Integer Factorization by Quantum Computers

Wen-Guey Tzeng

Computer Science Department

National Chiao Tung University

Periodic function

The <u>period</u> of g(x) is the minimum s that makes g(x)=g(x+s) for all x.

Question: find the period?

- 1. Sample N points a_0 , a_1 , ..., a_{N-1} every time unit
- 2. Find the frequency F in the sampled sequence $a_0 a_1 \dots a_{N-1}$.
- 3. Then, s=1/F.

Periodic function: sin(Fx)

Convolution with $sin(2\pi(y/N)x)$

g(x) with period = N/2, frequency = 2/N

Convolution with $sin(2\pi(y/N)x)$: observation

- F=y/N is a multiple of the frequency of g(x), the convoluted result is larger
- F=y/N is not a multiple of the frequency of g(x), the convoluted result is smaller

Discrete Fourier Transform (DFT)

$$\vec{a} = [a_0 \ a_1 \ ... a_{N-1}]$$

•
$$e^{ix} = \cos x + i \sin x$$
, $i = \sqrt{-1}$

- Let $\omega = e^{2\pi i/N}$
- DFT $(\vec{a}) = \vec{f} = [f_0 \ f_1 \ ... f_{N-1}]$, where

$$f_y = \sum_{x=0}^{N-1} a_x \omega^{-xy}, \qquad 0 \le y \le N-1$$

- $f_v = a_0 \omega^{-0y} + a_1 \omega^{-1y} + ... + a_{N-1} \omega^{-(N-1)y}$ is the magnitude of frequency y/N
- Convoluted with $sin(2\pi(y/N)x)$ and $cos(2\pi(y/N)x)$, $0 \le y \le N-1$

Discrete Fourier Transform (DFT)

DFT: special case (s | N)

- N=8 points, period s=4, $\vec{a} = [1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4]$
- Matlab (fft, abs, normalized)
 - $\vec{f} = [\mathbf{0.5664} \ \mathbf{0} \ \mathbf{0.1602} \ \mathbf{0} \ 0.1133 \ 0 \ 0.1602 \ 0]$

• N points, the period=s, s | N

•
$$\vec{f} = [f_{0(\frac{N}{s})} \ 0 \ 0 \ \dots 0 \ f_{\frac{N}{s}} \ 0 \ 0 \ \dots 0 \ f_{\frac{2N}{s}} \ 0 \ 0 \ \dots f_{(s-1)\frac{N}{s}} \ 0 \ 0 \ \dots 0]$$

- Random measure on \vec{f}
 - Get a frequency y with probability $|f_y|$ (after normalizing \vec{f})
- Compute s
 - Take r random measures and obtain frequencies $i_1(N/s)$, $i_2(N/s)$, ..., $i_r(N/s)$
 - Compute b=gcd(i₁(N/s), i₂(N/s), ..., i_r(N/s))
 - Compute N/b = s with high probability since b=N/s with high probability

Find the period of g: special case (s | N)

Algorithm I:

- 1. Prepare a vector $\vec{u} = [0 \ 1 \ 2 \ ... N 1]$
- 2. Compute $\vec{a} = g(\vec{u}) = [g(0) g(1) g(2) \dots g(N-1)]$
- 3. Compute and normalize $\vec{f} = DFT(\vec{a})$
- 4. Randomly measure \vec{f} r times to obtain frequencies d_1 , d_2 , ..., d_r
- 5. Compute $b=gcd(d_1, d_2, ..., d_r)$
- 6. Return (N/b)

DFT: general case (N mod $s \neq 0$)

- N=8, s=3, $\vec{a} = [1 \ 2 \ 3 \ 1 \ 2 \ 3 \ 1]$
- $\vec{f} = [0.5016 \ 0.0388 \ 0.0748 \ 0.1190 \ 0.0334 \ 0.1190 \ 0.0748 \ 0.0388]$

$$d = \left\lceil \frac{kN}{s} \right\rceil : closest \ integer \ to \ kN/s$$

- N=256, s=9, $\vec{a} = [12345789 ... 123456789$ **1234**]
- $\vec{f} = DFT(\vec{a})$

Find period s from measured frequency d=[kN/s]

•
$$F = \frac{256}{9} = 28.44$$

- From \vec{f} , we sample frequencies: d = 28, 57, which are of form [kN/s]
- Question: to find s from d=[kN/s]
- Observation:

$$\frac{kN}{s} - 0.5 < \left[\frac{kN}{s}\right] \le \frac{kN}{s} + 0.5 \implies \frac{k}{s} - \frac{1}{2N} < \frac{d}{N} \le \frac{k}{s} + \frac{1}{2N}$$

- Find the rational k/s that is close to d/N within the range 1/2N
- Thus, s is the denominator of k/s

Consider

•
$$d_1/N = 28/256 = 0.109375$$

•
$$d_2/N = 57/256 = 0.22265625$$

•
$$d_3/N = 85/256 = 0.33203125$$

Rational numbers to approximate d/N

- 1/9 0.109375 = 0.001736...
- 2/9 0.22265625 = 0.0004340...
- 3/9 0.33203125 = 0.001302...

Continued fraction

- Use a rational number to approximate an irrational number or another rational number
- Example: π =3.14159265368...
 - 22/7 = **3.14**28...
 - 333/106 = **3.1415**094...
 - 355/113 = **3.141592**92035...
 - ...
- How to compute

• 3.14159265368 = 3 +
$$\frac{1}{7 + \frac{1}{15 + \frac{1}{1 + 0.00341}}} \approx 3 \approx \frac{7}{22} \approx \frac{333}{106} \approx \frac{355}{113} \approx$$

Use Matlab to compute

- rats(pi, 5) = 22/7
- rats(pi, 10)=355/113
- rat(pi) = 3 + 1/(7 + 1/(16))
- rat(pi, 0.00000001) = 3 + 1/(7 + 1/(16 + 1/(-294)))

• ...

Theorem: For d=[kN/s], gcd(k,s)=1, s is n-bit long, and N is 2n-bit long, k/s is the unique rational that approximates d/N such that $\left|\frac{k}{s} - \frac{d}{N}\right| \le \frac{1}{2N}$. Proof.

•
$$\left| \frac{d}{N} - \frac{k}{s} \right| = \left| \frac{\left| \frac{kN}{s} \right|}{N} - \frac{k}{s} \right| = \left| \frac{\frac{kN \pm b}{s}}{N} - \frac{k}{s} \right| = \left| \frac{b}{sN} \right| \le \frac{1}{2N}$$
 for some $0 \le b \le \lfloor s/2 \rfloor$

- For another $\frac{k'}{s'} \neq \frac{k}{s}$, s' is n-bit long, $\left| \frac{k}{s} \frac{k'}{s'} \right| = \left| \frac{\text{ks'-k's}}{\text{ss'}} \right| > \frac{1}{2^{2n}} = \frac{1}{N}$
- Thus, k/s is unique. ◆

Note

• Even though d is [kN/s]+i, for small i, it is still ok to find k/s. This increases the success probability up to 90%.

- $\vec{a} = [12345789 \dots 1234567891234]$
- N=256, s=9, F=256/9=28.4
- Apply DFT on \vec{a} to get $\vec{f} = [...]$
- Randomly measure and get $d_1=28$, $d_2=57$, $d_3=85$.
- s is 4-bit long at most

- 64 is over 4 bits (X)
- 9 is within 4-bit long.
- 9 is a candidate for s since $|1/9-28/256| = 0.001736 \le 1/2N = 0.00195$
- Note: if d_1 =27, 29 or 30, 27/256 \approx 1/9, 29/256 \approx 1/9, 30/256 \approx 1/9

$$\bullet \frac{d_2}{256} = \frac{57}{256} \approx \frac{1}{4} \approx \frac{2}{9} \approx \frac{57}{256}.$$

- 4 and 9 are within 4-bit long.
- 9 is a candidate for s since |1/4 57/256| = 0.0273 > 1/2N and |2/9 57/256| = 0.000434 < 1/2N

$$\bullet \frac{d_3}{256} = \frac{85}{256} \approx \frac{1}{3} \approx \frac{85}{256}$$

- 3 is within 4-bit and |1/3-85/256| = 0.001302 < 1/2N.
- 3 is a candidate for s.
- However, it is wrong since the correct one 3/9 has gcd(3,9)≠1.

Some facts

Theorem: s is n-bit long. For a random k, prob(gcd(k, s)=1) is almost 1.

Proof:

- s has n prime factors at most.
- There are at least s/n primes less than s.
- The probability that a random prime can divide s is at most n^2/s .
- k has at most log k (≈ n) prime factors.
- Thus, the probability that k has a prime factor that is also a prime factor for s is $n \cdot n^2/s = n^3/s$.
- n³/s is almost 1 if s is large enough.

Theorem: For each d of form $\left[\frac{kN}{s}\right]$, $1 \le k < s$, the probability that a random measure gets this d is at least 0.4/s. Thus, the probability of getting a frequency of form $\left[\frac{kN}{s}\right]$ is at least 0.4

Proof. Omit.

Find the period of g: general case

Algorithm II: (assume that s is n-bit long at most)

- 1. Prepare a vector $\vec{u} = [0 \ 1 \ 2 \ ... \ N-1]$, where $N \ge 2^{2n}$
- 2. Compute $\vec{a} = g(\vec{u}) = [g(0) \ g(1) \ g(2) \dots \ g(N-1)]$
- 3. Compute and normalize $\vec{f} = DFT(\vec{a})$
- 4. Randomly measure \vec{f} r times to obtain frequencies $\mathbf{d_1}$, $\mathbf{d_2}$, ..., $\mathbf{d_r}$
- 5. Use "continued fraction" method to compute rationals $\mathbf{z_1}$, $\mathbf{z_2}$, …, $\mathbf{z_r}$ of denominators at most n-bit long for approximating d_1/N , d_2/N , …, d_r/N within 1/2N
- 6. A denominator of z_i 's is very likely to be the period s

Factoring $M \equiv Finding the period of g_{a,M}(x)$

- Let M=pq and $a \in Z_M^*$, $g_{a,M}(x) = a^x \mod M$, $0 \le x \le M-1$
- $g_{a,M}(x)$ has period s. That is, $a^s \mod M = 1$.
 - Eluer's theorem: $a^{\phi(M)} \mod M = 1$
 - Thus, $s \le \phi(M)$
- If s is even and $a^{s/2} \mod M \neq \pm 1$, then $\gcd(a^{s/2}\pm 1, M) = p \ or \ q$
 - $a^{s/2}$ is a nontrivial solution for $x^2 = 1 \mod M$
- Example
 - M=35=5x7, a=2, $g_{a.M}(x)$ has period s=12, 2^{12} mod 35 =1.
 - $2^6 \mod 35 = 29$, 29 + 1 = 30, 29 1 = 28. gcd(30, 35) = 5 = p, gcd(28, 35) = 7 = q.

Theorem: M=pq. For random $a \in Z_M^*$, the probability that $g_{a,M}(x)$ has an even period s and $a^{s/2} \mod M \neq \pm 1$ is at least ½.

Proof. Omit.

Problems of the above method

- For n-bit M, the period could be as long as s=O(2ⁿ)
- We need to choose N: 2n-bit long
- It takes O(N) time to compute the vector

$$\vec{a} = g(\vec{u}) = [g(0) \ g(1) \ g(2) \dots g(N-1)]$$

- It takes O(N) space to store \vec{a}
- Also, it takes O(N log N) time to do DFT

Quantum bits

- 1 qbit: $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where α, β are complex and $\alpha^2 + \beta^2 = 1$
 - Bra-ket notation, Dirac notation
 - Vector notation: $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} + \beta \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle, \quad \alpha^2 = \alpha \alpha^*, \quad \beta^2 = \beta \beta^*$
 - Bits 0 and 1 co-exist in superposition (simultaneous existence)
- 2 qbits : $|\Psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle$, $\alpha^2+\beta^2+\gamma^2+\delta^2=1$
 - Vector notation: $\begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \delta \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

• n qbits: let N=2ⁿ

$$|\Psi\rangle = \sum_{b_1 b_2 \dots b_n \in \mathbb{Z}_2^n} \alpha_{b_1 b_2 \dots b_n} |b_1 b_2 \dots b_n\rangle = \sum_{x=0}^{N-1} \alpha_x |x\rangle$$

Unknown vs superposition

- An unknow x with some distribution
- A quantum state y with some distribution for sampling
- Exact copy
 - $\chi \rightarrow \chi'$
 - y→y'
- Measure (open)
 - x must be equal to x'
 - y may not be equal to y'
- x: only one value exists (unknown)
 - $x+1 \rightarrow$ another value
- y: all values co-exist (superposition)
 - y+1 \rightarrow all values

Measurement

1 qbit
$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• Measure: get bit 0 with prob. α^2 and bit 1 with prob. β^2 -- no longer qbits

2 qbits
$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

- Measure: get bits 00 with prob. α^2 , etc.
- Partial measure the last qbit:
 \(\begin{align*} \((\P\)\)\)
 - With prob. $\alpha^2 + \gamma^2$, we see bit 0 and $\aleph(|\Psi\rangle)$ becomes 1 qbit

$$\frac{\alpha}{\sqrt{\alpha^2 + \gamma^2}} |0\rangle[0] + \frac{\gamma}{\sqrt{\alpha^2 + \gamma^2}} |1\rangle[0]$$

• With prob. $\beta^2 + \delta^2$, we see bit 1 and $\aleph(|\Psi\rangle)$ becomes 1 qbit

$$\frac{\beta}{\sqrt{\beta^2 + \delta^2}} |0\rangle[1] + \frac{\delta}{\sqrt{\beta^2 + \delta^2}} |1\rangle[1]$$

n qbits: let N=2ⁿ

$$|\Psi\rangle = \sum_{b_1 b_2 \dots b_n \in \mathbb{Z}_2^n} \alpha_{b_1 b_2 \dots b_n} |b_1 b_2 \dots b_n\rangle = \sum_{x=0}^{N-1} \alpha_x |x\rangle$$

- Full measure and partial measures
- Example: measure the last bit.
 - The first n-1 qbits are left in superposition and the last one collapses to either 0 or 1

$$\sum_{b_{1}b_{2}\dots b_{n-1}\in\mathbb{Z}_{2}^{n}}\alpha'_{b_{1}b_{2}\dots b_{n-1}}|b_{1}b_{2}\dots b_{n-1}\rangle[0]$$

$$\sum_{b_{1}b_{2}\dots b_{n-1}\in\mathbb{Z}_{2}^{n}}\alpha''_{b_{1}b_{2}\dots b_{n-1}}|b_{1}b_{2}\dots b_{n-1}\rangle[1]$$

Entanglement

Two quantum states

$$|\Psi\rangle = \sum_{b_1 b_2 \dots b_n \in \mathbb{Z}_2^n} \alpha_{b_1 b_2 \dots b_n} |b_1 b_2 \dots b_n\rangle$$

$$|\Omega\rangle = \sum_{c_1c_2\dots c_m \in \mathbb{Z}_2^m} \beta_{c_1c_2\dots c_m} |c_1c_2\dots c_m\rangle$$

Entanglement

$$|\Psi\rangle \otimes |\Omega\rangle = \sum_{x=0}^{2^{n+m}-1} \gamma_x |x\rangle$$

• Example

$$(\alpha_1|0\rangle + \beta_1|1\rangle) \otimes (\alpha_2|0\rangle + \beta_2|1\rangle)$$

= $\alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\alpha_2|10\rangle + \beta_1\beta_2|11\rangle$

Entanglement for teleportation

Information transmission exceeds the speed of light !!!

Quantum computation: concept

Operations on qbits

- Operator on n qbits: H is 2ⁿx2ⁿ unitary matrix
 - Unitary matrix: HH*=I.
- Example: $H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$
 - apply H on qbit $\alpha|0\rangle + \beta|1\rangle$ and obtain $\frac{1}{\sqrt{2}}(\alpha+\beta)|0\rangle + \frac{1}{\sqrt{2}}(\alpha-\beta)|1\rangle$

•
$$H\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + \beta \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} (\alpha + \beta) \\ \frac{1}{\sqrt{2}} (\alpha - \beta) \end{bmatrix}$$

Concept

Each quantum state is mapped to all quantum states

Example

•
$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$
, $H = [h_{i,j}]$

•
$$|00\rangle \rightarrow h_{1,1}|00\rangle + h_{2,1}|01\rangle + h_{3,1}|10\rangle + h_{4,1}|11\rangle$$

•
$$|01\rangle \rightarrow h_{1,2}|00\rangle + h_{2,2}|01\rangle + h_{3,2}|10\rangle + h_{4,2}|11\rangle$$

•
$$|10\rangle \rightarrow h_{1,3}|00\rangle + h_{2,3}|01\rangle + h_{3,3}|10\rangle + h_{4,3}|11\rangle$$

•
$$|00\rangle \rightarrow h_{1,4}|00\rangle + h_{2,4}|01\rangle + h_{3,4}|10\rangle + h_{4,4}|11\rangle$$

•
$$H|\Psi\rangle = \alpha(h_{1,1} + h_{1,2} + h_{1,3} + h_{1,4})|00\rangle + ...$$

Operations on 1 qbit

Operations on 1 qbit

Rotation:
$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & \frac{-2\pi i}{2^k} \end{bmatrix}$$
, $R_k \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{-2\pi i}{2^k} \\ e^{\frac{-2\pi i}{2^k}} \\ \cdot \beta \end{bmatrix}$

Note:

- $e^{i\theta} = \cos \theta + i \sin \theta$
- Euler's identity: $e^{i\pi} = -1$

•
$$e^{\frac{-2\pi i}{2^k}} \times e^{-2\pi 0.b_1b_2...b_{k-1}} = e^{-2\pi 0.b_1b_2...b_{k-1}1}$$

Operations on 2 qbits

• Control circuit: $x_2=1$ if and only if apply gate X on x_1

Controlled Not Controlled X CNot
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \frac{a|00\rangle + b|01\rangle + a|00\rangle +$$

Quantum circuit

DFT on N=2ⁿ bits

•
$$\vec{a} = [a_0 \ a_1 \ ... a_{N-1}], \omega = e^{2\pi i/N}, i = \sqrt{-1}$$

$$DFT(\vec{a}) = \vec{f} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix} = \sum_{x=0}^{N-1} a_x \begin{bmatrix} \omega^{-x \cdot 0} \\ \omega^{-x \cdot 1} \\ \vdots \\ \omega^{-x \cdot (N-1)} \end{bmatrix} = \sum_{x=0}^{N-1} a_x V_x$$

where
$$V_{x} = \begin{bmatrix} \omega^{-x \cdot 0} \\ \omega^{-x \cdot 1} \\ \vdots \\ \omega^{-x \cdot (N-1)} \end{bmatrix}$$

• Example: n=2, N=4, \vec{a} = [a₀ a₁ a₂ a₃], $\omega = e^{2\pi i/4}$, $\omega^4 = 1$

$$DFT(\vec{a}) = \vec{f} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

$$= a_0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + a_1 \begin{bmatrix} 1 \\ \omega^{-1} \\ \omega^{-2} \\ \omega^{-3} \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ \omega^{-2} \\ \omega^{-4} \\ \omega^{-6} \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ \omega^{-3} \\ \omega^{-6} \\ \omega^{-9} \end{bmatrix} = \begin{bmatrix} a_0 + a_1 + a_2 + a_3 \\ a_0 + a_1 \omega^{-1} + a_2 \omega^{-2} + a_3 \omega^{-3} \\ a_0 + a_1 \omega^{-2} + a_2 \omega^{-4} + a_3 \omega^{-6} \\ a_0 + a_1 \omega^{-3} + a_2 \omega^{-6} + a_3 \omega^{-9} \end{bmatrix}$$

QFT on coefficients of 1 qbit

•
$$\vec{a} = [a_0 \ a_1]$$
,
$$DFT(\vec{a}) = \begin{bmatrix} 1 & 1 \\ 1 & e^{\frac{-2\pi i}{2}} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} a_0 + a_1 \\ a_0 - a_1 \end{bmatrix}$$

•
$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$
, $|\Psi\rangle = a_0|0\rangle + a_1|1\rangle$

QFT(
$$|\Psi\rangle$$
) = $H|\Psi\rangle$ =
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_0 + a_1 \\ a_0 - a_1 \end{bmatrix}$$

QFT on coefficients of n qbits

• DFT: $\vec{a} = [a_0 \ a_1 \ ... \ a_{N-1}], \ N = 2^n$

$$\vec{f} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix} = \sum_{x=0}^{N-1} a_x V_x, \text{ where } V_x = \begin{bmatrix} \omega^{-x \cdot 0} \\ \omega^{-x \cdot 1} \\ \vdots \\ \omega^{-x \cdot (N-1)} \end{bmatrix}$$

• QFT:
$$|x\rangle = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \omega^{-x \cdot 00 \dots 0} \\ \omega^{-x \cdot 00 \dots 1} \\ \vdots \\ \omega^{-x \cdot 11 \dots 1} \end{bmatrix} = V_x = \sum_{y=0}^{N-1} \omega^{-xy} |y\rangle$$

• Put \vec{a} into n-qbit quantum state: $|\Psi\rangle = \sum_{x=0}^{N-1} a_x |x\rangle$

$$QFT(|\Psi\rangle) = QFT\left(\sum_{x=0}^{N-1} a_x | x\right) = \sum_{x=0}^{N-1} a_x QFT(|x\rangle)$$

$$= \sum_{x=0}^{N-1} a_x V_x = \sum_{x=0}^{N-1} a_x \sum_{y=0}^{N-1} \omega^{-xy} | y\rangle$$

$$= \sum_{y=0}^{N-1} (\sum_{x=0}^{N-1} a_x \omega^{-xy}) | y\rangle = \sum_{y=0}^{N-1} f_y | y\rangle = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix}$$

 Frequency magnitudes are in the coefficients of quantum states

•
$$\vec{a} = [a_0 \ a_1 \ a_2 \ a_3]$$

$$QFT(a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle)$$

$$= a_0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + a_1 \begin{bmatrix} 1 \\ \omega^{-1} \\ \omega^{-2} \\ \omega^{-3} \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ \omega^{-2} \\ \omega^{-4} \\ \omega^{-6} \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ \omega^{-3} \\ \omega^{-6} \\ \omega^{-9} \end{bmatrix}$$

$$= \begin{bmatrix} a_0 + a_1 + a_2 + a_3 \\ a_0 + a_1 \omega^{-1} + a_2 \omega^{-2} + a_3 \omega^{-3} \\ a_0 + a_1 \omega^{-2} + a_2 \omega^{-4} + a_3 \omega^{-6} \\ a_0 + a_1 \omega^{-3} + a_2 \omega^{-6} + a_3 \omega^{-9} \end{bmatrix}$$

$$= (f_0|00\rangle + f_1|01\rangle + f_2|10\rangle + f_3|11\rangle)$$

QFT for $|x\rangle$

•
$$\omega = e^{2\pi i/2^n}$$

•
$$x = x_1 x_2 \dots x_n = \sum_{i=1}^n 2^{n-i} x_i$$

•
$$y = y_1 y_2 \dots y_n = \sum_{i=1}^n 2^{n-i} y_i$$

$$QFT(|x\rangle) = \sum_{v=0}^{N-1} \omega^{-xy} |y\rangle$$

$$= \sum_{y_1 \in Z_2} \omega^{-xy_1 2^{n-1}} |y_1\rangle \otimes \sum_{y_2 \in Z_2} \omega^{-xy_2 2^{n-2}} |y_2\rangle \otimes \cdots \otimes \sum_{y_n \in Z_2} \omega^{-xy_n 2^{n-n}} |y_n\rangle$$

$$=(|0\rangle+\omega^{-x\cdot 2^{n-1}}|1\rangle)\otimes(|0\rangle+\omega^{-x\cdot 2^{n-2}}|1\rangle)\otimes\cdots\otimes(|0\rangle+\omega^{-x\cdot 2^0}|1\rangle)$$

$$= (|0\rangle + e^{-2\pi i \ 0.x_n} |1\rangle) \otimes (|0\rangle + e^{-2\pi i \ 0.x_{n-1}x_n} |1\rangle) \otimes \cdots \otimes (|0\rangle + e^{-2\pi i \ 0.x_1x_2...x_n} |1\rangle)$$

QFT(
$$|x_1x_2\rangle$$
)
= $(|0\rangle + e^{-2\pi i \ 0.x_2}|1\rangle) \otimes (|0\rangle + e^{-2\pi i \ 0.x_1x_2}|1\rangle)$
= $1 \cdot |00\rangle + e^{-2\pi i 0.x_1x_2}|01\rangle + e^{-2\pi i 0.x_2}|10\rangle + e^{-2\pi i (0.x_2 + 0.x_1x_2)}|11\rangle$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} \end{bmatrix}$$

$$x_1 x_2 \quad 00 \quad 01 \quad 10 \quad 11$$

Quantum gates for QFT($|x\rangle$)

•
$$n = 2$$
, $R_k = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{-2\pi i}{2^k}} \end{bmatrix}$, $H = \begin{bmatrix} 1 & 1 \\ 1 & e^{-2\pi i/2} \end{bmatrix}$

• QFT(
$$|x_1x_2\rangle$$
) = ($|0\rangle + e^{-2\pi i \ 0.x_2}|1\rangle$) \otimes ($|0\rangle + e^{-2\pi i \ 0.x_1x_2}|1\rangle$)

• n qbits

Algorithm for factoring M=pq

- Assume $g_{a,M}(x)=g(x)$ and M is m-bit long. Thus, s is at most m-bit.
- Example
 - M=35, a=4, $g(x) = 4^x \mod 35$
 - m=6, n=10

Algorithm III (M):

- 1. Randomly pick $a \in Z_M^*$
- 2. Prepare n+m qbits $|\Psi\rangle=\frac{1}{\sqrt{2^n}}\sum_{b_1b_2...b_n\in Z_2^n}|b_1b_2\cdots b_n\rangle|00...0\rangle$, where n=3m.

-- Prepare
$$|\Psi\rangle = \frac{1}{\sqrt{1024}} \sum_{b_1 b_2 \dots b_{10} \in Z_2^{10}} |b_1 b_2 \dots b_{10}\rangle |000000\rangle$$

3. Apply g(x) on the first n qbits and put the result in the last m qbits

$$g(|\Psi\rangle) = \frac{1}{\sqrt{2^n}} \sum_{b_1 b_2 \dots b_n \in \mathbb{Z}_2^n} |b_1 b_2 \dots b_n\rangle |g(b_1 b_2 \dots b_n)\rangle =$$

$$-g(|\Psi\rangle) = \frac{1}{\sqrt{1024}}(|0\rangle|1\rangle + |1\rangle|4\rangle + |2\rangle|16\rangle + |3\rangle|29\rangle + |4\rangle|11\rangle + |5\rangle|9\rangle + |6\rangle|1\rangle + |7\rangle|4\rangle + \cdots + |1023\rangle|29\rangle)$$

4. Measure the last m bits and we get the result θ

$$\Re(g(|\Psi\rangle)) = \sum_{\substack{b_1b_2...b_n \in \mathbb{Z}_2^n \\ \land g(b_1b_2...b_n) = \theta}} \alpha |b_1b_2...b_n\rangle[\theta]$$

-- Assume that we get θ =4:

$$\aleph(g(|\Psi\rangle))$$

$$= \frac{1}{\sqrt{171}} |1\rangle [4] + \frac{1}{\sqrt{171}} |7\rangle [4] + \dots + \frac{1}{\sqrt{171}} |1021\rangle [4]$$

Note:
$$\vec{a} = \begin{bmatrix} 0 & \frac{1}{\sqrt{171}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{171}} & 0 & \dots & 0 & \frac{1}{\sqrt{171}} & 0 & 0 & 0 \end{bmatrix}$$

5. Apply QFT on the coefficients of $\aleph(g(|\Psi\rangle))$ and obtain

$$\mathbf{QFT}\left(\aleph(\mathsf{g}(|\Psi\rangle))\right) = \sum_{y=0}^{N-1} f_y |y\rangle$$

```
-- QFT(\aleph(g(|\Pi\)))
= 0.0562|0\rangle + 0.00001|1\rangle + \cdots
+0.0231|171\rangle + 0.0465|172\rangle + \cdots
+0.0465|342\rangle + 0.0231|343\rangle + \cdots
+ \cdots
```

- 6. Measure the first n bits of **QFT**($\aleph(g(|\Psi\rangle))$) and obtain a frequency **d**.
- 7. Apply the continued fraction method on d/N to obtain a rational z of an m-bit denominator s.
- 8. If s is even and $a^{s/2}\pm 1 \mod M \neq 0$, then compute and return p=gcd($a^{s/2}\pm 1$, M) and q=M/p. else repeat steps 1-7 until M's prime factors are found.
- -- Assume $\Re\left(\mathbf{QFT}\left(\Re(|\Psi\rangle)\right)\right)$ outputs f=172.
- Rational approximation: $d/N=172/1024\approx 1/5\approx 1/6\approx 21/125$. Since 125 is longer than 6 bits, we use s=6.
- Since the denominator s=6 is even, we have 4⁶ mod 35=1.
- $35|(4^3-1)(4^3+1)$. $gcd(35, 4^3-1)=7$ and $gcd(35, 4^3+1)=5$.