ECE 101: Linear Systems Fundamentals

Summer Session II 2020 - Lecture 9

Saharnaz Baghdadchi

University of California, San Diego

Today's topics

- Definition of discrete-time Fourier series (DTFS)
- The synthesis and analysis equations for DTFS
- Examples of DTFS

Signals and Systems (2th Edition): sections 3.6 and 3.7

Fourier Series of Discrete-Time

Signals

Fourier Series for Discrete-time Periodic Signals

Fourier Series of a Periodic DT Signal

For a periodic DT signal x[n] with fundamental period $N \geq 1$ and fundamental frequency $\omega_0 = \frac{2\pi}{N}$, we have:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{ik\omega_0 n}, \tag{1}$$

where

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}. \tag{2}$$

- Eq. (1) is called the Fourier series representation of x[n].
- Each a_k is called a Fourier coefficient of x[n].

Key Equations for DT FS

- For a **periodic** signal x[n] with fundamental period N and fundamental frequency $\omega_0 = \frac{2\pi}{N}$
- Synthesis Equation:

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n},$$

Analysis Equation:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$

Notation

$$x[n] \xleftarrow{F.S.} a_k$$

• Important feature: $\{a_k\}$ is periodic with period N

$$a_{k+N} = a_k$$

a_k coefficients are periodic with period of N

The Fourier series coefficients of DT signals are periodic with period
 N

$$a_{k+N} = a_k$$

Proof.

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$

$$a_{k+N} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j(k+N)\omega_0 n}$$

$$= \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} e^{-jN\omega_0 n}$$

$$= \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} e^{-j2\pi n}$$

$$= \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = a_k$$

_

• Find the Fourier series coefficients of the DT signal

$$Cos\left(\frac{5\pi}{4}(n+N)\right) = Cos\left(\frac{5\pi}{4}n\right) \longrightarrow Cos\left(\frac{5\pi}{4}n + \frac{5\pi}{4}N\right) = Cos\left(\frac{5\pi}{4}n\right)$$

$$\frac{5\pi}{4}N = 2k\pi \longrightarrow N = \frac{8}{5}k \longrightarrow N_0 = 8$$

$$Cos\left(\frac{7\pi}{2}n + \frac{7\pi}{2}N\right) = Cos\left(\frac{7\pi}{2}n\right) \longrightarrow \frac{7\pi}{2}N = 2k\pi \longrightarrow N_0 = 4k \longrightarrow N_0 = 4$$
The period of $\chi(n)$ is $LCM(4,8) = 8$, $N = 8$, $\omega_0 = \frac{2\pi}{8} = \frac{7\pi}{4}$

 $x[n] = \cos(\frac{5\pi}{4}n) + j\cos(\frac{\pi}{2}n) + 1$

$$q[n] = 1 + \frac{1}{2}e^{i} + \frac{1}{2}e^{i} + \frac{1}{2}e^{i} + \frac{1}{2}e^{i} + \frac{1}{2}e^{i}$$

• Find the Fourier series coefficients of the DT signal

$$x[n] = \cos(\frac{5\pi}{4}n) + j\cos(\frac{\pi}{2}n) + 1$$

$$x[n] = 1 + \frac{1}{2} e^{\frac{5\pi}{4}n} +$$

In this example N=8, so we are looking for 8 distinct ax values.

• Find the Fourier series coefficients of the DT signal

$$x[n] = \cos(\frac{5\pi}{4}n) + j\cos(\frac{\pi}{2}n) + 1$$

By comparing A[n] written in apponential format with its fourier series representation:

• Find the Fourier series coefficients of the DT signal

$$x[n] = \cos(\frac{5\pi}{4}n) + j\cos(\frac{\pi}{2}n) + 1$$
- another way f identifying the order f e $j\frac{3\pi}{4}n$ is as following:
$$j\frac{5\pi}{4}n - j\frac{2\pi n}{4}n - j\frac{2\pi n}{4} - j\frac{2\pi n}{4}n - j\frac{2\pi n}{4}n$$

$$= e \times e \qquad be cause $e = \cos(-2\pi n) + j\sin(-2\pi n)$

$$= 1$$

$$= e \qquad -j\frac{3\pi}{4}n - j\frac{3\pi}{4}n - j\frac{3\pi}{4}n$$

$$= e \qquad -j\frac{3\pi}{4}n - j\frac{3\pi}{4}n - j\frac{3\pi}{4}n$$$$

If you look at the expanded version of the synthesis equation in the selected range, $-\frac{j\frac{3\pi}{4}n}{2}$ is present in the range and $a_3 = \frac{1}{2}$

Find the Fourier series coefficients of the DT signal

$$x[n] = \cos(\frac{5\pi}{4}n) + j\cos(\frac{\pi}{2}n) + 1$$

$$\begin{bmatrix} a_{-5} = \frac{1}{2} \end{bmatrix}$$
, $\begin{bmatrix} a_{-4} = 0 \end{bmatrix}$, $\begin{bmatrix} a_{-3} = \frac{1}{2} \end{bmatrix}$, $\begin{bmatrix} a_{-2} = \frac{1}{2} \end{bmatrix}$, $\begin{bmatrix} a_{-1} = 0 \end{bmatrix}$, $\begin{bmatrix} a_{-1} =$

Properties of discrete-time

Fourier series

Properties of DTFS (please read Section 3.7)

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \begin{vmatrix} a_k \\ b_k \end{vmatrix} $ Periodic with period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$ \begin{aligned} &Ax[n] + By[n] \\ &x[n-n_0] \\ &x[m] &x^n[n] \\ &x^n[n] \\ &x^n[n] \end{aligned} $ $ x[-n] \\ &x_{(m)}[n] = \begin{cases} &x[n/m], & \text{if n is a multiple of m} \\ &0, & \text{if n is not a multiple of m} \end{aligned} $ $ (\text{periodic with period m} / (\text{periodic with period m}) $	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi N)m_0}$ a_{k-M} a_{-k} a_{-k} $\frac{1}{m}a_k \text{ (viewed as periodic)}$ with period mN
Periodic Convolution	$\sum_{r=(N)} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=(N)} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$egin{array}{l} \{a_k=a_{-k}^* \ \Re e\{a_k\}=\Re e\{a_{-k}\} \ \Im e\{a_k\}=-\Im e\{a_{-k}\} \ a_k = a_{-k} \ orall a_k=-4a_{-k} \ \end{array}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_c[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j\Im m\{a_k\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N} \sum_{n = \langle N \rangle} x[n] ^2 = \sum_{k = \langle N \rangle} a_k ^2$	

Parseval's relation for DTFS

Parseval's relation

Parseval's relation

For a periodic signal $x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$, we have:

$$\frac{1}{N} \sum_{n = < N >} |x[n]|^2 = \sum_{k = < N >} |a_k|^2$$

- Note that $|a_k|^2$ is the average energy of the k'th harmonic component
- Parseval relation: Energy of a signal is equal to sum of the energy of its harmonic components!