

TENSOR.BY

ML-course

3. Classification in Python Scikit-learn

Kate Miniukovich (Data Scientist), miniukovich@rocketscience.ai

Reference

An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, <a href="http://www-

bcf.usc.edu/~gareth/ISL/
(available online for free)

Reference

Jake VanderPlas

Python Data Science Handbook

https://jakevdp.github.io/PythonDataScienceHandbook/

Video

https://www.youtube.com/watch?v=L7R4HUQ-eQ0&t=6033s

ML-course. Classification RocketScience.ai

O'REILLY

Jupyter

Data Science

Jake VanderPlas

Handbook

Reference

Home Installation

Documentation

Examples

Search

Fort me on Co

Documentation of scikit-learn 0.19.1

Quick Start

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

User Guide

The main documentation. This contains an in-depth description of all algorithms and how to apply them.

Other Versions

- · Development version
- All available versions
- · PDF documentation

Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Additional Resources

Talks given, slide-sets and other information relevant to scikit-learn.

http://scikit-learn.org

Supervised vs. Unsupervised Learning

Supervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation;
- 3) response Y measured on same n observations

Continuous Regression

Discrete Classification

Unsupervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation

Clustering...

Classification

Binary

2 classes

Multiclass

more than 2 classes

Regression / Classification Problem

Steps to solve

Working with data

Modeling

- Tidy data
- Types of variables and actions
- Missing data and imputation
- Feature engineering
- Data preprocessing for scikit-learn

- Tidy data is a standard way of mapping the meaning of a dataset to its structure. This is Codd's 3rd normal form and the focus put on a single dataset rather than the many connected datasets common in relational databases.
- In tidy data:
 - 1. Each variable forms a column.
 - 2. Each observation forms a row.
 - 3. Each type of observational unit forms a table.

Which table below is tidy?

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

person	treatment	result
John Smith	a	_
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

More about tidy data:

ftp://cran.r-project.org/pub/R/web/packages/tidyr/vignettes/tidy-data.html

Types of variables and actions

Types of variables	Actions
Categorical	Convert to n binary vars (n - number of labels)
Text	 Options: Scrap a pattern and convert it to n binary vars Convert text to numbers (Word2Vec) Drop text variable
Numerical	Standardization = = mean removal +variance scaling

Missing data and imputation

- Missing data: NaN
- Imputation
 - Mean, median or mode
 - Prediction

Examples:

https://www.kaggle.com/kernels search on "Missing data imputation"

Feature Engineering

- Based on variables meaning
- Technical approaches

Examples:

https://www.kaggle.com/kernels search on
"Feature engineering"

Representation of in Scikit-learn

X
 two-dimensional numpy array
 shape - (n_samples, m_features)

Y
 one-dimensional numpy array
 shape - (n_samples,)

Example

dataset: Titanic
 https://www.kaggle.com/c/titanic

classification_titanic_simple.ipynb

Modeling

- Choose a class of model
- Fit the model to data
- Validate the model and optimize hyperparameters
- Predict for unknown data

Some models for binary classification in Python scikit-learn

- Generalized Linear Models
 - Logistic regression

example in classification_titanic_simple.ipynb

- Ensemble methods
 - Random Forests
 - Gradient Tree Boosting

Binary Classification

Logistic Regression

To model p(X) = Pr(Y = 1|X) we need function that gives outputs between 0 and 1 for all values of X

$$\hat{y} = p(X) = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_m x_m}}{1 + e^{\theta_0 + \theta_1 x_1 + \dots + \theta_m x_m}} = \frac{e^{X\theta}}{1 + e^{X\theta}}$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = X\theta$$

Binary Classification

Decision trees Bagging, Random Forests, Gradient Boosting

petal length (cm) ≤ 2.45

Good explanation of Boosted Trees

http://xgboost.readthedocs.io/en/latest///model.html

Regression

Decision trees Bagging, Random Forests, Gradient Boosting

Classification metrics

Confusion matrix

Survived (S) -1; Not Survived (NS) - 0

Actual/Predicted	0	1	Error
0 (N)	TN (NS as NS)	FP (NS as S)	FPR=FP/N (False Positive Rate)
1 (P)	FN (S as NS)	TP (S as S)	FNR=FN/P(False Negative Rate)

Receiver operating characteristic curve

Accuracy = (TP+TN)/(P+N)

Precision = TP/(TP+FP) **Recall** = TPR = TP/P

F1 = 2*Precision*Recall/(Precision+Recall) harmonic mean Precision and Recall

AUC - Area Under ROC Curve (the closer to 1, the better a model is)

More: https://en.wikipedia.org/wiki/Precision_and_recall

Classification metrics

Confusion matrix

Survived (S) -1; Not Survived (NS) - 0

Actual/Predicted	0	1	Error
0 (N=438)	TN=365	FP=?	FPR=FP/N = ?
1 (P=274)	FN=?	TP=212	FNR=FN/P = ?
Total			(FN+FP)/(N+P) = ?

FN - ошибка первого рода; FP - ошибка второго рода

Accuracy =
$$(TP+TN)/(P+N)$$
 - ?

Precision = TP/(TP+FP) -?

Recall = TPR = TP/P-?

http://scikit-

<u>learn.org/stable/modules/classes.html#classification-metrics</u>

Binary Classification

Example: binary models for Titanic dataset

Models comparison based on Accuracy

Model	Train	CV	Test
LgR	0.82	0.81	0.77
RF			
GB			

Multiclass Classification

Some classification algorithms naturally permit the use of more than two classes

- Logistic Regression
- Random Forests, Gradient Boosting

example in mclass_classification.ipynb

Techniques of transformation to binary

- One vs. All
- One vs. One

Read more:

https://en.wikipedia.org/wiki/Multiclass classification http://scikit-learn.org/stable/modules/multiclass.html

Classification: Unbalanced classes

Unbalanced classes - classes are not represented equally

Accuracy Paradox

Tactics to Combat Unbalanced Classes

- 1) Collect more data
- 2) Resample Your Dataset
- 3) Generate Synthetic Samples
- 4) Change Your Performance Metric

Read more: 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/

Modeling

Hyperparameters optimization

- Parameters to optimize
- Good range of values

More about parameters to optimize and good range of values https://www.linkedin.com/pulse/approaching-almost-any-machine-learning-problem-abhishek-thakur?trk=hp-feed-article-title-like

Q & A

Thank you!

