Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	29 October 2022		
Team ID	PNT2022TMID15933		
Project Name	Fertilizer Recommendation System for Disease		
	Prediction		
Maximum Marks	8 Marks		

Product Backlog, Sprint Schedule, and Estimation:(4Marks)

Sprint	Functional Requirement	User Story			Priority	Team Members
•	(Epic)	Number	,	Points(Total)	•	
Sprint-1	Collection of		Collecting all the required dataset that are	4	High	Ragulan.R,
	Dataset		used to train and test the model			Naveen.S,
						Niranjan.B,
						Santhosh.S
	Model		Create a model which can classify	4	High	Ragulan.R,
	Creation and		diseased fruit plants from healthy plants			Naveen.S,
	Training(Frui		detected from the images. I also need to			Niranjan.B,
	ts)		test the model and deploy it on IBM			Santhosh.S
			Cloud.			
	Model		Create a model which can classify	4	High	Ragulan.R,
	Creation and		diseased vegetable plants from healthy			Naveen.S,
	Training(Veg		plants detected from the images. I also			Niranjan.B,
	etables)		need to test the model and deploy it on			Santhosh.S
			IBM Cloud.			

Sprint	Functional Requirement (Epic)	User Story Number	User Story/Task	Story Points (Total)	Priority	Team Members
Sprint-2	Model Training and testing in IBM Cloud		Create a model which can classify diseased vegetable plants from given images and train on IBM Cloud	6	High	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Registration	USN-1	As a user, I can register by entering my email, password, and confirming my password or via Auth API	3	Medium	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Upload page	USN-2	As a user, I will be redirected to a page where I can select based on my requirement whether to upload my pictures of crops for disease predication or entering my soil details for crop recommendation or fertilizer recommendation.	4	High	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Suggestion results	USN-3	As a user, I can view the results and then obtain the suggestions provided by the ML model	4	High	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Base Flask App		A base Flask web app must be created as an interface for the ML model to interact.	2	High	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
Sprint-3	Login	USN-4	As a user/admin/shopkeeper, can log into the application by entering email & password	2	High	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S

	User Dashboard	USN-5	As a user, I can view the previous results and history which saves the user's time.	3	Medium	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Integration		Integrate Flask, CNN model with Cloud and Database.	5	Medium	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Containerization		Containerize Flask app using Docker	5	Low	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
Sprint-4	Testing and Documentation		Finally the project is tested and further improvements are made based on user feedback. Documentation is also made in order to make better user experience.	4	Medium	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Dashboard	USN-6	As a shopkeeper, I can enter fertilizer products and then update the details if any	4	Low	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S
	Containerization		Create and deploy Helm charts using Docker Image made before.	2	Low	Ragulan.R, Naveen.S, Niranjan.B, Santhosh.S

Project Tracker, Velocity & Burn down Chart: (4Marks)

Sprint	Total	Duration	Sprint Start Date	Sprint End	Story Points	Sprint Release
	Story			Date	Completed (as	Date (Actual)
	Points			(Planned)	on	
					Planned End Date)	
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	30 Oct 2022
Sprint-2	15	6 Days	31 Oct 2022	05 Nov 2022	15	07 Nov 2022
Sprint-3	15	6 Days	07 Nov 2022	12 Nov 2022	15	13 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022	10	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV)per iteration unit (story points per day).

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Roadmap:

