ELEKTRİK DEVRELERİ I YAZ FİNAL 2004 - 2005

SORU 1 -)

Şekil 1 deki devrede başlangıç şartları i(0+)=1 ve $\frac{di}{dt}|_{0+}=0$ olduğuna göre i akımını bulunuz.

SORU 2 -)

Şekil 2 deki devre t = 0 — anında kararlı durumdadır. t = 0 anında anahtar kapatılıyor. t > 0 için i akımını bulunuz.

SORU 3 -)

Şekil 3 deki devrede i akımını Norton teoremi yardımı ile bulunuz.

NOT : Sınay süresi 60 dakikadır. 1. Soru 35 puan, 2. Soru 35 puan, 3. Soru 30 puandır.

ÇÖZÜMLER

ÇÖZÜM 1 -)
$$i(0+) = 1$$
 ve $\frac{di}{dt}|_{0+} = 0$

$$i_{1} = \frac{2}{3}t^{2} - i$$

$$5\left(i - \frac{2}{3}t^{2}\right) + 4\int idt - i_{1} + 2\frac{di}{dt} = 0$$

$$5i - \frac{10}{3}t^2 + 4\int idt + i - \frac{2}{3}t^2 + 2\frac{di}{dt} = 0$$

$$6i - \frac{12}{3}t^2 + 4\int idt + 2\frac{di}{dt} = 0, \quad 3i - \frac{6}{3}t^2 + 2\int idt + \frac{di}{dt} = 0$$

$$\frac{d^2i}{dt^2} + 3\frac{di}{dt} + 2i = \frac{12}{3}t$$

Doğal çözüm :

$$\frac{d^2i}{dt^2} + 3\frac{di}{dt} + 2i = 0$$

$$\lambda^2 + 3\lambda + 2 = 0$$
, $\lambda_1 = \frac{-3 + \sqrt{3^2 - 4 \times 2}}{2} = -1$, $\lambda_2 = \frac{-3 - \sqrt{3^2 - 4 \times 2}}{2} = -2$

$$i_h = K_1 e^{-t} + K_2 e^{-2t}$$

Zorlanmış Çözüm :

$$\frac{d^{2}i}{dt^{2}} + 3\frac{di}{dt} + 2i = 4t, \quad i = At^{2} + Bt + D, \quad \frac{di}{dt} = 2At + B, \quad \frac{di^{2}}{dt^{2}} = 2A$$

$$2A + 3(2At + B) + 2(At^2 + Bt + D) = 4t$$

$$2A + 3(2At + B) + 2(At^2 + Bt + D) = 4t$$
, $2At^2 + (6A + 2B)t + (2A + 3B + 2D) = 4t$

$$2At^{2} + (6A + 2B)t + (2A + 3B + 2D) = 4t$$

$$2A = 0 \rightarrow A = 0$$
, $6A + 2B = 4 \rightarrow B = 2$, $2A + 3B + 2D = 0 \rightarrow D = -3$

$i_{\ddot{O}} = 2t - 3$

Tam Çö<mark>züm</mark> :

$$i = i_h + i_{\ddot{O}} = K_1 e^{-t} + K_2 e^{-2t} + 2t - 3$$

$$i = K_1 e^{-t} + K_2 e^{-2t} + 2t - 3, \quad \frac{di}{dt} = -K_1 e^{-t} - 2K_2 e^{-2t} + 2$$

$$i(0) = K_1 + K_2 - 3 = 1$$
, $\frac{di}{dt}\Big|_{0} = -K_1 - 2K_2 + 2 = 0$

$$K_1 + K_2 = 4$$
, $K_1 + 2K_2 = 2$, $K_2 = -2$, $K_1 = 6$

$$i = 6e^{-t} - 2e^{-2t} + 2t - 3$$

ÇÖZÜM 2 -) Şekil 2 deki devre
$$t=0$$
 — anında kararlı durumdadır. $t=0$ anında anahtar kapatılıyor. $t>0$ için i akımını bulunuz.

$$i(0-) = i(0+) = 24/8 = 3 A$$

$$\frac{1}{4} \times \frac{di}{dt} + 4i + 2(i - i_1) = 12$$
$$4i_1 + 2(i_1 - i) = 12$$

$$\frac{1}{4} \times \frac{di}{dt} + 6i - 2i_1 = 12$$
$$-2i + 6i_1 = 12$$

$$\frac{3}{4} \times \frac{di}{dt} + 18i - 6i_1 = 36$$
$$-2i + 6i_1 = 12$$

$$\frac{3}{4} \times \frac{di}{dt} + 16i = 48$$

Doğal çözüm:

$$\frac{3}{4} \times \frac{di}{dt} + 16i = 0, \ \frac{3}{4}\lambda + 16 = 0 \rightarrow \lambda = -\frac{64}{3}, \quad i_h = Ke^{-64t/3}$$

Zorlanmış çözüm:

$$\frac{3}{4} \times \frac{di}{dt} + 16i = 48$$

$$i_{\ddot{O}} = A$$
, $\frac{di_{\ddot{O}}}{dt} = 0$
 $0 + 16A = 48 \rightarrow A = 3$

$$i_{\ddot{o}} = 3$$

Tam çözüm:

$$i = i_h + i_{\ddot{O}} = Ke^{-64t/3} + 3$$

Başlangıç şartlarından $i(0) = 3 = K + 3 \rightarrow K = 0$ bulunur.

Çözüm i = 3 A olur.

ÇÖZÜM 3 -) Şekil 3 deki devrede i akımını Norton teoremi yardımı ile bulunuz.

$$v_1 = \frac{3}{2} * 2 = 3V$$

Bağımlı kaynağın gerilimi $4v_1 = 4*3V = 12V$

Sekil (a) dan
$$v_{oc} = \frac{12}{12+6} \times 12 = 8 \text{ V}$$

Şekil (b) den
$$i_{sc} = I_N = \frac{12}{6} = 2 A$$

$$R_{\rm N} = \frac{v_{oc}}{i_{sc}} = \frac{8}{2} = 4 \,\Omega$$

olduğundan eşdeğer devre (c) deki gibidir. Eşdeğer devrede dirençler eşit olduğundan

$$i = \frac{I_{\rm N}}{2} = \frac{2}{2} = 1 \,\text{A}$$

olur.