ПОИСК КОНЕЧНЫХ ГРУПП С ПОЧТИ БОЛЬШОЙ СТЕПЕНЬЮ НЕПРИВОДИМОГО ХАРАКТЕРА В СИСТЕМЕ GAP

А.В. Иванова, С.С. Поисеева

Научный руководитель — С.С. Поисеева, канд. физ.-мат. наук, доцент

Северо-Восточный федеральный университет

Работа посвящена поиску конечных групп G порядка больше трех со степенью неприводимого характера Θ , что $2\Theta(1)^2 < |G| \le 3\Theta(1)^2$ с помощью системы GAP.

Ключевые слова: конечные группы, характер конечных групп, степень неприводимого характера конечных групп.

FINDING FINITE GROUPS WITH AN ALMOST LARGE DEGREE IRREDUCIBLE CHARACTER IN GAP

A.V. Ivanova, S.S. Poiseeva

Scientific Supervisor – **S.S. Poiseeva**, Candidate of Physics and Mathematics, Associate Professor

North-Easten Federal University

The paper examines the search for finite groups of order greater than three with a degree of irreducible character that $2\theta(1)^2 < |G| \le 3\theta(1)^2$ using the system GAP.

Keywords: finite groups, characters of finite groups, irreducible character degree of finite groups.

Пусть G — конечная группа и |G| > 3 с неприводимым представлением над полем комплексных чисел с характером Θ . Как известно по двум соотношениям ортогональности сумма квадратов степеней неприводимых характеров равна порядку группы, причем порядок всякой конечной группы строго больше квадрата степени любого ее неприводимого характера. Однако, в [1] были определены и изучены группы G порядка больше двух, обладающие неприводимым характером G таким, что, G (1) G (2) G (3), которые были названы группами с большим неприводимым характером, т.е. G (2)-группами.

А в [2] были определены конечные группы с почти большим неприводимым характером, т.е. конечные группы порядка больше 3, обладающие таким неприводимым характером Θ , что $3\Theta(1)^2 \ge |G| > 2\Theta(1)^2$, которые были названы $ALC(\Theta)$ -группами (от английского "Almost_Large_Character").

Цель настоящей статьи — поиск конечных $ALC(\Theta)$ -групп небольших порядков и построение их таблиц характеров с помощью системы GAP.

Для того, чтобы найти группы с почти большой степенью неприводимого характера, воспользуемся программой:

```
n = 1600;
for i in [4..n] do
l:=AllSmallGroups(Size,i);;
list:=List(l,CharacterDegrees);;
for j in [1..Length(list)] do
b:=false:
for object in list[j] do
if object[1]*object[1]*3>=i and object[1]*object[1]*2<i then
b:=true:
fi;
od:
if b=true then
Print(StructureDescription(l[j]), " ", object[1], " ", i, "\n");
fi:
od;
od:
```

где і – порядок группы, object[1] – наибольшая степень характера. Всего с 4 порядка по 1600 порядка мы получили 394 группы, удовлетворяющие определению $ALC(\Theta)$ -группы, и для этих групп имеются 23 разных степеней характера такие, как 2, 3, ..., 16, 18, 20, 21, 22, 23, 24, 26, 27. В итоге при n=1600, получаем, что только 63 порядка удовлетворяют условию групп с почти большим неприводимым характером. У групп, имеющих порядки 1176, 1200 и 1512, нашлись по

два характера, удовлетворяющие нашему условию. А именно у групп порядка 1176 — это характеры со степенями 21 и 24, у группы порядка 1200 — 20 и 24, а у группы порядка 1512 — 24 и 27. Наибольшее число групп содержит порядок 192, а именно 66 групп. Заметим также, что наименьшая степень неприводимого характера в полученной нами таблице равна 2, а наибольшая — 27.

Замечание. Система GAP не смогла проверить группы, имеющие порядки: 256, 356, 384, 512, 640, 768, 896, 960, 1024, 1152, 1280, 1344, 1408, 1536.

Представим таблицы характеров некоторых $ALC(\Theta)$ -групп с неприводимым характером Θ степени р (р – простое число).

1.
$$G=C_7 \rtimes C_3$$
 $|G|=21=3\cdot 7$, $\Theta(1)=3$, где $\mathbf{a}=\varepsilon_3^2=\frac{-1-\sqrt{3}}{2}$, $b=\varepsilon_7+\varepsilon_7^2+\varepsilon_7^4=\frac{-1-\sqrt{7}}{2}$ Таблина №1:

	G 1A	3 3A	7 7A	3 3B	7 7B	
χ_1	1	1	1	1	1	
χ_2	1	a	1	ā	1	
χ ₃	1	ā	1	а	1	
χ_4	3	0	b	0	$ar{b}$	
χ_5	3	0	$ar{b}$	0	b	

2.
$$G = S_7$$

 $|G| = 24 = 2^3 \cdot 3$,
 $\Theta(1) = 3$, где $a = \varepsilon_3^2 = \frac{-1 - \sqrt{3}}{2}$
Таблица №2:

	G 1A	4 2A	3 3A	8 2B	4 4A	
χ_1	1	1	1	1	1	
χ_2	1	-1	1	1	-1	
χ ₃	2	0	-1	2	0	
χ_4	3	-1	0	-1	1	
χ_5	3	1	0	-1	-1	

3.
$$G=(C_3\times C_3)\rtimes C_3$$
 $|G|=27=3^3$, $\Theta(1)=3$, где $a=\varepsilon_3^2=\frac{-1-\sqrt{-3}}{2}$, $b=3\varepsilon_3^2=\frac{-3-3\sqrt{-3}}{2}$, Таблица №3:

	G	9	9	G	9	9	9	G	9	9	9
	1A	3A	3B	3C	3D	3E	3F	3G	3H	3I	3J
χ_1	1	1	1	1	1	1	1	1	1	1	1
<i>X</i> ₂	1	1	а	1	1	а	ā	1	а	ā	ā
χ ₃	1	1	ā	1	1	ā	а	1	ā	а	а
χ_4	1	а	1	1	ā	а	1	1	\bar{a}	а	\bar{a}
χ_5	1	\bar{a}	1	1	а	\bar{a}	1	1	а	\bar{a}	а
χ_6	1	а	а	1	ā	ā	ā	1	1	1	а
<i>X</i> ₇	1	ā	\bar{a}	1	а	а	а	1	1	1	\bar{a}
χ_8	1	а	\bar{a}	1	\bar{a}	1	а	1	а	\bar{a}	1
χ ₉	1	ā	а	1	а	1	ā	1	ā	а	1
X ₁₀	3	0	0	b	0	0	0	\bar{b}	1	1	1
X ₁₁	3	0	0	\bar{b}	0	0	0	b	1	1	1

СПИСОК ЛИТЕРАТУРЫ

- 1. *Казарин Л.С.* О конечных группах с большой степенью неприводимого характера / Л.С. Казарин, С.С. Поисеева // Моделирование и анализ информационных систем. Якутск, 2015. С. 483-499.
- 2. Никитина А.А. О группах с почти большим характером/ А.А. Никитина // Семьдесят вторая всероссийская научно-техническая конференция студентов, магистрантов и аспирантов высших учебных заведений с международным участием: Сборник материалов конф. Ярославль, 24 апреля 2019 г. Часть 1 [Электронный ресурс] / ЯГТУ. Ярославль, 2019. С.554-556.
- 3. *GAP Groups, Algorithms and Programming, Version 4.9.1.* / Aachen, St. Andrews. 2008. Режим доступа: http://www.Gap-system.org.
- 4. *Богопольский О.В.* Введение в теорию групп / О.В. Богопольский, Москва-Ижевск: Институт компьютерных исследований, 2002. 148 с.
- 5. Кострикин А.И. Введение в алгебру. Часть 3. Основные структуры алгебры: учебник для вузов / А.И. Кострикин. М.: ФИЗМАТЛИТ, 2004. 272 с.