

PWM定时器在Linux设备 驱动中的应用

主讲: 贺光辉

嵌入式家园 <u>www.embedclub.com</u> 上海嵌入式家园-开发板商城 <u>http://embedclub.taobao.com/</u>

PWM定时器

- S3C2440共有5个16位的定时器,定时器0、1、2、3有 PWM功能,即它们都有一个输出引脚,可以通过定时器来 控制引脚周期性的高、低电平变化,定时器4没有输出引脚
- 定时器0、1共用第一个预分频器,定时器2、3、4共用第二个预分频器
- 定时器部件的时钟源为PCLK,通过两个8位预分频器降低频率:
 - 预分频器(Prescaler): 预分频值=0~255,通过TCFG0设置
 - 第二级分频器(MUX): 取值2、4、6、8或者外部时钟TCLK0/TCLK1,通过 TCFG1设置

嵌入式家园 www.embedclub.com

PWM定时器内部结构图

PWM定时器内部控制逻辑的工作流程

- ①程序初始,设置TCMPBn、TCNTBn这两个寄存器,它们表示定时器n的比较值、初始计数值
- ②随之设置TCON寄存器启动定时器n,这时,TCMPBn、TCNTBn的值将被装入其内部寄存器TCMPn、TCNTn中。在定时器n的工作频率下,TCNTn开始减一计数,其值可以通过读取TCNTOn寄存器得知。
- ③当TCNTn的值等于TCMPn的值时,定时器n的输出管脚 TOUTn反转; TCNTn继续减一计数
 - 定时器n的输出管脚TOUTn初始状态为高电平,以后在TCNTn的值等于TCMPn的值、TCNTn的值等于0时反转。
- ④当TCNTn的值到达0时,其输出管脚TOUTn再次反转, 并触发定时器n的中断
- ⑤当TCNTn的值到达0时,如果在TCON寄存器中将定时器n设为"自动加载",则TCMPB0和TCNTB0寄存器的值被自动装入TCMB0和TCMTCNTB0新存器中心。而一个计数流程开始。

PWM定时器使用的寄存器组

- TCFG0配置寄存器0
- TCFG1配置寄存器1
- TCNTBn计数缓冲寄存器
- TCMPBn比较缓冲寄存器
- TCNTOn计数观察寄存器
- TCON控制寄存器

嵌入式家园 www.embedclub.com

定时器配置寄存器TCFG0/TCFG1

● TCFG0寄存器

位[7:0]、位[15:8]分别用于控制预分频器0、1,它们的值为0-255,经过预分频器出来的时钟频率为: PCLK/{prescaler value+1}

● TCFG1寄存器

- 经过预分频器得到的时钟将被2分频、4分频、8分频、16分频,除这4种频率外,定时器0、1还可以工作在外接的TCLK0时钟下,定时器2、3、4还可以工作在外接的TCLK1时钟下。
- 定时器工作频率: freq =PCLK/{prescaler value+1}/{divider value}
- 其中: {prescaler value}= 0~255{divider value}=2、4、8、16

嵌入式家园 www.embedclub.com

定时器配置寄存器TCFG0

TIMER CONFIGURATION REGISTER0 (TCFG0)

Timer input clock Frequency = PCLK / {prescaler value+1} / {divider value} {prescaler value} = $0\sim255$ {divider value} = 2, 4, 8, 16

Register	Address	R/W	Description	Reset Value
TCFG0	0x51000000	R/W	Configures the two 8-bit prescalers	0x00000000

TCFG0	Bit	Description	Initial State
Reserved	[31:24]		0x00
Dead zone length	[23:16]	These 8 bits determine the dead zone length. The 1 unit time of the dead zone length is equal to that of timer 0.	0x00
Prescaler 1	[15:8]	These 8 bits determine prescaler value for Timer 2, 3 and 4.	0x00
Prescaler 0	[7:0]	These 8 bits determine prescaler value for Timer 0 and 1.	0x00

嵌入式家园 www.embedclub.com

定时器配置寄存器TCFG1

TCFG1	Bit	Description	Initial State
Reserved	[31:24]		00000000
DMA mode	[23:20]	Select DMA request channel 0000 = No select (all interrupt) 0001 = Timer0 0010 = Timer1	0000
MUX 4	[19:16]	Select MUX input for PWM Timer4. 0000 = 1/2	0000
MUX 3	[15:12]	Select MUX input for PWM Timer3. 0000 = 1/2	0000
MUX 2	[11:8]	Select MUX input for PWM Timer2. 0000 = 1/2	0000
MUX 1	[7:4]	Select MUX input for PWM Timer1. 0000 = 1/2	0000
MUX 0	[3:0]	Select MUX input for PWM Timer0. 0000 = 1/2	0000

嵌入式家园 www.embedclub.com

TCNTBn/TCMPBn寄存器

- TCNTBn (Timer n Count Buffer Register)
- TCMPBn (Timer n Compare Buffer Register)
- n为0~4。这两个寄存器都只用到位[15:0];
- TCNTBn中保存定时器的初始计数值;
- TCMPBn中保存比较值;
- 它们的值在启动定时器时,被传到定时器内部寄存器 TCNTn、TCMPn中。
- 没有TCMPB4,因为定时器4没有输出引脚

TCMPB0	Bit	Description	Initial State
Timer 0 compare buffer register	[15:0]	Set compare buffer value for Timer 0	0x00000000

TCNTB0	Bit	Description	Initial State
Timer 0 count buffer register	[15:0]	Set count buffer value for Timer 0	0x00000000

TCNTOn寄存器

- TCNTOn寄存器 (Timer n Count Observation Register)
 - 定时器n被启动后,内部寄存器TCNTn在其工作时钟下不断减一计数,可以通过读取TCNTOn寄存器得知其当前值。

TIMER 0 COUNT OBSERVATION REGISTER (TCNTO0)

Register	Address	R/W	Description	Reset Value
TCNTO0	0x51000014	R	Timer 0 count observation register	0x00000000

TCNTO0	Bit	Description	Initial State
Timer 0 observation register	[15:0]	Set count observation value for Timer 0	0x00000000

嵌入式家园 www.embedclub.com

TCON寄存器

- TCON寄存器 (Timer Control Register)
- 它有以下4个作用:
 - 第一次启动定时器时"手动"将TCNTBn/TCMPBn寄存器的值装入内部寄存器 TCNTn、TCMPn中。
 - 启动、停止定时器。
 - 决定在定时器计数到达0时是否自动将TCNTBn/TCMPBn寄存器值装入内部寄存器 TCNTn、TCMPn中。
 - 决定定时器的管脚TOUTn的输出电平是否反转。

嵌入式家园 www.embedclub.com

TCON寄存器

■ TCON寄存器格式:

功能	位	设置
开启/停止	0	0:停止定时器0;1:开启定时器0
手动更新	1	0: 无用 1: 将TCNTBn/TCMPBn寄存器的值装入内部寄存器TCNTn、TCMPn中
输出反转	2	0: TOUT0不反转; 1: TOUT0反转
自动加载	3	0:不自动加载 1:在定时器0计数达到0时,TCNTBn/TCMPBn寄存器的值自动装入内部 寄存器TCNTn、TCMPn中

● 注意:在第一次使用定时器时,需要将"手动更新"位置1,以使TCNTBn/TCMPBn寄存器的值装入内部寄存器TCNTn、TCMPn中。下一次如果还要设置这个位,将要免除它们。

PWM控制寄存器设置函数Buzzer_Freq_Set

```
函数名称: Buzzer Freq Set
   函数描述: PWM控制寄存器设置函数
// 返回类型: void
         U32 freq: PWM输出频率
void Buzzer Freq Set ( U32 freq )
   rGPBCON &= ~0x3;
                             //set GPBO as toutO, pwm output
   rGPBCON \mid = 0x2;
   rTCFGO &= ~OxFF;
   rTCFGO |= 0xF;
                           //prescaler = 15
   rTCFG1 &= ~OxF;
   rTCFG1 \mid = 0x2;
                      //mux = 1/8,divider value=8
   rTCNTBO = (PCLK>>7)/freq; //PCLK/{prescaler+1}/{divider value}
   rTCMPBO = rTCNTBO>>1; // Duty Ratio p=50%
   rTCON \&= \sim 0 \times 1F:
                         //disable deadzone, auto-reload, inv-off, update TCNTB1&TCMPB1, start timer 0
   rTCON |= 0x0B;
                          //clear manual update bit
   rTCON &= ~0x2;
```

嵌入式家园 www.embedclub.com

- 任务一、实现使用PWM定时器来控制蜂鸣器的鸣叫驱动实验
 - pwm_beep

嵌入式家园 www.embedclub.com