Układy analogowe LTI można analizować i projektować przy użyciu ich transmitancji H(s) i związanej z nią charakterystyki częstotliwościowej $H(j\omega)$ (s to zespolona zmienna transformacji Laplace'a, która dla $s=j\omega$ przechodzi w transformację Fouriera):

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{m=0}^{M} b_m(j\omega)^m}{\sum_{n=0}^{N} a_n(j\omega)^n} = \frac{b_M \prod_{m=1}^{M} (j\omega - z_m)}{a_N \prod_{n=1}^{N} (j\omega - p_n)}$$
(1)

 $Y(j\omega)$ i $X(j\omega)$ są wielomianami zmiennej $j\omega$, związanymi z wyjściem i wejściem układu. Odpowiedni dobór współczynników b_m i a_n obu wielomianów zapewnia wymaganą charakterystykę częstotliwościową projektowanego układu. Wielomiany w liczniku i mianowniku można również zapisać za pomocą ich miejsc zerowych z_m i p_n .

Miejsca zerowe z_m licznika transmitancji (zespolone, parami sprzężone) powodują wyzerowanie odpowiedzi częstotliwościowej dla wybranych częstotliwości $(j\omega=z_m)$, czyli usunięcie tych częstotliwości przez układ (brak ich na wyjściu). Natomiast w pobliżu tych pulsacji sygnał wejściowy jest na wyjściu mocno tłumiony. Miejsca te nazywamy "zerami transmitancji".

Miejsca zerowe p_n mianownika transmitancji (również zespolone, parami sprzężone) powodują silne wzmocnienie wybranych częstotliwości na wyjściu układu ($(j\omega - p_n)$) nie zeruje się, tylko przyjmuje małą wartość; z tego powodu dla danej częstotliwości dzielimy przez "mało" i mamy duże wzmocnienie). Miejsca te nazywamy "biegunami transmitancji".

1. Projektowanie metodą zer i biegunów (1 pkt)

Wykorzystując (1) możemy zaprojektować charakterystykę filtru pasywnego (układu LTI) rozmieszczając odpowiednio zera i bieguny transmitancji na płaszczyźnie zespolonej. Przykładowo, dla filtra pasmowo-przepustowego, przenoszącego sygnał w okolicach pulsacji równej 10 rad/s możemy zaprojektować "ręcznie" jego transmitancję tak, aby zera oraz bieguny przyjęły następujące wartości:

$$\begin{aligned} p_{1,2} &= - \ 0.5 \ \pm \ j 9.5; \ p_{3,4} &= - \ 1 \ \pm \ j 10; \ p_{5,6} &= - \ 0.5 \ \pm \ j 10.5 \\ z_{1,2} &= \pm \ j 5; \ z_{3,4} &= \pm \ j 15 \end{aligned}$$

Zapisz transmitancję (1) wykorzystując powyższe parametry.

Przedstaw zera i bieguny na płaszczyźnie zespolonej (zera zaznacz znakiem ,,o", bieguny znakiem ,,*").

Narysuj charakterystykę amplitudowo-częstotliwościową układu opisanego powyższymi parametrami w skali liniowej: $|H(j\omega)|$ oraz decybelowej: $20log_{10}|H(j\omega)|$. Użyj funkcji funkcji poly() i polyval().

Czy filtr ten jest pasmowo-przepustowy? Jakie jest maksymalne i minimalne tłumienie w paśmie zaporowym? Czy wzmocnienie układu w paśmie przepustowym jest równe 1? Jeśli nie, to zmodyfikuj odpowiednio transmitancję układu.

Narysuj charakterystykę fazowo-częstotliwościową. Czy jest ona zgodna z naszymi oczekiwaniami? Czyli liniowa w paśmie przepustowym, co gwarantuje, że układ nie zmienia na wyjściu kształtu sygnału zawartego w paśmie przepustowym.

2. Filtr Butterworth LP (1 pkt)

Poniżej przedstawiono metodę projektowania filtrów Butterwortha LP (dolnoprzepustowych).

Filtr LP Butterwortha składa się wyłącznie z biegunów rozmieszczonych na lewej półpłaszczyźnie zespolonej na okręgu o promieniu równym pulsacji granicznej ω_{3dB} . Jest to pulsacja, dla której zmienia się charakter filtru z przepustowego na zaporowy. Przykład rozmieszczenia biegunów transmitancji dla filtru rzędu 4 przedstawiono na poniższym rysunku.

Położenie biegunów można opisać w następujący sposób:

$$p_k = \omega_{3dB} exp \left[j \left(\frac{\pi}{2} + \frac{1}{2} \frac{\pi}{N} + (k-1) \frac{\pi}{N} \right) \right], k = 1, 2, 3, ..., N$$

gdzie N oznacza rząd filtru (liczbę biegunów).

Zaprojektuj filtry Butterwortha LP dla N=2, 4, 6, 8 i $\omega_{3dB}=2\pi100 [\text{rd/s}]$.

Narysuj na jednym rysunku ich charakterystyki amplitudowe ($20log_{10}(|H(j\omega)|)$ w funkcji f), skalując oś f liniowo (plot()) i logarytmicznie (semilogx()). Narysuj charakterystyki fazowe (kąt $H(j\omega)$ w funkcji f), skalując oś f liniowo.

Wyznacz i narysuj odpowiedź impulsową filtru N=4 oraz jego odpowiedź na skok jednostkowy. Do tego celu użyj odpowiednio funkcji: impulse(H) i step(H), gdzie H to transmitancja dla układu ciągłego. Transmitancję można uzyskać ze zbiorów współczynników $B=\{b_m\}$ i $A=\{a_n\}$ przy pomocy funkcji tf(B,A)¹.

3. Filtr antyaliasingowy (1 pkt)

Przed przetwornikiem A/C należy umieścić filtr dolnoprzepustowy w celu jak najlepszego zabezpieczenia się przed zjawiskiem "aliasingu" częstotliwościowego (po zbyt "wolnym" spróbkowaniu "szybkie" sygnały wyglądają jak "wolne"). Filtr ten powinien maksymalnie tłumić częstotliwości $f > f_s/2$ (połowa częstotliwości próbkowania) i mieć wzmocnienie=1 dla $f < f_s/2$ (tzn. najwierniej przenosić sygnały w tym paśmie). Zaprojektuj taki filtr dla następujących warunków:

- częstotliwość próbkowania przetwornika A/C wynosi f_s =256 kHz,
- typ filtru: Butterworth, Czebyszew 1, Czebyszew 2, eliptyczny (użyj funkcji Matlaba,
- pamiętaj że ma być to filtr analogowy a nie cyfrowy),
- filtr powinien być możliwie najmniejszego rzędu,
- zmiany tłumienia (zafalowania) w paśmie $f < f_{3dB} = 64 \text{ kHz}$ nie większe niż 3 dB,
- tłumienie dla częstotliwości f/2=128 kHz ma wynosić co najmniej $A_{\mu}=40$ dB.

Narysuj rozkład biegunów oraz charakterystykę częstotliwościową zaprojektowanych transmitancji H(s). Osie wyskaluj w [Hz]. Zastosowanie, którego z filtrów jest najkorzystniejsze?

W nowszych wersjach Matlaba, funkcja tf (...) zwraca obiekt sys zawierający współczynniki b i a. Jeżeli używasz instrukcji printsys (b,a,'s') to zwróć uwagę na trzeci argument, który wskazuje że analiza dotyczy filtrów analogowych. Argument domyślny (brak argumentu) to obliczenia dla filtrów cyfrowych.

4. Transformacja filtrów LP na filtry innego typu (1 pkt)

Skopiuj kod 7.4 (Listing_7_4.m) na początek programu 7.1 (Listing_7_1.m). Użyj po kolei każdy filtr prototypowy (Butterwortha, Czebyszewa-I oraz II, eliptyczny) oraz wybierz inny rodzaj filtru docelowego (LP, HP, BP, BS). Zapoznaj się z kształtem ch-ki amplitudowo-częstotliwościowej filtru, pokazanej na rysunku semilogx(), przed i po transformacji częstotliwości. Zwróć uwagę, że wszystkie filtry prototypowe są dolno-przepustowe oraz unormowane (w0=1). Mają one pasma przejściowe pass-2-stop oraz oscylacje w pasmach przepustowych i zaporowych TYPOWE dla typu użytego filtra prototypowego (B, C1, C2, E). Kiedy wartość N rośnie, charakterystyka amplitudowa filtru staje się bardziej stroma.

5. Filtr separujący (1+0.25 pkt)

Widmo kilku analogowych stacji radiowych FM przedstawiono na poniższym rysunku. Jak widać sygnał pojedynczej stacji zajmuje w przybliżeniu pasmo 100 kHz. Sygnał ten moduluje w częstotliwości nośną stacji, np. w Krakowie 96 MHz dla RMF FM: mamy wówczas 96 MHz ± 100 kHz.

Widmo sygnału radiowego zawierającego kilka analogowych stacji FM

Wykorzystując funkcje Matlaba (nie używaj narzędzi fdtool/fddesign, oprócz jako punktu odniesienia), zaprojektuj pasmowo-przepustowy filtr analogowy do separacji stacji radiowych.

Najpierw zaprojektuj testowy filtr 96 MHz ± 1 MHz następnie docelowy 96 MHz ± 100 kHz. W obu przypadkach zafalowania w paśmie przepustowym nie mogą być większe niż 3 dB a tłumienie w paśmie zaporowym co najmniej równe 40 dB.

Wyświetl charakterystykę częstotliwościową zaprojektowanego filtru. Oś częstotliwości wyskaluj w Hz. Zaznacz punkty charakterystyczne na wykresie (granice pasma zaporowego i przepustowego).

Jeżeli charakterystyka filtru będzie niezadowalająca, spróbuj obniżyć wymagania co do tłumienia w paśmie zaporowym oraz zwiększyć rząd filtru.

(**opcjonalnie**, +0.25 pkt) Zamiast używać gotowych funkcji Matlaba, zaprojektuj prototyp LP "na piechotę", a następnie wykonaj transformację LP do BP.

6. Implementacja sprzętowa filtru analogowego (+0.5 pkt)

Zaprojektuj sprzętową implementację wybranego filtru z ćwiczenia 3. Wykorzystaj wzmacniacze operacyjne, rezystory, kondensatory. Podaj strukturę układu oraz wartości rezystancji i pojemności wszystkich elementów pasywnych. Patrz rozdz. 6 w podręczniku [TZ].

7. Weryfikacja filtru analogowego (+0.25 pkt)

Dla filtru zaprojektowanego w ćwiczeniu 6 dopasuj wartości elementów pasywnych z typoszeregu dostępnego w handlu (np. E24), wyznacz charakterystyki częstotliwościowe przed i po modyfikacji. Wyświetl je na jednym wykresie. Czy zmiana charakterystyk mieści się w granicy 3 dB?

8. Symulacja obwodu (+1 pkt)

Przenieś projekt sprzętowej implementacji filtru do symulatora obwodów analogowych np. LTSpice (http://www.linear.com/designtools/software/ - licencja freeware) w oparciu o <u>instrukcje użytkownika</u>, lub inne opracowania znalezione w sieci. Wykonaj symulację i wyznacz wykresy częstotliwościowe. Porównaj uzyskane wyniki z teoretycznymi obliczeniami.

Jako sygnału wejściowego użyj napięcia ze źródła AC (*Edit/Components/voltage*) o amplitudzie 10V, składowej stałej (*DC offset*) 2V i częstotliwości 10 kHz. Przy implementowaniu filtru użyj elementu uniwersalnego wzmacniacza operacyjnego (*Edit/Components/* i z katalogu *Opamps* wybrać *UniversalOamp2*) i zasil go (wejścia "+" i "-") ze źródeł napięcia DC 15V, tak jak na schemacie obok.

Wykonaj symulację i wyznacz wykresy charakterystyk częstotliwościowych za pomocą <u>analizy AC</u> (*Simulation/Edit Simulation Command/AC Analysis*).

