ELETROMAGNETISMO EE - MIEBIOL & MIEBIOM

Ficha 3 – ENERGIA POTENCIAL. POTENCIAL ELÉTRICO.

- 1. A distância média entre o electrão e o protão no átomo de H é 5.3×10^{-11} m.
 - a) Calcule o potencial eléctrico à distância $r = 5.3 \times 10^{-11}$ m do protão.

- b) Calcule a energia potencial do sistema protão/electrão do átomo de hidrogénio. (-4.35×10⁻¹⁸ J ou -27.2 eV) Nota: se o electrão do hidrogénio estivesse em repouso, a energia de ionização seria 27.2 eV. O electrão move-se com uma energia cinética 13.6 eV, em consequência a sua energia total é -27.2 + 13.6 = -13.6 eV. Esta é a razão por que é necessária uma energia de 13.6 eV para ionizar um átomo de H.
- 2. Em reacções de fissão nuclear, o ²³⁵U capta um neutrão e divide-se em dois núcleos mais leves. Por vezes os produtos são Ba (Z=56) e Kr (Z=36). Assuma que ambos os núcleos resultantes são cargas pontuais separadas por $14.6 \times 10^{-15} \mathrm{m}$. Calcule a energia potencial deste sistema. Nota: A distância 14.6×10^{-15} m corresponde à soma dos raios dos 2 núcleos. Após a fissão os núcleos separam-se rapidamente devido à repulsão electrostática. A energia potencial é transformada em energia cinética e térmica.
- 3. Na figura o ponto p encontra-se no centro do rectângulo. Calcule o potencial eléctrico em p devido às seis cargas representadas. Considere $q=1\,n\mathcal{C}$ e d = 10 cm. (85 V)

- 4. Considere duas cargas eléctricas pontuais q1 = 12 nC e q2 = -12 nC que se encontram localizadas em dois vértices de um triângulo equilátero, conforme se ilustra na figura.
 - a) Determine qual a direcção, sentido e magnitude do campo eléctrico no ponto A. (10800î (N/C)
 - b) Calcule o potencial eléctrico no ponto A

- c) Considere que se coloca um electrão, no ponto A. Determine qual a direcção, sentido e magnitude da força a que o electrão fica sujeito.

$$1.73 \times 10^{-15} \hat{i}$$
 (N)

d) Existe alguma posição, no triângulo equilátero, onde se possa colocar o q electrão, para que a força eléctrica exercida sobre o electrão seja nula? Justifique.

5. Na figura estão representadas linhas de campo eléctrico e linhas equipotenciais. Quando um electrão se move de A até B o trabalho realizado pelo campo eléctrico é 3.94×10 $^{-19}$ J. Calcule as diferenças de potencial V_B —

6. Um campo eléctrico $\vec{E}=1000$ î (V/m) está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. A distância entre S e P e entre S e R é de 2 cm. Determine

- a) As diferenças de potencial $V_O V_S$ e $V_P V_O$.
- b) Compare o trabalho realizado pelo campo eléctrico para levar um protão de *S* a *P* com o trabalho realizado para levar um protão de *R* a *Q*.
- 7. A figura ilustra superfícies equipotenciais entre dois condutores.
 - a) Calcule a diferença de potencial entre um ponto situado em A e um ponto situado em H. (70 V)

- b) Calcule o trabalho realizado pela força eléctrica quando um electrão se desloca de A para H. $(+1.12 \times 10^{-17} \text{J})$
- c) Caracterize o campo eléctrico em B. (|E| = 100 N/C,...)
- 8. Um protão, com uma energia cinética igual a 2.1×10⁻¹⁷ J, move-se numa região onde existem placas paralelas carregadas (ver figura). Em que região o protão atingirá velocidade nula? (região B)

- 9. Numa trovoada, a diferença de potencial entre uma nuvem e o solo é de 1.0 x 10⁹ V, estando a nuvem a um potencial mais baixo. Numa descarga (relâmpago) a quantidade de carga transferida é de 30 C.
 - a) Qual o sentido dos electrões durante a descarga?
 - b) Qual é a variação de energia potencial desses electrões?

(-3 x 10¹⁰ J)

- c) Se toda essa energia pudesse ser utilizada para acelerar um carro, de massa 1000kg, a partir do repouso, qual seria a velocidade atingida pelo carro? ($^{\sim}7750 \text{ m/s}$)
- 10. Os pontos R e T, encontram-se à mesma distância de duas partículas com carga +Q e -Q, como se mostra na figura. Qual é o trabalho realizado, pelo campo eléctrico, para deslocar uma partícula com carga -q, desde o ponto R até ao ponto T. (0)

- 11. O positrão (antipartícula do electrão) possui a mesma carga de um protão, mas a massa de um electrão. Numa região onde existe um campo eléctrico uniforme de 480 V/m, um positrão percorre uma distância de 5.2 cm, no sentido do campo eléctrico.
 - a) Calcule a variação de energia potencial que o positrão sofre.

(-25 eV)

b) Calcule a variação de energia cinética do positrão.

(+25 eV)

- 12. Considere três pontos, $A(x_A = 1 \text{ m}, y_A = 4 \text{ m})$, $B(x_B = 1 \text{ m}, y_B = 1 \text{ m})$ e $C(x_C = 4 \text{ m}, y_C = 4 \text{ m})$, situados numa região em que existe um campo eléctrico uniforme $\vec{E} = 4 \times 10^4 \hat{l} (N/C)$.
 - a) Determine o trabalho realizado pelo campo eléctrico no deslocamento de uma carga de 1 C desde A até B e de B até C. (-12×10⁴ J; +12×10⁴ J)
 - b) Determine as diferenças de potencial $V_B V_A$, $V_B V_C$ e $V_C V_A$. (+12×10⁴ V; +12×10⁴ V; 0)
- 13. O potencial eléctrico no exterior de uma célula viva é maior que no interior. A diferença de potencial entre o exterior e o interior da membrana é 70 mV. Calcule o trabalho realizado pelo campo eléctrico para levar um ião Na^+ do exterior para o interior da célula.
- 14. Uma partícula entra numa região onde existe um campo eléctrico e a sua energia cinética diminui de 9520 eV (ponto A) para 7060 eV (ponto B). O potencial eléctrico no ponto A e B é $-35.0\,V$ e $+25.0\,V$, respectivamente. Qual a carga eléctrica da partícula?
- 15. Numa dada região do espaço actua um campo eléctrico uniforme de $(2 \, kN/C)$ na direção x. Uma carga puntiforme $Q = 3 \mu C$ é solta, em repouso na origem.
 - a) Calcule a energia cinética da carga quando passa na posição x = 4 m. (2.4 ×10⁻² J)
 - b) Qual é a variação de energia potencial entre os pontos x = 0 e x = 4 m? (-2.4 ×10⁻² J)
 - c) Qual é a diferença de potencial entre os pontos x = 0 e x = 4 m? $(-8 \times 10^3 \text{ V})$
- 16. No gráfico está representado o potencial eléctrico ao longo do eixo x, onde a escala vertical está definida de modo que $Vs=10\,\mathrm{V}$. Um protão é lançado em x = 4 cm com energia cinética inicial de 3 eV.

b) Se o protão se mover inicialmente para a esquerda, qual é a velocidade do protão em x = 2 cm?

- 17. Um campo eléctrico uniforme tem o sentido do semieixo negativo xx'. As coordenadas dos pontos $a \in b$ são respectivamente (2;0) m e (6;0) m.
 - a) A diferença de potencial $(V_b V_a)$ é positiva ou negativa? $(V_b - V_a > 0)$
 - b) Se o módulo de $(V_b V_a)$ for 10^5 V, qual é a magnitude do campo eléctrico? $(-8 \times 10^3 \text{ V})$
- 18. Sobre o "equador" duma esfera de raio 60 cm estão 6 cargas de +3 μC, igualmente espaçadas entre si.
 - a) Calcule o potencial eléctrico e o campo eléctrico no centro da esfera (2.7x105 V; 0 N/C)
 - b) Calcule o potencial eléctrico e o campo eléctrico no "polo norte" da esfera. (190.9 kV; 1.59x105 ĵ(N/C))

- 19. Calcular a energia potencial electrostática de um sistema constituído por quatro cargas puntiformes de 2μ C, colocadas nos vértices de um quadrado de 4 m de lado, sendo uma das cargas negativa e as outras três positivas.
- 20. Duas cargas de $2\,\mu\text{C}$ estão colocadas em dois pontos, conforme se mostra na figura, e uma carga de prova positiva $q=1.28\times10^{-18}\text{C}$, na origem.

- a) Caracterize o campo eléctrico, originado pelas duas cargas de 2 μC, na origem?
 - (0)
- b) Qual é a força resultante exercida sobre q pelas duas cargas de 2 μ C?
- (0)
- c) Qual é o potencial \emph{V} provocado pelas duas cargas de 2 μ C, na origem?
- (4.5×10⁴ V)
- 21. Uma carga de $+10^{-8}C$ está uniformemente distribuída sobre uma casca esférica de raio 12 cm.
 - a) Qual é o módulo do campo eléctrico na face interna e na face externa da superfície?
 - b) Qual é o potencial eléctrico na face interna e na face externa da superfície?
 - c) Qual é o módulo do potencial eléctrico no centro da casca? Qual é o campo eléctrico nesse ponto?
- 22. Duas cargas iguais $q=2.0~\mu \text{C}$ estão separadas por uma distância d=2~cm como está indicado na figura seguinte. Determine:

- b) O potencial eléctrico no ponto *C*;
- c) O trabalho a realizar para trazer uma terceira carga q (idêntica às anteriores) do infinito até $\it C$.
- d) A energia potencial do sistema de três cargas.
- 23. Um plano infinito tem a densidade superficial de carga de $3.5~\mu C~m^{-2}$. Qual é o afastamento entre duas superfícies equipotenciais cujos potenciais tenham 100~V de diferença?
- 24. Em certa região do espaço o potencial eléctrico é dado por: $V = 5x 3x^2y + 2yz^2$.
 - a) Calcular as componentes x, y e z do campo eléctrico nessa região.
 - b) Qual é o módulo do campo eléctrico no ponto P de coordenadas (1, 0, -2)?

((a)
$$\vec{E} = (-5 + 6xy)\hat{\imath} + (-3x^2 - 2z^2)\hat{\jmath} + (-4yz)\hat{k}$$
; (b) 1, 0, -2)

Mem brana

celular

- 25. As membranas celulares podem ser consideradas condensadores, nos quais duas soluções condutoras estão separadas por uma camada isolante (membrana celular). Por convenção, o potencial no exterior da membrana é considerado nulo. Considere uma célula típica, cuja membrana celular tem uma espessura de 7 nm e o potencial no interior da célula tem o valor de

 -70 mV (ver figura).
 V=0
 Exterior da célula
 - a) Caracterize o campo eléctrico (intensidade e sentido) no interior da membrana celular.
 - b) Considere um ião cloro, Cl^- , no interior da membrana celular. Calcule da força eléctrica (magnitude e sentido) a que o ião está sujeito. Se em vez de um ião cloro, estivesse um ião cálcio, Ca^+ no interior da membrana, qual seria a força a que ficaria sujeito..
- 26. Duas esferas condutoras, A e B, de raio $10 \, \mathrm{cm}$ e $20 \, \mathrm{cm}$, respectivamente, estão muito afastadas. A esfera menor está carregada com uma carga $+9 \, \mu \mathrm{C}$ e a maior está neutra.
 - a) Calcule a carga de cada uma das esferas, depois de serem ligadas por um fio condutor.
 - b) Compare o campo eléctrico à superfície da esfera A, com o campo eléctrico à superfície da esfera B.