# CoderFarm - Corso base

Carlo Collodel, Francesco Cerroni

15 novembre 2022

# Ripasso della scorsa lezione

Array

```
#include <iostream>
using namespace std;
int main()
    int array[5] = \{6, 9, 4, 2, 0\};
    array[0] = 777;
    for (int i = 0; i < 5; ++i) {
        cout << array[i] << " ";</pre>
    cout << endl;
```

### Ripasso della scorsa lezione

std::vector

```
#include <iostream>
#include <vector>
using namespace std;
int main()
    vector<int> vec(10, 5); /* 10 elementi con valore iniziale 5 */
    vec[1] = 314;
    cout << "{" << vec[0] << ", " << vec[9] << "}\n";</pre>
```

### std::vector

Altri metodi

```
vector<int> vec(3, 2); /* 3 elementi con valore iniziale 2 */
vec.push back(7);
vec.insert(vec.begin(), 2);
for(auto &el : vec) {
    cout << el << endl;</pre>
for(auto &el : vec) {
    cout << el << endl:</pre>
```

### std::vector

Altri metodi

#### Iteratori

Ci sono diversi tipi di *iteratori* nei vari contenitori di C++.

std::vector::begin() indica l'inizio di un vettore,

std::vector::end() punta a **dopo** la fine di un vettore.



Fonte: https://alphacodingskills.com/

**Definizione** 

Come misurare l'efficienza di un algoritmo?

Spesso in informatica (e durante le gare) è necessario misurare approssimativamente quante operazioni o quanta memoria un algoritmo userebbe qualora venisse eseguito da un computer. Un metodo usato molto spesso è quello basato sulla complessità asintotica: questo permette di trovare delle stime "abbastanza buone" per calcolare velocemente il numero di operazioni che richiede un algoritmo.

O-grande

#### La Notazione

Il simbolo più usato per indicare questo tipo di stima è detto

Questo simbolo viene spesso usato per indicare il "caso peggiore'

o il "caso medio" di un algoritmo.

### Esempio

- ▶ Per stampare un array di dimensione N:  $\mathcal{O}(N)$ .
- ▶ Per accedere a un elemento di un array:  $\mathcal{O}(1)$ .
- ▶ Ricerca binaria:  $\mathcal{O}(\log_2 N)$ .

# Complessità asintotica O-grande

### Combinare funzioni in notazione O-grande

Per combinare delle funzioni, per le somme si "scartano" le funzioni che crescono più lentamente e si tiene la funzione che cresce più velocemente per ogni variabile.

In caso di prodotti, semplicemente si moltiplicano le funzioni nella notazione

Spesso si possono omettere fattori moltiplicativi dall'O-grande  $(\mathcal{O}(N) = \mathcal{O}(100 \cdot N))$  e somme costanti  $(\mathcal{O}(N) = \mathcal{O}(N+1000))$ . Noi di solito ignoreremo le somme di valori costanti, ma presteremo più attenzione alle moltiplicazioni!

Funzioni utili

### Esponenziale

La funzione

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ volte}}$$

è detta **esponenziale** con base a ed esponente n. Noi useremo principalmente l'esponenziale con base 2  $(2^n)$ , la complessità asintotica di "stampare tutti i sottoinsiemi di un insieme di cardinalità N" è pari a  $\mathcal{O}(2^N)$ .

Una funzione esponenziale cresce molto rapidamente, ad esempio  $2^{32} \approx 4'000'000'000$ .

Funzioni utili

Forse non tutti siete familiari con 2 funzioni matematiche che spesso useremo nello studio delle complessità: il logaritmo e l'esponenziale.

### Logaritmo

Si definisce "**logaritmo** in base a di n" il numero c ( $\log_a n = c$ ) tale che  $a^c = n$ . Noi useremo in particolare il logaritmo in base 2:  $log_2 n = c \Rightarrow 2^c = n$ .

Il logaritmo è una funzione che cresce molto lentamente, ad esempio  $log_21'000'000\approx 20$ . Nella notazione O-grande si tende ad omettere la base del logaritmo.

O-grande

### Esercizi

- $\triangleright \mathcal{O}(N^2 + 70000 \cdot N).$
- $\triangleright \mathcal{O}(77 + 2^N \cdot N^2 + N^3 4 \cdot N).$
- $\triangleright \mathcal{O}(1+2).$
- $\triangleright \mathcal{O}(\log_2 N + 14 \cdot N + N!! + N!)$

Applicazioni reali

#### std::vector

- ▶ std::vector.push\_back(elemento):  $\mathcal{O}(1)$  ammortizzato.
- ▶ std::vector.pop\_back(elemento):  $\mathcal{O}(1)$  ammortizzato.
- ▶ std::vector.assign(N, x):  $\mathcal{O}(N)$ .
- ▶ std::vector.insert(it, x):  $\mathcal{O}(N)$ .
- ▶ std::vector.erase(it, x):  $\mathcal{O}(N)$ .

Tabella delle complessità

| $\overline{n}$ | Worst AC Algorithm        | Comment                                                       |
|----------------|---------------------------|---------------------------------------------------------------|
| $\leq$ [1011]  | $O(n!), O(n^6)$           | e.g. Enumerating permutations (Section 3.2)                   |
| $\leq [1518]$  | $O(2^n \times n^2)$       | e.g. DP TSP (Section 3.5.2)                                   |
| $\leq [1822]$  | $O(2^n \times n)$         | e.g. DP with bitmask technique (Section 8.3.1)                |
| $\leq 100$     | $O(n^4)$                  | e.g. DP with 3 dimensions + $O(n)$ loop, ${}_{n}C_{k=4}$      |
| $\le 400$      | $O(n^3)$                  | e.g. Floyd Warshall's (Section 4.5)                           |
| $\leq 2K$      | $O(n^2 \log_2 n)$         | e.g. $2$ -nested loops $+$ a tree-related DS (Section $2.3$ ) |
| $\leq 10K$     | $O(n^2)$                  | e.g. Bubble/Selection/Insertion Sort (Section 2.2)            |
| $\leq 1M$      | $O(n\log_2 n)$            | e.g. Merge Sort, building Segment Tree (Section 2.3)          |
| $\leq 100M$    | $O(n), O(\log_2 n), O(1)$ | Most contest problem has $n \leq 1M$ (I/O bottleneck)         |

Fonte: https://cpbook.net/

Per creare un array bidimensionale (una matrice) in C++, è sufficiente usare la seguente notazione:

```
int mat[7][20]; /* definisco una matrice 10x10 */

/* con il primo indice accedo a un array (con 20 elementi) */
/* con il secondo indice accedo agli elementi singoli */
mat[0][1] = 10;
mat[6][9] = 42;
mat[6][19] = 999; /* ultimo elemento */
```

Matrici

### Come stampo una matrice?

Itero con due indici i e j sulla matrice e stampo gli elementi.

Qual è la complessità asintotica?

Dati N il numero di righe e M il numero di colonne, la complessità dell'algoritmo è  $\mathcal{O}(N \cdot M)$ .

Se valesse N=M (nel caso di una matrice quadrata), la complessità si potrebbe riscrivere come  $\mathcal{O}(N\cdot N)=\mathcal{O}(N^2)$ 

Matrici

```
/* inizializzo una matrice con dei valori */
int mat[3][2] = {{1, 2}, {3, 4}, {5. 6}};

for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 2; ++j) {
        cout << mat[i][j] << " ";
    }
    cout << endl; /* vado a capo a fine riga */
}</pre>
```

Più di due dimensioni

In generale, per creare un array multidimensionale in C++, posso concatenare i [] nella dichiarazione:

```
/* dichiaro un array di quattro dimensioni */
int multidim[1][4][7][100];
multidim[1][0][4][55] = -7;
multidim[10][3][6][99] = 1000; /* ultimo elemento */
```

### std::vector multidimensionali

Posso creare anche vector multidimensionali, in generale un contenitore permette di inserire tra le parentesi angolari < > altri contenitori (!).

```
/* dichiaro un vector di tre dimensioni */
vector<vector<int>>> multidim;

/*
 * equivalente di multidim[5][4][3],
 * tutti i valori inizializzati a 100
 */
multidim.assign(5, vector<vector<int>>(4, vector<int>(3, 100)));
```

# Complessità generalizzata per array multidimensionali

### Come stampo un array con K dimensioni?

Itero con K indici  $i_0, i_1, \ldots, i_{K-1}$  sull'array e stampo gli elementi. Qual è la complessità asintotica? Dati  $N_0, N_1, \ldots, N_{K-1}$  il numero di elementi per ogni dimensione, la complessità dell'algoritmo è  $\mathcal{O}\left(\prod N_i\right) = \mathcal{O}(N_0 \cdot N_1 \cdot \cdots \cdot N_{K-1})$ . Se valesse  $N_0 = N_1 = \cdots = N_{K-1}$ , la complessità si potrebbe riscrivere come  $\mathcal{O}(N^K)$ 

Ricerca sequenziale

#### Problema

Supponiamo di avere una lista di elementi e dobbiamo verificare se un dato elemento è presente, come fare?

Ricerca sequenziale

### Soluzione

Scorro tutti gli elementi della lista finché trovo l'elemento cercato oppure raggiungo la fine. Per quanto sembri ovvia la soluzione non ne esiste una migliore.

Ma qual è la complessità asintotica? Distinguiamo 3 casi:

- ightharpoonup caso migliore: l'elemento si trova in posizione 0. L'algoritmo termina subito e la complessità è costante (O(1)).
- ▶ caso medio: l'elemento si trova più o meno a metà. L'algoritmo impiega quindi circa  $\frac{N}{2}$  operazioni, perciò la soluzione ha complessità  $O(\frac{N}{2}) = O(N)$
- ightharpoonup caso pessimo: l'elemento si trova alla fine o non è presente, il numero di operazioni richieste è N. La complessità è O(N).

Ricerca sequenziale

```
bool cerca(vector<int> &v, int val) {
  for (int i = 0; i < v.size(); i++) {
    if (v[i] == val) {
bool cerca(vector<int> &v, int val) {
  for (int &i: v) {
    if (i == val) {
```

Ricerca sequenziale

```
bool cerca(vector<vector<int>> &v, int val) {
  for (int i = 0; i < v.size(); i++) {
    for (int j = 0; j < v[i].size(); j++) {
      if (v[i][j] == val) {
bool cerca(vector<vector<int>>> &v, int val) {
  for (int &i: v) {
    for (int &j: i) {
      if (j == val) {
```

Ricerca binaria

#### **Problema**

Riconsideriamo il problema della ricerca sequenziale, se la lista di valori fosse ordinata, sarebbe possibile trovare un algoritmo più efficiente?

Ricerca binaria

### Ricerca binaria

Idea: supponiamo che x sia un valore da cercare in una lista ordinata L e che L[m] sia il valore in posizione centrale. Nel caso in cui x > L[m] possiamo affermare che nessun elemento nella metà sinistra della lista è uguale a x perché la lista è ordinata. Il ragionamento è analogo nel caso x < L[m]. A questo punto possiamo ripetere lo stesso ragionamento considerando come lista la metà non scartata e procedere finché il valore centrale non sarà uguale a x oppure si giungerà ad una lista di dimensione 0.

Consideriamo la seguente lista:

$$L = [1, 4, 6, 10, 11, 25, 30, 37, 70]$$

Supponiamo di voler cercare il valore 6, e indichiamo con l, r gli estremi della sottolista considerata durante la ricerca binaria.

- ► l = 0, r = 8. Calcoliamo  $m = \frac{l+r}{2} = 4$ , quindi L[m] = l[4] = 11 > 6.
- ► l = 0, r = 3. Calcoliamo  $m = \frac{l+r}{2} = 1$ , quindi L[m] = l[1] = 4 < 6.
- ► l = 2, r = 3. Calcoliamo  $m = \frac{l+r}{2} = 2$ , quindi L[m] = l[2] = 6 == 6.

Abbiamo quindi trovato che il valore 6 è contenuto nella lista e si trova in posizione 2.

Ricerca binaria

Qual è la complessità della ricerca binaria? Ad ogni passaggio della ricerca binaria eliminiamo metà degli elementi nello spazio di ricerca, quindi chiamando N la lunghezza della lista, dopo p passaggi la lunghezza del sotto-intervallo considerato sarà  $\frac{N}{2^p}$ , perciò il numero di passaggi necessario a raggiungere un intervallo di lunghezza di 1 è:

$$\frac{N}{2^p} = 1 \Rightarrow 2^p = N \Rightarrow p = \log_2 N$$

Segue quindi che il numero di passaggi è circa  $log_2N$ , la complessità della ricerca binaria è O(log(N)).

Ricerca binaria

```
bool cerca(vector<int> v, int val) { // supponiamo v ordinato
  while (l \ll r) {
    int m = (l + r) / 2;
    if (v[m] == val) {
    } else if (v[m] < val) {
    } else {
```

### Esercizi!

- ► Sand Buckets
  https://training.olinfo.it/#/task/ois\_buckets
- ► Flappy Bird
  https://training.olinfo.it/#/task/ois\_flappybird
- ► Kalindrome Strings
  https://training.olinfo.it/#/task/ois\_kalindrome
- •

### Fine

Ci vediamo alla prossima lezione!

- ► E-Mail: base@coderfarm.it
- **► Telegram**: T.B.D.