Chapter 6 Testability Analysis

可測度分析法

Outline

- Introduction
- SCOAP
- COP
- High-level Testability

Testability Analysis

- Applications
 - To give early warnings about the test problems
 - Guide the selection of test points to improve testability.
 - Automate the "Design for Testability" problem
 - To provide guidance in ATPG
 - For example, determine the "hardest" & "easiest" inputs in backtrace of PODEM
- Complexity should be simpler than ATPG and fault simulation
 - Need to be linear or almost linear in terms of circuit size
- Topology analysis
 - Only the structure of the circuit is analyzed
 - No test vectors are involved
 - Only an approximation
 - reconvergent fanouts cause inaccuracy

Testability Measures

- Controllability
 - The difficulty of setting a particular logic signal to 0 or 1.
- Observability
 - The difficulty of observing the logic state of a signal.

SCOAP

Sandia Controllability/Observability Analysis Program *Goldstein, DAC 1980*

SCOAP computes 6 numbers for each node N.

	0- controllability	1- controllability	Observability
Combinational	CC ₀ (N)	CC ¹ (N)	CO(N)
Sequential	SC ⁰ (N)	SC ¹ (N)	SO(N)

Combinational SCOAP Measures

- Combinational controllability
 - CC⁰(N), CC¹(N)
 - Related to the minimum number of combinational node (PI or gate output) assignments required to justify a 0 or 1 on a node N.
- Combinational observability
 - CO(N)
 - Related to the number of gates between N and PO's, and
 - the minimum number of PI assignments required to propagate the logical value on node N to a primary output.

$CC^0(N) & CC^1(N)$

	CC ⁰ (<i>y</i>)	CC ¹ (y)
$x_1 \longrightarrow y$	min[CC ⁰ (x ₁),CC ⁰ (x ₂)] +	$CC^{1}(x_{1}) + CC^{1}(x_{2}) + 1$
$x_1 \longrightarrow y$	$CC^{0}(x_{1}) + CC^{0}(x_{2}) + 1$	min[CC ¹ (x_1),CC ¹ (x_2)] +
$X_1 \longrightarrow Y$	min[CC ⁰ (x_1) + CC ⁰ (x_2), CC ¹ (x_1) + CC ¹ (x_2)] + 1	min[CC ⁰ (x_1) + CC ¹ (x_2), CC ¹ (x_1) + CC ⁰ (x_2)] + 1
<i>x</i> — <i>y</i>	$CC^{1}(x) + 1$	$CC^{0}(x) + 1$
Primary inputs	1	1

CO(N)

	$CO(x_1)$
$X_1 \longrightarrow y$	$CO(y) + CC^{1}(x_2) + 1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$CO(y) + CC^{0}(x_{2}) + 1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$CO(y) + min[CC^{0}(x_{2}), CC^{1}(x_{2})] + 1$
x ₁ — y	CO(y) + 1
$x_1 - y_1 - y_2$	min[CO(y_1),CO(y_2)]
Primary outputs	0

An Example – Controllability

An Example – Observability

Sequential SCOAP Measures

- Sequential controllability
 - SC⁰(N), SC¹(N)
 - Estimate the minimum number of sequential node (FF output) assignments required to justify a 0 or 1 on a node N.
- Sequential observability
 - SO(N)
 - Related to the number of FF's between N and PO's, and
 - the minimum number of FF assignments required to propagate the logical value on node N to a primary output.

Computing the Sequential SCOAP Measures

- Computation of SC⁰(N), SC¹(N), and SO(N) is similar to that of CC⁰(N), CC¹(N), and CO(N).
- The differences are
 - One increments the sequential measures by 1 only when signals propagate from FF inputs to Q or Q', or backwards.
 - Several iterations may be required for the controllability numbers to converge.

Computing SC⁰(N) and SC¹(N)

	SC ⁰ (<i>y</i>)	SC ¹ (y)
x ₁ — y	min[SC $^{0}(x_{1})$,SC $^{0}(x_{2})$]	$SC^{1}(x_{1}) + SC^{1}(x_{2})$
$X_1 \longrightarrow Y$	$SC^0(x_1) + SC^0(x_2)$	min[SC $^{1}(x_{1})$,SC $^{1}(x_{2})$]
$X_1 \longrightarrow Y$	min[SC ⁰ (x_1) + SC ⁰ (x_2), SC ¹ (x_1) + SC ¹ (x_2)]	min[SC ⁰ (x_1) + SC ¹ (x_2), SC ¹ (x_1) + SC ⁰ (x_2)]
<i>x</i> — — <i>y</i>	SC ¹ (x)	SC ⁰ (x)
Primary inputs	0	0

SO(N)

	$SO(x_1)$
$X_1 \longrightarrow y$	$SO(y) + SC^{1}(x_{2})$
$x_1 \longrightarrow y$	$SO(y) + SC^0(x_2)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$SO(y) + min[SC^{0}(x_{2}),SC^{1}(x_{2})]$
x ₁ — y	SO(y)
$x_1 - y_1 - y_2$	min[SO(y_1),SO(y_2)]
Primary outputs	0

Flip-Flop

$$CC^{1}(Q) = CC^{1}(D) + CC^{1}(CLK) + CC^{0}(CLK) + CC^{0}(R)$$

 $SC^{1}(Q) = SC^{1}(D) + SC^{1}(CLK) + SC^{0}(CLK) + SC^{0}(R) + 1$

$$CC^{0}(Q) = min[CC^{1}(R) + CC^{0}(CLK),$$

 $CC^{0}(D) + CC^{1}(CLK) + CC^{0}(CLK) + CC^{0}(R)]$
 $SC^{0}(Q) = min[SC^{1}(R) + SC^{0}(CLK),$
 $SC^{0}(D) + SC^{1}(CLK) + SC^{0}(CLK) + SC^{0}(R)] + 1$

$$\begin{aligned} &\mathrm{CO}(D) = \mathrm{CO}(Q) + \mathrm{CC}^1(CLK) + \mathrm{CC}^0(CLK) + \mathrm{CC}^0(R) \\ &\mathrm{SO}(D) = \mathrm{SO}(Q) + \mathrm{SC}^1(CLK) + \mathrm{SC}^0(CLK) + \mathrm{SC}^0(R) + 1 \end{aligned}$$

Computing Testability Measures for Sequential Circuits

- 1. For all Pl's, set $CC^0 = CC^1 = 1$ and $SC^0 = SC^1 = 0$.
- 2. For all other nodes, set $CC^0 = CC^1 = \infty$ and $SC^0 = SC^1 = \infty$.
- Propagate controllability measures from Pl's to PO's.
 Iterate until the controllability numbers stabilize.
- 4. For all PO's, set CO = SO = 0.
- 5. For all other nodes, set $CO = SO = \infty$.
- 6. Propagate observability from PO's to Pl's.

Controllability Computation

Controllability Computation – 2nd

Controllability Computation – 3rd iteration

Observability Computation

COP [F. Brglez, '84]

- C_x: the probability of x being 1.
- O_x : the probability of x being observed at a PO.

	C_{x}	O _a
а — х	$C_x = C_a \times C_b$	$O_a = O_x \times C_b$
а — х	$C_x = 1 - (1 - C_a) \times (1 - C_b)$	$O_a = O_x \times (1 - C_b)$
x — a	$C_x = C_a = C_b$	$O_x = 1 - (1 - O_a) \times (1 - O_b)$

An Example – Controllability

COP values

Actual contrallabilities

An Example – Observability

COP values

Actual observabilities

PODEM: Example (1/3)

Initial objective=(G5,1).

G5 is an AND gate → Choose the hardest-1

→ Back-trace to (G1,1).

G1 is an AND gate → Choose the hardest-1

 \rightarrow Arbitrarily, back-trace to (A,1). A is a PI \rightarrow Implication \rightarrow G3=0.

PODEM: Example (2/3)

The initial objective satisfied? No! \rightarrow Current objective=(G5,1). G5 is an AND gate \rightarrow Choose the hardest-1 \rightarrow Back-trace to (G1,1). G1 is an AND gate \rightarrow Choose the hardest-1 \rightarrow Arbitrarily, back-trace to (B,1). B is a PI \rightarrow Implication \rightarrow G1=1, G6=0.

PODEM: Example (3/3)

The initial objective satisfied? No! \rightarrow Current objective=(G5,1).

The value of G1 is known \rightarrow Back-trace to (G4,0).

The value of G3 is known \rightarrow Back-trace to (G2,0).

A, B is known \rightarrow Back-trace to (C,0).

C is a PI \rightarrow Implication \rightarrow G2=0, G4=0, G5=D, G7=D.

No backtracking!!

If The Backtracing Is Not Guided (1/3)

Initial objective=(G5,1). Choose path G5-G4-G2-A \rightarrow A=0. Implication for A=0 \rightarrow G1=0, G5=0 \rightarrow Backtracking to A=1. Implication for A=1 \rightarrow G3=0.

If The Backtracing Is Not Guided (2/3)

The initial objective satisfied? No! \rightarrow Current objective=(G5,1). Choose path G5-G4-G2-B \rightarrow B=0. Implication for B=0 \rightarrow G1=0, G5=0 \rightarrow Backtracking to B=1. Implication for B=1 \rightarrow G1=1, G6=0.

If The Backtracing Is Not Guided (3/3)

The initial objective satisfied? No! \rightarrow Current objective=(G5,1). Choose path G5-G4-G2-C \rightarrow C=0. Implication for C=0 \rightarrow G2=0, G4=0, G5=D, G7=D.

Two times of backtracking!!

High-Level Testability Analysis

- Based on behavioral level circuit model.
- Usually part of the behavior synthesis program.
- To improve the testability at earlier design stage.

Data Flow Graph (DFG)

- Each node corresponds to a register.
- Each arc represents a combinational path between two registers.

A High-Level Testability Measure – Sequential Depth

- The length of a sequential path between two nodes is the number of arcs along the path.
- The sequential depth between a pair of registers is the length of the shortest path between them.

$a \rightarrow g: 2$
$b \rightarrow g:3$
$d \rightarrow g: 4$
$e \rightarrow g: 4$

Testability Enhancement

- Improve controllability and observability of registers.
 - Whenever possible, allocate a register to at least one Pl or PO.
- Reduce the sequential depth between a controllable and an observable registers.

 $R1 \rightarrow R1:0$ $R2 \rightarrow R1:1$ $R3 \rightarrow R1:2$ $R4 \rightarrow R1:2$

An Example

R1 \rightarrow R1:0 R2 \rightarrow R1:1 R3 \rightarrow R1:2 R4 \rightarrow R1:2 $R1 \rightarrow R2 : 1$ $R2 \rightarrow R2 : 0$ $R3 \rightarrow R2 : 1$ $R4 \rightarrow R2 : 1$