1217: Functional Programming

Nao Hirokawa **JAIST**

Term 2-1, 2021

http://www.jaist.ac.jp/~hirokawa/lectures/fp/

1217: Functional Programming

1/11

Termination

Schedule			
10/15	introduction	11/12	interpreters
10/18	algebraic data types l	11/15	compilers
10/22	algebraic data types II	11/19	termination
10/25	program reasoning	11/22	confluence
10/29	applications	11/26	verification
11/1	data structures I	11/29	review
11/5	data structures II	12/6	exam
11/8	computational models		

Evaluation

exam
$$(60)$$
 + reports (40)

1217: Functional Programming

2/11

Termination

Definition

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence:

$$t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} t_3 \rightarrow_{\mathcal{R}} \cdots$$

Question

terminating or not?

$$\boxed{1} \{ \mathsf{f}(\mathsf{f}(x)) \to \mathsf{s}(\mathsf{s}(\mathsf{f}(x))) \}$$

$$3 \{ \mathsf{b}(\mathsf{a}(x)) \to \mathsf{a}(\mathsf{b}(x)) \}$$

$$\left\{ \begin{array}{ccc} \mathsf{f}(\mathsf{f}(x)) & \to & \mathsf{f}(\mathsf{g}(\mathsf{f}(x))) \\ \mathsf{g}(x) & \to & x \end{array} \right\}$$

$$2 \left\{ \begin{array}{ccc} \mathsf{f}(\mathsf{f}(x)) & \to & \mathsf{f}(\mathsf{g}(\mathsf{f}(x))) \\ \mathsf{g}(x) & \to & x \end{array} \right\}$$

$$4 \left\{ \begin{array}{ccc} \mathsf{0} + y & \to & y \\ x + y & \to & y + x \\ \mathsf{s}(x) + y & \to & \mathsf{s}(x + y) \end{array} \right\}$$

1217: Functional Programming 3/11 1217: Functional Programming 4/11

Terminating or Not?

$$[5] \{\underline{m} + \underline{n} \to \underline{m+n} \mid m, n \in \mathbb{N}\}$$

(e.g. 1+2 stands for $\underline{3}$)

$$\begin{bmatrix}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{bmatrix}$$

1217: Functional Programming

5/11

Examples of Algebras

consider $\{0, s, +\}$ -algebra $\mathcal{A} = (\mathbb{N}, \{0_A, s_A, +_A\})$

$$\mathbf{0}_{\mathcal{A}} = 1$$
 $\mathbf{s}_{\mathcal{A}}(x) = x + 1$ $+_{\mathcal{A}}(x, y) = 2x + y$

for assignment α with $\alpha(x) = 10$ and $\alpha(y) = 2$

$$[\alpha]_A(\mathsf{s}(x)+y) = \mathsf{s}_A(\alpha(x)) +_A \alpha(y) = 24$$

$$[\alpha]_{\mathcal{A}}(\mathsf{s}(x+y)) = \mathsf{s}_{\mathcal{A}}(\alpha(x) +_{\mathcal{A}} \alpha(y)) = 23$$

Exercise

does next inequality hold for any $\alpha: \mathcal{V} \to \mathbb{N}$?

$$[\alpha]_{\mathcal{A}}(\mathsf{s}(x)+y) > [\alpha]_{\mathcal{A}}(\mathsf{s}(x+y))$$

Algebras

Definition

 \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ consists of

- carrier
- A
- interpretations $f_A: A^n \to A$ if $f^{(n)} \in \mathcal{F}$

Definition

- assignment
- $\alpha \colon \mathcal{V} \to A$
- interpretation function $[\alpha]_{\mathcal{A}}(\,\cdot\,) \colon \mathcal{T}(\mathcal{F},\mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

1217: Functional Programming

6/11

Termination Criterion

Definition

algebra $\mathcal{A} = (\mathbb{N}, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ (on \mathbb{N}) is monotone if

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b_i,\ldots,a_n)$$

for all $f^{(n)} \in \mathcal{F}$ and all $a_1, \ldots, a_n, b_i \in \mathbb{N}$ with $a_i > b_i$

Theorem

TRS $\mathcal R$ is terminating if there is monotone algebra on $\mathbb N$ such that

$$[\alpha]_{\mathcal{A}}(\ell) > [\alpha]_{\mathcal{A}}(r)$$

for all rules $\ell \to r \in \mathcal{R}$ and assignments α

Example of Termination Proof

Claim

TRS $\mathcal{R} = \left\{ \begin{array}{l} 0 + y \to y \\ \mathsf{s}(x) + y \to \mathsf{s}(x + y) \end{array} \right\}$ is terminating

Proof.

Consider the algebra $\mathcal{A} = (\mathbb{N}, \{0_A, s_A + A\})$ with:

$$0_A = 1$$

$$s_A(x) = x + 1$$

$$0_{A} = 1$$
 $s_{A}(x) = x + 1$ $+_{A}(x, y) = 2x + y$

 \mathcal{A} is **monotone** and for every $x, y \in \mathbb{N}$ we have

$$0_A +_A y = y + 2 > y = y$$

 $s_A(x) +_A y = 2x + y + 2 > 2x + y + 1 = s_A(x +_A y)$

Hence, \mathcal{R} is terminating.

1217: Functional Programming

9/11

Homework 2/2

- \square Hamming's Problem: The set H of natural numbers is inductively defined as follows:
 - \blacksquare 1 \in H, and
 - If $n \in H$ then $2n, 3n, 5n \in H$.

The set looks like:

$$H = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, \ldots\}$$

Implement the infinite list h that lists all elements of H in increasing order. (Hint: Use infinite lists.)

Homework 1/2

1 Use a monotone algebra on \mathbb{N} to prove termination, or find an infinite rewrite sequence.

$$\blacksquare \mathcal{R}_1 = \{ \mathsf{f}(\mathsf{f}(x)) \to \mathsf{s}(\mathsf{s}(\mathsf{f}(x))) \}$$

2
$$\mathcal{R}_2 = \{ \mathsf{b}(\mathsf{a}(x)) \to \mathsf{a}(\mathsf{b}(x)) \}$$

4
$$\mathcal{R}_4 = \{(x+y) + z \to x + (y+z)\}$$

$$\mathbf{5} \ \mathcal{R}_5 = \left\{ \begin{array}{ccc} 0+y & \rightarrow & y \\ \mathbf{s}(x)+y & \rightarrow & \mathbf{s}(x+y) \\ x+y & \rightarrow & y+x \\ (x+y)+z & \rightarrow & x+(y+z) \end{array} \right\}$$

$$\mathcal{R}_6 = \left\{ \begin{array}{ccc} [] ++ys & \rightarrow & ys \\ (x:xs) ++ys & \rightarrow & x:(xs++ys) \end{array} \right\}$$

1217: Functional Programming

10/11