#### Introduction to neural networks



16-385 Computer Vision Spring 2019, Lecture 19

## Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Fei-Fei Li (Stanford University).
- Andrej Karpathy (Stanford University).

# Perceptron

#### The Perceptron



#### Aside: Inspiration from Biology



A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are **loosely** inspired by biology.

But they certainly are **not** a model of how the brain works, or even how neurons work.

#### The Perceptron



#### Another way to draw it...



# Neural networks

### Neural Network

a collection of connected perceptrons



### Neural Network

a collection of connected perceptrons



How many perceptrons in this neural network?

### Neural Network

a collection of connected perceptrons



'one perceptron'

### Neural Network

a collection of connected perceptrons



## Neural Network

a collection of connected perceptrons



## Neural Network

a collection of connected perceptrons



'four perceptrons'

### Neural Network

a collection of connected perceptrons



### Neural Network

a collection of connected perceptrons



#### Some terminology...

'input' layer



...also called a **Multi-layer Perceptron** (MLP)

#### Some terminology...



...also called a **Multi-layer Perceptron** (MLP)

#### Some terminology...



...also called a **Multi-layer Perceptron** (MLP)



all pairwise neurons between layers are connected



all pairwise neurons between layers are connected

How many neurons (perceptrons)?

How many weights (edges)?



How many learnable parameters total?

How many weights (edges)?



How many learnable parameters total?

How many neurons (perceptrons)?

$$4 + 2 = 6$$

How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$



How many learnable parameters total?

How many neurons (perceptrons)?

$$4 + 2 = 6$$

How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$



How many learnable parameters total?

20 + 4 + 2 = 26

bias terms

performance usually tops out at 2-3 layers, deeper networks don't really improve performance...



...with the exception of **convolutional** networks for images

# Training perceptrons

### world's smallest perceptron!



$$y = wx$$

What does this look like?

### world's smallest perceptron!



$$y = wx$$

(a.k.a. line equation, linear regression)

#### Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$
  
 $y = f_{PER}(x; w)$ 

Estimate the parameters of the Perceptron

w

#### Given training data:

| y    |
|------|
| 10.1 |
| 1.9  |
| 3.4  |
| 1.1  |
|      |

What do you think the weight parameter is?

$$y = wx$$

#### Given training data:

| $\boldsymbol{x}$ | y    |
|------------------|------|
| 10               | 10.1 |
| 2                | 1.9  |
| 3.5              | 3.4  |
| 1                | 1.1  |

What do you think the weight parameter is?

$$y = wx$$

not so obvious as the network gets more complicated so we use ...

#### An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

#### An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that  $\hat{y}$  gets 'closer' to y

#### An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that  $\hat{y}$  gets 'closer' to yperceptron parameter perceptron output label

## An Incremental Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that  $\hat{y}$  gets 'closer' to yperceptron parameter perceptron what does true label

Before diving into gradient descent, we need to understand ...

# Loss Function defines what is means to be close to the true solution

### YOU get to chose the loss function!

(some are better than others depending on what you want to do)

# Squared Error (L2)

(a popular loss function) ((why?))



#### L1 Loss

$$\ell(\hat{y}, y) = |\hat{y} - y|$$



## Zero-One Loss

$$\ell(\hat{y}, y) = \mathbf{1}[\hat{y} = y]$$



#### L2 Loss

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$



## Hinge Loss

$$\ell(\hat{y}, y) = \max(0, 1 - y \cdot \hat{y})$$



# Cross Entropy Loss/Negative Log

$$CrossEntropy 200s = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$

back to the...

# World's Smallest Perceptron!



$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

## Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
  $y=f_{\mathrm{PER}}(x;w)$  what is this activation function?

Estimate the parameter of the Perceptron

## Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
  $y=f_{ ext{PER}}(x;w)$  what is this activation function? linear function!  $f(x)=wx$ 

Estimate the parameter of the Perceptron

# Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that  $\hat{y}$  gets 'closer' to yperceptron parameter perceptron output label

Let's demystify this process first...

Code to train your perceptron:

Let's demystify this process first...

### Code to train your perceptron:

for 
$$n = 1 ... N$$
  

$$w = w + (y_n - \hat{y})x_i;$$

just one line of code!

# Gradient descent

(partial) derivatives tell us how much one variable affects another

## Two ways to think about them:



Slope of a function



Knobs on a machine

## 1. Slope of a function:



$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[ \frac{\partial f(\boldsymbol{x})}{\partial x}, \frac{\partial f(\boldsymbol{x})}{\partial y} \right]$$

 $\frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x}, \frac{\partial f(x)}{\partial y} \end{bmatrix}$  describes the slope around a point point

#### 2. Knobs on a machine:



small change in parameter  $\Delta w_1$ 



output will change by

$$\frac{\partial f(x)}{\partial w_1} \Delta w_1$$





# Backpropagation

back to the...

# World's Smallest Perceptron!



$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

### Training the world's smallest perceptron

for  $n = 1 \dots N$ 

This is just gradient descent, that means...

$$w = w + (y_n - \hat{y})x_i;$$



this should be the gradient of the loss function

$$\frac{d\mathcal{L}}{d\omega}$$

...is the rate at which this will change...

$$\mathcal{L} = \frac{1}{2}(y - \hat{y})^2$$

the loss function

... per unit change of this

$$y=wx$$

#### Compute the derivative

$$egin{aligned} rac{d\mathcal{L}}{dw} &= rac{d}{dw}iggl\{rac{1}{2}(y-\hat{y})^2iggr\} \ &= -(y-\hat{y})rac{dwx}{dw} \ &= -(y-\hat{y})x = 
abla w & ext{just shorthand} \end{aligned}$$

That means the weight update for gradient descent is:

$$w=w-
abla w$$
 move in direction of negative gradient  $=w+(y-\hat{y})x$ 

#### Gradient Descent (world's smallest perceptron)

For each sample

$$\{x_i, y_i\}$$

1. Predict

a. Forward pass

y

 $\hat{y} = wx_i$ 

b. Compute Loss

 $\mathcal{L}_i = \frac{1}{2}(y_i - \hat{y})^2$ 

2. Update

a. Back Propagation

 $\frac{d\mathcal{L}_i}{dw} = -(y_i - \hat{y})x_i = \nabla w$ 

b. Gradient update

 $w = w - \nabla w$ 

Training the world's smallest perceptron

for 
$$n = 1...N$$
  

$$w = w + (y_n - \hat{y})x_i;$$

# world's (second) smallest perceptron!



function of two parameters!

#### Gradient Descent

For each sample

 $\{x_i, y_i\}$ 

- 1. Predict
  - a. Forward pass
  - b. Compute Loss

we just need to compute partial derivatives for this network

- 2. Update
  - a. Back Propagation
  - b. Gradient update

#### **Derivative computation**

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \\
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\}$$

$$= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2}$$

$$= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1}$$

$$= -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2}$$

$$= -(y - \hat{y}) x_2 = \nabla w_2$$

#### **Derivative computation**

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \\
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2} \\
= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \\
= -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2} \\
= -(y - \hat{y}) x_1 = \nabla w_1 \qquad = -(y - \hat{y}) x_2 = \nabla w_2$$

#### **Gradient Update**

$$w_1 = w_1 - \eta \nabla w_1$$
$$= w_1 + \eta (y - \hat{y}) x_1$$

$$w_2 = w_2 - \eta \nabla w_2$$
$$= w_2 + \eta (y - \hat{y}) x_2$$

#### Gradient Descent

For each sample

$$\{x_i, y_i\}$$

1. Predict

a. Forward pass

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

b. Compute Loss

$$\mathcal{L}_i = rac{1}{2}(y_i - \hat{y})$$
 (side computation to track loss, not needed for backprop)

2. Update

- a. Back Propagation
- b. Gradient update

 $w_{1i} = w_{1i} + \eta(y - \hat{y})x_{1i}$  $w_{2i} = w_{2i} + \eta(y - \hat{y})x_{2i}$ 

two lines now

$$\nabla w_{1i} = -(y_i - \hat{y})x_{1i}$$

$$\nabla w_{2i} = -(y_i - \hat{y})x_{2i}$$

We haven't seen a lot of 'propagation' yet because our perceptrons only had <u>one</u> layer...

# multi-layer perceptron



function of FOUR parameters and FOUR layers!







$$a_1 = w_1 \cdot x + b_1$$



$$a_1 = w_1 \cdot x + b_1$$



$$a_1 = w_1 \cdot x + b_1$$
  
 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$ 



$$a_1 = w_1 \cdot x + b_1$$
  
 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$ 



$$a_1 = w_1 \cdot x + b_1$$
  
 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$   
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$ 



$$a_1 = w_1 \cdot x + b_1$$
  
 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$   
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$ 



$$a_1 = w_1 \cdot x + b_1$$
  
 $a_2 = w_2 \cdot f_1(w_1 \cdot x + b_1)$   
 $a_3 = w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1))$   
 $y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$ 

Entire network can be written out as one long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$

We need to train the network:

What is known? What is unknown?

Entire network can be written out as a long equation

$$y = f_3(w_3 \cdot f_2(w_2 \cdot f_1(w_1 \cdot x + b_1)))$$
known

We need to train the network:

What is known? What is unknown?

Entire network can be written out as a long equation

$$y=f_3(w_3\cdot f_2(w_2\cdot f_1(w_1\cdot x+b_1)))$$
 activation function sometimes has parameters

We need to train the network:

What is known? What is unknown?

# Learning an MLP

Given a set of samples and a MLP

$$\{x_i, y_i\}$$
  
 $y = f_{\text{MLP}}(x; \theta)$ 

Estimate the parameters of the MLP

$$\theta = \{f, w, b\}$$

#### Gradient Descent

For each 
$${ t random}$$
 sample  $\{x_i,y_i\}$ 

- 1. Predict
  - a. Forward pass
  - b. Compute Loss
- 2. Update
  - a. Back Propagation
  - b. Gradient update

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

 $\frac{\partial \mathcal{L}}{\partial \theta}$ 

vector of parameter partial derivatives

$$\theta \leftarrow \theta - \eta \nabla \theta$$

So we need to compute the partial derivatives

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \left[ \frac{\partial \mathcal{L}}{\partial w_3} \frac{\partial \mathcal{L}}{\partial w_2} \frac{\partial \mathcal{L}}{\partial w_1} \frac{\partial \mathcal{L}}{\partial b} \right]$$

Remember,  $\frac{\partial L}{\partial w_1} \ \ \text{describes...}$ 



So, how do you compute it?

# The Chain Rule



According to the chain rule...

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

Intuitively, the effect of weight on loss function :  $\frac{\partial L}{\partial w_3}$ 



rest of the network 
$$f_2$$
 —  $w_3$  —  $a_3$   $f_3$  —  $\hat{y}$   $L(y,\hat{y})$ 

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \qquad \text{Chain Rule!}$$

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$= -\eta (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

Just the partial derivative of L2 loss

rest of the network 
$$f_2$$
 —  $w_3$  —  $a_3$   $f_3$  —  $\hat{y}$   $L(y,\hat{y})$ 

$$\begin{split} \frac{\partial L}{\partial w_3} &= \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \end{split}$$

Let's use a Sigmoid function

$$\frac{ds(x)}{dx} = s(x)(1 - s(x))$$

rest of the network 
$$f_2$$
 —  $w_3$  —  $a_3$   $f_3$  —  $\hat{y}$   $L(y,\hat{y})$ 

$$\begin{split} \frac{\partial L}{\partial w_3} &= \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) f_3 (1 - f_3) \frac{\partial a_3}{\partial w_3} \end{split}$$
 Let's use a Sigmoid function 
$$\frac{ds(x)}{dx} = s(x)(1 - s(x))$$

rest of the network 
$$f_2$$
 —  $w_3$  —  $a_3$   $f_3$  —  $\hat{y}$   $L(y,\hat{y})$ 

$$\begin{split} \frac{\partial L}{\partial w_3} &= \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) f_3 (1 - f_3) \frac{\partial a_3}{\partial w_3} \\ &= -\eta (y - \hat{y}) f_3 (1 - f_3) f_2 \end{split}$$



$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$



$$\frac{\partial L}{\partial w_2} = \left[ \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2} \right]$$

already computed. re-use (propagate)!

# The Chain Rule



a.k.a. backpropagation

#### The chain rule says...



$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial f_2}{\partial f_1} \frac{\partial f_3}{\partial a_1} \frac{\partial f_3}{\partial w_1}$$

#### The chain rule says...



$$\frac{\partial L}{\partial w_1} = \left[ \frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \right] \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

already computed. re-use (propagate)!



$$\frac{\partial \mathcal{L}}{\partial w_3} = \begin{bmatrix}
\frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \\
\frac{\partial \mathcal{L}}{\partial w_2}
\end{bmatrix} \frac{\partial a_3}{\partial f_3} \frac{\partial a_3}{\partial a_3} \frac{\partial f_2}{\partial f_2} \frac{\partial a_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$



$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial a_2} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$



$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial f_2}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial f_1}{\partial w_1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial f_2}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial f_1}{\partial b}$$

#### Gradient Descent

For each example sample  $\{x_i,y_i\}$ 

1. Predict

a. Back Propagation

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

$$\mathcal{L}_i$$

$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial w_3} 
\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial w_2} 
\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial w_1} 
\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial f_3} \frac{\partial f_3}{\partial a_3} \frac{\partial a_3}{\partial f_2} \frac{\partial f_2}{\partial a_2} \frac{\partial a_2}{\partial f_1} \frac{\partial f_1}{\partial a_1} \frac{\partial a_1}{\partial b}$$

$$w_3 = w_3 - \eta \nabla w_3$$
  
 $w_2 = w_2 - \eta \nabla w_2$   
 $w_1 = w_1 - \eta \nabla w_1$   
 $b = b - \eta \nabla b$ 

#### Gradient Descent

For each example sample  $\{x_i,y_i\}$ 

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

 $\hat{y} = f_{\text{MLP}}(x_i; \theta)$ 

 $\mathcal{L}_i$ 

 $\frac{\partial \mathcal{L}}{\partial \theta}$ 

vector of parameter partial derivatives

 $\theta \leftarrow \theta + \eta \frac{\partial L}{\partial \theta}$ 

b. Gradient update

# Stochastic gradient descent

# What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

# The gradient is:

# What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

# The gradient is:

$$\sum_{i=1}^{N} \frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$

What we use for gradient update is:

# What we are truly minimizing:

$$\min_{\theta} \sum_{i=1}^{N} L(y_i, f_{MLP}(x_i))$$

# The gradient is:

$$\sum_{i=1}^{N} \frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$

# What we use for gradient update is:

$$\frac{\partial L(y_i, f_{MLP}(x_i))}{\partial \theta}$$
 for some i

#### Stochastic Gradient Descent

For each example sample  $\{x_i,y_i\}$ 

1. Predict

2. Update

a. Back Propagation

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

$$\mathcal{L}_i$$

$$\frac{\partial \mathcal{L}}{\partial \theta}$$

vector of parameter partial derivatives

$$heta \leftarrow heta + \eta rac{\partial \mathcal{L}}{\partial heta}$$

Select randomly!

Do we need to use only one sample?

Select randomly!

# Do we need to use only one sample?

You can use a minibatch of size B < N.</li>

Why not do gradient descent with all samples?

Select randomly!

# Do we need to use only one sample?

You can use a minibatch of size B < N.</li>

# Why not do gradient descent with all samples?

It's very expensive when N is large (big data).

# Do I lose anything by using stochastic GD?

Select randomly!

# Do we need to use only one sample?

You can use a minibatch of size B < N.</li>

# Why not do gradient descent with all samples?

It's very expensive when N is large (big data).

# Do I lose anything by using stochastic GD?

- Same convergence guarantees and complexity!
- Better generalization.

# References

Basic reading: No standard textbooks yet! Some good resources:

- https://sites.google.com/site/deeplearningsummerschool/
- http://www.deeplearningbook.org/
- http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf