Zusammenfassung Quantum Computing

Henrik Tscherny

1. September 2023

Inhaltsverzeichnis

1	Basic		1
		QBits	
	1.2	Complex Numbers	2
	1.3	Matrices	2
2	Gates		2
		Phase Kickback	3
3	Deutsch Algorithm		4
4	Deuts	sch-Jozsa Algorithm	5
5	Grove	ers Algorithm	6
1	D.	-•-	
1	Ba	SIC	
1	1 ()	D:4c	

QBits

- state of a single QB: $|s\rangle = a_0|0\rangle + a_1|1\rangle = a_0\begin{bmatrix}1\\0\end{bmatrix} + a_1\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a_0\\a_1\end{bmatrix}$
- state of two QBs: $|s\rangle = a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle$
- basis vectors: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- $P(|0\rangle) = |a_0|^2$, $P(|1\rangle) = |a_1|^2$

•
$$\sum_{i=0}^{2^n-1} |a_n| = 1$$
 (for n-qubit system)

• tensor product:
$$|00\rangle = |0\rangle \bigotimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \bigotimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• **entanglement**: non-serperable state (can not be written as the product of qubits, the qubits are statistical dependent)

Example:
$$|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

1.2 Complex Numbers

•
$$z = a + ib$$

 $= r \cdot e^{i\varphi}$
 $= r \cdot (\cos\varphi + i \cdot \sin\varphi)$
with $a, b \in \mathbb{R}$ and $i^2 = -1$

• conjugate:
$$\bar{z} = a - bi$$

1.3 Matrices

- **Transpose**: A^{T} swap rows and cols
- Conjugate: A^* each entry is the conjugate
- **Adjunct**: A^{\dagger} transpose + conjugate
- Unitary: $UU^{\dagger} = UU^{-1} = I = U^{\dagger}U$ adjunct is also the inverse
- Note: every unitary operator can be written as its eigenbases

2 Gates

- every gate is reversible (as gates are unitary matrices)
- Hardamard Gate:

$$-H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$
$$-H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

- applying H splits the probabilities in $\frac{1}{2}$ for each (simulate coinflip)
- H is self inverse as it is unitary

- recursive definition for Hardamard:
$$H^{\bigotimes n} = H \bigotimes H^{\bigotimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \bigotimes H^{\bigotimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} H^{\bigotimes n-1} & H^{\bigotimes n-1} \\ H^{\bigotimes n-1} & -H^{\bigotimes n-1} \end{bmatrix}$$
$$H^{\bigotimes 1} = H$$

- Pauli Gates:
 - **Pauli-X**: Swaps $|0\rangle$ and $|1\rangle$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - Pauli-Y: Swaps amplitudes, (adds phase ?), negates amplitudes of |1> $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
 - **Pauli-Z**: Negates amplitudes of $|1\rangle Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

• CNot:

- negates the target if the controller is active
- permutation matrix

$$- CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2.1 Phase Kickback

- U: one qubit unitary gate
- $|\phi\rangle$: some base state
- applying U to $|\psi\rangle$ yields $e^{i\phi}|\psi\rangle$
- the global phase factor of a quantum state is not measurable (symmetry)
- using ancilla qubits the global phase can be turned intro a relative phase which is measurable

3 Deutsch Algorithm

- function $f: \{0,1\} \rightarrow \{0,1\}$ that is either balanced or constant
- classical: compute f on every input
- quantum: one call of f is needed
- quantum oracle:

$$- U_f : |x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|y \bigoplus f(x)\rangle$$

- $|x\rangle$ input to function
- $|y\rangle$ qubit to write function result to
- $|y \bigoplus f(x)\rangle$, the XOR ensures that the oracle is reversible (as each image has a unique preimage)
- initializing $y = |0\rangle$ we only get the function value $|x\rangle|f(x)\rangle$ as $0 \bigoplus x = x$
- initializing $y = |-\rangle$ we get phase kickback to $|x\rangle|-\rangle \xrightarrow{U_f} (-1)^{f(x)}|x\rangle|-\rangle$ (a phase is applied to the input qubit)

$$\begin{cases} |x\rangle|-\rangle & f(x) = 0\\ -|x\rangle|-\rangle & f(x) = 1 \end{cases}$$

– Note: this is called a phase oracle $(U_f|x\rangle|-\rangle=(-1)^{f(x)}|x\rangle|-\rangle)$

$$- |\psi_0\rangle = |00\rangle$$

$$- |\psi_1\rangle = |01\rangle$$

$$- \ |\psi_2\rangle = |+-\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |-\rangle + |1\rangle |-\rangle)$$

$$- |\psi_3\rangle = U_f \frac{1}{\sqrt{2}}(|0\rangle| - \rangle + |1\rangle| - \rangle) = \frac{1}{\sqrt{2}}(U_f|0\rangle| - \rangle + U_f|1\rangle| - \rangle) \overset{\text{phase oracle}}{=} \frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle| - \rangle + (-1)^{f(1)}|1\rangle| - \rangle) \\ (|-\rangle \text{ can be omitted as its not needed})$$

$$- \text{case } f(0) = f(1) \colon \begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 0 \\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 1 \end{cases} \\ |\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \pm |+\rangle$$

$$- \text{case } f(0) \neq f(1) \colon \begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 0 \land f(1) = 1 \\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 1 \land f(1) = 0 \end{cases} \\ |\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \pm |-\rangle$$

$$- |\psi_4\rangle = \begin{cases} \pm |0\rangle, & f(0) = f(1) \\ \pm |1\rangle, & f(0) \neq f(1) \end{cases}$$

• measuring 0 iff function is constant and 1 iff function is balanced

4 Deutsch-Jozsa Algorithm

- generalized version of Deutsch Algorithm to n qubits
- $f: \{0,1\}^n \to \{0,1\}$
- f is constant iff $\forall x, f(x) = c$
- f is balanced iff $|\{x \mid f(x) = 0\}| = |\{x \mid f(x) = 1\}|$
- classical: $2^{n-1} + 1$ function calls (input half the possible inputs)
- quantum: one call of f in needed (exponential speed up)

$$- |\psi_0\rangle = |00...0\rangle|-\rangle = |0\rangle^{\bigotimes n}|-\rangle$$
 (we can get the $|-\rangle$ by $H|1\rangle$)

$$- |\psi_1\rangle = H^{\bigotimes n} |0\rangle^{\bigotimes n} |-\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |-\rangle \text{ (uniform distribution)}$$

$$-|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} U_f|x\rangle |-\rangle \stackrel{\text{phase oracle}}{=} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle |-\rangle$$

- Note:
$$H^{\bigotimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle, \ (*)$$

$$- |\psi_{3}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} H^{\bigotimes n} |x\rangle |-\rangle$$

$$\stackrel{(*)}{=} \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} \frac{1}{\sqrt{2^{n}}} \sum_{z \in \{0,1\}^{n}} (-1)^{x \cdot z} |z\rangle$$

$$= \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \sum_{z \in \{0,1\}^{n}} (-1)^{f(x)+x \cdot z} |z\rangle$$

- consider the amplitude of $|0\rangle^{\bigotimes n}$ is $\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)}$ case f constant:

$$\begin{cases} \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^0 = \frac{1}{2^n} 2^n = 1, & f(x) = 0\\ \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^1 = \frac{1}{2^n} (-2^n) = -1, & f(x) = 1 \end{cases}$$

- hence if f is constant the probability of measuring all zeros is 1
- hence if f is balanced half of the sum is 1 and half is -1 hence the probability of measuring all zeros is 0
- $-\rightarrow$ measure and iff we get 000...0 then f(x) is constant else balanced

5 Grovers Algorithm

• Problem: given an unstructured database, find an element \hat{x} within this database

- $f: \{0,1\}^n \to \{0,1\}$ with $f(\hat{x}) = 1$, $f(\neg \hat{x}) = 0$ $(x, \hat{x} \in \{0,1\}^n)$
- classical: $\frac{N+1}{2} \in O(N)$
- quantum: $\frac{\pi}{4}\sqrt{N} \in O(\sqrt{N})$
- Steps:
 - 1. generate uniform distribution on all elements:

$$-H^{\otimes n}|000...0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$
$$-|s\rangle = H^{\otimes n+1}|000...0\rangle |1\rangle = |0\rangle^{\otimes n}|-\rangle$$

- 2. Grover Iteration:
 - (a) Negate the amplitude of \hat{x} (Oracle \hat{U}_f)

$$-\hat{U_f}|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} H^{\bigotimes n} |x\rangle |-\rangle \quad \text{(as in Deutsch-Josza)}$$

(b) Mirror/Reflect/Diffuse all amplitudes a at the mean value m(Diffusion \hat{D})

$$-a := 2 \cdot m - a$$

- mirroring as a quantum state: $\sum_{i=0}^{N-1} a_i |i\rangle (*)$
- mean value of amplitudes: $\sum_{j=0}^{N-1} \frac{a_j}{N} (**)$
- combining (*) and (**) we get: $|s\rangle = \sum_{i=0}^{N-1} \left(2 \cdot \sum_{j=0}^{N-1} \frac{a_j}{N}\right) |i\rangle$

$$- D_N = \begin{bmatrix} -1 + \frac{2}{N} & \dots & \frac{2}{N} \\ \vdots & -1 + \frac{2}{N} & \vdots \\ \frac{2}{N} & \dots & -1 + \frac{2}{N} \end{bmatrix}$$

- Note: D_N can be expressed as a local operation (leq3 bits involved)
- 3. Conditional sign flip for \hat{x}

$$-V_f:|x\rangle\to(-1)^{f(x)}|x\rangle$$

4. Measure $|x\rangle$ and return it off $\hat{x} > c$ (c is some constant)

- The number of grover iterations T is capped by $(2T+1)\frac{1}{\sqrt{N}}$ since every iteration rotates by $\frac{2}{\sqrt{N}} \Rightarrow T = \frac{\pi}{4}\sqrt{4}$
- doing more than the necessary number of iteration degrades the result

6 Simons Algorithms

Todo

7 Shors Algorithm

Todo