Inteligência Artificial: uma abordagem de Aprendizado de Máquina

Introdução

- Imagine escrever um programa de computador que:
 - Reconheça pessoas pelo rosto
 - Problemas:
 - Diferentes expressões faciais
 - Alterações na face (ex. óculos, bigode)
 - Cortes de cabelo
 - Etc.

Que características considerar??

Seres humanos: reconhecimento de padrões, aprendizado do que deve ser observado após vários exemplos

Câmeras de reconhecimento facial acham criminoso no Carnaval de Salvador

Criminoso fantasiado é achado por câmeras de segurança com reconhecimento facial em Salvador Imagem: Secretaria de Segurança Pública da Bahia

Alexandre Santos Colaboração para o UOL, em Salvador 05/03/2019 22h16

Biometria por reconhecimento facial

https://support.apple.com/en-ph/HT208108

- Imagine agora escrever programas de computador para:
 - Responder a questões sobre vendas como:
 - Quais produtos são vendidos em conjunto?
 - Que produto recomendar a um cliente?
 - Como agrupar clientes para melhor marketing?

LUU, Minh-Duc; LIM, Ee-Peng. Do your friends make you buy this brand?. Data Mining and Knowledge Discovery, vol 32, n 2, p. 287–319, 2018.

Inteligência Artificial e AM

- IA era vista como área teórica
 - Aplicações em problemas de pouco valor prático
- 1970: disseminação maior da IA em problemas reais
 - Sistemas Especialistas / baseados em conhecimento
 - Conhecimento de especialista codificado
 - Frequentemente por regras lógicas

Como codificar subjetividade/intuição de especialista?

Inteligência Artificial e AM

- Necessidade de ferramentas mais autônomas
 - Reduzindo necessidade de intervenção humana e dependência de especialistas

Aprendizado de Máquina: técnicas capazes de criar, a partir de experiência passada, uma hipótese (função) capaz de resolver o problema

Ex: regra definida por análise de prontuários médicos
 Se temperatura > 37° C e tem dores então está doente

- 1952: programa jogador de damas de Samuel
- 1959: modelo Pandemonium de Selfridge
 - Reconhecimento de padrões
 - Padrão é reconhecido em partes antes do total

- Redes Neurais:
 - Perceptron (1957),
 - Adaline (1960)
- 1969: Minsky e Papert provam limitações do Perceptron

- Sistemas especialistas e o gargalo de aquisição de conhecimento
- Algoritmo ID3 (Iterative Dichotomiser 3) de Quinlan

- Aprendizado de Regras
- Ressurgimento das Redes Neurais (backpropagation 1986)
- Foco em metodologia de experimentos

- Sistemas Inteligentes Híbridos
- Mineração de Dados (1996) e de Textos
- Agentes de software adaptativos e aplicações na web
- Aprendizado por Reforço
- ILP (Inductive Logic Programming)
- Ensembles: Bagging, Boosting e Stacking
- Aprendizado por redes bayesianas
- Computação Bioinspirada

- Máquinas de Vetores de Suporte (Support Vector Machines)
- Modelos Gráficos
- Aplicações mais diversas
- Redes neurais profundas (deep learning)

AM: motivações

- Automatizar o processo de aquisição de conhecimento
- Entender melhor os mecanismos de aprendizado humano
- Algumas tarefas são melhor definidas e/ou executadas a partir de exemplos
 - Ex.: Reconhecer pessoas
- Ser humano não é capaz de explicar (e programar) sua habilidade para executar alguns tipos de tarefas
 - Ex.: Dirigir

AM: outras motivações

- Quantidade de conhecimento disponível pode ser muito grande para ser descrito (e programado) por humanos
 - Ex.: diagnóstico médico
- Algumas tarefas exigem cálculos complexos, possíveis apenas com computador
 - Ex.: interrelacionar/correlacionar grandes quantidades de dados
- Modelos de AM podem se adaptar a novas situações
 Evita necessidade de reprogramação

O que é aprendizado?

- Essencial para comportamento inteligente
- Algumas atividades:
 - Memorizar algo
 - Observar e explorar situações para aprender fatos
 - Melhorar habilidades motoras/cognitivas por prática
 - Organizar conhecimento novo em representações apropriadas

Aprendizado de Máquina: definição

Um programa aprende a partir da experiência **E**, em relação a uma classe de tarefas **T**, com medida de desempenho **P**, se seu desempenho em **T**, medido por **P**, melhora com **E**

Mitchell, 1997

Capacidade de melhorar o desempenho na realização de alguma tarefa por meio da experiência

- Problema: aprender a jogar damas
 - **Tarefa T**: jogar damas
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: aprender a jogar damas
 - Tarefa T: jogar damas
 - Medida de desempenho P: porcentagem de jogos vencidos contra adversários ou contra si próprio
 - Experiência E: praticar jogando

Arthur Lee Samuel
(criou o termo "machine learning" em 1959):
 programa de jogar damas,
primeiro programa com auto-aprendizado.
Jogou milhares de vezes conta si mesmo
Chegou a nível amador

MACHINE LEARNING JAN 27, 2016

AlphaGo: using machine learning to master the ancient game of Go

Demis Hassabis
CEO AND CO-FOUNDER, GOOGLE DEEPMIND

DeepMind > Blog > AlphaStar: Mastering the Real-Time Strategy Game StarCraft II

AlphaStar: Mastering the Real-Time Strategy Game StarCraft II

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: porcentagem de mensagens de spam legítimas corretamente identificadas
 - Pode ter um peso diferente para cada erro
 - Experiência E: conjunto de e-mails apontados pelo usuário como spams

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: porcentagem de dígitos corretamente identificados
 - Experiência E: imagens de dígitos manuscritos por diferentes pessoas

MNIST database:

images of handwritten digits, collected among Census Bureau employees and high-school students. Writers of the training set and test set are disjoint.

USPS database:

numeric data obtained from the scanning of handwritten digits from envelopes by the U.S. Postal Service

- Problema: carro autônomo (aprender a dirigir)
 - Tarefa T: dirigir em uma rodovia pública usando diversos sensores
 - Medida de desempenho P: ?
 - Experiência E: ?

ALVINN, an autonomous land vehicle in a neural network

Problema: carro autônomo (aprender a dirigir)

Tarefa T: dirigir em uma rodovia pública usando sensores

- Medida de desempenho P: distância média percorrida antes de um erro
- Experiência E: sequência de imagens e comandos de direção registrados observando um motorista humano

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: porcentagem de clientes classificados corretamente como bons e maus pagadores
 - Experiência E: uma base de dados histórica com dados de clientes já conhecidos

Inferência Indutiva

- A Inferência Indutiva é um dos principais meios para a aquisição de novos conhecimentos
- Indução: raciocínio para obter conclusões sobre todos os membros de uma classe pelo exame de alguns membros da classe

Raciocínio do particular para o geral

Inferência indutiva: exemplo

- Se eu noto que:
 - Todos pacientes com déficit de atenção atendidos em 1986 sofriam de ansiedade
 - Todos pacientes com déficit de atenção atendidos em 1987 sofriam de ansiedade
 - •
 - Posso inferir que pacientes que sofrem de déficit de atenção também sofrem de ansiedade

Isto pode ser ou não verdade, mas propicia uma boa generalização

Conjunto de dados

- Experiência pode ser provida por um conjunto de dados (de treinamento)
 - Ex. base de dados de um hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38.4	2	GO	Saudável

Conjunto de dados

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38.4	2	GO	Saudável

Meta: induzir hipótese para fazer diagnósticos corretos para novos pacientes

Conjunto de dados

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38.4	2	GO	Saudável

Cada linha (paciente) é um dado (objeto, exemplo, padrão ou registro)

Conjunto de dados

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38.4	2	GO	Saudável

Cada objeto é uma tupla com valores de características (atributos, campos ou variáveis), que descrevem seus principais aspectos

Conjunto de dados

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38.4	2	GO	Saudável

Atributo de saída (alvo/meta): presente em algumas tarefas, seus valores devem ser estimados usando outros atributos (de entrada/preditivos)

Importante: atributos de identificação e nome não possuem relação com a doença e não são utilizados como entradas

Conjunto de dados

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39.5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38.0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38.5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38.0	3	RJ	Doente
1322	Marta	19	F/	77	Espalhadas	39.0	6	AM	Doente
3027	Paulo	34			Uniformes	38.4	2	GO	Saudável

Importante: lidar com dados imperfeitos (ruídos, ausentes, etc.)

AM: multidisciplinar

Probabilidade e Estatística Psicologia

Teoria da Informação

Teoria da Computação Aprendizado de Máquina

Neurociência

Biologia

. .

Tarefas de Aprendizado

Divisão geral: Preditivas vs Descritivas

Previsão

Encontrar função (modelo ou hipótese) que possa ser utilizada para prever um rótulo ou valor para novos dados

Objetos na forma (entrada, saída)

Descrição

Explorar ou descrever um conjunto de dados

Objetos não possuem saída associada

Hierarquia de aprendizado

Importante: divisão não é rígida (modelo preditivo também provê descrição dos dados e modelo descritivo pode prover previsões após validado)

E existem outras formas de realizar o aprendizado preditivo/descritivo

Aprendizado supervisionado

- Supervisor externo
 - Conhece saída desejada para cada exemplo
 - Representado por conjunto de pares (x, y)
 - Ex.: \mathbf{x} = sintomas e y = diagnóstico

Classificação

Rótulos discretos

Ex.: diagnóstico, bom/mau pagador, etc.

Regressão

Rótulos contínuos

Ex.: peso, altura, etc.

Aprendizado supervisionado

Regressão

Aprendizado não supervisionado

- Algoritmos não fazem uso de atributo de saída
 - Exploram regularidades nos dados

Sumarização

Encontrar descrição compacta para dados

Associação

Encontrar padrões frequentes de associações entre atributos

Agrupamento

Dados agrupados de acordo com sua similaridade

Aprendizado não supervisionado

Assciação

Que itens serão comprados em conjunto?

Hierarquia de aprendizado

Aprendizado por reforço

- Reforçar/recompensar ações positivas e punir ações negativas
 - Crítico externo

Aprendizado supervisionado

- Supervisor
- É dito o que fazer
- Mais rápido

Aprendizado por reforço

- Crítico
- Faz e vê o que acontece
- Mais lento

Aprendizado semisupervisionado

Aprendizado semisupervisionado

- Classificação/regressão: usa dados rotulados e não rotulados
 - Dados não rotulados são mais frequentes
 - Rotular dados é custoso
- Agrupamento: usa conhecimento de que exemplos devem estar no mesmo grupo ou não

Aprendizado semisupervisionado

https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervised-learning-technique/

Generalização

- Capacidade de generalização de uma hipótese:
 - Propriedade de continuar válida para outros objetos que não fazem parte de seu conjunto de treinamento

Problemas:

Overfitting: especialização nos dados de treinamento, não generaliza

Underfitting: baixo acerto mesmo nos dados de treinamento

Viés indutivo

- Aprendizado: busca de hipótese em espaço de possíveis hipóteses
 - Que descreva relacionamentos entre os dados
 - E se ajuste aos dados de treinamento
- Todo algoritmo de AM indutivo tem um viés
 - Na escolha de uma hipótese (ou conjunto)

Sem viés, não haveria generalização (modelos seriam especializados para os exemplos individuais)

Viés indutivo

- Viés de representação ou linguagem
 - Define o espaço de busca
 - Restringe hipóteses que podem ser geradas


```
0.45 -0.40 0.54 0.12 0.98 0.37 -0.45 0.11 0.91 0.34 -0.20 0.83 -0.29 0.32 -0.25 -0.51 0.41 0.70
```

Redes neurais

Se Peso ≥ 50 então Doente Se Peso < 50 e Sexo = M então Doente Se Peso < 50 e Sexo = F então Saudável Conjunto de regras

Viés indutivo

- Viés de preferência ou busca
 - Como hipóteses são pesquisadas
 - Preferência de algumas hipóteses sobre outras
 - Ex.: preferência por hipóteses curtas
 - Navalha de Occam

"Se em tudo o mais forem idênticas as várias explicações de um fenômeno, a mais simples é a melhor"

Outras aplicações clássicas AM

Número crescente de aplicações

Finanças: análise de risco, detecção de fraudes, gerenciamento de carteiras

Internet: algoritmos de busca, marketing na web

Ciência e Medicina: descoberta de padrões, diagnóstico de pacientes, análise de dados do genoma

Indústrias: previsão de falhas, diagnóstico de produtos

Marketing: segmentação de mercado, recomendação de produtos

Telecomunicações: processamento de alarmes e sensores

Muito usada em Mineração de Dados, *Big Data, Analytics*, Ciência de Dados, ...

Algumas ferramentas

Rapid Miner

http://rapidminer.com

Weka

http://www.cs.waikato.ac.nz/ml/weka

Keel

http://www.keel.es/

Python – Scikit-learn:

http://scikit-learn.org/

R Project

http://www.r-project.org

Alguns conjuntos de dados

Machine Learning Data Repository UC Irvine

http://www.ics.uci.edu/~mlearn/ML/Repository.html

 Kaggle: competições práticas promovidas por empresas https://www.kaggle.com/competitions

OpenML

https://www.openml.org/

AM nas grandes empresas

Amazon Machine Learning

aws.amazon.com/machine-learning

Referências

- Capítulo 1 do livro Inteligência Artificial: uma abordagem de Aprendizado de Máquina, 2011
- Alguns slides foram baseados em apresentações de:
 - Profa Dra Ana Carolina Lorena
 - Prof Dr André C. P. L. F. Carvalho
 - Prof Dr Ricardo Campello
 - Profa Dra Solange O. Rezende
 - Prof Dr Marcilio C. P. Souto
 - Prof Dr Carlos Soares