

Effect of a treatment using causal inference

DECEMBER, TUESDAY 11TH

Introduction

Traumabase

- Data: from 7000 patients, 250 variables to 3000 patients, 35 variables
- Goal: perform causal inference to assess the effect of a treatment on the mortality of patients with head trauma

Introduction

- Patients : Trauma.cranien == I || AIS.tete ≥ 2
- Treatment : Acide Tranexamique
- Outcome : DC.Trauma / Glasgow.sortie

SUMMARY

I. <u>Preprocessing</u>

- A. Missing values analysis
- B. Imputation
- C. Restriction

II. Descriptive analysis

- A. Principal component analysis
- B. Hierarchical clustering
- C. Visualization of main variables

III. <u>Causal inference</u>

- A. Matching
- B. Inverse Propensity Weighting
- C. Discussion

Preprocessing

A. Missing values analysis

- From 244 variables, we keep 54 based on the doctors' input.
- Many of these null entries are not really missing - distinguishing them implies understanding the medical guidelines.

Percentage of missing values

null.data

Preprocessing

A. Missing values analysis – not really missing entries

- We delete the only variable that has more than 75% of missing data: Lactates.prehosp
- Only 3 remaining variables that have more than 26% of missing values: DTC.IP.max Alcool, and Glasgow.sortie

Percentage of missing values after cleaning data

null.data

A. Missing values analysis – missing completely at random?

ISS.2 for patients with trauma cranien or AIS.tete >=2, according to having at least one missing entry

B. Imputation

- Main method: iterative Factorial Analysis for Mixed Data model, package missMDA
- Most distributions unchanged MCAR

B. Imputation

- But some source of concern with Glasgow.sortie, Alcool
- Alternative method run to test sensitivity of causal inference to imputation: random forest, package missForest

- Extracting most of the information using only 10 components
- 62% of the variance kept
- Working on quantitative variables

- Visualizing the contribution of each variable to the principal components
- Gives an idea on the correlation between variables

B. Hierarchical clustering

- Cluster patients to understand the link between DC. Trauma and variables
- Both categorical and quantitative variables: clustering using FAMD
- R package: Hierarchical Clustering on Principal Components

Individual factor map

B. Hierarchical clustering

Hierarchical clustering output

Hierarchical clustering on the factor map

B. Hierarchical clustering

C. Data visualization

- Idea: Doctors look at measurements of variables to take their decisions
- Goal: Check their assumptions and possibly find new ways to predict trauma/shock/necessity of using Acide.tranexamique

C. Data visualization

Glasgow.initial and Cranial trauma

II. <u>Descriptive analysis</u>

C. Data visualization

Glasgow.initial and Hemorrhagic shock

C. Data visualization

Prothrombin Ratio

Cranial Trauma

Hemorrhagic shock

C. Data visualization

Hb Percentage

Cranial Trauma

Hemorrhagic shock

C. Data visualization

Acide tranexamique

C. Data visualization

Acide tranexamique

C. Data visualization

P(Died|Treated): 0.16

P(Died| Not treated) : 0.08

Treatment kills?

C. Data visualization

Comparaison of the treated/nontreated patients

A. Matching

 Pair each treated patient with a similar untreated patient

R package: Matching

Then, regression:DC.Trauma ~ Acide.tranexamique

A. Matching

Before matching

After matching

A. Matching

Before matching

After matching

A. Matching

Average treatment effect using Matching


```
## [1] "95% ATE on Glasgow.sortie : [-1.26, -0.67, -0.07]"
```

```
## [1] "95% ATE on Glasgow.sortie (FAMD) : [-1.59, -1.00, -0.42]"
```


- Correct the effect of confounding factors
- R package: ipw, survey, grf
- IPW estimator of IPW, double-robust estimator, linear regression

$$\tau = \mathbb{E}\left[Y_i(1) - Y_i(0)\right]$$

$$\hat{\tau}_{DM} = \frac{1}{n_1} \sum_{W_i = 1} Y_i - \frac{1}{n_0} \sum_{W_i = 1} Y_i \qquad \hat{\tau}_{IPW} = \frac{1}{n} \sum_{i=1}^n \left(\frac{W_i Y_i}{\hat{e}(X_i)} - \frac{(1 - W_i) Y_i}{1 - \hat{e}(X_i)} \right)$$

$$\hat{\tau}_{IPW} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{W_i Y_i}{\hat{e}(X_i)} - \frac{(1 - W_i) Y_i}{1 - \hat{e}(X_i)} \right)$$

$$e(x) = \mathbb{P}\left[W_i = 1 \,\middle|\, X_i = x\right]$$

- IPW estimator:
 - e : Logistic regression Acide tranexamique ~ X (confounder factors)
 - Computing the formula
- Double-robust estimator
- Weighted linear regression DC.Trauma ~ Treatment or not (slope)


```
ATE_table(treatment_data_important, important = TRUE)
```


B. Inverse Propensity Weighting

Random forest ?

■ Alcool ? DTC.IP.max ?

■ Glasgow.sortie?

Conclusion

Average treatment effect

