PHOTOELECTRIC OBSERVATIONS OF PECULIAR A AND RELATED STARS I: STRÖMGREN PHOTOMETRY OF 341 Ap STARS

N. VOGT
European Southern Observatory, Santiago, Chile
and
M. FAÚNDEZ A.
Universidad Técnica del Estado, Santiago, Chile

Received September 12, revised November 14, 1978

Mean uvby values of 341 Ap stars from the list of Bidelman and MacConnell (1973) are presented. In addition, the individual observations are given for 51 of these stars which turned out to be suspected variables.

Key words: Peculiar A stars – intermediate-band photometry.

1. INTRODUCTION

The main criteria of peculiar A stars are based on spectroscopic observations: enhanced variable line intensities of some heavy elements and variable Zeeman shifts due to strong stellar magnetic fields led to the oblique rotator model. Abundance anomalies are currently explained either by magnetic accretion of surrounding interstellar matter or by the selective effect of diffusion due to radiation pressure. However, relatively few stars were studied in detail spectroscopically due to the extensive efforts that are required in telescope size and time, as well as in reduction procedures. As a consequence, little is known about the statistical distribution of principal Ap parameters (e.g. element abundances, rotation periods, magnetic field strengths) in view of the fact that more than 1600 Ap stars are catalogued at present. On the other hand, Maitzen (1976) has shown that some of these parameters can be investigated with intermediate-band photoelectric photometry.

Here we present, as a first part, the result of Strömgren photometry of 341 Ap stars. A second part will contain the photometry (in the system proposed by Maitzen, 1976) of the $\lambda 5200$ Å continuum depression for the same Ap stars and of numerous normal stars from the Bright Star Catalogue (spectral types O to G). A statistical discussion of all photometric results presented here will be published elsewhere.

2. OBSERVATIONS AND DATA REDUCTION

Our observing programme contains all Ap stars from the list of Bidelman and MacConnell (1973) with $V \le 8^m$. The data were obtained in a total of 59 observing nights between September 1974 and June 1976 at the 50-cm telescope of the European Southern Observatory, La Silla, Chile. A single-channel photometer was used, equipped with an EMI 6256 photomultiplier, thermoelectric cooling and pulse counter. Every night at least five Strömgren standards taken from Crawford and Barnes (1970) were measured. The data were reduced with the ESO HP 2100 DOS-M computer system applying the standard reduction programme for uvby photometry written by F. Middelburg. This programme uses the following equations for the colour transformation:

$$V = y' + k_1 (b - y)' + q_1$$

$$b - y = k_2 (b - y)' + q_2$$

$$m_1 = k_3 m_1' + k_4 (b - y)' + q_3$$

$$c_1 = k_5 c_1' + k_6 (b - y)' + q_4$$

The V magnitude corresponds to the Johnson system; colours with an apostrophe represent the instrumental system, those without apostrophes the standard system. For nights with sufficient standard measurements ($N \ge 15$) the coefficients k were determined by a least square solution for each of the four equations. Normally, averaged colour coefficients k could be applied for a typical observing run of 5–10 subsequent nights. The actual standard measurements of each night, however, were used to determine the night zero points q.

The night extinction coefficients were determined comparing standard star measurements at different air-masses. The reduction procedures were applied iteratively, calculating first the colour transformation for low-air-mass standard stars (applying mean extinction coefficients). After determination of the mean colour transformation valid for the actual group of observing nights, the high-air-mass standards were included in order to determine individual extinction coefficients for each night. In case of insignificant night-to-night variations of the extinction, mean extinction coefficients for groups of subsequent nights were derived. The values thus determined of transformation and extinction coefficients were finally used in the calculation of the zero points q for each night individually.

Each programme star was measured at least in three different nights. The mean values of V, b-y, m_1 and c_1 and the corresponding standard deviations σ of the single measurements from their mean values are given in table 1 (σ in units of 0.001). N corresponds to the total number of measurements.

Figures 1a-d show the standard deviations σ as a function of the V magnitude for standards and programme stars. The accuracy of a single measurement in our photometry – as derived from the results of different observing nights – is $0^m.008$ (V), $0^m.005$ (b-y) and $0^m.007$ (m_1 and c_1) for the standard stars (left part of figure 1, V=3.5...6.0). These values increase for the faintest programme stars (V=9.0) to $0^m.013$ (V), $0^m.008$ (V=9.0), $0^m.011$ (V=9.0) and $0^m.013$ (V=9.0) to $0^m.013$

3. VARIABLE Ap STARS

The majority of the peculiar stars are variable with typical periods in the order of days to months and amplitudes of several hundredths of magnitude. The small number of measurements presented here for each star is not sufficient for a reliable determination of periods and lightcurves. On the other hand, the internal scatter of even 3–9 observations can give valuable hints for the amplitude of the expected variations: the measurements of most stars spread over several months, only for few stars were the three measurements obtained during subsequent nights. Intrinsic variables with large amplitudes (large compared to the accuracy mentioned in Section 2) can likely be detected, in spite of the fact that we did not observe constant comparison stars together with the Ap stars. Therefore, from figure 1 we selected those for which standard deviations of $\geq 2.5 \, \sigma_0$ were obtained (σ_0 corresponds to the mean values given in Section 2). A total of 51 stars fulfilled this condition in one or more colours. They represent the variable stars with the largest amplitudes within the sample studied here. Table 2 contains the individual observation of these stars and could facilitate further observers to determine periods and lightcurves.

A publication of each measurement of the remaining stars does not seem to be justified since a single observation in our non-differential photometry is of little value for variations with amplitudes of the order of our photometric accuracy.

ACKNOWLEDGEMENTS

We are obliged to A. Blest, J. Pérez and G. Román for performing part of the observations in late 1974.

REFERENCES

Bidelman, W.P. and MacConnell, D.J.: 1973, *Astron. J.* **78**, 687. Crawford, D.L. and Barnes, J.V.: 1970, *Astron. J.* **75**, 987.

Maitzen, H.M.: 1976, Astron. Astrophys. 51, 223.

N. Vogt

European Southern Observatory Casilla 16317

Santiago-9 (Chile)

M. Faúndez A.

Universidad Técnica del Estado

Casilla 5659 Santiago-2 (Chile)

Table 1 Strömgren Photometry of 341 Ap Stars

IDE	NT	٧	SIGV	8-Y	SIGBY	Ml	SIGM1	Cl	SIGCI	N	106	NT	٧	SIGV	8-Y	SIGBY	Ml	SIGMI	C1	SIGCI	N
HD	2957	8.501	12	-0.006	6	0.207	8	0.993	12	8	но	37189	8.638	7	-0.009	3	0.133	6	0.707	11	4
HD	3580	6.716	14	-0.063	1	0.123	2	0.502	9	7	но	37210	8.112	7	-0.041	7	0.148	9	0.565	26	4
HD	3980	5.708	9	0.068	10	0.295	19	0.756	41	12	HD	37642	8.032	25	-0.065	6	0.139	10	0.335	33	4
HD	5601	7.642	13	-0.056	10	0.219	13	0.782	23	9	нр	37713	8.139	22	-0.023	6	0.143	7	0.545	17	4
HD	6783	7.947	6	-0.034	8	0.175	12	0.609	17	7	нр	38698	9.097	5	-0.013	14	0.194	14	0.625	18	3
HD	8783	7.799	9	0.072	12	0.199	21	1.086	29	11	HD	38719	7.499	11	0.011	10	0.206	14	1.038	19	5
HD	15144	5.865	9	0.057	7	0.222	10	0.952	9	7	но	38823	7.330	6	0.100	12	0.298	32	0.569	55	4
HD	16145	7.660	9	0.028	5	0.201	11	1.057	13	7	HĐ	39082	7.443	51	-0.028	12	0.226	15	0.889	14	5
HD	18610	8.165	6	0.114	9	0.347	12	0.617	15	8	HD	39353	7.570	15	-0.065	5	0.129	6	0.608	16	4
но	19712	7.341	10	-0.060	9	0.248	29	0.848	39	6	нр	39575	7.849	13	-0.074	12	0.267	19	0.905	8	4
HD	20880	7.956	7	0.094	8	0.208	12	1.030	13	8	но	40071	8.067	14	-0.049	7	0.185	7	0.677	10	3
но	21201	8.949	8	0.114	8	0.295	14	C.808	19	8	Э	40277	€.353	11	0.041	5	0.239	15	0.901	21	4
HD	23207	7.560	12	0.106	8	0.259	11	0.856	12	8	БН	46383	9.002	15	0.177	5	0.059	19	0.809	11	3
HD	28299	7.575	9	-0.085	6	0.148	16	0.600	9	5	н	40711	8.581	7	0.095	10	0.184	15	1.059	12	3
HD	28365	8.437	8	-0.041	4	0.118	5	0.460	4	4	но	40759	8.547	ε	-0.013	12	0.226	20	0.899	12	3
но	29009	5.706	7	-0.057	5	0.119	7	0.568	4	5	HD	40948	7.150	10	-0.066	4	0.124	6	0.562	5	3
но	29925	8.318	8	-0.066	4	0.168	4	0.564	11	4	нь	41403	7.661	11	0.001	3	0.206	6	1.035	9	4
HD	30849	8.857	11	0.162	20	0.286	20	5،7٠٥	58	8	нр	42326	7.716	7	0.008	8	0.231	5	0.922	2	3
нυ	31225	7.018	12	0.093	9	0.190	12	1.079	8	9	нD	42335	8.406	14	0.070	5	0.075	12	0.635	5	3
HD	32145	7.237	19	-0.076	4	0.147	8	0.448	16	4	сн	42576	9.070	16	0.055	3	0.141	14	1.045	5	3
HD	32432	7.806	9	-0.661	7	0.201	13	0.864	4	5	но	42675	7.461	13	-0.017	5	0.141	12	0.612	7	3
но	32966	7.114	45	-0.043	18	0.104	13	0.505	19	4	но	43408	8.015	9	-0.009	6	0.185	12	0.960	13	3
но	34427	8.721	13	-0.014	4	0.209	2	0.821	14	4	но	43901	8.235	27	0.130	12	0.232	17	0.939	21	3
HD	34631	6.998	25	-0.652	8	0.153	8	0.541	22	6	HD	44290	8.549	2	-0.028	4	0.200	0	0.923	6	3
но	34736	7.823	16	-0.043	6	0.141	9	0.536	13	4	HD	44293	7.752	2 7	-0.089	18	0.238	20	0.883	8	4
но	35177	8.142	5	-0.031	7	0.113	7	0.533	14	3	HD	44456	8.534	24	-0.009	5	0.187	7	0.765	30	3
нр	35353	7.664	9	0.094	4	0.272	7	0.681	7	3	но	44947	8.763	5	0.105	6	0.233	5	0.924	12	3
нD	36668	8.049	5	-0.052	2	0.135	6	0.597	4	3											

Table 1 (continued)

IDENT	٧	SIGV	B-Y	S 1G BY	M1	S IGM1	C1	S1GC1	N	IDENT	٧	SIGV	8-Y	SIGBA	Ml	S IGM1	C1	S1GC1	N
HD 45439	7.892	21	-0.021	9	0.142	16	0.583	23	3	HD 66273	8.804	11	-0.003	5	0.131	8	0.961	12	3
HD 45530	7.366	22	-0.030	10	0.217	7	0.642	63	3	HD 66350	8.695	11	-0.030	6	0.197	8	1.050	12	3
HD 45583	7.990	17	-0.093	12	0.174	15	0.516	20	3	HD 66605	6.537	17	-0.030	8	0.178	11	0.618	29	3
HD 45698	8.183	18	0.069	8	0.244	5	0.846	17	3	HD 66698	7.755	12	-0.026	4	0.170	11	0.932	14	3
BD+8 1369	8.780	15	-0.020	12	0.147	24	0.639	16	3	HD 57165	8 • 486	7	-0.044	12	0.207	9	0.741	30	3
HD 46462	7.526	19	-0.054	8	0.130	10	0.422	22	3	HD 67330	8.602	16	-0.013	3	0.179	10	1.062	6	3
HD 47116	7.705	21	-0.014	2	0.198	12	0.679	24	3	HD 67835	7.307	12	-0.058	3	0.129	5	0.530	4	3
HD 47633	8.002	15	-0.018	8	0.139	20	0.848	10	3	HD 68074	8.222	18	-0.041	10	0.106	18	0.433	32	3
HD 47714	7.964	5	-0.015	8	0.118	10	0.546	27	3	HD 68292	7.512	10	-0.063	3	0.131	1	0.447	5	3
HD 47802	8.560	50	-0.028	5	0.142	7	0.588	28	3	HD 68419	8.187	5	0.014	10	0.226	21	0.983	6	3
HD 48729	9.446	9	-0.035	12	0.149	23	0.582	30	3	HD 68476	8.577	20	-0.020	11	0.136	10	0.651	37	3
HD 50166	8.780	10	-0.022	14	0.166	21	1.091	14	3	HD 68561	8.016	19	-0.020	10	0.103	9	0.512	26	3
HD 50221	8.867	18	-0.041	8	0.129	14	0.495	8	5	HD 68998	8.657	9	0.132	2	0.181	12	1.017	6	3
HD 50461	7.819	14	-0.079	4	0.217	7	0.660	13	4	HD 69067	8.206	9	-0.088	11	0.183	5	0.553	16	3
HD 50825	8.177	9	-0.040	6	0.176	9	0.896	12	4	HD 69913	8.216	20	0.112	8	0.058	7	0.537	1	3
HD 51088	8 • 2 4 5	17	-0.086	9	0.149	7	0.550	14	4	HD 70325	7.337	16	-0.055	12	0.131	18	0.509	21	3
HD 51172	8.672	21	-0.040	8	0.162	17	0.59 7	15	4	HD 70464	8.297	3	-0.062	5	0.135	9	0.491	18	3
HD 51650	8.332	11	-0.003	6	0.157	17	1.151	20	4	HD 76507	7.828	6	-0.047	6	0.151	11	0.578	10	3
HD 51684	7.975	20	0.134	23	0.264	20	0.783	28	4	HD 70749	8.225	10	0.015	12	0.112	14	0.653	10	3
HD 52589	€.070	22	-0.063	11	0.169	18	0.557	5	3	HD 70847	8.987	10	-0.019	7	0,116	12	0.523	27	3
HD 52696	8.539	6	0.097	9	0.138	15	1.092	14	4	HD 71808	8.853	33	0.026	21	0.191	21	0.657	53	4
HD 53116	8.884	31	-0.046	11	0.268	17	0.818	91	4	HD 72055	8.127	9	-0.053	6	0.114	14	0.690	6	3
HD 53204	7.651	5	-0.021	9	0.133	7	0.864	12	4	HU 72295	7.977	13	-0.023	3	0.179	8	1.064	28	3
HD 53662	8.690	9	-0.036	8	0.178	8	0.730	30	4	HD 72611	7.020	8	-0.062	4	0.192	6	0.748	4	3
HD 52851	7.594	9	-0.075	10	0.142	11	0.544	10	4	но 72634	7.288	6	-0.011	13	0.185	20	1.025	14	3
HU 54832	8.708	12	-0.035	4	0.142	5	0.540	11	4	HU 72881	7.447	3	-0.032	13	0.162	12 5	0.569	12 5	3 3
HU 55309	8.767	35	-0.065	4	0.188	9	0.577	53	3	но 7 2976 но 7 3340	7.486 5.772	26 5	-0.038	6	0.132	9	0.400	12	3
HD 55395	8.359	21	-0.036	15	0.156	15	0.529	14	3	HD 72737	8.310	9	-0.014	6	0.220	14	0.937	10	4
HD 56273	7.922	21	-0.042	5	0.136	2	0.587	21	3	HD 74169	7.220	6	-0.014	5	0.215	8	0.848	16	3
HC 56336	9.062	18	-0.019	10	0.124	14	0.558	19	3	HD 74555	8.977	3	0.006	8	0.203	7	0.944	20	3
HD 56632	8.436 7.105	12 7	-0.035	15	0.123	14 5	0.774	1	3	HD 74888	6.828	27	-0.055	10	0.131	11	0.503	21	3
HD 56882	8.386	20	0.030	3	0.183	8	0.874	5 19	3	HD 75445	7.143	6	0.159	1	0.218	8	0.729	19	3
HU 57526	8.295	7	-0.056	5	0.184	4	0.801	3	3	HD 76104	8.007	3	0.026	6	0.148	12	0.806	8	3
HU 57946	8.378	30	0.016	18	0.136	23	0.573	37	3	HD 76439	7.991	8	-0.075	3	0.131	8	0.479	14	3
HU 58292	7.947	6	-0.027	3	0.179	12	0.886	42	3	HD 76650	9.442	23	-0.042	12	0.117	20	0.544	4	3
HD 59435	7.985	24	0.278	10	0.203	14	0.841	29	3	нь 76897	7.501	5	-0.037	6	0.151	6	0.870	4	3
HD 60435	8.889	3	0.132	3	0.234	15	0.843	19	3	HD 77609	8.036	15	0.029	7	0.153	4	0.905	2	3
HD 61382	8.335	11	-0.626	17	0.199	12	0.955	1	3	HD 77669	8.461	33	-0.065	13	0.145	22	0.469	26	3
HD 61622	8.561	10	-0.021	6	0.136	12	0.506	6	3	HD 76201	8.094	14	-0.077	3	0.153	9	863.0	9	3
CuD-44 3656	8.671	13	-0.019	13	0.226	23	0.855	19	3	HD 7 3568	7.824	14	-0.032	3	0.124	14	0.565	24	3
Hn 62555	8.010	37	-0.035	7	0.193	8	0.726	16	3	HU 79606	8.156	10	0.035	5	0.059	8	0.509	10	3
но 62530	8.175	26	-0.043	6	0.201	3	0.877	13	3	HD 79976	8.556	18	0.011	9	0.176	26	1.651	8	3
HD 62553	7.877	16	0.044	7	0.197	11	1.085	10	3	HC 80282	7.592	6	-0.073	2	0.147	10	0.502	19	3
HD 62556	7.960	9	0.035	6	0.203	8	0.838	11	3	HD 8C316	7.808	12	0.122	20	0.295	8	0.657	64	4
HD 62640	8.077	6	-0.063	11	0.131	18	0.374	13	3	HD 81141	8.028	12	0.019	7	0.139	18	C.619	22	3
HD 62 7 52	9.523	3	0.085	5	0.140	13	1.666	12	3	HD 81269	8.429	19	-0.012	8	0.201	15	0.725	47	4
HD 63401	6.333	24	-0.087	13	0.140	18	0.414	10	3	HU 81588	8.454	4	0.113	1	0.238	2	0.843	10	3
HD 63 7 59	9.341	12	0.051	7	0.210	5	1.163	11	3	HO 81847	8.309	29	-0.044	9	0.172	14	0.533	32	3
HD 64881	8.816	5	-0.055	9	0.190	9	0.832	11	3	HD 82093	7.087	12	0.050	6	0.201	23	1.073	10	3
HD 64901	8.555	14	-0.063	7	0.140	12	0.534	23	3	HD 82154	8.622	18	0.007	8	0.219	8	0.682	37	2
hu 64972	7.198	11	-0.045	7	0.098	7	0.401	9	3	HD 82567	7.754	19	-0.016	12	0.118	25	0.565	1	2
HD 64988	7.872	21	-0.020	8	0.142	9	1.004	2	4	HD 83266	8.709	20	-0.062	21	0.264	42	0.852	24	4
HD 66051	8.814	20	-0.029	15	0.166	17	0.584	8	3	hD 83368	6.174	9	0.146	5	0.203	6	0.7%	8	3
HD 66195	8.653	12	0.043	8	0.227	14	0.886	52	3	HD 83625	6.899	9	-0.067	6	0.168	5	0.600	16	4

Table 1 (continued)

IDENT	v	SIGV	8 -Y	SIGBY	Ml	S IGM1	C1	S1GC1	N	IDENT	v	SIGV	8-Y	SIGBY	M1	SIGM1	C1	SIGC1	N
HD 84451	8.079	28	0.057	5	0.092	8	0.829	4	3	HD 118816	7.810	14	0.009	7	0.114	13	0.658	5	3
HD 84907	8.868	9	0.020	7	0.141	13	1.087	15	4	HD 118913	7.692	14	0.017	9	0.200	8	0.982	7	3
HD 85892	7.767	12	0.035	9	0.075	15	0.590	20	4	HD 119308	7.857	6	0.006	6	0.207	7	0.937	6	5
HD 86976	8.389	9	0.124	8	0.275	20	0.803	14	4	HD 120059	8.810	11	0.035	5	0.101	9	1.047	14	3
HD 88385	8.084	14	-0.022	16	0.236	38	0.884	38	3	HD 121661	8.560	30	0.027	8	0.239	12	0.831	8	3
HD 89103	7.812	13	-0.095	10	0.194	10	0.631	15	3	HD 122208	7.947	11	0.045	6	0.238	15	0.961	30	6
HD 89192	6.858	10	0.009	18	0.190	22	0.984	4	3	HD 123627	8.158	9	0.142	7	0.180	11	1.063	15	3
HD 89217	8.368	12	0.014	12	0.107	28	0.691	22	3	HD 124051	7.245	4	0.053	2	0.122	1	0.807	8	3
HD 89385	8.382	12	0.015	4	0.194	13	0.937	18	3	HD 125532	9.231	11	0.054	8	0.109	9	0.527	12	3
HD 89393	8.019	12	0.134	6	0.209	16	0.952	20	3	HD 125630	6.762	44	0.041	36	0.279	31	0.630	99	6
HD 89519	8.302	18	0.022	6	0.153	12	0.863	8	3	HD 126198	7.979	39	0.070	7	0.061	8 28	0.413	12 28	3
HD 89680	8.412	25	0.033	5	0.182	4	1.104	4	4	HD 126515	7.102	22	0.044	15	0.263	3	0.602	8	3
HD 90612	9.502	9	-0.019	13	0.156	15	0.582	13	4	HD 126876 HD 127453	8.342 7.358	10 5	0.178	6 7	0.027	14	0.624	5	3
HD 91089	7.521	21	-0.074	8	0.124	8	0.484	8 11	4	HD 127575	7.745	30	0.019	9	0.155	4	0.594	23	3
HD 91134	8.415	12	-0.036	8	0.144	17 11	0.852	4	4	HD 128896	3.198	17	0.152	18	0.195	30	0.760	7	3
HD 91239	7.367 6.733	12	-0.040	5	0.139	8	0.760	23	3	HD 129899	6.444	8	-0.026	11	0.178	17	0.838	9	6
HD 92379	7.910	9	-0.051	10	0.162	4	0.616	16	4	HD 130335	7.768	2	0.120	10	0.071	6	0.797	9	3
HD 92664	5.498	12	-0.082	5	0.115	9	0.391	31	6	HD 131505	8.627	10	-0.006	7	0.122	10	0.503	9	3
HD 93500	8.760	21	0.031	6	0.183	7	1.014	8	3	HD 132322	7.377	7	0.126	20	0.219	21	0.967	19	3
HD 93821	7.927	13	-0.050	4	0.146	4	0.775	11	4	HD 133281	8.964	5	-0.008	13	0.159	6	0.557	22	3
HD 94455	8.025	4	0.112	8	0.180	17	1.114	4	3	HD 133757	8.168	10	0.016	5	0.115	9	0.610	3	3
HD 94873	8.286	6	-0.056	9	0.135	10	0.694	8	4	HD 135297	7.973	9	-0.014	2	0.186	6	0.970	18	3
HD 95198	7.854	12	-0.039	9	0.162	14	0.836	29	4	HD 135396	7.994	16	0.299	2	0.147	3	0.732	2	3
HD 95413	8.736	13	-0.052	16	0.217	20	0.750	4	3	HD 135415	7.905	10	-0.051	9	0.137	7	0.565	10	3
HD 95442	7.851	18	0.013	8	0.206	14	1.035	22	3	HD 135728	8.615	13	0.244	10	0.191	14	0.917	13	7
HD 95569	8.533	31	0.121	11	0.110	14	0.845	16	6	HD 136347	6.478	6	-0.042	10	0.191	20	0.651	19	3
HD 95699	7.757	11	0.070	3	0.224	8	0.941	14	4	HD 137160	8.028	10	0.047	4	0.160	5	0.986	6	3
HD 96910	6 8.089	24	0.015	24	0.238	26	0.934	87	6	HD 137193	7.390	13	-0.018	6	0.205	6	0.731	7	3
HD 97394	8.784	14	0.126	8	0.290	35	0.786	61	7	HD 137509	6.872	28	-0.095	12	0.183	16	0.411	10	3
HD 97986	7.842	20	0.045	10	0.116	18	0.720	31	6	HD 137949	6.674	5	0.188	6	0.321	10	0.584	4	3
HU 98340	7.136	3	-0.034	9	0.161	13	0.803	14	4	HD 138519	7.933	9	0.101	16	0.040	20	0.524	7	3
HD 98457	7.917	49	-0.039	12	0.153	2	0.644	72	3	HD 138758	7.933	14	-0.074	13	0.221	19	0.795	5	3
но 98486	8.588	18	0.110	8	0.043	8	0.594	5	3	ны 138773	7.658	5	0.081	11	0.126	8	0.747	51	3
HD 101600	8.554	18	0.022	11	0.108	21	0.872	30	4	HD 141461	8.430	7	0.053	7	0.134	14	0.599	8	3
HD 101724	8.022	14	0.034	7	0.090	10	0.416	10	4	HU 141641	8.935	37	-0.042	15	0.120	12	0.397	7	3
HD 102354	8.829	6	0.157	2	0.024	1	0.561	4	3	HD 142884	6.768	8	0.039	4	0.092	5	0.303	5	3
HD 103302	8.307	14	0.004	13	0.217	16	0.968	20	3	HD 143474	7.429	34	0.073	15	0.126	20	0.534	11	3
HD 103457	7.763	12	-0.010	9	0.184	10	0.586	9	4	HD 143592	8.645	12	0.066	10	0.095	10	0.747	14 12	3
HD 10481C	7.374	12	0.067	12	0.072	21	0.555	12	3	HD 143658	6.477	6 10	0.029	7 9	0.090	7 10	0.645	2	3
HD 105379	8.016	20	0.027	6	0.182	10	1.063	13	3	HD 144231 HD 144748	8.619	7	0.080	8	0.210	10	1.068	9	3
HD 105457	9.008	37	0.058	18	0.181	17	0.481	68	6	HD 146971	8.634	10	0.147	4	0.159	4	1.054	5	3
HD 105770	7.372	14	0.138	6	0.032	4	0.538	17	3	HD 147890	7.676	39	0.186	3	0.039	3	0.821	32	3
HD 106204	8.575	13	0.017	10 14	0.115	12 15	0.737	8 6	3	HD 148848	7.458	33	0.134	13	0.178	13	0.813	48	6
HD 109809	8.386	23	0.276	6	0.036	13	0.814	6	3	HD 149764	6.961	20	0.010	7	0.116	14	0.499	33	6
HD 112381	6.511	18	-0.099	6	0.257	11	0.859	15	3	HD 149831	8.485	19	0.066	9	0.094	2	0.501	17	3
HD 112528	8.259	21	0.188	7	0.228	9	0.813	25	3	HD 149911	6.062	6	0.083	5	0.192	5	1.070	18	3
COD-67 1384		0	0.091		0.269	0	0.705	0	1	HD 150035	8.665	22	0.153	2	0.136	19	1.050	8	3
HD 115440	8.233	18	0.044	6	0.131	12	0.586	6	3	HD 150040	8.115	23	0.037	8	0.149	10	0.885	8	3
HD 115599	9.008	25	0.150	7	0.118	9	0.559	1	3	HD 150323	7.600	38	0.062	9	0.113	10	0.591	6	3
HD 116114	7.040	6	0.176	1	0.215	7	0.852	1	3	HD 150486	7.692	31	0.113	5	0.086	15	0.784	25	3
HD 116423	8.463	16	0.087	16	0.174	10	0.813	30	6	HD 150500	7.053	21	0.027	5	0.070	7	0.433	8	3
HD 117057	8.138	50	-0.019	3	0.101	9	0.491	25	6	HD 150714	7.588	42	0.068	7	0.135	8	0.853	24	3
HD 118242	7.545	20	0.001	7	0.123	9	0.673	13	3	HD 151742	8.513	3	0.197	0	0.031	8	0.721	9	3

N. Vogt and M. Faúndez A.

Table 1 (continued)

IDENT	٧	SIGV	B-Y	2 1 G BA	Ml	SIGM1	Cl	SIGCI	, N	IDENT	٧	SIGV	8-Y	2 1G BA	Ml	SIGM1	Cl	SIGCI	N
HD 151860	8.975	27	0.327	4	0.221	9	0.538	11	3	HD 166596	5.439	6	-0.047	6	0.065	10	0.154	15	3
HD 151965	6.325	22	-0.078	10	0.143	23	0.387	12	3	HD 166921	7.807	12	0.030	4	0.120	7	0.729	24	4
HD 152366	8.083	6	0.046	10	0.119	32	0.667	9	3	HD 166968	7.159	12	0.016	16	0.082	35	0.566	29	3
HD 153707	8.448	17	0.041	13	0.112	17	0.834	10	3	HD 168856	7.017	4	0.120	3	0.070	7	0.583	12	3
HD 154253	9.033	32	0.106	6	0.238	9	0.809	6	3	HD 169021	7.013	45	-0.008	10	0.118	34	0.562	43	5
HD 154308	8.772	23	0.095	12	0.187	24	0.943	8	3	HD 170397	6.038	6	-0.028	7	0.192	20	0.925	23	3
HD 154458	8.273	12	-0.026	7	0.129	11	0.522	23	3	HD 171279	7.337	15	0.064	7	0.157	4	1.066	11	3
HD 155127	8.350	19	0.136	8	0.136	5	1.082	22	6	HD 172032	7.746	4	0.335	3	0.124	13	0.747	7	3
HD 155778	7.767	19	0.105	9	0.055	18	0.805	8	3	HD 172690	7.506	7	0.024	9	0.102	7	0.724	21	3
HD 156300	8.681	24	0.206	2	0.082	6	0.889	18	3	HD 173406	7.417	12	0.101	10	0.076	11	0.616	23	3
HD 156853	7.597	1:4	0.008	6	0.109	10	0.614	11	3	HD 173562	7.922	4	0.038	7	0.174	10	1.121	6	3
HD 156869	7.940	20	0.041	8	0.165	18	0.990	14	3	HD 174646	8.221	13	0.067	3	0.137	6	0.643	26	3
HD 157678	8.128	12	-0.040	9	0.118	5	0.523	25	3	HD 174779	6.651	10	-0.045	3	0.164	3	0.836	5	3
HD 157751	7.663	7	-0.102	11	0.282	10	0.892	8	3	HD 176555	7.589	16	-0.031	6	0.136	12	0.599	6	3
HD 158128	8.173	18	0.034	6	0.170	16	0.788	10	3	HD 181550	8.692	10	-0.012	5	0.151	14	0.803	35	3
HD 158175	7.548	13	-0.024	14	0.137	26	0.636	20	3	HD 184020	8.149	16	-0.015	6	0.169	11	0.957	29	3
HD 158450	8.571	42	0.234	22	0.167	22	0.946	28	3	HD 185280	9.447	17	0.056	7	0.193	13	1.023	23	5
HD 158596	8.917	17	0.202	6	0.115	8	0.750	10	3	HD 187473	7.329	23	-0.021	12	0.160	14	0.682	15	4
HC 159376	6.471	25	0.047	12	0.088	18	0.677	6	3	HD 189502	7.915	11	-0.046	7	0.213	11	0.691	18	5
HD 159545	7.727	12	0.152	3	0.044	3	0.747	16	3	HD 191439	8.883	19	-0.026	10	0.244	25	0.938	22	4
HU 159846	7.804	13	0.043	1	0.096	5	0.618	6	3	HD 191796	7.794	4	-0.032	4	0.205	6	0.998	4	5
HD 160127	8.102	17	0.128	7	0.177	11	1.074	13	3	HD 197417	8.006	12	0.032	6	0.231	26	0.975	50	7
HD 161277	7.078	12	0.010	6	0.155	10	0.770	23	3	HD 199728	6.246	20	-0.062	16	0.133	19	0.621	23	3
HD 161349	8.424	17	-0.009	11	0.109	17	0.518	14	3	HD 200623	9.076	6	0.067	7	0.233	24	0.960	24	4
HD 161841	7.560	6	-0.009	17	0.089	14	0.464	9	3	HD 203932	8.820	10	0.169	5	0.196	15	0.736	10	6
HD 162651	7.228	7	0.205	10	0.045	7	1.045	31	3	HD 206653	7.191	13	-0.031	8	.0.137	6	0.549	42	4
HD 162725	6.420	16	0.012	16	0.151	7	1.001	32	6	HD 207188	7.632	23	-0.042	7	0.157	8	0.547	14	4
HU 163555	7.601	9	0.024	9	0.076	13	0.595	13	3	HD 208217	7.207	11	0.091	6	0.251	11	0.697	26	5
HD 164224	8.511	14	0.105	9	0.181	15	0.903	24	3	HD 212385	6.850	22	0.067	10	0.225	25	0.946	22	6
HD 164258	6.353	8	0.086	7	0.181	3	1.108	20	3	HD 212432	7.502	15	-0.056	20	0.125	30	0.639	17	4
HD 166053	8.373	26	0.138	6	0.039	15	0.482	26	3	HD 215966	7.890	14	-0.037	6	0.169	8	1.050	8	6
HD 166469	6.514	15	0.010	14	0.127	10	0.860	18	3	HD 217522	7.520	4	0.289	6	0.215	7	0.487	8	5
HD 166473	7.953	15	0.213	12	0.311	17	0.538	21	3	HD 218994	8.564	9	0.155	9	0.187	9	0.827	9	6

Table 2 Individual measurements of the variable Ap Stars

	HJD =244 2000	٧	b-y	m ₁	c ₁		HJD =244 2000	v	b-y	m ₁	c ₁		HJD -244 2000	٧	b-y	^m 1	c ₁
HD 3980	316.686 317.718 319.754 320.779	5.709 5.712 5.717 5.700	0.068 0.074 0.065 0.052	0.317 0.261 0.268 0.325	0.713 0.813 0.815 0.746	HD 81289	383.760 503.657 785.792 959.494	8.433 8.424 8.407 8.453	-0.016 0.000 -0.015 -0.018	0.186 0.196 0.222 0.201	0.768 0.677 0.692 0.762	HD 141641	859.849 860.786 861.759	8.978 8.914 8.913	-0.027 -0.056 -0.042	0.109 0.132 0.119	0.402 0.400 0.389
	340.657 341.593 342.593	5.708 5.704 5.701	0.066 0.074 0.087	0.296 0.293 0.314	0.742 0.764 0.686	HD 81847		8.285 8.302 8.341	-0.048 -0.034 -0.051	0.188 0.162 0.165	0.513 0.517 0.570	HD 143474	503.864 859.856 861.791	7.465 7.390 7.433	0.090 0.061 0.069	0.104 0.143 0.132	0.545 0.523 0.535
	346.636 347.609 350.674 351.596	5.702 5.715 5.695 5.712	0.079 0.062 0.073 0.060	0.305 0.292 0.292 0.287	0.714 0.774 0.732 0.789	HD 83266		8.685 8.723 8.700	-0.031 -0.076 -0.037 -0.082	0.302 0.210 0.292	0.826 0.871 0.838	HD 147890	560.797 860.813 861.818	7.711 7.683 7.634	0.188 0.186 0.183	0.035 0.040 0.041	0.845 0.832 0.785
HD 19712	682.761 317.806	5.726 7.346	0.056	0.296	0.788 0.873	HD 88385	959.497 502.747 503.703	8.729 8.097 8.087	-0.053 -0.013 -0.013	0.250 0.226 0.204	0.875 0.881 0.924	HD 148848	560.799 859.881 861.801 958.656	7.474 7.428 7.466 7.510	0.133 0.136 0.120 0.122	0.163 0.199 0.171 0.174	0.855 0.771 9.876 0.808
	319.815 320.773 340.730 341.667	7.357 7.331 7.336 7.343	-0.055 -0.079 -0.055 -0.061	0.222 0.285 0.223 0.223	0.880 0.831 0.892 0.892	HD 89217	503.713	8.069 8.370 8.378	-0.041 0.014 0.026	0.278 0.113 0.076	0.848 0.691 0.713	HD 149764	959.620 960.640 560.801	7.420 7.451 6.946	0.155 0.135 0.002	0.186 0.178 0.127	0.750 0.818 0.455
HD 30849	342.666 316.848 317.849	7.332 8.860 8.862	-0.058 0.163 0.155	0.282 0.280 0.266	0.793 0.739 0.775	HD 92664	503.742	8.355 5.477 5.510	0.003 -0.078 -0.082	0.131 0.123 0.107	0.669 0.350 0.404		859.863 861.799 958.666 959.622	6.973 6.979 6.947 6.983	0.006 0.007 0.012 0.022	0.122 0.119 0.127 0.091	0.514 0.518 0.511 0.536
	318.761 320.813 340.768 341.728	8.869 8.843 8.850 8.846	0.137 0.138 0.185 0.169	0.264 0.301 0.296 0.293	0.818 0.761 0.667 0.711		859.621 958.525 959.528 960.538	5.506 5.502 5.495 5.500	-0.089 -0.085 -0.079 -0.077	0.128 0.110 0.116 0.106	0.399 0.434 0.361 0.398	HD 150323	960.644 560.816 686.507	6.936 7.596 7.639	0.014 0.066 0.068	0.110 0.103 0.114	0.461 0.585 0.596
	342.763 354.864	8.870 8.857	0.157 0.194	0.267 0.319	0.767 0.643	HD 96910	500.728 503.771 860.569	8.129 8.092 8.103	-0.003 0.024 -0.024	0.194 0.255 0.224	1.041 0:887 1.041	HD 150486	862.802 560.814 686.514	7.564 7.694 7.722	0.051 0.117 0.108	0.122 0.072 0.102	0.529 0.811 0.761
HD 32966	316.844 317.874 318.775 366.675	7.075 7.136 7.167 7.077	-0.056 -0.033 -0.023 -0.061	0.116 0.088 0.100 0.113	0.485 0.522 0.493 0.522		958.535 959.535 960.547	8.074 8.073 8.064	0.025 0.032 0.039	0.240 0.264 0.255	0.924 0.860 0.853	HD 150714	862.807 560.821 686.518 862.812	7.660 7.590 7.628 7.545	0.115 0.094 0.089 0.081	0.084 0.133 0.128 0.143	0.780 0.836 0.881 0.842
HD 38823	316.891 317.887 320.854	7.335 7.335 7.328	0.188 0.195 0.199	0.295 0.266 0.342	0.592 0.634 0.510	HD 97394	380.842 503.778 860.589	8.776 8.809 8.765	0.139 0.114 0.123	0.305 0.239 0.343	0.710 0.885 0.715	HD 152366	682.519 683.520 862.814	8.089 8.076 8.083	0.036 0.056 0.045	0.155 0.092 0.110	0.657 0.627 0.672
HD 39082	356.759 317.889 319.883	7.322 7.420 7.412	0.216 -0.008 -0.030	0.291 0.202 0.240	0.541 0.900 0.866		862.759 958.536 959.552 960.560	8.774 8.792 8.788 8.786	0.121 0.127 0.127 0.128	0.309 0.296 0.279 0.259	0.781 0.802 0.782 0.826	HD 158 4 50	682.549 686.537 687.497	8.543 8.620 8.551	0.222 0.259 0.221	0.183 0.142 0.176	0.954 0.970 0.915
	320.860 340.785 341.869	7.407 7.551 7.424	-0.034 -0.037 -0.031	0.234 0.225 0.231	0.898 0.883 0.897	HD 97986	502.780 503.785 859.672	7.842 7.877 7.822	0.054 0.048 0.028	0.109 0.105 0.149	0.697 0.748 0.688	HD 162725	560.862 681.553 687.550 958.681	6.433 6.420 6.417 6.444	0.013 0.000 0.011 0.042	0.146 0.152 0.145 0.161	1.012 1.061 0.990 0.984
HD 45530	354.845 500.532 686.841	7.346 7.361 7.390	-0.026 -0.023 -0.041	0.222 0.220 0.209	0.610 0.602 0.715		958.564 959.558 960.569	7.842 7.822 7.848	0.040 0.049 0.055	0.117 0.115 0.098	0.738 0.696 0.758	HD 166968	959.632 960.653 681.583	6.405 6.401 7.157	0.010 0.004 0.034	0.145 0.155 0.042	0.983 0.974 0.599
HD 47802	355.850 368.768 686.867	8.577 8.503 8.599	-0.022 -0.030 -0.031	0.135 0.148 0.142	0.607 0.555 0.601	HD 98457	500.733 859.699 860.595	7.966 7.916 7.868	-0.048 -0.043 -0.026	0.151 0.154 0.154	0.714 0.648 0.570	HD 169021	682.619 687.577 560.874	7.147 7.172 7.005	0.004 0.011 -0.015	0.106 0.097 0.143	0.543 0.556 0.564
HD 51684	356.780 368.783 499.582 780.713	7.952 7.965 7.994 7.988	0.141 0.131 0.159 0.104	0.254 0.253 0.254 0.293	0.798 0.798 0.741 0.794	HD 105457	500.754 503.805 859.719	9.060 8.976 8.988	0.032 0.073 0.055	0.187 0.193 0.205	0.546 0.392 0.449		682.627 686.586 958.698 959.640	6.965 7.000 7.087 7.009	-0.006 -0.013 0.009 -0.013	0.128 0.135 0.059 0.126	0.496 0.550 0.605 0.594
HD 53116	366.810 502.515 744.749	8.848 8.918 8.900	-0.945 -0.959 -0.049	0.320 0.247 0.250	0.711 0.918 0.862		958.593 959.573 960.588	9.024 9.034 8.965	0.049 0.050 0.082	0.170 0.159 0.170	0.501 0.565 9,434	HD 197417	316.639 317.660 350.557	8.016 7.991 7.989	0.023 0.036 0.035	0.241 0.271 0.235	0.984 0.902 0.939
HD 55309	781.678 503.515 744.778	8.872 8.727 8.789	-0.032 -0.061 -0.065	0.255 0.190 0.178	0.780 0.517 0.619	HD 117057	500.809 503.832 860.662 958.618	8.149 8.181 8.150 8.118	-0.021 -0.018 -0.023 -0.022	0.114 0.093 0.107 0.103	0.462 0.513 0.489 0.461		351.591 355.566 356.581 679.664	8.022 8.010 8.007 8.009	0.027 0.038 0.036 0.031	0.209 0.206 0.204 0.254	1.028 1.012 1.023 0.935
HD 57946	781.708 356.817 368.804 781.756	8.786 8.344 8.391 8.400	-0.069 0.036 0.000 0.013	0.196 0.111 0.157 0.141	0.595 0.533 0.607 0.580	HD 125630	959.587 960.611 500.862	8.176 8.157 6.782	-0.016 -0.015	0.099 0.089 0.272	0.503 0.518 0.646	HD 206653	319.721 350.570 351.574	7.194 7.208 7.177	-0.024 -0.042 -0.030	0.134 0.133 0.136	0.542 0.606 0.506
HD 58292		7.953 7.942 7.946	-0.026 -0.030 -0.025	0.165 0.183 0.189	0.921 0.898 0.839	110 123030	560.736 861.612 958.634	6.703 6.794 6.791	0.085 0.012 0.016	0.323 0.267 0.251	0.488 0.707 0.715	HD 212385	356.586 311.731 316.661	7.186 6.825 6.849	-0.029 0.062 0.060	0.146 0.223 0.237	0.543 0.930 0.955
HD 62535	368.799 500.557 782.749	7.980 8.051 7.998	-0.031 -0.043 -0.031	0.193 0.200 0.185	0.708 0.734 0.736	HD 126198	959.599 960.620 500.866	6.710 6.794 7.952	0.086 0.007 0.071	0.311 0.248 0.058	0.492 0.734 0.414		317.693 350.576 355.592 356.567	6.849 6.837 6.847 6.890	0.080 0.060 0.058 0.080	0.216 0.246 0.245 0.181	0.941 0.919 0.948 0.982
HD 66195	499.656 503.539 784.723	8.663 8.641 8.655	0.051 0.041 0.036	0.230 0.240 0.212	0.858 0.853 0.946	HTD 126515	560.738 861.669 502.850	8.024 7.961 7.093	0.076 0.063 -0.050	0.054 0.070 0.272	0.424 0.400 0.907	HD 212432	317.697 319.730 350.580	7.490 7.491 7.522	-0.050 -0.049 -0.086	0.122 0.125 0.164	0.662 0.625 0.642
HD 71808	502.631 503.578 784.782 959.487	8.829 8.884 8.880 8.821	0.034 0.005 0.014 0.051	0.217 0.197 0.168 0.181	0.604 0.683 0.719 0.622		560.681 861.673	7.127	-0.027 -0.054	0.232 0.286	0.891 0.946		356.570	7.507	-0.040	0.091	0.628
HD 80316		7.817 7.810 7.790	0.124 0.093 0.128	0.286 0.294 0.305	0.623 0.749 0.608	HD 128898	500.888 859.813 861.629 502.904	3.178 3.206 3.210 7.652	0.132 0.160 0.165 0.087	0.230 0.180 0.178	0.788 0.777 0.775 0.708						
	959.490	7.814	0.141	0.294	0.648	110 1307/3	503.858 860.759	7.661 7.661	0.087	0.134 0.119 0.126	0.708 0.728 0.804						

9

1979A&AS...36..477V

Figure 1a-d Standard deviations σ of the single measurements from their mean values (in units of 0:001) vs. V magnitude.

© European Southern Observatory • Provided by the NASA Astrophysics Data System

0,

30

20

9