(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-114698

(43)公開日 平成5年(1993)5月7日

(51)Int.Cl.⁵

識別記号

厅内整理番号

FΙ

技術表示箇所

H01L 27/04 27/108 C 8427-4M

8728-4M

H 0 1 L 27/10

325 J

審査請求 未請求 請求項の数5(全 5 頁)

(21)出願番号

特願平3-304220

(22)出願日

平成3年(1991)10月23日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 沼澤 陽一郎

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 管野 中

(54)【発明の名称】 半導体装置の製造方法

(57)【要約】

【目的】 酸化膜の緻密化を行ないつつ、界面でのSi O2成長を抑止する。

【構成】 DRAMに用いられる容量素子部の形成工程 が、ポリシリコン下部電極3を形成し、その上へタンタ ル酸化膜4を形成後、酸素を含むガス系のプラズマ処理 を施し、さらにN2等の不活性ガス雰囲気中で熱処理を 施し、続いて上部電極5を形成する工程から構成されて いる。

1

【特許請求の範囲】

【請求項1】 ダイナミック ランダム アクセス メ モリ等の超LSIに用いられる容量素子部の形成工程

ポリシリコン下部電極を形成し、その上へタンタル酸化 膜(Ta2O5)を形成後、酸素を含むガス系のプラズマ 処理を施し、さらにN₂等の不活性ガス雰囲気中で熱処 理を施し、続いて上部電極を形成する工程を含むことを 特徴とする半導体装置の製造方法。

【請求項2】 前記ポリシリコン下部電極は、燐 (P) がドープされたものであることを特徴とする請求項1に 記載の半導体装置の製造方法。

【請求項3】 前記タンタル酸化膜の形成は、有機タン タルを原料とする化学気相成長法により行なわれるもの であることを特徴とする請求項1に記載の半導体装置の 製造方法。

【請求項4】 前記熱処理温度は、600~1000℃ の範囲に設定したものであることを特徴とする請求項1 に記載の半導体装置の製造方法。

【請求項5】 前記上部電極は、窒化チタン,タングス テンあるいはモリブデンのいずれかからなり、その電極 形成は、スパッタ法あるいは化学気相成長法により行な われるものであることを特徴とする請求項1に記載の半 導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法 に関し、特に、ダイナミック ランダム アクセス メ モリ(DRAM)等の超LSIに用いられる容量素子部 の形成する方法に関する。

[0002]

【従来の技術】64Mbit DRAM等の超LSIメ モリデバイスの容量素子部においては、単位面積あたり の容量値を大きくできるタンタル酸化膜を用いることが 提案されている(例えば、1989 VLSI テクノ ロジィ シンポジィウム ペイジ25 (Prc. of 1989 VLSI technology Symp osium p. 25)).

【0003】その提案されている容量素子部の一般的な 構造を図4に示す。図4に示す容量素子部の形成工程を 次に説明する。ポリシリコンをN型基板1上に化学気相 成長法により堆積し、かつ素子分離領域2を形成し、燐 (P) をイオン注入して活性化後、通常のリソグラフィ 技術によりポリシリコン下部電極3を形成する(図4 (a), (b))_o

【0004】このポリシリコン下部電極3上に、エトキ シタンタルを主原料とする減圧化学気相成長法によりタ ンタル酸化膜4を形成し(図4(c)、酸素雰囲気中で 膜緻密化処理を行なう(図4(d))。続いて、上部タ ングステン電極15を形成することにより図4(e)に 50 理と同等の緻密化が達成され、かつポリシリコン下部電

示す容量素子部が完成する。

[0005]

【発明が解決しようとする課題】タンタル酸化膜を用い る従来の容量素子においては、解決しなければならない 大きな問題点がある。それは、ポリシリコン下部電極と タンタル酸化膜との界面に10~20Åのシリコン酸化 膜ができるため、容量値が設計どおりには大きくならな い、と言う問題である。本発明者は、この原因を明確に するために、詳細なプロセス検討を行なった。その結 10 果、このシリコン酸化膜は、主に、タンタル酸化膜を化 学気相成長法で堆積後、酸素 (O₂) 雰囲気中で熱処理 した際に形成されることが判った。ポリシリコン上にあ る自然酸化膜は、完全な前処理を行なえば除去できるの で問題にはならない。しかしながら、有機タンタルを原

【0006】従って、本発明の目的は、従来において用 いられている酸素雰囲気での熱処理に代わる緻密化処理 を見出した半導体装置の製造方法を提供することにあ 20 る。

料とする化学気相成長法(量産性に優れている)を採用

する場合、膜堆積後の緻密化処理が必須である。

[0007]

【課題を解決するための手段】前記目的を達成するた め、本発明に係る半導体装置の製造方法においては、ダ イナミック ランダム アクセス メモリ等の超LSI に用いられる容量素子部の形成工程が、ポリシリコン下 部電極を形成し、その上へタンタル酸化膜 (Ta2O5) を形成後、酸素を含むガス系のプラズマ処理を施し、さ らにN2等の不活性ガス雰囲気中で熱処理を施し、続い て上部電極を形成する工程を含むものである。

30 【0008】また、前記ポリシリコン下部電極は、燐 (P) がドープされたものである。

【0009】また、前記タンタル酸化膜の形成は、有機 タンタルを原料とする化学気相成長法により行なわれる ものである。

【0010】また、前記熱処理温度は、600~100 0℃の範囲に設定したものである。

【0011】また、前記上部電極は、窒化チタン、タン グステンあるいはモリブデンのいずれかからなり、その 電極形成は、スパッタ法あるいは化学気相成長法により 40 行なわれるものである。

[0012]

【作用】本発明の容量素子形成工程は、ポリシリコン下 部電極を形成し、その上へタンタル酸化膜 (Ta₂O₅) を形成後、酸素を含むガス系のプラズマ処理を施し、さ らにN2等の不活性ガス雰囲気中で熱処理を施し、続い てメタル上部電極を形成する工程から構成されている。

【0013】化学気相成長法により堆積したタンタル酸 化膜を酸素プラズマで処理した後、不活性ガス雰囲気中 で熱処理することにより、従来の酸素雰囲気中での熱処

3

極が酸化されるという問題も発生しない。

[0014]

【実施例】次に、本発明について図面を用いて説明す

【0015】 (実施例1) 図1は、本発明の実施例1を 工程順に示すフローチャートである。

【0016】図1(a)において、N型シリコン単結晶 基板1に、LOCOS (LocalOxidation Separation)と呼ばれる素子分離領域2を 形成したところを示している。

【0017】次に、基板1上に、化学気相成長法により ポリシリコン膜を堆積し、通常のリソグラフィ/エッチ ング技術によりパターニングし、燐(P)を熱拡散法で ドープしてポリシリコン下部電極3を形成する(図1 (b))_。

【0018】続いて、ポリシリコン下部電極3上にある 自然酸化膜を除去後、直ちにタンタル酸化膜 4 を化学気 相成長させる(図1 (c))。タンタル酸化膜4の化学 気相成長工程においては、通常の縦型LPCVD (減圧 化学気相成長)装置を用いた。タンタル原料としては、 エトキシタンタル [Ta (OC_2H_5) $_5$] を用いた。液 体材料(室温)であるエトキシタンタルを気化する手段 としては、一般的なN2バブリング方式を用いた。タン タル酸化膜の成長条件としては、エトキシタンタルガス 流量10sccm,酸素ガス流量100sccm,反応 ガス圧力0.5Torr,成長温度450℃を用いた。 この成長条件での膜堆積速度は5Å/minであり、本 実施例では50~100Åのタンタル酸化膜が堆積され た。

【0019】タンタル酸化膜を堆積後、図1 (d) に示 すようにO2プラズマ処理を行なった。このO2プラズマ 処理は本発明を特徴づける工程であるので、ここで、用 いた装置について図面を用いて説明しておく。本発明に 係わり用いたプラズマ処理装置を図2に示す。

【0020】図2において、6は、枚葉型プラズマチャ ンバーである。7は、チタン合金で作製されたサセプタ で電位的には設置されている。8は、O2ガスを導入す るためのシャワー機構 (チタン合金で作製されている) で、プラズマ発生のための13.56MHz高周波印加 電極を兼ねている。サセプタ7上には、O2プラズマ処 理工程にある基板11が置かれている。9は、高周波発 生器、10はポンプである。O2プラズマ条件として は、O2ガス流量100sccm, ガス圧力0.5To rr, 13.5MHz高周波電力0.5W/cm²を用 いた。処理時間としては、10秒以上であれば充分の効 果が得られるが、本実施例においては、20秒の〇2プ ラズマ処理が行なわれた。

【0021】O2プラズマ処理に続いて、図1 (e) に 示す N_2 熱処理を行なった。この N_2 熱処理装置のため

空度のバックプレッシャである熱処理装置を用いた。 N 2ガスとしては、99.9999%の高純度のものを 用いた。熱処理温度としては、600~100℃の範 囲で本発明の目的を達成するが、本実施例では、制御し やすい800℃で30分間のN2熱処理が行なわれた。

【0022】続いて、上部電極として窒化チタンをスパ ッタ法で堆積し、通常のリソグラフィ/エッチング技術 によりTiN/Ta2O5の2層を同時にパターニングし て、図1 (f) に示す実施例1の容量素子を形成した。

【0023】本発明の効果を確認するために、形成され た容量素子を用いてタンタル酸化膜の電流ー電界特性を 測定したところ、従来の方法で形成される膜の特性と同 等であり、本発明における緻密化処理は緻密化において 充分な効果を持つことが確認された。さらに、タンタル 酸化膜とポリシリコン下部電極との界面にできるシリコ ン酸化膜は、5Å以下(50~100Åタンタル酸化膜 水準の容量素子の容量-電圧特性から評価した)と、従 来の方法で形成する場合に比べはるかに薄いものであっ た。

20 【0024】(実施例2)次に、本発明の実施例2につ いて説明する。実施例2においては、O2プラズマ処理 後の不活性ガス熱処理が、ランプ加熱装置を用いた急速 加熱短時間処理方式であることを特徴としている。

【0025】本実施例において、工程フローは、実施例 1の場合と同じである。但し、実施例2においては、O 2プラズマ処理後の不活性熱処理(図1(d))とし て、急速加熱短時間処理方式を用いた。急速加熱短時間 処理に用いたランプ加熱装置を図3に示す。この装置 は、基本的には枚葉型石英チャンバ12と加熱ランプ1 3とから構成されている。基板11は、石英チャンバ1 2を通して光により加熱される。

【0026】急速加熱短時間処理方式を用いる場合、処 理温度としては、850℃以上が必要になる。本実施例 では、O2プラズマ処理後の不活性ガス熱処理を不活性 ガスとして高純度N2 (99. 99999%) ガスを用 い900℃,30秒で行なった。続いて、実施例1と同 様にTiN上部電極を形成し、本発明の実施例2の容量 素子を作製した。

【0027】実施例2で形成された容量素子について も、容量特性等を測定した。その結果、実施例1と同様 に、本発明の効果が確認された。

[0028]

【発明の効果】以上説明したように本発明は、容量素子 部の形成工程において、ポリシリコン下部電極を形成 し、その上にタンタル酸化膜を堆積後、酸素を含むガス 系でのプラズマ処理を施し、さらにN2等の不活性ガス 雰囲気中で熱処理を施し、続いて上部電極を形成する工 程から構成されているので、容量値の大きい容量素子が 形成され、従って、64MDRAMのみならず、256 に、ロードロック機構を持ち、かつ 10^{-9} Torrの真 50 M~1 G D R A Mの製造に役立つものである。

6

5

【図面の簡単な説明】

【図1】本発明の実施例1を工程順に示すフローチャートである。

【図2】 O_2 プラズマ処理を行なうための装置を示す概念図である。

【図3】実施例2で用いた枚葉型N2熱処理装置を示す、概念図である。

【図4】従来の容量素子形成を工程順に示すフローチャートである。

【符号の説明】

- 1 N型シリコン基板
- 2 素子分離領域
- 3 ポリシリコン下部電極

- 4 タンタル酸化膜
- 5 窒化チタン上部電極
 - 6 枚葉型プラズマチャンバー
 - 7 サセプタ
 - 8 シャワー機構
 - 9 高周波発生器
 - 10 ポンプ
 - 11 基板
 - 12 枚葉型石英チャンバ
- 10 13 加熱用ランプ
 - 14 基板支持機構
 - 15 タングステン電極

【図1】

【図2】

【図3】

【図4】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.