Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

United States
Department of
Agriculture

NATIONAL
AGRICULTURAL
LIBRARY

Advancing Access to
Global Information for
Agriculture

SEDIMENT TREND STUDY
L.A. RIVER FLOOD PREVENTION PROJECT
1973
ANGELES NATIONAL FOREST
CALIFORNIA REGION

Prepared by:

EARL C. RUBY

Hydrologist

Angeles National Forest

Approved:

ROBERT A. REESE

Watershed Mgt. Officer Angeles National Forest

NOTE:

This study was begun by the Angeles National Forest in February, 1972, in conjunction with Management Sciences Staff, of Berkeley. Bill Kennedy was the man who helped to data, develop the analytical procedure, and array the the preparation of the computer programs that supervised He also spent considerable time and effort in are used. training Angeles personnel in the use of the computer and formating of the data. The first draft of this study and submitted to the Forest by Bill. In the was written subsequent revisions and updates, the data has been refined a great deal and some supplemental work has also been done. But the basic concept and systems analysis have not changed much. Bill passed away Christmas, 1972, before this study was brought to final draft.

SEDIMENT TREND STUDY

TABLE OF CONTENTS

I. THE WA	ATERSHED	Page
A. V	Validity of Debris Records Table 1 - Size of Subunits in LAWS Table 2 - Range of Sample Size	1 2 3
В. Т	The Debris/Generator System Figure 1 - The Sediment System	4 6
C. N	Need for Evaluation	7
D. F	Factors that Influence Debris Yield	8
II. THE E	EVALUATION	9
A. T	The Components of Comparability	9
В. Т	The Comparable Watershed Figure 2 - Dunsmore Debris Production Curves Figure 3 - Regression Lines of Dunsmore and LAWS	10 11 13
C. R	Results of the Analysis	14
D. T	The Magnitude of the Response to Treatment Figure 4 - Before and After Treatment Trends	15 16
E. D	Debris Storage in the System Figure 5 - Values of "b" Coefficient Table 3 - Storage of Debris, Dunsmore	17 18 20
III. SUMM	IARY	22

DETERMINING TRENDS OF SEDIMENT PRODUCTION WITHIN INDIVIDUAL WATERSHEDS OF THE LOS ANGELES RIVER WATERSHED

I. The Watershed

The Los Angeles River Watershed System (L.A.W.S.) is only a portion of the actual L.A. River Watershed. It includes only that portion which has been monitored for sediment yield. It was not established as a study area, but evolved through time as sediment trap basins were constructed. (See Appendix 4, Sec. 4, which is the list of basins and backup data.) Several concepts are essential to better understand the complex nature of this study area:

A. Validity of Debris Records

- 1. Annual sediment yield is, in early records, often the amount of sediment removed from the trap basin and may be a "truck count", or a surveyed measurement.
- 2. It may be an annual yield, or an accumulation of 2 to 7 or more years of annual yields between cleanout schedules. The zero years, therefore, may be "phantom zeros", because there may have been unmeasured inflow.
- 3. The cleanout was designed to restore the basin capacity, not to measure inflow, and seldom included all of the sediment deposited upstream from the basin.
- 4. Some basins have been surveyed, in recent years, to compute inflow, which gives an accurate reading, but also mixes accuracy within records.
- 5. Available records are from one year to 43 years, depending on the time since initial construction of each basin.
- 6. The sediment is measured from watersheds of many different sizes; of the 79 watersheds (in 1972), 58 are less than one square mile and 21 are greater:

Table 1
SIZE OF SUBUNITS IN L.A.W.S.
1971

LESS THAN 0.25	LESS THAN .0.50	LESS THAN 1.0	OVER 1.0	2.0 Sq.Mi. OR +	3.0 Sq.Mi. OR +	4.0 Sq.Mi. OR +
21	42	58	21	12	6	8
(27%)	(53%)	(73%)	(27%)	(15%)	(8%)	(10%)

7. The size of L.A.W.S. has not been consistent, but ranges as follows:

TABLE 2
RANGE OF SAMPLE SIZE

Water	Number of	Area	Basins	Area
Year	Basins	Sq. Mi.	Add ed	Add ed
		•		
1942-43	20	33.42	0	0
44	**	11	11	11
45	23	36.30	3	2.88
46	25	37.56	2	1.26
47	26	38.07	1	0.51
48	27	38.79	1	0.72
49	28	39.19	1	0.40
1950	11	38.80	0	- 0.39
51	11	11	***	0
52	11	11	11	**
53	30	40.37	2	1.57
54	33	41.37	3	1.00
55	. 39	43.33	6	1.96
56	47	53.62	8	10.29
57	49	54.07	2	0.45
58	11	11	0	0
59	50	55.5 3	1	1.46
1960	54	61.71	4	6.18
61	55	64.33	1	2.62
62	54	63.99	- 1	- 0.34
63	11	66.41	0	2.42
64	55	66.76	1	0.35
65	60	71.54	5	4.78
66	11	71.11	0	- 0.43
67	11	70.73	**	- 0.38
68	61	71.38	1	0.65
69	67	72.61	6	1.23
1970	70	77.84	3	5.23
71	76	83.61	6	5.77
72	79	84.31	3	0.70
73	80	84.32	1	0.01

- 8. New basins, and hence area, are still being added and/or dropped, and will continue to be added, or deleted.
- 9. Some records may include sediment sluiced into them from another basin above, such as a large water impoundment.
- 10. These records do not include the fine sediments which have gone through the spillways. The basins with large impoundment pits, (such as Sunset Lower and Wilson), will trap a greater proportion of fine sediments than the smaller pits because of the longer route of travel. So the relative proportion of fine sediments actually trapped will vary an unknown amount.
- 11. Some records may be less than actual inflow if the sediment was partially sluiced out.
- 12. Some watersheds were begun as one basin then were replaced by two or more, and old records are therefore replaced by two or more new records.
- 13. Some watersheds have been partially urbanized since the record began, (See Appendix 1, Sec. 1) and their sediment yield area is thereby modified.

The function of sediment basins is to trap and desilt floodwaters, then release desilted flows to percolation beds, reservoirs, or the ocean. To maintain a safety margin and protect populated channels, each basin is cleaned out when 25% of its capacity is filled. The cost of cleanout is significant, and creates a constant need to reduce sediment yield from the watersheds in L.A.W.S. Four treatments for sediment control have been used most frequently:

- 1. Fire Control
- 2. Vegetative cover improvement
- 3. Road stabilization
- 4. Cross-channel check dams.

The effect of adverse sediment yields has been well known since the early 1900's but efforts to control sediment have been greatly intensified since 1950, through an accelerated

program in fire and sediment control. The reason for attempting to determine sediment yield trend is to help evaluate the effects of intensified treatment on the sediment problem.

B. The Debris Generation/Delivery System

The task of compiling and evaluating a good set of annual sediment yield records is further complicated by the nature of the debris generation/delivery system.

The concept of the debris generation/delivery system is illustrated by Figure A (next page). The three components of the debris generator are:

- 1. Ridgetops
- 2. Side slopes
- 3. Channel bottoms

These are often indistinct and not clearly defined. The debris can be stored in place, or transported to a storage site by gravity and water. The steep slopes, (often over 100%) tend to yield the debris, as it is generated, as talus or alluvium, because the gradient is too steep to hold the fragments. The results of a research study on debris movement indicates that up to 89% of the mass movement can be by gravity (called "dry creep"). (See Appendix 4.) Dry season debris movement is an important feature of the debris system because it indicates that is a constant, everyday, yearlong, process and not just during the wet season. The fragments of debris are active on steep slopes (60%+) of south aspect, which suggests that slope gradients and temperature changes are important influences. There is an annual accumulation of debris at the first break in the slope gradient, which can be the upper sideslope, lower sideslope, or the channel. Once the debris is at rest and becomes stable with time, it will require some external force to cause it to further transport; which may be:

- 1. Removal of plant roots that bind it in place, and/or
- 2. A high intensity storm, and/or
- 3. Undercutting from below by dry ravel, road construction, etc., and/or
- 4. Other disturbance.

FIGURE 1

The final resting place before final transport is the channel, since it has the lowest gradient of the three components of the watershed. Debris tends to accumulate in the channel for a number of years, then flushes out every few decades, in a flood. This distorts the debris yield records, because the watershed may generate debris at a constant rate, but only flush out every 30 years or more. Therefore, the debris yield potential is related to:

- 1. The accumulation of debris in the system.
- 2. The stability of the debris deposits, and
- 3. The magnitude of the hydrologic event.

A massive debris yield may indicate that the problem has been solved for several decades, until the right combination of flood and debris accumulation again exist. It may also mean that the sideslope storage has been released from below by movement of the bedload, and stabilization is necessary. In either case, the condition should be identified and quantified before treatment is prescribed, or the wrong treatment can be used. If a channel has a deep bedload, without gullies, and appears to be stable, it may be a prime candidate for stabilization treatment.

The significance of both debris accumulation and the influence of high magnitude floods are apparent in the debris yield records. A high magnitude flood may flush out only moderate amounts of debris, or a moderate flood can trigger catastrophic mud flows of debris. The volume of debris depends on the combination of both influences.

To compensate for the large variation in debris yields, it requires fairly long-term records. The records are analyzed as accumulating amounts to improve the correlation.

C. Need for Evaluation

The value of check dams for sediment reduction is needed now, but the systems have not been installed long enough to have been tested in a wide enough range of hydrologic events to accurately evaluate the response to treatment. Only six canyons had been treated four or more years prior to the flood of 1969.

It is important to realize that even small reductions in sediment yield are important because removal costs range \$2-\$3/cu. yd. once it is trapped in a basin, and are escalating along with the rest of the economy.

These are expensive projects to construct, and some evaluation of effectiveness is needed to evaluate the numerous proposed projects. Several attempts have been made to analyze treated and untreated watersheds to establish the benefits as a percent of the annual yield. (See Appendix 4, Sec. 3; The L.A. County Debris Reduction Study of 1959; and unpublished Forest Service studies.) From this type of study has come the general rule of thumb that a treated canyon will produce 37% less sediment annually than an untreated canyon over the stabilized reach. The 37% rule of thumb has developed through the observations and estimates that have been made to date. The basic Forest Service document which first supported this rule is Appendix 4, Sec. 3.

These types of studies leave many unanswered questions, and are not accurate enough for planning purposes. For instance, suppose the 37% rule is true on the average, but some debris yields may be reduced by 75% and others by 7%, and the average is possibly 37%. The important thing to consider, then, is the site criteria that influence a reduction, then each watershed can be evaluated on its own potential. Once the site criteria are identified and quantified, each proposed channel can be evaluated to determine its response to treatment, and the rule of thumb is not needed.

D. Factors that Influence Debris Yield

The influences that affect sediment yield can be classed as "external" to the individual watersheds, or "internal".

1. External Factors

Such things as climate, duration, and intensity of storms, etc., are external to any one watershed, and general on the entire system as a whole. They seem to have the greatest effect on annual sediment yield for any one year. The large storms of 1938, 1943, and 1969, are good examples.

Sometimes one-third, or more, of the total sediment yield for a 30-year period may be delivered by a single storm event, as in 1969, (Pickens, Rubio, Brand) the external influences are not subject to control by man, we can only prepare to control the results with structural works. The erratic cycles of external influences make them unpredictable and difficult to manage.

2. Internal Factors

Such influences as vegetal cover, topography, fire, slope, ground cover, etc., are internal, and associate to make each watershed a unique individual unit, with unique functions. Except for large burns, the influences are fairly stable annual factors, and therefore do not induce much fluctuation in the sediment system. Man can adjust and modify these factors to some extent, depending on the of investment he wants to make. Wildfire landslips are the biggest problems because they both release temporary storage to channels for further transport. A good example of the response to fire is Brand Canyon (treated), and Sunset Canyon (untreated). Both were burned 100% on the same day, 3/1964. Brand produced more sediment the first year after the burn than it had yielded in the previous 20 years; then yielded 3.4 times the 21year amount the following year, and in the six years after the burn, the total accumulated yield was 14.2 times its 20-year prefire record. Sunset Canyon doubled its previous 36 years of records the first year, and tripled it in the following 6-year period. In this event there was some interaction between external and internal factors.

II. The Evaluation

A. The Components of Comparability.

In comparing sediment yield per year, per unit of area, of individual watersheds, we can relate the performance of each individual watershed in the system to the total system (LAWS). By accumulating the annual yield from an average watershed, we can build in a certain amount of correlation to the data, and compensate for the years when there was some inflow, but no measurement. The "average" watershed is one square mile on both L.A.W.S. and the canyon being

related to LAWS. With L.A.W.S. as the standard, or norm, we can compare each subwatershed to the same value, in the same unit of measurement, and thereby show its relative functions for the period of records.

This correlation is expected to compensate for some external effects, (since they are an influence in both L.A.W.S. and the test canyon) and some internal effects (if an adequate time of calibration precedes both the channel treatment and external influence).

In the process of analyzing several mass sediment yield curves, it is observed that there is an apparent cycle for the period 1944 - 1969. (See curves Appendix 1, Sec. 2.)

A comparison of the running mean curves for L.A.W.S. debris yield and runoff water to the ocean also indicated an identical cycle. This suggests that both sediment and floods have followed a similar pattern, or in other words, it is a weather-influenced cycle. Since there is a similar curve for both parameters, and the time span is identical, it adds considerable confidence to the premise that this is a definite cycle of events.

All of the debris analysis is confined to this identified cycle period and later years, even though records may have existed prior to the cycle. There are 20 watersheds, consisting of 33+ square miles of area that have records for the entire 26-year cycle, 1944-1969. (See Appendix 1, Section 4).

B. The Comparable Watershed

Using Dunsmore watershed, which was treated with check dams in 1964, as an example we can describe its response to treatment. This 0.84 square mile watershed includes a number of the problems previously discussed on inaccurate inflow records. The mass curve, Figure 2, shows the typical sediment cycle, and the data table, Place 2, Col. 4, shows several zero years followed by the accumulated amount. The data for L.A.W.S. does not have zero years because so far there has always been some yield somewhere on the watershed. The analysis of this data is as follows:

PLATE 2. Sediment Records - Dunsmore Canyon 0.84 Miles

110 110 111 111 111 111 111 111	z
1943-44 1944-45 1946-47 1946-47 1948-49 1948-49 1950-51 1951-52 1952-53 1952-53 1953-54 1956-57 1956-57 1956-61 1960-61 1960-61 1961-62 1962-63 1962-63 1962-63 1962-65 1962-65 1963-66 1964-65 1964-65 1964-65 1964-65 1965-66 1966-67 1967-68 1968-69 1968-69 1969-70 1970-71 1971-72	1 Water Year
3888 766 2204 0 0 0 11025 0 1184 3600 4692 0 0 2168 2829 3908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 Annual Cleanout (Cu.Yds.)
	3 Col. 2 Accum.
4628 911 2623 0 0 0 0 13125 0 1409 4285 5585 5585 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 Yield (Cu. Yd./Sq.Mi.) Col.2-0.84
\$539 8162 8162 8162 8162 8162 8162 21287 21287 21287 21287 21287 21287 21385 21387 2	5 Column 4 Accum.
4628 2770 2771 2040 1632 1360 1166 11020 2365 2129 1935 1774 1746 1746 1927 2171 2035 1912 1912 1953 2027 2158 2027 2158 2027 2158 2027 2158 2035 2035 2035 2035 2035	6 Running Mean Col.5-N
. 9235 . 9225 . 9815 . 9815 . 9819 . 9819 . 9761 . 9729 . 9789 . 9789 . 9832 . 9857 . 9857 . 9661 . 9651 . 9651 . 9467 . 9559 . 9342 . 9342 . 9342 . 93467 . 9467 . 9559 . 9661	7 Correlate Coeff.
535.11 718.64 -2896.51 -2800.50 -1662.49 - 839.78 - 151.59 - 250.42 - 620.70 - 318.95 59.97 242.75 2323.75 33076.43 3608.16 4405.08 5799.17 7035.81 7878.84 8737.56 9128.98 9387.85 9387.85	8 Regress. Coeff.
1.000 0.9664 1.5050 1.4910 1.3350 1.12262 1.11530 1.1530 1.1530 1.1628 1	Regress. Coeff.
Sq.M1.) 4231 5597 6426 7413 7701 7849 8000 8027 15514 116245 18834 20050 22162 23220 26421 29518 30873 32594 46545 49424 50843 56326 74472 77548 111828 111828 111828	LAWS Accum.
4231 2798 2142 1853 1540 1103 1103 1724 1624 1712 1671 1705 1671 1705 1816 1816 1816 1811 2450 2471 2451 2451 2451 2451 2451 2451 2451 245	11 Running Mean Col.10-N

	Į.
	U
	1
	I
	ı
	I
	1

- 1. We correlate the two mass yield data, (Col. 5 and 10, Plate 2) with a single regression analysis. Regression is with L.A.W.S. on the X-Array, and Dunsmore in the Y-Array of data, for the years 1944-1973, 1944-72 and so on to years 1944-64 then for alternate years. (See Appendix 2, Sec. 1).
- 2. The regression line (solution of Y=A+BX) is plotted through the scatter of points for each period of record, as shown on $\underline{\text{Figure 3}}$. This line is the "best fit" to the two sets of data.
- 3. These regressions were determined by the computer program *SIREG* developed by Management Sciences Staff, Berkeley. The results are shown in Columns 7, 8, and 9 of Plate 2.
- 4. The regression lines (Fig. 3) indicate the performance of Dunsmore watershed in relation to the performance of the whole watershed system. If the line is steeper than 45 degrees (which is a 1:1 ratio), then Dunsmore exceeds L.A.W.S., and if it is less than 45 degrees, then Dunsmore underproduced L.A.W.S.

C. Results of the Analysis

The regression analysis indicates that:

- 1. For the first 21 years of the period of comparability, Dunsmore correlated strongly with L.A.W.S., (correlation coefficient 0.97).
- 2. The 21-year regression line is almost identical to the 20-year regression line. At year 11 and before, there is insufficient data to develop a good correlation.
- 3. We can say then, with a considerable degree of confidence, that Dunsmore performed similar to L.A.W.S. in sediment yield for the 21-year period, 1944 1964.
- 4. In 1965, (year 22) there was a significant shift downward in the slope of the regression lines (indicating a diminished amount of debris inflow to the basin at the

mouth of the canyon) and a continued annual additional shift for the next 7 years of record, although it was progressively less each year.

- 5. The downtrend appears to have leveled off in year 29, (1972) and perhaps began a slight uptrend in year 30.
- 6. The downward shift in the slope of the line continued in spite of a major flood event in 1969 (year 26).

The definite change in the slope of the regression line occurs the next year after the check dams were installed. This would suggest that, after 21 years of consistently strong correlation, that the abrupt shift in the regression line (at year 22) is due to the performance of check dams that were installed the previous year, and they have indeed reduced the sediment yield. The next question is, how much?

D. The Magnitude of the Response to Treatment

To estimate the change in yield, it is first necessary to compute how much sediment would have been produced without the structures, compare it with the actual yield, and take the difference. The output for each regression also included the formula of a straight line equation which best fits the data.

The first 21 years of record are used to establish a trend between L.A.W.S. and Dunsmore. The trend can then be projected for 9 years to predict the accumulated debris yield for Dunsmore by 1973, on the basis of the accumulated yield for L.A.W.S. (See Appendix 2, Years 1944-64).

Y = a+bX= 3608 + 0.859179 (121,198) = 107,739 cu. yds./sq. mi.

Where: Y = Dunsmore, accumulated debris per sq. mi. in year 1973

a+b= regression coefficients from Fig. 1 X= the accumulated debris yield of L.A.W.S. per sq. mi. in 1973. (See Plate 2)

This means that Dunsmore would probably have yielded an accumulated volume of 107,739 yards without the check dam construction. The actual accumulated yield for Dunsmore, with the check dams, is computed with the "after treatment" equation. (See Appendix 2, Years 1964-73).

$$Y = a+bX$$

= 13,864 + 0.476791 (121,198)
= 71,651

The difference is the benefits of check dam treatment:

107,739 - 71,651 = 36,088 cu. yds./sq. mi. in the average watershed, or:

36,088 cu. yds./sq. mi. (0.84 sq. mi.) = 30,314 cu.yds.

reduction in the accumulated debris yield. The total debris yield for the watershed is:

The 52% reduction in debris yield is certainly a significant amount. The change in the regression lines resulting from check dam treatment are illustrated in Figure 3. Figure 4 illustrates the shift in the trend of the debris yield and also the relationship of the regression coefficients.

The slope of the regression line is the "b" coefficient. Each time the correlation between L.A.W.S. and Dunsmore changes, the "b" value will change. Fig. 5 is a plot of the "b" value, to illustrate the definite change that was caused by check dam installation.

E. Debris Storage in the System

Also shown in Figure 5 is the plot of "b" values of linear regression with debris storage in the check dam system included. To obtain this value, the volume of debris above each check dam is calculated, using the computer model DAMCAP. The data is then tested for comparability with a random t-test and a paried data t-test. In both t-tests the

results show that the debris yield of L.A.W.S. and Dunsmore + DAMCAP are similar populations. (See Appendix 3).

The regressions indicate that when check dam storage is included in the debris yield record, there has been no significant change over pretreatment yields. There may be a slight increase in debris yield but it is not statistically significant.

The Dunsmore Canyon check dam system is now filled to 110% of its capacity, with a large overload on the upper structures. The November, 1973 survey reveals that the debris cones of several dams have backed up on the next higher dam:

Dam #	Depth of Cone
4	3 feet on sill of #5
5	1 foot on sill of #6
8	9 feet overload in debris drifts
9	15 feet overload in a debris drift

Conversely, the other debris cones are not yet mature (See Table 3 below) as of 1973. The volume of debris in each check dam system is computed with the computer program <u>DAMCAP</u>, which was developed and written by Management Sciences Staff, Berkeley. The method needs to be refined to improve its accuracy. (DAMCAP printout is in App. 3.)

The dams in this system were located by use of the rule-of-thumb that the debris cone will mature on a gradient which is 7/10 of the original channel gradient. The rule has not proven to be very accurate on other channel projects, and is not supported by the study of Dunsmore debris cones. The cones apparently mature on a gradient greater than level, but how much is still to be determined.

PLATE 2. Sediment Records - Dunsmore Canyon 0.84 Miles

11	Running Mean	Col.10-N	1,004	1076	06/70	7577	15/0	2000	1143	1003	1724	1624	1712	1671	1705	1659	1761	1845	1816	1811	2450	2471	2421	2555	2884	3103	3102	4301	4222	4113	3995	0707
10	LAWS Accum.	(C.Y./	Sq.Mi.)	1000	1000	77.13	7701	7849	8000	8027	15514	16245	18834	20050	22162	23220	26421	29518	30873	32594	46545	49424	50843	56212	66326	74472	77548	111828	113996	115159	115856	121198
6	Regress. Coeff.	,,P,,							1,000	0.9664	1.5050	1.4910	1.3350	1.2262	1.1412	1,1530	1.1930	1,1628	1,1262	1.1093	0.9524	0.8974	0.8952	0.8060	0.7225	0.6535	0.6078	0.5699	0.5527	0.5414	0.5335	0.5380
6 0	Regress. Coeff.	"a"							535.11	718.64	-2896.51	-2800.50	-1662.49	- 839.78	- 151,59	- 250,42	- 620.70	- 318.95	59.97	242.75	2323.75	3076,43	3608.16	4405.08	5799.17	7035.81	7878.84	8737.56	9128.98	9387.85	9571.02	9462.09
7	Correlate Coeff.	14.1							.9235	.9225	.9815	. 9893	.9819	.9761	.9729	.9789	.9832	.9856	.9857	. 9874	.9661	.9679	.9691	.9651	9676	.9388	.9342	. 9467	.9559	.9619	,9661	.9710
9	Running	Col.5-N	4628	2770	2721	2040	1632	1360	1166	1020	2365	2129	1935	1774	1746	1927	2171	2035	1912	1953	2027	2158	2055	1962	1877	1898	1850	2571	2525	2434	2350	2558
S	Column 4 Accum.		4628	5539	8167	8162	8162	8162	8162	8162	21287	21287	21287	21287	22696	26981	32566	32566	32566	35146	38513	43165	43165	43165	43165	45545	46259	66854	68163	68163	68163	76753
7	Yield (Cu. Yd./Sq.Mi.)	Col.2-0.84	4628	911	2623	0	0	0	0	0	. 13125	0	0	0	1409	4285	5585	0	0	2580	3367	4652	0	0	0	2380	714	20595	1309		0	8590
6	Col. 2 Accum.																													,		
2	Annual Cleanout	(Cu.Yds.)	3888	766	2204	0	0	0	0	0.	11025	0	0	0	1184	3600	4692	0	0	2168	2829	3908	0	0	0	2000	009	17300	1100	0	0	7216
Ħ	Water Year		1943-44	1944-45	1945-46	1946-47	1947-48	1948-49	1949-50	1950-51	1951-52	1952-53	1953-54	1954-55	1955-56	1956-57	1957-58	1958-59	1959-60	1960-61	1961-62	1962-63	1963-64	1964-65	1965-66	1966-67	1967-68	1968-69	1969-70	1970-71	1971-72	1972-73
	z		, 1	2	~	7	2	9	7	æ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

TABLE 3. Storage of Debris, Dunsmore Canyon (Cubic Yards)

11/73 5030 2962 2819 7486 5753 5588 20636 1533 % 75% 66% 94% 123% 109% 71% 89% 147%	10/71 4473 2833 2004 5916 5135 5356 18171 1180 % 67% 63% 67% 97% 97% 68% 79% 113%	66 1814 1647 1004 2597 2324 3966 12825 5565 % 27% 37% 33% 43% 44% 50% 56% 54%	1964 227 547 407 1321 1211 2335 6159 3485 % 3% 12% 14% 22% 23% 30% 27% 34%	Date/Yr. 2/64 2/64 2/64 2/64 3/64 2/64 3/64 6/64	DESIGN 6700 4500 3000 6100 5300 7900 23100 1040	_
						6
15330 147%	11803 113%	5565 54%	3485 34%	6/64	10400	α
14296 255%	8710 156%	3030 54%	1739 31%	5/64	5600	¥
79900 110%	64402 89%	34773 48%	17431 24%		72600	10C.

Note in Table 3 that the dams were all constructed in the spring of 1964, with very little inflow that year. Therefore the storage for 1964 is not an inflow volume, but is the backfill as part of construction. In addition to the backfill will be the access road grade, undercut side slopes, etc., that normally flush out the first storm year after construction. Since backfill is 24% of the storage capacity of the system, the total construction-induced debris will be at least 32%, or 23,235 cu. yds. Several other things can be noted about this table:

- 1. The upper dams appear to fill first, which may suggest that the source of the most massive debris movement is from above the check dam system rather than from adjacent sidewalls, or the immediate channel.
- 2. The entire check dam system is not filled, but some are over and some is under the design amount.
- 3. The overload volume may be unstable to the point that it will later be flushed out.
- 4. The system is now 9 years old, but is not yet filled, or stable, and seems to be constantly changing.
- 5. Each debris cone has consistently agraded, and not one has yet degraded.

The actual debris trapped is the present volume minus construction-induced debris:

79,900 cu. yds. - 23,235 cu. yds. = 56,665 cu. yds.

This value is significant, in that it is a greater volume than was predicted by the preceding regression analysis, by 26,351 cu. yds. (87%). That is:

56,665 cu. yds. - 30,314 cu. yds. = 26,351 cu. yds.

The significance is that virtually the entire volume that can be claimed as a reduction in the debris yield can also be accounted for in storage and overload on the debris cones. The overload is: Dam #4 - 1386. cu. yds. #5 - 453. cu. yds. #8 - 4,930 cu. yds. #9 - 8,696 cu. yds. Sum 15,465 cu. yds.

The overload may or may not be a threat, because it is based on the design rule-of-thumb that the cone gradient will be 7/10 of original channel gradient. The rule-of-thumb has never been proven accurate. In this case, however, it is the best we have. Had the overload been yielded instead of stored it would have lowered the debris reduction benefit to 20% instead of 52%.

III. Summary

This evaluation of the effectiveness of a crib dam system as a debris control treatment is based on the comparison of Dunsmore Canyon debris yield to a norm, before and after treatment. There are 21 years of debris basin records before and 10 years after treatment. In order to minimize the variation of records, the data is accumulated for an average watershed (1 sq. mi.) for both the norm and the test canyon. This method of evaluation can be used on other watersheds that are treated with debris control structures, to determine the response to treatment. The conclusions of this study are:

- 1. In the 10 years following crib dam construction, the accumulated debris yield at the basin has been 52% less than was expected.
- 2. The reduction in debris yield can all be accounted for as storage accumulation above the check dams, and therefore the reduction is apparently a temporary condition.
- 3. In the last year of debris records, the trend has apparently began to return to the normal, pretreatment level.
- 4. When all of the system storage is included, there has been a slight but statistically insignificant increase in debris yield over the amount expected.
- 5. The check dam system did not trap 100% of the debris yield at any time in its history, as was expected in pretreatment evaluation.

- 6. Construction-induced debris and backfill take up 32% of the original system storage potential.
- 7. There is an apparent overload of debris on the cones of dams 4, 5, 8, and 9, as much as 155% over the designed amount.
- 8. The rule of thumb that, "the debris cone gradient will assume a profile 7/10 of the original channel gradient", cannot be supported by this study. The overloaded debris cones tend to disprove this theory.
- 9. The rule of thumb that "the stabilized reach will show a 37% reduction in debris yield" cannot be supported by this study.
- 10. There is no apparent permanent reduction in the debris yield due to check dam treatment.

APPENDIX 1

Section 1 - Watershed History

Section 2 - Mass Curves of Debris Yields

Section 3 - Running Mean of Wastewater to the Ocean

Running Mean of Annual Debris Yield

Section 4 - Summary of All Canyons with Debris Records 1944+

1

APPENDIX 1

WATERSHED HISTORY

LOCATION	SEDIMENT TRAP BASIN	ORIGINAL AREA	1972 AREA	TREAT DATE	BURN/%
Sylmar	Sombrero Stetson Hog Schoolhouse	1.06 sq.mi 0.29 0.30 0.28		1963	
Verdugo	Brand Childs Deer Elmwood Hillcrest Sunset Lwr. Sunset Upr.	1.03 0.31 0.59 0.31 0.35 0.65 0.44	-	1949	•
Tujunga La Canada	Blanchard Blue Gum Cooks Dunsmore Eagle Gould Haines Halls Hay Pickens Rowley Shields Snover Verdugo Ward Winery Zachau	.50 .19 .58 .84 .61 .47 1.53 1.06 0.20 1.84 0.58 0.27 0.23 9.97 0.10 0.18 0.38	- 0.44 0.36 0.83 1.56 0.47 0.21 3.25 - 0.31(11	1956 1956 1968	
- Altadena	Fair Oaks Fern Las Flores Lincoln Rubio West Ravine	0.21 .30 .45 .50 1.26 .25	.07(67 .28(7% .40(11 .50 1.19(6% .20(20) 3) 1966	·

1
1
-]
]
I

APPENDIX 1 (Cont'd.)

LOCATION	SEDIMENT TRAP BASIN	ORIGINAL AREA	1972 AREA	TREAT DATE	BURN/%
Sierra Madre Monrovia	Auburn Bailey Bradbury	.19 .60	-		1954-80% 61-85% 1954-100% 61-35% 1953-55%
	Carriage Hse Carter Kinneloa E.	.03	-		58-100% 1954-90% 61-95%
	Lannan Waddock	.25	-	•	1954-100% 1953-90% 58-100%
	Ruby Santa Anita Sawpit Sierra M. Sierra M.V. Spinks Sturtevant Sunnyside	.28 1.70 2.84 2.39 1.46 .44 .03 .02	- - - - - -	1967 1965 1965	
Azusa	Beatty	.20	-		1946-90%
Cl aremont	Englewild Harrow Hook E. Hook W. Little Dalton	.40 .43 .18 .17	-		1960-100% 1968 1968 1968 1919-100% 1968

ı

SUMMARY OF ALL CANYOUS WITH DEARIS BASIN' MECONDS IN YEARS 1045-44. THE LUCATION(LA = LA RIVEK; SO = SAN GABRIEL) AND YEARS OF RECORD ARE ALSO NOTED. YIELDS IN CU YDS/SO MI.

(8) HALLS LA 1936-	7793.72 4789.72 1613.63	20.00 20.00	3122.04 3772.54 3772.57	200 - 200 -	53.56 - 19.9 53.56 - 19.9 52.22 - 19.9 52.22 - 19.9 52.22 - 19.9 52.23 - 19.9 52.23 - 19.9 52.23 - 19.9 52.23 - 19.9	5104-503. 52470-514- 504-524 6846-504. 10320-233.	17.4937 . 34, 5831,25 1.44
(1.70 HAINES LA 1937HI	4182.081 . 1981 3941.183	100 mm	230Kipty 230Kipty 20kipty 20ki	1837 1840-1877 1840-188 1840-188	1147, BO	1000 - 1000 C C C C C C C C C C C C C C C C C	399454801 18314.601 833.
(0) FERN LA 1936	45394 # 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	# # # # # # # # # # # # # # # # # # #	37.5.7.8 38.5.5.7.8 38.0.0.0.0 86.18.64.0	3.550 and 2.50 and 2.50 and 3.50 and 3.	10000000000000000000000000000000000000	273492.481 4116.48
(5) FAINDAKS 12 12 56+	2495-30 2754-30 45775-40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02. 82. 82. 83. 84. 85.	88.77.408 88.74.801 88.74.80	2523.09 1035.09 14171.30 14171.30 28257.00	100 00 00 00 00 00 00 00 00 00 00 00 00	254557*448 33.13°57 2°18
EAGLE LA TRUNE	7 47 6 10 10 10 10 10 10 10 10 10 10 10 10 10	146.001 . 4651 . 6651 . 6651 . 6654 . 6654	49.64 (19.64) (19.64) (19.64) (19.64)	2307.20 2307.20 2407.20 280. 280.	2 40 4 40 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200-07-00-0 200-07-00-0 165-07-0 200-07-0 200-07-0 100-0 10-0 10	11345/745/21 3781.901
UNSWORE LA 1935-	4628.99 911.68 2623.48	(13) (13) (13) (13) (13) (13) (13)	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.00	\$507.83.9 \$605.83.9 \$605.83.9 \$605.80 \$605.80	00.40.000 00.00000000000000000000000000	76754+689; 2557+888 655
RRAND BRAND LA 1936-	515 525 525 525 525 525	20 20 20 20 20 20 20 20 20 20 20 20 20 2	4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .	147.5751 66. 66.	24 2015 - 49 3 9 4 4 2 - 39 9 4 5 5 5 7 4 1 1 1 1 1 2 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	242-24-24-24 242-24-24-24 25-24-25 25-24-25 26-24-24-24-24-24-24-24-24-24-24-24-24-24-	1413394050 479445 <u>8</u>) 1437
\$ - A - U - S - S - S - S - S - S - S - S - S	4231.68 1360.43 824.48	265-041 245-041 241-041 241-041 241-041 341-041	731.30 2009.30 1210.20 2112.30	5251 5251 1355 1725 1721 1721	15.5751 26.775.0 16.175.0 10.075.0 10.116.0 10.106.0 10.506.0	50.000 \$40000 \$20000 \$20000 \$10000 \$20000 \$20000 \$20000 \$20000 \$20000 \$20000 \$20000 \$20000 \$20	121178.38 4858.95 1.38
COLUNA YEARS	1444 1446 1440 140 140	27071	# # # # # # # # # # # # # # # # # # #	1405	70000 7000 7000 7000 7000 7000 7000 70	1700 1700 1701 1701 1701	COL MEAN

ı
1
1
i i

SJAMMARY OF ALL CANYONS WITH DEBRIS BASIN RECORDS IN YEARS 1043-44. THE LOCATION (LA M. LA RIVER? 50 M. SAN CAUHIEL) AND YEARS OF RECORD ARE ALSO NOTED. YIELDS IN CU YUS/SU Mis.

6163 SHUVER 14 1938-	6.00	6 1 5 4 e 14 5 1 A	033.00	3410	£ 84 0	. z.	9;	123130001	140 .	£1.79 .	4: (* *	15.50	4782.17	\$0.00×	3447.05	5	51 54 . 33	2956, 845	6.00	Se es a	6 5 8.	5273.00	5217.00	**	48675 . 121.	The Care	\$. 2	326.10.93	****	100332.40	5. A
C160 SIERRA MADRE LA TOCCI	6412 ashirt	16161 at V	1011-01-5	1411	151 cl a	ide.	1人で、	23.48 × 13611	1.154	2584021-11	1111 *	14803214	14/11 "	1424-117	185671	. 1985	ice.	483 6 - 11/1	58.00	341441131	6 g) . d =	(Q.6. Mp)	16181 "	からいっというか	4500000	1991, 4000	49.454.4	. Frit	10872-1111	· · · · · · · · · · · · · · · · · · ·	1862 / B. 1915.	184 * 2000 184 *
(14) SHIELOS IA 1738-1	37.57° MG	1666.60	77.00	. 25.	. 60 to .	6.63	,634,	49529613	:48:0	25.00	£ 13 ·	1801, 24	703 - 327	2×60.PH	266.00	42.	6)6).	5925.911	1984	6.4.	8885.83,	34548.44	22722.114.	444444	12224.20	1001210	.6961	R+E' *	\$629 c 250	中 安安 安 安 安 安 安 安 安 安 安 安 安 安 安 安 安 安 安	178055-49	1 (48) · [48]
(13) PICKE4S LA 1936-	48 35 34 40 30 30 44	60° 5.05	68.75%	236.44	000	KI P	20.0	7241.00	68.	2354.00	60.	2446.03	1573 . 43	2153.63	4117011	5/4-19-3	\$5.555¢	3647.41	3441 . 63	475. 32	Pul ·	24619・18	5075 .04	271.148	26555.00	66.	44:37.33	63.0	5487233	新安全 经有限 化异子子 医	142321.00	48.
(12) NICHOLS LA 1938-1	77308191	635-991	0.1:37:0013	184 . 8 C 4	625 . 445	128/15	a 1,5 € a	23150-110	1300	2433.40,	17.24	47.50	1600000	1340.00	1585000	521:000	100	5762 -1101	1450.066	. 13 g 3.	465.30	9014.413.	3/2 6	35-1-4, 1:19;	10'20.000	54.4 1 . 100	1000	a 17 ps.	25.53 - 1964	计 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化	77820.08	100
(0.0) LINCOLN LA 18:30=1	3732.40.	50.5	3222.03	660	16. V. +	15.50		8676. 341	113 61 *	**************************************	013.	1634.	4369.73,	32/2.43	544.1.JU	leg .	a p3 (3).	2092.03.	1574-17,3	20.	Z & •	12300.00	2.	Story .: 10 3 23	366 1-5 - 41	1200,000	20,344,834	22.0	Z	****	124304-22	1001
LAS FLORES LA 1005-	28.23.80 1048.400	10.00	1000000		61610	En Print	22	4101.44	100 to 1	. D.A.	6%.	6.63.	• 0€	3200.43	₹11 °	16-140	377 w 34	1400.13	54 11 61,12	5406.110	6810	58.400% eld	235 € 2113.	3266.113	44222° +112	1.701.	6.40	7.2	5252 cm	经金融条件 经存货 中央	1/6/50.80.	7.49.E
(4) HAY LA 145(1	1950 a G S.	25.4	60.	26.	. 933.	, F 19.	, ,	7455.44	113 65.0	6 69 9	24.60 ·	• • •	. 10		13 FB •	(350.03	50184.4d	25943.33	(023,004)	• 110.	. do.	11.50.00	1233000	11500000	20541.33	. 34	5.5	6.17.5	7530.98	*****	144070 34	
COLUMN TEARS	1744		144	17+6	** > -	1450	1721	1726	1935	1124	17.3	1450	17.27	1700	1757	1104	1407	NO 76	1725	ナント・	3 4 6 5	1700	1436	1100	1,0,1	14/0	1571	1772	1465		400 100 400 100	

1
11
Ī

SUMMARY OF ALL CAMYONS WITH DEBKTS BASIN RECORDS'IN YEARS 1845-444. THE LOCATION CA HARVERY SO HESAY GABREEL AND YEARS OF RECORD ARE ALSO AUTEDA! YICLUS AND TACKS OF RECORD ARE ALSO ALSO.

	10000 VI	SUNSEL BOYER	VER#1360 LA 14360-1	ERST RAVINE	LA 1945-	SEDS FOR	KOW MEANS	ROW RALIOS
	7872.86	2064 MY	84 5 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	19212 " dal - 1934 - 1931	4547+34	129435 44	647467	1.53
	£ 63 ·	347.00	100	2540 . 116.	16.00 . 03	22.533499	100000000000000000000000000000000000000	15.45
	50.	B1	51.0 1199	2 4 4 4 a 05 11.	1404.14	2 2 5 4 5 . 3 19,	126310'31	1.29
	.00.	(h (7° a	\$24°6. •	34.20	40.000p	1585.46	56.1391	62.
	A6 *	6457 0	(14.0	.00.	3/40410	1000-00	16:51 1914	4.50
	na.	6,14 4	0000	25 K. *	216, 10	1543+89:	101:101	.56
	6.13.	Mct.	. Del.	. 573.	6,44	· 65 57 .		34.
	8516-98	けんというかん	5137.83	1/840 - GO	6466-03	241390,193	10 かりかないがた	1.51.
	24.	85.7	1036 2001	16464	412	51/10.433	25/16/11	6 \$ 9
	P. 13	, th th .	19 P. C.	4044-40	21.16.00	42344 19131	2162.26	.31
	24.25.15	25.	. 23.	***	54.23	2489 - 55	124,431	.1,
	.20.0	264.	1284 . 193	\$	Z 22 *	23416.00	142 11.151	,0.
	2 2	1010,03	27.4.1941	E.C	1340,80	21500+ 44	1070208	1.44.2
	4714.00	341000	1902.490.	3434.dr	2420.38	11/051.00	5831665	+006
	2451.44	4348-22	199.00	1354.03	85.00	52658 - Mil	26.52. HVI	44.
	.00	E 2 *	• 613	(19)	946.03	13/48-431	20076	67.
	.3 €. a	5186 W 3.	3W.	\$370.03	5 5 7 4 41	36111.00	23456661	1.55
	247.23	3.2	3687° 33	アス・メラウト	3570.03	92333 3M	4516.044	. 3 5
	600	20.00	575.63	524++15	45 1.80	124195 - 541	62356491	4.17
	. 36	5243 MH	1000	300	600 . 300	35975,000	イグシス・あい	1.27
	20705.44	61441 .33	13/1,148	80:-	303.06	153035.34	7634.251	1.45
	5054.00	44145.00	50 HM + MA	56426 - 001	665++34	513 X 6 5 . F. 4	15915.1301	1.57
	1212.00	4 3116 - 414	2653 41121	d612,1000	86.11.59	147170.000	53.58., 831	.72
	£0.	300 5 - 250	1504.83	172 30100141	2051 .44	1674514,411	5374.4001	1.473
	というにんごじ	86.96.42S	6341.35	6.00 そうべつ	4522.44	657125 0721	326.1641101	₩. ¥.
	5.50	000 000 000 000 000 000 000 000 000 00	244 . MF.	6450 . 00	1000000	37545453	16851651	120
	26.	£ 14.	152006.	36000	. 22	17257.84	86 3 - 851	+ 2 .
	340	(16)	. 2.2.	. 400	22.	6430.LM	344.001	ウオ・
	1.0000	4518.6 18.	1915-34	12+120-193	1450000	125229.00	02616451	1.17
* * *	*********	安全年 安本安全 安林斯斯	****	· · · · · · · · · · · · · · · · · · ·	医毒气管管子医生产体	安安 安安 女女女女 安安 安安		
£ 70	0 500 2 . 40	162-34-3 - 18	\$6546 043,	1970146	and chotic	2584765.88		
MEAN	2122.73	54.46.4	121.1 . 441	6269.73	1.7 20. 63	80292211		
74 713	3	7-76	12.5	1.03	17	21 46		

APPENDIX 2

Section 1 - Results of Linear Regression

LINEAR RESPESSION DATA FILES

YE AR	X=L.A.H.S.	Y≠004S40 RE
* 944	4231	4508
1945	5597	5539
946	6426 *	8162
1947	7413	8162
943	7791	8162
949	78.49	8162
1957	8442	8162
9 51	8927	8162
1952	15514	21287
953	16245	21287
1954	18834	21287
9 55	29553	21207
956	22162	22695
1957	23223	26981
7958	25421	32566
959	29513	32 566
1968	36373	32566
1961	32594	35146
9.62	40545	33513
963	49424	43165
1954	5.1443	431165
955	56212	43165
966	66326	43145
1967	7447?	45545
7968	77548	46259
9 69	111823	6:5354
1970	113096	68163
971	115139	63163
W472	115856	68163
7773	121193	767153

REGRESSION AND CORRELATION OUTPUT

```
THE AVERAGE VALUE OF X IS 43352.7

IE AVERAGE VALUE OF Y IS 32595.3

IE STANDARD DEVIATION OF X IS 38943.3

THE STANDARD USVIATION OF Y IS 21574.8

EE CORRELATION COFFECIENT BETWEEN X AND Y IS
```

.071946

REARESSIUM ENUATION

9462.39 + .537965 * X

14.2931 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING YO

LIMEAR PEGRESSION

TER COLUMN NUMBERS OF X.Y VARIABLES RESPECTIVELY...

IFY MUST BE BETWEEN 1 AND 2 2 1.2

WHICH YEARS OF DATA DO YOU WISH TO LOOK AT...

TYPE FIRST YEAR. LAST YEAR? 1944.197?

IST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 40336.3
THE AVERAGE VALUE OF Y IS 31073.4
THE STADDARD DEVIATION OF X IS 36672.1
THE STADDARD DEVIATION OF Y IS 20249.9
THE CORRELATION CONFESSION BETWEEN X AND Y IS

,9551 m3

REGRESSION EQUATION

= 9571.82 + .533473 * X

93.3365 PERCENT OF THE VAPIATION IN Y IS ACCOUNTED FOR BY MEASURING X+1

MIN AGAIN, WITH DATA ACCHMULATED (YES OR NO)?

LINEAR REGRESSION

TER COLHAR QUARERS OF X.Y VARIABLES RESPECTIVELY...

HEY MUST SE BETHERN 1 AND 2 P 1.2

WHICH YEARS OF DATA ON YOU WISH TO LOOK AT...

PE FIRST YEAR. LAST YEAR? 1944.1971

ST DATA (YES OR NO) 2 NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 37648.1
THE AVERAGE VALUE OF Y IS 29748.8
THE STANDARD DEVIATION OF X IS 34288.5
THE STANDARD DEVIATION OF Y IS 10290.6
THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

· 964856

REGRESSION EQUATION

7 = 9587.85 + .541396 * X

92.5187 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X-1

- 水椒水溶解 眼束点 表音 非故者 自然收益 水水 化克萨水 食材 紫 水 表示 反共常 凝浊率

IN AGAIN WITH DATA ACCUMULATED (YES OR 40)?

LIVEAR REGRESSION

TER COLUMN MUMBERS OF X.Y VARIABLES RESPECTIVELY...
HEY MUST BE RETUEEN 1 AND 2 2 1.2
WHICH YEARS OF PATA DO YOU WISH TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 1944, 1978
IST PATA (YES OR NO)? HO

REGRESSION AND CORRELATION OUT PUT

THE AVERAGE VALUE OF X IS 34735.9
THE AVERAGE VALUE OF Y IS 28326
THE STANDARD DEVIATION OF Y IS 31321.6
THE STANDARD DEVIATION OF Y IS 18189.2
THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

. 9558711

REGRESSION EQUATION

7 = 9123.93 + .552657 * X

91.369 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASHRING X.

MAY AGAIN WITH DATA ACCUMULATED (YES OR MO)?

LINEAR REGRESSION

EVER COLUMN NUMBERS OF X.Y VARIABLES PESPECTIVELY...

EY MUST BE BETWEEN 1 AND 2 ? 1.2

WICH YEARS OF DATA DO YOU WISH TO LOOK AT....

PE FIRST YEAR. LAST YEAR? 1969

**TST DATA (YES OR NO)? NO

REGRESSION AND CORPELATION OUTPUT

THE STANDARD DEVIATION OF Y IS

THE STANDARD DEVIATION OF Y IS

THE STANDARD DEVIATION OF Y IS

THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

.94663

REGRESSION EQUATION

8735 + 56 + .569 955 * X

BY . 5243 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

LINEAR PEGRESSION

HEY MUST BE BETHELD 1 AND 2 2 1.2
HICH YEARS OF DATA ON YOU HISH TO LOOK AT....
TYPE FIRST YEAR, LAST YEAR? 1944.1960
IST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

TE AVERAGE VALUE OF Y IS 28481.8 25191.4

THE STAUDARD DEVIATION OF X IS

ME STAUDARD DEVIATION OF Y IS

14733.1

HE CORRELATION COEFFICIENT BETWEEN X AND Y IS

. 93415

REGRESSION EDUATION

Y = 7873.84 + .607846 * X

37.2637 PERCENT OF THE VARIATION IN V 19 ACCOUNTED FOR BY MEASURING X 41

PIN AGAIN HITH DATA ACCUMULATED (YES OR HO)?

FATER COLUMN AUMBERS OF XAY VARIABLES RESPECTIVELY...

TOY MUST BE BETWEEN 1. AND 2 2 142

HICH YEARS OF DATA DO YOU WISH TO LOOK AT....

TYPE FIRST YEAR. LAST YEAR? 1944,1967

(ST DATA (YES OR NO)? NO

REGRESSION AND CORPELATION OUTPUT

HE AVERAGE VALUE OF X 19 26437.4
HE AVERAGE VALUE OF Y 19 24313.6

THE STANDARD DEVIATION OF X IS 26637.3.

4E STANDARD DEVIATION OF Y IS 14365.6

HE CORRELATION COEFFICIENT BETWEEN Y AND Y IS

.933312

PEGRESSION EQUATION

¥ = 7935.81 + .653536 * x

8.1368 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING YEA

非职者激激表职业政策系统 化水水水 化水水水 化大水水 化香油油 化中午 网络青年 化中水汞

TIN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

FATER COLUMN NUMBERS OF X.Y VARIABLES RESPECTIVELY...

HEY MUST BE BETWEEN 1 AND 2 ? 1.2

HICH YEARS OF DATA DO YOU WISH TO LOOK AT...

TYPE FIRST YEAR. LAST YEAR? 1044, 1066

IST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF Y IS 2339 8.5

THE STANDARD DEVIATION OF Y IS 18325.9

TE STANDARD DEVIATION OF Y IS 13942.7

THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

·9495891

REGRESSION EQUATION

<u>Y</u> = 5799.17 + .722468 * X

1719 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

MUM AGAIN WITH DATA ACCUMULATED (YES OR NO)?

FATER COLUMN NUMBERS OF Y.Y VARIABLES RESPECTIVELY...
HEY MUST BE BETWEEN 1- AND 2 2 1-2
HICH YEARS OF DATA DO YOU WISH TO LOOK AT...
TYPE FIRST YEAR, LAST YEAR? 1944, 1965
IST DATA (YES OR NO) 2 NO

REGRESSION AND CORRELATION OUTPUT

THE STANDARD DEVIATION OF Y IS

THE STANDARD DEVIATION OF Y IS

THE STANDARD DEVIATION OF Y IS

THE CORPELATION COEFFICIENT BETWEEN X AND Y IS

.9051 14

REGRESSION EQUATION

V = 4405.08 + .805955 * X

3.1 427 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

NA AGAIN WITH DATA ACCUMULATED (YES OR NO)?

ENTER COLUMN MUMBERS OF XAY VARIABLES RESPECTIVELY ... HEY MUST BE BETUFEN 1 AND 2 2 1.2 ITCH YEARS OF DATA ON YOU WISH TO LOOK AT. . . . TYPE FIRST YEAR, LAST YEAR? 1944, 12:64 "IST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

ME AVERAGE VALUE OF X IS 29832.7 HE AVERAGE VALUE OF Y IS 21537.2 THE STANDARD DEVIATION OF X IS 14757.4 THE STANDARD DEVIATION OF Y IS

13977.2

E CORRELATION COEFFICIENT BETWEEN X AND Y IS

.P6911.

REGRESSION EDUATION

3698.16 + .859179 * X

\$3.9174 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

TER COLUMN NUMBERS OF X.Y VARIABLES RESOUCTIVELY...
HEY MUST BE BETWEEN 1 AND 2 ? 1.2
HIGH YEARS OF DATA DO YOU WISH TO LOOK AT....
YPE FIRST YEAR. LAST YEAR? 1044.1%2

REGRESSION AND CORRELATION DUTPUT

TE AVERAGE VALUE OF X IS 17743.4

HE AVERAGE VALUE OF Y IS 19227.4

HE STANDARD DEVIATION OF X IS 11673.0 IE STANDARD DEVIATION OF Y IS 11597.00

ME CORRELATION COEFFICIENT BETWEEN X AND Y IS

*P56146

REGRESSION EQUATION

= 2323.75 + .952494 * X

3.3438 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

华米埃市北京 医水子 电水平电子 医水平 化电子 医水水 医水 医水水虫 医水水中水水中状态

THE AGAIN WITH DATA ACCUMULATED (YES OR NO)?

ENTER COLUMN NUMBERS OF X4Y VARIABLES RESPECTIVELY...

FY MUST DE BETWEEN 1 AND 2 P 1.2

FICH YEARS OF DATA DO YOU WISH TO LOOK AT...

TYPE FIRST YEAR. LAST YEAR? 1949.1861

ST PATA (YES OR NO) P NO

REGRESSION AND CORRELATION OUTPUT

.937393

REGRÉSSION EQUATION

Y = 242.754 + 1.17928 + X

1. 4945 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X+1

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

ENTER COLUMN NUMBERS OF X.V VARIABLES RESPECTIVELY...

MEY MUST BE BETWEEN 1-AND 2 2 1.2

LICH YEARS OF DATA DO YOU JIST TO LOOK AT...

TYPE FIRST YEAR, LAST YEAR? 1944.1955

ST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION DUTPUT

TE AVERAGE VALUE OF Y IS

E A VERAGE VALUE OF Y IS

THE STANDARD DEVIATION OF Y IS

THE STANDARD DEVIATION OF Y IS.

7459.87

E STANDARD DEVIATION OF Y IS.

E CORRELATION CORFFICIENT BETWEEN X AND Y IS

.983244

REGRESSION EQUATION

Y = -629.78 + 1.19298 + X

6.6769 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

非女女术 水水水水水水水水水水水 化水水水 化水水水 医水水 化甲基苯甲基苯甲基

PAN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

EY MUST DE BETUEEN 1 AND 2 ? 1.2
WATCH YEARS OF GATA DO YOU WISH TO LOOK AT...

TYPE FIRST YEAR. LAST YEAR? 1944,1957

ST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE STANDARD DEVIATION OF X IS

THE STANDARD DEVIATION OF X IS 6743.82 E STANDARD DEVIATION OF Y IS 7942.82

TE CORRELATION COEFFICIENT BETWEEN X AND Y IS

,978934

REGRESSION EQUATION

= -259.415 + 1.15298 * X

95.8311 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASUPING X.

最考表在股票单位股票收益的 数字 医大麻麻 医水麻麻 医水麻 经未成本 经存货 医神经病

A AGAIN WITH DATA ACCUMULATED (YES OR NO)?

FUTER COLUMN NUMBERS OF Y.Y VARIABLES RESPECTIVELY...

EY MUST BE RETUEEN 1 AND 2 2 1.2

JICH YEARS OF DATA DO YOU UTSH TO LOOK AT...

TYPE FIRST YEAR. LAST YEAR? 1944.1955

ST PATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

HE AVERAGE VALUE OF X IS 11388.4 HE AVERAGE VALUE OF Y IS 12344.8

THE STANDARD DEVIATION OF X IS 6199.73
THE STANDARD DEVIATION OF Y IS 7272.04

TE CORRELATION COEFFICIENT BETWEEN X AND Y IS

. 472723

REGRESSION SQUATION

¥ = ~151.589 + 1.1412 * x

4.658 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

A AGAIN WITH DATA ACCHMULATED (YES OR NO)?

ETTER COLUMN NUMBERS OF X.Y VARIABLES RESPECTIVELY...
Y MUST BE BETWEEN 1 AND 2 2 1.2
CH YEARS OF DATA DO-YOU UISH TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 1944.1955
T DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

AVERAGE VALUE OF X IS 1849% 6 AVERAGE VALUE OF Y IS 12823.9

THE STANDARD DEVIATION OF X IS 5522.66.

F STANDARD DEVIATION OF Y IS 6937.77

REGRESSION FOUATION

-339.78 + 1.22521 * X

*2771 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X*1

零章命 化雄凝溶液 电水水流 医水水流 机水水流 化水水水 不 化 化水水水 水水下水 化水水

4 AGAIN WITH DATA ACCUMULATED (YES OR NO)?

DO YOU WISH TO ACCHMULATE THE DATA (YES OR MO)? VES
DO YOU WISH TO PRINT THE MATRIX (YES OR MO)? NO
DO YOU WISH TO RMM A STATISTICAL TEST ON THE MATRIX DATA (YES OR MO)? YES
TESTS AVAILABLE: LIMEAR REGRESSION(1), TTEST WITH RANDOM DATA(2).
AND TREST WITH PATRED DATA(3)...TYPE CODE OF DESIRED TEST (1,2 OP 3)? 1

LINEAR REGRESSION

ENTER CULIMA MUMBERS OF X.Y VARIABLES PESPECTIVELY....

THEY MUST BE BETHERY 1 AND 2 ? 1.2

WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....

TYPE FIRST YEAR, LAST YEAR? 1964.1973

LIST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 90343.8
THE AVERAGE VALUE OF Y IS 56939.5
THE STANDARD DEVIATION OF Y IS 27803.8
THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

a 9697371

REGRESSION EDNATION

y = 13864.4 + .476791 * x

94.0391 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X ...

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

APPENDIX 3

SEDIMENT TREND STUDY UPDATE DATA TABLES

- SECTION 1. Data Table of Debris Yields for L.A.W.S., and Dunsmore. (includes debris basin records plus DAMCAP storage for years 1964,1966,1971,1973)
- SECTION 2. Random Data t-Tests of Data Table in Section 1.
 - entire record, 1944 to 1973
 - years 1944 to 1964 (before check dam treatment)
 - years 1964 to 1973 (after treatment years)
- SECTION 3. Paired Data t-Tests of Data Table in Section 1.
 - entire record 1944 to 1973
 - years 1944 to 1964
 - years 1964 to 1973
- SECTION 4. Linear Regression of Data Table in Section 1., as accumulated data for the years:

				0	
1944-73	Entire	record	to	year	30
1944-72	11	11	11	11	29
1944-71	11	11	11	17	28
1944-70	11	11	**	***	27
1944-69	11	11	11	11	26
1944-68	11	11	*1	**	25
1944-67	11	11	1.84	11	24
1944-66	11	11	21	21	23
1944-65	11	TT	*1	11	22
1944-64	11	11	11	11	21

SECTION 5. DAMCAP Data Computer Printout

SECTION 1. Data Table of Debris Yields for L.A.W.S., and Dunsmore. (includes debris basin records plus DAMCAP storage for years 1964,1966,1971,1973)

•				
	(4)	(2)		
YEAR	LoAoMoSo	BROWSHILD	ROH SUMS	ROW MEANS
1944	4231	4628	4628	4628
1945	1366	911	911	911.
1945	829	2623	2623	2623
1947	987	Ø	, প	3
1948	283	Ø	Ø	9,1
1949	148	Ø	G	Ø:
1958	151	3	Ø	Ø.
1951	27	g	B	Ø;
1952	7487	13125	13125	13125
1953	731.	ମ	Ø	Ø
1954	253Q	Ø	Ø	OS .
1955	1216	9	Ø	Ø;
1956	2112	1449	14119	1499
1957	1458	4285	4285	4235
1958	3281	5585	5 5 8 5	5535
19 59	3007	Ø	Ø	Bi
1968	1355	65	Ø	8
1961	1721	2589	2580	2589
1962	13951	3367	3367	3367
1953	2879	4652	4652	4652
1964	1419	17431	17431	17431
1965	5369	3	អ	es,
1966	13114	17342	17342	17342
1967	8145	2386	2389	2380
1968	3975	71.4	714	714
19 59	34284	20595	201595	20595
1970	2168	1309	1 3 39	1399
1971	1163	26627	26629	26679
1972	697	ଖ	Ø	e _i
1973	5342	24 938	24388	24983
	***	章章奉章章章	* · ·	
COL SUMS	121198	1.53653		
COL MEANS	4039.93	5121.77		
COL RATIOS	1	1.26779		

DO YOU WISH TO RUN A STATISTICAL TEST ON THE MATRIX DATA (YES OR NO)? TESTS AVAILABLE: LINEAR REGRESSION(1). TTEST WITH RANDOM DATA(2). AND TTEST WITH PAIRED DATA(3)...TYPE CODE OF DESIRED TEST (1,2 OR 3)?

SECTION 2. Random Data t-Tests of Data Table in Section 1.
- entire record, 1944 to 1973

. - years 1944 to 1964 (before check dam treatment)

- years 1964 to 1973 (after treatment years)

THIFST DATA FILES

		*
YEAR	L.A.J.S.	DUMSHORE
1944	4231	4623
1945	1365	911
1946	829	2023
1947	937	7
1943	238	€1:
1949	143	Ø;
1053	151	σ_{i}
1951	. 27	α
1952	7487	13125
1953	731	3
1954	2559	15 .
1955	1216	33
1956	2112	1420
1957	1 358	4235
1953	3231	5585
1959	3097	A ,
1963	1355	*41
1961	1721	25 R R
1962	13951	33 6 7
1963	2879	4552
1964	1419	17431
1965	5369	Ø
1956	18114	17342
1967	8146	233
1968	3976	714
1969	34280	23595
1978	2168	1357
1971	1163	26629
1972	697	3:
1973	5342	24023
	水和水水和水水水	*****

4339.93

DUTPUT FOR THEST WITH RANDOMIZED DATA

5121-77

THE VALUE OF T = .57493

DATA MEAHS

FOR L.A.V.S. THE STANDARD DEVIATION = 5552.63 AND THE STANDARD ERROR OF THE MEAN = 1198.17

FOR DUNSMOVE THE STANDARD DEVIATION = 7947.14 AND THE STANDARD ERROR OF THE 4EAR = 1450.94

THE POOLES STANDARD DEVIATION FOR L.A.W.S. + DUVSMORE = 7237.34

IF .37402 IS GREATER THAN THE THIRRE VALUE FOR 58 DEGREES OF FREEDOT. THE COMPLISTON IS THAT THE SEAM VALUE OF L.A.W.S. OF ARROWS PROCESSING A DIFFERENT PORMITTION THAM OTHER THE MEAN WALUE OF BUILDING THE MEAN WALUE OF THE PROCESSING OF THE MEAN WALUE OF THE MEAN

RUN AGAIN WITH DATA NOT ACCUMULATED (YES OR NO)? YES

THTEST WITH RANDOMIZED DATA

ENTER COLUMN HUMBERS OF VARIABLES TO BE COMPARED....
THEY MUST BE BETIEFN 1 AND 2 ? 1.2
WHICH YEARS OF DATA ON YOU WISH TO LOOK AT....
TYPE FIRST YEAR. LAST YEAR? 1944,1964
LIST DATA (YES OR NO)? MO

OUTPUT FOR THEST WITH RANDOMIZED DATA

THE VALUE OF T = .33227

FOR LARAWAS. THE STANDARD DRYIATION = 3149.45 AND THE STANDARD ERROR OF THE MERN = 687.266

FOR UNISMORE THE STANDARD DEVIATION = 4591.65 AND THE STANDARD ERROR OF THE MEAN = 1031.85

THE POOLED STATIOARD DEVIATION FOR L.A.W.S. 4 DUNSMORF = 3036.8

IF .38227 IS GREATER THAN THE THEASTE VALUE FOR 43 DEGREES OF FREEDOM. THE CONCLUSION IS THAT THE MEAN VALUE OF L.A.W.S. OR 2421.19 REPRESENTS A DIFFERENT POPULATION THAN DOES THE MEAN VALUE OF DUBSMORE OR 2885.52 AT THE SIGNIFICANCE LEVEL SELECTED.

都表示水中很有有效的 医甲基氏反射性 化双苯二甲基乙基 医水管性 医二甲基甲基

RUN AGAIN WITH DATA NOT ACCUMPLATED (YES OR NO)?

THTEST WITH RANDOMIZED DATA

ENTER COLUMN NUMBERS OF VARIABLES TO BE COMPARED...
THEY MUST BE BETWEEN 1 AND 2 2 1.2
WHICH YEARS OF DATA OF YOU WISH TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 194464,1973
LIST DATA (YES OR, 40) 2 NO

OUTPUT FOR THIFST WITH RANDOMIZED DATA

THE VALUE OF T = .819366

FOR L.A.W.S. THE STANDARD DEVIATION = 109.22.2 AND THE STANDARD ERROR OF THE MEAN = 3169.29

FOR DUNSMORE THE STANDARD DEVIATION = 11881.5 AND THE STANDARD ERROR OF THE MEAN = 3564.29

THE POOLED STANDARD DEVIATION FOR L.A. J.S. 4 DURSMORE = 18565.1

IF .819366 IS GREATER THAN THE THTABLE VALUE FOR 18 DEGREES OF FREEDOM. THE CONCLUSION IS THAT THE MEAN VALUE OF L.A.H.S. OR 7177.46 REPRESENTS A PIFFERENT POPULATION THAN DOES THE MEAN VALUE OF DUNSTORE OR 11748.8 AT THE SIGNIFICANCE LEVEL SELECTED.

乔格米乔会安布米森本 化分级效应和米米米卡尔安卡米 电水水车 形示法处示水水 水岭 作中

RUN AGAIN WITH DATA NOT ACCUMULATED (YES OR NO)?

SECTION 3. Paired Data t-Tests of Data Table in Section 1.

- entire record 1944 to 1973

- years 1944 to 1964

- years 1964 to 1973

T-TEST WITH PAIRED DATA

THEY MUST BE BETWEEN 1. AUD 2 2 1.2
WHICH YEARS OF DATA ON YOU WISH TO LOOK AT.....
TYPE FIRST YEAR. LAST YEAR? 1944, 1973
LIST DATA (YES OR NO)? NO

DUTPUT FOR T-MEST WITH PAIRED DATA

THE VALUE OF T = .769695

THE STANDARD DEVIATION OF THE PAIRED DATA # 7698.44

THE STANDARD ERROR OF THE MEAN # 1445.54

IF 4769695 IS GREATER THAN THE TATABLE VALUE FOR 29 DEGREES OF FREEDOM, THE CONCLUSION IS THAT THE MEAN VALUE OF L.A.M.S.FOR 4039.03 REPRESENTS A DIFFERENT POPULATION THAN DOES THE MEAN VALUE OF DUNSMORE OR 5121.77 AT THE SIGNIFICANCE LEVEL SELECTED.

RUN AGAIN WITH DATA NOT ACCUMULATED (YES OF NO)?

T-TEST WITH DATRED DATA

ENTER COLUMN NUMBERS OF VARIABLES TO BE COMPARED....
THEY MUST BE BETWEEN 1 AND 2 ? 1.2
WRICH YEARS OF DATA DO YOU WISH TO LOCK AT....
TYPE FIRST YEAR, LAST YEAR? 1844,1964
LIST DATA (YES OR NO)? NO

OUTPUT FOR THIEST WITH PAIRED DATA

THE VALUE OF T = .453254

THE STANDARD DEVIATION OF THE PAIRED DATA = 4695.55

THE STANDARD ERROR OF THE MEAN = 1424.65

IF .453254 IS GREATER THAN THE T-TABLE VALUE FOR 28 DEGREES OF FREEDOM, THE CONCLUSION IS THAT THE MEAN VALUE OF L.A.U.S.OR 2421-18 REPRESENTS A DIFFERENT POPULATION THAN DOES THE MEAN VALUE OF DUBS MORE OR 2835-52 AT THE SIGNIFICANCE LEVEL SELECTED.

RUN AGAIN WITH DATA NOT ACCUMULATED (YES OR NO)?

YES

T-TEST WITH PAIRED DATA

EHTER COLUMN NUMBERS OF VARIABLES TO BE COMPARED. IN THEY MUST BE BETWEEN 1 AND 2 ? 1.2 WHICH YEARS OF DATA DO YOU WISH TO LOOK AT. TYPE FIRST YEAR. LAST YEAR? 1964. 1973 LIST DATA (YES OR NO)? NO

DUTPUT FOR THREST WITH PAIRED DATA

THE VALUE OF T = .976419

THE STANDARD DEVIATION OF THE PAIRED DATA = 12538.1

THE STANDARD ERROR OF THE MEAN = 3964.89

IF .976419 IS GREATER THAN THE THTABLE VALUE FOR 9 DEGREES OF FREEDOM. THE CONCLUSION IS THAT THE MEAN VALUE OF L.A.M.S. OR 7477.43 REPPRSENTS A DIFFERENT POPULATION THAN DOES THE MEAN VALUE OF DURSMORE OF 11348.8 AT THE SIGNIFICANCE LEVEL SELECTER.

RUN AGAIN WITH DATA NOT ACCHMULATED (YES OR NO)? NO DO YOU WISH TO RUN ANOTHER STATISTICAL TEST WITH THE DATA NOT ACCUMULATED S NO R UN AGAIN (YES OR NO)? NO

LINEAR REGRESSION DATA FILES

YEAR	X=1.A.WaSa	A=0442M03E
1944	4231	4623
1945	5577	5 5 3 9
1946	6426	\$162
1947	7413	8162
1948	7731	8162
1749	7549	3167
1958	1 3493	3152
1901	8527	3162
1 75 2	15514	21287
1953	16245	21237
1954	18334	21237
1955	25454	21227
1956	22162	22696
1957	23229	26981
1953	26421	32505
1959	29518	32550
1 7 63	3 % R 7 %	32566
1901	32594	35446
19.52	46545	38513
1963	49424	43165
1954	5/3/4/4	64576
1965	56212	63595
1956	55326	77938
1467	74472	8.4518
1708	77548	3.1-152
195 9	111333	101627
1970	113996	142736
1971	115159	12 9565
1972	115856	124465
1973	121193	153553

REGRESSION AND COORELATION OUTPUT

```
THE AVERAGE VALUE OF X IS 43482.7
THE AVERAGE VALUE OF Y IS 46218.4
THE STANDARD DEVIATION OF X IS 38943.3
THE STANDARD DEVIATION OF Y IS 42243.7
THE COPRELATION COEFFICIENT RETWEEN X AND Y IS .083325
```

REGRESSION EDUATION

Y = 341.136 + 1.84656 * X

95.6938 PERCENT OF THE WARRATTON ITY IS ACCOUNTED FOR BY MEASURING X2.

· 李农农在公司农业设计专为通信与农农农业市场专业股份及政政会设定,农农政务和新发展。

LIMEAU REGRESSION

ERITAR COLURN NUMBERS OF X.Y VARIABLES RESPECTIVELY...
THEY HUST BE BETWEEN 1 AND 2 ? 1.2
WHICH YEARS OF DATA DO YOU GIRB TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 1844.1972
LIST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X 19 48386.3
THE AVERAGE VALUE OF Y IS 48395.5

THE STANDARD DEVIATION OF X IS 36672.1
THE STANDARD DEVIATION OF Y IS 37736.2

THE CORRELATION COFFFICIENT BETWEEN X AND Y IS

. DS 7488.

RESKESSION EDUATION

 $Y = 1593.46 + 1.615.3 \times X$

97.45+ PERCENT OF THE VARIATION IN Y IS ACCOMPTED FOR BY MEASURING CO

我表示专家表表表表表表表表面的大利法有效发生的大家或者不安全的成为对应重要表表现

RUN AGAIN SILTH DATA ACCOMPLATED (YES OR NO)?

LIMEAR REMRESSION

ENTER COLUMN AUGHERS OF X.Y VARIABLES RESPECTIVELY...
THEY MUST SE RETULER 1 AND 2 2 1.2
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....
TYPE FIRST YEAR. LAST YEAR? 1944, 1971
LIST DATA (YES OR NO)? NO

REGRESSING AND CORRELATION OUTPHT

THE AVERAGE VALUE OF X IS 37683.1

THE AVERAGE VALUE OF Y IS 39304.2

THE STANDARD DEVIATION OF X IS 34283.5

THE STANDARD DEVIATION OF Y IS 34484.6

THE CORRELATION COEFFICIENT RETUEEN X AND Y IS

.986116

REGRESSION FOUATION

Y = 2184.59 + .089434 * X

97.2424 PERCENT OF THE VAPIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

RUT AGAIN WITH WATA ACCUMULATED (YES DR HO)?

ENTER COLUMN DIMPERS OF X.Y MARTARLES RESPECTIVELY...
THEY MIST SE DETWEEN 1 AND 2 2 1.2
MULICH YEARS OF DATA DO YOU GISH TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 1944.1978
LIST MATA (YESTOR NO)2 NO

THATHO POLITELAND CORPERATION OUTPHT

RECRESSION EQUATION

1 4 3105.57 + .447491 + X

Y7.2445 PERCEIT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X ...

RUN AGAIN HITH DATA ACCUMULATED (YES OR NO)?

LIVEAS REGRESSION

ENTER COLUMN MEMBERS OF X.Y VARIABLES RESPECTIVELY...
INHY MUST BE BEFORED 1. AND 2 P 1.2
UBICH YEARS OF DATA ON YOU DISH TO LOOK AT...
IYPE FIRST YEAR, LAST YEAR? 1944.1959
LIST DATA (YES OP MO)? 40

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 31557.4

THE AVERAGE VALUE OF Y IS 35434.3

THE STANDARD DEVIATION OF X IS 27550.49

THE STANDARD DEVIATION OF Y IS 27455.4

THE CORRELATION CORRECTION RETURED X AND Y IS

*4225

REGRESSION EDUKTION

Y = 73+3.61 + .48257 + X

97. 4628 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

STOR NO 23Y) GETALUMUDDA ATAG HTTH MIARA MODE

ENTER COLUMN HUMBERS OF X.Y VARIABLES RESPECTIVELY....
THEY MUST BE BETWEEN 1 AND 2 ? 1.42
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....
TYPE FIRST YEAR. LAST YEAR? 1944.1968
LIST DATA (YES OR NO)? NO

REGRESSIAN AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 28481%8
THE AVERAGE VALUE OF Y IS 30758.6
THE STANDARD DEVIATION OF Y IS 22642.4
THE STANDARD DEVIATION OF Y IS 24108.6
THE CORRELATION COEFFICIENT SETUEEN X AND Y IS

·83657

REGRESSION EDUATION

Y = 727.093 + 1.95441 + x

97.3359 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

华桑桑桑泰安安农农农农农农农农农农安安 化西安宁 电电水水 电流电子 电水电池 电电池 医电影

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

LIMPAR REGRESSION

ENTER COLUMN NUMBERS OF X.Y VARIABLES RESPECTIVELY...:
THEY MUST HE BETWEEN 1 AND 2 ? 1.2
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....
TYPE FIRST YEARS OR UN)? UN
LIST DATA (YES OR UN)? UN

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF Y IS 26437.4
THE AVERAGE VALUE OF Y IS 28663.9
THE STAUDARD DEVIATION OF X IS 28637.8
THE STAUDARD DEVIATION OF Y IS 22233.7
THE CORRELATION COEFFICIENT BETUEEN X AND Y IS

487517 C

REGRESSION EDHATION

Y = 536.287 + 1.85294 + X

96.7463 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING Y.

BUT AGAIR WITH DATA ACCUMULATED (YES OR NO)?

ERTER COLUMN MAMMARRS OF X.Y VARYARLES RESPECTIVELY...
THEY MUST BE RETURED 1 AND 2 2 1.2
WHICH YEARS OF DATA DO YOU UISH TO LOOK AT...
TYPE FIRST YEAR. LAST YEAR? 1944,1856
LIST DATA (YES OR MO)? NO

RESPECSION AND CORPELATION OUTPUT

THE AVERAGE VALUE OF X IS 24348.7
THE AVERAGE VALUE OF Y IS 26418.1
THE STANDARD DEVIATION OF X IS
THE STANDARD DEVIATION OF Y IS

THE CUPRELATION CORPERCIENT BETHERN Y AND Y IS

2878234

18375.9 19818.7

REGRESSION EQUATION

Y = 604, 286 + 1, 85771 + X

95.784 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURTED X.

事水素甲素面章形质水业由水准血水水为生物水形大物的生物水 化烷基水解汽车次次 奈尔

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

ENTER COLUMN HUMBERS OF YAY VARIABLES RESPECTIVELY...
THEY MUST BE BETUEEN 1 AND 2 2 1.2
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT...
TYPE FIRST YEAR, LAST YEAR? 1846, 1965
LIST DATA (YES OR MO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF Y IS 22446.9
THE AVERAGE VALUE OF Y IS 24676.3
THE STANDARD PRIVIALITY OF Y IS

THE STAYORRO DEVIATION OF Y IS 16251.4
THE STAYORROUGH OF Y IS 16787.4

ZI Y GWA X REBUTER THEIDIFFICE ROTTALBERGO BET

·9743311

REGRESSION EQUATION

Y = 1604.77 + 1.82137 + Y

94.8749 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING X.

歌珠 次聚苯素 张 胶本 繁彰 我看 在家 数果 数 班出处 聚 异形裂 散 校准 医 成环代 於 歌 散珠状 准 冷寂

RUM AGAIN WITH DATA ACCHMULATED (YES OF NO)?

ENTER COLUMN NUMBERS OF X,Y VARIABLES RESPECTIVELY...
THEY MUST BE BETWEEN 1 AND 2 P 1.2
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....
TYPE FIRST YEAR. LAST YEAR? 1944,1964
LIST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE A VERAGE VALUE OF X IS 23332.7
THE AVERAGE VALUE OF Y IS 22337.2
THE STANDARD DEVIATION OF X IS 14758.4
THE STANDARD DEVIATION OF Y IS 14941.3
THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

.B 554391

REGRESSION ENGATION

Y = 1933.32 + .979393 + X

93.4394 PERCENT OF THE VARIATION IN Y IS ACCOUNTED FOR BY MEASURING YOU

黎嫩家家家家 散放放弃 水香菜素 家客 唯中宗 密放制火度 增生表 医内束及 安安索 水果尔 歌奏

RUN AGAIN WITH DATA ACCUMULATED (YES OR NO)?

FATER COLUMN NUMBERS OF X.Y VARIABLES RESPECTIVELY....
THEY MUST BE BETWEEN 1 AND 2 ? 1.2
WHICH YEARS OF DATA DO YOU WISH TO LOOK AT....
TYPE FIRST YEAR, LAST YEAR? 1964, 1973
LIST DATA (YES OR NO)? NO

REGRESSION AND CORRELATION OUTPUT

THE AVERAGE VALUE OF X IS 90343.8
THE AVERAGE VALUE OF Y IS 97782.6
THE STABBARD DEVIATION OF X IS 27893.8
THE STABBARD DEVIATION OF Y IS 31496.3
THE CORRELATION COEFFICIENT BETWEEN X AND Y IS

.917371

REGRESSION EQUATION

Y = 3845.7 + 1.43977 * X

84.2486 PERCENT OF THE VARIATION IN Y IS ACCUINTED FOR BY MEASURING X.

维索表中示中利权表电讯农业产业主张利用电报率 4. 作利尔利尔农利 双形式中水水平 双角 不寿

RIM AGAIN WITH DATA ACCUMULATED (YES OR NO)? HO

DEBRIS DAM STORAGE DETERMINATIONS LOS ANGELES NATERSHED

	CHANNEL SYSTE	PART OF THE	ACCESS DATE		
单章也	**	***	***	**	* 4 9
	ивлент	HTGIW	ANGLE	DEBRIS	CAPACITY
DAM IO	(FT)	(FT)	(%)	LENGTH (FT)	(CU YOS)
00-01	16	95	12	36#	67.40
	CHECK	DEBRIS LENGTH	VOLUME	PERCENT	
	DATE	(FT)	(CI YDS)	FHLL	
	1964	64	226.773	3.38468	
	1966	123	1814.19	27.4774	
	1972	244	6473.13	00.7520	
	1973	279	5834.18	75.0761	
***	彩电学.	***	6**	***	
	HEIGHT	HTOTH	ANGLE	DEGRIS	CAPACITY
DAM TO	(FT)	(FT)	(X)	LENGIN (FT)	(CH ADZ)
0/1-75	16	73	12.2	350	4563
	CHECK	DERGIS LENGTH	V D L U 16	PERCENT	
	DATE	(FT)	(CU YDS)	FULL	
	1954	ទត	546.536	12-1453	
	1960	139	1647-11	56.67.24	
	1972	221	2833.59	62.4643	
	1973	238	2961.71	65.8157	
***	***	***	. ***	4 44	***
•	HEIGHT	UI DIH	ANGLE	DEBRIS	CAPACITY
DAM IO	(FT)	(FT)	(1)	LENGTH (FT)	(CU YDS)
00-23	15	55	14	338	3643
	CHECK	DEBRIS LENGTH	VOLUME	PERCENT	
	MATE	(FT)	(CI) YUS)	FULL	
	1964	39	487.287	13.5762	
	1465	118	1 444.49	33.4831	
	1972	221	2843.81	56-7937	
	1973	318	2818.96	93.9653	
***	***	***	***	***	***
	HEIGHT	HT#1W	ANGLE	DEBRIS	CAPACITY
U A14 10	(FT)	(FT)	(1)	LENGTH (FT)	(CH YUS)
01-44	16	Ýď.	13.5	330	6198
	CHECK	GENRIS LENGTH	VOLUME	PERCENT	
	DATE	(FT)	(CI) YOS)	FULL	
	1954	1.39	1329.92	21.4543	
	1766	148	2597.00	42-5748	
	1,00	170	E 271 + U'	46 431 40	

			•	•	
	1972	323	5912.93	96.3824	
	1773	350	1480.27	122./20	
***		***	***	***	-
* " *			***		
	REIGHT	HIDIH	ANGLE	DEBRIS	CAPACITY
DAM ID	(F1)·	(FC)	(%)	LENGTH (FT)	(CU YUS)
20-35	1.5	ยร์	11 - 1	328	5348
	0 10 0 1			0000000	
	CHECK	DESKIS LENGTH	VOLUME	PERCENT	
	DATE	(fT)	(CH YUS)	full 70 × 105	
	1904	138	1219.50	22 + 5 3 9 5 · 43 • 8 5 1 5	
	1905	141	2524.13		
	1972 1973	319 32ø	5134·35 5753·32	90.8339 118.253	
	1973	320	3173.32	100 62 3 3	
***	***	***	**	* * *	***
	HELGHT	HIDTH	ANGLE	DEBRIS	CAPACITY
DAM ID	(FT)	(FT)	(%)	LENGTA(FT)	(CU Y)S)
₩J~26	18	68	15.6	348.	7900
Grand or the state of	Catal Cal	Arunta Levera	01 414 5	01.000.07	
	CHECK	DEBRIS LENGTH	3 Millor	PERCENT	
	DATE	(FT) 113	(CH YOS) 2335.33	FULL 29.5612	
	1964			53.2445	
	. 1966	1.74	3406.15		
	1972	230	5356.47	57.8234	
•	1973	240	5507.9	70.7329	
***	***	**	***	6 4 7	***
	HEIGHT	UIVTH	ANGLE	DEBRIS	CAPACITY
O1 HAG	(FT)	(FT)	(%)	LENGTH (FT)	(CU YDS)
00-07	26	125	14.3	560	23167
	CHECK	DEERIS LENGTH	VOLUME	PERCENT	
	DATE	(FT)	(CU YDS)	FULL	
	1964	176	6159.29	26.6636	
	1960	314 314	12525.1	55.5193	
	1972	440	18178.9	78.362	
	1973	5 an	20635.9	89.3328	
***	***	***	***	***	***
	HEIGHT	WIDTH	ANGLE	DEBRIS	CAPACITY
OI MAG	(FT)	(FT)	(Y)	LEHGTH (FT)	(CU YOS)
86-00	26	90	14.8	683	, 19483
	CHECK	DEBRIS LENGTH	VOLUME	PERCENT	
	DATE	(FT)	(CU YUS)	FULL	
	1964	2 71	3435.25	33.512	
	1966	324	5504.80	53.544,3	
	1972	6 714	11843.3	113.493	
	1973	035	15334.4	147 • 407	
***	***	***	***	***	***.
	HEIGHT	WILTH	ANGLE	DEBRIS	CAPACITY
GI MAG	(FT)	(FT)	(X)	LENGTH (FT)	(CU YUS)
DU-09	18	5 5	18.6	346	5600
					-

The production of the state of

	CHECK	DEHRIS LENGTH	VOLUME	PERCENT	
	DATE	(+1)	(CU Y95)	FULL	
	1964 -	120.	1734.45	31.0545	
	1960	210	3029.96	54.1884	
*	1972	390	8714.29	155.541.	
	1973	398	14296.6	255.236	
***	***	***	***	* * *	***
SYSTEM CAPACITY		VOLUME	PERCENT		
	(CU YUS)		(CU YUS)	FULL	
	72688		79938.5	116.850	
			VOLUME MEASU	IKĘO '	
		YEAR		(CUUIC YARUS)	
		1964	17458.9		
		1966	347/3.8		
	•	1 972	64482.8		
		1973	77983.5		

TIME &

APPENDIX 4

RESEARCH DATA

- Section 1 Resume of Dry Creep Study Research Note No. 171, November 1960
- Section 2 Paper No. 12
 Seasonal Debris Movement from Steep
 Mountain Slopes in Southern California
- Section 4 List of 91 Basins in L.A.W.S., with back up data for each basin

RESUME OF DRY CREEP STUDY.

- 1. THE GREATEST AMOUNT OF DRY CREEP IS ON THE SOUTH FACING UNDERCUT SLOPES.
- 2. 89% OF ALL PREFIRE DEBRIS CAME FROM DRY SEASON PRODUCTION.
- 3. 91% OF POST FIRE DEBRIS WAS DRY CREEP.
- 4. WET SEASON DEBRIS IS RELATED MORE TO STORM INTENSITY THAN TO TOTAL PRECIP. THIS MEANS THAT AS LONG AS THE STORM INTENSITY DOES NOT EXCEED THE CAPACITY OF THE SOIL TO ABSORB, THE WATER ACTUALLY INCREASES THE COHESION OF SOIL PARTICLES AND THERE IS A DECREASE IN SOIL MOVEMENT.
- 5. FIRE INCREASES THE DRY CREEP.

	PRE-FIRE			POST, FIRE		
SITE	X-TON/A/YR	CU.YD/A/YR	CY/MI/Y	X-T/A/Y	CY/A/YR	CY/MI/YR
3	2.70	1.80	1,152	10.20	6.80	4,352
4	1.65	1.10	704	28.95	19.30	12,352
5	2.88	1.92	1,229	24.19	16.13	10,323
X-A11	2.69	1.79	1,146	24.67	16.45	10,528

- 6. THIS TABLE IS THE OVERLAND DRY CREEP INTO CHANNELS, AND DOES NOT REFLECT THE AMOUNT THAT WOULD BE PRODUCED FROM A BURNED WATER-SHED AFTER A FIRE. THE POST FIRE DEBRIS PRODUCTION WILL INCLUDE:
 - 1. ALL CHANNEL STORAGE
 - 2. SIDE SLOPE STORAGE THAT UNDERCUT AND SLUFFED OFF.
 - 3. DRY CREEP FOR THE TIME INTERVAL BETWEEN THE FIRE AND THE FLOOD.
 - 4. LAND SLIPS AND SLIDES TRIGGERED BY SATURATION, ETC.
- 7. THE ANNUAL SEDIMENT PRODUCTION IS SOMEWHERE BETWEEN THE PRE-FIRE AND POST-FIRE RATE, DUE TO TEMPORARY SLOPE STORAGE.

Paper No. 12 Fed. Interagancy Sed. Conf. 1963 - U.S.D.A. Misc. Pub. 970, p.p. 85 - 89, 1965 Seasonal Debris Movement From Steep Mountainside Slopes In Southern California

Both papers are in work file

^{*} P.S.W. Research Note No. 171 , 11/60, Erosion From Mountain Side Slopes After Fire In Southern California By j.s. Krammes.

FOREST SERVICE - U. S. DEPARTMENT OF AGRICULTURE

PACIFIC SOUTHWEST FOREST AND RANGE EXPERIMENT STATION BERKELEY - CALIFORNIA

No. 171

November 1960

EROSION FROM MOUNTAIN SIDE SLOPES AFTER FIRE IN SOUTHERN CALIFORNIA

Ву

Jay S. Krammes, Research Forester

The night of July 21, 1960 was a hectic one for firefighters setting backfires along the Glendora Mountain Road in a desperate effort to check the Johnstone Fire on the San Dimas Experimental Forest. What made the job so hectic? Not the fire, but dangerous, active erosion! The men had to be continually alert to dodge large rocks rolling downslope only seconds after the fire passed.

These men were witnessing how fast and furiously erosion begins after a southern California brush fire. Less than a week after the Johnstone Fire, so much soil material had moved down the denuded slopes that debris cones often blocked roads and trails (fig. 1).

In most areas, surface runoff of rainfall is the main cause of soil erosion. In the rugged San Gabriel Mountains, however, we are faced with a two-fold erosion problem: winter scour from surface runoff plus "dry creep" from steep side slopes during the summer. 1/ Fire's destruction of the plant cover greatly accelerates these processes. Until recently no one had a good opportunity to measure dry creep following a fire, but the Woodwardia Fire provided the opportunity when it swept over an established erosion study area in the mountains above Los Angeles during October 1959.

^{1/} Anderson, H. W., G. B. Coleman, and P. W. Zinke. Summer slides and winter scour...dry-wet erosion in southern California mountains. U. S. Forest Serv., Pacific Southwest Forest and Range Expt. Sta., Tech. Paper 36. 12 pp., illus. July 1959.

Figure 1. -- Road blocked by slide one week after the Johnstone Fire on the San Dimas Experimental Forest.

Anderson, Coleman, and Zinke had found that under long unburned conditions dry-season debris movement exceeded wet-season movement on most of the study sites. 2/ Their report covered a 5-year period; 4 years of below normal rainfall and 1 year of above average rainfall. This report gives data for an additional 2 years, the second of which followed the Woodwardia Fire, and shows the tremendous acceleration of soil movement from a fire-denuded area.

Field Procedures

Half-round steel troughs connected to the original soil surface by a concrete apron were used to catch the debris moving downslope (fig. 2). Wooden baffles installed at two of the sites to catch bouncing rocks were destroyed by the fire. Consequently, a portion of the first measurements following the burn had to be estimated. Later measurements proved the estimates to be rather conservative. Otherwise, material caught in each trough was removed and weighed, corrected for moisture, and sampled for organic matter and rock content. Troughs along the contour of the slopes ranged in length from 10 to 431 feet.

^{2/} Anderson, Coleman, and Zinke, op. cit.

Figure 2.--Debris trough at Falls Canyon. Collector trough filled with debris from dry season movement. Foot trail below the trough has eroded away since the fire.

Results

Debris production rates for the year before the fire showed generally the same trend as published in the 1959 report. 3/ The steep south rejuvenated slopes 4/ were again the greatest producers. Precipitation during the 1958-59 season was 70 percent of normal. Only one storm caused any appreciable wet-season movement, and the rate of debris movement was about the same as previously reported.

On October 13, 1959, the Woodwardia Fire burned four erosion measurement sites in the Arroyo Seco drainage. Immediately after the fire dry creep changed to rapid dry sliding. Although debris movement varied widely, all sites showed a marked increase in dry-season movement.

The first two measurements after the fire showed that side slope erosion had increased at all sites (table 1). The steep south rejuvenated

^{3/} Anderson, Coleman, and Zinke, op. cit.

1/ Rejuvenated slopes are the steep slopes flanking stream channels in which renewed channel downcutting has removed the toe of the slope creating an unstable condition and active erosion is taking place.

slopes were still by far the greatest producers, with a 10-fold increase over an already high pre-fire rate (fig. 3). Total annual production from the south-facing Lower Brown sites was 24.7 tons per acre, of which 21.9 tons per acre (89 percent) of the soil movement came from dry sliding during the first 88 days after the fire.

Table 1. -- Seasonal debris movement, south rejuvenated slopes

		. Lower	Brown	: Lower 1		: Lower		Lower 1	Brown
Season :		Site		: Site		: Site		Site II	
	of :	Dry		•		: Dry :		Dry :	
From :To (inc.):	days :		: season er acre	: season Tons pe		:season:	season: er acre		
		TOUS D	er acre	TO112 h	acre	<u> 10112 </u>	er scre	Tons pe	er acre
Five years before fi	re	6.104	11.331	5.943	4.568	15.671	1.907	9.601	8.180
4/16/58 12/11/58	238	•479		. 546		• • • 223	W0 400	.482	
12/12/58 3/5/59	82 .		1.667		1.276		4.355		1.809
3/6/59 6/23/59	111	.157	94 89	.050		.034		.078	
Total pre-fire		6.740	12.998	6,539	5.844	15.928	6.262	10.161	9.989
Tons/Acre/Season		.84	1.86	.82	.83	1.99	.89	1.27	1.42
Tons/Acre/Year		. 2	.70	1.	.65	2.	88	2.	. 69
After fire					•				
6/25/59 1/8/60	167 1/	, 20.070	1	/ _{82.070}	1	68.970	des don	62.510	
1/9/60 3/21/60	100		5.150	2	2/6.511	00.710	1.620		5.458
			7.170		- 0. 711		1.020		
3/22/60 5/23/60	62	2.798		4.005	~~	1.177		3.276	
Total post-fire		22.868	5.150	86.075	6.511	70.147	1.620	65.786	5.458
Tons/Acre/Season		7.62		28.69		23.38			
		-	-	-	_				
Tons/Acre/Year		10	.20	28.9	95	24	.19	24	.67

^{1/} Portion of catch estimated because of fire damage to trough installations.

^{2/} High rate caused by a large limb falling in the chute.

Figure 3. -- Dry and wet-season debris production before and after the Woodwardia Fire.

North rejuvenated slopes showed a post-burn rate of 4.3 tons per acre per year--an increase to about 17 times the unburned average (table 2). Dry-season movement amounted to 3.9 tons per acre or nearly 91 percent of total. Debris production from north non-rejuvenated sites increased 16 times (table 3). The smallest increase of only 4-fold occurred at the south non-rejuvenated site, Upper Brown, where surface rock outcrops served to stabilize the slope somewhat.

Precipitation during the 1959-60 rainy season was 59 percent of normal; consequently post-fire wet-season movement was small.

Table 2. -- Seasonal debris movement, north rejuvenated slopes

		:	Number	:		er Br	own.	:	Lowe	r B	
Se	eason	:	of	:-	Dry		Wet	- : -	Dry	:	Wet
From	: To (inc.)	:	days	:	season	:	season	:	season	:	season
					Tons	per	acre		Tons	per	
Five years	before fire		-		.660		.642		.675		• 544
4/16/58	12/11/58		238		.148		-		•092		en es
2/12/58	3/5/59		82	٠.			.088				.130
3/6/59	6/23/59		111		•030		ou se		.038		the est
Total p	ore-fire	-			.838		•730		. 805		.674
Tons/Ad	re/Season				• 14		.15		.13		.13
Tons/Ad	ere/Year		.26						.26		
After fire											
6/25/59	1/8/60		167		12.299				9.926		
1/9/60	3/21/60		100		***		.983		900 GOS		.458
3/22/60	5/23/60		62		.741		9 - 60		.719		desi ann
Total p	oost-fire	-			13.040		.983		10.645		.458
Tons/Ac	re/Season				4.35		.49				•23
	re/Year					. 84			3.78		

Summary and Conclusions

How much is dry creep erosion increased after the native plant cover is destroyed? Side slope erosion directly related to the Woodwardia Fire ranged from 2.2 to 24.7 tons per acre the first year after the fire. South slopes flanking rejuvenated stream channels yielded the most debris, 10 times the pre-burn rate. Nearly 89 percent of the eroded material came during the dry season.

Table 3. -- Seasonal debris movement, nonrejuvenated slopes

Season :	lumber of		ng Springs S South :	rging Sp. Nortl		Upper So	Brown outh	-	ills orth
From : To (inc.):	days	:Dry	: Wet :	Dry :	Wet:	Dry	: Wet	: Dry	: Wet
		Tons	per acre	Tons pe	er acre	Tons	per acre	Tons	per scre
Five years before fi	re.	.518	1.003	.516	•511	2.105	1.500	1.103	.685
4/16/58 12/11/58	138	.102		.066		•373	grand to the same of the same	.121	-
12/12/58 1/15/59	34	• 574		.149		ac es	.032		.028
1/16/59 3/5/59	48		• 323	*** ***	.196		.061		.020
3/5/59 6/24/59	111	.017		.017	ga en	· 044	With date	• O44	000 dam
Total pre-fire		1.211	1.326	.748	.707	2.522	1.593	1.263	•733
Tons/Acre/Season		•13	.22	.08	.12	• 32	.23	.16	.10
Tons/Acre/Year		•	35	.20)	• 5	55	.2	6
After fire							· · ·		
6/25/59 12/10/59	167			***		1.846	04 av	4.519	
12/11/59 3/21/60	100			en 40			3.067		4.053
3/22/60 5/23/60	62		der ten	OH 860		.085		1.618	
Total post-fire				B- 100	50 Na	1.931	3.067	6.137	4.053
Tons/Acre/Season						.64	1.53	2.05	2.03
Tons/Acre/Year				·	,	2.1	.7	1+ · C	8

Other study sites showed similar large increases of 4 to 17 times the pre-fire rates. Dry-season debris movement exceeded wet-season movement at all but one of the study sites. However, precipitation during the period of measurement was below normal, and the few gentle rains gave cohesion to the soil rather than winter scour.

The absence of appreciable winter scour in the first year after the burn does not necessarily decrease debris hazard. The eroded debris remains poised in the stream channels until high flows at some later date carry it destructively to the valley below (fig. 4).

Figure 4.--Lower Brown Canyon. Eroded material perched in the channel bottom which will eventually be flushed from the channel and deposited in debris basins, reservoirs, and property in the valley below.

SEASONAL DEBRIS MOVEMENT FROM STEEP MOUNTAINSIDE SLOPES IN SOUTHERN CALIFORNIA

[Paper No. 12]

By JAY S. Krammes, research forester, Pacific Southwest Forest and Range Experiment Station, Forest Service, Glendora, Calif.

Most people become concerned about floodporne debris only when it causes property dampage or is deposited in reservoirs. Much of the
debris is scoured from stream channels, where
it accumulates as the product of side-slope erosion. The interest in debris movement down
mentain slopes, then, stems from flood and
debris control problems downstream. Though
debris produced during storm runoff is often
the most spectacular, dry-season debris movement is an important part of the erosion in the
San Gabriel Mountains. This paper reports a
comparative study of dry- and wet-season debris movement in these steep, unstable watersheds.

A study in the Los Angeles River Watershed by Retzer and others is showed the sources and brocesses of debris movement. They mapped he sources of debris and determined the important source areas, in approximate descending order, to be "(1) streambanks and slopes returned by undercutting; (2) slopes with outh exposures; (3) very steep slopes; (4) fault zones and steep fault faces; and (5) deep colluvial-alluvial deposits on slopes where until ut by roads or streams."

pe active agents of erosion were observed to be gravity, water, wind, and the daily freeze-haw cycle, the latter occurring primarily at high elevations. These agents can act alone, but hey commonly work together, especially water and gravity.

Erosion took place mainly as granular movement on the surface rather than as deep-seated movements of soil masses. Granular debris moved as dry creep and as slope wash. Both of these processes were active over the entire study area. About 90 percent of the area mapped was affected by dry creep movement to some degree.

Dry creep movement is not found in most egions. It requires steep slopes with dry, loose

material on the surface. The dry slide material ranges in size from larger rocks to fine soil particles. When the slopes are vegetated, some of the dry creep material is detained behind rocks, stumps, and brush. Other material not detained continues to move downslope and collect as cones in channels.

The slopes of the San Gabriel Mountains maintain a precarious equilibrium. The average slope of the land is more than 65 percent, or above the angle of repose for unconsolidated soil materials. Downslope movement may be triggered by slight disturbances: movement of animals, the wind, or earth tremors.

Surface Debris Movement Study

A study was started in 1953 to determine the cause (gravity or water), rates, and amounts of debris moving downslope and into channels.²

Study Sites

Nine study sites were located in the Los Angeles River Watershed. Five of these sites are on rejuvenated slopes. The other four sites are on slopes not affected by rejuvenation (table 1).

Table 1.—Characteristics of debris movement study sites

Location (name and No.)	Slope condition	Aspect	Area	Cover	Average slope
Lower Brown			Acres		Percent
-site 1	Rejuvenated.	NE.	3.45	95	70
Lower Brown —site 2	do	NE.	3.36	95	70
	do	SE	.72	65	90
Lower Brown —site 4	do	SE	1.45	65	90
Lower Brown —site 5 Upper Brown	do Non-	SE	.34	65	90
-site 6 Falls Canyon	rejuvenated.	SW.	.68	95	55
—site 7	do	NE.	1.53	95	60
	do	sw.	1.30	65	60
Singing Springs —site 9	do	NE.	1.64	85	55

Study sites were located on generally north- or south-facing slopes that were undisturbed by fire or road building. The experimental sites were chosen in a single rock type — the Wilson Diorite, which underlies about one-third of the San Gabriel Mountains. The soils are character-

rmir. Fideral Interagoncy Sedimintation Ounf. 1963 From Agnic, Miss. Pobl. 970, pp. 85-89, 1965

origin and movement of sediments in the los angeles yer watershed, california. U.S. Forest Service. 103 pp., 1952. [Typed.]

² ANDERSON, H. W., COLEMAN, G. B., and ZINKE, P. J. SUMMER SLIDES AND WINTER SCOUR... DRY-WET EROSION IN SOUTHERN CALIFORNIA MOUNTAINS. U.S. Forest Serv. Pacific Southwest Forest and Range Expt. Sta. Tech. raper 36, 12 pp., illus. 1959.

Rejuvenated slopes are the steep slopes flanking stream channels in which renewed channel downcutting has removed the toe of the slope, creating an unstable ondition where active erosion is taking place.

istically shallow, coarse-textured, noncohesive, and very erodible.

Measurement of Debris

Debris moving downslope is caught in troughs that are connected to the original soil surface by a concrete apron. The troughs are built on the contour from a point of a ridge across a segment of the slope and end near a drainage channel. Troughs are placed across erosion chutes at the rejuvenated slope study sites. Catchment troughs range in length from 10 to 431 feet. Four-foot high barriers are installed at several of the sites to catch bouncing rocks and excessive debris yields.

The material caught in each trough is removed and weighed, corrected for moisture, and sampled for organic matter and rock content.

Results

Debris Production From Unburned Slopes

Anderson, Coleman, and Zinke' reported the first 5 years' debris production from these sites

under long unburned conditions. They found that the greatest source of debris was from the south-facing rejuvenated slopes. These sites yielded an average of 3.56 tons per acre per year — 5 to 10 times the average on other sites. Debris movement during the dry season exceed wet-season movement at most of the study sites. Even under unburned conditions, at least 0.2 ton per acre per year was measured at all study sites.

Rainfall during the first 4 years of the study was 77 percent of normal. The fifth year's precipitation was 143 percent of normal, but there were no high intensity storm periods. The first gentle rains increased the cohesion of the soil and tended to reduce wet-season debris movement.

Krammes reported a sixth year's (1958-59) debris production under unburned conditions. The south-facing rejuvenated slopes were again the greatest producers. Precipitation during the season was 70 percent of normal. One storm caused the wet-season movement to exceed dryseason movement at the south-facing rejuvenated sites and the north nonrejuvenated site 9. Six years of debris production under unburned conditions appears in tables 2, 3, and 4.

Debris Production From Burned Slopes

In October 1959 a wildfire swept through seven of the nine study sites (sites 1 through 7). Debris movement began almost immediately after the fire passed. The fire destroyed the low-growing brush that formerly detained de-

TABLE 2.—Debris production by seasons, south-facing rejuvenated slopes (Lower Brown Canyon)

		Site 3			Site 4			Site 5			Average sites 3, 4, and 5		
Period	Season			Season			Season			Season			
	Dry	Wet	Yearly	Dry	. Wet	Yearly	Dry	Wet	Yearly	Dry	Wet	Year.y	
Prefire (1953-59)	Tone per acre			0.82 0.83 1.65			1.99 0.89 2.88			Tons per cers 1.27 1.42 2.69			
Postfire	0.84	1.86	2.70	0.02	0.83	1.65	1.99	0.89	2.00	1.21	1.44	2.09	
1st year (1959-60)	7.62	2.58	10.20	28.69	3.26	28.95	23.38	.81	24.19	21.93	2.74	24.76	
2d year (1960-61) 3d year (1960-62)	$\frac{1.43}{2.94}$	34.97 29.83	36.40 32.77	5.05 6.97	21.53	26.58 16.62	1.24	10.30	(1)	3.51 5.62	23.87 16.57	27.33 *22.19	
od year (1300-02)	4.5.1	1 23.50	05.11	0.97	3.55	10.07			(*)	0.02	10.07	-22.19	

^{*} Trough destroyed by large boulder.

Table 3.—Debris production by seasons, north-facing rejuvenated slopes, colluvial soils (Lower Brown Canyon)

		Site 1			Site 2		Average sites 1 and 2 Season			
Period		Season			Season					
	Dry	Wet	Yearly	Dry	N'et	Yearly	Dry	N'et	Yearly	
Prefire (1953-59)	0.14	Tons per acr. 0.15	0.26	0.13	Tons per cere 0.13	0.26	. 0.13	Tons per acre 0.14	0.27	
1st year (1959-60) 2d year (1960-61) 3d year (1961-62)	.23	.49 .1.40 .S2	4.84 1.63 1.27	3.55 .25 .11	.23 1.57 1.68	3.78 1.82 1.79	3.95 .24 .28	.36 1.48 1.25	4.31 1.72 1.53	

^{*} Erosion chutes are caused by the concentrated movement of soil and rock down segments of steep slopes during both wet and dry periods. Reference: BLACK-WELDER, ELIOT. THE PROCESS OF MOUNTAIN SCULPTURE BY ROLLING DEERIS. Jour. Geomorphology 5(4): 324-328. 1942.

⁵ See footnote 2.

⁶ KRAMMES, JAY S. EROSION FROM MOUNTAIN SIDE SLOPES AFTER FIRE IN SOUTHERN CALIFORNIA. U.S. Forest Serv. Pacific Southwest Forest and Range Expt. Sta. Res. Note 171, 8 pp., illus. 1900.

On the basis of sites 3 and 4 only.

TABLE 4.—Debris production by season, south- and north-facing nonrejuvenated slopes (Upper Brown, Falls Canyon, and Singing Springs)

		Site 6 south			Site 7 north Season			Site 8 south 1 Scason			Site 9 north 1 Season		
Period	Se250n												
·	Dry	Wet	Yearly	Dry	Wet	Yearly	Dry	Wet	Yearly	Dry	Wet	Yearly	
	Tons per acre		Tons per aere			Tons per acre			Tons per acre				
Prefire (1953-59)	0.32	0.23	0.55	0.16	0.10	0.26	0.13	0.22	0.35	0.08	0.12	0.20	
Postfire:													
1st year (1959-60).		1.53	2.17	2.05	2.03	4.08	.03	.02	.05	.03	.01	.04	
2d year (1980-61).		4.48	4.59	.08	2.47	2.55	.04	.96	1.00	.04	.28	.32	
3d year (1961-62).	.02	2.13	2.15	.01	1.28	1.29	.03	.46	.49	.03	.18	.21	

¹ Vegetation unburned.

bris on the side slopes. Great quantities of debris moved downslope and into stream channels.

First Postfire Year

Dry-season debris movement in the first year after the fire ranged from 0.6 to 21.9 tons per acre (tables 2, 3, and 4). South-facing slopes flanking rejuvenated stream channels again had the highest annual production, more than 10 times the already high prefire rate (fig. 1). Nearly 90 percent of the debris came during the dry season.

North-facing rejuvenated slopes showed a postburn rate of 4.3 tons per acre per year, or an increase of about 16 times the unburned average (table 3). Debris production from the north nonrejuvenated site increased 16 times. The smallest increase (4-fold) occurred at the south nonrejuvenated site (table 4). Rock outops may have served to stabilize this site

newhat.

Precipitation during the first postfire year was 59 percent of normal and no high intensity storms were recorded.

The burned area, including the study sites, was seeded with annual ryegrass (Lolium multiflorum) and black mustard (Brassica nigra) after the fire. Because of the below-normal rainfall and extended dry periods during the wet season, the seeding was not successful. On the rejuvenated sites the seed moved downslope with the debris and was buried in the stream channel.

Second Postfire Year

Rainfall in the 1960-61 year, although only 35 percent of normal, contained four storms, totaling 7.35 inches of rainfall that produced debris movement. The south-facing rejuvenated ites, which were the most unstable, produced almost 27 tons per acre (table 2).

Most of the debris was moved in the second torm of the year. The highest 5-minute intensity recorded during that storm was 1.68 inches per hour. More wet-season debris was produced during this storm from all sites than had ocurred during any of the previous 8 years of neasurement. Wet-season debris production ap-

pears to be related more closely to intensity than total amount of storm rainfall.

Dry-season debris production in the second postfire year was considerably less than in the first postfire dry-season.

Third Postfire Year

Precipitation during the 1961-62 year was 96 percent of normal. The first three storms of the year, with a total of 5.62 inches of rainfall, produced more than 10 tons per acre at the south-facing rejuvenated sites. Another 5 tons per acre were measured in the rest of the wet season (almost 19 inches of rainfall). Wet-season debris movement exceeded dry-season movement. Dry-season debris movement was still considerably higher than the prefire rate on the south-facing rejuvenated sites but much less than the rate during the short period just after the fire (table 2).

Discussion

Debris that is eroded from the side slopes arrives in the channels through the action of wind, water, and gravity. However, these forces do not act equally or independently. There is always a gradual downslope movement of debris in the San Gabriel Mountains. The gradual soil movement during dry seasons is the "base flow" and the wet-season movement is analogous to "storm flow." Debris movement was separated into dry-season and wet-season movements to determine variations in rate between seasons. The first light rains of the wet season quite often have little or no effect on dry movement. As soil moisture increases, cohesiveness is given to the soil and dry movement slows down. This lasts as long as soil moisture is maintained. With additional rainfall, wet movement predominates. If prolonged dry periods between storms cause a reduction in surface moisture, dry creep begins again.

Over the years, many tons of debris are deposited in stream channels during both wet and dry seasons. This material remains poised in the channels and will be moved only when winter runoff has sufficient carrying power. Such flows occur on the average of once in every 5

years. Thus, side slope erosion provides of the flood debris that is thought of as or channel scour. Stabilizing these steep mountain slopes remains as a challenge to future erosion-control efforts in the San Gabriel Mountains of southern California.

FIGURE 1. - Scasonal debris movement before and after fire in the Los Angeles watershed.

1
1
•
1
•
1
1

BYMPOSIUM 1.—LAND INCOMON AND CONTROL! and Trace of the after

water runoff into stream channels, reduced peak discharge of streams, and effectively reduced toil erosion and resultant downstream sedimentation.

Summary

Several methods of obtaining soil stabilization on high mountain watersheds are available to the land administrator. These are (1) intensive management practices, (2) revegetation coupled with intensive management practice, and (3) contour trenching. Each method recognizes the fundamental relation existing between land cover and hydrologic behavior and reflects the importance of maintaining the productivity of the site for the production of forage, fiber, wildlife, and recreation.

The application of each method requires a careful analysis of the (1) geologic norm, (2) type of flooding, (3) watershed protection requirements, and (4) adaptability of the site for treatment.

Of the methods described, contour trenching has proved most effective in controlling flooding, and sedimentation occurring from badly deteriorated mountain watersheds. The application of this method is not a panacea for all flood-source areas but has proved effective in controlling flooding from badly deteriorated lands occasioned by high intensity summer rainstorms.

Literature Cited

- (1) BAILEY, R. W.
 - 1941. LAND PROSION—NORMAL AND ACCELERATED—IN THE SEMIARID WEST. Amer. Geophys. Union Trans. Part 2: 240-250, illus.
- 1950. WATERSHED MANACEMENT: KEY TO RESOURCE CONSERVATION. Paper presented before 15th North American Wildlife Conference.

- (8) BAILEY, R. W., and Copenand, O. L., Jr.
 1960. LOW FLOW DISCHAFTED AND PLANT COYCE
 RELATIONS ON TWO ROUNTAIN WATER
 SHEDS IN UTAH. I.A.S.H. Com. of Eurface
 Waters, Pub. No. 51, pp. 267-278.
- 1961. PARTIES AND EAST OF THE PROPERTY OF THE
- (5) and Croft, A. R.

 1937. CONTOUR TRENCHES CONTROL FLOODS AND
 EROSION ON RANGE LANDS. Emergency
 Cons. Work Forestry Pub. 4, 22 pp., illus.
- (6) FORSLING, C. L., and BECRAFT, R. J.

 1934. FLOODS AND ACCELERATED EROSION IN
 NORTHERN UTAH. U.S. Dept. Agr. Misc. *
 Pub. 196, 22 pp., illus.
- (7) CROFT, A. R., and GOODWIN, V. O.
 1956. SOME PLOOD CHARACTERISTICS OF BIERRA
 NEVADA EAST FRONT WATERSHEDS. Tenth
 Nevada Water Conference Proc., October 18-19, 1966, pp. 12-17.
- (8) LOWDERMILK, W. C.
 1953. CONQUEST OF THE LAND THROUGH 7,000
 YEARS. U.S. Dept. Agr. Inform. Bul. 99,
 33 pp., illus.
- (9) PACKER, P. E.
 1951. AN APPROACH TO WATERSHED PROTECTION
 CRITERIA. Jour. Forestry 49: 639-644,
 illus.
- (10) United States Department of Agriculture,
 1950. Forest service annual Report. U.S.
 Forest Service, Intermountain Forest
 and Range Expt. Sta.
- 1958. CONTOUR TRENCHES AND PITS. U.S. Forest Service, Intermountain Region Watershed Management Training Cir. 2, 7 pp.
- 1960. FOREST SERVICE ANNUAL REPORT. U.S.
 Forest Service, Intermeuntain Forest
 and Range Expt. Sta., 51 pp., illus.
- [n.d.] ENGINEERING HANDBOOK, SECTION 4, HYDROLOGY. Soil Conservation Service,
 illus.

EMERGENCY MEASURES TO CONTROL EROSION AFTER A FIRE ON THE SAN DIMAS EXPERIMENTAL FOREST [Paper No. 19]

By R. M. Rice, R. P. Crouse, and E. S. Corbett, research foresters, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Glendora and Berkeley

Southern California is in urgent need of better solutions to its flood and erosion problems. Its steady population growth has resulted in intensive urban development on the debris cones at the mouths of mountain canyons. The Mediterranean climate, which attracts thousands of newcomers to the State, favors the growth of a highly inflammable vegetative cover (chaparral) on the mountains. It also frequently pro-

duces weather conditions that promote widespread wildfires. Such fires damage watersheds on steep mountain slopes that often lie above densely populated cities. This hazard justifies flood and erosion control measures that may not be necessary in most parts of the United States.

The U.S. Forest Service is conducting a broad research program in southern California to test several flood and erosion control measures for

use after fire on mountainside slepes and in small tributary channels. This study is in progress at the San Dimas Experimental For-

est, which has been devoted to watershed resagement research since 1933. Owing to the distinction of burning watersheds under controlled

FIGURE 1 .-- Location of treatments on experimental watersheds testing erosion control measures

conditions, carlier studies of erosion after fire had been limited to plots or to analyses of the effect of wildfires in the area.

In 1960 a wildfire swept most of the 17,000-acre Experimental Forest. It destroyed much valuable research underway, but it also presented an opportunity to study flood flows and erosion rates from completely burned watersheds. To exploit this opportunity, Federal, State, and county agencies undertook a cooperative emergency research program.

This paper reports on a continuing study begun during the dry winter of 1960-61, and covers data collected during the four major storms of the 1961-62 season.

Methods

We are seeking to obtain a quantitative evaluation of several mechanical and vegetative land treatments as "first aid" for burned chaparral watersheds.

Selection of Watersheds

The 20 watersheds used in this study were chosen to be as similar as possible in size (about 5 acres), shape, aspect, and erodibility (fig. 1). Even so, considerable variation existed within the group. To reduce the effect of this variability upon our study, we grouped watersheds into five erodibility classes based on three independent appraisals of their relative erodibilities.

The appraisers used slope, channel gradient, rockiness, and amount of colluvial soils as indicators of the relative erodibility of the watersheds. Treatments were then assigned to the watersheds so that apparent erodibility was balanced among treatments; that is, no treatment could be applied to all the high erodibility groups.

Instrumentation

The streamflow from each experimental watershed is measured in a 30-foot trapezoidal flume. Debris is trapped and measured behind earth-fill dams that can hold about 60 cubic yards per acre. Precipitation is measured in 5 intensity rain gages and 16 nonrecording gages distributed throughout the study area.

Selection of Treatments

In southern California broadcast sowing of annual grasses is the most widely used method of rehabilitating watersheds after a tire. Eight of the watersheds were sown to a mixture of annual grasses (Wimmera 62 ryegrass, Lolium rigidum: and blando brome, Bromus mollis)—four at the rate of 2.5 pounds per acre and four at 20 pounds per acre.

Perennial grasses—often suggested for use—were also tried. Eight watersheds were seeded to a mixture of perennial grasses (intermediate wheatgrass, Agropyron intermedium; pubescent wheatgrass, A. trichophorum; tall wheatgrass, A. elongatum; hardingrass, Phalans tuberosa stenoptera; big bluegrass, Poa ampla; smilograss, Oryzopsis miliacea) and small amounts of the annuals, blando brome and Wimmera ryegrass—four at the rate of 4.5 pounds per acre and four at 20 pounds per acre. Four watersheds were left unseeded.

The areas sown to perennials were sprayed with 2,4-D and 2,4,5-T during the springs of 1961 and 1962 to help establish perennial grass by reducing competition from brush species.

Precipitation after sowing was light (total of 6.29 inches, 16 storms) during the 1960-61 season. Consequently, we had scant cover from seeded species. To correct this shortage, broadcast sowings were repeated in the fall of 1961.

In addition to the broadcast sowings, three mechanical erosion control measures were being tested. Chosen from measures currently in use in Western United States, each treatment combats the movement of water and soil at a different place along the route from raindrop impact to the debris basin. These mechanical treatments were distributed among the watersheds orthogonal to the broadcast sowings (see tables 2 and 3).

Side slope stabilization.—This treatment consisted of planting barley and fertilizer in hand-hoed rows at 2-foot intervals on the contour (150 pounds of barley and 140 pounds of diammonium phosphate per acre). Its objective was to create closely spaced barriers to the overland flow of water and debris. This treatment was compared with other mechanical measures because we were merely using plants as a means of obtaining the desired pattern of obstructions. The barley plants undoubtedly also promoted infiltration and reduced rainfall impact.

Contour trenching. — This method is being used in Idaho and Utah under somewhat different conditions of climate and soil. It has the effect of breaking up surface flow, increasing depression storage, encouraging the infiltration of storm runoff, and trapping sediment and debris. In this study the trenches were put in as close together as the terrain would permit (40 feet on the gentler slopes to 90 feet on the steeper slopes). The trenches provided storage for about 3 inches of rainfall. Storms of large size or of very high intensity may overtop the trenches. In order to provide for this situation, each trench was drained either into the stream

channel or into another trench below. This drainage system consisted of about six 12-inch half-round downspouts for each treated watershed.

Channel stabilization.—Channel stabilization was attempted by building small gravity channel check dams from soil cement. In the watersheds so treated, a system embodying both natural and artificial controls was designed to stabilize the channel in those portions with less than 30 percent normal gradient. This treatment attempts to lessen channel downcutting and, thereby, helps stabilize the toe of colluvial soils resting on side slopes.

The Analysis

A multiple linear regression model was used in analyzing the data. Nine separate analyses were made — each based on the flood peaks or debris production of an individual storm, except one analysis that used total annual debris production as a dependent variable. Several continuous variables were included in analyses in addition to the class variables used to express treatment effects. The vegetation variable expressed differences in natural vegetative recovery of the watersheds. The other continuous variables gave a further description of the inherent differences of the watersheds. The model tested was:

$$Y = a + \sum_{i=1}^{4} b_i M_i + \sum_{i=4}^{9} b_i V_i + b_{ii} N + b_{ii} R + b_{i2} S + b_{i3} C + b_{i4} A$$

in which Y is the dependent variable expressed as cubic feet per second per acre for flood peaks or cubic yards per acre for debris production.

a is the mean response of the experimental watersheds.

 M_i are the four mechanical treatment variables taking a value of 0 or 1, depending on the presence or absence of the individual treatments.

 V_i are the five vegetative treatment variables treated in the same manner as the M_{ii}

N is the vegetative cover of the watersheds due to the residual native vegetation and the recovery of native plants (includes burned brush stems and litter). The cover was obtained

by using visual estimates of cover on clusters of four 1-square-foot quadrats distributed in a stratified (on aspect) random fashion in the watersheds. About 140 square feet of each watershed was sampled. Expressed as a percent, the native plant cover at the time of the first two storms ranged from 3.7 to 16.5 percent, with a mean value of 7.1 percent. Estimated native cover for the third and fourth storms ranged from 2.3 to 29.9 percent, with a mean of 18.2 percent. This variable was included to allow for differences in natural vegetative recovery of the watersheds.

R is the percent of the soil surface covered by rocks greater than one-half inch in diameter. This variable ranged in value from 0.4 to 15.3. The mean was 7.4 percent. This variable was intended to index the effect that armoring the surface of the watershed with rocks might have on erodibility and storm runoff.

S is the mean slope of the watershed as determined by averaging the slopes at the vegetative sampling plots. This variable ranged from 37 to 69 percent with an average of 54 percent.

C is the mean channel gradient of the watersheds measured from 1:4000 scale aerial photographs. Gradients vary from 17 to 44 percent with an average of 27 percent.

A is the area of the watershed above the flume for flood peak analyses and the area above the debris dam for debris production analyses. The average area above the flumes is 4.67 acres (range: 1.38 to 7.31 acres). The average area above the debris dam is 5.63 acres (range: 2.26 to 9.57). As Anderson reiterated in a recent paper "most of the variables which we neglect to put in our analyses and many of our mistakes in choice of functions hide in the area variable." We included area in our analyses as indexof-ignorance variable. In each of the regression analyses four models were tested for each set of dependent variables: The first analysis included ali independent variables; the second omitted the continuous variable; the third omitted the vegetative treatment variable; and the fourth omitted the mechanical treatment variables.

ANDERSON, H. W. A MODEL FOR EVALUATING WILD-LAND MANAGEMENT FOR FLOOD PREVENTION. Pacific Southwest Forest and Range Expt. Sta. Tech. Paper 69, 12 pp. 1962.

10
1

Results 3

Storms

Four of the 22 storms during the 1961-62 season were long and intense enough to produce responses in the experimental watersheds that could be analyzed (table 1). Analysis of the

TABLE 1.—Rainfall intensities and amounts for major storms of hydrologic year 1962 1

	1	Maximum rainfall intensity for duration of—								
Storm date	5 min.	10 min.		20 min.		60 min.	Total storm precipi- tation			
Nov. 20, 1961. Nov. 30 to		In. /hr.					Inches 2.47			
Dec. 3, 1961	1.80	1.32	1.09	.96	.91	.73	4.58			
Jan. 20 to Jan. 23, 1962	1.38	1.10	.92	.82	.79	.70	4.75			
Feb. 7 to Feb. 12, 1962.	1.59	1.24	96	.81	.63	.39	9.27			

Average of gages in vicinity of study watersheds.

catch of rain gages indicated there were no appreciable differences in the amounts or intensities of rainfall among the watersheds. Consequently, rainfall variables were not included in the regression analyses. The average concentration time of the watersheds is about 8 minutes. The 10-minute intensities shown in table 1 have recurrence intervals of 2.1 years, 1.1 years, 0.5 year, and 0.8 year. The recurrence intervals for the maximum 24-hour precipitation are 0.5 year, 0.6 year, and 1.0 year.

Storm of November 20, 1961

The first storm of the season had rainfall of high intensities. This downpour resulted in high flood peaks and heavy debris from the watersheds with no mechanical treatment and in moderately high peaks and moderate amounts of debris from watersheds modified by channel, check dams, or treated side slopes. The responses were small from the contour-trenched watersheds, because the storm failed to exceed the storage capacity of the trenches. During this storm, the channel-stabilizing dams continued to be filled with debris. Thus, additional channel storage was available that, consequently, reduced the flood crests of these watersheds.

Storm of November 30 to December 3, 1961

During the second storm of the season, most of the channel structures filled with debris to the level of the spillway. This storm was the first since the study was begun to exceed the storage capacity of contour trenches. Several contour trenches failed, causing an increase in flood peaks and debris production from these watersheds, although rainfall was less intense during this storm (table 1).

Storm of January 20 to 23, 1962

The third storm was the gentlest and failed to reveal any dramatic effects of treatment differences. The general relations between mechanical treatments appear to be continuing.

Storm of February 7 to 12, 1962

The last storm of the season lasted 5 days and provided about two to four times as much precipitation as any other storm (table 1). During most of the storm, the rain fell at relatively low intensities (0.25 in./hr.). The peak flows were in response to short bursts of high-intensity rainfall on the fourth day of the storm.

Additional contour trenches failed during this storm, because storage capacity was greatly exceeded. With rare exceptions check dams that stabilized channels were filled with debris. In many cases, debris cones extend upstream to the toe of the next higher dam, indicating that the design profile had been reached.

The channel-stabilized watersheds had the highest flood peaks, continuing what appears to be a trend toward higher relative crests in comparison with the other treatments. The watersheds with stabilized side slopes, on the other hand, seem to be maintaining lower relative peaks. In this storm their average was about two-thirds the average of all the other watersheds.³

Seasonal Results

Two measures of practical importance to the hand manager are the total annual production of debris (the debris to be disposed of, table 2) and the highest flood peak for the year (the peak to be guarded against, table 3).

As the row means in tables 2 and 3 show, watersheds seeded to low density perennial grasses had higher peaks and heavier debris production. Debris production appears to have been reduced by the high density sowings. But whether this is a true effect is questionable, because the vegetative cover from seeded grasses in all watersheds was very low. The best cover was obtained in the watersheds having high density ryegrass where the seeded annual grass cover amounted to 1.8 percent in the spring of

The authors wish to acknowledge the assistance of Donald W. Seegrist, statistician, Pacific Southwest Forest and Range Experiment Station, Berkeley, Calif., for conducting the regression analyses and statistical tests.

Detailed data on flood peaks and debris production for each storm are available from the Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 110 North Wabash Avenue, Glendora, Calif.

1
1
1

TABLE 2.—Total debris production by treatments during hydrologic year 1962

Broadcast cowing			Mechanical treatmen	ta	
tratments	No mechanical treatment	Contour treaches	Channel stabilization	Side alope stabilization	Mean 4 response
	Cu.yd./ucre	Cu. wd. Jacra	Cu.yd. facts	Chyd. facte	Carpa faces
No broadcast seeding	29.0	16.7	13.8	9.9	17.4
Low density annual grass	39.7	1.8	25.4	5.8	18.2
High density annual grass	31.4	6.7	8.4	9.1	13.9
Low density perennial grass	35.6	26.6	26.4	8.6	24.3
High density perennial grass	26.0	6.9	23.3	8.7	16.2
Mean response 1	32.3	11.7	19.5	8.4	18.0

1 Row effects significant at the 0.23 level.

6 Column effects significant at the 0.03 level.

TABLE 3.—Highest flood peaks by treatments observed during hydrologic year 1962

Paradarahani		М	echanical treatments		
Broadcast cowing treatments	No mechanical treatment	tontour treaches	Channel stabilization	Side alope stabilization	Mean t response
	Cx.ft./vec./ocre	Cu.fl./sec.foces	Cullise love	Cu.fl. /vec./acre	Cu.fl. lese. facts
No broadcast seeding	2.1	1.7	1.2 1	3.8	2.2
Low density annual grass	6.0	1.6	2.8 1	1.1	2.9
High density annual grass	2.5	1.4	3.3	1.8	2.2
Low density perennial grass	3.6	7.4	7.7	2.5	5.3
High density perennial grass	3.9	0.7	3.0	1.8	2.4
Mean response 1	3.6	2.6	3.6	2.2	3.0

1 Row effects significant at the 0.23 level.

* Column effects significant at the 0.64 level.

1961 and 9.9 percent in the spring of 1962. Average total vegetative cover, exclusive of barley, on all watersheds amounted to 7.7 percent and 17.3 percent for the same periods, the majority of it being native species. In watersheds with the side-slope treatment, barley accounted for another 7.0 percent of cover in the spring of 1961 and 13.9 percent in the spring of 1962.

The mechanical treatments produced more striking contrasts, particularly in debris production. Debris yield from the watersheds with no mechanical treatment averaged about 30 cubic yards per acre when allowance is made for the effect of the continuous variables (table 4). The side-slope-stabilized watersheds yielded about 35 percent of this amount, the contourtrenched watersheds 40 percent, and the Coleto-channel-stabilized watersheds 65 percent. The highest peaks (table 3) form two groupings according to mechanical treatment: (1) those from watersheds with side-slope control (contour trenches and furrow planting of barley). and (2) those from watersheds without control (channel stabilization and no mechanical treatment). This grouping held during each of the four storms studied.

The regression equations calculated from each of these two analyses are shown in table 4.

The debris regression accounted for 90 percent of the variability in the data (i.e., $R^2 = 0.90$) and the other regression accounted for 74 percent of the variability in peak flow. Figures 2

Table 4.—Regression equations for predicting total annual debris production and highest annual flood peak

Total deura regression coefficients	Peak flow regression coefficients	Independent variables
Cu yd /acrr Y = + 7.48 +11.99 - 5.96 + 1.40 - 7.42 - 1.75 + 1.51	C.f.s./corr Y = -2.31 +0.57 -0.45 +0.78 -0.90 -0.82 +0.10	Gonstant. If no physical treatment. If contour trenched. If channel stabilized. If side slope stabilized. If no broadcast sowing. If sown to low density
- 4.27	-0.60	annual grasses. If sown to high density
+ 7.03	+2.16	annual grasses. If sown to low density perennial grasses.
- 2.53	-0.83	If sown to high density perennial grasses.
+ 0.04x	-0.08x	Native vegetative cover.
+ 0.78x	-0.10x	Exposed rock.
+ 0.35x	+0.07x	Slope.
-0.37x	+0.09x	Channel gradient.
-0.73x	-0.18x	Area.

and 3 illustrate the precision of our prediction equations.

Discussion and Conclusions

The perennial grass seeding appears to be unsuited to our soils and climate. The poor establishment of perennial grass (never more than 1.7 percent cover in this experiment) could not offset the reduction in native cover, owing to herbicidal chemicals needed to assist that establishment. Watersheds seeded by low

FIGURE 2. — Actual vs. predicted annual debris production (1962).

FIGURE 3. -- Actual vs. predicted highest annual flood peak.

density perennials tended to have higher flood peaks and greater debris yields than the other watersheds.

Annual grass seeding, on the other hand, may be justified as an emergency crossion control measure. It had no apparent effect on flood peaks, but may have helped reduce debris. Due to the low cost of this treatment (about 1/100 the cost of the mechanical treatments) and the ease and speed with which it can be applied, land managers appear to be justified in gambling on the success of the grass crop.

But there are difficulties in relying solely on broadcast seeding for erosion control in arid regions. To grow a grass crop, an area must have enough rainfall, properly distributed. Storms must be of several days' duration for initial establishment of grass and spaced every few weeks for continued growth. Dry autumn winds, common to this area, can disperse the seed, causing a patchy catch. Also, the grass rarely provides enough cover to do much good during the first year.

We found that the first year's seeding was almost a complete failure. We reseeded the watersheds in the fall of 1961 and had a respectable response by the third and fourth storms. By July 1962, the watersheds of high density annual grass had an average cover of 10.3 percent. The seed produced by this grass promises greater effectiveness from the treatment during the coming season than past performance.

Contour trenches do not appear suited to the terrain and climate of the test watersheds, although the rather limited data do not clearly reflect this fact. By the end of the 1962 season all watersheds had several broken trenches, with little likelihood that the eroding breaks could heal before they produce large amounts of debris. The trenches were necessarily underdesigned because of the steepness of the watersheds. That is, they were not spaced closely enough to provide sufficient storage for the runoff from larger storms. The test results should not be interpreted to mean that contour trenches would be ineffective if they had adequate storage. Our experience during the November 20 storm indicates that closely spaced trenches can be eminently successful in controlling erosion and in reducing peak discharge.

While trenching may not be a dependable control method under our conditions, an increase in depression storage on the side slopes would be highly effective if a method were used that was not so subject to failure. For this reason the trenches in three watersheds were repaired and strengthened so that the effects of increasing side-slope storage could be studied further in future seasons.

The reduction in debris obtained in the channel-stabilized watersheds is greater than the amount currently used to compute cost/benefit ratios for projects with this erosion control measure. However, the associated higher flood peaks argue for a closer look at this erosion control measure.

In our small watersheds, the increase in peaks may come from reduced channel roughness and shorter channel lengths caused by debris filling the rough crooked channels between the check dams. This effect would probably not be so pronounced in larger watersheds. In our case, how-

1
1
Ţ

ever, the storage of debris behind the stabilizing dams during this season was probably a much larger fraction of the total debris produced than in large watersheds. These ambiguities point to a need for further study of this treatment, particularly in larger watersheds.

Side-slope stabilizing by contour furrow planting appear to be the most effective erosion control measure. But the expected effective life of this treatment is only about 4 years. Also, side-slope stabilization is difficult to establish on rapidly eroding areas, such as dry erosion chutes or steep faces undergoing rapid weathering. However, in the majority of cases these

limitations may not be serious. Usually most of the area in any watershed can be treated. Using the estimates of Rowe, Countryman, and Storey's of debris after fire, with a recurrence of fire in 30 years, we find that 67 percent of a watershed's erosion takes place during the 4 years that the treatment for side-slope stabilization usually persists under conditions in southern California.

The relative superiority of the side-slope-stabilized and contour-trenched watersheds over the channel-stabilized watersheds supports the thesis that, immediately after a fire at least erosion control measures that prevent the concentration of water or debris are most effective. Barley planted to help stabilize side slopes also provides considerable protection against raindrop impact. From these tests we conclude that preventing the initiation of erosion is the key to postfire erosion control.

VEGETATIVE CONTROL OF STREAMBANK EROSION

[Paper No. 20]

By DONALD A. PARSONS, hydraulic engineer, USDA Sedimentation Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service 1

Vegetation may protect a streambank in at least three ways. Perhaps the most important of these is the reduction of water speeds and tractive forces at the soil surface to a value below that required to cause erosion. Second in importance is, perhaps, the protection given to the bank material as a buffer against ice, logs, and other transported materials. The stalwart barrier of trees standing along the edge of a stream prevents the impact of the transported materials with the soft material of the bank. Or, in another way, the tough but pliant shrub-type materials, bending with the forces involved, act as skid surfaces for the transported materials as they are deflected by the banks of streams of all-sizes.

Third, close-growing vegetation will contribute to bank stability, within a narrow range of conditions, by inducing deposition. Subsequent to a rare flood that has caused damage but not complete destruction to the vegetative cover, the deposition that occurs in minor floods helps to maintain the bank.

Since the ability of the flood flows to erode the boundary is related to the water speeds near the boundary, it is instructive to measure velocity variations in a vere ated waterway. W. O. Ree (6) did this for 8-inch long, dormant bermudagrass. His diagram is reproduced in figure 1, along with the velocity distribution in a comparable, uniform bare channel. The vegetation

FIGURE 1 .- Flow through vegetation (after W. O. Ree).

markedly reduces the water speeds near the soil surface. The rate of change of velocity with distance from the boundary also is less near the boundary with vegetation than without, indicating that the fluid shear stress at the boundary is therefore lower.

These low rates of change of velocity near the ground surface and the higher rates of change

⁴ Rowe, P. B., Countryman, C. M., and Storey. H. C. Hydrologic analysis used to determine effects of fire on feak discharge and erosion rates in southern California watersheds. U.S. Forest Service Pacific Southwest Forest and Range Expt. Sta., 49 pp., illus. 1954.

Research in cooperation with the University of Mississippi and Mississippi State University.

1
1
1
1
; [

SUMMARY OF ALL CANYONS WITH DERRIS RASIN RECORDS. THE LOCATION (14 m 14 RIVERS SG = SAN GARRIEL) AND YEARS OF PECORD (EG 50-71) IS ALSO NOTED. YIELDS IN SU YDS/SO MI.

2	\sim	0.	٤)	4	5	(9)	٧)	20
∀ ⊞ ∀	SIMMARA	ALISO LA 1971-	ALLEN RESA LA 1059-69	ALTADEMA LA 1947-	A8308 DELL	1956-	9471EY	86ATTY 56 1071+.
1935	3495.00	8 A B	· 600	689*		88.	υ·•	
1.735	5629240	000	30 Fg &	15 G *	F-150	a.		85
1037	5657.00	683.	85.0 ·	* B. B.	8 2 C 0	ジ 10 *	685	200
ان ان از ان از	33374000	10 m	22.0	55 150	\$ 30 to	数 於 ·	E .	50 Kg*
759	1976.33	77	() x) 6	. 9B	\$ 50 m	で *	8 K *	*8%
1001	2323+64	2	5 5	22.	\$1 to	. A.S.	80°	12 to 4
1441	1612/633	2	2 :	22	80°	is:	888	22.
240	4245888	2	58.	E .	50°	විසි *	€.	8.C.
1943	11277.00	. 6	* 63 *	10 B	e 37 €	8 Q 8	. 59.53	Z.
1044	4231.53	٠ ٥ ١٠ ١٥	. 22	D10 *	50 E *	* 01 08	8.8.8.	\$ F. 4
1948	1356433	888	* G	* 22	විරි ම *	* Q Q *	88.	5 Z *
1946	829.46	88.	0 0 0 c	80.50	0 14 13	* 3 € 4	1295-44	₹.
1947	9×7×93	96.	どど。	2747 - 63	650	e 63 %	20 E	£0.50 •
1948	288,33	\$ U.S.	200	3045.48€	680	P 25 4	800	E 2.
1949	148 - 93	600	£0.	2784.94	• अज	. 00	6000	2 2 3
1956	151.93	25.2	\$25	3249 . 00	₩ Ø Ø	50.	\$ 55°	66.4
1951	27,000	80 °	8 20 20	2110 - 29	80 0 0	. 22	12.00	50 20 *
1952	45	6130	200	8138,88	E 150 6	€ 15 °	450-03	* 23
1753	21.0	5.8	\$5 °	₹	E 10 4	10 kg #	0.80	FE ?
けいプロ	15	. 88.	₹ C •	2	. 213		\$ P &	77 78 6
1955	1216.48	8 12 a	100 m	कुष्ट क कुष्ट	688	8 B B	539	. 22.
1956	2112 • 49	₽ ₩₩	をでき	6	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	5952.40	5 . (3	. 02
1057	1058-00	05.	. 3G	5.	.03	* A 3		. SR
105X	3231.03	* \$ \$ \$	* 450	638200	\$ \$ \$	552.	2751.58	KH*
ひとって	7007 cag	e 613	66.	12125.00	P6.	3 . 3	14768030	हि ४ ◆
7	1352000	あち・	6 K .	& * D*	5 B	C	£ 5.5 3	. a 014
1961	1721-68	50 · 50 · **	+ 25	68.	. 23	21321	636	. BB.
1962	12351 . 18	K: 12 ·	6 C M	6	26.	285700	836	55.
1953	5479-03	1)(1	₹5°	184.85	で 18 18 18 18 18 18 18 18 18 18	4815 ad	2446 . 15	58.
1454	1419-839	0.00	. a.	\$ 50 e	. 22	© © 0	113.9	ਲ ਲ
\$ 6	5360 + 36	हर ह	E ()	200	22.1	IS 1	E :	あ で 。
40.40	25.4.5.	2 7 7	\$ 0 t	5 (25 (\$ 2	5	5 S.
000	001100	S :	4	85 d		473600	1 444 64	E .
*	82.07.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4	8	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			ල ප්ර •
959	342884888	• 05/2	12222 0 48	7500.00	\$ \$\pi\$		12	けど。
1976	2168.49	*	\$\$ ₹ •	27	. 0		333	ਦ *
٠ ا	1163.08	3458.00	85°	B 33 53	£2.	* # #	. 23	680
1972	697.04	•	200	がな。		.09	でじ。	# FC *
1973	5342.00	2278 001	* 8.90	5 W 5	25 27 8	5780.00	(1 to 1)	5666+333
. •	经新种的食化合作的合物	医安林斯斯斯斯斯斯特斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	医非安全性性性性性性	经存储部分的经济的特殊的	高量 衣法世界外交替平分外	我替着特先处卖行和外的	医安斯克斯特氏氏征系统	繁於黃安特在古代外档內質
MHS 100	39	5335.00	22 . 3	20	860	931 0 K	75 ° A	6.49
	5191.00	136.85	313,38	×C		6552 .		170.92
COL RATIO	-	€03		*	9	1.2		

1
1
1
1
1

(15) RRAND LA 1936-		E 1	5 20		۳ الله •	50 5 5 5 5 7 7	30 - 0 C 0 C		, t			5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 48 9 2 2	•	2. 2.	E 25. 0	R F3 a	5155.39	8 F 8	F 63 C	55.0	6.23	K.	1376-44		86.	189.30	2443 . 44	· 50 H ·	9642-34	45000000	10536.48	18892.00	1941 = 33	38252 · ##	をか。	6.6.4	85 95 8	6803.22	* 安 *	200 4 000 4	7 - 2 7 8 2	1000 1000 1000 1000	
(15) 38 458URY 86 1056-	1	5 t			1		े हैं हिंदी हिंदी	(to	5 5	, to 10	, E	. 8	\$ \$7 \$ \$	8.	87.7	· 45	8 1 m	\$ 8 B	5 × 0	. 30	10000	05730B3	85 m	4441000	68033433	20.2462	w 53 0A	18855 - 34	P 4 .	€ MG	,	34886 - 26	5011.03	さす。 ない ない ない ない ない	1のスクスちゅみの	11766 - 931	1323-89	800	16204.63	安全在安全公司公司各等各种	257778 C	5642.1	>	
(14) 884CE 1A 1972-	8	7 2					100	88	500	\$00 B	. E	6.	.03	E 17: 1	\$ 13 A	* A B	€ 55 ·	8.0	Q. i. o	F. E	E 15 e	\$5 E	. 53	8 L	600	\$5 # #	10 (7)	6 A G	* CH3	₩ •	e 27.08	\$ B	25	35 C 6	2016	* 23	0220	8 B B B B B B B B B B B B B B B B B B B	6896.34	经共产的专业的专业的	6396.80	17608	1 10	
(15) 81056114 1A 1969-	ර ප		E 55 *	8.8	20.00	80.	20°	66.	8 2 8	80 5 4	10 E .	\$ E .	6,73	E 15 "	98.	E (1) 0	E 20	ව ස	£) 85 ·	5 6 4	\$ 2.3	. G3	. G. G.	20.0	E 10 ● ✓	E 23.	B 10 8	55 55 °	で代。	हा । ह	6.	22	66.	1	17368-83	6.000	6000	9	5789 04	教學發發各分科於於於	~	593	* 12	•
C12) BLANCHARD LA 1969~	10 to	. 22 . 25	经定。	* 36	88 e	20.	8	600	P 54 4	20.0	689	* F 7.	8 R B	• FI W	5 S	66.	6 E	5	e e	200	* S		\$ 50 m	B. B. B.	5000	graph a	10 5 ·	防災・・	\$ 50 m	E ?	5 2 2	TO RECEIVE	2 2 2	4	51335523	5 (7222020	0.00		传染好於於母替替替替替	€7 • •	846.15	-17	
BIG DALTON L	9 53 9	10 % a	1000 1000 1000 1000 1000 1000 1000 100	F. F	\$150 e	* 20 *	. 5.3	2.00	2000	だで®	683	60.	* 22 22 *	. 53.3	22.4		변 1 6	5 t	6. 67 0	8 1	\$2.00 \$2.00	85° 1		22	5. E	9	294.	E	5 : 5 5 : 6	\$ 5 E	NO 74	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 6			22		e e	£ 6	经资金总额的经济的		4-	28.	
BIG DALTON SG 1961-	. A.A.	80	6.0.0	8 KJ *	0.00	. 30	85.	. A 3	10.00	8 4	* 30	C 5 a	in the second se	E) (3	E 155 E	2 2 2	2	S 25 0	2 2 4	gn 1	T) 1	2 i	2 1	6.53	5 !	3 1	1 X 1 X X 1 X X 1 X X X X X X X X X X X	100000000000000000000000000000000000000		2 %	20 C C C C C C		2818-A28	56.00000	10044			50.000	2	经费的债务的公司的公司	241412.68	™	1 + 22	
(9) 8¤[[1A 1973-	₩.30 e	64.	8 B 8	F. 55 #	2	26.	S1:5 *	K 50 .	# 24 CS	కే © •	作。 () () ()	E I	65.		555	7 2		C 20 10	0 10	14 14		5 6	2 2 2		5. 5.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S 7.	5 3	S. D. W.	55	. 60		(y) •	900	7.25.30	1542 - 454	25	0.014		医阿斯斯斯氏氏征检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	2724.88	71.33	Z.	
5 8 5 5 A 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	1935	1956	1555	1658	ブペブー	1000	1461	ヘオラー	2761	***	A+0-	0 10 0	147.	0 0 0 0 0 0	5.50	1053	10.50	34.5	40.00	40,5	7 11 7	40.7	- 40	4043	30.63	3063	1000	4.7.5	10.5%	17.75	1400	1407	1958	1959	1070	1 4 7 4	1073	4 - C		B	FRS 100	4	COL RATIO	

SUMMARY OF ALL CAMPONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA = LA RIVER: SG = SAN GARRIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTFO. YIELDS IN CU PDS/SG MI.

SUMMARY OF ALL CANYONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA H LA RIVERT SG = SAW GABRIEL) AND YEARS OF RECORD (FG 59-71) IS ALSO NOTED. YIELDS IN CU YOS/SQ MI.

1	COLUMN	CARRIAGE HSE	Ψ'	CHIL			0 6	SANGO	(24) FAGLE
1		197	6 6 70	(0)	2	LA 1953-	LA 1956-	14 1935mi	37
9.55	6	K 60 *	9 %		100	800	20	•	e.
943	1936		. 63		30	800	50	11210	C
10 10 10 10 10 10 10 10	1937	KS.	689		\$	* 83	* B 3	*	6
1	1954		86°		23	850	680	3114.	9344.0
	6261	SE.	* 50		15.	• 23.03	F 53 +		9731.0
	1043	88 € ·	\$ E		\$2 \$2 \$2	* 3 G	きる。	6276.	
1	1241	ਵ	ಟ೯•	888	3	888	F.M	4103.	2696 . 4
1	1942	• 83	E 22 .		ξ.	. as	. A. P. W.	4930	8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1943		30.		12	E 12.	世長の	64750	597300
94.5	1044	88.	. 2		68.0	853	8 B B		7418 . 0
946 947 948 948 948 948 948 948 948 948 948 948	1945	50	* Si Si	000	150	7. Ei	900		6.
94.7	1946	5 K	88.	6 03 04	€88°	8000	* B B		.c
994 948 948 948 948 948 948 948 948 948	1947	500.	623		8 B B B	£ 17. 0	689		2
1, 10 1, 1	1948	35°	8 in *		£ €	だら *	600	. 96	2
951	4949	. 22	• 33 3	* 23	12°	15 ° °	古物 **	25.	-55
9.55	1953	• 036	でんす	15 15 4	8 6	さじ。	. 00	2 2 3	5
955	1951		683	88.6	52 F5 ·	. AG		8.8	5
955	1952		69.9		98.	. 25.03	ਲਾ ਲ •	3125	64444
954 37	1953	\$ 8 B	88.	884	* 30	. 23	50 8	•	4996
1	1954		20.	. 63	8.00	£10.	22.	888	6
11585.08	1955	663			.89	8.68	. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	640	•
10 10 10 10 10 10 10 10	1955	88.	1583		15 B B	*	80.	400.	•
958 388 489 489 4822-489 4622-489 5585-489 5785-489 2150-2150-2150-2150-2150-2150-2150-2150-	1957	. 0,3	к		800	B 53 0	6 A S	4285.48	0,10
1204-80	1958	200	183.4		69	100	422	5535 4 9 9	2367
964 - 988 - 987 - 986 -	1953	683	516		\$2.50 ·	20408		136.	2150
561	1964	22.	888		.00	6 B 6	E.E.	BB.	
962 .043 97441.000 .940 .940 .940 17245.000 4652.000 1065 963 .044 .940 .940 .940 .940 4652.000 1065 964 .046 .940	1991	4 4	6.19.5		€ 00 °	80 E 8	8 0 00 00 00 00 00 00 00 00 00 00 00 00 0	10 C	581
12043	1952	k. Ω *	3041		0.3 CM	781	1745.03	367	2838
0.04	1963	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3283		. 23	600	2849.40	652.	063
965 988 <td>1001</td> <td>20.</td> <td>-</td> <td>•</td> <td>68.</td> <td>50°</td> <td>12276 - 13</td> <td>•</td> <td></td>	1001	20.	-	•	68.	50°	12276 - 13	•	
945	1965	22.	5. 5	•	E 55.		38175-03	. 83.	200
957 • 673 • 673 • 673 • 673 • 673 • 673 • 673 • 673 • 673 • 677 • 673 • 677 • 673 • 677 • 677 • 677 • 677 • 677 • 677 • 677 • 673 • 677 • 677 • 677 • 677 • 677 • 677 • 677 • 677 • 677 • 673 •	1955		•	۰	0.00	105500	ススフルの・カス	55 E *	5859
1	1957	85.	53330		枕形の	E _r	14015.20	3800	5961
962 - 999 2254595-919 17741-99 - 699 32241-949 74915-33 2825-919 28495-919 17741-99 1739-819 17741-99 1739-819 17741-99 1732-339 8974 339 8974 339 8974 339 8774-339 8774-339 8774-339 8774-39 175245 874-39 874-39 874-39 8774-39 175245 874-39 874-	9 6 8	20.	•	4	6.04	3-514	90.6773	47	100
974	696	€ K. C.	250309	7741.	600	2241.4	74915.33	8838	01810
971 の内 の内 の内 の内 の内 の内 の内 972 の内 15245 15245 15245 973 各名名名・3内 7点点の・カラ 2月 2月 2月 2月 15245 2月 142245 01 504 15日 15日 15日 15日 15日 15日 15日 10日 10日 10日 1 841 10日 834 10日 10日 10日 10日 10日 10日 10日	1973	22.	52	S	620	206.3	. 20	1339	m
972 の内内 も内内 も内内 も内内 も内内 も内内 15245 973 64546・379 3744・370 7月06 - 内内 7月06 - 内内 7月06 - 内内 15245 15245 15245 973 48年本書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書	1971	77. 17.			22	\overline{z}	254.0	٣.	8.6; ♥
973 6566 573 8571 2 2 7 1 1 2 1 2 2 2 2 4 2 2 2 2 2 3 2 2 2 3 3 3 3 3 3	1072	*	\mathcal{E}		27.	8 P .	(2)	307	6 6
	1973	86.3	15	9.6	LE.	968 + 9	384=3	571.3	5245
01 SU4 6566-44 166759-44 78139-34 26403-34 275473-44 27547 26473-44 27547 26473-44 27547 26473-44 27547 244744 27547 244744 2447444 275434 275434 275434 275434 275434 275434 275434 275434 275434 275434 275447 244744 275434 275447 244744 275434 275447 24547 245474 275434 275447 245474 275434 275447 245474 275447 245447 245474 275447 245474 275447 245474 275447 27547 275447 275447 275447 275447 275447 275447 275447 275447 2754		解释的特殊的	经经营金额的条件条件	★ 查 等 查 等 等 等 等 等	关号的数据数据影影的	食器营养的自治疗的含	**************************************	经安全的证券的	经备款 计分类 特特
01 NEAN 170492 4275-13 2442-79 688 1578-41 5123-46 5857-35 6156-3 01 RATIO 683 -84 -39 623 -31 1-60 1-15 1-2	S 10	6560.1	66759.0	3139 • 3	S	1246.0	99315.6	2947300	K . 80 m 12 7
01 RAILO +83 +84 +39	E 10	5°5) L	105)	7 = 25	ţ: 1	57004	12304	5.57 . 3	156.3
	x 	G • (X		Š.		22	•	29

Ц
1
U
0
1
1
1
1
1
Ī
Ī

SUMMARY OF ALL CANYONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA = LA RIVERS SG = SAN GABRIFL) AND YEAPS OF RECORD (EG 59-71) IS ALSO NOTED. YIELDS IN CU YDS/SG MI.

A 1465-	ENERALD FAST SS 1955+	ENGLEWILD SG 1963-	FAIROAKS LA 1056-	FERM 1936-	FLORAL LOWER LA 1955-59	FLORAL UPPER LA 1055-62	601F CLUR LA 1971-
800	. GIV	85.	88.	0	2.	- 6	- 55°
6.83	600	. 83	74814 • 93	1348	* A G	1KW .	6.60
. 53	.09	5. P. S.	9576	25.0	(S) .	.93	8 D .
850	. A.3	8000	R18.5	Ø526°	\$ 04 0\$	* 30V.	5 G 6
· 51.54	2 2 4	20.0	\$ B	\$ C .	8 53 52 a	650	. a G
10.00	8 0 e	60.00		•	660	* RSI	62.9
. 1503	\$5°	80° E.	19000.00	16030.38	. 9 A	. 90 P.	5 F .
β; •	#30 ·	680		٠	· 644		FD.
e 53 G	22.		304		10 E	000	51 K2 0
27	600	E 15 a	5 64	39 M.	55.	\$ 55. *	हा है . •
७७.	58.	e 30 €	752	49290	E. e.	E 60 .	. 2
600	PC e	€ 80 •	576	4400	. 45	. 27	
K & &	25.00	. 83	3147.00	723 - 63	800	8	. 88
22	22.0	23.0	60	•	: দং	: e: e:	. 6
8	গুল ক	5.5		. 22	22.	\$ 10 m	S 10 10 10 10 10 10 10 10 10 10 10 10 10
. 83	8	88.			88	\$110 e	. 6.
Ç.	\$ T	88.	22.0		8	EX (3)	8
A.		10 Pr 40 ·	14784-33	17990.00	800	5	500
.89	87	88.		•	85.	88	22
P 53 CH	83.	\$ P. 8	8 % % % % % % % % % % % % % % % % % % %	1533.90	560	330	50.
. 23	15 4	8.	800	*	8 B 8	3334 - OR	2. 2.
. 20	63.	22.00	4961-88	1333.00	. 33	,	89
• 25	5 N +	€ 5°	\$0.00 •	4	. 56.50	666.R	E & *
• 23 01	か です。		53971 - 98	3.4	683	74500	.03
. 93	• धर •	620.	39,639		10 Kg W		82°
* 33	P. P. O. P.	* ZZ **	9857.40	•	\$ 15 m	630	86.
• ଓଡ	. 20	886	140000	6	6 B B	42 143 144	
• 23/3	. 30	4	2523 8 19 41	3.8	22.0	13958.43	K 6
\$ 35 *	2.	3562+89	19333.60	4000	® Ø Ø ®	•	8 B B
2000	• 63	€ 50 B	4171	*	80 % ·	300	500
8783.43	a K			576.6	8 N 8	866°	我你 *
18860.00	80.	3345-83	8257	5553.0	8K.	.00	600
@322 * 9B	1875-93	754.	7142	60000	0.80	£ € #	.00
967.93	8.	. 3	16666-88	52	€ 15 GB	6.6.	\$ 55 m
632.89	18838.38	153593493	9523	9666.6	8 T 8	96.	B 83 4
500	• 23	37500		566.3	₹5.0°	\$ 50 m	85.0
. 6.5	5625 93	60°	20	533 4 3	2000	光冷*	* 22 *
2.2.2.2.	• 30	· 003	. S. S. S.	35°	* P. S.	k ⊗ *	· 33
. 22.	2544.48	• 86	5238 619		8 6 °	E 121 .	8437 . 49
医多种性性神经病性	泰曼 医格曼 经条件 经分额	医安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	失去合分子	*	经营业的营业的	经营业的专业的专业的专业	经验证证券的证券的证券
13.8	75 * हा	647.5	- 9		() () e	4000	37.6
1741.36	512.82	4451046	2857 * 3	Ψ-	. 55%	962.36	216.33
7 %		6 4	ŧ	1	ł	4	

SUMMARY OF ALL CAMYONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA # 1A RIVGR\$ SG # SAN GARRIGL) AND YEARS OF RECORD (RG 59-71) IS ALSO NOTED. YIELDS IN CU YDS/SG MI.

(46) HILLCREST LA 1964-	5	0 6	ি জ জ	2	6.	8. 8.	25	27.5	हा. ह	88°	* AG	20.0	. A A	. 22	\$ 5 G W	. 98	22 -	. 20.00	* 33	Ø. ₩. €	2.2	86.	80.	E 13 .	だて。	55 B B	800	80.00		N . 4657	М	e	2	B.	428.9	2235033	FS.	20.	1428459	经 安安	923 .A	2562.26	tr e
(39) HAY LA 1037-1	5	2 5		4000A	19155 0 31	020	50	2.	279	10	-3	60.13°	, G & .	50 KJ #	0000	62.	€00°	7435098	60.	623	. 93	1 C 1 C	A 13 18.	. 33	8 4/2	000	9189	4 17 4	7 8 P		23	11034.93	1549.93	115 BB OB BB	28500.30	62.	6000	. 53	7509.2491	经存货条件条件条件	1.5.75	7156.54	4
(38) HAVEN WAY LA 1972-	25	્ર		150	17	\$ 53 G	B 20 a	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	8 10 0	800°	• 63	0 B 0 .	8 8	* 93	\$ 15 °	88.	B. B.	200	100 m	N.O	683	8D.	P 2 3	. 80	19 W 0	600	6.69	K 10 .	• 73	• 8 8	25 E	* \$2	* 50.03	10 10 a	22.	. 00	0	669	8 M	#	8 8	E 8 *	
(37) HARROU SG 1965~	5	* * *		, E.	\$ 00 G	. 19.19	\$ 15 G	* 23 23	* 33	. an	• 900	659	15.00	* 500	988°	82.0	. 58	* A.S.	. 33	8 3 3 3	50 E.	880	650	. 98	· 88	* 8.5	82.4	2911093	2 0 E	6 12 ·	888	. 22	930.00g	8 D 8	411.	5531 + 43	. 9B	₩8.	4186.98	務務 经检验条件 化热性分离	4-	4105-62	\$00 ar
(36) HALLS LA 19367	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	200403	9	EW.	45953.88	850	597.	793.	64.6874	618.	2860	E 50 B		.03	B 4	25647.009		3122°03	80° 8	2792.64	\$ 5 G	7300	493.9	* 2 *	6.44.00	0 . 2	836.	85.	छ छ •	222.	803	QC.	A75.	* GOS	82. 82.	5886 € 400	16320000	安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	7179 . 8	10696.93	ç~
(35) HAINFS LA 1937-	19	. 15		0	۰	7447 . 90	- 6		377.	4182 630	- 3	391.00	625°	53.50	. 93	2.00	68.	4428-88	8860	2366.00	£ 80 *	603	\$ 8 G	775-09	9	86.0	. 33	1147=22	など。	* 33 38	58.	759 4 0 8	\$60°		24718-04	· A.A.	88.	200	8 8	医泰克斯斯特斯斯特斯特	57.08	2786.88	50 c
(34) 60010 1A 1949-	88.	* F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 M G	변 5	. G 3	6.0	50.	* 52.33	25.4	6.0	6.2.0	683	* 0.5		20.00	5 B C	2.2.2.2	17176-99	500	10 W ·	5231 .00	. 88	8453-03	* 15 FF	5010.BB	7258 . 39	27623-40	8457 - 83	ž.	12420	•	6 A A	11014.013	32978.93	425 . 89	7021000	. 25	18723.00	医医克尔氏氏征检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	280345.63	5140043	American Services of the Servi
(33) G005EBERRY LA 1968-64	5	7 7	. 2	82.0	· 39	. 83	F. 23.	€ 50 €	* 6.3%	DE.	• M3	200 e	* B 53	. 20.	· 67.9	e 63 A	6.0.		10 E .	• 88	. 63 53	* VIG	500	85.	. N. W.	649	888	6469 - 44	52.50	80	600	20.00	F. F	10 Km **	€66.	. 33	683	600	* 65.53	经安全条件的证券的	69.6	165.87	6.0
COLUMN YEARS	6 6 7	1046	1937	1953	1934	1946	1941	1942	1943	7761	パオケロ	9761	2401	1943	1949	25.6	1951	1952	1953	1954	1955	1956	1957	1958	1959	1463	1961	1962	1963	1964	1305	1966	1967	1968 .	1769	. 0/01	1971	1972	1973		10	COL HEAN	0

1
]
1
1
1
1
1
1
1
I
I
Ī

SHMMARY OF ALL CANYOUS WITH DEBRIS BASIN RECORDS. THE LOCATION (IA # 1A RIVER: SG # SAN GABRIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTFO. YIELDS IN CU YOS/SQ MI.

(48) (48) (4 TUNA LA 1056-	\$ \$ \$ \$ \$ \$	2 2 5	 	0 00 00 55 55 55 55 55 55 55 55 55 55 55	1 K B B B		152 152 153 153 153	5634	* * * * * * * * * * * * * * * * * * *	33369.88 855.62 817
(47) LAS FLORES LA 1936-	23626.98 23626.98	123282.33 2471.38	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5982 1513 1526		4 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	2 K	71/56 54971 5453 8453 8727 8727	7	356497.001 9148.95 1.79
(44) LANNAN LA 1955-	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	\$ 6 6 6 6 8 6 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ভাগত হৈছিল ভাগত হৈছিল ভাগত ভাগত হৈছিল ভাগত ভাগত ভাগত ভাগত ভাগত ভাগত ভাগত ভাগত	* & * & * & * *	263	57054 5748 5748 855° 808 808 808 808	27.56-20 12.14-60 20.00	######################################	274563°48 7848°21 1°38
(45) KINVELOA 4. LA 1966-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ଷ ଅଟେ ଅ ଅଧିକ ଅ	 	\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ଟିଟେଟଟଟ ୧୯୯୯ଟ ୧୯୯୯	យ្ស ស្ត្រ ស្ <u>ស</u> ស្ត្រ ស • • • •	≈ 8 8 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	\$125 \$25 \$25 \$4875 \$4875	252506.60 6474.36 1.27
(44) KINNELOA LA 1965	\$ B B B B	625		\$ 6 to 50	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	យស្ទស្ស ឃុំ ឃុំ ១ ខេត្ត	5 6 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	34725 344725 3649 37475 3749 3749 3749 3749 3749 3749 3749 3749	255.00 % 00 % 00 % 00 % 00 % 00 % 00 % 00	198725.16 4398.58 .96
(43) HOOK JEST SG 1971-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 4 4 20 80 80 80 82	6. 9 4 2 18 20 2 18 20	<u>ም</u>				ଷ୍ଟ୍ର ଅବନ୍ତ ବ୍ୟବନ୍ତ ବ୍ୟ	を の の の の の の の の の の の の の	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
(42) HOOK EAST SG 1950-	 		\$50°°°°	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\times \times \	57 57 57 57 57 57 57 57 57 57 57 57 57 5	7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N		223383.03 5358.92 1.15
(41) HOG LA 1976-	\$ \$ \$ \$ \$ \$	\$ 6 6 \$ 25 6 \$ 6 5	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	888. 888.	 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PBSBR988 550888903	(D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	200°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
COLUMN	1935 1936 1937	19 14 44 44 44 44 44 44 44 44 44 44 44 44	19 41 1942 1943	19944 19945 19945 19945	1948 1949 1958 1951	1 4 4 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 K 8 G B G G G G G G G G G G G G G G G G G	77777777777777777777777777777777777777		COL MEAN

SUMMARY OF ALL CAUYONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA = LA RIVER\$ SG = SAN GABRIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTED. YIELDS IN CU YDS/SG MI.

(56) MORGAN SG 1965~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$	で ! で !	\$ \$ \$	2 60	F 29 9	82.8	· 15 51 •	e 03.03	. 23	8 19 FB	686	888	80 87	*			B. P	. 03	50.	200 #	多数。	හි දි	K. F. a	42.00	. 35	2 2	8000	. 23	333 · 83	E 57 .	21656 • 48	B. C.	15 E .	. 33	. 23	各種發揮者與特殊發揮	21999 - 88	564+6	
(SS) MCCLURE LA 1955-781	ស៊ីស្ត ស្ត្រ • •		100 m	2	0 E	6	600	\$ 52 CM	669.	20.	\$50 °	· 63.53 ·	. G €.	E 10 .	• 13 03	* BB1	* 433	5 7 W	7690=30:	5967.049	15329*86	6591 - 178	.88	1 (O E) *	7295 a file.	579.13	20.00	47761-139		4577 - 36.	8 5 °	5898.33	200	* 33.52	\$ 89 °	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	茶	₩.	2618	
(54) MAY #2 LA 1954-	15 E C		10 to 00 to	2 2 2	. 15 E	22.	600	8 B 3	* B B	් ග්ර	. A. A. A.	. 3	• 68	62.	6.00	(2)	8 8 8	. 9 %	e 8 3	B 60 3	* 3	2711.00	\$5.00 e	63.	566	683	56.	€ 60 €	0355090	63858 · 814	28983.83	55	4444.00	200	窓です	25555 - 68	安告告	374.0	4	oc •
(53) MAY #1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		55 G 57 F 6 '	2 22	660 4	£66 •	E 55 8	800	E .	.00	. 9(B	हिं इ. इ. इ	\$ 63 1	• \$2 \$0	8 C .	0 H G	60°		2882.88		3168.40	748	. 23			85	₹ 00 •		19637.80	\$2330.34	16857+43	65428 * 80	12714.40	15 O •	83.	26428 0 4 3	安全安全公司	8	5872 09	1 0 1 5
(52) MADDOCK SG 1956-	විසින් වෙසින් මෙසින්	2 TO 10 TO 1	6 6	2 2 2	F 12 .	• 616	28.	# CS	22.		e (5 (4)	22 1	55.4	8		\$0.00 ·	2.	₹ •	23232 + 6 €	F 63 4	• SIG	8 51	4490.00		12334000	922 *	*	* M 3	14055002	4838463	8 2 2	4467% 500	E 5.	5 th 0	• 33	452.62	经验证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证	124.	3208	
(51) (II DALTON SG 1968-	ව ය විසින් මෙන්	2500	हा है .	200	5.50	• 153	\$ 6 B B B B B B B B B B B B B B B B B B	243 ·	ତ । ଓଟ	8 8 8	22.0	S (10 to 50 to	*	a (2)	22.	75° *	6 6 4	* 20	\$ 50 E	50 00	- 42			4	3025.90	কৈ ক			21455-35	9	24.	67.66.83	* 63	8500	7129 - 117	惟特學施羅於法院與合物	223888 94	5748.	1.13
(56) LINCOLN '	\$2916 • AB	2×122 • 30	85° 85° 82° 82°	2 3 5 2 8 0 6 5	Do.	28898 - 88	3732.00	40000A	- (2222+44	200	20. 1	998		3696 - 50	2	000	8 2 8	© \$.	4520.03	3272.66	244003	6.	13 P	2492 4 13 4	1594.04	• 25		12306 - 30	かご。	36430 43	56838.38	1200.49	2656.43	66° .	* 8 %	特别的基件的特殊的特别的	227642.30	5846.97	1 = 1 4
(49) LIMEKILN LA 1965-	K 60 8		\$ 3 \$ • 4	666	68.	\$ Q .	• 30 €	23	20.00	57 ·	B. B	5000	2 4	5.50	10 1	Z :	* 22	8 6 e	ଚ୍ଚ ବ୍ୟ	85	• 33	\$ G &	• 65	62.	514.0	**************************************	6.65	26.00	11467-43	6437.44	2 3 B B B E	5K + 40 5 0	A. A. C.	6253.43	2.28	8321.38	新花 医食管 经分子的 电力学	47384.83	1227.7	
COLUMN	1935	193.9	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1941	1942	1043	1944	1945	\$ 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1441	1948	* 4 5 7 7		1421	. 7661	1424	1954	. 50.61	1956	1257	1053	か: い ひ で	196 4	1961	1962	1963	***	3995	3000	1001	2.6%	1369	137.5	1971	1472	1973	. *	601 884	3	CCL RATIO

SUMMARY OF ALL CANYONS WITH DESRIS DASIW RECORDS. THE COCATION (LA # LA RIVER? SG # SAN GABRIEL) AND YEARS OF RECARD (EG 59-71) IS ALSO NOTED. YTELDS IN CU YDS/SQ MI.

SANTA AHITA LA 1962-		69.	. 88	• 30	. 83	S	. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	8	100	* 53	C	800	56.	88.	. 55.0	. 63	100 m	666	12	\$ FF .	. E. C.	55	35.	623	5 K	8847 • 88	68.	7647.	<u>د</u> .	2203	8883 . 8	9152 + 19	ē.	823.	758	18411-20		25705-03	19323.93	并	329314.80	40.4	•
(63) RUBY UPPER LA 1954-62		. A.	. 888	• 33		* 13 th	E 20.	· 17 13.	* 513	\$2.	* 33	+ Ø €.	B8.	640	880	1608	. OB.	. 22.	. 33	38223.40.	• 96	8 B B	10052.00	384 . 3	多 公。	B. P	* 13 13 ·	.Bb. 9269	100 m	E. E. S.	ව ජ •	₽ (3.5)	. 30	* G A1	• (4.0)	663.	• 88.51	(3/5) m	• 33.5	经存货的经济的经济的	55269.03	. (xx **
(62) RUBY LOWER LA 1956-	. 60	. 98	80.		. Q.B.	8 F. e	* 51 S	600	. 33%	2 2 2	0000	\$ W &	500 €	* AB	22.82	866	• 93	• 20	66.	P (3 C)	₩ M M	6000	928.	42.9	535.9	12	6	K	267+3	.00	.73		5 . 5	821.8	42.3	2142-33	4 22 4	880	5653.99	*	88.585 88.68.68 88.68.68		17.0
(61) RUSIO LA 1945-	* 22 G	* 50	.88	2 2 2	63.	600.	.00	0	\$	E55 ·	50 to 0	3452 . 40	42.	* &	85.	800	8 E	4074094	82.	8.80	* 23.33	6149	683	N N	402.03	K 12. *		60255	7300	9.9%	•	5 4 8	643	5	43650020	14.	. 23	£: 55 *	15395-98	医子宫外外外外外科科	102145 - 38	1	0.57
(68) ROULEY LA 1955-	.00	€ G B	• 3	€ 13 3	* 7.0	8 6 .	200°	* 50 60	680	· (3.9)	\$ 8 B	79.4°	. 80	8 6 °	* 10 10	6 P. G	€ 76 %	· 0.00	₹7 € *	.33	1806.38	% ଜଣ	1551.00	584.	. 33		574.83	68 . 4	6130	→ 500		6	241	17	19482 * 614	64.	3793080	\$ 10 m	• 83	经分价的公司公司公司	46287.58	7 7 7	
PICKENS LA 1936-	83	16777303	, K		12		20	52		483503	317.49	-		236.39	. 25	15	88.	7247 000	•	2354 - 183	•	5444033	1375033	2751-83	497-43	574 - 83	4445 • 20		3441 - 53			9		2	263×4084	1313 ·	4492•44	.00	5439 - 254	普通外替的公司的专业会的	250924069	C . #	è
(58) PARADISE LA 1945-65	e 22	67.29 0	• 60%	. 25	\$ \$ \$ \$	50°	• 54	6. C.C. C.C.	22.	85.	1743030	1359 - 43	1472-08	227.00	132.48	• 633	.00	14987.60	· 533	6.64	47811+33	5725,00	2340000	4785.93	325.66	580.03	683	5374 - 38	239	* 35	\$1.50	68.	经 500 中	25.	राष्ट्र क	E 5 4	53 63 *	666 .	620	经验证证券的证券的证券的证券	43956*38		77.
NICHOLS LA 1938-	9 B	. A.B.	8000	\$155 *	\$ € €	8 C .	* 93	25643.08	3187.38	774-48	322 - 43	235-93	6337 - 93	468.83	625.38	1287.93	63.	25158 8 8 4		2933 • 49	. 83	477 0313	1685.33	13411+38	1585.39	521.63	6 73 a	57.62 • 68	453	೮೮ *	963.93	9674.93	3723.08	3511.03	6463000	3191045	. GB	e 13	2553,03	学师学学校学校董师费=	146653.89	3 4	\$0.
COLHMA YE A 2 S	17.55	9	1337	رن ريا	7.00	1948.	1941	1942	1943	サウケト	1945	1946	1947	1948	7550	1950	1551	1932	1953	1054	1755	1956	1957	1954	1959	アンペア	1961	1,62	1903	100 4	1965	1200	1961	3000	1909	3070	4 ک	1972	6	*	10	1 10	

SUMMARY OF ALL CANYONS WITH DEFRIS BASIN RECORDS. THE LOCATION (LA = LA RIVER\$ SG = SAN GABRIEL) AND YEARS OF RECORD (ES 59-71) IS ALSO MOTED. YIFLDS IN CU YDS/SA MI.

(65)	(44)	(77)	(84)	0	\ \ \ \ \ \		
1956-	SCH0L L		-1 M	SIERRA MADRE	S MADRE VIL.	SNOVER	SOMPRERO
				-		000	<u>}</u>
. 93	86.	• 23	· 3/0	5) E *	5.	B 6 .	(G) & *
£ :	2: .	2	. 33.8	6.50	\$ 51.5 *	\$ 50 cm	.03
2 .	o Z.:	25	1		8 K. S.	500°	22.
* 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	22.	10 P	8174.0	26427 - 130	5 B .	72564.84	8330
• 20		0 S S	16259000	* 30	\$ 50 °	91700.20	6330
* 2G	E .	N. 13 14		E & .	\$ 23	8 22	\$ 6 e
. 20	#100 *	2000	34977.03	Ø≥.	.09	14430.63	\$ K .
.39	66.	88.	\$2.5°		. 38.	. 355	
80 f3 m	8° € €	Ø 55 €	14	52	. 33	26821.83	2
633	***	20.0	37	9	* \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20		500
.33	8.00	10 E .	562	7700	5	71.146088	, a
600	5000	· · · · · · · · · · · · · · · · · · ·	600		8 8	-	
42.00	1033.00	. 22.22	77	474.49	4	A 20 4 20 4 20 4 20 4 20 4 20 4 20 4 20	
680		1 CO			5 5	7	3 6
.00	60.	000	4	(C) (C)	ু ত		7
82	200	84.	5 5	3 2 2 3	: 8 : 5 • •	857	500
67.3	e	E .	. 22	7 2	S 5 6	60	200
. 20	. 6	800	\$60.500 B	- 5		40 41 4 CA	0 0
	4681083	2	i i	,	: 80 S		\$1 E
. 30		. 5	25.39	23346090		` ٣	0 65
3	28.0				55.4	, to	2
89-93	क हैं	6.16 *		18865° M3	20.00	6.2	
352-89	600	55 4	7 03 3		3 S	4787-86	5 5
0 . A.S.	7.7	. 23.38	2966 - 03	74	80	- 3	5 5 5
24334 . 44	1763.23	65.	89.6	126.3	826.82	3047°50	
5751 - 38	0				,	, 6	200
7.033	, S2	50	- 20	27 27 27 27 27 27 27 27 27 27 27 27 27 2	5) 57 *	. 6	े त : ह • •
3940 - 33	27		3925.38	4812+83	81241 - 18		
E8.5	1334000		9	TL.	25.53.0		. 22
6.93			04.	310.00	3.95.94.93	88.8	200
2.20	980		8888		4	68.4	65.
12597 - 29	1537.93	18278 - 78	34518.22	726.93	35161+36	78.0	. 2
6000	1515.83	3000	22222-83	ź	1 7 9 0	5017.30	3 13
4.09	2575+1313	•	4446000	35	10 3 4 . 12	_	1
5 . 23 %	5343.40		12222 : 08	100	- 62	48405 A	. E. E.
5.39	秋 代 6	•	14.81 . 53	6694	**		5 5 5
. 3.3	E 17.0			6	3.	E	223.23
6 13 ·	15 h		100	800	87.	5.5	
535023	5333 • 83	9295 * 34	9629000	12893-63	60	8269.23	. 30
古典人名英格兰	公安安安安安安安安安安	谷安县 医安安氏 医安安氏	经余者据 母者於於如子於安	经公司的	주 중 중	坚果标算资格法特益等格格	46
6 • (4	21 .	• 474	42.5 . 8	160	034.0	W.	283 + 64
9	659.51	4	5	3491 + 28	n	N 0 0 5	
4 000	2 6 "		9 ()	1 3	1		

SUMMARY OF ALL CANYONS WITH DEBRIS BASIU RECORDS. THE LOCATION (LA # LA RIVER: SG # SAN GARIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTED. YIELDS IN CU YDS/SQ MI.

ET LO		8	2 2 2			. 22	. 60	\$ E	• 22	88.8	86.			65.	. 88	2 E .	.03	• 53	2000	* \$2.00	*8°	86.	200	38°	.93	60.		633	22.00		Z5.	58336 - 55	2655	1846-33	2.	17592=94	623.	2769.93	£ 12 .	€. 5. •	医安林斯斯斯特特斯特特斯特斯斯特斯斯特斯斯特斯特斯特斯特斯特斯特斯特斯特斯特斯特斯	103798.03	2651 . 4	
× 1	A 1974	88		\$ 50 50	. G.	. 80		. 30	.63	166.	66.	• AB:	· 6451	* 3 3.	E 22 *	. G∂ ;	650	* 63	· 13.5	66.	. 99	10 to 0	66.	5 B .	E 23 .	€ 55 €	· 21 B.	. 83:	\$ 18 B	.3/3:	୭ ଓଟ	683	.0.3:	* G 55	27.	. ASS	E. C	2.	E4.	5696.03	经条件条 经转换 经分子经	5893083	128+21	1 N
SULL	× -		8. 8.	0 550	· 50 % •	* 12 to	. 88	8 10 a	. 43	888	* 9.00	あた。	. GB	· 6 13 33	€ 63 a	* B. B.	5000	. 33	. 23	\$ 50 B	. 39	€ 8.9	हा है जिल्ला हिंद्र •	. 63	\$ B B B B B B B B B B B B B B B B B B B	.08	. B B	. 00	€ € •	• 333	. as	81B ·	• 22	ಚಿ ಚ	5000	· 58	• 68	* 23	25.0	4373,83	安安安安安安安安安安安安安安安安安安安安安安安安安安安安	3.0	12409	
STURTEVANT	_	850		86.	600	\$ 50 m	6.80%	880°	\$ P	. 68	• 38	6000	• 619	\$ 50 cm	* 20.00	• 53	.03	. 23	28.8	• 933	0.60	.093	* A B	· 35 3	• 6851	· G (3)	E & .	. 03	. 52	15 15 W	600.	600	\$ \$0.	60.	8	22	33.33.34	• 33	8 C1 15	* 233	经存款的 医阴茎 医腹腔	13333.40	341 .8	•
	X	88		· 63 33	. 88	Z.	600	5°	•	SO	803	2835098	. 33	■ 488	• 45	* N N	• 83	600	8516・8ほ	28.0	4 G G	2425 + 00	€ 20 °	6.9.4	4714.93	037°	* 53 %		840.00	88.		26768.00	254	215	20 m	1693.00	. 62 %		20.00	1396-53	赞於荷典於齊於於於於	·C	249204	
(75) STETSON	× ×	22.00	10 G	\$2.50 B	81B 0	880	9 D ·	\$0.00 0.00	96.	\$ B \$	20.	603	* F F S	22	• 03 34	22.	· 50 53		, 6.5%	• 66	60.	. 33	. 22	55.50	かり。	\$5.50 m	. 23	6.69	\$2.0°		* 20 20	E 52 *	20.	8 B 8	.00	•	4137.98	€ 80 €	. 20	* R	经营业的专业的专业的	4937.33	3	•
(74) SPINKS	* 012	88			8 C o	• 80	₩ Ø ₩	. 20	* 43	50 B .	8000	\$3 EU •	96.	* Z Z	98.	.00	• 444	· 23	表 の ・	• 53.08	• 639	20.	* Q *	68.9	20.		39725.56	<u>.</u>	5928.26	ğ	₹ .	. 2	4420 • 22	9318,33	0 0 0	25	15° 4°	2. 2. 2. 2. 2.		. 83	医克里特氏 医克格氏氏试验	92788-33	3 00	
(73) SPARR	_	•	.33	8 P. S.	68.		. 43	600	· 600	96.		* ************************************	666	€ 13 d	• 33	DE.	€ 50 B	.33	5869.83	643.	1214-83	. 63	2228+39		3639 4 65	* 63 %	8000mm	68.	2625.88	1685.08	35.	643	• 68	6.00 a	• 27 22	6.63	* 65 A	* S. S. S.	£ 5. *	* 22 22 22	安全经济的公司	16633.94	426.41	
COLUMN YEARS		1935	6	1937	1935	1939	1949	しゅうし	1942	コンケス	1944	1945	1945	1947	1948	1749	1953	1951	1952	1953	1954	1955	1950	1957	1958	1959	1763	1901	1962	1963	1964	1765	1956	1587	1000	4669	1673	1971	1972	1973	. •	CO L SUR		COL RATIO

1
1
1

SUMMARY OF ALL CANYONS WITH DEBRIS BASIN RECORDS. THE LOCATION (LA = LA RIVER: SG = SAN GABRIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTED. YIELDS IN CU YDS/SO MI.

(88) WILDUOUD SG 1068-	0.50 m	55 P	20 6 6	2 77		* 53 G	. 93	· 68.9	₹\$\$\$ •	2.	• 88	8 D .	th: 150 **	₩Q.•	£0.	. 33.0	* GG	E 15 €	00.	80° a	€83 *	864°		23 23 •	E	E 12 0	. 50 G	2.0.	•		3230+4	5 * 5	84600	30400	7 = 3	6153 - 53	安全等等	20	4	1
(87) WILBUR LA 1945-	យ្យ ស្ត្រ • •	* 500 * 500 * 500	\$0.00 m		120	413	N-	1024080	~	464°B	~	0	216.33		2147 - 193		2	5 . 4	* BB *	1347001	2426 - 09	35,30	4.6	87.0	.61	\$	666.43	63.	454.5	17	5	322	269.4	22.	. 22 	05.50	安	018.8	5	
WEST RAVINE LA 1035-	483888.88. 28884.88	119454 - 156			716.99						2	60.	200	* 33	17940303	• (3	4844-36	* 20.0	2 2 3	E 22 e	5408 . 43	864.	20.	376.	1983 - ମଣ	5404	* 900	€ *	428.5	55	29303	23	6.4	0	86.00	やがっかでするし	***	348 • 9	4	0
(85) WARD LA 1957	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	• • • 2 2 2	. 800		600	校 (C) · ·	88.	* 99	286	• 619	60 B	• 20	85.	68.0	· 93	* 8 B	e 13 3	* 63	. SO	50543.43	51868.39	7 4 3	8 B 8	853+3	99773080	1026	200 ·	<i>C</i>	0	2300.39	£. *	36489*33	. 23	11440.33	\$5.50 **	65.	英名公安处安全不安安各共	Par	د_ بر	9
(84) WARD LOWER LA 1945-62	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	200	\$ 5 B		2	. 22. 23.	•	521.6	\$	ଅବ୍ୟବ୍ୟ	317.	64301	2812.69		50 34 54		240.0	. 0	153 + 0	1588 • 89	289 - 13	231	. 52.52	• 60	683	13 K.	200.	100 a	(4 E) 0	* 13.3	. 20	• 23	80.	02.0	\$0° =	20 %	各外公安并否有女女母的	63843	1323.85	2 2 1
(83) VERDUGO (A 1836-	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10483-88	2 2 2		6763-88				*	59 + 33	\$0.0°	₹ 0.•	• 22.5	*	2	352	\$\tilde{\nu}\$	8	4		2247567	20.000	6. Q. *		3897.89		•	371.		2553.53		6841-133		33	. 20	7215-26	茶	954.9	1795-59	
(82) TURNBULL LA 1953-	\$ \$5 6 \$ \$5 6	85.00	2 6	. 63.5	8.00	68.	~ S. S.	* 23	• 3 23	• 93	100 P	වල • වෙති •	6.00	55 E		1328.43	* 13 C	* 3.5	. S.	767-43	\$	£ 55 ·	* GB	252.39	2947.05	435-21.5	\$ \$ \$	8. R. e	733.33	1414.00	9747 403	16460-83	£ (3 •	. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		ひじゅのして	华 黄 子 参	36567 - 48	737.62	01.0
(81) SUNSET UPPER LA 1935-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		55 6	2 5	:2	84.	2684.23	281 - 33	327 · AA		• 00	E2.	. 22		7727 - 60	* :3 &	* AB	* 33	. A A	1818.36	415	4565.03	ಕ್ಕಾ	3104.33	· 20.00	68.	5293.98	51447.03	20145.00	2513+38	39,43 + 1303	22954=13	8470 • 55	\$ 50 m	ক্ষ ক	4318 4 43	* *	6 - 98 61	4639	
COLUMN	1935	10.00	0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m	1241	1942	1943	1044	7 4. 5	1946	1247	2700	1049	4シャ	1951	1952	195.5	7551	1955	1356	1981	1953	1954	1964	1961	1962	1953	19.54	1965	1266	1967	1963	. 0971	1970	1971	1472	1973			COL MEAN	

SUMMARY OF ALL CANYONS WITH DEFRIS BASIN RECORDS. THE LOCATION (LA = LA RIVER: SG = SAN GASRIEL) AND YEARS OF RECORD (EG 59-71) IS ALSO NOTED. YIELUS IN CU YDS/SO MI.

ROW RATIOS	•		•	. 3	0.7	5.	2.0		• 3	٢.	2 °	5 .	4.	\$ 5	10 m	.5		70		5 *	0.	\$	1.2	6.	ec •	2 0	678	5 *	1.02	00	6,3	oc.	× *		6 *	1.10		in					
ROW MEANS	537#56	6 +	324	54	.0	50	2941 - 16	5.0	5787.31	43	372009	334 ,22	309086	8 5 • 2 8	51421	75016	3	3324063	396.69	5	5	00 M	50	10	2675.61	00	1334+59	27	3578 493	23	4	67	K KA	383	3	583.0	587.1	397 .	0				
ROW SUMS	3388	24496	222041.43	1161755-00	144691000	51113.03	564754093	64600.08	349258 - 58	129435+99	33.45.50.42.50 32.45.50.45.50	80 * 58 X OH	35987 + 39	7675-30	4680,39	6764.33	2119.00	298887 - 93	35782-89	86713.00	134154.20	124050000	115431 • 00	276433+80	240395-83	89459+30	120105-03	744332 - 89	217638 - 34	- 119117-08	435821.83	780361.93	587933080	272931*##	0027055-129	232554.00	142837*88	5798	675.	经验证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证	11306413 - 99	292215	101175
ZACHAU LA 1957-	B 15 *	8 8 m	0 P ·	· 74	• 53	633	· 030	6.5	* 52 to	. 3 E	• 33	· 69	8 8 8 e	\$ 3.00 *	£60°	6.9.	690	\$6 °	· 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	660	6) (4) 6)	8000		3942 - 22	83 FD 0	220		307039	* &	B. S. C.	50 E &	•	882 * 193	9			• © ©			经存货的 医克尔克氏性 医克尔克氏性 医克尔克氏性 医克克克氏性 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎	34872 * 39	8040	- - - - - - -
WINERY LA 1969-	\$0 \$0	10 to a	* 22 22	т О	5. E •	686	9.00	600	• ₩ @	◆ 53 €	600	B6 •	© 67 €	• 33	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22 8	87 B	. 13		. Q.	B () *	. O.	20.00	• 60	6 13 0	. 22.	. 33	64.	KC .	8 E 4	* 03	• KG	. 93	*	52222	である。		80 60 .	38 a B	務務 医安克氏管 医牙髓	ऽऽ• ©	1566	K a C O O
WILSON LA 1963-	a 3 (3	23	8	23	25	0	100	83	3	3	. 23.3	15	€Ð.	6.6	8	90		60	න •	14.	60	20	886	5	₹.	630	\$ 12 · 5	4.52	6 X	452.0	224.1	248.3	550 . 3	6.88.9	511.8	88 = 9	e 20 ce	(·)		经安全债务等的证券	61219-88	0	10200
YEARS	1935	1936	1037	1938	1939	1948	1941	1942	1943	オカグト	1945	1946	~		1949	1953	1951	1952	1953	1 454	1535	19561	1957	1928	1959	1963	1961	19 62	1963	1964	1000	1955	13.67	1968	. 6000	1973	1971	1972	1973	*	-	` <\$	4

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 30 DEBRIS BASTRS FOR 1972-73 PROVIDED BY THE LOAG COUNTY FLOOD CONTROL DISTRICT

CANYON NAME	(2) AREA (SQ M1)	(3) 1972-75 LAWS (CU YU/SO MI)	(4) YIELD (CU YO)	(5) RATE (CU YD/30 MI)	(a) Invex (cul o/col 3)
ALISO	2.77	5342	6284	2238	•418944
ALTADENA	• 2	5342	ป	Ø	Ŋ
ARBOR DELL	•11-	5342	U	ป	Ø
NUSURII	•19	5342	1188.	5189	1.08368
BAILEY	+ Ó	5342	01	ø,	4
BEATIY	.27	5342	18 767	0665	1.24785
9611	7	5342	5381	757	.141737
BIG DALION	2.62	5 3 4 2	513h.	1946	• 364233
BLANCHARD	45	5 3 42	Ø	3	Ø
BLUEGUM	•19	>342	1163	5789	1.08363
SKACE	•29	>342	2000	6896	1.2989
9KAD BURY	.68	5342	1540	18294	1.92699
BRAND	1.83	5342	71 nd	6893	1.24334
CARRLAGE HOUSE	• 2/3	5342	233 a	6565	1 • 24785
CHIL US	•12 •31	5 3 42 5 3 42	2232	ย์. 7ช96	0
CFORN	•82	5342	2 CON	. B	1 • 3 2 8 3 4 Ø
6 00 KS	•58	534 2	4103	7563	1.3231
DEag	• 59	5342	3000	2484	*9517±3
DUNSAUIR	.84	5342	7264	8571	1.68440
EAGL E	•61	5342	9303	152+2	2 • 8 5 3 5
FIMMOND	• 51	5342	8	3	8
EMERALU EAST	•16	5342	400	2538	• 46799
ENGLEWILD	• 4	3342	U	2 J~ 01	8
FAIROAKS	• 21	5342	1.103	5238.	•960532
FERM	4.5	5342	Я	H	9
GOLF CLUS	• 32	5342	2763	8437	1.57937
40010	• 47	5342	5830	18723	3.56481
HA INES	1.53	5342	14	. 6	0
HALLS	1.05	55 42	17300.	1.6328	3.05584
HARROW	• 43	53 4 2	1300	4186	.783682
HAVE - AAY	.22	5342	Ø,	3	8
HAY	• 2	5342	15 อด	7 5 ฮก เ	1.48397
HILLCREST	• 35	53 42	500	1428	.207316
HOG	• 3	5542	ย์	าว์	Ø
HOUR EAST	.18	5342	B	Ø,	le le
HOUK WEST	•17	5342	U	ő .	8
KINGELOA	• 2	5342	4780	235HJ	4 • 3991
KIRHELUA WEST	•16	53 42	7820	43753	9 + 12583
KANNA	• 25	5.542	11188	44330	8.23552
LAS FLORES	• 6 5	5342	2568.	5555	1.03987
LA FUNA	5 a 34	5342	4300	7 4 9	•14/121
LIMEKLIN	3.69	5 3 4 2	24699	ડે ઇ∠1	1.50150
FIRCOFI	.5	5342	ы.	Ð	Ð
NCTIAG BITTI	5.31	5342	23639	7129	1.35452
MAUDÜCK	• 20	5342	100	4 1 3	· 074873
мау до 1	• 7	5 342	143/13	24423	3.82444
MAY NU Z	* B9	53+2	2300	25555	4.18379
MORGAN	• 6	> 342	FI	Ð	v
NICHOLS	. 94	>342	2400	2553	• 477911
PICKENS	1.84	5342	10100	5489	1 • 32752
ROULEY	+58	5342	9	0	Ø
40010	1.26	3342	19488	15396	2.83257
RUBY LOWER	. 28	5342	1400	5.3 8.0	.935979
SAUTA ANTIA	1.7	\$342 \$463	32338	19766	3.55072
SCHOLL	2.84	5342 5342	35638 3563	1 2535	2.34650
SCHOOL HOUSE	•28	5342	3564 2643	5393 9255	•992699 1•73811
Shields	*51	5342	2008	9629	1 • 60251
SICRRA MAURE	2.35)3 4 2	3039A	120J	2.39067
SIERRA MADRE V	1.40	5342	300000 493ਰਰ	35/67	6 • 3 2 1 8 4
SHOVER	• 23	5342	1900 1900	5253	1 454624
SOMBREED	1.06	5342	6	0,	0
SPINKS	. 44	5342	Ø	ð	ø
STATSON	• 54	5342	Ø	ม	e
Stuged	1.65	5342	18 ย ย	1278	• 204043
STURTEVANT	· H3	> 342	10 50 20	0	8
SULL I VAN	4.33	5542	11698	40/3	.912205
SUMMY SIDE	• 02	5342	1 ห อ.	51 411	e93597y
SURJET LOWER	.05	5342	9	P	8
SUNSET UPPER	. 44	5342	1900	4316	.888311
TUPNEULL	644	55 4 2	1300	1.818	.540322
VERDUGO	4.47	2542	14133	18:15	435848
WA RD	•1	5342	61	М	0
WEST KAVINE	+25	5342	3100	1.2464	2.32125
WI LBUK	5.86	5342	5543	1450	.271434
111 101010	. 35	53.42	4 et -1 =3	6153	1.15182
WILSON	2.58	>5+2	5031	53.53	.623924
MINERY	•13	>542	1680	8803	1 . 6 . 3 8 4
ZALHAJ	.55	5342	9	el	H
COLUMN SUMS	84.324		450500	\$45675	100.276
COLUMN HEARS	14424		5651.25	0077.94	1+25345

LOS ANGELES WATERSHED SYSTEM (LAUS) DEBRIS PRODUCTION OF MY DEBRIS BASINS FOR 18/1-72 DATA PROVIDED BY THE L.A. LOUNTY FLOOD CONTROL DISTRICT

	(1)	(2)	(3)	(4)	(5)	(6)
	CATYUN NA 16	AREA	1971-72 LAUS	AIEFA	RATE	INDEX
		(SQ MI)	(CU YP/SO HI)		(CH AD\25 MI)	
		134	(00 1-7 0 0 112)	(40 1-)	100 1000 1100	1011 17601 37
	ALISO	2.77	697	ø	ø,	B
1	AL TAUENA	+2	647	ø	Ø:	ย้
,						
	ARROR DELL	•12	697	e.	0,	Ø
	NE USH	•19	697	6	હ	ð
(BYITEA	. 6	697	3	9 .	В
	BEATTY	.27	69 7	PF	⊌.	力
	BELL	7	677	ð.	J.	Ø
(BIG WALTON	2.62	697	7640.	2993.	4 - 16069
	BLANCYARU	• 5	697	Ø	Ø,	Ø
	BLUEGUI	•19	697	3	0	Ð
,						
(BRACE	• 29	677	e e	31	6
	SRADAURY .	. 60	697	ð	eð	8
	BRAND	1 · # 3	697	49	Ø,	0
,	CARRIAGE HOUSE	. 33	697	8	₫,	Ø
	CARTER	• 12	647	Ø.	Ø	9
	CHILDS	•31	697	8	. 8	Ø
	COOKS	.58	697	9	6	Ø
				ß	81	-
	JEEK	• 59	697			Я
	DURSHUIR	• 8 4	691	6	Ø 1	0
	EAGLE	.61	697		Ø	Ð
	E [HU J Q U	• 31	697	<i>E</i> 3	ø	ð
	EMERALD EAST	•16	647	ĕ	Ø;	Ø
	ENGLEHILD	• 4	637	Ø	3,	ө
	FAIROAKS	.21-	69.7	3	Ø,	ð
	FERN	• 3	697	Ð	ø	В
	GULF CLUS	•32	697	e	Ø	Ø
				-	6	
	GOULU	. 47	697	ы	-	Ø
	HAINES	1.53	697	61	. 6	Ø
	HALLS	1.46	697	7388	6886	9.87948
	HARROHAH	.43	677	69	10 1	8
	NAVEN WAY	.22	697	정	- Ø	Ø
	HAY	• 2	697	Ø	6	. %
	HILLCREST	.35	697	6	ø	Ď
			697	ð	ø	Ø
	H 03	• 3			•	
	HOOK EAST	•18	697	Ø	ø	6
	HOOK WEST	. 17	697	Ø	છે.	€
	KIHNELOA	• 2	69 7	Ø	Ø	в
	KINNELOA WEST	•16	697	ß	Ø;	Ð
	LANGAH	.25	697	8	Ø:	6
	LAS FLURES	.45	697	Ð	ซ้	ø
	ARUT AS	5.34	697	6	e e	ø
	4 I A EX LIN	3.69	697	6		
					Ø	6
	LINCOLK	• 5	697	ø	Ø	8
(FITTLE DALTON	3 . 31	697	6	Ø	Ø
	MADDOCK	.25	697	Ø	ß	r)
	HAY SO 1	• 7	697	Ø.	ð	€!
(HAY RUZ	. 69	697	Ø	Ø	ಟ
	MOR GAN	• 6	697	8.	₫ ₁	Ø
	NECHULS	. 9 4	69 7	В	Ø1	ø
(PICKEUS	1.84	691 .	g	6.	Ø
١.			697	6		b b
	RUJEEY	• 58			ď	
	K0310	1 + 26	677	в	В	Ø
	RUBY LOUER	, 28	697	€.	Ø	Ø
	SAHIA ANITA	1.7	697	43703	25735	36.8795
	SAUPIT	2.84	647	ρ	ø.	ø
(SCHOLL	.65	697.	8	ð	0
	SCHOOL HOUSE	.28	617	8	6	В
	SHIELUS	• ? ?	6.91	. 6	9,	Ø
· ·	SIERRA MAURE	2.39	677	S.	8	2
	SIERRA HADRE V	1.46	697	ž.	ð,	Ø
				ก		
	340466	• 23	697		₿.	Ø
٠.	DESTREMOS	1.05	697	\$4°	Ø	Ø
	SPINKS	a 4.4	647	ð.	-8	Ø
,	STEISJN	• 29	691	AS	Ø,	ő
1,	STUJUT	1,65	69 7	Ø	21	6
		13	697	ľ	Ø	ø
	SULLIVAN	2.38	697	Ø	ā	ย
(697	Ø	er Er	
1	SURTYSTUE	.45			•	6
	SUNSET LOWER	• 65	697	Ø	Ø	ø
	SUNSET UPPER	a 4 4	697	V 1.	6	ь
	TURNOULL	. 39	647	Pr.	Ø.	Ø
	AESBILGO	4.91	697	ð	ø	Ø
	NA RU	• 1	697	ø	ų	A
	HEST RAVINE	. 25	697	8	9	6)
			691	61 61		
	wit 304	5.86			d ₁	H
	ALFORNA	.65	697	234	387	448459
	WILSON	2.58	647	0	Ø.	0
	WIRERA	•,18	. 57/	ð	o	Ø
	ZA CHAY	4 \$ 5	641	ð	ið,	0
					·	
	COLUMN SUAS	34.310		53888.	33793	51.5001
	CULUM MLANS	1.46/22		144.384	4 53.1 39	• 658123
	DO CO IN TIEM 13			1 4 4 8 2 11 3	4336103	• D 10 E 3

LOS ANGELES MATERSHED SYSTEM (LAWS) DENRIS PRODUCTION OF TO DEBRIS BASINS FOR 1979-74 DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NA 16	AREA (SQ MI)	19/3-/1 LAUS	Alefo	RATE (CU YU/SQ MI)	INDEX (COL 5/COL
	(SU MI)	(Ci) An\20 WI)	(cn Ap)	(CO TO/SU MI)	(01)/608
ALISO	2.17	1105	6538	3708	2.63801
AL FAUENA	• 2	1165	a	ž)	g
AUBURN	.19	1163	ii i	B ₁	S .
BAILEY	. 6	1:163	6	Ø,	Ø
BELL BELL	° 2 7	1163 1163	й 10830	0₁ 1542	# 1.32588
BIG DALTON	2.64	1163	g.	8	8
BLANCHARD	• 5	1163	538	1ฅ.ฮฮ.	• 859845
BLUEGIJ14	•19	1163	ช	8)	B
BRAUBJRY	* 68	1103	988	1323	1.13758
BKANU	1.83	1163	Ø,	Ø 1	Ø
CARRIAGE douse	· 10 5	1163	Ø	ಲೆ,	Ø
CARTER	+12	1163	Ø.	Ø	all
CHILUS	•31	11.63	8	d	Ø
COOKS	e 58	1163	2	5 1	Ø
DEER	• 59	1103	3160	5254	4.51763
DUNSAUIR	.84	1103	9.	31	Ø
EASLE	•61	1163	.	01	0
ELHIOUU LAST	•31	1.163	6	ย _{่เ} 5.625	0 4 93443
EMERALD EAST	•16 •4	1163 1163	400. 0	g. 20421	4.83663 Ø
FAIRDAKS	.21	1163	()	b.	0
FERN	43	1103	1968	6333.	5.4454
GOLF CLU3	• 32	1163	Ø	Ø.	Ø
enul D	.47	1163	3388	7621	6.03697
HAINES	1.53	1163	Ø	Ø ₁	Ø
HALLS	1.86	1163	Ø.	Ø,	ø
HARRUM	.43	1163	Ø	ß	ฮ
HAY	• 2	11.63	Ø.	Ŋ	0
HILLCREST	.35	1163	8	ø,	B
Hog	.3	1.163	R)	Øį	Ð
HOOK EAST	•18	1163	6	છ ∶ છ	6) Ø
HOOK WEST	•17 •2	1463 1163	6 69 <i>8</i>	3 3 3 3	2.57954
KINNELON KINNELON WEST	• 16	1463	1୫୧୫	625 <i>a</i> ,	5, 37483
LANHAN .	£ 25	1163	15000	6 68881	51.5997
LAS FLORES	. 45	11.63	3	Ø.	ø
LA TURA	> 34	1,1 63	6.	B.	ย
LIHEKLIN	3.07	1.163	23180	6263	5.39263
LINCOLA	.5	1165	1338	2600	2.23504
FITTLE DALION	3.31	110 3	63	•	Ø
MAUUDEK	625	1103	€.	₽,	Ы
MAY NO 1	• 7	14 53	в	Ø	ð
S OH YAM	• 09	1163	ő	64	B
MOKGAN	*6	1163	0	ð,	Ø
RICHOLS	• 9 4	1.163	9	б,	Ø
PICKERS	1.84	1465 1463	51 66 2290	4432 3793	3.78584
RUHLEY	•58 1.26	1163	R 550	9142	3 · 20139
RUBY LOUEK	+ 28	1163	3	ð ·	8
SANTA ATITA	1.7	1.163	15	છ ,	Ø
SAUPIT	2.84	1103	ð	6	ช
SCHOLL	•66	1163	Ð	ð,	Ð
SCHOOL HOUSE	• 2 3	1163	ø	ið	ø
SHIELDS	.27	1.163	€.	В	Ø
SIERKA MAURE	2.54	1165	Ø	8	Я
SIERRA MAURE V	1.46	1.1 63	હ	ii 2	Ø
SHOVER	. 23	1163	ð	8	3
50458684	1.85	1163	39d,	283	-243336
SPINKS STEISUN	• 4 4 • 2 9	1103 1103	i) i)	Ø₁ Ø.	() ()
STOUGH	1,65	1163	<i>в</i> Э	υ, Β.	e e
STURFEVANT	· 83	1163	ð	₽. ∀	e
SULLIVAN	2.38	1103	5	r	5
SUMMYSIZE	• 93	1163	ø	ಟ ,	ø
SUNSET LUWER	• 65	1153	18nB.	2769	2.58891
SUNSET UPPER	. 44	1/1 6 3	в	0,	ž)
TURNBULL	.99	1163	ð	Ð:	3
VEKAU90	9.97	11 93	75nd	7 32	.629447
MYKD	• 1	1163	1100	11000.	9.45838
WEST RAVING	• 25	1103	B 11 A	\$203,	2.75151
WILBUR	5.86	1163	Ø.	ø	8
MIT09990	. 65	1163	4800	7384	6.34910
MILOUM	2.53	1163	ย	t)	۵
HINERY	•18 •35	1163 1165	es O	0	ø
ZACHAU	.35	1103	47	i	3
	63.613		97388	1.42859	
CULUMN SUMS	0.5 a 0.3 id		ALZNA		122,319

. (

LOS ANGELES UNTERSHED SYSTEM (LAUS) DEBRIS PRODUCTION OF 78 DEBRIS ASINS FOR 1967-78 DATA PRODUCED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

\						
	(1)	(2)	(3)	(4)	(5)	(6)
	SHAN ICYLES	AREA	1904-14 LAWS	YIELD	RATE	INDEX
(· · · · · · · · · · · · · · · · · · ·	(SQ MI)	(CU YP/SQ MI)	(CI) YU)	(CU YU/SQ AI)	(COL 5/COL 5)
		434	100 100 34 111	(00) 107	(0) (0)	(47, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
	ALTADENA	+2	2168	et .	Ø.	6
(A US UR A	•19	2168	Ø	v)	ช
	BALLEY	# C	2106	6764	16333	4.75514
	DELL	ĭ	2165	\$400	485	223703
(BIG DALTON	2.62	2168	8360	3167	1.468/9
,	REAMENAKO			รายช ใช่ <i>อ</i> ั	2 48	. 692251
		e 5	2108	8		
(BLUE OUM	419	2168		ย _เ 1.1764	Ø 5 4 3 4 3 3
,	BRAUBURY	. 68	2163	3 880.	•	5.42620
	BRAHU	1.43	2168	0	ช่า	Ø
	CARTER	•12	2168	Ø	81	6
ţ	CHILOS	a 31-	2108	166	322	0.145524
	COOKS	• 58	2158	7118	1286	•556273
	DEER	e 59	2168	3	\mathfrak{G}_1	Ø
	9 N 4 2 W 0 I X	•84	2168	1130	1339	• 6 8 3 7 8 2
	EAULE	.01	2163	100	163	•J75185
	ETHANOD	e 31	2103	ð	9;	s3
	EMERALO EAST	•16	2168	Ø.	ð,	g
	ENGLEHLED	• 4	2168	5534	13/50	6.34225
	FAIRUAKS	•21	2168	938	4235	1.47648
	FERN	د ه	2165	OUKS	6500	3.87472
	GOULD	• 47	2163	208	425	• 196653
	HAIGES	1.53	2168	43	.	9
	MALLS	1.00	2160	8i	6	Ð
	HARROW	• 43	2163	2486.	>581	2.57426
	HAY	• 2	2168	3	Ø _i	Ø
	HILLCREST	•35	2163	ង១៤	2285	1.25397
	нов	• 3	2163	Ø	g.	8
	HOUK EAST	•13	2163	1033	55.35	2.56227
	KINNELUA	• 2	2163	566	2586	1.15314
	KINNELON HEST		2103	1368	8123	3.74769
		• 15			72580.	33.5/93
	LANHAN	• 25	2168	18288		
	LAS FLOR=S	.45	2168	а	<u>J</u> .	ß
	AA TURA	5.34	2158	ช้	Ø	g)
	LIMENLIN	3.69	2168	6	₿.	3
	LINCOLN .	• 5	21ó 8	640	12334	.553506
	LITTLE DALTON	3.31	2168	22230	6700	3, 39317
	HADDUCK	• 25	2165	ð	53	Ø
	riay #1	* l	2168	8933	12714	5 + 6 6 4 3 9
	MAY #2	•69	21.63	488	4444	2=84942
	- ACCLURE	+62	2168	E	J,	Ø
	MORGAN	• 6	2108	Ø	G,	8
	MIGHOLS	044	21 68	3000	3171	1.47186
	PICKERS	1.04	2163	Ð	Ø	Ø
1	KOHLEY	.58	2168	å	ź ³	Ø
	RUBIJ	1.26	21.58	943	714	.329336
	RUSY	«28	2163	633	2142	.9831197
(SANTA ANITA	1./	2163	313HB	13414.	8 - 49 2 1 6
	SAWPIT	2.84	2165 '	2633	915	*422048
	SCHULL	• စိန်	2153	£ 1	B,	Ø
(\$CHJOLHUUSE	• 23	2163	o.	ศ	б
	SHIELDS	.27	216 8	4 98	14 5 1.	+683118
	SIERNA HALRE	2 • 39	2166	10000	6674	3.38704
C	SIERKA JADRE V		2165	₫.	35	B
	STOVER	.23	2168	b	ŧÚ	Ø
	SUMBRERJ	1.26	2166	i d	1);	9
(,	SPINKS	. 44	2158	ø	3,	Ø
٠.	STEISON	• 29	2168	1208	4137	1.99821
	5 TOUS 11	1.65	2108	3	3	3
(♦ FUR FEVENT	+ 3.5	2105	193	3353	
				9		1.53735 8
	SUMSET LOUFH	.05	2168		0	
(SUNSET UPPER	• 4 4	21.68	3700	64 39	3.87569
,	THEMBULL	. 17	2168	0	62	ð
	AFKDORO	9.47	21.63	2388	242	.111024
,	HARU	+1	2168	ri d	io .	뵌
(NEST RAVINE	.25	21.68	603	24 83	1.18781
	MIL BJK	5.86	2168	4513	1569	.723788
	MILDAUUU	•65	2168	1278	1640	.851476
(#1150H	2.50	2108	2888	1635	.533461
	WINERY	•18	2158	£	3	ಶ
	ZA UHAU	• 35	2163	И	63 ,	ð
					•	
	COLUMN SUMS	17.843		168584	232554	197.257
	CULUMN MEANS	1.112		2411-45	3322.28	
					225525	

LOS ANGELES WATERSHED SYSTEM (LAWS) PERKIS PRODUCTION OF OV PERGIS HASINS FOR 1794-69 PATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1) GARYUL NAME	(2)	(3) 1768-67 LAUS	(4) YIELU	(5) · RATE	(6) INDEX
CARLOL MANE	(SQ AI)	(CA A5\20 41)	(CU 49)	(CH ADYZO WI)	(Cot 5/Cot 3)
ALLEY RES+	.49	34284	1180	12222	.356534
ALTAUEHA	• 2	3423 6	15ชย	7500	•218736
Ausun	.19	34280	5694	45203	1.52339
BAILEY	* C	34236	5149B	53106	1.55893
gre outlos	2.62	34283	295788	113244	3.3435
URAHOPAJU	° 45	34267	15788 .	31883.	•927655
	•17	3428A	3300	17368.	*3#6651
GRAVAURY GRAVAURY		3428 7	74763	103235	3 - 111 152
d R w kil	≠ 6 8	34258	39413	38252	1.11537
	1.63		2766	22503	
CHILUS	•12	34230		17/41	•65635 7
	•31	34230	5530 1.345	32241	•517552
LOUKS	• 5 8	3444 0	10783	74915	.948519
DEEK	•59 .	34288	44298		2.1 8539
OUNSHUIR	•84	342 6 9	1/388	28595	•6#378A
EAGLE	e 6 1	34237	12738	29314	a 54 7 3 2 4
El Huodo	•31	34263	5944	19232	•5>5193
EMERALU EAST	*15	34269	1699	1 3380.	• 291715
ENGLEHILD	m 4g	34279	60240	15 35 00,	4 + 3 9 3 3 2
FAIRGAKS	• 21	34288	12539	54523	1 • / 30 36
FEKN	* 3	34239	239UH	79666	2. 32.5/8
woll b	• 47	54203	15503	32978.	·952119
HAINES	1 • 53	3 4 28 3	51783	20/16.	£634376
MALLS	1.06	34284	55270	5 2 17 5	1.51911
H KRROW	• 4 3	34 25 8	63434	1 47441	4 = 3.31 to
H A Y	• 2	34 238	5760	28588	e83156¥
MILLEREST	+35	3423 n	10334	2,428.	e 3 > 3 4 6
HOUK EAST	•18	34268	40200	224533	6.51497
KINNELJA	• 2	34203	17090	853331	2.50719
KIHNELUK HEST	e16	34288	22239	13875∂₁	4.04755
LANNAH	+25	34280	45818	16த்சத்	a 525358
LAS FLORES	.45	342011	19404	44262	1.27082
LA TUNA	5 - 54	34200	67334	12632	.35762
LIMEKLIN	3.09	34280	36592	90.91	.288530
LINGULH	+5	34210	28400	508.384	1.05694
LITTLE WALTON	3.31	34288	337330	132004	2.97787
MANNUCK	.25	34280	11030	44836	1.28355
NAY #1	۰7	34230	45663	65428.	1 9 9 3 6 4
St. YAM	• 99	34269	4188	45555	1 • 3 2 3 9 1
		34280	3100	5400	.145858
MUGLURE	*62				
MARSAN	• 6	34258	13000	21666' • 6649'	•63283 •1•3207
RICAULS	*94	34260	6133	-73.	•107294
PACKERS	1 + 8 4	34233	45400	26344	•76/326
ROWLEY	• 58	34200	11366	19482	•56532
KORIO	1.26	34253	>5983	43050	1.27334
RUSY	*28	34239	5364	29642	«3647UZ
SANTA ANITA	1.7	34218	131763	77538.	2.26336
SA aP 1 f	2+54	34200	233344	82323	2 - 4 4149
SCHOLL	.66	34284	3538	5303	• 154697
S.CHJULHOJSE	• 2.8	34284	1690	5714	106686
SHIELDS	127	34238	3396	12222	··35653+
SIERRA MAURE	2+39	34268	97000	40836	1.19125
SIEKRA MADRE V	1 1.46	3428W =	1859 44	12534	2.11593
SHOVER	e 2 3	34288	11230	485951	1.42051
SPIRKS	* 4 4	34288	16460	37272	1.98723
ST 0064	1.65	34280	1399	1698	*831797
STURTEVANT	• 43	34 28 6	3 43 63	1 ชมยุติเ 🤈	.291715
SWISET LUNER	.65	34289	11>88	17092	• 5 1 51 3 5
SUMSET UPPER	a 4 4	54238	10100	22934	• 559035
TURISHL	. 49	34200	15/43	10000	*483445
VER 0 060	10.43	54200	54542	6641	·176225
UN Pay	•1	34208	3003	3661431	1.00013
MEST KANINE	+25	34231	15000	6 6 3 0 13	1 - 333 64
AIL BUR	8,63	34289	3/301	4322	.120:179
41100000	*65	34208	16898	24615	•718057
W11308	2 • 5 8	3425v	55546	21511	•627549
NINERY 20. HAD	• 18	3 4 28 B	9433	\$2.222	1.52348
ZA CHAU	•35	34280	1,360	29428.	•85846
Cart White Colde	73 (4.3		3 15 14 11 11		
COLUMN SUMS	72.610		2.48916+6	2.0280164	
COLUMN MEANS	1 • ∄8 5 7 5		37156.7	43701 - 7	1.27484

85.4146

LOS ANGFLES WATERSHOD SYSTEM (LAWS) OFFRIS PROPUCTION OF 51 DEBRIS ABSINS FOR 1M6/~68 OFFRIS PROPULLED BY THE LONG COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
C ANY ON HAME	AREA (SQ MI)	1407-68 LAWS	(CA AD) Alera	(CU YD/S9 MI)	140 FX (COL 5/COL 3)
ALTAVEHA	• 2	3676	в	ø	Ø
ANU BUA	¢19	3676	8	Ø	Ø
RYIFFA	• 0	3 8 7 0	Ø	3	ø
OI & WALTON	2.64	3976	10000	3816	1.24857
Ø R∱ DBJKY	• 5 5	33/6	14:19	2 8 5 8	•669351
BRAND	1.63	3670	2499	1941.	e651 ±1→
CARTER	•12	3076	Ø	មាំ	Ø
CHILDS	« 3 1	3876	ð	ð	6
COOKS	· 58	3470	1480	2413	e78446
JEER	• 59	5076	40 19	6779	2.20384
DUNSMUIR	.84	3 376	646	/14	• 23212
EAGLE ELMWOOM	•61	3976	1 48 4. 330	2295 967	.74 6 39 9
EMERALO EAST	• 31 • 16	3076 3276	300	Ø ₁	•314369 0
ENGLOWILD	.4	3476	Ø	Ø.	ø
FAIROAKS	•21	3970	3598	16560	5.41885
FERN	•3	3976	5490	18963	5 .85175
60010	• 47	3016	5643	1191+	3.87321
MAINES	1.53	3076	77 WH	>∂ 5 2	1.63519
MILS	1.16	3010	>500	5188	1.68061
MARROW	.45	3076	ю	ø ±	ð
BAY	• 2	3376	2300	14593	5.73862
HILLEREST	• 35	30/6	Ø	ø,	Ø
KINNE LOA	4 2	3076	3490	17000	5.52666
KINHELOA HEST	+16	31170	4288	20256	8 • 53 3 8 1
LANNAN	• 25	3470	ð	3	8
LAS FLURES	445	5076	3/30	6222	2.67245
LA TURA	5 • 3 4	3076	8) 4.65.31-	ід. 42 о́ д	9 7 6 6 4
LIMEKLIN	5.6Y	3076 3476	155ชห 17ลฮ	349 <i>8</i> .	1.36541 1.19535
LITTLE DALTON	3 · 31.	3876	5500	1001	• 539987
MADUULX	• 25	3876	230	866	.25 BA75
MAY 41	•7	3875	11636	10357	> - 68311
PAY 42	• 69 %	30/6	1880	20,000	6.58175
MCGLURE	.52	33 76	B.	B	Ö
HUNSAN	• 6	3076	ø	ro es	Ø
MICHULS	. 94	3676	3590	3.51⊌,	1 - 14 1 39
PICKERS	1.84	5076	5132	271.	+iØ3 K 1J1
KOMFEA	• 50	3470	300	517	168875
RUGIU	1.20	3876	ನ	⊎,	8
RU3 Y	• 28	3076	360	1871	· 348179
SANTA AVITA	1.7	3676	65 Hz	3823	1 • 2 4 2 8 5
TIPEAS	2.34	3976	9340	3274	1 . 6 6 4 3 7
SCHULL SCHUOLHOUSE	• 6 6 • 2 8	3376 3376	1733 2	2575	.837120 ∅
541F105	466	3976	1286	8, 44,44	1 • 4 4 4 7 3
SIERRA MADRE	2.39	3376	2283	728	·29 y o y
SICKRA MADKE V		3076	36436	24731	8.10581
SHUVER	• 23	3470 .	Ø	ø.	8
SPIAKS	# 44 4	3676	403	9 49	.295514
STOUGH	1.05	3876	ĸ	9	Ø
SUNSET LOWER	• 65	3076	В	₩.	₽,
SHAPEL OFFER	a 4 4	\$1176	1703	3803	1 • 2 5 5 3 5
10843011	•99	3076	9733,	9197	5.18498
A EK n 920	9.47	3376	13800	1384	.444935
A4 KD	• 1	3076	В	ð	8
WEST KAVIHE	.25	3075	4513	17234	5.5 9 163
WIL BUR	8.63	3.17.6	25333	2931	•952861
AILC MODO	.05	5076	2148	3234	1.35337
#IF204	2.38	38/6	1/00	658	•213914
ZACHAU	435	3810	s)	e5.	ð
COLUMN SUMS	71 - 336		219616	272931	82.7454
COLUMN MEANS	1.17.016		3690	4475.11	1.45484
30,00 14,118			,.,	77.2.13	********

LOS ANGELES MATERSHED SYSTEM (LANS) DEBRIS PRODUCTION OF OU DEBRIS BASINS FOR 1700+6/ DATA PROVIDENTY HE LOAD COUNTY FLOOD CONTROL DISTRICT

CANYON NAME	(2) AREA	(3) 1906-67 LAWS	(4) Y1 = (U	(5) RATE	(6) INDEX
CONTON WARE	(SQ MI)	(CA Ap\20 WI)	(CU YD)	(CU ADIZO WI)	(Col 5/col 3)
ALTAUENA	• 2	8146	ย	Ø	6
AUBURN	•19	8146	2890	14736	1.88899
BYLLEA	ó	8146	633	1637	.12270
BIG PALTON	2.62	8146	942 13	35954	4. 41 37
8 KADOULY	.68	8140	4700.	6711	.848392
BRAND	1.23	8146	10100	1,1582	1.24984
CARICK	412	8146	1344	10353	1 • 32 9 8 6
CHILUS	•31	8145	2869	9032	1.18877
60045	• 5 3	8146	e	Ñ	Ø
DEER	• 59	6146	3844	14913	1.83096
MIUKSKUB	.84	8146	29.03	2389	. 292168
€ AGLE	• 51	8146	9760	15981.	1.952
ELHWOOD	•31	8146	3289	16322	1.20713
EMERALU EAST	•16	0140	364	1875	.258174
ENGLENILA	• 4	8140	1189.	2750	.337589
FAIRUAKS	•21	8140	1508	7142	.875749
FERM	•3	5146	48 44	16888	1.96415
CONTR	41	8140	0	6	6
HAINES	1.53	8145	શ	ø	В
HALLS	1.06	8146	6983	4589	.799842
HARROW	•43	8146	480	93#	.114166
r A Y	•2	81 46	3 30	15-30	•184139
HILLCREST	•35	81.40	988	25:71	•315615
KIN NELOA	•2	81 46	4493	22,198	2.70371
KINNELON HEST	•10	6146	3981	24375	2.99227
LARNAN	• 25	8140	2503	10000.	1,22705
LAS FEORES	. 45	8146	1530	2888	•35453
LA TUNA	5.34	8140	5663	1048	.128652
LIMEKLIN	3.69	8146	25000	6937	851584
LINCOLN	•5	8140	0	81	e o si i so i
LIFTIC DALTON	3 • 31	8140	71296	21450	2.63319
MA DOJCK	•25	6145	1840	4873.	• 491839
MAY #1	• 7	8146	644013	9 2 8 0 9,	11.2934
MAY # 2	•94	8146	6251	68383.	8 • 45657
HECTOSE	•63	8146	2449	4677	. 57 41 47
HORGAN	• 0	81 40	2 8 8	33.3	. 849879
MICHOLS	.94	8145	3500.	3723	.45/134
PICKENS	1.64	8146	6633.	3675.	4453597
ROWLEY	•53	6146	4293	7241.	6868793
RUBIU	1.26	8145	12198	9613	1.17886
KURY	•28	81 46	684	21.42	+262451
SANTA ANITA	1.7	8146	71588	42453	5 . 16343
SAMPIT	2.84	8146	16238	5784	.700221
SCHOLL	.60	81.46	1033	15:15	.185981
\$6400 (4003E	• 23	8145	1199	3928	.4822
SHILLUS	.27	6146	5000	22222	2.72797
SIERRA MADRE	2.39	8140.	61	0,	Ø
SIERRA MADRE V	1.46	8146	13240	9641	1.1 6787
SNOVER	ذ23	8146	1243	5217	+648437
SP LAKS	. 44	6146	4134	9318	1.14387
STOUGH CTS	1.65	6146	2830	1212	• 143785
SUFFET LOUER	.65	8146	1200	1846	• 220014
SUNSET UPPER	. 44	8146	1133	2542	. 336899
TURRBULL	.94	8146	1488	1414	• 173532
VE RUUGO	4.97	8146	26640	2688	•329978
MARU	•1	6146	1,85	2880	.245519
HE ST RAVINE	+25	6146	5594	85113	1.08029
AIT 208	0.63	8146	55439	4217	.51/67/
WILSON	2.58	8146	16408	6350	.804070
ZACHAU	.35	8146	300	857	.103235
LOLUMN SUAS	78.73.1		576200	537930	72.1741

LOS ANGELES MATERSHED SYSTEM (LAMS) DEBRIS PRODUCTION OF 60 DEBRIS HASINS FOR 1765-66 DATA PROVIDED BY THE LOAD LOUNTY FLOOD CONTROL DISTRICT

(1) CANYON HAME	(2) AREA	(3) 1965-86 [Aus	(4) Y1ELO	(S) . Rate	[NDFX (9)
exited white	(SQ HI)	(CI) AN \20 W(1)	(cu Ya)	(CU YD/SQ MI)	
ALTADENA	• 5	16114	ø	\mathbf{o}_{i}	a
AUBURN	. 19	1 + 114	5223	27473	2.71 633
BAILEY	• 6	10114	0	Ø	W
BIG DALION	2.62	10114	23075	9112	
DRAUL URY	e61	18114	23723	54886	3.44928
BRAND	.1.83	10114	20123	19555	1.93158
CARTER	.12	1 2 1 1 4	ð	8	ß
CHELDS	•31	18114	5364	17367	1.71713
COOKS	•53	10 114	6412	11.655	1.07344
DEER	• 5 9	18114	19803	337301	3.53202
PUNSMUIR EAGLE	.84	13114	8 15769	Ø.	N 5 5 5 5 4
ETHYOOD	• 61	18114 18114	5331	25653 18389	2•5 5586 1• 8597 <i>ย</i>
EMEKALD EAST	• 3 1 • 1 0	10114	8	10327 8	1.0224.0
ENG LEWILD	.4	18114	1218	3,142	• 381868
FAIRUAKS	•21	18114	59.54	28257	2.79385
FERN	• 3	18114	18665	35553	3.51523
COULD	.47	1 11 14	18813	38325	3 + 78 + 3
HAINES	1.53	19114	1101	158	•074946
MALLS	1.06	13114	5536	5222	• 516314
HARROW	.43	10114	Ø	a .	Ø
HAY	• 2	18114	2236	11538	1.89057
HILLCREST	+35	1 11 1 4	2239	* * 631:1:	.623937
KINNELÜA	۰2	13114	6945	34725	3,43336
KINNELUA WEST	.10	10114	Ø	Ø	8
LANNAN	.25	11114	Ø	Ø	8
LAS FLURES	. 45	12114	17347	384501	3 . 8 4 2 6 5
LA TUNA	5.34	15114	26885	5619	• 496243
LIMEKLIN	3.69	10114	42316	1146 7	1.13378
FINCOLA	¢ 5	13114	6153	12396	1.21673
LITTLE DALTON	3.31	13114	47730	14435	1.42723
AJOCC KH	• 25	10114	3514	14356	1.38475
MAY #1	• 7	18114	7446	10037	1.051/1
MC CLUKE	• 49 • 62	1 d 1 1 4 1 b 1 1 4	842 3311	935 5 53 4 8	•924956 • 527 981
MORGAN	•6	181.14	8	3	9 • 2 % (A > 1
RICHOLS	.94	10114	9894	9674	e 956 476
PICKENS	1.84	18114	44564	24219	2.3946
ROWLEY	•58	16114	3461	6691	•601553
RUBIO	1.26	18114	22234	17046	1.74471
RUBY	.28	10114	Ø	. છે.	Ø
SANTA ANITA	1.7	10114	32576	19162	103945
SAWPIT	2 . 84	16114	35775	12597	1.2455
SCHULL	*66	1.6114	1 8 1 5	≅ 1 537	.151968
SCHOOLHUUSE	.23	10114	5118	132/8	1.80728
SHIELUS	e 2.7	18114	9320	34518	3.41287
STERRA MADRE	2.39	12114	1736	726	.071724
SIERKA MADRE V	1.46	13114	51336	35161	3.47647
SNOVER	. 23	10114	1444	6275	.627724
SPINKS	• 44	16114	1936	44 8 %.	•435241
STOUGH	1.65	10/114	534A	\$654	.499713
SUNSET LOWER	*65	1 (114		22625	2.62.5995
SURSET UPPER TURBBILL	.90	10114	8863	2 143	1.99106
AEBDARA	•99 18•35	10114 18114	780 36103	773 3686	• 873446 • 455943
WARD	41	10114	681	1 14 =	• 355942 • 673324
WEST RAVINE	•1 •25	1.0114	76-17	39425	3 a 11 d d d
MITBOX	5.63	10114	57424	0654	• 6579
WILSON	2.58	10114	29020	11.243.	1-11212
ZA CHAU	• 35	14114	ย	b d	8
		- • • •	_	~	-
COLUMN SUAS	71.113		719252	730351.	77+1555

(

(

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 60 DEBRIS BASINS FOR 1964-65 DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

	(1)	(2)	(3)	(4)	(5)	(6)
	CANYON NAME	AREA	1464-65 LAUS	YIELD	RATE	I NO E Y
((SQ H1)	(CO AB\26 WI)	(CU YD)	(CH A0/85 MI)	(col 5/col 3)
	ALTAUENA	«S1	5369	Ð	Ø,	Ð
l	AUBURN	+19	5369	Ø	ð	Ø
	BALLEY	•6	530¥	3.	0	Ø
	BIG DALTON	6.62	53 67	Ø	อ	8
(BRAUBJKY	060	5369	A	Ø	Ø
	BRAND	1.05	5369	46368 .	45049	8.38313
	GARTER	a12	5369	Ø	Ø	ð
(CHILDS	•31	5 3 6 9	8231	26551	4.94524
	COKS	•5ĕ	5369	B	Ø	es .
	DEEK	« 5 9	5 3 6 9	22524	38176	7.11045
	DUNSMUIR	•34	5 3 6 9	8	6	Ø
	EAGLE	•61	5369	2876	3433	•633824
	ELMHOUD .	• 31	5 36 9	5823	18783	3.49342
	EMERALU EAST	»16	5 3 0 9	6.	Ø	в
	ENGLEHILD	4.4	5367	Ď	Ø	Ø
	FAIROAKS	•21	53 69	0	að,	Ø
	FERN	4.3	5354	1313	4370	.815349
	GOULD	. 47	5309	5234	11242	2.44387
	HAINES	1.33	5369	Ø	€ .	Ú
	nal 12	1.66	\$309	0	ð	ů,
	HAKROU	• 43	5 3 6 9	Ø	81	0
	HAY	•2	5 3 6 9	0	0.	0
	HILLCREST	.35	5369	11659	3 3 3 1 1 1	6.20432
	KINTELOA	• 2	5364	Ø	Ø,	ø
	LANNAH	* 25	53 6 9	ð	i# ₁	ð
	LAS FLORES	443	\$ 569	6	69	0
	LA FUHA	5.34	5369	A	8	0
	FIMEKLIM	3.69	5369	4804	1188.	.28637
	LINLULA	• 5	5369	3	ω.	Ø
	LITTLE DALTON	3.31	5369	Ø.	Ø	б
	MADDUCK	• 25	5369	0	b a - 3	6
	MAY #1	• 7	5369	135	192	.035701
	MAY #2	• #9	536 9	0	ย์ 47761:	B 60631
	MCCLUKE	•62	5369	29612	• •	3.89578
	MORGAN C	• 6	5369	₽ 9 8 6	ศ 963	Ø 4703.43
	NICHOLS PARADISE	•94 •58	5369 5369	900	903 8.	• 179363
	PICKERS	1.64	5369	ಟ	Ø.	0 3
	RUWLEY	458	5 3 6 9	a	Ø	ខ
	RUMIO	1,26	5 3 9 9	3	υ ψ	es S
	RUBY	.28	5309	3	الله	ย์
	SANTA ANITA	1.7	5369	28645	16353	3 4 3 3 3 9
	SAMPIT	2.84	5369	78575	27702	5.15962
	SCHOLL	.66	5369	a	9	3
	SCHOULHOUSE	• 28	5369	в	ป	ð
	SHIELDS	• 27	5369	2399	8835	1.65437
	SIERRA HADRE	2.39	5369	8	ย	d
	SIERRA MADRE V	1.46	5 3 6 9	ø	b	0
	SHOVER	•23	5309	છ .	ø.	8
	SPINKS	• 4 4	5 3 6 9	ŭ	δ_1	ی
	STOUGH	1.65	>369	44163	20768	4 • 98 5 66
	SUNSET LOWER	. 65	5359	38244	58836	10.9535
	SUNSET UPPER	. 44	\$369	27037	61447	11.4443
	TURHBULL	.99	5369	0	Ø	ø
	VERDUGO	10.05	5369	13781	1371	+255355
	WA RU	•1	536¥	t)	i)	0
	WEST RAVINE	• 25	530 9	Ø	6,	ð
	WILMUR	3.63	5369	7452	863	100730
	AILSUN	2.58	5369	2738	2424	+41423
	ZACHAU	. 55	53 69	i)	D ₁	4
	CULUMN SUMS	71.541		384151	435821	81.1736
	COLUMB REANS	1 • 1 9 2 3 3		6482.52	7263.08	1.35289

1
1
1
1
1
1
1
ļ
1
1
1
ı
,

LOS AYGELES UNTERSHED SYSTEM (LAGS) DEBRIS PRODUCTION OF 55 DEBRIS MASING FOR 1903-04 DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

,	(1)	(2)	(3)	(4)	(5)	(6)
,	CANYUN NAME	AKEA	1705-04 LAWS	ATELD	RATE	INDEX
((SQ 41)	(CU YU/S) MI)	(ri) An)	(CU AD\26 WI)	(cor 2/cor 2)
	ALTAUENA	+51	1419	8	ð	ø
(AUBURN	•19	1419	0	Ø	8
(BALLEY	• 6	1419	7268	12113	8 • 53629
	RIG DALIDA	2 4 6 2	1419	0	4	8
(BKADBJKY	• 68	1417	ø	ы	N .
`	BHAND	1.35	1419	9932	96+2	6 479493
	CARTER	•12	1419	695	5791.	4.48144
(COUKS	+58	1417	ð	J,	Ø
•	DEER	•59	1419	7243	12276	8 - 65116
	Dun satific	+54	1419	8	ď	Ø
(EAGLE	-61	1419	ø	ю́	ø
	ENGLEWILD	# 4	1419	t)	Ø	d
	FAIRUAKS	•21	1419	2970	14171	9.48661
	FERN	.3	1419	년	ď.	ð
	GOOSEJEKRY	• 26	1419	Ø	в	W
	GOULU	.41	1417	ø.	3	ย
	MAINES	1.53	1419	2)	ði	Ø
	HALLS	1.46	1419	Ø	ы	Ø
	WCHRAH	• 43	1417	6	t ³	ช
	HAY .	* 2	1419	Ø	เชื่	Ø
	HILLEHEST	• 3 5	1419	8636	24594	17.3319
	LA INAK	•25	1419	A	Ø	Ø
	LAS PLORES	• 45	1419	2450	5406	3.85201
	LA TULA	5.34	1419	b)	ป	6
	LINCOLA	+5	1419	id.	Ø	v)
	ROTING PARTON	3.31	1 419	ð.	. 0	0
	PHO 9 SCK	• 25	1419	8	e e	r ed
	MAY #1	• ? • ઇ 9	1417	ð	ð	ย
	MCCERKE MV A 35	• 62	1417 1419	ಸ ಕ	ย ช	2
	MECEURE	•94	1417	6	v ⊌	່ ທັ ຢ
	PAKA UISE	•62	1417	g	8	s)
	PICKERS	1.54	1419	783	425	•299507
	MUNIEY	88	1419	15 J	Ø.	0
	RUBIO	1.20	1 4 1 7	и	8,	8
	KUSY	.25	1419	8	υ,	Ď
	SANTA ANTTA	1.7	1419	2419	1422	1.03211
	SAUPIT	2.04	1419	6747	2440	1.72375
	SCHOLL	. 40	1+19	25	ø.	B
	3 E y Unit Ju Out a	423	1419	5	0	Ø
	S41 = LUS	.27	1417	Ø	Ø	e ·
	SIERKA MADRE	2 • 3 9	1419	745	318	.218454
	SIC (KA HAUKE V	1 - 46	1419	4 4 5 3	3859	2 - 1494
t	SKOVER	· 2 3	1 4 1 9	Ю	ы	Ø
	SPARK	. 34	1419	65	Ð	Ø
	2514 KS	. 44	1419	ย์	ð	Ø
(\$ [ЭՄԵ H	1.05	1419	Ø	ಶ	6
	SUNSET UPPER	s 44	1419	5 2 5 5 4	5293	3.73009
,	TURISULL	644	1417	kĺ	₩,	ы
	A E K D B 30	10.35	1+13	ð	e)	Ø
	WARU	• 1	1417	8	b)	Ø
_	MEST RAVINE	+25	1419	3	13,	rð
(พาเยบล	0.63	1 419	5755	666	. 469345
	WILSON	2+58	1 4 19	32124	12452	8 • 77 519
(ZACHAJ	. 50	1417	ď	vi	Ŋ
$\overline{}$	1.01.020 00.24	06.758		44734	113147	77 4040
	COLUMN SHRIS	1.21332		1722.55	2832.13	77.6818 1.41074
(AGEOTE MENUS	1451306		1156433	E 02 C = 13	187177

LOS ANGELES WATERSHED SYSTÉM (LAUS) DEBRIS PRODUCTION OF 54 DEBRIS BASINS FOR 1962-63 DEBRIS PRODUCTION OF 54 DEBRIS BASINS FOR 1962-63

(1) CANYON MAME	(2) 486A	(3) 1902-63 LAWS	(4) Y 1 E L O	(3) RATE	(6)
adding Mude	(35 41)	(C3 A7\20 WT)	(Ci) An)	(CU YD/SQ MI)	(COL 5/COL 3
		(10) 1000	(4)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ALTADEHA	•51	2879	94	18∻	· 865911
AUBURN	•19	2879	2315	14315	> •1458 8
BALLEY	• 6	2879	1486	2466	.856547
BIG DALTON	2062	287 y	18125	3864	1 - 34213
BRADOURY	008	287.9	હ	Ø,	8
RMAM	1 • 33	2479	ě.	6,	0
LARIER	•12	2879	1594	13285	4.61376
COOKS	«5d	2879	8	3 1	0
PEER	• 39	237 4	1584	2549	.885377
DUNSHUIR	• 3 4	2879	3903	4052 1965	1.61584
EAGLE	•61	2879	1425	3562	o 681 R 34
ENGLEWILD	• 4	23 79			1.23724
FAIRDAKS FERN	• 21	2579	4368	1/3.33	6+71518
	• 3	2879	6732	22448	7.79437
60010 60010	*20 *41	2374 2379	a 3975	8 3457	2 a y 3748
HAIWES	1.55	2879	0.		2473148 A
HALLS	1.00	28/4	6167	9 5836	2.02789
HARRON	•43	267 7	0	ย์	H
HAY	• 2	28/9	1524	7628.	2.64675
LANNAN	• 2.5	2879	3037	12146	4.21952
LAS FLORES	. 45	2879	24737	54771	19 - 8938
LA TUNA	5.34	2879	8	9	8
LINCOLN	.5	2579	797	1594	•553664
LITTLE DALTON	3 - 31	2679	12494	3925	1 0 3 6 3 3 2
MANNUEK	425	2379	8	ø,	Ø
MAY √1	17	2879	6	e	ë
MAY # 2	•87	2879	ď	ð.	ĕ
MCCLURE	•62	2879	354	570	•197985
alchut s	• 94	2879	1363	1450	.503047
PARAULSE	*02	2877	1646	16871	• 585967
PICKERS	1.54	2879	6335	3441	1.19521
ROWLEY	.53	2879	65	õ	eŏ .
RUBIO	1.26	28 79	5 9 1 3	3978	1.38173
Ru d Y	• 28	2879	355	1267	.44 008 5
SANTA ANITA	1.7	2879	31452	16581	6.42519
SARPIT	2.84	2879	5124	1894	.626506
SCHOLL	000	2879	683	1034	.359152
SCHOOLHOUSE	• 28	2879	21027	77239	26.8254
SHIELDS	+27	2879	Ø	Ø	Ø
SIERRA MAURE	2 + 34	2879	140	58	.220146
SIERRA MADRE V	1.46	23/9	12415	8503.	2.95346
SNOVER	•23	2879	Ø	<i>i</i> 5,	8
5PARR	. 84	6782	912	1865	• 376867
SPINKS	444	2879	1034	4168	1 . 44773
\$ Tuilon	1.65	2879	Ø	₺	Ú
SUNSET UPPER	444	28 79	6	eD	lð .
LUKHBJEL	499	2879	431	4351	• 151694
VE PD U U O	12.05	2379	3772	37 3	138254
WARD	•1	2879	497	4973	1.72629
WEST RAVINE	+25	2879	131	. 224	*182168
WILBUR	8 • 6 3	2879	3900	451	e156652
WILSON	2.458	2679	557@	2158	• 749266
ZACHAU	• 35	2879	87	248	
0.55.1111.1			4.145.35	W 4 18	44 . 44 .
COLUMN MEANS	60.418 1.22482		191225 3541.2	317003 5881+53	11 0 • 319 2• 04274

LOS ANGELES MATERSHED SYSTÉM (LAWS) DEBRIS PRODUCTION OF 54 DEBRIS BASINS FOR 1961-62 DATA PROVIDED BY THE LOAD COUNTY FLOOD CONTROL DISTRICT.

	(1)	(2)	(3)	(4)	(5)	(6)
,	CANYUN NAME	AREA	1461-02 LAHS	OJELY	RATE	INDEX
((\$2 MI)	(CA A9/26 WI)	(60 40)	(CO AD\24 MI)	(EOL >/COL 3)
	ALTADENA	. 51	13951	u	ø,	e
(AUBURA	•19	13951	26113	185857:	7.58777
	UAILEY	. 4	13951	18102	16836	1.28648
	BIG DALION	2.62	13951	130574	49701	3.56644
(BRAUBURY	.94	13951	12322	133551	1.35152
	BRAND	1.03	13951	2475	2403	•172240
	CARTER	•12	13751	11155	93341.	6-66913
(COOKS	. 58	13951	987	1761.	.121927
	DEER	• 57	13951	1038	1.745	•125∉81
	UUNSAUIR	. 54	13451	2329	5367	.241345
1	EAGLE	.61.	13951	1762	2888	29/41
	FAIROAKS "	.21	13951	530	2523	.130547
	FERN	4.5	13951	394	1338	0040334
	FLOHAL UPPER	• 6 2	15951	637	13450	4799728
	UUUSEBERKY	e 26	13751	1682	0409	. 403574
	60710	•47	13951	12983	21 625	1.40
	HAINES	1.53	13751	1755	1.147	• 862210
	HALLS	1.06	13951	14914	1420.4	1.04540
	HARROW	• 45	13951	865	26.11	• 144147
	MA Y	•2	13951	5636	23943.	2.00789
	LANNAN	• 25	13951	2139	* * 67.56	•627625
	LAS FLORES	. 45	13751	525	1166	• NS 3573
	LA FUNA	5.34	13751	20884	5334	•363834
	LINCOLN	•5	1 3951	1246	5 n h 5	a144953
	LITTLE DALTON	5.31	13751	185686	5007R	4.01935
	MADOOCK	•25	13751	3070	12334	• 887678
	MAY #1	• 7	13951	2159	3471	•220128
	MAY #2	.u9	13751	51	505	·8 4 N 5 7 1
	MUULURE	•62	13 751	2343	32 Ý 5	• 236154
	NICHULS	•94	13951	5417	57.62	•413817
	PARADISE	•02	13721	3642	>874	. 42 1 15 4 5
	PIEKCHS	1.84	13951	10355	50271	• 46334
	ROWLET	453	13721	1142	1903.	•141965
	RUBIO	1.26	139-51	577	457	• 232753
	KUNY UPPER	• < 1	15951	1465	6976	• 50 8 4 5 6
	RUBY	.28	13951	1626	5887	415243
	SALTA ANTTA	1.7	13 9 21	132381	11647	2.5656Y
	SA WP IT	2.04	13901	63307	25746	1.71644
	SCHULL	460	13751	9	\$3740	8
	SHIELDS	•27	13931	1 - 3 o a	3925	.261342
,	STERRA MADRE	2.34	13951	11593	4812	•344922
,	SIERRA MAURE V	1.40	13951	115012	51241	5.82331
	SHUVER	.25	13951	688 688	2936	.211684
(SPARK	• & 4 • & 4	13951	22.45	2025	
,	SPICKS	- 44	13951	2035	5788	• 18315y
	Stadin	1.65	13951	1452		•429217
(• = • ·		849	<u>.</u> ₩6₩356
(SUNSET UPPER	- 44	13951	2049	9) / 7	2 142 70
	TORMOULL	499	13451	2918	2747	•211239
(VE 8.3.16.0	10.85	137.51	33261	30 A7.	• 272384
1 .	WARD LUWER	•>7	13951	3	2	W
	HARD DE CLUB	41	1.3951	987	9070	•653133
(WEST RAVINE	• 25	13751	447	1973	a 1424y9
(d1L BUK	3.63	1 39 51	33383	3579	.2>5541
	ZA'CHAU	• 35	13951	139	397	•928457
(LOLUMN SUMS	03.449		892762	744362	53.3511
•	COLUMN MEANS	1.185		16532.6	15783.4	•937984
_		•				

LOS ANGELES WATERSHED SYSTEM (LAUS) DEBRIS PRODUCTION OF 55 DEBRIS BASINS FOR 1960-61. DATA PROVIDED BY THE L-A. COUNTY FLOOD CONTROL DISTRICT

(1)	(5)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1963-61 LAWS	ATERD	RATE	IMOEX
	(SO MI)	(CO Anizd MI)	(CU YU)	(CU YD/SO HI)	(COL 5/COL 3
ALTADENA	•51	1.7.21	Ø	Ø1	Ø
AUSURN	•17	1721	41151.	21321	12 . 3887
BALLEY	4.6	1721	2104	3646	2-09529
BIG DALTON	2.62	1721	47558 .	18148.	10.545
BIG PALTUR L	· 3 4	1721	788	2244	1.33295
FRADBURY	e 6 8	172 1	v	Ø	\mathbf{y}
BRAND	1.03	1721	1 43	103	• 858186
CARTER	+14	1.721	a	6.	Ø
COOKS	«58	1721	Ø	Ø;	ø
DEER	059	1721	Ø	⊌,	ម
DUNSHULR.	•84 .	1721	2168	2588.	1.49913
EAGLE	• 61	1721	35 5	581.	•337574
FAIROAKS	•21	1 / 21	25	149	. 359146
FERN	* 3	1721	729	2434	1.41197
FLORAL UPPER	* 86	1.7 21	63	11.33	•658338
GOOSEBERRY	•26	1721	ð	€.	0
COULD	. 47	1721	3416	7268.	4 • 22313
HAINES	1.53	1,721	U	Ю́†	В
HALLS	1 = 90	1721	4139	3904	2.26845
MARRIN	- 45	1/21	Ð	9 .	6
HAY	4.2	1.7.21	0 8 3 6	38108	17.5363
LANHAN	. 25	1721	0	Ø	₽.
LAS FLORES	+45	1721	167	371	. 215572
LA TUNA	5 = 34	1721	в	Ø1	ð
LINCOLN	a 5	1721	IJ	r)	0
LISTLE DALTUN	5.31	1721	10597	5709	3.31726
MAUDOCK	• 25	1721	Ø	ଖ	v
MAY & 1	. 7	1721	B	Ø.	Ø
MAY #2	• 69	1721	P	M.	ß
MCCLURE	. 62	1721	Ø	ម	Ú
HICHOIS	s 9 4	1721	Ø	Ø	Ø
BYKWDIZE	•62	1721	Ø	Ø	ค
PICKENS	1.84	1721	8188	4445	2 • 58 28
ROULEY	• 5 5	1/21	335	574	0333527
Rusiu	1.26	1721	Ø	ø	8
RUSY UPPER	+21	1721	0	Ø	Ø
RIJS Y	e 2 S	1721	56	92	· 853457
SANTA ANITA	1 - 7	1721	Ø	e	0
SAUPIT	2.84	1721	2696	• 947	• \$58261
SCHOFF	*60	1721	ð	ย้	0
SHIELDS	.27	1721	B	Ø	Ð
SIERRA MAURE	2.39	1721	0	8	Ø
SIERRA MADRE V	1 = 46	1721	rd .	3	ы
SHOVER	• 23	1721	1181	5134	2.98315
SPAKK	•84	1721	8	Ø	Ø
SPINKS	• 44	1721	Ø	B.	Ø
o Fough	1.65	1721	Ø	Ø.	0
SUNSET UPPER	. 44	1721	1366	3184	1.8036
TURHOULL	• 9 9	1/21	254	252	•146426
VERDUGO	16.85	1721 *	В	61	8
WARD LOWER	+57	1721	0	01	0
WARD	-1	1721	185	18.50.	1.87496
WEST KAVINE	+25	1721	844	3376	1.96165
HITEUR	8.03	1/21	5#68	587	•341031
ZACHAU	• 35	1721	ь	ย่	ย
				4	
45 6 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
COLUMN MEANS	64.358 1.10964		116771 2814.02	120105 2183.78	69.7679 1.20887

LOS ANGELES WATERSHED SYSTEM (LAUS) DERRIS PRODUCTION OF 54 DEBRIS BASINS FOR 1959**OD DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1) CANYON NAME	(2) Area	(3) 1959-60 laws	ATEFD (4)	(5) Rate	(6)
	(SQ MI)	(CU YU/SQ M1)	(CA An)	(IM 65/ch MD)	(COL 5/COL 3)
ALTAUENA	.51	1355	474	927	. 685679
AUBURR	•19	1325	0	Ø	Ø
BAILEY	•6	1355	O	ð	8
SIG DALTON L	.34	1355	774	2276	167971
BRADHUKY	.66	1355	3569	5248	5.87306
BRAND	1.05	1355	Ø	Ø,	gl.
CARTER	*12	1355	Ø	_B	Ð
COUKS	• 5 ö	1355	ห์	Ø	В
DEER .	.59	13.55	б	Ø,	B
DUNSMULK	• 8 4	1355	i)	0	ß
EAGLE	•61	1355	9	Ø	0
FAIROAKS	•21	1355	2670	9857	7.27454
FERN	•3	1355	6	ð.	ñ
FLORAL UPPER	• 86	1355	0	b b	e e
GOOS EBERKY	• 20	1355	B	Ð	ø
200fn	• 47	1355	2825	63,18	
HAINES		1355	лого Я .		4 • 4 3 5 4 2
	1.53			ð	is
HALLS	1.55	1355	ð	ð,	ម
HARROU.	•43	1355	6	Ø	0
YAY	• 2	1355	1578	78.58	5.79336
LARNAN	•25	1355	B	6	Ø
LAS FLORES	• 45	1355	Ø	ы	B.
LA TUNA	5.34	1855	6.	υ,	Ø
FINCOFU	• 5	1355	Ø	0,	Ø
LITTLE DALTON	3.31	1355	15707	4745	3.50135
MARROCK	• 25	13 5 5	1150	44001	. 3.24723
MAY # 1	• 7	1355	zi	Ð	Ø
MAY # 2	• 89	135 5	Ø	Ø	Ø
WECFORE	*65	1355	ð	Ø	. 0
NICHULS	•94	1355	490	521	·384502
PARADISE	•62	13 5 5	369	584	• 428344
PICKERS	1 • 84	1355	1057	574	•423616
ROWLEY	45 8	1353	И	0	Ø
RUBIU	1.26	1355	9	g _i	Ø
RUBY UPPEK	• 21	1355	Ø	ě	в
RUSY	• 28	1355	в	Eβ	Ø
SANTA ANITA	1.7	1355	15949	8847	6.52915
SAUPLE	2.84	1:355	16983	5951.	4.39188
SCHOLL	•66	13 55	65	Ø	0
SHILLDS	· 27	1355	Ø	€:	6
SIERRA MADRE	2 • 39	1355	6	e5	6
SIERKA HADRE V	1.46	1355	Ø	ρ	Ø
SMOVER	•23	1355	ð	6	Ø
SPARK	.34	1355	65	ಚಿ	Ø
SPINKS	044	1355	13519	30725	22.6753
STOUGH	1.65	1355	Ø	S	ð
SUNSET UPPER	* 4 *	1355 -	6	6	Ø
TURNSULL	.99	1355	8	e5	В
VERDUGU	10.05	1355	18	Ð,	Ø
WARD LUYER	•57	1355	3	ø	9
WARD	•1	1355	Э	Ø ·	võ
WEST RAVINE	• 25	1355	ย	ĕ	ĸ
พัฐเรกุน พัฐธาน	8,63	1355	8164	946	•698155
ZACHAU	•35	1355	n i	ø,	Ŋ
COLUMN SUMS	61.718		83625	89457	60.H214
			1548.63		

		•
•		
		,
		•
		•
		1
		Į
		į
		1
		1
		1
		1

105 ANGELES MATERSHOD SYSTEM (LAWS) 55-124 FOR SINGER SHEEL SHEEL NOTICED BY 1457-58 TOTALLY LEATHOUS HOLD YTHE COMMON AND SHEEL AND STREET

(1) CANYUN NAME	(2) AREA	(3) 1957-53 LAUS	(4) Y1ELD	(5) Rate	(6)
CANTON NAME					
	(28 HI)	(CO A9\20 HI)	(CO AD)	(CU YD/SQ YI)	(COF 2/COF 3
ALTADENA	•51	3201	3255	6 38 2	1.99375
AUSURY	• 19	3201	1625	8552	2.67167
SAILEY	* O	3201	1651	2751	· 859419
BIG DALTON L	. 3 4	3201	Ð	3 .	N
ORAUBUKY	• 6 3	3201	3156	4641	1.44786
BRAHU	1.03	3201	1416	13/0	*429866
CARIER	•12	3291	142	2183	1.93158
COOKS	• 58	3201	232	400	.124761
VEEK	424	3231	2009	4422	1.34144
DURSHUTE	. 34	3201	4692	5545	1.74477
EAULE	•61	3211	1444	2367	.739450
FAIRQAKS	-21	3201	13/84	50771	15.9255
FERM	• 3	3231	1111	37 83	1.15683
FLUKAL UPPER	· if 6	3281	447	7454	2.32740
FLORAL LOVER	•11	32 я 1	Ø	Ø.	ы
GOULV	• 4 7	3231	3473	8453	2.64074
dalaes "	1 - 5 3	3201	1167	115	.242112
HALLS	1.80	3231	12167	11478	3 . 58 575
HAY	• 2	3241	9	8	еĀ
LANNAH	• 25	3281	1137	4548	1.42881
LAS FLURES	- 45	3201	1443	32.16	• 494088
LA TURA	5.34	3 2 31	10/23	2001	•626942
LINCULN	• 5	5281	1 5 3 6	3272	1.02218
HADDOCK	125	3231	<i>'</i> A	€\$ c	6
MAY #1	• 7	3201	2218	3166	• 989 591
HAY #2	* 10 7	3291	ð	z)	. vl
m C C L U R E	• 6 2	3281	9584	15329	4.73592
nichots	.94	5281	1200	1349	+418019
PARADISE	• 47	3281	2249	4785	1 • 49 485
PICKERS	1 . 4	3261	5000	2753	*800044
ROHEEY	.55	3281	1499	258+	•867243
RUD IO	1.20	3561	2012	2231	•67697
RUBY UPPER	• 21	3291	211	1034	•313652
K U d Y	• 28	3281	740	2642	825357
SAWPIF	2.34	3201	21003	1629	2.58532
SCHOLL	*66	3211	045	977	.385217
SHIELDS	• 27	3261	861	2966	4926585
SIERHA AADRE	2.39	3281	3494	1424	444861
SHOVEK	+ 23	3201	2175	9456	2.95448
SPARK	• 5 4	3201	3 8 3 2	3604	1-12746
> T006n	1.65	3291	7779	4714	1.47267
PARAL BAREK	- 4 4	3201	1533	3415	1 • 66685
TURNOULL	• 49	3231	955	964	• 3 01156
AE50797	13.35	3201 .	15375	1892	• 513027
MARU LUMER	457	3281	1305	2287	•715939
ARU	•1	3291	5186	>1368	16.2812
WEST KAVING	• 25	3201	1352	5443	1.68947
MILBUK	8.65	3231	20342	2426	•757868
LACHAU	· 35	3201	1383	3942	1.23149
Column Come	54 024		1721.17	3741.87	24 2544
COLUMN SUMS	54.975		173197	276433	36.3583
CULUMM MEANS	1.10547		. 3532+80	5641.49	1.76242

(

(

(

LOS ARGELES GATERSHED SYSTEM (LAGS) MERRIS PROGOCTION OF 49 DESPIS ENSINS FOR 1956-57 MATA PROVIDED BY THE LOAD COUNTY FLOOD CONTRUL DISTRICT

(1)	(5)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1456-57 LAWS	AIETA	RATE	INDEX
	(SQ MI)	(EU An\20 HI)	(ch Ab)	(CO AD\20 MI)	(COL 5/COL
ALTADENA	.51	1858	2078	4 8 5 8	3.83554
AUBURN	+19	1058	ß	⊘ ₁	ស
BAILEY	. 0	1658	в	i ∂.	Ø
BIG WALTON L	+34	1653	ы	Ø .	P
BRADBURY	• 68	1858	ы	Ø	ย
BRAND	1.33	1956	8	ø	ß
CARTER	•12	1058	0	ð	в
CUUKS	.56	1 # 58	el	O1	8
VEER	.59	1858	ß	0	0
DUNSMUIR	• 34	1 058	3690.	4285	4.45339
EAGLE	.61	1858	500	819	.774102
FAIRUAKS	•21	1858	ø	Ø,	ð
FEKII	0.5	1658	8	6	ø
FLURAL UPFER	0116	1923	700	11660	11.9265
FLORAL LUGER	•11	1358	Ø	0	Ø
GOULD	.47	1 8 38	ð	b)	Ŋ
HAINES	1.53	1858	60	а	В
HALLS	1.26	1058	ß	61	63
HAY	• 2	1058	0	Ø	6
LANNAN	.25	1653	Ø	d	Ø
LAS FLURES	. 45	1858	Ø	e	ð
LA TUHA	5.34	1858	11258	2100	1,99855
LINCULN	• 5	1958	2268	4520.	4.27221
MADUJCK	• 25	1058	ø	tó.	Ø
MAY #1	• 7	1058	Ø	t)	6
MAY #2	4159	1658	ยั	i)	и
MCCLURE	.62	1658	3/89	5967	5 - 63939
MICHOLS	.94	1358	1วังย	1685.	1. 5879
PARADISE	.47	1058	1109	2348	2.21172
PECKENS	1.84	1858	2532	1375	1.24962
RUHLEY	e 5 d	1258	930	1551	1.40597
RUBIO	1.26	1658	8	ъ	n d
RUBY JPPER	•21	15 24	2111	10,052	9.58695
RUSY	• 28	1056	32.1	2928	2.76749
SAUPIT	2.84	1058	1000	352	•332703
SCHULL	•66	1 858	3	0	0
SHIELUS	• 27	1 4 5 5	198	703	.664461
SI ERRA MADRE	2.39	1053	3	9	8
SAJVEX	• 25	1638	1183	4782	4.51985
SPA KIL	.84	1053	e e	9	10
STOUGH	1.65	1058	ð	8	a
SUNSET UPPER	.44	1858	869	1813.	1.71834
	.99	1055	768	767	•724953
TU RNOULL Vervuou	18.05	1058	276v	274	4253979
MAKU LUWER	•57	1058	663	1508	
MARD LOWER	•1		5g54		1.42533
		1 #58 1 #5 a		5854 <i>3</i> ₁ ย	47.7694 я
WEST RAVINE	• 25	1858	8	1346	
WILBUR	6 • 6 3	-	11570		1.26654
ZACHAU	+35	1 858	ษ	Ø	ð
COLURN SUNS	54.070		57215	115431-	109-133
COLUMN HEARS	1-13347		1167.65	2355.73	2.22659

LOS ANGRES MATERSHED SYSTEM (LAUS) DEBRIS OF CONCELON OF 47 UNDERLY MASTUS FOR 1955-55 WATA PROVIDED BY THE LAMP COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1455-56 LAWS	AIFFO	RATE	INDEX
	(sq MI)	(CU YD/SO HI)	(CO An)	(CO AS\25 WI)	(COL 3/COL 3
ALTADENA	«51	2112	1161	2276	1.07765
AUBURT	-19	2112	1131	5952	2.81818
BAILEY	*6	2112	2948	49:13	2.32623
BIG DALFON L	.34	2112	ย์	Ø,	Ø
PRAVBURY	* 6 8	2112	6510	y 5 7 3	4.53267
BRAND	1.113	2112	a.	ø.	6
CARTER	•12	2112	1394	11583	5 • 48 43 3
CUCKS	+58	2112	J	ið.	ø
JEER	459	2112	95	å	e)
DUN SMUTR	+84	2112	1184	1449	• 66714
EAGLE	•61	2112	H	ø	ช
FAIROAKS	+21	2112	1242	4961	2.34896
PERN	• 3	2112	406	1.355	+631155
FLORAL UPPER	486	2112	ø	Ø	ð
FLORAL LUWER	•11	2112	ю	₩,	Ú
GOULD	• 47	2112	2457	>231	2.47630
MAINES	1 6 3 5	2112	r	9	И
MALLS.	1.06	2112	4828	5792	1.79546
nay	• 2	2112	d .	b)	Ø
LANHAN	125	2112	1420	5704	2.70076
LAS FLURES	• 45	2112	J.	id.	9
FHLT NA	5.34	2112	16830	3156	1.44242
LINCOLN	• 5	2112	a	ú	ø
MAUDOCK	•25	211.2	5898	23232	11
HAY #1	17	2112	1702	2662	1.32671
MAY #2	•64	2112	9	6	Ø
MCGLURE	• 6 2	21.12	4712	7660.	3.59549
NICHOLS	.94	2112	444	477	•2258>2
PARAUISE .	• 47	2112	2691	5725	2.7107
PICKENS	1.84	2112	4531	2446	1 • 15 5 1 4
KUNLEY	•58	2112	g	ä	И
RUBIO	1.25	2112	ä	v	b
KUST UPPER	4 5 1	2112	ó	9	νõ
RUSY	• 23	2112	69.	v	el .
SAWPIT	2.84	2112	9668	3330	1.6803x
SCHOLL	*66	2112	6	ь	d
SHIELUS	•27	2112	5 g g	1851	*37642
SICKER HADRE	2.39	2112	25964	10003	5.14347
SAUVER	• 23	2112	Ü	0.	4
SPAKK	464	2112	1872	2223.	1.15442
SIDUIN	1.65	2112	ĝ!	₽. Z. Z. Z. J.	b)
SUASET UPPER	444	2112	d	6	z)
I OKNOULL OPPER	***	2112	ъ	8.	ė)
	18.45	2112	12705	1234	ย •647955
VEKUUGA 4 6 KD 1 10 15 0	10.00	2112	1736	3133	1.48543
WARD LUNER		2112	3	. 3133	0
W±SI XAVIN≃ WILBUR	423	2112	es es	ě	9 9
71 0 0 3 4 17	3.63	2112	17	•	v
164 444 8 106	53-43:6		113257	434041.4	EG. 4707
COLUMN SUNS	33+624 1 46455		2439.72	1249814 2057•45	59-1383
CULUMA ARANS	1 - 140 55		6434415	2031.43	1.25825

,
,

LOS ANGELES WATERSHED SYSTEM (LAWS)
DEBRIS PRODUCTION OF 39 DEBRIS BASINS FOR 1954-55
DATA PROVIDED BY THE LAA COUNTY PLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1954-55 LAWS	AIEFO	RATE	INDEX
	(SQ MI)	(CO AD\26 HI)	(CO YU)	(CU YO/SO MI)	(col 5/col 3
ALTADENA	.51	12 16	503	98 A.	•805921
BAILEY	a 6	1 2 16	35783	5 7638	49 - 3444
BIG DALTON L	.34	1215	ð	Ø,	Ŋ
BRAND	1.03	1216	Ø	3	ð
COUKS	•58	1210	2244	3868.	3.18092
DUNSHUIR	.84	121 6	Ø	z ^g į	rd)
EAGLE	.01	1210	ម	Ø	Ø
FAIROAKS	• 21	1216	Ø	Ð	Ø
FERN	• 3	1 2 10	Ø	Ø.	ø
FLORAL HEPER	. 30	1216	230	3333	2.74695
FLORAL LOWER	.11	1216	Ø	8.	Ø
60010	.41	1216	Ø	ø .	Ð
HAINES	1.53	1.216	ئ	Ø	Ø
HALLS	1.86	1416	Ø	9	Ü
HAY	• 2	1210	b	ø	Ø
LANNAN	•25	1 216	7565	38268	24.8849
LAS FLORES	.45	1216	9	ø.	0
LINCOLA	• 5	1216	И	ě,	Ø
MAY #1	ii	1216	Ø	e	6
MA Y #2	• #9	121.6	ð	Ø	Ø
HCGLURE	.62	1216	ž)	8,	б
NICHOLS	. 94	1216	6	6	Ø
PARADISE	. 47	1216	837	1789.	1.46382
PICK ENS	1.84	1216	3	6	6
ROWLEY .	.58	1216	1648	1830	1.43529
RJalu	1.26	1216	Ŋ	0	Ø
RUBY UPPER	• 21-	1216	6	B	в
SCHULL	•66	121 6	ь	<u>ت</u>	В
SHILLUS	•21	1216	g	zů,	Ø
SIERRA MADRE	2.37	1216	ø.	1 2.	ø
SHUVER	. 25	1216	Ø	6	Ø
SPAKE	•84	1216	ø	Ø.	Ø
STOUGH	1.65	1210	4332	2425	1.99424
SUNSET UPPER	. 44	1210	0	6	ø
TUKNBULL	.99	1210	d.	Ð,	ð
VERDUGU	10.45	1216	ð	6	0
WARD LOWER	.5/	1216	0.	ø	ø
WEST RAVINE	• 25	1216	č	ខ	ย้
WILBUR	8.63	1216	553	64	•652632
# # F DOK	0.00	1210		•	417714026
COLUMN SUMS	43.336		52732	18 + 154	85 • 6530
CULUMN MEANS	1.11103		1352.1	25711.62	2.19623

(

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 33 DEBRIS BASINS FOR 1953-54 DATA PROVIDED BY THE LOAD COULTY FLOOD CONTROL DISTRICT

(1)	(2)	(.3)	(4)	(5)	(6)
SMAN NCYNAD	AREA	1953-54 LAUS	YIELD	RATE	1 NO EX
	. (SH HI)	(CO ANISO HT)	(CD An)	(CO ADY-SO HI)	(COL 5/COL 3)
ALTA DENA	•51	2589	9 27	1778	«6867 5 2
BAILEY	.6	2589	Ø	0	ь
BRANU	1 . 83	2569	63	æå;	Ø
COOKS	• 58	2539	Ø	r)	ß
BUHSHUIK	.84	2589	Ø.	Ø	B
EAGL &	461	2589	Ø	Ø.	в
FAIRDAKS	•21	258 9	Ø.	. เข้	Ø
FERN	4.3	2589	460	1533	•592121
60010	047	2589	ó	n)	8
HAINES '	1.53	2589	3620	2360	•913865
HALLS	1.35	2589	3313	3122	1.20587
HAY	D 2	2589	8	- J	Ď
LAS FLURES	.45	258 9	Ø	ઇ	В
KINGOLX	• \$	2587	ß	ઝ ;	ы
MAY. #1	• 7	2539	3	· 15	69
PA Y #2	• 89	258 9	63	et e	Ø
N I CHOLS	.94	2589	1916	2838	4787177
PARAULSE	±47	2509	43	3	El .
PICKENS	1.54	2589	4332	2354	0909231
RUSIJ	1.26	2589	ð	ð	õ
RUSY UPPER	.21	258 9	8026	34228	14.7655
SC HOLL	*66	253 9	9	∆3	Ø
SHILLUS	.27	2569	7	25	9.656248-3
SIERKA MADKE	2.34	2589	56992	2 3 3 4 6	9.21051
SHOVER	• 23	2589	Ø.	83 ,	ð
SPARK	. 34	2589	1020	1214	• 466487
STOUGH	1.65	2589	65	Ø	Ø
SUNSET UPPER	· 44 44	25 8 9	Ø	13 1	Ø
TURNOULL	049	258¥	6	Ø	0
VERDUGO	10.85	2589	B	⊕ .	Ø
WARD LOVER	+57	2>89	2888	3649	1.43942
WEST RAVINE	.25	2539	1611	40 44	1.58199
MIT BOK	8 + 63	2589	23440	2716	1.64905
COLUMN SUMS	41.373		167123	86913	33.5701
COLUMN MEANS	1.22364		3246.15	2633.73	1.31723

(

(

_

(

COLARS PROPERTY OF THE LAW SETS OF THE STREET STREE

(1)	(5)	(5)	(4)	(5)	(6)
CANYON NAME	AHEA	1952-33 LAWS	AISFO	RATE	INDEX
	(SQ H1)	(CU YU/SQ MI)	(CA An)	(CH An/23 MI)	(COL 5/COL 3)
ALTADENA	e 51	731	1945	3809	5.21867
BAILEY	• 6	7 3 1	ઇ	છ ;	13
BHAND	1.03	731	Ø	tá	d
COOKS	8c.	73.1	3	29	ad .
DUNSHUIR	.84	7.31	ď	Øi	Ø
EXGLE	• 61	731	2499	4846	5.61328
FAIRUMKS	•21	731	ь	EJ,	rg.
FERM	٠.5	7 5 1	ð	Ø)	ø
ધાડાડા છ	•47	731	8075	17176	23 - 4966
HALNES	1.53	731	r.	Ø	a)
HALLS	1.76	731	ન ન	إف	PS
HAY	• 2	731	j3	Ø,	ษ
LAS FLUKES	. 45	731	ย	ಲೆ.	9
FINCOLH	• 5	/31	d	6	Ø
NICHOLS	. 14	731	8:	ம்,	⊌
PARAPISE	.47	731	69	₩,	ø
PIGKENS	1.84	731	Ø	ú	ฮ
K (B I)	1.26	731.	Ø	ಲೆ	ø
SCHULL	.66	731	3079	4651	6.48356
SHIELDS	.27	731	ø	91	28
SICRRA MADRE	2 + 39	731	Ø	ø.	Ø
SHOVER	• 2.5	731	ð	8)	Ø
SPARK	• 64	731	ย	ø	Ø
STOUGH	1.55	131	Ø	⊌,	ઇ
SUNSET UPPER	. 44	731	Ø	ย์	H
TORNSULL	• 44	731	1307	1323	1.80575
VERU UGO	10.05	731	14575	1052	1.43912
WARD LOWER	·57	/31	2834	3564	4.88399
WEST RAVINE	.25	731	Ø	b	93
MILOUR	8.63	73.1	ð	81	Ø
COLUMN SUMS	45.373		29521	357-32	48.8399
COLUMY MEANS	1.34567		934.033	1190,107	1.6280

C

(

Ć

. . . .

CORALD TO STREET BY THE LAW COUNTY PROPERTY OF THE LAW COUNTY PROPERTY PROP

(1)	(2)	(3)	(4)	(5)	(6)
GANYON NAME	AREA	1951-52 LAWS	ATFED	RATE	IMDEX
	(S) HI)	(CU ANIZO HI)	(cu va)	(CA ADIZO HI)	(COL 5/COL 3)
ALTADENA .	.S1 .	7487	4176	8138	1.89363
SAILEY	• 6	1687	276	468	•86144
BRAND	1.03	7487	5310	5:155	.683527
DURSHUIR	. 84	7437	11025	13125	1.75384
EAGLE	+61	1437	2711	do by up to	•593502
FAIROAKS	±21	7487	3388	14734	1.96394
FERN	. 5	7487	5397	17490	2.48233
GOIJED	. 47	7487	6	5 .	Ø
HAINES	1 + 5 3	7467	6164	4223	.537999
HALLS	1.05	7487	21580	20047	2.75771
н аү	• 2	7 487	1487	7435	.993H55
LAS FLUKES	• 45	7487	1868	4151	.559423
LINCULA	• 5	7487	4545	8696	1.16148
NICHOLS	044	7481	21769	23158	3.89318
PARAUISE	.47	7487	7044	14907	2.99174
PICKERS	1 . 8 4	7487	13336	7241	.967944
RUSIO	1.26	7487	5134	4874	-544143
SCHOLL	460	7487	0	ið	ಟ
SHIELUS	150	7487	13373	49:529	6.61533
SIERNA MADRE	2.39	7487	5515	2381	.396134
STOVER	• 23	7457	2832	12 31 5	1.66458
SPARR	. 54	7437	4938	5864	•783592
STOUGH	1.65	7487	14452	5516	1.13744
SUNS ET UPPER	. 44	7487	3480	7727	1.83446
VERDUGO	12.85	7487	51036	51.37	.680123
WARD LOHER	. > 7	7407	13585	23333	3.18323
WEST RAVINE	.25	7487	4465	17848.	2.39615
WILBUR	6.63	7487	61687	7147	6954533
COLUMN SUMS	38 - 69		29 a514	29 88871	39.9161
COLUMN MEANS	1.36571		10375.5	14671.7	1.42536

Ċ

C

(

	l
	1
	,
	1

LOS ANGELES MATERSHÃO SYSTEM (LAMS) DEBRIS PRODUCTION OF 28 DEBRIS BASINS FOR 1958-51; DATA PROVIDEM BY THE L.A. COUNTY FLOOD CONTROL MISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON HAME	AREA	1955-51 LAWS	YIELD	RATE	INDEX
	(SQ MI)	(CU YD/SQ MI)	(CA An)	(CU YD/S2 MI)	(COL >/COL 3)
ALTAUENA	-51	27	1881	21/19	78 - 4815
BAILEY	• 6	27	9	₫,	B
BRAHD	1.03	27	P	6 ₁	Ø
DUHSMUIK	• 84	27	43	Ø,	d
EAULE	· 61	27	8	Ø,	id
FALROAKS	• 21	27	Ø	Ø,	3
FERM	e 3	27	8		В
600FD -	. 47	27	Ø	€,	Ø
HAIYES	1 + 53	27	Ø	Ü	6
HALLS	1.86	21	Ø	6,	b)
nΑγ	• 2	27	Ø	15 1	Ø
LAS FLORES	• 45	2/	6	Ø ₁	69
FINCOLM	.5	27	Ø	81	Ø
MICHULS	.74	27	Ø	υ,	ð
PARQUISE	• 4 7	27	원	0;	Ø
PILKENS	1 . 54	27	Ø	Ø,	Ø
RUBIO	1.26	27	8	ð	. 🛭
SCHOLL	• 66	27	Ø	₽,	Ø
SHIELUS	. 27	2.7	Ø	ðį	Ø
SIERRA MAURE	2.37	27	Ð	81	Ø
SHOVER	.23	27	Ø	15.	Ø
SPAKK	.84	27	Ø	e,	Ø
STOUGH	1.05	27	Ø	e,	r)
SUHSET UPPER	. 44	27	Ø	e)	Ø
AFKnA20	10.25	27	Ø	Ø)	Ø
HARU LJHER	. 57	27	is	Ø,	성
WEST RAVINE	.25	27	d	19 1	ь
AIFPAS	8.63	27	Ø	ið.	0
COLUMN SUMS	38.89		1801	2149	78.4815
COLUMN MEANS	1.33571		36.6071	75 - 67 5 6	2.80291

(

C

Ć

		•

COUNTY NOT SUIZED STREET BY A COLLING SOLUTION OF SUIZED STREED TO THE SUIZED STREED TO THE SUIZED STREET TO THE SUIZED SCOLUT FLOOR SUIZED SU

(1)	(5)	(3)	(4)	(5)	(6)
CHNYUN HAME	AREA	1949-50 LAUS	ALSTO	MATE	INDEX
	(SQ MI)	(Cy yb/so MI)	(CA AD)	(IN DS/CK ND)	(CUL 3/601 3)
ALTABENA	•51	1>1	1657	3249	21 . 5156
BAILEY	· 6	151	ы	3,	8
BRAND	1 - 03	1>1	d	ø ₁	W
DUNSHUIR	* 5 4	1.51	Я	0 1	d
EAULE	•61	151	B	Ø	ð
FAIRUAKS	+21	1.51	ខា	Ø)	13
FERM	4.5	151	69	Ø1	ø
GUULU	. 47	151	Ø	Øi	3
HAINES	1 + 53	1>1	Ø	Ø	d
HALLS	1.85	151	g	651	b
HAY	• 2	1 > 1	£3	Ø ₁	В
LAS FLORES	. 45	151	9	6	9
LINCOLN	• 5	1>1	Ю	ø	₂ 3
NICHULS	444	151	1210	1287	8.52318
PARADISE	.47	151	0	¥Ú;	ð
PICKENS	1.64	151	ŏ	1 23	ø
RUBIU	1 • 26	151	d	Ø)	Ø
SCHOLL	•00	151	2	ø	ø
SHILLUS	.27	151	B	ø,	Ğ
SICHRA MADRE	2.39	1>1	ы	a,	Ø
SHUVER	٠23	151	6	υ'	6
SPARK	. 5 4	151	Ø	Ø	В
STOUGH	1.65	15.1	ø	Bl	Ø
SUNSET UPPER	. 44	151	B	vi,	ø
VERJUGO .	18.05	151	ē	ان	a
HARU LOJER	.57	151	1147	2112	13.3245
MEST RAVINE	. 25	151	2	0	0
MITANS	0.05	151	1878	216	1.43046
COLUMN SUNS	33.30		5334	6764	44.7947
CULUMN MEANS	1.38571		219-143	241.5/1	1.59931

(

(

C

(

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 28 DEBRIS BASINS FOR 1946-49 DATA PROVIDED BY THE LOAD COULTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1948-47 LAWS	ATELO	RATE	THUEX
	(SQ (4I)	(CO ADVES MI)	(CO AD)	(CU YD/SQ HI)	(COL 5/COL 3)
ALTABENA	•51	1+3	1418	2783	18.7833
BALLEY	. 6	148	Ø.	₫,	Ø
BHANU	1.83	1 48	ø	ð١	Ø
DUNSMUIR	-04	148	Ø	Ø _j	Ø
EAGLE	• 61-	1 → 3	e)	€,	Ø
FAIROAKS	•21.	148	fi	0	Ð
FERN	• 3	145	ø	υ.	ð
COULD	.47	146	Ø	€,	6
HAINES	1.53	143	Ð	ió;	6
HALLS "	1.00	148	ø.	₫,	Ø
HAY	• 2	143	Ø	Ø,	B
LAS FLORES	• 45	148	e	Ø	Ø
LINCOLH	45	140	Ø	. 31	Ø
NICHOLS	494	148	588	625	4.22277
PARADISE	•84	148	157	. 132	1 . 229 / 3
PICKENS	1 . 84	146	Ø	Ø	6
RJB 10	1.26	148	€,	∂ .	в
SCHULL	•66	148	69	Ø ₁	Ø
SHILLOS	• 27	1+6	ы	Ø.	· ø
SIERKA HADRE	2.39	148	Ø	Ø1	ß
SHOVER	.23	1 48	Ø	6	Ø
SPARK	. 84	148	Ø	ø.	Ø,
STOUSH	1.65	148	€o	ø,	8
SUMSET UPPER	. 4.4	148	6	Ø	Ø
VERBUGU	18.35	148	Ø	Ø	Ø
MARD LOWER	e57	145	367	643	4.34460
WEST RAVINE	.25	148	в	ði	8
RITAR	8.63	148	3277	379	2.56381
COLUMN SUMS	39.190		5827	4639	31-1419
COLUMN MEANS	1.39964		201.343	164.607	1,11221

(

C

(

,

	l
	'

LOS ANGELES WATERSHED SYSTEM (LAUS)

DEBRIS PRODUCTION OF 27 DEBRIS BASINS FOR 1947-48

DATA PROVIDED BY THE LOAD COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AKEA	1447-48 LAWS	AIFID	RATE	INDEX
	(IH DS)	(CA Anyze WI)	(CO YO)	(CO YO/SO MI)	(COL 3/COL 3)
ALTADENA	«51	288	2012	3945	13.6979
BAILEY	e 6	284	A	В	Я
BRANU	1.33	268	ಲೆ	Ø	ð
DUNSHUIR	.84	288	ið.	Ø į	И
EAGLE	.61	288	71	110	. 402/78
FAIROAKS	• 21	288	6	28.	·097222
FERN	• 3	283	61	Ø ₁	0
HAIRES	1.53	283	ਚੀ	8.	B
HALLS	1.06	288	€5	194	ម
HAY	• 2	233	Ø	47	Ø
LAS FLORES	.45	288	6	6 .	Ø
FIMCOFM	• 5	548	6	€	6
MICHGES	.94	238	448	468	1.025
PARAULSE	.93	288	212	227	.783194
PICKEHS	1.84	238	436	256	= 319444
RUDIU	1.26	288	Ø	₽,	번
SCHOLL	• • • 6	268	8	₽1	Ø
SHIFLUS	•27	288	B	₽,	θ
SICKRA HADRE	2.34	288	65	⊌ ;	P)
SHOVER	.23	288	0	ð,	g
SPARR .	« 9 4	238	A	g	0
STOUGH	1 • 65	283	Ø	Ø,	8
SUNSET UPPER	. 44	288	G	Ø	Ø
VERDUGO	10.35	2 dó	6	ð	e
WARD LOUER	•57	285	1036	1817	6.30903
WEST RAVINE	.25	235	8	32	.11111
WITS AS	8.63	283	69 56	886	2.79801
COLUMN SUMS	35.798		11177	7675	26.6493
COLUMN MEANS	1.43067		413 = 963	284.259	.907611

.

(

(

(

(

LOS ANGELES WATERSHED SYSTEM (LAWS). DEBRIS PROPUCTION OF 20 DEBRIS HASINS FOR 1946-47. DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
SEER HOTHES	AREA	1946-47 LAWS	YIELD	RATE	INDEX
	(14 0S)	(CR Anves 41)	(cu yu)	(CA Anled WI)	(COL 5/COL 3)
ALTABEHA	e 5 î	₹87	1481	2747	2.78318
RAILEY .	.6	987	Ð	Ø,	8
BRAND	1.03	987	143	138	•139218
DUNSAUIR	· 84	487	b)	. Ø ₁	29
EAGL E	•61	987	402	6.59	.66768
FAIROAKS	• 21	987	661	3147	3.18345
FERN	• 3	987	217	723	•732523
HAIHES	1.53	937	922	4 32	.699929
HALLS	1.00	987	4459	4200	4.26148
HAY	• Z	987	P	Ø,	ø
LAS FLORES	• 45	987	480	. 1856	1.03664
LINCULN	« S	987	1611.	3222	3.26444
KILHOLS	.94	987	5647	6 4 3 7	6.05612
PARADISE	1 • 35	937	1546	1472	1.49139
PICKENS	1.84	987	1896	595	.6 423 57
RUS IJ	1.26	987	664	542	•549 1 39
SCHOLL	+60	987	682	1033	1.84661
SHIELUS	•27	987	21.	77:	.978314
SIERRA MAURE	2 . 34	987	1134	474	· 487243
SHOVER	•23	987	122	538	.536781
STOUGH	1.65	907	Ø	Øi	a
SUNSET UPPER	.44	987	0	ø	B
VERDUGU	10.05	987	392	39.	.039514
WAKU LOWER	.57	987	2/36	4883 ₁	4.86322
WEST RAVINE	. 25	987	011	2444	2.47519
WILDUR	8.05	987	1 2641	1464	1.48328
COLUMN SUMS	38.916		37608	35.9871	36.4618
COLUMN MEANS	1 + 46423		1446 - 46	1384.12	1 -48235

LOS ANGELÉS NATERSHED SYSTEM (LANS) DEBRIS PRODUCTION OF 25 DEBRIS BASINS FOR 1945-46 DEBRIS PRODUCTION OF 25 DEBRIS BASINS FOR 1945-46 TAILED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5.)	(6)
CANYON NAME	AREA	1945 -46 LAUS	AIFFO	RATE	INDEX
	(25 KI)	(CU YD/SQ MI)	(CO YD)	(CO Anled 41)	(cot 5/cot 3)
BAILEY	• 6	829	776	1293	1.55971
BRAND	1.83	829	Ø	Ø	i)
PUNSAUIR	.84	829	2234	. 2623	3.16435
EAGLE	•ó1	829	300	491:	•59228
FAIROAKS	+21	9 2 9	96 1	4576	5 • 5 1 9 9
FERN	ø 3	8 2 9	1332	4448	5.35585
HAINES	1.53	. 829	461	30,1	436 3838
HALLS	1.86	327	1716	1618.	1.95175
HAY	• 2	829	ð	ä,	Ø
LAS FLORES	٠45	829	637	152 ú	1.84077
LINCOLN	. 5	829	e	ē	8
NICHOLS	.94	8 5 4	221	235	.283474
PARAD ISE	1.05	829	1427	1359	1.63932
PICKENS	1.84	829	669	363	.437871
RUBIO	1.26	829	4356	3452	4.16405
SCHOLL	.66	827	3.	Ø	8
SHIELDS	.27	827	458	1696	2.64534
SIERRA MAURE	2.39	82 9	6	Ø	ð
SHOVER	.25	829	Ð	٤١	0
STOUGH	1.65	8 29	Ø	Ø ₁	Ø
SUNSET UPPER	* 4 4	824	144	327	.394451
VERUUGO	10.05	8 2 9	ಚ	Ø,	6
WARD LOWER .	.57	829	927	1626	1.90148
WEST RAVINE	. 25	824	637	2548	3.57358
MITS NY	8.63	8 2 9	13868	1646	1 • 9 3 7 2 7
COLUMN SUMS	37.560		31138	3 ROB W	36.2347
COLUMN MEANS	1.5024		1245.52	1203.20	1 045139

(

(

......

LOS ANGELES MATERSHED SYSTEM (LAWS)

DEBRIS PRODUCTION OF 23 DEGRIS BASING FOR 1944-45

DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA .	1944-45 LAWS	YIELU	RATE	INDEX
	(IM G2)	(EN ABY 25 WT)	(CU YD)	(CU YD/SQ HI)	(COL 5/COL 3)
BRAND	1.93	1300	ø.	Ø	a
DUNSHUIR	0.6 %	1366	766	91.1.	•666911
EAGLE	+61	1 300	1886	1780	1.30308
FAIRDAKS	.21	1366	578	2/62	2.01404
FERN	e 3	1306	1470	4923	3 . 60176
HAINES	1.53	1366	Ø	Ø,	Ø
KALLS	1.36	1366	5877	4789	3 - 5 0 5 8 6
HAY .	• ?	1366	497	2485	1.81918
LAS FLURES	. 45	1306	681.	1543	1.19761
LINCOLN	• 5	1306	203	406	•297218
MICHOLS	.46	1 5 6 6	303	322	.235725
PARADISE	1.05	1366	1831	1743	1.27599
PICKENS	1.84	1.566	1594	. 617	•598097
RUB 10	1.26	1366	d	3	
SHILLUS	•21	1366	233	862	•63124
SIERRA MAURE	2.39	1366	186	771	. 056369
SNJVER	•23	1366	491	2134	1.56223
STOUGH	1.65	1366	4678	2035	2.0754
SUNSET UPPER	- 44	1306	124	281	• 20571
VERPUGO	10.05	1366	28424	2032	1 . 43755
WARD LOWER	•57	1306	247	5.21.	• 361486
WEST RAVINE	• 25	1306	321	1284	. 739971
HILBUR	8 + 6 5	1306	8841	1024	.749634
COLUMN SUMS	36.33		49597	33458	24.5154
COLUMN MEANS	1.57826		2156 - 39	1456	1.06589

(

(.

(

LOS ARBELES WATERSHED SYSTEM (LAWS)
DEBRIS PRODUCTION OF 20 DEBRIS BASINS FOR 1943~44
DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTRUL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1943-44 LAWS	ATELD	RATE	140 EX
	(SQ 4I)	(CU Y0/50 MI)	(CO AD)	(CI) A0/25 HI)	(COL 5/COL 3)
BRAND	1.03	4231	322	312	• U7 57 41
DUNSMUIR	.84	4231	3838	4623	1 - 49333
EAule	.61	4231	4525	7415	1.75325
FALROAKS	*21	4231	524	2495.	.58 7695
FERN	• 3	4231	13617	45399	10.7284
HAINES	1+53	42 31	6394	4182	+988419
HALLS	1.116	4231	8261	7793	1.84188
BA Y	+2	4231	211	1 355	. 24935
LAS FLORES	45	4231	2692	5982	1 - 41385
LINCOLN	• \$	4231	1866	37.32	• 3 8 20 6 1
RIGHOLS	.74	4231	724	773.	.18199
PICKERS	1.84	4231	8647	4035	1.14249
SHIELUS	•27	4251	1009	3737	.883243
SIERRA MADRE	2.39	4231	1441	632	• 142233
SNUVER	.25	4231	ed.	63,	В
STUUGA	1+05	4251	11703	7872	1.07624
SUNSET UPPER	. 44	4231	1181	2684	• 634365
AFKARPA	10.05	4231	31845	3163.	.748759
WEST RAVISE	• 25	4231	4833	19212	4.54477
MITERS	8 - 53	4231	37519	4347	1.32742
COLUMN SUMS	33.428		141429	129435	30.5921
COLUMN MEANS .	1.671		7971.45	6471.75	1+5296

71ME + +134

LOS ANGELES WATERSHED SYSTEM (LAUS) DEBRIS PRODUCTION OF ZM DEGRIS MASINS FOR 1942-43 PATA PROVIDED BY THE LOAG COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5:)	(6)
CANYON NAME	AREA	1942-43 LAUS	YIELD	RATE	INDEX
	(SQ MI)	(CO AD\25 WI)	(ca ha)	(CO AN\20 HT)	(Cot 2/cof 3)
BRANU	1.63	112/7	3100	3039	. 256826
DUNSMUIR	. 84	11277	16001	16675	1.47807
EAGLE	.61	11277	15/61	25370	2 . 29435
FAIRDAKS	• 21	11277	2774	13304	1 . 17975
FERN	• 3	11277	Ø	Ø	U
HAINE 3	1.53	11277	29641	19377	1.71823
HALLS	1.36	11277	46333	45597	4.04336
HAY	• 2	11277	3354	15277	1.35488
LAS FLORES	.45	11277	12757	28353	2.51423
LINCULK	• 5	11277	12449	29878	1.35315
NICHOLS	.94	11277	2496	3187	• 282611
PICKENS	1.84	11277	53585	29122	2.58242
SHIELDS	. 27	11277	5449	24148	1 .78555
SIERRA MADRE	2.59	11277	6824	2355	02>317
SHOVER	. 23	112/7	0157	26321	2.37833
STOUGH	1.05	11277	29577	17925	1.58952
SUNSET UPPER	. 44	11277	d	e3	63
VERUISO	10.05	11277	78378	7748	e 691476
WEST RAVINE	+25	1127 7	¥884	39536	3.59598
NILBUR	8.63	11277	44127	5.1.13	.453481
COLUMN SUES	33.429		376984	340853.	30.2259
COLUMN MEANS	1.671		18845 . 2	17042.9	1 - 51150

TIME .

LOS ANGELES MATERSHED SYSTEM (LAMS)
DEBRIS PRODUCTION OF 19 DEBRIS HASINS FOR 1941-42
DATA PROVIDED BY THE LAA. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYUN NAME	AREA	1941-42 LAUS	AIELD	RATE	INDEX
	(24 MI)	(CO An/25 MI)	(CH AD)	(CU YD/SQ 4I)	(COL 5/COL 3)
BRAND	1.03	4233	a	Ø	3
DUISHUIR	a 5 4	4233	356	43B,	·194490
EAGLE	+61	4233	ø	Ø	M
FAIROAKS	421	42 5 3	Ø	Ø	Ø
FERM	• 3	4233	Ø	Ø	Ø
HAINES	1 + 53	4233	0	ø	គ
HALLS	1.80	4233	8	Ø	Ø
HAY	62	4233	Ø	9,	ø
LAS FLORES	.45	4235	Ø		Ø
LINCOLN	« S	4233	P	e	ø
NI CHOLS	• 4 4	4233	24105	25643	6.85788
PICKENS	1 = 8 4	4233	Ø	v	8
SHIELDS	.27	4233	Ø	9	Ø
SI ERRA HADRE	2.39	42 35	Ø	¥	Ð
SHOVER	• 23	4233	6	6	6
STQUGH	1.05	4 2 3 3	9	Ø,	e)
SUNSET UPPER	. 4 6	4253	12358	28380	6.63591
VERDÜGO	19.05	4253	67471	67 03	1.59709
WEST KAVINE	• 25	4233	17y	71.6	•169147
COLUMN SOMS	24.790		104949	616 83	14.5542
COLUAN MEANS	1 - 50474		5523.63	\$242 + 53	.766311

.178 Tiné •

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 17 DEBRIS BASINS FOR 1944-41 DEBRIS PRODUCTION OF 17 DEBRIS BASINS FOR 1944-41

(1)	(2)	(3)	(4)	(5)	(6)
CANYON HAME .	AREA	1440-41 LAWS	AIEID	RAIE	INDEX
	(58 41)	(CU YD/SQ MI)	(CU YO)	(CU YD/SQ HI)	(cot 5/cot 3)
BRAND	1.83	10127	1055	1424	• 181116
DUNSHUIR	• 84	10127	11847	14105	1.39261
EAGLE	•61	10127	13845	27676	2 . 24114
FAIROAKS	•21	18127	3448	19 ศษษ	1.3/617
FERN	4.3	10127	4888	16000	1.57994
HAINES	1.53	18127	12554	8245	*81321
HALLS	1.06	10127	48711	45953	4.53767
HAY	• 2	10127	615	3475	.323644
LAS FLORES	-45	16127	Ø	ن ,	В
LINCOLR	•5	10127	11764	23528.	2.32329
NICHULS	.94	10 127	60	Ø	Ø
PICKERS	1.54	1.0127	34437	18715	1.84883
SHILLUS	.27	10127	9444	34977	3.45334
SIERRA MADRE	2.34	1.4127	8	, Ø1	Ø
SNJVEK	.23	18127	3312	14403.	1 - 4 2 1 9 4
STOUGH	1.05	16127	Ø	ß	Ø
SUNSET UPPER	. 44	18:127	6	8	6
VERBUGO	10.35	10127	85077	8564	84566
MEST RAVINE	• 25	161 27	8610	34464	3.40318
COLUMN SUMS	24.790		251267	204704	26.1384
COLUMN HEARS	1.39479		13214.1	13931-8.	1 - 37571

TIME : .194

(-

C

LOS ANGELES WATERSHED SYSTEM (LAWS)

DEBRIS PRODUCTION OF 18 DEBRIS BASINS FOR 1939-40

DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
CANYON NAME	AREA	1939-40 LAUS	YTELD	RATE	INDEX
	(iq MI)	(CU YO/SQ MI)	(cu Ab)	(CU AD\25 WI)	(COL 5/COL 3)
8 RAND	1.63	2323	4827	4686	2.01722
DUNSMUTH	.84	2323	22072	26276	11.3112
EAGLE	•61	2323	ઇ	0;	Ø
FAIRUARS	•21	2323	66	€,	of .
FERN	•3	2323	Ø	21	n
HAINES	1.53	2323	11425	7467	3.21438
HALLS	1.65	2323	3	Ø ₁	Ð
HAY	• 2	2323	184	8.58	.39644
LAS FLURES	.45	2323	3	₽ 5	ы
LINCOLN	• 5	2323	1188	2376	1.02232
NICHOLS	.94	2323	8	€,	9
PICKENS	1.84	2323	13565	7372	3.17348
SHIELDS	.21	2323	Ø	8	Ø
SIERRA MADRE	2.39	2323	Ø	Ø,	Ø
SHOVER	• 23	2323	Ø	Ø.	Ø
SUNSET UPPER	. 44	2323	Ø	Ø;	ø
VERDUGO	10.85	2323	ы	Ø	ē
WEST RAVINE	• 25	2323	584	2016	0857843
COLUMN SUMS	23.148		53765	54113	22.005
COLUMN MEAHS	1.28556		2980.94	2837.61.	1.22239

TIME 4 .162

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 18 DEBRIS BASINS FOR 1938-39 DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5:)	(6)
CANYON NAME	APEA	1938-39 LAUS	AIEFO	RATE	INDEX
	(14 62)	(CII AD\20 HI)	(Cil Ap)	(CU YO/SQ HI)	(COL 5/COL 1
8 RA 40	1.03	1976	គ	0,	0
DUNSMUIR	.84	1976	Ø	e.	Ø
EAGLE	#61	1976	5936	9731	4.92465
FAIRUAKS	+21	1976	б	Ø.	Ø
FERN	• 3	1976	Ø	6	ð
HAINES	1.53	1976	Ø.	e.	Ø
HALLS	1.86	1976	PI	Ø	Ø
HA Y	* Z	1976	2031	10155	5.13917
LAS FLORES	.45	1976	1112	2471	1.25451
LINCOLN	• 5	1976	8	. 16	Ø
NICHOLS	494	1976	Ø	Ø	6
PICKERS	1.84	1976	876 j	4763	2,41343
SHIELUS	• 27	1976	4390	16259	8.22324
SIERRA MADRE	2.59	1976	g.	6	. 2
SHOVER	• 23	1976	21891	91760	46.4469
SUNSET UPPER	. 444	1976	r)	Ø	5
VERUUGJ	19.05	1976	Ø	€ ,	Ð
WEST RAVIRE	• 25	1976	2403	9612	4.86437
COLUMN SUMS	23.140		45723	144691	73.2242
COLUMN HEANS	1.28556		2548.44	8834.39	4.40881

LOS ANGELES WATERSHED SYSTEM (LAWS) DEBRIS PRODUCTION OF 18 DEBRIS BASINS FOR 1937-38 DATA PROVIDED BY THE LAMB COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)	
CANYON NAME	AREA	1937-38 LAWS	VIELO	RATE	INDEX	
	(IM DE)	(CU Y0/S0 MI)	(CH YO)	(CU YU/SQ MI)	(COL 5/COL 3)	
BRAND	1.03	33374	Ø	Ø	Ø	
JUNS HUIR	.84	3 3 3 7 +	78216	9:3114	2.79 802	
EAGLE	.61	33374	41694	68344	2.84732	
FAIRONKS	•21	33374	12839	. 68185	1 - 8 0 3 3 5	
FERN	• 3	35374	21153	70526	2.1134	
HAINES	1.53	35374	51535	33663	1.38366	
HALLS	1.80	33374	178125	102034	3.95639	
HAY	• 2	43374	28993	184798	3.14586	
LAS FLORES	. 45	33374	55450	123288.	3 - 67413	
FIACOLA	•5	33374	14561	20122	.692924	
NICHOLS	.94	3 3 3 7 4	ø.	2 3)	Ŋ	
PICKENS	1.84	33 374	122197	66411	1.9899	
SHIELDS	.21	33374	35147	138174	3.99346	
STERRA MADRE	2.39	3 3 3 7 4	63162	26427	.791844	
SMUVER	.25	33374	16089	72554.	2.17415	
SUNSET UPPER	. 44	33374	Ø	bý	9	
VERPUGO	10.05	33374	105364	12483	.314107	
WEST RAVINE	+25	33374	29850	119404	3.57455	
CULUMN SUMS	23.148		772247	1.10,1765+	6	33,0124
COLUMN MEMAS	1.28556		42985.4	61208.6	1.83402	

LOS ANGELES WATERSHED SYSTEM (LAUS) DEBRIS PRODUCTION OF 15 DEBRIS BASINS FOR 1956-37 DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

(1)	(2)	(3)	(4)	(5)	(6)
SMAN HOYKAD	AREA	1936-37 LAUS	YIELD	RATE	INDEX
	(SQ 41)	(CU YU/SQ 41)	(C) YD)	(CR AD\25 WI)	(cot 2/cur 3)
BRAND .	1.03	56 57	Я	Ø	Ø
DUNSMUIR	.84	56 57	9	9	ē.
EAGLE	•61	5657	9	Я	Я
FAIROAKS	•21	565.7	14611	695.76	12.2991
FERN	•3	5651	21456	71528	12.6427
HAINES	1+53	5057	Ø	Ø.	Ø
HALLS	1.46	5657	2828.1	26680	4.71628
HAY	• 2	5657	0	Ø,	б
LAS FLORES	445	5657	В	ø	Ø
FIHEOFF	• 5	5657	202 89	44418	7-14478
PICKENS	1.94	5457	28454	18543	1.36371
SIERRA HAURE	2.39	5657	· 9.	Ø	а
SUNSET UPPER	. 44	5657	Ø-	Ø	ð
VERDUGU	19.35	5657	Ð	Я	6
WEST RAVINE	• 25	5657	1.8316	73264	12.951
COLUAN SUMS	21.39		123327	292041.	51.6176
COLUMN MEANS	1.45333		8221-88	19466.7	3.44113

LOS ANGELÉS MATÉRSHEU SYSTÉM (LAMS).

OEBRIS PRODUCTION OF 12 OEBRIS BASINS FOR 1835-36

DATA PROVIDED BY THE L.A. COUNTY FLOOD CONTROL DISTRICT

CANYON NAME	(2) AREA	(3) 1935-30 [Aus	(4) Y1ELD	(5) RATE	(6) Index
	(SQ MI)	(CO A51.25 MI)	(CH Ab)	(CO AD\Ed WI)	(COL 5/COL 3)
BRAND	1.83	5639	ø,	A)	Ø
DUMSMUIR	.84	5.639	9 42	1421	·197 847
FAIROAKS	+21	568.9	15711	74814	13-1596
FERA	•3	\$ 6 6 y	12492	413471	7 = 26566
HALLS	1.46	5689	23321	22435.	3.86352
LAS FLORES	.45	5689	10532	23626	4.15293
LINCULN	+5	56 à 9	7#58	15916	2.79763
PICKENS	1.94	55.37	32549	16777	2.94932
SIERRA MADRE	2.34	5007	e5	₽ ,	ø
SUNSET UPPER	.44	5689	Ø	₽ †	생
VERDUOD	13.85	5689	8	Ø	<u> ಶ</u>
WEST RAVITE	• 25	5589	7281	28.884	5.0631
COLUHN SUNS	17.46		110724	224436	3944456
COLUMN MEANS	1.62107		9227	18/33,5	3.28713

LOS ANGELES WATERSHED SYSTEM (LAMS) DEBAIS PRODUCTION OF 4 DEBAIS BASING FOR 1934-35 DATA PROVIDED BY THE L.A. COUNTY FLUOV CONTROL DISTRICT

CANYUN NAME	(2) AREA (SQ MI)	(3) 1934-35 taws (CU YD/SQ :41)	(CO AD) AIEFD (*)	(>) RATE (CU YD/SQ MI)	(6) 1 kD EX (COL 5/COL 3)
มปกราบ1R	.84	3885	в	ø	6
SIERRA MADRE	2.37	3205	6	ø	0
SU HSET UPPER	= 44	3005	6	ð,	Ø
WEST KAVI1E	•25	3035	12075	48589	15.6823
COLUMIT SUNS	3.92		12845	43335	15.6823
COLUMN MENNS	• 98		3023.15	12895	5.92058

(

.

(

LOS ANGELES MATERSITÉD SYSTÉM (LAWS) 4. ALE MAIS PRODUCTION OF SUBBRUS SAIRS FOR 1935-34 4. ALE MATERIAL PROVIDED BY THE LAW YTHOUGH PROVIDED BY THE LAW ATHOUGH PROVIDE

(1) CANYUN NAME	(2)	(3) 1933~5+ LA⊌S	(4) YIELD	(5) RATE	(6)
CANTON HAME	(14 PE)	(CU YU/SO MI)	(CU YU)	(CO AD/26 41)	(col 5/col 3)
DIVIDE OVERF	E15 11 LC1				
SIERFA MAURE DIVIVE UVERF	2.39	Ø	ø	ø,	1.701416+38
PLO ATING JVE					
SUNS ET UPPER	• 4 4	. 0	6	ið.	1.781416+38
CULUMN SUMS	2.83		Ð	ð,	1 -701415+53
CULUMH MEAMS	1 • 4 1 5		ď	di	8.5 8786E+37

TIME : .073

