Nombres décimaux

Exemple. 1049658723 s'écrit 1 049 658 723

Tranche des milliards			Tranche des millions			Tranche des milliers			Tranche des unités		
С	D	U	С	D	U	С	D	U	С	D	C
		1	0	4	9	6	5	8	7	2	3

1 049 658 723 s'écrit en en toutes lettres : un-milliard-quarante-neuf-millions-six-cent-cinquante-huit-millesept-cent-vingt-trois.

 $10\ 000) + (8 \times 1\ 000) + (7 \times 100) + (2 \times 10) + (3 \times 1)$

Exemple. Considérons 10,5712

Tranche	des unite	és	Tranche	des <u>mill</u> i	èmes	Tranche des millionièmes			
С	D	U	С	D	U	С	D	U	
	1	0	5	7	1	2			

10,5712 s'écrit en en toutes lettres : dix virgule cinq-mille-sept-cent-douze.

$$10,5712 = 1 \times 10 + 0 \times 1 + 5 \times 0,1 + 7 \times 0,01 + 1 \times 0,001 + 2 \times 0,0001$$

Définition. Quand on coupe une unité en 10 parties égales, on obtient des dixièmes.

Un dixième se note 0,1 ou $\frac{1}{10}$. Dans l'unité, il y a 10 dixièmes donc : $1 = 10 \times 0,1 = 10 \times \frac{1}{10} = \frac{10}{10}$.

représente
$$2 + \frac{8}{10} = \frac{28}{10} = 2,8$$

représente $\frac{3}{10}$ représente $2 + \frac{8}{10} = \frac{28}{10} = 2,8$ **Définition.** Quand on coupe une unité en 100 parties égales, on obtient des centièmes.

Un centième se note 0,01 ou $\frac{1}{100}$. Dans l'unité, il y a 100 centièmes donc $1 = 100 \times 0,01 = 100 \times \frac{1}{100} = \frac{100}{100}$

représente
$$\frac{32}{100} = \frac{3}{10} + \frac{2}{100} = 0.32$$
 représente $\frac{275}{100} = 2 + \frac{75}{100} = 2 + \frac{7}{10} + \frac{5}{100} = 2.75$ **Définition.** Quand on coupe une unité en 1 000 parties égales, on obtient des millièmes.

Un millième se note 0,001 ou $\frac{1}{1000}$. Dans l'unité, il y a 1 000 millièmes donc : $1 = 1000 \times 0,0001 = \frac{1000}{1000}$

Exemple.
$$\frac{14531}{1000} = 14 + \frac{531}{1000} = 14 + \frac{5}{10} + \frac{3}{100} + \frac{1}{1000} = 14,531$$

Définitions. Un nombre pouvant s'écrire sous la forme d'une fraction décimale (dont le numérateur est un nombre entier et le dénominateur est 1, 10, 100, 1 000...) est un nombre décimal.

Il peut aussi se noter en utilisant une virgule, c'est son écriture décimale qui est composée d'une partie entière et d'une partie décimale.

Exemple. Considérons le nombre 1 345,824 315

Ce nombre s'écrit : mille-trois-cent-quarante-cinq virgule huit-cent-vingt-quatre-mille-trois-cent-quinze La partie entière est 1 345. La partie décimale est 0,824 315.

Remarque. Un nombre entier est un nombre décimal particulier.

Exemple. 25 peut s'écrire avec une virgule (25,0) ou sous la forme d'une fraction décimale : $\frac{25}{1}$

Définition. Une demi-droite graduée a une origine, une longueur unité et des graduations régulières.

Question. Quelles sont les abscisses des points A et B?

• Une unité est divisée en dix parts égales, ce qui signifie qu'elle est partagée en dix dixièmes.

- Le point A se trouve 2 dixièmes après 3 donc son abscisse est
- $3 + \frac{2}{10}$ soit 3,2. On note A(3,2)
- Le point B a pour abscisse $0 + \frac{3}{10}$ soit 0,3. On note B(0,3)

Définition. **Comparer** deux nombres, c'est trouver le plus grand (ou le plus petit) ou dire s'ils sont égaux. **Règle**. Pour comparer deux nombres décimaux écrits sous forme décimale :

- on compare les parties entières.
- si les parties entières sont égales alors on compare les chiffres des dixièmes ;
- si les chiffres des dixièmes sont égaux alors on compare les chiffres des centièmes ;
- et ainsi de suite jusqu'à ce que les deux nombres aient des chiffres différents.

Exemple. 81,35 < 82,34 car : 81 < 82. **Exemple**. 92,488 > 92,459 car : 92 = 92 ; 4 = 4 ; mais <math>8 > 5.

Exemple. Ranger les nombres 25,342 ; 253,42 ; 25,243 ; 235,42 ; 25,324 dans l'ordre croissant. On repère le plus petit puis le plus petit des nombres qui restent et ainsi de suite jusqu'au dernier.

On obtient donc: 25,243 < 25,324 < 25,342 < 235,42 < 253,42.

Définition. Un **ordre de grandeur** d'un nombre est une valeur approchée simple de ce nombre.

Les ordres de grandeurs sont utiles lorsque l'on manque de temps et on cherche à avoir rapidement une idée du résultat par calcul mental.

Exemple. Déterminer un ordre de grandeur de 546,3 + 52.

546,3 est proche de 550 et 52 est proche de 50 or 550 + 50 = 600 donc le résultat doit être proche de 600.

Exemple. Déterminer un ordre de grandeur de $65,7 \times 4,1$.

65,7 est proche de 65 et 4,1 est proche de 4 donc le résultat doit être proche de 260.