Temporal Logics Linear & Branching Time Logic

Kim Guldstrand Larsen

Overview of Course

- Temporal Logics (Linear & Branching Time)
 - Kim G Larsen
- Mobile Process Calculi
 - Hans Hüttel
- Static Analysis of Mobile Ambients
 - René Rydhof Hansen
- Process Rewrite Systems
 - Jiri Srba

Software Errors

Therac-25 Radiation Overdosing (1985-87)

- Radiation machine for treatment of cancer patients
- At least 6 cases of overdosis in period 1985–1987 (\approx 100-times dosis)
- Three cancer patients died
- Source: Design error in the control software (race condition)

Software Errors

Ariane 5 Crash (1996)

- Crash of the european Ariane 5-missile in June 1996
- Costs: more than 500 million US\$
- Source: software flaw in the control software
- A data conversion from a 64-bit floating point to 16-bit signed integer
- Efficiency considerations had led to the disabling of the software handler (in Ada)

Software Errors

Pentium FDIV Bug (1994)

- FDIV = floating point division unit
- Certain floating point division operations performed produced incorrect results
- Byte: 1 in 9 billion floating point divides with random parameters would produce inaccurate results
- Loss: ≈ 500 million US\$ (all flawed processors were replaced) + enormous image loss of Intel Corp.
- Source: flawless realization of floating-point division

Model Checking (overview)

Model Checking

ACM Turing Award 2007

Edmund Clarke

E. Allen Emerson

Joseph Sifakis

"For their role in developing Model-Checking into a highly effective verification technology, widely adopted in the hardware and software industries."

Some other winners: Pnueli, Milner, Hoare, Scott,
Cook, Dijkstra

Model Checking

Gödel Prize 2000

Moshe Vardi

Pierre Wolper

"For work on model checking with finite automata."

Some other winners: Shor, Sénizergues, Agrawal et al., ...

Model Checking

ACM System Software Award 2001

Gerard J. Holzmann

SPIN book

SPIN is a popular open-source software tool, used by thousands of people worldwide, that can be used for the formal verification of distributed software systems.

Some other winners: TeX, Postscript, UNIX, TCP/IP, Java, Smalltalk

Model Checking (overview)

Informal description

Model checking is an automated technique that, given a finite-state model of a system and a formal property, systematically checks whether this property holds for (a given state in) that model.

What are Models?

Transition systems

- States labeled with basic propositions
- Transition relation between states
- Action-labeled transitions to facilitate composition

Expressivity

- Programs are transition systems
- Multi-threading programs are transition systems
- Communicating processes are transition systems
- Hardware circuits are transition systems
- What else?

What are Properties

Example properties

- Can the system reach a deadlock situation?
- Can two processes ever be simultaneously in a critical section?
- On termination, does a program provide the correct output?

Temporal logic

- Propositional logic
- Modal operators such as □ "always" and ◊ "eventually"
- Interpreted over state sequences (linear)
- Or over infinite trees of states (branching)

Course Topics

- 1. What are **properties**?
 - Safety: something bad will never happen
 - Liveness: something good will eventually happen
- 1. Regular Properties and Automata
 - Finite-state automata and regular safety
 - Büchi Automata and ω -regular properties
- 2. How to express properties succinctly?
 - Linear Temporal Logic (LTL): Syntax & Semantics
 - Expressivity & Algorithms
- 3. How to express properties succinctly?
 - Computational Tree Logic (CTL): Syntax & Semantics
 - Expressivity & Algorithms

Course Material

Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany

