AD-A277 180

Orbital Transfer Rocket Engine Technology High Velocity Ratio Diffusing Crossover

Contract NAS3-23773-Task B.2

FINAL REPORT

B. W. Lariviere ROCKWELL INTERNATIONAL Rocketdyne Division

prepared for

This document has been approved for public release and sale; its distribution is unlimited.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER

December 1992

NASA-Lewis Research Center Cleveland, Ohio 44135 G. P. Richter, Program Manager

DIR QUALITY GAS CARD 1

FOREWORD

The work represented by this final report was completed from December 1983 to December 1988 by personnel from engineering functional units at Rocketdyne, a division of Rockwell International, under Contract NAS3-23773. Mr. Dean Scheer, Lewis Research Center, was the NASA Project Manager. At Rocketdyne, Messrs. Ronald Pauckert, Project Manager, Timothy Harmon, Project Engineer, and Brian Lariviere, Development Engineer were responsible for the technical progress and administration of the program.

Important contributions to the completion of this program, and to the preparation of this report were made by the following Rocketdyne personnel:

Advanced Rotating Machinery:

Mr. Robert Sutton

Mr. Tim Irvin

Mr. Hal Buddenbohm

Mr. Al Little

Fluid Dynamics:

Dr. Eugene Jackson

Mr. Anthony Eastland

Dr. Sen Mena

Mr. Louis Rolas

Mr. Dave Wiltz

Mr. George Prueger

Ms. Laura Browzowski

Mechanical Elements:

Mr. Myles Butner

Structure Analysis:

Mr. Linsey Orr

Rotordynamics:

Mr. David Becht

Engineering Development Lab:

Mr. Carl Brown

Mr. Alex Tsosie

Mr. Bill Bubel

Mr. Sukjun Ko

Mr. Gene Bodel

Mr. Steve Rodgers

Mr. Jlm Perry

Mr. Dale Styles

Accesio	P. FOF				
NTIS					
DIRE					
U was					
an and a	San San American San San San San San San San San San S				
Ont its	ABREAL Communication of the second communication of Application of the second communication of				
Avas 45010					
Dist	Special				
1					
10-1					
111,	1				

TABLE OF CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	V
SUMMARY	1
INTRODUCTION	3
TECHNICAL DISCUSSION	6
DESIGN AND FABRICATION	6
Tester Configuration & Layout	6
High Velocity Ratio Diffusing Crossover	10
Impeller	17
Inducer	17
Dynamic Soft Wear Ring Seals	17
Thrust Disk	22
Ball Bearings and Shaft Support System	24
DESIGN SUPPORT ANALYSIS	24
Rotordynamics	24
Structural Analysis	34
TEST PLAN	34
Test Matrix	34
Test Instrumentation	35
Test Procedures	40
Test Facility Description	41
TEST DESCRIPTION	48
Test Summary	48
Hardware Disassembly	52
TEST DATA ANALYSIS	56
Stage Head and Efficiency versus Flow Results	56
Internal Pressure Distributions	63
Pump Suction Performance	72
Shroud Vortex Strength	86
Diffuser Crossover System Design Verification	92
REFERENCES	105
APPENDIX A - AIR TEST DATA	A1
APPENDIX B - WATER TEST DATA	B1

LIST OF FIGURES

Figure 1 - MK49 Fuel Turbopump Cross-Section	4
Figure 2 - Crossover Tester Cross-Section	
Figure 3 - Existing SSME HPFTP Tester Hardware	8
Figure 4 - Crossover Passage Layout	.11
Figure 5 - MK49-F Turbopump Crossover Casting Core	.12
Figure 6 - Individual Casting Core for Crossover Tester	.14
Figure 7 - Assembled Casting Cores for Crossover Tester	.15
Figure 8 - Completed Crossover Housing	.16
Figure 9 - Crossover Tester Impeller with Shroud Removed	.18
Figure 10 - Final Machined Crossover Tester Impeller	.19
Figure 11- Crossover Tester Inducer	.20
Figure 12 - Crossover Tester Inlet Housing with Soft Inducer Tip Seal	.21
Figure 13 - Crossover Tester Thrust Balance Disk	.23
Figure 14 - Crossover Tester Rotordynamic Finite Element Model	.25
Figure 15 - Critical Speed vs. Bearing Stiffness (Water)	.27
Figure 16 - Critical Speed vs. Bearing Stiffness (Air)	.28
Figure 17 - Crossover Tester Rotor Mode Shapes for 500 Kib/in	.29
Figure 18 - Inducer Deflections in Water	.30
Figure 19 - Impeller Tip Deflections in Water	.31
Figure 20 - Inducer Deflections in Air	.32
Figure 21 - Impeller Tip Deflections in Air	.33
Figure 22 - Crossover Tester Instrumentation Locations	.38
Figure 23 - Pump Test Facility Control Center	.42
Figure 24 - Water Test Facility Schematic	.43
Figure 25 - Crossover Tester Lube Oil Interface	.45
Figure 26 - Air Test Facility Schematic	.46
Figure 27 - Water Test Digital Data Acquisition System (DDAS)	.47
Figure 28 - Air Test Data Controller and Display Terminal	.49
Figure 29 - Crossover Tester Installed in the Air Test Facility	.51
Figure 30 - Calculated Axial Thrust vs. NPSH at 80%Qd	.53
Figure 31 - Crossover Exit Total Head-Flow in Water	.57
Figure 32 - Tester Stage Head-Flow Data versus Predicted	.58
Figure 33 - Tester Stage Efficiency in Water	.60
Figure 34 - Tester Stage Static Head in Air	.61
Figure 35 - Inducer + Impeller Total Head in Water and Air	.64
Figure 36 - Inducer + Impeller Static Head in Air	.65

Figure 37 - Inducer + Impeller Static Head in Water	67
Figure 38 - Inducer Static Head in Water and Air	68
Figure 39 - Static Head vs. Tester Location in Water	69
Figure 40 - Crossover Tester Static Pressure Locations	
Figure 41 - Static Head vs. Tester Location in Air	71
Figure 42 - Suction Performance Test at 80%Qd	
Figure 43 - Suction Performance Test at 87%Qd	
Figure 44 - Suction Performance Test at 92%Qd	
Figure 45 - Suction Performance Test at 101%Qd	76
Figure 46 - Suction Performance Test at 108%Qd	77
Figure 47 - Suction Performance Test at 109%Qd	
Figure 48 - Suction Performance Test at 116%Qd	79
Figure 49 - Suction Performance Test at 119%Qd	80
Figure 50 - Suction Performance Test at 124%Ctd	8 1
Figure 51 - Suction Specific Speed Capability versus Flowrate	82
Figure 52 - Inducer Static Head Loss at Q/Qd=87%	84
Figure 53 - Impelier Static Head Loss at Q/Qd=87%	85
Figure 54 - Inducer Static Head Loss at Q/Qd=109%	87
Figure 55 - Impelier Static Head Loss at Q/Qd=109%	88
Figure 56 - Crossover Tester Impeller Shroud Geometry	89
Figure 57 - Diffusing Crossover System	93
Figure 58 - Boundary Layer Build Up in Diffuser Inlet	93
Figure 59 - Curve Fits of Blockage Factor for Diffuser Angles	95
Figure 60 - Comparison of Pressure Recovery vs. Uδ*	95
Figure 61 - Head Coefficient vs. Position in Air and Water	102
Figure 62 - Two-Dimensional Diffuser Analogy	103
Figure 63 - Flow Regime Chart for Two-Dimensional Diffuser	103
·	

LIST OF TABLES

Table 1 - Basic Parametric Information	5
Table 2 - Crossover Tester Parts List	9
Table 3 - Operating Clearance Comparison	22
Table 4 - Hydrodynamic Performance and Axial Load Predictions	24
Table 5 - Crossover Planned Test Matrix	36
Table 6 - Water Test Instrumentation List	37
Table 7 - Air Test Instrumentation List	
Table 8 - High Velocity Ratio Diffusing Crossover Test Summary	50
Table 9 - Crossover Tester Post Test Parts Status	5 5
Table 10 - Head & Efficiency versus Flow - Air, Water, and LH2	62
Table 11 - Shroud Vortex Strength - Predicted versus Measured	
Table 12 - MK49-F Turbopump Crossover Data Analysis (LH2)	98
Table 13 - Crossover Tester Data Analysis (Water)	
Table 14 - Crossover Analysis Data (Water and LH ₂)	
Table 15 - Crossover Overall Performance (Water and LH2)	

SUMMARY

The effort conducted herein was sponsored by the Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio, under Contract NAS3-23773, "Orbit Transfer Rocket Engine Technology Program." The technical effort of this contract was completed from December 1983 through December 1988.

The overall objective of this task was to experimentally evaluate the performance of the high velocity ratio diffusing crossover used in the first and second stages of the MK49-F high pressure fuel turbopump, which is used on the RS-44 Orbital Transfer Vehicle rocket engine. With the diffuser inlet conditions generated by a scaled up model of the MK49-F inducer and impeller, the performance of these pumping elements and the high velocity ratio diffusing crossover were determined using water and air as the pumped fluids. The air tests were included to obtain performance data over a wide range of Reynolds number. These performance surveys were to be used to verify the design of the high velocity ratio diffusing crossover, and correct any design deficiencies that were found. Since the MK49-F was tested prior to the completion of this test program, the data from the MK49-F was used as a comparison for the water and air test data.

To complete the technical requirements of this program, a tester, utilizing a 2.85 times scale inducer, impeller, and diffuser crossover system, was designed, fabricated, and tested in both air and water.

The design of the high velocity ratio diffusing crossover was based on integrating the scaled up MK49-F first stage components with the existing SSME HPFTP tester. By using the existing tester hardware, design and fabrication costs were saved. Additional costs were saved by fabricating the new crossover tester components from common aluminum alloys to minimize the machining complexities and procurement costs.

A total of nine (9) tests were conducted on the north powerhead of the Pump Test Facility at the Engineering Development Laboratory from September 1988 to October 1988. The first two (2) tests of the diffusing crossover were conducted in air, while the remaining seven (7) tests were conducted in water. Both, the air and water tests were conducted at a shaft speed of 6322 rpm.

In air, the head versus flow (H-Q) test data determined that the upcomer diffuser in the crossover was stalled for all the flow conditions attempted. The stall was caused by increased boundary layer blockage due to the low Reynolds number resulting in the impeller discharge flow entering the diffuser inlet at an angle and velocity, which would produce a flow separation in the diffuser. Air test data compared well with the analytic predictions and MK49-F hydrogen data for the impeller and the inducer head performance, clearly showing that the stall was in the diffuser.

H-Q tests in water, from 65 to 140% of design flow, were conducted. The overall stage head measured these tests was only 4% lower than the prediction. Again, the performance of the inducer and impeller were compared with the available resources. During the H-Q tests, the upcomer diffuser stall point was determined to be at a slightly lower flow than predicted, and the hysteresis region was clearly evident. The head loss during stall was not severe which was indicative of a diffuser leading edge stall characteristic. Internal pressure distributions were also examined to evaluate the inducer, impeller, and various positions within the diffuser crossover system. Suction performance tests from 80% to 124% of design flow were conducted, which established the minimum inlet Net Positive Suction Head (NPSH). The performance was lower than the ideal potential, but a lower performance was expected with the design characteristics scaled from the smaller MK49-F. The performance of the tester, however, exceeded the minimum design requirements established for the MK49-F turbopump.

The test data showed 95% of the overall diffusion being accomplished by the upcomer portion of the crossover passage, as predicted. By calculating the required diffuser inlet boundary layer blockage to match the test data and using the Loss Isolation program to determine the vaneless area diffusion, the mean pressure recovery coefficient from the test data compared favorably with the predictions.

The technique generated to analyze the data will be beneficial for the design and analysis of future diffusing crossover passages. The data generated in this test program verified the methods used at Rocketdyne to design and predict the performance of pumping elements and high velocity ratio diffusing crossovers. The data generated in this program will also be of value in further anchoring the predictive codes of other designs.

INTRODUCTION

Multistage pumps require the use of crossover passages to convey the fluid from the exit of one impeller to the inlet of the next impeller. The MK49-F, which is used on the 15,000 lbf thrust Orbital Transfer Vehicle (OTV) engine, is a three stage centrifugal high-pressure liquid hydrogen turbopump. A cross-section of the MK49-F turbopump is presented in Figure 1 showing the location of the two interstage crossovers. The MK49-F uses seventeen continuous passage crossovers between each centrifugal impeller stage. Each passage consists a radially out diffuser called the "upcomer", followed by a radially inward diffuser called the "downcomer". A low turning loss section, called the transition, connects the two diffuser sections.

To develop the 4600 psia discharge pressure required by the advanced expander cycle OTV engine, a high impeller exit velocity is required. However, relatively low velocity is required at the inlet of the next impeller for the best overall pump performance. The result is a large diffuser inlet velocity to exit velocity ratio through the crossover.

The MK49-F design uses a velocity ratio of 6.23, which approaches the diffusion limit for stable efficient design. Previous diffusing crossover designs, at Rocketdyne, used velocity ratios that were lower, for example, 5.46 for the MK48-F, and 3.0 for the SSME HPFTP (MK38-F). With these high diffusion rates, the boundary layer flows must be carefully controlled to preclude stall, while operating over the wide range of pump flows required by the engine system.

The design of the crossover passages was based on advanced analytical procedures anchored by tests of stationary two-dimensional diffusers with steady flow. In the case of centrifugal pumps, however, the flow leaving the rotating impeller appears to the stationary diffusion system as an unsteady non-uniform flow field with potential inlet boundary layers even larger than normally encountered in laboratory tests of static diffusers. To accurately assess the design of the high velocity ratio diffusing crossover, it was required that the impeller flow be accurately simulated. This could only be achieved by using a scaled-up version of the MK49-F impeller.

A highly instrumented tester was designed and fabricated which would simulate the MK49-F first stage pumping elements and crossover passages. To take advantage of existing test facility hardware, a scaled up model of the stage was chosen with a scale factor of 2.85. This scaled up model also served to increase the Reynolds number for

Figure 1 - MK49 Fuel Turbopump Cross-Saction

RI/RD89-111

the model test to bring it closer to the Reynolds number of operation in hydrogen of the full scale MK49-F.

Table 1 gives the basic dimensions and operating parameters of both the MK49-F pump for full speed operation in hydrogen and the scale up model for the subject test program.

Tests of the high velocity ratio diffusing crossover tester with unsteady whirling flow from the exit of the scaled up impeller, were conducted to evaluate the influences of the large-scale turbulence, non-uniform velocity profile, and non-steady velocity on the MK49-F stage performance and efficiency. Tests were conducted in two fluids, water and air, to determine the effects on performance over a wide range of Reynolds number.

Table 1 - Basic Parametric Information MK49-F Turbopump versus Crossover Test Rig

	MK49-F Turbopump	Crossover Tester			
Parameter	LH ₂	Water	Air		
Inducer Tip Diameter (inch)	1.95	5.56	5.56		
Impeller Tip Diameter (inch)	3.90	11.124	11.124		
Diffuser Inlet Diameter (inch)	4.30	12.25	12.25 ·		
Number of Blades: Inducer Impeller Diffuser Inducer Flow Coeff. (\$=Cm/Ut)	4 4+4 17 0.10	4 4+4 17 0.10	4 · 4 · 4 · 17 · 0.10		
Design Speed (rpm)	110,000	6322	6322		
Design Flow (gpm) Reynolds Number	436 7.6×10 ⁷ ***	583 2.31x10 ⁷	583 1.65x10 ⁸		

Inlet Flow Coefficient, φ, where C_m is the meridional fluid velocity and U_t is the Inducer tip speed.

Reynolds number based on impeller diameter and speed.

^{* *} At 33,400 rpm, Reynolds number drops to 2.31x107.

TECHNICAL DISCUSSION

DESIGN AND FABRICATION

Tester Configuration & Layout

Analytical and computer predictions determined that, for optimum performance of the RS-44 advanced expander cycle engine, an interstage diffusion of 6.23 for the MK49-F would result. However, there was little published data on multistage pump crossovers having high diffusion velocity ratios. Rocketdyne's experience was limited to a maximum diffusion velocity ratio of 5.46 used in the MK48-F turbopump. The high diffusion rate of the MK49-F was sufficiently beyond the current experience base that a test program to evaluate the performance of the high velocity ratio diffusing crossover was required. The overall objective was to design a tester and experimentally evaluate the performance of the high velocity ratio diffusing crossover used in the first and second stages of the MK49-F high pressure fuel turbopump.

The high velocity ratio diffusing crossover tester, shown in Figure 2, was designed with two major design requirements imposed. The first requirement was to design the crossover tester around the dimensions of the existing SSME HPFTP tester interfaces to minimize the tester design and fabrication costs. The second requirement was to incorporate as much internal instrumentation as possible to maximize the information obtained during testing of the diffusing crossover passage and MK49-F pumping elements.

A scale factor of 2.85 was determined from the SSME HPFTP impeller tester hardware. The crossover tester layout was then generated by maintaining these interface geometries and directly scaling the MK49-F turbopump pump elements. Figure 3 shows the cross-section of the HPFTP tester shaft, discharge manifold, bearing carrier, face seal, and bearing assembly which were used by the crossover tester. The hardware parts list for the High Velocity Ratio Diffusing Crossover tester are shown in Table 2.

The MK49-F inducer, impeller, and crossover housing, components were scaled up to mate with the HPFTP tester discharge manifold. A scale factor of 2.85 was used to increase the size of the MK49-F impeller from 3.900 inches in diameter to a size of 11.124 inches. With this scale factor established, the crossover, the impeller, and the inducer were designed.

Figure ? - Crossover Tester Cross-Section

Figure 3 - Existing SSME HPFTP Tester Hardware

Table 2 - Crossover Tester Parts List

HIGH VELOCITY RATIO DIFFUSING CROSSOVER TESTER PARTS LIST

	PART NO.	DESCRIPTION	ONTY
	7R0017922-5	TUBE	6
	7R0017923-3	HOUSING, PUMP END	ī
	7R0017924-3	COVER PLATE, BEARING PRELOAD	ī
	7R0017925-3	CROSSOVER HOUSING	ī
	7R0017927-3	FACE SEAL MATING RING	ī
	7R0017927-5	THRUST DISK	ī
	7R0017928-3	THRUST DISK SEAL	ī
	7R0017928-5	RETAINER, THRUST DISK SEAL	ī
	7R0017930-1	IMPELLER	1
	7R0017931-1	INDUCER	1
	7R0017932-3	NUT (INDUCER)	1
	7R0017933-3	LOCK (INDUCER)	1
	7R0017934-3	SPACER	1
	7R0017935-3	LOCK (IMPELLER)	1
	7R0017936-3	SPACER	1
	7R0017938-3	RETAINER	1
	7R0017940-3	SEAL, LABY	1
	7R0017940-5	RETAINER, LABY SEAL	1
٠	7R0017941-3	NUT (IMPELLER)	1
	7R0017942-3	SPACER	1
	7R0017943-3	SCREEN	1
	7R0017944-1	INLET	1
	7R0017945-3	SPACER	1.
	7R0017950-3	TUBES	2
	7R0033904-3	SPACER	1
	MS 9390-580	PIN	3
		FACE SEAL, SEALOL: 3-3-B002B0-44	
	T-5100073-108	· ,	1
	T-5100073-104		
	T-5100073-501		1
	T-5100073-801		1
	T-5100073-104	SCREW, SET	2
	SRF 7214 BEA	BEARING	2
			_
	EWR307280-007	MAINFOLD	1
	EWR306802-003		1
	EWR306803-003		1

High Velocity Ratio Diffusing Crossover

A pair of straight channel type vaned diffusers, with square cross-section separated by a variable cross-section turning channel, were chosen for the MK49-F. The same concept was chosen for the lower area ratio SSME HPFTP diffusion system which had demonstrated an outstanding efficiency.

For a straight channel diffuser design, maximum performance requires a uniform flow field at the diffuser iniet, or throat. To improve the inlet flow field and reduce the perturbations produced by the passing impeller blades, a vaneless entrance region, just upstream of the diffuser throat, was included in the design. A detailed vane leading edge geometry and flow pattern relationship was investigated, using available analytical codes, to determine the diffuser inlet flow angle and velocity from the impeller. From this information, the inlet vane angle, throat area, and number of crossover passages were determined. Once the inlet geometries were satisfied and the throat flow field established, the diffuser geometry was produced.

At the exit of the upcomer diffuser, a three-dimensional transition section turns the flow radially inward to the inlet of the downcomer diffuser, forming a continuous crossover passage, as seen in Figure 4. The turning channel cross-section changes continuously through the turn to minimize the static pressure gradient across the passage. These pressure gradients, created by the centrifugal force of the fluid in the turn would induce secondary flows which would reduce the overall crossover performance. The design of the turning channel required the use of computer-aided design (CAD) to produce the three dimensional lay out.

Figure 5 shows the ceramic casting core assembly of the seventeen crossoval passages of the MK49-F turbopump. The High Velocity Ratio Diffusing Crossover tester passages were scaled up directly from the coordinates generated on GAD for the MK49-F crossover.

Initial bids for casting the aluminum crossover housing resulted in only one bidder response at a cost three times greater than the estimated costs based on the MK49-F crossover cores. It was decided that casting the crossover from ϵ high strength plastic would save both cost and schedule. By casting with a plastic, costs would be saved in raw materials and "hard" tooling which are required for metal castings. A plastic, FR-40/5481C epoxy, crossover housing was designed, with an aluminum reinforcing ring.

TASK B.2: HIGH VELOCITY RATIO DIFFUSING CROSSOVER

LH2 CROSSOVER PASSAGE (CERAMIC)

Figure 5 - MK49-F Turbopump Crossover Casting Core

186-597

Tri-Models was placed under contract to construct the core and tooling required to produce the plastic crossover housing, while the actual pouring of the part would be conducted at Rocketdyne. However, when Tri-Models completed the core box, their costs exceeded the purchase agreement. As a result, Rocketdyne took delivery of the core box only.

Using the core box and FR-40/5481C epoxy provided by Rocketdyne, A & M Model Makers was contracted to cact the crossover housing. Wax cores were successfully made and assembled into a "negative" of the crossover. The plan was to pour the plastic into the mold surrounding the cores, and then return the crossover to Rocketdyne for elevated temperature curing, which would promote the greatest strength of the epoxy. The pouring technique was designed to slowly cure the casting at an elevated temperature to reduce risk of cracking the crossover housing. However, when the pour of the plastic proceeded, cracks began to appear almost immediately. By the completion of the pour, the housing was riddled with cracks. The cracking was caused by normal shrinkage of the plastic, the aluminum reinforcement ring restricting any movement by the shrinking plastic.

The crossover housing drawing, 7R0017925, was modified to fabricate the part from aluminum alloy 356. Burrows Pattern Works was contracted to fabricate a set of ceramic cores from the existing core box. The cores were dimensionally inspected and found to be within the tolerance of the drawing. Enough cores were fabricated by Burrows Pattern Works to produce four crossover housings. The ceramic cores and the core box were delivered to Wellman Dynamics for casting. Figure 6 shows one of seventeen crossover cores which were assembled for each crossover housing pour.

Upon the attempt to cast the crossover housing, Wellman found that the Burrows Pattern Works cores were unusable. The long thin crossover inlet necessitated a high percentage of core binder. During the pour, the binder vaporized at the temperatures of molten aluminum, causing blows and cold shuts, ruining the casting. Wellman was forced to make their own cores using alumina sand and glass reinforcing rods running through the center of each core. Figure 7 shows the completed Wellman core assembly. Prior to the first pour by Wellman, the passage cores were dimensionally inspected and were found to meet the tolerance requirements of the drawing. In seven attempts to cast the crossover, only one good crossover housing was produced. Figure 8 shows the diffuser inlet vanes of this crossover housing. Rocketdyne released Wellman of the requirement for two castings, because of the excessive costs required to achieve a useable product.

CROSSOVER CORE (2.85:1 SCALE MODEL)

Figure 6 - Individual Casting Core for Crossover Tester

Figure 7 - Assembled Casting Cores for Crossover Tester by Wellman

RI/RD89-111 -16-

Impeller

The crossover tester impelier design, 7R0017930, maintained the critical dimensions of the MK49-F, such as blade geometry, inlet area, exit area, tip width, and shroud contours. However, the MK49-F impelier was machined in two pieces from titanium in the form of a pre-impelier and main impelier. The aluminum alloy 6061-T6 impelier was also designed and fabricated in two pieces, but in the form of a shroudless impeller and a front shroud. The impelier blades and face were numerical control (NC) machined to produce the complicated flow passage. The scaled-up impeller with the front shroud removed can be seen in Figure 9. Once the impeller blades were machined and dimensionally inspected, the front shroud was bonded to the impelier face using a furnace braze process. At the completion of the furnace braze operation, the impelier was machined to final dimensions and is shown in Figure 10.

Inducer

The crossover tester inducer, 7R0017931, was NC machined from aluminum alloy 7075-T73. The inducer blade coordinates, hub contour, and leading edge contours were also scaled directly from the MX49-F inducer using CAD. The crossover tester inducer is shown in Figure 11.

Dynamic Soft Wear Ring Seals

To gain some experience with the soft seal technology, being developed concurrently in task B.5 of this contract, cast in place polyurethane seals were incorporated in the inducer tunnel and the impeller interstage seal. The inducer seal was centrifugally cast by pouring the seal material, Hexcel 3125, in the inducer tunnel, while rotating the part on a lathe for several hours. A similar technique was used to cast the interstage seal in the inner diameter of the crossover housing. The seals were then machined to final bore dimensions after the casting and curing processes were completed. The casting and subsequent machining techniques were very successful. A photograph of the soft seal material in the inducer tunnel, 7R0017944, is shown in Figure 12.

The impeller front wear ring labyrinth seal and thrust disk seal also used soft seal technology and were machined from Kel-F stock. These seals went through several curing cycles before they were machined to their final dimensions. The clearances for the inducer tunnel, interstage seal, and the front wear ring labyrinth seal were also scaled by 2.85 from the MK49-F design, as shown in Table 3.

Figure 9 - Crossover Tester Impeller with Shroud Removed

RI/RD89-111

RI/RD89-111

RVRD89-111

Table 3 - Operating Clearance Comparison Crossover Tester vs. MK49-F

Diametral Clearance (inch)

Crossover Tester	MK49-F Turbopump
0.710	0.250
0.023	0.008
0.029	0.010
0.023	0.008
	0.710 0.023 0.029

Thrust Disk

Hydrodynamic analysis of the test pump showed the potential of large loads with some uncertainty of the load direction due to the lack of definitive pressure profiles around the impeller shrouds. With moderate changes in the effective vortex strengths in these shroud areas, the total net axial force could change direction and magnitude. To better handle this potential load variation the drive end bearing stop was replaced with a belleville spring to accommodate the thrust without unloading. Also, a thrust compensating disk, 7R0017927, as seen in Figure 13, was added to the design. To cross the gap between the volute manifold and the bearing carrier, transfer tubes, 7R0017922, were designed to allow the thrust disk back pressure to be vented through a control valve overboard. By allowing some of the crossover discharge flow to leak past the thrust disk tip seal into the thrust disk drain cavity, the pressure behind the disk could be regulated to produce the desired resultant axial thrust. Blank transfer tubes (no through holes) were also designed to return the manifold to its SSME test condition.

A thermodynamic computer model of the pump was developed to predict the axial load wer the anticipated test range. The pressure of 461 psia in the thrust disk drain cavity as selected to preclude the direction of the axial thrust at the 80% design flow towards the drive end. This pressure yields a uniform thrust direction with a maximum amplitude of 3555 to toward the pump inlet at 120% design flow as shown in Table 4. Also seen in Table 4, the loads produced at 60 and 70 percent of design flow are larger than at 80 percent because of the predicted stall characteristic of the pump. The axial load in air was considered negligible.

Table 4 - Hydrodynamic Performance and Axial Load Predictions Crossover Tester Internal Static Pressures (psia) in Water

	% of Design Flow Q _d (583 gpm)					
Tester Location	60%	7.0 %	80%	100%	110%	120%
Inducer Inlet Pr	94.3	94.3	94.3	94.4	94.3	94.3
Inducer Discharge Pr	163	160	156	141	129	114
Impeller Discharge Pr	558	556	553	541	528	509
Imp Front Shroud Hub Pr	365	362	360	347	335	315
Imp Rear Shroud Hub Pr	529	527	523	512	499	480
Crossover Disch Pr	711	708	741	710	685	649
Thrust Disk Front Pr	724	720	751	718	693	658
Thrust Disk Rear Pr	461	461	461	461	461	461
Axial Thrust (lbf) *	1336	1474	43	1333	2273	3555

Positive Load towards the Pump Inlet.

Ball Bearings and Shaft Support System

In addition to adding the thrust disk, a redesign of the pump bearing system was also required. The original 70mm bore conrad ball bearings, used in the SSME HPFTP tester, could not be used due to the high variations in axial load for the flow ranges to be tested. The maximum axial load capacity calculated for these bearings was 2500 lb. It was therefore necessary to increase the ball bearing axial load capacity. As a result, a pair of 70mm J type angular contact ball bearings were procured to replace the original conrad bearings. Mechanical preloading was used to obtain the appropriate radial stiffness and accommodate axial translation.

DESIGN SUPPORT ANALYSIS

Rotordynamics

In early 1984, the preliminary MK49-F crossover tester design, without the thrust disk, was analyzed to predict the critical speeds, shaft mode shapes, and shaft deflection. The rotating assembly consisted of a single stage inducer and impeller subassembly cantilevered on a shaft supported by two ball bearings. The finite element model of the rotor is shown in Figure 14. The rotor was segmented into 10 weight groups and 25 finite elements. The bearings were represented as translational springs to ground (rigid casing), and the assembly drive coupling shaft was assumed to add weight but no radial stiffness to the system.

MK-49F CROSSOVER TESTER ROTATING ASSEMBLY MODEL

Figure 14 - Crossover Tester Rotordynamic Finite Element Model

RURD89-111 -25The first three critical speeds of the rotor, pumping water and air respectively, are shown in Figures 15 and 16 as a function of bearing stiffness. The mode shapes corresponding to these critical speeds, for a bearing stiffness of 500,000 lb/in., are given in Figure 17. For the tester running in water, the operating speed is 6,322 rpm. Observing the normal rotordynamic practice of not operating within 20% of a critical speed, a first critical speed of at least 7590 rpm is required. According to Figure 15, if the bearings have a minimum stiffness of approximately 440,000 lb/in., the first critical speed would be over 7590 RPM, and the machine could operate safely at 6,322 RPM. The preloaded angular contact ball bearings easily met these radial stiffness requirements.

With air as the pumped fluid, a similar critical speed analysis was conducted with proposed operating speeds of 6,322 rpm and 14,000 rpm. This analysis was required because in the previous analysis, water being pumped adds mass and damping to the rotor system, while air, due to its low density and compressibility, provides less mass and virtually no damping. Again, a 20% margin on critical speeds was maintained and no critical speeds were found between 5,000 and 7,500 rpm and between 11,670 and 17,500 rpm for the predicted bearing stiffnesses, as seen in Figure 16. It was noted for the 14,000 rpm case, that the tester would run between the first and second critical speeds and below twice the first critical speed eliminating the requirement for a rotor stability analysis. The critical speed analysis showed that this machine could operate safely at either of the desired shaft speeds.

Due to the overhung nature of the crossover tester design, an unbalance response analysis was performed to determine the potential rubbing due to rotor deflection. Figure 18 and 19 show the predicted inducer and impeller deflections, respectively, as a function of rotor speed with 500,000 lb/in bearing stiffnesses. At 6,322 rpm, the predicted deflections were significantly less than the radial clearances built into the tester as shown earlier in Table 2. Figures 20 and 21 show similar inducer and impeller deflections, respectively, with air as the pumped fluid, as a function of shaft speed for bearing stiffnesses of 500,000 lb/in. As shown in these figures, large deflections would be incurred if the tester speed dwelled around the first critical speed of 8,000 rpm.

,1

Figure 15 - Critical Speed vs. Bearing Stiffness (Water)

RI/RD89-111 -27-

UNDAMPED CRITICAL SPEEDS (RUNNING IN AIR)

-28-

Figure 16 - Critical Speed vs. Bearing Stiffness (Air)

Figure 18 - Inducer Deflections in Water

 $K_B = 500,000 LB/IN$

. Y AXIS . . Z AKIS

DISPLACEMENT (IN.)

UNDALANCED RESPONSE OF 19649F DIFFUSING CROSSOVER TESTER 1 GH-IN UNDAL ON IMPELLER. OPERATING IN MATER

.

Figure 19 - Impeller Tip Deflections in Water

 $K_B = 500,000 LB/IN$

. Y AKIS . G Z AKIS

UNDMIANCED RESPONSE OF 18649F DIFFUSING CROSSOVER TESTER 1 SH-IN UNDMI ON IMPELLER, OPERATING IN MATER

Figure 20 - Inducer Deflections in Air

 $K_{\rm B} = 500,000 \, \text{LB/IN}$

A V AKIR A 7 AKIS

UNDALANCED RESPONSE OF 1849F DIFFUSING CROSSOVER TESTER 1 SM-IN UNDAL ON IMPELLER. OPERATING IN AIR

Operating Speed

RPM

Operating Spe

Figure 21 - Impeller Tip Deflections in Air

 $K_B = 500,000 LB/IN$

. Y AKIS 6 Z AKIS

UNDALANCED RESPONSE OF 19649F DIFFUSING CROSSOVER TESTER I GH-IN UNDAL ON IMPELLER, OPERATING IN AIR

As discussed earlier, the design for the High Velocity Ratio Diffusing Crossover tester was modified to incorporate the thrust disk, however, this was accomplished after the initial rotordynamic analyses were completed. To determine if this modification would significantly after the rotordynamic characteristics of the tester, the finite element model of the rotor was updated and its critical speeds, operating in water, were recalculated. Close comparison of this critical speed map with that of the old design showed that the first critical speed was virtually unaffected by the addition of the thrust disk because of its close proximity to the pump end bearing.

Structural Analysis

An analysis of the Crossover Tester assembly was performed for operating conditions of 6322 rpm for water testing and 14500 rpm for air testing, and for a maximum discharge pressure of 1111 psia in water. The analysis covered the major hydrodynamic test components, including the inducer, impeller, inlet, and crossover. In addition, new hardware required by the bearing support system redesign effort, including bearing preload believille spring sizing and face seal retainer deflections, were analyzed.

Because of the geometric similarity between the tester inducer, impeller and crossover and their counterparts from the MK49-F turbopump, stresses in these tester parts were determined by applying scaling factors to the MK49-F part stresses. Scale factors accounting for differences in tester and turbopump tip speeds, fluid densities, material densities, and static pressures were used as appropriate. Centrifugal stresses in the inducer and impeller were less than 10% of those in the turbopump. Fluid pressure stresses on the inducer and impeller blades and on the crossover were 38% of those occurring in the turbopump. Although the aluminum alloy, 6061-T6, used on the tester components, had significantly lower strength than the Inconel 718 (inducer), titanium (impeller) and inconel 625 (crossover) used on the turbopump, the tester parts were shown to have higher factors of safety because of the lower loading.

TEST PLAN

Test Matrix

The planned high velocity ratio diffusing crossover tests were divided into four parts; H-Q tests in water, crossover stall mapping in water, suction performance tests in water, and H-Q tests in air. These tests were run to establish the diffusion capability of the crossover passage, as well as, verify the performance and efficiency of the scaled up

model of the MK49-F first stage pumping elements. The planned test matrix is shown in Table 5. The yaw probe survey tests described in Table 5 were later deleted from the test matrix due to cost and schedule constraints coupled with the fact that these results were not critical to accomplishing the basic objectives of the program. Only in the event of a serious stall in the downcomer would the yaw data become critical.

Test Instrumentation

Instrumentation for the High Velocity Ratio Diffusing Crossover tests consisted of those parameters necessary to determine pressure, temperature, flowrate, speed, torque, and acceleration. In addition, adequate instrumentation was required of the facility to conduct the proposed tests and provide the information required for facility diagnostics. The low and high frequency data recorded provided the information necessary to investigate the performance and efficiency of the MK49-F turbopump high velocity ratio diffusing crossover and its pumping elements.

The instrumentation used, including parameter nomenclature, transducer ranges, redline limits, recording device, and parameter displays, for the water test series are shown in Table 6. Redundancy on all critical parameter systems were maintained. Figure 22 shows the locations of the various instrumentation types available on the crossover hardware. The three Kiel probes at the discharge of the crossover are located at three different radial heights: 1/4 passage, mid-height, 3/4 passage, from hub to tip.

The instrumentation used for the air test series are shown in Table 7. The air tests required less instrumentation to obtain the necessary performance information.

All low frequency data was recorded on a Digital Data Acquisition System (DDAS). The DDAS also provides test sequence control and redline monitoring, in addition to recording the low frequency data and facility events.

Some selected parameters were recorded in real-time on strip charts, as seen on the instrumentation lists in Tables 6 and 7, shown previously. During suction performance (cavitation) tests, monitoring of inlet pressure decay rate and pump differentially pressure, ΔP , were essential to successfully and safely control the test.

Provision was also made in the hardware design for laser velocimeter measurements at the impeller discharge (diffuser inlet). The measurements would have been able to define the blade-to-blade flowfield leaving the impeller at different planes from the slope.

Table 5 - Crossover Planned Test Matrix

				••••••••••••••••••••••••••••••••••••••			. .
TEST NO.	3T (TEST FLUID	(GPH)	TEST DESCRIPTION	SPEED (RPM)	i data Sampling	PROBE TYPE
c ##446			 			 	
1	CHECK GUT	H20	582	ESTAB AXIAL LOAD	6322	20 SCANS	KIEL
2	HEAD YOU FLOW	H20	408-694	H-Q W/ PROBE	6275	20 SCANS	KIEL
3	H-Q STALL MAPPING	H20	233-408	HQ 60-90XQ	6322	20 SCAHS	KIEL
4	CAVITATION	H20	582	NPSH 2 100XQ	6322	CONTINUOUS	KIEL
5	CAVITATION	H20	640	NPSH & 110XQ	6322	CONTINUOUS	KIEL
6	CAVITATION	H20	698	NPSH & 120X0	6322	CONTINUOUS	KIEL
7	CAVITATION	H20	523	NPSH & 90XQ	6322	CONTINUOUS	KIEL
8	CAVITATION	H20	465	NPSH & BOXQ	63322	CONTINUOUS	KIEL
9	CAVITATION	H20	407	NPSH 8 7C	6322	CONTINUOUS	KIEL
10	CAVITATION	H20	349	NPSH & 60XA	6322	CONTINUOUS	KIEL
11	PROBE SURVEY POS#1	H20	408-694	HO 70-120XO	6322	20 SCANS	WAY
12	PROBE SURVEY POS#2	H20	408-694	HO 70-120XA	6322	20 SCANS	YAU
13	PROSE SURVEY POUTS	H20	408-694	HQ 70-120XQ	6322	20 SCANS	WAY
rest	1	TEST	FLOU	7237	SPEED	DATA	PROBE
NO.	TYPE	FLUID	(CFS)	DESCRIPTION	(RPH)	SAMPLING	TYPE
14	HEAD VS. FLOW	AIR	0.91-1.56	N-Q W/ PROCE	6322	20 SCANS	KIEL

^{*} These tests were later deleted

Table 6 - Water Test Instrumentation List

PARAMETER	PARAMETER NAME	RANGE	REDLINE	ļ	DATA RECORD	ING AND DIS	SPLAY
NUMBER		PSIG	MIN/MAX	DIGITAL	STRP CHRT	CRT	HF DIGITAL
	:33788777777777777777777777777777777777					:========	
1	INLET STATIC PRESS #1	100 PSIA	!	X	1 ×		!!!
2	INLET STATIC PRESS #2	100 PSIA	į	X	!		!!!
3	INDUCER DISCH PRESS #1	0-500	1	į x	1	X	į į
4	INDUCER DISCH PRESS #2	0-500	ļ	X	!		1
5	IMP FRNT SHRD PR #1	0-2000	ļ	X	1		
6	IMP FRNT SHRD PR #2	0-1000	ļ	X	!		1
7	REAR SHRD PR #1	0-1000	Į.	X	į į		1
8	REAR SHRD PR #2	0-2000	!	X	1		
9	INP DISCH PR O	0-1000	t	l x	<u> </u>	X	1
10	IMP DISCH PR 45	0-2000	1	X			I I
12	UPC CONST SEC PR #2	0-2000	l	l X	1		1 1
13	UPC CONST SEC PR #3	0-2000	1	X			1 1
14	UPC CONST SEC PR #4	0-2000	i	j x	i l	,	1
15	TRANSITION PR #1	0-2000	1	1 x	1	X	1
18	DWN DIFF DISCH PR #2	0-3000	1	X	1		1
19	DWN HID-DIFFUSR PR #1	0-2000	1	X	1		1
20	DUN MID-DIFFUSR PR #1	0-2000	F	į x	1		1
21	XOVR DISCH STATIC	0-2000	1	X	1	X	1
24	BAL PSTN SHP DRN PR	0-500	1	X	1		1
25	INP DISCH TOTAL PR	0-2000	1	X	1		1
26	TRANSITION TOTAL PR	0-2000	t	į X	1		1 1
27	XOVR EXIT TOTAL PR #1	0-2000	1	j x	x		1
28	XOVR EXIT TOTAL PR #2	0-2000	1	į x	1		1
29	NOVE EXIT TOTAL PR #3	0-2000	1	į x	1		1 1
• 30	PLMP DELTA-PR	0-3000	Į	X	1 ×	X	!!!
31	WATER INLEY YEMP F	0-100	1	 X	1		1 1
34	LUSE OIL OUT TEMP F	0-200	1	X		X	
35	THRUST DISK FLOW	0-200	ì	i x		X	
36	WAYER FLOW GPH	0-1284	1	, - 1 x	1 X	, ,	1
37	LURE OIL FLOWATE GPW	0-120-	1	i û		· ·	
38	SHAFT SPEED - RPH	0-10,000	1	i î	1 X	•	i
30	TOROUE - IN-LES	0-20000	1	l X			1 1
40			1 6	1 ^	1		1 1
-	RADIAL O ACCEL	0-10 GRHS	1 2		1		1 X 1
41	RADIAL 90 ACCEL	0-10 GRHS) 5	!	1	<u> </u>	
42	AXIAL ACCEL	0-10 GHIS	5	i .	1		1 × 1

[&]quot; USE XOVE DISCH TOTAL PR #1 TO INLET STATIC #2 PR FOR DELTA-P

Figure 22 - Crossover Tester Instrumentation Locations

Table 7 - Air Test Instrumentation List

DATA RECORDING AND DISPLAY

					DATA RECOR	DING AND D	ISPLAY
PARAMETER NUMBER	PARAMETER NAME		REDLINE MIN / MAX	•	STRP CHRT	•	HF DIGITAL
1	INLET STATIC PRESS #1	0-1]	i x	1		
2	INLET STATIC PRESS #2	0-1	Ì	i x	i	i	i i
3	INDUCER DISCH PRESS #1	0-5	i	×	ì	i	i i
4	INDUCER DISCH PRESS #2	0'-5	i	i x	i	İ	iii
5	IMP FRNT SHRD PR #1	0-5	i	į x	i	į	i i
6	REAR SHRD PR #1	0-5	i	X	i	i	i
8	IMP DISCH PR 0	0-5	i	X	i	X	i
9	UPC CONST SEC PR #2	0-5	1	X	i	X	i i
10	UPC CONST SEC PR #3	0-5	l	X	i	l	1
11	TRANSITION PR #1	0-5	ĺ	X	1	[X	1
12	DWN DIFF DISCH PR #2	0-5		X	į	X	1 1
13	DUN CONST SEC PR #2	0-5	1	X	ĺ	X	1
14	DWN MID-DIFF PR #1	0-5	1	j x	1	X	1
15	XOVR DISCH. #1	0-5	i :	X	į ×	X	1 1
17	INLT ORF U/S PR	0-1	ĺ	X	x	1 ×	l
18	INLT ORF D/S PR	0-1	Į į	X	į ×	X	1
19	IMP DISCH TOTAL PR	0-5	ĺ	X	1	1	1
20	TRANSITION TOTAL PR	0-5	1	X	1	1	1
21	XOVR EXIT TOTAL PR#1	0-5	1	X	1	1	1
22	XOVR EXIT TOTAL PR#2-	0-5	1	X	I	l	1
23	XOVR EXIT TOTAL PR#3	0-5	!	X	!	1	
• 24	PUNP DELTA-PR	0-5) X	X	! {	
18	INLT ORF DELTA-PR	0-1		X	ļ ×	į x	1 1
25	AIR SHLEY TEMP F	0-100	! 	×	! 	! 	
26	INLT ORF U/S TEMP	0-100	1	X	ł	1	1 1
30	LUBE OIL OUT TEMP F	0-200	- / 150	X	ĺ	l	1 1
31	LUBE OIL FLOURATE GPM	0-10	1/-	X	İ	!	1 1
32	SHAFT SPEED - RPM	0-10,000	[l X	 X	l İ	x
33	TORQUE - IN-LES	0-5000		X	1	!	1
34	RADIAL O ACCEL	0-10 CRHS	5	1	Ì	l	x
35	RADIAL 90 ACCEL	0-10 CRMS	5		ĺ	1	x
36	ANIAL ACCEL	0-10 GRMS	5	<u>Į</u>	ŀ	1	1 x 1

[&]quot; USE XOVE DISCH TOTAL PR #1 TO INLET STATIC PR #2 FOR PUMP DELTA-P

shroud to the rear shroud. Had the diffuser-crossover system shown poor performance, this would permit valuable diagnostic data to be obtained relative to the uniformity of the fluid entering the diffuser. For example, such measurements could potentially differentiate between an impeller stall problem and a diffuser stall problem. A second laser window was designed for the transition section of the diffuser between the upcomer and downcomer diffusers. This too could be valuable for diagnostics to differentiate between stall in the various parts of the diffusing system.

Test Procedures

The first test scheduled for the high velocity ratio diffusing crossover tester was a system check out at 6322 rpm and 100% of design flow (582 gpm). This test, in water, was designed to verify the soundness of the tester assembly, to verify the instrumentation systems, and to determine the pump pressure distributions and axial loads. One major goal of this test was to establish the hydrodynamically produced axial loads, compare them to the current prediction, and modify the thrust disk back pressure to accommodate these loads. A secondary goal was to rotate the total pressure Kiel probes within the flow passages, to align the sensor with the fluid velocity vector. (Kiel probes will measure the total pressure accurately within ±40 degrees of the mean streamline for velocities ranging from 4 ft/sec to Ma 1 in air)

Following the check out test, the performance tests were to evaluate the diffusing crossover tester by mapping the delivered head as a function of flow. Tests were to be run from 70% to 120% of design flow in 10% increments, while maintaining a constant thrust disk back pressure to ensure the net axial thrust direction would always be towards the inlet. To establish the H-Q map, the tester is brought to the proper inlet conditions and ramped to speed, as stated in the program test plan. By adjusting the pump discharge throttle valve, the tester flowrate was changed to the various set points described by the test plan, and the resulting pump pressure distribution recorded. At each H-Q set point, the data system was allowed to take twenty (20) scans and average the results before continuing to the next point. This method reduced the opportunity for erroneous data.

Once the H-Q map had been determined, the stall region of the crossover was explored. Starting at a nominal flow condition, as determined by the previous test, the flow would be decreased in 2% to 5% flow increments until diffuser stall was clearly defined. Again, the data was recorded at the steady state set points. The flow was then increased in similar increments until the diffuser performance returned to the nominal H-Q map.

Determining the diffuser stall point, in the decreasing flow direction, and the diffuser reattachment point, in the increasing flow direction, is important for the engine system operating conditions.

The final test series in water were the suction performance tests used to determine the iniet head at which pump discharge head breaks down. These tests were to be run at the 60% to 120%Q_d conditions, in 10% flow increments, in the order described by the test matrix. The suction performance tests were initiated when the desired flow conditions were met. At this point, the inlet pressure was slowly reduced until a minimum 10% breakdown in discharge pressure was observed. Immediately thereafter, the inlet to the tester would be pressurized to the initial conditions. The thrust disk drain valve, during these tests, was to be maintained in a constant position. Data were recorded continuously during the cavitation tests.

The H-Q test in air was designed to verify the tester assembly function, set the total pressure Kiel probe angular positions, verify all instrumentation was operational, and obtain an H-Q curve for the pump from 70% to 120% of design flow, in 10% increments. The H-Q tests in air were conducted similarly to the H-Q tests in water.

Test Facility Description

The test program for the high velocity ratio diffusing crossover was conducted at the Pump Test Facility in Rocketdyne's Canoga Main Building. Both water and air tests were conducted at this facility on the north powerhead. The tester was driven by a 4000 hp reversible, synchronous electric motor. The 1200 rpm output of the motor was increased through a oil lubricated gearbox to 6322 rpm. The water and air tests were remotely conducted from the control center, shown in Figure 23.

The water and air tests were conducted at the 6322 rpm speed to stay well below the first undamped critical speed for this rotating assembly which lies between 8000 and 9400 rpm for the predicted bearing stiffnesses, as shown in the rotordynamic analysis. The air tests were originally going to be run at 14,000 rpm in a separate air test rig, but it was more economical to run the tests on the same rig as the water test. Also, at the lower speed in air the Reynolds number is even further reduced from that in water yielding a stronger contrast to characterize Reynolds number effects.

The water test facility and hardware interface schematic for the high velocity ratio diffusing crossover was configured as shown in Figure 24. The water flowed from the

RI/RD80-111 -- -42-

Figure 24 - Water Test Facility Schematic

8000 gallon tank through the tester and returned to the tank in a recirculation mode. The tank pressurizing and vacuum systems were capable of maintaining a constant pressure at the pump inlet during the head versus flow maps and could also ramp the inlet pressure to less than 5 psia during the suction performance runs.

A hydraulically operated pump discharge valve, using flowrate feedback, was installed downstream of the tester. This valve was used to vary the water flowrate during the H-Q tests and maintain a constant flowrate during the suction performance test series. This valve utilized the flowmeter downstream of the tester to react to the requested changes in the flow conditions. Since the flowmeter was located downstream of the pump, a flowmeter was added to the thrust disk drain system so the actual pumped flow could be measured. Later a flowmeter was placed in the inlet line reduce measurement error created by adding the output of two separate flowmeters (see Figure 24).

A 40 micron (minimum) mesh filter was installed in the inlet duct to protect the hardware from any debris in the facility lines. A 100 micron filter was installed downstream of the hardware to collect any debris which emanated from the tester. The tester bearings were lubricated by a pump-fed 2 gpm oil jet supply and drain system, also provided by the facility. A photograph of the lubrication system and hardware interface is shown in Figure 25.

The air tests were conducted at the same pump position as the water tests. The fluid supply system, however, was significantly different. A six inch diameter pipe, ten feet long, with an eight-inch to six-inch pipe reducer at the entrance was used as the inlet duct to channel the atmospheric air into the inducer. Within the inlet duct, a 2.000 inch diameter orifice was used, in coordination with the upstream pressure and temperature and orifice ΔP , to calculate mass flow. There were no appreciable axial loads predicted for these tests, so the thrust disk back pressure system was plugged. Like the water test, pump flow was controlled using throttling valve in the pump discharge line. A schematic of the air test facility is shown in Figure 26.

There are two digital data acquisition systems that were used to record and reduce test data at the Pump Test Facility. The system consists of two digital computers forming a multi-user display and data processing system. The test control and data acquisition system for the water test facility consists of an analog-to-digital conversion subsystem tied into the Data General MV4000 computer as seen in Figure 27. The analog subsystem can acquire 128 analog signals, such as pressure, delta pressure, temperature, torque,

RI/RD89-111

Synchronous Electric Motor 4000 hp Pump Position #1 Gear Box **Torquemeter Pump Discharge Valve Crossover Tester Overboard** Flow Measuring . Ortilice Inlet Screen

Figure 26 - Air Test Facility Schematic

RURD89-111

speed, acceleration, flow, and displacement transducer outputs. All analog signals are filtered and sampled within 80 microseconds (1st sample to the 128th sample). While performing test control, the computer simultaneously accepts the digitized data from the analog subsystem and passes the data every 0.1 second to the hard disk storage for post test processing. After all data channels are acquired, the data is converted to specified engineering units and sent to the various display monitors. At the conclusion of the test, the data is transmitted to an Apollo computer format via BLAST software. The data is then further reduced and analyzed by the Rotating Machinery Analysis groups.

For the air test facility, the Pressure System Incorporated (PSI) system was used. The four major components of the PSI system are the Data Acquisition and Control Unit (DACU), Pressure Calibration Unit (PCU), pressure sensor modules, and the system controller. The DACU provides the control and data acquisition functions for the pressure sensor modules. An eight bit microprocessor executing firmware programs controls the DACU. The PCU consists of pneumatic valves and high accuracy quartz pressure transducers. The pressure transducers ranged from 1 psig to 15 psig, with accuracles to 0.5%. Under DACU control, the PCU switches the calibration value within the sensor to calibrate position and then applies a three point pressure calibration to all transducers. The calibration data is then reduced by the DACU. The main purpose of the system controller, an IBM PS/2 Model 80 computer, is to program the DACU and direct data flow within the acquisition system. Additional functions of the computer are data reduction, data display, and permanent data storage. A photograph of the Air test data controller and display are shown in Figure 28. When the test condition is met, the PSI system averages twenty scans of data and stores the data in specified engineering units on a 3.5 Inch floopy diskette. The test information is then transferred from the data file into a Lotus 1-2-3 spreadsheet where the data is further reduced.

TEST DESCRIPTION

Test Summary

Tests of the high velocity ratio diffusing crossover were conducted between September 1988 and October 1988. During that period, tests were conducted in air and water for the purpose of obtaining performance data at two Reynolds Numbers and determining the stall and cavitation characteristics of the crossover tester. Since the design of the crossover tester and the MK49-F are geometrically similar, this data can be easily scaled for comparison.

RI/RD894 *1

Table 8 prosents a summary of the nine tests actually performed. Test 1, in air, provided a successful check out of the tester mechanical operation and facility systems. Figure 29 shows the crossover tester installed in the air test configuration at the Pump Test Facility. Test 2 was repeated the set points of Test 1 while rotating the Kiel probes to find the maximum total pressure. No effects were observed. Typical facility start up and mechanical problems occurred in tests 3, 5, 6, and 7 primarily related to the balance pressure drum operation which had not been used before in this facility and the tank vacuum system operation required for the suction performance test. The only instrumentation lost during the tests was the Kiel probe at the impeller discharge which facility in Test in however, some good H-Q data were still achieved. This Kiel probe togetical in a region of targe dynamic variations due to the normal blade-to-blade flowfield in the rotating impeller and is likely to have experienced a high-cycle fatigue fellure.

Table 8 - High Velocity Ratio Diffusing Crossover Test Summary

Tes	Test Number	Test Fluid	Test Objectives	Comments
1		Air	Check Out & HQ	Objectives Achieved
[2]	•	Air	HQ with Klel Probe	Objectives Achieved
3	T88A092	Water	Check Out @ 100 Qd	Test Cut - Redline
-	T88AD93	Water	Check Out @ 100% Cd	Objectives Achieved
13	*88 /094	Water	HQ and Stall Map	Facility Issue
	T881095	Wester	Detailed Mapping	Facility Issue
171	786A096	Water	Suction Performance	Limited Data Achleved
101	T88A097	Water	HQ & Stall Mapping	Objectives Achieved
શ્)@DÁGBT	Water	Suction Performance	Redline Cut. Data Achleved - Tester Falled

was very successful and several H-O points were achieved, diffuser stall was maded, and some station performance tests completed. In Test 8, the remaining suction manors with points were completed. Test 8, however, was terminated prematurely the rediling autoff. At the time of cutoff, the cavitation test at 80% design flow much high completed and the intel line was being re-pressurized. During the successful, showever, was terminated prematurely the intel line was being re-pressurized. During the successful, showever, and the pump end bearing had failed and the impeller front shroud had a severely on the intel housing. Post test analysis of the pressure parameters

RI/RD89-111

indicated that the axial thrust of the pump had dramatically changed due to shifting pressures caused by the deep cavitation in the pump. Figure 30 shows the axial loads calculated for the test where the failure occurred. With the pressures changing so rapidly, the accuracy of calculating this load is in question because it is obtained by vector addition of large forces which yield a relatively small residual. However, the trend is certainly correct. As can be seen from the Figure 30, the thrust suddenly changed direction at the end of the test by a magnitude of over 6,000 lb. resulting in an unloaded pump end ball bearing. Subsequent pressurization of the inlet and recovery from cavitation would then force the bearing back into a highly loaded condition which caused the bearing failure.

Hardware Disassembly

At the conclusion of the final test, the high velocity ratio diffusing crossover tester was disassembled and the condition of the major components documented. Two major observations were noted. First, there was significant rubbing on all the close radial clearance locations, and second, the shaft had translated axially toward the inlet sufficiently enough to rub the impeller.

When the axial load reversed during the 90% and 80% Q_d cavitation tests, the pump end bearing was unloaded, providing no radial support to the shaft. The rotor proceeded to whirl with amplitudes sufficient enough to cause the rotor to rub in the soft seal areas. Most of the damage incurred was at the inducer/tunnel, impeller hub/interstage seal, and thrust disk/seal interfaces.

The inducer tunnel and interstage seals were made with Hexcel 3125 polyurethane as described earlier. The interstage seal was badly damaged, including large cracks and significant material loss. However, there was no damage found on the inside diameter of the crossover housing. The rubbing velocity at the interstage seal was approximately 110 feet per second.

The inducer tip seal was moderately damaged. The inducer tip seal showed scratches from rubbing of the aluminum inducer blades, as well as pitting caused by the deep cavitation. Some minor damage to the inducer blade tips were also noted, but were considered superficial and easily repairable. The rubbing velocity at the inducer tip seal was approximately 154 feet per second.

Figure 30 - Calculated Axial Thrust vs. NPSH at 80%Qd

Further investigation into the survivability of Hexcel 3125 as a soft seal material is required to fully evaluate the findings of the post test disassembly. The condition of these seals were documented for the data base being compiled under the Soft Wear Ring Seal Technology Program, Task B.5.

The thrust disk, made from A-286, also rubbed the Kel-F thrust disk seal during the bearing unloading. The wear track in the Kel-F was not uncommon for this seal/rotor combination. Some heat generation was noted on the disk tip. The rubbing velocity in this location was approximately 235 feet per second.

The soft seal materials, though heavily damaged, were very successful. One of the main goals of this type of seal is to tolerate rubbing without damaging the rotor or stationary housings. In each case, the seals were worn, but did not cause severe damage to the rotating part or the soft seal retainer system. This was important because if significant rubbing were observed in an actual turbopump, only the soft seal material would have to be replaced and not the expensive rotor or seal retainer parts. This was evident in the interstage seal area. If a metallic seal would have been used in this application (and not uncommon) the impeller and the crossover as well as the soft seal would have to be replaced. During the crossover tests, however, neither the impeller hub nor crossover were damaged.

The axial rubbing damage caused by the axial translation of the shaft was much more severe than the radial rubbing damage. Some of the damaged parts included the impeller, front shroud carbon face seal, bearing sleeve, and labyrinth seal retainer.

The axial travel that was witnessed during the failure was over .025 inch towards the inlet. This was caused when the axial load returned towards the inlet after unloading the bearing during the 80% Qd test. When the thrust reversed the bearing seized, and the power of the motor kept turning the tester shaft. The tester shaft rotated inside the inner ring of the failed bearing heating the shaft sleeve and bearing area. With the 3,000 lb. load towards the inlet the high frictional heating in this area, the sleeve between the bearings started to deform allowing the shaft to travel until the impeller shroud started to rub on the pump and housing. At some point, the torque from the rubbing of the shaft and impeller was enough to shear the quill shaft. Excessive damage was incurred to the front shroud of the impeller, tester shaft and bearing separator sleeve. A list documenting the current damage status of the tester parts and the action required to fix the tester are shown in Table 9.

TABLE 9: CROSSOVER TESTER POST TEST PARTS STATUS

PART NO.	DESCRIPTION	DAMAGE	ACTION	(N)EW (R)EWORK (U)SE AS IS
7R0017923-3	INLET HOUSING	Rub at Seal Retainer	Clean Up with Lathe	æ
7R0017924	COVER	None	None	Ð
7R0017925	CROSSOVER	Interstage Seal Worn	Replace Interstage Seal	Œ
7R0017927	THRUST DISK	To Rub	None	Ð
7R0017928-1	THRUST DISK SEAL	Seal Worm	Replace Seal	z
7R0017930-3	IMPELLER	Tip Rub, Front Shroud Rub	Remove Shroud & Braze New	Œ
7R0017931-3	INDUCER	Blade Tip Rub	Sharpen Plade Tips	œ
7R0017940-3	IMP LABY SEAL		None	5
7R0017940-5	LABY RETAINER	Severely Rubbed by Impeller	Replace Retainer	Z
7R0017944-1	INLET TUNNEL	Minor Rubbing/Cavitation Damage	Replace Seal	Œ
T-5100073-120	FACE SEAL	Normally Worn	None	Э
T-5100073-501	BEARING SPACER	Severely Damaged	Replace Sleeve	z
SKF 7214	BALL BEARINGS	One Failure/One Good Condition	Replace (buy 2 minimum)	z
EWR3072086-007	VOLUTE MANIFOLD	None	None	Þ
EWR306802-003	SHAFT	Severe Rubbing from Bearing	Grind, Plate, Grind	Œ
EWR305803-003	BEARING CARRIER	Bore Scratches from Bearing	Polish Bore	Œ
			•	

TEST DATA ANALYSIS

Data from the two air tests and four of the seven water tests were compiled to determine the performance of the crossover tester. The tester performance was analyzed to review the crossover as well as the pumping element performance (inducer and impeller). In this section, the crossover test results of head and efficiency, axial thrust, critical NPSH, and crossover pressure recovery will be discussed and compared with the analytical models used to design this tester and the MK49-F LH2 turbopump. Data from the MK49-F turbopump tests conducted in 1986 will also be compared with these results. The raw data for the Air Tests 1 and 2 can be found in Appendix A and the water test data from tests T88a094, T88a096, and T88a097 can be seen in Appendix B.

Stage Head and Efficiency versus Flow Results

The overall stage head was determined using the crossover exit total pressure measurements and the calculated inlet total pressure where the latter was based on the measured static pressure and the calculated velocity head from the measured flowrate. At the crossover exit, three total pressures were measured at different radii representing the V4, V2, and 3/4 blade height positions. These three total pressures were in excellent agreement as can be seen in Figure 31 (notice the suppressed zero to expand the scale). This was the expected result and shows that the crossover exit flow was relatively uniform hub-to-tip as designed. If there had been a significant separation at the hub or tip, a variation in total pressure would have been seen.

Data from two water tests (T88A094 and 096) were combined in Figure 32 to show the stage head-flow relationship for the water test in comparison with the predicted head. The predicted head was calculated using Rocketdyne's Loss Isolation Program for centrifugal pumps with the actual dimensions and fluid properties for the water test configuration. This program accounts for the Reynolds number change for the test set up versus that for hydrogen testing of the MK49-F. The comparison between measured and predicted values was good, with the measured values of head being approximately 4 percent low at the design flow (Qd). Tests of the 3-stage MK49-F hydrogen pump had also shown the head low by about 8.0 percent. With a known overboard seal teakage problem partially contributing to the low head, a direct comparison of the tester and the MK49-F turbopump could not be made. Based on the water data, however, it appears that the stage performance of the hydrodynamic design was slightly lower than predicted. Figure 32 also shows the stall characteristic. The analysis had predicted the stall to occur at approximately 80 percent of design flow with a rather moderate decrease in head. The Loss Isolation program only predicts stall due to teading edge flow angle

T-T HERORISE, FEET

RURD89-111 -57-

STAGE HEAD, FT.

RURD89-111 -58mismatch. The water test data shows that the stall initiates at approximately 76% Q_d while the flow was decreased. While increasing the flow, the stalled condition persisted until approximately 100% Q_d . This is known as the stall hysteresis effect.

The stail hysteresis phenomena could have important implications in the engine start sequence. For example, if the pump operated at a low Q/N (flow-speed ratio) during the start transient and the diffuser stalled, then the pump may remain in the stalled condition if the pump operated at a Q/N lower than 100%. This scenario is being reviewed for the MK49-F turbopump performance issues on the Integrated Component Evaluator (ICE) completed under Task F.4 of this contract.

The total head loss due to the stall was not severe and was only approximately 9% lower than the predicted head at 70% Q_d in the "unstalled" condition. This low head loss is characteristic of leading edge type stall in a centrifugal pump.

To determine the pump stage efficiency, the power absorbed by the rotating axial thrust balance disk was subtracted from the measured power (torque and speed) to arrive at the pump absorbed pump power. The thrust balance disk power was calculated using the Daily and Nece friction coefficients (Ref. 1). Figure 33 shows the resulting pump efficiency for the water test as a function of flow and compares it with predicted values. Near design flow, the efficiency was approximately 3 percentage points lower than predicted. The lower calculated efficiency was due in part to the accuracy of the calculated and measured power terms. The general shape of the curve again agrees well with prediction. As was the case with the head characteristic, the measured stall initiated later than the predicted stall.

The effect of Reynolds No. on head was larger than expected. Figure 34 shows the head-flow relationship for the stage from the air test, again comparing the measured to predicted values. The measured head near 100% Qd was about 18 percent lower than predicted even though the predicted curve in air was 18 percent less than the prediction in water. Also, note that the air data does not show any stall characteristic in the curve. Data to be presented below will actually show that the diffuser was stalled over the full range of flow for the air test, so that the head characteristic in the data presented was the stalled head.

The stage efficiency could not be determined from the air test because of the low power absorption compared to the system tare torque. Table 10 presents the predicted and

Figure 33 - Tester Stage Efficiency in Water Test Versus Predicted

ELLICIENCY (%)

RI/RD89-111 -60-

Figure 34 - Tester Stage Static Head in Air Test Versus Predicted

RI/RD89-111 -61-

Table 10 - Head & Efficiency versus Flow - Air, Water,and LH2 Measured & Predicted

		<u>5</u>	Inducer			inducer	inducer + impeller	\[\frac{\pi}{2}	Stag	Stage - Ind+Imp+Xover	mp+Xq	ě
	State	Static Head (ff)	Effe	Efficiency	Static F	Static Head (ft)	器	Efficiency	Static H	Static Head (ft)	Effe	Efficiency
	Pred	Meas	Pred	Meas	Pred	Meas	Pred	Meas	Pred	Meas	Pred	Meas
Crossover Tester (Water)	100	<i>L</i> 5	78%		1037	1074	91.3%	•	1461	1420	56.5%	55.4%
Crossover Tester (Air)	g	8	%.29	•	8	1065	85.0%	•	1203	1011	45.7%	•
MK49-F Turborump in LItz at 60,000 rpm	1362	1235	79%	•	11693	12029	92.9%	•	16882	15768	69.7%	•

measured head and efficiency of the crossover tester in water and air with those data available from the MK49-F turbopump testing.

Internal Pressure Distributions

With the numerous internal pressures used in the test, the performance of indivicomponents of the pump was estimated.

For the air test, the total pressure at the impeller discharge was measured using a singlikel probe. Using this, the total head across the inducer-impeller combination were determined. The measured head was actually slightly higher than the predicted. The results are shown in Figure 35. This was consistent with the observations of stage head efficiency reported above. The water data had shown the head closer percentage-will to the prediction than the efficiency. This could be obtained if the impeller head were higher than predicted, and the losses in the diffusion system were higher than predicted. The two effects tend to cancel each other in the stage head but the higher losses show a direct effect on the efficiency.

Another interesting feature in Figure 35 was the difference between the two air test. The first air test was started at a lower Q/N which apparently put the impeller into stall, and due to hysteresis the impeller did not come out of stall until approximately Qd was achieved. Once out of stall, the flow could be decreased to 70% Qd without initiating stall. On the second air test, the pump was started at a higher flow but still began in an apparent stalled condition but, even more surprising, never got out of the "stalled" condition. This behavior has not been explained. The stage head characteristic in air did not show the same trends from test one to test two. In Figure 34, the two tests were shown to give about the same head value, and in fact, the data for the second test was higher than for the first test. With severe stall in the diffuser system, the stage performance results are not necessarily expected to be consistent.

Figures 36 and 37 show the static-to-static pressure rise across the inducer-impeller for the air and water, respectively. The air data (Figure 36) shows the same general features as the total head curve, but the difference between measured and predicted was much higher for the static rise. This was possible if there was some diffusion in the vaneless space due to the difference in radial position between the impeller diameter and the sensing port diameter. For the water data, the prediction and measurement are closer but the measured value was still higher. Note that for the water, the predicted

Figure 35 - Inducer + Impeller Total Head in Water and Air Test Versus Predicted

RI/RD89-111 -64-

Figure 36 - Inducer + Impeller Static Head in Air Test Versus Predicted

RI/RD89-111 -65static pressure was actually 14 percent higher than for air, but the measured values are essentially the same.

Figure 38 shows the static-to-static pressure rise across the inducer only for both air and water tests. Again, the second air test gave lower results. This could be indicative of inducer "stall" in the second test which would have aggravated the impeller stall. However, it was still not clear why the inducer would not come out of stall at the higher flows. The water data agreed with the data from the first air test. The air test data did not show a definitive stall, although there was some indication of hysteresis between 65% and 75% Qd. The predicted inducer discharge static pressure was close to the measured value for the air test at the design flow using the Loss Isolation Program. The predicted inducer discharge static pressure, for the water tests, was slightly higher.

To show the diffuser performance, plots of static-to-static head rise from pump inlet through crossover exit were prepared showing the intermediate stations through the diffuser-crossover system. The water test data pressure distribution at various flowrates are shown in Figure 39. The measurement stations (1 through 9) are delineated on the cross section of the pump in Figure 40. Note the significant increase in static pressure from station 3 to 4. This figure clearly shows the majority of the diffusion occurring in the upcomer diffuser. In the transition and the downcomer diffuser, little diffusion can be achieved because the boundary layers are already large before entering these sections. Figure 39 also shows the stall occurring in the upcomer diffuser at the 70% Qd flow. Note that the pressure at station 3 (impeller exit) was still high at this flow but the pressure at station 4 decreases.

The two air tests gave similar results so only those of the second air test were shown in Figure 41. The majority of the diffusion should be occurring in the upcomer diffuser, station 3 to station 4, as was seen in the water test data. The static pressure, however, for most flows significantly decreases from stations 3 to 4. Thus, the inlet to the upcomer diffuser was the point of initiation of the stati. The diffusion system never recovers from this stati. The stati was caused by increased boundary layer blockage due to a low Reynolds number. This effect resulted in an impeller discharge flow which entered the diffuser at a velocity and angle which would produce flow separation at the leading erige.

- Inducer + Impeller Static Head in Water Test Versus Predicted

Figure 37

RI/RD89-111 -67-

Figure 38 - Inducer Static Head in Water and Air Test Versus Predicted

INDUCER HEADRISE (FT)

RI/RD89-111 -68-

Figure 39 - Static Head vs. Tester Location in Water

RI/RD89-111 -69-

Figure 40 - Crossover Tester Static Pressure Locations

Figure 41 - Static Head vs. Tester Location in Air

RI/RD89-111 -71-

Pump Suction Performance

Suction performance data were obtained from 80% to 124% Q_d at approximately 10% Q_d increments. It was during the 80% Q_d flow test when the tester bearing failure occurred. By this point in the test program all flow conditions had been tested. Some data points, including the design flow point, would have been repeated because less than 3% head loss was seen. However, enough data existed to project reasonable estimates of the suction performance for all flows.

The test data were typically reduced by plotting stage head as a function of NPSH (Net Positive Suction Head) for each constant flow condition. Flow was held constant during these test via the pump discharge throttle valve. Typical results were shown in Figure 42 through 50, beginning at 80% and increasing to 124% Q_d.

At the lower flows, the head was seen to hold relatively constant and drop sharply once cavitation effects were seen. Figure 43, at 87% Q_d, shows a very interesting characteristic in that the head drops noticeably into stall as the NPSH was decreased. It can be said that the ensuing cavitation phenomena was a sufficient disturbance to drop the head to the lower level of the stall hysteresis characteristic.

As mentioned, in Figure 44 and 45, the tests were terminated before significant head loss occurred. The resulting suction specific speed values could not be accurately determined. Unfortunately, the failure occurred before these key points could be repeated.

As the flow was increased, the head was seen to drop at a higher NPSH, as expected. However, head loss was less severe before eventually dropping into super-cavitation, as seen Figures 46 through 50, which was indicative of the inception of impeller stall. This phenomena has been seen in other centrifugal pumps like Rocketdyne's MK29-F (used on the J2S Engine). Inducer performance was seen to be lower than expected and may have also contributed to this situation.

Using the Head versus NPSH data, suction specific speed curves were generated to compare with the design predicted value. These curves are given in Figure 51 for 3, 5, and 10 percent head fall off. Suction specific speed was defined as:

Figure 42 - Suction Performance Test at 80%Qd

CLUCE HEUD' FEET

Scaled-Up MARK49F Single Stage

Figure 44 - Suction Performance Test at 92%Qd

RI/RD89-111 -75-

I-I STRGE HEAD, FEET

RVRD89-111 -76-

I-I SINGE HEND, FEET

Figure 47 - Suction Performance Test at 109%Qd

Figure 48 - Suction Performance Test at 116%Qd

Figure 49 - Suction Performance Test at 119%Qd

Figure 50 - Suction Performance Test at 124%Qd

Figure 51 - Suction Specific Speed Capability versus Flowrate

where the parameters were speed (N) in rpm, flow (Q) in gpm, and NPSH in feet. Also shown in the figure was the predicted ideal capability at 3% head fall off based on the design flow coefficient and inlet hub/tip diameter ratio of the inducer. The ideal suction specific speed in water without thermodynamic suppression head (TSH) benefit was nearly 29,000. The suction specific speed calculated from the water data was only about 18,000. The low Nss could have been caused by several factors: (1) leading edge of inducer not fabricated to print, particularly with regard to thickness, (2) tip clearance of the inducer and leading edge thickness too large, (3) large hub-to-tip diameter ratio of the inducer, or (4) design deficiency. The latter does not appear to be the problem based on review of the hydrodynamic design. With the size of the MK49-F inducer being so small, the parameters typically controlled for good suction performance could not be scaled down. Consequently, the inducer tip clearance and leading edge radii, used in this tester, when scaled up from the small MK49-F, were larger than the ideal dimensions used on a turbopump of similar size. By scaling up these dimensions, suction performance would be reduced from the ideal case, hence the lower performance found during the tests.

It should be noted that the results of Figure 51 were for a single stage and with no TSH benefit. For a 3-stage pump in hydrogen the results would be much better. For example, 10 percent head loss on the first stage would represent only about 3 percent over all for the 3-stage design. The 10% head fall off curve was not defined in Figure 51 at design flow but the suction specific speed (Nss) could easily reach 25,000. With added TSH benefits, the suction specific speed capability in hydrogen could be much higher than 30,000.

At the time the MK49-F was designed, the required suction specific speed was only 10,000 at design flow. This value was exceeded even in water for a single stage. Thus, the operating requirements would be met even though the performance was down from the predicted potential at the design flow coefficient.

Using the inducer and impelier discharge static pressures, the relative performance of the inducer and impelier can be distinguished over the flow and NPSH range tested. Figure 52 shows the inducer static pressure head rise above inlet total at 87% Q_d , and Figure 53 shows the corresponding static pressure head differential across the impelier. Obviously, at this flow the inducer was determining the suction performance of the stage while the impelier continues to generate the static pressure head until the inducer performance drops. In Figure 53, note the very interesting result of the stall that was

RI/RD89-111 -84-

IMPELLER ST-ST HEAD, FEET

RI/RD89-111 -85-

also seen to occur at an NPSH of approximately 140 ft. in Figure 43. Although the impeller experienced a significant discharge pressure oscillation during pump stall, it did not lose head, showing that the pump stall occurred in the diffuser. The static pressure head was actually varying by 250 feet, peak-peak. With a stage head rise of only 1400 feet this was a peak-peak variation of over 15 percent of the stage head. Operation under such a large dynamic oscillation would not be recommended.

In contrast to Figure 52 and 53, Figure 54 and 55 present the same two parameters at 109% Qd. At this flow the impeller can be seen to slowly lose static pressure head as NPSH was decreased even though the inducer static head remains the same. As the inducer head decays the effect was also seen in the impeller, but the impeller began losing head earlier. Even at this flow however, the super-cavitation point was determined by the inducer, not the impeller. This was, of course, typical. At higher flows, the impeller suction performance was most critical while at design flow and below, the inducer determined the suction performance.

Shroud Vortex Strength

Static pressure measurements were made on the front and rear shroud of the impeller to permit evaluation of the vortex strength in these regions. The pressure distribution on these shrouds, which are strongly affected by these vortices, determine both the axial thrust and the shroud leakage rates. Data from the water tests was used to establish the front and rear shroud pressure distributions. Figure 56 presents an illustration of the impeller shroud pressure distributions and the direction of leakage flow.

The front shroud flow enters from the impeller outer diameter and down the shroud cavity to the impeller labyrinth seal. This leakage combine with the inducer discharge flow before re-entering the impeller eye. Because the front shroud flow enters at the impeller tip, the fluid already has a strong tangential velocity. According to the Loss Isolation program results, the fluid tangential velocity to impeller tip velocity ratio, defined as Cu/U₁, at the design flow is 0.63. This velocity ratio varies from 0.67 to 0.61 at the 80% to 120% design flow, respectively. Since the impeller discharge static pressure was measured 0.213 inch radially outboard from the impeller outside diameter, the static pressure at the impeller tip was calculated, using the velocity ratio and assuming no total pressure loss per the following:

$$P_{tp} = P_{thems} + \frac{1}{2g} C \frac{\Gamma_{t|p}}{\Gamma_{meas}} + 1$$
 (2)

Figure 54 - Inducer Static Head Loss at Q/Qd=109%

IMPELLCR ST-ST HEAD, FEET

Figure 56 - Crossover Tester Impeller Shroud Geometry

The effective ratio of fluid to wheel velocity, K, in the front shroud region was determined from the relationship,

$$\Delta P = \frac{\rho K^2 N^2 (d_2^2 - d_1^2)}{144(2g)(229.2)^2}$$
 (3)

where ρ was the specific weight in pounds per cubic feet, g was acceleration due to gravity (ft/sec²). N was the shaft speed in rpm, d₂ and d₁ (in inches) are the diameters at the pressures measurements (d₂ being at the impeller tip) and ΔP was the differential pressure in psi from d₂ to d₁. The constants in the denominator were used for engineering unit conversion. A predicted front shroud velocity ratio, K_{fs} , of 0.7 was selected based on the high tangential velocity entering the cavity and from turbopump data with similar geometries, such as the SSME HPFTP. As seen in Table 11, the measured values of K_{fs} , ranged from 0.72 to 0.68 from 80% to 120%Qd, respectively, and were in excellent agreement with this prediction. Because of the higher than predicted impeller discharge pressure at 80% and 100%Qd, a modest increase in axial thrust, 824 and 808 pounds, respectively, was calculated.

For the impeller rear shroud, the flow field was very different. In this case, the flow originates from the crossover exit with very low tangential velocity, flows through the interstage seal, and up the rear face of the impeller. Analysis had predicted the K value on this face to be as low as 0.23 due to the low entering velocity. The test data showed, however showed that the rear shroud velocity ratio, $K_{\rm rs}$, to be between 0.36 to 0.33. The higher value may have been due to a higher than expected angular velocity exiting the interstage seal.

If the flow were low, a value close to 0.5 would be expected (this being the average value for a rotating flat disk in a stationary housing with no through-flow). A higher K_{rs} would tend to reduce the axial force on this face, as seen in the 100% and 120% Q_d calculations, where a reduction of 694 and 1626 lbf, respectively, was seen. At the low flow condition, 80% Q_d , the higher than predicted impeller discharge pressure overwhelmed the influence of K_{rs} on axial thrust, and therefore, a slightly higher value (340 lbf) was calculated. The K factor information generated will be used to recalculate the axial loads of the MK49-F turbopump.

Table 11 - Shroud Vortex Strength - Predicted versus Measured

High Velocity Ratio Crossover Tester Pump Parameters	Predicted 80%	Measured 80%	Predicted 100%	Measured 100%	Predicted 120%	Measured 120%
Impeller Discharge Tap Pr (psia)	•	591	•	571	•	521
impeller Tip Press * (psia)	549	567	536	550	504	501
Imp Front Shroud Pr (psla)	,	475	٠	462	ŧ	417
Imp Frnt Shrd Hub Pr** (psla)	355	364	. 343	356	311	316
Impeller Rear Shrd Pr (psla)	•	548	•	526	,	481
Imp Rear Shrd Hub Pr** (psla)	520	510	507	478	475	440
imp Front Shroud K factor, Kis	0.70	0.72	0.70	0.70	0.70	0.68
Front Shroud Axial Force (lbf)	27,409	28,233	26,663	27,471	24,718	24,765
A Frnt Shrd Axial Force (Ibf)	ŧ	824	•	808	•	47
Imp Rear Shroud K factor, Krs	0.23	0.32	0.23	0.36	0.23	0.33
Rear Shroud Axial Force (Ibf)	45,224	45,564	44,183	43,489	41,467	39,841
δ Rear Shrd Axial Force (lbf)	•	340	•	-694	•	-1,626
Net Ax Thrust Toward Infet (lbf)	17,815	17,331	17,519	16,017	16,749	15,076

Imp Tip pressure calculated from measured Imp discharge pressure assuming rCu constant.

· · Hub Pressures calculated using measured K Factors

Diffuser Crossover System Design Verification

The diffuser-crossover system plays an important part in the operation of a high efficiency multistage pump. The diffuser and crossover (DC) system consists of a vaneless space upstream of two straight mean line diffusers with a constant area turning channel in between. Figure 57.

The vaneless space was necessary for the suppression of pressure and velocity perturbations from the impeller blade wakes. These perturbations cause local variations in the diffuser inlet flow angle resulting in dynamic loads on the leading edges of the diffuser vanes. The gap size was restricted since increasing the gap size above the minimum necessary will reduce efficiency and increase diameter and weight.

Design of the first diffuser of the DC system, the upcomer, requires one of the most critical calculations in diffuser design: the calculation of the effective blockage at the diffuser throat. This calculation requires estimation of the boundary layer growth up to the throat in the following regions:

- 1) Along the side walls in the vaneless space
- 2) Along the side walls in the diffuser inlet region represented by the triangular section DEF (Figure 58)
- 3) Along the vane suction surface (line DE in Figure 58)

The boundary layer displacement thicknesses were simply added to arrive at a total area blockage at the throat. The blockage formula can be stated as:

and represented in Figure 58. Note that eq. (4) double counts the boundary layer blockage in the corners, which tends to overestimate blockage, but this was assumed to partially account for 3-D boundary layer interaction effects not represented in the simple 1-D displacement thickness calculations. Coincidentally, double counting the boundary layer blockage in the corners may compensate for the actual metallic blockage due to corner radii or fillets.

Figure 57 - Diffusing Crossover System

Figure 58 - Boundary Layer Build Up in Diffuser Inlet

Determination of the throat blockage has been correlated with the pressure recovery from the diffuser inlet to the throat (Ref. 2, 3):

$$\frac{\Delta P}{Q_3} = \frac{(P_4 - P_3)}{Q_3} \tag{5}$$

where P₃ and P₄ were the static pressures at diffuser inlet and throat and q₃ was the inlet dynamic pressure defined as:

$$q_3 = \frac{1}{2} \rho C_3^2 \tag{6}$$

where C_3 was the diffuser inlet flow velocity. Figure 59 shows the correlation plotted at various inlet blade angles, α . As expected, the smaller the blade angle the larger the blockage due to the increased length of the fluid path to the diffuser throat. Since these curves were developed for a Reynolds number of 1×10^5 , a correction for significant variation in the Reynolds number was derived:

$$CR = 10 Re^{-0.2}$$
 (Ref. 2) (7)

The blockage was read from the curves in Figure 59 and multiplied by CR to determine the effective throat blockage. This blockage was then used to determine the pressure recovery of the diffuser channel from the 2-D diffuser performance Cp maps; an example of which was given in Figure 60.

The diffuser pressure recovery can be defined in various ways. The pressure recovery as defined by the diffuser maps described above was:

$$C_p = \frac{2(P_d - P_l)}{\rho C_l^2} \tag{8}$$

where P_d - P_t was the static pressure difference between the diffuser discharge and the diffuser throat and C_t was the velocity at the throat including any throat flow blockage due to the boundary layers. Since the blockage was not known, a priory in this case, an alternate form of the pressure recovery factor was defined by not including the blockage

Figure 59 - Curve Fits of Blockage Factor for Diffuser Angles (Ref. 3)

Figure 60 - Comparison of Pressure Recovery vs. $\cdot L/\delta^*$ (Ref 4)

in the velocity term:

$$C_{p} = \frac{2(P_{d} - P_{l})}{\rho C_{l}^{2}}$$

$$(9)$$

where Pd and P1 were the static pressure at the inlet and discharge to the diffuser and Ct was the mean velocity in the diffuser throat calculated only from the flowrate and the diffuser throat area. It was felt that this coefficient was the most representative to compare the analysis calculations to the data results because it allowed direct comparison between experimental and analytical results. The original design criteria was for no diffusion between the inlet and the throat of the upcomer. The test results were compared to this analysis and then the required throat blockage and leading edge suction surface diffusion required to match the test data were calculated. Similarly for the downcomer the pressure recovery was predicted analytically and then the throat blockage was calculated from the measured pressure recovery.

Data analysis for the upcomer involved using the same techniques as those utilized during the design analysis, but using the data results to calculate the amount of inlet blockage and the diffusion occurring in the inlet section of the diffuser. The analysis required iteration of the inlet pressure recovery. $\Delta P/q_3$, to determine the blockage from Figure 58. This blockage was then used to determine the predicted throat velocity for calculation of the throat Revnolds number defined as:

$$Re = \frac{C_1W_1}{v} \tag{10}$$

where C_1 was the throat velocity including the predicted blockage, W_1 was the throat width, and v was the kinematic viscosity. The blockage term as determined from Figure 58 was then corrected for Reynolds number using the correlation previously determined in eq. (3). This value of blockage was then used to find the L/δ^* , where L was the effective diffuser channel tength from throat to discharge and δ^* was an effective blockage determined from the Reynolds number corrected blockage. This term was necessary for the determination of the diffuser pressure recovery from Figure 60. The obtained C_0 can easily be transformed to a mean pressure recovery, C_0 , by adjusting the throat velocity in the denominator by the predicted blockage. The inlet pressure recovery term was then converted to a common denominator by multiplying by the ratio

of the throat dynamic pressure,

$$q_i = \frac{1}{2} \rho \overline{C}_i^2 \tag{11}$$

to the inlet dynamic pressure, q₃. This ratio was determined by assuming a "lossless" core flow in the diffuser inlet section. This is an often used assumption for 2-D diffuser analysis and assumes that the boundary layers do not merge. The q₃/q₁ ratio was:

$$\frac{\mathbf{q}_3}{\mathbf{q}_1} = \left(1 - \frac{\Delta P}{\mathbf{q}_3}\right)^{-1} \tag{12}$$

The Cp calculated from the data can be compared to the analysis Cp.

$$\overline{C}_{p} = \frac{C_{p}}{(1-BLG_{4})^{2}} + \frac{\Delta P}{Q_{p}} \frac{Q_{p}}{Q_{p}}$$
(13)

The analysis was then completed by iterating on the infet pressure recovery until the data and analysis mean pressure recoveries were matched. From this analysis, it was possible to obtain a good estimate of the actual throat blockage.

Data was available in three test mediums: hydrogen, water and air. One speed was selected from the hydrogen turbopump tests (60K rpm) giving data at three Reynolds numbers. As will be shown, the data predicted that the diffuser was stalled in air, allowing the diffuser performance predictions to be verified at two Reynolds numbers and the stall prediction to be checked for the third.

Hydrogen test data of the complete turbopump showed that the upcomer had a mean pressure recovery, $\overline{C_P}$, of 0.749 at 60,000 rpm. Design analysis predicted a $\overline{C_P}$ of 0.684 and a throat blockage of 8%. Analysis of the data indicated that diffusion had occurred in the diffuser intet. The analysis showed that the intet $\Delta P/q_3$ was 9.07 and the throat blockage 10.8% to match the test data $\overline{C_P}$. This analysis of the design was confirmed by comparing the intet velocity of the analysis to that which was predicted by Rocketdyne's Loss isolation program for centrifugal impeller design. The velocities were very close: 620.7 ft/sec from the data analysis and 619.7 ft/sec from the Loss isolation program. The amount of diffusion represented by the $\Delta P/q_3$ was only 3.6% of the intet velocity and probably represents the time average effect of the unsteady flow at the upcomer intet. Table 12 gives a summary of the analysis results.

Table 12 - MK49-F Turbopump Crossover Data Analysis (LH₂)

	C _p Data	Cpi	ΔP/q ₃	BLG4	R∙	Сp	Ū _p	C ₃ Analysis	C ₃ Loss Prgm
Design	•	0.866	0	0.08	2.6x10 ⁶	0.58	0.684	•	619.7
Data Analysis	0.749	0.866	0.07	0.108	2.85×10 ⁶	0.52	0.748	620.2	619.7

Note: C₃ in feet per second.

Water test data showed that the upcomer had a mean pressure recovery of 0.81. Analysis showed that to achieve this amount of pressure recovery there was approximately 6% diffusion in the diffuser inlet. This indicates that the inlet $\Delta P/q_3$ was 0.12 and the throat blockage was 17.8%. This analysis was substantiated by a comparison of the inlet velocity calculated from the data analysis with that predicted by the Loss Isolation program. The values agree within 5% as shown in Table 13. The increased throat blockage was expected since the lower Reynolds number of the water test, compared to the hydrogen tests, would tend to increase the boundary layer growth on the diffuser walls.

Table 13 - Crossover Tester Data Analysis (Water)

C _p Data	Cpi	ΔP/q ₃	BLG ₄	Re	Ср	Ç,	C ₃ Analysis	C ₃ Loss Prgm
0.81	0.866	0.12	0.178	4.32x10 ⁵	0.41	0.808	194.6 (fps)	181.6 (fps)

The diffusion system turning channel was designed for minimum losses. Rocketdyne data has shown that it was best to avoid diffusion in the turning channel, achieving all the diffusion in the radial inflow or outflow sections of the passage. Design of the turning channel for no diffusion and to minimize the losses does not simply mean designing for a constant cross section duct. Losses arising from secondary flows developed in the turning channel due to the centrifugal forces of the fluid flowing around the bend must be minimized. An area distribution to achieve this was developed by the Southwest Research Institute (Ref. 5). A correction factor was applied to the duct height as a

function of radius to minimize the migration of boundary layer fluid from the outside to the inside of the bend.

The effectiveness of the turn-around duct could not be determined directly due to the complexity of the flow in the bend which would have required extensive flow measurements. An estimate of the effectiveness was found from the data analysis of the second diffuser inlet blockage as compared to the discharge blockage of the first diffuser.

Design analysis of the second diffuser, the downcomer, was much the same as the upcomer although there was no inlet blade section. Again, accurate calculation of the Inlet blockage was essential to the design. A first approximation of the inlet blockage can be made by assuming a loss-less flow from the upcomer discharge through the turning channel. Thus, the inlet, or throat, blockage of the downcomer would be equivalent to the discharge blockage of the upcomer. This analysis indicates that the inlet blockages for hydrogen and water would be 55% and 61%, respectively. Using these blockages the mean pressure recoveries were predicted to be 0.57 in hydrogen and 0.76 in water. Data showed that the pressure recoveries were actually 0.867 in hydrogen and 0.586 in water. The necessary throat blockages to match the data were found to be 65% for hydrogen and 55% for water. The data analysis for the hydrogen shows that the blockage only grew by a factor of 10% in the turnaround duct. The water data indicated that the blockage decreased from that predicted by the "lossless" flow approximation which was probably due to experimental and analytical inaccuracies. The analysis, however, does show the criticality of predicting the throat blockage in calculating diffuser performance, and also that the turnaround duct has achieved its purpose of minimizing the increase in blockage from the upcomer discharge to the downcomer inlet. The results were summarized in Table 14.

Table 14 - Crossover Analysis Data (Water and LH₂)

Test Fluid	Cpi	BLG ₄	C _p	C _p Analysis
LH ₂ (Loss-Less Core Analysis)	0.866	0.55	0.115	0.572
LH ₂ Data Analysis	0.866	0.65	0.106	0.865
Water (Loss-Less Core Analysis)	0.866	0.61	0.10	0.755
Water Data Analysis	0.868	0.55	0.12	0.593

The effectiveness of the overall diffusion system can be measured by assuming that the system was one diffuser. Determination of the ideal pressure recovery, C_{pl} :

$$\overline{C_{pl}} = 1 \cdot (AR)^2 \tag{14}$$

where AR was the area ratio of the diffuser as defined by the downcomer discharge area to the unblocked upcomer throat area. The calculated overall C_{P} was 0.982, and for each individual diffuser it was 0.866. The data analysis shows the overall C_{P} to be .853 in hydrogen and 0.887 in water. Calculation of the effectiveness $(C_{P} C_{P})$, which was an indication of the diffuser efficiency, was 0.887. This was of the order expected for a diffuser with the calculated area ratio and length to throat width, L/W1. Table 15 gives a summary of the mean pressure recoveries computed from the data and the analysis. Figure 60 shows the first stage diffusion system operation at 60K and 87K rpm in hydrogen and the current test at 6,322 rpm in water, plotted as a static pressure rise normalized via the tip speed of the impeller versus the position in the diffuser. The performance loss seen in the 8TK hydrogen test was not due to the diffuser, but due to a performance loss in the impeller probably caused by excessive overboard teakage.

Table 15 - Crossover Overall Performance (Weter and LH₂)

	Total Pressure Loss (Po-Po)				
Test Fluid	Cpi	C _p Analysis	C _p Data	Data (pala)	Anaiyala (paia)
MK49-F Turbopump (LH ₂)	0.982	0.853	0.854	u	•
Crossover Tester (Water)	0.982	0.887	0.888	90.16	101.24

Note: No total pressures measurements were taken during the MK49-F Turbopump tests.

A method of verifying the analysis was to compare the total pressure loss through the system as determined by the analysis and the data. This information was recorded in the water test and was found to be 90.2 psia as determined by the calculated impeller exit total pressure and the measured crossover exit total pressure. The analysis predicted that the total pressure loss would be 101.2 psia. The system performed better than predicted by the analysis.

Results from the air test (Figure 61) show a static pressure loss in the upcomer, indicating a stall either at the leading edge or in the 2-D diffuser. Analysis showed that the pressure recovery for the upcomer in air should have been 0.29, which was very low, but does not represent a stalled condition. The pressure recovery was low due to the boundary layer blockage of the upcomer throat, approximately 30% as extrapolated from the hydrogen and water data analysis. This was much larger than in the water and hydrogen tests because the Reynolds number of the air test was only of the order of 1x10⁴, two orders of a magnitude less than the hydrogen test. This data and analysis indicates that the stall occurred at the diffuser leading edge.

THE STATE OF THE S

The leading edge stall model was based on modeling the flow incidence angle and blade geometry of the diffuser inlet vane suction surface as a 2-D channel diffuser (Ref. 2). The diffuser blade row can be approximated as shown in Figure 62, where the transition region ABCD can be treated as a 2-D diffuser. The 2-D diffuser stall model was used to predict a leading edge stall, Figure 63, using line a-a. Using the diffuser geometry and the expected inlet flow angle as determined by the Loss Isolation program, stall was predicted at a flow angle of 4.5 degrees or an incidence angle of 4.9 degrees. The expected flow angle was 7.65 degrees, which corresponds to an incidence angle of 1.75 degrees which was below the predicted stall angle. It was expected that the stall incidence would increase with decreasing Reynolds number, and making a correction based on variations of peak diffuser pressure recovery with Reynolds number and inlet bluckage, the stall incidence was predicted to be 3.5 degrees, corresponding to an 0.6a-a tine on Figure 62. Again, stall was not predicted, but the tendency for stall to occur in the case of air was evident. A compressor performance prediction code should be used to calculate the rotor exits conditions and, hence, may predict the stall. More analysis is required to evaluate the stall model for high blockage and low Reynolds number flows. In addition, an investigation is required to evaluate the dynamic effects of the varying incidence angle due to the impeller blade wakes on the mean stall incidence.

The DC system has been shown to achieve the required pressure recovery with lower total pressure loss than predicted. The test series was designed to verify the analytical approach and prove the usefulness in future design efforts. As was shown, the analysis does well provided that the throat blockage can be adequately predicted. The difficulty for the upcomer was trying to predict the time-averaged effect of an unsteady inlet flow field due to the impeller blade wakes. This may account for the difference between the original design and the data analysis results as determined in this report. The downcomer design was dependent on the correct estimation of the upcomer exit blockage

DEFB\(BHO+0~S)+10~8

RI/RD89-111

¥igure 62 - Two-Dimensional Diffuser Analogy (Ref. 2)

Figure & - Flow Regime Chart for Two-Dimensional Diffuser (Ref. 4)

įį

and determination of the extent of the boundary layer growth in the turnaround duct. The design approach for the constant area turnaround was verified. This was critical for designing effective downcomers with high diffusion upcomers.

REFERENCES

- 1. Daily, J. W. and Nece, R. E., "Chamber Dimension Effects on Induced Flow Frictional Resistance of Enclosed Rotation Disks", Transactions of the ASME, Journal of Basic Engineering, pp.217-232, March 1960.
- 2. Meng, S. Y. and E. D. Jackson, <u>The Continuous Diffusion Crossover System Design</u>, Presented at the Symposium on Return Passages of Muiti-Stage Turbomachinery, Fluid Machinery Spring Conference, Houston, Texas, June 1983.
- 3. Conrad, O., K. Raif, and M. Wessles, "The Calculation of Performance Maps for Centrifugal Compressors with Vane-Island Diffusers," Proceedings of the 25th Annual International Gas Turbine Conference, pp. 135-147, 9-13 March 1980.
- 4. Japikse, David, <u>Turbomachinery Diffuser Design Technology</u>, Concepts ETI, Inc., Vermont 1984.
- Gerlach, C. R., Study of Minimum Pressure Loss in High Velocity Duct Systems.
 NASA CR 102499, Southwest Research Institute, 3 November 1967.

APPENDIX A - AIR TEST DATA TEST 1 AND TEST 2

		Inlet Orf	Inlet Orf	Infet Orf	Inducer	Shaft	Inducer	Inducer
	O O O	U/S Pr	ΔP	U/S Temp	in #1 Pr	Speed	In #2 Pr	Out Pr #1
Record #	•	psia	psi	æ	psia	rpm	psia	psia
	80.2	14.3598	0.0486	538.3	14.312	6322	14.312	14.3771
ω	80.7	14.3599	0.0431	538.6	14.312	6322	14.312	14.3773
O.	71.5	14.3601	0.0384	539,3	14.323	6322	14.323	14.3948
10	71.8	14,3800	0.0389	538.5	14.323	6322	14.323	14.3948
11	81.8	14.3600	0.0504	539.5	14.312	5322	14.312	14.3761
12	81.8	14.3599	0.0503	539.6	14.312	6322	14.312	14.3782
13	91.1	14,3589	0.0625	539.6	14.299	6322	14.299	14.3563
14	80.3	14.3598	0.0614	540.1	14.300	6322	14.300	14.3572
15	102.3	14.3598	0.0787	540.6	14.286	6322	14.286	14.3332
16	102.5	14.3597	0.0792	540.1	14.286	6322	14.286	14.3329
17	110.9	14,3596	0.0925	541.5	14.271	6322	14.271	14.3087
81	110.6	14.3597	0.0919	542.3	14.272	6322	14.272	14.3101
1.0	119.4	14.3598	0.1073	541.2	14.257	6322	14.257	14.2835
50	120.4	14.3598	0.1087	542.5	14.256	6322	14.256	14.2834
21	111.4	14.3598	0.0927	544.8	14.273	6322	14.273	14.3108
22	111.5	14.3597	0.0929	545.0	14.273	6322	14.273	14.3108
23	101.7	14.3598	0.0772	545.4	14.290	6322	14.290	14.3399
24	100.9	14.3598	0.0759	545.4	14.290	6322	14.290	14.3395
25	92.1	14.3599	0.0632	545.0	14.302	6322	14.303	14.3590
56	92.0	14.3598	0.0631	545.4	14,303	6322	14.303	14.3601
27	81.4	14.3600	0.0493	545.0	14.319	6322	14.319	14.3847
28	81.8	14,3601	0.0500	544.8	14.318	6322	14.318	14.3836
53	70.8	14.3589	0.0370	547.1	14.331	6322	14.331	14.4125
30	72.4	14.3800	0.0389	547.1	14.330	6322	14.330	14.4093

Inducer	Impeller Frnt	Impaller Aft	Implir Disch	Upcomer ConstUpcomer Const	Upcomer Const	Transition	Downcomer	Downcomer
Out Pr #2	Shrd #1 Pr	Shrd #1 Pr	Static Pr	Area Pr #2	Area Pr #3	Static Pr #1	Disch Pr #2	Cnst Area #2
psia	psia	psia	psia	psia	psia	psia	psia	psia
14.3726	14.7336	14.8064	14.8721	14.8598	14.8371	14.8693	14.8600	14.8351
14,3724	14.7335	14.8066	14.8721	14.8592	14.8372	14.8691	14.8600	14.8351
14.3905	14.7577	14.8387	14.8991	14,9109	14.8890	14.9176	14.9067	14.8872
14.3904	14.7581	14.8366	14,8993	14.9103	14.8883	14.9169	14.9062	14.8866
14.3717	14.7317	14.8043	14.8698	14.8547	14.8331	14.8649	14.8565	14.8304
14.3744	14.7332	14.8058	14.8706	14.8585	14.8374	14.8685	14.8587	14.8337
14.3523	14.7040	14.7686	14.8383	14.7974	14.7758	14.8088	14.8039	14.7718
14.3534	14.7050	14.7701	14.8389	14.7986	14.7774	14.8117	14.8057	14.7739
14.3286	14.6874	14.7211	14.8185	14.7227	14.7155	14.7546	14.7468	14.7101
14.3290	14.6873	14,7213	14.8179	14.7212	14.7148	14.7536	14.7462	14.7098
14.3050	14.6573	14.6864	14.7842	14.6497	14.6442	14.6899	14.6794	14.6396
14.3059	14.6587	14.6887	14.7856	14.6532	14.6483	14.6943	14.6830	14.6434
14.2798	14.6253	14.6518	14.7488	14.5701	14.5661	14.6203	14.6064	14.5624
14.2794	14.6255	14.6518	14.7482	14.5688	14.5657	14.6195	14.6057	14.5612
14.3068	14.6585	14.6905	14.7859	14.6568	14.6524	14.6980	14.6869	14.6466
14.3069	14.6589	14,6901	14.7857	14.6579	14.6523	14.6982	14.6874	14.6476
14.3356	14.6938	14.7329	14.8258	14.7397	14.7322	14.7698	14.7630	14.7269
14.3358	14.6936	14.7321	14.8255	14.7338	14.7321	14.7705	14.7632	14.7274
14.3563	14.7183	14.7854	14.8540	14.7868	14.7781	14.8132	14.8066	14.7736
14.3572	14.7197	14.7869	14.8554	14,7901	14.7807	14.8154	14.8089	14.7761
14.3828	14.7527	14.8137	14.8921	14.8444	14.8311	14.8631	14.8545	14.8268
14.3816	14,7505	14.8116	14.8899	14.8410	14.8271	14.8604	14.8517	14.8235
14.4070	14.7927	14.8494	14.9386	14.8960	14.8807	14.9030	14.9006	14.8770
14.4048	14.7875	14.8459	14.9318	14.8942	14.8795	14.9028	14.8994	14.8756

Downcomer	Xover Disch	Implir Disch	Transition	Xover Exit-Mid	Xover Exit	Xover Exit	Inlet Orf	Pump Inlet	Salculated
Mid Diff #1	Static Pr #1	Total Press	Total Press	Mid Pass Pr	Mid Pass Pr	Inner Hub Pr	Disch Pr	Тетр	nlet Flov
psia	psia	psiat	psiat	psiat	psiat	psiat	psia	ĥ	lbm/sec
14.8630	14.8634	15.1460	14.8551	14.8752	14.8630	14.8645	14.3147	77.05	1.043
14.8634	14.8635	15.1449	14.8547	14.8747	14.8630	14.8645	14.3148	77.38	1.049
14.9116	14.9115	15,1797	14,8053	14.9222	14,9113	14.9130	14.3256	77.08	0.929
14.9115	14.9112	15.1798	14.9051	14.9210	14.9111	14.9128	14.3253	77.16	0.934
14.8588	14.8595	15.1419	14.8513	14.8714	14.8590	14.8609	14.3144	77.99	1.064
14.8619	14,8632	15.1428	14,8538	14.8733	14.8627	14.8642	14.3155	78.13	1.063
14.8031	14.8048	15.1009	14.7941	14.8168	14.8044	14.8032	14.3026	78.42	1.184
14.8041	14.8065	15.1027	14.7957	14.8184	14.8062	14.8051	14.3030	78.57	1.174
14.7452	14.7465	15.0889	14.7345	14.7588	14.7448	14.7486	14.2893	79.23	1.330
14.7446	14.7458	15.0892	14.7342	14.7585	14.7443	14.7482	14.2892	78.82	1.333
14.6779	14.6790	15.0432	14.6548	14.6927	14.6768	14.6814	14.2750	80.11	1.442
14,6819	14.6827	15.0461	14.6684	14.6963	14.6805	14.6849	14.2759	80.35	1.438
14.6043	14.6056	14.9973	14.5883	14.6200	14.6036	14.6079	14.2606	80.89	1.553
14.6039	14.6047	14.9967	14.5874	14,6192	14.6029	14.6068	14.2603	80.52	1.565
14.6862	14.6860	15.0448	14.6720	14.6998	14,6837	14.6887	14.2773	82.93	1.448
14.6858	14.6868	15,0451	14.6717	14.7002	14.6842	14.6889	14.2771	83.58	1.450
14.7608	14.7618	15.0970	14.7504	14.7747	14.7593	14.7644	14.2941	83.11	1.322
14.7613	14.7623	15.0978	14.7503	14.7748	14.7595	14.7648	14.2939	83.34	1.312
14.8046	14.8084	15.1288	14.7949	14.8179	14.8035	14.8082	14.3059	83.87	1.197
14.8075	14.8089	15.1292	14.7961	14.8191	14.8054	14.8039	14.3065	83.83	1.196
14.8570	14.8590	15,1686	14.8473	14,8685	14.8556	14.8598	14.3217	84.05	1.058
14,8531	14.8555	15.1665	14.8446	14.8657	14.8532	14.8568	14.3209	83.78	1.065
14.9060	14.9052	15.2074	14.8971	14.9156	14.8052	14.9070	14.3335	86.72	0.917
14.9034	14.9036	15.2052	14.8954	14.9137	14.9031	14.9043	14.3324	85.42	0.941

Calc In Dens	1bm/ft3	0.0720	0.0720	0.0719	0.0720	0.0719	0.0718	0.0718	G.0X18	0.0717	0.0718	0.0716	0.0715	0.0716	0.0715	0.0712	0.0711	0.0711	0.0711	0.0711	0.0711	0.0711	0.0711	0.0709	0.0709
Crossover Total AP	psi	0.2708	0.2702	0.2575	0.2588	0.2705	0.2695	0.2841	0.2843	0.3301	0.3307	0.3505	0.3498	0.3773	0.3775	0.3450	0.3449	0.3223	0.3228	0.3109	0.3101	0.3001	0.3008	0.2918	0.2915
Downcomer Total ∆P	psi	0.0201	0.0200	0.0169	0.0159	0.0201	0.0195	0.0227	0.0227	0.0243	0.0243	0.0279	0.0279	0.0317	0.0318	0.0278	0.0285	0.0243	0.0245	0.0230	0.0230	0.0212	0.0211	0.0185	0.0183
Fransition Total AP	iso	0.2909	0.2902	0.2744	0.2747	0.2906	0.2890	0.3068	0.3070	0.3544	0.3550	0.3784	0.3777	0.4090	0.4093	0.3728	0.3734	0.3466	0.3473	0.3339	0.3331	0.3213	0.3219	0.3103	0.3098
Crossover Static AP	isd	-0.0087	-0.0086	0.0124	0.0119	-0.0103	-0.0074	-0.0335	-0.0324	-0.0720	-0.0721	-0.1052	-0.1029	-0.1432	-0.1435	-0.0399	-0.0389	-0.0640	-0.0632	-0.0476	-0.0465	-0.0331	-0.0344	-0.0334	-0.0282
Downcomer Static AP	ps:	0.0059	0.0056	0.0046	0.0041	0.0065	0.0048	0.0080	0.0067	0.0042	0.0049	0.0028	0.0020	-0.0003	-0.0003	0.0018	0.0020	0.0049	0.0043	0.0047	0.0037	0.0054	0.0053	0.0126	0.0103
Transition Static &P	is c	-0.0028	-0.0030	0.0185	0.0176	-0.0049	-0.0021	-0.0295	-0.0272	-0.0639	-0.0643	-0.0943	-0.0913	-0.1285	-0.1287	-0.0879	-0.0875	-0.0560	-0.0550	-0.0408	-0.0400	-0.0290	-0.0295	-0.0356	-0.0290
Impeller Static AP]sd	0.4950	0.4948	0.5043	0.5045	0.4937	0.4924	0.4820	0.4817	0.4853	0.4850	0.4755	0.4755	0.4653	0.4648	0.4751	0.4749	0.4859	0.4860	0.4950	0.4953	0.5074	0.5083	0.5281	0.5225
Inducar Static AP	ŝ	0.0651	0.0553	0.0718	0.0718	0.0641	0.0662	0.0573	0.0572	0.0472	0.0469	0.0377	0.0381	0.0265	0.0274	0.0378	0.0378	0.0499	0.0495	0.0570	0.0571	0.0657	0.0656	0.0815	0.0793

		Inter Ort	Iniei Orf	Infet Orf	Inducer	Shaft	Inducer	Inducer
	9	WS Pr	ďΦ	U/S Temp	in #1 Pr	Speed	In #2 Pr	Out Pr #1
Record #	•	psla	D&C	ĝ.	psia	rpm	psia	psia
	100.3	14.3398	0.0757	539.9	14.262	6322	14.262	14.3068
N	100.2	14.3395	0.0754	540.4	14.262	6322	14.262	14.3070
က	111.3	14.3394	0.0931	541.2	14.244	6322	14.244	14.2765
→	111.0	14.3394	0.0926	541.0	14.244	6322	14.244	14.2769
w	122.8	14.3393	0.1128	541.9	14.224	6322	14.224	14.2432
9	122.2	14.3394	0.1122	541.3	14.224	6322	14.224	14.2437
7	90.6	14.3397	0.0513	542.7	14.277	6322	14.277	14.3308
ထ	90.4	14.3397	0.0610	543.2	14.277	6322	14.277	14.3307
ĊD	80.7	14.3397	0.0485	543.8	14.287	6322	14.287	14.3470
10	80.6	14.3397	0.0484	544.1	14.287	6322	14.287	14.3475
***	8.69	14.3397	0.0363	543.6	14.301	6322	14.301	14.3704
12	70.8	14,3399	0.0373	544.5	14.301	6322	14.301	14.3698
13	98.3	14,3397	0.0722	543.7	14.265	6322	14.265	14.3105
4	98.5	14.3396	0.0725	543.6	14.265	6322	14.265	14.3109
15	110.3	14.3396	0.0908	544.4	14.245	6322	14.245	14.2773
16	110.4	14,3394	0.0903	544.8	14.248	6322	14.246	14.2773

Air Test 2 - Dated 9/29/88

Inducer	Impeller Frot		Implir Disch	Impilir Disch Upcomer ConstUpcomer Const	Upcomer Const	Transition	Downcomer	Downcomer
Out Pr #2	Shrd #1 Pr	Shrd #1 Pr	Static Pr	Area Pr #2	Area Pr #3	Static Pr #1	Disch Pr #2	Cnst Area #2
psia	Daia	psia	psia	psia	psia	psia	psia	psia
14,3033	14.6514	14.6983	14,7802	14.7228	14.7135	14.7501	14.7455	14.7107
14.3033	14,6508	14.6988	14.7800	14.7223	14.7130	14.7493	14.7451	14.7103
14.2730	14,6134	14.8528	14.7370	14.6357	14.6303	14.6721	14.6668	14.6268
14.2728	14.6132	14.6526	14.7374	14,6359	14.6301	14.6724	14.6670	14.6270
14.2395	14.5724	14.6088	14,6919	14.5336	14.5307	14.5814	14.5728	14.5294
14.2400	14.5724	14.6067	14,6923	14.5352	14.5318	14.5820	14.5735	14.5295
14.3275	14.8767	14.7419	14.8103	14.7589	14.7476	14.7829	14.7759	14.7469
14,3273	14.6764	14.7417	14,8096	14.7588	14.7469	14.7831	14.7761	14.7465
14.3444	14,6979	14,7674	14,8333	14,8069	14.7940	14.8283	14.8190	14.7934
14.3440	14.6978	14,7681	14.8344	14.8077	14.7946	14.8289	14.8194	14.7937
14.3676	14.7285	14.8058	14,8586	14.8741	14.8594	14.8888	14.8772	14.8578
14,3869	14.7282	14.8050	14.8673	14.8739	14.8592	14.8884	14.8764	14.8579
14.3069	14,6525	14.7001	14.7819	14.7323	14.7234	14.7580	14.7536	14.7194
14.3072	14.6526	14.6398	14.7819	14.7321	14.7235	14.7583	14.7534	14.7194
14.2737	14.6117	14.6516	14.7348	14,6367	14.6312	14.6718	14.6664	14.6269
14.2743	14.6120	14.6518	14,7356	14.6372	14.6321	14.6733	14.6675	14.6281

Оожесошег	Xovar Disch	Imolir Disch	Transition	Xover Exit-Mid	Xover Exit	Xover Exit	Inlet Orf	Prime Inlet
Mid Diff #1	Static Pr #1	Total Press	Total Press	Mid Pass Pr	•	Inner Hub Pr	Disch Pr	Temp
psia	psia	psiat	psiat	psiat	psiat	pslat	D\$!a	į. Į
14.7427	14.7421	15.0346	14.7374	14.7657	14.7549	14.7460	14.2654	78.40
14.7426	14.7418	15.0342	14.7394	14.7858	14.7549	14.7455	14.2656	78.80
14.6635	14.5632	14,9759	14.6575	14.6881	14.6768	14.6666	14.2478	79.20
14.6637	14.8634	14.9780	14.6571	14.6882	14.6765	14.6666	14.2482	79.40
14.5703	14.5693	14.9187	14.5603	14.5973	14.5834	14.5736	14.2281	80.50
14.5700	14.5698	14.9152	14.5612	14.5979	14.5835	14.5744	14.2283	79.60
14.7759	14.7779	15.0690	14.7709	14.7980	14.7887	14.7806	14.2801	81.10
14.7752	14.7774	15.0681	14.7702	14.7971	14.7883	14.7802	14.2800	81.70
14.8200	14.8216	15.1007	14.8161	14.8394	14.8311	14.8247	14.2902	81.80
14.8208	14.8220	15.1005	14.8162	14.8393	14.8319	14.8247	14.2904	82.40
14.8816	14.8821	15.1433	14.8778	14.8964	14.8906	14.8849	14.3037	82.30
14.8812	14.8817	15.1430	14.8773	14.8963	14.8898	14.8843	14.3038	82.40
14.7503	14.7503	15.0362	14.7443	14.7723	14.7613	14.7533	14.2685	81.90
14.7504	14.7501	15.0387	14.7442	14.7718	14.7610	14.7534	14.2687	82.50
14,6631	14.6624	14.8729	14.6553	14.6874	14.6752	14.6659	14.2495	83.30
14.6643	14.6634	14.9731	14.6555	14.6875	14.6752	14.6669	14.2494	82.90

Calculated	Inducer	Impaller	Transition	Downcomer	Crossover	Transition	Downcomer	Crossover
Inlet Flow	Static AP	Static AP	Static AP	Static AP	Static AP	Total AP	Total AP	Total AP
lbm/sec	psi	psi	psi	psi	psi	jsd	psi	DSİ
1.304	0.0448	0.4734	-0.0301	0.0156	-0.0381	0.2972	0.0283	0.2689
1.302	0.0450	0.4730	-0.0307	0.0163	-6.0382	0.2948	0.0262	0.2686
1,448	0.0325	0.4605	-0.0649	0.0160	-0.0738	0.3184	0.0306	0.2878
1.443	0.0329	0.4805	-0.0650	0.0158	-0.0740	0.3189	0.0311	0.2878
1.594	0.0192	0.4487	-0.1105	0.0159	-0.1226	0.3584	0.0370	0.3214
1.588	0.0197	0.4486	-0.1103	0.0159	-0.1225	0.3580	0.0367	0.3213
1.177	0.0538	0.4795	-0.0274	0.0151	-0.0324	0.2981	0.0271	0.2710
1.175	0.0537	0.4789	-0.0265	0.0140	-0.0322	0.2979	0.0269	0.2710
1.049	0.0500	0.4883	-0.0050	0.0111	-0.0117	0.2846	0.0233	0.2613
1.048	0.0605	0.4889	-0.0055	0.0104	-0.0124	0.2843	0.0231	0.2612
0.907	0.0894	0.4982	0.0202	0.0076	0.0135	0.2655	0.0186	0.2469
0.920	0.0688	0.4975	0.0211	0.0079	0.0144	0.2657	0.0190	0.2467
1.278	0.0455	0.4714	-0.0239	0.0143	-0.0316	0.2919	0.0280	0.2639
1.281	0.0459	0.4710	-0.0236	0.0135	-0.0318	0.2925	0.0276	0.2649
1.433	0.0323	0.4575	-0.0630	0.0158	-0.0724	0.3176	0.0321	0.2855
1.435	0.0313	0.4583	-0.0623	0.0142	-0.0722	0.3176	0.0320	0.2856

APPENDIX B - WATER TEST DATA

TEST NUMBER T88A094 TEST NUMBER T88A096 TEST NUMBER T88A097

INFORMATION FOR READING DATA TABLE SUMMARY AND DATA TABLES:

MDS: Measurement Data Sequence. Data record within a particular test.

NSCANS: Number of Scans in the data record.

TYPE: Type of data recorded;

TYPE =1 Data are recorded at steady state operating conditions, e.g., HQ. The data are averaged based on the number of scans in the MDS.

TYPE = 2 Data are recorded continuously for transient tests, e.g. start/shutdown transients and suction performance tests.

Data in tables are averaged over the number of scans and are presented by MDS number. All TYPE 2 data, since they are averaged, should be disregarded. Due to the volumes of suction performance data, it was considered too cumbersome for this report. These data can be made available upon request.

Ü

M W 1 REC:

I N STAT:

404 7:9 752 2 3 4 0 0 0

```
DIRECTORY FILE: RUN NUM: 88A094 , T DATE: 10/5/88, N MDS= 17, N CPS= 45 EDF HDR: CROSSOVER HQ AND CAV TEST
I C P:
                 801.
                         2
                            228
                                  229
                                       802
                                              803
                                                    804
                                                           805
                                                                230
           231
                 806
                       807
                            808
                                        810
                                 809
                                              811
                                                    812
                                                           813
                                                                815
           818
                 120
                       819
                            820
                                   821
                                        822
                                              826
                                                           5
                                                                 3
                            903
           838
                 900
                                  902
                                        904
                       901
                                              905
                                                    950
                                                           951
                                                                952
                 953
                       850
                             851
                                   926
MDS NSCANS TYPE
                     HEADER
           1 PRE TEST STATIC @ 91 2 PSIA
      20
            2 STARTUP TRANSIENT
      181
      20
           1 HQ @640 FLOW
           1 HQ 2699 FLOW
      20
      20
           1 HQ @640 FLOW
      20
           1 HQ @582 FLOW
  7
      20
           1 HQ @524 FLOW
  8
      20
          1 HQ @466 FLOW
  9
      20
          1 HQ @407 FLOW
 10
      20
           1 HQ @466 FLOW
 11
      20
          1 HQ @524 FLOW
 12
      20
          1 HQ @582 FLOW
            2 CAV @582 FLOW
      345
 13
            2 CAV @524 FLOW
      3
 14
 15
      579
            2 CAV @524 FLOW
            2 CAV @466 FLOW
      701
 16
       20
 17
            1 POST TEST STATIC @90 PSIA
T S TIME: 14:59:35.90, P DATE: 10/06/88, P TIME: 07:30:07
N WS= 70, N W STAT= 74, N STAT= 12
            80% 2 228 229
                                                804
                                                      805
ID W:
                                     802
                                          803
                                                             230
        1
                        808
                   807
                              809.
        231
             806
                                    810 811 812
                                                      813
                                                            815
        816
             818
                  120 819 820
                                    821
                                           822
                                                826
                                                        7
            838
                  900 901
                              903
                                    902
                                          904 905
                                                      950
                                                             951
         3
        952
              4
                   953 850
                               851
                                     926 -152
                                                 -25
                                                       -26
                                                            -100
                         -34 -193
       -101
            -106
                  -107
                                    -194
                                          -195
                                                -202
                                                      -203
                                                            -800
       -801 -808 -809 -810 -811
                                    -812
                                          -813
                                                -814
                                                      -815
                                                            -816
                        2
                                                           805
I W STAT:
             1 801
                             228
                                   229
                                          802
                                               803
                                                      804
                                                                 230
                           800
120
900
153
                        807
            231
                  806
                                   809
                                          810
                                                811
                                                      812
                                                            813
                                                                  802
                                  819
            815
                 816
                        818
                                          820
                                                821
                                                      822
                                                            826
                      838
                                   901
                                          903
                                                902
                                                      904
                                                            905
                                                                 950
                                  850
                                                   -152
                                                                 -26
            951
                  952
                              953
                                          851
                                               926
                        4
                                                            -25
                                                                -243
           -100
                -101 -106 -107
                                  -34 -152
                                                    -194
                                              -193
                                                           -195
                -800 -801 -152
-152 -815 -816
                            -152 -808 -809
           -203
                                                   -811 -812
                                              -810
                                                                3 لدياء
           -814
                                    244
```

1331 2032

PROCESS TIME 10/12/88 14:03:21 CROSSOVER HQ AND CAV TEST
TEST START TIME 10/ 5/88 14:59:35.90 PROCESS TIME 10/ HEADER: TEST 88A094

		;
805 IMP AFT SHROUD P R #2		812 DWN DIFF DISCH P R #2 74.193 414.88 532.16 568.44 585.91 591.34 607.06 625.98 608.54 590.65 510.25 594.79
804 IMP AFT SHROUD P R #1	40404040000000004	811 DWN DIFF DISCH P R #1 75.249 416.20 570.53 533.91 570.92 588.01 580.91 606.10 606.10 624.55 607.04 589.50
. 803 IMP FWD SHROUD P R #2	α α α α α α α α α α	810 TRANSITI ON ST PR 75.115 75.115 510.29 510.29 510.29 510.00 596.67 611.78 596.67 596.39 596.39 591.01 582.32
802 IMP FWD SHROUD P	σ	809 17 SEC CONS 14 A A A A A A A A A A A A A A A A A A A
229 D/S STAT PRESS.	77.348 90.410 92.436 101.30 101.30 114.45 100.01 100.01 106.92 116.37 117.23 116.37 117.33	808 T.SEC PR 75.016 75.076 75.076 543.46 554.03 554.03 551.51 551.50 551.50 551.50 551.50 551.50 561.50 561.50
228 D/S STAT PRESS.	こことのころまちょうとのようこのころこの しょうこうこう しゅうしょうしょう はんしょう しょうしょう しょうこうこう	807 T SEC CONS T SEC CONS T SEC PR T SEC PR T S S S S S S S S S S S S S S S S S S S
2 Flowere R #1	6.33.24 554.95 733.24 734.95 673.24 673.58 673.82 674.05 674.05 61.82 61.82 61.82 61.82 61.82 61.82 61.82 61.82	806 DHR MID DIFF #11 \$592.03 \$592.03 \$592.03 \$592.55 \$592.23 \$592.63 \$592.63 \$592.63
801 INLET ST ATIC PR	2	231 PR 531 PR 533. 1MP # 22 77.098 469.58 469.58 487.85 563.78 563.78 563.78 563.78 47.91 47.91
INLET ST ATIC PRE		230 PRESS IMP 41 18 50 407.32 508.92 508.92 5526.98 554.18 572.80 574.18 574.14 574.14
#01 3/d		75

		812 F DWN DIFF P DISCH P R #2	552.82 74.655	822 X XOVER EX L IT TOTAL PR #3	79.123 425.73 579.89 545.00 581.84 603.08 617.08 617.03 604.48 525.02 608.73 76.744
		811 DWN DIFF DISCH P R #1	550.85 75.199	821 XOVER EX IT TOTAL PR #2	78.702 426.20 579.82 544.68 581.77 598.61 604.27 618.96 619.06 603.02 521.79 521.79 524.24
÷*.	14:03:21	610 TRANSITI ON ST PR	539.65 74.366	820 XJVER EX IT TOTAL PR #1	79.907 427.05 583.46 589.48 602.77 610.28 624.79 624.15 610.34 614.86 530.77 77.497
ETS	TIME 10/12/88	809 UPC CONS T SEC PR	534.33 75.619	819 TRRESTT ON FOTAL PR	23.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.
aged data on hersurement data sets	PROCESS TIME	808 UPC CONS T SEC PR	523.23 74.788	120 D/S TOT PRESS. 1 IMP #1	28.98.98.98.98.98.98.98.98.98.98.98.98.99.99
ata on hersu	14:59:35.90	807 UPC CONS T SEC PR	540.06	818 TRRUST D ISK DRAI N PR	28.00 6.11.00 6.11.00 6.11.00 6.12.10 6.12.00 6.13.85 6.13.50 6.13.
VER.	5/88	806 DWN MID DIFF #1	553.05	815 XOVER DI SCH ST P R £1	75. 5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.
STATE DAY ONE OF	TIME	231 D/S STAT PRESS.	521.79 76.940	802 IMP FWD SHROUD P R #1	25.000
H BENUSSUAD	TEST START	230 D/S STAT . PRESS.	5 19.77 77.832	813 DWN CONS T SEC PR	24.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
- 846844	TEST 88A094	B/F ID\$	16 2 17 1	P/F ID# MDS# TYPE	

PROCESS TIME 10/12/88 14:03:21 AVERAGED DATA ON MEASUREMENT DATA SETS CROSSOVER HQ AND CAV TEST TEST TIME 10/ 5/88 14:59:35.90 PROCESS TIME 10/ HEADER: Test 88A094

		;
902 LUBE OIL TEMP #2	96.359 101.09 112.60 111.11 112.57 116.11 117.63 119.00 119.15 117.44 117.44 117.35 117.35	851 GBOX OIL PR 46.547 34.603 23.402 21.930 21.355 20.698 20.698 20.698 20.184 19.702 19.702 19.702
903 LUBE OIL TEMP #1	93.201 105.05 116.17 117.92 117.38 123.05 133.49 133.49 133.85 124.10 124.10 126.00 126.00 126.13	# FLEX FLO # PR PR PLO 944.20 944.04 941.72 941.72 941.56 939.89 938.55 937.71 936.09
901 FWD TORQ UE TEMP	70.209 72.333 80.900 81.670 83.066 85.484 87.145 87.897 88.905 89.069 91.762 94.922 97.959	953 LUBE OIL FLOW 21.215 20.007 19.902 19.901 19.901 19.908 19.908 19.908 19.908 19.908
900 REAR TOR QUE TEMP	70.673 73.109 83.187 83.197 83.836 84.846 85.808 86.619 87.389 91.389 91.352 94.359	4 SPEED -1.7116 4986.8 6317.9 6320.2 6318.9 6317.6 6318.9 6317.2 6316.9 6318.6 6318.6 6318.6
838 THRUST D ISK DRAI N FLOW	4.4700 62.269 92.914 89.819 94.229 94.810 96.105 96.105 96.212 96.338 95.338 95.856	952 ACCEL Z AXCEL Z AXIS 0.26343E-01 0.215718 0.21661 0.21291 0.222999 0.222999 0.222999 0.23215 0.23215
3 Flowmete R #2	0.75280 503.98 655.26 706.91 657.03 639.88 679.79 618.57 618.57 639.00 679.50 679.50	ACCEL Y AXIS 0.79573E-01 0.17239 0.15707 0.17761 0.16762 0.15762 0.15762 0.15762 0.15762 0.15763
5 Torous # 1	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	950 AXIS AXIS 0.55525E-01 0.32616 0.32616 0.34281 0.24286 0.20898 0.32898 0.32944 0.329444
7 In. Temp Erature	666 666 666 667 667 667 667 667 667 667	905 EUBE OIL 50P T 905.108 92.108 92.079 92.255 92.349 92.348 92.348 92.348 92.348 92.471
826 PUMP DEL TA PR	0 934 488 488 488 488 50 50 50 50 50 50 50 50 50 50	904 CEAR CAS TEMP 73.766 74.084 99.720 102.85 110.20 112.39 113.66 125.02
P/F ID#		F/F ID# MDS# 14PE 122 11 11 11 11 11 11 11 11 11 11 11 11

HEADER: Test 88a094

CROSSOVER HO AND CAV TEST S/88 14:59:35.90 PROCESS TIME 10/12/88 14:03:21

851 GBOX OIL PR		17.298 23.145			#1	-85.634	78.611	66.678	71.918	66.736	60.736	54.694	48.658	42.412	48.678	54.737	60.730	689.09	54.703	54.685	48.669	-105.69
850 FLEX FLO W PR	\ \ \	934.33 932.79			Fon thu.	0.44755E+12	0.52580E+11	8010.5	8027.1	8015.3	7994.0	7.966.7	7981.6	7992.3	8010.2	7995.1	8003.3	4034.7	9.9008	2792.3	3430.2	0.31593E+12
110 ECTOR		21.591	AI.		. #1	18.234	5.7014	1.2605	1.3417	1.2615	1.1647	1.0660	0.96852	0.86855	0.96905	1.0670	1.1636	1.1588	1.0673	1.0618	0.96851	-0.54076
QZZZS		6319.6 -0.23337	-34	S.	4. F1FE	92.644	93.013	92.972	93.134	93.075	92.799	92.465	92.675	92.722	93.006	92.743	92.830	Ġ.	92.919	32.408	39.827	٠
952 Accel 2 Axis		0.25610 0.22619E-01		5	P. 41	4.2122	480.39	683,62	655.36	686.18	765.65	727.17	617.97	743.63	652.07	651.49	637.24	578.61	. 634.94	589.23	636.80	-0.48455
951 ACCEL Y AXIS		0.16592 0.77619E-01		KSS IND.	.	-0.63761E-01	2278.7	3046.8	3138.6	3046.6	2933.3	2813.6	2678.0	2533.5	2671.6	2807.4		5448.5	2804.6	7583.0	6253.6	0.00000
950 ACCEL X AXIS		0.31601 0.51557E-01	-25	NPSH IND	1.	14.30	~4	215.06	215.64	끍	214.66	(F)	₹ •4	14.	5	***	214.73	w	*	-	w	~1
T ans		93.645	^1	FLOW 1 R		φ,	5.7014	1.2605	1.3417	1.2615	1.1647	1.0660	0.96852	•	0.96905	1.0670	~	1.1588	1.0673	1.0618		.5407
904 Gear Cas E Temp		133.87	926	G-BOX TE	UL PTURE	(4)	3	.33	.33	E.	3.3131	.31	.31	3	Ë	.31	31	.31	31	E	3	31
#01 3/a	MDS# TYPE	16 2 17 1	P/F ID#		MDS# TYPE	y=4	2	~ ,										(*)				!

i

PROCESS TIME 10/12/88 14:03:21 CROSSOVER HO AND CAV TEST
TEST START TIME 16/ 5/88 14:59:35.90 PROCESS TIME 10/ HEADER: Test 88A094

-812 XOVR D/S TT HEAD RISE #3	2.7644 110.02 130.03 143.36 129.01 129.06 121.61 122.52 125.05 137.71 132.92 122.37	
-811 XOVR D/S TT HEAD RISE #2	1.7916 111.12 129.86 142.62 128.85 141.86 121.20 127.21 121.68 130.75 123.68 131.88 121.23	
-810 XOVR D/S TT HEAD RISE #1	4.5761 1138.27 1139.27 1139.28 1138.94 1138.97 1138.97 1136.38 1136.38	-819 NET AXIA L LOAD 406.29 -4045.2 -41415.9 -4176.6 -4176.6 -4176.6 -4176.6
-809 XOVR U/S T-T HEA DRISE	20.0294 3185.39 313.14 2242.13 321.27 321.27 3377.98 393.23 393.23 1304	-818 RESULTAN T AXIAL LOAD (+) 9978.8 50000.63563.63563.67898.70260.73036.73036.73036.73038.70378.65821.668549.
-808 IMP STAT IC HEADR ISE	-0. 9.52772 88.913.237 9.13.28 10.081.35 10.081.8 10.081.8 10.052.3 10.054.0 10.054.0 10.054.0	-817 RESULTAN T AXIAL LOAD (-) 10385. 46393. 59570. 59570. 61603. 65844. 65844. 65999. 61697.
-152 FLOW 1 R ATIO IND	18.234 1.26014 1.26014 1.2611 1.2611 1.0647 0.96952 0.96954 1.1636 1.0670 1.0613 0.96851 0.96851	-816 PUMP TT HEADRISE 3.4653 509.47 719.72 703.63 737.43 720.88 689.00 632.34 702.40
-801 INDUCER TOT-ST H EAD [2	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-815 -0.29
-800 INDUCER TOT-ST H EAD #1	0.35421 38.310 41.21.21.21.21.22.448 63.3466 63.3461 112.54 112.54 65.810 65.810 65.346 107.27 0.64980E-01	-152 FILOW 1 R 7110 IND -12605 1.2605 1.2605 1.0660 0.96650 0.96650 1.0670 1.1636 1.0673 1.0673
-195 SCALED H EAD IND.	0.66111E+10 0.27447E+09 43232. 40207. 43340. 4859. 48183. 48183. 48183. 48180. 48160. 48160. 48160. 48160. 48160. 48160. 48160. 48160. 48160.	-813 57862 7 7 HEADRI 805.46 1160.7 1204.6 1204.6 1204.6 1204.6 1204.6 1204.6 1204.6 1204.6 1204.6 1204.6 1200.7
P/F ID# KDS# TYPE	まななよなで 88033888333883838888838888888888888888	79 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10

ŧ

Averaged data on heasurement data sets

3:21	-819 NET AXIA L LOAD		-5162.7 421.72
14:0			7, 4
10/12/88	-818 RESULTAN T AXIAL	LOAD (+)	62801. 9967.0
PROCESS TIME 10/12/88 14:03:21	-817 RESULTAN	LOAD (-)	57638. 10389.
14:59:35.90	-816 PUMP II		721.55
	-815 XOVR TT	#5	530.56 0.61385
CROSSOVER HO AND CAV TEST TEST START TIME 10/ 5/88	FLOW 1 R		0.96851
CROSSOVER TEST	-813 STAGE T-	T HEAUKI SE	1251.7 -0.88846
HEADER: Test 802094	*	STATE TYPE	2-1
HEADEF	₽/F ID♣	₩DS.	16

•

```
DIRECTORY FILE: RUN NUM: 88A096
                                         , T DATE: 10/ 8/88, N MDS= 37, N CPS= 45
EDF HDR:
             XOVER HQ CAV TEST
                                                                          230
I C P:
                   801
                            2
                                 228
                                       229
                                              802
                                                     803
                                                            804
                                                                   805
               1
            231
                          807
                                 808
                                       809
                   806
                                              810
                                                            812
                                                                   813
                                                                          815
                                                     811
            818
                   120
                          819
                                 820
                                       821
                                              822
                                                     826
                                                              7
                                                                     5
                                                                            3
            838
                   900
                          901
                                 903
                                       902
                                              904
                                                     905
                                                            950
                                                                   951
                                                                          952
                   953
                          850
                                 851
                                       926
               4
MDS NSCANS TYPE
                         HEADER
             1 PRE STATIC 90
       20
             2
       158
                 START UP
  3
        20
                 582 GFM HQ
  4
        20
             1
                 582 GPM HQ
  5
        20
             1
                 698 GPM HQ
  6
        20
             1
                 640 GPM HQ
  7
        20
             1
                 582 GPM HQ
        20
             1
  8
                 524 GPM HQ
  9
        20
             1
                 466 GPM HQ
 10
        20
             1
                 437 GPM HQ
 11
        20
             1
                 407 GPM HQ
 12
        20
             1
                 378 GPM HQ
 13
        20
             1
                 349 GPM HQ
        20
                 349 GPM HQ
 14
             1
 15
        20
             1
                 378 GPM HQ
 16
        20
             1
                 407 GPM HQ
                 437 GPM HQ
             1
 17
        20
        20
             1
                 466 GPM HQ
 18
 19
        20
                 524 GPM HQ
             1
 20
        20
             1
                 582 GPM HQ
       20
 21
             1
                 640 GPM HQ
        20
 22
             1
                 698 GPM HQ
 23
       972
             2
                 582 GPM CAV
             2
 24
       824
                 640 GPM CAV
             2
 25
      128
                 698 GPM CAV
 26
      531
             2
                 582 GPM CAV
 27
      847
             2
                 524 GPM CAV
                 466 GPM CAV
 28
      835
             2
 29
       92
             2
                 407 GPM CAV
 30
       181
             2
                 2ND START UP
             2
 31
      934
                 582 GPM CAV
                 407 GPM CAV
      913
             2
 32
 33
       20
             1
                 POST STATIC 80
                 3RD START UP
 34
      200
             2
 35
        20
                 291 GPM HO
 36
     1022
             2
                 349 GPM CAV
        20
                 POST STATIC 90
T S TIME: 7:26:17.20, P DATE: 10/09/88,
                                               P TIME: 19:25:39
        70,
 N WS=
              N W STAT- 74, N STAT- 37
ID W:
          1
                801
                             228
                                    229
                                           802
                                                  803
                                                         804
                                                               805
                                                                      230
         231
                806
                       807
                             808
                                    809
                                           810
                                                  811
                                                        812
                                                               813
                                                                      815
                818
                       120
                             819
                                    820
                                           821
                                                  822
                                                         826
                                                                        5
         816
                       900
                                    903
                                           902
                                                                950
                                                                      951
                888
                             901
                                                  904
                                                         905
                                                               -26
         952
                       953
                             850
                                    851
                                           926
                                                -152
                                                        -25
                                                                     -100
               -106
                     -107
                                   -193
                                          -194
                                                -195
                                                       -202
                                                              -203
                                                                     -800
        -101
                             -34
               -808
                                                       -814
                     -809
                            -810
                                         -812
                                                -813
                                                              -815
        -801
                                  -811
                                                                     -816
                             2
                                               802
                                  228
                                         229
                                                             804
                                                                           230
I W STAT:
               1
                    801
                                                      803
                                                                    805
             231
                                                             812
                                                                           802
                    806
                           807
                                  808
                                         809
                                               810
                                                      811
                                                                    B13
             815
                    816
                           818
                                  120
                                         819
                                               820
                                                      821
                                                             822
                                                                    826
                                                                             7
                           828
                                  900
                                                             904
                                                                    905
                                                                           950
                       3
                                         901
                                                903
                                                      902
             951
                    952
                             4
                                  953
                                         850
                                               851
                                                      926
                                                            -152
                                                                    -25
                                                                           -26
                                                                          -202
                          -106
                                 -107
                                                     -193
                                                                   -195
            -100
                   -101
                                         -34
                                              -152
                                                            -194
            -203
                   -800
                          -801
                                 -152
                                       -808
                                              -809
                                                     -810
                                                            -811
                                                                   -812
                                                                          -813
                  -152
                          -815
                                 -816
            -814
                3
                      23
                                          221
M W 1 REC:
                            181
                                   201
                                                 241
                                                       261 281
                                                                     301
                                                                            321
```

AVERAGED DATA ON HEASUREMENT DATA SETS

		ILI		1E-06	æ r	- 00	9	₩.	20 i	ŭ =		6	<u> </u>	on i	٠ ت	. 5	7 0	₹.	₽.	ស៊ី	9	ci n		. <u>m</u>	2	<u></u>	ų į	יַּט	ا م		ر م م	7E-02	۷ ب	י נ	
		-820 CMOMENTL		0.5163	25.738	27.92	35.96	31.95	27.96	24.06	19.22	17.17	15.59	13.91	13.93	24.01	19.40	21.33	25.28	29.58	34.13	37.01	31.17	35.30	34.50	23.46	20.41	14.43	25.13	27.10	16.91	0.12027E 25.384	10.50	13.04	134
		-814 STAGE EF FICIENCY		-0.11455	0.45537	0.52546	0.51275	0.52198	0.52636	0.52641	0.51588	0.50956	0.50228	0.49087	0.49073	0.40501	0.51538	0.51990	0.52508	0.52478	0.51777	0.50985	0.45308	0.43815	0.36293	0.51179	0.51642	6.016.0	-0.48905	0.48463	0.50684	-18.538	0.33620	0.44800	-11.587
	13:05:42	-819 NET AXIA L LOAD		-3007.5	939.13	42.	-6233.1	-5981.3	1.2986-	-3393.1	-4193.8	-4342.7	-4457.1	-4566.6	-4610.0		-5201.0	-5189.1	-5532.9	-5511.4	-5627.1	-7565.7	-7645.9	-7473.4	-6522.5	-8374.4	-7626.0	5777	-5679.8	2029	5504	07.0 01.0	1000	7827	
SETS	01/05/89	-818 RESULTAN T AXIAL	LOAD (-)	- 11	£8067.	63470	59047.	61747.	63500.	66368	68159.	69548.	70544.	71269.	71341.	00000	69329	-	66095.	63313.	60278.	50131.	44132	43497.	30117.	56761.	~ ~	2/200	UCION.	0000	6.927.	5435.1		61861	9340.7
ON MEASUREMENT DATA	PROCESS TIME	-817 RESULTAN T AXIAL	LOAD (+)	6639.7	£3007.	58527	52814.	55766.	90000	63232	63966.	65205.	66087.	66702.	66731.	63536	64128.	63125.	60562.	57802.	54650.	52566.	196.85 196.85	36023.	23594.	48387.	SOCON.	00770	5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	67380.	. 27150	. פגלטטי. בימקקק	£4150.	54033	6268.6
data on mease	26:17.20	-816 PUMP TT HEADRISE		1.8699	672.36	708.63	636.72	672.29	407.73	771.08	789.01	801.76	810.10	75.718	613.92	7 0 0 0 0	758.45	742.66	709.11	678,63	646.63	625.20	488.00	461.66	323.76	675.49	12:11	# C	4	מים מים	27.14.	14.4.00 10.00 10.00	26.036	786.69	-2.8719
AVERAGED DA	10/ 8/88 7:	-815 XOVR TT HEADRISE	1 5	386	かり、 で で で の の の の の の の の の の の の の の の の	*	S.		ų c	, ,	6,3	8	ا مرا	<i>i</i>) (, e	10			9,6	9,1	٠ د د	a c		5.	7.4		, c		X	, c	ייי ליייי	4 C	ď	i ki	ig.
CAU TRST	START TIME	-152 FLOW 1 R ATIO IND	년 *	1886	1.2643	182	.342	. 265	400	012	.9813	.9278	. 8838	2 4 5 C C C	2000	20.0	.9862	.034	125	218	.307	-1 C	245	.328	308	.083	1100	9000	779	107.7	7636	200	7378	8134	22.02
XOVER HO C	123	-813 STAGE T- T HEADRI	23 53	929	1226.1	300.	148.	226.		420.	434.	6 65,	186.	200	, 0		(36.	110.	347.	279.			017	47.8	£0.8	308	, c		27.6		1420.	בי בי בי	20	189	888
HEADER	TEST 88A096	Δ.	MDS# TYPE		w						0	1 (N 6	· ·	₩ હ) ¥) (~	හ	Ċħ	٥.	- 1		· •	មា	; و	~ (x c	h e	.	٦ (2 6	J =		ى ب	٠,
																		_																	

ATTENDED THE OF MERCHENERS OF THE CANADAL

- 840484		toat are	AVERAGED	DATA ON HEASI	averaged data on Heasureheat data bets		
TEST 88A096	Ĕ	ST START TIME	10/ 8/88	7:26:17.20	PROCESS TIME 01/04/89	17:23:31	
F/F 104	-821 TOFWDL	-822 FIMPL	-823 TDUAFTL	-824 TDLAFTL	-825 AIMPL		
MDS# TYPE							
	085	2790.1	1307.7	1014.5	6607.3		
	0482	24388.	5471.5	6477.7	1205		
	3391	27761.	9372.7	11597.	39694.		
	4661	28846,	9463.2	11715.	41277.		
	207	26482.	9.0509	11174.	7565		
	339	21725	9443.9	11690.	39594		
	1664	28853.	9434.7	11678.	41273.		
	5706	29913	9443.0	11689.	£2723.		
	6668	30875.	9433.8	11677	€ € 666		
0	691	31310.	9926.6	12323.	44703.		
~ 4	743	31857.	10177.	12652.	£5465.		
2	7	32248.	10337.	12862.	€6052.		
، فرر	803	32513.	10440.	12998.	£6503.		
•	800	32551.	10449	13809	6553,		
ກເ	617	31838	10016.	12441.	45621.		
30	1100	41000 04400	10000	* 02.50 * 2.50 *	45272		
۰ «	200	91000	- CY 6	10603.	AUC		
٠ ۵	5.00	2000	**************************************	* 2000	#0000 #0000		
٠.	25.0	28656	200	1.683	41001.		
) and	2825	27372.	8957.3	11052	39406		
~	1859	26522.	5434.2	11677.	38224		
<u>س</u>	9679	21659.	B467.7	10409	0.00		
•	7209	18890.	7439.1	9059.6	27523.		
ų,	6544	18719.	7215.6	8766.4	27333.		
··	200	12915.	5062.9	5941.7	19267.		
<u>-</u>	215	24727.	9329.0	11540.	35628.		
œ	33.4	25959.	6388.8	11618.	37332.		
on.	594	29755.	9979.7	12393.	42685.		
0	860	22174.	7574.5	9237.5	32492.		
	696	21740.	8484.6	10432.	31490.		
N	4566	27346.	9496.2	11759.	39261.		
ტ (- 1886 600 600 600 600 600 600 600 600 600	2666.3	1292.2	994.06	6453.7		
- 10 - 10 - 10	25367	22722.	10000	10000	44 W. W. W. W. W. W. W. W. W. W. W. W. W.		
י ר	1000	10000000000000000000000000000000000000	10000	11676	4.00 E.		
) r	100	2533	0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	070	#0401.		
•	· •	1.12.1	414044	20.5.4	4.4660		

9

DATA	
AVERAGED	•
	1001
	:
	1001

LOADSH

	13:05:42																																					
ata sets	TIME 01/05/89			m									•																									
OREMENT D	PROCESS	-825 RIMPL		6607.	35205	39694	£1277	70000	61273	(2723	44066	44703	45465	66052	£6503	(6553	45621	(5272		64430	(2861	€1225	39406	38224	N 19 19 19 19 19 19 19 19 19 19 19 19 19	2/0/3	1000	1000	000000	100 SC 1	32492	31490	39261	6453.	33234	4 5602	40251	6391.
DATA ON MEASUREMENT DATA	7:26:17.20	-824 TDLAFTL		593.62	6056.5	11175.	11294.	110/03	11257.	11268.	11256.	11902.	12231.	12441.	12576.	12588.	12019.	11999.	12388.	12182.	11855	11262.	10630.	11256.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	604 KY. U	6650	4446	64443	11973	8816.5	1001	11338.	573.11	9165.7	12350.	11249.	558,63
AVERAGED	10/ 6/88	-823 TDUAFTL		1304.8	5468.6	9369.8	200 PM	0	9431.8	2440.1	9430.9	9923.7	10174.	10334.	10437.	10446.	10013.	4.7999	* A A A A A A A A A A A A A A A A A A A	10137.	9887.4	9436.0	6954.4	5431-3	A	7430.6		0.000	100000	97.00	7571.6	6481.7	\$493.3	1289.3	7837.8	10265.	9425.7	1278.2
frof Sec	ST START TIME 10/	-822 FIMPL		-1006.4	20589.	23962.	25047	23926	25054.	26114.	27076.	27511.	28058.	28469.	28/15.	28752.	28139.	27820	, 1041.	27272	26050,	24857.	23573.	22724.	, co	14004	0117	00000	22163.	25958.	18378	17942.	23550.	-1130,5	18926.	28042.	24291.	-1173.1
OH GANOX	33	-821 TDF#DL		3085.0	20482	23391.	24061.	23393	24664.	25706.	26668,	26910.	27433.	27793.	. KEDRZ	28025.	26172.	26011.		Zesue.	22426	24268.	22822	50000	, con	16644	1001	2000		25947	18600.	19695.	24566.	2984.3	19082.	26381.	23639.	2970.4
. 0004	TEST 88AC96	\$01 3/	MOS# TYPE	H-1		rd +	~ ~	-1 to	1								<i>a</i> \	o r	~ 0	.	5) (ο,	4 {	N c	7 •	, (, v	· [-	- α	on	O	,I	C4	e	34 2	ι'n	9	
	; F-	۵ <u>.</u>								,				_				_			_			_		•		•			- '	_				_		•

•

```
DIRECTORY FILE: RUN NUM: 88A097
                                         , T DATE: 10/10/88, N MDS= 46, N CPS= 45
EDF HDR:
            CROSSOVER TEST
                                228
                                       229
                                             802
I C P:
                   801
                                                    803
                                                           804
                                                                 805
                                                                        230
            231
                   806
                         807
                                808
                                       809
                                             810
                                                    811
                                                           812 .
                                                                 813
                                                                        815
                   120
            818
                         819
                                820
                                       821
                                             822
                                                    826
                                                                   5
                                                                          3
            838
                   900
                         901
                                903
                                       902
                                             904
                                                    905
                                                           950
                                                                 951
                                                                        952
                   953
                         850
                                851
                                       926
MDS NSCANS TYPE
                        HEADER
      20
             1 PRE STATIC @ 90 PSIA
       139
             2 START UP
      132
             2
       20
             1
                463
  5
       20
             1
                582
  6
       20
             1
                524 GPM
  7
       20
             1
                495 GPM
  8
        20
                466 GPM
  9
       20
                437 GPM
 10
       20
                407 GPM
 11
       189
             2
                2ND START UP
 12
        20
                442
 13
        20
                400
 14
        20
                375
        20
 15
                359
        20
 16
             1
                331
 17
        20
                302
 18
        20
                272
 19
        20
             1 243
 20
       20
 21
        97
             2
                3RD START UP
      252
 22
             2 4TH START UP
             2 5TH START UP
 23
      300·
 24
             2
      183
                6TH STARTUP
 25
        20
             1
                441
 26
        20
             1
                400
       20
 27
             1
                375
 28
       20
             1
                359
 29
       20
             1
                331
 30
       20
             1
                302
 31
       20
                272
 32
       20
                243
       20
 33
                243
        20
                272
 34
       20
 35
                302
 36
       20
                331
       20
 37
                359
       20
 36
             1
                375
 39
       20
             1 400
       20
 40
             1
               442
      681
             2 442 GPM
 41
 42
       14
             2
 43
      188
                7TH START UP
 44
      182
                START UP
             2
 45
      175
                START UP
 46
      717
             2
                375 CAV
T S TIME: 14:37:48.70, P DATE: 10/11/88, P TIME: 07:42:58
N WS= 70, N W STAT= 74, N STAT= 46
ID W:
         1
               801
                      - 2
                            228
                                   229
                                          802
                                                803
                                                       804
                                                              805
                                                                    230
         231
               806
                      807
                            808
                                   809
                                          810
                                                811
                                                       812
                                                              813
                                                                     815
         816
               819
                      120
                            819
                                   820
                                          821
                                                822
                                                       826
                                                                7
               828
                      900
                            901
                                   903
                                          902
                                                904
                                                       905
                                                              950
                                                                    951
         952
                      953
                            850
                                   851
                                          926
                                               -152
                                                       -25
                                                              -26
                                                                   -100
                                                      -202
        -101
              -106
                     -107
                            -34
                                  -193
                                         -194
                                               -195
                                                             -203
                                                                   -800
        -801
              808÷
                     -809
                           -810
                                  -011
                                         -812
                                               -813
                                                      -814
                                                             -815
                                                                   -816
```

AVERAGED DATA ON MEASUREMENT DATA SETS

	1 <u>r</u>	B-06
	-820 CMOMENTL	0.516318 27.738 27.928 31.937 31.954 31.958 31.958 31.958 34.136 22.234 35.334 25.136 27.107 27.107 27.107 27.107 27.107 27.107 27.107 27.107 27.107 27.107 27.107
	-814 STAGE EF FICIENCY	-0.555999 -0.555999 -0.555999 -0.555999 -0.5559999 -0.5559999 -0.5559999 -0.55599999 -0.5559999999999999999999999999999999999
17:23:31	-819 NET AXIA L LOAD	######################################
E 01/04/89	-818 RESULTAN T AXIAL LOAD (+)	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
DAIA ON MEASUREMENT DAIA SI 7:26:17.20 PROCESS TIME	-817 RESULTAN T AXIAL LOAD (-)	ישיאות שיים ואו או האות האות האות ואות האות האות הא
16 OK MEASU. 26:17.20	-816 PUMP II READRISE	
10/ 8/88 7::	-815 KOVR TT HEADRISE	0
NV TEST START TIME	-152 FLOW 1 R ATIC IND	00000000000000000000000000000000000000
XOVER HQ CI	-813 ETAGE T- T HEADRI SE	$\begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot $
HEADER: Test 83A096	9/F 104 MDS# 1YPE	・ ですさて で で で で で で で で で で で で で で で で で で で

AVERAGED DATA ON HEASUREHENT DATA SETS

REMORA			AC TOCA	SVERAGED UPIN	nevau ao u	or nevourement outs outs	213		
TEST 8	88A096	19.5	T START TIME	10/ 8/88 7::	26:17.20	PROCESS TIME	TIME 10/12/88	12:53:52	
P/F ID	-	-613	-152	-815	-816	-817	-818	9181	
	•	STAGE T-	FLOW 1 R	XOVR TT	PUND II	RESULTAN	RESULTAN	HET AXIA	
		•	ATIC IND	HEADRISE	HEADRISE	T AXIAL	T AXIAL	L LOAD	
MDS	TYPE	35	. 41	7.7		(-) avoz	TOND (+)		
**	~	. 929	-0.18862	0.608612-01	1.8689	10687,	10145.		
~	~	051.	1.2422	477.59	575.05	53056.	48566.	~	
678 1	~	226.	1.2643	554.44	672.76	59848	62081.	-2232.6	
~		300.	1.1827	593.40	708.63	62577.	63968.	_	
w '		148.	1.3421	513.28	636.72	56865.	59546.	-2681.1	
φ.	 1	226.	1.2651	554.78	672.29	59816.	62246.	-2429.4	
~	~	300.	1.1836	594.52	707.23	62588.	63898.	-1310.2	
හ	~	362.	1.0977	632,36	731,79	65015.	65456.	-441.23	
a		420.	1.0126	650.48	771.08	67252.	66866.	395.31	
10	-1	434.	0.98131	646.98	789.01	68016,	68658.	-641.98	
	، وحو	465	0.92781	664.85	801.76	69255.	70046.	-791.00	
27	, -1	486.	0.88381	677.78	610.10	70137.	71042.	-905.48	
13	_	500.	0.83499	684.58	817.57	70752.	71767.	-1015.0	
*	-	499.	0.83558	687.03	813.92	70781.	71839.	-1058.4	
	~	390.	0.87896	573.57	618.33	67992.	69873.	-1881.9	
9	,	380,	0.92462	572.80	809.31	67486.	69445.	-1958.6	
17	، يەن	436.	0.98620	679.10	756.45	68178.	69827.	-1649.5	
ස ~්		£10.	1.0341	658.43	742.66	67175.	68813.	-1637.6	
6	,	347.	1.1253	639.62	709.11	64611.	66593.	-1981.5	
20	, 1	279.	1.2180	601.69	678,63	61851.	63811.	-1960.0	
21	-	194.	1.3076	548,68	646.63	58700.	60776.	-2075.8	
25	~ ••••••••••••••••••••••••••••••••••••	rij :	7.3612	513.50	625.20	56615.	60630.	-4014.4	
23	~	167.	1.1602	585.03	282.60	16237	\$083B	-4661.6	
*	~	017.	1.2453	529, 30	688.00	C 0535.	44630.	4095.2	
25	N	47.8	1.3288	486.78	461.66	£0072.	43995	-3922.9	
9 ; (V)	~	€0,8	3083	417.46	323.76	27643.	30615.	-2972.1	
2	~	308	1.0831	634.15	0/10 0/10 0/10 0/10	52435	57259.	- CO CO CO CO CO CO CO CO CO CO CO CO CO	
9 (2	N 1	3 K K	1170.1	e 7.1.0	12.11)	いなりのもと、	27118.	-40/6.1	
62	N	675	0.98554	687.10	163.50	64222	66470.	-2248.0	
Ö,	~	39.2	2.8127	434.94	564.91	(8517.	50647	-2130.0	
2	~	161.	1.1631	584.87	576.80	46435.	51087.	-4652.2	
35	~	446.	0.92327	706.2	741.08	58170.	61425.	-3254.6	
£.	,-1	.849	27.257	5174	-3.3700	10404.	9933.1	470.44	
4	~	68.1	3.3690	48.0	520.68	49646.	52015.	-2369.2	
35	- :	1402.4	0.73784	635.55	767.72	68207.	70495.	-2287.7	
36	2	38	0.81349	603.5	786.69	58081.	62359.	-4277.5	
5	;-4	888	22.021	d	-2.8719	10316.	9838.7	477.43	

;

			•
	812 DWN DIFF DISCH F R #2	704.04 712.43 716.443 731.16.443 731.18 684.689 679.29 679.64 673.42 673.42 673.42 673.42 673.42 673.42 673.42 673.42 673.42 673.42 673.42	822 XOVER EX IT TOTAL PR #3 75.319 76.774 543.60 635.74 700.10 720.16 723.09 731.65 687.55 688.87
	811 DWN DIFF DISCH P R #1	705.33 713.65 717.52 724.38 731.53 685.02 685.02 679.17 679.18 679.17 670.28 670.28 671.59 77.959 600.80	821 XOVER EX IT TOTAL PR #2 75.278 36.971 541.10 632.98 632.98 632.98 715.35 715.35 715.35 727.93 688.59
12:39:00	810 TRANSITI ON ST PR	697.61 716.19 716.93 724.81 676.93 676.50 675.13 668.42 668.51 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36 658.36	820 XOVER EX IT TOTAL PR #1 74.306 75.972 543.60 636.58 723.40 725.62 735.61 688.82 691.53
ATA SETS TIME 10/12/88 1:	809 UPC CONS T SEC PR	699-77 712-82 712-82 712-82 727-50 673-50 675-35 675-35 666-35 667-35 671-35 67	819 TRANSITI ON TOTAL PR 74.832 75.538 493.29 667.98 696.57 699.68 713.56 654.91 §55.01
MEASUREMENT DATA SI .70 PROCESS TIME	808 UPC CONS T SF3 PR	692.52 701.69 714.38 721.68 671.97 672.14 666.35 660.35 660.35 661.76 661.76 661.76 77.213 598.42 598.42 598.42	120 D/S TOT PRESS. 1 IMP #1 75.778 77.235 327.41 402.45 405.6 409.10 422.86 442.50
DATA ON MEASUR 4:37:48.70	807 UPC CONS T SEC PR	697.48 710.63 710.63 727.96 672.19 672.13 672.13 668.63 668.63 668.63 669.11 610.38 77.59 603.94 603.94 77.98	818 ISK DRAI N PK N PK 76.647 77.879 420.65 472.74 521.49 530.21 536.23 507.36
AVERAGED DA 10/10/88 14:	806 DWN MID DIEF #1	702.89 711.38 7115.31 722.44 723.44 683.11 683.11 673.40 6	815 XOVER DI SCH ST P R #1 76.757 78.410 533.44 693.45 714.18 726.18 681.16 684.23 5.3.07
RT TIME	231 D/S STAT PRESS. IMP #2	00000000000000000000000000000000000000	802 IMP FWD SHRCUD P R #1 76.880 78.714 411.67 447.60 456.98 458.34 462.98 462.98
CROSSOVER TEST TEST STA	230 D/S STAT . PRESS. IMP #1	552 552 552 553 553 553 553 553 553 553	813 DFM CONS T SEC PR #1 77.195 78.439 524.82 617.17 689.83 714.95 714.95 673.65 676.35
HEADER: Test 86A097	P/F ID# MDS# TYPE	6554322222222222222222222222222222222222	P/F ID# WDS# TYPE 3 2 2 3 2 2 5 11 6 11 11 11 11 11 11 11 11 11 11 11 1

CHOCK CHACK PARTICION OF THE SECTION
KZADER: Test 88a097	CROSSOVER '	FEST START TIME	AVERAGED DF 10/10/88 14:	DATE ON MERSU 14:37:48,70	AVERAGED DATA ON MENSUREMENT DATA SI /10/88 14:37:48.70 PROCESS TIME	ers 10/12/88	12:39:00		
							•		
b/e iof			0	228	229	802	803	804	805
	INLET ST	INLET ST	FLOWMETE	D/S STAT	D/S STAT	IMP FWD	IMP FWD	IMP AFT	
	ATIC PRE	ATIC PR		. PRESS.	S	3	Ξ,	1	I
MDS# TYPE	SSURE, P	2		XND #1	IND #2	R #1	R #2	R #1	R #2
	0	8.81	100	115.95	·	•	0	· ·	7
		6.76	w	48.157	•	\ C	9) IC	
	ים יכ	9.0	, ,,	があった。	٠~) (*) (*	3 (} •
	•	7 6	1 1 =	00.00	٠.	١.	J	n L	7 (
	٠.	7	,	77.77	Λí	١.	4	O١	
76	7.0	7.70		# TC . 70	• •	n n	יי	٠.	υ.
4 (101.19	55.703	380.88	8 4 5	81.361	301.10	313.31 311 86	446.10 465.75	70°054 366 30
		· •			1	ı			•
0 to 104	000	200	808	803	90	000	o C	110	010
4	D/S STAT	D/S STAT	ä		UPC CONS	UPC CONS	TRANSITI	I	DWN DIFF
	. PRESS.	PRESS	SIS	T SEC PR	T SEC PR	T SEC PR	ON ST PR	DISCH P	DISCH P
MDS# TYPE	IMP #1	IMP #2		6	2	*		R #1	R #2
40	78.274	77.140	75.900	76,705	76.108	76.984	75.402	76.868	76.758
0			620 663	510 5.6	X = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50105	AL 603	٠.	٠.
د	10.		625.40	615.63	609.41	616.52	616.14	· ~	۸ -
ı ₁ -1	56.6		693,58	687.10	681.49	689	687.36		
**	0.0		714.11	709.47	704.16	711,80	709.08	1	· A
- -4	71.8		716.57	712.74	707.94	714.54	711.86	$\overline{}$	A.
	77.4		725.69	722.93	717.48	724.06	721.23	$\overline{}$	0
	71.7		679.43	672.11	666.07	673.11	671.55	•	~1 (
	Σ. (2)		281. C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	567.42	675.85	674.54	.	0 (
	er u		7 C C C C C C C C C C C C C C C C C C C	239.62	100 m	24C.45	539.03	n (~ 1
→ ←	מיק		100 40 40 40 40 40	100.00	517.03 505.03	707.02	701.40	30 E	<u>~ ^</u>
	68.7		713.68	709.09	704.12	711.14	708.74	ran	a co
I #4	71.2		718.04	713.78	709.36	716.07	713.35	10	LL?
,	71.5		675,96	668.51	663.44	669.33	668.55	m	ന
 1	69.6		678.27	671.86	666.94	672.63	670.02	a	0
erd (8.65		680.63	674.43	669.83	673.88	672.03	-4	O
,	מינ ימי		120. a.d.	07.810	6/0.19	05.274	10.//9	_	•
			44.004 40.004 40.004	20.02.44 20.04.40	901 01	74.811	72.820	O 6	9
	200		70000	24.400	10.102	207.03	201.13	•	N I
	7. C		70.00	476.36	12.37	3/4.23	3/1.22	No	Λ.
	96 14 15		21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500.76	409 30	510.015	V 44	. •
 	֓֞֜֝֞֜֜֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		A 44 44 44 44 44 44 44 44 44 44 44 44 44	583 25	677.35	200	682.83		* 10
	2		* 4 • 3 • 3	•)		, ,		١.

		805	1 2	R #2	ຜູ	Z	. –	-	m	Ŋ	Q	ø	-	Ŋ	4.	Q,	0	Ŋ		0	٦.	4	4	7	₹.	ď	٠,	٦,	Ģ,	٠, ١	N <	i L	- 0	1 4	<u> </u>	• <) A	7	ž t	ع زد	• 0	515.61
		804	CUDON'S		3.5	5.3	18.	69	12.	26.	28.	34.	29.	39.	9	98.	19.	24.	27.	24	27.	35.	43	2.	42.	5			ä.	9:0	2, c		֓֝֝֝֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֓֓֓֓֡֓֡֓֡֓֡֓֓֡֓֡֓		קיל		33.5	, «	, r	מיק	, ,	513.33
	12:39:00	803	TELL FIND		4.76	6.83	49.3	90.3	27.5	34.6	35.8	24.3	71.9	34.5	38.3	38.3	48.8	17.8	27.7	36.6	36.9	40.4	43.2	0.41	12.2	76.3	30.8	21.5	90.1	77.T	02.20 on 2.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	700	0	45.0	, u	22	17.7	7.1.	11.4		399.49
SEES	10/12/88	802	IMP FWU		6.88	8.71	72.2	11.6	47.6	56.9	58.3	61.9	67.4	76.1	57.8	40.9	51.8	55.3	57.3	66.4	70.3	77.6	85.1	5.71	24.0	95.0	40.8	51.7	40.5	7.05	20 a 40 a		ייני פייני	, a	ָ יַר	1 7	74.4	44.4	67.5	50°,7	. u	455.97
DATA	PROCESS TIME	229	-	IND #2	10	- 03	. ~		- 654	M		in	~	œ	\mathbf{c}	CO.	w	a	Γ.	S)	_		·Ω	a	m	0	ഗദ	N 1	m	m 1	717 4	* *	46	٠.	иα	٠.		3 C		. 16	7 U	120.70
ia on measurenth	7:48.70	8		IND #1	7.61	9	1 2 4	7.56	16.0	24.1	24.7	28.5	32.3	35.1	01.5	15.6	20.2	23.1	24.4	29.9	32.1	35.4	46.8	50° E	5.24	19.6	4.0	8.25	15.4	9.61	22.6	¥. 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	200	, * C	4 4 4 4 6 5	2 t	20 CA 20 CA 20 CA 20 CA	10	אָרָ מיני	יי מינו		121.50
AVERAGED DATA	10/10/88 24:3	8	FLOWNETE C	4 ≥ ¥	0.13083	56.122	100.00	711.82	578.53	513.55	502.19	466.67	435.40	402.81	526.59	578.57	539.61	513.52	500.01	467.60	438.88	467.83	382.17	€.6583	257:98	75.663	189.45	697.50	579.65	500.00	151.4.101 100.001	# C C C C C C C C C C C C C C C C C C C	- U - C - C - C - C - C - C - C - C - C	70.00	400 +00 000	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 mm	000000	カロ・カツザ	461.41	7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	536.68
es FS	AT TIME		TALKE ST	13 FE	100	91.424	91.223	90.672	90.881	90.636	91.050	90.708	90.420	88.340	\$00.05	89.491	90.886	90.684	362, 286	90.81¢	90, 795	50.454	91.430	89.874	92.440	95.260	96.711	W	90.222	100 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 60 C	000000000000000000000000000000000000000	0 ft iii	- 177	77.46	77. CO) () () () () () () () () () () () () ()	20.44 20.44	27.07.20	** · · · · · · · · · · · · · · · · · ·	96,750
CROSSOVER TEST	TEST	1	10 72727	C.1																																						90.579
HEADER:	TEST 88A097	P/2 10#		3dal 45cm	944) 1440	i N	: «\	(A)	****		<i>}~</i>	ri														•											at the				- G	7 e4

			AVERAGED DA	DATA ON MEASUREMENT	EMENT DATA SET	TS				
HEADER:	XOVER HO CA	V TEST	00,0			00,00,00	Ü			
personal rest	เกลา -	STAKI TIME	29/8/07	02:11:92:	FRUCESS IIME	10/17/68	76:53:33			
FIE ID	904	10	950	951	952	ਵ	953		851	
	w	LUBE OIL	ACCEL X	ACCEL Y	ACCEL 2	SPEED	LUBE OIL	FLEX FLO	GBOX OIL	
-	E TEMP	Sup T	AXIS	AXIS	AXIS		FLOW	E PR	PR	
MIST TYPE										
1	1.94	3.79	.427	0	۳.	,	99	47.	52	
2	1.86	4.71	19817	0.14734	.16290	732.			02	
<u>м</u>	9.70	5.00	246	0.28518		323.			84	
1	2.57	5.10	208	0.14574	•	6323.2			81	
S	8.65	5,29	648	0.55748		323.			04	
9	0.72	60	295	0.34509					40	
7	3.28	4.74	222	0.14628	•	322.			97	
8	5.98	5.30	.251	0.14860	•	322.			53	
	8.45	5.09	.261	0.14531	•	6322.8	•	_	10	
	02.7	4.95	60.	0.54314	-				38	
	3.	5.03	1.1546	0.57229		6321.9		933.79	.97	
	08.1	5,73	. 15	0.56924	-		•		54	
	69.9	5.61	100	6.55102	-	•	•		28	
	11.5	5.03	1.12	0.55678	•		•		.15	
	12.8	5.88	0.40793	0.22839	•	•	•		82	
	14.8	5.99	575	0.30002	•		•	•	48	
	16.6	5.82	EN CO	0.57323	-			•	24	
	18.1	5,50	1.12	0.54885	•		•		.05	
	20.0	5,51	.231	0.14787	-	-	•	•	91	
٠	20.9	6.14	. 221	0.15059	•		•	•	78	
	21.8	6.14	.365	0.39454	-	_	•	•	63	
	8.8	5.64	471	0.55373	•		•	•	48	
	28.0	6.49	.206	0.18005	•			•	11	
	33.8	7.49	-218	0.18278	•			•	57	
	36.9	7.43	.201	0.15978	•				16	
	37.9	8.04	369	0.27073	•		•		24	
	E .	35	. 200	0.17312	•				86	
	47.4	8 92	189	0.14888	•		•		8	
	43.3	8.83	. 223	0.15698					70	
	12.7	9.90	.186	0.15018	•		•		85	
	8.60	0.07	.206	0.17646	•				57	
	21.1	0.35	.704	0.35120	-	322.			981	•
	25.7	0.42	492	9	덕	.129			31	
	12.2	2.24	•	C	0.13040	5238.9			17	
	10.4	1.51	٠	.167	.1986	324.		7	10	
36	115.48		282	1170	.331	32	26.312	S	20.097	
	21.4	2.55	.4638	0.71021E-01	97E-01	0.42823		4	20	

902 LUBE OIL TEMP #2

AVERAGED DATA ON MEASUREMENT DATA SETS

HEADER.	adnox	10 ppc#	AVERAGE	DATA ON MENSOREMENT	מושה	05130		
TEST 88A096		TEST START TIME	10/ 8/88	7:26:17.20	PROCESS TIME	10/12/88	12:53:52	
P/F ID#	826	7	v	M	838	006	901	903
	TECHNOLICE TARES	IN. TEMP	TOROUE	FLOWNETE D #2	THRUST D	REAR TOR	FWD TORO	LUBE OIL
MDS# TYPE	•	700	•	>	N FLOW	Kon rem		1 4 3651
~	588	w	-1.8460	-0.64277E-01	-0.1	72.844	72.005	88.141
	34.5		3741.1	584.37	74.661	76.236	74.100	88.771
	18.5	ď	4371.7	653.50	94.924	77.882	77.436	97.957
	50.9	'n	4290.8	593.82	106.06	79.048	78.642	87.622
יים יים יי	# 15 20 20 20 20 20 20 20 20 20 20 20 20 20	59.187	4407.2	704.24	90.040	80.897	80.777	94.291
	9 -	, C	4 20 E	במינטט מינטטט	10.00	177.TO	R2 264	טטני רפ
·	10	•	0.503.	יי טיי טיי טיי טיי טיי טיי טיי טיי טיי	112.77	61.00	F07.70	06.19
	200	d	£021.5	479.33	120.05	82,202	83.558	95 395
. 0	0.80	ď	3000	640.53	131.22	82.935	84 189	112 GB
) and	73.4	ď	3900	415.22	133.72	83.270	84.820	114 99
12	30.5	Ġ	3833,1	388.35	134.64	83.620	85.603	116.45
	37.	d	3741.1	358.88	135.25	83,963	86.243	117.70
•	37.3	ö	3741.8	358.78	135.63	84.432	87.054	116.59
w)	88.4	ö	3863.4	388.36	131.74	84.783	87.274	110.92
9 (84.9	o.	3935.7	415.19	131.90	85.457	87.928	113.69
_	09.6	ö	6027.5	449.47	133.89	85.656	88.791	121.65
ω,	98.3	္ပဲ	4103.4	€ 79.25	132.50	86.183	89.458	123.44
on.	71.5	ej.	€232.0	535.92	130.07	86.854	90.109	95.810
0	41.5		4350.7	593.84	126.57	87.189	20.067	95.868
	8.10	-i	4419.4	653.02	120.83	87.431	90.367	95.161
0	81.1	.	4450.7	705.74	100.05	87.784	90.831	97.116
m	94.0	,	4073.8	595.57	93.176	90.047	93.098	107.52
~	29.6	ດ່	4083.9	654.51	85.049	93.223	95.876	107.72
เก	00.5	'n	4209.4	704.96	82.088	96.015	97.345	110.42
9	10.7	ď	3908.1	708.31	69.763	96.709	98.238	110.59
<u>ر</u>	55.4	-CE	4057.2	535.98	105.60	99.305	99.952	106.48
ω	85.8	'n	3981.3	478.99	119.49	102.16	101.76	105.11
on.	08.0	'n	4001.6	68.83	135.07	103.61	102.63	97.649
 o	97.4	'n	3450.2	523.42	94.207	93.339	91.357	101.54
··	93.	'n	4087.6	594.78	94.776	94.696	96.441	115.88
~	15.8	÷	3859.7	413.56	131.16	100.78	101.34	118.11
~	2389	'n	-4.6860	-0.25827E-01	4	96.079	98.602	96.305
•	10.1	'n,	3519.3	.12	g	94.056	93.209	103.32
ហ	۲,	÷.	3610.8	301.48	135.39	97.349	95.820	116.61
9	90.3	'n	3695.3	355,28	122.87	99.684	99.815	120.00
7	3783	Ġ	-3.9760	-0.66416E-01	***	96.208	98.404	960.66

			•
8.96 9.47 004.0 005.3 005.2 006.8	112.56 112.58 113.65 113.94 113.96 114.05	00000000000000000000000000000000000000	08.6 00.6 08.9 08.9 14.0 19.9 10.7
8.14 7.95 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62	95.395 112.68 114.99 117.70 1110.92 121.69	5.81 5.86 5.16 7.11 00.7.7 10.4 10.5	7.64 01.5 115.8 118.1 118.1 03.3 03.3 116.6 0.0 0.0 0.0
04406440	63.558 84.189 84.189 85.603 87.243 87.274 87.928 89.458	40480848	5.64.00004
29760444	82.202 882.202 883.220 883.220 884.432 885.433 885.433 886.133	0,4,40,60	0.6.00
6	120.05 131.22 133.72 135.25 131.74 131.90 133.89	130.07 126.57 120.83 100.05 93.176 85.049 82.088 69.763 105.60	י ער אונדי ער אונדי ווידי אונדי ווידי
642772-01 64.37 63.50 93.82 04.24 52.81 93.83	######################################	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 000000000000000000000000000000000000
2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 2 4 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	66 55 55 55 55 55 55 55 55 55 55 55 55 5
# B # B B B B B B B B B B B B B B B B B	59.630 59.630 59.9852 60.132 60.132 60.1562 60.1623 60.1623 60.1623		
864884848484848484848484848484848484848	60000000000000000000000000000000000000		000 000 000 000 000 000 000 000 000 00
~ N ~ ~ ~ ~ ~ ~	, , , , , , , , , , , , , , , , , , , ,		000000000

AVERAGED DATA ON MEASUREMENT DATA SETS

																																,					
		H (C)	78.782	535.32	612.07	643.86	579.00	612.24	643.55	669.87	693.71	699.42	712.60	721.59	121.53	18.121	680.33	699	689.43	663.80	634.16	597.47	573.15	514.27	452.01	210.00	578 00	608.75	674.80	486.87	515.17	638.01	75.759	499.39	686.44	614.64	Ŋ,
	821 XOVER EX	IT TOTAL	77,949				-	_	• •	••			, ^ ^	~ ′	w -					~	_	_	~ .	_	~ -	_ ~		-	_	-		_		-	-		_
2:53:52	820 XOVER EX	IT TOTAL	0.3	6	612.61	644.30	579.39	612.64	644.59	671.15	695.30	701.34	714.43	720.40	720.49	430.19	96.109	701.90	691.64	664.98	634.93	598.04	574.04	516.32	453.65	210.00	579 18	610.17	616.09	486.04	516.72	640.38	75.915	498.72	684.94	615.59	5.
10/12/88	819 TRANSITI	ON TOTAL PR	5	Ó							658.36	663.76	680.44	100 TAG	600.13	71.660	637.47	662.45	648.84	618.74	583.26	540.74	513.61	470.26	904.24	260.04	539.09	575.29	641.76	445.30	471.50	609.33	74.939	456.77	653.21	578.96	74.767
PROCESS TIME	120 D/S TOT	PRESS. 1 IMP #1	78.044	326.10	368.45	383.83	352.88	368.34	383.28	393.53	410.62	418.55	623.84	16.179	10.00 10.00	62.62	40.00 PA	404.77	398.47	384.13	371.08	357.03	348.15	258.30	220.74	125 43	303.74	3.55	376.16	295.89	259.68	331.38	75.816	302.64	408.14	351.50	75.375
26:17.20	818 THRUST D	ISK DRAI N PR	78.652	274.35	457.70	461.95	442.57	461.04	19.03	461.00	460.57	483.73	# 00 m	20.00	00.00	000.00 00.00	20.103	501.13	493.75	482.02	460.80	438.17	660.58	415.16	250.82	350.01 350.01	655.64 655.64	458.45	486.22	373.18	(15.95	463.49	77.923	385.69	499.76	460.31	77.400
8/83 7:	815 XOVER DI	SCH ST P	79,205	25	6	ď	ů,	oʻ,	m,	ď,		•	•	•		•					•	•		•			•				•		ເກ				n.
TIME	۵	<u>α</u>	372	e e	M	8	m	u) i	v.	9:	4	8.		ָ מימי	ה כ	, 0	•	, (1	7	7.6	ä	ж. Э.Э	۳.	٦,	0 "	10		10	(F)	3	S	3.6	. 66	3.6		4.	ω. 9
TEST :	ომ	T SEC PR	8.28	17.1	88.8	23.5	53.68		23.4	52.4		85.7	900	 	. 4	ם ניים ניים) Q	86.3	74.7	45.5	13.2	73.7	8	ภ. (ภ. (υ. 	, ,		200	8.65	67.7	95.3	25.2	6.31	79.9	68.0	97.3	5.17
TEST 88A096	₩ 10 €	MOS# TYPE		8	1 (V)	7	e-1 :	-1 ε	~ (~ •																											
	88A096	E8A096 TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 126 126 813 802 815 818 120 819 820 821 822 10f 813 802 815 818 120 819 820 821 822	E88A096 TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 ID\$ 813 802 815 818 120 819 820 821 ID\$ 813 802 815 818 120 819 820 821 I SEC PR SHROUD P SCH ST P ISK DRAI PRESS. 1 ON TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOT	### COVER NATIONAL 12 126 12 12 12 12 12 12	E88096 TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 ID\$ 813 802 815 818 120 819 820 821 822 ID\$ BH3 BOOK TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 I SEC PR SHROUD P SCH ST P ISK DRAI PRESS. 1 ON TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT TOTAL IT T	### FEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 #### ### FEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 ###################################	## ## CAVER NATIONALES! 126 126 1253:52 126 1253:52 126 126 1253:52 126 126 126 1253:52 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126	### ### ### ### ### ### ### ### ### ##	BEANDS TEST START TIME 10 8/88	Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig.	Table Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Recent Re	The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the	Test start Time 10/ 8/88	PROCESS TIME 10/12/18 1253:52 PROCESS TIME 10/12/18 12:53:52 PROCESS TIME 10/12/18 12:53:52 PR 42	BEANOSE TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 B22 B23 B23 B23 B23 B23 B23 B23 B23 B23 B23 B33 B	BBA096 TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52	BEANOSE TEST STREET TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52	BBA096 TEST START TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52	Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 12. Colored Fig. 13. Colored Fig	Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 2 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 Fig. 3 F	Fig. 2	PROCESS TIME 17.51 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	PROCESS TIME 10/12/18 12:53:52 PROCESS TIME 10/12/18 12:53:52 PROCESS TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:52 PR FAILST TIME 10/12/18 12:53:53 PR FAILST TIME 10/12/18 12:53:53 PR FAILST TIME 10/12/18 12:53:53 PR FAILST TIME 10/12/18 12:54 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 11/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 10/12/18 PR FAILST TIME 11/12/18 PR FAILST TIME 11/12/18 PR FAILST TIME 10/12/18 PR FAILST T	PROCESS TIME 10/6/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/89 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12/89 PROCESS TIME 10/12	PROCESS TIME 10/8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52	BRA006 TEST STATE TIME 10/ 8/88 7:26:17.20 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 12:53:52 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS TIME 10/12/88 PROCESS T	BEANONG TEST TARE TARE 10/ 8/88 T:26:17.20 PROCESS TIME 10/12/88 12:53:52	BEANON	Fig. 10 Fig. 10 Fig. 10 Fig. 11 Fig. 10 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig.	Fig. 10 Fig. 10 Fig. 10 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig. 11 Fig.	## ## ## ## ## ## ## ## ## ## ## ## ##	## 125 CF R SHRET TIME 10 6 6 8 7:26:11.20 PROCESS TIME 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Colo	Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page 1975 Page	PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART	PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART PART	Part

:1

AVERAGED DATA ON MEASUREMENT DATA SETS

HEADER		MOUPE HO CAU	TOUT O	AVERAGED	DATA ON MEASUREMENT	DATA	Sets			
TEST 88	88A096	TEST		10/ 8/88	7:26:17.20	PROCESS TIME	TIME 10/12/88 1	12:53:52		
₽OE ID∯		230	231	8	607	808	809	810	811	812
		D/S STAT	D/S STAT	DAN MID	UPC CONS	UPC CONS	UPC CONS	ANS	DI	
MDS# TY	Zeyt	IMP #1	. PRESS.	Gu .	T SEC PR	T SEC PR	T SEC PR	ON ST PR	DISCH PR	DISCH PR
	فمبر	3.20	40	77.231	78.120	77.583	8	77.845	77.482	94
	~	36.3		2	517.05	509.66	6.3	518.09	w	25.3
	-	0	100	ă	5 P P P P P P P P P P P P P P P P P P P	580.69	(C)	540.53	601 64	, 0
			• (? ?		70.00) "		****	٠,
	٠.	, c	7.75	7;	623.03	71.670	Ü١	80.479	524.38	4,
	-4 ·	2	2.4	Š	552.75	44.044	Ü١	555.85	267.67	۱۹
	-	31,3	88.4	28	588.85	581.07	'n	590.75	601.86	ဖ
	<u>_</u>	39.9	87.5	ä	623.52	615.64	œ	624.25	634.45	N
	.~1	27.4	24.6	85	652.31	645.14	0	653.03	661.32	8
		2.3	41.6	8	678.23	671.70	ທ	679.71	685.86	4
0	•-4	50.4	49.1	06	684.14	678.04	σ	685.98	691.70	ď
-		4	20.00	8	698.17	66.269	0	669	704 R1	,
. ~		9	24.7	, ,	708.28	702.84	1	709.02	714.24	٠,
, c~		700	, מא	9	715 57	708.48	ı.	715 10	720 11	1 4
) ~		9 0		10	, c	700 73	•	214 02	720 11	, (
	٠.) (7.0	9 C	17.01	2000	•	70.877	120.11	Ä (
ינו	٠.	ָם מריים	7.60	ימ	10.200	600.03	£,	55.37	0/1.80	Ņ
w c	~ .	56.8	53.3	9	658.63	651.22	٦,	658.53	667.93	ů.
~		53.5	52.6	6	684.12	677.40	Ņ	685.51	692.16	-
œ	1	46.2	4.9	5	672.14	665.82	<u>,</u>	673.82	681.11	œ
თ	**	26.3	24.4	3	644.27	636.64	Ċ	645.30	654.66	Q
0	_	2.90	04.1	2	611.96	603.79	πi	612.72	624.17	Q
~	1	85.5	82.5	82	572.37	564.10	Ö	574.54	586.50	9
c,		71.5	68.7	58	546.75	538.11	Ŋ	549.30	561.95	0
m	e.	91.3	88.7	8	494.66	487.33	Ġ	497.62	505.33	9
~	ຸດ	15.6	42.2	38	4 29.55	422.17	*	433.30	442.07	G
ហ	N	£2.8	39.4	21	410.52	403.42	æ	415.52	425.24	4
9	'n	17.1	43.2	20	294.93	285.30	æ	298.03	308.71	N
~	໙	11.9	39.9	99	560.55	552.53	4	561.04	569.37	0
ထ	N	62.2	61.6	9	593.39	585.67	κύ	593.61	600.64	4
Ø	N	24.8	24.6	65	660.12	651.89	8	629.69	667.53	φ
0	C)	99.8	97.8	15	468.40	461.30	'n	467.92	478.44	-
-	i N	95.6	90.1	8	695.47	487.67	8	497.14	· vo	g
ا م	٥١	25.	84.7	29	624.79	618.19		624.89	630.90	0
, ~) -	,,	יני יע) } *	10° 11'0'	AQA 75	: ເ	74 ng1	75 470	9
) ~	10	90	ים יים	t a	007.04 787.04	472 42	άα	480.61	70 USA	5 C
ru	.	9 6	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜	9 E		15.000	, L	10.001	0.000	9
יי מינ	٦ ,	22.50	20,000	6/0.33	10.010 10.010	10.240	6000.13	000,000	2/0/0	
9 (.		ָ היי	η Ο	54.130	390.41	ا	000	g.	N:
<i>1</i>		7.45	83	÷	75.289	14.191		13.621	74.994	4

.ì

,

AVERAGED DATA ON MEASUREMENT DATA SETS

		805	IMP AFT		.21	_	۷	-		เท	9	Q,	e.	ø	w	4	9	4	æ	æ	ĸ.	4.	ø	٦.	Ġ	433.51	<u></u>	ص ا	'n	ဖ	۱	œ	æ	οĺ	æ	ď	33	N	9	4	9
		804	IMP AFT		5.8	395,28																				431.41															
	12:53:52	803	IMP FWD		7	343.47	385, 63	398.33	367.80	377.46	397.70	410.65	421.78	425.72	431.14	442.86	458.29	446.68	447.92	445.07	433.61	433.64	413.62	395.08	380.25	371.22	290.66	245.20	266.60	175.82	334.54	353.58	414.73	323.50	294.33	368.89	71.099	302.89	474.59	360.97	, ,
SETS	10/12/88	802	IMP FWD		7.37	50	92	0.5	78	392.52	05	17	430.32	£ 36.89	443.67	448.83	451.59	451.97	453.89	448.43	440.54	34	17	8	88	378.34	Š	29	2	2	8	9	2	2	8	69	'n	28	63	92	S
	PROCESS TIME	229	/S STA	IND \$2	79.059	95.164	95,806	103.92	87.827	95.774	103.83	111.11	118.42	119.41	123.47	126.45	129.71	129.70	127.75	124.32	117.57	113.82	107.67	99.049	90.400	84.656	32.108	26.981	32.732	5.3683	40.506	42.995	95,704	89.824	34,289	53.475	77.194	90.727	132.95	61.760	76.709
DATA ON MEASUREMENT DATA	:26:17.20	228	_	IND #1	10	95,565	96.046	104.14	88.068	96.083	104.15	111.64	119.13	120.39	124.46	127.71	130,73	130.85	128.15	124.43	118.45	114.92	108.66	066.66	91.299	85.580	32.889	27.450	33.510	6.9378	60.536	41.971	95.595	89.773	33.605	52.947	77.048	90.646	133.00	61.436	76,518
AVERAGED DA	10/ 8/88 7:	N	FLOWETE D #1		5	646.4	2	88	4	30	38	38	63	7	39	7.7	8	86	H	38	7	01	S	80	61	792.60	5	S	<u>ا</u>	63	3	83	74	Ö	76	37	'n	13	9	5	ω
tout t	IART TIME		INLET ST	£277 2.8	3.24	2.85	3,25	3.02	2.85	2.96	3.03	2.77	2.72	2.91	3.05	2.89	3.03	2.96	2.87	2.87	1.94	2.47	2.46	2.28	2.26	20.0	1.56	3,58	6.51	.078	3.49	0.20	8.58	1.22	3.67	4.71	1.37	1.16	9.82	5.21	93.742
ີ	TEST	p4 (INIET ST	SSURE, P	1.17	1.1	23	1.16	1.18	32	1.21	3.90	1.05	1.25	1.06	1.10	1.02	1.14	1.00	1.19	0.68	7.39	1.30	1.38	1.10	43	0.7	3.38	6.86	.013	3.45	2.24	8.52	1.31	4.00	4.83	1.18	1.24	0.14	5.27	90,527
HEADED.		P/F IDS	•	MDS# TYPE		64	e-1	-	eri eri	9	7			Ö	~4	o.	m	•	ιn	9	۴.	œ	co.	σ.	~	~	m	•	ın '	9	٠	.	თ	0	**	~	m	_	S	9	37 1

7

AVERAGED DATA ON HEASUREMENT DATA SETS

	12:53:52
	TIME 10/12/88 12:53:52
	TIKE
	PROCESS
	7:26:17.20
	TEST START TIME 10/ 8/88
	10/
	TIME
TEST	ART
CAC	T ST
8	TES
XOVER HO CAV TEST	
HEADER:	TEST 88A096

	7	
-194 SCALED F LOW IND.		32558.
-193 SCALED N PSH IND.	.12459E+1 22348. 79789.5 7959.6 7954.0 7954.0 7952.0 7952.0 7952.1 7952.1 7952.1 7952.1 7952.1 7979.2 7975.5	0.13029E+12
-152 FLOW 1 R ATIO IND	11	.02
-34 D/S PRES S. PIPE	00000000000000000000000000000000000000	83
-107 ST-TOT H EAD 2 IM P. #1		-2.5197
-26 MSS IND.		0.16740E-01
-25 NPSH IND • #1		12.4
-152 FLOW 1 R ATIO IND	00000000000000000000000000000000000000	2.62
926 G-BOX TE MP ALARM		.312
P/F ID#		~

Averaged data on measurement data sets

	12:53:52
	PROCESS TIME 10/12/88 12:53:52
	7:26:17.20 PR
cover ho cav test	TEST START TIME 10/ 8/88
~	TEST 88A096

		1
-812 XOVR D/S TT HEAD RISE #3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66.536 2.1753 98.777 77.080 82.718
-811 XOVR D/S TT HEAD RISE #2	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	63.955 2.5444 91.840 69.254 77.852 2.3840
-810 XOVR D/S TT HEAD RISE #1		72.015 2.5367 97.234 73.613 84.929 2.2646
-809 XOVR U/S T-T HEA DRISE	1- 6. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	642.28 -2.0270 356.17 566.29 525.65
-808 IMP STAT IC HEADR ISE	0 0 0 0 0 0 0 0 0 0 0 0 0 0	996.57 -1.5363 130.52 1000.6 -2.0121
-152 FLOW 1 R ATIC IND	00.00000000000000000000000000000000000	0.92327 27.257 3.3690 0.73784 0.81349 22.021
-801 INDUCER TOT-ST H	######################################	7.60 2.60 2.60 2.60 2.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3
-800 INDUCER TOT-ST H EAD #1	84400000000000000000000000000000000000	96.385 -1.0867 29.688 113.65 0.79349
-195 SCALED H EAD IND.	0 4	3825. 179302+10 142612+69 2141. 1676.
P/F ID#		~~~~ ~~~~~

- 33 -

AVERAGED DATA ON HEASUREHENT DATA SETS

PROCESS TIME 10/12/88 12:39:00 CROSSOVER TEST TEST START TIME 10/10/88 14:37:48.70 HEADER: TEST 88A097

822 KOVER EX IT TOTAL PR #3	686.91 686.93 6883.67 6883.67 6883.67 6883.67 720.59 720.59 720.80 686.97 686.97 686.97 686.97 686.97 687.21 75.97 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21 687.21	7.6
82: XOVER EX IT TOTAL PR #2	694.76 7111.06 7119.06 7122.63 7222.63 6843.25 6847.79 726.80 726.79 726.80 726.79 726.79 726.80 683.10 683.10 683.10 683.10 683.10 683.10 683.10 683.10 683.10 683.10	87
820 XOVER EX IT TOTAL PR #1	698 686 686 686 686 696 697 722 722 722 723 723 723 723 72	. 0
619 Transiti On Total Pr	66666666666666666666666666666666666666	463.53
120 D/S TOT PRESS. 1 IMP #1	84 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	85.4
618 THKUST D ISK DRAI N PR	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	369.03
815 XCVER DI SCH ST P R #1) W
802 IMP FWD SHROUD P R #1	$\begin{array}{c} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} d$	21.1
813 DWN CONS T SEC PR	80111000000000000000000000000000000000	79.1
P/F ID#		

Averaged data on Measurement data seys

PROCESS TIME 10/12/88 12:39:00 CROSSOVER TEST TEST START TIME 10/10/88 14:37:48.70 HEADER: Test 88A097

		1
902 LUBE OIL TEMP #2	96.493 106.89 108.12 112.86.89 121.41 123.49 110.34 110.34 1123.73 1123.73 113.70 1107.63 111.72 111.72 111.72	1000410041000
903 LUBE OIL TEMP #1	90. 103.03 100.31 100.31 1115.30 1117.30 1125.30 1125.50 1114.69 1117.65 1106.82 1106.82 1106.82 1106.83 1106.83 1106.83 1106.83 1106.83	23.
901 FWD TORQ UE TEMP	755 775 775 775 775 775 775 775 775 775	3 F B B B B B B B B B B B B B B B B B B
900 RZAR TOR QUE TEMP	7.5. 6.6. 6.6. 6.6. 6.6. 6.6. 6.6. 6.6.	886.179 887.532 87.532 88.198 88.198 89.730 89.431 89.431
838 THRUST D ISK DRAI N FLOW	15.15. 10.15.	
3 PLOWMETE R #2	1 0-	40000000000000000000000000000000000000
TOROTE #	$\begin{array}{c} 0 \\ $	ううちょうこうらうもらり
7 In. Temp Erature	######################################	
826 PUMP DEL TA PR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000000000000000000000000000000000000
P/F ID#	- CE - CO CO CO CO CO CO CO CO CO CO CO CO CO	- ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

AVERAGED DATA ON MEASUREMENT DATA SETS

	903 902 BE OIL LUBE OIL EMP #1 TEMP #2	.48 121.46 .84 115.87 .78 107.31 .91 110.96 .22 106.48 .68 103.89	50 851 X FLO GBOX OIL R PR	251 2860 39.736 39.736 39.736 28.292 23 25.701 28 25.701 29 25.701 28 499 39 25.569 22.659 22.659 22.659 31.074 31.074 31.577 34.777 34.777 34.777 34.777 34.777 34.777
39:00	901 903 FWD TORQ LUBE OUR TEMP	93.438 109 94.911 108 93.498 102 89.450 104 86.736 104 82.246 104	953 850 LUBE OIL FLEX I FLOW W PR	26.372 199.059 199.059 199.006 199.006 199.006 199.006 199.006 199.006 200.231
SETS ME 10/12/88 12	900 Rear tor Que temp	89.906 89.406 89.609 88.056 81.442 84.366	02335 }	6322.1 6322.1 6322.1 6322.1 6322.1 6322.1 6322.1 6322.1 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4 6322.4
ON MEASUREMENT DATA SI (8.70 PROCESS TIME	838 TE THRUST D ISK DRAI K FLOW	136.24 116.90 124.6012 124.60 101.15	952 Y ACCEL 2 AXIS	10-1 10-1
GED DATA 8 14:37:	5 2002 \$ FLOWNET 8 \$2	69.9 378 -0.10540 2.6 462.91 11.4 4659.73 1.0 284.83	50 ACCEL SEX ACCEL	48280E-01 0.71320E 18474 0.15219 18673 0.15219 14673 0.15219 14673 0.1329 17099 0.12445 17099 0.12445 17099 0.12445 16529 0.12445 17069 0.12520 23499 0.1358 18528 0.11339 17060 0.11339 17060 0.11339 17060 0.11320 17228 18528 0.11339 17060 0.11320 17060 0.11320 17060 0.11320 17060 0.11320
AVER. RT TIME 10/10/	1 In. Temp torg erature 1	66.284 67.400 67.400 67.411 82.30 66.307 85.303 66.307 85.303 85.303 85.303 85.303	905 905 LUBE OIL ACCE SUP T AXIS	
Crossover test Test start	826 Pump del I Ta pr	597.93 600.12 600.12 480.08 527.04 517.11	904 Gear Cas E Temp	
Header: Test 68a097	P/F ID#	0105226	8/F ID\$	

,

PROCESS TIME 10/12/88 12:39:00 AVERAGED DATA ON MEASUREMENT DATA SETS CROSSOVER TEST TEST START TIME 10/10/88 14:37:48.70 HEADER: Test 88A097

																															1								
	851 GBOX OIL PR	:		96	ņ	ທຸ	œ.	S.	æ	'n.	ď		ď.	ᅻ	æ	ĸ.	ď	9	a,	9	Ĺ.	æ	ທ		-194	SCALED F	\Box	# 13	49.669									64.392	
	850 FLEX FLO W PR	٠	•	4	3.6	8.8	ر. د	1.7	1.2	1.2	1.1	3.8	5.6	6.9	7.3	7.6	8.1	8.0	8.7	9	36.4	777.37	8		-193	SCALED N	H IND	# 1	0.55227E+11	344638+1	080.	7957.3	939	943.	933	930	7849.9	4496	
•	953 LUBE OIL FLOW		8	ď	9.16	6.31	6.82	6.27	8.87	1.08	1.08	28.517	8.53	8,45	7.84	7.83	7.31	9.50	9.80	7.04	3.94	4.02	6.06		-152	11-4		### ##	63	.264	.277	1.223	0.99403	.8823	.8627	6109	0.74808	1.353	: :
	SPEED		6321.6	6322.3	6321.2	6321.8	6321.5	6321.5	6320.7	6320.2	6321.5	6321.6	6321.1	6322.0	6321.7	6321.3	6321.8	6321.8	1.3900	5471.7	5776.3	5797.8	4646.8		**************************************	l.	. •		7	d,	æ	4	Ņ	Ġ	rri	7	ઇ, વ	91.628	
	952 ACCEL 2	-	.5454	CV.	.5535	tal.	413	Ġ	d	Ġ	Ġ	ú	Ġ	Ġ	ď	ú	ĊΨ,	*-	Ġ	-4	7	*		•	2011	H TOT-T2	м	4~4 1884	461	172	47.5	34,3	24.1	53.4		5.1	9,0	510.42	
	951 Accel Y Axis	24	165	5001	2522	1378	2999	22 ຄວາ ຄວາ	2970	9779	1572	1432	2555	3150	3495	1801	1883	3763	10-30514	5801E-01	3562	\$628	8661		32	MSS IND.	1.0	• • •	88518-02	63.316	2044.5	3016.3	2723.8	2565.2			2383.9	A 12 1	1 Y 1 1
	950 ACCEL X AXIS		.1544	835	3020	0932	1.0395	18839	.17801	.19815	.19214		.20942	.21756	.28400	23265	19184	.19672	.43541E-01	.11367	.17509	.17369	.34418		\$100 m	MPSH IND	+1	•	13.14	13.95	*	17	3	Ë	eri eri	2	9:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1
	110 3801 10 3801			4.06	3.49		7.4	61.3	4.63	3.83	3.55	4.26	0.65	***	3.86	4.41	3,66	4.24	4.33	3.75	3.14	1.48	1.03			,	ATIC LAD	. 4 1	C.19632	9.2647	1.2772						0.74808	1.3527	
-	SO4 Gear Cas E Temp		80.359	96	*	.67	8	23	3	ķ	ű	.29	Q	2.6	?.	5.7	ž, 6	8.8	g. 6	, a	30	5	.82		926	G-80x 72	HP ALARM		313	.31	.313	333	(L)	.313	6	333	6.0 C		i i
	#QI.	HDS# TYPE	# 4																						, 1D\$			MDS# TYPE										4 N	
	P/F	£	26	2	28	8	9		32	33	14F	S.	e e	6.4	38	e.	40	4.7	42	*	**	<u> </u>	9		3/4			£		N	643	*	S.	9	-	Φ,	O1 \$	·	;

-194 SCALED F LOW IND.

AVERAGED DATA ON MEASUREMENT DATA SETS

																				·	•	•	•	••	• •							•	-	•		-•		•	-
		-193	SCALED N		#1					7871.3			7733.6	.57438E+1	0.86463E+06	.87440E+1	,28413E+1 91274					-	-		•	7783.3			79.4.4	٠.	7925	920	955	2450.1	498	682	27455.	1493.	.3111064
	12:39:00	-132	3	ATTO IND		•	•	•	•	•	0.75409	•	•	11.953	1.3372	2.1195	6,7096	•	٠,	•	•	•	•	•	•	•	•	•	•	•	0.87815	•	•	0.99068	12.559	1.0965	1.0292	1.0838	6.106.1
SETS	10/12/88	-34	1		#1	0	4	7	Ġ	4.	7	o.	æ	۰.	Ŀ	٠.	97.0.10 1.0.10	. 4		ς.	4		æ	Š	ø	ů.	ú.	,		•	0,0	ָיַת	<u>a</u> ,	4.	ď	,	v, r	บัก	Ú
	PROCESS TIME	-107	ST-TOT H	H	~ ·				•	687.49	٠	•		~		•	519.30	•			•			•		696.13	•	٠		663.60	659.68	~ 1	-	-, .)423	77	۱ <u>ن</u>	70.00%	ý
RVEKAGEU DATA ON MEASUREMENT DATA	:37:48.70	-26	NSS IND.	1	•	750.	626.	569	531.	463		2319.0	2293.7	0.37962E-01	1058.8	672,13	2755 3		2628.8			2474.6			-		-				2563.9		2722.3)))	ź	311 4	_;	25.38.3	2582.6
AVERAGED DE	16/13/88 14:	-25	NPSH IND	. #1		210.62	213.83	213.04	213.48	211.53	215.45	210.34	207.81	210.67	216.76	517 - 617 617	216	27. C	213.54	214.31	213.74	212.23	210.17	211.08	205.17	209.05	225.04	28.617	212.63	7.7.7	212.97	7777	213.77	65.835	213.37	214.50	214.07	214 03	74.4
- Sal	START TIME	-152	FLOW 1 R			9943	.9271	.8823	.8591	.8024	7540	7007.	.6566	1.95	337	200	1 2907	0966	.9271	.8847	.8627	.8128	.7626	.7032	.6556	.6596	7018	000	77000	K337	0.87815	2776	.9957	. W.C.C.	טיט מיט	250	25		7
CROSSOVER TEST	TEST	926	G-BOX TE	MP ALARM		313	313	313	313	313	313	313	313	313	313	W		313	313	313	333	313	313	313	313	313	5 L C	7 7 6	7 6	410	8 6	700	17 C	7	ŋ r		ا لو	2,3135	BCT. 1F
HPADER:	TEST 88A097	P/F ID4			BGAL #SGW												7 4 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7																						

1

DATO, DES

PRACTED DATE ON MEASTIMENINE DATE SETS

CP 338 F. R TEST STAR THE 10/10/69 14:37: 4. 3 FROCES TIME 10/12/88 12:3(100

		; 1
-812 XOVR D/S TT HERD RISE #3	1.4070 116.55 116.55 112.58 112.58 14.102 54.399 74.144 74.142 75.098 66.319 66.319 66.319 77.248 77.248 77.655 75.655 75.655 75.655 764 77.64 77.64 77.64 77.64 77.64	68.405 59.503 59.503 48.921 71.234 71.234 78.109 61.154 82.820 84.936
-811 T HEAD RISE #2	11.53 11.05 11.05 11.05 11.05 11.05 11.05 12.05	46049444468096
-810 XOVR D/S TT HEAD RISE #1	-0.934 11.2831 116.534 1116.534 1116.534 12.536 62.330 62.358 82.558 65.038 65.038 65.038 77.569 77.563 86.035 77.224 72.224 72.224 72.224 72.224 72.224 72.224 72.224	94400C00C-1000
-809 X.2VR U/S T-T HEA DRISE	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	444321012213
-808 IMP STAT IC READR	0-00.00.00.00.00.00.00.00.00.00.00.00.00	10022.0 100337.339.1 10022.0 10019.6 10019.6 10007.8
-162 FLOW 1 E AC. 3 IND	1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	0.8553 0.46286 0.46286 0.46288 0.465886 0.465888 0.85538 0.85538 0.85538 0.85538 0.85538 0.85538
-861 INDUCEP TOT-ST 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 000 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
-800 [-Ducer 101-57 End 41	66	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	562284 562284 7656. 3028. 3028. 5028. 5028. 5028. 5028. 5028. 5028. 5038.	50000000000000000000000000000000000000
adis pod	まらままままままままままままままままままままままままままままままままままま	୭ ୭୭୭୭

AVERAGED DATA ON MEASUREMENT DATA SETS

HEADER.	E 021000000	4000	AVERAGED D	Averaged data on ibasurement data		SIZS			
TEST 88A097	TEST	RT TIME	10/10/88 14	14:37:48.70	PROCESS TIME	10/12/88	12:39:00		
FOI A/A	-195	600	-801	-152	808-	609-	-810	-811	-812
•	SCALED H	CC.	NDOCEE	FLOW 1 R	IMP STAT		XOVR D/S	XOVR B/S	XOVR D/S
	EAD 18D.	ï	TOT-ST H	_	IC READR	T-T HER	œ	22	×
MUS# TYPE	31 31	EAD #1	EAD #2	1.	ISE	DRISE	RISE #1	RISS #2	RISE #3
	52102,	ey.	88.305		1001.9	575.97	90.155	81,164	84.167
	52304.	Ö	81.222	39066	980.65	646.77	75.082		66,354
	-0.33952E+09	4	2.6857	#2.559	-2.0128	-1.1276	-0.55441	w	-0.57587
	50255.	۳.	67.559	1.0965	805.60	483.20	70.747		66.753
27	51807.	76.810	76.693	1.0292	877.43	538.66	72.688	66.404	69.017
	56405.	، پ	66.737	1.0% 3.0%	871.56	510.01	91.067		78.370
	-0.22251E+89	82	78.117	1.9613	727.72	411.51	61.59%	55,248	56.045
				·,				•	
F/F 10#	-613	-152	S	-816	-817	63	-819		
	STAGE T-			PUMP TT	RESULTAN	RESULTAN	NET AXIA		
		7.	HEADRISE	HEADRISE	T AXIAL	T AXIAL	L LOAD	,	
MDS# TYPE	집 양	1	4 2		LOAD (-)	1040 (+)			
e4(-3.5303	94	-0.87555	2.6567	10409.	900	562.85		
	n.	Ġ	-0.32930	-0.92193E-01		16070.	551.10		
(Ú)	4	1.2772	40.00	577.80	50 50 50 50 50	\$ 500 PM	-2886.8		
		7	603.55	681.75	627.18	64659	-2480.7		
		G, (673.07	752.79	68430	70654.	٠		
	٦.	30	96.51	760.21	70346.	72568	-2222.4		
~ 0	1483.7	, (2)	720.35	763.	2000	12862.	-2267.9		
	1411	9 6	600 25	500 63 500 63	C41.40	71861	-2718 9		
	1415.8	59	669.13		69748	72632			
•	1095.3	E .	526.32	569.52	54403.	56499.			
	1430.6	56,	692.59	738.76	67819	70523.	-2704.6		-
	1465.1	Q.	71.2.24	753.60	69512	71.748	•		
	1482.8	88,	723.28	760.26	70214	72464.	٠		
กง	1.5%41	, c	13 th 13 th	77.00	on constant	12840.	•		
1101	1.00.1	0 252.44 0 25.00	10 th	7 C	e Se Se Se Se Se Se Se Se Se Se Se Se Se	745/8.	-2658-4 -2658-4		-
· a	77000		,		2000	10000			
0 (7) 1 (m)	1428.3	3	577.37	851.82	70530.	73504.	-2974.4		
	4556.4-	-	-0.81272	-3.9907	10179.	9648.8	-		
	486.53	6,	184.84	301.96	31450.	32370.	0		•
	696.42	in the	230.59	666.25	40928	42440.	-1511.9		
53	240.72	6	114.51	126,33	20222	20367.	-164.62		
	936	7	١٠, ١	10 cm cm cm cm cm cm cm cm cm cm cm cm cm	52550	55032.	-2371.5		
	. va.	'n	ij	*ひ・ひで*	C C TO F D .	. 2007	1.00001		

		12:39:00		
AVERAGED DATA ON MEASSRENENT DATA SETS		PROCESS TIME 10/12/88 12:39:00		
d drive on were	-	14:37:48.70		
AVERAGE		125T START TIME 10/10/88 14:37:48.70		
	CROSSOVER TEST	TRST START T	•	
	HEADER:	TEST 88A097		

#CI	-813	-152	-815	-816	-817	-818	-819
	STAGE T-	FLOW 1 R	XOVR TT	PUMP TT	RESULTRE	RESULTAN	NET AXII
	T HEADRI	ATIO IND	HEADRISE	HEADRISE	T AXIAL	T AXIAL	L LOAD
HOS TYPE	35	#4 ****	(VI		royd (-)	LOAD (+)	
,su <u>i</u>	1459.2	0.92719	712.69	746.29	69299.	71903.	-2503.6
ywl	1475.4	0.88479	723.64	752.57	70047.	72336.	-2569.4
w	1485.5	0.86277	731.24	755.06	70404	73084	-2680.3
~	1502.3	0.81286	745.25	757.90	70974.	73663.	-2589.1
~ 4	1523.1	0.76268	753.46	770.45	71694.	74453.	-2758.7
 4	1408.9	0.70327	598.20	611.54	69239	72460.	-3221.5
m	1425.1	0.65564	586.10	839.86	69911.	73254.	-3342.9
~	1420.0	0.65968	578.22	842.60	70118.	73397.	-3279.3
-1	1395.5	0.70188	595.98	800.34	69474	72563.	-3088.7
(**)	1492.5	0.75553	603.83	799.45	69020.	72103.	-3083.0
 4	1401.7	6.80334	613.11	789.38	68603.	71781.	-3178.3
-	1396.0	0.85315	613.68	777.09	68175	71275.	-3099.7
-	1390.1	0.87815	622.86	267.98	67361.	70948.	-3086.6
Ņ	1361.6	0.92189	625.08	757.30	67528.	70555.	-3026.9
	1400.1	0.99573	657.13	743.67	67322.	70401.	-3079.3
N	•	0.55068	712.44	653.86	56852	60211.	-3359.3
N	÷	12.559	0.46576	-1.6530	10571.	10048.	523.25
H	1130.8	1.0965	547.44	583.82	56174.	58726.	-2553.8
7	1240.3	1.0292	605.06	635.86	60516.	63357.	-2841.7
N	1215.9	1.0838	593.71	622.88	59510.	62308.	-2798.1
e	\$ 0.00	1 1	1 4 4				

	Report Doo	cumentation F	'age	
1. Report No. CR-194447	2. Government Acce	ssion No.	3. Recipient's Cat	alog No.
Title and Subtitle Orbital Transfer Vehicle E High Velocity Ratio Diffusion			5. Report Date December 19 6. Performing Org	
7. Author(s) Brian W. Lariviere			8. Performing Org RI/RD89-11 10. Work Unit No.	
Performing Organization Nam Rockwell International Rocketdyne Division P.O. Box 7922 Canoga Park, California 913	09-7922		11. Contract or Gr NAS3-2377 13. Type of Repor	
12. Sponsoring Agency Name at National Aeronautic Spac Lewis Reseach Center Cleveland, Ohio 44135			Final Report 14. Sponsoring Ar NASA-LeRC	- 12/83 to 12/89 gency Code
16. Abstract High speed, high efficiency effectively convey the pumpor Orbital Transfer Vehicle (OT velocity ratio diffusing crossor the operating conditions required to ask on advanced analystic steady flow. To secure the characteristics produced by a MK49-F turbopumps first star Water and air tests were convelocity on the pump and cruflow were completed in water and air tests were compared	ed fluid from the exit of V), the MK49-F, a three wer. This velocity ratio alred by the OTV systems and the analyte design and the analyten impeller. A tester was including the inductional properties of the expension of the exp	one impeller to a stage high pre- approaches the m. The design of the de	the inlet of the next imposure liquid hydrogen tue diffusion limits for stabled the high velocity ratio ests of stationary two-distingtion of the high velocity ratio ests of stationary two-distingtion of the diffusion of the di	reller. On Rocketdyne's rbopump, utilizes a 6.23 to and efficient flow over diffusing crossover was mensional diffusers with the unsteady whirling times scale model of the elocity, and non-steady 80% to 124% of design
17. Key Words (Suggested by A Orbital transfer Vehicle Engine; of Hydrogen Turbopump; Multi-stac Crossover.	OTV; OTVE; Liquid	18. Distribution Unclassified Subject Cate	- Unlimited	
19. Security Classif, (of this repo Unclassified	d) 20. Security Classif Unclassified	(of this page)	21. No. of Pages 151	22. Price