Wednesday, July 14

Midterm tomorrow

- check confirmation email from Tuesday.

Math 104 Worksheet 9 UC Berkeley, Summer 2021 Tuesday, July 13

Exercise 1. Justify the following facts about the Cantor set \mathcal{C} . $\subseteq \mathbb{R}$

intersection of closed sets is closed (a) C is compact. bound

(b) C does not contain any intervals. suppose (a,b) < C. There exists neN: (+)" < b-a.

(c) C does not have any interior points.

Let x∈C. For any 170, (a,b) & Cn Br(N= (X-r, X+r) & C by (b).

(d) Every point in C is a limit point of C. Let xEC. Let r>0. There exists nEN: (3) < r. a bunch of disjoint intervals xECn x is an element of some closed (e) Every point in C is a limit point of C. interval of length (1) of Yeigth (3)"

the two endpoints of this interval will lie in Br(x) n C Let XEC. Let 1>0. Br(x)=(x-r,x+r) & C => there exists y & Brix) st. y&C hence y & C°

Exercise 2. Prove that any open set in R is an at most countable disjoint union of open intervals. (Hint: If $U \subseteq \mathbb{R}$ is open, for any $x \in U$, any interval containing x can be expanded to the largest interval in U containing x.)

1 of 1

open. For each x \in U, there exists 1>0: Br(x) = U (x-r,x+r) = U.

Claim:

Check: If xiyell, then either Ix= Iy, or $I_x \cap I_u = \emptyset$

Argue: only at countably many distinct intervals.

CEC

Let Sx=inf) a<x: (a,x)=1

a for each interval I pick que QnI. by deviceness of Q injective.

Recall $\sum_{k=m}^{\infty} a_k \stackrel{\text{def}}{=} \lim_{n \to \infty} S_n$ Therit notions of $\sum_{k=m}^{\infty} a_k$.

Convergence/divergence, $(S_n) = (a_m, a_{n+a_{m+1}}, \dots)$.

Cauchy criterion.

Theorem: A series converges if and only if it satisfies Cauchy criterion. Corollary: If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Question: Is the converse true?

 $\frac{8}{500} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

Harmonic Series.

Theorem (comparison test).

Let Σ an be a series such that an ≥ 0 for all n.

- (i) If Zan converges and Ibn/ = an for all n, then Zbn converges.
- (ii) If ∑an = ∞, and bn ≥ an for all n, then ∑bn=∞.

 diverges to co
- Proof: (i) (Show that $\sum b_n$ satisfies the Cauchy criterion). Let $\epsilon>0$. There exists $N \in \mathbb{N}$ such that $n \geq m \geq N$ implies $\sum_{k=m}^{n} a_k < \epsilon$. Then for $n \geq m \geq N$, $\left|\sum_{k=m}^{n} b_k\right| \leq \sum_{k=m}^{n} \left|b_k\right| \leq \sum_{k=m}^{n} a_k < \epsilon$.
- (ii) Let (sn) be the sequence of partial sums of $\sum a_n$. Let (tn) be the sequence of partial sums of $\sum b_n$. $s_n \le t_n$ for all n. $s_n \to \infty \implies t_n \to \infty$.

 $a_1 + a_2 + a_3 + \dots$ $b_1 + b_2 + b_3 + \dots$ Corollary. Absolutely convergent series converge. Zan abs. conv mean that Z1an1 converges. $a_n \leq |a_n|$. If $\sum a_n$ converges absolutely, then $\sum |a_n| converges$. By comparison test (i), $|a_n| \leq b_n$ for all $n \Rightarrow \sum a_n$ converges. Harmonic series. smaller $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{32}$ diverges

:- Harmonic series diverge by comparison test.