ABDOS - AI-Based Dermatological Observation System

An Advanced Platform Using Deep Learning for Early Skin Cancer Detection and Patient Management By Emeka Adimora, 4th Year Software and Electronic Engineering Student

Project Overview

Purpose

Provide accessible tools for early skin cancer detection with medical guidance.

Features

- Image-based skin lesion classification
- Risk assessment and recommendations
- User authentication and profile management
- API for frontend integration

System Architecture

Frontend

User interface built with React for uploading skin images, displaying classification results, and interacting with risk assessments and recommendations.

Backend

RESTful API
developed using
Node.js and
Express.js, handles
user authentication,
profile management,
and serves machine
learning model
inference requests
securely.

Machine Learning Model

Deep convolutional neural network trained on diverse skin lesion datasets to classify multiple lesion types with high accuracy and reliability.

User Authentication (Backend)

Technologies

Node.js, Express, MongoDB, JWT for secure authentication.

Features

- User registration and login
- JWT-based secure authentication
- Password hashing and validation
- Profile retrieval and cookie sessions

Authentication API Endpoints

POST /api/auth/register	Register a new user	
POST /api/auth/login	User login and token generation	
POST /api/auth/logout	User logout and token invalidation	
GET /api/auth/profile	Retrieve user profile information	

Slide 6: Machine Learning Model

Model Architecture:

MobileNetV2 backbone (transfer learning)

Custom dense layers for classification

7 output classes (softmax)

Custom Preprocessing Layer:

Normalizes images to [-1, 1] range

Training Data:

Ham10000

Data augmentation for robustness

Model File:

Saved as .h5 file, loaded at runtime

4

1

2

3

Skin Cancer Model Integration

Model

Keras/TensorFlow deep learning model with MobileNetV2 backbone.

Classifies 7 types of skin lesions.

Prediction Pipeline

- Image upload and preprocessing
- Model inference
- Outputs: predicted class, confidence, risk, action

Skin Lesion Classes

Index	Code	Condition	Risk Level
0	akiec	Actinic Keratoses	Moderate
1	bcc	Basal Cell Carcinoma	High
2	bkl	Benign Keratosis	Low
3	df	Dermatofibroma	Low
4	mel	Melanoma	Very High
5	nv	Melanocytic Nevi	Low
6	vasc	Vascular Lesions	Low

Prediction Output Example

Predicted Condition

Melanoma

This is a malignant tumor of melanocytes, the cells that produce pigment. Early detection is critical for effective treatment.

Confidence

92.3%

The model is highly confident in this prediction, reflecting strong evidence from the input image features.

Risk Level

Very High

Melanoma is considered the most dangerous type of skin cancer due to its tendency to spread rapidly if untreated.

Description

Most serious form of skin cancer.

It often appears as a new or changing mole and requires prompt diagnosis by a dermatologist.

Recommended Action

Urgent medical attention required.

Immediate consultation with a healthcare professional is advised to confirm diagnosis and start treatment.

Testing & Validation

Model Loading Test

Verifies model loads and predicts correctly with sample input.

API Test

Sends images to API, checks response accuracy and latency.

Manual Testing

Uploads via frontend UI, reviews prediction results and UX.

Security & Privacy

Data Protection

User data is securely protected through JWT authentication and encrypted cookies.

Password Security

Passwords are securely hashed and never stored in plain text.

Privacy

Patient images and prediction data are never stored without explicit user consent.

