Jardim de infância

Nome do arquivo: jardim.c, jardim.cpp, jardim.pas, jardim.java, jardim.js ou jardim.py

Vívian é uma professora do jardim de infância. Todos os dias, ao final da aula, ela tem que olhar os desenhos que seus alunos fizeram naquele dia e fazer algum comentário. Esta é uma tarefa muito repetitiva, já que as crianças costumam desenhar coisas semelhantes, portanto Vívian decidiu automatizar o processo. Ela fez um programa capaz de processar a imagem e procurar padrões conhecidos para fazer comentários predeterminados. Em particular, ela percebeu que na maioria dos desenhos as crianças incluem um pinheiro. Porém, ela está tendo dificuldades para reconhecê-los e pediu sua ajuda. O programa dela já é capaz de reconhecer uma figura que pode ser um pinheiro e transformá-la em sete pontos $P_1, P_2, \dots P_7$. O candidato a pinheiro seria a região interna do polígono $P_1P_2P_4P_6P_7P_5P_3$, como mostra a figura a seguir de um pinheiro válido.

Logo, dados os sete pontos que formam a imagem, você deve decidir se ela é ou não um pinheiro. Ao analisar os desenhos das crianças, você decidiu que as condições para que os pontos formem um pinheiro são as seguintes:

- O ângulo $\angle P_2 P_1 P_3$ é agudo (vértice em P_1);
- Os segmentos $\overline{P_1P_2}$ e $\overline{P_1P_3}$ têm o mesmo comprimento;
- Os pontos P_2, P_3, P_4 e P_5 são colineares;
- \bullet Os pontos médios dos segmentos $\overline{P_2P_3}$ e $\overline{P_4P_5}$ são coincidentes;
- O segmento $\overline{P_2P_3}$ tem comprimento maior que o segmento $\overline{P_4P_5}$;
- Os segmentos $\overline{P_4P_6}$ e $\overline{P_5P_7}$ são perpendiculares ao segmento $\overline{P_2P_3}$;
- $\bullet\,$ Os segmentos $\overline{P_4P_6}$ e $\overline{P_5P_7}$ têm o mesmo comprimento;
- Os pontos P_1 e P_6 devem estar separados pela reta que contém o segmento $\overline{P_2P_3}$. Formalmente, o segmento $\overline{P_1P_6}$ deve interceptar a reta que contém o segmento $\overline{P_2P_3}$ em um único ponto.

A imagem a seguir mostra os polígonos formados pelos exemplos de entrada.

Entrada

A entrada contém sete linhas. A i-ésima da entrada contém dois inteiros X_i e Y_i , indicando as coordenadas cartesianas do ponto P_i .

Saída

Seu programa deve produzir uma única linha, contendo uma única letra, "S" se os pontos formam um pinheiro pelas condições descritas e "N", caso contrário.

Restrições

- $\begin{array}{l} \bullet \ -2 \times 10^4 \leq X_i, Y_i \leq 2 \times 10^4. \\ \bullet \ \text{Todos os pontos são diferentes}. \end{array}$

Informações sobre a pontuação

 $\bullet\,$ Em um conjunto de casos de teste equivalente a 50 pontos, o segmento $\overline{P_2P_3}$ será paralelo ao eixo X do plano cartesiano (exemplos 1 e 4).

Exemplos

Entrada	Saída
2 -4	S
5 3	
-1 3	
3 3	
1 3	
3 5	
1 5	

Entrada	Saída
2 -1	S
5 45	
-43 9	
-11 33	
-27 21	
-20 45	
-36 33	

Entrada	Saída
-1 -3	N
11 -23	
11 17	
11 -7	
11 1	
19 -7	
19 1	

Entrada	Saída
2 4	N
18 22	
-14 22	
6 24	
-2 20	
6 26	
-2 22	

Entrada	Saída	
4 1	N	
-36 -4		
-12 -36		
-30 -12		
-18 -28		
-39 -25		
-27 -41		