JAM CHEATSHEET

0.1. **TODO.**

• E_T : TODO

0.2. **State.**

- σ : State Identifier
- Y: State Transition Function (STF)

0.3. **Misc.**

- y < x: precedes operator, relation to indicate one term may be defined purely in terms of another
- *U*: substitute-if-nothing function
- i, j: used for numerical indices
- Ø: nothing

0.4. Functions and Operations.

- ∃: exists
- \iff : TODO (section 3.2)
- $\bigwedge_{i=0}^{x-1}$: big wedge

0.5. **Sets.**

- x, y: item of a set or sequence
- s: set
- $\wp(s)$: set power (section 3.3)
- |s|: set cardinality (section 3.3)
- f*: function applied to all members of a set to yield a new set (section 3.3)
- : set-disjointness relation (section 3.3)
- v: indicates unexpected failure of an operation or that a value is invalid or unexpected (section 3.3)

0.6. Numbers.

- \bullet $\mathbb{N}\text{:}\,$ denotes the set of naturals including zero
- \mathbb{N}_n : restricts the set of naturals to values less than n.
 - Formally, $\mathbb{N} = \{0, 1, \dots\}$ and $\mathbb{N}_n = \{x \mid x \in \mathbb{N}, x < n\}$
- \mathbb{N}_L : is equivalent to $\mathbb{N}_{2^{32}}$ and denotes the set of lengths of octet sequences that must have limited size to be stored practically
- %: modulo operator
- $5 \div 3 = 1 R 2$: remainder of quotient operation

0.7. Integers.

- \mathbb{Z} : denotes the set of integers
- $\mathbb{Z}_{a...b}$: denotes the set of integers within the interval [a,b)
 - Formally, $\mathbb{Z}_{a...b} = \{x \mid x \in \mathbb{Z}, a \le x < b\}$ (e.g. $\mathbb{Z}_{2...5} = \{2, 3, 4\}$).
 - $\mathbb{Z}_{a\cdots+b}$ denotes the offset/length form of this set, which is a short form of $\mathbb{Z}_{a\cdots a+b}$.

0.8. Dictionaries.

- $\mathbb{D}(K \to V)$: denotes a dictionary mapping from domain K to range V
- D: set of all dictionaries
- $(k \mapsto v)$: key-value pair in dictionary
- $\mathbb{D} \subset \{\{(k \mapsto v)\}\}$: defines a dictionary as a member of the set of all dictionaries \mathbb{D} and a set of pairs $p = (k \mapsto v)$

- $\forall \mathbf{d} \in \mathbb{D} : \forall (k \mapsto v) \in \mathbf{d} : \exists! v' : (k \mapsto v') \in \mathbf{d}$: dictionary's members must associate at most one unique value for any key k
- $\forall \mathbf{d} \in \mathbb{D} : \mathbf{d}[k : \equiv \begin{cases} v & \text{if } \exists k : (k \mapsto v) \in \mathbf{d} \\ \emptyset & \text{otherwise} \end{cases}$ define the sub-

script operator for a dictionary d

- Note, assumes the key exists in the dictionary, otherwise the result is undefined and any block relying on it must be considered invalid
- $\forall \mathbf{d} \in \mathbb{D}, \mathbf{s} \subseteq K : \mathbf{d} \setminus \mathbf{s} \equiv \{(k \mapsto v) : (k \mapsto v) \in \mathbf{d}, k \notin \mathbf{s}\}:$ define the subtraction operator for a dictionary d
- $\mathbb{D}(K \to V) \subset \mathbb{D}, \mathbb{D}(K \to V) \equiv \{\{(k \mapsto v) \mid k \in K \land v \in V\}\}$: denotes a typed dictionary mapping from domain K to range V as a set of pairs p of the form $(k \mapsto v)$
- $\mathcal{K}(\mathbf{d} \in \mathbb{D}) \equiv \{ k \mid \exists v : (k \mapsto v) \in \mathbf{d} \}, \mathcal{V}(\mathbf{d} \in \mathbb{D}) \equiv \{ v \mid \exists k : (k \mapsto v) \in \mathbf{d} \} :$ denotes the active domain (i.e. set of keys) of a dictionary $\mathbf{d} \in \mathbb{D}(K \to V)$, using $\mathcal{K}(\mathbf{d}) \subseteq K$, and range (i.e. set of values) $\mathcal{V}(\mathbf{d}) \subseteq V$, where since the co-domain of \mathcal{V} is a set, if different keys with equal values appear in the dictionary, the set will only contain one such value.
- $\forall \mathbf{d} \in \mathbb{D}, \mathbf{e} \in \mathbb{D} : \mathbf{d} \cup \mathbf{e} \equiv (\mathbf{d} \setminus \mathcal{K}(\mathbf{e})) \cup \mathbf{e}$: dictionaries combined through the union operator \cup , which prioritizes the right-side operand in the case of a key-collision.
- $\mathcal{K}(\mathbf{d})$: returns active domain (set of keys) of dictionary
- $V(\mathbf{d})$: returns range (set of values) of dictionary

0.9. **Tuples.**

About: Tuples are groups of values where each item may belong to a different set

- (a,b): tuple notation
- (\mathbb{N}, \mathbb{N}) : set of natural pairs
- $\mathbf{T} = (a \in \mathbb{N}, b \in \mathbb{N})$: tuple with named components
- t_a , t_b : access named components of tuple
- •: e.g. denote an item $t \in T$ through subscripting its name, so for some $t = (a:3, b:5), t_a = 3$ and $t_b = 5$

0.10. Sequences.

- [[T]]: set of sequences with elements from set T, and defines a partial mapping $\mathbb{N} \to T$
- $[T]_n$: set of sequences with exactly n elements from set T, and defines a complete mapping $\mathbb{N}_n \to T$
- $[T]_{:n}$: set of sequences with at most n elements
- $[T]_n$: set of sequences with at least n elements
- \mathbf{s}_i : access item at index i in sequence \mathbf{s}
- [0,1,2,3:...2=[0,1] and $[0,1,2,3]_{1\cdots+2}=[1,2]]$ range in a sequence
- |s|: length of sequence
- $\mathbf{s}[i: \overset{\circlearrowleft}{=} \mathbf{s}[i \% |\mathbf{s}|]]$ modulo subscription
- last(s) $\equiv x$: function that returns final element x of a sequence $\mathbf{s} = [..., x]$
- ~: sequence concatenation operator
- $\hat{\mathbf{x}}$: concatenate-all operator for sequences of sequences
- x + i: element concatenation

1

JAM CHEATSHEET 2

0.11. Cryptography.

- \bullet $\mathbb{H}\text{:}$ set of 256-bit values from cryptographic functions (equivalent to Y_{32})
- ℍ⁰: equals [0]₃₂
 ℋ(m): Blake2b 256-bit hash function
- $\mathcal{H}_K(m)$: Keccak 256-bit hash function
- $\mathcal{H}_x(m)$: first x octets of hash

0.12. Boolean & Octets.

- \mathbb{B}_s : set of Boolean strings of length s
- \mathbb{Y} : set of octet strings ("blobs") of arbitrary length \mathbb{Y}_x : set of octet strings of length x
- $Y_{\$}$: subset of Y which are ASCII-encoded strings
- bits(\mathbb{Y}): sequence of bits representing octet sequence