Projeto Mummy Maze Solver

Ana Martins Instituto Politécnico de Leiria 2201711@my.ipleiria.pt André Pinto Instituto Politécnico de Leiria 2201723@my.ipleiria.pt

ABSTRATO

Neste relatório descrevemos a aplicação de diferentes algoritmos de procura no jogo Mummy Maze.

Categorias e Descritores de Temas

Termos Gerais

Algoritmos, Custo da Solução, Nós expandidos, Tempo de execução, Java.

Palavras-Chave

Action; ActionUp; ActionRight; ActionDown; ActionLeft; ActionStandStill; AStarSearch; BreadhFirst Search; Depth First Search; Greedy Best First Search; IDA* Search; Iterative Deepening Search; Uniform Cost Search; Cell; Entity; Enemy; GraphSearch; Hero; Mummy; RedMummy; Scorpion; WhiteMummy; MummyMazeState; MummyMazeProblem; MummyMazeAgent; Heurística; Algoritmo de Procura Não Informado; Algoritmo de Procura Informado; Saída;

1. INTRODUÇÃO

Neste relatório iremos abordar a resolução do problema do jogo Mummy Maze, através de diferentes algoritmos de procura, informados e não informados, sendo que iremos apresentar alguns resultados para poder medir a performance entre algoritmos para os diferentes níveis e consoante as heurísticas utilizadas. Neste jogo, o objetivo é fazer com que a personagem principal (o Herói), consiga sair de um labirinto em que tem diversos inimigos a tentar matá-lo: múmias brancas, múmias vermelhas e escorpiões. Tem também armadilhas em que o herói morre caso as pise, e diversas portas em que podem ser abertas ao pisar numa chave. O Herói mexe-se sempre primeiro, sendo que os vão tentar aproximar-se dele, consoante regras pré-definidas.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Conference '04, Month 1–2, 2004, City, State, Country. Copyright 2004 ACM 1-58113-000-0/00/0004...\$5.00.

2. RESOLUÇÃO DO PROBLEMA

2.1 Representação de Cada Estado

Um estado do jogo é representado por uma matriz de caracteres 13x13 (13 linhas e 13 colunas), um herói representado pelo caracter 'H', e pode haver diversos inimigos (Múmia Branca, representada por 'M', que tem 2 movimentos por jogada e prioriza colocar-se na mesma coluna do herói; Múmia Vermelha, representada por 'V' que tem também 2 movimentos por jogada e tenta sempre colocar-se primeiro na mesma linha que o herói; Escorpião, representado por 'E', que tem apenas 1 movimento por jogada e prioriza colocar-se na mesma coluna do herói) e obstáculos (paredes fixas – representadas por | e - e portas fechadas – '=', ''", que podem ser abertas com uma chave – 'C' - em que um elemento pisa). Existe sempre uma saída representada, cuja qual terá que ser alcançada pelo herói para terminar o jogo.

2.2 Heurísticas Utilizadas

HeurisiticDistanceToEnemies: nesta heurística é calculada a distância do herói até aos inimigos presentes. A forma de estimar o valor desta heurística foi obtendo o inverso da soma do valor da Manhattan distance do herói até cada inimigo em jogo. Como quanto maior esta distância total, melhor o valor da heurística, o valor utilizado foi o inverso da distância:

HeuristicExitDistance: nesta heurística é obtido o valor da Manhattan distance do herói até à saída;

HeuristicDistanceToExitAndToEnemies: nesta heurística foi obtido um valor resultante da soma das duas heurísticas anteriores. Esse valor é calculado somando a Manhattan Distance do herói até à saída com o inverso da Manhattan Distance do herói até cada um dos inimigos presentes;

HeuristicNumberEnemies: nesta heurística o valor obtido é o inverso do número de inimigos presentes em jogo, pois a heurística será tanto melhor quanto o menor número de inimigos presentes;

HeuristicWallsAroundEnemies: nesta heurística é obtido o inverso da soma de todas as paredes que estão à volta de cada inimigo presente em jogo. O valor da heurística será tanto melhor quanto mais paredes estiverem em torno dos inimigos, pois pode levar a situações em que estes fiquem presos e o herói se consiga movimentar mais livremente;

2.3 Contribuição de Cada Elemento do Grupo

Tanto o desenvolvimento do projeto como este relatório foram realizados pelos dois elementos do grupo de igual forma.

2.4 Aspetos Relevantes

Alguns aspetos que consideramos relevantes mencionar são a forma que resolvemos matar os inimigos — qualquer inimigo pode matar um outro qualquer, sendo que quem se move para cima da uma célula que contém um inimigo é que mata. Outra nota é que, após a pesquisa das regras do jogo, colocámos como regra também na nossa solução em que qualquer elemento (herói e inimigos) presente em jogo consegue abrir portas, ao se posicionar em cima de uma célula que contenha a chave. Esta abordagem faz com que o herói, em certos níveis, priorize posicionar-se de forma que os inimigos (cujo movimento é sempre determinístico) abram ou fechem portas que o herói poderia não conseguir abrir/fechar.

2.5 Extras Realizados

Como extras fizemos mais heurísticas (5 ao todo); fizemos com que ao resolver um nível, seja gerado um documento .xls com os dados sobre essa pesquisa – qual o algoritmo usado, a heurística usada, no caso dos algoritmos informados, o custo da solução, o número máximo de nós expandidos, o tamanho máximo da fronteira, o número de nós gerados e o tempo gasto a encontrar a solução; adicionámos um botão na GUI do jogo 'Get Statistics From This Level', em que ao ser pressionado irá resolver o nível atualmente disposto, e com a heurística selecionada, apresentando uma JFrame com a informação da resolução do nível com todos os métodos de procura disponíveis, de forma a poder realizar experiências e analisar resultados de forma mais automática; implementámos também o algoritmo IDA*.

Foi colocado também, em anexo neste relatório, vários gráficos que complementam a informação das tabelas e a discussão dos resultados.

3. DISCUSSÃO DOS RESULTADOS

Abreviaturas utilizadas:

H₁ – Heurística "Distance To Enemies and To Exit"

H2 - Heurística "Total Distance to exit door"

H₃ – Heurística "Walls Around Enemies"

H₄ – Heurística "Number of Enemies"

H₅ – Heurística "Distance to Enemies"

ID - Iterative Deepening

GBF - Greedy Best First

 $Algoritmos\ Informados-A^*,\ GBF$

Algoritmos Não Informados — Breadth First, Uniform Cost, Depth First, ID

Figura 1 - Imagem do Nível 1

Figura 2. Resultados do Nível 1

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	10	16	24	63	0.004
A* - H ₂	10	25	20	68	0.001
A* - H ₃	10	55	18	156	0.0
A * - H ₄	10	70	15	176	0.0
A * - H ₅	10	44	31	168	0.001
Breadth First	10	69	15	172	0.004
Uniform Cost	10	70	15	176	0.002
Depth First	12	13	20	51	0.001
ID	10	1215	15	3760	0.018
GBF - H ₁	10	19	29	73	0.001
GBF - H ₂	10	34	22	83	0.001
GBF - H ₃	10	52	23	154	0.0
GBF - H ₄	10	21	17	81	0.0
GBF - H ₅	13	23	13	88	0.0

Como se pode observar pelos resultados apresentados na Figura 2, foi sempre possível obter a solução ótima, excetuando o Depth First Search e o Greedy Best First Search com a H₅. Em termos de nós expandidos, o Iterative Deepening destaca-se tendo cerca de 18 vezes mais do que a generalidade dos outros métodos de procura, sendo que os algoritmos informados com o H₁ e o Depth First Search obtiveram os melhores resultados. Em termos de tamanho máximo da fronteira, destacam-se os algoritmos não informados e o GBF com a H₅. Quanto ao número de nós gerados, o ID destaca-se pela negativa, sendo que o Depth First obtém o melhor resultado, seguido do A* com a H₁. Por fim, em relação ao tempo gasto a encontrar a solução, apesar de terem todos resultados muito rápidos, o ID obteve um valor muito pior, quase 18 vezes superior aos outros algoritmos.

No geral, neste nível os algoritmos comportaram-se de forma semelhante (excepto o ID), sendo o Depth First Search o que obteve os melhores resultados em termos de recursos usados, tendo em contrapartida não ter encontrado a solução ótima.

Figura 3 – Imagem do Nível 2

Figura 4. Resultados do Nível 2

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	9	18	19	64	0.005
A* - H ₂	9	32	12	64	0.001
A* - H ₃	9	34	14	64	0.001
A * - H4	9	39	14	71	0.0
A * - H ₅	9	21	20	71	0.0
Breadth First	9	39	13	71	0.002
Uniform Cost	9	39	14	71	0.001
Depth First	9	27	11	48	0.001
ID	9	418	10	661	0.005
GBF - H ₁	9	17	19	60	0.001
GBF - H ₂	9	30	10	60	0.0
GBF - H ₃	9	27	12	57	0.001
GBF - H ₄	9	27	9	52	0.001
GBF - H ₅	9	21	20	71	0.001

Como se pode observar pelos resultados apresentados na Figura 4, foi sempre possível obter a solução ótima para todos os algoritmos. Em termos de nós expandidos, o Iterative Deepening destaca-se tendo cerca de 10 vezes mais do que a generalidade dos outros métodos de procura, sendo que os algoritmos informados com o H₁ obtiveram os melhores resultados. Em termos de tamanho máximo da fronteira, houve muitos valores semelhantes destacando-se o GBF com a H₄. Quanto ao número de nós gerados, o ID tem cerca de 10 vezes mais do que os restantes, sendo que o GBF com a H₄ obteve o melhor resultado. Por fim, em relação ao tempo gasto a encontrar a solução, todos os algoritmos tiveram valores semelhantes.

No geral, neste nível os algoritmos comportaram-se de forma semelhante (excepto o ID), sendo o GBF com a H4 o que obteve os melhores resultados em termos de recursos usados (tamanho máximo da fronteira e o número de nós gerados).

Figura 5 – Imagem do Nível 3

Figura 6. Resultados do Nível 3

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	35	68	17	226	0.001
A* - H ₂	35	83	6	226	0.001
A* - H ₃	35	74	12	226	0.001
A * - H ₄	35	83	7	226	0.0
A * - H ₅	35	68	17	226	0.0
Breadth First	35	83	7	226	0.001
Uniform Cost	35	83	7	226	0.001
Depth First	35	63	17	178	0.001
ID	35	13245	15	38063	0.086
GBF - H ₁	35	64	19	213	0.001
GBF - H ₂	35	75	5	202	0.001
GBF - H ₃	35	74	10	222	0.001
GBF - H ₄	35	73	15	200	0.0
GBF - H ₅	35	68	18	226	0.0

Como se pode observar pelos resultados apresentados na Figura 6, foi sempre possível obter a solução ótima para todos os algoritmos. Em termos de nós expandidos, o Iterative Deepening destaca-se tendo cerca de cerca de 160 vezes mais do que a generalidade dos outros métodos de procura, sendo que o GBF com a H₁ e o Depth First Search obtiveram os melhores resultados. Em termos de tamanho máximo da fronteira, destaca-se o GBF com a H₂ e A* com a H₂. Quanto ao número de nós gerados, o ID tem cerca de 170 vezes mais do que os restantes, sendo que o Depth First Search obteve o melhor resultado. Por fim, em relação ao tempo gasto a encontrar a solução, todos os algoritmos tiveram valores semelhantes exceto o ID.

No geral, neste nível o algoritmo ID foi o que teve um pior desempenho em termos de recursos, por uma grande margem, e o algoritmo Depth First foi o que no geral obteve melhores resultados.

Figura 7 - Imagem do Nível 4

Figura 8 - Resultados do Nível 4

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	33	241	78	851	0.015
A* - H ₂	33	290	33	840	0.009
A* - H ₃	36	152	40	477	0.002
A * - H ₄	33	310	34	884	0.003
A * - H ₅	33	254	72	884	0.003
Breadth First	33	312	32	888	0.004
Uniform Cost	33	310	34	884	0.003
Depth First	40	150277	49	218249	0.518
ID	-	-	-	-	-
GBF - H ₁	34	172	74	613	0.001
GBF - H ₂	34	212	36	606	0.002
GBF - H ₃	36	138	53	465	0.001
GBF - H ₄	38	206	41	533	0.001
GBF - H ₅	34	180	76	633	0.002

Como se pode observar pelos resultados apresentados na Figura 8, o nível 4 teve resultados muito díspares para os diferentes algoritmos. Em termos de custo da solução, o A* (exceto com a H₄), o Breadth First e o Uniform Cost foram os únicos algoritmos que obtiveram a solução ótima, sendo que o Depth First foi o que obteve a pior solução. Em termos de nós expandidos, o Iterative Deepening destaca-se tendo cerca de cerca de 480 vezes mais do que a generalidade dos outros métodos de procura, sendo que o GBF com a H₃ e o A* com H₃ foram os que tiveram melhor. Em termos de tamanho máximo da fronteira, destaca-se o Breadth First Search. Quanto ao número de nós gerados, o Depth First tem cerca de 246 vezes mais do que os restantes, sendo que o A* com H₃ foi o que obteve o melhor resultado. Por fim, em relação ao tempo gasto a encontrar a solução, o Depth First teve um valor muito superior aos restantes (meio segundo), sendo que o A* com H₁ e H₂.

No geral, neste nível o algoritmo Depth First foi o que obteve um pior desempenho em termos de recursos, por uma grande margem, e o algoritmo GBF e A^* com H_3 foram os que no geral obtiveram melhores resultados em termos de recursos, apesar de não terem encontrado a solução ótima. Infere-se assim que a heurística H_3 será a mais adequada para resolver este nível. De notar que neste

nível o algoritmo ID demora muito tempo a executar, sendo no mínimo necessário 5 minutos para encontrar a solução.

Figura 9 - Imagem do Nível 5

Figura 10 - Resultados do Nível 5

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	35	84	36	278	0.005
A* - H ₂	35	118	11	289	0.003
A* - H ₃	36	106	13	269	0.003
A * - H ₄	35	120	11	293	0.001
A * - H ₅	35	88	35	293	0.002
Breadth First	35	120	11	293	0.002
Uniform Cost	35	120	11	293	0.002
Depth First	38	152	28	286	0.002
ID	35	22990	24	43494	0.117
GBF - H ₁	35	83	35	275	0.002
GBF - H ₂	35	112	9	272	0.002
GBF - H ₃	36	104	13	272	0.001
GBF - H ₄	37	125	14	317	0.001
GBF - H ₅	39	81	37	267	0.001

Como se pode observar pelos resultados apresentados na Figura 10, o nível 5 teve resultados muito díspares para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima. Em termos de nós expandidos, o Iterative Deepening tem muito mais do que os outros métodos de procura, sendo que o GBF com a H₁ e o A* com H₄ foram os que tiveram melhor. Em termos de tamanho máximo da fronteira, destaca-se o GBF com a H₂. Quanto ao número de nós gerados, o ID tem cerca de 137 vezes mais do que os restantes. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor muito superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, por uma grande margem, e os algoritmos GBF e A* com H₁ e H₄ foram os que no geral obtiveram melhores resultados, apesar de o GBF com H₄ não ter encontrado a solução ótima. Infere-se assim que as heurísticas H₃ e H₄ serão as mais adequadas para resolver este nível, apesar da maioria dos algoritmos não informados não terem desempenhos muito inferiores.

Figura 11 - Imagem do Nível 6

Figura 12 - Resultados do Nível 6

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	33	89	39	296	0.001
A* - H ₂	33	120	12	296	0.001
A* - H ₃	33	124	12	314	0.001
A * - H ₄	33	161	16	401	0.001
A * - H ₅	33	126	46	413	0.001
Breadth First	33	164	16	413	0.003
Uniform Cost	33	161	16	401	0.003
Depth First	35	107	21	241	0.002
ID	33	18024	23	40681	0.115
GBF - H ₁	33	89	39	296	0.001
GBF - H ₂	33	119	12	291	0.0
GBF - H ₃	33	107	18	291	0.0
GBF - H ₄	33	101	15	237	0.0
GBF - H ₅	36	83	44	282	0.0

Como se pode observar pelos resultados apresentados na Figura 12, o nível 6 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, excetuando o Depth First e o GBF com o H₅. Em termos de nós expandidos, o ID teve um valor cerca de 100 vezes muito superior aos outros métodos de procura, sendo que o GBF com o H₅ foi o que teve melhor resultado, apesar de não encontrar a solução ótima. Em termos de tamanho máximo da fronteira, destaca-se pela negativa o GBF e o A* com a H₅. Quanto ao número de nós gerados, o GBF com a H₄ tem o melhor resultado. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor muito superior, tendo os restantes valores muito semelhantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF e A^* com H_1 e H_4 foram os que no geral obtiveram melhores resultados, apesar de o GBF com H_4 não ter encontrado a solução ótima. O Depth First Search também apresenta bons resultados, mas não consegue encontrar a solução ótima.

Figura 13 - Imagem do Nível 7

Figura 14 - Resultados do Nível 7

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	19	371	96	953	0.016
A* - H ₂	19	413	88	996	0.002
A* - H ₃	28	416	87	1021	0.017
A * - H ₄	19	673	71	1660	0.006
A * - H ₅	19	602	116	1651	0.021
Breadth First	19	657	77	1611	0.008
Uniform Cost	19	665	76	1643	0.01
Depth First	26	40	44	103	0.0
ID	19	1898239	40	4935688	7.067
GBF - H ₁	22	124	68	353	0.001
GBF - H ₂	22	120	44	286	0.001
GBF - H ₃	27	393	74	954	0.011
GBF - H ₄	23	411	46	819	0.004
GBF - H ₅	20	369	123	993	0.01

Como se pode observar pelos resultados apresentados na Figura 14, o nível 7 teve resultados distintos para os diferentes algoritmos. Em termos de custo da solução, muitos algoritmos não conseguiram alcançar a solução ótima, sendo o Depth First o pior. Em termos de nós expandidos, o ID teve um valor muito superior aos outros métodos de procura, sendo que o Depth First Search foi o que teve melhor resultado, apesar de não encontrar a solução ótima. Em termos de tamanho máximo da fronteira, destaca-se pela negativa o GBF e o A* com a H₅, não sendo esta heurística boa para este nível em termos de tamanho da fronteira. Quanto ao número de nós gerados, o Depth First Search é o que apresenta o melhor resultado, estando o ID no lado oposto com quase 5 milhões de nós gerados, que se traduz numa prestação muito má em termos de tempo de execução. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor muito superior, tendo os restantes valores muito semelhantes, excetuando o A* com a H₅ e H₃.

No geral, neste nível o algoritmo ID foi o que obteve o pior desempenho em termos de recursos, sendo que o Depth First Search foi o que obteve os melhores resultados por uma grande margem, apesar de não ter encontrado a solução ótima, o que poderá compensar em termos computacionais.

Figura 15 – Imagem do Nível 8

Figura 16 – Resultados do Nível 8

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	32	90	22	303	0.009
A* - H ₂	32	106	11	303	0.009
A* - H ₃	34	94	12	297	0.003
A * - H ₄	32	108	12	309	0.003
A * - H ₅	32	92	20	309	0.002
Breadth First	32	108	12	309	0.003
Uniform Cost	32	108	12	309	0.002
Depth First	33	72	21	173	0.001
ID	32	537686	26	1285433	1.653
GBF - H ₁	32	67	23	240	0.001
GBF - H ₂	32	69	16	211	0.001
GBF - H ₃	34	92	14	294	0.001
GBF - H ₄	33	108	14	308	0.001
GBF - H ₅	32	89	20	300	0.002

Como se pode observar pelos resultados apresentados na Figura 16, o nível 8 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o GBF com o H_1 foi o que teve melhor resultado. Em termos de tamanho máximo da fronteira, todos tiveram números semelhantes. Quanto ao número de nós gerados, o Depth First é o que tem o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor muito grande, tendo o A^* com H_1 e com H_2 também tempos superiores aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com H_1 foi o que no geral obteve melhor resultado. O Depth First Search também apresenta bons resultados, principalmente a nível de número de nós gerados, mas não consegue encontrar a solução ótima.

Figura 17 - Imagem do Nível 9

Figura 18 – Resultados do Nível 9

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	36	151	52	505	0.005
A* - H ₂	36	193	12	503	0.011
A* - H ₃	36	195	23	547	0.005
A * - H ₄	36	224	22	571	0.004
A * - H ₅	36	168	59	560	0.005
Breadth First	36	224	24	570	0.002
Uniform Cost	36	224	22	571	0.003
Depth First	47	188	31	411	0.003
ID	36	96993	24	223522	0.401
GBF - H ₁	40	145	49	485	0.001
GBF - H ₂	40	147	18	410	0.002
GBF - H ₃	36	164	27	494	0.002
GBF - H ₄	40	193	17	510	0.002
GBF - H ₅	42	131	53	443	0.001

Como se pode observar pelos resultados apresentados na Figura 18, o nível 9 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First Search obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que os algoritmos informados com a H_1 e H_5 foram os que tiveram melhor resultados. Em termos de tamanho máximo da fronteira, destaca-se pela positiva o A^* com a H_2 . Quanto ao número de nós gerados, o Depth First e o GBF com a H_2 é são os que têm o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes, tendo o A^* com H_2 também tempos superiores.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com H₅ foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima.

Figura 19 - Imagem do Nível 10

Figura 20 - Resultados do Nível 10

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	37	99	64	351	0.012
A* - H ₂	37	153	17	366	0.011
A* - H ₃	39	137	23	393	0.005
A * - H ₄	37	170	12	417	0.004
A * - H ₅	37	120	62	426	0.007
Breadth First	37	171	11	424	0.003
Uniform Cost	37	170	12	417	0.003
Depth First	38	146	22	286	0.002
ID	37	168893	23	306462	0.557
GBF - H ₁	39	91	63	326	0.001
GBF - H ₂	45	152	13	353	0.002
GBF - H ₃	39	155	20	402	0.002
GBF - H ₄	38	125	27	316	0.001
GBF - H ₅	41	106	59	377	0.001

Como se pode observar pelos resultados apresentados na Figura 20, o nível 10 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o algoritmo GBF encontrado uma pior solução para todas as heurísticas utilizadas. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que os algoritmos informados com a H₁ foram os que tiveram melhor resultados. Em termos de tamanho máximo da fronteira, destaca-se pela negativa os algoritmos com a H₁. Quanto ao número de nós gerados, o Depth First é o que tem o melhor resultado, tendo o ID um resultado muito mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes, tendo o A* também tempos superiores.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, os algoritmos com a H_1 tiveram no geral melhor resultado tal como o GBF, apesar de o GBF e o Depth First Search não terem encontrado a solução ótima.

Figura 21 - Imagem do Nível 11

Figura 22 - Resultados do Nível 11

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	15	458	95	1138	0.025
A* - H ₂	15	495	91	1201	0.02
A* - H ₃	15	732	99	1615	0.013
A * - H ₄	15	730	97	1617	0.007
A * - H ₅	15	721	100	1597	0.006
Breadth First	15	741	105	1636	0.017
Uniform Cost	15	737	103	1631	0.011
Depth First	25	42	19	132	0.001
ID	15	49810	19	123458	0.336
GBF - H ₁	16	585	68	1393	0.004
GBF - H ₂	21	618	67	1425	0.006
GBF - H ₃	24	155	47	377	0.002
GBF - H ₄	20	262	50	553	0.002
GBF - H ₅	18	368	89	812	0.004

Como se pode observar pelos resultados apresentados na Figura 22, o nível 11 teve alguns resultados distintos para os diferentes algoritmos. Em termos de custo da solução, pouco mais de metade dos algoritmos encontra a solução ótima, tendo o Depth First Search obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o Depth First Search obteve de longe o melhor resultado entre todos os algoritmos disponíveis. Em termos de tamanho máximo da fronteira, destacam-se oyu Depth First e o ID, tendo estes um valor muito inferior aos restantes. Quanto ao número de nós gerados, o Depth First é o que tem o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes, sendo o Depth First o mais rápido a encontrar uma solução.

No geral, neste nível o algoritmo ID foi o que obteve o pior desempenho, e o algoritmo Depth First obteve resultados muito melhores que os restantes para todos os parâmetros, mas em contrapartida também foi o que encontrou a pior solução (mais 10 de custo em relação à solução ótima).

Figura 23 - Imagem do Nível 12

Figura 24 - Resultados do Nível 12

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	13	236	75	571	0.013
A* - H ₂	13	258	68	571	0.005
A* - H ₃	32	257	53	623	0.006
A * - H ₄	13	395	53	855	0.007
A * - H ₅	13	353	86	909	0.003
Breadth First	13	396	54	865	0.006
Uniform Cost	13	387	59	831	0.004
Depth First	15	848	31	1178	0.006
ID	13	38062	28	79999	0.224
GBF - H ₁	13	115	71	342	0.002
GBF - H ₂	25	112	64	324	0.001
GBF - H ₃	13	258	57	578	0.002
GBF - H ₄	18	265	44	542	0.002
GBF - H ₅	24	243	76	611	0.003

Como se pode observar pelos resultados apresentados na Figura 24, o nível 12 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o A* com a H3 obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que os algoritmos informados foram os que tiveram melhor resultados, destacando-se o GBF com a H1 e H2. Em termos de tamanho máximo da fronteira, destacam-se dois dos algoritmos não informados (Depth First e ID). Quanto ao número de nós gerados, o GBF com a H1 e H2 é são os que tem o melhor resultado, tendo o ID um resultado bastante elevado. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes, tendo o GBF os tempos mais baixos.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima para algumas das heurísticas utilizadas.

Figura 25 - Imagem do Nível 13

Figura 26 - Resultados do Nível 13

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	32	99	17	287	0.008
A* - H ₂	32	112	9	291	0.003
A* - H ₃	32	111	10	295	0.002
A * - H ₄	32	112	10	291	0.003
A * - H ₅	32	101	18	294	0.003
Breadth First	32	113	10	294	0.002
Uniform Cost	32	112	8	291	0.003
Depth First	38	65	19	162	0.001
ID	32	7298	16	17503	0.076
GBF - H ₁	32	94	19	272	0.001
GBF - H ₂	36	99	10	252	0.001
GBF - H ₃	32	111	10	295	0.002
GBF - H ₄	32	109	15	270	0.001
GBF - H ₅	32	95	18	273	0.001

Como se pode observar pelos resultados apresentados na Figura 26, o nível 13 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First Search obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o Depth First obteve o melhor resultado. Em termos de tamanho máximo da fronteira, têm resultados parecidos. Quanto ao número de nós gerados, o Depth First e o GBF com a H₂ é são os que têm o melhor resultado, tendo o ID um resultado bastante mau, e o Depth First foi o que obteve o valor mais baixo. Por fim, em relação ao tempo gasto a encontrar a solução, o ID foi o que teve o valor superior.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo Depth First foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima.

Figura 27 - Imagem do Nível 14

Figura 28 – Resultados do Nível 14

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	33	332	47	738	0.015
A* - H ₂	33	375	25	747	0.009
A* - H ₃	33	347	29	716	0.008
A * - H ₄	33	383	33	763	0.003
A * - H ₅	33	341	46	763	0.003
Breadth First	33	382	28	760	0.005
Uniform Cost	33	383	28	763	0.004
Depth First	36	245	26	487	0.002
ID	33	155432	26	247767	0.531
GBF - H ₁	33	157	46	406	0.001
GBF - H ₂	33	145	38	358	0.002
GBF - H ₃	33	329	46	692	0.003
GBF - H ₄	33	349	26	718	0.004
GBF - H ₅	35	296	49	669	0.003

Como se pode observar pelos resultados apresentados na Figura 28, o nível 14 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First Search obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo GBF com a H₁ e H₂ o que teve melhor resultado. Em termos de tamanho máximo da fronteira, os algoritmos não informados foram os que conseguiram valores mais baixos, em média. Quanto ao número de nós gerados, o Depth First e o GBF com a H₁ e H₂ é são os que têm o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H_1 e H_2 e o Depth First foram o que no geral obteve melhor resultado, apesar de o Depth First não ter encontrado a solução ótima.

numbered (e.g., "Table 1" or "Figure 2"), please note that the word for Table and Figure are spelled out. Figure's captions should be centered beneath the image or picture, and Table captions should be centered above the table body.

Figura 29 - Imagem do Nível 15

Figura 30 - Resultados do Nível 15

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	10	84	37	233	0.023
A* - H ₂	10	88	36	237	0.007
A* - H ₃	25	429	52	1009	0.019
A * - H4	10	243	62	583	0.008
A * - H ₅	10	243	71	620	0.007
Breadth First	10	265	62	621	0.006
Uniform Cost	10	229	60	558	0.005
Depth First	47	135	55	254	0.007
ID	10	5992	24	14013	0.071
GBF - H ₁	10	81	26	189	0.001
GBF - H ₂	10	77	26	168	0.001
GBF - H ₃	30	535	81	1290	0.011
GBF - H ₄	33	521	47	1098	0.007
GBF - H ₅	36	499	100	1225	0.009

Como se pode observar pelos resultados apresentados na Figura 30, o nível 15 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First Search obtido a pior solução. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o GBF com a $\rm H_2$ obteve o melhor resultado. Em termos de tamanho máximo da fronteira, destacam-se os algoritmos informados com a $\rm H_1$ e $\rm H_2$. Quanto ao número de nós gerados, o GBF com a $\rm H_1$ e $\rm H_2$ é o que tem o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID foi o que teve o valor superior.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e os algoritmos informados com as heurísticas H_1 e H_2 foram os que no geral obtiveram melhor resultado, encontrado a solução ótima.

Figura 31 - Imagem do Nível 16

Figura 32 – Resultados do Nível 16

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	36	290	48	736	0.032
A* - H ₂	36	334	30	740	0.011
A* - H ₃	36	322	36	756	0.009
A * - H4	36	345	36	774	0.008
A * - H5	36	303	49	774	0.007
Breadth First	36	346	36	778	0.008
Uniform Cost	36	345	36	774	0.006
Depth First	40	433	22	924	0.004
ID	36	310851	23	683437	1.97
GBF - H ₁	36	283	42	712	0.003
GBF - H ₂	36	279	28	652	0.002
GBF - H ₃	36	315	38	746	0.003
GBF - H ₄	38	312	33	708	0.003
GBF - H₅	41	289	54	734	0.004

Como se pode observar pelos resultados apresentados na Figura 32, o nível 16 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First Search e o GBF com a H5 obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo GBF com a H1 e H2 o que teve melhor resultado. Em termos de tamanho máximo da fronteira, os algoritmos Depth First e o ID foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o GBF com a H1, H2 e H3 são os que têm o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H_2 foi o que no geral obteve melhor resultado.

Figura 33 - Imagem do Nível 17

Figura 34 – Resultados do Nível 17

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	17	267	135	792	0.016
A* - H ₂	17	265	87	659	0.01
A* - H ₃	25	638	89	1571	0.019
A * - H4	17	822	106	2060	0.011s
A * - H ₅	17	738	194	2111	0.012
Breadth First	17	785	116	1982	0.01
Uniform Cost	17	830	115	2131	0.01
Depth First	32	112	36	228	0.003
ID	17	72417	26	193718	0.722
GBF - H ₁	20	253	70	588	0.002
GBF - H ₂	21	107	46	247	0.001
GBF - H ₃	31	690	103	1740	0.006
GBF - H ₄	29	545	52	1117	0.004
GBF - H ₅	41	822	207	2295	0.009

Como se pode observar pelos resultados apresentados na Figura 34, o nível 17 teve resultados semelhantes para os diferentes algoritmos, mas com uma ligeira subida no número de nós gerados. Em termos de custo da solução, cerca de metade dos algoritmos encontra a solução ótima, tendo o Depth First Search e o GBF com a H5 obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo Depth First e o GBF com a H2 os que tiveram os melhores resultados. Em termos de tamanho máximo da fronteira, os algoritmos Depth First e o ID foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o Depth First Search e o GBF com a H2 são os que têm o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H₂ e o Depth First foram os que no geral obtiveram melhor resultado, apesar de nenhum deles ter encontrado a solução ótima.

Figura 35 – Imagem do Nível 18

Figura 36 - Resultados do Nível 18

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	36	285	48	724	0.048
A* - H ₂	36	333	31	742	0.014
A* - H3	36	322	37	754	0.008
A * - H ₄	36	341	36	766	0.008
A * - H ₅	36	298	49	762	0.008
Breadth First	36	340	36	762	0.008
Uniform Cost	36	341	36	766	0.005
Depth First	46	357	26	756	0.004
ID	36	203705	22	472865	1.333
GBF - H ₁	36	278	42	700	0.003
GBF - H ₂	36	218	28	541	0.003
GBF - H ₃	39	302	33	721	0.002
GBF - H ₄	42	299	25	702	0.002
GBF - H ₅	41	274	48	701	0.003

Como se pode observar pelos resultados apresentados na Figura 36, o nível 18 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontrou a solução ótima, tendo o Depth First Search e o GBF com a H₃, H₄ e H₅ obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo A* com H₁ e o GBF com a H₁, H₂ e H₃ os que tiveram os melhores resultados. Em termos de tamanho máximo da fronteira, os algoritmos ID e o GBF com a H₄ foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o GBF com a H₂ teve o melhor resultado, sendo que o ID teve um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H₂ e H₄ foI o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima com H₄.

Figura 37 - Imagem do Nível 19

Figura 38 - Resultados do Nível 19

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	36	191	32	568	0.023
A* - H ₂	36	211	16	568	0.011
A* - H ₃	45	211	18	568	0.006
A * - H ₄	36	211	16	568	0.007
A * - H ₅	36	191	27	568	0.007
Breadth First	36	211	16	568	0.006
Uniform Cost	36	211	16	568	0.009
Depth First	36	243	12	624	0.004
ID	36	18897	12	48809	0.216
GBF - H ₁	36	156	42	494	0.003
GBF - H ₂	47	126	25	361	0.001
GBF - H ₃	46	211	19	568	0.003
GBF - H ₄	36	185	16	511	0.002
GBF - H5	36	185	29	552	0.002

Como se pode observar pelos resultados apresentados na Figura 38, o nível 19 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o A* com H_3 e o GBF com a H_2 e H_3 obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo GBF com a H_1 e H_2 o que teve melhor resultado. Em termos de tamanho máximo da fronteira, os algoritmos Depth First e o ID foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o GBF com a H_1 e H_2 teve o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H_1 e H_2 foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima com H_2 .

Figura 39 – Imagem do Nível 20

Figura 40 - Resultados do Nível 20

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	31	59	5	151	0.036
A* - H ₂	31	61	5	155	0.006
A* - H ₃	31	67	6	172	0.007
A * - H ₄	31	68	6	175	0.004
A * - H5	31	67	6	172	0.003
Breadth First	31	68	6	175	0.003
Uniform Cost	31	68	6	175	0.002
Depth First	31	50	12	128	0.002
ID	31	1685	12	4069	0.037
GBF - H ₁	31	53	7	133	0.002
GBF - H ₂	31	55	6	137	0.001
GBF - H ₃	31	62	9	169	0.001
GBF - H ₄	31	63	5	162	0.001
GBF - H ₅	31	44	20	135	0.001

Como se pode observar pelos resultados apresentados na Figura 40, o nível 20 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, todos os algoritmos obtiveram a solução ótima. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo Depth First e o GBF com a H₅ tiveram os melhores resultados. Em termos de tamanho máximo da fronteira, os algoritmos A* com H₁ e H₂ e o GBF com H₄ foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o Depth First e o GBF com a H₁ e H₅ tiveram os melhores resultados, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a Hs foi o que obteve o melhor resultado.

Figura 41 - Imagem do Nível 21_1

Figura 42 – Resultados do Nível 21_1

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	17	240	36	454	0.06
A* - H ₂	17	247	33	457	0.01
A* - H ₃	21	358	39	573	0.009
A * - H4	17	307	32	529	0.008
A * - H ₅	17	300	37	519	0.01
Breadth First	17	299	32	516	0.003
Uniform Cost	17	298	33	510	0.004
Depth First	36	1313	38	1824	0.013
ID	17	125065	27	239387	0.793
GBF - H ₁	17	203	34	365	0.002
GBF - H ₂	17	189	33	339	0.002
GBF - H ₃	17	272	22	472	0.003
GBF - H ₄	25	386	23	607	0.002
GBF - H ₅	21	202	63	425	0.002

Como se pode observar pelos resultados apresentados na Figura 42, o nível 21_1 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First e o GBF com a H4 obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo GBF com a H2 o que teve melhor resultado. Em termos de tamanho máximo da fronteira, os algoritmos ID e GBF com H3 foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o GBF com a H1 e H2 teve o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a H_1 e H_2 foi o que no geral obteve melhor resultado.

Figura 43 – Imagem do Nível 21_2

Figura 44 – Resultados do Nível 21_2

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	15	350	82	791	0.042
A* - H ₂	15	365	85	811	0.018
A* - H3	17	495	92	964	0.016
A * - H4	15	591	84	1138	0.02
A * - H5	15	569	98	1161	0.008
Breadth First	15	568	90	1118	0.006
Uniform Cost	15	581	91	1148	0.006
Depth First	35	1535	45	2098	0.01
ID	15	160984	30	450228	1.41
GBF - H ₁	17	385	60	788	0.006
GBF - H ₂	17	334	51	699	0.005
GBF - H ₃	16	502	38	998	0.005
GBF - H4	21	540	45	927	0.01
GBF - H ₅	21	320	77	767	0.008

Como se pode observar pelos resultados apresentados na Figura 44, o nível 21_2 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, cerca de metade dos algoritmos encontra a solução ótima, tendo o Depth First e o GBF com a H4 e H5 obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo A* com a H1 e GBF com a H2 e H5 os que tiveram melhores resultados. Em termos de tamanho máximo da fronteira, os algoritmos Depth First, o ID e o GBF com a H3 e H4 foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o GBF com a H2 teve o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo GBF com a $\rm H_2$ foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima.

Figura 45 – Imagem do Nível 22

Figura 46 - Resultados do Nível 22

Método de Procura	Custo da Solução	Número de Nós Expandidos	Tam. Máx da Frontier	Número de Nós gerados	Tempo (s)
A* - H ₁	38	194	48	598	0.035
A* - H ₂	38	223	15	600	0.01
A* - H3	38	220	21	614	0.047
A * - H4	38	255	13	655	0.01
A * - H ₅	38	215	50	657	0.006
Breadth First	38	260	12	659	0.006
Uniform Cost	38	260	13	657	0.005
Depth First	44	71	19	180	0.003
ID	38	74941	23	184663	0.807
GBF - H ₁	38	177	55	551	0.003
GBF - H ₂	38	203	18	508	0.003
GBF - H ₃	38	238	16	633	0.003
GBF - H ₄	46	182	24	479	0.001
GBF - H ₅	42	187	47	572	0.003

Como se pode observar pelos resultados apresentados na Figura 46, o nível 22 teve resultados semelhantes para os diferentes algoritmos. Em termos de custo da solução, a maior parte dos algoritmos encontra a solução ótima, tendo o Depth First e o GBF com a H₄ e H₅ obtido as piores soluções. Em termos de nós expandidos, o ID teve um valor muito superior aos restantes métodos de procura, sendo que o algoritmo Depth First e GBF com a H₁ os que tiveram melhores resultados. Em termos de tamanho máximo da fronteira, os algoritmos A* com a H₄, Breadth First e Uniform Cost foram os que conseguiram valores mais baixos. Quanto ao número de nós gerados, o Depth First teve o melhor resultado, tendo o ID um resultado bastante mau. Por fim, em relação ao tempo gasto a encontrar a solução, o ID teve um valor superior aos restantes.

No geral, neste nível o algoritmo ID foi o que obteve um pior desempenho em termos de recursos, e o algoritmo Depth First foi o que no geral obteve melhor resultado, apesar de não ter encontrado a solução ótima.

4. SECTIONS

The heading of a section should be in Times New Roman 12-point bold in all-capitals flush left with an additional 6-points of white space above the section head. Sections and subsequent subsections should be numbered and flush left. For a section head and a subsection head together (such as Section 3 and subsection 3.1), use no additional space above the subsection head.

4.1 Subsections

The heading of subsections should be in Times New Roman 12-point bold with only the initial letters capitalized. (Note: For subsections and subsubsections, a word like *the* or *a* is not capitalized unless it is the first word of the header.)

4.1.1 Subsubsections

The heading for subsubsections should be in Times New Roman 11-point italic with initial letters capitalized and 6-points of white space above the subsubsection head.

4.1.1.1 Subsubsections

The heading for subsubsections should be in Times New Roman 11-point italic with initial letters capitalized.

4.1.1.2 Subsubsections

The heading for subsubsections should be in Times New Roman 11-point italic with initial letters capitalized.

5. ACKNOWLEDGMENTS

Our thanks to ACM SIGCHI for allowing us to modify templates they had developed.

6. REFERENCES

- [1] Bowman, B., Debray, S. K., and Peterson, L. L. Reasoning about naming systems. *ACM Trans. Program. Lang. Syst.*, 15, 5 (Nov. 1993), 795-825.
- [2] Ding, W., and Marchionini, G. A Study on Video Browsing Strategies. Technical Report UMIACS-TR-97-40, University of Maryland, College Park, MD, 1997.
- [3] Fröhlich, B. and Plate, J. The cubic mouse: a new device for three-dimensional iput. In *Proceedings of the SIGCHI* conference on Human factors in computing systems (CHI '00) (The Hague, The Netherlands, April 1-6, 2000). ACM Press, New York, NY, 2000, 526-531.
- [4] Lamport, L. LaTeX User's Guide and Document Reference Manual. Addison-Wesley, Reading, MA, 1986.
- [5] Sannella, M. J. Constraint Satisfaction and Debugging for Interactive User Interfaces. Ph.D. Thesis, University of Washington, Seattle, WA, 1994.

Columns on Last Page Should Be Made As Close As Possible to Equal Length