Cálculo

Ficha 5 2011/2012

1. Calcule os seguintes integrais:

(a)
$$\int_{1}^{2} e^{\pi x} dx$$

(b)
$$\int_{1}^{2} (5x^2 - 1) dx$$

(c)
$$\int_{-1}^{0} (x+1)^2 dx$$

(d)
$$\int_0^3 (2y-5)^2 dy$$

(e)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| \ dx$$

(f)
$$\int_{-3}^{5} |x-1| dx$$

(g)
$$\int_0^2 |(x-1)(3x-2)| dx$$

Nota: Recorda-se a definição de módulo de uma função real de variável real f:

$$|f(x)| = \begin{cases} f(x) & \text{se } f(x) \ge 0\\ -f(x) & \text{se } f(x) < 0 \end{cases}$$

2. Calcule os seguintes integrais:

(a)
$$\int_{1}^{2} x \ln x \ dx$$

(b)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} t \sin t \ dt$$

(c)
$$\int_0^2 f(x) dx$$
, com $f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1\\ 3 - x & \text{se } 1 < x \le 2 \end{cases}$

(d)
$$\int_0^2 f(x) \ dx, \text{ com } f(x) = \begin{cases} \sqrt[3]{x} & \text{se } 0 \le x < 1 \\ \sqrt{2-x} & \text{se } 1 \le x < 2 \end{cases}$$

3. Determine todos os valores de $c \in \mathbb{R}$, para os quais:

$$\int_0^c x(1-x) \ dx = 0$$

4. Determine um polinómio quadrático tal que

$$p(0) = p(1) = 0$$
 e $\int_0^1 p(t) dt = 1$

Soluções:

1.

(a)
$$\frac{e^{2\pi} - e^{\pi}}{\pi}$$
 (b) $\frac{32}{3}$ (c) $\frac{1}{3}$ (d) 21 (e) 2 (f) 16 (g) $\frac{55}{27}$

2.

(a)
$$2 \ln 2 - \frac{3}{4}$$
 (b) $-\frac{\sqrt{2}\pi}{8} - \frac{\sqrt{2}}{2} + 1$ (c) $\frac{11}{6}$ (d) $\frac{17}{12}$

3.
$$c = 0 \lor c = \frac{3}{2}$$

4.
$$p(t) = -6t^2 + 6t$$