

IN4343 – Real Time Systems

June 23rd 2016, from 13:30 to 16:30

Koen Langendoen

Question:	1	2	3	4	5	6	Total
Points:	15	15	15	25	10	10	90
Score:							

- This is a closed book exam
- You may use a **simple** calculator only (i.e. graphical calculators are not permitted)
- Write your answers with a black or blue pen, not with a pencil
- Always justify your answers, unless stated otherwise
- The exam covers the following material:
 - (a) chapters 1-6, 8-9 of the book "Hard Real-Time Computing Systems (3rd ed)" by G. Buttazzo
 - (b) the paper "The Worst-Case Execution-Time Problem" by Wilhelm et al. (except Section 6)
 - (c) the paper "Transforming Execution-Time Boundable Code into Temporally Predictable Code" by P. Puschner
 - (d) the paper "Best-case response times and jitter analysis of real-time tasks" by R.J. Bril, E.F.M. Steffens, and W.F.J. Verhaegh

	77 PM (21/m 1)
Liu and Layland (LL) bound	$U_{lub}^{RM} = n(2^{1/n} - 1)$
Hyperbolic (HB) bound	$\prod_{i=1}^{n} (U_i + 1) \le 2$
Response Time Analysis	$WR_i = C_i + \sum_{k=1}^{i-1} \left\lceil \frac{WR_i + AJ_k}{T_k} \right\rceil C_k$
	$BR_i = C_i + \sum_{k=1}^{i-1} \left(\left\lceil \frac{BR_i - AJ_k}{T_k} \right\rceil - 1 \right)^+ C_k$
	$w^+ = \max(w, 0)$
Processor Demand	$w^{+} = \max(w, 0)$ $g(t_{1}, t_{2}) = \sum_{r_{i} \geq t_{1}}^{d_{i} \leq t_{2}} C_{i} \qquad g(0, L) = \sum_{i=1}^{n} \left\lfloor \frac{L + T_{i} - D_{i}}{T_{i}} \right\rfloor C_{i}$
schedulability	$\forall L \in D, g(0, L) \le L$
	$D = \{d_k d_k \le \min(H, \max(D_{max}, L^*))\}$
	$H = lcm(T_1, \dots, T_n)$
	$\sum_{i=1}^{n} (T_i - D_i)U_i$
	$L^* = \frac{\widetilde{i=1}}{1 - II}$
Polling Server schedulability	$L^* = \frac{\overline{i=1}}{1-U}$ $U_{lub}^{RM+PS} = U_s + n \left[\left(\frac{2}{U_s+1} \right)^{1/n} - 1 \right]$
	$\prod_{i=1}^{n} (U_i + 1) \le \frac{2}{U_s + 1}$
response time	$R_a = C_a + \Delta_a + F_a(T_s - C_s)$
response time	
Deferrable Server schedulability	$\Delta_a = \left\lceil \frac{r_a}{T_s} \right\rceil T_s - r_a \qquad F_a = \left\lceil \frac{C_a}{C_s} \right\rceil - 1$ $U_{lub}^{RM+DS} = U_s + n \left\lceil \left(\frac{U_s + 2}{2U_s + 1} \right)^{1/n} - 1 \right\rceil$
	$\prod_{i=1}^{n} (U_i + 1) \le \frac{U_s + 2}{2U_s + 1}$
response time	$R_a = C_a + \Delta_a - C_0 + F_a(T_s - C_s)$
	$C_0 = \min(C_s(r_a), \Delta_a)$
	$\Delta_a = \left\lceil \frac{r_a}{T_s} \right\rceil T_s - r_a \qquad F_a = \left\lceil \frac{C_a - C_0}{C_s} \right\rceil - 1$
NP scheduling level-i busy period	$L_i = B_i + \sum_{h=1}^{i} \left\lceil \frac{L_i}{T_h} \right\rceil C_h \qquad N_i = \left\lceil \frac{L_i}{T_i} \right\rceil$
	$B_i = \max_{j>i} \{C_j\}$
response time	$s_{ik} = B_i + (k-1)C_i + \sum_{h=1}^{i-1} \left(\left\lfloor \frac{s_{ik}}{T_h} \right\rfloor + 1 \right) C_h$
	$R_{ik} = (s_{ik} + C_i) - (k - 1)T_i$
	$R_i = \max_{k \in [1, N_i]} \{R_{ik}\}$
Elastic Model utilization	$\forall i U_i = U_{i0} - (U_0 - U_d) \frac{E_i}{E_S}$ where $E_S = \sum_{i=1}^n E_i$

Question 1 [15 points]

Bratley's algorithm is part of the class of scheduling algorithms handling aperiodic tasks. It is a heuristic algorithm that prunes (large) parts of the search tree.

(a) 3 points Bratley's algorithm can be classified as $(1|no-preem|L_{max})$ according to Graham's notation. Explain what the classification denotes.

 $\textbf{Solution:} \ \ \textbf{Uniprocessor algorithm for non-preemptive tasks that minimizes the maximum lateness.}$

(b) 4 points Explain how Bratley's algorithm works.

Solution: It expands the tree in depth-first order. A node, however, is only expanded when the partial schedule is found to be **strongly feasible**, i.e. if it remains feasible when adding any of the remaining nodes.

(c) 8 points Apply Bratley's algorithm to find the feasible schedules for the following task set:

	a_i	C_i	d_i
$ au_1$	0	3	9
$ au_2$	1	2	6
$ au_3$	2	1	5
τ_4	3	1	8

Draw the resulting search tree, and determine the optimal L_{max} . Finally, compute the gain over expanding the tree fully.

6 feasible schedules, with $\tau_2 - \tau_3 - \tau_4 - \tau_1$ achieving an $L_{max} = -1$. A fully expanded tree consists of 1 + 4 + 12 + 24 + 24 = 65 nodes. Bratley only expands 1 + 4 + 12 + 12 + 6 = 35 nodes, so the gain is 65/35 = 1.86.

Question 2 [15 points]

	C_i	T_i
$ au_1$	2	5
$ au_2$	3	9
$ au_3$	3	15

	C_i	T_i
$ au_1$	2	5
$ au_2$	3	9
$ au_3$	4	15

	C_i	T_i
$ au_1$	2	5
$ au_2$	3	9
$ au_3$	5	15

(i)

(ii)

(iii)

(a) 3 points Which task sets are feasible under Earliest Deadline First scheduling?

Solution:

- (i) Feasible as processor utilization $(42/45) \le 1$
- (ii) Feasible as processor utilization $(45/45) \le 1$
- (iii) Unfeasible as processor utilization (48/45) > 1
- (b) 7 points Which task sets are feasible under Rate Monotonic scheduling?

(i) Feasible

- (ii) Unfeasible as (i) has no slack in the critical instant of task τ_3
- (iii) Unfeasible as EDF can't schedule it
- (c) 5 points Determine the maximum lateness for the given task sets under RM scheduling. Hint: standard techniques may not apply to unfeasible task sets.

Solution:

- (i) $L_{max} = 0$, see figure above
- (ii) Task τ_3 misses its first deadline, and continues running in the 2^{nd} period pushing that instance to the right. Thus simply looking at the critical instant is not enough. A safe bet is to check the completer hyper period, i.e. until t=45.

 $I_{max} = 4$

(iii) As the system is overloaded L_{max} grows unbounded with time.

Question 3 [15 points]

	C_i	D_i	T_i
$ au_1$	2	3	5
τ_2	4	6	9
τ_3	4	30	40

Deadlines complicate matters. For EDF for example, we may need to revert to the processor demand criterion to determine the feasibility of a schedule. The processor demand is defined as

$$g(0,L) = \sum_{i=1}^{n} \left\lfloor \frac{L + T_i - D_i}{T_i} \right\rfloor C_i$$

(a) 5 points Explain what g(0, L) denotes, and why the term $T_i - D_i$ is part of the numerator.

Solution: g(0,L) captures the amount of work that has to be executed by time L when starting at time 0. When counting the number of instances of task τ_i , we know that the demand goes up as soon as the next deadline is reached. This deadline occurs before the next period T_i , so we must bump the counter early by $T_i - D_i$. See the drawing in the lecture notes.

(b) 10 points Determine if the task set is feasible under EDF scheduling.

Solution: Processor utilization is $340/360 \le 1$, so we need to check the processor demand until $min(H, max(D_{max}, L^*))$ with H = 360, $D_{max} = 30$, and $L^* = 56$, so until 56.

	demand
g(0,3)	2
g(0,6)	6
g(0,8)	8
g(0,13)	10
g(0,15)	14
g(0,18)	16
g(0,23)	18
g(0,24)	22
g(0,28)	24
g(0,30)	28
g(0,33)	34

Task set is **un**feasible!

When mixing periodic and aperiodic tasks one can make use of a fixed priority server to schedule the aperiodic tasks. Consider the following periodic tasks and aperiodic jobs (under RM):

	C_i	T_i
$ au_1$	2	5
$ au_2$	2	10

$$\begin{array}{c|cccc}
 & a_i & C_i \\
\hline
J_1 & 3 & 3 \\
\hline
J_2 & 7 & 4
\end{array}$$

(a) 4 points Dimension both a polling and a deferrable server by means of the hyperbolic bound guaranteeing schedulability.

Solution:
$$P = \prod_{i=1}^{n} (U_i + 1) = \frac{7}{5} \cdot \frac{12}{10} = \frac{84}{50}$$

Polling server:
$$U_s = \frac{2-P}{P} = \frac{4}{21}$$
, $< C_s = \frac{20}{21}$, $T_s = 5 > 0$

Deferrable server:
$$U_s = \frac{2-P}{2P-1} = \frac{8}{59}, < C_s = \frac{40}{59}, T_s = 5 >$$

(b) 7 points Consider a server dimensioned with $\langle C_s = 2, T_s = 5 \rangle$. Determine if this configuration is feasible (i.e. no deadline violations) to be used for a polling server. Determine the same for a deferrable server.

Solution: Polling server: utilization is 1 (!), we need to check the critical instant. Task τ_1 has a lateness of -1, task τ_2 has a lateness of 0, hence, it is a feasible task set.

Deferrable server: utilization is 1 (!), we need to check the critical instant, **but** with jitter for the server $(AJ_S = 5 - 2 = 3)$. As the schedule was already tight for the polling server, now tasks are getting into troubles $(R_1 = 6, R_2 = 20)$ and violates their deadline. Thus the schedule is **un**feasible.

(c) 10 points Obtain the response times of jobs J_1 and J_2 for a polling server, as well as for a deferrable server when configured as $\langle C_s = 2, T_s = 5 \rangle$.

Solution: Response times

	PS	DS
J_1	8	3
J_2	14 (15*)	9

*the equations in the book for PS ignore the case that spare capacity can be used when a job is blocked by a predecessor, see picture below, so the computed response time is too high.

(d) 4 points Determine the response times of the jobs when slack stealing would be used.

Solution: From the DS plot we can see that job J_1 is already optimal. Regarding job J_2 we can see that there is no slack until t=10, but there is room in the 3rd period of task τ_1 and the 2nd period of τ_2 . Shifting both 1 unit to the right allows job J_2 to finish by t=13, reducing its response time to 6.

Question 5 [10 points]

To protect periodic tasks from overruns by a-periodic jobs a Constant Bandwidth Server can be used in combination with an EDF scheduler.

	C_i	T_i
$ au_1$	2	5
$ au_2$	2	9
τ_3	2	13

	a_i	C_i
J_1	3	3
J_2	14	3

(a) 7 points Consider the case that the CBS server is dimensioned as $\langle C_S = 2, T_S = 6 \rangle$, determine the response times of jobs J_1 and J_2 .

(b) 3 points Argue the effect (if any) of keeping the server utilization constant, but halving its period (i.e. $C_S = 1, T_S = 3$).

Solution:

Things can only get better when the server period is reduced because there will be more intermediate deadlines (with in-between values) allowing shorter jobs to attain a higher priority (earlier deadline). Proof by example (not required for full score):

$$RJ_1 = 6, RJ_2 = 6$$

Question 6 [10 points]

One approach to handle permanent overloads is to resort to value-based scheduling, in which the least important tasks are simply rejected. The performance of a scheduling algorithm A can be evaluated through its cumulative value $\Gamma_A(T) < \Gamma_{max}(T) = \sum_i V_i$ for task set T with V_i denoting the value of task i.

(a) 4 points Show that, in case of overload, an **online** scheduling algorithm can not be optimal. That is, achieve the same performance as an offline (clairvoyant) algorithm in all cases.

Solution: Construct a counter example showing that knowledge of the future is required to decide to skip a task or not. See lecture notes for a concrete example.

(b) 6 points Explain what the **competitive factor** is, and demonstrate that for EDF this equals to zero.

Solution: The competitive factor ϕ captures how well (bad) a scheduling policy A does in comparison to the optimal (offline) scheduler.

$$\phi_a = min_T \frac{\Gamma_A(T)}{\Gamma_{maz}(T)}$$

For EDF we can construct an example with just two tasks of value ϵ and 1, where the deadline of the former is earlier than the latter, and the unit task has no slack (deadline = computation time). See lecture notes.