BIOINFORMATICS Structures

Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a

Contents: Structures

- What Structures Look Like?
- Structural Alignment by Iterated Dynamic Programming
 - ♦ RMS Superposition
- Scoring Structural Similarity
- Other Aspects of Structural Alignment
 - Distance Matrix based methods

Molecular Biology Information: Macromolecular Structure

- DNA/RNA/Protein
 - ♦ Almost all protein

(RNA Adapted From D Soll Web Page, Right Hand Top Protein from M Levitt web page

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

Molecular Biology Information: Protein Structure Details

- Statistics on Number of XYZ triplets
 - ♦ 200 residues/domain -> 200 CA atoms, separated by 3.8 A
 - ♦ Avg. Residue is Leu: 4 backbone atoms + 4 sidechain atoms, 150 cubic A
 □ => ~1500 xyz triplets (=8x200) per protein domain
 - ♦ 10 K known domain, ~300 folds

ATOM	1	C	ACE	0	9.401	30.166	60.595	1.00	49.88	1GKY	67
ATOM	2	0	ACE	0	10.432	30.832	60.722	1.00	50.35	1GKY	68
ATOM	3	CH3	ACE	0	8.876	29.767	59.226	1.00	50.04	1GKY	69
ATOM	4	N	SER	1	8.753	29.755	61.685	1.00	49.13	1GKY	70
ATOM	5	CA	SER	1	9.242	30.200	62.974	1.00	46.62	1GKY	71
ATOM	6	C	SER	1	10.453	29.500	63.579	1.00	41.99	1GKY	72
ATOM	7	0	SER	1	10.593	29.607	64.814	1.00	43.24	1GKY	73
ATOM	8	CB	SER	1	8.052	30.189	63.974	1.00	53.00	1GKY	74
ATOM	9	OG	SER	1	7.294	31.409	63.930	1.00	57.79	1GKY	75
ATOM	10	N	ARG	2	11.360	28.819	62.827	1.00	36.48	1GKY	76
ATOM	11	CA	ARG	2	12.548	28.316	63.532	1.00	30.20	1GKY	77
ATOM	12	C	ARG	2	13.502	29.501	63.500	1.00	25.54	1GKY	78
• • •											
ATOM	1444	CB	LYS	186	13.836	22.263	57.567	1.00	55.06	1GKY:	1510
ATOM	1445	CG	LYS	186	12.422	22.452	58.180	1.00	53.45	1GKY:	1511
ATOM	1446	CD	LYS	186	11.531	21.198	58.185	1.00	49.88	1GKY:	1512
ATOM	1447	CE	LYS	186	11.452	20.402	56.860	1.00	48.15	1GKY:	1513
ATOM	1448	NZ	LYS	186	10.735	21.104	55.811	1.00	48.41	1GKY:	1514
ATOM	1449	OXT	LYS	186	16.887	23.841	56.647	1.00	62.94	1GKY:	1515
TER	1450		LYS	186						1GKY:	1516

bioinfo.mbb.yale.edu Yale, 1999, Gerstein, Mark

Other Aspects of Structure, Besides just Comparing Atom Positions

Atom
Position,
XYZ triplets

Lines, Axes, Angles

Surfaces, Volumes

What is Protein Geometry?

- Coordinates (X, Y, Z's)
- Derivative Concepts
 - Distance, Surface Area,
 Volume, Cavity, Groove,
 Axes, Angle, &c
- Relation to
 - ♦ Function, Energies (E(x)),Þynamics (dx/dt)

Depicting
Protein
Structure:
Sperm
Whale
Myoglobin

Incredulase

J.S. Richardson and D.C. Richardson, "Some design principles: Betabellin", in D.L. Oxender and C.F. Fox (Eds.), "Protein Engineering", Alan R. Liss, 1987, p. 149-163

<u>Incredulase</u>

Structure alignment - Method

- What Structures Look Like?
- Structural Alignment by Iterated Dynamic Programming
 - ♦ RMS Superposition
- Scoring Structural Similarity
- Other Aspects of Structural Alignment
 - Distance Matrix based methods
 - ♦ Fold Library
- Relation of Sequence Similarity to Structural and Functional Similarity

- Protein Geometry
- Surface I (Calculation)
- Calculation of Volume
- Voronoi Volumes & Packing
- Standard Volumes & Radii
- Surfaces II (Relationship to Volumes)
- Other Applications of Volumes -- Motions, Docking

Sperm Whale Myoglobin

Structural Alignment of Two Globins

Hb Automatic Alignment to Build Fold Library

Elements: <u>Domain</u> definitions; <u>Aligned</u> structures, collecting together <u>Non-homologous Sequences</u>; <u>Core</u> annotation

Previous work: Remington, Matthews '80; **Taylor, Orengo** '89, '94; Artymiuk, Rice, Willett '89; Sali, Blundell, '90; Vriend, Sander '91; Russell, Barton '92; **Holm, Sander '93**; Godzik, Skolnick '94; Gibrat, Madej, Bryant '96; Falicov, F Cohen, '96; Feng, Sippl '96; G Cohen '97; Singh & Brutlag, '98

Automatically Comparing Protein Structures

- Given
 - 2 Structures (A & B),
 - 2 Basic

Comparison Operations

- 1 Given an alignment optimally SUPERIMPOSE A onto B Find Best R & T to move A onto B
- 2 Find an Alignment between A and B based on their 3D coordinates

(c) Mark

bioinfo.mbb.yale.edu

Yale,

999

Gerstein,

RMS Superposition (1)

RMS Superposition (2): <u>Distance Between</u> an Atom in 2 Structures

RMS Superposition (3): RMS Distance Between Aligned Atoms in 2 Structures

RMS Superposition (4): Rigid-Body Rotation and Translation of One Structure (B)

Methods of Solution:

springs (F ~ kx)

SVD

Kabsch

bioinfo.mbb.yale.edu

Yale,

999,

Gerstein,

Alignment (1) Make a Similarity Matrix (Like Dot Plot)

	A	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						1					1		
С			1					1		1			
K													
С			1					1		1			
R						1					1		
В	_	1											
Р												1	

Structural Alignment (1b) Make a Similarity Matrix (Generalized Similarity Matrix)

- PAM(A,V) = 0.5
 - ♦ Applies at every position
- S(aa @ i, aa @ J)
 - Specific Matrix for each pair of residues
 i in protein 1 and
 J in protein 2
 - ♦ Example is Y near N-term. matches any C-term. residue (Y at J=2)
- S(i,J)
 - Doesn't need to depend on a.a. identities at all!
 - Just need to make up a score for matching residue i in protein 1 with residue J in protein 2

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, (c) Mark

Structural Alignment (1c*) Similarity Matrix for Structural Alignment

Structural Alignment

- Similarity Matrix S(i,J) depends on the 3D coordinates of residues i and J
- ♦ Distance between CA of i and J

$$d = \sqrt{(x_i - x_J)^2 + (y_i - y_J)^2 + (z_i - z_J)^2}$$

$$0 M(i,j) = 100 / (5 + d^2)$$

Threading

♦ S(i,J) depends on the how well the amino acid at position i in protein 1 fits into the 3D structural environment at position J of protein 2

Alignment (2): Dynamic Programming, Start Computing the Sum Matrix

	А	В	С	N	Y	R	Q	С	L	С	R	P	М
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						1					1		
С			1					1		1			
K													
С			1					1		1			
R						1					1		
В		1											
P												1	

	А	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						1					1		
С			1					1		1			
K													
С			1					1		1			
R						1					2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
Р	0	0	0	0	0	0	0	0	0	0	0	1	0

Alignment (3):Dynamic Programming, Keep Going

	А	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						1					1		
С			1					1		1			
K													
С			1					1		1			
R						1					2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
Р	0	0	0	0	0	0	0	0	0	0	0	1	0

	А	В	С	N	Y	R	Q	С	L	С	R	Р	Μ
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						5	4	3	3	2	2	0	0
С	3	3	4	3	З	3	3	4	3	3	1	0	0
K	3	3	3	3	3	3	3	3	3	2	1	0	0
С	2	2	3	2	2	2	2	3	2	3	1	0	0
R	2	1	1	1	1	2	1	1	1	1	2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
P	0	0	0	0	0	0	0	0	0	0	0	1	0

Alignment (4): Dynamic Programming, Sum Matrix All Done

	А	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	1												
Y					1								
С			1					1		1			
Y					1								
N				1									
R						5	4	3	3	2	2	0	0
С	3	3	4	3	3	3	3	4	3	3	1	0	0
K	3	3	3	3	3	3	3	3	3	2	1	0	0
С	2	2	3	2	2	2	2	3	2	3	1	0	0
R	2	1	1	1	1	2	1	1	1	1	2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
Р	0	0	0	0	0	0	0	0	0	0	0	1	0

	A	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	8	7	6	6	5	4	4	3	3	2	1	0	0
Y	7	7	6	6	6	4	4	3	3	2	1	0	0
С	6	6	7	6	5	4	4	4	თ	თ	1	0	0
Y	6	6	6	5	6	4	4	3	3	2	1	0	0
N	5	5	5	6	5	4	4	3	3	2	1	0	0
R	4	4	4	4	4	5	4	3	3	2	2	0	0
С	3	3	4	3	3	3	3	4	3	3	1	0	0
K	თ	3	3	თ	3	3	3	3	3	2	1	0	0
С	2	2	3	2	2	2	2	3	2	3	1	0	0
R	2	1	1	1	1	2	1	1	1	1	2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
Р	0	0	0	0	0	0	0	0	0	0	0	1	0

(c) Mark

Yale, bioinfo.mbb.yale.edu

Alignment (5): Traceback

Find Best Score (8) and Trace Back

```
A B C N Y - R Q C L C R - P M
A Y C - Y N R - C K C R B P
```

	А	В	С	N	Y	R	Q	С	L	С	R	Р	M
А	8	7	6	6	5	4	4	3	3	2	1	0	0
Y	7	7	6	6	6	4	4	3	3	2	1	0	0
С	6	6	7	6	5	4	4	4	3	3	1	0	0
Y	6	6	6	5	6	4	4	3	3	2	1	0	0
N	5	5	5	6	5	4	4	3	3	2	1	0	0
R	4	4	4	4	4	5	4	3	3	2	2	0	0
С	3	3	4	3	თ	3	3	4	3	3	1	0	0
K	3	3	3	3	3	3	3	3	3	2	1	0	0
С	2	2	3	2	2	2	2	3	2	3	1	0	0
R	2	1	1	1	1	2	1	1	1	1	2	0	0
В	1	2	1	1	1	1	1	1	1	1	1	0	0
P	0	0	0	0	0	0	0	0	0	0	0	1	0

Yale, bioinfo.mbb.yale.edu 999, Gerstein, (c) Mark

In Structural Alignment, Not Yet Done (Step 6*)

- Use Alignment to LSQ Fit Structure B onto Structure A
 - ♦ However, movement of B will now change the Similarity Matrix
- This Violates Fundamental Premise of Dynamic **Programming**
 - ♦ Way Residue at i is aligned can now affect previously optimal alignment of residues (from 1 to i-1)

ACSQRP--LRV-SH -R SENCV A-SNKPQLVKLMTH VK **D**FCV-

SENCV

bioinfo.mbb.yale.edu Yale, 999, $\overline{}$ Gerstein, (c) Mark

Structural Alignment (7*), Iterate Until Convergence

- 1 Compute Sim. Matrix
- 2 Align via Dyn. Prog.
- 3 RMS Fit Based on Alignment
- 4 Move Structure B
- 5 Re-compute Sim. Matrix
- 6 If changed from #1, GOTO #2

Structure alignment - Scoring

- What Structures Look Like?
- Structural Alignment by Iterated Dynamic Programming
 - ♦ RMS Superposition
- Scoring Structural Similarity
- Other Aspects of Structural Alignment
 - Distance Matrix based methods
 - ♦ Fold Library
- Relation of Sequence Similarity to Structural and Functional Similarity

- Protein Geometry
- Surface I (Calculation)
- Calculation of Volume
- Voronoi Volumes & Packing
- Standard Volumes & Radii
- Surfaces II (Relationship to Volumes)
- Other Applications of Volumes -- Motions, Docking

Score S at End Just Like SW Score, but also have final RMS

S = Total Score

S(i,j) = similarity matrix score for aligning i and j

Sum is carried out over all aligned i and j

n = number of gaps (assuming no gap ext. penalty)

G = gap penalty

$$S = \sum_{i,j} S(i,j) - nG$$

bioinfo.mbb.yale.edu Yale, 999 Gerstein, (c) Mark

Some Similarities are Readily Apparent others are more Subtle

Easy: Globins

~1.5 Å

125 res., 85 res., ~3 Å

Tricky: Very Subtle: G3P-dehydro-Ig C & V genase, C-term. Domain >5 Å

Some Similarities are Readily Apparent others are more Subtle

Easy: Globins

> 125 res.,

85 res., ~3 Å

Tricky: Very Subtle: G3P-dehydro-Ig C & V genase, C-term. Domain

>5 Å

Yale, bioinfo.mbb.yale.edu

1999,

Significance Statistics

- ♦ For sequences, originally used in Blast (Karlin-Altschul). Then in FASTA, &c.
- Extrapolated Percentile Rank:
 How does a Score Rank Relative to all Other Scores?

Our Strategy: Fit to Observed Distribution

- 1) All-vs-All comparison
- 2) Graph Distribution of Scores in 2D (N dependence); 1K x 1K families -> ~1M scores; ~2K included TPs
- 3) Fit a function ρ(S) to TN distribution (TNs from scop); Integrating ρ gives P(s>S), the CDF, chance of getting a score better than threshold S randomly
- 4) Use same formalism for sequence & structure

bioinfo.mbb.yale.edu Yale, 999, Gerstein, (c) Mark

Statistics on Range of Similarities

For 2107 pairs, only 2% Outliers (with subtle similarity)

Num. Aligned

RMS

Scores from Structural Alignment Distributed Just Like Ones from Sequence Alignment (E.V.D.)

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, (c) Mark

Same Results for Sequence & Structure

3 Free Parm. fit to EVD involving: **a, b,s**. These are the only difference betw. sequence and structure.

$$Z = \frac{S - (a \ln N + b)}{S}$$

$$S = \sum_{i,j} M(i,j) - G$$

$$\mathbf{r}(z) = \exp(-z - e^{-z})$$

N, G, M also defined differently for sequence and structure.

N = number of residues matched.

G = total gap penalty.

M(i,j) = similarity matrix

(Blossum for seq. or M_{str}(i,j), struc.)

Score Significance (P-value) derived from Extreme Value Distribution (just like BLAST, FASTA)

$$F(s) = E.V.D$$
 of scores
 $F(s) = exp(-Z(s) - exp(-Z(s)))$

Z(s) = As + In(N) + Bs = Score from random alignmentN length of sequence matchedA & B are fit parameters

P(s>S) = CDF = integral[F(s)]

P(s>S) = 1 - exp(-exp(-Z(s)))

Given Score S (1%), P (s > S) is the chance that a given random score **s** is greater than the threshold

i.e. P-value gives chance score would occur randomly

Yale, bioinfo.mbb.yale.edu 999, Gerstein, (c) Mark

RMS is a similarity Score

- Also, RMS doesn't work instead of structural alignment (no EVD fit)
 - RMS penalizes worst fitting atoms, easily skewed

Structure alignment - Other methods

- What Structures Look Like?
- Structural Alignment by Iterated Dynamic Programming
 - ♦ RMS Superposition
- Scoring Structural Similarity
- Other Aspects of Structural Alignment
 - ♦ Distance Matrix based methods
 - ♦ Fold Library
- Relation of Sequence Similarity to Structural and Functional Similarity

- Protein Geometry
- Surface I (Calculation)
- Calculation of Volume
- Voronoi Volumes & Packing
- Standard Volumes & Radii
- Surfaces II (Relationship to Volumes)
- Other Applications of Volumes -- Motions, Docking

Yale, bioinfo.mbb.yale.edu 1999, Gerstein, Mark (C)

Refine Method

 Multiple Aligment by aligning to central structure

More Complex Dynamic Programming

AB-C-DEF abc-de-f

n² vs. n⁴

- · Find "best" aligned regions
 - "Core-finding" to remove outliers
 - "Noisy" suboptimal paths

Significance Ignoring Crucial Features in Structural Similarity

Yale, bioinfo.mbb.ya

bioinfo.mbb.yale.edu Yale, 1999, Gerstein, (c) Mark

Other Methods of Structural Alignment

- RMS fitting used universally, but other alignment methods
- Comparison of Distance Matrices
 - Holm & Sander, DALI
 - ♦ Taylor & Orengo

Cohen (Soap)

Sippl

Godzik (Lattice)

