Indian Institute of Information Technology, Design and Manufacturing Kancheepuram MA1002 Linear Algebra (Solution guideline)

 Date: 03/10/2024
 Mid Semester

 Time: 3.30 - 5.00
 Marks: 25

1. Consider the following system of linear equations kx+y+z=1, x+ky+z=1, and x+y+kz=1 where k is a real number. Find the values of k such that the above system has (i) infinite number of solutions, (ii) no solution and (iii) a unique solution. Justify your answer. (4)

$$\begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Longrightarrow AX = b.$$
 So we consider the augumented matrix $[A|b]$.

$$(A|b) = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \end{pmatrix} (R_1 \leftrightarrow R_2)$$

$$\sim \begin{pmatrix} 1 & k & 1 & 1 \\ k & 1 & 1 & 1 \\ 1 & 1 & k & 1 \end{pmatrix} (R_2 \leftarrow R_2 - kR_1, R_3 \leftarrow R_3 - R_1)$$

$$\sim \begin{pmatrix} 1 & k & 1 & 1 \\ 0 & 1 - k^2 & 1 - k & 1 - k \\ 0 & 1 - k & k - 1 & 0 \end{pmatrix} (R_2 \leftrightarrow R_3)$$

$$\sim \left(\begin{array}{ccc|c} 1 & k & 1 & 1 \\ 0 & 1 - k & k - 1 & 0 \\ 0 & 1 - k^2 & 1 - k & 1 - k \end{array}\right) \qquad (i)$$

When k = 1, $(A|b) \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow x + y + z = 1$. The solution set is $S = \{(1 - a - b, a, b) : a, b \in R\}$. So the system has infinite number of solutions when k = 1. So $k \neq 1$.

$$(A|b) \sim \begin{pmatrix} 1 & k & 1 & 1 \\ 0 & 1-k & k-1 & 0 \\ 0 & 1-k^2 & 1-k & 1-k \end{pmatrix} (R_2 \leftarrow \frac{1}{1-k}R_2, R_3 \leftarrow \frac{1}{1-k}R_3)$$

$$\sim \begin{pmatrix} 1 & k & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 1+k & 1 & 1 & 1 \end{pmatrix} (R_1 \leftarrow R_1 - kR_2, R_3 \leftarrow R_3 - (1+k)R_2)$$

$$(A|b) \sim \begin{pmatrix} 1 & 0 & 1+k & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & k+2 & 1 \end{pmatrix}$$
 (ii)

When k = -2,

$$(A|b) \sim \left(\begin{array}{ccc|c} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Due to the last row of (A|b), the system Ax = b has no solution when k = -2 [1] So $k \neq -2, 1$.

$$(A|b) \sim \begin{pmatrix} 1 & 0 & 1+k & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & k+2 & 1 \end{pmatrix} (R_3 \leftarrow \frac{1}{k+2}R_3)$$

$$\sim \begin{pmatrix} 1 & 0 & 1+k & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix} (R_2 \leftarrow R_1 - (1+k)R_3, R_2 \leftarrow R_2 + R_3)$$

$$(A|b) \sim \begin{pmatrix} 1 & 0 & 0 & \frac{1}{k+2} \\ 0 & 1 & 0 & \frac{1}{k+2} \\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix}$$

The solution of the system is unique and it is $\{(\frac{1}{k+2}, \frac{1}{k+2}, \frac{1}{k+2})\}$ [2]

2. Count all possible 3×3 inequivalent classes of row-reduced echelon matrices. (4)

Let
$$r$$
 be the number of non-zero rows. $r = 0:\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $r = 1:\begin{pmatrix} 1 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$r = 2: \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & x & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$r = 3: \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where x, y are arbitrary scalars. $(\frac{1}{2} \text{ mark for each matrix})$

3. Find all 2×2 elemetary matrices and respective inverses. Justify your answer. (4)

The elemetary row operations are

The elemetary row opertions are

(i)
$$e_1: R_1 \leftarrow cR_1 \ (c \neq 0), \qquad e_1^{-1}: R_1 \leftarrow \frac{1}{c}R_1$$

(ii) $e_2: R_2 \leftarrow cR_2 \ (c \neq 0), \qquad e_2^{-1}: R_2 \leftarrow \frac{1}{c}R_2$

(iii) $e_3: R_1 \leftarrow R_1 + cR_2, \qquad e_3^{-1}: R_1 \leftarrow R_1 - cR_2$

(iv) $e_4: R_2 \leftarrow R_2 + cR_1, \qquad e_4^{-1}: R_2 \leftarrow R_2 - cR_1$

(v) $e_5: R_1 \leftrightarrow R_2, \qquad e_5^{-1}: R_1 \leftrightarrow R_2$

[1]

Let $E_i = e_i(I)$ and $E_i^{-1} = e_i^{-1}(I)$.

$$E_1 = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix} \qquad E_1^{-1} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{pmatrix}$$

$$E_2 = \begin{pmatrix} 0 & 1 \\ c & 0 \end{pmatrix} \qquad E_2^{-1} = \begin{pmatrix} 0 & 1 \\ \frac{1}{c} & 0 \end{pmatrix}$$
[1]

$$E_3 = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \qquad E_3^{-1} = \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix}$$

$$E_4 = \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \qquad E_4^{-1} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix}$$
 [1]

$$E_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad E_5^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 [1]

Absence of details in your answerbook lead to at least 50 percentage deduction in marks.

4. Let $A \in F^{n \times n}$. Prove that if AX = Y has a solution $X \in F^{n \times 1}$ for each $Y \in F^{n \times 1}$, then A is invertible. Suppose that the system of equations AX = Y has a solution X for each $n \times 1$ matrix Y. Let R be a row-reduced echelon matrix which is row-equivalent to A. By Corollary 12.2, R = PA where P is an $n \times n$ invertible matrix. It is enough to prove that R = I

Consider
$$RX = E \iff (PA)X = E \iff AX = P^{-1}E$$
 (1)
So $AX = Y$ has a solution X for each $Y \in F^{n \times 1} \implies AX = P^{-1}E$ has a solution

X for E where

$$E = \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{array} \right]$$

 $\Longrightarrow RX = E$ has a solution X for E (by (1)). \Longrightarrow The last row of R is non-zero. $\Longrightarrow R$ is an $n \times n$ row-reduced echelon matrix with no zero rows. $\Longrightarrow R = I$. Hence A is row-equivalent to R = I. By Theorem 12, A is invertible.

- 5. Let $V = \{x \in R : x \ge 0\}$ and F = R. For $x, y \in V, \alpha \in R$, we define x + y := xy, (vector addition) and $\alpha x := |\alpha|x$. (scalar multiplication). Verify, which are the list of axioms for a vector space are satisfied by (V, R, +, .).
 - (a) Closure: For any $x, y \ge 0$ in R, $x + y = xy \in R$ and it is non-negative. (0.5 mark)
 - (b) Associativite law: The associativity law is true as it holds for R. (0.5 mark)
 - (c) Additive identity: The number 1 is the additive identity. As $x+1 = x \cdot 1 = x$ for all $x \in R$. (2 marks)
 - (d) Commutativity law: As the multiplication is commutative in R. (0.5 mark)
 - (e) Scalar multiplication: For all non-negative $x \in R$ and $\alpha \in R$, $\alpha x = |\alpha|x$ is also non-negative in R. (0.5 mark)
 - (f) We have 1x = |1|x = x. (.5 mark)
 - (g) We also have $(\alpha_1\alpha_2)x = |\alpha_1\alpha_2|x = |\alpha_1||\alpha_2|x$. Also, $\alpha_1(\alpha_2x) = |\alpha_1|(\alpha_2x) = |\alpha_1|(|\alpha_2|x) = |\alpha_1\alpha_2|x$. Thus, $(\alpha_1\alpha_2)x = \alpha_1(\alpha_2x)$ (0.5 mark)
- 6. Show that $0\alpha = 0$ for all $\alpha \in V$, where 0 is the additive identity in the field F and 0 is the zero vector in the vector space V (2) There can be multiple ways to prove this.

Let V be a vector space over the field F, and let 0 represent both the additive identity in F and $\mathbf{0}$ (zero vector) in V.

(a) Consider the scalar multiplication of the zero scalar with any vector $\alpha \in V$. We want to show that multiplying the scalar 0 by any vector α results in the zero vector 0_V in the vector space V.

We will use the distributive property of scalar multiplication over addition in vector spaces:

$$0\alpha = (0+0)\alpha$$

(b) Apply the distributive property of scalar multiplication:

By the distributive property of scalar multiplication over addition in F, we can expand the right-hand side as follows:

$$(0+0)\alpha = 0\alpha + 0\alpha$$

So, we now have the equation:

$$0\alpha = 0\alpha + 0\alpha$$

(c) Subtract 0α from both sides of the equation to eliminate one of the terms on the right-hand side. Since scalar multiplication follows the usual rules of addition and subtraction in V, we can do this as follows:

$$(0\alpha) - (0\alpha) = (0\alpha + 0\alpha) - (0\alpha)$$

This simplifies to:

$$\mathbf{0} = 0\alpha$$

Thus, we have shown that multiplying the scalar 0 by any vector $\alpha \in V$ results in the zero vector 0_V , i.e.,

$$0\alpha = \mathbf{0}$$

This holds for all $\alpha \in V$, as required.

7. Prove that the inverse of a lower triangular matrix is a lower triangular matrix. (3)

Let L be an $n \times n$ lower triangular matrix, meaning that all entries above the main diagonal are zero, i.e., for i < j, we have $L_{ij} = 0$. We need to show that the inverse L^{-1} , if it exists, is also a lower triangular matrix.

- (a) **Diagonals** $L_{ii} \neq 0$: A lower triangular matrix is invertible iff all diagonal entries are non-zero.
- (b) Form of the Matrix Equation:

Since L is invertible, there exists a matrix L^{-1} such that:

$$LL^{-1} = I_n$$

where I_n is the $n \times n$ identity matrix.

(c) Consider the Entries of L^{-1} :

Let $L^{-1} = (b_{ij})$ be the inverse matrix of L. We want to show that $b_{ij} = 0$ for i < j, meaning L^{-1} has zero entries above the main diagonal.

(d) Matrix Multiplication:

For the product $LL^{-1} = I_n$, consider the elements of the identity matrix on the diagonal and above the diagonal. The element in the (i, j)-th position of the product LL^{-1} is given by:

$$(LL^{-1})_{ij} = \sum_{k=1}^{n} L_{ik} b_{kj}$$

Since L is lower triangular, for i < k, $L_{ik} = 0$. Hence, the sum can only include terms with $k \le i$. This implies:

$$(LL^{-1})_{ij} = \sum_{k=1}^{i} L_{ik} b_{kj}$$

Now consider two cases:

• Case 1: i = j: On the diagonal of I_n , the entries are 1. Hence, for i = j, we have:

$$\sum_{k=1}^{n} L_{ik} b_{ki} = \sum_{k=1}^{i} L_{ik} b_{ki} = 1, \text{ for } i = 1, 2, 3, \dots, n$$

For i = 1 and from $L_{11} \neq 0$, we have $b_{ii} \neq 0$. Similarly, for other values of i and $L_{ii} \neq 0$, we can ensure that the inverse matrix L^{-1} must have non-zero diagonal elements.

• Case 2: i < j: For i < j, the entry in position (i, j) in I_n is 0. Thus, we have the equation:

$$\sum_{k=1}^{n} L_{ik} b_{kj} = \sum_{k=1}^{i} L_{ik} b_{kj} = 0$$

Since $L_{ik} = 0$ for k > i, and for i < j, we conclude that:

$$b_{ij} = 0$$

(e) Since the entries of L^{-1} above the diagonal are all zero, L^{-1} is a lower triangular matrix.