МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Организация ЭВМ и систем»

Тема: Организация связи Ассемблера с ЯВУ на примере программы построения частотного распределение попаданий псевдослучайных целых чисел в заданные интервалы.

Студент гр. 9382	 Кузьмин Д. И.
Преподаватель	 Ефремов М. А

Санкт-Петербург 2020

Цель работы.

Изучить принципы работы со массивами в ассемблере. Освоить навыки разработки программ на ЯВУ со включением кода на Ассемблере.

Задание.

На языке высокого уровня (Pascal или C) генерируется массив псевдослучайных целых чисел, изменяющихся в заданном диапазоне и имеющих равномерное распределение. Необходимые датчики псевдослучайных чисел находятся в каталоге Tasks\RAND_GEN (при его отсутствии программу датчика получить у преподавателя). Далее должен вызываться ассемблерный модуль(модули) для формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы. В общем случае интервалы разбиения диапазона изменения псевдослучайных чисел могут иметь различную длину. Результирующий массив частотного распределения чисел по интервалам, сформированный на ассемблерном уровне, возвращается в программу, реализованную на ЯВУ, и затем сохраняется в файле и выводится на экран средствами ЯВУ.

Вариант 2: подпрограмма формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы реализуется в ассемблерных модулей, первый виде двух ИЗ которых формирует распределение исходных чисел по интервалам единичной длины и возвращает его в вызывающую программу на ЯВУ как промежуточный результат. Это распределение должно выводиться в текстовом виде для контроля. Затем вызывается второй ассемблерный модуль, который по этому промежуточному распределению формирует окончательное распределение псевдослучайных целых чисел по интервалам произвольной длины (с заданными границами). Это распределение возвращается в головную программу и выдается как основной результат в виде текстового файла и, возможно, графика.

Выполнение работы.

1) Первым шагом было объявление различных переменных, а также реализация ввода данных.

- 2) Был создан массив случайных чисел, массив левых границ интервалов, массив частот единичных интервалов, массив частот заданных интервалов.
- 3) Затем при помощи вставки ассемблерного кода был реализован расчет частоты попадания сгенерированных случайных чисел в единичные интервалы.
 - 4) Далее следовал вывод этих частот.
- 5) На следующем шаге был реализован на ассемблере расчет частот попадания чисел в заданные интервалы и их вывод.

Тестирование. Результаты тестирование представлены в табл. 1.

Таблица 1 — результаты тестирования.

№ п/п	Входные данные	Выходные данные	Комментарий
	размер массива: 5	Массив случайных чисел: -1	Распределение по 3
	диапазон	0 2 -2 2	интервалам.
	распределения: -2 2	Распределение по	
	количество	единичным интервалам:	
	интервалов: 3	[-2]: 1	
	Левые границы	[-1]: 1	
1	интервалов: -1 0 1	[0]: 1	
		[1]: 0	
		[2]: 2	
		Распределение по заданным	
		интервалам:	
		[-1,-1]: 1	
		[0,0]: 1	
		[1,2]: 2	
2	размер массива: -5	Повторите ввод:	Программа
			обрабатывает
			некорректный размер
			массива

	размер массива: 5	Массив случайных чисел: 8	Случай, когда
	диапазон	9917	интервал всего один.
	распределения: 0 10	Распределение по	
	количество	единичным интервалам:	
	интервалов: 1	[0]: 0	
	Левые границы	[1]: 1	
3	интервалов: 0	[2]: 0	
		[3]: 0	
		[4]: 0	
		[5]: 0	
		[6]: 0	
		[7]: 1	
		[8]: 1	
		[9]: 2	
		[10]: 0	
		Распределение по заданным	
		интервалам:	
		[0,10]: 5	

Выводы.

Были изучены принципы связи Ассемблера с ЯВУ. Получены навыки разработки программ, работающих с массивами чисел.

ПРИЛОЖЕНИЕ А. ИСХОДНЫЙ КОД

Файл main.cpp

```
#include <iostream>
int main()
     int n;
     int xmin;
     int xmax;
     int arr length;
     setlocale(LC ALL, "Russian");
     std::cout << "Введите размер массива: ";
     std::cin >> n;
     while (n < 0) {
           std::cout << "Повторите ввод:";
           std::cin >> n;
     int* randomnumbers = new int[n];
     std::cout << "Введите диапазон распределения: ";
     std::cin >> xmin >> xmax;
     while (xmin > xmax) {
           std::cout << "Повторите ввод:";
          std::cin >> xmin >> xmax;
     }
     const int range = abs(xmax - xmin) + 1;
     int* unitintervalfrequency = new int[range];
     std::cout << "Введите количество интервалов: ";
     std::cin >> arr length;
     while (arr length <= 0) {</pre>
           std::cout << "\nПовторите ввод: ";
           std::cin >> arr length;
     int* lgrint = new int[arr length];
     int* frequency = new int[arr length];
     std::cout << "Левые границы интервалов: ";
     for (int i = 0; i < arr length; i++){
           std::cin >> lgrint[i];
           frequency[i] = 0;
     }
     std::cout << "Разделение на интервалы: ";
     for (int i = 0; i < arr length; i++) {
           std::cout << "[" << lgrint[i] << ",";
          if (i != arr length - 1) std::cout << lgrint[i + 1] - 1 <<</pre>
"]";
          else std::cout << xmax << "]";</pre>
```

```
std::cout << "\nMaccив случайных чисел: ";
     for (int i = 0; i < n; i++) {
           randomnumbers[i] = rand() % (abs(xmax - xmin) + 1) + xmin;
           std::cout << randomnumbers[i] << " ";</pre>
     for (int i = 0; i < range; i++) unitinterval frequency[i] = 0;
     std::cout << "\nРаспределение по единичным интервалам:\n";
     int h;
     _asm {
     mov ecx, n
     sub ecx, 1
     sub ebx, ebx
     mov edx, randomnumbers
     mov eax, unitintervalfrequency
     unit:
     mov esi, [edx + ebx*4]
     sub esi, xmin
     add [eax + esi*4], 1
     cmp ebx, ecx
     jge endloop
     inc ebx
     jmp unit
     endloop:
     }
     for (int i = 0; i < range; i++)
     std::cout << "[" << i + xmin << "]: " << unitintervalfrequency[i]</pre>
<< "\n";
     asm {
           mov eax, unitintervalfrequency
           mov edx, frequency
           mov ecx, arr length
           sub edi, edi
           cmp ecx, 1
           je lastint
           sub ecx, 2
           mov esi, lgrint
           mov esi, [esi + edi];
           sub esi, xmin
           mov ebx, lgrint
           add edi, 1
           mov ebx, [ebx + edi*4]
           sub ebx, xmin
           sub edi, 1
           oneinterval:
           cmp esi, ebx
           je nextinterval
```

```
mov eax, [eax + esi * 4]
          add [edx + edi*4], eax
          mov eax, unitintervalfrequency
          inc esi
          jmp oneinterval
          nextinterval:
          cmp edi, ecx
          je lastint
          jg stu
          inc edi
          mov esi, lgrint
          mov esi, [esi + edi*4]
          sub esi, xmin
          mov ebx, lgrint
          add edi, 1
          mov ebx, [ebx + edi*4]
          sub edi, 1
          sub ebx, xmin
          jmp oneinterval
          lastint:
          cmp ecx, 1
          je noinc
          inc edi
          noinc:
          mov ecx, 0
          mov esi, xmax
          sub esi, xmin
          add esi, 1
          cmp ebx, esi
          je stu
          mov ebx, xmax
          sub ebx, xmin
          add ebx, 1
          mov esi, lgrint
          mov esi, [esi + edi*4]
          sub esi, xmin
          jmp oneinterval
          stu:
     std::cout << "Распределение по заданным интервалам:\n";
     for (int i = 0; i < arr length; i++)
          if (i != arr length - 1)std::cout << "[" << lgrint[i] << ","</pre>
else std::cout << "[" << lgrint[i] << "," << xmax << "]: " <<
frequency[i] << "\n";</pre>
```