Chapter 1. part 2. 31.4.2 Permutations and Combinations A permutation is an ordered arrangement of objects. 1º how many different ordered arrangements of the letters a, b and c are possible? AN: abc, acb, bac, bca, cab, cba. $3\times2\times1=6$ from basic principle, 1st can be any of the 3, 2nd can be chosen from any of the remaining 2, etc. 2. Similary, for n objects, how many different ordered arrangments? An: $n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 = n!$ 3. Choose Υ elements from the set $C = \{C_1, C_2, C_3, \cdots, C_n\}$ and list them in order. How many ways can we do this? Ans. $n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)$. Example A. How many ways can five children be lined up? Ans. $5 \times 4 \times 3 \times 2 \times 1 = 5! = 120$. Example B. Suppose that from ten children, five are to be chosen and lined up. How many different lines are possible? Ans: $10\times9\times8\times7\times6 = 30,240$ different lines. Expl C: License plates have six characters: three letters followed by three numbers. How many distinct such plates are possible? Ans: There are $26 \times 26 \times 26 = 26^3 = 17,576$ different ways for letters. $10\times10\times10=10=1000$ Ways to choose numbers. Thus, there are $26^3\times10^3=17,576,000$ different plates! Expl D: If all sequences of 6 characters are equally likely, what is the probability that license plate for a new car will contain no duplicate letters for numbers?

Ans: Denote that event with A. $P(A) = \frac{n(A)}{n(S)}$. 2) $n(s2) = 26^{3} \times 10^{3} = 17,576,000$. $n(A) = 26 \times 25 \times 24 \times 10 \times 9 \times 8 = 11,232,000.$ thus, $P(A) = \frac{n(A)}{n(D)} = \frac{11,232,000}{17576000} = 0.64$ Expl. E. Birthday Problem. A room contains n people. What is the probability that at least two of them have a common birthday?

Ans: Denote that event with A. $P(A) = \frac{n(A)}{n(A)}$. $n(A) = 365 \times 365 \times$ Consider AC = none of them have the same birthday. $P(A) = 1 - P(A^c) = 1 - \frac{n(A^c)}{n(\Omega)} = 1 - \frac{365 \times (365 - 1) \times \cdots \times (365 - n + 1)}{365 n}$ Some numbers: $P(A) = 1 - \frac{365 \times (365 - 1) \times \cdots \times (365 - n + 1)}{365 n}$ $P(A) = 1 - P(A^c) = 1 - \frac{365 \times (365 - 1) \times \cdots \times (365 - n + 1)}{365 n}$ The probability are larger than one might guess! every pair prob = $\frac{365}{365^2} = \frac{365}{365^2} = \frac{3}{365} = \frac{3}{3} = \frac{3$ Expl F. How many people must you ask to have a 50:50 chance of finding someone who shares your birthday?

Ans: Suppose you ask n people. A = "Someone's birthday is, Same as yours" Ac is easier. determine n such <math>P(A) = 0.5 $P(A^c) = 1 - P(A) = 0.5$. $P(A^c) = \frac{364}{365^n}$ $let_{1} - \frac{364^{n}}{365^{n}} = P(A) = 0.5, \quad n = 253.$ Combination: If robjects are taken from a set of n objects without replacement and disregarding order, how many different samples are possible? e.g. N=3, A,B,C, Y=2, AB, AC, BC. Ans: 3 different samples. $\frac{3x^2\lambda}{2!} = 3$, denoted $\binom{3}{2} = \frac{3x^2}{2!} = \frac{3x^2x^1}{2!} = 3$

Generally, r objects from n objects without replacement and order $n \cdot (n-1) \cdot (n-2) \cdots (n-r+1)$ r! - a sample of size r can be ordered in r! ways $= \frac{n \cdot (n-1) \cdot \cdots (n-r+1) \cdot (n-r)(n-r-1) \cdot \cdots \cdot 2 \cdot 1}{r! \cdot (n-r)(n-r-1) \cdot \cdots \cdot 2 \cdot 1}$ $=\frac{n!}{r!(n-r)!}=\binom{n}{r}$ Proposition B (P.12)

The number of unordered samples of r objects selected from n objects without replacement is $\binom{n}{r} = \frac{n!}{r! (n-r)!}$ Also, $(a+b)^n = \binom{n}{0}a^0b^n + \binom{n}{1}a^1b^{n-1} + \binom{n}{2}a^2b^{n-2} + \binom{n}{n}a^nb^n$ $= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{nk}$ if a=b=1, $2^n = \sum_{k=0}^n \binom{n}{k}$. if a+b=1. $1=\frac{n}{2}\binom{n}{k}a^kb^{nk}$. 1°. How many different groups of 3 could be selected from 5 items, A, B, C, D, E? Ans: $\binom{5}{3}=\frac{5!}{3!(5-3)!}=\frac{5!}{3!2!}=10$. $\binom{5}{3!}=\frac{5}{3!}=\binom{5}{3!}=$ be ordered 3! Ways 2°. A committee of 3 is to be formed from a group of 20 people. How many different committee are possible?

Ans: $(20) = \frac{20!}{3!(20.3)!} = \frac{20.19.18}{3!(17!)} = \frac{20.19.18}{3.2.1} = 1140.$ Expl. G. A player of CA state lottery could win the jackpot prize by choosing the 6 numbers from 1 to 49 that were subsequently chosen at random by the lottery officials. There are (49)=13,983,816 ways to choose 6 numbers from 49. prob. of winning is (49), abount 1 in 14 million. In 1991, rules were changed. Select 6 number from 1 to 53. prob of winning $\binom{53}{6} = \binom{22,957,950}{22,957,950}$, about $\binom{53}{6} = \binom{53}{6} = \binom{$ Expl. H. quality control N Items are in a lot and a sample of size T is taken. Suppose that the lot contains k k defedire Nk nordefedie defective items. What is the prob. that the sample Contains exactly m defective?

(k)(n-k)

(m)(r-m) Ans: $P(A) = \frac{n(A)}{n(x)} =$ (n) total # of samples (k) ways to choose the m defeative items in the sample from ke defeatives in lot.

Extension of proposition B:

Extension of proposition B: The number of ways that n objects can be grouped into r classes with n in the i-th class, i=1,2,..., r, and $n_i+n_2+...+n_r=n$ is $3 \text{ rd class} \left(\begin{array}{c} N-N_1-N_2 \\ N_3 \end{array} \right) \text{ ways}. \cdots$ thus $\binom{n}{n_1}\binom{n-n_1}{n_2} \cdot ... \binom{n-n_1 \cdot n_{r-1}}{n_r} = \frac{n!}{n_1! (n-n_2)!} \cdot \frac{(n-n_1)!}{n_2! (n-n_1-n_2)!}$ (n-m-12)! (n3.11(n-n,-n2-n2)! $=\frac{n!}{n_1! \; n_2! \cdots n_r!}$

Expl. J. A committee of seven members is to be divided three, two, and two. How	ided into three 5
	or prairy varys:
Ans: $\binom{7}{322} = \frac{7!}{3!2!2!} = 210.$	
(322) 3:2:2!	
- 1 1 - 1	G
Expl K. In how many ways can the set of nucleotide be arranged in a sequence of nine letters?	es { A, A, G, G, G, C.C.C.S
be arranged in a sequence of nine letters?	
Ans: $\frac{9!}{2! \ 4! \ 3!} = \left(\frac{9}{2 \ 4 \ 3}\right) = 1260.$	
I 9 positions divides	d into subgroups of 2.4.3.
Expl L In how many ways can $n=2m$ people be m courts for the first round of a tennis	e paired and assigned to
m courts for the first round of a tennis;	tournament?
Aus	
=(2m)! = (21)	m)!
(222) 2!2!2! 2	m pairs.
since there are m! ways to assign the mp	raixs to m courts, the
Ans. $\binom{n}{22 \cdot 2} = (2m)! = (2n)!$ $(22 \cdot 2) = 2!2! \cdot 2! = 2$ Since there are $m!$ ways to assign the m positive answer is: $(2m)!$ $2^m m!$	ABOD AB CD
2mm!	(22)=6. AC BD AD BC
	(22) BC AD. X
(n) multinomial coefficients.	b = 2 BD AC ×
$(n, n_2 \cdots n_r)$ multinomial coefficients.	α.
	don't care about different courts
$(\chi_1 + \chi_2 + \dots + \chi_r)^n = \sum_{n_1, \dots, n_r} (n_1 n_2 \dots n_r)^n$	XM1 NA2 NAT
M,, Mr.	Jry NZ NY
$n_1 + n_2 + \cdot + n_r = n.$	
	8.