Exploring weather trends project

City selected for the analysis: Barcelona, Spain

SQL Query used to download data for Barcelona:

```
SELECT year, city, avg_temp as average_temp
FROM city data
WHERE city='Barcelona'
AND country='Spain'
AND avg temp is not null
ORDER BY year ASC
```

After a first attempt selecting only city='Barcelona' I was getting duplicates up from a certain year. I went back to the data and realized I was also selecting data for Barcelona(Venezuela), therefoe I included the additional criteria by country to ensure I wasn't getting wrong data

Query used to download global data:

```
SELECT *
FROM global_data
WHERE avg_temp is not null
```

city average_temp

13.81

Both data selections coming from SQL already have its null values removed

As a first step I import the python libraries that we will need for this exercise

After importing the libraries I load the csv's and assign them to two different dataframes

```
In [2]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import matplotlib.dates as mdates
```

```
In [3]: barcelona = pd.read csv('results barcelona.csv')
        barcelona.head()
```

Out[3]:

year

0 1743 Barcelona

year average_temp

0 1750 **1** 1751 8.7

8.0

1	1744	Barcelona	16.98
2	1745	Barcelona	10.78
3	1750	Barcelona	16.52
4	1751	Barcelona	16.78
0170	~~11	- nd roa	d cerr(!ros

```
In [4]: | overall = pd.read_csv('results_overall.csv
        overall.head()
Out[4]:
```

After importing	g both csv's separately I proceed to join them	using the merge method in Par
4 1754	8.5	
3 1753	8.4	
2 1/52	5.8	

In [5]: barcelona_world = barcelona.merge(overall,how='left', on='year', suffixes=['_barcelona','_overall'])

```
barcelona_world.head(10)
Out[5]:
```

	year	city	average_temp_barcelona	average_temp_overall
0	1743	Barcelona	13.81	NaN
1	1744	Barcelona	16.98	NaN
2	1745	Barcelona	10.78	NaN
3	1750	Barcelona	16.52	8.7
4	1751	Barcelona	16.78	8.0
5	1752	Barcelona	13.09	5.8
6	1753	Barcelona	16.17	8.4
7	1754	Barcelona	16.09	8.5
8	1755	Barcelona	15.80	8.4
9	1756	Barcelona	16.11	8.9

barcelona_world.describe()

average_temp_overall

264.000000

Using the describe function to check for inconsistencies that may appear in the data, such as outlier values

```
count 267.000000
```

In [7]:

In [9]:

Out[9]:

In [10]:

In [11]:

Out[11]: ''

1744

1751

1752

In [6]:

Out[6]:

mean	1879.955056	16.116105	8.364015	
std	77.298695	0.691412	0.572195	
min	1743.000000	10.780000	5.800000	
25%	1813.500000	15.830000	8.100000	
50%	1880.000000	16.090000	8.400000	
75%	1946.500000	16.470000	8.700000	
max	2013.000000	17.900000	9.700000	
Also, setting up the year as index so it will be easier to plot. Removing not useful columns for the analysis such as the 'city' column				

267.000000

year average_temp_barcelona

barcelona world.set index('year',inplace=True) In [8]: barcelona_world.drop('city', axis='columns', inplace=True)

```
barcelona_world.head()
Out[8]:
                average_temp_barcelona average_temp_overall
```

NaN

year 1743 13.81 NaN

16.98

barcelona_world.dropna(how='any', inplace=True)

1745	10.78	NaN	
1750	16.52	8.7	
1751	16.78	8.0	
	cided to remove any nu ar vs year with valid dat		l be present in any of both columns, so I ensure that I am

barcelona_world.head()

average_temp_barcelona average_temp_overall

year 1750 16.52 8.7

8.0

5.8

1753	16.17	8.4	
1754	16.09	8.5	
	plotting I create two ne g only the moving aver		g on a 10-year moving average using the pandas rolling method. I will
barcelona_wc	orld['moving_avera	ge_barcelona'] = 1	barcelona_world.rolling(window=10)['average_temp_barcelon

16.78

13.09

barcelona_world[['moving_average_barcelona','moving_average_overall']].plot(figsize=(12,6), linewidth=3

barcelona world['moving average overall'] = barcelona world.rolling(window=10)['average temp overall'].

```
plt.xlabel('Year', fontsize=14)
plt.ylabel('Temperature in Celsius', fontsize=14)
plt.legend(['Barcelona Temperature', 'Global Temperature'], loc='best')
plt.title('How temperature has changed in Barcelona compared to the global average?', fontsize=18)
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=25))
```


Conclusions extracted from the visualization

1766 1791 1816 1841 1866 1891 1916 1941 1966 1991 2016

Year

Temperature in Barcelona is on average around 8 degrees celsius higher than the global average, this difference has been preety much consistent since the beginning of the measurements.

Since these early measurements Barcelona has been facing very similar temperature trends and disruptions compared to the global average, including both main cold periords during the 19th century: the end of the little ice age period in the beginning of the XIXth century and the Krakatoa 1883 eruption in the end of the XIXth century, although this last one has been a bit more accentuated in Barcelona compared to the global trend.

However, in the last century the overall trends shows a global and rapid increse of temperature, the world is getting hotter, this fact is more evident from around 1970 onwards, with an increasing rise trend of the temperature