PHYS 3650L - Modern Physics Laboratory

Laboratory Advanced Sheet

The Absor	ption S	Spectra
-----------	---------	---------

1. <u>Objectives</u>. The objective of this laboratory is to measure the wavelengths of light absorbed by a liquid sample.

2. Theory.

An incandescent source such as a hot solid metal filament produces a continuous spectrum of wavelengths. A substance placed in the path of light from a continuous spectrum source will absorb certain colors from the continuous spectrum. The resulting absorption spectrum consists of a collection of well-defined dark lines or gaps in the otherwise continuous spectrum. By studying the absorption spectrum of an unknown substance it is possible to reliably identify it.

- 3. Apparatus and experimental procedures.
 - a. Equipment.
 - 1) Spectrophotometer system.
 - 2) Diffraction grating.
 - 3) Incandescent light source.
 - 4) Optics bench.
 - 5) High sensitivity light sensor.
 - 6) Colored liquid sample.

- 7) Computer with computer interface.
- 8) Rotary motion sensor.
- 9) Colored liquid samples.
- b. Experimental setup. To be provided by the student.
- c. Capabilities. To be provided by the student.
- d. Procedures. Detailed instructions are provided in paragraph 4 below.

4. Requirements.

- a. In the laboratory.
- 1) Your instructor will introduce you to the equipment to be used in the experiment.
- 2) Measurements to determine the angles of diffraction will be made for all lines observed in the absorption spectrum of a sample.
- 3) Your instructor will discuss methods to be used to process your data using the Microsoft ExcelTM spreadsheet program.
- b. After the laboratory. The items listed below will be turned in at the beginning of the next laboratory period. A complete laboratory report is **not** required for this experiment.

Para 3. Apparatus and experimental procedures.

- 1) Provide a figure of the experimental apparatus (para 3b).
- 2) Provide descriptions of the capabilities of equipment used in the experiment (para 3c).
- **Para 4. Data**. Data tables are included at Annex A for recording measurements taken in the laboratory. A copy of these tables must be included with the lab report. Provide the items listed below in your report in the form a Microsoft ExcelTM spreadsheet showing data, calculations and graphs. The spreadsheet will include:

1) For each sample: a table with columns for dark line, measured angle of diffraction to the right, angle of diffraction to the left, mean angle of diffraction, and calculated wavelength.

Para 5. Results and Conclusions.

a. Results.

1) A statement identifying the absorbed wavelengths for each liquid sample.

b. Conclusions.

- 1) Make a conclusion about the ability of the technique to observe the absorption spectra.
 - 2) Describe the sources of error in the experiment.

Annex A Data

1. Diffraction grating constant.

- 2. Angle of diffraction, 1st order.
 - a. Sample 1

Dark Line	Diffraction Ang	Diffraction Angle (degrees)	
	Right	Left	

b. Sample 2.

Dark Line	Diffraction Angle (degrees)	
	Right	Left

c. Sample 3.

Dark Line	Diffraction Angle (degrees)		
	Right	Left	

1			
,			
,			