CSCE 636: Deep Learning

1. Given,

A is 3x3 square matrix, whose eighen value decomposition is given by:

$$A = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}$$
 (i)

$$Or$$
, $A = u\Lambda u^T$

We know that for a given square matrix (S), the eigen value decomposition is given by:

$$S = Q\Lambda Q^{-1} \tag{ii}$$

Therefore, from (i) and (ii), we get that $u^T = u^{-1}$, i.e. u is an orthogonal matrix.

And, we also know that, for any given matrix (R):

$$R.R^{T} = U \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} U \tag{iii}$$

And,

$$R^T R = V \Sigma^2 V^T \tag{iv}$$

Using (iii), we have:

$$A.A^T$$

$$=\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix} . \\ \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^T$$

Or,

$$A.A^T$$

$$=\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^T \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^T \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix}^T$$

Or,
$$A.A^{T} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} 1 \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^{T} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix}^{T}$$
 Since, $u^{T} = u^{-1}$

Or,
$$A.A^{T} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}$$

Therefore,
$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{31} & u_{32} & u_{33} \\ u_{21} & u_{22} & u_{23} \end{bmatrix}$$

And, Using (iv), we have:

$$A^{T}.A = \begin{pmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T}. \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^{T} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{bmatrix}^{T} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^{T} 1 \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T}$$
 Since, $u^{T} = u^{-1}$

$$Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{T} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33} \end{bmatrix}^{-1} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix}^{-1} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix}^{-1} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{23} \\ u_{13} & u_{23} & u_{23} \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{23} \\ u_{22} & u_{23} \end{bmatrix}^{-1} \\ Or, A^{T}.A = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{23} \\ u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{23} \\ u_{13} & u_{22} & u_{23} \end{bmatrix}^{-1}$$

Therefore,
$$V = \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix}$$

And,

$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, as per definition of singular value decomposition, we have:

$$A = U\Sigma V^{T}$$

$$Or, A = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{31} & u_{32} & u_{33} \\ u_{21} & u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} & u_{31} \\ u_{13} & u_{23} & u_{33} \\ u_{12} & u_{22} & u_{23} \end{bmatrix}^{T}$$

$$Or, A = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{31} & u_{32} & u_{33} \\ u_{21} & u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{13} & u_{12} \\ u_{21} & u_{23} & u_{23} \\ u_{31} & u_{33} & u_{23} \end{bmatrix}$$

2. Given,

H is a symmetric (nxn) matrix with:

- eigenvalues: $\lambda_1 \ge \lambda_2$, $\ge \lambda_3$ $\ge \lambda_n$
- eigenvectors: $U = [u_1, u_2, \dots, u_n]$

Therefore, the eigen value decomposition of H is given by

$$H = U\Sigma U^{T}$$
where, $\Sigma = \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & . & 0 \\ 0 & 0 & 0 & 0 & \lambda_{n} \end{bmatrix}$

Since, H is symmetric, U is orthogonal.

Now,
$$A^T H A = A^T (U \Sigma U^T) A = (U^T A)^T \Sigma (U^T A)$$

Let, $(U^T A) = B$, such that $B^T B = I$
Therefore, $tr(A^T H A) = tr(B^T \Sigma B) = tr(\Sigma B B^T) = \sum_{i=1}^n \lambda_i ||b_i||^2$ (i)

Since, non-diagonal elements of Σ are 0

Now, we know that $B^T B = I$

Let us represent B as a matrix consisting of n rows: $b_1, b_2, \dots b_n$.

Therefore, B^T would then be a matrix consisting of n columns: b_1, b_2, \dots, b_n .

$$\text{Hence, } B^TB = \begin{bmatrix} b_1^{\ 2} & b_2b_1 & \dots & b_nb_1 \\ b_1b_2 & b_2^{\ 2} & \dots & b_nb_2 \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & \dots & \ddots & \vdots \\ b_1b_n & b_2b_n & \dots & b_n^{\ 2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \vdots \\ 0 & 0 & \dots & \dots \end{bmatrix}$$

Therefore,

$$b_1^2 = b_2^2 = \dots = b_n^2 = 1 \tag{ii}$$

Hence from (i) and (ii), we have:

$$tr(A^T H A) = \sum_{i=1}^k \lambda_i$$

[Hence, Proved]

- 3. You may find the completed code in the submitted files.
 Please find the results of the hyperparameter training (highlighted in yellow) and testing accuracy below:
- Kernel_LR

Sl. No.	Hyperparameter Combo	Average Validation Acc
1	• learning_rate = 0.01	0.80848
	• $max_epoch = 10$	
	• batch_size = 64	
	• sigma = 1	
2	• learning_rate = 0.01	0.97156
	• $max_epoch = 10$	
	• batch size = 64	
	• sigma = 2	
3	• learning rate = 0.001	0.98545
	• $\max_{\text{epoch}} = 10$	
	batch_size = 64	
	• sigma = 2	

Testing accuracy - 0.9502

RBF

Sl. No. Hyperparameter Combo Average Validation Acc

1	 hidden_dim = 200 learning_rate = 0.01 max_epoch = 10 batch_size = 64 sigma = 2 	0.9344
2	 hidden_dim = 300 learning_rate = 0.01 max_epoch = 10 batch_size = 64 sigma = 2 	0.9527
3	 hidden_dim = 300 learning_rate = 0.001 max epoch = 10 batch_size = 64 sigma = 2 	0.9653

Testing accuracy - 0.9329

• FFN

Sl. No.	Hyperparameter Combo	Average Validation Acc
1	 hidden_dim = 64 learning_rate = 0.01 max_epoch = 10 batch_size = 64 	0.9979
2	 hidden_dim = 128 learning_rate = 0.01 max_epoch = 10 batch_size = 64 	0.9997
3	 hidden_dim = 300 learning_rate = 0.001 max_epoch = 10 batch_size = 64 	0.9990

Testing accuracy - 0.98268

4. You may find the completed code in the submitted files. Please find the results below:

• Reconstruction Error

d	PCA Reconstruction Error	Autoencoder Reconstruction Error (Sigmoid,
		Tanh, ReLU)
32	269.4172	178.4242, 494.5225, 410.2892
64	251.5158	142.8160, 515.9313, 417.6237
128	240.8621	111.6051, 633.5126, 430.8327

The Autoencoder seems to better reconstruct the inputs. This may be because autoencoder involved some kind of learning (where the error/loss to reconstruct the inputs is targeted to decrease at every iteration). However, in PCA the reconstruction simply takes place based on reduced rank approximation of the matrix. And it is observed that the higher the hidden dimension, the smaller is the reconstruction error in both cases.

• Comparing W and G

d	Frobeniu Norm between W and G (Sigmoid, Tanh, ReLU)
32	75.9503, 88.3314, 90.4067
64	95.8757, 126.1780, 127.5083
128	143.4463, 158.6712, 179.8638

Here, it is observed that as the hidden dimension increases, the differences between the PCA weights and Autoencoder weights also increases.

• Autoencoder Reconstruction Error without weights sharing

d	Weights sharing Reconstruction Error	Weights not sharing Reconstruction
	(Sigmoid, Tanh, ReLU)	Error (Sigmoid, Tanh, ReLU)
32	178.4242, 494.5225, 410.2892	170.9591, 405.6484, 386.2084
64	142.8160, 515.9313, 417.6237	148.0365, 413.5284, 404.9223
128	111.6051, 633.5126, 430.8327	102.0406, 627.3070, 404.8511

The performance seems marginally better when there is no sharing of weights.

• Autoencoder Reconstruction Error without with multiple layers

Model Parameters	Reconstruction Error
2 hidden layers in encoder and decoder. ReLU Activation.	128.0155
(Encoder size: 256-192-128-64. Decoder size: 64-128-192-256)	
1 hidden layers in encoder and decoder. ReLU Activation	124.2723
(Encoder size: 256-128-64. Decoder size: 64-128-256)	
2 hidden layers in encoder and decoder. Sigmoid Activation.	152.2071
(Encoder size: 256-192-128-64. Decoder size: 64-128-192-256)	
1 hidden layers in encoder and decoder. Sigmoid Activation	112.9187
(Encoder size: 256-128-64. Decoder size: 64-128-256)	
2 hidden layers in encoder and decoder. Tanh Activation.	88.9893
(Encoder size: 256-192-128-64. Decoder size: 64-128-192-256)	
1 hidden layers in encoder and decoder. Tanh Activation	94.6996
(Encoder size: 256-128-64. Decoder size: 64-128-256)	

For the multiple layers approach, tanh seemed to be the best activation function. And also, intuitively, the greater number of layers lead to smaller reconstruction error.