

Electivo III: Machine Learning

Clasificación

Joel S. Torres

Departamento de Ciencias de la Ingeniería Ingeniería Civil Informática

www.ulagos.cl

MACHINE LEARNING

¿Qué es la Clasificación?

$$y \in \{0, 1\}$$

- 0 Clase Negativa (Tom)
- 1 Clase Positiva (Jerry)

Predicción de tipo de Cancer (M,B)

¿Cómo representar el problema?

- 0 Tumor Benigno
- 1 Tumor Maligno

¿Qué método utilizar?

Intentemos una regresión lineal...

Predicción de tipo de Cancer (M,B)

Una pista: Utilizar un limitador (threshold) Entonces para un threshold T = 0, 5:

- $h_{\theta}(x) \geq T$, predice salida y = 1
- $h_{\theta}(x) < T$, predice salida y = 0

Predicción de tipo de Cancer (M,B)

Una pista: Utilizar un limitador (threshold) Entonces para un limitador L = 0, 5:

- $h_{\theta}(x) \geq L$, predice salida y = 1
- $h_{\theta}(x) < L$, predice salida y = 0

Logistic Regression

Objetivo del modelo

Se necesita restringir el modelo a $0 \le h\theta(x) \le 1$ Nuevo Modelo

$$h_{\theta}(x) = g(\theta^T x)$$

¿Qué es g()?

$$g(z) = \frac{1}{1 + e^{-z}}$$

Esta función se llama sigmoidea (sigmoid function) o función logística.

Logistic Regression

Entonces, con $z = \theta^T x$:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Objetivo del modelo

Ajustar los parámetros θ con el menor costo posible.

Interpretación del resultado de la hipótesis

El modelo se basa en probabilidad

 $h_{\theta}(x) = \text{Estima la probabilidad de que } y = 1 \text{ para la entrada } x$

Ejemplo

Si
$$x=\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}=\begin{bmatrix} 1 \\ MedidaTumor \end{bmatrix}$$
; y, $h_{\theta}(x)=0,7$

Significa que hay una chance del 70 % de que el tumor sea maligno

Entonces,

$$h_{\theta}(x) = P(y = 1|x;\theta)$$

"la probabilidad de que y=1, dado un x parametrizado por θ "

Algunas Propiedades:

- $P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$
- $P(y = 0|x; \theta) = 1 P(y = 1|x; \theta)$

Límites de Decisión

El impacto de los límites

Para predecir y=1 debemos definir un límitador $h_{\theta}(x) \geq 0, 5$ Por lo tanto, y=0 debe tener un límitador $h_{\theta}(x) < 0, 5$

Si, $g(z) \ge 0, 5$ cuando $z \ge 0$

Entonces,

$$h_{\theta}(x) = g(\theta^T x) \ge 0, 5$$

cuando,

$$\theta^T x \ge 0$$

Límites de Decisión

Ejemplo

Asimilando lo anterior,

Si,
$$h_{\theta}(x) = g(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2)$$

Considerando un vector $\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$

Para predecir y=1 tendremos que comprobar que $-3+x_1+x_2 \geq 0$ Lo que implica que, $x_1+x_2 \geq 3$

Límites de Decisión

Definición

Un límite de desición en una línea que representa la separación entre la probabilidad de pertenecer a alguna de las categorías propuestas

Límites de Decisión No Lineales

¿Cómo solucionar este problema?

Límites de Decisión No Lineales

Nueva hipótesis,

$$h_{\theta}(x) = g(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \theta_3 * x_1^2 + \theta_4 * x_2^2)$$

Considerando un vector $\theta = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Para predecir y=1 tendremos que comprobar que $-1+x_1^2+x_2^2\geq 0$ Lo que implica que, $x_1^2+x_2^2\geq 1$

Límites de Decisión No Lineales

¿Cómo implementar otras figuras?

Hipótesis General

$$h_{\theta}(x) = g(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \theta_3 * x_1^2 + \theta_4 * x_1^2 x_2 + \theta_5 * x_1^2 x_2^2 + \theta_6 * x_1^3 x_2 + \dots)$$

Taller de Clasificación

Próxima Clase:

- Revisaremos la Función de costo y sus consecuencias
- Implementación en código
- Google Colab : https://colab.research.google.com/
- R Studio Cloud : https://rstudio.cloud/

Probando con Función de costo anterior:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
, con $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$ (Sigmoid)

J(heta) Convex Cost Function

Nueva Función de costo: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (Cost(h_{\theta}(x), y))$

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{, si } y = 1\\ -log(1 - h_{\theta}(x)) & \text{, si } y = 0 \end{cases}$$

Nueva Función de costo: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (Cost(h_{\theta}(x), y))$

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) &, \text{ si } y = 1\\ -log(1 - h_{\theta}(x)) &, \text{ si } y = 0 \end{cases}$$

Funcionamiento del Costo

- Si $h_{\theta}(x) = 1$, entonces $Cost(h_{\theta}(x), y) = 0$
- Si $h_{\theta}(x) = 0$, entonces $Cost(h_{\theta}(x), y) = \infty$

Intuición

Si $h_{\theta}(x) = 0$ predice que $P(y = 1|x; \theta) = 0$, cuando debería ser y = 1, entonces se PENALIZA con un alto costo.

Nueva Función de costo: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (Cost(h_{\theta}(x), y))$

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) &, \text{ si } y = 1\\ -log(1 - h_{\theta}(x)) &, \text{ si } y = 0 \end{cases}$$

Funcionamiento del Costo

- Si $h_{\theta}(x) = 0$, entonces $Cost(h_{\theta}(x), y) = 0$
- Si $h_{\theta}(x) = 1$, entonces $Cost(h_{\theta}(x), y) = \infty$

Intuición

Si $h_{\theta}(x) = 1$ predice que $P(y = 0|x; \theta) = 1$, cuando debería ser y = 0, entonces se PENALIZA con un alto costo.

Nueva Función de costo considerando todos los atributos entrada:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (Cost(h_{\theta}(x^{(i)}), y^{(i)}))$$

Se puede reescribir como:

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)}log(h_{\theta}(x^{(i)})) - (1 - y^{(i)})log(1 - h_{\theta}(x^{(i)}))$$

Entonces la Función de Costo para Regresión Lineal es:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} log(h_{\theta}(x^{(i)}) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})))$$

El objetivo es Minimizar el costo:

 $\min_{\theta}\,J(\theta)$

Algoritmo Descenso del Gradiente

Algorithm 1: Descenso de Gradiente

```
Result: Encuentra min J(\theta_0, \theta_1)
```

repeat

end

until Converger;

Algoritmo Descenso del Gradiente

Algorithm 2: Descenso de Gradiente

Result: Encuentra $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

repeat

$$\begin{array}{l} \text{for } j \leftarrow 0 \text{ to } n \text{ do} \\ \mid \ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) * x_j^{(i)}; \\ \text{end} \end{array}$$

until Converger;

Otros Algoritmos de Aprendizaje

- Gradiente Conjugado
- BFGS
- L-BFGS

Ventajas:

- No es necesario fijar el α .
- Más rápidos que el Descenso de Gradiente.

Desventaja:

 Mucho más complicados de implementar.

Clasificación Multiclase

¿Y si ahora queremos identificar más clases?

Clasificación Multiclase

Binary classification:

Multi-class classification:

Clasificación Multiclase

Clasificación One vs All con Regresión Logística

Class 1: 🛆

Class 2:

Class 3: X

Clasificación One vs All con Regresión Logística

Binary classification:

Multi-class classification:

Taller de Clasificación

- Google Colab : https://colab.research.google.com/
- R Studio Cloud : https://rstudio.cloud/

