Overview of the (e,e'p) Reaction

Paul Ulmer Old Dominion University

EEP03: International Workshop on

Probing Nucleons and Nuclei via the (e,e'p) Reaction

October 14-17, 2003

Grenoble, France

Outline

- **≻**Nuclei
 - ➤ Spectroscopic factors
 - > NN correlations
 - ➤ Reaction mechanism
- ➤ Deuteron and the NN interaction
- **≻**Nucleons
 - > Elastic form factors
 - ➤ Medium modifications
 - ➤ Color transparency
 - ➤ Pion electroproduction
 - ➤ Virtual Compton Scattering

Kinematics

In ERL_e:
$$Q^2 = -q_{\mu}q^{\mu} = q^2 - \omega^2 = 4ee' \sin^2\theta/2$$

Missing momentum: $p_{m} = q - p = p_{A-1} = - p_{O}$

Missing mass: $\varepsilon_{\rm m} = \omega - T_{\rm p} - T_{\rm A-1}$

Response Functions (OPEA)

$$\left(\frac{d^{6}\sigma}{d\Omega_{e}d\Omega_{p}dp d\omega}\right)_{LAB} = \frac{pE}{(2\pi)^{3}}\sigma_{M} \left\{ v_{L}(R_{L} + R_{L}^{n}S_{n}) + v_{T}(R_{T} + R_{T}^{n}S_{n}) + v_{LT}[(R_{LT} + R_{LT}^{n}S_{n})\cos\varphi_{x} + (R_{LT}^{l}S_{l} + R_{LT}^{t}S_{t})\sin\varphi_{x}] + v_{TT}[(R_{TT} + R_{TT}^{n}S_{n})\cos2\varphi_{x} + (R_{LT}^{l}S_{l} + R_{TT}^{t}S_{t})\sin2\varphi_{x}] + hv_{LT'}[(R_{LT'} + R_{LT'}^{n}S_{n})\sin\varphi_{x} + (R_{LT'}^{l}S_{l} + R_{LT'}^{t}S_{t})\cos\varphi_{x}] + hv_{TT'}(R_{TT'}^{l}S_{l} + R_{TT'}^{t}S_{t})\right\}$$

where the v's depend only on the (known) electron kinematics.

The Spectral Function

In nonrelativistic PWIA:

proton momentum distribution

For bound state of recoil system:

$$\rightarrow \frac{d^{5}\sigma}{d\Omega_{e}d\Omega_{p}d\omega} = K'\sigma_{ep} \left| \Phi(p_{m}) \right|^{2}$$

Final State Interactions (FSI)

$$|\vec{q} - \vec{p}| = \vec{p}_{A-1} \neq -\vec{p}_0$$

Distorted Wave Impulse Approximation (DWIA)

Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential).

$$\frac{d^{6}\sigma}{d\Omega_{e}d\Omega_{p}dpd\omega} = K \sigma_{ep} S^{D}(p_{m}, \varepsilon_{m}, p)$$

"Distorted" spectral function

Nuclei

1964: Frascati Synchrotron

U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964).

1976: Saclay

J. Mougey et al., Nucl. Phys. A262, 461 (1976).

1988: NIKHEF

G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988).

G. van der Steenhoven, et al., Nucl. Phys. **A480**, 547 (1988).

"Spectroscopic" Factors ...

Normalization factors

FIG. 12. z factors (\diamondsuit) from (e,e'p) and (e,e') reactions; (\Box) , from optical potential analysis; and from (\frown) theory.

V. Pandharipande, I. Sick and Peter K.A. deWitt Huberts, Rev. Mod. Phys. **69**, 981 (1997).

Transfer Reactions and Normalization Factors

TABLE I. Cross sections for the reactions ${}^{12}\text{C}({}^{12}\text{C}, {}^{11}\text{B})X, {}^{12}\text{C}({}^{12}\text{C}, {}^{11}\text{C})X, {}^{12}\text{C}({}^{16}\text{O}, {}^{15}\text{N})X \text{ and } {}^{12}\text{C}({}^{16}\text{O}, {}^{15}\text{O})X.$							
$\overline{{}^{A-1}Z}$	E _B MeV/	E*	$\sigma_{sp}(\mathrm{mb})^{\mathrm{a}}$		σ_{th}	σ_{ex}	pt
	nucleon		Strip.	Diffr.	(mb)	(mb)	R_s
$^{11}\mathbf{B}$	250	а	21.9	1.8	100.5	65.6(26) b	0.65(3)
	1050	a	20.8	1.9	96.1	48.6(24) ^c	0.51(3)
	2100	a	20.6	2.0	96.1	53.8(27) °	0.56(3)
$^{11}\mathbf{C}$	250	a	21.4	1.7	98.2	56.0(41) ^b	0.57(4)
	1050	a	20.2	1.8	93.4	44.7(28) ^c	0.48(3)
	2100	а	20.1	1.9	93.3	46.5(23) °	0.50(3)
·							
15 N	2100	0	15.40	1.77			
		6.324	12.95	1.30			
y		Sum			80.2	54.2(29) b	0.68(4)
1. 							
15 O	2100	0	14.63	1.61			
		6.176	12.54	1.23			
		Sum			76.9	42.9(23) °	0.56(3)

B.A. Brown et al., Phys. Rev. C 65, 061601 (2002).

Low Q²: optical potential

High Q2: Glauber

Discontinuity seen with strength nearly saturated at high Q².

L. Lapikás, et al., Phys. Rev. C 61, 064325 (2000).

$^{16}O(e,e'p)$

Data: J. Gao et al.

-100

o

missing momentum [MeV/c]

10

-400

-300

-200

The same spectroscopic factors used throughout: $0.644 (p_{1/2})$ and $0.537 (p_{3/2})$.

Marco Radici, W.H. Dickhoff and E. Roth Stoddard, Phys. Rev. C 66, 014613 (2002).

200

300

100

400

¹²C(e,e'p)

J.H. Morrison et al., Phys. Rev. C 59, 221 (1999).

Where does the missing strength go?

Short-range correlations? ...

SRC dominate high k (= p_m) and are related to large values of ϵ_m .

C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984).

³He(e,e'p)

C. Marchand *et al.*, Phys. Rev. Lett. **60**, 1703 (1988).

Calculations by Laget:

dashed=PWIA dot-dashed=DWIA solid=DWIA+MEC

Arrows indicate expected position for correlated pair.

Saclay

C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988).

⁴He(e,e'p)

J.J. van Leeuwe et al., Nucl. Phys. A631, 593c (1998).

Spectral function for ¹²C in parallel kinematics dashed: CBF theory, dotted: Greens function approach

Data do not seem to follow naïve expectation for NN correlation peak.

Data: D. Rohe, E97-006 (Preliminary)

GF: H. Müther et al., Phys. Rev. C 52, 2955 (1995).

CBF: O. Benhar et al., Nucl. Phys. A579, 493 (1994).

JLab Hall C

Reaction Mechanism

¹²C(e,e'p)

"Delta"

Missing Energy (MeV)

H. Baghaei *et al.,* Phys. Rev. C **39**, 177 (1989).

Bates Linear Accelerator

Quasielastic

L.B. Weinstein *et al.*, Phys. Rev. Lett. **64**, 1646 (1990).

Bates Linear Accelerator

¹²C(e,e'p) L/T Separations

P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987).

Bates Linear Accelerator

D. Dutta et al., Phys. Rev. C 61, 061602 (2000).

JLab Hall C

D. Dutta et al., Phys. Rev. C 61, 061602 (2000).

Transverse Enhancement

J.J. Kelly, Adv. Nucl. Phys. 23, 75 (1996).

Relativity ...

G. van der Steenhoven, Few-Body Syst. 17, 79 (1994).

J.M. Udías et al., Phys. Rev. C 64, 024614 (2001).

¹⁶O(e,e'p) Q²=0.8 GeV² Quasielastic

J. Gao *et al.*, Phys. Rev. Lett. **84**, 3265 (2000) and K.G. Fissum *et al.*, in preparation, to be submitted to Phys. Rev. C.

¹⁶O(e,e'p) Q²=0.8 GeV² Quasielastic

Two-body calculations (Janssen *et al.*) reproduce flat distribution, but **underpredict** by roughly a factor of two.

JLab Hall A

J. Gao *et al.*, Phys. Rev. Lett. **84**, 3265 (2000) and K.G. Fissum *et al.*, in preparation, to be submitted to Phys. Rev. C.

The deuteron and the *NN* interaction

Saclay

M. Bernheim et al., Nucl. Phys. A365, 349 (1981).

2 H(e,e'p) varying Q^{2} , x

K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998).

Calculations: H. Arenhövel

²H(e,e'p) Q^2 =0.23 GeV² near Δ

H. Breuker et al., Nucl. Phys. **A455**, 641 (1986).

Calculations: Leidemann and Arenhövel

2 H(e,e'p)n $Q^{2} = 0.67 \text{ GeV}^{2} x = 0.96$

High momentum structure of ²H?

JLab Hall A

→ Evidence for large FSI

P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002).

FIG. 1. Ratio of measured f_{00} and f_{11} structure functions to Arenhövel's calculation for this experiment and the Saclay experiment of Ducret *et al.* [6]. Only statistical errors are shown.

FIG. 2. Separated f_{00} and f_{11} structure functions for this experiment and the NIKHEF experiment of van der Schaar et al. [5]. The NIKHEF data (q = 380 MeV/c) are averaged over 5 MeV/c bins in p_m . The Bates data (q = 400 MeV/c) are averaged over the range of 30 to 70 MeV/c in p_m . Only statistical errors are shown.

D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).

$$^{2}\vec{\mathrm{H}}(\vec{e},e'p)$$

Sensitive to D-state

> AmPS NIKHEF-K

I. Passchier et al., Phys. Rev. Lett. 88, 102302 (2002).

$$\sigma = \sigma_0 \left[1 + P_1^d A_d^V + P_2^d A_d^T + h \left(A_e + P_1^d A_{ed}^V + P_2^d A_{ed}^T \right) \right]$$

The Nucleon

Proton Polarization and Form Factors

Free $\vec{e} p$ scattering*

$$I_0 P_x' = -2\sqrt{\tau(1+\tau)}G_E G_M \tan\left(\frac{\theta_e}{2}\right)$$

$$I_0 P_z' = \frac{e + e'}{m} \sqrt{\tau (1 + \tau)} G_M^2 \tan^2 \left(\frac{\theta_e}{2}\right)$$

$$I_0 = G_E^2 + \tau G_M^2 \left[1 + 2(1 + \tau) \tan^2 \left(\frac{\theta_e}{2} \right) \right]$$

$$\frac{G_E}{G_M} = -\frac{P_x'}{P_z'} \cdot \frac{e + e'}{2m} \tan\left(\frac{\theta_e}{2}\right)$$
 in nucleus model assumption

^{*} R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981).

Proton Elastic Form Factors via ¹H(e,e'p)

O. Gayou, et al., Phys. Rev. Lett. 88, 092301 (2002).

Searching for Medium Effects on the Nucleon ...

In parallel kinematics:

$$\frac{\mathrm{d}^6 \sigma}{\mathrm{d}\Omega_{\mathrm{p}} \mathrm{d}\rho \,\mathrm{d}\omega} = \frac{pE}{(2\pi)^3} \sigma_{\mathrm{M}} [v_L R_L + v_T R_T]$$

$$R_{G} \equiv \frac{m|\vec{q}|}{Q^{2}} \sqrt{\frac{2R_{T}}{R_{L}}} \rightarrow \frac{\widetilde{G}_{M}}{\widetilde{G}_{E}}$$
PWIA

This relies on (unrealistic) model assumption.

Medium Modifications or FSI?

Calculations (¹⁶O): T.D. Cohen, J.W. Van Orden, A. Picklesimer, Phys. Rev. Lett. 59, 1267 (1987).

Data (12C): G. Van der Steenhoven et al., Phys. Rev. Lett. 57, 182 (1986).

Another, less model-dependent, method ...

Polarization Transfer

⁴He(**e**,**e**|**p**)

Mainz: S. Dieterich *et al.*, Phys. Lett. **B500**, 47 (2001).

E93-049: S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003).

E03-104: Projected Data, Strauch, Ent, Ransome, Ulmer, cospokespersons

Color Transparency?

K. Garrow, et al., Phys. Rev. C 66, 044613 (2002).

$p(e,e'p)\pi^0$ and $\gamma^*N \rightarrow \Delta$

Sabit S. Kamalov et al., Phys Rev. C 64, 032201 (2001).

JLab Hall C data (Q²=2.8, 4.0 GeV²): V.V. Frolov *et al.*, Phys. Rev. Lett. **82**, 45 (1999); their analysis shown by stars.

Summary

- Single-particle picture describes some gross features of experiments at least in quasielastic kinematics.
- Quenching of strength gives indirect evidence of *NN* correlations. Also, some direct evidence, but ...
- Reaction dynamics still not well understood.
- Relativistic treatment essential at moderate/high Q^2 , but also essential at low Q^2 for certain observables.
- NN interaction studies via d(e,e'p)n now being fully exploited: reaction dynamics/short-range structure of NN force.
- A wealth of new information now coming out on the nucleon: elastic and inelastic structure, medium modifications, color transparency, polarizabilities, ...