

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Semantic Image Segmentation

Deep Learning

Bastian Lampe

Institute for Automotive Engineering

Overview

- Modern Deep Learning methods for image segmentation outcompete classical machine learning methods
 - large amounts of training data, powerful hardware, efficient algorithms
- Supervised learning
 - Datasets containing many samples (input + label)
- Inputs and outputs
 - Input: RGB camera image [Height, Width, 3]
 - Output: Segmentation Map [Height, Width, 1]
- Convolutional Neural Networks
 - Encoder-Decoder Architectures with skip connections

Datasets

Cityscapes

Datasets

Cityscapes Coarse

Datasets

Berkeley Deep Drive 100k

Datasets

Mapillary Vista

© ika 2022 · All rights reserved

Datasets

GTA

Datasets

Example Datasets

Dataset	Year	Samples	Places	Scene	Weather	Illumination	Road view	Classes	Resolution
CamVid [BRO08]	2008	700	UK	city	constant	day time	yes	32	960×720
Synthia [ROS16]	2016	213,400	synthetic	city,residential,highway	various	varies	yes	13	960×720
GTA [RIC16]	2016	24,966	synthetic	city,residential,highway	various	varies	partially	30	1914×1052
City [COR16]	2016	2,975/500	Germany	city	constant	day time	yes	29	2048×1024
City Coarse [COR16]	2016	20,000	Germany	city	constant	day time	yes	29	2048×1024
Mapillary [NEU17]	2017	18,000/2,000	Worldwide	city,residential,highway	various	varies	partially	66	3418×2481 †
KITTI [ALH18]	2018	200/200	Germany	city,residential	constant	day time	yes	29	1242×375
BDD100k [YU18b]	2018	7,000/1,000	US	city,residential,highway	various	varies	yes	37	1280×720
ApolloScapes [HUA18]	2018	146,997	China	city,residential,highway	various	day time	yes	25	3384×2710

Source: ika

Input and Label Representation

Input

- RGB Camera Image
- Shape: [Height, Width, 3]
- 3 corresponds to the three RGB channels
- RGB colour representation:
 - As **uint8** with values in [0, 255]
 - As float16 / float32 with values in [0, 1]

Label

- Color Encoding
- Segmentation Map
- One-Hot Encoding

Source: Cityscapes

Input and Label Representation

- How to represent the label of semantic segmentation ?
 - Color Encoding
 - Each class has a specific RGB Value
 - Data format: 3 x uint8
 - Shape: [Height, Width, 3]
 - Segmentation Map
 - Each class has a specific class ID
 - Data format: 1 x uint8
 - Shape: [Height, Width, 1]
 - One-Hot Encoding
 - A pixel is represented as a one-hot vector
 - The i`th value is set to 1 all other values are set to 0. The index i corresponds to the i`th class
 - Data format: Number of classes x Boolean
 - Shape: [Height, Width, Number of Classes]

Example with 3 Classes:

Color Encoding

2	0	1	1
2	0	0	1
2	0	0	1
2	0	0	1

Segmentation Map

Network Architecture

- Fully-Convolutional Network
- Network as a sequence of convolutional layers
- Make class predictions for all pixels at once

RWTHAACHEN UNIVERSITY

Summary

- Several different publicly available datasets
- Datasets consists of camera image and label pairs
- Label can be represented as
 - RGB encoding
 - Segmentation Map
 - One-Hot Encoding
- Fully-Convolutional Network architectures are used to learn representations from these datasets

Images: Mapillary Vista

Image: ika, PlotNeuralNet