

大学生创新训练计划立项答辩

菲涅耳非相干全息的超分辨率研究

项目组成员:

张钟秀

司进

张楚珩

张 铭

指导老师:

丁剑平

提要

* 研究对象综述

- * 研究背景
- * 拟解决的问题

❖ 研究内容及方法

- * 实验内容及进度安排
- * 项目的特色与创新之处
- * 可行性分析
- * 预期成果
- * 经费预算
- * 参考文献

研究背景

* 研究意义:

菲涅耳非相干全息 (Fresnel incoherent correlation holography - FINCH)

- · 还原物体立体形态
- · 再现过程实现自动化、数字化
- ·采用白光光源,对系统要求低,具有高分辨率低噪声、成像速度快等特性,应用广泛 (彩色三维显示、荧光三维显微成像、天文学成像、光场的相干性测量、空间通信及雷达技术)

图像超分辨率(super resolution - SR)处理技术

突破光学系统的分辨率限制,降低对仪器要求,提供更多图像细节

⇒ 破题:

- 光路配置、全息图初期处理 → 成像质量较高的全息图
- 超分辨率图像重建技术应用 → 清晰的高分辨率图像

研究背景: FINCH

* 菲涅耳非相干全息术 (FINCH)

研究背景: FINCH

* FINCH误差分析

- * 1. 单色性产生的误差
- * 2. 零级项和孪生像的干扰
- → 3. 光路配置产生的影响
- ❖ 4. 其他因素

研究背景: 超分辨率

* 超分辨率技术

核心思想: 多张低分辨率图像合成高分辨率图像

第一张低分辨率图片

第二张低分辨率图片

亚像素级匹配

形成最后的高分辨率图像 第一张的(1,1),第二张的(1,1)→最后的(2,2)第一张的(1,1),第二张的(2,2)→最后的(3,3)

研究背景:超分辨率

* 超分辨率技术 理论基础: 图像退化理论

g = Hu + n

研究背景: 超分辨率

- * 超分辨率技术 算法
 - * 基于插值的算法: 小波域的双线性插值、Delaunay三角化插值算法等
 - * 基于重建的算法: 迭代反向投影法、最大后验概率方法(MAP)、凸集投影法(POCS)、正则化法等

拟解决的问题

* 1. 从影响FINCH成像质量的因素入手,设计出合理的实验光路和图像初期处理的数值方法。

2. 编制快捷高效的算法程序,进行相关的计算机模拟,从而将 FINCH超分辨率成像方法应用于三维物体单通道非相干数字全 息的研究。

研究内容及方法

研究内容

❖ 用FINCH中有待研究和值得改进的影响成像质量的因素 在前人所做研究基础上进行改进 在一些尚待研究的领域进行探索

* 探索适合FINCH系统的超分辨率处理算法

研究内容及方法

实验方案

- * 1. 前期理论准备(3-6月份)
- * 2. 搭建实验平台(6月之后)
- * 3. 进行实验并获得数据
- * 4. 图像信息处理
- * 5. 初步结论(10月份)
- * 6. 整理项目成果(年底)

特色与创新之处

* FINCH和超分辨率的结合

* 算法具有可移植性

* "实验-获得数据-处理数据-初步理论-完善实验"的循环 反馈的方法

可行性分析

- * 在超分辨率和FINCH上国内外各有一定程度的研究,有理论基础
- * 项目组成员均为物理系大二学生,有一定的知识基础和实验技能,已自学信息光学,熟悉MATLAB编程
- * 鼓楼校区物理楼实验室具备光路设计所需的所有元件

预期成果

- * 建立图像质量较高的FINCH光路系统,对各种误差因素能够有比较成熟的理论研究与消除方法;
- * 编制适用于FINCH系统的超分辨率处理算法程序;
- ◆ 做出有新意的研究成果,力争在国内外核心期刊上发表学术论文1-2篇。

经费预算

支出科目	金额 (元)	计算根据及理由
1. 测试费	5000	实验所需耗材以及仪器运行费用
2. 试剂和材料费	6000	实验器材与样本添购
3. 图书资料费	500	研究所需购置图书文献
4. 交通费	500	往返两个校区和联系制作厂商交通费
5. 调研会议费	2000	参加全国、省级物理竞赛和会议交流
6. 论文版面费	2000	按以往估计
7. 专利申请费	3000	申请专利相关费用
8. 其他费用	1000	仪器维护、打印复印等
合计	20000	

参考文献

- * [1]邵文泽, 韦志辉. 基于图像建模理论的多幅图像正则化超分辨率重建算法研究 [D] [D]. 南京理工大学, 2008.
- * [2] Author, Joseph, Rosen等. 菲涅耳非相干全息术3D全息成像探讨[J]. 中国印刷与包装研究, 2011, (1):60-64.
- * [3]刘英臣, 范金坪, 曾凡创等. 白光菲涅耳非相干数字全息的记录、再现及实现[J]. 中国激光, 2013, (10): 234-240.
- * [4] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics letters, 2007, 32(8): 912-914.
- * [5]万玉红,满天龙,陶世荃.非相干全息术成像特性及研究进展[J].中国激光,2014,(2):43-44.
- * [6] Bouchal P, Bouchal Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light[J]. Optics letters, 2012, 37(14): 2949-2951.
- * [7] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Optics express, 2010, 18(2): 962-972.
- * [8]Brooker G, Siegel N, Wang V, et al. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy[J]. Optics express, 2011, 19(6): 5047-5062.

参考文献

- * [9]Katz B, Rosen J, Kelner R, et al. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM)[J]. Optics express, 2012, 20(8): 9109-9121.
- * [10] Indebetouw G, Klysubun P, Kim T, et al. Imaging properties of scanning holographic microscopy[J]. JOSA A, 2000, 17(3): 380-390.
- * [11]Lai X, Zhao Y, Lv X, et al. Fluorescence holography with improved signal-to-noise ratio by near image plane recording[J]. Optics Letters, 2012, 37(13): 2445-2447.
- * [12] Kim S G, Lee B, Kim E S. Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram [J]. Applied optics, 1997, 36(20): 4784-4791.
- * [13] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Optics express, 2010, 18(2): 962-972.
- * [14]浦剑, 张军平, 黄华. 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27-32.
- * [15] 陶然, 杜述松, 张文喜. 频谱编码超分辨率成像分析与仿真[J]. 光电工程, 2012, 39(6): 17-21.
- ❖ [16] 曹聚亮. 图像超分辨率处理, 成像及其相关技术研究[D]. 长沙: 国防科学技术大学, 2004.

成员信息及联系方式

* 张钟秀 2012级 物理学系 Tel. 15950580118

* 司 进 2012级 物理学系 Tel. 18061738570

* 张楚珩 2012级 光电系 Tel. 15851810218

* 张 铭 2012级 物理学系 Tel. 15950573100

感谢在座的各位评审老师!