Анализ потоков данных (Часть 2)

Mining Data Streams (Part 2)

http://mmds.org

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Содержание лекции

- Новые поточные алгоритмы:
 - Фильтрация потока данных: фильтры Блума
 - * Выбор элементов со свойством x из потока
 - Подсчет различных элементов: алгоритм Флажоле—
 Мартена
 - * Количество различных элементов среди последних k элементов потока
 - Оценка моментов: метод AMS
 - st Оценка стандартного отклонения последних k элементов

— Подсчет частых элементов

(1) Фильтрация потоков данных

Фильтрация потоков данных

- Каждый элемент потока данных это кортеж (tuple)
- ullet Для данного набора ключей S
- ullet определить, какие кортежи из потока находятся в S
- Очевидное решение: хеш-таблица
 - Но предположим, что памяти для хранения всего S в хеш-таблице недостаточно

* Например, мы можем применять миллионы фильтров на одном и том же потоке

Приложения

- Пример: фильтрация спама в электронной почте
 - Мы знаем 1 миллиард «хороших» электронных адресов
 - Если сообщение пришло с одного из них, то это НЕ спам
- Системы publish-subscribe
 - Вы собираете много сообщений (новостных статей)

- Люди выражают заинтересованность в определенных наборах ключевых слов
- Определить, соответствует ли каждое сообщение интересам пользователя

Решение-«пробный дубль» (1)

- ullet По заданному наборку ключей S, которые требуется отфильтровать
- ullet создать побитовый массив B из n бит, изначально обнулив все элементы
- ullet Выбрать хеш-функцию h с областью значений [0,n)
- ullet Хешировать каждый элемент $s \in S$ в одну из n урн и положить этот бит равным 1, т.е. B[h(s)]=1

- ullet Хешировать каждый элемент a потока и выводить только те из них, которые хешируются в бит, равный 1
 - Выводить a, если B[h(a)] == 1

Решение-«пробный дубль» (2)

Вывести элемент, так как он может быть в S. Элемент хешируется в урну, в которую хешировался по меньшей мере один элемент из S.

Отбросить элемент. Он хешируется в урну с нулевым значением, поэтому он точно не содержится в S.

- Выдает ложноположительные результаты, но не ложноотрицательные
 - Если элемент находится в S, то он выводится обязательно, если нет, то он все равно может быть выведен

Решение-«пробный дубль» (3)

- |S| = 1 миллиард адресов электронной почты |B| = 1 GB = 8 миллиардов бит
- Если электронный адрес находится в |S|, он обязательно хешируется в урну с битом 1, поэтому он всегда подается на вывод (нет ложноотрицательных)
- Около 1/8 битов положены равными 1, поэтому около 1/8 адресов, не принадлежащих S, подаются на вывод (ложноположительные)

- В действительности, менее 1/8, так как в один и тот же бит может хешироваться более одного адреса

Анализ: метание дротиков (1)

- Более точный анализ числа ложноположительных результатов
- Рассмотрим: Если метать m дротиков в n равновероятных мишений, какова вероятность, что в мишень попадет хотя бы один дротик?
- В нашем случае:
 - Мишени = биты/урны
 - Дротики = хеш-значения элементов

Анализ: метание дротиков (2)

- ullet Дано m дротиков, n мишеней
- Какова вероятность того, что в мишень попадет хотя бы один дротик?

$$1 - (1 - 1/n)^m \to 1 - e^{-m/n}$$

Равно 1/e при $n \to \infty$

Вероятность непопадания дротика в некоторую ми- шень X

Вероятность попадания по меньшей мере одного дротика в мишень X

Анализ: метание дротиков (3)

- Доля единиц в массиве B= вероятности ложноположительного результата = $1-e^{-m/n}$
- \bullet Пример: 10^9 дротиков, $8 \cdot 10^9$ мишеней
 - Доля единиц в $B = 1 e^{-1/8} = 0.1175$
 - * Сравните с оценкой выше: 1/8 = 0.125

Фильтр Блума

- Рассмотрим: |S| = m, |B| = n
- ullet Используем k независимых хеш-функций h_1,\ldots,h_k .
- Инициализация:
 - Положить все B равными 0
 - Хешировать каждый элемент $s \in S$ с помощью хеш-функции h_i , положить $B[h_i(s)]=1$ (для каждого $i=1,\ldots,k$)

- Во время выполнения
 - При поступлении элемента потока с ключом \boldsymbol{x}
 - * Если $B[h_i(x)] = 1$ для всех $i = 1, \ldots, k$, то считать, что x содержится в S
 - \cdot То есть, x хешируется в урну со значением 1 для каждой хеш-функции $h_i(x)$
 - st В противном случае, отбросить элемент x

Фильтр Блума – Анализ

- ullet Какую долю побитового вектора B составляют единицы?
 - Метание $k \cdot m$ дротиков в n мишеней
 - Поэтому доля единиц $(1 e^{-km/n})$
- Но у нас k независимых хеш-функций, и элемент x пропускается, только если $\mathit{Bce}\ k$ хешируют элемент x в урну со значением 1
- Следовательно, вероятность ложноположительных = $(1 e^{-km/n})^k$.

Фильтр Блума - Анализ (2)

 \bullet m=1 миллиард, n=8 миллиардов

$$-k = 1$$
: $(1 - e^{-1/8}) = 0.1175$

$$-k = 2$$
: $(1 - e^{-1/4})^2 = 0.0493$

- ullet Что происходит при увеличении k?
 - «Оптимальное» значение k: $n/m \ln(2)$
 - * В нашем случае: Оптимальное $k = 8 \ln(2) = 5.54 \approx 6$

 \cdot Погрешность при k=6: $(1-e^{-1/6})^2=0.0235$

Фильтр Блума – Резюме

- Фильтры Блума гарантируют отсутствие ложноотрицательных и требуют ограниченный объем памяти
 - Подходит для предварительной обработки до более дорогостоящих проверок
- Подходит для реализации на аппаратном обеспечении
 - Вычисление хеш-функций может быть распараллелено

- ullet Что лучше: 1 большой B или k малых B?
 - Одинаково: $(1-e^{-km/n})^k$ против $(1-e^{-m/(n/k)})^k$
 - Но хранение одного большого B проще

Подсчет различных элементов

Подсчет различных элементов

- Задача:
 - Поток данных состоит из универсума элементов, выбранных из множества размера ${\cal N}$
 - Сохранять счетчик количества различных элементов, встречавшихся до этого момента
- Очевидный подход: Хранить множество встречавшихся элементов
 - То есть, хранить хеш-таблицу всех различных встречавшихся элементов

Приложения

- Сколько разных слов найдено в веб-страницах на сайте?
 - Необычайно малое или большое количество слов может означать искусственность страниц (спам?)
- Сколько различных веб-страниц клиент запрашивает в течение недели?
- Сколько различных продуктов продано в последнюю неделю?

Использование малого хранилища

- Настоящая задача: Что, если у нас нет места для хранения набора элементов, которые нам встречались?
- Оценить количество несмещенным образом
- Принять то, что в подсчете может быть небольшая погрешность, но поставить ограничение на вероятность того, что ошибка слишком большая

Подход Флажоле-Мартена

- ullet Выбрать хеш-функцию h, отображающую каждый из N элементов в не менее чем $\log_2 N$ бит
- Для каждого элемента потока a пусть r(a) количество хвостовых нулей в h(a)
 - -r(a)= позиция первой единицы, считая справа
 - * Например, если h(a) = 12, то 12 это 1100 в двоичной системе, поэтмоу r(a) = 2.
- Записать R = максимальный встреченный r(a)

 $-R = \max_a r(a)$ по всем пройденным элементам a

ullet Оценка количества различных элементов $=2^R$

Почему это работает: интуитивно

- Очень-очень приблизительная прикидка, почему алгоритм Флажоле-Мартена работает:
 - h(a) хэширует a с равной вероятностью в любую из N значений
 - Поэтому h(a) последовательность $\log_2 N$ бит, в которой 2^{-r} доля всех a имеют хвост длиной r нулей
 - * Около 50% *а* хешируются в * * *0
 - * Около 25% *а* хешируются в * * 00

- * Таким образом, если самый длинный встретившийся хвост равен r=2 (т.е., окончания хеша элемента *100), то, вероятно, мы встретили около 4 различных элементов
- Следовательно, требуется хешировать 2^r элементов до того, как нам встретится таковой с нулевым суффиксом длины r

Почему это работает: более формально

- Теперь покажем, почему алгоритм Флажоле-Мартена работает
- ullet С формальной точки зрения покажем, что вероятность нахождения хвоста из r нулей
 - Стремится к 1 при $m >> 2^r$
 - Стремится к 0 при $m << 2^r$

где m — количество различных элементов, встретившихся в потоке

$ullet$ Таким образом, 2^R почти всегда будет около) m!

Почему это работает: более формально

- Какова вероятность того, что данная h(a) заканчивается на не менее чем r нулей? 2^{-r}
 - $-\ h(a)$ хеширует элементы равномерно случайным огбразом
 - Вероятность того, что случайное число оканчивается на не менее чем r нулей 2^{-r}
- Тогда вероятность НЕ встретить хвост длины r среди m элементов:

$$(1-2^{-r})^m$$

Почему это работает: более формально

• Заметим:
$$(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$$

- Вероятность НЕ встретить хвост длины r:
 - Если $m << 2^r$, то вероятсность стремится к 1

$$* (1-2^{-r})^m \approx e^{-m2^{-r}} = 1$$
 при $m/2^r \to 0$

- * Следовательно, вероятность встретить хвост длины r стремится к 0
- Если $m>>2^r$, то вероятность стремится к 0

$$* (1-2^{-r})^m pprox e^{-m2^{-r}} = 0$$
 при $m/2^r o \infty$

st Следовательно, вероятность встретить хвост длины r стремится к 1

ullet Таким образом, 2^R будет почти всегда около m!

Почему это не работает

- \bullet $E[2^R]$ в действительности бесконечно
 - Вероятность уменьшается в два раза, когда $R \to R+1$, но значение удваивается
- Обходные пути задействуют использование множества хеш-функций h_i и получения множества выборок R_i
- ullet Как выборки R_i комбинируются?
 - Среднее? Что, если одно очень большое значение 2^{R_i} ?

- Медиана? Все оценки степени числа 2
- Решение
 - * Разбить ваши выборки на малые группы
 - * Взять медиану групп
 - * Затем взять среднее медиан

(3) Вычисление моментов

Обобщение: моменты

- ullet Пусть в потоке есть элементы, выбираемые из множества A из N значений
- Пусть m_i число раз, когда значение i встречается в потоке
- k-й момент это

$$\sum_{i \in A} (m_i)^k$$

Частные случаи

$$\sum_{i \in A} (m_i)^k$$

- 0-й момент = число различных элементов
 - Только что рассмотренная задача
- 1-й момент = count of the numbers of elements = длина потока
 - Легко вычислить
- ullet 2-й момент = surprise number S= мера того, насколько распределение неравномерно

Пример: Surprise Number

• Поток длины 100

• 11 различных значений

• Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise S = 910

• Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise S = 8110

Метод AMS

- Метод AMS годится для всех моментов
- Дает несмещенную оценку
- ullet Мы сосредоточимся на втором моменте S
- Мы выбираем и следим за многими величинами X:
 - Для каждой величины X сохраняем X.el и X.val
 - *~X.el соответствует элементу i

- *~X.val соответсвует счетчику элемента i
- Заметим, что это требует, чтобы счетчик был в оперативной памяти, поэтому количество X'ов ограничено
- ullet Наша цель вычислить $S=\sum_i m_i^2$

Одна случайная величина (X)

- ullet Чему положить X.val и X.el?
 - Пусть поток имеет длину n (ослабим это условие позже)
 - Выбрать случайный момент времени $t\ (t < n)$ для начала, так чтобы любой момент времени был одинаково вероятен
 - Пусть в момент времени t поток имеет элемент i. Положить X.el = i.
 - Затем мы храним счетчик c (X.val=c) числа значений i в потоке начиная с выбранного момента времени t

ullet Тогда оценка второго момента $(\sum_i m_i^2)$ равна:

$$S = f(X) = n(2 \cdot c - 1)$$

— Отметим, что мы храним множество X ов (X_1, X_2, \ldots, X_k) и наша окончательная оценка будет $S=1/k\sum_j^k f(X_j)$

Анализ мат. ожидания

- ullet Второй момент $S=\sum_i m_i^2$
- c_t, \ldots сколько раз элемент в момент времени t появляется начиная с момента времени t ($c_1 = m_a, c_2 = m_a 1, c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1) = \frac{1}{n} \sum_{i=1}^{n} n(1 + 3 + 5 + \dots + 2m_i 1)$

Анализ мат. ожидания

•
$$E[f(X)] = \frac{1}{n} \sum_{i} n(1+3+5+\ldots+2m_i-1)$$

— Небольшое стороннее вычисление: $(1+3+5+\ldots+2m_i-1)=$

$$\sum_{i=1}^{m_i} (2i-1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2$$

- Тогда $E[f(X)] = \frac{1}{n} \sum_i n(m_i)^2$
- Следовательно, $E[f(X)] = \sum_{i} (m_i)^2 = S$

• Получаем второй момент (в смысле мат. ожидания)!

Моменты высших порядков

- Для оценки k-го момента используем по существу тот же алгоритм, но заменяем оценку:
 - Для k=2 было $n(2\cdot c-1)$
 - Для k=3 используем: $n(3 \cdot c^2 3c + 1)$ (где c=X.val)
- Почему?
 - Для k=2: Вспомним, что у нас было $(1+3+5+\ldots+2m_i-1)$ и мы показали, что члены c2-1 (для $c=1,\ldots,m$) в сумме дают m^2

*
$$\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c-1)^2 = m^2$$

* Следовательно:
$$2c-1=c^2-(c-1)^2$$

- Для
$$k = 3$$
: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

• В общем случае: Оценка $= n(c^k - (c-1)^k)$

Комбинация выборок

- На практике:
 - Вычислить f(X) = n(2c-1) для стольких переменных X, сколько поместится в памяти
 - Усреднить их по группам
 - Взять медиану средних
- Задача: Потоки бесконечны
 - Предполагалось, что существует число n, число позиций в потоке

— Но реальные потоки продолжаются бесконечно, так что n — это переменная — число полученных входных данных

Потоки бесконечны: корректировки

- (1) Величины X имеют n в качестве множителя хранить n отдельно; просто храним счетчик в X
- (2) Пусть можно хранить только k счетчиков. Мы должны выбрасывать некоторые X с течением времени:
 - Цель: Каждое начальное время t выбирается с вероятностью k/n
 - Решение: (выборка фиксированного объема!)

- st Выбрать первые k моментов времени для k величин
- * При поступлении n-го элемента (n>k), включить его в выборку с вероятностью k/n
- st Если элемент включен в выборку, выбросить одну из хранящихся величин X, с равной вероятностью

Подсчет наборов элементов

Подсчет наборов элементов

- Новая задача: Дан поток; какие элементы появляются чаще, чем s раз в окне?
- Возможное решение: Представлять себе поток урн как один бинарный поток на элемент
 - -1 = элемент есть; 0 = элемента нет
 - Использовать DGIM, чтобы оценить количество единиц во всех элементах

Обобщения

- В принципе, можно подсчитать частые пары или более большие наборы одинаковым образом
 - Один поток на набор элементов
- Недостатки:
 - Только приблизительно
 - Количество наборов элементов слишком ве лико

Экспоненциально затухающие окна

- Экспоненциально затухающие окна: Эвристика для выбора вероятных частых (наборов) элементов
 - Какие наиболее популярные фильмы «в текущий момент»
 - * Вместо вычисления количества среди последних N элементов «в лоб»
 - * Вычислить гладкое объединение по всему потоку

• Если поток — это a_1, a_2, \ldots , и мы берем сумму потока, взять за ответ в момент времени t:

$$\sum_{i=1}^{t} a_i (1-c)^{t-i}$$

- $-\ c$ константа, предположительно очень малая, порядка 10^{-6} или 10^{-9}
- ullet При поступлении нового a_{t+1} : Умножить текущую сумму на (1-c) и добавить a_{t+1}

Пример: подсчет элементов

- Если каждый a_i «элемент», можно вычислить характеристическую функцию каждого возможного элемента x в виде экспоненциально затухающего окна
 - То есть: $\sum_{i=1}^t \delta_i \cdot (1-c)^{t-i}$ где $\delta_i=1$, если $a_i=x$, и 0 в противном случае
 - Предположим, что для каждого элемента x у нас есть бинарный поток (1, если x встречается, 0, если x не встречается)
 - Поступает новый элемент x:

- * Умножить все счетчики на (1-c)
- st Добавить +1 к счетчику для элемента x

ullet Назовем эту сумму «весом» элемента x

Скользящие и затухающие окна

ullet Важное свойство: Сумма по всем весам $\sum_t (1-c)^t$ равна 1/[1-(1-c)] = 1/c

Пример: подсчет элементов

- Какие фильмы наиболее популярны «в данный момент»?
- ullet Пусть хотим найти фильмы с весом $> rac{1}{2}$
 - Важное свойство: Сумма по всем весам $\sum_t (1-c)^t$ равна 1/[1-(1-c)] = 1/c
- Таким образом:
 - Не может существовать более 2/c фильмов с весом $\frac{1}{2}$ или больше

ullet Следовательно, 2/c — граница числа фильмов, подсчитываемых в любой момент времени

Обобщение на набор элементов

- Посчитать (некоторые) наборы элементов в E.D.W.
 - Какие наборы элементы наиболее популярны в настоящий момент?
 - * Проблема: Слишком много наборов элементов для того, чтобы хранить счетчики их всех в памяти
- \bullet Когда поступает урна B:
 - Умножить все счетчики на (1-c)

- Для неподсчитанных элементов B создать новый счетчик
- Добавить 1 к счетчику любого элемента B и любого набора элементов, содержащихся в B, которые уже подсчитываются
- Удалить счетчики $< \frac{1}{2}$
- Инициализировать новые счетчики (следующий слайд)

Инициализация новых счетчиков

- Создать счетчик для набора множеств $S \subseteq B$, если каждое собственное подмножество S имело счетчик до поступления в урну B
 - Интуитивно: Если все подмножества S подсчитываются, это значит, что он «частые/популярные», и поэтому у S есть потенциал быть «популярным»

• Пример:

— Начинаем подсчитывать $S = \{i,j\}$ ттогда i и j подсчитывались до того, как мы встретили B

— Начинаем подсчитывать $S = \{i, j, k\}$ ттогда $\{i, j\}$, $\{i, k\}$ и $\{j, k\}$ все подсчитывались того, как мы встретили B

Сколько счетчиков нужно?

- Счетчики для единственных элементов $<(2/c)\cdot$ среднее количество элементов в урне
- Счетчики для более больших наборов элементов
 ??
- Но мы остаемся консервативными о начальных счетчиках больших наборов
 - Если бы мы подсчитывали каждый набор, который нам встретился, одна урна из 20 элементов инициализировала бы 1 М счетчиков