Math Tools

1

Note: Statistical Inference

Oct 2024

Lecturer: Typed by: Zhuohua Shen

Contents

1 Statistical Models

2	Principles of Data Reduction	2
	2.1 Sufficiency Principle	4
	2.2 Likelihood principle	4
	References: most of the contents are from the undergraduate course STA3020 (by Prof. Jianfeng Mao in 20	122
20	23 T1, and Prof. Jiasheng Shi in 2023-2024 T2) and postgraduate course STAT5010 (by Kin Wai Keith Char	ıir
20	24-2025 T1), with main textbook [1]	

1 Statistical Models

See Chapter 3 of [1]. Suppose $X_i \sim_{\text{iid}} P_*$, where P_* refers to the unknown data generating process (DGPg), we find $\widehat{P} \approx P_*$. A statistical model is a set of distributions $\mathscr{F} = \{P_\theta : \theta \in \Theta\}$, where Θ is the parameter space. A parametric model is the model with $\dim(\Theta) < \infty$, while a nonparametric model satisfies $\dim(\Theta) = \infty$.

Definition 1.1 (Exponential family). A k-dimensional exponential family (EF) $\mathscr{F} = \{f_{\theta} : \theta \in \Theta\}$ is a model consisting of pdfs of the form

$$f_{\theta}(x) = c(\theta)h(x) \exp\left\{ \sum_{j=1}^{k} \eta_{j}(\theta)T_{j}(x) \right\}$$
(1)

where $c(\theta), h(x) \ge 0$, $\Theta = \{\theta : c(\theta) \ge 0, \eta_j(\theta) \text{ being well defined for } 1 \le j \le k\}$. Let $\eta_j = \eta_j(\theta)$, the canonical form is

$$f_{\eta}(x) = b(\eta)h(x) \exp\left\{\sum_{j=1}^{k} \eta_j T_j(x)\right\},\tag{2}$$

- k-dim natural exponential family (NEF): $\mathscr{F}' = \{f_{\eta} : \eta \in \Xi\};$
- natural parameter $\eta = (\eta_1, \dots, \eta_k)^T$;
- natural parameter space: $\Xi = \{ \eta \in \mathbb{R}^k : 0 < b(\eta) < \infty \};$
- the NEF \mathscr{F}' is of full rank if Ξ contains an open set in \mathbb{R}^k ;
- the EF is a curved exponential family if $p = \dim(\Theta) < k$.

Properties of EF:

- Let $X \sim f_{\eta}$, where $\eta \in \Xi$ such that (i) f_{η} is of the form (2) with $B(\eta) = -\log b(\eta)$, and (ii) Ξ contains an open set in \mathbb{R}^k . Then, for $j, j' = 1, \ldots, k$, $\mathbb{E}\{T_j(X)\} = \frac{\partial B(\eta)}{\partial \eta_j}$ and $\mathbf{Cov}\{T_j(X), T_{j'}(X)\} = \frac{\partial^2 B(\eta)}{\partial \eta_j}$.
- Stein's identity:

Definition 1.2 (Location-scale family). Let f be a density.

- A location-scale family is given by $\mathscr{F} = \{f_{\mu,\sigma} : \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{++}\}$, where $f_{\mu,\sigma}(x) = f((x-\mu)/\sigma)/\sigma$.
- location parameter: μ ; scale parameter: σ ; standard density: f;
- A location family is $\mathscr{F} = \{f_{\mu,1} : \mu \in \mathbb{R}\}.$
- A scale family is $\mathscr{F} = \{f_{0,\sigma} : \sigma \in \mathbb{R}^{++}\}$

Representation: $X = \mu + \sigma Z$, $Z \sim f_{0,1}(\cdot)$.

- See some examples in Example 3.9, Keith's note 3, and Table 1 in Shi's note L1.
- Transform between location parameter and scale parameter by taking log.

Definition 1.3 (Identifiable family). If $\forall \theta_1, \theta_2 \in \Theta$ that

$$\theta_1 \neq \theta_2 \quad \Rightarrow \quad f_{\theta_1}(\cdot) \neq f_{\theta_2}(\cdot),$$

then \mathscr{F} is said to be an identifiable family, or equivalently $\theta \in \Theta$ is identifiable.

A typical feature of non-identifiable EF is that $p = \dim(\Theta) > k$. Typically,

- p < k, curved (must).
- p = k, of full rank.
- p > k, non-identifiable.

2 Principles of Data Reduction

Statistics: $T = T(X_{1:n})$, a function of $X_{1:n}$ and free of any unknown parameter.

2.1 Sufficiency Principle

Sufficiency principle: If $T = T(X_{1:n})$ is a "sufficient statistics" for θ , then any inference on θ will depend on $X_{1:n}$ only through T.

```
Definition 2.1 (Sufficient, minimal sufficient, ancillary, and complete statistics). Suppose X_{1:n} \sim_{iid} P_{\theta}, where \theta \in \Theta. Let T = T(X_{1:n}) be a statistic. Then T is sufficient (SS) for \theta \Leftrightarrow (\text{def}) [X_{1:n} \mid T = t] is free of \theta for each t.

\Leftrightarrow (\text{technical lemma}) T(x_{1:n}) = T(x'_{1:n}) implies that f_{\theta}(x_{1:n})/f_{\theta}(x'_{1:n}) is free of \theta.

\Leftrightarrow (\text{Neyman-Fisher factorization theorem}) \forall \theta \in \Theta, x_{1:n} \in \mathcal{X}^n, f_{\theta}(x_{1:n}) = A(t, \theta)B(x_{1:n}).

\Leftrightarrow \text{Define } \Lambda(\theta', \theta'' \mid x_{1:n}) := f_{\theta'}(x_{1:n})/f_{\theta''}(x_{1:n}). \quad \forall \theta', \theta'' \in \Theta, \exists \text{ function } C_{\theta', \theta''} \text{ such that } \Lambda(\theta', \theta'' \mid x_{1:n}) = C_{\theta', \theta''}(t), \text{ for all } x_{1:n} \in \mathcal{X}^n \text{ where } t = T(x_{1:n}).

T \text{ is minimal sufficient (MSS) for } \theta

\Leftrightarrow (\text{def}) (1) T \text{ is a SS for } \theta; (2) T = g(S) \text{ for any other SS } S.

\Leftrightarrow (1) T \text{ is a SS for } \theta; (2) S(x_{1:n}) = S(x'_{1:n}) \text{ implies } T(x_{1:n}) = T(x'_{1:n}) \text{ for any SS } S.

\Leftrightarrow (\text{Lehmann-Scheff\'e theorem}) \forall x_{1:n}, x'_{1:n} \in \mathcal{X}^n, f_{\theta}(x_{1:n})/f_{\theta}(x'_{1:n}) \text{ is free of } \theta \Leftrightarrow T(x_{1:n}) = T(x'_{1:n}).

A = A(X_{1:n}) \text{ is ancillary (ANS) if the distribution of } A \text{ does not depend on } \theta.

T \text{ is complete (CS) if } \forall \theta \in \Theta, \mathbf{E}_{\theta} g(T) = 0 \text{ implies } \forall \theta \in \Theta, P_{\theta} \{g(T) = 0\} = 1.
```

Properties

- (Transformation) If T = r(T'), then (i) T is $SS \Rightarrow T'$ is SS; (ii) T' is $CS \Rightarrow T$ is CS; (iii) r is one-to-one, then if one is SS/MSS/CS, then the another is.
- (Basu's Lemma) $X_i \sim_{iid} P_{\theta}$, A is ANS and T s CSS, then $A \perp \!\!\! \perp T$.
- (Bahadur's theorem) $X_i \sim_{iid} P_{\theta}$, if an MSS exists, then any CSS is also an MSS.
 - Then if a CSS exists, then any MSS is also a CSS \Rightarrow CSS=MSS.
 - All or nothing: start with MSS T, check whether T is CS. (i) Yes, it is both CSS and MSS, then the set of MSS=CSS; (ii) No, there is no CSS at all.
- (Exp-family) If $X_i \sim_{\text{iid}} f_{\eta}$ in (2), then $T = (\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i))$ is a SS, called natural sufficient statistic. If Ξ contains an open set in \mathbb{R}^k (i.e., \mathscr{F}' is of full rank), then T is MSS and CSS.

Proof techniques

- Prove T is not sufficient for θ : show if $\exists x_{1_n}, x'_{1:n} \in \mathcal{X}^n$ and $\theta', \theta'' \in \Theta$, such that $T(x_{1:n}) = T(x'_{1:n})$ and $\Lambda(\theta', \theta'' \mid x_{1:n}) \neq \Lambda(\theta', \theta'' \mid x'_{1:n})$.
- Prove A is an ANS: consider location-scale representation.
- Prove T is a CS: use definition or take $d \mathbf{E}_{\theta} g(T)/d\theta = 0$.
- Disprove T is CS:
 - Construct an ANS S(T) based on T, then $\mathbf{E} S(T)$ is free of θ , then $g(T) = S(T) \mathbf{E} S(T)$ is free of θ but $g(T) \neq 0$ w.p.1.
 - (Cancel the 1st moment) Find two unbiased estiamtors for θ as a function of T. E.g., $X_1, X_2 \sim_{\text{iid}} N(\theta, \theta^2)$, $T = (X_1, X_2), g(T) = X_1 X_2 \sim N(0, 2\theta^2)$.

Remark 2.2. • ANS A is useless on its own, but useful together with other information.

• $P(A(X) \mid \theta)$ is free of θ , but for non-SS T, $P(A(X) \mid T(X))$ is not necessarily free of θ .

2.2 Likelihood principle

References

[1] G. Casella and R. L. Berger. Statistical inference, volume 2. Duxbury Pacific Grove, CA, 2002. (document), 1