Bisección con $f(x) = cos(\pi x)$

Carmen Laura Martín González y David Tomás Montesdeoca Flores

11 de mayo de 2014

Definición de Bisección

- Definición de Bisección
- $oldsymbol{2}$ Definición del número π

- Definición de Bisección
- $oldsymbol{2}$ Definición del número π
- 3 Ejemplo general de bisección

- Definición de Bisección
- 2 Definición del número π
- 3 Ejemplo general de bisección
- Teorema de bisección

- Definición de Bisección
- 2 Definición del número π
- 3 Ejemplo general de bisección
- 4 Teorema de bisección
- $footnote{5}$ Algunas fórmulas que contienen el número π
 - Geometría
 - Análisis
 - Cálculo

Definición de Bisección

Según la RAE, La bisección es la acción o efecto de bisecar, es decir, dividir a la mitad y se aplica generalmente en la división de ángulos. Aunque esta definición no se aleja mucho de la deseada, la que verdaderamente nos interesa es la siguiente:

Definición aplicada

El método de bisección es un algoritmo usado en matemáticas para llevar a cabo una búsqueda de raíces. En resumen, este método encuentra una raíz de f(x)=0. Este método se realiza dividiendo el intervalo a la mitad y seleccionando el subintervalo de estos que contiene la raíz, que es aquel en el que hay un cambio de signo. (Se sabe que una raíz esta en un intervalo cerrado si la función cambia de signo en los puntos extremos). Cuantas más cifras decimales queramos obtener más divisiones tendremos que realizar.

Definición del número π

Definición

El número π es la relación existente entre el diámetro de la circunferencia con su longitud. Es un número irracional de los más importantes usados en las ciencias matemáticas, como la física, las ingenierías y las propias matemáticas.

El valor que toma esta constante es aproximadamente:

$$\pi = 3,14159265358979323846...$$

El número π se puede calcular mediante integración:

$$\int_0^1 \frac{4}{1+x^2} \, dx = 4(a \tan(1) - a \tan(0)) = \pi$$

Ejemplo general de bisección.

En la figura, se muestra gráficamente como los valores sucesivos convergen en una raíz de f(x) cuando se empiezan con un par de valores que encierran una raíz. Podemos ver que 5.5 está a la mitad entre 4 y 6, y que 5.75 a la mitad entre 5.5 y 6. Siempre se considera al siguiente valor x al punto medio del último par que encierra entre corchetes a la raíz: Estos valores encierran a la raíz cuando f(x) cambia de signo en los dos puntos.

Teorema de Bisección

Teorema

Si $[a_0,b_0],[a_1,b1],...,[a_n,b_n],...$, denotan los intervalos en el método de la bisección, entonces los límites lím $_{n\to\infty}a_n$ y lím $_{n\to\infty}b_n$ existen , son iguales y representan un cero de f. Si r=lím $_{n\to\infty}c_n$ y $c_n=(a_n+b_n)$ entonces:

$$||r-c_n|| <= 2^{-(n+1)}(b_0-a_0)$$

Geometría

• Longitud de la circunferencia.

- Longitud de la circunferencia.
- Área del círculo.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.
- Área del cono.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.
- Área del cono.
- Área de la esfera.

Análisis

• Fórmula de Leibniz.

- Fórmula de Leibniz.
- Producto de Wallis.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.
- Fórmula de Stirling.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.
- Fórmula de Stirling.
- Método de Montecarlo

Cálculo

• Área limitada por la astroide: $\frac{3}{8}\pi a^2$.

Cálculo

- Área limitada por la astroide: $\frac{3}{8}\pi a^2$.
- Área de la región comprendida por el eje X y un arco de la cicloide: $3\pi a^2$.

Bibliografía

es.wikipedia.org/wiki/Método_de_bisección#Algoritmo

 $www.juegosdelogica.com/numero_\pi.htm$

 $An a lisis Num\'erico con Aplicaciones. Gerald \Delta Wheatley. Editorial: Prentice Hall$