Student Information

Full Name: Mert Kaan YILMAZ

Id Number: 2381093

Answer 1

- (a) (i) \mathcal{T}_1 is a topology. Since the entire space and the empty set are both open $(A, \emptyset \in \mathcal{T}_1)$, and there are no other elements other than those, we can say that \mathcal{T}_1 is a topology.
 - (ii) \mathcal{T}_2 is not a topology, because "the union of any number of open sets is open" property does not hold for \mathcal{T}_2 . For example, $\{a\} \cup \{b\} = \{a,b\} \notin \mathcal{T}_2$. Therefore, we can say \mathcal{T}_2 is not a topology.
 - (iii) \mathcal{T}_3 is a topology. \emptyset and A are in the \mathcal{T}_3 . The union of the elements of any subset of \mathcal{T}_3 is in \mathcal{T}_3 . Also the intersection of the elements of any subset of \mathcal{T}_3 is in \mathcal{T}_3 . Therefore, we can say that \mathcal{T}_3 is a topology.
 - (iv) \mathcal{T}_4 is not a topology. \emptyset and A are in the \mathcal{T}_3 , but we cannot say the union of any collection of sets in \mathcal{T}_4 is also in \mathcal{T}_4 . For example, $\{a,c\} \cup \{b\} \notin \mathcal{T}_4$, so \mathcal{T}_4 is not a topology.
- (b) (i)
 - (ii)
 - (iii)

Answer 2

- (a) Yes, f is injective. Let's pick random different points from, Ax(0,1] such that (a1,b1) and (a2,b2). Assume f(a1,b1) = f(a2,b2), so this means a1+b1 = a2+b2. This can be written as a1-a2 = b1-b2. Since the least possible difference for a1-a2 is 1, this equation does not hold, because |b2-b1| < 0 for all values of b1 and b2 in (0,1).
- (b) No, f is not surjective. Note $a+b\in[0,\infty)$, and $f(a,b)\neq 0 \ \forall (a,b)\in Ax(0,1)$. If it was, then $f(a,b)=0 \to a+b=0 \to a=-b$. So a and b both should be zero, or b should be equal to -a, but $(0,0)\notin Ax(0,1)$ and there are no a such that $-a\in(0,1)$. Therefore f is not surjective.
- (c) By Cantor-Schroder-Bernstein theorem, if A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|. Namely if we can show there are 1-to-1 functions f from A to B and B to A, cardinalities of A and B are same, because there is one-to-one correspondence. Since we have defined f function that is injective and given g function which is also injective, we have bijection between Ax(0,1) and $[0,\infty)$. Therefore, we can say that Ax(0,1) and $[0,\infty)$ have the same cardinality.

Answer 3

- (a) Since the domain of function is finite, and co-domain is countable; we can list all the function elements like, $\{(0,1),(1,1),(0,2),(1,2),(0,3),(1,3),...\}$, we can say that this set of function is countable.
- (b) In this function set, our domain is finite and co-domain is countable, so we can list all the function set as $\{(0,1),(1,1),(2,1),...,(n,1),(0,2),(1,2),...,(n,2),(0,3)...\}$, this function set is countable.
- (c) We count the elements of \mathbb{Z}^+ like $\mathbb{Z}^+ = \{1, -1, 2, -2, 3, -3, ...\}$ Since, we can define a bijective function such that $f: \mathbb{Z}^+ \to \mathbb{Z}^+ : f(x) = x \ \forall x \in \mathbb{Z}^+$ we can say that the set C of all functions $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is countable.
- (d) Let's assume there are countable infinite functions from $N\rightarrow\{0,1\}$. Functions that are defined can be written as $f_1:00010101..., f_2:110101010..., f_3:01010111101..., ...$ If we pick n^{th} element of n^{th} function for different n values, and construct a function, which is not in this countable infinite list, we prove by contradiction, the set D is uncountably infinite.

(e)

Answer 4

(a) We start by showing that $\log(n!)$ is $O(n^n)$. Then we should show that $|\log(n!)| \leq C|\log(n^n)|$ and in the end, $n! \leq Cn^n$ for some C and all $n \geq k$; $k, C \in \mathbb{Z}^+$. If we choose k=C=1, we will have

```
\log(n!) = \log(n \cdot (n-1) \dots 2 \cdot 1)
= \log(1) + \log(2) + \dots + \log(n) \le \log(n) + \log(n) + \dots + \log(n) = n \cdot \log(n) = \log(n^n)
Therefore, n! < n^n and n! is O(n^n).
```

Now we will show that $\log(n!)$ is $\Omega(n^n)$. If we can show $C|\log(n^n)| \leq |\log(n!)|$ for some C and all $n \leq k$, $k \in \mathbb{Z}^+$. We choose k = 1.

```
\log(n!) = \log(1) + \log(2) + \dots + \log(n/2) + \dots + \log(n) \ge \log(n/2) + \dots + \log(n) = n/2 \cdot \log(n)
```

Then $\log(n!) \ge \log(n^{n/2})$. When take exponent 10 of both sides, we can write this as, $n! \ge (n/2)^{n/2}$ so, n! is $\Omega(n^n)$

Since n! is $O(n^n)$ and n! is $\Omega(n^{n/2})$ We can say that n! is $\Theta(n^n)$.

(b) If we can show that $(n+a)^b$ is $O(n^b)$ and $(n+a)^b$ is $O(n^b)$, then we can say $(n+a)^b$ is $O(n^b)$.

for
$$n \ge |a|$$
 $(n+a)^b \le (2n)^b = 2^b n^b = Cn^b$
Therefore, for $C = 2^b$, we can say $(n+a)^b$ is $O(n^b)$

for
$$n \ge |a|$$
 $(n+a)^b \ge (n/2)^b = 2^{-b}n^b = Cn^b$
Therefore, for $C = 2^{-b}$, we can say $(n+a)^b$ is $\Omega(n^b)$

From these results, we concluded $(n+a)^b$ is $\Theta(n^b)$.

Answer 5

(a) Let $x = y \cdot q + r$, and $r = x \pmod{y}$. We know that $a^b - 1 = (a - 1) \cdot (a^{b-1} + a^{b-2} + \dots + 1)$, $\forall k \ k \ge 1$. Namely, $(a - 1) | (a^b - 1)$.

```
If we choose 2^y as "a" value, we get (2^y-1)|(2^{y\cdot q}-1). Therefore, (2^x-1)\bmod(2^y-1)=2^r-1=2^{x\bmod(y)}-1
```

(b) For the Bézout's theorem, if a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb

Let
$$gcd(2^m-1,2^n-1)=k$$
 (1), then, $2^m-1\equiv 0\pmod k$ and $2^n-1\equiv 0\pmod k$ $2^m\equiv 1\pmod k$ and $2^n\equiv 1\pmod k$ and thus, $2^{ms+nt}\equiv 1\pmod k$ $\forall s,t\in Z$ As we mentioned above, $ms+nt=\gcd(m,n)$

As we mentioned above, ms+nt = gcd(m,n) $2^{ms+nt} \equiv 1 \pmod{k} = 2^{gcd(m,n)} - 1 \equiv 0 \pmod{k}$ Therefore, $gcd(2^m - 1, 2^n - 1) = 2^{gcd(m,n)} - 1$