PERIODIC PERMUTATIONS AND THE SUCCESSOR

B. MILLER

ABSTRACT. We investigate pairs of conjugacy classes of periodic permutations of \mathbb{Z} whose product contains the successor function.

Introduction

Given $g, h: X \to Y$, define $g \coprod h: \{g, h\} \times X \to \{g, h\} \times Y$ by $(g \coprod h)(f, x) = (f, f(x))$ for all $f \in \{g, h\}$ and $x \in X$. Given an element g of a group G, set $Cl(g) = \{hgh^{-1} \mid h \in G\}$.

Let $\operatorname{Sym}(X)$ denote the symmetric group of all permutations of X. The orbit of a point $x \in X$ under a permutation τ of X is given by $[x]_{\tau} = \{\tau^{i}(x) \mid i \in \mathbb{Z}\}$. Set $\mathcal{O}(\tau) = \{[x]_{\tau} \mid x \in X\}$. For all sets K of cardinals, define $\operatorname{Per}_{K}(\tau) = \{x \in X \mid |[x]_{\tau}| \in K\}$ and $\mathcal{O}_{K}(\tau) = \mathcal{O}(\tau \mid \operatorname{Per}_{K}(\tau))$. We will use straightforward shorthand for the set K. We say that τ is almost trivial if $\operatorname{Per}_{\geq 2}(\tau)$ is finite, an almost involution if $\operatorname{Per}_{\geq 3}(\tau)$ is finite, and $(\sigma$ -)periodic if $\operatorname{Per}_{\aleph_0}(\tau) = \emptyset$.

The successor function on \mathbb{Z} is given by $S^{\mathbb{Z}}(i) = i + 1$ for all $i \in \mathbb{Z}$. Here we prove the following:

Theorem A. Suppose that $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ are periodic.

- (1) If ρ and σ are almost involutions and $S^{\mathbb{Z}} \in Cl(\rho)Cl(\sigma)$, then $|\operatorname{Per}_{1}(\rho \coprod \sigma)| \leq |\operatorname{Per}_{>3}(\rho \coprod \sigma)| 2|\mathcal{O}_{>3}(\rho \coprod \sigma)| + 1$.
- (2) If ρ or σ is not an almost involution and neither is almost trivial, then $S^{\mathbb{Z}} \in Cl(\rho)Cl(\sigma)$.

The special case of (2) where neither ρ nor σ is an almost involution follows from [Mor89, Theorem A]. As far as I am aware, however, the special case of (2) where ρ or σ is an almost involution was not previously known. Regardless, the real purpose of this paper is to introduce ideas and language—in the simplest possible context—that can be used to investigate the finite-order elements R and S of the full group of an aperiodic Borel automorphism T for which $T \in \operatorname{Cl}(R)\operatorname{Cl}(S)$. This topic will be explored in a future paper.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 28A05, 37B05. Key words and phrases. Conjugate, symmetric group, permutation, successor.

In §1, we prove (1). In §2, we note a symmetry that eliminates the need to repeat arguments at several points throughout the paper. In §3, we establish a technical fact concerning the removal of fixed points. In §4, we describe the simplest finite approximations to pairs (ρ, σ) for which $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$. In §5, we use these as building blocks to construct extensions of more general finite approximations. And in §6, we prove the special case of (2) where ρ or σ has finite order.

1. The case of two almost involutions

For all $R \subseteq X^2$, define $\operatorname{graph}_R(\tau) = \operatorname{graph}(\tau) \cap R$.

Proposition 1.1. Suppose that \leq is a linear ordering of a finite set F and $\tau \in \operatorname{Sym}(F)$. Then $|\operatorname{graph}_{<}(\tau)| \leq |F| - 1$ and $|\operatorname{graph}_{>}(\tau)| \geq 1$.

Proof. Let x be the \leq -maximal element of F. Then $x \geq \tau(x)$, so $|\operatorname{graph}_{\geq}(\tau)| \geq 1$. But $|\operatorname{graph}(\tau)| = |F|$, thus $|\operatorname{graph}_{<}(\tau)| \leq |F| - 1$. \boxtimes

Define $\operatorname{graph}'_{R}(\tau) = \operatorname{graph}(\tau \upharpoonright \sim \operatorname{Per}_{2}(\tau)) \cap R$.

Proposition 1.2. Suppose that τ is an almost involution of a set X, \leq is a binary relation on X whose restriction to each orbit of τ is a linear order, and $|\operatorname{graph}'_{\geq}(\tau)| \leq |\operatorname{graph}'_{<}(\tau)| + 1$. Then $|\operatorname{Per}_{1}(\tau)| \leq |\operatorname{Per}_{\geq 3}(\tau)| - 2|\mathcal{O}_{\geq 3}(\tau)| + 1$.

Proof. Note that $|\operatorname{Per}_1(\tau)| = |\operatorname{graph}'_{=}(\tau)|$ and Proposition 1.1 yields that $|\mathcal{O}_{\geq 3}(\tau)| \leq |\operatorname{graph}'_{>}(\tau)|$ and $|\operatorname{graph}'_{<}(\tau)| \leq \sum_{O \in \mathcal{O}_{\geq 3}(\tau)} (|O| - 1)$, so

$$\begin{split} |\mathrm{Per}_1(\tau)| + |\mathcal{O}_{\geq 3}(\tau)| &\leq |\mathrm{graph}'_=(\tau)| + |\mathrm{graph}'_>(\tau)| \\ &\leq |\mathrm{graph}'_<(\tau)| + 1 \\ &\leq \sum_{O \in \mathcal{O}_{\geq 3}(\tau)} (|O| - 1) + 1 \\ &= |\mathrm{Per}_{\geq 3}(\tau)| - |\mathcal{O}_{\geq 3}(\tau)| + 1, \end{split}$$

thus subtracting $|\mathcal{O}_{\geq 3}(\tau)|$ from each side yields the desired result.

For all $\rho, \sigma \in \text{Sym}(\mathbb{Z})$, we will slightly abuse notation by also using \leq to denote any binary relation on $\{\rho, \sigma\} \times \mathbb{Z}$ with the property that $(\pi, i) \leq (\pi, j) \iff i \leq j \text{ for all } \pi \in \{\rho, \sigma\} \text{ and } i, j \in \mathbb{Z}$. Part (1) of Theorem A follows from Proposition 1.2 and:

Proposition 1.3. Suppose that $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ and $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$. Then $|\text{graph}'_{>}(\rho \coprod \sigma)| \leq |\text{graph}'_{<}(\rho \coprod \sigma)| + 1$.

Proof. Let I denote the involution of graph $(\rho \coprod \sigma)$ given by

$$I((\pi, i), (\pi, j)) = \begin{cases} ((\pi, j), (\pi, i)) & \text{if } i, j \in \text{Per}_2(\pi) \text{ and} \\ ((\pi, i), (\pi, j)) & \text{otherwise.} \end{cases}$$

Define $J: \operatorname{graph}(\rho \coprod \sigma) \to (\{\rho, \sigma\} \times \mathbb{Z})^2$ by

$$J((\pi,i),(\pi,j)) = \begin{cases} ((\sigma,j-1),(\sigma,i)) & \text{if } \pi = \rho \text{ and} \\ ((\rho,j),(\rho,i+1)) & \text{if } \pi = \sigma. \end{cases}$$

Lemma 1.4. *J* is an involution of graph($\rho \coprod \sigma$).

Proof. It is sufficient to show that if $((\pi, i), (\pi, j)) \in \operatorname{graph}(\rho \coprod \sigma)$, then $J((\pi, i), (\pi, j)) \in \operatorname{graph}(\rho \coprod \sigma)$.

If $\pi = \rho$, then $\rho(i) = j = S^{\mathbb{Z}}(j-1) = (\rho \circ \sigma)(j-1)$, so $i = \sigma(j-1)$, thus $J((\pi, i), (\pi, j)) = ((\sigma, j-1), (\sigma, i)) \in \operatorname{graph}(\rho \coprod \sigma)$.

If
$$\pi = \sigma$$
, then $\sigma(i) = j$, so $\rho(j) = (\rho \circ \sigma)(i) = S^{\mathbb{Z}}(i) = i+1$, thus $J((\pi, i), (\pi, j)) = ((\rho, j), (\rho, i+1)) \in \operatorname{graph}(\rho \coprod \sigma)$.

Lemma 1.5. $J(\operatorname{graph}_{<}(\rho \coprod \sigma)) = \operatorname{graph}_{>}(\rho \coprod \sigma).$

Proof. Note that
$$((\pi, i), (\pi, j)) \in \operatorname{graph}_{<}(\rho \coprod \sigma) \iff i < j \iff j - 1 \ge i \iff j \ge i + 1 \iff J((\pi, i), (\pi, j)) \in \operatorname{graph}_{>}(\rho \coprod \sigma).$$

The length of $((\pi, i), (\pi, j)) \in \operatorname{graph}(\rho \coprod \sigma)$ is $|((\pi, i), (\pi, j))| = |i - j|$.

Lemma 1.6. Suppose that $((\pi, i), (\pi, j)) \in \operatorname{graph}(\rho \coprod \sigma)$.

- (1) If i < j, then $|J((\pi, i), (\pi, j))| = |((\pi, i), (\pi, j))| 1$.
- (2) If $i \ge j$, then $|J((\pi, i), (\pi, j))| = |((\pi, i), (\pi, j))| + 1$.

Proof. If i < j, then $i + 1 \le j$, so

$$|(j-1)-i|=|j-(i+1)|=j-(i+1)=(j-i)-1=|i-j|-1,$$
 thus $|J((\pi,i),(\pi,j))|=|((\pi,i),(\pi,j))|-1.$ If $i\geq j$, then $i+1>j$, so $|(j-1)-i|=|j-(i+1)|=(i+1)-j=(i-j)+1=|i-j|+1,$ thus $|J((\pi,i),(\pi,j))|=|((\pi,i),(\pi,j))|+1.$

Let G be the group generated by I and J. The *orbit* of $((\pi, i), (\pi, j))$ under G is given by $[((\pi, i), (\pi, j))]_G = \{g \cdot ((\pi, i), (\pi, j)) \mid g \in G\}$. Set $\mathcal{O}(G) = \{[((\pi, i), (\pi, j))]_G \mid ((\pi, i), (\pi, j)) \in \operatorname{graph}(\rho \coprod \sigma)\}$.

Lemma 1.7. Suppose that $O \in \mathcal{O}(G)$. Then $\operatorname{graph}'_{\geq}(\rho \coprod \sigma) \cap O \neq \emptyset$.

Proof. Fix $((\pi, i), (\pi, j)) \in O$. We can assume that $((\pi, i), (\pi, j)) \notin \operatorname{graph}'_{\geq}(\rho \coprod \sigma)$. By replacing $((\pi, i), (\pi, j))$ with $I((\pi, i), (\pi, j))$ if necessary, we can therefore assume that $((\pi, i), (\pi, j)) \in \operatorname{graph}_{<}(\rho \coprod \sigma)$. For all $n \in \mathbb{N}$, define $((\pi, i_n), (\pi, j_n)) = (I \circ J)^n((\pi, i), (\pi, j))$. Note that if $((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}_{<}(\rho \coprod \sigma)$, then $J((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}_{\geq}(\rho \coprod \sigma)$ and $|J((\pi, i_n), (\pi, j_n))| = |((\pi, i_n), (\pi, j_n))| - 1$ by Lemmas 1.5 and 1.6. Observe further that if $J((\pi, i_n), (\pi, j_n)) \notin \operatorname{graph}'_{>}(\rho \coprod \sigma)$, then

 $((\pi,i_{n+1}),(\pi,j_{n+1})) \in \operatorname{graph}_{<}(\rho \amalg \sigma). \text{ Setting } n = |i-j|-1, \text{ it follows that if } J((\pi,i_m),(\pi,j_m)) \notin \operatorname{graph}'_{\geq}(\rho \amalg \sigma) \text{ for all } m < n, \text{ then } J((\pi,i_n),(\pi,j_n)) = 0, \text{ thus } J((\pi,i_n),(\pi,j_n)) \in \operatorname{graph}'_{\geq}(\rho \amalg \sigma).$

For all $i, j \in \mathbb{Z}$, we slightly abuse the usual notation by using (i, j), [i, j), (i, j], and [i, j] to denote the corresponding intervals of integers.

FIGURE 1. A finite orbit of G.

Lemma 1.8. Suppose that $O \in \mathcal{O}(G)$.

- (1) If O is finite, then $|\operatorname{graph}'(\rho \coprod \sigma) \cap O| = |\operatorname{graph}'(\rho \coprod \sigma) \cap O| = 1$.
- (2) If O is infinite, then O is a cofinite subset of graph($\rho \coprod \sigma$), $|\operatorname{graph}'_{>}(\rho \coprod \sigma) \cap O| = 1$, and $\operatorname{graph}'_{<}(\rho \coprod \sigma) \cap O = \emptyset$.

Proof. By Lemma 1.7, there exists $((\pi, i), (\pi, j)) \in \operatorname{graph}'_{\geq}(\rho \coprod \sigma) \cap O$. For all $n \in \mathbb{N}$, define $((\pi, i_n), (\pi, j_n)) = (I \circ J)^n((\pi, i), (\pi, j))$. If $n \in \mathbb{N}$ and $((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}_{\geq}(\rho \coprod \sigma)$, then Lemma 1.5 ensures that $J((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}_{<}(\rho \coprod \sigma)$. If $J((\pi, i_n), (\pi, j_n)) \notin \operatorname{graph}'_{<}(\rho \coprod \sigma)$, then $((\pi, i_{n+1}), (\pi, j_{n+1})) \in \operatorname{graph}_{>}(\rho \coprod \sigma)$.

Suppose now that n is the least natural number with the property that $J((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}'_{<}(\rho \coprod \sigma)$. Then $((\pi, i), (\pi, j))$ is in $\operatorname{graph}'_{\geq}(\rho \coprod \sigma) \cap O$, $J((\pi, i_n), (\pi, j_n))$ is in $\operatorname{graph}'_{<}(\rho \coprod \sigma) \cap O$, and the pairs $J((\pi, i_m), (\pi, j_m)), ((\pi, i_{m+1}), (\pi, j_{m+1})) \in \operatorname{Per}_2(\rho \coprod \sigma)^2$, for m < n, make up the rest of O, so condition (1) holds.

Finally, suppose that there is no $n \in \mathbb{N}$ for which $J((\pi, i_n), (\pi, j_n)) \in \operatorname{graph}'_{<}(\rho \coprod \sigma)$. Then $((\pi, i), (\pi, j))$ is in $\operatorname{graph}'_{\geq}(\rho \coprod \sigma) \cap O$ and the pairs $J((\pi, i_n), (\pi, j_n)), ((\pi, i_{n+1}), (\pi, j_{n+1})) \in \operatorname{Per}_2(\rho \coprod \sigma)^2$, for $n \in \mathbb{N}$, make up the rest of O, in which case $\operatorname{graph}'_{<}(\rho \coprod \sigma) \cap O = \emptyset$. Moreover, a straightforward induction shows that, for all $n \in \mathbb{N}$, the following hold:

- $i_{2n} = i + n$ and $j_{2n} = j n$.
- $\pi = \rho \implies i_{2n+1} = i + n \text{ and } j_{2n+1} = j (n+1).$
- $\pi = \sigma \implies i_{2n+1} = i + (n+1)$ and $j_{2n+1} = j n$.

Then graph $(\rho \coprod \sigma) \setminus O \subseteq (\{\rho, \sigma\} \times [i, j])^2$, so condition (2) holds.

 \boxtimes

As at most one orbit of G can be cofinite, Lemma 1.8 ensures that $|\operatorname{graph}'_{>}(\rho \amalg \sigma)| = |\mathcal{O}(G)| \leq |\operatorname{graph}'_{<}(\rho \amalg \sigma)| + 1.$

2. Duals

We use $f: X \hookrightarrow Y$ to denote a partial injection of X into Y. For all $\sigma: \mathbb{Z} \hookrightarrow \mathbb{Z}$, define $\overline{\sigma}: \mathbb{Z} \hookrightarrow \mathbb{Z}$ by $\overline{\sigma}(i) = -\sigma^{-1}(-i)$ for all $i \in \mathbb{Z}$.

Proposition 2.1. Suppose that $\sigma: \mathbb{Z} \hookrightarrow \mathbb{Z}$. Then $\sigma = \overline{\overline{\sigma}}$.

Proof. If
$$i \in \mathbb{Z}$$
, then $\overline{\overline{\sigma}}(i) = -(\overline{\sigma})^{-1}(-i)$, so $\overline{\sigma}(-\overline{\overline{\sigma}}(i)) = -i$. But $\overline{\sigma}(-\overline{\overline{\sigma}}(i)) = -\sigma^{-1}(\overline{\overline{\sigma}}(i))$, so $i = \sigma^{-1}(\overline{\overline{\sigma}}(i))$, thus $\sigma(i) = \overline{\overline{\sigma}}(i)$.

Proposition 2.2. Suppose that $\rho, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}$. Then $\overline{\rho \circ \sigma} = \overline{\sigma} \circ \overline{\rho}$.

Proof. Observe that

$$(\overline{\sigma} \circ \overline{\rho})(i) = -\sigma^{-1}(-(-\rho^{-1}(-i)))$$

$$= -(\sigma^{-1} \circ \rho^{-1})(-i)$$

$$= -(\rho \circ \sigma)^{-1}(-i)$$

$$= \overline{\rho \circ \sigma}(i)$$

for all $i \in \mathbb{Z}$.

Define $\mathcal{F} = \{ (\rho \colon \mathbb{Z} \hookrightarrow \mathbb{Z}, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}) \mid \rho \circ \sigma = S^{\mathbb{Z}} \upharpoonright \operatorname{dom}(\rho \circ \sigma) \}.$

Proposition 2.3. $(\rho, \sigma) \in \mathcal{F} \iff (\overline{\sigma}, \overline{\rho}) \in \mathcal{F}$.

Proof. Note that if $i \in \mathbb{Z}$ and $\rho, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}$, then $(\rho \circ \sigma)(i) = i + 1 \iff (\rho \circ \sigma)^{-1}(i+1) = i \iff \overline{\rho \circ \sigma}(-i-1) = -i$, so the desired result follows from Proposition 2.2.

Let $(i_0 \ i_1 \ \cdots \ i_n)$ denote the permutation of $\{i_m \mid m \leq n\}$ sending i_m to i_{m+1} for all m < n.

Proposition 2.4. Suppose that $n \geq 1$, $(i_m)_{m \leq n}$ is strictly increasing, $\rho = (i_0 \ i_1 \ \cdots \ i_n)$, and $\sigma = (-i_n \ -i_{n-1} \ \cdots \ -i_0)$. Then $\rho = \overline{\sigma}$.

Proof. If
$$m < n$$
, then $\overline{\sigma}(i_m) = -\sigma^{-1}(-i_m) = -(-i_{m+1}) = i_{m+1}$.

3. Eliminating fixed points

For all $k \in \mathbb{N}$, let par(k) denote the remainder when k is divided by two. For all $\rho, \sigma \in \text{Sym}(X)$, set $\delta(\rho, \sigma) = \{x \in X \mid \rho(x) \neq \sigma(x)\}$ and

$$\operatorname{Mal}(\rho, \sigma) = \{ x \in \operatorname{Per}_{\mathbb{N}+3}(\sigma) \mid |[x]_{\sigma} \setminus \operatorname{Per}_{1}(\rho)| = 1 \}.$$

Proposition 3.1. Suppose that $m \geq 1$, ρ and σ are permutations of a set X, and $\forall n \geq 3 \ \neg 0 < |\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{2\mathbb{N}+n}(\sigma)| < \aleph_0$. Then there are permutations ρ' and σ' of X such that:

- (1) $\rho \circ \sigma = \rho' \circ \sigma'$,
- (2) $\delta(\rho, \rho') = \delta(\sigma^{-1}, (\sigma')^{-1}) = \operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho),$
- (3) $\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho) \subseteq \operatorname{Per}_m(\rho')$, and
- (4) $\forall n \geq 3 \operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_n(\sigma) \subseteq \operatorname{Per}_n(\sigma')$.

Proof. Define $Y = \operatorname{Mal}(\rho, \sigma)$ and $Z = Y \setminus \operatorname{Per}_1(\rho)$. For all $n \geq 3$, set $Y_n = \operatorname{Per}_{2\mathbb{N}+n}(\sigma) \cap Y$ and $Z_n = \operatorname{Per}_{2\mathbb{N}+n}(\sigma) \cap Z$. Fix an equivalence relation F_4 on Z_4 whose classes all have cardinality m^2 , as well as $\pi_{0,1}, \pi_{0,2} \in \operatorname{Sym}(Z_4)$, whose graphs are contained in F_4 , such that the orbits of $\pi_{0,1}, \pi_{0,2}$, and $\pi_{0,3} = (\pi_{0,1} \circ \pi_{0,2})^{-1}$ all have cardinality m. For all $n \in (\mathbb{N}+3) \setminus \{4\}$, fix an equivalence relation F_n on Z_n whose classes all have cardinality m, fix $\pi_{\operatorname{par}(n),n-2} \in \operatorname{Sym}(Z_n)$ whose orbits coincide with the equivalence classes of F_n , and set $\pi_{\operatorname{par}(n),n-1} = \pi_{\operatorname{par}(n),n-2}^{-1}$. Then the support of $\pi = \operatorname{id}_{X \setminus (Y \setminus Z)} \cup \bigcup_{p < 2, n \geq 1} \sigma^n \circ \pi_{p,n} \circ \sigma^{-n}$ is $Y \setminus Z$, so $\rho' = \rho \circ \pi$ and $\sigma' = \pi^{-1} \circ \sigma$ satisfy conditions (1)–(3).

Lemma 3.2. Suppose that $\ell \leq n-1$. Then

$$(\sigma')^{\ell} \upharpoonright Z_n = (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_n. \tag{*}$$

 \boxtimes

Proof. The case $\ell = 0$ is trivial. If $\ell > 0$ and (*) holds at $\ell - 1$, then

$$(\sigma')^{\ell} \upharpoonright Z_{n} = (\sigma' \circ (\sigma')^{\ell-1}) \upharpoonright Z_{n}$$

$$= (\sigma' \circ \sigma^{\ell-1} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\pi^{-1} \circ \sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \sigma^{-\ell} \circ \sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n},$$

so (*) also holds at ℓ .

For all $n \geq 3$, set $Y'_n = \operatorname{Per}_n(\sigma) \cap Y$ and $Z'_n = \operatorname{Per}_n(\sigma) \cap Z$. Lemma 3.2 ensures that $Y'_n = \bigcup_{\ell \leq n-1} \sigma^{\ell}(Z'_n) = \bigcup_{\ell \leq n-1} (\sigma')^{\ell}(Z'_n)$ and

$$(\sigma')^{n} \upharpoonright Z'_{n} = (\sigma' \circ (\sigma')^{n-1}) \upharpoonright Z'_{n}$$

$$= (\sigma' \circ \sigma^{n-1} \circ \pi_{\operatorname{par}(n), n-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n), 1}^{-1}) \upharpoonright Z'_{n}$$

$$= (\sigma' \circ \sigma^{n-1}) \upharpoonright Z'_{n}$$

$$= (\sigma' \circ \sigma^{-1}) \upharpoonright Z'_{n}$$

$$= \operatorname{id}_{Z'_{n}},$$

so condition (4) also holds.

We write $\rho \cong \sigma$ to indicate that ρ and σ are isomorphic.

Proposition 3.3. Suppose that $m \geq 1$, ρ and σ are permutations of a set X, $\forall n \geq 3 \neg 0 < |\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{2\mathbb{N}+n}(\sigma)| < \aleph_0$, and $\operatorname{Per}_m(\rho)$ is infinite. Then there are permutations $\rho' \cong \rho \upharpoonright \sim (\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho))$ and $\sigma' \cong \sigma$ of X for which $\rho \circ \sigma = \rho' \circ \sigma'$.

Proof. Proposition 3.1 yields $\rho', \sigma' \in \operatorname{Sym}(X)$ such that $\rho \circ \sigma = \rho' \circ \sigma'$ and $|\mathcal{O}_{\kappa}(\rho)| \sim (\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{1}(\rho))| = |\mathcal{O}_{\kappa}(\rho')|$ and $|\mathcal{O}_{\kappa}(\sigma)| = |\mathcal{O}_{\kappa}(\sigma')|$ for all cardinals κ .

4. Building blocks

Set $\mathcal{F}(i,j] = \{(\rho,\sigma) \in \mathcal{F} \mid \rho \colon (i,j] \hookrightarrow (i,j] \text{ and } \sigma \colon (i,j) \hookrightarrow (i,j)\}$, noting that $\forall (\rho,\sigma) \in \mathcal{F}(i,j] \operatorname{dom}(\rho \circ \sigma) = (i,j-1]$.

Proposition 4.1. If i < j and $(\rho, \sigma) \in \mathcal{F}(i, j]$, then $\rho(j) = i + 1$.

Proof. Observe that
$$\rho((i, j-1]) = (\rho \circ \sigma)((i, j-1]) = (i+1, j].$$

Set $\mathcal{F}[i,j) = \{(\rho,\sigma) \in \mathcal{F} \mid \rho \colon (i,j) \hookrightarrow (i,j) \text{ and } \sigma \colon [i,j) \hookrightarrow [i,j)\}$, this time noting that $\forall (\rho,\sigma) \in \mathcal{F}(i,j] \ S^{\mathbb{Z}}(j-1) \notin \operatorname{rng}(\rho)$, and therefore $\forall (\rho,\sigma) \in \mathcal{F}(i,j] \ \operatorname{dom}(\rho \circ \sigma) = [i,j-1)$.

FIGURE 2. The extension provided by Proposition 4.2.

Proposition 4.2. Suppose that $n \geq 1$, $(i_m)_{m \leq n}$ is strictly increasing, $\forall m < n \ (\rho_m, \sigma_m) \in \mathcal{F}(i_m, i_{m+1}], \ \rho = \bigcup_{m < n} \rho_m, \ and \ \sigma = (i_0 \ i_1 \ \cdots \ i_n) \cup \bigcup_{m < n} \sigma_m$. Then $(\rho, \sigma) \in \mathcal{F}[i_0, i_n + 1)$.

Proof. As
$$[i_0, i_n) = \{i_m \mid m < n\} \cup \bigcup_{m < n} (i_m, i_{m+1} - 1]$$
, it follows that $(\rho, \sigma) \in \mathcal{F}[i_0, i_n + 1) \iff \forall k \in [i_0, i_n) \ (\rho \circ \sigma)(k) = k + 1$ $\iff \forall m < n \ (\rho \circ \sigma)(i_m) = i_m + 1$ $\iff \forall m < n \ \rho(i_{m+1}) = i_m + 1$ $\iff \forall m < n \ \rho_m(i_{m+1}) = i_m + 1$,

so Proposition 4.1 yields the desired result.

FIGURE 3. The extension provided by Proposition 4.3.

Proposition 4.3. Suppose that $n \geq 1$, $(i_m)_{m \leq n}$ is strictly increasing, $\forall m < n \ (\rho_m, \sigma_m) \in \mathcal{F}[i_m, i_{m+1}), \ \rho = (i_0 \ i_1 \ \cdots \ i_n) \cup \bigcup_{m < n} \rho_m$, and $\sigma = \bigcup_{m < n} \sigma_m$. Then $(\rho, \sigma) \in \mathcal{F}(i_0 - 1, i_n]$.

Proof. By Propositions 2.1, 2.3, 2.4, and 4.2.

 \boxtimes

FIGURE 4. Building blocks from Propositions 4.5 and 4.6.

Proposition 4.4. Suppose that $i \in \mathbb{Z}$. Then $(\emptyset, id_{\{i\}}) \in \mathcal{F}[i, i+1)$ and $(id_{\{i\}}, \emptyset) \in \mathcal{F}(i-1, i]$.

Proof. As $[i,i) = (i-1,i-1] = \emptyset$, the definitions of $\mathcal{F}[i,i+1)$ and $\mathcal{F}(i-1,i]$ yield that $(\rho,\sigma) \in \mathcal{F}[i,i+1) \iff (\rho = \emptyset \text{ and } \text{dom}(\sigma) = \{i\})$ and $(\rho,\sigma) \in \mathcal{F}(i-1,i] \iff (\text{dom}(\rho) = \{i\} \text{ and } \sigma = \emptyset)$.

Proposition 4.5. Suppose that i < j are integers. Then the pair $(id_{(i,j)}, (i \ i+1 \ \cdots \ j-1))$ is in $\mathcal{F}[i,j)$.

Proof. If i+1=j, then this follows from Proposition 4.4. Otherwise, Proposition 4.4 ensures that $(\mathrm{id}_{\{k\}},\emptyset) \in \mathcal{F}(k-1,k]$ for all $k \in (i,j)$, so Proposition 4.2 yields the desired result.

Proposition 4.6. Suppose that $m \ge 1$ and $(i_k)_{k < m}$ is a strictly increasing sequence of integers. Then the pair

$$((i_0 \ i_1 \ \cdots \ i_{m-1}) \cup \bigcup_{k < m-1} \operatorname{id}_{(i_k, i_{k+1})}, \bigcup_{k < m-1} (i_k \ i_k + 1 \ \cdots \ i_{k+1} - 1))$$

is in $\mathcal{F}(i_0 - 1, i_{m-1}]$.

Proof. If m = 1, then this follows from Proposition 4.4. Otherwise, $(id_{(i_k,i_{k+1})}, (i_k i_k + 1 \cdots i_{k+1} - 1)) \in \mathcal{F}[i_k, i_{k+1})$ for all k < m - 1 by Proposition 4.5, so Proposition 4.3 yields the desired result.

5. Extension

Given $n \geq 3$ and $\rho, \sigma \colon X \hookrightarrow X$, we say that a fixed point x of ρ is n-malleable if $x \in \operatorname{Per}_n(\sigma)$, $[x]_{\sigma} \subseteq \operatorname{dom}(\rho)$, and $[[x]_{\sigma} \setminus \operatorname{Per}_1(\rho)] = 1$.

FIGURE 5. The extension provided by Proposition 5.1.

Proposition 5.1. Suppose that i < j, $m \ge 2$, $n_k \ge 3$ for all k < m-2, and $(\rho, \sigma) \in \mathcal{F}[i, j)$. Then there exists $(\rho', \sigma') \in \mathcal{F}(i-1, j+\sum_{k < m-2} n_k]$ such that:

- ρ' is obtained from ρ by adding a single cycle of length m and $n_k 1$ n_k -malleable fixed points for all k < m 2.
- σ' is obtained from σ by adding a cycle of length n_k for all k < m 2.

Proof. Recursively define $i_0 = i$, $i_1 = j$, and $i_k = i_{k-1} + n_{k-2}$ for all $2 \le k \le m-1$. Set $(\rho_0, \sigma_0) = (\rho, \sigma)$. For all $1 \le k \le m-2$, Proposition 4.5 ensures that $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k, i_{k+1})}, (i_k \ i_k + 1 \ \cdots \ i_{k+1} - 1))$ is in $\mathcal{F}[i_k, i_{k+1})$. So $(\rho', \sigma') = ((i_0 \ i_1 \ \cdots \ i_{m-1}) \cup \bigcup_{k \le m-2} \rho_k, \bigcup_{k \le m-2} \sigma_k)$ is in $\mathcal{F}(i_0 - 1, i_{m-1}]$ by Proposition 4.3. But $i_0 - 1 = i - 1$ and $i_{m-1} = j + \sum_{k \le m-2} n_k$.

FIGURE 6. The extension provided by Proposition 5.2.

Proposition 5.2. Suppose that i < j, $m \ge 3$, $n_k \ge 3$ for all k < m-3, and $(\rho, \sigma) \in \mathcal{F}[i, j)$. Then there exists $(\rho', \sigma') \in \mathcal{F}(i-1, j+1+\sum_{k < m-3} n_k]$ such that:

- ρ' is obtained from ρ by adding a single cycle of length m and $n_k 1$ n_k -malleable fixed points for all k < m 3.
- σ' is obtained from σ by adding a fixed point and a cycle of length n_k for all k < m 3.

10 B. MILLER

Proof. Recursively define $i_0 = i$, $i_1 = j$, $i_2 = j+1$, and $i_k = i_{k-1} + n_{k-3}$ for all $3 \le k \le m-1$. Set $(\rho_0, \sigma_0) = (\rho, \sigma)$. For all $1 \le k \le m-2$, Proposition 4.5 ensures that $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k, i_{k+1})}, (i_k i_k + 1 \cdots i_{k+1} - 1))$ is in $\mathcal{F}[i_k, i_{k+1})$. So $(\rho', \sigma') = ((i_0 i_1 \cdots i_{m-1}) \cup \bigcup_{k \le m-2} \rho_k, \bigcup_{k \le m-2} \sigma_k)$ is in $\mathcal{F}(i_0 - 1, i_{m-1}]$ by Proposition 4.3. But $i_0 - 1 = i - 1$ and $i_{m-1} = j + 1 + \sum_{k < m-3} n_k$.
⊠

FIGURE 7. The extension provided by Proposition 5.3.

Proposition 5.3. Suppose that i < j, $n \ge 3$, $n_k \ge 3$ for all k < n - 3, and $(\rho, \sigma) \in \mathcal{F}(i, j]$. Then there exists $(\rho', \sigma') \in \mathcal{F}[i - 2 - \sum_{k < n - 3} (n_k + 1), j + 1)$ such that:

- ρ' is obtained from ρ by adding n-2 cycles of length two and n_k-1 n_k -malleable fixed points for all k < n-3.
- σ' is obtained from σ by adding a single fixed point, a cycle of length n, and a cycle of length of n_k for all k < n 3.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{n-3} = i - 2$, and $i_k = i_{k+1} - (n_k + 1)$ for all $k \le n - 4$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $k \le n - 3$, Proposition 4.6 implies that

 $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k+1, i_{k+1})} \cup (i_k+1 \ i_{k+1}), (i_k+1 \ i_k+2 \ \cdots \ i_{k+1}-1))$ is in $\mathcal{F}(i_k, i_{k+1}]$. So $(\rho', \sigma') = (\bigcup_{k \le n-2} \rho_k, (i_0 \ i_1 \ \cdots \ i_{n-1}) \cup \bigcup_{k \le n-2} \sigma_k)$ is in $\mathcal{F}[i_0, i_{n-1}+1)$ by Proposition 4.2. But $i-2-\sum_{k < n-3} (n_k+1) = i_0$ and $j+1=i_{n-1}+1$.

Proposition 5.4. Suppose that i < j, $m \ge 2$, $n \ge 2$, $n_{k,\ell} \ge 3$ for all k < m-1 and $\ell < n-2$, and $(\rho,\sigma) \in \mathcal{F}(i,j]$. Then there exists $(\rho',\sigma') \in \mathcal{F}[i-\sum_{k < m-1,\ell < n-2} n_{k,\ell},j+1)$ such that:

- ρ' is obtained from ρ by adding n-2 cycles of length m and $n_{k,\ell}-1$ $n_{k,\ell}$ -malleable fixed points for all k < m-1 and $\ell < n-2$.
- σ' is obtained from σ by adding a cycle of length n and a cycle of length $n_{k,\ell}$ for all k < m-1 and $\ell < n-2$.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{\ell} = i_{\ell+1} - \sum_{k < m-1} n_{k,\ell}$, $i_{0,\ell} = i_{\ell} + 1$, and $i_{k,\ell} = i_{k-1,\ell} + n_{k-1,\ell}$ for $k \le m-1$ and $\ell \le n-3$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $\ell \le n-3$, Proposition 4.6 implies that the

FIGURE 8. The extension provided by Proposition 5.4.

pair $(\rho_{\ell}, \sigma_{\ell})$, given by $\rho_{\ell} = (i_{0,\ell} i_{1,\ell} \cdots i_{m-1,\ell}) \cup \bigcup_{k < m-1} \mathrm{id}_{(i_{k,\ell}, i_{k+1,\ell})}$ and $\sigma_{\ell} = \bigcup_{k < m_{\ell}-1} (i_{k,\ell} i_{k,\ell} + 1 \cdots i_{k+1,\ell} - 1)$, is in $\mathcal{F}(i_{\ell}, i_{\ell+1}]$. So Proposition 4.2 yields that $(\rho', \sigma') = (\bigcup_{\ell \le n-2} \rho_{\ell}, (i_0 i_1 \cdots i_{n-1}) \cup \bigcup_{\ell \le n-2} \sigma_{\ell})$ is in $\mathcal{F}[i_0, i_{n-1} + 1)$. But $i - \sum_{k < m-1, \ell < n-2} n_{k,\ell} = i_0$ and $j + 1 = i_{n-1} + 1$. \boxtimes

We say that a fixed point x of ρ is anti-malleable if $x \in \operatorname{Per}_2(\sigma)$, $[x]_{\sigma} \subseteq \operatorname{dom}(\rho)$, and $|[x]_{\sigma} \setminus \operatorname{Per}_1(\rho)| = 1$.

FIGURE 9. The extension provided by Proposition 5.5.

Proposition 5.5. Suppose that i < j, $m \ge 2$, $n \ge 3$, $n_{k,\ell} \ge 3$ for all k < m-1 and $\ell < n-3$, and $(\rho,\sigma) \in \mathcal{F}(i,j]$. Then there exists $(\rho',\sigma') \in \mathcal{F}[i-1-\sum_{k< m-1,\ell< n-3} n_{k,\ell},j+1)$ such that:

- ρ' is obtained from ρ by adding a single anti-malleable fixed point, n-3 cycles of length m, and $n_{k,\ell}-1$ $n_{k,\ell}$ -malleable fixed points for all k < m-1 and $\ell < n-3$.
- σ' is obtained from σ by adding a cycle of length n and a cycle of length $n_{k,\ell}$ for all k < m-1 and $\ell < n-3$.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{n-3} = i - 1$, $i_{\ell} = i_{\ell+1} - \sum_{k < m-1} n_{k,\ell}$, $i_{0,\ell} = i_{\ell} + 1$, and $i_{k,\ell} = i_{k-1,\ell} + n_{k-1,\ell}$ for $k \le m-1$ and

12 B. MILLER

 $\ell \leq n-4$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $\ell \leq n-3$, Proposition 4.6 implies that the pair $(\rho_{\ell}, \sigma_{\ell})$, given by $\rho_{\ell} = (i_{0,\ell} \ i_{1,\ell} \ \cdots \ i_{m-1,\ell}) \cup \bigcup_{k < m-1} \mathrm{id}_{(i_{k,\ell},i_{k+1,\ell})}$ and $\sigma_{\ell} = \bigcup_{k < m-1} (i_{k,\ell} \ i_{k,\ell} + 1 \ \cdots \ i_{k+1,\ell} - 1)$, is in $\mathcal{F}(i_{\ell}, i_{\ell+1}]$. So $(\rho', \sigma') = (\bigcup_{\ell \leq n-2} \rho_{\ell}, (i_0 \ i_1 \ \cdots \ i_{n-1}) \cup \bigcup_{\ell \leq n-2} \sigma_{\ell})$ is in $\mathcal{F}[i_0, i_{n-1} + 1)$ by Proposition 4.2. But $i - 1 - \sum_{k < m-1, \ell < n-3} n_{k,\ell} = i_0$ and $j + 1 = i_{n-1} + 1$.

6. The main result

The special case of part (2) of Theorem A where ρ or σ has finite order is a consequence of Proposition 2.3 and:

Theorem 6.1. Suppose that $m \geq 2$, $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ are periodic, and $\text{Per}_m(\rho)$ and $\text{Per}_{\geq 3}(\sigma)$ are infinite. Then $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$.

Proof. For all integers i < j, set $\mathcal{F}_0(i,j) = \mathcal{F}[i,j)$ and $\mathcal{F}_1(i,j) = \mathcal{F}(i,j]$. Fix an enumeration $(\pi_n, O_n)_{n \in \mathbb{N}}$ of the pairs of the form (π, O) , where $\pi \in \{\rho, \sigma\}$ and $O \in \mathcal{O}(\pi)$. Then there is an infinite set $N \subseteq \mathbb{N}$ and p < 2 such that $\pi_n = \sigma$, $\operatorname{par}(|O_n|) = p$, and $3 \leq |O_n| \leq |O_{n+1}|$ for all $n \in \mathbb{N}$. Fix $n_{-1} \in \mathbb{N}$, set $N_0 = \mathbb{N} \setminus \{n_{-1}\}$, and apply Proposition 4.5 to find $i_0 < j_0$ and $(\rho_0, \sigma_0) \in \mathcal{F}_0(i_0, j_0)$ such that every point of $\operatorname{dom}(\rho_0)$ is a malleable fixed point and the lone orbit of σ_0 has cardinality $|O_{n-1}|$.

Suppose that k is a natural number for which we have found $i_k < j_k$, a cofinite set $N_k \subseteq \mathbb{N}$, and $(\rho_k, \sigma_k) \in \mathcal{F}_{\text{par}(k)}(i_k, j_k)$. If $k \in 2\mathbb{N}$, then let n_k be the least element of N_k for which $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| \ge 2)$ or $(\pi_{n_k} = \sigma, |O_{n_k}| = 1, \text{ and } m \ge 3)$. If $k \in 4\mathbb{N} + 1$, then let n_k be the least element of N_k for which $(\pi_{n_k} = \sigma, |O_{n_k}| = 1, \text{ and } m = 2), (\pi_{n_k} = \sigma \text{ and } |O_{n_k}| = 2)$, or $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| = 1)$. And if $k \in 4\mathbb{N} + 3$, then let n_k be the least element of N_k for which $\pi_{n_k} = \sigma$ and $|O_{n_k}| \ge 3$.

Lemma 6.2. For some finite cardinal κ_k and any subset F_k of $N \cap (N_k \setminus \{n\})$ of cardinality κ_k , there exist $i_{k+1} < i_k$, $j_{k+1} > j_k$, and $(\rho_{k+1}, \sigma_{k+1}) \in \mathcal{F}_{par(k+1)}(i_{k+1}, j_{k+1})$ such that:

- ρ_{k+1} is obtained from ρ_k by adding a set of cycles of length k and $|O_n| 1$ $|O_n|$ -malleable fixed points for all $n \in F_k$, as well as a cycle of length $|O_{n_k}|$ if $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| \ge 2)$ and an anti-malleable fixed point if $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| = 1)$.
- σ_{k+1} is obtained from σ_k by adding a cycle of length $|O_n|$ for all $n \in F_k$, as well as a cycle of length $|O_n|$ if $\pi_{n_k} = \sigma$.

Proof. If $k \in 2\mathbb{N}$, then the desired result follows from Propositions 5.1 and 5.2. Otherwise, it follows from Propositions 5.3–5.5.

Set $N_{k+1} = N_k \setminus (F_k \cup \{n_k\}).$

Define $\rho_{\infty} = \bigcup_{k \in \mathbb{N}} \rho_k$ and $\sigma_{\infty} = \bigcup_{k \in \mathbb{N}} \sigma_k$. As $(i_k)_{k \in \mathbb{N}}$ is strictly decreasing and $(j_k)_{k \in \mathbb{N}}$ is strictly increasing, these are permutations of \mathbb{Z} whose composition is $S^{\mathbb{Z}}$. Note that $\operatorname{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \operatorname{Per}_{n+2\mathbb{N}}(\sigma_{\infty}) = \emptyset$ for all $n \in 2\mathbb{N} + (1-p)$. As $F_k \neq \emptyset$ for all $k \in 4\mathbb{N} + 3$, it follows that $\neg 0 < |\operatorname{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \operatorname{Per}_{n+2\mathbb{N}}(\sigma_{\infty})| < \aleph_0$ for all $n \in 2\mathbb{N} + p$. As the fact that $\bigcap_{k \in \mathbb{N}} N_k = \emptyset$ ensures that $\rho_{\infty} \upharpoonright \sim (\operatorname{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \operatorname{Per}_1(\rho_{\infty})) \cong \rho$ and $\sigma_{\infty} \cong \sigma$, Proposition 3.3 yields conjugates ρ' of ρ and σ' of σ for which $\rho' \circ \sigma' = \rho_{\infty} \circ \sigma_{\infty} = S^{\mathbb{Z}}$.

As every almost involution has finite order, part (2) of Theorem A now follows from [Mor89, Theorem A].

References

[Mor89] G. Moran, Conjugacy classes whose square is an infinite symmetric group, Trans. Amer. Math. Soc. **316** (1989), no. 2, 493–522.

B. MILLER, 1008 BALSAWOOD DRIVE, DURHAM, NC 27705 $\it Email\ address$: glimmeffros@gmail.com

URL: https://glimmeffros.github.io