DOCSUMO DATA VERSE 2023

Visualize Train Conquer

Event Date : 17^{th} January, 2023 - 23^{rd} January, 2023

A

Data Insight Report On

ArXiv Datasets for Scholarly Articles

Author

Team Non-Linear

Nirajan Bekoju

Nishant Luitel

Submission Date

 23^{rd} January, 2023

Contents

1	\mathbf{Intr}	roduction to DataVerse 2023	4
	1.1	Abstract	4
	1.2	Problem Description	4
	1.3	Evaluation Metric	4
	1.4	Dataset Overview	5
		1.4.1 Train Dataset Overview	
		1.4.2 Test Dataset Overview	
		1.4.3 Submission Format	7
2	Dat	a Insights	8
	2.1	Text Data Analysis	8
		2.1.1 Title length based on character frequency	
		2.1.2 Title length based on word frequency	
	2.2	Word Cloud	
	2.3	N-gram Exploration	
	2.4	Named Entity Recognition	
	2.5	Part of Speech Tagging	

List of Figures

1.1	Train Data Sample	5
1.2	Train Data Category Countplot	6
1.3	Test Data Sample	7
1.4	Submission File Format	7
2.1	Title length based on number of characters (Bi-modal Distribution)	8
2.2	Box plot of title length based on character frequency	9
2.3	Title length based on word frequency (Right Skewed Normal Distribution)	10
2.4	Box plot of title length based on word frequency	11
2.5	Title Word Cloud	12
2.6	CS Word Cloud	12
2.7	Stat Word Cloud	13
2.8	Astro-ph Word Cloud	13
2.9	Math Word Cloud	14
2.10	Physics Word Cloud	14
	minority class Word Cloud	15
	Top 40 most frequent words	
	Most frequent bi-grams	
	Most frequent tri-grams	

List of Tables

1.1	Train Data Title Category Sample	6
2.1	Title length statistics based on character frequency	9
2.2	Title length statistics based on word frequency	10

Chapter 1

Introduction to DataVerse 2023

1.1 Abstract

ArXiv is a public service repository and open-source archive for scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics.

1.2 Problem Description

In this data challenge, Datasets that contains abstracts and categories columns that are collected from the arXiv portal are given to the participants. There are altogether 157 subject categories. For this competition, datasets having 23 classes are provided.

The task is to build a model to predict the category given paper abstract and title.

1.3 Evaluation Metric

The evaluation metric for this competition is Mean F1-Score. The F1 score, commonly used in information retrieval, measures accuracy using the statistics precision(p) and recall(r).

Precision is the ratio of true positives (tp) to all predicted positives (tp + fp). Recall is the ratio of true positives (tp) to all actual positives (tp + fn).

The F1 score is given by:

$$F1 = 2\frac{p \cdot r}{p+r} \quad \text{where} \quad p = \frac{tp}{tp+fp}, \quad r = \frac{tp}{tp+fn}$$

The F1 metric weights recall and precision equally, and a good retrieval algorithm will maximize both precision and recall simultaneously. Thus, moderately good performance on both will be favored over extremely good performance on one and poor performance on the other.

1.4 Dataset Overview

Participants were given three files.

1. **train.csv**: the training set

2. **test.csv**: the test set

3. sample_submission.csv : a sample submission file in the correct format

1.4.1 Train Dataset Overview

The train dataset contains total four columns as follow:

1. **id**: Unique id of the article

2. **title**: Title of the article

3. **abstract**: Abstract of the article

4. **category**: Label of the article

Figure 1.1: Train Data Sample

Altogether, there are 8,61,236 entries in the training dataset. None of id, title and abstract column are null. However, 4 row for category column are null. The train dataset is of size 995.08 MB.

Figure 1.2: Train Data Category Countplot

The name of the categories in the train data are cs, math, physics, eess, cond-mat, q-bio, stat, hep-ph, math-ph, hep-th, astro-ph, gr-qc, nlin, quant-ph, nucl-th, q-fin, nucl-ex, hep-ex, econ, hep-lat, funct-an, alg-geom, and q-alg.

From the graph, we can observe that the count of some labels like cs, math, physics, cond-mat, astro-ph are greater than 50,000 while some labels have their count range from 2,000 to 30,000 and label "funct-an", "alg-geom" and "q-alg" have 2, 1 and 1 count respectively.

So, it is clear that the given training data is highly imbalanced and so we have to take the imbalanced into consideration. Otherwise, the model will be highly biased toward the majority class. Hence, we will have to use various sampling methods to balance the data and feed to the model for increasing the reliablility of the classifier model.

Some sample title and their category are shown below:

id	id title	
2012.08209	2012.08209 Possible phase transition in plasma mirror modes	
2102.00193	2102.00193 Coupling innovation method and feasibility analysis of garbage	
1810.02767	Efficient Estimation of Smooth Functionals in Gaussian Shift Models	stat

Table 1.1: Train Data Title Category Sample

1.4.2 Test Dataset Overview

The test dataset contains total of three columns: id, title and abstract. The size of test dataset is of 52.12 MB. There are 45,328 entries in the test dataset.

Figure 1.3: Test Data Sample

1.4.3 Submission Format

For every author in the dataset, submission files should contain two columns: ID and Category. The file should contain a header and have the following format in csv file:

The file should contain a header and have the following format:

id	category
2107.01095	q-fin
1906.08519	cond-mat
2105.05523	math
1906.08731	cs
1703.08445	math
2106.13444	cond-mat
1812.05778	cs
1911.0796	cs
1808.07576	stat
1902.02865	cs

Figure 1.4: Submission File Format

Chapter 2

Data Insights

2.1 Text Data Analysis

Text data analysis were performed in the training datasets. Analysis like title length based on character frequency, title length based on word frequency were analysed.

2.1.1 Title length based on character frequency

Figure 2.1: Title length based on number of characters (Bi-modal Distribution)

From the figure above, it can be deduced that the title length based on number of characters follow bimodal distribution. Its basic statistics value can be observed in following box plot.

Figure 2.2: Box plot of title length based on character frequency

From the box plot, the average number of characters in a title in the training dataset is found to be 76.3678 ± 27.2314 . The statistics information are shown below.

mean	76.3678
standard deviation	27.2314
minimum	1
first quartile	57
median	75
third quartile	93
maximum	294

Table 2.1: Title length statistics based on character frequency

2.1.2 Title length based on word frequency

Figure 2.3: Title length based on word frequency (Right Skewed Normal Distribution)

From the above distribution plot, it can be deduced that the title length based on word frequency follow right skewed normal distribution.

From the box plot Fig : 2.4, the average number of words in a title in the training dataset is found to be 9.7681 ± 3.6153 . The statistics information are shown below.

mean	9.7681
standard deviation	3.6153
minimum	1
first quartile	7
median	9
third quartile	12
maximum	39

Table 2.2: Title length statistics based on word frequency

Figure 2.4: Box plot of title length based on word frequency

2.2 Word Cloud

A word cloud (also known as a tag cloud) is a visual representation of words. Cloud creators are used to highlight popular words and phrases based on frequency and relevance. They provide quick and simple visual insights that can lead to more in-depth analyses.

For this report, word cloud is created using the title column of the training data removing all stopwords. From the word cloud Fig 2.5, we can see the clear dominance of the majority class: cs, math, physics, cond-mat, stat, astro-ph, and quant-ph.

Figure 2.5: Title Word Cloud

Let's view the word cloud on specific topics.

Figure 2.6: CS Word Cloud

Figure 2.7: Stat Word Cloud

Figure 2.8: Astro-ph Word Cloud

Figure 2.9: Math Word Cloud

Figure 2.10: Physics Word Cloud

Inference from label based word cloud

From cs and stat word cloud, we can see lots of similar word in both labels like model, neural network, machine learning, network, data, distribution, etc. When looking on to the abstract of these labels, just by judging through the corpus, some of them were even hard for human to classify between them. Similar was the case with astro-ph and physics which can be clearly visualized in the word cloud.

Figure 2.11: minority class Word Cloud

Minority class includes labels with number of data less than 15000 in training datasets. The classes are q-bio, hep-ex, math-ph, nucl-th, nlin, q-fin, econ, nucl-ex, hep-lat, q-alg, funct-an, alg-geom

2.3 N-gram Exploration

For the exploration of the most frequency unigram, stopwords were removed from the corpus created from the whole training corpus. Then, we got the count of all unique word from the corpus in a hash map. Using the hash map, we drew this bar graph by taking the top 40 most frequent words. The result is as follow:

Figure 2.12: Top 40 most frequent words

Figure 2.13: Most frequent bi-grams

Figure 2.14: Most frequent tri-grams

2.4 Named Entity Recognition

2.5 Part of Speech Tagging