AMC and OFDM in 5G-NR

Rohit Budhiraja

Simulation-Based Design of 5G Wireless Standards (EE698H)

Agenda for today

- Finish discussion on AMC and discuss OFDM in context of 5G-NR
- Reference Chap3 of the 5G-NR book for spectrum discussion
- Reference Chap10.1 and 10.2 of LTE Baker book for adaptive modulation and coding
- Reference Chap3 of the 4G LTE/LTE-A book for OFDM

Adaptive modulation and coding (recap)

- 5G systems achieve capacity using adaptive modulation and coding
- Block diagram of capacity achieving transceiver

- FEC encoder adds parity bits to input message bits to guarantee a low BLER
- FEC encoder should use large code-block lengths to guarantee a low BLER
- FEC encoder code rate $r = \frac{\text{Number of FEC input bits}}{\text{Number of FEC output bits}}$
- FEC encoder code rate r is always ≤ 1
- If SNR is 2.5 dB, capacity is 1.5 bps/Hz, we will use 4-QAM with a code rate of 3/4

Capacity achieving codes (recap)

• 5G NR uses capacity achieving LDPC codes

 Capacity achieving – Provide low BLER with reasonable code block length at reasonable SNR offset from the capacity curve

Adaptive modulation and coding in 5G NR (1)

MCS Index	Modulation Order Q _m	Target Code Rate 1024 × R	Spectral Efficiency
/MCS	MCS Table I		
0	2	120	0.2344
1	2	157	0.3066
2	2 2	193	0.3770
3	2	251	0.4902
4	2	308	0.6016
5	2	379	0.7402
6	2	449	0.8770
7	2	526	1.0273
8	2	602	1.1758
9	2	679	1.3262
10	4	340	1.3281
11	4	378	1.4766
12	4	434	1.6953
13	4	490	1.9141
14	4	553	2.1602
15	4	616	2.4063
16	4	658	2.5703
17	6	438	2.5664
18	6	466	2.7305
19	6	517	3.0293
20	6	567	3.3223
21	6	616	3.6094
22	6	666	3.9023
23	6	719	4.2129
24	6	772	4.5234
25	6	822	4.8164
26	6	873	5.1152
27	6	910	5.3320
28	6	948	5.5547
29	2	Reserved	
30	4	Reserved	
31	6	Reserved	

• UEs report MCS (modulation and coding scheme) to the BS instead of SNR

Adaptive modulation and coding in 5G NR (2)

ullet Above plots show BLER for LDPC with code block length of ${\it N}=6000$

Adaptive modulation and coding in 5G NR(3)

- Cellular systems are designed to achieve capacity and use capacity-achieving FEC codes (uncoded cellular system do not exist)
- AMC achieves capacity by switching modulation and code rate

Key reasons why OFDM in 5G (1)

- ullet Peak data rate = system bandwidth imes peak spectral efficiency
- For a given spectral efficiency, peak data rate is scaled by increasing bandwidth
- For increased bandwidth, channel estimation and equalization is extremely complicated

• OFDM simplifies the channel estimation and equalization problem

Key reasons why OFDM in 5G (2)

- UE calculates SNR for each subcarrier $\gamma_i = \frac{|h_i|^2 P}{N_c}$. Enables AMC implementation
 - UE averages SNR over a bunch of subcarriers to calculate a single SNR (MCS)
 - One popular way is Effective Exponential SNR (EESM)

$$\gamma_{eff} = -\lambda \ln \left(\frac{1}{N_c} \sum_{i=1}^{N_c} e^{-\frac{\gamma_i}{\lambda}} \right)$$

• λ is calibration parameter and N_c is the number of subcarriers

Key reasons why OFDM in 5G (2)

Help in exploiting frequency diversity with channel coding

OFDM Transmitter

• Consider a system with T_{μ} OFDM symbol duration and N_c subcarriers

Figure valid for time interval $mT_m \le t < (m+1)T_m$

- Subcarrier spacing should be $\Delta f = 1/T_u$ for orthogonal subcarriers
- For two subcarriers $f_{k1} = k_1 \Delta f$ and $f_{k2} = k_2 \Delta f$, orthogonality implies

$$\int_{mT_u}^{(m+1)T_u} e^{j2\pi k_1 \Delta f} t e^{-j2\pi k_2 \Delta f t} dt = 0 \qquad \text{for } k_1 \neq k_2$$

OFDM receiver

• OFDM receive signal is r(t) = x(t) + n(t)

