

CHAPITRE 05

Modèles Volumiques

Ce cours est une **compilation**:

- Du cours de Modélisation géométrique (IRIT-UPS Toulouse; Equipe Vortex)
 - Cours de Christian Jacquemin (LIMSI- Paris 11)
 - Cours de Marc Daniel (LSIS- Marseille)
 - Cours G. Gesquière (LIRIS)
 - Cours C. Le Bihan Gautier (LIRIS)

Continu Vs Discret

Plan

- Représentation Volumique
 - Voxel
 - Octree
 - Octree régulier et adaptatif
 - Représentation surfacique et volumique d'un objet 3D
 - Ondelettes
 - Surfaces implicites
- Modèle B-Rep

Jeux dans des mondes en volumes...

Infiniminer est un jeu vidéo indépendant de type <u>bac à sable</u> en <u>multijoueur</u> conçu par <u>Zachary</u> <u>Barth</u>. Sorti en <u>2009</u>, le jeu propose au joueur d'incarner un personnage se mouvant dans un univers en trois dimensions, représenté par des cubes, la représentation du décor utilisant le principe des <u>voxels</u>. Il est possible de récupérer des ressources en creusant dans ces cubes, et de créer de nouveaux blocs avec les ressources ainsi accumulées.

Il est le principal inspirateur de <u>Minecraft</u>, dont le développement débuta le <u>10 mai 2009</u>, ainsi que d'autres jeux utilisant ce concept de cubes, tels que <u>FortressCraft</u>, <u>Total Miner, CastleMiner, CraftWorld, Ace of Spades, Guncraft, 7 Days to Die, Block Fortress</u> ou encore les variantes <u>libres Minetest, BlockColor</u> et Voxelands.

Phénomènes atmosphériques et volumes

David Ebert Volumetric modeling with implicit functions: A cloud is born, 1997

Procedural Cloudscapes. A. Webanck, Y. Cortial, E. Guérin, E. Galin. Computer Graphics Forum, 37(2), Eurographics, 2018.

Pourquoi des Terrains volumiques

Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule Cani, et al.. A Review of Digital Terrain Modeling. Computer Graphics Forum, Wiley, 2019, 38 (2). ffhal-02097510f

Représentation surfacique usuelle : fonction continue ou points interpolés

Figure 1: Elevation can be represented by an analytic or procedurally defined function, or by discrete heightfield data, in which case the elevation at any point is reconstructed by interpolation.

Pourquoi des Terrains volumiques

Représentation surfacique usuelle : modèle en couches

Figure 2: Layered models represent different types of materials organized in a predefined sorting order (bedrock, then sand and rocks, followed by water).

Pourquoi des Terrains volumiques

Utiliser une représentation en volume (cubes ou piles de matières)

Figure 3: *Voxel representations allow the modeling of arches, caves or overhangs, but are limited by their discrete nature.*

Exemples de terrains volumiques

Figure 15: Example of volumetric terrains featuring arches and overhangs produced by 3D curves (from [BKRE17, BKRE18]).

Figure 14: Arches and overhangs with different materials (bedrock and sand) generated by the hybrid layer-stack implicit surface representation (from [PGMG09a]).

Modèles Volumiques: Voxels

Volumes discrets

- Voxel = éléments d'une grille 3D
- Présence ou absence de matière

Modèle volumique : octree régulier

Arbre à huit branches.

Octree régulier : subdivise de façon récursive un volume cubique en huit souscubes de tailles égales. Les feuilles de l'octree sont appelées des « voxels ».

Modèle volumique : Octree adaptatif

Octree adaptatif, la profondeur de chaque branche peut être de taille différente Permet de subdiviser l'espace de départ de façon irrégulière.

Modèles Volumiques : Octree adaptatif

Illustration Octree sur une sphère

Illustrations: Mathieu Livebardon

Représentation surfacique par octree

- Octree régulier : on subdivise jusqu'à la précision souhaitée et
 - soit la cellule n'est pas sécante à la surface et la feuille est vide (valeur 0 par exemple),
 - soit elle est sécante et la feuille est pleine (valeur 1 par exemple).

Octree adaptatif:

- soit la cellule n'est pas sécante à la surface :
 - c'est une feuille vide de l'octree,
- soit la cellule est sécante à la surface :
 - si on est au niveau de précision désiré, c'est une feuille pleine de l'octree,
 - sinon, c'est un noeud qui va être subdivisé.

Représentation volumique par octree

- Octree régulier : on subdivise jusqu'à la précision souhaitée et
 - soit elle est sécante et la feuille est pleine (valeur 0 par exemple).,
 - soit elle est à l'intérieure de l'objet et elle vaut 1 par exemple,
 - soit elle est à l'extérieure de l'objet et elle vaut -1 par exemple.

Octree adaptatif :

- soit la cellule est sécante à la surface : si on est au niveau de précision désiré, c'est une feuille pleine de l'octree, sinon, c'est un noeud qui va être subdivisé,
- soit la cellule n'est pas sécante à la surface : c'est soit une feuille « extérieure », soit une feuille « intérieure ».

Octree: +/-

• Les +

- Représentation hiérarchique de l'objet : il peut être affiché à différentes résolutions.
- Possibilité de représentation volumique.
- Simplicité de positionnement d'un volume par rapport à l'objet : sécant ou non (éventuellement intérieur/extérieur).
- Construction et parcours récursifs simples.

• Les -

- Visualisation surfacique des voxels ?
- Rendu temps réel pour des scènes complexes ?
- Coup de stockage excessif.

Modèles Volumiques : n-tree

Réduire encore le nombre de cubes

Modèles Volumiques : Level Set

- Réduire encore le nombre de cubes (Level Set)
 - Volume stocké dans une grille hiérarchique sur deux niveaux.

Modèles Volumiques : ondelettes

Niveau 0 64×64×64

Niveau 1 32×32×32

Niveau 2 16×16×16

Niveau 3 8×8×8

Niveau 4

Modèles volumiques : surfaces implicites

$$S = \{ P(x,y,z) / f(x,y,z) = iso \}$$

Intérêt : Combiner des éléments

- union : $f = max(f_1, f_2)$
- Intersection : $f = min(f_1, f_2)$
- « mélange » : $f = f_1 + f_2$

Modèles volumiques : Surfaces implicites

Surfaces implicites discrètes

Modèles volumiques : Arbres CSG

Constructive Solid Geometry : arbre de composition

Modèles volumiques : Arbres CSG

Passage du volumique vers surfacique

Algorithme du marching cube

Illustration en 2D

Passage du volumique vers surfacique

En 3D, aprés exploitation des symmétries, il reste 14 cas différents. Exemples :

- A partir d'un ensemble de cellules intersectant une surface, on obtient un maillage triangulaire de la surface.
- Problème des arêtes franches :

Extended marching cube

- Pour reconstruire correctement les arêtes, il existe des version étendues du marching cube [1]. En général, ces méthodes utilisent:
 - Le calcul d'intersection entre une arête et la surface est effectué par interpolation linéaire:

- La normale à la surface est évaluée aux points d'intersection
- On maille le cube à partir des plans passant par les points d'intersection (ayant comme normale la normale à la surface au point)
- [1] L. Kobbelt et al. "Feature Sensitive Surface Extraction from Data Volume". SIGGRAPH 2001

Modèle B-Rep

- Boundary-Representation
 - Un modèle est représenté par ses bords
 - Pas de notion de volume
 - On peut représenter des solides

B-Rep quelconque

B-Rep Solide