TICNI					
USIN					

RV COLLEGE OF ENGINEERING®

(Autonomous Institution affiliated toVTU)

III Semester B. E. Fast Track ExaminationsJuly-19

Computer Science and Engineering LOGIC DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

The Boolean function f implemented in the figure 1.6 using two input multiplexer is	
Fig 1.6	02
1.7 The canonical sum of product form of the function $y(A, B) = A + B$ is	
	01
1.8 The odd parity generator output of decimal number 9 is	01
1.9 Define registers.	01
1.10 Write the characteristics equation of SR,JK, T and D.	02
1.11 Define race around condition.	02
1.12 Give the excitation table for SR and JK F/F.	02

PART-B

2	a	Apply K-map method to determine the SOP and POS expressions for	
		the given functions.	
		i. $y(A, B, C, D) = \sum m(0,4,7,8,9,11) + d(1,6)$	
		ii. $y(A, B, C, D) = \sum m(0,1,5,7,10,13,14) + d(2,4)$	
		iii. $y(A, B, C, D) = \prod m(2,4,6,8,9,10,12,14)$	06
	b	Explain with example the static and dynamic hazard in logic circuits.	04
	c	Find all the prime implicants of the function	
		$f(a,b,c,d) = \sum m(7,9,12,13,14,15) + dc(4,11)$ using Quine –mcClusky	
		algorithm.	06

3	а	Explain carry look ahead adder with a necessary expressions and	
		diagram.	06
	b	With an eat diagram explain the decimal adder.	04
	С	Implement the Boolean function $f(a, b, c, d) = \sum m(4,5,7,8,10,12,15)$ using	
		a 4 to 1 line MUX and external gates if,	
		i. a and b are connected to select lines a_1 and a_0 respectively.	
		ii. c and d are connected to select lines a_1 and a_0 respectively.	06
		OR	
4	a	Use active low 3 to 8 line decoder and 2 AND gates to implement the	
		following function:	
		$f_1(x_0, x_1, x_2) = \sum m(0, 2, 6, 7)$	
		$f_2(x_0, x_1, x_2) = \sum m(3,5,6,7)$	04
	b	Configure a 4 to 16 line decoder using 2 to 4 line decoder.	04
	С	Implement the following Boolean functions using a PROM PLD	
		$f_1(a,b,c) = \sum m(2,4,6,7)$	
		$f_2(a,b,c) = \sum m(0,1,2,5,)$	
		$f_3(a,b,c) = \sum m(2,6,7)$	
			04

	d	Implement the following functions using $3 \times 4 \times 2$ PLA.						
		$f_1(a,b,c) = \sum m(1,2,3,7)$						
		$f_2(a,b,c) = \sum m(1,5,7)$						
5	a	Define set-up time, hold time and propagation delay with necessary						
		timing diagrams.						
	b	Using excitation table, present state and next state table of F/F						
		convert JK F/F to SR F/F.	06					
	С	Explain the switch Debouncer circuit using SR latch with necessary						
		diagram.						
		OR						
6		Deline Alliani della controlla di						
0	a	Design a 4-bit registers using positive edge triggered D flip flops to operate as indicated in the table below:						
		Mode Select Register Operation						
		Wode Sciect Register Operation						
		a_1 a_0						
		0 0 Hold						
		0 1 Synchronous clear						
		1 0 Complement content						
		1 1 Circular shift right	10					
	Ъ	With neat circuit diagram and timing diagram explain positive edge						
		triggered D F/F.						
	•		· · · · · · · · · · · · · · · · · · ·					
7	а	Design a mod -5 up control using asynchronous, with necessary						
		timing diagram.						
	b	Design a mod 6 synchronous up counter using positive edge triggered						
		JK F/F.						
	_							
8	a	Design a synchronous circuit using Positive edge triggered JK F/F						
		with minimal combinational gating to generate the following						
		sequence.						
		$0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ if input $x = 0$ and						
		$0 \rightarrow 2 - 1 - 0 \text{ if input } x = 1$						
		Provide an output which goes high to indicate the non-zerostate in						
		the $0-1-2-0$ sequence. Is this amealy machine?						
	b	In detail explain the mealy or moore model with necessary diagrams.						