Лабораторная работа 2.4.1 Определение теплоты испарения жидкости

Кагарманов Радмир Б01-106 18 мая 2022 г. **Цель работы:** : 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

В работе используется: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчётный микроскоп.

Теоретические сведения

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Здесь P - давление насыщенного пара жидкости при температуре T, T - абсолютная температура жидкости и пара, L - теплота испарения жидкости, V_2 - объём пара, V_1 - объём жидкости. Найдя из опыта $\frac{dP}{dT}$, V_2 , V_1 и T, можно определить L путём расчёта. Величины L, V_2 , V_1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

При давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому:

$$V = \frac{RT}{P} \tag{2}$$

Подставляя (2) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдём:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{3}$$

Экспериментальная установка

Схема установки изображена на рис. 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5. В термостат погружён запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар

(перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединённому с исследуемым объёмом. Отсчёт показаний манометра производится при помощи микроскопа.

Рис. 1: Экспериментальная установка

Обработка результатов

1. Построим графики зависимости $ln\ P$ от 1/T. Они изображёны на Рис. 2. В таблицах 1 и 2 приведены значения разницы высоты столбцов ртутного манометра и температуры.

Рис. 2: Экспериментальная установка

С помощью метода наименьших квадратов найдём $\frac{d(\ln\,P)}{d(1/T)}$:

При нагревании: $k_{\rm h} = -4135 \pm 138~K$ При охлаждении: $k_{\rm o} = -4288 \pm 132~K$

2. По формуле (3) посчитаем L:

$$L_{
m H} = 34, 4 \pm 1, 1 \, {{
m K} \Delta
m K} \over {
m MOJID} \over {
m K} \Delta
m K} \ L_{
m O} = 35, 6 \pm 1, 1 \, {{
m K} \Delta
m K} \over {
m MOJID}$$

Для сравнения с табличным значением L перейдём к удельной теплоте:

$$L_{ ext{h}} = 1,91 \pm 0,06 \; rac{ ext{MДж}}{ ext{Kr}} \ L_{ ext{o}} = 1,98 \pm 0,06 \; rac{ ext{MДж}}{ ext{Kr}} \ L_{ ext{Ta6л}} = 2,26 \; rac{ ext{MДж}}{ ext{Kr}}$$

Вывод: в данной работе мы вычислили теплоту парообразования воды с помощью увеличения и понижения температуры. Более точный результат получился при понижении $L_{\rm o}=1,98\pm0,06~\frac{\rm MДж}{\rm kr}$. Табличное значение $L=2,26~\frac{\rm MДж}{\rm kr}$.

Δh , cm
2,41
2,59
2,7
2,79
2,96
3,04
3,21
3,335
3,455
3,615
3,84
3,975
4,35
4,45
4,63
4,81
5,02

Таблица 1: Нагрев

T, K	$\Delta h, \text{cm}$
309,03	5,065
308,02	4,845
307,01	4,665
306,02	4,445
305,04	4,22
304,03	4,03
303,03	3,85
302,03	3,68
301,04	3,49
300,03	3,335
299,04	3,17
298,04	3
297,05	2,91
296,03	2,765
295,07	2,64
294,07	2,52

Таблица 2: Охлаждение