P525/3 CHEMISTRY Paper 3 Jul/Aug 2019 3¼ Hours



#### **MUKONO EXAMINATION COUNCIL**

## Uganda Advanced Certificate of Education CHEMISTRY PRACTICAL

Paper 3

3 Hours 15 Minutes

#### **INSTRUCTIONS TO CANDIDATES**

- The paper consists of **three (3)** compulsory questions.
- Answer **all** questions in the spaces provided.
- No additional answer sheets will be provided.

| 1. | You are provided with the following;                                                                                               |                                          |                            |                     |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|---------------------|--|--|
|    | ${\bf FA1}$ , which is an aqueous solution of a diabasic acid, ${\bf H}_2{\bf X}$                                                  |                                          |                            |                     |  |  |
|    | FA2, which is a 0.1M sodium hydroxide solution.                                                                                    |                                          |                            |                     |  |  |
|    | <b>Solid Q,</b> which is a metal carbona                                                                                           | te M <sub>2</sub> CO <sub>3</sub> (RFM o | f Q = 74)                  |                     |  |  |
|    | You are required to determine the                                                                                                  | e molar concentr                         | ation of <b>FA1</b> and th | e percentage of the |  |  |
|    | impurity in Q.                                                                                                                     |                                          |                            |                     |  |  |
|    | Duran June A                                                                                                                       |                                          |                            |                     |  |  |
|    | Procedure A                                                                                                                        |                                          | .1 0 = 3 (714)             | 4 252 2             |  |  |
|    | a) Using a 10cm <sup>3</sup> measuring cylinder transfer exactly <b>8.5cm</b> <sup>3</sup> of <b>FA1</b> into a 250cm <sup>3</sup> |                                          |                            |                     |  |  |
|    | volumetric flask and make up to the mark distilled water. Shake the flask to mix the                                               |                                          |                            |                     |  |  |
|    | contents thoroughly. Label th                                                                                                      |                                          |                            |                     |  |  |
|    | b) Pipette <b>20.0</b> or <b>25.0cm</b> <sup>3</sup> of <b>F</b> A                                                                 | <b>A2</b> into a clean co                | onical flask and add       | 2-3 drops of        |  |  |
|    | phenolphthalein indicator. Titrate the contents with solution FA3 from the burette.                                                |                                          |                            |                     |  |  |
|    | Repeat the titration 2-3 times to obtain consistent results. Enter your results in the table                                       |                                          |                            |                     |  |  |
|    | below.                                                                                                                             |                                          |                            |                     |  |  |
|    | Results                                                                                                                            |                                          |                            |                     |  |  |
|    | Table 1                                                                                                                            |                                          |                            |                     |  |  |
|    | Volume of pipette usedcm <sup>3</sup>                                                                                              |                                          |                            |                     |  |  |
|    | Experiment                                                                                                                         | 1                                        | 2                          | 3                   |  |  |
|    | Final burette reading (cm <sup>3</sup> )                                                                                           |                                          |                            |                     |  |  |
|    | Initial burette reading (cm <sup>3</sup> )                                                                                         |                                          |                            |                     |  |  |
|    | Volume of FA3 used (cm <sup>3</sup> )                                                                                              |                                          |                            |                     |  |  |
|    | Titre values used for calculating the average volume of <b>FA3</b> used;                                                           |                                          |                            |                     |  |  |
|    | Average volume of <b>FA3</b> used                                                                                                  |                                          | ~                          |                     |  |  |
|    |                                                                                                                                    |                                          |                            |                     |  |  |
|    |                                                                                                                                    |                                          |                            |                     |  |  |

# c) Calculate the concentration in moldm<sup>-3</sup> of H<sub>2</sub>X in (i) **FA3** (ii) **FA1 Procedure B** a) Weigh accurately about 1.2g of Q and dissolve it in 15cm³ of FA1 in a beaker. Transfer the solution with washings into 250cm<sup>3</sup> volumetric flask and make up to the mark with distilled water. Label the resultant solution FA4. b) Pipette 20.0cm³or25.0cm³of FA2 into a clean conical flask and add 2-3 drops of phenolphthalein indicator and then titrate with solution FA4 from the burette. Repeat the

Questions

titration 2-3 times to obtain consistent results. Enter your results in the table II below.

### Results

| Table II                                                                             |                                                  |   |   |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------|---|---|--|
| Mass of weighing container $+\mathbf{Q} = \dots$                                     | Mass of weighing container $+\mathbf{Q} = \dots$ |   |   |  |
| Mass of weighing container =                                                         | Mass of weighing container =g                    |   |   |  |
| Mass of <b>Q</b> used =                                                              | Mass of $\mathbf{Q}$ used =g                     |   |   |  |
| Volume of pipette used                                                               | Volume of pipette usedcm <sup>3</sup>            |   |   |  |
| Experiment                                                                           | 1                                                | 2 | 3 |  |
| Final burette reading (cm <sup>3</sup> )                                             |                                                  |   |   |  |
| Initial burette reading (cm <sup>3</sup> )                                           |                                                  |   |   |  |
| Volume of <b>FA4</b> used (cm <sup>3</sup> )                                         |                                                  |   |   |  |
| Average volume of <b>FA4</b> used;                                                   |                                                  |   |   |  |
| Questions                                                                            | -1                                               |   |   |  |
| ) Calculate the number of moles of acid that;  (i) did not react with the carbonate. |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |
|                                                                                      |                                                  |   |   |  |

| (ii) reacted with the carbonate.                      |
|-------------------------------------------------------|
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
| Determine the;                                        |
| (i) mass of the carbonate that reacted with the acid. |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
| (ii) Percentage of the impurity in solid ${f Q}$ .    |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |

2. You are provided with substance **Y** which contains two cations and two anions. You are required to identify the cations and anions in **Y**. Carry out the following test on **Y** and record your observations and deductions in the table below. Identify any gas(es) evolved.

| Tests                                    | Observations | Deductions |
|------------------------------------------|--------------|------------|
| (a). Heat one spatula endful of <b>Y</b> |              |            |
| strongly in a dry test tube until        |              |            |
| there is no further change               |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
| (b).To two spatula endfuls of Y,         |              |            |
| add concentrated nitric acid drop        |              |            |
| wise until the solid just dissolves.     |              |            |
| To the resultant solution add            |              |            |
| sodium hydroxide solution drop           |              |            |
| wise until in excess and filter.         |              |            |
| Keep both the filtrate and residue       |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
| (c). To the filtrate, add dilute         |              |            |
| nitric acid drop wise until the          |              |            |
| solution is just acidic. Divide the      |              |            |
| resultant solution into seven            |              |            |
| portions                                 |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |
|                                          |              |            |

| (v)To the fifth portion of the      |   |  |
|-------------------------------------|---|--|
| acidic solution, add 3-4 drops of   |   |  |
| lead (ii) nitrate solution          |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
| (vi)To the sixth portion of the     |   |  |
| acidic solution, add 3-4 drops of   |   |  |
| barium nitrate solution             |   |  |
| 50174111 1110 400 501401011         |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
| (vi)To the governth portion of the  |   |  |
| (vi)To the seventh portion of the   |   |  |
| acidic solution, add 3-4 drops of   |   |  |
| silver nitrate solution followed by |   |  |
| excess ammonia solution             |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
| (d)Wash the residue and dissolve    |   |  |
| it in 4cm³ of dilute nitric acid.   |   |  |
| Divide the resulting solution into  |   |  |
| three portions                      |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     |   |  |
|                                     | 1 |  |

| (i) To the first portion add         |     |  |  |
|--------------------------------------|-----|--|--|
| sodium hydroxide solution drop       |     |  |  |
| wise until in excess                 |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
| (ii)To the second portion add        |     |  |  |
| aqueous ammonia drop wise            |     |  |  |
| until in excess                      |     |  |  |
| until in excess                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
| (iv) Has the third portion of the    |     |  |  |
| (iv)Use the third portion of the     |     |  |  |
| filtrate to carry out a test of your |     |  |  |
| choice to confirm one of the         |     |  |  |
| cations in <b>Y</b> .                |     |  |  |
| Test:                                |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
|                                      |     |  |  |
| (e)(i). Cations in <b>Y</b> :and     |     |  |  |
| (ii) Aniona in W                     | and |  |  |
| (11). Anions in Y:                   | and |  |  |

3. You are provided with organic substance G. You are required to identify the nature of G. Carry out the following test on G and record your observations and deductions in the table below.

| Tests                                                       | Observations | Deductions |
|-------------------------------------------------------------|--------------|------------|
| (a)Burn a spatula endful of <b>G</b>                        |              |            |
| on a porcelain dish or at the                               |              |            |
| end of a spatula                                            |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
| (b)To 2cm <sup>3</sup> of <b>G</b> add 3 cm <sup>3</sup> of |              |            |
| water. Shake vigorously and                                 |              |            |
| test with litmus. Divide the                                |              |            |
| mixture into four portions                                  |              |            |
| imatare into roar portions                                  |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
| (i)To the first portion of the                              |              |            |
| solution, add 3-4 drops of                                  |              |            |
| sodium carbonate solution                                   |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
| (ii)To the second portion of                                |              |            |
| the solution, add 2-3 drops                                 |              |            |
| of iron(iii)chloride solution                               |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              |            |
|                                                             |              | <u> </u>   |

| (iii) To the third portion of                       |    |  |
|-----------------------------------------------------|----|--|
| the solution, add 3-4 drops                         |    |  |
| of Brady's reagent                                  |    |  |
|                                                     |    |  |
|                                                     |    |  |
|                                                     |    |  |
|                                                     |    |  |
|                                                     |    |  |
| (iv)To the fourth portion of                        |    |  |
| the solution, add 2-3 drops                         |    |  |
| of potassium dichromate(vi)                         |    |  |
| solution and warm                                   |    |  |
|                                                     |    |  |
|                                                     |    |  |
| (c)To 1cm <sup>3</sup> of G add 3cm <sup>3</sup> of |    |  |
| iodine solution followed by                         |    |  |
| sodium hydroxide solution                           |    |  |
| drop wise until the solution                        |    |  |
| is pale yellow. Warm the                            |    |  |
| mixture and allow to stand.                         |    |  |
|                                                     |    |  |
|                                                     |    |  |
| (d) Comment on the nature of                        | G. |  |
|                                                     |    |  |
|                                                     |    |  |

End -