Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №5.7.1

Измерение углового распределения жесткой компоненты космического излучения

Маршрут VII

5 сентября 2019 г. 12 сентября 2019 г. Работу выполнил Ринат Валиев, 715 гр.

Под руководством А.И. Миланича

Постановка эксперимента

Цель работы: с помощью телескопа из двух сцинтилляторов измерить угловое распределение жесткой компоненты космического излучения и на основе полученных данных оценить время жизни мюона.

Оборудование: телескоп с двумя сцинтилляторами в режиме синхронизации, счетчик с секундомером.

Теория

 \widetilde{U}

В работе рассматривается вторичное космическое излучение, получение путем воздействия первичного космического излучение на атмосферу Земли. Первичное излучение в основном состоит из протонов ($\approx 90\%$), α -частиц ($\approx 10\%$) и небольшого количества ядер более тяжелых элементов. Вторичная компонента создается при взаимодействии быстрых частиц с ядрами атомов воздуха, а вблизи уровня моря происходит в основном уменьшение интенсивности космического излучения из-за постепенного поглащения частиц в воздухе.

Основная часть мюонов рождается в верхних слоях атмосферы. Высота атмосферы до слоя, где рождаются мюоны, равна $L_0 \approx 15$ км, а также учитывая, что радиус земли $R_0 \approx 6400$ км, можем представить поверхность Земли плоскостью в пределах $0 \leqslant \Theta \leqslant 75^\circ$ от вертикали (погрешность меньше 1%).

Учитывая вероятности попадания в детектор мю
онов из верхних слоев и лавиннообразованных вблизи, получаем для длины распадного пробег
а $L=v\tau$:

$$L = \beta c \frac{\tau_0}{\sqrt{1 - \beta^2}} = \beta c \tau_0 \frac{E_\mu}{m_\mu c^2},\tag{1}$$

где $v=\beta c$ – скорость мюона, τ – время жизни движущегося мюона, τ_0 – время жизни покоящегося мюона, $E_\mu=m_\mu c^2/\sqrt{1-\beta^2}\approx 4\cdot 10^9$ эВ – полная энергия мюона, $m_\mu=105.8~{\rm M}$ эВ/ c^2 . А также подчеркнем, что $\beta\approx 1$.

Отношение числа мюонов, идущих под зенитным углом Θ , к числу вертикально падающих мюонов можно записать через произведение вероятностей прохождения пути L без поглащения и без распада в виде:

$$\frac{N(\Theta)}{N(0^{\circ})} = \frac{P_1(\Theta)}{P_1(0^{\circ})} \frac{P_2(\Theta)}{P_2(0^{\circ})} = (\cos(\Theta))^n \frac{\exp(-L(\Theta)/L)}{\exp(-L_0/L)},\tag{2}$$

где $P_1(\Theta), P_2(\Theta)$ – те самые вероятности, n – показатель зависимости $I = I_0(\cos(\Theta))^n$. Расстояние $L(\Theta) = L_0/\cos(\Theta)$ – вследствие приближения плоскостью поверхность Земли.

Выполнение работы

1. Получим зависимость количества пойманных мю
онов N от зенитного угла установки Θ за
 t=200 с.

N_1 , IIIT	121	124	124	107	103	97	79	59	47	46
N_2 , iiit	111	120	117	109	96	87	81	68	43	57
N_3 , шт	139	121	113	111	101	83	76	60	44	49
N, iiit	124	122	118	109	100	89	79	62	45	51
Θ, °	0	10	20	30	40	50	60	70	80	90
$I(\Theta), c^{-1}$	0.62	0.61	0.59	0.55	0.50	0.45	0.39	0.31	0.22	0.25

Таблица 1: Интенсивность $I(\Theta)$ попадания мюонов в детектор за t=200 с. $N=(N_1+N_2+N_3)/3; \qquad I(\Theta)=N(\Theta)/t.$

2. Критические случаи углов не будем принимать во внимание из-за неопределенностей и неточностей. Построим график $\ln(I)$ от $\ln(\cos(\Theta))$ для нахождения n.

Рис. 1: Нахождение коэффициента n по коэффициенту наклона прямой.

3. Из графика (рис. 1) по данным из таблицы 1 находим $n \approx 1.7$, тогда как в теории $n_T \approx 1.6$. Следовательно коэффициент найден достаточно точно.

4. Воспользовавшись формулами (1) и (2), а также приняв во внимание $\beta \approx 1$, $L_0 \approx 15$ км, n=1.7, получаем формулу для расчета времени жизни мюона:

$$\tau_0 = \frac{[L_0 - L(\Theta)] \cdot m_{\mu}c}{E_{\mu} \ln \left[\frac{N(\Theta)}{N(0^{\circ})} \frac{1}{(\cos(\Theta))^n} \right]}$$

5. В результате получим для каждого зенитного угла Θ определенное значение τ_0 .

$\tau_0 \cdot 10^{-6}, c$	2.1	1.4	1.7	1.7	1.7	1.8	2.2
Θ, °	10	20	30	40	50	60	70

Таблица 2: τ_0 для адекватных зенитных углов Θ .

6. Среднее значение времени жизни мюона $\overline{\tau_0} = 1.8 \cdot 10^{-6} \ {\rm c.}$

Итоги

Провели исследование жесткого космического излучения на уровне моря, а также проверили некоторые теоретические формулы.

Провели оценку времени жизни мюона в лабораторных условиях: $\overline{\tau_0}=1.8\cdot 10^{-6}~{\rm c.}$ Табличное значение: $\tau_T=2.2\cdot 10^{-6}~{\rm c.}$ Следовательно, оценка времени жизни мюона проведена успешно.