Pneumonia Classification with Deep Learning

Jeremy Pagirsky June 4th, 2021

Causes and symptoms

- * Inflammation of the lungs —> alveoli fills with fluid.
 - * Decreased CO2 and O2 exchange in blood.
- * Shortness of breath, fever, cough, chest pain.
- * Higher risk for elderly individuals and those with pre-existing conditions.

Diagnostic Methods

- * Chest x-rays are fast, inexpensive, reliable.
 - * Deep-learning assistance provides automation.
- * Sputum, blood cultures, and bronchoscopy more invasive.

Significance

- * Testing and diagnosis are prophylactic.
 - * Early diagnosis and isolation can help prevent spread of disease.
- * Deep learning models potentially helpful for clinics with few resources.

Methods

- * Two types of neural networks compared: Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN).
- * Constructed, trained, and tested for prediction accuracy on 6000 images.
 - * Training (*n*≈5000): Learn how to predict pneumonia.
 - * Testing ($n \approx 1000$): Try to predict pneumonia.

Multilayer Perceptron

* Pros

- * Great for detecting broader patterns
- * Fewer computational resources required

* Cons

- * Not as cognizant of spatial information
- * Can easily "over-learn" training data
- * Can take longer to find solution

Convolutional Neural Network

* Pros

- * Excellent at computer imaging
- * Great at detecting smaller patterns in data
- * Finds solution faster than MLP

* Cons

* More computationally expensive than MLP

Results

- * CNN (top) was 87.06% accurate on training data, 85.74% on testing data.
- * MLP (bottom) was 74.29% accurate on training data, 62.50% on testing data.
- * CNN had less error for testing data than MLP.

Selection and Future Work

- * CNN prototype to be used for pneumonia classification.
- * Technical approaches for model optimization.
 - * Pre-trained models are highly effective.
- * Broader implications for detection of other diseases, including COVID-19.

References

- * Hurt B, Kligerman S, Hsiao A. Deep Learning Localization of Pneumonia. Journal of Thoracic Imaging. 2020;35(3). doi:10.1097/rti.0000000000000512
- * Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19. Cognitive Computation. 2021. doi:10.1007/s12559-020-09787-5
- Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics. 2017;19(6):1236-1246. doi:10.1093/bib/bbx044
- * Uniqtech. Multilayer Perceptron (MLP) vs Convolutional Neural Network in Deep Learning. Medium. https://medium.com/data-science-bootcamp/multilayer-perceptron-mlp-vs-convolutional-neural-network-in-deep-learning-c890f487a8f1. Published June 13, 2019. Accessed June 4, 2021.

Thank you!

- * Github repository: PneumoniaNeuralNet
- * E-mail: jeremy.pagirsky@gmail.com