Subspaces of Vector Spaces

Michael Brodskiy

Professor: Lynn Knight

March 3, 2021

- ullet A non-empty subset ${\bf W}$ of vector space ${\bf V}$ is called a subspace of ${\bf V}$ if ${\bf W}$ is itself a vector space under addition and scalar multiplication defined on ${\bf V}$
 - 1. If $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are in \mathbf{W} , then $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$ is in \mathbf{W}
 - 2. If $\overrightarrow{\mathbf{u}}$ is in \mathbf{W} , and c is any scalar, then $c\overrightarrow{\mathbf{u}}$ is in \mathbf{W}
 - 3. Ex. \mathbb{R}^2 is a vector space, then $\{(x,2x)\}$ is a subspace of \mathbb{R}^2 , but $\{(x,2x+1\}$ is not
- ullet Verify that **W** is a subspace of **V**
 - 1. $\mathbf{W} \leq \mathbf{V}$
 - 2. W not empty
 - 3. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} \in \mathbf{W}$
 - 4. $c\overrightarrow{\mathbf{u}} \in \mathbf{W}$