25
$$E = \frac{1}{4\pi E} \left[\int \frac{\Delta A}{R^2} \cos \theta \right] \frac{2}{\pi}$$
 $\int_{1}^{2} e^{-x^2 + \frac{\pi}{R^2}} \cos \theta = \frac{\pi}{R^2}$
 $E = \frac{1}{4\pi E} \left[\int \frac{A(2\pi e^2)^2}{(2+2\pi)^{2}} \right] \frac{2}{\pi}$
 $E = \frac{1}{4\pi E} \left[\frac{(\pi e^2)^2 2\pi e^2}{(2+2\pi)^{2}} \right] \frac{2}{\pi}$
 $E = \frac{1}{4\pi E} \left[\frac{(\pi e^2)^2 2\pi e^2}{(2+2\pi)^{2}} \right] \frac{2}{\pi}$
 $E = \frac{1}{4\pi E} \left[\frac{(\pi e^2)^2 2\pi e^2}{(2+2\pi)^{2}} \right] \frac{2}{\pi} \left[\frac{\pi}{R^2} \right] \frac{2}{\pi} \left[\frac{\pi}{R^2$

$$\frac{218}{218}$$
 $E_{+} = \frac{1}{316}$ V_{+} $E_{-} = \frac{1}{316}$ V_{-} $V_{-} = \frac{1}{316}$ $V_{+} = \frac{1}{316}$ $V_{+} = \frac{1}{316}$ $V_{+} = \frac{1}{316}$

4)
$$V = 4\pi\epsilon_0 \frac{\sqrt{2^2 R^2 R^2}}{\sqrt{2^2 R^2 R^2}} = 4\pi\epsilon_0 \ln(x + \sqrt{2^2 R^2}) |_{\nu_0}^{\nu_0} = \frac{1}{4\pi\epsilon_0} \ln(x + \sqrt{2^2$$