Advanced Optimization Lecture 2: Continuous Optimization I

October 20, 2021
CentraleSupélec / ESSEC Business School dimo.brockhoff@inria.fr

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

		Topic
Wed, 13.10.2021	PM	Introduction, examples of problems, problem types
Wed, 20.10.2021	PM	Continuous (unconstrained) optimization: convexity, gradients, Hessian, [technical test Evalmee]
Wed, 27.10.2021	PM	Continous optimization II: gradient descent, Newton direction, quasi-Newton (BFGS) [1st mini-exam] Linear programming: duality, maxflow/mincut, simplex algo
Wed, 03.11.2021	PM	Constrained optimization: Lagrangian, optimality conditions
Wed, 10.11.2021	PM	Gradient-based and derivative-free stochastic algorithms: SGD and CMA-ES
Wed, 17.11.2021	PM	Other blackbox optimizers: Nelder-Mead, Bayesian optimization [2 nd mini-exam]
Wed, 24.11.2021	PM	Benchmarking solvers: runtime distributions, performance profiles
Tue, 30.11.2021	23:59	Deadline open source project (PDF sent by email)
Wed, 01.12.2021	PM	Discrete optimization: branch and bound, branch and cut, k-means clustering
Wed, 15. 12.2021	PM	Exam

Details about the Group Project Grading

What is **not** graded?

- Whether the contribution to the project is actually accepted into the production code/master branch/...
- Your contributions when writing issues, interacting with others developers or users etc.
 - Just because I cannot check everything
 - But please interact with people (and also mention this in the report if you feel it is relevant; in this case it is graded ⓒ)

What **is** graded?

- Report: readability, structure, clearness, ...
- Contribution itself: difficulty, amount/scale, ...

I will try to be as fair as possible by grading all groups relatively to each other

Organization of the Groups

https://docs.google.com/spreadsheets/d/1WV8yfI1T0rYqtdoPYzOu7 ORVx9qKC1kwvOSFE6MVaX4/edit?usp=sharing

back to lecture

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

examples and typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization
 - linear programming, dual problem
 - Lagrangian, optimality conditions

Gradient-based Algorithms

- stochastic gradient
- quasi-Newton method (BFGS)

Learning in Optimization / Optimization in Machine Learning

- Stochastic gradient descent (SGD) + Adam
- CMA-ES (adaptive algorithms / Information Geometry)
- Other derivative-free algorithms: Nelder-Mead, Bayesian opt.

Reminder: Continuous Unconstrained Optimization

• Optimize
$$f$$
:
$$\begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \end{cases}$$

$$\in \mathbb{R}$$
 unconstrained optimization

- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$

Goal: Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points

- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Reminder: Gradient Definition

In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x (= ||\mathbf{x}||^2)$ with $x \in \mathbb{R}^n$

Link to the OneNote page with the solutions

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x (= ||\mathbf{x}||^2)$ with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(x) = x^T A x$, then $\nabla f(x) = (A + A^T) x$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is **orthogonal** to the level set in x_0 .

If this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$) and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^n

Taylor Formula – Order One

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{T} \mathbf{h} + o(||\mathbf{h}||)$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \to \mathbb{R}$ is two times differentiable then $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$ i.e. for h small enough, $h \to f(x) + hf'(x) + h^2f''(x)$ approximates $h \to f(x+h)$
- $h \to f(x) + hf'(x) + h^2f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

■ The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$$
.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Link to the OneNote page with the solutions

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \left(\nabla f(\mathbf{x})\right)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \left(\nabla^2 f(\mathbf{x})\right) \mathbf{h} + o(||\mathbf{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Organization of the Groups

https://docs.google.com/spreadsheets/d/1WV8yfI1T0rYqtdoPYzOu7 ORVx9qKC1kwvOSFE6MVaX4/edit?usp=sharing

Test for Mini-Exam in Evalmee

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$

Newton direction: $(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(x) = \frac{1}{2}x^T A x$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

- Plot the level sets of f(x).
- **2** Compute the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) and plot them into the same plot with the level sets.

Link to the OneNote page with the solutions

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$

Newton direction: $(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(x) = \frac{1}{2}x^T A x$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

- Plot the level sets of f(x).
- **2** Compute the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) and plot them into the same plot with the level sets.
- remind level sets: axis-parallel ellipsoids, axis-ratio=3
- remind gradient: Ax
- remind Hessian: A