

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平10-229598

(43) 公開日 平成10年(1998)8月25日

(51) Int Cl.
H 04 R 25/00

識別記号

P I
H 04 R 25/00

M

審査請求 未請求 請求項の数2 OL (全4頁)

(21) 出願番号 特願平9-30151
 (22) 出願日 平成9年(1997)2月14日

(71) 出願人 000115636
 リオン株式会社
 東京都国分寺市東元町3丁目20番41号
 (72) 発明者 坂本 真一
 東京都国分寺市東元町3丁目20番41号 リ
 オン株式会社内
 (72) 発明者 後藤 克彦
 東京都国分寺市東元町3丁目20番41号 リ
 オン株式会社内
 (74) 代理人 弁理士 小山 有 (外1名)

(54) 【発明の名称】 デジタル補聴装置

(57) 【要約】

【課題】 簡単に演算処理装置(CPU)が実行する補聴処理プログラムを変更することができない。
 【解決手段】 外部音に対応した出力信号を出力するマイクロホン3と、このマイクロホン3のアナログ出力信号をデジタル信号に変換するA/D変換器4と、補聴処理の手順を決定する補聴処理プログラムを格納したRAM5と、このRAM5に格納されている補聴処理プログラムに従ってA/D変換器4の出力信号を処理するCPU6と、このCPU6のデジタル出力信号をアナログ信号に変換するD/A変換器7と、このD/A変換器7の出力信号を使用者の外耳道に音響信号として導くイヤホン8からなるデジタル補聴装置本体1に、RAM5に格納されている補聴処理プログラムを書き換えることができるメモリ書き換え手段2を備える。

(2)

特開平10-229598

【特許請求の範囲】

【請求項1】 外部音に対応した出力信号を出力するマイクロホンと、このマイクロホンのアナログ出力信号をデジタル信号に変換するA/D変換器と、補聴処理の手順を決定する補聴処理プログラムを格納した書き換え可能なメモリと、この書き換え可能なメモリに格納されている補聴処理プログラムに従って前記A/D変換器の出力信号を処理する演算処理装置と、この演算処理装置のデジタル出力信号をアナログ信号に変換するD/A変換器と、このD/A変換器の出力信号を使用者の聴覚に供給する信号供給手段からなることを特徴とするデジタル補聴装置。

【請求項2】 請求項1記載のデジタル補聴装置において、前記書き換え可能なメモリに格納されている補聴処理プログラムを書き換えるメモリ書き換え手段を備えることを特徴とするデジタル補聴装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、補聴処理の手順を決定するプログラムを外部から容易に変更することができるデジタル補聴装置に関するものである。

【0002】

【従来の技術】従来の演算処理装置(CPU)を内蔵したデジタル補聴器のブロック図を図2に示す。図2において、マイクロホン10は、外部音に対応した出力信号を出力する。マイクロホン10の出力信号(アナログ信号)は、A/D変換器20によりデジタル信号に変換された後、CPU30に送られる。CPU30では、読み出し専用メモリ(ROM)40に格納されている補聴処理の手順を決定する補聴処理プログラムに従ってA/D変換器20の出力信号(デジタル信号)を信号処理する。信号処理されたデジタル信号は、D/A変換器50によりアナログ信号に変換され、更にイヤホン60より音響信号として使用者の外耳道に導かれる。

【0003】ここで、ROM40に格納されている補聴処理プログラムは、難聴者の聞こえを改善するために創作されたデジタル信号処理のアルゴリズムであり、難聴者個人個人に最も適したもののが選択されている。

【0004】

【発明が解決しようとする課題】難聴者の聞こえに関する研究は、様々な分野の研究機関で日々行われておらず、ROM40に書き込まれるべき、聞こえの改善のための補聴処理プログラムは、年々新たな方式が開発されてきている。新しい補聴処理プログラムが創作された場合、もしくは現在の補聴処理プログラムの改良版が開発された場合、その補聴処理プログラムによって難聴者は現在使用中の補聴器以上の聞こえを得られる可能性が高い。従って、ROM40の内容は、書き換え可能であることが望ましい。

【0005】しかし、補聴器のように小型化が強く要求

される機器において、ROM40を容易に交換できる機能を持たせるのは機械的に非常に困難であり、無理にこの機構を搭載しようとすればICソケットなどが必要となり機器の大型化は避けられない。補聴器は、難聴者が日常的に使用する機器であり、使用者の日常生活での快適性を考えた場合、形状が大型化することは好ましくないので、図2に示すデジタル補聴器においては、ROM40は交換不可能な構造となっている。

【0006】従って、より取りやすい補聴処理プログラムが開発されて場合、現在使用しているデジタル補聴器のプログラムが自分の難聴度に適さなくなった場合等には、補聴器全部を買い換える必要はないという不都合があった。また、デジタル補聴器は、通常のアナログ式の補聴器に比較して高価であるので、買い換えはユーザーに大きな経済的負担を与えることになる。

【0007】本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、演算処理装置(CPU)が行う補聴処理の手順を決定する補聴処理プログラムを簡単に書き換えることができるデジタル補聴装置を提供しようとするものである。

【0008】

【課題を解決するための手段】上記課題を解決すべく本発明は、外部音に対応した出力信号を出力するマイクロホンと、このマイクロホンのアナログ出力信号をデジタル信号に変換するA/D変換器と、補聴処理の手順を決定する補聴処理プログラムを格納した書き換え可能なメモリと、この書き換え可能なメモリに格納されている補聴処理プログラムに従って前記A/D変換器の出力信号を処理する演算処理装置と、この演算処理装置のデジタル出力信号をアナログ信号に変換するD/A変換器と、このD/A変換器の出力信号を使用者の聴覚に供給する信号供給手段からなるものである。

【0009】また、前記書き換え可能なメモリに格納されている補聴処理プログラムを書き換えるメモリ書き換え手段を備えることもできる。

【0010】

【発明の実施の形態】以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係るデジタル補聴装置の構成図である。

【0011】デジタル補聴装置は、図1に示すように、デジタル補聴装置本体1と、デジタル補聴装置本体1とは別体に設けられたメモリ書き換え手段2からなる。

【0012】デジタル補聴装置本体1は、外部音に対応した出力信号を出力するマイクロホン3と、マイクロホン3のアナログ出力信号をデジタル信号に変換するA/D変換器4と、補聴処理の手順を決定する補聴処理プログラムを格納したRAM5と、RAM5に格納されている補聴処理プログラムに従ってA/D変換器4の出力信号を処理するCPU6と、CPU6のデジタル出力信号

(3)

特開平10-229598

をアナログ信号に変換するD/A変換器7と、D/A変換器7の出力信号を音響信号に変換して使用者の外耳道に導くイヤホン8からなる。

【0013】なお、本実施の形態の場合、RAM5はフラッシュメモリで構成しているので、電源のバックアップがなくとも記憶内容を保持できる。

【0014】一方、メモリ書き換え手段2は、デジタル補聴装置本体1の電源として直接的に電力を供給する電源供給部2a、RAM5の内容を書き換えるメモリ書き換え部2b、およびCPU6の起動に関する制御信号を出力するCPU制御部2cとからなる。

【0015】また、メモリ書き換え手段2にパーソナルコンピュータを適用し、電源供給部2aの機能、メモリ書き換え部2bの機能、およびCPU制御部2cの機能を、パーソナルコンピュータに負わせることもできる。その場合、パーソナルコンピュータの記憶部にRAM5の内容を書き換えるためのプログラム及び新たにRAM5に入力する補聴処理プログラムを記憶させることもできる。

【0016】補聴処理プログラムとしては、例えば特公平4-17520号公報、特開平3-245700号公報及び特開平3-284000号公報に記載されているようなものを適用する。これらの公報には、様々な難聴者を対象にした聞こえの改善をはかるための補聴処理アルゴリズムについての代表例が記載されている。

【0017】特公平4-17520号公報には、周波数圧縮型補聴器が記載されている。これには、高周波数領域の聴力が低下した難聴者（高音難聴）のために、入力音の周波数を低周波数領域に向けて圧縮する処理が示されている。高音難聴は、耳に入力された音の高周波数成分を聞き取ることができないために、しばしば言葉の聞き違いを起こしたり、電話の音や虫の声などの周波数の高い音を聞き漏らす。周波数圧縮は、このような難聴者のために、デジタル信号処理により入力音の周波数を低く交換する処理である。

【0018】特公平4-17520号公報に記載されている周波数圧縮法は、このような通常の圧縮処理に加えて、入力音をPARCOR分析して、様々な音響パラメータを抽出し、このパラメータの値を変更して再合成するものである。このことにより、単に入力音の周波数を低くするだけではなく、音声のピッチ周波数だけは低くしないで入力の状態を保持したり、周波数の高い無聲音は、通常よりも大きく圧縮するといった幅広い処理が行えるようになっている。

【0019】上述したデジタル補聴装置では、デジタル補聴装置本体1に電源を供給する電源供給部2aと、CPU6が実行する補聴処理プログラムをRAM5に記憶させ、更にRAM5に記憶した補聴処理プログラムを書き換えるためのメモリ書き換え部2b、およびCPU6に制御信号を出力するCPU制御部2cの機能を有する

メモリ書き換え手段2を備えているので、簡単にCPU6の補聴処理の手順を変更することができる。

【0020】書き換えの手順としては、始めに、メモリ書き換え手段2を操作して、電源供給部2aからデジタル補聴装置本体1に電源を供給する。次いで、CPU6にCPU制御部2cからCPUオフ信号を送り、CPU6のアドレスバス及びデータバスを電気的に開放した後、RAM5のプログラムを書き換えるようになる。その後、CPU6にCPU制御部2cからCPUオン信号を送ると、CPU6は起動し、書き換え後のプログラムに従って補聴処理をするようになる。補聴音が適正でないときには、同様の手順で、次々に、異なるアルゴリズムに基づいて作成された補聴処理プログラムで処理される補聴音を試験することができる。

【0021】従って、補聴器装用者の難聴度が進行した場合等、これに応じた処理手順にすることが補聴処理プログラムを選択することにより短時間で可能となる。これにより、補聴器を買い換えることなく、常に、最適の補聴特性を備えるデジタル補聴装置本体を得ることができる。また、オーディオロジーの発展に伴って優れた特性を備える補聴処理のアルゴリズムが開発された場合にも、すばやく対応できる。

【0022】なお、上述の実施の形態においては、処理結果を使用者の聴覚に伝達する手段として、イヤホン8を使用しているが、本発明はこれに限定されず、電気的に直接、聴覚を刺激する装置でもよいし、またバイブレータのような耳小骨等を駆動する装置であってもよい。

【0023】また、上述の実施の形態においては、外部音を取り入れる手段としてマイクロホン3を使用しているが、本発明はこれに限定されず、テレビ、ラジオ、電話機等の他の音響装置の音声信号出力端子の出力を直接入力としてもよい。こうすることにより、聴覚障害者は、上述の装置の出力する信号を直接的に聴取することができる。

【0024】さらに、上述の実施の形態においては、演算処理装置として、中央演算処理装置(CPU)6を使用しているが、メモリによりプログラム可能なデジタル回路であってもよい。

【0025】

【発明の効果】以上説明したように本発明によれば、補聴処理の手順を決定する補聴処理プログラムを書き換え可能メモリに格納するので、メモリを取り換えることなく容易に補聴処理プログラムを変更することができる。

【0026】また、メモリ書き換え手段を使用して書き換え可能メモリの内容を書き換えれば、演算処理装置の補聴処理手順を簡単に変更することができるので、現有的デジタル補聴装置を買い換えることなく、最新または最新の補聴処理機能による利益を享受することができる。

【図面の簡単な説明】

(4)

特開平10-229598

【図1】本発明に係るデジタル補聴装置の構成図

【図2】従来のデジタル補聴器のブロック図

【符号の説明】

1…デジタル補聴装置本体、2…メモリ書き換え手段、
 2 a…電源供給部、2 b…メモリ書き換え部、2 c…C
 3…マイクロホン、4…A/D変換器、5…
 6…書き換え可能メモリ（RAM）、7…演算処理装置
 （CPU）、8…D/A変換器、9…信号供給手段（イヤホン）。

【図1】

【図2】

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10229598 A
 (43) Date of publication of application: 25.08.1998

(51) Int. Cl H04R 25/00

(21) Application number: 09030151
 (22) Date of filing: 14.02.1997

(71) Applicant: RION CO LTD
 (72) Inventor: SAKAMOTO SHINICHI
 GOTO KATSUHIKO

(54) DIGITAL HEARING AID DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To easily change a hearing aid processing program by processing the output signals of an A/D converter for converting the output signals of a microphone corresponding to the hearing aid processing program stored in a rewritable memory, D/A converting the digital output signals and supplying them to the hearing sensation of a user.

SOLUTION: A memory rewrite means 2 provided separately from a digital hearing aid device main body 1 is operated, power is supplied from a power supply part 2a to the hearing aid device main body 1, CPU OFF signals are sent from a CPU control part 2c and the address and data bus of a CPU 6 are electrically opened. Then, the hearing aid processing program for deciding the procedure of a hearing aid processing stored in an RAM 5 composed of a flash memory is rewritten. Thereafter, CPU ON signals are sent from the CPU

control part 2c, the CPU 6 is activated and the hearing aid processing is performed corresponding to the program after rewrite. When hearing aid sound is not appropriate, the hearing aid sound based on different algorithm is successively tried by a similar procedure.

COPYRIGHT: (C)1998,JPO

