Proof Portfolio

Anupam Bhakta

December 6, 2021

Theorem 1. Let $f: A \to B$ be a function and let A_1 and A_2 be subsets of A. Prove that if f is one-to-one then

$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2).$$

Proof. Suppose $f: A \rightarrow B$ is an injective function.

If $x \in f(A_1 \cap A_2)$, then there exists some $a \in A_1 \cap A_2$ such that f(a) = x. Since $a \in A_1 \cap A_2$, then a is also an element of A_1 , which means f(a) is an element of $f(A_1)$. In the same way, f(a) is also an element of $f(A_2)$. As a result, f(a) is an element of $f(A_1) \cap f(A_2)$ which implies $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.

Next, let y be an element of $f(A_1) \cap f(A_2)$. Then, there is an $a_1 \in A_1$ and $a_2 \in A_2$ such that $f(a_1) = y$ and $f(a_2) = y$. From this we can conclude that $a_1 = a_2$ since $f(a_1) = f(a_2)$ and by the function being injective. This implies $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$.

The only way $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$ and $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ is if $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.

Theorem 2. Let a be a fixed real number. Then

$$\sum_{i=0}^{n} (a+i) = \frac{1}{2}(n+1)(2a+n)$$

for every nonnegative integer n.

Proof. We proceed by induction.

Let n = 0 be the smallest nonnegative integer. Then,

$$\sum_{i=0}^{0} (a+i) = a = \frac{1}{2}(0+1)(2a+0).$$

Thus, the result holds when n = 0.

Assume that

$$\sum_{i=0}^{k} (a+i) = \frac{1}{2}(k+1)(2a+k)$$

for a nonnegative integer k. We show that $\sum_{i=0}^{k+1} (a+i) = \frac{1}{2}(k+2)(2a+k+1)$. Observe that

$$\sum_{i=0}^{k+1} (a+i) = (a+k+1) + \sum_{i=0}^{k} (a+i)$$
 (1)

$$= (a+k+1) + \frac{1}{2}(k+1)(2a+k)$$
 (2)

$$= \frac{1}{2}(2ak + 4a + k^2 + 3k + 2) \tag{3}$$

$$=\frac{1}{2}(k+2)(2a+k+1),\tag{4}$$

where in (2), we use the Inductive Hypothesis.

Thus, by the Principle of Mathematical Induction, we conclude that $\sum_{i=0}^{n} (a+i) = \frac{1}{2}(n+1)(2a+n)$ for all nonnegative integers n.

The **Fibonacci Sequence** F_1 , F_2 , F_3 , . . . is defined by

$$F_n = \begin{cases} 1 & n = 1, 2 \\ F_{n-2} + F_{n-1} & n \ge 3 \end{cases}$$

Theorem 3. Then nth Fibonacci Sequence is

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

for every positive integer n.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since $F_1 = 1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right]$, the formula holds for n = 1. Assume, for a positive integer k, that $F_i = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^i - \left(\frac{1-\sqrt{5}}{2} \right)^i \right]$ for every i with $1 \le i \le k$. We show that $F_{k+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right]$. First, observe that when k = 1, $F_{k+1} = F_{1+1} = F_2 = 1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right]$ and so the formula holds. Hence we may assume that $k \ge 2$. Since $k+1 \ge 3$, it follows by the recurrence relation that

$$F_{k+1} = F_{k-1} + F_k \tag{1}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k} \right]$$
(2)

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} + \left(\frac{1 + \sqrt{5}}{2} \right)^{k} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k} \right]$$
(3)

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(1 + \frac{1+\sqrt{5}}{2} \right) - \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(1 + \frac{1-\sqrt{5}}{2} \right) \right] \tag{4}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{3+\sqrt{5}}{2} \right) - \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{3-\sqrt{5}}{2} \right) \right] \tag{5}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right] \tag{6}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right], \tag{7}$$

where in (2), we use the Inductive hypothesis.

It therefore follows by the Strong Principle of Mathematical Induction that $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ for all positive integers n.

Theorem 4. Let A and B be two sets and let $f: A \to B$ be a function. If |A| > |B| then f is not injective (one-to-one).

Proof. We prove the contrapositive. Suppose that a function $f:A\to B$ is injective for two sets A and B. Since f is injective, then different elements of A must have different images in B. Therefore, if |A|=n, then the elements of A have n images in B. As a result, $|B|\geq n$. Thus, if $f:A\to B$ is injective, then $|A|\leq |B|$.

Theorem 5. A graph G is regular if and only if \overline{G} is regular.

Proof. Asumme a graph G is r-regular with n vertices. By definition, the complement of G is \overline{G} with $V(\overline{G}) = V(G)$ such that two distinct vertices u and v of G are adjacent in \overline{G} if and only if u and v are not adjacent in G. This means that every vertex $v \in V(\overline{G})$ is adjacent to (n-1)-r vertices. As such, \overline{G} is a [(n-1)-r]-regular graph. Thus, if G is regular then \overline{G} is also regular.

Assume a graph \overline{G} is r-regular. We know that the complement of \overline{G} is also regular due to the previous reasoning. By definition, the complement of a complement is the original object so G is also regular. Thus, we can conclude a graph G is regular if and only if \overline{G} is regular.

Theorem 6. A 3-regular graph G has a cut-vertex if and only if G has a bridge.

Proof. Assume G is a 3-regular graph with a cut-vertex v. Then G - v can be seperated into two components G_1 and G_2 or three components G_1 , G_2 , and G_3 . Consider the case where there are two components. Since G was originally a 3-regular graph, without loss of generality v has a vertex u that is adjacent in G_1 and two vertices that are adjacent in G_2 . As such, there is a bridge uv between the two components. Next, consider the case in which there are three components. Then, v has vertex u, v, and v that is adjacent in v0, and v0 respectively. As such, there are bridges v0, v0, and v0.

Assume G is a 3-regular graph with a bridge uv. Then the vertices of the bridge, u and v, are also cutvertices since removing them would remove their edges too. The bridge is a part of the edges that will be removed. Next, assume G has bridges uv, xv, and yv. By the same logic used previously, the vertices of the bridges are also cut-vertices.

Thus we can conclude that a 3-regular graph *G* has a cut-vertex if and only if *G* has a bridge.

Definition 1 (Divisible). An integer n is **divisible** be an integer d if there exists an integer k such that $n = d \times k$.

Theorem 7. For all nonnegative integers n,

$$2^{2n} - 1$$
 is divisible by 3.

Proof. We proceed by induction. Since $2^{2\cdot 0}-1=0=3\cdot 0$, the result holds for n=0. Assume that $2^{2k}-1$ is divisible by 3 for all nonnegative integers k. By the definition of divisibility, this means that $2^{2k}-1=3x\implies 2^{2k}=3x+1$ for some integer x. We show that $2^{2(k+1)}-1$ is divisible by 3 for all nonnegative integers. Observe that

$$2^{2(k+1)} - 1 = 2^2 \cdot 2^{2k} - 1 \tag{1}$$

$$=4(3x+1)-1$$
 (2)

$$= 12x + 4 - 1 \tag{3}$$

$$= 3(4x - 1), (4)$$

where in (2), we use the Inductive Hypothesis. Since x is an integer, 3(4x - 1) is divisible by 3. Thus, $2^{2n} - 1$ is divisible by 3 for all nonnegative integers n.