6. Relationaler Datenbankentwurf

Einordnung in den Vorlesungsverlauf

- ER-Modell
- Relationenmodell
- relationale Anfragesprachen
- SQL
- Entwurfstheorie
- Transaktionen

Relationaler Datenbankentwurf

Überblick

- funktionale Abhängigkeiten
- · Schema-Eigenschaften
- Transformationseigenschaften
- Entwurfsverfahren
- weitere Abhängigkeiten

Relationaler DB-Entwurf: Ziele

- Verfeinern des logischen Entwurfs
- Vermeidung von Redundanzen durch Aufspalten von Relationenschemata, ohne gleichzeitig
 - semantische Informationen zu verlieren (Abhängigkeitstreue)
 - die Möglichkeit zur Rekonstruktion der Relationen zu verlieren (Verbundtreue)
- Redundanzvermeidung durch Normalformen

6.1. Funktionale Abhängigkeiten

Sei R ein Relationenschema und $X, Y \subseteq R$ zwei Attributmengen.

In einer Relation besteht eine **funktionale Abhängigkeit** zwischen zwei Attributmengen X und Y, wenn in jedem Tupel der Relation der Attributwert unter den X-Komponenten den Attributwert unter den Y-Komponenten festlegt.

Schreibweise: $X \rightarrow Y$

Funktionale Abhängigkeit kurz: FD (von functional dependency)

FD formal

$$X \rightarrow Y : \iff \forall r \in \mathbf{REL}(R) \text{ gilt: } \forall t_1, t_2 \in r(R) : t_1(X) = t_2(X) \implies t_1(Y) = t_2(Y)$$

wobei t(X) die Einschränkung eines Tupels t auf die Attribute in X ist.

Bücher-Relation mit Redundanzen

 $ISBN \rightarrow Titel$ $ISBN \rightarrow Verlag$ zusammengefasst:

 $ISBN \rightarrow Titel Verlag$

trivialerweise:

 $ISBN \rightarrow ISBN$

gilt nicht:

 $ISBN \rightarrow Autor$ $ISBN \rightarrow Stichwort$

ISBN	Titel	Autor	Version	Stichwort	Verlagsname
0-8053-1753-8	Princ.of DBS	Elmasri	1,1989	RDB	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	1,1989	RDB	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Elmasri	2,1994	RDB	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	2,1994	RDB	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Elmasri	1,1989	Lehrbuch	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	1,1989	Lehrbuch	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Elmasri	2,1994	Lehrbuch	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	2,1994	Lehrbuch	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Elmasri	1,1989	ER	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	1,1989	ER	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Elmasri	2,1994	ER	Benj./Cumm.
0-8053-1753-8	Princ.of DBS	Navathe	2,1994	ER	Benj./Cumm.

Schlüssel

Sei R ein Relationenschema und $X, \beta \subseteq R$ zwei Attributmengen.

Eine Attributmenge $X \subseteq R$ heißt **Superschlüssel**, wenn $X \rightarrow R$.

Schlüsseleigenschaft: Alle Attribute von R hängen funktional von X ab.

Eine Attributmenge $X \subseteq R$ heißt **Kandidatenschlüssel**, wenn

- X erfüllt die Schlüsseleigenschaft
- X ist minimal

minimal: Kein Attribut kann aus X entfernt werden, ohne die Schlüsseleigenschaft zu verletzen. Für alle Attribute $A \in X$ gilt: $X \setminus A \rightarrow R$.

Primattribut: Ein Attribut heißt prim, falls es Teil von irgendeinem Kandidatenschlüssel ist.

Schlüssel

- es gilt immer: $PANr \rightarrow PANr$, damit gesamtes Schema auf rechter Seite
- da linke Seite minimal: PANr ist Kandidatenschlüssel

Ziel des Datenbankentwurfs: alle gegebenen funktionalen Abhängigkeiten in "Schlüsselabhängigkeiten" umformen, ohne dabei semantische Information zu verlieren

Schlüssel im Beispiel

Personen

ı	PANr	Vorname	Nachname	PLZ	Ort	GebDatum	
	4711	Andreas	Heuer	18209	DBR	31.10.1958	
	5588	Gunter	Saake	39106	MD	05.10.1960	
	6834	Michael	Korn	39104	MD	24.09.1974	
	7754	Andreas	Möller	18209	DBR	25.02.1976	
	8832	Tamara	Jagellovsk	38106	BS	11.11.1973	
	9912	Antje	Hellhof	18059	HRO	04.04.1970	
	9999	Christa	Loeser	69121	HD	10.05.1969	

Pers_Telefon

PANr	Telefon
4711	038203-12230
4711	0381-498-3401
4711	0381-498-3427
5588	0391-345677
5588	0391-5592-3800
9999	06221-400177

Ableitung von FDs i

Notation

Ab jetzt schreiben wir AB anstatt $\{A, B\}$, also z.B. $AB \rightarrow BCD$ anstatt $\{A, B\} \rightarrow \{B, C, D\}$

$$\begin{array}{c|ccccc}
R & A & B & C \\
\hline
a_1 & b_1 & c_1 \\
a_2 & b_1 & c_1 \\
a_3 & b_2 & c_1 \\
a_4 & b_1 & c_1
\end{array}$$

- genügt $A \rightarrow B$ und $B \rightarrow C$
- dann gilt auch $A \rightarrow C$
- nicht ableitbar $C \rightarrow A$ oder $C \rightarrow B$

Ableitung von FDs ii

- Gilt für f über R $SAT_R(F) \subseteq SAT_R(f)$, dann impliziert F die FD f (kurz: $F \models f$)
- obiges Beispiel:

$$F = \{A \rightarrow B, B \rightarrow C\} \models A \rightarrow C$$

Hüllenbildung F+:

$$F^+ := \{ f \mid F \models f \}$$

 $SAT_R(F)$ ist die Menge der Relationen mit Schema R, die alle FDs in F erfüllen.

Ableitungsregeln

Anforderungen an Ableitungssysteme:

- gültig (sound)
- vollständig (complete)
- unabhängig (independent) oder auch bzgl. ⊆ minimal

Name		Regel	
R Reflexivität	{}	\Longrightarrow	$X \rightarrow X$
A Akkumulation	$\{X \rightarrow YZ, Z \rightarrow VW\}$	\Longrightarrow	$X \rightarrow YZV$
P Projektivität	$\{X \rightarrow YZ\}$	\Longrightarrow	$X \rightarrow Y$

Weitere Ableitungsregeln i

```
R_1 Reflexivität: X \supseteq Y \implies X \rightarrow Y
```

$$R_2$$
 Augmentation: $\{X \rightarrow Y\} \implies XZ \rightarrow YZ$

$$R_3$$
 Transitivität: $\{X \rightarrow Y, Y \rightarrow Z\} \implies X \rightarrow Z$

$$R_4$$
 Dekomposition: $\{X \rightarrow YZ\} \implies X \rightarrow Y$

$$R_5$$
 Vereinigung: $\{X \rightarrow Y, X \rightarrow Z\} \implies X \rightarrow YZ$

$$R_6$$
 Pseudotransitivität: $\{X \rightarrow Y, WY \rightarrow Z\} \implies WX \rightarrow Z$

 R_1 - R_3 bekannt als Armstrong-Axiome (sound, complete & independent)

Weitere Ableitungsregeln ii

Beweis: Reflexivität

Annahme:

$$X \supseteq Y$$
, X , $Y \subset R$, $t_1, t_2 \in r(R)$ mit $t_1(X) = t_2(X)$

- dann folgt: $t_1(Y) = t_2(Y)$ wegen $X \supseteq Y$
- daraus folgt: $X \rightarrow Y$

Weitere Ableitungsregeln iii

Beweis: Agumentation

- Annahme: $X \rightarrow Y$ gilt in r(R), jedoch nicht: $XZ \rightarrow YZ$
- dann müssen zwei Tupel $t_1, t_2 \in r(R)$ existieren, so dass gilt
 - (1) $t_1(X) = t_2(X)$
 - (2) $t_1(Y) = t_2(Y)$
 - (3) $t_1(XZ) = t_2(XZ)$
 - $(4) t_1(YZ) \neq t_2(YZ)$
- Widerspruch wegen $t_1(Z)=t_2(Z)$ aus (1) und (3), woraus mit (2) folgt: $t_1(YZ)=t_2(YZ)$

Weitere Ableitungsregeln iv

Beweis: Transitivität

- Annahme: in r(R) gelten:
 - (1) $X \rightarrow Y$
 - (2) $Y \rightarrow Z$
- demzufolge für zwei beliebige Tupel $t_1, t_2 \in r(R)$ mit $t_1(X) = t_2(X)$ muss gelten:
 - (3) $t_1(Y) = t_2(Y)$ (wegen (1))
 - (4) $t_1(Z) = t_2(Z)$ (wegen (3) und (2))
- daher gilt: $X \rightarrow Z$

Membership-Problem

Kann eine bestimmte FD $X \rightarrow Y$ aus der vorgegebenen Menge F abgeleitet werden, d.h. wird sie von F impliziert?

Membership-Problem:
$$_{n}X \rightarrow Y \in F^{+}$$
 ?"

- Hülle einer Attributmenge X bzgl. F ist $X_F^* := \{A \mid X \rightarrow A \in F^+\}$
- · Das Membership-Problem kann nun durch das modifizierte Problem

Membership-Problem (2):
$$_{Y} \subseteq X_{F}^{*}$$
 ?"

in linearer Zeit gelöst werden

RAP-Algorithmus

Gegeben Attributmenge X. Gilt $X \rightarrow Y \in F^+$?

1. Berechnung der Hülle X* bzgl. FD-Menge F

$$X^{\circ} := X$$
 (R-Regel) $X^{i+1} = X^i \cup \{A \mid \exists Y \rightarrow Z \in F \text{ mit } Y \subseteq X^i \text{ und } A \in Z\}$ (A-Regel) Wenn $X^{i+1} = X^i$, dann ist X^* erreicht

2. Prüfen, ob $Y \subseteq X*$ gilt oder nicht.

Ist
$$Y \subseteq X^*$$
, dann gilt $X \rightarrow Y \in F^+$ (P-Regel)

Überdeckung und Äquivalenz

Gegeben zwei FD-Mengen F und G zum gleichen Relationsschema R.

- F heißt Überdeckung zu G, wenn gilt $G^+ \subseteq F^+$
 - Jede FD in G ist in der Hülle von F enthalten Für alle $X \rightarrow Y \in G$ gilt: $Y \subseteq X_F^*$
- F ist **äquivalent** zu G, wenn gilt $G^+ = F^+$
 - kurz: $F \equiv G$
 - $G^+ = F^+ \Leftrightarrow G^+ \subseteq F^+ \wedge F^+ \subseteq G^+$

6.2. Schema-Eigenschaften

- Relationenschemata, Schlüssel und Fremdschlüssel so wählen, dass
 - 1. alle Anwendungsdaten aus den Basisrelationen hergeleitet werden können,
 - 2. nur semantisch sinnvolle und konsistente Anwendungsdaten dargestellt werden können und
 - 3. die Anwendungsdaten möglichst nicht-redundant dargestellt werden.
- Hier: Forderung 3
 - Redundanzen innerhalb einer Relation: Normalformen
 - globale Redundanzen: Minimalität

Update-Anomalien

- Redundanzen in Basisrelationen unerwünscht:
 - · Belegen unnötigen Speicherplatzes (eher unwichtig)
 - Information redundant

 Änderung muss diese Information in allen ihren
 Vorkommen verändern (in relationalen Systemen nur schwer zu realisieren)
- Beispiel insert-Anomalie:

ISBN	Titel	Autor	Version	Stichwort	Verlagsname
0-8053-1753-8	Princ.of DBS	Elmasri	3,1996	RDB	Springer

in Bücher-Relation einfügen (FD, MVD verletzt; besser: auf Schlüsselabhängigkeiten zurückführen)

Erste Normalform

- · führt zunächst Redundanzen ein
- Erste Normalform (1NF):

nur atomare Attribute in Relationenschemata

Invnr	Titel	ISBN	Autoren
0007	Dr. No	3-125	James Bond
1201	Objektbanken	3-111	Heuer, Scholl

wäre in erster Normalform

Invnr	Titel	ISBN	Autor
0007	Dr. No	3-125	James Bond
1201	Objektbanken	3-111	Heuer
1201	Objektbanken	3-111	Scholl

Zweite Normalform i

Zweite und weitere Normalformen: aufgrund der Struktur von Abhängigkeiten Redundanzen entdecken

- Zweite Normalform (2NF):
 - 1. Relation ist in 1NF
 - 2. Es gibt keine partielle Abhängigkeit zwischen einem Kandidatenschlüssel und einem Nicht-Primattribut
- partielle Abhängigkeit liegt vor, wenn ein Attribut funktional schon von einem Teil eines Kandidatenschlüssels abhängt
- R mit FD-Menge F ist in 2NF, gdw. für alle $\alpha \to \beta \in F$ mindestens eine der folgenden Bedingungen gilt:
 - $\alpha \rightarrow \beta$ ist trivial oder
 - alle Attribute in β sind prim oder
 - α ist keine echte Teilmenge eines Kandidatenschlüssels

Zweite Normalform ii

• Beispiel:

und

Invnr, Autor
$$ightarrow$$
 Invnr, Titel, ISBN, Autor

Invnr und Autor zusammen Schlüssel Titel hängt aber allein von Invnr ab

• 2NF erreichen durch Elimination der rechten Seite der partiellen Abhängigkeit und Kopie der linken Seite (siehe nächste Folie)

Veranschaulichung zweite Normalform

Dritte Normalform

- Dritte Normalform (3NF):
 - 1. Relation ist in 2NF
 - 2. Es gibt keine transitive Abhängigkeit zwischen einem Kandidatenschlüssel und einem Nicht-Primattribut
- Es gibt eine transitive Abhängigkeit zwischen K und Y, wenn eine Attributmenge X existiert, sodass $K \rightarrow X$ und $X \rightarrow Y$ (also $K \rightarrow X \rightarrow Y$)
- R mit FD-Menge F ist in 3NF, gdw. für alle $\alpha \to \beta \in F$ mindestens eine der folgenden Bedingungen gilt:
 - $\beta \subseteq \alpha$ oder
 - alle Attribute in β sind prim oder
 - α ist ein Superschlüssel

Dritte Normalform

- Beispiel transitive Abhängigkeit:
 PANr → PLZ und PLZ → Ort
 Information, dass zur PLZ '40225' der Ort 'Duesseldorf' gehört, ist redundant
- 3NF erreichen durch Elimination von Y und Kopie von X (siehe nächste Folie)

Veranschaulichung dritte Normalform

Boyce-Codd-Normalform i

- nicht nur Nicht-Primattribute betrachten
- im aktuellen Postleitzahlsystem der Deutschen Post innerhalb der Attribute

folgende funktionale Abhängigkeiten:

Ort, Strasse, Hausnummer
$$ightarrow$$
 PLZ, PLZ $ightarrow$ Ort

Schlüssel:

Ort, Strasse, Hausnummer und PLZ, Strasse, Hausnummer

alle Attribute nun Primattribute: → 3NF

Boyce-Codd-Normalform ii

trotzdem Redundanz:

$$PLZ$$
, $Strasse$, $Hausnummer \rightarrow PLZ \rightarrow Ort$

- partielle (oder transitive) Abhängigkeit
- Boyce-Codd-Normalform (BCNF):
 - 1. Relation ist in 3NF
 - 2. Es gibt kein *primes* Attribut mit einer partiellen/transitiven Abhängigkeit
- R mit FD-Menge F ist in BCNF, gdw. für alle $\alpha \rightarrow \beta \in F$ mindestens eine der folgenden Bedingungen gilt:
 - $\beta \subseteq \alpha$ oder
 - α ist ein Superschlüssel

Minimalität

- global Redundanzen vermeiden
- andere Kriterien (wie Normalformen) mit möglichst wenig Schemata erreichen
- Beispiel:
 Attributmenge ABC, FD-Menge {A→B, B→C}
- Datenbankschemata in 3NF:

$$S = \{(AB, \{A\}), (BC, \{B\})\}$$

$$S' = \{(AB, \{A\}), (BC, \{B\}), (AC, \{A\})\}$$

Redundanzen in S'

Schema-Eigenschaften

Kennung	Schemaeigenschaft	Kurzcharakteristik		
	1NF	nur atomare Attribute		
	2NF	keine partielle Abhängigkeit eines Nicht-		
		Primattributes von einem Kandidatenschlüssel		
S 1	3NF	keine transitive Abhängigkeit eines Nicht-		
		Primattributes von einem Kandidatenschlüssel		
	BCNF	keine transitive Abhängigkeit eines Attributes		
		von einem Kandidatenschlüssel		
S 2	Minimalität	minimale Anzahl von Relationenschemata, die		
		die anderen Eigenschaften erfüllt		

6.3. Transformationseigenschaften

- Erreichen von Normalformen durch Zerlegung von Relationenschemata
- dabei beachten:
 - nur semantisch sinnvolle und konsistente Anwendungsdaten darstellen (Abhängigkeitstreue)
 - 2. alle Anwendungsdaten sollen aus Basisrelationen hergeleitet werden können (Verbundtreue)

Abhängigkeitstreue

- · Abhängigkeitstreue ist folgende Forderung:
 - allgemein: Menge der erfassten Abhängigkeiten äquivalent zur Menge der im System darstellbaren Abhängigkeiten (etwa Schlüssel und Fremdschlüssel)
 - · hier spezieller: Menge der FDs äquivalent zur Menge der Schlüsselabhängigkeiten

Abhängigkeitstreue: Beispiel

• Attribute:

```
PLZ (P), Ort (O), Strasse (S), Hausnummer (H)
```

• funktionale Abhängigkeiten F: $OSH \rightarrow P$. $P \rightarrow O$

- Datenbankschema S: (OSHP, {OSH})
- Menge der zugehörigen Schlüsselabhängigkeiten: { OSH→OSHP } nicht äquivalent zu F; S ist nicht abhängigkeitstreu

Abhängigkeitstreue formal

- $S = \{(R_1, \mathcal{K}_1), \dots, (R_p, \mathcal{K}_p)\}$ lokal erweitertes Datenbankschema, F Menge lokaler Abhängigkeiten
- S charakterisiert vollständig F (oder: ist abhängigkeitstreu bezüglich F) genau dann, wenn

$$F \equiv \{K \rightarrow R \mid (R, \mathcal{K}) \in S, K \in \mathcal{K}\}$$

Verbundtreue i

- Originalrelation soll aus zerlegten Relationen mit natürlichem Verbund zurückgewonnen werden können.
- Beispiel:

Relationenschema R = ABC in $R_1 = AB$ und $R_2 = BC$ zerlegt; ist bei

$$F = \{A \rightarrow B, C \rightarrow B\}$$

nicht verbundtreu, bei

$$\mathit{F}' = \{A \!\rightarrow\! B, B \!\rightarrow\! C\}$$

verbundtreu.

Verbundtreue ii

· Kriterium:

Attributmenge im Schnitt der entstandenen Relationenschemata (hier: *B*) bestimmt eines der beiden Relationenschemata (hier: *BC*) funktional (ist also Kandidatenschlüssel)

Beispielrelationen zur Verbundtreue i

1. Originalrelation:

Α	В	С
1	2	3
4	2	5

Dekomposition:

Α	В	В	С
1	2	2	3
4	2	2	5

Verbund (nicht verbundtreu):

Α	В	С
1	2	3
4	2	5
1	2	5
4	2	3

Beispielrelationen zur Verbundtreue ii

2. Originalrelation:

Α	В	С
1	2	3
4	2	3

Dekomposition:

Α	В] ,	_	
1	2		В	С
	2		2	3
4	2	l		

Verbund (verbundtreu):

Α	В	С
1	2	3
4	2	3

Verbundtreue formal i

• Definition: Dekomposition einer Attributmenge X in X_1,\ldots,X_p mit $X=\bigcup_{i=1}^p X_i$ heißt verbundtreu ($\pi\bowtie$ -treu, lossless) bezüglich einer Menge von Abhängigkeiten G über X genau dann, wenn

$$\forall r \in \mathsf{SAT}_X(G) : \pi_{\mathsf{X}_1}(r) \bowtie \cdots \bowtie \pi_{\mathsf{X}_p}(r) = r$$

gilt

• einfaches Kriterium für zwei Relationenschemata: Dekomposition von X in X_1 und X_2 ist verbundtreu bzgl. F, wenn $X_1 \cap X_2 \rightarrow X_1 \in F^+$ oder $X_1 \cap X_2 \rightarrow X_2 \in F^+$

Verbundtreue formal ii

allgemeineres Kriterium:
 G Menge funktionaler Abhängigkeiten

$$\exists i \in \{1, \dots, p\} : X_i \rightarrow X \in G^+ \implies$$

Dekomposition von X in X_1, \dots, X_p
ist verbundtreu bezüglich G

- minimale Teilmenge von Xi: Universalschlüssel
- Beispiel erster Fall: AC der einzige Universalschlüssel, in keinem Relationenschema enthalten
- Beispiel zweiter Fall: Universalschlüssel A

Transformationseigenschaften

Kennung	Transformations-	Kurzcharakteristik
	eigenschaft	
T 1	Abhängigkeits-	alle gegebenen Abhängigkeiten sind durch
	treue	Kandidatenschlüssel repräsentiert
T 2	Verbundtreue	die Originalrelationen können duch den Verbund der Basisrelationen wiedergewon- nen werden

Entwurfsverfahren i

- Universum \mathcal{U} und FD-Menge F gegeben
- lokal erweitertes Datenbankschema $S = \{(R_1, \mathcal{K}_1), \dots, (R_p, \mathcal{K}_p)\}$ berechnen mit
 - T 1 S charakterisiert vollständig F
 - **S** 1 S ist in 3NF bezüglich F
 - **T** 2 Dekomposition von \mathcal{U} in R_1, \ldots, R_p ist verbundtreu bezüglich F
 - S 2 Minimalität, d.h.

$$\exists S' : S' \text{ erfüllt } \boxed{\mathsf{T}} \boxed{\mathsf{1}}, \boxed{\mathsf{S}} \boxed{\mathsf{1}}, \boxed{\mathsf{T}} \boxed{\mathsf{2}} \text{ und } |S'| < |S|$$

Entwurfsverfahren ii

- Datenbankschemata schlecht entworfen, wenn nur eines dieser vier Kriterien nicht erfüllt
- Beispiel:

$$S = \{(AB, \{A\}), (BC, \{B\}), (AC, \{A\})\}$$
 erfüllt T 1, S 1 und T 2 bezüglich $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$ in dritter Relation AC-Tupel redundant oder inkonsistent

• korrekt: $S' = \{(AB, \{A\}), (BC, \{B\})\}$

BCNF und Abhängigkeitstreue i

BCNF und Abhängigkeitstreue unvereinbar

- Attribute PLZ (P), Ort (O), Strasse (S), Hausnummer (H)
- funktionale Abhängigkeiten F

$$OSH \rightarrow P$$
, $P \rightarrow O$

Datenbankschema S

- PSH auch Kandidatenschlüssel, da PSH → OSHP mit PSH minimal
- Schema in 3NF, da alle Attribute Primattribute

BCNF und Abhängigkeitstreue ii

· Schema nicht in BCNF, da

$$\{ PSH \rightarrow P \rightarrow 0 \}$$

transitive Abhängigkeit des Primattributs O

• jede Zerlegung von OSHP zerstört Abhängigkeit

$$OSH \rightarrow P$$

Abhängigkeitstreue nicht gewährleistet

6.4. Entwurfsverfahren

- Dekomposition
- Syntheseverfahren

Dekomposition: Start

Start: initiales Relationenschema R mit allen Attributen und einer von den erfassten Abhängigkeiten implizierten Schlüsselmenge

- Attributmenge $\mathcal U$ und eine FD-Menge F
- suche alle $K \rightarrow \mathcal{U}$ mit K minimal, für die $K \rightarrow \mathcal{U} \in F^+$ gilt $(\mathcal{K}(F))$
- $(\mathcal{U}, \mathcal{K}(F))$ initiales Relationenschema

Dekomposition: Normalisierung

Normalisierungsschritt:

falls $K \rightarrow X \rightarrow Y$, aus R Attributmenge Y eliminieren und mit X in ein neues Relationenschema stecken

- $\mathcal{R} = (R, \mathcal{K})$ und F über R gegeben
- falls $\mathcal R$ in 3NF ist: fertig
- sonst: existiert für Kandidatenschlüssel K mit $K \rightarrow Y, Y \not\rightarrow K, Y \rightarrow A, A \not\in KY$ wähle dann:

$$R_1 := R - A$$
 $R_2 := YA$ $\mathcal{R}_1 := (R_1, \mathcal{K})$ $\mathcal{R}_2 := (R_2, \mathcal{K}_2 = \{Y\})$

- Vorteile: 3NF, Verbundtreue
- Nachteile: restliche Kriterien nicht, reihenfolgeabhängig, NP-vollständig (Schlüsselsuche)

Syntheseverfahren

- Prinzip: Synthese formt Original-FD-Menge F in resultierende Menge von Schlüsselabhängigkeiten G so um, dass $F \equiv G$ gilt
- "Abhängigkeitstreue" im Verfahren verankert
- 3NF und Minimalität wird auch erreicht, reihenfolgeunabhängig
- Zeitkomplexität: quadratisch

Syntheseverfahren i

Syntheseverfahren

- gegeben: FD-Menge F
- berechne minimale Überdeckung $F' (\equiv F)$ durch
 - · Linksreduktion und Rechtsreduktion
- fasse FDs aus F' zu "Äquivalenzklassen" zusammen
 - FDs in eine Klasse, die gleiche oder äquivalente linke Seiten haben
 - pro Äquivalenzklasse ein Relationenschema mit allen Attributen der zugeordneten FDs
- Falls kein Kandidatenschlüssel zu $\mathcal U$ vollständig in einem der Relationenschemata, füge für einen Schlüssel ein Relationenschema hinzu (\leadsto Verbundtreue!)
 - oder: erweitere Original-FD-Menge \emph{F} um $\mathcal{U} \rightarrow \emph{b}$;
 - δ Dummy-Attribut, das nach Synthese entfernt wird

Syntheseverfahren ii

Bestimmung einer minimalen Überdeckung

• FD-Menge F ist linksreduzierbar, falls $(X \rightarrow Y) \in F$ mit

$$Z \subset X \land (F - \{X \rightarrow Y\}) \cup \{Z \rightarrow Y\} \equiv F$$

- Linksreduktion: Eliminieren von "überflüssigen" Attributen auf der linken Seite von FDs
- FD-Menge F ist rechtsreduzierbar, falls $(X \rightarrow Y) \in F$ mit

$$Z \subset Y \land (F - \{X \rightarrow Y\}) \cup \{X \rightarrow Z\} \equiv F$$

- Rechtsreduktion: Eliminieren von "überflüssigen" Attributen auf der rechten Seite von FDs
- Spezialfall: $Z = \emptyset \iff$ Eliminieren der FD $X \rightarrow Y$, da diese aus $F \{X \rightarrow Y\}$ ableitbar.
- F ist eine minimale Überdeckung, wenn F weder linksreduzierbar noch rechtsreduzierbar ist.

Vergleich Dekomposition — Synthese

6.5. Weitere Abhängigkeiten

- Mehrwertige Abhängigkeit (kurz: MVD, multivalued dependency) $X \longrightarrow Y$
- innerhalb einer Relation *r* wird einem Attributwert von *X* eine Menge von *Y*-Werten zugeordnet, unabhängig von den Werten der restlichen Attribute von *r*
- Beispiel: in $B\ddot{u}cher$ $ISBN \longrightarrow Autor$ $ISBN \longrightarrow Version$ $ISBN \longrightarrow Stichwort$

Mehrwertige Abhängigkeiten

Schwierigkeiten bei MVDs:

```
R = \{ Student, Fach, Vorlesung \}
mit FD Student \rightarrow Fach \quad und \; MVD \; Fach \; \rightarrow \rightarrow \; Vorlesung \}
```

- zusätzliches Attribut (SWS)
- ullet zusätzliche FD Vorlesung
 ightarrow SWS
- unsinnige FD Fach o SWS ableitbar
- MVD falsch spezifiziert
- Fach \longrightarrow Vorlesung (Werte zum Attribut Vorlesung unabhängig von den Werten aller restlichen Attribute?)
- sinnvoll $Student \rightarrow Fach$, $Vorlesung \rightarrow SWS$ und MVD $Fach \rightarrow Vorlesung$, SWS

Vierte Normalform i

Name	Kind	Hobby
James Bond	Hugo	Autos
James Bond	Egon	Autos
James Bond	Hugo	Action
James Bond	Egon	Action
James Bond	Hugo	Klettern
James Bond	Egon	Klettern

Name \longrightarrow Kind, Name \longrightarrow Hobby

Vierte Normalform ii

vierte Normalform (4NF) durch

- · Elimination der rechten Seite einer der beiden mehrwertigen Abhängigkeiten,
- linke Seite mit dieser rechten Seite in neue Relation kopiert

Name	Kind
James Bond	Hugo
James Bond	Egon

Name	Hobby
James Bond	Autos
James Bond	Action
James Bond	Klettern

Transformationseigenschaften bei MVDs

"Unabhängigkeit" der Attributmengen Y und Z voneinander: pro X-Wert bildet kartesisches Produkt der Y- und Z-Werte den YZ-Wert

$$X \longrightarrow Y \iff \forall X\text{-Werte } x:$$

$$\pi_{YZ}(\sigma_{X=x}(r)) = \pi_Y(\sigma_{X=x}(r)) \bowtie \pi_Z(\sigma_{X=x}(r))$$

genau für alle $r \in SAT_R(X \longrightarrow Y)$ gilt verbundtreue Dekomposition

$$r = \pi_{XY}(r) \bowtie \pi_{XZ}(r)$$

Inklusionsabhängigkeiten

Verallgemeinerung von Fremdschlüsseln

- auf der rechten Seite einer Fremdschlüsselabhängigkeit nicht unbedingt der Primärschlüssel einer Relation: Inklusionsabhängigkeit (kurz: IND, von inclusion dependency)
- X-Werte in einer Relation $r_1(R_1)$ kommen auch als Y-Werte in einer Relation $r_2(R_2)$ vor: Inklusionsabhängigkeit $R_1[X] \subseteq R_2[Y]$