First repeatedly divide each number by 2 until it becomes odd. Let ma denote the largest value among them, we claim the optimal solution must include ma: otherwise suppose the optimal solution includes $ma \cdot 2^j$ ($j \ge 1$) instead, then any other number must be even, otherwise it's odd and $\le ma$, the deviation $\ge ma \cdot 2^j - ma \ge ma$, which is not optimal. Then tune each number to the maximum possible number that $\le ma$, denote as a[i]. Let $mi = \min_i a[i]$. The optimal solution must either use a[i] or use $2 \cdot a[i]$ (if it's valid). In other words, the optimal solution must be of the following form: choose an index i, for each $a[j] \le a[i]$ use $2 \cdot a[j]$ (and should be valid), otherwise use a[j]. Let $\mathrm{succ}(x)$ denote the successor of x, then the deviation is $2 \cdot x - \mathrm{succ}(x)$. If multiplying mi by 2 is valid, then we have $2 \cdot mi > ma$, i.e. $mi > \frac{ma}{2}$; otherwise the optimal solution is ma - mi.

In order to avoid sorting, the next key observation is if there are multiple values in $[mi+2^j, mi+2^{j+1})$, then only selecting the largest value among them may be optimal: for any other number $x \in [mi+2^j, mi+2^{j+1})$, $2 \cdot x - \text{succ}(x) > 2 \cdot x - (mi+2^{j+1}) \ge mi$, but the optimal solution is at most ma - mi < mi. Thus we can use $O(\log W)$ bins, and record the minimum and maximum value in each bin. To compute the optimal solution, enumerate the bins in increasing order, and we can terminate early if we find a bin containing any number that cannot be multiplied by 2. O(n).

Accepted Solutions Runtime Distribution

Runtime: 196 ms, faster than 100.00% of C++ online submissions for Minimize Deviation in Array.

Memory Usage: 66.3 MB, less than 98.00% of C++ online submissions for Minimize Deviation in Array.

References