ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

Trabalho de Conclusão de Curso apresentado ao Departamento de Física de Ji-Paraná, Universidade Federal de Rondônia, Campus de Ji-Paraná, como parte dos quesitos para a obtenção do Título de Bacharel em Física, sob orientação do Prof. Dr. Marco Polo Moreno de Souza.

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ATA DE AVALIAÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO DE (LICENCIATURA PLENA/BACHARELADO) EM FÍSICA

Aos xxx dias do mês de xxx do ano de xxx, às xxx, no xxx, reuniu-se a Banca Julgadora composta pelo professor orientador Dr. Marco Polo Moreno de Souza e pelos examinadores Nome do professor da banca e Nome do professor da banca, para avaliarem o Trabalho de Conclusão de Curso, do Curso de Bacharelado em Física, intitulado "PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS", do discente *ELITON TRINDADE GOMES*. Após a apresentação, o candidato foi arguido pelos integrantes da Banca Julgadora por xxx (xxx) minutos. Ao final da arguição, a Banca Julgadora, em sessão reservada, aprovou o candidato com nota xxx (xxx), em uma avaliação de 0 (zero) a 10 (dez). Nada mais havendo a tratar, a sessão foi encerrada às xxx, dela sendo lavrada a presente ata, assinada por todos os membros da Banca Julgadora.

Prof. Dr. Marc	co Polo Moreno de Souza - DEFIJI/CJP/UNIF Orientador
Prof. Nome	e do professor da banca - DEFIJI/CJP/UNIR

DEDICATÓRIA

Digite a dedicatória aqui.

AGRADECIMENTOS

Digite os agradecimentos aqui.

EPÍGRAFE

Digite a epígrafe aqui.

RESUMO

O resumo em língua portuguesa deverá conter no mínimo 150 e no máximo 500 palavras. Bla Bla

Palavras-chave: palavra-chave 1. palavra-chave 2. palavra-chave 3.

LISTA DE TABELAS

4.1	Propriedades ópticas para transição $D1(5^2S_{1/2}\longrightarrow 5^2P_{1/2})$ do ^{87}Rb	30
5.1	Funções trigonométricas e hiperbólicas	43
6.1	Funções trigonométricas e hiperbólicas.	45

LISTA DE FIGURAS

2.1	Representação da superposição de duas ondas plana.	10
2.2	Pulso eletromagnético caracterizado por GVD positivo (a) e GVD negativo (b).	11
2.3	(A) representa o pulso em um referencial da amostra e (B) representa o pulso	
	no referencial do pulso	13
4.1	Níveis de energia de um hipotético átomo de dois níveis. A dessintonia $\delta =$	
	$\omega_{ab} - \omega$ é a diferença entre $(E_2 - E_1)/\hbar$ e ω_c , onde ω_c é a frequência angular	
	da radiação eletromagnética do laser incidente.	24
4.2	Amplitude de probabilidade $c_n(t)$ decai conforme (4.51)	27
4.3	Diagrama do níveis de rubídio	31
4.4	Evolução temporal da população σ_{22} exitada por um campo contínuo, onde (a)	
	$\delta/2\pi = 0$ Mhz, (b) $\delta/2\pi = 10$ Mhz, (c) $\delta/2\pi = 50$ Mhz e (d) $\delta/2\pi = 100$ Mhz.	32
4.5	População σ_{22} em função da dessintonia δ em um estado estacionário	32
5.1	Resultado numérico para variação da área de um pulso ultracurto qualquer, con-	
	forme ele se propaga em um meio atômico de dois níveis	35
5.2	Fluxograma mostrando os passos do Método Científico	35
5.3	Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que	
	interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubídio 87). (a) gráfico	
	de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para	
	$z=0$. (c) Curva de $\Omega_0(z,t)$ para $z=1$ cm	36
5.4	Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que	
	interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico	
	de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para	
	$z=0$. (c) Curva de $\Omega_0(z,t)$ para $z=1$ cm	37
5.5	Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que	
	interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico	
	de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para	2=
. .	$z = 0$. (c) Curva de $\Omega_0(z,t)$ para $z = 1$ cm	37
5.6	Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que	
	interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico	
	de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para	20
57	$z=0$. (c) Curva de $\Omega_0(z,t)$ para $z=1$ cm.	38
5.7	Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico	
	de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para	
	$z=0$. (c) Curva de $\Omega_0(z,t)$ para $z=1$ cm	39
5.8	Resultado	40
5.9	Resultado	41
	Resultado	41
	Resultado	42
	Pulso sech	42
6.1	Espectro de um laser de femtossegundos	45
6.2	Espectro de um laser de femtossegundos.	45
6.3	Níveis de energia de um hipotético "átomo de dois níveis".	46

6.4	descrição top																									46	
6.5	descrição top	•	•	•	•	•	•	•		•		•	 •	•		•	•			•	•	•	•	•	•	47	

SUMÁRIO

1	Intr	trodução						
2	Propagação de ondas eletromagnéticas em meio linear 2.1 Equações de Maxwell							
3	Mecânica Quântica e Operador Densidade							
	3.1	Matriz densidade	15					
		3.1.1 Propriedades do Operador Densidade	17					
		3.1.2 Evolução Temporal do Operador Densidade	20					
4	Inte	Interação sistema atômico de dois níveis com radiação						
	4.1	Hamiltoniano para um sistema atômico de dois níveis	21					
	4.2	Sistema atômico de dois níveis	23					
		4.2.1 Solução numérica para campos contínuos	29					
5	Pro	Propagação de pulso de Luz em sistema atômicos 33						
	5.1	Equações de Maxwell-bloch para um sistema de dois níveis	33					
	5.2	Teorema de Área	34					
	5.3	Resultados	35					
		5.3.1 Propagação de pulso com área pequena em meio ressonante	36					
		5.3.2 Transparência auto induzida	38					
	5.4	Equações	42					
	5.5	Tabelas	43					
	5.6	Códigos	43					
	5.7	Citação	43					
6	Out	ro capítulo	45					
7	Con	nclusão	49					
Tí	tulo d	do Primeiro Apêndice	53					
Tí	tulo d	lo Segundo Apêndice	55					

1 INTRODUÇÃO

Digite a introdução aqui.

2 PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS EM MEIO LINEAR

Neste Capítulo, revisitamos conceitos importantes do eletromagnetismo, que permitirá estudarmos a propagação de pulsos eletromagnéticos através de um ensemble de sistemas de 2 níveis. Para isso, primeiramente apresentaremos a propagação num meio linear e depois expandiremos para o caso de um meio atômico, onde efeitos não lineares estão presentes.

2.1 EQUAÇÕES DE MAXWELL

Em princípio, sabemos que as leis do electromagnetismo para um meio podem ser resumidas nas quatro equações de Maxwell [1, 2]:

$$\nabla \cdot \mathbf{D} = \rho_l$$
 (Lei de Gauss), (2.1)

$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}_l$$
 (Lei de Ampère), (2.2)

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$
 (Lei de Faraday), (2.3)

$$\nabla \cdot \mathbf{B} = 0$$
 (Lei de Gauss para o magnetismo). (2.4)

A lei de Gauss apresenta a existência de cargas elétricas positiva e negativa, sendo ϱ_l (C/m³) a densidade de carga elétrica livre. A lei de Àmpere estabelece que uma densidade de corrente elétrica \mathbf{J}_l (A/m²), ou um deslocamento elétrico \mathbf{D} (C/m²) variável no tempo, produz uma distribuição de campo magnetizante \mathbf{H} (A/m). A lei de Faraday estabelece que a variação no campo magnético \mathbf{B} (Wb/m²) produz uma distribuição de campo elétrico \mathbf{E} (V/m). A lei de Gauss para o magnetismo informa a não existência de cargas magnéticas. O deslocamento elétrico \mathbf{D} e o campo magnetizante \mathbf{H} se relacionam com \mathbf{E} and \mathbf{B} a partir das equações:

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \tag{2.5}$$

e

$$\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M},\tag{2.6}$$

sendo P a polarização elétrica e M magnetização de um meio material. A polarização ocorre quando sujeitamos um dielétrico a um campo elétrico. Isso acarreta uma distorção da distribuição interna de cargas, gerando dipolo elétricos que contribuem com o campo elétrico interno total no meio, ou seja, o campo externo separa as carga positiva e negativa do material, e esta contribui para uma componente adicional para o campo. O momento dipolar por unidade de volume é o que chamamos de polarização elétrica e obedece a seguinte definição:

$$\mathbf{P} \equiv \frac{1}{V} \sum_{i} \mathbf{d_{i}}.$$
 (2.7)

A magnetização da matéria ocorre quando é aplicado um campo magnético externo. Dois mecanismos atômicos que justificam esse fenômeno são: o paramagnetismo, em que os dipolos

referentes aos spins (momento angular intrínseco) de elétrons sem par se alinham ao campo magnético externo, e o diamagnetismo, no qual o campo magnético externo provoca alteração na velocidade orbital, ocasionando uma mudança no momento de dipolo orbital em sentido oposto a campo magnético externo. Podemos definir a magnetização M como momento do dipolo magnético resultante por unidade de volume, conforme a equação:

$$\mathbf{M} \equiv \frac{1}{V} \sum_{i} \mathbf{m_i}.$$
 (2.8)

Levando em conta que o meio atômico estudado neste TCC é eletricamente neutro e não magnético, podemos desconsiderar ρ_l , \mathbf{J}_l e \mathbf{M} , fazendo

$$|\varrho_l| = |\mathbf{J}_l| = |\mathbf{M}| = 0. \tag{2.9}$$

Aplicando o operador rotacional à lei de Faraday (2.3), obtemos:

$$\nabla \times (\nabla \times \mathbf{E}) + \nabla \times \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} + \frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = 0.$$
(2.10)

Usando as relações (2.5) e (2.6) na lei de Ampère (2.2), respeitando as condições (2.9), obtemos:

$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial}{\partial t} (\epsilon_0 \mathbf{E} + \mathbf{P}).$$
 (2.11)

Substituindo esse resultado em (2.10) e usando o fato de que $\nabla(\nabla \cdot \mathbf{E}) = 0$, obtemos a seguinte equação de onda para o campo elétrico em um meio material [3]:

$$\frac{\partial^2 \mathbf{E}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2}{\partial t^2} \mathbf{P}.$$
 (2.12)

Veja que o termo a esquerda da igualdade é equivalente equação da onda para a propagação da luz no vácuo, enquanto que o termo no lado direito representa a interação do campo eletromagnético com o meio material.

A polarização P pode ser decomposta em duas partes :

$$\mathbf{P} = \mathbf{P}^{\mathbf{L}} + \mathbf{P}^{\mathbf{NL}},\tag{2.13}$$

onde P^{L} representa contribuições que variam de forma linear e P^{NL} as contribuições que variam de forma não-linear com o campo elétrico aplicado [4, 5].

Na próxima Seção 2.2 apresentamos a solução da eq. (2.12) para um pulso de campo eletromagnético que interage com material linear e, posteriormente,na seção 2.3, apresentamos o caso não linear que se aplica ao sistema atômico de dois níveis, ao qual estudaremos no Capítulo 4.

2.2 PROPAGAÇÃO DE ONDA EM MEIO LINEAR

A equação de propagação da onda (2.12), normalmente é resolvida somente usando métodos numéricos. No entanto, podemos realizar simplificações e aproximações que, ainda assim, nos permita lidar com problemas práticos da propagação de pulsos em um meio material [5]. Para um meio linear, podemos reescrever a equação (2.12) da seguinte forma:

$$\frac{\partial^2}{\partial z^2} E(z,t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} E(z,t) = \mu_0 \frac{\partial^2}{\partial t^2} P^L(z,t). \tag{2.14}$$

Sabemos que, em um meio linear, a polarização se relaciona com o campo elétrico a partir da susceptibilidade elétrica χ_e [1, 2], seguindo a seguinte expressão:

$$P^{L}(z,t) = \epsilon_0 \int_{-\infty}^{t} dt' \, \chi_e(t-t') E(z,t'). \tag{2.15}$$

Isso nos diz que um material não pode polarizar instantaneamente em reposta a um campo aplicado, ou seja, a polarização é uma convolução do campo elétrico em tempos anteriores, onde a susceptibilidade é dada por $\chi_e(\Delta t)$. Podemos estender o limite superior desta integral ao infinito considerando que

$$\chi_e(\Delta t) = 0 \text{ para } \Delta t < 0. \tag{2.16}$$

Reescrevendo (2.15) no domínio da frequência, obtemos:

$$\tilde{P}^{L}(z,\omega) = \epsilon_{0} \int_{-\infty}^{-\infty} dt \, P^{L}(z,t) e^{-i\omega t}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt \int_{-\infty}^{\infty} dt' \chi_{e}(t-t') E(z,t') e^{-i\omega t}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt \int_{-\infty}^{\infty} dt' \chi_{e}(t) E(z,t') e^{-i\omega(t+t')}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt' \, E(z,t') \int_{-\infty}^{\infty} dt \, \chi_{e}(t) e^{-i\omega(t+t')}
= \epsilon_{0} \int_{-\infty}^{\infty} dt \, \chi_{e}(t) e^{-i\omega t} \int_{-\infty}^{-\infty} dt' \, E(z,t') e^{-i\omega t'}
= \epsilon_{0} \tilde{\chi}_{e}(\omega) \tilde{E}(z,\omega).$$
(2.17)

Usando a transformada de Fourier inversa de E(z,t) em (2.14), obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] E(z,t) = \mu_{0} \frac{\partial^{2}}{\partial t^{2}} P^{L}(z,t)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t}\right] = \mu_{0} \frac{\partial^{2}}{\partial t^{2}} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{P}^{L}(z,\omega) e^{i\omega t}\right]$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \frac{\omega^{2}}{c^{2}}\right] \tilde{E}(z,\omega) = -\mu_{0} \omega^{2} \tilde{P}^{L}(z,\omega).$$
(2.18)

Substituindo (2.17) em (2.18) e usando o fato de que $c^2 = \frac{1}{\mu_0 \epsilon_0}$, obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon_{0}\right]\tilde{E}(z,\omega) = -\mu_{0}\omega^{2}\epsilon_{0}\tilde{\chi}_{e}(\omega)\tilde{E}(z,\omega)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon_{0}(1+\chi_{e}(\omega))\right]\tilde{E}(z,\omega) = 0$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon(\omega)\right]\tilde{E}(z,\omega) = 0,$$
(2.19)

onde definimos

$$\epsilon(\omega) = \epsilon_0 [1 + \chi_e(z, \omega)] \tag{2.20}$$

é a permissividade elétrica do material. Para resolvermos a equação (2.19), assumimos que a susceptibilidade elétrica e a permissividade elétrica do material são reais. Assim, a solução da EDO na direção +z é:

$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{-ik(\omega)z},\tag{2.21}$$

onde $k(\omega)$ é o vetor de onda que em consequência da equação Em consequência da em termos de é a constante de propagação, obtida a partir da relação de dispersão da óptica linear

$$k^{2}(\omega) \equiv \omega^{2} \epsilon(\omega) \mu_{0} = \frac{\omega^{2}}{c^{2}} n(\omega),$$
 (2.22)

em que $n(\omega)$ é o índice de refração do material. Para uma análise mais minuciosa, é interessante expandir $k(\omega)$ em série de Taylor, em torno da frequência central ω_c :

$$k(\omega) = k(\omega_c) + \underbrace{\frac{\partial k}{\partial \omega}}_{\omega_c} \left(\omega - \omega_c\right) + \frac{1}{2} \frac{\partial^2 k}{\partial \omega^2} \Big|_{\omega_c} (\omega - \omega_c)^2 + \cdots$$
(2.23)

Assim,

$$k(\omega) \equiv k(\omega_c) + \Delta\kappa. \tag{2.24}$$

Substituindo (2.24) na equação de onda (2.21), temos:

$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{-ik_c z}e^{-i\Delta\kappa z},$$
(2.25)

onde

$$k_c^2 \equiv k^2(\omega_c) = \omega_c^2 \epsilon(\omega_c) \mu_0 = \frac{\omega_c^2}{c^2} n(\omega_c). \tag{2.26}$$

Para o caso prático que nos interessa neste TCC, centralizamos a amplitude de Fourier em um número de onda médio k_c , tendo valor significativo apenas quando o intervalo $\Delta \kappa$ é pequeno comparado a k_c . No apêndice A é introduzido uma função da envoltória que varia lentamente no tempo, após a separação de um termo que oscila rapidamente. Partindo desse princípio, podemos definir uma envoltória que varia lentamente na coordenada espacial:

$$\tilde{\mathcal{E}}(\omega, z) \equiv \tilde{E}(\omega + \omega_c, 0)e^{-i\Delta\kappa z}.$$
 (2.27)

Isso requer que

$$\left| \frac{\partial}{\partial z} \tilde{\mathcal{E}}(\omega, z) \right| \ll k_c \left| \tilde{\mathcal{E}}(\omega, z) \right|, \tag{2.28}$$

pois partimos do fato que:

$$\left| \frac{\Delta \kappa}{k_c} \right| \ll 1. \tag{2.29}$$

Aplicando a transformada de Fourier inversa à equação (2.25), obtemos:

$$E(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t} + c.c.$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(0,\omega) e^{-ik_{c}z - i\Delta kz} e^{i\omega t} + c.c.$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(0,\omega + \omega_{c}) e^{-ik_{c}z - i\Delta kz} e^{i(\omega + \omega_{c})t} + c.c.$$

$$= \frac{1}{2\pi} \left[\int_{0}^{\infty} d\omega \tilde{E}(0,\omega + \omega_{c}) e^{-i\Delta kz} e^{i\omega t} \right] e^{iw_{c}t - ik_{c}z} + c.c.$$
(2.30)

Substituindo (2.27) em (2.30), temos:

$$E(z,t) = \frac{1}{2} \left[\frac{1}{\pi} \int_0^\infty d\omega \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right] e^{iw_c t - ik_c z} + c.c.$$
 (2.31)

Assim, ao aplicarmos a relação do apêndice A, obtemos

$$E(z,t) = \frac{1}{2}\tilde{\mathcal{E}}(z,t)e^{iw_c t - ik_c z} + c.c.$$
(2.32)

onde $\mathcal{E}(z,t)$ é a envoltória do pulso que varia lentamente no espaço e no tempo.

Agora, precisamos obter uma expressão para $P^L(z,t)$. Para isso, reescrevemos (2.17) em termos de $\epsilon(\omega)$ e expandimos $\epsilon(\omega)$ em série de Taylor em torno de ω_c , assim como fizemos para $k(\omega)$, de forma que:

$$\tilde{P}^{L}(z,\omega) = \left[\epsilon(\omega) - \epsilon_{0}\right] \tilde{E}(z,\omega)$$

$$= \left[\epsilon(\omega_{c}) + (\omega - \omega_{c}) \frac{\partial \epsilon}{\partial \omega} \Big|_{\omega_{c}} + \frac{(\omega - \omega_{c})^{2}}{2!} \frac{\partial^{2} \epsilon}{\partial \omega^{2}} \Big|_{\omega_{c}} + \cdots + \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} - \epsilon_{0}\right] \tilde{E}(z,\omega)$$

$$= \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}}\right] \tilde{E}(z,\omega). \tag{2.33}$$

Aplicando transformada de Fourier inversa à equação (2.33), temos:

$$\tilde{P}^{L}(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(z,\omega) e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega) e^{-ik_{c}z - i\Delta\kappa z} e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{\omega^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega + \omega_{c}) e^{-ik_{c}z - i\Delta\kappa z} e^{i(\omega + \omega_{c})t}$$

$$= \frac{1}{2\pi} \left\{ \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{\omega^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega + \omega_{c}) e^{-i\Delta\kappa z} e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z}$$

$$(2.34)$$

Substituindo (2.27) em (2.34) e fazendo a mudança de notação $\frac{\partial^n \epsilon}{\partial \omega^n}\Big|_{\omega_c} = \epsilon^{(n)}(\omega_c)$, obtemos:

$$P^{L}(z,t) = \frac{1}{2} \left\{ \frac{1}{\pi} \int_{0}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{\epsilon^{(n)}(\omega_{c})}{n!} \omega^{n} \right] \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \frac{1}{\pi} \int_{0}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \frac{1}{\pi} \int_{0}^{\infty} d\omega \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \tilde{\mathcal{E}}(z,t) \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \tilde{\mathcal{P}}^{\mathcal{L}}(z,t) e^{i\omega t - ik_{c}z} + c.c., \tag{2.35}$$

onde $\tilde{\mathcal{P}}^{\mathcal{L}}(z,t)$ é a envoltória da polarização que varia lentamente em relação ao espaço e o tempo. O próximo passo é substituir o campo elétrico (2.32) e a polarização (2.35) na equação de propagação de onda (2.14). Assim, temos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) = \frac{1}{c^{2}}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) + \mu_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)$$

$$- \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\tilde{\mathcal{E}}(z,t)\right] = \mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t) + \frac{\mu_{0}}{2}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)\right]$$

$$- \omega_{c}^{2}\left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!}\epsilon^{(n)}(\omega_{c})\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t)\right].$$
(2.36)

Levando em conta que $(c^2)^{-1} = \mu_0 \epsilon_0$, temos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) = \mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) + \mu_{0}\epsilon(\omega_{c})\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) - \mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!}\mu_{0}\epsilon^{(n)}(\omega_{c})\left[\frac{\partial^{n+2}}{\partial t^{n+2}} + 2i\omega_{c}\frac{\partial^{n+1}}{\partial t^{n+1}} - \omega_{c}^{2}\frac{\partial^{n}}{\partial t^{n}}\right]\tilde{\mathcal{E}}(z,t) \\
\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) = \mu_{0}\epsilon(\omega_{c})\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) - - i\mu_{0}\left[2i\omega_{c}\epsilon^{(1)}(\omega_{c})\frac{\partial^{2}}{\partial t^{2}} - \omega_{c}^{2}\epsilon^{(1)}(\omega_{c})\frac{\partial}{\partial t} + \frac{i\omega_{c}^{2}\epsilon^{(2)}(\omega_{c})}{2}\frac{\partial^{2}}{\partial t^{2}}\right]\tilde{\mathcal{E}}(z,t) - - \sum_{n=3}^{\infty} \frac{(-i)^{n}}{n!}\left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\right]\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t). \tag{2.37}$$

Partindo do fato que ${k_c}^2 = \mu_0 \epsilon(\omega_c) \omega_c^2$, temos

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - \frac{\mathbf{k}_{c}^{2}}{\tilde{\epsilon}}\right]\tilde{\mathcal{E}}(z,t) = -\mathbf{k}_{c}^{2}\tilde{\mathcal{E}}(z,t) + i\mu_{0}\omega_{c}\left[\omega_{c}\epsilon^{(1)}(\omega_{c}) + 2\epsilon(\omega_{c})\right]\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t)
+ \mu_{0}\left[\epsilon(w_{c}) + 2\omega_{c}\epsilon^{(1)}(w_{c}) + \frac{\omega_{c}^{2}\epsilon^{(2)}(\omega_{c})}{2}\right]\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t)
- \sum_{n=3}^{\infty}\frac{(-i)^{n}}{n!}\left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) \right]
+ \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\frac{\partial}{\partial t^{n}}\tilde{\mathcal{E}}(z,t)
\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z}\right]\tilde{\mathcal{E}}(z,t) = i\mu_{0}\omega_{c}\left[\omega_{c}\epsilon^{(1)}(\omega_{c}) + 2\epsilon(\omega_{c})\right]\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t)
+ \mu_{0}\left[\epsilon(w_{c}) + 2\omega_{c}\epsilon^{(1)}(w_{c}) + \frac{\omega_{c}^{2}\epsilon^{(2)}(\omega_{c})}{2}\right]\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t)
- \sum_{n=3}^{\infty}\frac{(-i)^{n}}{n!}\left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) \right]
+ \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t). \tag{2.38}$$

Agora, precisamos introduzir as grandezas velocidade de fase, velocidade de grupo e dispersão de velocidade de grupo, que representam caracteristicas importantes da propagação de onda eletromagnéticas. A velocidade de fase $c/n(\omega)$ caracteriza uma onda monocromática idealizada sem inicio e fim. Assim, é impossível de ser realizada, pois toda onda eletromagnética de duração finita possui uma distribuição de frequências, assim quando propagado em um meio dielétrico, apresentam uma distribuição

de velocidades de fases. Porém, os pulsos eletromagnéticos se propagam com velocidades bem definidas que chamamos de velocidade de grupo.

Figura 2.1: Representação da superposição de duas ondas plana.

Derivar a fórmula da velocidade de grupo a partir de um pulso com número grande de superposições de onda é demasiadamente complicado. Então pra obter e expressão correta de forma mais simples, vamos calcular a partir de um campo eletromagnético composto da superposição de duas ondas planas de mesma amplitude e polarização, conforme figura 2.1, mas com valores de frequência ω e número de onda k diferentes entre si, da seguinte forma:

Fonte: Do autor

$$E(z,t) = cos[(\omega + \Delta\omega)t - (k + \Delta k)z] + cos[(\omega - \Delta\omega)t - (k - \Delta k)z]$$

$$= 2cos(\omega t - kz)cos\Delta\omega\left(t - \frac{\Delta k}{\Delta\omega}z\right)$$
(2.39)

onde $cos(\omega t - kz)$ é o termo de propagação que se propaga com velocidade $v_p = \omega/k = c/n(\omega)$. O segundo cosseno é o termo de modulação. Se $\Delta \omega$ e Δk são muito pequenos comparados, respectivamente, a ω e k, a envoltória do campo varia lentamente no espaço e tempo em comparação com o termo de propagação com velocidade $\Delta \omega/\Delta k$, de forma que $t-(\Delta \omega/\Delta k)z$ é constante. A partir desse resultado,

é possível supor que se temos um conjunto de ondas se propagando com frequência e numero variado em torno de ω_c e k_c , no teremos de forma semelhante um termo de propagação com velocidade de fase c/n(w) e um termos de modulação que se propaga com velocidade

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}.\tag{2.40}$$

Essa é a formula correta da velocidade de grupo. Como definimos em (2.26) , $k(\omega)=\omega_c\sqrt{\epsilon(\omega_c)\mu_0}$, então temos

$$\frac{1}{v_q} = \frac{\mu_0 \omega_c}{2k_c} \left[\omega_c \epsilon^{(1)}(\omega_c) + 2\epsilon(\omega_c) \right]$$
 (2.41)

Outro conceito importante quando estamos tratando de pulsos eletromagnéticos, é a dispersão de velocidade de grupo (GVD), uma característica de um meio dispersivo que descreve como este meio altera a duração de um pulso eletromagnético ao se propagar por ele. A dispersão de velocidade de grupo é usualmente definida como

$$k'' \equiv \frac{\partial^2 k}{\partial \omega^2} \Big|_{\omega_c} = \frac{\partial}{\partial \omega} \left(\frac{1}{v_g} \right)_{\omega_c} = -\frac{1}{k_c v_g^2} + \frac{\mu_0}{k_c} \left[\epsilon(w_c) + 2\omega_c \epsilon^{(1)}(w_c) + \frac{\omega_c^2 \epsilon^{(2)}(\omega_c)}{2} \right]. \tag{2.42}$$

Na figura 2.2, como exemplo, temos dois gráficos que apresentam o perfil de um pulso eletromagnético gaussiano que se propaga por dois meios dispersivos. Observe que para meio com k'' > 0 (GVD positivo) a frequência aumenta para tempos posteriores. Assim, um observador fixo vê frequências mais baixas no pulso chegam primeiro. Para meio com k'' < 0 (GVD negativo), a frequência diminue para tempo posteriores. Logo, o observador vê frequência maiores no pulso chegando primeiro.

Figura 2.2: Pulso eletromagnético caracterizado por GVD positivo (a) e GVD negativo (b)

Fonte: http://www.mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf

Calculando a velocidade de grupo $(v_g)^{-1}=\frac{\partial k}{\partial \omega}\big|_{\omega_c}$ e definindo $k_c''\equiv\frac{\partial^2 k}{\partial \omega^2}\big|_{\omega_c}$, obtemos:

$$\frac{1}{v_q} = \frac{\mu_0 \omega_c}{2k_c} \left[\omega_c \epsilon^{(1)}(\omega_c) + 2\epsilon(\omega_c) \right]$$
 (2.43)

e

$$k'' = -\frac{1}{k_c v_a^2} + \frac{\mu_0}{k_c} \left[\epsilon(w_c) + 2\omega_c \epsilon^{(1)}(w_c) + \frac{\omega_c^2 \epsilon^{(2)}(\omega_c)}{2} \right]. \tag{2.44}$$

Substituindo (2.43) e (2.44) em (2.38), obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z}\right]\tilde{\mathcal{E}}(z,t) = \frac{2ik_{c}}{v_{g}}\frac{\partial}{\partial t}\mathcal{E}(z,t) + k_{c}k''\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) - \frac{1}{v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) - \frac{1}{v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) - \frac{1}{v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) + \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\right]\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_{g}^{2}$$

Partindo da aproximação no qual

$$\left| \frac{\partial^2}{\partial z^2} \tilde{\mathcal{E}}(z, t) \right| \ll k_c \left| \frac{\partial}{\partial z} \tilde{\mathcal{E}}(z, t) \right| \tag{2.46}$$

e

$$\left| \frac{\partial^2}{\partial t^2} \tilde{\mathcal{E}}(z, t) \right| \ll \omega_c \left| \frac{\partial}{\partial t} \tilde{\mathcal{E}}(z, t) \right|, \tag{2.47}$$

finalmente reduzimos a equação de propagação de onda (2.45) à:

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_g}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) - \frac{ik''}{2}\frac{\partial^2}{\partial t^2}\tilde{\mathcal{E}}(z,t) + \mathcal{D} = 0$$
(2.48)

onde k_c'' é o termos de dispersão de velocidade de grupo GVD (Group Velocity Dispersion) e

$$\mathcal{D} = \frac{i\mu_0}{2k_c} \sum_{n=3}^{\infty} \frac{(-i)^n}{n!} \left[n(n-1)\epsilon^{(n-2)}(\omega_c) + 2n\omega_c \epsilon^{(n-1)}(\omega_c) + \omega_c^2 \epsilon^{(n)}(\omega_c) \right] \frac{\partial^n}{\partial t^n} \tilde{\mathcal{E}}(z,t)$$
(2.49)

é o termo que representa a dispersão de ordem superior.

Não temos interesse de resolver a equação (2.48). Apenas utilizaremos essa aproximação para derivar a equação para o meio atômico na aproximação de dois níveis na Seção 2.3.

2.3 PROPAGAÇÃO DE ONDA EM UM MEIO NÃO LINEAR

A discussão sobre propagação de onda na Seção 2.2 se limitava a interação com meios lineares. Porém, o que nos interessa neste TCC é descrever a interação de campo elétrico com meio atômico de dois níveis, que possui polarização não linear em ressonância com o campo elétrico. Para isso, precisamos complementar a equação (2.48) adicionando a polarização do meio atômico não linear, definindo que essa polarização também pode ser decomposta em uma envoltória que varia lentamente no tempo e no espaço e outra contribuição que oscila rapidamente:

$$P^{NL}(z,t) \equiv \frac{1}{2}\tilde{\mathcal{P}}^{NL}(z,t)e^{iw_c t - ik_c z} + c.c.$$
(2.50)

Assim, obtemos a seguinte equação de propagação:

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_g}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) - \frac{ik_c''}{2}\frac{\partial^2}{\partial t^2}\tilde{\mathcal{E}}(z,t) + \mathcal{D} = \frac{i\mu_0}{2k_c}\left(\frac{\partial^2}{\partial t^2} + 2i\omega_c\frac{\partial}{\partial t} - \omega_c^2\right)\tilde{\mathcal{P}}^{NL}(z,t). \quad (2.51)$$

Como estamos interessados em efeito não lineares da matéria, desconsideramos o termo de dispersão de velocidade de grupo GVD e os termos de ordem superior ($k_c'' = \mathcal{D} = 0$) e partimos do fato que

$$\left| \frac{\partial^2}{\partial t^2} \tilde{\mathcal{P}}^{NL}(z,t) \right| \ll \omega_c \left| \frac{\partial}{\partial t} \tilde{\mathcal{P}}^{NL}(z,t) \right| \ll \omega_c^2 \left| \tilde{\mathcal{P}}^{NL}(z,t) \right|, \tag{2.52}$$

para obtermos a seguinte aproximação para equação de onda:

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_q}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) = -\frac{i\mu_0}{2k_c}\omega_c^2\tilde{\mathcal{P}}^{NL}(z,t). \tag{2.53}$$

Por conveniência, vamos fazer uma mudança para um sistema de coordenadas (η,τ) movendose com a velocidade do grupo $v_g=\left(\frac{\mathrm{d}k}{\mathrm{d}\omega}\Big|_{w_c}\right)^{-1}$ conforme representado na figura 2.3, realizando as seguintes trocas de variáveis:

$$\eta = z \qquad \tau = t - \frac{z}{v_g} \tag{2.54}$$

e

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial \eta} - \frac{1}{v_g} \frac{\partial}{\partial \tau} \qquad \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau}.$$
 (2.55)

Figura 2.3: (A) representa o pulso em um referencial da amostra e (B) representa o pulso no referencial do pulso

Desse modo, podemos reescrever a equação(2.51) da seguinte forma:

$$\frac{\partial}{\partial \eta} \tilde{\mathcal{E}}(\eta, \tau) = -\frac{i\mu_0}{2k_c} \omega_c^2 \tilde{\mathcal{P}}^{NL}(\eta, \tau). \tag{2.56}$$

Este resultado final é a equação de onda em sua forma reduzida, que permite descrever o comportamento da propagação do campo eletromagnético através de um certo meio atômico. Ela será aplicada no Capítulo 5 para um meio atômico de dois níveis.

3 MECÂNICA QUÂNTICA E OPERADOR DENSIDADE

Neste capítulo nos dedicamos a apresentar o formalismo do operador densidade, desenvolvido por J. von Neumann em 1927, e suas vantagens em relação à representação de autoestados e autovetores no estudo de sistemas quânticos [6].

3.1 MATRIZ DENSIDADE

Como sabemos, o formalismo usual da mecânica quântica, onde trabalhamos com autoestados e autovalores de um determinado observável (formalismo de Dirac), nos permite fazer previsões sobre um conjunto de sistemas físicos preparados de forma idêntica [7]. Em termos mais específicos, garantimos que todos os sistemas membros deste ensemble sejam caracterizados por um mesmo ket de estado $|\alpha\rangle$. Assim, este formalismo não é válido se considerarmos, por exemplo, que 70% desses sistemas são caracterizados pelo ket de estado $|\alpha\rangle$ e 30% pelo ket de estado $|\beta\rangle$ (ensemble misto). Para lidar com essa situação, precisamos introduzir o conceito de operador densidade, que nos permitirá descrever quantitativamente conjuntos de sistemas quântico para ensemble puros ou, até mesmo, ensemble mistos completamente aleatórios.

Consideremos o ensemble misto, onde uma fração de sistemas com população relativa w_1 estão no estado $|\alpha^{(1)}\rangle$; outra fração w_2 estão no estado $|\alpha^{(2)}\rangle$, e assim sucessivamente. Podemos dizer, com certa precisão, que um ensemble misto pode ser visto como uma mistura de ensembles puros. As populações w_i devem satisfazer a condição de normalização, ou seja,

$$\sum_{i} w_i = 1. \tag{3.1}$$

Não é necessário que $|\alpha^{(1)}\rangle$, $|\alpha^{(2)}\rangle$,..., $|\alpha^{(i)}\rangle$ sejam ortogonais entre si e o número de termos na soma em i na equação (3.1) não precisa ser igual ao número de dimensões N no espaço de Hilbert. Exemplo: Supondo dois estados $|\alpha^{(1)}\rangle$ e $|\alpha^{(2)}\rangle$ com valores

$$\left|\alpha^{(1)}\right\rangle = \left|1\right\rangle$$

e

$$\left|\alpha^{(2)}\right\rangle = \frac{1}{\sqrt{2}}\left|1\right\rangle + \frac{1}{\sqrt{2}}\left|2\right\rangle,$$

podemos verificar que não são ortogonais entre si, fazendo

$$\left\langle \alpha^{(1)} \middle| \alpha^{(2)} \right\rangle = \left\langle 1 \middle| . \frac{1}{\sqrt{2}} \middle| 1 \right\rangle + \left\langle 2 \middle| 0 . \frac{1}{\sqrt{2}} \middle| 2 \right\rangle$$
$$= \frac{1}{\sqrt{2}}.$$

Vamos supor que realizamos a medida de um operador \hat{A} num ensemble misto. É possível calcular o valor médio se houver um número grande de medidas. O resultado é dado pela média sobre o

ensemble, definida por:

$$[\hat{A}] \equiv \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} \left(\sum_{a'} | a' \rangle \langle a' | \right) | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | \hat{A} | a' \rangle \langle a' | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle \langle a' | \alpha^{(i)} \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle^{*} \langle \alpha^{(i)} | a' \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} | \langle a' | \alpha^{(i)} \rangle |^{2} a', \qquad (3.2)$$

sendo que $|a'\rangle$ é um autovetor do operador \hat{A} (com autovalor a') e que $\langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$ trata-se do valor esperado habitual para \hat{A} em relação a um estado $|\alpha^{(i)}\rangle$. Vemos na equação (3.2) que este valores esperados são ponderados pelas populações relativas w_i . É possível observar também que $|\langle a' | \alpha^{(i)} \rangle|^2$ é a probabilidade do estado $|\alpha(i)\rangle$ de ser colapsado em um autoestado $|a'\rangle$ após uma medida em \hat{A} e que w_i identifica a quantidade relativa de sistemas no estado estado quântico caracterizado por $|\alpha^{(i)}\rangle$.

Se considerarmos uma base genérica $\{|b'\rangle\}$, podemos reescrever a média sobre o ensemble (3.2) da seguinte forma:

$$[\hat{A}] = \sum_{i} w_{i} \left\langle \alpha^{(i)} \middle| \sum_{b'} \middle| b' \middle\rangle b' \middle| \hat{A} \sum_{b''} \middle| b'' \middle\rangle b'' \middle| \alpha^{(i)} \right\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \left\langle \alpha^{(i)} \middle| b' \right\rangle \left\langle b' \middle| \hat{A} \middle| b'' \right\rangle \left\langle b'' \middle| \alpha^{(i)} \right\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \left\langle b'' \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(i)} \middle| b' \right\rangle \left\langle b' \middle| \hat{A} \middle| b'' \right\rangle$$

$$= \sum_{b'} \sum_{b''} \left(\sum_{i} w_{i} \left\langle b'' \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(i)} \middle| b' \right\rangle \right) \left\langle b' \middle| \hat{A} \middle| b'' \right\rangle. \tag{3.3}$$

O termo destacado entre parenteses é o elemento de matriz de um certo operador hermitiano, que denominamos **matriz densidade** ou ainda, **operador densidade** $\hat{\rho}$, conforme equações (3.4) e (3.5):

$$\langle b'' | \hat{\rho} | b' \rangle = \sum_{i} w_{i} \langle b'' | \alpha^{(i)} \rangle \langle \alpha^{(i)} | b' \rangle$$
(3.4)

De forma geral, o operador densidade é definido como

$$\hat{\rho} \equiv \sum_{i} w_i \left| a^{(i)} \middle\rangle \middle\langle a^{(i)} \right|. \tag{3.5}$$

Uma vez determinado o operador densidade do sistema, podemos caracterizar o ensemble quântico em questão de modo a obter todas as informações físicas encerradas por tal operador. Substituindo

(3.4) em (3.3), podemos reescrever o valor esperado de \hat{A} como:

$$[\hat{A}] = \sum_{b'} \sum_{b''} \langle b'' | \hat{\rho} | b' \rangle \langle b' | \hat{A} | b'' \rangle$$

$$= \operatorname{Tr}(\hat{\rho} \hat{A}), \tag{3.6}$$

onde a operação $\operatorname{Tr}\left(\hat{\rho}\hat{A}\right)$ corresponde ao traço do operador resultante do produto entre $\hat{\rho}$ e \hat{A} , ficando assim explícito o poder desta construção, pois o traço independe da representação e pode ser calculado usando uma base conveniente.

3.1.1 Propriedades do Operador Densidade

Vamos agora nos ater a algumas propriedades do operador densidade:

Primeira propriedade: O operador densidade é hermitiano, ou seja:

$$\hat{\rho} = \hat{\rho}^{\dagger}. \tag{3.7}$$

Segunda propriedade: O operador densidade satisfaz a condição de normalização

$$\operatorname{Tr} \rho = \sum_{i} \sum_{b'} w_{i} \left\langle b' \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(i)} \middle| b' \right\rangle$$

$$= \sum_{i} w_{i} \left\langle \alpha^{(i)} \middle| \alpha^{(i)} \right\rangle$$

$$= 1. \tag{3.8}$$

Terceira propriedade: Podemos substituir o operador \hat{A} em (3.6) pelo próprio operador densidade, obtendo:

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}(\hat{\rho}\hat{\rho})$$

$$= \sum_{b'} \sum_{b''} \left\langle b'' | \hat{\rho} | b' \right\rangle \left\langle b' | \hat{\rho} | b'' \right\rangle$$

$$= \sum_{b'} \sum_{b''} \left\langle b'' | \left(\sum_{i} w_{i} \left| a^{(i)} \right\rangle \left\langle a^{(i)} \right| \right) | b' \right\rangle \left\langle b' | \left(\sum_{j} w_{j} \left| a^{(j)} \right\rangle \left\langle a^{(j)} \right| \right) | b'' \right\rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \left\langle \alpha^{(i)} | \alpha^{(j)} \right\rangle \left\langle \alpha^{(j)} | \alpha^{(i)} \right\rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \left\langle \alpha^{(i)} | \alpha^{(j)} \right\rangle \left\langle \alpha^{(i)} | \alpha^{(j)} \right\rangle^{*}$$

$$= \sum_{j} \sum_{i} w_{i} w_{j} \left\| \left\langle \alpha^{(i)} | \alpha^{(j)} \right\rangle \right\|^{2}. \tag{3.9}$$

Esse resultado pode ser analisado observando a desigualdade de Cauchy-Schwarz [8]

$$\left\| \left\langle \alpha^{(i)} \middle| \alpha^{(j)} \right\rangle \right\|^2 \le \left\langle \alpha^{(i)} \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(j)} \middle| \alpha^{(j)} \right\rangle. \tag{3.10}$$

Como os kets $|\alpha^{(i)}\rangle$ são normalizados, ou seja, $\langle \alpha^{(i)}|\alpha^{(i)}\rangle=\langle \alpha^{(j)}|\alpha^{(j)}\rangle=1$, obtemos a seguinte propriedade:

$$\operatorname{Tr}(\hat{\rho}^2) \le 1. \tag{3.11}$$

É possível observar que quando se trata de um ensemble puro, ou seja, quando um dos pesos w_i tem valor 1 e o restante de valor 0, então

$$\hat{\rho} = \left| a^{(i)} \right\rangle \! \left\langle a^{(i)} \right|. \tag{3.12}$$

Nesse caso, ${
m Tr} \left(\hat{
ho}^2 \right)$ tem valor máximo, isto é,

$$\operatorname{Tr}(\hat{\rho}^2) = 1. \tag{3.13}$$

Assim, é fácil provar que o operador densidade de um ensemble puro é idempotente, ou seja:

$$\hat{\rho}^2 = \hat{\rho} \tag{3.14}$$

Para melhor compreensão dessas propriedades, vamos supor, por exemplo, um sistema de dois níveis onde o operador densidade é dado pela matriz

$$\hat{\rho} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}. \tag{3.15}$$

No primeiro caso, consideramos que 100% dos sistemas estão no ket estado $|\alpha\rangle$, onde

$$|\alpha\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle, \qquad (3.16)$$

sendo que $|0\rangle$ e $|1\rangle$ são auto estados de um certo operador \hat{H} . Então, calculamos:

$$\hat{\rho} = |\alpha\rangle\langle\alpha|$$

$$= \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \times \left(\frac{1}{\sqrt{2}}\langle0| + \frac{1}{\sqrt{2}}\langle1|\right)$$

$$= \frac{1}{2}(|0\rangle\langle0| + |0\rangle\langle1| + |1\rangle\langle0| + |1\rangle\langle1|)$$

$$= \begin{pmatrix}\frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & \frac{1}{2}\end{pmatrix}.$$
(3.17)

Neste caso, é fácil observar que $\hat{\rho}$ satisfaz condição de normalização e, como esperado, representa um caso puro, pois

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right\}$$

$$= \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right\}$$

$$= \operatorname{Tr}(\hat{\rho})$$

$$= 1 \tag{3.18}$$

Em um segundo caso, temos que 50% dos sistemas estão no ket estado $|\alpha\rangle$ (3.16) e 50% estão no ket estado $|\beta\rangle$, onde

$$|\beta\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle. \tag{3.19}$$

Assim temos:

$$\hat{\rho} = \frac{1}{2} |\alpha\rangle\langle\alpha| + \frac{1}{2} |\beta\rangle\langle\beta|$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle\right) \times \left(\frac{1}{\sqrt{2}} \langle 0| + \frac{1}{\sqrt{2}} \langle 1|\right)$$

$$+ \frac{1}{2} \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle\right) \times \left(\frac{1}{\sqrt{2}} \langle 0| - \frac{1}{\sqrt{2}} \langle 1|\right)$$

$$= \frac{1}{2} (|0\rangle\langle0| + |1\rangle\langle1|)$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{0}{0} \\ \frac{0}{0} & \frac{1}{2} \end{pmatrix}.$$
(3.20)

O segundo caso também obedece a condição de normalização, mas diferente do primeiro caso, se trata de ensemble misto, pois

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}\right\}$$

$$= \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}\right\}$$

$$= \frac{1}{2}, \tag{3.21}$$

ou seja,

$$Tr(\hat{\rho}^2) < 1. \tag{3.22}$$

3.1.2 Evolução Temporal do Operador Densidade

Agora, precisamos determinar como o operador densidade evolui no tempo. Para isso, devemos supor que para um instante $t=t_0$ o operador densidade corresponde à

$$\hat{\rho}(t_0) = \sum_{i} w_i \left| \alpha^{(i)}(t_0) \right\rangle \left\langle \alpha^{(i)}(t_0) \right|. \tag{3.23}$$

Consideremos que o ensemble não sofre pertubação conforme evolui no tempo, ou seja, as populações relativas w_i se mantém estáticas. Assim, a alteração de $\hat{\rho}$ acontece unicamente pela evolução temporal dos kets de estado $|\alpha^{(i)}(t_0)\rangle$.

$$\left|\alpha^{(i)}(t_0)\right\rangle \xrightarrow{\text{evolução temporal}} \left|\alpha^{(i)}(t)\right\rangle$$
 (3.24)

Sabemos que $|\alpha^{(i)}(t)\rangle$ satisfaz equação de Schrödinger

$$i\hbar \frac{\partial}{\partial t} \left| \alpha^{(i)}(t) \right\rangle = \hat{H} \left| \alpha^{(i)}(t) \right\rangle,$$
 (3.25)

então podemos derivar a equação (3.23) de modo que:

$$\frac{\partial}{\partial t}\hat{\rho}(t) = \frac{\partial}{\partial t} \sum_{i} w_{i} \left| \alpha^{(i)}(t) \right\rangle \left\langle \alpha^{(i)}(t) \right|$$

$$= \sum_{i} w_{i} \frac{\partial}{\partial t} \left(\left| \alpha^{(i)}(t) \right\rangle \right) \left\langle \alpha^{(i)}(t) \right| + \sum_{i} w_{i} \left| \alpha^{(i)}(t) \right\rangle \frac{\partial}{\partial t} \left(\left\langle \alpha^{(i)}(t) \right| \right).$$
(3.26)

Substituindo (3.25) em (3.26), obtemos a equação

$$\frac{\partial}{\partial t}\hat{\rho}(t) = \frac{1}{i\hbar}\hat{H}\left(\sum_{i}w_{i}\left|\alpha^{(i)}(t)\right\rangle\left\langle\alpha^{(i)}(t)\right|\right) - \frac{1}{i\hbar}\left(\sum_{i}w_{i}\left|\alpha^{(i)}(t)\right\rangle\left\langle\alpha^{(i)}(t)\right|\right)\hat{H}$$

$$= \frac{1}{i\hbar}\hat{H}\hat{\rho} - \frac{1}{i\hbar}\hat{\rho}\hat{H}$$

$$= -\frac{1}{i\hbar}\left[\hat{\rho},\hat{H}\right],$$
(3.27)

conhecida como equação de **Liouville-von Neumann**, que descreve a evolução temporal do operador densidade [6, 9]. Embora essa equação seja semelhante a equação de Heisenberg, exceto por um sinal negativo (–), é preciso lembrar que estamos trabalhando na formulação Schrödinger, visto que $\hat{\rho}$ é construído a partir de kets e bras que evoluem no tempo e obedecem a equação de Schrödinger.

4 INTERAÇÃO SISTEMA ATÔMICO DE DOIS NÍVEIS COM RADIAÇÃO

Neste Capítulo aplicaremos a equação von-Newmann, que obtemos no Capítulo 3, e a equação reduzida, obtida ao final do capitulo 2, a um sistema de dois níveis que sofre pertubação de um pulso de campo elétrico. Para isso, primeiramente, vamos obter o hamiltoniano que descreve a interação do átomo de dois níveis com a onda eletromagnética.

4.1 HAMILTONIANO PARA UM SISTEMA ATÔMICO DE DOIS NÍVEIS

Antes de obtermos o hamiltoniano para um sistema de dois níveis, vamos nos ater a um sistema clássico composto de uma partícula carregada na presença de um campo eletromagnético [10]. Nesta condição, a força que atua na partícula com carga q corresponde à

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}). \tag{4.1}$$

Podemos reescrever o campo elétrico (E) e magnético (B) escolhendo o potencial escalar $\phi(\mathbf{r},t)$ e o potencial vetor $\mathbf{A}(\mathbf{r},t)$:

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi \tag{4.2}$$

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}. \tag{4.3}$$

Assim, reescrevendo a força de Lorentz (4.1) em termos destes potenciais, temos que

$$\mathbf{F} = q \left(-\frac{\partial \mathbf{A}}{\partial t} - \mathbf{\nabla}\phi + \mathbf{v} \times \mathbf{\nabla} \times \mathbf{A} \right). \tag{4.4}$$

Usando a identidade vetorial

$$\mathbf{v} \times \nabla \times \mathbf{A} = \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla) \mathbf{A}, \tag{4.5}$$

obtemos

$$\mathbf{F} = q \left[-\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi + \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla) \mathbf{A} \right]. \tag{4.6}$$

Partindo do fato que A varia no tempo e no espaço, temos que sua derivada total é

$$d\mathbf{A} \equiv \mathbf{A}(\mathbf{r} + \mathbf{v}dt, t + dt) - \mathbf{A}(\mathbf{r}, t)$$

$$= \left(v_x \frac{\partial \mathbf{A}}{\partial x} + v_y \frac{\partial \mathbf{A}}{\partial y} + v_z \frac{\partial \mathbf{A}}{\partial z} + \frac{\partial \mathbf{A}}{\partial t}\right) dt$$

$$= \left[(\mathbf{v} \cdot \mathbf{\nabla})\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}\right] dt. \tag{4.7}$$

Logo,

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = (\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}.$$
(4.8)

Substituindo esse resultado na equação (4.6), temos:

$$\mathbf{F} = q \left[-\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} - \mathbf{\nabla}\phi + \mathbf{\nabla}(\mathbf{v} \cdot \mathbf{A}) \right]. \tag{4.9}$$

Assim, a equação de movimento para uma partícula carregada se torna

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = q\left[-\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} - \nabla\phi + \nabla(\mathbf{v}\cdot\mathbf{A})\right]. \tag{4.10}$$

ou

$$m\frac{\mathrm{d}}{\mathrm{d}t}[\mathbf{v} + q\mathbf{A}] = \mathbf{\nabla}[q(\mathbf{v} \cdot \mathbf{A}) - q\phi]. \tag{4.11}$$

examinando esta equação, podemos reescreve-la na forma de uma equação de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \mathbf{v}} \right) = \mathbf{\nabla} L,\tag{4.12}$$

se adotarmos a lagrangiana

$$L = \frac{1}{2}m\mathbf{v}^2 + q(\mathbf{v} \cdot \mathbf{A}) - q\phi. \tag{4.13}$$

Como vamos trabalhar com um sistema atômico, é necessário adicionar a essa equação a energia potencial eletrostática $V(\mathbf{r})$, referente a interação do elétron com o núcleo atômico, e usar a carga do elétron q=e. Assim, obtemos

$$L = \frac{1}{2}m\mathbf{v}^2 + e(\mathbf{v} \cdot \mathbf{A}) - e\phi - V(\mathbf{r}). \tag{4.14}$$

Aplicando a transformação de legendre apropriada a lagrangiana, usando a definição de momento conjugado $p_i \equiv \frac{\partial L}{\partial \dot{r}_i} = m v_i + e A_i$, obtemos o hamiltoniano de acoplamento mínimo [11, 12]:

$$H = \frac{1}{2m}(\mathbf{p} - e\mathbf{A})^2 + e\phi + V(\mathbf{r}). \tag{4.15}$$

Esse hamiltoniano é invariante à transformação de calibre

$$\mathbf{A}' = A + \nabla \gamma \tag{4.16}$$

$$\phi' = \phi - \frac{\partial \gamma}{\partial t},\tag{4.17}$$

onde λ é a função de calibre.

A equação de Schrödinger dependente do tempo é

$$\hat{H}|\psi\rangle = i\hbar \frac{\partial}{\partial t}|\psi\rangle. \tag{4.18}$$

Para resolvermos esta equação é ideal realizar uma transformação unitária \hat{U} , considerando que $\psi'=\hat{U}\psi$. Isso é necessário para simplificarmos a equação que obteremos do termo responsável pela interação da radiação com o átomo. Precisamos manter a equação de Schrödinger invariante a esta transformação unitária, então escrevemos o novo hamiltoniano da seguinte forma:

$$\hat{H}' = \hat{U}\hat{H}\hat{U}^{\dagger} + i\hbar \frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger}. \tag{4.19}$$

Escolhendo a transformação unitária $\hat{U} = e^{i\frac{e}{\hbar}\gamma}$, obtemos o seguinte hamiltoniano \hat{H}'

$$\hat{H}' = (\mathbf{p} - e\mathbf{A}')^2 + q\phi' + V(\mathbf{r}),\tag{4.20}$$

onde A' e ϕ' são dados pelas equações (4.16) e (4.17).

Fazendo $\phi = 0$ e realizando a escolha do calibre de Coulomb, onde $\nabla \cdot \mathbf{A} = 0$, temos:

$$\hat{H}' = \frac{1}{2m} (\mathbf{p} - e\mathbf{A} - e\mathbf{\nabla}\gamma)^2 - e\frac{\partial\gamma}{\partial t} + V(\mathbf{r}). \tag{4.21}$$

Supondo que os átomos estão imersos em uma onda plana monocromática, podemos escrever o potencial vetor da seguinte forma:

$$\mathbf{A}(\mathbf{r},t) = \frac{A_0(\omega)\hat{\epsilon}}{2}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} + c.c.$$
(4.22)

 $\mathbf{k} \cdot \mathbf{r} = 2\pi \cdot \frac{r}{\lambda}$, onde λ é o comprimento de onda do campo. Em geral, o comprimento de onda é muito maior, $4000 \le 8000 \le^0 A$, comparadas as dimensões atômicas, $|\mathbf{r}| \simeq 10^0 A$. Por isso, $\mathbf{k} \cdot \mathbf{r} \ll 1$. Assim, podemos desconsiderar os termos de ordem maior que 0 da seguinte expansão em série de Taylor de $\mathbf{A}(\mathbf{r},t)$

$$\mathbf{A}(\mathbf{r},t) = \frac{A_0(\omega)\hat{\epsilon}}{2}e^{-i\omega t} \left[1 + (i\mathbf{k} \cdot \mathbf{r}) + \frac{1}{2}(i\mathbf{k} \cdot \mathbf{r})^2 + \cdots \right],\tag{4.23}$$

implicando que $\mathbf{A}(\mathbf{r},t)\simeq\mathbf{A}(t)=\frac{A_0(\omega)\hat{\epsilon}}{2}e^{-i\omega t}$. Agora, escolhendo a função de calibre de Coulomb como $\gamma=-\mathbf{A}(t)\cdot\mathbf{r}$, obtemos

$$\nabla \lambda = -\mathbf{A}(t) \tag{4.24}$$

e

$$\frac{\partial \lambda}{\partial t} = -\mathbf{r} \frac{\partial \mathbf{A}(t)}{\partial t} = \mathbf{r} \cdot \mathbf{E}(t). \tag{4.25}$$

Substituindo estes resultados na equação do hamiltoniano \hat{H}' (4.21), obtemos

$$\hat{H}' = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathbf{d} \cdot \mathbf{E},\tag{4.26}$$

onde $\mathbf{d} = e\mathbf{r}$ é o momento de dipolo elétrico e e é a carga do elétron. Os dois primeiro termos se referem ao átomo não perturbado ($H_0 = \mathbf{p}^2/2m + V(\mathbf{r})$) e o último termo é referente a interação com o campo elétrico na aproximação de dipolo ($H_{int} = -\mathbf{d} \cdot \mathbf{E}$) [11, 12]. Esta aproximação será utilizada no decorrer deste trabalho.

4.2 SISTEMA ATÔMICO DE DOIS NÍVEIS

Neste TCC, trabalharemos com um sistema de dois níveis, sistema quântico simples que é descrito em duas dimensões no espaço de Hibert. Com esse sistema, poderemos estudar de maneira simples e detalhada as principais propriedades físicas inerentes ao processo de iteração de radiação com a matéria. Isso é possível, pois, apesar de sua simplicidade, existem diversos fenômenos quânticos que são descritos de forma satisfatória. Alguns exemplos são problemas que envolvem polarização de fótons, spin do elétron, oscilações dos neutrino e o caso deste TCC, um sistema atômico que possui dois níveis em ressonância (ou próximo da ressonância) com o campo eletromagnético aplicado e onde os demais níveis estão em dessintonia total com esse campo [3].

Para um sistema de dois níveis interagindo com campo eletromagnético, utilizamos o Hamiltoniano com aproximação dipolar, que apresentamos na Seção 4.1.

$$H_{int} = -\mathbf{d} \cdot \mathbf{E}. \tag{4.27}$$

Essa equação representa a energia de um dipolo elétrico inserido num campo elétrico E. Para isso, consideramos que um único elétron é o responsável pelo surgimento do momento de dipolo elétrico.

O sistema de dois níveis sem pertubação possui dois valores prováveis de energia. O estado $|1\rangle$ com energia $E_1=\hbar\omega_1$ e o estado $|2\rangle$ com energia $E_2=\hbar\omega_2$, como representado na figura 4.1. De acordo com descrição de Bohr, a transição entre os níveis atômicos $|1\rangle$ e $|2\rangle$ é dada pela frequência

$$\omega_{21} = \omega_2 - \omega_1 \tag{4.28}$$

$$= (E_2 - E_1)/\hbar. (4.29)$$

Figura 4.1: Níveis de energia de um hipotético átomo de dois níveis. A dessintonia $\delta = \omega_{ab} - \omega$ é a diferença entre $(E_2 - E_1)/\hbar$ e ω_c , onde ω_c é a frequência angular da radiação eletromagnética do laser incidente.

A função de onda para o sistema de dois níveis é

$$|\psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle,$$
 (4.30)

onde c_1 e c_2 são as amplitudes de probabilidade de encontrar o átomo nos estados $|1\rangle$ e $|2\rangle$, respectivamente. Apesar de ser possível obter as equações de movimento para nosso sistema utilizando a representação de Schrödinger, é mais conveniente utilizarmos o formalismo de matriz densidade, que apresentamos no Capítulo 3. Isso é necessário, pois estamos trabalhando com um grande número de átomos interagindo com o campo. Neste caso, o cálculo das amplitudes de probabilidade seria muito complexo, pois teríamos que calcular esta amplitude para cada átomo do nosso sistema. Em contrapartida, no formalismo de matriz densidade não precisamos ter a informação completa do vetor onda, pois nos importamos apenas com as informações estatísticas do operador densidade. Assim, diminuímos o custo computacional para lidar com um número grande de átomos interagindo com o campo.

A matriz densidade para um sistema de dois níveis descrito pela equação (4.30) é dada por:

$$\hat{\rho}(t) = \sum_{i} w_i |\psi_i(t)\rangle\langle\psi_i(t)| \tag{4.31}$$

$$= \sum_{i} w_{i} \begin{pmatrix} |c_{1}|^{2} & c_{1}c_{2}^{*} \\ c_{2}c_{1}^{*} & |c_{1}|^{2} \end{pmatrix}$$
(4.32)

$$= \left(\frac{\overline{|c_1|^2}}{\overline{c_2c_1^*}} \frac{\overline{c_1c_2^*}}{|c_1|^2}\right) \tag{4.33}$$

$$= \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}. \tag{4.34}$$

Os elementos da diagonal principal correspondem às probabilidades de encontrar as populações atômicas

no estado fundamental ($|1\rangle$) ou no estado excitado ($|2\rangle$). Os elementos fora da diagonal principal correspondem à coerência entre os estados $|1\rangle$ e $|2\rangle$. Os elementos ρ_{nm} da matriz densidade se relacionam com as amplitudes de probabilidade da seguinte forma:

$$\rho_{nm} = \sum_{i} w_i c_n^i c_m^{i*}, \tag{4.35}$$

onde ω_i é ...

O hamiltoniano do átomo livre, na aproximação de dois níveis, é dado por

$$\hat{H}_0 = \hbar\omega_1 |1\rangle\langle 1| + \hbar\omega_2 |2\rangle\langle 2|, \qquad (4.36)$$

sendo $\hbar\omega_1$ e $\hbar\omega_2$ os valores de energia para os estado $|1\rangle$ e $|2\rangle$, respectivamente.

Um campo eletromagnético externo clássico, com frequência ω_c , é dado por

$$\mathbf{E} = \frac{1}{2}\mathbf{E_0}e^{iw_c t} + c.c. \tag{4.37}$$

O átomo não possui momento de dipolo quanto está em um de seus estados estacionários, então $\langle 1|\hat{d}|1\rangle=\langle 2|\hat{d}|2\rangle=0$. Assim, podemos escrever o operador momento de dipolo como

$$\hat{d} = d_{12} |1\rangle\langle 2| + d_{21} |2\rangle\langle 1|. \tag{4.38}$$

A partir das equações (4.37) e (4.38), podemos reescrever o hamiltoniano da interação na aproximação de dipolo (4.27) da seguinte forma:

$$\hat{H}_{int} = -(\frac{1}{2}\mathbf{E_0}e^{iw_ct} + \frac{1}{2}\mathbf{E_0}*e^{-iw_ct})d_{12}|1\rangle\langle 2| - (\frac{1}{2}\mathbf{E_0}e^{iw_ct} + \frac{1}{2}\mathbf{E_0}*e^{-iw_ct})d_{21}|2\rangle\langle 1|.$$
(4.39)

Agora vamos nos aproveitar do fato que o sistema atômico de dois níveis está próximo à ressonância com o campo eletromagnético para realizar uma aproximação no hamiltoniano. Primeiramente, vamos fazer uma transformação unitária ao hamiltoniano (4.39) para sairmos da representação de Schrödinger para a representação de Dirac. Para isso, usamos o operador de transformação unitária e a relação de completeza,

$$\hat{U} = e^{i\frac{\hat{H}_0}{\hbar}t} = e^{i\omega_1 t} |1\rangle\langle 1| + e^{i\omega_2 t} |2\rangle\langle 2|, \qquad (4.40)$$

e, assim, obtemos o seguinte hamiltoniano:

$$\hat{H}_{D,int} = \hat{U}\hat{H}_{int}\hat{U}^{\dagger}$$

$$= \begin{pmatrix} e^{i\omega_{1}t} & 0 \\ 0 & e^{i\omega_{2}t} \end{pmatrix} \begin{pmatrix} 0 & -d_{12}\mathbf{E} \\ -d_{21}\mathbf{E} & 0 \end{pmatrix} \begin{pmatrix} e^{-i\omega_{1}t} & 0 \\ 0 & e^{-i\omega_{2}t} \end{pmatrix}$$

$$= (\mathbf{E}_{\mathbf{0}}e^{iw_{c}t} + \mathbf{E}_{\mathbf{0}}^{*}e^{-iw_{c}t}) \frac{d_{12}}{2} e^{-i\omega_{21}t} |1\rangle\langle 2|$$

$$+ (\mathbf{E}_{\mathbf{0}}e^{iw_{c}t} + \mathbf{E}_{\mathbf{0}}^{*}e^{-iw_{c}t}) \frac{d_{21}}{2} e^{i\omega_{21}t} |2\rangle\langle 1|$$

$$= (\mathbf{E}_{\mathbf{0}}e^{i\delta t} + \mathbf{E}_{\mathbf{0}}^{*}e^{-i(w_{c}+\omega_{21})t}) \frac{d_{12}}{2} |1\rangle\langle 2|$$

$$+ (\mathbf{E}_{\mathbf{0}}e^{i(\omega_{c}+\omega_{21})t} + \mathbf{E}_{\mathbf{0}}^{*}e^{-i\delta t}) \frac{d_{21}}{2} |2\rangle\langle 1|, \qquad (4.41)$$

onde $\delta = \omega_c - \omega_{21}$ é a dessintonia entre o campo e o átomo. Como o campo está próximo da ressonância com átomo, $\delta \ll \omega_c + \omega_{21}$. Isso significa que os termos que oscilam com frequência ($\omega_c + \omega_{21}$) alteram rapidamente em relação ao termos que oscilam com frequência δ , por isso podemos ignorar esse

termos, utilizando a aproximação de onda girante (RWA - Rotating Wave Approximation) [11]. Nestas condições, a equação do hamiltoniano (equação anterior) se reduz em

$$\hat{H}_{D,int} = \frac{d_{12}}{2} \mathbf{E}_{0} e^{i\delta t} |1\rangle\langle 2| + \frac{d_{21}}{2} \mathbf{E}_{0}^{*} e^{-i\delta t} |2\rangle\langle 1|, \qquad (4.42)$$

Finalmente, podemos retornar o hamiltoniano à representação de Schrödinger:

$$\hat{H}_{int} = \hat{U}^{\dagger} \hat{H}_{D,int} \hat{U}$$

$$= \begin{pmatrix} e^{-i\omega_{1}t} & 0 \\ 0 & e^{-i\omega_{2}t} \end{pmatrix} \begin{pmatrix} 0 & \frac{d_{12}}{2} \mathbf{E}_{\mathbf{0}} e^{i\delta t} \\ \frac{d_{21}}{2} \mathbf{E}_{\mathbf{0}}^{*} e^{-i\delta t} & 0 \end{pmatrix} \begin{pmatrix} e^{i\omega_{1}t} & 0 \\ 0 & e^{i\omega_{2}t} \end{pmatrix}$$

$$= \frac{d_{12}}{2} \mathbf{E}_{\mathbf{0}} e^{i\delta t} e^{i\omega_{21}t} |1\rangle\langle 2| + \frac{d_{21}}{2} \mathbf{E}_{\mathbf{0}}^{*} e^{-i\delta t} e^{-i\omega_{21}t} |2\rangle\langle 1|$$

$$= \frac{d_{12}}{2} \mathbf{E}_{\mathbf{0}} e^{i\omega_{c}t} |1\rangle\langle 2| + \frac{d_{21}}{2} \mathbf{E}_{\mathbf{0}}^{*} e^{-i\omega_{c}t} |2\rangle\langle 1|. \tag{4.43}$$

Com isso, a expressão para o Hamiltoniano total do sistema de dois níveis com pertubação de campo eletromagnético é dada por:

$$\hat{H} = \hbar\omega_1 |1\rangle\langle 1| + \hbar\omega_2 |2\rangle\langle 2| - \frac{d_{12}}{2} \mathbf{E_0} e^{i\omega_c t} |1\rangle\langle 2| - \frac{d_{21}}{2} \mathbf{E_0^*} e^{-i\omega_c t} |2\rangle\langle 1|$$
(4.44)

No capítulo 3 nós obtemos a equação de J. von-Newman (3.27), que descreve a evolução temporal da matriz densidade. Vamos utilizar essa equação para obtermos a evolução temporal para o sistema interagente, mas precisaremos inserir de forma fenomenológica o termo de decaimento referente a emissão espontânea ou ocasionados por colisões entre átomos [4]. Assim, equação (3.27) para o elemento da matriz densidade se torna

$$\frac{\mathrm{d}\hat{\rho}_{nm}}{\mathrm{d}t} = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H} \right]_{nm} - \gamma_{nm} (\rho_{nm} - \rho_{nm}^{(eq)}) \tag{4.45}$$

O termo à direita é o termo fenomenológico de decaimento, que indica que a relaxação da população ρ_{nm} para seu valor de equilíbrio $\rho_{nm}^{(eq)}$ ocorre a uma taxa γ_{nm} . Assumimos que $\gamma_{nm}=\gamma_{mn}$, por se tratar de uma taxa de decaimento. Além disso, supomos que

$$\rho_{nm}^{(eq)} = 0 \text{ para } n \neq m. \tag{4.46}$$

Isso significa que, no equilíbrio térmico, os estados excitados podem conter população mesmo na ausência do campo eletromagnético do laser $(\rho_{nn}^{(eq)})$ pode ser diferente de zero), porém essa excitação térmica não pode produzir superposição coerente de estados atômicos $(\rho_{nm}^{(eq)})=0$ para $n\neq m$). Outra maneira de descrever os fenômenos de decaimento é considerarmos que os elementos fora da diagonal principal da matriz densidade relaxam, conforme descrito acima, mas para descrevermos os termos da diagonal principal, de forma a permitir que a população decaia dos níveis mais altos para níveis mais baixos, representamos da seguinte forma:

$$\frac{\mathrm{d}\hat{\rho}_{nm}}{\mathrm{d}t} = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H} \right]_{nm} - \gamma_{nm} \rho_{nm} \text{ para } n \neq m \tag{4.47}$$

$$\frac{\mathrm{d}\hat{\rho}_{nn}}{\mathrm{d}t} = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H} \right]_{nn} + \sum_{E_m > E_n} \Gamma_{nm} \rho_{mm} - \sum_{E_m < E_n} \Gamma_{mn} \rho_{nn}, \tag{4.48}$$

onde Γ_{nm} representa a taxa por átomo em que a população decai do estado $|m\rangle$ para o estado $|n\rangle$ e γ_{nm} representa a taxa de relaxamento de ρ_{nm} .

Considerando que o estado $|n\rangle$ tem um tempo de vida $\tau=1/\Gamma_n$, onde Γ_n é a taxa de decaimento total da população fora do nível $|n\rangle$ dada por

$$\Gamma_n = \sum_{E'_n < E_n} \Gamma_{n'n},\tag{4.49}$$

Figura 4.2: Amplitude de probabilidade $c_n(t)$ decai conforme (4.51).

Fonte: Do autor

Podemos dizer que a probabilidade de encontrar o sistema no estado $|n\rangle$ (exceto o estado fundamental) diminui da seguinte forma:

$$|c_n(t)|^2 = |c_n(0)|^2 e^{-\Gamma_n t}.$$
 (4.50)

Assim, a amplitude de probabilidade, que varia no tempo, obedece a relação

$$c_n(t) = c_n(0)e^{-i\omega_n t}e^{-\frac{\Gamma_n}{2}t},$$
(4.51)

conforme podemos ver na figura 4.2. A amplitude de probabilidade para um estado $|m\rangle$ pode então ser escrita como

$$c_m(t) = c_m(0)e^{-i\omega_m t}e^{-\frac{\Gamma_m}{2}t}. (4.52)$$

Isso significa que a coerência entre os dois estados deve variar, já que

$$c_n(t)c_m^*(t) = c_n(0)c_m^*(0)e^{-i\omega_{mn}t}e^{-(\Gamma_n + \Gamma_m)\frac{t}{2}}.$$
(4.53)

Sabemos que ρ_{mn} é obtido a partir da média dos ensembles de $c_n c_m^*$ e sua taxa de decaimento é γ_{mn} . Com isso, obtemos uma relação entre as taxas de decaimento dos elementos fora da diagonal principal com os elementos da diagonal principal, dada por

$$\gamma_{mn} = \frac{1}{2}(\Gamma_n + \Gamma_m). \tag{4.54}$$

Para calculamos os elementos ρ_{nm} da matriz densidade com $n \neq m$, para sistema de dois níveis,

partimos da equação (4.47). Assim, podemos calcular $\dot{\rho}_{12}$:

$$\frac{\partial}{\partial t} \langle 1|\hat{\rho}|2\rangle = \frac{i}{\hbar} \langle 1| \left[\hat{\rho}, \hat{H}\right] |2\rangle - \gamma_{12}\rho_{12}
= \frac{i}{\hbar} \langle 1|\hat{\rho}\hat{H} - \hat{H}\hat{\rho}|2\rangle - \gamma_{12}\rho_{12}
= \frac{i}{\hbar} (\langle 1|\hat{\rho}\hat{H}|2\rangle - \langle 1|\hat{H}\hat{\rho}|2\rangle) - \gamma_{12}\rho_{12}
= \frac{i}{\hbar} (\hbar\omega_{2}\rho_{12} - \frac{d_{12}}{2}E_{0}e^{i\omega_{c}t}\rho_{11} - \hbar\omega_{1}\rho_{12} + \frac{d_{12}}{2}E_{0}e^{i\omega_{c}t}\rho_{22}) - \gamma_{12}\rho_{12}
= (i\omega_{21} - \gamma_{12})\rho_{12} + i\frac{d_{12}}{2\hbar}E_{0}e^{i\omega_{c}t}(\rho_{22} - \rho_{11})$$
(4.55)

e $\dot{\rho}_{21}$

$$\frac{\partial}{\partial t} \langle 2|\hat{\rho}|1\rangle = \frac{i}{\hbar} \langle 2|[\hat{\rho}, \hat{H}]|1\rangle - \gamma_{21}\rho_{21}
= \frac{i}{\hbar} \langle 2|\hat{\rho}\hat{H} - \hat{H}\hat{\rho}|1\rangle - \gamma_{21}\rho_{21}
= \frac{i}{\hbar} (\langle 2|\hat{\rho}\hat{H}|1\rangle - \langle 2|\hat{H}\hat{\rho}|1\rangle) - \gamma_{21}\rho_{21}
= \frac{i}{\hbar} (\hbar\omega_{1}\rho_{21} - \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{22} - \hbar\omega_{2}\rho_{21} + \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{11}) - \gamma_{21}\rho_{21}
= -(i\omega_{21} + \gamma_{21})\rho_{21} - i\frac{d_{21}}{2\hbar}E_{0}^{*}e^{-i\omega_{c}t}(\rho_{22} - \rho_{11}).$$
(4.56)

O cálculo para os elementos da diagonal principal da matriz densidade são obtidos pela equação (4.48). Assim, $\dot{\rho}_{11}$ é dado por

$$\frac{\partial}{\partial t} \langle 1|\hat{\rho}|1\rangle = \frac{i}{\hbar} \langle 1| \left[\hat{\rho}, \hat{H}\right] |1\rangle + \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} \langle 1|\hat{\rho}\hat{H} - \hat{H}\hat{\rho}|1\rangle + \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} (\langle 1|\hat{\rho}\hat{H}|1\rangle - \langle 1|\hat{H}\hat{\rho}|1\rangle) + \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} (\hbar\omega_{1}\rho_{11} - \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{12} - \hbar\omega_{1}\rho_{11} + \frac{d_{12}}{2}E_{0}e^{i\omega_{c}t}\rho_{21}) + \Gamma_{21}\rho_{22}
= \frac{d_{12}}{2\hbar}E_{0}e^{i\omega_{c}t}\rho_{21} - \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{12} + \Gamma_{21}\rho_{22}$$
(4.57)

e $\dot{\rho}_{22}$

$$\frac{\partial}{\partial t} \langle 2|\hat{\rho}|2\rangle = \frac{i}{\hbar} \langle 2| \left[\hat{\rho}, \hat{H}\right] |2\rangle - \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} \langle 2|\hat{\rho}\hat{H} - \hat{H}\hat{\rho}|2\rangle - \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} (\langle 2|\hat{\rho}\hat{H}|2\rangle - \langle 2|\hat{H}\hat{\rho}|2\rangle) - \Gamma_{21}\rho_{22}
= \frac{i}{\hbar} (\hbar\omega_{2}\rho_{22} - \frac{d_{12}}{2}E_{0}e^{i\omega_{c}t}\rho_{21} - \hbar\omega_{2}\rho_{22} + \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{12}) - \Gamma_{21}\rho_{22}
= -\frac{d_{12}}{2\hbar}E_{0}e^{i\omega_{c}t}\rho_{21} + \frac{d_{21}}{2}E_{0}^{*}e^{-i\omega_{c}t}\rho_{12} - \Gamma_{21}\rho_{22} \tag{4.58}$$

Para simplificarmos essas equações, devemos considerar o fato que $\rho_{11} + \rho_{22} = 1$ e $\rho_{12} = \rho_{21}^*$.

Fazendo $d_{12}=d_{21}$, definimos a frequência de Rabi como

$$\Omega_0 \equiv \frac{d_{12}}{\hbar} E_0. \tag{4.59}$$

Assim, obtemos

$$\dot{\rho}_{12} = (i\omega_{21} - \gamma_{12})\rho_{12} - i\frac{\Omega_0}{2}e^{i\omega_c t}(1 - 2\rho_{22}) \tag{4.60}$$

$$\dot{\rho}_{22} = -i\frac{\Omega_0}{2}e^{i\omega_c t}\rho_{12}^* + i\frac{\Omega_0^*}{2}e^{-i\omega_c t}\rho_{12} - \Gamma_{21}\rho_{22}$$
(4.61)

Podemos reescrever as equações acima, realizando as seguintes mudanças de variáveis

$$\rho_{12} \equiv \sigma_{12} e^{i\omega_c t} \tag{4.62}$$

$$\rho_{22} \equiv \sigma_{22}. \tag{4.63}$$

Assim, obtemos as equações de bloch ópticas

$$\dot{\sigma}_{12} = (i\delta - \gamma_{12})\sigma_{12} - i\frac{\Omega_0}{2}(1 - 2\sigma_{22}) \tag{4.64}$$

$$\dot{\sigma}_{22} = -i\frac{\Omega_0}{2}\sigma_{12}^* + i\frac{\Omega_0^*}{2}\sigma_{12} - \Gamma_{21}\sigma_{22} \tag{4.65}$$

4.2.1 Solução numérica para campos contínuos

As equação de bloch ópticas (4.64) e (4.65) possuem solução exata quando consideramos um campo contínuo. Essas soluções são obtidas a partir de métodos perturbativos, como vemos em [3]. Apesar disso, preferimos resolver essa equações numericamente, utilizando o algoritmo de runge-kutta de quarta ordem. Esse algoritmo é bastante popular na literatura, pois oferece uma boa precisão na resolução de equações diferenciais [13]. Para uma equação diferencial de primeira ordem do tipo

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y),\tag{4.66}$$

o algoritmo de Runge-Kutta de quarta ordem calcula valores y(x+h) a partir da expressão:

$$y(x+h) = y(x) + \frac{1}{6}(k_1 + k_2 + k_3 + k_4). \tag{4.67}$$

Os valores de k_1 , k_2 , k_3 e k_4 são obtidos da seguinte forma:

$$k_1 = hf(x, y), (4.68)$$

$$k_2 = hf(x + \frac{h}{2}, y + \frac{k_1}{2}),$$
 (4.69)

$$k_3 = hf(x + \frac{h}{2}, y + \frac{k_2}{2}),$$
 (4.70)

$$k_4 = hf(x+h, y+k_3).$$
 (4.71)

Como vamos trabalhar com um sistema de duas equações de primeira ordem do tipo

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, z) \tag{4.72}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, z) \tag{4.72}$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = g(x, y, z), \tag{4.73}$$

precisamos adaptar o algoritmo de Runge-Kutta. Assim, o cálculo de y(x+h) e y(x+h) precisam obedecer as seguintes expressões:

$$y(x+h) = y(x) + \frac{1}{6}(k_{y1} + k_{y2} + k_{y3} + k_{y4})$$
 (4.74)

$$z(x+h) = z(x) + \frac{1}{6}(k_{z1} + k_{z2} + k_{z3} + k_{z4}),$$
 (4.75)

O parâmetros presentes no incremento dessas expressões são dados por:

$$k_{y1} = hf(x, y, z), k_{z1} = hg(x, y, z)$$
 (4.76)

$$k_{y2} = hf(x + \frac{h}{2}, y + \frac{k_{y1}}{2}, z + \frac{k_{z1}}{2}), k_{z2} = hg(x + \frac{h}{2}, y + \frac{k_{y1}}{2}, z + \frac{k_{z1}}{2})$$
 (4.77)

$$k_{y3} = hf(x + \frac{h}{2}, y + \frac{k_{y2}}{2}, z + \frac{k_{z2}}{2}), k_{z3} = hg(x + \frac{h}{2}, y + \frac{k_{y2}}{2}, z + \frac{k_{z2}}{2})$$
 (4.78)

$$k_{y4} = hf(x+h, y+k_{y3}, z+k_{z3}), k_{z4} = hg(x+h, y+k_{y3}, z+k_{z3}).$$
 (4.79)

O algoritmo de Runge-Kutta foi implementado em linguagem C, conforme apresentado a seguir:

Algoritmo 1: Algoritmo de Runge-Kutta

```
Entrada: \Gamma_{21}, \gamma_{22}, \delta e \Omega_0
Saída: \sigma_{12} e \sigma_{22}
início
    inicialização;
    repita
         leia o atual;
         if entendeu then
              vá para o próximo;
              próximo se torna o atual;
          volte ao início da seção;
    até fim do texto;
```

fim

Para estudarmos um campo contínuo, vamos utilizar uma interação de campo contínuo produzido por um laser CW com átomos de Rubídio 87. Estamos interessados em estudar a transição do estado fundamental $5^2S_{1/2}$ para o estado excitado $5^2P_{1/2}$, como vemos na figura 4.3. Para isso, precisamos trabalhar com o seguintes parâmetros, apresentados na tabela 4.1:

Tabela 4.1: Propriedades ópticas para transição $D1(5^2S_{1/2} \longrightarrow 5^2P_{1/2})$ do ⁸⁷Rb

Frequência	ω_{21}	$2\pi \cdot 377, 1074635 \text{ THz}$
Tempo de vida	τ	27, 70 ns
Taxa de decaimento	Γ_{21}	$2\pi \cdot 5,746 \text{ MHz}$
momento de dipolo da transição $D1(5^2S_{1/2} \longrightarrow 5^2P_{1/2})$	d_{12}	$2,537 \times 10^{-29}$ Cm

Figura 4.3: Diagrama do níveis de rubídio

Fonte: Adaptada de [14]

O laser CW é identificado usualmente pela sua potência. Podemos calcular a potência de um laser a partir da frequência de rabi Ω_0 , utilizando a seguinte relação [2]:

$$\frac{P}{A} = I = \frac{c\epsilon_0}{2} \left(\frac{\hbar}{d_{12}}\right)^2 (\Omega_0)^2, \tag{4.80}$$

onde P é a potência irradiada, A é a área de seção transversal do feixe e I é a intensidade de radiação. Para o caso em que estamos interessados, vamos utilizar uma área A circular πR^2 , com o raio R=1 m e, também, vamos adotar uma frequência de rabi $\Omega_0=\Gamma_{21}$. Atribuindo na equação (4.80) os valores de momento de dipolo transição d_{12} e a taxa de decaimento Γ_{21} apresentados na tabela 4.1, obtemos uma potência de P=5 mm para nosso laser.

A figura 4.4 mostra os resultados numéricos obtidos para a evolução temporal da população σ_{22} , conforme o campo contínuo se propaga pelo ensemble de átomos de rubídio 87. A taxa de relaxação γ_{12} é calculado a partir da equação (4.54), onde obtemos que $\gamma_{12}=\Gamma_{21}/2$. No primeiro caso apresentado em (a), os átomos de dois níveis estão em ressonância ($\delta=0$) com o campo CW. O que acarreta interferências construtivas e assim faz a população de σ_{22} variar positivamente ao longo do tempo até atingir um platô de aproximadamente $\sigma_{22}\approx 1\cdot 10^{-3}$. Os gráficos apresentado em (b), (c) e (d) representam casos dissonantes com $\delta/2\pi=10$ Mhz, $\delta/2\pi=50$ Mhz e $\delta/2\pi=100$ Mhz, respectivamente. Nestes casos, observamos que a população σ_{22} sofre oscilações que vão sendo amortecidas ao longo do tempo, conforme o campo interage com os átomos. Podemos ver também que quanto maior o valor de δ , maior é a frequência em que σ_{22} oscila. Isso ocorre devido à interferência destrutiva neste processo. Por fim, podemos ver que todas as curvas tendem a estados aproximadamente estacionários. Aproveitando deste fato, elaboramos os gráficos presente na figura 4.5.

Na figura 4.5 apresentamos os resultados numéricos para população σ_{22} e coerência σ_{12} em função da dessintonia no estado estacionário. Adotamos os mesmos parâmetros Ω_0 , Γ_{21} e γ_{12} utilizados nos resultados mostrados na figura 4.4. Na curva (a) podemos ver que quanto mais próximo da ressonância, maior é a Amplitude da população σ_{22} . Em (b) e (c) temos está representada coerência σ_{12} . Na componente real (b) podemos ver que na ressonância está a maior taxa de variação. A componente imaginaria (c) possui seu valor mínimo na ressonância. Os três resultados tendem a zero para valores grande de dessintonia.

Figura 4.5: População σ_{22} em função da dessintonia δ em um estado estacionário.

5 PROPAGAÇÃO DE PULSO DE LUZ EM SISTEMA ATÔMICOS

Até aqui, estudamos as transições populacionais que ocorrem em um ensemble de sistemas de dois níveis que interage com campos eletromagnéticos contínuos. Neste capítulo, pretendemos estudar o que ocorre com o campo eletromagnético após essa interação. Mais especificamente, estudaremos o comportamento de um pulso eletromagnético ultracurto a medida que ele se propaga por uma amostra de muitos átomos ($N \approx 10^{12} \, {\rm átomos/cm^3}$), sendo cada átomo um sistema de dois níveis. Pra isso, resolvemos numericamente as equações de Maxwell-Bloch.

5.1 EQUAÇÕES DE MAXWELL-BLOCH PARA UM SISTEMA DE DOIS NÍVEIS

No capítulo 1, reduzimos equação de propagação de onda em meios não lineares, obtendo a seguinte equação:

$$\frac{\partial}{\partial \eta} \tilde{\mathcal{E}}(\eta, \tau) = -\frac{i\mu_0}{2k_c} \omega_c^2 \tilde{\mathcal{P}}^{NL}(\eta, \tau). \tag{5.1}$$

Sendo que $\tilde{\mathcal{P}}$ é a parte lenta da polarização do meio não linear. A forma mais geral de representar a polarização é através do somatório dos momentos de dipolos induzido em cada átomo pelo campo por unidade de volume, conforme definimos em (2.7). Como estamos trabalhando com um sistema de muitos átomos idênticos, podemos reescrevê-la da seguinte forma:

$$\mathbf{P} = \frac{1}{V} \sum_{i} \mathbf{d}_{i} * \left(\frac{N_{\text{átomos}}}{N_{\text{átomos}}} \right)$$
 (5.2)

(5.3)

$$\mathbf{P} = \mathcal{N}\left(\frac{1}{N_{\text{átomos}}} \sum_{i} \mathbf{d}_{i}\right) \tag{5.4}$$

(5.5)

$$\mathbf{P} = \mathcal{N}\langle \mathbf{d}_i \rangle_{atomos \acute{a}tomos} \tag{5.6}$$

onde $\mathcal{N}=N_{atomos}/V$ é o número de átomos por unidade de volume e $\langle \mathbf{d}_i \rangle_{atomos}$ é o momento de dipolo médio da amostra de átomos. Vimos no Capítulo 3 que, na representação de matriz densidade, o valor médio de um dado observável obedece a equação (3.6). Aplicando à equação da polarização (5.6) para um sistema de dois níveis, obtemos:

$$\mathbf{P} = \mathcal{N}Tr[\hat{\rho}\hat{d}] \tag{5.7}$$

$$\mathbf{P} = \mathcal{N}(d_{12}p_{21} + d_{21}p_{12}). \tag{5.8}$$

O que estabelece, que a polarização varia de acordo com a coerência atômica. Como estamos trabalhando com campo que se propaga no eixo z, é conveniente redefinirmos $\rho_{12} \equiv \sigma_{12}e^{i(kz-\omega t)}$. Assim, considerando o fato que $\rho_{12} = \rho_{21}^*$ e usando (2.50), temos que:

$$\frac{1}{2}\mathcal{P}e^{i(k_cz-\omega_ct)} + \frac{1}{2}\mathcal{P}^*e^{-i((k_cz-\omega_ct))} = \mathcal{N}(d_{12}\sigma_{21}\mathcal{P}e^{i((k_cz-\omega_ct))} + d_{21}\sigma_{12}^*e^{-i((k_cz-\omega_ct))}). \tag{5.9}$$

Analisando os dois lados da equação, é razoável concluirmos que

$$\mathcal{P} = 2\mathcal{N}d_{12}\sigma_{21}.\tag{5.10}$$

Assim podemos reescrever a equação (5.1), obtendo

$$\frac{\partial}{\partial \eta} \tilde{\mathcal{E}}(\eta, \tau) = -\frac{i\mu_0}{k_c} \omega_c^2 \mathcal{N} d_{12} \sigma_{21}(\eta, \tau). \tag{5.11}$$

Como as equações de bloch ópticas foram escritas em termos da frequência de rabi, é conveniente substituirmos (4.59) em (5.11). Assim, obtemos

$$\frac{\partial}{\partial \eta} \Omega_0(\eta, \tau) = -i\alpha \sigma_{21}(\eta, \tau), \tag{5.12}$$

onde $\alpha \equiv \mu_0 \omega_c^2 \mathcal{N} d_{12}^2 / k_c \hbar$ é uma constante. As equações óptica de bloch (4.64) e (4.65) precisam passar pela mesma mudança de coordenadas que aplicamos à (5.12). Assim, precisamos rescreve-las da seguinte forma:

$$\frac{\partial}{\partial \tau} \sigma_{12}(\eta, \tau) = [i\delta - \gamma_{12}] \sigma_{12}(\eta, \tau) - i\frac{1}{2} \Omega_0(\eta, \tau) [1 - 2\sigma_{22}(\eta, \tau)]$$
 (5.13)

$$\frac{\partial}{\partial \tau} \sigma_{22}(\eta, \tau) = -i \frac{1}{2} \Omega_0(\eta, \tau) \sigma_{12}^*(\eta, \tau) + i \frac{1}{2} \Omega_0^*(\eta, \tau) \sigma_{12}(\eta, \tau) - \Gamma_{21} \sigma_{22}(\eta, \tau). \tag{5.14}$$

O conjunto das equações (5.12), (5.13) e (5.14) são conhecidas na literatura como equações de Maxwell-Bloch. Neste TCC, e equações são resolvidas numéricamente, conforme resultados apresentados na seção 1 deste Capítulo.

5.2 TEOREMA DE ÁREA

Pra trabalharmos com pulsos eletromagnéticos ultracurtos, é importante conhecermos a área da envoltória pulso. Essa área é obtida a partir da seguinte integral:

$$\theta(\eta) \equiv \int_{-\infty}^{\infty} \Omega_0(\eta, \tau) dt \tag{5.15}$$

onde $\theta(\eta)$ é a área do pulso e $\Omega_0(\eta,\tau)$ é a frequência de Rabi. Aplicando essa definição as equações de Maxwell-Bloch para um meio ressonante, cujo tempo de decaimento é muito maior que a largura temporal do pulso $(1/\Gamma_{21} \gg FHWM)$. É possível calcular a variação da área do pulso, conforme o pulso se propaga no meio, como descrito em [eberly]. Assim, obtemos que

$$\frac{\partial \theta}{\partial z} = -\frac{\alpha}{2} sin(\theta) \tag{5.16}$$

onde α é o coeficiente de absorção. Esse equação é conhecida como teorema da área. Por praticidade, resolvemos numericamente essa equação diferencial, usando método de Euler

$$\theta(z + \Delta z) = \theta(z) - \frac{\alpha}{2} sin[\theta(z)] \Delta z, \tag{5.17}$$

conforme algorítimo escrito em linguagem C apresentado no Apendice "A".

Na figura 5.1, apresentamos os resultado numérico do teorema da área. Para isso, utilizamos o valor genérico para o coeficiente de absorção $\alpha=2\pi$ e usamos condições iniciais entre $\theta(0)=0$ e $\theta(0)=8\pi$. Podemos ver que após o pulso ultracurtos ao ser propagado pela amostra, os valores das áreas tendem para $\theta(z)=\{0,2\pi,4\pi,6\pi\ \ e\ 8\pi\}$, onde o valor n que acompanha o π é par. Para condições iniciais $0<\theta(0)<\pi$, a área do pulso diminui até chegar a zero. Enquanto, para condições

iniciais $\pi < \theta(0) < 2\pi$ aumenta para para 2π . A mesma tendência é observada para as demais condições iniciais. A seção (2), discutimos mais a fundo esse comportamento, a partir dos resultados das equações de Maxwell-bloch.

Figura 5.1: Resultado numérico para variação da área de um pulso ultracurto qualquer, conforme ele se propaga em um meio atômico de dois níveis

5.3 RESULTADOS

Nesta seção apresentamos resultados numéricos das equações de Maxwell-Bloch. Esses resultados foram calculados usando algoritmo de Runge-Kutta escrito em linguagem C apresentado no apêndice B, seguindo o fluxograma mostrado na figura 2.

Figura 5.2: Fluxograma mostrando os passos do Método Científico.

Nos resultados obtidos, foram utilizados os parâmetros da transição 5s1/2 e 6p1/2 do rubídio 87, apresentados na tabela 1, do capitulo 3. Para a interação aplicamos com um pulso ultracurto que parte da posição inicial do meio, com formato dado pela secante hiperbólica

$$\Omega(0,\tau) = \frac{1,76}{T_p} \frac{\theta_0}{\pi} \operatorname{sech}\left(\frac{1,76\tau}{T_p}\right)$$
(5.18)

onde t_p é a largura temporal do pulso e θ_0 é a área. Utilizamos um pulso de $T_p=100$ fs e consideramos que todos os átomos de Rubídio estão em ressonância com o campo, onde ignoramos efeito doppler. Como o tempo de vida da transição 5s1/2 e 6p1/2 é $T_{21}=27,70$ ns, conseguimos garantir que o teorema da área seja respeitado, visto que $T_{21}=1/\Gamma_{21}\gg T_p$.

5.3.1 Propagação de pulso com área pequena em meio ressonante

Na literatura temos solução analítica para equações de Maxwell-Bloch, quando tratamos um pulso com área muito pequena ($\theta \ll 1$), onde é adotado o limite de Beer's Law, conforme vemos em []. Assim, o nosso primeiro resultado foi obtido para um pulso desse tipo com área $\theta = 5, 7*10^{-4}\pi$.

Na figura 5.3 apresentamos o resultado numérico para a frequência de rabi $\Omega_0(z,\tau)$, conforme o pulso interage no meio. Em 5.3(a) mostramos o mapa de calor, onde $\Omega_0(z,\tau)$ é representado em cores. Em 5.3(b) temos o pulso secante hiperbólico antes de interagir com o meio. Em 5.3(c) temos representado o pulso na saída do meio atômico (z=1cm). Vemos que a após interagir com o meio atômico a envoltória do pulso adquire um caráter oscilatório que varia entre valores negativos e positivos o que faz com que a área seja aproximadamente $\theta\approx0$, o que é esperado pelo teorema da área apresentado (ver figura 5.1).

Figura 5.3: Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubídio 87). (a) gráfico de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para z=0. (c) Curva de $\Omega_0(z,t)$ para z=1cm.

A figura 5.4 mostra os resultado numéricos para a população σ_{22} para todo o meio atômico. Em 5.4(a) e 5.4(b) temos a excitação da população σ_{22} , da entrada e saída do meio atômico, respectivamente.

Podemos ver que o campo não consegue produzir excitação significante do nível 5S1/2 para 6p3/2 logo nos primeiros átomos presentes em z=0, e o decaimento espontâneo é desprezível no tempo representado. Os átomos presentes em z=1cm sofrem excitação ainda menor que a encontrada no início e tem um caráter oscilatório, pois o pulso que gera essas transições oscila entre valores negativo e positivos como representados em 5.3(c).

Figura 5.4: Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para z=0. (c) Curva de $\Omega_0(z,t)$ para z=1cm

Figura 5.5: Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para z=0. (c) Curva de $\Omega_0(z,t)$ para z=1cm

Na figura 5.6 temos os resultados numéricos para a coerência $\Im(\sigma_{12})$. A coerência dos primeiro átomos (z=0) é representa na figura 5.6(a) e em 5.6(b) temos a coerência do últimos átomos (z=1cm).

A coerência atômica obedece a a taxa de relaxação $\gamma_{12} = \Gamma_{21}/2$. Por isso, é praticamente desprezível em fig. 5.6(a) para o tempo representado.

Na figura 11 apresentamos o resultados para Ω_0 no domínio da frequência. Esses resultados foram obtidos a partir de FFT (Transformada de Fourier rápida) no resultados numéricos obtidos no domínio do tempo. Em Fig.(a) temos o resultado para z=0, em Fig.(b) z=0,05cm cm e Fig.(c) z=1,0 cm. Observamos que ao se propagar pelo meio a frequências proximas ao centro são absorvidas, devido a ressonância com a transição $5\rm{s}1/2\text{-}6p1/2$.

Figura 5.6: Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para z=0. (c) Curva de $\Omega_0(z,t)$ para z=1cm.

5.3.2 Transparência auto induzida

O teorema da área apresentado na seção anterior, indica que para pulso com área menor que π a área deve ir a zero, conforme o pulso se propaga no meio. Porém, quando o pulso possui área maior que π e menor que 2π , temos que área desse pulso deve aumentar até chegar em 2π . Para verificar esse comportamento, aplicamos um pulso de área de $\theta=0, 7\pi$ e $\theta=1, 7\pi$ ao nosso algoritmo.

Na figura 5.7 temos representado a propagação de dois pulsos diferentes. Na figura 5.7(a) o pulso possui área $\theta = 0, 7\pi$. Neste caso, podemos ver que, ao propaga no meio, sua área se aproxima a

 $\theta=0$ e o pulso adquire o mesmo comportamento oscilatório que observamos no pulso de pequena área (5.3. A figura 5.7(b) mostra um pulso de área $\theta=1,7\pi$. Neste caso, observamos um aumento da área do pulso que se aproxima de $\theta=2\pi$, o que está de acordo com o teorema da área.

Figura 5.7: Frequência de Rabi $\Omega_0(z,t)$ para pulso de área pequena $\theta=5,7*10^{-4}\pi$ que interage sistema de dois níveis (transição 5s1/2 6s3/2 do Rubidio 87). (a) gráfico de temperatura para a frequência de Rabi $\omega_0(z,t)$. (b) Curva de $\Omega_0(z,t)$ para z=0. (c) Curva de $\Omega_0(z,t)$ para z=1cm

Para pulsos com áreas $(2\pi, 4\pi, 6\pi, \ldots, 2n\pi)$, de acordo com o teorema da área, é esperado que a área não mude conforme o pulso se propaga no meio. Esse fenômeno recebe o nome de transparência auto induzida. Em Eberly [3] é obtido a solução para um pulso com $\theta = 2\pi$, onde é considerado o fato que $\mathrm{d}\theta/\mathrm{d}z = 0$ para obtera seguinte equação para $\Omega_0(z,t)$:

$$\Omega_0(z,t) = \frac{2*1,76}{T_p} sech \left[\frac{1,76}{T_p} \left(t - \frac{z}{v_q} \right) \right],$$
(5.19)

onde a velocidade de grupo é dada por

$$v_g = \frac{c}{1 + \alpha ct}. ag{5.20}$$

Na figura 5.10 temos a solução numérica para frequência de Rabi Ω_0 para a propagação de um pulso de área $\theta=2\pi$. em (A) temos o gráfico de temperatura onde podemos ver o comportamento do pulso ao se propagar por todo o meio. Em (b) temos Ω_0 em z=0 e em (c) temos o pulso ao final. Podemos ver que a envoltória do pulso não sofre mudança ao se propagar pelo meio atômico em mantem $\theta\approx 2\pi$. resultado coerente com o teorema da área e o resultado analítico (5.19).

Figura 5.8: Resultado

Outro resultado analítico importante é o encontrado por G. L. Lamb, Jr [], onde é possível estudar o comportamento de um pulso com área $\theta=4\pi$. Este caso, pode se descrito pela colisão de dois pulsos com velocidades de grupos v_g e largura temporal T_p diferentes. Assim, temos a seguinte expressão analítica para $\Omega_0(z,t)$:

$$\Omega_{0}(z,t) = \left(\frac{T_{r}^{2} - T_{r'}^{2}}{T_{r}^{2} + T_{r'}^{2}}\right) \frac{\frac{2}{T_{r}} sech\left(\frac{\tau}{T_{r}}\right) + \frac{2}{T_{r'}} sech\left(\frac{\tau}{T_{r'}}\right)}{1 - \frac{2T_{r}T_{r'}}{T_{r}^{2} + T_{r'}^{2}}} \left[tanh\left(\frac{\tau}{T_{r}}\right) tanh\left(\frac{\tau}{T_{r'}}\right) - sech\left(\frac{\tau}{T_{r}}\right) sech\left(\frac{\tau}{T_{r'}}\right)\right],$$
 (5.21)

onde $T_r = T_p/1,76$ e $T_{r'} = T_{p'}/1,76$.

Na figura 5.9 temos a solução numérica para frequência de Rabi Ω_0 para a propagação de um pulso de área $\theta=4\pi$. Em (A) temos o gráfico de temperatura onde podemos ver o comportamento do pulso ao se propagar pelo meio. Em (b) temos Ω_0 em z=0 e em (c) temos o pulso em z=1cm. Podemos ver que o pulso de área $\theta=4\pi$ se divide em dois pulsos de área $\theta\approx 2\pi$, com largura temporal diferentes, assim como a descrição analítica (5.21). O segundo pulso se afasta do primeiro conforme se propaga pelo meio. Isso significa que possuem velocidades de grupo v_g diferentes, sendo que o primeiro mantem a velocidade grupo do pulso inicial (sem propagação).

Figura 5.9: Resultado

Figura 5.10: Resultado

Figura 5.11: Resultado

5.4 EQUAÇÕES

Exemplo de equação centralizada:

$$a^2 = b^2 + c^2. (5.22)$$

Substituindo esse resultado o hamiltoniana H'

Exemplo de equação no texto: $e^{ix} = \cos x + i \sin x$. Citação de equação: 5.22.

5.5 TABELAS

Exemplo de tabela:

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 5.1: Funções trigonométricas e hiperbólicas.

5.6 CÓDIGOS

Exemplo de código (linguagem C):

```
#include<stdio.h>

int k;

main()

for (k=1; k<=5; k++)

printf("Física - UNIR - Ji-Paraná\n");
}</pre>
```

5.7 CITAÇÃO

Exemplo de citação:

Citando um trabalho: (ARAÚJO, 2004).

6 OUTRO CAPÍTULO

Digite aqui o conteúdo de outro capítulo.

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 6.1: Funções trigonométricas e hiperbólicas.

Figura 6.1: Espectro de um laser de femtossegundos.

Figura 6.2: Espectro de um laser de femtossegundos.

Figura 6.3: Níveis de energia de um hipotético "átomo de dois níveis". A "dessintonia" $\delta = \omega_{ab} - \omega$ é a diferença entre $(E_2 - E_1)/\hbar$ e ω . A radiação da frequência angular ω é quase ressonante com a transição $E_1 \to E_2$, quando $\delta \ll \omega_{ab} - \omega$.

4,0x10⁶ - Area=-0,07803 2,0x10⁶ - -2,0x10⁶ - -4,0x10⁶ - -6,0x10⁶ - -6,0x

Figura 6.5: descrição comum

Fonte:Elaborada pelo Autor

Tempo

5600

8400

11200

14000

2800

Ó

7 CONCLUSÃO

Digite a conclusão do TCC aqui.

REFERÊNCIAS

- [1] J. Jackson, Classical Eletrodynamics, third edition. Jhon Wiley, 1998.
- [2] D. Griffiths, *Eletrodinâmica*. Pearson Addison Wesley, 2011.
- [3] L. Allen and J. Eberly, *Optical Resonance and Two-level Atoms*. Dover books on physics and chemistry, Dover, 1987.
- [4] R. W. Boyd, "The nonlinear optical susceptibility," *Nonlinear optics*, vol. 3, pp. 1–67, 2008.
- [5] J. Diels, W. Rudolph, P. Liao, and P. Kelley, *Ultrashort Laser Pulse Phenomena*. Electronics & Electrical, Elsevier Science, 2006.
- [6] J. Sakurai, J. Napolitano, and S. Dahmen, Mecânica quântica moderna. Bookman, 2013.
- [7] H.-P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
- [8] C. Cohen-Tannoudji, B. Diu, and F. Laloë, *Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications*. Wiley, 2019.
- [9] R. Field and A. Tokmakoff, 5.74 Introductory Quantum Mechanics II. Massachusetts Institute of Technology: MIT OpenCourseWare, Spring 2004.
- [10] J. Taylor, Mecânica Clássica. Bookman Editora, 2013.
- [11] M. Scully and M. Zubairy, *Quantum Optics*. Cambridge University Press, 1997.
- [12] P. Meystre and M. Sargent, *Elements of Quantum Optics*. SpringerLink: Springer e-Books, Springer Berlin Heidelberg, 2007.
- [13] K. Atkinson, An Introduction to Numerical Analysis. Wiley, 1989.
- [14] D. A. Steck, "Rubidium 87 d line data," 2001.

TÍTULO DO PRIMEIRO APÊNDICE

Digite o primeiro apêndice aqui.

TÍTULO DO SEGUNDO APÊNDICE

Digite o segundo apêndice aqui.