Grade 11 Math Methods Lesson 2

Question 8 (5 marks)

Consider the equation of the circle $x^2 + y^2 - 4x + 2y - 4 = 0$.

- a. Determine the centre and the radius of the circle.
- b. Hence, calculate the area of the circle (in terms of π).

Question 5 (3 marks)

Fifty students at a sports camp were asked what sport they represented their school in. The results are shown in the Venn diagram.

- a. Calculate the probability that a student chosen at random:
 - i. represents the school in soccer
 - ii. represents the school in tennis but not in soccer.
- b. Calculate the probability that a student represents the school in tennis, given that they represent the school in soccer.

Simple familiar

- 1. Factorise $P(x) = x^3 + 5x^2 + 3x 9$ into linear factors.
- 2. Given (x-2) and (x+1) are factors of $P(x) = 6x^4 17x^3 11x^2 + 32x + 20$, determine all the linear factors of this polynomial.
- 3. The polynomial $P(x) = x^3 ax^2 + bx 3$ leaves a remainder of 2 when it is divided by (x - 1) and a remainder of -4 when it is divided by (x + 1). Calculate the values of a and b.

- **10.** Given P(A) = 0.7, P(B) = 0.3 and $P(A \cup B) = 0.8$, find the following.
 - **a.** $P(A \cap B)$
- b. P(A|B)
- c. P(B|A)
- **d.** P(A|B')
- **11.** Given P(A) = 0.6, P(B) = 0.5 and $P(A \cup B) = 0.8$, find the following.
 - **a.** $P(A \cap B)$
- **b.** P(A|B)
- c. P(B|A)
- **d.** P(A|B')
- **12.** Given P(A) = 0.6, P(B) = 0.7 and $P(A \cap B) = 0.4$, find the following.
 - **a.** $P(A \cup B)$ **b.** P(A|B)
- c. P(B|A')
- **d.** P(A'|B')

Tech active

- **15.** The revenue (\$) from the sale of x thousand items is given by $R(x) = 6(2x^2 + 10x + 3)$ and the manufacturing cost (\$) of x thousand items is $C(x) = x(6x^2 x + 1)$.
 - **a.** State the degree of R(x) and of C(x).
 - **b.** Calculate the revenue and the cost if 1000 items are sold and explain whether a profit is made.
 - **c.** Show that the profit (\$) from the sale of x thousand items is given by $P(x) = -6x^3 + 13x^2 + 59x + 18$.
 - **d.** Given the graph of $y = -6x^3 + 13x^2 + 59x + 18$ cuts the x-axis at x = -2, sketch the graph of y = P(x) for appropriate values of x.
 - **e.** If a loss occurs when the number of items manufactured is d, state the smallest value of d.

Part C: Complex unfamiliar — total marks: 10

Question 9 (10 marks)

A cuboid container with a base length twice its width is to be made with $48 \,\mathrm{m}^2$ of metal. Let x represent the container's width and h represent the container's height.

- a. Describe how the volume of the container changes as x changes.
- b. Determine the dimensions of the container with the largest volume
- c. Calculate the maximum volume.

Use mathematical reasoning to justify your response.