

Investigating Methods to Improve Language Model Integration for Attention-based Encoder-Decoder ASR Models

Mohammad Zeineldeen^{1,2}, Aleksandr Glushko¹, Wilfried Michel^{1,2}, Albert Zeyer^{1,2}, Ralf Schlüter^{1,2}, Hermann Ney^{1,2}

RWTH Aachen University¹, AppTek GmbH² Interspeech 2021, Brno

Introduction

• Attention encoder-decoder (AED) models benefit from external language model integration

Introduction

- Attention encoder-decoder (AED) models benefit from external language model integration
- Problem: AED models learn an implicit internal language model (ILM) from the training data

Introduction

- Attention encoder-decoder (AED) models benefit from external language model integration
- Problem: AED models learn an implicit internal language model (ILM) from the training data

• How to compute the ILM probability for prior correction during recognition for better performance?

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg\,max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

The posterior probability can be defined as:

$$P(w_1^N|x_1^T) \propto P_{\mathrm{AED}}(w_1^N|x_1^T) \cdot P_{\mathrm{LM}}^{\lambda_1}(w_1^N)$$

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

The posterior probability can be defined as:

$$P(w_1^N|x_1^T) \propto P_{\mathrm{AED}}(w_1^N|x_1^T) \cdot P_{\mathrm{LM}}^{\lambda_1}(w_1^N) \cdot P_{\mathrm{ILM}}^{-\lambda_2}(w_1^N)$$

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

The posterior probability can be defined as:

$$P(w_1^N|x_1^T) \propto P_{\mathrm{AED}}(w_1^N|x_1^T) \cdot P_{\mathrm{LM}}^{\lambda_1}(w_1^N) \cdot P_{\mathrm{ILM}}^{-\lambda_2}(w_1^N)$$

The ILM is defined as:

$$P_{\mathrm{ILM}}(w_1^N) = \sum_{T, x_1^T} P_{\mathrm{AED}}(w_1^N | x_1^T) \cdot P(x_1^T)$$

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

The posterior probability can be defined as:

$$P(w_1^N|x_1^T) \propto P_{\mathrm{AED}}(w_1^N|x_1^T) \cdot P_{\mathrm{LM}}^{\lambda_1}(w_1^N) \cdot P_{\mathrm{ILM}}^{-\lambda_2}(w_1^N)$$

The ILM is defined as:

$$P_{\mathrm{ILM}}(w_1^N) = \sum_{T, x_1^T} P_{\mathrm{AED}}(w_1^N | x_1^T) \cdot P(x_1^T)$$

However, the summation is intractable.

During recognition, the search algorithm searches for the best word sequence w_1^N that maximizes:

$$\hat{w}_1^{\hat{N}} = \underset{N,w_1^N}{\operatorname{arg max}} \left\{ \log P(w_1^N | x_1^T) \right\}$$

The posterior probability can be defined as:

$$P(w_1^N|x_1^T) \propto P_{\mathrm{AED}}(w_1^N|x_1^T) \cdot P_{\mathrm{LM}}^{\lambda_1}(w_1^N) \cdot P_{\mathrm{ILM}}^{-\lambda_2}(w_1^N)$$

The ILM is defined as:

$$P_{\mathrm{ILM}}(w_1^N) = \sum_{T, x_1^T} P_{\mathrm{AED}}(w_1^N | x_1^T) \cdot P(x_1^T)$$

However, the summation is **intractable**.

→ We propose different novel methods to estimate the ILM for AED models

• ILM estimation methods can be classified as:

- ILM estimation methods can be classified as:
 - 1. Model-agnostic methods (e.g Density Ratio [McDermott & Sak⁺ 19])

- ILM estimation methods can be classified as:
 - 1. Model-agnostic methods (e.g Density Ratio [McDermott & Sak⁺ 19])
 - 2. Model-specific methods [Variani & Rybach⁺ 20, Meng & Parthasarathy⁺ 20]

- ILM estimation methods can be classified as:
 - 1. Model-agnostic methods (e.g Density Ratio [McDermott & Sak⁺ 19])
 - 2. Model-specific methods [Variani & Rybach $^+$ 20, Meng & Parthasarathy $^+$ 20]

• We argue that using encoder bias can be helpful and this is more consistent with training

4 of 14

- ILM estimation methods can be classified as:
 - 1. Model-agnostic methods (e.g Density Ratio [McDermott & Sak⁺ 19])
 - 2. Model-specific methods [Variani & Rybach $^+$ 20, Meng & Parthasarathy $^+$ 20]

- We argue that using encoder bias can be helpful and this is more consistent with training
- This work focuses on **model-specific** estimation methods by replacing attention context vector with either static or trained context vectors

Attention Encoder-Decoder Model

Static Context Vector Estimation

Decoder

- Static vector → position independent
- Replace original context vector c_i by \hat{c} :
 - Zero vector (all elements are zero)
 - Average of all encoder states over train data
 - Average of all context vectors over train data

Trained Context Vector Estimation

- Training Steps
 - 1. Freeze all the parameters of AED model
 - 2. Add Linear and Mini-LSTM trainable layers
 - 3. Retrain the AED model for few epochs
- Minimizes directly the perplexity
- Trained only on transcription

ILM Suppression

- Limited Context Decoder
 - Replace the LSTM in the decoder with feed-forward layers
 - Less effective ILM
- Train AED together with LM via sequence training or local log-linear combination [Michel & Schlüter⁺ 20]
 - ASR model relies on the LM for language modeling and focuses on acoustic modeling

Results on Switchboard 300h

Method	WER [%]	
	Hub5'01	RT03
None	13.4	16.3
Shallow Fusion	13.0	15.7
Density Ratio	12.7	15.3
zero	12.9	15.6
$\mathbb{E}_{\mathcal{D}}[h]$	12.3	15.0
$\mathbb{E}_{\mathcal{D}}[c]$	12.4	14.9
$\mathbb{E}_{\scriptscriptstyle X}[h]$	12.6	15.2
Mini-LSTM	12.2	14.8

- ILM estimation by replacing attention context vector by:
 - zero: zero vector
 - $\mathbb{E}_{\mathcal{D}}[h]$: average of encoder states over train data
 - $-\mathbb{E}_{\mathcal{D}}[c]$: average of context vectors over train data
 - $-\mathbb{E}_{x}[h]$: average encoder states during recognition
 - Mini-LSTM: trained context vector
- Achieved 6% relative improvement in terms of WER compared to Shallow Fusion

Results on LibriSpeech 960h

Method	WER [%]	
ivietiiou	dev-other	test-other
None	10.37	10.88
Shallow Fusion	6.80	7.59
Density Ratio	6.68	7.22
train w. LM	6.19	6.81
zero	6.43	6.96
$\mathbb{E}_{\mathcal{D}}[h]$	6.19	6.76
$\mathbb{E}_{\mathcal{D}}[c]$	6.19	6.74
$\mathbb{E}_{\scriptscriptstyle X}[h]$	6.34	7.01
Mini-LSTM	5.76	6.53

- train w. LM: train AED model with LM to suppress ILM
- ILM estimation by replacing attention context vector by:
 - zero: zero vector
 - $\mathbb{E}_{\mathcal{D}}[h]$: average of encoder states over train data
 - $-\mathbb{E}_{\mathcal{D}}[c]$: average of context vectors over train data
 - $\mathbb{E}_{x}[h]$: average encoder states during recognition
 - Mini-LSTM: trained context vector
- Achieved 15% and 16% relative improvement in terms of WER compared to Shallow Fusion

Cross-domain Evaluation

- ASR model trained on LibriSpeech 960h dataset
- Evaluated on TED-LIUM-V2 [Rousseau & Deléglise⁺ 14] dev and test datastes

Method	WER [%]	
ivietiiou	TLv2-dev	TLv2-test
None	22.0	22.9
Shallow Fusion	18.5	19.3
Density Ratio	16.6	17.8
zero	17.3	18.3
$\mathbb{E}_{\mathcal{D}}[h]$	16.7	17.5
$\mathbb{E}_{\mathcal{D}}[c]$	16.8	18.0
$\mathbb{E}_{\scriptscriptstyle X}[h]$	16.7	18.0
Mini-LSTM	16.1	16.9

- ILM estimation by replacing attention context vector by:
 - zero: zero vector
 - $-\mathbb{E}_{\mathcal{D}}[h]$: average of encoder states over train data
 - $-\mathbb{E}_{\mathcal{D}}[c]$: average of context vectors over train data
 - $-\mathbb{E}_{x}[h]$: average encoder states during recognition
 - Mini-I STM: trained context vector

Limited Context Decoder - Switchboard 300h

Method	WER [%]	
	Hub5'01	RT03
None	14.0	16.8
SF	13.2	15.6
DR	13.2	15.6
zero	12.6	15.0
$\mathbb{E}_{\mathcal{D}}[h]$	12.4	14.8
$\mathbb{E}_{\mathcal{D}}[c]$	12.7	14.9
$\mathbb{E}_{x}[h]$	12.5	17.9
Mini-LSTM	12.6	14.9

- ILM estimation by replacing attention context vector by:
 - zero: zero vector
 - $\mathbb{E}_{\mathcal{D}}[h]$: average of encoder states over train data
 - $-\mathbb{E}_{\mathcal{D}}[c]$: average of context vectors over train data
 - $-\mathbb{E}_{x}[h]$: average encoder states during recognition
 - Mini-LSTM: trained context vector
- 1-layer FF decoder with context size 3
- Average-based static estimation methods perform better

Conclusions

- Subtracting the internal language model (ILM) during recognition gives significant improvements in terms of WER
- We proposed a novel method to train the attention context vector for ILM estimation which outperforms other methods
- We achieved 6% relative improvement in terms of WER on Switchboard 300h test sets as well as 15%-16% on LibriSpeech test sets
- Feed-forward or limited context decoder AED model can achieve comparable results to a recurrent decoder on Switchboard 300h task with ILM subtraction
- This work shows the importance of considering ILM subtraction in order to acheive better results

Thank you for your attention

Any questions?

References

[McDermott & Sak+ 19] E. McDermott, H. Sak, E. Variani.

A density ratio approach to language model fusion in end-to-end automatic speech recognition. 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Vol., pp. 434–441, 2019.

[Meng & Parthasarathy⁺ 20] Z. Meng, S. Parthasarathy, E. Sun, Y. Gaur, N. Kanda, L. Lu, X. Chen, R. Zhao, J. Li, Y. Gong.

Internal language model estimation for domain-adaptive end-to-end speech recognition.

ArXiv, Vol. abs/2011.01991, 2020.

[Michel & Schlüter⁺ 20] W. Michel, R. Schlüter, H. Ney.

Early Stage LM Integration Using Local and Global Log-Linear Combination.

In Proc. Interspeech 2020, pp. 3605-3609, 2020.

[Rousseau & Deléglise⁺ 14] A. Rousseau, P. Deléglise, Y. Estève.

Enhancing the TED-LIUM corpus with selected data for language modeling and more TED talks.

References

In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pp. 3935–3939, Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA).

[Variani & Rybach⁺ 20] E. Variani, D. Rybach, C. Allauzen, M. Riley. Hybrid autoregressive transducer (HAT). In *ICASSP*, 2020.

