

Weight of Statistical Evidence

Detection and Correction of Publication Bias

Servan Grüninger Zurich, November 29th 2019

EBPhD Admission Interview

The Woozle effect

Pooh and Piglet tracking down the elusive Woozle (Image: Ernest H. Shepard)

1

The Woozle effect—why care?

The Woozle effect—why care?

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

```
Transform statistic S_n into V_n = h_n(S_n) so that:
```

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 E_3 : $Var[V_n] = 1$;

```
Transform statistic S_n into V_n = h_n(S_n) so that:

E_1: V_n = h_n(S_n) monotonically increasing in S_n;

E_2: V_n \sim \mathcal{N}(\tau, 1);

E_3: \text{Var}[V_n] = 1;

E_4: E_{\mu}[V_n] = \tau(\mu) monotonically increasing in \mu from
```

 $\tau(0) = 0.$

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 $E_3 : Var[V_n] = 1;$

 E_4 : $E_{\mu}[V_n] = \tau(\mu)$ monotonically increasing in μ from $\tau(0) = 0$.

Student's *t*-statistic as example:

$$T_n = rac{\sqrt{n}(\hat{\mu} - \mu_0)}{\hat{\sigma}} \stackrel{H_0}{\sim} t(\nu = n-1)$$

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 E_3 : $Var[V_n] = 1$;

 E_4 : $E_{\mu}[V_n] = \tau(\mu)$ monotonically increasing in μ from $\tau(0) = 0$.

Student's *t*-statistic as example:

$$T_n = \frac{\sqrt{n}(\hat{\mu} - \mu_0)}{\hat{\sigma}} \stackrel{H_0}{\sim} t(\nu = n-1)$$

For small *n*, transformation needed:

Transform statistic S_n into $V_n = h_n(S_n)$ so that:

 $E_1: V_n = h_n(S_n)$ monotonically increasing in S_n ;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 E_3 : $Var[V_n] = 1$;

 E_4 : $E_{\mu}[V_n] = \tau(\mu)$ monotonically increasing in μ from $\tau(0) = 0$.

Student's *t*-statistic as example:

$$T_n = \frac{\sqrt{n}(\hat{\mu} - \mu_0)}{\hat{\sigma}} \stackrel{H_0}{\sim} t(\nu = n-1)$$

For small *n*, transformation needed:

$$V_n = h_n(T_n) = \sqrt{2n} \sinh^{-1}(T_n/\sqrt{2n})$$

Further improvement by finite sample correction:

$$V_n^* = \frac{n - 1.7}{n - 1} \sqrt{2n} \sinh^{-1}(T_n / \sqrt{2n})$$

3

Several methods assessed

• The funnel plot

- · The funnel plot
- · File drawer calculation

- The funnel plot
- · File drawer calculation
- Expected vs. observed # of significant publications

- The funnel plot
- · File drawer calculation
- Expected vs. observed # of significant publications
- · The calliper test

- The funnel plot
- · File drawer calculation
- Expected vs. observed # of significant publications
- · The calliper test
- Rank correlation & Egger regression

- The funnel plot
- · File drawer calculation
- Expected vs. observed # of significant publications
- · The calliper test
- Rank correlation & Egger regression
- p-curve

Several methods assessed

· Trim-and-fill

- · Trim-and-fill
- Reweight by publication probability

- · Trim-and-fill
- Reweight by publication probability
- p-curves for effect-size correction

- · Trim-and-fill
- Reweight by publication probability
- p-curves for effect-size correction
- Maximise truncated likelihood

Coming Full Circle

Fighting publication bias is like hunting the Woozle—all too often it forces you to go in circles