Homework 2

20125071 - Bùi Lê Gia Cát

1. P2.84

2. P2.88

FORMAT A		FORMAT B		
Bits	Value	Bits	Value	
1 01111 001	-9 /8	1 0111 0010	-9/8	
0 10110 011	176	0 1110 0110	176	
1 00111 010	-5/2048	1 0000 0000	-1/128	
0 00000 111	7/32763	0 0000 0001	1/1024	
1 11100 000	-8192	1 1110 1111	-248	
0 10111 100	384	0 1111 0000	$+\infty$	

3. P2.91

A. 11.0010010000111111011011

B. 11.001001001(001)

C. These two approximations to π diverge at the 9th to the right of the binary point.

4. P2.87

Description	Hex	M	E	V	D
-0	8000	0	- 15	-0	-0.0
Smallest value > 2	0401	1025/1024	1	1025.2 ⁻⁹	2.001953
512	6000	0	9	512	512.0
Largest denormalized	03FF	1023/1024	-14	1023.2^{-24}	0.000061
$-\infty$	FC00			$-\infty$	$-\infty$
Number with hex representation 3BB0	3BB0	59/64	-1	123.2^{-7}	0.960938

```
5. P2.92
```

```
float_bits float_negate(float_bits f){
  unsigned s=f>>31;
  unsigned e=(f>>23)&0xFF;
  unsigned frac=f&0x7FFFFF;

  if (e==0xFF && frac!=0){
    return f;
  }

  return ((~s)<<31) | (e<<23) | (frac);
}</pre>
```

6. P2.94

```
float_bits float_twice(float_bits f){
    float_bits s=f>>31;
    float_bits e=(f>>23) & 0xFF;
    float_bits frac=f & 0x7FFFFF;

if (e&0xFF){
    return f;
    }
    else if (e==0xFF-1){
        frac=0;
    }
    return (s<<31) | (e+1)<<23 | frac;
}</pre>
```

7. P2.95

```
float_bits float_half(float_bits f){
   unsigned s=f>>31;
   unsigned e=(f>>23)&0xFF;
   unsigned frac=f&0x7FFFFF;

   if (e==0xFF){
      return f;
   }
   else if (e==0x0){
      return 0;
   }

   return (s<<31) | (e-1)<<23 | frac;
}</pre>
```

```
int float f2i(float bits f){
   unsigned s=f>>31;
   unsigned e=(f>>23)&0xFF;
   unsigned m=f&0x7FFFFF;
   unsigned bias=0x7F;
   if (e<bias){
       return 0;
   int result;
   if (e>=31+bias \mid \mid e==0xFF){
       result= 0x80000000;
   else{
       e-=bias;
       m |=0x80000000;
       if (e>23){
       result = m<<(e-23);
       else {
       result = m>>(23-e);
   if (s) return -result;
   else return result;
```

9. P2.97

```
int bitLength(int i){
   i>>=1;
   int l=0;
   while (i){
       ++1;
       i >>=1;
   return 1;
float bits float i2f(int i){
        unsigned s=i>>31;
   int length=bitLength(i);
   unsigned e=length+127;
   i&=(1<<length)-1;
   float_bits result = s<<31;
   result |=(e<<23);
    result |= (i<<(23-length));
   return result;
```