Convolutional Neural Networks

Uma camada de uma CNN

Exemplo de uma camada

Exemplo de uma camada

Número de parâmetros em uma camada

Se você tem 10 filtros 3x3x3 em uma camada de uma rede neural, quantos parâmetros essa camada tem?

Sumário da notação

Se a camada I é uma camada convolucional:

```
f<sup>[l]</sup> = tamanho do filtro
```

Entrada:

```
p<sup>[l]</sup> = padding
```

Saída:

```
s^{[l]} = stride
```

n_c = número de filtros

Cada filtro é:

Ativações:

Pesos:

Bias:

Sumário da notação

camada l

```
Se a camada I é uma camada convolucional:
    f[1] = tamanho do filtro
    p<sup>[1]</sup> = padding
    s^{[l]} = stride
   n_c^{[l]} = número de filtros
Cada filtro é: S^{(2)} \times S^{(2)} \times N^{(2-1)}
    Ativações:
```

Uma camada de uma CNN

- Primeiro, convolvemos alguns filtros para uma determinada entrada
- Em seguida, adicionamos um viés a cada saída do filtro
- Por fim, obtemos o RELU do resultado

Uma camada de uma CNN

• Exemplo:

Imagem de entrada: 6x6x3 # a0

10 filtros: 3x3x3 # W1

Resultado: 4x4x10 # W1a0

Adicionar **b** (viés) com **10x1** nos levará: imagem **4x4x10** # W1a0 + b

Aplicar **RELU** nos levará: imagem **4x4x10** # A1 = RELU (W1a0 + b)

No último resultado p = 0, s = 1

O número de parâmetros aqui é: (3x3x3x10) + 10 = 280

- Dica: não importa o tamanho da entrada, o número de parâmetros é o mesmo se o tamanho do filtro for o mesmo
 - Isso torna menos propenso a overfitting

Se a camada 1 for uma camada conv

```
f[l] = filter size
p[l] = padding # Default is zero
s[l] = stride
nc[l] = number of filters
Input: n[l-1] \times n[l-1] \times nc[l-1] Or nH[l-1] \times nW[l-1] \times nc[l-1]
Output: n[l] \times n[l] \times nc[l] Or nH[l] \times nW[l] \times nc[l]
Where n[l] = (n[l-1] + 2p[l] - f[l] / s[l]) + 1
Each filter is: f[l] x f[l] x nc[l-1]
Activations: a[l] is nH[l] x nW[l] x nc[l]
              A[I] is m x nH[I] x nW[I] x nc[I] # In batch or minbatch training
Weights: f[l] * f[l] * nc[l-1] * nc[l]
```

bias: (1, 1, 1, nc[l])

Convolutional Neural Networks

Um exemplo simples de CNN

Exemplo de ConvNet

Exemplo de ConvNet 20 filtres 37×37×10 39 ×39×3 17x 17x20 7x7x90 7×7×40= =1960 logistic 1360

Um grande exemplo:

- Entrada: imagens são a0 = 39x39x3
 - n0 = 39 e nc0 = 3
- Primeira camada (camada **Conv**):
 - f1 = 3, s1 = 1, e p1 = 0
 - número de filtros = 10
 - Então, as saídas são: **a1 = 37x37x10**
 - n1 = 37 e nc1 = 10
- Segunda camada (camada Conv):
 - f2 = 5, s2 = 2, p2 = 0
 - número de filtros = 20
 - As saídas são a2 = 17x17x20
 - n2 = 17, nc2 = 20
 - Dica: o encolhimento é muito mais rápido, pois o stride é 2

- Terceira camada (camada **Conv**):
 - f3 = 5, s3 = 2, p3 = 0
 - número de filtros = 40
 - As saídas são a3 = 7x7x40
 - n3 = 7, nc3 = 40
- Quarta camada (Softmax todo conectado)
 - a3 = 7x7x40 = 1960 como um vetor
- Imagens estão ficando cada vez menor após cada camada.

Tipos de camadas em uma rede convolucional:

- Convolucional (Conv)
- Pooling (Pool)
- Toda conectada (Fully connected)

Convolutional Neural Networks

Camadas de pooling

Camada de pooling: Max pooling

	1	2	3	1
	1	1	9	2
max po stride	3	2	3	1
	2	1	6	5

Camada de pooling: Max pooling

Camada de pooling: Average pooling

Camada de pooling: Average pooling

1	3	2	1			
2	9	1	1		3.75	1.25
1	4	2	3	avg pooling	4	2
5	6	1	2	stride = 2		_

Camada de pooling: Average pooling

$$n_c = 3$$

Camadas de pooling

- Além das camadas conv, as CNNs geralmente usam camadas de pooling para
 - reduzir o tamanho das entradas
 - acelerar a computação
 - tornar algumas das features que ele detecta mais robustas

Max pooling

- O max pooling está fazendo o seguinte: se a feature for detectada em qualquer lugar desse filtro, mantenha um número alto
- A principal razão pela qual as pessoas o estão usando é porque ele funciona bem na prática e reduz os cálculos
- Não tem parâmetros para aprender

Max pooling

- Exemplo de max *pooling* em entrada 3D:
- Entrada: 4x4x10
- Tamanho do max pooling = 2 e stride = 2
- Saída: 2x2x10

Average pooling

- O average pooling tira as médias dos valores em vez de obter os valores máximos
- O max pooling é usado com mais frequência do que o average pooling na prática
- Se o stride do pooling for igual ao tamanho, então ele aplicará o efeito de encolhimento

Sumário de pooling

Hiperparâmetros:

f: tamanho do filtro

s:stride

Max ou average pooling

Padding (incomum)

Convolutional Neural Networks

Outro exemplo de CNN

Exemplo de CNN

Exemplo de CNN

	shape da ativação	tamanho	# parâmetros
Entrada:	(32,32,3)	3,072	0

Exemplo de CNN

- Hiperparâmetros são muitos
- Para escolher o valor de cada um, você deve seguir a diretriz que discutiremos mais tarde ou verificar a literatura e tirar algumas ideias e números dela
- Normalmente, o tamanho da entrada diminui em camadas, enquanto o número de filtros aumenta
- Uma CNN geralmente consiste em uma ou mais convoluções (não apenas uma como os exemplos mostrados) seguidas por um pooling
- Camadas totalmente conectadas têm a maioria dos parâmetros
- Para considerar o uso desses blocos juntos, você deve procurar outros exemplos de trabalho para obter algumas intuições

Convolutional Neural Networks

Por que convoluções?

Por que convoluções?

Por que convoluções?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10	10	0	0	0					_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10		0		0						0	30)
10 10 10 0 0 0 30 10 10 10 0 0 0 30	10			0	0	0		1	0	-1		0	30	
10 10 10 0 0	10			0	0	0	*	1	0	-1	=	0	30	
				0	0	0		1	0	-1		0	30	

Compartilhamento de parâmetros: um detector de features (como um detector de borda vertical) útil em uma parte da imagem é provavelmente útil em outra parte

Esparsidade de conexões: em cada camada, cada valor de saída depende apenas de um pequeno número de entradas

Colocando tudo junto

Training set $(x^{(1)}, y^{(1)}) \dots (x^{(m)}, y^{(m)})$.

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use o gradiente descendente para otimizar os parâmetros que reduzem J

Para brincar

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Links úteis

https://towardsdatascience.com/backpropagation-in-a-convolutional-layer-24c8d64d8509