VE401 Recitation 6

Single Sample Tests and Comparison of Parameter

Test Statistics

From now on, you will learn a lot of tests. For each test, you need to pay attention to:

- What parameter are we testing?
- What parameter do we know?
- What is the distribution of test statistics?

Denoting the distribution of test statistics as \mathcal{D} , and d_{α} as the number such that $\int_{-\infty}^{d_{\alpha}} f_{\mathcal{D}}(x) dx = 1 - \alpha$, we reject at significance level α ,

- $H_0: \theta = \theta_0$ if $\mathcal{D} > d_{\alpha/2}$ or $\mathcal{D} < d_{1-\alpha/2}$. (Test statistics is too small or too big)
- $H_0: \theta \leq \theta_0$ if $\mathcal{D} > d_\alpha$. (Test statistics is too big)
- $H_0: \theta \ge \theta_0$ if $\mathcal{D} < d_{1-\alpha}$. (Test statistics is too small)

Single Sample Tests for Mean (*Z*-Test and *T*-Test)

Single Sample Tests for Variance (Chi-Squared Test)

Single Sample Tests for Median (Non-Parametric)

Estimation of Proportion

Single Sample Test of Proportion (*Z*-Test)

Comparing Two Proportions (*Z*-Test, Pooled Test)

F Distribution

Comparing Two Variance (F-Test)

Out[415]= 1.27599

Comparing Two Means (Z-test, Pooled/Paired T-test)

Example: I am a soft drink manufacturer and I have two machines that produce bottles of soft drink. I would like to know if there is a difference in the products of the two machines. I sampled 10 bottles from each of the two machines.

```
In[410]:= Data1 = RandomVariate[NormalDistribution[499, 2], 10]
      Data2 = RandomVariate[NormalDistribution[500, 2], 10]
Out[410] = \{500.225, 497.209, 502.43, 499.553,
        498.25, 498.235, 498.463, 496.606, 498.849, 498.312}
Out[411] = \{500.439, 497.685, 498.616, 499.87,
        501.796, 500.566, 499.231, 497.896, 499.774, 498.836}
In[412]:= Mean [Data1]
      Mean[Data2]
Out[412]= 498.813
Out[413] = 499.471
ln[414]:=\sqrt{Variance[Data1]}
       \sqrt{\text{Variance}[\text{Data2}]}
Out[414] = 1.63617
```

I would like to test $H_0: \mu_1 \ge \mu_2$, and $H_1: \mu_1 \le \mu_2 - 1$.

Testing	Distribution	Sample size	Variance	Test Statistics	OC curve <i>x</i> -axis
Parameter	of the two RVs	n_1, n_2	σ_1^2, σ_2^2		(for two-tailed test)
$\mu_1 - \mu_2$	Normal	any	known	$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	$d = \frac{ \mu_1 - \mu_2 }{\sqrt{\sigma_1^2 + \sigma_2^2}}$ where
		large	unknown	$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2 / n_1 + S_2^2 / n_2}}$	$n = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}$
		small	unknown with $\sigma = \sigma_1 = \sigma_2$	$T_{n_1+n_2-2} = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{S_\rho^2 (1/n_1 + 1/n_2)}}$	In case of $n = n_1 = n_2$, $d = \frac{ \mu_1 - \mu_2 }{2\sigma}$
				where $S_p^2 = \frac{(n_1-1) S_1^2 + (n_2-1) S_2^2}{n_1 + n_2 - 2}$	where we use modified
					sample size $n^* = 2 n - 1$,
					and σ can be estimated.
		small	unknown	$T_{\gamma} = rac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2 / n_1 + S_2^2 / n_2}}$ where	No simple OC Curves
				$\gamma = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}} \text{ (we take}$	
				the floor)	

Suppose I know that $\sigma_1 = \sigma_2 = 2$, which test would you use? What is the test statistics?

The Z-test with known variance. The test statistics is
$$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} = \frac{498.813 - 499.471}{\sqrt{8/10}} = -0.73$$
.

This gives us a P-value of 0.23. This is large, so we failed to reject H_0 .

$$\label{eq:complex_loss} $$ \ln[419] = CDF \Big[NormalDistribution[], \frac{Mean[Data1] - Mean[Data2]}{\sqrt{8/10}} \Big] $$$$

Out[419]= 0.230966

Suppose we don't know about the true variance, but suppose we know they are equal. which test would you use? What is the test statistics?

The T-test with variance. equal We have pooled variance $S_p^2 = \frac{(n_1 - 1) \, S_1^2 + (n_2 - 1) \, S_2^2}{n_1 + n_2 - 2} = \frac{9 \, (1.64)^2 + 9 \, (21.28)^2}{18} = 2.15,$ the statistics $T_{10+10-2} = \frac{\overline{X_1 - X_2 - (\mu_1 - \mu_2)_0}}{\sqrt{S_p^2 (1/n_1 + 1/n_2)}} = \frac{498.813 - 499.471}{\sqrt{2.15 \times 2/19}} = -1.0$. This gives us a P-value of 0.16. So there is no evidence to reject H_0 .

Out[426]= 0.16461525213843

$$ln[521]:= \sqrt{Variance[Data1]}$$
 $\sqrt{Variance[Data2]}$

Out[521]= 1.63617

Out[522]= 1.27599

Suppose we know that μ_1 = 499, μ_2 = 500. What is the power of the T-test for unknown variance if $\alpha = 0.05$?

We can use the estimated variance $S_p^2=2.15$, and calculate $d=\frac{\mu_2-\mu_1}{2\,\sigma}\approx\frac{1}{2\,\sqrt{2.15}}=0.34$. Choosing $n^*=2\,n-1=19\approx20$, we get a β of approximately 0.56, so the power is approximately 0.44.

Suppose we don't know anything about the true variance. which test would you use? What is the test statistics?

Welch's T-test with unknown variance. We have the degrees of freedom $\gamma = \left| \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1-1} + \frac{\left(S_2^2/n_2\right)^2}{n_2-1}} \right| = 16.$

 $T_{16} = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2 (1/n_1 + 1/n_2)}} = -1.0.$ This gives us again a *P*-value of 0.17. So there is no evidence to reject

Out[524]= 16

Comparing Locations (Non-parametric)

Testing Parameter	Distribution of X , Y	Sample Size	Hypothesis H_0	Test Statistics
P[X > Y]	continuous	m samples of X	P[X > Y] = 1/2	W_m
		n samples of Y	$P[X > Y] \ge 1/2$	
		$m \leq n$.	$P[X > Y] \le 1/2$	

where W_m is the sum of ranks of X_1 , ..., X_m when we rank the samples X_1 , ..., X_m , Y_1 , ..., Y_n from the smallest to the largest. When there is a tie, we take the average value. For example, if the first, second and third smallest value is a group of 3 ties, we rank them all as $\frac{1+3}{2} = 2$.

For small n, you can refer to a table of critical values here: https://www.stat.auck-land.ac.nz/~wild/ChanceEnc/Ch10.wilcoxon.pdf. For $n \ge 20$, we can approximate the test statistics with normal distribution with $\mathrm{E}[W] = \frac{m(m+n+1)}{2}$, $\mathrm{Var}[W] = \frac{mn(m+n+1)}{12}$. If there are many ties, then for each group of t ties, the denominator of variance is reduced by $\frac{t^3+t}{12}$.

ln[427]:= PairedHistogram[Data1, Data2, ChartLegends \rightarrow {{"Machine 1", "Machine 2"}}, ChartStyle → {"Pastel", None, None}]

In[428]:= Sort[Data1]

Out[428]= {496.606, 497.209, 498.235, 498.25, 498.312, 498.463, 498.849, 499.553, 500.225, 502.43}

In[429]:= Sort[Data2]

Out[429]= {497.685, 497.896, 498.616, 498.836, 499.231, 499.774, 499.87, 500.439, 500.566, 501.796}

Use Wilcoxon Rank Sum test to test the hypothesis $H_0: P[X > Y] \ge 1/2$.

The test statistics $W_m = 1 + 2 + 5 + 6 + 7 + 8 + 11 + 13 + 16 + 20 = 89$. From the table, we can see that the *P*-value lies between 0.1 and 0.2. There is no strong evidence to reject $P[X > Y] \ge 1/2$.

			L	ower	Tai	l			U	ppe	r Tai	1	
				pr	ob					p	rob		
n_A	n_B	.005	.01	.025	.05	.10	.20	.20	.10	.05	.025	.01	.005
4	4 5 6 7 8 9 10 11 12	10 10 11 11 12 12 12	10 11 11 12 13 13 14 15	10 11 12 13 14 14 15 16 17	11 12 13 14 15 16 17 18 19	13 14 15 16 17 19 20 21 22	14 15 17 18 20 21 23 24 26	22 25 27 30 32 35 37 40 42	23 26 29 32 35 37 40 43 46	25 28 31 34 37 40 43 46 49	26 29 32 35 38 42 45 48 51	30 33 37 40 43 47 50 53	34 38 41 45 48 52 55
5	5 6 7 8 9 10 11 12	15 16 16 17 18 19 20 21	16 17 18 19 20 21 22 23	17 18 20 21 22 23 24 26	19 20 21 23 24 26 27 28	20 22 23 25 27 28 30 32	22 24 26 28 30 32 34 36	33 36 39 42 45 48 51 54	35 38 42 45 48 52 55 58	36 40 44 47 51 54 58 62	38 42 45 49 53 57 61 64	39 43 47 51 55 59 63 67	40 44 49 53 57 61 65 69
6	6 7 8 9 10 11 12	23 24 25 26 27 28 30	24 25 27 28 29 30 32	26 27 29 31 32 34 35	28 29 31 33 35 37 38	30 32 34 36 38 40 42	33 35 37 40 42 44 47	45 49 53 56 60 64 67	48 52 56 60 64 68 72	50 55 59 63 67 71 76	52 57 61 65 70 74 79	54 59 63 68 73 78 82	55 60 65 70 75 80 84
7	7 8 9 10 11 12	32 34 35 37 38 40	34 35 37 39 40 42	36 38 40 42 44 46	39 41 43 45 47 49	41 44 46 49 51 54	45 48 50 53 56 59	60 64 69 73 77 81	64 68 73 77 82 86	66 71 76 81 86 91	69 74 79 84 89 94	71 77 82 87 93	73 78 84 89 95 100
8	8 9 10 11 12	43 45 47 49 51	45 47 49 51 53	49 51 53 55 58	51 54 56 59 62	55 58 60 63 66	59 62 65 69 72	77 82 87 91 96	81 86 92 97 102	85 90 96 101 106	87 93 99 105 110	91 97 103 109 115	93 99 105 111 117
9	9 10 11 12	56 58 61 63	59 61 63 66	$62 \\ 65 \\ 68 \\ 71$	66 69 72 75	70 73 76 80	75 78 82 86	96 102 107 112	101 107 113 118	105 111 117 123	$109 \\ 115 \\ 121 \\ 127$	112 119 126 132	$115 \\ 122 \\ 128 \\ 135$
10	$10 \\ 11 \\ 12$	71 73 76	74 77 79	78 81 84	82 86 89	$87 \\ 91 \\ 94$	$93 \\ 97 \\ 101$	117 123 129	$123 \\ 129 \\ 136$	$128 \\ 134 \\ 141$	$132 \\ 139 \\ 146$	$136 \\ 143 \\ 151$	$139 \\ 147 \\ 154$
11	$\frac{11}{12}$	87 90	$\frac{91}{94}$	96 99	$\begin{array}{c} 100 \\ 104 \end{array}$	$\frac{106}{110}$	$\frac{112}{117}$	141 147	$\begin{array}{c} 147 \\ 154 \end{array}$	$\frac{153}{160}$	$\frac{157}{165}$	$\begin{array}{c} 162 \\ 170 \end{array}$	$\begin{array}{c} 166 \\ 174 \end{array}$
12	12	105	109	115	120	127	134	166	173	180	185	191	195

Test for Mean of Difference of two RVs (Paired T-test)

For our data, we can say: we do 10 times of sampling. For each sampling, we take one sample each from the two machines. We can pair the data and get a new data $D_i := X_i - Y_i$.

```
In[433]:= d = Data1 - Data2
 \text{Out} [433] = \left\{ -0.213956, -0.476581, 3.8135, -0.317297, -3.54625, \right. \\
        -2.33138, -0.768637, -1.29035, -0.925138, -0.523963
In[435]:= Mean[d]
       Variance[d]
Out[435]= -0.658004
Out[436]= 3.55379
```

Testing Parameter	Distribution of (X, Y)	Sample Size	Test Statistics
μ_D	joint bivariate	$n = n_X = n_Y$	$T_{n-1} = \frac{\overline{D} - (\mu_D)_0}{\sqrt{S_D^2/n}}$
where $D = X - Y$	normal distribution		$\sqrt{s_{ar{D}}/n}$
M_D	independent, same distribution	any	W_+ (Wilcoxon
where $D = X - Y$	but different location $(D \text{ symmetric})$		signed rank statistics)

Test $H_0: \mu_D \ge 0$ using paired T-test.

We have $T_{n-1} = \frac{\overline{D} - (\mu_D)_0}{\sqrt{S_D^2/n}} = \frac{-0.65}{\sqrt{3.55/10}} = -1.10$. The *P*-value is then 0.15. We don't have enough evidence to reject H_0 .

$$\label{eq:configure} $$ \inf[38]:=$ CDF\Big[StudentTDistribution[9], $\frac{Mean[d]}{\sqrt{Variance[d]/10}}\Big]$ $$$$

Out[438]= **0.14916234489980**

Recall that the pooled T-test gives us a P-value of 0.17. In general, pairing with the absence of correlation is unnecessary and actually makes a test less powerful.

Comparison Between Pooled and Paired T-test

If $n_X = n_Y = n$, we can use both

Testing Parameter	Distribution of (X, Y)	Test Statistics
$\mu_X - \mu_Y$	joint bivariate	$T_{2 n-2} = \frac{\overline{X} - \overline{Y}}{\sqrt{2 S_p^2/n}}$ where $S_p^2 = \frac{S_1^2 + S_2^2}{2}$
	normal distribution	$T_{n-1} = \frac{\overline{D} - (\mu_D)_0}{\sqrt{S_D^2/n}}$

- When the test statistics is the same, pooled *T*-test is more powerful because of more degrees of freedom.
- We have $\frac{S_D^2}{n} \approx \sigma_D^2 = \frac{2\,\sigma^2}{n}\,(1-\rho_{XY}) \approx \frac{2\,S_p^2}{n}\,(1-\rho_{XY})$. So, when n is large enough (so that difference in degrees of freedom has less impact), polled T-test will have $\begin{cases} \text{smaller power} & \text{if } \rho_{XY} > 0 \\ \text{larger power} & \text{if } \rho_{XY} \leq 0 \end{cases}$

Estimation of Correlation Coefficient

We use method of moments to get an estimator for ρ_{XY} :

$$R = \hat{\rho} = \frac{\sum (x_i - \overline{X}) (Y_i - \overline{Y})}{\sqrt{\sum (x_i - \overline{X})^2} \sqrt{\sum (Y_i - \overline{Y})^2}}$$

Single Sample Test for Correlation Coefficient (Z-test)

Testing Parameter	Sample Size	Test Statistics
ρ	large	$Z = \frac{\sqrt{n-3}}{2} \left(\ln \left(\frac{1+R}{1-R} \right) - \ln \left(\frac{1+\rho_0}{1-\rho_0} \right) \right) = \sqrt{n-3} \left(\operatorname{artanh}(R) - \operatorname{artanh}(\rho_0) \right)$

The $100 (1-\alpha) \%$ confidence interval for ρ is $tanh \left(artanh(R) \pm \frac{z_{\alpha/2}}{\sqrt{n-3}} \right)$

Calculate a 95% confidence interval of the correlation coefficient between the bottle volumes produced by the two machines.

$$\frac{\text{Covariance[Data1, Data2]}}{\sqrt{\text{Variance[Data1] Variance[Data2]}}}$$
Out[549]= 0.179961

We have
$$R = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2} \sqrt{\sum (Y_i - \overline{Y})^2}} = 0.180.$$

Then
$$tanh \left(artanh(R) \pm \frac{z_{n/2}}{\sqrt{n-3}} \right) = tanh(0.180 \pm 0.741) = [-0.51, 0.73].$$

$$\frac{ \text{In}[553] := }{ \text{Tanh} \Big[\text{ArcTanh} \Big[\frac{\text{Covariance}[\text{Data1}, \text{Data2}]}{\sqrt{\text{Variance}[\text{Data1}] \, \text{Variance}[\text{Data2}]}} \Big] + \\ \frac{\text{InverseCDF}[\text{NormalDistribution}[], 1 - 0.025]}{\sqrt{7}} \Big] }$$

Out[553]= 0.727191

Categorical Data

Multinomial Distribution

A multinomial trial with parameter $p_1, ..., p_k$ is a trial that can result in one of k outcomes, with the probability of getting i^{th} outcome is p_i .

We define random vector $(X_1, ..., X_k): S \to \Omega = \{0, 1, ..., n\}^k$ $f_{X_1 X_2 \dots X_k}(x_1, \dots, x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$ to have a **multinomial distribution** with parameters n and $p_1, ..., p_k$.

Properties:

- For $i = 1, ..., k, E[X_i] = n p_i$
- $Var[X_i] = n p_i(1 p_i)$.
- For $1 \le i < j \le k$, $Cov[X_i, X_i] = -n p_i p_i$.

Pearson Statistics

Let $(X_1, ..., X_k), f_{X_1, X_2...X_k}(x_1, ..., x_k)$ be multinomial random variable with parameters n and $p_1, ..., p_k$. For large n,

$$\sum_{i=1}^{k} \frac{(X_{i} - n p_{i})^{2}}{n p_{i}} = \sum_{i=1}^{k} \frac{\left(X_{i} - E[X_{i}]\right)^{2}}{E[X_{i}]} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

follows an approximate chi-squared distribution with k-1 degrees of freedom. Here O_i is the observed value and E_i is the expected value. For the approximation we require

$$E[X_i] = n p_i \ge 1$$

 $\mathsf{E}[X_i] = n \, p_i \ge 1 \qquad \qquad \mathsf{for all} \, i = 1, \, \ldots, \, k$

$$E[X_i] = n p_i \ge 5$$

 $E[X_i] = n p_i \ge 5$ for 80 % of all i = 1, ..., k

Chi-Squared Goodness-of-Fit Test

Purpose: To fit a distribution on the data.

Testing Parameter	Sample Size	Test Statistics		
p_1, \ldots, p_k	large	$X_{k-1-m}^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$		
		where k is the number of categories		
		and m is number of parameters we estimate		

If the test statistics is too large $(X_{k-1-m}^2 > \chi_{\alpha,k-1-m}^2)$, we reject $H_0: p_i = p_{i_0}$.

Goodness-of-Fit Test for Discrete Distribution

Steps:

- Usually in discrete distribution case, the categories are set.
- Calculate the expected value for each category given hypothesis is true. Sometimes the categories is incomplete, e.g. $\{0, 1, 2, 3, 4, 5\} \subset \mathbb{N}$. In this case the boundary category should also cover the probability that the value is greater than itself. Namely we need to calculate $P[X = 0], ..., P[X = 4], P[X \ge 5].$
- Determine degrees of freedom.
- Calculate critical region.
- Calculate Pearson statistics to see if we can reject H_0 .

Raindrops keep falling on my head at an unknown rate. I record the number of raindrops that fall on my head in every minute, and found that in a 42 minute time period,

Raindrops per minute	no. of minutes	p_i	E _i
0	3		
1	14		
2	9		
3	7		
4	5		
5	4		

- (1) Suppose this is a Poisson distribution with parameter k, what is the estimation of k?
- (2) Test whether this is a Poisson distribution with parameter \hat{k} .
- (3) Is this a proper categorization? What is the degree of freedom of test statistics?

Suppose this is a Poisson distribution, then we have $\hat{k} = \overline{X} = \frac{0 \times 3 + 1 \times 14 + 2 \times 9 + 3 \times 7 + 4 \times 5 + 5 \times 4}{42} = 2.21$. Then we calculate the expected value for each category. For example for X = 0, $P[X = 0] = \frac{e^{-2.21} \cdot 2.21^0}{0!} = 0.11$, so $E_i = 42 P[X = 0] = 4.6$.

5 or more Out[545]= Expected 4.60743 10.1824 11.2516 8.28865 4.57948 3.09045 **Observed**

And we found that this violates the Cochran's rule, so we adjust to merge the last two categories:

2 3 1 4 or more Out[546]= Expected 4.60743 10.1824 11.2516 8.28865 7.66994 **Observed**

This time it's good. The test statistics is then

$$\chi_{5-1-1}^2 = \frac{(4.61-3)^2}{4.61} + \frac{(10.18-14)^2}{10.18} + \frac{(11.25-9)^2}{11.25} + \frac{(8.29-7)^2}{8.29} + \frac{(7.67-9)^2}{7.67}$$

$$= 2.877$$

The critical value is

In[478]:= InverseCDF[ChiSquareDistribution[3], 0.95]

Out[478] = 7.81473

Since 2.877 < 7.81, we cannot reject H_0 : The data follows Poisson distribution with k = 2.21.

Goodness-of-Fit Test for Continuous Distribution

Steps:

■ Usually in continuous distribution case, you need to set the categories. This is by dividing R into k equally likely segments. e.g. For normal distribution and k = 8,

$$(a_0, a_1) = (-\infty, -1.15), [a_1, a_2) = [-1.15, -0.675), [a_2, a_3) = [-0.675, -0.32), [a_3, a_4) = [-0.32, 0)$$

 $[a_4, a_5) = [0, 0.32), [a_5, a_6) = [0.32, 0.675), [a_6, a_7) = [0.675, 1.15), [a_7, a_8) = [1.15, \infty)$

- Calculate the expected value for each category, which should be n/k for every category. Categorize your data according to those intervals to get the observed values.
- Determine degrees of freedom.
- Calculate critical region.
- Calculate Pearson statistics to see if we can reject H_0 .

Independence of Categorizations

Testing Parameter	Sample Size	Test Statistics
p_1, \ldots, p_k	large	$X_{(r-1)(c-1)}^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$
		where r is the number of rows
		and c is the number of columns

Steps:

- Sum the rows and columns to get the *marginal row and column sums* n_i , $n_{.j}$. These are used to estimate *marginal densities* $\hat{p}_{i.} = \frac{n_{i.}}{n}$, $\hat{p}_{.j} = \frac{n_{.j}}{n}$.
- \blacksquare For each grid (i, j), multiply the estimated marginal densities together and calculate the expected number $E_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}$.
- Determine degrees of freedom.
- Calculate critical region.
- Calculate Pearson statistics to see if we can reject H_0 .

We conducted a survey. In the survey, people are asked to fill in their gender and age. It is

	Ma	ale	Fe	male	n _i .
	O _i	E _i	O _i	E _i	
Under 18	75		25		
18 to 29	1242		60		
30 to 50	1531		68		
above 50	1040		39		
n _{.j}					

shown as follows:

Are the age and gender of

participants independent?

	М	ale	Fe	emale	n _i .
	O_i	E_i	Oi	E_i	
Under 18	75	95.29	25	4.706	100
18 to 29	1242	1241	60	61.27	1302
30 to 50	1531	1524	68	75.25	1599
above 50	1040	1028	39	50.78	1079
n. _j	3888		192		4080

Calculating the test statistics, $X_{(r-1)(c-1)}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ii}} = 95.34$. The degrees of freedom is (r-1)(c-1) = 3. The test statistics is far larger than the critical value, so we reject the null hypothesis that the gender and age are independent.

Problems in Assignments

Testing Hypotheses on an Exponential Variable

Let X be an exponential random variable with parameter β . Devise a test statistic for testing $H_0: \beta = \beta_0 \text{ and } H_0: \beta \leq \beta_0.$

Solution

We know that $Y = X_1 + ... + X_n$ follows a Gamma distribution with $\alpha = n$ and β , so,

$$m_Y(t) = \left(1 - \tfrac{t}{\beta}\right)^{-n} \, \Rightarrow \, m_{2\,\beta\,Y}(t) = m_Y(2\,\beta\,t) = (1 - 2\,t)^{-n}$$

which is a moment generating function of Chi-squared distribution with $\gamma = 2 n$. So we conclude that $2 \beta Y = 2 \beta \sum_{i=1}^{n} X_i = 2 n \beta \overline{X}$ follows Chi-squared distribution with $\gamma = 2 n$. Therefore we set our test statistics to be $X_{2n}^2 = 2 n \beta_0 \overline{X}$.

We note that when the true β is larger, \overline{X} , which is the estimator for the mean $1/\beta$, will be

smaller. So we reject

- $H_0: \beta = \beta_0 \text{ if } X_{2n}^2 > \chi_{0.025,2n}^2 \text{ or } X_{2n}^2 < \chi_{0.975,2n}^2.$
- $H_0: 1/\beta \ge 1/\beta_0$ if $X_{2n}^2 < \chi_{1-0.05,2n}^2$.

OC Curve For F-test

Calculate the power of *F*-test when $n_1 \neq n_2$.

Solution

$$P[\text{fail to reject } H_0] = P[\text{Sample statistics lies outside critical region}]$$

$$\begin{split} &= P \Big[f_{0.975, n_1 - 1, n_2 - 1} < \frac{S_1^2}{S_2^2} < f_{0.025, n_1 - 1, n_2 - 1} \, \Big| \, \lambda = \frac{\sigma_1}{\sigma_2} \Big] \\ &= P \Big[\frac{1/\sigma_1^2}{1/\sigma_2^2} \, f_{0.975, n_1 - 1, n_2 - 1} < \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < \frac{1/\sigma_1^2}{1/\sigma_2^2} \, f_{0.025, n_1 - 1, n_2 - 1} \, \Big| \, \lambda = \frac{\sigma_1}{\sigma_2} \Big] \\ &= P \Big[\frac{1}{\lambda^2} \, f_{0.975, n_1 - 1, n_2 - 1} < \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < \frac{1}{\lambda^2} \, f_{0.025, n_1 - 1, n_2 - 1} \, \Big| \, \lambda = \frac{\sigma_1}{\sigma_2} \Big] \\ &= P \Big[\frac{1}{\lambda^2} \, f_{0.975, n_1 - 1, n_2 - 1} < F_{n_1 - 1, n_2 - 1} < \frac{1}{\lambda^2} \, f_{0.025, n_1 - 1, n_2 - 1} \Big] \end{split}$$

```
ln[535]:= n_1 = 8; n_2 = 16;
       f[\lambda_{-}] := CDF FRatioDistribution[n_1 - 1, n_2 - 1],
             \frac{1}{\lambda^2} InverseCDF[FRatioDistribution[n_1 - 1, n_2 - 1], 0.975]] -
           CDF\Big[FRatioDistribution[n_1-1, n_2-1],
             \frac{1}{\lambda^2} InverseCDF[FRatioDistribution[n_1 - 1, n_2 - 1], 0.025]];
       Plot[f[\lambda], {\lambda, 0, 5}, PlotLabel \rightarrow "OC Curve of F test when n<sub>1</sub>=" <>
            ToString[n_1] <> ",n_2 = " <> ToString[n_2] \text{, } AxesLabel \rightarrow \{"\lambda", "P[Accept H_0]"\}]
```

