第 12 章 独立子系统的统计热力学

一、概念题

1、对于粒子数 N 、能量 E 和体积 V 恒定的系统,若以 表示系统该宏观状态所拥
有的微观状态总数,则每个微观状态出现的概率应为。
2、一个双原子分子的热运动可以等价地看成是由 、 和
运动组成。
3、在相同温度下,子的配分函数最大,子的配分
函数最小。(平动、转动、振动)
4、对于独立的离域子系统,其子配分函数 q 是子数 N 、温度 T 、体积 V 的函数。
(対、错)
5、设双原子分子 AB 的振动为间谐振动,以振动基态为能量标度的零点。若某温
度 T 时振动配分函数的值为 1.02 , 则分子占据振动基态的概率为。
6 、独立子系统能量的微变 $\mathrm{d}E=\sum_{j} \mathcal{E}_{j} \mathrm{d}N_{j} + \sum_{j} N_{j} \mathrm{d}\mathcal{E}_{j}$,试说明前项和后项的物理意
义:前项。
7、 $\mathrm{Br_2}$ 分子的转动特征温度 $\Theta_\mathrm{r}=0.116\mathrm{K}$,则 298 K 下理想气体分子 $\mathrm{Br_2}$ 占据转动
量子数 $J=1$ 能级的概率是。
8、有些气体如 N_2O 和 H_2O 等,他们的光谱熵都比量热熵大,这是由于用量热方法
不能测得残余位形熵。 (对、错)
二、某纯物质理想气体共有 6.023×10^{23} 个分子,分子的某内部运动形式只有三个
能级,各能级的能量分别为 $\varepsilon_1=0,\; \varepsilon_2/k=100~{ m K},\;\;\; \varepsilon_3/k=300~{ m K}$,各能级的简并度 $g_1=1$,
$g_2 = 3$, $g_3 = 5$, 其中 k 为玻耳兹曼常数。试计算:
(1) 200 时分子的配分函数;
(2) 200 并且在最概然分布时,能级 $arepsilon_2$ 上的分子数;
(3) $T \rightarrow \infty$ 并且在最慨然分布时,三个能级上的分子数之比。

四、已知理想气体 F_2 分子的转动特征温度 Θ_r 为 1.269 K , 500 K 时其摩尔转动能为 4157 J \cdot mol $^{-1}$,试求该温度下 F_2 的摩尔转动熵。

数 q_0 , 并指出在求算它们的 q_0 时,需要哪些有关 Ar 和 CO 分子的数据?

三、试写出 Ar 和 CO 两种分子,在室温下以基态能级为能量标度的零点的配分函