

Арктический технологический конкурс

Оценка ущерба от воздействия вредных и поражающих факторов техногенной чрезвычайной ситуации на опасных производственных объектах в Арктике **«SAFETY ARCITC»**

Safety Arctic

Состав команды

ФИО	Возраст	Город	Место работы или учебы	Специализация в команде
Алексеев Иван Николаевич	33	Москва	LLC Flat Ventures	Продакт-менеджмент, Machine Learning
Семенов Олег Владимирович	32	Москва	Первый бит	Разработка ПО
Андреев Алексей Владимирович	32	Москва	Сколтех	Тестирование ПО

Опыт команды:

- Разработка научной концепции
- Участие в 13 международных научнотехнических конференциях
- 23 публикации по теме
- Разработка математической модели
- Разработка прототипа ПО
- Разработка архитектуры глубокой нейронной сети

Первый прототип ПО, зарегистрированный в ФИПС

Публикации по теме проекта

Победа в конкурсе докладов на VIII Международной научно-технической конференции «Освоение ресурсов нефти и газа российского шельфа: Арктика и Дальний Восток» (ROOGD-2020).

в qr-кодах активные ссылки

Карты климата и расположения компрессорных станций в арктическом и субарктическом климатическом поясе

Данные МинФин за 2022 год

доходы	Исполнение за январь-декабрь	% исполнения	% от общей суммы доходов
1	3	4	
Лоходы, всего	27 825 016.9	111,2	
Нефтегазовые доходы	11 586 216,0	121,4	41,6
Ненефтегазовые доходы	16 238 800,9	104,9	58,4
Оборотные налоги и сборы	11 414 327,1	104,2	41,0
Связанные с внутренним производством	7 636 681,8	121,0	27,4
НДС внутрений	6 489 381,6	123,1	23,3

Карты климата и расположения компрессорных станций в арктическом и субарктическом климатическом поясе

	Объекты в САКП	Объекты в АКП
Трансгаз Югорск	25	1
Трансгаз СПетербург		2 (строящиеся)
Трансгаз Ухта	5	
Трансгаз Сургут	8	
Всего цехов в транспортных ДО	115	
Добыча Надым	2	2
Добыча Ноябрьск	3	
Добыча Уренгой	16	
Добыча Ямбург	4	6
Всего цехов в добычных ДО		64
Цехов всего	·	179
Всего	63 9 (11)	

ПОЯС АРКТИЧЕСКИЙ КЛИМАТИЧЕСКИЙ ПОЯС

СУБАРКТИЧЕСКИЙ КЛИМАТИЧЕСКИЙ ПОЯС

УМЕРЕННЫЙ КЛИМАТИЧЕСКИЙ ПОЯС

Количество пострадавших

	транспортн	добычные			
	ые				
Должности	272				
Случаев всего	490	267			
Количество	788	378			
пострадавших					
Погибших	118	14			
Дней	26614 (~72	18991 (~52			
нетрудоспособно	года)	года)			
СТИ					

Противоречивость статистических данных и особенности Арктических условий (явление температурной инверсии)

Динамика случаев аварии и смертельного травматизма на газотранспортных предприятиях в отчетах Ростехнадзора

Вероятности появления опасных метеорологических условий по месяцам в зимнее время в п. Оймякон

Оценка ущерба здоровью работников опасных

производственных объектов в Арктике

Трек конкурса: Экология (воздействие на человека)

Причины разработки:

- Отсутствие нормативной базы
- Отсутствие универсальной методики
- Противоречивость статистических данных (Росстат, ФСС, ФИТ, Газпром, Ростехнадзор)
- Компании не успевают за развитием технологий (бюрократия)
- Федеральные органы не успевают разрабатывать нормативные документы (бюрократия)

VAPKTEK

Типовой сценарий аварии на КС:

Самый негативный сценарий ущерба здоровью: получение профессиональных заболеваний

смертельный травматизм от поражающих факторов ЧС

Композиция распределений (математическая модель):

$$Y = X_1 \cdot X_2 \cdot K$$

где Ү – конечная функция распределения

Х₁ – случайная величина количества лет недожития до пенсионного возраста, год

Х₂ – случайная величина возраста погибшего, год

К – вероятность гибели от ПФ аварии, 1/год

Закон распределения получается интегрированием совместной плотности распределения $f(x_1; x_2)$ по области $D(y) = \left\{x_1, x_2 : x_2 < \frac{y}{x_2 \cdot K}\right\}$, которую нужно согласовать с областью возможных случайных аргументов.

Технологии и данные

Изменение типовой последовательности событий в группах сценариев из-за опасных метеорологических условий

N9	Группы сценариев аварий	Обозначение и название группы	Группа сценариев (типовая последовательность событий)
1	Группы сценариев аварий для ОСПО типа ГП (подземные технологическ ие газопроводы)	Группа сценариев Сгп3 «Рассеивание низкоскоростн ого шлейфа газа с возгоранием»:	…→ рассеивание истекающего газа без воспламенения → дисперсия в атмосфере и перенос на значительное расстояние взрывопожароопасного тяжелого парового облака ТВС как по территории объекта, так и за его пределы вблизи поверхности земли → образование взрывоопасных концентраций у поверхности земли → «задержанное» воспламенение парового облака от источника зажигания → сгорание облака паров в дефлаграционном режиме → попадание персонала объекта, зданий, сооружений, технологического оборудования объекта в зону барического, осколочного воздействия или газового облака → …

Пример дерева событий для группы сценариев аварий для ОСПО типа ГП (подземные технологические газопроводы)

Разрушение ОСПО

Результаты расчетов индивидуального риска для других групп сценариев на технологическом оборудовании

Сценарий	Технологическое оборудование	Вероятность гибели, 1/год
гп	Всасывающий и нагнетательный трубопроводы обвязки ГПА, подземные	0,00000114
ГНН	АВО газа	0,000005027
ГНВ	Трубопроводы диаметром менее 219 мм	0,000000241

	Мгновенное загорание	: С1ГП,	государст Есть пострадавшие планиров
	С1ГНН, С1ГНВ		P1=0,5
Истечение колонного типа для сценариев	РС1ГП=0,2 РС1ГПП=0.2		Нет пострадавших
С1ГП, С2ГП, С3ГП	PC1Γ11B=0,2		P2=0,5
Истечение колонного типа в		Образование взрывоопасного облака ГВС метана и	Есть пострадавшие
загроможденном	Рассеивание	задержанное воспламенение	P3=0,5
пространстве для сценариев С1ГНН,	низкоскоростного шлейфа газа с	РКМ1(ноябрь)=0,92	Нет пострадавших
С2ГНН, С3ГНН, С1ГНВ, С2ГНВ, С3ГНВ	задержанным воспламенением С2ГП, С2ГНН, С2ГНВ	РКМ2(декабрь)=0,98 РКМ3(январь)=0,94 РКМ4(февраль)=0,83	P4=0,5
PF111.1=0,2	РС2ГП=0,24	Рассеивание ГВС без образования опасных	Есть пострадавшие
РГП2.1=0,2 РГП3.1=0,4	РС2ГНН=0,24 РС2ГНВ=0,24	концентраций газа	P5=0,5
РГП4.1=0,4 РГНН5.1=0,4		РКМ5(ноябрь)=0,08 РКМ6(декабрь)=0,02	Нет пострадавших
РГНВ6.1=0,4		РКМ7(январь)=0,06	P6=0,5
РГНВ7.1=0,05 РГНН10.1=0,05	Без воспламенения СЗГП, СЗГПП.	РКМ8(февраль)=0,17	Есть пострадавшие
РГНН11.1=0,05	СЗГПВ		P7=0,5
	PC3FH=0,56 PC3FHH=0.56		Нет пострадавших
	PC3Γ1IB=0,56		PC32=0,5
	Мгновенное загорание С	ΆΓΠ.	Есть пострадавшие
	С4ГНН, С4ГНВ	,	P8=0,5
	РС4ГП=0,2		Нет пострадавших
	РС4ГНН=0,2 РС4ГНВ=0,2		P9=0,5
		Образование взрывоопасного	Есть пострадавшие
	Рассеивание	облака ГВС метана и задержанное воспламенение	P10=0,5
	низкоскоростного	PCM1(ноябрь)=0,92	Нет пострадавших
Истечение струевого типа	шлейфа газа с задержанным воспламенением С5ГП, С5ГНН, С5ГНВ	РСМ2(декабрь)=0,98 РСМ3(январь)=0,94 РСМ4(февраль)=0,83	P11=0,5
PFH1.2=0,8	PC5F∏=0,24	Рассеивание ГВС без образования опасных	Есть пострадавшие
PITI2.2=0,8 PITI3.2=0,6	РС5ГНН=0,24 РС5ГНВ=0,24	концентраций газа	P12=0,5
РГП4.2=0,6 РГПП5.2=0.6		PCM5(ноябрь)=0,08 PCM6(декабрь)=0,02	Нет пострадавших
PTHB6.2=0,6 PTHB7.2=0.95	_	PCM7(январь)=0,06	P13=0,5
PIHH10.2=0,95	Без воспламенения С6ГП, С6ГНН,	PCM8(февраль)=0,17	Есть пострадавшие
PITIIII1.2=0,95	С6ГНВ		P14=0,5
	PC6FH=0,56 PC6FHH=0,56		Нет пострадавших
	РС6ГПВ=0,56		P15=0,5

Промежуточные результаты

Процент перенёсших болезнь от общего количества людей заболевших в выбранных группах после длительного воздействия шума технологического оборудования

Болезнь/симптоматика	Маши- нист	Слесарь по ремонту	Слесарь КИП
шум в ушах	34,8	39,0	10,8
боли в области сердца	35,0	28,5	15,8
профессиональных потер слуха	36,0	38,5	5,7
хронические суб- и атрофические фарингиты	49,5	35,3	
гипертоническая болезнь	30,5	25,0	
нарушения биоэлектирческой активности миокарда	16,5	21,5	9,7
симпатикотоннческое реагирование по клнностотической и	92,4	90,5	
глазосердечной пробе			
синдром вегето-сосудистой дистонии, преимущественно	39,4		16,5
симпато-адреналового характера			
коньюнктивы глаза	79,6		
ангиопатии сетчатки гепертонического типа	84,2	83,3	50,4
·	47,8	34.5	16,9
	45,3		
клинического диагноза вегето-сосудистои дистонии			
	89,3	92,7	
	9.3		3,3
·	,		13,2
			,
	22.0	26.0	
	10.0	55,2	
	шум в ушах боли в области сердца профессиональных потер слуха хронические суб- и атрофические фарингиты гипертоническая болезнь нарушения биоэлектирческой активности миокарда симпатикотоннческое реагирование по клиностотической и глазосердечной пробе синдром вегето-сосудистой дистонии, преимущественно симпато-адреналового характера коньюнктивы глаза ангиопатии сетчатки гепертонического типа циркуляторных расстройств и нормальным уровнем АД изменения ретинальных сосудов до установления клинического диагноза вегето-сосудистои дистонии Офтальмологические нарушения сочетаются с изменениями в мозговой гемодинамики дискинезии желчевыводящнх путей умеренная гипербилирубинемия и повышение активности трансаминаз увеличение числа лимфоцитов	шум в ушах боли в области сердца профессиональных потер слуха зб,0 хронические суб- и атрофические фарингиты 49,5 гипертоническая болезнь зо,5 нарушения биоэлектирческой активности миокарда симпатикотоннческое реагирование по клнностотической и 92,4 глазосердечной пробе синдром вегето-сосудистой дистонии, преимущественно 39,4 симпато-адреналового характера коньюнктивы глаза 79,6 ангиопатии сетчатки гепертонического типа 84,2 циркуляторных расстройств и нормальным уровнем АД изменения ретинальных сосудов до установления 45,3 клинического диагноза вегето-сосудистои дистонии Офтальмологические нарушения сочетаются с изменениями в мозговой гемодинамики дискинезии желчевыводящнх путей умеренная гипербилирубинемия и повышение активности трансаминаз увеличение числа лимфоцитов 22,0 Угнетение фагоцитарной активности лейкоцитов 48.3	шум в ушах боли в области сердца профессиональных потер слуха доли в области сердца профессиональных потер слуха доли в области сердца профессиональных потер слуха долические суб- и атрофические фарингиты долу долу долу долу долу долу долу долу

Пример расчета размера доплат по предлагаемой методике

Профоссия	Количество действующих	Приведенный	Размер
Профессия	факторов	ущерб (сут/год)	доплаты, (%)
Машинист	20	80	16,8
Слесарь АиМо	20	75	15,75
Слесарь по ремонту	20	77	16,17

Результаты оценки влияния профессиональных заболеваний на количество дней недожития до 65 лет по профессиям

			Машини	1CT	Слес	арь по р	ремонту	СЛ	есарь А	иМО
Nº	Параметр	Ипз	Класс условий труда	К-во ДН до 65 лет в год	Ипз	Класс услови й труда	К-во ДН до 65 лет в год	Ипз	Класс услови й труда	К-во ДН до 65 лет в год
1	Среднее значение			102,941			76,47			50,00
2	На основании среднего Ипз	0,440	3.3	75	0,318	3.3	75	0,172	3.2	50

Ущерб здоровью от профессиональных заболеваний (дней недожития до СПЖ) в выбранных профессиях

o) = ==:=p=:::::=========================							
Риск в определенный	Ущерб здоровью от профессиональных заболеваний (дней недожития до СПЖ) в выбранных профессиях						
период	Машинист		Слесарь АиМО		Слесарь КИП		
	дней	лет	дней	лет	дней	лет	
С Профзаб, за год	103		77		50		
Римен В В В В В В В В В В В В В В В В В В В	3921,6	10,7	2931,7	8,0	1903,7	5,2	
Полный ущерб здоровью							
от опасных и вредных	5354, 7	14,7	4364,8	11,9	3336,8	9,1	
факторов Rпрофзаб+Rсмтравм							

Показатели страховых взносов по профессиям

Страховые взносы, руб.					
Машинисты	АиМО	Слесаря по ремонту			
4529204,564	3692485,564	2823825,564			

Промежуточные результаты

Практическое внедрение результатов исследований

каплидата технических наук

машиностроения и приборо По результатам ра

Алексеевым И.Н. подгото практической работы по кур

риска на компрессорных ст

бакалавриате по направлени

Пособие содержит в оформлению расчетной

профиль «Паротурбинные, га

установки», «Эксплуатация в

Акт внедрения

Свидетельствующий о том, что положения диссертационного исследования Алексеева Ивана Пиколаевича на соискание ученой степени кандидата технических наук на тему «Оценка опасности производственной деятельности персонала компрессорных станций магистральных газопроводов в условиях Арктики», а именно предложенный методический аппарат для оценки опасности при строительстве трубопроводов, использованы в твенной деятельности ООО «Гефест»

31.08 2020 \$ 11

МЕТОДЫ АНАЛИЗА РИСКА НА КОМПРЕССОРНЫХ СТАНЦИЯХ

Алексеева Ивана Николаевича на соискапие ученой степени кандидата технических наук на тему «Оценка опасности производственной деятельности персонала компрессорных станций магистральных газопроводов в условиях Арктики», в том числе использование при строительстве предложенных защитных покрытий для трубопроводов в целях снижения шума, использованы в производственной деятельности ООО НТЦ «Пожарные Инновации».

Использование рекомендаций диссертационной работы Алексеева И.Н. дополняет имеемые знания о применении конструктивных решений при проектировании и строительстве трубопроводов

000 НТЦ «Пожарные Инновации»

«Научно-технический центр «Пожарные инновации»

Утверждаю

Зам. Генерального директор:

000 НТЦ Пожарные Инновации

POCCHINCRASI OF ELEPACIFIST 西西南安泰安 СВИДЕТЕЛЬСТВО о государственной регистрации программы для ЭВМ № 2020611132 Методика опенки профессионального риска на компрессорных станциях магистральных газопроводов равообладателы: Алексеев Иван Николиевич (RU) Ангор: Алексеев Иван Николаевич (RU) Заявка № 2019664654 Дата поступления 13 ноября 2019 г. Ресстре программ или ЭВМ 24 япваря 2020 г. Рутоводитель Фидеостовой службы Telesce F.H. Harmen Проведение экспериментальных исследований звукопоглощающих покрытий в НИИСФ **PAACH**

2 1

1 – генератор «белого» 2 – усилитель мощности;

3 – источник звука;

4 – соединительный воздуховод со звукоизолирующим покрытием;

5 – гибкая вставка, уменьшающая передачу вибрации;

6 – упругий сальник;

7 – испытательная труба (с испытываемым покрытием и без него);

8 – звукопоглощающий клин;

9 – звукоизолирующая заглушка;

10 – микрофон;

11 – шумомеранализатор спектра

«Октава 110А»

Реверберационная

камера

Промежуточные результаты

Результаты экспериментальных исследований шумоглушения инновационных тепло- звукоизоляционных материалов на основе эластомеров в НИИСФ

Эффективность различных по составу покрытий на основе пеностекла, волокнистых материалов и эластомеров: 1 – Пеностекло типа FOAMGLAS T4 (50 мм), базальтовый мат (80 мм), антивибрационный слой (3 мм), оцинкованный лист (0,55 мм); 2 – 2 слоя K-FONIK 240 25 мм + INCLAD; 3 – K-FONIK ST GK 072 (12 мм); 4 – ISOVER типа KIM-AL (100 мм); 5 – K-FLEX ST (25 мм) + 3 слоя K-FONIK 240 (25 мм) + 2 слоя K-FONIK GK + INCLAD

Результаты экспериментальных исследований огнестойкости инновационных тепло- звукоизоляционных материалов на основе эластомеров в ЦНИИСК им. Кучеренко

Lean Canvas

(2) Проблема	(4) Решение	(3) Уникальное торговое предложение	(9) Нечестные преимущества	(1) Сегменты потребителей
официальных источниках	модель	· ·		Потребители: - b2b сегмент - государственные компании - отраслевыке компании - зарубежные отраслевые компании - военная промышленность
Альтернативные решения	(8) Ключевые метрики	отрасли. Описание в одну строку	(5) Каналы привлечения	Ранние последователи
- Использование существующих решений в области анализа рисков (отраслевые методологии) - Отраслевые СТО - Методики в НМД (ФЗ, ПБ, ФНП) - Использование софта Ростехнадзора	- C1 (конверсия из официальной рассылки) - C2/C3 (конверсия в подписку) - online/offline просмотры - LT - Просмотры/комментарии - Процент активной/вовлеченной аудитории	Модель глубокого обучения оценки ущерба - это недопущение этого самого ущерба и увеличение продолжительночсти жизни		- "продвинутые" ДО ПАО "Газпром"
7) Потоки расходов (6) Потоки доходов				
- оплата аренды серверных п- обновление компьютеров- затраты платформы- затраты на привлечение	мощностей (Яндекс Cloud/ VK Clouc	- дополни	стоимость за подписку тельная стоимость за "предложение" своего продукта от дохода запущенных продуктов	

Сценарии использования и масштабирование

Итеративная разработка

Создание блоков для возможности

кастомизации продукта под проблему

Переобучение модели

пользователя

Атмосфера

Почва/грунт

Водоемы

Лесной массив

Финансовые показатели, риски, ограничения

№ п/п	Риск	Категория
	Гос корпорации начнут собственную разработку (но на это у них уйдет много времени на	
	1согласования)	Продуктовый риск
	2Противоречия с законодательством	Продуктовый риск
	3Срок разработки может затянуться	Продуктовый риск
	4Не будет денег на аренду облачных сервисов	Продуктовый риск
	5Наработки могут пропасть без своевременного бекапа	Продуктовый риск
	6Кража интеллектуальной собственности	Продуктовый риск
	7Кража коммерческой тайны	Продуктовый риск
	8Отсутствие заинтересованности клиентов/стейкхолдеров	Каналы
	9Отсутствие финансирования	Рыночный риск
1	ОНевозможность масштабировать продукт при условиях выгорания членов команды	Продуктовый риск

Основные метрики проекта и что планируется сделать за время хакатона

Lean Startup (описание всех метрик проекта, Бизнесмодели по Отервальдеру находится по ссылке)

- Описание всех целевых групп, кому может быть полезен проект и продукт, в т.ч.
- Пользователи
- Заказчики
- Описание регионов, организаций, групп людей, кому и чем полезен проект
- Оценка стоимости реализации проекта
- Оценка возможной финансовой выручки или других выгод от реализации
- Риски проекта
- Описание сценариев использования проекта, ситуаций, кейсов
- Возможности развития и масштабирования
- Описание конкурентов и похожих проектов
- Описание отличий своего проекта и сильных сторон

Что планируется сделать за время хакатона:

- Работа по методам экстремального программирования
- 4 спринта
- Выбор архитектуры нейронной сети (возможно предобученной модели)
- Разработка реккурентной модели нейронной сети
- Разработка GAN модели нейронной сети
- Сравнение разных моделей нейронных сетей
- Выбор и оптимизация метрик гиперпараметров
- Обученная модель нейронной сети на официальных данных, готовая к продакшену
- MVP

СПАСИБО ЗА ВНИМАНИЕ

Алексеев Иван Николаевич +7 966 357 51 41 (whatsap) @ai_nick (telergam) Safety Arctic