МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра АПУ

ОТЧЕТ по лабораторной работе №2 по дисциплине «Теория управления» Вариант №4

Студент гр. 6373	 Антонов Д.Д.
Студент гр. 6373	 Ли Д.Б.
Студент гр. 6373	 Хон А.В.
Преподаватель	Брикова О.И.

Санкт-Петербург

2020

Содержание.

Исследование характеристик систем с обратной связью в корневой, временной и частотной областях. Устойчивость замкнутых систем с отрицательной обратной связью.

Ход работы.

Задача 2.1

K = 5, 15, 25

Вопрос 1. При увеличении k траектория корня системы имеет вид луча, стремящийся к минус бесконечности.

Вопрос 2. Влияние изменения коэффициента к представлено на рисунках ниже.

Рисунок 1: Переходная характеристика разомкнутой системы при изменении к

Рисунок 2: Траектория движения корней замкнутой системы (желтый-k=25; красный-k=15;синий-k=5)

Рисунок 3: Переходная функция замкнутой системы при разных к

Рисунок 4: ЛАЧХ и ЛФЧХ разомкнутой системы при изменении к

Pисунок 5: $A\Phi X$ разомкнутой системы $npu \ k=15$

Рисунок 6: ЛАЧХ и ЛФЧХ замкнутой системы при изменении к

Pисунок 7: $A\Phi X$ замкнутой системы $npu \ k=2$

Рисунок 8: $A\Phi X$ замкнутой системы при k=10

T=1

$$\Phi(s) = \frac{k}{s(s+1)+k}$$

$$D(s) = s^2 + s + k$$

Вопрос 1. При k < 0 корни XП D(s) лежат на вещественной оси. Чем меньше k, тем больше расстояние между корнями.

Вопрос 2. Графики отвечающие различным корням, приведены на рисунке ниже.

Рисунок 9: Траектория корней замкнутой системы при различных k (-2; 2; 1/4)

Рисунок 10: Различные переходные функции замкнутой системы при различных k (10;1/4;1)

$$T_1 = 1$$
; $T_2 = 2.4$

$$W_p(s) = \frac{k}{s(1*s+1)(2,4s+1)}$$

$$\Phi(s) = \frac{k}{2,4 s^3 + 3,4 s^2 + s + k}$$

$$D(s)=2,4s^3+3,4s^2+s+k$$

Boπpoc 1.
$$k_{κρ} = \frac{(1+2,4)}{(1*2,4)} = 1,42$$

Вопрос 2. По рисунку 14 определим:

$$k=0.5k_{_{\mathrm{KP}}}$$
 , $\Delta L=10\,\partial E$, $\Delta \phi=200\,\mathrm{spadycos}$

$$k = 0.8 \, k_{\mathrm{\tiny KP}}$$
 , $\Delta L = 5 \, \partial E$, $\Delta \phi = 190 \, \mathrm{градусов}$

Рисунок 11: Траектория движения корней замкнутой системы при различных k

Рисунок 12: Переходная функция замкнутой системы при $\mathbf{k}_{\kappa p}$

Рисунок 13: Переходная функция замкнутой системы при $0.8k_{\kappa p}, 0.5k_{\kappa p}$

Рисунок 14: Определение запасов устойчивости по амплитуде и по фазе

Рисунок 15: Переходные функции разомкнутой системы при различных k

Рисунок 16: ЛАФХ и ЛФЧХ разомкнутой системы при различных к

Рисунок 17: Переходные функции разомкнутой системы при различных k

$$\begin{split} T_1 &= 1; T_2 = 2,4 \\ W_p(s) &= \frac{k(1*s+k)}{s(1*s+1)(2,4s+1)} \\ \Phi(s) &= \frac{k(1*s+k)}{s(1*s+1)(2,4s+1)+k(1*s+1)} = \frac{ks+k}{2,4s^3+3,45s^2+s(1+k)+k} \end{split}$$

 $D(s)=2,4s^3+3,45s^2+s(1+k)+k$

Вопрос 1. Неподвижность одного из корней XП объясняется наличием диполя 1s + 1, корень равен s = 1 / 1 = 1.

Вопрос 2. Временные и частотные характеристики приобретают форму XП порядка на 1 ниже при наличии неподвижного корня XП.

Вопрос 3. Характер траектории подвижных корней XП при изменении k соответствует системе с отсутствующим диполем.

Рисунок 18: Траектория движения корней замкнутой системы при различных к

Рисунок 18: Траектория движения корней замкнутой системы при различных k

Рисунок 19: Переходная функция замкнутой системы при k = 1

Рисунок 20: ЛАЧХ и ЛФЧХ замкнутой системы при ${\bf k}=1$

Рисунок 21: $A\Phi X$ замкнутой системы при k=1

$$W_p(s) = \frac{30}{5,04 s^4 + 10,5 s^3 + 4,94 s^2 + 3 s + 1}$$

$$\Phi(s) = \frac{30}{5,04 s^4 + 10,5 s^3 + 4,94 s^2 + 3 s + 31}$$

$$D(s) = 5,04 s^4 + 10,5 s^3 + 4,94 s^2 + 3 s + 31$$

Рисунок 22: ЛАЧХ разомкнутой системы

По рисунку определим $\Omega_1{\in}[0\,;0,67]$ и $\Omega_2{=}[1.7\,;+\infty]$. Корни характеристического уравнения $s{\simeq}0.67$ и $s{\simeq}-1.7$. Корни D(s):

 $s_{1,2}$ =-1,65±0,95i; (Примерно равно -1,7)

 $s_{3,4}$ =0.65±1.09i; (Примерно равно 0,67)