

Laboratório de Eletrônica Básica I

Práticas de simulação com QUCS

LABORATÓRIO 8 - POLARIZAÇÃO E AMPLIFICADOR COM MOSFET - EARTE

Pedro Henrique Fabriz Ulhoa Tiago Ventura Silva Martins

Resultados do Experimento

3.1) Circuito de polarização

3.1.1) Para a primeira parte do experimento, o circuito foi montado como mostra a Figura 3.1.

Figura 3.1 - Circuito 3.1.1 com MOSFET 2N7000.

3.1.2) O circuito da Figura 3.1 foi simulado para medir V_D , V_S , V_G , V_{DSQ} , V_{DSQ} , I_{DQ} , e o resultado foi:

V _D	V _s	V_{G}
8,03V	0,464V	3,08V
V _{DSQ}	$V_{\sf GSQ}$	I _{DQ}
7,57V	2,6V	0,00211A

Tabela 3.1 - Valores de tensão e corrente para o circuito 3.1.1

3.2) Amplificador

3.2.1) O circuito ilustrado na Figura 3.2.1 foi montado no QUCS (note que o resistor de 1000 Ohms está desconectado dos terminais de saída).

Figura 3.2.1 - Circuito 3.2.1 com MOSFET 2N7000.

3.2.2) Com o valor de fonte de 140mV pico a pico, 5000Hz e offset de 0V, o resistor permaneceu desconectado do circuito (chave aberta) e o sinal Vin e Vout foi plotado (Figura 3.2.2)

Figura 3.2.2 - Gráfico Vin e Vout para chave aberta e fonte de 140mV.

3.2.4) Agora com a chave aberta e valor de pico a pico de 10mV, a simulação foi feita mais uma vez e o gráfico está representado na Figura 3.2.3.

Figura 3.2.3 - Gráfico Vin e Vout para chave aberta e fonte de 10mV.

3.2.5) O mesmo circuito com fonte de 10mV, porém com a chave fechada dessa vez.

Figura 3.2.4 - Gráfico Vin e Vout para chave fechada e fonte de 10mV.

3.2.6) O ganho foi calculado para os passos 3.2.4 e 3.2.5:

3.2.4)
$$A_v = \frac{0.545}{-0.005} = -109 \ V/V$$

$$3.2.5) A_v = \frac{0.127}{-0.005} = -25.4 \ V/V$$

3.2.7) A chave foi aberta novamente e o capacitor de 100uF foi retirado. O resultado está representado na Figura 3.2.5.

Figura 3.2.5 - Gráfico Vin e Vout para chave aberta, fonte de 10mV e sem capacitor.

3.2.7)
$$A_v = \frac{0.066}{-0.005} = -13.2 \ V/V$$