(1) Let $A = \{1, 2\}, B = \{1, 2, 3, 5\}, C = \{1, 3, 4, 6\}.$

(a) Compute the intersections:

\cap	Α	В	С
A			
В			
С			

(b) Compute the unions:

U	Α	В	С
A			
В			
С			

(c) Prove that if X, Y, Z are arbitrary sets and $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$.

(d) Is it true that if $X \cap Z \subseteq Y \cap Z$, then $X \subseteq Y$? Prove or give a counterexample.

(2) Prove or find a counterexample: If A and B are sets, then $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(3) Let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4, 5\}$, and let $f : X \to Y$ be the function defined by the table

X	а	b	С	d
f(x)	4	1	2	4

(a) Complete the table by computing the appropriate sets for each subset $A \subseteq X$:

Α	f(A)	$f^{-1}(f(A))$
{a}		
{b}		
{a,b}		
{c}		
$\{a,b,c\}$		
{ <i>d</i> }		
X		

(b) Complete the table by computing the appropriate sets for each subset $B \subseteq Y$

В	$f^{-1}(B)$	$f(f^{-1}(B))$
{1}		
{2,4}		
{3,5}		
{2,4,5}		
Y		

- (4) Prove or find a counterexample:
 - (a) If $f: X \to Y$ is a function and $A, A' \subseteq X$ are two subsets of X, then $f(A \cup A') = f(A) \cup f(A')$.

(b) If $f: X \to Y$ is a function and $A, A' \subseteq X$ are two subsets of X, then $f(A \cap A') = f(A') \cap f(A)$.

(5) Find and fix the problem in the following proof:

Theorem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = 1 - x. Then f is a surjective function.

Proof. In order to show that f is surjective, we need to show that any element of the codomain has a pre-image. Let $1 - y \in \mathbb{R}$ be any element. Let x = y. Then f(x) = 1 - x = 1 - y, so the element 1 - y is hit by x. This shows that every element of \mathbb{R} has a pre-image, so f is surjective.

- (6) Define an operation + on sets by $A + B = (A \cup B) (A \cap B)$.
 - (a) Sketch a Venn diagram of A + B. Conclude that A + B = B + A for all sets A, B.

(b) If *A* is any set, what is A + A? What about $A + \emptyset$?

(c) Prove that for any sets A, B, C, we have (A + B) + C = A + (B + C). (A Venn diagram computation is fine.)

(d) Prove that for any sets A, B, C, we have $A \cap (B + C) = (A \cap B) + (A \cap C)$.

(e) Does it make sense to define a sum of sets $\sum_{i \in I} A_i$ in this way for an arbitrary (possibly infinite) collection of sets $\{A_i\}_{i \in I}$?

(7) Given a function $f: X \to Y$, we can think of the operation of taking pre-images as defining a function between the powersets of X and Y:

$$f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$$

 $B \mapsto f^{-1}(B).$

(a) Show that if $id_X : X \to X$ is the identity function (defined by $id_X(x) = x$ for all $x \in X$), then

$$(\mathrm{id}_X)^{-1} = \mathrm{id}_{\mathcal{P}(X)} : \mathcal{P}(X) \to \mathcal{P}(X)$$

is the identity function on $\mathcal{P}(X)$.

(b) If $f: X \to Y$ and $g: Y \to Z$ are functions, we have associated functions

$$g^{-1}: \mathcal{P}(Z) \to \mathcal{P}(Y),$$

$$f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X),$$

and
$$(g \circ f)^{-1} : \mathcal{P}(Z) \to \mathcal{P}(X)$$
.

Show that

$$f^{-1} \circ g^{-1} = (g \circ f)^{-1}.$$

Remark 2. The last exercise shows that taking powersets extends to what is known as a "contravariant functor." We should think this means that taking powersets is a very orderly, structure-preserving thing to do.