

ERÖFFNUNGSVERANSTALTUNG METEOROLOGIE HAUTNAH

30. April 2022 meteorologie.hautnah@uni-leipzig.de

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwänscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

ABLAUFPLAN

- 10:00 Willkommen und Vorstellung des Projektes
- 10:30 Kurze Info zum Datenschutz
- 10:45 Erläuterung der MeteoTracker und der MeteoTracker App
- 11:15 Fragerunde
- 11:30 Einteilung in die 3 Forschungsgruppen (Mai, Juni, Juli)
- 12:00 Kleiner Snack auf dem Innenhof und praktische Einführung der MeteoTracker für die erste Gruppe
- Gemeinsame Fahrt zur Sachsenbrücke

WER SIND WIR

- Jakob, Johannes und Oscar
- Masterstudenten und Doktorand am Leipziger Institut für Meteorologie
- Link zur Webseite:
 <a href="https://meteorologiehautnah.github.io/Meteorologiehautnah.github.

WARUM METEOROLOGIE HAUTNAH?

Wissenschaftliche Begeisterung + finanzielle Möglichkeit = Meteorologie hautnah

- Themen:
 - Städte als Lebensraum mit eigenem Klima
 - Hitzebelastung von Bürger:innen in zunehmend wärmeren Sommern
- Meteorologie als gesellschaftlich relevante Wissenschaft in die Öffentlichkeit tragen

PROJEKTZIEL

Weitergabe der Faszination am wissenschaftlichen Arbeiten

Sammlung von Daten zum Leipziger Stadtklima

DATENSCHUTZ

- Was sammeln wir für Daten von Euch?
- Was sammelt der Tracker für Daten?
- Was machen wir mit den Daten von Euch?
- Was macht der Tracker mit den Daten?
- Was machen wir mit den Daten des Trackers?

STADTMETEOROLOGIE

EINE KLEINE EINFÜHRUNG

30. April 2022

Oscar Ritter, Johannes Röttenbacher und Jakob Thoböll

meteorologie.hautnah@uni-leipzig.de

https://meteorologiehautnah.github.io/MeteorologieHautnah

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwünscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

METEOROLOGISCHE MESSGRÖßEN MIT DEM METEOTRACKER

Meteorologische Größen:

Lufttemperatur

Taupunktstemperatur

Relative Feuchte

Luftdruck

Biometeorologische Größen:

Gefühlte Temperatur

Humidex

LUFTTEMPERATUR: WAS IST DAS?

Physikalische Definition:

Die Lufttemperatur ist ein Maß für die mittlere kinetische Energie der Moleküle in unserer Atmosphäre. Die Messung der Lufttemperatur darf weder durch Strahlung, noch durch Wärmeleitung beeinflusst sein.

Messeinheiten:

Physik: Kelvin (K)

Wetterbericht: Grad Celsius (°C)

Wie rechnet man Grad Celsius in Kelvin um? Wie ändert sich die Lufttemperatur mit der Höhe?

LUFTTEMPERATUR: WAS IST DAS?

Physikalische Definition:

Die Lufttemperatur ist ein Maß für die mittlere kinetische Energie der Moleküle in unserer Atmosphäre. Die Messung der Lufttemperatur darf weder durch Strahlung, noch durch Wärmeleitung beeinflusst sein.

Messeinheiten:

Physik: Kelvin (K)

Wetterbericht: Grad Celsius (°C)

 $0^{\circ}C = 273,15K$ $10^{\circ}C = 283,15K$ Im Schnitt:
Abkühlung um 6°C
je Kilometer Höhe

Messmethoden:

Klassisch:

Flüssigkeitsthermometer in einer Wetterhütte

Moderne Messung:

Pt-1000 Messfühler in einem belüfteten Strahlungsschutz

RELATIVE FEUCHTE: WAS IST DAS?

Physikalische Definition:

Massenverhältnis des aktuellen Wasserdampfgehaltes in der Luft zu dem Wasserdampfgehalt, der bei der aktuellen Temperatur maximal möglich ist.

Messeinheiten:

Relative Größe: 0 − 100 % → 100%: Luft ist Wasserdampfgesättigt → Wassertröpfchen (Wolken) entstehen

Messmethoden:

Klassisch: Hygrometer

Moderne Messung: Feuchtesensor in einem belüfteten Strahlungsschutz

TAUPUNKTSTEMPERATUR: WAS IST DAS?

Physikalische Definition:

Die Temperatur, die bei der aktuellen Luftfeuchtigkeit unterschritten werden **müsste**, damit die Luft wasserdampfgesättigt wäre und sich Tröpfchen (Wolken) bilden würden.

Messeinheiten:

Physik: Kelvin (K)

Wetterbericht: Grad Celsius (° C)

Taupunktstemperatur ist immer kleiner als oder genauso hoch wie die Lufttemperatur

Taupunktstemperatur ist ein Feuchtemaß

Messmethoden:

Klassisch:

Psychrometer Umrechnungen

The state of the s
Nasses Tuch

П					troc																						
1	5	6	7	. 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	53	24	25	26	27	28	29	30	
1	3 86		87		88			10	11 89	12 90	13 90	14	15	16 91	17	19 91	20 91	2† 92	22 92	23 92	24 92	25 92	26 93	27 93	28 93	29 93	Taugunkt (*C) % rel. Feucht
2	72	73	75	4 75	76	6 77	77	8 78	79	11	12	13	14 81	15 82	16	17 83	18	19	20 84	21 84	22 85	23 85	24 85	25 86	26 86	27 86	
2					3 64																						
4					53																						
5	32	-8 35	-6 37		-3 42		46	48	3 49	51	53	54	8 55	56	10 58	12 59	13 60	14	15 62	16 62	18 63	19 64	20 65	21 65	22 66	23 67	
6	·15				31																						
7					-11 21																						
					118																						
9	Т	_	_	_	_	_	7																	16.42			

Moderne Messung:

Feuchtesensor in einem belüfteten Strahlungsschutz

2m Messung

LUFTDRUCK: WAS IST DAS?

Physikalische Definition:

Druck der Luft auf einem Körper an einem Ort, der durch die Gewichtskraft der Luftsäule über dem Körper entsteht

Messeinheiten:

Physik: Pascal (Pa)

Wetterbericht: Hektopascal (hPa) = 100 Pascal

In welchem Bereich schwankt der Druck auf Meereshöhe?

Wie ändert sich der Druck mit der Höhe?

LUFTDRUCK: WAS IST DAS?

Physikalische Definition:

Druck der Luft auf einem Körper an einem Ort, der durch die Gewichtskraft der Luftsäule über dem Körper entsteht

Messeinheiten:

Physik: Pascal (Pa)

Wetterbericht: Hektopascal (hPa) = 100 Pascal

Messmethoden:

Klassisch: Barometer

920hPa – 1070hPa

Moderne Messung: Barometrischer Drucksensor

Abnahme um 1hPa

aller 8m

Höhenunterschied

GEFÜHLTE TEMPERATUR UND HUMIDEX: WAS IST DAS?

Kombinierte biometeorologische Größe:

Gefühlte Temperatur: Maß für das thermische Empfinden. Beschreibt die Wärmeabgabe eines Durchschnittsmenschen (Temperatur- und Feuchteabhängig)

Humidex: Gefühlte Temperatur bei Werten über 25° C → Hitzeindex

Messeinheiten:

Wetterbericht: Grad Celsius (°C)

Berechnungsmethoden:

- 1. Messung der Lufttemperatur und der relativen Feuchte
- 2. Verwendung des "Klima-Michel"-Modells des menschlichen Wärmehaushalts:

Männlich, 35 Jahre alt, 1.75m groß, 75kg schwer, behagliche Kleidung, 4km/h Gehtempo

KOMPAKTE MESSUNG MIT DEM METEOTRACKER

WARUM IST ES INNERHALB EINER STADT UNTERSCHIEDLICH WARM/KALT?

WARUM UNTERSCHEIDET SICH DIE TEMPERATUR INNERHALB EINER STADT?

https://www.dwd.de/DE/forschung/klima umwelt/klimawirk/stadtpl/projekt warmeinseln/projekt waermeinseln node.html

Wärmeaufnahme

WARUM UNTERSCHEIDET SICH DIE TEMPERATUR INNERHALB EINER STADT?

Straßenzug

Eigenschaften nach dem Tag: hohe Wärmeaufnahme, hohe Oberflächentemperaturen

Nächtliche Wärmeabgabe: Viel Wärmeleitung aus dem Boden → lange Wärmeabgabe.

Wärmeleitung in der Atmosphäre durch Horizonteinschränkung (Gebäude) vermindert

Stark erwärmte bodennahe Luftschichten, nur langsame Abkühlung → "Wärmeinsel"

AUSSTRAHLUNG nachts

Starke Unterschiede der Lufttemperatur zwischen offenen Grünflächen und bebauten Flächen in der Nacht

Offene Parkanlage

Eigenschaften nach dem Tag: Weniger Wärmeaufnahme

Nächtliche Wärmeabgabe:
Weniger Wärmeleitung aus dem
Boden → Wärmeabgabe reißt schnell
ab

Wärmeleitung in der Atmosphäre kaum eingeschränkt

Schnelles Abkühlen der
Oberflächen und der bodennahen
Luftschichten

Kalte Luft → hohe Dichte →
Sammelt sich am Boden →
"Kaltluftproduzent"

WAS BEEINFLUSST DIE STÄRKE DER STÄDTISCHEN ÜBERWÄRMUNG?

Bedeckungsgrad:

Stärkste Unterschiede bei klarem Himmel

Windgeschwindigkeit:

Stärkste Unterschiede bei wenig Wind, mehr Wind sorgt für Durchmischung

Oberflächenfeuchte:

Länge der aktuellen "Trockenzeit"

Stadtgröße:

Je größer die Stadt, desto länger dauert es, bis kalte Luft von außen zugeführt wird

Horizonteinschränkung durch Gebäude:

Je weniger Himmel zu sehen ist, desto schlechter kann Wärme nachts abgegeben werden

Aber: Abschattung führt tagsüber u.U. zu weniger Wärmeaufnahme

Anteil versiegelter Flächen:

Je mehr Versiegelung desto mehr Wärme wird aufgenommen

WIE UNTERSCHEIDET SICH DIE TEMPERATUR INNERHALB EINER STADT?

Tagsüber

Höchste Temperaturen:

Asphaltierte, besonnte Plätze/Kreuzungen

Niedrigste Temperaturen:

Baumreiche Parkanlagen, Seen

Temperaturunterschied:

Oberfläche: teils mehr als 20°C Lufttemperatur: einige °C, genaue Untersuchungen stehen aus

Nachts

Höchste Temperaturen:

Dicht bebaute Wohnviertel, Seen

Niedrigste Temperaturen:

Offene Wiesen in Senken und außerhalb der Stadt

Temperaturunterschied:

Oberfläche: wenige °C Lufttemperatur: bis zu 10°C

WELCHE ERGEBNISSE BRACHTEN BISHERIGE UNTERSUCHUNGEN IN LEIPZIG?

WELCHE ERGEBNISSE BRACHTEN BISHERIGE UNTERSUCHUNGEN IN LEIPZIG?

Lufttemperaturen

WAS MACHT DIE METEOTRACKER-MESSUNGEN SO SPANNEND?

- Kleinräumige Variabilität kann untersucht werden
- Viele Messfahrten aus der ganzen Stadt über lange Zeiträume
 - → Bisher ging nur je eines von beiden

WIE KANN ICH MEINE MESSUNGEN MIT ANDEREN MESSWERTEN VERGLEICHEN?

METEOROLOGISCHE MESSUNGEN IN LEIPZIG

- Vergleich mit anderen Teilnehmern im App-Dashboard und unseren Auswertungen:
 - → Diskussion im Workshop?
- Wettermessungen am Leipziger Institut für Meteorologie (LIM, Stephanstraße 3):
 <u>Stationsmesswerte LIM</u>
- 10-Minütliche Messungen vom Deutschen Wetterdienst in Leipzig-Holzhausen und Leipzig-Schkeuditz, sowie weiterer, privater Wetterstationen im Raum Leipzig: Link zur Webseite www.kachelmannwetter.com
- Messwerte der Stationen des Deutschen Wetterdienstes auch in der kostenpflichtigen Version der "DWD WarnWetter"-App: <u>WarnWetter-App</u>

WO FINDE ICH AUSFÜHRLICHE INFOS ZUM THEMA

- Grundlagen zum Thema Stadtklima / städtische Wärmeinsel:
 - Städtebauliche Klimafibel: https://www.staedtebauliche-klimafibel.de/?p=0
 - Deutscher Wetterdienst: Stadtklima Die städtische Wärmeinsel
- Auswertungen zum Leipziger Stadtklima
 - Übersicht der Leipziger Stadtklimauntersuchungen
- Bei Fragen zum Thema:
 - Jetzt stellen ;)
 - Uns kontaktieren: meteorologie.hautnah@uni-leipzig.de

VOM GERÄTESTART ZUR AUSWERTUNG SCHRITT FÜR SCHRITT

30. April 2022
Oscar Ritter, Johannes Röttenbacher und Jakob Thoböll meteorologie.hautnah@uni-leipzig.de
https://meteorologiehautnah.github.io/MeteorologieHautnah

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwänscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

WAS WIRD BENÖTIGT?

1. Meteo Tracker

2. Smartphone + MeteoTracker-App

3. Auswertedashboard

WAS WIRD BENÖTIGT?

1. Meteo Tracker

INHALT EINES GERÄTEPAKETS

AUFBAU DES METEO TRACKERS

AUFLADEN DES GERÄTES

Ladedauer: ca. 2-3 Stunden

BEFESTIGUNG AM FAHRRADLENKER

- Gerät in die Fahrradhalterung stecken. Auf festen Sitz achten!
- 2. Gummihalterung am Lenker anlegen
- 3. Mit Gummiverschluss befestigen
- Gerät ausrichten
 - Helligkeitssensoren zeigen senkrecht nach oben
 - Lufteinlass zeigt in Fahrtrichtung

Gummihalterung

Gummiverschluss

BEFESTIGUNG AUF DEM AUTODACH

- 1. Gerät ggf. aus der Fahrradhalterung nehmen
- Gerät auf einen flachen, trockenen und ferromagnetischen Teil des Autodachs aufsetzen → Magnete halten das Gerät am Autodach
- 3. Lufteinlass zeigt in Fahrtrichtung, Helligkeitssensoren zeigen senkrecht nach oben
- 4. Auf festen Sitz und Rutschfestigkeit achten!
- 5. Maximalgeschwindigkeit: 130km/h

Zusätzliche Sicherung durch ein Drahtseil bei Schneefall/Eis auf dem Dach erforderlich!

GERÄT EIN-/AUSSCHALTEN (1)

Vor der Messung

- Startknopf kurz drücken → Gelbe BT ADV-LED blinkt? → Gerät ist angeschalten und sucht eine Bluetooth-Verbindung mit einem Smartphone
- 2. Gelbe BT ADV-LED geht aus → Smartphone ist verbunden (in der App überprüfen!)
- 3. Gelbe BT ADV-LED geht nach 30s aus → Gerät ist ausgeschalten → Zurück zu 1.

Nach der Messung

Startknopf kurz drücken → Gelbe BT ADV-LED geht aus? → Gerät ist ausgeschalten

WICHTIGE HINWEISE

- Während der Fahrt Smartphone nicht verwenden!
- Während der Fahrt auf den Verkehr achten!
- Auf festen Sitz des Geräts in der Fahrradhalterung bzw. auf dem Autodach achten!
- Bei Schnee/Eis auf dem Autodach → Gerät durch Drahtseil sichern
- Lufteinlass zeigt in Fahrtrichtung
- Maximalgeschwindigkeit: 130km/h
- Gerät ist spritzwassergeschützt
 - Ein Regenschauer/Schneefall ist unproblematisch
 - Gerät aber nicht unter Wasser tauchen!
- Gerät nicht auseinanderbauen! Silikonschutz nicht lösen!

WAS WIRD BENÖTIGT?

2. Smartphone + MeteoTracker-App

WIE DOWNLOADE ICH DIE APP?

- Download der App für Android Smartphones:
 - Download-Link zum Google Play Store

- Download der App f
 ür IOS Smartphones (Apple):
 - Download-Link zum Apple App Store

EINRICHTUNG DER ANDROID-APP

Schritt 1:

App über das Smartphone-Menü

öffnen:

Google-Konto auswählen:

Anmeldung mit dem privaten Google-Konto

ODER

Anonymes Projekt-Konto in Absprache mit uns

EINRICHTUNG DER ANDROID-APP

Schritt 3:

Startansicht der App:

Schritt 4:

MeteoTracker über Bluetooth der App koppeln: Schritt 5:

Verbindung prüfen:

METEOROLOGIE HAUTNAH 2022

EINRICHTUNG DER ANDROID-APP

Schritt 6:

Messeinstellungen ändern:

START EINER MESSUNG IN DER ANDROID-APP

Schritt 1:

Startansicht der App:

Schritt 2:

Sitzungstyp auswählen:

Schritt 3:

Messreihe starten:

3 Sitzungsarten:

Public:

Daten werden mit Nickname auf dem Server gespeichert

Public anonymus:

Daten werden anonym auf dem Server gespeichert

Private:

Daten werden nur lokal gespeichert

Messstart

START EINER MESSUNG IN DER ANDROID-APP

Schritt 4:

Messübersicht → Losfahren!

ssung wird aufgezeichnet

NACH DER MESSUNG IN DER ANDROID APP

Schritt 1:

Messung beenden → Nach oben wischen! Gerät ausschalten

Schritt 2:

- PYY

Messung pausieren

Startknopf (1)

EINRICHTUNG DER IOS-APP

Schritt 1:

App über das Smartphone-Menü

öffnen:

Schritt 2: Anmeldung mit Apple-ID bestätigen:

Abbrechen

AUSWAHL:

Anmeldung mit dem privater Apple-ID

ODER

Anmeldung mit Anonymer Apple-ID

METEOROLOGIE HAUTNAH 2022

EINRICHTUNG DER IOS-APP

Schritt 3:

Messeinstellungen ändern:

START EINER MESSUNG IN DER IOS-APP

Schritt 1: Startansicht der App

Schritt 2:

Auswahl der Sitzungsart:

Schritt 3:
App mit Meteo Tracker koppeln

Bluetooth am Smartphone einschalten!

START EINER MESSUNG IN DER IOS-APP

Schritt 4:

Messübersicht → Losfahren!

NACH DER MESSUNG IN DER IOS-APP

Schritt 1:

Messreihe beenden

Schritt 2: Gerät ausschalten

WAS WIRD BENÖTIGT?

3. Auswertedashboard

Schritt 1:

Webseite des Auswertedashboards aufrufen: https://app.meteotracker.com/#!/

Schritt 2:

Konto anmelden

Google: Apple:

→ Anmeldeschritten folgen!

Schritt 3:

Übersicht der eigenen Messreihen:

Schritt 4:

Auswertung der Messreihe als Karte (links) oder Grafik (rechts) :

FRAGEN ODER PROBLEME?

- Wir gehen alle Schritte bei der Übergabe noch einmal durch
- Bei Fragen und Problemen während eurer Messzeit:
 - ➤ Kontaktiert uns über: <u>meteorologie.hautnah@uni-leipzig.de</u>
 - Unsere Webseite: <u>Meteorologie Hautnah</u>
- Für die Experimentierfreudigen:
 - Link zu den Betriebsanleitungen (in Englisch):

https://meteotracker.com/en/manuals/

METEOROLOGIE HAUTNAH 2022

UNSER PROJEKT

Jakob, Johannes, Oscar (v.l.n.r)

Citizen Science

Hitzebelastung in der Stadt

