חלוקה יעילה Efficient Division

אראל סגל-הלוי

מהי יעילות כלכלית?

נסביר ע"י דוגמה. שלושה אחים רוצים ללכת יחד למסעדה ומתלבטים באיזו מסעדה לבחור. כל אח מדרג את המסעדות מהכי גרועה בעיניו (1) להכי טובה בעיניו (5):

מסעדה:	א	ב	λ	Т	ה
עמי:	1	2	3	4	5
תמי:	3	1	2	5	4
רמי:	3	5	5	1	1

איזו בחירה – מבין החמש – היא לא יעילה? ---- **ב**! כי בעיני כולם, היא פחות טובה מ-ג.

מהי יעילות כלכלית?

הגדרות:

- מצב א נקרא **שיפור פארטו** (Pareto) של מצב ב, אם הוא *טוב יותר* לחלק מהמשתתפים, וטוב *לפחות* באותה מידה לכולם.
 - בעברית: "זה נהנה וזה לא חסר".
 - מצב נקרא יעיל פארטו אם לא קיים מצב אחר **יעיל** שהוא שיפור-פארטו שלו.
- יעילות פארטו תנאי הכרחי לבחירה שהיא "נכונה" מנקודת-מבט כלכלית.
 - האם האלגוריתמים לחלוקת-עוגה שראינו הם מחזירים תמיד חלוקה שהיא יעילה פארטו?

"יעילות אלגוריתם "חתוך ובחר"

בדרך-כלל, אלגוריתם "חתוך ובחר" אינו יעיל פארטו.

דוגמה (עמי חותך ותמי בוחרת):

"יעילות אלגוריתם "חתוך ובחר"

משפט: אלגוריתם "חתוך ובחר" מחזיר תוצאה יעילה פארטו אם מתקיימים התנאים הבאים: 1)העוגה חד-ממדית.

2)שני השחקנים רוצים רק חתיכות קשירות.

. לכל נקודה בעוגה יש ערך גדול ממש מאפס (3

"מתחכם) החותך חותך לשני חלקים שוים ולא

הוכחה:

לפי תנאים 2+1, יש רק שתי אפשרויות: או שהחותך משמאל והבוחר מימין, או הפוך. לפי תנאי 3, בסדר שנבחר, אין שיפור פארטו. לפי תנאי 4, גם בסדר ההפוך אין שיפור פארטו.

יעילות – המקרה הכללי

- אבל מה קורה אם:
 - ?העוגה רב-ממדית (1
- 2)השחקנים רוצים חתיכות לא דווקא קשירות?
 - ?יש הרבה שחקנים יותר משניים?
- אנחנו רוצים שהחלוקה תהיה גם ללא קנאה?

:הנחות

- ה"עוגה" מחולקת לאיזורים. הערך של כל שחקן אחיד בכל איזור (*אבל שונה לכל שחקן).*
 - אין חשיבות לקשירוּת. •
 - לדוגמה: ה"איזורים" מייצגים משאבי מיחשוב.

יעילות – מיקסום סכום הערכים

ניסיון ראשון: חלוקה הממקסמת את סכום הערכים:

$$\max_{X} \sum_{j=1}^{n} V_j(X_j)$$

אלגוריתם: תן כל אזור לשחקן עם הערך הכי גבוה:

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

רואים שהאלגוריתם לא הוגן. האם הוא יעיל?

יעילות – מיקסום סכום הערכים

משפט: כל חלוקה הממקסמת את סכום הערכים היא יעילה פארטו.

- **הוכחה**: נתונה חלוקה **א** הממקסמת סכום ערכים.
 - •נניח בשלילה שהחלוקה לא יעילה פארטו.
 - אז קיימת חלוקה **ב** שהיא שיפור-פארטו שלה.
 - בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו•
- בחלוקה א, ולחלק מהשחקנים יש ערך גבוה יותר.
- לכן בחלוקה ב סכום הערכים גבוה יותר בסתירה
 לכך שחלוקה א ממקסמת את סכום הערכים.

יעילות – מיקסום סכום עולה

ניסיון שני: נמצא חלוקה הממקסמת את הסכום של *פונקציה עולה* של הערכים:

$$\max \sum_{j=1}^{n} f(V_j(X_j))$$

דוגמה: שחקן א מקבל x אחוזים מהאזור השמאלי:

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

maximize
$$f(81 x + 19) + f(80(1-x)+20)$$

subject to $0 \le x \le 1$

יעילות – מיקסום סכום עולה

משפט: כל חלוקה הממקסמת סכום של *פונקציה עולה כלשהי* של הערכים, היא יעילה פארטו.

הוכחה: נתונה חלוקה **א** הממקסמת סכום זה. • נניח בשלילה שהחלוקה לא יעילה פארטו.

אז קיימת חלוקה **ב** שהיא שיפור-פארטו שלה.

בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו

בחלוקה א, ולחלק מהשחקנים יש ערך גבוה יותר.

כיוון שהפונקציה עולה, בחלוקה **ב** הסכום גבוה יותר •

– סתירה לכך שחלוקה **א** ממקסמת את הסכום.

מיקסום סכום עולה - דוגמה

דוגמה לבעיית אופטימיזציה הממקסמת סכום של פונקציה עולה של הערכים:

$$\max \sum_{j=1}^{n} \sqrt{V_j(X_j)}$$

דוגמה: שחקן א מקבל x אחוזים מהאזור השמאלי:

1.8	a = ().5			
1.6	•		Max		
1.4 f	0.2	0.4	0.6	0,8	\

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

max

 $x\sim0.5$ המקסימום ב: $\mathrm{s.t.}$

$$\sqrt{81x + 19} + \sqrt{80(1 - x) + 20}$$
$$0 \le x \le 1$$

יעילות – מיקסום סכום קמור

משפט: לכל פונקציה קעורה יש נקודת מקסימום אחת ויחידה בכל תחום קמור.

מסקנה: מקסימום מקומי של הפונקציה הוא גם מקסימום **גלובלי**.

מסקנה מעשית: קיימים אלגוריתמים מהירים למציאת נקודת מקסימום (*דוגמה: טיפוס על גבעה).* ראו בקורס חקר ביצועים או בתוכנות מתימטיות, למשל Mathematica:

```
In[9]:= FindMaximum[{ (81 \times + 19)^0.5 + (80 (1 - x) + 20)^0.5, 0 <= x <= 1}, {x}]
Out[9]= {15.4601, {x -> 0.512327}}
```

"יעילות – מיקסום סכום קמור

עכשיו כשאנחנו יודעים שקיימים אלגוריתמים מהירים לחישוב מקסימום של סכום קעור של הערכים, השאלה הנשארת היא – איזו פונקציה *f* לבחור?

מתברר שאם הפונקציה f היא לוגריתמית: $f(V) = \log(V)$ אז החלוקה לא רק יעילה אלא גם ללא קנאה!

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

Z הוכחה: נסתכל בפרוסת עוגה אינפיניטיסימלית, $f(V_j(X_j))$ היא: $f(V_j(X_j))$ היא: $f'(V_j(X_j)) * V_j(Z)$

Zלכן, אלגוריתם האופטימיזציה ייתן כל פרוסה לכן, אלגוריתם האופטימיזציה ייתן כל פרוסה לשחקן שהמכפלה הזאת עבורו גדולה ביותר $f'(V_j(X_j)) * V_j(Z) \geq f'(V_i(X_j)) * V_j(Z)$

(i-j-1)נסכם את המשוואה על כל הפרוסות שניתנו ל $(i-j-1) + V_i(X_i) + V_i(X_i) + V_i(X_i) + V_i(X_i) + V_i(X_i) + V_i(X_i) + V_i(X_i)$

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

הוכחה [המשך]:

```
f(V)לכל חלוֹקה המֹמקסמת את הסכום של f'(V_i(X_i)) = f'(V_i(X_i)) * V_i(X_i) + V_i(X_i) = f'(V_i(X_i)) * V_i(X_i) = compared the first first
```

*** וזו בדיוק ההגדרה של חלוקה ללא קנאה!

יעילות, הגינות וקשירות

ראינו שתמיד אפשר למצוא חלוקה שהיא:

- הוגנת ויעילה,
- הוגנת וקשירה,
- יעילה וקשירה.

האם תמיד קיימת חלוקה הוגנת, יעילה וקשירה? -- לא! הנה דוגמה:

עמי	2	0	3	0	2	0	0
תמי	0	0	0	0	0	7	0
צומי	0	2	0	2	0	0	3

חלוקה ללא קנאה - סיכום

	7	קשיר > יעיל פארטו V
סימונס-סו: זמן אקספוננציאלי ברמת הדיוק של הקירוב.	עזיז-מקנזי: זמן היפר-אקספוננציאלי במספר השחקנים.	לא
לא קיים.	אופטימיזציה קמורה: זמן פולינומיאלי במספר השחקנים <i>והאיזורים</i> .	