. Текстовый разбор домашки 1

DZ 17 1

Задача № 1 (2473)

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10000 до 10000 включительно. Определите и запишите в ответе сначала количество пар элементов последовательности, в которых хотя бы одно из чисел делится на 7 и хотя бы одно из чисел оканчивается на 3, затем минимальную из сумм элементов среди таких пар.

В данной задаче под парой подразумевается два подряд идущих элемента последовательности. Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952_456241310?t=0h0m0s

Решение

Сохраним файл на рабочий стол под именем 17_1.txt. Пишем программу: сначала считаем числа из файла в список а. Затем создадим пустой список ans, в который будем добавлять суммы пар элементов последовательности, соответствующих условию задачи.

Перебор пар

Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x,y in zip(a,a[1:]):
```

Проверка делимости

Проверяем, делится ли хотя бы одно из чисел на 7, используя условие x % 7 == 0 или у % 7 == 0.

Проверка окончания на 3

Проверяем, заканчиваются ли числа на 3, с учётом того, что они могут быть отрицательными. Для этого проверяем, выполняется ли условие abs(x) % 10 == 3 или abs(y) % 10 == 3, то есть хотя бы одно из чисел заканчивается на 3.

Если оба условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y.

```
if (x\%7==0 \text{ or } y\%7==0) and (abs(x)\%10==3 \text{ or abs}(y)\%10==3):
ans.append(x+y)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих пар, а также минимальную сумму элементов в этом списке, используя функцию min(ans).

```
a = [int(x) for x in open('17_1.txt')]
ans = []
for x,y in zip(a,a[1:]):
    if (x%7==0 or y%7==0) and (abs(x)%10==3 or abs(y)%10==3):
        ans.append(x+y)
print(len(ans),min(ans))
```

Ответ:

333 -18076

Telegram: @fast ege

DZ 17 2

Задача №2 (17680)

В файле содержится последовательность целых чисел. Её элементы могут принимать целые значения от -100~000 до 100~000 включительно. Определите количество пар последовательности, в которых элементы не равны, а абсолютное значение их разности делится на минимальный положительный элемент последовательности, кратный 41. Гарантируется, что такой элемент в последовательности есть. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Файлы к заданию:17.txt

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h2m40s

Решение

Сохраним файл на рабочий стол под именем 17 2.txt и считаем числа из файла в список а.

Поиск минимального положительного элемента последовательности, кратного 41

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти переменную m - минимальный положительный элемент из списка a, кратный 41, с помощью функции min().

```
m = min(x for x in a if x>0 and x%41==0)
```

Перебор пар

Создадим пустой список ans, в который будем добавлять суммы пар элементов последовательности, соответствующих условию задачи. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x,y in zip(a,a[1:]):
```

Проверка неравенства элементов и делимости на т

Проверяем, что числа в паре не равны, то есть условие x = y, и что абсолютное значение их разности, то есть abs(x - y), делится на минимальный положительный элемент m, то есть верно условие abs(x - y) % m == 0. Если оба условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y.

```
f x!=y and abs(x-y)%m==0:
    ans.append(x+y)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих пар, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_2.txt')]

m = min(x for x in a if x>0 and x%41==0)

ans = []

for x,y in zip(a,a[1:]):
   if x!=y and abs(x-y)%m==0:
        ans.append(x+y)
```

```
print(len(ans), max(ans))
Ответ:
10 92404
```

Telegram: @fast ege

DZ_17_3

Задача № 3 (19119)

В файле содержится последовательность натуральных чисел.

Её элементы могут принимать целые значения от 1 до 100 000 включительно. Определите количество пар последовательности, в которых остаток от деления обоих элементов на 43 равен минимальному элементу последовательности. В ответе запишите количество найденных пар, затем максимальную из абсолютных значений разностей элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952_456241310?t=0h5m15s

Решение

Сохраним файл на рабочий стол под именем 17 3.txt. и считаем числа из файла в список а.

Поиск минимального элемента последовательности:

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти переменную m с помощью функции min() - минимальный элемент из списка а.

```
m = min(a)
```

Перебор пар

Создадим пустой список ans, в который будем добавлять разности пар элементов последовательности, соответствующих условию задачи. Далее перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x, y in zip(a, a[1:]):
```

Проверка делимости на т

Проверяем, что остаток от деления обоих чисел на 43 равен минимальному элементу m. То есть, если выполняется условие: x % 43 == m и y % 43 == m, то эта пара подходит. Если пара подходит, добавляем в список ans модуль разности чисел, то есть abs(x - y).

```
if x%43==m and y%43==m:
ans.append(abs(x-y))
```

Вывод ответа

Выводим длину списка ans, то есть количество разностей подходящих пар, используя len(ans), и также максимальную разность элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_3.txt')]

m = min(a)

ans = []

for x,y in zip(a,a[1:]):
    if x%43==m and y%43==m:
        ans.append(abs(x-y))

print(len(ans), max(ans))
```

Ответ: 2 20726

Telegram: @fast ege

DZ_17_4

Задача № 4 (8504)

В файле содержится последовательность натуральных чисел. Элементы последовательности могут принимать целые значения от 1 до 100 000 включительно. Определите количество пар последовательности, в которых хотя бы один из элементов является трёхзначным числом, а сумма элементов пары кратна минимальному трёхзначному элементу последовательности, оканчивающемуся на 5. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h7m25s

Решение

Сохраним файл на рабочий стол под именем 17 4.txt и считаем числа из файла в список а.

Поиск минимального трехзначного элемента последовательности, оканчивающегося на 5:

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти переменную m - минимальный трехзначный элемент из списка a, оканчивающийся на 5.

```
m = min(x \text{ for } x \text{ in a if } 100 \le x \le 999 \text{ and } x \le 10 = 5)
```

Перебор пар

Создадим пустой список ans, в который будем добавлять суммы пар элементов последовательности, соответствующих условию задачи. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x,y in zip(a,a[1:]):
```

Проверка трехначности элементов и делимости суммы на т

Проверяем, что хотя бы одно из чисел пары является трехзначным, а сумма пары чисел (x + y) кратна m. Если оба условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y.

```
if (100 <= x <= 999 \text{ or } 100 <= y <= 999) and (x+y) %m == 0:
ans.append(x+y)
```

Вывод ответа

Наконец выводим длину списка ans, то есть количество сумм подходящих пар, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_4.txt')]

m = min(x for x in a if 100<=x<=999 and x%10==5)

ans = []

for x,y in zip(a,a[1:]):
   if (100<=x<=999 or 100<=y<=999) and (x+y)%m==0:</pre>
```

```
ans.append(x+y)
print(len(ans), max(ans))
```

Ответ: 13 9500

Telegram: @fast ege

DZ 17 5

Задача №5 (17558)

В файле содержится последовательность целых чисел. Её элементы могут принимать целые значения от –100 000 до 100 000 включительно. Определите количество пар последовательности, в которых хотя бы одно число отрицательно, а сумма чисел пары меньше количества чисел последовательности, кратных 32. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h9m55s

Решение

Сохраним файл на рабочий стол под именем 17_5.txt. и считаем числа из файла в список а.

Поиск количества элементов из списка а, кратных 32:

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти k - количество элементов из списка a, кратных 32. Используем функцию len и перебираем числа x из списка a.

```
k = len([x for x in a if x%32==0])
```

Перебор пар

Создадим пустой список ans, в который будем добавлять суммы пар элементов последовательности, соответствующих условию задачи. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x, y in zip(a, a[1:]):
```

Проверка отрицательности элементов и сравнение суммы пары чисел с k

Проверяем, что хотя бы одно из чисел пары является отрицательным, а сумма пары чисел (x + y) меньше, чем ранее посчитанное число k. Если оба условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y.

```
if (x<0 or y<0) and x+y<k:
    ans.append(x+y)</pre>
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих пар, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_5.txt')]
k = len([x for x in a if x%32==0])
ans = []
for x,y in zip(a,a[1:]):
   if (x<0 or y<0) and x+y<k:</pre>
```

```
ans.append(x+y)
print(len(ans), max(ans))
```

Ответ: 4969 299

Telegram: @fast_ege

DZ 17 6

Задание №6 (12450)

В файле содержится последовательность натуральных чисел. Элементы последовательности могут принимать целые значения от 1 до 100 000 включительно. Определите количество троек элементов последовательности, в которых сумма остатков от деления элементов на 113 равна минимальному элементу последовательности, кратному 52. В ответе запишите количество найденных троек, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h11m55s

Решение

Сохраним файл на рабочий стол под именем 17 6.txt и считаем числа из файла в список а.

Поиск минимального трехзначного элемента последовательности, кратного 52

Прежде чем перебирать тройки, для того чтобы ответить на вопрос задачи, надо найти переменную m - минимальный элемент из списка a, кратный 52.

```
m = min(x for x in a if x%52==0)
```

Перебор троек

Создадим пустой список ans, в который будем добавлять суммы троек элементов последовательности, соответствующих условию задачи. Перебираем соседние тройки чисел с помощью функции zip, со сдвигом на 1, и на 2, то есть тройки чисел (x, y, z).

```
for x,y,z in zip(a,a[1:],a[2:]):
```

Проверка суммы остатков от деления

Проверяем, что бы сумма остатков от деления, то есть x%113 плюс y%113 плюс z%113 было равна m. Если условие выполняется, то в список ans мы добавляем сумму этих чисел, то есть x+y+z.

```
if x%113+y%113+z%113==m:
ans.append(x+y+z)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих троек, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_6.txt')]

m = min(x for x in a if x%52==0)

ans = []

for x,y,z in zip(a,a[1:],a[2:]):
    if x%113+y%113+z%113==m:
        ans.append(x+y+z)
```

print(len(ans), max(ans))

Ответ: 7 77457

Telegram: @fast ege

DZ_17_7

Задание № 7(6049)

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –100 000 до 100 000 включительно. Определите количество пар последовательности, в которых только один из элементов оканчивается на 9, а сумма квадратов элементов пары меньше квадрата максимального элемента последовательности, оканчивающегося на 9. В ответе запишите количество найденных пар, затем минимальную из сумм квадратов элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952_456241310?t=0h14m00s

Решение

Сохраним файл на рабочий стол под именем 17 7.txt и считаем числа из файла в список а.

Поиск максимального элемента последовательности, оканчивающегося на 9

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти m - максимальный элемент из списка a, оканчивающийся на 9. Используем функцию max и перебираем числа x из списка a, проверяя, что модуль (числа могут быть отрицательными) числа x оканчивается на 9, то есть остаток от деления модуля x на 10 равен 9.

```
m = max(x \text{ for } x \text{ in a if abs}(x) %10==9)
```

Перебор пар

Затем создадим пустой список ans, в который будем добавлять суммы пар квадратов элементов последовательности, соответствующие условию задачи.. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x, y in zip(a, a[1:]):
```

Проверка оканчиваемости элементов на 9 и делимости суммы квадратов элементов на m Проверяем, что только одно из чисел пары оканчивается на 9: надо рассматривать обязательно в сумме, abs(x)%10 равно 9, плюс второе условие abs(y)%10 равно 9 — и, значит, сумма этих двух условий равна 1, а сумма квадратов пары чисел $(x^2 + y^2)$ меньше, чем квадрат ранее посчитанного число m. Если оба условия выполняются, то в список ans мы добавляем сумму квадратов этих чисел, то есть $x^2 + y^2$.

```
if (abs(x) %10==9) + (abs(y) %10==9) ==1 and x**2+y**2 < m**2:
ans.append(x**2+y**2)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм квадратов подходящих пар, используя len(ans), и также минимальную сумму квадратов элементов в списке ans, используя min(ans).Запускаем программу и получаем результат.

```
a = [int(x) for x in open('17_7.txt')]
```

```
m = max(x for x in a if abs(x)%10==9)

ans = []

for x,y in zip(a,a[1:]):
    if (abs(x)%10==9)+(abs(y)%10==9)==1 and x**2+y**2<m**2:
        ans.append(x**2+y**2)

print(len(ans),min(ans))</pre>
```

Ответ:

1428 356530

Telegram: @fast_ege

DZ_17_8

Задание №8 (5292)

Файлы к заданию: 17.txt

В файле содержится последовательность натуральных чисел. Элементы последовательности могут принимать целые значения от 1 до 100 000 включительно. Определите количество пар последовательности, в которых только для одного числа выполняется условие: остаток от деления числа на 2023 не меньше минимального элемента последовательности, кратного 123. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h16m30s

Решение

Сохраним файл на рабочий стол под именем 17 8.txt и считаем числа из файла в список а.

Поиск минимального элемента последовательности, кратного 123

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти m - минимальный элемент из списка a, кратный 123. Используем функцию min и перебираем числа x из списка a, проверяя, что остаток от деления числа x на 123 равен 0.

```
m = min(x for x in a if x%123==0)
```

Перебор пар

Создадим пустой список ans, в который будем добавлять суммы пар элементов последовательности, соответствующих условию задачи. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x,y in zip(a,a[1:]):
```

Проверка величины значения остатка от деления элемента пары

Проверяем, что только для одного из чисел пары выполняется условие: остаток от деления числа на 2023 не меньше m, (x%2023>=m) или (y%2023>=m) и, значит, сумма этих двух условий равна 1. Если условие выполняется, то в список ans мы добавляем сумму этих чисел, то есть x + y.

```
if (x%2023>=m) + (y%2023>=m) == 1:
ans.append(x+y)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих пар, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

```
a = [int(x) for x in open('17_8.txt')]
```

```
m = min(x for x in a if x%123==0)
ans = []
for x,y in zip(a,a[1:]):
   if (x%2023>=m) + (y%2023>=m) == 1:
      ans.append(x+y)
print(len(ans), max(ans))
```

Ответ:

4372 176581

Telegram: @fast ege

DZ 17 9

Задание №9(10100)

В файле содержится последовательность натуральных чисел, каждое из которых не превышает 100 000. Определите количество троек элементов последовательности, в которых ровно два из трёх элементов являются трёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 13.

Гарантируется, что в последовательности есть хотя бы одно число, оканчивающееся на 13. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности. Файлы к заданию: 17.txt

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241310?t=0h18m50s

Решение

Сохраним файл на рабочий стол под именем 17 9.txt и считаем числа из файла в список а.

Поиск максимального элемента последовательности, оканчивающегося на 13

Прежде чем перебирать тройки, для того чтобы ответить на вопрос задачи, надо найти m - максимальный элемент из списка a, оканчивающийся на 13. Используем функцию max и перебираем числа x из списка a, проверяя, что число x оканчивается на 13, остаток от деления числа x на 100 равен 13. Числа натуральные, поэтому модуль можно не брать.

```
m = max(x for x in a if x%100==13)
```

Перебор троек

Создадим пустой список ans, в который будем добавлять суммы троек элементов последовательности, соответствующих условию задачи. Далее перебираем соседние тройки чисел с помощью функции zip, со сдвигом на 1, и на 2, то есть тройки чисел (x, y, z).

```
for x,y,z in zip(a,a[1:],a[2:]):
```

Проверка трехзначности элементов и величины суммы чисел тройки

Проверяем, что ровно два из элементов x, y, z – трехзначные, то есть сумма трех условий равна 2, ровно в двух условиях y нас истина - (100 <= x <= 999) + (100 <= y <= 999) + (100 <= z <= 999) == 2, и при этом сумма трех чисел меньше либо равна m - <math>(x+y+z <= m).

Если эти два условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y + z.

```
if (100 <= x <= 999) + (100 <= y <= 999) + (100 <= z <= 999) == 2 and x + y + z <= m:
```

```
ans.append(x+y+z)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих троек, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

Запускаем программу и получаем результат.

```
a = [int(x) for x in open('17_9.txt')]

m = max(x for x in a if x%100==13)

ans = []

for x,y,z in zip(a,a[1:],a[2:]):
   if (100<=x<=999)+(100<=y<=999)+(100<=z<=999)==2 and x+y+z<=m:
        ans.append(x+y+z)

print(len(ans),max(ans))</pre>
```

Ответ:

959 97471

Telegram: @fast ege

DZ 17 10

Задание №10(9786)

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые — значения

от -100 000 до 100 000 включительно. Определите количество троек элементов последовательности, в которых не более двух из трёх

элементов являются четырёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 25. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек.

В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

Файлы к заданию: <u>17.txt</u>

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952_456241310?t=0h21m25s

Решение

Сохраним файл на рабочий стол под именем 17 10.txt и считаем числа из файла в список а.

Поиск максимального элемента последовательности, оканчивающегося на 25

Прежде чем перебирать тройки, для того чтобы ответить на вопрос задачи, надо найти m - максимальный элемент из списка a, оканчивающийся на 25. Используем функцию тах и перебираем числа x из списка a, проверяя, что модуль (числа могут быть отрицательными) числа x оканчивается на 25, остаток от деления модуля числа x на 100, равен 25.

```
m = max(x for x in a if abs(x)%100==25)
```

Перебор троек

Создадим пустой список ans, в который будем добавлять суммы троек элементов последовательности, соответствующих условию задачи. Далее перебираем соседние тройки чисел с помощью функции zip, со сдвигом на 1, и на 2, то есть тройки чисел (x, y, z).

```
for x,y,z in zip(a,a[1:],a[2:]):
```

Проверка количества знаков элементов тройки и величины суммы чисел тройки

Проверяем, что модули не более чем двух из элементов x, y, z – четырехзначные, то есть сумма трех условий меньше или равна 2, меньше или ровно в двух условиях y нас истина - (1000 <= abs(x) <= 9999) + (1000 <= abs(y) <= 9999) + (1000 <= abs(z) <= 9999) <= 2, и при этом сумма трех чисел меньше либо равна m - <math>(x+y+z <= m).

Если эти два условия выполняются, то в список ans мы добавляем сумму этих чисел, то есть x + y + z.

```
if (1000 \le abs(x) \le 9999) + (1000 \le abs(y) \le 9999) + (1000 \le abs(z) \le 9999) \le 2 and (x+y+z) \le abs(x+y+z)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих троек, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

Запускаем программу и получаем результат.

```
a = [int(x) for x in open('17_10.txt')]

m = max(x for x in a if abs(x)%100==25)

ans = []

for x,y,z in zip(a,a[1:],a[2:]):
    if (1000<=abs(x)<=9999)+(1000<=abs(y)<=9999)+(1000<=abs(z)<=9999)<=2 and \
        x+y+z<=m:
        ans.append(x+y+z)

print(len(ans),max(ans))</pre>
```

Ответ:

6315 84523

Telegram: @fast ege

DZ 17_11

Задание №11(14255)

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -100 000 до 100 000 включительно. Определите количество пар последовательности, в которых ровно один из элементов оканчивается на 11, а сумма элементов пары не меньше среднего арифметического всех нечётных чисел последовательности. В ответе запишите количество найденных пар чисел, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности. Файлы к заданию: 17.txt

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952_456241310?t=0h24m15s

Решение

Сохраним файл на рабочий стол под именем $17_11.txt$ и считаем числа из файла в список а.

Поиск среднего арифметического всех нечетных чисел последовательности

Прежде чем перебирать пары, для того чтобы ответить на вопрос задачи, надо найти среднее арифметическое всех нечётных чисел последовательности. Сделаем список a1, в котором будут все нечетные числа из списка a. Посчитаем avg — среднее арифметическое всех нечётных чисел последовательности как частное от суммы всех элементов списка a1 (sum (a1)) и количества элементов в списке a1 (len(a1)).

```
a1 = [x \text{ for } x \text{ in } a \text{ if } x\%2!=0]
```

```
avg = sum(a1)/len(a1)
```

Перебор пар

Создадим пустой список ans, в который будем добавлять суммы элементов последовательности, соответствующих условию задачи. Перебираем соседние пары чисел с помощью функции zip, со сдвигом на 1, то есть пары чисел (x, y).

```
for x,y in zip(a,a[1:]):
```

Проверка оканчиваемости элемента пары на 11 и величины значения суммы элементов пары

Проверяем, что ровно один из элемент из пары оканчивается на 11, остаток от деления модуля одного из чисел (у нас в списке есть отрицательные числа) на 100, равен 11, то есть abs(x)%100==11 или abs(y)%100==11 и, значит, сумма этих двух условий равна 1. Так же одновременно сумма чисел пары, x+y должна быть не меньше среднего арифметического всех нечетных чисел последовательности, найденного ранее. Если условие выполняется, то в список ans мы добавляем сумму этих чисел, то есть x+y.

```
if (abs(x) %100==11) + (abs(y) %100==11) ==1 and x+y>=avg:
ans.append(x+y)
```

Вывод ответа

Выводим длину списка ans, то есть количество сумм подходящих пар, используя len(ans), и также максимальную сумму элементов в списке ans, используя max(ans).

Запускаем программу и получаем результат.

```
a = [int(x) for x in open('17_11.txt')]

al = [x for x in a if x%2!=0]
avg = sum(al)/len(al)

ans = []

for x,y in zip(a,a[1:]):
    if (abs(x)%100==11)+(abs(y)%100==11)==1 and x+y>=avg:
        ans.append(x+y)
print(len(ans), max(ans))
```

Ответ: 56 101348

Telegram: @fast ege