(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

. I NATUR BUILDER 11 DIRIKO BART ALIH BART DIRI 1 MILI BART BIRRA HERI TURA 110 DIRIK BIRLAH HERI TURA BART B

(43) Internationales Veröffentlichungsdatum 21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/041825 A1

(51) Internationale Patentklassifikation7: C07D 487/04

(21) Internationales Aktenzeichen: PCT/EP2003/012277

(22) Internationales Anmeldedatum:

4. November 2003 (04.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 52 261.8 7. November 2002 (07.11.2002) DI

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; Carl-Bosch-Strasse, 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): TORMO I BLASCO, Jordi [DL/DE]; Carl-Benz-Str. 10-3, 69514 Laudenbach (DE). BLETTNER, Carsten [DL/DE]; Richard-Wagner-Str. 48, 68165 Mannheim (DE). MÜLLER, Bernd [DE/DE]; Stockingerstr.7, 67227 Frankenthal (DE). GEWEHR, Markus [DE/DE]; Goethestr.21, 56288 Kastellaun (DE). GRAMMENOS, Wassilios [DE/DE]; Alexander-Fleming-Str. 13, 67071 Ludwigshafen (DE). GROTE, Thomas [DE/DE]; Im Hochnhausen 18, 67157 Wachenheim (DE). GYPSER, Andreas [DE/DE]; B 4

4, 68159 Mannheim (DE). RHEINHEIMER, Joachim [DE/DE]; Merziger Str.24, 67063 Ludwigshafen (DE). SCHÄFER, Peter [DE/DE]; Römerstr.1, 67308 Ottersheim (DE). SCHEWECK, Frank [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). SCHWÖGLER, Anja [DE/DE]; Heinrich-Lanz-Str. 3, 68165 Mannheim (DE). AMMERMANN, Eberhard [DE/DE]; Von-Gagern-Str.2, 64646 Heppenheim (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstr.9, 67117 Limburgerhof (DE). SCHÖFL, Ulrich [DE/DE]; Luftschiffring 22c, 68782 Brühl (DE). STIERL, Reinhard [DE/DE]; Jahnstr. 8, 67251 Freinsheim (DE).

- (74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; Carl-Bosch-Strasse 38, 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM,

[Fortsetzung auf der nächsten Seite]

(54) Title: 5-ALKYL-7-AMINOTRIAZOLOPYRIMIDINES, METHODS AND INTERMEDIARY PRODUCTS NECESSARY FOR THE PRODUCTION THEREOF, AGENTS CONTAINING SAID COMPOUNDS AND THE USE THEREOF FOR FIGHTING AGAINST HARMFUL MUSHROOMS

(54) Bezeichnung: 5-ALKYL-7-AMINOTRIAZOLOPYRIMIDINE, VERFAHREN UND ZWISCHENPRODUKTE ZU IHRER HERSTELLUNG ,SIE ENTHALTENDE MITTEL SOWIE HIRE VERWENDUNG ZUR BEKÄMPFUNG VON SCHADPILZEN

$$\begin{array}{cccc}
R^{1} & R^{2} \\
N & R^{3}
\end{array}$$
(1)

(57) Abstract: The invention relates to 5-alkyl-7-aminotriazolopyrimidines of the formula (I) and to the salts thereof. In said formula substituents have the following meanings: R^1 and R^2 each is a hydrogen atom or a group of alkyl, alcenyl, alcynyl, haloalkyl, cycloalkyl, phenyl or naphtyle, saturated, unsaturated or aromatic heterocycle having from five to six members which contain from one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or R^1 and R^2 can form together with a connecting them nitrogen atom a cycle of 5 to 6 members containing from one to four nitrogen atoms or from one to three nitrogen atoms and one sulfur or oxygen atom,

R³ is a cycloalkyl or bicycloalkyl group, R¹, R² and R³ can be substituted in conformity with a description, and X is an alkyl or alkyl halide group. The inventive methods and intermediary products necessary for producing said compounds, agents containing them and the use thereof for fighting against harmful mushrooms are also disclosed.

(57) Zusammenfassung: 5-Alkyl-7-aminotriazolopyrimidine der Formel (I) in der die Substituenten die folgenden Bedeutungen haben: R¹, R² Wasserstoff, Alkyl, Alkenyl, Alkinyl, Haloalkyl, Cycloalkyl, Phenyl, Naphthyl; 5- oder 6-gliedriges gesättigtes, ungesättigtes oder aromatisches Heterocyclyl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefeloder Sauerstoffatom; oder R¹ und R² können zusammen mit dem Stickstoffatom, das sie verbindet, einen 5- oder 6-gliedrigen Ring bilden, der ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom enthält; R³ Cycloalkyl oder Bicycloalkyl; wobei R¹, R² und R³ gemäß der Beschreibung substituiert sein können; X Alkyl oder IIalogenalkyl; sowie deren Salze; Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung zur Bekämpfung von phytopathogenen Schadpilzen.

WO 2004/041825 A1

ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

vor Ablauf der f\(\textit{u}\)r \(\textit{a}\)r der Anspr\(\textit{u}\)che geltenden
Frist; Ver\(\textit{o}\)ffentlichung wird wiederholt, falls \(\textit{A}\)nderungen
eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

5-Alkyl-7-aminotriazolopyrimidine, Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von Schadpilzen

Beschreibung

Die vorliegende Erfindung betrifft 5-Alkyl-7-aminotriazolopyrimidine der Formel I,

10

45

15 in der die Substituenten die folgenden Bedeutungen haben:

- R^1,R^2 Wasserstoff, $C_1-C_{10}-Alkyl$, $C_2-C_{10}-Alkenyl$, $C_2-C_{10}-Alkinyl$, $C_1-C_{10}-Haloalkyl$, $C_3-C_8-Cycloalkyl$, Phenyl, Naphthyl; oder
- 5- oder 6-gliedriges gesättigtes, ungesättigtes oder aromatisches Heterocyclyl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefeloder Sauerstoffatom; oder
- R1 und R2 können zusammen mit dem Stickstoffatom, das sie verbindet, einen 5- oder 6-gliedrigen Ring bilden, der ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom enthält;
- R¹ und R² können, wenn ungleich Wasserstoff, unabhängig voneinander teilweise oder vollständig halogeniert sein und/oder einen bis drei Reste aus der Gruppe R^a tragen
- Ra Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl,

 C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkoxy,

 C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino,

 C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyl,

 C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes Oxy
 C₁-C₄-alkylenoxy;

wobei diese aliphatischen, alicyclischen oder aromatischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen Rb tragen

können:

Rb Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl,

2

Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxycarbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyloder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten:

8 Kohlenstoffatome enthalten;

und/oder einen bis drei der folgenden Reste:

Cycloalkyl, Cycloalkoxy, Heterocyclyl, Heterocyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl-C1-C6-alkoxy, Aryl-C1-C6-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyl- oder Haloalkylgruppen substituiert sein können;

- $C_3-C_{14}-Cycloalkyl$ oder $C_6-C_{14}-Bicycloalkyl$, wobei R^3 unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann; und
- 30 \times C_1 - C_6 -Alkyl oder C_1 - C_2 -Halogenalkyl;

sowie deren Salze.

5

15

- Zusätzlich betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung der Verbindungen I, sowie Mittel und die Verwendung der Verbindungen I zur Bekämpfung von phytopathogenen Schadpilzen.
- 6-Aryl-Triazolopyrimidine werden in WO 98/46608 und EP-A 550 113 offenbart. Durch aromatische Gruppen speziell substituierte 6-Benzyl-Triazolopyrimidine mit pharmazeutischer Wirkung sind aus US 5,231,094 und US 5,387,747 bekannt. EP-A 141 317 offenbart 6-Aryl- und 6-Arylalkyl-7-aminotriazolopyrimidine, welche in 5-Position einen Alkylrest tragen können. 6-Cycloalkyltriazolopyrimidine mit diversen Resten in 5-Position werden in EP-A 613 900

genannt. 5-Alkyl-6-phenyl-7-aminotriazolopyrimidine sind aus US 5,994,360 bekannt.

3

Die in WO 98/46608, EP-A 550 113, EP-A 141 317, EP-A 613 900 und 5 US 5,994,360 beschriebenen Verbindungen sind als Pflanzenschutzmittel gegen Schadpilze geeignet.

Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Daher lag als Aufgabe zugrunde, Verbindungen mit verbesserter. 10 Wirksamkeit zu finden.

Demgemäß wurden die 5-Alkyl-7-aminotriazolopyrimidine der Formel I gefunden. Weiterhin wurden Zwischenprodukte und Verfahren zur Herstellung der Verbindungen I, sowie die Verwendung der Verbin15 dungen I und diese enthaltende Mittel zur Bekämpfung von phytopathogenen Schadpilzen gefunden.

Die Verbindungen der Formel I unterscheiden sich von den aus den oben genannten Schriften bekannten Verbindungen durch die Kombi-20 nation der 5-Alkylgruppe mit der als mono- oder bicyclisches Cycloalkyl ausgestalteten Gruppe R³ am Triazolopyrimidingerüst.

7-Aminotriazolopyrimidine der Formel I, sind vorteilhaft erhältlich durch Umsetzung von 3-Amino-1,2,4-triazol mit Dicarbonylverbindungen der Formel II, wobei A für C₁-C₁₀-Alkoxy, insbesondere für C₁-C₄-Alkyl steht und R³ und X wie für Formel I definiert sind, zu 7-Hydroxytriazolopyrimidinen der Formel III:

30
$$N_{NH_2}$$
 + $O_X^{R_3}$ III N_N^{N} X

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 25°C bis 210°C, vorzugsweise 120°C bis 180°C, in Gegenwart einer Base [vgl. EP-A-770 615].

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Triisopropylethylamin, Tributylamin und N-Methylpiperidin, Pyridin in Betracht. Besonders bevorzugt werden Triethylamin und Tributylamin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

40

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, II in einem Überschuß bezogen auf das Aminotriazol einzusetzen.

5 Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt werden [Heterocycl. 1996, S.1031; Tetrahedron Lett. 1966, Bd.24, S.2661; Chem. Pharm. Bull. 1961, S.801] oder sind kommerziell zugänglich.

10

Anschließend setzt man die 7-Hydroxytriazolopyrimidine der Formel III mit einem Halogenierungsmittel zu 7-Halogentriazolopyrimidinen der Formel IV um:

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 150°C, vorzugsweise 80°C bis 125°C, in einem inerten organischen 20 Lösungsmittel oder ohne Lösungsmittel [vgl. EP-A-770 615].

Als Halogenierungsmittel kommen bevorzugt Bromierungs- oder Chlorierungsmittel, wie beispielsweise Phosphoroxybromid oder Phosphoroxychlorid, in Substanz oder in Anwesendheit eines Lösungsmittels in Frage.

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, besonders bevorzugt Toluol, o-, m- und p-Xylol. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Die Halogentriazolopyrimidine der Formel IV werden mit einem Amin der Formel V zu 7-Aminotriazolopyrimidinen der Formel I umge35 setzt.

40 Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 70°C, vorzugsweise 10°C bis 35°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl.EP-A 550 113].

Geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe wie 45 Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethyl-

5

ether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran.

Als Basen kommen allgemein anorganische Verbindungen wie Alkali5 metall- und Erdalkalimetallhydroxide, Alkalimetall- und Erdalkalimetalloxide, Alkalimetall- und Erdalkalimetallhydride,
Alkalimetallamide, Alkalimetall- und Erdalkalimetallcarbonate wie
Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, metallorga10 nische Verbindungen, insbesondere Alkalimetallalkyle, Alkylmagnesiumhalogenide sowie Alkalimetall- und Erdalkalimetallalkoholate
und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre
Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und
N-Methylpiperidin, Pyridin, substituierte Pyridine sowie bicycli15 sche Amine in Betracht. Besonders bevorzugt werden Triethylamin,
Kaliumcarbonat und Natriumcarbonat.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebe-20 nenfalls als Lösungsmittel verwendet werden. Alternativ dazu kann ein Überschuß der Verbindung V als Base dienen.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, V in 25 einem Überschuß bezogen auf IV einzusetzen.

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischenund Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

7-Hydroxy- und 7-Halogentriazolopyrimidine der Formeln III und IV, wobei X und R^3 die Bedeutung wie in Formel I hat und Hal Halogen, insbesondere Chlor oder Brom bedeutet, sind neu.

WO 2004/041825 6

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

5 Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6, 8 oder 10 Kohlenstoffatomen, z.B. C1-C6-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 10 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Di-15 methylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Haloalky1: geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 20 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise, beispielsweise ein- bis dreifach, oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluor-25 methyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 oder 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl,

- 35 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl,
- 40 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1propenyl, 1-Ethyl-2propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl,
- 45 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl,

7

4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl,
1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl,
1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl,
2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl,
1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und

10 1-Ethyl-2-methyl-2-propenyl;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 oder 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie Ethinyl,

- 15 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl,
 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl,
- 20 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl,
 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl,
 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl,
 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl,
- 25 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen
mit 3 bis 5, 6,oder 8 Kohlenstoffringgliedern, z.B. C₃-C₈-Cyclo30 alkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl,
Cycloheptyl und Cyclooctyl;

Bicycloalkyl: bicyclische, gesättigte Kohlenwasserstoffgruppen
mit 6 bis 14, insbesondere 7 oder 10 Kohlenstoffringgliedern, be35 stehend aus annelierten 5-, 6- und/oder 7-gliederigen Ringsystemen.

5- oder 6-gliedriges Heterocyclyl (gesättigtes Heterocyclyl), enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff-

- 40 oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothia-
- 45 zolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazo-

lidinyl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl,
3-Pyrrolin-3-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl,
1,3-Dioxan-5-yl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl,
2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4-Hexahydropyridazi5 nyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl und 2-Piperazinyl;

5- oder 6-gliedriges Heterocyclyl (ungesättigtes Heterocyclyl), enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff-10 oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome und eine oder zwei C=C-Doppelbindungen, z.B. 3,6-Dihydro-2H-pyridin-1-yl oder 2,5-Dihydropyrrol-1-yl;

- 5-gliedriges Heteroaryl (aromatisches Heterocyclyl), enthaltend
 15 ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl,
 20 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, und 1,3,4-Triazol-2-yl;
- 25 6-gliedriges Heteroaryl (aromatisches Heterocyclyl), enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl,
 30 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl und 2-Pyrazinyl;

Oxyalkylenoxy: divalente unverzweigte Ketten aus 1 bis 3 CH2-Gruppen, wobei beide Valenzen über ein Sauerstoffatom an das 35 Gerüst gebunden ist, z.B. OCH2O, OCH2CH2O und OCH2CH2CH2O;

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es in der Regel nicht auf die Art des Salzes ankommt. Im Allgemeinen kommen die 40 Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

45 Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vor-

zugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 2-(2-Hydroxy-eth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren, Phosphoniumionen, Sufoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxonium-10 ionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, 15 Hexaflourosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Sofern R¹ und/oder R² ein Chiralitätszentrum aufweist, sind die 20 (R) – und (S) – Isomere und die Razemate der Verbindungen der Formel I in den Umfang der Erfindung eingeschlossen.

Die besonders bevorzugten Ausführungsformen der Zwischenprodukte in Bezug auf die Variablen entsprechen denen der Reste R³ und X 25 der Formel I.

Im Hinblick auf ihre bestimmungsgemäße Verwendung der 5-Alkyl-7-aminotriazolopyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein 30 oder in Kombination, besonders bevorzugt:

Verbindungen I sind bevorzugt, in denen R^1 und R^2 für Wasserstoff, $C_1-C_{10}-Alkyl$ oder $C_1-C_6-Haloalkyl$, insbesondere für Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_4-Haloalkyl$, besonders bevorzugt für Wasserstoff, 35 1-Methylpropyl, Isopropyl oder 1,1,1-Trifluor-2-propyl steht.

Bevorzugt sind auch Verbindungen I, in denen R^1 und R^2 zusammen mit dem Stickstoffatom, das sie verbindet, einen 5-oder 6-gliedrigen Ring bilden, der ein Sauerstoff- oder Schwefelatom enthal-

- 40 ten kann, wie Pyrrolidin-1-yl, Pyrrol-1-yl, Pyrazol-1-yl, Imidazol-1-yl, Piperidin-1-yl, Morpholin-4-yl, Thiomorpholin-4-yl, 3,6-Dihydro-2H-pyridin-1-yl, 2,5-Dihydropyrrol-1-yl, wobei die genannten Reste durch eine bis drei Gruppen Ra, insbesondere durch C1-C4-Alkyl, wie beispielsweise Methyl oder Ethyl, substituiert
- 45 sein können. Besonders bevorzugt sind Verbindungen I, in denen R^1 und R^2 gemeinsam eine 4-Methylpiperidin-1-yl-Gruppe bilden.

10

Insbesondere bevorzugt werden Verbindungen I, in denen \mathbb{R}^1 nicht Wasserstoff bedeutet.

Daneben werden auch Verbindungen I besonders bevorzugt, in denen S^1 Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_4 -Haloalkyl und R^2 Wasserstoff oder C_1 - C_4 -Alkyl, insbesondere Wasserstoff, bedeutet.

Weiterhin werden Verbindungen I bevorzugt, in denen R¹ und R² keine Gruppen R^b tragen, insbesondere solche, in denen R¹ und R² 10 keine Gruppen R^a tragen.

Ein weiterer bevorzugter Gegenstand sind Verbindungen I, in denen \mathbb{R}^1 und \mathbb{R}^2 Wasserstoff bedeuten.

15 Besonders werden auch Verbindungen I bevorzugt, in denen R³
C₃-C₁₂-Cycloalkyl, bevorzugt Cyclopropyl, Cyclopentyl, Cyclohexyl,
Cyclooctyl oder Cyclododecyl oder Bicycloheptyl bedeuten, wobei R³
ggf. eine bis drei Gruppen R^a tragen kann. Insbesondere is R³
unsubstituiert.

20

Außerdem werden Verbindungen I besonders bevorzugt, in denen X für $C_1-C_4-\lambda lkyl$, insbesondere Methyl steht.

Insbesondere sind im Hinblick auf ihre Verwendung die in den fol25 genden Tabellen zusammengestellten Verbindungen I bevorzugt. Die
in den Tabellen für einen Substituenten genannten Gruppen stellen
außerdem für sich betrachtet, unabhängig von der Kombination, inder sie genannt sind, eine besonders bevorzugte Ausgestaltung des
betreffenden Substituenten dar.

30

Tabelle 1

Verbindungen der Formel I, in denen R^3 für Cyclopropyl, X für Methyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 2

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclopropyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 3

Verbindungen der Formel I, in denen R^3 für Cyclopropyl, X für n-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

PCT/EP2003/012277 WO 2004/041825 11

Tabelle 4

Verbindungen der Formel I, in denen R3 für Cyclopropyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 5

Verbindungen der Formel I, in denen R³ für Cyclopentyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 6

Verbindungen der Formel I, in denen R3 für Cyclopentyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 7

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclopentyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 8

Verbindungen der Formel I, in denen R³ für Cyclopentyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 9

Verbindungen der Formel I, in denen R³ für Cyclohexyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 10

Verbindungen der Formel I, in denen R^3 für Cyclohexyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 11

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclohexyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 12

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclohexyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

PCT/EP2003/012277

Tabelle 13

WO 2004/041825

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cycloheptyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

12

5

Tabelle 14

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cycloheptyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 15

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cycloheptyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 16

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cycloheptyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 17

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclooctyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 18

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclooctyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 19

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclooctyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 20

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclooctyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 21

Verbindungen der Formel I, in denen \mathbb{R}^3 für Cyclododectyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 22

Verbindungen der Formel I, in denen R3 für Cyclododectyl, X für Ethyl steht und die Kombination der Reste R1 und R2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

13

Tabelle 23

Verbindungen der Formel I, in denen R3 für Cyclododectyl, X für n-Propyl steht und die Kombination der Reste R1 und R2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 24

Verbindungen der Formel I, in denen R3 für Cyclododectyl, X für iso-Propyl steht und die Kombination der Reste R1 und R2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 25

Verbindungen der Formel I, in denen R3 für Bicyclo[2.2.1]hept-2-yl, X für Methyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 26

Verbindungen der Formel I, in denen R3 für Bicyclo[2.2.1]hept-2-yl, X für Ethyl steht und die Kombination der Reste R1 und R2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 27

Verbindungen der Formel I, in denen R3 für Bicyclo[2.2.1]hept-2-yl, X für n-Propyl steht und die Kombination der Reste R1 und R2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 28

Verbindungen der Formel I, in denen R3 für Bicyclo[2.2.1]hept-2-yl, X für iso-Propyl steht und die Kombination der Reste R¹ und R2 für eine Verbindung jeweils einer Zeile der Tabelle A ent-35 spricht

Tabelle 29

Verbindungen der Formel I, in denen R3 für 2-Methylcyclopentyl, X für Methyl steht und die Kombination der Reste R¹ und R² für 40 eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 30

Verbindungen der Formel I, in denen R3 für 2-Methylcyclopentyl, X für Ethyl steht und die Kombination der Reste R¹ und R² für eine 45 Verbindung jeweils einer Zeile der Tabelle A entspricht

14

Tabelle 31

Verbindungen der Formel I, in denen \mathbb{R}^3 für 2-Methylcyclopentyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 32

Verbindungen der Formel I, in denen R^3 für 2-Methylcyclopentyl, X für iso-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

5

Tabelle 33

Verbindungen der Formel I, in denen \mathbb{R}^3 für 3-Methylcyclopentyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 34

Verbindungen der Formel I, in denen \mathbb{R}^3 für 3-Methylcyclopentyl, X für Ethyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 35

Verbindungen der Formel I, in denen \mathbb{R}^3 für 3-Methylcyclopentyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 36

Verbindungen der Formel I, in denen \mathbb{R}^3 für 3-Methylcyclopentyl, X für iso-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 37

Verbindungen der Formel I, in denen \mathbb{R}^3 für 2-Methylcyclohexyl, X für Methyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 38

Verbindungen der Formel I, in denen R^3 für 2-Methylcyclohexyl, X für Ethyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 39

Verbindungen der Formel I, in denen \mathbb{R}^3 für 2-Methylcyclohexyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 40

Verbindungen der Formel I, in denen R^3 für 2-Methylcyclohexyl, X für iso-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 41

Verbindungen der Formel I, in denen R^3 für 3-Methylcyclohexyl, X für Methyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 42

Verbindungen der Formel I, in denen R^3 für 3-Methylcyclohexyl, X für Ethyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 43

Verbindungen der Formel I, in denen R^3 für 3-Methylcyclohexyl, X für n-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 44

Verbindungen der Formel I, in denen R^3 für 3-Methylcyclohexyl, X für iso-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 45

Verbindungen der Formel I, in denen R^3 für 4-Methylcyclohexyl, X für Methyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 46

Verbindungen der Formel I, in denen R^3 für 4-Methylcyclohexyl, X für Ethyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 47

Verbindungen der Formel I, in denen \mathbb{R}^3 für 4-Methylcyclohexyl, X für n-Propyl steht und die Kombination der Reste \mathbb{R}^1 und \mathbb{R}^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 48

Verbindungen der Formel I, in denen R^3 für 4-Methylcyclohexyl, X für iso-Propyl steht und die Kombination der Reste R^1 und R^2 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

I

Tabelle A

R¹N R²

	No.	R ¹			
	A-1	Н	R ²		
10	A-2	CH ₂ CH ₃	H		
	A-3	CH ₂ CH ₃	Н		
	A-4	CH ₂ CH ₃	CH ₃		
	A-5	CH ₂ CF ₃	CH ₂ CH ₃		
	A-6	CH ₂ CF ₃	Н		
15	A-7	CH ₂ CF ₃	CH ₃		
	A-8	CH ₂ CCl ₃	CH ₂ CH ₃		
	A-9	CH ₂ CCl ₃	H		
	A-10	CH ₂ CCl ₃	CH ₃		
	A-11	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃		
20	A-12	CH ₂ CH ₂ CH ₃	H		
	A-13	CH ₂ CH ₂ CH ₃	CH ₃		
	A-14	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃		
	A-15	CH (CH ₃) ₂	CH ₂ CH ₂ CH ₃		
	A-16	CH (CH ₃) ₂	Н		
25	A-17	CH (CH ₃) ₂	CH ₃		
	A-18	(R/S) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃		
	A-19	(R/S) CH(CH ₃)-CH ₂ CH ₃	Н		
- 1	A-20	(R/S) CH(CH ₃)-CH ₂ CH ₃	CH ₃		
	A-21	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃		
30	A-22	(R) CH(CH ₃)-CH ₂ CH ₃	Н		
ſ	A-23	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₃		
ſ	A-24	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃		
	A-25	(S) CH(CH ₃)-CH ₂ CH ₃	H		
35	A-26	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₃		
³³ [A-27	(R/S) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃		
	A-28	(R/S) CH(CH ₃)-CH(CH ₃) ₂	Н		
	A-29	(R/S) CH(CH ₃)-CH(CH ₃) ₂	CH CH		
	A-30	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃		
40 L	A-31	(R) CH(CH ₃)-CH(CH ₃) ₂	Н		
	A-32	(R) CH (CH ₃) -CH (CH ₃) ₂	CH ₃		
	A-33	(S) CH (CH ₃) -CH (CH ₃) ₂	CH ₂ CH ₃		
	A-34	(S) CH(CH ₃)-CH(CH ₃) ₂	H		
	A-35	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₃		
45	A-36	(R/S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃		
	A-37	(R/S) CH (CH ₃) -C (CH ₃) ₃	Н		
	A-38	(R/S) CH(CH ₃)-C(CH ₃) ₃	CH ₃		
			CH ₂ CH ₃		

	No.	R ¹	R ²
	A-39	(R) CH(CH ₃)-C(CH ₃) ₃	Н
	A-40	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₃
_	A-41	A-39 (R) CH(CH ₃) - C(CH ₃) ₃ A-40 (R) CH(CH ₃) - C(CH ₃) ₃ A-41 (R) CH(CH ₃) - C(CH ₃) ₃ A-42 (S) CH(CH ₃) - C(CH ₃) ₃ A-43 (S) CH(CH ₃) - C(CH ₃) ₃ A-44 (S) CH(CH ₃) - C(CH ₃) ₃ A-45 (R/S) CH(CH ₃) - C(CH ₃) ₃ A-46 (R/S) CH(CH ₃) - CF ₃ A-47 (R/S) CH(CH ₃) - CF ₃ A-48 (R) CH(CH ₃) - CF ₃ A-49 (R) CH(CH ₃) - CF ₃ A-49 (R) CH(CH ₃) - CF ₃ A-50 (R) CH(CH ₃) - CF ₃ A-51 (S) CH(CH ₃) - CF ₃ A-51 (S) CH(CH ₃) - CF ₃ A-52 (S) CH(CH ₃) - CF ₃ A-53 (S) CH(CH ₃) - CF ₃ A-54 (R/S) CH(CH ₃) - CCl ₃ A-55 (R/S) CH(CH ₃) - CCl ₃ A-56 (R/S) CH(CH ₃) - CCl ₃ A-57 (R) CH(CH ₃) - CCl ₃ A-58 (R) CH(CH ₃) - CCl ₃ A-59 (R) CH(CH ₃) - CCl ₃ A-60 (S) CH(CH ₃) - CCl ₃ A-61 (S) CH(CH ₃) - CCl ₃ A-62 (S) CH(CH ₃) - CCl ₃ A-63 (CH ₂ CF ₂ CF ₃ A-64 (CH ₂ CF ₂ CF ₃ A-65 (CH ₂ CF ₂ CF ₃ A-66 (CH ₂ CF ₂ CF ₃ A-67 (CH ₂ CF ₂ CF ₃ A-68 (CH ₂ CF ₂ CF ₃ A-69 (CH ₂ CCH ₃) - CH ₂ A-70 (CH ₂ CCH ₃) - CH ₂ A-71 CH ₂ C(CH ₃) - CH ₂ A-72 cyclopentyl A-73 cyclopentyl A-74 (Cyclopentyl A-75 (Cyclopentyl A-76 cyclopexyl A-77 (CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₄ CH ₃ CH ₄	CH ₂ CH ₃
5	A-42	(S) CH(CH ₃)-C(CH ₃) ₃	н
	A-43	(S) $CH(CH_3)-C(CH_3)_3$	CH ₃
	A-44	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
	A-45	(R/S) CH (CH_3) -CF ₃	Н
10	A-46	(R/S) CH (CH_3) -CF ₃	CH ₃
	A-47	(R/S) CH (CH_3) -CF ₃	CH ₂ CH ₃
	A-48	(R) CH(CH ₃)-CF ₃	н
	A-49	(R) CH(CH ₃)-CF ₃	CH ₃
	A-50	(R) CH(CH ₃)-CF ₃	CH ₂ CH ₃
15	A-51	(S) CH(CH ₃)-CF ₃	. н
	A-52	(S) CH(CH ₃)-CF ₃	CH ₃
	A-53	(S) CH(CH ₃)-CF ₃	CH ₂ CH ₃
			Н
	A-55	(R/S) CH (CH_3) -CCl ₃	CH ₃
20	A-56	(R/S) CH (CH_3) -CCl ₃	CH ₂ CH ₃
			Н
	A-58	(R) CH(CH ₃)-CCl ₃	CH ₃
	A-59		CH ₂ CH ₃
			Н
25			CH ₃
			CH ₂ CH ₃
	A-63	CH ₂ CF ₂ CF ₃	Н
	A-64	CH ₂ CF ₂ CF ₃	CH₃
30	A-65	CH ₂ CF ₂ CF ₃	CH ₂ CH ₃
30	A-66	CH ₂ (CF ₂) ₂ CF ₃	Н
	A-67	CH ₂ (CF ₂) ₂ CF ₃	CH ₃
	A-68	CH ₂ (CF ₂) ₂ CF ₃	CH ₂ CH ₃
	A-69	$CH_2C(CH_3) = CH_2$	Н
35	A-70	$CH_2C(CH_3) = CH_2$	CH ₃
	A-71	$CH_2C(CH_3) = CH_2$	CH ₂ CH ₃
	A-72	cyclopentyl	Н
	A-73	cyclopentyl	CH ₃
	A-74	cyclopentyl	CH ₂ CH ₃
40	A-75		н
			CH ₃
			CH ₂ CH ₃
45			
l	A-81	– (CH	2)5-

	No.	R ¹	R ²			
	A-82	-(CH ₂) ₂ CH	(CH ₃) (CH ₂) ₂ -			
_	A-83	-CH ₂ CH (CH ₃) CH ₂ CH (CH ₃) CH ₂ -				
	A-84	-(CH ₂) ₂ CH=CHCH ₂ -				
5	A-85	- (CH ₂) ₂ C (CH ₃)=CHCH ₂ -				
	A-86	-(CH ₂) ₂ CHF(CH ₂) ₂ -				
	A-87	-(CH ₂) ₃ CHFCH ₂ -				
	A-88	- (CH ₂) ₂ CH	(CF ₃) (CH ₂) ₂ -			
	A-89	-(CH ₂) ₂ O(CH ₂) ₂				
10	A-90	-(CH ₂) ₂ S(CH ₂) ₂ -				
	A-91	-CH ₂ CI	H=CHCH ₂ -			

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum

15 von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

20 Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- · Alternaria-Arten an Gemüse und Obst,
- 30 · Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen,
 - · Blumeria graminis (echter Mehltau) an Getreide,
 - Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
 - · Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
 - · Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
 - · Mycosphaerella-Arten an Getreide, Bananen und Erdnüssen,
 - · Phytophthora infestans an Kartoffeln und Tomaten,
 - Plasmopara viticola an Reben,

- 40 · Podosphaera leucotricha an Äpfeln,
 - Pseudocercosporella herpotrichoides an Weizen und Gerste,
 - · Pseudoperonospora-Arten an Hopfen und Gurken,
 - · Puccinia-Arten an Getreide,
 - · Pyricularia oryzae an Reis,
- 45 · Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
 - Septoria tritici und Stagonospora nodorum an Weizen,
 - · Uncinula necator an Reben,

- Ustilago-Arten an Getreide und Zuckerrohr, sowie
- Venturia-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schad-5 pilzen wie *Paecilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

Die Verbindungen I werden angewendet, indem man die Pilze oder 10 die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

15

45

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je 20 nach Art des gewünschten Effektes zwischen 0,01 und 2 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm 25 Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.

Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube,

35 Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

40 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

20

Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,

Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B.
hochdisperse Kieselsäure, Silikate); Emulgiermittel wie
nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und
Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylaryl-20 sulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Form-25 aldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl-arylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, 30 ethoxyliertes Polyoxypropylen, Laurylalkoholpoly-glykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen,
35 Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner
Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs,
aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B.
Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naph40 thaline oder deren Derivate, Methanol, Ethanol, Propanol,
Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare
Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder
Wasser in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

- 5 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde,
- 10 Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

15

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

20

Beispiele für Formulierungen sind:

- Produkte zur Verdünnung in Wasser
- 25 A Wasserlösliche Konzentrate (SL) 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

30

- В Dispergierbare Konzentrate (DC) 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.
- Emulgierbare Konzentrate (EC) С 15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinus-40 ölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.
- D Emulsionen (EW, EO) 40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in 45 Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und

22

zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

- E Suspensionen (SC, OD)
- 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirk-
- 10 stoffs.
 - F Wasserdispergierbare und wasserlösliche Granulate (WG, SG) 50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und
- mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
- 20 G Wasserdispergierbare und wasserlösliche Pulver (WP, SP)
 75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
 - 2. Produkte für die Direktapplikation
 - H Stäube (DP)
- 5 Gew. Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt.

 Man erhält dadurch ein Stäubemittel.
 - I Granulate (GR, FG, GG, MG)
- 0.5 Gew-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

40

45

J ULV- Lösungen (UL) 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

PCT/EP2003/012277

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

23

10

WO 2004/041825

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwi-25 schen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff 30 ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der 35 Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als

40 Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der
z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen
I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine

45 Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- 5 · Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
 - Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
 - Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,
- 10 · Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
 - Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Hexaconazol, Imazalil, Metconazol, Myclobu-
- tanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,
 - Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
- 20 · Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
 - Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Fluto-
- lanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
 - Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupfero-
- 30 xychlorid, basisches Kupfersulfat,
 - · Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl
 - Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
 - · Schwefel
- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexa-
- chlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid
 - Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid

25

· Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

5

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit 10 physikalischen Angaben aufgeführt.

- Beispiel 1 Herstellung von 2-Cyclopentyl-3-oxobutylsäureethylester
- 15 Eine Mischung von 3-Oxobutylsäure ethylester (0,5 mol), Cyclopentylbromid (0,5 mol) und Natriumethoxylat (0,5 mol) in Ethanol (100 ml) wurde 15 Std. refluxiert. Nach Abkühlen der Reaktionsmischung auf etwa 20 bis 25°C wurden 71g der Titelverbindung durch Destillation (96-100°C, 0,25 mbar) isoliert.

20

Beispiel 2 Herstellung von 5-Methyl-6-cyclopentyl-7-hydroxy-[1,2,4]-triazolo[1,5-a]-pyrimidin

Eine Mischung von 3-Amino-1,2,4-triazol (14 g), 2-Cyclopen
25 tyl-3-oxobutylsäureethylester (0,17 mol, Bsp. 1) und Tributylamin (50 ml) wurde für 6 Std. auf 180°C erhitzt. Nach Abkühlen der Reaktionsmischung auf etwa 70°C wurde wässr. NaOH-Lösung (21g in 200 ml H₂O) zugesetzt und die Lösung weitere 30 min gerührt. Nach Phasentrennung und Extraktion mit Diethylether wurde die wässrige

30 Phase mit konz. HCl-Lösung angesäuert. Aus dem Niederschlag erhielt man 19g der Titelverbindung.

Beispiel 3 Herstellung von 5-Methyl-6-cyclopentyl-7-chlor-[1,2,4]-triazolo[1,5-a]-pyrimidin

35

Eine Mischung von 5-Methyl-6-cyclopentyl-7-hydroxy-[1,2,4]-tri-azolo-[1,5-a]pyrimidin (17 g, Bsp. 2) und POCl₃ (50 ml) wurde 8 Std. refluxiert. Dabei destillierte ein Teil des POCl₃ ab. Der Rückstand wurde in ein Dichlormethan/Wasser-Gemisch gegeben. Die 0 organische Phase wurde abgetrennt und getrocknet. Nach Abtrennen des Lösungsmittels erhielt man 11g der Titelverbindung vom Fp. 87°C.

26

Beispiel 4 Herstellung von 5-Methyl-6-cyclopentyl-7-(4-methyl-piperidin-1-yl)-[1,2,4]-triazolo[1,5-a]pyrimidin
[I-1]

5 Eine Lösung von 4-Methylpiperidin (1,5 mmol) und Triethylamin (1,5 mmol) 10 ml Dichlormethan wurde unter Rühren zu einer Lösung von 5-Methyl-6-cyclopentyl-7-chlor-[1,2,4]-triazolo[1,5-a]-pyrimidin (1,5 mmol, Bsp. 3) in 20ml Dichlormethan gegeben. Die Reaktionsmischung wurde etwa 16 Std. bei 20 bis 25°C gerührt, dann mit 10 5%iger HCl-Lösung gewaschen. Die organische Phase wurde abgetrennt und getrocknet. Nach Abdestillieren des Lösungsmittels und Chromatographie an Kieselgel wurden daraus 0,26g der Titelverbindung vom Fp. 145°C erhalten.

15 Tabelle I: Verbindungen der Formel I

	Nr.	R ¹	R ²	R ³	ж	phys. Daten (Fp.[°C]; IR [cm ⁻¹])
20	I-1	- (CH ₂) ₂ CH (CH ₃)	(CH ₂) ₂ -	Cyclopentyl	CH ₃	145
20	I-2	(R) CH (CH ₃) -CH (CH ₃) ₂	Н	Cyclopentyl	CH ₃	96
	I-3	(S) CH(CH ₃)-CF ₃	Н	Cyclopentyl	CH ₃	108
	I-4	Н	H	Cyclopentyl	CH ₃	271
25	I-5	CH ₃	н	Cyclopentyl	CH ₃	175
	1-6	(R) CH (CH ₃) -C (CH ₃) ₃	Н	Cyclopentyl	CH ₃	1960; 1605; 1590; 1240

Beispiele für die Wirkung gegen Schadpilze

30

Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden getrennt als Stammlösung formuliert mit 35 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt. Die Stammlösungen der Wirkstoffe wurden entsprechend der angegebenen Konzentration mit Wasser verdünnt.

40

Beispiel 1: Wirksamkeit gegen die Dürrfleckenkrankheit der Tomate verursacht durch Alternaria solani

Blätter von Topfpflanzen der Sorte "Große Fleischtomate St.

45 Pierre" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenauf-

WO 2004/041825

telt werden konnte.

schwemmung von Alternaria solani in 2 % Biomalzlösung mit einer Dichte von 0,17 x 10⁶ Sporen/ml infiziert. Anschließend wurden die Pflanzen in einer wasserdampfgesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach 5 Tagen hatte sich die 5 Krautfäule auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermit-

27

PCT/EP2003/012277

In diesem Test zeigten die mit 250 ppm des Wirkstoffs I-1 behan-10 delten Pflanzen keinen Befall, während die unbehandelten Pflanzen zu 90% befallen war.

Beispiel 2: Wirksamkeit gegen den Grauschimmel an Paprikablättern verursacht durch Botrytis cinerea bei protektiver Anwendung

15

Paprikasämlinge der Sorte "Neusiedler Ideal Elite" wurden, nachdem sich 4 - 5 Blätter gut entwickelt hatten, mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten

20 Pflanzen mit einer Sporensuspension von Botrytis cinerea, die 1,7 x 10⁶ Sporen/ml in einer 2 %-igen wässrigen Biomalzlösung enthielt, inokuliert. Anschließend wurden die Versuchspflanzen in eine Klimakammer mit 22 bis 24°C und hoher Luftfeuchtigkeit gestellt. Nach 5 Tagen konnte das Ausmaß des Pilzbefalls auf den 25 Blättern visuell in % ermittelt werden.

In diesem Test zeigten die mit 250 ppm der Wirkstoffe I-1, bzw. I-3 behandelten Pflanzen maximal 20% Befall, während die unbehandelten Pflanzen zu 90% befallen waren.

30

Beispiel 3 - Wirksamkeit gegen Mehltau an Gurkenblättern verursacht durch Sphaerotheca fuliginea bei protektiver Anwendung

Blätter von in Töpfen gewachsenen Gurkenkeimlingen der Sorte
35 "Chinesische Schlange" wurden im Keimblattstadium mit wässriger
Suspension in der unten angegebenen Wirkstoffkonzentration bis
zur Tropfnässe besprüht. 20 Stunden nach dem Antrocknen des
Spritzbelages wurden die Pflanzen mit einer wässrigen Sporensuspension des Gurkenmehltaus (Sphaerotheca fuliginea) inoku-

- 40 liert. Anschließend wurden die Pflanzen im Gewächshaus bei Temperaturen zwischen 20 und 24°C und 60 bis 80 % relativer Luftfeuchtigkeit für 7 Tage kultiviert. Dann wurde das Ausmaß der Mehltauentwicklung visuell in %-Befall der Keimblattfläche ermittelt.
- 45 In diesem Test zeigten die mit 250 ppm der Wirkstoffe I-1, bzw. I-3 behandelten Pflanzen nicht über 3% Befall, während die unbehandelten Pflanzen zu 90% befallen waren.

Patentansprüche

1. 5-Alkyl-7-aminotriazolopyrimidine der Formel I,

5

in der die Substituenten die folgenden Bedeutungen haben:

 R^1,R^2 Wasserstoff, $C_1-C_{10}-Alkyl$, $C_2-C_{10}-Alkenyl$, $C_2-C_{10}-Alki-nyl$, $C_1-C_{10}-Haloalkyl$, $C_3-C_8-Cycloalkyl$, Phenyl, Naphthyl; oder

15

5- oder 6-gliedriges gesättigtes, ungesättigtes oder aromatisches Heterocyclyl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom; oder

20

 R^1 und R^2 können zusammen mit dem Stickstoffatom, das sie verbindet, einen 5- oder 6-gliedrigen Ring bilden, der ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom enthält;

25

 R^1 und R^2 können, wenn ungleich Wasserstoff, unabhängig voneinander teilweise oder vollständig halogeniert sein und/oder einen bis drei Reste aus der Gruppe R^a tragen

30

R^a Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halo-alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloal-koxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyl, C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes Oxy-C₁-C₄-alkylenoxy;

35

wobei diese aliphatischen oder alicyclischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen Rb tragen können:

40

Rb Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbo-

WO 2004/041825

nyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxycarbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyloder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten;

10

5

und/oder einen bis drei der folgenden Reste:

Cycloalkyl, Cycloalkoxy, Heterocyclyl, Heterocyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl-C1-C6-alkoxy, Aryl-C1-C6-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyloder Haloalkylgruppen substituiert sein können;

20

15

- R³ C₃-C₁₄-Cycloalkyl oder C₆-C₁₄-Bicycloalkyl, wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann; und
- X C₁-C₆-Alkyl oder C₁-C₂-Halogenalkyl;

30

25

sowie deren Salze.

2. 5-Alkyl-7-aminotriazolopyrimidine der Formel I gemäß Anspruch 1, in der die Substituenten die folgenden Bedeutungen haben:

35

 R^1,R^2 Wasserstoff, $C_1-C_{10}-Alkyl$, $C_2-C_{10}-Alkenyl$, $C_2-C_{10}-Alkinyl$, $C_1-C_{10}-Haloalkyl$, $C_3-C_8-Cycloalkyl$, Phenyl, Naphthyl; oder

40

5- oder 6-gliedriges gesättigtes, ungesättigtes oder aromatisches Heterocyclyl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom; oder

45

 ${\tt R}^1$ und ${\tt R}^2$ können zusammen mit dem Stickstoffatom, das sie verbindet, einen 5- oder 6-gliedrigen Ring bilden, der ein bis vier Stickstoffatome oder ein bis drei

Stickstoffatome und ein Schwefel- oder Sauerstoffatom enthält;

R¹ und R² können, wenn ungleich Wasserstoff, unabhängig voneinander teilweise oder vollständig halogeniert sein und/oder einen bis drei Reste aus der Gruppe R^a tragen

- Ra Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halo-alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloal-koxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyl, C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes Oxy-C₁-C₄-alkylenoxy;
- R³ C_3-C_{14} -Cycloalkyl oder C_6-C_{14} -Bicycloalkyl, wobei R^3 unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann; und
- 20 $X C_1-C_6-Alkyl;$

10

40

sowie deren Salze.

- Verbindungen der Formel I gemäß Anspruch 1 oder 2, in der X
 für Methyl steht.
 - Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1, dadurch gekennzeichnet, daß man Dicarbonylverbindungen der Formel II

wobei A für C₁-C₁₀-Alkoxy und R³ und X wie für Formel I definiert ist, mit 3-Amino-1,2,4-triazol zu 7-Hydroxytriazolopyrimidinen der Formel III

cyclisiert und III mit einem Halogenierungsmittel zu 7-Halogentriazolopyrimidinen der Formel IV

31

halogeniert, wobei Hal für Halogen steht, und anschließend mit einem Amin der Formel ${\tt V}$

worin \mathbb{R}^1 und \mathbb{R}^2 wie in Formel I definiert sind, zu 5-Al-kyl-7-aminotriazolopyrimidinen der Formel I umsetzt.

- 10 5. Verbindungen der Formeln III und IV wie in Anspruch 4 definiert.
- Zur Bekämpfung von phytopathogenen Schadpilzen geeignetes Mittel, enthaltend einen festen oder flüssigen Trägerstoff
 und eine Verbindung der Formel I gemäß Anspruch 1.
 - Saatgut, enthaltend eine Verbindung der Formel I gemäß Anspruch 1 in einer Menge von 0,001 bis 1 g/kg.
- 20 8. Verwendung der Verbindungen der Formel I gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von Schadpilzen geeigneten Mittels.
- 9. Verfahren zur Bekämpfung von phytopathogenen Schadpilzen, dadurch gekennzeichnet, daß man die Pilze oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge der Verbindungen der Formel I gemäß Anspruch 1 behandelt.

30

35

INTERNATIONAL SEARCH REPORT

interna ilcation No PCT/EP 03/12277

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07D487/04		
According to	o international Patent Classification (IPC) or to both national classifica	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do	ocumentation searched (classification system followed by classification CO7D	n symbols)	
	tion searched other than minimum documentation to the extent that s		
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)
EPO-In	ternal, CHEM ABS Data, PAJ, WPI Data		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	_	
Category °	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.
A	WO 02/083677 A (GRAMMENOS WASSILI RHEINHEIMER JOACHIM (DE); BASF AG GEWEHR M) 24 October 2002 (2002-1 Seite 1, Formel I page 10, line 18 - page 11, line	(DĒ); 0-24)	1-9
Α	EP 0 141 317 A (BASF AG) 15 May 1985 (1985-05-15) cited in the application Seite 1, Formel I Seite 9, Tabelle, Verb. Nr. 9 page 10, line 34 - page 11, line	2	1-9
Furth	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
• Special ca	legories of cited documents:	"T" later document published after the inte	mational filing date
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the International	or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the c	the application but eory underlying the
which	late ont which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the do 'Y' document of particular relevance; the c	be considered to current is taken alone laimed invention
O docume other r		cannot be considered to involve an in- document is combined with one or mo- ments, such combination being obvious in the art.	re other such docu-
	ant published prior to the international filing date but nan the priority date claimed	*&" document member of the same patent	family
	actual completion of the international search 6 March 2004	Oate of mailing of the international sea 24/03/2004	arch report
Name and n	naling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hoepfner, W	

INTERNATIONAL SEARCH REPORT

Internal pplication No
PCT/EP 03/12277

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 02083677	Α	24-10-2002	WO	02083677 A	24-10-2002
			ΕP	1381610 A	
EP 0141317	A	15-05-1985	DE	3338292 A	l 02-05-1985
			AT	32077 T	15-02-1988
			ΑU	566960 B2	
			AU	3452684 A	26-04-1985
			CA	1242715 A1	04-10-1988
			CS	248724 B2	12-02-1987
			DD	232635 A5	05-02-1986
			DE	3468878 D1	25-02-1988
			EP	0141317 A2	2 15-05-1985
			ΗŲ	36328 A2	2 30-09-1985
			ΙL	73258 A	30-11-1987
			JP	60104089 A	08-06-1985
			NZ	209936 A	31-03-1987
			PL	250093 A2	16-07-1985
			US	RE32676 E	24-05-1988
			US	4617303 A	14-10-1986

INTERNATIONALER RECHERCHENBERICHT

Internet Aktenzeichen PCT/EP 03/12277

			7 12277
A. KLASS IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C070487/04		
Nach der In	ternationalen Patentkiassifikation (IPK) oder nach der nationalen Kl	assifikation und der IPK	
B. RECHE	RCHIERTE GEBIETE		
Recherchie IPK 7	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssyml C070	bole)	
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s		
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete	Suchbegriffe)
EPO-In	ternal, CHEM ABS Data, PAJ, WPI Dat	a	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	be der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 02/083677 A (GRAMMENOS WASSIL RHEINHEIMER JOACHIM (DE); BASF AG GEWEHR M) 24. Oktober 2002 (2002- Seite 1, Formel I Seite 10, Zeile 18 - Seite 11, Zo	G (DÉ); -10-24)	1-9
Α	EP 0 141 317 A (BASF AG) 15. Mai 1985 (1985-05-15) in der Anmeldung erwähnt Seite 1, Formel I Seite 9, Tabelle, Verb. Nr. 9 Seite 10, Zeile 34 - Seite 11, Ze	eile 2	1-9
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ihmen	X Siehe Anhang Patentfamilie	
"A" Veröffen aber ni "E" ätteres E Anmeld "L" Veröffen scheine	Kategorien von angegebenen Veröffentlichungen : tlichung, die den allgemeinen Stand der Technik definiert, cht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen tedatum veröffentlicht worden ist tlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	'T' Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht Anmeldung nicht koliidiert, sondem nur Erfindung zugrundellegenden Prinzips of Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeut kann allein aufgrund dieser Veröffentlich erfinderischer Tätigkeit beruhend betra.	worden ist und mit der zum Verständnis des der oder der ihr zugrundeliegenden ung; die beanspruchte Erfindung nung nicht als neu oder auf
ausgefü "O" Veröffen eine Be "P" Veröffen	illichung, die sich auf eine mündliche Offenbarung, inutzung, eine Ausstellung oder andere Maßnahmen bezieht Illichung, die vor dem Internationalen Amerikeratum, aber nach	'Y' Veröffentlichung von besonderer Bedeut kann nicht als auf erfinderischer T\u00e4tigke werden, wenn die Ver\u00f6ffentlichung m\u00e4t Ver\u00f6ffentlichungen dieser Kategorie in diese Verbindung f\u00fcr einen Fachmann \u00e4 '\u00e4' Ver\u00f6ffentlichung, die Mitglied derseiben	on berunend betrachter einer oder mehreren anderen Verbindung gebracht wird und nahellegend ist
	bschlusses der internationalen Recherche	Absendedatum des internationalen Rec	
16	6. Maerz 2004	24/03/2004	
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentarnt, P.B. 5818 Patentiaan 2	Bevollmächtigter Bedlensteter	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hoepfner, W	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internal tenzelchen
PCT/EP 03/12277

im Recherchenbericht angeführtes Patentdokum	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 02083677	Α	24-10-2002	WO	02083677	A1	24-10-2002
			EP	1381610	A1	21-01-2004
EP 0141317	Α	15-05-1985	DE	3338292	A1	02-05-1985
			AT	32077	T	15-02-1988
			AU	566960	B2	05-11-1987
			AU	3452684	Α	26-04-1985
			CA	1242715	A1	04-10-1988
			CS	248724	B2	12-02-1987
			DD	232635	A5	05-02-1986
			DE	3468878	D1	25-02-1988
			EP		A2	15-05-1985
			HU	36328	A2	30-09-1985
			IL	73258		30-11-1987
			ĴΡ		A	08-06-1985
			NZ		Ä	31-03-1987
			PL	250093		16-07-1985
			ÜS	RE32676		24-05-1988
			US	4617303	_	14-10-1986