CS420

Introduction to the Theory of Computation

Lecture 14: Deterministic Finite Automata

Tiago Cogumbreiro

Today we will learn...

- Deterministic Finite Automata (DFA)
- Implementing a DFA
- Converting NFAs into DFAs
- Practical applications of DFAs and NFAs

Finite Automata

a.k.a. finite state machine

A turnstile controller

Allows one-directional passage. Opens when the front sensor is triggered. It should remain open while any sensor is triggered, and then close once neither is triggered.

• States: open, close

Inputs: front, rear, both, neither

State Diagram

Each state must have exactly one transition per element of the alphabet (all states must have same transition count)

Definition

- Graph-based diagram
- Nodes: called states; annotated with a name (Distinct names!)
- Edges: called transitions; annotated with inputs
- Initial state has an incoming edge (only one)
- Accepted nodes have a double circle (zero or more)
- Multiple inputs are comma separated

In the example: Two states: open, close. State close is an accepting state. State close is also the initial state

The controller of a turnstile

State transition

(prev. state)	front	rear	both	neither
close	open	close	close	close
open	open	open	open	close

```
from enum import *

class State(Enum): Open = 0; Close = 1

class Input(Enum): Neither = 0; Front = 1; Rear = 2; Both = 3

def state_transition(old_st, i):
   if old_st = State.Close and i == Input.Front: return State.Open
   if old_st == State.Open and i == Input.Neither: return State.Close
   return old_st
```

An automaton

An automaton receives a sequence of inputs, processes them, and outputs whether it accepts the sequence.

- Input: a string of inputs, and an initial state
- Output: accept or reject

Implementation example

```
def automaton_accepts(inputs):
    st = State.Close
    for i in inputs:
        st = state_transition(st, i)
    return st is State.Close
```

An automaton acceptance examples


```
>>> automaton_accepts([])
True
>>> automaton_accepts([Input.Front, Input.Neither])
True
>>> automaton_accepts([Input.Rear, Input.Front, Input.Front])
False
>>> automaton_accepts([Input.Rear, Input.Front, Input.Rear, Input.Neither, Input.Rear])
True
```

Formal definition of a Finite Automaton

Definition 1.5

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- 1. Q is a finite set called states
- 2. Σ is a finite set called alphabet
- 3. $\delta\colon Q\times\Sigma\to Q$ is the transition function (δ takes a state and an alphabet and produces a state)
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accepted states

A formal definition is a precise mathematical language. In this example, item declares a name and possibly some constraint, e.g., $q_0 \in Q$ is saying that q_0 **must** be in set Q. These constraints are visible in the code in the form of assertions.

Formal declaration of our running example

Let the running example be the following finite automaton $M_{turnstile}$

$$(\{\mathtt{Open},\mathtt{Close}\},\{\mathtt{Neither},\mathtt{Front},\mathtt{Rear},\mathtt{Both}\},\delta,\mathtt{Close},\{\mathtt{Close}\})$$

where

$$\delta(exttt{Close}, exttt{Front}) = exttt{Open} \ \delta(exttt{Open}, exttt{Neither}) = exttt{Close} \ \delta(q,i) = q$$

Facts

- $M_{turnstile}$ accepts [Front, Neither]
- $M_{turnstile}$ rejects [Rear, Front, Front]
- $M_{turnstile}$ accepts [Rear, Front, Rear, Neither, Rear]

States?

States? $Q=\{q_1,q_2,q_3\}$ Alphabet?

States? $Q = \{q_1, q_2, q_3\}$

Alphabet? $\Sigma = \{0,1\}$

Transition table δ ?

States?
$$Q=\{q_1,q_2,q_3\}$$

Alphabet?
$$\Sigma = \{0,1\}$$

Transition table δ ?

(prev)	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_3	q_2

States? $Q=\{q_1,q_2,q_3\}$

Alphabet? $\Sigma = \{0,1\}$

Transition table δ ?

(prev)	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_3	q_2

Finite Automaton:

$$(\{q_1,q_2,q_3\},\{0,1\},q_1,\{q_2\})$$

What are the set of inputs accepted by this automaton?

What are the set of inputs accepted by this automaton?

Answer: Strings terminating in 1

The language of a machine

Definition: language of a machine

- 1. We define $\operatorname{L}(M)$ to be the set of all strings accepted by finite automaton M.
- 2. Let A = L(M), we say that the finite automaton M recognizes the set of strings A.

The language of a machine

Definition: language of a machine

- 1. We define $\operatorname{L}(M)$ to be the set of all strings accepted by finite automaton M.
- 2. Let A = L(M), we say that the finite automaton M recognizes the set of strings A.

Notes

- The language is the **set** of all possible alphabet-sequences recognized by a finite automaton
- ullet Since ${
 m L}(M)$ is a **total** function, then the language recognized by a machine always exists and is unique
- A language may be empty
- We **cannot** write a program that returns the language of an arbitrary finite automaton. Why? **Because the language set may be infinite. How could a program return** Σ^* ?

Are all DFAs also NFAs?

Are all DFAs also NFAs?

- **Yes,** DFAs can be trivially converted into NFAs.

 The state diagram of a DFA is equivalent to the same state diagram as an NFA.
- We only need to slightly change the transition function to handle ϵ inputs.

Are all NFAs also DFAs?

Are all NFAs also DFAs?

Yes!

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

States:

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

- States: Each state becomes a set of all possible concurrent states of the NFA
- Alphabet:

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

- States: Each state becomes a set of all possible concurrent states of the NFA
- Alphabet: same alphabet
- Initial state:

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

- States: Each state becomes a set of all possible concurrent states of the NFA
- Alphabet: same alphabet
- Initial state: The state that consists of an epsilon-step on the initial state.
- Transition:

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

- States: Each state becomes a set of all possible concurrent states of the NFA
- Alphabet: same alphabet
- Initial state: The state that consists of an epsilon-step on the initial state.
- Transition: One input-step followed by one epsilon-step

Are all NFAs also DFAs?


```
def nfa_to_dfa(nfa):
 def transition(q, c):
    return nfa.epsilon(nfa.multi_transition(q, c))
  def accept_state(qs):
    for q in qs:
      if nfa.accepted_states(q):
        return True
    return False
  return DFA(
    nfa.alphabet,
    transition,
   nfa.epsilon({nfa.start_state}),
    accept_state)
```

Nondeterministic transition δ_{\Box}

$$\delta_{\cup}(R,a) = igcup_{q \in R} \delta(r,a)$$

```
def multi_transition(self, states, input):
   new_states = set()
   for st in states:
      new_states.update(self.transition_func(st, input))
   return set(new_states)
```

(See Theorem 1.39; in the book δ_{\cup} is δ')

Epsilon transition

 $E(R) = \{q \mid q \text{ can be reached from R by travelling along 0 or more } \epsilon \text{ arrows}\}$

```
def epsilon(self, states):
    states = set(states)
    while True:
        count = len(states)
        states.update(self.transition(states, None))
    if count == len(states):
        return states
```

(See Theorem 1.39)

Theorem 1.39

Every NFA has an equivalent DFA

Formally, we introduce function nfa2dfa that converts an NFA into a DFA.

 $ext{nfa2dfa}((Q,\Gamma,\delta,q_1,F)) = (\mathcal{P}(Q),\Gamma,\delta_D,E(q_1),F_D)$ where

- $\delta_D(Q,c)=E(\delta_\cup(Q,c))$
- $F_D = \{Q \mid Q \cap F \neq \emptyset\}$

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а		
$\{q_1,q_2,q_3\}$	b		

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	X
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	
$\{q_1,q_2,q_3\}$	b	$\{q_1,q_3\}$	
$\{q_1,q_2,q_3,q_4\}$	а		
$\{q_1, q_2, q_3, q_4\}$	b		
$\{q_1,q_3\}$	а		
$\{q_1,q_3\}$	b		

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	X
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_2,q_3\}$	b	$\{q_1,q_3\}$	
$\{q_1,q_2,q_3,q_4\}$	а	$\{q_1,q_2,q_3,q_4\}$	X
$\{q_1,q_2,q_3,q_4\}$	b	$\{q_1,q_3,q_4\}$	
$\{q_1,q_3\}$	а		
$\{q_1,q_3\}$	b		
$\{q_1,q_3,q_4\}$	а		
$\{q_1,q_3,q_4\}$	b		

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	X
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_2,q_3\}$	b	$\{q_1,q_3\}$	Х
$\{q_1, q_2, q_3, q_4\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_2,q_3,q_4\}$	b	$\{q_1,q_3,q_4\}$	Х
$\{q_1,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_3\}$	b	$\{q_1\}$	X
$\{q_1,q_3,q_4\}$	а		
$\{q_1,q_3,q_4\}$	b		

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	Х
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_2,q_3\}$	b	$\{q_1,q_3\}$	X
$\{q_1, q_2, q_3, q_4\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1, q_2, q_3, q_4\}$	b	$\{q_1,q_3,q_4\}$	X
$\{q_1,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_3\}$	b	$\{q_1\}$	X
$\{q_1,q_3,q_4\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_3,q_4\}$	b	$\{q_1,q_4\}$	
$\{q_1,q_4\}$	а		
$\{q_1,q_4\}$	b		

 ϵ, b

States	Input	States	Done
$\{q_1\}$	а	$\{q_1,q_2,q_3\}$	Х
$\{q_1\}$	b	$\{q_1\}$	X
$\{q_1,q_2,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_2,q_3\}$	b	$\{q_1,q_3\}$	X
$\{q_1, q_2, q_3, q_4\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1, q_2, q_3, q_4\}$	b	$\{q_1,q_3,q_4\}$	X
$\{q_1,q_3\}$	а	$\{q_1, q_2, q_3, q_4\}$	X
$\{q_1,q_3\}$	b	$\{q_1\}$	X
$\{q_1,q_3,q_4\}$	а	$\{q_1,q_2,q_3,q_4\}$	X
$\{q_1,q_3,q_4\}$	b	$\{q_1,q_4\}$	X
$\{q_1,q_4\}$	а	$\{q_1,q_2,q_3,q_4\}$	X
$\{q_1,q_4\}$	b	$\{q_1,q_4\}$	X

a, b

start -

a

Exercise

The initial state is the set of all states in the NFA that are reachable from q_1 via ϵ transitions plus q_1 .

- For each input in Σ range we must draw a transition to a target state.
- A target state is found by taking an input, say a, and doing an input+epsilon step on each sub-state.

First, input **a** we find all reachable states (via input+epsilon state) that start from either q_1 or q_3 .

- ullet From q_1 via $oldsymbol{a}$ we get $\{q_1,q_2,q_3\}$
- From q_3 via **a** we get \emptyset
- ullet Result state is $\{q_1,q_2,q_3\}\cup\emptyset=\{q_1,q_2,q_3\}$

Second, input **b** we find all reachable states (via input+epsilon state) that start from either q_1 or q_3 .

- From q_1 via b we get \emptyset
- ullet From q_3 via ullet we get $\{q_4\}$
- Result state is $\emptyset \cup \{q_4\} = \{q_4\}$

For inputs **a** and **b** we find all reachable states (via input+epsilon state) that start from q_4 :

- ullet From q_4 via **a** we get \emptyset , so the result state is \emptyset
- From q_4 via **b** we get \emptyset , so the result state is \emptyset

Transition from $\{q_1,q_2,q_3\}$ via **a**?

- We know with $\{q_1,q_3\}$ with **a** we reach $\{q_1,q_2,q_3\}$
- From q_2 with **a** we reach $\{q_3\}$
- ullet Thus, result state is $\{q_1,q_2,q_3\}\cup\{q_3\}=\{q_1,q_2,q_3\}$ (self-loop)

Transition from $\{q_1, q_2, q_3\}$ via b?

- We know with $\{q_1,q_3\}$ with **b** we reach $\{q_4\}$
- From q_2 with **b** we reach $\{q_2\}$
- ullet Thus, result state is $\{q_4\} \cup \{q_2\} = \{q_2,q_4\}$

Transition from $\{q_2,q_4\}$ via **a**?

- ullet From q_2 with ${f a}$ we reach $\{q_1,q_3\}$
- From q_4 with **a** we reach \emptyset
- ullet Thus, result state is $\{q_1,q_3\}\cup\emptyset=\{q_1,q_3\}$

Transition from $\{q_2, q_4\}$ via b?

- From q_2 with ${\sf b}$ we reach $\{q_2\}$
- From q_4 with ${\sf b}$ we reach \emptyset
- Thus, result state is $\{q_2\} \cup \emptyset = \{q_2\}$

Transition from $\{q_2\}$ via **a**?

ullet From q_2 with $oldsymbol{a}$ we reach $\{q_1,q_3\}$ (result state)

Transition from $\{q_2\}$ via b?

• From q_2 with b we reach $\{q_2\}$ (result state; self loop)

State $\{\}$ (also known as \emptyset) is a **sink state**, so we draw a self loop for every input in Σ .

Applications of automaton

- DFAs are crucial to implement regular expression matching by converting
 REGEX → NFA → DFA
- DFAs are simple to implement and fast to run
- DFAs can be minimized
 Any regular language has a minimal DFA, which is defined as a DFA with the smallest number of states that recognizes that language.

Use Case 1: implementing regex

Rust standard library's regular expresson implementation (source)

```
struct ExecReadOnly {
   /// The original regular expressions given by the caller to compile.
    res: Vec<String>,
   /// A compiled program that is used in the NFA simulation and backtracking.
   /// It can be byte-based or Unicode codepoint based.
   /// N.B. It is not possibly to make this byte-based from the public API.
   /// It is only used for testing byte based programs in the NFA simulations.
   nfa: Program,
   /// A compiled byte based program for DFA execution. This is only used
   /// if a DFA can be executed. (Currently, only word boundary assertions are
   /// not supported.) Note that this program contains an embedded .*?
   /// preceding the first capture group, unless the regex is anchored at the
   /// beginning.
   dfa: Program,
```

Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage

Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage

- Arduino is an open-source hardware to design microcontrollers
- Programming can be difficult, because it is highly concurrent
- Finite-state-machines structures the logical states of the hardware
- **Input:** a string of hardware events
- String acceptance is not interesting in this domain

Example

The FSM represents the logical view of a micro-controller with a light switch

Use Case 2

Declare states

```
#include "Fsm.h"
// Connect functions to a state
State state_light_on(on_light_on_enter, NULL, &on_light_on_exit);
// Connect functions to a state
State state_light_off(on_light_off_enter, NULL, &on_light_off_exit);
// Initial state
Fsm fsm(&state_light_off);
```

Source: platformio.org/lib/show/664/arduino-fsm

Use Case 2

Declare transitions

Source: platformio.org/lib/show/664/arduino-fsm

Use Case 2

Code that runs on before/after states

```
// Transition callback functions
void on_light_on_enter() {
  Serial.println("Entering LIGHT_ON");
void on_light_on_exit() {
  Serial.println("Exiting LIGHT_ON");
void on_light_off_enter() {
  Serial.println("Entering LIGHT_OFF");
```

Source: platformio.org/lib/show/664/arduino-fsm