Lecture 18: Multi-Armed Bandits & Confidence Bounds

1) Explore-then-Commit

Alg 3 Explore-then-commit:

For
$$t=1$$
, -, N·K 3 pull each arm $\alpha_t = t \mod k$ 7 pull each arm N times

 $\widehat{\gamma}_a = \frac{1}{N} \sum_{i=1}^{N} Y_{ki} 3$ compute average reward

For $t=N\cdot K+1$, -, T
 $\alpha_t = \arg\max_a \widehat{\gamma}_a = \widehat{\alpha}^*$

This algorithm balances exploration & exploitation. How to set N? Let's do some analysis.

The regret de composes:

$$R(T) = \sum_{t=1}^{T} y^{t} - y_{at} = \sum_{t=1}^{NK} y^{t} - y_{at} + \sum_{t=NKH}^{T} y^{t} - y_{at}$$

$$R_{1} \qquad R_{2}$$

To bound Rz, consider the difference between Ma and Ma. We suppose rewards are bounded $v_{\epsilon} \in [0,1]$.

Lemma (Explore): After exploration phase, for all arms a=1, .., K, 1ya-yal & Jog(x/8) with probability 1-8.

<u>Proof</u>: Hoeffding & union Bound P(ANB) < P(A) + P(B).

Lemma (thoeffdings): Suppose
$$r_i \in [0, 1]$$
 and $\mathbb{E}[r_i] = M$.
Then for $r_i, -j, r_N$ fid, with probability $1-8$,
$$\left|\frac{1}{N}\sum_{i=1}^{N}r_i - M\right| \lesssim \left|\frac{\log(1/8)}{N}\right| \text{ (proof is out of supp.)}$$

This gives us 1-8 confiden du intervals:

use confidence intervals to bound R_2 .

$$R_2 = \sum_{t=Nk+1}^{t} y^t - y^* = (T-Nk)(y^* - y^*)$$

=
$$(T-NK)(\hat{M}_{a*}-\hat{M}_{a*}+2\sqrt{\frac{\log(k/8)}{N}})$$

 ≤ 0 by definition of \hat{a}^*

Combining everything, we have

$$R(T) = R_1 + R_2 \le NK + 2T \int \frac{\log k/s}{N} \qquad \text{w.p. } 1-\delta$$

$$explore \qquad \qquad explore \qquad \qquad \text{(if wrong)}$$

Minimizing this upper bound with respect to N, $N = \left(\frac{1}{2k} \int_{10g(k+1)}^{10g(k+1)}\right)^{2/3}$ and mp 1-5,

 $R(T) \lesssim T^{2/3} K^{1/3} \log^{1/3}(\frac{K}{8})$ for explore—then—commit

suldivear!

2) Upper Confidence Bound Algorithm I dea: always pull the arm that has the highest upper confidence bound.

Follows principle of optimism in the face of uncertainty

Alg 4: UCB

Initialize
$$\hat{\mathcal{H}}_{o}^{a}$$
, N_{o}^{a} for $\alpha=1,-,\kappa$

For $t=1,2,-,T$:

 $\alpha_{t}=\arg\max_{a}\hat{\mathcal{U}}_{t}^{a}$

Update $\hat{\mathcal{H}}_{t+1}^{a}$ and N_{t+1}^{at}

The confidence intervals depend on # times an arm is pulled

$$N_t^a = \sum_{k=1}^t \mathbb{1} \{ a_k = a \}$$

Also depend on the empirical mean $\hat{\gamma}_t^{\alpha} = \sum_{t=1}^{\infty} r_t 1 \{ a_t = a \} / N_t^{\alpha}$

The 1-8 upper confidence bounds are

$$\widehat{U}_{t}^{\alpha} = \widehat{\mathcal{N}}_{t}^{q} + \sqrt{\frac{\log(\kappa t/s)}{N_{q}^{t}}}$$

Q: why log (KT/s)? Hint: recall union bound

This is like adding a synthetic reward bonus inversely proportional to the # times we visit a state.

3) UCB Analysis

The intuition for why UCB works is that we are in one of two cases each time we pull an arm:

case 1) at has a large confidence interval -> explore so high uncertainty

case 2) at how small confidence interval -> exploit

so good aum

Degret at time t:

$$M^{+}-Ma_{t} \leq \hat{U}_{t}^{*}-Ma_{t}$$
 (frue mean within confidence interval for all arms)
$$\leq \hat{U}_{t}^{a_{t}}-Ma_{t} \qquad (a_{t}=argmax \; \hat{U}_{t}^{a_{t}})$$

$$= \hat{M}_{t}^{a_{t}}+\sqrt{\frac{\log(TK/8)}{N_{t}^{a_{t}}}} -Ma_{t} \qquad (ulfinition)$$

$$\leq 2\sqrt{\frac{\log(TK/8)}{N_{t}^{a_{t}}}} \qquad (lower confidence interval)$$

Putting it all together,

$$R(T) = \sum_{t=1}^{\infty} M^{t} - Mat$$

$$\leq 2 \sqrt{\log(Tk/s)} \sum_{t=1}^{\infty} \sqrt{N_{t}^{t}}$$
Claim: $\sum_{t=1}^{\infty} \sqrt{N_{t}^{t}} \leq \sqrt{KT}$

Sublinear regret! $O(\sqrt{T})$ vs. $O(\sqrt{T^{2/3}})$ explore—then-tammit.

$$O(\sqrt{T})$$
 vs. C

$$\begin{array}{lll} \frac{Pnof \ of \ claim}{\sum_{t=1}^{T} \int /N_{t}^{a_{t}}} &= \sum_{t=1}^{T} \sum_{a=1}^{K} 1 \left\{ a_{t} = a \right\} \int /N_{t}^{a_{t}} & \text{ (Indicator } = 1 \ \text{for only one term of the sum)} \\ &= \sum_{a=1}^{K} \left(\sum_{t=1}^{K} 1 \left\{ a_{t} = a \right\} \int /N_{t}^{a_{t}} \right) & \text{ (Smitching Summation order)} \\ &= \sum_{a=1}^{K} \left(\sum_{t=1}^{N_{T}} \int /N_{t} \right) & \text{ (indicator } = 1 \ \text{whenever } N_{t}^{a_{t}} \text{ increments)} \\ &\leq \sum_{a=1}^{K} \int /N_{t}^{a_{t}} & \left(\sum_{i=1}^{N} |N_{i}| \leq \int N_{t} \right) & \text{ (summation rule)} \\ &\leq \sum_{a=1}^{K} \int N_{t}^{a_{t}} & \left(\sum_{i=1}^{N} |N_{i}| \leq \int N_{t} \right) & \text{ (summation rule)} \end{array}$$

Aside:
$$\underset{\alpha=1}{\overset{k}{\succeq}} N_T^{\alpha} = T$$
 because we pull one aim per nound.
 $\underset{\alpha=1}{\overset{k}{\succeq}} N_T^{\alpha} \leq \int \underset{\alpha=1}{\overset{k}{\succeq}} N_T^{\alpha} = \int \underset{\alpha=1}{\overset{k}{\smile}} N_T^{\alpha}$

Jensen's

Therefore,
$$\sum_{t=1}^{L} \sqrt{N_t^{a_t}} \le \sum_{a=1}^{K} \sqrt{N_T^{a_t}} \le \sqrt{KT}$$