PSA2: DN1

Globalno segrevanje je stalilo led na obali Grenlandije, zato so se podjetni gradbinci odločili, da ob njej zgradijo dolgo alejo hiš. Zgradili so jih kar $n = 10^7$. Zaradi enostavnosti aleje niso poimenovali, hiše pa so označili s hišnimi številkami h_i , $0 \le h_i < n$.

V nekatere izmed hiš so se že naselile družine. Vsaka izmed njih ima nekaj hišnih ljubljenčkov. Hiša h_i je tako ali prazna ali pa je v njej družina z ℓ_i ljubljenčki. Ker gre za butično sosesko, bodoče stanovalce zanima, koliko je trenutno skupno število ljubljenčkov v hišah okoli tiste, za katero se zanimajo. Ker nočejo izdati točne lokacije hiše, za katero se zanimajo, agentom sporočijo le interval [a, b] hišnih številk, od agenta pa pričakujejo, da jim pove

$$L(a,b) = \sum_{i=a}^{b} \ell_i.$$

Če je hiša h_i prazna, velja $\ell_i = 0$. Postavite se v vlogo agenta in odgovarjajte na poizvedbe.

Naloga A (5 točk)

Čeprav je veliko hiš še praznih, zaradi padca cen nepremičnin nove vselitve niso mogoče. Kot agent veste, koliko hišnih ljubljenčkov je kje, vaša naloga pa je, da odgovorite na p poizvedb oblike $[a_j, b_j]$.

Naloga B (5 točk)

Dvig cen nepremičnin je dobičkaželjne agente spodbudil k temu, da ponovno dovolijo naseljevanje. Ponovno je vaša naloga odgovoriti na p poizvedb, a pozor: med dvema poizvedbama je lahko prišlo do ene ali več vselitev. Seveda so z novimi domovi vsi neizmerno zadovoljni, zato se nihče nikoli ne odseli.

Vhodni podatki

Vsaka od podnalog ima vsojo vhodno datoteko (nalogaA.txt in nalogaB.txt). V prvi vrstici vhodne datoteke se nahajajo s presledki ločena števila n, v in p, kjer je n število vseh hiš, v število vselitev in p število poizvedb. Sledi v + p vrstic, ki opisujejo vselitve in poizvedbe.

Če vrsta opisuje vselitev, se začne s črko V, ki ji sledita števili h_i in ℓ_i . Vmes so presledki. Če vrsta opisuje poizvedbo, se začne s črko P, ki ji sledita števili a_i in b_i . Vmes so presledki.

Pri nalogi A so torej vse vselitve navedene pred prvo poizvedbo, pri nalogi B pa dodatnih omejitev ni. Velja tudi $0 \le \ell_i \le 15$.

Izhod

Za vsako poizvedbo [a, b] v izhodno datoteko zapišite število L(a, b).

Primer

Vhod:	Vhod:
10 3 2 V 0 5 V 4 2 V 9 10 P 0 0 P 2 9	10 2 3 P 0 4 V 0 5 P 0 4 V 4 2 P 0 4
Izhod:	Izhod:
5 12	0 5 7

Vhod na desni je mogoč le pri nalogi B.

Preverjanje rešitev

Definirajte, kolikor razredov želite, nato pa poženite svojo kodo v priloženem razredu Main. Rešitev se bo nato avtomatsko preverila s pomočjo razreda PreveriResitev. Za preverjanje rešitev potrebujete svojo izhodno datoteko in (nekoliko zakodirane) uradne rešitve v datotekah resitveA.pub in resitveB.pub. Rešitev za dano nalogo je pravilna, če

- je dovolj hitra (za vsako od nalog A in B imate 10 sekund) in
- so vsi odgovori pravilni.

Končno verzijo kode oddajte na učilnici (samo izvorno kodo), ker jo bomo izvajalci predmeta še enkrat preverili.