## Persentation:

One project Sentiment analysis: BY IMDB dataset

- 1. Text preprocessing
- 2. Tokenizer
- 3. LSTM architecture
- 4. Activation SoftMax
- 5. Adam optimizer
- 6. testing



## muril\_bilstm\_DL

```
precision recall f1-score support

-1 0.87 0.89 0.88 750
0 0.78 0.82 0.80 750
1 0.87 0.80 0.83 750

accuracy 0.84 2250
macro avg 0.84 0.84 0.84 2250
weighted avg 0.84 0.84 0.84 2250
```

```
precision recall f1-score support

0 0.98 0.83 0.90 4454
1 0.26 0.80 0.39 341

accuracy 0.83 4795
macro avg 0.62 0.81 0.65 4795
weighted avg 0.93 0.83 0.86 4795
```

Now I Want to explain some latest architecture

**Claude 3**: consists of a family of three models (Claude 3 Haiku, Claude 3 Sonnet, and Claude 3 Opus); Claude 3 Opus (the strongest model) seems to outperform GPT-4 on common benchmarks like MMLU and HumanEval; Claude 3 capabilities include analysis, forecasting, content creation, code generation, and converting in non-English languages like Spanish, Japanese, and French; 200K context windows supported but can be extended to 1M token to select customers; the models also have strong vision capabilities for processing formats like photos, charts, and graphs; Anthropic claims these models have a more nuanced understanding of requests and make fewer refusals.

**Mistral Large**: a new LLM with strong multilingual, reasoning, maths, and code generation capabilities; features include: 1) 32K tokens context window, 2) native multilingual capacities, 3) strong abilities in reasoning, knowledge, maths, and coding benchmarks, and 4) function calling and JSON format natively supported.

**StarCoder 2:** a family of open LLMs for code with three different sizes (3B, 7B, and 15B); the 15B model was trained on 14 trillion tokens and 600+ programming languages with a context window of 16K token and employing a fill-in-the-middle objective; it matches 33B+ models on many evaluation like code completion, code reasoning, and math reasoning aided through PAL.

BERT:



## BERTology meets Biology | Solving biological problems with Transformers

**PlanGPT:** shows how to leverage LLMs and combine multiple approaches like retrieval augmentation, fine-tuning, tool usage, and more; the proposed framework is applied to urban and spatial planning but there are a lot of insights and practical tips that apply to other domains.

|               | CHINCHILLA | SPARROW |
|---------------|------------|---------|
| plausi bility | 61%        | 78%.    |
| rule breaking | 20%        | 8%      |
| Winogender    | 1          | 7       |

|                                | Chart GPT | SPARROW |
|--------------------------------|-----------|---------|
| deliver evidence               | X         |         |
| fine-tune on<br>human feedback |           | V       |
| follow rules                   | X         |         |
| paper                          | X         |         |
| model demo                     |           | X       |

**Stable Diffusion 3:** a suite of image generation models ranging from 800M to 8B parameters; combines diffusion transformer architecture and flow matching for improved performance in multi-subject prompts, image quality, and spelling abilities; technical report to be published soon and linked here.







Thank you for hearing