大規模Vision&Languageマルチタスクモデルの学習効率化と Human-Object Interactionへの適用

軸屋敬介+,梁瀬和哉+,表英輝+,土田裕登+,加藤邦人+

+:岐阜大学工学部, #: 日本車輌製造株式会社

研究背景

- ◆ 大規模Vision&Languageモデル
 - 画像と言語の統合 → 高い性能
- ◆大規模マルチタスクモデル

知識の組み合わせ *** 未学習タスクを解く(推論能力)

【対策】

これらを含むモデルの作成と下流タスクへの適用

【効率的な学習】

◆720データ(短い:長い=360:360)での計算

通常のマルチタスク学習

		無減な入亡りで使用					ı	
短いタスク	abbey	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>] 120 バッチ
長いタスク	cruise	ship	and	boats	by	the	dock	×6
							バッチ内	-

提案手法

勾配を蓄積して勾配更新

タスクごとのバッチサイズを設定

毎軒かくエリを休用

長いタスク

A	food	item	on	the	table	<pad></pad>	120 バッエ
uise	ship	and	boats	by	the	dock	×3

バッチ内

→ 6 から 4 (=1+3) 回 ヘ 計算回数の削減

提案手法

【事前学習】

文章の一部を隠して学習

【タスク学習】

様々なタスクで 汎用的な知識を得る

【ファインチューニング】 特定のタスクに適用

Human-Object Interaction 人と物体の**関係**を予測するタスク

人がボールを持っている

	タスクの例	
タスク	入力	出力
Region Captioning	What does the region <loc_81><loc_1192> describe?</loc_1192></loc_81>	heavily embellished wedding sandals
Categorization	What is the category of the region <pre><loc_825><loc_1349>?</loc_1349></loc_825></pre>	Human arm

実験結果

データセッ	
V-COCO	

	データセットの詳	紀
学習	テスト	関係
8,543	7,811	29

入力と出力

入力

What is the interaction between person<loc_40><loc_1558> and donut<loc_376><loc_1024>?

出力

hold, eat

|評価指標

Marco F1

Macro F1 =
$$\frac{1}{m} \sum_{i=1}^{m} (F_1)_i$$

比較対象

OFA, Kosmos-2

結果の例

結果

vs OFA_{Large} 11倍<u>図</u> 13.3% <u>レ</u>

vs OFA_{Huge} 24倍 区 11.5% 辽

vs Kosmos-2 120倍 ☒

パラメータと学習時間およびMacro F1

Kosmos-2

モデル	OFA _{Large}	OFA _{Huge}	Ours	Kosmos-2
総パラメータ	473M	929M	699M	1798M
学習パラメータ	412M	853M	162M	1798M
学習時間 [1エポック] (6000Ada×4)	11 min	24 min	1 min	120 min
RTX4090での バッチサイズ	16	不可	160	不可
Macro F1 (Oursとの比較)	68.0% (-13.3%)	69.8% (-11.5%)	81.3% (±0%)	84.3% (+ 3.0 %)

今後の課題

パラメータ数が最多のKosmos-2が最も良い精度

■ モデルやデータの改良で 軽量さを維持しつつKosmos-2を超える性能を実現したい