Lec 4. Cut and Flow: Fundamentals

Soviet rail network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum flow and minimum cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

https://en.wikipedia.org/wiki/Maximum_flow_problem

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .

Outline

- . Minimum cut
- Skew-symmetric transshipment (TS)
- · Residual (Augmenting) graph
- · Elementary augmentations
- · Feasibility test

1. Minimum Cut

Cuts

D = (V, A): a simple digraph (no parallel arcs via merging)

Def. For any disjoint $X, Y \subseteq V$, $A(X, Y) := \{(u, v) \in A : u \in X, v \in Y\}$

Def. For any $U \subseteq V$,

$$\delta^{out}(U) \coloneqq A(U, V \setminus U),$$

$$\delta^{in}(U) \coloneqq A(V \setminus U, U) = \delta^{out}(V \setminus U),$$

$$A[U] \coloneqq \{(u, v) \in A : u \in U, v \in U\}$$

Cut capacity

Notation: For any $x \in \mathbb{R}^A$, $x(B) := \sum_{a \in B} x(a)$

 $c \in \mathbb{R}^A$: an edge-capacity function (vector)

Def. The cut-capacity of U is $c(\delta^{out}(U))$

Minimum s-t cut

 $s,t \in V$

Def. An s-t cut is $\delta^{out}(U)$ for some $s \in U \subseteq V \setminus \{t\}$.

Min s-t cut problem: Find an s-t cut of minimum cut-capacity.

Computational hardness of Min-Cut

analogy of shortest path

NP-complete for arbitrary "capacity": Max-cut is NP-complete

Assumption: each edge $a \in A$ has a "mirror" (i.e. reverse edge) a^{-1} (if not, add it with $c(a^{-1}) = 0$ without changing the solution)

- forward edge: the direction with larger capacity
- backward edge: the direction with smaller capacity

Def. c is a flow network capacity if $c(a) + c(a^{-1}) \ge 0$ for each $a \in A$

Min-cut is polynomial if c is a flow network capacity.

The cut equality

$$\left[\chi_{\delta^{out}(X)} + \chi_{\delta^{out}(Y)}\right] - \left[\chi_{\delta^{out}(X\cap Y)} + \chi_{\delta^{out}(X\cup Y)}\right] = \chi_{A(X\setminus Y,Y\setminus X)} + \chi_{A(Y\setminus X,X\setminus Y)}$$

Pf.

$$\delta^{out}(X) = A(X, Z) \cup A(X, Y \setminus X)$$

 $= A(X,Z) \cup A(X \cap Y,Y \setminus X) \cup A(X \setminus Y,Y \setminus X)$

$$\delta^{out}(Y) = A(Y,Z) \cup A(X \cap Y,X \setminus Y) \cup A(Y \setminus X,X \setminus Y)$$

$$\delta^{out}(X \cap Y) = A(X \cap Y, Z) \cup A(X \cap Y, Y \setminus X) \cup A(X \cap Y, X \setminus Y)$$

$$\delta^{out}(X \cup Y) = A(X \cup Y, Z)$$

$$\chi_{A(X,Z)} + \chi_{A(Y,Z)} = \chi_{A(X \cap Y,Z)} + \chi_{A(X \cup Y,Z)}$$

Submodularity of cut capacities

$$\left[c \left(\delta^{out}(X) \right) + c \left(\delta^{out}(Y) \right) \right] - \left[c \left(\delta^{out}(X \cap Y) \right) + c \left(\delta^{out}(X \cup Y) \right) \right]$$

$$= c \left(A(X \setminus Y, Y \setminus X) \right) + c \left(A(Y \setminus X, X \setminus Y) \right)$$

Thm. If
$$c$$
 is a flow network capacity, then $c(\delta^{out}(X))$ is submodular: $c(\delta^{out}(X)) + c(\delta^{out}(Y)) \ge c(\delta^{out}(X \cap Y)) + c(\delta^{out}(X \cup Y))$

- Min-cut: minimizing submodular function
- more efficient algorithm via max-flow

2. Skew-Symmetric Transshipment

Skew-symmetry transshipment

D=(V,A): a simple bidirected graph with |A|=2m $x\in\mathbb{R}^A$

Def. x is skew-symmetric if $x(a^{-1}) = -x(a)$ for each $a \in A$

- magnitude simply represents the amount
- sign simply represents the direction

$$A^+(x) \coloneqq \{a \in A : x(a) > 0\}$$

Skew-symmetry is preserved by linear combination.

Excess and deficit

Def. $x\left(\delta^{in}(v)\right)$ and $x\left(\delta^{out}(v)\right)$ are the excess and deficit of v

$$x\left(\delta^{in}(v)\right) = x\left(\delta^{in}(v) \cap A^{+}(x)\right) - x\left(\delta^{out}(v) \cap A^{+}(x)\right) = -x\left(\delta^{out}(v)\right)$$

- v is excessive (resp., deficient, balanced) $\Leftrightarrow x\left(\delta^{in}(v)\right)$ is positive (resp., negative, 0).
- total (net) excess = 0, i.e. $\sum_{v \in V} x(\delta^{in}(v)) = 0$

Modularity.
$$\sum_{v \in U} x(\delta^{in}(v)) = x(A[U]) + x(\delta^{in}(U)) = x(\delta^{in}(U))$$

excess of U = sum of excesses of nodes in U

b-Transshipment (b-TS)

Def. If $x(\delta^{in}(v)) = b(v)$ for $v \in V$, then x is called a b-TS

$$\sum_{v \in V} b(v) = \sum_{v \in V} x(\delta^{in}(v)) = 0$$

Def. x is called a *circulation* if all nodes are balanced (i.e. a 0-TS)

Def. The (absolute) value of a b-TS x: |x|: = $(1/2)||b||_1$

- = total excesses of excessive nodes,
- = total deficits of deficient nodes.

Elementary skew-symmetric TS

P: a path or nontrivial circuit in A

 χ^P : elementary TS along P given by $\chi^P(a) = 1$ (resp., -1, 0) if $a \in P$ (resp., $a \in P^{-1}$, $a \notin P \cup P^{-1}$)

Elementary TS

TS = positive combinations of "paths & circuits"

 χ_P along a path or circuit P in A

- $\chi_P(a) = 1$ and $\chi_P(a^{-1}) = -1$, for each $a \in P$;
- $\chi_P(a) = 0$ for each $a \notin P \cup P^{-1}$.

Elementary decomposition

TS = positive combinations of "paths & circuits"

In O(nm) time, we may find

- a collection \mathcal{P} of paths in $A^+(x)$ from deficient nodes to excessive nodes,
- \rightarrow a collection \mathcal{C} of circuits in $A^+(x)$,
- \rightarrow and positive scaling factor $\varepsilon(P)$ for each $P \in \mathcal{P} \cup \mathcal{C}$

s.t.
$$|\mathcal{P}| + |\mathcal{C}| \le |A^+(x)| \le m$$
 and $x = \sum_{P \in \mathcal{P} \cup \mathcal{C}} \varepsilon(P) \chi^P$.

Moreover, if x is integer-valued, so are all $\varepsilon(P)$.

$$|x| = \sum_{P \in \mathcal{P}} \varepsilon(P)$$

(Linear) Cost

 $\ell \in \mathbb{R}^A$: skew-symmetric edge price (length)

$$cost(x) := \sum_{a \in A} \ell(a)x(a) = 2\sum_{a \in A^+(x)} \ell(a)x(a)$$

- for each $a \in A$, $\ell(a^{-1})x(a^{-1}) = \ell(a)x(a)$
- Given an elementary decomposition $x = \sum_{P \in \mathcal{P} \cup \mathcal{C}} \varepsilon(P) \chi_P$, $cost(x) = 2 \sum_{P \in \mathcal{P} \cup \mathcal{C}} \varepsilon(P) \ell(P)$
- Cost is linear:

$$cost(x \pm y) = cost(x) \pm cost(y)$$

Adjusted price and cost

p: a node price function

 ℓ_p : p-adjusted edge price (length); also skew-symmetric

Claim. After the adjustment, the cost of any b-TS x drops by a constant $2\sum_{v\in V}p(v)b(v)$.

Pf. True for every elementary TS.

Coro. Costs of circulations are invariant to the price adjustment.

Rounding of a fractional b-TS

Given a b-TS x where b is integral, comput in O(mn) time a b-TS x' s.t.

- (1) $x'(a) \in \{\lfloor x(a) \rfloor, \lceil x(a) \rceil\}$ for each edge $a \in A$,
- (2) x' has the same or lower cost than x

F: the set of fractional edges

Fact. If $a \in F$ then $a^{-1} \in F$.

Fact. F contains a circuit.

Pf. If $(u, v) \in F$ then for some $w \neq u$, $(w, v) \in F$ hence $(v, w) \in F$.

Rounding along a fractional augmenting circuit

Find a circuit $C \subseteq F$ in O(n) time, and by symmetry assume $\ell(C) \le 0$. Let

$$\varepsilon \coloneqq \min_{a \in C} ([x(a)] - x(a)), x' \coloneqq x + \varepsilon \chi_C$$

- $x' \coloneqq x + \varepsilon \chi_C$ is also a *b*-TS.
- For each $a \in A$, $[x(a)] \le x'(a) \le [x(a)]$.
- For each "bottleneck" $a \in C$ with $\varepsilon = [x(a)] x(a)$,
 - $x'(a) = [x(a)] \text{ and } x'(a^{-1}) = [x(a^{-1})]$
 - \rightarrow both a and a^{-1} become integral

Rounding algorithm

```
initialize F;
while F is nonempty
find a non-positive circuit C in F;
compute \varepsilon along C;
update x and F along C;
return x
```

at most m rounding iterations, and each iteration takes $\mathcal{O}(n)$ time

Capacitated flow network

Feasibility constraints: $d \le x \le c$

x: a skew-symmetric TS in a capacitated flow network: D = (V, A; c)

Def. x is called a pseudoflow under c if $x \le c$

Preflow and flow: additional excess constraints

x: a pseudoflow in a flow network D = (V, A; c)Def. x is called an s-preflow under c if only s may be deficient \cdot s is called the source node.

Def. x is called an $\{s,t\}$ -flow under c if all nodes except s, t are balanced.

- For any s-t separator U, $x(\delta^{out}(s)) = x(\delta^{out}(U))$
- As an s-t flow, its value is $val(x) := x(\delta^{out}(s)) = x(\delta^{in}(t))$.

Extreme pseudoflows and and max-flows

Def. A pseudoflow x is said to be extreme if it has minimum cost among all pseudoflows with the same deficits.

- An extreme b-TS is a min-cost b-TS.
- Adjustment by node prices preserves the extremeness.

Max flow problem. Find an s-t flow of maximum value. Min flow problem. Find an s-t flow of minimum value.

a min s-t flow \Leftrightarrow a max t-s flow

Integrality theorem

Thm. If c is integral and there is an s-t flow under c, then there exists an integral max s-t flow under c.

Thm. If b and c are integral and there is a b-TS under c, then there exists an integral min-cost b-TS under c.

Nonnegative capacitated $TS \Rightarrow$ nonnegative uncapacitated TP

Construct D' and from D via edge splitting [Fulkerson 1960]:

- For each $a = (u, v) \in A$ with c(a) > 0,
 - add a node z_a with $b'(z_a) := c(a)$,
 - split a into a free (u, z_a) , and (v, z_a) of price $\ell(a)$
- For each $v \in V$, $b'(v) := -[b(v) + c(\delta^{out}(v))]$

min-cost b-TS in $D \leftrightarrow \text{min-cost } b'$ -TP in D'

Remark. The reduction preserves integrality.

3. Residual (Augmenting) Graph

Residual (augmenting) graph

- x: a pseudoflow under c
- residual capacity: $c x \ge 0$
- $a \in A$ is saturated if x(a) = c(a), residual if x(a) < c(a)
- $A_x := A^+(c-x)$: the set of residual edges
 - if $c \ge 0$, then $A^+(x) \subseteq A_x^{-1}$
- residue graph $D_x = (V, A_x)$

Sum and difference of pseudoflows

```
x, z: pseudoflows under c
y: a pseudoflow under c - x
```

- x + y is a pseudoflow under c.
- z-x is a pseudoflow under c-x and $A^+(z-x) \subseteq A_x \cap A_z^{-1}$

Sum and difference of pseudoflows

x, z: b-TS's under cy: a circulation under c - x

- x + y is a b-TS under c.
- z-x is a circulation under c-x

Thm. y is a min-cost circulation under $c-x \Leftrightarrow x+y$ is a min-cost b-TS under c

Thm. z is a min-cost b-TS under $c \Leftrightarrow z - x$ is a min-cost circulation under c - x

Algorithmic implication for min-cost TS

Phase 1. find a b-TS $x \le c$

Phase 2. compute a min-cost circulation $y \le c - x$

Phase 3. return x + y

Remark: Phase 1 is reduced to max-flow subject to nonnegative capacity

Sum and difference of flows

$$x, z$$
: s-t flows under c
y: s-t flow under $c - x$

- x + y is a s-t flow under c, and val(x + y) = val(x) + val(y)
- z-x is a s-t flow under c-x, and val(z-x)=val(z)-val(x)

Pf. For any
$$a \in A^+(z-x)$$
,
$$x(a) < z(a) \le c(a) \Rightarrow a \in A_x$$

$$z(a^{-1}) < x(a^{-1}) \le c(a^{-1}) \Rightarrow a^{-1} \in A_z \Rightarrow a \in A_z^{-1}$$

Thm. y is a max s-t flow under $c-x \Leftrightarrow x+y$ is a max s-t flow under cThm. z is a max s-t flow under $c \Leftrightarrow z-x$ is a max s-t flow under c-x

Algorithmic implication for max flow

```
Phase 1. find an s-t flow x \le c
```

Phase 2. compute a max s-t flow $y \le c - x$

Phase 3. return x + y

Remark: 2 computations of max-flow subject to nonnegative capacity! Phase 1 is reduced to max-flow subject to nonnegative capacity Phase 2 is a max-flow subject to nonnegative capacity

4. Elementary Augmentations

Elementary augmentation of a pseudoflow

x: a pseudoflow under c

P: a path or circuit in A_x

- bottleneck edge-set P^* : the edge with the smallest (residual) capacity
- bottleneck capacity $\Delta_x(P) := \text{(residual)}$ capacity of the bottleneck edge

Def. For any $0 < \varepsilon \le \Delta_x(P)$, $x + \varepsilon \chi_P$ is called an elementary augmentation of x along P. If $\varepsilon = \Delta_x(P)$, denote $x + \varepsilon \chi_P$ by $x \oplus P$.

- $P^{-1} \subseteq A_{x+\varepsilon \chi_P} \subseteq A_x \cup P^{-1} \text{ and } A_{x \oplus P} = (A_x \setminus P^*) \cup P^{-1}$
- $cost(x + \varepsilon \chi_P) = cost(x) + 2\varepsilon \ell(P)$
- □ If x is an s-t flow and P is an s-t path, then $x + \varepsilon \chi_P$ is also an s-t flow.

Augmenting path theorem for max flow

[Ford-Fulkerson 1955]

Thm. An s-t flow x is a max s-t flow under $c \Leftrightarrow A_x$ has no s-t path.

Pf. We show contrapositive.

 \Rightarrow For any s-t path P in A_{χ} ,

$$val(x \oplus P) = val(x) + \Delta_x(P) > val(x).$$

- \Leftarrow Assume x is not maximum and z is a max s-t flow.
- z-x is a s-t flow under c-x of positive value.
- An elementary decomposition of z x contains an s-t path

$$P \subseteq A^+(z-x) \subseteq A_{\chi}.$$

Augmenting circuit theorem for extreme pseudoflow

[Tolstoi 1930], [Ford and Fulkerson 1962], [Klein 1967]

Thm. A pseudoflow x is extreme $\Leftrightarrow A_x$ has no negative circuit.

- Pf. We show contrapositive. Suppose that x is a b-TS.
- \Rightarrow For any negative circuit C in D_x ,

$$cost(x \oplus C) = cost(x) + 2\Delta_x(C)\ell(C) < cost(x)$$

- \Leftarrow Assume x is not extreme and z is an extreme b-TS.
- z-x is a circulation under c-x of negative cost.
- An elementary decomposition of z-x contains a negative circuit $C\subseteq A^+(z-x)\subseteq A_x.$

Difference between extreme pseudoflows

x: an extreme pseudoflows under c

z: an min-cost b-TS under c

Thm. All circuits in $A^+(z-x)$ have 0 price (length).

Pf. Otherwise, for a negative circuit C, $x \oplus C$ has smaller cost than x; for a positive circuit C, $z \oplus C^{-1}$ has smaller cost than z.

Coro. Given an elementary decomposition $z - x = \sum_{P \in \mathcal{P} \cup \mathcal{C}} \varepsilon(P) \chi_P$, $cost(z - x) = 2 \sum_{P \in \mathcal{P}} \varepsilon(P) \ell(P)$

Growth of extreme pseudoflows

[Jewell 1958], [Iri 1960], [Busacker and Gowen 1961]

x: an extreme pseudoflow

P: a shortest path in A_x

Thm. For any $0 < \varepsilon \le \varepsilon_{\chi}(P)$, $\chi + \varepsilon \chi_{P}$ is also an extreme pseudoflow.

Pf. For any extreme pseudoflow z with the same deficits as $x + \varepsilon \chi_P$, $cost(z) - cost(x) = cost(z - x) \ge 2\varepsilon \ell(P) = cost(x + \varepsilon \chi_P) - cost(x)$. Thus, $cost(z) \ge cost(x + \varepsilon \chi_P)$.

MFMC Duality [Ford-Fulkerson 1954]

Assumption: (1) there is an s-t flow, and (2) no uncapacitated s-t path

Thm. max-flow value = min-cut capacity.

Pf. Let f be a max-flow.

- (\leq) for any s-t cut U, $val(f) = f(\delta^{out}(U)) \leq c(\delta^{out}(U))$
- (=) Each $a \in \delta^{out}(U)$ is saturated (i.e $a \notin A_f$) hence $f(a) = c(a) < \infty$. Thus, $val(f) = f(\delta^{out}(U)) = c(\delta^{out}(U)).$

Construction of min-cuts from max-flow

f: a maximum s-t flow. There is no s-t path in D_f .

- U: the set of vertices reachable from s in D_f .
- W: the set of vertices which can reach t in D_f .

Thm. U (resp., $V\setminus W$) is the minimal (resp., maximal) s-t cut with minimum cut-capacity.

Exercise: How about other s-t separators with minimum cut capacity?

Optimality gap

```
f: an s-t flow
f*: a max s-t flow
```

Thm. $val(f^*) - val(f) = \min s$ -t cut capacity of D_f .

Pf. $val(f^*) - val(f) = val(f^* - f)$, and $f^* - f$ is a max s-t flow in D_f .

Flow with demands

Thm. max s-t flow value with demands = min of $c(\delta^{out}(U)) - d(\delta^{in}(U))$ over all s-t separators U.

Thm. min s-t flow value with demands = max of $d(\delta^{out}(U)) - c(\delta^{in}(U))$ over all s-t separators U.

Coro. When $c = \infty$, min s-t flow value with demands = max of $d(\delta^{out}(U))$ over all s-t separators U with $\delta^{in}(U) = \emptyset$.

5. Feasibility Test of b-TS

Feasibility test of b-TS

Given D = (V, A; c) and $b \in \mathbb{R}^V$ with b(V) = 0, decide whether there is a b-TS under c, and if so find one.

Reduction to max-flow subject to non-negative edge capacity

Disposal of negative capacities (demands)

Idea: shift negative capacities (demands) of edges to demands of nodes

"Edge demand" d: for each forward-backward pair $a, a^{-1} \in A$, let $d(a) = -c(a^{-1}), d(a^{-1}) = c(a^{-1}).$

Step 1. Define the residual "edge capacity" c' := c - d: for each forward-backward pair $a, a^{-1} \in A$,

$$c(a) - d(a) = c(a) + c(a^{-1}) > 0,$$

 $c(a^{-1}) - d(a^{-1}) = 0.$

Step 2. Define the residual "node demand" $b':b'(v):=b(v)-d\left(\delta^{in}(v)\right)$

x is a b-TS under $c \Leftrightarrow x - d$ is a b'-TS under c' = c - d.

Remark. The reduction preserves integrality

Reduction to nonnegative max-flow

Idea: translate supplies/demands on nodes to edge capacities

$$D' = (V, A; c'); c' \ge 0; b' \in \mathbb{R}^V \text{ with } b'(V) = 0$$

$$S \coloneqq \{v \in V : b'(v) < 0\},\$$

$$T \coloneqq \{v \in V : b'(v) > 0\}.$$

Reduction to nonnegative max-flow

Construct an extended flow network D^+ from D'

- \Box add new source s and sink t.
- $u \in S$, add edges (s, u), (u, s) with capacity -b'(u) and 0 resp.
- $\forall v \in T$, add edges (v, t), (t, v) with capacity b'(v) and 0 resp.

A b'-TS in $D' \leftrightarrow$ a source-saturating max s-t flow in D^+

Characterization of feasibility

Thm. D' has a b'-TS under c' $\Leftrightarrow c' \Big(\delta^{out}(U) \Big) \ge -b'(U) \ \forall U \subseteq V$ $\Leftrightarrow c' \Big(\delta^{in}(U) \Big) \ge b'(U) \ \forall U \subseteq V.$

Pf. In D^+ , $\{s\}$ has cut-capacity -b'(S), and $U \cup \{s\}$ has cut-capacity

$$-b'(S \setminus U) + b'(T \cap U) + c'(\delta^{out}(U))$$

$$= -b'(S) + b'(S \cap U) + b'(T \cap U) + c'(\delta^{out}(U))$$

$$= -b'(S) + b'(U) + c'(\delta^{out}(U))$$

Thus, the min cut-capacity = -b'(S) iff $c'(\delta^{out}(U)) \ge -b'(U)$.

$$c'\left(\delta^{in}(U)\right) = c'\left(\delta^{out}(V \setminus U)\right) \ge -b'(V \setminus U) = b'(U)$$

Characterization of feasibility

Thm. D has a b-TS under c

$$\Leftrightarrow c \left(\delta^{out}(U) \right) \ge -b(U) \ \forall U \subseteq V$$

$$\Leftrightarrow c \left(\delta^{in}(U) \right) \ge b(U) \ \forall U \subseteq V.$$

Pf.

$$c'\left(\delta^{in}(U)\right) = c\left(\delta^{in}(U)\right) - d\left(\delta^{in}(U)\right)$$
$$b'(U) = b(U) - d\left(\delta^{in}(U)\right)$$

Thus,

$$c'\left(\delta^{in}(U)\right) \ge b'(U) \iff c\left(\delta^{in}(U)\right) \ge b(U)$$

Hoffman's Circulation Theorem

Thm [Hoffman 1960] D has a circulation under c

$$\Leftrightarrow c(\delta^{out}(U)) \ge 0 \ \forall U \subseteq V$$

$$\Leftrightarrow c(\delta^{out}(U)) \ge 0 \ \forall U \subseteq V$$

$$\Leftrightarrow c(\delta^{in}(U)) \ge 0 \ \forall U \subseteq V$$

Feasibility test of flow

Reduction to circulation: D' Identifing s and t in D to get D' an s-t flow in $D \Leftrightarrow$ a circulation in D'

find a circulation in D', if there is any, and then break up s and t.

Thm. There exists an s-t flow in $D \Leftrightarrow$ for any $U \subseteq V$ not separating s and t, $c(\delta^{out}(U)) \ge 0$.

Pf.
$$\Rightarrow c(\delta^{out}(U)) \ge f(\delta^{out}(U)) = 0$$

 \Leftarrow By Hoffman's Circulation Theorem, there exists a circulation in D'

Feasibility test of bounded TS

Given D=(V,A;c) and $p,q\in\mathbb{R}^V$ with $p\leq q$, decide whether there exists a b-TS under c with $p\leq b\leq q$, and if so find one.

Reduction to circulation: Construct an extended network D^+ from D:

- · add new node t.
- $\forall v \in V$, add edges (v, t), (t, v) with capacity q(v) and -p(v) resp.

a b-TS in D with $p \le b \le q \leftrightarrow$ a circulation in D^+

•

Linking of bounded TS

Thm. D has a b-TS under c with $p \leq b \leq q$ $\Leftrightarrow c\left(\delta^{in}(U)\right) \ge \max\{p(U), -q(V \setminus U)\} \ \forall U \subseteq V$ $\Leftrightarrow D$ has a b-TS under c with $b \ge p$ and a b'-TS under c with $b' \le q$

Pf. For any $U \subseteq V$,

- cut-capacity of U in D^+ : $c\left(\delta^{in}(U)\right)-p(U)$ cut-capacity of $U\cup\{t\}$ in D^+ : $c\left(\delta^{in}(U)\right)+q(V\setminus U)$

Follows from Hoffman's Circulation Theorem

Thm. If p,q and c are integral and D has a b-TS x under c with exists with $p \le b \le q$, then x can be taken integer

Summary

- · Elementary decomposition and augmentation
- · Residual graph
- Integrality theorem and rounding
- Min-cut via max-flow
- · Feasibility via max-flow