

We used Random **Forest Classifier for** our Model, why?

It handles both behavioral and contextual data, provides high accuracy and delivers interpretable decisions

<u>Introduction of Prototype</u>

Traditional access control systems rely on static credentials and perimeter-based security, which are ineffective against modern threats. Our prototype addresses this by using AI to evaluate real-time behavioral and contextual factors, enforcing Zero Trust principles for secure, dynamic access control.

Tools Used

Python, Scikit-learn (Random Forest Classifier) Pandas & NumPy (data handling) Matplotlib & Seaborn (visualization) **CLI Interface (for session simulation)**

OBJECTIVES

Implement Zero Trust Architecture for modern access control.

Score each session across five trust vectors.

Train an AI model using labeled session data

Make real-time access decisions for end-users and admins.

Enforce strict admin access via perfect scoring

Model Accuracy

METHODOLOGY

25000 session logs with realistic scenario were extracted

Device Trust Score (MAC recognition)

IP Trust Score (Network recognition, VPN detection)

Location Trust Score (realistic login time and travel feasibility)

Access Mechanism (OS and Browser version detection)

User Behavior Score

(user behavior pattern detection)

ZTA Compliance Mapping

Never Trust: No implicit trust for any device or user

Always Verify: Evaluate all sessions in real-time

Context-Aware: Access decision based on user context

Least Privilege: Strict enforcement for Admins

Dynamic Decision: Approve/Deny based on score thresholds

Scope

- Applies to enterprise login environments (e.g., universities).
- Focus on desktop/laptop logins in Australian cities.
- Includes 7 user roles from Admin to Student.
- Designed as a modular proof-of-concept model.

AI-Driven Access Control: System Workflow

1. Log Collection

2. Data Cleaning & Preprocessing

3. Score Assignment (5 Mechanisms)

4. Random Forest Model Training

5. CLI-Based Access Testing

6. Visual Analysis & Reporting

7. Zero Trust Alignment Verification

Real imitation of our Access Control System Logic Flow

MAC Address: 28:EE:52:CD:91:7A Device Trust Score: 20 (companyOwned) IP Trust Score: 15 (External, VPN Detected)OS/Browser Score: 20 (macOS Ventura, Chrome ver129) Key Dynamic Score: 20 (Full Match) Location-Time Score: 20 (Valid time + feasible city transition) Final Score: 95/100

→ ACCESS GRANTED

Limitations

- No mobile or IoT simulation.
- Scoring uses fixed thresholds.
- Dataset is synthetic (no adversarial attacks).
- No biometric or MFA support.

Key Features

- Role-sensitive scoring logic.
- Strict Admin enforcement.
- CLI testing interface.
- Real-time contextual scoring.
- Fully interpretable model decisions.

Access Decision Logic

- Each login scored out of 100 (20 points per mechanism).
- Access Approved: Total score ≥ 75.
- Admins require a perfect 100.
- Any risky attribute lowers the trust score.

References

- [1] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, "Zero Trust Architecture (SP 800-207)," NIST, 2020.
- [2] M. Ali, R. Islam, and M. Faheem, "Revolutionizing Identity and Access Management with Al: A Zero Trust Approach Using User Behavior Analytics," Int. J. Artif. Intell. Mach. Learn., vol. 2, no. 1, pp. 35-49, 2022.
- [3] A. Rizzardi, A. Pavani, and N. Capuano, "Harnessing Al-Powered Zero Trust Architectures for Proactive Cyber Defense," in Proc. Int. Conf. Computer and Cyber Security, 2023.
- [4] I. A. Khan, M. Mustafa, and A. Yousaf, "Al-Powered Identity and Access Management in Zero Trust Architectures," J. Netw. Secur. Anal., vol. 14, no. 3, pp. 245-262, 2021.
- [5] J. R. C. Nurse, S. Li, and S. Creese, "Behavioral Biometrics in Access Control: Opportunities and Risks," IEEE Secur. Privacy, vol. 20, no. 2, pp. 24-31, 2022.

AI DRIVEN ACCESS CONTROL WITH ZERO TRUST ARCHITECTURE

Designed by: Krish Neupane(S375639), Pranjal Ghimire(S376779), Prashiddhika Shrestha(S376554), Rijip Prasain (S378021),