Calculus (SMD001UM1) Mid-sem exam

Marks: 30

Time: 10:00 AM to 11:30 AM

- Attempt any 6 questions.
- Answers to the **true-false** questions will be considered **only if** correct justification is provided.
- 1. True or false: Let $r \in \mathbb{Q} \cap (0,1)$. Then for each $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $r^n < \epsilon$ for all $n \geq N$. (5 marks)
- 2. True or false: The sequence

$$a_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \dots + \frac{1}{\sqrt{n}} - \sqrt{n}$$

converges. (5 marks)

- 3. Show that the series $\sum_{n=1}^{\infty} \left(\sqrt{n+1} \sqrt{n} \right)$ and $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n} \right)$ are divergent. (5 marks)
- 4. Let $\{a_n\}$ be a sequence of positive real numbers such that the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Prove that the series $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ is convergent. Does the converse hold? (5 marks)

- 5. Let $a_1 > 0$ is fixed and define the sequence $\{a_n\}$ by $a_{n+1} := \frac{1}{2} \left(1 + \frac{1}{a_n}\right)$ for $n \in \mathbb{N}$. Then show that $\{a_n\}$ converges to 1. (5 marks)
- 6. Evaluate the following limits.

(a)
$$\lim_{x \to 0} x^{\frac{1}{3}} \log |x|$$
. (2.5 marks)

(b)
$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^3}$$
. (2.5 marks)

7. Check the uniform continuity of the following functions.

(a)
$$f(x) = x \cos x$$
, on \mathbb{R} . (2.5 marks)

(b)
$$f(x) = \tan^{-1} x$$
, on \mathbb{R} . (2.5 marks)

- 8. Let $S := \{x \in \mathbb{R} : |x| > 3\}$ and suppose $f : S \to \mathbb{R}$ be a differentiable function such that f'(x) = 0, for all $x \in S$. Then is it true that f has to be constant on S? Justify your answer. (5 marks)
- 9. Show that for any real number b, the equation $x^3 6x^2 + b = 0$, has at most one root in [-1,0]. Also find the conditions on b for which it has exactly one real root in [-1,0]. (5 marks)
- 10. True or false: Let $f:(a,b)\to\mathbb{R}$ is a differentiable function. Then f is strictly decreasing on (a,b) if and only if f'(x)<0, for all $x\in(a,b)$. (5 marks)