Lecture 10

Function

Topics

- Invertibility and Inverse Functions
- Function Compositions

Inverse Functions and Compositions of Functions

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function of* f is the function that assigns to an element b belonging to B to the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Fig : The function f^{-1} is the inverse function of f

Inverse Functions and Compositions of Functions

A one-to-one correspondence is called **invertible** because we can **define** an inverse of this function. A function is **not invertible** if it is **not a one-to-one correspondence**, because the inverse of such a function **does not exist**.

EXAMPLE: Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

SOLUTION: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

EXAMPLE: Let f be the function from R to R with $f(x) = x^2$. Is f invertible?

SOLUTION: Because f(-2) = f(2) = 4, f is not one-to-one. If an inverse function were defined, it would have to assign two elements to 4. Hence, f is not invertible. (Note we can also show that f is not invertible because it is not onto.)

Compositions of Functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is the function from A to C defined by $(f \circ a)(a) = f(a(a))$

Fig : The composition of the functions f and g

EXAMPLE: Let g be the function from the set $\{a, b, c\}$ to *itself* such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and f?

SOLUTION: The composition $f \circ g$ is defined by $(f \circ g)(a) = f(g(a)) = f(b) = 2$, $(f \circ g)(b) = f(g(b)) = f(c) = 1$, and $(f \circ g)(c) = f(g(c)) = f(a) = 3$.

Note that gof is not defined, because the range of f is not a subset of the domain of g.

EXAMPLE: Let f and g be the functions defined by $f: R \to R^+ \cup \{0\}$ with $f(x) = x^2$ and $g: R^+ \cup \{0\} \to R$ with $g(x) = \sqrt{x}$ (where \sqrt{x} is the nonnegative square root of x). What is the function $(f \circ g)(x)$?

SOLUTION: The domain of $(f \circ g)(x) = f(g(x))$ is the domain of g, which is $R^+ \cup \{0\}$, the set of nonnegative real numbers. If x is a **nonnegative real number**, we have $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$. The range of $f \circ g$ is the image of the range of g with respect to the function g. This is the set g to g and g are g and g and g and g and g are g and g and g and g and g are g and g and g and g are g are g and g are g are g and g are g and g are g

Explanation

When the composition of a function and its inverse is formed, in either order, an identity function is obtained. To see this, suppose that **f** is a **one-to-one** correspondence from the set A to the set B. Then the inverse function f^{-1} exists and is a *one-to-one correspondenc*e from **B** to **A**. The inverse function reverses the correspondence of the original function, so $f^{-1}(b) = a$ when f(a) = b, and f(a) = b when $f^{-1}(b) = a$. Hence, $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(a)$ (b) = a, and $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$. Consequently $f^{-1} \circ f = I_{\Delta}$ and $f \circ f^{-1}$ = I_B , where I_A and I_B are the identity functions on the sets A and B, respectively. That is, $(f^{-1})^{-1} = f$.

Some Important Functions

The *floor function* assigns to the real number x the *largest* integer that is *less than or equal to x*. The value of the floor function at x is denoted by [x].

The *ceiling function* assigns to the real number x the *smallest* integer that is *greater than or equal to x*. The value of the ceiling function at x is denoted by [x].

Floor and Ceiling Functions. (*n* is an integer, *x* is a real number) (1a) |x| = n if and only if $n \le x < n + 1$

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$
(1b) $\lceil x \rceil = n$ if and only if $n - 1 < x \le n$

TABLE 1 Useful Properties of the

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $n - 1 < x \le n$
(1c) $\lfloor x \rfloor = n$ if and only if $x - 1 < n \le x$
(1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$
(2) $x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$

(1d)
$$[x] = n$$
 if and only if $x \le n < x + 1$
(2) $x - 1 < [x] \le x \le [x] < x + 1$
(3a) $[-x] = -[x]$
(3b) $[-x] = -|x|$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a) $\lfloor -x \rfloor = -\lceil x \rceil$
(3b) $\lceil -x \rceil = -\lfloor x \rfloor$
(4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$

EXAMPLE: Prove that if x is a *real number*, then (2x) = (x) + (x + 1/2).

SOLUTION: To prove this statement we let $x = n + \epsilon$, where n is an integer and $0 \le \epsilon < 1$. There Examples are two cases to consider, depending on whether ϵ is less than, or greater than or equal to 1/2. (The reason we choose these two cases will be made clear in the proof.)

We first consider the case when $0 \le \epsilon < 1/2$. In this case, $2x = 2n + 2\epsilon$ and $\lfloor 2x \rfloor = 2n$ because $0 \le 2\epsilon < 1$. Similarly, $x + 1/2 = n + (1/2 + \epsilon)$, so $\lfloor x + 1/2 \rfloor = n$, because $0 < 1/2 + \epsilon < 1$. Consequently, $\lfloor 2x \rfloor = 2n$ and $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = n + n = 2n$.

Next, we consider the case when $1/2 \le \epsilon < 1$. In this case, $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon - 1)$. Because $0 \le 2\epsilon - 1 < 1$, it follows that $\lfloor 2x \rfloor = 2n + 1$. Because $\lfloor x + 1/2 \rfloor = \lfloor n + (1/2 + \epsilon) \rfloor = \lfloor n + 1 + (\epsilon - 1/2) \rfloor$ and $0 \le \epsilon - 1/2 < 1$, it follows that $\lfloor x + 1/2 \rfloor = n + 1$. Consequently, $\lfloor 2x \rfloor = 2n + 1$ and $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = n + (n + 1) = 2n + 1$. This concludes the proof.

Thank You