Лекция 8

Тензорная алгебра

Содержание лекции:

Данная лекция завершает знакомство с основынми операциями полилинейной алгебры и посвящена построению алгебраических структур, которые индуцируются рассматриваемыми операциями. Здесь мы обсудим прострарство тензоров над выбранным линейным пространством и обобщим наши представления о полилинейных отображениях и их свойствах.

Ключевые слова:

Тензор, пространство тензоров, координаты тензора, тензорное произведение, транспонирование тензора, свертка тензора, симметризация и антисимметризация тензора, внешняя прямая сумма, алгебра, градуировка алгебры.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

8.1 Операции с тензорами

Пространством тензоров типа (p,q) над $X(\Bbbk)$ называется пространство

$$T_q^p(\mathbb{k}) = X^* \otimes X^* \dots \otimes X^* \otimes X \otimes X \otimes \dots \otimes X.$$

Пример 8.1.

- 1. $T_0^0(\mathbb{k}) \simeq \mathbb{k}, \quad T_0^1 \simeq X^*, \quad T_1^0 \simeq X;$
- 2. $T_0^p(\mathbb{k}) \simeq \operatorname{Hom}(X, \dots, X; \mathbb{k}) \simeq \Omega_0^p$;
- 3. $T_1^p(\mathbb{k}) \simeq \operatorname{Hom}(X, \dots, X; X) \simeq \operatorname{Hom}(X, \dots, X, X^*; \mathbb{k}) \simeq \Omega_1^p$

 ${\it Nota \ bene}$ Элементами пространства T^p_q яляются тензоры:

$$\alpha^1 \otimes \ldots \otimes \alpha^p \otimes x_1 \otimes \ldots \otimes x_q$$

где $\alpha^1, \dots, \alpha^p \in X^*$ и $x_1, \dots, x_q \in X$.

Nota bene С тензорами определены следующие операции:

1. Произведение тензоров:

$$(\alpha^1 \otimes \ldots \otimes \alpha^{p_1} \otimes x_1 \otimes \ldots \otimes x_{q_1}) \otimes (\beta^1 \otimes \ldots \otimes \beta^{p_2} \otimes y_1 \otimes \ldots \otimes y_{q_2})$$

= $\alpha^1 \otimes \ldots \otimes \alpha^{p_1} \otimes \beta^1 \otimes \ldots \otimes \beta^{p_2} \otimes x_1 \otimes \ldots \otimes x_{q_1} \otimes y_1 \otimes \ldots \otimes y_{q_2}.$

Таким образом

$$v \in T_{q_1}^{p_1}(\mathbb{k}), \quad w \in T_{q_2}^{p_2}(\mathbb{k}) \quad \Rightarrow \quad v \otimes w \in T_{q_1+q_2}^{p_1+p_2}(\mathbb{k}).$$

2. Транспонирование t_{ij} по паре нижних индексов (i, j):

$$t_{ij}: \ldots \otimes x_i \otimes \ldots \otimes x_j \otimes \ldots \mapsto \ldots \otimes x_j \otimes \ldots \otimes x_i \otimes \ldots$$

Аналогично для пары верхних индексов t^{ij} :

$$t^{ij}: \ldots \otimes \alpha^i \otimes \ldots \otimes \alpha^j \otimes \ldots \mapsto \ldots \otimes \alpha^j \otimes \ldots \otimes \alpha^i \otimes \ldots$$

Таким образом:

$$t^{ij}, t_{ij}: T_q^p(\mathbb{k}) \to T_q^p(\mathbb{k}).$$

3. Свертка тензора c_i^i по индексам i и j:

$$c_j^i: \ldots \otimes \alpha^i \otimes \ldots \otimes x_j \otimes \ldots \mapsto \alpha^i(x_j) \cdot \ldots \otimes \ldots \otimes \ldots$$

Таким образом

$$c_j^i: T_q^p(\mathbb{k}) \to T_{q-1}^{p-1}(\mathbb{k}).$$

4. Симметризация и антисимметризация тензора:

Sym:
$$x_1 \otimes x_2 \otimes \ldots \otimes x_p \mapsto \frac{1}{p!} \sum_{\sigma} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(p)},$$

Alt: $x_1 \otimes x_2 \otimes \ldots \otimes x_p \mapsto \frac{1}{p!} \sum_{\sigma} (-1)^{[\sigma]} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(p)},$

Таким образом:

Sym:
$$T_0^p(\mathbb{k}) \to \Sigma^p(\mathbb{k})$$
, Alt: $T_0^p(\mathbb{k}) \to \Lambda^p(\mathbb{k})$.

Nota bene Пусть $\{e_i\}_{i=1}^n$ - базис $X(\mathbb{k})$ и $\{f^j\}_{j=1}^n$ - дуальный базис $X^*(\mathbb{k})$, тогда базисом пространства $T_q^p(\mathbb{k})$ будет набор

$$f^{s_1} \otimes f^{s_2} \otimes \ldots \otimes f^{s_p} \otimes e_{t_1} \otimes e_{t_2} \otimes \ldots \otimes e_{t_q}$$

и каждый элемент $w \in T^p_q(\Bbbk)$ единственным образом может быть представлен в виде:

$$w = w_{s_1, s_2, \dots, s_p}^{t_1, t_2, \dots, t_q} \cdot f^{s_1} \otimes f^{s_2} \otimes \dots \otimes f^{s_p} \otimes e_{t_1} \otimes e_{t_2} \otimes \dots \otimes e_{t_q}.$$

Набор скаляров $w^{t_1,t_2,\dots,t_q}_{s_1,s_2,\dots,s_p}$ называется **коордианатами тензора** w в паре дуальных базисов $\{e_i\}_{i=1}^n,\ \{f^j\}_{j=1}^n$ пространств $X(\Bbbk)$ и $X^*(\Bbbk)$ соответственно.

Лемма 8.1. При переходе от базиса $\{e_i\}_{i=1}^n$ к новому базису $\{\tilde{e}_m\}_{m=1}^n$, координаты тензора преобразуются в соответствии со следующим правилом:

$$\tilde{w}_{s_1,s_2,\dots,s_p}^{t_1,t_2,\dots,t_q} = \tau_{s_1}^{i_1}\dots\tau_{s_p}^{i_p}\sigma_{j_1}^{t_1}\dots\sigma_{j_q}^{t_q}w_{i_1,i_2,\dots,i_p}^{j_1,j_2,\dots,j_q}.$$

Здесь $T = \|\tau_s^i\|$ и $S = \|\sigma_j^t\|$ - матрицы прямого и обратного перехода соответственно.

Справедливость утверждения следует из билинейности тензорного произведения.

4

8.2 Определение тензорной алгебры

Внешней прямой суммой пространств X_1, X_2, \dots, X_p называется линейное пространство $X_1 \oplus X_2 \oplus \dots \oplus X_p$, составленное из всех последовательностей вида

$$(x_1, x_2, \dots, x_p), \quad x_i \in X_i,$$

с покомпонентным сложением и умножением на скаляры из к:

$$(x_1, x_2, \dots, x_p) + (y_1, y_2, \dots, y_p) = (x_1 + y_1, x_2 + y_2, \dots, x_p + y_p),$$

 $\alpha(x_1, x_2, \dots, x_p) = (\alpha x_1, \alpha x_2, \dots, \alpha x_p)$

Пример 8.2. Следующие пространства образуются как внешние прямые суммы:

• Пространство многочленов $\mathcal{P}^n[x]$ степени не выше n:

$$\mathcal{P}^n[x] = \mathcal{P}_0[x] \oplus \mathcal{P}_1[x] \oplus \ldots \oplus \mathcal{P}_n[x],$$

где $\mathcal{P}_k[x]$ - пространство многочленов степени k.

• Пространство тензоров T конечного типа:

$$T = T_0^0 \oplus T_0^1 \oplus T_1^1 \oplus \ldots \oplus T_q^p.$$

Nota bene Прямая сумма может быть распространена на бесконечное число слагаемых, но могут рассматриваются при этом только финитные последовательности.

Пример 8.3. Примеры пространств - бесконечных прямых сумм:

• Пространство всех многочленов $\mathcal{P}[x]$:

$$\mathcal{P}[x] = \mathcal{P}_0[x] \oplus \mathcal{P}_1[x] \oplus \dots$$

• Пространство тензоров всех типов \mathcal{T} :

$$\mathcal{T}(\mathbb{k}) = T_0^0(\mathbb{k}) \oplus T_0^1(\mathbb{k}) \oplus T_1^1(\mathbb{k}) \oplus \dots$$

Линейное пространство $\mathbb{A} = \mathbb{A}(\mathbb{k})$ называется **алгеброй** над полем \mathbb{k} , если на \mathbb{A} определена операция, индуцирующая на нем структуру кольца с согласованным умножением на элементы поля \mathbb{k} .

Пример 8.4.

- Множество \mathbb{C} комплексных чисел образует алгебру над \mathbb{R} ;
- Множество \mathbb{k}^4 кватернионов образует алгебру как над \mathbb{R} , так и над \mathbb{C} ;
- Пространство P[x] вместе со стандартной операцией умножения многочленов является алгеброй, называемой алгеброй многочленов;
- Пространство $\mathcal{T}(\mathbb{k})$ вместе с операцией тензорного умножения образует алгебру, называемую *тензорной алгеброй*.

ТЕНЗОРНАЯ АЛГЕБРА

Говорят, что в алгебре А задана градуировка, если при

$$\mathbb{A} = \mathbb{A}_0 \oplus \mathbb{A}_1 \oplus \ldots \oplus \mathbb{A}_i \oplus \ldots$$

имеет место следующее свойство относительно умножения в алгебре:

$$\mathbb{A}_i \cdot \mathbb{A}_j \subseteq \mathbb{A}_{i+j}$$
.

Алгебры, обладающие данным свойством называются градуированными.

Пример 8.5. Примеры градуированных алгебр:

- $(\mathcal{P}[x], +, \cdot)$ алгебра многочленов;
- $(\mathcal{T}(\mathbb{k}), \oplus, \otimes)$ алгебра тензоров;
- (Σ, \oplus, \vee) алгебра симметричных тензоров;
- $(\Lambda, \oplus, \wedge)$ алгебра антисимметричных тензоров (алгебра Грассмана);