

Zhengyuan Yang

Agenda

- Image-text tasks overview; Motivation of unification
- Unified image-text models
- Summary and discussion

Image-text Tasks Overview

Close-set classification

What color is the plate?

Popular Image-text Tasks:

VQA, GQA, VisDial, VCR, NLVR2, image-text matching Open-ended text sequence

A donut on a white plate next to a cup of latte.

Popular Image-text Tasks:

Image captioning, paragraph captioning, storytelling, open-ended **VQA**

Unified Image-Text Modeling

Box/mask localization

The donut on the white plate

Popular Image-text Tasks:

Referring expression comprehension/ segmentation, phrase grounding, grounded captioning

A donut on a white plate next to a cup of latte.

Popular Image-text Tasks:

Text-to-image synthesis, text-based image editing

Close-set Classification

- Two woman are holding Entailment
- The sisters are hugging goodbye while holding to go packages after just eating lunch.

Hypothesis

 The men are fighting outside a deli. Neutral

Contradiction

Answer

Image-text matching, NLVR2

VCR

Visual Entailment

Image credit: from the original papers: NLVR2, VCR, Visual Entailment

Open-ended Text Sequence

Image captioning

This image is of a family celebrating Christmas. They are all gathered around a dinner table, with a turkey and other food on it. The family is smiling and seems to be enjoying themselves. There is a Christmas tree in the background and some Christmas lights on the walls.

Paragraph Captioning

What color is the plate? The plate is white.

Open-ended VQA

Box/mask Localization

[Xee Vee Xee Ve]

[**x₁, y₁, x₂, y₂**]: [90.1, 83.2, 184.9, 180.4]

glass bottles

blonde hair

Multi-Modal Fusion

pedestrian crosswalk

A man with pierced ears is wearing glasses and an ora

A man with glasses is wearing a beer can crotched hal Visual grounding
A man with gauges and glasses is wearing a Blitz hat

A man in an orange hat starring at something (REC, phrase grounding)

A man wears an orange hat and glasses.

Language-based segmentation (RES)

Pixel Prediction

Pixel values

"White leaves" "Slue leaves" "Yellow leaves"

"Remove bottom-right large red cube"

"This bird has wings that are black, and has a red belly and a red head"

Text-to-image synthesis

Text-based image editing

- Better performance
- New capabilities
- Task-agnostic unified systems

- Better performance
 - Similar abilities; Multi-task training
 - Extra data/annotations from other tasks

New capabilities

- E.g., text + box; grounded captioning
- More comprehensive and interpretable image description

- Task-agnostic unified systems
 - Ease framework design; Avoid model copies
 - Capability generalization

A man in a black jacket and black pants is playing with a dog in a park.

Generalizing grounded captioning to COCO

Agenda

- Image-text tasks overview; Motivation
- Unified image-text models
 - Classification as text generation
 - Model design and training
 - Unify text and box
 - Textualize visual outputs
- Summary and discussion

VL Research

Models curated for tasks

 Fast-forward to vision-language pre-training (VLP)

Vision-language Pre-training (VLP)

- Large-scale transformer-based self-supervised pre-training
- Reuse the same pre-training weight as initialization point
- Separate output head and finetune model copies for different downstream tasks

Vision-language Pre-training (VLP)

Large-scale transformer-based self-supervised pre-training

UNITER

Reuse the same pre-training weight as initialization point

 Separate output head and finetune model copies for different downstream tasks

12-in-1

- Single model for 12 tasks (12*270M=3B -> 270M)
- Relationships among tasks; better averaged performance
- Task-specific heads and objectives

All these task require visually-grounded language understanding skills.

VL-T5

- Image-text tasks as multimodal conditional text generation
- Avoid task-specific arch design and model copies

VL-T5

- Image-text tasks as multimodal conditional text generation
- Avoid task-specific arch design and model copies

Agenda

- Image-text tasks overview; Motivation
- Unified image-text models
 - Classification as text generation
 - Model design and training
 - Unify text and box
 - Textualize visual outputs
- Summary and discussion

Model design and training

- Output format unification is the first step, how to have different tasks and capabilities work well together
 - Partially-shared parameters
 - Modular network design
 - Data and training techniques

VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts

UFO: A unified transformer for vision-language representation learning

VL-BEiT: Generative Vision-Language Pretraining

etc.

FLAVA: A Foundational Language And Vision Alignment Model

Towards a unified foundation model: Jointly pre-training transformers on unpaired images and text UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal Contrastive Learning UNIMO-2: End-to-End Unified Vision-Language Grounded Learning

Partially-shared Parameters

- Mixture of modality experts
- Task-specific parameters

Modular Network Design

- Unimodal encoders for single-modality tasks
- Reuse adjusted submodules for different tasks

Data and Training Techniques

- Training corpus, batch construction
- Optimizing and loss design

$$\begin{split} G_{\text{txt}} &= \frac{\partial \mathcal{L}_{\text{txt}}}{\partial \theta}, \quad G_{\text{img}} = \frac{\partial \mathcal{L}_{\text{img}}}{\partial \theta} \\ G_{\text{global}} &= M \odot G_{\text{txt}} + (1 - M) \odot G_{\text{img}} \end{split}$$

Agenda

- Image-text tasks overview; Motivation
- Unified image-text models
 - Classification as text generation
 - Model design and training
 - Unify text and box
 - Textualize visual outputs
- Summary and discussion

Good for Text Outputs, Others?

- Back to unifying I/O formats
- Output formats:
 - √ Classification, text sequence
 - ? Box/mask
 - ? Pixel value
- Text+box as a case study

Unifying Text and Box Outputs

 A donut on a white plate next to a cup of latte.

 OD/grounding: white plate, donut, coffee mug

- 1. Support both outputs
- 2. Word-box alignments

GPV-1

- Text and box outputs: detector for image -> regions
- Word-box alignments: region index prediction
 - Related to the modeling in region-based VL models, but with detector E2E finetuned

MDETR, UniT

- Avoid explicit detection module?
- Text and box outputs: (box): coordinate regression; (text): heads for classification output
- Word-box alignments: input word index, or OD vocab

FIBER

- Challenge: resolution, computing cost trade-offs
- Coarse-to-fine two-stage vision-language pre-training
- Text and box outputs; Fusion in-the-backbone

Agenda

- Image-text tasks overview; Motivation
- Unified image-text models
 - Classification as text generation
 - Model design and training
 - Unify text and box
 - Textualize visual outputs
- Summary and discussion

- Visual (box, mask, pixel) outputs and text outputs (cls, text)
 are often modeled differently and require different modules:
 - Object detector (OD)
 - Coordinate regression head
- A single model that unifies text and box(visual) outputs?

Representative Models		isual Modeling	Text Output	Box Output	Word-box Align
Vilbert [42], OSCAR [38],					
UNITER [12], VinVL [73],		Offline OD	${\it Task-specific\ Heads}$	Region Index	X
etc. [37,59,35,58,78,43]					
PixelBERT [29], SOHO [28],					
ViLT [33], SimVLM [64],	I	mage Patches	${\it Task-specific Heads}$	X	X
etc. [56,36,68,19]	١,				
VL-T5 [13]		Offline OD	Single Output Seq.	Region Index	Extra Prediction
GPV [23]		Online OD	Single Output Seq.	Region Index	Extra Prediction
MDERT [31]	I	mage Patches	Task-specific Heads	Box Coordinate	Х
UniT [26]	I	mage Patches	Task-specific Heads	Box Coordinate	X
UniTAB (Ours)	I	mage Patches	Single Output Seq.	Box Coordinate	Inline Indicated

UNICORN

- Textualize bounding box for object detection [1]
- Text and box outputs: Unified text+box decoding vocabulary
- Word-box alignments: in-line in output sequence

Model and Training

- Encoder-decoder architecture
- Single LM objective

<obj> A donut <90> <83> <184> <180> <\obj> on
a <obj> white plate <78> <84> <186> <199> <\obj>
next to a <obj> cup of latte <10> <7> <94> <113> <\obj>.

Unifying Different VL Tasks

- Textualized outputs: text, box, alignment
- Multi-task finetuning, capability generalization

Capability Generalization

MSCOCO; Grounded description

For eval: text, box, alignment

Metrics: captioning

Input text: A picture of

Text: A man in a black jacket and black pants is playing with a dog in a park.

Box: Not Used

ImageNet; Object localization

For eval: text, box, alignment

Metrics: accuracy

Input text: Brittany spaniel

Output seq.: <obj> Brittany spaniel <29> <31>

<136> <199> <\obj>

Text: Not Used

Box: Brittany spaniel

- OFA
- Image tokens for <u>pixel</u> outputs

- Pix2Seq-V2
- Masks as polygon, Keypoints

Task prompt

Task output

Output visualization

[Detect]

y_{min}=327 x_{min}=370 y_{max}=653 x_{max}=444 person

[Segment] y_{min} =503 x_{min} =518 y_{max} =805 y_{max} =892 Motocycle

y₀=553 x₀=599 y₁=788 y₁=664

[Keypoint] y_{min} =327 x_{min} =370 y_{max} =653 x_{max} =444 person

Nose y_{min}=1 x_{min}=57 left eye

[Describe]

A person working in mechanical shop with two mopeds outside.

Unified-IO

all vision tasks (seg., depth, surface, etc.) that require dense prediction as (conditional) image generation

Tasks

Image Classification

Object Detection

Semantic Segmentation

Depth Estimation

Surface Normal Estimation

Segment-based Image Generation

Image Inpainting

Pose Estimation

Relationship Detection

Image Captioning

Visual QA

Referring Expressions

Situation Recognition

Text-based Image Generation

Visual Commonsense

Classification in context

Region Captioning

GLUE Benchmark tasks

Reading comprehension

Natural Language Inference

Grounded Commonsense Inference

Agenda

- Image-text tasks overview; Motivation
- Unified image-text models
- Summary and discussion

Take-away Messages

- Unified image-text modeling from the view of I/O format
- Textualized visual outputs for unified image-text modeling
- Format unification is the first step, improving unified models
- Grand vision of general-purpose visual understanding

Challenges and Future Directions

- How to better show the advantage of unified models
 - Relationship among tasks; Gain from MTL
 - New capability showcase; Generalization setups
- How to better train the unified models
 - Balance the degree of unification
 - Better ways of format unification
- Foundation models at what granularity

Any Questions?

Thank you!