

Probabilistic Modeling and Reasoning ${\tt Homework-7}$

Nikolaos Liouliakis (AID25001) Vasileios-Efraim Tsavalia (AID25006)

MSc in Artificial Intelligence and Data Analytics University of Macedonia

Supervisor: Professor Dimitris Christou-Varsakelis

Problem 1

1. Show that $p(f \mid \mathbf{x})$ is Gaussian:

We are given:

$$f = \mathbf{w}^{\top} \mathbf{x}, \quad p(\mathbf{w}) \sim \mathcal{N}(\mathbf{w} \mid 0, \Sigma)$$

Since f is a linear combination of the components of \mathbf{w} , it is Gaussian. We only need to find its mean and variance:

The mean of f:

$$\mu_f = \mathbb{E}[f] = \mathbb{E}[\mathbf{w}^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}]^\top \mathbf{x} = \mathbf{0}^\top \mathbf{x} = 0$$

The variance of f:

$$\sigma_f^2 = \operatorname{Var}(f) = \mathbb{E}[(f - \mu_f)^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] = \mathbb{E}[\mathbf{w}^\top \mathbf{x} \mathbf{w}^\top \mathbf{x}] =$$

$$\mathbb{E}[(\mathbf{w}^{\top}\mathbf{x})^{\top}\mathbf{w}^{\top}\mathbf{x}] = \mathbb{E}[\mathbf{x}^{\top}\mathbf{w}\mathbf{w}^{\top}\mathbf{x}] = \mathbf{x}^{\top}\mathbb{E}[\mathbf{w}\mathbf{w}^{\top}]\mathbf{x} = \mathbf{x}^{\top}\Sigma\mathbf{x}$$

Thus:

$$p(f \mid \mathbf{x}) = \mathcal{N}(f \mid 0, \mathbf{x}^{\top} \Sigma \mathbf{x})$$

2. Find $p(f \mid t, \mathbf{x})$:

We are given:

$$t = f + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

This implies:

$$p(t \mid f) = \mathcal{N}(t \mid f, \sigma^2)$$

The prior for f:

$$p(f \mid \mathbf{x}) = \mathcal{N}(f \mid 0, \mathbf{x}^{\top} \Sigma \mathbf{x})$$

To compute $p(f \mid t, \mathbf{x})$, we use Bayes' theorem:

$$p(f \mid t, \mathbf{x}) \propto p(t \mid f)p(f \mid \mathbf{x})$$

Since both $p(t \mid f)$ and $p(f \mid \mathbf{x})$ are Gaussian, their product results in another Gaussian distribution. The posterior mean and variance are derived using the standard formulas for combining Gaussians.

Likelihood $p(t \mid f)$:

$$p(t \mid f) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(t-f)^2}{2\sigma^2}\right)$$

Prior $p(f \mid \mathbf{x})$:

$$p(f \mid \mathbf{x}) = \frac{1}{\sqrt{2\pi \mathbf{x}^{\top} \Sigma \mathbf{x}}} \exp\left(-\frac{f^2}{2\mathbf{x}^{\top} \Sigma \mathbf{x}}\right)$$

Posterior $p(f | t, \mathbf{x})$: The posterior is proportional to the product:

$$p(f \mid t, \mathbf{x}) \propto \exp\left(-\frac{(t-f)^2}{2\sigma^2} - \frac{f^2}{2\mathbf{x}^{\top}\Sigma\mathbf{x}}\right)$$

Simplify the terms in the exponent:

$$p(f \mid t, \mathbf{x}) \propto \exp\left(-\frac{t^2 - 2tf + f^2}{2\sigma^2} - \frac{f^2}{2\mathbf{x}^\top \Sigma \mathbf{x}}\right)$$

Probabilistic Modeling and Reasoning Homework 7

$$p(f \mid t, \mathbf{x}) \propto \exp\left(-\frac{f^2}{2}\left(\frac{1}{\sigma^2} + \frac{1}{\mathbf{x}^\top \Sigma \mathbf{x}}\right) + f\frac{t}{\sigma^2} - \frac{t^2}{2\sigma^2}\right)$$

$$p(f \mid t, \mathbf{x}) \propto \exp\left(-\frac{f^2}{2}\left(\frac{1}{\sigma^2} + \frac{1}{\mathbf{x}^\top \Sigma \mathbf{x}}\right) + f\frac{t}{\sigma^2}\right)$$

This is a Gaussian distribution with precision (inverse variance):

$$\frac{1}{\sigma_{f|t}^2} = \frac{1}{\sigma^2} + \frac{1}{\mathbf{x}^\top \Sigma \mathbf{x}},$$

variance:

$$\sigma_{f|t}^2 = \left(\frac{1}{\sigma^2} + \frac{1}{\mathbf{x}^\top \Sigma \mathbf{x}}\right)^{-1} = \frac{\sigma^2(\mathbf{x}^\top \Sigma \mathbf{x})}{\sigma^2 + \mathbf{x}^\top \Sigma \mathbf{x}},$$

and mean:

$$\mu_{f|t} = \sigma_{f|t}^2 \frac{t}{\sigma^2} = \frac{\sigma^2(\mathbf{x}^\top \Sigma \mathbf{x})}{\sigma^2 + \mathbf{x}^\top \Sigma \mathbf{x}} \frac{t}{\sigma^2} = \frac{t \cdot (\mathbf{x}^\top \Sigma \mathbf{x})}{\sigma^2 + \mathbf{x}^\top \Sigma \mathbf{x}}$$

Final Result:

$$p(f \mid t, \mathbf{x}) = \mathcal{N}\left(f \mid \frac{t \cdot (\mathbf{x}^{\top} \Sigma \mathbf{x})}{\sigma^2 + \mathbf{x}^{\top} \Sigma \mathbf{x}}, \frac{\sigma^2(\mathbf{x}^{\top} \Sigma \mathbf{x})}{\sigma^2 + \mathbf{x}^{\top} \Sigma \mathbf{x}}\right)$$

Problem 2

Problem: Show that for any integrable function $f(\cdot)$, the following holds:

$$\int f(\mathbf{x}^{\top}\mathbf{w})p(\mathbf{w})d\mathbf{w} = \int f(h)p(h)dh$$

Proof:

Let $h = \mathbf{x}^{\top}\mathbf{w}$, where \mathbf{w} is a vector and \mathbf{x} is a constant vector. By definition of p(h), it is the marginal distribution of h derived from the joint distribution of \mathbf{w} . Specifically:

$$p(h) = \int \delta(h - \mathbf{x}^{\mathsf{T}} \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

where $\delta(\cdot)$ is the Dirac delta function

Using the definition of p(h), the integral over f(h) becomes:

$$\int f(h)p(h)dh = \int f(h) \left(\int \delta(h - \mathbf{x}^{\top} \mathbf{w})p(\mathbf{w})d\mathbf{w} \right) dh$$

The order of integration can be swapped using Fubini's theorem. Thus:

$$\int f(h)p(h)dh = \int \left(\int f(h)\delta(h - \mathbf{x}^{\top}\mathbf{w})dh\right)p(\mathbf{w})d\mathbf{w}$$

Using the property of the Dirac delta function, we have:

$$\int f(h)\delta(h - \mathbf{x}^{\top}\mathbf{w})dh = f(\mathbf{x}^{\top}\mathbf{w})$$

Substituting this result into the equation gives:

$$\int f(h)p(h)dh = \int f(\mathbf{x}^{\top}\mathbf{w})p(\mathbf{w})d\mathbf{w}$$

Probabilistic Modeling and Reasoning Homework 7

Problem 3

We aim to derive the optimal regularization parameter α for Bayesian Logistic Regression by maximizing the marginal log-likelihood $L(\alpha)$, given as:

$$L(\alpha) = -\frac{\alpha}{2}\mathbf{w}^{\top}\mathbf{w} + \sum_{n} \log \sigma((\mathbf{w}^{\top}\mathbf{h}^n)) - \frac{1}{2} \log \det(\alpha\mathbf{I} + \mathbf{J}) + \frac{B}{2} \log \alpha,$$

where:

- w is the weight vector,
- $\sigma(\cdot)$ is the sigmoid function,
- \mathbf{J} is the Hessian matrix of the negative log-likelihood with respect to \mathbf{w} ,
- B is the dimensionality of \mathbf{w} .

Step 1: Total Derivative of $L(\alpha)$

The total derivative of $L(\alpha)$ with respect to α is given by:

$$\frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha} + \sum_{i} \frac{\partial L}{\partial w_{i}} \frac{\partial w_{i}}{\partial \alpha}.$$

At the optimal $\mathbf{w} = \mathbf{w}^*$, the gradient $\frac{\partial L}{\partial \mathbf{w}} = 0$. Thus, the total derivative simplifies to:

$$\frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha}.$$

Step 2: Compute $\frac{\partial L}{\partial \alpha}$

Using the expression for $L(\alpha)$, we compute its derivative directly:

$$\frac{\partial L}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(-\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} - \frac{1}{2} \log \det(\alpha \mathbf{I} + \mathbf{J}) + \frac{B}{2} \log \alpha \right).$$

Taking the derivative term by term:

1. First term:

$$\frac{\partial}{\partial \alpha} \left(-\frac{\alpha}{2} \mathbf{w}^\top \mathbf{w} \right) = -\frac{1}{2} \mathbf{w}^\top \mathbf{w}.$$

2. Second term: For $-\frac{1}{2} \log \det(\alpha \mathbf{I} + \mathbf{J})$, we use the identity:

$$\frac{\partial}{\partial \alpha} \log \det(\mathbf{M}) = \operatorname{trace} \left(\mathbf{M}^{-1} \frac{\partial \mathbf{M}}{\partial \alpha} \right),$$

where $\mathbf{M} = \alpha \mathbf{I} + \mathbf{J}$ and $\frac{\partial \mathbf{M}}{\partial \alpha} = \mathbf{I}$. Therefore:

$$\frac{\partial}{\partial \alpha} \left(-\frac{1}{2} \log \det(\alpha \mathbf{I} + \mathbf{J}) \right) = -\frac{1}{2} \mathrm{trace} \left((\alpha \mathbf{I} + \mathbf{J})^{-1} \right).$$

3. Third term:

$$\frac{\partial}{\partial \alpha} \left(\frac{B}{2} \log \alpha \right) = \frac{B}{2\alpha}.$$

Combining these, the derivative is:

$$\frac{\partial L}{\partial \alpha} = -\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \frac{1}{2} \text{trace}((\alpha \mathbf{I} + \mathbf{J})^{-1}) + \frac{B}{2\alpha}.$$

Probabilistic Modeling and Reasoning Homework 7

Step 3: Solve for α

To find the optimal α , set $\frac{\partial L}{\partial \alpha} = 0$:

$$-\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} - \frac{1}{2}\mathrm{trace}((\alpha\mathbf{I} + \mathbf{J})^{-1}) + \frac{B}{2\alpha} = 0.$$

Multiply through by 2 to simplify:

$$-\mathbf{w}^{\top}\mathbf{w} - \operatorname{trace}((\alpha \mathbf{I} + \mathbf{J})^{-1}) + \frac{B}{\alpha} = 0.$$

Rearranging:

$$\frac{B}{\alpha} = \mathbf{w}^{\top} \mathbf{w} + \operatorname{trace}((\alpha \mathbf{I} + \mathbf{J})^{-1}).$$

$$\alpha = \frac{B}{\mathbf{w}^{\top}\mathbf{w} + \operatorname{trace}((\alpha \mathbf{I} + \mathbf{J})^{-1})}.$$

Step 4: Fixed-Point Equation

After substituting **w** with \mathbf{w}^* , the fixed-point equation for α is:

$$\alpha^{\text{new}} = \frac{B}{\mathbf{w}^{*\top}\mathbf{w}^{*} + \text{trace}((\alpha \mathbf{I} + \mathbf{J})^{-1})}.$$

Problem 4

The file $HW7_P4_main.m$ implements the main functionality. For the estimation of the a and b hyperparameters the Gull-MacKay fixed point iteration method was used.

Figure 1: The log marginal likelihood for various λ .

Figure 2: Training data points and the predicted curve with error bars.