

Inbreeding BIOL3110 Conservation and Evolutionary Genetics

ISLAND ANOLIS LIZARDS

ISLAND ANOLIS LIZARDS

Bahamas: Great Exuma Island + archipelago

ISLAND ANOLIS LIZARDS

- Rats **infested** 1 island for 12-mo, then exterminated, leaving 13 individuals
- Nearby non-infested island served as a control

ISLAND ANOLIS LIZARDS

• Significant reductions in V_G post-population "recovery"

SPECIES VARIATION IN INBREEDING DEPRESSION

SPECIES VARIATION IN INBREEDING DEPRESSION

Mutational load exposed & purged

Mutational load exposed & purged

Mutational load exposed & purged

Inbreeding & Evolutionary Potential

e.g. Evolution 66:2384-2398

ORIGINAL ARTICLE

doi:10.11

RESPONSE TO SELECTION ON COLD TOLERANCE IS CONSTRAINED BY INBREEDING

Anneke Dierks, 1,2 Birgit Baumann, 1 and Klaus Fischer 1

¹Zoological Institute and Museum, University of Greifswald, J.-S.-Bachstraße 11/12, D-17489 Greifswald, Germany

²E-mail: anneke.dierks@uni-greifswald.de

Inbreeding & Evolutionary Potential

ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2012.01604.x

RESPONSE TO SELECTION ON COLD TOLERANCE IS CONSTRAINED BY INBREEDING

Anneke Dierks, 1,2 Birgit Baumann, 1 and Klaus Fischer 1

¹Zoological Institute and Museum, University of Greifswald, J.-S.-Bachstraße 11/12, D-17489 Greifswald, Germany ²E-mail: anneke.dierks@uni-greifswald.de

No inbreeding (F = 0.00)

Some inbreeding (F = 0.25)

More inbreeding (F = 0.375)

10 Generations of directional selection for cold tolerance

Assessed:

- Cold tolerance Other stuff, such as:
 - Heat tolerance
 - Fecundity
 - Egg hatching
 - Develop time
 - Adult size
 - Growth rate

Inbreeding & Evolutionary Potential

Genetic Analysis of Inbreeding

- Individuals A and B are half-siblings.
- Their offspring, I, is inbred, and inherited one copy of her genes from A and one copy from B.
- These copies may be **identical by descent** if they are identical copies inherited from individual C.
- C is the common ancestor of I.

The Inbreeding Coefficient

- The Inbreeding Coefficient, *F*, is the probability that the two gene copies in an individual are identical by descent from a common ancestor.
- Calculation of the Inbreeding Coefficient
 - 1) Identify the common ancestor(s) of an inbred individual.
 - 2) Count the number of linkages between individuals (*n*) in each inbreeding loop.
 - 3) Calculate the quantity 2 X $(1/2)^n$ for each inbreeding loop and sum the results.

Calculating *F* for a Full-Sibling Mating

- 1) Identify the common ancestor(s).
 - U and V are both common ancestors, so there are two inbreeding loops.
- 2) Count the number of links between individuals in each inbreeding loop.
 - Loop 1: U, R, S, Z; n=4
 - Loop 2: V, R, S, Z n=4)

Calculating F for a Full-**Sibling Mating**

- Each individual is 3) diploid...therefore the probability of Z receiving two copies of either allele from a common ancestor is $(1/2)^n$ X 2 for each loop and sum the results.
 - Loop 1: $(1/2)^4$ X 2 = 1/8
 - Loop 2: $(1/2)^4 X 2 = 1/8$ F = 1/8 + 1/8 = 1/4

Calculating F for a Half-Sibling Mating

- 1) Identify the common ancestor(s).
 - C is the common ancestor, so there is one inbreeding loop.
- 2) Count the number of linkages between individuals in each inbreeding loop.
 - The Loop includes C, A, and B; n=4
- 3) Calculate $(1/2)^n$ for each loop and sum the results.
 - There is only one loop in this case
 - $(1/2)^4 X 2 = 1/8$, so F = 1/8

Full siblings

Half siblings

First cousins

Double first cousins

Uncle-niece

TRACED VIA PEDIGREE DIAGRAMS

SIMPLY FROM PEDIGREE DIAGRAMS:

Count the nodes:

$$F = 0.5^n$$

OFFSPRING OF FULL-SIBLINGS:

Count the nodes:

$$F = 0.5^n$$

Outbred parents Full-Sibs (bro & Sis)

OFFSPRING OF FULL-SIBLINGS:

Count the nodes:

$$F = 0.5^n$$

$$F = 0.5^2$$

$$F = 0.25$$

Outbred parents

OFFSPRING OF HALF-SIBLINGS:

Count the nodes:

$$F = 0.5^n$$

$$F = 0.5^3$$

$$F = 0.125$$

RELATIONSHIP TO GENETIC VARIANCE

$$F = 1 - \frac{H_{obs}}{H_{exp}}$$
H-W expected V_G

As H_{obs} nears H_{exp} F nears zero.

As $H_{obs} \ll H_{exp}$ F nears one.

RELATIONSHIP TO GENETIC VARIANCE

$$F = 1 - \frac{H_{obs}}{H_{exp}}$$

H-W expected V_G

$$F = 1 - \frac{H_{t=1}}{H_{t=0}}$$

Change in V_G over time

RELATIONSHIP TO (DELTA) GENETIC VARIANCE

$$F = 1 - \frac{H_{t=1}}{H_{t=0}}$$

RELATIONSHIP TO (DELTA) GENETIC VARIANCE

$$F = 1 - \frac{H_{t=1}}{H_{t=0}}$$

$$\frac{H_{1997}}{H_{1974}} = \frac{0.10}{0.23} = \mathbf{0.43}$$

RELATIONSHIP TO (DELTA) GENETIC VARIANCE

$$F = 1 - \frac{H_{t=1}}{H_{t=0}}$$

$$F = 1 - 0.43$$

$$F = 0.57$$

$$\frac{H_{1997}}{H_{1974}} = \frac{0.10}{0.23} = \mathbf{0.43}$$

Genetic problems are usually eased by restoring genetic variation

'genetic rescue' / 'gene pool mixing' works

Nearly every one of 156 cases (Frankham 2015)

Applications of Genetic Tools and Approaches in Conservation Biology and Management

CASE STUDY Augmenting genetic variation reverses population decline

Madsen et al. (1999) Nature

- population of adders (Ne<15)
- isolated for 100 years
- pop. decline over 35 years
- high proportion of stillborn & deformed young
- low genetic variation

 added 20 males from diverse nearby population

• watched population change & re-examined genetic variation

• migrant males settled in & mated, removed after 4 breeding seasons

• from first breeding season, stillbirths declined, population began dramatic growth...

NB: numbers exclude ones added

T. Madsen et al. | Biological Conservation 120 (2004) 145-147

Many other high profile successes

But still, genetic rescue has rarely been used

Fear of outbreeding depression, but it's

- Rare
- Usually mild / transient
- Predictable and avoidable

Three 'red flags' for outbreeding depression

Major chromosomal differences

Long isolation

Adaptive differentiation

Next Lecture: Genetic consequences of Habitat Fragmentation

