固物 2014 期中 A 卷

Deschain

2022 年 4 月 26 日

物理'	常	数
-----	---	---

则其电子浓度为____。

$k_B = 1.381 \times 10^{-23} J \cdot K^{-1}$	$\hbar = 1.054 \times 10^{-34} J \cdot s q$	$= 1.602 \times 10^{-19} C$ m	$= 9.109 \times 10^{-31} kg$
$N_A = 6.022 \times 10^{23}$			
1. 填空题 (每空 1 分, 共 30 分)		
(1) GaAs 的晶体结构是	结构,其布拉菲格子是_	格子。	
(2) 碱金属晶体是体心立方晶格,	其倒格子为	格子。若倒格子基矢之	为 $\vec{\beta}_1, \vec{\beta}_2, \vec{\beta}_3$,则碱金属
晶体晶面指数为 (231) 的晶面族的	的面间距可表示为	。假设硕	咸金属的晶格常数为 a,

- (3) 假设 Si 的晶格常数为 a,则其布拉菲格子原胞的体积为____,第一布里渊区的体积为 _____。
- (4) 晶体中的缺陷按其几何类型可以分为____ 缺陷、线缺陷和___ 缺陷。其中线缺陷又分为____ 位错和 位错。
- (5) 原子的结合中,吸引作用主要来自于异性电荷之间的______作用,而排斥作用来自于同性电荷之间的_____作用以及_______原理引起的排斥。一般固体的结合可以概括为四种基本形式,除了离子性结合之外,还包括______结合、_____结合和______结合。金刚石材料中 C-C 键结合的方式是典型的_____结合,其电离度为____。
- (6) 假设金属晶体的总体积为 V,则 k 空间的点阵密度为_____。能量标度下电子的能态密度会随着能量的增大而____。
- (7) 两块同种原子组成的金属晶体,体积分别为 V_1 和 V_2 ,且 $V_1 > V_2$,则自由电子的数目 N_1 _____N2,费米能级 E_{F1} _____ E_{F2} 。(填 >, <, =)

(原图缺失)

2. 简答题 (每题 5 分, 共 20 分)

- (1) 请简述晶体、非晶体和准晶体之间的区别。
- (2) 请说明空穴的物理意义。
- (3) 请描述周期性边界(波恩-卡曼)条件并说明其在什么条件下适用。
- (4) 请用能带理论简述导体、绝缘体和半导体的区别。
- 3. (8 分) 如图所示,是一个体心立方晶格的单胞,其晶格常数为 a, A 和 B 都是各自边矢量的中点。
- (1) 写出 OAB 晶面的密勒指数。
- (2) 求 OAB 晶面的面间距。

1. 填空题答案

(1) ①闪锌矿 ②面心立方

(2) ①面心立方 ② $\frac{2\pi}{\|\vec{\beta}_1 + \vec{\beta}_2 + \vec{\beta}_3\|}$ ③ $\frac{2}{a^3}$

(3) $\mathfrak{Q} \frac{a^3}{4}$ $\mathfrak{Q} \frac{32\pi^3}{a^3}$

(4) ①点 ②面 ③刃形 ④螺形

(5) ①吸引 ②排斥 ③泡利不相容 ④共价 ⑤金属性 ⑥范德瓦耳斯力 ⑦共价 ®0

(6) ① $\frac{V}{8\pi^3}$ ②增大

(8) ①周期性势场

2. 简答题答案

(1) ①晶体:内部原子的排列具有空间周期性。

②非晶体:内部原子的排列不具有周期性。

③准晶体:内部原子的排列具有旋转对称性,没有平移对称性(或具有长程取向序,无长程平移序)。

(2) 空穴是满带缺少电子的状态,实际上描述的是满带中其他电子的运动。

(3) $\mathfrak{D}\psi(x) = \psi(x + Na)$

②是忽略边界影响时的边界条件。

(4) ①导体: 价带完全填充,导带部分填充,导电性良好。

②绝缘体: 价带完全填充,导带是空带,并且带隙较大,不易发生跃迁,因此几乎不导电。

③半导体:绝对零度时,价带完全填充,导带是空带,但是带隙较小。室温下,一部分电子可以从价带上被热激发到导带上。导带和价带都变成部分填充,可以导电。