Torus quotient of Richardson varieties

Somnath Dake

This is joint work with Shripad M. Garge and Arpita Nayek.

July 20, 2023

Outline

1 Introduction

1 Introduction	-
1.1 Grassmannian	1
1.2 Bruhat Decomposition	6
1.3 Schubert Varieties and Richardson Varieties	12
1.4 Bruhat Order	15
1.5 Actions	22
2 Torus Action	24
2.1 Introduction	24
2.2 Known Results	25
2.3 Main Theorem	32
2.4 Proof	32

Notations

- 1. We work over \mathbb{C} . Fix $n, r \in \mathbb{Z}_{>0}$.
- 2. G = SL(n).
- 3. $T \subseteq G$ is group of diagonal matrices (a maximal torus of G).
- 4. $B, B^- \subseteq G$ be Borel and opposite Borel subgroups of G containing T. These are just upper triangular and lower triangular matrices in G.
- 5. $P \subseteq G$ is a subgroup containing all block matrices of the form $\begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$ where $a_{11} \in GL(r)$.

Grassmannian as a set

$$G_{r,n} = \Big\{ W \subseteq \mathbb{C}^n \mid \dim(W) = r \Big\}.$$

Any full rank matrix in $\mathbb{C}^{n\times r}$ represents a $W\in G_{r,n}$.

Two full rank matrices $a,b\in\mathbb{C}^{n\times r}$ represent same subspace iff $\exists g\in GL(r)$ such that a=bg.

Grassmannian as a set

Two full rank matrices $a,b\in\mathbb{C}^{n\times r}$ represent same subspace iff $\exists g\in GL(r)$ such that a=bg.

In other words, orbits of GL(r) action from right on full rank matrices in $\mathbb{C}^{n\times r}$ is $G_{r,n}$. Hence

$$G_{r,n} = (\mathbb{C}^{n \times r})^o / GL(r) = \left\{ a \cdot GL_r \mid a \in (\mathbb{C}^{n \times r})^o \right\}.$$

Grassmannian as a set

$$G_{r,n} = (\mathbb{C}^{n \times r})^o / GL(r) = \left\{ a \cdot GL_r \mid a \in (\mathbb{C}^{n \times r})^o \right\}.$$

Consider the set

$$G/P = \left\{ g \cdot P \mid g \in G \right\}$$

Observe that there is bijection between $G_{r,n}$ and G/P.

Grassmannian variety

Theorem

G/P is a projective variety.

Bruhat Decomposition in type A

$$G = \bigsqcup_{w \in S_n} BwB$$

Bruhat Decomposition in type A

$$G = \bigsqcup_{w \in S_{-}} BwB$$

Splitting of element g of G as bwb^\prime follows from Gaussian elimination.

Disjointness follows from: BwB are double cosets $B \setminus G/B$.

Bruhat Decomposition in type A

$$G = \bigsqcup_{w \in S_n} BwB$$

Modify to

$$G = \bigsqcup_{w \in ?} BwP$$

How to achieve this? Observe which cosets are merged by P.

Bruhat Decomposition in type A

$$G = \bigsqcup_{w \in ?} BwP$$

How to achieve this? Observe which cosets are merged by P.

Observe permutations
$$w=\begin{pmatrix} w_{11} & 0 \\ 0 & w_{22} \end{pmatrix}$$
 are in P .

Notation: $W_r = \{ w \in S_n | w \in S_r \times S_{n-r} \}$

Example n = 4, r = 2

$$SL(4) = (1, 2, 3, 4) \sqcup (1, 2, 4, 3) \sqcup (2, 1, 3, 4) \sqcup (2, 1, 4, 3)$$
$$\sqcup (1, 3, 2, 4) \sqcup (1, 3, 4, 2) \sqcup (3, 1, 2, 4) \sqcup (3, 1, 4, 2)$$
$$\sqcup (1, 4, 2, 3) \sqcup (1, 4, 3, 2) \sqcup (4, 1, 2, 3) \sqcup (4, 1, 3, 2)$$
$$\sqcup (2, 3, 1, 4) \sqcup (2, 3, 4, 1) \sqcup (3, 2, 1, 4) \sqcup (3, 2, 4, 1)$$
$$\sqcup (2, 4, 1, 3) \sqcup (2, 4, 3, 1) \sqcup (4, 2, 1, 3) \sqcup (4, 2, 3, 1)$$
$$\sqcup (3, 4, 1, 2) \sqcup (3, 4, 2, 1) \sqcup (4, 3, 1, 2) \sqcup (4, 3, 2, 1)$$

Bruhat Decomposition in type A

In general we need coset representatives of S_n/W_r . Hence

$$G = \bigsqcup_{wW_r \in S_n/W_r} BwP$$

1. Introduction: 1.3. Schubert Varieties and Richardson Varieties

Schubert varieties

$$G/P = \bigsqcup_{wW_r \in S_n/W_r} BwP/P = \bigsqcup_{wW_r \in S_n/W_r} BwP$$

BwP are called Schubert cells and their closures are Schubert varieties.

Notation: $X_w = \overline{BwB}$

1. Introduction: 1.3. Schubert Varieties and Richardson Varieties

Richardson Variety

There is another way to decompose G,

$$G/P = \bigsqcup_{vW_r \in S_n/W_r} B^- vP$$

Here B^-vP are called opposite Schubert cells and their closures are opposite Schubert varieties.

Notation: $X^v = \overline{BvB}$

1. Introduction: 1.3. Schubert Varieties and Richardson Varieties

Richardson Variety

Fix cosets vW_r, wW_r , The Richardson variety X_v^w is defined as

$$X_w^v = \overline{B^- vP} \cap \overline{BwP}$$

1. Introduction: 1.4. Bruhat Order

Coset representatives

How to chose?

Set of coset representatives is

$$\{ w \in S_n \mid w(1) < \dots < w(r), w(r+1) < \dots < w(n) \}.$$

Observe that $w(1), \ldots, w(r)$ is sufficient to describe a coset. Hence

$$I_{r,n} = \left\{ \underline{i} = (i_1, \dots, i_r) \mid 1 \le i_1 < \dots < i_r \le n \right\}$$

is set of coset representatives.

1. Introduction: 1.4. Bruhat Order

Bruhat Order

On the set $I_{r,n}$

We define Bruhat order on $I_{r,n}$ as follows

$$\underline{i} \leq \underline{j} \text{ if } i_1 \leq j_1, \dots, i_r \leq j_r$$

1. Introduction: 1.5. Actions

Group action on variety

Let X be a projective variety with embedding, $\mathbb{C}[X]$ be the homogeneous coordinate ring.

- 1. Action is a map $G \times X \to X$ of varieties.
- 2. Induced action on $\mathbb{C}[X]$ is a map $G\times \mathbb{C}[X]\to \mathbb{C}[X]$ defined by $g\cdot f(x)=f(g^{-1}\cdot x)$.
- 3. Ring of invariants: $\mathbb{C}[X]^G = \{ f \in \mathbb{C}[X] \mid \forall g \in G, g \cdot f = f \}$

1. Introduction: 1.5. Actions

Projective GIT quotient

Theorem

If G is reductive then $\mathbb{C}[X]^G$ is generated by finitely many homogeneous elements q_0, \ldots, q_N .

$$X^{ss}=\Big\{x\in X\mid \exists f\in \mathbb{C}[X]^G \text{ s.t. } f(x)\neq 0\Big\}.$$
 $X^{ss}//G=\operatorname{proj}(\mathbb{C}[X]^G).$ The map $\pi:X^{ss}\to X^{ss}//G$ given by $x\mapsto [q_0(x):\cdots:q_N(x)]$ is called **Projective GIT quotient**.

2. Torus Action: 2.1. Introduction

Torus action

Let r, n are coprime.

- 1. T acts on $\mathbb{C}^{n\times r}$, and hence on $G_{r,n}$, by left multiplication.
- 2. Schubert cells are T-stable. T action on BwP is consumed in B, by writing B=TU. Hence Schubert varieties are T-stable.
- 3. Similarly Richardson varieties are T-stable. T action on $BwP\cap B^-vP$ is consumed in B,B^- , by writing $B=TU,B^-=TU^-$.

Aim: Understand $T \setminus G_{r,n}^{ss}$.

2. Torus Action: 2.2. Known Results

Known results

- 1. Gelfand-MacPherson correspondence.
- 2. $T \setminus G_{2,n}^{ss}$ is well understood.
- 3. Next one is $G_{3,n}$. Not much is know in this case. Simplest case is when n=7. $T\backslash \backslash G_{3,7}^{ss}$ is projectively normal with line bundle $\mathcal{L}(7\omega_r)$.

:

Can we use Schubert varieties and Richardson varieties to understand the quotient?

2. Torus Action: 2.2. Known Results

Minimal Schubert variety admitting semistable points.

From now on we fix the line bundle $\mathcal{L}(\omega_r)$ on Grassmannian.

Let
$$a_i = \lceil \frac{in}{r} \rceil, w_{r,n} = (a_1, \dots, a_r).$$

Theorem: Kannan, Sardar 09

Let X_w be a Schubert variety. $X_w^{ss} \neq \emptyset$ if and only if $w_{r,n} \leq w$.

2. Torus Action: 2.2. Known Results

Richardson varieties in $X_{w_{r,n}}$

- 1. Even $T \setminus X^{ss}_{w_{r,n}}$ looks difficult. $T \setminus X^{ss}_{w_{3,7}}$ is understood.
- 2. Simplify the problem: Look at Richardson varieties inside $X_{w_{r,n}}$.

Theorem

Let $v_{r,n}=(1,a_1,\ldots,a_{r-1}).$ $(X^v_{w_{r,n}})^{ss}\neq\emptyset$ if and only if $v\leq v_{r,n}$.

2. Torus Action: 2.3. Main Theorem

Main Theorem

Theorem

Let $c_i=ra_i-ni$. The GIT quotient $T\backslash \backslash X_{w_{r,n}}^v\mathcal{L}(n\omega_r)$ is isomorphic to

 $\mathbb{P}^{a_1-v(1)} imes \mathbb{P}^{a_2-v(2)} imes \cdots imes \mathbb{P}^{a_{r-1}-v(r-1)}$ and it is embedded via the very ample

line bundle $\mathcal{O}_{\mathbb{P}^{a_1-v(1)}}(c_1)\boxtimes\mathcal{O}_{\mathbb{P}^{a_2-v(2)}}(c_2)\boxtimes\cdots\boxtimes\mathcal{O}_{\mathbb{P}^{a_{r-1}-v(r-1)}}(c_{r-1}).$

Plucker embedding

- 1. Define vector space $\wedge^r \mathbb{C}^n$ as \mathbb{C} span of $\left\{e_{\underline{i}} = e_{i_1} \wedge \cdots \wedge e_{i_r} \mid \underline{i} \in I_{r,n}\right\}$ and $\left\{p_{\underline{i}} \mid \underline{i} \in I_{r,n}\right\}$ be the dual basis.
- 2. Define map $\phi: (\mathbb{C}^{n \times r})^o \to \mathbb{P}(\wedge^r \mathbb{C}^n)$ given by $(b_1, \dots, b_r) \mapsto [b_1 \wedge \dots \wedge b_r]$. We have $\mathrm{Im}(\phi) = G_{r,n}$.
- 3. We have compatible torus action on $\wedge^r \mathbb{C}^n$.

Tableau

Let $d\omega_r=((d^r))=(d,d,\ldots,d)$ be a partition. We call Γ a column standard tableau of shape $d\omega_r$ if filling is from $\{1,\ldots,n\}$, columns are strictly increasing.

We call Γ semistandard if column entries are strictly increasing and row entries are weakly increasing. We allow columns to commute.

For each column standard tableau Γ we associate a monomial $f_{\Gamma} \in \mathbb{C}[\wedge^r \mathbb{C}^n]_d$. This is a bijection between monomials and column standard tableaux. Hence vector space basis of $\mathbb{C}[\wedge^r \mathbb{C}^n]$ is indexed by column standard tableaux. If Γ is semistandard then f_{Γ} is called standard monomial.

Ideal of X_w^v

Theorem

- 1. Let I be the ideal generated by Plucker relations. Then $\mathbb{C}[G_{r,n}] \simeq \frac{\mathbb{C}[\wedge^r \mathbb{C}^n]}{I}$.
- 2. Standard monomials form a vector space basis of $\mathbb{C}[G_{r,n}]$.
- 3. Ideal of Richardson variety X_w^v in $\mathbb{C}[\wedge^r \mathbb{C}^n]$ is generated by Plucker relations and $\{p_i \mid \underline{i} \not\leq w \text{ or } \underline{i} \not\geq v\}$

Richardson varieties of our interest

Recall

$$a_i = \lceil \frac{in}{r} \rceil,$$
 $w_{r,n} = (a_1, \dots, a_r),$ $v_{r,n} = (1, a_1, \dots, a_{r-1}),$ $v_m = (1, 2, a_1 + 2, \dots, a_{r-2} + 2)$

Let $v \in I_{r,n}$ be such that $v_m \le v \le v_{r,n}$. Richardson varieties of our interest are $X_{w_{r,n}}^v$.

Next we try to understand $\mathbb{C}[X_{w_{r,n}}^v]^T$.

Ring of Invariants

Theorem

Let Γ be a tableau of shape $nd\omega_r$ such that

- 1. Γ is semistandard.
- 2. Γ contains each integer $1 \le k \le n$ with multiplicity rd.
- 3. $\Gamma(i,j) \in \{v(i),\ldots,a_i\}$ for $1 \le i \le r$ and for $1 \le j \le nd$.

Then $\mathbb{C}[X_w^v]^T$ is spanned by f_{Γ} .

Proof sketch

Let
$$Y = \mathbb{P}^{a_1 - v(1)} \times \mathbb{P}^{a_2 - v(2)} \times \cdots \times \mathbb{P}^{a_{r-1} - v(r-1)}$$

and $\mathcal{M} = \mathcal{O}_{\mathbb{P}^{a_1 - v(1)}}(c_1) \boxtimes \mathcal{O}_{\mathbb{P}^{a_2 - v(2)}}(c_2) \boxtimes \cdots \boxtimes \mathcal{O}_{\mathbb{P}^{a_{r-1} - v(r-1)}}(c_{r-1}).$

Note that Y is a toric variety. Let S be a semigroup and $\mathbb{C}[S]$ be the semigroup algebra of embedding of Y embedded via \mathcal{M} .

We construct an isomorphism between graded algebra $\mathbb{C}[X_{w_{r,n}}^v]^T$ and $\mathbb{C}[S]$.

Proof sketch

bijection between graded basis.

Proof sketch

from bijection to ring map.