Frühjahr 14 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei die matrixwertige Funktion $A:]-1,1[\to \mathbb{R}^{2\times 2}, t \mapsto \begin{pmatrix} 2t & t \\ 0 & \frac{2t}{t^2-1} \end{pmatrix}$. Zeigen Sie, dass das Anfangswertproblem

$$x'(t) = A(t)x(t)$$
 , $x(0) = \begin{pmatrix} 2\\1 \end{pmatrix}$

eine eindeutige maximale Lösung besitzt und berechnen Sie diese.

Lösungsvorschlag:

Alle Matrixeinträge sind stetige Funktionen auf] -1,1[, die Differentialgleichung ist also linear von erster Ordnung mit stetigen Koeffizienten. Demnach existiert zu jedem Anfangswert $x(0) \in \mathbb{R}^2$ genau eine Lösung $x:]-1,1[\to \mathbb{R}^2.$ Wir schreiben $x(t)=(x_1(t),x_2(t)),$ dann muss x_2 das Anfangswertproblem $y'=\frac{2t}{t^2-1}y,y(0)=1$ lösen. Wegen $\ln(1-t^2)'=\frac{2t}{t^2-1}$ folgern wir, dass $x_2(t)=1-t^2$ ist. Daraus ergibt sich nun, dass x_1 eine Lösung des Anfangswertproblems $y'=2ty+t-t^3,y(0)=2$ ist. Die Lösung der homogenen Gleichung ist $y(t)=e^{t^2}.$ Durch Raten oder mittels Variation der Konstanten finden wir die partikuläre Lösung $y(t)=\frac{1}{2}t^2,$ die allgemeine Lösung hat also die Form $y(t)=\frac{1}{2}t^2+ce^{t^2}$ mit $c\in\mathbb{R}.$ Die Anfangsbedingung y(0)=2 impliziert nun c=2. Wir folgern, dass $x(t)=(\frac{1}{2}t^2+2e^{t^2},1-t^2)$ die Lösung des Anfangswertproblems ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$