MATH 4410 Nate Stott A02386053

Quiz #1; Due 11:59 pm, 1/16/2024

1. Write n^4 as a sum of falling powers: $n^4 = c_0 \cdot n^0 + c_1 n^1 + c_2 n^2 + c_3 n^3 + c_4 n^4$.

I used a python program I made to make the difference table. Here is the code on github if you want to see:

https://github.com/funkybooboo/MATH4110_DifferanceTable

The program produced the numbers in the following table. However I don't know Latex that well so I copied the table you made and checked that our numbers matched then edited it to look how I like.

n	0	1	2	3	4	5	6	7
$\Delta^{(0)}$ n ⁴	0	1	16	81	256	625	1296	2401
$\Delta^{(1)}$ n ⁴	1	15	65	175	369	671	1105	
$\Delta^{(2)}n^4$	14	50	110	194	302	434		
$\Delta^{(3)}$ n ⁴	36	60	84	108	132			
$\Delta^{(4)} n^4$	24	24	24	24				
$\Delta^{(0)}$ n ⁴ $\Delta^{(1)}$ n ⁴ $\Delta^{(2)}$ n ⁴ $\Delta^{(3)}$ n ⁴ $\Delta^{(4)}$ n ⁴ $\Delta^{(5)}$ n ⁴	0	0	0					

Then I wanted to prove that this statement is true to make sure you weren't pulling any trickery.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{\underline{k}}}{k!}$$

Start proof.

Lets focus in.

$$\frac{n!}{k!(n-k)!} = \frac{n^{\underline{k}}}{k!}$$

We can eliminate k!.

$$\frac{n!}{(n-k)!} = n^{\underline{k}}$$

Wait $\frac{n!}{(n-k)!} = n^k$ is the definition of n^k so I guess you weren't pulling anything there. End proof.

Lets use The Discrete Taylor Theorem to find a falling power representation for n^4 .

$$f(n) = \sum_{k \ge 0} \Delta^{(k)} f(\alpha) \binom{n - \alpha}{k}$$

Let a=0 so that we can get the first item of every row on the difference table.

$$f(n) = n^4 = \sum_{k \geq 0} \Delta^{(k)} f(0) \binom{n}{k} = 0 \binom{n}{0} + 1 \binom{n}{1} + 14 \binom{n}{2} + 36 \binom{n}{3} + 24 \binom{n}{4} + 0 \binom{n}{5} + 0 \binom{n}{6} + 0 \binom{n}{7} + \dots$$

We can through out the terms with 0 as the leading coefficient.

$$=1\binom{n}{1}+14\binom{n}{2}+36\binom{n}{3}+24\binom{n}{4}$$

OK so now I can use $\binom{n}{k} = \frac{n^{\underline{k}}}{k!}$ to my advantage.

$$=1(\frac{n^{\underline{1}}}{1!})+14(\frac{n^{\underline{2}}}{2!})+36(\frac{n^{\underline{3}}}{3!})+24(\frac{n^{\underline{4}}}{4!})$$

Simplifying.

$$= n^{\frac{1}{2}} + 14(\frac{n^{2}}{2}) + 36(\frac{n^{3}}{6}) + 24(\frac{n^{4}}{24})$$
$$= n^{\frac{1}{2}} + 7n^{\frac{2}{2}} + 6n^{\frac{3}{2}} + n^{\frac{4}{2}}$$

There you have it.

$$n^4 = n^{\frac{1}{2}} + 7n^{\frac{2}{2}} + 6n^{\frac{3}{2}} + n^{\frac{4}{2}}$$

2. Create a function that is a polynomial in n (ideally with no falling powers, but simplifying is not necessary) for the $\sum_{i=1}^{n} i^4$.

$$\sum_{i=0}^{n} i^{4} = \sum_{i=0}^{n} (i^{1} + 7i^{2} + 6i^{3} + i^{4})$$

I know the summation doesn't distribute but you know what I'm doing

$$\begin{split} &=\sum_{i=0}^{n}i^{\frac{1}{2}}+\sum_{i=0}^{n}7i^{\frac{2}{2}}+\sum_{i=0}^{n}6i^{\frac{3}{2}}+\sum_{i=0}^{n}i^{\frac{4}{2}}\\ &=\frac{i^{\frac{2}{2}}}{2}\Big|_{i=0}^{i=n+1}+7(\frac{i^{\frac{3}{2}}}{3}\Big|_{i=0}^{i=n+1})+6(\frac{i^{\frac{4}{4}}}{4}\Big|_{i=0}^{i=n+1})+\frac{i^{\frac{5}{2}}}{5}\Big|_{i=0}^{i=n+1}\\ &=(\frac{(n+1)^{\frac{2}{2}}}{2}-\frac{(0)^{\frac{3}{2}}}{3})+7(\frac{(n+1)^{\frac{3}{2}}}{3}-\frac{(0)^{\frac{3}{2}}}{3})+6(\frac{(n+1)^{\frac{4}{4}}}{4}-\frac{(0)^{\frac{4}{4}}}{4})+(\frac{(n+1)^{\frac{5}{2}}}{5}-\frac{(0)^{\frac{5}{2}}}{5})\\ &=\frac{(n+1)^{\frac{2}{2}}}{2}+7(\frac{(n+1)^{\frac{3}{2}}}{3})+6(\frac{(n+1)^{\frac{4}{2}}}{4})+\frac{(n+1)^{\frac{5}{2}}}{5}\\ &=\frac{(n+1)(n)}{2}+7(\frac{(n+1)(n)(n-1)}{3})+6(\frac{(n+1)(n)(n-1)(n-2)}{4})+\frac{(n+1)(n)(n-1)(n-2)(n-3)}{5}\\ &=\frac{n^{2}+n}{2}+7(\frac{n^{3}-n}{3})+6(\frac{n^{4}-2n^{3}-n+2}{4})+\frac{n^{5}-5n^{4}+5n^{3}+5n^{2}-6n}{5} \end{split}$$

Simplify

$$=\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}+\frac{3n^2}{2}-\frac{68n}{15}+3$$

There you have it

$$\sum_{i=0}^{n} i^4 = \frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} + \frac{3n^2}{2} - \frac{68n}{15} + 3$$

3. Show that $\sum_{i=0}^{n} (4i^3 + 6i^2 + 4i + 1) = (n+1)^4$.

Start proof

$$\sum_{i=0}^{n} (4i^3 + 6i^2 + 4i + 1) = (n+1)^4$$
$$\sum_{i=0}^{n} (4i^3 + 6i^2 + 4i + 1) = n^4 + 4n^3 + 6n^2 + 4n + 1$$

focus in on left side

$$= \sum_{i=0}^{n} (4(i^{\underline{3}} + 3i^{\underline{2}} + i^{\underline{1}}) + 6(i^{\underline{2}} + i^{\underline{1}}) + 4(i^{\underline{1}}) + 1)$$

I know the summation doesn't distribute but you know

$$\begin{split} &=\sum_{i=0}^{n}4(i^{\frac{3}{4}}+3i^{\frac{2}{4}}+i^{\frac{1}{4}})+\sum_{i=0}^{n}6(i^{\frac{2}{4}}+i^{\frac{1}{4}})+\sum_{i=0}^{n}4(i^{\frac{1}{4}})+\sum_{i=0}^{n}1\\ &=4\sum_{i=0}^{n}(i^{\frac{3}{4}}+3i^{\frac{2}{4}}+i^{\frac{1}{4}})+6\sum_{i=0}^{n}(i^{\frac{2}{4}}+i^{\frac{1}{4}})+4\sum_{i=0}^{n}i^{\frac{1}{4}}+n+1\\ &=4(\sum_{i=0}^{n}i^{\frac{3}{4}}+3\sum_{i=0}^{n}i^{\frac{2}{4}}+\sum_{i=0}^{n}i^{\frac{1}{4}})+6(\sum_{i=0}^{n}i^{\frac{2}{4}}+\sum_{i=0}^{n}i^{\frac{1}{4}})+4\sum_{i=0}^{n}i^{\frac{1}{4}}+n+1\\ &=4(\frac{i^{\frac{4}{4}}}{4}\Big|_{i=0}^{i=n+1}+3(\frac{i^{\frac{3}{4}}}{3}\Big|_{i=0}^{i=n+1})+\frac{i^{\frac{2}{4}}}{2}\Big|_{i=0}^{i=n+1})+6(\frac{i^{\frac{3}{4}}}{3}\Big|_{i=0}^{i=n+1}+\frac{i^{\frac{2}{4}}}{2}\Big|_{i=0}^{i=n+1})+4(\frac{i^{\frac{2}{4}}}{2}\Big|_{i=0}^{i=n+1})+n+1\\ &=4(\frac{(n+1)^{\frac{4}{4}}}{4}+3(\frac{(n+1)^{\frac{3}{4}}}{3})+\frac{(n+1)^{\frac{2}{4}}}{2})+6(\frac{(n+1)^{\frac{3}{4}}}{3}+\frac{(n+1)^{\frac{2}{4}}}{2}+4(\frac{(n+1)^{\frac{2}{4}}}{2})+n+1\\ &=4(\frac{(n+1)n(n-1)(n-2)}{4}+3(\frac{(n+1)n(n-1)}{3})+\frac{(n+1)(n)}{2})+6(\frac{(n+1)n(n-1)}{3}+\frac{(n+1)n(n-1)}{2})+4(\frac{(n+1)n}{2})+n+1\\ &=n^{4}+4n^{3}+6n^{2}+4n+1 \end{split}$$

There you go

$$\sum_{i=0}^{n} (4i^3 + 6i^2 + 4i + 1) = (n+1)^4$$

End proof

4. Compute $\begin{Bmatrix} 7 \\ 3 \end{Bmatrix}$ using the difference table for n^7 .

n	0	1	2	3	4	5	6	7	8
$\Delta^{(0)}\mathfrak{n}^7$	0	1	128	2187	16384	78125	279936	823543	2097152
$\Delta^{(1)}\mathfrak{n}^7$	1	127	2059	14197	61741	201811	543607	1273609	
$\Delta^{(2)}\mathfrak{n}^7$	126	1932	12138	47544	140070	341796	730002		
$\Delta^{(3)}\mathfrak{n}^7$	1806	10206	35406	92526	201726	388206			
$\Delta^{(4)}\mathfrak{n}^7$	8400	25200	57120	109200	186480				
$\Delta^{(5)}\mathfrak{n}^7$	16800	31920	52080	77280					
$\Delta^{(6)}\mathfrak{n}^7$	15120	20160	25200						
$\Delta^{(7)}\mathfrak{n}^7$	5040	5040							
$\Delta^{(8)} n^7$	0								

 Given

$${k \brace j} = \frac{\Delta^{(j)}[(0)^k]}{j!}$$

Compute

$${7 \brace 3} = \frac{\Delta^{(3)}[(0)^7]}{3!} = \frac{1806}{3!} = 301$$