AOD Lista 2

Zadanie 1

```
x_{ij}- ilość galonów paliwa dowożonych na lotnisko i przez firmę ja_j- maksymalna ilość galonów paliwa dowożonych przez firmę jb_i- ilość galonów paliwa dowożonych na lotnisko i c_{ij}- koszt jednego galonu paliwa dowożonego na lotnisko i przez firmę jm- ilość lotniskn- ilość firm
```

$$\begin{array}{l} i \in \{1, 2, ..., m\} \\ j \in \{1, 2, ... n\} \\ \forall i, j \; x_{ij} \geq 0 \\ \forall i \sum_{k=1}^{n} x_{ik} = b_i \\ \forall j \sum_{k=1}^{m} x_{kj} \leq a_i \end{array}$$

 $\min \sum x_{ij}c_{ij}$

	Firma 1	Firma 2	Firma 3
Lostnisko 1	0	110 000	0
Lostnisko 2	165000	55000	0
Lostnisko 3	0	0	330 000
Lostnisko 4	$110\ 000$	0	330 000

- a) Minimalny łączny koszt wynosi 8 525 000 \$
- b) Wszystkie firmy dowożą paliwo
- c) Możliwości dostawy są wyczerpane przez firmy 1 i 3

Zysk wynosi4052.5\$

```
\boldsymbol{x}_i - ilość wyprodukowanego produktu i w kilogramach
p_i - zysk ze sprzedaży produktu i
t_j - maksymalna tygodniowa ilość godzin pracy maszyny j
{mach_j} - koszt użycia maszyny j przez godzinę
mat_i - koszt materiałowy za kilogram produktu i
\boldsymbol{d}_i - tygodniowy popyt na produkt i w kilogramach
m_{ij}- ilość minut pracy maszyny j potrzebna do wyprodukowania kilogramu produktu i
a - ilość produktów
b - ilość maszyn
i \in \{1, 2, ..., a\}
j \in \{1, 2, ..., b\}
 \forall i \ 0 \le x_i \le d_i   \forall j \sum_{k=1}^{a} m_{kj} p_k \le 60 t_j 
\max \sum_{k=1}^{a} x_k (p_i - mat_i - \sum_{l=1}^{j} \frac{m_{kl} mach_l}{60})
Zakładamy, że koszt użycia maszyny przez minutę to \frac{1}{60} kosztu użycia maszyny przez godzinę.
x_1 = 225
x_2 = 100
x_3 = 150
x_4 = 500
```

 x_i - ilość wyprodukowanych jednostek produktu w okresie i w normalnym trybie

 y_i - ilość wyprodukowanych jednostek produktu w okresie i w trybie ponadwymiarowym

 z_i - ilość jednostek produktu magazynowanych na koniec okresu i

 c_i - koszt wyprodukowania jednej jednostki produktu w okresie i w normalnym trybie

pi - maksymalna ilość jednostek produktu wyprodukowanych w okresie i w normalnym trybie

 o_i - koszt wyprodukowania jednej jednostki produktu w okresie i w trybie ponadwymiarowym

pi - maksymalna ilość jednostek produktu wyprodukowanych w okresie i w trybie ponadwymiarowym

 \boldsymbol{d}_i - zapotrzebowanie w okresie i

 \boldsymbol{s}_i - maksymalna ilość magazynowanych jednostek produktu na koniec okresu i

 m_i - koszt magazynowania jednej jednostki produktu na koniec okresu i

st - ilość jednostek produktu przechowywanych na początku okresu

k - długość okresu produkcji

$$\begin{split} & i \in \{1, 2, 3, ..., k\} \\ & \forall i \ 0 \leq x_i \leq p_i \\ & \forall i \ 0 \leq y_i \leq a_i \\ & \forall i \ 0 \leq z_i \leq s_i \\ & z_0 = st \\ & \forall i \ z_i = z_{i-1} + x_i + y_i - d_i \end{split}$$

$$\min \sum_{i=1}^{k} x_i * c_i + y_i * o_i + z_i * m_i$$

i	\mathbf{x}_i	y_i	\mathbf{z}_i
0			15
1	100	15	0
2	100	50	70
3	100	0	45
4	100	50	0

- a) Minimalny łączny koszt wynosi 3 842 500\$
- b) Firma planuje produkcję ponadwymiarową w okresach 1,2 i 4
- c) Możliwości magazynowania wyczerpane są w 2 okresie

```
\begin{aligned} x_{ij} &- \operatorname{czy} \text{ najkrótsza ścieżka zawiera krawędź (i,j)} \\ s &- \operatorname{węzeł początkowy} \\ t &- \operatorname{węzeł końcowy} \\ T &- \operatorname{maksymalny czas} \\ n &- \operatorname{liczba węzłów} \\ A &- \operatorname{krawędzie grafu} \end{aligned} i \in \{1, 2, \dots, n\} \\ j \in \{1, 2, \dots, n\} \\ \forall i, j \ x_{i,j} \in \{0, 1\} \end{aligned} \forall i \ \sum_{j, \ (i,j) \in A} x_{i,j} - \sum_{j, \ (j,i) \in A} x_{j,i} = \begin{cases} 1 & i = s \\ -1 & i = t \\ 0 & w \ p. \ p. \end{cases}
```

$$\sum_{(i,j)\in A} x_{ij} c_{ij}$$

```
a) Najkrótsza ścieżka ma długość 13
1 2 [3.0, 4.0]
2 3 [2.0, 3.0]
3 5 [2.0, 2.0]
5 7 [3.0, 3.0]
7 9 [1.0, 1.0]
9 10 [2.0, 2.0]
b) Najrótsza ścieżka ma długość 8
1 4 [3.0, 3.0]
```

1 4 [3.0, 3.0] 4 5 [1.0, 1.0] 5 6 [1.0, 1.0] 6 10 [3.0, 3.0]

Najrótsza ścieżka bez ograniczenia czasu ma długość 6

1 2 [1 15] 2 3 [2 4] 3 10 [3 6]

c) Ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest konieczne.

Przykład:

```
\begin{array}{l} (1,2,4,1) \ (1,3,2,18) \ (2,3,4,1) \\ s{=}1 \ t{=}3 \ T{=}10 \end{array}
```

Z ograniczeniem $x_{12}=1, x_{13}=0, x_{23}=1$ ścieżka ma długość 4+4=8

Bez ograniczenia $x_{12}=0.5, x_{13}=0.5, x_{23}=0.5$ ścieżka ma długość 0.5*4+0.5*4+0.5*2=5

d) Po usunięciu ograniczenia na czasy przejazdu nieakceptowalne rozwiązanie może być zwrócone tylko w

przypadku istnienia co najmniej 2 różnych najkrótszych ścieżek o tej samej długości. Jeżeli istnieje tylko jedna najkrótsza ścieżka o długości s to dla każdej ścieżki o długości $t \neq s \ \forall a \in (0,1] \ s < s(1-a) + at$, więc rozwiązanie będzie całkowitoliczbowe.

Zadanie 5

```
\boldsymbol{x}_{ij} - ilość radiowozów przydzielonych do i-tej dzielnicy podczas j-tej zmiany
```

```
a_i- minimalna liczba radiowozów przydzielonych i-tej dzielnicy b_j- minimalna liczba radiowozów przydzielonych j-tej zmiany mn_{ij}- minimalna liczba radiowozów przydzielonych do i-tej dzielnicy podczas j-tej zmiany mx_{ij}- maksymalna liczba radiowozów przydzielonych do i-tej dzielnicy podczas j-tej zmiany m- ilość dzielnicn- ilość zmian
```

$$i \in \{1, 2, 3, ..., m\} j \in \{1, 2, 3, ..., n\} \forall i, j \ mn_{ij} \le x_{ij} \le mx_{ij} \forall i \sum_{k=1}^{n} x_{ik} \le a_{i} \forall j \sum_{k=1}^{m} x_{kj} \le b_{j}$$

	zmiana 1	zmiana 2	zmiana 3
p_1	2	7	5
p_2	3	6	7
p_3	5	7	6

Minimalna łączna liczba radiowozów wynosi 48.

 \boldsymbol{x}_{ij} - Czy na kwadracie i,
j stawiamy kamerę

 A_{ij} - Czy na kwadracie i,
j stoi kontener k - Zasięg kamery m,n - Wymiary terenu

$$\begin{split} i &\in \{1, 2, ..., m\} \\ j &\in \{1, 2, ..., n\} \\ \forall i, j \ x_{ij}, A_{ij} &\in \{0, 1\} \\ \forall i, j \ x_{ij} + A_{ij} &\leq 1 \\ \forall i, j \ \sum_{s=-k}^k x_{i+s \ j} + x_{ij+s} - A_{ij} &\geq 0 \\ i + s &\in (1, m) \\ j + s &\in (1, n) \end{split}$$

С		X	С	С
С			С	
		С	X	
X		С	С	С
С	С		С	X
С	X	С		С

 $\substack{k=2\\5\text{ kamer}}$

С	X	X	С	С
С			С	X
X		С	X	
X		С	С	С
С	С	X	С	X
С	X	С		С

 $_{9~\mathrm{kamer}}^{\mathrm{k=1}}$