Physique Statistique: Petite classe n°3

1 Étude d'un gaz parfait en rotation uniforme

Un gaz parfait monoatomique est placée dans un récipient cylindrique fermé de rayon R qui tourne autour de son axe à la vitesse angulaire ω , maintenue constante. On se place dans le système en rotation avec le cylindre. L'ensemble est placé dans un thermostat de température T_0 . Le gaz comporte N_0 atomes de masse m. On appellera r la distance d'un atome à l'axe de rotation. Il sera commode d'introduire la température T_R définie selon $k_B T_R = \frac{1}{2} m \omega^2 R^2$.

- 1. Calculer l'énergie potentielle de la force centrifuge 1 pour un atome. Montrer que la fonction de partition Z_P associée à cette énergie potentielle peut se mettre sous la forme $Z_P = z_P^{N_0}$ où z_P est relatif à un atome et s'obtient en intégrant sur r une fonction qu'on exprimera en fonction de r, m, ω et T_0 . Calculer z_P en fonction de T_0 et T_R .
- 2. Comment le nombre n d'atomes par unité de volume varie-t-il en fonction de r? On se bornera à la dépendance en r sans chercher à normaliser la distribution.
- 3. Quelle quantité \bar{U}_R doit-on ajouter à l'expression habituelle de l'énergie moyenne \bar{U} du gaz parfait au repos pour décrire le système en rotation? On exprimera \bar{U}_R en fonction de N_0 , T_0 et T_R .
- 4. Quelle quantité C_R doit-on ajouter à l'expression habituelle de la capacité calorifique du gaz parfait au repos pour décrire le système en rotation? On discutera les cas où $T_0 \ll T_R$ et $T_0 \gg T_R$. Comment expliquez-vous qualitativement l'accroissement de chaleur spécifique avec la rotation dans le premier cas?

^{1.} On ne tiendra pas compte de la force de Coriolis qui ne fournit aucun travail.

2 Étude de la sublimation d'un solide par un modèle simple

Un gaz monoatomique et un solide cristallin constitué des mêmes atomes, de masse m et de spin 0, coexistent à l'équilibre dans une enceinte de volume V_0 maintenue à la température T_0 par un thermostat. On négligera le volume du cristal devant celui du gaz. La vapeur est assimilée à un gaz parfait classique et le solide est décrit par le modèle d'Einstein avec une pulsation caractéristique ω . Toutefois, le zéro des énergies étant pris pour un atome **libre** au repos, le minimum du potentiel harmonique de chaque oscillateur sera pris à la valeur $-\varepsilon_0$ (avec $\varepsilon_0 > 0$) pour tenir compte de la **liaison** des atomes dans le cristal. Ainsi, chaque atome du cristal a l'énergie :

$$E_{n_x n_y n_z} = -\varepsilon_0 + \hbar\omega \left(n_x + \frac{1}{2} \right) + \hbar\omega \left(n_y + \frac{1}{2} \right) + \hbar\omega \left(n_z + \frac{1}{2} \right) .$$

On appelle N_0 le nombre total d'atomes (solide et gaz) dans le volume V_0 et N_g le nombre de ceux qui sont à l'état gazeux.

- 1. On appelle $z_E(T_0)$ la fonction de partition pour un seul **atome** 2 dans le modèle d'Einstein tel qu'il est exposé dans le cours, c'est-à-dire sans contribution de l'énergie de liaison $(-\varepsilon_0)$. En tenant compte maintenant du terme $-\varepsilon_0$, calculer la fonction de partition du solide Z_S pour une valeur fixée de N_g en fonction de z_E , N_0 , N_g , ε_0 et $\beta_0 = 1/(k_B T_0)$.
- 2. Dans les mêmes conditions, montrer que la fonction de partition du gaz s'écrit sous la forme :

$$Z_G = \frac{[V_0 G(T_0)]^{N_g}}{N_g!} ,$$

- où $G(T_0)$ est une fonction de la température qu'on précisera. Dans la suite de l'exercice, on n'explicitera pas $G(T_0)$.
- 3. Exprimer la fonction de partition totale à N_g fixé, soit Z_{N_g} et trouver la valeur la plus probable \tilde{N}_g du nombre d'atomes en phase gazeuse à l'équilibre. Montrer que l'équilibre ne peut être obtenu que si le volume est inférieur à une valeur critique qu'on exprimera en fonction de N_0 , ε_0 , T_0 , $t_$

^{2.} Attention, un atome = 3 oscillateurs à une dimension. On n'explicitera pas $z_E(T_0)$ dans la suite.