Theoretische Informatik HS24

Nicolas Wehrli

Übungsstunde 09

19. November 2024

ETH Zürich nwehrl@ethz.ch

Heute

- 1 Feedback zur Serie
- 2 Reduktion continued
- 3 Satz von Rice Beweis
- **4** EE Reduktion angewendet für \mathcal{L}_{RE}
- **6** Worked example
- **6** Reduktionsaufgaben

Feedback zur Serie

Feedback zur Serie

- Recht gut.
- EE-Reduktion braucht nur das Eingabe zu Eingabe Mapping.
- Ihr müsst erwähnen, dass eure TM terminiert!

Reduktion continued

Aufgabe 5.22

Wir zeigen

$$L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \iff L \in \mathcal{L}_{R}$$

 (\Longrightarrow) :

Nehmen wir $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE}$ an.

Dann existiert eine TM M und M_C mit L(M) = L und $L(M_C) = L^{\complement}$.

Wir konstruieren eine TM A, die für eine Eingabe w die beiden TM's M und M_C parallel auf w simuliert.

A akzeptiert w, falls M das Wort akzeptiert und verwirft, falls M_C das Wort akzeptiert.

Aufgabe 5.22

Bemerke, dass $L(M) \cap L(M_C) = \emptyset$ und $L(M) \cup L(M_C) = \Sigma^*$.

Da $w \in L(M)$ oder $w \in L(M_C)$, hält A immer.

Da A genau dann akzeptiert, falls $w \in L(M)$, folgt L(A) = L(M) = L.

Demnach gilt $L \in \mathcal{L}_R$.

 (\longleftarrow) :

Nehmen wir $L \in \mathcal{L}_R$ an. Per Lemma 5.4 gilt $L^{\complement} \leq_R L$ und daraus folgt auch $L^{\complement} \in \mathcal{L}_R$.

Da $\mathcal{L}_R \subset \mathcal{L}_{RE}$, folgt $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE}$.

٠.

Satz von Rice - Beweis

Satz von Rice

Satz 5.9

Jedes semantisch nichttriviale Entscheidungsproblem über Turingmaschinen ist unentscheidbar.

Prerequisites

Zur Erinnerung:

Semantisch nichttriviales Entscheidungsproblem über TMs

Das Entscheidungsproblem (Σ, L) , bzw. die Sprache L muss folgendes erfüllen.

- I. $L \subseteq \mathbf{KodTM}$
- II. $\exists M_1 \text{ so dass } \text{Kod}(M_1) \in L(\text{i.e. } L \neq \emptyset)$
- III. $\exists M_2$ so dass $Kod(M_2) \notin L(i.e. L \neq KodTM)$
- IV. Für zwei TM A und B mit L(A) = L(B) gilt

$$Kod(A) \in L \iff Kod(B) \in L$$

KodTM $\subseteq (\Sigma_{\text{bool}})^*$ ist die Menge aller Kodierungen von Turingmaschinen.

Prerequisites

Wir brauchen

Lemma 5.8

$$L_{H,\lambda} \notin \mathcal{L}_{R}$$

Zur Erinnerung:

$$L_{H,\lambda} = \{ \operatorname{Kod}(M) \mid M \text{ h\"alt auf } \lambda \}$$

Idee

Wir zeigen für jedes semantisch nichtriviale Entscheidungsproblem (Σ, L)

$$L \in \mathcal{L}_{R} \implies L_{H,\lambda} \in \mathcal{L}_{R}$$

Aus dem folgt dann per Kontraposition

$$L_{H,\lambda} \notin \mathcal{L}_{R} \implies L \notin \mathcal{L}_{R}$$

Mit der Aussage $L_{H,\lambda} \notin \mathcal{L}_R$ von **Lemma 5.8**, können wir dann

$$L \notin \mathcal{L}_R$$

wie gewünscht folgern.

Wir müssen noch die Implikation

$$L \in \mathcal{L}_{R} \implies L_{H,\lambda} \in \mathcal{L}_{R}$$

beweisen.

Kernidee

Wir zeigen die Existenz einer Reduktion, aus der die Implikation folgt.

Idee

Konkret machen wir eine Case Distinction und zeigen jeweils

- Die **Existenz** einer EE-Reduktion von $L_{H,\lambda}$ auf L Daraus folgt $L_{H,\lambda} \leq_{\text{EE}} L$.
- oder die **Existenz** einer EE-Reduktion $L_{H,\lambda}$ auf L^{\complement} Daraus folgt $L_{H,\lambda} \leq_{\mathrm{EE}} L^{\complement}$.

Zur Erinnerung:

Lemma 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen.

$$L_1 \leq_{\mathsf{EE}} L_2 \implies L_1 \leq_{\mathsf{R}} L_2$$

Weshalb reicht es $L_{H,\lambda} \leq_{\text{EE}} L^{\complement}$ zu zeigen?

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\mathbf{C}}$$
 und $L^{\mathbf{C}} \leq_{\mathbf{R}} L$

In beiden Cases folgt mit **Lemma 5.3** und **Lemma 5.4**, die gewünschte Aussage $L_{H,\lambda} \leq_{\mathbb{R}} L$.

Explizit gilt nun

1.

$$L_{H,\lambda} \leq_{\mathrm{EE}} L^{\complement} \xrightarrow{\mathbf{Lemma 5.3}} L_{H,\lambda} \leq_{\mathrm{R}} L^{\complement} \xrightarrow{\mathbf{Lemma 5.4}} L_{H,\lambda} \leq_{\mathrm{R}} L$$

2.

$$L_{H,\lambda} \leq_{\text{EE}} L \xrightarrow{\text{Lemma 5.3}} L_{H,\lambda} \leq_{\text{R}} L$$

Aus $L_{H,\lambda} \leq_{\mathbb{R}} L$ folgt (in beiden Cases) die gewünschte Implikation

$$L \in \mathcal{L}_R \implies L_{H,\lambda} \in \mathcal{L}_R$$

Beweis

Sei M_{\emptyset} eine TM s.d. $L(M_{\emptyset}) = \emptyset$.

Case Distinction

- I. $\mathbf{Kod}(\mathbf{M}_{\emptyset}) \in \mathbf{L}$ Wir zeigen $L_{H,\lambda} \leq_{\mathrm{EE}} L^{\complement}$.
- II. $\mathbf{Kod}(\mathbf{M}_{\emptyset}) \notin \mathbf{L}$ Wir zeigen $L_{H,\lambda} \leq_{\mathrm{EE}} L$.

Case I. $Kod(M_{\emptyset}) \in L$

Es **existiert** eine TM \overline{M} , so dass Kod(\overline{M}) \notin L. (Nichttrivialität)

Wir beschreiben eine TM S, so dass für eine Eingabe $x \in (\Sigma_{bool})^*$

$$x \in L_{H,\lambda} \iff S(x) \in L^{\complement}$$

Daraus folgt dann die gewünschte EE-Reduktion.

Wir verwenden dabei M_{\emptyset} und \overline{M} , da $\operatorname{Kod}(M_{\emptyset}) \notin L^{\complement}$ und $\operatorname{Kod}(\overline{M}) \in L^{\complement}$.

Case I. $Kod(M_{\emptyset}) \in L$ - Beschreibung von S

Eingabe $x \in (\Sigma_{\text{bool}})^*$

- 1. *S* überprüft ob x = Kod(M) für eine TM M. Falls dies **nicht** der Fall ist, gilt $S(x) = \text{Kod}(M_{\emptyset})$
- 2. Sonst x = Kod(M). Dann S(x) = Kod(A), wobei A wie folgt kodiert ist.
 - i. Gleiches Eingabealphabet wie \overline{M} , i.e. $\Sigma_A = \Sigma_{\overline{M}}$.
 - ii. Für eine beliebige Eingabe $y \in (\Sigma_{\overline{M}})^*$, simuliert A zuerst M auf λ ohne die Eingabe y zu überschreiben.
 - iii. Danach simuliert A die TM \overline{M} auf die gegebene Eingabe y.
 - iv. Akzeptiert y genau dann, wenn \overline{M} y akzeptiert.

Korrektheit

Wir zeigen

$$x \in L_{H,\lambda} \iff S(x) \in L^{\complement}$$

 (\Longrightarrow) :

Wir nehmen $x \in L_{H,\lambda}$ an und zeigen $S(x) \in L^{\complement}$.

Da M auf λ hält, wird A immer \overline{M} auf der Eingabe y simulieren und wir haben $L(A) = L(\overline{M})$.

Da L (und somit auch L^{\complement}) ein **semantisches** Entscheidungsproblem ist, gilt

$$Kod(\overline{M}) \in L^{\complement} \implies Kod(A) \in L^{\complement}$$

Da die LHS der Implikation gegeben ist, folgt $S(x) = \text{Kod}(A) \in L^{\complement}$

Korrektheit

$$(\Longleftrightarrow) :$$

Wir nehmen $x \notin L_{H,\lambda}$ an und zeigen $S(x) \notin L^{\complement}$.

Aus Kontraposition folgt dann die gewünschte Rückimplikation.

Da M nicht auf λ hält, wird A bei jeder Eingabe nicht halten.

Somit folgt $L(A)=L(M_\emptyset)$ und da $\operatorname{Kod}(M_\emptyset)\notin L^\complement$ per semantische Eigenschaft von L

$$S(x) = \operatorname{Kod}(A) \notin L^{\complement}$$

Case II.

Zweite Case funktioniert genau gleich.

Wir haben $Kod(M_{\emptyset}) \notin L$.

Per Nichttrivialität existiert eine TM \overline{M} mit $\operatorname{Kod}(\overline{M}) \in L$.

•••

19

EE Reduktion angewendet für \mathcal{L}_{RE}

EE-Reduktion impliziert RE-Reduktion (nicht in der Vorlesung)

$$L_1 \leq_{EE} L_2 \implies (L_2 \in \mathcal{L}_{RE} \implies L_1 \in \mathcal{L}_{RE})$$

Beweis

Sei $L_1 \leq_{\text{EE}} L_2$ und $L_2 \in \mathcal{L}_{\text{RE}}$.

Wir zeigen nun $L_1 \in \mathcal{L}_{RE}$.

Per Definition von $L_1 \leq_{\text{EE}} L_2$ existiert ein Algorithmus F, der die Funktion $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, so dass

$$\forall x \in \Sigma_1^* . x \in L_1 \iff f(x) \in L_2$$

Da $L_2 \in \mathcal{L}_{RE}$ existiert eine TM M_2 (die nicht unbedingt immer terminiert) mit $L(M_2) = L_2$.

Wir beschreiben mit F und M_2 nun eine TM M_1 mit $L(M_1) = L_1$.

Eingabe: $x \in \Sigma_1^*$

- 1. F berechnet auf x und übergibt seine Ausgabe f(x) zur TM M_2
- 2. M_2 berechnet auf f(x) und die Ausgabe wird übernommen.

Abbildung 1: TM M_1 , Zsf. Fabian Frei

Korrektheit
$$(L_1 = L(M_1))$$

Case Distinction

I.
$$\mathbf{x} \in \mathbf{L_1}$$
 $\implies f(x) \in L_2$ (Algorithmus F terminiert immer)
 $L(M_2) = L_2 \implies f(x) \in L(M_2)$
da die Ausgabe von M_2 übernommen wird
 $\implies x \in L(M_1)$
II. $\mathbf{x} \notin \mathbf{L_1}$
 $\implies f(x) \notin L_2$
 $\implies f(x) \notin L(M_2)$
 $\implies x \notin L(M_1)$

Worked example

Worked example

Aufgabe

Sei $L_{\text{all}} = \{ \text{Kod}(M) \mid M \text{ akzeptiert jede Eingabe} \}.$

Zeigen Sie $L_{\rm H}^{\complement} \leq_{\rm EE} L_{\rm all}$.

Kernidee

Für eine Eingabe x = Kod(M) # w, generieren wir Kod(A) einer TM A, die folgendes folgendes macht:

Worked example

A:

Eingabe y

- 1. Berechnet |y| Schritte von M auf w.
- 2. Falls danach die Berechnung nach |y| noch nicht terminiert hat, akzeptiert A die Eingabe y.
- 3. Sonst verwirft *A* die Eingabe.

$$A$$
 akzeptiert jede Eingabe $\iff M$ läuft unendlich auf w Kod $(A) \in L_{\mathrm{all}} \iff \mathrm{Kod} \# w \in L_H^\complement$

$$L_1 \leq_{\mathbf{R}} L_2 \implies (L_2 \in \mathcal{L}_{\mathbf{RE}} \implies L_1 \in \mathcal{L}_{\mathbf{RE}})$$

Wir beweisen diese Aussage per Gegenbeispiel.

Sei
$$L_1 = L_{\text{diag}}$$
 und $L_2 = L_{\text{diag}}^{\complement}$.

Wir haben

$$ightharpoonup L_1 = L_{\mathrm{diag}} \notin \mathcal{L}_{\mathrm{RE}}$$

(Satz 5.5)

$$\blacktriangleright L_2 = L_{\text{diag}}^{\complement} \in \mathcal{L}_{\text{RE}} \setminus \mathcal{L}_{\text{R}}$$

(Korollar 5.2, Lemma 5.5)

Per **Lemma 5.4** gilt $L_{\text{diag}} \leq_{\mathbf{R}} L_{\text{diag}}^{\complement}$.

Die rechte Implikation gilt jedoch nicht.

$$L_1 \leq_{\mathbf{R}} L_2 \iff (L_2 \in \mathcal{L}_{\mathbf{RE}} \implies L_1 \in \mathcal{L}_{\mathbf{RE}})$$

Sei
$$L_1 = L_U$$
 und $L_2 = \{0^i \mid i \in \mathbb{N}\}.$

Wir haben

$$\blacktriangleright L_1 = L_U \in \mathcal{L}_{RE} \setminus \mathcal{L}_R$$
 (Satz 5.6 und 5.7)

$$lacksquare L_2 = \{0^i \mid i \in \mathbb{N}\} \in \mathcal{L}_{\mathbb{R}}$$
 (da $\mathcal{L}_{\mathrm{EA}} \subset \mathcal{L}_{\mathbb{R}}$)

Da $L_1 \in \mathcal{L}_{RE}$, gilt die Implikation auf der rechten Seite für dieses L_1 und L_2 .

Da per Definition

$$L_1 \leq_{\mathbf{R}} L_2 \iff (L_2 \in \mathcal{L}_{\mathbf{R}} \implies L_1 \in \mathcal{L}_{\mathbf{R}})$$

folgt aus $L_1 \notin \mathcal{L}_R$ und $L_2 \in \mathcal{L}_R$, dass diese Instanzierung von L_1 und L_2 ein Gegenbeispiel ist.

Relation zu EE-Reduktion

Wir haben aber gezeigt, dass

$$L_1 \leq_{\text{EE}} L_2 \implies L_1 \leq_{\text{R}} L_2$$

und

$$L_1 \leq_{\text{EE}} L_2 \implies (L_2 \in \mathcal{L}_{\text{RE}} \implies L_1 \in \mathcal{L}_{\text{RE}})$$

Die Rückrichtung gilt jeweils nicht.

Aufgabe 1

Zeige

$$L_{\text{diag}} \leq_{\text{EE}} L_{\text{H}}^{\complement}$$

Zur Erinnerung:

$$L_{\text{diag}} = \{w_i \in (\Sigma_{\text{bool}})^* \mid M_i \text{ akzeptiert } w_i \text{ nicht}\}$$

$$L_{\mathbf{H}}^{\complement} = \{ \operatorname{Kod}(M) \# w \in \{0, 1, \#\}^* \mid M \text{ h\"alt nicht auf } w \}$$
$$\cup \{ x \in \{0, 1, \#\}^* \mid x \text{ nicht von der Form Kod}(M) \# w \}$$

Lösung 1

Wir beschreiben einen Algorithmus A, so dass

$$x \in L_{\text{diag}} \iff A(x) \in L_{\text{H}}^{\complement}$$

Eingabe: $x \in (\Sigma_{\text{bool}})^*$

- 1. Findet *i* so dass $x = w_i$
- 2. Generiert $Kod(M_i)$
- 3. Generiert $Kod(\overline{M}_i)$ mit folgenden Modifikationen zu $Kod(M_i)$
 - Transitionen nach q_{reject} werden in eine Endlosschleife umgeleitet.
- 4. Gibt $Kod(\overline{M}_i) # w_i$ aus.

Lösung 1

Case Distinction

$$\text{I. } x \in L_{\text{diag}}$$

$$\implies M_i$$
 akzeptiert $x = w_i$ nicht $\implies \overline{M}_i$ hält nicht auf w_i $\implies A(x) = \operatorname{Kod}(\overline{M}_i) \# w_i \in L_{\operatorname{H}}^{\complement}$

II.
$$\mathbf{x} \notin \mathbf{L}_{diag}$$

$$\implies M_i$$
 akzeptiert $x = w_i$

$$\implies \overline{M}_i \text{ hält auf } w_i$$

$$\implies A(x) = \text{Kod}(\overline{M}_i) \# w_i \notin L_H^{\complement}$$

31

Aufgabe 2

Zeige

$$L_{\mathrm{U}}^{\complement} \leq_{\mathrm{EE}} L_{\mathrm{diag}}$$