Devoir surveillé n°1

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Résoudre dans
$$\mathbb{R}^2$$
 le système
$$\begin{cases} 2^{3x+2y} = 5 \\ 4^{2x} = 2^{2y+3} \end{cases}.$$

II. Argument tangente hyperbolique.

L'objectif de ce problème est d'étudier la fonction réciproque de la tangente hyperbolique : l'argument tangente hyperbolique, notée argth.

Dans tout le problème, on considère un plan muni d'un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

- 1) Définition en tant que réciproque.
 - a) Rappeler sans démonstration le tableau de variations de la fonction th.
 - b) Démontrer que th admet une réciproque, que nous noterons argth, et déterminer son tableau de variations.
 - c) Exprimer th' en fonction de th (on justifiera le résultat).
 - d) Étudier la dérivabilité de argth et déduire de la question précédente une expression explicite de argth'.
 - e) Étudier la position relative de la courbe de argth et de sa tangente au point d'abscisse 0.
 - f) Tracer sur un même dessin les courbes de th, argth et la droite d'équation y = x.
- 2) Expression explicite de l'argument tangente hyperbolique.
 - a) Soit $y \in \mathbb{R}$. Résoudre en x l'équation $y = \operatorname{th}(x)$ et en déduire une expression explicite de $\operatorname{argth}(y)$.
 - b) Retrouver à partir de cette expression de $\operatorname{argth}(y)$ l'expression de de $\operatorname{argth}'(y)$ obtenue à la question $\mathbf{1}$)d).
- 3) Une étude de fonction.

On considère la fonction $f: x \mapsto \operatorname{argth}\left(\frac{3\operatorname{th}(x)+1}{3+\operatorname{th}(x)}\right)$.

- a) Déterminer le domaine de définition de f.
- b) Déterminer le domaine de dérivabilité de f ainsi qu'une expression simplifiée de f'(x), lorsque c'est possible.
- c) En déduire une expression simplifiée de f.
- 4) <u>Une autre étude de fonction.</u>

On considère la fonction $g: x \mapsto \operatorname{argth}\left(\sqrt{\frac{\operatorname{ch}(x) - 1}{\operatorname{ch}(x) + 1}}\right)$.

- a) Déterminer le domaine de définition de g.
- **b)** Soit $x \in \mathbb{R}$, posons $y = \operatorname{ch}(x)$. Montrer que $g(x) = \frac{1}{2} \ln \left(y + \sqrt{y^2 1} \right)$.
- c) En déduire que pour tout $x \in \mathbb{R}$, $g(x) = \frac{|x|}{2}$.
- 5) Un calcul de somme.
 - a) Montrer que si $x, y \in \mathbb{R}$, alors

$$th(x+y) = \frac{th(x) + th(y)}{1 + th(x)th(y)}.$$

b) En déduire que pour tout $k \in \mathbb{N}$:

$$\operatorname{argth}\left(\frac{1}{k^2+3k+1}\right) = \operatorname{argth}\left(\frac{1}{k+1}\right) - \operatorname{argth}\left(\frac{1}{k+2}\right)$$

c) En déduire l'existence et la valeur de la limite de la suite de terme général :

$$S_n = \sum_{k=1}^n \operatorname{argth}\left(\frac{1}{k^2 + 3k + 1}\right) = \operatorname{argth}\left(\frac{1}{1^2 + 3 \times 1 + 1}\right) + \dots + \operatorname{argth}\left(\frac{1}{n^2 + 3n + 1}\right).$$

III. Polynômes de Tchebychev.

Pour tout $n \in \mathbb{N}$, on considère la fonction $F_n : x \mapsto \cos(n \operatorname{Arccos}(x))$.

- 1) Pour chaque $n \in \mathbb{N}$, déterminer l'ensemble de définition de F_n , que l'on notera \mathcal{D}_n .
- 2) Expliciter F_0 , F_1 et F_2 .
- 3) Montrer que, pour tout $x \in \mathcal{D}_3$, $F_3(x) = 4x^3 3x$.
- 4) Soit $x \in [-1, 1]$. Exprimer Arccos(-x) en fonction de Arccos(x).
- 5) En utilisant le résultat de la question précédente, déterminer la parité de F_n pour chaque $n \in \mathbb{N}$.
- 6) Soit $n \in \mathbb{N}^*$, exprimer $F_{n+1} + F_{n-1}$ en fonction de F_n .
- 7) Retrouver à partir de ce résultat l'expression de F_3 obtenue à la question 3) et déterminer F_4 .
- 8) Déterminer F'_n et F''_n pour tout $n \in \mathbb{N}$. On s'attachera à déterminer les ensembles de dérivabilité des fonctions en jeu.
- 9) Montrer que pour tout $x \in]-1,1[$ et tout $n \in \mathbb{N}$:

$$(1 - x^{2})F''_{n}(x) - xF'_{n}(x) + n^{2}F_{n}(x) = 0.$$
- FIN -