Sprawozdanie

Algorytmy optymalizacji Dyskretnej Laboratorium - Lista 4

Paweł Stanik

18. January 2025

0.1 Przedmowa

Zadanie polega na implementacji i przetestowaniu kilku algorytmów wyznaczania największych przepływów w grafach. Algorytmy zostały zaimplementowane w języku rust, wykresy wykonano za pomocą biblioteki plotters.

1 Algorytm Edmondsa - Karpa

Moja implementacja wykorzystuje BFS z kolejką oraz tablicę prev oznaczającą poprzednika danego wierzchołka w BFS pozwalającą na znalezienie ścieżki do wierzchołka końca, a następnie za pomocą tej ścieżki modyfikujemy sieć resydualną. Bfs jest wykonywany w sieci resydualniej wielokrotnie, do póki istnieje ścieżka z wierzchołka startu do wierzchołka końca.

Złożoność algorytmu to $O(VE^2)$, znajdywanie ścieżki powiększającej ma złożoność O(E), długość ścieżki nie może maleć, ale może się utrzymywać na tym samym poziomie przez co najwyżej O(E) kroków, a maksymalna długość ścieżki jest O(V).

1.1 Wykresy

Maximum flow in hypercube of x dimension Maximum flow Ma

Rysunek 1: Wielkość maksymalnego przepływu

Wiemy że k wymiarowa hiperkostka ma $k \cdot 2^{k-1}$ krawędzi możemy więc przypuszczać że przepływ będzie w jakiś sposób zależny od liczby krawędzi i rzeczywiście obserwujemy eksponencjalny wzrost maksymalnego przepływu wraz ze wzrostem k.

Count of expanding paths in hypercube of x dimension

Rysunek 2: Ilość wyznaczonych ścieżek powiększających

Wiemy że ilość ścieżek powiększających jest rzędu $O(V \cdot E)$ spodziewamy się więc również wzrostu eksponencjalnego i zaobserwowany wykres znowu na taki wygląda.

Algorithm run time in hypercube of x dimension

Rysunek 3: Czas działania algorytmu

Jako że znamy złożoność czasową algorytmu $O(VE^2)$, wiemy że możemy się spodziewać wzrostu czasu na poziome 2^{2k} co zgadza się z obserwacjami.

2 Algorytm Wyznaczania Skojarzeń

Moja implementacja wykorzystuje zmodyfikowany algorytm BFS z kolejką oraz tablicą prev do wyznaczania ścieżek powiększających, oraz tablicę matching do zapisywania skojarzeń wierzchołków, modyfikacja polega na "zmuszeniu" algorytmu po przejściu po krawędzi skojarzenia w co drugiej iteracji.

Złożoność algorytmu to $O(E\sqrt{V})$, BFS posiada złożoność O(E) i jest wykonywany $O(\sqrt{V})$ razy.

2.1 Wykresy

Max matching size per k and i

Rysunek 4: Wielkość maksymalnego matchingu w stosunku do i oraz k

Obserwujemy eksponencjalny wzrost rozmiaru matchingu wraz ze wzrostem k, co jest spowodowane eksponencjalnym wzrostem ilości wierzchołków, obserwujemy również logarytmiczny wzrost wielkości matchingu wraz ze wzrostem i. Co ciekawe już dla i=4 matching obejmuje niemal 100% wierzchołków. Wydaje mi się że jest to w jakiś sposób powiązane z rozkładem geometrycznym zmiennej losowej.

Algorithm run time in microseconds per k and i

Rysunek 5: Czas działania algorytmu w stosunku do i oraz k

Obserwujemy eksponencjalny wzrost czasu działania wraz ze wzrostem k, co ciekawe wykres ze wzrostem i zachowuje się specyficznie osiągając maksimum dla i=3, jest to spowodowane faktem że dla małych i statystycznie rzadkie są długie ścieżki powiększające w sieci, z kolei dla dużych i istnieje duże prawdopodobieństwo znalezienia krótkiej ścieżki powiększającej, co powoduje że dla wartości pomiędzy czas działania jest największy.

Algorytm Dinitza 3

Algorytm Dinica to modyfikacja algorytmu znajdowania maksymalnego przepływu w sieci. Wykorzystuje on graf poziomowy aby zredukować poruszanie się po krawędziach które nie doprowadzą do źródła.

Moja implementacja wykorzystuje algorytm BFS z kolejką i tablicą LEVEI do wyznaczania grafu poziomowego i algorytm DFS z tablicą PATH do wyznaczania ścieżek powiększających w grafie poziomowym.

Algorytm działa w czasie $O(V^2E)$, wyznaczanie grafu poziomowego zajmuje O(E) a wyznaczenie przepływu blokującego w grafie poziomowym zajmuje O(VE).

Dinic algorithm run time in hypercube of x dimension

Rysunek 6: Czas działania algorytmu Dinitza

Comparison of algorithm run time in hypercube of x dimension in seconds (log2 scale)

Rysunek 7:

Jak widzimy algorytm Dinitza jest magnitudy szybszy dla większych grafów, dla małych grafów jest jednak nieco wolniejszy. Obliczenia wykazują że algorytm Dinica jest $\approx 2^{0.5x-2}$ razy szybszy. Widzimy że jest on znacznym usprawnieniem algorytmu Edmondsa - Karpa

4 Modele programowania liniowego

4.1 Max Flow

- 1. Konwersje rozpoczynamy od zamiany grafu na postać macierzy sąsiedztwa
- 2. Ustalamy zmienne decyzyjne jako macierz o rozmiarach macierzy sąsiedztwa gdzie każdy element jest większy od zera
- 3. Ustalamy ograniczenie: wartość zmiennej decyzyjnej nie może być większa od odpowiadającej jej wartości w macierzy sąsiedztwa
- 4. Ustalamy ograniczenie: ilość przepływu wpływająca do wierzchołka musi być taka sama jak ilość wypływająca tzn. suma wartości i-tej kolumny musi być równa sumie i-tego wiersza (z pominięciem pierwszego i ostatniego start i sink)
- 5. Ustalamy funkcję celu jako ilość przepływu wypływającą z 1 wierzchołka (suma 1 wiersza)

4.2 Max Flow

- 1. Konwersje rozpoczynamy od zamiany grafu na postać macierzy sąsiedztwa
- 2. Ustalamy zmienne decyzyjne jako macierz o rozmiarach macierzy sąsiedztwa gdzie każdy element jest równy 1 lub 0
- 3. Ustalamy ograniczenie: wartość zmiennej decyzyjnej nie może być większa od odpowiadającej jej wartości w macierzy sąsiedztwa
- 4. Ustalamy ograniczenie: jeden wierzchołek może być połączony co najwyżej z jednym wierzchołkiem, tzn. suma danego wiersza ≤ 1 i suma danej kolumny ≤ 1
- 5. Ustalamy funkcję celu jako ilość przepływu wypływającą z 1 wierzchołka (suma 1 wiersza)

4.3 Eksperymenty

Testy wykazały że solver zwraca te same obliczane wartości co algorytmy, i wyznacza te same rozwiązanie, działa przy tym znacznie wolniej od algorytmów (możliwe że jest to spowodowane po części parsowaniem wygenerowanej macierzy)

5 Dodatkowe wykresy

Algorithm run time in in bipartite graph of i = 1

Comparison of algorithm run time in hypercube of x dimension

Comparison of count of expanding paths in hypercube of x dimension

Comparison of maximum flow in hypercube of x dimension

