

INTRODUCTION

- Often, people book airline tickets on irregular basis i.e. on urgent requirement.
 At that time, they have to pay the same tickets at high price. So there is a need to predict that on which day the prices will be optimal.
- Here, Airline prediction is done using reinforcement leaning to predict the airline ticket prices.

WORKFLOW

DATA FROM

- Google flights pricing data in the form of JSON files using the Google QPX Express API service.
- Collected every four hours, date range of 3/2016-3/2017 for oneway flights on the SFO → NYC route.

DATA MANIPULATION AND ANALYSIS

Data manipulation

- Simple Imputer or fillna or drop functions(for handling missing values and noisy data).
- Normalizing the values (using min max techniques or zscore techniques, standardscaler)
- Data Analysis is done using matplotlib, plotly, seaborn, folium etc.
- This all is considered as data preprocessing.

FEATURE EXTRACTION

- Extracting important features from high dimensional data i.e. dropping unnecessary features.
- Converting categorical features to numerical values using LabelEncoder, OneHotEncoder etc.

TRAINING AND TESTING DATA

Training Data: 586 flights,
 97,848 data points (65% of the flights)

Dev Data: 103 flights, 30,451
 data points (10% of the flights)

Test Data: 149 flights, 51,945
 data points (25% of flights

MODEL SELECTION

Reinforcement Learning

- Queue Learning-the sequence of actions that will eventually generate the maximum total reward.
- Deep Q-Network-a state-value function in a Q-Learning framework with a neural network.

MODEL EVALUATION

 Model evaluation is done using precision score ,AUC, Recall, Loss , Confusion Matrix, F1 score, Accuracy Score etc.

RESULTS

		Percent Savings	Maximum Savings	% Wait Decisions	% Correct Wait Decisions	Total Tickets	Total Flights
	Baseline	0.00%	16.23%	0.00%	0.00%	7402	5.7
Train	Q-Learning	-15.44%	16.23%	86.14%	36.34%	7402	5.1
	DQN	0.00%	16.23%	0.00%	0.00%	7402	54
	Baseline	0.00%	26.25%	0.00%	0.00%	2720	3.0
Dev	Q-Learning	-2.24%	26.25%	93.46%	33.40%	2720	3.0
	DQN		26.25%	0.00%	0.00%	2720	3.0
Test	Baseline	0.00%	23.77%	0.00%	0.00%	3183	3.0
	Q-Learning	10.17%	23.77%	94.85%	31.00%	3183	3.0
	DON	0.00%	23.77%	0.00%	0.00%	3483	3.0

		Percent Sawings	Maximum Savings	% Wait Decisions	% Correct Wait Decisions	Total Tickets	Total Flights
	Baseline	0.00%	16.23%	0.00%	0.00%	7402	5.5
Tisalin	Q-Learning	- 25,44%	16.23%	86.14%	36.34%	7402	5.0
	DQM	0.0096	16.23%	0.00%	0.00%	7402	51
	Baseline	0.00%	26.25%	0.00%	0.00%	2720	200
Dev	Q-Leanning	-2.24%	26.25%	93.46%	33.40%	2720	190
	DQM	0.00%	26.25%	0.00%	0.00%	2720	10
	Baseline	0.00%	23.77%	0.00%	0.00%	3183	200
Test	Q-Learning	10.17%	23.77%	944.85%	31.00%	3183	100
	IDHOM	0.00%	238,7796	0.00%	0.00%	3183	50

FUTURE WORK AND CONCLUSIONS

- Access to high quality flight data for multiple routes and over long time-periods is incredibly important to be able to train the data. It'll be interesting to extend the work to more routes, with more data.
- Deep Q-Networks can capture more nuanced states, but they are difficult to train and needs more parameter tuning.
- Users generally purchase a ticket on a route, not an individual flight. The current setup doesn't capture the majority use case.
- Currently, the agents interaction doesn't change the environment. However, in actual ticket purchase problems, the agents behavior can lead to tickets being sold out etc.