Chromatography terms 层析术语

History of Chromatography

层析技术的历史

1906 - Mikhail Semenovich Tswett (1872-1919)

植物色素分离:碳酸钙吸附剂/石油醚

Purification - a key technology

Principles of operation for chromatography techniques 层析原理

Gel Filtration

分子筛

Ion Exchange

离子交换

Hydrophobic interaction 疏水层析

Reversed phase 反相

Affinity

亲和

Important terms & parameters 重要的术语和参数

- Separation volumes 分离体积
- Resolution 分辨率
- Selectivity 选择性
- Efficiency 柱效
- Symmetry 对称性
- Linear flow rate 线性流速
- Capacity 载量

Separation volumes 分离体积

V_o = void volume 外水体积 ■ V_R = retention volume or elution volume 保留体积/洗脱体积 V_t = total liquid volume of the bed 总液体体积 V_i = inner pore volume = $V_c - V_s - V_o$ 内孔体积/内水体积 V_c = total geometric volume of the column 柱体积 **V_s** = volume of gel matrix 固相凝胶的体积 void volume Vo volume of the gel matrix V_s pore volume V_i Volume

Resolution 分辨率(分离峰的能力) the power to separate peaks

Maximum number of peaks in gel filtration ca 15

Maximum number of peaks in RPC > 150

Remember: we are not purifying peaks, but proteins & peptides!

注意:我们不是在纯化峰,而是纯化蛋白质和多肽!

Resolution factor, R_s分辨率

两峰相对于其峰宽而言,分开的有多远

Resolution: depends on 分辨率取决于 selectivity 选择性 and efficiency 柱效

Selectivity 选择性:

- 峰分离的量度
- 高选择性可以达到基线分离
- 高选择性可以弥补低的柱效峰体积有可能增加

Efficiency 柱效:

- 峰宽的量度
- 柱效越高峰越窄
- 高柱效需要良好的柱填装技术
- 高柱效有时可弥补选择性不足

Selectivity 选择性

To maximize the differences between proteins! 使得不同蛋白之间的差异最大化!

取决于

- Separation technologies 分离技术
- Chromatography media screen 填料筛选
- Separation conditions screen 参数优化

Efficiency 柱效

A powerful tool to improve Resolution!提高分辨率的有力工具!

取决于

- flow rate 流速
- particle size of matrix 粒径大小
- particle size distribution of matrix 粒径分布
- packing quality of the column 层析柱的装填
- sample volume and viscosity 样品体积和黏度

Band broadening effects

峰展宽的影响因素

Diffusion along column (轴向扩散)

增加流速

Mass transfer

(传质阻力)

降低流速

Eddy diffusion

(涡流扩散)

均一的填料 良好填装

Eddy diffusion (涡流扩散)

Particles distribution & packing 填料粒径分布 & 柱装填质量

流速(Flow)对峰宽(Peak width)的影响

峰宽 (HETP)

- Diffusion along column (轴向扩散): 小分子扩散速度快,高流速下峰较窄
- •Mass transfer (传质阻力): 小分子传质速度快,低流速下峰较窄
- •Eddy diffusion (涡流扩散): 装填良好,均一的球形颗粒使峰较窄

$$H = Ad_p + B/u + Cd_p^2u$$
 (层析速率方程)

H: 等板高度, d_p: 粒径, u: linear flow 线速度

 ${\bf Ad_p}$: eddy , ${\bf B/u}$: diffusion along column, ${\bf Cd_p}^2{\bf u}$: mass transfer

Efficiency 柱效测定方法

$$N = 5.54 \left(\frac{V_r}{W_{1/2h}} \right)^2$$

$$HETP = L/N$$

N = 理论塔板数;

L=柱高

Test: 1% 丙酮溶液

- 大约 0.5% 的柱体积, 0.2 AUFS 在 280 nm
- 或者用 2 M NaCl 用电导检测

建议在检查柱效和寿命时检测

Symmetry: 对称性 the shape of your peak 峰的形状

$$A_s = \frac{b}{a}$$

 $A_s = 1$ is perfect shaped Gauss curve

A_s >1 peak is tailing 拖尾

A_s <1 peak is leading 前倾

A_S 0.8~1.5 一般可以接受!

线性流速 (linear flow rate)

线性流速 (cm/hr) = 体积流速 (ml/min) x 60 截面积 (cm) ²

Capacity 载量 (Adsorption chromatography 吸附层析)

Capacity depends on 载量取决于:

- Protein properties 蛋白性质
 - -MW分子量, shape形状, charge电荷, hydrophobicity疏水性, etc
- Media properties 填料性质
 - -开孔率,粒径,配基密度,etc
- Operation parameters 操作条件
 - -pH, salt conc.盐浓度, additives添加剂, protein conc.蛋白浓度, temp温度, flow流速

Capacity 载量(mg protein/ml beads)

- -Static capacity 静态载量
- -Shake & Incubate 混合 & 孵育
- -Dynamic capacity 动态载量(DBC): 质量传递
 - -Flow,residence time (停留时间) calculation

线性流速 (cm/h) =
$$\frac{\text{体积流速 (ml/min)} \times 60}{\text{截面积 (cm)}^2}$$

- Residence time停留时间 (bed height柱高, linear flow线性流速)
- -真实样品 (protein conc.蛋白浓度, buffer缓冲液, impurities杂质成分, temp温度)
- Good column efficiency 好的柱效

Q&A?

Please visit:

www.gehealthcare.com/protein-purification

