1.3.iii: Let C be a category consisting of objects 1, 2, 3, 4 and morphisms $1 \to 2$ and $3 \to 4$ with the identities on each object as well. This is clearly a category.

Now define a category \mathcal{D} consisting of a, b, c with morphisms $a \to b, b \to c, a \to c$ and all identities. This is also a category.

Define the functor $F: \mathcal{C} \to \mathcal{D}$ collapsing 2, 3 to b - i.e. $1 \to a, 2, 3 \to b$ and $4 \to c$ with $(1 \to 2) \to (a \to b)$ and $(3 \to 4) \to (b \to c)$ and identities mapped to identities. This satisfies the functoriality axioms since the only composable maps in \mathcal{C} were with identities, and since identities are mapped to identities. However, $a \to c$ is not in the image of F while $a \to b$ and $b \to c$ are in the image, hence the image is not a category.

1.3.iv: The functors F = C(c, -) and G = C(-, c) have been described in terms of objects and morphisms, so it remains to check the functoriality axioms.

Let $f = x \to y$ and $g = y \to z$ and $h = gf = x \to z$ be morphisms in C. Then $F(gf) = F(h) = h_*$ and $F(g)F(f) = g_*f_*$. Now, for any $\alpha \in C(c,x)$, we have

$$h_*(\alpha) = h\alpha = gf\alpha = g(f\alpha) = g_*(f\alpha) = g_*(f_*(\alpha)) = g_*f_*(\alpha)$$

so F(gf) = F(g)F(f) for any composable f, g in C.

For each object $a \in C$, we have F(a) = C(c, a) and $F(1_a) = 1_{a*}$ given by: for any $\gamma \in C(c, a)$, we have $1_{a*}(\gamma) = 1_a \gamma = \gamma$ by composition in C, so $F(1_a) = 1_{a*} = 1_{C(c,a)} = 1_{F(a)}$.

Taking the dual, we get that the opposite functor C^{op} is also a functor.

1.4.i: By the natural transformation $F \Longrightarrow G$, we have that since $F(f)\alpha_c = F(f)\alpha_{c'}$ for an arbitrary morphism $f\colon c\to c'$, we have also $F(f)\alpha_c^{-1} = \alpha_{c'}^{-1}\alpha_{c'}F(f)\alpha_c^{-1} = \alpha_{c'}^{-1}G(f)\alpha_c\alpha_c^{-1} = \alpha_{c'}^{-1}G(f)$, so the following diagram commutes, and hece $\alpha^{-1}\colon G \Longrightarrow F$ is a natural transformation.

$$G(c) \longrightarrow \alpha_c^{-1} \longrightarrow F(c)$$

$$\downarrow^{G(f)} \qquad \qquad \downarrow^{F(f)}$$

$$G(c') \longrightarrow \alpha_{c'}^{-1} \longrightarrow F(c')$$