第三章练习题部分答案

一.填空题.

1. $\alpha = (\frac{2}{3}, 1, -2)$. 2. (1) 线性相关. (2) 线性相关. (3) 线性无关.

3.
$$a \neq 3$$
. 4. $a = -1$. 5. $t \neq \frac{5}{2}$. 6. $a = -2$. 7. $r(\alpha_1, \dots, \alpha_s, \beta, \gamma) = r + 1$.

8. (I) $k(1,1,\dots,1)^T$,其中k任意. (II) r(A) = 0. 9. $(1,1,1,1)^T + k(1,-1,-1,-1)^T$,其中k任意. 10. a = -2.

$$\begin{pmatrix} 1 & -1 & -a & 3 \\ 2 & 0 & -3 & 1 \\ -2 & a & 10 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & -3 & 1 \\ 0 & -1 & \frac{3}{2} - a & \frac{5}{2} \\ 0 & 0 & \frac{3}{2}a - a^2 + 7 & 5 + \frac{5}{2}a \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & -3 & 1 \\ 0 & -1 & \frac{3}{2} - a & \frac{5}{2} \\ 0 & 0 & -(a+2)(2a-7) & 10 + 5a \end{pmatrix}$$

11.
$$a = -1$$
. $\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & 3 \\ 1 & a & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & a^2 - 2a - 3 & a - 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & (a+1)(a-3) & a - 3 \end{pmatrix}$

- 12. $\lambda = 1$ 时,方程组无解;当 $\lambda = 0$ 时,方程组有无穷多解.
- 13. r(A) = 3,只有零解;当且仅当r(A) < 3时,方程组有非零解,3 r(A).

14.
$$r(A) = r(A, \beta) < n$$
. 15. $\lambda \ne 1$. 16. $a_1 + a_2 + a_3 = 0$. 17. $r(A) = 2, a = 1$ $\not\equiv a = -\frac{3}{2}$.

18.
$$m \le n.19$$
. $r(A) = 5$. 20. $k = 1$. 21. $r \not \equiv r+1$. 22. $n-r$.

23.系数矩阵列满秩,或系数矩阵列向量组线性无关. 24. |A| = 0或 r(A) < n. 25. s.

二.计算题:

6. 已知方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ 2x_1 + 3x_2 + 5x_3 = 1 \end{cases} = \begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = -1 \end{cases}$$
 有解,且同解,求 a,b,c 的值.

分析:分别记两个方程组为(I)和(II),同解,则基础解系相同,所含向量个数相同,即(I)和(II)的系数矩阵的秩相等,由(II)可知秩为2,故(I)的系数矩阵的秩为2,依此可求得a,进而可求得(I)的适当的一个或两个解,代入(II)中求b,c

$$\begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 5 & 1 \\ 1 & 1 & a & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & a - 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & a - 2 & 0 \end{pmatrix}, a = 2, \text{$\Re E$}: X_1 = (-1, 1, 0), X_2 = (-2, 0, 1)$$

代入(II)中,
$$\begin{cases} -1+b=0\\ -2+b^2=-1 \end{cases}, \begin{cases} -2+c=0\\ -4+(c+1)=-1 \end{cases}, 得 b=1, c=2.$$

6. 已知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \text{ 有三个线性无关的解,求 } a,b \text{ 的值及方程组的通解.} \\ ax_1 + x_2 + 3x_3 + bx_4 = -3 \end{cases}$

三个线性无关的解,则 4-r(A)+1=2,则 r(A)=2,故 4-2a=0,4a+b-5=0,4a-8=0,得 a=2,,b=-3.

此时,
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -5 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
,特解 $\gamma_0 = (-4, 5, 0, 0)$,

导出组的一组基础解系为 $\eta_1 = (-2,1,1,0), \eta_2 = (4,-5,0,1)$,得通解 $\gamma = \gamma_0 + k_1 \eta_1 + k_2 \eta_2$ 其中 k_1, k_2 任意. 三.证明题:

1. 证明秩 $r(\alpha_1,\alpha_2,\cdots,\alpha_s)=r(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta)$ \Leftrightarrow β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出.

证明: \Rightarrow 若 $r(\alpha_1,\alpha_2,\cdots,\alpha_s)=r(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta)=r$,不妨设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的一个极大线性无关组,则 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是 $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 的一个线性无关的部分组,而 $r(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta)=r$,则 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是 $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 的一个极大无关组,故 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 与 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 和与 $\alpha_1,\alpha_2,\cdots,\alpha_s$,都等价,从而 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 和 $\alpha_1,\alpha_2,\cdots,\alpha_s$,等价,特别的 β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出. \Leftarrow 若 β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出,则 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 和 $\alpha_1,\alpha_2,\cdots,\alpha_s$,等价,从而秩相等.

2. $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 n 个线性无关的 n 维向量, $\alpha_{n+1} = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n$, 且 k_i (i = 1, 2, n) 全不为零. 证明: $\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_{n+1}$ 中任意 n 个向量均线性无关.

证明: 首先 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是线性无关的.任取 n 个向量 $\alpha_1, \cdots, \alpha_{s-1}, \alpha_{s+1} \cdots, \alpha_n, \alpha_{n+1}$,假设 $l_1\alpha_1 + \cdots + l_{s-1}\alpha_{s-1} + l_{s+1}\alpha_{s+1} + \cdots + l_n\alpha_n + l_{n+1}\alpha_{n+1} = 0$,代入 $\alpha_{n+1} = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n$,得 $(l_1 + l_{n+1}k_1)\alpha_1 + \cdots + (l_{s-1} + l_{n+1}k_{s-1})\alpha_{s-1} + l_{n+1}k_s\alpha_s + (l_{s+1} + l_{n+1}k_{s+1})\alpha_{s+1} + \cdots + (l_n + l_{n+1}k_n)\alpha_n = 0$ 而 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是线性无关,得系数全为零,首先 $l_{n+1}k_s = 0$,得 $l_{n+1} = 0$,代入求得 $l_1 = \cdots = l_{s-1} = l_{s+1} = \cdots = l_n = 0$,故 $\alpha_1, \cdots, \alpha_{s-1}, \alpha_{s+1} \cdots, \alpha_n, \alpha_{n+1}$ 线性无关.

3. 设两个线性方程组:(I)
$$\begin{cases} a_{11}y_1 + a_{12}y_2 + \cdots a_{1n}y_n = b_1 \\ a_{21}y_1 + a_{22}y_2 + \cdots a_{2n}y_n = b_2 \\ \cdots & \cdots \\ a_{m1}y_1 + a_{m2}y_2 + \cdots a_{mn}y_n = b_m \end{cases} , (II) \begin{cases} a_{11}x_1 + a_{21}x_2 + \cdots + a_{m1}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \cdots + a_{m2}x_m = 0 \\ \cdots \\ a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{mn}x_m = 0 \\ b_1x_1 + b_2x_2 + \cdots + b_mx_m = 1 \end{cases}$$

求证: (I)有解当且仅当(II)无解.

证明: 设(I)的系数矩阵为A,列向量组为 $\alpha_1,\alpha_2,\dots,\alpha_n$,常数项为 β ,

$$\Rightarrow$$
若(I)有解, $r(A) = r(A, \beta)$,同时 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表出,而在(II)中系数矩阵为 $B = \begin{pmatrix} \alpha_1^T \\ \vdots \\ \alpha_n^T \\ \beta^T \end{pmatrix}$

$$\overline{B} = \begin{pmatrix} \alpha_1^T & 0 \\ \vdots & \vdots \\ \alpha_n^T & 0 \\ \beta & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \alpha_1^T & 0 \\ \vdots & \vdots \\ \alpha_n^T & 0 \\ 0 & 1 \end{pmatrix}, 此时 r(\overline{B}) = r(A) + 1 = r(A, \beta) + 1 = r(B) + 1, (II) 无解.$$

 \leftarrow 反之.若(II)无解则 $r(\bar{B}) = r(B) + 1$,若(I)无解,则 $r(\alpha_1, \alpha_2, \cdots, \alpha_n, \beta) = r(\alpha_1, \alpha_2, \cdots, \alpha_n) + 1$,即 B 的行 秩为 $r(\alpha_1, \alpha_2, \cdots, \alpha_n) + 1$,同时 $r(\bar{B}) = r(\alpha_1, \alpha_2, \cdots, \alpha_n) + 1$,从而 $r(\bar{B}) = r(B)$,矛盾.

4. 设A 是n 阶方阵,已知齐次线性方程组AX=0的一个基础解系为 $\alpha_1,\alpha_2,\cdots,\alpha_t$,若 β 不是方程组 AX=0的解,试证明向量组 $\beta,\alpha_1+\beta,\alpha_2+\beta,\cdots,\alpha_t+\beta$ 线性无关.

证明: 假设 $k_0\beta + k_1(\alpha_1 + \beta) + \dots + k_t(\alpha_t + \beta) = 0$,则 $(k_0 + k_1 + \dots + k_t)\beta + k_1\alpha_1 + \dots + k_t\alpha_t = 0$, 若 $k_0 + k_1 + \dots + k_t \neq 0$,则 β 可由 $\alpha_1, \dots, \alpha_t$ 线性表出 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是基础解系,故 β 是 AX = 0的一个解, 矛盾,故 $k_0 + k_1 + \dots + k_t = 0$,由 $(k_0 + k_1 + \dots + k_t)\beta + k_1\alpha_1 + \dots + k_t\alpha_t = 0$,则 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_t\alpha_t = 0$,由于 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是基础解系,则 $k_1 = \dots = k_t = 0$,同时 $k_0 = 0$,得 $\beta, \alpha_1 + \beta, \alpha_2 + \beta, \dots, \alpha_t + \beta$ 线性无关.

7. 设n维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$,证明 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关当且仅当任一由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出的向量的表示法是不唯一的.

证明: \Rightarrow 取 β 是由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出的任一向量,设为 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$,由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,存在一组不全为零的数 l_1, l_2, \cdots, l_s ,使得 $l_1\alpha_1 + l_2\alpha_2 + \cdots + l_s\alpha_s = 0$,故

 \leftarrow 假若由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出的向量的表示法不唯一,设

$$\beta = k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = l_1\alpha_1 + l_2\alpha_2 + \dots + l_s\alpha_s$$
,其中存在 $k_i \neq l_i$,则
$$(k_1 - l_1)\alpha_1 + (k_2 - l_2)\alpha_2 + \dots + (k_s - l_s)\alpha_s = 0$$
,系数不全为零,故 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关.

9. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,而向量组 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,且 $\beta\neq 0$,证明:向量组 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$ 中有且仅有一个向量 $\alpha_i(1\leq j\leq m)$ 可由其前面的向量 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性表出.

证明: $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,而 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,则 β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 唯一线性表出.

由 β , α_1 , α_2 , \cdots , α_m 线性相关,可知存在 k_0 , k_1 , k_2 , \cdots , k_m 不全为零,使得 $k_0\beta$ + $k_1\alpha_1$ + $k_2\alpha_2$ + \cdots + $k_m\alpha_m$ = 0, 取 k_j 为 k_0 , k_1 , k_2 , \cdots , k_m 中最后一个非零的数,即 $k_j \neq 0$, $k_{j+1} = k_{j+2} = \cdots = k_m = 0$,则 α_j 可由向量组 β , α_1 , α_2 , \cdots , α_{j-1} 线性表出.并且 α_j 由 β , α_1 , α_2 , \cdots , α_{j-1} 线性表出的关系式中 β 的系数非零,若为零,则 α_j 可由 α_1 , α_2 , \cdots , α_{j-1} 线性表出,与 α_1 , α_2 , \cdots , α_m 线性无关,矛盾.从而 β 可由 α_1 , α_2 , \cdots , α_{j-1} , α_j 线性表出.

假设还有 α_i 可由 β , α_1 , α_2 ,…, α_{i-1} 线性表出.设i < j,则 β 可由向量 α_1 , α_2 ,…, α_i 线性表出.从而与 β 由 α_1 , α_2 ,…, α_m 线性表出唯一矛盾.

11 设向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 线性无关,且可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出,证明存在向量 $\alpha_k (1 \le k \le n)$,使 得 $\alpha_k,\beta_2,\cdots,\beta_m$ 线性无关.

证明:反证法: 若对任意向量 $\alpha_k (1 \le k \le n)$,都有 α_k , β_2 ,…, β_m 线性相关,由于 β_1 , β_2 ,…, β_m 线性无关,从而 β_2 ,…, β_m 线性无关,则 $\alpha_k (1 \le k \le n)$ 可由 β_2 ,…, β_m 线性表出,从而向量组 α_1 , α_2 ,…, α_n 可由 β_2 ,…, β_m 线性表出,特别的对 β_1 , β_1 可由向量组 β_2 ,…, β_m 线性表出,与 β_1 , β_2 ,…, β_m 线性无关矛盾.