Curved Yang-Mills gauge theories

based on my preprint arXiv:2210.02924

Simon-Raphael Fischer

National Center for Theoretical Sciences

30 December 2022

Table of contents

- Infinitesimal curved Yang-Mills-Higgs gauge theories
 - Motivation and short introduction
- Integration: Ansatz

Infinitesimal curved Yang-Mills-Higgs gauge theories

- Principal bundles based on Lie group bundle actions
- Connections as parallel transport
- Connection
 - Basic notions
 - as horizontal distribution
 - ... as connection 1-form
- Curvature
- Conclusion

Motivation and short introduction

Infinitesimal gauge theory

Motivation and short introduction

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E & E -connections
Canonical flat connection ∇^0 on $M \times \mathfrak{q}$	General connection ∇ on E

Infinitesimal curved Yang-Mills-Higgs gauge theories

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra \mathfrak{g} as $M \times \mathfrak{g}$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \rightsquigarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

	Classical	Curved
Infinitesimal	Lie algebra ${\mathfrak g}$	0-
Integrated	Lie group G	LGB¹ 𝒯

 $G \longrightarrow \mathscr{G}$

Μ

¹LGB = Lie group bundle

Definition (LGB actions, simplified)

$$\begin{array}{c} \mathscr{G} \\ \downarrow \\ \mathscr{P} \stackrel{\pi}{\rightarrow} M \end{array}$$

 $\mathscr{P} \stackrel{\pi}{\to} M$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_M \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathscr{P}$ and $g, h \in \mathscr{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathscr{G}_{\pi(p)}$.

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

- Either by $M = \{*\}.$
- Or by $\mathscr{G} \cong M \times G$, then also $\mathscr{P} * \mathscr{G} \cong \mathscr{P} \times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

Infinitesimal curved Yang-Mills-Higgs gauge theories Principal bundles based on Lie group bundle actions

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- Or by $\mathscr{G} \cong M \times G$, then also $\mathscr{P} * \mathscr{G} \cong \mathscr{P} \times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

⇒ Think of the "classical" theory as coming from a trivial LGB

Infinitesimal curved Yang-Mills-Higgs gauge theories Principal bundles based on Lie group bundle actions

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- Or by $\mathscr{G} \cong M \times G$, then also $\mathscr{P} * \mathscr{G} \cong \mathscr{P} \times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

⇒ Think of the "classical" theory as coming from a trivial LGB

Definition (Principal bundle)

Still a fibre bundle

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi}$$
 M

but with G-action

$$egin{array}{ccc} \mathscr{P} & \mathscr{F} & \mathcal{F} \\ \mathscr{P} & \mathscr{G} & \end{array}$$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

Infinitesimal curved Yang-Mills-Higgs gauge theories

But:

$$r_g: \mathscr{P}_X \to \mathscr{P}_X$$

 $D_p r_g$ only defined on vertical structure

Connection on \mathscr{P} : Idea

Infinitesimal curved Yang-Mills-Higgs gauge theories

But:

$$r_{\mathsf{g}}:\mathscr{P}_{\mathsf{X}}\to\mathscr{P}_{\mathsf{X}}$$

 $D_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

Infinitesimal curved Yang-Mills-Higgs gauge theories

Use
$$\sigma \in \Gamma(\mathscr{G}) : r_{\sigma}(p) \coloneqq p \cdot \sigma_{\pi(p)}$$

Infinitesimal curved Yang-Mills-Higgs gauge theories

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Infinitesimal curved Yang-Mills-Higgs gauge theories

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT_{\alpha}^{\mathscr{P}}$ in \mathscr{P} :

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p\cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p)\cdot g$$

where $\alpha: I \to M$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p \cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p) \cdot \mathsf{PT}^{\mathscr{G}}_{\alpha}(g)$$

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p \cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p) \cdot \mathsf{PT}^{\mathscr{G}}_{\alpha}(g)$$

 \Rightarrow Introduce connection on \mathscr{G}

Classical situation

Remarks (Lie group G situation with Lie algebra \mathfrak{g})

In the case of a right *G*-action on \mathscr{P} , $\Phi: \mathscr{P} \times G \to \mathscr{P}$, we have

$$\mathrm{D}_{(p,g)}\Phi(X,Y)=\mathrm{D}_p r_g(X)+\widetilde{(\mu_G)_g(Y)}\Big|_{p\cdot g}$$

for all $p \in \mathcal{P}$, $g \in \mathcal{G}$, $X \in T_p \mathcal{P}$ and $Y \in T_g \mathcal{G}$, where

- ullet $\widetilde{
 u}$ denotes the fundamental vector field on \mathscr{P} of $u\in\mathfrak{g}$,
- μ_G is the Maurer-Cartan form of G.

Definition (Fundamental vector fields)

Fundamental vector fields defined by

$$\widetilde{\nu}_{p} := \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (p \cdot \mathrm{e}^{t \nu_{\pi(p)}})$$

for all $\nu \in \Gamma(g)$ and $p \in \mathcal{P}$, where g is the LAB^a of \mathcal{G} .

^aLie algebra bundle

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is the connection 1-form on \mathscr{C} .

Connection

000000

Infinitesimal curved Yang-Mills-Higgs gauge theories

Proposition (Differential of LGB action Φ, [S.-R. F.])

$$\mathrm{D}_{(p,g)}\Phi(X,Y)=\mathrm{D}_{p}r_{\sigma}(X)-\left.\widehat{\left(\pi^{!}\Delta\sigma\right)\Big|_{p}(X)}\right|_{p\cdot g}+\left.\widehat{\left(\mu_{\mathcal{C}}\right)_{g}(Y)}\right|_{p\cdot g}$$

Definition (Modified right-pushforward)

$$r_{g*}(X) := D_p r_{\sigma}(X) - \left(\pi^! \Delta \sigma\right) \Big|_{p(X)}$$

Infinitesimal curved Yang-Mills-Higgs gauge theories

Proposition (Differential of LGB action Φ, [S.-R. F.])

$$\mathrm{D}_{(p,g)}\Phi(X,Y)=\mathrm{D}_{p}r_{\sigma}(X)-\left.\widehat{\left(\pi^{!}\Delta\sigma\right)\Big|_{p}(X)}\right|_{p\cdot g}+\left.\widehat{\left(\mu_{\mathcal{C}}\right)_{g}(Y)}\right|_{p\cdot g}$$

Definition (Modified right-pushforward)

$$r_{g*}(X) := \operatorname{D}_{p} r_{\sigma}(X) - \left. \overbrace{\left(\pi^{!} \Delta \sigma\right) \Big|_{p}(X)} \right|_{p \in \mathcal{G}}$$

... as horizontal distribution

Ehresmann connection

... as connection 1-form

Field of gauge bosons

Summary

	Locally	Globally
Curved Yang-Mills	Pre-classical	$\operatorname{ad}(\mathbb{S}^7 o \mathbb{S}^4)$ curved

Remarks (Integrated point of view)

This is probably linked to that an LGB is locally trivial → LGB action locally equivalent to a Lie group action

Hope: Structural Lie groupoids

Infinitesimal curved Yang-Mills-Higgs gauge theories

Gauge theory	Structure
Yang-Mills	Lie group G
Curved Yang-Mills	Lie group bundle ${\mathscr G}$
Curved Yang-Mills-Higgs	Lie groupoid &?

Remarks

- Richer set of principal bundles, containing LGBs.
- May result into obstruction statements for curved Yang-Mills-Higgs gauge theories.

Thank you!