1 Proof of Lemma 11.15

Let $f \in \text{Hom}_{\mathbb{F}}(\mathbb{F}^n, \mathbb{F}^m)$ with representing matrix $A \in \mathbb{F}^{m \times n}$. Please show:

- 1. The sets $\ker(f)$ and $\operatorname{Im}(f)$ are subspaces of \mathbb{F}^n and \mathbb{F}^m , respectively.
- 2. rank(A) = dim(Im(f)).
- 3. $ker(f) = \{0\} \Leftrightarrow f \text{ is injective.}$

Solution:

Let $f: \mathbb{F}^n \to \mathbb{F}^m$ be linear with matrix representation $A \in \mathbb{F}^{m \times n}$.

- 1. Show:
 - a) $\ker(f) \subset \mathbb{F}^n$ subspace
 - b) $\operatorname{Im}(f) \subset \mathbb{F}^m$ subspace

Proof:

a) i. $0 \in \ker(f)$

ii.
$$\lambda \in \mathbb{F}$$
, $u,v \in \ker(f)$, then $f(\lambda u + v) = \lambda \underbrace{f(u)}_{=0} + \underbrace{f(v)}_{=0} = 0$

$$\Rightarrow \lambda u + v \in \ker(f)$$

b) i.
$$A_0 = 0 \in Im(f)$$

ii.

$$\begin{split} &\lambda \in \mathbb{F}, \ w_1, w_2 \in \operatorname{Im}(f) \subset W \\ \Rightarrow & \exists v_1, v_2 \in V: \ w_1 = f(v_1), \ w_2 = f(v_2) \\ \Rightarrow & \lambda w_1 + w_2 = \lambda f(v_1) + f(v_2) = f(\lambda v_1 + v_2) \\ \Rightarrow & \lambda w_1 + w_2 \in \operatorname{Im}(A) \end{split}$$

2. Show: rank(A) = dim(Im(f))

Proof:

Recall:

• $\operatorname{rank}(A_f) = |\{\sigma \neq 0 : \sigma \text{ singular value of } A\}|$

$$A=U\Sigma V^T,\;U\in\mathbb{R}^{m imes m},\;V\in\mathbb{R}^{n imes n} ext{ orthogonal, }\Sigma=egin{pmatrix} \cdot & 0 \ 0 & 0 \end{pmatrix}$$

• dim(V) := length of a basis

Let $rank(A_f) =: k$, then

$$\operatorname{Im}(f) = \operatorname{Im}(A_f) = \{A_f x : x \in \mathbb{F}^n\} = \{U \underbrace{\sum V^T x}_{=:\lambda = (\underbrace{\tilde{\lambda}}_{\in \mathbb{R}^k} \underbrace{0, \dots, 0}_{m-k})} : x \in \mathbb{F}^n\}$$

$$= \{U_k \tilde{\lambda} : \tilde{\lambda} \in \mathbb{F}^k\}$$

$$\Rightarrow$$
 Im $(f) = \text{span}(u_1, \dots, u_k)$ and u_1, \dots, u_k linearly independent (even orthogonal)

$$\Rightarrow \dim(\operatorname{Im}(f)) = k = \operatorname{rank}(A_f)$$

 $\text{3. } \underline{\mathsf{Show}} \mathsf{:} \ \mathsf{ker}(f) = \{0\} \ \Leftrightarrow \ f \ \mathsf{injective} \ \underline{\mathsf{Proof}} \mathsf{:}$

$$\ker(f) = \{0\} \quad \Leftrightarrow \quad \{f(x) = 0 \Rightarrow x = 0\}$$

$$\Leftrightarrow \quad \forall x, y \in \mathbb{F}^n : \ f(x) - f(y) = f(x - y) = 0 \Rightarrow x - y = 0$$

$$\Leftrightarrow \quad f \text{ injective}$$