the lat

3 term

University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING

Final Examination, December 1998

APM 384F Year III, Program III — 5a, 5bm, 5env, 5p

Examiner: Prof. R.A. Ross

Duration: $2\frac{1}{2}$ hours

Exam Type C All questions have EQUAL value

1. Solve $\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ for $u(r, \theta)$ where $0 < a \le r \le b$, $0 \le \theta \le \frac{\pi}{2}$, with the boundary conditions

$$\frac{\partial u}{\partial \theta}(r,0) = 0 , u\left(r,\frac{\pi}{2}\right) = 0$$

$$u(a,\theta) = 0 , u(b,\theta) = f(\theta) .$$

2. Solve $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} + b \frac{\partial u}{\partial t} = 0$ for u(x, t), where $0 \le x \le \ell$, $t \ge 0$, with the boundary conditions

$$u(0,t)=0$$
, $\frac{\partial u}{\partial x}(\ell,t)=0$,

and the initial conditions

$$u(x,0) = f(x)$$
, $\frac{\partial u}{\partial t}(x,0) = 0$.

The constants b and c satisfy the condition

$$b < \frac{2\pi c}{\ell}$$
 $b < \frac{\pi c}{\ell}$

3. The temperature u(x,y,t) in the rectangular plate $0 \le x \le \ell$, $0 \le y \le h$, satisfies the equation $\frac{\partial u}{\partial t} - k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 1$. If the initial temperature of the plate is u(x,y,0) = 0 and the boundary conditions on the edges of the plate are

$$u(0, y, t) = 0$$
 , $u(\ell, y, t) = 0$
 $\frac{\partial u}{\partial y}(x, 0, t) = x$, $\frac{\partial u}{\partial y}(x, h, t) = 0$,

find u(x, y, t).

Committee of the Commit

Page 1 of 2

- 4. Solve $\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial^2 u}{\partial z^2} = 0$ for u(r, z) in the semi-infinite cylinder, $0 \le z < \infty$, $0 \le r \le a$, where $\frac{\partial u}{\partial z} = f(r)$ on z = 0, u = 0 on r = a and $\lim_{z \to \infty} u(r, z) = 0$.
- 5. Solve $\frac{\partial^2 u}{\partial t^2} c^2 \frac{\partial^2 u}{\partial x^2} = 0$, $0 \le x < \infty$, $t \ge 0$, for u(x, t), where u(0, t) = 0, and the initial conditions are $u(x, 0) = 0 , \frac{\partial u}{\partial t}(x, 0) = \emptyset \Leftrightarrow . S(x \alpha) , \alpha > 0.$