0.3~3 μm. 表面凹凸の平均高低差が5 0 ~500nmである2nOからなる透明電極を形成する 30 12の厚さは、必要かつ十分な光電変換が可能なよう ことが好ましい。

【0018】MOCVD法により2nOを成職するに は、下地温度を200℃以下に設定し、たとえば原料ガ スとしてジェチルジンクZn (C,H,)。 酸化剤とし てH,O. ドーパントガスとしてジボランなどを供給 し、5~100Torrの減圧下で反応させる。下途復 度は100~150℃に設定することがより好ましい。 200°C以下の下地温度条件においてMOCVD法によ り平均順厚がり、3~3μmの2nOからなる適明電極 面凹凸の平均高低差を50~500 nmの範囲にすると とができる。

【0019】遠明電極2上にシリコン系光電変換ユニッ ト11が形成される。この光電変換ユニット11に含ま れるすべての半導体層は、下地温度を400℃以下に設 定してプラズマCVD法によって堆積される。プラズマ CVD法としては、一般によく知られている平行平板樹 のRFブラズマCVDを用いてもよいし、周波敷150 MHz以下のRF帯からVHF帯までの高限波電源を利 用するプラズマCVD法を用いてもよい。

【0020】光電変換ユニット11には一導電型層11 1. 結晶質シリコン系光電変換層 1 1 2 および遊導電型 厘113が含まれる。一導電型厘111はp型層でもn 型層でもよく、これに対応して逆導電型層 1 1 3 は n 型 歴またはり型層になる。ただし、光電変換装置では通常 は光の入射側に p型層が配置されるので、図1の構造で は一般的に一導電型層 1 1 1 は p 型層 逆導電型層 1 1 3はn型層である。

【9021】一場電型厘111は、たとえば導電型決定 膜からなる。ただし、不純物原子は特に限定されず、p 御層の場合にはアルミニウムなどでもよい。また、一導 電型層111の半導体材料としては、多結晶シリコンも しくは部分的に非晶質を含む機結晶シリコンまたはシリ コンカーバイドやシリコンゲルマニウムなどの合金材料 を用いることができる。なお、必要に応じて、維積され た一導黨型層111にパルスレーザ光を昭射(レーザー アニール) することにより、結晶化分率やキャリア濃度 を制御することもできる。

【0022】一導電型厘111上に結晶質シリコン系光 電変換層 1 1 2 が堆積される。この結晶質シリコン系光 電変換層112としては、体積結晶化分率が80%以上 である、ノンドーブ(真正半導体)の多緒品シリコン臓 もしくは微縞晶シリコン聯生たは微量の不銹物を含む頭 p型もしくは弱n型で光電変換機能を十分に備えたシリ コン系薄膜材料を用いることができる。この光電変換層 112を構成する半導体材料についても、上記の材料に 限定されず、シリコンカーバイドやシリコンゲルマニウ ムなどの合金材料を用いることができる。光電変換層 1 に、一般的に0.5~20 μmの範囲に形成される。こ

の結晶質シリコン系光電変換屋112は400°C以下の 低温で形成されるので、結晶粒界や粒内における欠陥を 終端させて不活性化させる水素原子を多く含む。具体的 には、光電室換層112の水素含有量は1~30原子% の範囲内にある。さらに、結晶質シリコン系薄膜光電変 検層 1 1 2 に含まれる結晶粒の多くは下地層から上方に 柱状に延びて成長しており、その膿面に平行に(11 の優先結晶配向面を有する。そして、X線回折にお を形成すると、その表面凹凸構造を容易に制御でき、哀 49 ける(220)回折ピークに対する(111)回折ピー クの強度比はり、2以下である。

> 【0023】結晶質シリコン系光電変換層112上には 逆導電型層113が形成される。この道導電型層113 は、たとえば婆難型決定不純物原子としてリンがドーブ されたn型シリコン系薄膜からなる。ただし、不純物原 子は特に限定されず、n型層では窒素などでもよい。ま た 道導電機関113の半導体材料としては、多銭県シ リコンもしくは部分的に非晶質を含む微結晶シリコンま たはシリコンカーバイドやシリコンゲルマニウムなどの 50 台金材料を用いることができる。

【りり24】ここで、透明電極2の表面が実質的に平坦 である場合でも、その上に維備される光電変換ユニット 11の表面は微細な凹凸を含む表面テクスチャ構造を示 す。また、透明電極2の表面が凹凸を含む表面テクスチ ャ構造を有する場合、光電変換ユニット11の表面は、 透明電極2の表面に比べて、テクスチャ構造における凹 凸のビッチが小さくなる。これは、光電変換ユニット1 1を構成する結晶質シリコン系光電変換層 112の堆積 時に結晶配向に基づいてテクスチャ構造が生じることに よる。このため光電変換ユニット11の表面は広範囲の 10 波長領域の光を反射させるのに適した微細な表面凹凸テ クスチャ構造となり、光電変換整置における光閉じ込め 効果も大きくなる。

【0025】光翼室換ユニット11上には透明準電性設 化購121と光反射性金属電極122とを含む裏面電極 12が形成される。透明準電性酸化機121は、必要に 応じて形成されるが、光電変換コニット11と光反射性 金属電腦122との付着性を高め、光反射性金属電腦1 22の反射効率を高め、光電変換コニット11を化学変 化から防止する機能を有する。

[0026] 透明導電性酸化膜121は、ITO. Sn O₂、2nOなどから選択される少なくとも1種で形成 することが好ましく、2n0を主成分とする誰が特に好 ましい。光電変換ユニット11に隣接する透明導電性融 化験121の平均縮晶粒径は100 n m以上であること が好ましい。この条件を満たすためには、下地温度を1 ○○~450℃に設定して透明導電性酸化膜121を形 成することが望ましい。なお、2n0を主成分とする透 明導電性酸化購121の機厚は50nm~1μmである ことが好ましく、比抵抗は1.5×10¹¹Ω cm以下で 30 短端電流密度は25.3 mA/cm¹であった。 あることが好ましい。

[0027] 光反射性金属電径122は真空蒸着または

スパッタなどの方法によって形成することができる。光 反射性金属電板122は、Ag、Au、Al、Cuおよ びPiから選択される1種。またはこれらを含む合金で 形成することが好ましい。たとえば、光反射性の高いA 皮を100~330℃、より好ましくは200~300 Yの温度で真空蒸着によって形成することが好ましい。 [0028]次に、図2に示す断面図を参照して、本発 明に係るタンデム型シリコン系薄膜光電変換装置を説明 40 と同様にして、プラズマCVD法により、ボロンドープ する。このタンデム型シリコン系薄膜光電変換装置は、 基板1上に、透明電極2と、微結晶または非晶質シリコ ン系の一導電型層211. 実質的に真正半導体である非 **品質シリコン系光電変換層212および微結晶または非 温質シリコン系の遊導電型層213を含む前方光電変換** ユニット21と、図1の光電変換ユニット11に対応す 太一選案型限2.2.1. 結晶質シリコン系光電変換限2.2. 2 および逆導電型圏223を含む後方光電変換ユニット 2.2.と、透明返電性酸化糖2.3.1.および光反射性金属電

する。而有光面変換ユニット2 1 および後有光面変換ユ ニット22を構成する各層は、いずれもプラズでCVD 法により形成される。 [0029]

【実施例】以下 本発明の実施例を説明する。

【0030】 (実施例1) 以下のようにして図1に示す シリコン系薄膜光電変像装置を作製した。まずガラス基 板1上に2n〇からなる遠明電極2を形成した。この透 明電優2は、MOCVD法により、下地温度を150℃ に設定し、原斜ガスであるジェチルジンク2n(C 」H₂)」と酸化剤であるH2Oの流量比を2:3にすると ともにドーパントガスとして1%のジボランを供給し、 反応室内圧力5 Togrで 2 nOを成績することにより 形成した。この条件で成績された2n0からなる返明電 福2の輝さは1.5μmであり、その表面の凹凸の平均 高低差は180 nmであった。

【0031】次に、プラズマCVD法により、厚さ10 nmのボロンドープの一導電型層(p型層)111、煙 さ3 μmのノンドーブの多結晶シリコン系光電変換層 29 (i型層)112、および厚さ15nmのリンドープの 逆導電型層(n型層)113を成膜してp-1-n接合 の多結晶シリコン系光電変換ユニット11を形成した。 【0032】次いで、それぞれスパッタ法により、2n Oからなる煙き100mmの透明遮電性酸化値121. およびAgからなる煙さ300nmの光反射性金属電極 122を成績して、裏面電镀12を形成した。

[0033]得られたシリコン系薄膜光電変換装置に、 AM1. 5の光を100mW/cm²の光量で入射して 出力特性を制定したところ、光電変換効率は7.8%、

【0034】(実験例2)以下のようにして図2に示す タンデム型シリコン系薄膜光電空機装置を作製した。ま ずガラス基板1上に、実施例1と同一の条件で、2n0 からなる透明電極2を形成した。次に、プラズマCVD 法により、ボロンドーブの一導電型層 (p型層) 21 1. ノンドープの非晶質シリコン系光電変換層 (i型) 厘)212、およびリンドープの逆導電型層(n型層) 213を成績してp-!-n接合の非晶質シリコン系の 前方光電変換ユニット21を形成した。また、実総例1 の一導電型層 (p型層) 221、ノンドーブの多結晶シ リコン系光電変換層(1型層)222. およびリンドー プの連導電型層 (n型層) 223を成績してp-i-n 接合の多結晶シリコン系の後方光電変換ユニット22を 形成した。

【0035】次いで、それぞれスパッタ法により、2n Oからなる原さ100nmの透明濃重性酸化腺231. およびAgからなる輝さ300mmの光反射性金属電極 232を成験して、裏面電極23を形成した。 怪232を含む真面電怪23とを順次慎圧した構造を有 50 【0036】得られたタンデム型シリコン系薄漿光電変

