Algoritmos de Clusterização: K-Means

Prof. Mateus Mendelson mendelson.mateus@gmail.com

mmendelson.com

1. Introdução

- É um algoritmo não supervisionado que separa dados não rotulados em K grupos.
- Os grupos (clusters) são formados de acordo com a similaridade das features entre os elementos.
- É um algoritmo iterativo e rápido.
- Serve para:
 - ✓ Descobrir usuários com comportamentos semelhantes
 - ✓ Detecção de anomalias
 - ✓ Categorizar vendedores de acordo com seus hábitos e resultados de vendas
 - ✓ etc

1. Definir a quantidade K de clusters que queremos calcular

1. Definir a quantidade K de clusters que queremos calcular

2. Sortear as coordenadas iniciais para cada um dos K

centroides

1. Definir a quantidade K de clusters que queremos calcular

2. Sortear as coordenadas iniciais para cada um dos K

centroides 55 T

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides. Há duas opções para escolher as coordenadas iniciais dos centroides:
 - ✓ Sortear quaisquer coordenadas
 - ✓ Sortear pontos do próprio conjunto de dados

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides
- 3. Calcular a distância de cada ponto para cada centroide

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides
- 3. Calcular a distância de cada ponto para cada centroide
 - ✓ Como calcular distância entre dois pontos (x₁, y₁), (x₂, y₂)? Distância euclidiana!

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides
- 3. Calcular a distância de cada ponto para cada centroide
- 4. Associar cada ponto ao centroide mais próximo

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides
- 3. Calcular a distância de cada ponto para cada centroide
- 4. Associar cada ponto ao centroide mais próximo
- 5. Atualizar as coordenadas de cada centroide
 - ✓ As novas coordenadas de cada centroide são calculadas como sendo a média das coordenadas de todos os pontos associados aquele centroide

- 1. Definir a quantidade K de clusters que queremos calcular
- 2. Sortear as coordenadas iniciais para cada um dos K centroides
- 3. Calcular a distância de cada ponto para cada centroide
- 4. Associar cada ponto ao centroide mais próximo
- 5. Atualizar as coordenadas de cada centroide
- 6. Executar os passos de 3. a 5. até que os centroides não alterem mais suas posições ou que elas variem muito pouco
- 7. Retornar as coordenadas dos centroides como resultado do algoritmo

• Considere os seguintes pontos:

• Iremos formar dois clusters (K = 2)

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) Ponto_2: (1, 2) Ponto_3: (4, 10)

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) Ponto_2: (1, 2) Ponto_3: (4, 10)

$$d_{P1C1} = \sqrt{(1-2)^2 + (0-4)^2} = 4,12$$

Sorteamos dois valores iniciais para os centroides (em vermelho)

$$d_{P1C1} = 4,12$$
 $d_{P1C2} = \sqrt{(1-3)^2 + (0-8)^2} = 8,25$

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) Ponto_3: (4, 10)

$$d_{P1C1} = 4.12$$

 $d_{P1C2} = 8.25$

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) -> C1

Ponto_2: (1, 2) Ponto_3: (4, 10)

$$d_{P2C1} = \sqrt{(1-2)^2 + (2-4)^2} = 2,24$$

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_2: (1, 2) Ponto_3: (4, 10)

$$d_{P2C1} = 2,24$$
 $d_{P2C2} = \sqrt{(1-3)^2 + (2-8)^2} = 6,32$

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) -> C1 Ponto_3: (4, 10)

Centroide_1: (2, 4) Centroide_2: (3, 8)

 $d_{P2C1} = 2,24$ $d_{P2C2} = 6,32$

Sorteamos dois valores iniciais para os centroides (em vermelho)

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) -> C1 Ponto_3: (4, 10)

_ 、,

$$d_{P3C1} = \sqrt{(4-2)^2 + (10-4)^2} = 6.32$$

Sorteamos dois valores iniciais para os centroides (em vermelho)

$$d_{P3C1} = 6.32$$

 $d_{P3C2} = \sqrt{(4 - 3)^2 + (10 - 8)^2} = 2.24$

Sorteamos dois valores iniciais para os centroides (em vermelho)

$$d_{P3C1} = 6.32$$

 $d_{P3C2} = 2.24$

 Agora, vamos atualizar os centroides, por meio da média das coordenadas dos pontos pertencentes a cada cluster

Centroide_1:

$$novo_x = (1 + 1)/2 = 1$$

 $novo_y = (0 + 2)/2 = 1$

 Agora, vamos atualizar os centroides, por meio da média das coordenadas dos pontos pertencentes a cada cluster

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) -> C1 Ponto_3: (4, 10) -> C2

Centroide_1: (1, 1)

 Agora, vamos atualizar os centroides, por meio da média das coordenadas dos pontos pertencentes a cada cluster

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) -> C1 Ponto_3: (4, 10) -> C2

Centroide_1: (1, 1)

Centroide_2:

novo_x: (4)/1 = 4novo_y: (10)/1 = 10

 Agora, vamos atualizar os centroides, por meio da média das coordenadas dos pontos pertencentes a cada cluster

Ponto_1: (1, 0) -> C1 Ponto_2: (1, 2) -> C1 Ponto_3: (4, 10) -> C2

Centroide_1: (1, 1) Centroide_2: (4, 10)

• O processo se repete até que os centroides convirjam!

• Ou seja, é assim que o K-Means funciona:

 $\textbf{Fonte:} \ \underline{\text{https://towardsdatascience.com/an-easy-introduction-to-unsupervised-learning-with-4-basic-techniques-da7fbf0c3adf} \\ \underline{\text{https://towardsdatascience.com/an-easy-introduction-to-unsupervised-learning-with-4-basic-te$

- Não há garantias de que os centroides finais sejam os melhores.
- Por isso, devemos executar o algoritmo múltiplas vezes alterando os pontos iniciais dos centroides.
- A métrica que devemos utilizar para decidir qual o melhor conjunto de centroides é o cálculo da distância média entre os pontos de cada cluster e seu centroide.
 - ✓ Quanto menor for essa distância média, melhor é o resultado obtido.

• Como escolher o melhor K?

3. Mini-projeto

- Para este projeto, iremos utilizar o dataset de COVID-19 dos casos nos Estados Unidos no período de 21 de janeiro até 09 de abril de 2020 processado.
- Tarefa: implementar a função "fit_k_means(pontos, parada, max_iter)", com K fixo e igual a 3. Retorne os centroids finais.
 - ✓ pontos: conjunto de pontos 2D (casos x mortes)
 que serão clusterizados
 - ✓ parada: valor da variação dos clusters que indicará
 o fim do treinamento, i.e., se
 distancia(centroide_antigo, centroide_novo) <=
 parada então termine o treinamento
 </p>
 - ✓ max_iter: quantidade máxima de vezes que o algoritmo deve ser repetido caso "parada" não seja alcançada
 - ✓ Desafio: adicionar parâmetro com a quantidade de centroides K variável

3. Mini-projeto

- O seu relatório será o notebook exportado para um arquivo HTML e deve conter:
 - ✓ Um scatter plot mostrando os centroides (com marcador x) e seus respectivos pontos (cada cluster deve estar em uma cor distinta)
 - ✓ Para cada cluster, também devem ser exibidas as distâncias médias entre os pontos e seu respectivo centroide final
 - ✓ Discorra sobre cada cluster: o que eles indicam?
 - ✓ Desafio: implementar uma visualização iterativa do processo de treinamento igual ao gif do início da aula
 - ✓ Desafio: plotar o gráfico que permite visualizar o elbow point, variando o valor de K e indicar qual o melhor valor
 - ✓ Desafio: compare os resultados obtidos pelo seu algoritmo com os da função do K-Means do sklearn

