《高等数学 A(二)、B(二)》考试试卷(A卷)

(闭卷 时间 120 分钟)

题 号	 11	Ξ	四	五	总 分
得 分					
阅卷人					

一、填空题(每小题2分,共10分)

得分

- 1. 过点(1, 2, 3)且与直线 $\frac{x-3}{3} = \frac{y}{2} = \frac{z-1}{1}$ 平行的直线方程为_____
- 3. 累次积分 $\int_{0}^{2} dx \int_{x^{2}}^{2x} f(x, y) dy$ 交换积分次序后为_____
- 4. 已知曲线 $L: x^2 + y^2 = a^2$ (常数 a > 0),则 $\oint_T x^2 ds =$ ______.
- 5. 已知 f(x) 是周期为 2π 的周期函数,在 $(-\pi, \pi]$ 上 f(x) 的解析式为

二、单项选择题(每小题 2 分,共 10 分)

得分

- 6. 设 $y_1(x)$ 、 $y_2(x)$ 、 $y_3(x)$ 是非齐次线性方程 y'' + p(x)y' + q(x)y = f(x) 的三个线性 无关的解, C_1 、 C_2 是任意常数,则该非齐次线性方程的通解可表示为(
 - A. $C_1 y_1 + C_2 y_2 + C_3$
- B. $C_1 y_1 + C_2 y_2 (C_1 + C_2) y_3$
- C. $C_1 y_1 + C_2 y_2 (1 C_1 C_2) y_3$ D. $C_1 y_1 + C_2 y_2 + (1 C_1 C_2) y_3$
- 7. 已知二元函数 $f(x,y) = \begin{cases} x^2 + y^2, & xy = 0 \\ 1, & xy \neq 0 \end{cases}$, 则 f(x,y) 在 (0,0) 处 ().

 - A. 连续, 一阶偏导数不存在 B. 不连续, 一阶偏导数不存在
 - C. 不连续, 一阶偏导数存在 D. 连续, 一阶偏导数存在

- A. 8x y 2z = 108 B. 16x y + 2z = 268
- C. 8x y 2z = 140 D. 16x y + 2z = 244

$$A. \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$B. \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

C.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
 D. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$

D.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

三、计算题(每小题8分,共64分)

11. 已知直线 $L_1: \frac{x-3}{3} = \frac{y}{0} = \frac{z-1}{-4}$, 平面 $\Sigma: x+2y+2z=5$, 求直线 L_1 与平面 Σ 的夹角.

13. 求微分方程 $y'' - 3y' + 2y = e^{-2x}$ 的通解.

14. 计算二重积分 $\iint_D e^{-\frac{y^2}{2}} dxdy$, 其中 D 是由直线 x=0 、 y=1 及 y=x 所围成的区域.

15. 计算三重积分 $\iiint\limits_{x^2+y^2+z^2\leq R^2} (x^2+y^2+xz) dx dy dz$, 其中常数 R>0.

16. 计算第二型曲线积分 $I = \int_C (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$, 其中 C 为 上半圆周 $x^2 + y^2 = ax$, 方向为从 A(a,0) 到 O(0,0), 常数 a > 0.

17. 设抛物面 Σ : $z=1-x^2-y^2$ ($z\geq 0$),方向取其上侧,计算 $\iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 2dx dy$.

18. 将 $f(x) = \frac{1}{1+2x}$ 展开为 (x+2) 的幂级数,并求该幂级数的收敛域.

李

四、应用题(本大题共8分)

得 分

19. 在椭圆 $x^2 + 4y^2 = 4$ 上求一点,使该点到直线2x + 3y - 12 = 0的距离最短.

五、证明题(本大题共8分)

得 分

20. 设数列 $\{a_n\}$ 单调减小,且 $a_n \ge 0$ $(n = 1, 2, \cdots)$,又级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散.

证明:级数
$$\sum_{n=0}^{\infty} \left(\frac{1}{1+a_n}\right)^n$$
收敛.