DETERMINAREA CONSTANTEI LUI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD

> Pascu Ioana-Călina Sîrboiu Patricia Octavia Văideanu Renata-Georgia

Valorile obținute în urma laboratorului se găsesc în Tabelul 1:

Filtru	λ(nm)	$U_o(V)$										<u>1</u> (V)	v·10 ¹⁴
		1	2	3	4	5	6	7	8	9	10	$U_0(V)$	V · 10
galben	578	0,61	0,58	0,59	0,62	0,59	0,63	0,59	0,61	0,57	0,59	0,598	5,19
verde	546	0,76	0,74	0,75	0,74	0,76	0,77	0,75	0,76	0,75	0,76	0,754	5,494
albastru	436	1,26	1,24	1,25	1,24	1,26	1,26	1,23	1,25	1,26	1,24	1,249	6,883
violet	405	1,42	1,44	1,45	1,44	1,43	1,45	1,46	1,43	1,45	1,44	1,441	7,412

(Tabel 1)

Se calculează frecvențele corespunzătoare lungimilor de undă, pentru fiecare dintre filtrele de interferență utilizate (cu formula $v = \frac{c}{\lambda}$, unde $c = 3 * 10^8$, viteza luminii în vid):

$$\lambda_1 = 578 \text{ mm}: \qquad \nu_1 = \frac{3 \cdot 10^8}{578 \cdot 10^{-9}} = 5,19 \cdot 10^{14}$$

$$\lambda_2 = 546 \, mm : \qquad \nu_2 = \frac{3 \cdot 10^8}{546 \cdot 10^{-9}} = 5,494 \cdot 10^{14}$$

$$\lambda_3 = 436 \, mm : \qquad \nu_3 = \frac{3 \cdot 10^8}{536 \cdot 10^{-9}} = 6,883 \cdot 10^{14}$$

$$\lambda_4 = 405 \text{ mm}: \qquad \nu_4 = \frac{3 \cdot 10^8}{405 \cdot 10^{-9}} = 7,412 \cdot 10^{14}$$

Se reprezintă grafic tensiunea \overline{U}_0 de stopare în funcție de frecvența ν a luminii incidente și se trasează o dreaptă printre punctele experimentale:

Se determină panta dreptei din grafic, valoare care se egalează cu raportul $\frac{h}{e}$, pentru a determina valoarea constantei lui Planck (e = 1,6 · 10⁻¹⁹C).

Din ecuația dreptei de regresie $y = 0.3721 \cdot x - 1.313$ rezultă panta:

$$m = 0.3721 \frac{V}{10^{14} \text{ Hz}} = 0.3721 \cdot 10^{-14} \text{ Vs}$$

Deci constanta lui Planck va fi egală cu:

$$h = m \cdot e = 0.3721 \cdot 10^{-14} \cdot 1.6 \cdot 10^{-19} = 5.9536 \cdot 10^{-34} \text{ Js}$$

Prin prelungirea dreptei până la intersecția cu axa absciselor, se determină frecvența de prag (ν_p) și se calculează lungimea de undă de prag (λ_p) .

$$y = 0.3721 \cdot x - 1.3134$$

$$y = 0 \implies x = \frac{1.3134}{0.3721} \cong 3.5296$$

Deci
$$\nu_{\rm p}=3.5296\cdot 10^{14}~{\rm Hz}~{\rm si}~\lambda_{\rm p}=\frac{c}{\nu_{\rm p}}=\frac{3\cdot 10^8}{3.5296\cdot 10^{14}}=0.84995\cdot 10^{-6}\cong 850~{\rm nm}$$

Se calculează lucrul mecanic de extracție (Lextr).

$$L_{extr} = h \cdot \nu_p = 5.9536 \cdot 10^{-34} \cdot 3.5296 \cdot 10^{14} \cong 21.014 \cdot 10^{-20} \text{ J}$$