Projeto e Analise de Algoritmos

- Analise assintótica
- Notação assintótica
 - -0
 - $-\Omega$
 - $-\Theta$

Analise Assintótica

- O tempo necessário para rodar o programa depende to tamanho da entrada *n*
 - Um vetor maior demora mais tempo para ser ordenado
 - T(n): o tempo necessário para a entrada de tamanho n
 - Ver o crescimento de T(n) quando n→∞ é chamado de "Análise Assintótica"
- O tamanho da entrada é geralmente definido como o número de elementos da entrada
 - Pode n\u00e3o ser verdade em alguns casos

Analise Assintótica

- Considera um custo uniforme para cada declaração do código (menos para funções)
- Ordem de crescimento é uma medida importante:
 - O termo de maior ordem é o que realmente importa
 - Quando o tamanho n da entrada aumenta, o termo de maior ordem domina o tempo gasto

Ordem de Crescimento

Comparação entre ordens de crescimento

$$1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$$

Como comparar as ordens de crescimento?

Análise Exata é Difícil

• O pior caso e o caso médio são difíceis de lidar de forma exata pois os detalhes são muito complicados

Pode ser mais fácil lidar com os limites inferiores e superiores da função

Notações Assintótica

• O: Grande O

• Ω : Grande Omega

• Θ: Theta

• o: Pequeno o

• ω: Pequeno omega

Grande O

- Informalmente, O (g(n)) é o conjunto de todas as funções com uma ordem de crescimento menor ou igual a g(n), multiplicado por uma constante
- g(n) é o limite superior assintótico de f(n)
 - Intuitivamente é como se $f(n) \le g(n)$
- O que significa $O(n^2)$?
 - Corresponde ao conjunto de todas as funções que tem o crescimento mais lento ou da mesma ordem de n²
 - Várias funções preenchem este requisito

Exemplo

```
Temos (como se f(n) \le g(n)):

n \in O(n^2)

n^2 \in O(n^2)

1000n \in O(n^2)

n^2 + n \in O(n^2)

100n^2 + n \in O(n^2)

Mas:

1/1000 \ n^3 \not\in O(n^2)
```

Pequeno o

- Informalmente, o (g(n)) é o conjunto de todas as funções que tem um crescimento estritamente menor que o crescimento de g(n), multiplicado por uma constante
- O que significa $o(n^2)$?
 - Conjunto de todas as funções que crescem mais lentamente que n²
 - E como se f(n) < g(n)

Logo:

```
1000n \in o(n^2)
```

Mas:

$$n^2 \notin o(n^2)$$

Grande Ω

- Informalmente, Ω (g(n)) é o conjunto de todas as funções com uma ordem de crescimento igual ou superior a de g(n), multiplicado por uma constante.
- Assim, g(n) é o limite inferior assintótico de f(n)
 - Intuitivamente e como se $g(n) \le f(n)$

Assim:

```
n^2 \in \Omega(n)

1/1000 n^2 \in \Omega(n)
```

Mas:

 $1000 \text{ n} \notin \Omega(n^2)$

Pequeno w

- Informalmente, ω (g(n)) corresponde ao conjunto de todas as funções com uma ordem de crescimento maior que g(n), multiplicado por uma constante
- É como se g(n) < f(n)

Assim:

```
n^2 \in \omega(n)

1/1000 n^2 \in \omega(n)

n^2 \notin \omega(n^2)
```

Theta (Θ)

- Informalmente, Θ (g(n)) é o conjunto de todas as funções com uma ordem de crescimento igual a de g(n), multiplicado por uma constante
- g(n) é o limite assintótico de f(n)
 - Intuitivamente e como se f(n) = g(n)
- Qual é o $\Theta(n^2)$?
 - Conjunto de todas as funções que crescem com a mesma ordem de n²

Exemplo

```
Então: n^{2} \in \Theta(n^{2})
n^{2} + n \in \Theta(n^{2})
100n^{2} + n \in \Theta(n^{2})
100n^{2} + \log_{2}n \in \Theta(n^{2})
Mas: n\log_{2}n \notin \Theta(n^{2})
1000n \notin \Theta(n^{2})
1/1000 n^{3} \notin \Theta(n^{2})
```

Grande O

- Informalmente: O (g(n)) é o conjunto de todas as funções com uma ordem de crescimento menor ou igual a g(n), multiplicado por uma constante
- Definição:

```
O(g(n)) = \{f(n): \exists constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n) \forall n > n_0\}
```

- $\lim_{n\to\infty} g(n)/f(n) > 0$ (se este limite existir)
- Significado da notação:

```
f(n) = O(g(n)) significa f(n) \in O(g(n))
```

Grande O

- Verificar se $f(n) = 3n^2 + 10n + 5 \in O(n^2)$
- Prova usando a definição:

$$O(g(n)) = \{f(n): \exists constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n) \forall n > n_0\}$$

Queremos encontrar c e n_0 tais que $f(n) \le cn^2$ para $n > n_0$. (podemos escolher qualquer constante que satisfaça a definição) $3n^2 + 10n + 5 \le 10n^2 + 10n + 10$ $\le 10n^2 + 10n^2 + 10n^2, \forall \ n \ge 1$ $\le 30 \ n^2, \ \forall \ n \ge 1$

Seja c = 30 e n_0 = 1, nós temos $f(n) \le c n^2$, $\forall n \ge n_0$. assim de acordo com a definição, $f(n) = O(n^2)$.

• Se pode alternativa provar que

$$\lim_{n\to\infty} \frac{n^2}{(3n^2+10n+5)} = \frac{1}{3} > 0$$

Grande Omega

• Definição:

```
\Omega(g(n)) = \{f(n): \exists constantes positivas c e n_0 tais que 0 \le cg(n) \le f(n) \forall n > n_0 \}
```

- $\lim_{n\to\infty} f(n)/g(n) > 0$ (se o limite existe)
- A notação:

```
f(n) = \Omega(g(n)) significa f(n) \in \Omega(g(n))
```

Grande Omega

- Verificar: $f(n) = n^2 / 10 = \Omega(n)$
- Prova por definição:

$$f(n) = n^2 / 10, g(n) = n$$

Basta encontrar c e n_0 que satisfaz a definição $f(n) \in \Omega(g(n))$, i.e., $f(n) \ge cg(n)$ para $n > n_0$

 $n \le n^2 / 10$ quando $n \ge 10$

Se c = 1 e $n_0 = 10$, nos temos $f(n) \ge cn^2$, $\forall n \ge n_0$. logo de acordo com a definição $f(n) = \Omega(n^2)$.

• Se Pode alternativamente demonstrar que:

$$\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} (n/10) = \infty$$

Theta

- Definição:
 - $\Theta(g(n))$ ={f(n): ∃ constantes positivas c_1 , c_2 e n_0 tais que $0 \le c_1$ g(n) ≤ f(n) ≤ c_2 g(n), \forall n ≥ n_0 }
- $\lim_{n\to\infty} f(n)/g(n) = c > 0$ e c $< \infty$
- $f(n) = O(g(n)) e f(n) = \Omega(g(n))$
- A notação significa:
 - $f(n) = \Theta(g(n))$ significa $f(n) \in \Theta(g(n))$
 - $\Theta(1)$ significa tempo constante

Theta

- Verificar: $f(n) = 2n^2 + n = \Theta(n^2)$
- Prova usando a definição:
 - Queremos encontrar 3 constantes c_1 , c_2 e n_0 tais que $c_1 n^2 \le 2n^2 + n \le c_2 n^2$ para todo $n > n_0$
 - Uma solução é $c_1 = 2$, $c_2 = 3$ e $n_0 = 1$
- Alternativamente, $\lim_{n\to\infty} (2n^2+n)/n^2 = 2$

Exemplos

- Mostrar que $n^2 + 3n + 1g$ n está em $O(n^2)$
- Encontrar c e n_0 tais que $n^2 + 3n + \lg n \le cn^2$ para $n > n_0$
- Prova:

$$n^2 + 3n + lg n \le 3n^2 + 3n + 3lgn$$
 para $n > 1$
 $\le 3n^2 + 3n^2 + 3n^2$
 $\le 9n^2$
Ou $n^2 + 3n + lg n \le n^2 + n^2 + n^2$ para $n > 10$
 $\le 3n^2$

Exemplos

- Provar $n^2 + 3n + \lg n$ esta em $\Omega(n^2)$
- Encontrar c e n₀ tais que

$$n^2 + 3n + \lg n > = cn^2 para n > n_0$$

$$n^2 + 3n + \lg n >= n^2$$
 para $n > 0$

• Provar $n^2 + 3n + \lg n$ esta em $\Theta(n^2)$

$$n^2 + 3n + lg n = O(n^2) e n^2 + 3n + lg n = \Omega(n^2)$$

=> $n^2 + 3n + lg n = \Theta(n^2)$

As definições implicam em uma constante n₀ alem da qual a propriedade é satisfeita. Valores pequenos de n são ignorados

Comparação de Ordens

- comparar $\log_2 n e \log_{10} n$
- $\log_a b = \log_c b / \log_c a$
- $\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n$
- Assim, $\lim(\log_2 n / \log_{10} n) = 3.3$
- $\log_2 n = \Theta (\log_{10} n)$

Comparação de Ordens

- Comparar 2ⁿ e 3ⁿ
- $\lim_{n \to \infty} 2^n / 3^n = \lim_{n \to \infty} (2/3)^n = 0$
- Logo, $2^n \in o(3^n)$ e $3^n \in \omega(2^n)$
- Comparar 2^n e 2^{n+1} ? $2^n / 2^{n+1} = \frac{1}{2}$, $\log o \ 2^n = \Theta \ (2^{n+1})$

Dominância da Ordem de Crescimento

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$