Atomic Layer Deposition

4D Labs system and recipes

David Dvorak

June 2016

Cambridge NanoTech Fiji F200

From 4D Labs website:

The ALD system is equipped with a heated process chamber, remote plasma source, turbomolecular pump, and automated load lock for transferring substrates. The system is primarily intended for the deposition of a variety of thin films, including metals, oxides, and nitrides. Typical film thicknesses are monolayers up to tens of nanometers. Thicker films may be deposited but, since typical deposition rates are ~ 3-20 nm/h, deposition times will be several hours, at least.

Films available:

Currently, the following films may be deposited in the ALD system; however, it has the capability to deposit many other materials, which may be added on request. For additional information, please contact the tool owner.

Oxides: Al2O3, HfO2, SiO2, & ZnO.

Nitrides: AlN Metals: Pt

Key features:

Highly conformable, well controlled layer by layer film deposition.

Multi-layer film stacks possible.

Aspect ratios of up to 450:1 in thermal mode or 20:1 in plasma mode are possible.

Substrates up to 200 mm in diameter and 6 mm thick can be accommodated.

Substrates may be heated up to 400°C.

Process chamber turbomolecular pump provides a base pressure ~ 2 x 10⁻⁵ Torr.

Load lock chamber with automated transfer of substrates into the process chamber.

All depositions are performed from recipes.

Available plasma gases are Ar, O_2 , N_2 , & H_2 . Any combination of gases may be used simultaneously, with the exception that O_2 & H_2 cannot flow simultaneously.

Ga₂O₃ – New TMGa source Sept 2015

Ga₂O₃ – Purge Headspace

Old purge headspace recipe, data from May

2015 **Pressure Plot** 1.40 1.20 Path Select a file and press graph button when not running to view past 1.00 C:\Cambridge NanoTech\Logfile\Pressure Data\2015 05 01-10-57-0.80 - 08.0 Graph 0.40 **Pressure Plot** 2.00 0.20 1.80 1.60 0.00 100.00 250.00 50.00 150.00 200.00 300.00 411.76 1.40 -350.00 Time (s) 1.20 -1.00 -0.80 1.20 -0.60 0.40

0.20

0.02

40.00

60.00 Time (s)

Ga₂O₃ – Purge Headspace

 New purge headspace pressure data from Sept. 2015 (right)

Purge headspace recipe on file, not sure if it's old

or new (left)

	ipe: ALD5_P				-		10	0.02	
Status: Changed but not saved						10	9.93		
	Instruction	#	Value	Units	A		MFC1	Ar Plasma (sccm)	
0	APC		100	1%			30	29.4	
1	flow	0	40	sccm			MFC 2	N2 Plasma (sccm)	
2	flow	1	40	sccm			0	1.81	
3	wait	No.	10	S					
4	pulse	5	1	S		9		O2 Plasma (sccm)	
5	wait		5	S			0	1.78	
6	goto	4	20	cycles			MFC 4 I	H2 Plasma (sccm)	
7	flow	0	10	sccm		M	0	1.39	
8	flow	1	30	sccm			MFC 5 N	No gas	
							0	1.47	
								MFC 6 I	No gas
							0	1.51	
1							MFC 7 1	No MFC	
							0		

Ga₂O₃ – Growth

 Same recipe used every time, only # of cycles is changed

SiO₂ – Growth & Purge Headspace

Growth

Purge Headspace

Al₂O₃ – Growth & Purge Headspace

Growth

Purge Headspace

Summary

	Old Ga ₂ O ₃	Ga ₂ O ₃ (Sept 2015 ->)	Al ₂ O ₃	SiO ₂
Purge Headspace – spike height	1.0	0.46-0.52	0.14	0.03
Purge Headspace – spike peak pressure	0.01	0.01	0.15	0.04
Growth– spike height	0.06	0.07	0.02	0.015
Growth – spike peak pressure	0.16	0.16	0.15	0.09

ALD Runs:

Precursor	Date	Nominal Thickness (nm)	# of cycles	ALD ticket (hrs)	Cleanroom ticket (hrs)
TDMASi	April 8, 2015	8		5.58	1.67
TMGa	May 1, 2015	10	189	4.47	2.25
TDMASi	May 8, 2015	2.5	139	2.85	2
TMAI	June 26, 2015	8	90	2	1
TMGa	Sept. 8, 2015	8	94	2.33	1
TMGa	Sept. 16, 2015	8	93	2.32	1
TMGa	Dec. 21, 2015	40	465	5	3
TMAI	Jan. 13, 2016	40.5	450	3.17	1.25
TMAI	Jan. 18, 2016	8	90	1.5	0.5
TMAI	Jan. 21, 2016	2	22	1	0.5
TMAI	Jan. 21, 2016	4	45	1.33	0.5
TMGa	Feb. 2, 2016	20	233	2.25	0.75
TMAI	Feb. 23, 2016	2	22	1.5	0.5
TMAI	June 8, 2016	2	22	1.33	1

1 ₂ -H ₂ 1 ₂ O 1 ₂ O	°C 200 250 200 270	1,000 1,000	56.06 20.12 20.3	0.089 0.108	4.8 15.9 19.1
l ₂ O	250 200	1,000	20.12	0.089	19.1
120	200	1,000	20.3	0.108	19.1
-		-	-		
)2	270	350	26.0	0.043	
	0	300	20.0	0.045	5.9
02	200	300	36.0	0.036	3.6
02	150	300	66.0	0.036	2.0
02	90	300	96.0	0.036	1.4
O_2	250	1,200	19.1	0.018	3.
	250	1 400	19.	1 0.018	3.
THE RESERVE AND PARTY OF THE PA		-			23
	2	150 2 90 2 250 2 250	150 300 2 90 300 2 250 1,200 2 250 1,400	150 300 66.0 90 300 96.0 2 250 1,200 19.1 2 250 1,400 19.1	150 300 66.0 0.036 90 300 96.0 0.036 2 250 1,200 19.1 0.018 2 250 1,400 19.1 0.018

^{*} Do not use this recipe. Films degrade over time.

Deposition rate in regular face type have been measured at 4D Labs but rates in italics are based on Cambridge NanoTech standard recipes.