

# ICON Database Reference Manual

### D. Reinert, F. Prill, H. Frank and G. Zängl

Deutscher Wetterdienst Research and development (FE13)



Version: 0.2.4

Last changes: December 17, 2013

Offenbach am Main, Germany

ii History of versions

# History of versions

| Version | Date     | $\mathbf{Author}(\mathbf{s})$ | Changes                                                                                                                                                              |
|---------|----------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1.0   | 10.01.13 | DR, FP                        | Generated preliminary list of available GRIB2 output fields                                                                                                          |
| 0.2.0   | 12.07.13 | DR, FP                        | Added a short section describing the horizontal ICON grid. AUMFL_S, AVMFL_S added to the list of available output fields                                             |
| 0.2.1   | 15.07.13 | DR                            | Provide newly available output fields in tabulated form. Change levelType of 3D atmospheric fields from 105 (Hybrid) to 150 (Generalized vertical height coordinate) |
| 0.2.2   | 16.07.13 | FP                            | Short description of ICON's vertical grid.                                                                                                                           |
| 0.2.3   | 25.09.13 | DR                            | Added description of available First Guess and analysis fields                                                                                                       |
| 0.2.4   | 17.12.13 | DR                            | Added description of external paramater fields                                                                                                                       |

iv History of versions

# Contents

| 1 |        | d geometry                                                | 1  |
|---|--------|-----------------------------------------------------------|----|
|   | 1.1    | Horizontal grid                                           | 1  |
|   |        | 1.1.1 Local grid refinement                               | 3  |
|   | 1.2    | Vertical grid                                             |    |
| 2 | Ana    | alysis fields                                             | 5  |
| 3 | Ma     | ndatory input fields                                      | 9  |
|   | 3.1    | External parameter                                        | 9  |
| 4 | Ava    | silable output fields in GRIB2-format                     | 11 |
|   | 4.1    | Deprecated output fields                                  | 11 |
|   | 4.2    | New output fields                                         | 12 |
|   | 4.3    | Available output fields listed in tabular form            | 14 |
|   |        | 4.3.1 Time-constant (external parameter) fields           |    |
|   |        | 4.3.2 Multi-level fields on native hybrid vertical levels | 15 |
|   |        | 4.3.3 Multi-level fields interpolated to pressure levels  | 15 |
|   |        | 4.3.4 Single-level fields                                 | 16 |
|   |        | 4.3.5 Surface fields interpolated to msl                  |    |
| В | iblios | graphy                                                    | 21 |

vi CONTENTS

### Chapter 1

# Grid geometry

#### 1.1 Horizontal grid

The horizontal ICON grid consists of a set of spherical triangles that seamlessly span the entire sphere. The grid is constructed from an icosahedron (see Figure 1.1a) which is projected onto a sphere. The spherical icosahedron (Figure 1.1b) consists of 20 equilateral spherical triangles. The edges of each triangle are bisected into equal halves or more generally into n equal sections. Connecting the new edge points by great circle arcs yields 4 or more generally  $n^2$  spherical triangles within the original triangle (Figure 1.2a, 1.2b).





Figure 1.1: Icosahedron before (a) and after (b) projection onto a sphere





Figure 1.2: (a) Bisection of the original triangle edges (b) More general division into n equal sections

ICON grids are constructed by an initial root division into n sections ( $\mathbf{R}n$ ) followed by k bisection steps ( $\mathbf{B}k$ ), resulting in a  $\mathbf{R}n\mathbf{B}k$  grid. Figures 1.3a and 1.3b show  $\mathbf{R}2\mathbf{B}00$  and  $\mathbf{R}2\mathbf{B}02$  ICON grids. Such grids avoid polar singularities of latitude-longitude grids (Figure 1.3c) and allow a high uniformity in resolution over the whole sphere.



**Figure 1.3:** (a) R2B00 grid. (b) R2B02 grid. (c) traditional latitude-longitude grids with polar singularities

Throughout this document, the grid is referred to as the "RnBk grid" or "RnBk resolution". For a given resolution RnBk, the total number of cells, edges, and vertices can be computed from

$$n_c = 20 n^2 4^k$$

$$n_e = 30 n^2 4^k$$

$$n_v = 10 n^2 4^k + 2$$

The average cell area  $\overline{\Delta A}$  can be computed from

$$\overline{\Delta A} = \frac{4\pi \, r_e^2}{n_c} \,,$$

with the earth radius  $r_e$ , and  $n_c$  the total number of cells. Based on  $\overline{\Delta A}$  one can derive an estimate of the average grid resolution  $\overline{\Delta x}$ :

$$\overline{\Delta x} = \sqrt{\overline{\Delta A}} = \sqrt{\frac{\pi}{5}} \frac{r_e}{n \, 2^k}$$

Visually speaking,  $\overline{\Delta x}$  is the edge length of a square which has the same area as our triangular cell.

In Table 1.1, some characteristics of frequently used ICON grids are given. The table contains information about the total number of triangles  $(n_c)$ , the average resolution  $\overline{\Delta}x$ , and the maximum/minimum cell area. The latter may be interpreted as the area for which the prognosed meteorological quantities (like temperature, pressure, ...) are representative. Some additional information about ICON's horizontal grid can be found in Wan et al. (2013).

1.2. Vertical grid 3

| <b>Table 1.1:</b> Characteristics of frequently used ICON grids. | $\Delta A_{max}$ and $\Delta A_{min}$ | refer to the maximum |
|------------------------------------------------------------------|---------------------------------------|----------------------|
| and minimum area of the grid cells, respectively.                |                                       |                      |

| Grid  | number of cells $(n_c)$ | avg. resolution [km] | $\Delta A_{max}  [km^2]$ | $\Delta A_{min}  [km^2]$ |
|-------|-------------------------|----------------------|--------------------------|--------------------------|
| R2B04 | 20480                   | 157.8                | 25974.2                  | 18777.3                  |
| R2B05 | 81920                   | 78.9                 | 6480.8                   | 4507.5                   |
| R2B06 | 327680                  | 39.5                 | 1618.4                   | 1089.6                   |
| R2B07 | 1310720                 | 19.7                 | 404.4                    | 265.1                    |
| R3B07 | 2949120                 | 13.2                 | 179.7                    | 116.3                    |

The first operational version of ICON will most likely be based on the R3B07 grid, thus, having a horizontal resolution of about 13 km!

#### 1.1.1 Local grid refinement

#### 1.2 Vertical grid

The vertical grid consists of a set of vertical layers with height-based vertical coordinates. Each of these layers carries the horizontal 2D grid structure, thus forming the 3D structure of the grid. The ICON grid employs a Lorenz-type staggering with the vertical velocity defined at the boundaries of layers (half levels) and the other prognostic variables in the center of the layer (full levels).

To improve simulations of flow past complex topography, the ICON model employs a smooth level vertical (SLEVE) coordinate Leuenberger et al. (2010). The required smooth large-scale contribution of the model topography is generated by digital filtering with a  $\nabla^2$ -diffusion operator. Figure 1.4 shows the (half) levels of the current (preliminary) ICON setup with 90 vertical levels.



| level | [m]    | [Pa]     |
|-------|--------|----------|
| 1     | 75 000 | 2.1      |
| 6     | 63555  | 12.3     |
| 11    | 54651  | 41.8     |
| 16    | 46991  | 111.0    |
| 21    | 40262  | 267.8    |
| 26    | 34298  | 618.7    |
| 31    | 28 988 | 1365.4   |
| 36    | 24255  | 2816.9   |
| 41    | 20040  | 5439.7   |
| 46    | 16298  | 9814.6   |
| 51    | 12991  | 16532.5  |
| 56    | 10091  | 26070.0  |
| 61    | 7573   | 37851.2  |
| 66    | 5421   | 51045.6  |
| 71    | 3622   | 64737.1  |
| 76    | 2168   | 77845.2  |
| 81    | 1062   | 89198.3  |
| 86    | 318    | 97558.8  |
| 90    | 20     | 101085.0 |

**Figure 1.4:** Vertical levels of the ICON model (preliminary setup). The table of selected pressure values (for zero height) is based on the 1976 US standard atmosphere.

### Chapter 2

# Analysis fields

The 3-hourly first guess output of ICON contains the following fields:

Table 2.1: Available 3h first guess output fields

| Type                  | GRIB shortName                                                                           |
|-----------------------|------------------------------------------------------------------------------------------|
| Atmosphere            | VN, U, V, W, DEN, THETA <sub>-</sub> V, T, QV, QC, QI, QR, QS, TKE, P                    |
| Surface (general)     | T_G, T_SO(0), QV_S, T_2M, TD_2M, U_10M, V_10M, PS, Z0                                    |
| Land specific         | W_SNOW, T_SNOW, RHO_SNOW,<br>H_SNOW, FRESHSNW, W_I,<br>T_SO(1:nlev_soil), W_SO, W_SO_ICE |
| Lake/sea ice specific | T_MNW_LK, T_WML_LK, H_ML_LK, T_BOT_LK, C_T_LK, T_B1_LK, H_B1_LK, T_ICE, H_ICE, FR_ICE    |
| Time invariant        | FR.LAND, HHL, CLON, CLAT, ELON, ELAT, VLON, VLAT                                         |

Atmospheric analysis fields are computed every 3 hours (00, 03, 06,... 21 UTC) with the 3DVar data assimilation system. Sea surface temperature (T\_SO(0)) and sea ice cover (FR\_ICE) are provided once per day (00 UTC) by the SST-Analysis. A snow analysis is conducted every 3 hours. In addition a soil moisture analysis (SMA) is conducted once per day (00 UTC). It basically modifies the soil moisture content (W\_SO), in order to improve the 2 m temperature forecast.

For the 3-hourly analysis cycle, ICON must be provided with 2 input files, containing First Guess (FG) and analysis (AN) fields, respectively. Variables for which no analysis is available are always read from the first guess file (e.g. TKE). Other variables may be either read from the first guess or the analysis file, depending on the starting time. E.g. for T\_SO(0) the first guess is read at 03, 06, 09, 12, 15, 18, 21 UTC, however, the analysis is read at 00 UTC. In Table 2.2 the available and employed first guess and analysis fields are listed as a function of starting time.

Table 2.2: The leftmost column shows variables that are mandatory for the assimilation cycle and forecast runs. Column 2 indicates, whether or not an analysis is performed for these variables. Columns 3 to 10 show the origin of these variables (analysis or first guess), depending on the starting time.

| ShortName                                                     | Analysis    | 00 | 03 | 06 | 09 | 12 | 15 | 18 | 21 |
|---------------------------------------------------------------|-------------|----|----|----|----|----|----|----|----|
| Atmosphere                                                    |             |    |    |    |    |    |    |    |    |
| VN                                                            | _           | FG |
| $\mathrm{THETA}_{-}\mathrm{V}$                                | _           | FG |
| DEN                                                           | _           | FG |
| W                                                             | _           | FG |
| TKE                                                           | _           | FG |
| T                                                             | 3DVar       | AN |
| P                                                             | 3DVar       | AN |
| U, V                                                          | 3DVar       | AN |
| $\mathrm{QV},\mathrm{QC},\mathrm{QI},\mathrm{QR},\mathrm{QS}$ | 3DVar       | AN |
| Surface                                                       |             |    |    |    |    |    |    |    |    |
| Z0                                                            | _           | FG |
| $T_{-}G$                                                      | _           | FG |
| $\mathrm{QV}_{-}\!\mathrm{S}$                                 | _           | FG |
| $T_{-}SO(0)$                                                  | $Ana\_SST$  | AN | FG |
| $T\_SO(1:nlevsoil)$                                           | _           | FG |
| W_SO_ICE                                                      | _           | FG |
| $W_{-}SO$                                                     | SMA         | AN |
| $W_{-}I$                                                      | $Ana\_SNOW$ | AN |
| $W_{-}SNOW$                                                   | $Ana\_SNOW$ | AN |
| $T_{-}SNOW$                                                   | $Ana\_SNOW$ | AN |
| RHO_SNOW                                                      | $Ana\_SNOW$ | AN |
| $H_{-}SNOW$                                                   | $Ana\_SNOW$ | AN |
| FRESHSNW                                                      | $Ana\_SNOW$ | AN |
| Sea ice/Lake                                                  |             |    |    |    |    |    |    |    |    |
| T_ICE                                                         | $Ana\_SST$  | AN | FG |
| H_ICE                                                         | Ana_SST     | AN | FG |
| FR_ICE                                                        | Ana_SST     | AN | FG |
| $T_MNW_LK$                                                    | _           | FG |
| $T_WML_LK$                                                    | _           | FG |
| $H_{-}ML_{-}LK$                                               | _           | FG |

Continued on next page

Table 2.2: The leftmost column shows variables that are mandatory for the assimilation cycle and forecast runs. Column 2 indicates, whether or not an analysis is performed for these variables. Columns 3 to 10 show the origin of these variables (analysis or first guess), depending on the starting time.

| ShortName | Analysis | 00 | 03 | 06 | 09 | 12 | 15 | 18 | 21 |
|-----------|----------|----|----|----|----|----|----|----|----|
| T_BOT_LK  | _        | FG |
| $C_T_K$   | _        | FG |
| T_B1_LK   | _        | FG |
| H_B1_LK   | _        | FG |

## Chapter 3

# Mandatory input fields

#### 3.1 External parameter

The following external parameter fields are mandatory for the assimilation cycle and forecast runs:

Table 3.1: Mandatory external parameter fields (in alphabetical order)

| ShortName        | Description                                                                        | Data source   |
|------------------|------------------------------------------------------------------------------------|---------------|
| AER_SS           | Sea salt aerosol climatology (monthly fields)                                      | GACP          |
| AER_DUST12       | Total soil dust aerosol climatology (monthly fields)                               | GACP          |
| $AER_ORG12$      | Organic aerosol climatology (monthly fields)                                       | GACP          |
| AER_SO412        | Total sulfate aerosol climatology (monthly fields)                                 | GACP          |
| AER_BC           | Black carbon aerosol climatology (monthly fields)                                  | GACP          |
| ALB_DIF12        | Shortwave $(0.3-5.0\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)   | MODIS         |
| ${ m ALB\_UV12}$ | UV-visible (0.3 $-$ 0.7 $\mu \rm m)$ albedo for diffuse radiation (monthly fields) | MODIS         |
| ALB_NI12         | UV-visible (0.7 $-5.0\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields) | MODIS         |
| DEPTH_LAKE       | Lake depth                                                                         |               |
| EMIS_RAD         | Surface longwave (thermal) emissivity                                              | GlobCover2009 |
| FOR_D (*)        | Fraction of deciduous forest                                                       |               |
| FOR_E (*)        | Fraction of evergreen forest                                                       |               |
| $FR\_ICE$        | Glacier fraction (part of land fraction)                                           | GlobCover2009 |
| $FR_LAKE$        | Lake fraction (fresh water)                                                        | GlobCover2009 |
| FR_LAND          | Land fraction (excluding lake fraction but including glacier fraction)             | GlobCover2009 |
| FR_LUC           | Landuse class fraction                                                             |               |
| HSURF            | Orography height at cell centres                                                   | GLOBE         |

Continued on next page

Table 3.1: continued

| $HSURF_{-}V$       | Orography height at cell vertices                                                 | GLOBE           |
|--------------------|-----------------------------------------------------------------------------------|-----------------|
| $LAI\_MX$          | Leaf area index in the vegetation phase                                           | GlobCover2009   |
| $NDVI\_MAX$        | Normalized differential vegetation index                                          | SEAWIFS         |
| NDVI_MRAT          | proportion of monthly mean NDVI to yearly maximum (monthly fields)                | SEAWIFS         |
| $PLCOV\_MX$        | Plant covering degree in the vegetation phase                                     | GlobCover2009   |
| ROOTDP             | Root depth                                                                        | GlobCover2009   |
| RSMIN              | Minimum stomatal resistance                                                       | GlobCover2009   |
| SOILTYP            | Soil type                                                                         | DSMW            |
| ${\rm SSO\_STDH}$  | Standard deviation of sub-grid scale orographic height                            | GLOBE           |
| $SSO\_THETA$       | Principal axis-angle of sub-grid scale orography                                  | GLOBE           |
| ${\rm SSO\_GAMMA}$ | Horizontal anisotropy of sub-grid scale orography                                 | GLOBE           |
| ${\rm SSO\_SIGMA}$ | Average slope of sub-grid scale orography                                         | GLOBE           |
| $T_2M_CL$          | Climatological 2m temperature (serves as lower boundary condition for soil model) | CRU climatology |
| Z0 (*)             | Surface roughness length (over land)                                              | GlobCover2009   |

Note that fields marked with (\*) are not required when using the operational setup. I.e.  $FOR_D$  and  $FOR_E$  are only required without tile approach. Similarly, the surface roughness Z0 is only needed, if the additional contribution from sub-grid scale orography should be taken into account (i.e. for itype\_z0=1). Otherwise, land-use specific roughness lengths are used, which are based on a GlobCover-based lookup table. However, due to technical reasons, all 3 fields must be provided as input, irrespective of the options chosen.

#### Remarks for post-processing

Some of the external parameter fields provided by ExtPar are modified by ICON. The following fields are affected: HSURF,  $HSURF_{-}V$ ,  $FR_{-}LAND$ ,  $FR_{-}LAKE$ . Thus, for consistency reasons, those modified fields should be used for post-processing tasks rather than the original external parameter fields.

### Chapter 4

# Available output fields in GRIB2-format

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- step Type (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

A documentation of the official WMO GRIB2 code tables can be found here: http://www.wmo.int/pages/prog/www/WMOCodes/WMO306\_vI2/LatestVERSION/WMO306\_vI2\_GRIB2\_CodeFlag\_en.pdf In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2.

#### 4.1 Deprecated output fields

With the launch of ICON, the following former GME output fields will no longer be available:

- **OMEGA** [Pa/s]: Vertical velocity in pressure coordinates  $\omega = \frac{dp}{dt}$ . Since ICON is a nonhydrostatic model, the vertical velocity **W** [m/s] is provided, instead (see Section 4.2).
- BAS\_CON [-]: Level index of convective cloud base. Instead, HBAS\_CON [m] should be used.
- TOP\_CON [-]: Level index of convective cloud top. Instead, HTOP\_CON [m] should be used.
- $T_S$  [K]: Temperature at the soil-atmosphere-, or soil-snow-interface. Note that  $T_S = T_SO(0)$ , thus  $T_S$  is redundant.
- W\_G1, W\_G2 [mm H2O]: Soil water content in upper layer (0 to 10 cm) and middle layer (10 to 100 cm), respectively. If needed, these fields can be derived from W\_SO.
- FIS [m<sup>2</sup> s<sup>-1</sup>]: Surface Geopotential. Instead, HSURF [m] should be used (see Section 4.2).
- O3 [kg/kg], TO3 [Dobson]: Ozone mixing ratio and corresponding total ozone concentration. No longer available; no substitution

### 4.2 New output fields

Table 4.1 contains a list of new output fields that will become available with the launch of ICON (compared to GME). A more thorough description of these fields is provided in Section 4.3.

Table 4.1: Newly available output fields

| ShortName    | Unit                        | Description                                                              |
|--------------|-----------------------------|--------------------------------------------------------------------------|
| $\mathbf{W}$ | m/s                         | vertical velocity in height coordinates $w = \frac{dz}{dt}$ (3D field)   |
| DEN          | ${\rm kg/m^3}$              | density of moist air (3D field)                                          |
| TKE          | $\mathrm{m}^2/\mathrm{s}^2$ | Turbulent kinetic energy (3D field)                                      |
| HSURF        | m                           | Geometric Height of the earths surface above sea level (2D field)        |
| $_{ m HHL}$  | m                           | Geometric Height of model half levels above sea level (3D field)         |
| CLON,CLAT    | deg                         | Geographical longitude/latitude of native grid triangle cell center      |
| ELON,ELAT    | $\deg$                      | Geographical longitude/latitude of native grid triangle edge midpoint $$ |
| VLON,VLAT    | $\deg$                      | Geographical longitude/latitude of native grid triangle vertex           |

### 4.3 Available output fields listed in tabular form

#### 4.3.1 Time-constant (external parameter) fields

**Table 4.2:** Time-constant fields (Date D=000000)

|              | Table 4.2: Time-consta                                                              | ne nera    | b (Date  | <i>D</i> -000 |                   |                  |                     |
|--------------|-------------------------------------------------------------------------------------|------------|----------|---------------|-------------------|------------------|---------------------|
| ShortName    | Description                                                                         | Discipline | Category | Number        | ${ m Lev-Typ}1/2$ | ${\rm stepType}$ | Unit                |
| HSURF        | Geometric height of the earths surface above msl                                    | 0          | 3        | 6             | 1/101             | inst             | m                   |
| HHL          | Geometric height of model half levels above msl                                     | 0          | 3        | 6             | 105/101           | inst             | m                   |
| RLAT         | Geographical latitude                                                               | 0          | 191      | 1             | 1/-               | inst             | Deg. N              |
| RLON         | Geographical longitude                                                              | 0          | 191      | 2             | 1/-               | inst             | Deg. E              |
| CLAT         | Geographical latitude of native grid triangle cell center                           | 0          | 191      | 1             | 1/-               | inst             | Deg. N              |
| CLON         | Geographical longitude of native grid triangle cell center                          | 0          | 191      | 2             | 1/-               | inst             | Deg. E              |
| ELAT         | Geographical latitude of native grid triangle edge midpoint                         | 0          | 191      | 1             | 1/-               | inst             | Deg. N              |
| ELON         | Geographical longitude of native grid triangle edge midpoint                        | 0          | 191      | 2             | 1/-               | inst             | Deg. E              |
| VLAT         | Geographical latitude of native grid triangle vertex                                | 0          | 191      | 1             | 1/-               | inst             | Deg. N              |
| VLON         | Geographical longitude of native grid triangle vertex                               | 0          | 191      | 2             | 1/-               | inst             | Deg. E              |
| FR_LAND      | Land fraction (possible range $[0,1]$ )                                             | 2          | 0        | 0             | 1/-               | inst             | 1                   |
| ROOTDP       | Root depth of vegetation                                                            | 2          | 0        | 32            | 1/-               | inst             | m                   |
| EMIS_RAD     | Longwave surface emissivity                                                         | 2          | 3        | 199           | 1/-               | inst             | 1                   |
| RSMIN        | Minimum stomatal resistance                                                         | 2          | 0        | 16            | 1/-               | inst             | ${ m s}{ m m}^{-1}$ |
| $SSO\_STDH$  | Standard deviation of sub-grid scale orography                                      | 0          | 3        | 20            | 1/-               | inst             | m                   |
| $SSO\_GAMMA$ | Anisotropy of sub-gridscale orography                                               | 0          | 3        | 24            | 1/-               | inst             | 1                   |
| SSO_THETA    | Angle of sub-gridscale orography                                                    | 0          | 3        | 21            | 1/-               | inst             | rad                 |
| SSO_SIGMA    | Slope of sub-gridscale orography                                                    | 0          | 3        | 22            | 1/-               | inst             | 1                   |
| PLCOV_MX     | Plant covering degree in the vegetation phase                                       | 2          | 0        | 4             | 1/-               | max              | 1                   |
| $T_2M_CL$    | Climatological 2 m temperature (used as lower bc. for soil model)                   | 0          | 0        | 0             | 103/-             | inst             | K                   |
| NDVI_MRAT    | ratio of monthly mean NDVI (normalized differential vegetation index) to annual max | 0          | 0        | 192           | 1/-               | avg              | 1                   |

#### 4.3.2 Multi-level fields on native hybrid vertical levels

**Table 4.3:** Hybrid multi-level forecast (VV > 0) and initialised analysis (VV = 0) products

|                   | 3. Hybrid main level forceast (v v  | / 0) ai    | 1111111  | moca ai | ,                        | 0) P10           | - daets                       |
|-------------------|-------------------------------------|------------|----------|---------|--------------------------|------------------|-------------------------------|
| ${\bf ShortName}$ | Description                         | Discipline | Category | Number  | $ m Lev\mbox{-}Typ\ 1/2$ | ${\rm stepType}$ | Unit                          |
| U                 | Zonal wind                          | 0          | 2        | 2       | 150/150                  | inst             | ${ m ms^{-1}}$                |
| V                 | Meridional wind                     | 0          | 2        | 3       | 150/150                  | inst             | $\rm ms^{-1}$                 |
| W                 | Vertical wind                       | 0          | 2        | 9       | 150/-                    | inst             | $\rm ms^{-1}$                 |
| T                 | Temperature                         | 0          | 0        | 0       | 150/150                  | inst             | K                             |
| DEN               | Density of moist air                | 0          | 3        | 10      | 150/150                  | inst             | ${\rm kg}{\rm m}^{-3}$        |
| QV                | Specific humidity                   | 0          | 1        | 0       | 150/150                  | inst             | $\rm kgkg^{-1}$               |
| QC                | Cloud mixing $\mathrm{ratio}^2$     | 0          | 1        | 22      | 150/150                  | inst             | $\rm kgkg^{-1}$               |
| QI                | Cloud ice mixing $\mathrm{ratio}^2$ | 0          | 1        | 82      | 150/150                  | inst             | $\rm kgkg^{-1}$               |
| QR                | Rain mixing ratio <sup>2</sup>      | 0          | 1        | 24      | 150/150                  | inst             | $\rm kgkg^{-1}$               |
| QS                | Snow mixing ratio <sup>2</sup>      | 0          | 1        | 25      | 150/150                  | inst             | $\rm kgkg^{-1}$               |
| CLC               | Cloud cover                         | 0          | 6        | 22      | 150/150                  | inst             | %                             |
| TKE               | Turbulent kinetic energy            | 0          | 19       | 11      | 150/-                    | inst             | $\mathrm{m}^2\mathrm{s}^{-2}$ |

#### 4.3.3 Multi-level fields interpolated to pressure levels

The following pressure levels are available: 1000, 950, 925, 900, 850, 700, 500, 400, 300, 250, 200, 150, 100, 50, 10, hPa.

 $<sup>^2 \</sup>mathrm{for}$  the time being, erroneously encoded as mixing ratios instead of specific quantities

Table 4.4: Multi-level forecast (VV>0) and initialised analysis (VV=0) products interpolated to pressure levels

| ShortName | Description                               | Discipline | Category | Number | m Lev-Typ~1/2 | $\operatorname{stepType}$ | Unit                  |
|-----------|-------------------------------------------|------------|----------|--------|---------------|---------------------------|-----------------------|
| FI        | Geopotential                              | 0          | 3        | 4      | 100/-         | inst                      | ${ m m}^2{ m s}^{-2}$ |
| U         | Zonal wind                                | 0          | 2        | 2      | 100/-         | inst                      | $\rm ms^{-1}$         |
| V         | Meridional wind                           | 0          | 2        | 3      | 100/-         | inst                      | $\rm ms^{-1}$         |
| W         | Vertical wind                             | 0          | 2        | 9      | 100/-         | inst                      | $\rm ms^{-1}$         |
| T         | Temperature                               | 0          | 0        | 0      | 100/-         | inst                      | K                     |
| RELHUM    | Relative humidity (with respect to water) | 0          | 1        | 1      | 100/-         | inst                      | %                     |

#### 4.3.4 Single-level fields

Table 4.5: Single-level forecast (VV > 0) and initialised analysis (VV = 0) products

| ShortName                           | Description                                                                | Discipline | Category | Number | m Lev-Typ~1/2 | ${\rm stepType}$ | Unit             |
|-------------------------------------|----------------------------------------------------------------------------|------------|----------|--------|---------------|------------------|------------------|
| PS                                  | Surface pressure (not reduced)                                             | 0          | 3        | 1      | 1/-           | inst             | Pa               |
| $T_{-}SNOW$                         | Temperature of the snow surface                                            | 0          | 0        | 18     | 1/-           | inst             | K                |
| $T_{-}G$                            | Ground temperature (temperature at sfc-atm interface)                      | 0          | 0        | 0      | 1/-           | inst             | K                |
| $\mathrm{QV}_{	ext{-}}\!\mathrm{S}$ | Surface specific humidity                                                  | 0          | 1        | 0      | 1/-           | inst             | $\rm kgkg^{-1}$  |
| W_SNOW                              | Snow depth water equivalent                                                | 0          | 1        | 60     | 1/-           | inst             | ${\rm kgm^{-2}}$ |
| $W_{-}I$                            | Plant canopy surface water                                                 | 2          | 0        | 13     | 1/-           | inst             | ${\rm kgm^{-2}}$ |
| TCM                                 | Turbulent transfer coefficient for momentum (surface)                      | 0          | 2        | 29     | 1/-           | inst             | 1                |
| тсн                                 | Turbulent transfer coefficient for heat and moisture (surface)             | 0          | 0        | 19     | 1/-           | inst             | 1                |
| ASOB_S                              | Net short-wave radiation flux<br>at surface (average since model<br>start) | 0          | 4        | 9      | 1/-           | avg              | ${ m Wm^{-2}}$   |
| ATHB_S                              | Net long-wave radiation flux at surface (average since model start)        | 0          | 5        | 5      | 1/-           | avg              | ${ m Wm^{-2}}$   |

Continued on next page

Table 4.5: continued

| ASOB_T                       | Net short-wave radiation flux at TOA (average since model start)     | 0 | 4  | 9  | 8/-     | avg  | ${ m Wm^{-2}}$         |
|------------------------------|----------------------------------------------------------------------|---|----|----|---------|------|------------------------|
| $ATHB_{-}T$                  | Net long-wave radiation flux at TOA (average since model start)      | 0 | 5  | 5  | 8/-     | avg  | ${ m Wm^{-2}}$         |
| ALB_RAD                      | Surface albedo for visible range, diffuse                            | 0 | 19 | 1  | 1/-     | inst | %                      |
| RAIN_GSP                     | Large scale rain (accumulated since model start)                     | 0 | 1  | 77 | 1/-     | accu | ${\rm kg}{\rm m}^{-2}$ |
| $SNOW\_GSP$                  | Large snowfall water equivalent (accumulated since model start)      | 0 | 1  | 56 | 1/-     | accu | ${\rm kg}{\rm m}^{-2}$ |
| RAIN_CON                     | Convective rain (accumulated since model start)                      | 0 | 1  | 76 | 1/-     | accu | ${\rm kgm^{-2}}$       |
| SNOW_CON                     | Convective snowfall water equivalent (accumulated since model start) | 0 | 1  | 55 | 1/-     | accu | ${\rm kgm^{-2}}$       |
| TOT_PREC                     | Total precipitation (accumulated since model start)                  | 0 | 1  | 52 | 1/-     | accu | ${\rm kgm^{-2}}$       |
| RUNOFF_S                     | Surface water runoff (accumulated since model start)                 | 2 | 0  | 5  | 106/-   | accu | ${\rm kgm^{-2}}$       |
| RUNOFF_G                     | Soil water runoff (accumulated since model start)                    | 2 | 0  | 5  | 106/-   | accu | ${\rm kg}{\rm m}^{-2}$ |
| $U_{-}10M$                   | Zonal wind at 10m above ground                                       | 0 | 2  | 2  | 103/-   | inst | ${ m ms^{-1}}$         |
| $V_{-}10M$                   | Meridional wind at 10m above ground                                  | 0 | 2  | 3  | 103/-   | inst | ${ m ms^{-1}}$         |
| $T_{-}2M$                    | Temperature at 2m above ground                                       | 0 | 0  | 0  | 103/-   | inst | K                      |
| $\mathrm{TD}_{-}\mathrm{2M}$ | Dew point temperature at 2m above ground                             | 0 | 0  | 6  | 103/-   | inst | K                      |
| TMAX_2M                      | Maximum temperature at $2m$ above ground <sup>2</sup>                | 0 | 0  | 0  | 103/-   | max  | К                      |
| TMIN_2M                      | Minimum temperature at 2m above ground <sup>2</sup>                  | 0 | 0  | 0  | 103/-   | min  | K                      |
| VMAX_10M                     | Maximum wind at 10 m above ground                                    | 0 | 2  | 22 | 103/-   | max  | $\rm ms^{-1}$          |
| Z0                           | Surface roughness (above land and water)                             | 2 | 0  | 1  | 1/-     | inst | m                      |
| CLCT                         | Total cloud cover                                                    | 0 | 6  | 1  | 1/-     | inst | %                      |
| CLCH                         | High level clouds                                                    | 0 | 6  | 22 | 100/100 | inst | %                      |
| CLCM                         | Mid level clouds                                                     | 0 | 6  | 22 | 100/100 | inst | %                      |
| CLCL                         | Low level clouds                                                     | 0 | 6  | 22 | 100/1   | inst | %                      |

 $Continued\ on\ next\ page$ 

Table 4.5: continued

| TQV        | Total column integrated water vapour                                           | 0  | 1 | 64  | 1/-   | inst | ${\rm kgm^{-2}}$       |
|------------|--------------------------------------------------------------------------------|----|---|-----|-------|------|------------------------|
| TQC        | Total column integrated cloud water                                            | 0  | 1 | 69  | 1/-   | inst | ${\rm kgm^{-2}}$       |
| TQI        | Total column integrated cloud ice                                              | 0  | 1 | 70  | 1/-   | inst | ${\rm kgm^{-2}}$       |
| TQR        | Total column integrated rain                                                   | 0  | 1 | 45  | 1/-   | inst | ${\rm kgm^{-2}}$       |
| TQS        | Total column integrated snow                                                   | 0  | 1 | 46  | 1/-   | inst | ${\rm kgm^{-2}}$       |
| HBAS_CON   | Height of convective cloud base above msl                                      | 0  | 6 | 26  | 2/101 | inst | m                      |
| HTOP_CON   | Height of convective cloud top above msl                                       | 0  | 6 | 27  | 3/101 | inst | m                      |
| HTOP_DC    | Height of top of dry convection above msl                                      | 0  | 6 | 196 | 3/101 | inst | m                      |
| HZEROCL    | Height of 0 degree Celsius isotherm above msl                                  | 0  | 3 | 6   | 4/101 | inst | m                      |
| $AUMFL\_S$ | U-momentum flux at surface $\overline{u'w'}^{1/2}$ (average since model start) | 0  | 2 | 17  | 1/-   | avg  | m                      |
| AVMFL_S    | V-momentum flux at surface $\overline{v'w'}^{1/2}$ (average since model start) | 0  | 2 | 18  | 1/-   | avg  | m                      |
| ASHFL_S    | Sensible heat net flux at surface (average since model start)                  | 0  | 0 | 11  | 1/-   | avg  | ${ m Wm^{-2}}$         |
| $ALHFL\_S$ | Latent heat net flux at surface (average since model start)                    | 0  | 0 | 10  | 1/-   | avg  | ${ m Wm^{-2}}$         |
| FR_ICE     | Sea ice cover (possible range: $[0,1]$ )                                       | 10 | 2 | 0   | 1/-   | inst | 1                      |
| T_ICE      | Sea ice temperature (at ice-atm interface)                                     | 10 | 2 | 8   | 1/-   | inst | K                      |
| H_ICE      | Sea ice thickness (Max: 3 m)                                                   | 10 | 2 | 1   | 1/-   | inst | m                      |
| FRESHSNW   | Fresh snow factor (weighting function for albedo indicating freshness of snow) | 0  | 1 | 203 | 1/-   | inst | 1                      |
| RHO_SNOW   | Snow density                                                                   | 0  | 1 | 61  | 1/-   | inst | ${\rm kg}{\rm m}^{-3}$ |
| H_SNOW     | Snow depth                                                                     | 0  | 1 | 11  | 1/-   | inst | m                      |
| PLCOV      | Plant cover                                                                    | 2  | 0 | 4   | 1/-   | inst | %                      |
| LAI        | Leaf area index                                                                | 2  | 0 | 28  | 1/-   | inst | 1                      |

Continued on next page

|           | ole 1::: bon mode                | i. verticai dibuilbu | tion of levels and layers |
|-----------|----------------------------------|----------------------|---------------------------|
| level no. | $\mathbf{depth} \ [\mathbf{cm}]$ | layer no.            | upper/lower bounds [cm]   |
| 0         | 0.0                              |                      |                           |
| 1         | 0.5                              | 1                    | 0.0 - 1.0                 |
| 2         | 2.0                              | 2                    | 1.0 - 3.0                 |
| 3         | 6.0                              | 3                    | 3.0 - 9.0                 |
| 4         | 18.0                             | 4                    | 9.0 - 27.0                |
| 5         | 54.0                             | 5                    | 27.0 - 81.0               |
| 6         | 162.0                            | 6                    | 81.0 - 243.0              |
| 7         | 486.0                            | 7                    | 243.0 - 729.0             |
| 8         | 1458.0                           | 8                    | 729.0 - 2187.0            |

Table 4.7: Soil model: vertical distribution of levels and layers

Table 4.5: continued

| dex) to annual max | NDVIRATIO | ratio of current NDVI (normalized differential vegetation index) to annual max | 2 | 0 | 192 | 1/- | inst | 1 |
|--------------------|-----------|--------------------------------------------------------------------------------|---|---|-----|-----|------|---|
|--------------------|-----------|--------------------------------------------------------------------------------|---|---|-----|-----|------|---|

Table 4.6: Multi-level forecast (VV > 0) and initialised analysis (VV = 0) products of the soil model

| ShortName | Description                                                         | Discipline | Category | Number | m Lev-Typ~1/2 | $\operatorname{stepType}$ | Unit                   |
|-----------|---------------------------------------------------------------------|------------|----------|--------|---------------|---------------------------|------------------------|
| $T_{-}SO$ | Soil temperature                                                    | 2          | 3        | 18     | 106/-         | inst                      | K                      |
| W_SO      | Soil moisture integrated over individual soil layers (ice + liquid) | 2          | 3        | 20     | 106/106       | inst                      | ${\rm kg}{\rm m}^{-2}$ |
| W_SO_ICE  | Soil ice content integrated over individual soil layers             | 2          | 3        | 22     | 106/106       | inst                      | ${\rm kg}{\rm m}^{-2}$ |

Soil temperature is defined at the soil depths given in Table 4.7 (column 2). Levels 1 to 8 define the full levels of the soil model. A zero gradient condition is assumed between levels 0 and 1, meaning that temperatures at the surface-atmosphere interface are set equal to the temperature at the first full level depth.  $(0.5\,\mathrm{cm})$ . Temperatures are prognosed for levels 1 to 7. At the lowermost level  $(1458\,\mathrm{cm})$  the temperature is fixed to the climatological average  $2\,\mathrm{m}$ -temperature.

Soil moisture W\_SO is prognosed for layers 1 to 6. In the two lowermost layers W\_SO is time constant.

<sup>&</sup>lt;sup>2</sup>Planned, but not yet available

#### 4.3.5 Surface fields interpolated to msl

**Table 4.8:** Forecast (VV > 0) and initialised analysis (VV = 0) products interpolated to msl

| ShortName | Description                     | Discipline | Category | Number | m Lev-Typ~1/2 | stepType | Unit |
|-----------|---------------------------------|------------|----------|--------|---------------|----------|------|
| PMSL      | Surface pressure reduced to msl | 0          | 3        | 1      | 101/-         | inst     | Pa   |

# **Bibliography**

Leuenberger, D., M. Koller, and C. Schär, 2010: A generalization of the sleve vertical coordinate. *Mon. Wea. Rev.*, **138**, 3683–3689.

Wan, H., M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Ripodas, L. Kornblueh, and J. Förstner, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version. *Geosci. Model Dev.*, 6, 735–763.