ALGORYTMY GRAFOWE

Opis algorytmu Bellmana-Forda (wersja kontrolująca długości ścieżek)

Najkrótsze ścieżki z ustalonego wierzchołka s do wszystkich pozostałych wierzchołków (dowolne wagi krawedzi).

Ogólna zasada działania:

W k-tej iteracji (k = 1, 2, ..., n-1) rozpatrujemy zbiór wierzchołków, do których **aktulane** najkrótsze ścieżki z s mają k krawędzi (łuków) (S – zbiór tych wierzchołków). Patrzymy na sąsiadów S (następniki wierzchołków z S – $\Gamma(S)$). Zmieniamy im cechy (l i p), jeśli znaleźliśmy krótszą ścieżkę. Nowy zbiór S – zbiór tych wierzchołków, które zmieniły cechę w k-tej iteracji.

Oznaczenia stosowne w algorytmie:

- $l^k(v)$ długość aktualnej najkrótszej ścieżki do v
- $p^k(v)$ poprzednik na aktualnej najkrótszej ścieżce do \boldsymbol{v}
- $\Gamma(v)$ zbiór następników wierzchołka v
 - 1. $l^1(s) \leftarrow 0$, $p^1(s) \leftarrow None$ oraz $l^1(v) \leftarrow w(s,v)$, $p^1(v) \leftarrow s$ dla każdego $v \in \Gamma(s)$; dla pozostałych wierzchołków u:

$$l(u) \leftarrow \infty, \quad p(u) \leftarrow \infty;$$

$$k \leftarrow 1, S \leftarrow \Gamma(s).$$

2. Dla każdego wierzchołka u z $\Gamma(S)$: Jeśli

$$l^{k}(u) > \min\{l^{k}(v) + w(v, u), v \in S\},$$

(uwaga: tu możemy zignorować pary vu, dla których nie ma krawędzi) nadajemy nowe cechy tymczasowe, biorąc v, dla którego jest osiągnięte minimum

$$l^{k+1}(u) \leftarrow l^k(v) + w(v, u);$$
$$p^{k+1}(u) \leftarrow v;$$

Dla $u \notin \Gamma(S)$: $l^{k+1}(u) \leftarrow l^k(u), p^{k+1}(u) \leftarrow p^k(u)$.

(Zbiór S zawiera wszystkie wierzchołki, do których aktualnie najkrótsze ścieżki z s składają się z k krawędzi (łuków);

- 3. (a) Jeżeli $k \leq n-1$ oraz $l^{k+1}(v) = l^k(v)$ dla każdego v, to STOP;
 - (b) Jeżeli k < n-1 oraz $l^{k+1}(v) \neq l^k(v)$ dla pewnego wierzchołka v, to krok 4;
 - (c) Jeżeli k=n-1 oraz $l^{k+1}(v)\neq l^k(v)$ dla pewnego wierzchołka v, to STOP graf ma cykl o ujemnej sumie wag.
- 4. S zbiór wierzchołków, których cecha się zmieniła w k–tej iteracji; $k \leftarrow k+1$ i krok 2 (S zawiera wierzchołki, do których najkrótsze ścieżki z s mają k+1 krawędzi(luków)).

Opis algorytmu Bellmana-Forda - wersja uproszczona

1.
$$l(s) \leftarrow 0$$
, $p(s) \leftarrow None$, $l(v) \leftarrow \infty$, $p(s) \leftarrow None$, dla $v \in V \setminus \{s\}$

2. Powtarzaj |V| - 1 razy:

Dla każdego wierzchołka vi każdego $u \in \Gamma(v)$ jeśli

$$l(u) > l(v) + w(v, u),$$

to

$$l(u) \leftarrow l(v) + w(v, u)$$
 oraz $p(u) \leftarrow v$.

3. Jeśli istnieją v i $u \in \Gamma(v)$ takie, że:

$$l(u) > l(v) + w(v, u),$$

to graf ma cykl o ujemnej wadze.

UWAGA: Można zakończyć wcześniej, w przypadku, gdy nastąpi iteracja bez zmian cech wierzchołków.