计算流体力学第二次作业

朱林-2200011028

2025年4月14日

1 数理算法原理

对于一阶波动方程,采用三种数值格式进行求解,分别为 Lax-Wendroff 格式、Warming-Beam 格式和 Leap-frog 格式。

1.1 Lax-Wendroff 格式

1.1.1 离散格式推导

对一阶波动方程进行泰勒展开至二阶项,时间导数替换为空间导数:

$$\frac{\partial u}{\partial t} = -\frac{\partial u}{\partial x},\tag{1}$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}. (2)$$

离散形式为:

$$u_j^{n+1} = u_j^n - \frac{\sigma}{2}(u_{j+1}^n - u_{j-1}^n) + \frac{\sigma^2}{2}(u_{j+1}^n - 2u_j^n + u_{j-1}^n), \tag{3}$$

其中 $\sigma = \Delta t/\Delta x$ 为 CFL 数。

1.1.2 稳定性分析

傅里叶模式代入得放大因子:

$$g = 1 - i\sigma \sin(k\Delta x) - \sigma^2 (1 - \cos(k\Delta x)). \tag{4}$$

稳定性条件为 $|g|^2 \le 1$,解得 $\sigma \le 1$ 。

1.1.3 精度分析

截断误差主项为 $O(\Delta t^2, \Delta x^2)$, 故为二阶精度。

1.2 Warming-Beam 格式

1.2.1 离散格式推导

迎风三点差分格式:

$$u_j^{n+1} = u_j^n - \sigma(u_j^n - u_{j-1}^n) + \frac{\sigma(\sigma - 1)}{2}(u_j^n - 2u_{j-1}^n + u_{j-2}^n).$$
 (5)

2 代码生成与调试 2

1.2.2 稳定性分析

将傅里叶模式 $u_i^n = g^n e^{ikj\Delta x}$ 代入格式 (5), 得到放大因子:

$$g = 1 - \sigma \left(1 - e^{-ik\Delta x} \right) + \frac{\sigma(\sigma - 1)}{2} \left(1 - 2e^{-ik\Delta x} + e^{-i2k\Delta x} \right). \tag{6}$$

计算模平方 $|g|^2$, 通过极值分析可得稳定性条件为:

$$0 \le \sigma \le 2$$

当 $\sigma = 0.5$ 时,对所有波数 k 均有 $|g|^2 \le 1$,验证格式的稳定性。

1.2.3 精度分析

空间差分不对称导致二阶精度,伴随显著色散误差。

1.3 Leap-frog 格式

1.3.1 离散格式推导

时间-空间中心差分:

$$u_j^{n+1} = u_j^{n-1} - \sigma(u_{j+1}^n - u_{j-1}^n).$$
(7)

1.3.2 稳定性分析

特征方程解满足 |g|=1,中性稳定条件 $\sigma \leq 1$ 。

1.3.3 精度分析

截断误差主项 $O(\Delta t^2, \Delta x^2)$, 二阶精度, 无耗散但存在相位误差。

2 代码生成与调试

3 结果讨论与物理解释

3.1 稳定性验证

通过数值实验验证三种格式的稳定性特征:

• Lax-Wendroff 格式

- $-\sigma = 0.8$ 时解保持稳定,波形传播正常
- $-\sigma = 1.1$ 时出现指数型发散,验证 $\sigma \le 1$ 的必要性

• Warming-Beam 格式

- $-\sigma = 1.5$ 时解保持稳定,但波形出现畸变
- $-\sigma = 2.2$ 时计算迅速发散,确认 $\sigma \le 2$ 的上限
- $-\sigma = 0.3$ 时稳定,证明下限 $\sigma \ge 0$ 有效

3 结果讨论与物理解释

3

• Leap-frog 格式

- $-\sigma = 0.95$ 时保持中性稳定,但出现寄生振荡
- σ = 1.05 时振幅持续增长,违反稳定性条件

3.2 精度验证

通过网格加密实验观察收敛特性:

- Lax-Wendroff 和 Leap-frog 格式的误差随 Δx 减小呈二次收敛趋势
- Warming-Beam 格式在 $\sigma = 1.5$ 时因稳定性限制收敛速率下降
- 三种格式的收敛阶与理论截断误差分析一致

3.3 耗散与相位特性

对比方波传播的数值解行为:

• Lax-Wendroff 格式

- 波形前缘出现轻微过冲,后缘有耗散衰减
- 相位滞后现象明显, 高频分量传播速度偏慢

• Warming-Beam 格式

- 强数值耗散导致波峰幅值显著降低
- 波形前缘出现超前相位误差
- 高频振荡成分被有效抑制

• Leap-frog 格式

- 保持幅值守恒特性, 无可见耗散
- 产生对称的寄生振荡,波形分裂为双峰结构
- 相位误差表现为波包中心位置的周期性偏移

3.4 综合对比

表 1: 数值格式特性总结

特性	L-W 格式	W-B 格式	Leap-frog
CFL 条件	[0,1]	[0,2]	[0,1]
耗散性	弱	强	无
相位误差	滞后	超前	分裂
适用场景	光滑解	耗散控制	守恒系统

三种格式呈现显著不同的行为特征,与理论分析中的放大因子特性和差分格式构造方式一致。实际计算时应根据问题物理特性选择合适格式。

A AI 工具使用声明表

使用内容	工具名称	使用目的	
hw3.tex 1-9 行、图片插入	Github Copilot	调整 pdf 格式,调用宏包,省略插入图片的重复性工作	
.gitignore	Github Copilot	针对于 python 和 latex 的.gitignore 文件,完全由 Copilot 生成	