ÖRNEKLEME

TEORISI

- Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik.
- Peki popülasyonun istatistiksel parametrelerini örneklemlerle belirlemenin nedenleri neler olabilir?

cevap....

- Popülasyonu tümü üzerinde çoğu zaman işlem yapmanın imkansız ve/veya oldukça maliyetli olması
- Örneklem ile çalışmanın vakit ve maliyet açısından tasarruflu olması
- İyi seçilmiş bir örneklemin popülasyonu en iyi şekilde temsil edebilmesi

#Örnekleme Çeşitleri#

ÖRNEKLEME

Rasgele

Karara dayalı(iradi)

- *basit
- *sistematik
- *cluster

1. RASGELE ÖRNEKLEME:

- *Basit Rasgele Örnekleme:popülasyondaki her bir üyenin seçilme olasılığı birbirine eşittir.
- *Sistematik Rasgele Örnekleme:rasgele belirlenen başlangıç noktasından itibaren her n. üye örneklem içerisine dahil edilir.
- *Cluster Örnekleme: gruplara ayrılan popülasyondan rasgele örneklem ayarlanır.
- 2. KARARA DAYALI (iradi) ÖRNEKLEME:örneklemeyi yapan kişi kendi isteğine göre üye seçimi yapar. Bu tip örneklem popülasyonu iyi yansıtmayacağı için hata payı büyüktür.

ÖRNEKLEME HATASI

 Popülasyonun gerçek parametresi ile örnekleme istatistiği arasındaki farka örnekleme hatası denir.
Ortalamadaki standart hata olarak da bilinir. Buna göre;

s:örneklemedeki gözlemlerin standart sapması n:örneklemedeki gözlem sayısı

$$\sigma_{x} = \frac{s}{\sqrt{n}}$$

Bir örneklemede tahmin edilen ortalamadaki standart hata

- MERKEZİ LİMİT TEOREMİ: Dağılım ne olursa olsun ve dağılımın bilinmediği durumlarda da örneklem hacmi (n) yeteri kadar büyük olduğunda örneklemi normal dağılıma çevirebilen bir teoremdir. Buna göre;
 - Popülasyon normal dağılıma sahip ise örneklemlerin aritmetik ortalamaları da normal dağılım gösterir.
 - Popülasyon normal dağılıma sahip değil iken örneklemlerin aritmetik ortalamaları normale yaklaşan bir dağılım sergiler. Örnek sayısı arttıkça normale daha çok yakınsanır.

Popülasyon parametreleri iki şekilde tahmin edilebilir:

- NOKTA TAHMİNİ(point estimate): tek bir değer kullanılarak parametre tahmin edilir.
- ARALIK TAHMİNİ(envertal tahmin~invertal estimate): popülasyon parametresi için bir aralık tespiti yapılır. Bu aralık tespiti yapılırken popülasyon için yapılan bir hesaplama ile güven aralığı bulunur.

GÜVEN ARALIĞI;

n:gözlem sayısı

s:örneklemenin standart sapması

z:standart değer

$$\left(\frac{-}{x}-z\frac{s}{\sqrt{n}},\frac{-}{x}+z\frac{s}{\sqrt{n}}\right)$$

n≥30 için;

- %95 güven aralığında z=1,96
- %99 güven aralığında z=2,58 alınır.
- ❖ 1,96 ve 2,58 değerleri gözlemlerin sırasıyla %95 ve %99 una karşılık gelen
- standard değerlerdir. Bu güven aralıklarına karşılık gelen değerler standart normal
- dağılım tablolarından hesaplanır.
- Örneğin yarım normal dağılıma göre 0,95/2 =0,475. Bu değere karşılık gelen standart değer normal dağılım tablosundan 1,96 olarak kolaylıkla okunabilir.

 Bir örneklemede popülasyonun ortalaması için gerekli olan gözlem sayısı yani n;

E:izin verilebilir max. hata oranı z:seçilen güven aralığı s:verilerin standart sapması

$$n = \left(\frac{ZS}{E}\right)^2$$

!!!!

Eğer örneklemedeki veri sayısı(n)
 popülasyonun (N) %5inden büyük ise hem
 popülasyon ortalaması hem de standart
 hataya bir düzeltm katsayısı uygulanmalıdır. Bu
 katsayı

$$(N-n)/(N-1)$$

O halde;

 n/N>0.05 iken popülasyon ortalamasının standart hatası:

$$\sigma_{\overline{X}} = \frac{s}{\sqrt{n}} \left(\frac{N - n}{N - 1} \right)$$

Ortalamanın güven aralığı:

$$\overline{X} \pm z \frac{s}{\sqrt{n}} (\frac{N-n}{N-1})$$

• • • • • •

 Bu durumda (n/N>0.05 iken) düzeltme katsayısı standart hatayı azalttığı için popülasyon ortalamasının aralığı daralır. Yani örneklem sayısı arttıkça ortalamanın standart hatası azalır.