21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 2 - Friday September 16, 2011. Due Wednesday September 21

Exercise 8: If G is a group (not necessarily finite), show that every subgroup H of index [G:H] = 2 is a normal subgroup.

Is it true if H has index 3?

Exercise 9: If G is a group and H, K are two subgroups of G, show that HK is a subgroup of G if and only if HK = KH.

Exercise 10: (Putnam 1968-B2) If A is a subset of a finite group G, and A contains more than one half of the elements of G, show that each element of G is the product of two elements of A.

Exercise 11: (Putnam 1969-B1) Let n be a positive integer such that $n = 23 \pmod{24}$. Show that the sum of all the divisors of n is divisible by 24.

Exercise 12: (Putnam 1972-A5) Show that if n is an integer ≥ 2 , then n does not divide $2^n - 1$.

Exercise 13: (Putnam 1972-B3) Let a and b be two elements in a group such that $a b a = b a^2 b$, $a^3 = e$ and $b^{2n-1} = e$ for some positive integer n. Show that b = e.

Exercise 14: (Putnam 1976-B2) Suppose that G is a group generated by two elements a and b, and that $a^4 = b^7 = a b a^{-1} b = e$, with $a^2 \neq e$ and $b \neq e$.

- i) How many element of G are of the form c^2 with c in G?
- ii) Write each such square as $a^m b^n$ for some $m, n \in \mathbb{Z}$.