# Let's go cisco live! #CiscoLive

# Evolution of the transport network architecture in the context of 5G and Open RAN

Roberta Maglione - Technical Solutions Architect Global MIG Architectures Specialists



# Cisco Webex App

#### Questions?

Use Cisco Webex App to chat with the speaker after the session

#### How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.



https://ciscolive.ciscoevents.com/ciscolivebot/#BRKSPG-2133



# Agenda

- Introduction
- RAN and Transport Network Evolution
- Cisco 5G Converged SDN Transport
- 5G Transport in Hybrid Cloud Environment
- Conclusion



# Introduction



#### 5G Architectural shifts

Impact network evolution

Disaggregation
Radio Access
Mobile Core
Converged Core
Open, Disaggregated

#### New Radio

High BW, low latency Packet based, Statistical Multiplexing Massive MIMO Software Centric
Virtualization
Cloud Native
Edge Computing
Programmable



#### Convergence

Any Access Common Sub Mgmt. Converged Transport Common Policy

#### Automation

Closed Loop Multi Domain Network Slicing Service Assurance

# RAN and Transport Network Evolution



## **RAN Components**





RU: Radio Unit, CU: Centralized Unit, DU: Distributed Unit. BBU: Baseband Unit, CPRI: Common Public Radio Interface, eCPRI: enhance CPRI, RoE: Radio over Ethernet



#### RAN Fronthaul Standards Standard Fronthaul **Evolving towards Open RAN** Ways to carry interface Radio over Ethernet based Split 7.2x Ethernet Split 7 Open RAN RoE **CPRI eCPRI** O-RAN Alliance Standard for Radio (Open RAN) over Ethernet & Open feature NGFI (IEEE 1914.1/3) Common Public enhanced development Time Sensitive Radio Interface Common Public Reduced time-to-Networking Radio Interface market TSN Profiles 802.1CM, TDM based Frame Preemption Incubation of Split 8 ecosystem innovation 802.1Qbu Advancing Technology for Humanity

Driving towards open standards for RAN Interfaces



# RAN Transport Architecture Options



- Higher Speed Interfaces
- Lower Latency
- More Precise Timing & Synchronization
- Any-to-Any Connectivity

# Cisco 5G Converged SDN Transport Solution



# Requirements and Architecture



#### What's Different in 5G?

#### New requirements on transport network





#### RAN and 5G Core Interfaces



# Cisco's 5G Converged SDN Transport

Reduce Infrastructure Costs and Simplify Operations



Cisco architecture is validated as per O-RAN WG-9 "Packet Switched xHaul architecture and solutions"



#### Packet-Based Fronthaul

#### As optimal solution





## Different types of fronthaul Interfaces

How do we deal with legacy interfaces in a packet-based network?





# Brownfield C-RAN deployments

Options for CPRI in a packet-based network:

- Fronthaul Gateway Interworking Function
- CPRI over Ethernet



## Fronthaul Gateway Interworking Function

Standard based solution to integrate legacy interfaces



- Fronthaul gateway (FHGW) is a RAN function that converts non-ORAN interface to O-RAN
   7.2.x Interface (CPRI to eCPRI conversation)
- ORAN Alliance defined IWF and Open FHGW Hardware Platform specification as part of ORAN Alliance working group 7 ORAN.WG7.HRD.0-v02.00.pdf



## Fronthaul Gateway Interworking Function

#### Deployment models and benefits







FHGW Open Platform Open SW APIs



Optimizes Transport Bandwidth by:





Enables Unified Architecture for Brownfield RAN



Improved
Brownfield
Network TCO\*

24%

\*As per TCO done for an operator



#### Fronthaul Gateway on Cisco NCS540-FH

#### Prototype and demonstration



- Fronthaul Gateway: software function running as container on NCS540-FH
- Tested with Barthi Airtel as part of ORAN Plugfest in India Nov 2021 (1)
- Demonstrated at Mobile World Congress Barcelona 2022<sup>(2)</sup>
- 4.5Gbps of CPRI → 0.5Gbps of eCPRI traffic

<sup>(2)</sup> https://www.linkedin.com/pulse/optimized-architectural-approach-brownfield-scenarios-maglione



https://www.o-ran.org/blog/o-ran-global-plugfest-2021-demonstrates-stronger-ecosystem-and-maturing-solutions

#### Fronthaul: CPRI over Ethernet

Radio over Ethernet Structure Agnostic Modes (Type 0 & Type 1)



Based on IEEE 1914.3 Standard for Radio over Ethernet Encapsulations and Mappings

#### Deployment Modes:

- RoE Structure-Agnostic Tunneling Mode (Type 0)
  - Compatible with all RAN suppliers' equipment
  - Tested with Huawei, Ericsson and Samsung radio
- RoE Structure-Agnostic Line Code Aware Mode (Type 1)
  - Tailored with RAN vendor specific CPRI information to reduce fronthaul bandwidth by 20%
  - Tested with Huawei radio



# **CPRI** over Converged Packet Fronthaul

How can we optimize transport performance for multiple services?



- Multiple services (Mobile, Residential, Business VPN) on a common transport network
- Different applications may have different packet size
- How can we meet the strict latency requirements for 5G services at the Fronthaul?



## Time Sensitive Networking IEEE 802.1CM

#### **Ethernet for Fronthaul**

- Profile A: Strict priority queuing (no frame pre-emption)
  - Radio data payload frame size max is 2000, C&M max is 1500 octets
  - IQ data traffic belongs to strict priority traffic class strict priority algorithm
  - C&M data assigned to lower priority than IQ data

- Profile B: IEEE 802.1Qbu Frame Preemption
  - Pre-emption useful to avoid restrictions on the maximum frame size
  - Frame Preemption up to 25G links
  - IQ data traffic configured (frame pre-emption status) as "express"
  - C&M data assigned to lower priority than IQ data and set "pre-emptable"



## CPRI over Converged Packet Fronthaul

#### IEEE TSN: 802.1Qbu, Frame Preemption Technique



- IEEE 802.1Qbu with Strict Priority
   + Preemption offers lowest
   fronthaul latency and greatest BW
   utilization
- Required on uplink 10G or 25G interfaces
- Its book ended, hardware solution

| In -> Out | HP Packet Size | LP Packet Size  | 802.1bu (w Frame Preemption)  |                | No 802.1bu (wo Frame Preemption) |                |
|-----------|----------------|-----------------|-------------------------------|----------------|----------------------------------|----------------|
|           |                |                 | HP Latency (us)               | HP Jitter (us) | HP Latency (us)                  | HP Jitter (us) |
| 10G->25G  | 1500 (eCPRI)   | 9K (Enterprise) | 17.677<br>(Saving of 4.34 us) | 3.24           | 22.021                           | 4.54           |

Saving of 4.34 us = 1Km fiber or 1-Router hop delay

cisco Live!

HP: High Priority

# Architecture principles and components



# Cisco's 5G Converged SDN Transport

Reduce Infrastructure Costs and Simplify Operations



Cisco architecture is validated as per O-RAN WG-9 "Packet Switched xHaul architecture and solutions"



# Key principle: simplification at all layers



Operational Simplification – Ease of Use IOS-XR end-to-end, Crosswork, NSO, Yang suite

Service Simplification
BGP based VPN for unified service delivery

Transport Simplification
Unified forwarding with Segment Routing + SR-PCE



# Cisco IOS XR 7: single OS end to end

Redefining software for better operations



#### Simple

- Optimized to reduce memory, downloads, and boot times
- Streamlined protocols with SR/EVPN, Telemetry
- Secure zero-touch rollout



#### Modern

- Open APIs
- Customizable software images
- Cloud-enhanced



#### Trustworthy

- Assess hardware and software authenticity at boot and runtime
- Immutable record of all software and hardware changes
- Real-time visibility of trust posture





50% Faster Boot Times



40% Smaller Image Sizes



40% Faster Download



# Why Segment Routing for Transport?

#### **Network Resiliency**

TI-LFA and automated 50ms protection

Network Simplification
Eliminate LDP, RSVP and other protocols

#### Simplified Service Creation

Easily configure L2VPN and L3VPN services

#### Scalable Network Slicing

Faster creation, adaptation and deletion of slices at scale



#### Granular and simple TE

Dynamic and efficient provisioning of custom traffic paths

Any-to-any Connectivity
Flexible any-to-any connectivity

Simplified Operations
Easy to operate the network

Standards Based

No vendor lock-in



#### The value of Cell Site Router in Access

- Multi Services support
- Green field and brown field
- Multi deployment models:
  - · Point-to-point, ring, etc.
- Programmable paths and SLA
- Scalability
- Secure ZTP
- Rich streaming Telemetry
- Cleaner timing distribution
- Enhanced redundancy





# 5G RAN Resiliency with Segment Routing

Case Study: Packet-based fronthaul network



- Fronthaul network between Cisco NCS 540 and E// BBU is approx. 14km
- The setup was running eCPRI between E// NR Radios and BBU
- TI-LFA is enabled to provider protection against link failures
- No cell went down during the failure and convergence time
- No service issue or call drop observed



# Transport Network Slicing



## Transport Slicing for Service Experience

Goal: to enable multi-services support





## Transport Network Slicing





# O-RAN WG9: transport network slicing phase 1

- · Only Backhaul can be sliced
- Mapping 5QI to DSCP only at backhaul





# O-RAN WG9: transport network slicing phase 2

- · Both Backhaul and Midhaul can be sliced
- Mapping 5QI to DSCP also at Midhaul

01 E2 A1 Near RT SMO /Non Shared (non sliced) control and RIC RT RIC 7.2x M-plane **FH Mamt** management plane N1/2 5GC F1-c vO-CU-CP N4 Common Open Fronthaul 7.2x U and C Xn-u (per slice longer term) between slices planes O-RU UPF vO-CU vO-DU O-RU Dedicated (sliced) user N9 eMBB N3 N<sub>6</sub> F1-u UPF vO-CU-UP plane Dedicated to each slice O2 interface not F1-u **mMTC** shown as it's a N<sub>6</sub> vO-CU-UP UPF DC management interface F1-u N3 NB-IOT N<sub>6</sub> UPF



BRKSPG-2133

## Underlay Forwarding planes

Different planes to provide different behaviours



- Small number of forwarding planes defined in underlay:
  - Services orientated (eMBB, URLLc, MMTc, circuit style services)
- Forwarding planes aims to support a set of behavioural characteristics:
  - Delay, loss, topological constraints, subscription ratio, service type and characteristics, admission control
- Tools to build forwarding planes:
  - Segment Routing TE policies, Segment Routing Flex-algo, QoS and admission control



BRKSPG-2133

# Segment Routing Traffic Engineering Policies

For the same source/end-point different colors for different SLA

- E.g Green = Low Latency and Red = High Bandwidth
- Policy Color designed to match BGP Ext. Community Color
- Extended Community Color is specified in RFC 5512





# Segment Routing Traffic Steering

- Mechanism on source router to steer traffic
- By default traffic uses IGP path
- Can steer traffic into a SR policy or specific Flex-algos
- Destination based Traffic Steering: destination only
- Flow based Traffic Steering : Destination + QoS criteria







# Segment Routing IGP Flexible Algorithm

- New Prefix-Segments with specific optimization objective and constraints
  - minimize igp-metric or delay or te-metric
  - avoid SRLG or affinity
- Each node MUST advertise Flex-Algo(s) that it is participating in
- Each node MUST have the definition of the Flex-Algo(s) that it is participating in
  - e.g. ALGO 128: minimize on IGP metric and avoid TE affinity RED
  - Local configuration

Nodes 0 and 9 participate to Algo 0 and 128 and 129

Nodes 1/2/3/4 participate to Algo 0 and 128

Nodes 5/6/7/8 participate to Algo 0 and 129





# Mapping services to forwarding planes

Multiple tools to provide flexibility and scale



Packet services (O-RAN WG9)

EVPN VPWS services for FH with priority queuing

BGP L3 VPN for O-RAN 7.2X M-Plane

BGP L3 VPNs for midhaul / backhaul control plane and user plane – 4G and 5G

Circuit Style services

Controller computation with end-to-end b/w admission control and reservation

- Forwarding behaviours with SR policies, FlexAlgo, QoS and admission control
- N:1 Many VPNs to 1 forwarding plane
- Traffic pushed into correct forwarding plane:
   Segment Routing ODN and Automated Steering
- Monitoring transport and service layers (SR PM, etc.)



### Crosswork Network Controller

### Simplify operations and speed up the time to market









**Extended for Network Slicing** 

# CNC will support transport network slicing

### Designed to simplify network slicing automation

### **Building Blocks**

- FlexAlgo, SR-TE support
- QOS support
- L2VPN/L3VPN enhanced NSO Function Packs





### Slice Creation Abstraction

- Simplified UI to abstract the Slice components
- Slice Template Catalog

### Slice Lifecycle

- Overlay maps
- KPI collection and Closed-Loop Automation
- Network Optimization



# Timing and synchronization



# Time Synchronization in 5G Networks

### Cell Synchronization Requirements

- Transmitter power ON/OFF
- · Change Transmit / Receive modes
- Air propagation time

### Coordinated Transmission and Reception

- · Increase throughput with Carrier Aggregation, Dual connectivity
- Improve performance with coordinate multipoint operation

### **Application Requirements**

- Positioning and Tracking
- Time-sensitive networking: Robot control or Autonomous Vehicles
- Extended Reality

TAE: Time Alignment Error





TX Diversity / NB-IoT TAE <65ns



Intra Band Contiguous <130ns FR2, LTE <260ns FR1

Intra Band Non-Contiguous <260ns (FR2, LTE)
3us (FR1)

Inter Band CA <260ns (LTE) 3us (NR)



Positioning TAE <100ns

3GPP TS 36.104, 38.104



# Timing solution options

PTP Telecom Profiles

G.8275.1 is the recommended timing solution for 5G services Supported across all Cisco routing portfolio

PRTC: Primary Reference Time Clock T-TSC: Telecom Time Slave Clock T-GM: Telecom Grandmaster T-BC: Telecom Boundary Clock T-BC-P: T-BC with partial support T-TSC-P:T-TSC with partial support



# 5G Transport in Hybrid Cloud Environment



# 5G Transport in Hybrid Cloud Environment 5G Converged SDN Transport is extended to support public cloud



# Hybrid Cloud Architecture

Some services move to the public cloud



- On-Prem Network
- CSP corporate IT moving to public cloud
- Most of the content delivery is part of public cloud
- 5G RAN and 5GC services are part of Hybrid cloud











Hybrid Cloud Architecture

Based on real customer's deployment



- 5G RAN & Core require connectivity for various services:
- L3 VPN, Anycast & BGP extension to VPCs
- Due to lack of IPv6 support by hyperscalers
  - GRE + SR MPLS is currently available option for overlay architecture.





CLOUD

Region

AZ2

AZ3

(a) Central

OSS

**BSS** 

IMS

BRKSPG-2133

# Cell Site with Cloud Native Routing

### Alternative model for small cell sites

### Traditional Cell site



### Cloud Native Cell site



### Two boxes solution:

- Physical Cell site Router
- x86 Server hosting O-DU
- · Suitable for any size of cell sites

### Single box solution:

- vCSR (Cisco Xrd) and O-DU hosted on the same x86 server
- Cisco Xrd is a Software based router running into containers
- Cloud native routing helps optimize inventory and power at lowbandwidth cell site
- Suitable for small cell sites requiring low throughput

https://www.cisco.com/c/en/us/td/docs/routers/virtual-routers/xrd-77x/release/notes/b-release-notes-xrd-r771.html



# Cisco Cloud Native Router (Xrd)



### Software based router to run on x86



- Cisco IOS-XR and Management
- DPDK/VPP based forwarding
- Kubernetes compliant
- Light footprint on x86 compute

### Solution for Cloud native deployments



- Suitable for Cloud native environments
- Routing function at low-bandwidth cell site
- Physical CSR Feature parity

| CPU Cores   | 2 physical cores: 1 for control plane; 1 for dataplane (*)                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory      | 11 GiB: 8 GiB regular memory + 3 GiB huge pages (**)                                                                                                     |
| Disk        | 7 Gb (***)                                                                                                                                               |
| Boot time   | ~2 mins (to BGP convergence)                                                                                                                             |
| Latency     | 50us via vRouter CNF                                                                                                                                     |
| Performance | Intel Ice Lake CPU @3.5 GHz turbo, Packet size 1514 bytes ~ 56 Gbps - IPv4 Only ~ 47 Gbps - Customer config (L3 VPN, SR/MPLS, ECMP VLAN with egress QoS) |

- CPU may require hyperthreading for control plane stability
- \*\* 11 GiB provides equivalent memory to NCS540
  - 8 GiB is minimum to boot
  - Real configuration expected to be < 10 GiB
- \*\*\* Includes provision for logs and other operational data; in most cases usage <= 2Gb



# Conclusion





# Why Cisco for xHaul transport?



Converges multiple services while optimizing costs and resources



Supports brown-field C-RAN deployments with CPRI over Ethernet and Fronthaul Gateway Interworking function



Provides flexible and scalable transport network slicing with Segment Routing tools



Allows for seamless deployments of cloud-native functions within hybrid cloud environments



### References

### Cisco 5G Transport page:

www.cisco.com/go/5g-transport

### Converged SDN Transport design:

https://xrdocs.io/design/blogs/latest-converged-sdn-transport-hld

### Segment Routing:

http://www.segment-routing.net/

### O-RAN Alliance Specifications:

https://www.o-ran.org/specifications



# Recommended Cisco Live US 2023 Sessions

- BRKSPG-2315 Cloud-Ready Converged SDN Transport
- BRKSPG-2263 Design, Deploy and Manage Transport Slices using SDN Controller and Assurance -
- BRKSPG-3050 Synchronizing 5G Mobile Networks
- BRKMPL-2203 SRv6 Fundamentals
- BRKMPL-2253 EVPN Deep Dive with IOS-XR Configuration examples for Service Provider Metro and Data Center

# Fill out your session surveys!



Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!



Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.



These points help you get on the leaderboard and increase your chances of winning daily and grand prizes



# Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education. with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand



# Thank you



# Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

### How:

- Open the Cisco Events App.
- Click on 'Cisco Live Challenge' in the side menu.
- Click on View Your Badges at the top.
- Click the + at the bottom of the screen and scan the QR code:







# Let's go cisco live! #CiscoLive