Exercice 1. Calculs d'intégrales.

1) On dispose chaque fois d'une primitive "usuelle"

$$A = \int_{e}^{e^{2}} \ln(x) dx = [x \ln(x) - x]_{e}^{e^{2}} = (e^{2} \ln(e^{2}) - e^{2}) - (e \ln(e) - e) = \boxed{e^{2}}$$

$$B = \int_{0}^{1/2} \frac{1}{\sqrt{1 - x^{2}}} dx = [\arcsin(x)]_{0}^{1/2} = \arcsin(1/2) - \arcsin(0) = \boxed{\frac{\pi}{6}}$$

$$C = \int_{0}^{1} \frac{1}{1 + x^{2}} dx = [\arctan(x)]_{0}^{1} = \arctan(1) - \arctan(0) = \boxed{\frac{\pi}{4}}$$

2)

$$D_1 = \int_0^{\pi/4} \tan(x) dx = -\int_0^{\pi/4} \frac{-\sin x}{\cos x} dx = [-\ln(|\cos x|)]_0^{\frac{\pi}{4}} = \boxed{\frac{1}{2}\ln(2)}$$

$$D_2 = \int_0^{\frac{\pi}{4}} \tan^2 x dx = \int_0^{\frac{\pi}{4}} (1 + \tan^2 x) dx - \int_0^{\frac{\pi}{4}} 1 dx = [\tan x]_0^{\frac{\pi}{4}} - \frac{\pi}{4} = \boxed{1 - \frac{\pi}{4}}$$

$$D_3 = \int_0^{\frac{\pi}{4}} \tan^3(x) dx = \int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan x dx - \int_0^{\frac{\pi}{4}} \tan x dx = \boxed{\frac{1}{2}\tan^2(x)}_0^{\frac{\pi}{4}} - D_1 = \boxed{\frac{1 - \ln(2)}{2}}$$

3) Voici une décomposition en éléments simples :

$$\frac{1}{t(t+1)} = \frac{(t+1)-t}{t(t+1)} = \frac{1}{t} - \frac{1}{t+1}.$$

On calcule donc

$$E = \int_{1}^{2} \frac{1}{t(t+1)} dt = \left[\ln|t| - \ln|1+t| \right]_{1}^{2} = \left[2\ln(2) - \ln(3) \right]$$

Une intégration par parties amène

$$F = \int_{1}^{2} \frac{\ln(1+t)}{t^{2}} dt = \left[-\frac{\ln(1+t)}{t} \right]_{1}^{2} - \int_{1}^{2} -\frac{1}{t} \cdot \frac{1}{t+1} dt = \ln(2) - \frac{1}{2} \ln(3) + E.$$

On obtient done

$$F = \boxed{\frac{3}{2}(2\ln(2) - \ln(3))}.$$

4) On pose u(t) = t et $v(t) = \arcsin(t)$. Les fonctions u et v sont de classe \mathcal{C}^1 sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$G = \left[t \arcsin(t)\right]_0^{1/2} - \int_0^{1/2} \frac{t}{\sqrt{1 - t^2}} dt$$

$$= \frac{1}{2} \arcsin(\frac{1}{2}) + \int_0^{1/2} \frac{(-2t)}{2\sqrt{1 - t^2}} dt$$

$$= \frac{\pi}{12} + \left[\sqrt{1 - t^2}\right]_0^{1/2}$$

$$= \left[\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1\right]$$

5)

a) On fait deux intégrations par parties successives, en choisissant de primitiver exp et de dériver les fonctions circulaires. Les fonctions mises en jeu sont de classe \mathcal{C}^1 .

$$H = \int_0^{\frac{\pi}{4}} \sin(2x)e^x dx = \left[\sin(2x)e^x\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} 2\cos(2x)e^x dx$$
$$= \left(e^{\frac{\pi}{4}} - 0\right) - \left(\left[2\cos(2x)e^x\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} (-4\sin(2x)e^x dx\right)$$
$$= e^{\frac{\pi}{4}} + 2 - 4H$$

On a donc $5H=e^{\frac{\pi}{4}}+2$ et on obtient $H=\frac{e^{\frac{\pi}{4}}+2}{5}$

b) On a $\sin(2x)e^x = e^x \text{Im}\left(e^{2ix}\right) = \text{Im}\left(e^{(1+2i)x}\right)$. Une primitive de $u: x \mapsto \sin(2x)e^x$ est donc $U: x \mapsto \text{Im}\left(\frac{1}{1+2i}e^{(1+2i)x}\right)$. Calculons, pour x réel,

$$U(x) = \frac{1 - 2i}{|1 - 2i|^2} e^x e^{2ix} = \operatorname{Im}\left(\frac{e^x}{5} (1 - 2i) \left(\cos(2x) + i\sin(2x)\right)\right)$$
$$= \frac{e^x}{5} \left(\sin(2x) - 2\cos(2x)\right)$$

On a donc

$$H = U\left(\frac{\pi}{4}\right) - U(0) = \frac{e^{\frac{\pi}{4}} + 2}{5}.$$

On retrouve bien le résultat précédent.

6) On pose	x	$\sqrt{2t+1}$		
	$\mathrm{d}x$	$\frac{1}{\sqrt{2t+1}} dt$		
	x = 1	t = 0		
	$x = \sqrt{3}$	t = 1		

On calcule alors

$$I = \int_0^1 e^{\sqrt{2t+1}} dt = \int_0^1 \sqrt{2t+1} e^{\sqrt{2t+1}} \frac{1}{\sqrt{2t+1}} dt = \int_1^{\sqrt{3}} x e^x dx.$$

Cette dernière intégrale se calcule par intégration par parties :

$$I = \left[xe^{x}\right]_{1}^{\sqrt{3}} - \int_{1}^{\sqrt{3}} e^{x} dx = \sqrt{3}e^{\sqrt{3}} - e - \left(e^{\sqrt{3}} - e\right) = \boxed{\left(\sqrt{3} - 1\right)e^{\sqrt{3}}}$$

Exercice 2. Une étude de fonction.

1. La fonction u est dérivable sur \mathbb{R} comme quotient et $\forall x \in \mathbb{R}$ $u'(x) = 2\frac{(1-x^2)}{(1+x^2)^2}$.

x	$-\infty$		-1	0	1		$+\infty$
u'(x)		_	0	+	0	_	
u	0 、		_1		1		0

La fonction u prend ses valeurs dans [-1,1], intervalle de définition de arcsin. La fonction f est donc <u>bien définie</u>, comme composée arcsin $\circ u$.

- 2. Soit $k \in \{1, 2, 3\}$. D'après le tableau de variation précédent, u va de I_k dans]-1, 1[et est dérivable sur I_k . Comme arcsin est dérivable sur]-1, 1[, le théorème de dérivation des composées permet de justifier que f est dérivable sur I_k .
- 3. Soit $x \in I_1 \cup I_2 \cup I_3$.

$$f'(x) = u'(x)\arcsin'(u(x)) = 2\frac{1-x^2}{(1+x^2)^2} \cdot \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}} = \frac{1-x^2}{|1-x^2|} \cdot \frac{2}{1+x^2}.$$

Ainsi,

$$\forall x \in]-1,1[\quad f'(x) = \frac{2}{1+x^2} \text{ et } \forall x \in]-\infty,-1[\cup]1,+\infty[\quad f'(x) = -\frac{2}{1+x^2}.$$

4. Il existe trois constantes C_1, C_2 et C_3 telles que

$$\forall x \in I_1 \quad f(x) = C_1 - 2\arctan(x)$$

$$\forall x \in I_2 \quad f(x) = C_2 + 2\arctan(x)$$

$$\forall x \in I_3 \quad f(x) = C_3 - 2\arctan(x)$$

Évaluons en 0 : on a $f(0) = 2\arctan(0) + C_2$ ce qui donne $C_2 = 0$:

$$\forall x \in]-1,1[\quad f(x) = 2\arctan(x).$$

Passons à la limite en $+\infty$: on obtient $0 = -2 \cdot \frac{\pi}{2} + C_3$ d'où $C_3 = \pi$:

$$\forall x \in]1, +\infty[f(x) = \pi - 2\arctan(x).$$

Passons à la limite en $-\infty$: on obtient $0 = -2 \cdot \left(-\frac{\pi}{2}\right) + C_1$ d'où $C_1 = -\pi$:

$$\forall x \in]-\infty,-1[$$
 $f(x) = \pi - 2\arctan(x).$

5. a)
$$f(\tan(u)) = \arcsin\left(\frac{2\tan u}{1 + \tan^2 u}\right)$$
$$= \arcsin\left(2\cos^2(u) \cdot \frac{\sin u}{\cos u}\right)$$
$$= \arcsin\left(2\cos u \sin u\right)$$
$$= \arcsin\left(\sin 2u\right)$$
$$= 2u.$$

la dernière égalité étant vraie parce-que $2u \in]-\frac{\pi}{2}, \frac{\pi}{2}[.$

b) Soit $x \in]-1,1[$. On a $\arctan(x) \in]-\frac{\pi}{4},\frac{\pi}{4}[$. En appliquant le résultat de la question a avec $u=\arctan(x)$, on obtient

$$f(\tan(\arctan(x))) = 2\arctan(x)$$
 soit $f(x) = 2\arctan(x)$.

On retrouve donc bien le résultat de la question 4.

Exercice 3. Une intégrale du DM, calculée d'une autre façon.

On définit sur \mathbb{R}_+^* la fonction $f: x \mapsto \int_{1/x}^x \frac{\arctan(t)}{t} dt$.

- 1. La fonction $t \mapsto \frac{\arctan(t)}{t}$ est continue sur \mathbb{R}_+^* (comme quotient de fonctions continues, le dénominateur ne s'annulant pas). Elle admet donc une primitive A sur cet intervalle (le théorème fondamental de l'analyse le garantit).
- 2. On a

$$\forall x \in \mathbb{R}_+^* \quad f(x) = A(x) - A\left(\frac{1}{x}\right).$$

La fonction $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}_+^* et à valeurs dans \mathbb{R} et arctan est dérivable sur \mathbb{R} . La composée $x \mapsto A\left(\frac{1}{x}\right)$ est donc dérivable sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$.

$$f'(x) = A'(x) - \left(-\frac{1}{x^2}\right)A'\left(\frac{1}{x}\right) = \frac{\arctan(x)}{x} + \frac{1}{x^2} \cdot \frac{\arctan(\frac{1}{x})}{\frac{1}{x}} = \frac{\arctan(x) + \arctan(\frac{1}{x})}{x}.$$

Une propriété du cours nous donne que le numérateur de la dernière fraction vaut $\frac{\pi}{2}$ pour tout x dans \mathbb{R}_{+}^{*} . On a donc bien établi que

$$\forall x \in \mathbb{R}_+^* \quad f'(x) = \frac{\pi}{2x}$$

3. La fonction f et la fonction $\frac{\pi}{2}$ ln ont la même dérivée sur l'intervalle \mathbb{R}_+^* . Elle coïncident sur cet intervalle à une constante additive près :

$$\exists c \in \mathbb{R} \quad \forall x \in \mathbb{R}_+^* \quad f(x) = \frac{\pi}{2} \ln(x) + c.$$

Pour calculer c, on évalue en 1. D'une part,

$$f(1) = \int_{1}^{1} \frac{\arctan(t)}{t} dt = 0.$$

D'autre part $\frac{\pi}{2}\ln(1) + c = c$. Ceci impose c = 1. On a démontré

$$\forall x \in \mathbb{R}_+^* \quad f(x) = \frac{\pi}{2} \ln(x)$$

Problème. Les nombres ne sont pas réels, la somme et le produit si.

- 1. Si $z_1 \in \mathbb{U}$ et $z_1 \in \mathbb{R}$ alors $z_1 = \pm 1$. Donc A_1 est fausse
- 2. (a) Une possibilité parmi d'autres : $z_1 = i$; $z_2 = -i$
 - (b) Généralisons ce qui précède : si n est pair, notons n=2p avec $p\in\mathbb{N}^*$. On choisit $z_1=\cdots=z_p=i$ et $z_{p+1}=\cdots=z_n=-i$. D'une part $z_1+\cdots+z_n=(z_1+\cdots+z_p)+(z_{p+1}+\cdots+z_{2p})=pi-pi=0\in\mathbb{R}$ et d'autre part $z_1\ldots z_n=(z_1\ldots z_p)(z_{p+1}\ldots z_{2p})=i^p(-i)^p=(-i^2)^p=1\in\mathbb{R}$. Puisque ces nombres z_k (pour $1\leq k\leq n$) sont de module 1 et différents de ± 1 , ceci montre que A_1 est vraie.
- 3. (a) On rappelle que

$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin p - \sin q = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right).$$

- (b) $\operatorname{Im}(z_1 + z_2 + z_3) = \left[\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 0 \right]$ puisque $z_1 + z_2 + z_3 \in \mathbb{R}$. $\operatorname{Im}(z_1 z_2 z_3) = \operatorname{Im} \left(e^{i(\theta_1 + \theta_2 + \theta_3)} \right) = \left[\sin(\theta_1 + \theta_2 + \theta_3) = 0 \right]$ puisque $z_1 z_2 z_3 \in \mathbb{R}$.
- (c) On calcule:

$$\sin(a+b+c) - (\sin a + \sin b + \sin c)$$

$$= (\sin(a+b+c) - \sin a) - (\sin b + \sin c)$$

$$= 2\cos\left(a + \frac{b+c}{2}\right)\sin\frac{b+c}{2} - 2\sin\frac{b+c}{2}\cos\frac{b-c}{2}$$

$$= 2\sin\left(\frac{b+c}{2}\right)\left(\cos\left(a + \frac{b+c}{2}\right) - \cos\left(\frac{b-c}{2}\right)\right)$$

$$= -4\sin\frac{b+c}{2}\sin\frac{a+b}{2}\sin\frac{a+c}{2}.$$

(d) D'après la question b) : $\sin(\theta_1 + \theta_2 + \theta_3) = 0$ et $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 0$. En appliquant la question précédente on obtient

$$\sin\left(\frac{\theta_1 + \theta_2}{2}\right) \sin\left(\frac{\theta_2 + \theta_3}{2}\right) \sin\left(\frac{\theta_3 + \theta_1}{2}\right) = 0$$

$$\sin\left(\frac{\theta_1+\theta_2}{2}\right) = 0$$
 ou $\sin\left(\frac{\theta_2+\theta_3}{2}\right) = 0$ ou $\sin\left(\frac{\theta_3+\theta_1}{2}\right) = 0$.

Plaçons nous par exemple dans le cas où $\sin\left(\frac{\theta_1+\theta_2}{2}\right)=0$. Alors $\frac{\theta_1+\theta_2}{2}=0$ $[\pi]$ i.e. $\theta_1+\theta_2=0$ $[2\pi]$. Par conséquent $\theta_1+\theta_2+\theta_3=\theta_3$ $[2\pi]$.

Il s'en suit que $\sin(\theta_3) = \sin(\theta_1 + \theta_2 + \theta_3) = 0$.

On obtient $\theta_3 = 0$ [π] et donc $z_3 = e^{i\theta_3} = \pm 1$.

Les deux autres cas mènent à $z_1 = \pm 1$ et $z_2 = \pm 1$.

$$z_1 = \pm 1 \text{ ou } z_2 = \pm 1 \text{ ou } z_3 = \pm 1$$

- (e) Ce qui précède démontre que A_3 est fausse.
- 4. (a) $z_1z_2z_3 = -j^3 = -1$ donc : $z_1z_2z_3z_4z_5 \in \mathbb{R} \iff z_4z_5 \in \mathbb{R}$. Puisque $|z_4z_5| = 1$ il reste $z_1z_2z_3z_4z_5 \in \mathbb{R} \iff z_4z_5 = \pm 1$. Enfin $|z_4| = 1$ donne $\frac{1}{z_4} = \overline{z_4}$ ce qui permet de conclure que

$$z_1 z_2 z_3 z_4 z_5 \in \mathbb{R} \iff z_5 = \pm \overline{z_4}$$

(b) Si $z_5 = \overline{z_4}$ alors $z_1 + z_2 + z_3 + z_4 + z_5 = j + z_4 + \overline{z_4} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} + 2\text{Re}(z_4)$. Ainsi

$$\operatorname{Im}(z_1 + z_2 + z_3 + z_4 + z_5) = \frac{\sqrt{3}}{2} \neq 0$$

$$\boxed{z_1 + z_2 + z_3 + z_4 + z_5 \notin \mathbb{R}}$$

(c) Si $z_5 = -\overline{z_4}$ alors $z_1 + z_2 + z_3 + z_4 + z_5 = j + z_4 - \overline{z_4} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} + 2i\operatorname{Im}z_4$. Ainsi

$$\operatorname{Im}(z_1 + z_2 + z_3 + z_4) = \frac{\sqrt{3}}{2} + 2\operatorname{Im}z_4.$$

Il vient alors:

$$z_1 + z_2 + z_3 + z_4 + z_5 \in \mathbb{R} \iff \frac{\sqrt{3}}{2} + 2\operatorname{Im} z_4 = 0 \iff \operatorname{Im} z_4 = -\frac{\sqrt{3}}{4}.$$

(d) • Supposons que z_4 et z_5 conviennent. Par la question a) on a $z_5=\overline{z_4}$ ou $z_5=-\overline{z_4}$.

Le cas $z_5 = \overline{z_4}$ est à exclure d'après la question b).

Il reste donc $z_5 = -\overline{z_4}$ et d'après la question c) $\text{Im} z_4 = -\frac{\sqrt{3}}{4}$.

Notons $z_4 = x + iy$ $(x, y) \in \mathbb{R}^2$. On doit avoir $y = -\frac{\sqrt{3}}{4}$ mais aussi $x^2 + y^2 = |z_4|^2 = 1$,

d'où

$$x = \pm \frac{\sqrt{13}}{4}.$$

On obtient donc

$$\begin{cases} z_4 = \frac{1}{4}(\sqrt{13} - i\sqrt{3}) \\ z_5 = \frac{1}{4}(-\sqrt{13} - i\sqrt{3}) \end{cases} \text{ ou } \begin{cases} z_4 = \frac{1}{4}(-\sqrt{13} - i\sqrt{3}) \\ z_5 = \frac{1}{4}(\sqrt{13} - i\sqrt{3}). \end{cases}$$

• En prenant $z_4 = \frac{1}{4}(\sqrt{13} - i\sqrt{3})$ et $z_5 = \frac{1}{4}(-\sqrt{13} - i\sqrt{3})$, on vient de voir que $z_1 + \cdots + z_5 \in \mathbb{R}$ et $z_1 \dots z_5 \in \mathbb{R}$. De plus, les z_k sont tous de module 1 et distincts de ± 1 .

$$\mathcal{A}_5$$
 est vraie.

- 5. On a vu que A_1 et A_3 sont fausses.
 - On sait aussi que A_n est vraie n est pair.
 - On sait enfin que A_5 est vraie.
 - Soit à présent un entier n impair tel que $n \geq 7$. On écrit n = 5 + 2k avec $k \in \mathbb{N}^*$. Puisque 2k est pair, \mathcal{A}_{2k} est vraie et donc

$$\exists (z_6, \dots, z_{2k+5}) \in (\mathbb{U} \setminus \{-1; 1\})^{2k}$$
 : $z_6 + \dots + z_{2k+5} \in \mathbb{R}$ et $z_6 \times \dots \times z_{2k+5} \in \mathbb{R}$. Puisque \mathcal{A}_5 est vraie,

$$\exists (z_1, \dots, z_5) \in (\mathbb{U} \setminus \{-1; 1\})^5$$
 : $z_1 + \dots + z_5 \in \mathbb{R}$ et $z_1 \times \dots \times z_5 \in \mathbb{R}$.

On a alors

$$(z_1, \ldots, z_{2k+5}) \in (\mathbb{U} \setminus \{-1; 1\})^{2k+5}$$

 $_{
m et}$

$$z_1 + \dots + z_{2k+5} = \underbrace{(z_1 + \dots + z_5)}_{\in \mathbb{R}} + \underbrace{(z_6 + \dots + z_{2k+5})}_{\in \mathbb{R}} \in \mathbb{R}$$
$$z_1 \times \dots \times z_{2k+5} = \underbrace{(z_1 \times \dots \times z_5)}_{\in \mathbb{R}} \times \underbrace{(z_6 \times \dots \times z_{2k+5})}_{\in \mathbb{R}} \in \mathbb{R}.$$

Cela montre que A_{2k+5} , c'est-à-dire A_n est vraie.

• Conclusion :

Les entiers n tels que \mathcal{A}_n est vraie sont ceux de $\mathbb{N}^* \setminus \{1, 3\}$.