SANTA CLARA UNIVERSITY	ELEN 115 Spring 2023	Shoba Krishnan
Laboratory #5: Diode Rectifiers		
Noble Huang (Mulia Widjaja)		

PRE-LAB

1. For the diode circuit shown in Figure 1, consider the diode to be ideal. The input voltage v_i given to the circuit is a sinusoid with a peak value of 10V.

For the circuit

(a) Derive the expression for the transfer characteristic v_{OUT} versus v_I for the circuit.

(b) Plot the transfer characteristic v_{OUT} versus v_{I} indicating the values of all significant points and the values of the slopes of all segments.

(c) Draw the corresponding output voltage v_{OUT} vs. time for two cycles of the the input v_{I}

If
$$V_{in} \le 0$$
:

Then $V_{out} = 0$

Effect on $V_{out}(t)$:

Vout: (lipped at 0 V,

instead of going all the way down to -10 V

LTSpice Version:

(d) Find the peak diode current.

(e) Find the maximum reverse voltage seen by the diode.

2. If a capacitor is connected **instead of** the resistor R1 in Figure 1, draw the corresponding output voltage vout vs. time for two cycles of the the input vi.

3. If a capacitor is connected **in parallel with** the resistor R1 in Figure 1, draw the corresponding output voltage vout vs. time for two cycles of the the input vi.

LTSpice Version:

