Komplexanalys i flera variabler Assignment 3

simjac

May 2020

1

Prove that subharmonicity is a local property. That is, given an open set $U \subset \mathbb{C}$, a function $f: U \to \mathbb{R} \cup \{-\infty\}$ is subharmonic if and only if for every $p \in U$ there exists a neighbourhood W of $p, W \subset U$, such that $f|_W$ is subharmonic. Hint: Perhaps try to use the maximum principle and Exercise 2.4.10.

Solution

Definition 1. A function $f: U \to \mathbb{R} \cup \{-\infty\}$ is *subharmonic* if it is upper-semicontinuous and for every ball $B_r(a) \subset U$, and every function g continuous on $\overline{B}_r(a)$ and harmonic on $B_r(a)$, such that $f(x) \leq g(x)$ for $x \in \partial B_r(a)$, we have $f(x) \leq g(x)$, for all $x \in B_r(a)$.

Lemma 1 (Exercise 2.4.10 in Lebl). Suppose $U \subset \mathbb{C}$ is open and $g: U \to \mathbb{R}$ is harmonic. Then $f: U \to \mathbb{R} \cup \{-\infty\}$ is subharmonic if and only if f - g is subharmonic.

Proof. Let h be continuous on some ball $\overline{B}_r(a)$ and harmonic on $B_r(a) \subset U$. If f - g is subharmonic, then $f - g \leq h - g$ on $\partial B_r(a)$ implies $f - g \leq h - g$ on $B_r(a)$ (since h - g is harmonic), and so $f \leq h$ on $\partial B_r(a)$ implies $f \leq h$ on $B_r(a)$. f is hence subharmonic.

If f-g is not subharmonic, there exists some h, continuous on $\overline{B}_r(a)$ and harmonic on $B_r(a)$, such that $f-g \leq h$ on $\partial B_r(a)$, but (f-g)(z) > h(z) form some $z \in B_r(a)$. But then we have found a function, h+g, continuous on $\overline{B}_r(a)$ and harmonic on $B_r(a)$, such that $f \leq h+g$ on $\partial B_r(a)$ but f(z) > (h+g)(z) for some $z \in B_r(a)$. So f is not subharmonic.

The if part Assume that, for every $p \in U$, there exists a neighbourhood W of p such that $f|_W$ is subharmonic. Then, for every $p \in U$ and such neighbourhood W of p, and for every ball $B_{r_p}(a_p) \subset W$ and g continuous on $\overline{B}_{r_p}(a_p)$ and harmonic on $B_{r_p}(a_p)$, $f(z) \leq g(z)$ on $\partial B_{r_p}(a_p)$ implies that $f(z) \leq g(z)$ on $B_{r_p}(a_p)$.

We want to show that, for $B_r(a) \subset U$ and g continuous on $\overline{B}_r(a)$ and harmonic on $B_r(a)$, $f(z) \leq g(z)$ on $\partial B_r(a)$ implies that $f(z) \leq g(z)$ on $B_r(a)$. So, for a contradiction, assume f is not subharmonic on U. Then there exists g continuous on $\overline{B}_r(a)$ and harmonic on $B_r(a)$ such that $f(z) \leq g(z)$ on $\partial B_r(a)$ and $f(p_0) > g(p_0)$ for some p_0 in $B_r(a)$. By lemma 1, f is subharmonic iff f - g is subharmonic, so we have that $(f - g)(z) \leq 0$ on $\partial B_r(a)$, but $(f - g)(p_0) > 0$.

Firstly, we note that since $\overline{B}_r(a)$ is compact, the open cover defined as all of the neighbour-hoods W of all of the points p in $\overline{B}_r(a)$ has a finite subcover. Call that subcover $\{W_n\}$. We may also, since if a function h is subharmonic on A it is subharmonic on $B \subset A$, define $\{V_n\}$ as $V_n = W_n \cap B_r(a)$. This we do in order to avoid trouble with g as it is not defined outside of $\overline{B}_r(a)$.

Secondly, since f - g is upper-semicontinuous on the compact set $\overline{B}_r(a)$, it attains its maximum there. Since this maximum evidently is not on the boundary, it is at some inner point q_0 . We may just as well let $q_0 \in V_0$. But since f - g is subharmonic on V_0 , and since f - g attains

its max at an inner point of V_0 , f-g is by the Maximum Principle constant on V_0 . And thus also constant on $\overline{V_0}$ by upper-semicontinuity and $(f-g)(q_0)$ being a global maximum on $\overline{B}_r(a)$. We may now go on and chose a point q_1 on ∂V_0 and there will exist some other neighbourhood V_1 from our open cover containing q_1 . Likewise, since f-g will attain its max at the inner point q_1 of V_1 , it is constant on $\overline{V_1}$. The constantness of f-g will thus spread like a disease through $B_r(a) = \bigcup \{V_n\}$ (since there are only finitely many V_n , this logic holds). But then f=g+ constant is harmonic, contradicting our assumption about f not being subharmonic.

The only if part If f is harmonic on U, then, since U is a neighbourhood of each point $p \in U$, we have that

for every $p \in U$ there exists a neighbourhood W of $p, W \subset U$ such that $f|_W$ is subharmonic

is true if we just chose W = U for each p.

 $\mathbf{2}$

a)

Assume u and v are subharmonic on $U \subseteq \mathbb{C}$. Prove that $\log (e^u + e^v)$ is subharmonic.

Solution

Restating definition 1, we want to show that, for each $B_r(a) \subset U$,

if
$$\log (e^{u(z)} + e^{v(z)}) \le g(z)$$
 on $\partial B_r(a)$ for any g continuous on $\overline{B_r(a)}$ and harmonic on $B_r(a)$, then $\log (e^{u(z)} + e^{v(z)}) \le g(z)$ on $B_r(a)$. (1)

We begin by stating

$$\log \left(e^{u(z)} + e^{v(z)} \right) \le g(z)$$

$$\iff e^{u(z)} + e^{v(z)} \le e^{g(z)}$$
(2)

$$\iff \begin{cases} u(z) \le g(z) \\ v(z) - \log\left(1 - e^{u(z) - g(z)}\right) \le g(z) \end{cases}$$
 (3)

 $-\log(1-e^{u(z)-g(z)})$ is subharmonic since it is a strictly increasing convex function of a subharmonic function:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(-\log(1 - \mathrm{e}^x) \right) = \frac{\mathrm{e}^x}{1 - \mathrm{e}^x} > 0 \quad \text{on } [-\infty, 0) \quad \text{(where } u - g \text{ lives)},$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(-\log(1 - \mathrm{e}^x) \right) = \frac{\mathrm{e}^x}{(1 - \mathrm{e}^x)^2} > 0.$$

So since both u(z) and $v(z) - \log(1 - e^{u(z) - g(z)})$ are subharmonic, we have that "(3) true on $\partial B_r(a)$ " implies "(3) true on $B_r(a)$ ", and hence also "(2) true on $\partial B_r(a)$ " implies "(2) true on $B_r(a)$ ", which is what (1) says.

b)

Show that if $F = (F_1, ..., F_m)$ is a tuple of holomorphic functions on $U \subseteq \mathbb{C}^n$, then $\log |F|^2$ is plurisubharmonic.

Solution

By proposition 2.4.8 in Lebl, we want to show that the Hessian matrix

$$\frac{\partial^2 \log |F|^2}{\partial \overline{z}_j \partial z_k}$$

is positive semidefinite at all points $p \in U$. Firstly, we make the observation that $|F|^2 = |TF|^2$ for any unitary matrix T. We may thus assume that F has only nonzero values in the F_1 -direction at p:

$$F(p) = (F_1(p), 0, \dots, 0) \tag{4}$$

$$|F(p)|^2 = |F_1(p)|^2. (5)$$

Then, by using the holomorphicity of F (and suppressing the p dependence),

$$\frac{\partial^{2} \log |F|^{2}}{\partial \overline{z}_{j} \partial z_{k}} = \frac{\partial}{\partial \overline{z}_{j}} \frac{1}{|F|^{2}} \frac{\partial |F|^{2}}{\partial z_{k}}
= -\frac{1}{(|F|^{2})^{2}} \frac{\partial |F|^{2}}{\partial \overline{z}_{j}} \frac{\partial |F|^{2}}{\partial z_{k}} + \frac{1}{|F|^{2}} \frac{\partial^{2} |F|^{2}}{\partial \overline{z}_{j} \partial z_{k}}
= -\frac{1}{(|F|^{2})^{2}} \left(\frac{\partial \overline{F}_{1}}{\partial \overline{z}_{j}} F_{1} + \dots + \frac{\partial \overline{F}_{m}}{\partial \overline{z}_{j}} F_{m} \right) \left(\overline{F}_{1} \frac{\partial F_{1}}{\partial z_{k}} + \dots + \overline{F}_{m} \frac{\partial F_{m}}{\partial z_{k}} \right)
+ \left(\frac{\partial \overline{F}_{1}}{\partial \overline{z}_{j}} \frac{\partial F_{1}}{\partial z_{k}} + \dots + \frac{\partial \overline{F}_{m}}{\partial \overline{z}_{j}} \frac{\partial F_{m}}{\partial z_{k}} \right)
\stackrel{(4)}{=} -\frac{1}{(|F|^{2})^{2}} \overline{F}_{1} F_{1} \frac{\partial \overline{F}_{1}}{\partial \overline{z}_{j}} \frac{\partial F_{1}}{\partial z_{k}} + \frac{1}{|F|^{2}} \left(\frac{\partial \overline{F}_{1}}{\partial \overline{z}_{j}} \frac{\partial F_{1}}{\partial z_{k}} + \dots + \frac{\partial \overline{F}_{m}}{\partial \overline{z}_{j}} \frac{\partial F_{m}}{\partial z_{k}} \right)
\stackrel{(5)}{=} \frac{1}{|F|^{2}} \left(\frac{\partial \overline{F}_{2}}{\partial \overline{z}_{j}} \frac{\partial F_{2}}{\partial z_{k}} + \dots + \frac{\partial \overline{F}_{m}}{\partial \overline{z}_{j}} \frac{\partial F_{m}}{\partial z_{k}} \right).$$
(6)

To show that (6) is positive semidefinite, we note that we may disregard the $\frac{1}{|F|^2}$ -factor, and that if we can show that each term

$$\frac{\partial \overline{F}_{\alpha}}{\partial \overline{z}_{i}} \frac{\partial F_{\alpha}}{\partial z_{k}} \tag{7}$$

is positive semidefinite, then the sum is positive semidefinite and we are done. But (7) is positive semidefinite since if $w \in \mathbb{C}^n \setminus \{0\}$,

$$\sum_{j,k} \overline{w}_j \frac{\partial \overline{F}_{\alpha}}{\partial \overline{z}_j} \frac{\partial F_{\alpha}}{\partial z_k} w_k = \overline{\Psi} \Psi = |\Psi|^2 \ge 0$$

with

$$\Psi = \sum_{k} \frac{\partial F_{\alpha}}{\partial z_{k}} w_{k}.$$

3

Give an example of a harmonic function on \mathbb{C}^2 , which is not the real part of a holomorphic function. Make sure to provide an explanation of why the function has this property.

Also give an example of a harmonic function u on a domain $V \subseteq \mathbb{C}^2$ and a holomorphic change of coordinates, i.e., a biholomorphism $F \colon U \to V, \ U \subseteq \mathbb{C}^2$ a domain, such that u is harmonic but $u \circ F$ is not.

Solution

We have that f is harmonic if

$$\frac{\partial^2 f}{\partial \overline{z}_j \partial z_j} = 0$$

for j=1,2. Consider $f: z \mapsto (z_1 + \overline{z}_1)(z_2 + \overline{z}_2)$. It is evidently harmonic since $\frac{\partial f}{\partial z_1}$ is constant in \overline{z}_1 and $\frac{\partial f}{\partial z_2}$ is constant in \overline{z}_2 . But it is not the real part of some holomorphic function since if

$$f(z) = g(z) + \overline{g(z)}$$

for some holomorphic g, expanding f in power series of z_1 and z_2 yields

$$f(z) = g(0) + \overline{g(0)} + g'(0)z_1 + \overline{g'(0)}\overline{z}_2 + \frac{1}{2}g''(0)z_1^2 + \frac{1}{2}\overline{g''(0)}\overline{z}_2^2 + \mathcal{O}(|z|^3).$$
 (8)

But f cannot have the series expansion (8) since it doesn't contain any of the cross terms $z_1\overline{z}_2$ and $z_2\overline{z}_1$.

f is harmonic on \mathbb{C}^2 , and $F:(z_1,z_2)\mapsto (z_1+z_2,z_2)$ is a biholomorphism from \mathbb{C} to \mathbb{C} , but

$$f \circ F(z) = (z_1 + z_2 + \overline{z}_1 + \overline{z}_2)(z_2 + \overline{z}_2)$$

is not harmonic since it has a term $2z_2\overline{z}_2$ which will not be killed by $\frac{\partial^2}{\partial z_2\partial\overline{z}_2}$.

4

Show that every open set $U \subset \mathbb{R}^n$ is convex with respect to real polynomials.

Solution

U is convex with respect to real polynomials $\mathcal{P}(\mathbb{R}^n)$ on \mathbb{R}^n if, for each $K \subset\subset U$, we have that $\widehat{K} \subset\subset U$, where

$$\widehat{K} := \left\{ x \in U \text{ s. th. } f(x) \leq \sup_{y \in K} f(y) \text{ for all } f \in \mathcal{P}(\mathbb{R}^n) \right\}.$$

So let $K \subset\subset U$. We want to show that $\widehat{K} \subset \overline{K}$ by showing that if x is in $\widehat{K} \setminus K$, then x will still be in \overline{K} . To that end, let $x \in \widehat{K} \setminus K$ and consider the real polynomial

$$p(y) = -[(x_1 - y_1)^2 + \dots + (x_n - y_n)^2].$$

This polynomial has a global isolated maximum at y = x. So for this x to be in \widehat{K} , we must have that $p(x) = \sup_{y \in K} p(y)$, which can only happen if x is a limit point of K (by continuity and maximum being isolated).

Thus, since $\widehat{K} \subset \overline{K}$, we have that $K \subset C$ implies $\widehat{K} \subset C$.

5

a)

Let H be the hyperplane $H := \{z_2 = 0\} \subset \mathbb{C}^2_{(z_1, z_2)}$, show that $H^C = \mathbb{C}^2 \setminus H$ is Hartogs pseudoconvex.

Solution

Let

$$f(z) = \max(-\log|z_2|, |z|^2).$$

This function is plurisubharmonic since

- $-\log|z_2| = -\operatorname{Re}\log z_2$ is the real part of a holomorphic function, so it is pluriharmonic and thus plurisubharmonic
- $|z|^2 = z_1 \overline{z}_1 + z_2 \overline{z}_2$ is plurisubharmonic since $\frac{\partial^2 |z|^2}{\partial \overline{z}_j \partial z_k} = \delta_{jk}$ is positively definite
- the pointwise maximum of two plurisubharmonic functions is plurisubharmonic.

It is also continuous of $H^{\mathbb{C}}$.

For a given $r \in \mathbb{R}$, we have that

$$A = \{ z \in H^{\mathcal{C}} \text{ s. th. } f(z) < r \}$$

$$= \{ z \in H^{\mathcal{C}} \text{ s. th. } -\log|z_2| < r \} \cap \{ z \in \mathbb{C}^2 \setminus H \text{ s. th. } |z|^2 < r \}$$

$$= \{ z \in H^{\mathcal{C}} \text{ s. th. } |z_2| > e^{-r} \} \cap \{ z \in H^{\mathcal{C}} \text{ s. th. } |z|^2 < r \}.$$

If r < 0, we can't take \sqrt{r} , and so $A = \emptyset$ (which is trivially compact). Otherwise, the set looks like the intersection shown in Figure 1. Since A does not intersect $\partial H^{\mathbb{C}}$, its closure in $H^{\mathbb{C}}$ is the same as its closure in \mathbb{C}^2 . Since A is bounded, it is relatively compact in \mathbb{C}^2 (Heine-Borel theorem).

b)

Let $B = \mathbb{R}^2 \subset \mathbb{C}^2$ be naturally embedded (that is, it is the set where z_1 and z_2 are real). Show that the set $\mathbb{C}^2 \setminus \mathbb{R}^2$ is not Hartogs pseudoconvex.

Solution

By theorem 2.5.6 in Lebl, since B is a domain, B being Hartogs pseudoconvex is equivalent to $-\log \rho(z)$ being plurisubharmonic, where $\rho(z)$ is the distance from z to ∂B . In our case,

$$\rho(z) = \max\left(\operatorname{Im}|z_1|, \operatorname{Im}|z_2|\right).$$

Consider some z with $\text{Im} |z_1| > \text{Im} |z_2|$, then

$$\frac{\partial^2}{\partial \overline{z}_1 \partial z_1} \left(-\log \rho(z) \right) = -\frac{\partial^2}{\partial \overline{z}_1 \partial z_1} \log \frac{|z_1 - \overline{z}_1|}{2}$$
$$= -\frac{\partial}{\partial \overline{z}_1} \frac{1}{z_1 - \overline{z}_1}$$
$$= -\frac{1}{(z_1 - \overline{z}_1)^2}$$

while the rest of the entries in the complex Hessian are 0. Thus the complex Hessian is not positive semi-definite, implying $-\log \rho(z)$ is not plurisubharmonic, which in turn implies that B is not Hartogs pseudoconvex.

Figure 1