Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №2 по курсу "Математическая статистика"

Тема Интервальные оценки

Студент Нисуев Н. Ф.

Группа ИУ7-62Б

Вариант 10

Преподаватель Власов П. А.

СОДЕРЖАНИЕ

1	Содержание работы	3
2	Определения	4
3	Формулы	5
4	Текст программы	6
5	Результаты работы программы	9

1 Содержание работы

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

- 1. Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ:
 - а) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - б) вычисление нижней и верхней границ $\underline{\hat{\mu}}(\vec{x}_n), \, \overline{\hat{\mu}}(\vec{x}_n)$ для γ доверительного интервала для математического ожидания MX;
 - в) вычисление нижней и верхней границ $\hat{\underline{\sigma}}(\vec{x}_n)$, $\bar{\hat{\sigma}}(\vec{x}_n)$ для γ доверительного интервала для дисперсии DX.
- 2. Вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта.
- 3. Для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x}_N)$, также графики функций $y = \hat{\mu}(\vec{x}_n), \ y = \underline{\mu}(\vec{x}_n), \ y = \overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N;
 - б) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N),$ также графики функций $z=S^2(\vec{x}_n),$ $z=\underline{\sigma^2}(\vec{x}_n),$ $z=\overline{\sigma^2}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

2 Определения

Определение γ -доверительного интервала для значения параметра распределения случайной величины

Пусть:

X — случайная величина, закон которой известен с точностью до неизвестного θ .

 $\vec{X} = X_1, ..., X_n$ - случайная выборка из генеральной совокупности X.

Опр Интервальной оценкой параметра θ уровня $\gamma \in (0,1)$ (γ - интервальной оценкой) называется пара статистик:

$$\underline{\theta}(\vec{X})$$
 и $\overline{\theta}(\vec{X})$

таких, что

$$P\{\theta \in (\underline{\theta}(\vec{X}), \ \overline{\theta}(\vec{X}))\} = \gamma.$$

 $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ называют нижней и верхней границами интервальной оценки соответственно.

Опр γ - доверительным интервалом (доверительным интервалом уровня γ) для параметра θ называют реализацию интервальной оценки уровня γ для этого параметра, то есть интервал:

$$(\underline{\theta}(\vec{x}), \ \overline{\theta}(\vec{x})),$$

где \vec{x} — выборка из генеральной совокупности X.

3 Формулы

Формулы для вычисления границ γ - доверительного интервала для математического ожидания и дисперсии нормальной случайной величины

Таблица 3.1 – Таблица границ доверительных интервалов

Параметры	Центральная статистика	Границы
μ — неизвестно,	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	$u(\vec{X}) - \overline{X} - u_{1-\alpha}\sigma$
σ — известно.		$\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$ $\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{u_{1-\alpha}\sigma}{\sqrt{n}}$
Oценить μ .		$\mu(\Lambda_n) - \Lambda + \frac{1}{\sqrt{n}}$
μ — неизвестно,	_	$\left(\overrightarrow{X} \right) - \overline{X} - \frac{t_{1-\alpha}^{(n-1)} S(\vec{X}_n)}{T_{1-\alpha}} \right)$
σ — неизвестно.	$\frac{\mu - \overline{X}}{S(\overline{X}_n)} \sqrt{n} \sim St(n-1)$	$\frac{\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{t_{1-\alpha}^{(n-1)}S(\vec{X}_n)}{\sqrt{n}}}{\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{t_{1-\alpha}^{(n-1)}S(\vec{X}_n)}{\sqrt{n}}}$
Oценить μ .		$\overline{\mu}(X_n) = X + \frac{1-\alpha}{\sqrt{n}}$
σ — неизвестно.	$\frac{S(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$	$\underline{\sigma}^2(\vec{X}_n) = \frac{S^2(\vec{X}_n)(n-1)}{b^{(n-1)}}$
Оценить σ^2 .		$ \underline{\sigma}^{2}(\vec{X}_{n}) = \frac{S^{2}(\vec{X}_{n})(n-1)}{h_{1-\alpha}^{(n-1)}} \overline{\sigma}^{2}(\vec{X}_{n}) = \frac{S^{2}(\vec{X}_{n})(n-1)}{h_{\alpha}^{(n-1)}} $

где:

n — объем выборки,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 — выборочное среднее,

$$S^2(\vec{X}_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 — исправленная выборочная дисперсия,

 γ — уровень доверия,

$$\alpha = \frac{1-\gamma}{2}$$
,

 u_{α} — квантиль уровня α распределения N(0,1),

$$t_{\alpha}^{(n-1)}$$
 — квантиль уровня α распределения $St(n-1)$,

$$h_{\alpha}^{(n-1)}$$
 — квантиль уровня α распределения $\chi^2(n-1)$.

4 Текст программы

```
1 function lab2(X, gamma)
 2
       n = length(X);
 3
 4
       [mu, s2] = calc\_select\_params(X);
5
 6
       fprintf("Выборочное среднее = %.3 f \ n", mu);
 7
       fprintf("Исправленная выборочная дисперсия = %.3 f\n", s2);
8
9
       alpha = (1 - gamma) / 2;
10
11
       [lower m, upper m] = calc m whithout sigma confint(X, alpha);
12
13
       fprintf("\ngamma—доверительный интервал для mu: (%.4f, %.4f) \ n",
          lower m, upper m);
14
       [lower sigma, upper sigma] = calc sigma confint(X, alpha);
15
16
       fprintf("\ngamma—доверительный интервал для sigma: (%.4f, %.4f)\n",
17
          lower sigma, upper sigma);
18
19
       mu arr = zeros(n, 1);
       mu line = zeros(n, 1);
20
21
       mu lower = zeros(n, 1);
22
       mu upper = zeros(n, 1);
23
24
       s2 	mtext{ arr} = zeros(n, 1);
25
       s2 line = zeros(n, 1);
       sigma\ lower = zeros(n, 1);
26
27
       sigma upper = zeros(n, 1);
28
       mu line(1 : n) = mu;
29
       s2 line(1 : n) = s2;
30
       for i = 1 : n
31
           X = X(1 : i);
32
33
34
           [mu \ arr(i), \ s2 \ arr(i)] = calc \ select \ params(X);
           [mu\ lower(i),\ mu\ upper(i)] = calc\ m\ whithout\ sigma\ confint(X),
35
              alpha);
```

```
[sigma lower(i), sigma upper(i)] = calc sigma confint(X, )
36
              alpha);
37
       end
38
       mu plot(2, n, mu line, mu arr, mu lower, mu upper);
39
40
       figure();
41
       sigma plot(2, n, s2 line, s2 arr, sigma lower, sigma upper);
42 end
43
44 | function [mu, s2] = calc select params(X)
       n = length(X);
45
46
      mu = 0;
47
       s2 = 0;
48
49
       if (n > 1)
50
           mu = sum(X) / n;
51
           s2 = sum((X - mu) .^2) / (n - 1);
52
53
       end
54 end
55
56 \, \% \, m -  неизвестно,
57 % sigma — неизвестно,
58 % Оценить т
59 | function [I, u] = calc_m_whithout_sigma_confint(X, alpha)
60
       n = length(X);
       [mu, s2] = calc select params(X);
61
       q st = tinv((1 - alpha), (n - 1));
62
63
64
       I = mu - (q_st * sqrt(s2) / sqrt(n));
       u = mu + (q st * sqrt(s2) / sqrt(n));
65
66 end
67
68 | \% sigma — неизвестно
69 | % Оценить sigma ^2
70| function [I,u] = calc_sigma confint(X, alpha)
       n = length(X);
71
       [^{\sim}, s2] = calc select params(X);
72
73
74
       q xi2 r = chi2inv((1 - alpha), (n - 1));
       q xi2 l = chi2inv(alpha, (n-1));
75
```

```
76
77
       l = s2 * (n - 1) / q xi2 r;
       u = s2 * (n - 1) / q xi2 | ;
78
79 end
80
81 function mu plot(startn, endn, mu line, mu arr, mu lower, mu upper)
       plot((startn : endn), mu line(startn : endn), 'LineWidth', 1);
82
83
       hold on;
84
       plot((startn : endn), mu arr(startn : endn), 'LineWidth', 1);
85
       hold on;
       plot((startn : endn), mu upper(startn : endn), 'LineWidth', 1);
86
87
       hold on;
       plot((startn : endn), mu lower(startn : endn), 'LineWidth', 1);
88
89
       hold on;
90
       grid on;
91
92
       xlabel("n");
       ylabel('\mu');
93
94
       legend('\mu\^(x N)', '\mu\^(x n)', '\mu^{-}(x n)', '\mu {-}(x n)');
95
96 end
97
98 function sigma plot(startn, endn, s2 line, s2 arr, sigma lower,
      sigma upper)
       plot((startn : endn), s2 line(startn : endn), 'LineWidth', 1);
99
100
       hold on;
101
       plot((startn : endn), s2 arr(startn : endn), 'LineWidth', 1);
102
       hold on;
103
       plot((startn : endn), sigma upper(startn : endn), 'LineWidth', 1);
104
       hold on;
105
       plot((startn : endn), sigma lower(startn : endn), 'LineWidth', 1);
106
       hold on;
107
108
       grid on;
       xlabel("n");
109
110
       ylabel('\sigma');
111
112
       legend ('S^2(x N)', 'S^2(x n)', '\sigma^\{2 - \}(x n)',
           ' \simeq ^2 {-}(x n)';
113 end
```

5 Результаты работы программы

Для Варианта №10

Точечные оценки:

$$\hat{\mu}(\vec{x}_n) = 1.836$$

$$S^2(\vec{x}) = 1.153$$

 γ -доверительные интервалы при $\gamma{=}0.9$:

$$(\mu(\vec{x}_n), \overline{\mu}(\vec{x}_n)) = (1.6739, 1.9989)$$

$$(\underline{\sigma}^2(\vec{x}_n), \overline{\sigma}^2(\vec{x}_n)) = (0.9430, 1.4467)$$

Рисунок 5.1 – График зависимости оценки математического ожидания и границ γ -доверительного интервала от объема выборки n

Рисунок 5.2 – График зависимости оценки дисперсии и границ γ -доверительного интервала от объема выборки n