Text Classification

+

Machine Learning Review 3

CS 287

Review: Logistic Regression (Murphy, p 268)

Cons

- ► Harder to fit versus naive Bayes.
- ▶ Must fit all classes together.
- ▶ Not a good fit for semi-supervised/missing data cases

Pros

- Better calibrated probability estimates
- ► Natural handling of feature input
 - ▶ Features likely not multinomials
- ▶ (For us) extend naturally to neural networks

Review: Gradients for Softmax Regression

For multiclass logistic regression:

$$\frac{\partial L(\mathbf{y}, \hat{\mathbf{y}})}{\partial z_i} = \sum_j \frac{\partial \hat{y}_j}{\partial z_i} \frac{\mathbf{1}(j=c)}{\hat{y}_j} = \begin{cases} -(1-\hat{y}_i) & i=c\\ \hat{y}_i & ow. \end{cases}$$

Therefore for parameters θ ,

$$\frac{\partial L}{\partial b_i} = \frac{\partial L}{\partial z_i} \quad \frac{\partial L}{\partial W_{f,i}} = x_f \frac{\partial L}{\partial z_i}$$

Review: Gradients for Softmax Regression

For multiclass logistic regression:

$$\frac{\partial L(\mathbf{y}, \hat{\mathbf{y}})}{\partial z_i} = \sum_j \frac{\partial \hat{y}_j}{\partial z_i} \frac{\mathbf{1}(j=c)}{\hat{y}_j} = \begin{cases} -(1-\hat{y}_i) & i=c\\ \hat{y}_i & ow. \end{cases}$$

Therefore for parameters θ ,

$$\frac{\partial L}{\partial b_i} = \frac{\partial L}{\partial z_i} \quad \frac{\partial L}{\partial W_{f,i}} = x_f \frac{\partial L}{\partial z_i}$$

Intuition:

- Nothing happens on correct classification.
- ▶ Weight of true features increases based on prob not given.
- Weight of false features decreases based on prob given.

Gradient-Based Optimization: SGD

```
procedure SGD
     while training criterion is not met do
           Sample a training example \mathbf{x}_i, \mathbf{y}_i
           Compute the loss L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta)
           Compute gradients \hat{\mathbf{g}} of L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta) with respect to \theta
           \theta \leftarrow \theta - \eta \hat{\mathbf{g}}
     end while
     return \theta
end procedure
```

Quiz: Softmax Regression

Given bag-of-word features

$$\mathcal{F} = \{ \texttt{The, movie, was, terrible, rocked, A} \}$$

and two training data points:

Class 1: The movie was terrible Class 2: The movie rocked

Assume that we start with parameters ${\bf W}=0$ and ${\bf b}=0$, and we train with learning rate $\eta=1$ and $\lambda=0$. What is the loss and the parameters after one pass through the data in order?

Answer: Softmax Regression (1)

First iteration,

$$\hat{\mathbf{y}}_1 = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$$

$$L(\mathbf{y}_1, \hat{\mathbf{y}}_1) = -\log 0.5$$

$$\mathbf{W} = \begin{bmatrix} 0.5 & 0.5 & 0.5 & 0.5 & 0 & 0 \\ -0.5 & -0.5 & -0.5 & -0.5 & 0 & 0 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 0.5 & -0.5 \end{bmatrix}$$

Answer: Softmax Regression (2)

Second iteration,

$$\hat{\mathbf{y}}_1 = \operatorname{softmax}([1.5 \ -1.5]) \approx \begin{bmatrix} 0.95 \ 0.05 \end{bmatrix}$$

$$L(\mathbf{y}_2, \hat{\mathbf{y}}_2) = -\log 0.05$$

$$\mathbf{W} \approx \begin{bmatrix} -0.45 \ -0.45 \ 0.45 \ -0.5 \ -0.5 \ 0.95 \ 0 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} -0.45 \ 0.45 \end{bmatrix}$$

Today's Class

So far

- ► Naive Bayes (Multinomial)
- ► Multiclass Logistic Regression (SGD)

Today

- Multiclass Hinge-loss
- ► More about optimization

Contents

Multiclass Hinge-Loss

Gradients

Black-Box Optimization

Other Loss Functions

What if we just try to directly find \mathbf{W} and \mathbf{b} ?

$$\hat{\mathbf{y}} = \mathbf{x}\mathbf{W} + \mathbf{b}$$

- ▶ No longer a probabilistic interpretation.
- Just try to find parameters that fit training data.

0/1 Loss

Just count the number of training examples we classify correctly,

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} L_{0/1}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{1}(\arg\max_{c'} \hat{y}_{c'} \neq c)$$

0/1 Loss

Just count the number of training examples we classify correctly,

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} L_{0/1}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbf{1}(\arg\max_{c'} \hat{y}_{c'} \neq c)$$

$$\frac{\partial L(\mathbf{y}, \hat{\mathbf{y}})}{\partial \hat{y}_j} = \begin{cases} 0 & j = c \\ 0 & o.w. \end{cases}$$

$$L_{0/1}([x \ y]) = \mathbf{1}(x > y)$$

Hinge Loss

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} L_{hinge}(\mathbf{y}, \hat{\mathbf{y}})$$

$$L_{\textit{hinge}}(\mathbf{y}, \hat{\mathbf{y}}) = \max\{0, 1 - (\hat{y}_{\textit{c}} - \hat{y}_{\textit{c'}})\}$$

Where

▶ Let c be defined as true class $y_{i,c} = 1$

$$c' = \arg\max_{i \in \mathcal{C} \setminus \{c\}} \hat{y}_i$$

Hinge Loss

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} L_{hinge}(\mathbf{y}, \hat{\mathbf{y}})$$

$$L_{\textit{hinge}}(\mathbf{y}, \hat{\mathbf{y}}) = \max\{0, 1 - (\hat{y}_c - \hat{y}_{c'})\}$$

Where

▶ Let c be defined as true class $y_{i,c} = 1$

$$c' = \arg\max_{i \in \mathcal{C} \setminus \{c\}} \hat{y}_i$$

Minimizing hinge loss is an upper-bound for 0/1.

$$L_{hinge}(\mathbf{y}, \hat{\mathbf{y}}) \geq L_{0/1}(\mathbf{y}, \hat{\mathbf{y}})$$

Hinge Loss

$$\mathrm{hinge}(\hat{\mathbf{y}}) = \mathbf{1}(\max\{0, 1 - (y - x)\})$$

 $\arg\max([x\ y])=\mathbf{1}(x>y)$

Important Case: Hinge-loss for Binary

$$L_{\mathit{hinge}}([0\ 1],[x\ y]) = \max\{0,1-(y-x)\} = \mathsf{ReLU}(1-(y-x))$$

Neural network name (Rectified linear unit):

$$\mathsf{ReLU}(t) = \max\{0, t\}$$

Hinge-Loss Properties

Complete objective:

$$\mathcal{L}_{hinge}(\theta) = \sum_{i=1}^{n} \max\{0, 1 - (\hat{y}_{c} - \hat{y}_{c'})\}$$

$$= \sum_{i=1}^{n} \max\{0, 1 - (\hat{y}_{c} - \max_{c' \in \mathcal{C} \setminus \{c\}} \hat{y}_{c'})\}$$

- ▶ Apply convexity rules: Linear ŷ is convex, max of convex functions is convex, linear + convex is convex, sum of convex functions is convex (Boyd and Vandenberghe, 2004 p. 72-74)
- However, non-differentiable because of max.

Piecewise Linear Objective

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \max\{0, 1 - (\hat{y}_{c} - \hat{y}_{c'})\}$$

$$10*\max\{0,1-(y-x)\}+5*\max\{0,1-(x-y)\}$$

Objective with Regularization

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \max\{0, 1 - (\hat{y}_c - \hat{y}_{c'})\} + \lambda ||\theta||^2$$

$$10*\max\{0,1-(y-x)\}+5*\max\{0,1-(x-y)\}+5*||\theta||^2$$

Contents

Multiclass Hinge-Loss

Gradients

Black-Box Optimization

(Sub)Gradient Rule

- Technically ReLU is non-differentiable.
- Only an issue at 0, generally for "ties".
- We informally use subgradients,

$$\frac{d \operatorname{ReLU}(x)}{dx} = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ 1 \text{ or } 0 & o.w \end{cases}$$

Generally,

$$\frac{d\max_{v'}(f(x,v'))}{dx} = f'(x,\hat{v}) \text{ for any } \hat{v} \in \arg\max_{v'} f(x,v')$$

Symbolic Gradients

- Let c be defined as true class
- \blacktriangleright Let c' be defined as the highest scoring non-true class

$$c' = rg \max_{i \in \mathcal{C} \setminus \{c\}} \hat{y}_i$$

▶ Partials of $L(y, \hat{y})$

$$\frac{\partial L(y, k\hat{y})}{\partial \hat{y}_j} = \begin{cases} 0 & \hat{y}_c - \hat{y}_{c'} > 1\\ 1 & j = c'\\ -1 & j = c\\ 0 & o.w. \end{cases}$$

Intuition: If wrong or close to wrong, improve correct and lower closest incorrect.

Notes: Hinge Loss: Regularization

- Many different names,
 - Margin Classifier
 - Multiclass Hinge
 - Linear SVM
- ▶ Important to use regularization.

$$\mathcal{L}(\theta) = -\sum_{i=1}^{n} L(\hat{\mathbf{y}}, \mathbf{y}) + ||\theta||_{2}^{2}$$

▶ Can be much more efficient to train than LR. (No partition).

Results: Longer Reviews

Our results	RT-2k	IMDB	Subj.
MNB-uni	83.45	83.55	92.58
MNB-bi	85.85	86.59	93.56
SVM-uni	86.25	86.95	90.84
SVM-bi	87.40	89.16	91.74
NBSVM-uni	87.80	88.29	92.40
NBSVM-bi	89.45	91.22	93.18
BoW (bnc)	85.45	87.8	87.77
BoW ($b\Delta t'c$)	85.8	88.23	85.65
LDA	66.7	67.42	66.65
Full+BoW	87.85	88.33	88.45
Full+Unlab'd+BoW	88.9	88.89	88.13

IMDB (longer movie review), Subj (longer subjectivity)

▶ NBSVM is hinge-loss interpolated with Naive Bayes.

Contents

Multiclass Hinge-Loss

Gradients

Black-Box Optimization

Optimization Methods

Goal: Minimize function $\mathcal{L}: \mathbb{R}^{|\theta|} \mapsto \mathbb{R}$

First-order Methods

$$\mathcal{L}(\theta + \delta) \approx \mathcal{L}(\theta) + \mathcal{L}'(\theta)^{\top} \dot{\delta}$$

▶ Require computing $L(\theta)$ and gradient $L'(\theta)$.

Second-order Methods

$$\mathcal{L}(\theta + \delta) \approx \mathcal{L}(\theta) + \mathcal{L}'(\theta)^{\top} \delta + 1/2 \delta^{\top} \mathbf{H} \delta^{\top}$$

▶ Require computing $L(\theta)$ and gradient $L'(\theta)$ and Hessian **H**.

Stochastic Methods

▶ Require computing $\mathbb{E}(L(\theta))$ and expected gradient.

Gradient Descent

```
while training criterion is not met do
       k \leftarrow 0
      \hat{\mathbf{g}} \leftarrow 0
       for i = 1 to n do
              Compute the loss L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta)
              Compute gradients \mathbf{g}' of L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta) with respect to \theta
             \hat{\mathbf{g}} \leftarrow \hat{\mathbf{g}} + \frac{1}{n}\mathbf{g}'
       end for
      \theta_{k+1} \leftarrow \theta_k - \eta_k \hat{\mathbf{g}}
       k \leftarrow k + 1
end while
return \theta
```

Choosing the Learning Rate

Gradient Descent with Momentum

Standard Gradient Descent (figure from Boyd):

$$\theta_{k+1} \leftarrow \theta_k - \eta_k \hat{\mathbf{g}}$$

Momentum terms:

$$\theta_{k+1} \leftarrow \theta_k - \eta_k \hat{\mathbf{g}} + \mu_k (\theta_k - \theta_{k-1})$$

► Also known as: Heavy-ball method

Second-Order

Requires compute Hessian $\hat{\mathbf{H}}$

Second-order update becomes:

$$\theta_{k+1} \leftarrow \theta_k - \eta_k \hat{\mathbf{H}}^{-1} \hat{\mathbf{g}}$$

- Used for strictly convex functions (although there are variants)
- Also known as: Newton's Method

Quasi-Newton Methods

Construct an approximate Hessian from first-order information

- BFGS
 - construct approx. Hessian directly
 - ▶ $O(|\theta|^2)$ space
- ► L-BFGS;
 - ▶ limited-memory BFGS, only save last *m* gradients
 - ightharpoonup can often set m < 20 or smaller

Fast implementations available, specific details are beyond scope of course.

Stochastic Methods

- ▶ Minimize function $L(\theta)$
- ▶ Require computing $\mathbb{E}(L(\theta))$ and gradient
- Typically, we by sampling a subset of the data. computing a gradient, and updating
- ▶ Other first-order optimizers (like momentum) can be used.

Gradient-Based Optimization: Minibatch SGD

```
while training criterion is not met do
      Sample a minibatch of m examples (\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)
      \hat{\mathbf{g}} \leftarrow 0
      for i = 1 to m do
             Compute the loss L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta)
             Compute gradients \mathbf{g}' of L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta) with respect to \theta
             \hat{\mathbf{g}} \leftarrow \hat{\mathbf{g}} + \frac{1}{m}\mathbf{g}'
      end for
      \theta \leftarrow \theta - \eta_k \hat{\mathbf{g}}
end while
return \theta
```

Tricks On Using SGD (Bottou 2012)

- ► Can be crucial to experiment with learning rate.
- Often useful to use development set for stopping.
- Shuffle data first and run over it.
- ▶ Also describes "averaged" versions which work well in practice.

Optimization in NLP

- For convex batch-methods:
 - ▶ L-BFGS is easy to use and effective.
 - Nice for verifying results.
 - ► Sometimes even *m*-times the parameters is a lot though.
- ► For both convex, and especially, non-convex problems:
 - SGD and variants are dominant.
 - Trade-off of speed vs. exact optimization.
 - Also see notes on AdaGrad, another popular method.