Teoria da Informação - 060046 - UNISINOS

$$H = -\sum_{i=1}^{M} P_i \log_2 P_i \quad \text{(bits per symbol)}.$$

Entropia de uma fonte de Informação (Shannon)

onde H= bits/símbolo H' = bits/seg m=símbolos/seg

N símbolos

$$p = p_1^{p_1N} p_2^{p_2N} \cdots p_n^{p_nN}$$

 $\log p \doteq N \sum_i p_i \log p_i$

 $\log p \doteq -NH$

$$H \doteq \frac{\log 1/p}{N}.$$

$$H \doteq \frac{\log 1/p}{N}$$
. $\frac{\log p^{-1}}{N}$ very close to H when N is large

Entropia relativa e redundância (Elwyn)

Incerteza Relativa =
$$\frac{\text{Incerteza Real}}{\text{Incerteza Máxima (sendo } n = 4)}$$

$$= \frac{\mid \Sigma p_i \log p_i}{\log n}$$

$$= \frac{1\frac{3}{4}}{2} \text{ ou } \frac{7}{8} \text{ ou } 87,5 \text{ por cento.}$$

$$Redundância = rac{Incerteza Máxima - Incerteza Real}{Incerteza Máxima} = 1 - Incerteza Relativa$$

Incerteza Relativa =
$$\frac{-\sum p_i \log p_i}{\log n}$$
=
$$\frac{4,129}{4,700}$$
=
$$87,9 \text{ por cento}$$
Redundância =
$$1 - 0,879, \text{ ou seja, } 12,1 \text{ por cento.}$$

Freqüência e valor de informação de letras, no inglês escrito

Letra	pi	$-\log p_i \times p_i$
A	0,082	0,296
В	0,014	0,086
C	0,028	0,144
D	0,038	0,179
E	0,131	0,384
F	0,029	0,148
G	0,020	0,113
н	0,053	0,225
I	0,063	0,251
J	0,001	0,010
K	0,004	0,032
L .	0,034	0,166
M	0,025	0,133
N	0,071	0,271
0	0,080	0,292
P	0,020	0,113
Q	0,001	0,010
R	0,068	0,264
S	0,061	0,246
T	0,104	0,340
Ū	0,025	0,133
v	0,009	0,061
W	0,015	0,091
x	0,002	0,018
Y	0,020	0,113
Ż	0,001	0,010

		PARA			Total	
		A	В	С	D	de Fileira
D	Α	4	5	5	5	19
	В	9	1	0	0.	10
Е	С	2	3	0	0	5
	D	5	0	0	0	5
Tot Col	al da uṇa	20	9	5	5	

		Y			Total		
		A	В	С	D	de Fileira	
X	A	4 19	<u>5</u>	5 19	<u>5</u> 19	1	
	В	9 10	가	0	0	1	
^	С	<u>2</u> 5	3 5	0	0	1	
	D	1	0	0	0	1	

$$-\sum_{Y=A}^{D} p_{A}(Y) \log p_{A}(Y), \text{ ou seja}$$

$$(-\frac{4}{19} \log \frac{4}{19}) + (-\frac{5}{19} \log \frac{5}{19}) + (\frac{5}{19} \log \frac{5}{19}) + (-\frac{5}{19} \log \frac{5}{19})$$

X	$-\sum p_{\mathbf{X}}(Y)\log p_{\mathbf{X}}(Y)$	p(X)	Produto
A	1,994	0,5	0,997
B	0,469	0,25	0,117
C	0,971	0,125	0,121
D	0,000	0,125	0,000

$$H_{\mathbf{X}}(Y) = -\sum_{x}^{\mathbf{X}} \sum_{y}^{\mathbf{Y}} p(X) p_{\mathbf{X}}(Y) \log p_{\mathbf{X}}(Y)$$
 = 1.235 bits/letra

$$\begin{array}{l} H(\mathrm{digramas}) = H(Y) - H_{\mathbf{x}}(Y) \\ = 1,75 - 1,235 \ \mathrm{bits/letra} \\ = 0,415 \ \mathrm{bits/letra}. \end{array}$$

$$\frac{1,235}{2} \times 100 \text{ por cento}$$
= 61,75 por cento.

redundância=1-0,6175=0,3825

Representação de Operações de codificação e decodificação (Shannon)

$$y_n = f(x_n, \alpha_n)$$

$$\alpha_{n+1} = g(x_n, \alpha_n)$$

 x_n is the n^{th} input symbol,

 α_n is the state of the transducer when the n^{th} input symbol is introduced,

 y_n is the output symbol (or sequence of output symbols) produced when x_n is introduced if the state is α_n .

Canal de comunicação sem ruído (noiseless)

Exemplo: todos símbolos com a mesma duração; 32 símbolos (5 bits); R= n símbolos/seg, então: C= 5n bits/seg onde C é a capacidade do canal

$$R_{\text{max}} = \frac{C}{H} - \epsilon$$
 onde R é a taxa de transmissão

Equivocação e capacidade do canal

Exemplo: alfabeto={0,1} taxa de transm.= 1000 símb./seg

 $p_0 = p_1 = 1/2 = 0.5$

erro = 1%

$$R = H(x) - H_{y}(x)$$

p=0.99 e q=0.01 (p=1-q)

$$H_y(x) = -[.99\log.99 + 0.01\log0.01]$$

= .081 bits/symbol $_{R=100}$

R=1000-81=919 bits/seg

no caso extremo, se p=q=1/2=0.5 $H(x) = -\left[\frac{1}{2}\log\frac{1}{2} + \frac{1}{2}\log\frac{1}{2}\right]$

$$H_y(x) = -\left[\frac{1}{2}\log\frac{1}{2} + \frac{1}{2}\log\frac{1}{2}\right]$$

= 1 bit per symbol

e nesse caso R=1000 bits transmitidos - 1000 bits equivocados = 0

Teorema fundamental do canal discreto com ruído

$$C = \operatorname{Max}(H(x) - H_{y}(x))$$

