推定

確率分布を推定する

村田 昇

2020.06.19

推定とは

統計解析の目的

- 観測データを確率変数の実現値と考えてモデル化
- 観測データの背後の確率分布を 推定
 - 分布のもつ特性量 (平均や分散など) を評価する
 - 分布そのもの(確率関数や確率密度)を決定する
- 統計学で広く利用されている推定方法を説明
 - 点推定
 - 区間推定

推定の標準的な枠組

- 観測データは独立同分布な確率変数列 X_1, X_2, \ldots, X_n
- X_i の従う共通の法則 £ を想定
 - L として全ての分布を考察対象とすることは困難
 - * 対象とする範囲が広くなりすぎる
 - * データ数 n が大きくないと意味のある結論を導き出せない
 - 確率分布 $\mathcal L$ を特徴づけるパラメタ θ を考察対象
 - * L の平均・分散・歪度・尖度など
 - * \mathcal{L} の 確率関数・確率密度関数のパラメタ

点推定

点推定

定義

点推定とは $\mathcal L$ に含まれるパラメタ θ を X_1,\ldots,X_n の関数

$$\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$$

で推定することで、 $\hat{\theta}$ を θ の **推定量** と呼ぶ.

• 記述統計量は分布のパラメタの1つ

例: $\mathcal L$ の平均 μ を標本平均 $\bar X=\frac{1}{n}\sum_{i=1}^n X_i$ によって推定することが点推定であり, $\bar X$ は μ の推定量となる.

良い推定量

- 一般に1つのパラメタの推定量は無数に存在
- 推定量の良さの代表的な基準: 不偏性・一致性
 - $-\hat{\theta}$ が θ の不偏推定量:

$$E[\hat{\theta}] = \theta$$

 $-\hat{\theta}$ が θ の (強) 一致推定量:

 $\hat{\theta}$ が θ に収束する確率が 1 $(n \to \infty)$

例:標本平均,不偏分散はそれぞれ £ の平均,分散の不偏かつ一致性をもつ推定量

良い不偏推定量

• 一般に不偏推定量も複数存在

例: 足 の平均 μ の不偏推定量:

- 標本平均 \bar{X}
- $-X_1$
- $-X_1, \ldots, X_n$ のメディアン (\mathcal{L} が $x = \mu$ に関して対称な場合)
- 不偏推定量の良さを評価する基準が必要
- 一様最小分散不偏推定量:

 θ の任意の不偏推定量 $\hat{\theta}'$ に対して推定値のばらつき (分散) が最も小さいもの

$$Var(\hat{\theta}) \le Var(\hat{\theta}')$$

Cramer-Rao の不等式

定理

 \mathcal{L} は 1 次元パラメタ θ を含む連続分布とし、その確率密度関数 $f_{\theta}(x)$ は θ に関して偏微分可能であるとする。このとき、緩やかな仮定の下で、 θ の任意の不偏推定量 $\hat{\theta}$ に対して以下の不等式が成り立つ:

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{nI(\theta)}.$$

ただし

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^{2} f_{\theta}(x) dx.$$

一様最小分散不偏推定量

- 用語の定義
 - 下界 $1/(nI(\theta))$: Cramer-Rao 下界
 - $-I(\theta)$: Fisher 情報量
- 定理 (Cramer-Rao の不等式の系)

 θ の不偏推定量 $\hat{\theta}$ で分散が Cramer-Rao 下界 $1/(nI(\theta))$ に一致するものが存在すれば、それは一様最小分散不偏推定量となる。

例: 正規分布モデルの標本平均

- \mathcal{L} は平均 μ , 分散 σ^2 の正規分布
 - 平均パラメタ μ に関する Fisher 情報量:

$$I(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma^4} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sigma^2}$$

- Cramer-Rao 下界: σ^2/n
- 標本平均 \bar{X} の分散: σ^2/n (=Cramer-Rao 下界)
- \bar{X} は μ の一様最小分散不偏推定量

演習

練習問題

- X を一様乱数に従う確率変数とし、平均値の推定量として以下を考える。それぞれの推定量の分散を比較しなさい。
 - 標本平均 (mean)
 - 中央値 (median)
 - 最大値と最小値の平均 ((max+min)/2)
- ヒント: 以下のような関数を作り、Monte-Carlo 実験を行えばよい

myMeanEst <- function(n, min, max){ # 観測データ数 x <- runif(n, min=min, max=max) # 一様乱数を生成, 範囲は引数から return(c(xbar=mean(x),med=median(x),mid=(max(x)+min(x))/2)) } # 3 つまとめて計算する関数

最尤法

離散分布の場合

- 観測値 $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$ の同時確率
 - 確率関数: $f_{\theta}(x)$
 - 確率関数のパラメタ: $\boldsymbol{\theta} := (\theta_1, \dots, \theta_p)$
 - 独立な確率変数の同時確率:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$
$$= \prod_{i=1}^n f_{\theta}(x_i) = f_{\theta}(x_1) \cdot f_{\theta}(x_2) \cdots f_{\theta}(x_n)$$

尤度関数

定義

パラメタ $oldsymbol{ heta}$ に対して観測データ X_1, X_2, \dots, X_n が得られる理論上の確率

$$L(\boldsymbol{\theta}) := \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(X_i)$$

 $e \theta$ の尤度 と言い、 θ の関数 L を 尤度関数 と呼ぶ.

- 観測データ X_1, X_2, \ldots, X_n が現れるのにパラメタ θ の値がどの程度尤もらしいかを測る尺度

最尤法

• 最尤法:

観測データに対して「最も尤もらしい」パラメタ値を θ の推定量として採用する方法を最 尤法という.

- 最尤推定量:
 - Θ を尤度関数の定義域として、尤度関数を最大とする $\hat{m{ heta}}$

$$L(\hat{\boldsymbol{\theta}}) = \max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}).$$

を θ の 最尤推定量 という.

以下のように表現することもある.

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}).$$

最尤推定量の計算

• 対数尤度関数:

$$\ell(\boldsymbol{\theta}) := \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log f_{\boldsymbol{\theta}}(X_i).$$

- 対数関数は狭義増加
- $-\ell(\boldsymbol{\theta})$ の最大化と $L(\boldsymbol{\theta})$ の最大化は同義
- 扱い易い和の形なのでこちらを用いることが多い
- 大数の法則を用いて対数尤度関数の収束が議論できる
- 最尤推定量の性質

広い範囲の確率分布に対して最尤推定量は 一致性 を持つ

連続分布の場合

- 確率密度関数 $f_{\theta}(x)$ を用いて尤度を定義
- 尤度関数:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(x_i) = f_{\boldsymbol{\theta}}(x_1) \cdot f_{\boldsymbol{\theta}}(x_2) \cdots f_{\boldsymbol{\theta}}(x_n)$$

• 対数尤度関数:

$$\ell(\boldsymbol{\theta}) := \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log f_{\boldsymbol{\theta}}(X_i)$$

例: Poisson 分布の最尤推定

- \mathcal{L} をパラメタ $\lambda > 0$ の Poisson 分布でモデル化
 - 対数尤度関数 (未知パラメタ: λ)

$$\ell(\lambda) = \sum_{i=1}^{n} \log \frac{\lambda^{X_i}}{X_i!} e^{-\lambda} = \sum_{i=1}^{n} (X_i \log \lambda - \log X_i!) - n\lambda$$

- 少なくとも 1 つの i について $X_i > 0$ を仮定する
- (Poisson 分布のつづき)

- ℓ(λ) の微分:

$$\ell'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n, \quad \ell''(\lambda) = -\frac{1}{\lambda^2} \sum_{i=1}^{n} X_i < 0$$

- 方程式 $\ell'(\lambda) = 0$ の解が $\ell(\lambda)$ を最大化
- λ の最尤推定量:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

例: 指数分布の最尤推定

- \mathcal{L} をパラメタ $\lambda > 0$ の指数分布でモデル化
 - 対数尤度関数 (未知パラメタ: λ)

$$\ell(\lambda) = \sum_{i=1}^{n} \log \lambda e^{-\lambda X_i} = n \log \lambda - \lambda \sum_{i=1}^{n} X_i$$

- (指数分布のつづき)
 - ℓ(λ) の微分:

$$\ell'(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i, \quad \ell''(\lambda) = -\frac{n}{\lambda^2} < 0$$

- 方程式 $\ell'(\lambda) = 0$ の解が $\ell(\lambda)$ を最大化
- λ の最尤推定量:

$$\hat{\lambda} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} X_i}$$

例: ガンマ分布の最尤推定

- \mathcal{L} をパラメタ $\nu, \alpha > 0$ のガンマ分布でモデル化
 - 対数尤度関数 (未知パラメタ: ν,α)

$$\ell(\nu, \alpha) = \sum_{i=1}^{n} \log \frac{\alpha^{\nu}}{\Gamma(\nu)} X_i^{\nu-1} e^{-\alpha X_i}$$
$$= n\nu \log \alpha - n \log \Gamma(\nu) + \sum_{i=1}^{n} \{(\nu - 1) \log X_i - \alpha X_i\}$$

- $-\ell(\nu,\alpha)$ を最大化する ν,α は解析的に求まらないので実際の計算では数値的に求める
- R での計算例 (ガンマ分布の最尤推定量の例)

library(stats4) # 関数 mle を利用するため

数値最適化のためには尤度関数を最初に評価する初期値が必要

mle.gamma <- function(x, # 観測データ

nu0=1, alpha0=1){ # nu, alphaの初期値

負の対数尤度関数を定義 (最小化を考えるため)

ll <- function(nu, alpha) # nu と alpha の関数として定義suppressWarnings(-sum(dgamma(x, nu, alpha, log=TRUE)))

suppressWarnings は定義域外で評価された際の警告を表示させない

最尤推定(負の尤度の最小化)

```
est <- mle(minuslogl=11, # 負の対数尤度関数 start=list(nu=nu0, alpha=alpha0), # 初期値 method="BFGS", # 最適化方法 (選択可能) nobs=length(x)) # 観測データ数 return(coef(est)) # 推定値のみ返す }
```

演習

練習問題

• 東京都の気候データ (tokyo_weather.csv) の風速の項目について以下の間に答えよ.

myData <- read.csv("data/tokyo_weather.csv", fileEncoding="utf8")</pre>

- 全データを用いてヒストグラム (密度)を作成しなさい.
- ガンマ分布でモデル化して最尤推定を行いなさい.
- 推定した結果をヒストグラムに描き加えて比較しなさい.
- 自身で収集したデータを用いて、モデル化と最尤推定を試みよ、

区間推定

推定誤差

- 推定量 θ̂ には推定誤差が必ず存在
- 推定結果の定量評価には推定誤差の評価が重要
 - "誤差 $\hat{\theta} \theta$ が区間 [l, u] の内側にある確率が $1-\alpha$ 以上 " ("外側にある確率が α 以下"と言い換えてもよい)

$$P(l < \hat{\theta} - \theta < u) > 1 - \alpha$$

- パラメタの範囲の推定に書き換え
 - " θ が含まれる確率が $1-\alpha$ 以上となるような区間 $[\hat{\theta}-u,\hat{\theta}-l]$ を推定"

$$P(\hat{\theta} - u \le \theta \le \hat{\theta} - l) \ge 1 - \alpha$$

区間推定

定義

区間推定とは未知パラメタ θ とある値 $\alpha \in (0,1)$ に対して以下を満たす確率変数 L,U を観測データから求めることをいう.

$$P(L \le \theta \le U) \ge 1 {-} \alpha$$

- 区間 $[L,U]:1-\alpha$ 信頼区間 $(100(1-\alpha)\%$ と書くことも多い)
- $-L:1-\alpha$ 下側信頼限界
- $-U:1-\alpha$ 上側信頼限界
- $-1-\alpha$: 信頼係数 ($\alpha = 0.01, 0.05, 0.1$ とすることが多い)

信頼区間の性質

- 信頼区間は幅が狭いほど推定精度が良い
 - 真のパラメタが取りうる値の範囲を限定することになるため
- 最も推定精度の良い $1-\alpha$ 信頼区間 [L,U]

$$P(L \le \theta \le U) = 1 - \alpha$$

- 信頼区間の幅が狭いほど $P(L < \theta < U)$ は小さくなるため
- 実行可能である限り $1-\alpha$ 信頼区間 [L,U] は上式を満たすように L,U を決定する

正規母集団の区間推定

平均の区間推定 (分散既知)

- 正規分布に従う独立な確率変数の重み付き和は正規分布に従う
- 一般の場合

 Z_1,Z_2,\ldots,Z_k を独立な確率変数列とし,各 $i=1,2,\ldots,k$ に対して Z_i は平均 μ_i ,分散 σ_i^2 の正規分布に従うとする.このとき a_0,a_1,\ldots,a_k を (k+1) 個の 0 でない実数とすると, $a_0+\sum_{i=1}^k a_i Z_i$ は平均 $a_0+\sum_{i=1}^k a_i \mu_i$,分散 $\sum_{i=1}^k a_i^2 \sigma_i^2$ の正規分布に従う.

• 同分布の場合

$$k = n, \, \mu_i = \mu, \, \sigma_i^2 = \sigma^2, \, a_0 = 0, \, a_i = 1/n \, (i = 1, \dots, n)$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad (標本平均)$$

は平均 μ , 分散 σ^2/n の正規分布に従う.

• 同分布を標準化した場合

$$k=1$$
, $\mu_1=\mu$, $\sigma_1^2=\sigma^2/n$, $a_0=-\sqrt{n}\mu/\sigma$, $a_1=\sqrt{n}/\sigma$
$$Z=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$$

は標準正規分布に従う.

• 標準化した確率変数の確率

 $z_{1-\alpha/2}$ を標準正規分布の $1-\alpha/2$ 分位点とすれば

$$P\left(-z_{1-\alpha/2} \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le z_{1-\alpha/2}\right) = 1 - \alpha$$

• 信頼区間の構成

μ について解くと

$$P\left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

となるので、 σ が既知の場合の平均 μ の $1-\alpha$ **信頼区間** は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

平均の区間推定 (分散未知)

- χ² 分布の特徴付け
 - 標準正規分布に従う k 個の独立な確率変数の二乗和は自由度 k の χ^2 分布に従う
- t 分布の特徴付け
 - Z を標準正規分布に従う確率変数, Y を自由度 k の χ^2 分布に従う確率変数とし, Z,Y は独立であるとする. このとき確率変数

$$\frac{Z}{\sqrt{Y/k}}$$

は自由度 k の t 分布に従う

• 標本平均と不偏分散の性質

 X_1, X_2, \dots, X_n は独立同分布な確率変数列で、平均 μ 、分散 σ^2 の正規分布に従うとする.不偏分散を

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

とすると, \bar{X} と s^2 は独立であり, 確率変数 $(n-1)s^2/\sigma^2$ は自由度 n-1 の χ^2 分布に従う.

• 標準化した確率変数の性質

前の命題と $\sqrt{n}(\bar{X}-\mu)/\sigma$ が標準正規分布に従うことから、確率変数

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{s} = \frac{\sqrt{n}(\bar{X} - \mu)/\sigma}{\sqrt{(n-1)s^2/\sigma^2/(n-1)}}$$

は自由度 n-1 の t 分布に従う.

信頼区間の構成

 $t_{1-\alpha/2}(n-1)$ を自由度 n-1 の t 分布の $1-\alpha/2$ 分位点とすれば

$$P\left(-t_{1-\alpha/2}(n-1) \le \frac{\sqrt{n}(\bar{X}-\mu)}{s} \le t_{1-\alpha/2}(n-1)\right) = 1-\alpha$$

となるので、分散が未知の場合の平均 μ の $1-\alpha$ 信頼区間 は以下で構成される.

$$\left[\bar{X} - t_{1-\alpha/2}(n-1) \cdot \frac{s}{\sqrt{n}}, \ \bar{X} + t_{1-\alpha/2}(n-1) \cdot \frac{s}{\sqrt{n}} \right]$$

分散の区間推定

• 不偏分散の性質

$$(n-1)s^2/\sigma^2$$
 は自由度 $n-1$ の χ^2 分布に従う

• 不偏分散の確率

 $\chi^2_{\alpha/2}(n-1)$, $\chi^2_{1-\alpha/2}(n-1)$ をそれぞれ自由度 n-1 の χ^2 分布の $\alpha/2,1-\alpha/2$ 分位点とすれば

$$P\left(\chi_{\alpha/2}^{2}(n-1) \le \frac{(n-1)s^{2}}{\sigma^{2}} \le \chi_{1-\alpha/2}^{2}(n-1)\right) = 1-\alpha$$

• 信頼区間の構成

 σ^2 について解くと

$$P\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right) = 1 - \alpha$$

となるので、 σ^2 の $1-\alpha$ 信頼区間 は以下で構成される.

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right]$$

漸近正規性にもとづく区間推定

推定量の漸近正規性

- 漸近正規性: 多くの推定量 θ の分布は正規分布で近似できる
 - モーメントに基づく記述統計量は漸近正規性をもつ
 - 最尤推定量は広い範囲の確率分布に対して漸近正規性をもつ
 - いずれも中心極限定理にもとづく
- 正規分布を用いて近似的に信頼区間を構成することができる

標本平均の漸近正規性

定理

確率分布 $\mathcal L$ が 2 次のモーメントを持てば、 $\mathcal L$ の平均 μ の推定量である標本平均は漸近正規性をもつ.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \mathcal{L} の標準偏差を σ とすれば、任意の $a \leq b$ に対して以下が成立する。 (ϕ は標準正規分布の確率密度関数)

$$P\left(a \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le b\right) \to \int_a^b \phi(x)dx \quad (n \to \infty)$$

平均の区間推定 (分散既知)

標本平均の確率

 $z_{1-lpha/2}$ を標準正規分布の 1-lpha/2 分位点とすれば

$$P\left(-z_{1-\alpha/2} \le \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \le z_{1-\alpha/2}\right) \to 1-\alpha \quad (n \to \infty)$$

となるので、μについて解くと以下が成り立つ.

$$P\left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

$$\to 1-\alpha \quad (n \to \infty)$$

信頼区間の構成

 σ が既知の場合の平均 μ の $1-\alpha$ 信頼区間は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

(サンプル数 n が十分大きい場合に近似的に正しい)

平均の区間推定 (分散未知)

- σ をその一致推定量 $\hat{\sigma}$ で置き換えてもそのまま成立する
 - σ̂ としては例えば不偏分散の平方根を用いる

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

- 実問題で平均はわからないが、分散はわかるという場合はあまりない
- -t-分布は自由度 $n \to \infty$ で標準正規分布なる
- 信頼区間の構成

 σ が未知の場合の平均 μ の $1-\alpha$ **信頼区間**は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}\right]$$

(サンプル数 n が十分大きい場合に近似的に正しい)

最尤推定量の区間推定

- 定理 (最尤推定量の漸近正規性) \mathcal{L} が 1 次元パラメタ θ を含む連続分布とするとき,最尤推定量 $\hat{\theta}$ は平均 θ (真の値),分散 $1/nI(\hat{\theta})$ の正規分布で近似できる.
- 信頼区間の構成

 θ の $1-\alpha$ 信頼区間 は以下で構成される.

$$\left[\hat{\theta} - z_{1-\alpha/2} \cdot \frac{1}{\sqrt{nI(\hat{\theta})}}, \ \hat{\theta} + z_{1-\alpha/2} \cdot \frac{1}{\sqrt{nI(\hat{\theta})}}\right]$$

(サンプル数 n が十分大きい場合に近似的に正しい)

演習

練習問題

- 東京都の気候データ (tokyo weather.csv) の日射量の項目について以下の間に答えよ.
 - 全データによる平均値を計算しなさい.
 - ランダムに抽出した 50 点を用いて、平均値の 0.9(90%) 信頼区間を求めなさい。
 - 上記の推定を 100 回繰り返した際, 真の値 (全データによる平均値) が信頼区間に何回含まれる か確認しなさい.
- 自身で収集したデータで区間推定を試みよ.