Egy adatelemző projekt

a kérdésfeltevéstől az automatizálásig

Erben Péter

A Gondolkodás Öröme Alapítvány: Beszéljük meg! 2023. június 26.

A kérdés

Al történet

🕓 automatizáció, 📜 termékké alakítás

Adat futószalag

változók definíciója adat transzformációk, adat tisztítás körmentes irányított gráfok

Változók definíciója

"Hány ügyfele van a cégnek 2023. június 26-án?"

"Meddig kell visszamenni időben, ha fél évre akarunk előrejelzést adni?"

Adat transzformációk

Diszkretizálás, hiányzó adatok

#	életkor		#	életkor
1	24		1	'20-30'
2	63	→	2	'60-70'
3	44		3	'40-50'
4	49		4	'40-50'
5	-		5	'NA'

Optimális vágások?

Kategorikusból valós

#	gen		#	3G	4G	5G	NA
1	'4G'		1	0	1	0	0
2	'4G'	→	2	0	1	0	0
3	'5G'		3	0	0	1	0
4	'3G'		4	1	0	0	0
5	'NA'		5	0	0	0	1

Beágyazás magasabb dimenziós térbe

Adat tisztítás

Adat silók

Irányított körmentes gráfok (DAGs)

A feladat tudja, kitől függ.

Apache Airflow

Az ütemező tudja, ki következhet.

Gépi tanulás

<i>v</i> ₁	<i>V</i> ₂	 t

mesterséges intelligencia gépi tanulás (görbeillesztés, statisztikai tanulás) változók kiválasztása

Mesterséges intelligencia (Artificial Intelligence)

stockfish Gépi tanulás (Machine Learning) Felügyelt (supervised) tanulás Felügvelet nélküli (unsupervised) tanulás Megerősítéses (reinforcement) tanulás regresszió / klasszifikáció lineáris regresszió principal component analysis C-learning logisztikus regresszió k-means clustering support vector machine 🗖 döntési fa xaboost Neurális hálók (Deep learning) convolutional neural network autoencoders DeepMind AlphaGo large languale models (LLMs)

Gépi tanulás: görbe illesztés + túltanulás elkerülése

Hiba: \mathcal{L} (loss)

Algoritmus: $\mathcal{L}_{\min ta} o \min$

Elmélet: $|\mathcal{L}_{\text{minta}} - \mathcal{L}| < \epsilon$, ha elég sok adaton "tanítottunk", a függvény "bonyolultságához" képest

Túltanulás (overfitting):

$$\mathcal{L}_{minta} < \epsilon$$
, de $|\mathcal{L}_{minta} - \mathcal{L}| >> \delta$

Felügyelt tanulás

Felügyelt tanulás

Felügyelt tanulás

Áttekintés

Mit tanulunk?

$$P(t \mid \underline{v})$$

Mit feltételezünk?

$$P(\underline{v})$$

Mit remélünk?

 $P(t \mid \underline{v})$ nem változik (gyorsan), akkor sem, ha $P(\underline{v})$ változik.

Melléktermék

$$P(t, \underline{v}) = P(t \mid \underline{v}) \cdot P(\underline{v})$$

Példák felügyelt tanulásra

Lineáris regresszió

Perceptron

Logisztikus regresszió

Lineáris regresszió

$$\mathcal{H}$$
: { $f(x) = mx + b \mid (m, b) \in \mathbb{R}^2$ }

$$\mathcal{L}(f,t): \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - t_i)^2$$

optimalizáló:

 \mathcal{L} konvex, $\nabla \mathcal{L}_{m,b} = \underline{0}$

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 \to \min$$

$$\mathcal{L}(m,b) = \sum_{i} (f(x_i) - y_i)^2 = \sum_{i} (mx_i + b - y_i)^2 = \sum_{i} (mx_i + b - y_i)^2 = \sum_{i} (mx_i + b - y_i)^2$$

$$= \sum (m^2 x_i^2 + 2mbx_i + b^2 + y_i^2 - 2y_i mx_i - 2y_i b) =$$

$$= m^2 \sum x_i^2 + 2mb \sum x_i + nb^2 + \sum y_i^2 - 2m \sum x_i y_i - 2b \sum y_i$$

$$\frac{\partial \mathcal{L}}{\partial m} = 2m \sum_{i} x_i^2 + 2b \sum_{i} x_i - 2 \sum_{i} x_i y_i = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = 2m \sum_{i} x_i + 2bn - 2 \sum_{i} y_i = 0$$

Lineáris regresszió

$$m = \frac{n \sum x_i y_i - \sum x_i \cdot \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{\sum y_i - m \sum x_i}{n}$$

Perceptron

$$\mathcal{H}$$
: $\{f(x,y) = \text{sgn}(Ax + By + C)\}\$
 $(A, B, C) \in \mathbb{R}^3, t_i \in \{+1, -1\}$

$$\mathcal{L}(f,t): \#\{i \mid t_i \neq f(x_i,y_i)\}$$

optimalizáló:

Ciklus amíg $\exists i : f(x_i, y_i) \neq t_i$:

$$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} A \\ B \\ C \end{pmatrix} + t_i \cdot \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix}$$

Perceptron (motiváció)

 $\underline{w}(A,B,C)$ az origón átmenő, Ax+By+Cz=0 egyenletű S_B sík normálvektora.

Az ismert pontok a z = 1 egyenletű S síkon helyezkednek el. $(x_i, y_i, 1)$

A döntés határvonala S_B és S metszésvonala.

Ha a $\underline{v}(x_i, y_i, 1)$ pontra tévedtünk, akkor $\underline{w} \cdot \underline{v}$ és t_i előjele különbözik (tfh. $t_i = -1$).

 $\underline{w}' = \underline{w} - \underline{v}$ jó irányba forgatta az S_B síkot $(x_i, y_i, 1)$ szempontjából.

Logisztikus regresszió* (motiváció)

$$u(x, y) = Ax + By + C \in]-\infty; +\infty[$$

$$f(x,y) = \sigma(u(x,y)) \in]0;+1[$$

Logisztikus regresszió (motiváció)

$$P(\text{minta} \mid f) = \prod p_i^{t_i} \cdot (1 - p_i)^{(1 - t_i)}$$

Maximum Likelihood Estimate:

$$P(\mathsf{minta} \mid f) \to \mathsf{max} \qquad - \mathsf{ln} \, P(\mathsf{minta} \mid f) \to \mathsf{min}$$

$$\mathcal{L}(f, t) = -\ln P(\text{minta } | f) = -\sum (t_i \ln f(x_i, y_i) + (1 - t_i) \ln (1 - f(x_i, y_i)))$$

Logisztikus regresszió

$$\mathcal{H}$$
: $\left\{ f(x,y) = \frac{1}{1 + e^{-(Ax + By + C)}} \right\}$
 $(A, B, C) \in \mathbb{R}^3, t_i \in \{1, 0\}$

$$\mathcal{L}(f,t)$$
:
-\sum (t_i \ln (f(x_i, y_i)) + (1 - t_i) \ln (1 - f(x_i, y_i)))

optimalizáló: gradiens leszállás

$$\underline{\mathbf{w}}' = \underline{\mathbf{w}} - \alpha \cdot \nabla \mathcal{L}\left(\underline{\mathbf{v}}\right)$$

Logisztikus regresszió (hiba gradiens)

$$\mathcal{L}(u) = -t \ln(\sigma(u)) - (1-t) \ln(1-\sigma(u)) =$$

$$= -t \ln\left(\frac{e^u}{1+e^u}\right) - (1-t) \ln\left(\frac{1}{1+e^u}\right) =$$

$$= -tu + \ln(1+e^u)$$

$$\frac{\partial \mathcal{L}}{\partial u} = \sigma(u) - t \qquad \qquad \nabla \mathcal{L} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cdot (\sigma(u) - t)$$

Gradiens leszállás:
$$\begin{pmatrix} A' \\ B' \\ C' \end{pmatrix} = \begin{pmatrix} A \\ B \\ C \end{pmatrix} - \alpha \sum \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix} \cdot (\sigma(u(x_i, y_i)) - t_i)$$

Változók kiválasztása

- fontosság (feature importance)
 - modelltől független (pl. SHAP)
 - modell specifikus (pl. döntési fák)
- függetlenség
 - folytonos (pl. korrelációs együttható)
 - ightharpoonup diszkrét (pl. χ^2 -teszt)
- változtathatóság
 - kontextus változók (pl. lakóhely)
 - szolgáltatás minőségét leíró változók (pl. ügyfélszolgálat válaszidő)

A modell alkalmazása

"Mi lenne ha?" szegmentálás és hasonlóság szimuláció

Mi lenne, ha ...?

$$f(v_1, v_2, \ldots, v_n) \approx t \qquad (= \mathbb{E}(t \mid \underline{v}))$$

Ügyfelek: $\{u_1, u_2, \dots, u_k\}$, az u_j ügyfél jellemzői: $v_{j,1}, v_{j,2}, \dots, v_{j,n}$ Tegyük fel, hogy a v_1 változó lehetséges értékei $\{e_1, e_2, \dots, e_m\}$ Ha csak a v_1 változó módosulna, akkor az u_j ügyfélre:

$$f_j^{\min} = \min_{x \in \{e_1, \dots, e_m\}} f(x, v_{j,2}, \dots, v_{j,n}) \le f_j \le \max_{x \in \{e_1, \dots, e_m\}} f(x, v_{j,2}, \dots, v_{j,n}) = f_j^{\max}$$

A teljes ügyfél bázisra

$$\sum_{j} f_{j}^{\mathsf{min}} \leq \mathbb{E}(\mathsf{kimenet}) = \sum_{j} \mathbb{E}(\mathsf{kimenet}_{j}) \leq \sum_{j} f_{j}^{\mathsf{max}}$$

Mi lenne, ha ...?

Szegmentáció

Szimuláció

🕓 automatizáció, 📜 termékké alakítás

Adatelemzés és matematika érettségi követelmények

- Algebra és aritmetika, kombinatorika: véges halmazok számossága, átlag
- ► Koordinátageometria: vektorok, skalárszorzat, egyenes egyenlete, pont és egyenes távolsága
- ► Függvények: polinomok, exponenciális és logaritmus függvény, derivált és gradiens, szélsőérték
- Valószínűségszámítás és statisztika: feltételes valószínűség, korreláció és függetlenség, várható érték (linearitása)
- Gráfelmélet: körmentes irányított gráfok, topologikus rendezés

- David J. C. MacKay (2003) Information Theory, Inference and Learning Algorithms, Cambridge University Press.
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin (2012) Learning From Data, AMLbook.com.
- lan Goodfellow, Yoshua Bengio, Aaron Courville (2016) *Deep Learning*, The MIT Press.
- Avrim Blum, John Hopcroft, Ravi Kannan (2020) *Foundations of Data Science*, Hindustan Book Agency.