

# B. Candy

| Feladat neve  | Candy       |
|---------------|-------------|
| Időkorlát     | 3 másodperc |
| Memóriakorlát | 1 gigabyte  |

Ica ősi városában állítólag egy olyan palota áll, amelynek gazdagsága minden képzeletet felülmúl. A belsejében van egy folyosó, ahol a világ minden tájáról származó N doboznyi cukorka van. Az arra járó utazók annyi édességet vehetnek magukhoz, amennyit csak akarnak, feltéve, hogy a cukorkák súlyát aranyban megfizetik.

A cukorkás dobozok balról jobbra, 0-tól N-1-ig vannak sorszámozva. Az i. dobozban  $a_i$  darab cukorka van, ahol  $a_i$  egy nemnegatív egész szám.

A palota őrzőjeként a dobozokat úgy szeretnéd mozgatni, hogy a sok cukorkát tartalmazó dobozok kerüljenek közelebb a bejárathoz.

Adott az  $a_0, a_1, \ldots, a_{N-1}$  tömb, valamint az F és T számok. Egyetlen művelet során a  $a_0, a_1, \ldots, a_{N-1}$  két **szomszédos** elemét cserélhetjük fel. Legalább hány művelet szükséges ahhoz, hogy a tömb első F elemének összege legalább T legyen?

#### **Bemenet**

A bemenet első sora három egész számot tartalmaz: N-t, F-t és T-t.

A bemenet második sora N darab egész számot tartalmaz:  $a_0, a_1, \ldots, a_{N-1}$ .

#### Kimenet

Ha a célt a megadott műveletekkel nem lehet elérni, akkor írd ki a "NO" üzenetet.

Egyébként egyetlen egész számot írj ki, a szükséges műveletek minimális számát.

## Megkötések és pontozás

- $1 \le N \le 100$ .
- 1 < F < N.

- $0 \le T \le 10^{11}$ .
- $ullet 0 \stackrel{-}{\leq} a_i \stackrel{-}{\leq} 10^9$  ahol  $i=0,1,\ldots,N-1.$

**Megjegyzés:** A bemeneti adatok nem feltétlenül férnek bele egy 32-bites egész számba, ezért C++ esetén figyelj a túlcsordulásra.

A megoldásodat tesztesetek csoportjaira tesztelik, minden csoport előre meghatározott pontot ér. Minden csoportban különálló tesztesetek vannak. A tesztcsoportra kapható pontot akkor kapod meg, ha minden egyes tesztesetre helyes megoldást adsz.

| Csoport | Pontszám | Korlátok                                                                     |
|---------|----------|------------------------------------------------------------------------------|
| 1       | 6        | $N \leq 2$ és $a_i \leq 100$ , ahol $i = 0, 1, \ldots, N-1$ és $T \leq 10^9$ |
| 2       | 19       | $a_i \leq 1$ az $i=0,1,\ldots,N-1$ értékekre                                 |
| 3       | 16       | $N \leq 20$                                                                  |
| 4       | 30       | $a_i \leq 100$ az $i=0,1,\ldots,N-1$ esetén                                  |
| 5       | 29       | Nincsenek további megkötések.                                                |

### Példa

Az első példában az első két elem összegének legalább 27-nek kell lennie. Ez két szomszédos elem egyetlen cseréjével elérhető: a 4 és a 20 elemeket cseréljük ki. A csere után a tömb 10 20 4 6 3 3 lesz, és az első két elem összege  $10+20=30\geq 27$ .

A második példában a 0-nak a tömb végére kell kerülnie; ehhez három cserére van szükség.

A harmadik példában nem lehet elérni, hogy az első két elem összege legalább 100 legyen; a legnagyobb szám, amit elérhetünk, az a 60+30=90.

| Bemenet                                            | Kimenet |
|----------------------------------------------------|---------|
| 6 2 27<br>10 4 20 6 3 3                            | 1       |
| 6 5 5000000000<br>100000000 1000000000 0 100000000 | 3       |
| 3 2 100<br>20 30 60                                | NO      |
| 1 1 100<br>100                                     | 0       |