The Ordinary Double Point

SAMUEL STARK, based on a lecture of RICHARD THOMAS

1. **Introduction.** Consider an analytic function

$$f: \mathbf{C}^{n+1} \to \mathbf{C}$$
.

Assume that f and its partial derivatives vanish at the origin, so that the hypersurface X in \mathbb{C}^{n+1} defined by f has a singularity at 0. Then the lowest nonvanishing term of the Taylor series expansion of f about the origin is the quadratic one. If this quadratic form is nondegenerate, then in a neighbourhood of 0 there is a system of analytic coordinates in which f takes the form

(1.1)
$$f(x) = x_1^2 + \dots + x_{n+1}^2.$$

(This is essentially the Morse lemma.) In this case one says the singularity of X at 0 is an *ordinary double point* (odp for short). This is the simplest kind of hypersurface singularity; it is ubiquitous in geometry.

Remark 1. (i) Of course, this can be expressed purely in terms of the local ring $\mathcal{O}_{X,0}$: X has an ordinary double point at 0 if and only if the completion $\hat{\mathcal{O}}_{X,0}$ is isomorphic to $\mathbb{C}[[T_1,\ldots,T_{n+1}]]/(T_1^2+\cdots+T_{n+1}^2)$.

(ii) Replacing (1.1) with $x_1^2 + \cdots + x_n^2 + x_{n+1}^{k+1}$ yields the family of A_k -singularities $(k \ge 1)$. Odps are therefore also called A_1 -singularities or *nodes*. Nodal curves occur for instance in the (Deligne-Mumford) compactification $\overline{\mathcal{M}}_g$ of the moduli space \mathcal{M}_g of curves of genus g.

Exercise 1. Let \mathcal{L} be a (globally generated) line bundle on a smooth projective variety $X, P \subset \mathbf{P}(H^0(X, \mathcal{L}))$ a generic pencil of sections, with zero sets $(X_t)_{t \in \mathbf{P}^1}$. Show that each X_t has at worst one odp. (For a special case see [7], section 2).

In the following we discuss two approaches to understanding the geometry of the ordinary double point; X will usually denote the affine hypersurface given by

$$(1.2) x_1^2 + \dots + x_{n+1}^2 = 0.$$

The first approach is called *smoothing*, while the second one is called *resolving*.

2. **Smoothing.** Consider the hypersurface \mathfrak{X} in $\mathbb{C}^{n+1} \times \mathbb{C}$ given by

$$x_1^2 + \dots + x_{n+1}^2 = t$$
,

which we regard as fibered over C via the morphism

$$(2.1) \pi: \mathfrak{X} \to \mathbf{C}$$

induced by the projection $\mathbb{C}^{n+1} \times \mathbb{C} \to \mathbb{C}$. The fibre X_t over a fixed point $t \neq 0$ in \mathbb{C} is the smooth hypersurface in \mathbb{C}^{n+1} defined by

$$x_1^2 + \dots + x_{n+1}^2 = t$$

while the fibre over 0 (the singular fibre) is $X_0 = X$. One calls X_t the *smoothing* or *Milnor fibre* of X. Consider first the case n = 1, which guides our intuition ⁽¹⁾. After a change of variables the equation $x_1^2 + x_2^2 = 0$ becomes uv = 0; thus X is a cone, while X_t is a quadric. The real slice $L = L_t$ of X_t which degenerates to the singularity of $X = X_0$ as $t \to 0$ is called the *vanishing cycle*.

We view X_t as a symplectic manifold with symplectic structure ω induced by the one of \mathbb{C}^{n+1} . It is a fundamental fact that the vanishing cycle L is a *Lagrangian* submanifold of X_t , i.e. dim $L = \frac{1}{2} \dim X_t$ and $\omega | L = 0$. We will outline three different descriptions of L and, correspondingly, three different proofs that L is Lagrangian; they all indicate that smoothings should be regarded within the framework of *symplectic geometry*. To begin with, L is the fixed locus of the anti-symplectic involution $\sigma: X_t \to X_t$ induced by complex conjugation.

Exercise 2. Let (X, ω) be a symplectic manifold and $\sigma: X \to X$ an antisymplectic involution, i.e. $\sigma^2 = \operatorname{id}$ and $\sigma^*\omega = -\omega$. If the fixed locus is nonempty, then it is a Lagrangian submanifold.

In dimension n = 1 it is easy to see that X_t is diffeomorphic to $S^1 \times \mathbf{R}$, with L corresponding to a circle S^1 . There is a generalisation of this observation, holding in any dimension: X_t is symplectomorphic to the cotangent bundle T^*S^n , with L corresponding to the zero section $S^n \subset T^*S^n$.

⁽¹⁾ For n = 0 the fibre over 0 is the singleton consisting of 0, while the general fibre is the set of square roots of t. (The scheme theoretic fibres are $\operatorname{Spec}(\mathbf{C}[T]/(T^2))$ and $\operatorname{Spec}(\mathbf{C} \times \mathbf{C})$, respectively.)

Exercise 3. Let t > 0, and identify $\mathbb{C}^{n+1} \simeq \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ via $x_j = a_j + ib_j$. Then for $x \in X_t$ we have $t = x_1^2 + \dots + x_{n+1}^2 = |a|^2 + 2i\langle a, b\rangle - |b|^2$, in particular $\langle a, b \rangle = 0$ and $|a| \neq 0$. Identify

$$T^*S^n \simeq TS^n = \{(a,b) \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \mid |a| = 1, \langle a,b \rangle = 0\},$$

and show that the map

$$(2.2) X_t \to T^*S^n given by x \mapsto (a/|a|, |a|b)$$

is a symplectomorphism.

This gives the second proof that the vanishing cycle is a Lagrangian submanifold: it is the zero section of a cotangent bundle.

Remark 2. Locally this is typical for Lagrangian submanifolds: Weinstein's neighbourhood theorem says that for every compact Lagrangian L in a symplectic manifold X there is a neighbourhood of L in X symplectomorphic to a neighbourhood of the zero section of T*L.

We come to the third and final description; it relies on the notion of *symplectic connection*, which gives rise to *monodromy*, the Riemannian analogoue of which is holonomy. Let us consider a family of projective varieties

$$\pi:\mathfrak{X}\to\mathsf{T}.$$

whose smooth locus will be denoted by $T^* \subset T$. Regarded as a family of smooth manifolds over T^* this is a locally trivial fibration by a theorem of Ehresmann. In particular, the fibres are diffeomorphic, but the complex structure may vary. However, the symplectic structure does not vary: it is a symplectic fibre bundle. By taking the annihilator (with respect to the symplectic form) of $T_{\mathfrak{X}/T}$ we obtain a connection (horizontal subbundle of $T_{\mathfrak{X}}$) on \mathfrak{X} over T^* . The parallel transport map associated to a path in T^* is a symplectomorphism, and for loops we in particular obtain the *monodromy representation*

$$\pi_1(T^*,t) \to \operatorname{Aut}(X_t),$$

where $Aut(X_t)$ is the group of symplectomorphisms of X_t modulo Hamiltonian isotopies $^{(2)}$.

We return to the particular family (2.1), with $T^* = \mathbb{C}^*$. Consider the straight line path from t to 0 in \mathbb{C} ; the third and final description of the vanishing cycle L is then that it is the set of all $x \in X_t$ which parallel transport to the singularity of X_0 . This is a Lagrangian submanifold exactly because the connection preserves ω .

⁽²⁾ It turns out that the parallel transport maps corresponding to isotopic loops are distinct but Hamiltonian isotopic, see [6], section 2.

The monodromy about a circle around the origin in \mathbb{C} is particularly interesting; it is called the *Dehn twist* $T_L: X_t \to X_t$ about L, shown in the following picture.

If we identify $X_t \simeq T^*S^n$ via (2.2), then the Dehn twist can be described as a Hamiltonian flow (with Hamiltonian essentially equal to |b|), or as a geodesic flow (the flow of the geodesic vector field on TS^n associated to the Levi-Cevita connection). Using this local model one then defines the Dehn twist more generally by appealing to Weinstein's neighbourhood theorem.

Remark 3. (i) One can generalise this dicussion to the A_k -singularity (see remark 1 (ii)) with smoothings X_p given by $x_1^2 + \cdots + x_n^2 = p(x_{n+1})$, where p is a monic polynomial of degree k+1 with distinct roots. The vanishing cycle is a chain of k+1 spheres, and the fundamental group of the smooth locus (the configuration space of k+1 unordered points in \mathbb{C}) is the Braid group B_{k+1} . Khovanov and Seidel proved that in this case the monodromy representation is faithful; for more on this we refer to [6], section 2.3.

(ii) For
$$\alpha = (\alpha_1, \dots, \alpha_{n+1}), \alpha_i \geqslant 2$$
, let $X(\alpha) \subset \mathbb{C}^{n+1}$ be defined by

$$x_1^{\alpha_1} + \dots + x_{n+1}^{\alpha_{n+1}} = 0.$$

Then $X(\alpha)$ is a topological manifold if and only if the $link \ \Sigma(\alpha) = X(\alpha) \cap S^{2n+1}$ (where S^{2n+1} is a small sphere centred at the origin) is topologically a sphere. For $\alpha_1 = \cdots = \alpha_{n+1} = 2$ it is easy to see that $\Sigma(\alpha)$ is the Stiefel manifold $V_2(\mathbf{R}^{n+1})$. Brieskorn [2] (see also [4]) shows that $X(\alpha)$ is a topological manifold if and only if

where the product is taken over all $0 < i_k < \alpha_k$. The topological manifold $\Sigma(\alpha)$ carries a natural differentiable structure, and Brieskorn proves that the $\Sigma(\alpha)$ with $\alpha = (2, 2, 2, 3, 6k - 1)$ $(1 \le k \le 28)$ give the 28 differentiable structures on S^7 . (iii) The fundamental class [L] generates $H_n(X_t; \mathbf{Z}) \simeq \mathbf{Z}$, and the map induced by T_L on $H_n(X_t; \mathbf{Z})$ is given by the *Picard-Lefschetz formula*

$$(T_L)_*(a) = a + (-1)^{(n+1)(n+2)/2} (a.[L])[L],$$

where (a.[L]) denotes the intersection number (see for instance [1], chapter 2).

3. **Resolution.** In algebraic geometry one deals with singularities by resolving them. A resolution of singularities of a variety X is a smooth variety \tilde{X} with a proper birational map $\pi: \tilde{X} \to X$ which is an isomorphism over the smooth locus of X. The existence theorem for resolutions of singularities is due to Hironaka; he proved that one can obtain a resolution of singularities by repeated blow ups (in particular, π can be chosen to be projective). In our case (1.2), the mild nature of the singularity allows us to resolve X by a single blow up

$$\pi: \tilde{X} = Bl_0X \to X.$$

Exercise 4. Show that the exceptional divisor of this blow up is a smooth projective *n*-dimensional quadric, and that π is a resolution of singularities ⁽³⁾.

An interesting phenomenon occurs in dimension n=3. By a change of variables we can rewrite the equation (1.2) as uv-wz=0. Apart from blowing up 0, one can also resolve X by blowing up the 2-planes D^+ and D^- given by u=w=0 and u=z=0, respectively. So we consider the blow ups

$$\pi^+: X^+ = Bl_{D^+}(X) \to X$$
 and $\pi^-: X^- = Bl_{D^-}(X) \to X$

of X along D⁺ and D⁻, respectively.

Exercise 5. Show that the divisors D^+ and D^- are not Cartier, but that they are Cartier away from the origin. Prove that X^+ can be regarded as the closure of the graph of the rational function u/w = z/v on X. Find a similar description for X^- . Check that π^+ and π^- are resolutions of singularities of X.

The inverse images of D^+ and D^- under the blow up $\tilde{X} \to X$ are effective Cartier divisors on \tilde{X} (they are of pure codimension 1). The universal property of the blow up thus gives rise to a commutative diagram

$$\tilde{X} \longrightarrow X^{-} \\
\downarrow \qquad \qquad \downarrow \\
X^{+} \longrightarrow X.$$

The fibres of π^+ and π^- over $0 \in X$ are rational curves C^+ and C^- , and so π^+ and π^- are *small resolutions* of X in the sense that the exceptional sets are of codimension 2. The maps $\tilde{X} \to X^+$ and $\tilde{X} \to X^-$ can be regarded as blow ups along these curves; each of them contracts one of the rulings of the exceptional quadric $E \subset \tilde{X}$. The above diagram is actually a Cartesian diagram, $\tilde{X} \simeq X^+ \times_X X^-$. It is easy to see that the schemes X^+ and X^- are isomorphic as schemes over C (there

 $[\]overline{\ }^{(3)}$ The exceptional divisor is the Proj of the associated graded ring of the local ring of X at 0, so it suffices so show that the latter ring is isomorphic to $C[T_1, \ldots, T_{n+1}]/(T_1^2 + \cdots + T_{n+1}^2)$.

is an automorphism of X exchanging D^+ and D^-), but not as schemes over $X^{(4)}$. However, π^+ and π^- induce an isomorphism

$$X^+ - C^+ \xrightarrow{\sim} X^- - C^-$$

and in particular a birational map

$$X^+ \longrightarrow X^-$$

the so-called *Atiyah flop*. It can be thought of as an 'algebraic surgery': it exchanges one rational curve with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ by another.

Remark 4. (i) Small resolutions are crepant, and X is therefore an example of a variety with two distinct crepant resolutions. (For surfaces these are unique.)

- (ii) Let V be vector space of dimension 2, and view $X \subset End(V)$ as the locus of endomorphisms u with $rank(u) \leq 1$. Then X^+ (resp. X^-) can be viewed as the subvariety of $End(V) \times Gr_1(V)$ given by pairs (u, L) with $L \subset Ker(u)$ (resp. $Im(u) \subset L$), and the Atiyah flop takes (u, Ker(u)) to (u, Im(u)).
- (iii) The varieties X, X^+ , X^- and \tilde{X} are toric, and π^+ , π^- , and π are toric resolutions of singularities (see [3], example 1.13, for a toric description of these maps).

As pointed out in the above remark, there cannot be an analogue of the Atiyah flop in dimension two; this is only one of the many differences between dimension two and three. For instance, the surface odp can be regarded as a quotient of the affine plane \mathbb{C}^2 by the cyclic group $\mathbb{Z}/2\mathbb{Z}$ generated by the involution $x \mapsto -x$. It is not possible to express the 3-fold odp as a quotient of an affine space by a finite group ⁽⁵⁾, essentially because the divisor class group of the 3-fold is \mathbb{Z} (with generator $[D^+] = [D^-]$), which is not torsion. (In contrast, the class group of the surface odp is $\mathbb{Z}/2\mathbb{Z}$.)

Maybe more interesting is the observation that the smoothing and resolution of the surface odp are diffeomorphic; we leave this as an exercise.

Exercise 6. The small resolution of the 3-fold odp X has a natural map to C induced by the fourth projection of \mathbb{C}^4 . Notice that the fibre over 0 is the resolution of the surface odp, while the fibre over $t \neq 0$ is the smoothing. (Another approach would be to view the surface odp as $\mathbb{C}^2/\{\pm 1\}$ as indicated above, and to use that $\mathrm{Bl}_0(\mathbb{C}^2/\{\pm 1\}) \simeq \mathrm{Bl}_0(\mathbb{C}^2)/\{\pm 1\}$.)

⁽⁴⁾ In fact there is no morphism $f: X^+ \to X^-$ of schemes over X. If there were such a morphism (necessarily dominant), then the pullback of D^- to X^- would be a Cartier divisor whose pullback under f would be a Cartier divisor in X^+ . But this divisor would be equal the pullback of D^- to X^+ , which is not a Cartier divisor.

⁽⁵⁾ However, one can regard the 3-fold odp as a quotient of \mathbb{C}^4 by the multiplicative group \mathbb{G}_m acting with weight (1, 1, -1, -1). By varying the linearisation of the trivial bundle on \mathbb{C}^4 , one obtains X^+ and X^- (this is sometimes called 'variation of GIT'). See [5], example 1.16, for details.

However, in three dimensions resolution and smoothing are no longer diffeomorphic, in fact not even homeomorphic, essentially because smoothing replaces the singularity by a S^3 , while resolution replaces it by a $P^1 \simeq S^2$ (6). There is another difference between dimension two and dimension three. If X is a projective surface and $\pi: \tilde{X} \to X$ a resolution of singularities, then \tilde{X} is a smooth proper surface, in particular projective by a theorem of Zariski. The following construction of Hironaka shows that in dimension three this no longer holds; it also gives an example of a smooth variety which is not quasi-projective.

Exercise 7 (Hironaka). (Fill in the details.) Let X be a smooth projective 3-fold, and C, D \subset X smooth (rational, say, for simplicity) curves intersecting transversally in two points p, q. Consider the composites

(3.1)
$$\operatorname{Bl}_{(D-p)'}\left(\operatorname{Bl}_{C-p}\left(X-p\right)\right) \xrightarrow{g} \operatorname{Bl}_{C-p}\left(X-p\right) \xrightarrow{f} X-p,$$

$$(3.2) Bl_{(C-q)'}\left(Bl_{D-q}(X-q)\right) \to Bl_{D-q}(X-q) \to X-q,$$

where (D-p)' is the proper transform of D-p. The inverse images of $X-\{p,q\}$ under these morphisms are canonically isomorphic, and the morphisms coincide over $X-\{p,q\}$. This allows one to glue, and we obtain a proper 3-fold Y with a morphism $Y \to X$. Consider now (3.1). The exceptional surface of the blow-up f is a \mathbf{P}^1 -bundle $S \to C-p$ whose fibres are all linearly equivalent. We have $f^{-1}(D-p)=f^{-1}(q)\cup (D-p)'$, and $S\cap (D-p)'$ consists of a single point q' which is taken to q by f. Now $g^{-1}(S)=g^{-1}(q')\cup S'$ with $S'=Bl_{q'}S$. As $g^{-1}(S)$ is irreducible, we have $g^{-1}(q')\subset S'$. The fibre $g^{-1}(f^{-1}(q))$ has two components L_q and M_q , where $L_q=g^{-1}(q')$ and g induces an isomorphism $M_q\overset{\sim}{\to} f^{-1}(q)$. For $x\neq q$ in C-p the fibre $g^{-1}(f^{-1}(x))$ is irreducible and we denote it by L_x . Then $L_x\approx L_q+M_q$, where \approx denotes numerical equivalence. The exceptional surface $g:R\to (D-p)'$ is a \mathbf{P}^1 -bundle with fibres L_y and $L_{q'}=L_q$. The surfaces R and S' meet along L, and we have $L_x\approx L_q+M_q\approx L_y+M_q$. By doing analogous considerations with (3.2) we arrive at $M_p+M_q\approx 0$ which implies that Y cannot be projective.

⁽⁶⁾ This is closely related to a phenomenon which in the physics literature is called 'conifold transition', usually illustrated by an enlightening picture showing X as a cone over $S^2 \times S^3$. From there also stems the view that, in a sense, smoothing and resolution are 'mirror' to each other.

The universal property of the blow up $Bl_{C\cup D}\,X\to X$ allows us to factor the morphism $Y\to X$ as

$$Y \to Bl_{C\cup D} X \to X$$
.

The morphism $Y \to Bl_{C\cup D} X$ is a small resolution of the nodal threefold $Bl_{C\cup D} X$.

References

- [1] V. I. Arnold et al., Singularity Theory I, Springer-Verlag.
- [2] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2.
- [3] C. D. Hacon, J. McKernan, Flips and Flops, Proc. ICM 2010, 513-539.
- [4] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Studies 61.
- [5] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9.
- [6] R. P. Thomas, An exercise in mirror symmetry, Proc. ICM 2010, 624-651.
- [7] C. Voisin, Hodge Theory and Complex Algebraic Geometry II, Cambridge University Press.