Network Routing

Computer Networks

Faculty of Information Technology Hanoi University

1. Definition (Network routing)

What is network routing?

- **Network Routing** is an umbrella term for the set of **protocols** that determine the path that data follows in order to travel across multiple networks from its source to its destination.
- Data is routed from its source to its destination through a series of routers, and across multiple networks.

Forwarding vs Routing

Forwarding

- Process of selecting an output port based on destination address and routing/switching table
- □ Simple and well-defined, performed locally at a node

Routing

- □ Process by which a routing table is built
 - How the network topology information is acquired
 - Determining the best path through the network
- Depends on complex distributed algorithms

Forwarding Table vs Routing Table

- Forwarding Table
 - Maps a MAC UID to an outgoing interface and/or MAC address of the next hop
 - Optimized for the lookup of data
 - Usually implemented in hardware
- Routing Table
 - Built by the routing algorithm
 - Maps a Network UID to next hop, cost, forwarding policy etc.
 - Optimized for calculating/managing changes in topology
 - Usually implemented in software

Example: Forwarding table

Host MAC Address	Port
00 00 80 45 FE 21	5
00 00 80 45 DA 47	3
00 40 00 80 45 FE	2
00 40 80 10 AA 21	1
00 00 80 00 FF AB	5

- Router is a small computer (hardware and software as in a computer).
 - CPU
 - □ RAM
 - □ NVRAM
 - □ ROM
 - Flash memory
 - □ IN/OUT Ports
 - IOS

Router Operates at Layers 1, 2, and 3

Red arrows indicate flow through the OSI layers.

- Router is centre of networks. It is used to connect networks (LAN, WAN).
- Router has some ports, each port belongs to different networks.

Routers direct packets to their proper destination. Routers connect different media.

Example: Routing table

2. Routing Protocols, Algorithms and Metric

Routing protocol at Network layer

- A major component of the network layer is routing protocol
- Routing protocols use routing algorithms
- Job of a routing algorithm: Given a set of routers with links connecting the routers, find a "good" path from the source to the destination

Modeling a Network

- A network can be modeled by a graph
 - Routers are represented by nodes
 - □ Physical links between routers are represented by edges
 - Attached computers are ignored
 - Each edge is assigned a weight representing the "cost" of sending a packet across that link
 - The total cost of a path is the sum of the costs of the edges

Network as a Graph

- Problem: Find lowest cost path between two nodes
- Factors
 - Static/Dynamic topology
 - Cost
 - Path length
 - Reliability
 - Delay
 - Bandwidth
 - Load
 - Communication cost

Routing Algorithms

- Routing algorithms that solve a routing problem are based on shortest-path algorithms
- Two types of routing algorithms
 - Non-Adaptive
 - form of <u>routing</u> that occurs when a router uses a manually-configured routing entry (by a network administrator)
 - Also called static routing
 - Adaptive
 - Dynamic information like current topology, load, delay,
 etc. to select routes is used
 - Also called dynamic routing

Routing Algorithms

- Correctness, simplicity and minimality
- Robustness
 - During years of continuous operation, should handle all kinds of hardware and software failures, changes in topology and traffic patterns etc. etc.
- Stability
- Fairness and Optimality
- Scalability
 - □ For routing inside autonomous systems, the internal routing protocols are used e.g., RIP (Interior Gateway Protocols IGP)
 - □ For routing between autonomous systems, external routing protocols like EGP (External Gateway Protocol), or BGP (Border Gateway Protocol) are used (Exterior Gateway Protocols EGP)

Shortest Path Routing

- If we know the topology of the network we can compute the shortest path using Graph theory
 - Shortest in terms of which metric
 - No. of hops, geographical distance, queuing and transmission delay, bandwidth, average traffic, communication cost, mean queue length, etc. etc. etc.
 - Once the graph is complete, use Dijkstra's algorithm

Shortest Path Routing

 Basic Idea: During each step, select a newly reachable node at the lowest cost, and add the edge to that node, to the graph built so far

Non-Adaptive Algorithms (static routing)

Non-Adaptive Algorithms

- Non Adaptive routing algorithm is also known as a static routing algorithm.
- When booting up the network, the routing information stores to the routers.
- Non Adaptive routing algorithms do not take the routing decision based on the network topology or network traffic.

Adaptive Algorithms (dynamic routing)

Problem of non-adaptive algorithm

Imagine maintaining static routing configurations for THIS network!

Routing Protocols Evolution and Classification

Exterior Gateway Interior Gateway Protocols **Protocols** Link State Routing Distance Vector Path Vector Protocols Routing Protocols RIP **IGRP EGP** Classful IS-IS Classless OSPFv2 BGPv4 RIPv2 **EIGRP** IPv6 **EIGRP** for OSPFv3 IS-IS for BGPv4 for IPv6 RIPng IPv6 IPv6

Highlighted routing protocols are the focus of this course.

a. Distance Vector Routing Protocol (DVRP)

- A type of Interior Gateway Protocols (IGP)
- Uses the Bellman-Ford algorithm to calculate paths
 - Each router calculates the distances between itself and all neighboring routers within the AS and stores this information as a table
 - 2. Each router periodically sends its table to all neighboring routers
 - When a router receives distance tables from its neighbors, it calculates the shortest routes to all other routers and updates its own table to reflect any changes
 - Upon receipt of an update, for each destination in its table, a router:
 - Compares the metric in its local table with the metric in the neighbor's table plus the cost of reaching that neighbor
 - If the path via the neighbor has a lower cost, the router updates its local table

	from A	via A	via B	via C	via D
	to A				
T=3	to B		3	25	
	to C		5	23	
	to D		10	28	

from B	via A	via B	via C	via D
to A	3		7	
to B				
to C	8		2	
to D	13		7	

from C	via A	via B	via C	via D
to A	23	5		15
to B	26	2		12
to C				
to D	33	9		5

from D	via A	via B	via C	via D
to A			10	
to B			7	
to C			5	
to D				

	from A	via A	via B	via C	via D	from B	via A	via B	via C	via D	from C	via A	via B	via C	via D	from [via A	via B	via C	via D
	to A					to A	3				to A	23				to A				
T=0	to B		3			to B					to B		2			to B				
	to C			23		to C			2		to C					to C			5	
	to D					to D					to D				5	to D				
'	£ ^	^	D		D	f D	A	D			£ C	A	ui- D	اء دا		£	Σ:- Λ	D		
	from A	via A	via B	via C	via D	from B	via A	via B		via D	from C		via B	via C	via D	Trom I	via A	VIA B		via D
	to A					to A	3		25		to A	23	5			to A			28	
T=1	to B		3	25		to B					to B	26	2			to B			7	
	to C		5	23		to C	26		2		to C					to C			5	
	to D			28		to D			7		to D				5	to D				
	from A	via A	via B	via C	via D	from B	via A	via B	via C	via D	from C	via A	via B	via C	via D	from [) via A	via B	via C	via D
	to A					to A	3		7		to A	23	5		33	to A			10	
T=2	to B		3	25		to B					to B	26	2		12	to B			7	
	to C		5	23		to C	8		2		to C					to C			5	
	to D		10	28		to D	31		7		to D	51	9		5	to D				
	c A					r D														· -
	from A	via A	via B	via C	via D	from B	via A	via B	via C	via D	from C		via B			from I) via A	via B	via C	via D
T=3	to A					to A	3		7		to A	23	5		15	to A			10	
	to B		3	25		to B					to B	26	2		12	to B			7	
	to C		5	23		to C	8		2		to C					to C			5	
	to D		10	28		to D	13		7		to D	33	9		5	to D				

Input from A, I, H, K, and the new routing table for J

Qs: How to estimate route from J to G?

Critique of DVRP

- Advantages
 - Simple to handle and configure
 - □ Less computational complexity & message overhead
- Disadvantages
 - □ Does not scale well
 - Slow convergence
 - □ Convergence is the process of getting consistent routing information to all nodes
 - Count-to-Infinity Problem ('Routing by Rumour')

The count-to-infinity problem

- Assume A was down and just came back online
 - Its neighbors will update their tables with this new information hop-by-hop

Basic problem: when X tells Y it has a path to Z, Y has no way of knowing whether it itself lies on that path

Implementations of DVRP

- Examples of real world implementation of distance-vector routing algorithm are:
 - □ Routing Information Protocol (RIP)
 - Interior Gateway Routing Protocol (IGRP)

b. Link State Routing Protocol

- The network topology and all link costs are known.
- Algorithm used: Dijkstra's Algorithm
- When a network link changes state, a notification, called a *link state advertisement* (LSA) is *flooded* throughout the network

Flooding

Basic idea: Forward an incoming packet to every outgoing line, except the one it came through

Flooding

- Basic problem: How to avoid "drowning by packets"?
 - $lue{}$ Use a hop counter: after a packet has been forwarded across N routers, it is discarded
 - Difficult find the right hop count
 - Be sure to flood a packet only once (i.e. avoid directed cycles)
 - Add a sequence number to each packet's header
 - Each router maintains a private sequence number. When it sends a new packet, it copies the sequence number into the packet, and increments its private sequence number
 - For each source router S, a router:
 - □ Keeps track of the highest sequence number seen from S
 - Whenever it receives a packet from S containing a sequence number lower than the one stored in its table, it discards the packet
 - □ Otherwise, it updates the entry for S and floods the packet on
 - □ **Selective Flooding**: only in the direction that makes sense

When to use Flooding

- Flooding makes sense only when robustness is needed
 - In military applications, the network must remain robust in the face of (extreme) hostility
 - Updating routing tables or distributed databases concurrently

Link State Routing Protocol

- All the routers note the change, and recompute their routes accordingly
 - □ It is done using only the local copy of the map, and without communicating in any other way with any other node, and calculating a sink tree to the other routers
 - OSPF (Open Shortest Path First) and IS-IS (Intermediate System to Intermediate System) are implementations of Link State routing algorithm

Link State Routing

Each router must do the following:

- 1. Discover its neighbors, learn their network address
- 2. Measure the delay or cost to each of its neighbors
- 3. Construct a packet telling all it has just learned
- 4. Send this packet to all other routers
- 5. Compute the shortest path to every other router

More details:

Learning about the Neighbors

- Periodically send HELLO packets on each line
 - Each router replies with its unique ID

Measuring Line Cost

 Just send an ECHO packet through each interface, and measure the round-trip delay

Building Link State Packets

- Each node periodically makes up a short message, the link-state advertisement or the link-state packet, which:
 - □ Identifies the node which is producing it
 - Identifies all the other nodes to which it is directly connected
 - Includes a *sequence number*, which increases every time the source node makes up a new version of the message

Building Link State Packets

(a) A subnet

(b) The link state packets for this subnet

- When to build LSPs
 - Periodically
 - Based on events

Distributing the Link State Packets

- Problem: Distributing LSPs with integrity and reliability
 - Inefficient distribution leads to different versions of topology → inconsistencies, loops, unreachable hosts, etc. etc.
- Distribution algorithm
 - Flooding
 - Flood is controlled by remembering the (source router, seq no.)
 pair
 - Duplicates and old seq. nos. are discarded

Distributing the Link State Packets

- Problems with Flooding
 - 1. If the sequence no. wraps around
 - 2. If a router crashes, it will lose track of its sequence nos.
 - 3. An error in seq. no during transmission

Solution

- Use 32-bit Sequence numbers
- Include *Age* in each packet and decrement by 1 every second and every time when its forwarded to a router
- To increase reliability, all LSPs are acknowledged and checksumed

Distributing the Link State Packets

The packet buffer for router B

Source	Seq.	Age	Sei	nd fla	ags F	AC	K fla	igs F	Data E 8	6 7 F
А	21	60	0	1	1	1	0	0		
F	21	60	1	1	0	0	0	1		
E	21	59	0	1	0	1	0	1		
С	20	60	1	0	1	0	1	0		
D	21	59	1	0	0	0	1	1		

Avoids the count to infinity problem since all routers get each other router's information

Compute the shortest path to every other router

- Each router constructs the entire subnet graph based on the LSP information
- No link is considered to have been correctly reported unless the two ends agree
 - □ If one node reports that it is connected to another, but the other node does not report that it is connected to the first, there is a problem, and the link is not included on the map
- Each router uses Dijkstra's algorithm to calculate shortest paths based on the current values in its database
- Because each router makes its calculation using the same information, better routing decisions are made

LS vs DV Routing

- Pros
 - more reliable,
 - more scalable,
 - more convergent,
 - less bandwidth-intensive
 - The link-state packets that are sent over the network are smaller than the packets used in distance-vector routing
 - DV requires a node's entire routing table to be transmitted, while in linkstate routing only information about the node's immediate neighbors are transmitted

LS vs DV Routing

- Cons
 - More complex
 - More compute intensive
 - More memory-intensive
 - One LSP for every other node in the network

c. Border Gateway Protocol

An Exterior Gateway Protocol

Intro to BGP

- Core routing protocol of the Internet
- Designates network reachability among autonomous systems (AS)
 - Uses Path Vector algorithm
- Current version of BGP is 4 (RFC 4271)

Intra and Inter-AS routing

- Performance vs Policy
 - □ Intra-AS (IGP-Interior Gat)
 - Move packets as efficiently as possible from source to destination within a single admin domain (Focus is on performance)
 - □ Inter-AS (EGP)
 - Admin wants control over how traffic is routed (Focus is on policy)
- Scalability
 - □ Hierarchical routing saves table size, reduced update traffic

Inter-AS routing in the Internet: BGP

- Local Traffic
 - Traffic that originates at or terminates on nodes within an AS
- Transit Traffic
 - □ Traffic that passes through an AS

Internet through BGP's eyes

- The Internet consists of three types of Autonomous Systems (AS) interconnected with each other
 - Stub AS
 - An AS that has only a single connection to one other AS
 - Will carry only local traffic
 - Multihomed AS
 - An AS that has connections to more than one other AS but refuses to carry transit traffic
 - □ Transit AS
 - An AS that has connections to more than one other AS and can carry both local and transit traffic

Internet through BGP's eyes

Goals of BGP

- To find *any* path to destination that is loop-free
 - i.e. we are more concerned with reachability than optimality
- Support complex routing policies involving political, security or economic issues

Path Vector Algorithm

- A variant of DV algorithm
 - □ Instead of maintaining and exchanging *costs* to each destination, BGP router keeps track of *path*

THANK YOU!

Questions & Comments