Please replace the paragraph beginning at line 25 on page 9 through line 5 on page 10 of the specification with the following rewritten paragraph:

At 35 °C, 45 μ l of H₂O₂ (50%) were added to a solution of 325 μ l of α -terpinene and 48.5 mg of Na₂MoO₄·2H₂O in 4 ml of methanol. Five further 45 μ l portions of H₂O₂ (50%) were added to this mixture as soon as the red-colored reaction mixture turned yellow again. After 1.5 hours, the reaction mixture was analyzed by means of HPLC. Analysis gave a quantitative formation of ascaridol.

100

IN THE CLAIMS:

Please amend claims 1 to 3 as follows:

- 1. (Amended) A process for the oxidation of organic substrates by means of ${}^{4}O_{2}$, which comprises adding 30-70% strength $H_{2}O_{2}$ to hydrophobic organic substrates which react with ${}^{4}O_{2}$ in an organic solvent in the presence of a homogeneous catalyst, whereupon, following the catalytic decomposition of $H_{2}O_{2}$ to give water and ${}^{4}O_{2}$, oxidation to give the corresponding oxidation products takes place.
- 2. (Amended) The process as claimed in claim 1, wherein the substrates which react with ${}^{1}O_{2}$ used are olefins which contain 1 to 10 C=C double bonds; C_{6} - C_{50} phenols, polyalkylbenzenes, polyalkoxybenzenes; polycyclic aromatics having 2 to 10 aromatic rings; alkyl sulfides, alkenyl sulfides, aryl sulfides which are either mono- or disubstituted on the sulfur atom, and C_{4} - C_{60} heterocycles having an O, N or S atom in the ring, which may be unsubstituted or may be mono- or polysubstituted by halogens, cyanide, carbonyl groups, hydroxyl groups, C_{1} - C_{50} alkoxy groups, C_{1} - C_{50} alkyl groups, C_{6} - C_{50} aryl groups, C_{2} - C_{50} alkenyl groups, C_{2} - C_{50} alkynyl groups, carboxylic acid groups, ester groups, amide groups, amino groups, nitro groups, silyl groups, silyloxy groups, sulfone groups, sulfoxide groups or by one or more $NR^{1}R^{2}$ radicals in which R^{1} or R^{2} may be identical or different and are H; C_{1} - C_{50} alkyl; formyl; C_{2} - C_{50} acyl, C_{7} - C_{50} benzoyl, where R^{1} and R^{2} may also together form a ring.

3. (Amended) The process as claimed in claim 1, wherein the solvent used is C₁-C₈-alcohols, formamide, N-methylformamide, dimethylformamide, sulfolane or propylene carbonate.

Please add the following new claims:

- 9. (New) A process for the oxidation of organic substrates by means of ${}^{1}O_{2}$, which consists essentially of adding 30-70% strength $H_{2}O_{2}$ to hydrophobic organic substrates which react with ${}^{1}O_{2}$ in an organic solvent in the presence of a homogeneous catalyst, whereupon, following the catalytic decomposition of $H_{2}O_{2}$ to give water and ${}^{1}O_{2}$, oxidation to give the corresponding oxidation products takes place.
- 10. (New) The process as claimed in claim 9, wherein, following the reaction of the hydrophobic organic substrates which react with ${}^{1}O_{2}$ in a monohydric C_{1} - C_{8} alcohol as solvent in the presence of a molybdate catalyst with 30-70% strength $H_{2}O_{2}$ to give the corresponding oxidation products, the removal and recycling of the precipitated-out catalyst when the reaction is complete is carried out by simple centrifugation or filtration.
 - 11. (New) The process of claim 7 wherein the reaction temperature is 15 to 35°C.

