Logistic Regression And Classification Error Metrics

Learning Objectives

After completing this lecture, you will be able to:-

- Describe logistic regression
- Implement logistic function based optimization for any regression or classification problem
- Define and calculate the basic classification error metrics
- Utilize the advanced (compound) classification error metrics

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

What is this function?

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Relating to Linear Regression

Logistic Function

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Logistic Function

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Odds Ratio

$$\frac{P(x)}{1 - P_x} = e^{(\beta_0 + \beta_1 x)}$$

Log Odds

$$\log\left(\frac{P(x)}{1 - P_x}\right) = \beta_0 + \beta_1 x$$

Two features (nodes, age)

Three labels (survived, complications, lost)

Two features (nodes, age)

Three labels (survived, complications, lost)

Two features (nodes, age)

Three labels (survived, complications, lost)

Two features (nodes, age)

Three labels (survived, complications, lost)

Two features (nodes, age)

Three labels (survived, complications, lost)

Age

Assign most probable class to each region

Logistic Regression Syntax

Import the class containing the classification method

```
from sklearn.linear_model import LogisticRegression
```

Create an instance of the class

```
LR = LogisticRegression(penalty='12', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(x_train, y_train)
y_predict = LR.predict(x_test)
```

 Tune regularization parameters with cross-validation using LogisticRegressionCV

Classification Error Metrics

- Task: build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

Confusion Matrix

Predicted Predicted Negative

True Positive

(TP)

False Negative

(FN)

Type II Error

False Positive

(FP)

True Negative

(TN)

Type I Error

Actual

Positive

Actual

Negative

Accuracy: Predicting Correctly

Predicted Positive

Predicted Negative

Actual Positive

Actual Negative True Positive (TP)

False Negative (FN)

False Positive (FP)

True Negative (TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall: Identifying All Positive Instances

Recall (sensitivity) =
$$\frac{TP}{TP + FN}$$

Precision: Identifying Only Positive Instances

Predicted Positive

Predicted Negative

Actual Positive

Actual Negative True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

$$\frac{TP}{TP + FP}$$

Specificity: Avoiding False Alarms

Actual Positive

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative (FP)

True Negative (TN)

Specificity =
$$\frac{TN}{FP + TN}$$

Confusion Matrix Error Measurements

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN} = \frac{Recall \text{ or Sensitivity}}{Sensitivity} = \frac{TP}{TP + FN}$$
Precision =
$$\frac{TP}{TP + FN} = \frac{TP}{Sensitivity} = \frac{TP}{TN} = \frac{Precision \times Recall}{Precision + Recall}$$

$$F1 = 2 = \frac{Precision \times Recall}{Precision + Recall}$$

Receiver Operating Characteristic (ROC)

Evaluation of model at all possible thresholds

Area Under Curve (AUC)

Measures total area under ROC curve

Precision Recall Curve (PR Curve)

Measures trade-off between precision and recall

Multiple Class Error Metrics

$$Accuracy = \frac{TP1 + TP2 + TP3}{Total}$$

Most multi-class error metrics are similar to the binary versions – just expand elements as a sum

Classification Error Metrics Syntax

Import the desired error function

```
from sklearn.metrics import accuracy_score
```

Calculate the error on the test and predicted data sets

```
accuracy_value = accuracy_score(y_test, y_pred)
```

Lots of other error metrics and diagnostic tools

End of Lecture

Many thanks to Intel
Software for providing a
variety of resources for
this lecture series

