# Genetic algorithms 2023/2024

Kamil Eliaszuk

# **Travelling salesman problem, TSP**

Knowing the list of cities and the distances between them, one must find the shortest possible route that connects all the cities, starts and ends at a specified point, and passes through each city only once.

Complexity O(n!)



# Representation

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---|----|----|----|----|----|----|----|----|
| 1 | 0  | 12 | 19 | 31 | 22 | 17 | 23 | 12 |
| 2 | 12 | 0  | 15 | 37 | 21 | 28 | 35 | 22 |
| 3 | 19 | 15 | 0  | 50 | 36 | 35 | 35 | 21 |
| 4 | 31 | 37 | 50 | 0  | 20 | 21 | 37 | 38 |
| 5 | 22 | 21 | 36 | 20 | 0  | 25 | 40 | 33 |
| 6 | 17 | 28 | 35 | 21 | 25 | 0  | 16 | 18 |
| 7 | 23 | 35 | 35 | 37 | 40 | 16 | 0  | 14 |
| 8 | 12 | 22 | 21 | 38 | 33 | 18 | 14 | 0  |

0 0 0 0 0 0 0 0 0 0

STSP (symmetrical)

# **Selection**

Fitness function = 1 / total route length

Shorter route -> higher fitness

- Roulette method
- Tournament method

# **Crossovers (blind)**

### **Parents**



### Offspring



OX (Ordered Crossover)



PMX (Partially Matched Crossover)

c) children

CX (Cycle Crossover)

# Crossovers (known distance between cities)

| father: | 4 | 5 | 7 | 3 | 2 | 1 | 6 | 8 |
|---------|---|---|---|---|---|---|---|---|
|         |   |   |   |   |   |   |   |   |
| mother: | 5 | 1 | 7 | 3 | 6 | 2 | 4 | 8 |

In each step, four neighbors of recent selected node are considered and which is closer to it is selected. 2, 6, 5 and 7 are neighbors of 1 and 2 is closer to it so is copied to child.

**GX** (Greedy Crossover)

| father:            | 4           | 5           | 7 | 3 | 1 | 2 | 6 | 8 |
|--------------------|-------------|-------------|---|---|---|---|---|---|
| mother:            | 3           | 1           | 7 | 5 | 6 | 4 | 2 | 8 |
|                    |             | Î           |   | Î |   |   |   |   |
| child:             | 7           |             |   |   |   |   |   |   |
|                    |             |             |   |   |   |   |   |   |
| father:            | 4           | 5           | 7 | 3 | 1 | 2 | 6 | 8 |
| father:<br>mother: | 4<br>3<br>↑ | 5<br>↑<br>1 |   | 1 |   |   | 2 |   |

UHX (Unnamed Heuristic Crossover)

**Step 1**: Start from 'First Node' of the parent 1 (i.e., current node p = parent1(1)).

Step 2: Sequentially search both of the parent chromosomes and consider The first 'legitimate node' (the node that is not yet visited) appeared after 'node p' in each parent. If no 'legitimate node' after node p is present in any of the parent, search sequentially the nodes from parent 1 and parent 2 (the first 'legitimate node' that is not yet visited from parent1 and parent2), and go to Step 3.

**Step 3**: Suppose the 'Node  $\alpha$ ' and the 'Node  $\beta$ ' are found in 1st and 2nd parent respectively, then for selecting the next node go to Step 4.

**Step 4**: If  $C_{p\alpha} < C_{p\beta}$ , then select 'Node  $\alpha$ ', otherwise, 'Node  $\beta$ ' as the next node and concatenate it to the partially constructed offspring chromosome. If the offspring is a complete chromosome, then stop, otherwise, rename the present node as 'Node p' and go to Step 2.

MSCX (Modified Sequential Constructive Crossover)

https://arxiv.org/pdf/2001.11590.pdf https://arxiv.org/ftp/arxiv/papers/1504/1504.02590.pdf

# **Mutation**



# **Map of Poland**



### Cities:

http://cybermoon.pl/wiedza/wspolrzedne\_polskich\_miast.html

### Borders:

https://www.geoportal.gov.pl/pl/dane/panstwowy-rejestr-granic-prg/

# **Results - visualization**



### PMX – 40 cities



# **Results - visualization**



### GX – 40 cities



## **Results - visualization**



### UHX - 200 cities



# Results – crossover method comparison



Population – 400 Cities – 150 Tournament method, Mutation – 0.01

# Results – crossover method comparison



Population – 400 Cities – 20 Tournament method, Mutation – 0.01

# Results – mutation rate comparison



Population – 200 Cities – 25 Roulette method, Crossover - OX