SPOTMICRO – INVERSE KINEMATICS (IK)

Forward kinematics:

 θ_1 , θ_2 et θ_3 are the servos angles

 \rightarrow x_{paw} , y_{paw} , z_{paw} are calculated from the angles

Not an easy way to plan movements

Inverse Kinematics (IK):

Paw position (x_{paw} , y_{paw} , z_{paw}) is what we want

 \rightarrow calculate θ_1 , θ_2 et θ_3 to set the servos

```
def IK (self, L0, L1, L2, d, x, y, z, side): #Leg inverse Kinematics
179
180
              s = 1 for left leg
181
             s = -1 for right leg
182
           t2 = y^{**2}
183
           t3 = z^{**2}
            t4 = t2+t3
           t5 = 1/sqrt(t4)
            t6 = L0**2
187
           t7 = t2+t3-t6
           t8 = sqrt(t7)
            t9 = d-t8
190
           t10 = x**2
           t11 = t9**2
           t15 = L1**2
           t16 = L2**2
195
           t12 = t10+t11-t15-t16
           t13 = t10+t11
197
           t14 = 1/sqrt(t13)
198
            error = False
199
           try:
                theta1 = side^*(-pi/2+asin(t5*t8))+asin(t5*y)
                theta2= -a\sin(t14*x)+a\sin(L2*t14*sqrt(1/t15*1/t16*t12**2*(-1/4)+1))
201
202
                theta3 =-pi + acos(-t12/2/(L1*L2))
203
204
            except ValueError:
205
                print ('ValueError IK')
206
                error = True
207
                theta1=90
                theta2=90
                theta3=90
210
211
           theta = [theta1, theta2, theta3]
212
            return (theta, error)
```


Inverse Kinematics – Zeros angles

Servos - Zero angles

The Walk

- ➤ Legs describe a half ellipse forward followed by a translation backwards.
- > Leg cycles are shifted by 1/4th of the full walk cycle

XBOX ONE CONTROLLER FUNCTIONS

XBOX ONE CONTROLLER VARIABLES

