ECOLE POLYTECHNIQUE ECOLES NORMALES SUPERIEURES

CONCOURS D'ADMISSION 2021

UNDI 12 AVRIL 2021 08h00 - 12h00

FILIERE MP - Epreuve n° 1

MATHEMATIQUES A (XLCR)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

Sous-groupes finis de $\mathbf{GL}_n(\mathbb{Z})$

Ce sujet traite de l'étude des cardinaux possibles pour les sous-groupes finis de $\mathbf{GL}_n(\mathbb{Z})$. Le but est de démontrer que pour tout $n \in \mathbb{N}^*$, il existe une borne (ne dépendant que de n) sur le cardinal des sous-groupes finis de $\mathbf{GL}_n(\mathbb{Z})$, d'en expliciter une, et d'en donner une majoration raffinée dans le cas des sous-groupes dont le cardinal est une puissance d'un nombre premier.

Les préliminaires contiennent des résultats pouvant être utiles dans toute la suite du sujet.

Les parties 1, 2 et 3 sont indépendantes. La partie 4 est largement indépendante des autres, mais utilise le résultat de la dernière question de la partie 3.

Notations

- Les lettres \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} désignent respectivement l'ensemble des entiers naturels, des entiers relatifs, des nombres rationnels, des nombres réels, des nombres complexes. La notation \mathbb{N}^* désigne l'ensemble des entiers naturels non nuls.
- Si $x \in \mathbb{R}$, on note $\lfloor x \rfloor$ la partie entière de x, c'est-à-dire le plus grand entier k tel que $k \leq x$.
- Si E est un ensemble fini, on note card(E) son cardinal.
- Si $a, b \in \mathbb{Z}$, on note $b \mid a$ si b divise a, et $b \nmid a$ dans le cas contraire.
- Si $a, a', b \in \mathbb{Z}$, on note $a \equiv a' \pmod{b}$ si $b \mid (a' a)$.
- Si $q \geq 2$ est un nombre premier et $a \in \mathbb{Z}$, on note $v_q(a)$ le plus grand entier v tel que $q^v \mid a$.
- Pour $n \in \mathbb{N}^*$, \mathfrak{S}_n désigne le groupe des permutations de l'ensemble $\{1, \ldots, n\}$, et $\varepsilon : \mathfrak{S}_n \to \{\pm 1\}$ désigne le morphisme signature.
- Pour $k, n \in \mathbb{N}$, on notera $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ le nombre de parties à k éléments dans un ensemble à n éléments.
- Tous les anneaux considérés dans ce sujet sont unitaires.
- Si R est un anneau commutatif et $n \in \mathbb{N}^*$, on définit $\mathcal{M}_n(R)$ comme l'ensemble des matrices carrées de taille n à coefficients dans R. On pourra utiliser librement le fait que l'addition coefficient par coefficient et la multiplication matricielle munissent $\mathcal{M}_n(R)$ d'une structure d'anneau.
- Si R est un anneau commutatif et $A \in \mathcal{M}_n(R)$, en notant $(a_{ij})_{1 \leq i,j \leq n}$ les coefficients de A, on définit la trace de A par la formule $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$ et le déterminant de A par la formule $\det A = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{1 \leq i \leq n} a_{i\sigma(i)}$. On pourra utiliser librement le fait que pour $A, B \in \mathcal{M}_n(R)$, $\det(AB) = (\det A)(\det B)$.
- Si $n \in \mathbb{N}^*$ et R est un anneau commutatif, pour tout $A \in \mathcal{M}_n(R)$ on note $\chi_A = \det(XI_n A)$ le polynôme caractéristique de A.

- Pour $n \in \mathbb{N}^*$, $\mathcal{M}_n(\mathbb{C})$ désigne l'ensemble des matrices carrées de taille n à coefficients dans \mathbb{C} , et $\mathbf{GL}_n(\mathbb{C})$ désigne le groupe multiplicatif des matrices inversibles de taille n à coefficients dans \mathbb{C} .
- Pour $n \in \mathbb{N}^*$, $\mathcal{M}_n(\mathbb{Z})$ désigne l'ensemble des matrices carrées de taille n à coefficients dans \mathbb{Z} , et $\mathbf{GL}_n(\mathbb{Z})$ désigne le sous-groupe de $\mathbf{GL}_n(\mathbb{C})$ constitué des matrices $A \in \mathcal{M}_n(\mathbb{Z})$ inversibles dont l'inverse est dans $\mathcal{M}_n(\mathbb{Z})$ (on ne demande pas de démontrer que cet ensemble est bien un sous-groupe de $\mathbf{GL}_n(\mathbb{C})$).
- Si G est un groupe d'élément neutre e, on rappelle qu'un élément g de G est dit d'ordre fini s'il existe un entier d > 0 tel que $g^d = e$. Dans ce cas, l'ordre de g est le plus petit entier d > 0 tel que $g^d = e$.
- Si $z \in \mathbb{C}$ et $d \in \mathbb{N}^*$, on dit que z est une racine d-ième de l'unité si $z^d = 1$. S'il existe $d \in \mathbb{N}^*$ tel que $z \in \mathbb{C}$ soit une racine d-ième de l'unité, on dira simplement que z est une racine de l'unité.

Préliminaires

- 1. Soit $z \in \mathbb{C}$ une racine de l'unité. Justifier que |z| = 1.
- 2. Soit $g \in GL_n(\mathbb{C})$, et soit $d \in \mathbb{N}^*$. On suppose que g est d'ordre d. Démontrer que g est diagonalisable, et que toutes ses valeurs propres sont des racines d-ièmes de l'unité.
- 3. Soit $m \in \mathbb{N}$, et soit $q \in \mathbb{N}^*$.
 - (a) Démontrer que card $(\{1 \le k \le m \text{ tels que } q \mid k\}) = \lfloor \frac{m}{q} \rfloor$.
 - (b) En déduire que si q est premier, $v_q(m!) = \sum_{i=1}^{+\infty} \lfloor \frac{m}{q^i} \rfloor.$

1 Éléments d'ordre fini de $\operatorname{GL}_n(\mathbb{Z})$

Le but de cette partie est de démontrer que l'ensemble des ordres possibles pour les éléments d'ordre fini de $\mathbf{GL}_n(\mathbb{Z})$ est fini.

On commence par détailler le cas n=2. Soit $g\in \mathbf{GL}_2(\mathbb{Z})$. On suppose que g est d'ordre fini $d\in\mathbb{N}^*$.

- 1. Démontrer que $|\text{Tr}(g)| \leq 2$.
- 2. On suppose que les valeurs propres de g sont réelles, déterminer les valeurs possibles pour d.
- 3. On suppose maintenant que g n'a pas de valeurs propres réelles. Démontrer que le polynôme caractéristique de g est l'un des polynômes suivants : $X^2 + 1, X^2 + X + 1, X^2 X + 1$.
- 4. En déduire que $d \in \{1, 2, 3, 4, 6\}$.

On traite maintenant le cas de $GL_n(\mathbb{Z})$ où $n \geq 1$ est un entier quelconque.

- 5. Soit $P = X^n + \sum_{i=0}^{n-1} a_i X^i \in \mathbb{C}[X]$ unitaire de degré n. On note z_1, \ldots, z_n les racines de P (comptées avec multiplicité) et $\alpha = \max_{1 \leq i \leq n} |z_i|$. Démontrer que pour tout $0 \leq i \leq n-1, |a_i| \leq \binom{n}{i} \alpha^{n-i}$.
- 6. Montrer que $\{\chi_g \text{ tels que } g \in \mathbf{GL}_n(\mathbb{Z}) \text{ est d'ordre fini} \}$ est fini.
- 7. En déduire que $\{d \in \mathbb{N} \mid \exists g \in \mathbf{GL}_n(\mathbb{Z}) \text{ d'ordre } d\}$ est fini.

2 Sous-groupes finis de $\operatorname{GL}_n(\mathbb{Z})$

Soit $n \in \mathbb{N}^*$. Le but de cette partie est de majorer le cardinal des sous-groupes finis de $\mathbf{GL}_n(\mathbb{Z})$ par une quantité ne dépendant que de n.

- 1. Soit $m \geq 3$ un entier. Soit $g \in \mathbf{GL}_n(\mathbb{Z})$. On suppose que g est d'ordre fini et que $g I_n$ a tous ses coefficients divisibles par m. Soit $A = (g I_n)/m$.
 - (a) Montrer que A est diagonalisable sur \mathbb{C} , et que pour toute valeur propre λ de A, on a $|\lambda| < 1$.
 - (b) En déduire qu'il existe $k \in \mathbb{N}$ tel que $A^k = 0$.
 - (c) Conclure que $g = I_n$.
- 2. Soit G est un sous-groupe fini de $GL_n(\mathbb{Z})$, et soit $m \geq 3$ un entier.

- (a) Démontrer que l'application $\mathcal{M}_n(\mathbb{Z}) \to \mathcal{M}_n(\mathbb{Z}/m\mathbb{Z})$ de réduction modulo m des coefficients induit une application injective $G \to \mathcal{M}_n(\mathbb{Z}/m\mathbb{Z})$.
- (b) En déduire que $card(G) \leq 3^{n^2}$.

3 Traces des éléments d'un p-sous-groupe de $\operatorname{GL}_n(\mathbb{Z})$

Soit p un nombre premier et $r \geq 1$ un entier. Dans cette partie, on suppose que G est un sous-groupe de cardinal p^r de $\mathbf{GL}_n(\mathbb{Z})$. Le but de cette partie est de déterminer l'ensemble des valeurs possibles pour les traces des éléments de G.

- 1. Soit ℓ un nombre premier.
 - (a) Démontrer que pour tout $1 \le k \le \ell 1$, l'entier $\binom{\ell}{k}$ est multiple de ℓ .
 - (b) Soit R un anneau. On note $\ell R = \{\ell x, \ x \in R\}$. Démontrer que pour tous $x, y \in R$ tels que xy = yx, on a $(x + y)^{\ell} (x^{\ell} + y^{\ell}) \in \ell R$.
- 2. Soit R un anneau commutatif, et soit I un idéal de R. Soient $n \in \mathbb{N}^*$ et $A, B \in \mathcal{M}_n(R)$. On suppose que tous les coefficients de B sont dans l'idéal I. Démontrer que $\det(A+B) \det A \in I$.
- 3. Soit $\ell \in \mathbb{N}$ un nombre premier. Démontrer que pour tout polynôme $P \in \mathbb{Z}[X]$, on a :

$$P(X^{\ell}) - P(X)^{\ell} \in \ell \mathbb{Z}[X].$$

- 4. Soit $M \in \mathcal{M}_n(\mathbb{Z})$, et soit $\ell \in \mathbb{N}$ un nombre premier.
 - (a) Justifier qu'il existe $A \in \mathcal{M}_n(\mathbb{Z}[X])$ telle que $(XI_n M)^{\ell} (X^{\ell}I M^{\ell}) = \ell A$.
 - (b) Démontrer que $\chi_{M^{\ell}}(X^{\ell}) \chi_{M}(X)^{\ell} \in \ell \mathbb{Z}[X]$
 - (c) En déduire que $Tr(M^{\ell}) \equiv Tr(M) \pmod{\ell}$.
- 5. Soit $g \in G$. Démontrer que $Tr(g) \equiv n \pmod{p}$.
- 6. Soit $g \in G$ et soit ℓ un nombre premier. On suppose que $\ell > 2n$. Démontrer que $\mathrm{Tr}(g^{\ell}) = \mathrm{Tr}(g)$.
- 7. Soit $k \in \mathbb{N}$ non divisible par p. On note

$$m = k + p^r \prod_{\substack{\ell \text{ premier} \\ \ell \le 2n \\ \ell \text{ ne divise pas } k}} \ell.$$

- (a) Justifier que tous les facteurs premiers de m sont strictement supérieurs à 2n.
- (b) En déduire que pour tout $g \in G$, $Tr(g^k) = Tr(g)$.
- 8. On note $J_r = \{1 \le k \le p^r 1 \text{ tels que } p \nmid k\}.$
 - (a) Démontrer que $J_r = \bigcup_{0 \le s \le p^{r-1}-1} \{ps + t \text{ tels que } 1 \le t \le p-1\}.$
 - (b) Soit $\zeta\in\mathbb{C}$ tel que $\zeta^{p^r}=1.$ Montrer que :

$$\sum_{j \in J_r} \zeta^j = \begin{cases} p^{r-1}(p-1) & \text{si } \zeta = 1\\ -p^{r-1} & \text{si } \zeta \text{ est d'ordre } p\\ 0 & \text{sinon} \end{cases}.$$

- 9. Soit $g \in G$. On note n_0 la multiplicité de 1 comme racine de χ_g , et n_1 le nombre de racines ζ de χ_g d'ordre p (comptées avec multiplicité). Démontrer que $\text{Tr}(g) = n_0 \frac{n_1}{p-1}$.
- 10. On note $a = \lfloor \frac{n}{p-1} \rfloor$. Soit $g \in G$, démontrer que $\text{Tr}(g) \in \{n pv \mid 0 \le v \le a\}$.

4 Cardinaux des p-sous-groupes de $\operatorname{GL}_n(\mathbb{Z})$

Soit $G \subset \mathbf{GL}_n(\mathbb{C})$ un sous-groupe fini. Dans cette partie, on démontre que pour tout $s \in \mathbb{N}$, $\sum_{g \in G} \mathrm{Tr}(g)^s$ est un entier divisible par $\mathrm{card}(G)$. On en déduit une borne uniforme sur le cardinal des sous-groupes finis de $\mathbf{GL}_n(\mathbb{Z})$ dont le cardinal est une puissance d'un nombre premier.

- 1. Soit $G \subset \mathbf{GL}_n(\mathbb{C})$ un sous-groupe fini. Soit $f = \frac{1}{\operatorname{card}(G)} \sum_{g \in G} g \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Démontrer que f est un projecteur sur $\{x \in \mathbb{C}^n \mid \forall g \in G, \ g(x) = x\}$.
 - (b) En déduire que $\sum_{g \in G} \text{Tr}(g)$ est un entier divisible par card(G).
- 2. Soient $k, n \in \mathbb{N}^*$. Pour $g \in \mathbf{GL}_n(\mathbb{C})$ et $h \in \mathbf{GL}_k(\mathbb{C})$, on note $g \otimes h$ la matrice par blocs, de taille $nk \times nk$, définie par :

$$g \otimes h = \begin{pmatrix} g_{11}h & g_{12}h & \cdots & g_{1n}h \\ g_{21}h & \cdots & \cdots & g_{2n}h \\ \vdots & & & \vdots \\ g_{n1}h & \cdots & \cdots & g_{nn}h \end{pmatrix}.$$

Justifier les affirmations suivantes:

- (i) si $g \in \mathbf{GL}_n(\mathbb{C})$ et $h \in \mathbf{GL}_k(\mathbb{C})$, $\mathrm{Tr}(g \otimes h) = \mathrm{Tr}(g)\mathrm{Tr}(h)$.
- (ii) si $g, g' \in \mathbf{GL}_n(\mathbb{C})$ et $h, h' \in \mathbf{GL}_k(\mathbb{C})$, $(g \otimes h)(g' \otimes h') = gg' \otimes hh'$.
- (iii) si $g \in \mathbf{GL}_n(\mathbb{C})$ et $h \in \mathbf{GL}_k(\mathbb{C})$, $g \otimes h \in \mathbf{GL}_{nk}(\mathbb{C})$ et $(g \otimes h)^{-1} = g^{-1} \otimes h^{-1}$.
- 3. Soient Γ, Γ' des groupes finis et $\varphi : \Gamma \to \Gamma'$ un morphisme de groupes. Soit $H = \ker \varphi$.
 - (a) Soit $\gamma' \in \Gamma'$. Démontrer que $\varphi^{-1}(\{\gamma'\})$ est vide ou de la forme $\gamma H = \{\gamma h \mid h \in H\}$ pour un certain $\gamma \in \Gamma$.
 - (b) Démontrer que $\operatorname{card}(\Gamma) = \operatorname{card}(\varphi(\Gamma))\operatorname{card}(H)$.
- 4. Pour $g \in \mathbf{GL}_n(\mathbb{C})$, on définit par récurrence sur $s : g^{(1)} = g$ et $g^{(s+1)} = g^{(s)} \otimes g$. Soit $s \geq 1$, on définit l'application :

$$\varphi_s : \mathbf{GL}_n(\mathbb{C}) \to \mathbf{GL}_{n^s}(\mathbb{C}).$$
 $g \mapsto g^{(s)}.$

Soit G un sous-groupe fini de $\mathbf{GL}_n(\mathbb{C})$.

(a) Justifier que φ_s est un morphisme de groupes et démontrer que :

$$\sum_{g \in G} \operatorname{Tr}(g)^s = \operatorname{card}(G \cap \ker \varphi_s) \sum_{g' \in \varphi_s(G)} \operatorname{Tr}(g').$$

(b) En déduire que $\sum_{g \in G} \operatorname{Tr}(g)^s$ est un entier divisible par $\operatorname{card}(G)$.

Soit p un nombre premier et soit $r \in \mathbb{N}^*$. Soit G un sous-groupe de $\mathbf{GL}_n(\mathbb{Z})$ de cardinal p^r .

- 5. On rappelle qu'on a noté $a=\left\lfloor\frac{n}{p-1}\right\rfloor$. Pour $1\leq j\leq a$, on note $\tau_j=n-pj$, et $P(X)=\prod_{1\leq j\leq a}(X-\tau_j)$.
 - (a) En considérant $\sum_{g \in G} P(\text{Tr}(g))$, démontrer que card(G) divise P(n).
 - (b) En déduire que $r \leq a + v_p(a!)$.
- 6. (a) Démontrer que $r \leq \frac{pn}{(p-1)^2}$.
 - (b) En déduire que $\operatorname{card}(G) \leq 4^n$.