Entropie statistique : système à N niveaux d'énergie

F. Kany. ISEN-Brest & La Croix-Rouge

Présentation

Principe

On cherche tous les N-uplets $\{n_0, n_1, \dots, n_{N-1}\}$ tel que $n_i \in \mathbb{N}$ vérifiant

$$\begin{cases}
 n_0 + n_1 + \dots + n_{N-1} = n_{tot} \\
 n_0 \cdot e_0 + n_1 \cdot e_1 + \dots + n_{N-1} \cdot e_{N-1} = e_{tot}
\end{cases}$$

avec n_{tot} , e_i et e_{tot} des constantes données.

Contexte

Soit un système Σ , isolé, d'énergie totale e_{tot} , constitué de n_{tot} particules pouvant occuper N niveaux d'énergie e_i (notés $e_0, e_1, \dots e_{N-1}$).

Le niveau d'énergie e_i est occupé par n_i particules.

La conservation de la matière impose : $n_0 + n_1 + \cdots + n_{N-1} = n_{tot}$.

La conservation de l'énergie impose : $n_0.e_0 + n_1.e_1 + \cdots + n_{N-1}.e_{N-1} = e_{tot}$.

Exemple : N=4 avec $e_0=0,\ e_1=\varepsilon,\ e_2=2.\varepsilon,\ e_3=3.\varepsilon,\ n_{tot}=3$ particules notées $A,\ B,\ C$ et $e_{tot}=3.\varepsilon.$

On a:

	eaux ergie	Configurations									
3.	ε		A	В	С						
2.	ε					A	Α	В	В	С	С
8		ABC				В	С	Α	С	A	В
)		BC	AC	AB	C	В	С	A	В	A

Si les particules A, B et C sont **discernables** (i.e. on peut différencier les particules), on a $\Omega = 10$ N-uplets possibles : $\{0,1,0,0\}$, $\{2,0,0,1\}$ trois fois et $\{1,1,1,0\}$ six fois.

Si les particules A, B et C sont **indiscernables** (i.e. rien ne peut différencier les particules), on a $\Omega = 3$ N-uplets possibles : $\{0,1,0,0\}$, $\{2,0,0,1\}$ et $\{1,1,1,0\}$.

Les Ω N-uplets représentent les états microscopiques compatibles avec les conditions macroscopiques que l'on a imposées (ici : $n_{tot} = 3$ et $e_{tot} = 3.\varepsilon$).

Ensemble micro-canonique

En physique statistique, on définit l'ensemble micro-canonique comme l'ensemble des répliques fictives d'un système réel dont l'énergie (e_{tot}) , le volume (V) et le nombre de particules (n_{tot}) sont fixés.

L'hypothèse micro-canonique consiste à supposer que, quand un système est isolé et en équilibre, celui-ci se trouve avec probabilités égales dans chacun de ses micro-états accessibles.

Dans l'exemple ci-dessus, pour des particules discernables, $\Omega=10$ et la probabilité de chaque micro-état est $P_{\ell}=\frac{1}{10}$.

Lien avec l'entropie

On appelle entropie statistique, dans un état macroscopique donné, la quantité :

$$S = -k_B \cdot \sum_{\ell} P_{\ell} \cdot \ln(P_{\ell})$$

D'après l'hypothèse micro-canonique $P_\ell = \frac{1}{\Omega}$ où Ω est la nombre de micro-états accessibles. Donc : $S = -k_B$. $\sum_{\ell} P_\ell . \ln(P_\ell) = -k_B$. $\sum_{\ell=1}^{\Omega} \frac{1}{\Omega} . \ln\left(\frac{1}{\Omega}\right) = k_B . \Omega . \frac{1}{\Omega} . \ln(\Omega) = k_B . \ln(\Omega)$

Donc:
$$S = -k_B \cdot \sum_{\ell} P_{\ell} \cdot \ln(P_{\ell}) = -k_B \cdot \sum_{\ell=1}^{\Omega} \frac{1}{\Omega} \cdot \ln\left(\frac{1}{\Omega}\right) = k_B \cdot \Omega \cdot \frac{1}{\Omega} \cdot \ln(\Omega) = k_B \cdot \ln(\Omega)$$

Dans l'exemple ci-dessus : $S = k_B \cdot \ln(10)$ pour des particules discernables.

Algorithme

Ecrire une fonction microetats (niveaux_energie, nbre_particules, energie_totale, indiscernable) qui prend en arguments : niveaux_energie : la liste des niveaux d'énergie, nbre_particules : l'entier n_{tot} , energie_totale l'entier e_{tot} et indiscernable : un booléen indiquant le type de particules.

La fonction renvoie la liste des Ω N-uplets (sous le forme de listes) triée à l'aide de la fonction sort.

```
Exemple:
entrée
[0,1,2,3],3,3,True
sortie
[[0, 3, 0, 0], [1, 1, 1, 0], [2, 0, 0, 1]]
entrée
[0,1,2,3],3,3,False
sortie
[[0, 3, 0, 0], [1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0],
 [1, 1, 1, 0], [2, 0, 0, 1], [2, 0, 0, 1], [2, 0, 0, 1]]
```