Nombres complexes et géométrie

Le plan \mathcal{P} est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

Un vrai triangle dans le plan \mathcal{P} est la donnée de trois points non alignés A, B, C. Un tel triangle est noté ABC.

On se donne quatre points A, B, C, D du plan deux à deux distincts d'affixes respectives a, b, c, d.

Si $\overrightarrow{v_1}, \overrightarrow{v_2}$ sont deux vecteurs non nuls, une mesure de l'angle orienté formé par ces vecteurs est notée $(\overrightarrow{v_1}, \overrightarrow{v_2})$. Une telle mesure est uniquement déterminée modulo 2π .

On dispose de la relation de Chasles sur les mesures d'angles orientés : $(\overrightarrow{v_1}, \overrightarrow{v_2}) + (\overrightarrow{v_2}, \overrightarrow{v_3}) \equiv (\overrightarrow{v_1}, \overrightarrow{v_3})$ (2π) .

On rappelle qu'un argument d'un nombre complexe z non nul, noté $\arg(z)$, est une mesure de l'angle $(\overrightarrow{u}, \overrightarrow{OM})$, où M est le point d'affixe z.

Un point $M(x,y) \in \mathcal{P}$ d'affixe z = x + iy sera noté M(z).

- I - Généralités

- 1. On suppose que ABC est un vrai triangle. En notant, après avoir justifié son existence, Ω le point d'intersection des médiatrices de [BC] et [AC] du triangle ABC, montrer que Ω est aussi sur la médiatrice de [AB]. Les trois médiatrices du triangle ABC sont donc concourantes au point Ω . Montrer que le cercle de centre Ω et de rayon $R = \Omega A$ est circonscrit à ce triangle.
- 2. Montrer que si Ω est le centre du cercle circonscrit au triangle ABC, on a alors $2\left(\overrightarrow{AB},\overrightarrow{AC}\right) \equiv \left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right)$ (figure 1).

FIGURE 1 – Théorème de l'angle inscrit

- 3. Montrer que si $\overrightarrow{v_1}, \overrightarrow{v_2}$ sont deux vecteurs non nuls d'affixes respectives z_1, z_2 , une mesure de l'angle orienté formé par les vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ est un argument de $\frac{z_2}{z_1}$.
- 4. Soient $\overrightarrow{v_1}, \overrightarrow{v_2}$ deux vecteurs non nuls d'affixes respectives z_1, z_2 et $\theta = (\overrightarrow{v_1}, \overrightarrow{v_2})$. Montrer que :

$$\cos\left(\theta\right) = \frac{|z_1|}{|z_2|} \operatorname{Re}\left(\frac{z_2}{z_1}\right) = \frac{\operatorname{Re}\left(\overline{z_1}z_2\right)}{|z_1||z_2|}, \ \sin\left(\theta\right) = \frac{|z_1|}{|z_2|} \operatorname{Im}\left(\frac{z_2}{z_1}\right) = \frac{\operatorname{Im}\left(\overline{z_1}z_2\right)}{|z_1||z_2|}$$

- 5. Montrer que assertions suivantes sont équivalentes :
 - (a) les points A, B, C sont alignés;
 - (b) $\frac{c-a}{b-a}$ est réel.

$$-$$
 II $-$ Lignes de niveau de la fonction $f:z\mapsto \mathrm{arg}\left(\frac{a-z}{b-z}\right)\ \mathrm{mod}\left(\pi\right)$

On se donne deux points $A \neq B$ dans le plan \mathcal{P} d'affixes respectives a, b, un réel λ et on s'intéresse à l'ensemble

$$\mathcal{E}_{\lambda} = \left\{ M \in \mathcal{P} \setminus \left\{ A, B \right\} \mid \left(\overrightarrow{MA}, \overrightarrow{MB}\right) \equiv \lambda \ \operatorname{mod}\left(\pi\right) \right\}$$

- 1. Dans le cas où λ est congru à 0 modulo π , montrer que \mathcal{E}_{λ} est la droite (AB) privée des points A, B. Pour la suite de cette partie, on suppose que $\lambda \in]0, \pi[$.
- 2. Étudier le cas où $\lambda = \frac{\pi}{2}$.
- 3. Montrer que:

$$\mathcal{E}_{\lambda} = \left\{ M\left(z\right) \in \mathcal{P} \mid z \in \mathbb{C} \setminus \left\{a, b\right\} \text{ et } \arg\left(\left(a - z\right)\left(\overline{b} - \overline{z}\right)\right) \equiv \lambda \ \operatorname{mod}\left(\pi\right) \right\}$$

- 4. Soit $M(z) \in \mathcal{E}_{\lambda}$.
 - (a) En notant $c = \frac{a+b}{2}$, $d = \frac{b-a}{2}$ et t = z-c, montrer que $t \notin \{-d,d\}$ et :

$$(a-z)\left(\overline{b}-\overline{z}\right) = \left(\left|t\right|^2 - \left|d\right|^2\right) + 2i\operatorname{Im}\left(d\overline{t}\right)$$

- i. Montrer que $\frac{\left|t\right|^{2}-\left|d\right|^{2}}{2\operatorname{Im}\left(d\overline{t}\right)}=\frac{\cos\left(\lambda\right)}{\sin\left(\lambda\right)}.$
- ii. En notant $\omega = c i \frac{\cos(\lambda)}{\sin(\lambda)} d$, montrer que $|z \omega|^2 = \frac{1}{\sin^2(\lambda)} |d|^2$.
- iii. Conclure.
- 5. On note \mathcal{C}_{λ} le cercle de centre $\Omega(\omega)$ et de rayon R.
 - (a) Montrer que les points A et B sont sur le cercle \mathcal{C}_{λ} .
 - (b) Montrer que $(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}) \equiv 2\lambda \mod (2\pi)$
 - (c) En déduire que $\mathcal{C}_{\lambda} \setminus \{A, B\}$ est contenu dans \mathcal{E}_{λ} .

En conclusion, on a montré que l'ensemble $\mathcal{E}_{\lambda} = \left\{ M \in \mathcal{P} \setminus \{A, B\} \mid \left(\overrightarrow{MA}, \overrightarrow{MB}\right) \equiv \lambda \mod (\pi) \right\} \text{ est } :$

- la droite (AB) privée des points $A,\,B$ si λ est congru à 0 modulo $\pi\,;$
- le cercle de centre Ω d'affixe $\omega = \frac{a+b}{2} i\frac{1}{\tan(\lambda)}\frac{b-a}{2}$ et de rayon $R = \frac{1}{|\sin(\lambda)|}\left|\frac{b-a}{2}\right|$ privé des points A, B si λ n'est pas congru à 0 modulo π .

- III - Alignement et cocyclicité

- 1. Montrer que assertions suivantes sont équivalentes :
 - (a) les points A, B, C, D sont alignés ou cocycliques;
 - (b) $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{DB}, \overrightarrow{DC}) \mod (\pi);$
 - (c) $\operatorname{arg}\left(\frac{c-a}{b-a}\right) \equiv \operatorname{arg}\left(\frac{c-d}{b-d}\right) \operatorname{mod}(\pi);$
 - (d) $\frac{c-a}{b-a}\frac{b-d}{c-d}$ est réel.
- 2. Déduire de la question précédente une équation complexe du cercle circonscrit au triangle ABC. On précisera l'affixe du centre Ω et le rayon du cercle.

$\begin{array}{c} \textbf{Solution} \\ -\textbf{I} - \textbf{G\'{e}n\'{e}ralit\'{e}s} \end{array}$

- 1. Comme ABC est un vrai triangle, les droites (BC) et (AB) ne sont pas parallèles et en conséquence les médiatrices de [BC] et [AC] sont sécantes un point Ω . On a alors $\Omega B = \Omega C$ et $\Omega A = \Omega B$, donc $\Omega A = \Omega C$, ce qui signifie que Ω est aussi sur la médiatrice de [AC]. Le point Ω est donc à l'intersection des trois médiatrices et les sommets du triangle sont sur le cercle de centre Ω et de rayon $R = \Omega A = \Omega B = \Omega C$.
- 2. En utilisant la relation de Chasles, on a :

$$\left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) \equiv \left(\overrightarrow{\Omega B},\overrightarrow{\Omega B}\right) \equiv 0 \ (2\pi)$$

Comme les triangles ΩAB et ΩAC sont isocèles en Ω , on a :

$$2\left(\overrightarrow{AB},\overrightarrow{A\Omega}\right)+\left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right)\equiv\pi\ (2\pi)$$

et $2\left(\overrightarrow{AQ},\overrightarrow{AC}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv \pi \ (2\pi)$, ce qui donne par addition $2\left(\left(\overrightarrow{AB},\overrightarrow{AQ}\right) + \left(\overrightarrow{AQ},\overrightarrow{AC}\right)\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv 0 \ (2\pi)$, soit $2\left(\overrightarrow{AB},\overrightarrow{AC}\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv 0 \ (2\pi)$, ou encore :

$$2\left(\overrightarrow{AB},\overrightarrow{AC}\right)-\left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right)\equiv0\ (2\pi)$$

- 3. C'est du cours, parait-il.
- 4. En notant $\theta = (\overrightarrow{v_1}, \overrightarrow{v_2})$, on a $\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} e^{i\theta}$, ce qui équivaut à $\operatorname{Re}\left(\frac{z_2}{z_1}\right) = \frac{|z_2|}{|z_1|} \cos\left(\theta\right)$ et $\operatorname{Im}\left(\frac{z_2}{z_1}\right) = \frac{|z_2|}{|z_1|} \sin\left(\theta\right)$.
- 5. On a:

$$\begin{split} (A,B,C \text{ align\'es}) &\Leftrightarrow \left(\overrightarrow{AC}, \ \overrightarrow{AB} \text{ colin\'eaires}\right) \Leftrightarrow \left(\frac{c-a}{b-a} \in \mathbb{R}\right) \Leftrightarrow \left(\operatorname{Im}\left(\frac{c-a}{b-a}\right) = 0\right) \\ &\Leftrightarrow \left(\sin\left(\left(\widehat{\overrightarrow{AB}}, \overrightarrow{AC}\right)\right) = 0\right) \Leftrightarrow \left(\left(\widehat{\overrightarrow{AB}}, \overrightarrow{AC}\right) \equiv 0 \ \operatorname{mod}\left(\pi\right)\right) \end{split}$$

$$-$$
 II $-$ Lignes de niveau de la fonction $f: z \mapsto \arg\left(\frac{a-z}{b-z}\right) \mod(\pi)$

- 1. Facile.
- 2. $(M \in \mathcal{E}_{\frac{\pi}{2}}) \Leftrightarrow (M \in \mathcal{P} \setminus \{A, B\} \text{ et } (\overrightarrow{MA}, \overrightarrow{MB}) \equiv \frac{\pi}{2} \mod(\pi)) \Leftrightarrow (M \in \mathcal{P} \setminus \{A, B\} \text{ et } \overrightarrow{MA} \cdot \overrightarrow{MB} = 0), \text{ donc } \mathcal{E}_{\frac{\pi}{2}} \text{ est le cercle de diamètre } [AB], \text{ soit le cercle de centre } \Omega\left(\frac{a+b}{2}\right) \text{ et de rayon } \frac{|b-a|}{2}.$
- 3. On a:

$$\mathcal{E}_{\lambda} = \left\{ M(z) \in \mathcal{P} \mid z \in \mathbb{C} \setminus \{a, b\} \text{ et } \arg\left(\frac{a-z}{b-z}\right) \equiv \lambda \mod(\pi) \right\}$$

avec
$$\operatorname{arg}\left(\frac{a-z}{b-z}\right) = \operatorname{arg}\left(\frac{(a-z)\left(\overline{b}-\overline{z}\right)}{\left|b-z\right|^2}\right) = \operatorname{arg}\left((a-z)\left(\overline{b}-\overline{z}\right)\right).$$

4.

(b)

(a) En posant z = c + t, l'égalité z = a ou z = b équivaut à t = -d ou t = d et on a :

$$(a-z)\left(\overline{b}-\overline{z}\right) = \left(a-\frac{a+b}{2}-t\right)\left(\overline{b}-\frac{\overline{a+b}}{2}-\overline{t}\right) = \left(\frac{a-b}{2}-t\right)\left(\frac{\overline{b-a}}{2}-\overline{t}\right) = (d+t)\left(\overline{t}-\overline{d}\right)$$
$$= d\overline{t}-\overline{d}t+|t|^2-|d|^2 = \left(|t|^2-|d|^2\right)+2i\operatorname{Im}\left(d\overline{t}\right)$$

i. Si $M(z) \in \mathcal{E}_{\lambda}$, on a alors $z \in \mathbb{C} \setminus \{a, b\}$ et $(a - z) (\overline{b} - \overline{z}) = \rho e^{i\theta}$ où $\rho = |a - z| |b - z|$ et $\theta \equiv \lambda \mod(\pi)$, soit $\theta = \lambda + k\pi$ avec $k \in \mathbb{Z}$, ce qui nous donne:

$$\begin{cases} |t|^2 - |d|^2 = \rho \cos(\theta) = \rho \cos(\lambda + k\pi) = (-1)^k \rho \cos(\lambda) \\ 2\operatorname{Im}(d\overline{t}) = \rho \sin(\theta) = \rho \sin(\lambda + k\pi) = (-1)^k \rho \sin(\lambda) \neq 0 \end{cases}$$

donc
$$\frac{\left|t\right|^{2}-\left|d\right|^{2}}{2\operatorname{Im}\left(d\overline{t}\right)}=\frac{\cos\left(\lambda\right)}{\sin\left(\lambda\right)}.$$

ii. On a:

$$\begin{aligned} |z - \omega|^2 &= \left| z - c + i \frac{\cos(\lambda)}{\sin(\lambda)} d \right|^2 = \left| t + i \frac{\cos(\lambda)}{\sin(\lambda)} d \right|^2 \\ &= \left(t + i \frac{\cos(\lambda)}{\sin(\lambda)} d \right) \left(\overline{t} - i \frac{\cos(\lambda)}{\sin(\lambda)} \overline{d} \right) = |t|^2 + \frac{\cos^2(\lambda)}{\sin^2(\lambda)} |d|^2 + i \frac{\cos(\lambda)}{\sin(\lambda)} \left(d\overline{t} - \overline{d}t \right) \\ &= |t|^2 - |d|^2 + \frac{1}{\sin^2(\lambda)} |d|^2 - 2 \frac{\cos(\lambda)}{\sin(\lambda)} \operatorname{Im} \left(d\overline{t} \right) \\ &= 2 \operatorname{Im} \left(d\overline{t} \right) \frac{\cos(\lambda)}{\sin(\lambda)} + \frac{1}{\sin^2(\lambda)} |d|^2 - 2 \frac{\cos(\lambda)}{\sin(\lambda)} \operatorname{Im} \left(d\overline{t} \right) = \frac{1}{\sin^2(\lambda)} |d|^2 \end{aligned}$$

iii. En conclusion, le point M est sur le cercle de centre $\Omega(\omega)$ et de rayon $R = \frac{1}{|\sin(\lambda)|} \left| \frac{b-a}{2} \right|$ privé des points A et B.

5.

- (a) On a $|a \omega| = |b \omega| = R$.
- (b) C'est le théorème de l'angle inscrit.
- (c) Il parait que c'est facile.

En conclusion, on a montré que l'ensemble $\mathcal{E}_{\lambda} = \left\{ M \in \mathcal{P} \setminus \{A, B\} \mid \left(\overrightarrow{MA}, \overrightarrow{MB}\right) \equiv \lambda \mod(\pi) \right\} \text{ est } :$

- la droite (AB) privée des points A, B si λ est congru à 0 modulo π ;
 le cercle de centre Ω d'affixe $\omega = \frac{a+b}{2} i\frac{1}{\tan{(\lambda)}}\frac{b-a}{2}$ et de rayon $R = \frac{1}{|\sin{(\lambda)}|}\left|\frac{b-a}{2}\right|$ privé des points $A, B \text{ si } \lambda \text{ n'est pas congru à 0 modulo } \pi$

- III - Alignement et cocyclicité

1. Si A, B, C, D sont alignés, on a alors $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{DB}, \overrightarrow{DC}) \mod (\pi)$. Si A, B, C, D sont cocycliques, on a alors

$$\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \equiv \frac{\left(\overrightarrow{\Omega B}, \overrightarrow{\Omega C}\right)}{2} \equiv \left(\overrightarrow{DB}, \overrightarrow{DC}\right) \ (\pi)$$

(figure ??). Faire une figure.

 $\operatorname{Si}\left(\overrightarrow{AB},\overrightarrow{AC}\right) \equiv \left(\overrightarrow{DB},\overrightarrow{DC}\right) \, \operatorname{mod}\left(\pi\right), \text{ le point } D \text{ appartient à } \mathcal{E}_{\lambda} = \left\{M \in \mathcal{P} \setminus \{A,B\} \mid \left(\overrightarrow{MA},\overrightarrow{MB}\right) \equiv \lambda \, \operatorname{mod}\left(\pi\right)\right\},$ où $\lambda = (\overrightarrow{AB}, \overrightarrow{AC})$ (on prend la détermination principale de la mesure de l'angle) et il est maintenant connu que cet ensemble est une droite.ou un cercle

- $(b) \Leftrightarrow (c)$ résulte de $(\overrightarrow{MB}, \overrightarrow{MC}) \equiv \arg\left(\frac{c-z}{b-z}\right) \mod(2\pi)$ pour tout point M (et que ceux qui croient à une truanderie le démontre).
- $(c) \Leftrightarrow (d) \text{ On a}:$

$$\left(\arg\left(\frac{c-a}{b-a}\right) \equiv \arg\left(\frac{c-d}{b-d}\right) \, \operatorname{mod}\left(\pi\right)\right) \Leftrightarrow \left(\arg\left(\frac{c-a}{b-a}\frac{b-d}{c-d}\right) \equiv 0 \, \operatorname{mod}\left(\pi\right)\right)$$
$$\Leftrightarrow \left(\frac{c-a}{b-a}\frac{b-d}{c-d} \in \mathbb{R}\right)$$

2. Au boulot.