

Técnicas de los Sistemas Inteligentes. Curso 2017-18.

Práctica 1: Planificación de caminos en Robótica

Entrega de la Práctica1.

1.1 Objetivo

La entrega de la Práctica1 consiste en implementar en ROS técnicas de navegación global para un robot móvil usando el simulador Stage. El objetivo es implementar el algoritmo A*, a partir del código proporcionado por el profesor, como un plugin de ROS que pueda ser ejecutado como "global planner" en el paquete *Move_base* (ver transparencias de la Sesión 3 para más información). Tener en cuenta que el algoritmo encontrará y devolverá un camino solución entre los puntos inicial y destino y, al estar integrado en *Move_base*, este camino se enviará automáticamente al planificador local de move_base, usando el resto de funciones de este paquete. Por esta razón, es importante conocer qué parámetros de configuración deben tocarse para afinar el comportamiento (ver transparencias de la Sesión 3 para más información).

1.2 Tareas

El trabajo consistirá en modificar el código fuente proporcionado por el profesor (que incluye una versión de búsqueda en anchura preparada para ser integrada como un plugin de "global planner" en el paquete move_base) realizando las siguientes tareas:

 Extender la actual implementación de búsqueda en anchura para obtener el camino más corto y más seguro desde la posición actual del robot hasta la posición dada como objetivo a través de Rviz. Entendemos como camino más seguro aquél que garantiza

Universidad de Granada

en todo paso que la distancia del robot a los obstáculos es la más amplia posible. En el código fuente se proporcionan funciones que calculan la heurística en función de la distancia pero no consideran la seguridad del camino. Como se observa en el código, A* usa como representación las celdas de un global costmap de ROS, a partir de los valores de este costmap puede extraerse información para extender el algoritmo de manera que incorpore información sobre la seguridad de la ruta.

- 2. Mejorar el algoritmo para tratar de reducir el tiempo en que tarda en encontrar una solución. Este es un requisito importante porque la implementación está integrada en una arquitectura para la navegación de un robot en tiempo real. En cualquier caso, tener en cuenta que es posible configurar los tiempos de respuesta esperados para el planificador local y el planificador global del paquete move_base (ver transparencias de la Sesión 3). Para intentar reducir el tiempo de búsqueda puede usarse cualquier técnica explicada en teoría (incluyendo modificación de pesos para encontrar una solución rápida aunque sea subóptima) o alguna de las técnicas descritas en un blog muy referenciado sobre A* para juegos (que apunta técnicas totalmente aplicables a problema nuestro robótica) http://theory.stanford.edu/~amitp/GameProgramming/
- 3. Además, deberá llevarse a cabo una experimentación en la que se muestren al menos tres episodios de navegación (con distintos puntos de inicio y objetivo), en el mapa willow-garage. La experimentación tiene como objeto mostrar cómo las técnicas implementadas en la Tarea 2 mejoran el comportamiento del A* implementado en la Tarea 1. Cada experimento se ilustrará con una imagen, por cada uno de los episodios de búsqueda, describiendo al menos: tiempo de ejecución, nodos expandidos, longitud del camino encontrado (en nodos y en metros) implementado en la tarea 1.

1.3 Calificación del trabajo

Es obligatorio realizar las 3 tareas descritas y una memoria en la que se describa claramente cómo se ha resuelto cada tarea y que incluya la experimentación. No hay que incluir código fuente en la memoria, hay que describir clara y sintéticamente cómo se ha resuelto cada tarea y, si fuera necesario, especificar las técnicas adicionales utilizadas. Se valorará muy positivamente el uso de figuras o esquemas para apoyar la descripción. La memoria para esta entrega tendrá una extensión máxima de 7 páginas. La primera página debe incluir obligatoriamente un resumen de máximo 150 palabras explicando sintéticamente qué se ha hecho y cómo se ha hecho. Se añadirá una página de título en la que se incluirá el nombre del autor.

- Calificación de navegación global (hasta 10 puntos):
 - Si no se realiza alguna de las tareas, la entrega se puntúa con un 0.

- La calificación del trabajo realizado en las tareas 1 y 3 estará en el intervalo [0,4] y dependerá del grado de consecución de las tareas, de las heurísticas implementadas y de la experimentación realizada. Para la Tarea 1 se valorará el uso de información heurística para el camino más corto, las técnicas empleadas para determinar la ruta más segura y se tendrá muy en cuenta las mejoras realizadas sobre estructuras de datos utilizadas para optimizar las operaciones de acceso y almacenamiento de nodos en el proceso de búsqueda. Para la Tarea3 se valorará cómo se han planteado los experimentos y cómo se demuestra con los experimentos realizados que los cambios realizados en la Tarea 2 mejoran la implementación realizada en la Tarea1.
- La Tarea 2 se puntuará en el intervalo [0, 6] dependiendo de las técnicas utilizadas y de la experimentación realizada para comprobar su efectividad. La puntuación dependerá del grado de complejidad de la mejora planteada (por ejemplo el uso de una técnica simple como proponer pesos para modificar la heurística tiene una valoración pobre), de la originalidad de la técnica propuesta y de en qué medida se mejoran los resultados del proceso de búsqueda implementado en la Tarea1.

La memoria se calificará Bien, Regular o Mal, según los criterios de estructuración y buen formato, organización de ideas en la redacción (incluyendo estructura gramatical y ortografía), además de capacidad de síntesis, claridad y facilidad de comprensión de lo escrito en la descripción. Una memoria Regular supone restar entre 1 y 2 puntos a la calificación obtenida en las otras tareas, una memoria calificada como Mal supone restar entre 3 y 4 puntos, a criterio del profesor.

1.4 Material a entregar

Hay que entregar un fichero comprimido que contenga la memoria en pdf y con una estructura de directorios y ficheros según un paquete ROS estándar. **El paquete tiene que denominarse my_astar_planner**. En ese paquete tienen que estar bien implementados, organizados y colocados todos los ficheros fuente, los ficheros launch, los ficheros de configuración y los CMakeLists.txt necesarios para compilarlo.

1.5 Fecha de entrega

14 de Abril de 2018 a las 23:00 horas.