CLEMSON UNIV S C DEPT OF MATHEMATICAL SCIENCES A PROPERTY OF THE GAMMA DISTRIBUTION. (U) F/G 12/1 AD-A069 453 JUL 78 K ALAM N00014-75-C-0451 UNCLASSIFIED NL OF AD 69453 END DATE 7 -- 79

DA069453

THE COPY,

DEPARTMENT
OF
MATHEMATICAL
SCIENCES

CLEMSON UNIVERSITY Clemson, South Carolina

D D C Y

(a) Cyaliti(ty) (a)(Cyality) to 1 (14) }

Approved for public release Distribution Unlimited

79 06 04 080

See 1473 in Jack,

A PROPERTY OF THE GAMMA DISTRIBUTION

KHURSHEED ALAM

TECHNICAL REPORT #285

Department of Mathematical Sciences Clemson University

July 1978

Report N99

Research Supported by

THE OFFICE OF NAVAL RESEARCH

Task NR 042-271 Contract N00014-75-C-0451

Reproduction in whole or part is permitted for any purposes of the U.S. Government.

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

A PROPERTY OF THE GAMMA DISTRIBUTION

Khursheed Alam*
Clemson University

ACCESSION	for
NTIS	White Section
DDC	Buff Section
UNANNOUNG	CED C
JUSTIFICATI	ON
BY	STANAH ARHITY OCCEA
	M/AVAILABILITY CODES and/or special

ABSTRACT

Let U and V be independent random variables, and let W = UV. This paper concerns the distribution of U, given that V and W are distributed according to the gamma distributions. It is shown that U is distributed according to a beta distribution if the distributions of V and W are central gamma and that the distribution of U is degenerate at u = 1 if the distributions of V and W are non-central gamma. The given result is applied to determine the distribution of U when V and W are normally distributed.

Key words: Central and non-central gamma distributions.

AMS Classification: 62E10

*The author's work was supported by the Office of Naval Research under Contract No. 00014-75-0451.

1. Main results. Let

$$g_{m}(x) = \frac{x^{m-1}}{\Gamma(m)} e^{-x}, \quad x > 0$$

denote the gamma density function with m degrees of freedom. The non-central gamma distribiton $G_{m,\delta}$ with m degrees of freedom and non-centrality parameter equal to $\delta(>0)$ is given by the density function

(1.1)
$$g_{m,\delta}(x) = e^{-\delta \sum_{r=0}^{\infty}} g_{m+r}(x) \frac{\delta^{r}}{r!}.$$

$$= e^{-\delta - x} (\frac{x}{\delta})^{\frac{m-1}{2}} I_{m-1} (2\sqrt{x\delta})$$

where $I_{m}(x)$ denotes the modified Bessel function with parameter m.

Let U and V be independent random variables and let

$$(1.2) W = UV.$$

Suppose that the distribution of V is $G_{m,\delta}$ and the marginal distribution of W is $G_{m',\delta}$. The main result of this paper concerns the distrubiton of U. Clearly U is positive with probability 1. Moreover

$$(1.3) P\{0 < U \le 1\} = 1.$$

Otherwise, let $P\{U \ge 1 + \xi\} = \alpha$, where ξ and α are positive numbers. Let $c = (1 + \xi)^{-1}$. Then

(1.4)
$$Ee^{CW} = Ee^{CUV}$$
$$\geq \alpha Ee^{V}$$

where E denotes expectation. The left hand side of (1.4) is finite, whereas the right hand side is infinite. Therefore (1.3) is true.

It is easy to show that $m' \le m$ and $\delta' \le \delta$. Let $E(U) = E(W)/E(V) = (m' + \delta')/(m + \delta) = \gamma$, say. The Laplace transform of the gamma distribution is given by

$$\int_0^\infty e^{-\lambda x} dG_{m,\delta}(x) = (1 + \lambda)^{-m} \exp(-\frac{\lambda \delta}{1 + \lambda}), \quad \lambda > -1.$$

Therefore, (1.2) yields

(1.5)
$$(1 + \lambda)^{-m} \exp \left(-\delta' + \frac{\delta'}{1 + \lambda}\right) = E(1 + \lambda U)^{-m} \exp \left(-\delta + \frac{\delta}{1 + \lambda U}\right)$$

$$\geq (1 + \lambda \gamma)^{-m} \exp \left(-\delta + \frac{\delta}{1 + \lambda \gamma}\right)$$

by Jensen's inequality. Comparing the two sides of (1.5) for large values of λ we find that m' < m.

Let

$$\phi(a,b;x) = 1 + \frac{a}{b}x + \frac{a(a+1)}{b(b+1)} \frac{x^2}{2!} + \dots$$

denote the confluent hypergeometric function. We have

$$EW^{r} = \frac{\Gamma(m'+r)}{\Gamma(m')} e^{-\delta'} \Phi(m'+r,m';\delta'), \quad r > -m'.$$

Similarly

$$EV^{r} = \frac{\Gamma(m+r)}{\Gamma(m)} e^{-\delta} (m+r, m; \delta), r > -m.$$

Therefore, (1.2) yields

(1.6)
$$EU^{r} = \frac{\Gamma(m' + r)}{\Gamma(m')} e^{-\delta'} \Phi(m' + r, m'; \delta') / \frac{\Gamma(m + r)}{\Gamma(m)} e^{-\delta} \Phi(m + r, m; \delta)$$

$$= (\delta')^{\frac{3}{4} - \frac{m'}{2}} (\delta)^{\frac{m}{2} - \frac{3}{4}} r^{(m' - m)/2} \exp(\frac{\delta - \delta'}{2} - 2\sqrt{r})$$

$$(\sqrt{\delta} - \sqrt{\delta'})) (1 + O(r^{-1}))$$

for large values of r. The asymptotic expression given above is derived from Formula 6.13.2 (12) of Erdelyi (1953). Since $EU^{\mathbf{r}} \leq 1$ for $\mathbf{r} \geq 0$, it follows from (1.6) that $\delta' \leq \delta$.

Let H(u) denote the distribution function of U, and let $f_m^*(\nu) = (1 + \nu)^{-m}$ and

$$f_{m}(v) = \int_{0}^{1} (v + u)^{-m} dH(u), \quad v > 0.$$

Putting $v = \frac{1}{\lambda}$ in (1.5) we get

$$(1.7) \frac{\sqrt{m'-m}}{(1+v)^{m'}} \exp \left(-\frac{\delta'}{1+v}\right) = e^{-\delta} \int_{0}^{1} (v+u)^{-m} \exp \left(\frac{\delta v}{v+u}\right) dH(u)$$

$$= e^{-\delta} \sum_{r=0}^{\infty} \frac{(-\delta v)^{r} \Gamma(m)}{r! \Gamma(m+r)} f_{m}^{(r)}(v)$$

$$= \Gamma(m) e^{-\delta} H_{m-1} \left(2\sqrt{v\delta D}\right) f_{m}(v)$$

where D = $\frac{d}{d\nu}$ denotes the derivative operator with respect to ν , and

$$H_{m}(x) = \sum_{r=0}^{\infty} \frac{(-x^{2}/4)^{r}}{\Gamma(m+r+1) \Gamma!}$$

Note that $J_m(x) = (\frac{x}{2})^m H_m(x)$ represents a Bessel function. Therefore

(1.8)
$$\left(x \frac{d^2}{dx^2} + (2m - 1) \frac{d}{dx} + x\right) H_{m-1}(x) = 0.$$

Writing the left hand side of (1.7) in the same form as the right hand side we get

(1.9)
$$\Gamma(m') v^{m'-m} e^{-\delta'} H_{m'-1} (2\sqrt{\theta \delta'D}) f_{m'}^* (v) =$$

$$\Gamma(m) e^{-\delta} H_{m-1} (2\sqrt{\theta \delta D}) f_{m}(v)$$

where $\theta = v$.

First let m' = m. A transformation of (1.8) gives

(1.10)
$$(4x \frac{d^2}{dx^2} + 4m \frac{d}{dx} + c^2) H_{m-1} (c\sqrt{x}) = 0$$

where c is a constant. An application of the differential equation (1.10) to both sides of (1.9) with $c = 2\sqrt{\theta \delta}$ gives

$$4\theta (\delta - \delta') e^{-\delta'} H_{m-1} (2\sqrt{\theta \delta'D}) f_m^*(v) = 0$$

or

$$(\delta - \delta')$$
 $f_m^*(v) \exp(-\frac{\delta'}{1+v}) = 0$.

Therefore, $\delta = \delta'$. Hence, $P\{U = 1\} = 1$.

Next, let m > m'. If δ = 0 then δ' = 0, since $\delta' \leq \delta$, as shown above. Then (1.6) reduces to

$$EU^{r} = \frac{\Gamma(m' + r)}{\Gamma(m')} / \frac{\Gamma(m + r)}{\Gamma(m)}$$
$$= \int_{0}^{1} u^{r} dH^{*}(u)$$

where H* denotes the beta distribution $\beta(u;m',m-m')$. Hence, H(u) = H*(u). Suppose that $\delta > 0$. Writing

$$e^{-\delta'}$$
 $\sum_{r=0}^{\infty}$ $\binom{m-m'+r-1}{r}$ $\Gamma(m+r)$ H_{m+r-1} $(2\sqrt{\theta\delta'D})$ $f_{m+r}^{\star}(v)$

for the left hand side of (1.7) and applying the differential equation (1.10) to both sides with $c = 2\sqrt{\theta \delta}$ we get

$$e^{-\delta'} \sum_{r=0}^{\infty} {m-m'+r-1 \choose r} \Gamma(m+r) \left(4\theta \left(\delta-\delta'\right)-4r \frac{d}{dD}\right)$$

$$H_{m+r-1} \left(2\sqrt{\theta \delta'D}\right) f_{m+r}^{*}(v) = 0$$

or

$$4\theta (\delta - \delta') \frac{\sqrt{m'-m}}{(1+\nu)^{m'}} \exp \left(-\frac{\delta'}{1+\nu}\right) + 4\theta \delta' \sum_{r=0}^{\infty} r^{\binom{m-m'+r-1}{r}}$$
$$\sum_{s=0}^{\infty} \frac{(\theta \delta')^{s}}{s!} \frac{(1+\nu)^{m-r-s}}{m+r+s} = 0.$$

The above equation implies that $\delta = \delta' = 0$, contrary to the assumption that $\delta > 0$.

The foregoing results are summarized in the following theorem.

Theorem 1. Let W = UV where U and V are independent random variables, and let V and W be distributed according to the gamma distributions $G_{m,\delta}$ and $G_{m'\delta'}$, respectively. Then $m' \leq m, \delta' \leq \delta$ and $P\{0 < U \leq 1\} = 1$. If m' = m then $\delta' = \delta$ and $P\{U = 1\} = 1$. If m' < m then $\delta' = \delta = 0$ and U is distributed according to the beta distribution $\beta(u;m',m-m')$.

Since the square of a normal random variable is distributed according to the gamma distribution with a scale factor we obtain the following corollary from the above theorem.

Corollary 1. Let W = UV where U and V are independent random variables, and let V and W be normally distributed with unit variance and means equal to μ and μ' , respectively. Then $\mu^2 = \mu'^2$ and $P\{U^2 = 1\} = 1$. If $\mu = -(+)\mu' \neq 0$ then $P\{U = -(+)1\} = 1$.

An extension of Corollary 1 is given as follows: Let $\alpha_1, \dots, \alpha_p, Z_1, \dots, Z_p$ be independent random variables and let $Z = \sum_{i=1}^p \alpha_i Z_i$. Let $EZ_i = \xi_i$.

Corollary 2. If the random variables z, z_1, \ldots, z_p are normally distributed then $P\{\alpha_i = c_i\} = 1$ when $\xi_i \neq 0$ and $P\{\alpha_i^2 = c_i^2\} = 1$ when $\xi_i = 0$ for each $i = 1, \ldots, p$ where c_1, \ldots, c_p are certain constants.

<u>Proof.</u> Since Z is normally distributed it follows from the reproductive property of the normal distribution (see e.g., Lukacs and Laha (1964) Lemma 5.1.1) that $\alpha_i Z_i$ is normally distributed for each $i=1,\ldots,p$. The conclusion of the corollary follows from Corollary 1.

Let α_1,\ldots,α_p be m-component random vectors and let A denote the matrix whose ith column vector is α_i , $i=1,\ldots,p$. Let z_1,\ldots,z_p be p independent normal random variables. Let

 $\mathbf{EZ_i} = \boldsymbol{\xi_i}$, $\mathbf{Z} = (\mathbf{Z_1}, \dots, \mathbf{Z_p})$ ' and $\mathbf{Y} = \mathbf{AZ}$. The random vector \mathbf{Y} is distributed according to a multivariate normal distribution if and only if λ ' $\mathbf{Y} = \sum_{i=1}^{p} (\lambda'\alpha_i)\mathbf{Z_i}$ is normally distributed for every non-null vector λ . The following result follows from Corollary 2.

Corollary 3. Let $\alpha_1, \ldots, \alpha_p$, Z be independent. If the distribution of Y is multivariate then $P\{\lambda'\alpha_i = c_i\} = 1$ when $\xi_i \neq 0$ and $P\{(\lambda'\alpha_i)^2 = c_i^2\}$ when $\xi_i = 0$, $i = 1, \ldots, p$ for each non-null vector λ , where c_1, \ldots, c_p are certain constants depending on λ .

Corollary 3 is related to the following result due to Kingman and Graybill (1970). Let Y_1, \ldots, Y_p be independent and identically distributed random variables and let $A = (a_{ij})$ be a p×p random matrix which is orthogonal with probability 1 and $E(\sum_{j=1}^p a_{ij}) \neq 0$ for some i. Let $Y = (Y_1, \ldots, Y_p)$ ' and Z = AY.

Then the components of Z are independently and identically distributed according to the standard normal distribution if and only if the components of Y have the same distribution.

Theorem 2 below gives a characterization of the gamma distribution. Let

$$F(a,b;c;x) = \sum_{r=0}^{\infty} \frac{\Gamma(a+r) \Gamma(b+r) \Gamma(c)}{\Gamma(a) \Gamma(b) \Gamma(c+r)} \frac{x^r}{r!}$$

denote the hypergeometric function, and let

(1.11)
$$\phi(\lambda) = F(a,b;c;-\lambda)$$

$$= \frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1+t\lambda)^{-a} dt$$

$$a,b,c > 0, c > b.$$

It is seen that $\phi(0)=1$ and that $\phi(\lambda)$ is a completely monotone function, that is, $(-1)^r \phi^{(r)}(\lambda) \geq 0$, $\lambda > 0$. Therefore, $\phi(\lambda)$ represents the Laplace transform of a probability distribution on $[0,\infty)$. A distribution on $[0,\infty)$, whose Laplace transform is given by (1.11) will be called inverse-hypergeometric. If b=c then $\phi(\lambda)=(1+\lambda)^{-a}$ is the Laplace transform of the gamma distribution with a degrees of freedom.

Theorem 2. Let W = UV where U and V are independent random variables, and let U be distributed according to a beta distribution $\beta(u;p,q)$, say. Then W is distributed according to a gamma distribution with m degrees of freedom if and only if $m \leq p$ and the distribution V is inverse-hypergeometric, given by the Laplace transform $\phi(\lambda) = F(p+2;m;p;-\lambda)$.

<u>Proof.</u> Suppose that the Laplace transform of the distribution of V is given by $\phi(\lambda) = F(p+q;m;p;-\lambda)$. The rth moment of V is given by

(1.12)
$$EV^{r} = \frac{\Gamma(p+q+r) \Gamma(m+r) \Gamma(p)}{\Gamma(p+q) \Gamma(m) \Gamma(p+r)} .$$

Therefore,

(1.13)
$$EW^{r} = EU^{r}EV^{r}$$
$$= \frac{\Gamma(m+r)}{\Gamma(m)}.$$

The right hand side of (1.13) represents the rth moment of the gamma distribution with m degrees of freedom. Therefore, the distribution of W is gamma.

Next, suppose that the distribution of W is gamma with m degrees of freedom. Considering the Laplace transform of the distribution of W, we have

$$(1.14) \qquad (1 + \lambda)^{-m} = Ee^{-\lambda W}$$

$$= Ee^{-\lambda UV}$$

$$= E \frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} \int_{0}^{1} u^{p-1} (1-u)^{q-1} e^{-uV} du$$

$$= E \Phi(p,p+q;-\lambda V)$$

$$\geq \Phi(p,p+q;-\lambda EV)$$

$$= \frac{\Gamma(p+q)}{\Gamma(q)} \lambda^{-p} (1 + O(\lambda^{-1})) \text{ as } \lambda \to \infty.$$

It follows from (1.14) that $m \leq p$.

The rth moment of V is given by

$$EV^{r} = EW^{r}/EU^{r}$$

$$= \frac{\Gamma(m+r)}{\Gamma(m)} \cdot \frac{\Gamma(p+q+r) \Gamma(p)}{\Gamma(p+q) \Gamma(p+r)}$$

From (1.12) it follows that the Laplace transform of the distribution of V is given by $\phi(\lambda) = F(p+q;m;p;-\lambda)$. Hence the distribution of V is inverse-hypergeometric.

References

- [1] Erdelyi, A. (1953). Higher Transcendental Functions, Vol. I. Bateman Manuscript Project, McGraw-Hill Publishing Co., New York.
- [2] Kingman, A. and Graybill, F.A. (1970). A non-linear characterization of the normal distribution. Ann. Math. Statist. (41) 1889-1895.
- [3] Lucaks, E. and Laha, R.G. (1964). Applications of characteristic functions. Hafner Publishing Co., New York.

DEPOST DOCUMENTATION BACE	READ INSTRUCTIONS	
REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 12. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER	
N-99	. RECIPIENT 3 CATALOG NUMBER	
4. TITLE (and Subtitle)	S. TYPE OF REPORT A PERIOD COVERED	
- TITLE (and subtitle)		
() A Property of the Gamma Distribution	Technical Report	
in respectly of the duming processing	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(s)	
	ALL COMPANY OF SHARE HOME	
Khursheed Alam	N00014-75-C-0451	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Clemson University		
Dept. of Mathematical Sciences Clemson, South Carolina 29631	NR 042-271	
11. CONTROLLING OFFICE NAME AND ADDRESS		
Office of Naval Research	Jul y 19 78 /	
Code 436	10	
Arlington, Va. 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	10 15. SECURITY CLASS. (of this report)	
(12) 9 9	Unclassified	
	154. DECLASSIFICATION/DOWNGRADING	
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)		
(14) N99, TR-285		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Central and non-central gamma distributions.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
Let U and V be independent random variables, and let W = UV.		
It is shown that if the distribution of V and W are central		
gamma then the distribution of V is beta, and if the distributions		
of V and W are non-central gamma then the distribution of U is degenerate at u = 1.		
× A I		
407 78	33	

DD 1 JAN 73 1473

EDITION OF 1 NOV 43 IS OBSOLETE 5/N 0102-014-6601