

Décomposition conjointe d'une séquence de signaux spectroscopiques

Vincent Mazet

(vincent.mazet@unistra.fr)

séminaire ICube-MIV, 27 mars 2014

Sommaire

- Présentation du problème
- Approche bayésienne & algorithme RJMCMC
- Approches par approximation parcimonieuse
 - 1. Décomposition séquentielle + positivité des amplitudes
 - 2. Décomposition conjointe + positivité des amplitudes

Objectifs

- Estimer les paramètres des raies (position, largeur, amplitude)
- Estimer le nombre de raies
- Associer les raies entre elles → trajectoire

Hypothèses

- Spectre = somme de raies + bruit
- Les raies évoluent lentement dans le temps
- Le nombre de raies peut varier au cours de la séquence

Décomposition séquentielle ou conjointe?

Décomposition séquentielle ou conjointe?

Décomposition séquentielle spectres décomposés indépendamment

- algorithmes performants pour décomposer un unique spectre [Gulam Razul 2003, Fischer 2000, ...]
- post-traitement pour associer les raies
- deux décompositions contiguës peuvent être très différentes

Décomposition séquentielle ou conjointe?

Décomposition conjointe spectres décomposés ensembles

- chaque décomposition aide ses décompositions voisines
- permet de modéliser l'évolution lente des raies

Approche bayésienne

Travail commun avec S. Faisan (ICube)

$$\underbrace{(\boldsymbol{y}_s)_n}_{\text{spectre}} = \underbrace{\sum_{k=1}^K \sum_{m=1}^{l_k} a_{k,m} \exp\left(-\frac{(n-c_{k,m})^2}{2w_{k,m}^2}\right) \delta_{b_k+m-1,s}}_{\text{bruit}} + \underbrace{(\boldsymbol{v}_s)_n}_{\text{bruit}}$$

$$\underbrace{(\boldsymbol{y}_s)_n}_{\text{spectre}} = \underbrace{\sum_{k=1}^K \sum_{m=1}^{l_k} a_{k,m} \exp\left(-\frac{(n-c_{k,m})^2}{2w_{k,m}^2}\right) \delta_{b_k+m-1,s}}_{\text{bruit}} + \underbrace{(\boldsymbol{v}_s)_n}_{\text{bruit}}$$

 $\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, r_{\boldsymbol{v}})$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$p(\mathbf{c}_{k}|r_{\mathbf{c}}, l_{k}) = p(c_{k,1}|\dots) \times p(c_{k,2}|c_{k,1},\dots) \times \dots \times p(c_{k,l_{k}}|c_{k,l_{k}-1},\dots)$$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}}, l_{k}) = p(c_{k,1}|\dots) \times p(c_{k,2}|c_{k,1},\dots) \times \dots \times p(c_{k,l_{k}}|c_{k,l_{k}-1},\dots)$$

$$= \frac{1}{(2\pi r_{\boldsymbol{c}})^{\frac{l_{k}-1}{2}}} \exp\left(-\frac{1}{2r_{\boldsymbol{c}}} \|\boldsymbol{D}\boldsymbol{c}_{k}\|^{2}\right)$$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$D = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ & & \ddots & \ddots & \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

$$p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}}, l_{k}) = p(c_{k,1}|\dots) \times p(c_{k,2}|c_{k,1},\dots) \times \dots \times p(c_{k,l_{k}}|c_{k,l_{k}-1},\dots)$$

$$= \frac{1}{(2\pi r_{\boldsymbol{c}})^{\frac{l_{k}-1}{2}}} \exp\left(-\frac{1}{2r_{\boldsymbol{c}}} \|\boldsymbol{D}\boldsymbol{c}_{k}\|^{2}\right)$$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$D = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ & & \ddots & \ddots & \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

$$p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}}, l_{k}) = p(c_{k,1}|\dots) \times p(c_{k,2}|c_{k,1},\dots) \times \dots \times p(c_{k,l_{k}}|c_{k,l_{k}-1},\dots)$$

$$= \frac{1}{N-1} \times \frac{1}{(2\pi r_{\boldsymbol{c}})^{\frac{l_{k}-1}{2}}} \exp\left(-\frac{1}{2r_{\boldsymbol{c}}} \|\boldsymbol{D}\boldsymbol{c}_{k}\|^{2}\right)$$

$$p(\boldsymbol{c}|r_{\boldsymbol{c}},\boldsymbol{l}) = \prod_{k=1}^{K} p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}},l_{k})$$

$$D = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ & & \ddots & \ddots & \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

$$p(\boldsymbol{c}_{k}|r_{\boldsymbol{c}}, l_{k}) = p(c_{k,1}|\dots) \times p(c_{k,2}|c_{k,1},\dots) \times \dots \times p(c_{k,l_{k}}|c_{k,l_{k}-1},\dots)$$

$$= \frac{1}{N-1} \times \frac{1}{(2\pi r_{\boldsymbol{c}})^{\frac{l_{k}-1}{2}}} \exp\left(-\frac{1}{2r_{\boldsymbol{c}}} \|\boldsymbol{D}\boldsymbol{c}_{k}\|^{2}\right) \mathbb{I}_{\mathcal{C}}(\boldsymbol{c}_{k})$$

- M: nombre total de raies
- K: nombre de trajectoires
- *l*: longueur des trajectoires
- b: numéro du premier spectre des trajectoires

Comment favoriser un nombre faible de raies **et** de trajectoires?

Approche standard:

$$p(M, K, \boldsymbol{l}, \boldsymbol{b}) = p(M, K)p(\boldsymbol{l}, \boldsymbol{b}|M, K)$$

Comment favoriser un nombre faible de raies **et** de trajectoires?

Approche standard:

$$p(M, K, \boldsymbol{l}, \boldsymbol{b}) = p(M, K)p(\boldsymbol{l}, \boldsymbol{b}|M, K)$$

Or, si K est grand :

- et M = SK: une configuration $\Rightarrow p(\mathbf{l}, \mathbf{b}|M, K) = 1$
- et $M \approx SK/2$: beaucoup de configurations $\Rightarrow p(\mathbf{l}, \mathbf{b}|M, K) \ll 1$

 \Rightarrow A priori joint :

$$p(M, K, \mathbf{l}, \mathbf{b}) \propto \xi^{M+K} \mathbb{I}_{\mathcal{X}}(M, K, \mathbf{l}, \mathbf{b})$$

où $\ensuremath{\mathcal{X}}$ définit l'ensemble des valeurs admissibles

Hyperparamètres:

- $r_c, r_a, r_w \sim \mathcal{U}_{\mathbb{R}^+}$: douceur des trajectoires
- $lacksquare r_{oldsymbol{v}} \sim \mathcal{U}_{\mathbb{R}^+}$: variance du bruit
- ξ petit : favorise un nombre faible de trajectoires et de raies

Optimisation

- Nombre de variables important et inconnu
- Loi a posteriori très irrégulière

Optimisation

- Nombre de variables important et inconnu
- Loi a posteriori très irrégulière
 - → reversible jump Monte Carlo Markov chain (RJMCMC)
- 1. Initialiser l'état $\theta^{(0)}$
- 2. Pour *i* allant de 1 à beaucoup :
- choisir un mouvement
- 4. proposer θ^* à partir de $\theta^{(i)}$
- 5. accepter $(\boldsymbol{\theta}^{(i+1)} \leftarrow \boldsymbol{\theta}^*)$ ou refuser $(\boldsymbol{\theta}^{(i+1)} \leftarrow \boldsymbol{\theta}^{(i)})$

Les échantillons générés sont distribués suivant la loi a posteriori.

Deux variables de dimension

M et K sont très corrélées :

Deux variables de dimension

Pour M et K fixés, le problème est de dimension 3M + 2K + 4.

Mise à jour des paramètres des raies

Estimation des paramètres

- Comment comparer des densités de probabilité qui n'ont pas la même dimension?
- Comment gérer le label switching (dans un contexte où le nombre de variables varie)?
- → Estimateur MAP : l'estimation est l'échantillon le plus probable.

Lois candidates mixtes

Les lois candidates permettent de générer des états candidats θ^* .

- Loi candidate uniforme :
 - (candidats générés uniformément sur l'espace)
 - permet d'explorer « tout » l'espace
 - difficile de proposer un bon candidat

Lois candidates mixtes

Les lois candidates permettent de générer des états candidats θ^* .

- Loi candidate uniforme :
 - (candidats générés uniformément sur l'espace)
 - © permet d'explorer « tout » l'espace
 - ② difficile de proposer un bon candidat
- Loi candidate issue du modèle ou des données :
 - (ex. : favoriser les naissances là où le résidu est grand)
 - © augmente la probabilité de proposer un bon candidat
 - le rapport d'acceptation peut être très faible pour sortir d'une configuration peu probable

Lois candidates mixtes

Les lois candidates permettent de générer des états candidats θ^* .

- Loi candidate uniforme :
 - (candidats générés uniformément sur l'espace)
 - permet d'explorer « tout » l'espace
 - © difficile de proposer un bon candidat
- Loi candidate issue du modèle ou des données :
 - (ex. : favoriser les naissances là où le résidu est grand)
 - augmente la probabilité de proposer un bon candidat
 - ② le rapport d'acceptation peut être très faible pour sortir d'une configuration peu probable
- ⇒ Utiliser une loi mixte permet d'obtenir de bonnes propriétés

Autres détails d'implémentation

Multi-résolution

Une petite partie des spectres est d'abord décomposée, puis les autres sont ajoutés progressivement.

Sur-estimation des hyperparamètres

Pour contre-balancer le phénomène qui, durant le *burn-in*, tend à sous-estimer les hyperparamètres.

Probabilités des mouvements

Certains mouvements sont plus probables que d'autres. Par exemple, on effectue beaucoup de mises à jour après une naissance.

Données réelles

Données réelles

Données réelles

Approche bayésienne: conclusion

Résumé:

- Modèle bayésien pour la décomposition jointe de spectres
- Échantillonnage de l'a posteriori avec l'algorithme RJMCMC

Originalités et contributions :

- Approche conjointe
- A priori markovien pour modéliser l'évolution lente des raies
- Deux variables de dimension corrélées (M et K)
- Mouvements RJMCMC adaptés au problème

Approximation parcimonieuse

Travail commun avec C. Soussen & E.-H. Djermoune (CRAN)

Motivation

- Algorithmes MCMC inexploitables lorsque les données sont trop volumineuses
- Alternative efficace: algorithmes déterministes des méthodes d'approximation parcimonieuse [Bourguignon 2007, Sahnoun 2012]

Modèle

$$y_s = Ax_s + b_s$$

où:

- x_s : vecteur des amplitudes
- \bullet b_s : bruit
- A: dictionnaire des raies potentielles (atomes)

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{a}_1 & \dots & \boldsymbol{a}_M \end{pmatrix}$$

- \Rightarrow dictionnaire surdimensionné ($M \gg N$)
- ⇒ atomes très corrélés
- $\Rightarrow x_s$ parcimonieux

Deux approches

- Première approche
 Décomposition séquentielle + positivité des amplitudes
- Seconde approche
 Décomposition conjointe + positivité des amplitudes

Pour les deux méthodes, les raies estimées sont classées afin de reconstituer leurs trajectoires

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}_s \geqslant \boldsymbol{0}} \|\boldsymbol{y}_s - \boldsymbol{A}\boldsymbol{x}_s\|_2^2 + \lambda \sum_{m=1}^{M} \varphi(\boldsymbol{x}_s(m))$$

Pour garantir la parcimonie, φ doit être non différentiable en 0

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}_s \geqslant \boldsymbol{0}} \|\boldsymbol{y}_s - \boldsymbol{A}\boldsymbol{x}_s\|_2^2 + \lambda \sum_{m=1}^M \varphi(\boldsymbol{x}_s(m))$$

Pour garantir la parcimonie, φ doit être non différentiable en 0 :

 $\varphi(t) = 1 - \delta_{t=0}$ (norme ℓ_0)

- favorise la parcimonie
- © optimisation combinatoire

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}_s \geqslant \boldsymbol{0}} \|\boldsymbol{y}_s - \boldsymbol{A}\boldsymbol{x}_s\|_2^2 + \lambda \sum_{m=1}^M \varphi(\boldsymbol{x}_s(m))$$

Pour garantir la parcimonie, φ doit être non différentiable en 0 :

$$\varphi(t) = |t|$$
 (norme ℓ_1)

- optimisation quadratique
- positivité facile
- gère les dictionnaires surdimensionnés
- atomes corrélés ⇒ manque de parcimonie [Fuchs 2007]

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}_s \geqslant \boldsymbol{0}} \|\boldsymbol{y}_s - \boldsymbol{A}\boldsymbol{x}_s\|_2^2 + \lambda \sum_{m=1}^M \varphi(\boldsymbol{x}_s(m))$$

Pour garantir la parcimonie, φ doit être non différentiable en 0 :

$$\varphi(t) = \log(|t| + \varepsilon)$$

- choix guidé par l'utilisation de IRℓ₁ [Candes 2008, Zou 2006]
- critère généralement non convexe et multimodal
- \odot IR ℓ_1 sous-optimal mais donne de bons résultats
- positivité facile

- 1. Jusqu'à convergence:
- 2. Calcule $\widehat{m{x}}^{(i)} = rg \min_{m{x}_s \geqslant m{0}} \|m{y}_s m{A}m{x}_s\|_2^2 + \lambda \|m{W}^{(i)}m{x}_s\|_1$
- 3. Calcule $extbf{ extit{W}}^{(i+1)} = \operatorname{diag}(extbf{ extit{w}})$ où $w_n = \frac{1}{(x_s)_n^{(i)} + arepsilon}$

- 1. Jusqu'à convergence:
- 2. Calcule $\widehat{m{x}}^{(i)} = \arg\min_{m{x}_s \geqslant m{0}} \|m{y}_s m{A}m{x}_s\|_2^2 + \lambda \|m{W}^{(i)}m{x}_s\|_1$
- 3. Calcule $extbf{ extit{W}}^{(i+1)} = \operatorname{diag}(extbf{ extit{w}})$ où $w_n = \frac{1}{(x_s)_n^{(i)} + arepsilon}$
- Nous fixons $\varepsilon = 0 \rightarrow \mathsf{Adaptive\ Lasso\ [Zou\ 2006]}$

- 1. Jusqu'à convergence:
- 2. Calcule $\widehat{m{x}}^{(i)} = \arg\min_{m{x}_s \geqslant m{0}} \|m{y}_s m{A}m{x}_s\|_2^2 + \lambda \|m{W}^{(i)}m{x}_s\|_1$
- 3. Calcule $extbf{ extit{W}}^{(i+1)} = \operatorname{diag}(extbf{ extit{w}})$ où $w_n = \frac{1}{(x_s)_n^{(i)} + arepsilon}$
- Nous fixons $\varepsilon = 0 \rightarrow \mathsf{Adaptive \, Lasso} \, [\mathsf{Zou} \, \mathsf{2006}]$
- S'adapte naturellement à la contrainte de positivité [Wipf 2010]

- 1. Jusqu'à convergence:
- 2. Calcule $\widehat{m{x}}^{(i)} = \arg\min_{m{x}_s \geqslant m{0}} \|m{y}_s m{A}m{x}_s\|_2^2 + \lambda \|m{W}^{(i)}m{x}_s\|_1$
- 3. Calcule $extbf{ extit{W}}^{(i+1)} = \operatorname{diag}(extbf{ extit{w}})$ où $w_n = \frac{1}{(x_s)_n^{(i)} + arepsilon}$
- Nous fixons $\varepsilon = 0 \rightarrow \mathsf{Adaptive \, Lasso} \, [\mathsf{Zou} \, \mathsf{2006}]$
- S'adapte naturellement à la contrainte de positivité [Wipf 2010]
- Algorithmes de minimisation ℓ_2 - ℓ_1 :
 - ADMM [Fadili 2009, Figueiredo 2010]
 - gradient projeté [Figueiredo 2007]
 - seuillage itératif [Beck 2009, Zibulevsky 2010]
 - algorithme d'homotopie [Asif 2012]

Décomposition conjointe non contrainte

La douceur d'évolution peut être mesurée en calculant la similarité entre x_s et $x_{s+1} \to$ distance de Hausdorff.

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \sum_{s=1}^{S} \|\boldsymbol{y}_{s} - \boldsymbol{A}\boldsymbol{x}_{s}\|_{2}^{2} + \lambda \sum_{s=1}^{S} \|\boldsymbol{x}_{s}\|_{0} + \mu \sum_{s=1}^{S-1} \max \left(d_{s \to s+1}, d_{s+1 \to s}\right)$$

où $d_{s\to s+1}$ est la plus grande des plus petites distances entre les points de Γ_s (support de x_s) et ceux de Γ_{s+1} (support de x_{s+1}):

$$d_{s \to s+1} = \max_{\gamma_s \in \Gamma_s} \left(\min_{\gamma_{s+1} \in \Gamma_{s+1}} ||\gamma_s - \gamma_{s+1}||_2 \right)$$

Décomposition conjointe non contrainte

Problème combinatoire

- ⇒ Algorithme SBR (single best replacement) [Soussen 2011]
 - algorithme de minimisation ℓ_2 - ℓ_0
 - bons résultats en déconvolution impulsionnelle (où le dictionnaire est grand et redondant)
 - 1. Jusqu'à convergence:
 - 2. Pour chaque atome m du dictionnaire :
 - 3. Calcule le critère avec l'atome m en plus ou en moins
 - 4. Ajoute ou enlève l'atome qui minimise le plus le critère

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

$$\boldsymbol{C}_{i,j} = \begin{cases} d_{i,j} & \text{si } d_{i,j} < D \\ +\infty & \text{sinon} \end{cases} \quad \text{où} \quad d_{i,j} = \frac{(c_i - c_j)^2}{\sigma_c^2} + \frac{(a_i - a_j)^2}{\sigma_x^2} + \frac{(w_i - w_j)^2}{\sigma_w^2}$$

Dictionnaire de M = 300 atomes

Approximation parcimonieuse: conclusion

Résumé:

- Deux approches sont testées :
 - décomposition séquentielle + positivité + classification (IR ℓ_1)
 - décomposition conjointe + classification (SBR)
- Approches plus rapides qu'avec l'algorithme RJMCMC
- Résultats équivalents au RJMCMC si le RSB est faible
- Croisement entre deux trajectoires pas résolu

Conclusion:

Alternative intéressante face aux MCMC pour la décomposition

Perspectives:

- Décomposition conjointe & positivité
- Prise en compte de la douceur d'évolution (normes mixtes ?)

