Géométrie repérée

I. Vecteurs dans un repère

1. Différents repères

Définition.

Soient O un point du plan et \overrightarrow{i} et \overrightarrow{j} deux vecteurs de ce plan de directions différentes (.....), alors $(O; \overrightarrow{i}; \overrightarrow{j})$ est appelé ______ du plan. O est appelé _____ du repère.

Définition.

Soit un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ du plan.

- 1. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont orthogonales, le repère est dit ______
- 2. Si les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit ______
- 3. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont orthogonales et que les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit _____
- 4. Sinon, le repère est dit _____

Exemples.

Repère orthogonal Repère normé Repère orthonormé \overrightarrow{j}

Définition.

Dans ce repère, si un vecteur \overrightarrow{u} est égal à $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j}$ on dit que les coordonnées de \overrightarrow{u} sont $\begin{pmatrix} x \\ y \end{pmatrix}$ que l'on peut également noter (x;y).

Exemple. Déterminons les coordonnées des vecteurs \overrightarrow{u} et \overrightarrow{v} dans le repère $(0; \overrightarrow{i}; \overrightarrow{j})$:

Ici les coordonnées de \overrightarrow{u} sont $\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right)$, les coordonnées de \overrightarrow{v} sont $\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right)$.

2. Coordonnées d'un vecteur

Dans un repère les coordonnées du vecteur \overrightarrow{AB} sont \overrightarrow{AB} $\left(\begin{array}{c} x_B - x_A \\ y_B - y_A \end{array}\right)$ que l'on peut également noter $(x_B - x_A; y_B - y_A)$.

3. Égalité de deux vecteurs

Propriété.

Dans un repère, on considère \overrightarrow{u} de coordonnées $\left(\begin{array}{c} x \\ y \end{array} \right)$ et $\overrightarrow{v} \left(\begin{array}{c} x' \\ y' \end{array} \right)$

$$\overrightarrow{u} = \overrightarrow{v} \Longleftrightarrow x = x' \text{ et } y = y'$$

Exercice 1.9. Dans un repère $(0; \overrightarrow{i}; \overrightarrow{j})$, on considère les points A(1; 2), B(5; 4), C(2; 1), D(-2; -1) et E(6; 2).

- 1. Montrer que le quadrilatère ABCD est un parallélogramme.
- 2. Calculer les coordonnées du point G pour que le quadrilatère CBEG est un parallélogramme.

4. Somme de vecteurs

Propriété.

Dans un repère, soit les vecteurs \overrightarrow{u} de coordonnées $\left(\begin{array}{c} x\\y \end{array}\right)$ et \overrightarrow{v} $\left(\begin{array}{c} x'\\y' \end{array}\right)$ Dans ce repère, $\overrightarrow{u}+\overrightarrow{v}$ a pour coordonnées $\left(\begin{array}{c} x+x'\\y+y' \end{array}\right)$.

Exercice 2.9. Dans un repère $(0; \overrightarrow{i}; \overrightarrow{j})$, on donne $\overrightarrow{u}(1; 2)$ et $\overrightarrow{v}(-4; 7)$. Calculer les coordonnées du vecteur $\overrightarrow{u} + \overrightarrow{v}$.

5. Produit d'un vecteur par un réel

Dans un repère, on considère le vecteur $\overrightarrow{u}(x;y)$. Le vecteur $\overrightarrow{u}+\overrightarrow{u}$ a pour coordonnées (x+x;y+y), soit (2x;2y). On le note $2\overrightarrow{u}$. De même Le vecteur $\overrightarrow{u}+\overrightarrow{u}+\overrightarrow{u}+\overrightarrow{u}$ a pour coordonnées (x+x+x;y+y+y), soit (3x;3y). On le note $3\overrightarrow{u}$. De manière générale, on pose la définition suivante :

Définition.

Dans un repère, soit le vecteur \overrightarrow{u} de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ et k un nombre réel. Le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$ dans ce repère.

Exercice 3.9. Soit dans un repère $\overrightarrow{u}(2; 1)$. Calculez les coordonnées des vecteurs $4\overrightarrow{u}$ et $-6\overrightarrow{u}$.

II. Vecteurs colinéaires

1. Définition

Définition.

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont colinéaires signifie qu'ils ont la même direction. Il existe alors un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Remarque. Le vecteur nul est colinéaire à tout vecteur.

Définition.

On considère deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On appelle $d\acute{e}terminant$ de \overrightarrow{u} et \overrightarrow{v} noté $\det\left(\overrightarrow{u}\;;\;\overrightarrow{v}\right)$ ou $\left|\begin{array}{cc} x & x' \\ y & y' \end{array}\right|$, est le nombre défini par :

$$\det\left(\overrightarrow{u}\ ;\ \overrightarrow{v}\right) = \left|\begin{array}{cc} x & x' \\ y & y' \end{array}\right| = xy' - yx' \ (\text{diff\'erence des produits en croix})$$

Propriété.

Dans un repère, on considère deux vecteurs $\overrightarrow{u}\left(\begin{array}{c}x\\y\end{array}\right)$ et $\overrightarrow{v}\left(\begin{array}{c}x'\\y'\end{array}\right)$.

 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement les coordonnées de ces deux vecteurs sont proportionnelles, c'est-à-dire si et seulement si xy'=x'y ou encore :

$$\det\left(\overrightarrow{u}\;;\;\overrightarrow{v}\right) = 0$$

Exercice 4.9. Soit dans un repère, $\overrightarrow{u}(1; \sqrt{2}+1)$ et $\overrightarrow{v}(\sqrt{2}-1; 1)$. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont-ils colinéaires?

2. Applications de la colinéarité de vecteurs

Propriété.

Soit A, B, C et D quatre points du plan distincts deux à deux.

- 1. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- 2. Les points A, B et C sont *alignés* si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont *colinéaires*.

Exercice 5.9. Soit M(1; 4), N(3; 3) et P(7; 1). Démontrer que les points M, N et P sont alignés.

III. Milieu et longueur d'un segment

1. Coordonnées du milieu d'un segment

Théorème III..1

On se place dans un repère quelconque. Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ et $I(x_I; y_I)$ milieu de [AB].

Alors:

$$x_I = \frac{x_A + x_B}{2} \qquad \text{et } y_I = \frac{y_A + y_B}{2}.$$

2. Calculs de distances

Propriété.

Dans un repère **orthonormé**, la distance AB entre les points $A(x_A\,;\,y_A)$ et $B(x_B\,;\,y_B)$ est telle que :

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

Exercice 6.9. On se place dans un repère orthonormé $(0; \overrightarrow{i}; \overrightarrow{j})$ et on donne les points A(-4; -1), B(4; -2), et C(-2; 2).

- 1. Calculez les distances AB, AC et BC.
- 2. Le triangle ABC est-il rectangle?