FONKSİYONLAR

DR. ZEYNEP BANU ÖZGER

- 1. Fonksiyonlar
- 2. Birebir Fonksiyonlar
- 3. Örten Fonksiyonlar
- 4. Bijective Fonksiyonlar
- 5. Ters Fonksiyon
- 6. Fonksiyonların Bileşkesi

FONKSIYONLAR

- A ve B boş olmayan 2 küme olmak üzere, A'dan B'ye tanımlanmış bir f fonksiyonu, B'nin her bir elemanının A'nın bir elemanına atanmasıdır.
 - f(a)=b şeklinde tanımlanır.

- Fonksiyonlar formüller ile gösterilebilir.
 - f(x)=x+1 gibi

- f; A'dan B'ye bir fonksiyon olmak üzere,
 - A'ya f fonksiyonunun tanım kümesi; domain,
 - B'ye de f'nin değer kümesi; range denir.
- f(a)=b ise; b'ye a'nın görüntüsü (image), a'ya da b'nin öngörüntüsü (preimage) denir.

Bir Fankşiyanun Tanım Ve Reğer Kümeşi Değiştirildiğinde Farklı Bir Fankşiyan Elde Edilik.

- Fonksiyonlar tanım kümesinden, değer kümesine eşleştirmedir.
 - f:D→R
 - D:domain ve x∈D
 - R:range ve $f(x) \in R$
- D'deki her bir eleman için benzersiz şekilde tanımlanmış bir f(x) elemanı vardır.
- f_1 ve f_2 2 fonksiyon olmak üzere; $f_1 + f_2$ ve f_1 f_2 de birer fonksiyondur.
 - Ör: $f_1 = x^2$ ve $f_2 = x x^2$ ise
 - $f_1 + f_2 = x^2 + x x^2$
 - $f_1 f_2 = x^2(x x^2)$

- Bir fonksiyon;
 - Formülle;
 - Doğruluk tablosuyla,
 - Grafikle veya
 - Kelimelerle gösterilebilir.

- Örneğin;
- {(-2, 3), {4, 5), (6, -5), (-2, 3)}, şeklinde tanımlı bir bağıntı için;
 - Tanım kümesi; {-2,4,6} ve değer kümesi: {3,5,-5} dir
- $f:Z \rightarrow Z$ ve f(n)=3n
 - Tanım kümesi; tamsayılar.
 - Değer kümesi; tamsayılar
- h:{1,2,3,4}→N fonksiyonu için
 - · doğruluk tablosu ile gösterim;

\boldsymbol{x}	1	2	3	4
h(x)	3	6	9	12

Grafik Gösteriminde Grafik ile gösterim Eğri Kullanılmaz

ÖRNEK

- f:{1,2,3,4,5}→R
 - f(0)=0
 - f(1)=1
 - f(2)=4
 - f(3)=9
 - f(4)=16
 - f(5)=25
 - f fonksiyonu nedir?
 - $f(x) = x^2$

Bire Bir (One to One-Injective) Fonksiyonlar

f:X→Y olmak üzere;

Tanım Kümesindeki Her Bir Değerin Değer Kümesindeki Farklı Bir Karşılığı Var İse Fonksiyon Birebir Dir.

Bire Bir (One to One) Fonksiyonlar

- Örnek;
 - Tanım ve değer kümesi tamsayılar olmak üzere
 - $f(x)=x^2$ bire bir fonksiyon mudur?
 - f(1)=1
 - f(-1)=1

Tanım Kümesindeki Farklı Değerler İçin Değer Kümesinde Aynı Değere Eşleştiğinden Birebir Değildir.

ÖRTEN (ONTO-Surjective) FONKSİYONLAR

- f: X→Y bir fonksiyon olmak üzere,
 - Y kümesindeki her bir eleman için X kümesinde en az bir eleman varsa f örten fonksiyondur.
- Niceleyiciler ile tanımlarsa;
 - $\forall y \exists x (f(x) = y)$

Örnek

Birebir? Örten?

Birebir ama Örten değil

Örten ama Birebir değil

Birebir ve örten

Birebir veya örten değil

Fonksiyon değil

BIJECTIVE FONKSIYONLAR

- f:X→Y bir fonksiyon olmak üzere, f fonksiyonu hem birebir hem de örten ise f bijective bir fonksiyondur.
 - Birebir olma şartı;
 - Tanım kümesinde ki her bir değer, değer kümesindeki tek bir değere eşlenecek.
 - Örten olma şartı;
 - Değer kümesindeki her bir değer için, tanım kümesinde bir karşılık olacak.
- Bijective ise;
 - f(x)=y ise
 - Farklı x değerleri için aynı y sonucunu üretmeyecek,
 - Her bir y değeri için bir f(x) fonksiyonu olacak

TERS (INVERSE) FONKSİYON

- f(x)=y bir fonksiyon olmak üzere f fonksiyonunun tersi;
 - f^{-1} ile gösterilir.
 - $f(x)=y \rightarrow f^{-1}(y)=x \text{ dir.}$
- Her fonksiyonun tersi bir fonksiyon değildir.
- Her bijective fonksiyonun tersi de bir fonksiyondur.

TERS (INVERSE) FONKSİYON

- Bir f fonksiyonu birebir değilse,
- Tersi bir fonksiyon olamaz.

- Bir f fonksiyonu örten değilse,
- Tersi bir fonksiyon olamaz.

- f, $\{a, b, c\} \rightarrow \{1,2,3\}$ 'e
 - f(a) = 2, f(b) = 3 ve f(c) = 1 olacak şekilde bir fonksiyon olsun.
 - f'nin tersi alınabilir mi? Eğer tersi alınabilirse tersi nedir?
- Birebir eşleme olduğu için alınabilir.
- $f^{-1}(1) = c$, $f^{-1}(2) = a$ ve $f^{-1}(3) = b$ 'dir.

FONKSİYONLARIN BİLEŞKESİ

- g: A→B ve f: B→C olmak üzere f ve g fonksiyonlarının bileşkesi;
 - f o g ile gösterilir ve
 - (f o g) (a)=f(g(a)) şeklinde tanımlanır.
- Örneğin;
 - $f(x)=3x+5 \text{ ve } g(x)=x^2-1 \text{ ise}$
 - (f o g) (x)= $f(g(x))=3*(x^2-1)+5$

FONKSİYONLARIN BİLEŞKESİ

- Fonksiyon bileşkesinin birleşim özelliği vardır;
 - fo(goh)= (fog) oh
- Fonksiyon bileşkesinin değişim özelliği yoktur.
 - fog≠goh

Fonksiyonun Tersinin Bileşkesi

- Bir fonksiyonun
 - Kendisiyle tersinin veya
 - Tersiyle kendisinin bileşkesi birim fonksiyonu verir.

