Techniques de Calcul – TD IEP Devoir à rendre le 16/10/19

La suite de Fibonacci est la suite de nombres réels $(F_n)_n$ définie par

$$\begin{cases} F_0 = F_1 = 1 \\ F_{n+2} = F_{n+1} + F_n \quad \forall \ n \in \mathbb{N} \end{cases}$$

- * 1. Montrer que $(F_n)_{n\geq 1}$ est strictement croissante. Est-elle convergente?
- * 2. Déterminer $a > 0, \varphi > 1$ et $\psi \in [-1, 0]$ tels que

$$F_n = a(\varphi^{n+1} - \psi^{n+1})$$

Définition Soit $(u_n)_n$ et $(v_n)_n$ deux suites telles que $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ v_n > 0$. Ces deux suites sont dites équivalentes (on note $u_n \sim v_n$) si et seulement si $\lim_{n \to \infty} (u_n/v_n) = 1$. Si la suite $(v_n)_n$ est constante et égale à $\ell \neq 0$ alors $(u_n)_n$ est convergente de limite ℓ .

On note $(f_n)_n$ et $(z_n)_n$ les suites définies sur \mathbb{N} de termes généraux $f_n = a\varphi^n$ et $z_n = a\psi^n$.

- * 3. Étudier la convergence de $(z_n)_n$. En déduire que $F_n \sim f_{n+1}$.
- ** 4. Montrer que $\lim_{n\to\infty} (F_{n+1}/F_n) = \varphi$.

On définit la suite réelle $(u_n)_n$ par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 1 + \frac{1}{u_n} \quad \forall \ n \in \mathbb{N} \end{cases}$$

- * 5. Calculer $\{u_k\}_{1 \le k \le 5}$. Émettre une conjecture sur la monotonie et la convergence éventuelles de $(u_n)_n$. Donner un exemple de suite convergente non-monotone.
- * 6. Établir par récurrence qu'il existe des réels $(a_k)_{k \le n}$ tels que :

$$u_n = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots}}} \quad \forall \ n \in \mathbb{N}$$

Définition À une telle fraction continue on associe sa suite réduite $(x_n)_n$ dont le terme général est le quotient $x_n = p_n/q_n$, avec

$$\begin{cases} p_0 = 1, \ p_1 = 2 \\ p_{n+2} = a_n p_{n+1} + p_n \ \forall \ n \in \mathbb{N} \end{cases} et \begin{cases} q_0 = q_1 = 1 \\ q_{n+2} = a_n q_{n+1} + q_n \ \forall \ n \in \mathbb{N} \end{cases}$$

Une fraction continue est convergente si et seulement si sa suite réduite est convergente. Lorsqu'elle existe, la limite de cette dernière est la valeur de la fraction continue.

*** 7. En utilisant les questions précédentes, montrer que $\lim_{n\to\infty} u_n = \varphi$.

On considère la suite $(v_n)_n$ définie sur $\mathbb N$ par

$$\begin{cases} v_0 = \sqrt{1} \\ v_{n+1} = \sqrt{1 + v_n} \quad \forall \ n \in \mathbb{N} \end{cases}$$

- * 8. Montrer que $\varphi = \sqrt{1+\varphi}$.
- * 9. Établir par récurrence que, $\forall n \in \mathbb{N}, 1 \leq v_n \leq \varphi$.
- * 10. Montrer que $(v_n)_n$ est croissante, puis que $\lim_{n\to\infty} v_n = \varphi$.