- 1. (4 pts)Given a target string, the goal is to produce it starting from a random string of the same length. Use **Genetic Algorithm** to solve this problem. The algorithm terminates when the number of iterations is larger than **5000**, or the target string is generated. The details of implementation are as follows.
 - Characters A-Z, a-z, 0-9 and other special symbols are considered as genes. The target string is "Hello, World! 19/11/09".
 - A string generated by these characters is considered as chromosome.
 - Fitness score is the number of characters which are equal to characters in target string at a particular index. For example, the fitness score of "ke:lF,)5X#iM# &\$n11g0A" is 6.

H	Ι	е	l	l	О	,		W	О	r	l	d	!	-	9	/	1	1	/	1	0
k	ζ	e	:	1	f	,)	5	X	#	i	Μ	#	&	\$	n	1	1	g	0	a

Requirement: Print the individual of the highest fitness score in each generation. For example,

```
// Valid Genes
const string GENES = "ABCDEFGHJKLMNOPQRSTUVWXYZ"\
"abcdefghijklmnopqrstuvwxyz 1234567890 , .-;:_!\"#%&/()=?@${[]}";

// Target string
const string TARGET = "Hello, World! 19/11/09";
```

2. (4 pts)Find x^* to minimize $x \cdot sin(x), x \in [-1, 15]$ ($sin(\pi) = 0$). Use **Genetic Algorithm**. Chromosome is a 16-bit binary code. The algorithm terminates when the number of iterations is larger than **5000**, or the average fitness score \approx the best fitness score.

Requirements:

• Design the implementation details by yourself.

- $x^* = \arg\min_x x \cdot \sin x \approx 11.0857$. It will be accepted as long as your final result falls into (11.08, 11.10).
- Print the individual of the best fitness score in each generation.
- 3. (2 pts) Describe your implementation of Question 2, including the end criterion, crossover operator, selection methods and so on.

Important Notes:

- Reference: The class note of Lecture 15.
- Remember to submit your makefile!
- Submit question 3 in a pdf file.
- Due: 2019/11/17 11:59pm