# ENGEMATEC CAPACITORES

CORREÇÃO DO FATOR DE POTÊNCIA



Confiança e economia na qualidade da energia.



Equipamentos Elétricos e Elêtronicos de Potência Ltda

## MODELOS DOS CAPACITORES TRIFÁSICOS PADRONIZADOS

| NOMINIAN   60   50   50   50   50   50   50   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TENSÃO  | POTÊ | NCIA | CORR  | ENTE  | CAP.  | CABO  | CHAVE               | FUSÍVEL DE | CONTATOR 3Ø   | PESO | MODELO   | MODELO          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-------|-------|-------|-------|---------------------|------------|---------------|------|----------|-----------------|
| 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOMINAL |      |      |       |       |       |       | <b>SECCIONADORA</b> | PROTEÇÃO   | CORRENTE- AC3 |      | SEM      | COM             |
| Fig.   1,12   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13      | (V)     | HZ   | HZ   | HZ    | HZ    | μF    | (mm²) | (A)                 | (NH-00)    | (A)           | (Kg) | PROTEÇÃO | <b>PROTEÇÃO</b> |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 2,5  |      |       | ,     |       |       |                     |            |               |      |          |                 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8       |      | _    |       | _     |       |       |                     |            |               |      |          |                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.     |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52      |      |      |       |       | ,     |       |                     |            |               |      |          |                 |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       | ,     |       |                     |            |               | _    |          |                 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |      |       | _     | _     |       |                     |            |               |      |          |                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| Teal   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      | _    |       |       |       |       |                     |            |               |      |          |                 |
| 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38      | 17,5 |      |       |       |       | 6     |                     |            |               |      |          |                 |
| 25 20,8 37,98 31,65 459,2 10 125A 63 63 14,0 EG3 EG5   30 25,0 45,58 37,98 551,1 16 125A 80 75 16,0 EG3 EG5   35 29,2 53,18 44,31 642,9 25 125A 100 110 20,0 EG4 EG5   40 33,3 60,77 50,64 734,8 25 125A 100 110 20,0 EG4 EG5   50 41,7 75,97 63,31 918,5 35 125A 125 110 22,0 EG5 EG6   50 41,7 75,97 63,31 918,5 35 125A 125 110 24,5 EG5 EG6   50 41,7 75,97 63,31 918,5 35 125A 125 110 24,5 EG5 EG6   50 41,7 10,28 27,3 34,3 1,5 125A 125 110 24,5 EG5 EG6   50 41,7 10,32 28 2,73 34,3 1,5 125A 125 110 24,5 EG5 EG6 EG6   7,5 6,3 9,84 8,20 102,8 2,5 125A 10 12 3,5 EG0 EG3   10 8,3 13,12 10,93 137,0 2,5 125A 16 16 16 4,5 EG0 EG3   11,5 12,5 10,4 16,40 13,67 171,3 4 125A 25 32 6,5 EG2 EG4   11,5 12,5 19,88 16,60 205,5 4 125A 36 32 7,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 32 7,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 12,96 30,84 31 10 125A 36 38 8,5 EG2 EG4   18,5 12,5 13,5 13,5 12,5 125A 10 125A 36 38 8,5 EG2 EG4   18,6 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -       |      |      |       |       |       | 10    |                     | 50         |               |      | EG2      | EG4             |
| 25 20,8 37,98 31,65 459,2 10 125A 63 63 14,0 EG3 EG5   30 25,0 45,58 37,98 551,1 16 125A 80 75 16,0 EG3 EG5   35 29,2 53,18 44,31 642,9 25 125A 100 110 20,0 EG4 EG5   40 33,3 60,77 50,64 734,8 25 125A 100 110 20,0 EG4 EG5   50 41,7 75,97 63,31 918,5 35 125A 125 110 22,0 EG5 EG6   50 41,7 75,97 63,31 918,5 35 125A 125 110 24,5 EG5 EG6   50 41,7 75,97 63,31 918,5 35 125A 125 110 24,5 EG5 EG6   50 41,7 10,28 27,3 34,3 1,5 125A 125 110 24,5 EG5 EG6   50 41,7 10,32 28 2,73 34,3 1,5 125A 125 110 24,5 EG5 EG6 EG6   7,5 6,3 9,84 8,20 102,8 2,5 125A 10 12 3,5 EG0 EG3   10 8,3 13,12 10,93 137,0 2,5 125A 16 16 16 4,5 EG0 EG3   11,5 12,5 10,4 16,40 13,67 171,3 4 125A 25 32 6,5 EG2 EG4   11,5 12,5 19,88 16,60 205,5 4 125A 36 32 7,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 32 7,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 22,96 19,14 239,8 6 125A 36 38 8,5 EG2 EG4   17,5 14,6 12,96 30,84 31 10 125A 36 38 8,5 EG2 EG4   18,5 12,5 13,5 13,5 12,5 125A 10 125A 36 38 8,5 EG2 EG4   18,6 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38      | 22,5 | 18,8 | 34,19 | 28,49 | 413,3 | 10    |                     |            | 63            | 12,0 | EG3      |                 |
| 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 25   | 20,8 | 37,98 | 31,65 | 459,2 |       |                     |            |               | 14,0 | EG3      | EG5             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |      |       |       | ,     |       |                     |            |               | ,    |          |                 |
| ME         45         37,5         68,37         56,98         826,6         35         125A         125         110         22,0         EG5         EG6           50         41,7         75,97         63,31         918,5         35         125A         125         1110         22,5         EG5         EG6         EG6           5         4,2         6,56         5,47         68,5         1,5         125A         10         12         3,5         EG0         EG3           7,5         6,3         9,84         8,20         102,8         2,5         125A         10         12         3,5         EG0         EG3           10         8,3         13,12         10,93         137,0         2,5         125A         20         19         5,5         EG0         EG3           12,5         10,4         16,40         13,67         171,3         4         125A         25         32         6,5         EG2         EG4           12,5         10,4         16,40         205,5         4         125A         36         32         7,5         EG2         EG4           12,5         10,4         13,42         239,8 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| SO         41,7         75,97         63,31         918,5         35         125A         125         110         24,5         EG5         EG6           S         4,2         6,56         5,47         68,5         1,5         125A         6         9         2,5         EG0         EG3           7,5         6,3         9,84         8,20         102,8         2,5         125A         16         16         4,5         EG0         EG3           10         8,3         13,12         10,33         137,0         2,5         125A         20         19         5,5         EG0         EG3           12,5         10,4         16,40         13,67         171,3         4         125A         20         19         5,5         EG0         EG3           17,5         14,6         22,96         19,14         239,8         6         125A         36         32         7,5         EG2         EG4           15         14,6         22,96         19,14         239,8         6         125A         36         38         10,0         EG2         EG4           20         16,7         26,24         21,37         274,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| Property of the property of th |         |      |      |       |       |       |       |                     |            |               | ,    |          |                 |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      | _    |       | _     |       |       |                     |            |               |      |          |                 |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| Property of the content of the conte |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      | -     | -     |       |       |                     |            |               |      |          |                 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | _    | _    |       |       |       |       |                     |            |               |      |          |                 |
| 17,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       | ,     |       |       |                     |            |               |      |          |                 |
| PART INSTRUMENT         25         20,8         32,80         27,34         342,5         10         125A         63         63         14,0         EG3         EG5           30         25,0         39,36         32,80         411,0         16         125A         63         63         16,0         EG3         EG5           35         29,2         45,93         38,27         479,5         16         125A         80         75         18,0         EG4         EG5           40         33,3         52,49         43,74         548,1         25         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         125         110         24,0         EG5         EG6           2,5         0,4         3,01         0,53         28,8         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø       |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| PART INSTRUMENT         25         20,8         32,80         27,34         342,5         10         125A         63         63         14,0         EG3         EG5           30         25,0         39,36         32,80         411,0         16         125A         63         63         16,0         EG3         EG5           35         29,2         45,93         38,27         479,5         16         125A         80         75         18,0         EG4         EG5           40         33,3         52,49         43,74         548,1         25         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         125         110         24,0         EG5         EG6           2,5         0,4         3,01         0,53         28,8         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ဗို     |      |      |       |       |       |       |                     |            |               |      |          |                 |
| PART INSTRUMENT         25         20,8         32,80         27,34         342,5         10         125A         63         63         14,0         EG3         EG5           30         25,0         39,36         32,80         411,0         16         125A         63         63         16,0         EG3         EG5           35         29,2         45,93         38,27         479,5         16         125A         80         75         18,0         EG4         EG5           40         33,3         52,49         43,74         548,1         25         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         125         110         24,0         EG5         EG6           2,5         0,4         3,01         0,53         28,8         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64      |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| Second Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4       |      | _    |       |       |       |       |                     |            |               |      |          |                 |
| Me         33,3         52,49         43,74         548,1         25         125A         100         75         20,0         EG4         EG5           45         37,5         59,05         49,21         616,6         25         125A         100         85         22,0         EG5         EG6           50         41,7         65,61         54,67         685,1         35         125A         125         110         24,0         EG5         EG6           5         0,4         3,01         0,53         28,8         1,5         125A         6         9         2,5         EG0         EG3           5         0,9         6,01         1,05         57,6         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02         1,58         86,3         2,5         125A         16         16         4,5         EG0         EG3           10         1,8         12,03         2,11         115,1         2,5         125A         20         19         5,5         EG0         EG3           12,5         2,2         15,04         2,63         143,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 30   | 25,0 |       |       |       | 16    |                     |            | 63            | 16,0 | EG3      | EG5             |
| ## A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 35   | 29,2 | 45,93 | 38,27 | 479,5 | 16    | 125A                | 80         | 75            | 18,0 | EG4      | EG5             |
| SO         41,7         65,61         54,67         685,1         35         125A         125         110         24,0         EG5         EG6           2,5         0,4         3,01         0,53         28,8         1,5         125A         6         9         2,5         EG0         EG3           5         0,9         6,01         1,05         57,6         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02         1,58         86,3         2,5         125A         16         16         4,5         EG0         EG3           10         1,8         12,03         2,11         115,1         2,5         125A         20         19         5,5         EG0         EG3           12,5         2,2         15,04         2,63         143,9         4         125A         25         32         6,5         EG2         EG4           15,5         2,6         18,04         3,16         172,7         4         125A         36         32         7,5         EG2         EG4           17,5         3,1         21,05         3,68         201,5 <t< td=""><td></td><td>40</td><td>33,3</td><td>52,49</td><td>43,74</td><td>548,1</td><td></td><td>125A</td><td>100</td><td>75</td><td>20,0</td><td>EG4</td><td>EG5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 40   | 33,3 | 52,49 | 43,74 | 548,1 |       | 125A                | 100        | 75            | 20,0 | EG4      | EG5             |
| 88         1,5         0,4         3,01         0,53         28,8         1,5         125A         6         9         2,5         EG0         EG3           7,5         0,9         6,01         1,05         57,6         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02         1,58         86,3         2,5         125A         16         16         4,5         EG0         EG3           10         1,8         12,03         2,11         115,1         2,5         125A         20         19         5,5         EG0         EG3           12,5         2,2         15,04         2,63         143,9         4         125A         25         32         6,5         EG2         EG4           15         2,6         18,04         3,16         172,7         4         125A         36         32         7,5         EG2         EG4           17,5         3,1         21,05         3,68         201,5         6         125A         36         32         8,5         EG2         EG4           20         3,5         24,06         4,21         230,3 </td <td></td> <td></td> <td>37,5</td> <td>59,05</td> <td>49,21</td> <td>616,6</td> <td></td> <td></td> <td></td> <td></td> <td>22,0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |      | 37,5 | 59,05 | 49,21 | 616,6 |       |                     |            |               | 22,0 |          |                 |
| S         0,9         6,01         1,05         57,6         1,5         125A         10         9         3,5         EG0         EG3           7,5         1,3         9,02         1,58         86,3         2,5         125A         16         16         4,5         EG0         EG3           10         1,8         12,03         2,11         115,1         2,5         125A         20         19         5,5         EG0         EG3           12,5         2,2         15,04         2,63         143,9         4         125A         25         32         6,5         EG2         EG4           15         2,6         18,04         3,16         172,7         4         125A         36         32         7,5         EG2         EG4           17,5         3,1         21,05         3,68         201,5         6         125A         36         32         8,5         EG2         EG4           20         3,5         24,06         4,21         230,3         6         125A         50         38         10,0         EG2         EG4           22,5         3,9         27,06         4,74         259,0         6<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| Region         7,5         1,3         9,02         1,58         86,3         2,5         125A         16         16         4,5         EG0         EG3           10         1,8         12,03         2,11         115,1         2,5         125A         20         19         5,5         EG0         EG3           12,5         2,2         15,04         2,63         143,9         4         125A         25         32         6,5         EG2         EG4           15         2,6         18,04         3,16         172,7         4         125A         36         32         7,5         EG2         EG4           17,5         3,1         21,05         3,68         201,5         6         125A         36         32         8,5         EG2         EG4           20         3,5         24,06         4,21         230,3         6         125A         50         38         10,0         EG2         EG4           22,5         3,9         27,06         4,74         259,0         6         125A         50         45         12,0         EG3         EG5           25         4,4         30,07         5,26 <t< td=""><td></td><td></td><td></td><td>3,01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |      | 3,01  |       |       |       |                     |            |               |      |          |                 |
| No.   1,8   12,03   2,11   115,1   2,5   125A   20   19   5,5   EG0   EG3     12,5   2,2   15,04   2,63   143,9   4   125A   25   32   6,5   EG2   EG4     15   2,6   18,04   3,16   172,7   4   125A   36   32   7,5   EG2   EG4     17,5   3,1   21,05   3,68   201,5   6   125A   36   32   8,5   EG2   EG4     20   3,5   24,06   4,21   230,3   6   125A   50   38   10,0   EG2   EG4     22,5   3,9   27,06   4,74   259,0   6   125A   50   45   12,0   EG3   EG5     25   4,4   30,07   5,26   287,8   10   125A   50   45   14,0   EG3   EG5     30   5,3   36,08   6,32   345,4   10   125A   50   45   14,0   EG3   EG5     30   5,3   36,08   6,32   345,4   10   125A   63   63   16,0   EG3   EG5     35   6,1   42,10   7,37   403,0   16   125A   80   63   18,0   EG4   EG5     40   7,0   48,11   8,42   460,5   16   125A   80   75   20,0   EG4   EG5     45   7,9   54,13   9,48   518,1   25   125A   100   85   22,0   EG5   EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| 12,5       2,2       15,04       2,63       143,9       4       125A       25       32       6,5       EG2       EG4         15       2,6       18,04       3,16       172,7       4       125A       36       32       7,5       EG2       EG4         17,5       3,1       21,05       3,68       201,5       6       125A       36       32       8,5       EG2       EG4         20       3,5       24,06       4,21       230,3       6       125A       50       38       10,0       EG2       EG4         22,5       3,9       27,06       4,74       259,0       6       125A       50       45       12,0       EG3       EG5         25       4,4       30,07       5,26       287,8       10       125A       50       45       14,0       EG3       EG5         30       5,3       36,08       6,32       345,4       10       125A       63       63       16,0       EG3       EG5         35       6,1       42,10       7,37       403,0       16       125A       80       63       18,0       EG4       EG5         40 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 22,5       3,9       27,06       4,74       259,0       6       125A       50       45       12,0       EG3       EG5         25       4,4       30,07       5,26       287,8       10       125A       50       45       14,0       EG3       EG5         30       5,3       36,08       6,32       345,4       10       125A       63       63       16,0       EG3       EG5         35       6,1       42,10       7,37       403,0       16       125A       80       63       18,0       EG4       EG5         40       7,0       48,11       8,42       460,5       16       125A       80       75       20,0       EG4       EG5         45       7,9       54,13       9,48       518,1       25       125A       100       85       22,0       EG5       EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ø       |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 22,5       3,9       27,06       4,74       259,0       6       125A       50       45       12,0       EG3       EG5         25       4,4       30,07       5,26       287,8       10       125A       50       45       14,0       EG3       EG5         30       5,3       36,08       6,32       345,4       10       125A       63       63       16,0       EG3       EG5         35       6,1       42,10       7,37       403,0       16       125A       80       63       18,0       EG4       EG5         40       7,0       48,11       8,42       460,5       16       125A       80       75       20,0       EG4       EG5         45       7,9       54,13       9,48       518,1       25       125A       100       85       22,0       EG5       EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e -     |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| 25     4,4     30,07     5,26     287,8     10     125A     50     45     14,0     EG3     EG5       30     5,3     36,08     6,32     345,4     10     125A     63     63     16,0     EG3     EG5       35     6,1     42,10     7,37     403,0     16     125A     80     63     18,0     EG4     EG5       40     7,0     48,11     8,42     460,5     16     125A     80     75     20,0     EG4     EG5       45     7,9     54,13     9,48     518,1     25     125A     100     85     22,0     EG5     EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80      |      |      |       | _     |       |       |                     |            |               |      |          |                 |
| 30     5,3     36,08     6,32     345,4     10     125A     63     63     16,0     EG3     EG5       35     6,1     42,10     7,37     403,0     16     125A     80     63     18,0     EG4     EG5       40     7,0     48,11     8,42     460,5     16     125A     80     75     20,0     EG4     EG5       45     7,9     54,13     9,48     518,1     25     125A     100     85     22,0     EG5     EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4       |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 35     6,1     42,10     7,37     403,0     16     125A     80     63     18,0     EG4     EG5       40     7,0     48,11     8,42     460,5     16     125A     80     75     20,0     EG4     EG5       45     7,9     54,13     9,48     518,1     25     125A     100     85     22,0     EG5     EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 40     7,0     48,11     8,42     460,5     16     125A     80     75     20,0     EG4     EG5       45     7,9     54,13     9,48     518,1     25     125A     100     85     22,0     EG5     EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
| 45 7,9 54,13 9,48 518,1 25 125A 100 85 22,0 EG5 EG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      |      |       |       |       |       |                     |            |               |      |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |      |       | -     |       |       |                     |            |               |      |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |      |       | _     |       |       |                     |            |               |      |          |                 |

O MODELO EG DEFINE AS DIMENSÕES DA CAIXA DO CAPACITOR E DEVE TER A SEGUINTE ESPECIFICAÇÃO: Nº EG + CP/SP + POTÊNCIA + TENSÃO + FREQUÊNCIA. A PROTEÇÃO PODERÁ SER COMPOSTA POR SECCIONADORA OU BASE TRIPOLAR. DEVE-SE INDICAR O TIPO DE PROTEÇÃO, SE BASE NH-00 OU CHAVE SECCIONADORA.

EXEMPLO: CAPACITOR DE 50 KVAR / 440 VOLTS COM PROTEÇÃO TEM A SEGUINTE ESPECIFICAÇÃO: EG6 CP 50KVAR, 440 VOLTS, 60 Hz.

PARA O MESMO CAPACITOR , 50 KVAR / 440 VOLTS SEM PROTEÇÃO, TEM-SE A SEGUINTE ESPECIFICAÇÃO: EG5 SP 50KVAR, 440 VOLTS, 60 Hz.

OS CAPACITORES COM PROTEÇÃO DE BASE TEM O MODELO BÁSICO (MÍNIMO) EG2, AO INVÉS DE EG0.

NORMAS DE FABRICAÇÃO, ENSAIOS E APLICAÇÃO PARA OS CAPACITORES ENGEMATEC®: IEC 831-1/2; NBR 5060; NBR 5282; NBR 5289.



CAPACITORES EG1 A EG7 SEM PROTEÇÃO – MODÊLO EG SP

**CAIXA TIPO EG0** 



CAPACITORES EG3 A EG7 COM PROTEÇÃO – MODÊLO EG CP (COM CONTATOR)

CAPACITORES MONTADOS EM BASES - PODEM SER MONTADOS ATÉ 4 UNIDADES

| DIMENSÕES | Α      | В      | С      | D      | Е     | F      | G     | Н     | ı    | J     | K     | L     | M     | N      |
|-----------|--------|--------|--------|--------|-------|--------|-------|-------|------|-------|-------|-------|-------|--------|
| (mm)      |        |        |        |        |       |        |       |       |      |       |       |       |       |        |
| EG0       | 170,00 | 200,00 | 70,00  | 66,00  | 20,00 | 10,00  |       | 6,00  |      |       |       |       |       |        |
| EG1       | 200,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG2       | 250,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG3       | 300,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG4       | 400,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG5       | 500,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG6       | 600,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |
| EG7       | 700,00 | 200,00 | 200,00 | 195,00 | 40,00 | 100,00 | 40,00 | 16,00 | 8,00 | 66,00 | 35,00 | 65,00 | 40,00 | 150,00 |

A ENGEMATEC® SE RESERVA O DIREITO DE ALTERAR TIPOS E DIMENSÕES SEM PRÉVIO AVISO.

CAPACITORES LINHA PADRONIZADA. PARA CAPACITORES COM OUTRAS POTÊNCIAS OU APLICAÇÕES, CONSULTAR A ENGEMATEC®.

# BANCOS AUTOMÁTICOS E SEMI-AUTOMÁTICOS DE CAPACITORES





# **BANCOS AUTOMÁTICOS DE CAPACITORES**





**BANCOS SEMI-AUTOMÁTICOS DE CAPACITORES** 

# BANCOS DE CAPACITORES COM CONTROLE AUTOMÁTICO DO FATOR DE POTÊNCIA

| TENSÃO   | MODELO                           | POTÊNCIA DO        | NÚMERO DE<br>ESTÁGIOS | POTÊNCIA DO<br>ESTÁGIO (KVAR) | CORRENTE           |
|----------|----------------------------------|--------------------|-----------------------|-------------------------------|--------------------|
| (V)      | BCA 05/50/220                    | BANCO (KVAR)<br>50 | 05                    | 10                            | NOMINAL (A)<br>132 |
|          |                                  | 60                 | 05<br>06              | 10                            | 158                |
|          | BCA 06/60/220                    |                    |                       |                               |                    |
|          | BCA 04/80/220<br>BCA 04/100/220  | 80<br>100          | 04<br>04              | 20<br>25                      | 210<br>263         |
| 3 ф      |                                  | 120                | 06                    | 20                            | 315                |
| Ĭ        | BCA 06/120/220<br>BCA 05/125/220 | 125                | 05                    | 25                            | 329                |
| 220 -    | BCA 05/125/220<br>BCA 07/175/220 | 175                | 05                    | 25                            | 460                |
| **       | BCA 10/200/220                   | 200                | 10                    | 20                            | 525                |
|          | BCA 10/250/220                   | 250                | 10                    | 25                            | 657                |
|          | BCA 12/300/220                   | 300                | 12                    | 25                            | 788                |
|          | BCA 12/300/220                   | 300                | 12                    | 23                            | 700                |
|          | BCA 05/50/380                    | 50                 | 05                    | 10                            | 76                 |
|          | BCA 04/80/380                    | 80                 | 04                    | 20                            | 122                |
|          | BCA 04/100/380                   | 100                | 04                    | 25                            | 152                |
|          | BCA 06/120/380                   | 120                | 06                    | 20                            | 183                |
| <b>+</b> | BCA 05/125/380                   | 125                | 05                    | 25                            | 190                |
| -3       | BCA 07/175/380                   | 175                | 07                    | 25                            | 266                |
| 380 -    | BCA 10/200/380                   | 200                | 10                    | 20                            | 304                |
| ñ        | BCA 10/250/380                   | 250                | 10                    | 25                            | 380                |
|          | BCA 12/360/380                   | 360                | 12                    | 30                            | 547                |
|          | BCA 12/480/380                   | 480                | 12                    | 40                            | 730                |
|          | BCA 12/540/380                   | 540                | 12                    | 45                            | 821                |
|          | BCA 12/600/380                   | 600                | 12                    | 50                            | 912                |
|          | BCA 05/50/440                    | 50                 | 05                    | 10                            | 66                 |
|          | BCA 04/80/440                    | 80                 | 04                    | 20                            | 105                |
|          | BCA 04/100/440                   | 100                | 04                    | 25                            | 132                |
|          | BCA 06/120/440                   | 120                | 06                    | 20                            | 158                |
| <b>-</b> | BCA 05/125/440                   | 125                | 05                    | 25                            | 165                |
|          | BCA 07/175/440                   | 175                | 07                    | 25                            | 230                |
| 440 - 3  | BCA 10/200/440                   | 200                | 10                    | 20                            | 263                |
| 44       | BCA 10/250/440                   | 250                | 10                    | 25                            | 329                |
|          | BCA 12/360/440                   | 360                | 12                    | 30                            | 473                |
|          | BCA 12/480/440                   | 480                | 12                    | 40                            | 630                |
|          | BCA 12/540/440                   | 540                | 12                    | 45                            | 709                |
|          | BCA 12/600/440                   | 600                | 12                    | 50                            | 788                |
|          |                                  |                    |                       |                               |                    |
|          | BCA 05/50/480                    | 50                 | 05                    | 10                            | 61                 |
|          | BCA 04/80/480                    | 80                 | 04                    | 20                            | 97                 |
|          | BCA 04/100/480                   | 100                | 04                    | 25                            | 121                |
|          | BCA 06/120/480                   | 120                | 06                    | 20                            | 145                |
| <b>•</b> | BCA 05/125/480                   | 125                | 05                    | 25                            | 151                |
| - 3      | BCA 07/175/480                   | 175                | 07                    | 25                            | 211                |
| 480      | BCA 10/200/480                   | 200                | 10                    | 20                            | 241                |
| 4        | BCA 10/250/480                   | 250                | 10                    | 25                            | 301                |
|          | BCA 12/360/480                   | 360                | 12                    | 30                            | 434                |
|          | BCA 12/480/480                   | 480                | 12                    | 40                            | 578                |
|          | BCA 12/540/480                   | 540                | 12                    | 45                            | 650                |
|          | BCA 12/600/480                   | 600                | 12                    | 50                            | 722                |

OS MODELOS SÃO ORIENTATIVOS; OUTRAS CONFIGURAÇÕES PODERÃO SER FORNECIDAS MEDIANTE CONSULTA.

# TABELA PARA ELEVAÇÃO DO FATOR DE POTÊNCIA

Para determinar a quantidade de kVAr necessários para a elevação do Fator de Potência de uma Indústria , utiliza-se o seguinte procedimento:

- 1. Toma-se o Fator de Potência original da instalação, e localiza-se a linha correspondente na tabela abaixo;
- 2. Procura-se a coluna que contenha o Fator de Potência desejado;
- 3. A interseção entre a linha e a coluna, contém o fator de multiplicação adequado;
- 4. Multiplica-se então o valor de Demanda em kW da carga (ou conta) pelo fator encontrado na tabela;
- 5. O valor obtido representa a Potência de capacitores ENGEMATEC® que deverão ser instalados para a Correção do Fator de Potência.

|          | FATOR DE POTÊNCIA DESEJADO |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|----------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|
|          | 0.80                       | 0.81  | 0.82  | 0.83  | 0.84  | 0.85  | 0.86  | 0.87  | 0.88  | 0.89  | 0.90  | 0.91  | 0.92  | 0.93  | 0.94  | 0.95  | 0.96  | 0,97           | 0,98  | 0.99  | 1.000 |
|          | 0,50 0,982                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,51 0,937                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,52 0,893                 | 0,919 | 0,945 | 0,971 | 0,997 | 1,023 | 1,049 | 1,076 | 1,103 | 1,130 | 1,158 | 1,187 | 1,217 | 1,247 | 1,280 | 1,314 | 1,351 | 1,392          | 1,440 | 1,500 | 1,510 |
|          | 0,53 0,850                 | 0,876 | 0,902 | 0,928 | 0,954 | 0,980 | 1,007 | 1,033 | 1,060 | 1,088 | 1,116 | 1,144 | 1,174 | 1,205 | 1,237 | 1,271 | 1,308 | 1,349          | 1,397 | 1,458 | 1,468 |
|          | 0,54 0,809                 | 0,835 | 0,861 | 0,887 | 0,913 | 0,939 | 0,965 | 0,992 | 1,019 | 1,046 | 1,074 | 1,103 | 1,133 | 1,163 | 1,196 | 1,230 | 1,267 | 1,308          | 1,356 | 1,416 | 1,426 |
|          | 0,55 0,768                 | 0,794 | 0,820 | 0,846 | 0,873 | 0,899 | 0,925 | 0,952 | 0,979 | 1,006 | 1,034 | 1,063 | 1,092 | 1,123 | 1,156 | 1,190 | 1,227 | 1,268          | 1,315 | 1,376 | 1,386 |
|          | 0,56 0,729                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,57 0,691                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,58 0,655                 | 0,681 | 0,707 | 0,733 | 0,759 | 0,785 | 0,811 | 0,838 | 0,865 | 0,892 | 0,920 | 0,949 | 0,979 | 1,009 | 1,042 | 1,076 | 1,113 | 1,154          | 1,201 | 1,262 | 1,272 |
|          | 0,59 0,618                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ⋖        | 0,60 0,583                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| Z        | 0,61 0,549                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| G        | 0,62 0,515                 | ,     |       | ,     |       |       |       |       | ,     |       |       |       | •     |       | ,     | ,     | ,     | ,              |       |       |       |
| 조        | 0,63 0,483                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ORIGINAL | 0,64 0,451<br>0,65 0,419   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ⋖        | 0,66 0,388                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ᇙ        | 0,66 0,368                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| Z        | 0,68 0,328                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| POTÊNCIA | 0.69 0.299                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| <u>5</u> | 0,70 0,270                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,71 0,242                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| DE       | 0,72 0,214                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,73 0,186                 | 0,212 | 0,238 | 0,264 | 0,290 | 0,316 | 0,343 | 0,370 | 0,396 | 0,424 | 0,452 | 0,481 | 0,510 | 0,541 | 0,573 | 0,608 | 0,645 | 0,686          | 0,733 | 0,794 | 0,804 |
| FATOR    | 0,74 0,159                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| 2        | 0,75 0,132                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ¥        | 0,76 0,105                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
| ш        | 0,77 0,079                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,78 0,052                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,79 0,026<br>0,80 0,000   | 0,052 | 0,078 | 0,104 | 0,130 | 0,156 | 0,183 | 0,209 | 0,236 | 0,264 | 0,292 | 0,320 | 0,350 | 0,381 | 0,413 | 0,447 | 0,484 | 0,525          | 0,5/3 | 0,634 | 0,644 |
|          |                            |       |       |       |       |       |       |       |       | 0,236 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,81                       |       |       |       |       |       |       |       |       | 0,212 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,83                       |       | 5,500 | 0.000 | 0.026 | 0.052 | 0.079 | 0.105 | 0.132 | 0,160 | 0.188 | 0.216 | 0.246 | 0.277 | 0.309 | 0.343 | 0.380 | 0.421          | 0.469 | 0.530 | 0.540 |
|          | 0,84                       |       |       | 3,300 |       |       |       |       |       | 0,134 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,85                       |       |       |       |       |       |       |       |       | 0,107 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,86                       |       |       |       |       |       |       |       |       | 0,081 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,87                       |       |       |       |       |       |       |       | 0,027 | 0,054 | 0,082 | 0,111 | 0,141 | 0,172 | 0,204 | 0,238 | 0,275 | 0,316          | 0,364 | 0,424 | 0,434 |
|          | 0,88                       |       |       |       |       |       |       |       | 0,000 | 0,027 |       |       |       |       |       |       |       |                |       |       |       |
|          | 0,89                       |       |       |       |       |       |       |       |       | 0,000 |       |       |       |       | 0,149 |       |       |                |       |       |       |
|          | 0,90                       |       |       |       |       |       |       |       |       |       | 0,000 | ,     | ,     | ,     | 0,121 | ,     | ,     | ,              |       |       | ,     |
|          | 0,91                       |       |       |       |       |       |       |       |       |       |       |       | •     |       | 0,093 | ,     | ,     | ,              |       |       | ,     |
|          | 0,92                       |       |       |       |       |       |       |       |       |       |       |       | υ,000 |       | 0,063 | ,     | ,     | ,              |       |       | ,     |
|          | 0,93                       |       |       |       |       |       |       |       |       |       |       |       |       | υ,υυ0 | 0,032 |       |       |                |       |       |       |
|          | 0,94                       |       |       |       |       |       |       |       |       |       |       |       |       |       | ,     | ,     | ,     | 0,112          |       |       | ,     |
|          | 0,95<br>0,96               |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0,000 | ,     | 0,078<br>0,041 |       |       | ,     |
|          | 0,96                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | ,     | 0,041          |       |       | ,     |
|          | 0,97                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | ,              |       |       | 0,116 |
|          | 0.99                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                | 0,000 |       | 0.010 |
| 1        | 5,55                       |       |       |       |       |       |       | -     | -     |       |       |       |       | l     |       |       |       |                |       | 5,500 | 5,010 |

EXEMPLO: Deseja-se elevar o Fator de Potência de uma planta industrial para o mínimo de 0,92.

- 1. Fator de Potência original, registrado: 0,62
- 2. Fator de Potência recomendado pela Engematec®: 0,95
- 3. Multiplicador encontrado na tabela acima: 0,937
- 4. Valor da Demanda de Potência (carga) registrada: 400 kW
- Multiplica-se: 400 kW x 0,937 374 kVAr, onde arredonda-se mais próximo – 375 kVAr, que é a correção a ser feita com capacitores ENGEMATEC<sup>®</sup>.

O fator de potência deve estar entre 0,92 indutivo e 0,92 capacitivo. A ENGEMATEC® recomenda como fator de potência mínimo 0,92 e máximo 1.

# TABELA PARA COMPENSAÇÃO DE MOTORES STANDARD

|          |                | CAR          |              |                |                | CAR          |              |                | CARGA          |              |              |                |  |
|----------|----------------|--------------|--------------|----------------|----------------|--------------|--------------|----------------|----------------|--------------|--------------|----------------|--|
| POTÊNCIA |                | 50           |              |                |                | 75           |              |                | 100 %          |              |              |                |  |
| (115)    | (η)            | F.P.         | POT.         | Δi             | (η)            | F.P.         | POT.         | Δi             | (η)            | F.P.         | POT.         | Δi             |  |
| (HP)     | (%)            | (cos ф)      | (KVAR)       | (%)            | (%)            | (cos φ)      | (KVAR)       | (%)            | (%)            | (cos ф)      | (KVAR)       | (%)            |  |
| 4        | 50.00          | 1 0 50 1     | 0.05         |                |                |              | - 900 RPM    |                | 05.40          | 1 0 00 1     | 0.05         | 1 00 00        |  |
| 1        | 59,30          | 0,50         | 0,85         | 46,39          | 64,10          | 0,60         | 0,85         | 36,13          | 65,10          | 0,68         | 0,85         | 28,38          |  |
| 1,5<br>2 | 60,00          | 0,46         | 1,70<br>1,70 | 53,39          | 64,80          | 0,55         | 1,70<br>1,70 | 43,69<br>38,04 | 67,70<br>74,70 | 0,62         | 1,70<br>1,70 | 36,29          |  |
|          | 73,00          | 0,50         |              | 49,82          | 74,00<br>78,10 | 0,61         |              | 29,16          | 78,10          | 0,68         |              |                |  |
| 3 4      | 74,40<br>76,20 | 0,55<br>0,53 | 1,70<br>2,50 | 40,95<br>44,13 | 80,20          | 0,68<br>0,65 | 1,70<br>2,50 | 32,63          | 81,30          | 0,74<br>0,72 | 1,70<br>2,50 | 22,40<br>25,12 |  |
| 5        | 77,70          | 0,55         | 3,40         | 44,68          | 81,50          | 0,63         | 2,50         | 28.39          | 82,70          | 0,72         | 2,50         | 21.83          |  |
| 7,5      | 83,40          | 0,55         | 5,00         | 48,04          | 85,90          | 0,67         | 5,00         | 35,66          | 86,30          | 0,73         | 5,00         | 27,28          |  |
| 10       | 84,50          | 0,51         | 6,70         | 48,24          | 86,60          | 0,64         | 6,70         | 35,10          | 86,80          | 0,71         | 5,00         | 22,92          |  |
| 12,5     | 82,00          | 0,70         | 5,00         | 29,27          | 84,90          | 0,77         | 5,00         | 21,09          | 86,60          | 0,82         | 5,00         | 15,84          |  |
| 15       | 85,60          | 0,69         | 5,00         | 28,24          | 87,00          | 0,78         | 5,00         | 18,92          | 87,30          | 0,83         | 5,00         | 13,77          |  |
| 20       | 86,00          | 0,76         | 5,00         | 21,10          | 87,00          | 0,82         | 5,00         | 14,19          | 87,40          | 0,85         | 5,00         | 10,59          |  |
| 25       | 85,90          | 0,58         | 12,50        | 40,15          | 88,30          | 0,69         | 10,00        | 25,23          | 88,80          | 0,75         | 10,00        | 19,05          |  |
| 30       | 87,60          | 0,65         | 12,50        | 33,82          | 89,20          | 0,74         | 12,50        | 23,83          | 89,40          | 0,82         | 10,00        | 14,41          |  |
| 40       | 89,40          | 0,76         | 10,00        | 21,55          | 90,20          | 0,82         | 10,00        | 14,51          | 90,90          | 0,85         | 10,00        | 10,88          |  |
| 50       | 88,80          | 0,73         | 15,00        | 25,24          | 90,50          | 0,80         | 15,00        | 17,26          | 91,00          | 0,85         | 12,50        | 10,89          |  |
| 60       | 89,00          | 0,73         | 17,50        | 24,92          | 90,50          | 0,79         | 17,50        | 17,43          | 91,70          | 0,81         | 20,00        | 15,10          |  |
| 75       | 90,70          | 0,71         | 22,50        | 26,60          | 92,20          | 0,78         | 22,50        | 18,39          | 92,70          | 0,81         | 25,00        | 15,21          |  |
| 100      | 89,00          | 0,66         | 35,00        | 31,04          | 91,50          | 0,75         | 35,00        | 21,49          | 92,60          | 0,79         | 37,50        | 17,28          |  |
| 125      | 90,00          | 0,69         | 40,00        | 28,41          | 92,00          | 0,75         | 45,00        | 21,91          | 92,60          | 0,79         | 45,00        | 16,83          |  |
| 150      | 90,00          | 0,62         | 60,00        | 35,26          | 92,90          | 0,74         | 50,00        | 21,47          | 92,80          | 0,79         | 50,00        | 16,01          |  |
| 175      | 91,00          | 0,65         | 60,00        | 31,50          | 93,10          | 0,75         | 50,00        | 19,04          | 93,80          | 0,81         | 50,00        | 13,79          |  |
| 200      | 92,00          | 0,56         | 95,00        | 41,41          | 93,80          | 0,70         | 80,00        | 25,85          | 94,70          | 0,75         | 85,00        | 20,73          |  |
| 250      | 91,10          | 0,64         | 90,00        | 32,78          | 92,90          | 0,75         | 80,00        | 20,53          | 93,90          | 0,80         | 80,00        | 15,32          |  |
| 300      | 92,40          | 0,65         | 100,00       | 31,28          | 93,80          | 0,74         | 100,00       | 21,60          | 94,00          | 0,80         | 100,00       | 15,76          |  |
|          |                |              |              |                | ORES DE 6      |              |              |                |                | T 0 =0 T     |              | L =            |  |
| 1        | 68,00          | 0,53         | 0,85         | 46,33          | 72,00          | 0,64         | 0,85         | 35,63          | 72,50          | 0,72         | 0,85         | 27,13          |  |
| 1,5      | 69,10          | 0,52         | 1,25         | 47,81          | 72,20          | 0,66         | 1,25         | 34,06          | 73,20          | 0,72         | 1,25         | 27,25          |  |
| 2        | 66,90          | 0,52         | 1,70         | 47,52          | 71,50          | 0,64         | 1,70         | 35,52          | 73,50          | 0,72         | 1,70         | 27,30          |  |
| 3        | 70,00          | 0,54         | 2,10         | 44,48          | 73,80          | 0,64         | 2,50         | 35,77          | 76,60          | 0,72         | 2,50         | 27,58          |  |
| 5        | 76,30          | 0,58<br>0,58 | 2,50         | 41,54<br>38,61 | 79,00          | 0,69<br>0,68 | 2,50         | 30,06<br>28,04 | 79,40<br>82,50 | 0,76<br>0,75 | 2,50         | 22,66<br>21,09 |  |
| 7,5      | 79,50<br>82,90 | 0,58         | 2,50<br>3,40 | 35,95          | 81,90<br>84,20 | 0,88         | 2,50<br>3,40 | 24,67          | 84,40          | 0,78         | 2,50<br>3,40 | 18,82          |  |
| 10       | 84,00          | 0,58         | 5,00         | 39,81          | 85,20          | 0,73         | 5,00         | 27,62          | 85,80          | 0,75         | 5,00         | 21,56          |  |
| 12,5     | 85,50          | 0,66         | 5,00         | 32,45          | 87,00          | 0,70         | 5,00         | 21,32          | 87,50          | 0,73         | 5,00         | 15,89          |  |
| 15       | 88,00          | 0,58         | 7,50         | 40,52          | 89,00          | 0,71         | 7,50         | 27,66          | 89,00          | 0,78         | 5,00         | 15,88          |  |
| 20       | 87,50          | 0,57         | 10,00        | 40,96          | 89,00          | 0,71         | 7,50         | 23,63          | 89,00          | 0,78         | 7,50         | 17,23          |  |
| 25       | 88,60          | 0,81         | 5,00         | 16,49          | 89,30          | 0,87         | 5,00         | 10,37          | 89,40          | 0,90         | 5,00         | 7,34           |  |
| 30       | 88,70          | 0,77         | 7,50         | 20,89          | 90,00          | 0,84         | 7,50         | 13,56          | 90,20          | 0,86         | 7,50         | 10,44          |  |
| 40       | 89,00          | 0,74         | 10,00        | 22,47          | 90,40          | 0,81         | 10,00        | 14,96          | 90,60          | 0,84         | 10,00        | 11,22          |  |
| 50       | 87,80          | 0,74         | 12,50        | 22,30          | 90,00          | 0,81         | 12,50        | 14,92          | 91,20          | 0,84         | 12,50        | 11,27          |  |
| 60       | 90,00          | 0,81         | 12,50        | 17,06          | 91,20          | 0,85         | 12,50        | 11,74          | 91,70          | 0,87         | 12,50        | 8,90           |  |
| 75       | 90,00          | 0,70         | 22,50        | 27,00          | 91,50          | 0,80         | 17,50        | 14,75          | 92,10          | 0,85         | 15,00        | 9,28           |  |
| 100      | 90,20          | 0,70         | 27,50        | 25,71          | 92,20          | 0,78         | 25,00        | 16,27          | 92,70          | 0,84         | 20,00        | 9,61           |  |
| 125      | 91,50          | 0,70         | 35,00        | 26,22          | 92,80          | 0,80         | 30,00        | 15,20          | 92,90          | 0,84         | 27,50        | 10,38          |  |
| 150      | 91,00          | 0,69         | 45,00        | 27,62          | 92,30          | 0,79         | 40,00        | 16,66          | 93,00          | 0,83         | 40,00        | 12,35          |  |
| 175      | 91,50          | 0,68         | 55,00        | 28,87          | 92,50          | 0,78         | 50,00        | 17,87          | 93,70          | 0,83         | 45,00        | 12,09          |  |
| 200      | 90,40          | 0,68         | 60,00        | 27,93          | 92,50          | 0,78         | 55,00        | 17,42          | 93,70          | 0,83         | 55,00        | 12,69          |  |
| 250      | 92,70          | 0,65         | 85,00        | 31,67          | 93,70          | 0,76         | 80,00        | 20,23          | 94,00          | 0,80         | 85,00        | 15,97          |  |
| 300      | 93,00          | 0,66         | 95,00        | 30,11          | 94,50          | 0,76         | 90,00        | 19,52          | 94,50          | 0,81         | 90,00        | 14,35          |  |
| 350      | 93,00          | 0,62         | 120,00       | 32,98          | 94,70          | 0,73         | 120,00       | 22,52          | 94,90          | 0,79         | 120,00       | 16,57          |  |
| 400      | 93,70          | 0,71         | 110,00       | 25,86          | 94,50          | 0,79         | 110,00       | 17,26          | 94,70          | 0,83         | 110,00       | 12,78          |  |
| 450      | 93,90          | 0,70         | 125,00       | 26,49          | 94,70          | 0,78         | 125,00       | 17,82          | 95,00          | 0,82         | 125,00       | 13,28          |  |

|            |                | CAR          | GA            |                |                | CAR          | GA           |                | CARGA          |               |              |                |  |
|------------|----------------|--------------|---------------|----------------|----------------|--------------|--------------|----------------|----------------|---------------|--------------|----------------|--|
| POTÊNCIA   |                | 50           | %             |                |                | 75           | %            |                | 100 %          |               |              |                |  |
|            | (η)            | F.P.         | POT.          | Δi             | (η)            | F.P.         | POT.         | Δi             | (η)            | F.P.          | POT.         | Δi             |  |
| (HP)       | (%)            | (cos ø)      | (KVAR)        | (%)            | (%)            | (cos ø)      | (KVAR)       | (%)            | (%)            | (cos $\phi$ ) | (KVAR)       | (%)            |  |
|            |                |              |               |                |                |              | - 1800 RPN   |                |                |               |              |                |  |
| 1          | 70,00          | 0,64         | 0,50          | 33,64          | 74,00          | 0,77         | 0,50         | 21,71          | 78,00          | 0,82          | 0,50         | 16,89          |  |
| 1,5        | 69,00          | 0,63         | 0,85          | 35,51          | 72,00          | 0,76         | 0,85         | 23,27          | 72,70          | 0,83          | 0,85         | 16,40          |  |
| 2          | 75,00          | 0,53         | 1,25          | 44,13          | 77,50          | 0,68         | 1,25         | 30,47          | 80,00          | 0,76          | 1,25         | 22,68          |  |
| 3          | 78,00          | 0,70         | 1,25          | 29,00          | 79,00          | 0,80         | 1,25         | 18,92          | 79,30          | 0,85          | 1,25         | 13,54          |  |
| 4          | 76,80          | 0,63         | 1,70          | 33,09          | 80,00          | 0,75         | 1,70         | 22,25          | 82,70          | 0,82          | 1,70         | 15,92          |  |
| 5          | 81,70          | 0,68         | 1,70          | 28,35          | 83,30          | 0,80         | 1,70         | 17,61          | 84,60          | 0,83          | 1,70         | 13,76          |  |
| 7,5        | 87,00          | 0,66         | 2,50          | 29,85          | 88,00          | 0,77         | 2,50         | 19,44          | 88,50          | 0,82          | 2,50         | 14,33          |  |
| 10         | 86,00          | 0,66         | 3,40          | 30,02          | 87,00          | 0,78         | 2,50         | 15,53          | 89,00          | 0,84          | 2,50         | 11,07          |  |
| 12,5       | 85,80          | 0,65         | 5,00          | 33,00          | 87,50          | 0,78         | 5,00         | 20,75          | 87,70          | 0,86          | 2,50         | 8,63           |  |
| 15         | 86,80          | 0,70         | 5,00          | 27,96<br>30,07 | 88,20          | 0,81         | 5,00         | 17,45          | 88,30          | 0,86          | 5,00         | 12,31<br>11,46 |  |
| 20<br>25   | 88,00<br>88,20 | 0,69         | 7,50<br>10,00 | 32,78          | 89,30<br>90,00 | 0,79         | 5,00         | 15,57<br>18,54 | 89,80          | 0,83          | 5,00         |                |  |
| 30         | 89,50          | 0,66         | 7,50          | 21,03          | 90,00          | 0,77<br>0,84 | 7,50<br>7,50 | 13,56          | 90,10          | 0,82          | 7,50<br>7,50 | 13,50<br>10,09 |  |
| 40         | 89,50          | 0,74         | 10,00         | 22,54          | 90,50          | 0,84         | 10,00        | 14,56          | 91,00          | 0,87          | 10,00        | 10,09          |  |
| 50         | 90,20          | 0,74         | 12,50         | 21,66          | 91,70          | 0,83         | 12,50        | 14,19          | 91,70          | 0,86          | 12,50        | 10,56          |  |
| 60         | 89,70          | 0,70         | 10,00         | 14,87          | 91,20          | 0,87         | 10,00        | 9,30           | 91,60          | 0,90          | 10,00        | 6,56           |  |
| 75         | 90,30          | 0,76         | 17,50         | 20,87          | 91,70          | 0,84         | 15,00        | 11.85          | 91.90          | 0,88          | 12,50        | 7,21           |  |
| 100        | 90,00          | 0,70         | 30,00         | 27,00          | 92,00          | 0,80         | 25,00        | 15,53          | 92,50          | 0,87          | 20,00        | 8,69           |  |
| 125        | 89,30          | 0,80         | 22,50         | 16,03          | 91,00          | 0,85         | 22,50        | 10,58          | 91,80          | 0,87          | 25,00        | 8,64           |  |
| 150        | 89,00          | 0,82         | 25,00         | 14,39          | 91,30          | 0,87         | 22,50        | 8,60           | 92,00          | 0,89          | 22,50        | 6,36           |  |
| 175        | 90,40          | 0,80         | 35,00         | 17,24          | 92,00          | 0,83         | 40,00        | 13,44          | 92,70          | 0,85          | 40,00        | 10,34          |  |
| 200        | 90,50          | 0,81         | 35,00         | 15,45          | 92,50          | 0,85         | 40,00        | 11,52          | 93,40          | 0,88          | 35,00        | 7,60           |  |
| 250        | 90,80          | 0,80         | 45,00         | 16,21          | 93,00          | 0,85         | 45,00        | 10,75          | 93,50          | 0,89          | 40,00        | 6,78           |  |
| 300        | 93,00          | 0,79         | 60,00         | 18,02          | 94,50          | 0,85         | 55,00        | 11,01          | 95,00          | 0,88          | 50,00        | 7,40           |  |
| 350        | 92,90          | 0,77         | 70,00         | 18,91          | 94,60          | 0,85         | 65,00        | 11,12          | 95,10          | 0,88          | 60,00        | 7,58           |  |
| 400        | 93,30          | 0,77         | 80,00         | 18,96          | 94,70          | 0,85         | 70,00        | 10,67          | 95,30          | 0,88          | 70,00        | 7,71           |  |
| 450        | 93,80          | 0,77         | 90,00         | 19,02          | 94,80          | 0,85         | 80,00        | 10,80          | 95,40          | 0,88          | 80,00        | 7,81           |  |
| 500        | 93,90          | 0,79         | 90,00         | 16,99          | 95,00          | 0,85         | 90,00        | 10,91          | 95,40          | 0,88          | 85,00        | 7,55           |  |
|            |                |              |               |                |                |              | - 3600 RPM   |                |                |               |              |                |  |
| 1          | 65,20          | 0,62         | 0,50          | 33,61          | 71,00          | 0,75         | 0,50         | 22,47          | 74,50          | 0,83          | 0,50         | 15,73          |  |
| 1,5        | 70,00          | 0,78         | 0,50          | 20,75          | 74,50          | 0,85         | 0,50         | 13,22          | 75,70          | 0,87          | 0,50         | 10,77          |  |
| 2          | 77,00          | 0,73         | 0,85          | 26,86          | 78,00          | 0,82         | 0,50         | 13,05          | 80,50          | 0,89          | 0,50         | 8,40           |  |
| 3          | 78,50          | 0,66         | 1,70          | 33,81          | 80,00          | 0,77         | 1,70         | 22,91          | 81,50          | 0,84          | 0,85         | 11,19          |  |
| 4          | 81,50          | 0,70         | 1,70          | 29,66          | 82,50          | 0,80         | 1,70         | 19,33          | 84,00          | 0,86          | 1,70         | 13,45          |  |
| 5          | 79,00          | 0,74         | 1,70          | 24,59          | 82,00          | 0,82         | 1,70         | 16,31          | 84,50          | 0,88          | 1,70         | 10,93          |  |
| 7,5        | 84,00          | 0,73         | 2,50          | 25,71          | 86,50          | 0,80         | 2,50         | 17,84          | 86,50          | 0,87          | 2,50         | 11,58          |  |
| 10         | 84,00<br>85,80 | 0,77         | 2,50<br>2,50  | 20,35<br>15,75 | 86,50<br>87,20 | 0,85         | 2,50         | 12,72<br>10,63 | 87,00          | 0,88          | 2,50         | 9,31<br>7,64   |  |
| 12,5<br>15 | 87,50          | 0,82<br>0,78 | 3,40          | 19,15          | 89,50          | 0,86<br>0,85 | 2,50<br>3,40 | 12,23          | 87,50<br>89,50 | 0,89          | 2,50<br>2,50 | 6,78           |  |
| 20         | 88,20          | 0,78         | 5,00          | 21,90          | 90,70          | 0,85         | 5,00         | 13,59          | 91,00          | 0,89          | 5,00         | 10,48          |  |
| 25         | 89,50          | 0,78         | 5,00          | 18,03          | 90,70          | 0,85         | 5,00         | 11,32          | 90,50          | 0,88          | 5,00         | 8,21           |  |
| 30         | 90,20          | 0,78         | 5,00          | 15,29          | 91,00          | 0,86         | 5,00         | 9,67           | 91,00          | 0,88          | 5,00         | 7,18           |  |
| 40         | 87,00          | 0,82         | 7,50          | 15,27          | 90,00          | 0,85         | 7,50         | 10,79          | 91,00          | 0,88          | 7,50         | 7,84           |  |
| 50         | 89,00          | 0,80         | 10,00         | 17,08          | 91,10          | 0,85         | 10,00        | 11,40          | 92,20          | 0,87          | 10,00        | 8,67           |  |
| 60         | 86,50          | 0,84         | 10,00         | 13,22          | 90,00          | 0,89         | 7,50         | 6,80           | 91,00          | 0,91          | 7,50         | 4,91           |  |
| 75         | 89,00          | 0,85         | 10,00         | 11,24          | 91,30          | 0,88         | 10,00        | 7,55           | 92,50          | 0,90          | 10,00        | 5,54           |  |
| 100        | 90,00          | 0,85         | 12,50         | 10,81          | 92,10          | 0,90         | 10,00        | 5,51           | 93,10          | 0,91          | 10,00        | 4,16           |  |
| 125        | 86,20          | 0,80         | 25,00         | 16,75          | 89,50          | 0,85         | 22,50        | 10,44          | 91,40          | 0,88          | 20,00        | 6,95           |  |
| 150        | 89,00          | 0,82         | 25,00         | 14,39          | 91,40          | 0,86         | 25,00        | 9,68           | 92,70          | 0,88          | 25,00        | 7,27           |  |
| 175        | 89,20          | 0,84         | 25,00         | 12,21          | 91,60          | 0,86         | 30,00        | 9,90           | 92,90          | 0,87          | 35,00        | 8,72           |  |
| 200        | 90,00          | 0,84         | 30,00         | 12,69          | 92,40          | 0,87         | 30,00        | 8,69           | 93,30          | 0,90          | 25,00        | 5,28           |  |
| 250        | 90,00          | 0,86         | 30,00         | 10,12          | 91,00          | 0,89         | 30,00        | 6,63           | 92,50          | 0,90          | 30,00        | 5,07           |  |
| 300        | 91,00          | 0,90         | 25,00         | 6,52           | 92,70          | 0,92         | 25,00        | 4,27           | 93,80          | 0,93          | 25,00        | 3,16           |  |
| 350        | 91,80          | 0,90         | 25,00         | 5,82           | 93,80          | 0,92         | 25,00        | 3,79           | 94,00          | 0,93          | 25,00        | 2,77           |  |

Para determinar a quantidade de kVAr necessários à compensação junto a motores de indução trifásicos de gaiola, siga a tabela. Aplicável para tensões de 220 V a 600 V – 60 Hz, motores tipo Stadard, norma IEC.

O valor  $\Delta$  i (%) representa a redução da corrente de linha no circuito alimentador do motor após a instalação do banco de capacitores – POT. (KVAR).



- C1 BANCO AUTOMÁTICO DE CAPACITORES. MANTÉM O FATOR DE POTÊNCIA EM UM VALOR PROGRAMADO CFP.
- C2 CORREÇÃO SOLIDÁRIA; COMPENSAÇÃO DOS REATIVOS CONSUMIDOS PELO MOTOR, COM PARTIDA POR SOFT-START.
- C3 CORREÇÃO SOLIDÁRIA; COMPENSAÇÃO DOS REATIVOS CONSUMIDOS PELO MOTOR, COM PARTIDA POR CHAVE COMPENSADORA.
- C4 CORREÇÃO SOLIDÁRIA; COMPENSAÇÃO DOS REATIVOS CONSUMIDOS PELO MOTOR, COM PARTIDA POR CHAVE ESTRELA / TRIÂNGULO.
- C5 CORREÇÃO SOLIDÁRIA; COMPENSAÇÃO DOS REATIVOS CONSUMIDOS PELO MOTOR, COM PARTIDA DIRETA.
- C6 CORREÇÃO DE GRUPOS DE MOTORES.
- C7 CORREÇÃO DOS REATIVOS CONSUMIDOS PELO TRANSFORMADOR.

| POTÊNCIA DO TRANSFORMADOR (KVA) | POTÊNCIA DO CAPACITOR (KVAR) |
|---------------------------------|------------------------------|
| 25                              | 0,75                         |
| 30                              | 1                            |
| 45                              | 1,5                          |
| 50                              | 1,5                          |
| 75                              | 2,5                          |
| 112,5                           | 5                            |
| 150                             | 7,5                          |
| 225                             | 10                           |
| 300                             | 12,5                         |
| 500                             | 20                           |
| 750                             | 30                           |
| 1000                            | 40                           |
| 1500                            | 65                           |
| 2000                            | 80                           |
| 2500                            | 100                          |

Tabela para compensação reativa das perdas de transformadores. As potências são orientativas, visto que as perdas dos transformadores diferem em função de fabricante, nível de tensão primária, e tipo de meio isolante – seco, à óleo, silicone, etc.

### Recomendações para a aplicação de capacitores em sistemas de potência

Verifique sempre se o nível de tensão dos capacitores é compatível com a tensão do sistema.

## • Manobra de capacitores:

Os equipamentos de manobra deverão ser dimensionados considerando a corrente nominal e de energização dos capacitores; a corrente de energização poderá atingir 180 vezes a corrente nominal, enquanto a que corrente de regime poderá atingir 130% de I<sub>n</sub>.

#### • Condutores:

Os condutores devem ser dimensionados levando-se em consideração as condições ambientais como temperatura, umidade, maneiras de instalar, altitude, utilizando os fatores de correção adequados.

#### Proteções:

As proteções dos capacitores podem ser compostas por fusíveis ou por disjuntores termomagnéticos de caixa moldada com fatores de correção adequados.

#### Condições ambientais e localização:

Os capacitores devem ser instalados em local ventilado, com temperatura entre +5 e +45°C e umidade relativa inferior a 85% (sem condensação), mantendo distanciamento mínimo de 50 mm entre unidades e outros equipamentos.

#### • Capacitores instalados junto a motores:

Motores com partida direta: Instalar o capacitor entre o contator principal e o relé térmico.

Motores com partida por chave estrela—triângulo: Os capacitores devem ser obrigatoriamente instalados após o contator principal do motor, sem necessidade de contator adicional para a manobra do capacitor.

Motores com partida por chave compensadora: Os capacitores deverão ser obrigatoriamente acionados por contatores tripolares, juntamente com o contator principal da compensadora.

#### • Capacitores instalados junto a centros de carga:

Os alimentadores do centro de carga devem ter capacidade de condução de corrente para alimentar tanto as cargas conectadas quanto os capacitores. As proteções também devem ser dimensionados com os fatores de correção adequados, como temperatura, agrupamento e maneira de instalar.

#### • Capacitores instalados em Bancos Automáticos de Capacitores:

Os bancos automáticos devem ser dimensionados para um tempo de acionamento dos capacitores de no mínimo 1 minuto; Utilizar os demais fatores de correção para os condutores e equipamentos de manobra.

#### Capacitores instalados em circuitos com presença de harmônicos:

Aplicações de capacitores nestes circuitos requerem especial atenção devido a problemas de ressonância e sobretensões. Neste caso o Departamento de Engenharia da ENGEMATEC® deverá ser consultado.

## HARMÔNICAS EM SISTEMAS INDUSTRIAIS

Instalações elétricas que possuam equipamentos eletrônicos para controle de velocidade, tensão e frequência, devem ter especial atenção na correção do fator de potência.

O atual estágio dos sistemas de controles industriais, utilizam em larga escala equipamentos com controle tiristorizado, como soft starter's, inversores de frequência, conversores AC/DC, e outros equipamentos que geram correntes não senoidais. Outros equipamentos como lâmpadas de descarga, fornos de fusão de metais por arco voltaico entre outros, são grandes fontes de distorções harmônicas de tensão.

Na instalações de capacitores, deve-se tomar especial cuidado, pois poderá haver o aumento da distorção harmônica e ressonância, causando não só danos aos capacitores, mas principalmente aos equipamentos eletroeletrônicos da fábrica.



Como exemplo, vamos analisar um caso típico, onde uma indústria composta basicamente por um transformador, motores trifásicos, iluminação e algumas cargas com controle por inversores de frequência estão instaladas na baixa tensão.

Carga 1 com características motoras e iluminação, potência de 90kVA e 76kW; carga 2 composta por inversores de frequência de 6 pulsos, com o espectro harmônico detalhado na tabela abaixo:

| CARGA 2            |          | TABELA 1                 | TABELA 2             |  |  |
|--------------------|----------|--------------------------|----------------------|--|--|
| CARACTERÍSTICAS DA | CARGA 1  | COM BANCO DE CAPACITORES | COM FILTRO HARMONICO |  |  |
| ORDEM HARMÔNICA h  | THDI (%) | THDV (%) BUS-CARGA 3     | THDV (%) BUS-CARGA 3 |  |  |
| 5,00               | 20,00    | 2,74                     | 0,63                 |  |  |
| 7,00               | 14,30    | 3,25                     | 1,59                 |  |  |
| 11,00              | 9,10     | 3,96                     | 1,54                 |  |  |
| 13,00              | 7,70     | 2,19                     | 1,45                 |  |  |
| 17,00              | 5,90     | 0,61                     | 1,16                 |  |  |
| 19,00              | 5,30     | 0,33                     | 0,95                 |  |  |
| 23,00              | 4,30     | 0,09                     | 0,59                 |  |  |
| 25,00              | 4,00     | 0,05                     | 0,44                 |  |  |
| 29,00              | 3,40     | 0,01                     | 0,13                 |  |  |
| 31,00              | 3,40     | 0,00                     | 0,14                 |  |  |
| 35,00              | 3,20     | 0,01                     | 0,32                 |  |  |
| 37,00              | 2,80     | 0,01                     | 0,43                 |  |  |
| 41,00              | 2,40     | 0,02                     | 0,48                 |  |  |
| 43,00              | 2,30     | 0,03                     | 0,51                 |  |  |
| 47,00              | 2,10     | 0,03                     | 0,45                 |  |  |
| THDV %             |          | 6,29 %                   | 3,38                 |  |  |

Comparando os valores da tabela I e II, a simples correção do fator de potência eleva a distorção harmônica para 6,29% (valores perigosos), enquanto que a instalação de filtros harmônicos reduzem esses valores para 3,38%, e o fator de potência na concessionária passa a 0,95 indutivo.

O adequado dimensionamento do sistema, associando levantamento de campo, projeto e implantação, não só corrige o fator de potência, mas reduz as distorções harmônicas no sistema, mantendo os níveis dentro dos valores internacionalmente adotados.

Sem correção do fator de potência as distorções de tensão (THDV%) verificadas nas diversas barras são: BUS 1 = 0%, BUS 2 = 4,38 % e BUS 3 = 4,75%.



**Equipamentos Elétricos e Eletrônicos de Potência Ltda.** 

Rua João D'Agostino, 123 Parque Via Norte - CEP 13065-610 - CAMPINAS/SP

Fone/Fax: (0 XX 19) 3242-9176 email: suporte@engematec.com.br email: engematec@engematec.com.br

site: www.engematec.com.br