Sea A matriz nxn.

Diremos que un escalar $\lambda \in R$ es un **autovalor** o valor propio de A si existe un vector $v \in R$, $v \ne 0$, tal que $Av = \lambda v$, en cuyo caso se dice que v es un vector propio o **autovector** asociado al autovalor λ

El conjunto de todos los autovectores asociados a un mismo autovalor λ se llama autoespacio o subespacio propio, $E_A(\lambda)$

CÁLCULO de los AUTOVALORES de una matriz A nxn

El sistema : $Ax = \lambda x$ (1) se puede escribir: $(A - \lambda I)x = 0$ (2)

La ecuación $det(A - \lambda I) = 0$ (3) es la ecuación característica de A (polinomio característico en potencias de λ)

Se representa: $q_A(\lambda) = \det(A - \lambda I)$

 $q_A(\lambda)$ de A nxn es de grado n \rightarrow hay n autovalores λ que cumplen (3)

Se llama **multiplicidad algebraica** de un autovalor λ_i ma (λ_i) a la multiplicidad que tiene λ_i como raíz de $q_A(\lambda)$ Si en la factorización del polinomio $q_A(\lambda)$ aparece $(\lambda - \lambda_i)^k \rightarrow la$ raíz λ_i tiene multiplicidad algebraica k

PROPIEDADES DE VALORES PROPIOS

Sean A, B matrices nxn

a) A es invertible sii $det(A) \neq 0$

b) det(AB) = det(A) det(B)

c) $det(A^T) = det(A)$

d) Si A es triangular, det(A) es el producto de las entradas de la diagonal principal de A.

1.- La suma de los n valores propios de la matriz A es igual a su traza: $\lambda_1 + \lambda_2 + ... \lambda_n = \text{traza}(A)$

2.- El producto de los n valores propios de A es igual a su determinante: λ_2 $\lambda_n = \det(A)$

3.- Los valores propios de una matriz triangular (superior o inferior) son los elementos de su diagonal. Su multiplicidad es el n^{o} de veces que el valor propio aparece en la diagonal.

4.- λ es valor propio de A sii (A- λ I)x=0 tiene solución no trivial

Teorema Cayley-Hamilton: Si A es una matriz cuadrada, entonces q(A) = O (matriz nula)

CÁLCULO de los AUTOVECTORES asociados a los autovalores de una matriz A nxn

Para calcular los vectores propios asociados a los valores propios de una matriz A se resuelve el SL: $Ax = \lambda x$ para cada autovalor de A

1º Formar matriz (A - λI).

 2° Resolver la ecuación del polinomio característico: $q_A(\lambda) = det(A - \lambda) = 0$ para obtener los valores de λ y su multiplicidad.

 3° Resolver el SL: Ax = λx para cada autovector λ obtenido en 2)

>> Un autovector está asociado a un sólo autovalor

>> Un autovalor tiene asociados infinitos autovectores

El conjunto de todas las soluciones de $(A-\lambda I)x = 0$ es el **espacio nulo** de la matriz $(A-\lambda I)$

Este conjunto es un subespacio de R^n y se denomina subespacio propio de A correspondiente o asociado a λ

El subespacio propio de A está formado por los vectores cero y todos los vectores propios correspondientes a λ

SubEspacio propio de A: $E_{\Delta}(\lambda) = \text{Nul}(A-\lambda I)$

La dimensión de $E_A(\lambda)$ es la multiplicidad geométrica de λ : $mg(\lambda)$.