Compatible Equivalence Checking of X-Valued Circuits

Authors: <u>Yu-Neng Wang*</u>, Yun-Rong Luo*, Po-Chun Chien*, Ping-Lun Wang, Hao-Ren Wang, Wan-Hsuan Lin, Jie-Hong Roland Jiang and Chung-Yang Ric Huang

ALCom Lab

EE Dept./ Grad. Inst. of Electronics Eng.
National Taiwan University

^{*:} equal contribution

Combinational Equivalence Checking (CEC)

True when $o_i = o_i'$

- I: Input pattern
- G: Golden netlist
- R: Revised netlist
- *O/O'*: Output pattern of *G/R* under *I*

Compatible Equivalence Checking with X-value (XCEC)

Definition 1. Given two values \hat{a} , $\hat{b} \in \mathbb{T}$, \hat{a} is compatible equivalent to \hat{b} if $(\hat{a}, \hat{b}) \in \{(0,0), (1,1), (\times,0), (\times,1), (\times,\times)\}$. Otherwise, \hat{a} is not compatible equivalent to \hat{b} , i.e., $(\hat{a}, \hat{b}) \in \{(0,1), (1,0), (0,\times), (1,\times)\}$.

- Defined on ternary-valued logic
- Equivalence in golden circuit's care-space
- Asymmetric relation

X-Valued Circuits

- Primitive gates

- AND, NAND
- OR, NOR
- XOR, XNOR
- *NOT*

- Special gates

- DC
- MUX

a	0	1	X	a b	0	1	Х	d^{c}	0	1	Х
NOT(a)	1	0	X	0	0	0	0	0	0	1	37
				U	U	U	U	U	U	1	X
N	OT((a)		1	0	1	х	1	X	X	X
				X	0	X	Х	X	X	Х	Х

AND(a,b)

DC(c,d)

s=0				s=1			s=2				
b b	0	1	Х	a b	0	1	X	a b	0	1	X
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	Х	1	0	1	Х	1	0	1	Х
Х	0	Х	X	Х	0	X	Х	X	0	Х	Х

MUX(s,a,b)

Proposed Algorithm Flow

From CEC to XCEC

SAT solver is only applicable for binary logic

Internal compatible equivalent pairs cannot be merged

Dual Rail Encoding

- Encoding choices
 - symmetric E_{sym}
 - X-preserving E_{xp}
 - one-hot E_{oh}

Encoded bits					
00	$0^{0} 0^{1} 0^{2}$				
$oxed{E_{xp}}$	$oxed{E_{sym}}$	E_{oh}			
00	10	100			
10	01	010			
01, 11	00	001			
	$egin{array}{c} { m o}^0 \ E_{xp} \ { m o}0 \ { m 10} \ \end{array}$	$egin{array}{c c} o^0 o^1 & & & & & & & & & & & & & & & & & & &$			

o¹ bit is preserved to represent x

The superiority of X-preserving encoding: implication ability

We compare E_{xp} (X-preserving encoding) with E_{sym} (Symmetric encoding)

- ullet E_{sym} is more succint than E_{xp} for most circuit primitive gates
- However, E_{xp} has stronger implication ability.

EQ	Ternary Loigc (T)	$oxed{E_{xp}}$	$oxed{E_{sym}}$
	(x,0) (x,1) (x,x)	(- 1 ,)	(00,)
	(0,0)	(00, 00)	(10, 10)
	(1,1)	(10,10)	(01, 01)
NEQ	(1,0)	(10,00)	(01,-0)
	(1,x)	(-0,-1)	
	(0,x)		(10,0-)
	(0,1)	(00,10)	

Т	Encoded bits o ⁰ o ¹				
	$oxed{E_{xp}}$	$oxed{E_{sym}}$			
0	00	10			
1	10	01			
X	0 <mark>1</mark> , 1 <mark>1</mark>	00			

 E_{xp} can conclude EQ with 1 bit assignment while E_{sym} needs 2 bits assignment. E_{xp} has stronger implication ability.

The superiority of X-preserving encoding: don't care property

Both $a^0a^1 = 01$, 11 represents x under Exp. When $a^1 = 1$, the value of a^0 becomes don't care.

→ Replace a⁰ to the controlling value/ non controlling value of o⁰.

controlling value of AND: 0 non controlling value of AND: 1

becomes 0 when a¹=1 (propagates the implication toward PO)

becomes 1 when $a^1=1$ (conditionally disable the fanin a^0 when $a^1=1$)

Dual Rail Encoding

ullet And gate under E_{xp}

$$o^{0}o^{1} = AND(a^{0}a^{1}, b^{0}b^{1})$$

 $o^{0} = a^{0}b^{0}$
 $o^{1} = a^{1}b^{1} \vee a^{1}b^{0} \vee a^{0}b^{1}$

ullet Compatible EQ Miter under E_{xp}

$$M = igvee_{i=1}^n (o_{g,i}^0
eg o_{r,i}^0 ee
eg o_{g,i}^0 o_{r,i}^0 ee o_{r,i}^1)
eg o_{g,i}^1$$

Internal Compatible EQ(CE) Proving and Learning

$$\mathsf{E}_{\mathsf{xp}}(\hat{a}) \ = \ (a^0, a^1)$$

$$\mathsf{E}_{\mathsf{xp}}(\hat{b}) \ = \ (b^0, b^1)$$

add to SAT instance

$$(a^{1} \vee \neg b^{1})$$

$$\wedge (a^{1} \vee a^{0} \vee \neg b^{0})$$

$$\wedge (a^{1} \vee \neg a^{0} \vee b^{0})$$

Internal Compatible EQ(CE) Proving and Learning

$$\mathsf{E}_{\mathsf{xp}}(\hat{a}) = (a^0, a^1)$$

 $\mathsf{E}_{\mathsf{xp}}(\hat{b}) = (b^0, b^1)$

add to SAT instance

$$(a^{1} \vee \neg b^{1})$$

$$\wedge (a^{1} \vee a^{0} \vee \neg b^{0})$$

$$\wedge (a^{1} \vee \neg a^{0} \vee b^{0})$$

Circuit Representation

- Maintain: the high-level X-valued circuit and the low-level AIG.
- High-level circuit: the original ternary-valued circuit (consists of the primitive gates and constants)

Propagating CE relation

Proposition: For a pair of ternary-valued signals \hat{o}_1 and \hat{o}_2 with $\hat{o}_1 = AND(\hat{a}_1, \hat{b}_1)$ and $\hat{o}_2 = AND(\hat{a}_2, \hat{b}_2)$, if \hat{a}_1 is CE to \hat{a}_2 and \hat{b}_1 is CE to \hat{b}_2 , then \hat{o}_1 is CE to \hat{o}_2 .

- Although CE pairs cannot be merged, we can use the proposition to propagate CE relation.
- Proving CE relation without time-consuming SAT solving

Experimental Results

Experimental Settings

- 2020 ICCAD CAD Contest Benchmark
 - 30 cases
 - 28 Industrial cases (23 EQ, 5 NEQ)
 - 2 Hard NEQ cases (excluded, no X-values)
 - 1,000 ~ 100,000 #Gates
 - Timeout limit 1800 secs
- Solver Setting
 - Berkeley ABC [1] (ABC 1.01 commit 5c8ee4a2c142d133afe4cbfe567b300fe4d040a8)
 - Incremental SAT solver: Glucose [2] (Glucose 3.0)
 - Final SAT solver: kissat [3] (kissat sc2020, target UNSAT)

Flow Comparison

Performance Evaluation

- Flow

- xcec: encode → ABC circuit optimization
 → SAT solving
- cepr: encode → ABC circuit optimization
 → CE proving and learning → SAT solving

Encoding

- x-preserving (E_{xp})
 - controlling value (E_{xp}^c)
 - non-controlling value (E^{nc}_{xp})
- symmetric (E_{sym})

- Baseline Method

- Symmetric encoding
- Other contestants
- Conformal LEC

and the set	# s	total times		
method	EQ	NEQ	total	total time
$xcec - E_{xp}^{nc}$	13	7	20	5625.25
$xcec - E_{xp}^c$	13	7	20	6305.45
cepr-E _{xp}	12	7	19	6645.13
$xcec - E_{xp}$	11	7	18	2600.02
3rd Place	11	7	18	2727.24
$xcec - E_{sym}$	11	7	18	4021.63
2nd Place	9	7	15	2157.75
LEC	6	5	11	2344.78 ₁₈

The superiority of X-preserving encoding: implication ability

- Under xcec flow, E_{xp} solves 18 cases in less total time than E_{sym} .

Т	Encoded bits o ⁰ o ¹				
	$oxed{E_{xp}}$	$oxed{E_{sym}}$			
0	00	10			
1	10	01			
X	0 <mark>1</mark> , 1 <mark>1</mark>	00			

on a the a st	# s	total time		
method	EQ	NEQ	total	total time
$xcec - E_{xp}^{nc}$	13	7	20	5625.25
$xcec - E_{xp}^c$	13	7	20	6305.45
cepr-E _{xp}	12	7	19	6645.13
$xcec - E_{xp}$	11	7	18	2600.02
3rd Place	11	7	18	2727.24
$xcec - E_{sym}$	11	7	18	4021.63
2nd Place	9	7	15	2157.75
LEC	6	5	11	2344.78 ₁₉

The superiority of X-preserving encoding: implication ability

Compare Exp and Esym under two flows:

- xcec: encode → ABC circuit optimization →
 SAT solving
- dsat: encode → SAT solving

The superiority of Exp over Esym is independent of synthesis tool.

EQ	Ternary Loigc (T)	$oxed{E_{xp}}$	$oxed{E_{sym}}$
	(x,0) (x,1) (x,x)	(- 1 ,)	(00,)
	(0,0)	(00, 00)	(10, 10)
	(1,1)	(10,10)	(01, 01)

The superiority of X-preserving encoding: don't care property

 $a^{1}=1$ \rightarrow the value of a^{0} becomes don't care \rightarrow replace a^{0} to the controlling value/ non controlling value of o^{0} .

and the set	# s	4-4-14:		
method	EQ	NEQ	total	total time
$xcec - E_{xp}^{nc}$	13	7	20	5625.25
$xcec - E_{xp}^{c}$	13	7	20	6305.45
$cepr-E_{xp}$	12	7	19	6645.13
$xcec - E_{xp}$	11	7	18	2600.02
3rd Place	11	7	18	2727.24
$xcec - E_{sym}$	11	7	18	4021.63
2nd Place	9	7	15	2157.75
LEC	6	5	11	2344.78 ₂₁

Internal CE Learning Improves Final SAT Solving

on a the a st	# s	total time o		
method	EQ	NEQ	total	total time
$xcec - E_{xp}^{nc}$	13	7	20	5625.25
$xcec - E_{xp}^c$	13	7	20	6305.45
cepr-E _{xp}	12	7	19	6645.13
$xcec - E_{xp}$	11	7	18	2600.02
3rd Place	11	7	18	2727.24
$xcec - E_{sym}$	11	7	18	4021.63
2nd Place	9	7	15	2157.75
LEC	6	5	11	2344.78 ₂₃

Conclusion

- With stronger implication ability, x-preserving encoding outperforms traditional symmetric encoding.
- Using don't-care property further improves the performance of x-preserving encoding.
- Learned clauses from internal CE relation speed up final SAT solving.

Thank you for your listening

Acknowledgement

- Cadence ...
- 2nd, 3rd Place ...