Lab Report 06

Assignment 1

Code:

Comments:

- Input 1: (-2, 6, -1, 3, -2) \Rightarrow Max sum = -2 + 6 - 1 + 3 = 6, w/ length = 4

\$v0 = 4

- Input 2: (2, -3, 2, 5, -4)

$$\Rightarrow$$
 Max sum = 2 + -3 + 2 + 5 = 5, w/ length = 4

\$v0 = 4

\$v1 = 6

Assignment 2

Code:

.data

A: .word 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5

Aend: .word

.text

main: la \$a0, A \$a0 = Address(A[0])

la \$a1, Aend

addi \$a1, \$a1, -4 \$a1 = Address(A[n-1])

j sort #sort

after sort: li \$v0, 10 #exit

syscall

end_main:				
#				
#procedure sor	rt (ascending sel	ection sort using	pointer)	
#register usage	e in sort program	ı		
#\$a0 pointer to	the first eleme	nt in unsorted pa	art	
#\$a1 pointer to	the last elemer	nt in unsorted pa	rt	
#\$t0 temporary	y place for value	of last element		
#\$v0 pointer to	max element in	unsorted part		
#\$v1 value of n	nax element in u	nsorted part		
#			-	
sort:	beq	\$a0, \$a1, done	#single element list is sorted	
	j	max	#call the max procedure	
after_max:	lw	\$t0, 0(\$a1)	#load last element into \$t0	
	SW	\$t0, 0(\$v0)	#copy last element to max location	
	SW	\$v1, 0(\$a1)	#copy max value to last element	
	addi	\$a1, \$a1, -4	#decrement pointer to last element	
	j	print		
after_print:	j	sort	#repeat sort for smaller list	
done:	j	after_sort		
#				
#Procedure max				
#function: fax the value and address of max element in the list				
#\$a0 pointer to first element				
#\$a1 pointer to last element				
#				
max:				
	addi	\$v0, \$a0, 0	#init max pointer to first element	
	lw	\$v1, 0(\$v0)	#init max value to first value	

	addi	\$t0, \$a0, 0	#init ne	ext pointer to first
loop:				
	beq	\$t0, \$a1, ret	#if nex	t=last, return
	addi	\$t0, \$t0, 4	#advar	nce to next element
	lw	\$t1, 0(\$t0)	#load r	next element into \$t1
	slt	\$t2, \$t1, \$v1	#(next))<(max) ?
	bne	\$t2, \$zero, loo	p#if (ne	xt)<(max), repeat
	addi	\$v0, \$t0, 0	#next 6	element is new max element
	addi	\$v1, \$t1, 0	#next \	value is new max value
	j	loop	#chang	ge completed; now repeat
ret:				
	j	after_max		
#				-
#Procedure print				
#				-
print:	add	\$s7, \$v0, \$zero	1	#Save
	add	\$s6, \$a0, \$zero)	#Save
	la	\$s0, A		#\$s0 = Address(A[0])
	la	\$s1, Aend		
	addi	\$s1, \$s1, -4		#\$s1 = Address(A[n-1])
loop2:	blt	\$s1, \$s0, endp	rint	#exit if Aned < A[i]
	li	\$v0, 1		#service 01: print integer
	lw	\$a0, 0(\$s0)		#value of A[i]
	syscall			
	li	\$v0, 11		
	li	\$a0,''		#print space
	syscall			

\$s0, \$s0, 4 addi #Move to A[i+1] loop2 endprint: li \$v0, 11 \$a0, '\n' #print enter syscall add \$v0, \$s7, \$zero #Load add \$a0, \$s6, \$zero #Load j after_print

Comments:

- Input: 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5

- Input: 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

Assignment 3

Code:

.data

A: .word 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5

Aend: .word

.text

main:

lui	\$s0, 0x1001	# A[0]
li	\$t0, 0	# i = 0
li	\$t1,0	# j = 0
li	\$s1, 13	# n = A.length
li	\$s2, 13	# n - i for inner loop
add	\$t2, \$zero, \$s0	# For iterating addr by i
add	\$t3, \$zero, \$s0	# For iterating addr by j
addi	\$s1, \$s1, -1	

outer_loop:

li \$t1,0 #j=0addi \$s2,\$s2,-1 # Decrease size for inner_loop

	add	\$t3, \$zero, \$s0	# Reset addr itr j
inner_loop:			
	lw	\$s3, 0(\$t3)	# A[j]
	addi	\$t3, \$t3, 4	# Addr itr j += 4
	lw	\$s4, 0(\$t3)	# A[j+1]
	addi	\$t1, \$t1, 1	# j++
	slt	\$t4, \$s3, \$s4	# Set \$t4 = 1 if \$s3 < \$s4
	bne	\$t4, \$zero, cond	
swap:			
	SW	\$s3, 0(\$t3)	
	SW	\$s4, -4(\$t3)	
	lw	\$s4, 0(\$t3)	
cond:			
	bne	\$t1, \$s2, inner_loop	#j != n-i
	j	Print	
EndPrt:			
	addi	\$t0, \$t0, 1	#i++
	bne	\$t0, \$s1, outer_loop	#i != n
	li	\$t0, 0	
	addi	\$s1, \$s1, 1	
exit:			
	li	\$v0, 10	
	syscall		
#			
# Procedure Pr	int		
#			
Print:	add	\$s7, \$v0, \$zero	# Save
	add	\$s6, \$a0, \$zero	# Save

	la	\$t8, A	# \$t8 = Address(A[0])
	la	\$t9, Aend	
	addi	\$t9, \$t9, -4	# \$t9 = Address(A[n-1])
LoopPrt:	blt	\$t9, \$t8, EndLoopPrt	# Exit if Aend < A[i]
	li	\$v0, 1	# Service 01: print integer
	lw	\$a0, 0(\$t8)	# Value of A[i]
	syscall		
	li	\$v0, 11	
	li	\$a0,''	# Print space
	syscall		
	addi	\$t8, \$t8, 4	# Move to A[i+1]
	j	LoopPrt	
EndLoopPrt:	li	\$v0, 11	
	li	\$a0, '\n'	# Print enter
	syscall		
	add	\$v0, \$s7, \$zero	# Load
	add	\$a0, \$s6, \$zero	# Load
	j	EndPrt	
Result:			

Assignment 4

Code:

.data

A: .word 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5

Aend: .word

.text

init:	la	\$s0, A	# Array A
	li	\$s1, 13	# Length of A
	li	\$s2, 1	# i
	li	\$s3, 0	# j
	li	\$s 4 , 0	# v
	li	\$t0, 0	# Address of A[i]
	li	\$t1,0	# Address of A[j]
	li	\$t2, 0	# Value of A[i]
	li	\$t3, 0	# Value of A[j]
Loop1:	sll	\$t0, \$s2, 2	# \$t0 = 4 * i
	add	\$t0, \$t0, \$s0	# Address(A[i])

```
lw
                             $s4, 0($t0) # v = A[i]
               addi
                             $s3, $s2, -1 # j = i - 1
               sll
                             $t1, $s3, 2 # $t1 = 4 * j
               add
                             $t1, $t1, $s0 # Address(A[j])
Loop2:
               lw
                             $t3, 0($t1)
                                            # Load A[j]
               blt
                             $t3, $s4, EndL2 # Continue looping if A[j] >= v
                             $t3, 4($t1) # A[j+1] = A[j]
               SW
               addi
                             $s3, $s3, -1 # --j
               addi
                             $t1, $t1, -4 # Keep memory access consistent with j
               bge
                             $s3, $0, Loop2 # Loop if j >= 0
EndL2:
                             $s4, 4($t1) # A[j+1] = v
               SW
               addi
                             $s2, $s2, 1
                                            # ++i
                              Print
               j
EndPrt:
               blt
                             $s2, $s1, Loop1 # Loop while i < A.length
Exit:
               li
                             $v0, 10 # Load exit operation
               syscall
# Procedure Print
Print:
               add
                             $s7, $v0, $zero
                                                    # Save
               add
                             $s6, $a0, $zero
                                                    # Save
               la
                             $t8, A
                                                    # $t8 = Address(A[0])
               la
                             $t9, Aend
               addi
                             $t9, $t9, -4
                                                    # $t9 = Address(A[n-1])
```

LoopPrt:	blt	\$t9, \$t8, EndLoopPrt	# Exit if Aend < A[i]
	li	\$v0, 1	# Service 01: print integer
	lw	\$a0, 0(\$t8)	# Value of A[i]
	syscall		
	li	\$v0, 11	
	li	\$a0,''	# Print space
	syscall		
	addi	\$t8, \$t8, 4	# Move to A[i+1]
	j	LoopPrt	
EndLoopPrt:	li	\$v0, 11	
	li	\$a0, '\n'	# Print enter
	syscall		
	add	\$v0, \$s7, \$zero	# Load
	add	\$a0, \$s6, \$zero	# Load
	i	EndPrt	

Result:

