Interpretable Machine Learning

Individual Conditional Expectation (ICE) Plot

Learning goals

- ICE curves as local effect method
- How to sample grid points for ICE curves

MOTIVATION

Question: How does changing values of a single feature of an observation affect model prediction?

Idea: Change values of observation and feature of interest, and visualize how prediction changes

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed \Rightarrow local interpretation

INDIVIDUAL CONDITIONAL EXPECTATION (ICE) Goldstein et. al (2013)

Partition each observation \mathbf{x} into \mathbf{x}_S (features of interest) and remaining features \mathbf{X}_{-S} .

 \rightarrow In practice, \mathbf{x}_S consists of one or two features (i.e., $|S| \le 2$ and $-S = S^{\complement}$).

ICE curves visualize how prediction of i-th observation changes after varying its feature values indexed by S using grid points \mathbf{x}_{S}^{*} while keeping all values in -Sfixed:

$$\hat{f}_S^{(i)}(\mathbf{x}_S^*)$$
 vs. \mathbf{x}_S^*

where $\hat{f}_{S}^{(i)}(\mathbf{x}_{S}^{*}) = \hat{f}(\mathbf{x}_{S}^{*}, \mathbf{x}_{-S}^{(i)})$ is prediction of *i*-th observation in which original feature value $\mathbf{x}_{S}^{(i)}$ was replaced by \mathbf{x}_{S}^{*}

1. Step - Grid points:

Sample grid values $\mathbf{x}_S^{*^{(i)}}, \dots, \mathbf{x}_S^{*^{(g)}}$ along feature of interest \mathbf{x}_S and replace vector $\mathbf{x}^{(i)}$ in data with grid \Rightarrow Creates new artificial points for the *i*-th observation (here: $\mathbf{x}_S^* = x_1^* \in \{1, 2, 3\}$ is a scalar)

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_S^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$
 vs. $x_1^* \in \{1, 2, 3\}$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_S^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_S^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$
 vs. $x_1^* \in \{1, 2, 3\}$

3. Step - Repeat for other observations:

ICE curve for i = 2 connects all predictions at grid values associated to i-th observation.

3. Step - Repeat for other observations:

ICE curve for i = 3 connects all predictions at grid values associated to i-th observation.

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values x_S that are visualized on the x-axis
- Common choices for grid values are
 - equidistant grid values within feature range
 - randomly sampled values or quantile values of observed feature values
- Except equidistant grid, the other two options preserve (approximately) the marginal distribution
 of feature of interest ⇒ Avoids unrealistic feature values for distributions with outliers

Grid points for X_S (red) for highlighted observation (blue)

