新応用数学 改訂版,大日本図書(2023.11.1)

4章 複素関数

1 正則関数

1.1 複素数と極形式

問 1 (1) (p.107)

$$(3+2i)^2 = 3^2 + 2 \cdot 3 \cdot 2i + (2i)^2$$

= 5 + 12i.

ここで, $z = (3 + 2i)^2$ とおくと,

$$\begin{aligned} \text{Re}(z) &= 5, \\ \text{Im}(z) &= 12, \\ |z| &= \sqrt{5^2 + 12^2} = \sqrt{169} = 13, \\ \bar{z} &= 5 - 12\text{i}. \end{aligned}$$

問 1 (2) (p.107)

$$(2+i)(1-3i) = 2 + 2 \cdot (-3i) + i + i \cdot (-3i)$$

= 5 - 5i.

ここで, z = (2+i)(1-3i) とおくと,

Re(z) = 5,
Im(z) = -5,

$$|z| = \sqrt{5^2 + (-5)^2} = 5\sqrt{2},$$

 $\bar{z} = 5 + 5i.$

問 1 (3) (p.107)

$$\begin{split} \frac{1}{3+i} &= \frac{3-i}{(3+i)(3-i)} \\ &= \frac{3-i}{3^2-i^2} \\ &= \frac{3-i}{10}, \\ &= \frac{3}{10} - \frac{1}{10}i, \end{split}$$

ここで , $z=rac{1}{3+\mathrm{i}}$ とおくと ,

$$\begin{aligned} \text{Re}(z) &= \frac{3}{10}, \\ \text{Im}(z) &= -\frac{1}{10}, \\ |z| &= \sqrt{\left(\frac{3}{10}\right)^2 + \left(-\frac{1}{10}\right)^2} = \frac{\sqrt{10}}{10}, \\ \bar{z} &= \frac{3}{10} + \frac{1}{10}\text{i.} \end{aligned}$$

問 1 (4) (p.107)

$$\begin{split} \frac{4+3i}{2+i} &= \frac{(4+3i)(2-i)}{(2+i)(2-i)} \\ &= \frac{4\cdot 2+4\cdot (-i)+3i\cdot 2+3i\cdot (-i)}{2^2-i^2} \\ &= \frac{11+2i}{5} \\ &= \frac{11}{5}+\frac{2}{5}i, \end{split}$$

ここで, $z=rac{4+3\mathrm{i}}{2+\mathrm{i}}$ とおくと,

$$\begin{aligned} \text{Re}(z) &= \frac{11}{5}, \\ \text{Im}(z) &= \frac{2}{5}, \\ |z| &= \sqrt{\left(\frac{11}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \sqrt{5}, \\ \bar{z} &= \frac{11}{5} - \frac{2}{5}i. \end{aligned}$$

問 2 (1) (p.107)

証明 $x_j=\mathrm{Re}(z_j), y_j=\mathrm{Im}(z_j)(j=1,2)$ とおくと, $z_1+z_2=x_1+x_2+\mathrm{i}(y_1+y_2)$ であるから

$$\overline{z_1 + z_2} = x_1 + x_2 - i(y_1 + y_2)$$

$$= x_1 - iy_1 + x_2 - iy_2$$

$$= x_1 + iy_1 + \overline{x_2 + iy_2}$$

$$= \overline{z_1} + \overline{z_2},$$

を得る . ■

問 2 (2) (p.107)

証明 $x_j=\mathrm{Re}(z_j), y_j=\mathrm{Im}(z_j)(j=1,2)$ とおくと, $z_1-z_2=x_1-x_2+\mathrm{i}(y_1-y_2)$ であるから

$$\overline{z_1 - z_2} = x_1 - x_2 - i(y_1 - y_2)$$

$$= x_1 - iy_1 - (x_2 - iy_2)$$

$$= \overline{x_1 + iy_1} - \overline{(x_2 + iy_2)}$$

$$= \overline{z_1} - \overline{z_2},$$

を得る . ■

問 2 (3) (p.107)

証明 $x_j=\mathrm{Re}(z_j), y_j=\mathrm{Im}(z_j)(j=1,2)$ とおくと, $z_1z_2=x_1x_2-y_1y_2+\mathrm{i}(x_1y_2+x_2y_1)$ であるから

$$\overline{z_1 z_2} = x_1 x_2 - y_1 y_2 - i(x_1 y_2 + x_2 y_1),$$

となる、一方、

$$\overline{z_1} \ \overline{z_2} = (x_1 - iy_1)(x_2 - iy_2)$$

= $x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1),$

の結果から

$$\overline{z_1z_2} = \overline{z_1} \ \overline{z_2},$$

を得る.■

問 2 (4) (p.107)

証明 任意の実数 c と任意の複素数 z に対して $\overline{cz}=c\overline{z}$ であることと , $z_2\overline{z_2}=|z_2|^2$ が実数であることに注意すると , $z_2\neq 0$ に対して

$$\overline{\left(\frac{1}{z_2}\right)} = \overline{\left(\frac{1}{z_2\overline{z_2}} \cdot \overline{z_2}\right)}$$

$$= \frac{1}{z_2\overline{z_2}} \cdot \overline{\overline{z_2}}$$

$$= \frac{1}{z_2\overline{z_2}} \cdot z_2,$$

となる.最右辺を z_2 で約分することで

$$\overline{\left(\frac{1}{z_2}\right)} = \frac{1}{\overline{z_2}},$$

が得られる.この結果と前問の結果を利用して,

$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{z_1 \cdot \left(\frac{1}{z_2}\right)}$$

$$= \overline{z_1} \cdot \overline{\left(\frac{1}{z_2}\right)}$$

$$= \overline{z_1} \cdot \frac{1}{\overline{z_2}}$$

$$= \overline{\frac{z_1}{z_2}}$$

を得る . ■

問 2 (5) (p.107)

証明 z が実数 \iff $\mathrm{Im}(z)=0$ に注意すると,(必要性)

$$z$$
 が実数 $\Longrightarrow 0 = \operatorname{Im}(z) = \frac{1}{2i}(z - \bar{z})$
 $\Longrightarrow \bar{z} = z.$

(十分性)

$$ar{z}=z\Longrightarrow {
m Im}(z)=rac{1}{2{
m i}}(z-ar{z})=0$$
 $\Longrightarrow z$ は実数.

以上より z が実数 $\iff \bar{z} = z$ である.

問 2 (6) (p.107)

証明 z が純虚数 \Longleftrightarrow $\mathrm{Re}(z)=0$ かつ $\mathrm{Im}(z)\neq 0$ に注意すると,

(必要性)

$$z$$
 が純虚数 $\Longrightarrow 0 = \operatorname{Re}(z) = \frac{1}{2i}(z + \bar{z})$
 $\Longrightarrow \bar{z} = -z.$

十分性については成立しない (z=0 は $\bar{z}=-z$ を満たすが , $\mathrm{Im}(z)\neq 0$ に反する) . よって「 $\bar{z}=-z\longleftrightarrow z$ が純虚数」は偽である . \blacksquare

問 3 (1) (p.108) $|\sqrt{3} + i| = 2$ より,

$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$$
$$= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
$$= 2e^{\frac{\pi}{6}i}.$$

問 3 (2) (p.108)
$$|-1+\mathrm{i}|=\sqrt{2}$$
 より,

$$-1 + i = \sqrt{2} \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right)$$
$$= \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
$$= \sqrt{2} e^{\frac{3\pi}{4} i}.$$

問 3 (3) (p.108) |5i| = 5 より,

$$5i = 5(0+i)$$

$$= 5(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})$$

$$= 5e^{\frac{\pi}{2}i}.$$

$$-4 = 4(-1 + i0)$$

= $4(\cos \pi + i \sin \pi)$
= $4e^{\pi i}$.

問 4 (1) (p.108)

証明 左辺を計算し,

$$\left| e^{i\theta} \right| = \left| \cos\theta + i\sin\theta \right| = \sqrt{\cos^2\theta + \sin^2\theta} = 1,$$

を得る . ■

問 4 (2) (p.108)

証明 左辺を計算し,

$$\overline{e^{i\theta}} = \overline{\cos \theta + i \sin \theta}$$

$$= \cos \theta - i \sin \theta$$

$$= \cos(-\theta) + i \sin(-\theta)$$

$$= e^{-i\theta},$$

を得る . ■

問 4 (3) (p.108)

証明 右辺を計算し,

$$\begin{split} \frac{\mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{-\mathrm{i}\theta}}{2} \\ &= \frac{(\cos\theta + \mathrm{i}\sin\theta) + [\cos(-\theta) + \mathrm{i}\sin(-\theta)]}{2} \\ &= \cos\theta, \end{split}$$

を得る . ■

問 4 (4) (p.108)

証明 右辺を計算し,

$$\begin{split} \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ &= \frac{(\cos\theta + i\sin\theta) - [\cos(-\theta) + i\sin(-\theta)]}{2i} \\ &= \sin\theta, \end{split}$$

を得る . ■