# 02244 Language-Based Security Security Protocols Automated Analysis II: Abstraction

Sebastian Mödersheim

April 23, 2018

## The Sources of Infinity



- For security protocols, the state space can be infinite for (at least) the following reasons:
  - **Messages** The intruder can compose arbitrarily complex messages from his knowledge, e.g.  $i, h(i), h(h(i)), \ldots$
  - **Sessions** No bound on the number of executions of the protocol. (In our model: infinitely many threads in the initial state).
  - **Nonces** In an unbounded number of sessions, honest agents create an infinite number of fresh nonces.
- Consider the models that arise from bounding any subset of these parameters:
  - ★ Decidability/Automation?
  - ★ Can we justify the bounds?

# **Decidability Lattice**



Today we look at the remaining two elements.

#### **Typed Model**

Declare for all variables and constants a type, e.g.,

 $A, B, C, a, b, c, i, \dots$  Agent  $NA, NB, na_{17}, \dots$  Nonce  $KAB, kab, \dots$  SymmetricKey

#### **Typed Model**

We allow that variables are only instantiated with constants of the same type.

• This means bounding the depth of messages. Why?

## **Typed Model**

Declare for all variables and constants a type, e.g.,

 $A, B, C, a, b, c, i, \dots$  Agent  $NA, NB, na_{17}, \dots$  Nonce  $KAB, kab, \dots$  SymmetricKey

#### **Typed Model**

We allow that variables are only instantiated with constants of the same type.

- This means bounding the depth of messages. Why?
- Can this be justified?
  - ★ i.e., don't we exclude some attacks with this in general?

#### **No Fresh Nonces**

#### Idea

Consider a scenario where agents do not create fresh nonces in every protocol run, but use the same nonce in all protocol runs with the same communication partners.

#### **Example NSPK**

Replace the fresh nonces with functions of the involved agent names. For NSPK, we choose NA becomes na(A, B) and NB becomes nb(B, A).

$$A \rightarrow B$$
 :  $\{na(A,B),A\}_{pk(B)}$   
 $B \rightarrow A$  :  $\{na(A,B),nb(B,A)\}_{pk(A)}$   
 $A \rightarrow B$  :  $\{nb(B,A)\}_{pk(B)}$   
 $NA \text{ secret of } A,B$   
 $NB \text{ secret of } A,B$ 

#### **No Fresh Nonces**

#### Idea

Consider a scenario where agents do not create fresh nonces in every protocol run, but use the same nonce in all protocol runs with the same communication partners.

#### Example NSPK:

Leave received nonce NB as is.



#### **Abstract Interpretation**

We have partitioned the set of all concrete nonces into abstract equivalence classes:



a's nonces for communication with b, c, and i

and replace in the protocol model each concrete value with its abstract equivalence class.

## **Abstract Interpretation**

- Every reachable concrete state has an abstract counter-part,
- but some abstract states have no concrete counter-part:



Sebastian Mödersheim April 23, 2018 8 of 22

## **Abstract Interpretation**

- Every reachable concrete state has an abstract counter-part,
- but some abstract states have no concrete counter-part.
- So the abstract model is an over-approximation of the concrete model, allowing at least as many behaviors.
- The abstract model is easier to verify than the concrete one.
- Claim: if the abstract model has no attack trace, then the concrete model has none. (True?)
- An attack trace in the abstract model may be a false positive: no (corresponding) attack trace in the concrete model.

## **Abstracting States**

Idea: regard honest agents just as a set of oracles that the intruder can ask to get an answer from.





```
ik(\{na(A, B), A\}_{pk(B)})
ik(\{na(A,B),NB\}_{pk(A)})
\implies ik(\{NB\}_{pk(B)})
  ik(m): intruder knows message m
 ik(\{NA,A\}_{pk(B)})
  \implies ik(\{NA, nb(B, A)\}_{pk(A)})
```

(Intruder learns nothing)

#### **Abstracting States**

There is no notion of states or development anymore. Rather we consider with ik(m) all messages that the intruder can ever know.

```
ik(\{na(A, B), A\}_{pk(B)}) for all agents A, B
ik(\{NA, A\}_{pk(B)}) \Rightarrow ik(\{NA, nb(B, A)\}_{pk(A)})
ik(\{na(A, B), NB\}_{pk(A)}) \Rightarrow ik(\{NB\}_{pk(B)})
... plus standard intruder deduction rule (Dolev-Yao):
ik(M) \wedge ik(K) \Rightarrow ik(\{M\}_K)
ik(\{M\}_K) \wedge ik(inv(K)) \Rightarrow ik(M)
ik(M_1) \wedge ik(M_2) \Rightarrow ik(\langle M_1, M_2 \rangle)
ik(\langle M_1, M_2 \rangle) \Rightarrow ik(M_1) \wedge ik(M_2)
Initial intruder knowledge: ik(inv(pk(i))) ik(A) ik(pk(A)) for every A
Goal: For every honest A \neq i and B \neq i:
ik(na(A, B)) \Rightarrow attack
ik(nb(B, A)) \Rightarrow attack
```

#### **Abstracting States**

There is no notion of states or development anymore. Rather we consider with ik(m) all messages that the intruder can ever know.

```
ik(\{na(A, B), A\}_{pk(B)}) for all agents A, B
ik(\{NA, A\}_{pk(B)}) \Rightarrow ik(\{NA, nb(B, A)\}_{pk(A)})
ik(\{na(A, B), NB\}_{pk(A)}) \Rightarrow ik(\{NB\}_{pk(B)})
... plus standard intruder deduction rule (Dolev-Yao):
ik(M) \wedge ik(K) \Rightarrow ik(\{M\}_K)
ik(\{M\}_K) \wedge ik(inv(K)) \Rightarrow ik(M)
ik(M_1) \wedge ik(M_2) \Rightarrow ik(\langle M_1, M_2 \rangle)
ik(\langle M_1, M_2 \rangle) \Rightarrow ik(M_1) \wedge ik(M_2)
Initial intruder knowledge: ik(inv(pk(i))) ik(A) ik(pk(A)) for every A
Goal: For every honest A \neq i and B \neq i:
ik(na(A, B)) \Rightarrow attack
ik(nb(B, A)) \Rightarrow attack
```

- 2 na(A, i) by intruder deduction on 1 when B = i

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- **3**  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on **1**

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- **2** na(A, i) by intruder deduction on **1** when B = i
- 3  $\{na(A,B), nb(B,A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A,B), nb(B,A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 0
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **6**

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **3**
- nb(i, A) by intruder deduction on o

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **6**
- nb(i, A) by intruder deduction on o
- **8**  $\{N\}_{pk(i)}$  by step 3 on **2** and intruder ded.

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **6**
- nb(i, A) by intruder deduction on o
- **8**  $\{N\}_{pk(i)}$  by step 3 on **2** and intruder ded.

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1 when B = i
- 3  $\{na(A, B), nb(B, A)\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A)\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **4**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **6**
- nb(i, A) by intruder deduction on o
- **8**  $\{N\}_{pk(i)}$  by step 3 on **2** and intruder ded.
- $\bigcirc$  nb(B,A) intruder deduction on  $\bigcirc$  attack

We have left variables A, B, and N in the above fixedpoint:

- A and B represent arbitrary agent names
- *N* represents any nonce the intruder knows

We have left variables A, B, and N in the above fixed point:

- A and B represent arbitrary agent names
- N represents any nonce the intruder knows
- In general, this represents an infinite fixedpoint, when replacing arbitrary agent names for A and B like a1, a2, a3, ...

We have left variables A, B, and N in the above fixedpoint:

- A and B represent arbitrary agent names
- N represents any nonce the intruder knows
- In general, this represents an infinite fixedpoint, when replacing arbitrary agent names for A and B like a1, a2, a3, ...
- There are some results that show: for many problems it is sufficient to work with only a fixed number of agents {a, b, i}.
   But makes the *descriptions* of the fixedpoint longer...

- We can easily calculate with facts that have variables, but mind incorrect variable capturing:
  - ★ Fact  $\{na(A, i), nb(B, A)\}_{pk(A)}$  of the previous fixedpoint
  - ★ and the rule  $\{na(A, B), NB\}_{pk(A)} \Rightarrow \{NB\}_{pk(B)}$ .

- We can easily calculate with facts that have variables, but mind incorrect variable capturing:
  - ★ Fact  $\{na(A, i), nb(B, A)\}_{pk(A)}$  of the previous fixedpoint
  - ★ and the rule  $\{na(A, B), NB\}_{pk(A)} \Rightarrow \{NB\}_{pk(B)}$ .
  - ★ Seems to allow only B = i and NB = nb(i, A)?

- We can easily calculate with facts that have variables, but mind incorrect variable capturing:
  - ★ Fact  $\{na(A, i), nb(B, A)\}_{pk(A)}$  of the previous fixedpoint
  - ★ and the rule  $\{na(A, B), NB\}_{pk(A)} \Rightarrow \{NB\}_{pk(B)}$ .
  - ★ Seems to allow only B = i and NB = nb(i, A)?
  - $\star$  But A and B can be anybody, so we could rename this fact to:

$$\{na(A',i),nb(B',A')\}_{pk(A')}$$

- We can easily calculate with facts that have variables, but mind incorrect variable capturing:
  - ★ Fact  $\{na(A, i), nb(B, A)\}_{pk(A)}$  of the previous fixedpoint
  - ★ and the rule  $\{na(A, B), NB\}_{pk(A)} \Rightarrow \{NB\}_{pk(B)}$ .
  - ★ Seems to allow only B = i and NB = nb(i, A)?
  - $\star$  But A and B can be anybody, so we could rename this fact to:

$$\{na(A',i),nb(B',A')\}_{pk(A')}$$

★ Now solution: A = A', B = i, NB = nb(B', A) more general!

- We can easily calculate with facts that have variables, but mind incorrect variable capturing:
  - ★ Fact  $\{na(A, i), nb(B, A)\}_{pk(A)}$  of the previous fixedpoint
  - ★ and the rule  $\{na(A, B), NB\}_{pk(A)} \Rightarrow \{NB\}_{pk(B)}$ .
  - ★ Seems to allow only B = i and NB = nb(i, A)?
  - $\star$  But A and B can be anybody, so we could rename this fact to:

$$\{na(A',i),nb(B',A')\}_{pk(A')}$$

- ★ Now solution: A = A', B = i, NB = nb(B', A) more general!
- $\star$  Thus the intruder obtains the secret nonce between any two agents B' and A. (attack)

## Lowe's fix for NSPK (NSL)

Insert the name of *B* in the second message:

```
Example (NSL)
```

```
A \rightarrow B: \{NA, A\}_{pk(B)}

B \rightarrow A: \{NA, NB, B\}_{pk(A)}
```

$$B \rightarrow A: \{NA, NB, B\}_{pk(A)}$$

$$A \rightarrow B: \{NB\}_{pk(B)}$$

- 2 na(A, i) by intruder deduction on 1

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 0

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixedpoint (e.g. N = na(A, i) by **2**)

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixed point (e.g. N = na(A, i) by **2**)
- **5**nb(B, i) by intruder deduction on **6**

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixed point (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **6**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **3**

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixed point (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **6**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **9**
- nb(i, A) by intruder deduction on o

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- **3**  $\{na(A, B), nb(B, A), B\}_{pk(A)}$  by step 2 on **1**
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixed point (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **6**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **9**
- nb(i, A) by intruder deduction on o
- **8**  $\{N\}_{pk(i)}$  by step 3 on **2** and intruder ded.

- **1**  $\{na(A, B), A\}_{pk(B)}$  by step 1
- 2 na(A, i) by intruder deduction on 1
- 3  $\{na(A,B), nb(B,A), B\}_{pk(A)}$  by step 2 on 1
- **4**  $\{N, nb(B, A), B\}_{pk(A)}$  by step 2 with intr. ded. for any nonce N that the intruder can derive in this fixed point (e.g. N = na(A, i) by **2**)
- **5** nb(B, i) by intruder deduction on **6**
- **6**  $\{nb(B,A)\}_{pk(B)}$  by step 3 on **9**
- nb(i, A) by intruder deduction on o
- **8**  $\{N\}_{pk(i)}$  by step 3 on **2** and intruder ded.

Not derivable anymore:  $\{nb(B,A)\}_{pk(i)}$ 

### **Abstraction Based Analysis**

- We have now a verification procedure for unbounded sessions when bounding fresh nonces and messages...
- This also avoids the entire state explosion problem of standard model-checking: the number of reachable states is (at least) exponential in the number of concurrent processes.

### **Decidability Lattice**



### **ProVerif**

- ProVerif [Blanchet 2001ff] is a protocol verifier based on the abstract-interpretation method where messages are unbounded by default.
- Horn clauses like  $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$  can be equivalently written as  $\neg P_1 \vee \ldots \vee \neg P_n \vee Q$ .

#### Resolution

Find two clauses  $p \lor \phi$  and  $\neg p \lor \psi$ . Then we can derive the clause  $\phi \lor \psi$ 

- Add the clause ¬attack: if the protocol has an attack, then this leads to a contradiction, deriving the empty clause "False".
- Resolution is refutation-complete: a set of clauses is consistent iff False is not derivable with resultion.
- With bounded messages, resolution is guaranteed to terminate.
- In an untyped model without bounding messages, this approach can lead to non-termination, but often it does terminate!

### **Decidability**

• To complete our picture:

### Theorem ([Durgin et al. 2004])

For an unbounded number of sessions and an unbounded number of nonces, protocol security is undecidable, even when bounding messages.

### **Decidability Lattice**



#### **Conclusion:**

For decidability, we may have either unbounded messages or unbounded sessions (with bounded nonces), but not both.

# **Bibliography**

- ProVerif: http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
- Sebastian Mödersheim and Georgios Katsoris. A Sound Abstraction of the Parsing Problem. CSF 2014.
- Hubert Comon and Véronique Cortier. Security Properties: Two Agents Are Sufficient. In ESOP 2003.