Dynamic Survival Modelling of Risk Credit Default

Ana María Patrón Piñerez¹, Supervised by: F. Javier Rubio Alvarez²

"All models are wrong, but some are useful" (Box, 1976)

Research Question: How can (bio)statistical models be used to study and predict UK housing credit defaults?

Motivation

Survival Modelling

 Techniques typically employed in biostatistics to predict life expectancy

Figure 1: The Bridge of Life, Karl Pearson (1897)

$$h(t) = \lim_{\Delta t \to 0} \frac{P[t \le T < t + \Delta t \mid T \ge t]}{\Delta t} = \frac{f(t)}{S(t)}$$

Redefine the event as mortgage default Simulated Data

 Lack of available data (UK General Data Protection Regulation the Data Protection Act 2018)

Dynamical Modelling

Dynamic behaviour of the Mortgage sector

SIMULATION

Times are simulated as in Rubio, F. J. (2019):

Events 29 40 23 27 29 13 33

| Iteration | 1

$$t_i = F_0^{-1} \Bigg(1 - \exp \Big(\frac{\log(u_i)}{\exp(\boldsymbol{x}_i^\top \boldsymbol{\beta})} \Big) \Bigg)$$

where $u_i \sim \text{Unif}(0,1)$ at t_1 with rescaling at each iteration and $F_0 \sim weibull(\theta_1,\theta_2)$ s.t $\Pr(t_k \leq T < t_{k+1}) = a$

 Monte Carlo simulations, truncated distributions for set of covariates (rate, inflation, LTV, age)

MODELLING

Static (and time-varying covariates)

Proportional Hazards (PH) Model: Assumes the relative effect of covariates is constant over time

$$h(t \mid \mathbf{x}_i) = h_0(t) \, \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta})$$

 Accelerated Failure Time (AFT) Model: Covariates accelerate or delay the event of default.

$$h(t \mid \mathbf{x}_i) = h_0 \Big(t \exp(\mathbf{x}_i^ op oldsymbol{eta}) \Big) \exp(\mathbf{x}_i^ op oldsymbol{eta})$$

Pros: Easy to use, interpretable, widely available in standard software (R: survival, fit.survreg).

Cons: Static (does not update risk over time); cannot handle time-varying covariates; may miscalibrate when individual characteristics change.

Dynamic

• Landmarking. For $t \geq t_L$

$$h(t \mid T > t_L, \mathbf{x}_i(t_L)) = h_0(t \mid t_L) \, \exp \left(\mathbf{x}_i(t_L)^{ op} \boldsymbol{\beta} \right).$$

Pros: Captures changes in individuals' characteristics (dynamic).

Cons: Limited available software (R: landmark*); no unique way of updating information; more difficult interpretation.

References

- Rubio, F. J. (2019). Simulating survival times from a General Hazard structure with a flexible baseline hazard.
- Campbell, J. Y., & Cocco, J. F. (2015). A Model of Mortgage Default. The Journal of Finance, 70(4), 1495–1554.
- Barrott, I. (2022). How to use the R package 'Landmarking'.

PREDICTION

CONCLUSIONS

- Dynamic survival modelling for finance is a pioneering approach, with limited literature currently available.
- **Limitations:** emulating real-world behavior remains challenging.
- **Future avenues:** improve data simulation and explore additional dynamic models for more realistic analyses.

Affiliations

¹ Department of Mathematics, Imperial College London and Universidad de los Andes, Colombia

² University College London, London

Imperial College London imperial.ac.uk