Q5:Analyze traffic accident data to identify patterns related to road conditions, weather, and time of day. Visualize accident hotspots and contributing factors.

```
In [3]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]: data = pd.read_csv("accident_data.csv")
data

Out[4]:

	Date	Time	Latitude	Longitude	Location Description	Weather Conditions	Road Conditions	Visibility	Acci
0	05- 01- 2022	15:30:00	40.7128	-74.0060	Highway	Foggy	Wet	Poor	Coll
1	10- 02- 2022	18:45:00	41.8781	-87.6298	Street	Rainy	Wet	Poor	Rol
2	15- 03- 2022	12:00:00	37.7749	-122.4194	Intersection	Clear	Dry	Clear	Coll
3	20- 04- 2022	09:20:00	34.0522	-118.2437	Highway	Clear	Dry	Clear	Coll
4	25- 05- 2022	17:10:00	40.7128	-74.0060	Street	Rainy	Wet	Poor	Coll
142	10- 08- 2024	12:45:00	40.7128	-74.0060	Street	Rainy	Wet	Poor	Rol
143	15- 09- 2024	08:30:00	37.7749	-122.4194	Highway	Clear	Dry	Clear	Coll
144	20- 10- 2024	16:20:00	34.0522	-118.2437	Street	Clear	Dry	Clear	Coll
145	25- 11- 2024	14:10:00	40.7128	-74.0060	Intersection	Rainy	Wet	Poor	Coll
146	30- 12- 2024	10:00:00	41.8781	-87.6298	Highway	Clear	Dry	Clear	Rol

147 rows × 17 columns

In [5]: data.head(10)

Out[5]:

	Date	Time	Latitude	Longitude	Location Description	Weather Conditions	Road Conditions	Visibility	Accide Ty
0	05- 01- 2022	15:30:00	40.7128	-74.0060	Highway	Foggy	Wet	Poor	Collisi
1	10- 02- 2022	18:45:00	41.8781	-87.6298	Street	Rainy	Wet	Poor	Rollov
2	15- 03- 2022	12:00:00	37.7749	-122.4194	Intersection	Clear	Dry	Clear	Collisi
3	20- 04- 2022	09:20:00	34.0522	-118.2437	Highway	Clear	Dry	Clear	Collisi
4	25- 05- 2022	17:10:00	40.7128	-74.0060	Street	Rainy	Wet	Poor	Collisi
5	30- 06- 2022	14:30:00	41.8781	-87.6298	Intersection	Clear	Dry	Clear	Rollov
6	05- 07- 2022	20:15:00	34.0522	-118.2437	Street	Clear	Dry	Clear	Collisi
7	10- 08- 2022	12:45:00	40.7128	-74.0060	Highway	Rainy	Wet	Poor	Rollov
8	15- 09- 2022	08:30:00	37.7749	-122.4194	Intersection	Clear	Dry	Clear	Collisi
9	20- 10- 2022	16:20:00	34.0522	-118.2437	Highway	Clear	Dry	Clear	Collisi
4									•

In [6]: data.describe()

Out[6]:

	Latitude	Longitude	No of Vehichles	Vehicle Speed	Year
count	147.000000	147.000000	147.000000	147.000000	147.000000
mean	38.325525	-98.649265	1.428571	38.843537	2022.979592
std	3.197276	20.962406	0.496564	8.110285	0.823203
min	34.052200	-122.419400	1.000000	25.000000	2022.000000
25%	34.052200	-118.243700	1.000000	30.000000	2022.000000
50%	40.712800	-87.629800	1.000000	35.000000	2023.000000
75%	40.712800	-74.006000	2.000000	45.000000	2024.000000
max	41.878100	-74.006000	2.000000	55.000000	2024.000000

```
data.isnull().sum()
In [7]:
Out[7]: Date
                                  0
         Time
                                  0
         Latitude
                                  0
                                  0
         Longitude
         Location Description
                                  0
         Weather Conditions
                                  0
         Road Conditions
                                  0
         Visibility
         Accident Type
                                  0
         Injury Severity
                                  0
         Contributing Factors
         Vehicle Type
                                  0
         No of Vehichles
                                  0
         Vehicle Speed
                                  0
         Day of Week
                                  0
         Month
                                  0
         Year
                                  0
         dtype: int64
```

```
In [12]: plt.figure(figsize=(10, 6))
    sns.countplot(x='Road Conditions', data=data)
    plt.title('Distribution of Accidents based on Road Conditions')
    plt.xlabel('Road Conditions')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [13]: plt.figure(figsize=(10, 6))
    sns.countplot(x='Weather Conditions', data=data)
    plt.title('Distribution of Accidents based on Weather Conditions')
    plt.xlabel('Weather Conditions')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [26]: data['DateTime']=pd.to_datetime(data['Date']+' '+ data['Time'], format="mixe data.set_index('DateTime', inplace=True)

In [27]: data.index

Out[27]: DatetimeIndex(['2022-05-01 15:30:00', '2022-10-02 18:45:00', '2022-03-15 12:00:00', '2022-04-20 09:20:00', '2022-05-25 17:10:00', '2022-06-30 14:30:00', '2022-05-25 17:10:00', '2022-06-30 14:30:00', '2022-09-15 08:30:00', '2022-10-08 12:45:00', '2022-09-15 08:30:00', '2022-10-20 16:20:00', '2024-03-15 12:00:00', '2024-04-20 09:20:00', '2024-05-25 17:10:00', '2024-06-30 14:30:00', '2024-05-25 17:10:00', '2024-06-30 14:30:00', '2024-05-07 20:15:00', '2024-10-08 12:45:00', '2024-09-15 08:30:00', '2024-10-20 16:20:00', '2024-10-20 16:20:00', '2024-11-25 14:10:00', '2024-12-30 10:00:00'], dtype='datetime64[ns]', name='DateTime', length=147, freq=No
```

ne)

```
In [28]: plt.figure(figsize=(10, 6))
    data.index.hour.value_counts().sort_index().plot(kind='bar',color='red')
    plt.title('Distribution of Accidents based on Time of Day')
    plt.xlabel('Hour of the Day')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [29]: plt.figure(figsize=(10, 6))
    data.index.month.value_counts().sort_index().plot(kind='bar',color="cyan")
    plt.title('Distribution of Accidents based on Month')
    plt.xlabel('Month')
    plt.ylabel('Number of Accidents')
    plt.xticks(range(1, 13), ['January', 'February', 'March', 'April', 'May', '
    plt.show()
```



```
In [30]: plt.figure(figsize=(10, 6))
    data.index.dayofweek.value_counts().sort_index().plot(kind='bar',color = "g
    plt.title('Distribution of Accidents based on Day of the Week')
    plt.xlabel('Day of the Week')
    plt.ylabel('Number of Accidents')
    plt.xticks(range(7), ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday
    plt.show()
```



```
In [32]: !pip install folium
```

Defaulting to user installation because normal site-packages is not writea ble

Collecting folium

Obtaining dependency information for folium from https://files.pythonhosted.org/packages/b9/98/9ba4b9d2d07dd32765ddb4e4c189dcbdd7dca4d5a735e2e4ea756f40c36b/folium-0.16.0-py2.py3-none-any.whl.metadata (https://files.pythonhosted.org/packages/b9/98/9ba4b9d2d07dd32765ddb4e4c189dcbdd7dca4d5a735e2e4ea756f40c36b/folium-0.16.0-py2.py3-none-any.whl.metadata)

Downloading folium-0.16.0-py2.py3-none-any.whl.metadata (3.6 kB) Collecting branca>=0.6.0 (from folium)

Obtaining dependency information for branca>=0.6.0 from https://files.py thonhosted.org/packages/17/ce/14166d0e273d12065516625fb02426350298e7b4ba59 198b5fe454b46202/branca-0.7.1-py3-none-any.whl.metadata (https://files.pythonhosted.org/packages/17/ce/14166d0e273d12065516625fb02426350298e7b4ba591 98b5fe454b46202/branca-0.7.1-py3-none-any.whl.metadata)

Downloading branca-0.7.1-py3-none-any.whl.metadata (1.5 kB)

Requirement already satisfied: jinja2>=2.9 in c:\programdata\anaconda3\lib \site-packages (from folium) (3.1.2)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-packages (from folium) (1.24.3)

Requirement already satisfied: requests in c:\programdata\anaconda3\lib\si te-packages (from folium) (2.31.0)

Requirement already satisfied: xyzservices in c:\programdata\anaconda3\lib \site-packages (from folium) (2022.9.0)

Requirement already satisfied: MarkupSafe>=2.0 in c:\programdata\anaconda3 \lib\site-packages (from jinja2>=2.9->folium) (2.1.1)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\programdata \anaconda3\lib\site-packages (from requests->folium) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in c:\programdata\anaconda3\lib\site-packages (from requests->folium) (3.4)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\programdata\anacon da3\lib\site-packages (from requests->folium) (1.26.16)

Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anacon da3\lib\site-packages (from requests->folium) (2023.7.22)

Downloading folium-0.16.0-py2.py3-none-any.whl (100 kB)

00:00

Downloading branca-0.7.1-py3-none-any.whl (25 kB) Installing collected packages: branca, folium

Successfully installed branca-0.7.1 folium-0.16.0

Out[33]: Make this Notebook Trusted to load map: File -> Trust Notebook

```
In [34]: plt.figure(figsize=(10, 6))
    sns.countplot(y='Contributing Factors', data=data)
    plt.title('Distribution of Contributing Factors to Accidents')
    plt.xlabel('Number of Accidents')
    plt.ylabel('Contributing Factors')
    plt.show()
```



```
In [35]: plt.figure(figsize=(8, 6))
    data['Injury Severity'].value_counts().plot(kind='bar', color='skyblue')
    plt.title('Distribution of Accident Severity')
    plt.xlabel('Severity')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [36]: plt.figure(figsize=(10, 6))
    data['Accident Type'].value_counts().plot(kind='bar', color='purple')
    plt.title('Accident Types')
    plt.xlabel('Accident Type')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [37]: plt.figure(figsize=(10, 6))
    data.resample('M').size().plot()
    plt.title('Accident Counts Over Time')
    plt.xlabel('Date')
    plt.ylabel('Number of Accidents')
    plt.grid(True)
    plt.show()
```



```
In [38]: plt.figure(figsize=(10, 6))
    data.resample('D').size().rolling(window=30).mean().plot()
    plt.title('Rolling Average of Accident Counts')
    plt.xlabel('Date')
    plt.ylabel('Rolling Average')
    plt.grid(True)
    plt.show()
```


In [39]: import plotly.express as px

```
In [41]: import matplotlib.pyplot as plt
```

```
In [42]: data.index=pd.to_datetime(data.index)
    plt.figure(figsize=(10, 6))
    data.resample('D').size().plot()
    plt.title('Time Series of Accident Counts')
    plt.xlabel('Date')
    plt.ylabel('Number of Accidents')
    plt.grid(True)
    plt.show()
```



```
In [43]: data['Year'] = data.index.year
    accidents_by_year = data['Year'].value_counts().sort_index()
    plt.figure(figsize=(10, 6))
    accidents_by_year.plot(color='skyblue', marker='o', linestyle='-')
    plt.title('Number of Accidents Over the Years')
    plt.xlabel('Year')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.grid(True)
    plt.show()
```


In []: