This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is (US):

1. A compound of the formula (I) or a salt thereof

$$\begin{array}{c|c}
R^1 & Y & \\
\hline
R^1 & Y & \\
\hline
R^2 & R^4
\end{array}$$
(I)

where the symbols and indices are as defined below:

X is =CH- or =N-;

Y is =0 or =S;

10 n is 0 or 1;

m is 0, 1 or 2;

- R¹ is (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, -S(halogen)₅ or halogen, where one or two CH₂ groups may be replaced by -O- or -S- or -N(C₁-C₆)-alkyl, with the proviso that heteroatoms may not be adjacent;
- 15 R², R³ independently of one another are hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl or halogen, where one or two CH₂ groups may be replaced by -O- or -S- or -N(C₁-C₆)-alkyl, with the proviso that heteroatoms may not be adjacent;

is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl, (C_3-C_{10}) -heterocyclyl or (C_1-C_{10}) -alkanoyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_8-C_{10}) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted;

5

20

except for compounds of the formula (I), in which X is =CH-, m is 1 or 2 and R^5 is unsubstituted or substituted (C₁-C₁₀)-alkyl.

2. A compound of the formula (II) or a salt thereof

$$R^{4'}$$
 $(O)_m$
 R^3
 $(O)_n$
 (II)

where the symbols and indices are as defined below:

X is =CH- or =N-;

10 Y' is -O- or -S-;

n is 0 or 1;

m is 0, 1 or 2;

R¹ is (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, -S(halogen)₅ or halogen, where one or two CH₂ groups may be replaced by -O- or -S- or -N(C₁-C₆)-alkyl, with the proviso that heteroatoms may not be adjacent;

R², R³ independently of one another are hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl or halogen, where one or two CH₂ groups may be replaced by -O- or -S- or -N(C₁-C₆)-alkyl, with the proviso that heteroatoms may not be adjacent;

R⁴ is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -cycloalkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_6-C_{14}) -aryl or (C_3-C_{10}) -heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted; and

R⁶ is hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{10}) -alkenyl, (C_3-C_{10}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_8-C_{10}) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.

20

15

- 3. A compound of the formula (I) or a salt thereof as claimed in claim 7 where R^1 is SF_5 , CHF_2 , CF_2CI or CF_3 .
- 4. A compound of the formula (I) or a salt thereof as claimed in claim 1 where X is =CH-, Y is =O, m and n are 0, R¹ is CF₃, R², R³ and R⁴ are hydrogen and R⁵ is (C₁-C₁₀)-alkyl, (C₂-C₁₀)-alkenyl, (C₂-C₁₀)-alkynyl, (C₃-C₀)-cycloalkyl, (C₄-C₀)-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.
- 10 5. A compound of the formula () or a salt thereof as claimed in claim 1 where R⁵ is a radical of the formula IIa

where the symbols and indices are as defined below:

a is 0, 1, 2, 3 or 4;

is = 0 or = S:

- are identical or different R⁸, or two radicals R⁷ together with the atoms to which they are attached form a three- to eight-membered saturated or unsaturated ring system which is unsubstituted or substituted by one or more radicals R⁸ and which may also contain further heteroatoms, selected from the group consisting of O, N, S, SO and SO₂;
- 20 R⁸ are identical or different R⁹, R¹⁰, -C(W)R⁹, -C(=NOR⁹)R⁹, -C(=NNR⁹₂)R⁹,
 -C(=W)OR⁹, -C(=W)NR⁹₂, -OC(=W)R⁹, -OC(=W)OR⁹, -NR⁹C(=W)R⁹,
 -N[C(=W)R⁹]₂, -NR⁹C(=W)OR⁹, -C(=W)NR⁹-NR⁹₂, -C(=W)NR⁹-NR⁹[C(=W)R⁹],
 -NR⁹-C(=W)NR⁹₂, -NR⁹-NR⁹C(=W)R⁹, -NR⁹-N[C(=W)R⁹]₂, -N[(C=W)R⁹]-NR⁹₂,
 -NR⁹-N[(C=W)WR⁹], -NR⁹[(C=W)NR⁹₂], -NR⁹(C=NR⁹)R⁹, -NR⁹(C=NR⁹)NR⁹₂,
 -O-NR⁹₂, -O-NR⁹(C=W)R⁹, -SO₂NR⁹₂, -NR⁹SO₂R⁹, -SO₂OR⁹, -OSO₂R⁹, -OR⁹, -NR⁹₂, -SR⁹, -SiR⁹₃, -PR⁹₂, -P(=W)R⁹₂, -SOR⁹, -SO₂R⁹, -PW₂R⁹₂, -PW₃R⁹₂ or two radicals R⁸ together are (=W), (=N-R⁹), (= CR₂⁹), (= CHR⁹) or (=CH₂);

5

10

15

20

25

30

Ř⁹ are identical or different (C_1 - C_6)-alkyl, (C_2 - C_6)-alkenyl, (C_2 - C_6)-alkynyl, (C_3 - C_8)cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkyl, (C_4-C_8) cycloalkenyl- (C_1-C_4) -alkyl, (C_3-C_8) -cycloalkyl- (C_2-C_4) -alkenyl, (C_4-C_8) cycloalkenyl- (C_2-C_4) -alkenyl, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkyl, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkyl, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkyl, (C_1-C_6) -alkyl- (C_4-C_8) cycloalkenyl, (C₂-C₈)-alkenyl-(C₄-C₈)-cycloalkenyl, aryl, heterocyclyl; where the radicals mentioned are unsubstituted or substituted by one or more radicals R¹⁰ and two radicals R⁹ together may form a ring system; R^{10} are identical or different halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C_1-C_6) -alkanoyl, (C_1-C_6) -alkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -alkynyloxy, (C_1-C_6) -haloalkyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_8) cycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈)-halocycloalkoxy, (C₄-C₈)halocycloalkenyloxy, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkoxy, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkoxy, (C_3-C_8) -cycloalkyl- (C_2-C_4) -alkenyloxy, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenyloxy, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkoxy, (C_2-C_6) -alkenyl- (C_3-C_8) -alkyl- (C_3-C_8) - (C_3-C_8) cycloalkoxy, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkoxy, (C_1-C_6) -alkyl- (C_4-C_8) cycloalkenyloxy, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenyloxy, (C_1-C_4) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_4) -alkoxy- (C_3-C_6) -alkenyloxy, carbamoyl, (C_1-C_6) -mono- or -dialkylcarbamoyl, (C_1-C_6) -mono- or -dihaloalkylcarbamoyl, (C_3-C_8) -mono- or -dicycloalkylcarbamoyl, (C₁-C₆)-alkoxycarbonyl, (C₃-C₈)-cycloalkoxycarbonyl, (C_1-C_6) -alkanoyloxy, (C_3-C_8) -cycloalkanoyloxy, (C_1-C_6) -haloalkoxycarbonyl, (C_1-C_6) -haloalkanoyloxy, (C_1-C_6) -alkanoylamino, (C_1-C_6) -haloalkanoylamino, (C₂-C₆)-alkenoylamino, (C₃-C₈)-cycloalkanoylamino, (C₃-C₈)-cycloalkyl- (C_1-C_4) -alkanoylamino, (C_1-C_6) -alkylthio, (C_3-C_6) -alkenylthio, (C_3-C_6) alkynylthio, (C_1-C_6) -haloalkylthio, (C_3-C_6) -haloalkenylthio, (C_3-C_6) haloalkynylthio, (C₃-C₈)-cycloalkylthio, (C₄-C₈)-cycloalkenylthio, (C_3-C_8) -halocycloalkylthio, (C_4-C_8) -halocycloalkenylthio, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylthio, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylthio, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylthio, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylthio, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylthio, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkylthio, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylthio, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylthio, (C_2-C_6) -alkenyl-

 (C_4-C_8) -cycloalkenylthio, (C_1-C_6) -alkylsulfinyl, (C_3-C_6) -alkenylsulfinyl, (C_3-C_6) alkynylsulfinyl, (C_1 - C_6)-haloalkylsulfinyl, (C_3 - C_6)-haloalkenylsulfinyl, (C_3 - C_6)haloalkynylsulfinyl, (C_3-C_8) -cycloalkylsulfinyl, (C_4-C_8) -cycloalkenylsulfinyl, (C_3-C_8) -halocycloalkylsulfinyl, (C_4-C_8) -halocycloalkenylsulfinyl, (C_3-C_8) cycloalkyl- (C_1-C_4) -alkylsulfinyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylsulfinyl, 5 (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylsulfinyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) alkenylsulfinyl, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylsulfinyl, (C_2-C_8) -alkenyl- (C_3-C_8) cycloalkylsulfinyl, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylsulfinyl, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylsulfinyl, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenylsulfinyl, (C_1-C_6) -alkylsulfonyl, (C_3-C_6) -alkenylsulfonyl, (C_3-C_6) -alkynylsulfonyl, (C_1-C_6) -10 haloalkylsulfonyl, (C_3-C_6) -haloalkenylsulfonyl, (C_3-C_6) -haloalkynylsulfonyl, (C_3-C_8) -cycloalkylsulfonyl, (C_4-C_8) -cycloalkenylsulfonyl, (C_3-C_8) halocycloalkylsulfonyl, (C₄-C₈)-halocycloalkenylsulfonyl, (C₃-C₈)-cycloalkyl- (C_1-C_4) -alkylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylsulfonyl, (C_3-C_8) cycloalkyl- (C_3-C_4) -alkenylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylsulfonyl, 15 (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylsulfonyl, (C_2-C_6) -alkenyl- (C_3-C_8) cycloalkylsulfonyl, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylsulfonyl, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylsulfonyl, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenylsulfonyl, (C_1-C_6) -dialkylamino, (C_1-C_6) -alkylamino, (C_3-C_6) -alkenylamino, (C_3-C_6) -alkenylamino, (C_3-C_6) -alkenylamino, (C_3-C_6) -alkylamino, (C_3-C_6) -alkylamin 20 alkynylamino, (C_1 - C_6)-haloalkylamino, (C_3 - C_6)-haloalkenylamino, (C_3 - C_6)haloalkynylamino, (C₃-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C_3-C_8) -halocycloalkamino, (C_4-C_8) -halocycloalkenylamino, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylamino, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylamino, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylamino, (C_4-C_6) -cycloalkenyl- (C_3-C_4) -alkenylamino, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylamino, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkylamino, (C_2-C_6) -25 alkynyl-(C₃-C₈)-cycloalkylamino, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylamino, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenylamino, (C_1-C_6) -trialkylsilyl, aryl, aryloxy, arylthio, arylsulfinyl, arylsulfonyl, arylamino, aryl-(C₁-C₄)-alkoxy, aryl-(C₃-C₄)alkenyloxy, aryl- (C_1-C_4) -alkylthio, aryl- (C_1-C_4) -alkylsulfinyl, aryl- (C_1-C_4) alkylsulfonyl, aryl- (C_2-C_4) -alkenylthio, aryl- (C_2-C_4) -alkenylsulfinyl, aryl- (C_2-C_4) -30 alkenylsulfonyl, aryl- (C_1-C_4) -alkylamino, aryl- (C_3-C_4) -alkenylamino, aryl(C₁-C₆)-dialkylsilyl, diaryl-(C₁-C₆)-alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, where the cyclic moiety of the fourteen last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, cyano, nitro, amino, hydroxyl, thio, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, (C₁-C₄)-haloalkylthio, (C₁-C₄)-haloalkylthio, (C₁-C₄)-alkylamino, (C₁-C₄)-haloalkylamino and (C₁-C₄)-alkanoyl, and if R⁹ is aryl or heterocyclyl, (C₁-C₄)-alkyl or C₁-C₄)-haloalkyl..

- 10 6. A compound of the formula (II) or a salt thereof as claimed in claim 2 where R¹ is SF₅, CHF₂, CF₂Cl or CF₃.
- A compound of the formula (II) or a salt thereof as claimed in claim 2 where X is =CH-, Y' is -O-, m and n are 0, R¹ is CF₃, R², R³ and R⁴ are hydrogen and R⁶ is (C₁-C₁₀)-alkyl, (C₃-C₀)-cycloalkyl, aryl, benzyl or heterocyclyl having a total of one to three nitrogen, oxygen and/or sulfur ring atoms, where the radicals mentioned may be unsubstituted or mono- or polysubstituted.
- 8. A compound of the formula (II) or a salt thereof as claimed in claim 7 where
 20 the substituents are radicals R⁷ having the following meaning: R⁷ are identical or
 different R⁸ or two radicals R⁷ together with the atoms to which they are attached
 form a three- to eight-membered saturated or unsaturated ring system which is
 unsubstituted or substituted by one or more radicals R⁸ and which may also contain
 further heteroatoms, selected from the group consisting of O, N, S, SO and SO₂; R⁸
 25 being as defined in claim 6.
 - 9. A process for preparing compounds of the formula (I) as claimed in claim 1, which comprises the following steps:

$$\mathbb{R}^{2}$$
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{5}

- a) reaction of a carboxamide of the formula (III) with a halogenating agent to give a compound of the formula (IV), and
- 5 b) reaction of this compound with a thioether R⁵SH in the presence of a base to give the end products of the formula (I), where in these formulae the radicals R¹, R², R³, R⁴, R⁵, X and Y and the index n have the meanings given in claim 1 and Hal is halogen.
- 10. A process for preparing compounds of the formula (I) as claimed in claim 1, which comprises reacting an activated derivative of the carboxylic acid or thiocarboxylic acid of the formula (VI)

$$R^{1}$$
 Y OH R^{3} $(O)_{n}$ (VI)

in the presence of a base with a compound of the formula (VII)

$$R^{5}$$
NHR⁴
(VII)

where in these formulae the radicals R¹, R², R³, R⁴, R⁵, X and Y and the indices m and n have the meanings given in claim 1.

11. A process for preparing compounds of the formula (la) as claimed in claim 1by thermal decomposition of the sulfimides of the formula (VIII)

where the radicals R¹, R², R³, R⁵, X and Y and the index n are as defined in claim 1,

R⁵ is one of the groups defined in claim 1 for R⁵ having a β-hydrogen atom and R⁵ is the ethylenically unsaturated leaving group corresponding to R⁵ reduced by one hydrogen atom.

12. A process for preparing compounds of the formula (II) as claimed in claim 2, which comprises reacting the compounds of the formula (Ib)

with an alcohol R⁴'-OH in the presence of an azodicarboxylic acid diester and a phosphine in accordance with the scheme above to give the compounds of the formula (II) in which, R⁴' has one of the meanings defined in claim 2, except for H, and R¹, R², R³, R⁶, X, Y and n have one of the meanings defined in claim 2.

- 13. A composition having insecticidal, acaricidal, ixodicidal, nematicidal, molluscidal and/or fungicidal action, which comprises at least one compound of the formula (I) or a salt thereof and/or a compound of the formula (II) or a salt thereof as claimed in claim 1 and 2, respectively.
- 14. A method for controlling animal pests comprises the step of directly or indirectly applying to the pest a compound of the formula (I) or a salt thereof as claimed in claim 1.
- 15. A method for controlling animal pests comprises the step of directly or indirectly applying to the pest a compound of the formula (II) or a salt thereof as claimed in claim 2.
- 20 16. A method for warding off or fending off harmful organisms, where one or more compounds of the formula (I) or salts thereof as claimed in claim 1 are applied to the site from which the harmful organisms are to be fended off or warded off.

4 6

10

5

- 17. A method for warding off or fending off harmful organisms, where one or more compounds of the formula (II) or salts thereof as claimed in claim 2 are applied to the site from which the harmful organisms are to be fended off or warded off.
- 5 18. A veterinary medicament comprising a compound of the formula (I) or a salt thereof as claimed in claim 1.
 - 19. A veterinary medicament comprising a compound of the formula (II) or a salt thereof as claimed in claim 2.
 - 20. A process for preparing sulfimides of the formula (VIII) by reacting a thiohydroxamic acid of the formula (Ia) in the presence of a compound R⁵-Z and a base according to the scheme below:

10

15

$$R^2$$
 R^3
 R^5
 R^5

where the radicals R^1 , R^2 , R^3 , R^5 , X and Y and the index n are as defined in claim 1, R^{5° independently of R^5 is one of the groups defined in claim 1 for R^5 and Z is a leaving group.