Clase práctica 1

November 5, 2024

- 1. Se
a $k \in \mathbf{Z}^+.$ Demuestre que k divide a todo producto de
 k enteros consecutivos.
 - (a) Demuestre que k! divide al producto de k enteros consecutivos.
- 2. Un entero n > 1 es especial si para todo $k \in \mathbf{Z}^+$, con $k \leq n$ se puede escribir como suma de divisores distintos de n. Demuestre que si $p \neq q$ son especiales entonces pq es especial.
- 3. Determine el número de formas de descomponer a n en sumandos donde el orden no es relevante y la diferencia modular de cualquier par de sumandos es a lo sumo 1.
- 4. Demuestre que si $n \in \mathbf{Z}^+$ entonces $2^{2^n} 1$ tiene al menos n divisores distintes
- 5. Demuestre que $\sqrt{2}$ es irracional.
- 6. Sea $n \in \mathbb{Z}^+$. Demuestre que existen infinitos múltiplos de n que contienen a todos los dígitos decimales.
- 7. Demuestre que si p y $p^2 + 2$ son primos entonces $p^3 + 2$ es primo.