Modeling Food Serving
Sizes Through
Nutrition Profiles

Jeremy Ondov August 27, 2019

Project Introduction

Problem Statement

- Creating a new food product is a long and complex process
- Serving sizes incorporate many aspects of the product
 - RACC guidelines
 - Nutrition, cost, demographic
- Predictive model can give early estimate for servings

Data Sourcing

- USDA hosts a database of branded food products
 - Contains over 260,000 products
- Incorporates standard information
 - Ingredients, nutrition facts, market category

Data Analysis

Cleaning Process

- Labels are not all the same
 - Standardized, with wide variations
- Many nutrient entries were missing
 - Macronutrients were used to estimate calories
 - FDA guidelines helped with imputation
 - Top 10 nutrients were kept

Serving Size is Right-Tailed

The largest servings are liquids and frozen meals

Dealing With Data

- Models trained on log-serving size
- Nutrition columns used as-is
- Product categories were dummied
- Ingredients were analyzed with NLP
 - Not included in final modeling at this time

Modeling

Model Types

- 3 Linear models were used
- Straightforward OLS fit on unscaled data
- Ridge and LASSO fit on scaled data
 - Utilized gridsearch and CV for best alpha

Feed Forward Neural Network

- Custom grid searching function was created
 - Altered parameters for given layers
- Final model had 3 hidden layers
 - 256, 128, 64 nodes
 - Each layer used ReLU, L2 regularization
 - Output used identity function
 - Ran for 75 epochs

Evaluations

R² and Root Mean Squared Error

	Train R ² %	Test R ² %	Train RMSE	Test RMSE
OLS	69.19	68.60	31.79	32.32
Ridge	69.19	68.60	31.79	32.33
Lasso	69.19	68.58	31.79	32.33
FF Neural Net	81.53	81.00	24.61	25.15

- FFNN maximizes R² and minimizes RMSE
- Adjusted R² differed by < 0.1%

FFNN - Smooth Loss Over Epochs

Errors are Uniform and Normal

Wrap-up

Conclusions

- FFNN produced the best model
 - Leaves no interpretation of details
- Model has tendency to underpredict
 - May be affected by inedible portions
- Many other factors could have influence
 - Packaging, target market, sale price

Recommendations

- Further exploration of FFNN parameters
- Better utilize NLP for ingredients
- Attempt other model types
 - Decision trees, SVM
- Maintain dataset through USDA updates

Thank You!

Questions?

Sources

- https://data.nal.usda.gov/dataset/usda-branded-food-products-database
 se
- https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.c fm?fr=101.9
- https://dietarysupplementdatabase.usda.nih.gov/ingredient_calculator/ help.php