Supervised Learning: Linear Regression and Classification

Yuan Yao

Department of Mathematics Hong Kong University of Science and Technology

Most of the materials here are from Chapter 2-4 of Introduction to Statistical learning by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani.

Spring, 2020

Overview of Supervised Learning The Bias-Variance Trade-Off of Prediction Error

Linear Regression

The least squares estimation

The statistical properties of the least squares estimates.

Linear Classification

Logistic Regression.

Linear Discriminant Analysis

The ROC curve

Outline

Overview of Supervised Learning

The Bias-Variance Trade-Off of Prediction Error

Linear Regression

The least squares estimation

The statistical properties of the least squares estimates.

Linear Classification

Logistic Regression

Linear Discriminant Analysis

The ROC curve

Probability vs. Statistical Machine Learning

Forward problem: Probability is a language to quantify uncertainty.

Inverse Problem: Statistics or Machine Learning

Statistics/Data Mining Dictionary

Statisticians and computer scientists often use different language for the same thing. Here is a dictionary that the reader may want to return to throughout the course.

Statistics	Computer Science	Meaning
estimation	learning	using data to estimate
classification	supervised learning	an unknown quantity predicting a discrete Y from X
clustering	unsupervised learning	putting data into groups
data	training sample	$(X_1, Y_1), \dots, (X_n, Y_n)$
covariates	features	the X_i 's
classifier	hypothesis	a map from covariates
		to outcomes
hypothesis	_	subset of a parameter
		space Θ
confidence interval	_	interval that contains an unknown quantity with given frequency
directed acyclic graph	Bayes net	multivariate distribution with given conditional independence relations
Bayesian inference	Bayesian inference	statistical methods for
frequentist inference		using data to update beliefs statistical methods
requentist interence		with guaranteed frequency behavior
large deviation bounds	PAC learning	uniform bounds on probability of errors

Figure: Larry Wasserman's classification of statistical learning vs. machine learning in Computer Science

Supervised vs. Unsupervised Learning

- Supervised Learning
 - **Data**: (x, y), where x is data and y is label
 - **Goal**: learn a function to map $f: x \rightarrow y$
 - Examples: classification (object detection, segmentation, image captioning), regression, etc.
 - Golden standard: prediction!
- Unsupervised Learning
 - Data: x, just data and no labels!
 - Goal: learn some hidden structure of data x
 - Examples: clustering (topology), dimensionality reduction (geometry), density estimation (GAN), etc.
 - Golden standard: Non!
- "Self-supervised Learning": cloze task in language models

Related Courses

Supervised Learning

- Math 4432: Statistical Machine Learning https://yuany-pku.github.io/2018_math4432/
- Math 5470, Statistical Learning, by Bingyi JING
- Math 6380o, Deep learning
 (https://deeplearning-math.github.io/)
- Best machine learning algorithms: neural networks, random forests, and support vector machines
- Unsupervised Learning
 - Math 4432: Statistical Machine Learning (PCA/clustering)
 https://yuany-pku.github.io/2018_math4432/
 - CSIC 5011, Topological and Geometric Data Reduction (https://yao-lab.github.io/2019_csic5011/)
 - Math 6380o, Deep learning (Generative models and GANs) (https://deeplearning-math.github.io/)

Statistical (supervised) learning

Suppose that we observe a quantitative response Y and p different predictors, X_1, X_2, \ldots, X_p . We assume that there is some mapping $f: X = (X_1, X_2, \ldots, X_p) \to Y$, written as

$$Y = f(X) + \epsilon, \tag{1}$$

where

- f is some fixed but unknown function to be estimated;
- $-\epsilon$ is a random *error* term, which is independent of X and has mean zero;
- There are two main reasons that we may wish to estimate f: prediction and inference.

Prediction vs. Inference

▶ Prediction aims to minimize the gap between true value Y and predicted value $\hat{Y} = \hat{f}(X)$, usually measured by loss

$$\mathbb{E}_{(X,Y)}\mathcal{L}(Y,\hat{f}(X))$$

- ▶ *Inference* aims to estimate *f* and its properties, but the goal is not necessarily to make predictions for *Y*, e.g.
 - Variable selection: which predictors are associated with the response?
 - Model selection: can the relationship between Y and each predictor be adequately summarized using a linear equation, more complicated ones?
 - Uncertainty: how much is the uncertainty of your prediction or estimation given finite information?

Prediction

• Given an estimate \hat{f} and a set of predictors X, we can predict Y using

$$\hat{Y} = \hat{f}(X),$$

Assume for a moment that both \hat{f} and X are fixed. In regression setting,

$$\mathbb{E}(Y - \hat{Y})^{2} = \mathbb{E}[f(X) + \epsilon - \hat{f}(X)]^{2}$$

$$= \underbrace{[f(X) - \hat{f}(X)]^{2}}_{\mathbf{Reducible}} + \underbrace{Var(\epsilon)}_{\mathbf{Irreducible}}, \qquad (2)$$

where $\mathbb{E}(Y-\hat{Y})^2$ represents the expected squared error between the predicted and actual value of Y, and $Var(\epsilon)$ represents the variance associated with the error term ϵ . An optimal estimate is to minimize the reducible error.

The Bias-Variance Trade-Off

- Let f(X) be the true function which we aim at estimating from a training data set \mathcal{D} .
- ▶ Let $\hat{f}(X; \mathcal{D})$ be the estimated function from the training data set \mathcal{D} .
- ▶ **Fisher's view**: data set \mathcal{D} is a **random selection** from the set of all possible measurements which form the true distribution!
- Expected prediction error

$$\min_{\hat{f}} \mathbb{E}_{\mathcal{D}} \left[f(X) - \hat{f}(X; \mathcal{D}) \right]^2, \tag{3}$$

where randomness caused by **random selection** has been taken into account.

▶ Add and subtract $\mathbb{E}_{\mathcal{D}}(\hat{f}(X;\mathcal{D}))$ inside the braces, then expand,

$$\begin{split} & \left[f(X) - \hat{f}(X; \mathcal{D}) \right]^2 \\ &= \left[f(X) - \mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) + \mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) - \hat{f}(X; \mathcal{D}) \right]^2 \\ &= \left[f(X) - \mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) \right]^2 + \left[\mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) - \hat{f}(X; \mathcal{D}) \right]^2 \\ &+ 2 \left[f(X) - \mathbb{E}_{\mathcal{D}}[\hat{f}(X; \mathcal{D})] \right] \left[\mathbb{E}_{\mathcal{D}}[\hat{f}(X; \mathcal{D})] - \hat{f}(X; \mathcal{D}) \right]. \end{split}$$

► Take the expectation with respect to D,

$$\mathbb{E}_{\mathcal{D}}\left[f(X) - \hat{f}(X; \mathcal{D})\right]^{2} = \underbrace{\left[f(X) - \mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D}))\right]^{2}}_{Bias^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left[\mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) - \hat{f}(X; \mathcal{D})\right]^{2}\right]}_{Variance}$$

(a) High bias, Low variance (high precision)

(b) Low bias, High variance (low precision)

(c) High bias, High variance (low precision)

(d) Low bias Low variance (high precision)

- ▶ Bias refers to the error that is introduced by approximating a real-life problem, which may be extremely complicated, by a much simpler model.
- ▶ Variance refers to the amount by which $\hat{f}_{\mathcal{D}}$ would change if we estimated it using a different training data set \mathcal{D} .
- ▶ Bias and variance trade-off: The optimal predictive capability is the one that leads to balance between bias and variance.

Bias-variance tradeoff

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

FIGURE 2.11. Test and training error as a function of model complexity.

Outline

Overview of Supervised Learning
The Bias-Variance Trade-Off of Prediction Error

Linear Regression

The least squares estimation The statistical properties of the least squares estimates

Linear Classification
Logistic Regression.
Linear Discriminant Analysis
The ROC curve

Example: Advertising data

```
The data contains 200 observations.
```

Sample size: n = 200.

Sales: y_i , i = 1..., n.

TV (bugdets): $x_{i1}, i = 1, ..., n$.

Radio (budgets): $x_{i2}, i = 1, ..., n$.

Newspaper (budgets): x_{i3} , i = 1, ..., n.

Dimensionality: p = 3.

Example: Advertising data

Linear models formulation

Consider linear regression model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i, \qquad i = 1, ..., n$$
 (2.1)

where $y_i, x_i = (x_{i1}, ..., x_{ip})$ are the *i*-th observation of the response and covariates.

- Responses are sometimes called dependent variables or outputs;
- covariates called independent variables, or predictors or features or inputs or regressors.
- ▶ noise ϵ_i is independent, of zero mean, and fixed but unknown variance, e.g. Gaussian noise $N(0, \sigma^2)$

Example: Advertising data

Now, we consider three covariates: TV, radio and newspapers. The number of covariates (predictors, or features): p=3. The linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i, \qquad i = 1, ..., n$$

Estimating the coefficient by the least squares

Minimizing the sum of squares of error (Gauss'1795) [essentially as – log **likelihood** of normal distribution]:

$$\min_{\beta_0,\dots,\beta_3} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2.$$

Figure: Carl Friedrich Gauss

Notations

With slight abuse of notation, in this chapter, we use

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{1} : \mathbf{x}_1 : \mathbf{x}_2 : \dots : \mathbf{x}_p \end{pmatrix}.$$

Here a column of ones, 1, is added, which corresponds to the intercept β_0 . Then \mathbf{X} is a n by p+1 matrix.

Recall that

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \mathbf{x}_j = \begin{pmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

The least squares criterion

The least squares criterion is try to minimize the sum of squares:

$$\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \cdots - \beta_p x_{ip})^2.$$

Using matrix algebra, the above sum of squares is

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta).$$

The LSE, fitted values and residuals

By some linear algebra calcuation, the least squares estimator of β is then

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Then

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$$

is called the fitted values; viewed as the predicted values of the responses based on the linear model.

$$\hat{\epsilon} = \mathbf{y} - \hat{\mathbf{y}}$$

are called residuals. The sum of squares of these residuals

$$RSS = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \|\mathbf{y} - \hat{\mathbf{y}}\|^{2}.$$

Orthogonality

▶ The residual $\hat{\epsilon}$ is orthogonal to all columns of **X**, i.e, all $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$. This can be seen by

$$\begin{aligned} \mathbf{X}^T \hat{\epsilon} &= \mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \hat{\beta} \\ &= \mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{H} \mathbf{y} = 0. \end{aligned}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T = \mathbf{H}^2$ is the projection.

▶ The residual vector $\hat{\epsilon}$ is orthogonal to the hyperplane formed by vectors $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$ in n dimensional real space.

The least squares projection

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 3

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Result of the estimation

TABLE 3.9. (from ISLR) The advertising data: coefficients of the LSE for the regression on number of units sold on TV, radio and newspaper advertising budgets.

	Coefficient	Std.error	t-statistic	p-value
		0.0440	0.40	0.0004
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Variable selection

- ▶ We may be concerned with a subset of the *p* variables are irrelevant with the response.
- ▶ Let the subset be denoted as $A = \{i_1, ..., i_r\}$, where $r \le p$. Then, the null hypothesis is

$$H_0: \beta_{i_1} = \beta_{i_2} = \cdots = \beta_{i_r} = 0,$$

which again is equivalent to

$$H_0: E(\mathbf{y}) \in \mathcal{L}(A^c),$$

where $\mathcal{L}(A)$ is the linear space in R^n spanned by $\mathbf{x}_{i_1},...,\mathbf{x}_{i_r}$, which is of r dimension.

Statistical properties of LSE

Assume $\epsilon_i \sim N(0, \sigma^2)$,

$$\begin{split} \hat{\beta} &\sim \textit{N}(\beta, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}); \\ \text{RSS} &= \sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \sim \sigma^2 \chi_{n-p-1}^2 \\ \hat{\beta} \text{ and RSS are independent} \\ s^2 &= \text{RSS}/(n-p-1) \text{ unbiased estimate of } \sigma^2 \\ &\qquad \qquad \frac{\hat{\beta}_j - \beta_j}{s\sqrt{c_{jj}}} \sim t_{n-p-1} \\ &\qquad \qquad \frac{(\hat{\beta}-\beta)^T(\mathbf{X}^T\mathbf{X})(\hat{\beta}-\beta)/p}{s^2} \sim F_{p+1,n-p-1} \end{split}$$

where $c_{00}, c_{11}, ..., c_{pp}$ are the diagonal elements of $(\mathbf{X}^T\mathbf{X})^{-1}$.

Confidence intervals

For example,

$$\hat{\beta}_{j} \pm t_{n-p-1}(\alpha/2)s\sqrt{c_{jj}}$$

is a confidence interval for β_j at confidence level $1-\alpha$. Here $t_{n-p-1}(\alpha/2)$ is the $1-\alpha/2$ percentile of the t-distribution with degree of freedom n-p-1.

Outline

Overview of Supervised Learning
The Bias-Variance Trade-Off of Prediction Error

Linear Regression

The least squares estimation

The statistical properties of the least squares estimate

Linear Classification

Logistic Regression. Linear Discriminant Analysis The ROC curve

Examples: The default data

- Simulated data: 10000 individuals.
- Three predictors: income, balance (monthly), and student (Yes or No)
- One output: Default (Yes or No).
- Judge if a trading activity is a fraud or not.

Figure: FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Strong relation between balance and default while a weaker relation between income and default.

The special case of binary response

- Consider the output is binary: two class,
- ► Code the response into 0 and 1 and apply linear regression produce the same result as linear discriminant anlaysis.
- ▶ Not the case for output with more than two classes.

Example: The default data

Figure: Left: linear regresion; Right: logistic regression

The setup for binary output

- ▶ The training data: (\mathbf{x}_i, y_i) : i = 1, ..., n.
- $y_i = 1$ for class 1 and $y_i = 0$ for class 0.
- $\mathbf{x}_i = (1, x_{i1}, ..., x_{ip})$ are p + 1 vectors with actually p inputs.
- ▶ If instead consider linear regression model is

$$y_i = \beta^T \mathbf{x}_i + \epsilon_i$$

 β can be estimated by the least squares, and $\hat{\beta}^T \mathbf{x}_i$ is the predictor of y_i .

- Key idea: should focus on predicting the probability of the classes.
- ▶ Using $P(y = 1|\mathbf{x}) = \beta^T \mathbf{x}$ is not appropriate.

The logistic regression model

Assume

$$P(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\beta^T \mathbf{x})}$$

As a result,

$$P(y = 0|\mathbf{x}) = 1 - P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(\beta^T \mathbf{x})}$$

$$\log(\frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})}) = \beta^T \mathbf{x}$$

This is called log-odds or logit. And

$$\frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})}$$

is called odds.

▶ Interpretation: one unit increase in variable x_j , increases the log-odds of class 1 by β_j .

The maximum likelihood estimation

- Recall that, the likelihood is the joint probability function of joint density function of the data.
- ▶ Here, we have independent observations (\mathbf{x}_i, y_i) , i = 1, ..., n, each follow the (conditional) distribution

$$P(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + \exp(-\beta^T \mathbf{x}_i)} = 1 - P(y_i = 1 | \mathbf{x}_i).$$

So, the joint probability function is

$$\prod_{i=1,...,n;y_i=1} p(y_i = 1 | \mathbf{x}_i) \prod_{i=1,...,n;y_i=0} p(y_i = 0 | \mathbf{x}_i)$$

which can be conveniently written as

$$\prod_{i=1}^{n} \frac{\exp(y_i \beta^T \mathbf{x}_i)}{1 + \exp(\beta^T \mathbf{x}_i)}.$$

The likelihood and log-likelihood

- ▶ The likelihood function is the same as the joint probability function, but viewed as a function of β .
- ► The log-likelihood function is

$$\sum_{i=1}^{n} [y_i \beta^T x_i - \log(1 + \exp(\beta^T \mathbf{x}_i))]$$

▶ The maximizor is denoted as $\hat{\beta}$, which is the MLE of β based on logistic model.

Example: the default data with all three inputs: balance, income and student

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance, income, and student status. Student status is encoded as a dummy variable student[Yes], with a value of 1 for a student and a value of 0 for a non-student. In fitting this model, income was measured in thousands of dollars.

	Coefficient	Std.error	t-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
Balance	0.0057	0.0002	24.74	< 0.0001
Income	0.0030	0.0082	0.37	0.7115
Student[Yes]	-0.6468	0.2362	-2.74	0.0062

The Bayes Theorem

- ▶ Suppose there are K, denoted as 1, 2, ..., K, for the output Y.
- ➤ X is the input of p-dimension. Both Y and X are random variables.
- $\blacktriangleright \text{ Let } \pi_k = P(Y = k).$
- Let $f_k(x) = f(x|Y = k)$ be the conditional density function of X given Y = k.
- ▶ Then, Bayes theorem¹ implies

$$p_k(x) = P(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{j=1}^K \pi_j f_j(x)}$$

▶ We classify a subject with input x into class k, if its $p_k(x)$ is the largest, for k = 1, ..., K.

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{j=1}^K P(B|A_j)P(A_j)}.$$

¹General Bayes theorem: for $A_i \cap A_j = \emptyset$, $P(\cup_i A_i) = 1$,

Model assumptions of LDA

X is p-dimensional. Y=1,...,K, totally K classes. Assume, for k=1,...,K,

$$X|Y = k \sim N(\mu_k, \Sigma),$$

where μ_p is *p*-vector and Σ is *p* by *p* variance matrix. i.e.,

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)\right)$$

Note that we assumed the same Σ for all classes k=1,...,K.

Computing $p_k(x)$ for LDA

▶ We aim to maximize over k the following

$$p_k(x) = \frac{\pi_k \exp[(-1/2)(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)]}{\sum_{l=1}^K \pi_l \exp[(-1/2)(x - \mu_l)^T \Sigma^{-1}(x - \mu_l)]}$$

► Comparing $p_k(x)$ is the same as comparing the numerator. Set the k-th score

$$\delta_k(x) = \mu_k^{-1} \Sigma^{-1} x - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k.$$

where the Bayesian classifier is the k with the largest δ_k .

A practical problem: Σ and μ_j and π_j , j=1,...,K are usually unknown?

Fisher's Linear Discriminant Analysis

We choose the k-th class such that the following *linear* score function is the largest:

$$\hat{\delta}_k(x) = \hat{\mu}_k^T \hat{\Sigma}^{-1} x - \frac{1}{2} \hat{\mu}_k^T \hat{\Sigma}^{-1} \mu_k + \log \hat{\pi}_k, \tag{4}$$

where given data (x_i, y_i) , i = 1, ..., n,

- $\hat{\pi}_k = n_k/n$ is the sample proportion of class k where n_k is the number of subjects in class k
- \triangleright $\hat{\mu}_k$ is the sample mean of class k

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i;$$

 \triangleright $\hat{\Sigma}$ is the pooled (overall) sample covariance

$$\hat{\Sigma} = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i: y_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T,$$

Example: the default data

Fit the LDA model to 10,000 training samples gives training error rate of 2.75%.

That is, 275 samples are misclassifed.

But, actually only 3.33% of the training samples default, meaning that, a naive classfier that classfies every sample as non-default only has 3.33% error rate.

The detailed result is shown in the confusion matrix.

The Confusion matrix.

TABLE 4.4. A confusion matrix compares the LDA predictions to the true default statuses for the 10, 000 training observations in the Default data set. Elements on the diagonal of the matrix represent individuals whose default statuses were correctly predicted, while off-diagonal elements represent individuals that were misclassified. LDA made incorrect predictions for 23 individuals who did not default and for 252 individuals who did default.

		True default status		
		NI -	V	T-+-1
		No	res	Total
Predicted	No	9644	252	9896
default status	Yes	23	81	104
	Total	9667	333	10000

Class-specific performance

- Overall error rate: (252 + 23)/10000 = 2.75%.
- ► Error rate with default people: 252/333 = 75.7%
- Sensitivity (TPR): 1 75.7% = 24.3%
- ► Error rate within people no-default (FPR): 23/9667 = 0.24%.
- Specificity: 1 0.24% = 99.8%

A modification

- ▶ The Bayes classifier classifies a subject into class k, if the posterior probability $p_k(x)$ is the largest.
- ▶ In this case with two classes (Yes/No), i.e., K = 2. Bayes classifier classifies into *default* class if

$$Pr(default = Yes|X = x) > 0.5.$$

▶ A modification is classifies into *default* class if

$$Pr(default = Yes|X = x) > 0.2.$$

The classification result of the modification

TABLE 4.5. A confusion matrix compares the LDA predictions to the true default statuses for the 10, 000 training observations in the Default data set, using a modified threshold value that predicts default for any individuals whose posterior default probability exceeds 20 %.

		True default status		
		No	Yes	Total
Predicted	No	9432	138	9570
default status	Yes	235	195	430
	Total	9667	333	10000

Class-specific performance

- Overall error rate: (235 + 138)/10000 = 3.73%. (increased)
- ► Error rate with default people: 138/333 = 41.4% (lower after modification)
- ► Sensitivity (TPR): 1 41.4% = 58.6% (Bayes 24.3%)
- ► Error rate within people no-default (FPR): 235/9667 = 2.43%. (increased from 0.24%)
- ▶ Specificity: 1 2.43% = 97.57% (Bayes **99.8%**)
- Identification of defaulter (sensitivity) is more important to credit card company!
- This modification may be helpful to the company. A tradeoff of specificity for sensitivity.

The tradeoff

FIGURE 4.7. For the Default data set, error rates are shown as a function of the threshold value for the posterior probability that is used to perform the assignment. The black solid line displays the overall error rate. The blue dashed line represents the fraction of defaulting customers that are incorrectly classified, and the orange dotted line indicates the fraction of errors among the non-defaulting customers.

The ROC curve (Operation characteristic curve)

FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It traces out two types of error as we vary the threshold value for the posterior probability of default. The actual thresholds are not shown. The true positive rate is the sensitivity: the fraction of defaulters that are correctly identified, using a given threshold value. The false positive rate is 1-specificity: the fraction of non-defaulters that we classify incorrectly as defaulters, using that same threshold value. The ideal ROC curve hugs the top left corner, indicating a high true positive rate and a low false positive rate. The dotted line represents the no information classifier; this is what we would expect if student status and credit card balance are not associated with probability of default. Predicted class

General confusion matrix

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

		Predicted class		
True status	- or Null + or Non-null Total	- or Null True Neg. (TN) False Neg. (FN) N*	+ or Non-null False Pos. (FP) True Pos. (TP) P*	Total N P

Clarifying the terminology

TABLE 4.7. Important measures for classification and diagnostic testing, derived from quantities in Table 4.6.

Name	Definition	Synonyms
False Pos. rate True Pos. rate Pos. Pred.value Neg.Pred.value	FP/N TP/P TP/P* TN/N*	Type I error, 1 - specificity 1- Type II error, power, sensitivity, recall Precision 1- false discovery rate

▶ F_1 -score is the harmonic mean of precision and recall:

$$F_1 = \frac{2}{\operatorname{precision}^{-1} + \operatorname{recall}^{-1}} = \frac{2 \cdot \operatorname{precision} \cdot \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}}.$$