言語処理学会第 30 回年次大会 併設ワークショップ JLR2024 - 日本語言語資源の構築と利用性の向上

# Prompt Tuning から Fine Tuning への移行時期推定

アマゾンウェブサービスジャパン合同会社

久保 隆宏, 呉 和仁, 前川 泰毅



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## アマゾンウェブサービスジャパン合同会社





日本で AWS を利用する時は AWS Japan が契約 当事者になります。

AWS には 200 以上のサービスがあるため、目的を達成するのにどのサービスを組み合わせればよいのか迷うことがあります。そんな課題を解決するソリューションアーキテクト (SA) などが働いています。

AWS の SA には目黒セントラルスクエアの 17F にある AWS Loft というコワーキングスペースに行くと質問できたりします。

## アマゾンウェブサービスジャパン合同会社



AWS は生成 AI の領域でも Amazon のように「品揃え」を拡充し「顧客体験をよくする」ことを指向しています。

LLM 開発支援プログラムでは総額 8 億円超のクレジットと学習用インスタンスを確保し、採択した 17 社の基盤モデル開発を支援しました。

#### 開発後の収益化を支援すべく

AWS Marketplace を通じた販売や Amazon SageMaker JumpStart を通じ た販路拡大を支援しています。

参考: AWSのAIインフラで何を作った? NTTやストックマークが成果を公開



## 日本語大規模言語モデル(言語資源)の利用を促進する調査研究をしてきたので発表します!



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## 日本語の大規模言語モデル公開が進む一方、素の精度重視の評価が利用の移行を阻んでいる



公開モデル(※)の精度は上昇傾向だが、高性能 な企業独自のモデル (Claude や ChatGPT) と は差がある。

公開モデルの利点はカスタマイズ(追加学習)できることなので、その特性を活かさない素の精度のみ評価されるのは、平等ではあるが公平ではないのでないか?

※公開されているモデルの中には厳密にはオープンソースの定義を満たさないものも含まれるため、本資料では一貫し「公開モデル」と表記します

平等と公平の画像:特定非営利活動法人 ホップすてーしょん より引用



### 先行研究

モデルの評価には様々なベンチマークがあるが、Zero-shot / Few-shot の精度をみており学習データによる Fine Tuning が行われていない。

※ llm-jp-evalについては、<u>zero-shotを使用し、</u>各testデータの100間に対する評価を計算しています。Wikiのデータについては、全 Nejumi リーダーボードは zero-shot 評価体で100間となるようにデータ数を設定しています。

Overall average = (llm-jp-eval + MT-bench/10) / 2



実際企業で利用する際はすでに対象ドメインのデータが一定量蓄積しているはずであり (例:顧客応対のデータなど)、公開モデルはチューニングしたうえで使える



### 明らかにしたいこと

- 追加学習を前提とした場合 API と公開モデルの精度の差はどの程度になるのか?
- ・ 追加学習にコストをかけることは費用対効果があるのか?



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## 実験設計 (1/3)

基盤モデルの活用例として代表的な検索拡張検索 (RAG: Retrieval-Augmented Generation) での公開モデル活用を想定し、①情報抽出性能と②要約性能の 2 種類のタスクを評価する。





## 実験設計 (2/3)

①情報抽出性能として JSQuAD 、②要約性能として XLSum-ja で評価。





## 実験設計 (3/3)



Few shot / Fine Tuningに使う 学習データの量

何件ぐらいのデータがあれば、 API のモデルと同等の精度が得られるのかを知りたい。少ない件数、学習で良ければ公開モデルのコスト効率が高いことになる。

データを全く与えない場合を 0、そこから 2 、 4 、 8 、 16 ・・・と 2 の倍数刻みでデータを 増やしていき精度の変化を観測する。 API 側も Few-shot にデータを使い公平な設定で実験。

## 実験に使用するデータセットの詳細

#### **JSQuAD**

Wikipedia の記事 (context) に対する質問 (question) と回答 (answers) が収録されている。評価は完全一致 (exact match) と、文字単位の部分一致を加味する f1。

同じ context のデータは類似性が高いため、学習 データ (Instruction) を作る際は context が重複し ないよう設計 (データ数が 15,000 件までは重複な しで作成可)。

#### XLSum-ja

XLSum のデータセットから日本語のデータのみを抽出。 title 、text 、 summary の 3 つ組から成る。評価は ROUGE2 (bi-gram の一致を評価)。



## 実験に使用する公開モデル

1B 、 3~4B 、 7B 、 10B 超の 4 種類を用意

| モデル                                        | 公開元        | パラメータ数 | 概要                                                                                                |
|--------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------|
| open-calm-1b                               | CyberAgent | 1B     | 株式会社サイバーエージェントから公開された GPT-<br>NeoX ベースの日本語大規模言語モデル。                                               |
| japanese-gpt-neox-<br>3.6b-instruction-ppo | rinna      | 3.6B   | rinna 株式会社から公開された日本語で学習された<br>GPT-NeoX ベースの大規模言語モデル。対話形式の<br>データで教師あり学習、強化学習が行われた日本語<br>大規模言語モデル。 |
| bilingual-gpt-neox-4b-<br>instruction-ppo  | rinna      | 4B     | rinna 株式会社から公開された日英両言語で学習された GPT-NeoX ベースの大規模言語モデル。対話形式のデータで教師あり学習、強化学習を行っている。                    |
| ELYZA-japanese-Llama-<br>2-7b-instruct     | ELYZA      | 7B     | 株式会社 ELYZA から公開された、 Meta の Llama2<br>をもとに日本語コーパスで継続学習した大規模言語<br>モデル。独自データでの教師あり学習を行っている。          |
| Swallow-13b-instruct-hf                    | 東工大 / 産総研  | 13B    | 東工大と産総研の研究チームから公開された、Meta<br>の Llama2 をもとに日本語コーパスで継続学習した<br>大規模言語モデル。                             |



### 実験に使用する API のモデル

#### Claude 3 は間に合いませんでした!君の目で確かめてください

| 公開元            | 種別          | 概要                                                                                                                                                          |  |
|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Claude v2.1    | Anthropic   | Anthropic の提供する高性能な基盤モデル。 <u>Hugging Face</u> <u>の Leaderboard</u> では GPT-4 などに次ぐ精度。日本語性能でも、 <u>Rakuda Ranking</u> などでトップレベルの性能を示す。 20 万トークンという長大なテキストを扱える。 |  |
| Claude Instant | 1/ nthronic | 高速な応答に重点を置いたモデル。 10 万トークンという長<br>大なテキストを扱える。                                                                                                                |  |



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## 評価: JP Language Model Evaluation Harness を使用

Ilm-jp-eval にはまだ要約のデータセットがなかったので (2024/2/28 時点 ) 、双方が入っている Evaluation Harness を利用。

※ ただ、JSQuAD の評価において <u>F1 は文字単位で計算する必要があるが、 Im-evaluation-harness</u> は <u>JSQuAD の評価をトークン単位で計算している</u>ので、本来の値とはずれてしまう (ただ、結論への影響は軽微と判断)。



## 公開モデルの学習: Hugging Face で PEFT (LoRA) を実装

Full Fine Tuning でなく部分的にパラメーターを学習する PEFT (Parameter-Efficient Fine Tuning) を採用し、実装には Hugging Face (peft) を使用。 epoch 数は 3 まで実施。



Amazon SageMaker を使うと、

学習データ、学習スクリプト(次スライド)、 実行環境

の3つを用意すれば簡単に学習できる。

<u>Amazon SageMaker Training で機械学習のモデル開発を楽にする【ML-Dark-01】【AWS Black Belt】</u>



## Amazon SageMaker で LoRA 学習

#### Fine-tuning

```
base_job_name="OpenCALM"
hyperparameters={
           'base model':'cyberagent/open-calm-7b',
          # 'load in 8bit': True.
          'load_in_4bit': True,
                                                                                                                                                                                                                                                                                                                                                      学習データ
          'pad token id': 1.
          'data_path': '/opt/ml/input/data/train/databricks-dolly-15k-ja.json',
          'num epochs': 1, # default 3
          'cutoff len': 512,
           'group by length': False,
          'output dir': '/opt/ml/model'.
          # 'resume_from_checkpoint': '/opt/ml/checkpoints',
          'lora target modules': '[query key value]',
          'lora_r': 16.
          'batch size': 32,
          'micro_batch_size': 4,
           'prompt_template_name': 'alpaca',
huggingface_estimator = HuggingFace(
          base job name=base job name,
                                                                                                                                                                                                                                                                                                                                                      学習スクリプト、
          role=role,
          entry point='finetune.py',
          source_dir='./scripts/code',
          instance_type='ml.g5.2xlarge',
          instance count=1,
                                                                                                                                                                                                                                                                                                                                                      実行環境 (A10G の g5)
          volume size=200,
          transformers version='4.26',
          pytorch version='1.13',
          py version='py39'.
          use_spot_instances=True,
          max_wait=86400,
          hyperparameters=hyperparameters,
          metric_definitions=[{'Name': 'eval_loss', 'Regex': "'eval_loss': (\due\u00e4d\u00e4.\u00e4d+)\u00e4), Regex': \u00e4d\u00e4d\u00e4d\u00e4d\u00e4d+\u00e4d+\u00e4d\u00e4d+\u00e4d+\u00e4d\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4d+\u00e4
                                                            {'Name': 'train loss', 'Regex': "'loss': (\u2014d\u2014\u2014d\u2014)\u2014\u2014)\u2014],
          # checkpoint_s3_uri=f"s3://{bucket}/{base_job_name}/checkpoint/",
                                                                                                                                                                                                                                                                                                                                                      fit で実行!
huggingface estimator_fit({'train': input train})
```



## API モデルの推論: Amazon Bedrock でバッチ推論 (Preview)

JSQuAD の Validation dataset は 4000 件ぐらいあるので、普通に API を叩いているとあっという間にレートリミットにかかる。そのため、バッチ推論機能を使用。

```
# Create batch inference job
inputDataConfig = {
                                                                                                                学習データ
   "s3InputDataConfig": {"s3Uri": f"s3://{bucket name}/{input key}"}
outputDataConfig = {
   "s3OutputDataConfig": {"s3Uri": f"s3://{bucket name}/output/{job name}/"}
role arn = role arn if role arn else self.identity["Arn"]
# Todo: fix patch code
role arn = (
   _role_arn.replace(":sts:", ":iam:")
   .replace("assumed-role/", "role/service-role/")
   .replace("/SageMaker", "")
                                                                                                                モデルを指定しジョブを発行
response = self.batch client.create model invocation job(
   roleArn= role arn,
   modelId=model id.
   jobName=job name,
   inputDataConfig=inputDataConfig,
   outputDataConfig=outputDataConfig,
```

aws

※バッチ推論は資料作成時点では Preview の機能です

### 実装は公開済みです



https://github.com/aws-samples/aws-ml-jp/tree/main



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



## JSQuAD の精度を、学習データを増やしながら 計測した結果







## JSQuAD の精度を、学習データを増やしながら 計測した結果



縦軸はF1、横軸は使用したJSQuADの学習データの件数(対数)



## JSQuAD の精度を、学習データを増やしながら 計測した結果







## XLSum-ja の精度を、学習データを増やしながら計測した結果





縦軸は ROUGE2 、横軸は使用した XLSum-ja の学習データの件数 (対数)

## XLSum-ja の精度を、学習データを増やしながら計測した結果

合計 / rouge2 30 model mT5 によるベンチマーク Anthropic Claude 2.1 Anthropic Claude 2.1 (Ful ——Anthropic Claude Instant Anthropic Claude Instant ELYZA-japanese-Llama-2japanese-gpt-neox-3.6b-i 10 Swallow-13b-instruct-hf data num •

13B の Swallow 、 7B の ELYZA は 128 件 以上のデータで Claud 2.1 より高いス コアに到達

スコア上、 API のモデルは要約が得意ではないように見える。

要約元の文章を含む例示を与えないと Few-shot の恩恵が少ない (= API のモデ ルで要約を制御する場合、コスト高に なる可能性がある)

60 件を超すまで ROUGE2 にほぼ反応が 見られない。要約は一定量のデータが 必要な可能性あり。

縦軸は ROUGE2、横軸は使用した XLSum-ja の学習データの件数 (対数)



## にかかるコストの比較

## API の Few-shot 推論、公開モデル学習 + 推論





### XLSum-ja



※コストはオンデマンド価格で計算しており、スポットインスタンスの使用、さらに推論特化の AWS Inferentia2 を使用するこ とでさらに下げられます。

縦軸は金額 (\$) 、横軸は使用した JSQuAD / XL Sum-ja の学習データの件数 (対数)



## API の Few-shot 推論、公開モデル学習 + 推論 にかかるコストの比較







## \$1 で上げられる評価指標の大きさ





#### XLSum-ja



縦軸は F1 / ROUGE2 をコスト (\$) で割った値、横軸は使用した JSQuAD / XL Sum-ja の学習データの件数 (対数)



## \$1 で上げられる評価指標の大きさ



縦軸は F1 / ROUGE2 をコスト (\$) で割った値、横軸は使用した JSQuAD / XL Sum-ja の学習データの件数 (対数)



## 推奨される「移行時期」※下記結論を一般化できるかは議論の余地あり

### API は 2 件 Few-shot まで、コスト効率や安定性に不満なら 30~200 件データを用意して公開モデルの Fine Tuning へ

- 1. まず、API 経由で利用し精度に課題がある場合、2 つ程度プロンプトに例示入れ ることで確かな精度の向上を確認できる。
- 2. Claude Instant / ChatGPT 3.5 など軽量な API モデルの精度に満足している一方、 速度、コスト、サービス安定性に課題を感じている場合 7B クラスのモデルを 30~200 件程度のデータで追加学習し、精度を計測してみる。
- 3. Claude 2.1、あるいは GPT-4 相当の精度が必要な場合、 1) 13B クラスの OSS モデ ルを使用するか、 2) 7B クラスの OSS モデルを 500 件程度のデータで追加学習し 精度を計測してみる。



### その他の考察

プロンプトエンジニアリングと Fine Tuning (ここでは Instruction Tuning を指す) は対立的にみられることが多いが、Fine Tuning は「事前プロンプトエンジニアリング」のようにも捉えられる。

「精度を引き出すためのプロンプト」は探索空間が非常に広いが、 Fine Tuning では ELYZA の例が示す通り 30 件程度の例示でモデルの出力を API 並みの精度に高められる。 API でも Few-shot により例示に沿わせることができるが、要約の例示は原文の入力なしには精度の改善が見られず、例示による精度向上はコストがかさむ。

そのため、 Fine Tuning はプロンプトエンジニアリングよりもコストパフォーマンス に優れる可能性がある。



## アジェンダ

- 1. 会社概要
- 2. 取り組んだ問題の背景 / 先行研究
- 3. 課題解決のための実験設計
- 4. 実装
- 5. 実験結果
- 6. 今後の展望



### 今後の展望

- ① 本検証結果をもとにしたお客様(皆様)への検証の提案データ整備や情報抽出などバッチで良いケースでは活用余地十分 複数タスクや会話のスタイルなど複雑なケースではどうなるか?
- ② **7B の OSS をサーバーレス (AWS Lambda 等) で推論できないか検証** Fine Tuning 済みの 7B を API で使えたら活用シーンが広がる
- ③ Amazon SageMaker 等による Easy to train / deploy / call の体験実現 データとモデルからワンクリックで学習、 API エンドポイント化



## Thank you!

