Contract Regulation in Selection Markets

Yehuda John Levy (Glasgow University) Andre Veiga (Imperial College London)

Essex, June 2023

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPF
- Markets for Lemons
- Moral Hazard
- Onclusion

Motivation

- Constraints are common
 - non-purchase fees (US)
 - minimal coverage (US exchanges, "bronze" plans)
 - maximal coverage (US exchanges, "platinum" plans)
 - How do these affect equilibrium and welfare?

- ► Two common frameworks for studying competitive selection markets
 - Markets for lemons (Akerlof 1970, EFC 2010)
 - Rothschild Stiglitz 76
 - ► Are these special cases of a more general model? (yes)

In this paper

- ▶ Tractable model of a competitive selection market
 - continuum of types
 - non-purchase fee
 - maximal and minimal coverage
- Comparative statics of welfare wrt regulatory constraints

- Equilibrium typically exhibits partial pooling
 - depends non-trivially on the type distribution
- Welfare increases with maximal allowed coverage
- ▶ Sufficient conditions for welfare to increase with the non-purchase fee
- Increasing the minimal coverage has ambiguous (possibly non-monotonic) effects on welfare

Roadmap

- Motivation
- Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPF
- Markets for Lemons
- Moral Hazard
- Onclusion

Types

- ▶ Type $\mu \in [\mu, \overline{\mu}]$ (expected cost)
- ▶ PDF $f(\mu) > 0$, CDF $F(\mu)$
- ► Assume *f* log-concave

Contracts

- ► Coverage *x*: insurer covers a share *x* of the individual's loss
 - no insurance: x = 0
 - full insurance: x = 1
- ► Allowed contracts are

$$x \in X = \{0\} \cup [\underline{x}, \overline{x}]$$

- Not buying: x = 0
- ▶ Minimal coverage: $\underline{x} \ge 0$
- ▶ Maximal coverage: $\overline{x} \le 1$

Cost

ightharpoonup If type μ buys coverage x, expected cost to the insurer is

$$c = x\mu$$

Utility

- ▶ $p(x) \ge 0$ is the (endogenous) price of coverage x
- ightharpoonup A contract is a pair (x,p)
- Utility is

$$u(\mu, x, p) = x\mu + g(x)\nu - p - T \cdot \mathbb{I}\left\{x = 0\right\}$$

- lacktriangle Even a risk neutral buyer transfers to the insurer the expected cost $x\mu$
- ▶ Risk aversion v > 0 implies an additional surplus $g(x) \cdot v$
 - $g(x) \ge 0$
 - pg(0) = 0
 - g'(x) > 0 in [0,1), and g'(1) = 0
 - g''(x) < 0
 - marginal surplus is positive, decreasing and vanishes at full insurance
- ▶ Non-purchase fee $T \ge 0$

Equilibrium: Azevedo Gottlieb 2017

- Intuitively, an **equilibrium** is a price p(x) and a set of choices such that
 - individuals maximize utility
 - each contract breaks even
 - the prices of non-traded contracts are "reasonable"

Theorem

Every economy has an equilibrium

The Game

- 1. Regulator chooses $(\underline{x}, \overline{x}, T)$
- 2. Insurers set prices competitive, and individuals make choices, with the outcome given by an AG equilibrium

Roadmap

- Motivation
- 2 Model & Equilibrium
- Possible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- PPPP
- Markets for Lemons
- 8 Moral Hazard
- Onclusion

Possible Equilibrium regimes

Lemma

In any equilibrium, if a mass of individuals chooses x=0, then a mass also chooses x=x.

▶ The types of possible equilibria are:

Some choose	Some choose	Some choose	Regime
$x > \underline{x}$	$x = \underline{x}$	x = 0	Regime
Y	Y	Y	Full Dispersion
Y	-	-	RS
Y	Υ	-	Perfect Purchase,
			Partial Pooling
			(PPPP)
-	Y	Y	Lemons

Uniqueness

Proposition

If f is log-concave, equilibrium is unique.

► Valid for all equilibrium regimes

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- Oispersive Equilibrium
- 5 RS
- 6 PPPP
- Markets for Lemons
- 8 Moral Hazard
- Onclusion

Dispersive Equilibrium

some buy some buy some buy
$$x > \underline{x}$$
 $x = \underline{x}$ $x = 0$

- ▶ Other regimes are "limits" of "Dispersive"
- Let $\sigma(\mu)$ be the contract chosen by type μ in equilibrium

Dispersive Equilibrium: graphically

Comparative Statics

- ▶ *v* is homogeneous
- ▶ Welfare is proportional to

$$W = [F(\mu^*) - F(\mu_*)]g(\underline{x}) + \int_{\mu^*}^{\overline{\mu}} g(\sigma(\mu))f(\mu)d\mu.$$

Adjusting T

Lemma

If equilibrium is dispersive,

$$\frac{\partial \mu^*}{\partial T} > 0, \qquad \frac{\partial \mu_*}{\partial T} < 0$$

Effect on welfare is still ambiguous, but:

Proposition

If equilibrium is dispersive,

$$f(\mu_*) \ge f(\mu^*) \Rightarrow \frac{\partial W}{\partial T} > 0.$$

If f is weakly decreasing for all μ , then

$$\frac{\partial W}{\partial T} > 0, \forall T.$$

Adjusting T

► Condition is sufficient but not necessary:

Adjusting \overline{x}

Proposition

If equilibrium is dispersive,

$$\frac{\partial W}{\partial \overline{x}} > 0.$$

Simulations

- ► Results for *x* are less clear...
- ▶ With most simulated log-concave distributions, $\frac{\partial W}{\partial x} \ge 0$

Simulations

▶ But not always...

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- S RS
- 6 PPPF
- Markets for Lemons
- Moral Hazard
- Conclusion

RS Equilibria

- ▶ All individuals buy $x > \underline{x}$, as in RS76
- ▶ Sufficient condition: $\underline{x} = 0$

Equilibrium graph

Comparative Statics

Lemma

If the equilibrium is RS, then

$$\frac{\partial W}{\partial \overline{x}} > 0.$$

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPP
- Markets for Lemons
- Moral Hazard
- Onclusion

PPPP Equilibria

- "Perfect Purchase with Partial Pooling" (PPPP) equilibria
 - ▶ some buy x > x
 - ▶ some buy x = x
- ► True if *T* is sufficiently high

Equilibrium graphically

Adjusting \overline{x}

► The fee *T* is irrelevant

Lemma

If the equilibrium is PPPP,

$$\frac{\partial W}{\partial \overline{x}} > 0.$$

Adjusting <u>x</u>

Proposition

If the equilibrium is PPPP,

$$\frac{F(\mu^*)}{f(\mu^*)} \ge \frac{vg'(\underline{x})}{\underline{x}} \Rightarrow \frac{\partial W}{\partial \underline{x}} \ge 0. \tag{1}$$

Suppose f log-concave. Then if (1) holds for some $\hat{\underline{x}}$, it holds for all $\underline{x} > \hat{\underline{x}}$.

Simulations

▶ In simulations, $\frac{\partial W}{\partial \underline{x}} \ge 0$ for all log-concave distributions (but no proof)...

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPP
- Markets for Lemons
- Moral Hazard
- Onclusion

"Lemons" Equilibria

- ▶ All individuals buy $x \in \{0, \underline{x}\}$
 - sufficient condition: $\|\overline{x} \underline{x}\|$ sufficiently small
- ► In equilibrium:
 - types $\mu \ge \mu_*$ buy $x = \underline{x}$
 - types $\mu < \mu_*$ buy x = 0

Adjusting \underline{x}

▶ As we change \underline{x} , assume $\underline{x} = \overline{x}$

Lemma

If the equilibrium is "lemons" and f log-concave,

$$\frac{\partial \mu_*}{\partial x} \ge 0$$

- ► Higher coverage (and the corresponding adjustment in price) shrinks the set of buyers
 - (due to adverse selection)

Adjusting <u>x</u>

- ▶ Let quantity of buyers be $q(\underline{x}) = 1 F(\mu_*(\underline{x}))$
- We can show $\underline{x}(q)$ is decreasing...like a an inverse demand function.
- ▶ Social welfare is $W = q \cdot g(\underline{x}(q))$
 - This is the monopoly problem!
- ▶ Selling insurance to another marginal individual entails:
 - marginal gains: surplus of the marginal individual
 - infra-marginal losses: increasing q requires lowering the coverage enjoyed by all infra-marginal individuals

Full coverage is not optimal

Proposition

Suppose "everyone buying full coverage $(\underline{x} = 1)$ " is not an equilibrium. Suppose $X = \{0,\underline{x}\}$. Then, the socially optimal level of mandated coverage is interior $(\underline{x} \in (0,1))$.

- ▶ At full insurance ($\underline{x} = 1$)
 - marginal surplus from additional insurance is g'(1) = 0
 - reducing coverage implies no loss for buyers and increases number of buyers

Roadmap

- Motivation
- 2 Model & Equilibrium
- Ossible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPF
- Markets for Lemons
- Moral Hazard
- Onclusion

Moral Hazard

- ► E.g., individuals use more healthcare when they receive better insurance, especially high-cost individuals
- ▶ So far: $\frac{\partial W}{\partial \overline{x}} \ge 0$
 - ▶ Does MH lead to OVER-insurance?
 - ▶ Is there a rationale to reduce \overline{x} ?

Modelling MH

Utility and cost are

$$u = x\mu + \frac{x^2}{2}M + g(x)v - p(x)$$
$$c = x\mu + x^2M$$

- ightharpoonup M > 0 captures the importance of MH
- ▶ Things are more general in the paper

Social Surplus

 \blacktriangleright Social surplus of type μ is

$$s(\mu, x) = g(x)v - \frac{x^2}{2}M$$

• s concave in x, and maximized at $x = x^{**}$ that satisfies

$$\frac{g'(x^{\star\star})}{x^{\star\star}}v=M, \qquad \forall \mu$$

- ► M > 0 implies $x^{**} < 1$
- ► Full insurance is not optimal

Equilibrium

▶ There is a maximum purchased coverage \tilde{x} ,s.t. types $\mu \in [\mu^*, \overline{\mu}]$ purchase contracts

$$x \in [x^*, \tilde{x}]$$

Proposition

In equilibrium, if $\tilde{x} < \overline{x}$, then \tilde{x} satisfies

$$\frac{\partial s(\overline{\mu},x)}{\partial x}\mid_{x=\tilde{x}}=0.$$

Moreover, $\tilde{x} = \overline{x}$ if

$$\frac{\partial s(\overline{\mu},x)}{\partial x}\mid_{x=\overline{x}}\geq 0.$$

Over-insurance? No

- At most, type $\overline{\mu}$ buys \tilde{x}
- ▶ But $\tilde{x} = x^{**}$ is the optimal coverage for all types
- Every type $\mu < \overline{\mu}$ obtains $x < \tilde{x}$.
- ► So MH leads to UNDER-insurance

Proposition

If M > 0, then

$$\frac{\partial W}{\partial \overline{x}} \ge 0$$

▶ MH should not imply restrictions on \overline{x}

Roadmap

- Motivation
- 2 Model & Equilibrium
- 3 Possible Equilibrium Regimes
- 4 Dispersive Equilibrium
- 5 RS
- 6 PPPP
- Markets for Lemons
- Moral Hazard
- Conclusion

- ▶ Tractable model of a competitive selection market with
 - continuum of types
 - non-purchase fee
 - exogenous restrictions on the set of allowed contracts:
 - as special cases: Akerlof 1970 and RS 1976
- ▶ Sufficient conditions for welfare to increase with the non-purchase fee
- ▶ Welfare robustly increases with maximal allowed coverage
 - robust to moral hazard
- Increasing the minimal allowed coverage has ambiguous (possibly non-monotonic) effects on welfare

THANK YOU!

a.veiga@imperial.ac.uk