## Algebraic Topology II Homework 2

James Harbour

September 6, 2023

#### 1 Problem 1

Assuming as known the cup product structure on the 2-torus  $\mathbb{T}^2 = S^1 \times S^1$ , compute the cup product structure in  $H^*(M_g)$  for  $M_g$  the closed orientable surface of genus g using the quotient map from  $M_g$  to a wedge sum of g tori (see photo).

*Proof.* We take as known that the cohomology ring of  $\mathbb{T}^2$  with coefficients in a ring R is given by

$$H^*(\mathbb{T}^2; R) = \Lambda_R[\alpha_1, \alpha_2]$$



#### 2 Problem 3

(a): Using the cup product structure, show that there is no map  $\mathbb{R}P^n \to \mathbb{R}P^m$  inducing a nontrivial map  $H^1(\mathbb{R}P^m; \mathbb{Z}_2) \to H^1(\mathbb{R}P^n; \mathbb{Z}_2)$  if n > m. What is corresponding result for maps  $\mathbb{C}P^n \to \mathbb{C}P^m$ .

(b): Prove the Borsuk-Ulam theorem.

### 3 Problem 7

Use cup products to show that  $\mathbb{R}P^3$  is not homotopy equivalent to  $\mathbb{R}P^2 \vee S^1$ .

## 4 Problem 8

Let X be  $\mathbb{C}P^2$  with a cell  $e^3$  attached by a map  $S^2 \to \mathbb{C}P^1 \subseteq \mathbb{C}P^2$  of degree p, and let  $Y := M(\mathbb{Z}_p, 2)) \vee S^4$ . Thus X and Y have the smae 3-skeleton but differ in the way their 4-cells are attached. Show that X and Y have isomorphic cohomology rings with coefficients in  $\mathbb{Z}$ , but not with  $\mathbb{Z}_p$  coefficients.

# 5 Problem 9

Show that if  $H_n(X;\mathbb{Z})$  free for each n, then  $H^*(X;\mathbb{Z}_p)$  and  $H^*(X;\mathbb{Z})\otimes\mathbb{Z}_p$  are isomorphic as rings, so in particular the ring structure with  $\mathbb{Z}$  coefficients determines the ring structure with  $\mathbb{Z}_p$  coefficients.