

University of Idaho

CS CAPSTONE DESIGN

Capstone Portfolio Drone Mission Planning Software

Team: Mission Control

Authors:
David Klingenberg
Taylor Trabun

Advisors:
Dr. Bruce Bolden
Dr. Robert Rinker

Customer: Brandon Ortiz

Contents

Ir	atroduction
2.	
Ir	nitial Client Interview Transcript 9/10/14
3.	1 Meetings
3.	End Goal
3.	±
3.	4 Requirements
3.	5 Other Notes
N	leeting Agendas
4.	1 Sept. 10, 2014
	4.1.1 short
4.	2 Sept. 18, 2014
	4.2.1 short
4.	3 Sept. 25, 2014
	4.3.1 short
4.	4 Oct. 2, 2014
	4.4.1 short
4.	5 Oct. 9, 2014
	4.5.1 short
.pp	endices
N	liscellaneous UML Charts
3 A	TMEL [©] Microcontrollers
T	echnical Drawings
.	
∠ist	of Figures
1	Communication Sequence
2	ATmega644
3	ATmega2560
4	Electronic speed controller part bin

List of Tables

1	Team Member Contact Information	1
2	Priorities	1

1 Team Member Contact Information

Name	Phone Number	Email Address
David Klingenberg	(208) 310-9657	bigwookiee@Gmail.com
Taylor Trabun	(509) 995-0904	trab1744@vandals.uidaho.edu

Table 1: Team Member Contact Information

2 Introduction

Software to create and upload a flight plan to a quad copter drone. The flight plan will be uploaded using xBee radio communication.

This project will use off-the-shelf parts. ATMEL $^{\textcircled{c}}$ based microcontrollers found on ardunio based open source boards is the current preference.

2.1 Target Priorities

Number	Category	Need	Importance
1	Quadcopter	Center of Gravity Refined	5
2	Quadcopter	Reliable Flight	5
3	Quadcopter	Functioning xBee Hardware	4
4	Quadcopter	Hardware (Microcontroller) with xAPI and ser-	5
		vices to control flight	
5	Quadcopter	Controlled with XP communications	4
6	Quadcopter	Autoland	5
7	Software	software package for flight planning	2
8	Software	API for sending commands from computer	$\overline{2}$

Table 2: Priorities

3 Initial Client Interview Transcript 9/10/14

Mentor/Client: Brandon Ortiz

3.1 Meetings

We will be having weekly meetings in Brandon's office on Thursdays at 3:30 PM. These meeting will include status updates, further work on designs, troubleshooting, and assignment of tasks

3.2 End Goal

To have a stable and flying quadcopter that can be communicated with remotely. In addition, work done on a flight planning software (including GUI) should be underway. The project will be done in small steps, as this project requires research and development throughout.

3.3 First Steps

- Learn how quadcopter works
- Reconstruct quadcopter to be stable
- Learn how to fly quadcopter
- Understand flight computer documentation
- Design communications
- Be sure to use xAPI

3.4 Requirements

- Functional quadcopter (stable)
- Documentation of quadcopter construction
- Use of xAPI on arduino communication system
- Communication system using xBEE to communicate from computer to quadcopter
- Ability to send commands to quadcopter
- Flight planning software, including GUI

3.5 Other Notes

Other notes from the meeting included aviation terminology, how to pair the remote control and quadcopter receiver, quick tour of controller and motor adjustments, and a quick tour of flight computer.

4 Meeting Agendas

4.1 Sept. 10, 2014

Mission Control Team Agenda

Friday September 10, 2014. 1500 — 1600 in JEB Think Tank.

Type of Meeting

Initial client interview.

Attendees

David Klingenberg Taylor Trabun Brandon Ortiz

Topics

Topic	Responsible	Time (in minutes)
Product Overview	Brandon	15
System Requirements	Brandon	15
Tasks Breakdown	Open Discussion	15
Question & Answers	Open Discussion	25

Additional Information: This is our initial client interview.

4.1.1 Minutes from Friday September 10 Meeting

Refer to Section 3 initial client transcript.

4.2 Sept. 18, 2014

Mission Control Team Agenda

Thrusday September 18, 2014. 1500 - 1600 in JEB Think Tank.

Type of Meeting

Initial Planning

Attendees

David Klingenberg Taylor Trabun Brandon Ortiz Bruce Bolden

Topics

Topic	Responsible	Time (in minutes)
Progress Report	David, Taylor	5
System Overview	Brandon	10
Tasks Breakdown	Open Discussion	20
Additional Words of Wisdom	Bruce	5
Question & Answers	Open Discussion	20

Additional Information:

The rerouting and reconfiguring of the drone is proceeding nicely. It progress will be shown at the meeting time.

4.2.1 Minutes from Thursday September 18 Meeting

- 1505Meeting Started
- Discussed drone rebuild progress.
- Evaluated ESC bin for the drone.
 - Refer to figur 4 in Appendix C
- Discussed, evaluated, and illustrated the communication sequence.
 - Refer to figur 1 in Appendix A
- 1610 Meeting

4.3 Sept. 25, 2014

Mission Control Team Agenda

Thrusday September 25, 2014. 1530 — 1630 in JEB 37

Type of Meeting

Status Report and Next Week Planning

Attendees

David Klingenberg Taylor Trabun Brandon Ortiz

Topics

Topic	Responsible	Time (in minutes)
Progress Report	David & Taylor	10
Demonstrations	David & Taylor	10
New Tasks	Open Discussion	20
Question & Answers	Open Discussion	20

Additional Information:

4.3.1 Minutes from Thursday September 25 Meeting

- 1530 Meeting Start
- Discussed LCD use on Arduinos.
- Reviewed TUN packets.
- Status updates
 - Things moving along.
 - Getting closer to flying possibly next Thursday.
- xBee discussion on how to connect.
- Evaluated future problems.
 - Gyros and accelerometers need to be implemented separately from the flight computer.
- 1630 Meeting Ended

4.4 Oct. 2, 2014

Mission Control Team Agenda Thrusday October 2, 2014. 1530 - 1630 in JEB 37

Type of Meeting

Status Report and Next Week Planning

Attendees

David Klingenberg Taylor Trabun Brandon Ortiz

Topics

Topic	Responsible Time (in minu	
Progress Report	David & Taylor	10
Demonstrations	David & Taylor	10
New Tasks	Open Discussion	20
Question & Answers	Open Discussion	20

Additional Information:

4.4.1 Minutes from Thursday October 2 Meeting

- 1530 Meeting Start
- Status updates.
 - Taylor has one-way communications working.
 - David finished a prototype for the ECS bin.
 - * Bin needs its weight reduced.
 - * ECS cables need to be lengthened.
- To
 - Taylor will attempt to get XP comm working.
 - David will finish quadcopter.
 - Get a new adrenal for running a second xBee radio.
 - Solder new LCD board.

- xBee Configuration notes.
 - Use XCTU tool for configuration.
 - Need FID drivers installed for XCTU tool.
- 1630 Meeting Ended

4.5 Oct. 9, 2014

Mission Control Team Agenda Thrusday October 9, 2014. 1530 — 1630 in JEB 37

Type of Meeting

Status Report and Next Week Planning

Attendees

David Klingenberg Taylor Trabun Brandon Ortiz

Topics

Topic	Responsible	Time (in minutes)
Progress Report	David & Taylor	10
Demonstrations	David & Taylor	10
New Tasks	Open Discussion	20
Question & Answers	Open Discussion	20

Additional Information:

4.5.1 Minutes from Thursday October 9 Meeting

- 1530 Meeting Start
- Update
 - Taylor is preparing for snapshot day.
 - David
 - * Quadcopter rebuilt.
 - * Simple xBee terminals working between two computers.

• New Resources

- UAV control paper with GUI design example.
- Survey of UAV papers.

• Action Items

- David will experiment with PWM and the quadcopter and portfolio.
- Taylor will work on poster for snapshot day and continue working on communications.

• Test Flight

- Quadcopter has severe drift forward. David will work on solution.
- 1630 Meeting Ended

Appendices

A Miscellaneous UML Charts

Figure 1: Communication Sequence

ATMEL[©] Microcontrollers

Features

- High-performance, Low-power Atmel® AVR® 8-bit Microcontroller
 Advanced RISC Architecture
- - 131 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers Fully Static Operation

 - Up to 20 MIPS Throughput at 20MHz
- . High Endurance Non-volatile Memory segments
- 64 Kbytes of In-System Self-programmable Flash program memory
 - 2 Kbytes EEPROM4 Kbytes Internal SRAM

 - 4 Koytes Internal SHAM

 Write/Erase cyles: 10,000 Flash/100,000 EEPROM⁽¹⁾⁽³⁾

 Data retention: 20 years at 85°C/100 years at 25°C/2(3)

 Optional Boot Code Section with Independent Lock Bits
 In-System Programming by On-chip Boot Program True Read-While-Write Operation

 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 Compliant) Interface
- Boundary-scan Capabilities According to the JTAG Standard
 Extensive On-chip Debug Support
 Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Six PWM Channels8-channel, 10-bit ADC
- Differential mode with selectable gain at 1x, 10x or 200x Byte-oriented Two-wire Serial Interface
- One Programmable Serial USART
 Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
 Interrupt and Wake-up on Pin Change
 Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
 External and Internal Interrupt Sources
- Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
 - 32 Programmable I/O Lines
- 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
- Speed Grades
- ATmega644V: 0 4MHz @ 1.8V 5.5V, 0 10MHz @ 2.7V 5.5V ATmega644: 0 10MHz @ 2.7V 5.5V, 0 20MHz @ 4.5V 5.5V Power Consumption at 1MHz, 3V, 25 C
- - Active: 240μA @ 1.8V, 1MHz
 Power-down Mode: 0.1μA @ 1.8V

Notes: 1. Worst case temperature. Guaranteed after last write cycle.
2. Failure rate less than 1 ppm.

- 3. Characterized through accelerated tests.

8-bit Atmel Microcontroller with 64K Bytes In-System **Programmable** Flash

ATmega644/V

2593O-AVR-02/12

Figure 2: ATmega644

Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V

8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash

DATASHEET

Features

- Features

 High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller

 Advanced RISC Architecture

 135 Powerful Instructions Most Single Clock Cycle Execution

 32 x 8 General Purpose Working Registers

 Fully Static Operation

 Up to 16 MIPS Throughput at 16MHz

 On-Chip 2-cycle Multiplier

 High Endurance Non-volatile Memory Segments

 4KIYJ8K/256KBytes of In-System Self-Programmable Flash

 4Kbytes EEPROM

 Write/Erase Cycles:10,000 Flash/100,000 EEPROM

 8Kbytes Internal SRAM

 Write/Erase Cycles:10,000 Flash/100,000 EEPROM

 Bit System Programing by On-but Boot Program

 Frogramming Lock Ore Section with Independent Lock Bits

 In-System Programing by On-but Boot Program

 True Read-While-Write Operation

 Programming Lock for Software Security

 Endurages: Up to 64Kbytes Optional External Memory Space

 Atmel® Cfouch* Bitsons support

 Capacitive touch buttons, siders and wheels

 Grounds are Gildattis acquisition

 True Fleat-Write-Write Operation

 Programming Lock Lock Of Software Security

 Endurages: Up to 64Kbytes Optional External Memory Space

 Atmel® Cfouch* Bitsons acquisition

 Programming Lock Lock Of Software Security

 Endurages: Up to 64Kbytes Optional External Memory Space

 Atmel® Cfouch* Bitsons Sequential Security Security Sequential Security Sequential Security Sequential Sequential Security Sequential Security Sequential Security Sequential Security Sequential Security Sequential Sequential Sequential Sequential Security Sequential Seque

Figure 3: ATmega2560

C Technical Drawings

Figure 4: Electronic speed controller part bin