浙江工业大学2014/2015(二)期末考试试卷

《复变函数与积分变换》 A卷 2015.06

学院 班级 学号 姓名											
	任课教师										
	题号	_		三	四	五.	六	七	八	总分	
	但从										

一、填空题(本题满分30分,每小题3分)

1. 设
$$z = 1 - \sqrt{3}i$$
, 则 $\arg(2 - z) = \dots$

2.
$$(1+i)^{1+i} = \dots$$

3. 设
$$z = x - iy$$
, 则 $\text{Im}(e^{\frac{1}{z}}) = \dots$

4.
$$\int_{-\pi i}^{3\pi i} e^{2z} dz = \dots$$

5. 设
$$C$$
 为正向圆周 $|z|=2$, 则 $\oint_C \frac{\cos \pi z}{(z-1)^5} dz =$ ______.

6.
$$\frac{1}{z(4-3z)}$$
 在 $z_0 = 1 + i$ 处展开成泰勒级数的收敛半径为______

7. 级数
$$\sum_{n=1}^{\infty} (-i)^n (1+\sin\frac{1}{n})^{-n^2} z^n$$
 的收敛半径 $R = ----$

8. 设
$$f(z) = \frac{1 - e^{2z}}{z^4}$$
, 则 $Res[f(z), 0] = \dots$

9.
$$\mathscr{F}[tu(t)] = 1$$
 其中 $u(t)$ 为单位阶跃函数.

10. 设
$$f(t) = e^{-3t} \sin 2t$$
, 则 $f(t)$ 的 Laplace 变换 $F(s) = \dots$

二、单项选择题(本题满分15分,每小题3分)

- (A) 若 $\lim_{z\to z_0} f(z)$ 存在且有限, 则 z_0 是f(z) 的可去奇点;
- (B) $\lim_{z \to 0} z \sin \frac{1}{z} = 0$;
- (C) 若 f(z) 在区域 D 内解析,则 |f(z)| 也在 D 内解析;
- (D) 若 u 是 D 内的调和函数, 则 $f = \frac{\partial u}{\partial x} i \frac{\partial u}{\partial y}$ 是 D 内的解析函数.

(A)
$$\sum_{n=1}^{\infty} \frac{i^n}{n}$$
 (B)
$$\sum_{n=2}^{\infty} \frac{i^n}{\ln n}$$

(C)
$$\sum_{n=0}^{\infty} \frac{(6+5i)^n}{8^n}$$
 (D) $\sum_{n=0}^{\infty} \frac{\cos in}{2^n}$

$$3. z = 0 是 \frac{z - \sin z}{z^6}$$
 的 ()

(A) 可去奇点 (B) 3级极点 (C) 4级极点 (D) 5级极点

(A)
$$\oint_C \frac{3}{z-2} dz = 0$$
 (B) $\oint_C \frac{3(z-1)}{z-2} dz = 0$

(C)
$$\oint_C \frac{3}{(z-2)^2} dz = 0$$
 (D) $\oint_C \frac{3(z-1)}{(z-2)^2} dz = 0$

5. 设
$$f(t) = \delta(2-t) + e^{jw_0t}$$
, 则 $f(t)$ 的 Fourier 变换 $\mathscr{F}[f(t)]$ 为:

(A)
$$e^{-2wj} + 2\pi\delta(w - w_0)$$
 (B) $e^{2wj} + 2\pi\delta(w - w_0)$

(C)
$$e^{-2wj} + 2\pi\delta(w + w_0)$$
 (D) $e^{2wj} + 2\pi\delta(w + w_0)$

三、(6分) 设 $x^2 + axy + by^2 + (cx^2 + dxy + y^2)i$ 为解析函数, 试确定 a、b、c、d 的值.

四、(10分) 将函数 $f(z) = \frac{1}{z(1-z)^2}$ 分别在圆环 0 < |z| < 1 以及 0 < |z-1| < 1 内展开成洛 朗级数.

五、(6分) 已知 $v(x,y) = \frac{y}{x^2+y^2}$,求一解析函数 f(z) = u(x,y) + iv(x,y),并使 f(2) = 0.

六、(本题满分15分,每小题5分) 计算以下积分的值(积分圆周均取正向).

1.
$$\oint_{|z|=2} \frac{\sin^2 z}{z^2(z-1)} dz$$

$$2.\oint_{|z|=2} \frac{z}{(z^4-1)(z-3)} dz$$

3.
$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+4)(x^2+9)} dx$$

七、(10分) 求函数 $f(t) = e^{-|t|} \cos t$ 的 Fourier 变换, 并证明:

$$\int_0^{+\infty} \frac{w^2 + 2}{w^4 + 4} \cos(wt) dw = \frac{\pi}{2} e^{-|t|} \cos t.$$

八. (8分) 利用 Laplace 变换解如下的微分方程:

$$y''' - 3y'' + 3y' - y = t^2 e^t, \ y(0) = 1, \ y'(0) = 0, \ y''(0) = -2.$$