

Código: ECP 107

Disciplina: Algoritmos - I

N1 | 2º bimestre | Curso: EC | Turma: 1º

15/05/2021

Prof.: Flávio Viotti | Coord.: Michele Bazana de Souza

Nota:

Aluno: David Santos Pinheiro das Neves	RA: 081210007
Aluno: Guilherme Feruglio Nishiyama	RA: 081210018
Aluno: Lucas Araújo dos Santos	RA: 081210009
Aluno: Victor Nunes da Silva	RA: 081210012

Orientações:

- Este trabalho deve ser feito em grupos de 3 a 4 alunos. Não podendo ter de forma alguma, número maior ou menor de alunos;
- Caso o grupo não seja composto da forma estabelecida será atribuída nota zero;
- Caso tenham trabalhos iguais, ambos terão nota zero;
- A nota do trabalho será a nota de N1 do 2º bimestre;
- O trabalho deverá ser postado no moodle, na disciplina Algoritmos-I, apenas por um integrante do grupo e deverá conter o nome e RA de todos os componentes;
- O trabalho a ser entregue deverá ser postado, IMPRETERÍVELMENTE, até, no máximo, dia 15/05, sexta-feira às 23h55min. Após este horário e data, o moodle estará travado para receber os trabalhos e a nota será zero;
- A não realização do trabalho fará com que o aluno tenha nota zero na N1 do 2º bimestre;
- Abaixo critérios de correção:
- ✓ O programa não pode possuir erros de compilação;
- ✓ A lógica e estrutura do programa serão avaliados;
- ✓ Programas de fácil entendimento e compreensão em sua escrita, melhoram a nota do mesmo;

Cada um dos programas a serem feitos, deverão ser entregues um em cada projeto do Visual Studio, na linguagem C#.

Lista de Exercícios de Algoritmos – I

1. Desenvolver um algoritmo que efetue a soma de todos os números ímpares que são múltiplos três e encontram no conjunto dos números de 1 até 500.

Resolução:

```
static void Main(string[] args)
{
  int soma = 0;
```

Console.WriteLine("Somando todos os números ímpares que são múltiplos de 3, entre 1 e 500");

```
//Laço de repetição de 1 a 500 for (int i = 1; i <= 500; i++)
```

```
{
             //Selecionando os números ímpares
             if (i % 2 != 0)
               //Selecionando os números múltiplos de 3
               if (i \% 3 == 0)
                 //Somando estes números
                 soma = soma + i;
               }
            }
          }
          //Imprimindo o resultado na tela do usuário
          Console.WriteLine($"\nO resultado é: {soma}.");
          Console.ReadKey();
        }
2. Faça um algoritmo que lê a altura de 15 pessoas e deverá calcular e exibir
    a. A menor altura do grupo;
    b. A maior altura do grupo;
    Resolução:
        static void Main(string[] args)
          Console.WriteLine("Vamos ver quem é o mais alto e quem é o mais baixinho?");
          double altura = 0, maior = 0, menor = 0;
          int i = 0;
          Console.WriteLine("\nDigite a altura de cada pessoa:");
          //Solicitando a primeira altura como base para o laço
          Console.Write("1ª altura: ");
          altura = Convert.ToDouble(Console.ReadLine());
          menor = altura;
          maior = altura;
          //Laço de repetição de 2 até 15 (porque o primeiro valor já foi digitado)
          for (i = 2; i \le 15; i++)
          {
             //Solicitando as próximas alturas
             Console.Write("" + i + " altura: ");
             altura = Convert.ToDouble(Console.ReadLine());
             //Condição para ser o menor
             if (altura < menor)
               menor = altura;
             //Condição para ser o maior
             if (altura > maior)
               maior = altura;
```

```
}

//Imprimindo resultado na tela do usuário

Console.WriteLine($"\nA menor altura é {menor:0.00}m.");

Console.ReadKey();
}
```

3. Desenvolver um algoritmo que leia um número não determinado de valores e calcule e escreva a média aritmética dos valores lidos, a quantidade de valores positivos, a de negativos e o percentual de negativos e positivos.

Resolução:

//Média dos números

```
static void Main(string[] args)
  Console.WriteLine("Olá! Este programa irá ler diversos valores e informar a média");
  Console.WriteLine("aritmética, a quantidade de valores positivos e negativos e o");
  Console.WriteLine("percentual de negativos e positivos.");
  double n, soma = 0;
  int quantidade, i = 0;
  double pos = 0, neg = 0;
  //Solicitando a quantidade de números que serão informados
  Console.WriteLine("\nQuantos números deseja informar?");
  quantidade = Convert.ToInt32(Console.ReadLine());
  //Laço de repetição a partir da quantidade de números
  for (i = 1; i <= quantidade; i++)
  {
    //Solicitando os números
    Console.Write("\n" + i + "° número: ");
    n = Convert.ToDouble(Console.ReadLine());
    //Soma dos números solicitados
    soma = soma + n;
    //Condição para números positivos
    if (n > 0)
      n = pos;
      pos = pos + 1;
    //Condição para números negativos
    else if (n < 0)
      n = neg;
      neg = neg + 1;
  }
```

```
double media = soma / quantidade;

//Percentuais de negativos e positivos
double pp = pos / quantidade * 100;
double pn = neg / quantidade * 100;

//Imprimindo os resultados para o usuário
Console.WriteLine($"\nA média dos números é: {media:0.00}.");
Console.WriteLine($"\nTêm {pos} número(s) positivo(s) e {neg} número(s) negativo(s).");
Console.WriteLine($"\nPortanto, {pp:0.00}% de números positivos e {pn:0.00}% de números negativos.");

Console.ReadKey();
}
```

4. Escrever um algoritmo que leia uma quantidade desconhecida de números e conte quantos deles estão nos seguintes intervalos: [0-25], [26-50], [51-75] e [75-100]. A leitura de dados deve terminar quando for lido um número negativo.

```
static void Main(string[] args)
      Console.WriteLine("Informe diversos valores e o programa mostrará quantos deles");
      Console.WriteLine("estão nos seguintes intervalos: [0-25], [26-50], [51-75] e [75-
100].\n");
      double quantidade, n = 1, int1 = 0, int2 = 0, int3 = 0, int4 = 0;
      //Solicitando a quantidade de números que o usuário vai informar
      Console.WriteLine("Quantos números deseja informar?");
      quantidade = Convert.ToDouble(Console.ReadLine());
      //Laço de repetição a partir da quantidade de números
      for (int i = 1; i <= quantidade; i++)
        //Solicitando os números
        Console.Write("\n" + i + "\circ número: ");
        n = Convert.ToDouble(Console.ReadLine());
        //Condição para números positivos
        if (n < 0)
          Console.WriteLine("\nOps! Não pode informar um número negativo. Reinicie o
programa.");
          break;
        //Condição do intervalo de 0 até 25
        if (n \ge 0 \&\& n \le 25)
          int1++;
        //Condição do intervalo de 26 até 50
        if (n > 25 && n <= 50)
        {
```

```
int2++;
    //Condição do intervalo de 51 até 75
    if (n > 50 \&\& n <= 75)
      int3++;
    //Condição do intervalo de 76 até 100
    if (n > 75 && n <= 100)
      int4++;
    }
  }
  if (n \ge 0)
    //Imprimindo na tela do usuário
    Console.WriteLine($"\nA quantidade de números entre [0-25] é {int1}");
    Console.WriteLine($"A quantidade de números entre [26-50] é {int2}");
    Console.WriteLine($"A quantidade de números entre [51-75] é {int3}");
    Console.WriteLine($"A quantidade de números entre [76-100] é {int4}");
  }
  Console.ReadKey();
}
```

5. Desenvolva um algoritmo que leia uma quantidade não determinada de números positivos. Calcule a quantidade de números pares e ímpares, a média de valores e a média geral dos números lidos. O programa irá terminar quando um número zero for digitado

```
static void Main(string[] args)
      Console.WriteLine("Olá! Este programa lerá uma quantidade de números positivos
(diferentes de zero) e");
      Console.WriteLine("informará para você a quantidade de números pares e ímpares, a
média de valores");
      Console.WriteLine("(pares/impares) e a média geral dos números lidos.");
      double n = 1, quantidade, media = 0, mp = 0, mi = 0, soma = 0, sp = 0, si = 0, par = 0, impar
= 0;
      //Solicitando a quantidade de números que serão informados
      Console.WriteLine("\nQuantos números positivos deseja informar?");
      quantidade = Convert.ToDouble(Console.ReadLine());
      // Condição para a quantidade ser um número positivo, diferente de zero
      if (quantidade > 0)
      {
        //Laço de repetição a partir da quantidade de números
        for (int i = 1; i \le quantidade; i++)
          //Solicitando os números
          Console.Write("\n" + i + "° número: ");
```

```
n = Convert.ToDouble(Console.ReadLine());
          //Condição para não ter número negativo, ou igual a zero
          if (n \le 0)
            Console.WriteLine("\nOps! Só pode informar números POSITIVOS e DIFERENTES de
zero!");
            Console.WriteLine("Vamos novamente, reinicie o programa!");
            break;
          }
          //Soma dos números
          soma = soma + n;
          //Condição para números pares
          if (n % 2 == 0)
          {
            //Soma dos números pares
            sp = sp + n;
            //Quantidade de números pares
            par++;
          }
          //Condição para números ímpares
          else
            //Soma dos números ímpares
            si = si + n;
            //Quantidade de números ímpares
            impar++;
          }
          //Média dos números pares
          mp = sp / par;
          //Média dos números ímpares
          mi = si / impar;
          //Média geral dos números
          media = soma / quantidade;
        if (n > 0)
          //Imprimindo os resultados para o usuário
          Console.WriteLine($"\nTêm {par} número(s) par(es) e {impar} número(s)
ímpar(es).");
          Console.WriteLine($"A média destes números é {media:0.00}.");
          Console.WriteLine($"A média dos números pares é {mp:0.00}.");
          Console.WriteLine($"A média dos números ímpares é {mi:0.00}.");
        }
      }
      // Caso a quantidade de números for um número negativo ou igual a zero
      else
```

6. Escreve um algoritmo que gera e escreva os números ímpares entre 100 e 200.

Resolução:

7. Escreva um algoritmo que leia um valor inicial A e uma razão R e imprima uma sequência em PA. contendo 10 elementos

```
static void Main(string[] args)

{

// Declaração de variáveis
float valor, valorinicial, razao;

Console.WriteLine("--- SEQUÊNCIA EM PA ---\n");

// Solicita o valor inicial
Console.Write("Digite o valor inicial: ");
valorinicial = float.Parse(Console.ReadLine());

// Solicita a razão
Console.Write("Digite a razão: ");
razao = float.Parse(Console.ReadLine());

Console.WriteLine("\nA sequência em Progressão Aritmética ficou assim: \n");

// Laço de repetição de 1 até 10
for (int i = 1; i <= 10; i++)
```

```
{
    // Fórmula da PA
    valor = valorinicial + (i - 1) * razao;

    // Exibe o valor
    Console.Write("| " + valor + " |");
}

// Comando para esperar o usuário usar uma tecla
Console.ReadKey();
```

8. Escreva um algoritmo que leia um valor inicial A e uma razão R e imprima uma sequência em P.G. contendo 10 elementos

Resolução:

```
static void Main(string[] args)
  // Declaração de variáveis
  double valor, valorinicial, razao;
  Console.WriteLine("--- SEQUÊNCIA EM PG ---\n");
  // Solicita o valor inicial
  Console.Write("Digite o valor inicial: ");
  valorinicial = double.Parse(Console.ReadLine());
  // Solicita a razão
  Console.Write("Digite a razão: ");
  razao = double.Parse(Console.ReadLine());
  Console.WriteLine("\nA sequência em Progressão Geométrica ficou assim: \n");
  // Laço de repetição de 1 até 10
  for (int i = 1; i \le 10; i++)
    // Fórmula da PG
    valor = valorinicial * Math.Pow(razao, (i - 1));
    // Exibe o valor
    Console.Write(" | " + valor + " | ");
  }
  // Comando para esperar o usuário usar uma tecla
  Console.ReadKey();
```

9. Escreva um algoritmo que leia um valor inicial A e imprima a sequência de cálculo de A! e 0 resultado. Ex: 5! = 5 X 4 X 3 X 2 X 1 = 120

```
static void Main(string[] args) {
// Declaração de variáveis
ulong numero, fatorial;
```

```
Console.WriteLine("--- FATORIAL ---\n");
// Solicita um número
Console.Write("Digite um número: ");
numero = Convert.ToUInt64(Console.ReadLine());
fatorial = 1;
// Exibe o número digitado pelo usuário
Console.Write("\n{0}! = {1}", numero, numero);
// Laço de repetição do valor do número digitado até 1
for (ulong n = numero; n >= 1; n--)
  // Cálculo do fatorial
  fatorial = fatorial * Convert.ToUInt64(n);
  // if pra não exibir o número digitado pelo usuário denovo
  if (n != numero)
  {
    // Exibe o valor de n (número da sequência do cálculo)
    Console.Write("X {0} ", n);
  }
}
// Exibe o valor do fatorial
Console.Write("= {0}", fatorial);
// Comando para esperar o usuário usar uma tecla
Console.ReadLine();
```

10. Escreva um algoritmo que leia um número e informe se ele é divisível por 10, por 5 ou por 2 ou se não é divisível por nenhum deles.

Resolução:

```
static void Main(string[] args)
{

// Declaração de variáveis
double numero;

// Solicita um número
Console.Write("Digite um número: ");
numero = double.Parse(Console.ReadLine());

if (numero % 10 == 0 || numero % 5 == 0 || numero % 2 == 0)
{

// If para verificar se o número é divisível por 10
if (numero % 10 == 0)
{

Console.WriteLine($"\nO {numero} é divisível por 10");
}

// If para verificar se o número é divisível por 5
if (numero % 5 == 0)
```

```
{
    Console.WriteLine($"\nO {numero} é divisível por 5");
}

// If para verificar se o número é divisível por 2
if (numero % 2 == 0)
{
    Console.WriteLine($"\nO {numero} é divisível por 2");
}

// else, caso o número não seja divisível por: 10, 5, 2
else
{
    Console.WriteLine($"\nO {numero} não é divisível por: 10, 5, 2");
}

// Comando para esperar o usuário usar uma tecla
Console.ReadLine();
```

11. Construa um algoritmo para determinar se o indivíduo está com um peso favorável. Essa situação é determinada através do IMC (índice de Massa Corpórea), que é definida como sendo a relação entre o peso (PESO) e o quadrado da Altura (ALTURA) do indivíduo, ou seja,

$$IMC = \frac{PESO}{ALTURA^2}$$

e, a situação do peso é determinada pela tabela abaixo:

Condição	Situação		
IMC abaixo de 20	Abaixo do peso		
IMC de 20 até 25	Peso Normal		
IMC de 25 até 30	Sobre Peso		
IMC de 30 até 40	Obeso		
IMC de 40 e acima	Obeso Mórbido		

Resolução:

```
static void Main(string[] args)
{
    // variáveis
    double peso, altura, imc;

    // entrada de dados
    Console.WriteLine("Digite seu peso:");
    peso = Convert.ToDouble(Console.ReadLine());

Console.WriteLine("Digite sua altura:");
    altura = Convert.ToDouble(Console.ReadLine());
```

```
// cálculo do IMC
imc = (peso / Math.Pow(altura, 2));

if (imc < 20)
{
    Console.WriteLine("\nVocê está abaixo do peso. ");
}
else if (imc < 25)
{
    Console.WriteLine("\nVocê está no peso normal. ");
}
else if (imc < 30)
{
    Console.WriteLine("\nVocê está acima do peso. ");
}
else if (imc < 40)
{
    Console.WriteLine("\nVocê está obeso. ");
}
else if (imc >= 40)
{
    Console.WriteLine("\nVocê está com obesidade mórbida. ");
}
Console.ReadKey();
```

12. A CEF concederá um crédito especial com juros de 2% aos seus clientes de acordo com o saldo médio no último ano. Fazer um algoritmo que leia o saldo médio de um cliente e calcule o valor do crédito de acordo com a tabela a seguir.

Imprimir uma mensagem informando o saldo médio e o valor de crédito.

Saldo Médio	Percentual		
De 0 a 500	Nenhum crédito		
De 501 a 1000	30% do valor do saldo médio		
De 1001 a 3000	40% do valor do saldo médio		
Acima de 3001	50% do valor do saldo médio		

Resolução:

```
static void Main(string[] args)
{

// Declaração de variáveis
double saldo_medio, credito;

Console.Write("Digite seu saldo médio: ");
saldo_medio = Convert.ToDouble(Console.ReadLine());

if (saldo_medio <= 500)
{

Console.WriteLine($"\nSeu saldo médio é R$ {saldo_medio}");
Console.WriteLine($"Você não tem crédito.");
```

```
else if (saldo_medio <= 1000)

{
    credito = (saldo_medio * 0.3);
    Console.WriteLine($"\nSeu saldo médio é R$ {saldo_medio}");
    Console.WriteLine($"Seu crédito é de R$ {credito}.");
}

else if (saldo_medio <= 3000)

{
    credito = (saldo_medio * 0.4);
    Console.WriteLine($"\nSeu saldo médio é R$ {saldo_medio}");
    Console.WriteLine($"Seu crédito é de R$ {credito}.");
}

else if (saldo_medio > 3000)

{
    credito = (saldo_medio * 0.5);
    Console.WriteLine($"\nSeu saldo médio é R$ {saldo_medio}");
    Console.WriteLine($"\nSeu crédito é de R$ {credito}.");
}

Console.ReadKey();
}
```

- 13. Crie um algoritmo que leia a idade de uma pessoa e informe a sua classe eleitoral:
- Não eleitor (abaixo de 16 anos);
- Eleitor obrigatório (entre a faixa de 18 e menor de 65 anos);
- Eleitor facultativo (de 16 até 18 anos e maior de 65 anos, inclusive).

14. Criar um algoritmo que informe a quantidade total de calorias de uma refeição a partir do usuário que deverá informar o prato, a sobremesa e a bebida (veja a tabela a seguir).

Prato	Calorias	Sobremesa	Calorias	Bebida	Calorias
Vegetariano	180 cal	Abacaxi	75 cal	Chá	20 cal
Peixe	230 cal	Sorvete diet	110 cal	Suco de laranja	70 cal
Frango	250 cal	Mouse diet	170 cal	Suco de melão	100 cal
Carne	350 cal	Mouse chocolate	200 cal	Refrigerante diet	65 cal

Sugestão: enumere cada opção de prato, sobremesa e bebida. Ou seja:

Prato: 1 - vegetariano, 2 — Peixe, 3 — Frango, 4 — Carne;

Sobremesa: 1 — Abacaxi, 2 — Sorvete diet, 3 — Mouse diet, 4 — Mouse chocolate;

Bebida: 1 — Chá, 2 - Suco de laranja, 3 — Suco de melão, 4 – Refrigerante diet;

```
static void Main(string[] args)
  // Declaração de variáveis
  int prato=0, sobremesa=0, bebida=0;
  int CALprato=0, CALsobremesa=0, CALbebida=0;
  int total_calorias;
  while (prato < 1 | | prato > 4)
  {
    // Entrada de dados da escolha do prato
    Console.WriteLine("Digite o número do prato que deseja:");
    Console.WriteLine("1 - Vegetariano");
    Console.WriteLine("2 - Peixe");
    Console.WriteLine("3 - Frango");
    Console.WriteLine("4 - Carne\n");
    prato = Convert.ToInt32(Console.ReadLine());
    if (prato < 1 || prato > 4)
      Console.WriteLine("\n-----");
      Console.WriteLine(" | Número incorreto!! Por favor, digite um número entre 1 a 4 | ");
      Console.WriteLine("-----\n");
      continue;
    // Alteração de variável de acordo com o prato
    if (prato == 1)
      CALprato = 180;
    else if (prato == 2)
      CALprato = 230;
    else if (prato == 3)
      CALprato = 250;
    else if (prato == 4)
```

```
CALprato = 350;
}
while (sobremesa < 1 | | sobremesa > 4)
  // Entrada de dados da escolha da sobremesa
  Console.WriteLine("\nDigite o número da sobremesa que deseja:");
  Console.WriteLine("1 - Abacaxi");
  Console.WriteLine("2 - Sorvete diet");
  Console.WriteLine("3 - Mousse diet");
  Console.WriteLine("4 - Mousse de chocolate\n");
  sobremesa = Convert.ToInt32(Console.ReadLine());
  if (sobremesa < 1 | | sobremesa > 4)
    Console.WriteLine("\n-----");
    Console.WriteLine(" | Número incorreto!! Por favor, digite um número entre 1 a 4 | ");
    Console.WriteLine("-----\n");
    continue;
  }
  // Alteração da variável de acordo com a escolha da sobremesa
  if (sobremesa == 1)
    CALsobremesa = 75;
  else if (sobremesa == 2)
    CALsobremesa = 110;
  else if (sobremesa == 3)
    CALsobremesa = 170;
  else if (sobremesa == 4)
    CALsobremesa = 200;
while (bebida < 1 | | bebida > 4)
{
  // Entrada de dados da escolha da bebida
  Console.WriteLine("\nDigite o número da bebida que deseja:");
  Console.WriteLine("1 - Chá");
  Console.WriteLine("2 - Suco de laranja");
  Console.WriteLine("3 - Suco de melão");
  Console.WriteLine("4 - Refrigerante diet\n");
  bebida = Convert.ToInt32(Console.ReadLine());
  if (bebida < 1 | | bebida > 4)
  {
```

```
Console.WriteLine("\n-----");
         Console.WriteLine(" | Número incorreto!! Por favor, digite um número entre 1 a 4 | ");
         Console.WriteLine("-----\n");
         continue;
       // Alteração da variável de acordo com a escolha da bebida
       if (bebida == 1)
         CALbebida = 20;
       }
       else if (bebida == 2)
         CALbebida = 70;
       else if (bebida == 3)
         CALbebida = 100;
       else if (bebida == 4)
         CALbebida = 65;
       total_calorias = CALprato + CALsobremesa + CALbebida;
       Console.WriteLine($"\nA quantidade de calorias dessa refeição é de {total_calorias}
calorias");
     Console.ReadKey();
   }
```

15. Criar um algoritmo que leia o um número inteiro entre 1 e 7 e escreva o dia da semana correspondente. Caso o usuário digite um número fora desse intervalo, deverá aparecer uma mensagem informando que não existe dia da semana com esse número.

```
static void Main(string[] args)
{
    // Declaração de Variáveis
    int semana;

    // Solicita o dia da semana
    Console.Write("Digite o dia da semana entre (1 a 7): ");
    semana = Convert.ToInt16(Console.ReadLine());

    //If para verificar qual é o dia da semana correspondente
    if (semana == 1)
        Console.Write("\nDomingo");

else if (semana == 2)
        Console.Write("\nSegunda-feira");

else if (semana == 3)
        Console.Write("\nTerça-feira");
```

```
else if (semana == 4)
    Console.Write("\nQuarta-feira");

else if (semana == 5)
    Console.Write("\nQuinta-feira");

else if (semana == 6)
    Console.Write("\nSexta-feira");

else if (semana == 7)
    Console.Write("\nSábado");

else
    Console.Write("\nNão existe dia da semana com esse número");

// Comando para esperar o usuário usar uma tecla
Console.ReadKey();
```

16. Dados três valores A, B e C, construa um algoritmo, que imprima os valores de forma descendente (do maior para o menor).

Resolução:

```
static void Main(string[] args)
  // Declaração de Variáveis
  int a, b, c;
  // Solicita os três valores
  Console.WriteLine("Digite três valores: \n");
  Console.Write("Digite o 1º valor: ");
  a = int.Parse(Console.ReadLine());
  Console.Write("Digite o 2º valor: ");
  b = int.Parse(Console.ReadLine());
  Console.Write("Digite o 3º valor: ");
  c = int.Parse(Console.ReadLine());
  Console.WriteLine("\n---ORDEM DECRESCENTE---\n");
  // Verifica se a é maior que b
  if (a > b)
    // Verifica se b é maior que c, logo: (a > b > c)
    if (b > c)
       Console.WriteLine(a + " - " + b + " - " + c);
    // Verifica se a é maior que c, logo: (a > c > b)
    else if (a > c)
       Console.WriteLine(a + " - " + c + " - " + b);
```

```
// Caso contrário, c é maior que a e b, logo: (c > a > b)
  else
    Console.WriteLine(c + " - " + a + " - " + b);
  }
// Verifica se b é maior que c
else if (b > c)
  // Verifica se a é maior que c, logo: (b > a > c)
  if (a > c)
    Console.WriteLine(b + " - " + a + " - " + c);
  // Caso contrário, a é menor que b e c, logo: (b > c > a)
  else
    Console.WriteLine(b + " - " + c + " - " + a);
// Caso contrário, c é maior que b e a, logo: (c > b > a)
else
  Console.WriteLine(c + " - " + b + " - " + a);
}
// Comando para esperar o usuário usar uma tecla
Console.ReadKey();
```

17. Escreva um algoritmo que calcule a soma dos números de 1 a 15.

Resolução:

```
static void Main(string[] args)
{
    // Declaração de Variáveis
    int cont, soma = 0;

    Console.WriteLine("Cálculo da soma dos números de 1 a 15");

    // Laço de repetição de 1 até 15
    for (cont = 1; cont <= 15; cont++)
    {
        // Soma o valor de cont com o valor das somas anteriores
        soma = soma + cont;
    }

    // Exibe o valor da soma dos números de 1 a 15
    Console.WriteLine("\nO resultado da soma dos números de 1 a 15 é: {0}", soma);

    // Comando para esperar o usuário usar uma tecla
    Console.ReadKey();
}</pre>
```

18. Leia a idade de 20 pessoas e exiba a soma das idades, a média das idades e quantas pessoas são maiores de idade.

Resolução:

```
static void Main(string[] args)
  // Declaração de Variáveis
  float soma = 0, media = 0;
  int idade, ii = 0;
  // Laço de repetição para solicitar idade até completar as 20 pessoas
  for (int i = 1; i \le 20; i++)
    Console.Write(i + " - Digite sua idade : ");
    idade = int.Parse(Console.ReadLine());
    // Cálculo da soma das idades
    soma += idade;
    // Pessoas +18
    if (idade >= 18)
      ii++;
    }
  }
  // Cálculo da média das idades
  media = soma / 20;
  // Exibição dos resultados
  Console.WriteLine("\n A soma das idades é : " + soma);
  Console.WriteLine("\n A média das idades é : " + media);
  Console.WriteLine($"\n O número de pessoas maior de idade é: {ii}");
  // Comando para esperar o usuário usar uma tecla
  Console.ReadKey();
```

19. Leia o nome e a idade de 10 pessoas e exiba o nome da pessoa mais nova.

Resolução:

```
static void Main(string[] args)
  // Declaração de Variáveis
  string nome="", nomenovo="";
  double idade = 0, novo = 0;
  Console.WriteLine("Vamos ver quem é o mais novo?");
  Console.WriteLine("\nDigite o nome e a idade de 10 pessoas:");
  //Laço de repetição de 1 até 10
  for (int i = 1; i <= 10; i++)
    //Solicitando as próximas idade
```

```
Console.Write("\n" + i + "° nome: ");
nome = Console.ReadLine();

Console.Write("" + i + "a idade: ");
idade = Convert.ToDouble(Console.ReadLine());

//Condição para ser o mais novo
if (novo > idade)
{
    nomenovo = nome;
    novo = idade;
}

// Imprimindo resultado na tela do usuário
Console.WriteLine($"\nO(a) mais novo(a) é o(a) {nomenovo}, com {novo} anos.");

// Comando para esperar o usuário usar uma tecla
Console.ReadKey();
```

20. Faça um algoritmo que leia 20 números e, ao final, escreva quantos estão entre 0 e 100, quantos estão entre 101 e 200 e quantos são maiores de 200.

```
static void Main(string[] args)
      Console.WriteLine("Descrever quantos números estão entre 0 e 100, quantos entre 101 e
200 e quantos são maiores de 200.");
      double nummaior = 0, numEntre0e100 = 0, numEntre101e200 = 0;
      Console.WriteLine("\nDigite 20 números : \n");
      // Laço de repetição de 1 até 20
      for (int i = 1; i \le 20; i++)
        double numero = 0;
        Console.Write($"{i}° número: ");
        numero = double.Parse(Console.ReadLine());
        if (numero > 0)
        {
          //Verificação se o número está entre 0 e 100
          if (numero >= 0 && numero <= 100)
            numEntre0e100++;
          //Verificação se o número está entre 101 e 200
          else if (numero >= 101 && numero <= 200)
          {
            numEntre101e200++;
```

```
//Verificação se o número é maior que 200
else
{
    nummaior++;
}
}
//Exibição dos resultados
Console.WriteLine("\nQuantidade de números entre 0 e 100 : " + numEntre0e100);
Console.WriteLine("\nQuantidade de números entre 101 e 200 : " + numEntre101e200);
Console.WriteLine("\nQuantidade de números maiores que 200 : " + nummaior);
Console.ReadKey();
}
```