AMS526: Numerical Analysis I (Numerical Linear Algebra)

Lecture 4: Singular Value Decomposition

Xiangmin Jiao

SUNY Stony Brook

Geometric Observation

- The image of unit sphere under any $m \times n$ matrix is a hyperellipse
- Give a unit sphere S in \mathbb{R}^n , let AS denote the shape after transformation
- SVD is

$$A = U\Sigma V^*$$

where $\pmb{U} \in \mathbb{C}^{m \times m}$ and $\pmb{V} \in \mathbb{C}^{n \times n}$ is unitary and $\pmb{\Sigma} \in \mathbb{R}^{m \times n}$ is diagonal

- Singular values are diagonal entries of Σ , correspond to the principal semiaxes, with entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.
- Left singular vectors of \boldsymbol{A} are column vectors of \boldsymbol{U} and are oriented in the directions of the principal semiaxes of \boldsymbol{AS}
- Right singular vectors of A are column vectors of V and are the preimages of the principal semiaxes of AS
- $\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j$ for $1 \leq j \leq n$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{C}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{C}^{n \times n}$ is

$$A = U\Sigma V^*$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{C}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{C}^{n \times n}$ is

$$A = U\Sigma V^*$$

• Reduced SVD: $\hat{U} \in \mathbb{C}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^*$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{C}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{C}^{n \times n}$ is

$$A = U\Sigma V^*$$

• Reduced SVD: $\hat{U} \in \mathbb{C}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^*$$

Furthermore, notice that

$$\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

so we can keep only entries of U and V corresponding to nonzero σ_i .

Existence of SVD

Theorem

(Existence) Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has an SVD.

Proof: Let $\sigma_1=\|A\|_2$. There exists $\boldsymbol{v}_1\in\mathbb{C}^n$ with $\|\boldsymbol{v}_1\|_2=1$ and $\|\boldsymbol{A}\boldsymbol{v}_1\|_2=\sigma_1$. Let \boldsymbol{U}_1 and \boldsymbol{V}_1 be unitary matrices whose first columns are $\boldsymbol{u}_1=\boldsymbol{A}\boldsymbol{v}_1/\sigma_1$ (or any unit-length vector if $\sigma_1=0$) and \boldsymbol{v}_1 , respectively. Note that

$$U_1^* A V_1 = S = \begin{bmatrix} \sigma_1 & \omega^* \\ 0 & B \end{bmatrix}. \tag{1}$$

Furthermore, $\boldsymbol{\omega}=0$ because $\|\boldsymbol{S}\|_2=\sigma_1$, and

$$\left\| \left[\begin{array}{cc} \sigma_1 & \omega^* \\ \mathbf{0} & \mathbf{B} \end{array} \right] \left[\begin{array}{cc} \sigma_1 \\ \omega \end{array} \right] \right\|_2 \geq \sigma_1^2 + \omega^* \omega = \sqrt{\sigma_1^2 + \omega^* \omega} \left\| \left[\begin{array}{cc} \sigma_1 \\ \omega \end{array} \right] \right\|_2,$$

implying that $\sigma_1 \geq \sqrt{\sigma_1^2 + \omega^* \omega}$ and $\omega = \mathbf{0}$.

Existence of SVD Cont'd

We then prove by induction using (1). If m = 1 or n = 1, then B is empty and we have $A = U_1 S V_1^*$. Otherwise, suppose $B = U_2 \Sigma_2 V_2^*$, and then

$$\mathbf{A} = \underbrace{\mathbf{U}_1 \begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \sigma_1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{\Sigma}_2 \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{V}_2^* \end{bmatrix} \mathbf{V}_1^*}_{\mathbf{V}^*},$$

where \boldsymbol{U} and \boldsymbol{V} are unitary.

Uniqueness of SVD

Theorem

(Uniqueness) The singular values $\{\sigma_j\}$ are uniquely determined. If **A** is square and the σ_j are distinct, the left and right singular vectors are uniquely determined **up to complex signs** (i.e., complex scalar factors of absolute value 1).

Geometric argument: If the lengths of semiaxes of a hyperellipse are distinct, then the semiaxes themselves are determined by the geometry up to signs.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

• Question: What if we change the sign of a singular vector?

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

- Question: What if we change the sign of a singular vector?
- Question: What if σ_i is not distinct?

SVD vs. Eigenvalue Decomposition

• Eigenvalue decomposition of nondefective matrix \boldsymbol{A} is $\boldsymbol{A} = \boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}$

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix ${\bf A}$ is ${\bf A} = {\bf X}{\bf \Lambda}{\bf X}^{-1}$
- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - ▶ Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix \boldsymbol{A} is $\boldsymbol{A} = \boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}$
- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities

- ► Singular values of **A** are square roots of eigenvalues of **AA*** and **A*****A**, and their eigenvectors are left and right singular vectors, respectively
- ► Singular values of hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to complex signs)
- ▶ This relationship can be used to compute singular values by hand

Matrix Properties via SVD

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - ► rank(**A**) is r
 - $ightharpoonup range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
- 2-norm and Frobenius norm
 - $\|\mathbf{A}\|_2 = \sigma_1 \text{ and } \|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$
- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|\det(\mathbf{A})| = \prod_{i=1}^m \sigma_i$

Matrix Properties via SVD

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - rank(A) is r
 - $ightharpoonup range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
- 2-norm and Frobenius norm

$$\|\mathbf{A}\|_2 = \sigma_1 \text{ and } \|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$$

- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|\det(\mathbf{A})| = \prod_{i=1}^m \sigma_i$
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later in the semester