Algorithms for Graphical Models (AGM)

Bayesian nets

\$Date: 2008/10/16 10:24:16 **\$**

AGM-08

In this lecture

Bayesian nets:

- what they are
- as factored distributions
- conditional independence properties

Bayesian net structure

- The structure of a Bayesian net is given by a directed acyclic graph (DAG) whose nodes are the variables of a distribution.
- Here's one for the 'Asia' example:

AGM-08

Directed graph terminology

- If there's an arrow $A \to B$ in a directed graph, then A is a parent of B and B is a child of A.
- A directed graph (digraph) is *acyclic* if the graph contains no loops which follow the direction of the arrows.
- The DAG defines a partial order on nodes. A (total) ordering of nodes consistent with a given DAG is one consistent with this partial ordering.

Bayesian net parameters

- There is a *conditional probability table (CPT)* for each variable.
- The CPT for variable X defines a distribution over the values of X for each joint instantiation of the parents of X
- Here are the CPTs for Asia. Cue asia_cpts from gPy.Examples

The distribution represented by a Bayesian net

- Note that each CPT is a factor.
- The distribution represented by a Bayesian net is the product of all the CPTs.
- So BNs are factored representations of probability distributions and so everything we have said about such more general factored representations holds for BNs as well.
- But (unsurprisingly!) BNs have extra properties.

No normalisation needed

- A product of CPTs, one for each variable, defines a distribution directly, no matter what numbers are in the CPTs

- . . . as long as the corresponding digraph is acyclic.
- There is no need to normalise: you will prove this as an exercise.

The moral graph

- If we 'forget' that the CPTs are CPTs and just treat them as factors, then the resulting interaction graph is called the *moral graph*.
- Unmarried parents get connected (since they are together in some CPT) and the arrows disappear (since the CPTs lose their CPTness).
- It's not difficult to see that a BN factorises according to its moral graph.

Conditional independencies from a BN's moral graph

- Since a BN factorises according to its moral graph, we can read off some conditional independencies from its moral graph.
- For example, we have that $\{A\} \perp \{B,D,S\} | \{E,L,T\}$.
- However, there are further conditional independence relations which hold in a BN but cannot be deduced from the moral graph.
- To get these we need to exploit properties of CPTs . . .

The key property of CPTs

- For any configuration of its parents the values for the child must add up to one: this is what makes it a CPT.
- So if we marginalise away the child variable in a CPT we end up with a factor of ones.
- Factors with all data values = 1 can be deleted from a factored distribution without altering the distribution.
- So if a variable only appears in its own CPT then we can marginalise it away from the Bayesian net by simply removing this CPT!

Removing childless variables from Bayesian nets

- Let P(A, T, E, L, S, B, D, X) be the joint distribution defined by the 'Asia' Bayesian net.
- The marginal distribution P(A, T, E, L, S, B, X) [D marginalised away] is given by the BN with (i) the CPT for D deleted and thus (ii) the node D and all links to it deleted in the corresponding acyclic digraph.
- The BN for P(A, T, E, L, S, X) [B marginalised away in addition] is produced by deleting B from the BN for P(A, T, E, L, S, B, X).
- Clearly there is some sort of general principle here . . .

Ancestral sets

- In a given digraph, the *ancestors* of vertex X, denoted an(X), is the set of nodes Y such that there is a directed path from Y to X.
- It's just the transitive closure of the parent relationship.
- A set of nodes X is an *ancestral set* iff for any node $X \in X$ we have $an(X) \subseteq X$.
- Let $An(\mathbf{Z})$ denote the smallest ancestral set containing a set of nodes \mathbf{Z} . (Just add ancestors, recursively.)

Ancestral sets by example

• Some ancestral sets in the 'Asia' digraph: \emptyset , $\{B, L, S\}$, $\{A, E, L, S, T\}$, $\{A, B, E, L, S, T\}$, $\{A, S\}$.

• And some sets which are not ancestral: $\{L\}, \{A, E, L, S\}.$

The key property of Bayesian nets

- (Notation: Let P be a joint distribution and \mathbf{X} be some subset of its variables, then denote the distribution produced by marginalising P onto \mathbf{X} as $P_{\mathbf{X}}$. If \mathcal{G} is a graph, let $\mathcal{G}_{\mathbf{X}}$ be the graph formed by removing from \mathcal{G} all nodes not in \mathbf{X} .)
- Let P be defined by a BN with acyclic digraph \mathcal{G} and let \mathbf{X} be an ancestral set in \mathcal{G} ...
- ullet . . . then $P_{\mathbf{X}}$ is given by the BN with DAG $\mathcal{G}_{\mathbf{X}}$ (and the relevant CPTs deleted).

What this means for conditional independence

- ullet If we want to know whether the BN structure implies ${f A}\perp {f B}|{f S}$ for disjoint sets of variables ${f A},{f B},{f S}$. . .
- ... first construct the DAG for the distribution $P_{An(A \cup B \cup S)}$.
- ullet This is just $\mathcal{G}_{An(\mathbf{A}\cup\mathbf{B}\cup\mathbf{S})}$ where \mathcal{G} is the original DAG.
- Then construct the moral graph for this (smaller) DAG and use this (smaller) moral graph to check for separation.

The directed global Markov property

This is from Lauritzen:

Let P factorise recursively according to \mathcal{G} . Then

$$\mathbf{A} \perp \mathbf{B} | \mathbf{S}$$

whenever A and B are separated by S in $(\mathcal{G}_{An(A\cup B\cup S)})^m$, the moral graph of the smallest ancestral set containing $A\cup B\cup S$.

This property, which recursive factorisation implies, is the *di*rected global Markov property.

Further conditional independence relations in 'Asia'

- ullet Using this technique from $\mathcal{G}_{\mathsf{Asia}}$ we can deduce that $A \perp S | \emptyset$.
- And that $A \perp S|T$.
- ullet But not that $A\perp S|E$. It could be that $A\perp S|E$ for a particular choice of CPTs, but this does not hold for all choices of CPTs.

The directed local Markov property

- In some DAG \mathcal{G} ...
- Let nd(A) be the non-descendants of node A and pa(A) be the parents of A.
- A distribution P obeys the directed local Markov property relative to \mathcal{G} , if each variable is independent of its non-descendants given its parents: $A \perp nd(A)|pa(A)$.
- ullet It turns out that for any DAG \mathcal{G} , recursive factorisation, the global Markov property and the local Markov property are all equivalent.

Inference in Bayesian nets

- Since a BN is a factored distribution, one option is just to use variable elimination as previously described.
- There are also BN-specific options for inference, both exact and approximate.