17 | Covering Spaces

17.1 Definition. A map $p: T \to X$ is a *covering* of X if for every point $x \in X$ there exists an open neighborhood $U_x \subseteq X$ and a homeomorphism $h_{U_x}: p^{-1}(U_x) \to U_x \times D_x$ where D_x is some discrete space, such that the following diagram commutes:

Here $\operatorname{pr}_1: U_x \times D_x \to U_x$ is the projection map $\operatorname{pr}_1(y,d) = y$.

17.3 Example. Let D be a discrete space. The projection map $\operatorname{pr}_1: X \times D \to X$ is a covering of X. In this case the whole space X is evenly covered. We say that $\operatorname{pr}_1: X \times D \to X$ is a *trivial covering* of X.

17.4 Example. Recall that the universal covering of S^1 is the map $p: \mathbb{R}^1 \to S^1$ given by $p(s) = (\cos 2\pi s, \sin 2\pi s)$. If $U \subseteq S^1$ is any open set such that $U \neq S^1$, then $p^{-1}(U)$ is evenly covered and $p^{-1}(U) \cong U \times \mathbb{Z}$ (exercise).

17.5 Example. Consider S^1 as a subset of the complex plane:

$$S^1 = \{ z \in \mathbb{C} \mid ||z|| = 1 \}$$

For n=1,2,... the map $p_n: S^1 \to S^1$ given by $p_n(z)=z^n$ is an n-fold covering of S^1 . Similarly as in the case of the universal covering of S^1 any open set $U \subseteq S^1$ such that $U \neq S^1$ is evenly covered by p_n (exercise).

17.6 Example. If $p_1: T_1 \to X_1$ and $p_2: T_2 \to X_2$ are coverings then the map $p_1 \times p_2: T_1 \times T_2 \to X_1 \times X_2$ is also a covering (exercise). For example, starting with the universal covering $p: \mathbb{R}^1 \to S^1$ of the circle we obtain a covering $p \times p: \mathbb{R}^1 \times \mathbb{R}^1 \to S^1 \times S^1$ of the torus.

17.7 Example. Using the coverings of S^1 described above we can construct many coverings of $S^1 \vee S^1$. For example, here is a covering obtained by combining the universal covering over one copy of S^1 and a trivial covering over the second copy:

Here are two different 3-fold coverings of $S^1 \vee S^1$:

17.8 Definition. If $p: T \to X$ is a covering and $f: Y \to X$ is a map then a *lift* of f is a map $\tilde{f}: Y \to T$ such that the following diagram commutes:

17.9 Theorem (Homotopy Lifting Property). Let $p\colon T\to X$ be a covering. Let $F\colon Y\times [0,1]\to X$ and $\widetilde{f}\colon Y\times \{0\}\to T$ be functions satisfying $p\widetilde{f}=F|_{Y\times \{0\}}$. There exists a function $\widetilde{F}\colon Y\times [0,1]\to T$ such that $p\widetilde{F}=F$ and $\widetilde{F}|_{Y\times \{0\}}=\widetilde{f}$:

$$Y \times \{0\} \xrightarrow{\tilde{f}} T$$

$$\downarrow p$$

$$Y \times [0,1] \xrightarrow{\tilde{F}} X$$

$$(*)$$

Moreover, such function \tilde{F} is unique.

- **17.10 Corollary.** Let $p: T \to X$ be a covering. Let $x_0 \in X$, and let $\tilde{x}_0 \in T$ be a point such that $p(\tilde{x}_0) = x_0$.
- 1) For any path $\omega: [0,1] \to X$ such that $\omega(0) = x_0$ there exists a lift $\widetilde{\omega}: [0,1] \to T$ satisfying $\widetilde{\omega}(0) = \widetilde{x}_0$. Moreover, such lift is unique.
- 2) Let ω , τ : $[0,1] \to X$ be paths such that $\omega(0) = \tau(0) = x_0$, $\omega(1) = \tau(1)$ and $\omega \simeq \tau$. If $\widetilde{\omega}$, $\widetilde{\tau}$ are lifts of ω , τ , respectively, such that $\widetilde{\omega}(0) = \widetilde{\tau}(0) = \widetilde{x}_0$ then $\widetilde{\omega}(1) = \widetilde{\tau}(1)$ and $\widetilde{\omega} \simeq \widetilde{\tau}$.

17.11 Lemma. Let $p: T \to X$ be a covering, and let $\tilde{f}_1, \tilde{f}_2: Y \to T$ be two lifts of a map $f: Y \to X$. If Y is a connected space and there exists $y_0 \in Y$ such that $\tilde{f}_1(y_0) = \tilde{f}_2(y_0)$ then $\tilde{f}_1(y) = \tilde{f}_2(y)$ for all $y \in Y$.

17.12 Lemma. Let $p: T \to X$ be a covering. Let $F: Y \times [a,b] \to X$ and $\tilde{f}: Y \times \{a\} \to T$ be functions satisfying $p\tilde{f} = F|_{Y \times \{a\}}$. Assume also that $F(Y \times [a,b]) \subseteq U$ where $U \subseteq X$ is an evenly covered open set. There exists a function $\tilde{F}: Y \times [a,b] \to T$ such that $p\tilde{F} = F$ and $\tilde{F}|_{Y \times \{a\}} = \tilde{f}$:

Proof of Theorem 17.9.