Soongsil University - AC-complete

Team Note of AC-complete

0xC0DEF, enochjung, jhnah917

Compiled on November 15, 2021

Contents	4.9 Discrete Log / Sqrt	17
1 DataStructure 2 1.1 Bipartite Union Find	2 4.10 De Bruijn Sequence	18
1.2 Erasable Priority Queue 2 1.3 Convex Hull Trick 2	2 4.11 Simplex / LP Duality	18
1.4 Persistent Segment Tree 2 1.5 Splay Tree, Link-Cut Tree 3	4.12 FFT, NTT, Polynomial, Fast Kitamasa	19
2 Geometry	4	
2.1 Rotating Calipers 4 2.2 Point in Convex Polygon 4	4 5 String	21
2.3 Half Plane Intersection	4 5 5.1 KMP, Hash, Manacher, Z	21
2.5 Dual Graph	5	22
2.7 Delaunay Triangulation	$\begin{bmatrix} 6 \\ 5.3 & O(N \log N) \text{ SA} + \text{LCP} & \dots & $	22
3.1 Euler Tour	7 5.4 Bitset LCS	23
3.3 BCC	7 7 8 5.5 Lyndon Factorization, Minimum Rotation	23
3.5 Bipartite Matching	0 8 9	
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9	8 9 9 6 Misc	23
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10	0 6.1 Ternary Search	
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10	0	23
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E) \log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 13	0	23 23
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E)\log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 13 3.14 $O(VE)$ Vizing Theorem 13 3.15 $O(E\log V)$ Directed MST 12	0	23 23 23
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E) \log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 13 3.14 $O(VE)$ Vizing Theorem 13	0	23 23 23 24
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V + E) \log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 11 3.14 $O(VE)$ Vizing Theorem 12 3.15 $O(E \log V)$ Directed MST 12 3.16 $O(V^3)$ General Matching 13 3.17 $O(V^3)$ Weighted General Matching 13 4 Math	6.1 Ternary Search 6.2 Aliens Trick 6.3 Slope Trick 6.4 Random, PBDS, Bit Trick 6.5 Fast I/O, Fast Div/Mod, Hilbert Mo's	23 23 23 24 24
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E)\log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 11 3.14 $O(VE)$ Vizing Theorem 12 3.15 $O(E\log V)$ Directed MST 12 3.16 $O(V^3)$ General Matching 13 3.17 $O(V^3)$ Weighted General Matching 15 4 Math 14 4.1 Extend GCD, CRT, Combination 14 4.2 FloorSum 15	6.1 Ternary Search 6.2 Aliens Trick 6.3 Slope Trick 6.4 Random, PBDS, Bit Trick 6.5 Fast I/O, Fast Div/Mod, Hilbert Mo's 6.6 DP Opt, Tree Opt, Well-Known Ideas	23 23 23 24 24 24
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E)\log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 11 3.14 $O(VE)$ Vizing Theorem 12 3.15 $O(E\log V)$ Directed MST 12 3.16 $O(V^3)$ General Matching 15 3.17 $O(V^3)$ Weighted General Matching 15 4 Math 14 4.1 Extend GCD, CRT, Combination 14 4.2 FloorSum 15 4.3 XOR Basis(XOR Maximization) 15 4.4 Gauss Jordan Elimination 16	6.1 Ternary Search 6.2 Aliens Trick 6.3 Slope Trick 6.4 Random, PBDS, Bit Trick 6.5 Fast I/O, Fast Div/Mod, Hilbert Mo's 6.6 DP Opt, Tree Opt, Well-Known Ideas 6.7 Catalan, Burnside, Grundy, Pick, Hall, Simpson, Kirchhoff	23 23 23 24 24 24
3.5 Bipartite Matching 8 3.6 Maximum Flow, Minimum Cut 9 3.7 MCMF 9 3.8 LR Flow 10 3.9 Hungarian Method 10 3.10 Gomory-Hu Tree 10 3.11 $O(V^3)$ Global Min Cut 10 3.12 $O((V+E)\log V)$ Dominator Tree 11 3.13 $O(N^2)$ Stable Marriage Problem 11 3.14 $O(VE)$ Vizing Theorem 12 3.15 $O(E\log V)$ Directed MST 12 3.16 $O(V^3)$ General Matching 13 3.17 $O(V^3)$ Weighted General Matching 15 4 Math 14 4.1 Extend GCD, CRT, Combination 14 4.2 FloorSum 15 4.3 XOR Basis(XOR Maximization) 15	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	23 23 23 24 24 24 25

Soongsil University – AC-complete Page 2 of 25

1 DataStructure

1.1 Bipartite Union Find

Usage: Union-Find with friend, enemy relations

```
int P[_Sz], E[_Sz]; // Parent, Enemy
void clear(){ iota(P, P+_Sz, 0); memset(E, -1, sizeof E); }
int find(int v){}
bool merge(int u, int v){}
int set_friend(int u, int v){ return merge(u, v); }
int set_enemy(int u, int v){
  int ret = 0;
  if(E[u] == -1) E[u] = v;
  else ret += merge(E[u], v);
  if(E[v] == -1) E[v] = u;
  else ret += merge(u, E[v]);
  return ret;
}
```

1.2 Erasable Priority Queue

```
template<typename T, T inf>
struct pq_set{
    priority_queue<T, vector<T>, greater<T>> in, out; // min heap, inf = 1e18
    // priority_queue<T> in, out; // max heap, inf = -1e18
    pq_set(){ in.push(inf); }
    void insert(T v){ in.push(v); }
    void erase(T v){ out.push(v); }
    T top(){
    while(out.size() && in.top() == out.top()) in.pop(), out.pop();
    return in.top();
    }
    bool empty(){
    while(out.size() && in.top() == out.top()) in.pop(), out.pop();
    return in.top() == inf;
    }
};
```

1.3 Convex Hull Trick

```
Usage: call init() before use

struct Line{
    11 a, b, c; // y = ax + b, c = line index
    Line(l1 a, l1 b, l1 c) : a(a), b(b), c(c) {}
    11 f(l1 x){ return a * x + b; }
};

vector<Line> v; int pv;

void init(){ v.clear(); pv = 0; }

int chk(const Line &a, const Line &b, const Line &c) const {
    return (__int128_t)(a.b - b.b) * (b.a - c.a) <= (__int128_t)(c.b - b.b) * (b.a - a.a);
}

void insert(Line 1){
    if(v.size() > pv && v.back().a == 1.a){
        if(1.b < v.back().b) 1 = v.back(); v.pop_back();
    }
}</pre>
```

```
while(v.size() >= pv+2 && chk(v[v.size()-2], v.back(), 1)) v.pop_back();
 v.push_back(1);
p query(ll x){ // if min query, then v[pv].f(x) >= v[pv+1].f(x)
 while(pv+1 < v.size() && v[pv].f(x) <= v[pv+1].f(x)) pv++;
 return {v[pv].f(x), v[pv].c};
//// line container start (max query) ////
struct Line {
 mutable ll k, m, p;
 bool operator < (const Line& o) const { return k < o.k; }
 bool operator<(ll x) const { return p < x; }</pre>
\}; // (for doubles, use inf = 1/.0, div(a,b) = a/b)
struct LineContainer : multiset<Line, less<>>> {
 static const ll inf = LLONG_MAX;
 11 div(11 a, 11 b) { return a / b - ((a ^ b) < 0 && a % b); } // floor
 bool isect(iterator x, iterator y) {
   if (y == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p) isect(x, erase(y));
 11 query(11 x) { assert(!empty());
   auto 1 = *lower bound(x):
    return 1.k * x + 1.m;
 }
};
1.4 Persistent Segment Tree
  Usage: call init(root[0], s, e) before use
struct PSTNode{
 PSTNode *1. *r: int v:
 PSTNode() \{ 1 = r = nullptr; v = 0; \}
PSTNode *root[101010];
PST(){ memset(root, 0, sizeof root); } // constructor
void init(PSTNode *node, int s, int e){
 if(s == e) return:
 int m = s + e \gg 1;
 node->1 = new PSTNode; node->r = new PSTNode;
 init(node->1, s, m); init(node->r, m+1, e);
void update(PSTNode *prv, PSTNode *now, int s, int e, int x){
 if(s == e){ now->v = prv ? prv->v + 1 : 1; return; }
 int m = s + e \gg 1;
 if(x \le m)
    now->1 = new PSTNode; now->r = prv->r;
```

update(prv->1, now->1, s, m, x);

Soongsil University – AC-complete

```
}
  else{
    now->r = new PSTNode; now->l = prv->l;
    update(prv->r, now->r, m+1, e, x);
  int t1 = now->1 ? now->1->v : 0;
  int t2 = now -> r ? now -> r -> v : 0:
  now->v = t1 + t2;
}
int kth(PSTNode *prv, PSTNode *now, int s, int e, int k){
 if(s == e) return s;
  int m = s + e \gg 1, diff = now->l->v - prv->l->v;
 if(k <= diff) return kth(prv->1, now->1, s, m, k);
  else return kth(prv->r, now->r, m+1, e, k-diff);
}
      Splay Tree, Link-Cut Tree
struct Node{
  Node *1, *r, *p;
  bool flip; int sz;
  T now, sum, lz;
  Node() { 1 = r = p = nullptr; sz = 1; flip = false; now = sum = lz = 0; }
  bool IsLeft() const { return p && this == p->1; }
  bool IsRoot() const { return !p || (this != p->1 && this != p->r); }
  friend int GetSize(const Node *x){ return x ? x->sz : 0; }
  friend T GetSum(const Node *x){ return x ? x->sum : 0; }
  void Rotate(){
    p->Push(); Push();
    if(IsLeft()) r && (r->p = p), p->l = r, r = p;
    else 1 && (1-p = p), p-r = 1, 1 = p;
    if(!p->IsRoot()) (p->IsLeft() ? p->p->1 : p->p->r) = this;
    auto t = p; p = t \rightarrow p; t \rightarrow p = this;
    t->Update(); Update();
  }
  void Update(){
    sz = 1 + GetSize(1) + GetSize(r):
    sum = now + GetSum(1) + GetSum(r);
  void Update(const T &val){ now = val; Update(); }
  void Push(){
    Update(now + lz); if(flip) swap(l, r);
    for(auto c : \{1, r\}) if(c) c->flip ^= flip, c->lz += lz;
    lz = 0; flip = false;
};
Node* rt;
Node* Splay(Node *x, Node *g=nullptr){
  for(g || (rt=x); x->p!=g; x->Rotate()){
    if(!x->p->IsRoot()) x->p->p->Push(); x->p->Push();
    if(x-p-p) = g) (x-sileft() x-p-sileft() x : x-p)-sileft();
  x->Push(): return x:
Node* Kth(int k){
  for(auto x=rt; ; x=x->r){
```

```
for(; x->Push(), x->1 && x->1->sz > k; x=x->1);
    if(x->1) k -= x->1->sz;
    if(!k--) return Splay(x);
 }
Node* Gather(int s, int e){
 auto t = Kth(e+1); return Splay(t, Kth(s-1))->1;
Node* Flip(int s, int e){
 auto x = Gather(s, e); x->flip ^= 1; return x;
Node* Shift(int s, int e, int k){
 if(k >= 0){
   k \% = e-s+1:
    if(k) Flip(s, e), Flip(s, s+k-1), Flip(s+k, e);
 else{
   k = -k; k \% = e-s+1;
   if(k) Flip(s, e), Flip(s, e-k), Flip(e-k+1, e);
 return Gather(s, e);
int Idx(Node *x){ return x->l->sz; }
//////// Link Cut Tree Start ////////
Node* Splay(Node *x){
 for(; !x->IsRoot(); x->Rotate()){
   if(!x->p->IsRoot()) x->p->p->Push(); x->p->Push(); x->Push();
    if(!x->p->IsRoot()) (x->IsLeft() ^ x->p->IsLeft() ? x : x->p)->Rotate();
 x->Push(); return x;
void Access(Node *x){
 Splay(x); x->r = nullptr; x->Update();
 for(auto y=x; x->p; Splay(x)){
   y = x-p; Splay(y); y-r = x; y-Update();
int GetDepth(Node *x){
 Access(x); x->Push();
 return GetSize(x->1);
Node* GetRoot(Node *x){
 Access(x); for(x->Push(); x->1; x->Push()) x = x->1;
 return Splay(x);
Node* GetPar(Node *x){
 Access(x); x->Push(); if(!x->1) return nullptr;
 x = x\rightarrow 1; for(x\rightarrow Push(); x\rightarrow r; x\rightarrow Push()) x = x\rightarrow r;
 return Splay(x);
void Link(Node *p, Node *c){
 Access(c); Access(p);
 c->1 = p; p->p = c; c->Update();
void Cut(Node *c){
 Access(c);
```

Soongsil University – AC-complete
Page 4 of 25

```
c->l->p = nullptr; c->l = nullptr; c->Update();
Node* GetLCA(Node *x, Node *y){
  Access(x); Access(y); Splay(x);
  return x->p ? x->p : x;
Node* Ancestor(Node *x. int k){
 k = GetDepth(x) - k; assert(k >= 0);
  for(::x->Push()){
    int s = GetSize(x->1);
    if(s == k) return Access(x), x;
    if(s < k) k = s + 1, x = x -> r;
    else x = x->1;
 }
}
void MakeRoot(Node *x){ Access(x); Splay(x); x->flip ^= 1; }
bool IsConnect(Node *x, Node *y){ return GetRoot(x) == GetRoot(y); }
void PathUpdate(Node *x, Node *y, T val){
  Node *root = GetRoot(x); // original root
  MakeRoot(x); Access(y); // make x to root, tie with y
  Splay(x); x->lz += val; x->Push();
  MakeRoot(root); // Revert
  Node *lca = GetLCA(x, y);
  Access(lca); Splay(lca); lca->Push();
  lca->Update(lca->now - val);
T VertexQuery(Node *x, Node *y){
  Node *1 = GetLCA(x, y);
 T ret = 1->now;
  Access(x); Splay(1);
  if(1->r) ret = ret + 1->r->sum;
  Access(y); Splay(1);
  if(1->r) ret = ret + 1->r->sum;
  return ret;
Node* GetQuervResultNode(Node *u. Node *v){
  if(GetRoot(u) != GetRoot(v)) return 0;
  MakeRoot(u); Access(v);
  auto ret = v->1;
  while(ret->mx != ret->v){
    if (ret->1 && ret->mx == ret->1->mx) ret = ret->1;
    else ret = ret->r;
  Access(ret):
  return ret;
   Geometry
      Rotating Calibers
pair<Point, Point> RotatingCalipers(const vector<Point> &H){
```

```
air<Point, Point> RotatingCalipers(const vector<Point> &H){
    l1 mx = 0; Point a, b;
    for(int i=0, j=0; i<H.size(); i++){
        while(j+1 < H.size() && CCW(0, H[i+1]-H[i], H[j+1]-H[j]) >= 0){
        if(l1 now = D2(H[i], H[j]); mx < now) mx = now, a = H[i], b = H[j];
    }
}</pre>
```

```
if(ll now = D2(H[i], H[j]); mx < now) mx = now, a = H[i], b = H[j];
 return {a, b};
2.2 Point in Convex Polygon
bool pip_convex(const vector &v, p pt){
 int i = lower_bound(v.begin()+1, v.end(), pt, [&](const p &a, const p &b){
   int cw = ccw(v[0], a, b);
   if(cw) return cw > 0:
   return dst(v[0], a) < dst(v[0], b);
 }) - v.begin();
 if(i == v.size()) return 0;
 if(i == 1) return ccw(v[0], pt, v[1]) == 0 && v[0] <= pt && pt <= v[1];
 int t1 = ccw(v[0], pt, v[i]) * ccw(v[0], pt, v[i-1]);
 int t2 = ccw(v[i], v[i-1], v[0]) * ccw(v[i], v[i-1], pt);
 if(t1 == -1 && t2 == -1) return 0;
 return ccw(v[0], pt, v[i-1]) != 0;
2.3 Half Plane Intersection
 Usage: Line : ax + by + c = 0
const pdd o = pdd(0, 0);
ld ccw(pdd a, pdd b, pdd c){} // return cross product value
struct Line{
 ld a, b, c;
 Line() : Line(0, 0, 0) {}
 Line(ld a, ld b, ld c): a(a), b(b), c(c) {}
 bool operator < (const Line &1) const {
   bool f1 = pdd(a, b) > o;
   bool f2 = pdd(1.a, 1.b) > o;
   if(f1 != f2) return f1 > f2:
   1d cw = ccw(o, pdd(a, b), pdd(1.a, 1.b));
   return same(cw, 0) ? c * hypot(l.a, l.b) < l.c * hypot(a, b) : cw > 0;
 pdd slope() const { return pdd(a, b); }
pdd lineCross(Line a, Line b){
 1d det = a.a*b.b - b.a*a.b;
 1d x = (a.c*b.b - a.b*b.c) / det, y = (a.a*b.c - a.c*b.a) / det;
 return pdd(x, y);
bool hpi_chk(Line a, Line b, Line c){
 if(ccw(o, a.slope(), b.slope()) <= 0) return 0;</pre>
 pdd v = lineCross(a, b);
 return v.x*c.a + v.y*c.b >= c.c;
vector<pdd> hpi(vector<Line> v){
 sort(v.begin(), v.end());
 deque<Line> dq; vector<pdd> ret;
 for(auto &i : v){
```

Soongsil University – AC-complete Page 5 of 25

```
if(dq.size() && same(ccw(o, dq.back().slope(), i.slope()), 0)) continue;
    while(dq.size() >= 2 && hpi_chk(dq[dq.size()-2], dq.back(), i)) dq.pop_back();
    while(dq.size() >= 2 && hpi_chk(i, dq[0], dq[1])) dq.pop_front();
    dq.push_back(i);
  while(dq.size() > 2 && hpi_chk(dq[dq.size()-2], dq.back(), dq[0])) dq.pop_back();
  while(dq.size() > 2 && hpi_chk(dq.back(), dq[0], dq[1])) dq.pop_front();
  for(int i=0; i<dq.size(); i++){</pre>
    Line now = dq[i], nxt = dq[(i+1)%dq.size()];
    if(ccw(o, now.slope(), nxt.slope()) <= eps) return vector<pdd>();
    ret.push_back(lineCross(now, nxt));
 }
  return ret;
2.4 K-D Tree
#define all_range(v, s, e) v.begin()+s, v.begin()+e+1
struct KDNode{
 pll v; bool dir; ll sx, ex, sy, ey;
 KDNode() \{ sx = sy = inf; ex = ey = -inf; \}
};
const auto xcmp = [](pll a, pll b){ return tie(a.x, a.y) < tie(b.x, b.y); };</pre>
const auto ycmp = [](pll a, pll b){ return tie(a.y, a.x) < tie(b.y, b.x); };</pre>
struct KDTree{
 // Segment Tree Size
 static const int S = 1 << 18;
 KDNode nd[S]; int chk[S];
 vector<pll> v;
 KDTree(){ init(): }
  void init(){ memset(chk, 0, sizeof chk); }
  void _build(int node, int s, int e){
    chk[node] = 1; nd[node].dir = !nd[node/2].dir;
    nd[node].sx = min_element(all_range(v, s, e), xcmp)->x;
    nd[node].ex = max_element(all_range(v, s, e), xcmp)->x;
    nd[node].sy = min_element(all_range(v, s, e), ycmp)->y;
    nd[node].ey = max_element(all_range(v, s, e), ycmp)->y;
    if(nd[node].dir) sort(all_range(v, s, e), ycmp);
    else sort(all_range(v, s, e), xcmp);
    int m = s + e >> 1; nd[node].v = v[m];
    if(s <= m-1) _build(node<<1, s, m-1);
    if(m+1 <= e) _build(node<<1|1, m+1, e);</pre>
  void build(const vector<pll> &_v){
    v = v; sort(all(v)); _build(1, 0, v.size()-1);
 11 query(pll t, int node = 1){
   11 tmp, ret = inf:
    if(t != nd[node].v) ret = min(ret, dst(t, nd[node].v));
    bool x_chk = (!nd[node].dir && xcmp(t, nd[node].v));
    bool y_chk = (nd[node].dir && ycmp(t, nd[node].v));
    if(x_chk || y_chk){
      if(chk[node<<1]) ret = min(ret, query(t, node<<1));</pre>
      if(chk[node<<1|1]){
        if(nd[node].dir) tmp = nd[node<<1|1].sy - t.y;</pre>
        else tmp = nd[node << 1|1].sx - t.x;
```

```
if(tmp*tmp < ret) ret = min(ret, query(t, node<<1|1));</pre>
     }
   }
    else{
      if(chk[node << 1|1]) ret = min(ret, query(t, node << 1|1));
      if(chk[node<<1]){
        if(nd[node].dir) tmp = nd[node<<1].ey - t.y;</pre>
        else tmp = nd[node<<1].ex - t.x;</pre>
        if(tmp*tmp < ret) ret = min(ret, querv(t, node<<1));</pre>
     }
   }
    return ret;
 }
}:
2.5 Dual Graph
const int MV = 101010, ME = 101010; // MAX_V, MAX_E
p pt[MV]: // vertex's coord
vector g[MV]; // g[s].emplace_back(e, edge_id);
vector<int> dual_pt; // coord compress
int par[ME * 2]; // Union Find
void uf_init(){ iota(par, par+ME*2, 0); }
int find(int v){return v == par[v] ? v : par[v] = find(par[v]);}
void merge(int u, int v){ u = find(u); v = find(v); if(u != v)par[u] = v; }
p base; // sort by angle
bool cmp_angle(const p &_a, const p &_b){
 p a = pt[_a.x], b = pt[_b.x];
 if((a > base) != (b > base)) return a > b;
 return ccw(a, base, b) > 0:
void addEdge(int s, int e, int id){
 g[s].emplace_back(e, id); g[e].emplace_back(s, id);
int out: //outer face
void getDual(int n, int m){
 uf init():
 for(int i=1; i<=n; i++){
   base = pt[i]; sort(all(g[i]), cmp_angle);
   // up, left : *2+1 / down, right : *2
    for(int j=0; j<g[i].size(); j++){</pre>
      int k = j ? j - 1 : g[i].size()-1;
      int u = g[i][k].y << 1 | 1, v = g[i][j].y << 1;
      p p1 = pt[g[i][k].x], p2 = pt[g[i][j].x];
      if(p1 > base) u ^= 1;
      if(p2 > base) v = 1:
      merge(u, v);
   }
  int mn_idx = min_element(pt+1, pt+n+1) - pt;
  out = find(g[mn_idx][0].y << 1 | 1);
  for(int i=1; i<=m; i++){</pre>
   dual_pt.push_back(find(i << 1));</pre>
    dual_pt.push_back(find(i << 1 | 1));</pre>
```

compress(dual_pt);

Soongsil University – AC-complete Page 6 of 25

```
// @TODO coord compress
      Bulldozer Trick (Rotating Sweep Line)
Point v[2020];
struct Line{
 ll i, j, dx, dy;
  Line(int i, int j) : i(i), j(j) {
    dx = v[i].x - v[j].x; dy = v[i].y - v[j].y;
  bool operator < (const Line &t) const {</pre>
    ll a = dy * t.dx, b = t.dy * dx;
    return tie(a, i, j) < tie(b, t.i, t.j);</pre>
};
int ccw(Point a, Point b, Point c){}
int ccw(Line a. Line b){
 11 \text{ res} = a.dx*b.dy - b.dx*a.dy;
 if(!res) return 0; return res > 0 ? 1 : -1;
int idx[2020]; vector<Line> line;
void bulldozer(int n){
  sort(v+1, v+n+1); for(int i=1; i \le n; i++) idx[i] = i;
  for(int i=1; i<=n; i++) for(int j=1; j<i; j++) line.emplace_back(i, j);
  for(int i=0, j=0; i<line.size(); ){</pre>
    int ed = i:
    while(ed < line.size() && !ccw(line[i], line[ed])) ed++;</pre>
    for(int j=i; j<ed; j++){</pre>
      int a = line[j].i, b = line[j].j;
      swap(idx[a], idx[b]); swap(v[idx[a]], v[idx[b]]);
      update(idx[a]); update(idx[b]);
    ans = merge(ans, query()); i = ed;
      Delaunay Triangulation
using lll = __int128; // using T = ll; (if coords are < 2e4)
// return true if p strictly within circumcircle(a,b,c)
bool inCircle(P p, P a, P b, P c) {
  a = p, b = p, c = p; // assert(cross(a,b,c)>0);
 lll x = (lll)norm(a)*cross(b,c)+(lll)norm(b)*cross(c,a)
      +(lll)norm(c)*cross(a,b);
  return x*(cross(a,b,c)>0?1:-1) > 0;
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point
using Q = struct Quad*;
struct Quad {
 bool mark; Q o, rot; P p;
 P F() { return r()->p; }
  Q r() { return rot->rot; }
  Q prev() { return rot->o->rot: }
  Q next() { return r()->prev(); }
```

};

```
Q makeEdge(P orig, P dest) {
 Q q[]{new Quad{0,0,0,orig}, new Quad{0,0,0,arb},
      new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
 FOR(i,4) q[i] \rightarrow o = q[-i \& 3], q[i] \rightarrow rot = q[(i+1) \& 3];
 return *q;
void splice(Q a, Q b) { swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o); }
Q connect(Q a, Q b) {
 Q = makeEdge(a->F(), b->p);
  splice(q, a->next()); splice(q->r(), b);
pair<Q,Q> rec(const vP& s) {
 if (sz(s) \le 3) {
    Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.bk);
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = cross(s[0], s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
   return {side < 0 ? c \rightarrow r() : a, side < 0 ? c : b \rightarrow r() };
#define H(e) e \rightarrow F(), e \rightarrow p
#define valid(e) (cross(e->F(),H(base)) > 0)
 Q A, B, ra, rb;
  int half = sz(s) / 2;
 tie(ra, A) = rec({all(s)-half}):
 tie(B, rb) = rec({sz(s)-half+all(s)});
  while ((cross(B->p,H(A)) < 0 && (A = A->next())) | |
       (cross(A->p,H(B)) > 0 \&\& (B = B->r()->o)));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (inCircle(e->dir->F(), H(base), e->F())) { \
      Q t = e \rightarrow dir; \
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e = t; \
  while (1) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break:
   if (!valid(LC) || (valid(RC) && inCircle(H(RC), H(LC))))
      base = connect(RC, base->r());
    else base = connect(base->r(), LC->r());
 return {ra, rb}:
V<AR<P,3>> triangulate(vP pts) {
  sor(pts); assert(unique(all(pts)) == end(pts)); // no duplicates
 if (sz(pts) < 2) return {};
 Q = rec(pts).f; V<Q> q = {e};
 while (cross(e->o->F(), e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c\rightarrow mark = 1; pts.pb(c\rightarrow p); \
```

Soongsil University – AC-complete Page 7 of 25

```
q.pb(c->r()); c = c->next(); } while (c != e); }
  ADD; pts.clear();
  int qi = 0; while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
  V<AR<P,3>> ret(sz(pts)/3);
  FOR(i,sz(pts)) ret[i/3][i%3] = pts[i];
  return ret;
}
3 Graph
      Euler Tour
// Not Directed / Cvcle
constexpr int SZ = 1010;
int N, G[SZ][SZ], Deg[SZ], Work[SZ];
void DFS(int v){
  for(int &i=Work[v]; i<=N; i++) while(G[v][i])</pre>
    G[v][i]--, G[i][v]--, DFS(i);
  cout << v << " ";
// Directed / Path
void DFS(int v){
  for(int i=1; i<=pv; i++) while(G[v][i]) G[v][i]--, DFS(i);
  Path.push_back(v);
}
void Get(){
  for(int i=1; i<=pv; i++) if(In[i] < Out[i]){ DFS(i); return; }</pre>
  for(int i=1; i<=pv; i++) if(Out[i]){ DFS(i); return; }</pre>
}
3.2 \quad SCC + 2-SAT
  Usage: CNF: (A or B) / alwaysTrue: A = , B / setValue / mostOne / exactlyOne
inline int True(int x){ return x << 1; }</pre>
inline int False(int x){ return x << 1 | 1; }</pre>
inline int Inv(int x) { return x ^ 1: }
struct TwoSat{
  int n;
  vector<vector<int>> g;
  vector<int> result;
  TwoSat(int n, int m = 0) : n(n), g(n+n) { if(!m) g.reserve(m+m); }
  int addVar(){ g.emplace_back(); g.emplace_back(); return n++; }
  void addEdge(int s, int e){ g[s].push_back(e); }
  void addCNF(int a, int b){ addEdge(Inv(a), b); addEdge(Inv(b), a); } // (A or B)
  void setValue(int x) { addCNF(x, x): } // (A or A)
  void addAlwaysTrue(int a, int b){ addEdge(a, b); addEdge(Inv(b), Inv(a)); } // A => B
  void addMostOne(const vector<int> &li){
    if(li.empty()) return; int t;
    for(int i=0; i<li.size(); i++){</pre>
      t = addVar():
      addAlwaysTrue(li[i], True(t));
      if(!i) continue;
      addAlwaysTrue(True(t-1), True(t));
      addAlwaysTrue(True(t-1), Inv(li[i]));
```

```
}
 void addExactlyOne(const vector<int> &li){
   if(li.empty()) return; int t;
   for(int i=0; i<li.size(); i++){</pre>
     t = addVar();
     addAlwaysTrue(li[i], True(t));
     if(!i) continue:
     addAlwaysTrue(True(t-1), True(t));
     addAlwaysTrue(True(t-1), Inv(li[i]));
    setValue(True(t));
 }
 vector<int> val, comp, z; int pv = 0;
 int dfs(int i){
   int low = val[i] = ++pv, x; z.push_back(i);
   for(int e : g[i]) if(!comp[e]) low = min(low, val[e] ?: dfs(e));
   if(low == val[i]){
     do{
       x = z.back(); z.pop_back();
        comp[x] = low:
       if (result[x>>1] == -1) result[x>>1] = ~x&1;
     }while(x != i);
   }
   return val[i] = low;
 }
 bool sat(){
   result.assign(n, -1);
   val.assign(2*n, 0); comp = val;
   for(int i=0; i<n+n; i++) if(!comp[i]) dfs(i);</pre>
   for(int i=0; i<n; i++) if(comp[2*i] == comp[2*i+1]) return 0;
   return 1;
 vector<int> getValue(){ return move(result); }
3.3 BCC
 Usage: call tarjan() before use
vector<int> G[MAX_V];
int In[MAX_V], Low[MAX_V], P[MAX_V];
void addEdge(int s, int e){
 G[s].push_back(e); G[e].push_back(s);
void tarjan(int n){ /// Pre-Process
 function<void(int,int)> dfs = [&pv,&dfs](int v, int b){
   In[v] = Low[v] = ++pv; P[v] = b;
   for(auto i : G[v]){
     if(i == b) continue;
     if(!In[i]) dfs(i, v), Low[v] = min(Low[v], Low[i]);
     else Low[v] = min(Low[v], In[i]);
   }
 };
 for(int i=1; i<=n; i++) if(!In[i]) dfs(i, -1);
```

Soongsil University – AC-complete Page 8 of 25

```
vector<int> cutVertex(int n){
 vector<int> res;
 array<char,MAX_V> isCut;
 function<void(int)> dfs = [&dfs,&isCut](int v){
   int ch = 0;
   for(auto i : G[v]){
     if(P[i] != v) continue;
     dfs(i); ch++;
     if(P[v] == -1 \&\& ch > 1) isCut[v] = 1:
      else if(P[v] != -1 \&\& Low[i] >= In[v]) isCut[v] = 1;
 };
 for(int i=1; i<=n; i++) if(P[i] == -1) dfs(i);
 for(int i=1; i<=n; i++) if(isCut[i]) res.push_back(i);</pre>
 return move(res);
vector<PII> cutEdge(int n){
 vector<PII> res;
 function<void(int)> dfs = [&dfs,&res](int v){
   for(auto i : G[v]){
     if(P[i] != v) continue;
     dfs(i):
      if(Low[i] > In[v]) res.emplace_back(min(v,i), max(v,i));
 };
 for(int i=1; i<=n; i++) if(P[i] == -1) dfs(i);
 return move(res): // sort(all(res)):
vector<int> BCC[MAX_V]; // BCC[v] = components which contains v
void vertexDisjointBCC(int n){
 int cnt = 0;
 array<char,MAX_V> vis;
 function<void(int,int)> dfs = [&dfs,&vis,&cnt](int v, int c){
   if(c > 0) BCC[v].push_back(c);
   vis[v] = 1:
   for(auto i : G[v]){
     if(vis[i]) continue;
     if(In[v] < In[i]) BCC[v].push_back(++cnt), dfs(i, cnt);</pre>
      else dfs(i, c);
   }
 };
 for(int i=1; i<=n; i++) if(!vis[i]) dfs(i, ++cnt);</pre>
void edgeDisjointBCC(int n){} // remove cut edge, do flood fill
3.4 Maximum Clique
int N, M; ull G[40], MX, Clique; // O-index, adj list with bitset, O(3^{N/3})
void get_clique(int R = 0, ull P = (1ULL<<N)-1, ull X = 0, ull V=0){</pre>
 if((P|X) == 0) \{ if(R > MX) MX = R, Clique = V; return; \}
 int u = __builtin_ctzll(P|X); ll c = P&~G[u];
 while(c){
   int v = __builtin_ctzll(c);
   get clique(R + 1. P\&G[v]. X\&G[v]. V \mid 1ULL \ll v):
   P ^= 1ULL << v; X |= 1ULL << v; c ^= 1ULL << v;
```

```
3.5 Bipartite Matching
const int S = 333;
vector<int> g[S];
int dst[S], 1[S], r[S], chk[S];
void clear(){ for(int i=0; i<S; i++) g[i].clear(); }</pre>
void addEdge(int s, int e){ g[s].push_back(e); }
int bfs(int n){
 queue<int> q; int ret = 0;
 memset(dst, 0, sizeof dst);
 for(int i=1; i<=n; i++) if(l[i] == -1 && !dst[i])
   q.push(i); dst[i] = 1;
 while(!q.empty()){
   int v = q.front(); q.pop();
   for(auto i : g[v]){
     if(r[i] == -1) ret = 1;
     else if(!dst[r[i]]) dst[r[i]] = dst[v] + 1, q.push(r[i]);
   }
 }
 return ret:
int dfs(int v){
 if(chk[v]) return 0; chk[v] = 1;
 for(auto i : g[v]){
   l[v] = i: r[i] = v: return 1:
   }
 }
 return 0;
int match(int n){
 memset(1, -1, sizeof 1); memset(r, -1, sizeof r);
 int ret = 0:
 while(bfs(n)){
   memset(chk, 0, sizeof chk);
   for(int i=1; i<=n; i++) if(l[i] == -1 && dfs(i)) ret++;
 }
 return ret;
int track[S+S];
void rdfs(int v. int n){
 if(track[v]) return: track[v] = 1:
 for(auto i : g[v]) track[i+n] = 1, rdfs(r[i], n);
vector<int> getCover(int n, int m){
 match(n); memset(track, 0, sizeof track);
 for(int i=1; i<=n; i++) if(l[i] == -1) rdfs(i, n);
 vector<int> ret;
 for(int i=1; i<=n; i++) if(!track[i]) ret.push_back(i);</pre>
 for(int i=n+1: i<=n+m: i++) if(track[i]) ret.emplace back(i):
 return ret;
```

Soongsil University – AC-complete Page 9 of 25

3.6 Maximum Flow, Minimum Cut

```
template<typename FlowType, size_t _Sz, FlowType _Inf=1'000'000'007>
struct Dinic{
 struct Edge{ int v, dual; FlowType c; };
 int Level[_Sz], Work[_Sz];
 vector<Edge> G[_Sz];
 void clear(){ for(int i=0; i<_Sz; i++) G[i].clear(); }</pre>
 void AddEdge(int s, int e, FlowType x){
   G[s].push_back({e, (int)G[e].size(), x});
   G[e].push_back({s, (int)G[s].size()-1, 0});
 bool BFS(int S, int T){
   memset(Level, 0, sizeof Level);
   queue<int> Q; Q.push(S); Level[S] = 1;
   while(Q.size()){
     int v = Q.front(); Q.pop();
     for(const auto &i : G[v]){
       if(!Level[i.v] && i.c) Q.push(i.v), Level[i.v] = Level[v] + 1;
     }
   }
   return Level[T];
 FlowType DFS(int v, int T, FlowType tot){
   if(v == T) return tot;
   for(int &_i=Work[v]; _i<G[v].size(); _i++){</pre>
     Edge &i = G[v][_i];
     if(Level[i.v] != Level[v] + 1 || !i.c) continue;
     FlowType fl = DFS(i.v, T, min(tot, i.c));
     if(!fl) continue:
     i.c -= fl; G[i.v][i.dual].c += fl;
     return fl;
   }
   return 0;
 FlowType MaxFlow(int S, int T){
   FlowType ret = 0, tmp;
   while(BFS(S, T)){
     memset(Work, 0, sizeof Work);
     while((tmp = DFS(S, T, _Inf))) ret += tmp;
   return ret;
 tuple<FlowType, vector<int>, vector<int>> MinCut(int S, int T){
   FlowType fl = MaxFlow(S, T);
   vector<int> a. b:
   const int Bias = 1e9;
   queue<int> Q; Q.push(S); Level[S] += Bias;
   while(Q.size()){
     int v = Q.front(); Q.pop();
     for(const auto &i : G[v]){
       if(Level[i.v] < Bias) Q.push(i.v), Level[i.v] += Bias;</pre>
     }
   }
   for(int i=0; i<_Sz; i++){</pre>
     if(Level[i]) a.push_back(i);
```

```
else b.push_back(i);
   }
   return make_tuple(fl, a, b);
 }
};
3.7 MCMF
template<typename FlowType, typename CostType, int _Sz, FlowType _Inf_flow, CostType _Inf_cost>
struct MCMF{
 struct Edge{ int nxt; FlowType cap; CostType cst; int rev; };
 vector<Edge> G[_Sz];
 bitset<_Sz> Visit;
 CostType Dist[_Sz];
  int Used[_Sz];
 void AddEdge(int s, int e, FlowType cap, CostType cst){
   G[s].push_back({e, cap, cst, SZ(G[e])});
   G[e].push_back({s, 0, -cst, SZ(G[s])-1});
 void Init(const int S, const int T){
   fill(Dist, Dist+_Sz, _Inf_cost);
   queue<int> Q;
   bitset<_Sz> InQ;
   Q.push(S); InQ[S] = true; Dist[S] = 0;
    while(!Q.empty()){
     int now = Q.front(); Q.pop(); InQ[now] = false;
     for(const auto &i : G[now]){
        if(i.cap > 0 && Dist[i.nxt] > Dist[now] + i.cst){
          Dist[i.nxt] = Dist[now] + i.cst;
          if(!InQ[i.nxt]) InQ[i.nxt] = true, Q.push(i.nxt);
     }
   }
 bool Update(){
   CostType fix = _Inf_cost;
   for(int i=0: i < Sz: i++){
     if(!Visit[i]) continue;
     for(const auto &j : G[i]){
        if(j.cap && !Visit[j.nxt]) fix = min(fix, Dist[i] + j.cst - Dist[j.nxt]);
   }
   if(fix == _Inf_cost) return false;
   for(int i=0; i<_Sz; i++) if(!Visit[i]) Dist[i] += fix;</pre>
   return true:
 FlowType DFS(int now, int sink, FlowType fl){
   Visit[now] = true:
   if(now == sink) return fl;
   for(; Used[now] < G[now].size(); Used[now]++){</pre>
     auto &i = G[now][Used[now]];
     if(!Visit[i.nxt] && i.cap > 0 && Dist[i.nxt] == Dist[now] + i.cst){
       FlowType ret = DFS(i.nxt, sink, min(fl, i.cap));
        if(ret > 0){
          i.cap -= ret;
          G[i.nxt][i.rev].cap += ret;
```

Soongsil University – AC-complete Page 10 of 25

```
return ret:
      }
    }
    return 0;
  pair<FlowType, CostType> MinCostFlow(int S, int T){
    FlowType flow = 0, tmp;
    CostType cost = 0;
    Init(S, T);
    do{
      Visit.reset();
      memset(Used, 0, sizeof Used);
      while((tmp = DFS(S, T, _Inf_flow))){
        flow += tmp;
        cost += tmp * Dist[T];
        Visit.reset();
    }while(Update());
    return make_pair(flow, cost);
};
3.8 LR Flow
addEdge(t, s, inf) // 기존 싱크 -> 기존 소스 inf
addEdge(s, nt, 1) // s -> 새로운 싱크 1
addEdge(ns, e, 1) // 새로운 소스 -> e 1
addEdge(a, b, r-l) // s -> e (r-l)
// ns -> nt의 max flow == 1들의 합 확인
// maxflow : s -> t 플로우 찿을 수 있을 때까지 반복
      Hungarian Method
// 1-based, only for minimum matching, maximum matching may get TLE
template<typename cost_t=int, cost_t _INF=0x3f3f3f3f3f>
struct Hungarian{
  int n:
  vector<vector<cost_t>> mat;
  Hungarian(int n) : n(n), mat(n+1, vector<cost_t>(n+1, _INF)) {}
  void addEdge(int s, int e, cost_t x){
    mat[s][e] = min(mat[s][e], x);
  cost_t run(){
    vector < cost_t > u(n+1), v(n+1), m(n+1);
    vector<int> p(n+1), w(n+1), c(n+1);
    for(int i=1,a,b; i<=n; i++){
      p[0] = i; b = 0;
      fill(m.begin(), m.end(), _INF);
      fill(c.begin(), c.end(), 0);
      do{
        int nxt; cost_t delta = _INF;
        c[b] = 1; a = p[b];
        for(int j=1; j<=n; j++){</pre>
         if(c[i]) continue;
```

cost_t t = mat[a][j] - u[a] - v[j];

```
if(t < m[j]) m[j] = t, w[j] = b;
          if(m[i] < delta) delta = m[i], nxt = i;</pre>
        for(int j=0; j<=n; j++){
          if(c[j]) u[p[j]] += delta, v[j] -= delta;
          else m[j] -= delta;
       }
       b = nxt;
     \mathbf{b}
        int nxt = w[b];
        p[b] = p[nxt];
        b = nxt;
     }while(b != 0);
   }
   return -v[0];
 }
};
      Gomory-Hu Tree
// O-based, S-T cut in graph == S-T cut in gomory-hu tree (path minimum)
vector<Edge> GomoryHuTree(int n, const vector<Edge> &e){
   Dinic<int,100> Flow;
   vector<Edge> res(n-1); vector<int> pr(n);
   for(int i=1; i<n; i++, Flow.clear()){</pre>
        for(const auto &[s,e,x] : e) Flow.AddEdge(s, e, x); // bi-directed
        int fl = Flow.MaxFlow(pr[i], i);
       for(int j=i+1; j<n; j++){
            if(!Flow.Level[i] == !Flow.Level[j] && pr[i] == pr[j]) pr[j] = i;
        res[i-1] = Edge(pr[i], i, fl);
   }
   return res;
3.11 O(V^3) Global Min Cut
int vertex, g[S][S], dst[S], chk[S], del[S];
void init(){
 memset(g, 0, sizeof g); memset(del, 0, sizeof del);
void addEdge(int s, int e, int x){ g[s][e] = g[e][s] = x; }
int minCutPhase(int &s, int &t){
 memset(dst, 0, sizeof dst);
 memset(chk, 0, sizeof chk);
 int mincut = 0;
 for(int i=1; i<=vertex; i++){</pre>
   int k = -1, mx = -1;
   for(int j=1; j<=vertex; j++) if(!del[j] && !chk[j])</pre>
     if(dst[j] > mx) k = j, mx = dst[j];
   if(k == -1) return mincut;
   s = t, t = k;
   mincut = mx, chk[k] = 1:
   for(int j=1; j<=vertex; j++){</pre>
     if(!del[j] && !chk[j]) dst[j] += g[k][j];
```

Soongsil University – AC-complete Page 11 of 25

```
return mincut;
}
int getMinCut(int n){
  vertex = n; int mincut = 1e9+7;
  for(int i=1; i<vertex; i++){</pre>
    int s, t;
    int now = minCutPhase(s, t):
    mincut = min(mincut, now); del[t] = 1;
    if(mincut == 0) return 0;
    for(int j=1; j<=vertex; j++){</pre>
      if(!del[j]) g[s][j] = (g[j][s] += g[j][t]);
  }
  return mincut;
       O((V+E)\log V) Dominator Tree
vector<int> DominatorTree(const vector<vector<int>> &g, int src){ // // 0-based
  int n = g.size();
  vector<vector<int>> rg(n), buf(n);
  vector<int> r(n), val(n), idom(n, -1), sdom(n, -1), o, p(n), u(n);
  iota(all(r), 0); iota(all(val), 0);
  for(int i=0; i<n; i++) for(auto j : g[i]) rg[j].push_back(i);</pre>
  function<int(int)> find = [&](int v){
    if(v == r[v]) return v;
    int ret = find(r[v]):
    if(sdom[val[v]] > sdom[val[r[v]]]) val[v] = val[r[v]];
    return r[v] = ret:
  };
  function<void(int)> dfs = [&](int v){
    sdom[v] = o.size(); o.push_back(v);
    for(auto i : g[v]) if(sdom[i] == -1) p[i] = v, dfs(i);
  dfs(src): reverse(all(o)):
  for(auto &i : o){
    if(sdom[i] == -1) continue;
    for(auto j : rg[i]){
      if(sdom[j] == -1) continue;
      int x = val[find(j), j];
      if(sdom[i] > sdom[x]) sdom[i] = sdom[x];
    buf[o[o.size() - sdom[i] - 1]].push_back(i);
    for(auto j : buf[p[i]]) u[j] = val[find(j), j];
    buf[p[i]].clear();
    r[i] = p[i];
  reverse(all(o)); idom[src] = src;
  for(auto i : o){ // WARNING : if different, takes idom
    if(i != src) idom[i] = sdom[i] == sdom[u[i]] ? sdom[i] : idom[u[i]];
  for(auto i : o) if(i != src) idom[i] = o[idom[i]]:
  return idom; // unreachable -> ret[i] = -1
```

```
O(N^2) Stable Marriage Problem
// man : 1~n, woman : n+1~2n
struct StableMarriage{
 int n;
 vector<vector<int>> g;
 StableMarriage(int n) : n(n), g(2*n+1) {
   for(int i=1; i<=n+n; i++) g[i].reserve(n);</pre>
 }
 void addEdge(int u, int v){ // insert in decreasing order of preference.
   g[u].push_back(v);
 vector<int> run(){
   queue<int> q;
   vector<int> match(2*n+1), ptr(2*n+1);
   for(int i=1; i<=n; i++) q.push(i);
   while(q.size()){
     int i = q.front(); q.pop();
     for(int &p=ptr[i]; p<g[i].size(); p++){</pre>
        int i = g[i][p]:
        if(!match[j]){ match[i] = j; match[j] = i; break; }
        int m = match[j], u = -1, v = -1;
        for(int k=0; k<g[j].size(); k++){</pre>
         if(g[j][k] == i) u = k;
         if(g[j][k] == m) v = k;
        if(u < v){
         match[m] = 0; q.push(m);
         match[i] = j; match[j] = i;
         break:
     }
   }
   return match;
 }
};
3.14 O(VE) Vizing Theorem
// Graph coloring with (max-degree)+1 colors, O(N^2)
int C[MX][MX] = {}, G[MX][MX] = {}; // MX = 2500
void solve(vector<pii> &E, int N, int M){
 int X[MX] = \{\}, a, b;
 auto update = [&](int u){ for(X[u] = 1; C[u][X[u]]; X[u]++); };
 auto color = [&](int u, int v, int c){
   int p = G[u][v]:
   G[u][v] = G[v][u] = c;
   C[u][c] = v; C[v][c] = u;
   C[u][p] = C[v][p] = 0;
   if(p) X[u] = X[v] = p;
   else update(u), update(v);
   return p; }; // end of function : color
  auto flip = [&](int u, int c1, int c2){
   int p = C[u][c1], q = C[u][c2];
    swap(C[u][c1], C[u][c2]);
   if(p) G[u][p] = G[p][u] = c2;
```

Soongsil University – AC-complete

```
if( !C[u][c1] ) X[u] = c1:
    if( !C[u][c2] ) X[u] = c2;
    return p; }; // end of function : flip
  for(int i = 1; i <= N; i++) X[i] = 1;
  for(int t = 0; t < E.size(); t++){
    int u = E[t].first, v0 = E[t].second, v = v0, c0 = X[u], c = c0, d;
    vector<pii> L;
    int vst[MX] = {};
    while(!G[u][v0]){
      L.emplace_back(v, d = X[v]);
      if(!C[v][c]) for(a = (int)L.size()-1; a >= 0; a--) c = color(u, L[a].first, c);
      else if(!C[u][d])for(a=(int)L.size()-1;a>=0;a--)color(u,L[a].first,L[a].second);
      else if( vst[d] ) break;
      else vst[d] = 1, v = C[u][d]:
    if( !G[u][v0] ){
      for(;v; v = flip(v, c, d), swap(c, d));
      if(C[u][c0]){
        for(a = (int)L.size()-2; a >= 0 && L[a].second != c; a--);
        for(; a >= 0; a--) color(u, L[a].first, L[a].second);
      } else t--;
    }
}
       O(E \log V) Directed MST
3.15
struct Edge{
  int s, e; cost_t x;
  Edge() = default:
  Edge(int s, int e, cost_t x) : s(s), e(e), x(x) {}
  bool operator < (const Edge &t) const { return x < t.x; }</pre>
};
struct UnionFind{
  vector<int> P, S;
  vector<pair<int, int>> stk;
  UnionFind(int n) : P(n), S(n, 1) { iota(P.begin(), P.end(), 0); }
  int find(int v) const { return v == P[v] ? v : find(P[v]); }
  int time() const { return stk.size(); }
  void rollback(int t){
    while(stk.size() > t){
      auto [u,v] = stk.back(); stk.pop_back();
      P[u] = u; S[v] -= S[u];
  bool merge(int u. int v){
    u = find(u); v = find(v);
    if(u == v) return false;
    if(S[u] > S[v]) swap(u, v);
    stk.emplace_back(u, v);
    S[v] += S[u]; P[u] = v;
    return true;
 }
};
struct Node{
  Edge key;
```

```
Node *1. *r:
  cost_t lz;
 Node() : Node(Edge()) {}
 Node(const Edge &edge) : key(edge), 1(nullptr), r(nullptr), lz(0) {}
 void push(){
   key.x += lz;
   if(1) 1->1z += 1z:
   if(r) r\rightarrow lz += lz;
   1z = 0:
 }
 Edge top(){ push(); return key; }
Node* merge(Node *a, Node *b){
 if(!a | | !b) return a ? a : b:
 a->push(); b->push();
 if(b->key < a->key) swap(a, b);
 swap(a->1, (a->r = merge(b, a->r)));
 return a;
void pop(Node* &a){ a->push(); a = merge(a->1, a->r); }
// 0-based
pair<cost_t, vector<int>> DirectMST(int n, int rt, vector<Edge> &edges){
 vector<Node*> heap(n);
 UnionFind uf(n):
 for(const auto &i : edges) heap[i.e] = merge(heap[i.e], new Node(i));
 cost t res = 0:
 vector<int> seen(n, -1), path(n), par(n);
 seen[rt] = rt;
 vector<Edge> Q(n), in(n, \{-1,-1,0\}), comp;
 deque<tuple<int, int, vector<Edge>>> cyc;
 for(int s=0; s<n; s++){</pre>
   int u = s, qi = 0, w;
   while(seen[u] < 0){
     if(!heap[u]) return {-1, {}};
      Edge e = heap[u]->top();
     heap[u] \rightarrow lz = e.x; pop(heap[u]);
     Q[qi] = e; path[qi++] = u; seen[u] = s;
     res += e.x; u = uf.find(e.s);
      if(seen[u] == s){ // found cycle, contract
        Node* nd = 0:
        int end = qi, time = uf.time();
        do nd = merge(nd, heap[w = path[--qi]]); while(uf.merge(u, w));
        u = uf.find(u); heap[u] = nd; seen[u] = -1;
        cyc.emplace_front(u, time, vector<Edge>{&Q[qi], &Q[end]});
   for(int i=0; i<qi; i++) in[uf.find(Q[i].e)] = Q[i];</pre>
 for(auto& [u,t,comp] : cyc){
   uf.rollback(t):
   Edge inEdge = in[u];
   for (auto& e : comp) in[uf.find(e.e)] = e;
   in[uf.find(inEdge.e)] = inEdge;
 for(int i=0; i<n; i++) par[i] = in[i].s;</pre>
```

Soongsil University – AC-complete Page 13 of 25

```
O(V^3) General Matching
#define zer(x) memset(x, 0, sizeof x)
#define fu(x) memset(x, -1, sizeof x)
int n;
vector<int> g[SZ];
int match[SZ], par[SZ], chk[SZ], gid[SZ], color[SZ];
void addEdge(int s. int e){
  g[s].push_back(e); g[e].push_back(s);
int lca_chk[SZ], pv;
int lca(int rt, int u, int v){ pv++;
  while(u != rt) lca_chk[u] = pv, u = gid[par[match[u]]];
  while(v != rt){
    if(lca_chk[v] == pv) return v; v = gid[par[match[v]]];
 return rt;
}
void group(int 1, int u, int v){
  while(1 != gid[u]){
    int vv = match[u]. uu = par[vv]:
    chk[vv] = 1; par[u] = v; gid[u] = gid[vv] = 1;
    u = uu; v = vv;
 }
void add_match(int rt, int v){
  while(par[v] != rt){
    int p = par[v], vv = match[p];
    match[v] = p; match[p] = v; match[vv] = 0;
    v = vv;
 }
  match[v] = rt: match[rt] = v:
int arg(int st){
  zer(par); zer(chk); fu(color); iota(gid, gid+SZ, 0);
  queue<int> q; q.push(st); chk[st] = 1; color[st] = 0;
  while(q.size()){
    int v = q.front(); q.pop();
    for(auto i : g[v]){
      if(color[i] == -1){
        par[i] = v; color[i] = 1;
        if(!match[i]){ add_match(st, i); return 1; }
        color[match[i]] = 0: chk[match[i]] = 1:
        q.push(match[i]);
      else if(!color[i] && gid[v] != gid[i]){
        int l = lca(gid[st], gid[v], gid[i]);
        group(1, v, i); group(1, i, v);
        for(int j=1; j<=n; j++) if(chk[j] && color[j])</pre>
          color[j] = 0, q.push(j);
      }
    }
  }
```

return {res, par};

```
return 0:
int run(int _n){
 n = _n; int ret = 0;
 for(int i=1; i<=n; i++) if(!match[i] && arg(i)) ret++;</pre>
 return ret:
3.17 O(V^3) Weighted General Matching
int n, n_x;
edge g[N*2][N*2];
int lab[N*2];
int match[N*2], slack[N*2], st[N*2], pa[N*2];
int flo_from[N*2][N+1], S[N*2], vis[N*2];
vector<int> flo[N*2];
queue<int> q;
int e_delta(const edge &e){ return lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2; }
void update slack(int u. int x){
 if(!slack[x] || e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack[x] = u;</pre>
void set_slack(int x){
 slack[x] = 0;
 for(int u=1: u<=n: u++)
   if(g[u][x].w > 0 \&\& st[u] != x \&\& S[st[u]] == 0) update_slack(u,x);
void q_push(int x){
 if(x \le n) q.push(x);
 else for(int i=0; i<flo[x].size(); i++) q_push(flo[x][i]);</pre>
void set_st(int x, int b){
 st[x] = b:
 if(x > n) for(int i=0; i < flo[x].size(); i++) set_st(flo[x][i], b);
int get_pr(int b, int xr){
 int pr=find(all(flo[b]), xr) - flo[b].begin();
 if(pr & 1){ reverse(1 + all(flo[b])); return flo[b].size() - pr; }
 else return pr;
void set match(int u. int v){
 edge e = g[u][v]; match[u] = g[u][v].v; if(u <= n) return;
 int xr = flo_from[u][e.u], pr = get_pr(u, xr);
 for(int i=0; i<pr; i++) set_match(flo[u][i], flo[u][i^1]);</pre>
 set_match(xr, v); rotate(flo[u].begin(), pr+all(flo[u]));
void augment(int u. int v){
 while(true){
   int xnv = st[match[u]]; set_match(u, v);
   if(!xnv) return;
   set_match(xnv, st[pa[xnv]]); u = st[pa[xnv]]; v = xnv;
 }
int get_lca(int u, int v){
 static int t = 0:
 for(++t; u || v; swap(u,v)){
   if(u == 0)continue;
```

Soongsil University – AC-complete Page 14 of 25

```
vis[u] = t; u = st[match[u]];
    if(u) u = st[pa[u]];
  return 0:
}
void add blossom(int u. int lca. int v){
  int b = n+1; while(b <= n_x && st[b]) ++b;
  if(b > n x) ++n x: // new blossom
  lab[b] = 0; S[b]=0; match[b] = match[lca]; flo[b] = vector<int>{lca};
  for(int x=u, y; x!=lca; x=st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y=st[match[x]]), q_push(y);
  reverse(1 + all(flo[b]));
  for(int x=v.v: x!=lca: x=st[pa[v]])
    flo[b].push_back(x), flo[b].push_back(y=st[match[x]]), q_push(y);
  set_st(b, b);
  for(int x=1; x<=n_x; x++) g[b][x].w = g[x][b].w = 0;
  for(int x=1; x<=n; x++) flo_from[b][x] = 0;
  for(int i=0; i<flo[b].size(); i++){</pre>
    int xs=flo[b][i]:
    for(int x=1; x<=n_x; x++)</pre>
      if(g[b][x].w==0 \mid | e_delta(g[xs][x]) < e_delta(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    for(int x=1; x<=n; x++) if(flo_from[xs][x]) flo_from[b][x] = xs;
  set_slack(b);
void expand_blossom(int b){
  for(int i=0; i<flo[b].size(); i++) set_st(flo[b][i], flo[b][i]);</pre>
  int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
  for(int i=0; i<pr; i+=2){</pre>
    int xs = flo[b][i], xns = flo[b][i+1];
    pa[xs] = g[xns][xs].u; S[xs]=1; S[xns]=0;
    slack[xs]=0; set_slack(xns); q_push(xns);
  S[xr]=1: pa[xr]=pa[b]:
  for(int i=pr+1; i<flo[b].size(); i++) S[flo[b][i]] = -1, set_slack(flo[b][i]);</pre>
  st[b] = 0:
bool on_found_edge(const edge &e){
  int u = st[e.u], v = st[e.v]:
  if(S[v] == -1){
    pa[v] = e.u; S[v] = 1;
    int nu = st[match[v]]:
    slack[v] = slack[nu] = S[nu] = 0; S[nu]=0; q_push(nu);
  else if(S[v] == 0){
    int lca = get_lca(u, v);
    if(!lca) return augment(u, v), augment(v, u), true;
    else add_blossom(u, lca, v);
  }
  return false:
bool matching(){
  memset(S+1, -1, sizeof(int)*n_x);
  memset(slack+1, 0, sizeof(int)*n_x);
  q=queue<int>();
```

if(vis[u] == t) return u:

```
for(int x=1; x<=n_x; x++) if(st[x] == x && !match[x]) pa[x]=0, S[x]=0, q_push(x);
 if(q.empty()) return false;
 while(true){
   while(q.size()){
      int u = q.front(); q.pop(); if(S[st[u]] == 1) continue;
     for(int v=1; v<=n; v++) if(g[u][v].w > 0 && st[u] != st[v]){
        if(e_delta(g[u][v]) == 0){ if(on_found_edge(g[u][v])) return true; }
        else update_slack(u,st[v]);
   }
   int d = INF;
   for(int b=n+1; b<=n_x; b++) if(st[b] == b && S[b] == 1) d = min(d, lab[b]/2);
   for(int x=1; x<=n_x; x++) if(st[x] == x && slack[x]){
     if(S[x] == -1) d = min(d, e_delta(g[slack[x]][x]));
     else if(S[x] == 0) d = min(d, e_delta(g[slack[x]][x])/2);
   for(int u=1; u<=n; u++){
     if(S[st[u]] == 0){if(lab[u] <= d) return 0; lab[u] -= d;}
     else if(S[st[u]] == 1) lab[u] += d;
   for(int b=n+1; b<=n_x; b++) if(st[b] == b){</pre>
     if(S[st[b]] == 0) lab[b] += d*2:
      else if(S[st[b]] == 1) lab[b] -= d*2;
   q=queue<int>();
   for(int x=1; x<=n_x; x++)</pre>
     if(st[x] == x && slack[x] && st[slack[x]] != x && e delta(g[slack[x]][x]) == 0)
        if(on_found_edge(g[slack[x]][x])) return true;
   for(int b=n+1; b<=n_x; b++)</pre>
     if(st[b] == b\&\& S[b] == 1 \&\& lab[b] == 0) expand_blossom(b);
 }
 return false;
pair<long long,int> solve(){
 memset(match+1, 0, sizeof(int)*n);
 n_x = n; int n_matches = 0, w_max = 0; long long tot_weight = 0;
 for(int u=0; u<=n; u++) st[u] = u, flo[u].clear();
 for(int u=1; u<=n; u++) for(int v=1; v<=n; v++)
   flo_from[u][v] = u==v ? u : 0, w_max = max(w_max, g[u][v].w);
 for(int u=1; u \le n; u++) lab[u] = w_max;
 while(matching()) ++n_matches;
 for(int u=1; u<=n; u++) if(match[u] && match[u] < u) tot_weight += g[u][match[u]].w;</pre>
 return make_pair(tot_weight, n_matches);
void add_edge(int u, int v, int w){ g[u][v].w = g[v][u].w = w; }
void init(int _n){
 n = _n;
 for(int u=1; u<=n; u++) for(int v=1; v<=n; v++) g[u][v] = edge(u, v, 0);
4 Math
4.1 Extend GCD, CRT, Combination
```

```
// 11 gcd(11 a, 11 b), 11 lcm(11 a, 11 b), 11 mod(11 a, 11 b)
11 ext_gcd(11 a, 11 b, 11 &x, 11 &y) { //ax + by = gcd(a, b)
```

Soongsil University – AC-complete

```
11 g = a; x = 1, y = 0;
  if (b) g = ext_gcd(b, a \% b, y, x), y = a / b * x;
}
11 inv(11 a, 11 m){ //return x when (ax mod m = 1), fail \rightarrow -1
 ll x, y, g = ext_gcd(a, m, x, y);
 if (g > 1) return -1:
 return mod(x, m);
pair<11,11> crt(11 a1, 11 m1, 11 a2, 11 m2){ // Return (z, M), fail -> M = -1
 ll s, t; ll g = ext_gcd(m1, m2, s, t);
 if(a1 % g != a2 % g) return {0, -1};
  s = mod(s*a2, m2); t = mod(t*a1, m1);
 ll res = mod(s*(m1/g) + t*(m2/g), m1/g*m2), M = m1/g*m2;
  return {res, M};
pair<11,11> crt(const vector<11> &a, const vector<11> &m){
 if(a.size() == 1) return {a[0], m[0]};
  pair<11,11> ret = crt(a[0], m[0], a[1], m[1]);
  for(int i=2; i<a.size(); i++) ret = crt(ret.x, ret.y, a[i], m[i]);
  return ret:
struct Lucas{ // init : O(P), query : O(log P)
  const size_t P;
  vector<ll> fac. inv:
  11 Pow(11 a, 11 b){
    ll ret = 1:
    for(; b; b>>=1, a=a*a%P) if(b&1) ret=ret*a%P;
    return ret;
Lucas(size_t P) : P(P), fac(P), inv(P) {
    fac[0] = 1:
    for(int i=1; i<P; i++) fac[i] = fac[i-1] * i % P;</pre>
    inv[P-1] = Pow(fac[P-1], P-2);
    for(int i=P-2; ~i; i--) inv[i] = inv[i+1] * (i+1) % P;
 11 small(ll n, ll r) const {
    if(n < r) return 0:
    return fac[n] * inv[r] % P * inv[n-r] % P;
  11 calc(ll n, ll r) const {
    if (n < r | | n < 0 | | r < 0) return 0;
    if(!n || !r || n == r) return 1:
    return small(n\%P, r\%P) * calc(n/P, r/P) % P:
};
template<11 p, 11 e> struct CombinationPrimePower{ // init : O(p^e), query : O(log p)
  vector<ll> val: 11 m:
  CombinationPrimePower(){
    val.resize(m); val[0] = 1; m = 1; for(int i=0; i<e; i++) m *= p;</pre>
    for(int i=1; i<m; i++) val[i] = val[i-1] * (i % p ? i : 1) % m;
  pair<ll,ll> factorial(int n){
    if(n < p) return {0, val[n]};</pre>
    int k = n / p; auto v = factorial(k);
    int cnt = v.first + k, kp = n / m, rp = n % m;
```

```
ll ret = v.second * Pow(val[m-1], kp % 2, m) % m * val[rp] % m;
   return {cnt, ret};
 11 calc(int n, int r){
   if(n < 0 || r < 0 || n < r) return 0;
   auto v1 = factorial(n), v2 = factorial(r), v3 = factorial(n-r);
   11 cnt = v1.first - v2.first - v3.first:
   11 ret = v1.second * inv(v2.second, m) % m * inv(v3.second, m) % m;
   if(cnt >= e) return 0:
   for(int i=1; i<=cnt; i++) ret = ret * p % m;
   return ret;
 }
};
4.2 FloorSum
// sum of floor((A*i+B)/M) over 0 <= i < N in O(log(N+M+A+B))
11 FloorSum(11 N. 11 M. 11 A. 11 B) { // 1 <= N.M <= 1e9. 0 <= A.B < M
 11 R = 0:
 if(A >= M) R += N * (N - 1) / 2 * (A / M), A %= M;
 if(B >= M) R += B / M * N, B %= M;
 11 Y = (A * N + B) / M, X = Y * M - B;
 if(Y == 0) return R:
 R += (N - (X + A - 1) / A) * Y;
 R += FloorSum(Y, A, M, (A - X % A) % A);
 return R:
4.3 XOR Basis(XOR Maximization)
// can use greedy maximize
//((staircase basis, basis coefficient), selected basis indices)
// staircase basis: has some good property
// basis coefficient and selected basis indices: for reconstruct
pair<Arr<pint>, Arr<int>> xor_basis(const Arr<int>& a) {
 Arr<pint> r(64, \{-1, -1\}); // descending
 Arr<int> bi:
 for(int i = 0; i < sz(a); i++) {
   int x = a[i], xc = 0;
   for(auto [b, bc] : r)
     if("b and x > (x ^b)) x ^= b, xc ^= bc;
   if(x) r[63 - lg2f(x)] = \{x, xc^(111 << sz(bi))\}, bi.pushb(i);
 }
 return {move(r), move(bi)}:
4.4 Gauss Jordan Elimination
template<typename T> // return {rref, rank, det, inv}
tuple<vector<vector<T>>, T, T, vector<vector<T>>> Gauss(vector<vector<T>> a, bool square=true){
 int n = a.size(), m = a[0].size(), rank = 0;
 vector<vector<T>> out(n, vector<T>(m, 0)); T det = T(1);
 for(int i=0; i<n; i++) if(square) out[i][i] = T(1);</pre>
 for(int i=0: i<m: i++){</pre>
   if(rank == n) break;
   if(IsZero(a[rank][i])){
```

Page 15 of 25

Soongsil University – AC-complete Page 16 of 25

11 ret = 0;

```
T mx = T(0); int idx = -1; // fucking precision error
      for(int j=rank+1; j<n; j++) if(mx < abs(a[j][i])) mx = abs(a[j][i]), idx = j;
      if(idx == -1 || IsZero(a[idx][i])){ det = 0; continue; }
      for(int k=0; k<m; k++){</pre>
        a[rank][k] = Add(a[rank][k], a[idx][k]);
        if(square) out[rank][k] = Add(out[rank][k], out[idx][k]);
      }
    det = Mul(det, a[rank][i]):
    T coeff = Div(T(1), a[rank][i]);
    for(int j=0; j<m; j++) a[rank][j] = Mul(a[rank][j], coeff);
    for(int j=0; j<m; j++) if(square) out[rank][j] = Mul(out[rank][j], coeff);</pre>
    for(int j=0; j<n; j++){
      if(rank == j) continue;
      T t = a[j][i]; // Warning: [j][k], [rank][k]
      for(int k=0; k < m; k++) a[j][k] = Sub(a[j][k], Mul(a[rank][k], t));
      for(int k=0; k<m; k++) if(square) out[j][k] = Sub(out[j][k], Mul(out[rank][k], t));</pre>
    rank++;
  return {a, rank, det, out};
      Gauss Jordan Elimination (Binary)
//NOTE: n*m행렬이다. 코드는 <m>(n)형태니 조심
#pragma GCC optimize ("Ofast")
int REF(bool pv_fix){
  int pi = 0;
  for(int i=0; i<n; i++){
    while(pi < m && !a[i][pi]){
      if(!pv_fix){
        for(int j=i+1; j<n; j++) if(a[j][pi]) break;</pre>
        if(j < n){ swap(a[i], a[j]); break; }</pre>
      }
      pi++;
    if(pi == m)break;
    if(a[i][pi])for(int j=i+1;j<n;j++)if(a[j][pi])a[j]^=a[i];</pre>
    pi++;
  return rank = i;
int RREF(int rm) {REF(false), flipX(rank), flipY(rm), REF(true), flipY(rm), flipX(rank); return rank;}
void flipX(int rn){
  for(int i=0; i<rn/2; i++) swap(a[i], a[rn-1-i]);
}
void flipY(int rm){
  for(int i=0;i<n;i++) for(int j=0;j<rm/2;j++) swap(a[i][j], a[i][rm-1-j]);
      Berlekamp + Kitamasa
  Time Complexity: O(NK + N \log mod), O(N^2 \log X)
```

```
const int mod = 1e9+7;
11 pw(11 a, 11 b){
```

```
ll ret = 1: a %= mod:
 while(b){
   if(b & 1) ret = ret * a % mod;
   b >>= 1; a = a * a % mod;
 return ret;
vector<int> berlekamp_massey(vector<int> x){
 vector<int> ls, cur;
 int lf, ld;
 for(int i=0; i<x.size(); i++){</pre>
   11 t = 0:
   for(int j=0; j<cur.size(); j++) t = (t + 111 * x[i-j-1] * cur[j]) % mod;
   if((t - x[i]) \% mod == 0) continue;
   if(cur.empty()){
     cur.resize(i+1);
     lf = i; ld = (t - x[i]) \% mod;
     continue;
   }
   11 k = -(x[i] - t) * pw(1d, mod - 2) % mod;
   vector<int> c(i-lf-1); c.push_back(k);
   for(auto &j : ls) c.push_back(-j * k % mod);
   if(c.size() < cur.size()) c.resize(cur.size());</pre>
   for(int j=0; j<cur.size(); j++) c[j] = (c[j] + cur[j]) % mod;
   if(i-lf+(int)ls.size()>=(int)cur.size()){
     tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod);
   }
 for(auto &i : cur) i = (i % mod + mod) % mod;
int get_nth(vector<int> rec, vector<int> dp, ll n){
 int m = rec.size(); vector<int> s(m), t(m);
 s[0] = 1:
 if(m != 1) t[1] = 1:
 else t[0] = rec[0];
 auto mul = [&rec](vector<int> v, vector<int> w){
   int m = v.size();
   vector\langle int \rangle t(2 * m);
   for(int j=0; j<m; j++) for(int k=0; k<m; k++){</pre>
     t[j+k] += 111 * v[j] * w[k] % mod;
     if(t[j+k] >= mod) t[j+k] -= mod;
   for(int j=2*m-1; j>=m; j--) for(int k=1; k<=m; k++){
     t[j-k] += 111 * t[j] * rec[k-1] % mod;
     if(t[j-k] >= mod) t[j-k] -= mod;
   }
   t.resize(m):
   return t;
 }:
 while(n){
   if(n \& 1) s = mul(s, t);
   t = mul(t, t); n >>= 1;
 }
```

Soongsil University – AC-complete Page 17 of 25

```
for(int i=0: i<m: i++) ret += 111 * s[i] * dp[i] % mod:
 return ret % mod;
int guess_nth_term(vector<int> x, ll n){
  if(n < x.size()) return x[n];</pre>
  vector<int> v = berlekamp_massey(x);
  if(v.empty()) return 0;
  return get_nth(v, x, n);
}
4.7 Miller Rabin + Pollard Rho
ull mul(ull a, ull b, ull mod){ return (__uint128_t)a * b % mod; }
bool isp[10101010]:
vector<int> prime;
void sieve(){
  memset(isp, 1, sizeof isp);
  isp[0] = isp[1] = 0;
  for(ll i=2: i<=100000000: i++){
    if(isp[i]) prime.push_back(i);
    for(auto j : prime){
      if(i*j > 10000000) break;
      isp[i*j] = 0;
      if(i % i == 0) break:
 }
}
// 32bit : 2, 7, 61
// 64bit : 2, 325, 9375, 28178, 450775, 9780504, 1795265022
bool MR(ull n. ull a) { // Miller Rabin
 if(a % n == 0) return 1;
 int cnt = __builtin_ctzll(n-1);
  ull d = n >> cnt;
  ull p = pw(a, d, n);
  if(p == 1 || p == n - 1) return 1;
  while(cnt--){
    p = mul(p, p, n);
    if(p == n-1) return 1;
 return 0:
bool isPrime(ll n){
 if(n < 10000001) return isp[n];
  if (n \le 2) return n == 2;
  if(!(n & 1)) return 0;
  if(n\%3 == 0 | | n\%5 == 0 | | n\%7 == 0 | | n\%11 == 0) return 0:
  for(int p: {2,325,9375,28178,450775,9780504,1795265022}){
    if(!MR(n, p)) return 0;
 }
  return 1;
ll rho(ll n){
  while(1){
    11 x = rand() \% (n - 2) + 2:
    11 y = x, c = rand() \% (n-1) + 1;
    while(1){
```

```
x = (mul(x, x, n) + c) \% n:
     v = (mul(v, v, n) + c) \% n;
     y = (mul(y, y, n) + c) \% n;
     11 d = \_gcd(abs(x - y), n);
     if(d == 1) continue;
     if(!isPrime(d)){ n = d; break; }
      else return d:
   }
 }
vector<11> pollard_rho(11 n){
 vector<ll> v:
  while(~n & 1) n >>= 1, v.push_back(2);
 if(n == 1) return move(v);
 while(!isPrime(n)){
   11 d = rho(n);
   while(n % d == 0) v.push_back(d), n /= d;
   if(n == 1) break;
 if(n != 1) v.push back(n);
 return move(v);
4.8 Linear Sieve
// sp : 최소 소인수, 소수라면 0
// tau : 약수 개수, sigma : 약수 합
// phi : n 이하 자연수 중 n과 서로소인 개수
// mu : non square free이면 0, 그렇지 않다면 (-1)^(소인수 종류)
// e[i] : 소인수분해에서 i의 지수
vector<int> prime;
int sp[sz], e[sz], phi[sz], mu[sz], tau[sz], sigma[sz];
phi[1] = mu[1] = tau[1] = sigma[1] = 1;
for(int i=2: i<=n: i++){
 if(!sp[i]){
   prime.push_back(i);
   e[i] = 1; phi[i] = i-1; mu[i] = -1; tau[i] = 2; sigma[i] = i+1;
 for(auto j : prime){
   if(i*j >= sz) break;
   sp[i*j] = j;
   if(i \% j == 0){
     e[i*j] = e[i]+1; phi[i*j] = phi[i]*j; mu[i*j] = 0;
     tau[i*j] = tau[i]/e[i*j]*(e[i*j]+1);
     sigma[i*j] = sigma[i]*(j-1)/(pw(j, e[i*j])-1)*(pw(j, e[i*j]+1)-1)/(j-1);//overflow
   e[i*j] = 1; phi[i*j] = phi[i] * phi[j]; mu[i*j] = mu[i] * mu[j];
   tau[i*i] = tau[i] * tau[j]; sigma[i*j] = sigma[i] * sigma[j];
4.9 Discrete Log / Sqrt
 Time Complexity: Log : O(\sqrt{P}\log P), O(\sqrt{P}) with hash set
```

Sqrt : $O(\log^2 P)$, $O(\log P)$ in random data

Soongsil University – AC-complete Page 18 of 25

```
11 DiscreteLog(11 A, 11 B, 11 P){
  __gnu_pbds::gp_hash_table<ll,__gnu_pbds::null_type> st;
  11 t = ceil(sqrt(P)), k = 1; // use binary search?
  for(int i=0; i<t; i++) st.insert(k), k = k * A \% P;
  ll inv = Pow(k, P-2, P);
  for(int i=0, k=1; i<t; i++, k=k*inv%P){</pre>
    11 x = B * k % P;
    if(st.find(x) == st.end()) continue;
    for(int j=0, k=1; j<t; j++, k=k*A%P){
      if(k == x) return i * t + j;
    }
 }
  return -1:
}
// Given A, P, solve X^2 === A mod P
11 DiscreteSqrt(11 A, 11 P){
  if(A == 0) return 0;
  if (Pow(A, (P-1)/2, P) != 1) return -1;
  if (P \% 4 == 3) return Pow(A, (P+1)/4, P);
  11 s = P - 1, n = 2, r = 0, m;
  while("s & 1) r++, s >>= 1;
  while (Pow(n, (P-1)/2, P) != P-1) n++;
  11 \times Pow(A, (s+1)/2, P), b = Pow(A, s, P), g = Pow(n, s, P);
  for(;; r=m){
    11 t = b;
    for(m=0: m < r && t!=1: m++) t = t * t % P:
    if(!m) return x:
    ll gs = Pow(g, 1LL << (r-m-1), P);
    g = gs * gs % P;
    x = x * gs % P;
    b = b * g \% P;
}
4.10 De Bruijn Sequence
// Create cyclic string of length k^n that contains every length n string as substring. alphabet
= [0, k - 1]
int res[10000000], aux[10000000]; // >= k^n
int de_bruijn(int k, int n) { // Returns size (k^n)
 if(k == 1) { res[0] = 0; return 1; }
  for(int i = 0; i < k * n; i++) aux[i] = 0;
```

// Given A. B. P. solve A^x === B mod P

int sz = 0:

}
else {

};

db(1, 1);

return sz;

function<void(int, int)> db = [&](int t, int p) {

aux[t] = aux[t - p]; db(t + 1, p);

if(n % p == 0) for(int i = 1; i <= p; i++) res[sz++] = aux[i];

for(int i = aux[t - p] + 1; i < k; i++) aux[t] = i, db(t + 1, t);

4.11 Simplex / LP Duality

```
//입력: Ax<=b, obj
//출력: maximize obj*x
//numeric stability is sensitive by M
//디버깅 노트
//1. T=f64 해보기(정수값만 나오는거같아도 중간에 유리수나올때 있음)
//2. M값 조절(답의 상한정도의 크기가 적절)
//듀얼후 리덕션한 결과값 primal로 복원하기
template < class T=f64, int M>
void dualize(Arr<Arr<T>> &a,Arr<T> &b,Arr<T>& obj){
 int m=sz(a), n=sz(a[0]);
 transpose(a),swap(b,obj);
 for(int i=0;i<n;i++){</pre>
   for(auto& j:a[i]) j=-j;
   b[i]=-b[i];
 }
 for(auto& i:obj)i=-i;
template < class T=f64, int M>
tuple<T,Arr<T>,Arr<T>> simplex(Arr<Arr<T>>& a,Arr<T>& b,Arr<T>& obj){
 //return {maxval,argmax,dual_argmin}
  int m=sz(a), n=sz(a[0]), s=0;
 if(m>n){
   dualize<T,M>(a,b,obj);
   auto&& [x,y,z]=simplex<T,M>(a,b,obj);
   x*=-1:
   swap(v,z);
   return {move(x),move(y),move(z)};
 func(void,elim,int r1,int r2,int c){//elim r2
   if(r1==r2){T x=a[r1][c]; for(auto& i:a[r1])i/=x;}
     T = a[r2][c]/a[r1][c]; if(-eps<x&&x<eps)return;
     for(int i=0;i<n+s+m+2;i++)</pre>
        a[r2][i]-=x*a[r1][i];
   }
 };
 //make all b>=0
 Arr<char> geq(m);
 for(int i=0;i<m;i++)</pre>
   if(b[i]<0){
     for(auto& j:a[i])j=-j;
     for(auto& r:a)r.emplb(0);
     a[i][-1]=-1,b[i]=-b[i],geq[i]=true,s++;
   }
 //n vars, s slacks(-1), m slacks(1), 1 z, 1 b_value
 Arr<int> p(m);//행의 기본변수
 obj.resize(n+s+m+2);
 for(int i=0;i<m;i++)</pre>
   a[i].resize(n+s+m+2),a[i][p[i]=n+s+i]=1,a[i][-1]=b[i],obj[p[i]]=geq[i]?-M:0;
 //z=f(x) == z-f(x)=0
 for(auto &i:obj)i=-i;
```

Soongsil University – AC-complete

```
obi\lceil -2 \rceil = 1:
  a.emplb(obj);
  for(int i=0;i<m;i++)</pre>
     elim(i,m,p[i]);
   //now shape of a = (m+1)*(n+s+m+2)
   while(true){
     int ev=0.1vi=-1:
     for(int i=0;i<n+s+m;i++)</pre>
        ev=a[-1][ev]>a[-1][i]?i:ev;
     if(a[-1][ev]>-eps)break;
     for(int i=0;i<m;i++)</pre>
        if(a[i][ev]>eps and (!~lvi or a[i][-1]/a[i][ev]<a[lvi][-1]/a[lvi][ev]))
          lvi=i:
     if(!~lvi) throw "unbounded";
     for(int i=0;i<m+1;i++)elim(lvi,i,ev);</pre>
     p[lvi]=ev;
  //if(?) throw "infeasible"
  Arr<T> ans(n+s+m+2);
  for(int i=0:i<m:i++)</pre>
     ans[p[i]]=a[i][-1];
   Arr<T> dual(m);
   for(int i=0;i<m;i++)</pre>
     dual[i]=a[-1][n+s+i]+(geq[i]?+M:0);
  return {a[-1][-1],ans,dual};
}
Simplex Example
Maximize p = 6x + 14y + 13z
Constraints
-0.5x + 2y + z < 24
-x + 2y + 4z < 60
- n=2, m=3, a=\begin{pmatrix}0.5 & 2 & 1\\1 & 2 & 4\end{pmatrix}, b=\begin{pmatrix}24\\60\end{pmatrix}, c=[6,14,13]
LP Duality & Example
tableu를 대각선으로 뒤집고 음수 부호를 붙인 답 = -(원 문제의 답)
- Primal : n = 2, m = 3, a = \begin{pmatrix} 0.5 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 24 \\ 60 \end{pmatrix}, c = [6, 14, 13]
- Dual: n = 3, m = 2, a = \begin{pmatrix} -0.5 & -1 \\ -2 & -2 \\ -1 & -4 \end{pmatrix}, b = \begin{pmatrix} -6 \\ -14 \\ -13 \end{pmatrix}, c = [-24, -60]
- Primal : \max_{x} c^{T} x, Constraints Ax \leq b, x \geq 0
- Dual: \min_{u} b^{T} u. Constraints A^{T} u > c, u > 0
        FFT, NTT, Polynomial, Fast Kitamasa
template<int M>
struct MINT{
  int v:
  MINT() : v(0) \{
  MINT(ll val){
     v = (-M \le val \&\& val \le M)? val : val % M;
```

```
if(v < 0) v += M:
 }
 // @TODO : pw, operator >> << == != + - * /
 friend MINT pw(MINT a, 11 b){
   MINT ret= 1;
   while(b){
     if(b & 1) ret *= a:
     b >>= 1; a *= a;
   }
   return ret;
 friend MINT inv(const MINT a) { return pw(a, M-2); }
namespace fft{
 using real_t = double; using cpx = complex<real_t>;
 void FFT(vector<cpx> &a, bool inv_fft = false){
   int N = a.size();
   vector<cpx> root(N/2);
   for(int i=1, j=0; i<N; i++){
     int bit = (N >> 1):
     while(j \ge bit) j = bit, bit >>= 1;
     j += bit;
     if(i < j) swap(a[i], a[j]);</pre>
   real_t ang = 2 * acos(-1) / N * (inv_fft ? -1 : 1);
   for(int i=0; i<N/2; i++) root[i] = cpx(cos(ang * i), sin(ang * i));
   /*
   XOR Convolution : set roots[*] = 1.
   OR Convolution : set roots[*] = 1, and do following:
   if (!inv) a[j + k] = u + v, a[j + k + i/2] = u;
   else a[j + k] = v, a[j + k + i/2] = u - v;
   for(int i=2; i<=N; i<<=1){</pre>
     int step = N / i;
     for(int j=0; j<N; j+=i) for(int k=0; k<i/2; k++){
       cpx u = a[j+k], v = a[j+k+i/2] * root[step * k];
       a[j+k] = u+v; a[j+k+i/2] = u-v;
   }
   if(inv_fft) for(int i=0; i<N; i++) a[i] /= N; // skip for OR convolution.
 vector<ll> multiply(const vector<ll> &_a, const vector<ll> &_b){
   vector<cpx> a(all(_a)), b(all(_b));
   int N = 2; while (N < a.size() + b.size()) N <<= 1;
   a.resize(N); b.resize(N);
   FFT(a); FFT(b);
   for(int i=0; i<N; i++) a[i] *= b[i];
   FFT(a, 1);
   vector<ll> ret(N):
   for(int i=0; i<N; i++) ret[i] = llround(a[i].real());</pre>
 vector<ll> multiply_mod(const vector<ll> &a, const vector<ll> &b, const ull mod){
   int N = 2; while (N < a.size() + b.size()) N <<= 1;
   vector\langle cpx \rangle v1(N), v2(N), r1(N), r2(N);
   for(int i=0; i<a.size(); i++) v1[i] = cpx(a[i] >> 15, a[i] & 32767);
```

Soongsil University – AC-complete Page 20 of 25

```
for(int i=0; i<b.size(); i++) v2[i] = cpx(b[i] >> 15, b[i] & 32767);
  FFT(v1); FFT(v2);
  for(int i=0; i<N; i++){</pre>
   int j = i ? N-i : i;
    cpx ans1 = (v1[i] + conj(v1[j])) * cpx(0.5, 0);
    cpx ans2 = (v1[i] - conj(v1[j])) * cpx(0, -0.5);
    cpx ans3 = (v2[i] + conj(v2[j])) * cpx(0.5, 0);
    cpx ans4 = (v2[i] - conj(v2[j])) * cpx(0, -0.5);
   r1[i] = (ans1 * ans3) + (ans1 * ans4) * cpx(0, 1);
   r2[i] = (ans2 * ans3) + (ans2 * ans4) * cpx(0, 1);
  FFT(r1, true); FFT(r2, true);
  vector<11> ret(N);
  for(int i=0: i<N: i++){</pre>
   ll av = llround(r1[i].real()) % mod;
   11 bv = ( llround(r1[i].imag()) + llround(r2[i].real()) ) % mod;
   11 cv = llround(r2[i].imag()) % mod;
   ret[i] = (av << 30) + (bv << 15) + cv;
   ret[i] %= mod; ret[i] += mod; ret[i] %= mod;
 }
  return ret;
// 104,857,601 = 25 * 2^22 + 1, w = 3
// 998,244,353 = 119 * 2^23 + 1, w = 3
// 2,281,701,377 = 17 * 2^27 + 1, w = 3
// 2,483,027,969 = 37 * 2^26 + 1, w = 3
// 2.113.929.217 = 63 * 2^25 + 1. w = 5
// 1,092,616,193 = 521 * 2^21 + 1, w = 3
template<int W, int M>
static void NTT(vector<MINT<M>> &f, bool inv_fft = false){
  using T = MINT<M>;
  int N = f.size();
  vector<T> root(N >> 1);
 for(int i=1, j=0; i<N; i++){
   int bit = N \gg 1;
    while(j >= bit) j -= bit, bit >>= 1;
   j += bit;
   if(i < j) swap(f[i], f[j]);</pre>
 T ang = pw(T(W), (M-1)/N); if(inv_fft) ang = inv(ang);
 root[0] = 1; for(int i=1; i<N>>1; i++) root[i] = root[i-1] * ang;
  for(int i=2; i<=N; i<<=1){</pre>
   int step = N / i:
   for(int j=0; j<N; j+=i) for(int k=0; k<i/2; k++){
     T u = f[j+k], v = f[j+k+(i>>1)] * root[k*step];
     f[j+k] = u + v; f[j+k+(i>>1)] = u - v;
   }
  if(inv fft){
   T rev = inv(T(N));
   for(int i=0; i<N; i++) f[i] *= rev;</pre>
 }
template<int W, int M>
vector<MINT<M>> multiply_ntt(vector<MINT<M>> a, vector<MINT<M>> b){
 int N = 2; while(N < a.size() + b.size()) N <<= 1;</pre>
```

```
a.resize(N): b.resize(N):
   NTT < W, M > (a); NTT < W, M > (b);
   for(int i=0; i<N; i++) a[i] *= b[i];
   NTT<W, M>(a, true);
   return a;
 }
template<int W, int M>
struct PolvMod{
 using T = MINT<M>;
 vector<T> a;
 PolyMod(){}
 PolyMod(T a0) : a(1, a0) { normalize(); }
 PolyMod(const vector<T> a) : a(a) { normalize(); }
 int size() const { return a.size(); }
 int deg() const { return a.size() - 1; }
 void normalize(){ while(a.size() && a.back() == T(0)) a.pop_back(); }
 T operator [] (int idx) const { return a[idx]; }
 typename vector<T>::const_iterator begin() const { return a.begin(); }
 typename vector<T>::const_iterator end() const { return a.end(); }
 void push_back(const T val) { a.push_back(val); }
 void pop_back() { a.pop_back(); }
 T evaluate(T x) const {
   T \text{ ret} = T(0);
   for(int i=deg(); i>=0; i--) ret = ret * x + a[i];
   return ret:
 PolyMod reversed() const {
   vector < T > b = a;
   reverse(b.begin(), b.end());
   return b;
 PolyMod trim(int n) const {
   return vector<T>(a.begin(), a.begin() + min(n, size()));
 // @TODO : operator + - *(with scala) /(with scala)
 PolyMod inv(int n){
   PolyMod q(T(1) / a[0]);
   for(int i=1; i<n; i<<=1){
     PolyMod p = PolyMod(2) - q * trim(i * 2);
     q = (p * q).trim(i * 2);
   return q.trim(n);
 PolyMod operator *= (const PolyMod &b){
   *this = fft::multiply_ntt<W, M>(a, b.a);
   normalize(); return *this;
 PolyMod operator /= (const PolyMod &b){
   if(deg() < b.deg()) return *this = PolyMod();</pre>
   int sz = deg() - b.deg() + 1;
   PolyMod ra = reversed().trim(sz), rb = b.reversed().trim(sz).inv(sz);
   *this = (ra * rb).trim(sz);
   for(int i=sz-size(); i; i--) push_back(T(0));
   reverse(all(a)); normalize();
   return *this;
```

Soongsil University – AC-complete Page 21 of 25

```
PolyMod operator %= (const PolyMod &b){
    if(deg() < b.deg()) return *this;</pre>
    PolyMod tmp = *this; tmp /= b; tmp *= b;
    *this -= tmp; normalize();
   return *this:
 PolyMod operator * (const PolyMod &b) const { return PolyMod(*this) *= b; }
 PolyMod operator / (const PolyMod &b) const { return PolyMod(*this) /= b: }
 PolyMod operator % (const PolyMod &b) const { return PolyMod(*this) %= b; }
using mint = MINT<998244353>;
using poly = PolyMod<3, 998244353>;
mint Kitamasa(poly c, poly a, ll n){
 poly d = vector<mint>{1};
 poly xn = vector < mint > \{0, 1\};
 polv f:
 for(int i=0; i < c.size(); i++) f.push_back(-c[i]);</pre>
 f.push_back(1);
  while(n){
   if(n \& 1) d = d * xn % f;
   n >>= 1: xn = xn * xn % f:
 mint ret = 0;
 for(int i=0; i<=a.deg(); i++) ret += a[i] * d[i];
  return ret;
5 String
5.1 KMP, Hash, Manacher, Z
vector<int> getFail(const container &pat){
    vector<int> fail(pat.size());
   // match: pat[0...j] and pat[j-i...i] is equivalent
    // ins/del: manipulate corresponding range to pattern starts at 0
            (insert/delete pat[i], manage pat[j-i..i])
   function<bool(int, int)> match = [&](int i, int j){ };
    function<void(int)> ins = [&](int i){ };
   function<void(int)> del = [&](int i){ };
    for(int i=1, j=0; i<pat.size(); i++){</pre>
        while(j && !match(i, j)){
            for(int s=i-j; s<i-fail[j-1]; s++) del(s);</pre>
            j = fail[j-1];
        if(match(i, j)) ins(i), fail[i] = ++j;
   }
   return fail:
vector<int> doKMP(const container &str, const container &pat){
    vector<int> ret, fail = getFail(pat);
    // match: pat[0..j] and str[j-i..i] is equivalent
   // ins/del: manipulate corresponding range to pattern starts at 0
            (insert/delete str[i], manage str[i-i..i])
    function<bool(int, int)> match = [&](int i, int j){ };
```

function<void(int)> ins = [&](int i){ };

```
function<void(int)> del = [&](int i){ }:
    for(int i=0, j=0; i<str.size(); i++){</pre>
        while(j && !match(i, j)){
            for(int s=i-j; s<i-fail[j-1]; s++) del(s);</pre>
            i = fail[i-1];
        if(match(i, j)){
            if(j+1 == pat.size()){
                ret.push back(i-i):
                for(int s=i-j; s<i-fail[j]+1; s++) del(s);</pre>
                j = fail[i];
            }
            else ++j;
            ins(i):
        }
   }
   return ret;
// 1e5+3, 1e5+13, 131'071, 524'287, 1'299'709, 1'301'021
// 1e9-63, 1e9+7, 1e9+9, 1e9+103
template<11 P, 11 M> struct Hashing {
   vector<ll> H, B;
   void Build(const string &S){
        H.resize(S.size()+1);
        B.resize(S.size()+1);
        B[0] = 1:
        for(int i=1: i<=S.size(): i++) H[i] = (H[i-1] * P + S[i-1]) % M:
        for(int i=1; i<=S.size(); i++) B[i] = B[i-1] * P % M;</pre>
   }
   ll sub(int s, int e){
        ll res = (H[e] - H[s-1] * B[e-s+1]) % M;
        return res < 0 ? res + M : res;
   }
};
// # a # b # a # a # b # a #
// 0 1 0 3 0 1 6 1 0 3 0 1 0
vector<int> Manacher(const string &inp){
    int n = inp.size() * 2 + 1;
   vector<int> ret(n);
    string s = "#";
   for(auto i : inp) s += i, s += "#";
   for(int i=0, p=-1, r=-1; i<n; i++){
        ret[i] = i \le r ? min(r-i, ret[2*p-i]) : 0;
        while(i-ret[i]-1 >= 0 && i+ret[i]+1 < n && s[i-ret[i]-1] == s[i+ret[i]+1]) ret[i]++:
        if(i+ret[i] > r) r = i+ret[i], p = i;
   }
   return ret;
// input: manacher array, 1-based hashing structure
// output: set of pair(hash_val, length)
set<pair<hash_t,int>> UniquePalindrome(const vector<int> &dp, const Hashing &hashing){
    set<pair<hash_t,int>> st;
    for(int i=0,s,e; i<dp.size(); i++){</pre>
        if(!dp[i]) continue;
        if(i \& 1) s = i/2 - dp[i]/2 + 1, e = i/2 + dp[i]/2 + 1;
        else s = (i-1)/2 - dp[i]/2 + 2, e = (i+1)/2 + dp[i]/2;
```

Soongsil University – AC-complete Page 22 of 25

```
for(int l=s, r=e; l<=r; l++, r--){
            auto now = hashing.get(1, r);
            auto [iter,flag] = st.emplace(now, r-l+1);
            if(!flag) break;
        }
    }
    return st;
}
//z[i]=match length of s[0,n-1] and s[i,n-1]
vector<int> Z(const string &s){
    int n = s.size():
    vector<int> z(n);
    z[0] = n:
    for(int i=1, l=0, r=0; i<n; i++){
        if(i < r) z[i] = min(r-i-1, z[i-1]);
        while(i+z[i] < n && s[i+z[i]] == s[z[i]]) z[i]++;
        if(i+z[i] > r) r = i+z[i], l = i;
    }
    return z:
}
      Aho-Corasick
struct Node{
  map<char, Node*> ch; int terminal;
  Node() : terminal(-1) {}
  ~Node(){
    for(auto &i : ch) delete i.second:
    ch.clear():
  void insert(const char *key, int num){
    if(*key == 0){ terminal = num; return; }
    if(!ch[*key]) ch[*key] = new Node();
    ch[*key]->insert(key+1, num);
  Node *fail: vector<int> out:
};
void aho_getFail(Node *root){
  queue<Node*> q; q.push(root);
  root->fail = root;
  while(q.size()){
    Node *now = q.front(); q.pop();
    for(auto &i : now->ch){
      Node *ch = i.second:
      if(!ch) continue:
      if(root == now) ch->fail = root;
      else{
        Node *t = now->fail:
        while(t != root && !t->ch[i.first]) t = t->fail;
        if(t\rightarrow ch[i.first]) t = t\rightarrow ch[i.first]:
        ch->fail = t;
      ch->out = ch->fail->out:
      if(ch->terminal != -1) ch->out.push_back(ch->terminal);
      q.push(ch);
```

```
}
vector aho_find(const string &s, Node *root){
 vector ret; auto state = root;
 for(int i=0; i<s.size(); i++){</pre>
    while(state != root && !state->ch[s[i]]) state = state->fail:
    if(state->ch[s[i]]) state = state->ch[s[i]];
   for(int j=0: i<state->out.size(): j++){
     ret.emplace_back(i, state->out[j]);
 }
 return ret;
5.3 O(N \log N) SA + LCP
// O(N \setminus log N) + O(N)
// 서로 다른 부분 문자열의 개수 : n(n+1)/2 - sum(lcp)
// LCS : A+#+B, then do
/* int result = 0, pos = 0, B = N - A;
   for(int i=0; i<N-1; i++) if((sa[i] >= A) != (sa[i+1] >= A)){
   int t = min(lcp[i], A-1 - min(sa[i], sa[i+1])):
   if(t > res) res = t, pos = sa[i]; } */
int sa[1010101], lcp[1010101], pos[1010101];
void getSA(const string &s){
 int n = s.size(), m = 500;
 vector<int> cnt(max(n, m)+1), x(n+1), y(n+1);
 for(int i=1: i<=n: i++) cnt[x[i]=s[i-1]]++:
 for(int i=1; i<=m; i++) cnt[i] += cnt[i-1];</pre>
 for(int i=n; i; i--) sa[cnt[x[i]]--] = i;
 for(int len=1, pv=0, i; pv<n; len<<=1, m=pv){
   for(pv=0, i=n-len+1; i<=n; i++) v[++pv] = i;
   for(i=1; i \le n; i++) if(sa[i] > len) y[++pv] = sa[i] - len;
   for(i=0; i<=m; i++) cnt[i] = 0;
   for(i=1: i<=n: i++) cnt[x[v[i]]]++:
   for(i=1; i<=m; i++) cnt[i] += cnt[i-1];
   for(i=n; i>=1; i--) sa[cnt[x[v[i]]]--] = v[i];
    swap(x, y); pv = 1; x[sa[1]] = 1;
   for(i=1; i<n; i++){
      int a = sa[i], b = sa[i+1], a_len = a + len, b_len = b + len;
     if (a_len \le n \&\& b_len \le n \&\& y[a] == y[b] \&\& y[a_len] == y[b_len]) x[sa[i+1]] = pv;
      else x[sa[i+1]] = ++pv;
 }
 for(int i=0; i< n; i++) sa[i] = sa[i+1]-1, pos[sa[i]] = i;
void getLCP(const string &s){
 int n = s.size();
 for(int i=0,k=0; i< n; i++, k=max(k-1, 0)){
   if(pos[i] == n-1) continue;
   for(int j=sa[pos[i]+1]; s[i+k]==s[j+k]; k++);
   lcp[pos[i]] = k;
 }
```

Page 23 of 25 Soongsil University – AC-complete

5.4 Bitset LCS

```
#include <x86intrin.h>
template<size_t _Nw> void _M_do_sub(_Base_bitset<_Nw> &A, const _Base_bitset<_Nw> &B){
 for(int i=0, c=0; i<_Nw; i++) c = _subborrow_u64(c, A._M_w[i], B._M_w[i], (ull*)&A._M_w[i]);
void _M_do_sub(_Base_bitset<1> &A, const _Base_bitset<1> &B){ A._M_w -= B._M_w; }
template<size_t _Nb> bitset<_Nb>& operator-=(bitset<_Nb> &A, const bitset<_Nb> &B){
 _M_do_sub(A, B); return A;
template<size_t _Nb> inline bitset<_Nb> operator-(const bitset<_Nb> &A, const bitset<_Nb> &B){
 bitset<_Nb> C(A); return C -= B;
char s[50050], t[50050]:
int lcs(){ // O(NM/64)}
 bitset<50050> dp, ch[26];
 int n = strlen(s), m = strlen(t);
 for(int i=0; i<m; i++) ch[t[i]-'A'].set(i);</pre>
 for(int i=0; i<n; i++){ auto x = dp | ch[s[i]-'A']; dp = dp - (dp ^ x) & x; }
 return dp.count();
```

5.5 Lyndon Factorization, Minimum Rotation

```
// factorize string into w1 \ge w2 \ge ... \ge wk, wi is smallest cyclic shift of suffix.
vector<string> Lyndon(const string &s){ // O(N)
 int n = s.size(), i = 0, j, k;
 vector<string> res;
 while(i < n){
   for(j=i+1, k=i; i < n && s[k] <= s[j]; <math>j++) k = s[k] < s[j] ? i : k + 1;
   for(; i<=k; i+=j-k) res.push_back(s.substr(i, j-k));</pre>
 }
 return res;
// rotate(v.begin(), v.begin()+min_rotation(v), v.end());
template<typename T> int min_rotation(T s){ // O(N)
 int a = 0, N = s.size();
  for(int i=0; i<N; i++) s.push_back(s[i]);</pre>
 for(int b=0; b<N; b++) for(int k=0; k<N; k++){
   if(a+k == b || s[a+k] < s[b+k]){b += max(0, k-1); break;}
    if(s[a+k] > s[b+k]){a = b; break;}
 }
 return a;
  Misc
```

Ternary Search

```
// get minimum / when multiple answer, find minimum `s`
while(s + 3 \le e){
 T 1 = (s + s + e) / 3, r = (s + e + e) / 3;
 if(Check(1) > Check(r)) s = 1:
  else e = r:
T mn = INF, idx = s;
```

```
for(T i=s: i<=e: i++){
 T now = Check(i);
 if(now < mn) mn = now, idx = i;</pre>
6.2 Aliens Trick
// 점화식에 min이 들어가는 경우: 구간을 쪼갤 때마다 +lambda
while(1 \le r)
 11 m = 1 + r >> 1;
  [dp,cnt] = Solve(m);
 res = max(res, dp - k*m);
 if(cnt \le k) r = m - 1:
 else l = m + 1;
// 점화식에 max가 들어가는 경우: 구간을 쪼갤 때마다 +lambda
while(1 \le r){
 11 m = 1 + r >> 1:
 [dp,cnt] = Solve(m);
 res = min(res, dp - k*m);
 if(cnt \le k) l = m + 1;
 else r = m - 1;
6.3 Slope Trick
//NOTE: f(x)=min\{f(x+i),i<a\}+|x-k|+m \rightarrow pf(k)sf(k)ab(-a,m)
//NOTE: sf_inc에 답구하는게 들어있어서, 반드시 한 연산에 대해 pf_dec->sf_inc순서로 호출
struct LeftHull{
 void pf_dec(int x){pq.empl(x-bias);}//x이하의 기울기들 -1
 int sf_inc(int x){//x이상의 기울기들 +1, pop된 원소 반환(Right Hull관리에 사용됨)
   if(pq.empty() or argmin()<=x)return x;</pre>
   ans+=argmin()-x;//이 경우 최솟값이 증가함
   pq.empl(x-bias);//x 이하 -1
   int r=argmin();pq.pop();//전체 +1
   return r;
 }
 void add_bias(int x,int y){bias+=x;ans+=y;}//그래프 x축 평행이동
  int minval(){return ans;}//최소값
 int argmin(){return pq.empty()?-inf<int>():pq.top()+bias;}//최소값 x좌표
 void operator+=(LeftHull& a){
   ans+=a.ans;
   while(sz(a.pq))pf_dec(a.argmin()), a.pq.pop();
 int size()const{return sz(pq);}
// private:
 PQMax<int> pq;
 int ans=0,bias=0;
//NOTE: f(x)=min\{f(x+i),a<i<b\}+|x-k|+m -> pf(k)sf(k)ab(-a,b,m)
struct SlopeTrick{
 void pf_dec(int x){l.pf_dec(-r.sf_inc(-x));}
 void sf_inc(int x){r.pf_dec(-l.sf_inc(x));}
 void add_bias(int lx,int rx,int y){l.add_bias(lx,0),r.add_bias(-rx,0),ans+=y;}
 int minval(){return ans+1.minval()+r.minval();}
 pint argmin(){return {l.argmin(),-r.argmin()};}
```

Soongsil University – AC-complete Page 24 of 25

```
void operator+=(SlopeTrick& a){
   while(sz(a.l.pq)) pf_dec(a.l.argmin()),a.l.pq.pop();
   1.ans+=a.l.ans;
   while(sz(a.r.pq)) sf_inc(-a.r.argmin()),a.r.pq.pop();
   r.ans+=a.r.ans;
   ans+=a.ans:
 int size()const{return l.size()+r.size();}
// private:
 LeftHull l,r;
 int ans=0;
//LeftHull 역추적 방법: 스텝i의 argmin값을 am(i)라고 하자. 스텐n부터 스텝1까지
ans[i]=min(ans[i+1],am(i))하면 된다. 아래는 증명..은 아니고 간략한 이유
//am(i)<=ans[i+1]일때: ans[i]=am(i)
//x[i]>ans[i+1]일때: ans[i]=ans[i+1] 왜냐하면 f(i,a)는 a<x[i]에서 감소함수이므로 가능한 최대로
오른쪽으로 붙은 ans[i+1]이 최적.
//스텐i에서 add_bias(k,0)한다면 간격제한k가 있는것이므로 ans[i]=min(ans[i+1]-k,x[i])으로 수정.
//LR Hull 역추적은 케이스나눠서 위 방법을 확장하면 될듯
```

6.4 Random, PBDS, Bit Trick

```
mt19937 rd((unsigned)chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<int> rnd_int(1, r); // rnd_int(rd)
uniform_real_distribution<double> rnd_real(0, 1); // rnd_real(rd)
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds; //ordered_set : find_by_order(order), order_of_key(key)
using namespace __gnu_cxx; //crope : append(str), substr(s, e), at(idx)
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
int __builtin_clz(int x);// number of leading zero
int __builtin_ctz(int x);// number of trailing zero
int __builtin_popcount(int x);// number of 1-bits in x
lsb(n): (n & -n); // last bit (smallest)
floor(log2(n)): 31 - __builtin_clz(n | 1);
floor(log2(n)): 63 - __builtin_clzll(n | 1);
long long next_perm(long long v){
 long long t = v \mid (v-1);
 return (t + 1) \mid (((^t \& -^t) - 1) >> (_builtin_ctz(v) + 1));
int main2(){ return 0: }
int main(){
 size_t sz = 1<<29; // 512MB
 void* newstack = malloc(sz):
 void* sp_dest = newstack + sz - sizeof(void*);
 asm __volatile__("movq %0, %%rax\n\t"
           "movq %%rsp , (%%rax)\n\t"
            "movq %0, %%rsp\n\t": : "r"(sp_dest): );
 main2():
  asm __volatile__("pop %rsp\n\t");
 return 0;
```

```
6.5 Fast I/O, Fast Div/Mod, Hilbert Mo's
static char buf[1 << 19]; // size : any number geq than 1024
static int idx = 0, bytes = 0;
static inline int _read() {
 if (!bvtes || idx == bvtes) {
   bytes = (int)fread(buf, sizeof(buf[0]), sizeof(buf), stdin);
 }
 return buf[idx++];
static inline int readInt() {
 int x = 0, s = 1, c = _read();
 while (c \le 32) c = read():
 if (c == '-') s = -1, c = _read();
 while (c > 32) x = 10 * x + (c - '0'), c = _read();
 if (s < 0) x = -x; return x;
typedef uint128 t L:
struct FastMod{
 ull b, m;
 FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
 ull reduce(ull a){
   ull q = (ull)((L(m) * a) >> 64), r = a - q * b; // can be proven that <math>0 \le r \le 2*b
   return r \ge b? r - b: r:
 }
inline int64_t hilbertOrder(int x, int y, int pow, int rotate) {
 if(pow == 0) return 0;
 int hpow = 1 \ll (pow-1);
 int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) : ((y < hpow) ? 1 : 2);
 seg = (seg + rotate) & 3;
  const int rotateDelta[4] = \{3, 0, 0, 1\};
  int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
  int nrot = (rotate + rotateDelta[seg]) & 3;
  int64_t subSquareSize = int64_t(1) << (2*pow - 2);</pre>
 int64_t ans = seg * subSquareSize;
 int64 t add = hilbertOrder(nx, nv, pow-1, nrot);
 ans += (seg == 1 || seg == 2) ? add : (subSquareSize - add - 1);
 return ans;
struct Query{
 int s, e, x; ll order;
 void init(){ order = hilbertOrder(s, e, 21, 0); }
 bool operator < (const Query &t) const { return order < t.order; }</pre>
}:
6.6 DP Opt. Tree Opt. Well-Known Ideas
// Quadrangle Inequality : C(a, c)+C(b, d) \le C(a, d)+C(b, c)
// Monotonicity : C(b, c) \le C(a, d)
// CHT, DnC Opt(Quadrangle), Knuth(Quadrangle and Monotonicity)
```

// 크기가 A, B인 두 서브트리의 결과를 합칠 때 D(AB)이면 D(N^3)이 아니라 D(N^2)

// 각 정점마다 sum(2 ~ C번째로 높이가 작은 정점의 높이)에 결과를 구할 수 있으면 O(N^2)이 아니라 O(N)

Soongsil University – AC-complete Page 25 of 25

```
// IOI 16 Alien(Lagrange Multiplier), IOI 11 Elephant(sqrt batch process)
// IOI 09 Region
// 서로소 합집합의 크기가 적당히 bound 되어 있을 때 사용
// 쿼리 메모이제이션 / 쿼리 하나에 O(A log B), 전체 O(N√Q log N)
```

6.7 Catalan, Burnside, Grundy, Pick, Hall, Simpson, Kirchhoff

- 카탈란 수
- $1,\ 1,\ 2,\ 5,\ 14,\ 42,\ 132,\ 429,\ 1430,\ 4862,\ 16796,\ 58786,\ 208012,742900$
- $C_n = binomial(n*2, n)/(n+1);$
- 길이가 2n인 올바른 괄호 수식의 수
 n + 1개의 리프를 가진 풀 바이너리 트리의 수
- n + 1개의 디프를 가진 둘 마이디디 드디의 구 - n + 2각형을 n개의 삼각형으로 나누는 방법의 수
- Burnside's Lemma
 - 수식

G=(X,A): 집합X와 액션A로 정의되는 군G에 대해, |A||X/A|=sum(|Fixed points of a|, for all a in A) <math>X/A는 Action으로 서로 변형가능한 X의 원소들을 동치로 묶었을때 동치류(파티션) 집합

- 풀어쓰기
 - orbit: 그룹에 대해 두 원소 a,b와 액션f에 대해 f(a)=b인거에 간선연결한 컴포넌트(연결집합) orbit개수 = sum(각 액션 g에 대해 f(x)=x인 x(고정점)개수)/액션개수
- 자유도 치트시트 회전 n개: 회전i의 고정점 자유도=gcd(n,i)
 임의뒤집기 n=홀수: n개 원소중심축(자유도 (n+1)/2)
 임의뒤집기 n=짝수: n/2개 원소중심축(자유도 n/2+1) + n/2개 원소안지나는축(자유도 n/2)
- 알고리즘 게임
- Nim Game의 해법 : 각 더미의 돌의 개수를 모두 XOR했을 때 0 이 아니면 첫번째, 0 이면 두번째 플레이어가 승리.
- Grundy Number : 어떤 상황의 Grundy Number는, 가능한 다음 상황들의 Grundy Number를 모두 모은 다음, 그 집합에 포함 되지 않는 가장 작은 수가 현재 state의 Grundy Number가 된다. 만약 다음 state가 독립된 여러개의 state들로 나뉠 경우. 각각의 state의 Grundy Number의 XOR 항을 생각한다.
- Subtraction Game : 한 번에 k 개까지의 돌만 가져갈 수 있는 경우, 각 더미의 돌의 개수를 k + 1로 나눈 나머지를 XOR 합하여 판단한다.
- Index-k Nim : 한 번에 최대 k개의 더미를 골라 각각의 더미에서 아무렇게나 돌을 제거할 수 있을 때, 각 binary digit에 대하여 합을 k+1로 나는 나머지를 계산한다. 만약 이 나머지가 모든 digit에 대하여 0이라면 두번째, 하나라도 0이 아니라면 첫번째 플레이어가 승리.
- Pick's Theorem

격자점으로 구성된 simple polygon이 주어짐. I 는 polygon 내부의 격자점 수, B 는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다. A=I+B/2-1

- 홀의 결혼 정리 : 이분그래프(L-R)에서, 모든 L을 매칭하는 필요충분 조건 = L에서 임의의 부분집합 S를 골랐을 때, 반드시 (S의 크기) <= (S와 연결되어있는 모든 R의 크기)이다.
- Simpson 중식 (적분): Simpson 중식, $S_n(f) = \frac{h}{3}[f(x_0) + f(x_n) + 4\sum f(x_{2i+1}) + 2\sum f(x_{2i})]$
- $M=\max|f^4(x)|$ 이라고 하면 오차 범위는 최대 $E_n \leq \frac{M(b-a)}{180}h^4$
- Kirchhoff's Theorem : 그래프의 스패닝 트리 개수
- m[i][j] := -(i-j 간선 개수) (i ≠ j)
- m[i][i] := 정점 i의 degree
- res = (m의 첫 번째 행과 첫 번째 열을 없앤 (n-1) by (n-1) matrix의 행렬식)
- Tutte Matrix : 그래프의 최대 매칭
- m[i][j] := 간선 (i, j)가 없으면 0, 있으면 i < j?r : -r, r은 [0, P) 구간의 임의의 정수
- rank(m)/2가 높은 확률로 최대 매칭

6.8 About Graph Matching (Graph with $|V| \le 500$)

- Game on a Graph : s에 토큰이 있음. 플레이어는 각자의 턴마다 토큰을 인접한 정점으로 옮기고 못 옮기면 짐. s를 포함하지 않는 최대 매칭이 존재함 ↔ 후공이 이김
- Chinese Postman Problem : 모든 간선을 방문하는 최소 가중치 Walk를 구하는 문제. Floyd를 돌린 다음, 홀수 정점들을 모아서 최소 가중치 매칭 (홀수 정점은 짝수 개 존재)
- Unweighted Edge Cover : 모든 정점을 덮는 가장 작은(minimum cardinality/weight) 간선 집합을 구하는 문제
- |V| |M|, 길이 3짜리 경로 없음, star graph 여러 개로 구성
- Weighted Edge Cover : $sum_{v \in V}(w(v)) sum_{(u,v) \in M}(w(u) + w(v) d(u,v))$, w(x)는 x와 인접한 간선의 최소 가중치
- NEERC'18 B: 각 기계마다 2명의 노동자가 다뤄야 하는 문제. 기계마다 두 개의 정점을 만들고 간선으로 연결하면 정답은 |M| - |기계|임. 정답에 1/2씩 기여한다는 점을 생각해 보면 좋음.
- Min Disjoint Cycle Cover: 정점이 중복되지 않으면서 모든 정점을 덮는 길이 3 이상의 사이클 집합을 찾는 문제.
 모든 정점은 2개의 서로 다른 간선, 일부 간선은 양쪽 끝점과 매칭되어야 하므로 플로우를 생각할 수 있지만 용량 2 짜리 간선에 유량을 1만큼 흘릴 수 있으므로 플로우는 불가능.
 각 정점과 간선을 2개씩((v, v'), (e_{i,u}, e_{i,v}))로 복사하자. 모든 간선 e = (u, v)에 대해 e_u와 e_v를 잇는 가중치 w짜리 간선을 만들고(like NEERC18), (u, e_{i,u}), (u', e_{i,v}), (v', e_{i,v})를 연결하는 가중치 0짜리 간선을 만들자.
 Perfect 매칭이 존재함 ↔ Disjoint Cycle Cover 존재. 최대 가중치 매칭 찾은 뒤 모든 간선 가중치 합에서 매칭
- Two Matching : 각 정점이 최대 2개의 간선과 인접할 수 있는 최대 가중치 매칭 문제. 각 컴포넌트는 정점 하나/경로/사이클이 되어야 함. 모든 서로 다른 정점 쌍에 대해 가중치 0짜리 간선 만들고, 가중치 0짜리 (v,v') 간선 만들면 Disjoing Cycle Cover 문제가 됨. 정점 하나만 있는 컴포넌트는 self-loop, 경로 형태의 컴포넌트는 양쪽 끝점을 연결한다고 생각하면 편함.

6.9 Checklist

빼면 됨.

- 비슷한 문제를 풀어본 적이 있던가?
- 단순한 방법에서 시작할 수 있을까? (Brute Force)
- 내가 문제를 푸는 과정을 수식화할 수 있을까? (예제를 직접 해결해보면서)
- 문제를 단순화할 수 없을까?
- 그림으로 그려볼 수 있을까?
- 수식으로 표현할 수 있을까?
- 문제를 분해할 수 있을까?
- 뒤에서부터 생각해서 풀 수 있을까?
- 순서를 강제할 수 있을까?
- 특정 형태의 답만을 고려할 수 있을까? (정규화)
- 구간을 통째로 가져간다 : 플로우 + 적당한 자료구조 (i, i+1, k, 0), (s, e, 1, w), (N, T, k, 0)
- a = b : a만 움직이기, b만 움직이기, 두 개 동시에 움직이기, 반대로 움직이기
- 말도 안 되는 것들을 한 번은 생각해보기 / "당연하다고 생각한 것" 다시 생각해보기
- Directed MST / Dominator Tree
- 일정 비율 충족 or 2 3개로 모두 커버 : 랜덤
- 확률 : DP, 이분 탐색(NYPC 2019 Finals C)
- 최대/최소 : 이분 탐색, 그리디(Prefix 고정, Exchange Argument), DP(순서 고정)