

Systèmes à Microprocesseurs

Cycle Ingénieur Troisième Année

Sébastien Bilavarn

Organisation du module µP

- 12 cours (1h) + 6 TDs (2h)
- http://users.polytech.unice.fr/~bilavarn/
 - login elec3, mdp nios2007
 - Cours, TDs, TPs, exercices complémentaires, bibliographie
 - TDs: environnement de développement (GCC ARM, Linux)

- Examen partiel (1h): mardi 24 mars
- Examen final (2h): vendredi 15 mai
- 5 séances TP notées (Compte rendus) + Examen TP
 - Final_TP=(MOY_CR_TP + 2*Exam_TP) / 3 COEF 3

- Ch1 Représentation de l'information
- Ch2 ARM Instruction Set Architecture
- Ch3 Accès aux données
- Ch4 Programmation structurée
- Ch5 Cycle d'exécution
- Ch6 Codage binaire
- Ch7 Microcontrôleur ARM Cortex-M

- Représentation de l'information
 - Opérations sur les données

- Types de données de base
 - Nombres entiers (0, -23, 10, 6, 65635)
 - Nombres réels (0.3, -3.2, 5, 10e3)
 - Booléens (true, false)
 - Caractères ('a', 'b', '?', '&', '0')
- Systèmes de numération
 - Décimal: 0 ... 9, décomposition en puissances de 10
 - Hexadécimal: 0 à 9 et A...F, décomposition en puissances de 16
 - Binaire: 0 ou 1, décomposition en puissances de 2
- Décimal et hexadécimal sont utilisables pour l'être humain
- La représentation binaire est utilisable par l'ordinateur

Mot binaire

Bit (Binary digit)

Quartet (nibble)

Octet (byte)

4 bits

8 bits

 Terminologie utilisée sur les processeurs 32-bit (y compris ARM)

Demi-mot (half-word) 16 bits

32 bits Mot (word)

Double-mot (double word)64 bits

- /!\ la terminologie peut changer d'une famille à l'autre
 - Motorola, Intel
 - word 16 bits, long word 32 bits, guad word 64 bits

- Binaire pur sur n bits
 - Représentation des entiers entre 0 et 2ⁿ-1

Exemples (sur 8 bits):

$$\bullet$$
 $(0000000)_{bin} = (0)_{dec}$

$$(111111111)_{bin} = (2^{8}-1)_{dec} = (255)_{dec}$$

$$(11001001)_{bin} = 1x 2^{7} + 1x 2^{6} + 0x 2^{5} + 0x 2^{4} + 1x 2^{3} + 0x 2^{2} + 0x 2^{1} + 1x 2^{0}$$

$$= (128 + 64 + 8 + 1)_{dec}$$

$$= (201)_{dec}$$

- Vocabulaire
 - Bit de poids fort: bit le plus significatif (MSB, Most Significant Bit)
 - Bit de poids faible: bit le moins significatif (LSB, Least Significant Bit)

- Complément à deux sur n bits
 - Représentation des entiers compris entre -2ⁿ⁻¹ et 2ⁿ⁻¹-1
 - Conversion décimal vers complément à deux
 - Nombres positifs: correspondance directe avec le binaire pur
 - Nombres négatifs: convertir 2ⁿ + x en binaire pur.
- Méthode pour prendre l'opposé d'un nombre en complément à deux
 - Complémenter bit à bit
 - Puis ajouter 1 au résultat

- Complément à deux sur n bits
 - Exemples (sur 8 bits)

$$(10000000)_{bin} = (-128)_{dec}$$

$$- (111111111)_{bin} = (-1)_{dec}$$

$$(00000000)_{bin} = (0)_{dec}$$

$$(011111111)_{bin} = (127)_{dec}$$

$$(5)_{dec} = (00000101)_{bin}$$

-
$$(-5)_{dec} = (\overline{00000101})_{bin} + 1 = (11111010)_{bin} + 1 = (11111011)_{bin}$$

Décimal	Binaire pur	Complément à deux
255	11111111	
•••		
129	1000001	
128	1000000	
127	01111111	<u>0</u> 1111111
3	0000011	<u>0</u> 0000011
2	0000010	<u>0</u> 0000010
1	0000001	<u>0</u> 0000001
0	0000000	<u>0</u> 0000000
-1		<u>1</u> 1111111
-2		<u>1</u> 1111110
-3		<u>1</u> 1111101
		•••
-127		<u>1</u> 0000001
-128		<u>1</u> 0000000

- Correspondance entre binaire et hexadécimal
 - Un chiffre hexadécimal pour 4 bits
 - Exemples:
 - $(53)_{hex} = (0101\ 0011)_{bin}$
 - $(FF)_{hex} = (1111 \ 1111)_{bin}$
 - Nombres négatifs
 - En décimal on fait figurer le signe –
 - En hexadécimal par convention, on traduit directement à partir du binaire
 - Exemple en complément à deux sur 8 bits
 - $(-1)_{dec} = (1111111111)_{bin} = (FF)_{hex}$

Représentation des caractères

- Le code ASCII
 - American Standard Code for Information Interchange
 - 1 caractère = 1 octet
 - Exemples:

Dé	cimal	Caractère	Décimal	Caractère	Décimal	Caractère
32		ESPACE	48	0	91	[
33		!	49	1	92	\
34		c)		•••	63]
35		#	57	9		
36		\$				
37		%	65	Α	97	а
38		&	66	В	98	b
39		,				
40		(90	Z	122	Z

Représentation des nombres réels

Le standard IEEE 754 (32-bit, simple précision)

S: Signe (1 bit) E: Exposant (8 bits)

M: Mantisse (23 bits)

$$(-1)^{S*}(1 + M/2^{23}) * 2^{E-127}$$

Le standard IEEE 754 (64-bit, double précision)

$$(-1)^{S*}(1 + M/2^{52}) * 2^{E-1023}$$

Représentation des nombres réels

Exemple:

01000100 01000001 01010100 01000101

Signe: 0 positif

• Exposant: $10001000 = (136)_{dec}$

Mantisse: 1000001 01010100 01000101 = (4281413)_{dec}

• Résultat: $(1 + 4281413/2^{23}) * 2^{136-127} =$ = 1.5103842 * 2⁹ = 773.31671

Polytech Nice Sophia - Dpt Ingénierie des Systèmes Electroniques - Université Côte d'Azur - S. Bilavarn - 15 -

- Représentation de l'information
 - Opérations sur les données

- Addition n bits
 - Exemple

- A chaque étape, on réalise la somme de trois bits
 - Un bit de chacun des deux opérandes
 - La retenue de l'étape précédente
- Indicateur d'état: C=1

- Addition de nombres signés
 - Utilisation du complément à deux

- Indicateur d'état: C=1
 - La retenue sortant est ignorée dans le résultat
 - Risque de débordement

- Addition de nombres signés
 - Risque de débordement

- Indicateur d'état: C=0
 - La retenue sortant est ignorée dans le résultat
- Indicateur de débordement: V=1

$$V = A_{n-1}.B_{n-1}.S_{n-1} + A_{n-1}.B_{n-1}.S_{n-1}$$

Multiplication en binaire pur sur 8 bits

X	110 102
	220
(000
11	10
1	1220

```
01101110
      \times 01100110
       0000000
      01101110
     01101110
    0000000
   0000000
  01101110
 01101110
0000000
010101111010100
```

Polytech Nice Sophia - Dpt Ingénierie des Systèmes Electroniques - Université Côte d'Azur - S. Bilavarn - 20 -

- Multiplication en binaire pur sur 8 bits
 - Résultat sur 2n bits
 - Combinaisons de décalages et d'additions
 - Opération coûteuse en temps de calcul
 - Si l'un des deux nombres contient beaucoup de 0 et peu de 1, l'algorithme de multiplication peut devenir très inefficace.

Multiplication en complément à deux

Multiplication en complément à deux

On obtient 77 !!

 Conséquence: les circuits multiplieurs traitent différemment les opérations en binaire pur (nombres non signés) et les opérations en complément à deux (nombres signés).

- Décalages et rotations
 - Intérêt d'une opération de décalage
 - Multiplication ou division par des puissances de deux.
 - Multiplication par des nombres comprenant beaucoup de 0 et peu de 1.
 - Parcourir un par un les bits d'une donnée, par exemple dans le cadre d'une transmission série.
 - Deux types de décalage
 - Décalage logique
 - Décalage arithmétique

Décalage logique

•
$$(72)_{dec} >> 2 = (01001000)_{bin} >> 2 = (00010010)_{bin} = (18)_{dec}$$

$$-(-4)_{dec} >> 2 = (111111100)_{bin} >> 2 = (001111111)_{bin} = (63)_{dec}$$

Décalage arithmétique

•
$$(72)_{dec} >> 2 = (01001000)_{bin} >> 2 = (00010010)_{bin} = (18)_{dec}$$

$$-(-4)_{dec} >> 2 = (111111100)_{bin} >> 2 = (111111111)_{bin} = (-1)_{dec}$$

Opérations de comparaison

Les quatre indicateurs d'état:

C: Carry

V: oVerflow

Z: Zero

N: Negative

Comment comparer deux nombres A et B?

On calcule la différence A - B

On utilise les indicateurs N, Z, C, V

$$Z = 1, A = B$$

$$Z = 0, A \neq B$$

Opérations de comparaison

- Comparaison de nombres non signés
 - La soustraction génère une retenue lorsque A ≥ B.

С	Z	
0 -	- 1	A≤B
1	0	A > B

Opérations de comparaison

- Comparaison de nombres signés
 - On test le signe du résultat (N) en tenant compte d'un éventuel débordement (V).

N	V	
1	0	Λ . D
0	1	A < B
1	1	A≥B
0	0	

	Z	V	Ν
Λ / D	-	0	1
A≤B	-	1	0
	1	-	-
A > B	0	1	1
/\	0	0	0

Opérations logiques

- AND
 - $(00000101)_{bin}$ AND $(000011111)_{bin}$ = $(00000101)_{bin}$
- OR
 - $(00000101)_{bin}$ AND $(00000111)_{bin}$ = $(00000111)_{bin}$
- Exclusive OR
 - $(00000101)_{bin}$ AND $(00000111)_{bin}$ = $(00000010)_{bin}$
- Bit clear
 - Mise à 0 de bits
 - $(00000101)_{bin}$ BIC $(00000111)_{bin} = (00000000)_{bin}$