MAPPING ER-EER TO RELATIONAL MODEL

RELATIONAL MODEL REVIEW - CONCEPTS

Relational Model is made up of tables

- A row of table = a relational instance/tuple
- A column of table = an attribute
- A table = a schema/relation
- Cardinality = number of rows
- Degree = number of columns

REVIEW - EXAMPLE

A Schema / Relation

ER TO RELATIONAL MAPPING

How do we convert an ER diagram into a table?? Simple!!

Basic Ideas:

- > Build a table for each entity set
- > Build a table for each relationship set if necessary (more on this later)
- Make a column in the table for each attribute in the entity set
- Composite and Multivalue Attributes
- Primary Key

ER\EER TO RELATIONAL MAPPING

• ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relationship Types
- Step 4: Mapping of Binary 1:N Relationship Types
- Step 5: Mapping of Binary M:N Relationship Types
- Step 6: Mapping of Multivalued attributes
- Step 7: Mapping of N-ary Relationship Types

Mapping EER Model Constructs to Relations

- Step 8: Mapping of Specialization or Generalization
- Step 9: Mapping of Union Types (Categories)

Mapping - Strong Entity Set

SID	Name	Major	GPA
1234	John	CS	2.8
5678	Mary	EE	3.6

SSN	Name	Dept
9999	Smith	Math
8888	Lee	CS

Mapping of Weak Entity

- Weak Entity Set cannot exists alone
- To build a table/schema for weak entity set
 - Construct a table with one column for each attribute in the weak entity
 - Add a column for the primary key of the Owner of the Weak Entity
 - Primary Key of the weak entity = Discriminator + foreign key

Mapping - Weak Entity Set

Construct a table with one co	JIUIIIII
for each attribute in the weak e	entity

☐ Add primary key of the Owner Entity in the table

Age	<u>Name</u>	SID
10	Bart	1234
8	Lisa	5678

^{*} Primary key of Children is Parent_SID + Name

MAPPING - WEAK ENTITY SET

TransNum

Example:

AccNum

Date

Amount

Mapping of Relationships

--This is a little complicated—

- ✓ Unary/Binary Relationship set
 - Depends on the cardinality and participation constraints
- ✓ N-ary (multiple) Relationship set
- ✓ Identifying Relationship

MAPPING RELATIONSHIP SET UNARY/BINARY RELATIONSHIP

- 1-1 relationship without total participation
 - **Relationship relation:** Build a table and add columns for each participating entity's primary key. Also add the attributes of the relationship. *(cross-reference)*
- 1-1 relationship with one total participation
 - **Foreign key approach**: Add primary key of the entity without total participation in the table of the entity with total participation.
- Merged relation (alternate mapping): merge the two entities and the relationship into a single relation (used when both participations are total).

EXAMPLE: RELATIONSHIP RELATION

SID	S\N#	Date
9999	07	12-08-09
8888	05	15-07-10

^{*} Primary key can be either *SID* or S\N#

EXAMPLE: FOREIGN KEY APPROACH

SID	Name	GPA	Major	S\N#	Date
9999	Bart	3.2	1	11289	12-09-09
8888	Lisa	4.0	2	12345	14-02-10

FIGURE 7.1

THE ER CONCEPTUAL SCHEMA DIAGRAM FOR THE COMPANY DATABASE.

REPRESENTING RELATIONSHIP SET UNARY/BINARY RELATIONSHIP

- 1-N relationship without total participation
 - Same as 1-1 relationship
 - **Relationship relation:** Build a table and add columns for each participating entity's primary key. Also add the attributes of the relationship. *(cross-reference)*
- 1-N with total participation on N side
 - Foreign key approach: Add a column in the table of the entity on the N side, put in there the primary key of the entity on the 1 side.

EXAMPLE - 1:N RELATIONSHIP SET

SID	Name	Major	GPA	Pro_SSN	Ad_Sem
9999	Ali	EE	3.0	123-456	Fall 2009
8888	Aliya	CS	3.8	567-890	Fall 2008

^{*} Primary key of this table is *SID*

FIGURE 7.1

THE ER CONCEPTUAL SCHEMA DIAGRAM FOR THE COMPANY DATABASE.

REPRESENTING RELATIONSHIP SET UNARY/BINARY RELATIONSHIP

• N:M relationship

- **Relationship relation:** Build a table and add columns for each participating entity's primary key. Also add the attributes of the relationship. *(cross-reference)*
- Primary key of this new table is the union of the foreign keys of both entity sets.
- Note No Foreign Key approach is possible...

FIGURE 7.1

THE ER CONCEPTUAL SCHEMA DIAGRAM FOR THE COMPANY DATABASE.

REPRESENTING RELATIONSHIP SET N-ARY RELATIONSHIP

Intuitively Simple

- Build a new table, add primary keys of all participating entity sets.
- Add attributes of the relationship set
- The primary key of this new table is the union of all primary keys of entities that are on **N** side
- That is it, we are done.

EXAMPLE - N-ARY RELATIONSHIP SET

P-Key1	P-Key2	P-Key3	A-Key	D-Attribute
9999	8888	7777	6666	Yes
1234	5678	9012	3456	No

^{*} Primary key of this table is *P-Key1* + *P-Key2* + *P-Key3*

FIGURE 4.11

TERNARY RELATIONSHIP TYPES. (A) THE SUPPLY RELATIONSHIP.

SUPPLIER

SNAME

PROJECT

PART

<u>PARTNO</u>	• • •
---------------	-------

SUPPLY

SNAME	PROJNAME	PARTNO	QUANTITY
			ı

REPRESENTING RELATIONSHIP SET IDENTIFYING RELATIONSHIP

- Don't create a table for the identifying relationship
- As we have built a table for the corresponding weak entity
 - Reason:
 - A special case of 1:N with total participation
 - Reduce Redundancy

Representing Composite Attribute

- One column for each component attribute
- NO column for the composite attribute itself

SSN	Name	Street	City
9999	Dr. Smith	50 1 st St.	Fake City
8888	Dr. Lee	1 B St.	San Jose

Representing Multivalue Attribute

- Build a new relation schema with two columns
- Add the primary keys of the entity/relationship that has the multivalue attribute
- Add the multivalue attribute.
 - Each cell of this column holds only one value. So each value is represented as an unique tuple
- Primary key for this schema is the union of all attributes

EXAMPLE - MULTIVALUE ATTRIBUTE

SID	Name	Major	GPA
1234	Javed	CS	2.8
5678	Saif	EE	3.6

Stud_SID	Degree	
1234	FSC	
1234	BS	
5678	BS	
5678	MS	
5678	FA	

EXAMPLE - MULTIVALUE ATTRIBUTE

DEPT_LOCATIONS

CORRESPONDENCE BETWEEN ER MODEL & RELATIONAL MODEL

ER Model

- 1. Entity type
- 2. 1:1 or 1:N relationship type
- 3. M:N relationship type
- 4. *n*-ary relationship type
- 5. Simple attribute
- 6. Composite attribute
- 7. Multivalued attribute
- 8. Value set
- 9. Key attribute

Relational Model

- 1. Entity relation
- 2. Foreign key (or relationship relation)
- 3. Relationship relation and two foreign keys
- 4. Relationship relation and n foreign keys
- 5. Attribute
- 6. Set of simple component attributes
- 7. Relation and foreign key
- 8. Domain
- 9. Primary (or secondary) key

ER TO RELATIONAL: EXAMPLE FOOTBALL CLUB

"A football club has a name and a ground and is made up of players. A player can play for only one club. A manager, represented by his name manages a club. A footballer has a registration number, name and age. A club manager also buys players. Each club plays against other clubs in the league and matches have a date, venue and score."

• Create a relation for each strong entity type:

EXAMPLE STEP 2 &3

- No weak entity types (Step 2), so move on to next step
- For each binary 1:1 relationship choose an entity and include the other's PK as a FK.

- For each binary 1:n relationship choose the n-side entity and include a FK with respect to the other entity
- (a) Player plays for Club

- For each binary 1:n relationship choose the n-side entity and include a FK with respect to the other entity
- (b) Manager buys Player

• For each binary n:m relationship, create a relation for the relationship:

EXAMPLE - FINAL RELATION

CORRESPONDENCE BETWEEN ER MODEL & RELATIONAL MODEL

ER Model

- 1. Entity type
- 2. 1:1 or 1:N relationship type
- 3. M:N relationship type
- 4. *n*-ary relationship type
- 5. Simple attribute
- 6. Composite attribute
- 7. Multivalued attribute
- 8. Value set
- 9. Key attribute

Relational Model

- 1. Entity relation
- 2. Foreign key (or relationship relation)
- 3. Relationship relation and two foreign keys
- 4. Relationship relation and n foreign keys
- 5. Attribute
- 6. Set of simple component attributes
- 7. Relation and foreign key
- 8. Domain
- 9. Primary (or secondary) key

Mapping EER Model Constructs to Relations

- For Mapping Specialization or Generalization we have four options:
 - Multiple relations-Superclass and subclasses
 - Multiple relations-Subclass relations only
 - Single relation with one type attribute
 - Single relation with multiple type attributes

Mapping EER Model Constructs to Relations

Multiple relations- Superclass and Subclasses

- Create a relation for the Superclass
- Create a relation for each subclass and also include the primary key of the Superclass
- This option works for any specialization (total or partial, disjoint or over-lapping).

ATTRIBUTE-DEFINED SPECIALIZATION ON JOBTYPE

(a) EMPLOYEE

SSN	FName	Name MInit	LName	BirthDate	Address	JobType
-----	-------	------------	-------	-----------	---------	---------

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN EngType

Mapping EER Model Constructs to Relations

Multiple Relations-Subclass relations only

- Create a relation for each subclass and include the attributes of the superclass in each subclass relation
- This option only works for a specialization whose subclasses are total
 - Every entity in the superclass must belong to at least one of the subclasses.
- It is preferred that subclasses are disjoint (to avoid redundancy)
- Need Outer join (or full outer join) to get all entities

GENERALIZING CAR AND TRUCK INTO THE SUPERCLASS VEHICLE.

(b) CAR

VehicleId LicensePlateNo	Price	MaxSpeed	NoOfPassengers
--------------------------	-------	----------	----------------

TRUCK

VehicleId	LicensePlateNo	Price	NoOfAxles	Tonnage
-----------	----------------	-------	-----------	---------

MAPPING EER MODEL CONSTRUCTS TO RELATIONS

Single relation with one type attribute

- Create a single relation for superclass and all of the subclasses
- The new relation includes the attributes of superclass and all the attributes of each subclass
- The relation also includes an attribute that indicates the subclass to which each tuple belongs
- Not recommended if subclasses have many attributes
- This option works only for a specialization whose subclasses are *disjoint*,

ATTRIBUTE-DEFINED SPECIALIZATION ON JOBTYPE

1	C)	1	E۱	ΛD	1 (^ \	/⊏	F
١	U)	•		ИΜ	Ľ	וע		_

MAPPING EER MODEL CONSTRUCTS TO RELATIONS

Single relation with multiple type attributes

- Create a single relation for superclass and all of the subclasses
- The new relation includes the attributes of superclass and all the attributes of each subclass
- The relation also includes m type attributes, that is $\{t_1, t_2,...,t_m\}$, where m is the no of subclasses.
- Each t_i , 1 < i < m, is a Boolean type attribute indicating whether a tuple belongs to the i^{th} subclass.
- This option is for overlapping subclasses (but will work for a disjoint subclasses).

FIGURE 4.5

EER DIAGRAM NOTATION FOR AN OVERLAPPING SPECIALIZATION.

(d) PART

		PartNo	Description	MFlag	DrawingNo	ManufactureDate	BatchNo	PFlag	SupplierName	ListPrice
--	--	--------	-------------	-------	-----------	-----------------	---------	-------	--------------	-----------

Mapping of Shared Subclasses (Multiple Inheritance)

- A shared subclass, is a subclass of several classes, indicating multiple inheritance.
- These classes must all have the same key attribute. WHY?
 - Otherwise, the shared subclass would be modeled as a category.
- We can apply any of the options discussed before for Specialization\Generalization to a shared subclass, subject to the restriction.

FIGURE 4.7

A SPECIALIZATION LATTICE WITH MULTIPLE INHERITANCE FOR A UNIVERSITY DATABASE.

FIGURE 7.5

MAPPING THE EER SPECIALIZATION LATTICE IN FIGURE 4.6 USING MULTIPLE OPTIONS.

PERSON

SSN	Name	BirthDate	Sex	Address
-----	------	-----------	-----	---------

EMPLOYEE

<u>SSN</u>	Salary	EmployeeType	Position	Rank	PercentTime	RAFlag	TAFlag	Project	
------------	--------	--------------	----------	------	-------------	--------	--------	---------	--

ALUMNUS

ALUMNUS DEGREES

SSN	Year	Degree	

STUDENT

SSN	MajorDept	GradFlag	UndergradFlag	DegreeProgram	Class	StudAssistFlag
-----	-----------	----------	---------------	---------------	-------	----------------

Mapping of Union Types (Categories)

• For mapping a category whose superclass have different keys, we specify a new key attribute, called a surrogate key.

FIGURE 4.8

TWO CATEGORIES (UNION TYPES): OWNER AND REGISTERED_VEHICLE.

Mapping Exercise 1

Example:

Team

TeamName

Location

LocName Address

Match

HomeTeamName VisitorTeamName LocName Score

MAPPING EXERCISE 2

Mapping Exercise 2 -RESULT

SPECIALIZATION MAPPING EXAMPLE

