✓1) A test well was drilled to a total depth of 117 feet with the following geologists log:

0 - 73 feet Coarse sand
73 - 82 feet Clayey sand
82 - 117 feet Coarse sand
117 feet Crystalline bedrock

& . D. 2 . 5

The depth to water was 55 feet. The test well was screened from 82 to 117 feet. It was pumped at a rate of 560 gallons per minute. Drawdown was measured in an observation well that was also screened from 82 to 117 feet and was located 82 feet away from the pumping well. The following data were collected:

Elapsed Time	(minutes)	Drawdown (feet)
-	0	0.00
	1	0.90
	2	2.15
	3	3.05
	4	3.64
	5	4.07
	6	4.52
	7	4.74
	8	5.02
	9	5.21
	10	5.53
	15	5.72
	20	5.97
	30	6.12
•	40	6.20
	50 .	6.25
	60	6.27
	90	6.29
1	20	6.29
(a) D=0.00	hamatia of the a	anifor anatom dogorihad by the ac

- (a) Draw a schematic of the aquifer system described by the geologic log. Indicate the relative positions of the pumping and observation well.
- (b) Compute the value of storativity and transmissivity for the aquifer system. If your data suggest a leaky system, estimate the vertical hydraulic conductivity of the confining layer.
- 2) A slug test was made in a piezometer that had a casing radius of 2.54 centimeters and a screen radius of 2.54 centimeters. A slug of 4000 cubic centimeters was <u>injected</u>; this slug raised the water level by 197.3 cm. The well completely penetrated a confined stratum that was 2.3 meters thick. The data from the test are listed below. Estimate the transmissivity and storativity for the stratum.

Time	(seconds)	Head(feet)
	Ο.	197.3
	1	185.4
	2	178.6
	3	173.6
	5	, 167.7
	7	158.8
	10	147.0
	13	140.0
	17	129.2
	22	118.4
	32	99.6
	53	74.0
	84	51.3
	119	35.3
	170	23.3
	245	15.2
	400	8.7
	800	4.3

3) The following data were obtained from a pumping test where a well was pumped at a rate of 200 gallons per minute. Drawdown was measured in an observation well 250 feet away from the pumped well. The geologist log of the pumping well is:

```
0 - 23 feet Glacial till, brown, clayey
23 - 77 feet Dolomite, fractured
77 - 182 feet Shale, black, dense
182 - 217 feet Sandstone, well-cemented, coarse
217 - 221 feet Shale, gray, limy
```

A steel casing was cemented to a depth of 182 feet and the well was screened from 182 feet to its total depth of 221 feet.

Elapsed				Dr	awdo	wn	(fe	et.)
	 0					0.0		,
	1					0.6		
	1.5					0.8		
	2					0.9		
	2.5					1.1		
	3					1.2		
	4					1.3		
	5					1.4		
	6					1.5		
	8					1.7		
	10					1.8		
	12					1.9		
	14					2.0		
X	18					2.2		
	24							
	30					2.4		
	40					2.6		
	50					2.7		
	60					2.8		
	80					3.0		
	00					3.1		
	20					3.2		
	50					3.4		
	80					3.5		
	10					3.6		
	40	 . •			••	3.6	57 .	

- (a) Draw a schematic of the aquifer system described by the geologic log. Indicate the relative positions of the pumping and observation well.
- (b) Compute the value of storativity and transmissivity for the aquifer system. If your data suggest a leaky system, estimate the vertical hydraulic conductivity of the confining layer.
- 4) The effect of hydrologic boundaries is usually evidenced by departures of time drawdown data from theoretical curves. These departures can be analyzed to locate the type of boundaries and their contribution to total flow. Prepare time drawdown curves for the three cases below:
- (a) An observation well located 100 feet from a pumped well in a homogeneous, isotropic, confined aquifer. The pumped well is operated at a rate of 200 gpm, T = 2000 gpd/ft, and S=0.001.
- (b) Same as above, except the observation well is located between the pumping well and a recharge (constant head) boundary that is located 500 feet from the pumping well.
- (c) Same as above, except the boundary is a no-flow boundary.
- (d) Comment on the time drawdown patterns for recharge and no-flow boundaries.

b) andone of leakage see attriched norksheets

Matein Point 1/B = 1.0

$$W(u, \frac{\pi}{6}) = 1.4$$

$$\frac{\pi}{6} = 50$$

$$T = \frac{560 \text{gpm}}{4\pi (104)} = 6.238 \frac{\text{gpm}}{\text{ft}} = \frac{f_{t}^{3}}{7.48 \text{gal}} = \frac{0.834 ft^{2}}{\text{min}}$$

$$G = (\frac{1}{50}) 4 (0.834 ft^{2}) 10^{-2} (\frac{\text{min}}{ft^{2}}) = 6.67 \cdot 10^{-4}$$

$$K' = (0.834 \text{H}^2)(9\text{H})(1.0)^2$$

$$= 1.116.10^{-3} \text{H/min}$$

$$= (82\text{H})^2$$

5 Pr	oblem#1	Data	r= 82 ft			
		Time (min)	S (feet)	t/r^2		
		0	0	0		
	•	1	0.9			
		2	2.15		,	
		3	3.05			
		4	3.64			
		5	4.07			
		6	4.52			
		7	4.74			
		8	5.02			
		9	5.21			
		10	5.53			
		15	5.72	0.002230815		
		20	5.97	0.00297442		
		30	6.12	0.00446163		
		40	6.2	0.005,94884		
		50	6.25	0.007,43605		
		60	6.27	0.00892326		
		90	6.29	0.01338489		
		120	6.29			
				Cooper-Jac	ob Plo	
			Problem #1		ob Plo	
	1		Problem #1	Cooper-Jac		1000
	·		Problem #1	Cooper-Jac		1000
	1 0 		Problem #1	Cooper-Jac		1000
	0		Problem #1	Cooper-Jac		1000
	·		Problem #1	Cooper-Jac		1000
et)	0		Problem #1	Cooper-Jac		1000
(feet)	0 1 2		Problem #1 Time	Cooper-Jac		1000
n (feet)	0 1 2		Problem #1 Time	Cooper-Jac		1000
wn (feet)	0 1 2 3		Problem #1 Time	Cooper-Jac		1000
down (feet)	0 1 2		Problem #1 Time	Cooper-Jac		1000
awdown (feet)	0 1 2 3 4 4		Problem #1	Cooper-Jac		1000
Drawdown (feet)	0 1 2 3		Problem #1 Time	Cooper-Jac		1000
Drawdown (feet)	0 1 2 3 4 5 5		Problem #1 Time	Cooper-Jac		1000
Drawdown (feet)	0 1 2 3 4 4		Problem #1 Time	Cooper-Jac		1000
Drawdown (feet)	0 1 2 - 3 - 4 - 5 - 6 -		Problem #1 Time	Cooper-Jac		1000
Drawdown (feet)	0 1 2 3 4 5 5		Problem #1 Time	Cooper-Jac		1000
Drawdown (feet)	0 1 2 - 3 - 4 - 5 - 6 -		Problem #1 Time	Cooper-Jac		1000

hen, from dix 3.

3) —

irawdown

stants for nite thick-

pe curves
,r/B) as a
/pe curve

e are sevwith the /B; it may lines. m portion well, the

the data is $h_0 - h$. Talues are

FIGURE 6.13 Type curves of leaky artesian aquifer in which no water is released from storage in the confining layer. Source: W. C. Walton, Illinois State Water Survey Bulletin 49, 1962.

183

£81

th the data $h_0 - h$. values are

im portion well, the ! lines. r/B; it may e with the LC SIC 2CA-:ype curve 1,r/B) as a be cnives

istants for inite thick-

drawdown

1(

(8) Then, from rdix 3. 2) Use Nguyer and Pincer Method

$$r_c = 2.54 \cdot 10^{-2} \text{m}$$
 $r_s = 2.54 \cdot 10^{-2} \text{m}$

$$Z_1 = 0$$
 $Z_1 = 2.3 m$

Plot: In (HE) us In(E)

C3 = 0.577 (see attacked spreadshed)

$$S = \frac{r_c^2}{r_s^2} \frac{l_3}{l_2 - l_1} = \frac{0.557}{2.3} = \frac{0.242}{2.3}$$

$$K = \frac{r^2}{4c_4} \frac{c_3}{c_1 - c_1} = \frac{(2.5410^{-2})^2}{4(32.5)} \cdot \frac{0.557}{2.3m} = 1.201.10^{-6} \text{ m/sec}$$

May wish to use thousles method to check result for K.

HW5 Problem #	2 Slug Test				
1/t	dh/dt	time	H (time)	ln(t)	ln (H)
#DIV/0!		. 0	197.3	#NUM!	5.284725413
1	11.9	1	185.4	0	5.222515653
0.5	6.8	2	178.6	0.693147181	5.185148668
0.33333333	5	3	173.6	1.098612289	5.156753802
0.2	2.95	5	167.7	1.609437912	5.122176669
0.142857143	4.45	7	158.8	1.945910149	5.067645549
0.1	3.933333333	10	147	2.302585093	4.990432587
0.076923077	2.333333333	13	140	2.564949357	4.941642423
0.058823529	2.7	17	129.2	2.833213344	4.86136159
0.045454545	2.16	22	118.4	3.091042453	4.774068722
0.03125	1.88	32	99.6	3.465735903	4.601162165
0.018867925	1.219047619	53	74	3.970291914	4.304065093
0.011904762	0.732258065	84	51.3	4.430816799	3.937690752
0.008403361	0.457142857	119	35.3	4.779123493	3.563882964
0.005882353	0.235294118	170	23.3	5.135798437	3.148453361
0.004081633	0.108	245	15.2	5.501258211	2.721295428
0.0025	0.041935484	400	8.7	5.991464547	2.16332302
0.00125		800	4.3	6.684611728	1.458615023

5.2221 54.601 1.521 1.521

3.143

Ln(dH/dt) vs 1/

#3 b) attached.

- No evidence et leaker system

-See Jacob- (ogge Plot
Time (min)

1.4kx

#3)	Y=250', Q=200 gpm						
at A case The graph of the Chapter Stage Co.	5(H)	1 6/12					
The state of the s	0.66	1.6.10-5	Type Curves attached				
	0.87	2.4.10-5					
	0.99	3.2. 10-5	Match Point				
and the second s	1011	4.0:10-5	$f = 27$; $0 = 3.704 - 10^{-2}$; $5 = 1$				
	121	4.8 10-5					
<u>.</u>	1.36	6.4.105	W(u) = 1.6 = 10-4				
	1.49	8.0.10-6					
	1.59	9.6 - 10-5	T = 200gpm(1.6) = 25.46 gpm/ft				
	1.75	1-28-10-4	4T (1FE) HE				
	1.86	1.6.10-4	= 4902 ft day				
	1.97	1.9.10-4	day				
	2-08	2.2 10-4	8 = (3.704.10-2)(4)(3.404 FE2 X10-4 min				
	. 220	2.88.10-4	Min				
	2.36	3.84.10-4	= 4.504-10-5				
	2.49	4.80.104					
	2.65	6.4.10-4					
	2.78	8.0-10-4	T= 4900 ft /d				
	2.88	9 6 . 10	5 = 4.5-10-5				
	3.04	1.28 - 10 - 3					
	3.16	1-60 , 10-3					
	3.28	1.92 10-3					
will be	3.42	2-40 10-3					
et e	3.51	2-88 10 3					
	3.6/	3.36 : 10 3	F				
, in december of	3.67	3.84 10 -3					

FIGURE 1.2.—Type curve of dimensionless drawdown (W(u)) versus dimensionless time (1/u) for constant discharge from an artesian

1 And be some for

t * suld be some for