Math 211 - Week 4 - Determinants

RJ Vestrum

October 16, 2019

If A is a 3x3 matrix with a zero determinant, then one column must be a multiple of some other column. *True or False?*

If A is a 3x3 matrix with a zero determinant, then one column must be a multiple of some other column. *True or False?*

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} =$$

If A is a 3x3 matrix with a zero determinant, then one column must be a multiple of some other column. *True or False?*

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{vmatrix} =$$

If A is a 3x3 matrix with a zero determinant, then one column must be a multiple of some other column. True or False?

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0 \qquad \begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{vmatrix} = 0$$

False, Det(A) = 0 if one column is a linear combination of up to (n-1) columns

This would be the same if the question asked about rows.

If any two columns of a square matrix are equal, then the determinant of the matrix equals zero. *True or False?*

If any two columns of a square matrix are equal, then the determinant of the matrix equals zero. *True or False?*

True, Quick elementary column operation to get a column of 0s, expand over that column

If any two columns of a square matrix are equal, then the determinant of the matrix equals zero. *True or False?*

True, Quick elementary column operation to get a column of 0s, expand over that column

What is a elementary column operation??

For A and B two nxn matrices, det(A+B) = det(A) + det(B)True or False?

For A and B two nxn matrices, det(A+B) = det(A) + det(B)True or False?

Take
$$A = B = I_n$$

 $\det(A + B) = \det(2A) = \det(2I_n) = 2^n$
 $\det(A) + \det(B) = \det(I_n) + \det(I_n) = 2 \det(I_n) = 2$

For A and B two nxn matrices, det(A+B) = det(A) + det(B)True or False?

Take
$$A = B = I_n$$

 $\det(A + B) = \det(2A) = \det(2I_n) = 2^n$
 $\det(A) + \det(B) = \det(I_n) + \det(I_n) = 2 \det(I_n) = 2$

False

For A an nxn matrix, det(3A) = 3 det(A) True or False?

For A an nxn matrix, det(3A) = 3 det(A) True or False?

False, $det(3A) = 3^n det(A)$, Take $A = I_2$ to confirm

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

$$A^{-1}A=I_n$$

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

$$\begin{aligned} A^{-1}A &= I_n \\ \det(A^{-1}A) &= \det(I_n) \end{aligned}$$

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

$$A^{-1}A = I_n$$

 $\det(A^{-1}A) = \det(I_n)$
 $\det(A^{-1})\det(A) = 1$

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

$$A^{-1}A = I_n$$

 $\det(A^{-1}A) = \det(I_n)$
 $\det(A^{-1})\det(A) = 1$
 $\det(A^{-1}) = \frac{1}{\det(A)} = \det(A)^{-1}$

If
$$A^{-1}$$
 exists then $det(A^{-1}) = det(A)^{-1}$ True or False?

$$A^{-1}A = I_n$$

 $\det(A^{-1}A) = \det(I_n)$
 $\det(A^{-1})\det(A) = 1$
 $\det(A^{-1}) = \frac{1}{\det(A)} = \det(A)^{-1}$
True

If B is obtained by multiplying a single row of A by 4 then det(B) = 4 det(A) *True or False?*

If B is obtained by multiplying a single row of A by 4 then det(B) = 4 det(A) *True or False?*

True

For A an nxn matrix, $det(-A)=(-1)^n det(A)$ True or False?

Week 4 - Question 5 $\overline{(g)}$

For A an nxn matrix, $det(-A)=(-1)^n det(A)$ True or False?

True

If A is a real nxn matrix, then $det(A^TA) \ge 0$ True or False?

If A is a real nxn matrix, then $det(A^TA) \ge 0$ True or False?

True
$$det(A^TA) = det(A^T)det(A) = det(A)det(A) = det(A)^2 \ge 0$$

Cramers rule is useful for finding solutions to systems of linear equations in which there is an infinite set of solutions. *True or False?*

Cramers rule is useful for finding solutions to systems of linear equations in which there is an infinite set of solutions. *True or False?*

Cramers rule

For a system:

$$Ax = b$$

where nxn matrix A has a nonzero determinant, and the vector $x = (x_1, \dots, x_n)^T$ is the column vector of the variables.

$$x_i = \frac{\det(A_i)}{\det(A)}$$
 $i = 1, \dots, n$

where A_i is the matrix formed by replacing the i-th column of A by the column vector b.

Cramers rule is useful for finding solutions to systems of linear equations in which there is an infinite set of solutions. *True or False?*

Cramers rule

For a system:

$$Ax = b$$

where nxn matrix A has a nonzero determinant, and the vector $x = (x_1, \dots, x_n)^T$ is the column vector of the variables.

$$x_i = \frac{\det(A_i)}{\det(A)}$$
 $i = 1, \ldots, n$

where A_i is the matrix formed by replacing the i-th column of A by the column vector b. **False**