

Essupio 3
$$\sqrt{m^2+m} - \sqrt[3]{m^2+3}$$

Prima: $A^2 - B^2 = (A+B)(A-B)$

Ova: $A^3 - B^3 = (A-B)(A^2 + AB + B^2)$

Uso questa relassione con $A = \sqrt[3]{m^2+m}$ e $B = \sqrt[3]{m^3+3}$

Quindi devo unekiplicase e dividere per $A^2 + AB + B^2$
 $\sqrt[3]{(u^2+u)^2} + \sqrt[3]{(u^2+n)(m^2+3)} + \sqrt[3]{(n^2+3)^2}$
 $\sqrt[3]{(u^2+m)^2} + \sqrt[3]{(1)} + \sqrt[3]{(u^2+3)^2}$

Essupio 4 $\sqrt{m+3} - \sqrt{m^2+5} \rightarrow -\infty$

Brutalmente è: $\sqrt{m} - \sqrt[3]{m^2} = m - m^3 \rightarrow -\infty$ parché $\frac{2}{3} > \frac{1}{2}$

Essupio 5 $\frac{e^{2x} - \cos(3x)}{\log(1 + \tan x)}$ 2 $\frac{1}{2} = \frac{3}{2} = \frac{3}$

