

Grundlagen der Elektrotechnik

Wechselstrom

Vorlesungsunterlagen

Hans Hermann Scholl

Inhalt

1. Grundlagen

- 1.1 Prinzip der Spannungserzeugung
- 1.2 Benennung und Festlegung
- 1.3 Zeigerdiagramm
- 1.4 Gauß'sche Zahlenebene

2. Kennwerte von Wechselgrößen

- 2.1 Arithmetischer Mittelwert
- 2.2 Gleichrichtwert
- 2.3 Quadratischer Mittelwert
- 2.4 Zusammensetzung von Wechselgrößen

3. Einzelverbraucher im Wechselstromkreis

- 3.1 Ohmscher Verbraucher
- 3.2 Induktiver Verbraucher
- 3.3 Kapazitiver Verbraucher
- 3.4 Leistung

4. Die Reihenschaltung im Wechselstromkreis

- 4.1 Ohmscher und induktiver Verbraucher
- 4.2 Ohmscher und kapazitiver Verbraucher
- 4.3 Ohmscher, induktiver und kapazitiver Verbraucher
- 4.4 Leistung

5. Die Parallelschaltung im Wechselstromkreis

- 5.1 Ohmscher und induktiver Verbraucher
- 5.2 Ohmscher und kapazitiver Verbraucher
- 5.3 Ohmscher, induktiver und kapazitiver Verbraucher
- 5.4 Leistung

6. Spezielle Verfahren für Wechselstromkreise

- 6.1 Reihenresonanz
- 6.2 Parallelresonanz
- 6.3 Gemischte Schaltungen
- 6.4 Netzwerkanalyse

1. Grundlagen

1.1 Prinzip der Spannungserzeugung

1.2 Benennungen und Festlegungen

1.3 Zeigerdiagramm

1.4 Gauß'sche Zahlenebene

1.1 Prinzip der Spannungserzeugung

 Wird in einem räumlich homogenen Feld eine Modellspule gleichförmig rotiert, so ändert sich der magnetische Fluss Φ nach einer Cosinus-Funktion

$$\Phi = \Phi_{max} \cos \alpha$$

$$\alpha = 0^{\circ}$$
 $\Phi = \Phi_{max}$

$$\alpha = 45^{\circ}$$

$$\Phi = 0.707 \ \Phi_{max}$$

$$\alpha = 90^{\circ}$$
 $\Phi = 0$

• Dreht sich die Modellspule mit konstanter Geschwindigkeit, so gilt für die Winkelgeschwindigkeit:

$$\omega = \frac{d\alpha}{dt} \Rightarrow \omega t = \alpha$$

• Für den magnetischen Fluss ergibt sich somit :

$$\Phi = \Phi_{\text{max}} \cos(\omega t)$$

 Nach dem Induktionsgesetz gilt für eine Spule mit N Windungen :

$$\begin{split} u(t) &= -N\,\frac{d\Phi}{dt} = -N\,\frac{d}{dt}(\Phi_{max}\,\cos(\omega\,t)) \\ &= N\,\omega\,\Phi_{max}\,\sin(\omega\,t) = \hat{\mathbf{u}}\,\sin(\omega\,t) \\ &\quad \text{mit} \ \hat{\mathbf{u}} = N\,\omega\,\Phi_{max} \end{split}$$

- Wird eine Spule in einem homogenen Magnetfeld gedreht, so induziert die Spule eine sinusförmige Wechselspannung.
- Die Zeit für einen vollen Umlauf wird Periodendauer T genannt, die Einheit ist die Sekunde s.
- Die Zahl der Umdrehungen pro Zeiteinheit wird Frequenz f genannt, die Einheit ist das Herz (Hz).

$$T = \frac{1}{f} \Rightarrow \omega = 2 \pi f$$

 ω ist die Kreisfrequenz, die Einheit ist die Sekunde 1/s. • Bei dem Aufbau von Wechselstromgeneratoren werden zwei grundsätzliche Arten unterschieden.

1. Außenpolmaschine:

- Die Erregerwicklung sitzt außen auf dem stehenden Teil (Stator).
- Die spannungserzeugende Spule sitzt auf dem, beweglichen Teil (Rotor).
- Die Spannungsabnahme erfolgt über Schleifringe.

2. Innenpolmaschine:

- Die Erregerwicklung sitzt innen auf dem beweglichen Teil (Rotor).
- Die spannungserzeugende Spule sitzt auf dem, stehenden Teil (Stator).
- Die Spannungsabnahme erfolgt über Schleifringe.

Daneben werden zwei- und Mehrpolmaschinen unterschieden.

- Bei der Zweipolmaschine existiert nur ein Süd- und Nordpol.
- Bei der Mehrpolmaschine existieren mehrere Polpaare.

Cross section of DC machine

Figure 17.3(a) Generator losses, direct current

Figure 17.3(b) Motor losses, direct current

1.2 Benennungen und Festlegungen

Die Darstellung im sog. Liniendiagramm (kartesisches Koordinatensystem) in Abhängigkeit von der Zeit t) ergibt :

u(t), i(t) sind die jeweiligen Augenblickswerte

û und î sind sie Scheitelwerte (maximale Werte von u(t) und i(t)

 ϕ_u , ϕ_i sind die Nullphasenwinkel (Winkel zwischen dem Beginn der positiven Halbwelle und dem Nullpunkt)

φ ist die Phasenverschiebung zwischen Spannung und Strom, der Wert ist unabhängig vom Nullpunkt und beschreibt das Zusammenwirken der beiden Nullphasenwinkel.

1.3 Zeigerdiagramm

- Bei der Darstellung von mehreren sinusförmigen Vorgängen ist das Liniendiagramm sehr aufwendig und unübersichtlich (vgl. 4.3).
- Wesentlich bequemer ist die Darstellung im Zeigerdiagramm mit Polarkoordinaten. Dabei wird das Liniendiagramm als Projektion eines rotierenden Zeigers aufgefasst.

Ein voller Umlauf des Zeigers (360° bzw. 2π)
 entspricht der Periodendauer T im
 Liniendiagramm, die Größe der Projektion des
 Zeigers entspricht dem Augenblickswert (u(t)
 bzw. i(t)).

1.4 Gauß'sche Zahlenebene

- Die Gauß'sche Zahlenebene ist ein Koordinatensystem mit einer reellen (x-Achse) und einer imaginären Achse (y-Achse).
- Eine beliebige Zahl z lässt sich durch kartesische Koordinaten oder Polarkoordinaten darstellen.

Imaginäre Achse

Dabei ist

a der Realteil von z,

b der Imaginärteil von z,

φ der Winkel zwischen reeller Achse und z,

|z| der Betrag von z.

Es gibt drei Möglichkeiten eine beliebige Zahl z zu definieren :

- 1) kartesische Form : z = a + j b
- 2) Polarform : $z = |z| (\cos \varphi + j \sin \varphi)$
- 3) Exponential form: $z = |z| e^{j\varphi}$

Dabei gilt:

$$e^{j\phi} = \cos\phi + j\sin\phi$$

$$\varphi = \arctan(\frac{b}{a})$$

$$|\mathbf{z}| = \sqrt{a^2 + b^2}$$

$$a = |z| \cos \varphi$$
; $b = |z| \sin \varphi$

Exkurs

Mathematik für Wechselstrom

2. Kennwerte von Wechselgrößen

2.1 Arithmetischer Mittelwert

2.2 Gleichrichtwert

2.3 Quadratischer Mittelwert

2.4 Zusammensetzung von Wechselgrößen

2.1 Arithmetischer Mittelwert

- Der arithmetische Mittelwert oder auch linearer Mittelwert oder Gleichwert berücksichtigt die Vorzeichen einer Wechselgröße.
- Er wird über eine Periode T gebildet.
- Der negative Flächenanteil A₋ (unterhalb der t-Achse) wird von dem positiven Flächenanteil A₊ (oberhalb der t-Achse) abgezogen und das Ergebnis auf eine Periode T bezogen.

Mathematisch ergibt sich der arithmetische Mittelwert zu :

$$\overset{-}{u} = 1/T \int\limits_{t}^{t+T} u(t) \ dt \ oder \ \overset{-}{i} = 1/T \int\limits_{t}^{t+T} i(t) \ dt$$

Eine Funktion u(t) bzw. i(t) setzt sich aus einem Wechselanteil (~) und einem Gleichanteil (-) zusammen.

$$u(t) = u_{\sim}(t) + u_{\perp}$$
; $i(t) = i_{\sim}(t) + i_{\perp}$

Damit ergibt sich:

$$u = 1/T \int_{t}^{t+T} (u_{\sim}(t) + u_{\sim}) dt$$

$$\dot{i} = 1/T \int_{t}^{t+T} (i_{\sim}(t) + i_{-}) dt$$

Kennzeichnend für eine reine Wechselgröße ohne Gleichanteil ist :

$$u = 1/T \int_{t}^{t+T} u(t) dt = 0$$

$$\frac{1}{i} = \frac{1}{T} \int_{t}^{t+T} i(t) dt = 0$$

Damit ergibt sich für u(t) bzw. i(t):

$$u = u_{-}$$

$$i = i$$

• Bei einem Drehspulinstrument ergibt sich bei einer reinen Wechselgröße ein um den Nullpunkt schwankender Zeigerausschlag. Bei Mischgrößen pendelt der Zeiger um den arithmetischen Mittelwert und damit um den Gleichanteil.

2.2 Gleichrichtwert

- Es wird zwischen Einweg- und Zweiweggleichrichtung unterschieden.
- Bei der Einweggleichrichtung wird nur die positive Halbwelle berücksichtigt.

Die Fläche A₊ ergibt sich aus der Integration :

$$A_{+} = \int_{0}^{T/2} f(t) dt$$

Bei sinusförmigen Verlauf z.B. von i(t) ergibt dies :

$$A_{+} = \int_{0}^{T/2} \hat{\mathbf{i}}_{+} \sin(\omega t) dt = [-\hat{\mathbf{i}}_{+}/\omega \cos(\omega t)]_{0}^{T/2}$$
$$= 2\hat{\mathbf{i}}_{+}/\omega = \hat{\mathbf{i}}_{+} T/\pi$$

• Bei der Zweiweggleichrichtung werden beide Halbwellen berücksichtigt.

In Analogie zu der Einweggleichrichtung ergibt sich für einen sinusförmigen Verlauf :

$$A_{+} = \int_{0}^{T/2} \hat{\mathbf{i}}_{+} \sin(\omega t) dt = [-\hat{\mathbf{i}}_{+}/\omega \cos(\omega t)]_{0}^{T/2}$$

$$= 2\hat{\mathbf{i}}_{+}/\omega = \hat{\mathbf{i}}_{+}T/\pi$$

$$A_{-} = |\int_{T/2}^{T} \sin(\omega t) dt| = |[-\hat{\mathbf{i}}_{-}/\omega \cos(\omega t)]_{T/2}^{T}|$$

$$= 2\hat{\mathbf{i}}_{-}/\omega = \hat{\mathbf{i}}_{-}T/\pi$$

Damit ergibt:

$$A = A_{\scriptscriptstyle +} + A_{\scriptscriptstyle -} = {\hat{\textbf{\i}}}_{\scriptscriptstyle +} \, T/\pi + {\hat{\textbf{\i}}}_{\scriptscriptstyle -} \, T/\pi = T/\pi \; ({\hat{\textbf{\i}}}_{\scriptscriptstyle +} + {\hat{\textbf{\i}}}_{\scriptscriptstyle -})$$

Haben beide Halbwellen die gleichen Scheitelwerte, $(\hat{1}_{+} = \hat{1}_{-} = \hat{1})$ so ergibt sich :

$$A = A_{+} + A_{-} = \hat{i} T/\pi + \hat{i} T/\pi = 2T/\pi \hat{i}$$

So ergeben sich die arithmetischen Mittelwerte bei sinusförmigen Verlauf zu :

Einweggleichrichtung (Halbperiode):

Zweiweggleichrichtung (Vollperiode):

$$i_{VP} = 1/T \int_{t}^{t+T} i(t) dt = 2/\pi \hat{i} = 0,637 \hat{i}$$

2.3 Quadratischer Mittelwert

- Unter dem quadratischen Mittelwert einer periodischen veränderlichen Größe, wird der während einer Periode T gebildete Mittelwert verstanden, bei dem durch Quadrierung der Augenblickswerte sämtliche Anteile (auch die negativen) einen positiven Beitrag liefern.
- Dieser Wert wird Effektivwert genannt.

$$U = \sqrt{1/T \int_0^T u^2(t) dt} bzw. I = \sqrt{1/T \int_0^T i^2(t) dt}$$

Der Effektivwert ergibt sich bei sinusförmigen Verlauf zu .

$$I = \sqrt{1/T} \int_{0}^{T} i^{2}(t) dt = \sqrt{1/T} \int_{0}^{T} (\hat{\mathbf{i}} \sin(\omega t))^{2} dt$$

$$= \sqrt{\hat{\mathbf{i}}^{2}/T} \int_{0}^{T} \sin^{2}(\omega t) dt = \sqrt{\hat{\mathbf{i}}^{2}/T} \sqrt{\int_{0}^{T} \sin^{2}(\omega t) dt}$$

$$= \sqrt{\hat{\mathbf{i}}^{2}/T} \sqrt{[-1/(2\omega) \sin(\omega t) \cos(\omega t)]_{0}^{T} + [1/2 t]_{0}^{T}}$$

$$= \sqrt{\hat{\mathbf{i}}^{2}/T} \sqrt{1/2 T} = \frac{\hat{\mathbf{i}}}{\sqrt{2}}$$

• Als Scheitelfaktor σ wird das Verhältnis aus Scheitelwert zu Effektivwert bezeichnet.

$$\sigma = \hat{i} / I bzw. \ \sigma = \hat{u} / U$$

• Für einen sinusförmigen Verlauf ergibt sich :

$$\sigma = \sqrt{2}$$

• Als Formfaktor F wird das Verhältnis von Effektivwert zu einem arithmetischen Mittelwert der Gleichrichtwerte bezeichnet.

So ergeben sich die Formfaktoren bei sinusförmigen Verlauf zu :

Einweggleichrichtung (Halbperiode):

$$F_{HP} = I/i_{HP} = 2,222$$

Zweiweggleichrichtung (Vollperiode):

$$F_{VP} = I/i_{VP} = 1,111$$

• Bei einem Hitzdraht- oder Weicheiseninstrument ergibt sich ein um den Effektivwert schwankender Zeigerausschlag.

DC Voltage	Accuracy spe	cs		
Range dc voltage	6.5 Digits Resolution	Accuracy: 1 year (%reading + %range)	Input resistance	
100mV	100nV	0.0050 + 0.0035	$10 \text{ M}\Omega \text{ or } > 10 \text{ G}\Omega$	
100mV	$1\mu V$	0.0030 + 0.0007	$10 \text{ M}\Omega \text{ or } > 10 \text{ G}\Omega$	
1V 10V	$10\mu V$	0.0035 + 0.0005	$10 \text{ M}\Omega \text{ or } > 10 \text{ G}\Omega$	
	$100\mu V$	0.0035 + 0.0006	$10 \text{ M}\Omega$	
100V 1000V	1 mV	0.0045 + 0.0010	$10~\mathrm{M}\Omega$	
True RMS	AC Voltage Ac	ccuracy specs		
		Accuracy: 1 y		
Frequency		(%reading + 9	wrange)	
100 mV	3 Hz-5 H			
range	5 Hz-10			
runge	10 Hz-20 1			
	20 kHz-50	0.12 + 0.04		
	50 kHz-10			
	100 kHz-30			
1 V-750 V	3 Hz-5 H	1.00 + 0.03		
ranges	5 Hz-10			
ranges	10 Hz-20			
	20 kHz-50			
	50 kHz-10	The second secon		
	100 kHz-30	10,000,000		
1 00000	Resolution	Accuracy: 1 year (%reading + %range	e) Current Source	
Range	Resolution		<u></u>	
100 ohm	100Ω	0.010 + 0.004	1 mA	
$1 \text{ k}\Omega$	$1 \text{ m}\Omega$	0.010 + 0.001	1 mA	
10 kΩ	$10 \text{ m}\Omega$	0.010 + 0.001	$100 \mu A$	
100 kohm	$100~\mathrm{m}\Omega$	0.010 + 0.001	$10 \mu A$	
$1 \mathrm{M}\Omega$	1 Ω	0.010 + 0.001	$5 \mu A$	
	10 Ω	0.040 + 0.001	500 nA	
10 MΩ 100 Mohm		0.800 + 0.010	500 nA	
Other Acc	curacy specs (b	pasic 1 year accuracy)		
dc current		0.05% of reading +		
(10 mA to 3 A ranges)		0.005% of range		
ac current accuracy: (1 A to 3 A ranges)		0.1% of reading + 0.04% of range		
Frequency (and Period): (3 Hz to 300 kHz, 0.333 sec to 3.33 μ sec)		0.01% of reading		
Continuity: (1000 Ω range, 1 mA test current)		0.01% of reading +		
(1000Ω)	2 range,	0.02% of range		

2.4 Zusammensetzung von Wechselgrößen

Gegeben sei eine Wechselgröße mit einem Gleichanteil i₀ und Wechselanteilen verschiedener Frequenzen, wobei diese einem Vielfachen der Grundfrequenz entsprechen.

$$\begin{split} i(t) &= i_0 + \sum_{k=1}^{oo} i_k \sin(k\omega t) \\ &= i_0 + i_1 \sin(\omega t) + i_2 \sin(2\omega t) + i_3 \sin(3\omega t) + \dots \end{split}$$

Der Effektivwert von i(t) ergibt sich zu :

$$I = \sqrt{\sum_{k=0}^{oo} {I_k}^2} = \sqrt{{I_0}^2 + {I_1}^2 + {I_2}^2 + {I_3}^2 + ...}$$

Wobei die I_K die Effektivwerte der einzelnen Wechselanteile mit den Frequenzen k ω t sind. I_0 ist der Gleichanteil.

Es lässt sich so der Grundschwingungsgehalt g und der Klirrfaktor k bestimmen.

$$g = \frac{I_1}{I}$$

$$k = \frac{\sqrt{{I_2}^2 + {I_3}^2 + {I_4}^2 + ...}}{I}$$

• Allgemein lässt sich jede periodische Funktion durch eine Überlagerung von Sinus und Cosinus Funktionen darstellen.

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

$$mit \ a_0 = 1/T \int_0^T f(t) \ dt$$

a₀ ist der lineare Mittelwert und a_n und b_n sind die Amplituden der einzelnen Schwingungsanteile und werden als Fourierkoeffizienten bezeichnet. Es gilt:

$$a_n = 2/T \int_0^T f(t) \cos(n\omega t) dt$$

$$b_n = 2/T \int_0^T f(t) \sin(n\omega t) dt$$

Für gerade Funktionen (f(x) = f(-x)) ist $b_n = 0$, für ungerade Funktionen (f(-x) = -f(x)) ist $a_n = 0$.

Die einzelnen Elemente lassen sich zu einem Spektrum zusammenfassen.

$$A_n = \sqrt{{a_n}^2 + {b_n}^2}$$

$$\phi_n = \arctan \frac{a_n}{b_n}$$

Damit wird:

$$f(t) = a_0 + \sum_{n=1}^{oo} A_n \sin(n\omega t + \phi_n)$$

Aufgaben I

Radar Impuls

Reines Radar-Signal

Radar-Signal mit 10db Filter der Oberwellen

Spannungsverteilung beim Radar Impuls

Leistungsverteilung eines Radar Impulses

Leistungsverteilung eines Radar Impulses

Leistungsverteilung eines Radar Impulses

3. Einzelverbraucher im Wechselstromkreis

3.1 Ohmscher Verbraucher

3.2 Induktiver Verbraucher

3.3 Kapazitiver Verbraucher

3.4 Leistung

3.1 Ohmscher Verbraucher

• Verbraucher, die keine Energie speichern, sondern mechanische, chemische oder thermische Energie umwandeln, werden als Wirkwiderstände (Resistanz) bezeichnet.

$$R$$

$$u(t) = \hat{\mathbf{u}} \sin(\omega t + \phi_u)$$

Es gilt das ohmsche Gesetz:

$$i(t) = \frac{u(t)}{R} = \frac{\hat{u}}{R} \sin(\omega t + \phi_u) = \hat{i} \sin(\omega t + \phi_i)$$

Durch Koeffizientenvergleich gilt:

$$\hat{i} = \frac{\hat{u}}{R} \text{ und } \phi_i = \phi_u \Rightarrow \phi = \phi_u - \phi_i = 0$$

- Die Phasenverschiebung zwischen Spannung und Strom bei einem ohmschen Verbraucher ist Null.
- Spannung und Strom haben einen sinusförmigen Verlauf.

Es gilt:

$$R = \frac{\hat{\textbf{u}}}{\hat{\textbf{1}}} e^{j\phi} = \frac{\hat{\textbf{u}}}{\hat{\textbf{1}}} e^{j0} = \frac{\hat{\textbf{u}}}{\hat{\textbf{1}}}$$

Für den Leitwert gilt entsprechend:

$$G = \frac{1}{R} = \frac{\hat{\textbf{i}}}{\hat{\textbf{u}}}$$

Dies bedeutet für das Zeigerdiagramm:

bzw. für das Liniendiagramm:

3.2 Induktiver Verbraucher

• Bei Verbrauchern, die aus einer reinen (Vernachlässigung von elektrostatischen Feldern) Induktivität (Spule) bestehen, wird der Quotient aus Spannung und Strom induktiver Blindwiderstand (Induktanz) genannt.

$$L$$

$$i(t) = \hat{i} \sin(\omega t + \phi_i)$$

Es gilt:

$$u(t) = L \frac{d i(t)}{dt} = L \hat{i} \frac{d}{dt} (\sin(\omega t + \phi_i))$$

= L î
$$\omega \cos(\omega t + \varphi_i)$$
 = û $\cos(\omega t + \varphi_i)$

$$= \hat{\mathbf{u}} \sin(\omega t + 90^{\circ} + \phi_{i}) = \hat{\mathbf{u}} \sin(\omega t + \phi_{u})$$

mit

$$\label{eq:phiu} \begin{split} \hat{\textbf{u}} &= L \; \hat{\textbf{i}} \; \omega \\ \phi_u &= 90^{\circ} + \phi_i \; \boldsymbol{\Rightarrow} \; \phi = \phi_u \; \text{-} \; \phi_i = 90^{\circ} \end{split}$$

• Die Phasenverschiebung zwischen Spannung und Strom bei einem induktiven Verbraucher ist 90 Grad. Die Spannung eilt dem Strom voraus.

• Spannung und Strom haben einen sinusförmigen Verlauf.

Für den induktiven Blindwiderstand gilt:

$$X_L = \frac{\hat{\mathbf{u}}}{\hat{\mathbf{l}}} = \omega L$$

Für den Leitwert gilt entsprechend:

$$Y_L = \frac{1}{X_L} = \frac{1}{\omega L}$$

Dies bedeutet für das Zeigerdiagramm:

Imaginäre Achse $jX_L = j \omega L$ Reelle Achse

bzw. für das Liniendiagramm:

3.3 Kapazitiver Verbraucher

• Bei Verbrauchern, die aus einer reinen (Vernachlässigung von magnetischen Feldern) Kapazität (Kondensator) bestehen, wird der Quotient aus Spannung und Strom kapazitiver Blindwiderstand (Kapazitanz) genannt.

$$C$$

$$u(t) = \hat{\mathbf{u}} \sin(\omega t + \phi_{\mathbf{u}})$$

Es gilt:

$$i(t) = C \frac{du(t)}{dt} = C \hat{u} \frac{d}{dt} (\sin(\omega t + \phi_u))$$

$$= C \ \hat{\textbf{u}} \ \omega \cos(\omega \ t + \phi_u) = \hat{\textbf{I}} \cos(\omega \ t + \phi_u)$$

=
$$\hat{\mathbf{i}} \sin(\omega t + 90^{\circ} + \phi_{u}) = \hat{\mathbf{i}} \sin(\omega t + \phi_{i})$$

mit

$$\label{eq:phi} \begin{split} \textbf{\^{i}} &= C \ \textbf{\^{u}} \ \omega \\ \phi_i &= 90^\circ + \phi_u \Rightarrow \phi = \phi_u \text{ - } \phi_i = \text{- } 90^\circ \end{split}$$

• Die Phasenverschiebung zwischen Spannung und Strom bei einem kapazitiven Verbraucher ist -90 Grad. Die Spannung eilt dem Strom nach.

• Spannung und Strom haben einen sinusförmigen Verlauf.

Für den kapazitiven Blindwiderstand gilt:

$$X_C = \frac{\hat{u}}{\hat{i}} = \frac{1}{\omega C}$$

Für den Leitwert gilt entsprechend:

$$Y_C = \frac{1}{X_C} = \omega C$$

Dies bedeutet für das Zeigerdiagramm: Imaginäre Achse

bzw. für das Liniendiagramm:

3.4 Leistung

Die Leistung ist im Zeitbereich definiert als:

$$p(t) = u(t) i(t)$$

Ohmscher Verbraucher:

$$\begin{split} &p(t) = u(t) \ i(t) = \hat{\textbf{u}} \ sin(\omega \ t + \phi_u) \ \hat{\textbf{i}} \ sin(\omega \ t + \phi_i) \\ &= \hat{\textbf{u}} \ \hat{\textbf{i}} \ sin^2(\omega \ t), \ da \ \phi = 0, \ wegen \ \phi_u = \ \phi_i \\ &= \frac{\hat{\textbf{u}} \ \hat{\textbf{i}}}{2} \left(1 - \cos(2\omega \ t) \right) \end{split}$$

Die Funktion der Leistung pulsiert bei einem ohmschen Verbraucher mit der doppelten Frequenz wie Spannung und Strom um einen Mittelwert, der sog. Wirkleistung P, von ûî.

Induktiver Verbraucher:

$$\begin{split} p(t) &= u(t) \ i(t) = \hat{u} \ sin(\omega \ t + \phi_u) \ \hat{\mathbf{1}} \ sin(\omega \ t + \phi_i) \end{split}$$

$$&= \hat{u} \ cos(\omega \ t + \phi_i) \ \hat{\mathbf{1}} \ sin(\omega \ t + \phi_i), \ da \ \phi_u = 90^o + \phi_i \\ &= \frac{\hat{u} \ \hat{\mathbf{1}}}{2} \ sin(\ 2 \ (\omega \ t + \phi_i) \) \end{split}$$

- Die Funktion der Leistung pulsiert bei einem induktiven Verbraucher mit der doppelten Frequenz wie Spannung und Strom.
- Die von der Induktivität aufgenommene Leistung ist gleich der ins Netz abgegebenen Leistung, so dass die mittlere Leistung, die sog. Blindleistung Q, Null ist.

Kapazitiver Verbraucher:

$$\begin{split} p(t) &= u(t) \; i(t) = \hat{\textbf{u}} \; \sin(\omega \; t + \phi_u) \; \hat{\textbf{i}} \; \sin(\omega \; t + \phi_i) \\ &= \hat{\textbf{u}} \; \sin(\omega \; t + \phi_u) \; \hat{\textbf{i}} \; \cos(\omega \; t + \phi_u), \; da \; \phi_i = 90^\circ + \phi_u \\ &= \frac{\hat{\textbf{u}} \; \hat{\textbf{i}}}{2} \sin(2 \; (\omega \; t + \phi_u) \;) \end{split}$$

- Die Funktion der Leistung pulsiert bei einem kapazitiven Verbraucher mit der doppelten Frequenz wie Spannung und Strom.
- Die von der Kapazität aufgenommene Leistung ist gleich der ins Netz abgegebenen Leistung, so dass die mittlere Leistung, die sog. Blindleistung Q, Null ist.

Komplexe Darstellung der Leistung:

• In Analogie zu den Widerständen, kann auch die Leistung in der Gauß'schen Zahlenebene dargestellt werden.

$$S = |S| e^{j\phi}$$

• Der Zeiger der komplexen Leistung ergibt sich als Produkt aus dem Zeiger der komplexen Spannung mit dem konjugiert komplexen Zeiger des Stroms.

$$\begin{split} S &= U \; I^* = |U| \; e^{j(\phi u)} \; |I| \; e^{j(-\;\phi i)} = |U| \; |I| \; e^{j(\phi u \; - \;\phi i)} \\ &= P \; \pm \; j \; Q = |U| \; |I| \; cos\phi \; \pm \; |U| \; |I| \; sin\phi \end{split}$$

• Die komplexe Leistung S ist die Summe aus Wirkleistung P und Blindleistung Q.

Ohmscher Verbraucher:

$$\begin{split} S &= U \ I^* = |U| \ e^{j(\phi u)} \ |I| \ e^{j(-\phi i)} \\ &= |U| \ e^{j(0)} \ |I| \ e^{j(0)} = |U| \ |I| \ e^{j(0)} = |U| \ |I| = P \end{split}$$

Ohmsche Wirkleistung

Induktiver Verbraucher:

$$\begin{split} S &= U \; I^* = |U| \; e^{j(\phi u)} \; |I| \; e^{j(-\phi i)} \\ &= |U| \; e^{j(90)} \; |I| \; e^{j(0)} = |U| \; |I| \; e^{j(90)} = |Q| \; e^{j(90)} \; = jQ \end{split}$$

Induktive Blindleistung

Kapazitiver Verbraucher:

$$\begin{split} S &= U \; I^* = |U| \; e^{j(\phi u)} \; |I| \; e^{j(\text{-}\phi i)} \\ &= |U| \; e^{j(0)} \; |I| \; e^{j(\text{-}90)} = |U| \; |I| \; e^{j(\text{-}90)} = |Q| \; e^{j(\text{-}90)} = \text{--}jQ \end{split}$$

Kapazitive Blindleistung

4.	Die	Reihens	chaltung	im	Wechse	lstromkreis
----	-----	---------	----------	----	--------	-------------

4.1 Ohmscher und induktiver Verbraucher

4.2 Ohmscher und kapazitiver Verbraucher

4.3 Ohmscher, induktiver und kapazitiver Verbraucher

4.4 Leistung

4.1 Ohmscher und induktiver Verbraucher

Für die Darstellung im Liniendiagramm gilt :

$$u(t) = u_{R}(t) + u_{L}(t) = i(t) R + L \frac{d i(t)}{dt}$$

$$= R \hat{i} (\sin(\omega t + \varphi_{i})) + L \hat{i} \frac{d}{dt} (\sin(\omega t + \varphi_{i}))$$

$$= R \ \hat{\textbf{i}} \ (sin(\omega \ t + \phi_i)) + L \ \hat{\textbf{i}} \ \omega \ cos(\omega \ t + \phi_i)$$

$$= \hat{\textbf{u}}_R \, sin(\omega \, t + \phi_i) + \hat{\textbf{u}}_L \, sin(\omega \, t + 90^o + \phi_i)$$

$$mit \;\; \boldsymbol{\hat{u}}_R = R \; \boldsymbol{\hat{i}} \; und \; \boldsymbol{\hat{u}}_L = L \; \boldsymbol{\hat{i}} \; \boldsymbol{\omega}$$

Die Darstellung im Zeigerdiagramm liefert:

$$\begin{split} U &= U_R + U_L = I \; R \; + I \; j \; \omega \; L = I \; (R + j \; \omega \; L) = I \; Z \\ &= I \; |Z| \; e^{j\phi} = I \; \sqrt{R^2 + (\omega \; L)^2} \; e^{j arctan(\omega L/R)} \\ &= \boldsymbol{\hat{\imath}} \; \sqrt{R^2 + (\omega \; L)^2} \; e^{j arctan(\omega L/R)} \; , \; da \; I = |I| \; e^{j\phi i} = \boldsymbol{\hat{\imath}} \; e^{j0} \\ &= \boldsymbol{\hat{u}} \; e^{j\phi u} \end{split}$$

mit $\hat{\mathbf{u}} = \hat{\mathbf{i}} \sqrt{R^2 + (\omega L)^2}$ und $\phi_u = \arctan(\omega L/R)$

4.2 Ohmscher und kapazitiver Verbraucher

Für die Darstellung im Liniendiagramm gilt :

$$\begin{split} u(t) &= u_R(t) + u_C(t) = i(t) \ R + \frac{1}{C} \int i(t) \ dt \\ &= R \ \hat{i} \ (\sin(\omega \ t + \phi_i)) + \frac{1}{C} \ \hat{i} \ \int \ \sin(\omega \ t + \phi_i) \ dt \\ &= R \ \hat{i} \ (\sin(\omega \ t + \phi_i)) - \frac{\hat{i}}{\omega \ C} \ \cos(\omega \ t + \phi_i) \end{split}$$

Die Darstellung im Zeigerdiagramm liefert:

$$U = U_R + U_L = I \ R \ + I \ \frac{1}{j\omega C} = I \ (R - j \ \frac{1}{\omega \ C}) = I \ Z$$

$$= I \; |Z| \; e^{j\phi} = I \; \sqrt{R^2 + (\frac{1}{\omega \; C})^2} \; e^{j arctan(\text{-}1/R\omega C)}$$

$$= \mathbf{\hat{I}} \sqrt{R^2 + (\frac{1}{\omega C})^2} \ e^{j arctan(-1/R\omega C)} \ , \ da \ I = |I| \ e^{j \phi i} = \mathbf{\hat{I}} \ e^{j 0}$$

$$= \hat{\mathbf{u}} e^{j\phi u}$$

mit
$$\hat{\textbf{u}} = \hat{\textbf{I}} \sqrt{R^2 + (\frac{1}{\omega C})^2}$$
 und $\phi_u = \arctan (-1/R\omega C)$

4.3 Ohmscher, induktiver und kapazitiver Verbraucher

Für die Darstellung im Liniendiagramm gilt :

$$\begin{split} u(t) &= u_R(t) + u_L(t) + u_C(t) \\ &= i(t) \ R + L \ \frac{d \ i(t)}{dt} + \frac{1}{C} \int i(t) \ dt \\ \\ &= \hat{u}_R \ sin(\omega \ t + \phi_i) + \hat{u}_L \ sin(\omega \ t + 90^o + \phi_i) \\ &\quad + \hat{u}_C \ sin(\omega \ t - 90^o + \phi_i) \\ &\quad mit \ \hat{u}_R = R \ \hat{i} \ ; \ \hat{u}_L = L \ \hat{i} \ \omega \ und \ \hat{u}_C = \frac{\hat{i}}{\omega \ C} \end{split}$$

Dabei ist:

u_R(t) gegenüber dem Strom i(t) in Phase.

 $u_L(t)$ gegenüber dem Strom i(t) um +90 Grad Phasen verschoben.

u_C(t) gegenüber dem Strom i(t) um -90 Grad Phasen verschoben.

Es müssen zwei Fälle unterschieden werden:

 $\hat{\mathbf{u}}_{L} > \hat{\mathbf{u}}_{C}$ (positive Phasenverschiebung $\phi > 0$; induktives Verhalten überwiegt)

Das Zeigerdiagramm liefert hier:

$\hat{\mathbf{u}}_{L} < \hat{\mathbf{u}}_{C}$ (negative Phasenverschiebung $\phi < 0$; kapazitives Verhalten überwiegt)

Das Zeigerdiagramm liefert hier:

Für die Reihenschaltung gilt:

$$\begin{split} U &= U_R + U_L + U_C \\ &= I \ R + I \ \frac{1}{j\omega C} + I \ j\omega L \\ &= I \ (R + j \ (\omega L - \frac{1}{\omega \ C})) \\ &= I \ Z = I \ |Z| \ e^{j\phi} \\ &= I \ \sqrt{R^2 + (\omega L - \frac{1}{\omega \ C})^2} \ e^{j\arctan((\omega L - 1/\omega C)/R)} \\ &= \hat{\mathbf{1}} \ \sqrt{R^2 + (\omega L - \frac{1}{\omega \ C})^2} \ e^{j\arctan((\omega L - 1/\omega C)/R)} \\ &\quad , \ da \ I = |I| \ e^{j\phi i} = \hat{\mathbf{1}} \ e^{j0} \\ &= \hat{\mathbf{u}} \ e^{j\phi u} \\ \\ &\quad mit \ \hat{\mathbf{u}} = \hat{\mathbf{1}} \ \sqrt{R^2 + (\omega L - \frac{1}{\omega \ C})^2} \\ &\quad und \ \phi_u = \arctan((\omega L - 1/\omega C)/R) \end{split}$$

4.4 Leistung

Allgemein gilt:

$$S = U \; I^* = |U| \; |I| \; e^{j(\phi u \; \text{-}\; \phi i)} = P \; \text{±} \; j \; Q$$

Ohmscher und induktiver Verbraucher:

$$\begin{split} S &= U~I^* = I^*~I~Z = U^2/Z~,~da~I = I^*~wegen~\phi_i = 0\\ &= I~I^*~\sqrt{R^2 + (\omega~L)^2}~e^{jarctan(\omega L/R)}\\ &= \frac{U^2}{\sqrt{R^2 + (\omega~L)^2}~e^{jarctan(\omega L/R)}}\\ &= I~I^*~R + j~I~I^*~\omega L = U_R^2/R + j~U_L^2/\omega L \end{split}$$

Im Zeigerdiagramm ergibt dies:

Ohmscher und kapazitiver Verbraucher:

$$\begin{split} S &= U \; I^* = I^* \; I \; Z = U^2/Z \; da \; I = I^* \; wegen \; \phi_i = 0 \\ &= I \; I^* \; \sqrt{R^2 + (\frac{1}{\omega \; C})^2} \; e^{j arctan(-1/R\omega C)} \\ &= \frac{U^2}{\sqrt{R^2 + (\frac{1}{\omega \; C})^2} \; e^{j arctan(-1/R\omega C)}} \\ &= I \; I^* \; R - j \; I \; I^* \; \frac{1}{\omega C} = U_R^2/R - j \; U_C^2 \; \omega C \end{split}$$

Im Zeigerdiagramm ergibt dies:

Ohmscher, induktiver und kapazitiver Verbraucher:

$$\begin{split} S &= U \; I^* = I^* \; I \; Z = U^2 / Z \; da \; I = I^* \; wegen \; \phi_i = 0 \\ &= I \; I^* \; \sqrt{R^2 + (\omega L - \frac{1}{\omega \; C})^2} \; e^{j \arctan((\omega L - 1/\omega C \;)/R)} \\ &= \frac{U^2}{\sqrt{R^2 + (\omega L - \frac{1}{\omega \; C})^2} \; e^{j \arctan((\omega L - 1/\omega C \;)/R)}} \\ &= I \; I^* \; R + j \; I \; I^* \; \omega L - j \; I \; I^* \; \frac{1}{\omega C} \\ &= U_R^2 / R + j \; U_L^2 / \omega L - j \; U_C^2 \; \omega C \end{split}$$

Im Zeigerdiagramm ergibt dies zwei Fälle:

	5.	Die	Para	lle	lscha	ltung	im	Wechse	lstromk	reis
--	----	-----	------	-----	-------	-------	----	--------	---------	------

5.1 Ohmscher und induktiver Verbraucher

5.2 Ohmscher und kapazitiver Verbraucher

5.3 Ohmscher, induktiver und kapazitiver Verbraucher

5.4 Leistung

5.1 Ohmscher und induktiver Verbraucher

$$\begin{split} I &= I_R \ + I_L \ = U \ G + U \ Y_L \\ &= U \ 1/R + U \ 1/j\omega L = U \ (1/R \ \mbox{-} \ j \ 1/\omega L) \end{split}$$

$$=U~Y=U~|Y|~e^{j\phi Y}$$
 mit $|Y|=\sqrt{\left(1/R\right)^2+\left(1/\omega L\right)^2}$ und $\phi_Y=\arctan(-\frac{R}{\omega L})$

5.2 Ohmscher und kapazitiver Verbraucher

$$\begin{split} I &= I_R \ + I_C \ = U \ G + U \ Y_C \\ &= U \ 1/R + U \ j\omega C = U \ (1/R + j\omega C) \end{split}$$

$$= U \; Y = U \; |Y| \; e^{j\phi Y}$$
 mit $|Y| = \sqrt{\left(1/R\right)^2 + \left(\omega C\right)^2}$ und $\phi_Y = arctan(R\omega C)$

5.3 Ohmscher, induktiver und kapazitiver Verbraucher

$$\begin{split} I &= I_R \,+ I_C + I_L = U \; G + U \; Y_C + U \; Y_L \\ &= U \; 1/R + U \; j\omega C + U \; 1/j\omega L \\ &= U \; (1/R + j(\omega C\text{-}1/\omega L)) \\ &= U \; Y = U \; |Y| \; e^{j\phi Y} \\ \\ mit \; |Y| &= \sqrt{(1/R)^2 + (\omega C\text{-}1/\omega L)^2} \\ \\ und \; \phi_Y &= arctan(R(\omega C\text{-}1/\omega L)) \end{split}$$

Es müssen zwei Fälle unterschieden werden:

$$Y_L > Y_C$$
 und $Y_L < Y_C$

$Y_L < Y_C$:

$Y_L > Y_C$:

5.4 Leistung

Allgemein gilt:

$$S = U \; I^* = |U| \; |I| \; e^{j(\phi u \; - \; \phi i)} = P \; \pm \; j \; Q$$

Ohmscher und induktiver Verbraucher:

$$S = U I^* = P \pm j Q$$

$$P = U^2 / R = U^2 G \text{ und } Q = j U^2 / \omega L = j U^2 Y_L$$

Ohmscher und kapazitiver Verbraucher:

$$S = U I^* = P \pm i Q$$

$$P = U^2 \, / \, R = U^2 \, G \ und \ Q = \ \textbf{-j} \ U^2 \omega C = \textbf{-j} \ U^2 \, Y_C$$

Ohmscher, induktiver und kapazitiver Verbraucher:

$$S = U \ I^* = P \pm j \ Q$$

$$P = U^2 / R = U^2 \ G \ und$$

$$Q = j \ U^2 \omega C \ -j \ U^2 / \omega L = j \ U^2 \ Y_C -j \ U^2 \ Y_L$$

Es sind folgende Fälle zu betrachten:

$$Q_L < Q_C$$

$$Q_L > Q_C$$

Aufgaben III

6. Spezielle Verfahren für Wechselstromkreise

6.1 Reihenresonanz

6.2 Parallelresonanz

6.3 Gemischte Schaltungen

6.4 Netzwerkanalyse

6.1 Reihenresonanz

• Reihenresonanz tritt bei Reihenschaltungen auf.

- Bei einer bestimmten Frequenz sind induktiver und kapazitiver Blindwiderstand gleich groß. Diese Frequenz wird Resonanzfrequenz f₀ genannt.
- Die Phasenverschiebung bei Resonanz zwischen Gesamtspannung und Gesamtstrom ist Null.
- Der komplexe Gesamtwiderstand ist rein reell.
- Die Reihenresonanz wird auch als Spannungsresonanz bezeichnet.

$$Z = R + j\omega L - j 1/\omega C = R + j (\omega L - 1/\omega C)$$

 $\Rightarrow \omega_0 L - 1/\omega_0 C = 0$, da Z rein reell sein soll

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{L C}}$$

$$\Rightarrow f_0 = \frac{1}{2 \pi} \frac{1}{\sqrt{L C}}$$

- Bei der Resonanzfrequenz erreichen U_R und I ihr Maximum.
- U_L und U_C haben ihr Maximum nicht bei der Resonanzfrequenz, sondern bei

$$f_{0L} = \frac{1}{2 \pi} \sqrt{\frac{2}{2L \ C - R^2 \ C^2}} = f_0 \frac{1}{\sqrt{1 - \frac{R^2 \ C}{2L}}} = \frac{f_0}{g}$$

$$f_{0C} = \frac{1}{2 \pi} \sqrt{\frac{1}{L \ C} - \frac{R^2}{2L^2}} = f_0 \sqrt{1 - \frac{R^2 \ C}{2L}} = f_0 \ g$$

$$mit g = \sqrt{1 - \frac{R^2 C}{2L}}$$

• Eine weitere Kennzahl des Resonanzkreises ist die Güte G. Sie ist definiert als Verhältnis aus Blindleistung zu Wirkleistung bei Resonanz $(Q_L = Q_C)$:

$$G = \frac{\omega_0 L}{R} = \frac{1}{R \ \omega_0 C} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Der Kehrwert der Güte ist die Dämpfung d:

$$d = 1/G = R \sqrt{\frac{C}{L}}$$

• Daneben wird noch die sog. Verstimmung v, ein Maß für die Abweichung von der Resonanzfrequenz, definiert als:

$$v = \frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}$$

Damit wird beim Reihenschwingkreis:

$$Z = R + j (\omega L - 1/\omega C) = R + j \sqrt{\frac{L}{C}} (\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})$$
$$= R + j v \sqrt{\frac{L}{C}}$$

• Unter der Bandbreite B wird die Differenz der beiden Grenzfrequenzen f_1 und f_2 verstanden, bei denen der Strom auf das $1/\sqrt{2}$ fache des Stromes bei Resonanz abgefallen ist.

$$B = f_2 - f_1 = f_0 d = f_0/G$$

Bei den Grenzfrequenzen gilt:

- Der Betrag des Blindwiderstandes ist gleich dem ohmschen Widerstand |Z| = R.
- Die Phasenverschiebung beträgt 45°.

Aufgaben IV

6.2 Parallelresonanz

• Parallelresonanz tritt bei Parallelschaltungen auf.

- Bei einer bestimmten Frequenz sind induktiver und kapazitiver Blindleitwert gleich groß. Diese Frequenz wird Resonanzfrequenz f₀ genannt.
- Die Phasenverschiebung bei Resonanz zwischen Gesamtspannung und Gesamtstrom ist Null.
- Der komplexe Gesamtleitwert ist rein reell.
- Die Parallelresonanz wird auch als Stromresonanz bezeichnet.

$$Y = G + j\omega C - j 1/\omega L = G + j (\omega C - 1/\omega L)$$

 $\Rightarrow \omega_0 C - 1/\omega_0 L = 0$, Y rein reell sein soll

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{L C}}$$

$$\Rightarrow f_0 = \frac{1}{2 \pi} \frac{1}{\sqrt{L C}}$$

- Für den Parallelresonanzkreis mit idealen Bauelementen ergibt sich dieselbe Formel für die Resonanzfrequenz wie für den Reihenresonanzkreis.
- Es gelten hier die gleichen Definitionen für die Güte G, die Dämpfung d und die Verstimmung v.
- Die Bandbreite B ist in Analogie zur Reihenresonanz hier definiert als Differenz der beiden Grenzfrequenzen f_1 und f_2 , bei denen die Spannung auf das $1/\sqrt{2}$ fache der Spannung bei Resonanz abgefallen ist.

6.3 Gemischte Schaltungen

 Für gemischte Schaltungen gelten die Gesetzmäßigkeiten wie sie aus dem Bereich des Gleichstroms bekannt sind nur mit komplexen Größen.

Spannungsteiler:

Mit Hilfe der Ersatzspannungsquelle kann für einen mit Z_a belasteten Spannungsteiler ermittelt werden :

$$\frac{U_a}{U_e} = \frac{Z_a \, Z_2}{Z_a \, Z_1 + Z_a \, Z_2 + Z_2 \, Z_1}$$

Brückenschaltung:

Als Abgleich gilt:

$$\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4}$$

Ersatzspannungsquelle:

- 1. Umwandlung jeder Spannungsquelle in eine gleichwertige Stromquelle.
- 2. Umwandlung der Widerstände in Leitwerte.
- 3. Zusammenfassung der Stromquellen zu einer Ersatz-Stromquelle.

Stern-Dreieck-Umwandlung:

Für die Überführung wird vorausgesetzt, dass in jeder Schaltung der Widerstand zwischen zwei Anschlusspunkten gleich bleibt.

(Gleichungen s. Skript Gleichstrom GELEK I)

Ersatzschaltungen:

• Ohmsche Widerstände besitzen neben dem reinen Widerstandsanteil auch Wicklungsinduktivitäten (1nH...1mH) und Wicklungskapazitäten (0,1pF...100pF).

• Spulen besitzen eine Kapazität, Hysterese- bzw. Wirkverluste.

• Kondensatoren haben geringe Wirkverluste und eine merkliche Induktivität in den Zuleitungen.

6.4 Netzwerkanalyse

Vorgehensweise bei Schaltungen:

- Zusammenfassung von parallelen Widerständen.
- Zusammenfassung von Reihenwiderständen.
- Zusammenfassung von Stromquellen.
- Zusammenfassung von Spannungsquellen.
- Ermittlung von Iges.
- Ermittlung von Uges.
- Ermittlung der Teilspannungen an den Widerständen.
- Ermittlung der Teilströme in den Widerständen.

Systematik bei Netzwerken:

- Durchnummerierung der Knoten
- Einzeichnen der Ströme
- Bestimmung der Knotengleichungen
- Einzeichnen der Maschen
- Nummerierung der Maschen
- Einzeichnen der Spannungen an den Widerständen
- Bestimmung der Maschengleichungen

Aufgaben V