1. Let $\Sigma = \{a, b\}$. For the language, L that are defined by each of the following grammars

(i)
$$S \to aS \mid Sb \mid \varepsilon$$

(ii)
$$S \rightarrow aS \mid bS \mid \varepsilon$$

Do each of the following:

(a) List TWO strings that are in L.

Solution: ab, abb

(b) List TWO strings that are not in L.

Solution: There are no strings that are not in L.

(c) Describe L consisely. You can use regular expressions or set theoretic expressions.

Solution: The grammar of the language L can be described as $G = (V, \Sigma, P, S)$, where $V = \{a, b, S\}$, $\Sigma = \{0, 1\}$, starting symbol S and productions P described as above.

The language generated by the grammar, L can be described with the regular expression $L(G) = (a + b)^*$.

(d) State whether L is a regular language or not.

Solution: L is a regular language.

2. Draw a FA diagram for each of the regular grammar below.

(a)
$$S \to aS \mid bA \mid \lambda$$

 $A \to bA \mid \lambda$

Solution:

(b)
$$S \to aS \mid bA \mid \lambda$$

 $A \to aS \mid bA \mid \lambda$

Solution:

$$q_0$$
 a, b

(c) $S \rightarrow aA \mid bS$ $A \rightarrow aB \mid bS$ $B \rightarrow aB \mid bB \mid \lambda$

Solution:

(d) $S \rightarrow aA \mid bS$ $A \rightarrow aA \mid bS \mid \lambda$

Solution:

(e) $S \rightarrow aS \mid bA$ $A \rightarrow aS \mid bB$ $B \rightarrow aB \mid bB \mid \lambda$

Solution:

1. Let G be the grammar $S \to SAB \mid \lambda$

$$A \to aA \mid a$$
$$B \to bB \mid \lambda$$

(a) Give a leftmost derivation of string abbaab.

(b) Build the derivation tree for the derivations in part (a).

Solution:

(c) Generate TWO other possible strings of the language L(G).

Solution:

1) aabbab

(Derivation: $S \to SAB \to SABAB \to ABAB \to aABAB \to aabBAB \to aabbAB \to aabbAB \to aabbAB \to aabbAB \to aabbAB \to aabbabB \to aabbab)$

2) aaaabb

(Derivation: $S \to SAB \to AB \to aAB \to aaAB \to aaaAB \to aaaabB \to aaaabbB \to aaaabb$)

(d) Give a regular expression for L(G).

Solution: $L(G) = (aa^*b^*)^*$

2.

No.	Language
1	$(a+b)^*$
2	$(a+b)^+$
3	(a+b)
4	(ab)
5	a^*bb
6	aa^*bb^*
7	a^*bba^*
8	$a(a+b)^*b$
9	$(a+b)^*bb(a+b)^*$
10	$(a+b)^*aa(a+b)^*$

Matched No	Grammars	CFG or RG
6	$S \to SAB \mid \lambda$	CFG
	$A \rightarrow aA \mid a$	
	$B \rightarrow bB \mid \lambda$	
5	$S \to Abb$	CFG
	$A \rightarrow aA \mid \lambda$	
2	$S \rightarrow aS \mid bS \mid a \mid b$	RG
10	$S \rightarrow AaaA$	CFG
	$S \rightarrow aA \mid bA \mid \lambda$	
4	$S \to aA$	RG
	$A \rightarrow b$	
9	$S \rightarrow aS \mid bS \mid bA$	RG
	$A \rightarrow bB$	
	$B \rightarrow aB \mid bB \mid \lambda$	
0	$S \to aA$	RG
8	$A \rightarrow aA \mid bA \mid b$	
1	$S \rightarrow aS \mid bS \mid \lambda$	RG
7	$S \to aS \mid bA$	RG
	$A \rightarrow bB$	
	$B \rightarrow aB \mid \lambda$	
3	$S \rightarrow a \mid b$	RG