Introduction to Machine Learning

Christos Dimitrakakis

August 16, 2024

Outline

Machine Learning And Data Mining

The nuts and bolts

- Models
- ► Algorithms
- ► Theory
- Practice

■Workflow

- Scientific question
- Formalisation of the problem
- Data collection
- Analysis and model selection

Types of <u>I</u> statistics / ***** machine learning problems

- Classification
- Regression
- ▶ Density estimation
- ► Reinforcement learning

The nuts and bolts

- ► Models
- ► Algorithms
- ► Theory
- ► Practice

Machine learning

Data Collection

- Downloading a clean dataset from a repository
- Performing a survey
- Scraping data from the web
- Deploying sensors, performing experiments, and obtaining measurements.

Modelling (what we focus on this course)

- Simple: the bias of a coin
- Complex: a language model.
- The model depends on the data and the problem

Algorithms and Decision Making

- ▶ We want to use models to make decisions.
- Decisions are made every step of the way.
- Decisions are automated algorithmically.

The main problems in machine learning and statistics

Prediction

- ▶ Will it rain tomorrow?
- ► How much will bitcoin be worth next year?
- ▶ When is the next solar eclipse?

Inference

- ▶ Does my poker opponent have two aces?
- ▶ What is the law of gravitation?

Decision Making

./fig/artemis.gif

- ▶ What data should I collect?
- ▶ Which model should I use?
- Should I fold, call, or raise in my poker game?
- ► How can I get a spaceship to the moon and back?

The need to learn from data

Problem definition

- ▶ What problem do we need to solve?
- ► How can we formalise it?
- ▶ What properties of the problem can we learn from data?

Data collection

- ▶ Why do we need data?
- What data do we need?
- ► How much data do we want?
- ► How will we collect the data?

Modelling and decision making

- ► How will we compute something useful?
- ► How can we use the model to make decisions?

Problem definition

Example: Health, weight and height

Example (Health questions regarding height and weight)

- ► What is a normal height and weight?
- ► How are they related to health?
- ► What variables affect height and weight?

Data collection

Think about which variables we need to collect to answer our research question.

Necessary variables

The variables we need to know about

- Weight
- Height
- Dependent: (health/vote/opinion/salary)

Auxiliary variables

Measurable factors related to the variables of interest

Possible confounders

Hidden factors that might affect variables

Class data and variables

▶ The class enters their data into the excel file.

Unsupervised learning (unconditional estimation)

- Predict the gender of an unknown individual.
- Predict the height.
- ► Predict the height and weight?

Supervised learning problems (conditional estimation)

- Classification: Can we predict gender from height/weight?
- Regression: Can we predict weight from height and gender?
- ► In both cases we predict output variables from input variables

Variables

- ▶ Input variables: aka features, predictors, independent variables
- Output variables: aka response, dependent variables, labels, or targets.
- ► The input/output dichotomy only exists in some prediction problems.

Variables

The class data looks like this

First Name	Gender	Height	Weight	Age	Nationality	Smoking
Lee	М	170	80	20	Chinese	10
Fatemeh	F	150	65	25	Turkey	0
Ali	Male	174	82	19	Turkish	0
Joan	N	5'11	180	21	Brtish	4

► X: Everybody's data

 \triangleright x_t : The t-th person's data

 \triangleright $x_{t,k}$: The k-th feature of the *t*-th person.

 $ightharpoonup x_k$: Everybody's k-th feature

Raw versus neat data

▶ Neat data: $x_t \in \mathbb{R}^n$

▶ Raw data: text, graphs, missing values, etc

Python pandas for data wrangling

Reading class data

```
import pandas as pd
X = pd.read_excel("data/class.xlsx")
X["First_Name"]
```

- Array columns correspond to features
- Columns can be accessed through namesx

Summarising class data

```
X. hist()
import matplotlib.pyplot as plt
plt.show()
```

Pandas and DataFrames

- ▶ Data in pandas is stored in a DataFrame
- ▶ DataFrame is not the same as a numpy array.

Core libraries

```
import pandas as pd
import numpy as np
```

Series: A sequence of values

```
# From numpy array:
s = pd. Series(np.random.randn(3),
index=["a", "b", "c"])
# From dict:
d = \{ "a": 1, "b": 0, "c": 2 \}
s = pd. Series(d)
# accessing elemets
s.iloc[2] #element 2
s.iloc[1:2] #elements 1,2
s.array # gets the array object
s.to numpy() # gets the underlying numpy array
```

DataFrames

Constructing from a numpy array

```
\begin{array}{lll} \mbox{data} &= \mbox{ np.random.uniform (size } = [3\,,2]) \\ \mbox{df} &= \mbox{pd.DataFrame(data, index} = ["John", "Ali", "Sumi"], \\ \mbox{columns} = ["X1", "X2"]) \end{array}
```

Constructing from a dictionary

```
 \begin{array}{lll} d = \{ & "one" \colon pd.\,Series\left([1\,,\,\,2]\,,\,\,index = ["a"\,,\,\,"b"]\right)\,,\\ & & "two" \colon pd.\,Series\left([1\,,\,\,2\,,\,\,3]\,,\,\,index = ["a"\,,\,\,"b"\,,\\ df = pd\,.\,DataFrame(d) \end{array}
```

Access

```
 \begin{split} & X["First \_Name"] \;\#\; get\; a\; column \\ & X.loc[2] \;\#\; get\; a\; row \\ & X.at[2,\;"First \_Name"] \;\#\; row\; 2,\; column\;\; 'first\;\; name' \\ & X.loc[2].at["First \_Name"] \;\#\; row\; 2,\; element\;\; 'first\;\; name' \\ & X.iat[2,0] \;\#\; row\;\; 2,\;\; column\;\; 0 \end{split}
```

Modelling variables

Means using python

Example (Calculating the mean of our class data)

```
X.mean() \# gives the mean of all the variables through p X["Height"].mean() np.mean(X["Weight"])
```

- ▶ The mean here is fixed because we calculate it on the same data.
- ▶ If we were to collect new data then the answer would be different.

Example (Calculating the mean of a random variable)

▶ The mean is random, so we get a different answer everytime.

One variable: expectations and distributions

Definition (The expected value)

Assume $x: \Omega \to \mathbb{R}$, and $\omega_t \sim P$

- \triangleright $x_1, \ldots, x_t, \ldots, x_T$: random i.i.d. variables with $x_t = x(\omega_t)$
- $ightharpoonup \Omega$: random outcome space
- ▶ P: distribution of outcomes $\omega \in \Omega$
- $\triangleright \mathbb{E}_p[x]$: expectation of x under P

$$\mathbb{E}_{P}[x_t] = \sum_{\omega \in \Omega} x_t(\omega) P(\omega)$$

One variable: expectations and distributions

Definition (The expected value)

Assume $x: \Omega \to \mathbb{R}$, and $\omega_t \sim P$

- \triangleright $x_1, \ldots, x_t, \ldots, x_T$: random i.i.d. variables with $x_t = x(\omega_t)$
- $ightharpoonup \Omega$: random outcome space
- ightharpoonup P: distribution of outcomes $\omega \in \Omega$
- $\triangleright \mathbb{E}_p[x]$: expectation of x under P

$$\mathbb{E}_{P}[x_{t}] = \sum_{\omega \in \Omega} x_{t}(\omega) P(\omega)$$

Definition (The sample mean)

The sample mean of x_1, \ldots, x_T is

$$\frac{1}{T}\sum_{t=1}^{T}x_{t}$$

Under P, the sample mean is $O(1/\sqrt{T})$ -close to the expected value $\mathbb{E}_P[x_t]$.

Reminder: expectations of random variables

A gambling game

What are the expected winnings if you play this game?

- ► [a] With probability 1%, you win 100 CHF
- ▶ [b] With probability 40%, you win 20 CHF.
- ► [c] Otherwise, you win nothing

Solution

Reminder: expectations of random variables

A gambling game

What are the expected winnings if you play this game?

- ► [a] With probability 1%, you win 100 CHF
- ▶ [b] With probability 40%, you win 20 CHF.
- ► [c] Otherwise, you win nothing

Solution

- Let x be the amount won, then x(a) = 100, x(b) = 20, x(c) = 0.
- We need to calculate

$$\mathbb{E}_{P}(x) = \sum_{\omega \in \{a,b,c\}} x(\omega)P(\omega) = x(a)P(a) + x(b)P(b) + x(c)P(c)$$

▶
$$P(c) = 59\%$$
, as $P(\Omega) = 1$. Substituting,
$$\mathbb{E}_P(x) = 1 + 8 + 0 = 9.$$

Models

Models as summaries

- ▶ They summarise what we can see in the data
- ► The ultimate model of the data is the data

Models as predictors

- They make predictions about things beyond the data
- ► This requires some assumptions about the data-generating process.

Example models

- A numerical mean
- A linear classifier
- A linear regressor
- A deep neural network
- ► A Gaussian process
- A large language model

The simplest model: A mean

Modelling variables

The Bernoulli distribution

Definition (Bernoulli distribution)

We say that $x \in \{0,1\}$ has Bernoulli distribution with parameter θ and write

$$x \sim \text{Bernoulli}(\theta),$$

when

$$\mathbb{P}(x) = \begin{cases} \theta & x = 1 \\ 1 - \theta & x = 0. \end{cases}$$

Example (Applications of the Bernoulli distribution)

- ► A biased coin flip.
- Classification errors.

Predicting y from x, discrete case.

Consider two variables, x, y. We can either care about

- $ightharpoonup \mathbb{E}[y|x]$ the expectation of y for all x.
- $ightharpoonup \mathbb{P}[y|x]$ the distribution of y for all x.

Probability table for P(x, y)

P(x,y)	y = 0	y = 1
x = 0	54%	6%
x = 1	16%	24%

▶ What is P(x)?

Conditional probability table for P(y|x)

$P(y \mid x)$	y = 0	y = 1
$\times = 0$	90%	10%
x = 1	40%	60%

▶ What is $\mathbb{E}[y \mid x]$?

Distributions of two variables

In this setting, both x and y have a Bernoulli distribution. If we use a model whereby x is sampled first, and then y, then we can define two Bernoulli distributions. The first, for x is unconditional, while the second, for y, depends on the value of x:

$$x \sim \text{Bernoulli}(\theta)$$

 $y \mid x \sim \text{Bernoulli}(\phi_x).$

In our example, $\phi_0 = 0.1$ and $\phi_1 = 0.6$.

Homework

Probability table for P(x, y)

P(x,y)	y = -1	y = 0	y = 1
x = 0	10%	20%	10%
x = 1	30%	20%	10%

Given the above table, calculate

- \triangleright P(x)
- ▶ The conditional probability table for P(y|x).
- $ightharpoonup \mathbb{E}[y|x]$ for all values of x.

Two variables: conditional expectation

The height of different genders

The conditional expected height

$$\mathbb{E}[h \mid g = 1] = \sum_{\omega \in \Omega} h(\omega) P[\omega \mid g(\omega) = 1]$$

The empirical conditional expectation

$$\mathbb{E}[h \mid g = 1] \approx \frac{\sum_{t:g(\omega_t)=1} h(\omega_t)}{|\{t:g(\omega_t)=1\}|}$$

Python implementation

Two variables: conditional expectation

The height of different genders

The conditional expected height

$$\mathbb{E}[h \mid g = 1] = \sum_{\omega \in \Omega} h(\omega) P[\omega \mid g(\omega) = 1]$$

The empirical conditional expectation

$$\mathbb{E}[h \mid g = 1] \approx \frac{\sum_{t:g(\omega_t)=1} h(\omega_t)}{|\{t:g(\omega_t)=1\}|}$$

Python implementation

```
h[g==1] / sum(g==1)
## alternative
import numpy as np
np.mean(h[g==1])
```

Populations, samples, and distributions

Figure: The world population

Figure: A sample

Statistical assumptions

Independent, Identically Distributed data

- $lackbox{}\omega_t \sim P$: individuals $\omega_t \in \Omega$ are drawn from some distribution P
- $ightharpoonup x_t riangleq x(\omega_t)$ are some features of the t-th individual
- ightharpoonup Here we are interested in properties of the unknown distribution P.

Representative sample from a fixed population

- ▶ Finite population $\Omega = \{\omega_1, \omega_2, \dots, \omega_N\}$
- A subset S ⊂ Ω of size T < N is selected with a uniform distribution, i.e. so that

$$P(S) = T/N, \quad \forall S \subset \Omega.$$

- ▶ Here we are interested in statistics of the unknown population Ω .
- ▶ We assume an underlying distribution *P* for convenience.
- We can tried both cases essentially the same.

Learning from data

Unsupervised learning

- ightharpoonup Given data x_1, \ldots, x_T .
- Learn about the data-generating process.
- Example: Estimation, compression, text/image generation

Supervised learning

- ightharpoonup Given data $(x_1, y_1), \ldots, (x_T, y_T)$
- ▶ Learn about the relationship between x_t and y_t .
- Example: Classification, Regression

Online learning

- ▶ Sequence prediction: At each step t, predict x_{t+1} from x_1, \ldots, x_t .
- Conditional prediction: At each step t, predict y_{t+1} from $x_1, y_1, \dots, x_t, y_t, x_{t+1}$

Reinforcement learning

Learn to act in an unknown world through interaction and rewards

Robust models of the mean

Validating models

Training data

- ► Calculations, optimisation
- ► Data exploration

Validation data

- ► Fine-tuning
- ► Model selection

Test data

Performance comparison

Simulation

- Interactive performance comparison
- White box testing

Real-world testing

► Actual performance measurement

Model selection

- ► Train/Test/Validate
- ► Cross-validation
- ► Simulation

Course Contents

Models

- k-Nearest Neighbours.
- Linear models and perceptrons.
- Multi-layer perceptrons (aka deep neural networks).
- Bayesian Networks

Algorithms

- ► (Stochastic) Gradient Descent.
- ► Bayesian inference.

Supervised learning

The general goal is learning a function $f: X \to Y$.

Classification

- ▶ Input data $x_t \in \mathbb{R}$, $y_t \in [m] = \{1, 2, ..., m\}$
- ▶ Learn a mapping f so that $f(x_t) = y_t$ for unseen data

Regression

- ▶ Input data x_t, y_t
- Learn a mapping f so that $f(x_t) = \mathbb{E}[y_t]$ for unseen data
- Can be mapped into classification by binning.

Unsupervised learning

The general goal is learning the data distribution.

Density estimation

- ▶ Input data $x_1, ..., x_T$ from distribution with density p
- Problem: Estimate p.

Special case: Compression

- Learn two mappings c, d
- ightharpoonup c(x) compresses an image x to a small representation z.
- ightharpoonup d(z) decompresses to an approximate datapoint \hat{x} .

Special case: Clustering

- ▶ Input data $x_1, ..., x_T$.
- Estimate latent cluster labels c_t to model the distribution of x as a mix over densities p_c .

$$p(x_t) = \sum_{c} P(c_t = c) p_c(x_t)$$

Supervised learning objectives

- ▶ Data (x_t, y_t) , $x_t \in X$, $y_t \in Y$, $t \in [T]$.
- ▶ i.i.d assumption: $(x_t, y_t) \sim P$ for all t.
- ▶ Supervised decision rule $\pi(a_t|x_t)$

Classification

- Predict the labels correctly, i.e. $a_t = y_t$.
- ► Have an appropriate confidence level

Regression

- Predict the mean correctly
- Have an appropriate variance around the mean

Unsupervised learning objectives

- ► Reconstruct the data well
- ► Be able to generate data

Reinforcement learning objectives

► Maximise total reward

Pitfalls

Reproducibility

- Modelling assumptions
- ▶ Distribution shift
- ► Interactions and feedback

Fairness

- Implicit biases in training data
- ► Fair decision rules and meritocracy

Privacy

- Accidental data disclosure
- Re-identification risk

Reading for this week

ISLP Chapter 1