Super-resolution Cartoons

Gustavo Cordeiro Libel Lucas Kaminski de Freitas

Super-resolution

• What is super-resolution?

Cartoons

The Flintstones (1960)

The Three Bears (1939) "Spaghetti"

Avatar: The Last Airbender (2005)

Cartoons

Approaches

Traditional approach	Vectorization	Deep Learning
Pixel surroundings.kernels.	Polygons and other shapes.2D points.	 Convolutional Neural Network.

Image vectorization

- Approximating the image by a bunch of shapes (polygons).
- The color of each polygon is the median of the colors inside of it (removes noise).
- Image loses details in the process.
- Upscale the polygons.
- Polygon shapes get preserved, no matter how many times the image is resized.

Image vectorization - Segmentation

The colors in this image mean nothing!

- Separating the image into several different regions.
- Each region is composed of pixels of similar color.
- The algorithm used is called Quickshift.

Image vectorization - Segmentation

- Separating the image into several different regions.
- Each region is composed of pixels of similar color.
- The algorithm used is called **Quickshift**.

Image vectorization Approximation by polygons

Image vectorization Upscaling the image

- Upscale each individual polygon.
- Each polygon is just a collection of coordinates (vertices).
- Multiply both the X and Y coordinate of every vertex by the same factor.

Image vectorization Upscaling the image

- Create empty image.
- Paint each polygon separately.
- The order matters.

Image vectorization Black dots

Image vectorization Black dots

- Pixels that don't belong in any region.
- After upscaling, some distance between the polygons appears.
- Increasing the border sometimes is not enough.

Image vectorization Inpainting

- Set the black dots as "mask", then use an Inpainting algorithm.
- Predicts what is probably the correct color of those dots based on the rest of the image.

Image vectorization Final result (after Inpainting)

Image vectorization Original image interpolated (for comparison)

Deep Learning - DCSCN

- Trained with 1,164 images.
- Data augmentation.

https://github.com/jiny2001/dcscn-super-resolution

Deep Learning - DCSCN Final result

Deep Learning - DCSCN Original image interpolated (for comparison)

Deep Learning - waifu2x

- Inspired by SRCNN.
- Noise Reduction.
- Trained with 6,000 high-resolution-noisefree-PNG images.

https://github.com/nagadomi/waifu2x

Deep Learning - waifu2x Final result

Deep Learning - waifu2x Original image interpolated (for comparison)

Thank You. Now, some results

