Data Analysis #1

Dustin Leatherman
April 18, 2019

```
# PUTTING THESE HERE INSTEAD OF A SEPARATE FILE FOR VISIBILTY
# pca analysis
# Parameters:
# dataset - data.frame containing all items that will be run against pca
# type - enumeration for "original" or "standard". orginal applies pca to the orginal values while stan
# returns a tibble containing the original data, a PCA object, and an augmented set of the data with fi
pca_analysis <- function(dataset, type) {</pre>
  inputDataset <- dataset</pre>
  if(type == "original") {
    inputDataset %>%
      # calculate mean eigenvalue from covariance matrix to determine floor for principle component sel
      select_if(is.numeric) %>%
      mutate(avg_eigen = eigen(var(.))$values %>% mean) %>%
      # merge back the original data into data
      bind_cols(inputDataset %>% select_if(is.factor)) %>%
      nest() %>%
      mutate(
        pca = map(data, ~ prcomp(.x %>% select_if(is.numeric) %>% select(-avg_eigen))),
        # add values from pca output onto original data
       pca_aug = map2(pca, data, ~augment(.x, data = .y))
  } else if(type == "standard") {
    inputDataset %>%
      # calculate mean eigenvalue from correlation matrix to determine floor for principle component se
      select_if(is.numeric) %>%
      mutate(avg_eigen = eigen(cor(.))$values %>% mean) %>%
      # merge back the original data into data
      bind_cols(inputDataset %>% select_if(is.factor)) %>%
      nest() %>%
      mutate(
       pca = map(data, ~ prcomp(.x %>% select if(is.numeric) %>% select(-avg eigen), scale. = TRUE, ce
        # add values from pca output onto original data
       pca_aug = map2(pca, data, ~augment(.x, data = .y))
 }
}
# pca_tidy
# Parameters:
# pca_analysis - a tibble returned from the pca_analysis function
# Returns: a tibble containing summarized pca information
pca_summary <- function(pca_analysis) {</pre>
 pca_analysis %>%
    unnest(pca_aug) %>%
    # calculate variance for all PC variables
    summarize_at(.vars = vars(contains("PC")), .funs = funs(var)) %>%
```

```
# pivot columns to rows
    gather(
      key = pc,
      value = variance
    ) %>%
    mutate(
      # variance explained
     var_exp = variance / sum(variance),
      # cumulative sum of variance explained so far
      cum_var_exp = cumsum(var_exp),
      # name of principle component
      pc = str_replace(pc, ".fitted", "")
}
# pca kable
# Taking all the above parameters, produce a kable which highlights Principle Components where
# the variance exceeds the average eigenvalue
pca_kable <- function(pca_analysis, pca_summary, type) {</pre>
  caption_txt <- ifelse(type == "standard", "Standardized", "Original")</pre>
  pca summary %>%
  kable(
    digits = 4,
    col.names = c("PC", "Variance", "Var. Explained", "Cumulative Var. Explained"),
    caption = paste(caption_txt, "Principle Components. Bolded rows indicate where variance is greater
    ) %>%
    kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
  # bold rows that are greater than the average eigenvalue.
  row_spec(which(pca_summary$variance >= (pca_analysis$pca_aug[[1]]$avg_eigen) %>% mean), bold = T)
# kable_pc_list
# Parameters:
# pca_analysis - output from pca_analysis function
# type - "original"/"standard" for type of analysis
# pc_list - vector of Principle Components to retrieve. i.e. c("PC1", "PC2")
# This function is a utility function to write out the PC coefficients in a formatted way
kable_pc_list <- function(pca_analysis, type, pc_list){</pre>
  caption txt <- ifelse(type == "standard", "Standardized", "Original")</pre>
  pca_analysis$pca[[1]]$rotation[, pc_list] %>%
  kable(
    caption = paste("Coefficients for selected ", caption_txt, " Principle Components"),
    col.names = pc_list
  kable_styling("striped", full_width = FALSE, latex_options = "hold_position")
# return correlation for a given principle component
pc_corr <- function(dataset, pc_num, type) {</pre>
  if(type == "standard") {
    R <- cor(dataset)</pre>
    pca <- prcomp(dataset, scale. = TRUE, center = TRUE)</pre>
```

```
lambda <- eigen(R)$values</pre>
    diag <- diag(R)</pre>
  } else if (type == "original") {
    S <- var(dataset)</pre>
    pca <- prcomp(dataset)</pre>
    lambda <- eigen(S)$values</pre>
    diag <- diag(S)</pre>
    stop(paste("Invalid type specified:", type))
  pc <- pca$rotation[,pc_num]</pre>
  pc * sqrt(lambda[pc_num] / diag)
\# run N knn simulations for a given k
knn_n <- function(training, testing, training.grouping, testing.grouping, k, simulations) {
  output <- lapply(1:simulations, function(i) {</pre>
    knnRes <- knn(training, testing, training.grouping, k)</pre>
    confusion <- as.matrix(table(Actual = testing.grouping, Predicted = knnRes))</pre>
    err.pcnt <- 1 - sum(diag(confusion))/length(testing.grouping)</pre>
    list(res = knnRes, confusion = confusion, error.pcnt = err.pcnt)
  })
  # error.pcnt is a nested within each index so this pulls it into a list for quick summary calculation
  output$error.pcnt = Reduce(c, Reduce(c, map(output, function(z) z$error.pcnt)))
  output
```

Introduction

What does a baseball player need to do over their career to end up in the Hall of Fame? In recent years, baseball writers who have voting privileges for the Hall of Fame have been using more advanced statistics to make a case for a certain player of interest; however, it was not always that way! In the past, anyone could submit a vote to the Hall of Fame for any reason so it is possible that many Hall of Famers' aren't statistically Hall of Fame material.

This analysis gathers summary statistics and uses them to investigate the distributions of each measure in order to test assumptions required for Discriminant Analysis and Classification. Dimension reduction is explored through Principle Component Analysis to gather a smaller number of predictors. These predictors are used in Discriminant Analysis to ascertain whether or not a Hall of Fame Winner can be be predicted from this dataset.

Background

The dataset in question represents the population of the all non-pitchers who recieved a vote for the MLB Hall of Fame. A representative subset of this will be taken for training data. Since HoF is the classification of interest, a 30% stratified sample will be used to build the training set.

Variables of Interest

${\bf Categorical}$

Field Name	Description	Type
HoF	This is a "Yes"/"No" indicator on whether or not the player is in the Hall of Fame.	categorical

Continuous

Field Name	Description	Type
Yrs	How many seasons did the player play in MLB	continuou
WAR	Baseball References's measure of Wins Above Replacement. This is a single number that describes the number of wins the player added to their teams over the course of their career.	continuou
WAR7	The sum of the seven best seasons of WAR in the player's career. It may not be seven seasons in a row.	continuou
JAWS	Developed by Baseball Prospectus. It contains a combination of career and 7-year peak WAR totals allowing for comparison to average Hall of Fame players by position.	continuou
Jpos	The average JAWS score for all Hall of Fame players at this position plus overall Hall of Fame averages for positions with fewer inducted players.	continuou
JAWSRatio	JAWS divided by Jpos and multiplied by 100.	continuou
G	Games played during a player's career.	continuou
AB	at bats during a player's career.	continuou
R	Runs scored during a player's career.	continuou
Н	Hits during a player's career.	continuou
HR	Home runs during a player's career.	continuou
RBI	Runs batted during a player's career.	continuou
SB	Stolen bases during a player's career.	continuou
BB	Walks during a player's career.	continuou
BA	Batting average.	continuou
OBP	On Base Percentage. This is the sum of the number of hits, walks, and times hit by a pitch divided by the sum of the number of at bats, walks, times hit by a pitch, and sacrifice flies.	continuou
SLG	Slugging Percentage. This is the number of bases divided by the number of at bats. Every single is one base, double is two bases, triple is three bases, and home run is four bases in the numerator of this calculation.	continuou
OPS	On Base Percentage plus slugging percentage	continuou
OPS+	OPS adjusted to the player's ball park. 100 is an average hitter.	continuou

Summary Statistics

General summary statistics for each of the variables are shown below.

```
# Overall statistics
baseball %>%
select(-Name, -HoF) %>%
summarize_all(
funs(
```

```
Min=min,
    Q25 = quantile(., 0.25),
    Median=median,
    Q75 = quantile(., 0.75),
   Max=max,
   Mean=mean,
    Stdev = sd,
   N = n()
   )
  ) %>%
gather(stat, val) %>%
separate(stat, into = c("Variable", "stat"), sep = "_") %>%
spread(stat, val) %>%
select(Variable, Min, Q25, Median, Q75, Max, Mean, Stdev, N) %>%
kable(
  digits = 4,
  caption = "Continuous Variable Summary for Hall of Fame Nominees and Winners"
     kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
```

Table 3: Continuous Variable Summary for Hall of Fame Nominees and Winners

Variable	Min	Q25	Median	Q75	Max	Mean	Stdev	N
AB	186.0000	5013.5000	6390.0000	7792.0000	14053.0000	6403.4498	2075.3312	607
BA	0.2080	0.2670	0.2820	0.2975	0.3660	0.2834	0.0239	607
BB	7.0000	430.0000	623.0000	870.0000	2558.0000	682.7298	358.0039	607
G	67.0000	1441.0000	1806.0000	2145.0000	3562.0000	1792.6227	529.9208	607
Н	54.0000	1387.0000	1790.0000	2248.0000	4256.0000	1830.4596	653.2518	607
HR	1.0000	47.0000	118.0000	253.0000	762.0000	166.8567	147.3545	607
JAWS	-2.0000	21.7500	32.7000	44.3000	123.4000	34.4308	19.3539	607
JAWSratio	-4.5455	39.6800	59.0494	81.4813	220.1869	63.0552	34.7478	607
Jpos	33.0000	53.5000	55.0000	57.8000	57.9000	54.3687	4.3026	607
OBP	0.2540	0.3320	0.3540	0.3725	0.4820	0.3534	0.0323	607
OPS	0.5290	0.7210	0.7840	0.8350	1.1640	0.7800	0.0902	607
OPSadj	22.0000	98.0000	113.0000	126.0000	206.0000	112.7512	22.2150	607
R	25.0000	686.0000	930.0000	1193.5000	2295.0000	958.0610	399.3304	607
RBI	24.0000	580.0000	860.0000	1173.5000	2297.0000	896.3855	407.1120	607
SB	2.0000	41.5000	90.0000	201.0000	1406.0000	151.2768	164.6460	607
SLG	0.2560	0.3805	0.4270	0.4695	0.6900	0.4267	0.0657	607
WAR	-5.3000	22.8500	37.0000	52.6000	162.8000	40.0114	25.8353	607
WAR7	0.0000	20.4000	28.4000	36.8000	84.7000	28.8397	13.2823	607
Yrs	4.0000	13.0000	16.0000	18.0000	27.0000	15.7414	3.6289	607

```
sum.grouped <-
baseball %>%
select(-Name) %>%
group_by(HoF) %>%
summarize_all(
funs(
    Min=min,
    Q25 = quantile(., 0.25),
    Median=median,
```

```
Q75 = quantile(., 0.75),
   Max=max,
   Mean=mean,
   Stdev = sd,
   N = n()
 )
sum.grouped %>%
 filter(HoF == "Yes") %>%
 select(-HoF) %>%
 gather(stat, val) %>%
 separate(stat, into = c("Variable", "stat"), sep = "_") %>%
 spread(stat, val) %>%
 select(Variable, Min, Q25, Median, Q75, Max, Mean, Stdev, N) %>%
    caption = "Hall of Fame Winner Variable Summary",
   digits = 4
 ) %>%
     kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
```

Table 4: Hall of Fame Winner Variable Summary

17 11	у 1.	005	N.F. 1:	075	3.4	1. J	Ct 1	NT
Variable	Min	Q25	Median	Q75	Max	Mean	Stdev	N
AB	4205.0000	6624.0000	8134.0000	9288.0000	12364.0000	8007.9045	1792.0740	157
BA	0.2530	0.2840	0.3030	0.3180	0.3660	0.3023	0.0241	157
BB	308.0000	650.0000	849.0000	1129.0000	2190.0000	919.7261	389.8591	157
G	1211.0000	1795.0000	2164.0000	2499.0000	3308.0000	2165.2420	480.9455	157
H	1161.0000	2048.0000	2386.0000	2839.0000	4189.0000	2419.3822	565.7568	157
HR	11.0000	75.0000	170.0000	361.0000	755.0000	226.8153	180.9208	157
JAWS	17.6000	41.9000	52.6000	61.2000	123.4000	54.5025	18.8944	157
JAWSratio	30.4498	76.1364	96.4912	113.2727	213.4948	99.3852	33.0504	157
Jpos	44.0000	54.7000	55.7000	57.8000	57.9000	54.8363	3.8404	157
OBP	0.2990	0.3560	0.3760	0.3950	0.4820	0.3766	0.0304	157
OPS	0.6530	0.7970	0.8370	0.8880	1.1640	0.8415	0.0862	157
OPSadj	82.0000	115.0000	128.0000	141.0000	206.0000	128.8535	20.8793	157
R	579.0000	1094.0000	1291.0000	1583.0000	2295.0000	1334.6369	349.8845	157
RBI	530.0000	952.0000	1209.0000	1529.0000	2297.0000	1236.2866	385.0121	157
SB	8.0000	67.0000	153.0000	330.0000	1406.0000	225.1019	222.7155	157
SLG	0.3160	0.4270	0.4620	0.5050	0.6900	0.4651	0.0650	157
WAR	16.2000	49.4000	63.0000	75.2000	162.1000	66.8739	26.7982	157
WAR7	18.9000	34.6000	41.3000	47.7000	84.7000	42.1268	11.6400	157
Yrs	10.0000	16.0000	18.0000	20.0000	27.0000	18.0255	3.4566	157

```
sum.grouped %>%
  filter(HoF == "No") %>%
  select(-HoF) %>%
  gather(stat, val) %>%
  separate(stat, into = c("Variable", "stat"), sep = "_") %>%
  spread(stat, val) %>%
  select(Variable, Min, Q25, Median, Q75, Max, Mean, Stdev, N) %>%
  kable(
```

```
caption = "Hall of Fame Nominee Variable Summary",
  digits = 4
) %>%
  kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
```

Table 5: Hall of Fame Nominee Variable Summary

Variable	Min	Q25	Median	Q75	Max	Mean	Stdev	N
AB	186.0000	4596.2500	5928.0000	7152.2500	14053.0000	5843.6733	1866.2843	450
BA	0.2080	0.2642	0.2770	0.2900	0.3560	0.2768	0.0200	450
BB	7.0000	383.7500	559.0000	792.0000	2558.0000	600.0444	306.0772	450
G	67.0000	1341.0000	1676.0000	1994.0000	3562.0000	1662.6200	482.8608	450
H	54.0000	1252.2500	1624.5000	2000.5000	4256.0000	1624.9911	548.7798	450
HR	1.0000	39.0000	105.0000	232.7500	762.0000	145.9378	127.4271	450
JAWS	-2.0000	17.2250	26.9500	36.2750	117.8000	27.4280	13.8381	450
JAWSratio	-4.5455	31.2608	50.3999	65.3642	220.1869	50.3800	25.0509	450
Jpos	33.0000	53.5000	55.0000	57.0000	57.9000	54.2056	4.4450	450
OBP	0.2540	0.3260	0.3450	0.3640	0.4440	0.3453	0.0288	450
OPS	0.5290	0.7042	0.7600	0.8108	1.0510	0.7586	0.0813	450
OPSadj	22.0000	94.0000	109.0000	120.0000	182.0000	107.1333	19.8068	450
R	25.0000	618.2500	834.5000	1035.2500	2227.0000	826.6778	325.2769	450
RBI	24.0000	514.0000	728.5000	1027.7500	1996.0000	777.7978	343.0733	450
SB	2.0000	38.0000	80.5000	171.7500	752.0000	125.5200	129.5485	450
SLG	0.2560	0.3690	0.4110	0.4548	0.6070	0.4133	0.0605	450
WAR	-5.3000	17.6000	29.1000	41.1750	162.8000	30.6393	17.6349	450
WAR7	0.0000	16.8000	24.4500	31.0750	72.7000	24.2040	10.3808	450
Yrs	4.0000	13.0000	15.0000	17.0000	24.0000	14.9444	3.3409	450

Distributions

Are the variables normally distributed?

```
# Histogram matrix with free scales
melt(baseball) %>%
   ggplot(aes(value)) +
   geom_histogram() +
   facet_wrap(~variable, scales = "free") +
   xlab("Variable Values") +
   ylab("Frequency") +
   ggtitle("Distributions of Baseball Measures")
```

Distributions of Baseball Measures WAR WAR7 JAWS Jpos 60 -150 -60 -40 -40 **-**20 **-**20 -50 -0 50 150 50 100 JAWSratio G AB 60 -40 -20 -0 -60 -40 -40 **-**20 **-**40 **-**20 **-**20 -1000 2000 3000 5000 10000 500 1000 1500 2000 1000 2000 3000 4000 100 150 200 ò 0 0 HR RBI SB ВВ ВА 60 **-**40 **-**20 **-**

500

OPS

0.8

Variable Values

1500

80 **-**60 **-**40 **-**

Ö

1000

OPSadj

100 150

50

2000

0.25

0.20

0.30

0.35

1000

1.0

```
# Standardized Histogram matrix
baseball %>%
  select(-Name, -HoF) %>%
  scale %>%
  melt %>%
  ggplot(aes(value)) +
    geom_histogram() +
    facet_wrap(~Var2) +
    xlab("Standardized Variable Values") +
    ylab("Frequency") +
    ggtitle("Standardized Distributions of Baseball Measures")
```


Ó

0.3

60 **-**40 **-** 500 1000 1500 2000

0.4 0.5 0.6 0.7

SLG

Frequency

200 400 600 800

OBP

0.25 0.30 0.35 0.40 0.45

While a handful appear to be normally distributed, a Shapiro-Wilk Test indicates that there is convincing evidence that all variables except for \mathbf{G} , \mathbf{AB} , and \mathbf{H} are non-normal. Additionally though not picture, excluding the columns with negative values (JAWS, JAWSratio, and WAR) and applying a log transformation does not yield differing results.

```
# Run shapiro-wilk tests for all columns and display to table, highlighting variables with low p-values
meltedRows <-
  baseball %>%
  select(-Name, -HoF) %>%
  apply(., 2, shapiro.test) %>%
  map(function(res) res$p.value) %>%
  melt %>%
  select(Variable = L1, Value = value)

meltedRows %>%
  kable(
    caption = "Shapiro-Wilk Tests for Baseball Measures",
    digits = 4
) %>%
  kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
  row_spec(which(meltedRows$Value <= 0.05), bold = T)</pre>
```

Table 6: Shapiro-Wilk Tests for Baseball Measures

Yrs 0.000 WAR7 0.000 JAWS 0.000 JAWSratio 0.000 G 0.96 AB 0.000 R 0.000 HR 0.000 RBI 0.000 SB 0.000
WAR7 0.000 JAWS 0.000 Jpos 0.000 JAWSratio 0.000 G 0.96° AB 0.99° R 0.000 H 0.05° HR 0.000 RBI 0.000
JAWS 0.000 Jpos 0.000 JAWSratio 0.000 G 0.96° AB 0.99° R 0.000 H 0.05° HR 0.000 RBI 0.000
Jpos 0.000 JAWSratio 0.000 G 0.96° AB 0.99° R 0.000 H 0.05° HR 0.000 RBI 0.000
JAWSratio 0.000 G 0.96° AB 0.99° R 0.000 H 0.05° HR 0.000 RBI 0.000
G 0.96° AB 0.99° R 0.000 H 0.05° HR 0.000 RBI 0.000
AB 0.995 R 0.000 H 0.055 HR 0.000 RBI 0.000
R 0.000 H 0.053 HR 0.000 RBI 0.000
H 0.053 HR 0.000 RBI 0.000
HR 0.000 RBI 0.000
RBI 0.000
SD 0.000
55
BB 0.000
BA 0.000
OBP 0.031
SLG 0.031
OPS 0.003
OPSadj 0.002

Equal Variances

Are there equal variance between Hall of Fame Winners and Non-Hall of Fame Nominees?

```
meltedRows <-
  baseball %>%
  select_if(is.numeric) %>%
  apply(., 2, function(c) leveneTest(y = c, group = baseball$HoF, data = .)) %>%
  map(function(res) res$`Pr(>F)`[1]) %>%
  melt %>%
  select(Variable = L1, Value = value)
```

```
meltedRows %>%
kable(
   caption = "Levene's Test for Equal Variance between Hall of Fame Winners and Hall of Fame Nominees"
   digits = 4
) %>%
kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
   row_spec(which(meltedRows$Value <= 0.05), bold = T)</pre>
```

Table 7: Levene's Test for Equal Variance between Hall of Fame Winners and Hall of Fame Nominees

Variable	Value
Yrs	0.5643
WAR	0.0000
WAR7	0.3203
JAWS	0.0012
Jpos	0.2381
JAWSratio	0.0014
G	0.6672
AB	0.6749
R	0.2090
H	0.5741
HR	0.0000
RBI	0.0712
SB	0.0000
BB	0.0011
BA	0.0004
OBP	0.6644
SLG	0.6795
OPS	0.9320
OPSadj	0.7958

There is convincing evidence that WAR, JAWS, Jpos, JAWSratiom HR, SB, BB, and BA have non-equal variances for Hall of Fame Winners and Hall of Fame Nominees.

Analysis

Data Reduction Through Principle Component Analysis

With 19 continuous dimensions, can Principle Component Analysis be used to reduce dimensions while retaining a large amount of explained variance? Given that the scales for the variables are not homogenous, principle components against standardized variables should be run. The floor of the mean eigenvalue from the correlation matrix is used to determine which Principle Components should be selected use in further analysis.

```
prcomp.analysis <-
  baseball %>%
  pca_analysis(., "standard")

# get the summary statistics in tibble form
prcomp.summary <- pca_summary(prcomp.analysis)</pre>
```

print out a kable showing which principle components should be selected
pca_kable(prcomp.analysis, prcomp.summary, "standard")

Table 8: Standardized Principle Components. Bolded rows indicate where variance is greater than the average eigenvalue. These are the chosen PCs

PC	Variance	Var. Explained	Cumulative Var.
		•	Explained
PC1	11.6034	0.6107	0.6107
PC2	2.6168	0.1377	0.7484
PC3	1.5182	0.0799	0.8283
PC4	1.0291	0.0542	0.8825
PC5	0.7479	0.0394	0.9219
PC6	0.4733	0.0249	0.9468
PC7	0.4502	0.0237	0.9705
PC8	0.2359	0.0124	0.9829
PC9	0.0918	0.0048	0.9877
PC10	0.0768	0.0040	0.9918
PC11	0.0509	0.0027	0.9944
PC12	0.0457	0.0024	0.9968
PC13	0.0276	0.0015	0.9983
PC14	0.0179	0.0009	0.9992
PC15	0.0080	0.0004	0.9997
PC16	0.0043	0.0002	0.9999
PC17	0.0021	0.0001	1.0000
PC18	0.0002	0.0000	1.0000
PC19	0.0000	0.0000	1.0000

There are four principle components that can be used to explain 88.25% of the variability within the data. This significantly reduces potential variables in our models from 19 to 4. Listed below are the coefficients for the first four principle components.

```
# print coefficients for 4 principle components
kable_pc_list(prcomp.analysis, "standard", c("PC1", "PC2", "PC3", "PC4"))
```

TT 11 0	a	. 1	1 0 . 1	1. 1.	1 0
Table 9	Coefficients	tor select	ed Standai	rdized Princi	iple Components

	cremes for ser	ceced Starrage	andea i imerp	re component
	PC1	PC2	PC3	PC4
Yrs	0.1917199	-0.3261328	-0.1762935	0.1124091
WAR	0.2744984	-0.0375130	0.0615155	0.2050946
WAR7	0.2707184	0.0252625	0.0695967	0.1598593
JAWS	0.2760978	-0.0164217	0.0648268	0.1917946
Jpos	0.0864120	0.0102121	0.3104342	-0.7941355
JAWSratio	0.2713002	-0.0155594	0.0243229	0.2931694
G	0.2387916	-0.3157802	-0.1351448	-0.0984047
AB	0.2408756	-0.3101257	-0.0450257	-0.1572629
R	0.2706447	-0.1528720	0.1107416	-0.0972100
Н	0.2560575	-0.2277965	0.0543836	-0.1219962
HR	0.2040842	0.1153563	-0.4816115	-0.1909742
RBI	0.2636774	-0.0059832	-0.2409501	-0.1380877
SB	0.0953520	-0.2797300	0.5196258	0.0625241
BB	0.2458355	-0.0528521	-0.0834126	0.0591980
BA	0.1669953	0.2521045	0.3964864	0.0062593
OBP	0.2060246	0.3032109	0.2549802	0.1425718
SLG	0.2141470	0.3579357	-0.1788806	-0.1452180
OPS	0.2294886	0.3687190	-0.0384713	-0.0557608
OPSadj	0.2321369	0.3253757	0.0307670	0.0098161

Correlation

Determining the correlation between a Principle Component and the original variable helps show which variables are most correlated with a given Principle Component.

```
contvars <- baseball %>% select(-Name, -HoF)

# wanted to do this in a more functional way but spent enough time on it
correlations <- data.frame(
   PC1 = pc_corr(contvars, 1, "standard"),
   PC2 = pc_corr(contvars, 2, "standard"),
   PC3 = pc_corr(contvars, 3, "standard"),
   PC4 = pc_corr(contvars, 4, "standard")
)

correlations %>%
   kable(
   digits = 4
) %>%
   kable_styling(full_width = FALSE, bootstrap_options = "striped", latex_options = "hold_position")
```

Interpretation

	PC1	PC2	PC3	PC4
Yrs	0.6531	-0.5276	-0.2172	0.1140
WAR	0.9350	-0.0607	0.0758	0.2081
WAR7	0.9222	0.0409	0.0858	0.1622
JAWS	0.9405	-0.0266	0.0799	0.1946
Jpos	0.2944	0.0165	0.3825	-0.8056
JAWSratio	0.9242	-0.0252	0.0300	0.2974
G	0.8134	-0.5108	-0.1665	-0.0998
AB	0.8205	-0.5017	-0.0555	-0.1595
R	0.9219	-0.2473	0.1365	-0.0986
H	0.8722	-0.3685	0.0670	-0.1238
HR	0.6952	0.1866	-0.5934	-0.1937
RBI	0.8982	-0.0097	-0.2969	-0.1401
SB	0.3248	-0.4525	0.6403	0.0634
BB	0.8374	-0.0855	-0.1028	0.0601
BA	0.5688	0.4078	0.4885	0.0063
OBP	0.7018	0.4905	0.3142	0.1446
SLG	0.7295	0.5790	-0.2204	-0.1473
OPS	0.7817	0.5965	-0.0474	-0.0566
OPSadj	0.7907	0.5263	0.0379	0.0100

PC1

The coefficients for PC1 are all positive and roughly a similar magnitude (0.9 - 0.28) indicating that this represents a weighted average of the measures. The magnitudes are also positively correlated with the correlation values which further supports this.

PC2

The coefficients for PC2 are a mix of both positive and negative values. The positive values are dominated by BA, OPB, SLG, OPS, OPSadj and the negative values are dominated by Yrs, G, AB, H, and SB. The correlation value of the largest magnitude is associated with OPS at 0.5965 which is considered a weak correlation. At best, this principle component can be interpreted as a difference in weighted averages between BA, OPB, SLG, OPS, OPSadj and Yrs, G, AB, H, SB.

PC3

Akin to PC2, there are a mix of both positive and negative values. The positive values are dominated by SB, BA, Jpos, and OBP while the negative values are dominated by HR and RBI. The largest correlation value is associated with SB as 0.6403 which is considered a weak correlation. At best, this principle component can be interpreted as a difference in weighted averages between SB, BA, Jpos, OBP and HR, RBI.

PC4

There is a mix of positive and negative components but the Jpos coefficient dominates values on both side. Jpos has the largest correlation value with -0.8056. This principle component can interpreted as an effect of Jpos.

Discriminant Analysis

```
baseball.aug <- prcomp.analysis$pca_aug[[1]] %>%
    dplyr::select(Name, HoF, PC1.fit = .fittedPC1, PC2.fit = .fittedPC2, PC3.fit = .fittedPC3, PC4.fit =
# create a 30% sample for training data. The 30% is arbitrary
baseball.training <-
    stratified(baseball.aug, c("HoF"), .3)

# Names are unique so exclude the players from our training set to make up our testing set
baseball.testing <- baseball.aug %>% filter(!(Name %in% baseball.training$Name))
```

Assumptions

Discriminant Analysis can be formed given these assumptions are met:

- 1. Multivariate Normality
- 2. Multicollinearity
- 3. Equal Covariance Matrices
- 4. Independence

Multivariate Normality

Shapiro-Wilk Tests for each variable for both the Hall of Fame Winners and Nominee groups show that there is a mix of normal variables and non-normal variables. Since multivariate normality is defined as a linear combination of normal variables, the non-normal variables cause both groups to be considered **not** multivariate normal. This is confirmed by the results for the Mardia Test for multivariate normality.

```
mardia.res.yes <-
  baseball.aug %>%
  filter(HoF == "Yes") %>%
  dplyr::select(-Name, -HoF) %>%
  mvn(mvnTest = "mardia")

mardia.res.yes$univariateNormality %>%
  kable(
    caption = "Univariate Tests for Normality for Hall of Fame Winners",
    digits = 4
) %>%
  kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
  row spec(which(stringr::str trim(mardia.res.yes$univariateNormality$Normality) == "YES"), bold = T)
```

Table 10: Univariate Tests for Normality for Hall of Fame Winners

Test	Variable	Statistic	p value	Normality
Shapiro-Wilk	PC1.fit	0.9667	0.0008	NO
Shapiro-Wilk	PC2.fit	0.9940	0.7616	YES
Shapiro-Wilk	PC3.fit	0.9885	0.2241	YES
Shapiro-Wilk	PC4.fit	0.9551	0.0001	NO

```
mardia.res.yes$multivariateNormality %>%
kable(
   caption = "Multivariate Tests for Normality for Hall of Fame Winners",
   digits = 4
```

```
) %>%
kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
row_spec(which(stringr::str_trim(mardia.res.yes$multivariateNormality$Result) == "YES"), bold = T)
```

Table 11: Multivariate Tests for Normality for Hall of Fame Winners

Test	Statistic	p value	Result
Mardia Skewness	127.700202019266	1.05119460276813e-17	NO
Mardia Kurtosis	2.31507371588937	0.0206088981874308	NO
MVN	NA	NA	NO

```
mardia.res.no <-
baseball.aug %>%
filter(HoF == "No") %>%
dplyr::select(-Name, -HoF) %>%
mvn(mvnTest = "mardia")

mardia.res.no$univariateNormality %>%
kable(
   caption = "Univariate Tests for Normality for Hall of Fame Nominees",
   digits = 4
) %>%
kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
row_spec(which(stringr::str_trim(mardia.res.no$univariateNormality$Normality) == "NO"), bold = T)
```

Table 12: Univariate Tests for Normality for Hall of Fame Nominees

Test	Variable	Statistic	p value	Normality
Shapiro-Wilk	PC1.fit	0.9867	4e-04	NO
Shapiro-Wilk	PC2.fit	0.9975	0.7507	YES
Shapiro-Wilk	PC3.fit	0.9966	0.4612	YES
Shapiro-Wilk	PC4.fit	0.8968	< 0.001	NO

```
mardia.res.no$multivariateNormality %>%
kable(
   caption = "Multivariate Tests for Normality for Hall of Fame Nominees",
   digits = 4
) %>%
kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position") %>%
   row_spec(which(stringr::str_trim(mardia.res.no$multivariateNormality$Result) == "YES"), bold = T)
```

Table 13: Multivariate Tests for Normality for Hall of Fame Nominees

Test	Statistic	p value	Result
Mardia Skewness	290.709761151269	6.35086597325384e-50	NO
Mardia Kurtosis	6.02451067437034	1.69622005330439e-09	NO
MVN	NA	NA	NO

Equal Covariance Matrices

Since the multivariate normality is violated, this cannot be tested with Box's M Test. Levene's Test can be used to test equal variances for the univariate case. There is convincing evidence that PC2 and PC3 have unequal variances. Given that at least one of univariate tests have shown unequal variance, it can be assumed that the covariance matrices are also non-homogenous.

Since this assumption is not met, LDA **cannot** be used. Instead Quadratic Discriminant Analysis is appropriate.

```
pc1 <- leveneTest(baseball.aug$PC1.fit, baseball.aug$HoF, data = baseball.aug)
pc2 <- leveneTest(baseball.aug$PC2.fit, baseball.aug$HoF, data = baseball.aug)
pc3 <- leveneTest(baseball.aug$PC3.fit, baseball.aug$HoF, data = baseball.aug)
pc4 <- leveneTest(baseball.aug$PC4.fit, baseball.aug$HoF, data = baseball.aug)

data.frame(pc1 = pc1$`Pr(>F)`[1], pc2 = pc2$`Pr(>F)`[1], pc3 = pc3$`Pr(>F)`[1], pc4 = pc4$`Pr(>F)`[1])'
kable(
    caption = "Univariate Levene's Tests on each Principle Component",
    digits = 4
) %>%
    kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
```

Table 14: Univariate Levene's Tests on each Principle Component

pc1	pc2	pc3	pc4
0.5262	0.0015	0	0.6944

Multicollinearity and Independence

Principle Components are uncorrelated and independent from each other by definition so their use satisifies both assumptions.

A Note About SMOTE

Synthetic Minority Over-sample Technique (SMOTE) is a well known algorithm for unbalanced classification problems. SMOTE under samples the majority group while oversampling the minority group in order to create a balanced dataset. Behind the scenes, synthetic records for the minority and majority groups are created based on the KNN algorithm. This is useful for classification problems where a given dataset is unbalanced. Because SMOTE creates synthetic data based on KNN, doing so violates the independence assumption which bars its use in QDA but its effect is explored for KNN.

Results

Despite the principle components not meeting the multivariate normality assumption, QDA still provides predictive value because we are interested in a binary classifier. Using a 30% stratified sample as our training set, QDA gives us an error rate of 14.11% when run against the test set which is the remainder of the data.

```
baseball.aug.qda <- qda(HoF ~ PC1.fit + PC2.fit + PC3.fit + PC4.fit, data = baseball.training)
confusion <- as.matrix(table(baseball.testing$HoF, predict(baseball.aug.qda, baseball.testing)$class))
err.pcnt <- 1 - sum(diag(confusion)) / length(baseball.testing$HoF)
kable(
   confusion,</pre>
```

```
caption = "Confusion Matrix for Actual vs Predicted for QDA"
) %>%
kable_styling(full_width = F, bootstrap_options = "striped", latex_options = "hold_position") %>%
add_header_above(c(" ", "Predicted" = 2))
```

Table 15: Confusion Matrix for Actual vs Predicted for QDA

	Predicted	
	No	Yes
No	292	23
Yes	41	69

Can the error rate be improved with Cross Validation? An error rate of 14% is yielded which is a slight improvement opposed to using a training set.

```
baseball.aug.qda.cv <- qda(HoF ~ PC1.fit + PC2.fit + PC3.fit + PC4.fit, data = baseball.aug, CV = TRUE

confusion <- as.matrix(table(baseball.aug$HoF, baseball.aug.qda.cv$class))
err.pcnt <- 1 - sum(diag(confusion)) / length(baseball.aug$HoF)

kable(
   confusion,
   caption = "Confusion Matrix for Actual vs Predicted for QDA with Cross Validation"
   ) %>%
   kable_styling(full_width = F, bootstrap_options = "striped", latex_options = "hold_position") %>%
   add_header_above(c(" ", "Predicted" = 2))
```

Table 16: Confusion Matrix for Actual vs Predicted for QDA with Cross Validation

	Predicted	
	No	Yes
No	428	22
Yes	63	94

KNN

For comparison, knn is also run using a training dataset with a 30% stratified sample on HoF. Multiple simulations were run for k=10 through 14 and the average error rate was taken. K was determined by the following formula:

$$K = \sqrt{min(n_i)} = \sqrt{157} \approx 13$$

Error percentages vary between executions of KNN but the percentages are generally between 13-20 percent though it can exceed this. Not pictured is the number of executions of 1000 iterations done on this dataset. The lower end of this range matches what QDA provides consistently.

Pardon the formatting beyond this point. Unresolved technical issues arose when compiling to PDF

```
training.pc <-
baseball.training %>%
dplyr::select(-Name, -HoF)
```

```
testing.pc <-
  baseball.testing %>%
  dplyr::select(-Name, -HoF)
knn14 <- knn_n(training.pc, testing.pc, baseball.training$HoF, baseball.testing$HoF, 14, 1000)
knn13 <- knn_n(training.pc, testing.pc, baseball.training$HoF, baseball.testing$HoF, 13, 1000)
knn12 <- knn_n(training.pc, testing.pc, baseball.training$HoF, baseball.testing$HoF, 12, 1000)
knn11 <- knn n(training.pc, testing.pc, baseball.training$HoF, baseball.testing$HoF, 11, 1000)
knn10 <- knn_n(training.pc, testing.pc, baseball.training$HoF, baseball.testing$HoF, 10, 1000)
# summary statistics on error percentages
knn14.err <- knn14$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 14, Mean = value)
knn13.err <- knn13$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 13, Mean = value)
knn12.err <- knn12$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 12, Mean = value)
knn11.err <- knn11$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 11, Mean = value)
knn10.err <- knn10$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 10, Mean = value)
knn.err <- bind_rows(knn14.err, knn13.err, knn12.err, knn11.err, knn10.err)
as.data.frame(knn.err) %>%
  dplyr::select(K, Mean) %>%
  kable(
    caption = "Average Error % for 1000 KNN simulations",
   digits = 4
kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
\begin{table}[!h]
```

\caption{Average Error % for 1000 KNN simulations}

K	Mean
14	0.1565
13	0.1576
12	0.1528
11	0.1435
10	0.1434

\end{table}

Can usage of SMOTE on the fitted PCA values improve our error percentage? K is chosen based on the method described above though $n_i = 1413$ after SMOTE has been applied. It can have a significant impact on the results depending on the outcome. This is not useful if a consistent answer is needed.

```
# SMOTE proved to not be helpful in improving error percentages. It was performed after PCA since it vi
baseball.smote <- SMOTE(HoF ~ ., as.data.frame(baseball.aug), perc.over = 800, perc.under = 113, k = 13

# create a 30% sample for training data. The 30% is arbitrary
baseball.smote.training <- stratified(baseball.smote, c("HoF"), .3)

# Names are unique so exclude the players from our training set to make up our testing set
baseball.smote.testing <- baseball.smote %>% filter(!(Name %in% baseball.smote.training$Name))

training.pc.smote <-
```

```
baseball.smote.training %>%
  dplyr::select(-Name, -HoF)
testing.pc.smote <-
  baseball.smote.testing %>%
  dplyr::select(-Name, -HoF)
knn34.smote <- knn_n(training.pc.smote, testing.pc.smote, baseball.smote.training$HoF, baseball.smote.t
knn35.smote <- knn_n(training.pc.smote, testing.pc.smote, baseball.smote.training$HoF, baseball.smote.t
knn36.smote <- knn_n(training.pc.smote, testing.pc.smote, baseball.smote.training$HoF, baseball.smote.t
knn37.smote <- knn_n(training.pc.smote, testing.pc.smote, baseball.smote.training$HoF, baseball.smote.t
knn38.smote <- knn_n(training.pc.smote, testing.pc.smote, baseball.smote.training$HoF, baseball.smote.t
# summary statistics on error percentages
knn34.err.smote <- knn34.smote$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 34, Mean = value)
knn35.err.smote <- knn35.smote$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 35, Mean = value)
knn36.err.smote <- knn36.smote$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 36, Mean = value)
knn37.err.smote <- knn37.smote$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 37, Mean = value)
knn38.err.smote <- knn38.smote$error.pcnt %>% mean %>% as.tibble %>% mutate(K = 38, Mean = value)
knn.err.smote <- bind_rows(knn34.err.smote, knn35.err.smote, knn36.err.smote, knn37.err.smote, knn38.er
knn.err.smote %>%
  dplyr::select(K, Mean) %>%
  kable(
     caption = "Average Error % for 1000 KNN simulations - SMOTE'd Data",
     digits = 4
   ) %>%
   kable_styling(full_width = T, bootstrap_options = "striped", latex_options = "hold_position")
```

K	Mean
34	0.1432
35	0.1431
36	0.1336
37	0.1304
38	0.1387

 \end{table}

Conclusion

Quadratic Discriminant Analysis with Cross Validation gives the best error rate with the most consistent result. The analysis was done using Principle Components in order to reduce the dimensions of the data and mitigate the effects of multicollinearity. Using standardized principle components, a Hall of Fame winner can be predicted with 85.89% accuracy. This isn't the best accuracy percentage but it is passible. Interpretation of the impact of certain predictors is difficult given that principle components were standardized and fed into the model. In terms of satisfying the main goal which was to produce the best predictive accuracy rate, that has been met.

Final Thoughts

Much of the data is on varying scales which means it has to be standardized for any analysis. While this is fine for interpretation for the signifiance of variables, it makes it difficult to create a classic interpretation. i.e. an X increase in Y yields an increase D in Z. I pursued this analysis to provide a smaller set of predictors to improve Classification percentages. Were I to analyze this set further, I would start looking into correlations between variables to see what fields could be used directly through classification rather than abstracted through principle components.