

05-May-2022

Jeff Lampi City of Escanaba WWTP P.O. Box 948 Escanaba, MI 49829

Re: Sludge Analyses Work Order: 22042243

Dear Jeff,

ALS Environmental received 1 sample on 26-Apr-2022 09:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 28.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Julienn Williams

Juliann C. Willia

Julienn Williams Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 05-May-22

Client: City of Escanaba WWTP

Project: Sludge Analyses Work Order Sample Summary

Work Order: 22042243

Lab Samp IDClient Sample IDMatrixTag NumberCollection DateDate ReceivedHold22042243-01Tank #5 BiosolidsSludge4/25/2022 11:204/26/2022 09:00\Box

Date: 05-May-22

Client: City of Escanaba WWTP

Project: Sludge Applyage

QUALIFIERS,

Project: Sludge Analyses
WorkOrder: 22042243

ACRONYMS, UNITS

Date: 05-May-22 ALS Group, USA

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n ND	Analyte accreditation is not offered
ND O	Not Detected at the Reporting Limit Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reporte	ed Description
% of sample	Percent of Sample

Milligrams per Kilogram Dry Weight mg/Kg-dry

Client: City of Escanaba WWTP

Project: Sludge Analyses Case Narrative

Work Order: 22042243

The attached "Sample Receipt Checklist" documents the date of receipt, status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. A copy of the laboratory's scope of accreditation is available upon request.

Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

Any flags on MS/MSD samples not addressed in this narrative are unrelated to samples in this report.

With the following exceptions, all sample analyses achieved analytical criteria.

Batch 195481, Method D7968-17a, Sample Tank #5 Biosolids (22042243-01A): One or more surrogate recoveries were below the lower control limits. The sample results may be biased low. 13C2-PFTeA

Batch 195481, Method D7968-17a, Sample Tank #5 Biosolids (22042243-01A): Surrogate high due to matrix interference. d5-NEtFOSAA

Batch 195481, Method D7968-17a, Sample LCSD2-195481: The RPD between the LCS2 and LCSD2 was outside of the control limit. The sample results should be considered estimated for this analyte: FTS 8:2

Client: City of Escanaba WWTP

Project:Sludge AnalysesWork Order:22042243Sample ID:Tank #5 BiosolidsLab ID:22042243-01Collection Date:4/25/2022 11:20 AMMatrix:SLUDGE

Date: 05-May-2022

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471E	P r	ep: SW7471 5/2/22 13:01	Analyst: EJC
Mercury	1.9		0.32	mg/Kg-dr	y 1	5/2/2022 05:22 PM
METALS BY ICP-MS			SW6020E	P r	ep: SW3050B 5/3/22 08:04	Analyst: DSC
Arsenic	6.3		0.78	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Barium	320		6.5	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Cadmium	ND		1.3	mg/Kg-dry	1	5/3/2022 10:49 PM
Calcium	32,000		130	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Chromium	90		13	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Copper	750		6.5	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Lead	32		2.6	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Magnesium	3,800		26	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Molybdenum	14		6.5	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Nickel	21		6.5	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Potassium	1,400	В	26	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Selenium	5.4		1.8	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Silver	2.9		0.65	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Sodium	1,900		65	mg/Kg-dr	y 1	5/3/2022 10:49 PM
Zinc	1,000		6.5	mg/Kg-dr	y 1	5/3/2022 10:49 PM
PFAS BY LC-MS-MS			D7968-17	' A Pr	ep: D7968-17a 4/28/22 17:1	0 Analyst: ENS
Perfluorobutanoic Acid (PFBA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluoropentanoic Acid (PFPeA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorohexanoic Acid (PFHxA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluoroheptanoic Acid (PFHpA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorooctanoic Acid (PFOA)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorononanoic Acid (PFNA)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorodecanoic Acid (PFDA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluoroundecanoic Acid (PFUnA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorododecanoic Acid (PFDoA)	ND		2,200	ng/Kg-dry	1	5/4/2022 03:09 AM
Perfluorotridecanoic Acid (PFTriA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorotetradecanoic Acid (PFTeA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorobutanesulfonic Acid (PFBS)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluoropentanesulfonic Acid (PFPeS)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorohexanesulfonic Acid (PFHxS)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorooctanesulfonic Acid (PFOS)	3,600		440	ng/Kg-dry	, 1	5/3/2022 01:55 AM
Perfluorononanesulfonic Acid (PFNS)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorodecanesulfonic Acid (PFDS)	840		440	ng/Kg-dry	, 1	5/3/2022 01:55 AM
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: City of Escanaba WWTP

Project:Sludge AnalysesWork Order:22042243Sample ID:Tank #5 BiosolidsLab ID:22042243-01Collection Date:4/25/2022 11:20 AMMatrix:SLUDGE

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Perfluorooctanesulfonamide (PFOSA)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
N- Ethylperfluorooctanesulfonamidoacetic Acid	2,800		2,200	ng/Kg-dry	1	5/4/2022 03:09 AM
N-	6,700		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Methylperfluorooctanesulfonamidoaceti c Acid						
11CI-Pf3OUdS	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
9CI-PF3ONS	ND		440	ng/Kg-dry	1	5/3/2022 01:55 AM
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND		2,200	ng/Kg-dry	1	5/3/2022 01:55 AM
Surr: 13C4-PFBA	90.8		50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C5-PFPeA	95.9		50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-PFHxA	91.8		50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C4-PFHpA	95.0		50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C4-PFOA	105		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C5-PFNA	114		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-PFDA	118		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-PFUnA	118		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-PFDoA	70.1		70-130	%REC	1	5/4/2022 03:09 AM
Surr: 13C2-PFTeA	6.77	S	50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C3-PFBS	77.2		50-130	%REC	1	5/3/2022 01:55 AM
Surr: 1802-PFHxS	81.4		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C4-PFOS	83.6		70-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-FtS 4:2	204	S	50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-FtS 6:2	350	S	50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C2-FtS 8:2	278	S	50-130	%REC	1	5/3/2022 01:55 AM
Surr: 13C8-FOSA	64.8		50-130	%REC	1	5/3/2022 01:55 AM
Surr: d3-N-MeFOSAA	118		50-130	%REC	1	5/3/2022 01:55 AM
Surr: d5-N-EtFOSAA	140	S	50-130	%REC	1	5/4/2022 03:09 AM
Surr: 13C3-HFPO-DA	73.2		50-130	%REC	1	5/3/2022 01:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW9056A	A Prep	EXTRACT 4/29/22 16:17	Analyst: QTN
Chloride	2,600		180	mg/Kg-dry	1	4/30/2022 03:46 AM
MOISTURE			SW35500			Analyst: ALG
Moisture	94		0.10	% of sample	e 1	4/28/2022 03:05 PM
AMMONIA AS NITROGEN (DISTILLED)			A4500-NI	H3 G-11 Prep	o: A4500-NH3 B 5/2/22 13:14	⁴ Analyst: JMT

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 05-May-2022

Client: City of Escanaba WWTP

Project: Sludge Analyses Work Order: 22042243

Sample ID: Tank #5 Biosolids Lab ID: 22042243-01

Collection Date: 4/25/2022 11:20 AM Matrix: SLUDGE

Analyses	Result Qual	Report Limit Units	Dilution Factor	Date Analyzed
Ammonia as Nitrogen	14,000	4,900 mg NH dry	13-N/Kg- 20	5/2/2022 03:12 PM
PHOSPHORUS, TOTAL		E365.1 R2.0	Prep: E365.1 R2.0 4/29/2	2 10:50 Analyst: JMT
Phosphorus, Total	23,000	8,200 mg/Kg	-dry 20	5/3/2022 06:37 PM

Date: 05-May-2022

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 05-May-22

Client: City of Escanaba WWTP

Work Order: 22042243
Project: Sludge Analyses

Batch ID: 195598	Instrument ID HG4	1		Method	d: SW747	1B					
MBLK	Sample ID: MBLK-1955	98-195598	3			Units: mg/	Kg	Analysis	s Date: 5/2/	2022 04:4	6 PM
Client ID:		Run ID	: HG4_22	20502A		SeqNo: 838 6	0890	Prep Date: 5/2/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		ND	0.020								
LCS	Sample ID: LCS-195598	-195598				Units: mg/	Kg	Analysis	s Date: 5/2/	2022 04:4	8 PM
Client ID:		Run ID	: HG4_2	20502A		SeqNo: 838 (0891	Prep Date: 5/2/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	(0.1725	0.020	0.1665		0 104	80-120	0			
MS	Sample ID: 22042336-0 3	3AMS				Units: mg/	Kg	Analysis	s Date: 5/2/	2022 05:3	6 PM
Client ID:		Run ID	: HG4_2	20502A		SeqNo: 838 (0917	Prep Date: 5/2/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.173	0.018	0.1516	0.0185	3 102	75-125	0			
MSD	Sample ID: 22042336-0 3	3AMSD				Units: mg/	Kg	Analysis	s Date: 5/2/	2022 05:3	8 PM
Client ID:		Run ID	: HG4_2	20502A		SeqNo: 838 (0918	Prep Date: 5/2/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.1748	0.018	0.1518	0.0185	3 103	75-125	0.173	1.03	35	

Client: City of Escanaba WWTP

Work Order: 22042243
Project: Sludge Analyses

Batch ID: 195633 Instrument ID ICPMS4 Method: SW6020B

MBLK	Sample ID: MBLK-1956	33-195633	3			Units: mg/	Kg	Analys	is Date: 5/3	/2022 09:5	59 PM
Client ID:		Run ID	: ICPMS4	1_220503B		SeqNo: 8385833		Prep Date: 5/3/2022		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic		ND	0.25								
Barium		ND	0.25								
Cadmium		ND	0.10								
Calcium		ND	25								
Chromium		ND	0.25								
Copper		ND	0.25								
Lead		ND	0.25								
Magnesium		ND	10								
Molybdenum		ND	0.25								
Nickel		ND	0.25								
Potassium		ND	10								
Selenium		ND	0.25								
Silver		ND	0.25								
Sodium		ND	15								
Zinc		ND	0.50								

LCS	Sample ID: LCS-195633	ample ID: LCS-195633-195633							Analysis Date: 5/3/2022 10:01 PM			
Client ID:		Run ID	ICPMS4	_220503B		Se	qNo: 8385	834	Prep Date: 5/3/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic		4.844	0.25	5		0	96.9	80-120	0			
Barium		5.067	0.25	5		0	101	80-120	0			
Cadmium		4.947	0.10	5		0	98.9	80-120	0			
Calcium		516.8	25	500		0	103	80-120	0			
Chromium		5.044	0.25	5		0	101	80-120	0			
Copper		4.999	0.25	5		0	100	80-120	0			
Lead		4.957	0.25	5		0	99.1	80-120	0			
Magnesium		507.6	10	500		0	102	80-120	0			
Molybdenum		4.963	0.25	5		0	99.3	80-120	0			
Nickel		4.97	0.25	5		0	99.4	80-120	0			
Potassium		515.8	10	500		0	103	80-120	0			
Selenium		4.767	0.25	5		0	95.3	80-120	0			
Silver		4.776	0.25	5		0	95.5	80-120	0			
Sodium		505.2	15	500		0	101	80-120	0			
Zinc		4.995	0.50	5		0	99.9	80-120	0			

Client: City of Escanaba WWTP

Work Order: 22042243
Project: Sludge Analyses

Batch ID: 195633 Instrument ID ICPMS4 Method: SW6020B

MS	Sample ID: 22042162-21CMS				Units: mg/	Kg	Analysi	s Date: 5/3	/2022 10:2	26 PM
Client ID:	Ru	n ID: ICPMS	4_220503B	Se	eqNo: 838	5848	Prep Date: 5/3	/2022	DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	8.413	3 0.37	7.418	1.109	98.5	75-125	C)		
Barium	13.49	0.37	7.418	4.698	118	75-125	C)		
Cadmium	7.116	0.15	7.418	0.01109	95.8	75-125	C)		
Calcium	1356	37	741.8	490.3	117	75-125	C)		
Chromium	9.554	0.37	7.418	1.655	106	75-125	C)		
Copper	8.086	0.37	7.418	0.6795	99.8	75-125	C)		
Lead	9.41	0.37	7.418	2.038	99.4	75-125	C)		
Magnesium	1195	5 15	741.8	365.8	112	75-125	C)		
Molybdenum	7.367	0.37	7.418	0.0745	98.3	75-125	C)		
Nickel	9.01	0.37	7.418	1.375	103	75-125	C)		
Potassium	926.1	15	741.8	71.7	115	75-125	C)		
Selenium	7.12	0.37	7.418	-0.04946	96.6	75-125	C)		
Silver	6.944	0.37	7.418	0.001628	93.6	75-125	C)		
Sodium	769.2	2 22	741.8	13.89	102	75-125	C	1		
Zinc	12.47	0.74	7.418	4.483	108	75-125	C)		

MSD	Sample ID: 22042162-21CN	ISD			Units: mg/	/Kg	Analysis Date: 5/3/2022 10:28 PM			
Client ID:	F	Run ID: ICPM	S4_220503B	S	eqNo: 838	5849	Prep Date: 5/3/	2022	DF: 1	
Analyte	Res	ult PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	8.1	67 0.38	7.53	1.109	93.7	75-125	8.413	2.97	20	
Barium	12.	54 0.38	7.53	4.698	104	75-125	13.49	7.27	20	
Cadmium	6.9	61 0.15	7.53	0.01109	92.3	75-125	7.116	2.21	20	
Calcium	12	83 38	3 753	490.3	105	75-125	1356	5.55	20	
Chromium	9.1	12 0.38	7.53	1.655	99	75-125	9.554	4.73	20	
Copper	7.8	29 0.38	7.53	0.6795	94.9	75-125	8.086	3.24	20	
Lead	8.9	53 0.38	7.53	2.038	91.8	75-125	9.411	4.98	20	
Magnesium	11	28 15	753	365.8	101	75-125	1195	5.8	20	
Molybdenum	7.1	58 0.38	7.53	0.0745	94.1	75-125	7.367	2.88	20	
Nickel	8.7	51 0.38	7.53	1.375	98	75-125	9.011	2.92	20	
Potassium	883	3.4 15	753	71.7	108	75-125	926.1	4.72	20	
Selenium	6.8	27 0.38	7.53	-0.04946	91.3	75-125	7.12	4.21	20	
Silver	6.8	57 0.38	7.53	0.001628	91	75-125	6.944	1.26	20	
Sodium	74	7.9 23	753	13.89	97.5	75-125	769.2	2.81	20	
Zinc	11.	85 0.75	7.53	4.483	97.8	75-125	12.47	5.12	20	

The following samples were analyzed in this batch:

22042243-01B

Client: City of Escanaba WWTP

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

MBLK1	Sample ID: MBLK1-	195481-1954	B1			U	Inits: ng/k	(g	Analysis Date: 5/3/2022 12:23 AM			
Client ID:		Run ID	: LCMS1	_220502C		Se	qNo: 838 1	1764	Prep Date: 4/2	8/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Perfluorobutanoic A	\cid (DERA)	ND	120	0		0	0		0			
Perfluoropentanoic	,	ND	120	0		0	0		0			
Perfluorohexanoic	,	ND	120	0		0	0		0			
Perfluoroheptanoic		ND	120	0		0	0		0			
Perfluorooctanoic A		ND	25	0		0	0		0			
Perfluorononanoic	,	ND	25	0		0	0		0			
Perfluorodecanoic	, ,	ND	120	0		0	0		0			
Perfluoroundecano		ND	120	0		0	0		0)		
Perfluorododecano	, ,	ND	120	0		0	0		0			
Perfluorotridecanoi	, ,	ND	120	0		0	0		0			
Perfluorotetradecar		ND	120	0		0	0		0			
Perfluorobutanesul	` ,	ND	25	0		0	0		0)		
Perfluoropentanesu	ulfonic Acid (PFPeS	ND	25	0		0	0		0)		
Perfluorohexanesul	lfonic Acid (PFHxS)	ND	120	0		0	0		0)		
Perfluoroheptanesu	ulfonic Acid (PFHpS	ND	120	0		0	0		0)		
Perfluorooctanesult	fonic Acid (PFOS)	ND	25	0		0	0		0)		
Perfluorononanesu	Ifonic Acid (PFNS)	ND	120	0		0	0		0	1		
Perfluorodecanesul	Ifonic Acid (PFDS)	ND	25	0		0	0		0)		
Fluorotelomer Sulp	honic Acid 4:2 (FtS	ND	120	0		0	0		0)		
Fluorotelomer Sulp	honic Acid 6:2 (FtS	ND	120	0		0	0		0)		
Fluorotelomer Sulp	honic Acid 8:2 (FtS	ND	120	0		0	0		0)		
Perfluorooctanesulf	fonamide (PFOSA)	ND	25	0		0	0		0	1		
N-Ethylperfluorooct	tanesulfonamidoace	ND	120	0		0	0		0)		
N-Methylperfluoroo	ctanesulfonamidoa	ND	120	0		0	0		0)		
11CI-Pf3OUdS		ND	25	0		0	0		0)		
	uorononanoic Acid (ND	25	0		0	0		0	1		
9CI-PF3ONS		ND	25	0		0	0		0)		
Hexafluoropropylen		ND	120	0		0	0		0			
Surr: 13C4-PFBA		447.2	0	400		0	112	50-130				
Surr: 13C5-PFP6		402	0	400		0	101	50-130				
Surr: 13C2-PFH		393.5	0	400		0	98.4	50-130				
Surr: 13C4-PFH		405.1	0	400		0	101	50-130				
Surr: 13C4-PFO		458.7	0	400		0	115	70-130				
Surr: 13C5-PFN/		469 466	0	400		0	117	70-130				
Surr: 13C2-PFD/		466 460 6	0	400		0	116	70-130				
Surr: 13C2-PFUI		469.6 406.7	0	400		0	117	70-130				
Surr: 13C2-PFT6		406.7 370.4	0	400 400		0	102	50-130 50-130				
Surr: 13C3-PFBS		424.3	0	400 378		0	92.6 112	50-130 70-130				
Surr: 1802-PFH: Surr: 13C4-PFO:		383.9	0	378 383		0	100					
Surr: 13C2-FtS 4		308.6	0	373		0	82.7	70-130 50-130				
Surr: 13C2-FtS 6		348.4	0	373		0	02.7 91.7	50-130				

Work Order: 22042243

Project: Sludge Analyses

QC BATCH REPORT	Γ
-----------------	---

Batch ID: 195481	Instrument ID LCMS1		Method:	D7968-17a				
Surr: 13C2-FtS 8:2	311.5	0	383	0	81.3	50-130	0	
Surr: 13C8-FOSA	400.4	0	400	0	100	50-130	0	
Surr: d3-N-MeFOSAA	435.2	0	400	0	109	50-130	0	
Surr: 13C3-HFPO-DA	357.5	0	400	0	89.4	50-130	0	

Client: City of Escanaba WWTP

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

MBLK2	Sample ID: MBLK2-	195481-19548	B1			U	Jnits: ng/k	(g	Analysi	s Date: 5/3	/2022 12:4	40 AM
Client ID:		Run ID	: LCMS1	_220502C		Se	qNo: 838 ′	1766	Prep Date: 4/2	8/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Perfluorobutanoic A	Acid (PFBA)	ND	120	0		0	0		()		
Perfluoropentanoic	,	ND	120	0		0	0		(
Perfluorohexanoic	, ,	ND	120	0		0	0		(
Perfluoroheptanoic	,	ND	120	0		0	0		(
Perfluorooctanoic A	` ' /	ND	25	0		0	0		()		
Perfluorononanoic	Acid (PFNA)	ND	25	0		0	0		()		
Perfluorodecanoic	,	ND	120	0		0	0		()		
Perfluoroundecano		ND	120	0		0	0		()		
Perfluorododecano	oic Acid (PFDoA)	ND	120	0		0	0		()		
Perfluorotridecanoi	, ,	ND	120	0		0	0		(
Perfluorotetradeca	,	ND	120	0		0	0		()		
Perfluorobutanesul	Ifonic Acid (PFBS)	ND	25	0		0	0		()		
	ulfonic Acid (PFPeS	ND	25	0		0	0		()		
Perfluorohexanesu	Ilfonic Acid (PFHxS)	ND	120	0		0	0		()		
Perfluoroheptanesi	ulfonic Acid (PFHpS	ND	120	0		0	0		()		
Perfluorooctanesul	fonic Acid (PFOS)	ND	25	0		0	0		()		
Perfluorononanesu	Ilfonic Acid (PFNS)	ND	120	0		0	0		()		
Perfluorodecanesu	Ilfonic Acid (PFDS)	ND	25	0		0	0		()		
Fluorotelomer Sulp	honic Acid 4:2 (FtS	ND	120	0		0	0		()		
	honic Acid 6:2 (FtS	ND	120	0		0	0		()		
Fluorotelomer Sulp	honic Acid 8:2 (FtS	ND	120	0		0	0		()		
Perfluorooctanesul	fonamide (PFOSA)	ND	25	0		0	0		()		
N-Ethylperfluorooc	tanesulfonamidoace	ND	120	0		0	0		()		
N-Methylperfluoroo	octanesulfonamidoa	ND	120	0		0	0		()		
11CI-Pf3OUdS		ND	25	0		0	0		()		
4,8-Dioxa-3H-perflu	uorononanoic Acid (ND	25	0		0	0		()		
9CI-PF3ONS	·	ND	25	0		0	0		()		
Hexafluoropropyler	ne oxide dimer acid	ND	120	0		0	0		()		
Surr: 13C4-PFB	A	423.9	0	400		0	106	50-130	()		
Surr: 13C5-PFP	eA	432.2	0	400		0	108	50-130	()		
Surr: 13C2-PFH.	×Α	413.9	0	400		0	103	50-130	()		
Surr: 13C4-PFH	pΑ	419.1	0	400		0	105	50-130	()		
Surr: 13C4-PFO	Α	448.7	0	400		0	112	70-130	()		
Surr: 13C5-PFN.	Α	443.1	0	400		0	111	70-130	()		
Surr: 13C2-PFD	A	463.5	0	400		0	116	70-130	()		
Surr: 13C2-PFU	'nA	497.7	0	400		0	124	70-130	()		
Surr: 13C2-PFTe	eA	393.8	0	400		0	98.5	50-130	()		
Surr: 13C3-PFB	S	386	0	400		0	96.5	50-130	()		
Surr: 1802-PFH	'xS	339.2	0	378		0	89.7	70-130	()		
Surr: 13C4-PFO	S	390.9	0	383		0	102	70-130	()		
Surr: 13C2-FtS 4	4:2	326.7	0	373		0	87.6	50-130	()		
Surr: 13C2-FtS 6		349.5	0	380		0	92	50-130				

413

0

400

Work Order: 22042243

Surr: 13C3-HFPO-DA

Project: Sludge Analyses

	<u> </u>						
Batch ID: 195481	Instrument ID LCMS1		Method:	D7968-17a			
Surr: 13C2-FtS 8:2	335.5	0	383	0	87.6	50-130	0
Surr: 13C8-FOSA	446.8	0	400	0	112	50-130	0
Surr: d3-N-MeFOSAA	493.5	0	400	0	123	50-130	0

0

103

50-130

QC BATCH REPORT

0

Client: City of Escanaba WWTP

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

LCSD2	Sample ID: LCSD2-	195481-19548	B1			l	Jnits: ng/k	(g	Analysis	Date: 5/3/	2022 01:0	5 AM
Client ID:		Run ID	: LCMS1	_220502C		Se	qNo: 838 ′	1769	Prep Date: 4/28	/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Perfluorobutanoic.	Acid (PFBA)	557.3	120	500		0	111	50-130	521.4	6.66	30	
Perfluoropentanoio	,	576.5	120	500		0	115	70-130	580.7	0.716	30	
Perfluorohexanoic	, ,	496.9	120	500		0	99.4	50-130	494.5	0.485	30	
Perfluoroheptanoio	,	518.3	120	500		0	104	50-130	539.2	3.96	30	
Perfluorooctanoic		575.8	25	500		0	115	70-130	548.4	4.87	30	
Perfluorononanoic	Acid (PFNA)	603.9	25	500		0	121	70-130	570.6	5.67	30	
Perfluoroundecand	pic Acid (PFUnA)	706.9	120	500		0	141	70-130	626.6	12.1	30	S
Perfluorododecano	oic Acid (PFDoA)	571.8	120	500		0	114	70-130	569.3	0.444	30	
Perfluorotridecano	ic Acid (PFTriA)	671.4	120	500		0	134	70-130	539.9	21.7	30	S
Perfluorotetradeca	noic Acid (PFTeA)	526.8	120	500		0	105	70-130	459.5	13.7	30	
Perfluorobutanesu	Ifonic Acid (PFBS)	427.2	25	442		0	96.6	70-130	396.2	7.52	30	
Perfluoropentanes	ulfonic Acid (PFPeS	513.9	25	469		0	110	70-130	484.2	5.94	30	
Perfluorohexanesu	Ilfonic Acid (PFHxS)	483.1	120	455		0	106	70-130	471.4	2.45	30	
Perfluoroheptanes	ulfonic Acid (PFHpS	443	120	476		0	93.1	70-130	461.6	4.12	30	
Perfluorooctanesu	Ifonic Acid (PFOS)	509.7	25	464		0	110	70-130	458	10.7	30	
Perfluorononanesu	ulfonic Acid (PFNS)	516.6	120	480		0	108	70-130	461	11.4	30	
Perfluorodecanesu	Ilfonic Acid (PFDS)	466.7	25	482		0	96.8	70-130	413.7	12	30	
Fluorotelomer Sulp	phonic Acid 4:2 (FtS	508.3	120	467		0	109	70-130	422.8	18.4	30	
Fluorotelomer Sulp	phonic Acid 6:2 (FtS	531.1	120	474		0	112	70-130	583.6	9.42	30	
Fluorotelomer Sulp	phonic Acid 8:2 (FtS	617.8	120	479		0	129	70-130	450.6	31.3	30	R
Perfluorooctanesu	lfonamide (PFOSA)	494.7	25	500		0	98.9	70-130	497.4	0.546	30	
N-Ethylperfluorood	tanesulfonamidoace	647.6	120	500		0	130	70-130	648.5	0.139	30	
N-Methylperfluoroo	octanesulfonamidoa	575.9	120	500		0	115	70-130	600.2	4.13	30	
11CI-Pf3OUdS		568.9	25	471		0	121	70-130	572.7	0.66	30	
4,8-Dioxa-3H-perfl	uorononanoic Acid (483.3	25	471		0	103	70-130	459.2	5.12	30	
9CI-PF3ONS		542.8	25	466		0	116	70-130	531.4	2.12	30	
Hexafluoropropyle	ne oxide dimer acid	433.2	120	500		0	86.6	50-130	531.1	20.3	30	
Surr: 13C4-PFB	Α	404.9	0	400		0	101	50-130	402.6	0.574	30	
Surr: 13C5-PFP	'eA	421.2	0	400		0	105	50-130	403.6	4.28	30	
Surr: 13C2-PFH	/xA	402.4	0	400		0	101	50-130	419.3	4.11	30	
Surr: 13C4-PFH	•	448.4	0	400		0	112	50-130		2.5	30	
Surr: 13C4-PFC		441.1	0	400		0	110	70-130		3.87	30	
Surr: 13C5-PFN		468.2	0	400		0	117	70-130		8.49	30	
Surr: 13C2-PFD		489.9	0	400		0	122	70-130		2.76	30	
Surr: 13C2-PFU		505.2	0	400		0	126	70-130		15.5	30	
Surr: 13C2-PFT		372.1	0	400		0	93	50-130		16.9	30	
Surr: 13C3-PFB		371.4	0	400		0	92.8	50-130		3.8		
Surr: 1802-PFH		367	0	378		0	97.1	70-130		0.937	30	
Surr: 13C4-PFC		378.5	0	383		0	98.8	70-130		0.527	30	
Surr: 13C2-FtS		374.1	0	373		0	100	50-130		19.1	30	
Surr: 13C2-FtS		405.3	0	380		0	107	50-130		10.7		
Surr: 13C2-FtS	8:2	358.7	0	383		0	93.7	50-130	406.7	12.5	30	

Client: City of Escanaba WWTP

Work Order: 22042243
Project: Sludge Analyses

Batch ID: 195481	Instrument ID LCMS1		Method:	D7968-17a						
Surr: 13C8-FOSA	425.5	0	400	0	106	50-130	435.7	2.37	30	
Surr: d3-N-MeFOSAA	455.7	0	400	0	114	50-130	469.6	3	30	
Surr: d5-N-EtFOSAA	515.8	0	400	0	129	50-130	510.9	0.965	30	
Surr: 13C3-HFPO-DA	434.8	0	400	0	109	50-130	481.8	10.3	30	

LCSD2	Sample ID: LCSD2-195481-195481					Units: ng/Kg			Analysis Date: 5/5/2022 11:16 AM				
Client ID:		Run ID:	LCMS1	_220505A		Sec	qNo: 839 (941	Prep Date: 4/2	8/2022	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Perfluorodecanoic Ac	id (PFDA)	534	120	500		0	107	70-130	603.8	3 12.3	30		

LCS1 Sample ID: LCS1-19	95481-195481				ι	Jnits: ng/k	(g	Analysis Da	ate: 5/3 /	2022 12:3	2 AM
Client ID:	Run ID	: LCMS1	_220502C		Se	qNo: 838	1765	Prep Date: 4/28/20)22	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %	6RPD	RPD Limit	Qual
Perfluorooctanoic Acid (PFOA)	28.51	25	25		0	114	35-150	0			
Perfluorononanoic Acid (PFNA)	31.32	25	25		0	125	35-150	0			
Perfluoropentanesulfonic Acid (PFPeS	23.43	25	23.5		0	99.7	35-150	0			J
Perfluorooctanesulfonic Acid (PFOS)	20.8	25	23		0	90.5	35-150	0			J
Perfluorodecanesulfonic Acid (PFDS)	28.74	25	24		0	120	35-150	0			
Perfluorooctanesulfonamide (PFOSA)	36.62	25	25		0	146	35-150	0			
11CI-Pf3OUdS	33.23	25	23.5		0	141	35-150	0			
4,8-Dioxa-3H-perfluorononanoic Acid (23.06	25	23.5		0	98.1	35-150	0			J
9CI-PF3ONS	23.47	25	23		0	102	35-150	0			J
Surr: 13C4-PFBA	409.2	0	400		0	102	50-130	0			
Surr: 13C5-PFPeA	414.1	0	400		0	104	50-130	0			
Surr: 13C2-PFHxA	418.5	0	400		0	105	50-130	0			
Surr: 13C4-PFHpA	437.3	0	400		0	109	50-130	0			
Surr: 13C4-PFOA	452.1	0	400		0	113	70-130	0			
Surr: 13C5-PFNA	448.2	0	400		0	112	70-130	0			
Surr: 13C2-PFDA	447.4	0	400		0	112	70-130	0			
Surr: 13C2-PFUnA	458.3	0	400		0	115	70-130	0			
Surr: 13C2-PFTeA	468.4	0	400		0	117	50-130	0			
Surr: 13C3-PFBS	368.1	0	400		0	92	50-130	0			
Surr: 1802-PFHxS	416.8	0	378		0	110	70-130	0			
Surr: 13C4-PFOS	398.5	0	383		0	104	70-130	0			
Surr: 13C2-FtS 4:2	302.1	0	373		0	81	50-130	0			
Surr: 13C2-FtS 6:2	312.7	0	380		0	82.3	50-130	0			
Surr: 13C2-FtS 8:2	430.8	0	383		0	112	50-130	0			
Surr: 13C8-FOSA	431.4	0	400		0	108	50-130	0			
Surr: d3-N-MeFOSAA	485.5	0	400		0	121	50-130	0			
Surr: 13C3-HFPO-DA	440.8	0	400		0	110	50-130	0			

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

LCS1 S	ample ID: LCS1-195	481-195481				ι	Jnits: ng/K	(g	Anal	ysis Date: 5/4 /	2022 01:0	5 AM
Client ID:		Run ID	: LCMS1	_220503B		Se	eqNo: 8386	823	Prep Date: 4	4/28/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	· %RPD	RPD Limit	Qual
Perfluorobutanesulfonic	Acid (PFBS)	18.61	25	22		0	84.6	35-150		0		J
Surr: 13C2-PFDoA		515.3	0	400		0	129	70-130		0		
Surr: d5-N-EtFOSAA		462.8	0	400		0	116	50-130		0		

Client: City of Escanaba WWTP

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

LCS2 Sample ID:	LCS2-195481-195481				U	Inits: ng/k	(g	Analysis Date: 5/3	3/2022 12:	56 AM
Client ID:	Run ID	: LCMS1	_220502C		Se	qNo: 838 ′	1768	Prep Date: 4/28/2022	DF: 1	
				SPK Ref			Control	RPD Ref	RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value %RPD	Limit	Qual
Perfluorobutanoic Acid (PFBA)	521.4	120	500		0	104	50-130	0		
Perfluoropentanoic Acid (PFPeA)	580.7	120	500		0	116	70-130	0		
Perfluorohexanoic Acid (PFHxA)	494.5	120	500		0	98.9	50-130	0		
Perfluoroheptanoic Acid (PFHpA)	539.2	120	500		0	108	50-130	0		
Perfluorooctanoic Acid (PFOA)	548.4	25	500		0	110	70-130	0		
Perfluorononanoic Acid (PFNA)	570.6	25	500		0	114	70-130	0		
Perfluoroundecanoic Acid (PFUnA)	626.6	120	500		0	125	70-130	0		
Perfluorododecanoic Acid (PFDoA	569.3	120	500		0	114	70-130	0		
Perfluorotridecanoic Acid (PFTriA)	539.9	120	500		0	108	70-130	0		
Perfluorotetradecanoic Acid (PFTe	A) 459.5	120	500		0	91.9	70-130	0		
Perfluorobutanesulfonic Acid (PFB	s) 396.2	25	442		0	89.6	70-130	0		
Perfluoropentanesulfonic Acid (PFI	,	25	469		0	103	70-130	0		
Perfluorohexanesulfonic Acid (PFH	lxS) 471.4	120	455		0	104	70-130	0		
Perfluoroheptanesulfonic Acid (PFI	HpS 461.6	120	476		0	97	70-130	0		
Perfluorooctanesulfonic Acid (PFO	S) 458	25	464		0	98.7	70-130	0		
Perfluorononanesulfonic Acid (PFN	,	120	480		0	96	70-130	0		
Perfluorodecanesulfonic Acid (PFD	,	25	482		0	85.8	70-130	0		
Fluorotelomer Sulphonic Acid 4:2 (,	120	467		0	90.5	70-130	0		
Fluorotelomer Sulphonic Acid 6:2 (120	474		0	123	70-130	0		
Fluorotelomer Sulphonic Acid 8:2 (120	479		0	94.1	70-130	0		
Perfluorooctanesulfonamide (PFOS		25	500		0	99.5	70-130	0		
N-Ethylperfluorooctanesulfonamido		120	500		0	130	70-130	0		
N-Methylperfluorooctanesulfonami		120	500		0	120	70-130	0		
11CI-Pf3OUdS	572.7	25	471		0	122	70-130	0		
4,8-Dioxa-3H-perfluorononanoic A		25	471		0	97.5	70-130	0		
9CI-PF3ONS	531.4	25	466		0	114	70-130	0		
Hexafluoropropylene oxide dimer a		120	500		0	106	50-130	0		
Surr: 13C4-PFBA	402.6	0	400		0	101	50-130	0		
Surr: 13C5-PFPeA	403.6	0	400		0	101	50-130	0		
Surr: 13C2-PFHxA	419.3	0	400		0	105	50-130	0		
Surr: 13C4-PFHpA	437.3	0	400		0	109	50-130	0		
Surr: 13C4-PFOA	424.3	0	400		0	106	70-130			
Surr: 13C5-PFNA	430	0	400		0	108	70-130			
Surr: 13C3-PFDA	476.5	0	400		0	119	70-130			
Surr: 13C2-PFUnA	432.4	0	400		0	108	70-130			
Surr: 13C2-PFTeA	314.3	0	400		0	78.6	50-130	0		
Surr: 13C3-PFBS	385.7	0	400		0	76.6 96.4	50-130			
Surr: 1802-PFHxS	363.6	0	378		0	96.4	70-130			
	376.5									
Surr: 13C4-PFOS	376.5	0	383		0	98.3	70-130			
Surr: 13C2-FtS 4:2	308.9 364.1	0	373		0	82.8	50-130			
Surr: 13C2-FtS 6:2		0	380		0	95.8	50-130			
Surr: 13C2-FtS 8:2	406.7	0	383		0	106	50-130	0		

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481	Instrument ID LCMS1		Method	D7968-17a			
Surr: 13C8-FOSA	435.7	0	400	0	109	50-130	0
Surr: d3-N-MeFOSAA	469.6	0	400	0	117	50-130	0
Surr: d5-N-EtFOSAA	510.9	0	400	0	128	50-130	0
Surr: 13C3-HFPO-DA	481.8	0	400	0	120	50-130	0

LCS2 Sample ID: LCS2-	195481-195481				L	Jnits: ng/K	(g	Analys	sis Date: 5/5 /	2022 11:0	7 AM
Client ID:	Run ID	LCMS1	_220505A		Se	qNo: 8390	940	Prep Date: 4/	28/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorodecanoic Acid (PFDA)	603.8	120	500		0	121	70-130		0		
Surr: 13C2-PFDoA	539.8	0	400		0	135	70-130		0		S

Client: City of Escanaba WWTP

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195481 Instrument ID LCMS1 Method: D7968-17a

LCS3 Sample ID: LCS3-19	5481-195481				U	Inits: ng/k	(g	Analysis Date:	5/3/2022 12:4	18 AM
Client ID:	Run ID	: LCMS1	_220502C		Sec	qNo: 838 ′	1767	Prep Date: 4/28/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %RPI	RPD Limit	Qual
•										Q 0.0.1
Perfluorobutanoic Acid (PFBA)	107.2	120	125		0	85.7	35-150	0		J
Perfluoropentanoic Acid (PFPeA)	114.4	120	125		0	91.5	35-150	0		J
Perfluorohexanoic Acid (PFHxA)	116.9	120	125		0	93.5	35-150	0		J
Perfluoroheptanoic Acid (PFHpA)	115.2	120	125		0	92.1	35-150	0		J
Perfluorooctanoic Acid (PFOA)	131.1	25	125		0	105	35-150	0		
Perfluorononanoic Acid (PFNA)	127.7	25	125		0	102	35-150	0		
Perfluorodecanoic Acid (PFDA)	128	120	125		0	102	35-150	0		
Perfluoroundecanoic Acid (PFUnA)	163.6	120	125		0	131	35-150	0		
Perfluorododecanoic Acid (PFDoA)	141	120	125		0	113	35-150	0		
Perfluorotridecanoic Acid (PFTriA)	151.5	120	125		0	121	35-150	0		
Perfluorotetradecanoic Acid (PFTeA)	148.5	120	125		0	119	35-150	0		
Perfluorobutanesulfonic Acid (PFBS)	90.6	25	110		0	82.4	35-150	0		
Perfluoropentanesulfonic Acid (PFPeS	103.8	25	118		0	88	35-150	0		
Perfluorohexanesulfonic Acid (PFHxS)	121.8	120	115		0	106	35-150	0		
Perfluoroheptanesulfonic Acid (PFHpS	93.91	120	120		0	78.3	35-150	0		J
Perfluorooctanesulfonic Acid (PFOS)	111.2	25	115		0	96.7	35-150	0		
Perfluorononanesulfonic Acid (PFNS)	119.2	120	120		0	99.3	35-150	0		J
Perfluorodecanesulfonic Acid (PFDS)	126.1	25	120		0	105	35-150	0		
Fluorotelomer Sulphonic Acid 4:2 (FtS	132.8 94.37	120	118		0	112	35-150	0		
Fluorotelomer Sulphonic Acid 6:2 (FtS	119.3	120	118		0	80	35-150	0		J
Fluorotelomer Sulphonic Acid 8:2 (FtS		120	120		0	99.4	35-150	0		J
Perfluorooctanesulfonamide (PFOSA)	113.5 128.5	25	125		0	90.8	35-150	0		
N-Ethylperfluorooctanesulfonamidoace	102.1	120	125 125		0	103	35-150			
N-Methylperfluorooctanesulfonamidoa 11Cl-Pf3OUdS	131.4	120	125 118		0	81.7 111	35-150	0		J
	111.9	25 25	118		0		35-150	0		
4,8-Dioxa-3H-perfluorononanoic Acid (9CI-PF3ONS	114.9	25 25	118		0	94.8 97.4	35-150 35-150	0		
	112	120	125		0	89.6	35-150	0		
Hexafluoropropylene oxide dimer acid Surr: 13C4-PFBA	418.7	0	400		0	105	50-130	0		J
Surr: 13C5-PFPeA	407.6	0	400		0	103	50-130	0		
Sur: 13C2-PFHxA	391.5	0	400		0	97.9	50-130			
Surr: 13C4-PFHpA	400.4	0	400		0	100	50-130			
Surr: 13C4-PFOA	433.7	0	400		0	108	70-130			
Surr: 13C5-PFNA	437	0	400		0	109	70-130	0		
Surr: 13C2-PFDA	448.3	0	400		0	112	70-130			
Surr: 13C2-PFUnA	448.3	0	400		0	112	70-130			
Surr: 13C2-PFTeA	441.2	0	400		0	110	50-130			
Surr: 13C3-PFBS	376.7	0	400		0	94.2	50-130			
Surr: 1802-PFHxS	357.5	0	378		0	94.6	70-130			
Surr: 13C4-PFOS	380.7	0	383		0	99.4	70-130			
Surr: 13C2-FtS 4:2	317.9	0	373		0	85.2	50-130			
Ja 1002 1 to 1.2	334.7	0	380		0	88.1	50-130			

Instrument ID LCMS1

306

408.3

465

374.5

Work Order: 22042243

Batch ID: 195481

Surr: 13C2-FtS 8:2

Surr: 13C8-FOSA

Surr: d3-N-MeFOSAA

Surr: 13C3-HFPO-DA

Project: Sludge Analyses

50.400	•		
50-130	0		
50-130	0		

0

0

QC BATCH REPORT

The following samples were analyzed in this batch:	22042243-01A

383

400

400

400

0

0

0

0

Method: D7968-17a

79.9

102

116

93.6

50-130

50-130

0

0

0

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195549 Instrument ID IC3 Method: SW9056A **MBLK** Sample ID: MBLK-195549-195549 Units: mg/Kg Analysis Date: 4/30/2022 02:50 AM DF: 1 Client ID: Run ID: IC3 220429A SeqNo: 8378450 Prep Date: 4/29/2022 RPD SPK Ref RPD Ref Control Value Value Limit Limit PQL SPK Val %REC %RPD Qual Analyte Result Chloride ND 10 LCS Sample ID: LCS-195549-195549 Units: mg/Kg Analysis Date: 4/30/2022 03:01 AM Client ID: Run ID: IC3 220429A SeqNo: 8378451 Prep Date: 4/29/2022 DF: 1 SPK Ref RPD Ref RPD Control Value Limit Value Limit SPK Val %REC %RPD Qual Analyte Result **PQL** 89.6 0 0 Chloride 10 99.6 90 80-116 MS Sample ID: 22042397-01A MS Units: mg/Kg Analysis Date: 4/30/2022 04:20 AM Client ID: Run ID: IC3 220429A SeqNo: 8378458 Prep Date: 4/29/2022 DF: 1 RPD RPD Ref SPK Ref Control Value Limit Value Limit Analyte Result **PQL** SPK Val %REC %RPD Qual 131.5 Chloride 10 100 15.96 116 80-116 0 MSD Sample ID: 22042397-01A MSD Units: mg/Kg Analysis Date: 4/30/2022 04:31 AM Client ID: Run ID: IC3 220429A SeqNo: 8378459 Prep Date: 4/29/2022 DF: 1 RPD SPK Ref RPD Ref Control Value Limit Value Limit Qual PQL SPK Val %REC %RPD Analyte Result 131.6 10 Chloride 100 15.96 116 80-116 131.5 0.0593 20 22042243-01B The following samples were analyzed in this batch:

Work Order: 22042243

Project: Sludge Analyses

Batch ID: 195626	Instrument ID LAC	CHAT2		Method	: A4500	NH3 G-11					
MBLK	Sample ID: MBLK-1956	26-195626	}			Units: mg	NH3-N/K	g Analysi	is Date: 5/2	/2022 02:	55 PM
Client ID:		Run ID	LACHA	T2_220502	A	SeqNo: 838	30390	Prep Date: 5/2	2/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Ammonia as Nitroger	1	ND	15								
LCS	Sample ID: LCS-195620	6-195626				Units: mg	NH3-N/K	g Analysi	is Date: 5/2	/2022 02:	56 PM
Client ID:		Run ID	LACHA	T2_220502/	4	SeqNo: 838	30391	Prep Date: 5/2	2/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Ammonia as Nitroger	า	48.68	15	50		0 97.4	71-119	(0		
MS	Sample ID: 22042243-0	1B MS				Units: mg	NH3-N/K	g Analysi	is Date: 5/2	/2022 03:	13 PM
Client ID: Tank #5 B	iosolids	Run ID	LACHA	T2_220502	A	SeqNo: 838	30405	Prep Date: 5/2	2/2022	DF: 20)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ammonia as Nitroger	า	914.2	290	49.02	807	.9 217	71-119	(0		so
MSD	Sample ID: 22042243-0	1B MSD				Units: mg	NH3-N/K	g Analysi	is Date: 5/2	/2022 03: ⁻	14 PM
Client ID: Tank #5 B	iosolids	Run ID	LACHA	T2_220502/	4	SeqNo: 838	30406	Prep Date: 5/2	2/2022	DF: 20)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Ammonia as Nitroger		843.9	280	47.17	807	.9 76.2	71-119	914.2	2 8	25	0

The following samples were analyzed in this batch:

22042243-01B

City of Escanaba WWTP **Client:**

Work Order: 22042243

Sludge Analyses **Project:**

Batch ID: 195685	Instrument ID LAC	HAT2		Method	: E365. 1	R2.0					
MBLK	Sample ID: MBLK-1956	85-195685	5			Units: mg/	Kg	Analysis	s Date: 5/3/	2022 06:1	0 PM
Client ID:		Run ID	LACHA	AT2_2205030	3	SeqNo: 838	5738	Prep Date: 4/29	9/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Phosphorus, Total		ND	5.0								
LCS	Sample ID: LCS-195685	5-195685				Units: mg/	Kg	Analysis	s Date: 5/3/	2022 06:1	1 PM
Client ID:		Run ID	LACHA	AT2_2205030	3	SeqNo: 838	5739	Prep Date: 4/2	9/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Phosphorus, Total		8.973	5.0	10		0 89.7	76-128	0			
MS	Sample ID: 22042243-01B MS					Units: mg/Kg Analysis Date: 5/3				/2022 06:38 PM	
Client ID: Tank #5 B	Biosolids	Run ID	LACHA	AT2_2205030	3	SeqNo: 838	5762	Prep Date: 4/2	9/2022	DF: 20	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Phosphorus, Total		1444	460	46.3	12	67 381	76-128	0			SO
MSD	Sample ID: 22042243-0	1B MSD				Units: mg/	Kg	Analysis	/2022 06:39 PM		
Client ID: Tank #5 B	Biosolids	Run ID	LACHA	AT2_2205030	3	SeqNo: 838	5763	Prep Date: 4/2	9/2022	DF: 20	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Phosphorus, Total		1694	460	46.3	12	67 921	76-128	1444	15.9	20	so
The following same	oles were analyzed in this	s batch:	22	2042243-01E	3						

Work Order: 22042243

Project: Sludge Analyses

Batch ID: R343212	Instrument ID MC	IST		Metho	d: SW35	50C							
MBLK	Sample ID: WBLKS-R3	343212				Uni	ts: % o t	f sample	Analysis Date: 4/28/2022 03:05 PM				
Client ID:		Run ID	MOIST	_220428B		SeqN	lo: 837 2	2726	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Moisture		ND	0.10										
LCS	Sample ID: LCS-R343212					Uni	ts: % o f	f sample	Analysi	s Date: 4/2 8	28/2022 03:05 PM		
Client ID:		Run ID	: MOIST	_220428B		SeqN	lo: 837 2	2725	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		99.99	0.10	100		0	100	98-102	C)			
DUP	Sample ID: 22042162-20B DUP					Units: % of sample Analysis Date: 4/28				8/2022 03:05 PM			
Client ID:		Run ID	MOIST	_220428B		SeqN	lo: 837 2	2702	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		20.52	0.10	0		0	0	0-0	21.2	2 3.26	10		
DUP	Sample ID: 22042243- 0	1B DUP				Units: % of sample Analysis Date: 4/			s Date: 4/2 8	3/2022 03:	05 PM		
Client ID: Tank #5 B	iosolids	Run ID	MOIST	_220428B		SeqN	lo: 837 2	2717	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		94.39	0.10	0		0	0	0-0	94.38	0.0106	10		
The following samp	oles were analyzed in thi	s batch:	22	2042243-011	3								

Chain of Custody Form

Page	
今	

N	
N	þ
	þ
P	
N	
N	
4	h
6	
	22042243

				-1	
		_			
		_			
	-		-	_	
			_		
40.5					
		_	-	-	
	_	_	_	_	
		_	_		
-		-	-		
		_			
					-
		100	_	_	. rejection of
	-	_	$\overline{}$		- 3
	and it states				
900 FE		_			
984			_	_	
	-	_	$\overline{}$		
-	_	_	_		1
	2,000			_	٠,
-	-				
-		_	_	_	
-	-	=		_	
			1	_	٠,
	-			_	
		_			
-	\rightarrow	_	_		
			-	-	
-	-	_	_	-	
	_	_	_	$\overline{}$	
	_	_	_	\neg	
	-		_		
	_	_	_		
		_	_	_	
weeks	STATE OF STREET	_		_	
-		-	-		
	nant State		-	No. of Lot	
-		_	-		

A PFAS B HAPTAN C HAPTAN B C A B C X Time: Notes: Time: ALS Cooler ID Time: A4°C Note
Project Information
Turnaround Time: (Business Days) Date: Time: Date: D
A DFAS B Hd3 IC Met-Nay, Maistin
A DEAS A DEAS A DEAS B HA IS Metal MaisTINH3 P C C C C C C C C C C C C C C C C C C
A DEAS A DEAS A DEAS B HA IS Metal, Maistin Halls B G D E F G H I J A B C D E F G H I J X X B C D E F G H I J A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B
C D E F G H I J C D E F G H I J C DHer Results Due Date: Cooler Cooler Cooler Level IV: SW846 Methods/CLP like Note: Any changes must be made in writing once
Metaby MaisTinnels for Analysis D E F G H I J
dow) Level IV Level IV
dow) Level IV Level IV
dow) Level IV Level IV
g once
g once

samples and COC Form have been submitted to ALS.

Sample Receipt Checklist

Client Name: ESCWWTP					Date/Time F	Received	d: <u>26-A</u>	pr-22	09:00			
Work Order:	22042243				Received by	y :	<u>LYS</u>					
Checklist comple	eted by Lydia Sweet esignature	26	6-Apr-22 Date	_	Reviewed by:	eSignat	ure				Da	te
Matrices: Carrier name:	<u>Sludge</u> <u>UPS</u>	, ,								,		
Shipping contain	ner/cooler in good condition?		Yes	✓	No 🗌	Not	Present					
Custody seals in	ntact on shipping container/coole	r?	Yes	✓	No 🗌	Not	Present					
Custody seals in	ntact on sample bottles?		Yes		No 🗌	Not	Present	✓				
Chain of custody	y present?		Yes	~	No 🗌							
Chain of custody	y signed when relinquished and ı	received?	Yes	✓	No 🗆							
Chain of custody	y agrees with sample labels?		Yes	✓	No 🗌							
Samples in prop	per container/bottle?		Yes	✓	No 🗌							
Sample containe	ers intact?		Yes	✓	No 🗌							
Sufficient sampl	e volume for indicated test?		Yes	✓	No 🗆							
All samples rece	eived within holding time?		Yes	✓	No 🗆							
Container/Temp	Blank temperature in complianc	e?	Yes	✓	No 🗆							
Sample(s) received on ice? Temperature(s)/Thermometer(s):			Yes 4.2/5.2		No 🗆		<u>IR3</u>					
Cooler(s)/Kit(s):												
	ole(s) sent to storage:)22 2	::42:23 PM							
	ils have zero headspace?		Yes				vials subn	nitted	✓			
	eptable upon receipt?		Yes			N/A	✓					
pH adjusted? pH adjusted by:			Yes -		No L	N/A	✓					
Login Notes:												
						. — — -						
Client Contacted: Date Contacted:		Date Contacted:			Person	Contact	ed:					
Contacted By: Regarding:												
Comments:												
CorrectiveAction	1:								c	RC Pa	ngo 1 :	of 1