the column spacers differ.

i .

AMENDMENTS TO THE CLAIMS

- (Withdrawn) A liquid crystal display device comprising:
 opposite first and second substrates; and
 column spacers between the first and second substrates, wherein the column spacers
 formed on one of the substrates such that the height of the column spacers differ as position of
- 2. (Withdrawn) The liquid crystal display device as claimed in claim 1, wherein the column spacers at a lower end of the display device is greater in height than the column spacers at an upper end of the display device.
- 3. (Withdrawn) The liquid crystal display device according to claim 1, wherein the column spacers have two or more different heights.
- 4. (Withdrawn) The liquid crystal display device according to claim 1, wherein the column spacers are formed of photo acryl.
- 5. (Withdrawn) The liquid crystal display device according to claim 1, wherein the column spacers are formed by an ink jet method.
- 6. (Withdrawn) The liquid crystal display device according to claim 1, wherein the height of the column spacers increases as it goes farther from an upper end to a lower end of the display device.
- 7. (Withdrawn) The liquid crystal display device according to claim 1, wherein the column spacers in an upper end of the display device have a 3.5μm height and the column spacers in a lower end of the display device have a 4 to 4.5μm height.
- 8. (Withdrawn) The liquid crystal display device according to claim 1, wherein the column spacers in an upper part have a height different from the column spacers at a lower end of the display device by less than $1\mu m$.

9. (Previously Presented) A method of manufacturing a liquid crystal display device comprising:

forming a thin film transistor substrate;

forming a color filter substrate;

forming column spacers on one of the thin film transistor substrate and the color filter substrate, wherein the height of the column spacers differ as the position of the column spacers differ according to the expansion ratio of the cell gap between the thin film transistor substrate and the color filter substrate due to gravity; and

bonding the thin film transistor substrate and the color filter substrate to each other.

- 10. (Original) The method of claim 9, wherein the column spacers at a lower end of the display device are greater in height than the column spacers at an upper end of the display device.
- 11. (Original) The method of claim 9, wherein the column spacers have two or more different heights.
- 12. (Original) The method of claim 9, wherein the column spacer are formed of photo acryl.
- 13. (Original) The method of claim 9, wherein the column spacers are formed by an ink jet method.
- 14. (Original) The method of claim 9, wherein the height of the column spacers increases as it goes farther from an upper end to a lower end of the display device.
- 15. (Original) The method of claim 9, wherein the column spacers in an upper end of the display device have a 3.5 µm height and the column spacers in a lower end of the display device have a 4 to 4.5 µm height.

- 16. (Original) The method of claim 9, wherein the column spacers in an upper part have a height different from the column spacers at a lower end of the display device by less than 1µm.
 - 17. (Withdrawn) A liquid crystal display device comprising:

opposite first and second substrates; and

column spacers between the first and second substrates, wherein the column spacers are formed on one of the substrates using an inkjet method such that the height of the column spacers are substantially uniform.

18. (Withdrawn) A method of manufacturing a liquid crystal display device comprising:

forming a thin film transistor substrate;

forming a color filter substrate;

forming column spacers on one of the thin film transistor substrate and the color filter substrate using a inkjet method, wherein the height of the column spacers are substantially uniform; and

bonding the thin film transistor substrate and the color filter substrate to each other.

19. (Currently Amended) A method of manufacturing a liquid crystal display device comprising:

forming a thin film transistor substrate;

forming a color filter substrate;

forming at least two groups of column spacers, in different areas from each other, on one of the thin film transistor substrate and the color film substrate, wherein a height and a diameter of the at least one group of the column spacers is different from those of the other group of the column spacers, wherein the group of column spacers with the greatest height is located nearer to a bottom of the liquid crystal display device and the other group of column spacers is located nearer to a top of the liquid crystal display device; and

bonding the thin film transistor substrate and the color filter substrate to each other.