7.2

Dissoint Sets:

2 sets A : B are D.S : F ANB = of

	TABLE 1 Set Identities.	
	Identity	Name
(A) (B)	$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
	$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
	$A \cup A = A$ $A \cap A = A$	Idempotent laws
0- (0) (0)	$\overline{(\overline{A})} = A$	Complementation law
e table I	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
	$\overline{\overline{A \cap B}} = \overline{\overline{A} \cup \overline{B}}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
	$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Prove 2 sets are equal:

Prove $A-B=A \cap \overline{B}$

intuition using diagram

TO Prove 2 set are equal- ACB on BEA

Prove D A-B = A n B

let $\times \in A-B$, by Jefinition $\times \in A$ and $\times \notin B$ Since $\times \notin B$, by Jefinition of complimat, $\times \in B$ By Jef of interception $\times \in A$ and $\times \in B$, means $\times \in A \cap B$

2) $A \cap B = A - B$. Jet $\lambda \in A \cap B$, by def on intercetion $\times EA$ and $\times EB$. Since $\times EB$, by def or complement $\times EA - B$

Sct Question

C-(AUB)

(C-(AUB))-...

Representation of sets on computers

representing sets using arbitrary ordering

N: only works for finite sets, &

FR: U= (a,b,c,d) > arbitrary ordering abcd

To represent A= Sa,c) + 6it string: 1010 B-[a,3] > 6;+ string: 1001

ANB: {a}

AUB: {a,c,d} 1000 1000

A - 96,33	7[0[0] 010]
,	