Wachstum und Prognose

Besprechung Test

Nr. 1 | Berechne die fehlenden Werte.

	a)	b)	c)
Grundwert	250m		500€
Prozentsatz	10%	50%	
Prozentwert		60kg	35€

Nr. 2 | Fülle die Lücken aus.

p% (Wachstumsrate)	+15%	+73%	-25%	-1,5%				
a (Wachstumsfaktor)					1,4	0,6	1,005	0,255

- Nr. 3 2015 betrug der Holzbestand eines Waldes 5 000 m^3 . Ohne Schlägerung ist er innerhalb eines Jahres auf einen Bestand von 5 375 m^3 angewachsen. Man darf annehmen, dass das Holzwachstum ein exponentieller Vorgang ist.
 - a) Bestimme die jährliche Wachstumsrate.
 - b) Wie viele m^3 Holz wären nach dieser Annahme heute vorhanden?

- Nr. 4 An einem Fluss werden 200 Fische einer seltenen Art ausgesetzt. Ein Biologe hofft, dass der Bestand um jährlich 18% zunimmt.
 - a) Bestimme den Wachstumsfaktor a.
 - b) Wie viele Fische wären es nach dieser Annahme in 5 Jahren?

Nr. 5 | Ein bestimmtes Bakterium vermehrt sich pro Stunde um 4%. Nach 5 Stunden sind ungefähr 730 Bakterien vorhanden. Wie viele Bakterien waren es zu Beginn der Zählung?

Linear oder exponentiell?

Max erhält monatlich 10€ Taschengeld. Seine Eltern sind an weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um 1,50€ zu erhöhen. Max schlägt dagegen eine monatliche Erhöhung um 10% vor.

- a) Um welche Art des Wachstums handelt es sich jeweils?
- b) Stelle für beide Methoden die Funktionsgleichung auf und berechne, wie viel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.

Generationszeit/Halbwertszeit

Was ist die **Generationszeit?**

Was ist die Halbwertszeit?

Generationszeit – (Verdopplungszeit)

Die Zeit, in der sich bei exponentieller Zunahme die Ausgangsgröße verdoppelt. Der Wachstumsfaktor für diese Zeitspanne ist $\mathbf{a} = \mathbf{2}$.

Halbwertszeit T - Die Zeit, in der sich bei exponentieller Abnahme die Ausgangsgröße halbiert. Der Wachstumsfaktor für diese Zeitspanne ist **a = 0,5**. n steht in diesem Fall für eine Zeiteinheit abhängig von der Halbwertszeit bzw. der Generationszeit.

Beispiel: Bei einer Halbwertszeit von 4 Stunden wären:

- 4 Stunden: n = 1
- 8 Stunden: n = _____
- 1 Tag: n = ____
- 3 Tage: n = ____
- 1 Stunde: n = ____
- 20 Minuten: n = ____

Generationszeit

Die Anzahl von Milchsäurebakterien hat bei 37° eine Generationszeit von etwa 30 Minuten. Zu Beginn sind 100 Bakterien vorhanden.

Wie viele Bakterien sind nach 10 Minuten; 5,5 Stunden und nach einem Tag vorhanden?

Halbwertszeit

Radium hat eine Halbwertszeit von 10 Tagen. Zu Beginn der Messungen sind 300mg vorhanden.

Wie viel mg Radium sind nach zwei Monaten (je 30 Tage) noch vorhanden?

Wachstumsrate gesucht

Ein Kapital von 2000€ wird bei einer Bank angelegt. Nach 5 Jahren ist das Kapital auf ca. 2318,55€ angewachsen. Zu wie viel Prozent wurden die Anlagen verzinst?

Wachstumsrate gesucht

Nach Tricks Geburt legt sein Onkel Dagobert ein Kapital von 1500€ fest an. Zu Tricks 18. Geburtstag werden 5 701,30€ ausgezahlt. Zu welchem Jahreszins hat Onkel Dagobert das Geld angelegt?