<pre>In [2]: df= In [3]: df. Out[3]: 0 1 2 3 4</pre>	port numby as np port numby a
Rar Col dty	lass 'pandas.core.frame.DataFrame'> ngeIndex: 1212 entries, 0 to 1211 lumns: 101 entries, V1 to Class ypes: float64(100), int64(1) mory usage: 956.5 KB
25 50 75 m 8 rov	## 8169.91881 8144.306262 8192.653738 8176.868738 812.297211 8173.030008 8186.582748 8183.641543 8154.670066 8120.767574 8120.056815 8125.917409 8158.793812 8140.885421 8213.480611 8185.594002 8140.195355 8192.960891 818541 8147.9174.950461 17784.9
['V' 'V3 7', 'V1 In [8]: df. Out[8]: (12 In [9]: df Out[9]: 0 1	
Out[10]: Class 2 ro	1 913.333251 7825.33996 7902.49729 7857.032079 7775.610198 7875.436337 7804.166584 7722.324802 7793.328416 7686.782046 7753.427244 7737.843366 7799.332079 7825.211700 7791.354010 7927.237112 7874.502343 7844.227459 7875.338713 7855.181172 1 8424.850512 8463.272558 8482.810182 8496.705396 8480.984224 8470.623680 8572.998911 8644.958284 8516.011716 8554.753102 8478.513399 8502.270264 8452.502739 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 2 8454.850512 8462.85139 8492.375924 8490.416832 8499.724109 8496.85660 8436.163251 8510.583069 8457.213581 3 8454.85139 8454.85139 8502.270264 8452.502739 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 3 8454.85139 8454.85139 8502.270264 8452.502739 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8457.213581 4 8454.85139 8492.375924 8490.416832 8499.724109 8496.685660 8436.163251 8510.583069 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8496.88560 8499.724109 8499
In [15]: X=c	$egin{array}{cccccccccccccccccccccccccccccccccccc$
120 120 120 121 121	212
n [23]: ss x =	msklearn.preprocessing import StandardScaler = StandardScaler() = ss.fit_transform(X) ray([[-0.45248681, -0.45361784, -0.45100881,, -0.45609618, -0.45164274, -0.45545496], [-0.45455665, -0.453554372, -0.4532285, -0.45352285], [-0.45455665, -0.453554051, [-0.45452605, -0.453554051, [-0.45452605, -0.453554051, [-0.45452605, -0.453554051, [-0.45452605, -0.453554051, [-0.45272112, -0.45359729, -0.45118691,, -0.45648861, -0.45872112, -0.45590314, -0.45590314],
n [26]: fro n [27]: X_t n [28]: X_t ut[28]: ((8	[0.01782872, -0.02636986, 0.05196137,, 0.03036056,
n [30]: lr lr. uut[30]: ▼L Log	<pre>om sklearn.linear_model import LogisticRegression = LogisticRegression() .fit(X_train, y_train) .ogisticRegression() pred=lr.predict(X_test) pred.shape 64,)</pre>
n [33]: Y_r	
[[1 [In [37]: pri	176 6] 93 89]] int(classification_report(y_test,y_pred)) precision recall f1-score support 0 0.65 0.97 0.78 182 1 0.94 0.49 0.64 182 accuracy macro avg 0.80 0.73 0.71 364
wein [38]: X_r n [39]: X_r ut[39]: 415	macro avg
1 [40]: X_r 1 [40]: X_r 1 [41]: X_r 1 [42]: X_r 1 [42]: 415	new.shape , 101) new=X_new.drop('Class', axis=1) rew V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V91 V92 V93 V94 V95 V96 V97 V98 V99 V100 5 368.9 379.75 373.4 357.88 360.79 369.34 402.03 364.16 385.41 364.9 386.08 355.87 346.57 373.63 376.45 375.63 376.45 372.4 358.88 388.14 400.11 369.42
1 rov [43]: X_r t[43]: (1,	new.shape , 100) new = ss.fit_transform(X_new) pred_new=lr.predict(X_new)
t[46]: arr	pred_new ray([1], dtype=int64) .predict_proba(X_new) ray([[0.49567024, 0.50432976]])