

Membangun Grammar

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Revised by:

Regular Grammar

- Dikenal juga sebagai linear grammar.
- Regular grammar adalah grammar denga setiap rulenya mengambil salah satu dari 3 format rule berikut
 - $A \rightarrow a$
 - $A \rightarrow aB$
 - $A \rightarrow \varepsilon$

dengan $A, B \in (V - \Sigma)$ dan $a \in \Sigma$, dan ε string kosong

• **Teorema**: Bahasa *L* adalah *bahasa reguler* jika dan hanya jika *L* dapat dibentuk oleh suatu *regular grammar* (RG) *G*.

Grammar Reguler dan Bahasa Reguler

- Bahasa yang dapat degenerate oleh grammar regular adalah bersifat regular.
 - $A \rightarrow \varepsilon \mid a \mid aB$
 - Variabel A menghasilkan bahasa sederhana $\{\epsilon\}$ atau $\{a\}$ atau $\{a\}$ L_B , jika L_B dihasilkan B.
 - $A \rightarrow \alpha \mid \beta$
 - Variabel A menghasilkan $L_A = L_\alpha \cup L_\beta$ jika L_α dihasilkan α dan L_β dihasilkan β .
- Implikasi
 - $A \rightarrow \varepsilon \mid aA$
 - Variabel A menghasilkan $L_A = \{a\}^*$.
 - $A \rightarrow a \mid aA$
 - Variabel A menghasilkan $L_A = \{a\}^+$.

DFSM Grammar Reguler

- Dari suatu DFSM *M*, grammar regular dari Bahasa yang diterima *M* dapat dibentuk sebagai berikut:
 - $\circ V = K$
 - Start symbol S adalah start state dalam M.
 - Untuk setiap transisi ((A, c), B) buat rule $A \rightarrow cB$
 - Untuk setiap accepting state E buat rule $E \rightarrow \varepsilon$.
 - Menambahkan Σ ke dalam V.
- Catatan: mesin M harus deterministic karena transisi-ɛ tidak ada padanan langsungnya (jika ada, harus dihilangkan dahulu dengan konversi NDFSM → DFSM).

Contoh

- $L = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}$
- Ekspresi reguler untuk L adalah $(aa \cup ab \cup ba \cup bb)^*$
- FSM untuk L adalah

• RG untuk L adalah:

$$\begin{array}{ccc} \circ & S \to \varepsilon & S \to aT & S \to bT \\ T \to aS & T \to bS \end{array}$$

Dapat disingkat:

$$S \rightarrow \varepsilon \mid aT \mid bT \quad T \rightarrow aS \mid bS$$

• String *aaba* dibentuk oleh grammar sbb:

$$S \Rightarrow aT \Rightarrow aaS \Rightarrow aabT \Rightarrow aabaS \Rightarrow aaba$$

Grammar Reguler - NDFSM

- Dari suatu grammar regular G, suatu mesin *M* yang dapat menerima bahasa yang dihasilkan G dapat dibentuk sebagai berikut:
 - $K = (V \Sigma) \cup \{q_A\}$ dengan q_A adalah accepting state.
 - Start state S start symbol dalam V.
 - Untuk setiap rule $A \to cB$ buat transisi ((A, c), B).
 - Untuk setiap rule $A \to c$ buat transisi $((A, c), q_A)$.
 - Untuk setiap rule $A \to \varepsilon$ buat transisi $((A, \varepsilon), q_A)$.
- Note: Mesin yang dihasilkan adalah NDFSM karena ada kemungkinan grammar berisi $A \rightarrow cB \mid cD$, terjadinya undefined transition (implisit ke dead-state), dan transisi- ε .

Contoh

- Gramamr untuk L mempunyai rule-rule:
 - $S \rightarrow bS \mid aA \mid \varepsilon$ $A \rightarrow aA \mid bB \mid b$ $B \rightarrow bS$
- Mesin yang merima Bahasa L adalah:

Latihan

- Dapatkan grammar untuk $\neg L$ jika grammar untuk L adalah (grammar yang sama dari contoh sebelumnya).
 - $S \rightarrow bS \mid aA \mid \varepsilon$ $A \rightarrow aA \mid bB \mid b$ $B \rightarrow bS$

Varian lain Untuk Grammar Reguler

- Definisi grammar regular yang telah dibahas adalah varian **right linear grammar**.
- **Left linear grammar** didefinisikan dengan rule-rule berformat:
 - $A \rightarrow Bb$
 - $A \rightarrow b$
 - $A \rightarrow \epsilon$
- Perbedaan "hanya" pada saat meng-generate string maka simbol string ditulis dari belakang.
- Pertanyaan: apakah bahasa yang dihasilkan grammar varian ini juga regular?