

Out-of-Distribution Detection

Jee-Hyong Lee Sungkyunkwan Univ.

- In the World, there are many instances which we never expect they are given.
 - Does deep neural network can say "I don't know"?

Out of distribution

A Simple Way

- We choose the maximum of softmax for classification
 - For an image in domain, softmax will produce a sharp output
 - For an image out of domain, softmax will produce rather a vague output
- Let's check the value of the maximum

Over Confidence

- Modern NN tends to output overconfident prediction
 - Confidence : Max softmax probability
- NN returns prediction with high confidence for noise image

Guo, Chuan, et al. "On calibration of modern neural networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Over Confidence

- ResNet-20 trained on CIFAR10 (Test Acc: 92%)
- Prediction & Activation before softmax

In-domain

Cat: 87%

```
array([-11.121608 , -12.295707 , -1.5396624 , 1.8473705 , -4.0719457 , -0.40232527, -4.8595014 , -9.229726 , -7.4466705 , -11.751272 ], dtype=float32)
```

Out-of-domain

Bird: 84%

```
array([ -8.550764 , -0.03473853, 2.1666217 , -0.5177511 , -9.423397 , -11.470142 , -5.384335 , -11.936867 , -8.519983 , -6.6835756 ], dtype=float32)
```

Over-confident prediction

Threshold-based Detection

 Limitations: Performance of prior works highly depends on how to train the classifiers

Confidence Calibration

 Specially train a neural network so that it has low confidence for out-of-distribution samples

Distribution-based Detection

 Output of each layer may be different between indistribution and out-of-distribution samples

Variance-based Detection

- NN cannot perform extrapolation as much as interpolation
- Check the variance of output
 - Similar output for in-distribution data
 - Different output for out-of-distribution data

Confidence Calibration

 K. Lee, et al., Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018

Distribution-based Detection

 K. Lee, et al., A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NIPS 2018

Variance-based Detection

 B. Lakshminarayanan, et al., Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017

Confidence Calibration

 K. Lee, et al., Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018

Distribution-based Detection

 K. Lee, et al., A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NIPS 2018

Variance-based Detection

 B. Lakshminarayanan, et al., Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017

Calibrate confidence

- Train a neural network so that it outputs higher maximum prediction values to in-distribution samples than out-ofdistribution ones
- We need out-of-distribution data when training

Confident Loss

Minimize the KL divergence on data from out-of-distribution

 $\min_{\theta} \ \mathbb{E}_{\underline{P_{\text{in}}(\widehat{\mathbf{x}},\widehat{y})}} \big[-\log P_{\theta} \left(y = \widehat{y} | \widehat{\mathbf{x}} \right) \big] + \beta \mathbb{E}_{\underline{P_{\text{out}}(\mathbf{x})}} \big[KL \, \overline{\left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right)} \big]$

Data from in-distribution

Data from out-of-distribution

Confident Loss

Simple test

- Model: 2 conv + 3 FC
- Train data: SVHN(in-dist), MNIST(out-of-dist)

Confidence Loss

- Usually given out-of-distribution data is not enough to generally model out-of-distribution samples
- We need more out-of-distribution samples

What about generating out-of-distribution data with GAN?

Generating out-of-distribution data with GAN

- (a) & (b) out-of-distribution data is sparse around in-dist.
- (c) & (d) out-of-distribution data is dense around in-dist.

Red & blue : in-distribution data Green : out-of-distribution data

Yellow: synthetic out-of-distribution data

=> We need to densely generate synthetic OOD around ID

Generating out-of-distribution data with GAN

In-distribution

In-distribution (on border line)

Generating out-of-distribution data with GAN

 GAN loss to generate synthetic in-distribution samples on border lines

$$\min_{G} \max_{D} \ \beta \underbrace{\mathbb{E}_{P_{G}(\mathbf{x})} \big[KL \left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right) \big] }_{\text{(a)}}$$
 (Need to be trained)
$$+ \underbrace{\mathbb{E}_{P_{\text{in}}(\mathbf{x})} \big[\log D \left(\mathbf{x} \right) \big] + \mathbb{E}_{P_{G}(\mathbf{x})} \big[\log \left(1 - D \left(\mathbf{x} \right) \right) \big] }_{\text{(b)}}$$

- (a) Forces the generator to generate low-density samples
- (b) Original GAN loss

Generating out-of-distribution data with GAN

 GAN loss to generate synthetic in-distribution samples on border lines

$$\min_{G} \max_{D} \quad \beta \underbrace{\mathbb{E}_{P_{G}(\mathbf{x})} \big[KL \left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right) \big]}_{\text{(a)}} \qquad \text{(Need to be trained)}$$

$$+ \underbrace{\mathbb{E}_{P_{\text{in}}(\mathbf{x})} \big[\log D \left(\mathbf{x} \right) \big] + \mathbb{E}_{P_{G}(\mathbf{x})} \big[\log \left(1 - D \left(\mathbf{x} \right) \right) \big]}_{\text{(b)}}$$

Original GAN loss

New GAN loss

Joint Loss: Confidence Loss + GAN Loss

$$\underset{G}{\min} \underset{D}{\min} \underset{D}{\min} \underbrace{\mathbb{E}_{P_{\text{in}}(\widehat{\mathbf{x}},\widehat{y})} \left[-\log P_{\theta} \left(y = \widehat{y} | \widehat{\mathbf{x}} \right) \right]}_{\text{(c)}} + \beta \underbrace{\mathbb{E}_{P_{G}(\mathbf{x})} \left[KL \left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right) \right]}_{\text{(d)}} + \underbrace{\mathbb{E}_{P_{\text{in}}(\widehat{\mathbf{x}})} \left[\log D \left(\widehat{\mathbf{x}} \right) \right] + \mathbb{E}_{P_{G}(\mathbf{x})} \left[\log \left(1 - D \left(\mathbf{x} \right) \right) \right]}_{\text{(e)}}.$$

- Classifier's confidence loss: (c) + (d)
- GAN loss: (d) + (e)

Experiment

Data set

bird

- 32×32 RGB
- 10 classes
- 50,000 training set
- 10,000 test set

TinylmageNet

- 32×32 RGB
- 200 classes
- 10,000 test set

SVHN [Netzer' 11]

- 32×32 RGB
- 10 classes
- 73,257 training set
- 26,032 test set

LSUN

10,000 test set

Used model: VGGNet

Experiment

Result with Confident loss (without GAN loss)

In-dist	Out-of-dist	Classification accuracy	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
		Cross entropy loss / Confidence loss					
SVHN	CIFAR-10 (seen) TinyImageNet (unseen) LSUN (unseen) Gaussian (unseen)	93.82 / 94.23	47.4 / 99.9 49.0 / 100.0 46.3 / 100.0 56.1 / 100.0	62.6 / 99.9 64.6 / 100.0 61.8 / 100.0 72.0 / 100.0	78.6 / 99.9 79.6 / 100.0 78.2 / 100.0 83.4 / 100.0	71.6 / 99.9 72.7 / 100.0 71.1 / 100.0 77.2 / 100.0	91.2 / 99.4 91.6 / 99.4 90.8 / 99.4 92.8 / 99.4
CIFAR-10	SVHN (seen) TinyImageNet (unseen) LSUN (unseen) Gaussian (unseen)	80.14 / 80.56	13.7 / 99.8 13.6 / 9.9 14.0 / 10.5 2.8 / 3.3	46.6 / 99.9 39.6 / 31.8 40.7 / 34.8 10.2 / 14.1	66.6 / 99.8 62.6 / 58.6 63.2 / 60.2 50.0 / 50.0	61.4 / 99.9 58.3 / 55.3 58.7 / 56.4 48.1 / 49.4	73.5 / 99.8 71.0 / 66.1 71.5 / 68.0 39.9 / 47.0

Sometimes good but sometime bad

Experiment

Result with Joint Loss (with GAN Loss)

