for all $m, n \geq N$. For every fixed $k \in K$, this implies that

$$|\lambda_k^m - \lambda_k^n| < \epsilon$$

for all $m, n \geq N$, which shows that $(\lambda_k^n)_{n\geq 1}$ is a Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, the sequence $(\lambda_k^n)_{n\geq 1}$ has a limit $\lambda_k \in \mathbb{C}$. We claim that $(\lambda_k)_{k\in K} \in \ell^2(K)$ and that this is the limit of $((\lambda_k^n)_{k\in K})_{n\geq 1}$.

Given any $\epsilon > 0$, the fact that $((\lambda_k^n)_{k \in K})_{n \geq 1}$ is a Cauchy sequence implies that there is some $N \geq 1$ such that for every finite subset I of K, we have

$$\sum_{i \in I} |\lambda_i^m - \lambda_i^n|^2 < \epsilon/4$$

for all $m, n \geq N$. Let p = |I|. Then

$$|\lambda_i^m - \lambda_i^n| < \frac{\sqrt{\epsilon}}{2\sqrt{p}}$$

for every $i \in I$. Since λ_i is the limit of $(\lambda_i^n)_{n\geq 1}$, we can find some n large enough so that

$$|\lambda_i^n - \lambda_i| < \frac{\sqrt{\epsilon}}{2\sqrt{p}}$$

for every $i \in I$. Since

$$|\lambda_i^m - \lambda_i| \le |\lambda_i^m - \lambda_i^n| + |\lambda_i^n - \lambda_i|,$$

we get

$$|\lambda_i^m - \lambda_i| < \frac{\sqrt{\epsilon}}{\sqrt{p}},$$

and thus,

$$\sum_{i \in I} |\lambda_i^m - \lambda_i|^2 < \epsilon,$$

for all $m \geq N$. Since the above holds for every finite subset I of K, by Proposition A.1(2), we get

$$\sum_{k \in K} |\lambda_k^m - \lambda_k|^2 < \epsilon,$$

for all $m \geq N$. This proves that $(\lambda_k^m - \lambda_k)_{k \in K} \in \ell^2(K)$ for all $m \geq N$, and since $\ell^2(K)$ is a vector space and $(\lambda_k^m)_{k \in K} \in \ell^2(K)$ for all $m \geq 1$, we get $(\lambda_k)_{k \in K} \in \ell^2(K)$. However,

$$\sum_{k \in K} |\lambda_k^m - \lambda_k|^2 < \epsilon$$

for all $m \geq N$, means that the sequence $(\lambda_k^m)_{k \in K}$ converges to $(\lambda_k)_{k \in K} \in \ell^2(K)$. The fact that the subspace consisting of sequences $(z_k)_{k \in K}$ such that $z_k = 0$ except perhaps for finitely many k is a dense subspace of $\ell^2(K)$ is left as an easy exercise.