tcplFit2

January 6, 2020

2 acgnlsobj

	exp5	9
	fitcnst	10
	fitexp2	10
	fitexp3	11
	fitexp4	12
	fitexp5	13
	fitgnls	14
	fithill	15
	fitpoly1	16
	fitpoly2	17
	fitpow	18
	gnls	19
	gnlsderivobj	19
	hello	20
	hillfn	20
	hitcont	21
	hitcontinner	21
	hitlogic	22
	hitloginner	23
	loggnls	24
	loghill	24
	nestselect	25
	poly1	26
	poly2	26
	pow	27
	tcplFit2.test	27
	tcplObj	28
	toplikelihood	29
Index		30

acgnlsobj

AC GNLS Objective Function

Description

GNLS objective function set to y for gnls solver.

Usage

```
acgnlsobj(x, y, tp, ga, p, la, q)
```

acy 3

Arguments

x	Concentration.
У	Desired activity level.
tp	Top.
ga	Gain AC50.
р	Gain power.
la	Loss AC50.
q	Loss power.

Value

Difference between GNLS model repsone at x and y.

асу

Activity Concentration y

Description

Returns concentration at which model equals y.

Usage

```
acy(
   y,
   modpars,
   type = "hill",
   returntop = F,
   returntoploc = F,
   getloss = F,
   verbose = F
```

Arguments

У	Activity value at which the concentration is desired. y should be less than the model's top, if there is one, and greater than zero.
modpars	List of named model parameters. Model parameters can include: "a", "b", "ga", "la", "p", "q", "tp". ga and la should NOT be in log units.
type	Model type; must be one of: "exp1", "exp2", "exp3", "exp4", "gnls", "hill", "poly1", "poly2", "pow".
returntop	When TRUE, returns actual top value for gnls. Has no effect for other models.
returntoploc	When TRUE, returns concentration of top for gnls. Has no effect for other models. If top location can't be found, NA is returned.
getloss	When TRUE, returns value on loss side of curve for gnls. Has no effect for other models.
verbose	When TRUE, shows warnings.

4 bmdbounds

Details

Mathematically inverts model functions of the given type, except for gnls, which is numerically inverted. gnls returns NA when y > tp. Other options return the actual top (as opposed to theoretical tp) and top location for gnls model. gnls model defaults to giving concentration on gain side. Only one of getloss, returntop, and returntoploc should be TRUE at a time. If top location solution fails for gnls, top is set to tp. Returns NA if gnls numerical solver fails.

Value

Ouputs concentration at activity y, or gnls top or top concentration, when applicable.

Examples

```
acy(1, list(ga = 10, tp = 2, p = 3), type = "hill")
acy(1, list(ga = .1, tp = 2, p = 3, q = 3,la = 10), type = "gnls")
acy(1, list(ga = .1, tp = 2, p = 3, q = 3,la = 10), type = "gnls", getloss = TRUE)
acy(1, list(ga = .1, tp = 2, p = 3, q = 3,la = 10), type = "gnls", returntop = TRUE)
acy(1, list(ga = .1, tp = 2, p = 3, q = 3,la = 10), type = "gnls", returntoploc = TRUE)
```

bmdbounds

BMD Bounds

Description

Computes BMDU or BMDL.

Usage

```
bmdbounds(
   fit_method,
   bmr,
   pars,
   conc,
   resp,
   onesidedp = 0.05,
   bmd = NULL,
   which.bound = "lower"
)
```

Arguments

```
fit_method Fit method: "exp2", "exp3", "exp4", "exp5", "hill", "gnls", "poly1", "poly2", or "pow".
bmr Benchmark response.
pars Named vector of model parameters: a,b,tp,ga,p,la,q,er output by httrfit, and in that order.
```

bmdobj 5

conc Vector of concentrations (NOT in log units).

resp Vector of responses corresponding to given concentrations.

onesidedp The one-sided p-value. Default of .05 corresponds to 5 percentile BMDL, 95

percentile BMDU, and 90 percent CI.

bmd Can optionally input the bmd when already known to avoid unnecessary calcu-

lation.

which.bound Returns BMDU if which.bound = "upper"; returns BMDL if which.bound =

"lower".

Details

Takes in concentration response fit details and outputs a bmdu or bmdl, as desired. If bmd is not finite, returns NA. If the objective function doesn't change sign or the root finding otherwise fails, it returns NA. These failures are not uncommon since some curves just don't reach the desired confidence level.

Value

Returns either the BMDU or BMDL.

Examples

```
conc = c(.03, .1, .3, 1, 3, 10, 30, 100)
resp = c(.1,-.1,0,1.1,1.9,2,2.1,1.9)
pars = c(tp = 1.973356, ga = 0.9401224, p = 3.589397, er = -2.698579)
bmdbounds(fit_method = "hill", bmr = .5, pars, conc, resp)
bmdbounds(fit_method = "hill", bmr = .5, pars, conc, resp, which.bound = "upper")
```

bmdobj

BMD Objective Function

Description

Utility function for bmdbounds

Usage

```
bmdobj(bmd, fname, bmr, conc, resp, ps, mll, onesp, partype = 2)
```

Arguments

bmd Benchmark dose.

fname Function name: "exp2", "exp3", "exp4", "exp5", "hillfn", "gnls", "poly1", "poly2",

or "pow".

bmr Benchmark response.

conc Vector of concentrations NOT in log units.

6 concRespCore

resp Vector of corresponding responses.

ps Named list of paramters.

mll Maximum log-likelihood of winning model.

onesp One-sided p-value.

partype Number for parameter type. Type 1 is y-scaling: a or tp. Type 2 is x-scaling: b

or ga, when available, a otherwise. Type 3 is power scaling: p when available, then b or ga, then a if no others. Since bmd is linked to the x-scale, type 2 should always be used. Other types can also be vulnerable to underflow/overflow.

Value

Objective function value to find the zero of.

cnst Constant Model

Description

Constant Model

Usage

```
cnst(ps, x)
```

Arguments

ps Vector of parameters (ignored)

x Vector of concentrations (regular units)

Value

Vector of model responses

concRespCore Concentration Response Core

Description

Core of concentration response curve fitting for pvalue based cutoff. This function calls httrFit to get curve fits, chooses the winning model, extracts the top and ac50, computes the hitcall, and calculates bmd/bmdl/bmdu among other statistics. Nested model selection is used to choose between poly1/poly2, then the model with the lowest AIC (or AICc) is declared the winner. Continuous hitcalls requires tcplFit2 to be run with force.fit = T and "cnst" never to be chosen as the winner.

concRespCore 7

Usage

Arguments

row

A named list that must include:

• conc - list of concentrations (not in log units)

• resp - list of corresponding responses

• bmed - median of noise estimate.

• cutoff - noise cutoff

• onesd - 1 standard deviation of the noise (for bmd calculation)

Other elements (usually identifiers, like casrn) of row will be attached to the final output.

fitmodels Vector of model names to use.

conthits = T uses continuous hitcalls, otherwise they're discrete.

aicc aicc = T uses corrected AIC to choose winning method; otherwise regular AIC.

bounds (default FALSE)

bidirectional If TRUE allow fitting to happen in both directions (default TRUE)

verbose If TRUE, write extra output from tcplFit2 (default FALSE)
do.plot If TRUE, create a plot in the tcplFit2 function (default FALSE)

Value

One row dataframe containing all CR output and statistics and any identifiers from row.

```
conc = list(.03,.1,.3,1,3,10,30,100)
resp = list(0,.2,.1,.4,.7,.9,.6, 1.2)
row = list(conc = conc, resp = resp, bmed = 0, cutoff = 1, onesd = .5)
concRespCore(row, conthits = TRUE)
concRespCorec(row, aicc = TRUE)
```

8 exp3

exp2

Exponential 2 Model

Description

Exponential 2 Model

Usage

```
exp2(ps, x)
```

Arguments

ps Vector of parameters: a,b,er

x Vector of concentrations (regular units)

Value

Vector of model responses

exp3

Exponential 3 Model

Description

Exponential 3 Model

Usage

```
exp3(ps, x)
```

Arguments

ps Vector of parameters: a,b,p,er

x Vector of concentrations (regular units)

Value

Vector of model responses

exp4 9

exp4

Exponential 4 Model

Description

Exponential 4 Model

Usage

```
exp4(ps, x)
```

Arguments

ps Vector of parameters: tp,ga,er

x Vector of concentrations (regular units)

Value

Vector of model responses

exp5

Exponential 5 Model

Description

Exponential 5 Model

Usage

```
exp5(ps, x)
```

Arguments

ps Vector of parameters: tp,ga,p,er

x Vector of concentrations (regular units)

Value

Vector of model responses

Constant Model Fit

Description

Function that fits a constant line and returns generic model outputs.

Usage

```
fitcnst(conc, resp, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

nofit If nofit = T, returns formatted output filled with missing values.

Details

success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. aic, rme, and er are set to NA in case of nofit or failure. pars always equals "er".

Value

List of five elements: success, aic (Aikaike Information Criteria), rme (root mean square error), er (error parameter), pars (parameter names).

Examples

```
fitcnst(c(.1,1,10,100), c(1,2,0,-1))
fitcnst(c(.1,1,10,100), c(1,2,0,-1), nofit = TRUE)
```

fitexp2

Exponential 2 Model Fit

Description

Function that fits to $f(x) = a^*(e^{(x/b)} - 1)$ and returns generic model outputs.

Usage

```
fitexp2(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

Details

Zero background and increasing absolute response are assumed. Parameters are "a" (y scale), "b" (x scale), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fitexp2(c(.1,1,10,100), c(0,.1,1,10))
```

fitexp3

Exponential 3 Model Fit

Description

Function that fits to $f(x) = a^*(e^{(x/b)^p}) - 1$ and returns generic model outputs.

Usage

```
fitexp3(
  conc,
  resp,
  bidirectional = TRUE,
  verbose = FALSE,
  nofit = F,
  dmin = 0.3
)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

dmin Minimum allowed value of p.

Details

Zero background and increasing absolute response are assumed. Parameters are "a" (y scale), "b" (x scale), "p" (power), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fitexp3(c(.03,.1,.3,1,3,10,30,100), c(0,0,.1, .2, .4, 1, 4, 50))
```

fitexp4

Exponential 4 Model Fit

Description

Function that fits to $f(x) = tp*(1-2^{(-x/ga)})$ and returns generic model outputs.

Usage

```
fitexp4(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

Details

Zero background and increasing absolute response are assumed. Parameters are "tp" (top), "ga" (AC50), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fitexp4(c(.03,.1,.3,1,3,10,30,100), c(0,0,.1,.2,.5,1,1.5,2))
```

fitexp5

Exponential 5 Model Fit

Description

Function that fits to $f(x) = tp*(1-2^{(-(x/ga)^p)})$ and returns generic model outputs.

Usage

```
fitexp5(
  conc,
  resp,
  bidirectional = TRUE,
  verbose = FALSE,
  nofit = F,
  dmin = 0.3
)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

dmin Minimum allowed value of p.

14 fitgnls

Details

Zero background and increasing absolute response are assumed. Parameters are "tp" (top), "ga" (AC50), "p" (power), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fitexp5(c(.03,.1,.3,1,3,10,30,100), c(0,0,.1, .2, .5, 1, 1.5, 2))
```

fitgnls

Gain-Loss Model Fit

Description

Function that fits to $f(x) = tp/[(1 + (ga/x)^p)(1 + (x/la)^q)]$ and returns generic model outputs.

Usage

```
fitgnls(
  conc,
  resp,
  bidirectional = TRUE,
  verbose = FALSE,
  nofit = F,
  minwidth = 1.5
)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

minwidth Minimum allowed distance between gain ac50 and loss ac50 (in log10 units).

fithill 15

Details

Concentrations are converted internally to $\log 10$ units and optimized with $f(x) = tp/[(1 + 10^{(p*(ga-x))})(1 + 10^{(q*(x-la))})]$, then ga, la, ga_sd, and la_sd are converted back to regular units before returning. Zero background and increasing initial absolute response are assumed. Parameters are "tp" (top), "ga" (gain AC50), "p" (gain power), "la" (loss AC50), "q" (loss power) and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fitgnls(c(.03,.1,.3,1,3,10,30,100), c(0,.3,1, 2, 2.1, 1.5, .8, .2))
```

fithill

Hill Model Fit

Description

Function that fits to $f(x) = tp/[(1 + (ga/x)^p)]$ and returns generic model outputs.

Usage

```
fithill(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

Details

Concentrations are converted internally to $\log 10$ units and optimized with $f(x) = tp/(1 + 10^{\circ}(p^*(ga-x)))$, then ga and ga_sd are converted back to regular units before returning. Zero background and increasing initial absolute response are assumed. Parameters are "tp" (top), "ga" (gain AC50), "p" (gain power), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

16 fitpoly1

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

Examples

```
fithill(c(.03,.1,.3,1,3,10,30,100), c(0,0,.1,.2,.5,1,1.5,2))
```

fitpoly1

Polynomial 1 (Linear) Model Fit

Description

Function that fits to f(x) = a*x and returns generic model outputs.

Usage

```
fitpoly1(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

Details

Zero background and increasing absolute response are assumed. Parameters are "a" (y scale) and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

```
fitpoly1(c(.03,.1,.3,1,3,10,30,100), c(0,.01,.1, .1, .2, .5, 2, 5))
```

fitpoly2

fitpoly2	Polynomial 2 (Quadratic) Model Fit	

Description

Function that fits to $f(x) = a*(x/b + x^2/b^2)$ and returns generic model outputs.

Usage

```
fitpoly2(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = F)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

Details

Zero background and monotonically increasing absolute response are assumed. Parameters are "a" (y scale), "b" (x scale), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

```
fitpoly2(c(.03,.1,.3,1,3,10,30,100), c(0,.01,.1, .1, .2, .5, 2, 8))
```

18 fitpow

fitpow

Power Model Fit

Description

Function that fits $tof(x) = a*x^p$ and returns generic model outputs.

Usage

```
fitpow(
  conc,
  resp,
  bidirectional = TRUE,
  verbose = FALSE,
  nofit = F,
  nmin = 0.3
)
```

Arguments

conc Vector of concentration values NOT in log units.

resp Vector of corresponding responses.

bidirectional If TRUE, model can be positive or negative; if FALSE, it will be positive only.

verbose If TRUE, gives optimization and hessian inversion details.

nofit If nofit = T, returns formatted output filled with missing values.

nmin Minimum allowed value of p.

Details

Zero background and monotonically increasing absolute response are assumed. Parameters are "a" (y scale), "p" (power), and error term "er". success = 1 for a successful fit, 0 if optimization failed, and NA if nofit = T. cov = 1 for a successful hessian inversion, 0 if it fails, and NA if nofit = T. aic, rme, modl, parameters, and parameter sds are set to NA in case of nofit or failure.

Value

Named list containing: success, aic (Aikaike Information Criteria), cov (success of covariance calculation), rme (root mean square error), modl (vector of model values at given concentrations), parameters values, parameter sd (standard deviation) estimates, pars (vector of parameter names), sds (vector of parameter sd names).

```
fitpow(c(.03,.1,.3,1,3,10,30,100), c(0,.01,.1, .1, .2, .5, 2, 8))
```

gnls 19

gnls

Gain-Loss Model

Description

Gain-Loss Model

Usage

```
gnls(ps, x)
```

Arguments

ps Vector of parameters: tp,ga,p,la,q,er x Vector of concentrations (regular units)

Value

Vector of model responses

gnlsderivobj

GNLS Derivative Objective Function

Description

Derivative of the gnls function set to zero for top location solver.

Usage

```
gnlsderivobj(x, tp, ga, p, la, q)
```

Arguments

X	Concentration.
tp	Top.
ga	Gain AC50.
р	Gain power.
la	Loss AC50.
q	Loss power.

Value

Value of gnls derivative at x.

20 hillfn

hello

Hello, World!

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

hillfn

Hill Model

Description

Hill Model

Usage

hillfn(ps, x)

Arguments

ps Vector of parameters: tp,ga,p,er

x Vector of concentrations (regular units)

Value

Vector of model responses

hitcont 21

hitcont	Continuous Hitcalls

Description

Wrapper that computes continuous hitcalls for a provided PATHWAY_CR dataframe.

Usage

```
hitcont(indf, xs = NULL, ys = NULL, newcutoff, mc.cores = 1)
```

Arguments

indf	Dataframe similar to PATHWAY_CR. Must contain "conc" and "resp" columns if xs and ys are not provided. Must contain "top", "ac50", "er", "fit_method", "caikwt", and "mll" columns as well as columns for each model parameter.
xs	List of concentration vectors that can be provided for speed.
ys	List of response vectors that can be provided for speed.
newcutoff	Vector of new cutoff values to use. Length should be equal to rows in indf.
mc.cores	Number of cores to use for large dataframes.

Details

indf parameter columns should be NA when not required by fit method. "conc" and "resp" entries should be a single string with values separated by I. Details on indf columns can be found in pathwayConcRespCore_pval.

Value

Vector of hitcalls between 0 and 1 with length equal to indf row number.

r Continuous Hitcalls Inner	continner <i>Continu</i>	itcontir	hit

Description

Calculates continuous hitcall using 3 statistical metrics.

Usage

```
hitcontinner(conc, resp, top, cutoff, er, ps, fit_method, caikwt, mll)
```

22 hitlogic

Arguments

conc	Vector of concentrations.
resp	Vector of responses.
top	Model top.
cutoff	Desired cutoff.
er	Model error parameter.
ps	Vector of used model parameters in order: a, tp, b, ga, p, la, q, er.
fit_method	Name of winning fit method (should never be constant).
caikwt	Aikaike weight of constant model relative to winning model.
mll	Maximum log-likelihood of winning model.

Details

This function is called either directly from pathwayConcRespCore_pval or via hitcont using PATH-WAY_CR. Details of how to compute function input are in pathwayConcRespCore_pval.

Value

Continuous hitcall between 0 and 1.

Examples

```
conc = c(.03,.1,.3,1,3,10,30,100)
resp = c(0,.1,0,.2,.6,.9,1.1,1)
top = 1.023239
er = -3.295307
ps = c(1.033239, 2.453014, 1.592714, er = -3.295307) #tp,ga,p,er
fit_method = "hill"
caikwt = 1.446966e-08
mll = 12.71495
hitcontinner(conc,resp,top,cutoff = 0.8, er,ps,fit_method, caikwt, mll)
hitcontinner(conc,resp,top,cutoff = 1, er,ps,fit_method, caikwt, mll)
hitcontinner(conc,resp,top,cutoff = 1.2, er,ps,fit_method, caikwt, mll)
```

hitlogic

Hit Logic (Discrete)

Description

Wrapper that computes discrete hitcalls for a provided PATHWAY_CR dataframe.

Usage

```
hitlogic(indf, newbmad = NULL, xs = NULL, ys = NULL, newcutoff = NULL)
```

hitloginner 23

Arguments

indf Dataframe similar to PATHWAY_CR. Must contain "conc" and "resp" columns

if xs and ys are not provided. Must contain "cutoff" and "bmad_factor" columns if newbmad is not NULL. Must contain "top" and "ac50" columns. "conc" and

"resp" entries should be a single string with values separated by l.

newbmad (Deprecated) New number of bmads to use for the cutoff.

xs List of concentration vectors that can be provided for speed.

ys List of response vectors that can be provided for speed.

newcutoff Vector of new cutoff values to use. Length should be equal to rows in indf.

Value

Vector of hitcalls with length equal to number of rows in indf.

Examples

```
conc = rep(".03|.1|.3|1|3|10|30|100",2)
resp = rep("0|0|.1|.1|.5|.5|1|1",2)
indf = data.frame(top = c(1,1), ac50 = c(3,4), conc = conc, resp = resp,
    stringsAsFactors = FALSE)
hitlogic(indf, newcutoff = c(.8,1.2))
```

hitloginner

Hit Logic Inner (Discrete)

Description

Contains hit logic, called directly during CR fitting or later through "hitlogic".

Usage

```
hitloginner(conc = NULL, resp, top, cutoff, ac50 = NULL)
```

Arguments

conc Vector of concentrations (No longer necessary).

resp Vector of responses.

top Model top. cutoff Desired cutoff.

ac50 Model AC50 (No longer necessary).

Details

The purpose of this function is to keep the actual hit rules in one location so it can be called during CR fitting, and then again after the fact for a variety of cutoffs. Curves fit with constant winning should have top = NA, generating a miss.

24 loghill

Value

Outputs 1 for hit, 0 for miss.

Examples

```
hitloginner(resp = 1:8, top = 7, cutoff = 5) #hit
hitloginner(resp = 1:8, top = 7, cutoff = 7.5) #miss: top too low
hitloginner(resp = 1:8, top = 9, cutoff = 8.5) #miss: no response> cutoff
hitloginner(resp = 1:8, top = NA, cutoff = 5) #miss: no top (constant)
```

loggnls

Log Gain-Loss Model

Description

Log Gain-Loss Model

Usage

```
loggnls(ps, x)
```

Arguments

ps Vector of parameters: tp,ga,p,la,q,er
x Vector of concentrations (log10 units)

Value

Vector of model responses

loghill

Log Hill Model

Description

Log Hill Model

Usage

```
loghill(ps, x)
```

Arguments

ps Vector of parameters: tp,ga,p,er x Vector of concentrations (log10 units) nestselect 25

Value

Vector of model responses

Description

Chooses between nested models.

Usage

```
nestselect(aics, mod1, mod2, dfdiff, pval = 0.05)
```

Arguments

aics	Named vector of model aics (can include extra models).
mod1	Name of model 1, the model with fewer degrees of freedom.
mod2	Name of model 2, the model with more degrees of freedom.
dfdiff	Absolute difference in number of degrees of freedom (i.e. the difference in parameters).
pval	P-value for nested model test.

Value

Named aic vector with losing model removed.

```
aics = c(-5,-6,-3)

names(aics) = c("poly1", "poly2", "hill")

nestselect(aics, "poly1", "poly2", 1)

aics = c(-5,-7,-3)

names(aics) = c("poly1", "poly2", "hill")

nestselect(aics, "poly1", "poly2", 1)
```

poly2

poly1

Polynomial 1 Model

Description

Polynomial 1 Model

Usage

```
poly1(ps, x)
```

Arguments

ps Vector of parameters: a,er

x Vector of concentrations (regular units)

Value

Vector of model responses

poly2

Polynomial 2 Model

Description

Polynomial 2 Model

Usage

```
poly2(ps, x)
```

Arguments

ps Vector of parameters: a,b,er

x Vector of concentrations (regular units)

Value

Vector of model responses

pow 27

pow

Power Model

Description

Power Model

Usage

```
pow(ps, x)
```

Arguments

ps Vector of parameters: a,p,er

x Vector of concentrations (regular units)

Value

Vector of model responses

tcplFit2.test

Run a test of the tcploFit2 code

Description

This is jsut a test routine to show how tcplFit2 runs

Usage

```
tcplFit2.test()
```

Details

```
concRespCore(row, conthits = TRUE) concRespCorec(row, aicc = TRUE)
```

28 tcplObj

tcpl0bj	Concentration Response Objective Function
---------	---

Description

Log-likelihood to be maximized during CR fitting.

Usage

```
tcplObj(p, conc, resp, fname, errfun = "dt4", err = NULL)
```

Arguments

p	Vector of parameters, must be in order: a, tp, b, ga, p, la, q, er. Does not require names.
conc	Vector of concentrations in $\log 10$ units for loghill/loggnls, in regular units otherwise.
resp	Vector of corresponding responses.
fname	Name of model function.
errfun	Which error distribution to assume for each point. "dt4" is the original 4 degrees of freedom t-distribution. "dnorm" is the normal distribution.
err	An optional estimation of error for the given fit.

Details

This function is a generalized version of the log-likelihood estimation functions used in the ToxCast Pipeline (TCPL). Hill model uses fname "loghill" and gnls uses fname "loggnls". Other model functions have the same fname as their model name; i.e. exp2 uses "exp2", etc. errfun = "dnorm" may be better suited to gsva pathway scores than "dt4". Setting err could be used to fix error based on the null data noise distribution instead of fitting the error when maximizing log-likelihood.

Value

Log-likelihood.

```
conc = c(.03,.1 , .3 , 1 , 3 , 10 , 30 , 100)
resp = c( 0 , 0 , .1 ,.2 , .5 , 1 , 1.5 , 2 )
p = c(tp = 2, ga = 3, p = 4, er = .5)
tcplObj(p,conc,resp,"exp5")

lconc = log10(conc)
tcplObj(p,lconc,resp,"loghill")
```

toplikelihood 29

	toplikelihood	Top Likelihood	
--	---------------	----------------	--

Description

Probability of top being above cutoff.

Usage

```
toplikelihood(fname, cutoff, conc, resp, ps, top, mll)
```

Arguments

fname	Model function name (equal to model name except hill which uses "hillfn")
cutoff	Desired cutoff.
conc	Vector of concentrations.
resp	Vector of responses.
ps	Vector of parameters, must be in order: a, tp, b, ga, p, la, q, er
top	Model top.
mll	Winning model maximum log-likelihood.

Details

Should only be called by hitcontinner. Uses profile likelihood, similar to bmdbounds. Here, the y-scale type parameter is substituted in such a way that the top equals the cutoff. Then the log-likelihood is compared to the maximum log-likelihood using chisq function to retrieve probability.

Value

Probability of top being above cutoff.

```
fname = "hillfn"
conc = c(.03,.1,.3,1,3,10,30,100)
resp = c(0,.1,0,.2,.6,.9,1.1,1)
ps = c(1.033239, 2.453014, 1.592714, er = -3.295307)
top = 1.023239
mll = 12.71495
toplikelihood(fname, cutoff = .8, conc, resp, ps, top, mll)
toplikelihood(fname, cutoff = 1, conc, resp, ps, top, mll)
toplikelihood(fname, cutoff = 1.2, conc, resp, ps, top, mll)
```

Index

acgnlsobj, 2 acy, 3	poly2, 26 pow, 27
bmdbounds, 4 bmdobj, 5	tcplFit2.test, 27 tcplObj, 28 toplikelihood, 29
<pre>cnst, 6 concRespCore, 6</pre>	
exp2, 8 exp3, 8 exp4, 9 exp5, 9	
fitcnst, 10 fitexp2, 10 fitexp3, 11 fitexp4, 12 fitexp5, 13 fitgnls, 14 fithill, 15 fitpoly1, 16 fitpoly2, 17 fitpow, 18	
gnls, 19 gnlsderivobj, 19	
hello, 20 hillfn, 20 hitcont, 21 hitcontinner, 21 hitlogic, 22 hitloginner, 23	
loggnls, 24 loghill, 24	
nestselect, 25	
poly1, 26	