Representations of ly (86)

Overieur. In this section, we only focus on fin dim shiple it wood and the counter of Ugester. For rep theory:

1. 2 is not a root of remity, Ug(sle)/k behaves like U(sle)/charo. where chark #2.

d. 9 is a primitive both noot of runtry with I sold and l = 3, Ug (8b)/alg closed k behaves like U(Sb)/prime char

For the center:

1. If 9 is not a root of unity, C(U) is generated by C as a kralg. 2. If 9 is a primitive both root of unity with I odd and l=3.

Ceu) is generated by E, F, and its intersection with Us. (Cour=<E',F', Cou)(140>)

Representation theory:

Let Mbe a U-moel, EM2CMg2, FM2CMg22

I, 9 is not a root of unity. Let Mbe a fin. dim U-mod. char R+2 Then D I rise IN st, E M=FSM=0, (E, Fact notpotently)

DM = DM ± 9a. (We can find a zero polynomial of K: TT (K-92j))

1. 9 is not a root of unity, Z(U) = RLCI, $(R_1 \circ TE : Z(U) = (U^0)^S)$ 2. 9 is a primitive l-th root of unity with l odd and l = 3, $Z(U) = (E^1, F^1, K^1, C)$

	Hopf A	tgetna S	Anuture o	of Ugust	2)		
Raview: Définit	fion of	Hopf algebr	us.				
				k equippe	d with	the J	Mowing
A Hopf algebrains: linear maps: m: A® c: k-	A A n	ultiplocation mt	\$\frac{\lambda}{\mathcal{E}}:	A→ A⊗, A→ k	4 commi	ltiplreati f	m
Suchthat			ζ λ =		/. 6		
m. (m. & d)) = m · (fel)	20 m) 10 (id (201)		$(ab) \circ \Delta = \Delta \circ (bas)$			
		ala	elmus	sid). Δ:	- 14 = ((a 62)	coalgebra
and Δ , z are	algebra flor	nountphirms	, m,	, L are coc	elgelna 1	homomorph	where a
and there epists	a livear mo	g S. A.	→ A (an	otipode) 52	£.		bialgi
m. (S	\otimes rel) o \triangle	= l 0 S	= m o (id (8S)0A			
Equivalently, the							
AQADA				40 A0A	∠\0 is	1 48	A
id, m				۵			
J A⊗A		Ј Д		1 A&A	, <u>, , , , , , , , , , , , , , , , , , </u>	- A	
		- / -	= -				~
k Ø A →		A		k⊗ A €0	$\frac{1}{2}$ $A\otimes_{\lambda}$	A along	A⊗k Z
18	m A 2 id			id	A	\ \d	
<u> </u>	A = 12						<u> </u>
	AOA	$\leftarrow \Delta$	A A	→ A&/	1		
) id	DS W	R L	√	300 hel		
	/4\&\/		4	— A⊗A			

Proposition of Hopf algs. 1. antipode is uniquely determined by the conditions. 2. S is automatically a alg autihorno and coalg antihono with $\mathcal{E} \cdot S = \mathcal{E}$, $\Delta \cdot S = P \cdot (S \otimes S) \cdot \Delta$, $P > \infty$ and ange map on $A \otimes A$. In general, the Hopf Anuture of A 13 MT unique: If Is an automorphism or auti-, then we can define a new Hopf structure (2), 95, 95) Where 3/2 = (989)0/097, 95=2097, 95 = 59.5097 If 4 is an auto 95-5097 If 9 is an autianto Ug(sh) is a Hopf algebra by S: E->-KE A: E > E S1+K DE S: E → 0 F → F&K"+1&F 下 つ F -> -FK K → K⊗K K → 1 K -> K Some Jonnulas, $Z(K_{\nu}) = E_{\nu}$ $\Delta(\kappa^n) = \kappa^n \otimes k^n$ S(Er) = (-1) gran ret a (E') = I givei) [[] Efiki & Ei S(F')=(-1) 9-r(1-1) F(C $\Delta(F') = \sum_{i=1}^{\infty} 2icr-i) [i] F^i \otimes F'^i K^i$ S'(u) = K'uk for all well Rep of tensors: M, k) duel space: (Wf)(m) = f(Scw)m), the U, mo M. for M* D Mx = Home (M, k) G:M -> M** ; G(m) f) = J(Km) a homo of U-mods. (M and M** , in general, are MT isomorphism. For findin, it is true.) M* &M -> k; J&m >> Jim is a home of Utmods. But the analogous, of M&M* -> k is NOT a home in general. But we can compose with 9':

 $M \otimes M^* \xrightarrow{g \otimes ro} M^{**} \otimes M^* \rightarrow k$ $m \otimes J \qquad \qquad J \mid K^{\dagger} m \mid M^{\dagger} + k \quad \text{only way}.$ H (M) 3 Hom, (M,N): u19 = I luig go U(2). (Hom, (M,N) is a U&U-mod) Homu (M,N) = Homk (M,N) = { GeHomk (M,N): UG = Em) 9 } (B) Homy (M, Hom (N,V)) ~ Homy (M&N, V) Debag: Endk(M) → k, B → fr(Gok-1) is a U-homom (quantrum trace) $M \otimes M' \subseteq M \otimes M$ An observation gives: If M&M' fin dim, then M&M' = M'&M, Since their weight spaces have the same dimension. But P is NOT a Uthoman. Therefore, our goal is to find a Junctorial isomorphism: Given $M \xrightarrow{g} N'$, the isomorphism R makes the diagram commute MOM RMM MOM $J\otimes g'$] $N\otimes N'$ $R_{\nu,\nu'}$ $N'\otimes N$ Now we find some necessary condition: Take M=M'=U, then set R = Ru,u (1001) H meM, n'eM', consider the map U→M: a → am, U→M', b → fm' By the functoriality, RM,M' (m∞m') = R'(m'∞m). And because Ru,u is a U-homom, R'o Diu) oR = Po∆(u)

Now our goal is to fond a somertible REUOU satisfying RiDusoR=PoDIN. · Drinfeld has obscovered (in () $R = \left(\frac{1}{2} - \frac{(1-9^2)^n}{[n]!} + \frac{1}{2} - \frac{n(n+1)}{[n]!} + \frac{1}{2} +$ where $9=\exp(-\frac{h}{2})$, $K=\exp(-\frac{hH}{2})$. But this $R \notin U$. Now we consider another construction. (9 is WT and of runty, chark+2) Step 1. Set $\theta_n = a_n F' \otimes E' \in U \otimes U$, $a_n = (-1)^n q^{\frac{n(w-1)}{2}} \frac{(q-q^{-1})^n}{[n]!}$ $(\theta_1 = 0)$ Then $\theta_0 = 181$, $\theta_1 = -(9-9^-)$ F&E and $\alpha_n = -9^{-(n-1)} \frac{9-9^{-1}}{[n]} \alpha_{n-1}$ and $\Theta = \sum_{n \geq 0} \Theta_n$ is unipotent (bijective), but MT a U-homom. with the formula $\Delta(u) \cdot \Theta = \Theta \cdot \Delta(u)$ \tag{\tau}. Step 2. Sex 1 = 3±9a | a 62} weight lattice. J= /\x/\ > kx is a map satisfying J(\(\lambda\))=\(\lambda\) = \(\mu\) J(\(\lambda\)^2)= \(\mu\) J(\(\lambda\)^2, \(\mu\) J: MOM' > MOM'; nom' > J(r,u) nom &m 6Mz, meMu (This of exists but MT unique) Then $\Delta(u) \circ \Theta^{\mathcal{J}} = \Theta^{\mathcal{J}} \circ (P \circ \Delta) (u)$, where $\Theta^{\mathcal{J}} = \Theta \circ \mathcal{J}$. Theorem: The map O.P: M&M -> MOM' is an isomorphism of Ut mods, and sectisfies the functional condition.

Quantum lang-Boxter Equation:

 $R_{12} \otimes R_{13} \otimes R_{23} = R_{23} \otimes R_{13} \otimes R_{12}$ in Endk $(V \otimes V \otimes V)$ dim $V < \infty$. In special case (M = M' = M''), Θ^T is a solution of the quantum Young-Baxter equation.

Theorem: $\Theta_{12}^{f} \Theta_{13}^{f} = \Theta_{23}^{f} \Theta_{13}^{f} \Theta_{12}^{f}$ End (M&M's) Pf: (1) LHS = Θ_{12} \mathcal{J}_{12} \mathcal{J}_{3} \mathcal{J}_{13} \mathcal{J}_{23} \mathcal{J}_{13} RHS = Θ_{23} \mathcal{J}_{23} \mathcal{O}_{13} \mathcal{J}_{13} \mathcal{O}_{12} \mathcal{J}_{12} When we calculate Fix OB & Fix OB, 0'80" are involved. $\widehat{J}_{12}\Theta_{13} = \Theta'\widehat{J}_{12}$, $\widehat{J}_{23}\Theta_{13} = \Theta'\widehat{J}_{23}$. Where $\Theta' = \widehat{\square}\Theta_n' = \widehat{\square}\Omega_n F' \otimes K'' \otimes E''$, $\Theta'' = \widehat{\square}\Omega_n'' = \widehat{\square}\Omega_n F' \otimes K'' \otimes E''$ 1HS= 012 0/ F12 F13 023 F23 RHS = 0=3 0" F23 F13 0=2 F12 (3) LHS = 0,20 O23 F12 F13 F23 RHS = 023 0" 012 723 713 712 Since \mathcal{J}_{ij} are commutative, we only need to consider the joint three terms: $\theta_{12}\theta'\theta_{23} = \sum_{n\geq 0} \frac{1}{2} \theta_{12} \theta'_{10} (18\theta_{n-1})$ = D 0 (D 0 (D 0 1) (D n) $= \overline{\sum_{n \geq 0}} (\Delta \otimes 1)(\theta_n) \circ \theta_{n2}$ $= \sum_{n \geq 0} \widehat{\sum}_{i \neq 0} (100 \Theta_{n-i}) \cdot \Theta_{i}'' \cdot \Theta_{12}$ $= \Theta_{23} \circ \Theta'' \circ \Theta_{12}$

Hexagon Identifies:

In the following diagram, R denote maps constructed using suitable 00 P

Theorem: Let M, M', M' Jon dim U mod, J satisfies
$\mathcal{J}(\lambda,\mu\nu)=\mathcal{J}(\lambda,\mu)\mathcal{J}(\lambda,\nu) \& \mathcal{J}(\lambda\mu,\nu)=\mathcal{J}(\lambda,\nu)\mathcal{J}(\mu,\nu)$
$J(\lambda,\mu\nu) = J(\lambda,\mu)J(\lambda,\nu)$ & $J(\lambda\mu,\nu) = J(\lambda,\nu)J(\mu,\nu)$ for all weights λ,μ,ν . The the following diagrams commute
$\mathbb{R}^{M\otimes M'\otimes M'}) \xrightarrow{\mathrm{Can}} (M\otimes M') \otimes M'$
$\mathcal{M} \otimes (\mathcal{M}' \otimes \mathcal{M}')'$ $(\mathcal{M}' \otimes \mathcal{M}) \otimes \mathcal{M}'$
an $(M \otimes M) \otimes M'' \xrightarrow{R} M'' \otimes (M \otimes M')$ an Hexagon ide
and Ry (M'OM) OM" COM M'OM") R
$(M \otimes M') \otimes M''$ $M' \otimes (M'' \otimes M)$
$\sum_{M \otimes (M \otimes M')}^{\infty} \frac{R}{M \otimes M'') \otimes M} = \sum_{M \otimes M} \frac{R}{M \otimes M''} \frac{R}$
The proof of this theorem is plain.
Now use consider the existence of J:
Now we consider the existence of J: A necessary condition is that I all weights are 9^a , $a \in \mathbb{Z}$, then
$J(9^a, 9^b)$ must be $(9^{\frac{1}{2}})^{-ab}$, $\forall a, b \in \mathbb{Z}$ (if $9^{\frac{1}{2}} \in \mathbb{R}$)
Thus, all findin U-moel of type 1 (neights & f 99, as 2) satisfies
hexagon identities.

ntillia

The Quantized Enveloping Algebra Ug(0J)

Settings

of semistruple Lie alg/k
chark +2 and chark +3 if of has component of type G2

De soot system wa jundamental weight lattice

 $a_{\alpha\beta} = \frac{2(\alpha,\beta)}{(\alpha,\alpha)}$, $d_{\alpha} = \frac{(\alpha,\alpha)}{2}$, $\langle \lambda, \alpha' \rangle = \frac{2(\lambda,\alpha)}{(\alpha,\alpha)}$

Then U(J) has a presentation with generators Xa, Ya, ha, 26TT. and relations [ha, hg] = , [xa, yg] = Sagha, Iha, xg] = aagxg, [ha,yg] = - aagyg and for all 2+f

 $\left(ad\chi_{\alpha}\right)^{1-a_{\alpha\beta}}(\chi_{\beta})=0$, $\left(ady_{\alpha}\right)^{1-a_{\alpha\beta}}(y_{\beta})=0$.

that is,

 $\frac{1-a_{\alpha\beta}}{\sum_{v=0}^{1-(-1)^{i}} \left(\frac{1-a_{\alpha\beta}}{i}\right) \chi_{\alpha}^{1-a_{\alpha\beta}-i} \chi_{\beta} \chi_{\alpha}^{\overline{i}} = 0, \qquad \frac{1-a_{\alpha\beta}}{\sum_{v=0}^{1-(-1)^{i}} \left(\frac{1-a_{\alpha\beta}}{i}\right) \chi_{\alpha}^{1-a_{\alpha\beta}-i} \chi_{\beta} \chi_{\alpha}^{\overline{i}} = 0,$

Fix an element $9 \le k$, $9 \ne 0$ and $9^{2da} \ne 1$ for all $a \ne \overline{a}$. Set $9a = 9^{da}$, $[a]_{\alpha} = [a]_{\nu=9a} = \frac{9a - 9a}{9a - 9a} = \frac{9ada - 9ada}{9^{da} - 9^{-da}}$

 $Inj_a' = I1j_a[2j_a...[n]_a, Iaj_a' = Iala' = Ianj_a' Inj'$

Definition of Mg 07/m

The quantized enveloping algebra $U_1(J)$ is a k-alg generated by E_{λ} , F_{a} , K_{a} , K_{a}^{-1} with relations (for all α , β 6Π)

· Sin = Kep u Kep for all uf U Basis of Ú Step 1. Construct reps on Mk: basts (vz: I for seq of simple nots) Devote $C = (C_{\beta})_{\beta \in \Pi} \in \mathcal{K}^{\Pi}$ nonzero \mathcal{K} truple. Then $\mathcal{M}_{\mathcal{K}}$ has a \mathcal{U} -mod structure: $\widehat{\mathcal{M}}_{k'}(C)$: $K_{2} \cdot V_{I} = C_{0} \cdot q^{-(\alpha)} \cdot w_{I} \cdot I$, $E_{\alpha} \cdot V_{I} = \underbrace{\sum_{1 \leq j \leq r} C_{\alpha} \cdot q^{-(\alpha)} \cdot y_{j}}_{1 \leq j \leq r} \cdot C_{\alpha} \cdot q^{-(\alpha)} \cdot y_{j} \cdot I$ (Only (R4) is interesting: $g_{j} = a$ where $U_{3} = \sum_{i=j+1}^{r} \beta_{i}$. (Only (R4) is interesting: $E_{a}E_{a}\cdot V_{I} = E_{a}V_{(a,I)} = \frac{(aq^{-(a)},ut_{I})}{q_{a}-q_{a}^{-1}} \cdot V_{I} + \frac{(aq^{-(a)},ut_{I})}{q_{a}-q_{a}^{-1}} \cdot V$ $v_{I} + F_{a}E_{a}v_{I} = \frac{K_{a}-K_{a}}{q_{a}-q_{a}}v_{I} + F_{a}E_{a}v_{I}$ 9a-9d $M_{K}(C)$: $K_{a}V_{I} = C_{a}q^{(a)}w_{I}$ V_{I} , $F_{a}\cdot V_{I} = \frac{\sum_{1 \leq j \leq r} C_{a}q^{(a)}w_{j}^{j} - C_{a}q^{(a)}w_{j}^{j}}{q_{a} - q_{a}^{-1}}v_{(\beta_{1}, \cdots, \beta_{r}, -\beta_{r})}$ Eavi = Vaji) where $\mu_{\hat{0}} = \frac{1}{2} \beta_{\hat{1}}$. Step 2. A computational lemma. (proved by industion) Let I be a seq. There are $G_{A,B} \in \mathbb{Z}[v,v']$ indexed by for seqs of somple roots ARB with wt I = wt A + wt B. set, in U and in U. △(Ez) = = CAB(q) EA KWB & EB △ (FI)= = CA,B(9T) FA & KWAAFB Corl. YUEZD, U>O, A(U) C D U, K, &U,, A(U) C D U-v& K, U, Cor 2. If $x \in U_{\mu}$ and $y \in U_{\mu}$, $\mu = \sum M_{\alpha} \cdot \alpha$, then $S(x) = (-1)^{ht(\mu)} \cdot 9^{m(\mu)} \cdot K_{\mu} \cdot T(x) \quad \text{and} \quad S(y) = (-1)^{ht(\mu)} \cdot 9^{-m(\mu)} \cdot T(y) \cdot K_{\mu}$ where there = Ima, my) = = ((u,u)- Ima(2,d))

Step 3. Basis of U

Theorem: The elements FIKMET with $\mu \in \mathbb{Z} \overline{\Xi}$, I, J for seq of sample roots one a basis of U.

Pf. Let V be the subspace of \widehat{U} spanned by those elts. It is easy to show from the calculation that $\widehat{U} V \subset V$, Thus $\widehat{U} = V$, i.e. these elts span \widehat{U} .

Suppose $\sum_{I,J,\mu} Q_{I,J,\mu} F_I K_{\mu} E_J = 0$ in \widehat{U} with almost but not all $Q_{I,J,\mu} = 0$. Take I_{o} he the sequence such that $\exists Q_{I_{o},J,\mu} to$ and wt I_{o} is maximal. Consider the tensor product $\widehat{M}_{k}(c) \otimes_{k} \widehat{M}'_{k}(c)$ as a $\widehat{U} \otimes k$ -mod. Then

- O Zuntiku Ej (V48V4) = Zuntiku Zuntiku
- Dere $(\mu = \prod_{\alpha \in \Pi} C_{\alpha}^{m(\alpha)})$ = $\sum Q_{I,J,\mu} C^{\mu} Q^{\mu,\mu tJ}$ = $\sum |V_{\mu} \otimes V_{J}| = 0$ where $(\mu = \prod_{\alpha \in \Pi} C_{\alpha}^{m(\alpha)})$, $\mu = \sum m_{i,\alpha} d$.

Using the lemma again,

- 3 I ar, J, u cha (u, wt J) I co, p(q1) voo Kitc For J = 0 The only term on the subspace vo Mk(c) is
- $\begin{array}{lll}
 \bigoplus & \int \Omega_{\text{Io},J,\mu} C^{\mu} Q^{(\mu,\text{vtJ})} C^{\text{Io}}_{J,\rho} Q^{-1} V_{\text{Io}} \otimes K_{\text{wtIo}} V_{\text{J}} \\
 &= \sum_{J,\mu} \Omega_{\text{Io},J,\mu} C^{\mu-\text{vtIo}} Q^{(\mu,\text{vtJ})-(\text{wtIo},\text{wtJ})} \cdot V_{\text{Io}} \otimes V_{\text{J}} = 0 \\
 &= \sum_{J,\mu} \Omega_{\text{Io},J,\mu} C^{\mu-\text{vtIo}} Q^{(\mu,\text{vtJ})-(\text{wtIo},\text{wtJ})} \cdot V_{\text{Io}} \otimes V_{\text{J}} = 0
 \end{array}$ Since $V_{\text{Io}} \otimes V_{\text{J}}$ are linearly independent,
- Desposition over k in 171 determinates and their inverses.

Since this polynomial ranisher at all ITI-tuples (Ca), QIo, J, u =0 Y u. J This contradicts the choice of Io. Thus, they are linearly independent.

Triangular Decomposition of U.

Denote Usp and Usp the Serre relation in U. i.e.

and It the ideal in Ut generated by Uds

Prop: The two-sided ideal generated by $\mathcal{U}_{\mathbf{k}}^{\pm}$ in $\widetilde{\mathcal{U}}$ is equal to the image of $\widetilde{\mathcal{U}} \otimes \widetilde{\mathcal{U}}^{0} \otimes I^{+}$ (resp. $I^{-} \otimes \widetilde{\mathcal{U}}^{0} \otimes \widetilde{\mathcal{U}}^{+}$) under the multiplication, say V^{\pm} . Pf. Only show for $\mathcal{U}_{\mathbf{k}}^{\pm}$.

 V^+ , as a vector space, is spanned by u $U_{af}^+ E_{\mathbf{I}}$, $u \in \hat{U}$, I suitable fin seq. Thus V^+ is a left ideal.

By a direct but complicated calculation, V is a two-sided ideal.

Thus, Vt = < Udip: a#>

Thm. The multiplication map $m: U \otimes U^{\circ} \otimes U^{\dagger} \rightarrow U$ is an isom of vector spaces. If Let I be the bernel of $\pi: \widehat{U} \rightarrow U$, i.e. two sided ideal generated by U_{t}^{\dagger} . It is obvious that $I \cap \widehat{U}^{\circ} = 0$. Thus $m: \widehat{U}^{\circ} \rightarrow U^{\circ}$ And $I \cap \widehat{U}^{\dagger} = I^{\dagger} \Rightarrow \widehat{U}^{\dagger} / I^{\dagger} \xrightarrow{\sim} U^{\dagger}$

 $\widehat{\mathcal{U}}_{\mathbf{I}} = \widehat{\mathcal{U}} \otimes \widehat{\mathcal{U}} \otimes \widehat{\mathcal{U}}_{(\widehat{\mathcal{U}} \otimes \widehat{\mathcal{U}} \otimes \mathbf{I} + \mathbf{I} \otimes \widehat{\mathcal{U}} \otimes \widehat{\mathcal{U}}^{\dagger})} = \widehat{\mathcal{U}}_{\mathbf{I}} \otimes \widehat{\mathcal{U}} \otimes \widehat{\mathcal{U}}^{\dagger} \cong \widehat{\mathcal{U}} \otimes \mathcal{U} \otimes \mathcal{U}^{\dagger}$

Runk. Ut is isom to the algebra generated by E2(F2), 2ETT and relation Uap (commutative)

Compared with Lie algebras, PBW Thm of U2(07) is quite hard. The reasons one:

1) The graded associative alg of U is NOT commutative

2) The nort vectors of U is NOT clear.

Thus, we can not prove the PBW now.

But by analying the grading of 21th we can get Fa Fu Ex are

linearly independent. ($I_{\pm rd}^{\pm} = 0 \ \forall r \in Z^{70}$)

Thus, Ug/sh) -> Ug(of) is an imbedding.