Tools and Libraries

Jupyter

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

https://jupyter.org/

- Origin: iPython, iPython Notebook
- Open source, BSD license
- Started in 2014 by Fernando Pérez, assistant professor in the Department of Statistics at UC Berkeley
- Supported by Microsoft, Google and several foundations
- Very popular in the data analysis / data science / machine learning space
- Supports ~50 languages: Python, R, Julia, Scala, ...

Using Jupyter

Run Cells

- Run and stay at current cell: Ctrl+Enter
- Run and advance to next cell: Shift+Enter
- Run all cells in a notebook -> Menu

Manage Cells

- Switch between command and edit mode: Enter, ESC/Ctrl+M
- In command mode:
 - Delete cell: dd
 - Add cell before a or after b current cell
 - Copy cell: c + v
 - Change cell type: markdown m, code y, raw r

Pandas

- Python library (can be used independent of Jupyter)
- Data structues and tools for data analysis (in-memory)
- Tabluar data and time series
- Homepage: https://pandas.pydata.org/)
- Documentation: https://pandas.pydata.org/pandas-docs/stable/ (https://pandas.pydata.org/pandas-docs/stable/)

Pandas Data Structure: DataFrame

- Two-dimensional, like a spreadsheet or SQL table
- Rows have an index
- Columns have a label and a data type

Out[10]:

	somecat	somedate	somefloat	someint	sometext
0	а	2019-06-24 14:03:21.035563	1.400000	-1	foo
1	b	2000-01-01 00:00:00.000000	0.000012	0	bar
2	b	NaT	NaN	42	baz
3	а	NaT	3.141593	1000	None

DataFrame: head, tail, sample

In [11]: df.head(2)

Out[11]:

	somecat	somedate	somefloat	someint	sometext
0	а	2019-06-24 14:03:21.035563	1.400000	-1	foo
1	b	2000-01-01 00:00:00.000000	0.000012	0	bar

In [12]: df.tail(2)

Out[12]:

	somecat	somedate	somefloat	someint	sometext
2	b	NaT	NaN	42	baz
3	а	NaT	3.141593	1000	None

In [13]: | df.sample(2)

Out[13]:

	somecat	somedate	somefloat	someint	sometext
1	b	2000-01-01 00:00:00.000000	0.000012	0	bar
0	а	2019-06-24 14:03:21.035563	1.400000	-1	foo

Data Import

- Pandas has many read * functions for importing data into a DataFrame
 - CSV, SQL (query or table), JSON, XML
- CSV:
- Tries to automagically detect: separators, column names, data types
- Fails sometimes, but can be defined explicitely
- Parsing of dates needs to be defined explicitely
- SQL:
- Requires connection to database

```
In [ ]: df = pd.read_csv('data/demo.csv')
```

scikit-learn

- Tools for data mining and statistical machine learning
- Built on NumPy, SciPy, and matplotlib
- Open source https://scikit-learn.org/stable/index.html (https://scikit-learn.org/stable/index.html)

Important classification functions in sklearn

- fit(x_train, y_train):trains the model on the data
- predict(x_test):shows the predicted outcome
- predict_proba(x_test): shows the probability for the predicted outcome
- score(x_test, y_test): gives us a value max 1.0 (which is the perfect score) for the performance of our model

Other libraries

There are a lot of useful python libraries for data analysis and machine learning. We will work with:

- numpy: library adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays
- matplotlib and seaborn: plotting libraries

Default imports

```
In [8]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn as sklearn
```

Datasets we are working with

- Iris flower Dataset
 - Part of scikit-learn
 - 3 classes of flowers
 - 4 dimensions: sepal length (cm), sepal width (cm), petal length (cm), petal width (cm)
- Heart Disease Data Set
 - From the UC Irvine Machine Learning Repository
 - Details: https://archive.ics.uci.edu/ml/datasets/heart+Disease
 (https://archive.ics.uci.edu/ml/datasets/heart+Disease

Attribute Information Heart Disease Dataset

- 1. age
- 2. sex
- 3. chest pain type (4 values)
- 4. resting blood pressure
- 5. serum cholestoral in mg/dl
- 6. fasting blood sugar > 120 mg/dl
- 7. resting electrocardiographic results (values 0,1,2)
- 8. maximum heart rate achieved
- 9. exercise induced angina
- 10. oldpeak = ST depression induced by exercise relative to rest
- 11. the slope of the peak exercise ST segment
- 12. number of major vessels (0-3) colored by flourosopy
- 13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

Exercise Jupyter

Goals:

• Getting familiar with Jupyter

Tasks:

- Create a notebook file, create some code cells, write some Python code, and execute it
- Create a markdown cell
- Try some shortcuts:
 - Execute a cell: Ctrl+Enter and Shift+Enter
 - Create a cell before a or after b
 - Copy c and paste v a cell
- Try code completion
 - Tab

Exercise Pandas (1)

Goals:

- Get an idea what the dataset is about
- Getting familiar with pandas

Tasks:

- Import data/heart.csv as pandas dataframe
- How many tupels and how many attributes do we have?
- Set meaningful column names (See https://pandas.pydata.org/pandas.DataFrame.html

 (https://pandas.pydata.org/pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html))
- Look at the top lines of the data table
- A useful function for a statistical overview is describe(). Try it for your dataframe
- Plot the outcome with Seaborn (See:
 https://seaborn.pydata.org/generated/seaborn.countplot.html)
 (https://seaborn.pydata.org/generated/seaborn.countplot.html))

Exercise Pandas (2)

Goals:

• Preparing data for working with scikit-learn

Tasks:

• Separate input data and output, common variables are x for input, y for output.