Evaluating models fairly MLP Tips

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

13th March 2018

Adapted from slides provided by Prof. Michael Mandel.

MLP design parameters

- Several parameters to choose when designing an MLP (best to evaluate empirically)
- Number of hidden layers
- Number of units in each hidden layer
- Activation function
- Error function

Optimization tricks

- For a given network, local minima of the cost function are possible
- Many tricks exist to try to find better local minima
 - Momentum: mix in gradient from step
 - Weight initialization: small random values
 - Stopping criterion: early stopping
 - Learning rate annealing: start with large, slowly shrink
 - Second order methods: use a separate for each parameter or pair of parameters based on local curvature
 - Randomization of training example order
 - Regularization, i.e., terms in E(w) that only depend on w

Learning rate control: momentum

• To ease oscillating weights due to large η , some inertia (momentum) of weight update is added

$$\Delta w_{ji}(n) = \eta \delta_j y_i + \alpha \Delta w_{ji}(n-1), \quad 0 < \alpha < 1$$

- In the downhill situation, $\Delta w_{ji}(n) pprox rac{\eta}{1-lpha} \delta_j y_i$
 - thus accelerating learning by a factor of $1/(1-\alpha)\,$
- In the oscillating situation, it smooths weight change, thus stabilizing oscillations

Input pre-processing

- Remove mean
 - Avoids extra update steps to learn it
- Divide by standard deviation
 - Or whiten by multiplying by the square root of the covariance matrix
 - Make dimensions commensurate
 - Scales curvature of error surface to be less canyon-like

Weight initialization

- Consider a network with one hidden layer and a single output neuron
- What happens if we initialize all weights to 0?

$$y_k = \varphi\left(\sum_j w_{kj}\varphi\left(\sum_i w_{ji}x_i\right)_j\right)_k$$

Weight initialization

- Break symmetry by initializing with random values
- If inputs are normalized, they are uncorrelated, with zero-mean, and unit-variance
- Would like output to be approximately the same
- So inputs to sigmoid nonlinearity must be too

Hyperbolic tangent function

Hyperbolic tangent function

Weight initialization

$$\sigma_{y_i}^2 = E_x \{ y_i^2 \} = E_x \left\{ \varphi \left(\sum_j w_{ij} x_j \right) \right\}$$

$$\approx E_x \left\{ \left(\sum_j w_{ij} x_j \right)^2 \right\} \approx \sum_j w_{ij}^2 E_x \{ x_j^2 \}$$

$$= \sum_{j=1}^m w_{ij}^2$$

- So in order to make $\sigma_{u_i}^2 = 1$
 - Initialize w_{ij} randomly with $\sigma_w^2 = \frac{1}{m}$

Debugging: Gradient checking

- Is your backpropagation code working properly?
 - I.e., is it computing the right gradient?
- Backpropagation computes

$$\nabla_{\mathbf{w}} E(\mathbf{x}_p; \mathbf{w}) = \left[\frac{\partial E}{\partial W_{111}}, \frac{\partial E}{\partial W_{121}}, \cdots, \frac{\partial E}{\partial W_{NML}} \right]$$

- where $w_{i_1i_2l}$ is the weight in layer l connecting neurons i_1 and i_2
- Compute the gradient numerically and compare

Recall: Gradient illustration

Debugging: Gradient checking

One-sided numerical gradient:

$$\frac{\partial E}{\partial w_{i_1 i_2 l}} \approx \frac{1}{\delta} \left(E(\mathbf{x}_p; \mathbf{w} + \delta \mathbf{1}_{i_1 i_2 l}) - E(\mathbf{x}_p; \mathbf{w}) \right)$$

- where $\mathbf{1}_{i_1i_2l}$ is a vector that is 1 at entry $\mathbf{1}_{i_1i_2l}$ and 0 everywhere else and δ is a "small" constant
- Two-sided numerical gradient:

$$\frac{1}{2\delta} \left(E(\mathbf{x}_p; \mathbf{w} + \delta \mathbf{1}_{i_1 i_2 l}) - E(\mathbf{x}_p; \mathbf{w} - \delta \mathbf{1}_{i_1 i_2 l}) \right)$$

- More accurate approximation
- But requires twice as many evaluations of $E(\mathbf{x}_p; \mathbf{w})$

Debugging: Gradient checking

- Complexity of backpropagation
 - 1 forward pass (O(1) multiply and add per weight)
 - 1 backward pass (O(1) multiply and add per weight)
- Complexity of numerical gradient
 - One-sided: 1 forward pass per network weight
 - So W + 1 forward passes total
 - Two-sided: 2 forward passes per network weight
- So numerical gradient is good for checking correctness of backpropagation
 - But very slow to use in training, especially for large W

Gradient checking procedure

- Select an example data point, \mathbf{x}_p , initialize \mathbf{w}
- Compute the gradient of $E(\mathbf{x}_p; \mathbf{w})$ using backprop
 - Gives a vector of derivatives, one for each weight in the network
- Compute the gradient numerically
 - Evaluate $E(\mathbf{x}_p; \mathbf{w})$
 - Loop over each weight in the network
 - Evaluate $\textit{E}(\mathbf{x}_p;\mathbf{w}+\sigma\mathbf{1}_{i_1i_2l})$, compute partial derivative
- If they are not the same, look for patterns as a function of i_1i_2l , etc

How to select δ ?

- δ too big means derivative might be different at $E(\mathbf{x}_p; \mathbf{w} + \delta \mathbf{1}_{i_1 i_2 l})$ and $E(\mathbf{x}_p; \mathbf{w})$
 - Leading to a bad estimate using the above formulas
- δ too small runs into numerical issues
 - Need to be aware of limitations of floating point math
 - For δ too small, $1 + \delta = 1$
 - This might be around 1e-16, depending on the data type (e.g., float, double)
 - So $\delta=1$ e-8 might be reasonable

How to select δ ?

"AbsoluteErrorNumericalDifferentiationExample" by Berland - Self-made using TikZ, Beamer and LaTeX. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File-AbsoluteErrorNumericalDifferentiationExample.png #mediaviewer/File-AbsoluteErrorNumericalDifferentiationExample.png

Thank you!