Jaime S. Cardoso

jaime.cardoso@fe.up.pt

INESC TEC and Faculdade de Engenharia, Universidade do Porto, Portugal

Introduction to Machine Learning

PDEEC – Machine Learning 2018/19 Sept 20th, 2018, Porto, Portugal

Roadmap

- What's Machine Learning
- Distinct Learning Problems
- For the same problem, different solutions
- Different solutions but with common traits
 - ... and ingredients
- Avoiding overfitting and data memorization
- A fair judgement of your algorithm
- Some classical ML algorithms
- Beyond the classics

Artificial Intelligence (AI)

- "[...automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning..." (Bellman, 1978)
- "The branch of computer science that is concerned with the automation of intelligent behaviour." (Luger and Stubblefield, 1993)
- "The ultimate goal of AI is to create technology that allows computational machines to function in a highly intelligent manner. (Li Deng 2018)

Al: three generations

1st wave of Al: the sixties

 emulates the decision-making process of a human expert

Al: three generations

1st wave of Al: the sixties

- Based on expert knowledge
 - "if-then-else"
- Effective in narrow-domain problems
- Focus on the head or most important parameters (identified in advance), leaving the "tail" parameters and cases untouched.
- Transparent and interpretable
- Difficulty in generalizing to new situations and domains
- Cannot handle uncertainty
- Lack the ability to learn algorithmically from data

Al: three generations

Data

2nd wave of AI: the eighties

Based on (shallow) machine learning

Output

An example*

 Problem: sorting incoming fish on a conveyor belt according to species

- Assume that we have only two kinds of fish:
 - Salmon
 - Sea bass

Picture taken with a camera

An example: decision process

- What kind of information can distinguish one species from the other?
 - Length, width, weight, number and shape of fins, tail shape, etc.
- What can cause problems during sensing?
 - Lighting conditions, position of fish on the conveyor belt, camera noise, etc.
- What are the steps in the process?
 - Capture image -> isolate fish -> take measurements -> make decision

An example: our system

Sensor

The camera captures an image as a new fish enters the sorting area

Preprocessing

- Adjustments for average intensity levels
- Segmentation to separate fish from background

Feature Extraction

 Assume a fisherman told us that a sea bass is generally longer than a salmon. We can use **length** as a feature and decide between sea bass and salmon according to a threshold on length.

An example: features

We estimate the system's probability of error and obtain a discouraging result of 40%. Can we improve this result?

An example: features

- Even though sea bass is longer than salmon on the average, there are many examples of fish where this observation does not hold
- Committed to achieve a higher recognition rate, we try a number of features
 - Width, Area, Position of the eyes w.r.t. mouth...
 - only to find out that these features contain no discriminatory information
- Finally we find a "good" feature: average intensity of the fish scales

An example: features

Histogram of the lightness feature for two types of fish in **training samples**. It looks easier to choose the threshold but we still can not make a perfect decision.

An example: multiple features

- We can use two features in our decision:
 - lightness: \boldsymbol{x}_1
 - length: \boldsymbol{x}_2
- Each fish image is now represented as a point (feature vector)

$$\mathbf{x} = \hat{\mathbf{e}} \begin{array}{c} \dot{\mathbf{x}}_1 \, \dot{\mathbf{u}} \\ \dot{\mathbf{e}} \\ \dot{\mathbf{e}} \\ \mathcal{X}_2 \, \dot{\mathbf{u}} \end{array}$$

in a two-dimensional feature space.

An example: multiple features

Avg. scale intensity

Scatter plot of lightness and length features for training samples. We can compute a **decision boundary** to divide the feature space into two regions with a classification rate of 95.7%.

An example: cost of error

- We should also consider costs of different errors we make in our decisions.
- For example, if the fish packing company knows that:
 - Customers who buy salmon will object vigorously if they see sea bass in their cans.
 - Customers who buy sea bass will not be unhappy if they occasionally see some expensive salmon in their cans.
- How does this knowledge affect our decision?

An example: cost of error

Avg. scale intensity

We could intuitively shift the decision boundary to minimize an alternative cost function

An example: generalization

The issue of generalization

 The recognition rate of our linear classifier (95.7%) met the design specifications, but we still think we can improve the performance of the system

 We then design a classifier that obtains an impressive classification rate of 99.9975% with the following decision

boundary

Data Driven Design

- When to use?
 - Difficult to reason about a generic rule that solves the problem
 - Easy to collect examples (with the solution)

Data Driven Design

- There is little or no domain theory
- Thus the system will learn (i.e., generalize) from training data the general input-output function
 - Programming computers to use example data or past experience
- The system produces a program that implements a function that assigns the decision to any observation (and not just the input-output patterns of the training data)

What is Machine Learning?

Automating the Automation

Data Driven Design

- A good learning program learns something about the data beyond the specific cases that have been presented to it
 - Indeed, it is trivial to just store and retrieve the cases that have been seen in the past
 - This does not address the problem of how to handle new cases, however
- Over-fitting a model to the data means that instead of general properties of the population we learn idiosyncracies (i.e., nonrepresentative properties) of the sample.

DISTINCT LEARNING PROBLEMS

Taxonomy of the Learning Settings

Goals and available data dictate the type of learning problem

- Supervised Learning
 - Classification
 - Binary
 - Multiclass
 - Nominal
 - Ordinal
 - Regression
 - Ranking
 - Counting
- Semi-supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- etc.

Supervised Learning: Examples

Classification

Denoising

Classification/Regression

- **Training:** given a *training set* of labeled examples $\{(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_N, \mathbf{y}_N)\}$, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Regression

- Predicting house price
 - Output: price (a scalar)
 - Inputs: size, orientation, localization, distance to key services, etc.

 Given a collection of labelled examples (= houses with known price), come up with a function that will predict the price of new examples (houses).

Supervised Learning in computer vision

... but with common traits

FOR THE SAME PROBLEM, DIFFERENT SOLUTIONS

Design of a Classifier

Design of a Classifier

Design of a Classifier

Taxonomy of the Learning Tools

Properties

 directly map each x onto a class label

Tools

- Least Square Classification
- Fisher's Linear Discriminant
- SVM
- Etc.

Properties

 Model posterior probabilities (p(C_k|x)) directly

Tools

Logistic Regression

Properties

- model class priors (p(C_k)) & classconditional densities (p(x|C_k))
- use to compute posterior probabilities (C_k|x))

Tools

Bayes

Pros and Cons of the three approaches

- Discriminant Functions are the most simple and intuitive approach to classify data, but do not allow to
 - compensate for class priors (e.g. class 1 is a very rare disease)
 - minimize risk (e.g. classifying sick person as healthy more costly than classifying healthy person as sick)
 - implement reject option (e.g. person cannot be classified as sick or healthy with a sufficiently high probability)

Pros and Cons of the three approaches

- Generative models provide a probabilistic model of all variables that allows to synthesize new data and to do novelty detection but
 - generating all this information is computationally expensive and complex and is not needed for a simple classification decision
- Discriminative models provide a probabilistic model for the target variable (classes) conditional on the observed variables
 - this is usually sufficient for making a well-informed classification decision without the disadvantages of the simple Discriminant Functions

DIFFERENT SOLUTIONS BUT WITH COMMON INGREDIENTS

Common steps

- The learning of a model from the data entails:
 - Model representation
 - Evaluation
 - Optimization

Linear Regression

Model Representation

Linear Regression

Evaluation

Linear Regression

 Optimization: finding the model that maximizes our measure of quality

Let's design a classifier

- Use the (hyper-)plane orthogonal to the line joining the means
 - project the data in the direction given by the line joining the class means

Let's design a classifier

Fisher's linear discriminant

- Every algorithm has three components:
 - Model representation
 - Evaluation
 - Optimization
- Model representation: class of linear models
- Evaluation: find the direction w that

maximizes
$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
 $J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$

Optimization

$$\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

Hyper parameters / user defined parameters

AVOIDING OVERFITTING AND DATA MEMORIZATION

Regularization

- To build a machine learning algorithm we specify model family, a cost function and optimization procedure
- Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
 - There are many regularization strategies
- Regularization works by trading increased bias for reduced variance. An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.