Solution

DIP Midterm Exam 2020/5/18

1. (20%) Consider f(x,y) and w(x,y) below. (a) Evaluate the linear convolution $g_1(x,y) = f(x,y)$ * w(x,y). (b) Determine $g_2(x,y) = DFT^1[F(u,v)W(u,v)]$ (3×3 inverse DFT), where F(u,v) and W(u,v) are respectively the 3×3 DFT of f(x,y) and w(x,y), and $g_2(x,y)$ is the inverse 3×3 DFT of [F(u,v)W(u,v)]. The shaded grid indicates the origin (0,0) of the image spatial coordinate system.

	(_	,	, (30,5)	,
1	0	0	1	2	3
-1	0	0	4	5	4
0	0	0	3	2	1

Solution:

2. (15%) A linear, shift-invariant (LSI) system has the impulse response $h(x,y) = \delta(x-a,y-b)$ where a and b are constants, and x and y are discrete quantities. (a) What is the frequency response H(u,v) of this LSI system (assume $M\times N$ 2D DFT)? (b) Given an input, $f_1(x,y) = K$, what is the output of this LSI system? (c) If now the input is $f_2(x,y) = \sin((2\pi u_0 x)/M + (2\pi v_0 y)/N)$, what is the output?

Solution:

$$H(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x,y) W_M^{ux} W_N^{vy} = \sum_{y=0}^{N-1} \delta(x-a,y-b) W_M^{ux} W_N^{vy} = W_M^{ua} W_N^{vb} = e^{-j\frac{2\pi}{M}ua} e^{-j\frac{2\pi}{N}vb}$$

$$f_1(x, y) * h(x, y) = K * \delta(x - a, y - b) = K$$
 5

$$f_2(x,y) * h(x,y) = \sin\left(\frac{2\pi u_0 x}{M} + \frac{2\pi v_0 y}{N}\right) * \delta(x-a,y-b) = \sin\left(\frac{2\pi u_0 (x-a)}{M} + \frac{2\pi v_0 (y-b)}{N}\right)$$

3. (26%)

3. (20%)
(a) (10%) Consider
$$f(x,y)$$
 below. Let $F(u,v) = DFT\{f(x,y)\}_{8\times8}$. Plot $g(x,y) = iDFT_{8\times8} \{F(u,v)e^{j\frac{\pi}{4}(u-v)}\}$

Solution:

$$(a)g(x,y) = iDFT \left\{ F(u,v)e^{j\left(\frac{\pi u}{4} - \frac{\pi v}{4}\right)} \right\} = iDFT \left\{ F(u,v)e^{j\left(\frac{2\pi u}{8} - \frac{2\pi v}{8}\right)} \right\} = f((x+1)_8, (y-1)_8)$$

$$f((x-x_0)_M, (y-y_0)_N) \longleftrightarrow^{DFT} F(u,v)e^{-j\frac{2\pi}{M}ux_0} e^{-j\frac{2\pi}{N}vy_0}$$

$$= F(u,v)W_M^{ux_0}W_N^{vy_0}$$

3. (26%)
(b) (16%) Prove the multiplication property of 2D DFT:
$$f(x,y)h(x,y) \stackrel{DFT}{\longleftrightarrow} \frac{1}{MN} F(u,v) \otimes H(u,v)$$
where $F(u,v) / H(u,v)$ is the $M \times N$ 2D DFT of $f(x,y) / h(x,y)$. Give two-way proof: $(x,y) \rightarrow (u,v)$,
 $(x,y) \leftarrow (u,v)$.

Prove: $(x,y) \rightarrow (u,v)$
Let $g(x,y) = f(x,y)h(x,y)$

$$g(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)h(x,y)W_M^{ux}W_N^{vy} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left(\frac{1}{MN} \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta)W_M^{-\alpha x}W_N^{-\beta y}\right)h(x,y)W_M^{ux}W_N^{vy}$$

$$= \frac{1}{MN} \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta) \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x,y)W_M^{(u-\alpha)x}W_N^{(v-\beta)y} = \frac{1}{MN} \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta)H((u-\alpha)_M,(v-\beta)_N)$$

$$= \frac{1}{MN} F(u,v) \otimes H(u,v)$$

$$(x,y) \leftarrow (u,v)$$

$$G(u,v) = \frac{1}{MN} F(u,v) \otimes H(u,v) = \frac{1}{MN} \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta)H((u-\alpha)_M,(v-\beta)_N)$$

$$= \frac{1}{MN} \sum_{\alpha=0}^{N-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta) \left(\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x,y)W_M^{(u-\alpha)x}W_N^{(v-\beta)y}\right) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x,y) \left(\frac{1}{MN} \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} F(\alpha,\beta)W_M^{-\alpha x}W_N^{-\beta y}\right) W_M^{ux}W_N^{vy}$$

$$\Rightarrow g(x,y) = f(x,y)h(x,y)$$

4. (30%) Consider a 4 bits/pixel image f_r (size 20×20) with the gray levels $0 \le r_i \le 15$, $i=0,\ldots,15$. The number of pixels (n_i) with gray level r_i is: $n_0=n_1=n_2=n_3=0$, $n_4=24$, $n_5=n_6=48$, $n_7=n_8=100$, $n_9=80$, $n_i=0$ for $10\le r_i \le 15$. (a) Determine the intensity transformation function $s=T_1(r)$ for performing histogram equalization (10%), and find out the output histogram (5%).

Solution (a):

				I		10			10\(()		
r_i	n_i	p_i	$\Sigma(p_i)$	$15\Sigma(p_i)$	s_i		r_i	$s_i=T_1(r_i)$		s_i	n_i
0	0	0.00	0.00	0.00	0		0	0		0	0
1	0	0.00	0.00	0.00	0		1	0		1	24
2	0	0.00	0.00	0.00	0		2	0		2	0
3	0	0.00	0.00	0.00	0		3	0		3	48
4	24	0.06	0.06	0.90	1		4	1		4	0
5	48	0.12	0.18	2.70	3		5	3		5	48
6	48	0.12	0.30	4.50	5		6	5		6	0
7	100	0.25	0.55	8.25	8		7	8		7	0
8	100	0.25	0.80	12.00	12		8	12		8	100
9	80	0.20	1.00	15.00	15		9	15		9	0
10	0	0.00	1.00	15.00	15		10	15		10	0
11	0	0.00	1.00	15.00	15		11	15		11	0
12	0	0.00	1.00	15.00	15		12	15		12	100
13	0	0.00	1.00	15.00	15		13	15		13	0
14	0	0.00	1.00	15.00	15		14	15		14	0
15	0	0.00	1.00	15.00	15		15	15		15	80

4. (30%) Consider a 4 bits/pixel image f_r (size 20×20) with the gray levels $0 \le r_i \le 15$, $i = 0, \ldots$, 15. The number of pixels (n_i) with gray level r_i is: $n_0 = n_1 = n_2 = n_3 = 0$, $n_4 = 24$, $n_5 = n_6 = 48$, $n_7 = n_8 = 100$ $n_9 = 80$, $n_i = 0$ for $10 \le r_i \le 15$. (b) Determine the intensity transformation function $z = T_2(r)$ to produce the output image with the new histogram (probability density function) $\{0.2\ 0\ 0.2\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1\ 0\ 0.1$ histogram (5%).

Solution (b):

			-		_		
r_i	n_i	p_{ri}	$\Sigma(p_{ri})$		$\Sigma(p_{zi})$	p_{zi}	Zi
0	0	0.00	0.00)	/ 0.20	0.2	0
1	0	0.00	0.00		/ 0.20	0	1
2	0	0.00	0.00		/ 0.40	0.2	2
3	0	0.00	0.00		/ 0.40	0	3
4	24	0.06	0.06	1/	0.50	0.1	4
5	48	0.12	0.18]/	0.50	0	5
6	48	0.12	0.30	_	0.60	0.1	6
7	100	0.25	0.55		0.60	0	7
8	100	0.25	0.80		0.70	0.1	8
9	80	0.20	1.00)	0.70	0	9
10	0	0.00	1.00		0.80	0.1	10
11	0	0.00	1.00		0.80	0	11
12	0	0.00	1.00	\geq	0.90	0.1	12
13	0	0.00	1.00		0.90	0	13
14	0	0.00	1.00		\0.90	0	14
15	0	0.00	1.00	ノ	1.00	0.1	15

		10\	,		
r_i	$z_i = T_2(r_i)$		z_i	n_i	
0	0		0	72	
1	0		1	0	
2	0		2	48	
3	0		3	0	
4	0		4	0	
5	0		5	0	
6	2		6	100	
7	6		7	0	
8	10		8	0	
9	15		9	0	
10	15		10	100	
11	15		11	0	
12	15		12	0	
13	15		13	0	
14	15		14	0	
15	15	- 11	15	80	

5. (15%) We may design the intensity transformation function s = T(r) to perform the bit-plane slicing. Determine s = T(r) to obtain respectively (a) bit-plane 8 (8%), and (b) bit-plane 6 (7%) image, assume an 8-bit gray-scale image.

Solution:

bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1
128	64	32	16	8	4	2	1

bit - plane 8: $s = T(r) = \begin{cases} 0, 0 \le r \le 127 \\ 1,128 \le r \le 255 \end{cases}$

bit - plane 6: $s = T(r) = \begin{cases} 0, 0 \le r \le 31, 64 \le r \le 95, 128 \le r \le 159, 192 \le r \le 223 \\ 1, 32 \le r \le 63, 96 \le r \le 127, 160 \le r \le 191, 224 \le r \le 255 \end{cases}$

