695 WS2- Applied Machine Learning Team 6 Final Project Proposal

Problem statement:

Predicting Annual Income of Individuals using Classification Techniques

Description of data set:

For this project, we are using a very well-known dataset named the *Adult* Dataset. It contains information on individuals from the US Census Bureau database, and includes demographic and socio-economic features such as age, education, occupation, work class, marital status, race, gender, and income.

(https://archive.ics.uci.edu/ml/datasets/Adult).

Features: The dataset provides 14 input variables that are a mixture of categorical and continuous data types. They are:

Categorical Features	Continuous Features
workclass	age
education	fnlwgt
marital-status	education-num
occupation	capital-gain
relationship	capital-loss
race	hours-per-week
sex:	
native-country	

Dataset Size: There are a total of 48,842 rows of data, and 3,620 with missing values, leaving 45,222 complete rows.

Classes: There are two class values '>50K' and '<=50K'.

Implementation plan:

We want to implement various classification techniques and compare the results.

- 1. Binary Classification: We will develop binary classification models that predict whether a person's income is above or below \$50K per year. We will also experiment with different techniques for handling missing data, scaling features, and balancing the imbalanced classes.
 - a. Logistic Regression
 - b. Decision Tree
 - c. Random Forest
 - d. SVM
 - e. Neural Network
- 2. Ensemble Model: We will develop ensemble models that combine the predictions of multiple classification algorithms to improve overall performance. We will try a variety of ensemble techniques, such as voting, bagging, boosting, or stacking, and compare their performance against individual models.

- 3. Hyperparameter Tuning: We will experiment with different hyperparameters for classification algorithms.
- 4. Feature Engineering: We will extract new features from the dataset and use these new features to train a classification model.

Team members & task allocation:

Darsh Patel:

- Decision Tree
- Random Forest
- SVM
- Hyperparameter Tuning

Janmejay Mohanty:

- Logistic Regression
- Ensemble Models
- Hyperparameter Tuning

Soumen Sikder Shuvo:

- Neural Network
- Ensemble Models
- Feature Engineering

Each member will contribute to the report writing of his assigned tasks. Also, it will be reviewed and edited by everyone in offline meetings.