Algoritmi e Strutture Dati

Foglio 1 27/02/2023

Esercizio 1. Fornire un limite asintotico superiore per le seguenti funzioni f(n):

- 1. $(n + 8 \log n)(10n \log n + 17n^2)$
- 2. *n*!
- 3. log *n*!
- 4. $3n \log n! + (n^2 + 3) \log n$

Esercizio 2. Siano $f_1(n)$, $f_2(n)$ e g(n) funzioni tali che $f_1(n) = O(g(n))$ e $f_2(n) = O(g(n))$. Dimostrare che $f_1(n) + f_2(n) = O(g(n))$.

Esercizio 3. Dimostrare le seguenti:

- 1. $(n^n + n2^n + 5^n)(n! + 5^n) = O(n^n n!)$
- 2. $(n! + 2^n)(n^3 + \log(n^2 + 1)) = O(n^3 n!)$
- 3. $n! \neq O(2^n)$.

Esercizio 4. Dimostrare o confutare le seguenti:

- 1. $n \log n = O(\log n!)$
- 2. $\log_{16} n = O(\log_4 n)$ e $\log_8 n = O(\log_{10} n)$
- 3. $\log(n^2 + 1) = O(\log n)$
- 4. Per risolvere un certo problema abbiamo a disposizione due algoritmi, A_1 e A_2 . Se l'input ha dimensione n, A_1 impiega esattamente n^22^n passi, mentre A_2 impiega esattamente n! passi. Al crescere di n, A_1 impiega un numero minore di passi rispetto ad A_2 .

Esercizio 5. Per ognuna delle seguenti funzioni f(n), trovare g(n) tale che $f(n) = \Theta(g(n))$:

- 1. $(n^2+1)^{10}$
- 2. $2n\log(n+2)^2 + (n+2)^2\log\frac{n}{2}$
- 3. $2^{n+1} + 3^{n-1}$

Esercizio 6. Quale delle seguenti sequenze di funzioni è tale che ogni funzione è O della successiva?

- 1. $\log(\log n)$, n, $\log n$, n^n
- 2. $\log n$, 2^{2^n} , n^n , n!
- 3. $\log(\log n)$, $\log n$, n, 2^{2^n}
- 4. nessuna delle precedenti

Esercizio 7. Sia k un intero positivo. Dimostrare che un insieme di n elementi ha $O(n^k)$ sottoinsiemi di cardinalità k.

Esercizio 8. Usando il metodo visto a lezione, dimostrare che, per ogni $\alpha, k > 0$ (costanti fisse), $n^k = o((1 + \alpha)^n)$.

Esercizio 9. Terminando il ragionamento visto a lezione, dimostrare che il numero di cifre della rappresentazione di $(n)_{10}$ in base $b \in \lfloor \log_b n \rfloor + 1$.

Esercizio 10. Completare l'analisi di correttezza dell'algoritmo di addizione binaria.