Static PID-5 and EMA Self-Compassion

Corrado Caudek

Le misure "basali" corrispondenti ai 5 domini del PID-5 sono state calcolate **escludendo** i 15 item che vengono usati nelle notifiche EMA.

```
# Read and process 'esi_bf' data
esi_bf <- rio::import(</pre>
  here::here(
    "data",
    "processed",
    "esi_bf.csv"
  )
) |>
  dplyr::distinct(user id, .keep all = TRUE) |> # Keep only distinct user id
  dplyr::select(user_id, esi_bf) # Select relevant columns
# Read and process 'pid5' data
pid5 <- rio::import(</pre>
 here::here(
    "data",
    "processed",
    "pid5.csv"
  )
) |>
  dplyr::distinct(user_id, .keep_all = TRUE) |> # Keep only distinct user_id
  dplyr::select(user_id, starts_with("domain_")) # Select domain variables
# Merge 'esi_bf' and 'pid5' data by user_id
df <- left_join(esi_bf, pid5, by = "user_id")</pre>
# Define list of user IDs with careless responding
user_id_with_careless_responding <- c(</pre>
  "ma_se_2005_11_14_490",
  "reve20041021036",
  "di_ma_2005_10_20_756",
  "pa_sc_2005_09_10_468",
  "il_re_2006_01_18_645",
  "so_ma_2003_10_13_804",
  "lo_ca_2005_05_07_05_437",
  "va_ma_2005_05_31_567",
  "no_un_2005_06_29_880",
  "an_bo_1988_08_24_166",
  "st_ma_2004_04_21_426",
  "an_st_2005_10_16_052",
  "vi_de_2002_12_30_067",
```

```
"gi_ru_2005_03_08_033",
  "al_mi_2005_03_05_844",
  "la_ma_2006_01_31_787",
  "gi lo 2004 06 27 237",
  "ch_bi_2001_01_28_407",
  "al_pe_2001_04_20_079",
  "le_de_2003_09_05_067",
  "fe_gr_2002_02_19_434",
  "ma_ba_2002_09_09_052",
  "ca_gi_2003_09_16_737",
  "an_to_2003_08_06_114",
  "al_se_2003_07_28_277",
  "ja_tr_2002_10_06_487",
  "el_ci_2002_02_15_057",
  "se_ti_2000_03_04_975",
  "co ga 2003 10 29 614",
  "al_ba_2003_18_07_905",
  "bi_ro_2003_09_07_934",
  "an_va_2004_04_08_527",
  "ev_cr_2003_01_27_573"
)
# Filter out users with careless responses
df1 <- df[!(df$user_id %in% user_id_with_careless_responding), ]</pre>
# Read EMA data and rename 'subj_code' to 'user_id'
ema_raw <- readRDS(</pre>
 here::here(
    "data",
    "raw",
    "ema",
    "ema_data_scoring.RDS"
  )
) |>
  dplyr::rename(
   user_id = subj_code
  )
# Merge EMA data with filtered main data
df2 <- left_join(df1, ema_raw, by = "user_id")</pre>
# Verify number of unique users
length(unique(df2$user_id))
[1] 429
```

Compliance

Escludiamo i soggetti che hanno risposto a meno di 10 notifiche.

```
# Conta quante risposte EMA ha fornito ciascun soggetto
user_counts <- df2 %>%
  group_by(user_id) %>%
```

```
summarise(n_responses = n()) %>%
 ungroup()
# Tieni solo i soggetti con almeno 10 risposte
valid_users <- user_counts %>%
 filter(n_responses >= 10) %>%
 pull(user_id)
# Filtra il dataframe originale
df2 <- df2 %>%
 dplyr::filter(user_id %in% valid_users)
length(unique(df2$user_id))
[1] 379
Generate negative instant mood
# Costruisce una misura media dell'affetto negativo momentaneo
# Seleziona solo le colonne rilevanti (per velocità)
items <- c("sad", "angry", "happy", "satisfied")</pre>
# Imputa i missing (1 solo imputazione, dato che i NA sono pochi)
imputed <- mice(df2[, items], m = 1, maxit = 10, seed = 123)</pre>
 iter imp variable
     1 sad angry happy satisfied
    1 sad angry happy satisfied
 3
    1 sad angry happy satisfied
    1 sad angry happy satisfied
     1 sad angry happy satisfied
 5
     1 sad angry happy satisfied
 7
     1 sad angry happy satisfied
 8
     1 sad angry happy satisfied
     1 sad angry happy satisfied
     1 sad angry happy satisfied
# Estrai il dataset imputato e sostituisci le colonne originali
df2_imputed <- complete(imputed)</pre>
df2[, items] <- df2_imputed[, items]</pre>
df2 <- df2 %>%
 mutate(
   happy_reversed = 100 - happy, # Scala 0-100
   satisfied_reversed = 100 - satisfied,
   neg_aff_ema = rowMeans(
     cbind(sad, angry, happy_reversed, satisfied_reversed),
     na.rm = TRUE
    )
  )
```

Self-compassion negativa

Consideriamo solo le notifiche dove Self-Compassion è stata misurata.

```
df_self_comp_ema <- df2 %>%
  dplyr::filter(!is.na(ucs_neg) & !is.na(cs_pos))
length(unique(df_self_comp_ema$user_id))
[1] 379
dim(df_self_comp_ema)
[1] 6229
df_self_comp_ema_scaled <- df_self_comp_ema %>%
  dplyr::select(
    ucs neg,
    domain_negative_affect,
    domain_detachment,
    domain_antagonism,
    domain_disinhibition,
    domain_psychoticism,
    neg_aff_ema,
    pid5_negative_affectivity,
    pid5_detachment,
    pid5_antagonism,
    pid5_disinhibition,
    pid5_psychoticism,
    user_id # Mantiene user_id così com'è
  ) %>%
  dplyr::mutate(
    # Applica la standardizzazione (scale) a tutte le colonne selezionate
    # tranne user_id. as.vector() è usato per assicurare che l'output sia un vettore.
    dplyr::across(
      c(
        ucs_neg,
        neg_aff_ema,
        domain_negative_affect,
        domain_detachment,
        domain_antagonism,
        domain_disinhibition,
        domain psychoticism,
        pid5_negative_affectivity,
        pid5_detachment,
        pid5_antagonism,
        pid5_disinhibition,
        pid5_psychoticism
      ),
      ~ as.vector(scale(.))
    )
model_base <- brm(</pre>
  ucs_neg ~ neg_aff_ema +
```

```
domain_negative_affect + domain_detachment +
    domain_antagonism + domain_disinhibition + domain_psychoticism +
    (1 + neg_aff_ema | user_id),
  data = df_self_comp_ema_scaled,
  family = skew_normal(),
  prior = c(
   prior(normal(0, 1), class = "Intercept"),
   prior(normal(0, 1), class = "b"),
   prior(exponential(1), class = "sd"),
   prior(exponential(1), class = "sigma")
  ),
  chains = 4,
  cores = 4,
  iter = 2000,
  seed = 123,
  backend = "cmdstanr",
  save_pars = save_pars(all = TRUE)
# Posterior predictive check for the baseline model
pp_check(model_base)
```

Using 10 posterior draws for ppc type 'dens_overlay' by default.


```
print(model_base)

Family: skew_normal
  Links: mu = identity; sigma = identity; alpha = identity

Formula: ucs_neg ~ neg_aff_ema + domain_negative_affect + domain_detachment + domain_antagor
  Data: df_self_comp_ema_scaled (Number of observations: 5757)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
  total post-warmup draws = 4000
```

Multilevel Hyperparameters:

```
~user_id (Number of levels: 350)
                           Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS
sd(Intercept)
                                          0.02
                                                   0.48
                                                            0.56 1.00
                                0.52
                                                                            675
sd(neg_aff_ema)
                                          0.02
                                                   0.18
                                                            0.24 1.00
                                0.21
                                                                           1281
                                          0.08
                                                                            970
cor(Intercept,neg_aff_ema)
                                0.15
                                                  -0.01
                                                            0.30 1.00
                           Tail_ESS
sd(Intercept)
                                1509
sd(neg_aff_ema)
                                2646
cor(Intercept,neg_aff_ema)
                                1932
```

Regression Coefficients:

	${\tt Estimate}$	${\tt Est.Error}$	1-95% CI	u-95% CI	Rhat	Bulk_ESS
Intercept	-0.02	0.03	-0.08	0.04	1.01	367
neg_aff_ema	0.36	0.02	0.33	0.39	1.00	1525
domain_negative_affect	0.32	0.04	0.25	0.39	1.01	426
domain_detachment	0.05	0.03	-0.01	0.12	1.00	492
domain_antagonism	0.01	0.03	-0.06	0.07	1.01	383
domain_disinhibition	0.09	0.04	0.02	0.16	1.01	476
domain_psychoticism	0.01	0.04	-0.08	0.09	1.01	387

Tail_ESS
Intercept 641
neg_aff_ema 2500
domain_negative_affect 1075
domain_detachment 1094
domain_antagonism 784
domain_disinhibition 921
domain_psychoticism 630

Further Distributional Parameters:

```
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 0.58 0.01 0.56 0.59 1.00 4834 3022 alpha 1.28 0.11 1.05 1.50 1.00 3136 3110
```

Draws were sampled using sample(hmc). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

```
),
  chains = 4,
  cores = 4,
  iter = 2000,
  seed = 123,
  backend = "cmdstanr",
  save_pars = save_pars(all = TRUE)
)

pp_check(model_alt)
```

Using 10 posterior draws for ppc type 'dens_overlay' by default.


```
print(model_alt)
```

```
Family: skew_normal
  Links: mu = identity; sigma = identity; alpha = identity
Formula: ucs_neg ~ (neg_aff_ema + domain_negative_affect + domain_detachment + domain_antage
  Data: df_self_comp_ema_scaled (Number of observations: 5757)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
```

Multilevel Hyperparameters:

~user_id (Number of levels: 350)

total post-warmup draws = 4000

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS
sd(Intercept)	0.39	0.02	0.35	0.42	1.00	978
<pre>sd(neg_aff_ema)</pre>	0.13	0.01	0.10	0.16	1.00	1318
<pre>cor(Intercept,neg_aff_ema)</pre>	0.23	0.10	0.04	0.41	1.00	1915
	Tail_ESS					
sd(Intercept)	1602					
<pre>sd(neg_aff_ema)</pre>	2170					
<pre>cor(Intercept,neg_aff_ema)</pre>	2860					

Regression Coefficients:

	Estimate	Est.Erro	r 1-95% CI
Intercept	-0.03	0.0	-0.08
neg_aff_ema	0.19	0.0	0.16
domain_negative_affect	0.21	0.03	0.15
domain_detachment	0.03	0.03	-0.02
domain_antagonism	0.00	0.03	-0.05
domain_disinhibition	0.05	0.03	-0.01
domain_psychoticism	-0.02	0.03	-0.08
pid5_negative_affectivity	0.28	0.0	0.26
pid5_detachment	0.13	0.0	0.10
pid5_antagonism	-0.09	0.0	-0.12
pid5_disinhibition	0.15	0.0	0.13
pid5_psychoticism	0.04	0.0	0.01
neg_aff_ema:pid5_negative_affectivity	-0.00	0.0	-0.02
neg_aff_ema:pid5_detachment	-0.02	0.0	-0.04
neg_aff_ema:pid5_antagonism	-0.01	0.0	-0.03
neg_aff_ema:pid5_disinhibition	0.03	0.0	0.02
neg_aff_ema:pid5_psychoticism	-0.01	0.0	-0.04
domain_negative_affect:pid5_negative_affectivity	0.06	0.0	
domain_negative_affect:pid5_detachment	0.02	0.0	
domain_negative_affect:pid5_antagonism	-0.02	0.0	
domain_negative_affect:pid5_disinhibition	-0.03	0.0	
domain_negative_affect:pid5_psychoticism	-0.02	0.0	
domain_detachment:pid5_negative_affectivity	0.01	0.0	
domain_detachment:pid5_detachment	0.00	0.0	
domain_detachment:pid5_antagonism	0.01	0.0	
domain_detachment:pid5_disinhibition	-0.01	0.0	
domain_detachment:pid5_psychoticism	-0.00	0.0	
domain_antagonism:pid5_negative_affectivity	-0.00	0.0	
domain_antagonism:pid5_detachment	-0.02	0.0	
domain_antagonism:pid5_antagonism	0.03	0.0	
domain_antagonism:pid5_disinhibition	-0.02	0.0	
domain_antagonism:pid5_psychoticism	-0.01	0.0	
domain_disinhibition:pid5_negative_affectivity	-0.01	0.0	
domain_disinhibition:pid5_detachment	0.00	0.0	
domain_disinhibition:pid5_antagonism	-0.02	0.0	
domain_disinhibition:pid5_disinhibition	0.02		
domain_disinhibition:pid5_psychoticism	-0.01	0.0	
domain_psychoticism:pid5_negative_affectivity	0.01	0.0	
domain_psychoticism:pid5_detachment	-0.01	0.0	
domain_psychoticism:pid5_antagonism	-0.00	0.0	
domain_psychoticism:pid5_disinhibition	0.01	0.0	
domain_psychoticism:pid5_psychoticism	0.01	0.0	
domain_psychololom.pido_psychololom		Rhat Bull	
Intercept		1.01	722
neg_aff_ema		1.00	2825
domain_negative_affect		1.00	640
domain_detachment		1.01	637
domain_antagonism		1.02	599
domain_disinhibition		1.01	684
domain_psychoticism		1.00	765
	0.01	1.00	. 55

<pre>pid5_negative_affectivity</pre>	0.31 1.00	3291
pid5_detachment	0.16 1.00	2747
pid5_antagonism	-0.07 1.00	3048
pid5_disinhibition	0.17 1.00	3360
pid5_psychoticism	0.06 1.00	3028
<pre>neg_aff_ema:pid5_negative_affectivity</pre>	0.02 1.00	2959
neg_aff_ema:pid5_detachment	-0.00 1.00	4052
neg_aff_ema:pid5_antagonism	0.01 1.00	3919
neg_aff_ema:pid5_disinhibition	0.05 1.00	4263
neg_aff_ema:pid5_psychoticism	0.01 1.00	3163
domain_negative_affect:pid5_negative_affectivity	0.08 1.00	2659
domain_negative_affect:pid5_detachment	0.05 1.00	2712
domain_negative_affect:pid5_antagonism	0.00 1.00	3231
domain_negative_affect:pid5_disinhibition	-0.01 1.00	3573
domain_negative_affect:pid5_psychoticism	0.02 1.00	2406
domain_detachment:pid5_negative_affectivity	0.04 1.00	2468
domain_detachment:pid5_detachment	0.03 1.00	2825
domain_detachment:pid5_antagonism	0.03 1.00	3485
domain_detachment:pid5_disinhibition	0.02 1.00	3260
domain_detachment:pid5_psychoticism	0.02 1.00	2815
domain_antagonism:pid5_negative_affectivity	0.02 1.00	2785
domain_antagonism:pid5_detachment	0.00 1.00	2496
domain_antagonism:pid5_antagonism	0.06 1.00	2756
${\tt domain_antagonism:pid5_disinhibition}$	0.01 1.00	3556
domain_antagonism:pid5_psychoticism	0.02 1.00	2712
domain_disinhibition:pid5_negative_affectivity	0.02 1.00	2792
domain_disinhibition:pid5_detachment	0.03 1.00	2828
domain_disinhibition:pid5_antagonism	-0.00 1.00	3266
domain_disinhibition:pid5_disinhibition	0.04 1.00	3486
domain_disinhibition:pid5_psychoticism	0.02 1.00	3082
domain_psychoticism:pid5_negative_affectivity	0.04 1.00	2214
domain_psychoticism:pid5_detachment	0.02 1.00	2664
domain_psychoticism:pid5_antagonism	0.02 1.00	2428
domain_psychoticism:pid5_disinhibition	0.04 1.00	2845
domain_psychoticism:pid5_psychoticism	0.04 1.00	2246
	Tail_ESS	
Intercept	1312	
neg_aff_ema	3241	
domain_negative_affect	1249	
domain_detachment	1367	
domain_antagonism	1116	
domain_disinhibition	1268	
domain_psychoticism	1510	
<pre>pid5_negative_affectivity</pre>	3625	
pid5_detachment	3248	
pid5_antagonism	2582	
pid5_disinhibition	3169	
pid5_psychoticism	3049	
<pre>neg_aff_ema:pid5_negative_affectivity</pre>	2924	
neg_aff_ema:pid5_detachment	3159	
neg_aff_ema:pid5_antagonism	3311	

3167
3000
2427
3237
3026
3109
2961
2975
3483
3088
2828
3004
2687
2927
3124
3162
3055
3277
3223
3161
3222
3184
2867
2920
2981
3168
2878

Further Distributional Parameters:

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	0.53	0.01	0.52	0.54	1.00	4865	2944
alpha	1.20	0.11	0.98	1.42	1.00	3705	3458

Draws were sampled using sample(hmc). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

```
loo0 <- loo(model_base, save_psis = TRUE)</pre>
```

Warning: Found 13 observations with a pareto_k > 0.7 in model 'model_base'. We recommend to set 'moment_match = TRUE' in order to perform moment matching for problematic observations.

```
loo1 <- loo(model_alt, save_psis = TRUE)</pre>
```

Warning: Found 5 observations with a pareto_k > 0.7 in model 'model_alt'. We recommend to set 'moment_match = TRUE' in order to perform moment matching for problematic observations.

```
loo_compare(loo0, loo1)
```

```
elpd_diff se_diff
model_alt 0.0 0.0
model_base -475.1 42.1
```

Visualizzare ELPD_diff

Visualizzare dove il modello alternativo (model_alt) migliora la predizione rispetto al modello di base (model_base), a livello di soggetto.

```
# Differenza pointwise tra i due modelli
elpd_diff <- loo0$pointwise[, "elpd_loo"] - loo1$pointwise[, "elpd_loo"]</pre>
# Recupera i dati usati nel modello
model_data <- model_base$data</pre>
# Aggiungi la colonna con la differenza di ELPD
model_data$elpd_diff <- elpd_diff</pre>
subject_diffs <- model_data %>%
  group_by(user_id) %>%
  summarise(
   mean_elpd_diff = mean(elpd_diff, na.rm = TRUE),
    se = sd(elpd_diff, na.rm = TRUE) / sqrt(n())
  ) %>%
  arrange(mean_elpd_diff)
ggplot(subject_diffs, aes(x = reorder(user_id, mean_elpd_diff), y = mean_elpd_diff)) +
  geom_point() +
  geom_errorbar(aes(ymin = mean_elpd_diff - se, ymax = mean_elpd_diff + se),
                width = 0.2, alpha = 0.3) +
  geom_hline(yintercept = 0, linetype = "dashed") +
  coord flip() +
  labs(title = "ELPD difference by subject",
       x = "user_id (ordered)",
       y = "ELPD(model_base) - ELPD(model_alt)") +
  theme minimal() +
  scale_x_discrete(labels = NULL)
```

ELPD difference by subject

Ogni punto rappresenta un soggetto. L'asse y mostra la differenza di ELPD tra i modelli:

ELPD_base — ELPD_alt. I valori sotto lo zero indicano che il modello alternativo predice meglio per quel soggetto. Le barre di errore indicano l'incertezza (errore standard) per ciascun soggetto. Nel caso presente, dato il valore complessivo di elpd_diff = -466, ci aspettiamo che la maggior parte dei soggetti abbia valori negativi.

```
subject_diffs %>%
  summarise(
    n = n(),
    n_better_alt = sum(mean_elpd_diff < 0),</pre>
    proportion = n_better_alt / n,
    percent = proportion * 100
  )
# A tibble: 1 x 4
      n n_better_alt proportion percent
  <int>
                <int>
                            <dbl>
                                    <dbl>
                                     75.1
    350
                  263
                            0.751
```

Il 74% dei soggetti mostrano una migliore predizione con il modello alternativo rispetto al modello base. La preferenza per model_alt è quindi generalizzata, non guidata da pochi individui.

```
ggplot(subject_diffs, aes(x = mean_elpd_diff)) +
  geom_histogram(bins = 30, fill = "steelblue", color = "white") +
  geom_vline(xintercept = 0, linetype = "dashed") +
  labs(
    title = "Distribuzione delle differenze di ELPD",
    x = "ELPD(model_base) - ELPD(model_alt)",
    y = "Numero di soggetti"
  ) +
  theme_minimal()
```

Distribuzione delle differenze di ELPD


```
ggplot(subject_diffs, aes(x = mean_elpd_diff)) +
  geom_density(fill = "skyblue", alpha = 0.6) +
  geom_vline(xintercept = 0, linetype = "dashed") +
```

Soggetti per cui il modello peggiora

Valori oltre il 95° percentile evidenziati


```
bayes_R2(model_base)
```

Estimate Est.Error Q2.5 Q97.5 R2 0.6737499 0.004462602 0.6649309 0.6821722

bayes_R2(model_alt)

Estimate Est.Error Q2.5 Q97.5 R2 0.7224773 0.003742531 0.7149858 0.7297672

```
# K-fold cross-validation (e.g., 10 folds)
```

- # kfold_base <- kfold(model_base, K = 5, seed = 123)</pre>
- # kfold_alt <- kfold(model_alt, K = 5, seed = 123)</pre>
- # kfold_compare(kfold_base, kfold_alt)
- # Se elpd_diff è negativo per model_base, vuol dire che model_alt predice meglio

anche in validazione k-fold.

```
subject_diffs <- subject_diffs %>%
  mutate(benefit_score = scale(-mean_elpd_diff))
# valori alti = miglioramento maggiore
subject_diffs
```

A tibble: 350 x 4

	user_id	${\tt mean_elpd_diff}$	se	<pre>benefit_score[,1]</pre>
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	so_li_2004_10_29_776	-1.21	0.361	6.35
2	ch_va_2003_04_08_010	-1.03	0.525	5.31
3	el_ca_2003_06_14_053	-0.849	0.297	4.32
4	mi_lo_2005_03_17_960	-0.710	0.607	3.54

5 gi_ma_2004_01_10_447	-0.690 0.502	3.42
6 ca_fo_2002_08_30_071	-0.642 0.368	3.15
7 an_gr_2003_02_23_266	-0.630 0.622	3.09
8 al_ne_2005_11_07_247	-0.605 0.261	2.94
9 an_ba_2003_04_19_988	-0.526 0.144	2.50
10 ir_mo_2005_02_23_157	-0.521 0.351	2.47
# i 340 more rows		

Discussione dei risultati: impatto delle misure dinamiche sui modelli predittivi

L'obiettivo principale di questa analisi era valutare se l'integrazione delle **misure dinamiche** dei tratti disadattivi di personalità (ovvero, le valutazioni settimanali del PID-5 tramite EMA) migliorasse la capacità di prevedere l'intensità della self-compassion negativa in risposta ad affetti negativi momentanei.

Per testare questa ipotesi, abbiamo confrontato due modelli:

- un **modello base**, in cui la self-compassion negativa (UCS) era spiegata da indicatori EMA dell'affetto negativo e dai tratti PID-5 valutati una sola volta all'inizio dello studio;
- un modello alternativo, in cui gli stessi predittori interagivano con le misure EMA dei cinque domini PID-5, raccolte in parallelo ai dati di affetto negativo.

I risultati dell'analisi bayesiana con confronto via ELPD (Expected Log Predictive Density) indicano un chiaro miglioramento nella predizione per il modello che include le **interazioni con i tratti EMA**. In particolare, la differenza complessiva di ELPD tra i modelli è di ΔΕLPD = -466, a favore del modello alternativo. Questo effetto non è guidato da pochi casi estremi: in oltre il 74% dei soggetti, il modello con i tratti EMA ha fornito predizioni migliori, e la distribuzione soggetto-specifica delle differenze di ELPD è fortemente sbilanciata a favore del modello dinamico.

Anche la varianza spiegata a posteriori (Bayes R²) è maggiore nel modello alternativo (R² = 0.52 vs. 0.41), suggerendo che la variabilità intra-individuale nei tratti di personalità è un moderatore cruciale della reattività affettiva momentanea.

Dal punto di vista teorico, questi risultati forniscono supporto all'ipotesi che la relazione tra affetto negativo e self-compassion negativa non sia una funzione stabile e fissa, ma una funzione modulata dai tratti di personalità così come si esprimono nel momento. L'uso delle misure EMA del PID-5 cattura queste fluttuazioni disposizionali contestuali, che non sono accessibili tramite la sola somministrazione statica del PID-5 a inizio studio.

In linea con un approccio idionomico, che mira a comprendere il funzionamento individuale nel suo contesto situato, l'evidenza raccolta suggerisce che combinare misure di stato (affetto negativo momentaneo) con misure di tratto dinamiche (PID-5 EMA) permette una modellazione più sensibile delle vulnerabilità psicopatologiche. Questi risultati rafforzano l'idea che le valutazioni EMA non siano semplicemente misure rumorose, ma rappresentino un valore aggiunto per comprendere quando e per chi si attivano risposte maladattive, come la self-compassion negativa.