

INTRODUCTION TO MODELING

Matt Brems General Assembly, D.C.

AGENDA

1. Data Science Process & Modeling

2. Linear Regression

DATA SCIENCE PROCESS

- Define problem. Real-world problem → data science problem
 Gather data. .CSV , database 80%
- Explore data.
- Model with data.
- Evaluate model.
- Answer problem.

• Modeling is something that we naturally do.

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.
 - How do we simplify?
 - Making assumptions about how things behave.
 - Taking into account only really important factors.

Is my model useful.

"Essentially, all models are wrong, but some are useful."

— George Box, 1987

WHY DO WE MODEL?

- Prediction Stock prices
 - How long does it take me to get to work?
 - How much money is a 29-year-old DSI alum expected to make?
- Inference What is the effect of sex on income? Know "why."

 - How much more money can I be expected to make in a year?

medical studies

MACHINE LEARNING ALGORITHMS

- **Machine learning** is a term we use to describe getting computers (machines) to learn without needing to be explicitly programmed.
- There are many different machine learning algorithms we'll cover in the class from linear regression to neural networks!

linear model
neural network

Input

output

MACHINE LEARNING ALGORITHMS

wkGit Data Science Problem Supervised Learning 4 have access to nave access to

Y (what I want to

/predict)

Regression wk3

(4 continuous Y 4 discrete Y

Unsupervised Learning Lado not have access 4 Clustering 4 PCA

TERMINOLOGY

- X: our data, the independent/explanatory variables we use to predict Y.
- Y: our data, the dependent variable we want to predict.
- \widehat{Y} : our predicted values of Y.

$$f(X) = \hat{X}$$

MODELING GOALS

1. Use observed values of X and Y to model relationship between them.

2. Build model that makes \mathbf{Y} and $\widehat{\mathbf{Y}}$ as close as possible.

3. Use observed values of X and existing model to make predictions \hat{Y} .

$$f(X) = \hat{Y}$$