Contents

1 1 1

1 1

Seien U_1, U_2, U_3 Unterräume eines Vektorraums V. zz:

a) $U_1 \cup U_2 \leq V \Leftrightarrow U_1 \subseteq U_2 \vee U_2 \subseteq U_1$

Proof. " \Rightarrow ":

 U_1 und U_2 sind Unterräume von V. $U_1 \cup U_2$ ist ein Unterraum von V. Es ist somit sicher, dass $U_1, U_2 \neq \emptyset$ und $U_1 \cup U_2 \neq \emptyset$.

Seien $a, b \in U_1 \cup U_2$. per definitionem gilt:

 $a+b\in U_1\cup U_2 \forall a,b\in U_1\cup U_2$. Das bedeutet:

 $a+b \in U_1 \forall a,b \in U_1 \cup U_2 \vee a+b \in U_2 \forall a,b \in U_1 \cup U_2$

Das geht nur, wenn $U_1 \subseteq U_2 \vee U_2 \subseteq U_1$.

"⇐":