

CLASS TEST 1 – 2020

TRIMESTER 1

ECEN 321

ENGINEERING STATISTICS

Time Allowed: THIRTY FOUR HOURS

OPEN BOOK

Permitted materials: Calculators permitted.

Instructions: Attempt ALL Questions.

There are 40 marks in total.

1. Sample statistics

(8 marks)

Measurements of signal strength y versus distance x for a given wireless channel were made, giving the results below:

(a) Calculate the sample means \bar{x} and \bar{y} .

(2 marks)

(b) Calculate the sample standard deviations s_x and s_y

(4 marks)

(c) Calculate the correlation coefficient between \boldsymbol{x} and \boldsymbol{y} .

(2 marks)

2.	Conditional Probability	(10 marks)
	Items are inspected for flaws by two quality inspectors. If a flaw will be detected by the first inspector with probability 0.9, and by inspector with probability 0.7. Assume the inspectors function inde	y the second
	(a) If an item has a flaw, what is the probability that it is found by tors?	both inspec- (1 mark)
	(b) If an item has a flaw, what is the probability that it is found by inspector?	at least one (1 mark)
	(c) If the second inspector were to only examine those items the passed by the first inspector, what is the probability, for an ite flaw, that the second inspector will find it?	
	(d) If the probability that an item has a flaw is 0.1, and an item is p first inspector, what is the probability that it actually has a flaw	•
	(e) If the probability that an item has a flaw is 0.1, and an item is p both inspectors, what is the probability that it actually has a flav	

Student ID:

3. Joint Probability Density

(12 marks)

Consider the density $f_{X,Y}(x,y)$ shown below. The shaded area has a constant density, c. Elsewhere the density is zero. **As always explain all answers: only providing answers results in no marks.**

(a) Compute the value *c* of the density, where the density is not zero.

(1 mark)

(b) Determine the density $f_X(x)$ (a careful plot is ok).

(1 mark)

(c) Determine the function $f_{X,Y}(\frac{1}{2},y)$ (a careful plot is ok).

(1 mark)

(d) Determine the density $f_{Y|X}(y|\frac{1}{2})$ (a careful plot is ok).

(2 marks)

(e) Determine $E\{X\}$

(2 marks)

(f) Determine the expectation $E\{XY\}$.

(3 marks)

(g) Compute the covariance between *X* and *Y*.

(2 marks)

St	tudent ID:	
	nere are two fuses in an electrical device. Let <i>X</i> denote the lifetime of the first se, and let <i>Y</i> denote the lifetime of the second fuse (both in years). Assume that	
$f(x,y) = \begin{cases} \frac{1}{6}e^{-x/2 - y/3} & x > 0\\ 0 & \text{other} \end{cases}$	0 and $y > 0$ rwise	
(a) Find $P(X \le 2$ and $Y \le 3)$.		
(b) Find the probability that both fuses last at lea	(2 marks) est 3 years.	
(c) Find the marginal probability density function	(2 marks) on of <i>X</i>	
	(2 marks)	

(e) Are *X* and *Y* independent? Explain.

(d) Find the marginal probability density function of *Y*

(2 marks)

(2 marks)

* * * * * * * * * * * * * * *