12.1

12.2

12.3

Equality of (12.14) will happen when ρ_x has orthogonal support. It is obvious that n qubits have at most n orthogonal ρ_x s, and from (12.6),

$$H(X:Y) \le \chi(\rho) \le H(X) \le n \tag{1}$$

So, n qubits can be used to at most n bits of classical information.

12.6

12.7

12.8

12.9

12.10

12.12

12.12

12.13

12.14

12.15

12.16

12.17

12.18

12.19

12.20

12.21

12.22

12.23

12.24

12.25

12.26

12.31

Eve makes her qubits entangled with $|\beta_{00}\rangle$, and gets ρ^E .

$$|ABE\rangle = U |\beta_{00}^{\otimes n}\rangle |0\rangle_E \tag{2}$$

$$\rho^E = tr_{AB}(|ABE\rangle \langle ABE|) \tag{3}$$

Note that Eve's mutual information with Alice and Bob measurements does not depend on whether Eve measures ρ^E before Alice and Bob's measurement or after. So we can assume that Eve measures ρ^E after Alice and Bob's measurement. Alice and Bob measure their Bell state, getting binary string \vec{k} as an outcome. Let ρ_k^E and p_k are the corresponding Eve's states and probabilities. Note,

$$\rho_E = \sum_k p_k \rho_k^E. \tag{4}$$

Let K is a variable of \vec{k} and e is an outcom of a measurement of ρ^E , and E is its variable. From Holevo bound,

$$H(K:E) \le S(\rho^E) - \sum_k p_k \rho_k^E \le S(\rho^E) = S(\rho). \tag{5}$$