

SCC361: Artificial Intelligence

Week 3: Clustering and Classification

Dr Bryan M. Williams

School of Computing and Communications, Lancaster University

Office: InfoLab21 C46 Email: b.williams6@lancaster.ac.uk

Attendance Check-in

Be sure to check in to all timetabled sessions using Attendance Check-in

To check in:

- Check the Attendance Hub in iLancaster
- Click Check In
- Wait for the "You are checked in" confirmation page
- Here is a the demo

Please DO NOT leave a timetabled session without your attendance being registered

Last Week: Feature Extraction

Sobel Filter

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

$$\mathbf{G}=\sqrt{{\mathbf{G}_x}^2+{\mathbf{G}_y}^2}$$

- Term Frequency Inverse Document Frequency
 - For a corpus of documents *D*:
 - Term Frequency (TF)
 - Frequency counts (log transformed)
 - $TF_{t,d} = \begin{cases} 1 + \log_{10} c(t,d) & \text{if } c(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$
 - Inverse Document Frequency (IDF)
 - |D| = # all documents
 - $|\{d \in D: t \in d\}|$ = # documents with t
 - $IDF_t = \log\left(\frac{|D|}{|\{d \in D: t \in d\}|}\right)$
 - · Words like 'the' or 'of' have low IDF
 - **TF-IDF**: $TF \times IDF$

01000 Child	1-01-N
King Man e	encoding

word	features				
king	1	0	0	0	0
queen	0	1	0	0	0
man	0	0	1	0	0
woman	0	0	0	1	0
child	0	0	0	0	1

Next Four Weeks: Fundamental ML

KNN

K-Means

Decision
<u>Trees</u>

Naïve Bayes

Generic Algorithms

Lancaster Marinersity

Expected Learning Outcomes

By the end of this week:

- Distinguish between classification and clustering as supervised and unsupervised learning methods
- Demonstrate how clustering algorithms work
- Demonstrate how classification algorithms work
- Understand their typical application scenarios

Machine Learning

Machine Learning Paradigm

Machine Learning Paradigm

Training Data

The observed set of example data

Test Data

Previously unseen data generated by the same process as the training data

Training process

Inferring or learning something about the process that generated the training data **Prediction**

Using the inference to make predictions about the test data

Evaluation

Comparing the prediction outputs with the correct test data outputs

Machine Learning Paradigm

Training Data

The observed set of example data

Validation Data

Data tested during the training process

Test Data

Previously unseen data generated by the same process as the training data

Training process

Inferring or learning something about the process that generated the training data **Prediction**

Using the inference to make predictions about the test data

Evaluation

Comparing the prediction outputs with the correct test data outputs

Supervised vs Unsupervised

Supervised learning

- Given a set of feature-label pairs, find a rule that predicts the label associated with a previously unseen input
 - Classification
 - Regression

Unsupervised learning

- Given a set of feature vectors (without labels) group them into some "natural clusters"
 - Clustering
 - Association

Classification

Classification

A supervised learning concept used in building machine learning models that categorise data items into classes

Classifier is trained to specify which of k categories some input belongs to

A classifier is a function:

$$f: \mathbb{R}^n \to \{1, \dots, c\}$$

Classification

Aim: find f such that $f(x) = y \in \{1, ..., c\}$ where

Feature vectors

x =feature vector and

y = class label

Classes, labels, categories

Iris Dataset Example

Aim: find f such that $f(x) = y \in \{1, ..., c\}$ where

x = feature vector: values of measurements

y = class label: names of species

$$f: \mathbb{R}^n \to \{1, \dots, c\}$$

$$c = 3$$

$$n = 150 \times 4$$

	Sepal Length	Sepal Width	Petal Length	Petal Width
--	--------------	-------------	--------------	-------------

setosa versicolor virginica

Feature vectors

Classes, labels, categories

Iris Dataset Example

Measure1	Measure2	Measure3	Measure4	Class1	Class2
5.1	3.5	1.4	0.2	1	setosa
4.9	3	1.4	0.2	1	setosa
4.7	3.2	1.3	0.2	1	setosa
4.6	3.1	1.5	0.2	1	setosa
5	3.6	1.4	0.2	1	setosa
5.4	3.9	1.7	0.4	1	setosa
4.6	3.4	1.4	0.3	1	setosa
5	3.4	1.5	0.2	1	setosa
4.4	2.9	1.4	0.2	1	setosa
4.9	3.1	1.5	0.1	1	setosa
5.4	3.7	1.5	0.2	1	setosa
4.8	3.4	1.6	0.2	1	setosa
4.8	3	1.4	0.1	1	setosa
4.3	3	1.1	0.1	1	setosa
5.8	4	1.2	0.2	1	setosa
5.7	4.4	1.5	0.4	1	setosa
5.4	3.9	1.3	0.4	1	setosa
5.1	3.5	1.4	0.3	1	setosa
5.7	3.8	1.7	0.3	1	setosa
5.1	3.8	1.5	0.3	1	setosa
5.4	3.4	1.7	0.2	1	setosa
5.1	3.7	1.5	0.4	1	setosa
4.6	3.6	1	0.2	1	setosa
5.1	3.3	1.7	0.5	1	setosa
4.8	3.4	1.9	0.2	1	setosa
7	3.2	4.7	1.4	2	versicolor
6.4	3.2	4.5	1.5	2	versicolor
6.9	3.1	4.9	1.5	2	versicolor
5.5	2.3	4	1.3	2	versicolor

Iris Dataset Example

Iris Dataset Example

2.5: Classification

Add the following samples to the graphs created in Section 2.2 and use this to estimate the class that they belong to.

	Measure 1	Measure 2	Measure 3	Measure 4
Sample 1	6.3	2.6	4.1	1.2
Sample 2	4.7	3.5	1.5	0.3
Sample 3	7.1	2.9	5.5	2.1

k-Nearest Neighbour

K-Nearest Neighbour

Car

???

Bicycle

Lancaster Market University

K-Nearest Neighbour

Given training data and a test point

Look at the k most similar examples

Assign the majority class label k = number of nearest neighbours to search for

Special case: k = 1

1 nearest neighbour

Iris Dataset Example

2.5: Classification

Add the following samples to the graphs created in Section 2.2 and use this to estimate the class that they belong to.

	Measure 1	Measure 2	Measure 3	Measure 4
Sample 1	6.3	2.6	4.1	1.2
Sample 2	4.7	3.5	1.5	0.3
Sample 3	7.1	2.9	5.5	2.1

1-Nearest Neighbour

1-NN is sensitive to mis-labelled data

Every example in the blue shaded area will be misclassified as the blue class

Solution? Increase *k*

3-Nearest Neighbour

3-NN reduces the classification error

Every example in the blue shades will now be classified correctly as the red class

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
2.3	4.3	1.2	2.4	setosa
3.4	6.4	4.5	2.3	Versicolor
6.4	4.2	2.1	1.2	virginica
2.5	3.5	2.7	2.1	???

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

$$||a-b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

Summation

Let $\mathbf{u} \in \mathbb{R}^n$ and assume $1 \le a, b \le n$

The summation of \mathbf{u} from a to b

i.e. a and b and greater than or equal to 1 and less than or equal to n

$$\sum_{x=a}^{b} \mathbf{u}[x] = \mathbf{u}[a] + \mathbf{u}[a+1] + \dots + \mathbf{u}[b]$$

Can think of this as a *for* loop:

```
count = 0;
for x = a:b
    count = count + u(x);
end
```

or we could form a vector and use a summation

```
count = sum(u(a:b))
```

Summation

Let
$$\mathbf{u} \in \mathbb{R}^n$$
 and $A = \{1, 2, ..., n\}$

A is a set of values

The summation of **u** over the set A

$$\sum_{x \in A} \mathbf{u}[x] = \mathbf{u}[\mathbf{1}] + \mathbf{u}[\mathbf{2}] + \dots + \mathbf{u}[\mathbf{n}]$$

Can think of this as a *for* loop:

```
count = 0;
for x = 1:length(A)
    count = count + u(A(x));
end
```

or we could form a vector and use a summation

$$count = sum(u(A))$$

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

Species

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

to 4 th Row	Length (m_1)	Width (m_2)	Length (m_3)	Width (m_4)	
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

Petal

Petal

Sepal

Distance: Euclidean

$$||a-b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

Sepal

Distance

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.73	2.3	4.3	1.2	2.4	Setosa
3.54	3.4	6.4	4.5	2.3	Versicolor
4.11	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

$$ED = sqrt(sum((a-b).^2))$$

1-Nearest Neighbour

Iris Example

Using 1-Nearest Neighbour and all of the measures, can we determine the species of the 4th row?

Distance to 4 th Row	Sepal Length (m_1)	Sepal Width (m_2)	Petal Length (m_3)	Petal Width (m_4)	Species
1.53	2.3	4.3	1.2	2.4	Setosa
1.81	3.4	6.4	4.5	2.3	Versicolor
1.08	6.4	4.2	2.1	1.2	virginica
0	2.5	3.5	2.7	2.1	???

Distance: Euclidean

What if we only use measures m_3 and m_4

$$||a-b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

Distance Metrics

Common Distance Metrics

Name	Formula		
Euclidean Distance	$ a - b _2 = \sqrt{\sum_i (a_i - b_i)^2}$		
Square Euclidean Distance	$ a - b _2^2 = \sum_i (a_i - b_i)^2$		
Manhattan Distance	$ a - b _1 = \sum_{i} a_i - b_i $		
Maximum Distance	$ a - b _{\infty} = \max_{i} a_i - b_i $		
Mahalanobis Distance	$\sqrt{(a-b)^{T}S^{-1}(a-b)}$ where S is the Covariance matrix		
Cosine Distance	$\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}$		
Hamming Distance	$\sum_{i=0}^{n} \begin{cases} 1 & \text{if } a_i \neq b_i \\ 0 & \text{otherwise} \end{cases}$		

Common Distance Metrics

Name	Formula
Euclidean Distance	$ a - b _2 = \sqrt{\sum_i (a_i - b_i)^2}$
Square Euclidean Distance	$ a - b _2^2 = \sum_i (a_i - b_i)^2$
Manhattan Distance	$ a - b _1 = \sum_{i} a_i - b_i $
Maximum Distance	$ a - b _{\infty} = \max_{i} a_i - b_i $

Common Distance Metrics: Cosine Distance

Cosine Distance between a and b

$$\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}$$

Common Distance Metrics: Bray-Curtis Distance

Bray-Curtis Distance between a and b

$$1 - 2 \frac{\sum_{i} \min(a_i, b_i)}{|a| + |b|}$$

$$a = \{a_1, a_2, a_3, ..., a_{|a|}\}$$

 $b = \{b_1, b_2, b_3, ..., b_{|b|}\}$

 $\operatorname{sum}(\min(a_1,b_1),\min(a_2,b_2),\min(a_3,b_3),\dots,\min(a_{|a|},b_{|b|}))$

Common Distance Metrics: Hamming Distance

How many letters are different between two words

С	Α	Т	Total Difference
V	E	Т	
1	1	0	2

Hamming Distance =
$$\sum_{i=0}^{n} \begin{cases} 1 & \text{if } a_i \neq b_i \\ 0 & \text{otherwise} \end{cases}$$

NB: We must have |a| = |b|

	Α	R	T	ı	F	ı	С	I	Α	L			Total Difference
•	1	N	Т	Е	L	L	I	G	Е	N	С	Е	?

The number of changes needed to change word a into word b

С	Α	Т	Number of Changes
V	Α	Т	1
V	Е	T	2

The number of changes needed to change word a into word b

Α	R	T	I	F	I	С	I	Α	L			Number of Changes
I	N	Т	E	L	L	ı	G	E	N	С	E	<u> </u>

Levenshtein Distance:

$$\operatorname{lev}(a,b) = \begin{cases} |a| & \text{if } |b| = 0 \\ |b| & \text{if } |a| = 0 \end{cases}$$

$$\operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) & \text{if } \operatorname{head}(a) = \operatorname{head}(b)$$

$$\operatorname{lev}(\operatorname{tail}(a), b) & \text{otherwise}$$

$$\operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) & \text{otherwise}$$

The number of changes needed to change word a into word b

С	Α	T	Number of Changes			
V	А	Т	1			
V	Е	Т	2			

Levenshtein Distance:

$$\operatorname{lev}(a,b) = \begin{cases} |a| & \text{if } |b| = 0 \\ |b| & \text{if } |a| = 0 \end{cases}$$

$$\operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) & \text{if } \operatorname{head}(a) = \operatorname{head}(b)$$

$$\operatorname{lev}(\operatorname{tail}(a), b) & \text{otherwise}$$

$$\operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) & \text{otherwise}$$

Common Distance Metrics: Levenshtein Distance

$$\begin{cases} lev(v,vet) = 3 \\ lev(t,vet) = 1 + \min \\ \begin{cases} lev(v,vet) = 2 \\ lev(v,vet) = lev(v,vet) = 0 \\ lev(v,vet) = 2 \end{cases} \\ lev(at,vet) = 1 + \min \\ \begin{cases} lev(at,vet) = 1 + \min \\ lev(at,vet) = 1 \end{cases} \\ lev(at,vet) = 1 + \min \\ \begin{cases} lev(v,vet) = 1 \\ lev(v,vet) = 1 \end{cases} \\ lev(v,vet) = 1 + \min \\ \begin{cases} lev(v,vet) \\ lev(v,vet) = 1 \\ lev(v,vet) = 1 \end{cases} \\ lev(v,vet) = 1 + \min \\ \begin{cases} lev(v,vet) \\ lev(v,vet) = 1 \\ lev(v,vet) = 1 \end{cases} \\ lev(v,vet) = 1 + \min \\ \begin{cases} lev(v,vet) \\ lev(v,vet) = 1 \\ lev(v,vet) = 1 \end{cases} \\ lev(v,vet) = 1 + \min \\ lev(v,vet) = 1 + \min$$

Let m=|a| and n=|b|Create a $(m+1)\times(n+1)$ matrix d – here, column and row indices start at 0 Set

$$d(i,0) = i$$
 for $i = 0...m$
 $d(0,j) = j$ for $j = 0...n$

for i from 1 to m for j from 1 to n if a[i] = b[j] then sub = 0, otherwise sub = 1 $d[i,j] = \min \begin{cases} d[i-1,j] + 1 \\ d[i,j-1] + 1 \\ d[i-1,j-1] + sub \end{cases}$ answer d[i,j]

Example: lev(vet, cat)

		V	E	Т
	0	1	2	3
С	1	1	2	3
Α	2	2	2	3
T	3	3	3	2

Example: lev(artificial, intelligence)

		Α	R	т	I	F	I	С	I	A	L
	0	1	2	3	4	5	6	7	8	9	10
1	1	1	2	3	3	4	4	5	6	7	8
N	2	2	2	3	4	4	5	5	6	7	8
Т	3	3	3	2	3	4	5	6	6	7	8
E	4	4	4	3	3	4	5	6	7	7	8
L	5	5	5	4	4	4	5	6	7	8	7
L	6	6	6	5	5	5	5	6	7	8	8
1	7	7	7	6	5	6	5	6	6	7	8
G	8	8	8	7	6	6	6	6	7	7	8
E	9	9	9	8	7	7	7	7	7	8	8
N	10	10	10	9	8	8	8	8	8	8	9
С	11	11	11	10	9	9	9	9	9	9	9
E	12	12	12	11	10	10	10	10	10	10	10

SCC361: Artificial Intelligence

Week 3: Clustering and Classification

Dr Bryan M. Williams

School of Computing and Communications, Lancaster University

Office: InfoLab21 C46 Email: b.williams6@lancaster.ac.uk

Be sure to check in to all timetabled sessions using Attendance Check-in

To check in:

- Check the Attendance Hub in iLancaster
- Click Check In
- Wait for the "You are checked in" confirmation page
- Here is a the demo

Please DO NOT leave a timetabled session without your attendance being registered

KNN and Distance

d	m_1	m_2	m_3	m_4	l
1.73	2.3	4.3	1.2	2.4	1
3.54	3.4	6.4	4.5	2.3	2
4.11	6.4	4.2	2.1	1.2	3
0	2.5	3.5	2.7	2.1	???

1	noisy sample
	• • • • • • • • • • • • • • • • • • •

Name	Formula
Euclidean Distance	$ a - b _2 = \sqrt{\sum_i (a_i - b_i)^2}$
Square Euclidean Distance	$ a - b _2^2 = \sum_i (a_i - b_i)^2$
Manhattan Distance	$ a - b _1 = \sum_{i} a_i - b_i $
Maximum Distance	$ a - b _{\infty} = \max_{i} a_i - b_i $
Mahalanobis Distance	$\sqrt{(a-b)^{T}S^{-1}(a-b)}$ where S is the Covariance matrix
Cosine Distance	$\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}$
Hamming Distance	$\sum_{i=0}^{n} \begin{cases} 1 & \text{if } a_i \neq b_i \\ 0 & \text{otherwise} \end{cases}$

Application of KNN Classification

Image recognition

• Face detection, optical character recognition

Sentiment analysis

• aka opinion mining e.g. politics, product reviews

Text classification

• e.g. classifying news to topics (technology, sports, entertainment)

Email Classification and Spam filtering

• sorting emails into appropriate folders and removing spams

Authorship attribution

• identifying writing styles of different authors.

Measures of Success and Error Measures

Machine Learning Paradigm

Training Data

The observed set of example data

Test Data

Previously unseen data generated by the same process as the training data

Training process

Inferring or learning something about the process that generated the training data **Prediction**

Using the inference to make predictions about the test data

Evaluation

Comparing the prediction outputs with the correct test data outputs

Evaluation

Suppose we have a method f and a test set $S_x = \{X_1, \dots, X_n\}$ where $X_i = [x], l_i[x]$

Our method estimates the label as

$$\widehat{l_i} = f(x_i)$$

If the model is suitable, we should have

$$\widehat{l_i} = l_i$$
 for all $i = 1, ..., n$

$$Accuracy = \frac{Number\ of\ test\ elements\ where\ the\ estimated\ label\ is\ correct}{Number\ of\ test\ elements}$$

Accuracy

Accuracy is a measure of how close your estimate is to the actual value

For classification with categorical labels:

Accuracy = ratio of **correct estimates** to **all estimates**

$$Accuracy = \frac{Number\ of\ test\ elements\ where\ the\ estimated\ label\ is\ correct}{Number\ of\ test\ elements}$$

$$Accuracy = \frac{\sum_{i} b(l_{i}, \widehat{l_{i}})}{|S_{x}|} \text{ where } b(l_{i}, \widehat{l_{i}}) = \begin{cases} 1 & \text{if } l_{i} = \widehat{l_{i}} \\ 0 & \text{if } l_{i} \neq \widehat{l_{i}} \end{cases}$$

Accuracy

Example

$$l_1 = \text{"dog"}$$

$$l_1 = \text{"dog"}$$
 $\widehat{l_1} = f(x_1) = \text{"dog"}$ $b(l_1, \widehat{l_1}) = 1$

$$b(l_1, \widehat{l_1}) = 1$$

$$l_2 = \text{"dog}$$

$$l_2 = \text{"dog"}$$
 $\widehat{l_2} = f(x_2) = \text{"dog"}$ $b(l_2, \widehat{l_2}) = 1$

$$b(l_2, \widehat{l_2}) = 1$$

$$l_3 = "cat"$$

$$l_3 = \text{"cat"}$$
 $\widehat{l_3} = f(x_3) = \text{"cat"}$ $b(l_3, \widehat{l_3}) = 1$

$$\int b(l_3)$$

$$b(l_3, \widehat{l_3}) = 1$$

$$l_4 = \text{"cat"}$$

$$l_4 = \text{"cat"}$$
 $\widehat{l_4} = f(x_4) = \text{"dog"} \times b(l_4, \widehat{l_4}) = 0$

$$b(l_4,$$

$$b(l_4, \widehat{l_4}) = 0$$

$$l_5 = \text{"cat"}$$

$$l_5 = \text{"cat"}$$
 $\widehat{l}_5 = f(x_5) = \text{"cat"}$ $b(l_5, \widehat{l}_5) = 1$

$$b(l_5, \widehat{l_5}) = 1$$

$$Accuracy = \frac{\sum_{i} b(l_{i}, \widehat{l_{i}})}{|S_{x}|}$$

$$|S_x| = 5$$

$$\sum_{i} b(l_i, \widehat{l_i}) = 1 + 1 + 1 + 0 + 1$$
= 4

$$Accuracy = \frac{4}{5} = 0.8 = 80\%$$

Lancaster Market Lancaster Market Lancaster La

Accuracy

Non-categorical

What if model output is not categorical?

Example: determine location of centre of pupil

More meaningful: **distance** such as L^2 -norm:

$$Accuracy = ||l - \hat{l}||_2 = \sqrt{(x - \hat{x})^2 + (y - \hat{y})^2}$$

E.g.
$$l = (95,101), \hat{l} = (100,103)$$

$$Accuracy = ||l - \hat{l}||_2 = \sqrt{(95 - 100)^2 + (101 - 103)^2}$$

= $\sqrt{(-5)^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29} \approx 5.385$

Actual Centre l = (x, y)

Predicted Centre $\hat{l} = (\hat{x}, \hat{y})$

Confusion Matrices

Accuracy is important as an overall view.

Example:

- Suppose we are developing a new automated technique for Glaucoma diagnosis
- Our technique is 95% accurate on a test set of 10,000 people
- It is wrong for 5%
 - But which ones???

Healthy eyes

Periphial vision loss due to glaucoma

Confusion Matrices

- Confusion Matrices give us more insight.
 - TP: We predicted positive and we were right
 - TN: We predicted negative and we were right
 - **FP**: We predicted **positive** and we were **wrong**
 - FN: We predicted negative and we were wrong

Examples:

- Positive = Glaucoma, Negative = Healthy
- Positive = Cats, Negative = Dogs

Confusion Matrices

Glaucoma (GL) Diagnosis Example:

- Our technique is 95% accurate on a test set of 10,000 people
- Our test set includes
 - 500 GL Patients
 - 9500 Non-GL Patients
- Scenario 1: Our results:
 - All GL Patients diagnosed correctly
 - 9000 Healthy patients diagnosed correctly
 - 500 Healthy patients mis-diagnosed

	True Class					
5 1:		GL	Healthy			
Predicted Class	GL	500	500			
Class	Healthy	0	9000			

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = 0.95$$

Confusion Matrices

Glaucoma (GL) Diagnosis Example:

- Our technique is 95% accurate on a test set of 10,000 people
- Our test set includes
 - 500 GL Patients
 - 9500 Non-GL Patients
- Scenario 2: Our results:
 - All Healthy Patients diagnosed correctly
 - All DL patients mis-diagnosed

	True Class					
5 1:		GL	Healthy			
Predicted Class	GL	0	0			
Ciass	Healthy	500	9500			

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = 0.95$$

Confusion Matrices

What other measures can we consider?

- **Sensitivity**, recall, hit rate, true positive rate
- **Specificity**, selectivity, true negative rate
- **Precision**, positive predicted value
- Negative predictive value
- Miss rate, false negative rate
- Fall out, false positive rate
- False discovery rate
- False omission rate
- **F1 score**, dice coefficient

Lancaster Market University

Sensitivity and Specificity

Sensitivity: Probability of *positive* outcome if truly positive

$$Sensitivity = \frac{TP}{TP + FN} = \frac{TP}{|Positives|}$$

Specificity: Probability of *negative* outcome if truly *negative*

$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{|Negatives|}$$

Lancaster Market University

Sensitivity and Specificity

Example

Scenario 1	True Class		
		GL	Healthy
Predicted Class	GL	500	500
Class	Healthy	0	9000

Sensitivity =
$$\frac{TP}{TP + FN} = \frac{500}{500 + 0} = 1$$

Specificity = $\frac{TN}{TN + FP} = \frac{9000}{9000 + 500} \approx 0.95$

Scenario 2	True Class		
		GL	Healthy
Predicted Class	GL	0	0
	Healthy	500	9500

$$Sensitivity = \frac{TP}{TP + FN} = \frac{0}{500 + 0} = 0$$
$$Specificity = \frac{TN}{TN + FP} = \frac{9500}{9500 + 0} = 1$$

Sensitivity and Specificity

Sensitivity: Probability of *positive* outcome if truly positive

$$Sensitivity = \frac{TP}{TP + FN} = \frac{TP}{|Positives|}$$

Specificity: Probability of *negative* outcome if truly *negative*

$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{|Negatives|}$$

- Usually consider sensitivity and specificity together.
- Aim for high sensitivity and high specificity.
- Can use trade-off thresholds.

Precision and Negative Predicted Value (NPV)

Precision: Proportion of *truly positive* outcomes to *positive predictions*

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{|Predicted \ Positives|}$$

NPV: Proportion of *truly negative* outcomes to *predicted negative*

$$NPV = \frac{TN}{TN + FN} = \frac{TN}{|Predicted\ Negatives|}$$

Lancaster Market University

Precision and Negative Predicted Value (NPV)

Example

Scenario 1	True Class		
		GL	Healthy
Predicted Class	GL	500	500
Class	Healthy	0	9000

$$Precision = \frac{TP}{TP + FP} = \frac{500}{500 + 500} = 0.5$$

$$NPV = \frac{TN}{TN + FN} = \frac{9000}{9000 + 0} = 1$$

Scenario 2	True Class		
Predicted Class		GL	Healthy
	GL	0	0
	Healthy	500	9500

Precision =
$$\frac{TP}{TP + FP} = \frac{0}{0+0} = undefined$$

 $NPV = \frac{TN}{TN + FN} = \frac{9500}{9500 + 500} = 0.95$

Precision and Negative Predicted Value (NPV)

Precision: Proportion of *truly positive* outcomes to *positive predictions*

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{|Predicted \ Positives|}$$

NPV: Proportion of *truly negative* outcomes to *predicted negative*

$$NPV = \frac{TN}{TN + FN} = \frac{TN}{|Predicted\ Negatives|}$$

- Should consider precision and NPV together.
- Aim for high precision and NPV.
- Often consider precision and recall (sensitivity) together

Lancaster Market University

F₁ Score

It can be difficult to compare a pair of values

Aim to reduce to a single value

We use harmonic mean when interested in average *rate*

 F_1 score is the harmonic mean of precision and recall

$$F_{1} = \frac{2}{recall^{-1} + precision^{-1}} = 2\frac{precision \cdot recall}{precision + recall}$$
$$= \frac{2TP}{2TP + FP + FN}$$

For our examples:

Example 1:
$$F_1 = \frac{2.500}{2.500 + 500 + 0} = \frac{1000}{1500} \approx 0.66$$

Example 2:
$$F_1 = \frac{2 \cdot 0}{2 \cdot 0 + 0 + 500} = 0$$

Confusion Matrices

Back to our example

Measure	Scenario 1	Scenario 2
TP	500	0
TN	9000	9500
FP	500	0
FN	0	500
Accuracy	0.95	0.95
Sensitivity	1	0
Specificity	0.947	1
Precision	0.5	Undefined
NPV	1	0.95
F1 Score	0.667	0

Scenario 1	True Class		
		GL	Healthy
Predicted Class	GL	500	500
Class	Healthy	0	9000

Scenario 2	True Class		
		GL	Healthy
Predicted Class	GL	0	0
Class	Healthy	500	9500

Non-Binary Confusion Matrices

Compute accuracy in the same way.

There exist generalised versions of F1 Score etc but this is not covered here.

Example: Security System

False Acceptance Rate:

$$FAR = \frac{Incorrect\ Authentication}{Total\ Attempts}$$

False Rejection Rate:

$$FRR = \frac{Incorrect\ Rejection}{Total\ Attempts}$$

Aim: minimise both FAR and FRR.

Equal Error Rate: when FAR = FRR

Example: Clinical Test

So how to choose hyperparameters?

Best Accuracy

Threshold: 0.67

Accuracy: 0.80

Sensitivity: 0.49

Specificity: 0.90

Precision: 0.64

F_1 Score: 0.55

Best F_1 Score

Threshold: 0.59

Accuracy: 0.73

Sensitivity: 0.80

Specificity: 0.70

Precision: 0.48

F_1 Score: 0.60

Best Youden Index

Threshold: 0.59

Accuracy: 0.73

Sensitivity: 0.80

Specificity: 0.70

Precision: 0.48

F_1 Score: 0.60

Best Precision

Threshold: 0.83

Accuracy: 0.76

Sensitivity: 0.07

Specificity: 1.00

Precision: 0.92

F 1 Score: 0.13

At 0.95 sensitivity, we have: 0.41 specificity

Clustering

Lancaster Mariversity

Customer Engagement Data

Here are the **ages** (in years) and **engagements** (in days/weeks) of our customers that use our app.

If we have to put them into three groups to effectively serve them, how should we do that?

Α	{1,5,6} {4,8} {2,3,7}
В	{1,8,3} {4,7,2} {5,6}
С	{2,8,3} {5,7,1} {4,6}
D	{3,7,8} {4,1} {2,5,6}

Customer Engagement Data

Here are the **ages** (in years) and **engagements** (in days/weeks) of our customers that use our app.

If we have to put them into three groups to effectively serve them, how should we do that?

Α	{1,5,6} {4,8} {2,3,7}
В	{1,8,3} {4,7,2} {5,6}
С	{2,8,3} {5,7,1} {4,6}
D	{3,7,8} {4,1} {2,5,6}

Customer Engagement Data

Here are the **ages** (in years) and **engagements** (in days/weeks) of our customers that use our app.

If we have to put them into three groups to effectively serve them, how should we do that?

Learning from Data

ML Goal

Learn from observed data in two ways

1: Clustering

 Identify meaningful patterns, clusters or groups in observed data points

2: Classification

 Classify or categorise new data points into one of the identified groups

What is Clustering?

Grouping data into "clusters"

Optimisation with constraints:

- Number of clusters
- Minimum distance between clusters

Reduce dissimilarity between members in a cluster

Non-Simpson Family

Two common methods:

Hierarchical

K-Means

K-Means Clustering

K-Means clustering is an optimisation problem

Aim:

Minimize the within-cluster sum of squares (WCSS) i.e. variance

Given n observations $(x_1, x_2, ..., x_n)$, where each is a d-dimensional real vector, K-Means partitions the n observations into k sets S where $k \le n$:

$$S = \{S_1, S_2, \dots, S_k\}$$

Such that the variance of each subset S_i is minimised.

K-Means Clustering

K-Means clustering is an optimisation problem

Such that the variance of each subset S_i is minimised.

Source: K-Means Clustering on Wikipedia

How K-Means Works

- Choose k, i.e. the number of clusters
- Place *k* centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

How K-Means Works

- Choose *k*, i.e. the number of clusters
- Place *k* centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

How K-Means Works

- Choose *k*, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

How K-Means Works

Algorithm:

- Choose k, i.e. the number of clusters
- Place k centroids

while true:

- Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
- compute k new centroids by averaging points in each cluster
- if centroids don't change:
 - stop

Lancaster Market University

Changing the Initialisation

- Choose *k*, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Lancaster Market University

Changing the Initialisation

- Choose *k*, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Lancaster Stancaster University

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place *k* centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Lancaster Stancaster University

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Lancaster Marinersity

Changing the Initialisation

- Choose k, i.e. the number of clusters
- Place k centroids
- while true:
 - Create k clusters by assigning each point to closest centroid
 - Calculate distance from centroids
 - Find minimum distance
 - Copy label
 - compute k new centroids by averaging points in each cluster
 - if centroids don't change:
 - stop

Changing the Initialisation

K-Means Summary

Efficiency

• K-Mean is efficient but has some weaknesses

K-Means Summary

Efficiency

• K-Mean is efficient but has some weaknesses

Number of Clusters

- ullet You don't necessarily know $oldsymbol{k}$, i.e. number of clusters
- You can choose "wrong" k and get strange results.

How do we choose the right k?

K-Means Summary

Efficiency

• K-Mean is efficient but has some weaknesses

Number of Clusters

- ullet You don't necessarily know $oldsymbol{k}$, i.e. number of clusters
- You can choose "wrong" k and get strange results.

It is non-deterministic

• Initial centroids are chosen at random

K-Means Summary

Efficiency

• K-Mean is efficient but has some weaknesses

Number of Clusters

- You don't necessarily know k, i.e. number of clusters
- You can choose "wrong" k and get strange results.

It is non-deterministic

- Initial centroids are chosen at random
- Centroids can be too close

K-Means Summary

How can we choose k?

- A prior knowledge of the data space can help
 - Three classes of flowers in the Iris dataset
 - Two types of emails: good and spam
- Use the Elbow method
 - Try different values and look for abrupt change in result
- Run hierarchical clustering on subset of data

K-Means Summary

Mitigating Initial Centroids Dependency

- Use a random number seed
- Define a minimum distance min(d) between clusters:

$$d_1, d_2, d_3 \ge \min(d)$$

• Define the minimum data points in a cluster.

