This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出國公開番号 特開2000-344507 (P2000-344507A)

(43)公開日 平成12年12月12日(2000.12.12)

(51) Int.Cl.

識別配号

FΙ

テーマコート*(参考)

C01B 31/08 H01G 9/058

C01B 31/08

A 4G046

H01G 9/00

301A

審査請求 未請求 請求項の数4 OL (全 8 頁)

(21) 出願番号

特爾平11-159244

(71)出願人 390001177

クラレケミカル株式会社・

岡山県伽前市鶴海4342

(22)出願日

平成11年6月7日(1999.6.7)

(72) 発明者 大學 消人

東京都中央区日本橋3-8-2 クラレケ

ミカル株式会社内

Fターム(参考) 40046 HA01 HB00 HB02 HB05

(54) 【発明の名称】 粉末宿性炎、活性炭シート及び電気二重層キャパシタ

. (57)【要約】

【課題】 少ないバイングー量で成型した場合でも商充 填密度を達成できる粉末活性炭を提供する。

【解決手段】 高速で圧縮と混合を繰り返し、中心粒子 径が10μm以上50μm以下であって、中心粒子径の 1/10以下の大きさの粒子の割合が6%以上13%以 下の粉末活性炭を作製する。

!(2) 000-344507 (P2000-34jJL8

【特許請求の範囲】

【請求項1】 中心粒子径が10μm以上50μm以下であって、中心粒子径の1/10以下の大きさの粒子の割合が6%以上13%以下である粉末活性炭。

【請求項2】 該粉末活性炭が主として椰子般を原料とする活性炭である請求項1記載の粉末活性炭、

【請求項3】 請求項1又は2記載の粉末活性炭及びバインダーからなる混合物を成型せしめた活性炭シート。 【請求項4】 請求項3記載の活性炭シートを電極とした電気二重層キャパシタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、粉末活性炭、活性 炭シート及び電気二重層キャパシタに関する。さらに詳 しくは、中心粒子径が10μm以上50μm以下であっ て、中心粒子径の1/10以下の大きさの粒子の割合が 6%以上13%以下である粉末活性炭、該粉末活性炭及 びパインダーからなる混合物を成型せしめた活性炭シート、及び該活性炭シートを電極とした電気二重層キャパ シタに関する。

[0002]

【従来の技術】近年、分極性電極と電解質界面に生じる 電気二重層を利用してエネルギーを貯蔵する電気二重層 キャパシタの開発が広くなされている。電気二重層キャ パシタ(以下、電気二重層キャパシタを単にキャパシタ と略称する) は、アルミニウム等の金属箔あるいは導電 性ゴムのような集電体上に活性炭からなる2枚の電極を セパレーターを介して対峙させ、電気二重層形成イオン を含む電解液を注入した構造であり、ファラッド級の大 容量を有し、充放電サイクルにも優れることから、名種 電気機器のバックアップ電源、太陽電池と組み合わせた 発光ダイオードの電源、おもちゃ等の小型モーターの電 源、車載バッテリーなどの用途に多く使用されている。 【0003】かかるキャパシタの電極材料には、大きな 比表面積をもつ活性炭繊維や粉末活性炭などのカーボン 系材料が使用されることが多い。例えば、特開平2-2 40909号及び特開平2-241012号公報に、活 性炭繊維をパルプ、炭素繊維に加え、バインダー及び分 散剤を用いて抄紙とした分極性電極が開示されており、 特開平4-22062号公報に、特定の粒子径を持つ活 性模粉末及びプラスチック粉末を混合し、板状に成型し たキャパシタが開示されており、また、特開平8-11 9615号公報には、繊維状活性炭、粉末活性炭及びバ インダーからなる混合物を成型したシートを掌稿とする キャパシタが開示されている。

【0004】キャパシタに蓄電できる体積あたりのエネルギー量を上げるためには高い比表面積の活性炭を高密度で充填した電極を使用する必要がある。しかしながら、活性炭の充填密度と比表面積とは逆比例する関係にあるので、高い比表面積の活性炭を高密度で充填するの

は極めて困難である。高比表面積の粉末活性炭を高密度で充填する方法として、特開平9-320906号公報に、粉末活性炭にテフロン粉末等のバインダーを5~10%程度混合した後に加圧成型する方法が提案されている。また、特開平9-289023号公報に、フッ化ビニリデン系共重合体をバインダーとし、Nーメチルー2ービロリドンに均一に溶解した後に粉末活性炭を混合し、ペースト状に加工しドクターブレードで塗布し加熱・乾燥する方法が開示されている。

【0005】従来、活性炭を粉砕してキャパシタ用活性 炭とするには、主としてボールミルあるいは振動ボール ミルによる方法が実施されている。このようにして得ら れる電気二重層キャパシタに使用される活性炭としては 中心粒子径が3~40μmであって、中心粒子径の1/ 10以下の大きさの粒子の割合は5%以下であった。

【0006】活性炭の粒度分布をシャープにする場合には風力分球機が併用されている。ボールミルで粉砕した場合には分布がブロードになりやすく、そのために充填密度が大きくなりやすい傾向にあるが、電極に成型を行った場合の活性炭の充填密度は実用上十分なレベルまで向上しなかった。またこの時の中心粒子径の1/10以下の大きさの粒子の割合は5%以下であった。ボールミルを使用し、粉砕時間を長くすると小さな粒子は増加するが、中心粒子径も小さくなるために電極に成型した場合の充填密度は依然として大きくならない。

[0007]

【発明が解決しようとする課題】高比表面積の粉末活性 炭を使用して高充填密度の活性炭電極を得るためには、 活性炭粉末にテフロン等のバインダーを混合し、加圧成 型するのが効果的である。しかしバインダーの量を増や した場合にはバインダーにより活性炭表面が積われるために容量が低下し、バインダーを粉末活性炭に対し10 %(重量%)以上添加した場合には活性炭の容量低下が 著しく、活性炭の充填密度が上がっても体積あたりの容量は増加しなかった。またバインダーを多く使用した場合にはキャパシタの内部抵抗が増大するという問題もあった。

【0008】キャバシタの内部抵抗が増加する原因は、バインダーが電気的な絶縁物であることにより、電極として使用する活性炭シートの電気抵抗が低下するためであり、また、バインダーが粉末活性炭間に多く充填されることにより、電解質イオンの通路が減少し、イオンの運動が妨げられるためである。バインダーの量は少ない程よいが、あまり少ないと粉末活性炭を捕捉する力が弱く、加圧した場合でも電極の密度は上がらない傾向にある。したがって本発明の目的は、少ないバインダー量で成型した場合でも高充填密度を達成できる粉末活性炭を提供することにある。

[0009]

【課題を解決するための手段】本発明者らは、上記目的

!(3) 000-344507 (P2000-34jJL8

を達成するため鋭意検討を重ね、本発明に到達した。すなわち、本発明は、中心粒子径が10μm以上50μm以下であって、中心粒子径の1/10以下の大きさの粒子の割合が6%以上13%以下である粉末活性炭である。また、本発明のもう一つの発明は、上記記載の粉末活性炭及びバインダーからなる混合物を成型せしめた活性炭シートであり、本発明の別の発明は、上記記載の活性炭シートを電極とした電気二重層キャパシタである。【0010】

【発明の実施の形態】本発明の粉末活性炎の中心粒子径及び中心粒子径の1/10以下の大きさの粒子の割合は、あまり小さくても、また、あまり大きくても電極中の活性炎密度及び休積あたりの容量が小さくなるので、中心粒子径は10μm以上50μm以下、好ましくは13μm以上44μm以下の粉末活性炎が、また、中心粒子径の1/10以下の大きさの粒子の割合は6%以上13%以下の活性炎が使用される。

【0011】このような活性炭粉末を製造する方法はとくに限定されないが、例えば、本発明の粉末活性炭を得るためには二つの粒度分布を有する粉末活性炭を均一混合してもよいし、あるいは粉末活性炭に高速で圧縮と混合を繰り返してもよい。本発明者らが検討したところによると、粉末活性炭に高速で圧縮と混合を繰り返した場合の方が粉末活性炭の中に占める細かな粒子の割合が増加し、活性炭密度を高くすることができるので、好ましい。高速で圧縮と混合を繰り返すには、例えば後述するホソカワミクロン株式会社から商品名AMS—30Sで市販されている粒子複合化装置を使用すればよい。

【0012】また、二つの粒度分布を有する粉末活性炭を混合した後に高速で圧縮と混合を繰り返してもよい。本発明の粉末活性炭を使用することにより電極中の活性炭の充壌密度は5%~13%程度向上する。活性炭の吸着性能は低下しないためにキャパシタの体積あたりの容量も同等に向上する。また、内部抵抗が増大しないという効果も発現する。

【0013】粉末活性炭の中心粒子径および粒度分布を 測定するには遠心沈降法あるいはレーザー回折法が一般 的に使用されるが、測定精度が高いという点でレーザー 回折型粒度分布計を使用するのが好ましい。

【0014】本発明の活性炭粉末をシートに成型するには、活性炭粉末100重量部に対し、テフロン、ポリビニリデンフルオライド(PVDF)などのバインダー5~10重量部を混合し、ロールプレスなどで圧縮成型する。成型温度はパインダーの種類に応じて適宜選択すればよいが、通常は室温程度で実施される。加熱して冷却プレスする方法によってもよい。

【0015】一般的な傾向として、中心粒子径が小さい場合にはより多くのバインダーが必要になる。この理由は活性炭粒子が小さくなることにより活性炭の見かけの表面積(活性炭粒子の外表面の面積)が増大するためで

あると推定される。小さな粒子が多い粉末活性炭においては中心粒子直径が10μm以下である場合には5~10%のバインダー量では活性炭粉末をバインダーにより十分に捕捉することができない。本発明の粉末活性炭は従来の粉末活性炭と比較して微粉の量が増加しているため、とくにその傾向が大きい。

【0016】本発明の粉末活性炭を定金電子顕微鏡を使用して観察すると、粉末活性炭中に存在する細かな粒子は大きな粒子の周囲に付着した状態で存在する。したがって、粉末活性炭を5~10%のバインダーと混合し電極として成型した場合、大きな粒子の周りに小さな粒子が存在する状態で最密充填の状態が達成されていると考えられる。このため中心となる粒子が大きい場合と小さい場合とでは必要となる粒子の大きさが変化する。

【0017】本発明の粉末活性焼を使用すれば、成型時の活性炭の密度が0.65g/cc以上、とくに好ましくは0.67g/cc以上の電極を作製することができる。従来の粉末活性炭を使用した場合には0.63g/cc程度の密度にしか成型が困難であったが、本発明の粉末活性炭を使用することにより、充填密度を大きく向上させることができる。

【0018】本発明に使用される活性炭は1gあたり300m2/g以上の大きな比表面積を有し、高い吸管性能を示す材料であれば高範囲に使用できる。活性炭の原料としては、椰子殼、木材あるいはフェノール樹脂等の炭化物あるいは石炭が使用される。なかでも、椰子殼を原料とする活性炭は粉砕と粒炭調整が容易であり、さらに高速で圧縮と混合を繰り返すことにより中心粒子径はほとんど変化せずに小さな粒子のみが増加しやすく、充填密度が上がりやすいという点で本発明の効果を最も顕著に発揮でき、好ましい。これらの活性炭は、水蒸気あるいは二酸化炭素により高温であるいは、塩化亜鉛、リン酸、水酸化カリウム等により薬品により賦活された活性炭でもよい。

【0019】前述したように、キャパシタは、アルミニウム等の金属箔あるいは導電性ゴムのような集電体上に活性炭からなる2枚の電極をセパレーターを介して対峙させ、電気二重層形成イオンを含む電解液を注入した構造であり、該電解液としては、硫酸水溶液などの水溶液系電解液を使用する場合と、プロビレンカーボネート、ケーブチロラクトン、アセトニトリル、ジメチルホルムアミドのような有機溶媒にテトラノルマルブチルアンモニウムテトラフルオロボレート等の電解質を溶解した有機電解液を使用する場合がある。有機電解液系キャパシタは耐電圧が2 5 V程度と高く、キャパシタの蓄電エネルギー量は電圧の二乗に比例するため、高エネルギー密度のキャパシタを作る場合には有機電解液を使用するのが好ましい。

【0020】本発明の粉末活性炭をシートに成型し、該シートを使用してボタン型キャパシタを作製した例を図

!(4) 000-344507 (P2000-34JJL8

1に示す。図1において、1は正極、2は負極、3はス テンレス競、4はステンレスケース、5は封口体、6は セパレーター、7は電解液である。以下、実施例により 本発明を具体的に説明するが本発明はこれらに限定され るものではない。

[0021]

【実施例】参考実験例

椰子殻を乾留した炭化物を4~10メッシュ(粒径1. 7mm以上、4.75mm以下)に整粒して粒状活性炭 の原料とした。この原料炭化物をプロバン燃焼ガスを用 いて900℃で4時間賦活した後、同一組成のガス中で 300℃以下まで冷却した。この活性炭の灰分は2.5 重量%であった。この活性炭を濃度10重量%、温度5 ○℃の塩酸水溶液で繰り返し洗浄を行った。その後水洗 浄を行い、150℃で12時間乾燥を行った。この活性 炭の灰分は0.3重量%であって、電気二重層キャパシ 夕用活性炭の電極として使用可能なレベルまで低下して いた。この活性炭のベンゼン吸着量は50%、ヨード吸 若性能は1700mg/gであった。またこの活性炭の 容量は27F(ファラッド)/gであった。容量の測定 には**電解液**として $1M(C_2H_5)_4BF_4$ のプロピレ ンカーボネート(PC)溶液を使用した。

【0022】この活性炭をボールミルに入れ12時間粉 砕を行った。この粉末活性炭の中心粒子径(50%D) および粒度分布をレーザー回折型粒度分布計(島津製作 所製SALD─3000S)を使用し測定した。中心粒 子直径は45μm、中心粒子径が1/10以下の粒子の 割合は5%であった。中心粒子径の1/10の粒子の割 合はその値に最も近い測定値の上下二つの値から比例計 算によって算定した。

【0023】実飾例1

参考実験例で得た粉末活性炭を、高速で圧縮と混合を行 う粒子複合化装置(ホソカワミクロン株式会社製AMS -30S)を使用し、回転数1100rpmで30分間 圧縮と混合を行った。インナーピースと回転容器との間 はBmmとした、該粒子複合化装置による圧縮と混合の 原理を簡単に説明する。まず、該装置に粉末活性炭を投 入し、500~2500rpm程度の速さで高速回転さ せる。粉末活性炭は遠心力により容器内壁に固定され る。中心軸に固定されたインナーピースと回転する容器 の間を粉末活性炭は高速で通過し、この時に圧縮力を受

【0024】インナーピースの後には粉末活性炭を回転 容器から剥ぎ取るためのスクレーバーが設置してあり、 圧縮された粉末活性炭は直後に攪拌混合される。この作 葉を高速で繰り返す。この装置で処理された粉末活性炭 は中心粒子直径43μm、1/10以下の粒子は7.5 %に増加していた。細かな粒子が増加した理由は高速の 圧縮と混合により粉末活性炭の中で割れやすい部分が選 択的に破損したためではないかと考えられる。

【0025】該装置で粉末活性炭を処理する前と処理し た後の粉末活性炭の状態を走査電子顕微鏡で観察した。 図2と図3に処理前の粉末活性炭の状態を各々倍率10 00倍及び2000倍で示し、図4と図5に処理後の粉 末活性炭の状態を各々倍率1000倍及び2000倍で 示した。処理後は処理前と比較して小さな粒子が格段に 増加していることが明瞭である。この結果はレーザー回 折型粒度分布計での測定結果と一致していた。また、小 さな粒子が大きな粒子の周りに付着した状態で存在して いる様子も明瞭である。

【0026】この粉末活性炭に重量比で7.5%のテフ ロン7Jとデンカブラック7.5%を加え均一に混合 し、ロールプレスで圧縮成型してシートに成型した。該 シートを打ち抜き、直径20mm、重さ100mgの活 性炭シートを得た。該シートの厚さから活性炭の充填密 度を測定したところ、0.78g/ccであり、この値 から換算した電極中の活性炭密度は0.68g/ccで あった。該シート2枚とセパレーターとして硝子繊維ペ ーパーを使用し、電解液として1M(C2H5)4BF 4 のPC溶液を使用してボタン型キャパシタを作製し た。2.3V定電圧充電を30分間行い、4mA定電流 放電により容量を測定したところ、成型活性炭電極の単 位体積あたりの容量は18.4ド/ccであった。結果 を表1に示す。

【0027】比較例1

参考実験例で得た処理前の粉末活性炭を使用した場合の 電極密度は0、728/ccであった(電極中の活性炭 の密度0.63g/cc).この成型活性炭を実施例1 と同様な方法で評価したところ、処理前の活性炭を使用 した場合の容量は17.0F/ccであった。この容量 は従来の電気二重層キャバシタの標準的な容量であり、 この値を容量の大小を検討する場合の指標とした。容量 の増加率は電極中の活性炭の密度の向上率に比例してい た。小さな粒子の増加率は2.5%であったが容量は 7.6%も大幅に向上していた。結果を表1に示す。

[0028] 実施例2

15分処理を行った以外は実施例1と同様にして粉末活 性炭を得た。該粉末活性炭の中心粒子径は44μmで、 1/10以下の粒子は6.5%であった。この粉末活性 炭を使用して実施例1と同様にして電極を作製した。電 極中の活性炭の密度は0、67g/ccで、容量は1 8. 1 F/c c であり、容量は6.5%向上した。結果 を表1に示す。

【0029】実施例3

60分間処理を行った以外は実施例1と同様にして粉末 活性炭を得た。該粉末活性炭の中心粒子径は43μm で、1/10以下の粒子は9.0%であった。この粉末 活性炭を使用して実施例1と同様にして電極を作製し た、電極中の活性炭の密度は0.70g/cc、容量は 18.9F/であり、容量は11%向上した。結果を表

!(5) 000-344507 (P2000-34JJL8

1に示す.

【0030】実施例4

120分処理を行った以外は実施例1と同様にして粉末活性炭を得た。該粉末活性炭の中心粒子径は40μmで、1/10以下の粒子は11%であった。電極中の活性炭密度は0.71g/ccで、容量は19.2F/ccであり、容量は12%向上しており、小さな粒子の割合の増加に伴い、容量が向上した。結果を表1に示す。 (0031)実施例5

参考実験例で得た粉末活性炭をボールミルを使用し、さらに24時間粉砕を行った。この活性炭の中心粒子径は5μmであった。参考実験例で得た粉末活性炭と上記粉砕した粉末活性炭を1:1(重量比)の割合でボールミルに入れ、2時間混合した。得られた粉末活性炭の中心粒子径は16μmで、1/10以下の粒子は7%であった。この粉末活性炭を使用した電極中の活性炭密度は0.66g/cc、容量は17.8F/ccであり、容量は5%向上した。結果を表1に示す。

【0032】実施例6

(

実施例5で得た粉末活性炭を実施例4と同様にして高速で圧縮と混合を120分間行った。中心粒子径は13μmで、1/10以の粒子は13%に増加した。この粉末活性炭を使用した電極中の活性炭密度は0.72g/cc、容量は19.4F/ccであり、容量は13%向上した。結果を表1に示す。

【0033】実施例7

参考実験例で得た粉末活性炭をさらに17時間ボールミルで粉砕し、中心粒子径が12μm、1/10以下粒子が5%の粉末活性炭とした。この活性炭を実施例1と同様にして30分間高速で圧縮と混合を繰り返した。待られた粉末活性炭は中心粒子径10μm、1/10以下の粒子の割合は7%であった。この粉末活性炭の電極での密度は0.67g/cc、容量は18.1F/ccであ

った。容量は6.5%向上した。結果を表1に示す。 【0034】比較例2

参考実験例で得た粉末活性炭を使用し、さらに34時間ボールミルで粉砕を行い、中心粒径3μmの粉末活性炭とした。この粉末活性炭を参考実験例で得た粉末活性炭に1:1(重量比)の割合で混合した。中心粒子径は13μmで、1/10以下の粒子の割合は14%であった。この活性炭を使用して電極を成型した。活性炭密度は0.60g/cc、容量は16.2F/ccであった。容量は4.7%低下した。結果を表1に示す。

【0035】比較例3

参考実験例で得た粉末活性炭をさらに20時間ボールミルで粉砕を行い、中心粒子径9μmの粉末活性炭とした。この活性炭を実施例3と同様にして60分間圧縮と混合を繰り返した。待られた粉末活性炭の中心粒子径は8μmで、1/10以下の粒子は8%であった。この粉末活性炭の電極中の活性炭密度は0.57g/cc、容量は15.4F/ccと低下した。中心粒子径が10μm以下の場合には活性炭の密度が向上しなかった。結果を表1に示す。

【0036】比較例4

参考実験例で得た粉末活性炭をさらに10時間ボールミルで粉砕し、中心粒子径60μm、1/10以下の粒子の割合が5%の粉末活性炭とした。この活性炭を実施例1と同様に処理し、中心粒子径55μm、1/10以下の粒子の割合が8%の粉末活性炭を得た。この粉末活性炭の電極中の密度は0.57g/cc、容量は15.4 F/ccと低下した。中心粒子直径が50μm以上の場合には活性炭の密度が向上しなかった。結果を表1に示す。

【0037.】 【袋1】

	中心粒子性 (μm)	1/10以下 の粒子の割合	電程中の活 性炭密度	体積あたり の容量	容量アップ 率
		(%)	(g/cc)	(F/cc)	(%)
実施別1	4.8	7. 5	0, 68	18.4	7. 6
実施列2	44	6. 5	: 0. 67	18.1	6. 5
実施例3	4.3	9.0	0.70	18.9	11
突旋例4	40	11.0	0.71	19.2	12
突旋例 6	16	7.0	0.86	17.8	5
英語例 6	13	13.0	0.72	19.4	13
実施例7	10	7. 0	0.67	18.1	6. 5
比較例1	4 5	5. 0	0.63	17.0	0
比較何2	13	14.0	0.60	16.2	—4. 7
比較例3	8	8. 0	0. 57	15.4	-9.4
比較何4	5 5	8.0	0. 57	15.4	-9.4

【0038】実施例8

フェノール樹脂を硬化・乾留した炭化物を4~10メッシュに整粒して活性炭の原料とした。この原料炭化物を

プロパン燃焼ガスを使用し900℃で8時間賦活した。 この活性炭のヨード吸着性能は2000mg/g、ベン ゼン吸着量は60%であった。この活性炭のキャパシタ

!(6) 000-344507 (P2000-34jJL8

としての容量は29下/gであった。この活性炭をボー ルミルを使用し19時間粉砕を行った。得られた粉末活 性炭は中心粒子径35μm、1/10の粒子の割合は5 %であった。この粉末活性炭を使用し実施例1と同様な 方法で電極を作製した。活性炭の密度は0.62g/c cで、容量は18.0F/ccであった。この粉末活性 炭を実施例1と同様な方法で高速で圧縮と混合を行い、 中心粒子径34μm、1/10の粒子の割合が7%の粉 宋活性炭を得た。この活性炭の電極中での密度は0.6 5g/ccで、容量は18.9F/ccであった。容量 は5%向上した。フェノール樹脂活性炭の場合も容量は 向上したが、椰子殻活性炭の方が容量の向上が大きかっ た.

[0039]

【発明の効果】本発明により、中心粒子径が10μm以 上50μm以下で、中心粒子径の1/10以下の大きさ の粒子の割合が6%以上13%以下の粉末活性炭を提供 することができる。本発明の粉末活性炭はバインダーと 混合してシートに成型し、該シートを電極としてセパレ ータ及び電解液と組み合わせ、容量の大きいキャパシタ に作製することができる。また、本発明の活性炭粉末

は、キャパシタの他、各種電極、シートにも好適に使用 することができる.

【図面の簡単な説明】

【図1】本発明の粉末活性炭を成型して作製したボタン 型キャパシタの断面図である.

【図2】処理前の粉末活性炭を1000倍の走査電子顕 微鏡で観察した写真である。

【図3】処理前の粉末活性炭を2000倍の走査電子顕 微鏡で観察した写真である。

【図4】本発明の粉末活性炭を1000倍の走査電子顕 微鏡で観察した写真である.

【図5】本発明の粉末活性炭を2000倍の走査電子顕 微鏡で観察した写真である。

【符号の説明】

- 1 正極
- 2 負極
- 3 ステンレス蓋
- 4 ステンレスケース
- 5 封口体
- 6 セパレーター
- 電解液

[図1]

!(7) 000-344507 (P2000-34jJl8

→→→ YOUNG&THOMPSON

[図3]

'04 04/07 WED 21:10 FAX 03 3402 4660

【図4】

!(8) 000-344507 (P2000-34jJL8

【図5】

