

- he information represents a broad range of phenomena from hysical and man-made world.
- he physical world is characterized by parameters such as wei emperature, pressure, velocity, flow, and sound intensity equency.
- lost physical parameters are continuous, typically capable king on all possible values over a defined range.
- n contrast, in the man-made world, parameters can be discret ature, such as business records using words, quantities, arrencies.

- n general, information systems must be able to represent bontinuous and discrete information.
- le refer to such a continuous voltage as an analog signal iscrete voltage as digital signal.
- he signals in most present-day electronic digital systems use wood discrete values and are therefore said to be binary.
- he two discrete values used are often called 0 and 1, the di or the binary number system.

☐ FIGURE 1

Examples of Voltage Ranges and Waveforms for Binary Signals

anges an applied voltage lies.

ince 0 and 1 are associated with the binary number system, the preferred names for the signal ranges. A binary digital alled a bit. Information is represented in digital computers roups of bits.

Thy is binary used? In contrast to the situation in Diagran consider a system with 10 values representing the decimal diginal such a system, the voltages available—say, 0 to 1.0 voltable divided into 10 ranges, each of length 0.1 volt. A circuit provide an output voltage within each of these 10 ranges in input of a circuit would need to determine in which of the

The Digital Computer

The Digital Computer

he memory stores programs as well as input, output, itermediate data.

he datapath performs arithmetic and other data-process perations as specified by the program.

he control unit supervises the flow of information between arious units.

datapath, when combined with the control unit, form omponent referred to as a central processing unit, or CPU.

The Digital Computer

he program and data prepared by the user are transferred lemory by means of an input device such as a keyboard.

n output device, such as an LCD (liquid crystal display), displae results of the computations and presents them to the user.

NUMBER SYSTEMS

he decimal number system is employed in everyday arithmetic epresent numbers by strings of digits. Depending on its posing the string, each digit has an associated value of an interaction in the string of the power of 10.

or example, the decimal number 724.5 is interpreted epresent 7 hundreds plus 2 tens plus 4 units plus 5 tenths.

he hundreds, tens, units, and tenths are powers of 10 implied ne position of the digits. The value of the number is computed

ollows: $724.5 = 7 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1}$

NUMBER SYSTEMS

he convention is to write only the digits and inferorresponding powers of 10 from their positions.

general, a decimal number with n digits to the left of ecimal point and m digits to the right of the decimal point epresented by a string of coefficients:

$$A_{n-1}A_{n-2}...A_1A_0.A_{-1}A_{-2}...A_{-m+1}A_{-m}$$

NUMBER SYSTEMS

n general, the "." is called the *radix point. An - 1* is referred to ne *most significant digit* (*msd*) and *Am* as the *least significant of* sd) of the number.

he following illustrates a base 5 number with n = 3 and m and its conversion to decimal:

$$(312.4)_5 = 3 \times 5^2 + 1 \times 5^1 + 2 \times 5^0 + 4 \times 5^{-1}$$

= $75 + 5 + 2 + 0.8 = (82.8)_{10}$

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

n digital systems, we refer to 2^{10} as K (kilo), 2^{20} as M (mega), 2 s G (giga), and 2^{40} as T (tera). Thus,

$$4K = 2^2 \times 2^{10} = 2^{12} = 4096$$

$$16M = 2^4 \times 2^{20} = 2^{24} = 16,777,216$$

I THE THE PERSON OF THE PERSON OF THE PERSON OF	Num	bers	with	Different	Bases
---	-----	------	------	-----------	-------

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

inary to Decimal Conversion

$$(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (26)_{10}$$

$$(110101.11)_2 = 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75)_{10}$$

inary to Octal Conversion

 $(010\ 110\ 001\ 101\ 011.\ 111\ 100\ 000\ 110)_2 = (26153.7406)_8$

inary to Hexadecimal Conversion

 $(0010\ 1100\ 0110\ 1011.\ 1111\ 0000\ 0110)_2 = (2C6B.F06)_{16}$

Decimal Numbers

ecimal to Binary conversion

$$(525)_{10} = ?$$

$$625 - 512 = 113 = N_1 \qquad 512 = 2^9$$

$$113 - 64 = 49 = N_2 \qquad 64 = 2^6$$

$$49 - 32 = 17 = N_3 \qquad 32 = 2^5$$

$$17 - 16 = 1 = N_4 \qquad 16 = 2^4$$

$$1 - 1 = 0 = N_5 \qquad 1 = 2^0$$

$$(625)_{10} = 2^9 + 2^6 + 2^5 + 2^4 + 2^0 = (1001110001)_2$$

onversion of Decimal Integers to Binary

Convert decimal 41 to binary:

41/2 = 20 + 1/2	Remainder = 1	Least significant digit
20/2 = 10	= 0	
10/2 = 5	=0	
5/2 = 2 + 1/2	= 1	
2/2 = 1	= 0	
1/2 = 0 + 1/2	= 1	Most significant digit
$41)_{10} = (101001)_2$		

onversion of Decimal Fractions to Binary

$$0.6875 \times 2 = 1.3750$$
 Integer = 1 Most significant digit $0.3750 \times 2 = 0.7500$ = 0 $0.7500 \times 2 = 1.5000$ = 1 Least significant digit $(0.6875)_{10} = (0.1011)_2$

Conversion from Decimal to Other Bases

onversion of Decimal Integers to Octal

 $(153)_{10} = (231)_8$

$$153/8 = 19 + 1/8$$
 Remainder = 1 Least significant digit $19/8 = 2 + 3/8$ = 3 $= 2$ Most significant digit

Conversion from Decimal to Other Bases

onversion of Decimal Fractions to Octal

$$0.513 \times 8 = 4.104$$
 Integer = 4 | Most significant digit
 $0.104 \times 8 = 0.832$ = 0
 $0.832 \times 8 = 6.656$ = 6
 $0.656 \times 8 = 5.248$ = 5 \ Least significant digit

$$(0.513)_{10} = (0.407)_8$$

Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

ctal to Decimal Conversion

$$(127.4)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} = (87.5)_{10}$$

ctal to Binary Conversion

$$(673.12)_8 = 110 111 011. 001 010 = (110111011.00101)_2$$

exadecimal to Decimal Conversion

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46687)_{10}$$

exadecimal to Binary Conversion

$$(3A6.C)_{16} = 0011 \ 1010 \ 0110. \ 1100 = (1110100110.11)_2$$

ARITHMETIC OPERATIONS

inary Addition

00000	101100
01100	10110
+10001	+10111
11101	101101

ARITHMETIC OPERATIONS

inary Subtraction

00000	00110
10110	10110
-10010	-10011
00100	00011

ARITHMETIC OPERATIONS

inary Multiplication

 \times 101

1's & 2's complement

xample: Find 3's complement and 2's complement of 121_3 ? s complement of 121_3

222 - 121

101₃

nd 3's complement of 121₃

2's complement + 1

 $101_3 + 1$

102₃

xample: Find the 3's complement and 4's complement of 130_4 's complement of 130_4

333 - 130

2034

s complement of 130₄

3's complement of $130_4 + 1$

 $203_4 + 1$

 210_{4}

xample: Find the 4's complement and 5's complement of 224_5 's complement of 224_5

444 - 224

 220_{5}

s complement of 224₅

4's complement of $224_5 + 1$

 $220_5 + 1$

 221_{5}

xample: Find 10's complement and 11's complement of 1A1₁₁?

o's complement of 1A1₁₁

AAA - 1A1

90911

l's complement of $1A1_{11}$

10's complement of $1A1_{11} + 1$

 $909_{11} + 1$

90A₁₁

xample: Find 11's complement and 12's complement of $AB0_{12}$

l's complement of ABO₁₂

BBB – AB0

 $10B_{12}$

2's complement of $AB0_{12}$

11's complement of $AB0_{12} + 1$

 $10B_{12} + 1$

110₁₂

DECIMAL CODES

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD Addition

110	BCD carry	1←	1-	٦
448		0100	0100	1000
+489		+0100	+1000	+1001
937	Binary sum	1001	1101	1 0001
	Add 6		+0110	+0110
	BCD sum	. W. D.	1 0011	1 0111
	BCD result	1001	0011	0111

ALPHANUMERIC CODES

lany applications of digital computers require the handling ata consisting not only of numbers, but also of letters.

or instance, an insurance company with thousands olicyholders uses a computer to process its files.

o represent the names and other pertinent information, i ecessary to formulate a binary code for the letters of lphabet.

addition, the same binary code must represent numerals becial characters such as \$.

ASCII Character Code

he standard binary code for the alphanumeric characters alled ASCII (American Standard Code for Informa aterchange). It uses seven bits to code 128 characters.

he ASCII code contains 94 characters that can be printed and onprinting characters used for various control functions.

he printing characters consist of the 26 uppercase letters, the wercase letters, the 10 numerals, and 32 special prints haracters such as %, @, and \$.

ASCII Character Code

American Standard	Code for	Information	Interchange	(ASCII)
-------------------	----------	-------------	-------------	---------

	$\mathbf{B}_7 \mathbf{B}_6 \mathbf{B}_5$							
$B_4B_3B_2B_1$	000	001	010	011	100	101	110	111
000	NULL	DLE	SP	0	@	P		p
001	SOH	DC1	!	1	A	Q	a	q
010	STX	DC2	"	2	В	R	b	r
011	ETX	DC3	#	3	C	S	c	S
100	EOT	DC4	\$	4	D	T	d	t
101	ENQ	NAK	%	5	E	U	e	u
110	ACK	SYN	&	6	F	V	f	v
111	BEL	ETB	,	7	G	W	g	w
000	BS	CAN	(8	H	X	h	X
001	HT	EM)	9	I	Y	i	y
010	LF	SUB	: ∤<	:	J	Z	j	Z
011	VT	ESC	+	;	K	1	k	{
100	FF	FS	,	<	L	1	1	ì
101	CR	GS	_	=	M	1	m	}
110	SO	RS		>	N	^	n	~
111	SI	US	/	?	O	_	0	DEI

Parity Bit

	With Even Parity	With Odd Parity		
1000001	01000001	11000001		
1010100	11010100	01010100		

Hamming Code

001000

$$+r+1<2^r$$

R1	R2	1	R3	0	0	1	R4	0	0	0
1	2	3	4	5	6	7	8	9	10	11

Hamming Code

$$1 = BIT NO. 1+3+5+7+9+11$$

$$2 = BIT NO. 2+3+6+7+10+11$$

$$B = BIT NO. 4+5+6+7$$

$$4 = BIT NO. 8+9+10+11$$

EBCDIC

xtended Binary Coded Decimal Interchange Code (EBCDIC) is bit character encoding used on IBM mainframe inicomputer operating systems.

ll IBM mainframe peripherals and operating systems apport EBCDIC, although the operating systems also pros SCII and Unicode modes to allow translation between differenced accodings.

EBCDIC

Character	The second second second second second	DIC iguration	Character	EBDIC Bit Configuration		
A	1100	0001	S	1110	0010	
В	1100	0010	T	1110	0011	
C	1100	0011	U	1110	0100	
D	1100	0100	V	1110	0101	
E	1100	0101	W	1110	0110	
F	1100	0110	X	1110	0111	
G	1100	0111	Y	1110	1000	
Н	1100	1000	Z	1110	1001	
	1100	1001	0	1111	0000	
J	1101	0001	1	1111	0001	
K	1101	0010	2	1111	0010	
L	1101	0011	3	1111	0011	
M	1101	0100	4	1111	0100	
N	1101	0101	5	1111	0101	
0	1101	0110		1111	0110	
Р	1101	0111	6 7	1111	0111	
Q	1101	1000	8	1111	1000	
R	1101	1001	9	1111	1001	

UNICODE

he Unicode character set has the capacity to support over aillion characters, and is being developed with an aim to havingle character set that supports all characters from all scriss well as many symbols, that are in common use around orld today or in the past.

urrently, the Standard supports over 96,000 charace epresenting a large number of scripts. UTF-8, UTF-16 and U 2 are part of Unicode.