KNOW YOUR CUSTOMER:

SYRIATEL CHURN MODEL

OUR TEAM

David Johnson

Houston, TX

Elina Rankova

New York, NY

CONTENT

01

BUSINESS OBJECTIVES

02

DATA ANALYSIS AND METHODS

03

MODELING

04

RESULTS

05

NEXT STEPS

06

CONTACTS

BUSINESS OBJECTIVE

Build a classifier to predict whether a customer will ("soon") stop doing business with SyriaTel, a telecommunications company.

Measure Performance with Recall:

The Data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 21 columns):
```

Data	Data columns (total 21 columns):							
#	Column	Non-Null Count	Dtype					
						churn		
0	state	3333 non-null	object			0		
1	account length	3333 non-null	int64	2500 -		1		
2	area code	3333 non-null	int64					
3	phone number	3333 non-null	object					
4	international plan	3333 non-null	object	2000 -				
5	voice mail plan	3333 non-null	object					
6	number vmail messages	3333 non-null	int64					
7	total day minutes	3333 non-null	float64	1500 -				
8	total day calls	3333 non-null	int64	1500	~85%			
9	total day charge	3333 non-null	float64		30070			
10	total eve minutes	3333 non-null	float64	1000 -				
11	total eve calls	3333 non-null	int64	1000 -				
12	total eve charge	3333 non-null	float64					
13	total night minutes	3333 non-null	float64	500				
14	total night calls	3333 non-null	int64	500 -				
15	total night charge	3333 non-null	float64			~15%		
16	total intl minutes	3333 non-null	float64					
17	total intl calls	3333 non-null	int64	0 —		1		
18	total intl charge	3333 non-null	float64		0	1		
19	customer service calls	3333 non-null	int64		CI	nurn		
20	churn	3333 non-null	bool					

MODELING

Logistic Regression Models

Logistic L1 Model: Data Prep/Train Results

• This model contains all predictor variables, except phone number.

Logistic Select Model: Data Prep/Train Results

- We Used **SelectFromModel** to select **features** for us that are **most important**:
 - Reduced the dataframe from 69 predictors to 53.

Logistic Reduced Model: Data Prep/Train Results

• We only included highly correlated predictors with respect to churn.

Processing steps SMOTE, hyperparameter tuning, and OneHotEncoding

Processing steps
SelectFromModel, hyperparameter tuning

Processing steps
SMOTE, hyperparameter tuning,
and feature selection

Logistic Regression Models: Test Results

Train Results:

model_name	recall_score
Logistic L1	0.754796
Logistic Select	0.751989
Logistic Reduced	0.899392

Our Logistic Regression models are underfitting!!!!

Test Results:

Classification	report	for	Model	1:	

weighted avg

Classificatio	n report for	Model 1:					
	precision	recall	f1-score	support			
0	0.91	0.32	0.48	713			
1	0.17	0.81	0.28	121			
			0.20	024			
accuracy			0.39	834			
macro avg	0.54	0.57	0.38	834			
weighted avg	0.80	0.39	0.45	834			
Classificatio	n report for	Model 2:					
	precision	recall	f1-score	support			
0	0.91	0.33	0.48	713			
1	0.17	0.81	0.28	121			
accuracy			0.40	834			
macro avg	0.54	0.57	0.38	834			
weighted avg	0.80	0.40	0.45	834			
Classification report for Model 3:							
	precision	recall	f1-score	support			
0	0.96	0.13	0.24	713			
1	0.16	0.97	0.27	121			
accuracy			0.26	834			
macro avg	0.56	0.55	0.25	834			

0.84

0.26

0.24

834

DecisionTree Model

Data Prep/Train Results

- We used the same data that was used for model 3.
- Applied GridSearchCV() to find the optimal parameters for the model.
- Best Parameters:

{'criterion': 'gini', 'max donth': 1

'max_depth': 1,

'max_features': 1,

'min_samples_leaf': 1,

'min_samples_split': 2,

'splitter': 'best'}

CV Train Results

Metrics	Values
Mean Train Score	0.946065
Train Standard Deviation Score	0.022619
Mean Test Score	0.940583
Test Standard Deviation Score	0.027754

Test Results

	precision	recall	f1-score	support
0	0.89	0.12	0.21	713
1	0.15	0.92	0.26	121
accuracy			0.23	834
macro avg	0.52	0.52	0.23	834
weighted avg	0.78	0.23	0.21	834

FUTURE CONSIDERATIONS

Different type of model or ensemble modeling

STEP 1

Tiered Marketing Strategy

STEP 3

STEP 2

Larger data set to offset the underfitting we encountered

Contact

• David Johnson: Johnsondavidbjr@gmail.com

Elina Rankova: elinarankova@gmail.com