UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Tirsdag 7. desember 2004

MAT-INF 1100 — Modellering og beregninger — del 1

Tid for eksamen:	14:30 – 17:30
Oppgavesettet er på 4 sider.	
Vedlegg:	Formelark
Tillatte hjelpemidler:	Godkjent kalkulator
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.	
Husk å fylle inn kandidatnummer under.	
	Kandidatnr:
Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!	
Del 1: Flervalgsoppgaver	
Oppgave 1. Taylorpolynomet av grad 3 til funksjonen $f(x) = e^x - 1 - x$ om punktet $a = 0$ er gitt ved	
Oppgave 2. Taylorpolynomet av grad 2 til funksjonen $f(x) = x^2$ om punktet $a = 0$ er gitt ved	
Oppgave 3. Koeffisienten foran x^2 i Taylorpolynomet til funksjonen $f(x) = \sqrt{1+x}$ om punktet $a=0$ er \bigcirc 0 \bigcirc -1/8 \bigcirc 1/3 \bigcirc -1/2 \bigcirc 1/12	

Eksamen i

Eksamensdag:

Oppgave 4. Vi tilnærmer en funksjon f(x), som kan deriveres vilkårlig mange ganger, med et Taylorpolynom $T_n f(x)$ av grad n, utviklet om a. Vi betrakter restleddet

$$R_n f(x) = \frac{(x-a)^{n+1} f^{(n+1)}(\xi)}{(n+1)!}$$

(n+1)!
der ξ er et tall i intervallet $[a,x]$. Hvilket av følgende utsagn er sant? For alle f vil restleddet gå mot 0 når $n \to \infty$ Ikke for noen f vil restleddet gå mot 0 når $n \to \infty$ For alle f vil restleddet gå mot ∞ når $x \to -\infty$ Restleddet vil gå mot 1 når $x \to \pi$ For alle f vil restleddet gå mot 0 når $x \to a$ Oppgave 5. Vi har påstanden P : Det fins alltid nøyaktig ett polynom p_n av grad n som tilfredstiller betingelsene $p_n(x_i) = y_i$ for $i = 0, 1, \ldots, m$, der $(x_i)_{i=0}^m$ og $(y_i)_{i=0}^m$ er reelle tall slik at $x_0 < x_1 < \cdots < x_m$. Påstanden P er sann hvis
Oppgave 6. Anta at vi bruker trapesregelen til å beregne en tilnærming T til $\int_0^1 f(x) dx$, og at vi ser bort fra avrundingsfeil. Da er $T = \int_0^1 f(x) dx$ hvis
\Box f er en parabel \Box $f(x) = \sin x$ \Box $f(x) = e^x$ \Box f er en rett linje \Box f er et polynom av grad tre
Oppgave 7. Hvilken av følgende differensialligninger er lineær?
Oppgave 8. Differensialligningen $(1+x^2)y'=y$ har den generelle løsningen
Oppgave 9. Differensialligningen $y''-4y'+y=0$ har den generelle løsningen
Oppgave 10. Differensialligningen $y'+y/x=x^2$, der $x>0$, har løsningen

Del 2

Husk at i denne delen må alle svar begrunnes! Merk også at oppgavene ikke bygger på hverandre. I oppgavene 1, 3 og 4 er det derfor mulig å løse deloppgave b selv om du ikke har løst deloppgave a.

Oppgave 1.

a) Løs differensialligningen

$$y'' - 2y' - 3y = 0$$

med intitalverdiene y(0) = 0 og y'(0) = 1.

b) Løs differensialligningen

$$y'' - 2y' - 3y = -x$$

med intitialverdiene y(0) = 0 og y'(0) = 1.

Oppgave 2. Vis ved induksjon at

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}$$

for alle heltall $n \geq 0$ og alle relle tall $a \neq 1$.

Oppgave 3. Tom har et akvarium der vannet har blitt for hardt, dvs. at konsentrasjonen av salter er for stor. Denne konsentrasjonen måles i gram per liter, g/ℓ , og har kommet opp i $c_0 = 1.0 \, g/\ell$. Av hensyn til sine kjære dyr og planter, kan ikke Tom bytte alt vannet på en gang, men må nøye seg med å bytte S liter en gang i uka. Dette gjør han ved å tappe S liter vann fra akvariet og deretter fylle på med S liter vann fra springen. Vi ser bort fra fordampning etc.

a) Forklar hvorfor konsentrasjonen av salter etter n uker, c_n , er styrt av differenslikningen

$$c_n = \left(1 - \frac{S}{V}\right)c_{n-1} + \frac{S}{V}K,$$

der K er konsentrasjonen av salt i vannet i springen og V er det totale vannvolumet i akvariet, målt i liter.

b) Vi setter nå

$$K = 0.1q/\ell$$
, $V = 100.0\ell$, $S = 10.0\ell$

i tillegg til $c_0 = 1.0g/\ell$.

Løs differensligningen og finn et uttrykk for saltkonsentrasjonen etter n uker. Hvor mange uker går det før Tom får saltinnholdet ned til det halve av c_0 , dvs. til $0.5g/\ell$?

Oppgave 4.

a) Finn parabelen p som interpolerer funksjonen f i punktene x = 0, x = h og x = 2h (parabelen tilfredstiller altså betingelsene p(0) = f(0), p(h) = f(h) og p(2h) = f(2h)).

Deriver p og utled tilnærmingen $\delta(f)$ til f'(0) gitt ved

$$f'(0) \approx \delta(f) = \frac{-f(2h) + 4f(h) - 3f(0)}{2h}.$$

b) Vis at feilen i denne tilnærmingen er gitt ved

$$|f'(0) - \delta(f)| \le h^2 \max_{x \in [0,2h]} |f'''(x)|.$$

Hint: I denne oppgaven kan du bruke at feilleddet i Taylors formel kan skrives

$$R_n f(x) = \frac{(x-a)^{n+1} f^{(n+1)}(\xi)}{(n+1)!},$$

der ξ er et tall i intervallet [a, x].

Lykke til og god jul!