

HH-M01 NearLink Module Specifications

Document version: 03

Release date: 2024/12/12

Table of contents

1 Overview	3
1.1 Main features	4
1.2 Main technical parameters	5
1.3 Main features	6
2 Interface definition	7
3 Appearance and dimensions	10
4 Electrical Characteristics	12
5 power consumption	12
6 Wi-Fi RF parameters	13
7 BLE/SLE RX TX performance	14
8 Recommended furnace temperature curve	15
9 module minimum system	16
10 Recommended PCB Designs	17
11 Peripheral wiring recommendations	19
12 Packaging instructions	19

Copyright statement:

The copyright of this document is owned by HopeRun, with all rights reserved. Without written permission, no unit or individual may excerpt or copy part or all of the contents of this document, or disseminate it in any form.

The information in this document will be continuously updated with the advancement of HopeRun products and technology, without further notice of updates to such information.

٠

1 Overview

HH-M01 is a high-performance, low-power consumption, highly integrated 2.4GHz Wi-Fi 6, BLE and SLE Combo module based on HiSilicon WS63. It has complete Wi-Fi network functions, supports standard IEEE802.11 b/g/n/ax protocol and complete TCP/IP protocol stack; supports BLE 4.0/4.1/4.2/5.0/5.1/5.2; supports SLE 1.0. Users can use this module to add networking capabilities to existing devices or build standalone network controllers. It can be used independently or as a slave to run on other host MCUs.

The module has rich peripheral interfaces, including SPI, QSPI, UART, I2C, PWM, GPIO and multi-channel ADC; it has built-in SRAM and Flash, can run independently, and supports running programs on Flash. IoT intelligent terminal devices can be developed based on Oniro and third-party components, so that they can be widely used in IoT fields such as smart homes, smart wearables, medical monitoring, industrial testing, electric power and water conservancy, and smart agriculture.

Figure 1-1 HH-M01 module structure

1.1 Main features

Table 1-1 Main features of HH-M01 module

Main features	Description				
Stable and					
reliable	Supports reliable communication algorithms such as TPC, automatic				
communication	rate, and weak interference immunity in complex environments				
capabilities					
Flexible	Cuppent DIF Mach potagodina				
networking	Support BLE Mesh networking				
capabilities	 Supports three networking methods: Wi-Fi, BLE or SLE 				
	Support IPv4/IPv6 network functions				
Complete	Support DHCPv4/DHCPv6 Client/Server				
network support	Support DNS Client function				
network support	Support mDNS function				
	Support CoAP/MQTT/HTTP/JSON basic components				
	Hardware implementation of AES128/256 encryption and decryption				
	algorithm				
	Hardware implementation of HASH-SHA256 and HMAC_SHA256				
	algorithms				
	Hardware implementation of RSA and ECC signature verification				
	algorithms				
Powerful security	Hardware implements true random number generation, meeting				
engine	FIPS140-2 random testing standards				
	Hardware supports TLS/DTLS acceleration				
	Hardware supports national secret algorithms SM2, SM3, SM4				
	Internally integrated EFUSE, supporting secure storage, secure boot,				
	and hardware ID				
	Internally integrated MPU features support memory isolation				
	features				

	Open operating system Oniro provides an open, efficient and secure
	system development and operating environment
	Rich low power consumption, small memory, high stability, high real-
	time mechanism
Open operating	Flexible protocol support and expansion capabilities
system	Secondary development interface
	Multi-level development interface: operating system adaptation
	interface and system diagnostic interface, link layer interface,
	network layer interface

1.2 Main technical parameters

Table 1-2 Main technical parameters of HH-M01 module

Category	Project Parameter					
	frequency	2.4G (2412M~2484M)				
		802.11b: +23 dBm				
	Transmit power	802.11g: +19 dBm				
		802.11n: +18 dBm				
Wi-Fi		802.11b: -90 dBm (11Mbps)				
	Receive sensitivity	802.11g: -78 dBm (54Mbps)				
		802.11n: -76 dBm (MCS7)				
		-20dB @802.11b,11Mbps @23dBm				
	EVM	-25dB @802.11g,54Mbps @19dBm				
		-28dB @802.11n,HT40,MCS7 @18dBm				
BE	Power output range	-27~20dBm				
SLE	Power output range	14~20dBm				
	CPU	32-bit RISC-V 240MHz CPU				
	peripherals	UART/SPI/I2C/I2S/ADC/GPIO/PWM (multiplex)				
hardware	Working voltage	3.0V ~ 3.6V				
	working temperature	-40°C ~ 85°C				
	ambient temperature	-40°C ~ 105°C				
	size	12mm x 12mm x 3mm				
	Wi-Fi mode	STA, Soft-AP and sniffer modes				
	security mechanism	WPS / WEP / WPA / WPA2 / WPA3				
Software	Encryption type	UART Download				
	software development	SDK				
	network protocol	IPv4, TCP/UDP/HTTP/FTP/MQTT				

1.3 Main features

Table 1-3 Main features of HH-M01 module

Module	Specification description				
	High-performance 32bit microprocessor, maximum operating frequency				
CPU	240MHz				
subsystem	Embedded SRAM 606KB, ROM 300KB				
	Embedded 4MB Flash				
	1 SPI interface, 1 QSPI interface, 2 I2C interfaces, 1 I2S interface, 3 UART				
Peripheral	interfaces, 19 GPIO interfaces, 6 ADC inputs, 8 PWM (Note: the above				
interface	interfaces are implemented through multiplexing)				
	External crystal clock frequency 24MHz, 40MHz				
	• 1×1 2.4GHz frequency band (ch1 ~ ch14)				
	PHY supports IEEE 802.11b/g/n/ax MAC supports IEEE 802.11d/e/i/k/v/w				
	Support 802.11n 20MHz/40MHz bandwidth, support 802.11ax 20MHz				
	bandwidth				
	Supported maximum rate: 150Mbps@HT40 MCS7, 114.7Mbps@HE20				
	MCS9				
Wi-Fi	Built-in PA and LNA, integrated TX/RX Switch, Balun, etc.				
*** ***	• Supports STA and AP forms. When used as an AP, it supports up to 6 STAs.				
	Support A-MPDU, A-MSDU				
	Support Block-ACK				
	Support QoS to meet different business service quality requirements				
	Support WPA/WPA2/WPA3 personal, WPS2.0				
	Supports RF self-calibration scheme				
	Supports STBC and LDPC				
	Bluetooth Low Energy (BLE)				
	• Support BLE 4.0/4.1/4.2/5.0/5.1/5.2				
	Supports 125Kbps, 500Kbps, 1Mbps, 2Mbps rates				
Bluetooth	Support multicast				
	Support Class 1				
	Support high power 20dBm				
	Support BLE Mesh, support BLE gateway				
	Sparklink Low Energy (SLE)				
	Support SLE 1.0				
NearLink	Support SLE 1MHz/2MHz/4MHz, maximum air interface rate 12Mbps				
	Supports Polar channel coding				
	Support SLE gateway				

2 Interface definition

(1) The HH-M01 module interface definition is as shown in the figure below:

Figure 2-1 HH-M01 interface definition

(2) The modules working mode selection and each pin definition are as shown in the following table:

Table 2-1 Working mode

Model
3V3/power supply 3.3V
EN/high level
TX0 RX0/ UART Download

.

Table 2-2 Pin definition

Serial Number	Name	Туре	Function description	
1	GND	Р	Ground	
2	RF0	-	Wi-Fi/BLE/SLE	
3	GND	Р	Ground	
4	NC	-	Not connected	
5	NC	-	Not connected	
6	IO01	I/O	GPIO01,PWM1, SPI1_IO0, JTAG_MODE	
7	1005	I/O	GPIO05, SSI_DATA, SPI1_IO2, UART2_CTS, PWM5,DFT_ JTAG_TCK	
8	NC	-	Not connected	
9	3V3	Р	Recommended 3.3V/500mA	
10	1004	I/O	GPIO4,SSI CLK,PWM4,SPI1_IO1,DFT_JTAG_TMS , JTAG_ENABLE	
11	1000	I/O	GPIO00, PWM0,SPI1_CSN,JTAG_TDI	
12	IN	-	high level	
13	1002	I/O	GPIO02,PWM2,SPI_IO3	
14	1009	I/O	GPIO09,PWM1,SPI0_OUT,I2S_ DO,JTAG_TDO,ADC2	
15	1007	I/O	GPIO07,PWM7,UART2_RXD,SPI0_SCK,I2S_ MCLK,ADC0	
16	IO11	I/O	GPIO11,PWM3,SPI0_IN,I2S_LRCLK,ADC4	
17	IO10	I/O	GPIO10,PWM2,SPI0_CS0_N,I2S_SCLK,ADC3	
18	TX1	I/O	UART1_TXD,GPIO15,I2C1_SDA	
19	RX1	I/O	UART1_RXD,GPIO16,I2C1_SCL	
20	GND	Р	Ground	

21	NC	-	Not connected		
22	3V3	Р	Recommended 3.3V/500mA		
23	NC	1	Not connected		
24	1006	I/O	GPIO06,PWM6,UART2_RTS,SPI1_SCK,DFT_JTAG_TDI,SPI0_OUT		
25	1003	I/O	GPIO03,PWM3,SPI1_IO1		
26	NC	-	Not connected		
27	IO13	I/O	GPIO13,UART_CTS,DFT_JTAG_TDO,JTAG_TMS		
28	IO14	I/O	GPIO14,DFT_JTAG_TRSTN,UART1_RTS		
29	GND	Р	Ground		
30	NC	-	Not connected		
31	GND	Р	Ground		
32	NC	-	Not connected		
33	NC	-	Not connected		
34	NC	-	Not connected		
35	NC	-	Not connected		
36	GND	Р	Ground		
37	RX0	I/O	UART0_RXD,GPIO18,I2C0_SCL		
38	TX0	I/O	UART0_TXD,GPIO17,I2C0_SDA		
39	IO12	I/O	GPIO12,PWM4,I2S_DI,ADC5		
40	1008	I/O	GPIO08,PWM0,UART2_TXD,SPI0_CS1_N,ADC1		
41	NC	-	Not connected		
42	GND	Р	Ground		
43	RF1	-	Not connected		
44	GND	Р	Ground		

3 Appearance and dimensions

(1) HH-M01 dimensions are as follows:

Figure 3-1 HH-M01 appearance (top view)

Figure 3-2 HH-M01 appearance (side view)

Figure 3-3 HH-M01 PCB package (top view)

•

4 Electrical Characteristics

Table 4.1 Electrical Characteristics

Par	ameter	Condition	Minimum value	Typical value	Maximum value	Unit
Storage	temperature range	-	-40	room	150	°C
				temperature		
Maximum welding temperature		IPC/JEDEC J-STD-020	-	-	260	°C
Working	ı voltage	-	3.0	3.3	3.6	V
	WILL	-	-0.3	-	0.25*VDD	
I/O	HIV	-	0.75*VDD	-	VDD+0.3	V
	VOL	-	-	-	0.1*VDD	
	VOH	-	0.8*VDD	-	-	
	of electrostatic le (human body	TAMB=25°C	-	-	2	KV
Amount of electrostatic discharge (machine model)		TAMB=25°C	-	-	0.5	KV

5 Power consumption

Table 5-1 Power consumption

Para	meter	Smallest	Typical	Maximun	Unit
RX	11b /g/n, HT20	-	-	82	mA
RX	11n, HT40		-	84	mA
TX	11b, 1Mbps @23dBm		-	350	mA
TX	11g, 54Mbps @19dBm	-	-	295	mA
TX	11n, HT20, MCS7, @18dBm	-	-	290	mA
TX	11n, HT40, MCS7, @18dBm	-	-	290	mA
Mod	lem-sleep, CPU is powered	-	1.5	-	mA
Power consumption when turned off (DVDD, AVDD33 and AVDD18 are all		-	500	-	uA

in office)				
Power consumption when shutting down (DVDD power-off, AVDD33 and AVDD18 is in place)	-	4.3	0	uA

The peak current of HH-M01 may exceed 400mA, the recommended power supply is 500mA.

6 Wi-Fi RF Parameters

The data in the table below are measured at room temperature and a voltage of 3.3V.

Table 6-1 Wi-Fi TX characteristics

Parameter	Smallest	Typical	Maximun	Unit
input frequency	2412	-	2484	MHz
802.11b @11Mbps	-	23	-	dBm
802.11g @54Mbps	-	19	-	dBm
802.11n,HT20,MCS7	-	18	-	dBm
EVM @11b,11Mbps@23dBm	-	-20	-	dBm
EVM @11g,54Mbps@19dBm	-	-25	-	dBm
EVM @11n,HT20,MCS7@18dBm	-	-28	-	dBm

Table 6-2 Wi-Fi RX sensitivity

,				
Parameter	Smallest	Typical	Maximun	Unit
802.11b,1Mbps	-	-99	-	dBm
802.11b,11Mbps	-	-90	-	dBm
802.11g,6Mbps	-	-96	-	dBm
802.11g,54Mbps	-	-78	-	dBm
802.11n,HT20,MCS0	-	-96	-	dBm
802.11n,HT20,MCS3	-	-87	-	dBm
802.11n,HT20,MCS7	-	-76	-	dBm

Table 6-3 Wi-Fi RX features

Parai	meter				Smalle	Typical	Maximun	Unit
ACI @11l	suppression o,1Mbps	interference	signal	ratio	-	42	-	dB
ACI @11l	suppression o,11Mbps	interference	signal	ratio	-	35	-	dB
ACI @11g	suppression g,6Mbps	interference	signal	ratio	-	40	-	dB
ACI	suppression	interference	signal	ratio	-	16	-	dB

@11g,54Mbps					
ACI suppression interference signal ratio @11n,HT20,MCS0	-	39	-	dB	
ACI suppression interference signal ratio @11n, - 14 - dB HT20, MCS7					

7 BLE/SLE RX TX Performance

Table 7-1 BLE/SLE performance

Mode	DR	Unit	NF (db)	-	Remark
IVIOGE	DK	Oilit	iti (ub)	-	Remark
BECAME 1M	-97.7	dBm	4.7	30% PER	-
BECAME 2M	-94.7	dBm	4.7	30% PER	-
WAS 125K	-105.7	dBm	4.7	30% PER	-
SLE 1M GFSK	-96.7	dBm	4.7	10% PER	modulation index=0.5
SLE 2M GFSK	-93.7	dBm	4.7	10% PER	modulation index=0.5
SLE 4M GFSK	-90.7	dBm	4.7	10% PER	modulation index=0.5
SLE 1M QPSK	-99.7	dBm	4.7	10% PER	code rate=3/4
SLE 1M 8PSK	-94.7	dBm	4.7	10% PER	code rate=3/4
SLE 2M QPSK	-96.7	dBm	4.7	10% PER	code rate=3/4
SLE 2M 8PSK	-91.7	dBm	4.7	10% PER	code rate=3/4
SLE 4M QPSK	-93.7	dBm	4.7	10% PER	code rate=3/4

Table 7-2 BLE/SLE power

Mode	Power	Unit
BE	(Maximum) 20	dBm
SLE GFSK	(Maximum) 20	dBm
SLE QPSK	(Max 4M BW) 14	dBm
SLE 8FSK	(Max 4M BW) 14	dBm

8 Recommended temperature curve

Figure 8-1 Recommended temperature curve

9 Minimum module system

This module works at 3.3V voltage:

Figure 9-1 Minimal system

Note:

- (1) The module power supply voltage is DC 3.3V;
- (2) The maximum output current of module IO is 27mA;
- (3) Module EN enable pin high level;
- (4) The RXD of the Wi-Fi module is connected to the TXD of the external MCU, and the TXD of the Wi-Fi module is connected to the RXD of the external MCU;

10 Recommended PCB Designs

For PCB, the characteristic impedance of all RF traces should be controlled at 50Ω . The impedance of an RF trace is typically determined by the trace width (W), the dielectric constant of the material, the height from the reference ground to the signal layer (H), and the spacing between the RF trace and ground (S). Microstrip or coplanar waveguides are commonly used in RF layouts to control characteristic impedance. Below are reference designs for microstrip or coplanar waveguides with different PCB structures.

Figure 10-1 Microstrip design of 2-layer PCB

Figure 10-2 Coplanar waveguide design on double-layer PCB

Figure 10-3 Coplanar waveguide design on 4-layer PCB (layer 3 serves as reference ground)

Figure 10-4 Coplanar waveguide design on 4-layer PCB (layer 4 serves as reference ground)

To ensure RF performance and reliability, follow the following principles in RF layout design:

- Use impedance simulation tools to accurately control the characteristic impedance of the RF trace to 50Ω .
- The GND pin adjacent to the RF pin should not be designed as a thermal relief pad but should be fully grounded.
- The distance between the RF pins and the RF connector should be as short as possible, and all right-angle traces should be replaced with curved traces.
- There should be clearance underneath the signal pins of the antenna connector or solder joint.
- The reference ground of the RF trace should be intact. Also, adding some ground vias around the RF traces and ground reference can help improve RF performance. The distance between ground vias and RF traces should be no less than twice the width of the RF signal trace (2×W).

11 Peripheral wiring recommendations

Wi-Fi modules integrate high-speed GPIO and peripheral interfaces, which can generate significant switching noise. If some applications have higher requirements for power consumption and EMI characteristics, it is recommended to connect a 10~100 ohm resistor in series with the digital I/O line. This suppresses overshoot and smoothes the signal when switching the power supply on and off, while also providing some protection against electrostatic discharge (ESD).

12 Packaging instructions

The product is packed in tape form.

The dimensions of a single packaging box are: 340 x 360 x 60mm, each packaging box contains 1000 modules.

The outer box size is: 355 x 375 x 325mm, which can hold 5 boxes.

Figure 12-1 Module packaging