A Handbook of Statistical Analyses Using ${\sf R}$

Brian S. Everitt and Torsten Hothorn

CHAPTER 13

Principal Component Analysis: The Olympic Heptathlon

13.1 Introduction

13.2 Principal Component Analysis

13.3 Analysis Using R

To begin it will help to score all the seven events in the same direction, so that 'large' values are 'good'. We will recode the running events to achieve this;

Figure 13.1 shows a scatterplot matrix of the results from the 25 competitors on the seven events. We see that most pairs of events are positively correlated to a greater or lesser degree. The exceptions all involve the javelin event – this is the only really 'technical' event and it is clear that training to become successful in the other six 'power'-based events makes this event difficult for the majority of the competitors. We can examine the numerical values of the correlations by applying the cor function

R> round(cor(heptathlon[,-score]), 2)

	hurdles	highjump	shot	run200m	longjump	javelin	run800m
hurdles	1.00	0.81	0.65	0.77	0.91	0.01	0.78
highjump	0.81	1.00	0.44	0.49	0.78	0.00	0.59
shot	0.65	0.44	1.00	0.68	0.74	0.27	0.42
run200m	0.77	0.49	0.68	1.00	0.82	0.33	0.62
longjump	0.91	0.78	0.74	0.82	1.00	0.07	0.70
javelin	0.01	0.00	0.27	0.33	0.07	1.00	-0.02
run800m	0.78	0.59	0.42	0.62	0.70	-0.02	1.00

This correlation matrix demonstrates again the points made earlier.

A principal component analysis of the data can be applied using the prcomp function. The result is a list containing the coefficients defining each component (sometimes referred to as *loadings*), the principal component scores, etc. The required code is (omitting the score variable)

R> score <- which(colnames(heptathlon) == "score")
R> plot(heptathlon[,-score])

Figure 13.1 Scatterplot matrix for the heptathlon data.

R> heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE)
R> print(heptathlon_pca)

Standard deviations: [1] 2.1119364 1.0928497 0.7218131 0.6761411 0.4952441 0.2701029 [7] 0.2213617

Rotation:

	PC1	PC2	PC3	PC4
hurdles	-0.4528710	0.15792058	-0.04514996	0.02653873
highjump	-0.3771992	0.24807386	-0.36777902	0.67999172
shot	-0.3630725	-0.28940743	0.67618919	0.12431725
run200m	-0.4078950	-0.26038545	0.08359211	-0.36106580
longjump	-0.4562318	0.05587394	0.13931653	0.11129249

The summary method can be used for further inspection of the details:

R> summary(heptathlon_pca)

Importance of components:

The linear combination for the first principal component is

R> a1 <- heptathlon_pca\$rotation[,1] R> a1

```
hurdles highjump shot run200m longjump

-0.4528710 -0.3771992 -0.3630725 -0.4078950 -0.4562318

javelin run800m

-0.0754090 -0.3749594
```

We see that the 200m and long jump competitions receive the highest weight but the javelin result is less important. For computing the first principal component, the data need to be rescaled appropriately. The center and the scaling used by prcomp internally can be extracted from the heptathlon_pca via

```
R> center <- heptathlon_pca$center
R> scale <- heptathlon_pca$scale</pre>
```

Now, we can apply the scale function to the data and multiply with the loadings matrix in order to compute the first principal component score for each competitor

```
R> hm <- as.matrix(heptathlon[,-score])
R> drop(scale(hm, center = center, scale = scale) %*%
+ heptathlon_pca$rotation[,1])
```

```
Joyner-Kersee (USA) John (GDR) Behmer (GDR)
-4.121447626 -2.882185935 -2.649633766
Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)
-1.343351210 -1.359025696 -1.043847471
```

```
Fleming (AUS)
                     Greiner (USA)
                                      Lajbnerova (CZE)
 -1.100385639
                      -0.923173639
                                          -0.530250689
Bouraga (URS)
                     Wijnsma (HOL)
                                       Dimitrova (BUL)
 -0.759819024
                      -0.556268302
                                         -1.186453832
Scheider (SWI)
                      Braun (FRG) Ruotsalainen (FIN)
                                           0.090747709
  0.015461226
                      0.003774223
 Yuping (CHN)
                      Hagger (GB)
                                           Brown (USA)
 -0.137225440
                      0.171128651
                                           0.519252646
Mulliner (GB)
                 Hautenauve (BEL)
                                          Kytola (FIN)
  1.125481833
                       1.085697646
                                           1.447055499
Geremias (BRA)
                     Hui-Ing (TAI)
                                        Jeong-Mi (KOR)
                                           2.970118607
  2.014029620
                       2.880298635
  Launa (PNG)
  6.270021972
```

or, more conveniently, by extracting the first from all precomputed principal components

R> predict(heptathlon_pca)[,1]

```
Joyner-Kersee (USA)
                             John (GDR)
                                               Behmer (GDR)
      -4.121447626
                           -2.882185935
                                               -2.649633766
Sablovskaite (URS)
                      Choubenkova (URS)
                                               Schulz (GDR)
      -1.343351210
                         -1.359025696
                                               -1.043847471
     Fleming (AUS)
                          Greiner (USA)
                                           Lajbnerova (CZE)
      -1.100385639
                          -0.923173639
                                               -0.530250689
     Bouraga (URS)
                          Wijnsma (HOL)
                                            Dimitrova (BUL)
      -0.759819024
                           -0.556268302
                                              -1.186453832
    Scheider (SWI)
                           Braun (FRG)
                                         Ruotsalainen (FIN)
       0.015461226
                           0.003774223
                                                0.090747709
      Yuping (CHN)
                           Hagger (GB)
                                                Brown (USA)
      -0.137225440
                           0.171128651
                                                0.519252646
     Mulliner (GB)
                       Hautenauve (BEL)
                                               Kytola (FIN)
       1.125481833
                           1.085697646
                                                1.447055499
                          Hui-Ing (TAI)
    Geremias (BRA)
                                             Jeong-Mi (KOR)
       2.014029620
                            2.880298635
                                                2.970118607
       Launa (PNG)
        6.270021972
```

The first two components account for 81% of the variance. A barplot of each component's variance (see Figure~13.2) shows how the first two components dominate. A plot of the data in the space of the first two principal components, with the points labelled by the name of the corresponding competitor can be produced as shown with Figure~13.3. In addition, the first two loadings for the events are given in a second coordinate system, also illustrating the special role of the javelin event. This graphical representation is known as biplot (?).

The correlation between the score given to each athlete by the standard scoring system used for the heptathlon and the first principal component score can be found from

R> cor(heptathlon\$score, heptathlon_pca\$x[,1])

Figure 13.2 Barplot of the variances explained by the principal components.

[1] -0.9910978

This implies that the first principal component is in good agreement with the score assigned to the athletes by official Olympic rules; a scatterplot of the official score and the first principal component is given in Figure 13.4.

R> biplot(heptathlon_pca, col = c("gray", "black"))

Figure 13.3 Biplot of the (scaled) first two principal components.

R> plot(heptathlon\$score, heptathlon_pca\$x[,1])

