ELEC271: Overview of module

Electronic Circuits

- Device model (hybrid-pi) simple, linear we can use it to help design and understand circuits
- 1-Transistor configurations can amplify current and voltage etc. Use out model to analyse them to find key operation parameters BUT none are 'ideal'.

WHAT TO DO???

- Look at combining 1-T configurations Take account of how one stage will 'load' another.. Start to see how ideal amplifier systems (IAS) might be built
 - Need some more 'building blocks' IAS must operate in the 'real world' differential amplifier (DA) can 'reject' interference (CMRR) – VERY USEFUL
 - Look at simplest DA all resistor biasing
 OK but problems as can't get high CMRR (depends on R_E) or high differential gain (depends on R_C) biasing and ac performance too closely linked via R-values
 - Replace simple R based current source with an active T one also can temperature compensate! VERY IMPORTANT – AMPLIFIER SYSTEMS WILL BE ALL ON ONE PIECE OF SILICON (CHIP) SO POWER STAGES WILL HEAT UP CHIP – temperature gradients across chip!
 - Look at other ways that the biasing can be done simple ways of setting different bias currents for different parts of a circuit currents mirrors, current repeater etc

 Also use small signal analysis to show that these current sources are close to ideal ie have very high dynamic resistance
 - Replace R-loads with active loads current mirrors (so there are TWO uses for CMs)
 - Now have very high gain, high CMMR diff amp **MAJOR MILESTONE**

CASE STUDY: A COMMERCIAL OP-AMP (MOTOROLA – old design!)

- Can identify building blocks amps., bias circuitry
- Can work out dc levels so can get values for transistor ac parameters, gm, rbe
- Can work out ac gain of each stage taking into account loading effects

FIRST MAJOR ACHIEVEMENT OF THE MODULE HAVE THE BASIC BUILDING BLOCKS – WILL NEED TO STUDY FEEDBACK TO SEE HOW TO FINISH THE JOB OF MAKING IT AS NEAR TO IDEAL AS WE CAN

- High frequency performance
 - \circ Look at the highest frequency at which we can get useful current gain (f_T)
 - o Look at voltage gain-bandwidth of common emitter amplifiers
 - o Both analyses involve the parasitic capacitances within the device. We use some circuit tricks to simplify the analysis reduce to simple first order RC response.
- MOS transistors the building blocks of modern Integrated Circuits
- Step response ie TRANSIENT response of circuits time to 'switch on'

Electronic Systems

- Intro to negative feedback: appraise circuits by SPICE simulation 'good' and 'poor' amplifiers
- 4 Types of amplifier what makes an amp what it is! (summary table)
 - o Voltage amp
 - o Current amp
 - o Transconductance amp
 - o Transresistance amp
- \bullet Generic Equivalent circuits for each amp type gain, R_{in} , R_{out}
- Relation between ideal amps and –ve feedback types of feedback
- Identify Topology output sensing voltage and current / Input summing
- Derivation of feedback equation relating A_f , A_{ol} , β
 - \circ A_f gain with feedback
 - o A_{ol} open-loop gain
- Apply theory to analyse 4 amplifier types (assuming $A_f \sim 1/\beta$)
- Operational amplifiers equivalent circuit (r_d, r_o, A_{ol}V_d)
 - o VSP
 - o Some circuit examples inc. the Analogue computer
 - \circ Estimate R_{in} and R_{out} for non-inv. and inv. Op-amp circuits use Equivalent circuit for an op-amp, some sensible approximations and simple (yes!) circuit analysis
 - Estimating the loop gain (inject a 'test signal' into loop) should be large for a good amp. system
- Effect of feedback on
 - o Bandwidth effectively increases it
 - o Distortion effectively reduces it
- Model for op-amp including non-idealities:
 - Output Voltage offset

Input currents: Input bias current: $I_B = \frac{I_{BP} + I_{BN}}{2}$; 'input offset current' $I_{os} = |I_{Bp} - I_{Bn}|$

A method to work out a way of compensating for these offsets

CHECK PAST PAPERS TO SEE QUESTION STYLES