Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Algoritmo de Dijkstra

El algoritmo de Dijkstra computa todas las distancias mínimas a todos los vértices de un grafo G = (V, E) desde un vértice fuente s:

- Sólo funciona para pesos no-negativos $w:E \to \mathbb{R}^{\geq 0}$
- El algoritmo de Dijkstra es más eficiente que el algoritmo de Bellman-Ford

Al igual que el algoritmo de Bellman-Ford, el algoritmo de Dijkstra ejecuta una secuencia σ de relajaciones de aristas del grafo

Caminos de costo mínimo en grafos Algoritmo de Dijkstra

© 2014 Blai Bonet CI2613

Algoritmo de Dijkstra

El algoritmo de Dijkstra mantiene un conjunto S de vértices para los cuales la distancia más corta desde s ha sido determinada

El algoritmo iterativamente realiza:

- Selecciona un vértice u en $V \setminus S$ que tenga un valor mínimo d[u]
- Agrega u al conjunto S
- Relaja todas las aristas que salen de u

Dijkstra se implementa con una **cola de prioridad** para mantener el conjunto de vértices $V\setminus S$, y poder seleccionar un vértice u con menor estimado d[u]

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Dijkstra: Pseudocódigo

```
void Dijkstra(G, w, s):
       Inicializar-vertice-fuente(G, s)
       PriorityQueue q
5
       foreach Vertice v
           q.insert(v)
       while !q.empty()
9
           u = q.extract-min()
10
11
           S = S \cup \{ u \}
           foreach Vertice v ∈ adyacentes[u]
12
13
                Relajar(u, v, w)
```

© 2014 Blai Bonet

CI2613

Dijkstra: Pseudocódigo

```
void Dijkstra(G, w, s):
        Inicializar-vertice-fuente(G, s)
        S = ∅
        PriorityQueue q
5
        foreach Vertice v
            q.insert(v)
        while !q.empty()
10
            u = q.extract-min()
11
            S = S \cup \{ u \}
            foreach Vertice v \in adyacentes[u]
12
                Relajar(u, v, w)
13
© 2014 Blai Bonet
                                                                           CI2613
```

Dijkstra: Análisis

- **1** La inicialización toma tiempo $\Theta(V)$
- 2 Las |V| inserciones en la cola toman tiempo $O(V \log V)$
- 3 Se realizan |E| relajaciones en tiempo $\Theta(E)$
- 4 Cada relajación involucra un decrease-key sobre la cola q
- **5** Se realizan |V| extract-min sobre la cola q

Heap binario: todas las operaciones en **4** y **5** toman tiempo $O(E \log V)$ y $O(V \log V)$ para un tiempo total de $O((E+V) \log V)$

Heap de Fibonacci: todas las operaciones en **4** y **5** toman tiempo (amortizado) O(E) y O(V) para un tiemp total de $O(E+V\log V)$

© 2014 Blai Bonet CI2613

Dijkstra: Correctitud

Teorema

© 2014 Blai Bonet

Sea G=(V,E) un digrafo con vértice fuente s y pesos no-negativos $w:E\to\mathbb{R}^{\geq 0}$. Al correr el algoritmo de Dijkstra sobre G con fuente s, al terminar, $d[v]=\delta(s,v)$ para todo vértice v.

Prueba: demostraremos el siguiente invariante:

Al inicio de cada iteración del lazo 9–13, $d[v] = \delta(s,v)$ para cada vértice $v \in S$

Es suficiente mostrar $d[u] = \delta(s, u)$ cada vez que u se inserta en S (línea 11)

CI2613

Esto porque por el Invariante 1:

Una vez que $d[u] = \delta(s,u)$ se hace cierto, la igualdad se mantiene posteriormente

Utilizaremos inducción en el número de inserciones en S

Dijkstra: Pseudocódigo

```
void Dijkstra(G, w, s):
        Inicializar-vertice-fuente(G, s)
4
        PriorityQueue q
        foreach Vertice v
            q.insert(v)
8
        while !a.emptv()
            u = q.extract-min()
10
            S = S \cup \{ u \}
11
            foreach Vertice v ∈ adyacentes[u]
12
                Relajar(u, v, w)
13
```

© 2014 Blai Bonet CI2613

Dijkstra: Correctitud

Al inicio (antes de cualquier inserción): S es vacío y la propieded es cierta trivialmente

Paso inductivo: suponga que la propiedad es cierta despues de k-1 inserciones y considere la k-ésima inserción. Sea u el vértice que se inserta

Queremos ver $d[u] = \delta(s,u)$. Para una demostración por contradicción, suponga $d[u] \neq \delta(s,u)$. Consideramos dos casos:

© 2014 Blai Bonet CI2613

Dijkstra: Correctitud

 \bullet $\delta(s,u)=\infty$: por el Invariante 1, $d[u]=\infty$ y este caso no puede ser

2 $\delta(s,u)<\infty$: como $d[s]=\delta(s,s)=0$, u no puede ser s. Considere un camino de costo mínimo (s,\ldots,x,y,\ldots,u) donde $x\in S$ y $y\in V\setminus S$

Como $x \in S$, por hipótesis inductiva, $d[x] = \delta(s, x)$ al insertar x en S

En ese momento, se relaja la arista (x,y) y por el Invariante 3, $d[y]=\delta(s,y)$ al momento de decolar u

© 2014 Blai Bonet Cl2613

Dijkstra: Correctitud

Corolario

Al finalizar el algoritmo de Dijkstra, el grafo de predecesores es un árbol de caminos óptimos.

Prueba: aplicar el Invariante 5 ya que por el Teorema, $d[v]=\delta(s,v)$ para todo vértice v al finalizar el algoritmo de Dijkstra

© 2014 Blai Bonet CI2613

Dijkstra: Correctitud

- Un camino óptimo $(s, \ldots, x, y, \ldots, u)$
- Por optimalidad de subcaminos y costos no-negativos, $\delta(s,y) \leq \delta(s,u)$
- $d[x] = \delta(s, x)$ y $d[y] = \delta(s, y)$
- Como u se decola antes que y, $d[u] \leq d[y]$

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u] \le d[y]$$

$$d[y] = \delta(s,y) = \delta(s,u) = d[u] = d[y]$$

En particular, $\delta(s, u) = d[u]$

© 2014 Blai Bonet Cl2613