Nama : Daarel Safa Fatillah

NIM : 2022071064

1. Cari nilai KPK dari 3 dan 4

```
Pseudocode:
def gcd(a, b):
while b != 0:
remainder = a % b a = b
b = remainder return a
def lcm(a, b):
return (a * b) // gcd(a, b)
def main(): number1 = 3
number2 = 4
kpk = lcm(number1, number2)
print(f"KPK dari {number1} dan {number2} adalah {kpk}") main()
algoritma:
1.Mulai.
2.Tentukan dua bilangan bulat 'a' dan 'b'.
3.Definisikan sebuah fungsi bernama 'find_lcm' dengan parameter 'a' dan 'b':
4.Setelah keluar dari loop, kembalikan nilai 'lcm' sebagai hasil dari fungsi 'find_lcm'.
5. Tetapkan dua bilangan 'a' dan 'b' dengan nilai masing-masing (contohnya a = 3 dan b = 4).
6.Panggil fungsi 'find_lcm' dengan argumen 'a' dan 'b', dan simpan hasilnya dalam variabel 'kpk'.
7.Cetak pesan yang berisi nilai KPK dari 'a' dan 'b' dengan menggunakan pernyataan 'print'
```

8. se	lesai
-------	-------

2. Fungsi untuk menukar posisi dua variabel x dan y, dengan kasus:
ada 2 buah: manggis dan pisang, manggis di piring 1, pisang di piring 2, piring 3 kosong
pseudocode:
p1 = manggis
p2 = pisang
p3 = null
define swap(p1,p2)
p3 = p1
p1 = p2
p2 = p3
algoritma:
1. Pindahkan manggis ke piring 3 dan piring 1 null
2. pindahkan pisang ke piring 1 dan piring 2 null
3. pindahkan manggis ke piring 2 dan piring 3 null
3. Diketahui Sebuah segitiga memiliki ukuran seperti berikut:
Alas = 25
Tinggi = 30
Hitunglah luas dari segitiga tersebut.
Pseudocode:
alas = 25

```
tinggi = 30
luas = 0.5 * alas * tinggi
print("Luas segitiga:", luas)
algoritma:
1. Mulai
2. Inisialisasi alas dengan nilai 25
3. Inisialisasi tinggi dengan nilai 30
4. Menghitung luas dengan rumus (luas = 0.5 * alas * tinggi)
5. Tampilkan hasil perhitungan luas segitiga
6. Selesai
4. Tetapkan algoritma dan pseudocode luas jajar genjang
  (panjang = 5, tinggi = 3)
Pseudocode:
panjang = 5
tinggi = 3
luas = panjang * tinggi
print("Luas jajar genjang:", luas)
algoritma:
1. Mulai
2. Inisialisasi panjang dengan nilai 5
3. Inisialisasi tinggi dengan nilai 3
```

4. Hitung luas dengan rumus (luas = panjang * tinggi)

5. Tampilkan hasil luas jajar genjang
6. Selesai
5. Tentukan algotima dan pseudocode volume tabung
(jari-jari = 3, tinggi = 5)
pseudocode:
jarijari = 3
tinggi = 5
pi = 3.14159
volume = pi * jarijari ** 2 * tinggi
print("Volume tabung:", volume)
algoritma:
1. Mulai
2. inisialisasi jari-jari dengan nilai 3
3. inisialisasi tinggi dengan nilai 5
4. Tetapkan nilai π (pi) sebagai 3.14159
5. Hitung volume tabung dengan menggunakan rumus (volume = π * jari_jari^2 * tinggi)
6. Tampilkan hasil volume tabung
8. Selesai
6. Tentukan algoritma dan pseudocode volume kerucut
(diameter = 5, tinggi = 4)
Pseduocode:

```
Diameter = 5

Tinggi = 4

Jarijari = diameter / 2

Pi = 3.14159

Volume = (1/3) * pi * jari_jari ** 2 * tinggi

Print("Volume kerucut:", volume)

Algoritma:

1. Mulai
2. Inisialisasi Diameter dengan nilai 5
3. Inisialisasi Tinggi dengan nilai 4
4. Hitung jari-jari kerucut dengan rumus (jarijari = diameter / 2)
```

5. Tetapkan nilai π (pi) sebagai 3.14159

7. Tampilkan hasil volume kerucut

8.Selesai

6. Hitung volume kerucut dengan rumus: volume = ((1/3) * pi * jari_jari ** 2 * tinggi)