Understanding Data Structure and Column Contents

using R

Dr. Austin Brown

Kennesaw State University

Understanding Column Contents

- Objective: Learn to differentiate between numeric and character data, and identify missing data.
- ▶ **Importance**: Essential for correct data processing and analysis.
- Key Points
 - **str()**: Displays structure of the dataframe, including data types.
 - **summary()**: Provides a summary of each column, helping to identify missing values.
 - **Example**: Display metadata about a dataset and its missing values.

Data Structure

- ▶ In any given dataset, the way the data are arranged is paramount for understanding what the data are and what information they contain.
- Generally, we want the way data are recorded within a dataset to be "tidy".
- ▶ Tidy data is data that is well-organized and easy to work with. It has a specific structure:
 - Each variable is a column.
 - Each observation is a row.
 - Each cell has a single value.

Data Structure

▶ For instance, it the cars dataset below, the data are arranged in a tidy way:

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160	110	3.90
Mazda RX4 Wag	21.0	6	160	110	3.90
Datsun 710	22.8	4	108	93	3.85
Hornet 4 Drive	21.4	6	258	110	3.08
Hornet Sportabout	18.7	8	360	175	3.15
Valiant	18.1	6	225	105	2.76

Data Structure

- Why are they considered tidy? Consider our above criteria:
 - Each variable is a column: mpg, cyl, disp, hp, drat.
 - Each observation is a row: Each row represents a different car.
 - ► Each cell has a single value: Each cell contains a single value for the variable it represents.

- Now that we know how data should be structured, let's talk about the types of data we might encounter.
- In R, there are two main types of variables:
 - Numeric or Quantitative: These are variables which are naturally measured using numbers. Variables like age, height, weight, etc. are examples of numeric variables.
 - Character or Qualitative: These are variables which are naturally measured using non-quantitative qualities. Variables like hair color, favorite food, etc. are examples of character variables.

- Note, when we read data into R, based on the values contained in each column, R will automatically assign a data type to each column.
- Thus, it is important for us to double-check to ensure that the data types as we understand them are also the way R has interpreted them.

- ▶ For example, suppose we want to use the Cars.csv dataset. We have already learned how to read that data in. But how do we check to see what data types R has assigned to each column?
- ▶ To do this, we can use the str() function in R.
- ► The str() function provides a compact display of the internal structure of an R object.
 - For dataframes, it shows the data type of each column and the first few values in that column.

```
## Read in the Data ##
cars <- read.csv("Cars.csv")
## Examine the Data Structure ##
str(cars)</pre>
```

- As we can see in the output above, we get a list of all the columns in the dataset, along with the data type of each column.
- Note, variables with num next to their name (e.g., mpg, disp, etc.) are numeric variables, while variables with chr next to their name (e.g., X) are character variables.
- ▶ However, notice next to the cyl variable it says int. This is because R has interpreted the cyl variable as an integer, which is a type of numeric variable.
- Character variables can also be referred to as factor variables in R.
 - ► Factors generally contain ordered levels whereas character variables do not.

Now, let's read in the NYC Airplanes 2013 Excel dataset and perform the same operation.

```
## Load readxl package ##
library(readxl)
## Read in Airplanes Data ##
planes <- read_xlsx("NYC Airplanes 2013.xlsx")
## Examine the Data Structure ##
str(planes)</pre>
```

- As we can see from the output, we have five character columns and four numeric columns.
- We also have 3322 observations (or rows) and 9 columns (or variables)

- In addition to understanding the data types of each column, it is also important to understand the contents of each column.
- One very common issue that arises when working with data is missing data.
- ▶ Missing data can be problematic for many reasons, including:
 - It can lead to biased results.
 - It can lead to incorrect conclusions.
 - lt can lead to incorrect inferences.
- ▶ Thus, it is important to identify and address missing data in our datasets before proceeding with any analysis.

- ► How do we do this? One way is to use the summary() function in R.
- ➤ The summary() function is like the str() function in some ways, but it also provides a summary of each column in the dataset, including the number of missing values in each column.
- Let's see how this works with the cars dataset.

Examine the Data Summary
summary(cars)

X	mpg	cyl	disp
Length:32	Min. :10.40	Min. :4.000) Min. : 71.1
Class :characte	r 1st Qu.:15.43	3 1st Qu.:4.000	1st Qu.:120.8
Mode :characte	r Median :19.20	Median :6.000	Median :196.3
	Mean :20.09	9 Mean :6.188	B Mean :230.7
	3rd Qu.:22.80	3rd Qu.:8.000	3rd Qu.:326.0
	Max. :33.90	Max. :8.000	Max. :472.0
hp	drat	wt	qsec
Min. : 52.0	Min. :2.760	Min. :1.513	Min. :14.50
1st Qu.: 96.5	1st Qu.:3.080	1st Qu.:2.581	1st Qu.:16.89
Median :123.0	Median :3.695	Median :3.325	Median :17.71
Mean :146.7	Mean :3.597	Mean :3.217	Mean :17.85
3rd Qu.:180.0	3rd Qu.:3.920	3rd Qu.:3.610	3rd Qu.:18.90
Max. :335.0	Max. :4.930	Max. :5.424	Max. :22.90
vs	am	gear	carb
Min. :0.0000	Min. :0.0000	Min. :3.000	Min. :1.000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:3.000	1st Qu.:2.000
Median :0.0000	Median :0.0000	Median :4.000	Median :2.000
Mean :0.4375	Mean :0.4062	Mean :3.688	Mean :2.812
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:4.000	3rd Qu.:4.000
Max. :1.0000	Max. :1.0000	Max. :5.000	Max. :8.000

- As we can see from the output above, the summary() function provides a summary of each column in the dataset.
- For numeric variables, it provides the minimum, 1st quartile, median, mean, 3rd quartile, and maximum values.
- For character variables, it provides the number of unique values in the column.
- It also provides the number of missing values in each column.

- In the case of the cars data, we see that there are no missing values in any of the columns.
- ▶ However, this is not always the case. Let's see what happens when we use the summary() function on the planes dataset.

Examine the Data Summary
summary(planes)

tailnum	*****	tumo	manufacturer
	year	type	
Length: 3322	Min. :1956	Length:3322	Length:3322
Class :character	1st Qu.:1997	Class :character	Class :character
Mode :character	Median :2001	Mode :character	Mode :character
	Mean :2000		
	3rd Qu.:2005		
	Max. :2013		
	NA's :70		
model	engines	seats	speed
Length: 3322	Min. :1.000	Min. : 2.0	Min. : 90.0
Class :character	1st Qu.:2.000	1st Qu.:140.0	1st Qu.:107.5
Mode :character	Median :2.000	Median :149.0	Median :162.0
	Mean :1.995	Mean :154.3	Mean :236.8
	3rd Qu.:2.000	3rd Qu.:182.0	3rd Qu.:432.0
	Max. :4.000	Max. :450.0	Max. :432.0
			NA's :3299
engine			

Length: 3322 Class : character Mode : character

- Here we can see that two of our variables, year and speed contain missing values.
- ➤ The year variable has 70 missing values, while the speed variable has 3299 missing values.
- ➤ This is important information to know, as it will help us to decide how to proceed with our analysis.