Package 'ingredients'

January 15, 2023

```
Title Effects and Importances of Model Ingredients
```

Version 2.3.0

Description Collection of tools for assessment of feature importance and feature effects.

Key functions are:

feature_importance() for assessment of global level feature importance,

ceteris_paribus() for calculation of the what-if plots,

partial_dependence() for partial dependence plots,

conditional dependence() for conditional dependence plots,

accumulated_dependence() for accumulated local effects plots,

aggregate_profiles() and cluster_profiles() for aggregation of ceteris paribus profiles,

generic print() and plot() for better usability of selected explainers,

generic plotD3() for interactive, D3 based explanations, and

generic describe() for explanations in natural language.

The package 'ingredients' is a part of the 'DrWhy.AI' universe (Biecek 2018) <arXiv:1806.08915>.

Depends R (>= 3.5)

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports ggplot2, scales, gridExtra, methods

Suggests DALEX, gower, ranger, testthat, r2d3, jsonlite, knitr,

rmarkdown, covr

URL https://ModelOriented.github.io/ingredients/,

https://github.com/ModelOriented/ingredients

BugReports https://github.com/ModelOriented/ingredients/issues

VignetteBuilder knitr

NeedsCompilation no

Author Przemyslaw Biecek [aut, cre] (https://orcid.org/0000-0001-8423-1823),

Hubert Baniecki [aut] (https://orcid.org/0000-0001-6661-5364),

Adam Izdebski [ctb]

Maintainer Przemyslaw Biecek <przemyslaw.biecek@gmail.com>

Repository CRAN

Date/Publication 2023-01-15 11:40:02 UTC

R topics documented:

	accumulated_dependence	2
	aggregate_profiles	5
	bind_plots	7
	calculate_oscillations	8
	calculate_variable_profile	9
	calculate_variable_split	11
	ceteris_paribus	12
	ceteris_paribus_2d	14
	cluster_profiles	16
	conditional_dependence	18
	describe.partial_dependence_explainer	20
	feature_importance	23
	partial_dependence	26
	plot.aggregated_profiles_explainer	28
	plot.ceteris_paribus_2d_explainer	30
	plot.ceteris_paribus_explainer	32
	plot.ceteris_paribus_oscillations	35
	plot.feature_importance_explainer	36
	plotD3	38
	r	40
	plotD3.feature_importance_explainer	41
	print.aggregated_profiles_explainer	43
	print.ceteris_paribus_explainer	45
	print.feature_importance_explainer	46
	select_neighbours	47
	select_sample	48
	show_aggregated_profiles	49
	show_observations	50
	show_profiles	52
	show_residuals	53
	show_rugs	55
Index		58

accumulated_dependence

Accumulated Local Effects Profiles aka ALEPlots

Description

Accumulated Local Effects Profiles accumulate local changes in Ceteris Paribus Profiles. Function accumulated_dependence calls ceteris_paribus and then aggregate_profiles.

Usage

```
accumulated_dependence(x, ...)
## S3 method for class 'explainer'
accumulated_dependence(
 х,
 variables = NULL,
 N = 500,
 variable_splits = NULL,
 grid_points = 101,
  variable_type = "numerical"
)
## Default S3 method:
accumulated_dependence(
 Х,
 data,
  predict_function = predict,
  label = class(x)[1],
  variables = NULL,
 N = 500,
  variable_splits = NULL,
 grid_points = 101,
  variable_type = "numerical"
)
## S3 method for class 'ceteris_paribus_explainer'
accumulated_dependence(x, ..., variables = NULL)
accumulated\_dependency(x, ...)
```

Arguments

X	an explainer created with function DALEX::explain(), an object of the class ceteris_paribus_explainer or a model to be explained.
	other parameters
variables	names of variables for which profiles shall be calculated. Will be passed to calculate_variable_split. If NULL then all variables from the validation data will be used.
N	number of observations used for calculation of partial dependence profiles. By default, 500 observations will be chosen randomly.
variable_splits	s
	named list of splits for variables, in most cases created with calculate_variable_split. If NULL then it will be calculated based on validation data available in the explainer.
grid_points	number of points for profile. Will be passed tocalculate_variable_split.

variable_type a character. If "numerical" then only numerical variables will be calculated. If
"categorical" then only categorical variables will be calculated.

data validation dataset Will be extracted from x if it's an explainer NOTE: It is best
when target variable is not present in the data

predict_function

predict function Will be extracted from x if it's an explainer

name of the model. By default it's extracted from the class attribute of the
model

Details

Find more detailes in the Accumulated Local Dependence Chapter.

Value

an object of the class aggregated_profiles_explainer

References

ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots https://cran.r-project.org/package=ALEPlot, Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                                verbose = FALSE)
adp_glm <- accumulated_dependence(explain_titanic_glm,</pre>
                                   N = 25, variables = c("age", "fare"))
head(adp_glm)
plot(adp_glm)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
```

aggregate_profiles 5

```
adp_rf <- accumulated_dependence(explain_titanic_rf, N = 200, variable_type = "numerical")
plot(adp_rf)
adp_rf <- accumulated_dependence(explain_titanic_rf, N = 200, variable_type = "categorical")
plotD3(adp_rf, label_margin = 80, scale_plot = TRUE)</pre>
```

aggregate_profiles

Aggregates Ceteris Paribus Profiles

Description

The function aggregate_profiles() calculates an aggregate of ceteris paribus profiles. It can be: Partial Dependence Profile (average across Ceteris Paribus Profiles), Conditional Dependence Profile (local weighted average across Ceteris Paribus Profiles) or Accumulated Local Dependence Profile (cummulated average local changes in Ceteris Paribus Profiles).

Usage

```
aggregate_profiles(
    x,
    ...,
    variable_type = "numerical",
    groups = NULL,
    type = "partial",
    variables = NULL,
    span = 0.25,
    center = FALSE
)
```

ceteris_paribus.

Arguments

X	a ceteris paribus explainer produced with function ceteris_paribus()
	other explainers that shall be calculated together
variable_type	a character. If numerical then only numerical variables will be calculated. If categorical then only categorical variables will be calculated.
groups	a variable name that will be used for grouping. By default NULL which means that no groups shall be calculated
type	either partial/conditional/accumulated for partial dependence, conditional profiles of accumulated local effects
variables	if not NULL then aggregate only for selected variables will be calculated
span	smoothing coefficient, by default 0.25. It's the sd for gaussian kernel
center	by default accumulated profiles start at 0. If center=TRUE, then they are centered around mean prediction, which is calculated on the observations used in

6 aggregate_profiles

Value

an object of the class aggregated_profiles_explainer

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
library("ranger")
head(titanic_imputed)
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
head(cp_rf)
# continuous variable
pdp_rf_p <- aggregate_profiles(cp_rf, variables = "age", type = "partial")</pre>
pdp_rf_p$`_label_` <- "RF_partial"
pdp_rf_c <- aggregate_profiles(cp_rf, variables = "age", type = "conditional")</pre>
pdp_rf_c$`_label_` <- "RF_conditional"
pdp_rf_a <- aggregate_profiles(cp_rf, variables = "age", type = "accumulated")</pre>
pdp_rf_a$`_label_` <- "RF_accumulated"
plot(pdp_rf_p, pdp_rf_c, pdp_rf_a, color = "_label_")
pdp_rf <- aggregate_profiles(cp_rf, variables = "age",</pre>
                              groups = "gender")
head(pdp_rf)
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red") +
  show_aggregated_profiles(pdp_rf, size = 3, color = "_label_")
# categorical variable
pdp_rf_p <- aggregate_profiles(cp_rf, variables = "class",</pre>
                                variable_type = "categorical", type = "partial")
pdp_rf_p$`_label_` <- "RF_partial"
pdp_rf_c <- aggregate_profiles(cp_rf, variables = "class",</pre>
                                variable_type = "categorical", type = "conditional")
```

bind_plots 7

bind_plots

Bind Multiple ggplot Objects

Description

This is an aesthetically efficient implementation of the grid.arrange

Usage

```
bind_plots(..., byrow = FALSE)
```

Arguments

... (ggplot) ggplot objects to combine.

byrow (logical) if FALSE (the default) the plots are bind by columns, otherwise the plots are bind by rows.

Value

```
(gtable) A plottable object with plot().
```

Author(s)

```
https://github.com/harell
```

8 calculate_oscillations

Examples

calculate_oscillations

Calculate Oscillations for Ceteris Paribus Explainer

Description

Oscillations are proxies for local feature importance at the instance level. Find more details in Ceteris Paribus Oscillations Chapter.

Usage

```
calculate_oscillations(x, sort = TRUE, ...)
```

Arguments

x a ceteris paribus explainer produced with the ceteris_paribus() function sort a logical value. If TRUE then rows are sorted along the oscillations other arguments

Value

an object of the class ceteris_paribus_oscillations

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

```
library("DALEX")
library("ingredients")
titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313)</pre>
# build a model
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_small, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_small[,-8],
                                y = titanic_small[,8])
cp_rf <- ceteris_paribus(explain_titanic_glm, titanic_small[1,])</pre>
calculate_oscillations(cp_rf)
library("ranger")
apartments_rf_model <- ranger(m2.price ~ construction.year + surface + floor +
                                      no.rooms + district, data = apartments)
explainer_rf <- explain(apartments_rf_model,
                         data = apartments_test[,-1],
                         y = apartments_test$m2.price,
                         label = "ranger forest",
                         verbose = FALSE)
apartment <- apartments_test[1,]</pre>
cp_rf <- ceteris_paribus(explainer_rf, apartment)</pre>
calculate_oscillations(cp_rf)
```

```
calculate_variable_profile
```

Internal Function for Individual Variable Profiles

Description

This function calculates individual variable profiles (ceteris paribus profiles), i.e. series of predictions from a model calculated for observations with altered single coordinate.

Usage

```
calculate_variable_profile(
   data,
   variable_splits,
   model,
   predict_function = predict,
   ...
)

## Default S3 method:
calculate_variable_profile(
   data,
   variable_splits,
   model,
   predict_function = predict,
   ...
)
```

Arguments

data set of observations. Profile will be calculated for every observation (every row)

variable_splits

named list of vectors. Elements of the list are vectors with points in which
profiles should be calculated. See an example for more details.

model a model that will be passed to the predict_function

predict_function

function that takes data and model and returns numeric predictions. Note that
the ... arguments will be passed to this function.

Details

Note that calculate_variable_profile function is S3 generic. If you want to work on non standard data sources (like H2O ddf, external databases) you should overload it.

other parameters that will be passed to the predict_function

Value

a data frame with profiles for selected variables and selected observations

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
calculate_variable_split
```

Internal Function for Split Points for Selected Variables

Description

This function calculate candidate splits for each selected variable. For numerical variables splits are calculated as percentiles (in general uniform quantiles of the length grid_points). For all other variables splits are calculated as unique values.

Usage

```
calculate_variable_split(
  data,
  variables = colnames(data),
  grid_points = 101,
  variable_splits_type = "quantiles",
  new_observation = NA
)

## Default S3 method:
calculate_variable_split(
  data,
  variables = colnames(data),
  grid_points = 101,
  variable_splits_type = "quantiles",
  new_observation = NA
)
```

Arguments

data validation dataset. Is used to determine distribution of observations.

variables names of variables for which splits shall be calculated

grid_points number of points used for response path

variable_splits_type

how variable grids shall be calculated? Use "quantiles" (default) for percentiles or "uniform" to get uniform grid of points

new_observation

if specified (not NA) then all values in new_observation will be included in variable_splits

Details

Note that calculate_variable_split function is S3 generic. If you want to work on non standard data sources (like H2O ddf, external databases) you should overload it.

12 ceteris_paribus

Value

A named list with splits for selected variables

ceteris_paribus

Ceteris Paribus Profiles aka Individual Variable Profiles

Description

This explainer works for individual observations. For each observation it calculates Ceteris Paribus Profiles for selected variables. Such profiles can be used to hypothesize about model results if selected variable is changed. For this reason it is also called 'What-If Profiles'.

Usage

```
ceteris_paribus(x, ...)
## S3 method for class 'explainer'
ceteris_paribus(
  Х,
  new_observation,
  y = NULL,
  variables = NULL,
  variable_splits = NULL,
  grid_points = 101,
  variable_splits_type = "quantiles",
)
## Default S3 method:
ceteris_paribus(
  Х,
  predict_function = predict,
  new_observation,
  y = NULL,
  variables = NULL,
  variable_splits = NULL,
  grid_points = 101,
  variable_splits_type = "quantiles",
  variable_splits_with_obs = FALSE,
  label = class(x)[1],
)
```

ceteris_paribus 13

Arguments

x an explainer created with the DALEX::explain() function, or a model to be explained.

... other parameters

new_observation

a new observation with columns that corresponds to variables used in the model

y true labels for new_observation. If specified then will be added to ceteris

paribus plots. NOTE: It is best when target variable is not present in the new_observation

variables names of variables for which profiles shall be calculated. Will be passed to

calculate_variable_split. If NULL then all variables from the validation

data will be used.

variable_splits

named list of splits for variables, in most cases created with calculate_variable_split.

If NULL then it will be calculated based on validation data available in the

explainer.

grid_points maximum number of points for profile calculations. Note that the finaln number

of points may be lower than grid_points, eg. if there is not enough unique

values for a given variable. Will be passed to calculate_variable_split.

variable_splits_type

how variable grids shall be calculated? Use "quantiles" (default) for percentiles

or "uniform" to get uniform grid of points

data validation dataset. It will be extracted from x if it's an explainer NOTE: It is

best when target variable is not present in the data

predict_function

predict function. It will be extracted from x if it's an explainer

variable_splits_with_obs

if TRUE then all values in $new_observation$ will be included in $variable_splits$

label name of the model. By default it's extracted from the class attribute of the

model

Details

Find more details in Ceteris Paribus Chapter.

Value

an object of the class ceteris_paribus_explainer.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

14 ceteris_paribus_2d

Examples

```
library("DALEX")
library("ingredients")
titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313)</pre>
# build a model
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_small,
                          family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_small[,-8],
                                y = titanic_small[,8])
cp_rf <- ceteris_paribus(explain_titanic_glm, titanic_small[1,])</pre>
cp_rf
plot(cp_rf, variables = "age")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
# select few passangers
selected_passangers <- select_sample(titanic_imputed, n = 20)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red")
```

ceteris_paribus_2d

Ceteris Paribus 2D Plot

Description

This function calculates ceteris paribus profiles for grid of values spanned by two variables. It may be useful to identify or present interactions between two variables.

ceteris_paribus_2d 15

Usage

```
ceteris_paribus_2d(explainer, observation, grid_points = 101, variables = NULL)
```

Arguments

explainer a model to be explained, preprocessed by the DALEX::explain() function observation a new observation for which predictions need to be explained number of points used for response path. Will be used for both variables variables if specified, then only these variables will be explained

Value

an object of the class ceteris_paribus_2d_explainer.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ age + fare,</pre>
                        data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_imputed[,-8],
                                 y = titanic_imputed[,8])
cp_rf <- ceteris_paribus_2d(explain_titanic_glm, titanic_imputed[1,],</pre>
                        variables = c("age", "fare", "sibsp"))
head(cp_rf)
plot(cp_rf)
library("ranger")
set.seed(59)
apartments_rf_model <- ranger(m2.price ~., data = apartments)</pre>
explainer_rf <- explain(apartments_rf_model,</pre>
                         data = apartments_test[,-1],
                         y = apartments_test[,1],
                         label = "ranger forest",
                         verbose = FALSE)
new_apartment <- apartments_test[1,]</pre>
```

16 cluster_profiles

cluster_profiles

Cluster Ceteris Paribus Profiles

Description

This function calculates aggregates of ceteris paribus profiles based on hierarchical clustering.

Usage

```
cluster_profiles(
    x,
    ...,
    aggregate_function = mean,
    variable_type = "numerical",
    center = FALSE,
    k = 3,
    variables = NULL
)
```

Arguments

x a ceteris paribus explainer produced with function ceteris_paribus()
... other explainers that shall be plotted together
aggregate_function
a function for profile aggregation. By default it's mean
variable_type a character. If numerical then only numerical variables will be computed. If
categorical then only categorical variables will be computed.

center shall profiles be centered before clustering
k number of clusters for the hclust function
variables if not NULL then only variables will be presented

Details

Find more detailes in the Clustering Profiles Chapter.

Value

an object of the class aggregated_profiles_explainer

cluster_profiles 17

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_imputed[,-8],
                                 y = titanic_imputed[,8])
cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)</pre>
clust_rf <- cluster_profiles(cp_rf, k = 3, variables = "age")</pre>
plot(clust_rf)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
pdp_rf <- aggregate_profiles(cp_rf, variables = "age")</pre>
head(pdp_rf)
clust_rf <- cluster_profiles(cp_rf, k = 3, variables = "age")</pre>
head(clust_rf)
plot(clust_rf, color = "_label_") +
  show_aggregated_profiles(pdp_rf, color = "black", size = 3)
plot(cp_rf, color = "grey", variables = "age") +
  show_aggregated_profiles(clust_rf, color = "_label_", size = 2)
clust_rf <- cluster_profiles(cp_rf, k = 3, center = TRUE, variables = "age")</pre>
head(clust_rf)
```

conditional_dependence

Conditional Dependence Profiles

Description

Conditional Dependence Profiles (aka Local Profiles) average localy Ceteris Paribus Profiles. Function 'conditional_dependence' calls 'ceteris_paribus' and then 'aggregate_profiles'.

Usage

```
conditional_dependence(x, ...)
## S3 method for class 'explainer'
conditional_dependence(
  х,
  variables = NULL,
 N = 500,
  variable_splits = NULL,
  grid_points = 101,
  variable_type = "numerical"
)
## Default S3 method:
conditional_dependence(
  data,
 predict_function = predict,
 label = class(x)[1],
  variables = NULL,
 N = 500,
  variable_splits = NULL,
 grid_points = 101,
  variable_type = "numerical"
)
## S3 method for class 'ceteris_paribus_explainer'
conditional_dependence(x, ..., variables = NULL)
local_dependency(x, ...)
conditional\_dependency(x, ...)
```

Arguments

Х	an explainer created with function DALEX::explain(), an object of the class ceteris_paribus_explainer or a model to be explained.
	other parameters
variables	names of variables for which profiles shall be calculated. Will be passed to calculate_variable_split. If NULL then all variables from the validation data will be used.
N	number of observations used for calculation of partial dependence profiles. By default 500.
variable_splits	
	named list of splits for variables, in most cases created with calculate_variable_split. If NULL then it will be calculated based on validation data available in the explainer.
grid_points	number of points for profile. Will be passed to calculate_variable_split.
variable_type	a character. If "numerical" then only numerical variables will be calculated. If "categorical" then only categorical variables will be calculated.
data	validation dataset, will be extracted from x if it's an explainer NOTE: It is best when target variable is not present in the data
<pre>predict_function</pre>	on
	predict function, will be extracted from x if it's an explainer
label	name of the model. By default it's extracted from the class attribute of the

Details

Find more details in the Accumulated Local Dependence Chapter.

Value

```
an object of the class aggregated_profile_explainer
```

model

References

```
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
```

describe.partial_dependence_explainer

Natural language description of feature importance explainer

Description

Generic function describe generates a natural language description of ceteris_paribus(), aggregated_profiles() and feature_importance() explanations what enchaces their interpretability.

Usage

```
## S3 method for class 'partial_dependence_explainer'
describe(
    x,
    nonsignificance_treshold = 0.15,
    ...,
    display_values = FALSE,
    display_numbers = FALSE,
    variables = NULL,
    label = "prediction"
)
describe(x, ...)
```

```
## S3 method for class 'ceteris_paribus_explainer'
describe(
    x,
    nonsignificance_treshold = 0.15,
    ...,
    display_values = FALSE,
    display_numbers = FALSE,
    variables = NULL,
    label = "prediction"
)

## S3 method for class 'feature_importance_explainer'
describe(x, nonsignificance_treshold = 0.15, ...)
```

Arguments

Details

Function describe.ceteris_paribus() generates a natural language description of ceteris paribus profile. The description summarizes variable values, that would change model's prediction at most. If a ceteris paribus profile for multiple variables is passed, variables must specify a single variable to be described. Works only for a ceteris paribus profile for one observation. In current version only categorical values are discribed. For display_numbers = TRUE three most important variable values are displayed, while display_numbers = FALSE displays all the important variables, however without further details.

Function describe.ceteris_paribus() generates a natural language description of ceteris paribus profile. The description summarizes variable values, that would change model's prediction at most. If a ceteris paribus profile for multiple variables is passed, variables must specify a single variable to be described. Works only for a ceteris paribus profile for one observation. For display_numbers = TRUE three most important variable values are displayed, while display_numbers = FALSE displays all the important variables, however without further details.

Function describe.feature_importance_explainer() generates a natural language description of feature importance explanation. It prints the number of important variables, that have significant dropout difference from the full model, depending on nonsignificance_treshold. The description prints the three most important variables for the model's prediction. The current design of DALEX explainer does not allow for displaying variables values.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 10)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
pdp <- aggregate_profiles(cp_rf, type = "partial", variable_type = "categorical")</pre>
describe(pdp, variables = "gender")
library("DALEX")
library("ingredients")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passanger <- select_sample(titanic_imputed, n = 1, seed = 123)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passanger)</pre>
plot(cp_rf, variable_type = "categorical")
describe(cp_rf, variables = "class", label = "the predicted probability")
library("DALEX")
library("ingredients")
lm_model <- lm(m2.price~., data = apartments)</pre>
explainer_lm <- explain(lm_model, data = apartments[,-1], y = apartments[,1])
fi_lm <- feature_importance(explainer_lm, loss_function = DALEX::loss_root_mean_square)</pre>
```

feature_importance 23

```
plot(fi_lm)
describe(fi_lm)
```

feature_importance

Feature Importance

Description

This function calculates permutation based feature importance. For this reason it is also called the Variable Dropout Plot.

Usage

```
feature_importance(x, ...)
## S3 method for class 'explainer'
feature_importance(
 Х,
 loss_function = DALEX::loss_root_mean_square,
  type = c("raw", "ratio", "difference"),
 n_sample = NULL,
 B = 10,
 variables = NULL,
 variable_groups = NULL,
 N = n_sample,
 label = NULL
)
## Default S3 method:
feature_importance(
 х,
 data,
 predict_function = predict,
 loss_function = DALEX::loss_root_mean_square,
  label = class(x)[1],
  type = c("raw", "ratio", "difference"),
 n_{sample} = NULL,
 B = 10,
 variables = NULL,
 N = n_sample,
  variable_groups = NULL
)
```

24 feature_importance

Arguments

an explainer created with function DALEX::explain(), or a model to be ex-

plained.

... other parameters

loss_function a function thet will be used to assess variable importance

type character, type of transformation that should be applied for dropout loss. "raw"

results raw drop losses, "ratio" returns drop_loss/drop_loss_full_model while

"difference" returns drop_loss - drop_loss_full_model

n_sample alias for N held for backwards compatibility. number of observations that should

be sampled for calculation of variable importance.

B integer, number of permutation rounds to perform on each variable. By default

it's 10.

variables vector of variables. If NULL then variable importance will be tested for each

variable from the data separately. By default NULL

variable_groups

list of variables names vectors. This is for testing joint variable importance. If NULL then variable importance will be tested separately for variables. By

default NULL. If specified then it will override variables

N number of observations that should be sampled for calculation of variable im-

portance. If NULL then variable importance will be calculated on whole dataset

(no sampling).

label name of the model. By default it's extracted from the class attribute of the

model

data validation dataset, will be extracted from x if it's an explainer NOTE: It is best

when target variable is not present in the data

y true labels for data, will be extracted from x if it's an explainer

predict_function

predict function, will be extracted from x if it's an explainer

Details

Find more details in the Feature Importance Chapter.

Value

an object of the class feature_importance

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

feature_importance 25

```
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8])
fi_glm <- feature_importance(explain_titanic_glm, B = 1)</pre>
plot(fi_glm)
fi_glm_joint1 <- feature_importance(explain_titanic_glm,</pre>
                    variable_groups = list("demographics" = c("gender", "age"),
                    "ticket_type" = c("fare")),
                    label = "lm 2 groups")
plot(fi_glm_joint1)
fi_glm_joint2 <- feature_importance(explain_titanic_glm,</pre>
                    variable_groups = list("demographics" = c("gender", "age"),
                                            "wealth" = c("fare", "class"),
                                            "family" = c("sibsp", "parch"),
                                            "embarked" = "embarked"),
                    label = "lm 5 groups")
plot(fi_glm_joint2, fi_glm_joint1)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
fi_rf <- feature_importance(explain_titanic_rf)</pre>
plot(fi_rf)
fi_rf <- feature_importance(explain_titanic_rf, B = 6) # 6 replications</pre>
plot(fi_rf)
fi_rf_group <- feature_importance(explain_titanic_rf,</pre>
                    variable_groups = list("demographics" = c("gender", "age"),
                    "wealth" = c("fare", "class"),
                    "family" = c("sibsp", "parch"),
                    "embarked" = "embarked"),
```

26 partial_dependence

partial_dependence

Partial Dependence Profiles

Description

Partial Dependence Profiles are averages from Ceteris Paribus Profiles. Function partial_dependence calls ceteris_paribus and then aggregate_profiles.

Usage

```
partial_dependence(x, ...)

## S3 method for class 'explainer'
partial_dependence(
    x,
    variables = NULL,
    N = 500,
    variable_splits = NULL,
    grid_points = 101,
    ...,
    variable_type = "numerical"
)

## Default S3 method:
partial_dependence(
    x,
```

partial_dependence 27

```
data,
  predict_function = predict,
  label = class(x)[1],
  variables = NULL,
  grid_points = 101,
  variable_splits = NULL,
  N = 500,
    ...,
  variable_type = "numerical"
)

## S3 method for class 'ceteris_paribus_explainer'
  partial_dependence(x, ..., variables = NULL)
```

Arguments

x an explainer created with function DALEX::explain(), an object of the class ceteris_paribus_explainer or or a model to be explained.

... other parameters

variables names of variables for which profiles shall be calculated. Will be passed to

 ${\tt calculate_variable_split}.$ If NULL then all variables from the validation

data will be used.

N number of observations used for calculation of partial dependence profiles. By

default 500.

variable_splits

named list of splits for variables, in most cases created with calculate_variable_split.

If NULL then it will be calculated based on validation data avaliable in the explainer.

grid_points number of points for profile. Will be passed to calculate_variable_split.

variable_type a character. If "numerical" then only numerical variables will be calculated. If

"categorical" then only categorical variables will be calculated.

data validation dataset, will be extracted from x if it's an explainer NOTE: It is best

when target variable is not present in the data

predict_function

predict function, will be extracted from x if it's an explainer

label name of the model. By default it's extracted from the class attribute of the

model

Details

Find more details in the Partial Dependence Profiles Chapter.

Value

```
an object of the class aggregated_profiles_explainer
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

```
library("DALEX")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_imputed[,-8],
                                 y = titanic_imputed[,8],
                                 verbose = FALSE)
pdp_glm <- partial_dependence(explain_titanic_glm,</pre>
                               N = 25, variables = c("age", "fare"))
head(pdp_glm)
plot(pdp_glm)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                                label = "ranger forest",
                                verbose = FALSE)
pdp_rf <- partial_dependence(explain_titanic_rf, variable_type = "numerical")</pre>
plot(pdp_rf)
pdp_rf <- partial_dependence(explain_titanic_rf, variable_type = "categorical")</pre>
plotD3(pdp_rf, label_margin = 80, scale_plot = TRUE)
```

Description

Function plot.aggregated_profiles_explainer plots partial dependence plot or accumulated effect plot. It works in a similar way to plot.ceteris_paribus, but instead of individual profiles show average profiles for each variable listed in the variables vector.

Usage

```
## S3 method for class 'aggregated_profiles_explainer'
plot(
    x,
    ...,
    size = 1,
    alpha = 1,
    color = "_label_",
    facet_ncol = NULL,
    facet_scales = "free_x",
    variables = NULL,
    title = NULL,
    subtitle = NULL
)
```

Arguments

X	a ceteris paribus explainer produced with function aggregate_profiles()
	other explainers that shall be plotted together
size	a numeric. Size of lines to be plotted
alpha	a numeric between 0 and 1. Opacity of lines
color	a character. Either name of a color, or hex code for a color, or _label_ if models shall be colored, or _ids_ if instances shall be colored
facet_ncol	number of columns for the facet_wrap
facet_scales	a character value for the facet_wrap. Default is "free_x".
variables	if not NULL then only variables will be presented
title	a character. Partial and accumulated dependence explainers have deafult value.
subtitle	a character. If NULL value will be dependent on model usage.

Value

```
a ggplot2 object
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
data = titanic_imputed[,-8],
                                 y = titanic_imputed[,8],
                                 verbose = FALSE)
pdp_rf_p <- partial_dependence(explain_titanic_glm, N = 50)</pre>
pdp_rf_p$`_label_` <- "RF_partial"</pre>
pdp_rf_l <- conditional_dependence(explain_titanic_glm, N = 50)</pre>
pdp_rf_l$`_label_` <- "RF_local"
pdp_rf_a<- accumulated_dependence(explain_titanic_glm, N = 50)</pre>
pdp_rf_a$`_label_` <- "RF_accumulated"</pre>
head(pdp_rf_p)
plot(pdp_rf_p, pdp_rf_l, pdp_rf_a, color = "_label_")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                                label = "ranger forest",
                                verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
pdp_rf_p <- aggregate_profiles(cp_rf, variables = "age", type = "partial")</pre>
pdp_rf_p$`_label_` <- "RF_partial"</pre>
pdp_rf_c <- aggregate_profiles(cp_rf, variables = "age", type = "conditional")</pre>
pdp_rf_c$`_label_` <- "RF_conditional"</pre>
pdp_rf_a <- aggregate_profiles(cp_rf, variables = "age", type = "accumulated")</pre>
pdp_rf_a$`_label_` <- "RF_accumulated"</pre>
head(pdp_rf_p)
plot(pdp_rf_p)
plot(pdp_rf_p, pdp_rf_c, pdp_rf_a)
plot(cp_rf, variables = "age") +
 show_observations(cp_rf, variables = "age") +
 show_rugs(cp_rf, variables = "age", color = "red") +
 show_aggregated_profiles(pdp_rf_p, size = 2)
```

Description

This function plots What-If Plots for a single prediction / observation.

Usage

```
## S3 method for class 'ceteris_paribus_2d_explainer'
plot(
    x,
    ...,
    facet_ncol = NULL,
    add_raster = TRUE,
    add_contour = TRUE,
    bins = 3,
    add_observation = TRUE,
    pch = "+",
    size = 6
)
```

Arguments

x	a ceteris paribus explainer produced with the ceteris_paribus_2d() function
	currently will be ignored
facet_ncol	number of columns for the facet_wrap
add_raster	if TRUE then geom_raster will be added to present levels with diverging colors
add_contour	if TRUE then geom_contour will be added to present contours
bins	number of contours to be added
add_observation	1
	if TRUE then geom_point will be added to present observation that is explained
pch	character, symbol used to plot observations
size	numeric, size of individual datapoints

Value

```
a ggplot2 object
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
library("ranger")
```

```
apartments_rf_model <- ranger(m2.price ~., data = apartments)</pre>
explainer_rf <- explain(apartments_rf_model,</pre>
                         data = apartments_test[,-1],
                         y = apartments_test[,1],
                         verbose = FALSE)
new_apartment <- apartments_test[1,]</pre>
new_apartment
wi_rf_2d <- ceteris_paribus_2d(explainer_rf, observation = new_apartment)</pre>
head(wi_rf_2d)
plot(wi_rf_2d)
plot(wi_rf_2d, add_contour = FALSE)
plot(wi_rf_2d, add_observation = FALSE)
plot(wi_rf_2d, add_raster = FALSE)
# HR data
model <- ranger(status ~ gender + age + hours + evaluation + salary, data = HR,</pre>
                 probability = TRUE)
pred1 <- function(m, x) predict(m, x)$predictions[,1]</pre>
explainer_rf_fired <- explain(model,</pre>
                                data = HR[,1:5],
                                y = as.numeric(HR$status == "fired"),
                                predict_function = pred1,
                                label = "fired")
new_emp <- HR[1,]
new_emp
wi_rf_2d <- ceteris_paribus_2d(explainer_rf_fired, observation = new_emp)</pre>
head(wi_rf_2d)
plot(wi_rf_2d)
```

```
plot.ceteris_paribus_explainer
```

Plots Ceteris Paribus Profiles

Description

Function plot.ceteris_paribus_explainer plots Individual Variable Profiles for selected observations. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

Find more details in Ceteris Paribus Chapter.

Usage

```
## S3 method for class 'ceteris_paribus_explainer'
plot(
    x,
    ...,
    size = 1,
    alpha = 1,
    color = "#46bac2",
    variable_type = "numerical",
    facet_ncol = NULL,
    facet_scales = NULL,
    variables = NULL,
    title = "Ceteris Paribus profile",
    subtitle = NULL,
    categorical_type = "profiles"
)
```

Arguments

x	a ceteris paribus explainer produced with function ceteris_paribus()
• • •	other explainers that shall be plotted together
size	a numeric. Size of lines to be plotted
alpha	a numeric between 0 and 1. Opacity of lines
color	a character. Either name of a color or name of a variable that should be used for coloring
variable_type	a character. If numerical then only numerical variables will be plotted. If categorical then only categorical variables will be plotted.
facet_ncol	number of columns for the facet_wrap
facet_scales	a character value for the $facet_wrap$. Default is "free $_x$ ", but "free $_y$ " if $categorical_type="bars"$.
variables	if not NULL then only variables will be presented
title	a character. Plot title. By default "Ceteris Paribus profile".
subtitle	a character. Plot subtitle. By default NULL - then subtitle is set to "created for the XXX, YYY model", where XXX, YYY are labels of given explainers.
categorical_typ	pe
	a character. How categorical variables shall be plotted? Either "profiles" (default) or "bars" or "lines".

Value

```
a ggplot2 object
```

References

```
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
```

```
library("DALEX")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                                verbose = FALSE)
cp_glm <- ceteris_paribus(explain_titanic_glm, titanic_imputed[1,])</pre>
cp_glm
plot(cp_glm, variables = "age")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red")
selected_passangers <- select_sample(titanic_imputed, n = 1)</pre>
selected_passangers
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
plot(cp_rf) +
  show_observations(cp_rf)
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age")
plot(cp_rf, variables = "class")
plot(cp_rf, variables = c("class", "embarked"), facet_ncol = 1)
plot(cp_rf, variables = c("class", "embarked"), facet_ncol = 1, categorical_type = "bars")
plotD3(cp_rf, variables = c("class", "embarked", "gender"),
              variable_type = "categorical", scale_plot = TRUE,
              label_margin = 70)
```

```
plot.ceteris_paribus_oscillations

Plot Ceteris Paribus Oscillations
```

Description

This function plots local variable importance plots calculated as oscillations in the Ceteris Paribus Profiles.

Usage

```
## S3 method for class 'ceteris_paribus_oscillations'
plot(x, ..., bar_width = 10)
```

Arguments

```
x a ceteris paribus oscillation explainer produced with function calculate_oscillations()
... other explainers that shall be plotted together
bar_width width of bars. By default 10.
```

Value

```
a ggplot2 object
```

References

```
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
```

```
plot(cp_rf, color = "_ids_")
vips <- calculate_oscillations(cp_rf)
vips
plot(vips)</pre>
```

```
{\it plot.} \ {\it feature\_importance\_explainer} \\ {\it Plots} \ {\it Feature} \ {\it Importance}
```

Description

This function plots variable importance calculated as changes in the loss function after variable drops. It uses output from feature_importance function that corresponds to permutation based measure of variable importance. Variables are sorted in the same order in all panels. The order depends on the average drop out loss. In different panels variable contributions may not look like sorted if variable importance is different in different models.

Usage

```
## S3 method for class 'feature_importance_explainer'
plot(
    x,
    ...,
    max_vars = NULL,
    show_boxplots = TRUE,
    bar_width = 10,
    desc_sorting = TRUE,
    title = "Feature Importance",
    subtitle = NULL
)
```

Arguments

X	a feature importance explainer produced with the ${\tt feature_importance}()$ function
• • •	other explainers that shall be plotted together
max_vars	maximum number of variables that shall be presented for for each model. By default NULL what means all variables
show_boxplots	logical if TRUE (default) boxplot will be plotted to show permutation data.
bar_width	width of bars. By default 10
desc_sorting	logical. Should the bars be sorted descending? By default TRUE
title	the plot's title, by default 'Feature Importance'
subtitle	the plot's subtitle. By default - NULL, which means the subtitle will be 'created for the XXX model', where XXX is the label of explainer(s)

Details

Find more details in the Feature Importance Chapter.

Value

```
a ggplot2 object
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8])
fi_rf <- feature_importance(explain_titanic_glm, B = 1)</pre>
plot(fi_rf)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
fi_rf <- feature_importance(explain_titanic_rf)</pre>
plot(fi_rf)
HR_rf_model <- ranger(status~., data = HR, probability = TRUE)</pre>
explainer_rf <- explain(HR_rf_model, data = HR, y = HR$status,
                          verbose = FALSE, precalculate = FALSE)
fi_rf <- feature_importance(explainer_rf, type = "raw", max_vars = 3,</pre>
                             loss_function = DALEX::loss_cross_entropy)
head(fi_rf)
plot(fi_rf)
HR_glm_model <- glm(status == "fired"~., data = HR, family = "binomial")</pre>
explainer_glm <- explain(HR_glm_model, data = HR, y = as.numeric(HR$status == "fired"))
```

38 plotD3

plotD3

Plots Ceteris Paribus Profiles in D3 with r2d3 Package.

Description

Function plotD3.ceteris_paribus_explainer plots Individual Variable Profiles for selected observations. It uses output from ceteris_paribus function. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

Find more details in Ceteris Paribus Chapter.

Usage

```
plotD3(x, ...)
## S3 method for class 'ceteris_paribus_explainer'
plotD3(
 х,
  ...,
  size = 2,
  alpha = 1,
  color = "#46bac2",
  variable_type = "numerical",
  facet_ncol = 2,
  scale_plot = FALSE,
  variables = NULL,
  chart_title = "Ceteris Paribus Profiles",
  label_margin = 60,
  show_observations = TRUE,
  show\_rugs = TRUE
)
```

Arguments

```
x a ceteris paribus explainer produced with function ceteris_paribus()
... other explainers that shall be plotted together
size a numeric. Set width of lines
alpha a numeric between 0 and 1. Opacity of lines
color a character. Set line color
```

plotD3

```
a character. If "numerical" then only numerical variables will be plotted. If
variable_type
                  "categorical" then only categorical variables will be plotted.
                  number of columns for the facet_wrap
facet_ncol
scale_plot
                  a logical. If TRUE, the height of plot scales with window size. By default it's
                  FALSE
variables
                  if not NULL then only variables will be presented
chart_title
                  a character. Set custom title
label_margin
                  a numeric. Set width of label margins in categorical type
show_observations
                  a logical. Adds observations layer to a plot. By default it's TRUE
                  a logical. Adds rugs layer to a plot. By default it's TRUE
show_rugs
```

Value

a r2d3 object.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 10)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
plotD3(cp_rf, variables = c("age","parch","fare","sibsp"),
     facet_ncol = 2, scale_plot = TRUE)
selected_passanger <- select_sample(titanic_imputed, n = 1)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passanger)</pre>
plotD3(cp_rf, variables = c("class", "embarked", "gender", "sibsp"),
    facet_ncol = 2, variable_type = "categorical", label_margin = 100, scale_plot = TRUE)
```

```
plotD3.aggregated_profiles_explainer
```

Plots Aggregated Ceteris Paribus Profiles in D3 with r2d3 Package.

Description

Function plotD3.aggregated_profiles_explainer plots an aggregate of ceteris paribus profiles. It works in a similar way to plotD3.ceteris_paribus_explainer but, instead of individual profiles, show average profiles for each variable listed in the variables vector.

Find more details in Ceteris Paribus Chapter.

Usage

```
## S3 method for class 'aggregated_profiles_explainer'
plotD3(
    x,
    ...,
    size = 2,
    alpha = 1,
    color = "#46bac2",
    facet_ncol = 2,
    scale_plot = FALSE,
    variables = NULL,
    chart_title = "Aggregated Profiles",
    label_margin = 60
)
```

Arguments

```
a aggregated profiles explainer produced with function aggregate_profiles()
                  other explainers that shall be plotted together
size
                  a numeric. Set width of lines
                  a numeric between 0 and 1. Opacity of lines
alpha
color
                  a character. Set line/bar color
facet_ncol
                  number of columns for the facet_wrap
scale_plot
                  a logical. If TRUE, the height of plot scales with window size. By default it's
variables
                  if not NULL then only variables will be presented
chart_title
                  a character. Set custom title
                  a numeric. Set width of label margins in categorical type
label_margin
```

Value

```
a r2d3 object.
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

```
library("DALEX")
library("ingredients")
library("ranger")
# smaller data, quicker example
titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313)
# build a model
model_titanic_rf <- ranger(survived ~., data = titanic_small, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_small[,-8],
                               y = titanic_small[,8],
                               label = "ranger forest",
                               verbose = FALSE)
selected_passangers <- select_sample(titanic_small, n = 100)</pre>
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
pdp_rf_p <- aggregate_profiles(cp_rf, type = "partial", variable_type = "numerical")</pre>
pdp_rf_p$`_label_` <- "RF_partial"
pdp\_rf\_c <- aggregate\_profiles(cp\_rf, \ type = "conditional", \ variable\_type = "numerical")
pdp_rf_c$`_label_` <- "RF_conditional"
pdp_rf_a <- aggregate_profiles(cp_rf, type = "accumulated", variable_type = "numerical")</pre>
pdp_rf_a$`_label_` <- "RF_accumulated"
plotD3(pdp_rf_p, pdp_rf_c, pdp_rf_a, scale_plot = TRUE)
pdp <- aggregate_profiles(cp_rf, type = "partial", variable_type = "categorical")</pre>
pdp$`_label_` <- "RF_partial"</pre>
plotD3(pdp, variables = c("gender","class"), label_margin = 70)
```

```
plotD3.feature_importance_explainer
```

Plot Feature Importance Objects in D3 with r2d3 Package.

Description

Function plotD3. feature_importance_explainer plots dropouts for variables used in the model. It uses output from feature_importance function that corresponds to permutation based measure

of feature importance. Variables are sorted in the same order in all panels. The order depends on the average drop out loss. In different panels variable contributions may not look like sorted if variable importance is different in different models.

Usage

```
## S3 method for class 'feature_importance_explainer'
plotD3(
    x,
    ...,
    max_vars = NULL,
    show_boxplots = TRUE,
    bar_width = 12,
    split = "model",
    scale_height = FALSE,
    margin = 0.15,
    chart_title = "Feature importance"
)
```

Arguments

X	a feature importance explainer produced with the feature_importance() function $\label{eq:produced} \begin{tabular}{ll} \end{tabular}$
	other explainers that shall be plotted together
max_vars	maximum number of variables that shall be presented for for each model. By default NULL which means all variables
show_boxplots	logical if TRUE (default) boxplot will be plotted to show permutation data.
bar_width	width of bars in px. By default 12px
split	either "model" or "feature" determines the plot layout
scale_height	a logical. If TRUE, the height of plot scales with window size. By default it's \ensuremath{FALSE}
margin	extend x axis domain range to adjust the plot. Usually value between 0.1 and 0.3, by default it's 0.15
chart_title	a character. Set custom title

Value

```
a r2d3 object.
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

```
library("DALEX")
library("ingredients")
lm_model <- lm(m2.price ~., data = apartments)</pre>
explainer_lm <- explain(lm_model,
                         data = apartments[,-1],
                         y = apartments[,1],
                         verbose = FALSE)
fi_lm <- feature_importance(explainer_lm,</pre>
      loss_function = DALEX::loss_root_mean_square, B = 1)
head(fi_lm)
plotD3(fi_lm)
library("ranger")
rf_model <- ranger(m2.price~., data = apartments)</pre>
explainer_rf <- explain(rf_model,</pre>
                         data = apartments[,-1],
                         y = apartments[,1],
                         label = "ranger forest",
                         verbose = FALSE)
fi_rf <- feature_importance(explainer_rf, loss_function = DALEX::loss_root_mean_square)</pre>
head(fi_rf)
plotD3(fi_lm, fi_rf)
plotD3(fi_lm, fi_rf, split = "feature")
plotD3(fi_lm, fi_rf, max_vars = 3, bar_width = 16, scale_height = TRUE)
plotD3(fi_lm, fi_rf, max_vars = 3, bar_width = 16, split = "feature", scale_height = TRUE)
plotD3(fi_lm, margin = 0.2)
```

```
\label{eq:profiles_explainer} Prints\ Aggregated\ Profiles
```

Description

Prints Aggregated Profiles

Usage

```
## S3 method for class 'aggregated_profiles_explainer' print(x, ...)
```

Arguments

- x an individual variable profile explainer produced with the aggregate_profiles() function
- ... other arguments that will be passed to head()

```
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_imputed[,-8],
                                 y = titanic_imputed[,8])
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)</pre>
head(cp_rf)
pdp_rf <- aggregate_profiles(cp_rf, variables = "age")</pre>
head(pdp_rf)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed,</pre>
                            probability = TRUE)
explain_titanic_rf <- explain(model_titanic_rf,
                               data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
pdp_rf <- aggregate_profiles(cp_rf, variables = "age")</pre>
head(pdp_rf)
```

Description

Prints Individual Variable Explainer Summary

Usage

```
## S3 method for class 'ceteris_paribus_explainer'
print(x, ...)
```

Arguments

- x an individual variable profile explainer produced with the ceteris_paribus() function
- ... other arguments that will be passed to head()

```
library("DALEX")
library("ingredients")
titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313)</pre>
# build a model
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_small,
                          family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                 data = titanic_small[,-8],
                                 y = titanic_small[,8])
cp_glm <- ceteris_paribus(explain_titanic_glm, titanic_small[1,])</pre>
cp_glm
library("ranger")
apartments_rf_model <- ranger(m2.price ~., data = apartments)</pre>
explainer_rf <- explain(apartments_rf_model,</pre>
                          data = apartments_test[,-1],
                         y = apartments_test[,1],
                          label = "ranger forest",
                         verbose = FALSE)
apartments_small <- select_sample(apartments_test, 10)</pre>
```

```
cp_rf <- ceteris_paribus(explainer_rf, apartments_small)
cp_rf</pre>
```

```
print.feature_importance_explainer
```

Print Generic for Feature Importance Object

Description

Print Generic for Feature Importance Object

Usage

```
## S3 method for class 'feature_importance_explainer' print(x, ...)
```

Arguments

x an explanation created with feature_importance... other parameters.

Value

a data frame.

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

select_neighbours 47

select_neighbours Select Subset of Rows Closest to a Specified Observation	
--	--

Description

Function select_neighbours selects subset of rows from data set. This is useful if data is large and we need just a sample to calculate profiles.

Usage

```
select_neighbours(
  observation,
  data,
  variables = NULL,
  distance = gower::gower_dist,
  n = 20,
  frac = NULL
)
```

Arguments

observation single observation
data set of observations
variables names of variables that shall be u

names of variables that shall be used for calculation of distance. By default these

are all variables present in data and observation

distance the distance function, by default the gower_dist() function.

n number of neighbors to select

frac if n is not specified (NULL), then will be calculated as frac * number of rows

in data. Either n or frac need to be specified.

Details

Note that select_neighbours() function is S3 generic. If you want to work on non standard data sources (like H2O ddf, external databases) you should overload it.

Value

a data frame with selected rows

```
library("ingredients")
new_apartment <- DALEX::apartments[1,]
small_apartments <- select_neighbours(new_apartment, DALEX::apartments_test, n = 10)</pre>
```

48 select_sample

```
new_apartment
small_apartments
```

select_sample

Select Subset of Rows

Description

Function select_sample selects subset of rows from data set. This is useful if data is large and we need just a sample to calculate profiles.

Usage

```
select_sample(data, n = 100, seed = 1313)
```

Arguments

data set of observations. Profile will be calculated for every observation (every row)

n number of observations to select.
seed seed for random number generator.

Details

Note that select_subsample() function is S3 generic. If you want to work on non standard data sources (like H2O ddf, external databases) you should overload it.

Value

a data frame with selected rows

```
library("ingredients")
small_apartments <- select_sample(DALEX::apartments_test)
head(small_apartments)</pre>
```

```
show\_aggregated\_profiles \\ Adds~a~Layer~with~Aggregated~Profiles
```

Description

Function show_aggregated_profiles adds a layer to a plot created with plot.ceteris_paribus_explainer.

Usage

```
show_aggregated_profiles(
    x,
    ...,
    size = 0.5,
    alpha = 1,
    color = "#371ea3",
    variables = NULL
)
```

Arguments

```
x a ceteris paribus explainer produced with function ceteris_paribus()
... other explainers that shall be plotted together
size a numeric. Size of lines to be plotted
alpha a numeric between 0 and 1. Opacity of lines
color a character. Either name of a color or name of a variable that should be used for coloring
variables if not NULL then only variables will be presented
```

Value

```
a ggplot2 layer
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

```
library("DALEX")
library("ingredients")
selected_passangers <- select_sample(titanic_imputed, n = 100)
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
```

50 show_observations

```
data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8])
cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)</pre>
pdp_rf <- aggregate_profiles(cp_rf, type = "partial", variables = "age")</pre>
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_aggregated_profiles(pdp_rf, size = 3)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf
pdp_rf <- aggregate_profiles(cp_rf, type = "partial", variables = "age")</pre>
head(pdp_rf)
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red") +
  show_aggregated_profiles(pdp_rf, size = 3)
```

show_observations

Adds a Layer with Observations to a Profile Plot

Description

Function show_observations adds a layer to a plot created with plot.ceteris_paribus_explainer for selected observations. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

Usage

```
show_observations(
```

show_observations 51

```
x,
...,
size = 2,
alpha = 1,
color = "#371ea3",
variable_type = "numerical",
variables = NULL
)
```

Arguments

X	a ceteris paribus explainer produced with function ceteris_paribus()
	other explainers that shall be plotted together
size	a numeric. Size of lines to be plotted
alpha	a numeric between 0 and 1. Opacity of lines
color	a character. Either name of a color or name of a variable that should be used for coloring
variable_type	a character. If numerical then only numerical variables will be plotted. If categorical then only categorical variables will be plotted.
variables	if not NULL then only variables will be presented

Value

```
a ggplot2 layer
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

show_profiles

```
plot(cp_rf, variables = "age", color = "grey") +
show_observations(cp_rf, variables = "age", color = "black") +
show_rugs(cp_rf, variables = "age", color = "red")
```

show_profiles

Adds a Layer with Profiles

Description

Function show_profiles adds a layer to a plot created with plot.ceteris_paribus_explainer.

Usage

```
show_profiles(
    x,
    ...,
    size = 0.5,
    alpha = 1,
    color = "#371ea3",
    variables = NULL
)
```

Arguments

x	a ceteris paribus explainer produced with function ceteris_paribus()
	other explainers that shall be plotted together
size	a numeric. Size of lines to be plotted
alpha	a numeric between 0 and 1. Opacity of lines
color	a character. Either name of a color or name of a variable that should be used for coloring
variables	if not NULL then only variables will be presented

Value

```
a ggplot2 layer
```

References

```
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
```

show_residuals 53

```
library("DALEX")
library("ingredients")
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
selected_john <- titanic_imputed[1,]</pre>
model_titanic_glm <- glm(survived ~ gender + age + fare,</pre>
                          data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,</pre>
                                data = titanic_imputed[,-8],
                                y = titanic_imputed[,8],
                                 label = "glm", verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)</pre>
cp_rf_john <- ceteris_paribus(explain_titanic_glm, selected_john)</pre>
plot(cp_rf, variables = "age") +
  show_profiles(cp_rf_john, variables = "age", size = 2)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                                label = "ranger forest",
                               verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)</pre>
cp_rf_john <- ceteris_paribus(explain_titanic_rf, selected_john)</pre>
cp_rf
pdp_rf <- aggregate_profiles(cp_rf, variables = "age")</pre>
head(pdp_rf)
plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red") +
  show_profiles(cp_rf_john, variables = "age", color = "red", size = 2)
```

show_residuals

Description

Function show_residuals adds a layer to a plot created with plot.ceteris_paribus_explainer for selected observations. Note that the y argument has to be specified in the ceteris_paribus function.

Usage

```
show_residuals(
    x,
    ...,
    size = 0.75,
    alpha = 1,
    color = c(`TRUE` = "#8bdcbe", `FALSE` = "#f05a71"),
    variables = NULL
)
```

Arguments

X	a ceteris paribus explainer produced with function ceteris_paribus(). Note that y parameter shall be supplied in this function.
	other explainers that shall be plotted together
size	a numeric. Size of lines to be plotted
alpha	a numeric between 0 and 1. Opacity of lines
color	a character. Either name of a color or name of a variable that should be used for coloring
variables	if not NULL then only variables will be presented

Value

```
a ggplot2 layer
```

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

show_rugs 55

```
parch = 0,
 fare = 72,
 embarked = factor("Southampton", levels = c("Belfast", "Cherbourg", "Queenstown", "Southampton"))
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explain_titanic_rf <- explain(model_titanic_rf,</pre>
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               label = "ranger forest",
                               verbose = FALSE)
johny_neighbours <- select_neighbours(data = titanic_imputed,</pre>
                                       observation = johny_d,
                                       variables = c("age", "gender", "class",
                                                   "fare", "sibsp", "parch"),
                                       n = 10
cp_neighbours <- ceteris_paribus(explain_titanic_rf,</pre>
                                  johny_neighbours,
                                  y = johny_neighbours$survived == "yes",
                              variable_splits = list(age = seq(0,70, length.out = 1000)))
plot(cp_neighbours, variables = "age") +
 show_observations(cp_neighbours, variables = "age")
cp_johny <- ceteris_paribus(explain_titanic_rf, johny_d,</pre>
                             variable_splits = list(age = seq(0,70, length.out = 1000)))
plot(cp_johny, variables = "age", size = 1.5, color = "#8bdcbe") +
 show_profiles(cp_neighbours, variables = "age", color = "#ceced9") +
 show_observations(cp_johny, variables = "age", size = 5, color = "#371ea3") +
 show_residuals(cp_neighbours, variables = "age")
```

show_rugs

Adds a Layer with Rugs to a Profile Plot

Description

Function show_rugs adds a layer to a plot created with plot.ceteris_paribus_explainer for selected observations. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

show_rugs

Usage

```
show_rugs(
    x,
    ...,
    size = 0.5,
    alpha = 1,
    color = "#371ea3",
    variable_type = "numerical",
    sides = "b",
    variables = NULL
)
```

Arguments

Χ a ceteris paribus explainer produced with function ceteris_paribus() other explainers that shall be plotted together . . . a numeric. Size of lines to be plotted size alpha a numeric between 0 and 1. Opacity of lines color a character. Either name of a color or name of a variable that should be used for coloring variable_type a character. If numerical then only numerical variables will be plotted. If categorical then only categorical variables will be plotted. a string containing any of "trbl", for top, right, bottom, and left. Passed to geom sides rug.

if not NULL then only variables will be presented

Value

```
a ggplot2 layer
```

variables

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

show_rugs 57

```
y = titanic_small[,8])
cp_glm <- ceteris_paribus(explain_titanic_glm, titanic_small[1,])</pre>
cp_glm
library("ranger")
rf_model <- ranger(survived ~., data = titanic_imputed, probability = TRUE)</pre>
explainer_rf <- explain(rf_model,</pre>
                         data = titanic_imputed[,-8],
                         y = titanic_imputed[,8],
                         label = "ranger forest",
                         verbose = FALSE)
selected_passangers <- select_sample(titanic_imputed, n = 100)</pre>
cp_rf <- ceteris_paribus(explainer_rf, selected_passangers)</pre>
cp_rf
plot(cp_rf, variables = "age", color = "grey") +
show_observations(cp_rf, variables = "age", color = "black") +
  show_rugs(cp_rf, variables = "age", color = "red")
```

Index

```
accumulated_dependence, 2, 2
                                                plotD3, 38
accumulated_dependency
                                                plotD3.aggregated_profiles_explainer,
        (accumulated_dependence), 2
                                                         40, 40
aggregate_profiles, 2, 5
                                                plotD3.ceteris_paribus_explainer, 38,
bind_plots, 7
                                                plotD3.feature_importance_explainer,
                                                        41, 41
calculate_oscillations, 8
                                                print.aggregated_profiles_explainer,
calculate_variable_profile, 9, 10
                                                         43
calculate_variable_split, 3, 11, 11, 13,
                                                print.ceteris_paribus_explainer, 45
        19, 27
                                                print.feature_importance_explainer, 46
ceteris_paribus, 2, 12, 38, 54
ceteris_paribus_2d, 14
                                                select_neighbours, 47, 47
cluster_profiles, 16
                                                select_sample, 48, 48
conditional_dependence, 18
                                                show_aggregated_profiles, 49, 49
conditional_dependency
                                                show_observations, 50, 50
        (conditional_dependence), 18
                                                show_profiles, 52, 52
                                                show_residuals, 53, 54
describe
                                                show_rugs, 55, 55
        (describe.partial_dependence_explainer),
describe.partial_dependence_explainer,
        20
facet_wrap, 29, 31, 33, 39, 40
feature_importance, 23, 41, 46
grid.arrange, 7
local_dependency
        (conditional_dependence), 18
partial_dependence, 26
partial_dependency
        (partial_dependence), 26
plot.aggregated_profiles_explainer, 28
plot.ceteris_paribus_2d_explainer, 30
plot.ceteris_paribus_explainer, 32, 49,
        50, 52, 54, 55
plot.ceteris_paribus_oscillations, 35
plot.feature_importance_explainer, 36
```