Sistemas Multiagentes aplicados à Tráfego e Sistemas de Transporte

Eduardo Rauh Müller

Programa de Pós Graduação em Engenharia de Automação e Sistemas

- Congestionamentos geram impactos econômicos, sociais e ambientais muito negativos.
 - Nos Estados Unidos, os custos decorrentes de congestionamentos em áreas urbanas ultrapassaram 120 bilhões de dólares em 2012 e causaram 38 horas de atraso por passageiro
 - Na Europa, estima-se que os custos decorrentes de congestionamentos aumentarão 50% nos próximos 40 anos, atingindo 200 bilhões de Euros por ano em 2050

- Soluções podem envolver
 - Ampliar infraestrutura
 - Utilizar a infra-estrutura existente de maneira mais eficiente
 - Reduzir a demanda

- Soluções podem envolver
 - Ampliar infraestrutura
 - Utilizar a infra-estrutura existente de maneira mais eficiente
 - Reduzir a demanda

- "From the traffic and transportation management perspective, the most appealing characteristics of agents are autonomy, collaboration, and reactivity"
 - Chen, Bo, and Harry H. Cheng. "A review of the applications of agent technology in traffic and transportation systems." *Intelligent Transportation Systems, IEEE Transactions on* 11.2 (2010): 485-497.

- O paradigma de Sistemas Multiagentes foi aplicado à vários problemas de tráfego e transporte, inclusive:
 - Modelagem e simulação
 - Controle de tráfego
 - Roteamento dinâmico

2. Review

- Classifica trabalhos na área em:
 - Arquiteturas e Plataformas para Controle e Gerenciamento de Tráfego baseado em agentes.
 - 2. Sistemas de transporte rodoviário baseados em agentes.
 - 3. Sistemas de controle e gerenciamento de tráfego aéreo baseados em agentes.
 - 4. Sistemas de transporte ferroviário baseados em agentes.
 - 5. Modelagem e simulação de tráfego comó sistemas multiagentes.

2. Review

- Classifica trabalhos na área em:
 - Arquiteturas e Plataformas para Controle e Gerenciamento de Tráfego baseado em agentes.
 - 2. Sistemas de transporte rodoviário baseados em agentes.
 - 3. Sistemas de controle e gerenciamento de tráfego aéreo baseados em agentes.
 - 4. Sistemas de transporte ferroviário baseados em agentes.
 - 5. Modelagem e simulação de tráfego comó sistemas multiagentes.

2. Review

- Sugere uma distinção entre Sistemas de Agentes Estacionários e Sistemas de Agentes Móveis.
- Sistemas Multiagentes geralmente se refeririam a Sistemas de Agentes Estacionários, e fornecem macanismos para o gerenciamento e comunicação dos Agentes.
- Um Sistema de Agentes Móveis fornece mecanismos adicionais para a migração e execução de Agentes Móveis.

Project name	Research group	Application domain	Key Features
TRACK-R agents	Garcia-Serrano et al. [7], Technical University of Madrid, Spain	Traffic management	Using international agent standard, FIPA, to design TRACK-R agents
	Tomas and Garcia [8], University Jaume I, Spain	meteorological incident management	Propose a FIPA compliant MAS for the management of non urban road meteorological incidents. The paper defines ontology, types of agents, and communication protocols for the proposed MAS
Mobile-C	Chen et al. [13], [9], [14], University of California, Davis, U.S.A.	Traffic detection and management	FIPA compliant MAS, support both stationary agents and mobile agents, hybrid control architecture
InTRYS and TRYSA2	Hernandez et al. [17], Technical University of Madrid, Spain	Traffic management	Comparison study of centralized and decentralized agent- based architecture for traffic management systems
aDAPTS	Fei-Yue Wang [4], [5], University of Arizona and Chinese Academy of Science	Traffic control and management	Describes both hardware and system implementation, and its field deployment in real-world urban traffic control using agent technology
	van Katwijk et al. [19], Delft University of Technology, The Netherlands	Test bed for multi- agent control systems in road traffic management	A test bed to experiment with different strategies for the application of multi-agent systems for dynamic traffic management and examine their applicability

Garcia-Serrano et al. [7], projetam agentes
"Traffic Agent City for Knowledge-based
Recommendation (TRACK-R)" para fornecer
recomendações de rota para humanos e
outros agentes. Cada agente TRACK-R é
responsável por uma área geográfica.

 Tomas and Garcia [8] propõe um MAS para auxiliar operadores a escolher as melhores estratégias para lidar com incidentes metereológicos.

- Chen et al. [9], [10], [13], [14] desenvolveram o Mobile-C e projetaram um sistema de detecção e gerenciamento de tráfego em tempo real baseado nele.
 - Mobile-C é uma plataforma para MAS, seguindo a FIPA, projetado para suportar agentes móveis em C/C++ em sistemas mecatrônicos e embarcados. Embora seja de propósito geral, foi projetado especificamente para aplicações em tempo real, com recursos limitados e necessidade de interface direta com o hardware.

- Hernandez et al. [17] comparam MAS com arquiteturas centralizadas (e hierárquicas) e descentralizadas para o gerenciamento de tráfego em malhas viárias urbanas.
 - Uma arquitetura descentralizadas tem vantagens quanto à sincronização, reusabilidade e escalabilidade.
 - A abordagem centralizada tem vantagens quando à coordenação da tarefa nessa aplicação.

- Wang [4], [5], [18] desenvolveu um sistema de gerenciamento de tráfego que decompõe um algoritmo de controle em agentes simples que são distribuídos pela rede.
 - É capaz de despachar agentes dinamicamente e substituir agentes de controle conforme necessário.
 - Arquitetura hierárquica em 3 níveis.
 - Lógica e planejamento de sequências de tarefas para agentes
 - 2. Despacha e coordena agentes de controle
 - 3. Hospeda e executa agentes.
 - Agentes de controle são móveis, podendo migrar de um centro de controle para outro

- Katwijk et al. [19] desenvolveram um ambiente de testes visando permitir a prototipação rápida de MAS para o controle e gerenciamento de tráfego, com comunicação obedecendo a FIPA.
- Consiste de modelos para a inteligência dos agentes, para o sistema de tráfego, e para a interação entre os agentes.

2.2. Aplicações em Transporte Rodoviário

AGENT APPLICATIONS IN ROADWAY TRANSPORTATION

Project name	Research group	Application domain	Key Features
CARTESIUS	Logi and Ritchie [23], Technische Universität München, Germany	Traffic congestion management	Two interacting knowledge-based agents for inter- jurisdictional traffic congestion management
IDTMIS/UTC	Roozemond [27], [29], Civil Engineering and Geoscience, Delft University of Technology, Netherlands	Urban Intersection Control	A theoretical UTC model based on several Intelligent intersection Traffic Signaling Agents (ITSA), Road Segment Agents (RSA), and some authority agents
	Guo et al. [28], Tsinghua University, China	Urban traffic control	A conceptual three-layer urban traffic control model
	Choy et al. [30], National University of Singapore, Singapore	Traffic signal control	Hierarchical multi-agent architecture, embedded fuzzy-neural decision-making modules, on-line learning capability
	Zhao et al. [33], University of Southern California, U.S.A.	Bus-holding control	Achieve dynamic coordination of bus dispatching through the negotiation between a bus agent and a stop agent
CORBA-A	Zhang et al. [36], Tsinghua University, China	Traffic data management	Distributed MAS architecture, the software implementation is based on the combination of CORBA and agents
TRYSA2	Ossowski et al. [39], Rey Juan Carlos University of Madrid, Spain	Decision support for urban traffic control	An application of TRYSA2 system for distributed decision support of urban traffic control
	Srinivasan and Choy [45], National University of Singapore, Singapore	Traffic signal control	A single layer cooperative multi-agent architecture, the cooperative zones of individual agents can be updated and allocated dynamically

2.2. Aplicações em Transporte Rodoviário

aDAPTS	Wang [4], [5], Chinese Academy of Sciences, Beijing, China	Urban traffic control and management	A hierarchical three-level agent platform for urban traffic control. The platform integrates mobile agent concept with multi-agent systems
ACTAM	Chen et al. [46], National Chiao- Tung University, Taiwan	Traffic signal control	The modular design of an adaptive and cooperative traffic signal agent
HUTSIG	Kosonen [48], Helsinki University of Technology, Finland	Traffic signal control	Allow on-line simulation that takes real-time detector data to model traffic situation
	Moreno et al. [53], DEIM, URV	Taxi dispatch	Customers can request a taxi from his/her PDA through a personal agent running in a JADE-LEAP agent system
NTuCab	Seow et al. [54] – [56], National University of Singapore	Taxi dispatch	Propose a taxi dispatch system that attempts to minimize the total waiting time of a group of customers
	Ossowski et al [59], [60]. University of Rey Juan Carlos, Spain	Decision support systems	Define an abstract architecture for multi-agent decision support system. Instantiate each type of agents in the abstract architecture for two case studies in the domain of traffic management
SATIR	Balbo and Pinson [61], Paris Dauphine University, France	Decision support systems	Propose an interaction model called ESAC (Environment as Active Communication Support) to allow agents to interact directly, sending and receiving messages through logical filters of emission, reception, and interception
SATIR	Balbo and Pinson [62], Paris Dauphine University, France	Disturbance modeling and decision support systems	Knowledge related to the network dynamics that is stored in vehicle sensors is incorporated into disturbance modeling and decision support system

2.2.1. Aplicações em Controle de Tráfego Rodoviário

- Logi and Ritchie [23] usam MAS para auxiliar a tomada de decisões no gerenciamento de congestionamentos.
- Sistema composto por dois agentes que interagem para a tomada de decisões em tempo real. Um agente responsável pela rodovia e outro por uma via arterial.
- Cada agente gera planos de controle locais, e o sistema fornece uma interface para que operadores em diferentes centros de controle cheguem a uma decisão global.

2.2.1. Aplicações em Controle de Tráfego Rodoviário

 Van Katwijk and Van Koningsbruggen [24] propõe uma abordagem multiagente para a coperação de instrumentos de controle de tráfego.

- Abordagens baseadas em agentes tem sido muito investigadas em diferentes áreas do problema de Controle de Tráfego Urbano, incluindo:
 - Modelagem [27]
 - Controle semafórico em interseções [29], [30]
 - Gerenciamento de frota de ônibus [31], [32]
 - Controle de espera de ônibus [33]

 Bazzan [38] e Ossowski et al. [39] propõe, respectivamente, um sistema de controle de tráfego e um sistema de suporte à decisão distribuídos através de MAS, o que melhora a escalabilidade do sistema em relação à uma abordagem centralizada.

- Wang [40] criou um sistema que usa agentes móveis para converter algoritmos de controle em agentes de controle e implementar um sistema de controle distribuído.
 - Essa ideia foi generalizada e empregada também em sistemas de "casa inteligente"; processos lixiviação de cobre; e excavação robótica.
- Desenvolveu um dos primeiros sistemas baseado em agentes aplicados em campo para controle de tráfego (aDAPTS) [4], [5]).

- Vários autores exploraram o uso de agentes para o controle proativo e cooperativo de interseções.
- Roozemond [27], [29] propõe um sistema que consiste de traffic signaling agents (TSAs), road segment agents (RSAs), and authority agents.
 - Os ITSAs controlam interseções com a ajuda dos RSAs. Os authority agents coordenam os TSAs para atingir uma performace ótima.

• Choy et al. [30] e Srinivasan et al. [44] apresentam um MAS hierárquico com três caadas de agentes: intersection controller agents (ICAs), zone controller agents (ZCAs), e regional controller agents (RCAs).

- Srinivasan and Choy [45] investigam uma arquitetura cooperativa de apenas uma camada para o controle semafórico com MAS.
 - Cada agente é responsável pela semaforização de uma interseção da malha viária.
 - Cada agente tem uma zona de cooperação, que pode ser alterada dinamicamente. Agentes dentro de um grupo cooperativo tomam decisões em conjunto.

- Chen et al. [46] propõe um sistema descentralizado, cooperativo e adaptativo para controle semafórico.
- Kosonen [48] apresenta um MAS que usa dados de detectores em tempo real para a simulação do sistema de controle.
- Ferreira et al. [49] propõe um sistema onde cada agente otimiza o controle semafórico baseado em dados locais e "opiniões" de agentes (interseções) vizinhos.

 Yang et al. [51] e France and Ghorbani [52] propõe MAS hierárquicos para controle semafórico. Utiliza aprendizado por reforço para o controle local e algoritmos genéticos para tentar chegar a um ótimo global modificando parâmetros do aprendizado.

 Zhao et al. [33] propõe um MAS para a cordenação de despacho de ônibus em múltiplas paradas. O sistema proposto consiste de dois tipos de agentes: paradas e ônibus. Agentes ônibus interagem com paradas quando estão próximos, e podem negociar com várias paradas simultaneamente.

- Moreno et al. [53] implementam JADE-LEAP em dispositivos móveis e apresentam um MAS para o despacho de taxis, com 5 tipos de agentes, representando pessoas, taxis, uma estação de taxis, o tráfego, e um visualizador.
 - O usuário chama um taxi através de seu agente pessoal rodando no dispositivo móvel.
 - A requisição é enviada para a estação, que a encaminha para taxis disponíveis.
 - Os taxis calculam o tempo necessário para chegar até o cliente e a estação escolhe o mais próximo.

 Seow et al. [54]–[56] propõe um sistema de despacho de taxis cujos agentes taxi são cooperativos e negociam entre si para minimizar o tempo de espera total de um grupo de usuários.

- Dresner and Stone [58] estudaram a abordagem de MAS para o gerenciamento de interseções autônomas e desenvolveram um ambiente de simulação que demonstra que uma abordagem de agentes tem potencial de atingir um desempenho significativamente melhor que a tecnologia atual de controle de interseções.
 - Isto é, substituir semáforos e motoristas humanos por agentes cooperativos no controle dos veículos.

3. Conclusão

 Sistemas de tráfego e transporte são inerentemente distribuídos, permitindo uma decomposição natural em agentes.

3. Conclusão

 Vários aspectos de Sistemas Multiagentes – autonomia, capacidade de colaboração, reatividade, proatividade - são altamente desejáveis nesse tipo de aplicação, o que justifica a abordagem.

3. Conclusão

- Não foi encontrada menção explícita a Ambiente ou Organização no review ou artigos encontrados.
- Mesmo sendo evidente em alguns casos que a adição dessas dimensões pode ser bastante interessante, em geral parece que atualmente se trabalha apenas com agentes nesse tipo de aplicação.

