

Lehrstuhl für Technische Elektronik

Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel Prof. Dr.-Ing. Georg Fischer

Bachelorarbeit

im Studiengang "Elektrotechnik, Elektronik und Informationstechnik (EEI)"

von

Christof Pfannenmüller

zum Thema

Aufbau und Inbetriebnahme einer mobilen Basisstation für feldstärkebasierte Lokalisierung

Betreuer: Felix Pflaum, Dipl.-Ing.

Beginn: 25.04.2016 Abgabe: 26.09.2016

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 26. September 2016

Christof Pfannenmüller

Abstract

Zur Lokalisierung von mobilen Sensorknoten, welche in einem Sub-GHz-Frequenzbereich von 868 MHz arbeiten, sollte eine energieeffiziente Art der Ortung umgesetzt werden. Dazu sollte mithilfe einer auf Feldstärke basierten Ortung die genaue Position der Sensorknoten festgestellt werden. Um dies zu ermöglichen wurde eine Basisstation mit sechs Transceiver-ICs der Bauart TDA5340 entworfen. Die Steuerung übernahm ein Mikrocontroller der Baureihe XMC4500. Diese Basisstation sollte dabei ein Auslesen der empfangen Daten sowohl über den USB-Standard, als auch über Ethernet als zweite Kommunikationsschnittstelle ermöglichen. Die dabei verwendete Hardware basierte zum Großteil auf Bauteilen des Herstellers Infineon. Die Platine der Basisstation wurde mit Altium Designer entwickelt und umgesetzt. Dabei wurde die Verbindung zwischen der Steuereinheit und den Transceivern mit dem SPI-Protokoll umgesetzt. Die einzelnen Sende-/Empfangseinheiten wurden dabei gleichmäßig in alle Raumrichtungen zeigend angeordnet und so gestaltet, das diese bei bedarf abgetrennt und mit einer Kabelverbindung weiter voneinander entfernt konnten. Die Peripherie der verwendeten TDA5340 Transceiver generierte im Programmablauf nach einer Kommunikation mit dem Sensor ein Interrupt Signal. Dies erlaubte dem Mikrocontroller die Daten der einzelnen Empfangseinheiten auszulesen, zu speichern und zu einem späteren Zeitpunkt weiterzuleiten. Beim Messen der Feldstärke wurde ausgenutzt, dass die vorliegende Feldstärke bereits durch den TDA5340-Empfänger zur Verfügung gestellt wurde.

Antenne in verschiedene Richtungen ...

Inhaltsverzeichnis

1	Einl	eitung	
	1.1	Motiva	ation
	1.2	Zieldef	finition
	1.3	Projek	tmanagement
2	Plat	inenaul	fbau
	2.1	Vorübe	erlegungen
	2.2	Layout	tprogramm Altium Designer
	2.3	verwer	ndete Hardware
		2.3.1	TDA5340
		2.3.2	XMC4500
		2.3.3	Ethernet
		2.3.4	Spannungsversorgung
	2.4	Generi	erte Dokumente
3	Soft	ware	
	3.1	DAVE	Entwicklungsumgebung
	3.2	verwen	ndete Peripherie des XMC4500
		3.2.1	USIC
		3.2.2	ERU
		3.2.3	USB
	3.3	verwer	ndete Bibliotheken
		3.3.1	XMC Libraries (XMC Lib)
		3.3.2	SPI Library
		3.3.3	TDA5340 Library
		3.3.4	Virtueller COM Port
	3.4	Progra	ummablauf
		3.4.1	Konfiguration der Funkmodule
		3.4.2	interrupt basierte Datenerfassung
		3.4.3	Weiterleitung der erfassten Daten
4	Feld	ltest	
-	4.1		u
	4.2		führung

	4.3 Ergebnisse und Auswertung	11
5	Zusammenfassung und Ausblick	13
ΑI	bbildungsverzeichnis	15
Ta	abellenverzeichnis	17
6	Anhang 6.1 Seriennummern	19

Kapitel 1

Einleitung

noch unterzubringen: wohin das Gehäuse?

1.1 Motivation

1.2 Zieldefinition

1.3 Projektmanagement

Als Versionskontrolle für das Projekt wurde Github eingesetzt.

Platinenaufbau

2.1 Vorüberlegungen

Um Sicherzustellen, das alle Antennen gleichmäßig in die sechs vorgegebenen Raumrichtungen abstrahlen sollte bereits die Platine symmetrisch aufgebaut werden. Dazu wurden zuerst das Layout der sechs identischen Transceiver-Einheiten mit dem TDA5340 Baustein und den Antennen erstellt und anschließend gleichmäßig um die weiten notwendigen notwendigen Segmente der Schaltung angeordnet.

2.2 Layoutprogramm Altium Designer

Bei dem Entwicklungswerkzeug "Altium Designer" des Entwicklers Altium Limited handelt es sich um ein System zum Entwurf von gedruckten Schaltungen oder PCBs (Printed Circuit Boards). Ein solches Programm wird auch als Electronic Design Automation (EDA) oder ECAD für electronic CAD bezeichnet, da es den Entwickler bei der Umsetzung der Anforderungen in einen Schaltplan unterstützen soll. Wie viele andere EDA-Programme ist auch Altium Designer so aufgebaut das sich der Entwickler zuerst mit dem allgemeinen Schaltplan befassen kann und erst zu einem späteren Zeitpunkt die tatsächliche Anordnung auf dem PCB-Substrat festgelegt wird. Somit können zuerst im Schematic Editor die Funktionen der Schaltung umgesetzt werden. Dazu werden die verwendeten Bauteile aus zuvor angelegten Bibliotheken verwendet oder es werden bestehende Bibliotheken verwendete, die etwa vom Hersteller der Bauteile zur Verfügung gestellt werden. Altium selbst bietet hierfür auch diverse Möglichkeiten an und stellt Bauteile nach Hersteller und Art geordnet bereit. In den Bibliotheken sind alle im weiteren Verlauf benötigten Informationen über die einzelnen Bauteile enthalten. So liegen dort etwa entsprechenden Abbildungen für das Bauteil im Schaltplan vor. In den so genannten "Footprints" zu jedem Bauteil, welche ebenfalls in den Bibliotheken enthalten sind, wurde zuvor die für das physikalische Gehäuse notwendigen Abmessungen und Lötpads festgelegt. Da es Bauteile wie den verwendeten Mikrocontroller in verschiedenen Gehäusen geben kann besteht somit auch die Möglichkeit hier verschiedene Footprints zu wählen. Da viele

2 Platinenaufbau Bachelorarbeit

Gehäuse herstellerübergreifend genormt sind, konnten teilweise bestehende Footprints genutzt werden oder diese mehrfach verwendet werden. Ebenfalls

Bauteileingabe und schaltplan M Ulti channel - multi sheet 6.1

Altium Designer ist dabei in drei Teilbereiche unterteilt: im "Board Planning Mode" liegt der Fokus auf dem Anordnen der einzelnen Bauteile und Komponenten auf der Leiterplatte, außerdem wird in diesem Bereich die Form und Ausmaße der Leiterplatte festgelegt. Im 2D-Modus des PCB-Editor lassen sich anschließend die aus der Definition im Schaltplan ergebenden elektrischen Verbindungen örtlich auf den verschiedenen Kupferebenen (Layern) anordnen. Die Hauptarbeit findet also in diesem Teil des PCB-Editors statt. Der 3D-Modus dient anschließend zur Evaluation des Designs und zur Anpassung an Gehäuse oder andere Komponenten. DRC

2.3 verwendete Hardware

2.3.1 TDA5340

Der verwendete Transceiver TDA5340 wird von Infineon Technologies AG entwickelt und vertrieben. Er ist teil der SmartLEWISTM Produktfamilie die energiesparende Lösungen für Funkanwengungen im Frequenzspektrum unterhalb von einem Gigaherz bietet. Der Transceiver kommuniziert mit seinem Host über das SPI-Protokoll, der Mikrocontroller ist in diesem Fall sternförmig mit den einzelnen TDA-Bausteinen verbunden, die als Slaves fungieren. Die Daten werden auf drei gemeinsamen Leitungen übertragen, eine vierte Leitung dient dem XMC zur Auswahl des gewünschten Slaves für die Kommunikation. Diese "not Chip select"-Leitung (NCS) arbeitet active-low, sodass der jeweilige TDA5340 eine Interaktion akzeptier sobald diese vom XMC-Baustein auf Erdpotential gezogen wird. Von dein drei eigentlichen Datenleitungen fungiert eine als reiner Ausgang des Masters bzw. Dateneingang des TDA (MOSI), eine zweite als Eingang des Masters (MISO) und die dritte als ein vom XMC getriebenes Clock-Signal. Bei dem auf MISO und MOSI anliegenden Signal handelt es sich um ein unipolar kodiertes non-return-to-zero Signal, welches einer logischen 0 bei Erdpotential entspricht. Der TDA unterstützt acht verschiedene Instruktionen, die es erlauben entweder einzelne Register des Bausteins zu lesen bzw. zu schreiben, auf mehrere hintereinander folgende Register oder auf die beiden Puffer des Bausteins zuzugreifen. In den beiden Puffern, die als FIFO-Strukturen (first-in-first-out) aufgebaut sind, werden die vom TDA erkannten und demodulierten bzw. die auf Übertragung wartenden Signalpakete zwischengespeichert. Diese Zwischenspeicherung soll den Mikrocontroller entlasten, so können entsprechende Datenpakete dem TDA5340 mitgeteilt werden und dieser übernimmt selbsttätig eine korrekte Modulation und Übertragung mit den eingestellten Parametern.

Der TDA5340 kann sowohl mit einer Spannungsversorgungsspannung von 5V als auch bei 3.3V arbeiten. Da aber der XMC nur bei letzterer betrieben werden kann, wurde der TDA-Baustein und die externe Beschaltung einfachheitshalber auch auf 3.3V ausgelegt.

Package -transparent modes of tda (Des weiteren erlaubt der Baustein noc) Anpassnetzwerk IF Filter warum komisches Quarz? SMA

Um zu einem späterem Zeitpunkt eine größere Entfernung zischen den einzelnen Transceiver, und somit auch den jeweiligen Antennen zu erlauben, wurde eine eine Sollbruchstelle vorgesehen. Sollte zur besseren E

2.3.2 XMC4500

2.3.3 Ethernet

Die Ethernetschnittstelle der Basisstation basiert auf dem RelaxKit von Infineon. Genau wie im Evaluations Board des Herstellers Infineon wurde der Ethernet-Controller KSZ8031RNL von Mircel inc. verwendet. Dieser stellt alle wichtigen Peripherien selbst zur Verfügung und muss somit nur noch durch ein Quarz und diverse Kapazitäten und Induktivitäten an den Versorgungsleitungen ergänzt werden. Da die im Controller verbaute Stufe zur Interruptgenerierung nur über einen schwachen Pull-Up Widerstand verfügt, musste ein externer Widerstand von $1k\Omega$ verbaut werden. Am Reset-Eingang wurde ebenfalls ein Pull-Up Widerstand verbaut. Dieser wurde um zwei Dioden sowie einen Kondensator zu der im Datenblatt empfohlenen Verschaltung erweitert. So kann sichergestellt werden, das sowohl beim Anlegen einer Spannung an das Gesamtsystem, als auch bei einem Reset des Ethernetbausteins durch den steuernden Mikrocontroller alle Spannungen im sicheren Bereich liegen und die Funktion gewähleistet ist. Da der KSZ8031RNL nicht lieferbar war und die anfallende Datenmenge nur von geringem Umfang ist, wurde der Controller und die entsprechende Netzwerkbuchse von Würth Electronics zunächst nicht bestückt. Somit wurde eine Verwendung des Ethernet-Controllers auch in der Software des XMC-Mikrocontroller nicht umgesetzt. Da jedoch ein entsprechendes Softwareprojekt für das RelaxKit von Infineon zur Verfügung gestellt wird (TODO wird es das auch wirklich + webseite zitieren), wäre eine Netzwerkkomunikation vermutlich mit wenigen Anpassungen leicht umzusetzen.

2.3.4 Spannungsversorgung

2.4 Generierte Dokumente

Software

- 3.1 DAVE Entwicklungsumgebung
- 3.2 verwendete Peripherie des XMC4500
- 3.2.1 USIC
- 3.2.2 ERU
- 3.2.3 USB
- 3.3 verwendete Bibliotheken
- 3.3.1 XMC Libraries (XMC Lib)
- 3.3.2 SPI Library
- 3.3.3 TDA5340 Library
- 3.3.4 Virtueller COM Port
- 3.4 Programmablauf
- 3.4.1 Konfiguration der Funkmodule
- 3.4.2 interruptbasierte Datenerfassung
- 3.4.3 Weiterleitung der erfassten Daten

Kapitel 4

Feldtest

- 4.1 Aufbau
- 4.2 Durchführung
- 4.3 Ergebnisse und Auswertung

Zusammenfassung und Ausblick

Abbildungsverzeichnis

Tabellenverzeichnis

6.1	Seriennummern	der im	Projekt	verwendeten	TDA5340	 			19
0.1	Scricinanincin	aci iii	1 10 JCRU	ver wellacteri	1 100 10	 •	 •	 •	10

Anhang

EINFÜGEN: Seriennummern TDA Bilder Altium 3D Modelle

6.1 Seriennummern

Alle TDA5340 verfügen über eine eingebaute Seriennummer, welche ausgelesen werden kann. Die Seriennummern der verwendeten TDA5340 sind in der Tabelle aufgeführt.

TDA	Seriennummer
TDA1	33020236
TDA2	11727080
TDA3	11545236
TDA4	11728870
TDA5	11550773
TDA6	33026263

Tab. 6.1: Seriennummern der im Projekt verwendeten TDA5340

Literatur