Zagazig University

Faculty of Engineering

Mechatronics Engineering

400 Level, 2nd Term 2016/2017

CSE 411 Artificial Intelligence

(Double-Sided)

(Duration: 60 minutes)

Midterm Examination

April 26th, 2017 1:00pm – 2:00pm

4 pages, 3 questions, 30 points

Question 1: MCQ's

[10 points]

Select from among the given choices <u>the one</u> that best answers each of the following questions, and write in your answer sheet that choice beside the question number. [1 point each]

- 1. A neural network is an example of an AI agent that:
 - (a) Thinks rationally
 - (b) Acts rationally
 - (c) Thinks humanly
 - (d) Acts humanly
 - (e) All of the above
- 2. For an AI agent to pass the Turing test, it should be able to:
 - (a) Navigate a maze
 - (b) Communicate successfully in English
 - (c) Manipulate objects
 - (d) All of the above
 - (e) None of the above
- 3. The environment of an AI agent that controls the air traffic over an airport is:
 - (a) Partially observable, dynamic, stochastic, episodic, continuous, multi-agent
 - (b) Partially observable, dynamic, stochastic, sequential, continuous, multi-agent
 - (c) Partially observable, dynamic, stochastic, episodic, continuous, single-agent
 - (d) Fully observable, static, deterministic, sequential, discrete, single-agent
 - (e) None of the above
- 4. An agent that has the ability to take exploratory actions is:
 - (a) Goal-based agent
 - (b) Utility-based agent
 - (c) Learning agent
 - (d) Model-based reflex agent
 - (e) None of the above
- 5. Given a search problem in which two robots try to find each other in an $M \times N$ maze, which of the following is a minimal state representation for such problem?
 - (a) The distance between the two robots
 - (b) A list of all the moves taken by each robot
 - (c) A list of all the positions visited by each robot
 - (d) The position of each robot in the maze
 - (e) None of the above
- 6. What is the size of the state-space of the two-robot-maze problem (from question 6)?
 - (a) $(M*N)^2$
 - (b) M*N
 - (c) $2^{(M*N)}$
 - (d) 2*(M*N)
 - (e) $2^{(M+N)}$

- 7. Let h_1 be an admissible heuristic, and h_2 be an inadmissible heuristic. Which of the following heuristic functions is necessarily admissible?
 - (a) $max(h_1, h_2)$
 - (b) $min(h_1, h_2)$
 - (c) $(h_1+h_2)/2$
 - (d) $\sqrt{h_1^2 + h_2^2}$
 - (e) None of the above
- 8. Which of the following conditions must be satisfied in order for a node n to be expanded during an A^* graph search that uses a consistent heuristic h and finds a goal at node n^* ?
 - (a) $g(n) < g(n^*)$
 - (b) $g(n)+h(n) < g(n^*)$
 - (c) $h(n) < g(n^*)$
 - (d) Both (a) and (b)
 - (e) Both (b) and (c)
- 9. Which of the following statements about α - β pruning is **true**?
 - (a) It is always faster than minimax
 - (b) It always consumes less memory than minimax
 - (c) It always returns the same value as minimax for all nodes of the tree
 - (d) All the above
 - (e) None of the above
- 10. Consider an adversarial game in which each state s has a minimax value v(s). Assume that MAX plays according to the optimal minimax policy π , but the opponent (MIN) plays according to an unknown, possibly sub-optimal policy π' . Which of the following statements is **false**?
 - (a) The score at any state s under MAX's control could be greater than v(s).
 - (b) The score at any state s under opponent's control could be less than v(s).
 - (c) Even if π' were known to MAX, MAX should play according to π .
 - (d) All of the above
 - (e) None of the above

Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a **graph search** algorithm. Assume the children of a node are visited in alphabetical order. Each tree shows only the nodes that have been **expanded**. Numbers next to nodes indicate the relevant "score" used by the algorithm's priority queue. The start state is A, and the goal state is G.

For each tree, indicate:

- 1. **[5 points]** Whether it was generated with depth-first search, breadth-first search, uniform-cost search, or A* search. Algorithms may appear more than once.
- 2. [2 points] If the algorithm uses a heuristic function, say whether we used H1 or H2 where:

H1 =
$$\{h(A)=3, h(B)=6, h(C)=4, h(D)=3\}$$

H2 = $\{h(A)=3, h(B)=3, h(C)=0, h(D)=1\}$

3. **5 points** For each algorithms, say whether the result was an optimal path (assuming we want to minimize the sum of step-costs). If the result was not optimal, state why the algorithm found a suboptimal path.

Consider the following minimax tree:

- 1. [2 points] Redraw the tree in your answer sheet, and annotate each node with its minimax value (which could be an expression in terms of x).
- 2. [2 points] For what values of x is MAX guaranteed to choose Action 1? Justify your answer.
- 3. **2 point** For what values of x is the tree guaranteed to be alpha-beta-pruned at **Section 1**? Justify your answer.
- 4. **2 point** For what values of x is the tree guaranteed to be alpha-beta-pruned at **Section 2**? Justify your answer.

** End of Exam **