Función de masa de probabilidad conjunta

$$p_{X,Y}(x,y) = P(X=x,Y=y)$$

$$|P(a \le X \le b, c \le Y \le d) = \sum_{x=a}^{b} \sum_{y=c}^{d} p_{X,Y}(x,y)$$

$$\sum_{x \in R_X} \sum_{y \in R_Y} p_{X,Y}(x,y) = 1$$

Función de probabilidad acumulada conjunta

$$\begin{aligned} \boldsymbol{F}_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) &= \boldsymbol{P}\left(\boldsymbol{X} \leq \boldsymbol{x}, \boldsymbol{Y} \leq \boldsymbol{y}\right) \\ \boldsymbol{F}_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) &= \sum_{\alpha \leq \boldsymbol{x}} \sum_{\beta \leq \boldsymbol{y}} \boldsymbol{p}_{\boldsymbol{X},\boldsymbol{Y}}(\alpha,\beta) \end{aligned}$$

$$\mathbf{O} \leq \mathbf{F}_{X,Y}(\mathbf{x},\mathbf{y}) \leq \mathbf{1}$$

- Monótonamente no decreciente en cada variable
- Continua por derecha en cada variable

Función de masa de probabilidad marginal

$$\mathbf{p}_{\mathbf{Y}}(\mathbf{y}) = \sum_{\mathbf{x} \in R_{\mathbf{x}}} \mathbf{p}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$$

$$\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in R_{\boldsymbol{Y}}} \boldsymbol{p}_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})$$

Función de masa de probabilidad condicional

$$\boldsymbol{p}_{\boldsymbol{x}\vee\boldsymbol{y}}(\boldsymbol{x}\vee\boldsymbol{y})=\frac{\boldsymbol{p}_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{\boldsymbol{p}_{\boldsymbol{Y}}(\boldsymbol{y})}$$

$$m{p}_{m{Y}m{ee X}}(m{y}m{ee x}) = rac{m{p}_{m{X},m{Y}}(m{x},m{y})}{m{p}_{m{X}}(m{x})}$$

Variables aleatorias independientes

$$oldsymbol{p}_{oldsymbol{X},oldsymbol{Y}}(oldsymbol{x}$$
 , $oldsymbol{y}) = oldsymbol{p}_{oldsymbol{X}}(oldsymbol{x}) oldsymbol{p}_{oldsymbol{Y}}(oldsymbol{x})$

$$\boldsymbol{p}_{\boldsymbol{X}\vee\boldsymbol{Y}}(\boldsymbol{x}\vee\boldsymbol{y})=\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{x})$$

$$\boldsymbol{p}_{\boldsymbol{Y} \vee \boldsymbol{X}}(\boldsymbol{y} \vee \boldsymbol{x}) = \boldsymbol{p}_{\boldsymbol{Y}}(\boldsymbol{y})$$

Valor esperado

$$E[g(X,Y)] = \sum_{x \in R_X} \sum_{y \in R_Y} g(x,y) p_{X,Y}(x,y)$$

Covarianza

$$\mathbf{Cov}(oldsymbol{X},oldsymbol{Y})\!=\!oldsymbol{E}[oldsymbol{X}oldsymbol{Y}]\!-\!oldsymbol{E}[oldsymbol{X}]oldsymbol{E}[oldsymbol{Y}]$$

Variables independientes

$$E[g_{1}(X)g_{2}(Y)] = \sum_{x \in R_{X}} \sum_{y \in R_{Y}} g_{1}(x)g_{2}(y)p_{X,Y}(x,y)$$

$$E[g_{1}(X)g_{2}(Y)] = \sum_{x \in R_{X}} \sum_{y \in R_{Y}} g_{1}(x)g_{2}(y)p_{X}(x)p_{Y}(y)$$

$$E[g_{1}(X)g_{2}(Y)] = \sum_{x \in R_{X}} g_{1}(x)p_{X}(x) \sum_{y \in R_{Y}} g_{2}(y)p_{Y}(y)$$

$$E[g_1(X)g_2(Y)] = E[g_1(X)]E[g_2(Y)]$$

Covarianza

$$\mathbf{Cov}(oldsymbol{X},oldsymbol{Y})\!=\!oldsymbol{E}[oldsymbol{X}oldsymbol{Y}]\!-\!oldsymbol{E}[oldsymbol{X}]oldsymbol{E}[oldsymbol{Y}]$$

Variables independientes

¡OJO! En general:

$$Y = aX + b$$
 con $a \neq 0$

$$\mu_{Y} = a \mu_{X} + b$$

$$\sigma_{Y}^{2} = a^{2} \sigma_{X}^{2} = \sigma_{Y}^{2} = |a| \sigma_{X}^{2}$$

$$|E[XY] = E[aX^2 + bX] = aE[X^2] + bE[X]$$

$$E[X]E[Y] = a \mu_X^2 + b \mu_X$$

$$\mathbf{Cov}(oldsymbol{X}$$
 , $oldsymbol{Y}) = a\,\sigma_X^2$

Relación lineal

Correlación

$$Q_{X,Y} = \frac{\mathbf{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$Q_{X,Y} \in [-1,+1]$$

Relación lineal

Experimento:

Una urna contiene 10 bolillas blancas y 5 negras. Se tira una moneda al aire. Si sale cara se agregan 10 bolillas negras a la urna; si sale ceca se agregan 10 bolillas blancas. Se saca una bolilla al azar y se observa el color.

Se definen dos variables aleatorias discretas:

- : vale 0 si sale ceca al arrojar la moneda y 1 si sale cara
- : vale 0 si la bolilla extraída es negra y 1 si es blanca.

: probabilidad condicional de dado

		negra	blanca
X = 0			
20 blancas 5 negras		0	1
ceca	0	0.2	0.8
X = 1 cara	1	0.6	0.4
15 negras 10 blancas			

$$p_{Y\vee X}(0|0) = \frac{5}{25}, p_{Y\vee X}(1|0) = \frac{20}{25}$$
 $p_{Y\vee X}(0|1) = \frac{15}{25}, p_{Y\vee X}(1|1) = \frac{10}{25}$

: probabilidad conjunta de e

,: probabilidades marginales de e

	0	1
0	0.1	0.4
1	0.3	0.2

$$p_X(x)$$

0.5	

$$p_{Y}(y)$$

No son independientes

	0	1
0	0.1	0.4
1	0.3	0.2

$$p_X(x)$$

0.5	
0.5	

$$p_Y(y)$$
 0.4 0.6

$$\mu_X = E[X] = 0.0.5 + 1.0.5 = 0.5$$
 $E[X^2] = 0^2 \cdot 0.5 + 1^2 \cdot 0.5 = 0.5$
 $\sigma_X^2 = 0.5 - 0.25 = 0.25$

	0	1
0	0.1	0.4
1	0.3	0.2

$$p_X(x)$$

0.5
0.5

$$p_Y(y)$$
 0.4 0.6

$$\mu_Y = E[Y] = 0.0.4 + 1.0.6 = 0.6$$

$$E[Y^2] = 0^2 \cdot 0.4 + 1^2 \cdot 0.6 = 0.6$$

$$\sigma_Y^2 = 0.6 - 0.36 = 0.24$$

	0	1
0	0.1	0.4
1	0.3	0.2

$$p_X(x)$$

0.5
0.5

$$p_Y(y)$$
 0.4 0.6

$$E[XY] = 0.0.1 + 0.0.4 + 0.0.3 + 1.0.2 = 0.2$$

	0	1
0	0.1	0.4
1	0.3	0.2

$$p_X(x)$$

0.5	
0.5	

$$p_Y(y)$$
 0.4 0.6

$$\mu_X = 0.5, \sigma_X^2 = 0.25$$
 $\mu_Y = 0.6, \sigma_Y^2 = 0.24$
 $E[XY] = 0.2$

No son variables independientes

No hay una relación lineal

Experimento

Se tira un dado dos veces y se anotan los resultados X_1 y X_2 .

Se definen dos variables aleatorias discretas:

$$X_1$$

$$|X_1 - X_2|$$

El recorrido de

$$R_X = \{1,2,3,4,5,6\}$$

El recorrido de

$$R_Y = [0,1,2,3,4,5]$$

El recorrido de

$$R_{X,Y} = R_X \times R_Y$$

X_2	1	2	3	4	5	6
1	0	1	2	3	4	5
2)	•)	•
3	1	0	1	2	3	4
4	2	1	0	1	2	3
5					_	
6	3	2	1	0	1	2

4 3 2 1 0 1

5 4 3 2 1 0

X_2	1	2	3	4	5	6
1	0	1	2	3	4	5
2			_			
3	1	0	1	2	3	4
4	2	1	0	1	2	3
5		_				_
6	3	2	1	0	1	2
	4	3	2	1	0	1

: probabilidad conjunta de e

	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

$$P(X=1|Y=2)$$
 $\frac{P(X=1,Y=2)}{P(Y=2)}$

$$\begin{array}{r}
\frac{1}{36} \\
\frac{8}{36}
\end{array}$$

$$\frac{1}{8} \neq P(X=1) = \frac{1}{6}$$

No son variables aleatorias independientes

$$m{p}_{Xee Y}(1|2)$$
 $rac{m{p}_{X,Y}(1,2)}{m{p}_{Y}(2)}$

$$\frac{\frac{1}{36}}{\frac{8}{36}}$$

$$\frac{1}{8} \neq p_X(1) = \frac{1}{6}$$