R = X ^ N	-20 N – 16
N	-20 N – 12
X	-20 N – 8
Return Address N	-20 N – 4
Frame Pointer N	-20 N
R = X ^ 2	-56
N	-52
Х	-48
Return Address 2	-44
Frame Pointer 2	-40
R = X	-36
N	-32
Х	-28
Return Address 1	-24
Frame Pointer 1	-20
R = 1	-16
N	-12
X	-8
Frame Pointer 0	-4

Assuming the stack pointer starts at 0 (in the code I used 0x1000) in the memory and the stack is in descending order.

To calculate X ^ N, we need (n + 1) stack frame, one in the main and the others for the recursive functions.

The first frame pointer (0) (in the main) points to -4. Starting from the first frame pointer for the function, the i th frame pointer points to -20 i.

The stack pointer starts at 0. Moved to -4, -16. And then in the k th functions moved in the following order: -20 k, -20 k - 16

After the stack pointer reached -20 N - 16, its getting back in the same order.