${\bf Chapter~11:~Vector~Spaces}_{\tiny \rm July~25,~2023}$

Contents

1	Gen	neral approach	1
	1.1	Structure of a Vector Space	1
	1.2	Defintion	1
		1.2.1 Property	1
		1.2.2 Example	
	1.3	$Vector \ Subspaces \ (= linear \ subspaces) . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	2
		1.3.1 Definition	
		1.3.2 Propositions	2
	1.4	Sum of VSS	3
	1.5	Examples	3
	1.6	Direct Sum	4
		1.6.1 Definition	4
		1.6.2 Notation	4
		1.6.3 Examples	4

During this chapter, \mathbb{K} will be either \mathbb{R} or \mathbb{C} .

1 General approach

1.1 Structure of a Vector Space

Let E be a set, we define two operations:

• An internal operation:

$$\bigoplus: E \times E \xrightarrow{I} E$$

$$(u, v) \longmapsto u + v$$

• An external operation:

$$\odot : \mathbb{K} \times E \longrightarrow E$$

$$(\lambda, v) \longmapsto \lambda u$$

1.2 Defintion

We say that (E, \oplus, \odot) is a vector space if $\forall (u, v, w) \in E^3$ we have:

- $u + (v + w) = (u + v) + w (\oplus is associative)$
- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (\oplus is commutative)
- $\exists 0_E \in E \text{ such that } u + 0_E = 0_E + u = u \text{ (Existence of a neutral element for } \oplus)$
- $\exists -u \in E, u + (-u) = (-u) + u = 0_E$ (Existence of a symmetrical element for \oplus)

And $\forall (u, v) \in E^2$ and $\forall (\alpha, \beta) \in \mathbb{K}^2$ we have:

- $(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$ (\odot is distributive)
- $\alpha(u+v) = \alpha \cdot u + \alpha \cdot v$ (\odot is distributive)
- $(\alpha\beta)u = \alpha(\beta u)$ (\odot is associative)
- $1_{\mathbb{K}} \cdot u = u$ (Where $1_{\mathbb{K}}$ is the neutral element of multiplication of element of \mathbb{K})

Let (E, \oplus, \odot) be a \mathbb{K} -Vector Space,

Any element from E is called a vector and any element from K is called a scalar. 0_E is called the zero vector.

1.2.1 Property

 $\forall u \in E \text{ and } \forall \alpha \in \mathbb{K} \text{ we have:}$

- 1. $\alpha \cdot 0_E = 0_E$
- 2. $0_{\mathbb{K}} \cdot u = 0_{\mathbb{E}}$
- 3. $\alpha \cdot u = 0_E \Leftrightarrow \alpha = 0_{\mathbb{K}} \text{ or } u = 0_{\mathbb{E}}$

1.2.2 Example

1.
$$E = \mathbb{R}^2$$
, $U = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$

2.
$$\mathbb{R}^3, \mathbb{R}^4, \dots, \mathbb{R}^n$$
 are $\mathbb{R} - VS$

3.
$$\mathbb{R}[X]$$
: Set of polynomials $0_{\mathbb{R}[X]}: \mathbb{R}_2[X] = \{aX^2 + bX + c, (a, b, c) \in \mathbb{R}^3\}$ \mathbb{R}_2 means: "at least max2", here "a" can be 0

4.
$$\mathbb{R}^{\mathbb{N}}$$
 and $\mathbb{R}^{\mathbb{R}}$ are \mathbb{R} -VS

ex:
$$\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$$
 VS: 8 Property are check

1.3 Vector Subspaces (= linear subspaces)

1.3.1 Definition

Let E be a \mathbb{K} -Vector Space:

•
$$F \subset E$$
 (F is a subset of E)

•
$$F \neq \emptyset$$
 (F is non-empty, $0_E \in F$)

•
$$\forall (u,v) \in F^2, \forall \alpha \in \mathbb{K}, (\alpha \cdot u + v) \in F$$
 (F is closed under linear combination)

1.3.2 Propositions

1.3.2.1 Proposition 1

Let E be a \mathbb{K} -Vector Space:

$$F \subset E$$
 is a Vector SubSpace of $E \Longrightarrow 0_E \in F$
 \iff

1.3.2.2 Example

$$E = \mathbb{R}^{3}$$

$$F_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3}, x + y + z = 1 \right\} \text{ and } F'_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3}, x + y + z = 0 \right\}$$

$$0_{E} \notin F_{1} \Longrightarrow F_{1} \text{ is not a Vector SubSpace of } E$$

$$\forall (u, v) \in F'_{1}^{2}, \forall \alpha \in \mathbb{R}, u = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ and } v = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

$$\alpha u + v = \alpha(x, y, z) + (x', y', z') = 0_{E} \in F'_{1} \Longrightarrow F'_{1} \text{ is a Vector SubSpace of } E$$

$$F_{2} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \right\} \begin{cases} \in \mathbb{R}^{3} \\ \ni 0_{E} \end{cases}, 0_{E} \in xy \geq 0$$

$$\begin{split} \left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\-1\end{pmatrix}\right) \in {F_2}^2 \\ \begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\-1\end{pmatrix} = \begin{pmatrix}1\\-1\end{pmatrix} \not \in {F_2}^2 \text{ Not closed by linear combination} \end{split}$$

Exercise on your own: $F_3 = \{P \in \mathbb{R}[X], P(2) = 0\}$

1.3.2.3 Proposition 2

Let E be a Vector Space, F and G two Vector SubSpaces of E. Then:

- 1. $F \cap G \subset E$, $F \cap G$ is a Vector SubSpace of E
- 2. $F \text{ VSS of } E \implies 0_E \in F$ $G \text{ VSS of } E \implies 0_E \in G$ $\Longrightarrow 0_E \in F \cap G \implies F \cap G \neq \emptyset$
- 3. $\forall (u,v) \in F \cap G, \forall \alpha \in \mathbb{K}$ Then: F close under linear combination $\Longrightarrow \alpha u + v \in F$. So far for $G \Longrightarrow \alpha u + v \in G$ $\alpha u + v \in F \cap G$ and A A is closed under linear combination.

1.3.2.4 Proposition 3

Let E be a VS: $\{0_E\}$ (sigleton) is a VSS of E

1.3.2.5 **Proof:**

- 1. $\{0_E\}\subset E$
- 2. $0_E \in \{0_E\} \implies \{0_E\} \neq \emptyset$
- 3. $\forall (u,v) \in \{0_E\}^2, u = v = 0_E \text{ and } \forall \alpha \in \mathbb{K}, \alpha u = 0_E \implies \alpha u + v = 0_E \implies (\alpha u + v) \in \{0_E\}$

1.3.2.6 Proposition 4

Let (E, \oplus, \odot) be a VS and F a VSS of E, then F is a VS

1.4 Sum of VSS

Let E a K-VS, F and G VSS of E, we say H is the sum of F and G if:

$$H = \{u \in E, \exists (v, w) \in F \times G, u = v + w\}$$

1.5 Examples

1.
$$E = \mathbb{R}^2, G = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix}, x \in \mathbb{R} \right\}, H = \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix}, y \in \mathbb{R} \right\}$$

$$G + H = \left\{ \begin{pmatrix} x \\ y \end{pmatrix}, (x, y) \in \mathbb{R}^2 = \mathbb{R}^2 \right\}$$

$$F = \left\{ \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, x \in \mathbb{R} \right\}$$
2.
$$G = \left\{ \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}, z \in \mathbb{R} \right\}$$
 VSS of \mathbb{R}^3
$$F + G = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix}, (x, z) \in \mathbb{R}^2 \right\} \in \mathbb{R}^3 \neq \mathbb{R}^3$$

1.6 Direct Sum

1.6.1 Definition

Let E a \mathbb{K} -VS, F and G two VSS of E, we say that F and G are in direct sum if:

$$F \cap G = \{0_E\}$$

1.6.2 Notation

In that case we denote $F \oplus G$ instead of F + G

1.6.3 Examples

1. Both of previous examples

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, z = 0, x, y \in \mathbb{R}^2 \right\}$$

$$2. \quad G = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix}, (x, y) \in \mathbb{R}^2 \right\}$$

$$F + G \text{ Check}$$

$$F \oplus G \text{ Not bc } F \cap G \neq \{0_E\}$$