Continuous Random Variables

Appendix [Ross S5.4]

The result below shows that a Gaussian pdf has unit area under its curve.

Proposition 21.1

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

Why? Let $u=(x-\mu)/\sigma$ and $du=dx/\sigma$. So

 $\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du$

 $I = \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du = \sqrt{2\pi}$

We will show that $I^2 = 2\pi$:

$$\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2 + y^2}{2}} dx dy \\
&= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^2}{2}} r dr d\theta \\
&= \int_{0}^{2\pi} \left[-e^{-\frac{r^2}{2}} \right]_{0}^{\infty} d\theta \\
&= \int_{0}^{2\pi} 1 d\theta \\
&= 2\pi
\end{aligned}$$

where we switched from Cartesian (x,y) coordinates to polar (r,θ) coordinates

 $I^{2} = \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} dy$

nates.