Assignment 8

Solutions

There are total 23 points in this assignment. 20 points is considered 100%. If you go over 20 points, you will get over 100% for this homework and it will count towards your course grade (up to 115%).

Your solutions should contain full proofs. Bare answers will not earn you much. This assignment covers section 4.1, 4.2 in Bartle–Sherbert.

- (1) (Modified 4.1.1) In each case below, find a number $\delta > 0$ such that the corresponding inequality holds for all x such that $0 < |x c| < \delta$. Give a *specific number* as your answer, for example $\delta = 0.0001$, or $\delta = 2.5$, or $\delta = 3/14348$, etc. (Not necessarily the largest possible.)
 - (a) [1pt] $|x^3 1| < 1/2$, c = 1. (Hint: $x^3 1 = (x 1)(x^2 + x + 1)$.)

▷ Note that $|x^3 - 1| = |x - 1| \cdot |x^2 + x + 1|$. So, for 0 < x < 2, we have $|x^3 - 1| \le |x - 1| \cdot 7$. Pick $\delta = (1/2)/7$. Since this δ is < 1, for all x such that $0 < |x - 1| < \delta$ we have 0 < x < 2, so $|x^3 - 1| \le 7|x - 1| < 7 \cdot (1/2)/7 = 1/2$.

(b) $[1pt] |x^3 - 1| < 10^{-3}, c = 1.$

 \triangleright Pick $\delta<10^{-3}/7,$ e.g. $\delta=10^{-4}<1.$ Then $|x^3-1|\le 7|x-1|<7\cdot(10^{-4})<10^{-3}.$

(c) $[1pt] |x^3 - 1| < \frac{1}{10^{-3}}, c = 1.$

⊳ As in two previous items, pick $\delta < \min\{1, 10^3/7\} = 1$. Then $|x^3 - 1| \le |x|^3 + 1 < 2^3 + 1 = 9 < 10^3$.

(Note that for $\delta = 10^3/7$, x may be > 2, so the bound $|x^3 - 1| \le |x - 1| \cdot 7$ is false for such δ . That's why we need to take min $\{1, 10^3/7\}$.)

(d) [1pt] $|x^2 \cos x^3 - 0| < 0.00001$, c = 0.

⊳ Since $-1 \le \cos \theta \le 1$ for any $\theta \in \mathbb{R}$, we have $|x^2 \cos x^3 - 0| \le |x^2|$. Therefore, for $\delta = 0.001$ we have that if $0 < |x - 0| < \delta$, then $|x^2 \cos x^3 - 0| \le |x^2| < 0.001^2 < 0.00001$.

(2) [3pt] (Modified 4.1.9) Use the ε - δ definition of limit to show that (a) $\lim_{x\to 2} \frac{1}{1-x} = -1$,

 $ho \frac{1}{1-x} - (-1) = \frac{2-x}{1-x} = \frac{2-x}{-1+(2-x)}$. For |2-x| < 1/2, we have $|-1+(2-x)| \ge 1/2$, so

$$\left| \frac{2-x}{-1+(2-x)} \right| \le 2|2-x|.$$

So, given $\varepsilon > 0$, it suffices to take $\delta = \min\{1/2, \varepsilon/2\}$.

(b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$

 $\Rightarrow \frac{x}{1+x} - \frac{1}{2} = \frac{x-1}{2(x+1)}$. For x > 0 (guaranteed by, for example, |x-1| < 1), we have $|2(x+1)| \ge 2$, so

$$\left| \frac{x-1}{2(x+1)} \right| \le |x-1|/2.$$

So, given $\varepsilon > 0$, it suffices to take $\delta = \min\{1, 2\varepsilon\}$.

(3) [2pt] (4.1.11) Show that the following limits do not exist:

(a) $\lim_{x\to 0} (x + \operatorname{sgn} x)$,

ightharpoonup Solution directly from definition of limit. Suppose $\lim_{x\to 0}(x+\mathrm{sgn}\,(x))=L$. Take $\varepsilon_0=1/2$. Then for whichever $\delta>0$ we take, there is an x_0 such that $0< x_0<\delta$ in case L<0, or $-\delta< x_0<0$ in case $L\geq 0$. For definiteness, consider L<0 (other case is similar).

Then $x_0 + \operatorname{sgn}(x_0) = 1 + x_0 > 1$, while $L + \varepsilon_0 \le 0 + 1/2 = 1/2$. So $|L - (x_0 + \operatorname{sgn}(x_0))| \ge 1/2$, which contradicts $\lim_{x \to 0} (x + \operatorname{sgn}(x)) = L$.

 $ightharpoonup Solution using sequential criterion. Consider <math>x_n = (-1)^n/n \to 0$ $(n \to \infty)$. Then $\lim(x_n + \operatorname{sgn} x_n) = \lim((-1)^n/n + (-1)^n)$ and the latter limit does not exist. By sequential criterion, the limit in question does not exist.

(b) $\lim_{x\to 0} \sin(1/x^2)$.

ightharpoonup Solution directly from definition of limit. Suppose $\lim_{x\to 0}\sin(1/x^2)=L$. Take $\varepsilon_0=1/2$. Then for any $\delta>0$, there is $x\in(-\delta,\delta)$ of the form $\left(\sqrt{\pi/2+2\pi n}\right)^{-1}$, since the corresponding sequence converges to

0. Similarly, there is $y \in (-\delta, \delta)$ of the form $y = \left(\sqrt{-\pi/2 + 2\pi n}\right)^{-1}$. For these x and y we get $\sin(1/x^2) = 1$, $\sin(1/x^2) = -1$, so $1, -1 \in (L - \varepsilon_0, L + \varepsilon_0)$. Therefore, $1 - (-1) < 2\varepsilon_0 = 1$, so 2 < 1, which is a contradiction.

> Solution using sequential criterion. Consider

$$x_n = \left(\sqrt{(-1)^n \pi/2 + 2\pi n}\right)^{-1} \to 0$$

as $n \to \infty$. Then $\sin(1/x_n^2) = (-1)^n$, so $\lim(\sin(1/x_n^2))$ does not exist. By sequential criterion, the limit in question does not exist.

- (4) [3pt] (4.1.15) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) = x if x is rational, and f(x) = 0 if x is irrational.
 - (a) Show that f has limit at x = 0 (*Hint*: you can use the ε - δ definition directly, or the sequential criterion and squeeze theorem).

ightharpoonup Solution using Squeeze theorem for sequences. Let (x_n) be a sequence that converges to $0, x_n \neq 0$. Then $f(x_n) = 0$ or $= x_n$, so $-|x_n| \leq f(x_n) \leq |x_n|$. Since $|x_n| \to 0$ and $-|x_n| \to 0$ $(n \to \infty)$, by Squeeze theorem for sequences, $(f(x_n)) \to 0 = f(0)$, so f is continuous at 0.

ightharpoonup Solution using the ε - δ definition of limit. Let $\varepsilon > 0$ be given. Put $\delta = \varepsilon$. Then if $|x - 0| < \delta$, we have |f(x) - f(0)| is either $|0 - 0| < \varepsilon$, or $|x - 0| < \delta = \varepsilon$. In either case, $|f(x) - f(0)| < \varepsilon$. By definition of continuity, f is continuous at 0.

 \triangleright Solution using Squeeze theorem for functions. Note that for any $x, -|x| \le f(x) \le |x|$. Since

$$\lim_{x \to 0} |x| = \lim_{x \to 0} (-|x|) = 0,$$

by squeeze theorem, $\lim_{x\to 0} f(x)$ exists and is equal to 0.

(b) Prove that if $c \neq 0$, then f does not have limit at c. (*Hint*: you can use sequential criterion.)

 \triangleright By density theorem, there is a sequence of rational numbers $x_n \to c$ as $n \to \infty$, $x_n \ne c$; and a sequence of irrational numbers $y_n \to c$ as $n \to \infty$, $y_n \ne c$. Then $\lim(x_n) = c$ and $\lim(y_n) = 0$.

Since $c \neq 0$, the sequence

$$z_n = x_n$$
 for even n ,
 $z_n = y_n$ for odd n

is divergent, so $\lim_{x\to 0} f(x)$ does not exist.

(5) [2pt] (Theorem 4.2.4 for difference) Using ε - δ definition, prove that limit of functions preserves difference. That is, prove the following: Let $A \subseteq \mathbb{R}$, $c \in \mathbb{R}$ be a cluster point of A, and f,g be functions on A to \mathbb{R} . If $\lim_{x \to c} f = L$, and $\lim_{x \to c} g = M$, then $\lim_{x \to c} f - g = L - M$.

ightharpoonup Suppose $\varepsilon > 0$ is given. Since $\lim_{x \to c} f = L$, there is $\delta_1 > 0$ such that if $x \in A$ and $0 < |x - c| < \delta_1$, then $|f(x) - L| < \varepsilon/2$.

Since $\lim_{x\to c}g=M$, there is $\delta_2>0$ such that if $x\in A$ and $0<|x-c|<\delta_2$, then $|g(x)-M|<\varepsilon/2$.

Then for the $\delta = \min\{\delta_1, \delta_2\}$, we have that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - g(x) - (L - M)| = |f(x) - L - (g(x) - M)| \le |f(x) - L| + |g(x) - M| < 2\varepsilon/2 = \varepsilon$.

- (6) [2pt] Using arithmetic properties of limit, find the following limits.
 - (a) $\lim_{x \to 1} \frac{x^{100} + 2}{x^{100} 2}$.

▷ Note that $\lim_{x \to 1} x = 1$, so $\lim_{x \to 1} x^{100} = 1^{100} = 1$, and $\lim_{x \to 1} x^{100} \pm 2 = 1 \pm 2$. Denominator is nonzero, so $\lim_{x \to 1} \frac{x^{100} + 2}{x^{100} - 2} = \frac{3}{-1} = -3$.

(b) $\lim_{x\to 1} \frac{2x^2-x-1}{x^2-3x+2}$. (*Hint*: Denominator turns to 0 at x=1, but you can cancel out (x-1).)

(c) $\lim_{x \to 0} \frac{(x+1)^{20}-1}{x}$.

Note that by binomial formula $(x+1)^{20}-1=1+20x+x^2p(x)$, where p(x) is a polynomial in x. So, $\frac{(x+1)^{20}-1}{x}=(1+20x+x^2p(x)-1)/x=20+xp(x)$. We have $\lim_{x\to 0}\frac{(x+1)^{20}-1}{x}=\lim_{x\to 0}20+xp(x)$. The latter limit by arithmetic properties of limits is $\lim_{x\to 0}20+xp(x)=20+0\cdot p(0)=20$.

(d) $\lim_{x \to c} \frac{(x-c+1)^2-1}{x-c}$.

$$\text{Note that } \frac{(x-c+1)^2-1}{x-c} = \frac{(x-c)^2+2(x-c)+1-1}{x-c} = x-c+2, \text{ so } \\ \lim_{x\to c} \frac{(x-c+1)^2-1}{x-c} = \lim_{x\to c} x-c+2 = c-c+2 = 2.$$

(7) (a) [2pt] (4.2.5) Let f, g be defined on $A \subseteq \mathbb{R}$ to \mathbb{R} , and let c be a cluster point of A. Suppose that f is bounded on a neighborhood of c and that $\lim_{x\to c}g=0$. Prove that $\lim_{x\to c}fg=0$. Explain why Theorem 4.2.4 (Arithmetic Properties of Limit) cannot

Explain why Theorem 4.2.4 (Arithmetic Properties of Limit) cannot be used.

ightharpoonup We show this by definition of a limit. Let f be bounded by M>0 on a δ_0 -neighborhood of c, i.e. |f(x)|< M for all $x\in A, |x-c|<\delta_0$. Let $\varepsilon>0$ be given. Since $\lim_{x\to c}g=0$, there is $\delta_1>0$ such that $|g(x)|<\varepsilon/M$ for all $x\in A, 0<|x-c|<\delta_1$. Then put $\delta=\min\{\delta_0,\delta_1\}$, and get that for all $x\in A, 0<|x-c|<\delta$,

$$|f(x)g(x)| < M \cdot \varepsilon/M = \varepsilon.$$

So $\lim_{x\to c} fg = 0$ by definition of a limit.

 \triangleright Another way is to use the squeeze theorem: note that for δ_0 and M as above, we have

$$0 \le |fg| \le Mg$$

on a δ_0 -neighborhood of c. So by squeeze theorem, $\lim |fg| = 0$. Then since $-|fg| \le fg \le |fg|$, by another application of the squeeze theorem, we get $\lim_{x\to c} fg = 0$.

Theorem 4.2.4 does not apply because f may have no limit at c.

- (b) [1pt] ($\sim 4.2.11$ b) Determine whether $\lim_{x\to 0} x \cos(1/x^2)$ exists in \mathbb{R} .
 - ightharpoonup Note that $\lim_{x\to 0} x=0$ and $|\cos(1/x^2)|\le 1$, so by the problem above $\lim_{x\to 0} x\cos(1/x^2)=0$. (We could also use the Squeeze Theorem disconnection) rectly.)
- (8) [4pt] (4.2.15) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a cluster point of A. In addition, suppose $f(x) \geq 0$ for all $x \in A$, and let \sqrt{f} be the function defined for $x \in A$ by $(\sqrt{f})(x) = \sqrt{f(x)}$. If $\lim_{x \to c} f$ exists, prove that $\lim_{x \to c} \sqrt{f} = \sqrt{\lim_{x \to c} f}$. (*Hint*: $a^2 - b^2 = (a - b)(a + b)$. Another hint: you will probably have to consider cases $\lim_{x \to c} f = 0$ and $\lim_{x \to c} f \neq 0$ separately.)

 \triangleright Let $\lim_{x\to c} f = L \ge 0$ (since $f \ge 0$). If $L \ne 0$, note that

$$0 \le \left| \sqrt{f} - \sqrt{L} \right| = \frac{|f - L|}{\sqrt{f} + \sqrt{L}} \le \frac{|f - L|}{\sqrt{L}},$$

so by squeeze theorem $\lim_{x\to c}\left|\sqrt{f}-\sqrt{L}\right|=0$, i.e. $\lim_{x\to c}\sqrt{f}=\sqrt{L}$. If L=0, show by definition that $\lim_{x\to c}\sqrt{f}=0$. Indeed, since $\lim_{x\to c}f=0$, given any $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-0|=f(x)<\varepsilon^2$ whenever $x \in A$, $0 < |x - c| < \delta$. But then for the same values of x we have $\sqrt{f(x)} < \varepsilon$, so $\lim_{x \to c} \sqrt{f} = 0$ by definition of a limit.