Math 150 03 – Calculus I

Final Cheat-sheet

December 20, 2023

Algebra of limits

Let f and g be any real functions. If a is any real number or ∞ or $-\infty$, and if the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

- Sum: $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- **Product:** $\lim_{x \to a} f(x) \cdot g(x) = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right)$
- Quotient: If $\lim_{x\to a} g(x)$ is not equal to 0, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$

Remember: A rational function is a real function of the form $f(x) = \frac{p(x)}{q(x)}$, where p and q are 1-variable polynomials. The domain of a rational function $f(x) = \frac{p(x)}{q(x)}$ is the set of all real numbers except for the roots of q (the real numbers a such that q(a) = 0). If $f(x) = \frac{p(x)}{q(x)}$ is a rational function, and if a is a root of both polynomials p and q, then $\lim_{x \to a} f(x) = \lim_{x \to a} \frac{p_1(x)}{q_1(x)}$, where $p(x) = p_1(x) \cdot (x - a)$ and $q(x) = q_1(x) \cdot (x - a)$.

Algebra of continuity

Remember: A real function f is **continuous** at a real number a if f(a) is defined and if $\lim_{x\to a} f(x) = f(a)$.

If f and g are continuous at a, then:

- Sum: (f+g)(x) = f(x) + g(x) is continuous at a.
- **Product:** $(f \cdot g)(x) = f(x) \cdot g(x)$ is continuous at a.
- Quotient: If $g(a) \neq 0$, then $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$ is continuous at a.

Derivatives

Remember: Let f be a continuous real function. The *derivative* of f at a real number x is defined to be the limit:

$$f'(x) = \lim_{h \to 0} D_h f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If the derivative of f exists at every real number x in an interval I, then f is differentiable over the interval I.

Remember: If f is differentiable over I, then the derivative f' is a real function that is *continuous* over I.

Remember: A function f is **strictly increasing** at a real number a if f'(a) > 0.

Remember: A function f is strictly decreasing at a real number a if f'(a) < 0.

Rules for derivatives

Let f, g be real functions that are differentiable over an interval I. Then,

• Sum rule:

$$(f+g)'(x) = f'(x) + g'(x)$$

• Product rule:

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quotient rule: If g(x) is never 0 over I, then

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Some useful derivatives

The derivatives of some useful functions are given below.

- If f(x) = a (for some constant real number a), then f'(x) = 0.
- If $f(x) = x^a$ (for some constant real number a), then $f'(x) = a \cdot x^{a-1}$.
- If $f(x) = a \cdot g(x)$ (for some constant real number a and some function g), then $f'(x) = a \cdot g'(x)$.
- If $f(x) = a^x$ (for some constant real number a, then $f'(x) = a^x \cdot \ln(a)$.
- If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$.
- If $f(x) = \cos(x)$, then $f'(x) = -\sin(x)$.

Local and global maxima/minima

Let f be a differentiable real function.

- f has a local maximum at x = a if f'(a) = 0 and if f''(a) < 0.
- f has a local minimum at x = a if f'(a) = 0 and if f''(a) > 0.
- The global maximum of f is its largest local maximum.
- The global minimum of f is its smallest local maximum.

Antiderivatives

An antiderivative of a real function f is a real function $(\int f)$ such that $(\int f)'(x) = f(x)$.

Some useful antiderivatives

- If $f(x) = x^a$, where a is any constant real number such that $a \neq -1$, then $(\int f)(x) = \frac{x^{a+1}}{a+1} + C$
- If $f(x) = \frac{1}{x}$, then $(\int f)(x) = \ln(x) + C$
- If $f(x) = e^{kx}$, where k is any constant real number such that $k \neq 0$, then $(\int f)(x) = \frac{1}{k}e^{kx} + C$
- If $f(x) = a^{kx}$, where a is any constant real number such that a > 0 and $a \ne 1$, and k is any constant real number such that $k \ne 0$, then $\left(\int f\right)(x) = \frac{1}{k\ln(a)}a^{kx} + C$
- If $f(x) = \sin(x)$, then $(\int f)(x) = -\cos(x) + C$
- If $f(x) = \cos(x)$, then $(\int f)(x) = \sin(x) + C$

Remark: in each of the previous expressions, C is any arbitrary constant.

Rules for antiderivatives

• Anti-Sum rule: If h(x) = f(x) + g(x), then

$$\left(\int h\right)(x) = \left(\int f\right)(x) + \left(\int g\right)(x)$$

• Anti-Constant Multiple rule: If $g(x) = c \cdot f(x)$, where c is any constant real number, then

$$(\int g)(x) = c \cdot (\int f)(x)$$

• Anti-Chain rule: If $h(x) = g(f(x)) \cdot f'(x)$, then

$$\left(\int h\right)(x) = \left(\int g\right)(f(x))$$

where $(\int g)$ is an antiderivative of g.

• Anti-Product rule: If $h(x) = f(x) \cdot g'(x)$, then

$$\left(\int h\right)(x) = f(x) \cdot g(x) - \left(\int (f' \cdot g)\right)(x)$$

where $(\int (f' \cdot g))$ is an antiderivative of the function $(f' \cdot g)(x) = f'(x) \cdot g(x)$.

Definite integrals

If f is a continuous real function, then the definite integral of f over the interval [a,b] is the total area between the graph of f and the x-axis bounded by the points x = a and x = b. The definite integral is written as $\int_a^b f(t) \cdot dt$.

Fundamental theorems of calculus

The $fundamental\ theorems\ of\ calculus\ are\ the\ following\ facts.$

FTC1 If f is a continuous real function, then

$$F(x) = \int_0^x f(t) \cdot dt$$

is an antiderivative of f.

FTC2 If f is a continuous real function and if $(\int f)$ is any antiderivative of f, then

$$\int_{a}^{b} f(t) \cdot dt = \left(\int f \right) (b) - \left(\int f \right) (a)$$