

Exame Final Nacional de Matemática A Prova 635 | 2.ª Fase | Ensino Secundário | 2020

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho | Decreto-Lei n.º 55/2018, de 6 de julho

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 7 Páginas

A prova inclui 4 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final (itens **1.1.**, **1.2.**, **9.1.** e **9.2.**). Dos restantes 14 itens da prova, apenas contribuem para a classificação final os 8 itens cujas respostas obtenham melhor pontuação.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Á} rea da base \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Á} rea da base \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \ e^{i\theta}} = \sqrt[n]{\rho} \ e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ \mathbf{e} \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^{u})' = u' e^{u}$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Na Figura 1, está representado, num referencial o.n. Oxyz, o cubo [ABCDEFGH] (o ponto H não está representado na figura).

Sabe-se que:

- o ponto A tem coordenadas (7,1,4)
- o ponto G tem coordenadas (5,3,6)
- a reta AE é definida pela equação vetorial $(x, y, z) = (7, 1, 4) + k(3, -6, 2), \ k \in \mathbb{R}$

Resolva os itens 1.1. e 1.2. sem recorrer à calculadora.

Figura 1

1.2. Determine a equação reduzida da superfície esférica que passa nos oito vértices do cubo.

2. Considere um cubo [MNPQRSTU]

Escolhem-se, ao acaso, três vértices distintos desse cubo.

Qual é a probabilidade de o plano por eles definido conter uma das faces do cubo?

(A)
$$\frac{1}{7}$$

(B)
$$\frac{3}{7}$$

(c)
$$\frac{1}{8}$$

(D)
$$\frac{3}{8}$$

3. Seja E o espaço amostral associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset E \text{ e } B \subset E)$.

Sabe-se que:

•
$$P(A) = 0.3$$
 ; $P(B) = 0.4$

•
$$P(\overline{A} \cup \overline{B}) = 0.9$$

Determine o valor da probabilidade condicionada $\ P \big(A \, | \, (A \cup B) \big)$

Apresente o resultado na forma de fração irredutível.

4. Considere todos os números naturais superiores a 9999 e inferiores a 22 000 Destes números, quantos se podem escrever com os algarismos 0, 1, 2 e 3?

- **(A)** 192
- **(B)** 236
- **(C)** 384
- **(D)** 512

5. Dados dois números reais positivos, sabe-se que a soma dos seus logaritmos na base 8 é igual a $\frac{1}{3}$												
	A que é igual o produto desses dois números?											
	(A) 2	(B) 3	(C) 8	(D) 9								
6.	. De uma progressão aritmética (u_n) sabe-se que o sétimo termo é igual ao dobro do segundo e que soma dos doze primeiros termos é igual a 57											
	Sabe-se ainda que 500	é termo da sucessão	(u_n)									
	Determine a ordem deste termo.											
7.	. Seja (v_n) a sucessão o	definida por										
	.		se $n \le 10$									
		$v_n = \begin{cases} 1 + \end{cases}$	se $n < 10$ $\frac{1}{n} \text{se } n \ge 10$									
	Qual das afirmações se	guintes é verdadeira?										
	(A) A sucessão (v_n) to	em limite nulo.	(B) A sucessão (v_n)	é divergente.								
	(C) A sucessão (v_n) é	limitada.	(D) A sucessão (v_n)	é monótona.								

- **8.** Seja $\mathbb C$ o conjunto dos números complexos.
 - 8.1. Resolva este item sem recorrer à calculadora.

Seja $z_1 = \frac{2}{1-i} + \frac{4}{i^5}$ e seja z_2 um número complexo tal que $|z_2| = \sqrt{5}$

Sabe-se que, no plano complexo, o afixo de $z_1 \times z_2$ tem coordenadas positivas e iguais.

Determine z_2

Apresente a resposta na forma $\,a+bi\,,\,$ com $\,$ a, $\,b\,\in\,\mathbb{R}$

8.2. Seja k um número real.

Sabe-se que $\,k+i\,$ é uma das raízes quadradas do número complexo $\,3-4i\,$

Qual é o valor de k?

(A) 2 (B) 1 (C) -1 (D) -2

9. Os satélites artificiais são utilizados para diversos fins e a altitude a que são colocados depende do fim a que se destinam.

Admita que a Terra é uma esfera.

A Figura 2 apresenta um esquema em que se pode observar a superfície terrestre coberta por um satélite, quando este se encontra numa certa posição.

Nesta figura,

- R é o raio, em quilómetros, da Terra;
- h é a altitude, em quilómetros, do satélite (h > 0)

• r é o raio, em quilómetros, da base da calote esférica cuja superfície é coberta pelo satélite $(0 \le r \le R)$

Sabe-se que, para cada posição do satélite, a percentagem da área da superfície terrestre coberta pelo

satélite é dada por
$$50\left(1-\sqrt{1-\left(\frac{r}{R}\right)^2}\right)$$

- **9.1.** Qual é a percentagem da área da superfície terrestre coberta por um satélite se o raio da base da calote esférica for igual a $\frac{3}{5}$ do raio da Terra?
 - (A) 20%
- **(B)** 15%
- (C) 10%
- (D) 5%

Figura 2

9.2. Considere que o raio da Terra é 6400 km

Determine, recorrendo às capacidades gráficas da calculadora, a percentagem da área da superfície terrestre coberta por um satélite se a altitude deste for igual ao raio da base da respetiva calote esférica.

Apresente o resultado arredondado às unidades.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas;
- apresente o valor pedido arredondado às unidades.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

- **10.** Sejam $f \in g$ as funções, de domínio \mathbb{R} , definidas, respetivamente, por $f(x) = x^2$ e $g(x) = \cos x$
 - **10.1.** Qual é o declive da reta tangente ao gráfico da função $f \circ g$ no ponto de abcissa $\frac{\pi}{4}$?
 - (A) -2
- **(B)** -1 **(C)** 1
- **(D)** 2
- **10.2.** Mostre, recorrendo ao teorema de Bolzano-Cauchy, que a equação f(x) = g(x) tem, pelo menos, uma solução no intervalo $\left[0, \frac{\pi}{3}\right]$
- **11.** Seja h a função, de domínio $]-\infty,4[$, definida por

$$h(x) = \begin{cases} 1 + x e^{x-1} & \text{se } x \le 1 \\ \frac{\sqrt{x} - 1}{\text{sen}(x - 1)} & \text{se } 1 < x < 4 \end{cases}$$

Resolva os itens 11.1. e 11.2. sem recorrer à calculadora.

- **11.1.** Averigue se a função h é contínua em x = 1
- **11.2.** Mostre que o gráfico da função h tem uma assíntota horizontal e apresente uma equação dessa assíntota.
- **12.** Seja f uma função, de domínio $]0, +\infty[$, cuja derivada, f', de domínio $]0, +\infty[$, é dada por $f'(x) = \frac{2 + \ln x}{x}$
 - **12.1.** Resolva este item sem recorrer à calculadora.

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f

12.2. Qual é o valor de $\lim_{x \to 1} \frac{f(x) - f(1)}{1 - x^2}$?

(A) -2 **(B)** -1 **(C)** 0

(D) 2

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 4 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.			1.2. 20			9.1 .		9.2 .			Subtotal			
Cotação (em pontos)	16											72			
Destes 14 itens, contribuem para a classificação final da prova os 8 itens cujas respostas obtenham melhor pontuação.	2.	3.	4.	5.	6.	7.	8.1.	8.2.	10.1.	10.2.	11.1.	11.2.	12.1.	12.2.	Subtotal
Cotação (em pontos)	8 x 16 pontos											128			
TOTAL									200						

Prova 635

2.ª Fase