Peal III

$$S = \int_{0}^{\infty} f(x) dx = F(b) - F(a)$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots = -\frac{3}{7} \ln 2$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

Зміст

	Інтеграли з параметром		
	1.1	Основні означення та властивості	
	1.2	Невласні інтеграли з параметром та ознаки збіжності	
	1.3	Властивості невласного інтегралу	
	1.4	Інтеграл Діріхлє	
	1.5	Інтеграл Ойлера-Пуассона	
	1.6	Гамма-функція	
	1.7	Бета-функція	
	1.8	Зв'язок між гамма- та бета-функціями. Основна теорема гамма-функції	

1 Інтеграли з параметром

1.1 Основні означення та властивості

Definition 1.1.1 Задана функція $f:[a,b]\times[c,d]\to\mathbb{R}$, така, що $\forall y\in[c,d]:f\in\mathcal{R}([a,b]).$ Інтегралом з параметром називають таку функцію $J \colon [c,d] \to \mathbb{R}$:

$$J(y) = \int_{a}^{b} f(x, y) \, dx$$

Remark 1.1.2 Зауважимо, що якщо додатково вимагати $f \in C([a,b] \times [c,d])$, то отримаємо $\forall y \in$ $[c,d]:f\in C([a,b]).$ Таким чином, $\forall y\in [c,d]:f\in \mathcal{R}([a,b]),$ а тому функція $J(y)=\int^{b}f(x,y)\,dx$ буде визначеною коректно.

Proposition 1.1.3 Про неперервність інтеграла з параметром

Задана функція $f:[a,b]\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,b]\times[c,d])$. Тоді $J\in C([c,d])$.

Proof.

$$\begin{array}{l} f(x,y) \in C([a,b] \times [c,d]) \implies f(x,y) \in C_{\mathrm{unif}}([a,b] \times [c,d]) \implies \\ \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x_1,y_1), (x_2,y_2) \in [a,b] \times [c,d]: \end{array}$$

$$||(x_1,y_1)-(x_2,y_2)|| = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta \Rightarrow |f(x_1,y_1)-f(x_2,y_2)| < \frac{\varepsilon}{h-a}$$

Тоді
$$|J(y_1) - J(y_2)| = \left| \int_a^b f(x, y_1) dx - \int_a^b f(x, y_2) dx \right| \le \int_a^b |f(x, y_1) - f(x, y_2)|$$

Якщо я оберу (x,y_1) , (x,y_2) так, що $\|(x,y_1)-(x,y_2)\|=\sqrt{(y_1-y_2)^2}=|y_1-y_2|<\delta$, то тоді $|f(x,y_1)-f(x,y_2)|<\frac{\varepsilon}{b-a}$.

Збираючи пазл, отримаємо $J \in C_{\mathrm{unif}}([c,d]) \implies J \in C([c,d]).$

Proposition 1.1.4 Про диференційованість інтеграла з параметром

Задана функція $f : [a,b] \times [c,d] \to \mathbb{R}$, така, що $f \in C([a,b] \times [c,d])$. Відомо, що $\exists \frac{\partial f}{\partial u} \in C([a,b] \times [c,d])$.

Тоді J – диференційована на [c,d], причому $J'(y) = \int_{-\partial u}^{b} \frac{\partial f}{\partial u}(x,y) dx$.

Proof.

Диференційованість означає існування похідної, тобто необхідно довести її існування.

$$\frac{J(y+\Delta y)-J(y)}{\Delta y}=\frac{1}{\Delta y}\int_a^bf(x,y+\Delta y)-f(x,y)\,dx$$
 Прадаемо Ньютона-Ляйбніца та властивості інтеграла,

та властивості інтеграла, розпишемо підінтегральний вираз ось так:

$$f(x, y + \Delta y) - f(x, y) = \int_{y}^{y + \Delta y} f'_{y}(x, t) dt = \int_{y}^{y + \Delta \hat{y}} \frac{\partial f}{\partial y}(x, t) dt$$

$$= \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y}^{y+\Delta y} \frac{\partial f}{\partial y}(x,t) dt \right) dx$$

Тепер зафіксуємо точку
$$y_0$$
 та розпишемо праву частину рівності, що ми доводимо:
$$\int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = \int_a^b \frac{1}{\Delta y} \left(\int_{y_0}^{y_0+\Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx = \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0+\Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx$$

$$\left| \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) \, dt \right) dx - \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right| dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dx \right| dx \right| dx$$

$$= \left| \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y_{0}}^{y_{0} + \Delta y} \frac{\partial f}{\partial y}(x, t) - \frac{\partial f}{\partial y}(x, y_{0}) dt \right) dx \right| \le 1$$

За умовою твердження,
$$\frac{\partial f}{\partial y}(x,y) \in C([a,b] \times [c,d]) \implies \frac{\partial f}{\partial y}(x,y) \in C_{\mathrm{unif}}([a,b] \times [c,d]) \implies$$

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall (x,t), (x,y_0) \in [a,b] \times [c,d]: \|(x,t) - (x,y_0)\| < \delta \Rightarrow \left| \frac{\partial f}{\partial y}(x,t) - \frac{\partial f}{\partial y}(x,y_0) \right| < \frac{\varepsilon}{b-a}$$

Збираємо пазл – отримаємо, що: $\forall y_0 \in [c,d]: \exists \lim_{\Delta y \to 0} \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} = \int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = J'(y_0).$ Отже, J – диференційована на [c,d].

Proposition 1.1.5 Про інтегрованість інтеграла з параметром

Задана функція $f\colon [a,b]\times [c,d]\to \mathbb{R},$ така, що $f\in C([a,b]\times [c,d]).$ Тоді $J\in \mathcal{R}([c,d]),$ причому $\int_c^d \underbrace{\int_a^b f(x,y)\,dx}_{=J(y)}\,dy = \int_a^b \int_c^d f(x,y)\,dy\,dx.$

Proof.

Розглянемо дві функції: $h(t) = \int_{t}^{t} \int_{a}^{b} f(x,y) dx dy$ $g(t) = \int_{a}^{b} \int_{t}^{t} f(x,y) dy dx$.

У нашому випадку $t \in [c,d]$. Якщо t=c, то маємо h(c)=g(c)=0. Ми хочемо зараз довести, що g'(t)=h'(t), і тоді за наслідком теореми Лагранжа, h(t)=g(t)+C. Підставивши t=c, отримаємо C=0, тому h(t)=g(t), зокрема h(d)=g(d) – бажана рівність.

Доведемо те, що хочемо. Зробимо позначення: $h(t) = \int_{a}^{t} J(y) \, dy$, $g(t) = \int_{a}^{b} F(x,t) \, dx$. У цьому

випадку $F(x,t) = \int_{-t}^{t} f(x,y) \, dy$

Перший – це інтеграл від верхньої межі, тому h'(t) = J(t).

Покажемо, що другий інтеграл задовольняє умові Ргр. 1.1.4, тоді можемо знайти похідну.

Спочатку доведемо, що підінтегральна функція $F \in C([a,b] \times [c,d])$ (нижче припускаю $t > t_0$).

$$|F(x,t) - F(x_0,t_0)| = \left| \int_c^t f(x,y) \, dy - \int_c^{t_0} f(x_0,y) \, dy \right| = \left| \int_c^t f(x,y) - f(x_0,y) \, dy - \int_{t_0}^t f(x_0,y) \, dy \right| \le \int_c^t |f(x,y) - f(x_0,y)| \, dy + \int_{t_0}^t |f(x_0,y)| \, dy.$$

Оскільки $f \in C([a,b] \times [c,d])$, то вона обмежена, тож $\exists M>0: \forall (x,y) \in [a,b] \times [c,d]: |f(x,y)| \leq M$. Оберемо $\varepsilon>0$. Оскільки $f \in C([a,b] \times [c,d])$, то $\exists \delta>0: \forall (x,y): \|(x,y)-(x_0,y_0)\| < \delta \Longrightarrow |f(x,y)-f(x_0,y_0)| < \varepsilon$. Зокрема оберемо $y_0=y$, тоді $\forall x: |x-x_0| < \delta \Longrightarrow |f(x,y)-f(x_0,y)| < \frac{\varepsilon}{d-c}$.

Отже, $|F(x,t) - F(x_0,t_0)| < (t-c)\frac{\varepsilon}{d-c} + (t-t_0)M \le \varepsilon + \tilde{\delta}M.$

Оберемо $\tilde{\delta}=\min\left\{\delta,\frac{\varepsilon}{M}\right\}$. Тоді якщо обрати кожну точку (x,t) так, що $\|(x,t)-(x_0,t_0)\|<\tilde{\delta},$ отримаємо $|F(x,t)-F(x_0,t_0)|<2\varepsilon$ (при $t< t_0$ все працюватиме). Тепер зауважимо, що $\frac{\partial F}{\partial t}(x,t)=f(x,t)\in C([a,b]\times[c,d]).$ Отже, дійсно, g можна продиференціювати за **Prp. 1.1.4**, отримаємо наступне:

$$g'(t)=\int_a^b rac{\partial F}{\partial t}(x,t)\,dt=\int_a^b f(x,t)\,dx=J(t).$$
 Разом ми довели, що хотіли, а саме $g'(t)=h'(t)$ для всіх $t\in [c,d]$. Завершили доведення.

Example 1.1.6 Обчислити $\lim_{\alpha \to 0} \int_0^2 x^2 \cos \alpha x \, dx$.

Маємо $I(\alpha) = \int_0^2 x^2 \cos \alpha x \, dx$. Розглянемо функцію $f(x,\alpha) = x^2 \cos \alpha x$ на $[0,2] \times [-1,1]$ (можна й менше взяти другу сторону, головне щоб навколо точки 0). Ця функція є неперервною, тоді $I(\alpha)$ неперервна, зокрема в точці $\alpha = 0$.

 $\lim_{\alpha \to 0} \int_0^2 x^2 \cos \alpha x \, dx = \lim_{\alpha \to 0} I(\alpha) = I(0) = \int_0^2 x^2 \, dx = \frac{x^3}{3} = \frac{8}{3}.$

Example 1.1.7 Знайти похідну функції $I(\alpha) = \int_{-\infty}^{2} e^{\alpha x^2} \frac{dx}{x}$.

Позначу $f(x,\alpha)=\frac{e^{\alpha x^2}}{\frac{x}{2}}$. Знайдемо частинну похідну за другим аргументом: $\frac{\partial f}{\partial \alpha}=\frac{x^2e^{\alpha x^2}}{x}=xe^{\alpha x^2}$. Зауважимо, що f та $\frac{\partial f}{\partial \alpha}$ неперервні на прямокутнику $[1,2]\times[-1,1]$, тому ми можемо диференціювати

функцію
$$I$$
, а також $I'(\alpha) = \int_1^2 x e^{\alpha x^2} dx$.
$$I'(\alpha) = \frac{1}{2} \int_1^2 e^{\alpha x^2} dx^2 = \frac{1}{2\alpha} e^{\alpha x^2} \Big|_1^2 = \frac{e^{4\alpha} - e^{\alpha}}{2\alpha}$$

Example 1.1.8 Обчислити $\int_0^1 \frac{x^b - x^\alpha}{\ln x} \, dx$, якщо a,b>0.

Зауважимо, що $\frac{x^b-x^a}{\ln x}=\int_a^b x^y\,dy$. Тоді взагалі маємо обчислити $\int_0^1 \int_a^b x^y\,dy\,dx$. Оскільки функція $f(x,y)=x^y$ є неперервною на прямокутнику $[0,1]\times[a,b]$, то звідси ми можемо змінити місцями порядок інтегрування, тобто

$$\int_0^1 \int_a^b x^y \, dy \, dx = \int_a^b \int_0^1 x^y \, dx \, dy = \int_a^b \frac{x^{y+1}}{y+1} \Big|_0^1 \, dy = \int_a^b \frac{1}{y+1} \, dy = \ln(y+1) \Big|_a^b = \ln \frac{b+1}{a+1}.$$

Зараз будуть більш специфічні приклади. Але на них простіше зрозуміти узагальнення теореми про неперервність та диференційованість.

Example 1.1.9 Знайти $\lim_{\alpha \to 0} \int_{0}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2}$

Інтуїтивно хочеться, щоб це дорівнювало $\int_0^1 \frac{dx}{1+x^2}$. Запишемо наш ліміт ось так:

$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \lim_{\alpha \to 0} \left(\int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} + \int_{1}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} - \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right).$$

 $\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \lim_{\alpha \to 0} \left(\int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} + \int_{1}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} - \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right).$ Перший інтеграл, тобто $\lim_{\alpha \to 0} \int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} = \int_{0}^{1} \frac{dx}{1+x^2}.$ Тому задля нашої інтуіції, треба довести, що останні два інтеграла дорівнюють нулю. $\left| \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_{0}^{\alpha} \left| \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_{0}^{\alpha} M \, dx = M\alpha \to 0.$

$$\left|\int_0^\alpha \frac{dx}{1+x^2+\alpha^2}\right| \leq \int_0^\alpha \left|\frac{dx}{1+x^2+\alpha^2}\right| \leq \int_0^\alpha M\,dx = M\alpha \to 0.$$

$$\left|\int_1^{1+\alpha} \frac{dx}{1+x^2+\alpha^2}\right| \leq M(1+\alpha-1) \to 0 \text{ аналогічними міркуваннями}.$$

Тут $M=\max_{x\in[0,2]\times[0,1]}\frac{1}{1+x^2+\alpha^2},$ і це можна знайти через неперервність самої функції. Отже, $\lim_{\alpha\to 0}\int_{\alpha}^{1+\alpha}\frac{dx}{1+x^2+\alpha^2}=\int_{0}^{1}\frac{dx}{1+x^2}=\frac{\pi}{4}.$

Отже,
$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \int_{0}^{1} \frac{dx}{1+x^2} = \frac{\pi}{4}$$
.

Отже, теорему про неперервність інтеграла з параметром можна узагальнити.

Theorem 1.1.10 Маємо $f \in C([a,b] \times [c,d])$ та $a(y),b(y) \in C([c,d])$, причому $a(y) \geq a$ та $b(y) \leq b$. Тоді $J(y) = \int_{-\infty}^{b(y)} f(x,y) \, dx \in C([c,d]).$

$$\lim_{y \to y_0} \int_{a(y)}^{b(y)} f(x, y) \, dx = \lim_{y \to y_0} \left(\int_{a(y_0)}^{b(y_0)} f(x, y) \, dx \pm \int_{b(y_0)}^{b(y)} f(x, y) \, dx \pm \int_{a(y_0)}^{a(y)} f(x, y) \, dx \right).$$

Знак \pm залежить від взаємного розташування точок $a(y), b(y), a(y_0), b(y_0)$.

Перший інтеграл неперервний, за Prp. 1.1.3. Другий та третій інтеграли оцінюються за модулем так само, як це було на прикладі. Маємо права, бо f обмежується сталою M. Тоді там отримаємо, що ці інтеграли прямують до нуля.

Example 1.1.11 Знайти похідну функції $F(\alpha) = \int_{\alpha}^{\alpha^2} \frac{\ln(1+\alpha x)}{x} \, dx$, нехай $\alpha \geq 0$. Інтуїтивно хочеться продиференціювати як інтеграл від межі та інтеграл від параметру.

=f(x,lpha) неперервна функція, то вона має первісну H. Тоді за формулою $\frac{x}{x}$ Ньютона-Ляйбніца:

$$F(\alpha) = H(x,\alpha)\Big|_{\alpha}^{\alpha^2} = H(\alpha^2,\alpha) - H(\alpha,\alpha) = H(u(\alpha),\alpha) - H(v(\alpha),\alpha), \text{ ge } u(\alpha) = \alpha^2, \ v(\alpha) = \alpha.$$

$$F'(\alpha) = \frac{\partial H}{\partial \alpha^2}(\alpha^2, \alpha) \frac{d\alpha^2}{d\alpha} + \frac{\partial H}{\partial \alpha}(\alpha^2, \alpha) - \frac{\partial H}{\partial \alpha}(\alpha, \alpha) \frac{d\alpha}{d\alpha} - \frac{\partial H}{\partial \alpha}(\alpha, \alpha)$$

$$= \left(\frac{\partial H}{\partial \alpha^2}(\alpha^2, \alpha) \cdot 2\alpha - \frac{\partial H}{\partial \alpha}(\alpha, \alpha) \cdot 1\right) + \left(\frac{\partial H}{\partial \alpha}(\alpha^2, \alpha) - \frac{\partial H}{\partial \alpha}(\alpha, \alpha)\right)$$

$$= \left(f(\alpha^2, \alpha) \cdot 2\alpha - f(\alpha, \alpha) \cdot 1\right) + \left(f(\alpha^2, \alpha) - f(\alpha, \alpha)\right).$$

Підставимо все, що маємо - отримаємо

$$F'(\alpha) = \frac{\ln(1+\alpha^3)}{\alpha^2} \cdot 2\alpha - \frac{\ln(1+\alpha^2)}{\alpha} + \frac{\ln(1+\alpha^3)}{\alpha^2} - \frac{\ln(1+\alpha^2)}{\alpha} = \frac{\ln(1+\alpha^3)}{\alpha} \left(2 + \frac{1}{\alpha}\right) - 2\frac{\ln(1+\alpha^2)}{\alpha}.$$

Для диференціювання існує більш загальна формула.

Theorem 1.1.12 Маємо $f, \frac{\partial f}{\partial u} \in C([a,b] \times [c,d]), a,b \in C([c,d]),$ причому $a(y) \geq a$ та $b(y) \leq b$. Тоді $J(y) = \int_{a(x)}^{b(y)} f(x,y) dx$ буде диференційованою на [c,d], причому

$$J(y)=\int_{a(y)}f(x,y)\,dx$$
 оуде диференциованою на $[c,a]$, причо $J'(y)=f(b(y),y)b'(y)-f(a(y),y)a'(y)+\int_{a(y)}^{b(y)}rac{\partial f}{\partial y}(x,y)\,dx.$

Для її доведення можна скористатися формулою Ньютона-Ляйбніца.

Невласні інтеграли з параметром та ознаки збіжності

Definition 1.2.1 Задана функція $f \colon A \times B \to \mathbb{R}$, де $A, B \subset \mathbb{R}$, та $y_0 \in \mathbb{R}$ – гранична точка для B. Функція f поточково збігається до функції φ при $y \to y_0$, якщо

$$\forall x \in A : \lim_{y \to y_0} f(x, y) = \varphi(x)$$

Функція f збігається рівномірно до функції φ при $y \to y_0$ на множині A, якщо

$$\sup_{x \in A} |f(x,y) - \varphi(x)| \to 0, y \to y_0$$

Позначення: $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \rightarrow y_0$.

Новий вигляд збіжності можна звести до збіжності функціональних послідовностей таким твердженням.

Proposition 1.2.2 $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0$ на множині $A \iff \forall \{y_n, n \geq 1\} \subset B : \forall n \geq 1 : y_n \neq y_0 : x \neq y_0 = x \neq y_0$ $f(x,y_n) \xrightarrow{\rightarrow} \varphi(x), n \to \infty$ на множині A. Випливає з означення рівномірної збіжності.

Theorem 1.2.3 Критерій Коші

$$f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0 \text{ на } A \iff \forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall y_1,y_2 \in B, y_1,y_2 \neq y_0: \begin{cases} |y_1-y_0| < \delta \\ |y_2-y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x,y_1) - f(x,y_2)| < \varepsilon.$$

Proof.

⇒ Вказівка: означення рівномірної границі та нерівність трикутника.

$$\sqsubseteq \exists \text{Дано: } \forall \varepsilon > 0 : \exists \delta : \forall y_1, y_2 \in B, y_1, y_2 \neq y_0 : \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x, y_1) - f(x, y_2)| < \varepsilon.$$

Візьмемо деяку послідовність
$$\{y_n, n \ge 1\}$$
, де $y_n \ne y_0, y_n \to y_0$. Тоді $\exists N: \forall n, m \ge N: |y_n - y_0| < \delta, |y_m - y_0| < \delta$. За умовою, звідси $\sup_{x \in A} |f(x, y_n) - f(x, y_m)| < \varepsilon$. За

критерієм Коші рівномірної збіжності функціональної послідовності, $f(x, y_n)$ є рівномірно збіжною на A. Отже, f(x,y) - рівномірно збіжний на A за **Prp. 5.2.2.** (**TODO**: лінкування)

Тепер уже до суті цього підрозділу.

Definition 1.2.4 Задана функція $f \colon [a,\omega) \times A$, така, що $\forall y \in A : \forall c \in [a,\omega) : f \in \mathcal{R}([a,c])$. Також маємо збіжний невласний інтеграл із параметром $J(y) = \int_{a}^{x} f(x,y) dx, \forall y \in A.$

Невласний інтеграл **збігається рівномірно** на множині $\overset{\circ}{A}$, якщо

$$\sup_{y \in A} \left| \int_{a}^{\omega} f(x, y) \, dx - \int_{a}^{c} f(x, y) \, dx \right| \stackrel{c \to \omega}{\to} 0$$

Remark 1.2.5 Воно якось схоже за рівномірну збіжність функції, але трошки не так. Тут розглядається взагалі-то рівномірна збіжність функції g(x,y) до функції g(y) TA при цьому аргумент $x \to x_0$.

Theorem 1.2.6 Критерій Коші

$$\int_{a}^{\omega} f(x,y) dx - 36іжний рівномірно на $A \iff \forall \varepsilon > 0 : \exists C : \forall c_{1}, c_{2} \in (C,\omega) : \sup_{y \in A} \left| \int_{c_{1}}^{c_{2}} f(x,y) dx \right| < \varepsilon.$ Випливає з критерію Коші рівномірної збіжності функцій.$$

Theorem 1.2.7 Ознака Ваєрштраса

Задані функції $f:[a,\omega)\times A\to\mathbb{R},\,g:[a,\omega)\to\mathbb{R}$ такі, що виконується наступне:

1)
$$\forall x \in [a, \omega) : \forall y \in A : |f(x, y)| \le g(x);$$

$$(2)$$
 $\int_{-\infty}^{\omega} g(x) dx$ – збіжний.

Тоді
$$\int_a^\omega f(x,y) \, dx$$
 – збіжний рівномірно на A .

Proof.
$$\int_{-\infty}^{\omega} f(x) dx$$

$$\sup_{y \in A} \left| \int_{c}^{\omega} f(x, y) \, dx \right| \le \left| \int_{c}^{\omega} g(x) \, dx \right| \stackrel{c \to \omega}{\to} 0.$$

Example 1.2.8 Довести, що $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$, якщо $\gamma>0$.

Маємо функцію $f(x,\alpha)=\frac{1}{x^{\alpha}}$. Також відома оцінка $x^{\alpha}>x^{1+\gamma}\implies \frac{1}{x^{\alpha}}<\frac{1}{x^{1+\gamma}},$ виконано $\forall x\geq 1.$

Також $\int_{1}^{+\infty} \frac{dx}{x^{1+\gamma}}$ – збіжний невласний інтеграл (еталон). Тому за ознакою Вейерштрасса, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$.

Example 1.2.9 Довести, що $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$ не ϵ рівномірно збіжним на множині $(1, +\infty)$.

Дійсно,
$$\sup_{\alpha>1}\left|\int_{c}^{+\infty}\frac{dx}{x^{\alpha}}\right|=\sup_{\alpha>1}\left(\frac{1}{c^{\alpha-1}}\frac{1}{1-\alpha}\right)=+\infty\not\to 0$$
 при $c\to+\infty.$

Theorem 1.2.10 Ознака Діріхлє та Абеля

Задані функції $f,\ g\colon [a,\omega)\times A\to \mathbb{R}$ такі, що виконана одна з двох пар умов:

Бадані функції
$$f, g: [a, \omega) \times A \to \mathbb{R}$$
 такі, що виконана одна з двох пар умов.
$$\int_a^A f(x,y) \, dx - \text{рівномірно обмежена на } [a,\omega).$$

$$g - \text{монотонна на } [a,\omega) \ (\forall y \in A) \text{ та}$$

$$g(x,y) \stackrel{\rightarrow}{\to} 0, \ x \to \omega.$$

$$oзнака \ \mathcal{J}ipixлe$$

$$\int_a^\omega f(x,y) \, dx - \text{збіжний рівномірно на } A.$$

$$g - \text{монотонна на } [a,\omega) \ (\forall y \in A) \text{ та}$$

$$pівномірно обмежена на } [a,\omega) \times A.$$

$$oзнака \ A белл$$

$$Tоді \int_a^\omega f(x,y)g(x,y) \, dx - \text{рівномірно збіжний на } A.$$

Тоді
$$\int_{-\infty}^{\infty} f(x,y)g(x,y)\,dx$$
 – рівномірно збіжний на A .

Доведення теореми Діріхлє анаголігно доводиться, як це було в розділі про прості невласні інтеграли (ТОДО: лінкування). Так само із Діріхлє випливає Абеля аналогічним чином.

Example 1.2.11 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} dx$ збіжний рівномірно на $[\alpha, +\infty)$, $\alpha > 0$.

Розглянемо функції $f(x,y) = \sin xy$ та $g(x,y) = \frac{1}{\sqrt{x}+1}$.

 $\int_0^A \sin xy \, dx = -\frac{1}{y} \cos xy \Big|_0^A = -\frac{1}{y} \cos Ay + \frac{1}{y}.$ Ця штука – рівномірно обмежена на $[0, +\infty)$, тому що

$$\frac{1}{y}|1-\cos Ay|\leq \frac{1}{y}\leq \frac{1}{\alpha},$$
 виконано $\forall A\in [0,+\infty).$

 $\frac{1}{\sqrt{x}+1}$ ясно, що монотонна на $[0,+\infty)$ та рівномірно прямує до нуля при $x\to+\infty$.

Отже, за ознакою Діріхлє, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x+1}} dx$ - збіжний рівномірно на $[\alpha, +\infty)$.

Example 1.2.12 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \operatorname{arctg} xy \, dx$ збіжний рівномірно на $[\alpha, +\infty), \ \alpha > 0.$

Розглянемо функції $f(x,y)=\dfrac{\sin xy}{\sqrt{x}+1}$ та $g(x,y)=\arctan xy$.

 $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1}$ – збіжний рівномірно за попереднім прикладом.

Отже, за ознакою Абеля, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \arctan xy \, dx$ – збіжний рівномірно на $[\alpha, +\infty)$.

Theorem 1.2.13 Ознака Діні

Задано функцію $f \in C([a,\omega) \times [c,d])$. Також відомо, що $f \geq 0$ та $J(y) = \int_{-\infty}^{\infty} f(x,y) \, dx \in C([c,d])$. Тоді J – збіжний рівномірно на [c,d].

Proof.

Доведення ознаки прямо випливає з теореми Діні про рівномірну збіжність функціонального ряда. Для спрощення доведення розгляну випадок, коли $\omega = +\infty$.

Розглянемо функціональну послідовність $g_n(y) = \int_{-1}^{a+n} f(x,y) \, dx$, які визначені на [c,d]. Зауважи-

мо, що $g_n\in C([c,d])$ за **Prp. 1.1.3**. Далі, $\lim_{n\to\infty}g_n(y)=\int_a^\infty f(x,y)\,dx=J(y)\in C([c,d])$. Нарешті, всі $g_n(y)$ неспадають в силу того, що $f \ge 0$.

Отже, за ознакою Діні для функціональної послідовності, g_n збігається рівномірно до J при $n \to \infty$. Тоді звідси $\forall \varepsilon > 0 : \exists N : \forall y \in [c,d] : |g_N(y) - J(y)| < \varepsilon$. Тобто маємо $\left| \int_{a+N}^{+\infty} f(x,y) \, dx \right| < \varepsilon$.

Оберемо C=a+N, тоді $\forall c>C$ та $\forall y\in [c,d]$ матимемо $\left|\int_{a}^{+\infty}f(x,y)\,dx\right|<\varepsilon.$ Власне, це доводить рівномірну збіжність J на [c,d].

1.3 Властивості невласного інтегралу

Proposition 1.3.1 Про неперервність невласного інтеграла з параметром

Задана функція $f:[a,\omega)\times[c,d] o\mathbb{R}$, така, що $f\in C([a,\omega)\times[c,d])$. Також J – рівномірно збіжний на [c,d]. Тоді $J \in C([c,d])$.

За означенням рівномірної збіжності, маємо $\sup_{y\in[c,d]}\left|\int_{\xi}^{\omega}f(x,y)\,dx\right|\,\to\,0,\,\,\xi\,\to\,\omega.$ Іншими словами,

 $\forall \varepsilon > 0 : \exists \xi > a : \sup_{x \in [\varepsilon, d]} \left| \int_{\varepsilon}^{\omega} f(x, y) \, dx \right| < \frac{\varepsilon}{3}.$ Тепер оцінимо J:

$$|J(y_1) - J(y_2)| = \left| \int_a^{\omega} f(x, y_1) \, dx - \int_a^{\omega} f(x, y_2) \, dx \right| =$$

$$= \left| \int_a^{\xi} f(x, y_1) \, dx - \int_a^{\xi} f(x, y_2) \, dx + \int_{\xi}^{\omega} f(x, y_1) \, dx - \int_{\xi}^{\omega} f(x, y_2) \, dx \right| \le$$

$$\le \left| \int_a^{\xi} f(x, y_1) - f(x, y_2) \, dx \right| + \left| \int_{\xi}^{\omega} f(x, y_1) \, dx \right| + \left| \int_{\xi}^{\omega} f(x, y_2) \, dx \right| \le$$

Перший модуль: $f \in C_{\mathrm{unif}}([a,\xi] \times [c,d])$, тоді $\exists \delta: \forall y_1,y_2: |y_1-y_2| < \delta \Rightarrow |f(x,y_1)-f(x,y_2)| < \frac{\varepsilon}{\varepsilon-a}$.

Другий модуль: $\sup_{y\in[c,d]}\left|\int_{\varepsilon}^{\omega}f(x,y)\,dx\right|<\frac{\varepsilon}{3}\implies \forall y\in[c,d]:\left|\int_{\varepsilon}^{\omega}f(x,y)\,dx\right|<\frac{\varepsilon}{3}.$

азл та маємо $J \in C_{\mathrm{unif}}([c,d]) \implies J \in C([c,d])$

Proposition 1.3.2 Про інтегрованість невласного інтеграла з параметром

Задана функція $f\colon [a,\omega) imes [c,d] o \mathbb{R}$, така, що $f\in C([a,\omega) imes [c,d]).$ Також J – рівномірно збіжний на [c,d]. Тоді $J \in \mathcal{R}([c,d])$, причому $\int_c^d \underbrace{\int_a^\omega f(x,y) \, dx}_d \, dy = \int_a^\omega \int_c^d f(x,y) \, dy \, dx$.

Proof.

Розпишемо інтеграл $\int_{c}^{d} J(y) \, dy = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy$. Перший доданок – це визначений інтеграл, тому там виконується **Prp 3.1.4.** (ТОDO: лінкування),

тобто
$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx.$$
 Другий доданок уже цікавіше, його ми оцінимо:
$$\left| \int_{c}^{d} \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dy \right| dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx + \int_{c}^{d} \left| \int_{c}^{\omega} f(x,y) \, dx \, dx + \int_$$

$$\left| \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{b}^{\omega} f(x,y) \, dx \right| dy \leq \int_{c}^{d} \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| dy =$$

 $=\sup_{y\in[c,d]}\left|\int_b^\omega f(x,y)\,dx\right|(d-c)\to 0, b\to\omega.$ Якщо $b\to\omega,$ то тоді отримаємо

$$\int_{c}^{d} J(y) \, dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy + 0 = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy.$$

Proposition 1.3.3 Про диференційованість невласного інтеграла з параметром

Задана функція $f \colon [a,\omega) \times [c,d] \to \mathbb{R}$, така, що виконані умови:

- $1) \ \exists y_0 \in [c,d] : J(y_0)$ збіжний;
- 2) $\frac{\partial f}{\partial y} \in C([a,\omega) \times [c,d]);$
- 3) $\int_{a}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$ рівномірно збіжний.

Тоді J – збіжний, диференційований на [c,d], при цьому $J'(y)=\int_{-\infty}^{\infty}\frac{\partial f}{\partial u}(x,y)\,dx.$

Розглянемо функцію $I(y)=\int_a^\omega \frac{\partial f}{\partial y}(x,y)\,dx$. Оскільки $\frac{\partial f}{\partial y}$ неперервна та I – рівномірно збіжний, то тоді за **Prp. 3.2.6.** (TODO: лінкування), $I\in\mathcal{R}([y,y_0])$. $\int_{y_0}^y I(t)\,dt=\int_a^\omega \int_{y_0}^y \frac{\partial f}{\partial y}(x,t)\,dt\,dx=\int_a^\omega f(x,y)-f(x,y_0)\,dx=J(y)-J(y_0).$

$$\int_{y_0}^{y} I(t) dt = \int_{a}^{\omega} \int_{y_0}^{y} \frac{\partial f}{\partial y}(x, t) dt dx = \int_{a}^{\omega} f(x, y) - f(x, y_0) dx = J(y) - J(y_0).$$

Отже, $J(y) = \int_{-\infty}^{y} I(t) \, dt - J(y_0)$ – збіжний $\forall y \in [c,d]$, як сума окремих збіжних доданків. Значить,

$$J'(y) = I(y) - 0 = \int_a^\omega \frac{\partial f}{\partial y}(x, y) \, dx.$$

Example 1.3.4 Обчислити $\int_0^{\frac{\pi}{2}} \frac{\arctan(\operatorname{tg} x))}{\operatorname{tg} x} \, dx.$ Ми розглянемо функцію $J(y) = \int_0^{\frac{\pi}{2}} \frac{\arctan(y \operatorname{tg} x))}{\operatorname{tg} x} \, dx$. Про неї відомо, що: $1) \ \exists y_0 = 0 : J(0) = 0, \ \text{тобто звіжний;}$ $2) \ \frac{\partial f}{\partial y} = \frac{1}{1 + y^2 \operatorname{tg}^2 x} \in C\left(\left[0, \frac{\pi}{2}\right) \times [-1, 1]\right);$

- 3) $\int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \lg^2 x} \, dx$ збіжний рівномірно принаймні на [-1,1] за мажорантною Ваєрштраса. Дійсно, $\frac{1}{1 + u^2 \operatorname{tg}^2 x} \le 1, \forall y \in [-1, 1].$

Отже, ми можемо продиференціювати функцію J(y) та отримати:

$$J'(y)=\int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \lg^2 x} \, dx \stackrel{t=\lg x}{=} \cdots = \frac{\pi}{2} \frac{1}{1+y}.$$
 $J(y)=\int \frac{\pi}{2} \frac{1}{1+y} \, dy = \frac{\pi}{2} \ln|1+y| + C.$ Оскільки $J(0)=0$, то звідси $C=0$. Наша мета буда – не знайти

Оскільки J(0)=0, то звідси C=0. Наша мета була – це знайти J(1). Таким чином,

$$J(1) = \int_0^{\frac{\pi}{2}} \frac{\arctan(\tan x)}{\tan x} dx = \frac{\pi}{2} \ln 2.$$

Proposition 1.3.5 Про невласне інтегрування невласного інтеграла з параметром

Задана функція
$$f \in C([a,+\infty) \times [c,+\infty))$$
, причому $f \geq 0$. Також відомо, що $\int_a^{+\infty} f(x,y) \, dx \in C([c,+\infty))$, а також $\int_c^{+\infty} f(x,y) \, dy \in C([a,+\infty))$. Тоді якщо $\int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy$ — збіжний, то $\int_a^{+\infty} \int_c^{+\infty} f(x,y) \, dy \, dx$ — збіжний. Навпаки теж. Нарешті, $\int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy = \int_a^{+\infty} \int_c^{+\infty} f(x,y) \, dy \, dx$.

Позначимо $I(y)=\int_{a}^{+\infty}f(x,y)\,dx$, про неї відомо, що $I\in C([c,+\infty))$, а також $\int_{c}^{+\infty}I(y)\,dy$ — збі-

Хочемо довести, що
$$\lim_{R\to +\infty} \int_a^R \int_c^{+\infty} f(x,y) \, dy \, dx = \int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy.$$

Відомо, що
$$\int_{c}^{+\infty} \int_{a}^{+\infty} f(x,y) \, dx \, dy$$
 - збіжний, тобто

$$\forall \varepsilon > 0 : \exists \Delta_1 : \forall d > c : d > \Delta_1 \implies \left| \int_d^{+\infty} \int_a^{+\infty} f(x, y) \, dx \, dy \right| < \frac{\varepsilon}{2}.$$

Також відомо, що $\int_{0}^{+\infty} f(x,y) \, dx$ – збіжний рівномірно за ознакою Діні, тоді

$$\forall \varepsilon > 0 : \exists \Delta_2 : \forall R > a : R > \Delta_2 \implies \forall y \in [c, +\infty) : \left| \int_R^{+\infty} f(x, y) \, dx \right| < \frac{\varepsilon}{2(d - c)}.$$

Оберемо $\Delta=\max\{\Delta_1,\Delta_2\}$, фіксуємо довільне $d>\Delta$ та $R>\Delta$ таким чином, щоб d>c,R>a.

А далі для доведення ліміту зробимо оцінку:

$$\left|\int_{c}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy-\int_{c}^{+\infty}\int_{a}^{R}f(x,y)\,dx\,dy\right|=\left|\int_{c}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|=$$

$$=\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy+\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq$$

$$\leq\int_{c}^{d}\left|\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy\right|<\int_{c}^{d}\frac{\varepsilon}{2(d-c)}+\frac{\varepsilon}{2}=\varepsilon.$$
Таким чином, дійсно,
$$\int_{a}^{+\infty}\int_{c}^{+\infty}f(x,y)\,dy\,dx=\int_{c}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy.$$

Інтеграл Діріхлє

Інтегралом Діріхле називають таку рівність, яку зараз доведу (про збіжність вже говорили) (TODO: лінкування)

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Розглянемо функцію $J(a)=\int_0^{+\infty}e^{-ax}\frac{\sin x}{x}\,dx$, причому підінтегральну функцію ми довизначимо в точці 0. Тоді підінтегральна функція неперервна.

Перш за все J(a) – рівномірно збіжний на $[0,+\infty)$, бо за ознакою Абеля, маємо:

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx - з \text{біжний рівномірно (доводили)};$$

 e^{-ax} – монотонна відносно x та рівномірно обмежена, бо $|e^{-ax}| \leq 1.$ Із цього ми отримуємо, що $J\in C([0,+\infty))$, а тому $J(0)=\lim_{a\to 0}J(a)$. Далі маємо наступне:

1)
$$\exists a_0 = 0 : J(0)$$
 – збіжний

1)
$$\exists a_0 = 0 : J(0)$$
 – збіжний;
2) $\frac{\partial f}{\partial a} = -e^{-ax} \sin x \in C([0, +\infty) \times [0, +\infty));$

3)
$$-\int_0^{+\infty} e^{-ax} \sin x \, dx$$
 збіжний рівномірно на $[\gamma, +\infty)$, де $\gamma>0$, за мажорантною Ваєрштраса.

Дійсно,
$$|e^{-ax}\sin x| \le e^{-\gamma x}$$
, а $\int_0^{+\infty} e^{-\gamma x} dx$ – збіжний.

Таким чином,
$$J'(a) = -\int_0^{+\infty} e^{-ax} \sin x \, dx = \dots = -\frac{1}{1+a^2}.$$

 $J(a) = - \operatorname{arctg} a + C$, причому ця рівність виконана $\forall a \in [\gamma, +\infty)$. Але водночас $J(0) = \lim_{a \to 0} J(a) = C$.

Проте ще маємо, що
$$|J(a)| = \left| \int_0^{+\infty} e^{-ax} \frac{\sin x}{x} \, dx \right| \le \int_0^{+\infty} \left| e^{-ax} \frac{\sin x}{x} \right| dx \stackrel{|\sin x| \le x}{\le} \int_0^{+\infty} e^{-ax} \, dx = \frac{1}{a}.$$
 А тому $J(a) \to 0$ при $a \to +\infty$. Звідси випливає, що $0 = -\frac{\pi}{2} + C \implies J(0) = \frac{\pi}{2}.$

Додатково дослідимо ось такий інтеграл та доведемо рівність:

$$\int_0^{+\infty} \frac{\sin ax}{x} \, dx = \frac{\pi}{2} \operatorname{sgn} a$$

Поки обмежимось a > 0, тод

$$F(a)=\int_0^{+\infty}\frac{\sin ax}{x}\,dx\stackrel{ax=t}{=}\int_0^{+\infty}\frac{\sin t}{t}\,dt=\frac{\pi}{2}.$$

$$F(-a)=-F(a)=-\frac{\pi}{2}\ \text{та}\ F(0)=0\ \text{- тут відносно ясно}.$$

$$F(-a) = -F(a) = -\frac{\pi}{2}$$
 та $F(0) = 0$ – тут відносно ясно.

Інтеграл Ойлера-Пуассона 1.5

Інтегралом Ойлера-Пуассона називають таку рівність, яку зараз доведу

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Позначимо $J = \int_0^{+\infty} e^{-x^2} dx$. Зробимо заміну x = at. А потім помножимо обидві частини рівності

на
$$e^{-a^2}$$
. Разом отримаємо рівність: $Je^{-a^2}=\int_0^{+\infty}e^{-a^2}e^{-a^2t^2}a\,dt.$

А потім проінтегруємо обидві частини рівності по
$$a$$
 на $[0,+\infty)$ – отримаємо:
$$\int_0^{+\infty} J e^{-a^2} \, da = J \int_0^{+\infty} e^{-a^2} \, da = J^2.$$
 А з іншого боку, ми отримали:

$$J^{2} = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}} e^{-a^{2}t^{2}} a \, dt \, da \stackrel{?}{=} \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}t^{2} - a^{2}} a \, da \, dt \stackrel{s=-a^{2}t^{2} - a^{2}}{=}$$

$$= \int_{0}^{+\infty} \frac{1}{2(t^{2} + 1)} \int_{-\infty}^{0} e^{s} \, ds \, dt = \int_{0}^{+\infty} \frac{1}{2(t^{2} + 1)} \, dt = \frac{\pi}{4}.$$

Отже, взявши квадратний корінь, отримаємо $J=\frac{\sqrt{\pi}}{2}$ (ясно, що J – невід'ємне число). Варто обґрунтувати рівняння зі знаком питання. Для цього перевіримо всі умови для невласного інтегрування невласного інтеграла. Функція $f(t,a)=ae^{-a^2(t^2+1)}\in C([0,+\infty)\times[0,+\infty)),$ причому

$$\int_0^{+\infty} ae^{-a^2(t^2+1)} da = \frac{1}{2} \frac{1}{t^2+1} \in C([0,+\infty)) \text{ та } \int_0^{+\infty} ae^{-a^2(t^2+1)} dt = Je^{-a^2} \in C([0,+\infty)) \text{ (неважко довести, шо } J \text{ рівномірно збігається}).$$

довести, шо J рівномірно збігається). Нарешті, $\int_0^{+\infty} \int_0^{+\infty} ae^{-a^2(t^2+1)}\,da\,dt$ ми знайшли вище, який виявився збіжним. Отже, рівність '?'

Гамма-функція

Definition 1.6.1 Гамма-функцією називають таку функцію:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx, \qquad \alpha > 0$$

Lemma 1.6.2 При $\alpha > 0$ гамма-функція збіжна.

$$\int_0^{+\infty} x^{\alpha-1} e^{-x} dx = \int_0^1 x^{\alpha-1} e^{-x} dx + \int_1^{+\infty} x^{\alpha-1} e^{-x} dx.$$

Розглянемо перший інтеграл. Особлива точка – це точка x=0. Порівняємо з інтегралом $\int_{-\infty}^{1} x^{\alpha-1} dx$ – збіжний при $\alpha>0$. Маємо:

 $\lim_{x\to 0}\frac{x^{\alpha-1}e^{-\bar{x}}}{x^{\alpha-1}}=1. \ \text{Отже, обидва збіжні, тому перший доданок}-збіжний.$

Розглянемо другий інтеграл. Особлива точка – це $x=\infty$. Порівняємо з інтегралом $\int_{1}^{+\infty} e^{-\frac{x}{2}} dx$ —

збіжний при
$$\alpha>0$$
. Маємо:
$$\lim_{x\to\infty}\frac{x^{\alpha-1}e^{-x}}{e^{-\frac{x}{2}}}=\begin{bmatrix} 0 \text{ за Лопіталем, }\alpha\geq 1\\ \lim_{x\to\infty}\frac{1}{x^{1-\alpha}e^{\frac{x}{2}}}=0, \alpha<1 \end{bmatrix}.$$
 Отже, обидва збіжні, тому другий доданок – збіжний. Остаточно, $\Gamma(\alpha)$ – збіжний при $\alpha>0$.

Lemma 1.6.3 $\Gamma \in C^{\infty}((0,+\infty))$.

Proof.

Коли будемо диференціювати n разів гамма-функцію, ми очікуватимемо таке:

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x \, dx.$$

Маємо
$$\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^n x \, dx = \int_0^1 x^{\alpha-1} e^{-x} \ln^n x \, dx + \int_1^{+\infty} x^{\alpha-1} e^{-x} \ln^n x \, dx.$$

$$|x^{\alpha-1}e^{-x}\ln^n x| = x^{\alpha-1}e^{-x}(-1)^n \ln^n x \le \begin{bmatrix} (-1)^n x^{b-1}e^{-x}\ln^n x \\ (-1)^n x^{a-1}e^{-x}\ln^n x \end{bmatrix}$$

Спробуемо зараз довести, що $\Gamma^{(n)}$ – рівномірно збіжний на проміжку $[a,b]\subset (0,+\infty)$. Маємо $\int_0^{+\infty} x^{\alpha-1}e^{-x}\ln^n x\,dx=\int_0^1 x^{\alpha-1}e^{-x}\ln^n x\,dx+\int_1^{+\infty} x^{\alpha-1}e^{-x}\ln^n x\,dx.$ Розглянемо перший інтеграл. Використаємо мажорантну Ваєрштрасса: $|x^{\alpha-1}e^{-x}\ln^n x|=x^{\alpha-1}e^{-x}(-1)^n\ln^n x\leq \begin{bmatrix} (-1)^nx^{b-1}e^{-x}\ln^n x\\ (-1)^nx^{a-1}e^{-x}\ln^n x \end{bmatrix}.$ Ситуації тут можуть бути різними, але поведінка інтеграла не зміниться. Я буду на розгляд брати перший випадок. Тобто дослідимо $\int_0^1 x^{b-1}e^{-x}\ln^n x\,dx$ на збіжність. Відомо, що $\ln x=o(x^{-\varepsilon}), x\to 0$, де $\varepsilon > 0$. Тоді правилом Лопіталя можна довести, що $\ln^n x = o(x^{-\varepsilon}), x \to 0$.

Завдяки цьому, ми візьмемо $\int_0^1 x^{b-1} x^{-\varepsilon} e^{-x} dx$ – збіжний, допоки $b > \varepsilon$. Це доводили під час попередньої леми. А далі $\lim_{x \to 0} \frac{x^{b-1} e^{-x} \ln^n x}{x^{b-1} x^{-\varepsilon} e^{-x}} = \lim_{x \to 0} \frac{\ln^n x}{x^{-\varepsilon}} = 0.$

Отже, $\int_0^1 x^{b-1} e^{-x} \ln^n x \, dx$ – збіжний. І тому за мажорантною Вейєрштрасса, $\int_0^1 x^{\alpha-1} e^{-x} \ln^n x \, dx$ -

Аналогічно доводиться, що $\int_{1}^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \, dx$ – збіжний рівномірно на [a,b]. Там та сама оцінка

на мажоранту, а також треба використати $\ln x = o(x^\varepsilon), x \to +\infty$, де $\varepsilon > 0$. Остаточно, $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^n x \, dx$ – збіжний рівномірно на $[a,b] \subset (0,+\infty)$, що й доводить той факт, $\Gamma \in C^{\infty}((0,+\infty))$

Theorem 1.6.4 $\forall \alpha > 0 : \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

Вказівка: $\Gamma(\alpha+1)$ інтегруємо частинами, взявши за $u=x^{\alpha}$, $dv=e^{-x}dx$.

Corollary 1.6.5 $\Gamma(n+1) = n!$ при $n \in \mathbb{N}$.

Proof.

Дійсно, за попередньою теоремою, маємо таку рівність:

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)(n-2)\dots 2 \cdot 1\Gamma(1).$$

Нарешті, обчислимо
$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

Corollary 1.6.6
$$\Gamma\left(\frac{1}{2} + n\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$
.

Proof.

Дійсно, за попередньою теоремою, маємо таку рівність:

$$\Gamma\left(\frac{1}{2}+n\right) = \Gamma\left(n-\frac{1}{2}+1\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{3}{2}+1\right) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\dots\left(n-\frac{2n-1}{2}\right)\Gamma\left(\frac{1}{2}\right)$$

$$= \frac{(2n-1)(2n-3)\dots 1}{2^n}\Gamma\left(\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n}\Gamma\left(\frac{1}{2}\right).$$

Нарешті, обчислимо
$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \stackrel{\text{Заміна: } t = \sqrt{x}}{=} 2 \int_0^{+\infty} e^{-t^2} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

Remark 1.6.7 До речі кажучи, завдяки функціональному рівнянню $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$, ми можемо продовжити нашу функцію на $\mathbb{R}\setminus\mathbb{Z}$.

Якщо я хочу порахувати $\Gamma(-0.5)$, то для цього я просто визначаю його як $\Gamma(-0.5) = \frac{\Gamma(0.5)}{-0.5}$. Для цілих чисел я продовження не можу зробити, бо $\Gamma(-1) = \frac{\Gamma(0)}{-1}$, проте $\Gamma(0)$ тупо не визначена.

Графік гамма-функції

Proposition 1.6.8 $\lim_{\alpha \to +\infty} \Gamma(\alpha) = +\infty$.

Proof.

Маємо $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$ для великих $\alpha>0$. Оцінимо $\Gamma(\alpha)$

$$\Gamma(\alpha) > \int_{1}^{+\infty} x^{\alpha - 1} e^{-x} dx > \int_{1}^{+\infty} e^{-x} dx = \frac{1}{e}.$$

Таким чином, $\Gamma(\alpha+1) > \frac{\alpha}{\epsilon} \to +\infty$ при $\alpha \to +\infty$.

Proposition 1.6.9 Гамма-функція опукла вниз на проміжку $(0, +\infty)$.

Proof

Дійсно,
$$\Gamma''(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^2 x \, dx > 0$$
 при всіх $\alpha > 0$.

Proposition 1.6.10 $\Gamma'(1) = -\gamma$, де γ – константа Ойлера-Маскероні.

Proof

$$\Gamma'(1) = \int_0^{+\infty} e^{-x} \ln x \, dx \stackrel{\text{заміна:}}{=} \int_0^1 \ln(-\ln u) \, du =$$

Пригадаємо, що $\ln a = \lim_{n \to \infty} n(\sqrt[n]{a} - 1)$. За допомогою цього ліміту, ми можемо отримати наступне:

$$= \int_0^1 \ln\left(\lim_{n\to\infty} n(1-\sqrt[n]{u})\right) du \stackrel{?}{=} \lim_{n\to\infty} \int_0^1 \ln n + \ln\left(1-\sqrt[n]{u}\right) du = \lim_{n\to\infty} \left(\ln n + \int_0^1 \ln\left(1-\sqrt[n]{u}\right) du\right) = \lim_{n\to\infty} \left(\ln n + \ln\left(1-\sqrt[n]{u}\right) d$$

Тепер згадаємо, що $\ln(1-t) = -\sum_{k=1}^{\infty} \frac{t^k}{k}$, тож звідси випливає наступне:

$$\int_0^1 \ln(1 - \sqrt[n]{x}) \, du = -\int_0^1 \sum_{k=1}^\infty \frac{(\sqrt[n]{u})^k}{k} \, du = -\sum_{k=1}^\infty \int_0^1 \frac{u^{\frac{k}{n}}}{k} \, du = -\sum_{k=1}^\infty \frac{1}{k} \frac{1}{\frac{k}{n} + 1} = \sum_{k=1}^\infty \frac{n}{k(k+n)} = -\sum_{k=1}^\infty \frac{n}{k} \frac{1}{k} = \sum_{k=1}^\infty \frac{n}{k(k+n)} = -\sum_{k=1}^\infty \frac{n}{k} \frac{n}{k} = -\sum_{k=1}^\infty \frac{n}{k} = -\sum_$$

$$= -\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+n} \right) = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

$$\equiv \lim_{n \to \infty} \left(\ln n - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right) = -\gamma.$$

Окремо варто пояснити рівність $\stackrel{?}{=}$, щоб все було цілком строго. (TODO: додати)

Proposition 1.6.11 Гамма-функція логарифмічно опукла вниз на проміжку $(0, +\infty)$.

Proof.

Тобто хочемо довести, що $\ln \Gamma$ опукла вниз на $(0, +\infty)$. Маємо $(\ln \Gamma)'' = \frac{1}{\Gamma^2} (\Gamma'' \Gamma - (\Gamma')^2).$

$$\Gamma^{2}(x^{2} - x^{2})^{2}$$
 Також, за допомогою нерівності Коші-Буняковського, ми доведемо наступне:
$$(\Gamma'(\alpha))^{2} = \left(\int_{0}^{+\infty} x^{\alpha-1}e^{-x}\ln x\,dx\right)^{2} = \left(\int_{0}^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\right)\left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\ln x\right)\right)^{2} \leq$$

$$\leq \left(\int_{0}^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\right)^{2}\,dx\right)\left(\int_{0}^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\ln x\right)^{2}\,dx\right) = \int_{0}^{+\infty} x^{\alpha-1}e^{-x}\,dx\int_{0}^{+\infty} x^{\alpha-1}e^{-x}\ln^{2}x\,dx =$$

$$= \Gamma(\alpha)\Gamma''(\alpha).$$

Власне, це доводить, що $(\Gamma')^2 - \Gamma\Gamma'' \le 0$, а тому звідси $(\ln \Gamma)'' > 0$, що доводить бажане.

1.7 Бета-функція

Definition 1.7.1 Бета-функцією називають таку функцію:

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \qquad \alpha, \beta > 0$$

Lemma 1.7.2 При $\alpha, \beta > 0$ бета-функція збіжна.

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \int_0^{\frac{1}{2}} x^{\alpha - 1} (1 - x)^{\beta - 1} dx + \int_{\frac{1}{2}}^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

Розглянемо перший інтеграл. Особлива точка – це точка x=0. Порівняємо з інтегралом $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{\alpha-1} dx$

— збіжний для $\alpha>0$. Маємо $\lim_{x\to 0}\frac{x^{\alpha-1}(1-x)^{\beta-1}}{x^{\alpha-1}}=1$. Отже, обидва збіжні, тому перший доданок — збіжний. Розглянемо другий інтеграл. Проводимо заміну 1-x=t, тоді маємо:

 $-\int_{a}^{2}(1-t)^{\alpha-1}t^{\beta-1}\,dt$ – це той самий перший доданок. І він вже буде збіжним, якщо $\beta>0$.

Остаточно, $B(\alpha, \beta)$ – збіжний при $\alpha > 0, \beta > 0$.

Proposition 1.7.3
$$B(\alpha,\beta)=\int_0^{+\infty} \frac{y^{\alpha-1}}{(1+y)^{\alpha+\beta}}\,dy.$$

 Вказівка: зробити заміну $x=\frac{y}{1+y}.$

Proposition 1.7.4 $B(\alpha, \beta) = B(\beta, \alpha)$.

Bказівка: x = 1 - t.

Proposition 1.7.5
$$B(\alpha,\beta) = \frac{\alpha-1}{\beta+\alpha-1}B(\alpha-1,\beta)$$
 при $\alpha>1.$

Вказівка: інтегруємо частинами, де $u = x^{\alpha-1}$ та решта dv

Зауважимо, що
$$B(\alpha,\beta)=B(\beta,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\beta-1,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\alpha,\beta-1)$$
 при $\beta>1.$

Ще зауважимо, що
$$B(\alpha,1)=\frac{1}{\alpha}$$
, якщо порахувати бета-функцію. Використовуючи два зауваження, можемо отримати ось це:
$$B(\alpha,n)=\frac{n-1}{\alpha+n-1}B(\alpha,n-1)=\frac{n-1}{\alpha+n-1}\frac{n-2}{\alpha+n-2}\dots\frac{2}{\alpha+2}\frac{1}{\alpha+1}\frac{1}{\alpha}=\frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)}.$$
 Зокрема при $\alpha=m$ ми отримаємо $B(m,n)=\frac{(n-1)!(m-1)!}{(m+n-1)!}.$

Зв'язок між гамма- та бета-функціями. Основна теорема гамма-функції 1.8

Proposition 1.8.1 $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n).$

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx \stackrel{x = \ln \frac{1}{u}}{=} \int_0^1 \ln^{\alpha - 1} \frac{1}{u} du = \int_0^1 (-\ln u)^{\alpha - 1} du = \int_0^1 \lim_{t \to 0} \left(\frac{1 - u^t}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to 0} \left(\frac{1 - u^t}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{\frac{1}{n}}\right)^{\alpha - 1} du \stackrel{\Gamma \in C((0, +\infty))}{=} \lim_{n \to \infty} \int_0^1 n^{\alpha - 1} (1 - u^{\frac{1}{n}})^{\alpha - 1} du \stackrel{u = s^n}{=} \lim_{n \to \infty} n^{\alpha} \int_0^1 s^{n - 1} (1 - s)^{\alpha - 1} ds = \lim_{n \to \infty} n^{\alpha} B(n, \alpha)$$

$$\begin{array}{l} \textbf{Theorem 1.8.2 Функціональне рівняння Ойлера} \\ \Gamma(\alpha) \cdot \Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha} \text{ при } 0 < \alpha < 1. \\ \Gamma\left(\frac{1}{2} + \alpha\right) \cdot \Gamma\left(\frac{1}{2} - \alpha\right) = \frac{\pi}{\cos \pi \alpha} \text{ при } -\frac{1}{2} < \alpha < \frac{1}{2}. \end{array}$$

Proof.

Використовучи **Prp 3.8.1.** (TODO: лінкування) отримаємо

$$\Gamma(\alpha)\Gamma(1-\alpha) = \lim_{n\to\infty} n^{\alpha} \frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \lim_{n\to\infty} n^{1-\alpha} \frac{(n-1)!}{(1-\alpha)(2-\alpha)\dots(n-\alpha)} =$$

$$= \lim_{n\to\infty} \frac{n}{n-\alpha} \frac{1}{\alpha\left(1+\frac{\alpha}{1}\right)\left(1+\frac{\alpha}{2}\right)\dots\left(1+\frac{\alpha}{n-1}\right)} \frac{1}{\left(1-\frac{\alpha}{1}\right)\left(1-\frac{\alpha}{2}\right)\dots\left(1-\frac{\alpha}{n-1}\right)} =$$

$$= \frac{1}{\alpha} \lim_{n\to\infty} \frac{1}{\left(1-\frac{\alpha^2}{1^2}\right)\left(1-\frac{\alpha^2}{2^2}\right)\dots\left(1-\frac{\alpha^2}{(n-1)^2}\right)}$$

$$\sin(\pi\alpha) = \pi\alpha \lim_{n \to \infty} \left(1 - \frac{\alpha^2}{1^2}\right) \left(1 - \frac{\alpha^2}{2^2}\right) \dots \left(1 - \frac{\alpha^2}{(n-1)^2}\right) \stackrel{\text{a6o}}{=} \pi\alpha \prod_{n=1}^{\infty} \left(1 - \frac{\alpha^2}{n^2}\right).$$

Власне звідси отримаємо $\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha}$

Друга формула вказівка: заміна $\beta = \alpha + \frac{1}{2}$

Theorem 1.8.3 Зв'язок між
$$\Gamma$$
 та B $B(\alpha,\beta)=rac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$

Proof.

Розглянемо
$$\Gamma(\alpha+\beta)$$
 та проведемо заміну $x=y(t+1), dx=(t+1)\,dy$.
$$\Gamma(\alpha+\beta)=\int_0^{+\infty}x^{\alpha+\beta-1}e^{-x}\,dx=(t+1)^{\alpha+\beta}\int_0^{+\infty}y^{\alpha+\beta-1}e^{-y(t+1)}\,dy.$$

Отримаємо
$$\frac{\Gamma(\alpha+\beta)}{(1+t)^{\alpha+\beta}} = \int_0^{+\infty} y^{\alpha+\beta-1} e^{-y(t+1)} \, dy$$

Помножимо обидві частини на
$$t^{\alpha-1}$$
 та проінтегруємо від 0 до $+\infty$ по t :
$$\int_0^{+\infty} \frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \Gamma(\alpha+\beta) = \int_0^{+\infty} \int_0^{+\infty} y^{\alpha+\beta-1} t^{\alpha-1} e^{-y} e^{-yt} \, dy \, dt$$

$$\Gamma(\alpha+\beta) \cdot B(\alpha,\beta) = \int_0^{+\infty} y^{\beta-1} e^{-y} \int_0^{+\infty} y^{\alpha} t^{\alpha-1} e^{-yt} \, dt \, dy.$$

Внутрішній інтеграл при заміні yt=x стане рівним $\Gamma(\alpha)$. Його виносимо з-під зовнішнього інтегралу, а сам інтеграв вже $\epsilon \Gamma(\beta)$. Тоді

$$\Gamma(\alpha + \beta)B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta).$$

А тепер час обґрунтувати обережно зміну порядку інтегрування: із dy dt dy.

Розглянемо функцію $f(t,y) = y^{\alpha+\beta-1}t^{\alpha-1}e^{-y(t+1)}$. Ми обмежимось лише випадком $\alpha > 1, \beta > 1$. Зрозуміло, що $f \ge 0$, а також $f \in C([0,+\infty) \times [0,+\infty))$. В т. (t,0),(0,y) все ок, тому що при наших α, β ми маємо $y^{\alpha+\beta-1} \to 0, t^{\alpha-1} \to 0$ при $y \to 0, t \to 0$.

$$I(y)\int_0^{+\infty} f(t,y)\,dt = \Gamma(\alpha)y^{\beta-1}e^{-y}$$
 - це ми рахували вище. $F\in C([0,+\infty))$.

$$J(t)=\int_0^{+\infty}f(t,y)\,dy=\Gamma(\alpha+\beta)\frac{t^{\alpha-1}}{(t+1)^{\alpha+\beta}}\text{ -- теж вище було. }J\in C([0,+\infty)).$$

Також
$$\int_0^{+\infty} \int_0^{+\infty} f(t,y) dt ds = \Gamma(\alpha)\Gamma(\beta)$$
, тобто це – збіжний інтеграл.

Отже, зміна порядку інтегралів є справедливою лише для $\alpha > 1, \beta > 1$, тобто

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 справедлива для $\alpha,\beta>1.$

$$B(\alpha-1,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1}B(\alpha,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1} \cdot \frac{\alpha+\beta-1}{\beta-1}B(\alpha,\beta), \text{ а тут уже } \alpha,\beta > 1. \text{ Тоді}$$

$$B(\alpha-1,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}B(\beta,\alpha) = \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} =$$

$$= \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}\frac{(\alpha-1)\Gamma(\alpha-1)(\beta-1)\Gamma(\beta-1)}{(\alpha+\beta-1)(\alpha+\beta-2)\Gamma(\alpha+\beta-2)} = \frac{\Gamma(\alpha-1)\Gamma(\beta-1)}{\Gamma(\alpha-1+\beta-1)}.$$
 Отже, ми довели нашу формулу зв'язка для всіх $\alpha>0,\beta>0.$

Припустимо, що задана функція $f:(0,+\infty)\to\mathbb{R}$, що задовольняє умовам:

- 1) f(1) = 1;
- 2) $f(\alpha + 1) = \alpha f(\alpha)$ при $\alpha > 0$;
- 3) f логарифмично опукла вниз функція на $(0, +\infty)$.

Тоді функція $f \equiv \Gamma$, тобто є гамма-функцією.

Theorem 1.8.4 Теорема Бора-Молерупа

Тобто гамма-функція – єдина можлива функція, яка задовольняє трьом властивостям вище.

Із умов 1), 2) випливає, що f(n)=(n-1)! при $n\in\mathbb{N}$. Отже, нам достатньо показати рівність $f(\alpha) = \Gamma(\alpha)$ лише при $\alpha \in (0,1]$.

Умова 3) каже, що $\ln f$ опукла вниз на $(0,+\infty)$. Це означає, що на інтервалі [n-1,n+1] та точці $n+\alpha, \alpha \in (0,1], n \geq 2$ маємо наступну нерівність:

$$\frac{\ln f(n-1) - \ln f(n)}{n-1-n} \leq \frac{\ln f(n+\alpha) - \ln f(n)}{n+\alpha-n} \leq \frac{\ln f(n+1) - \ln f(n)}{n+1-n}.$$

 $\frac{\ln f(n-1) - \ln f(n)}{n-1-n} \le \frac{\ln f(n+\alpha) - \ln f(n)}{n+\alpha-n} \le \frac{\ln f(n+1) - \ln f(n)}{n+1-n}.$ Зауважимо, що $\ln f(n-1) - \ln f(n) = \ln \frac{1}{n-1} = -\ln(n-1)$, а також $\ln f(n+1) - \ln f(n) = \ln n$.

Зважаючи на знаменники, отримаємо такі нерівності:
$$\ln(n-1) \leq \frac{\ln f(n+\alpha) - \ln(n-1)!}{\alpha} \leq \ln n.$$

$$\ln(n-1)^{\alpha} = \alpha \ln(n-1) \le \ln f(n+\alpha) - \ln(n-1)! \le \alpha \ln n = \ln n^{\alpha}.$$

Далі проекспоненціюємо нерівності з обох сторін:

$$(n-1)^{\alpha} \le \frac{f(n+\alpha)}{(n-1)!} \le n^{\alpha};$$

$$(n-1)^{\alpha}(n-1)! \le f(n+\alpha) \le n^{\alpha}(n-1)!.$$

За пунктом 2), отримаемо
$$f(n+\alpha)=(\alpha+n-1)\dots(\alpha+1)\alpha f(\alpha)$$
. Звідси вилпиває:
$$\frac{(n-1)^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \leq f(\alpha) \leq \frac{n^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \frac{(n-1)^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \leq f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \frac{\alpha+n}{n}$$
 Дана нерівність виконана для всіх $n \geq 2$ та $\alpha \in (0,1]$. Зокрема ми взяли фіксоване n , тому щойно

$$\frac{n^{\alpha} n!}{\alpha(\alpha+1)\dots(\alpha+n)} \le f(\alpha) \le \frac{(n+1)^{\alpha}(n+1)!}{\alpha(\alpha+1)\dots(\alpha+n+1)} \frac{\alpha+n+1}{n+1}.$$

Дана нерівність виконана для всіх
$$n \geq 2$$
 та $\alpha \in (0,1]$. Зокрема ми взяли отримана нерівність працюватиме й для $n+1$. Коротше, буде
$$\frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \leq f(\alpha) \leq \frac{(n+1)^{\alpha}(n+1)!}{\alpha(\alpha+1)\dots(\alpha+n+1)} \frac{\alpha+n+1}{n+1}.$$
 Нас з цих двох нерівностей цікавитиме ланцюг з червоних нерівностей:
$$f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \frac{\alpha+n}{n} \leq \frac{\alpha+n}{n} f(\alpha).$$

$$\frac{n}{\alpha+n} f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \leq f(\alpha).$$

Спрямуємо $n\to\infty$. Звідси отримаємо $f(\alpha)=\lim_{n\to\infty}n^\alpha B(\alpha,n)\frac{n}{\alpha+n}$. Проте якщо продовжити рівність, то можна зауважити, що $\lim_{n\to\infty}n^\alpha B(\alpha,n)\frac{n}{\alpha+n}=\Gamma(\alpha)$.

Remark 1.8.5 Можна було закінчити доведення інакше. Представимо собі, що ми не знаємо, що $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$. Ми в кінці для кожного $\alpha \in (0, 1]$ отримали $f(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$, а границя приймає єдине значення. Оскільки нам вже відомо, що Γ задовольняє 1), 2), 3), то ми би такими сами міркуваннями отримали $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$ (інший спосіб доведення цієї формули). Оскільки границя єдина, то $\Gamma(\alpha) = f(\alpha)$.