ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 11: Confidence Intervals and Hypothesis Testing

William Marsh

Outline

- Recap of Sampling
 - Estimation and uncertainty
 - Ways to estimate
- Estimating the mean and variance of a Normal
- Sampling distributions
 - Standard error
- Confidence intervals
- Hypothesis testing
 - Null hypothesis
 - Type I & II errors
 - Example: Student's t-test
- Issues with CI and p-values

Sampling

Recap sampling

Population and Sample

Population size N

- Sample from a population
- Measure the sample (e.g. political preference)
- Statistical inference about population

Sampling Introduces Variation

- When you toss a coin
 - P(Heads) = P(Tails) = 0.5
 - BUT you do not always get 5 heads in 10 tosses
- When we generate data (i.e. sample) from an unknown distribution
 - We can calculate the statistics (parameters) of the sample
 - BUT this only gives an estimate of the true parameters (of the distribution)

Statistical Inference: Two Problems

- Estimate a parameter from a sample
 - The mean and variance
 - A rate (probability in a binomial)
 - A regression coefficient
- Say how certain we can be that the estimate is near the true value (in the population)

Population has Normal Distribution

Different Ways to Estimate

 No unique way to estimate a parameter from some data

- Maximum likelihood estimation (MLE)
 - Choose θ to maximise p(Data | θ)
- Unbiased estimator
 - Average of repeated estimation is θ
- MLE is sometimes unbiased, but not always

Estimating the Mean and Variance

A 'sample statistic' (e.g. a mean) is calculated from the sample

Estimate the Mean

- \bar{x} is an estimate of μ
- N is sample size

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- This estimate is unbiased
- ... and an MLE

Estimates of the Variance

- Sample variance s^2 estimates σ^2
 - Estimate uses \bar{x}
- Unbiased estimate

$$s^2 = \frac{\sum_{1}^{N} (x_i - \bar{x})^2}{N - 1}$$

Bessel's correction (degrees of freedom)

MLE estimate

$$s_{mle}^2 = \frac{\sum_{1}^{N} (x_i - \bar{x})^2}{N}$$

Simulation

Sampling Distribution

Sampling Distribution

Distribution of the statistic estimated from the sample

Standard Error

How wide is sampling distribution?

- Standard error of the mean
 - Standard deviation of the sampling distribution

Population deviation Sample size $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{N}}$

Estimate by:

$$s_{\bar{x}} = \frac{s}{\sqrt{N}}$$

Approach

- Work out the form of the sample distribution (mathematics)
 - Often normal (central limits theorem)
- Use sample estimates (\bar{x} and s^2) since μ and σ^2 not known
- Look at width of distribution
 - Use standard error to ...
 - estimate 'confidence interval' (error)

Quiz 1

Confidence Intervals

Summary So Far

- We know the sample statistic comes from a distribution
 - Given a population, many samples possible
- We have only one sample value
 - Where in the sampling distribution?
 - How can a confidence interval be based on a single sample?

Confidence Intervals

 A statistic, a sampling distribution and probability threshold

Problem: True Sampling Distribution Depends on Population

Solution: Sampling Distribution based on Sample

Let's cheat

Summary So Far II

- We know the sample statistic comes from a distribution
 - Given a population, many samples possible
- Use the sample statistics to locate the sampling distribution
- Confidence interval
 - Range of a value covering 'most' of the area under the sampling distribution

Normal Approximation

z score

Using Normal to Estimate CI

- Central limits theorem
- Interval

Experiment

- Random data sample (N=30) from Normal
- Calculate 95% CI
- Look at whether the CI contains the true mean (zero)
- Repeat

95% CI does NOT contain true value in 6.27% of samples

95% CI does NOT contain true value in 5.77% of samples

This is the meaning of a CI:

In 95% of samples, the 95% CI will contain the true mean

Quiz 2

Student's t-Distribution

Sampling distribution similar to normal, but variance unknown

Student's t-Distribution

- Normal is only approximate when the variance is unknown (the usual case)
 - Good approximation for sample size >= 30
- Student's t
 - Symmetric
 - Fat tails
 - Parameter 'degrees of freedom' (equal to N-1)
- See notebook for comparison of CI using Normal and Student's t

Student's t-Distribution

- Parameter: 'degrees of freedom' df ≥ 0
 - Shift or scaled with mean and standard deviation
- Normal with 'fat tails'

QQPlot of Estimated Z-Scores

 Compare distribution of sampled values to standard normal

Using Student's t to Estimate CI

- Central limits theorem
- Interval

Confidence Intervals for a Mean

- Sample of data
 - From a normal
- Sample statistics
 - Mean
 - Standard deviation

- Cl from
 - Student's tdistribution
 - Required p-value

Sampling Distribution (of a Statistic)

- We looked at the distribution of the samples
 - Often Normal, at least for large samples
- Some sampling distributions

Distribution	Application
Student's t-distribution	Example: difference between two sample means. Sampling distribution normal but variance unknown
Chi-squared	Difference between frequencies in a contingency tables

Preview of C/W 1

C/W 1: Underground Exits

- Working with a data frame in Pandas
- Summary statistics and histograms
- Interpretation of data and plots
- Simple model and evaluation

- Use any code from notebooks
- Sprint week should cover everything
- All code should be relevant (NO JUNK)
- You can ask questions

Two Key Issues

Readable Document

- Write the notebook as a 'document'
 - Imagine all the code hidden
 - Reader is a 'domain' expert (not a data scientist, not a programmer)
- Guide: it should look like notebooks 1-3
 - Title and section headings
 - Short code cells alternating with markdown
- Write about data manipulation, not code

Running the Notebook

- Problem of order
- Solution: rerun notebook
 - Restart the kernel
 - Rerun everything
- Expect zero if your code does not run
 - You may get more

Hypothesis Testing

Making a decision: are differences real?

Student's t-test

Hypothesis Testing

- Null hypothesis (H₀)
 - Chance is to blame
 - Differences in the sample are not real
- Alternative hypothesis (H₁)
 - The difference is not due to chance

- Idea: assume 'null hypothesis' and ask 'is this data likely'?
 - If sufficiently unlikely, we reject the null hypothesis
 - If not, all we can say is 'no evidence'

Significance and Errors

- 'Sufficiently unlikely' significance
 - Choose a threshold 'p-value'
- Type 1 error:
 - Mistakenly reject the null hypothesis
 - False positive
- Type 2 error
 - Mistakenly accept the null hypothesis
 - Effect not proven more data needed
- Increase threshold to reduce type 1 errors

t-Tests

 For statistics that would be normally distributed except that variance also estimated from data

Examples

- Could the mean be equal to a given value?
- Are means the same? Paired data:
 - E.g. same students taking programming and stats
- Are means the same? Unpaired data:
 - E.g. stats results for men and women

Testing Difference Between Two Means

- Two groups A (size N_A) and B (size N_B), unpaired
 - E.g. those with / without heart disease
 - Samples X_A, X_B of e.g. cholesterol

Type	H0: Null	H1: Alternative
One tailed	A-mean does not exceed B-mean	A-mean does exceed the B-mean
Two tailed	A-mean and B-mean are equal	A-mean and B-mean are not equal

Test statistic:
$$t = \frac{\overline{X_A} - \overline{X_B}}{\sqrt{\frac{s_A^2 + s_B^2}{N_A} + N_B}}$$
 Difference of means: t increases as $\overline{X_A} > \overline{X_B}$

from t-distribution with degrees of freedom depending on N_A - 1 and N_B - 1

Two-Tailed t-Test

 |t-statistic| increases as A-mean > B-mean (or as A-mean < Bmean)

- Is the t-statistic far enough from zero?
 - Calculate α
 - Is α small enough to reject H₀?
 - Threshold 99% then α ≤ 1%

One-Tailed t-Test

 Only look at A-mean > B-mean

– Is α small enough to reject H₀?

Software: given the data for A and B, calculate the statistic and return α usually for 2-tailed test

Relationship between Hypothesis Testing and Cl

- These two are connected
 - Confidence interval for $\overline{X_A} \overline{X_B}$
 - Hypothesis test comparing μ_A and μ_B
- If CI includes zero then means may be equal
- Catch
 - CI of difference in means is not the same as difference between CIs of means

Quiz 3

Issues with Hypothesis Testing, C.I.s and p-Values

Often misinterpreted

Confidence Intervals

- Good idea to have interval estimation
 - Not just point estimates
- Problem: Not the probability that you think it is!

There is 95% probability that the mean is in the CI range

If we repeat the same sampling process many times, the true (population) statistic with be inside the CI range 95% of the time

Hypothesis Testing

- Not very relevant to data science
- Problem 1: no account of effect size
 - Effect: e.g. the increase in mean survival
 - A 'statistically significant' effect can be insignificant
 - ... especially with large datasets
- Problem 2: interpretation
 - Failure to reject the null hypothesis does not imply it is true
 - maybe too little data
- Problem 3: p-values (again)
 - At 95% confidence, the conclusion is wrong 5% of the time

t-test Assumes Independent Samples from Normal

- Population is not Normal
 - Skewness
 - Outliers (e.g. errors)
- Sample not independent
 - E.g. time series
- Difficulty: how much non-normality is too much
 - t-test generally ok when sample large

Summary I

- When sampling, difference may arise by chance
- CI: in what range will the sample statistic usually fall?
- Hypothesis test: assume 'null hypothesis' (no difference)
- Hypothesis testing and p-values can be dangerously misleading
 - Especially with large datasets: 'statistical significance' may be true when difference trivial

Summary II

- What makes this topic difficult?
 - Details of sampling statistic and sampling distributions
 - Assumptions under which different tests are reliable
- Consequence
 - Formulaic approach
 - Poor interpretation of results
- Computational approaching: bootstrapping
 - More uniform
 - Focus on interval estimation