看解答 上微信小程序 搜数之谜

2020 年全国高中数学联合竞赛一试 (B 卷)

- 1. 若实数 x 满足 $\log_2 x = \log_4(2x) + \log_8(4x)$,则 $x = \underline{\hspace{1cm}}$
- **2.** 在平面直角坐标系 xOy 中,圆 Ω 经过点 (0,0),(2,4),(3,3),则圆 Ω 上的点到原点的距离的最大值为_____.
- **3.** 设集合 $X = \{1, 2, \dots, 20\}$, $A \in X$ 的子集, A 的元素个数至少是 2, 且 A 的所有元素可排成连续的正整数,则这样的集合 A 的个数为______.
 - **4.** 在 $\triangle ABC$ 中, BC = 4, CA = 5, AB = 6, 则 $\sin^6 \frac{A}{2} + \cos^6 \frac{A}{2} = \underline{\hspace{1cm}}$.
- **5.** 设 9 元集合 $A = \{a + bi \mid a, b \in \{1, 2, 3\}\}$, 其中 i 是虚数单位. $\alpha = (z_1, z_2, \dots, z_9)$ 是 A 中所有元素的一个排列,满足 $|z_1| \leq |z_2| \leq \dots \leq |z_9|$,则这样的排列 α 的个数为______.
 - 6. 已知一个正三棱柱的各条棱长均为 3,则其外接球的体积为 ...
- 7. 在凸四边形 \overrightarrow{ABCD} 中, $\overrightarrow{BC} = 2\overrightarrow{AD}$,点 P 是四边形 \overrightarrow{ABCD} 所在平面上一点,满足 $\overrightarrow{PA} + 2020\overrightarrow{PB} + \overrightarrow{PC} + 2020\overrightarrow{PD} = \overrightarrow{0}$. 设 s,t 分别为四边形 \overrightarrow{ABCD} 与 $\triangle PAB$ 的面积,则 $\frac{t}{s} =$ ______.
- **8.** 已知首项系数为 1 的五次多项式 f(x) 满足: $f(n) = 8n, n = 1, 2, \dots, 5$,则 f(x) 的一次项系数为

看解答 上微信小程序 搜数之谜

看解答 上微信小程序 搜数之谜

9. (本题满分 16 分) 在椭圆 Γ 中,A 为长轴的一个端点,B 为短轴的一个端点, F_1,F_2 为两个焦点. 若 $\overrightarrow{AF_1}\cdot\overrightarrow{AF_2}+\overrightarrow{BF_1}\cdot\overrightarrow{BF_2}=0$,求 $\tan\angle ABF_1\cdot\tan\angle ABF_2$ 的值.

10. (本题满分 20 分) 设正实数 a,b,c 满足 $a^2+4b^2+9c^2=4b+12c-2$,求 $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}$ 的最小值.

11. (本题满分 20 分) 设数列 $\{a_n\}$ 的通项公式为

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right], n = 1, 2, \dots$$

求证:存在无穷多个正整数 m,使得 $a_{m+4}a_m-1$ 是完全平方数.

看解答 上微信小程序 搜数之谜

看解答 看讨论 上微信小程序 搜数之谜

2020 年全国高中数学联合竞赛加试 (B 卷)

一、(本题满分 40 分)如图,A,B,C,D,E 是圆 Ω 上顺次的五点,满足 $\widehat{ABC} = \widehat{BCD} = \widehat{CDE}$. 点 P,Q 分别在线段 AD,BE 上,且 P 在线段 CQ 上. 求证: $\angle PAQ = \angle PEQ$.

二、 (本题满分 40 分) 设集合 $A = \{1, 2, \dots, 19\}$. 是否存在 A 的非空子 集 S_1, S_2 , 满足

- (1) $S_1 \cap S_2 = \emptyset, S_1 \cup S_2 = A$;
- (2) S_1, S_2 都至少有 4 个元素;
- (3) S_1 的所有元素的和等于 S_2 的所有元素的乘积?

三、**(本题满分 50 分)** 给定整数 $n \geq 2$. 设正实数 $a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n$ 满足

$$a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$$

且对任意 $1 \le i < j \le n$, 均有 $a_i a_j \ge b_i + b_j$. 求 $a_1 + a_2 + \cdots + a_n$ 的最小值.

四、(本题满分 50 分)设 a,b 是不超过 12 的正整数,满足:存在常数 C,使得 $a^n + b^{n+9} \equiv C \pmod{13}$ 对任意正整数 n 成立. 求所有满足条件的有序数对 (a,b).