ЛАБОРАТОРНАЯ РАБОТА 9

СПЕКТРОМЕТР БЛИЖНЕГО ИК-ДИАПАЗОНА НА АКУСТООПТИЧЕСКОМ ПЕРЕСТРАИВАЕМОМ ФИЛЬТРЕ

ИСПОЛЬЗУЕМЫЕ ФОРМУЛЫ

Дисперсионная кривая акустооптического фильтра в общем случае описывается следующей функцией:

$$\lambda = \frac{a}{f} + b \tag{1}$$

Разрешение спектрального прибора:

$$R = \frac{\lambda}{\Delta \lambda} \tag{2}$$

Где $\Delta\lambda$ берется на полувысоте аппаратной функции.

ОБРАБОТКА РЕЗУЛЬТАТОВ

ПРЕДВАРИТЕЛЬНОЕ ОПРЕДЕЛЕНИЕ ПИКОВ. СПЕКТР

Построим спектр по полученным данным, предварительно вычитая темновой сигнал. На спектре найдем предварительные положения максимумов.

УТОЧНЕНИЕ ПОЛОЖЕНИЙ ПИКОВ

Для каждого из трех пиков на двух каналах построим гауссово приближение и определим с помощью него положения пиков.

ДИСПЕРСИОННАЯ КРИВАЯ ФИЛЬТРА

Учитывая соотношение (1) подберем коэффициенты и построим дисперсионные кривые для разных каналов.

НОРМАЛИЗАЦИЯ АППАРАТНЫХ ФУНКЦИЙ

Нормализуем и сгладим аппаратные функции, полученные в предыдущих пунктах и отобразим их на одном графике для каждого канала.

НОРМАЛИЗАЦИЯ АППАРАТНЫХ ФУНКЦИЙ 2

Проведем замену переменных с частоты на длины и построим графики аналогичные предыдущему пункту. Определим полуширину.

СПЕКТРАЛЬНОЕ РАЗРЕШЕНИЕ

Определив полуширину аппаратных функций можно посчитать разрешение и построить график от длины волны.

