

Gabarito 3 Cursao 2021

Geometria Analítica e Vetores (Universidade Estadual de Campinas)

Gabarito P3

Exercicio 3

Decida se as afirmações abaixo são verdadeiras ou falsas. Se for verdadeira, demonstre. Se for falsa, exiba um contra-exemplo. (Respostas sem justificativas não serão consideradas. Justificativas devem ser baseadas nos conteúdos trabalhados na disciplina).

- (1) Sejam U e V vetores. Então ||U+V|| = ||U|| + ||V||.
- (2) Seja $U \in \mathbb{R}^3$ ortogonal aos vetores básicos **i**, **j** e **k**. Então U = 0.
- (3) Sejam $U, V \in W$ vetores tais que $U \neq 0$ e $U \cdot V = U \cdot W$. Então V = W.
- (4) Sejam A = (1,1,1), B = (-1,1,1), C = (-1,-1,1) e D = (1,2,1). Então o quadrilátero com vértices A, B, C e D é um paralelogramo.
- (5) Sejam U e V vetores. Então $||U|| ||V||| \le ||U V||$.
- (6) Sejam P = (1, -1) e Q = (0, 2) pontos do plano. Existe só um ponto à distância 3 de P e Q.
- (7) Sejam U um vetor no espaço e λ um escalar. Então

$$\|\lambda U\| = \lambda \|U\|.$$

- (8) Sejam U, V e W vetores tais que W é ortogonal a U e V. Então para quaisquer α e β escalares, $\alpha U + \beta V$ é ortogonal a W.
- (9) Sejam U e V vetores. Então

$$||U - V||^2 = ||U||^2 + ||V||^2 + 2\cos\theta ||U|| ||V||$$

onde θ é o ângulo entre U e V.

- (10) Sejam A, B e C os vértices de um triângulo e E e F os pontos médios dos lados AC e BC, respectivamente. Então EF é paralelo a AB.
- (11) Sejam A, B, C e D os vértices de um trapézio. Então o segmento que une os pontos médios dos lados não-paralelos é paralelo aos lados paralelos.

Respostas

(1) FALSO.

Sejam
$$U = (1,0,0)$$
 e $V = (-1,0,0)$. Então $||U|| = ||V|| = 1$ e $||U + V|| = 0$, logo $||U + V|| = 0 < ||U|| + ||V|| = 2$.

(2) VERDADEIRO.

Como
$$U=a\mathbf{i}+b\mathbf{i}+c\mathbf{k}$$
, temos que $a=U\cdot\mathbf{i}=0,\,b=U\cdot\mathbf{j}=0,\,c=U\cdot\mathbf{k}=0.$ Logo
$$U=0\mathbf{i}+0\mathbf{i}+0\mathbf{k}=0.$$

(3) FALSO.

Sejam $U = \mathbf{i}, V = \mathbf{j} \in W = \mathbf{k}$. Logo

$$U \neq 0$$
; $U \cdot V = U \cdot W = 0$; $V \neq W$.

- (4) FALSO. $\overrightarrow{AB}=-2\mathbf{i}$, $\overrightarrow{CD}=2\mathbf{i}+3\mathbf{j}$ não s ao paralelos.
- (5) VERDADEIRO. Aplicando Cauchy-Schwartz $U \cdot V \leq ||U|| ||V||$,

$$(||U|| - ||V||)^{2} = ||U||^{2} - 2||U||V|| + ||V||^{2}$$

$$\leq ||U||^{2} - 2U \cdot V + ||V||^{2}$$

$$= ||U - V||^{2}$$

Logo $|||U|| - ||V||| \le ||U - V||$.

(6) FALSO. Seja R = (x, y). Então

$$d(P,R)^2 = (x-1)^2 + (y+1)^2 = 3^2$$
; $d(Q,R)^2 = (x-0)^2 + (y-2)^2 = 3^2$

Logo $(x-1)^2 + (y+1)^2 = (x-0)^2 + (y-2)^2$ isto é -2x + 2y + 2 = -4y + 4 ie x = 3y - 1. Obtemos $(3y-1)^2 + (y-2)^2 = 9$ que tem duas soluções distintas y_1 e y_2 , logo existem dois pontos $R_1 = (x_1, y_1)$ e $R_2 = (x_2, y_2)$ que estam a distancia 3 de P e Q.

(7) FALSO.

Sejam $U = \mathbf{i} \in \lambda = -1$. Resulta que

$$||(-1)U|| = 1$$
; $(-1)||U|| = -1$.

Ou seja $||(-1)U|| \neq (-1)||U|| = -1$.

(8) VERDADEIRO. Pois,

$$U \cdot (\alpha V + \beta W) = \alpha U \cdot V + \beta U \cdot W = \alpha 0 + \beta 0 = 0.$$

(9) FALSO.

Sejam $U = \mathbf{i} \in V = \mathbf{i}$. Logo

$$||U - V||^2 = 0$$
; $||U||^2 + ||V||^2 + 2\cos\theta ||U|| ||V|| = 1 + 1 + 2\cos\theta = 4$

Isto é $||U - V||^2 \neq ||U||^2 + ||V||^2 + 2\cos\theta ||U|| ||V||$.

(10) VERDADEIRO.

Sejam A, B e C os vertices de um triangulo. E e F os pontos medios dos lados AB e BC respectivamente. Então $\overrightarrow{MN} = \overrightarrow{EB} + \overrightarrow{FN}$. Como

$$\overrightarrow{BB} = \frac{1}{2}\overrightarrow{AB} \; ; \; \overrightarrow{BF} = \frac{1}{2}\overrightarrow{BC},$$

temos que

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2}\overrightarrow{AC}.$$

Logo EF é paralelo a AC.

(11) VERDADEIRO.

Sejam A, B, C e D os vertices do trapezio, onde AB e CD são paralelos. Logo

$$\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DC} + \overrightarrow{CN} \; ; \; \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN}$$

Somando,

$$2\overrightarrow{MN} = (\overrightarrow{MD} + \overrightarrow{MA}) + \overrightarrow{DC} + (\overrightarrow{CN} + \overrightarrow{BN}) + \overrightarrow{AB}$$

Como

$$\overrightarrow{MD} = \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} \; ; \; \overrightarrow{BN} = \overrightarrow{NC} = \frac{1}{2}\overrightarrow{BC}$$

Temos que $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD})$, ou seja MN é paralelo a AB e CD.

Baixado por alan moore (lofafen647@kaudat.com)

Exercicio 1

(1) Sejam A, B e C os seguintes pontos

1)

$$A = (1, 2, 1) ; B = (1, -1, 1) ; C = (3, 1, 1)$$

2)

$$A = (1, -1, 1) ; B = (3, 1, 1) ; C = (1, 2, 1)$$

3)

$$A = (3, 1, 1)$$
; $B = (1, 2, 1)$; $C = (1, -1, 1)$

Escreva o vetor \overrightarrow{AC} como soma de um vetor \overrightarrow{U} paralelo a \overrightarrow{AB} e um vetor ortogonal a \overrightarrow{AB} .

Respostas

1) Como
$$\overrightarrow{AB} = 0\mathbf{i} - 3\mathbf{j} + 0\mathbf{k}$$
 e $\overrightarrow{AC} = 2\mathbf{i} - 1\mathbf{j} + 0\mathbf{k}$, temos que $\|\overrightarrow{AB}\| = 3$; $\overrightarrow{AB} \cdot \overrightarrow{AC} = 3$

Logo

$$\operatorname{proj}_{\overrightarrow{AB}}\overrightarrow{AC} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\|^2}\overrightarrow{AB} = \frac{3}{3^2}\overrightarrow{AB} = 0\mathbf{i} - 1\mathbf{j} + 0\mathbf{k}.$$

Concluimos que $U = 0\mathbf{i} - 1\mathbf{j} + 0\mathbf{k}$ e $V = \overrightarrow{AC} - U = 2\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$, onde U é paralelo a \overrightarrow{AB} e V é um vetor ortogonal a \overrightarrow{AB} .

2) Como
$$\overrightarrow{AB} = 2\mathbf{i} + 2\mathbf{j} + 0\mathbf{k}$$
 e $\overrightarrow{AC} = 0\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}$, temos que $\|\overrightarrow{AB}\| = \sqrt{8}$; $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6$

Logo

$$\operatorname{proj}_{\overrightarrow{AB}}\overrightarrow{AC} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\|^2}\overrightarrow{AB} = \frac{6}{8}\overrightarrow{AB} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 0\mathbf{k}.$$

Concluimos que $U = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 0\mathbf{k}$ e $V = \overrightarrow{AC} - U = -\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 0\mathbf{k}$, onde U é paralelo a \overrightarrow{AB} e V é um vetor ortogonal a \overrightarrow{AB} .

3) Como
$$\overrightarrow{AB} = -2\mathbf{i} + 1\mathbf{j} + 0\mathbf{k}$$
 e $\overrightarrow{AC} = -2\mathbf{i} - 2\mathbf{j} + 0\mathbf{k}$, temos que $\|\overrightarrow{AB}\| = \sqrt{5}$; $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2$

Logo

$$\operatorname{proj}_{\overrightarrow{AB}}\overrightarrow{AC} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\|^2}\overrightarrow{AB} = \frac{2}{5}\overrightarrow{AB} = -\frac{4}{5}\mathbf{i} + \frac{2}{5}\mathbf{j} + 0\mathbf{k}.$$

Concluimos que $U = -\frac{4}{5}\mathbf{i} + \frac{2}{5}\mathbf{j} + 0\mathbf{k}$ e $V = \overrightarrow{AC} - U = -\frac{6}{5}\mathbf{i} - \frac{12}{5}\mathbf{j} + 0\mathbf{k}$, onde U é paralelo a \overrightarrow{AB} e V é um vetor ortogonal a \overrightarrow{AB} .

Exercicio 2

(1) Considere os pontos $A, B, C \in D$ 1)

$$A = (0,0,1)$$
; $B = (1,1,1)$; $C = (1,2,1)$; $D = (1,-5,1)$.

2)

$$A = (0,0,1)$$
; $B = (1,2,1)$; $C = (1,1,1)$; $D = (1,-5,1)$.

3)

$$A = (-1, 1, -1)$$
; $B = (1, 1, -1)$; $C = (1, 2, 1)$; $D = (-1, -5, 1)$.

- (2) Calcule o cosseno do ângulo entre os vetores \overrightarrow{AB} e \overrightarrow{BC} .
- (3) Decida se B, C e D são colineares.

Respostas

1) (2)
$$\overrightarrow{AB} = 1\mathbf{i} + 1\mathbf{j} + 0\mathbf{k} \; ; \; \overrightarrow{BC} = 0\mathbf{i} + 1\mathbf{j} + 0\mathbf{k}$$

$$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{\|\overrightarrow{AB}\| \|\overrightarrow{BC}\|} = \frac{1}{\sqrt{2}}.$$

(3)
$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & -5 & 1 \end{pmatrix} = 0$$

Os pontos B, C e D são colineares.

2) (2)
$$\overrightarrow{AB} = 1\mathbf{i} + 2\mathbf{j} + 0\mathbf{k} \; ; \; \overrightarrow{BC} = 0\mathbf{i} - 6\mathbf{j} + 0\mathbf{k}$$
$$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{\|\overrightarrow{AB}\| \|\overrightarrow{BC}\|} = -\frac{12}{6\sqrt{5}}.$$

(3)
$$\det \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & -5 & 1 \end{pmatrix} = 0$$

Os pontos B, C e D são colineares.

3) (2)
$$\overrightarrow{AB} = -2\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \; ; \; \overrightarrow{BC} = 0\mathbf{i} + 1\mathbf{j} + 0\mathbf{k}$$
$$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{\|\overrightarrow{AB}\| \|\overrightarrow{BC}\|} = 0.$$

(3)
$$\det \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & -5 & 1 \end{pmatrix} \neq 0$$

Os pontos B, C e D não são colineares.