Christopher John Frederick Cameron, PhD

As a computational biologist, I develop novel statistical, machine learning and bioinformatics approaches to emerging molecular biology technologies. At NYSBC, I build new computational methods to improve the center's cryogenic electron microscopy (cryo-EM) and other structural biology pipelines. My postdoctoral research focused on cryo-EM image processing, specifically addressing the modeling and integration of prior information. During my PhD, I implemented analyses of chromosome conformation capture and chromatin immunoprecipitation data that provided insight into the regulation of genomes through the organization of chromatin's higher-order structures.

Keywords: computational biology, machine learning, cryo-EM, 4D regulatory genomics

Email: ccameron [at] nysbc [dot] org Website: https://ccameron.github.io/

Education

2019–24	Postdoctoral Researcher
	Yale University, New Haven, USA
	Advisors: Mark B Gerstein, Hemant D Tagare and Yong Xiong
2013 – 19	PhD in Computer Science, concentration in Bioinformatics (October 2019)
	McGill University, Montréal, CAN
	Thesis: High-resolution computational analysis of chromatin architecture and function
	Advisors: Mathieu Blanchette and Josée Dostie
2012 - 13	MSc in Bioinformatics (February 2014)
	University of Guelph, Guelph, CAN
	Thesis: Tissue-to-plasma partition coefficient prediction by a multi-channel restricted
	Boltzmann machine
	Advisors: Andrea Edginton, Ronald Johnson and Stefan Kremer
2006 – 11	BSc in Biomedical Toxicology, minor in Computer Science (February 2012)
	University of Guelph, Guelph, CAN
	Thesis: Molecular graph neural networks for toxicology
	Advisor: Stefan Kremer

Positions held

2024-Now	Computational Scientist
	Simons Electron Microscopy Center, NYSBC
2021-Now	Special Graduate Faculty
	School of Computer Science, University of Guelph
2019-24	Postdoctoral Associate
	Department of Molecular Biophysics and Biochemistry, Yale University
2013 – 19	Graduate Research Assistant
	School of Computer Science, McGill University
Fall 2017	Course Lecturer
	School of Computer Science, McGill University
2013 – 17	Teaching Assistant
	School of Computer Science, McGill University
2012 – 13	Graduate Service & Research Assistant
	School of Computer Science, University of Guelph
2008 - 12	Undergraduate Research Assistant
	School of Computer Science, University of Guelph

¹ Simons Electron Microscopy Center, New York Structural Biology Center (NYSBC)

Journal publications

† co-first or -second authors

- 15. <u>Cameron CJF</u>, Seager SJH, Sigworth FJ, Tagare HD and Gerstein MB. **REPIC** an ensemble learning methodology for cryo-EM particle picking. *BioRxiv*. DOI:110.1101/2023.05.13.540636
- 14. Leng J, <u>Cameron CJF</u>, Oh S, Khurana E, Noonan JP and Gerstein MB. **LESSeq: local event-based analysis of alternative splicing using RNA-Seq data**. *BioRxiv*. DOI:10.1101/841494
- 13. Prost JA[†], Cameron CJF[†] and Blanchette M. **SACSANN:** identifying sequence-based determinants of chromosomal compartments. *BioRxiv.* DOI:10.1101/2020.10.06.328039
- 12. Zhang Y, <u>Cameron CJF</u>, and Blanchette M (2024) **Posterior inference of Hi-C contact frequency through sampling**. Front Bioinform, (3). DOI: 10.3389/fbinf.2023.1285828
- 11. Rozowsky J, Gao J, Borsari B, [and 103 others, including <u>Cameron CJF</u>] (2023) **The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models**. *Cell*, 186(7):1493-1511.e40. DOI:10.1016/j.cell.2023.02.018
- 10. Tsai P, Cameron CJF, Forni MF, Wasko RR, Naughton BS, Horsley V, Gerstein MB and Schlieker C (2022) Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Rep, 41(8):111675. DOI:10.1186/s13104-020-05106-1
- 9. Amaya C, <u>Cameron CJF</u>[†], Devarkar SC[†], Seager SJH, Gerstein MB, Xiong Y and Schlieker C (2021) **Nodal** modulator (NOMO) is required to sustain endoplasmic reticulum morphology. *JBC*, 297(2):100937. DOI:10.1016/j.jbc.2021.100937
- 8. Ramilowski J, Yip CW, Agrawal S, [and 115 others, including <u>Cameron CJF</u>] (2020) Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping. Genome Res, 30:1060-1072. DOI:10.1101/gr.254219.119
- 7. Cameron CJF, Wang XQD, Dostie J and Blanchette M (2020) **LAMPS: an analysis pipeline for sequence-specific ligation-mediated amplification reads**. *BMC Res Notes*, 13:273. DOI:10.1186/s13104-020-05106-1
- 6. Bonetti A, Agostini F, Suzuki AM, [and 26 others, including <u>Cameron CJF</u>] (2020) **RADICL-seq identifies** general and cell type-specific principles of genome-wide RNA-chromatin interactions. *Nat Commun*, 11:1018. DOI:10.1038/s41467-020-14337-6
- 5. <u>Cameron CJF</u>, Dostie J and Blanchette M (2020) **HIFI: estimating DNA-DNA interaction frequency** from Hi-C data at restriction-fragment resolution. *Genome Biol*, 21(1):11. DOI:10.1186/s13059-019-1913-v
- 4. Wang XQD[†], Cameron CJF[†], Paquette D, Segal D, Warsaba R, Blanchette M and Dostie J (2019) **2C-ChIP:** measuring chromatin immunoprecipitation signal from defined genomic regions with deep sequencing. *BMC Genomics*, 20:162. DOI:10.1186/s12864-019-5532-5
- 3. Roche PJR, Gytz H, Hussain F, <u>Cameron CJF</u>, Paquette D, Blanchette M, Dostie J, Nagar B and Akavia UD (2018) **Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells**. *CRISPR J*, 1(6). DOI:10.1089/crispr.2018.0045
- 2. Malina A, <u>Cameron CJF</u>, Robert F, Blanchette M, Dostie J and Pelletier J (2015) **PAM multiplicity** marks genomic target sites as inhibitory to CRISPR/Cas9 editing. *Nat Commun*, 6:10124. DOI:10.1038/ncomms10124
- 1. Ma EYT, <u>Cameron CJF</u> and Kremer SC (2010) Classifying and scoring of molecules with the NGN: new data sets, significance tests, and generalization. *BMC Bioinformatics*, 11(Suppl 8):S4. DOI:10.1186/1471-2105-11-S8-S4

Peer-reviewed conference papers

- 2. Kirchhof M, <u>Cameron CJF</u> and Kremer SC (2021) **End-to-end chromosomal compartment prediction** from reference genomes. *IEEE BIBM*: 50-57. DOI:10.1109/BIBM52615.2021.9669521
- 1. <u>Cameron CJF</u>, Ma EYT and Kremer SC (2010) **Neural Grammar Networks for Toxicology**. *IEEE CIBCB* (Montréal, CAN): 1-8. DOI:10.1109/CIBCB.2010.5510322

Conferences with abstract submission

- 15. <u>Cameron CJF</u>, Seager SJH, Sigworth FJ, Tagare HD and Gerstein MB (2023) **REPIC** an ensemble learning methodology for cryo-EM particle picking. *MLCSB COSI at ISMB/ECCB*, Lyon, FRA
- 14. <u>Cameron CJF</u>, Seager SJH, Sigworth FJ, Tagare HD and Gerstein MB (2023) **REPIC** an ensemble learning methodology for cryo-EM particle picking. *3DEM GRC/GRS*, Newry, USA
- 13. <u>Cameron CJF</u>, Seager SJH, Sigworth FJ, Tagare HD and Gerstein MB (2023) **REPIC** an ensemble learning methodology for cryo-EM particle picking. *BPS*, San Diego, USA. DOI:10.1016/j.bpj.2022.11.914
- 12. <u>Cameron CJF</u>, Sigworth FJ, Gerstein MB, and Tagare HD (2023) **MIDLS membrane detection in cryo-EM using deep level sets**. *BPS*, San Diego, USA. DOI:10.1016/j.bpj.2022.11.913
- 11. <u>Cameron CJF</u>, Seager SJH, Tagare HD and Gerstein MB (2022) **Reliably expanding SPA cryo-EM particle** sets by machine-learning consensus. *3DEM GRC/GRS*, Castelldefels, ESP (*GRS*-selected talk)
- 10. <u>Cameron CJF</u>, Tagare HD, Gerstein MB and Xiong Y (2020) Improving agreement between structural models and cryo-EM maps in reciprocal space. 5th NE Cryo-EM Symp, Boston, USA
- 9. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C interaction matrices** from sequence-based determinants. *IRIC Annual Symp*, Montréal, CAN
- 8. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C contact maps from genomic sequence**. *SCS and RegSys COSI at ISMB*, Chicago, USA
- 7. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C contact maps from genomic sequence alone**. *RECOMB*, Paris, FRA
- 6. <u>Cameron CJF</u>, Dostie J and Blanchette M (2017) **High-resolution estimation of true DNA-DNA interaction frequency from Hi-C data**. *SCS and RegGen COSI at ISMB/ECCB*, Prague, CZE
- 5. <u>Cameron CJF</u>, Dostie J and Blanchette M (2016) **Improved Hi-C Contact Maps by Adaptive Density Estimation**. *MRCCT* 1st International Symp on Immunogenetics of Infectious and Inflammatory Diseases, Montréal, CAN (PhD poster prize)
- 4. <u>Cameron CJF</u>, Blanchette M, De Hoon M and Dostie J (2016) **Identifying ncRNA Drivers of Architectural** Change in Chromatin. *RNA*, Kyoto, JPN
- 3. <u>Cameron CJF</u>, Dostie J and Blanchette M (2016) **Improved Hi-C Contact Maps by Adaptive Density Estimation**. *GLBIO/CCBC*, Toronto, CAN
- 2. <u>Cameron CJF</u>, Kaplan M, Drouin A and Blanchette M (2016) Linking Transposable Elements to Chromatin Architecture in *Arabidopsis thaliana*. *GLBIO/CCBC*, Toronto, CAN
- 1. <u>Cameron CJF</u>, Fraser J, Dostie J and Blanchette M (2014) **Chromosome conformation capture data** improves long-range eQTL prediction. *Epigenetics & Chromatin CSHL*, Huntington, USA

Book chapters, reviews and non-refereed publications

- 3. Wang XQD, <u>Cameron CJF</u>, Segal D, Paquette D, Blanchette M and Dostie J (2021) **Profiling Chromatin** Landscape at High Resolution and Throughput with 2C-ChIP. In: Bodega B., Lanzuolo C. (eds) Capturing Chromosome Conformation. Methods in Molecular Biology, vol 2157. *Humana, New York, NY.* DOI:10.1007/978-1-0716-0664-3 8
- 2. <u>Cameron CJF</u>, Fraser J, Blanchette M and Dostie J (2016) **Mapping and Visualizing Spatial Genome Organization. In: Bazett-Jones D, Dellaire G (eds) The Functional Nucleus.** *Springer, Cham.* **DOI:10.1007/978-3-319-38882-3 16**
- 1. Marhon SA, <u>Cameron CJF</u> and Kremer SC (2013) Recurrent Neural Networks. In: Bianchini M, Maggini M, Jain L (eds) Handbook on Neural Information Processing. *Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg.* DOI:10.1007/978-3-642-36657-4 2

Invited talks

- 5. (Aug 2023) Reliable protein identification in cryo-EM images by machine-learning consensus. New York Structural Biology Center, NYC, USA
- 4. (Aug 2023) Reliable protein identification in cryo-EM images by machine-learning consensus. Spanish National Research Council, Madrid, ESP
- 3. (Jul 2017) The future of Hi-C. Birds of a Feather panel discussion at ISMB/ECCB, Prague, CZE

- 2. (Apr 2017) **High-resolution estimation of DNA-DNA contact frequency from Hi-C data**. The Physical Basis of Functional Genome Organization: Genome organization as viewed by molecular and visual techniques, Holetown, BRB
- 1. (Aug 2016) **The 3D genome**. Beijing Institute of Genomics (BIG) at the Chinese Academy of Sciences, Beijing, CHN

Awards and scholarships

2017 - 19	Walter Sumner Fellowship, Walter Sumner Foundation
2018	Travel Fellowship Award for ISCB Student Council Symposium, ISCB SCS
2017	Graduate Research Enhancement and Travel Award, McGill University
2017	Graduate Mobility Award, McGill University
2016	Mitacs Globalink Research Award, Mitacs/Japan Society for the Promotion of Science
2013 – 14	Grad Excellence Award in Computer Science, McGill University
2013 – 14	Walter Hitschfeld Award - Computer Science, McGill University

Training and workshops

2024	MaxQuant Summer School, Ludwig Maximilian University, Munich, DEU
2023	LBMS cryo-EM Training Workshop Series 1-2 & 4, Brookhaven National Laboratory, Upton,
	USA
Spr 2023	LBMS on-demand training on screening EMs, Brookhaven National Laboratory, Upton, USA
Spr 2023	Compass Leadership & Management training and mentoring program
2020-22	CCTP/CIRTL teaching certification: Associate (2020) & Practitioner (2022)

Academic service

2024	RECOMB peer reviewer
2023 – 24	Nature Communications Biology peer reviewer
2020 – 24	Intelligent Systems for Molecular Biology peer reviewer
2016-24	Undergraduate and graduate student mentorship $(N = 21)$
2023	Bioinformatics Advances peer reviewer
2021 - 23	YPA symposium committee co-coordinator (2021–22) & member
Fall 2017	COMP 364: Computer Tools for Life Sciences co-instructor (with Oliver CG)