TP2- Jeux de mots Synthèse et analyse spectrale d'une gamme de musique

Aya Habiballah Mr Alae Ammour 29 janvier 2023

Objectifs

Comprendre comment manipuler un signal audio avec Matlab, en effectuant certaines opérations classiques sur un fichier audio d'une phrase enregistrée via un smartphone.

Comprendre la notion des sons purs à travers la synthèse et l'analyse spectrale d'une gamme de musique.

Jeux de mots

1:Sauvegardez ce fichier sur votre répertoire de travail, puis charger-le dans MATLAB à l'aide de la commande « audioread ».

On enregistre l'audio sur notre machine, puis en convertie en fichier .wav

```
[y,Fs]=audioread('audi1.wav');
dt = 1/Fs;
t = 0:dt:(length(y)-1)*dt;
```

2:Tracez le signal enregistré en fonction du temps, puis écoutez-le en utilisant la commande « sound ».

```
[x,fs]=audioread("audio1.au");

Taille = length(x);
ts=1/fs;|
T = (0:Taille-1)*ts;

sound(x,fs);
plot(T,x);
legend("Representation du signal");
xlabel("t");
ylabel("x");
```

<u>3:</u>

```
%Ecoutez la phrase en modifiant la fréquence d'échantillonnage qui va
%rendre le son grave/aigus
sound(x,1/8*fs);|
sound(x,2*fs);
```

4:Tracez le signal en fonction des indices du vecteur x, puis essayez de repérer les indices de début et de fin de la phrase « Rien ne sert de ».

seg1 = x(36500:130106);
plot(seg1);

5:Créez ce vecteur, puis écoutez le mot segmenté.

%creer le vecteur sound(seg1,fs);

<u>5:Segmentez cette fois-ci toute la phrase en créant les variables suivantes : riennesertde, courir, ilfaut, partirapoint.</u>

```
%segmentation1 'rien ne sert de'
seg1 = x(36500:130106);
plot(seg1);
title('Rien ne sert de');
%segmentation2 'courir'
seg2=x(130107:190006);
plot(seg2);
title('courir');
%segmentation3 'il faut'
seg3=x(190007:250006);
plot(seg3);
title('il faut');
%segmentation4 'partir a point'
seg4=x(250007:394240);
plot(seg4);
title('partir a point');
```

7:la phrase synthétisée « Rien ne sert de partir à point, il faut courir ».

```
%phrase complete
sound([seg1;seg4;seg3;seg2],fs);
```

Synthèse et analyse spectrale d'une gamme de musique

- Synthèse d'une gamme de musique

1:Créez un programme qui permet de jouer une gamme de musique.

```
clear all
close all
                                 fe = 8192;
                                 te = 1/fe;
t = [0:te:0.5];
%les signaux
                                 Do = sin(2*pi*t*261.62);
                                Dod = sin(2*pi*t*277.18);
Re = sin(2*pi*t*293.66);
                                 Red = sin(2*pi*t*311.12);
                                Mi = sin(2*pi*t*329.62);
Fa = sin(2*pi*t*349.22);
                                 Fad = sin(2*pi*t*370); 5
                                 Sol = sin(2*pi*t*392);
                                Sold = sin(2*pi*t*415.30);

La = sin(2*pi*t*440);

Lad = sin(2*pi*t*466.16);

Si = sin(2*pi*t*494.88);

Do2 = sin(2*pi*t*523.25);
Rapport acad doremifasol_solfamiredo= [Do,Re,Mi,Fa,Sol,La,Si,Do2,Do2,Si,La,Sol,Fa,Mi,Re,Do]; Gamme=[Do,Re,Mi,Fa,Sol,La,Si,Do2];
```

-Spectre de la gamme de musique :

<u>2:</u>

```
%analyse du spectre
signalAnalyzer(Gamme);
spectrogram(Gamme)
a = length(Gamme);
fshift = (-a/2:(a/2)-1)*(fe/a);
y = fft(Gamme);
```

3:Tracez le spectrogramme:

