Alberto Quaini

Measure theory exercises

Section 1

Exercise 1.3:

- 1. $\mathcal{G}_1 := \{A : A \subset \mathbb{R}, A \text{ is open}\}\$ is not an algebra on \mathbb{R} , hence not a σ -algebra. Let $a \in \mathbb{R}$ and define $A_1 := (-\infty, a)$. Clearly $A_1 \in \mathcal{G}_1$, however its complement, $A_1^c = [a, +\infty)$, is not in \mathcal{G}_1 .
- 2. $\mathcal{G}_2 := \{A : A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], (a, \infty)\}$ is an algebra, but not a σ -algebra. Clearly, \mathcal{G}_2 contains the empty set. Also, \mathcal{G}_2 is closed under complements because it contains the complements of the three basic intervals $(a, b], (-\infty, b]$ and (a, ∞) and, by the properties of complements, it contains the complements of any finite union of the basic intervals. Finally, \mathcal{G}_2 is closed under finite union as the finite union of finite unions of the three basic intervals is still a finite union of these basic intervals. However, \mathcal{G}_2 is not a σ -algebra since it clearly does not contain an infinite union of the three basic interval.
- 3. $\mathcal{G}_3 := \{A : A \text{ is a countable union of intervals of the form } (a, b], (-\infty, b], (a, \infty)\}$ is a σ -algebra, hence also an algebra. Everything discussed for \mathcal{G}_2 holds except for the fact that infinite unions of the basic intervals belong to \mathcal{G}_3 .

Exercise 1.7: By definition, any σ -algebra contains \emptyset . Also, it contains X, since it must be closed under complements. Therefore, $\{\emptyset, X\}$ is contained in any σ -algebra and is thus the smallest σ -algebra on X.

On the other hand, by definition, any σ -algebra on X is a set of subsets of X, therefore it is contained in the power set of X, which is the set of all subsets of X.

Exercise 1.10: Let $\mathcal{N} = \bigcap_{\alpha} \mathcal{S}_{\alpha}$. $\emptyset \in \mathcal{N}$ because $\emptyset \in \mathcal{S}_{\alpha}$, for every α . Also, if $A \in \mathcal{N}$, we have that A is in every \mathcal{S}_{α} , and since these are closed under complements, $A^c \in \mathcal{N}$. Finally, if $A_1, A_2, \ldots \in \mathcal{N}$, they belong to each \mathcal{S}_{α} and so does $\bigcup_{n=1}^{\infty} A_n$, and we have that it also belongs to \mathcal{N} . In conclusion, \mathcal{N} is a σ -algebra.

Exercise 1.17:

- 1. Take $A, B \in \mathcal{S}$, with $A \subset B$. Notice that B can be written as the union of two disjoint sets in the following way: $B = (A \cap B) \cup (A^c \cap B)$. Then, $\mu(B) = \mu(A \cap B) + \mu(A^c \cap B) = \mu(A) + \mu(A^c \cap B)$. Since a measure is nonnegative, $\mu(B) \geq \mu(A)$. Therefore μ is monotone.
- 2. Let $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{S}$ and define the following sets: $A:=\cup_{n\in\mathbb{N}}A_n,\ B_1:=A_1,\ B_2:=A_2-A_1,\ B_3:=A_3-(A_1\cup A_2),$ and so on. Then, $A=\cup_{n\in\mathbb{N}}B_n$. By monotonicity, for each $n\in\mathbb{N},\ \mu(B_n)\leq\mu(A_n)$ since $B_n\subset A_n$. Therefore we obtain $\mu(A)=\sum_{n\in\mathbb{N}}\mu(B_n)\leq\sum_{n\in\mathbb{N}}\mu(A_n)$.

Exercise 1.18: λ is a measure because (i) $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$ and (ii) for any $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{S}$ with A_n 's paiwise disjoint we have $\lambda(\cup_{n \in \mathbb{N}} A_n) = \mu((\cup_{n \in \mathbb{N}} A_n) \cap B) = \mu(\cup_{n \in \mathbb{N}} (A_n \cap B)) = \sum_{n \in \mathbb{N}} \mu(A_n \cap B) = \sum_{n \in \mathbb{N}} \lambda(A_n)$.

Exercise 1.20: Since $\mu(A_1) < \infty$, by monotonicity $\mu(A_i) < \infty$ for each $n \in \mathbb{N}$. Consider the increasing sequence $\{A_1 - A_n\}_{n \in \mathbb{N}}$, define $A = \bigcap_{n \in \mathbb{N}} A_n$ and note that $\lim_{n \to \infty} (A_1 - A_n) = A_1 - \lim_{n \to \infty} A_n = A_1 - A$.

Since μ is continuous from below,

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu[A_1 - \bigcup_{i=1}^{\infty} (A_1 - A_i)] = \mu(A_1) - \mu(\bigcup_{i=1}^{\infty} (A_1 - A_n))$$
$$= \mu(A_1) - \lim_{n \to \infty} \mu(A_1 - A_n) = \mu(A_1) - \lim_{n \to \infty} [\mu(A_1) - \mu(A_n)] = \lim_{n \to \infty} \mu(A_n)$$

Therefore $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

Section 2

Exercise 2.10: Clearly, $B = [(B \cap E) \cup (B \cap E^c)] =: F$. In particular, $B \subset F$ and by monotonicity and countable subadditivity we have $\mu^*(B) \leq \mu^*(F) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Therefore requiring (*) is the same as requiring $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$