Professora: Betsabe Blas

NOME:

Prova 1, 01 de julho de 2021

INSTRUÇÕES	Questão	Pontuação
• A prova é individual.	1	
• Faça toda a prova na ordem das questões e não		
esqueça itens.	2	
• Pode utilizar notas de aulas (apostilas e listas).		
• Não esta permitido discutir as questões com	3	
ninguém . Se tiver dúvida no entendimento das questões contactar a docente.	Total	
Voce não precisa dar uma prova a menos que eu		
peça mostrar isso. Escrever com caneta as respostas ou no computador para ser legível.		

1) (2 pontos) Abaixo estão 4 gráficos de dispersão de um resultado *y* versus o preditor *x* seguido por quatro ajustes de regressão identificados como A, B, C e D mostrados na Tabela. Identifique cada gráfico de acordo com as estatísticas correspondentes dadas na tabela.

Dados	Intercepto	tangente	desvio padrão dos resíduos	SSR/SST	
Α	$b_0 = 8.1, s_{b_0} = 0.11$	$b_1 = 2.1, s_{b_1} = 0.066$	s = 1.08	$R^2 = 0.90$	
В	$b_0 = 8.0, s_{b_0} = 0.10$	$b_1 = 2.0, s_{b_1} = 0.017$	s = 1.01	$R^2 = 0.99$	
C	$b_0 = 1.0, s_{b_0} = 0.10$	$b_1 = 2.0, s_{b_1} = 0.060$	s = 0.97	$R^2 = 0.93$	
D	$b_0 = 0.9, s_{b_0} = 0.20$	$b_1 = 1.9, s_{b_1} = 0.120$	s = 2.09	$R^2 = 0.71$	

2) (3 pontos) Temos a seguinte saída:

Do resumo acima da regressão dos retornos de um fundo mútuo Keystone (keystne) para o valor de retorno do índice de mercado ponderado (valmrkt), responda as seguintes perguntas:

- (a)(0.5 pontos) Qual é a correlação entre a Keystone e os retornos do mercado?
- (b) **(1 ponto)** Qual é o intervalo de confiança de 95% para o intercepto da regressão?
- (c) **(0.75 pontos)** Qual é a estatística t para um teste de hipótese, se o intercepto é ou não igual a zero? O que você conclui no nível de significância $\alpha = 0.05$?
- (d) **(0.75 pontos)** Qual é a estatística t para um teste de hipótese de se a inclinação é ou não igual a um? O que você conclui no nível de significância $\alpha = 0.05$?
- **3) (5 pontos)** Após uma regulagem eletrônica um veículo apresenta um rendimento ideal em relação a rendimento de combustível. Contudo, com o passar do tempo esse rendimento vai se degradando. A partir dos dados que representam o rendimento medido mês a mês após a regulagem. As variáveis são:

X: meses após a regulagem, e

Y : rendimento.

Temos um tamanho de amostra n = 12, e os seguintes resultados.

$$\sum_{i=1}^{n} X_i = 78,00, \sum_{i=1}^{n} X_i^2 = 650,00, \ \sum_{i=1}^{n} Y_i = 110,70; \sum_{i=1}^{n} X_i Y_i = 673,1, \sum_{i=1}^{n} Y_i^2 = 1039,55,$$

- (a) (0,5 pontos) Ajuste um modelo de regressão linear ($Y = \beta_0 + \beta_1 X + \epsilon$) relacionando meses após a regulagem e o rendimento, e interprete a tangente da reta ajustada.
- **(b) (0,5 pontos)** Realize o teste t da hipoteses H_0 : $\beta_1 = 0$ versus H_1 : $\beta_1 \neq 0$ e concluia com un nível de significância $\alpha = 5\%$.
- (c) (0,5 pontos) Construia a tabela ANOVA.
- **(d) (0,5 pontos)** Realize o teste F para as hipoteses H_0 : $\beta_1 = 0$ versus H_1 : $\beta_1 \neq 0$ e e concluia utilizando um nível de significância $\alpha = 5\%$.
- **(e) (0,5 pontos)**Qual a porcentagem da variabilidade do rendimiento que está sendo explicada por esse modelo? (R²)
- (f) (0,5 pontos) Encontre um intervalo de confiança de 95% para β_1 .
- **(g) (1 ponto)** Obtenha os intervalos de confiança de 95% para a previsão de um valor médio e um valor individual de Y para um tempo $x_0 = 8$ meses.
- (i) (1 ponto) Se o modelo de regressão linear proposto fosse sem intercepto ($Y = \beta_1 X + \epsilon$), qual seria o estimador de mínimos quadrados de β_1 e a sua variância?