1.	Given the 2-itemsets {1, 2}, {1, 3}, {2, 3}, {2, 5}, {3, 5}, when generating the 3-itemset we will:	
	☐ a. ☐ b. ☐ c. ☐ d.	Have 4 3-itemsets after the join and 4 3-itemsets after the prune Have 4 3-itemsets after the join and 2 3-itemsets after the prune Have 3 3-itemsets after the join and 3 3-itemsets after the prune Have 2 3-itemsets after the join and 2 3-itemsets after the rune
2.		e following transactions {milk, bread}, {eggs, bread}, {milk, eggs, eggs}, {milk, eggs}, {milk}
	 a. b. c. d.	bread⇒milk has support ⅓ and confidence ⅔ eggs⇒milk has support ⅓ and confidence ⅔ milk⇒bread has support ⅓ and confidence ⅔ milk⇒eggs has support ⅓ and confidence ⅔
3.		we a graph with nodes $\{1, 2, 3, 4\}$ and edges $\{1\rightarrow 2, 1\rightarrow 3, 1\rightarrow 4, 2\rightarrow 3\}$ authority values, without normalization, are:
	☐ b. ☐ c.	$ \begin{array}{c} (0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}) \\ (\frac{3}{4}, \frac{1}{4}, 0, 0) \\ (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \\ (\frac{1}{2}, \frac{1}{2}, 0, 0) \end{array} $
4.	If milk⇒{ then:	bread, eggs} has confidence c1 and milk⇒bread has confidence c2,
	c.	c1 <= c2 c2 <= c1 c1 < c2 and c2 < c1 are possible c1 = c2
5.	Given the	e following matrix for teleporting in a random walker model:
		[0 0 1] 0 ½ 0 [1 ½ 0]

	Which of the following is true (independent of how the link matrix is given):
	a. A random walker can always reach node 2 not if i start at 1
	☐ b. A random walker can always reach any node not if i start at 1
	☐ c. A random walker can always leave node 2
	d. A random walker can never reach node 2 start at 2 and reach 2
6.	Which of the following statements concerning compression of adjacency lists for link indexing is wrong:
	 a. Compression can exploit the fact that most links of a page point to the page itself
	□ b. Compression can exploit the fact that pages with similar URLs
	typically have also many outgoing links in common
	c. Exploiting similarity among different adjacency lists will
	always decrease the cost of encoding of adjacency lists worst case scenar
	 d. Compression works well, even if we consider similarity of adjacency lists only for a fraction of neighbouring URLs in the lexicographically order
7.	Given the graph $1\rightarrow 2$, $1\rightarrow 3$, $2\rightarrow 3$, $3\rightarrow 2$, the <i>PageRank</i> value of this graph is (without random jumps)
	□ a. (0, 1, 1) no links TO 1, thus only 1 and 2 feasible. 1 is not normalized. thus □ c. (½, ½, ½) 2 is left remaining □ d. (1, 0, 0)
8.	When computing PageRank iteratively the computation ends when
	a. The norm of the rank vector exceeds a predefined thresholdb. All nodes of the graph have been visited a predefined number of times
	☐ c. The norm of the difference of rank vectors of two subsequent
	iterations falls below a predefined threshold
	☐ d. The difference among the Eigenvalues of two subsequent iterations
	falls below a predefined threshold