形式语言与自动机 作业 6

上下文无关文法的性质

1951112 林日中

习题 7.2.1

用 CFL 泵引理来证明下面的语言都不是上下文无关的:

- a) $\{a^i b^j c^k | i < j < k\}.$
- b) $\{a^nb^nc^i|i\leq n\}.$
- c) $\{0^p|p$ 是素数 $\}$. 提示: 使用和例 4.3 中证明不是正则语言时采用相同的思想.
- d) $\{0^i 1^j | j = i^2\}.$
- e) $\{a^nb^nc^i|n\leq i\leq 2n\}.$

证明. 对于每个问题, 假设语言 L 是上下文无关的. 那么由上下文无关语言的泵引理, 存在一常数 n>0, 对于语言 L 中每个满足 $|z|\geq n$ 的字符串 z, 存在一组 u,v,w,x,y 使 得 z=uvwxy 且有 $|vwx|\leq n, vx\neq \varepsilon$ 且 $\forall k\geq 0, uv^kwx^ky\in L$.

a) 考察串 $z = a^n b^{n+1} c^{n+2}$. 对于串 vwx, 可能有 $vwx \in a^+, a^+ b^+, b^+, b^+ c^+$ or c^+ .

当 $c \notin vwx$ 时(即前 3 种可能性),对于串 uv^3wx^3y ,它有不少于 n+2 个 a 或 b,而只有 n+2 个 c. 此时,显然有 $uv^3wx^3y \notin L$.

当 $c \in vwx$ 时(即后 2 种可能性),因为 $|vwx| \le n$,故有 $a \notin vwx$.对于串 $uv^0wx^0y = uwy$,它有不多于 2n+1 个 b 和 c 以及 n 个 a,故它不可能同时有多于 n 个 b 和多于 n 个 c. 那么也就有 $uv^0wx^0y \notin L$.

因此,该语言不是上下文无关的.

b) 考察串 $z = a^n b^n c^n$.

当 $c \notin v, x$ 时,有 $vwx \in a^+, b^+$ or a^+b^+ . 对于串 uv^0wx^0y ,它一定有少于 $n \uparrow a$ 和/或少于 $n \uparrow b$,因而有 $uv^0wx^0y \notin L$.

当 $a,b \notin vwx$ 时,有 $vwx \in c^+$. 对于串 uv^3wx^3y ,它一定有多于 n 个 c,因而有 $uv^3wx^3y \notin L$. 当 $a,c \notin vwx$ 或 $b,c \notin vwx$ 时,分别会有相同的矛盾出现.

因此,该语言不是上下文无关的.

c) 考察串 $z=0^p, p \ge n$, 其中 p 是素数. 令 $|vwx| \le n, |vx| = m \ge 1$, 此时有 $uv^kwx^ky=0^{p+m(k-1)}, k \ge 0$. 当 k=p+1 时, $uv^kwx^ky=0^{p+pm}=0^{p(1+m)}$. 显然, p(1+m) 不是素数, 故有 $uv^kwx^ky \notin L$.

因此,该语言不是上下文无关的.

d) 考察串 $z = 0^n 1^{n^2}$.

显然, 当 v 或 x 横跨 0^n 和 1^{n^2} 的边界时, 由泵引理产生的串 $uv^kwx^ky \notin L$.

当 $vwx \in 0^+$ 时,对于串 $uv^2wx^2y = 0^{n+|vx|}1^{n^2}, 0 < |vx| \le p$,显然有 $(n+|vx|)^2 \ne n^2$, 故有 $uv^2wx^2y \notin L$.

当 $vwx \in 1^+$ 时,对于串 $uv^2wx^2y = 0^n1^{n^2+|vx|}, 0 < |vx| \le p$,显然有 $n^2 \ne n^2 + |vx|$,故有 $uv^2wx^2y \notin L$.

当 $v \in 0^+, x \in 1^+$ 时,对于串 $uv^2wx^2y = 0^{n+|v|}1^{n^2+|x|}, |vx| > 0$,因为 $(p+1)^2 = p^2 + 2p+1, |x| < n$, 所以有 $n^2 + |x| < (n+1)^2$, 进而一定有 $(n+|v|)^2 \neq n^2 + |x|$. 故有 $uv^2wx^2y \notin L$.

因此,该语言不是上下文无关的.

e) 考察串 $a^{\hat{n}}b^{\hat{n}}c^{2\hat{n}}$, 其中 \hat{n} 是泵长度.

当 $c \notin v, x$ 时,有 $vwx \in a^+, b^+$ or a^+b^+ . 对于串 $uv^mwx^my, m = \hat{n}$,它仍属于该语言. 但当 $m \ge \hat{n} + 1$ 时,有 $n \ge 2\hat{n} + 1, i \le n - 1$,故产生的串不再属于该语言.

当 $a \notin v, x$ 时,有 $vwx \in b^+, c^+$ or b^+c^+ . $vwx \in b^+$ or b^+c^+ 时,对于串 uv^0wx^0y ,它一定含有少于 \hat{n} 个 b,故产生的串不再属于该语言; $vwx \in c^+$ 时,对于串 uv^2wx^2y ,它一定含有多于 $2\hat{n}$ 个 c,故产生的串不再属于该语言.

因此,该语言不是上下文无关的.

f) 考察串 $0^n110^n0^n1$. 与 b) 中讨论的情况类似,3 段 0^n 不可能同时存在于 vwx 中,将他们分别记为 $0^n_{(1)}, 0^n_{(2)}, 0^n_{(3)}$. 对于串 vwx,可能有 $vwx \in 0^+_{(1)}, 0^+_{(2)}, 0^+_{(3)}, 0^+_{(1)}, 0^+_{(2)}$ or $0^+_{(2)}0^+_{(3)}$. 在任何一种可能性中,对于串 uv^iwx^iy , $\forall i \in \mathbb{N}, i \neq 1$,都会出现 $0_{(1)}$ 、 $0_{(2)}$ 和 $0_{(3)}$ 的数量不相等的情况,即产生的串不再属于该语言.

因此,该语言不是上下文无关的.

习题 7.2.5

使用奥格登引理(习题 7.2.3)来证明下列语言不是 CFL:

- a) $\{0^i 1^j 0^k | j = \max(i, k)\}.$
- b) $\{a^nb^nc^i|\ i\neq n\}$. 提示: 如果 n 是奥格登引理的常数,考虑串 $z=a^nb^nc^{n+n!}$. 证明.
- a) 考察串 $z = 0^{2n}1^{2n}0^n$,并标记所有最后的 0 为 $\hat{0}$ (即 $z = 0^{2n}1^{2n}\hat{0}^n$).

显然,当 v 或 x 横跨 0^{2n} 、 1^{2n} 和 $\hat{0}^n$ 的边界时,由奥格登引理产生的串已不再属于语言 L.

当 $v \in 0^+$ or 1^+ 时,对于由奥格登引理产生的串,题设条件 $j = \max(i, k)$ 将不再成立,因为其中一个数会增长,同时另一个会保持不变.

当 v 和 x 完全包含 $\hat{0}$ 时,在对 z 应用奥格登引理时,必然在某时有 k>i,j,题设条件 $j=\max(i,k)$ 将不再成立.

因此,该语言不是上下文无关的.

b) 考察串 $z = a^n b^n c^{n+n!}$, 其中 n 是奥格登引理中的常数.

我们标记所有的 a 和 b. 注意到,当 v 或 x 包含 a 和 b 的混合时,在 i=2 的情况下,由奥格登引理生成的串 uv^iwx^iy 不再属于该语言.

当 $v=a^{\alpha}$ 和 $x=b^{\beta}$ 时,假设 $\alpha \neq \beta$,那么 a 和 b 的数量将不相等,因此,一定有 $\alpha=\beta$. 令 $\gamma=\alpha=\beta$,那么最终的字符串将是这样的形式

$$a^{n+\gamma(i-1)}b^{n+\gamma(i-1)}c^{n!+n}$$

因此, 我们假设 a 或 b 的指数等于 c 的指数, 有

$$n+\gamma(i-1)=n!+n$$

$$\gamma(i-1)=n!$$

$$i-1=\frac{n!}{\gamma}$$

由于 $\gamma \leq n$, 上述等式右侧能够整除. 故我们能够选择一个满足这个约束的 i, 从而得出由奥格登引理生成的串 uv^iwx^iy 与我们先前的约束 $\{a^nb^nc^i|i\neq n\}$ 矛盾.

因此,该语言不是上下文无关的.

习题补充 1

构造与下列文法等价的 CNF.

$$S \to ABB \mid bAA$$

$$B \to aBa \mid aa \mid \varepsilon$$

$$A \to bbA \mid \varepsilon$$

解答. 消除 ε -产生式,有

$$S \rightarrow \varepsilon \mid A \mid B \mid AB \mid BB \mid ABB \mid b \mid bA \mid bAA$$

$$B \rightarrow aBa \mid aa$$

$$A \rightarrow bba \mid bb$$

消除单一产生式,有

$$S \rightarrow \varepsilon \mid bbA \mid bb \mid aBa \mid aa \mid AB \mid BB \mid ABB \mid b \mid bA \mid bAA$$

$$B \rightarrow aBa \mid aa$$

$$A \rightarrow bba \mid bb$$

引入新变量 C_1, C_2, C_3, C_4, C_5 , 有

$$S \rightarrow \varepsilon \mid C_3A \mid C_5C_5 \mid C_4BC_4 \mid C_4C_4 \mid AB \mid BB \mid AC_1 \mid b \mid C_5A \mid C_5C_2$$

$$B \to C_4 B C_4 \ | \ C_4 C_4$$

$$A \rightarrow C_3 A \mid C_5 C_5$$

$$C_1 \to BB$$

$$C_2 \to AA$$

$$C_3 \rightarrow C_5 C_5$$

$$C_{4} \rightarrow a$$

$$C_5 \to b$$

引入新变量 C_6 ($C_6 \rightarrow BC_4$), 有

$$S \rightarrow \varepsilon \mid b \mid C_3A \mid C_5C_5 \mid C_4C_6 \mid C_4C_4 \mid AB \mid BB \mid AC_1 \mid C_5A \mid C_5C_2$$

$$B \rightarrow C_4 C_6 \mid C_4 C_4$$

$$A \rightarrow C_3 A \mid C_5 C_5$$

$$C_1 \to BB$$

$$C_2 \to AA$$

$$C_3 \rightarrow C_5 C_5$$

$$C_{4} \rightarrow a$$

$$C_5 \to b$$

$$C_6 \to BC_4$$