```
[17]: #import librabies
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
       #Load the dataset
      df = pd.read_csv('sales_data.csv')
      #display the first few rows
      print("First 5 rows of the dataset:")
      display(df.head())
      #basic information about the dataset
      print("\nDataset Information:")
      df.info()
       #statistical summary of numerical columns
      print("\nStatistical Summary:")
      display(df.describe())
      #check for duplicates
      duplicates = df.duplicated().sum()
      print(f"Number of duplicate rows: {duplicates}")
      #remove duplicates
      df = df.drop_duplicates()
      #handle missing values
      print(f"Missing values before cleaning:\n{df.isnull().sum()}")
```

```
#handle missing values
print(f"Missing values before cleaning:\n{df.isnull().sum()}")
#fill missing numerical values with column mean
df.fillna(df.select dtypes(include='number').mean(), inplace=True)
# Fix for Region (categorical)
df['Region'] = df['Region'].fillna(df['Region'].mode()[0])
# Fix for Date (datetime)
df['Date'] = df['Date'].fillna(df['Date'].mode()[0])
print(f"Missing values after cleaning:\n{df.isnull().sum()}")
#convert 'Date' column to datetime format
df['Date'] = pd.to datetime(df['Date'], format='%d-%m-%Y')
#verify the changes
print("\nData after cleaning:")
display(df.head())
#plot sales trends over time
plt.figure(figsize=(10,6))
df.groupby('Date')['Sales'].sum().plot(kind='line',color='blue')
plt.title('Sales Trend Over Time')
plt.xlabel('Date')
plt.ylabel('Total Sales')
```

```
plt.title('Sales Trend Over Time')
plt.xlabel('Date')
plt.ylabel('Total Sales')
plt.show()
#scatter plot: profit vs discount
plt.figure(figsize=(8,6))
sns.scatterplot(x='Discount', y='Profit', data=df,color='orange')
plt.title('Profit vs Discount')
plt.xlabel('Discount')
plt.ylabel('Profit')
plt.show()
#sales distribution by region
plt.figure(figsize=(8,6))
region sales = df.groupby('Region')['Sales'].sum()
region_sales.plot(kind='bar', color='green')
plt.title('Sales by region')
plt.ylabel('Total Sales')
plt.show()
#heatmap for correlations
plt.figure(figsize=(8,6))
sns.heatmap(df.select_dtypes(include='number').corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```

```
plt.title('Correlation Matrix')
plt.show()
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean squared error, r2 score
#select features and target
X = df[['Profit', 'Discount']]
Y = df['Sales']
#split the dataset into training and test sets
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=42)
#train the linear regression model
model = LinearRegression()
model.fit(X train, Y train)
#make predictions
Y pred = model.predict(X test)
#evaluate the model
print(f"Mean Squared Error: {mean_squared_error(Y_test, Y_pred):.2f}")
print(f"R-squared Score: {r2_score(Y_test, Y_pred):.2f}")
```

First 5 rows of the dataset:

	Product	Region	Sales	Profit	Discount	Category	Date
0	Laptop	East	1200.0	200.0	0.10	Electronics	15-01-2024
1	Tablet	West	800.0	150.0	0.05	Electronics	16-01-2024
2	Chair	North	150.0	50.0	NaN	Furniture	17-01-2024
3	Laptop	East	NaN	200.0	0.10	Electronics	15-01-2024
4	Desk	South	300.0	NaN	0.15	Furniture	18-01-2024

Dataset Information:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 11 entries, 0 to 10 Data columns (total 7 columns):

Ducu	COTAMILIS (cocar / corumiis)	
#	Column	Non-Null Count	Dtype
0	Product	11 non-null	object
1	Region	10 non-null	object
2	Sales	8 non-null	float64
3	Profit	9 non-null	float64
4	Discount	9 non-null	float64
5	Category	11 non-null	object
6	Date	10 non-null	object

dtypes: float64(3), object(4)
memory usage: 748.0+ bytes

Statistical Summary:

Statistical Summary:

	Sales	Profit	Discount
count	8.000000	9.000000	9.000000
mean	575.000000	122.22222	0.116667
std	368.394199	56.960025	0.070711
min	150.000000	50.000000	0.050000
25%	262.500000	70.000000	0.050000
50%	600.000000	120.000000	0.100000
75%	800.000000	150.000000	0.150000
max	1200.000000	200.000000	0.250000

Number of duplicate rows: 1 Missing values before cleaning:

Product 0
Region 1
Sales 3
Profit 2
Discount 2
Category 0
Date 1
dtype: int64

Missing values after cleaning:

Product 0 Region 0 Missing values after cleaning:

Product 0
Region 0
Sales 0
Profit 0
Discount 0
Category 0
Date 0
dtype: int64

Data after cleaning:

	Product	Region	Sales	Profit	Discount	Category	Date
0	Laptop	East	1200.000000	200.00	0.100	Electronics	2024-01-15
1	Tablet	West	800.000000	150.00	0.050	Electronics	2024-01-16
2	Chair	North	150.000000	50.00	0.125	Furniture	2024-01-17
3	Laptop	East	542.857143	200.00	0.100	Electronics	2024-01-15
4	Desk	South	300.000000	118.75	0.150	Furniture	2024-01-18

Mean Squared Error: 68080.60

R-squared Score: 0.36