Class 1 Homework

Load the following libraries:

```
library(tidyverse)
library(kableExtra)
library(gcookbook)
```

Get heightweight data (built in with the gcookbook package), and put it in a dataframe (the gcookbook:: syntax tell r which package the function or data you want is coming from. This normally is not necessary, unless packages have functions or data with the same name):

```
dfHW <- heightweight
```

head(dfHW)

	sex	ageYear	${\tt ageMonth}$	${\tt heightIn}$	${\tt weightLb}$
1	f	11.92	143	56.3	85.0
2	f	12.92	155	62.3	105.0
3	f	12.75	153	63.3	108.0
4	f	13.42	161	59.0	92.0
5	f	15.92	191	62.5	112.5
6	f	14.25	171	62.5	112.0

Let's take a quick look at the distribution of female and male observations. Use count to find the totals:

Now, Create a scatter plot of Weight vs Age in Years:

Change the scatter plot to show sex in different colors:

What does that tell us? Is that a little hard to see?

Let's make it easier to see. Create a new dataframe, and group the data by sex and ageYear, Then summarise the means of heightIn. It should look like the following:

#	Α	tibb	le: 1	102	x 3	3	
#	Gı	coups	: :	sex	[2]		
	S	sex	age!	l'ear	· Av	gWeight	;
	<	<fct></fct>	<0	dbl>	•	<dbl></dbl>	>
1	L 1	f	:	11.6	5	87.8	3
2	2 1	f	:	11.7	•	75.5	5
3	3 1	f		11.8	3	80.8	3
4	1 1	f		11.8	3	70.8	3
5	5 1	f		11.9)	82.7	7
6	3 1	f		12		86.3	3
7	7 1	f	:	12.1		88.2	2
8	3 1	f		12.2	2	96.2	2
9) 1	f		12.2	2	91.8	3
10) 1	f		12.3	3	85.5	5
#		. wit	h 92	2. mc	re	rows	

Now plot that and see what it looks like. And add a geom_smooth regression line to see if we can pick up a trend.

A little easier to see tendency. Do you think there's a tedency? Add a geom_smooth() (use se=F)

