VECTOR

Question: P and **Q** are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that, $ar\left(\triangle APB\right) = ar\left(\triangle BQC\right)$. **Figure:**

Figure 1

Solution:

Input Parameters	Description	Value
A	Vertex(at origin)	0
a	Side of the parallelogram, $AB = DC$	6
b	Side of the parallelogram, $AD = BC$	$\sqrt{29}$
θ	Angle of parallelogram, $\angle BAD$	$\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)$
k_1	AQ:QD	k_1
k_2	DP:PC	k_2

Table 1: Table of input parameters

Output Parameters	Description	Value
В	Vertex of parallelogram	$a\mathbf{e_1}$
D	Vertex of parallelogram	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
C	Vertex of parallelogram	B + D
Q	Vertex of $\triangle BQC$	$\frac{k_1\mathbf{D}+\mathbf{A}}{k_1+1}$
P	Vertex of $\triangle APB$	$\frac{k_2\mathbf{C}+\mathbf{D}}{k_2+1}$

Table 2: Table of output parameters

For the $\triangle BQC$, the vertices of the triangle are taken from table 1 and table 2.

$$\implies ar\left(\triangle BQC\right) = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{Q} & \mathbf{C} \end{vmatrix} \tag{1}$$

$$= \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 6 & \frac{2k_1}{k_1+1} & 8 \\ 0 & \frac{5k_1}{k_1+1} & 5 \end{vmatrix}$$
 (2)

$$= \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 6 & \frac{2k_1}{k_1+1} & 8 \\ 0 & \frac{5k_1}{k_1+1} & 5 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} 1 & 0 & 0 \\ 6 & \frac{-4k_1-6}{k_1+1} & 2 \\ 0 & \frac{5k_1}{k_1+1} & 5 \end{vmatrix}$$
(2)

$$= \frac{1}{2} \left(1 \begin{vmatrix} \frac{-4k_1 - 6}{k_1 + 1} & 2\\ \frac{5k_1}{k_1 + 1} & 5 \end{vmatrix} + 0 + 0 \right) \tag{4}$$

$$=\frac{1}{2}\times30\tag{5}$$

$$=15\tag{6}$$

For the $\triangle APB$, the vertices of the triangle are taken from table 1 and table 2.

$$\implies ar\left(\triangle APB\right) = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{P} & \mathbf{B} \end{vmatrix} \tag{7}$$

$$= \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & \frac{8k_2+2}{k_2+1} & 6 \\ 0 & 5 & 0 \end{vmatrix}$$
 (8)

$$=\frac{1}{2}\times30\tag{9}$$

$$=15\tag{10}$$

(6) = (10)
So,
$$\operatorname{ar}(\triangle BQC) = \operatorname{ar}(\triangle APB).(proved)$$