

CS 134 Data Visualization: Week 1

Joshua Goldberg

Edmonds College

Thank you to Allison Obourn and Andrew Heiss of Georgia State University for parts of these slides

Welcome to CS 134

- Instructor: Joshua Goldberg
 - Education: Master's in Data Science from the University of Chicago
 - o **Industry:** Currently working as a Data Scientist at Amazon
- Contact Information
 - Email: josh.goldberg@edmonds.edu

What we will cover

Topics

Basics of graphic design

Mapping data to graphics

How **not** to lie with statistics

Core types of graphics

Special applications

Tools

- Last Quarter:
 - Excel
- This Quarter:
 - R / tidyverse
 - o ggplot2
 - Tableau

The Logistics

- Class schedule and format
 - Tuesdays 6:00 7:50 pm
 - Thursdays 7:15 8:15 pm
 - All classes will be held on Zoom
- All class information will be posted on the class website

Required Materials

Everything you need for this class is free

Reading material

- Fundamentals of Data Visualization by Claus O. Wilke
- R for Data Science by Hadley Wickham and Garrett Grolemund

Technology

- The R Programming Language
- RStudio / Posit available to download and install as well as use in your browser
- The esquisse library for R
- Tableau

Assigned Work

• Required work

- No exams!
- One assignment a week for the first 6 weeks
- Larger final project
 - Presentation during our final exam slot

• Grading breakdown

- 60% Weekly assignments
- 40% Final project

Graphic Design

Principles of design

There are thousands of books and centuries of debate and theory about what makes good design.

No one agrees.

This isn't a graphic design class - we'll just discuss some general pointers.

Let's start with the CRAP

Contrast

Repetition Repetition Repetition

Alignment

Proximity

Use these as a checklist.

Contrast

If two items are not exactly the same, make them different.

REALLY DIFFERENT

Create contrast with:

- Colors
- Font family
- Font weight
- Size

Color Theory

knitr::include_url("https://color.adobe.com/create/color-wheel")

Usability

Values **close** to each other should use **similar** colors, and values far from each other use different colors

- 1. Colors should indicate which values are **greater** or **lesser** than the other values.
- 2. The difference between colors should represent the difference between values.

Accessibility

8% of men and 0.05% of women have some form of color blindness.

Rainbow scale as seen by color-impaired persons. (Okabe, 2002)

We need to make sure we choose colors everyone can distinguish.

Making it all fit together

- Keep something **consistent** so your visualization has **cohesion**. Choose at least one of:
 - colors
 - fonts
 - families
 - weights
 - sizes
 - graphical elements
 - o alignments
- Every item should have a **visual connection** with something else on the page.

Alignment

Share lines and repeat alignments where possible.

Proximity

Group similar things together to have logical groupings.

Ralph Roister Doister

(717) 555-1212

Mermaid Tavern

916 Bread Street

London, NM

Mermaid Tavern

Ralph Roister Doister

916 Bread Street London, NM (717) 555-1212

Image Quality

Last, but not least: **image resolution** matters

No matter how good your visualization is, it won't look good if it pixelated or blurry.

1992

- Some image types compress data
 - bitmap
- Others compress colors
 - o png
 - o gif
- Better option: vector graphics
 - o svg
 - o pdf
 - o eps