Boston Housing

First Part

Preparation

```
Import modules for analysis
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import scipy.stats
```

Create dataframe

```
boston_house = pd.read_csv('BostonHousing.csv')
```

EDA

Check data

boston_house

`	crim	zn	indus	chas	nox	rm	age	dis	rad	tax
0	0.00632	18.0	2.31	Θ	0.538	6.575	65.2	4.0900	1	296
1	0.02731	0.0	7.07	Θ	0.469	6.421	78.9	4.9671	2	242
2	0.02729	0.0	7.07	Θ	0.469	7.185	61.1	4.9671	2	242
3	0.03237	0.0	2.18	Θ	0.458	6.998	45.8	6.0622	3	222
4	0.06905	0.0	2.18	Θ	0.458	7.147	54.2	6.0622	3	222
501	0.06263	0.0	11.93	Θ	0.573	6.593	69.1	2.4786	1	273
502	0.04527	0.0	11.93	Θ	0.573	6.120	76.7	2.2875	1	273
503	0.06076	0.0	11.93	Θ	0.573	6.976	91.0	2.1675	1	273
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273

```
lstat
     ptratio
                    b
                               medv
0
        15.3
               396.90
                        4.98
                               24.0
                               21.6
1
        17.8
               396.90
                        9.14
2
        17.8
               392.83
                        4.03
                               34.7
3
        18.7
               394.63
                        2.94
                               33.4
4
        18.7
               396.90
                        5.33
                               36.2
        21.0
               391.99
                        9.67
                               22.4
501
502
        21.0
               396.90
                        9.08
                               20.6
        21.0
                               23.9
503
              396.90
                        5.64
        21.0
               393.45
                               22.0
504
                        6.48
505
        21.0 396.90
                        7.88
                               11.9
```

[506 rows x 14 columns]

The description of all the features:

- CRIM: Per capita crime rate by town
- ZN: Proportion of residential land zoned for lots over 25,000 sq. ft
- INDUS: Proportion of non-retail business acres per town
- CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX: Nitric oxide concentration (parts per 10 million)
- RM: Average number of rooms per dwelling
- AGE: Proportion of owner-occupied units built prior to 1940
- DIS: Weighted distances to five Boston employment centers
- RAD: Index of accessibility to radial highways
- TAX: Full-value property tax rate per 10,000 dollars
- PTRATIO: Pupil-teacher ratio by town
- B: proportion of American African by town
- LSTAT: Percentage of lower status of the population
- MEDV: Median value of owner-occupied homes in \$1000s TARGET

boston_house.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	crim	506 non-null	float64
1	zn	506 non-null	float64
2	indus	506 non-null	float64
3	chas	506 non-null	int64
4	nox	506 non-null	float64
5	rm	506 non-null	float64

```
506 non-null
                             float64
6
    age
7
    dis
             506 non-null
                             float64
8
             506 non-null
                             int64
    rad
9
             506 non-null
    tax
                             int64
10 ptratio
             506 non-null
                             float64
11
             506 non-null
                             float64
    b
12
   lstat
             506 non-null
                             float64
13 medv
             506 non-null
                             float64
```

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

Check NA

boston_house.isna().sum()

crim	0	
zn	0	
indus	0	
chas	0	
nox	0	
rm	0	
age	0	
dis	0	
rad	0	
tax	0	
ptratio	0	
b	0	
lstat	0	
medv	0	
dtype:	int64	

Lets see on descriptive statistics

boston_house.describe()

	crim	zn	indus	chas	nox
rm \					
count 50	96.000000	506.000000	506.000000	506.000000	506.000000
506.00000	90				
mean	3.613524	11.363636	11.136779	0.069170	0.554695
6.284634					
std	8.601545	23.322453	6.860353	0.253994	0.115878
0.702617					
min	0.006320	0.000000	0.460000	0.000000	0.385000
3.561000					
25%	0.082045	0.000000	5.190000	0.000000	0.449000
5.885500					
50%	0.256510	0.000000	9.690000	0.000000	0.538000
6.208500					
75%	3.677083	12.500000	18.100000	0.000000	0.624000
6.623500					

max 8.7800	88.976200 000	100.000000	27.740000	1.000000	0.871000
	age	dis	rad	tax	ptratio
b \ count	506.000000	506.000000	506.000000	506.000000	506.000000
506.00					
mean 356.67	68.574901	3.795043	9.549407	408.237154	18.455534
std	28.148861	2.105710	8.707259	168.537116	2.164946
91.294					
min 0.3200	2.900000	1.129600	1.000000	187.000000	12.600000
25%	45.025000	2.100175	4.000000	279.000000	17.400000
375.37					
50% 391.44		3.207450	5.000000	330.000000	19.050000
391.44 75%		5.188425	24.000000	666.000000	20.200000
396.22					
max	100.000000	12.126500	24.000000	711.000000	22.000000
396.90	00000				
	lstat	medv			
count	506.000000	506.000000			
mean	12.653063	22.532806			
std	7.141062	9.197104			
min	1.730000	5.000000			
25%	6.950000	17.025000			
50%	11.360000	21.200000			
75%	16.955000	25.000000			
max	37.970000	50.000000			

Evaluate the medv distribution. We can see the distribution of target close to normal, except margin measure nearly 50.000\$. So we need to use cook distance to select appropriate observation

```
sns.histplot(boston_house.medv, stat='density')
<AxesSubplot:xlabel='medv', ylabel='Density'>
```


Create target and feature dataframes. And start to analyse

boston_house_target = boston_house.medv
boston_house_feature = boston_house.drop('medv', axis=1)
boston_house_feature

`	crim	zn	indus	chas	nox	rm	age	dis	rad	tax
0	0.00632	18.0	2.31	Θ	0.538	6.575	65.2	4.0900	1	296
1	0.02731	0.0	7.07	Θ	0.469	6.421	78.9	4.9671	2	242
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222
501	0.06263	0.0	11.93	Θ	0.573	6.593	69.1	2.4786	1	273
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273
504	0.10959	0.0	11.93	Θ	0.573	6.794	89.3	2.3889	1	273

```
505 0.04741 0.0 11.93 0 0.573 6.030 80.8 2.5050 1 273
```

```
ptratio
                    b
                       lstat
0
        15.3
               396.90
                        4.98
1
               396.90
                        9.14
        17.8
2
        17.8
               392.83
                        4.03
3
               394.63
                        2.94
        18.7
4
               396.90
        18.7
                        5.33
               391.99
501
        21.0
                        9.67
502
        21.0
               396.90
                        9.08
503
        21.0
               396.90
                        5.64
        21.0
               393.45
504
                        6.48
505
        21.0
              396.90
                        7.88
```

[506 rows x 13 columns]

Standardization and linear model

Descriptive statistics demonstrates that features obtain different std. It can (and will) influence linear model so we have to standardize this dataset. However, previously look on original data analysis

```
X = sm.add_constant(boston_house_feature)
model = sm.OLS(boston_house_target, X)
results = model.fit()
print(results.summary())
```

OLS Regression Results

```
======
Dep. Variable:
                                  medv
                                         R-squared:
0.741
Model:
                                   0LS
                                         Adj. R-squared:
0.734
Method:
                                         F-statistic:
                         Least Squares
108.1
Date:
                     Wed, 14 Dec 2022
                                         Prob (F-statistic):
6.72e-135
Time:
                              01:38:00
                                         Log-Likelihood:
-1498.8
                                         AIC:
No. Observations:
                                   506
3026.
Df Residuals:
                                         BIC:
                                   492
3085.
Df Model:
                                    13
```

Covariance Type: nonrobust

========	========	========	========	========	========
0.975]		std err	t	P> t	[0.025
const 46.487 crim -0.043 zn 0.073 indus 0.141 chas 4.380 nox -10.262 rm 4.631 age 0.027 dis -1.084 rad 0.436 tax -0.005 ptratio -0.696 b 0.015 lstat -0.425 ========= Omnibus:	coef 36.4595 -0.1080 0.0464 0.0206 2.6867 -17.7666 3.8099 0.0007 -1.4756 0.3060 -0.0123 -0.9527 0.0093 -0.5248		7.144 -3.287 3.382 0.334 3.118 -4.651 9.116 0.052 -7.398 4.613 -3.280 -7.283 3.467 -10.347		[0.025
1.078 Prob(Omnibu	s):			-watson: -Bera (JB):	
783.126 Skew: 8.84e-171 Kurtosis: 1.51e+04			Prob(J 281 Cond.		
========	=======	========		=======	========

======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Adj. R-squared: 0.734 and p-value = 6.72e-135 - very good for raw data but it can not reflect true dependance between target and features. Lets do standardization

```
mean_param = boston_house_feature.mean(axis=0)
stds param = boston house feature.std(axis=0)
```

scaled_features = (boston_house_feature - mean_param) / stds_param
scaled features

```
crim
                            indus
                                       chas
                     zn
                                                  nox
                                                             rm
age \
    -0.419367   0.284548   -1.286636   -0.272329   -0.144075   0.413263   -
0.119895
    -0.416927 -0.487240 -0.592794 -0.272329 -0.739530 0.194082
0.366803
    -0.416929 -0.487240 -0.592794 -0.272329 -0.739530 1.281446 -
0.265549
    -0.416338 -0.487240 -1.305586 -0.272329 -0.834458 1.015298 -
0.809088
    -0.412074 -0.487240 -1.305586 -0.272329 -0.834458 1.227362 -
0.510674
501 -0.412820 -0.487240 0.115624 -0.272329 0.157968 0.438881
0.018654
502 -0.414839 -0.487240 0.115624 -0.272329 0.157968 -0.234316
0.288648
503 -0.413038 -0.487240 0.115624 -0.272329 0.157968 0.983986
0.796661
504 -0.407361 -0.487240 0.115624 -0.272329 0.157968 0.724955
0.736268
505 -0.414590 -0.487240 0.115624 -0.272329 0.157968 -0.362408
0.434302
          dis
                    rad
                              tax
                                    ptratio
                                                    b
                                                          lstat
0
     0.140075 -0.981871 -0.665949 -1.457558 0.440616 -1.074499
1
     0.556609 - 0.867024 - 0.986353 - 0.302794   0.440616 - 0.491953
2
     0.556609 -0.867024 -0.986353 -0.302794
                                             0.396035 -1.207532
3
     1.076671 -0.752178 -1.105022
                                   0.112920
                                             0.415751 -1.360171
4
     1.076671 -0.752178 -1.105022
                                             0.440616 -1.025487
                                   0.112920
501 -0.625178 -0.981871 -0.802418
                                  1.175303
                                            0.386834 -0.417734
502 -0.715931 -0.981871 -0.802418
                                             0.440616 -0.500355
                                  1.175303
503 -0.772919 -0.981871 -0.802418 1.175303
                                             0.440616 -0.982076
```

```
504 -0.667776 -0.981871 -0.802418 1.175303 0.402826 -0.864446
505 -0.612640 -0.981871 -0.802418 1.175303 0.440616 -0.668397
[506 rows x 13 columns]
```

Again check prepared data

scaled_features.describe()

```
indus
              crim
                              zn
                                                        chas
nox \
count 5.060000e+02 5.060000e+02 5.060000e+02 5.060000e+02
5.060000e+02
      8.326673e-17 3.466704e-16 -3.016965e-15 4.677857e-16
mean
3.563575e-15
      1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
1.000000e+00
      -4.193669e-01 -4.872402e-01 -1.556302e+00 -2.723291e-01 -
min
1.464433e+00
     -4.105633e-01 -4.872402e-01 -8.668328e-01 -2.723291e-01 -
9.121262e-01
     -3.902803e-01 -4.872402e-01 -2.108898e-01 -2.723291e-01 -
1.440749e-01
      7.389247e-03 4.872402e-02 1.014995e+00 -2.723291e-01
5.980871e-01
      9.924110e+00 3.800473e+00 2.420170e+00 3.664771e+00
max
2.729645e+00
                                           dis
                 rm
                             age
                                                         rad
tax
count 5.060000e+02 5.060000e+02 5.060000e+02 5.060000e+02
5.060000e+02
mean -1.149882e-14 -1.158274e-15 7.308603e-16 -1.068535e-15
6.534079e-16
      1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
std
1.000000e+00
      -3.876413e+00 -2.333128e+00 -1.265817e+00 -9.818712e-01 -
1.312691e+00
    -5.680681e-01 -8.366200e-01 -8.048913e-01 -6.373311e-01 -
7.668172e-01
50%
      -1.083583e-01 3.170678e-01 -2.790473e-01 -5.224844e-01 -
4.642132e-01
      4.822906e-01 9.059016e-01 6.617161e-01 1.659603e+00
1.529413e+00
      3.551530e+00 1.116390e+00 3.956602e+00 1.659603e+00
1.796416e+00
           ptratio
                               b
                                         lstat
count 5.060000e+02 5.060000e+02 5.060000e+02
```

mean -1.084420e-14 8.117354e-15 -6.494585e-16

```
      std
      1.000000e+00
      1.000000e+00
      1.000000e+00

      min
      -2.704703e+00
      -3.903331e+00
      -1.529613e+00

      25%
      -4.875567e-01
      2.048688e-01
      -7.986296e-01

      50%
      2.745872e-01
      3.808097e-01
      -1.810744e-01

      75%
      8.057784e-01
      4.332223e-01
      6.024226e-01

      max
      1.637208e+00
      4.406159e-01
      3.545262e+00
```

And repeat linear regression by OLS using prepared data

```
X = sm.add_constant(scaled_features)
model_scaled = sm.OLS(boston_house_target, X)
results_scaled = model_scaled.fit()
```

print(results scaled.summary())

OLS Regression Results

```
======
Dep. Variable:
                                medv R-squared:
0.741
Model:
                                 OLS Adj. R-squared:
0.734
Method:
                       Least Squares F-statistic:
108.1
                  Wed, 14 Dec 2022 Prob (F-statistic):
Date:
6.72e-135
                            01:55:41 Log-Likelihood:
Time:
-1498.8
No. Observations:
                                       AIC:
                                 506
3026.
Df Residuals:
                                 492
                                       BIC:
3085.
Df Model:
                                  13
```

Covariance Type: nonrobust

========					
0.975]	coef	std err	t	P> t	[0.025
const 22.947	22.5328	0.211	106.814	0.000	22.118
crim -0.374	-0.9291	0.283	-3.287	0.001	-1.484
zn 1.712	1.0826	0.320	3.382	0.001	0.454
indus	0.1410	0.422	0.334	0.738	-0.688

chas 1.112	0.6824	0.219	3.118	0.002	0.252	
nox -1.189	-2.0588	0.443	-4.651	0.000	-2.928	
rm 3.254	2.6769	0.294	9.116	0.000	2.100	
age 0.750	0.0195	0.372	0.052	0.958	-0.711	
dis -2.282	-3.1071	0.420	-7.398	0.000	-3.932	
rad 3.800	2.6649	0.578	4.613	0.000	1.530	
tax -0.834	-2.0788	0.634	-3.280	0.001	-3.324	
ptratio -1.506	-2.0626	0.283	-7.283	0.000	-2.619	
b 1.332	0.8501	0.245	3.467	0.001	0.368	
lstat -3.036	-3.7473	0.362	-10.347	0.000	-4.459	
========		=======	=======	========		=
Omnibus: 1.078		178.0	941 Durbin	-Watson:		
Prob(Omnibus	s):	0.0	900 Jarque	-Bera (JB):		
783.126 Skew: 8.84e-171		1.	521 Prob(J	B):		
Kurtosis:		8.2	281 Cond.	No.		

======

Notes:

9.82

0.970

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Adj. R-squared: 0.734 - its similar to raw data but probably they have difference in the next round. Build graphs of coefficients for every feature

sns.barplot(results_scaled.params.index[1:],
results_scaled.params[1:])

C:\Users\ornfi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:>

Check linear dependance

```
Predict target values using acquired coefficients
```

```
prediction = results_scaled.get_prediction(X)
target_predict = prediction.predicted_mean
print(target_predict[:10])
[30.00384338 25.02556238 30.56759672 28.60703649 27.94352423 25.25628446 23.00180827 19.53598843 11.52363685 18.92026211]
```

Concate predicted and real target values in one dataframe for graphs

```
predict_target_df = pd.DataFrame(list(zip(target_predict.round(1),
boston_house_target)),
```

columns =['Predicted target', 'Real

```
target'])
predict_target_df
```

0 1 2 3 4	Predicted	target 30.0 25.0 30.6 28.6 27.9	Real	target 24.0 21.6 34.7 33.4 36.2
501 502		27.9 23.5 22.4		22.4 20.6

```
503
                 27.6
                               23.9
504
                 26.1
                               22.0
                 22.3
                               11.9
505
[506 rows x 2 columns]
plt.figure(figsize=[12,7], dpi=900)
sns.lmplot(x='Predicted target', y='Real target',
data=predict_target_df, order=1)
plt xlabel('Predicted value')
plt.ylabel('Real value')
Text(24.05000000000001, 0.5, 'Real value')
<Figure size 10800x6300 with 0 Axes>
```


We can see that predicted target well conform with real target. However we take into acount some value in area of 50.000\$ dramaticaly differ from expectation. Hence, start to use cook distance for sorting observation decreasing quality of model

Influential observation

```
influence = results_scaled.get_influence()
cooks = influence.cooks_distance

I use standard threshold = 0.05
(cooks[1] < 0.05).sum()
0</pre>
```

None of the observations prevent us from building qualitative model so in the future we will use the whole dataframe

Independence of observations

dis

rad

Features can interfere and be consistent with each other. Hence, we will check the collinearity of the features using correlation

```
correlation_matrix = boston_house_feature.corr()
correlation matrix
```

	crim	zn	indus	chas	nox	rm	
age \ crim 1.0 0.352734	000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	
	200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-
	406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	
	055892	-0.042697	0.062938	1.000000	0.091203	0.091251	
	420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	
	219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-
	352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	
	379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-
	625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	
	582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	
	289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	
	385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-
	455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	

tax

ptratio

b

lstat

```
crim
        -0.379670
                    0.625505
                               0.582764
                                         0.289946 -0.385064
                                                               0.455621
         0.664408 -0.311948 -0.314563 -0.391679
                                                    0.175520
                                                             -0.412995
zn
indus
        -0.708027
                    0.595129
                              0.720760
                                         0.383248
                                                   -0.356977
                                                               0.603800
        -0.099176 -0.007368
                              -0.035587
                                        -0.121515
chas
                                                    0.048788
                                                              -0.053929
        -0.769230
                    0.611441
                               0.668023
                                         0.188933 -0.380051
                                                               0.590879
nox
         0.205246 -0.209847 -0.292048
                                        -0.355501
                                                    0.128069
                                                              -0.613808
rm
                                         0.261515
        -0.747881
                    0.456022
                               0.506456
                                                   -0.273534
                                                               0.602339
age
dis
         1.000000
                   -0.494588
                              -0.534432
                                        -0.232471
                                                    0.291512
                                                              -0.496996
        -0.494588
                              0.910228
                                         0.464741
                                                   -0.444413
rad
                    1.000000
                                                               0.488676
tax
        -0.534432
                    0.910228
                               1.000000
                                         0.460853 -0.441808
                                                               0.543993
ptratio -0.232471
                    0.464741
                               0.460853
                                         1.000000 -0.177383
                                                               0.374044
         0.291512
                   -0.444413
                              -0.441808
                                        -0.177383
                                                    1.000000
                                                              -0.366087
lstat
        -0.496996
                    0.488676
                              0.543993
                                         0.374044 - 0.366087
                                                               1.000000
```

Its of course nice, but very difficult to distinguish every correlation so build heatmap

```
plt.figure(figsize=[10,4], dpi=700)
sns.heatmap(data=correlation_matrix, annot=True, fmt=".2f")
<AxesSubplot:>
```


The strong positive correlation between rad and tax suggests that it is better to leave only one value for further analysis. But we'll check it later using VIF

Distribution of prediction

Now we can estimate distribution of predicted value and will be sure that our model predict correctly without outliers

```
scipy.stats.shapiro(target_predict)
ShapiroResult(statistic=0.9942290186882019,
pvalue=0.05247299373149872)
```

H0 is confirmed - predicted values present normal distribution

figure_1 = sm.qqplot(target_predict, line='45', fit=True)
plt.show()

sns.histplot(target_predict, stat='density')
<AxesSubplot:ylabel='Density'>

QQplot and histplot also confirm good picture of normal distibution

Disribution of error

However it is more interesting to look on distribution of error. Due to this parameter we can say how well the model predicts is not up to predicts or over-predicts.

First of all we will calculate errors

```
errors_full = boston_house_target - target_predict
scipy.stats.shapiro(errors_full)
```

ShapiroResult(statistic=0.9013808369636536, pvalue=1.4802261404015972e-17)

H0 reject - is not normal disribution so very interesting see histplot of errors

sns.histplot(errors_full)

<AxesSubplot:xlabel='medv', ylabel='Count'>

Predictions of our regression model often is not up to predicts

```
figure_errors_ggplot = sm.qqplot(errors_full, line='45', fit=True)
```


QQplot also shows the increasing density of value under zero and some outliers n the highest quartile

Prediction by max value

Find max coefficient for separated prediction

max(abs(results_scaled.params[1:]))

3.7473318548615406

results_scaled.params

const	22.532806
crim	-0.929065
zn	1.082639
indus	0.141039
chas	0.682414
nox	-2.058754
rm	2.676877
age	0.019485
dis	-3.107116
rad	2.664852
tax	-2.078837
ptratio	-2.062646
b	0.850109
lstat	-3.747332
dtypo: flo	a+64

dtype: float64

The best abs coefficient consist with lstat feature. So try predict value using only lstat

```
prediction_by_lstat = X.lstat * results_scaled.params[13]
plt.figure(figsize=[5,4], dpi=700)
sns.distplot(boston house.medv, color='red')
sns.distplot(prediction by lstat)
plt.xlabel('Value')
plt.legend(['Real value', 'Predicted by population'])
C:\Users\ornfi\anaconda3\lib\site-packages\seaborn\
distributions.py:2619: FutureWarning: `distplot` is a deprecated
function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar
flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
C:\Users\ornfi\anaconda3\lib\site-packages\seaborn\
distributions.py:2619: FutureWarning: `distplot` is a deprecated
function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar
flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
```

<matplotlib.legend.Legend at 0x273b0324a00>

The graph demontrates that prediction based only on lstat is under real target value

```
sns.scatterplot(y = prediction_by_lstat, x = boston_house_target);
plt.xlabel("Real target");
plt.ylabel("Predicted target");
```


The scatterplot exellently shows that lstat has a linear dependence on the area of values not exceeding 30, after which the prediction does not reflect the real cost of housing

Second Part

Then start to analyse which parameters could help to increase cost of house. To commence with, we can create correlation plot of every standardized features with target

```
name_of_column = list(scaled_features.columns)
column_number = 1

fig, axes = plt.subplots(ncols=6, nrows=2, figsize=(30,12))
for i in range(2):
    for j in range(6):
        ## Store column name in variable
        axes[i, j].scatter(scaled_features.iloc[:,column_number],
boston_house_target)
        axes[i, j].set_xlabel(name_of_column[column_number])
        axes[i, j].set_ylabel('medv')
        axes[i, j].set_ylabel('medv')
        column number += 1
```


This plot give opportunity to assume what features is better for linear model and what features we have to analyse additionally.

For example, rad and chas are categorical variables so it is worth considering how they affect the value of target.

Divide all value by chas

```
target_no_river = boston_house_target[boston_house["chas"] == 0]
target_river = boston_house_target[boston_house["chas"] == 1]
sns.histplot(target_river, stat="density", color="green")
sns.histplot(target_no_river, stat="density", color="red");
```


The histogram shows that separated targets have abnormal disribution and different outliers. So we have to use nonparametric criteria to understand how chas impacts target

```
scipy.stats.mannwhitneyu(target_river, target_no_river)
```

MannwhitneyuResult(statistic=10879.5, pvalue=0.0015816705011294974)

The difference between groups is significant

```
target_river.mean(), target_no_river.mean()
(28.44, 22.093842887473482)
target_river.median(), target_no_river.median()
(23.3, 20.9)
sns.boxplot(data=boston_house, x="chas", y="medv")
```

<AxesSubplot:xlabel='chas', ylabel='medv'>

Housing closed to river obtains higher price

To look at rad feature

```
target', 'rad'])
predict_target_ch
plt.figure(figsize=[12,7], dpi=900)
sns.scatterplot(x='Predicted target', y='Real target',
data=predict_target_rad, hue='rad')
plt.xlabel('Predicted value')
plt.ylabel('Real value')
```

Text(0, 0.5, 'Real value')

The scatterplot demonstrates that all options except 24 index spread equal so the distance from radial highways reduces cost but at very large differences of indexes.

```
Dep. Variable: medv R-squared:
0.722
Model: 0LS Adj. R-squared:
0.716
Method: Least Squares F-statistic:
116.9
Date: Thu, 15 Dec 2022 Prob (F-statistic):
8.71e-130
```

00:18:31 Log-Likelihood: Time:

-1515.9

No. Observations: 506 AIC:

3056.

Df Residuals: BIC: 494

3107.

Df Model: 11

Covariance Type: nonrobust

========				========	=========
======	coef	std err	t	P> t	[0.025
0.975]					
const 22.961	22.5328	0.218	103.465	0.000	22.105
crim -0.051	-0.6030	0.281	-2.144	0.032	-1.155
zn 1.576	0.9303	0.329	2.831	0.005	0.285
indus 0.531	-0.2880	0.417	-0.691	0.490	-1.108
nox -0.802	-1.6894	0.452	-3.740	0.000	-2.577
rm 3.530	2.9427	0.299	9.843	0.000	2.355
age 0.699	-0.0526	0.382	-0.137	0.891	-0.804
dis -2.313	-3.1647	0.433	-7.301	0.000	-4.016
tax 0.931	0.1405	0.402	0.349	0.727	-0.650
ptratio -1.329	-1.8918	0.286	-6.607	0.000	-2.454
b	0.8073	0.252	3.200	0.001	0.312
1.303 lstat -3.028	-3.7614	0.373	-10.083	0.000	-4.494
========		=======	========	========	=========

=======

204.480 Omnibus: Durbin-Watson:

0.981

Prob(Omnibus): 0.000 Jarque-Bera (JB):

1061.249

Prob(JB): Skew: 1.714

3.57e-231

Kurtosis: 9.212 Cond. No.

5.84

======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

If we drop categorical variables, it will lead to decreasing of model quality - *Adj. R-squared:* 0.716. So firstly should to estimate VIF

VIF

13

```
Function for VIF
```

```
from statsmodels.stats.outliers influence import
variance inflation factor
def calculate vif(X):
    vif data = pd.DataFrame()
    vif_data["feature"] = X.columns
    vif data["VIF"] = [variance inflation factor(X.values, i)
                            for i in range(len(X.columns))]
    return vif data
calculate vif(X)
    feature
                  VIF
0
      const
             1.000000
       crim 1.792192
1
2
         zn 2.298758
3
     indus 3.991596
4
       chas 1.073995
5
        nox 4.393720
6
         rm 1.933744
7
        age 3.100826
8
        dis 3.955945
9
        rad 7.484496
10
        tax 9.008554
11 ptratio 1.799084
          b 1.348521
12
```

Rad really has a huge colinearity but, like attempt, try to drop chas and rad simultaniously calculate vif(X.drop(columns=["chas", "rad"]))

```
feature VIF
0 const 1.000000
1 crim 1.663648
2 zn 2.272992
3 indus 3.660714
```

lstat 2.941491

```
nox 4.294324
4
5
       rm 1.880883
6
       age 3.077311
7
       dis 3.953729
8
       tax 3.403205
   ptratio 1.725085
9
10
         b 1.338875
11
     lstat 2.928554
```

It seems like a strange idea so will act subsequently.

Initially delete rad and compare new model and VIF.

```
model_updated_1 = sm.OLS(boston_house_target, X.drop(columns=["rad"]))
results_updated_1 = model_updated_1.fit()
```

print(results_updated_1.summary())

OLS Regression Results

=======

Dep. Variable: medv R-squared:

0.729

Model: OLS Adj. R-squared:

0.723

Method: Least Squares F-statistic:

110.8

Date: Thu, 15 Dec 2022 Prob (F-statistic):

1.92e-131

Time: 03:13:52 Log-Likelihood:

-1509.5

No. Observations: 506 AIC:

3045.

Df Residuals: 493 BIC:

3100.

Df Model: 12

Covariance Type: nonrobust

0.975]	coef	std err	t	P> t	[0.025
const 22.956 crim	22.5328	0.215 0.278	104.682	0.000	22.110
-0.035 zn	0.9264	0.325	2.852	0.005	0.288

1.565 indus 0.412 chas 1.227 nox -0.890 rm	-0.4007	0.413	-0.969	0.333	-1.213	
	0.7910	0.222	3.563	0.000	0.355	
	-1.7685	0.447	-3.956	0.000	-2.647	
	2.8910	0.296	9.772	0.000	2.310	
3.472 age	-0.1105	0.378	-0.292	0.770	-0.854	
0.633 dis	-3.1378	0.428	-7.323	0.000	-3.980	
-2.296 tax	0.2249	0.398	0.565	0.573	-0.557	
1.007 ptratio	-1.8158	0.284	-6.398	0.000	-2.373	
-1.258 b	0.7683	0.250	3.079	0.002	0.278	
1.259 lstat -2.962	-3.6878	0.369	-9.986	0.000	-4.413	
-2.902 ========	:=======	========		========	========	=
======= Omnibus: 1.059 Prob(Omnibus):		189.2	296 Durbin	-Watson:		
		0.000 Jarque-Bera		-Bera (JB):		
907.772 Skew:		1.5	596 Prob(J	B):		
7.58e-198 Kurtosis:		8.7	733 Cond.	No.		

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

calculate_vif(X.drop(columns=["rad"]))

	feature	VIF
0	const	1.000000
1	crim	1.664471
2	zn	2.273018
3	indus	3.682265
4	chas	1.061561
5	nox	4.304929
6	rm	1.885425
7	age	3.083009
8	dis	3.954951

```
9 tax 3.415289
10 ptratio 1.734873
11 b 1.341459
12 lstat 2.937752
```

It reduced the quality of the model (Adj. R-squared: 0.723) and imrove VIF. Since our goal to reveal the most important feature (not prediction) we can allow to sacrifice the quality of the model for discovering hidden dependencies

```
of the model for discovering hidden dependencies
calculate vif(X.drop(columns=["rad", "dis"]))
    feature
                   VIF
0
      const
              1.000000
1
       crim 1.638205
2
              1.897074
         zn
3
      indus
             3.511704
4
       chas 1.061233
5
        nox 3.949993
6
         rm 1.849614
7
            2.821975
        age
8
        tax
             3.414851
9
    ptratio
             1.720096
10
              1.340875
          b
11
      lstat
              2.933530
calculate vif(X.drop(columns=["nox", "rad", "dis"]))
    feature
                   VIF
0
      const
              1.000000
1
       crim 1.637882
2
             1.826807
         zn
3
      indus
              3.155735
4
       chas
             1.057774
5
              1.847368
         rm
6
        age 2.430656
7
        tax 3.073277
8
             1.504126
    ptratio
9
             1.331457
          b
10
             2.920516
      lstat
etc... I will skip how I did each stage, but in the end it turned out the following
calculate vif(X.drop(columns=["tax", "indus", "nox", "rad", "zn",
"lstat", "dis"]))
   feature
                  VIF
             1.000000
0
     const
1
      crim
            1.333301
2
      chas
            1.041442
3
        rm
            1.190387
4
            1.254365
       age
```

```
5 ptratio 1.247573
6
       b 1.209671
model_updated_3 = sm.OLS(boston_house_target, X.drop(columns=["tax",
"indus", "nox", "rad", "zn", "lstat", "dis"]))
results updated 3 = model updated 3.fit()
print(results updated 3.summary())
                      OLS Regression Results
Dep. Variable:
                                R-squared:
                          medv
0.637
                           0LS
Model:
                              Adj. R-squared:
0.633
                  Least Squares F-statistic:
Method:
145.9
Date:
                Thu, 15 Dec 2022 Prob (F-statistic):
2.18e-106
Time:
                       01:02:46 Log-Likelihood:
-1583.9
No. Observations:
                           506
                                AIC:
3182.
Df Residuals:
                           499
                                BIC:
3211.
Df Model:
                             6
Covariance Type:
             nonrobust
______
=======
             coef std err t P>|t|
                                                [0.025
0.9751
______
           22.5328
                     0.248
                             90.913
                                       0.000
                                                22.046
const
23.020
           -0.9323
                     0.286
                          -3.254
                                       0.001
                                            -1.495
crim
-0.369
           0.8968
                     0.253
                             3.542
                                       0.000
                                                 0.399
chas
1.394
                     0.271
           4.9544
                             18.303
                                       0.000
                                                 4.423
rm
5.486
           -1.1305
                     0.278
                             -4.069
                                       0.000
                                                -1.676
age
-0.585
           -1.9914
                     0.277 -7.186
                                       0.000
ptratio
                                                -2.536
```

-1.447

1.3671

0.273

5.010

0.000

0.831

1.903

Omnibus: 283.471 Durbin-Watson: 0.863

Prob(Omnibus): 0.000 Jarque-Bera (JB):

3000.941

Skew: 2.236 Prob(JB):

0.00

Kurtosis: 14.060 Cond. No.

1.90

======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

It's decrease the model quality (Adj. R-squared: 0.633) but help to idetify the most crucial featuries.

Then create barplot of every coefficient without constant

sns.barplot(results_updated_3.params.index[1:],
results updated 3.params[1:])

C:\Users\ornfi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:>

Try to compare the prediction of target by current model and error distribution

```
prediction ult =
results updated 3.get prediction(X.drop(columns=["tax", "indus",
"nox", "rad", "zn", "lstat", "dis"]))
target predict ult = prediction ult.predicted mean
predict target ult =
pd.DataFrame(list(zip(target_predict_ult.round(1),
boston house target)),
                                 columns =['Predicted target', 'Real
target'])
predict target ult
     Predicted target
                        Real target
0
                 28.4
                               24.0
                 24.4
                               21.6
1
2
                 30.5
                               34.7
3
                 29.0
                               33.4
4
                 29.7
                               36.2
                                . . .
                 23.0
                               22.4
501
502
                 19.4
                               20.6
503
                 24.9
                               23.9
504
                 23.6
                               22.0
505
                 18.7
                               11.9
[506 rows x 2 columns]
plt.figure(figsize=[12,7], dpi=900)
```

sns.lmplot(x='Predicted target', y='Real target',

```
data=predict_target_ult, order=1)
plt.xlabel('Predicted value')
plt.ylabel('Real value')
```

Text(24.05000000000001, 0.5, 'Real value')

<Figure size 10800x6300 with 0 Axes>

<AxesSubplot:xlabel='medv', ylabel='Count'>

errors_upd = boston_house_target - target_predict_ult
scipy.stats.shapiro(errors_upd) #H0 reject - isn't normal disribution
ShapiroResult(statistic=0.8326656818389893,
pvalue=1.2416456078012506e-22)
sns.histplot(errors_upd)

result = sm.qqplot(errors_upd, line='45', fit=True)

As result the prediction became worse and error distribution also reflects this observation.

However, we can identify the important for prices features:

- the house price will become higher if tract bounds river
- the lower the crime rate per capita the more expensive the house will be

- average number of rooms per dwelling: the more rooms the higher price
- proportion of owner-occupied units built prior to 1940 has a negative correlation with price
- · increasing of pupil-teacher ratio leads to decreasing of price
- the more people of African-American descent, the higher the price