ЛЕКЦИЯ 1. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ С БЕСКОНЕЧНЫМИ ПРЕДЕЛАМИ ИНТЕГРИРОВАНИЯ И ОТ НЕОГРАНИЧЕННЫХ ФУНКЦИЙ

Несобственные интегралы с бесконечными пределами интегрирования

Пусть функция f(x) непрерывна на промежутке $[a; +\infty)$, тогда по определению

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$
 (1.1)

Если существует конечный предел в правой части равенства (1.1), то несобственный интеграл в левой части указанного равенства называется *сходящимся*, если такой предел не существует, то – *расходящимся*.

Аналогично, для функции f(x) непрерывной на промежутке $(-\infty;b]$

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

Далее по определению

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx,$$
 (1.2)

где c — произвольное действительное число. Причем интеграл в левой части равенства (1.2) считается сходящимся, если сходятся оба интеграла в правой части равенства (1.2).

Геометрически в случае f(x) > 0 интеграл (1.1) есть площадь фигуры, ограниченная графиком функции y = f(x), прямой x = a и осью Ox.

Признаки сходимости несобственных интегралов

Для определенности сформулируем признаки сходимости несобственных интегралов первого типа.

Теорема 1. Если F(x) — первообразная для функции f(x) на промежутке $[a; +\infty)$ и существует конечный предел $\lim_{x\to +\infty} F(x) = F(+\infty)$, то интеграл (1.1) сходится и равен

$$\int_{a}^{+\infty} f(x)dx = F(x)\Big|_{a}^{+\infty} = F(+\infty) - F(a) \blacksquare$$

Теорема 2. (Признак сравнения) Пусть при $a \le x < +\infty$ выполнено двойное неравенство $0 \le f(x) \le g(x)$. Тогда из сходимости несобственного

интеграла
$$\int_{a}^{+\infty} g(x)dx$$
 следует сходимость несобственного интеграла $\int_{a}^{+\infty} f(x)dx$

, причем $\int\limits_a^{+\infty}f(x)dx\leq \int\limits_a^{+\infty}g(x)dx$. Если $\int\limits_a^{+\infty}f(x)dx$ расходится, то расходится и

$$\int_{a}^{+\infty} g(x)dx =$$

Теорема 3. (Признак сравнения в предельной форме) Если функции f(x), g(x) непрерывны и положительны на промежутке $[a;+\infty)$ и

существует конечный предел $\lim_{x\to +\infty} \frac{f(x)}{g(x)} \neq 0$, то интегралы $\int\limits_a^{+\infty} f(x) dx$ и

$$\int_{a}^{+\infty} g(x)dx$$
 сходятся или расходятся одновременно ■

В качестве интеграла сравнения во многих случаях используется интеграл

$$\int_{a}^{+\infty} \frac{dx}{x^{\alpha}} dx \left(a > 0, \ \alpha > 0 \right) . \tag{1.3}$$

Интеграл (1.3) сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Теорема 4. Если сходится интеграл $\int_{a}^{+\infty} |f(x)| dx$, то сходится и интеграл

 $\int\limits_a^{+\infty} f(x)dx$, последний интеграл в этом случае называется абсолютно сходящимся \blacksquare

Теорема 5. (**Критерий Коши**) Для сходимости несобственного интеграла $\int\limits_a^{+\infty} f(x) dx$ от непрерывной на промежутке $[a;+\infty)$ функции f(x) необходимо и достаточно, чтобы $\forall \varepsilon > 0 \; \exists B = B(\varepsilon) > a$ такое, что $\forall B_1 \geq B$ и $\forall B_2 \geq B$ выполнялось неравенство

$$\left| \int_{B_1}^{B_2} f(x) dx \right| < \varepsilon \blacksquare$$

Следствие. Если $\exists \mathcal{E}_0 > 0$ такое, что $\forall B > a$ $\exists B_1 \geq B, \ B_2 \geq B$, для которых $\begin{vmatrix} B_2 \\ f(x) dx \end{vmatrix} \geq \mathcal{E}_0$, то несобственный интеграл $\int\limits_a^{+\infty} f(x) dx$ расходится

Теорема 6. (Признак Дирихле) Пусть

- 1) функция f(x) непрерывна и имеет ограниченную первообразную на промежутке $[a;+\infty)$;
- 2) функция g(x) непрерывно дифференцируема, монотонна на промежутке $[a;+\infty)$ и $\lim_{x\to +\infty} g(x) = 0$.

Тогда несобственный интеграл $\int_{a}^{+\infty} f(x)g(x)dx$ сходится ■

Пример 1. Исследовать на абсолютную и условную сходимость при всех значениях параметра α интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx. \tag{1.4}$$

Решение: 1) Если $\alpha > 1$, то $\left| \frac{\sin x}{x^{\alpha}} \right| \le \frac{1}{x^{\alpha}}$. Согласно признаку сравнения

и теореме 4 интеграл (1.4) сходится абсолютно.

2) Если $0 < \alpha \le 1$, то интеграл (1.4) сходится согласно признаку Дирихле. Условия теоремы 6 будут выполнены, если положить $f(x) = \sin x$,

$$g(x) = \frac{1}{x^{\alpha}}$$
.

Покажем, что эта сходимость не является абсолютной, т.е. расходится интеграл

$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx. \tag{1.5}$$

Так как $|\sin x| \ge \sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$, то при $\eta > 1$ имеем:

$$\int_{1}^{\eta} \frac{|\sin x|}{x^{\alpha}} dx \ge \frac{1}{2} \int_{1}^{\eta} \frac{dx}{x^{\alpha}} - \frac{1}{2} \int_{1}^{\eta} \frac{\cos 2x}{x^{\alpha}} dx. \tag{1.6}$$

Интеграл $\int_{1}^{+\infty} \frac{\cos 2x}{x^{\alpha}} dx$ сходится согласно признаку Дирихле, если положить

 $f(x) = \cos 2x$, $g(x) = \frac{1}{x^{\alpha}}$. Следовательно, существует конечный предел

$$\lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{\cos 2x}{x^{\alpha}} dx$$
. Интеграл $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ расходится при $\alpha \in (0;1]$, причем

$$\lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{dx}{x^{\alpha}} = +\infty$$
. Переходя в (1.6) к пределу при $\eta \to +\infty$, получим

$$\lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{|\sin x| dx}{x^{\alpha}} = +\infty.$$

Это означает, что интеграл (1.5) расходится.

3) Докажем расходимость интеграла (1.4) при $\alpha \le 0$, используя следствие критерия Коши:

$$\forall B > 1 \quad \exists B_1 = \frac{\pi}{6} + 2\pi m \ge B, \ B_2 = \frac{5\pi}{6} + 2\pi m \ge B, \ m \in \mathbb{Z},$$

такие, что

$$\begin{vmatrix} \int_{B_1}^{B_2} \frac{\sin x}{x^{\alpha}} dx \end{vmatrix} = \begin{vmatrix} \int_{\pi/6 + 2\pi m}^{5\pi/6 + 2\pi m} \frac{\sin x}{x^{\alpha}} dx \end{vmatrix} = \int_{\pi/6 + 2\pi m}^{5\pi/6 + 2\pi m} \frac{\sin x}{x^{\alpha}} dx \ge$$

$$\ge \int_{\pi/6 + 2\pi m}^{5\pi/6 + 2\pi m} \int_{\pi/6 + 2\pi m}^{5\pi/6 + 2\pi m} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3} = \varepsilon_0.$$

Ответ: при $\alpha > 1$ сходится абсолютно; при $0 < \alpha \le 1$ сходится условно; при $\alpha \le 0$ расходится.

Несобственные интегралы от неограниченных функций

Пусть функция f(x) непрерывна на промежутке a;b и $\lim_{x\to b-0}f(x)=\infty$. Тогда по определению

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x)dx . \tag{1.7}$$

Если существует конечный предел в правой части равенства (1.7), то несобственный интеграл в левой части указанного равенства называется *сходящимся*, если такой предел не существует, то – *расходящимся*.

Аналогично определяется несобственный интеграл в случае, если $\lim_{x\to a+0} f(x) = \infty$ для функции f(x) непрерывной на промежутке (a;b].

Если $c \in (a;b)$ — точка разрыва функции f(x), f(x) непрерывна на промежутках [a;c), (c;b] и не ограничена в любой окрестности точки c , то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon_{1} \to +0} \int_{a}^{c-\varepsilon_{1}} f(x)dx + \lim_{\varepsilon_{2} \to +0} \int_{c+\varepsilon_{2}}^{b} f(x)dx,$$
 (1.8)

Причем интеграл в левой части равенства (1.8) считается сходящимся, если сходятся оба интеграла в правой части равенства (1.8).

Геометрически в случае f(x) > 0 интеграл (1.7) есть площадь фигуры, ограниченная графиком функции y = f(x), прямой x = a, вертикальной асимптотой x = b и осью Ox.

Признаки сходимости несобственных интегралов от неограниченных функций аналогичны признакам сходимости из пункта I.

В качестве интегралов сравнения используются интегралы

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} dx , \int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} dx (\alpha > 0) .$$
 (1.9)

Интегралы (1.9) сходятся при $\alpha < 1$ и расходятся при $\alpha \ge 1$.

Переформулируем критерий Коши для несобственных интегралов (1.7).

Теорема 5а. (Критерий Коши) Для сходимости несобственного

интеграла $\int_{a}^{b} f(x)dx$ от непрерывной на промежутке [a;b) функции f(x)

необходимо и достаточно, чтобы $\forall \varepsilon > 0 \; \exists \, \eta \in [a;b)$ такое, что $\forall \, \eta_1, \eta_2 \in [\eta;b)$ выполнялось неравенство

$$\left| \int_{\eta_1}^{\eta_2} f(x) dx \right| < \varepsilon \blacksquare$$

Следствие. Если $\exists \varepsilon_0 > 0$ такое, что $\forall \eta \in [a;b) \exists \eta_1, \eta_2 \in [\eta;b)$, для

которых $\begin{vmatrix} \eta_2 \\ \int f(x) dx \end{vmatrix} \ge \varepsilon_0$, то несобственный интеграл $\int_a^b f(x) dx$ расходится \blacksquare

Пример 2. Найти значения параметров α, β , при которых сходится интеграл

$$\int_{0}^{1} x^{\alpha} \ln^{\beta} \left(\frac{1}{x}\right) dx. \tag{1.10}$$

Решение: 1) Если $\alpha > 0, \beta > 0$, то

$$\lim_{x \to +0} \frac{\ln(1/x)}{(1/x)^{\alpha/\beta}} = \lim_{t \to +\infty} \frac{\ln t}{(t)^{\alpha/\beta}} = \lim_{t \to +\infty} \frac{1/t}{(\alpha/\beta)(t)^{\alpha/\beta-1}} = \lim_{t \to +\infty} \frac{1}{(\alpha/\beta)(t)^{\alpha/\beta}} = 0.$$

Следовательно,

$$\lim_{x \to +0} x^{\alpha} \ln^{\beta} \left(\frac{1}{x} \right) = \lim_{x \to +0} \left(\frac{\ln(1/x)}{(1/x)^{\alpha/\beta}} \right)^{\beta} = 0.$$

Доопределяя подынтегральную функцию нулем в точке x = 0, получим определенный интеграл от непрерывной на отрезке [0;1] функции, т.е. интеграл (1.10) не является несобственным.

2) Выполним замену переменной $t = \frac{1}{x}$:

$$\int_{0}^{1} x^{\alpha} \ln^{\beta} \left(\frac{1}{x}\right) dx = \int_{1}^{+\infty} \frac{\ln^{\beta} t}{t^{\alpha+2}} dt = I_{1} + I_{2},$$

$$I_1 = \int_{1}^{e} \frac{\ln^{\beta} t}{t^{\alpha+2}} dt, \ I_2 = \int_{e}^{+\infty} \frac{\ln^{\beta} t}{t^{\alpha+2}} dt.$$

Исследуем на сходимость интеграл I_1 . При $\alpha \in (-\infty; +\infty)$, $\beta \ge 0$ интеграл I_1 является определенным. Если $\beta < 0$, то положим $\beta_1 = -\beta > 0$. Тогда

$$\frac{\ln^{\beta} t}{t^{\alpha+2}} = \frac{1}{t^{\alpha+2} \ln^{\beta_1} (1 + (t-1))} \approx \frac{1}{(t-1)^{\beta_1}}, \ t \to 1.$$

Так как интеграл $\int_{1}^{e} \frac{dt}{(t-1)^{\beta_{l}}}$ сходится при $\beta_{l} < 1$, то согласно признаку

сравнения в предельной форме интеграл I_1 сходится при $\beta > -1$ и $\alpha \in (-\infty; +\infty)$.

Исследуем на сходимость интеграл I_2 .

Если $-1 < \beta \le 0$, $\alpha + 2 > 1$, то

$$0 \le \frac{\ln^{\beta} t}{t^{\alpha+2}} = \frac{1}{t^{\alpha+2} \ln^{\beta_1} t} \le \frac{1}{t^{\alpha+2}}, \ t \ge e.$$

Так как интеграл $\int_{e}^{+\infty} \frac{dt}{t^{\alpha+2}}$ сходится, то по признаку сравнения сходится и

интеграл I_2 .

Если $\beta > 0$, $\alpha + 2 > 1$, то $\alpha + 2 = 1 + 2\delta$, $\delta > 0$,

$$0 \le \frac{\ln^{\beta} t}{t^{\alpha+2}} = \frac{\ln^{\beta} t}{t^{\delta}} \cdot \frac{1}{t^{1+\delta}}, \ t \ge e.$$

Так как $\lim_{t\to +\infty} \frac{\ln^{\beta} t}{t^{\delta}} = 0$, то $\exists M>0: 0 \leq \frac{\ln^{\beta} t}{t^{\delta}} \leq M \quad \forall t \in [e;+\infty).$

Следовательно,

$$0 \le \frac{\ln^{\beta} t}{t^{\alpha+2}} \le \frac{M}{t^{1+\delta}}, \ t \ge e.$$

Согласно признаку сравнения интеграл I_2 сходится.

Если $\beta > -1$, $\alpha + 2 = 1$, то

$$I_{2} = \int_{e}^{+\infty} \frac{\ln^{\beta} t}{t} dt = \int_{e}^{+\infty} (\ln t)^{\beta} d(\ln t) = \frac{(\ln t)^{\beta+1}}{\beta+1} \Big|_{e}^{+\infty} = +\infty$$

т.е. интеграл I_2 расходится.

Если $\beta > -1$, $\alpha + 2 < 1$, то $\frac{\ln^{\beta} t}{t^{\alpha + 2}} > \frac{\ln^{\beta} t}{t}$, $t \ge e$. Так как интеграл

 $\int\limits_e^{+\infty} \frac{\ln^{eta}t}{t} dt$ расходится, то согласно признаку сравнения расходится и интеграл I_2 .

Интеграл (1.10) сходится при условии одновременной сходимости интегралов I_1 , I_2 , т.е. при $\alpha+2>1$, $\beta>-1$.

Omeem: $\alpha > -1$, $\beta > -1$.