Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

PROYECTO DE CARRERA

Actividad Meta 2.3 Realización de Pruebas de Hipótesis

Docente: J. Reyes Juarez Ramirez: 17500

Alumnos:

Emmanuel Alberto Gómez Cárdenas: 01261509

Pablo Constantino Leon Romero: 01253171

Instrucciones de la actividad

Una vez que ha finalizado la implementación de la solución propuesta:

- 1. Recolectar los datos de las corridas/ejecuciones de la solución desarrollada.
- 2. Preparación de los datos para análisis. Cuidar que los datos estén "limpios", de lo contrario, limpiar los datos.
- 3. Realizar el análisis de datos y la interpretación de los mismos
- **4.** Con base al comportamiento de los datos, contrastación de hipótesis:
 - **a.** Si se considera necesario, realizar ajustes al prototipo de la solución y repetir el ciclo desde el punto 1.

Índice

Instrucciones de la actividad	2
Índice	2
Desarrollo de los pasos	3
Recolección de datos	3
Definición de Variables y Métricas	3
Diseño del Plan de Recolección de Datos	3
Instrumentos de Recolección de Datos	4
Procedimiento	4
Período de Recolección	4
Monitoreo y Soporte	4
Almacenamiento y Seguridad de los Datos	4
Herramientas	
Implementación Técnica	5
Preparación de los Datos para el Análisis	6
Limpieza de Datos	6
Transformación de Datos	6
Análisis de Datos e Interpretación	6
Contrastación de Hipótesis	7
Formulación de Hipótesis	7
Nivel de Significancia	
Selección de la Prueba Estadística	
Procedimiento para la Contrastación de Hipótesis	7
Ajustes Basados en los Resultados	
Conclusión	
Referencias	

Desarrollo de los pasos

Recolección de datos

Para evaluar el impacto de la solución ScholarSync, se implementó un plan detallado de recolección de datos que asegura la obtención de información relevante y confiable. A continuación, se describen los pasos seguidos en este proceso.

Definición de Variables y Métricas

Se identificaron las siguientes variables y métricas clave para la correcta recolección de datos:

- Tiempo dedicado a tareas: Horas y minutos dedicados a la realización de la tarea.
- **Número de recordatorios enviados y utilizados:** Cantidad de recordatorios enviados por aplicación y cuantos fueron efectivamente utilizados.
- Cumplimiento de tareas: Porcentaje de tareas completadas.
- Nivel de estrés reportado: Evaluaciones subjetivas de estrés utilizando la escala de Likert
- Frecuencia de uso de la aplicación: Número de veces que la aplicación fue abierta/utilizada diariamente.
- Satisfacción del usuario: Encuestas sobre la satisfacción del usuarios con la aplicación y su utilidad.

Diseño del Plan de Recolección de Datos

Pre-Prueba (Antes del uso de ScholarSync)

Se recolectarán datos iniciales para establecer una línea base:

- Encuestas sobre el tiempo promedio dedicado a tareas y nivel de estrés.
- Registro de los métodos actuales de gestión del tiempo y recordatorios.

Durante el uso de ScholarSync

La aplicación ScholarSync se configurará para recolectar automáticamente los siguientes datos:

- Tiempo dedicado a tareas: Registro automático del inicio y fin de cada tarea.
- Recordatorios: Registro del número de recordatorios enviados y utilizados.
- Cumplimiento de tareas: Registro del porcentaje de tareas marcadas como completadas.
- Frecuencia de uso: Registro de cada vez que el usuario abre la aplicación.

Postprueba (Después del uso de ScholarSync)

Al finalizar el período de prueba, se recolectarán datos finales mediante:

Encuestas sobre el tiempo dedicado a tareas, nivel de estrés y satisfacción con la aplicación.

Instrumentos de Recolección de Datos

- **Encuestas y Cuestionarios:** Se utilizaron herramientas en línea como Google Forms para recolectar datos subjetivos.
- **Registro Automático:** ScholarSync registrará automáticamente los datos relevantes de uso (tiempo dedicado, frecuencia de uso, etc.).

Procedimiento

Reclutamiento de Participantes

Se seleccionará un grupo representativo de usuarios y se pedirá su consentimiento informado para participar en el estudio y para la recolección de sus datos.

Instrucciones a los Participantes

Se proporcionarán instrucciones claras sobre el uso de ScholarSync y sobre cómo completar las encuestas antes y después del uso de la aplicación.

Período de Recolección

El período de prueba se definió en cuatro semanas, durante las cuales los participantes usarán ScholarSync de manera regular.

Monitoreo y Soporte

Se realizarán seguimientos regulares para asegurar que los participantes no tengan problemas con el uso de la aplicación y se ofrecerá soporte técnico cuando sea necesario.

Almacenamiento y Seguridad de los Datos

- Confidencialidad: Los datos recolectados se almacenan de manera anónima y segura.
- Seguridad: Se utilizarán bases de datos seguras para proteger los datos contra accesos no autorizados.

Herramientas

- Google Forms: Para encuestas pre y postprueba.
- Firebase: Para recolección y análisis de datos de uso de la aplicación.
- Excel: Para análisis y visualización de datos.
- Python: Para realizar análisis estadísticos

Implementación Técnica

El equipo de desarrollo de ScholarSync implementará las funcionalidades necesarias para el registro automático de datos dentro de la aplicación, asegurando el registro preciso del tiempo dedicado, recordatorios, cumplimiento de tareas y frecuencia de uso.

Este plan de recolección de datos permitirá obtener información detallada y precisa sobre el impacto de ScholarSync en la gestión del tiempo y la reducción del estrés de los usuarios, facilitando un análisis robusto y confiable.

Preparación de los Datos para el Análisis

Limpieza de Datos

Se llevará a cabo un proceso de limpieza de datos para asegurar que toda la información recopilada esté completa y sea precisa. Este proceso incluirá:

- **Eliminación de Valores Atípicos:** Se identificarán y eliminarán datos que se encuentren significativamente fuera del rango esperado, los cuales podrían distorsionar los resultados.
- Manejo de Datos Faltantes: Se imputarán valores faltantes utilizando métodos estadísticos adecuados o se eliminarán registros incompletos cuando sea necesario.
- Validación de Datos: Se verificará la consistencia y exactitud de los datos recolectados, comparándolos con fuentes adicionales cuando sea posible.

Transformación de Datos

Se realizarán las siguientes transformaciones para preparar los datos para el análisis:

- **Normalización:** Se convertirán los datos a una escala común para permitir comparaciones directas.
- Categorización: Se clasificarán datos cualitativos en categorías definidas previamente para facilitar el análisis.
- Creación de Nuevas Variables: De ser necesario, se generarán variables derivadas que podrían proporcionar información adicional, como la diferencia de tiempo dedicado a tareas antes y después del uso de ScholarSync.

Análisis de Datos e Interpretación

Se realizará un análisis exhaustivo de los datos recolectados utilizando métodos estadísticos y herramientas de análisis de datos. Este análisis incluirá:

Estadísticas Descriptivas

Media y Mediana: Se calcularán los valores promedio y centrales de las principales variables.

Desviación Estándar y Rango Intercuartil: Se medirán la variabilidad y dispersión de los datos.

Visualización de Datos

Se utilizarán varias técnicas de visualización para interpretar y presentar los resultados de manera clara y comprensible:

- Gráficos de Barras: Para comparar el tiempo dedicado a tareas antes y después del uso de ScholarSync.
- **Diagramas de Caja**: Para visualizar la distribución del nivel de estrés reportado.
- Histogramas: Para analizar la frecuencia de uso de la aplicación.

Análisis Inferencial

Se realizarán pruebas estadísticas para contrastar las hipótesis planteadas

Contrastación de Hipótesis

Formulación de Hipótesis

Se plantean las siguientes hipótesis:

- **Hipótesis Nula** (H_0) : ScholarSync no mejora significativamente la gestión del tiempo ni reduce el estrés de los usuarios.
- **Hipótesis Alternativa** (H_1) : ScholarSync mejora significativamente la gestión del tiempo y reduce el estrés de los usuarios.

Nivel de Significancia

Se utilizará un nivel de significancia (a) de 0.05 para las pruebas estadísticas.

Selección de la Prueba Estadística

Dado que se compararán mediciones antes y después del uso de ScholarSync en el mismo grupo de usuarios, se empleará una prueba t para muestras relacionadas (paired t-test).

Procedimiento para la Contrastación de Hipótesis

Recolectar Datos Pre y Post Uso:

 Datos de tiempo dedicado a tareas, niveles de estrés y frecuencia de uso antes y después del uso de ScholarSync.

Aplicar la Prueba t para Muestras Relacionadas:

• Se utilizará software estadístico como R o Python para realizar la prueba t y calcular la estadística t y el valor p.

Interpretación de Resultados:

- Se comparará el valor p obtenido con el nivel de significancia (α =0.05).
- Si el valor p es menor que 0.05, se rechazará la hipótesis nula, concluyendo que ScholarSync mejora significativamente la gestión del tiempo y reduce el estrés de los usuarios.

Reporte de Resultados:

• Se documentarán los resultados obtenidos, incluyendo la estadística *t*, el valor *p*, y la interpretación de los mismos en relación a las hipótesis planteadas.

Ejemplo de Cálculo

```
import scipy.stats as stats

# Datos de ejemplo (ficticios para ilustración)
antes = [120, 150, 160, 180, 200]
despues = [90, 110, 100, 130, 140]

# Prueba t para muestras relacionadas
t_stat, p_val = stats.ttest_rel(antes, despues)

# Resultados
print(f'Estadística t: {t_stat}')
print(f'Valor p: {p_val}')
```

En este ejemplo, los datos recolectados serán utilizados para realizar la prueba t. Con los resultados obtenidos, se documentará la estadística t y el valor p, y se determinará si se rechaza la hipótesis nula.

Ajustes Basados en los Resultados

En caso de que los resultados no sean concluyentes o no se observe una mejora significativa, se considerará realizar ajustes al prototipo de ScholarSync. Estos ajustes pueden incluir mejoras en la interfaz de usuario, optimización de funcionalidades, o ajustes en la lógica de envío de recordatorios y gestión del tiempo. Posteriormente, se repetirá el ciclo de recolección de datos, análisis y contrastación de hipótesis para evaluar el impacto de los cambios implementados.

Conclusión

La contrastación de hipótesis permitirá validar si ScholarSync cumple con los objetivos planteados de mejorar la gestión del tiempo y reducir el estrés entre los usuarios. Este proceso sistemático y riguroso asegurará la obtención de conclusiones fiables y fundamentadas, proporcionando una base sólida para futuras mejoras y desarrollos de la aplicación.