# 传感器规格书 (RX-D2620)

## 概要描述

电阻式薄膜压力传感器RX-D2620属于单节点传感器家族中的一员。RX-D2620是非常可靠的压阻传感器,当施加在传感器有效区域上的压力(压强)增加,传感器的输出电阻减小.单点传感器可以使用万用表或者客户自己的电路来测量.

## 标准压力量程

50 千克压力

## 传感器特性

| 特性         | 值              | 注释                    |
|------------|----------------|-----------------------|
| 最小测力       | 2 千克           | 最小测力是指让传感器的输出         |
| 传感器量程      | 50 千克          | 电阻小于 500 千欧。          |
| 压力分辨率      | 模拟输出,连续的       |                       |
| 压力重复性      | 5%             |                       |
| 无激励电阻      | >2 Mega Ohms   |                       |
| 基材类型       | 聚酯             | 厚度 0.075 毫米, 0.125 毫米 |
| 传感器厚度      | 0.20mm, 0.30mm | 和基材厚度有关               |
| 静态电阻       | >2 Mega ohms   | 不受压,平放,不弯曲            |
| 传感器上升时间    | <5 ms          |                       |
| 迟滞         | +10%           |                       |
| 长时间漂移(蠕变)  | 20% 1 个小时      | 施加 90%量程压力            |
|            | 38% 10 个小时     |                       |
| 使用次数(生命周期) | 一百万次           |                       |
| 工作温度       | -40°C~60°C     |                       |
| 工作湿度       | 5%~95%         |                       |
| 寄生电容       | 100P           | 可变的                   |

## 应用信息

#### • 压力和电阻及电导的关系

RX-D2620是一个2线输出的元件,输出电阻的大小和施加在传感器有效区域的压力有关.下面的表格是输出电阻及输出电导和施加压力的对应表格及图.

| RX-D2620 50 公斤大力量程 |        |         |  |
|--------------------|--------|---------|--|
| 输出电阻               | 压力     | 输出电导    |  |
| 单位: 千欧             | 单位: 千克 | 1/千欧    |  |
| ∞                  | 0      | 0       |  |
| 95                 | 5      | 0. 0105 |  |
| 50                 | 10     | 0. 0200 |  |
| 38                 | 15     | 0. 0263 |  |
| 30                 | 20     | 0. 0333 |  |
| 25                 | 25     | 0. 0400 |  |
| 15                 | 50     | 0. 0667 |  |



#### • 电阻转换成电压

下图是一个典型电阻到电压的转换电路,后面跟了一级跟随器用于阻抗隔离.这个电路在单点演示系统中使用,其中的运放采用单电源供电.



## 传感器接口选择



## 传感器接口选择

▶ 母端子



▶ 带塑胶壳的母端子



▶ 公端子



## 传感器尺寸图

