

BAYESIAN CLASSIFIER

Probabilistic Reasoning

Dealing with Uncertainty

$$x \rightarrow y$$

$$\hat{y} = \arg\max_{c_i} \{P(c_i|\mathbf{x})\}\$$

$$= \arg\max_{c_i} \left\{ \frac{P(c_i) \times P(\boldsymbol{x}|c_i)}{P(\boldsymbol{x})} \right\}$$

$$\begin{array}{c}
\mathbf{x} \to \mathbf{y} \\
\hat{y} = \arg\max\{P(c_i|\mathbf{x})\} \\
c_i
\end{array}$$

$$= \arg\max\left\{\frac{P(c_i) \times P(\mathbf{x}|c_i)}{P(\mathbf{x})}\right\}$$

prior probability

for each class

$$x \rightarrow y$$

$$\hat{y} = \arg\max_{c_i} \{P(c_i|\mathbf{x})\}\$$

$$= \arg\max_{c_i} \left\{ \frac{P(c_i) \times P(\boldsymbol{x}|c_i)}{P(\boldsymbol{x})} \right\}$$

Likelihood of x belonging to each class

$$x \rightarrow y$$

$$\hat{y} = \arg\max_{c_i} \{P(c_i|\mathbf{x})\}\$$

$$= \arg\max_{c_i} \left\{ \frac{P(c_i) \times P(\boldsymbol{x}|c_i)}{P(\boldsymbol{x})} \right\}$$

probability of x being observed

$$x \rightarrow y$$

$$\hat{y} = \arg\max_{c_i} \{P(c_i|\mathbf{x})\}\$$

$$= \arg\max_{c_i} \left\{ \frac{P(c_i) \times P(\boldsymbol{x}|c_i)}{P(\boldsymbol{x})} \right\}$$

$$\widehat{y} = \arg \max_{c_i} \{P(c_i) \times P(x|c_i)\}$$

BAYESIAN CLASSIFIERS

Records represented as tuples of d values

Training algorithm

Compute prior probabilities for each class

Classification algorithm

For each Z to be classified

- Estimate likelihood for z given each class
- Classify Z in the most probable class

ESTIMATION OF PRIOR PROBABILITIES

ESTIMATION OF LIKELIHOOD

PROBABILITIES ESTIMATION

JOINT PROBABILITIES

Data Science by Cláudia Antunes

Naive Bayes

Naïve Bayes assumption

"All variables describing the data are conditionally independent"

 V_1, \dots, V_d are independent

$$P(V_1 = v_1 \wedge \cdots \wedge V_d = v_d) = \prod_{j=1}^d P(V_j = v_j)$$

NAÏVE BAYES ALGORITHM

$$\hat{y} = \arg \max_{c_i} \{P(c_i|x)\}$$

$$\hat{y} = \arg \max_{c_i} \{P(c_i) \times P(x|c_i)\}$$

$$\hat{y} = \arg \max_{c_i} \{P(c_i) \times \prod_{j=1}^{d} P(x_j|c_i)\}$$

Naïve Bayes algorithm

Records represented as tuples of d values

Training algorithm

Compute prior probabilities for each class

Classification algorithm

For each Z to be classified

- Estimate likelihood for Z for all its d dimensions given each class
- Classify Z in the most probable class

ESTIMATION OF PRIOR PROBABILITIES

ESTIMATION OF LIKELIHOOD

$$\widehat{P}(x|c_i) = \frac{n_{x|i}}{n_i}$$

PROBABILITIES ESTIMATION

$$X_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{i}^{2})$$

$$\widehat{P}(x|c_{i}) = f_{i}(x|\mu_{i}, \sigma_{i})$$

JOINT PROBABILITIES

JOINT PROBABILITIES

$$\overrightarrow{X} \sim \mathcal{N}(\overrightarrow{\mu}, \Sigma^2)$$

$$\widehat{P}(\overrightarrow{x}|c_i) = f_i(\overrightarrow{x}|\overrightarrow{\mu}_i, \Sigma_i)$$

$$\widehat{P}(x_1 \wedge \cdots x_d | c_i) = f_i(x_1, \dots, x_d | \overrightarrow{\mu}_i, \Sigma_i)$$

$$\hat{y} = \underset{c_i}{\arg\max} \{P(c_i|x)\}$$

$$\hat{y} = \underset{c_i}{\arg\max} \{P(c_i) \times P(red|c_i) \times P(95|c_i)\}$$

$$\widehat{P}(gold) = \frac{3}{5}$$

$$\widehat{P}(red \land 95|gold) =$$

$$= \widehat{P}(red|gold) \times \widehat{P}(95|gold)$$

$$= \frac{1}{3} \times f_{gold}(95)$$

$$\widehat{P}(silver) = \frac{2}{5}$$

$$\widehat{P}(red \land 95|silver) =$$

$$=\widehat{P}(red|silver)\times\widehat{P}(95|silver)$$

$$= 0 \times f_{silver}(95)$$

= C

$$\hat{y} = \arg\max_{c_i} \{P(c_i|\mathbf{x})\}\$$

$$\widehat{y} = \underset{c_i}{arg max} \{ P(c_i) \times P(red|c_i) \times P(95|c_i) \}$$

$$\widehat{y} = \underset{\{gold, silver\}}{arg max} \left\{ P(gold) \times P(red|gold) \times P(95|gold), \\ P(silver) \times P(red|silver) \times P(95|silver) \right\}$$

$$\widehat{y} = \underset{\{gold, silver\}}{arg max} \left\{ \frac{3}{5} \times \frac{1}{3} \times P(95|gold), \frac{2}{5} \times 0 \times P(95|silver) \right\}$$

Data Science by Cláudia Antunes

Thank you!

