```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: data = pd.read_csv(r"S:\DATA SCIENCE TCA ML\HeightWeightAge.csv")
 data

Out[2]:		Age	Height	Weight	Bmi	BmiClass
	0	61	1.85	109.30	31.935720	Obese Class 1
	1	60	1.71	79.02	27.023700	Overweight
	2	60	1.55	74.70	31.092612	Obese Class 1
	3	60	1.46	35.90	16.841809	Underweight
	4	60	1.58	97.10	38.896010	Obese Class 2
	•••		•••	•••		
	736	34	1.86	95.70	27.662157	Overweight
	737	44	1.91	106.90	29.302925	Overweight
	738	25	1.82	88.40	26.687598	Overweight
	739	35	1.88	98.50	27.868945	Overweight
	740	45	1.93	109.90	29.504148	Overweight

741 rows × 5 columns

```
In [3]: data.shape
```

Out[3]: **(741, 5)**

In [4]: data.isnull().sum()

```
Out[4]: Age
         Height
        Weight
         Bmi
         BmiClass
         dtype: int64
In [5]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 741 entries, 0 to 740
       Data columns (total 5 columns):
            Column
                      Non-Null Count Dtype
            Age
                      741 non-null
                                      int64
            Height
                    741 non-null
                                     float64
            Weight
                     741 non-null
                                     float64
        3
            Bmi
                      741 non-null
                                     float64
            BmiClass 741 non-null
                                      object
       dtypes: float64(3), int64(1), object(1)
       memory usage: 29.1+ KB
In [6]: data['BmiClass'].unique()
Out[6]: array(['Obese Class 1', 'Overweight', 'Underweight', 'Obese Class 2',
                'Obese Class 3', 'Normal Weight'], dtype=object)
In [7]: data['BmiClass'].value counts()
Out[7]: BmiClass
        Normal Weight
                          342
        Overweight
                         166
         Underweight
                          96
         Obese Class 3
                          62
         Obese Class 2
                          55
         Obese Class 1
                          20
         Name: count, dtype: int64
In [9]: data['BmiClass'].replace('Normal Weight',0,inplace=True)
        data['BmiClass'].replace('Overweight',1,inplace=True)
        data['BmiClass'].replace('Underweight',2,inplace=True)
```

```
data['BmiClass'].replace('Obese Class 3',3,inplace=True)
data['BmiClass'].replace('Obese Class 2',4,inplace=True)
data['BmiClass'].replace('Obese Class 1',5,inplace=True)
```

In [18]: data

Out[18]:

	Age	Height	Weight	Bmi	BmiClass
0	61	1.85	109.30	31.935720	5
1	60	1.71	79.02	27.023700	1
2	60	1.55	74.70	31.092612	5
3	60	1.46	35.90	16.841809	2
4	60	1.58	97.10	38.896010	4
•••					
736	34	1.86	95.70	27.662157	1
737	44	1.91	106.90	29.302925	1
738	25	1.82	88.40	26.687598	1
739	35	1.88	98.50	27.868945	1
740	45	1.93	109.90	29.504148	1

741 rows × 5 columns

```
In [21]: q1 = data['Weight'].quantile(0.25)
    q3 = data['Weight'].quantile(0.75)
    IQR = q3 - q1

min_range = q1 - 1.5 * IQR
    max_range = q3 + 1.5 * IQR

data = data[data['Weight'] <= max_range]</pre>
```

```
In [30]: z score = (data['Bmi'] - data['Bmi'].mean()) / data['Bmi'].std()
          data['z score'] = z score
         data = data[data['z_score'] < 3]</pre>
In [31]: data.describe()
Out[31]:
                       Age
                                Height
                                           Weight
                                                          Bmi
                                                                 BmiClass
                                                                                 z_score
          count 617.000000 617.000000 617.000000
                                                               617.000000
                                                                           6.170000e+02
                  31.593193
                               1.703121
                                         67.227326
                                                     22.871957
                                                                 0.685575
                                                                            8.752228e-16
          mean
                  11.647898
                                         15.590546
                                                      3.952428
                               0.082761
                                                                 0.974514
                                                                           1.000000e+00
            std
                  15.000000
                               1.460000
                                         25.900000
                                                     12.150497
                                                                 0.000000
                                                                           -2.712626e+00
            min
           25%
                  22.000000
                                         60.300000
                                                     20.569330
                               1.670000
                                                                 0.000000
                                                                           -5.825854e-01
                  29.000000
                                         70.100000
                                                                            1.142238e-01
           50%
                              1.720000
                                                     23.323418
                                                                 0.000000
                  40.000000
           75%
                               1.750000
                                         76.000000
                                                     25.419356
                                                                 1.000000
                                                                            6.445149e-01
                  61.000000
                               1.930000 109.900000
                                                     32.718367
                                                                           2.491231e+00
                                                                 5.000000
           max
 In [ ]:
 In [ ]:
In [10]: x=data[['Age','Height','Weight']]
         y=data['Bmi']
```

```
In [33]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         scaled data= scaler.fit transform(x)
In [34]: x= pd.DataFrame(scaled data, columns=x.columns)
         Х
Out[34]:
                   Age
                          Height
                                   Weight
           0 2.522573
                         1.636157
                                  0.958264
           1 2.436718
                        0.006666 0.018847
           2 2.436718 -1.855609 -0.115178
           3 2.436718 -2.903139 -1.318921
           4 2.436718 -1.506432 0.579767
         736
               0.204498
                         1.752549
                                  0.536333
         737 1.063045
                         2.334510
                                  0.883805
         738 -0.568193
                         1.286980
                                  0.309856
         739 0.290353
                         1.985334
                                  0.623201
              1.148899
                         2.567295
                                  0.976878
         741 rows × 3 columns
 In [ ]:
In [ ]:
In [35]: from sklearn.model_selection import train_test_split
```

```
In [36]: xtrain,xtest,ytrain,ytest=train test split(x,y,test size=0.3,random state=43)
In [37]: print('Complete Dataset Shape:',data.shape)
         print('Shape of x1 train:',xtrain.shape)
         print('Shape of x1 test:',xtest.shape)
         print('Shape of y1 train:',ytrain.shape)
         print('Shape of y1 test',ytest.shape)
        Complete Dataset Shape: (617, 6)
        Shape of x1 train: (518, 3)
        Shape of x1 test: (223, 3)
        Shape of y1 train: (518,)
        Shape of y1 test (223,)
In [38]: from sklearn.linear model import LinearRegression
         model=LinearRegression()
         model.fit(xtrain,ytrain)
Out[38]:
             LinearRegression
         LinearRegression()
In [ ]:
In [39]: y_pred=model.predict(xtest)
         y_pred[:5]
Out[39]: array([25.59415329, 36.0285382 , 34.18289623, 26.91459167, 22.76391314])
In [40]: ytest.head()
Out[40]: 11
                 25.401384
                 38.567493
          462
          461
                 35.492158
          120
                27.069388
          359
                 22.862369
         Name: Bmi, dtype: float64
```

```
In [41]: from sklearn.metrics import r2 score
         ypred = model.predict(xtest)
         r2 = r2 score(ytest, ypred) * 100
         print(r2)
        97.92088351650433
In [42]: model.score(xtrain,ytrain)
Out[42]: 0.9711024120564841
In [43]: model.score(xtest,ytest)
Out[43]: 0.9792088351650433
In [ ]:
 In [ ]:
 In [ ]:
In [ ]:
 In [ ]: import joblib
         joblib.dump(model, "BMI_CLASS_PREDICTION.pkl")
 In [ ]: model=joblib.load("BMI_CLASS_PREDICTION.pkl")
         newdata=np.array([34,1.86,95.70,27.662157]).reshape(1,-1)
         newdata
         prediction=model.predict(newdata)
         prediction
```

```
In [ ]: if prediction[0]==0:
            print('Normal Weight')
        elif prediction[0]==1:
            print('Overweight')
        elif prediction[0]==2:
            print('Underweight')
        elif prediction[0]==3:
            print('Obese Class 3')
        elif prediction[0]==4:
            print('Obese Class 2')
        else:
            print('Obese Class 1')
In [ ]:
```