1 DETERMINING THE MINIMAL BACKGROUND

2 AREA FOR SPECIES DISTRIBUTION MODELS:

3 MinBAR PACKAGE. SUPPLEMENTARY

4 MATERIAL

- 5 Xavier Rotllan-Puig^{1,®}, and Anna Traveset²
- 6 ¹ ASTER Projects. Barri Reboll, 9, 1r. 08694 Guardiola de Berguedà (Barcelona). Spain
- 7 ² Terrestrial Ecology Laboratory. Global Change Research Group. Institut Mediterrani
- 8 d'Estudis Avançats (CSIC-UIB). C/ Miquel Marqués, 21. 07190 Esporles (Mallorca -
- 9 Illes Balears). Spain
- 10 ** Correspondence: Xavier Rotllan-Puig <xavier.rotllan.puig@aster-projects.cat>

11 1 Introduction

- 12 This is the Supplementary Material to the article "Determining the minimal background
- 13 area for MaxEnt species distribution models: MinBAR package" (https://CRAN.R-
- 14 project.org/package=MinBAR)

16 2 Supplementary Material S1

17 Table S1: Example of an output of MinBAR. Buffer in km. (continued below)

		BoyceIndex	BoyceIndex		
Species	Buffer	_part	_tot	SD_part	SD_tot
Prunus	126.8	0.968	0.954	NA	NA
spinosa					
Prunus	228.1	0.982	0.185	NA	NA
spinosa					
Prunus	304.2	0.995	0.946	NA	NA
spinosa					
Prunus	384.3	0.989	0.992	0.01162	0.39
anin o a o					
spinosa Prunus	476.3	0.993	0.996	0.00573	0.3971
	170.5	0.773	0.990		0.5771
spinosa				7	
Prunus	591.5	0.997	0.992	0.00341	0.0237
spinosa				6	4
Prunus	746.1	1	1	0.00478	0.0038
spinosa				7	3
Prunus	878.2	0.999	1	0.00309	0.0038
Trunus	070.2	0.777	1	0.00507	0.0036
spinosa				6	3
Prunus	1068	0.996	0.994	0.00182	0.0041
spinosa				6	23
Prunus	3668	1	0.999	0.00189	0.0028
spinosa				3	72

18 Table continues below

Execution	rankBI	rankBI		rankFinal	rankFinal
Time	_part	_tot	rankTime	NoTime	WithTime
0.7504	10	8	1	9	8
0.9735	9	10	2	10	10
1.257	6	9	3	8	6
1.417	8	6	4	7	7
1.519	7	4	5	5	4
1.753	4	7	6	6	5
2.226	1	1	7	1	1
2.63	3	2	8	2	2
2.66	5	5	9	4	9
8.862	2	3	10	3	3

19

20 3 Supplementary Material S2

21 Table S2.1: List of species used in case study 1

Case.Study.1	Abbreviation1
Pinus sylvestris L.	pin_syl
Quercus ilex L.	que_ile
Fagus sylvatica L.	fag_syl
Fraxinus excelsior L.	fra_exc
Quercus petraea (Matt.) Liebl.	que_pet
Quercus robur L.	que_rob
Quercus pyrenaica Willd.	que_pyr
Quercus suber L.	que_sub
Abies alba Mill.	abi_alb
Acer platanoides L.	ace_pla
Alnus glutinosa (L.) Gaertn.	aln_glu
Juniperus oxycedrus L.	jun_oxy

Arbutus unedo L.	arb_une
Crataegus monogyna Jacq.	cra_mon
Prunus spinosa L.	pru_spi
Buxus sempervirens L.	bux_sem
Cotoneaster tomentosus Lindl.	cot_tom
Viola mirabilis L.	vio_mir
Diplotaxis erucoides DC.	dip_eru
Centaurea alba L.	cen_alb
Geranium lucidum L.	ger_luc
Linaria alpina Mill.	lin_alp
Pistacia terebinthus L.	pis_ter
Muscari comosum (L.) Mill.	leo_com
Lotus edulis L.	lot edu

23 The occurrences were downloaded from GBIF using *PreSPickR* (Rotllan-Puig, 2018)

25 Table S2.2: Citations of the data sets downloaded from GBIF and used in case study 1

species	source	DOI	date_downloaded
ABIES ALBA	GBIF	10.15468/dl.eo0lqe	2018-03-04T17:37:26.441+0000
MILL. ACER	GBIF	10.15468/dl.idbrjq	2018-03-04T17:43:00.642+0000
PLATANOID			
ES L. ALNUS GLUTINOSA	GBIF	10.15468/dl.6stmlq	2018-03-04T17:53:48.872+0000
(L.) GAERTN. ARBUTUS	GBIF	10.15468/dl.mez7r0	2018-03-04T17:59:43.726+0000
UNEDO L. BUXUS	GBIF	10.15468/dl.vitxba	2018-03-04T18:30:04.506+0000

SEMPERVIR

ENS L. CENTAUREA	GBIF	10.15468/dl.izlpzu	2018-03-07T22:20:10.052+0000
ALBA L. COTONEAST	GBIF	10.15468/dl.51ud43	2018-07-12T14:53:51.438+0000
ER			
TOMENTOSU			
S LINDL. CRATAEGUS	GBIF	10.15468/dl.lshmvs	2018-03-04T18:10:29.057+0000
MONOGYNA			
JACQ. DIPLOTAXIS	GBIF	10.15468/dl.djvzg0	2018-03-07T22:18:38.525+0000
ERUCOIDES			
DC. FAGUS	GBIF	10.15468/dl.u60ogx	2018-02-22T23:14:34.322+0000
SYLVATICA			
L. FRAXINUS	GBIF	10.15468/dl.fxzzxv	2018-03-04T17:04:11.166+0000
EXCELSIOR			
L. GERANIUM	GBIF	10.15468/dl.srgkdi	2018-03-07T22:22:17.220+0000
LUCIDUM L. JUNIPERUS	GBIF	10.15468/dl.lnykuh	2018-03-04T17:57:27.889+0000
OXYCEDRUS			
L. LINARIA	GBIF	10.15468/dl.phqgk3	2018-03-07T22:23:42.077+0000
ALPINA			

MILL. LOTUS	GBIF	10.15468/dl.gphxhp	2018-03-07T22:29:38.764+0000
EDULIS L. MUSCARI	GBIF	10.15468/dl.ff8tqr	2018-03-07T22:28:23.186+0000
COMOSUM			
(L.) MILL. PINUS	GBIF	10.15468/dl.lpqpm3	2018-02-22T23:00:00.299+0000
SYLVESTRIS			
L. PISTACIA	GBIF	10.15468/dl.g0zyyj	2018-03-07T22:25:47.461+0000
TEREBINTH			
US L. PRUNUS	GBIF	10.15468/dl.dzldah	2018-03-04T18:25:37.314+0000
SPINOSA L. QUERCUS	GBIF	10.15468/dl.yfpx0f	2018-02-22T23:03:47.122+0000
ILEX L. QUERCUS	GBIF	10.15468/dl.1htw8l	2018-03-04T17:15:52.716+0000
PETRAEA			
(MATT.)			
LIEBL. QUERCUS	GBIF	10.15468/dl.mpmnvw	2018-03-04T17:31:41.099+0000
PYRENAICA			
WILLD. QUERCUS	GBIF	10.15468/dl.ihampz	2018-03-04T17:28:03.035+0000
ROBUR L. QUERCUS	GBIF	10.15468/dl.uzpt1x	2018-03-04T17:33:45.764+0000
SUBER L.			

VIOLA GBIF 10.15468/dl.6vyew0 2018-03-07T22:16:25.766+0000

MIRABILIS

L.

27 4 Supplementary Material S3

- 28 Figures S3.1 S3.25: Evolution of Boyce Index Total (green) and Partial (blue), and the
- 29 execution time in minutes (pink), for all the species in case study 1. The origin of the x-
- 30 axis corresponds to the geographical centre of the species distribution (mean location for
- 31 longitude/latitude coordinates dealing with angularity). The x-axis increases (in
- 32 kilometres) with buffers 1 to 10, respectively the closest and the most distant to the centre
- 33 of species distribution

Boyce Index (mean of 3 models) - Pinus sylvestris

Boyce Index (mean of 3 models) - Fraxinus excelsior

Boyce Index (mean of 3 models) - Quercus pyrenaica

Boyce Index (mean of 3 models) - Quercus suber

Boyce Index (mean of 3 models) - Acer platanoides

Boyce Index (mean of 3 models) - Juniperus oxycedrus

Boyce Index (mean of 3 models) - Crataegus monogyna

Boyce Index (mean of 3 models) - Buxus sempervirens

Boyce Index (mean of 3 models) - Cotoneaster tomentosus

Boyce Index (mean of 3 models) - Viola mirabilis

Boyce Index (mean of 3 models) - Diplotaxis erucoides

Boyce Index (mean of 3 models) - Centaurea alba

Boyce Index (mean of 3 models) - Geranium lucidum

Boyce Index (mean of 3 models) - Linaria alpina

Boyce Index (mean of 3 models) - Pistacia terebinthus

Boyce Index (mean of 3 models) - Lotus edulis

5 Supplementary Material S4

61 Table S4.1: List of species used in case study 3 (Balearic Islands)

Case.Study.2	Abbreviation2
Arbutus unedo L.	arb_une
Asphodelus aestivus Rchb.	asp_aes
Chamaerops humilis L.	cha_hum
Ephedra fragilis subsp. fragilis Desf.	eph_fra
Helichrysum stoechas (L.) Moench	hel_sto
Juniperus oxycedrus subsp. oxycedrus L.	jun_oxy
Pistacia lentiscus L.	pis_len
Quercus coccifera L.	que_coc
Rhamnus alaternus L.	rha_ala
Viburnum tinus L.	vib_tin

71 time in Case Study 3 (Balearic Islands)

Best Buffer With and Without Execution Time

Figures S4.2 - S4.11: Evolution of Boyce Index Total (green) and Partial (blue), and the
execution time in minutes (pink), for all the species in Case Study 3 (Balearic Islands).

The origin of the x-axis corresponds to the geographical centre of the species distribution
(mean location for longitude/latitude coordinates dealing with angularity). The x-axis
increases (in kilometres) with buffers 1 to 10, respectively the closest and the most
distant to the centre of species distribution

Boyce Index (mean of 3 models) - Arbutus unedo

Boyce Index (mean of 3 models) - Asphodelus aestivus

Boyce Index (mean of 3 models) - Chamaerops humilis

Boyce Index (mean of 3 models) - Ephedra fragilis subsp. fragilis

Boyce Index (mean of 3 models) - Helichrysum stoechas

Boyce Index (mean of 3 models) - Juniperus oxycedrus subsp. oxycedrus

Boyce Index (mean of 3 models) - Pistacia lentiscus

Boyce Index (mean of 3 models) - Rhamnus alaternus

Boyce Index (mean of 3 models) - Viburnum tinus

93 6 References

- 94 Rotllan-Puig, X., 2018. PreSPickR: Downloading species presences (occurrences) from
- 95 public repositories. https://doi.org/10.13140/RG.2.2.10574.97607/1