CORRIGE – BAREME de l'IE2 – 1^{er} Décembre 2016

Partie 1 : Circuit RL

4 pts (+1pt bonus)

	(1	Tpt bollus)
1.1	$\frac{di}{dt} + \frac{R}{L}i = \frac{1}{L}v \text{ ou } L\frac{di}{dt} + Ri = v$	0.5
1.2	i(0 ⁺)=0 car la présence de l'inductance L dans le circuit série empêche toute discontinuité du courant (ou « car le courant est toujours continu dans une bobine »)	0.5
1.3	$i(t) = I_o cos(\omega t + \psi) \ avec I_o = \frac{\sqrt{2}V_{eff}}{\sqrt{R^2 + (L\omega)^2}} \ et \ \psi = -atan\left(\frac{L\omega}{R}\right)$	1,5
1.4	$i(t) = -I_o cos(\psi) e^{-t/\tau} + I_o cos(\omega t + \psi) \ avec \ \tau = \frac{L}{R}$	1,5
1.5	$V_{\rm eff} = 230 \text{ V (accepter } 220 < \text{Veff} < 240$ $\omega = 100\pi = 314,16 \ rad \cdot s^{-1}$	bonus 0,5 0,5

Partie 2 : Electrisation en cas de défaut d'isolement

7 pts

2.1	En fonctionnement normal $i_P(t) = i_N(t)$	0,5		
2.2	En fonctionnement normal $i_T(t) = i_P(t) - i_N(t) = 0$	0,5		
2.3	a) $\underline{u_{BE}} = \underline{u_{CD}}$			
	b) $\overline{\underline{i_h}} = \frac{\overline{R_a}}{R_a + R_h} \underline{i_c}$			
	c) Si $R_h >> R_a$ alors $\underline{i_h} = \frac{R_a}{R_h} \underline{i_c}$	0,5		
2.4	a) $\underline{i_T} = \underline{i_c} + \underline{i_h}$: loi des nœuds en E ou D	0,5		
	b) $\underline{i_T} = \underline{i_c} \left(1 + \frac{R_a}{R_h} \right)$ écriture simplifié si $R_h >> R_a$	0,5		
	accepter l'expression exacte : $\underline{i_T} = \underline{i_c} \left(1 + \frac{R_a}{R_a + R_h} \right)$			
2.5	a) $\underline{i_c} = \frac{\underline{v}}{R_a \left(2 + \frac{R_a}{R_h}\right)}$	0,5		
	accepter l'expression exacte : $\underline{i_c} = \frac{\underline{v}}{R_a \left(2 + \frac{R_a}{R_a + R_b}\right)}$			
	b) $\underline{i_h} = \frac{\underline{v}}{2R_h}$	0,5		
	accepter l'expression moins simplifiée $\underline{i_h} = \frac{\underline{v}}{2R_h + R_a}$ ou l'expression exacte			
	$i_h = \frac{v}{2R_h + 3R_a}$			

2.6	Démarche : relever les valeurs de R _h						
	En déduire les valeurs de $I_{h_eeff}=V_{h_eeff}/R_h$						
	En déduire les valeurs de $I_{c_eff} = \frac{R_a + R_h}{R_a} I_{h_eff}$ (selon 2.3b)						
		$V_{heff}(V)$	10	50	230		
		$I_{h \text{ eff}}(mA)$	0,02	10	115		
		$I_{c \text{ eff}}(A)$	1	5	23		
	Ne pas pénaliser si utilisation de la relation $\underline{i_h} = \frac{\underline{v}}{2R_h + 3R_a}$ trouvée en 2.5 car le text						
	pouvait prêter à confusion → facteur ½ donnant le tableau ci-dessous :						
		$V_{\rm eff}(V)$	10	50	230		
		$I_{h \text{ eff}}(mA)$	0,01	5	57,5 (ou 57,0 expression exacte)		
		$I_{c \text{ eff}}(A)$	0,5	2,5	11,5		
2.7	Pour $V_{eff} = 50V$, $I_h = 5$ mA => sensation douloureuse						
	Pour $V_{eff} = 50V$, $I_h > 50$ mA => oxydation du sang						

Partie 3 : Etude du principe de fonctionnement d'un disjoncteur différentiel 9 pts

3.1	a) Schéma avec orientation du repère, du courant.	1			
	b) $\vec{B} = B(r)\vec{u_{\theta}}$ à l'intérieur du tore (avec justifications détaillées incluant la	1.5			
	symétrie/invariance du milieu) (pénaliser de 0,5 l'oubli de l'etude de				
	sym/inv du milieu				
	c) $\vec{B} = \pm \frac{\mu Ni}{2\pi r} \vec{e_{\theta}}$ selon le sens d'enroulement des spires (avec justificatio				
	détaillées du calcul de la circulation de B) (enlever 0,5 si μ₀ au lieu de μ, enlever 0,5 pour chaque justification manquante : orientation du contour, signe de Ni, signe de la circulation en cohérence avec le contour, colinéarité avec dl et	0,5			
	uniformité de B sur le contour, d) Si r_i et r_e suffisamment proches, $\vec{B} =$				
	$\pm \frac{\mu Ni}{\pi (r_i + r_e)} \overrightarrow{e_{\theta}}$				
3.2	$\overrightarrow{B_t} = A(i_N - i_P)\overrightarrow{e_\theta} \text{ avec } A = \frac{\mu N_d}{\pi(r_i + r_e)}$	0,5			
3.3	a) En cas de défaut d'isolement $(i_N - i_P)$ est non nul et variable. Il apparaît				
	donc un champ $\overrightarrow{B_t}$ variable qui crée une <u>fem induite</u> aux bornes du bobinage noir.	0,5 + 0,5			
	Il s'agit d'un phénomène d'induction <u>statique</u> .	(0,5bonus)			
	b) Soit ϕ le flux de B à travers le circuit « noir »,	(0,500Hus)			
	$d\phi$ $d(i_N - i_p)$ di_T				
	$V(t) = \pm e(t) \ et \ e = -\frac{d\phi}{dt} = -N_m AS \frac{d(i_N - i_P)}{dt} = N_m AS \frac{di_T}{dt}$	0,5			
	$(0.5/1 \text{ si oubli de } N_m)$				
	c) En fonctionnement normal $(i_N - i_P) = 0$ donc le champ est nul et	1			
	invariable : pas de phénomène d'induction, pas de f.e.m induite				
		0,5			
3.4	Temps de moins de 0,5 s pour couper l'alimentation (afin d'éviter la	0,5			
	tétanisation)				