Section 2.5

Determinants

Objectives

- How do matrix operations affect determinants?
- What is the relation between invertibility and determinant?
- What is the adjoint of a matrix?
- What is Cramer's rule?

Two main results:

$$det(AB) = det(A)det(B)$$

A is invertible if and only if det(A) ≠ 0

Matrices with two identical rows (columns)

Theorem 2.5.12 & Example 2.5.13

- The determinant of a square matrix with two identical rows is zero.
- 2. The determinant of a square matrix with two identical columns is zero.

$$\begin{pmatrix}
4 & -2 \\
4 & -2
\end{pmatrix}$$

$$det = 0$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
-1 & 10 & 4 \\
1 & 2 & 4 \\
0 & -2 & -2 & -1
\end{pmatrix}$$

$$det = 0$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
-1 & -3 & 9 \\
4 & 0 & 0 \\
0 & -2 & -2 & -1
\end{pmatrix}$$

$$det = 0$$

Theorem 2.5.12 (Exercise 2.58)

Prove by mathematical induction.

The determinant of a square matrix with two identical rows is zero

Base case
$$2\times 2: \begin{vmatrix} a & b \\ a & b \end{vmatrix} = ab - ab$$
Inductive step k × k ⇒ (k+1) × (k+1)
$$\begin{vmatrix} a & b & c \\ * & * & * \\ a & b & c \end{vmatrix} = - * \begin{vmatrix} b & c \\ b & c \end{vmatrix} + * \begin{vmatrix} a & c \\ a & c \end{vmatrix} - * \begin{vmatrix} a & b \\ a & b \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ a & b \end{vmatrix}$$

cofactor expansion along row 2

How does e.r.o affect determinants?

Discussion 2.5.14 & Theorem 2.5.15

$$A \xrightarrow{E.R.O.} B$$

What is the relation between $det(\mathbf{A})$ and $det(\mathbf{B})$?

E.R.O	Determinant
$A \xrightarrow{kR_i} B$	$\det(\boldsymbol{B}) = k \det(\boldsymbol{A})$
$A \xrightarrow{R_i \leftrightarrow R_j} B$	$det(\mathbf{B}) = -det(\mathbf{A})$
$A \xrightarrow{R_i + kR_j} B$	$det(\mathbf{B}) = det(\mathbf{A})$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

Matrices

Chapter 2

Using e.r.o. to find determinants

Example 2.5.17.1

$$= -3 \times 2 \times 1 \times (-1) = 6$$

Gaussian Elimination

Using e.r.o. to find determinants

Example 2.5.17.2

$$R_1 + \frac{2}{9}R_2$$
 $R_2 \leftrightarrow R_3$ $A \leftarrow A \leftarrow A \leftarrow A \leftarrow A \leftarrow A$ $A \leftarrow A \leftarrow A \leftarrow A \leftarrow A$ $A \leftarrow A$ A

Proof of part 3

To prove: det(B) = det(A)

Theorem 2.5.15

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{R_2 + kR_1} \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + ka_{11} & a_{22} + ka_{12} & a_{23} + ka_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

the (2, j)-cofactor of \mathbf{A} = the (2, j)-cofactor of \mathbf{B}

$$A_{21} = B_{21}$$
 $A_{22} = B_{22}$ $A_{23} = B_{23}$

Cofactor expansion along row 2 of **B**:

$$\begin{aligned} \det(\mathbf{B}) &= (\mathbf{a}_{21} + k \mathbf{a}_{11}) \mathbf{B}_{21} + (\mathbf{a}_{22} + k \mathbf{a}_{12}) \mathbf{B}_{22} + (\mathbf{a}_{23} + k \mathbf{a}_{13}) \mathbf{B}_{23} \\ &= (\mathbf{a}_{21} + k \mathbf{a}_{11}) \mathbf{A}_{21} + (\mathbf{a}_{22} + k \mathbf{a}_{12}) \mathbf{A}_{22} + (\mathbf{a}_{23} + k \mathbf{a}_{13}) \mathbf{A}_{23} \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) + k (\mathbf{a}_{11} \mathbf{A}_{21} + \mathbf{a}_{12} \mathbf{A}_{22} + \mathbf{a}_{13} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a}_{22} \mathbf{A}_{22} + \mathbf{a}_{23} \mathbf{A}_{23}) \\ \\ &= (\mathbf{a}_{21} \mathbf{A}_{21} + \mathbf{a$$

Proof of part 3

To prove: det(B) = det(A)

Theorem 2.5.15

shown = 0

det(**B**) = det(**A**) + k
$$(a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23})$$

cofactors for row 2

replace row 2 of A by row 1

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 cofactor expansion
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 det(\mathbf{A}') = $\mathbf{a}_{11} A_{12} = \mathbf{a}_{11} A_{12} = \mathbf{a}_{13} A_{13} = \mathbf{a}_{13} A_{11} = \mathbf{a}_{12} A_{13} A_{12} = \mathbf{a}_{13} A_{13} A_{12} = \mathbf{a}_{13} A_{13} A_{13} A_{13} = \mathbf{a}_{13} A_{13} A$

cofactor expansion (A') along row 2

$$det(\mathbf{A'}) = \mathbf{a_{11}} \mathbf{A'_{21}} + \mathbf{a_{12}} \mathbf{A'_{22}} + \mathbf{a_{13}} \mathbf{A'_{23}}$$
$$= \mathbf{a_{11}} \mathbf{A_{21}} + \mathbf{a_{12}} \mathbf{A_{22}} + \mathbf{a_{13}} \mathbf{A_{23}}$$

In terms of elementary matrices

Theorem 2.5.15 (part 4)

A: nxn square matrix

(1 0 0)	det(E)	e.r.o.	Determinant
0 k 0	k	\mathbf{A} kR_i \mathbf{R}	$\det(\boldsymbol{B}) = k \det(\boldsymbol{A})$
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$, X	A — 7 B	$= det(\mathbf{E}) det(\mathbf{A})$
$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$	_	$R_i \leftrightarrow R_i$	$\det(\boldsymbol{B}) = -\det(\boldsymbol{A})$
$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} $	-1	$A \xrightarrow{A \cap A \cap A} B$	$= \det(\mathbf{E})\det(\mathbf{A})$
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	1	$R_i + kR_i$	$det(\mathbf{B}) = det(\mathbf{A})$
0 1 0	Т	A B	= det(E)det(A)
(k 0 1)			

E: nxn elementary matrix

$$EA = B \Rightarrow det(EA) = det(B) = det(E)det(A)$$

Chapter 2 Matrices 11

Pre-multiplying a matrix with elementary matrices

Remark

For any square matrix **A** and elementary matrix **E**:

$$\det(\textbf{\textit{E}A}) = \det(\textbf{\textit{E}})\det(\textbf{\textit{A}})$$

$$\det(\textbf{\textit{E}}_2\textbf{\textit{E}}_1\textbf{\textit{A}}) = \det(\textbf{\textit{E}}_2)\det(\textbf{\textit{E}}_1\textbf{\textit{A}})$$

$$= \det(\textbf{\textit{E}}_2)\det(\textbf{\textit{E}}_1)\det(\textbf{\textit{A}})$$

$$\det(\textbf{\textit{E}}_k\cdots\textbf{\textit{E}}_2\textbf{\textit{E}}_1\textbf{\textit{A}}) = \det(\textbf{\textit{E}}_k)\cdots\det(\textbf{\textit{E}}_2)\det(\textbf{\textit{E}}_1)\det(\textbf{\textit{A}})$$
 In particular
$$\det(\textbf{\textit{E}}_k\cdots\textbf{\textit{E}}_2\textbf{\textit{E}}_1) = \det(\textbf{\textit{E}}_k)\cdots\det(\textbf{\textit{E}}_2)\det(\textbf{\textit{E}}_1)$$
 Note: We have not yet proved that
$$\det(\textbf{\textit{AB}}) = \det(\textbf{\textit{A}})\det(\textbf{\textit{B}})$$

Column operations

Remark 2.5.18

Since $det(\mathbf{A}) = det(\mathbf{A}^T)$ for any square matrix \mathbf{A} , Theorem 2.5.15 is still true if we change "rows" to "columns".

- We have 3 corresponding elementary column operations.
- Column operations have same effect as postmultiplying an elementary matrix.

$$A \xrightarrow{C: column} B \qquad B = AE$$

Column operations

Remark 2.5.18 = $(Theorem 2.5.15)^T$

A: nxn square matrix E: nxn elementary matrix

	Elementary		Determinant	
C	column operation			
	A —	$\xrightarrow{kC_i} \mathbf{B}$		$\det(\boldsymbol{B}) = k \det(\boldsymbol{A})$
	A —	$C_i \leftrightarrow C_j$	B	$\det(\boldsymbol{B}) = -\det(\boldsymbol{A})$
	A —	$C_i + kC_j \longrightarrow B$		$det(\mathbf{B}) = det(\mathbf{A})$

 $\det(\mathbf{AE}) = \det(\mathbf{A})\det(\mathbf{E})$

Determinant and invertibility

Theorem 2.5.19

A square matrix \mathbf{A} is invertible if and only if $\det(\mathbf{A}) \neq 0$.

contrapositive

same

meaning

1

converse

A is invertible \Rightarrow det(**A**) \neq 0

A is invertible $\leftarrow \det(\mathbf{A}) \neq 0$

A is not invertible \Rightarrow det(**A**) = 0

A is not invertible $\leftarrow \det(\mathbf{A}) = 0$

different meaning

> different meaning

The proof

Theorem 2.5.19

A square matrix \mathbf{A} is invertible if and only if $\det(\mathbf{A}) \neq 0$.

$$\mathbf{A} \xrightarrow{R_1} \xrightarrow{R_2} \cdots \xrightarrow{R_k} \mathbf{B} \text{ (RREF)}$$

$$\mathbf{E_k} \cdots \mathbf{E_2} \mathbf{E_1} \mathbf{A} = \mathbf{B}$$

$$\det(\mathbf{E_k} \cdots \mathbf{E_2} \mathbf{E_1} \mathbf{A}) = \det(\mathbf{B})$$

$$\det(\mathbf{E_k}) \cdots \det(\mathbf{E_2}) \det(\mathbf{E_1}) \det(\mathbf{A}) = \det(\mathbf{B})$$

$$\text{non-zero}$$

A invertible \Rightarrow RREF $\mathbf{B} = \mathbf{I} \Rightarrow \det(\mathbf{B}) = 1 \Rightarrow \det(\mathbf{A}) \neq 0$ A not invertible \Rightarrow RREF \mathbf{B} has zero row $\Rightarrow \det(\mathbf{B}) = 0 \Rightarrow \det(\mathbf{A}) = 0$

Using determinant to check invertibility

Remark 2.5.21

- When the determinant is easy to get
- Connecting concepts

In practice

17

What is the actual value of determinant for?

Determinant and matrix operations

Theorem 2.5.22

A and B: square matrices of order n

c a scalar

$$det(c\mathbf{A}) \neq c det(\mathbf{A})$$

- 1. $det(c\mathbf{A}) = c^n det(\mathbf{A})$
- 2. det(AB) = det(A)det(B) Multiplicative property
- 3. if **A** is invertible, then

$$\det(\boldsymbol{A}^{-1}) = \frac{1}{\det(\boldsymbol{A})}$$

4. $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$

$$\det(\mathbf{EB}) = \det(\mathbf{E})\det(\mathbf{B})$$

Theorem 2.5.22

Case 1: A is singular

$$\Rightarrow \det(\mathbf{A}) = 0$$

$$\Rightarrow \det(\mathbf{A}) \det(\mathbf{B}) = 0 \qquad \Rightarrow \det(\mathbf{A}\mathbf{B}) = 0$$

By Theorem 2.4.14

AB is singular

$$\Rightarrow \det(\mathbf{AB}) = 0$$

Case 2: A is invertible Theorem 2.4.7: (1) implies (4)

$$\Rightarrow \mathbf{A} = \mathbf{E_1}\mathbf{E_2}\cdots\mathbf{E_k}$$
 (product of elementary matrices)

 $\frac{\det(\boldsymbol{AB})}{\det(\boldsymbol{E_1E_2}\cdots\boldsymbol{E_kB})}$

 $= \det(\boldsymbol{E_1})\det(\boldsymbol{E_2})\cdots\det(\boldsymbol{E_k})\det(\boldsymbol{B})$

 $= \det(\boldsymbol{E_1}\boldsymbol{E_2}\cdots\boldsymbol{E_k})\det(\boldsymbol{B})$

 $= \det(\mathbf{A})\det(\mathbf{B})$

What is adjoint?

Definition 2.5.24

Let \mathbf{A} be a square matrix of order n.

The adjoint of \mathbf{A} is the $n \times n$ matrix

$$adj(A) = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

where A_{ij} is the (i, j)-cofactor of \boldsymbol{A} . $(-1)^{i+j} \det(\boldsymbol{M}_{ij})$

What is adjoint?

Example 2.5.26.2

$$\boldsymbol{B} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

$$adj (\mathbf{B}) = \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 0 & 3 \end{vmatrix} & \mathbf{e} \begin{vmatrix} 0 & 0 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} -1 & 1 \\ 0 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} & \mathbf{e} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} -1 & 1 \\ -1 & 0 \end{vmatrix} & \mathbf{e} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -3 & 0 & 1 \\ 3 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 3 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{pmatrix}$$

What is adjoint for?

Theorem 2.5.25

Let **A** be a square matrix.

If **A** is invertible, then

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{adj}(\mathbf{A})$$

Example 2.5.26.2

$$\mathbf{B} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 3 \end{pmatrix} \quad \det(\mathbf{B}) = -2 \quad \operatorname{adj}(\mathbf{B}) = \begin{pmatrix} -3 & 3 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{pmatrix}$$
$$\mathbf{B}^{-1} = \frac{1}{\det(\mathbf{B})} \operatorname{adj}(\mathbf{B}) = -\frac{1}{2} \begin{pmatrix} -3 & 3 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{pmatrix}$$

The proof

Theorem 2.5.25

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

$$adj(\mathbf{A}) = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

the (i, i)-entry of A[adj(A)]

diagonal entries

$$= a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} = det(A)$$

cofactor expansion along row i

the
$$(i, j)$$
-entry of $\mathbf{A}[\operatorname{adj}(\mathbf{A})]$ with $i \neq j$, non-diagonal entries
$$= a_{i1}A_{j1} + a_{i2}A_{j2} + ... + a_{in}A_{jn}$$
 see the proof of Theorem 2.5.15.3.

Chapter 2 Matrices 2

The proof

Theorem 2.5.25

$$\mathbf{A} \cdot \operatorname{adj}(\mathbf{A}) = \begin{pmatrix} \det(\mathbf{A}) & 0 & \dots & 0 \\ 0 & \det(\mathbf{A}) & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \det(\mathbf{A}) \end{pmatrix} = \det(\mathbf{A}) \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
$$= \det(\mathbf{A}) \mathbf{I}$$

$$\Rightarrow \boldsymbol{A}\left[\frac{1}{\det(\boldsymbol{A})}\operatorname{adj}(\boldsymbol{A})\right] = \boldsymbol{I}$$

$$\Rightarrow \mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{adj}(\mathbf{A})$$

Using adjoint to find inverse

for inverse

Remark

Chapter 2 Matrices 26

What is Cramer's rule?

Example 2.5.28 (Cramer's rule)

Use Cramer's rule to solve the system of linear equations

$$\begin{cases} x + y + 3z = 0 \\ 2x - 2y + 2z = 4 \\ 3x + 9y = 3 \end{cases}$$

Rewrite the linear system as
$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & -2 & 2 \\ 3 & 9 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$$

$$\mathbf{A}_1 = \begin{pmatrix} \mathbf{0} & 1 & 3 \\ \mathbf{4} & -2 & 2 \\ \mathbf{3} & 9 & 0 \end{pmatrix} \qquad \mathbf{A}_2 = \begin{pmatrix} 1 & \mathbf{0} & 3 \\ 2 & \mathbf{4} & 2 \\ 3 & \mathbf{3} & 0 \end{pmatrix} \qquad \mathbf{A}_3 = \begin{pmatrix} 1 & 1 & \mathbf{0} \\ 2 & -2 & \mathbf{4} \\ 3 & 9 & \mathbf{3} \end{pmatrix}$$

$$\mathbf{A}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\mathbf{A}_3 = \begin{pmatrix} 1 & 1 & \mathbf{0} \\ 2 & -2 & \mathbf{4} \\ 3 & 9 & \mathbf{3} \end{pmatrix}$$

What is Cramer's rule?

Example 2.5.28

$$\begin{cases} x + y + 3z = 0 \\ 2x - 2y + 2z = 4 \\ 3x + 9y = 3 \end{cases}$$

Cramer's rule says:

$$X = \frac{\det(A_1)}{\det(A)} = \frac{\begin{vmatrix} 0 & 1 & 3 \\ 4 & -2 & 2 \\ 3 & 9 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 3 \\ 2 & -2 & 2 \\ 3 & 9 & 0 \end{vmatrix}} = \frac{132}{60} = 2.2$$

$$y = \frac{\det(A_2)}{\det(A)} = \frac{\begin{vmatrix} 1 & 0 & 3 \\ 2 & 4 & 2 \\ 3 & 3 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 3 \\ 2 & -2 & 2 \\ 3 & 9 & 0 \end{vmatrix}} = \frac{-24}{60} = -0.4$$

$$Z = \frac{\det(A_3)}{\det(A)} = \frac{\begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & \frac{1}{9} & 3 \end{vmatrix}}{\begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{9} & 3 \end{vmatrix}} = \frac{-36}{60} = -0.6$$

this gives the unique solution of the system

What is Cramer's rule?

Theorem 2.5.27 (Cramer's Rule)

Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a linear system where \mathbf{A} is an $n \times n$ invertible matrix. terms and conditions

Let A_i be the matrix obtained from A by replacing the *i*th column of **A** by **b**.

Then the system has a unique solution

$$\mathbf{x} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} \det(\mathbf{A}_1) \\ \det(\mathbf{A}_2) \\ \vdots \\ \det(\mathbf{A}_n) \end{pmatrix} \mathbf{x}_1 = \frac{\det(\mathbf{A}_1)}{\det(\mathbf{A})} \mathbf{x}_2 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})}$$

$$X_1 = \frac{\det(A_1)}{\det(A)}$$

$$X_2 = \frac{\det(\mathbf{A_2})}{\det(\mathbf{A})}$$

$$X_n = \frac{\det(\mathbf{A}_n)}{\det(\mathbf{A})}$$

 $X_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$

Proof of Theorem 2.5.27

$$X_{1} = \frac{1}{\det(\mathbf{A})} (b_{1}A_{11} + b_{2}A_{21} + \dots + b_{n}A_{n1})$$

$$X_{i} = \frac{1}{\det(\mathbf{A})} (b_{1}A_{1i} + b_{2}A_{2i} + \dots + b_{n}A_{ni})$$

for i = 1, 2, ..., n

To prove:

$$X_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$$

Proof of Theorem 2.5.27

entries on column i

$$X_i = \frac{1}{\det(\mathbf{A})} (\mathbf{b}_1 \mathbf{A}_{1i} + \mathbf{b}_2 \mathbf{A}_{2i} + \dots + \mathbf{b}_n \mathbf{A}_{ni}) = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$$

 $\det(\mathbf{A}_i)$

cofactors for column i

cofactor expansion of \mathbf{A}_i along column i

$$\det(\boldsymbol{A_i}) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,i-1} & b_1 & a_{1,i+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,i-1} & b_2 & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,i-1} & b_n & a_{n,i+1} & \cdots & a_{nn} \end{vmatrix}$$

Section 3.1

Euclidean n-Spaces

Objectives

- What is an n-vector?
- What are some operations on n-vectors?
- What is a Euclidean n-space Rⁿ?
- How to express subsets of Rⁿ?

What is a vector?

Discussion 3.1.1 - 3.1.2 (Vectors)

Notation	geometric	algebraic (2-dimension) (3-dimension)
Vector u Vector v	v	(u_1, u_2) (v_1, v_2) (u_1, u_2, u_3) (v_1, v_2, v_3)
Addition u+v	u + v	(u_1+v_1, u_2+v_2) $(u_1+v_1, u_2+v_2, u_3+v_3)$
Negative -u	u /- u	(-u ₁ , -u ₂) (-u ₁ , -u ₂ , -u ₃)
Scalar multiple a u	$\frac{1}{2}u$, $2u$ (-1.5) u	(au ₁ , au ₂) (au ₁ , au ₂ , au ₃)

Geometric vs algebraic vectors

Discussion 3.1.2.1

Geometrically, (u_1, u_2) can represent either a point and an arrow in the xy-plane.

Similarly for (u_1, u_2, u_3) in the xyz-space.

Point or Arrow?

Geometrically, (u_1, u_2) can represent either a point and an arrow in the xy-plane.

Linear equation: 2y - x = 1 A solution: x = 1, y = 1

The point (1, 1) lies on the line, but the arrow (1, 1) does not lie on the line

Chapter 3 Vector spaces

$$(u_1, u_2)$$
 2-vector (u_1, u_2, u_3) 3-vector

Definition 3.1.3

n-vector
$$(u_1, u_2, ..., u_i, ..., u_n) \neq \{u_1, u_2, ..., u_i, ..., u_n\}$$
 where $u_1, u_2, ..., u_n$ are real numbers i^{th} component (or i^{th} coordinate) of the n-vector

Always think/view an n-vector as a SINGLE object and not n numbers

n-vectors as matrices

Notation 3.1.5

We can identify an n-vector $(u_1, u_2, ..., u_n)$ with a $1 \times n$ matrix $(u_1 u_2 ... u_n)$ (row vector)

or an $n \times 1$ matrix $\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$ (column vector).

Which form to use depends on the context.

Definitions and properties of vector operations are similar to matrix operations (see 3.1.3 to 3.1.6)

What is a Euclidean n-space?

Definition 3.1.7

The set of all n-vectors of real numbers is called the Euclidean n-space and is denoted by \mathbb{R}^n . (1,2,3,1) (0,2,1,5) (-1,2,3,19)

 $\boldsymbol{u} \in \mathbf{R}^n \longleftrightarrow \boldsymbol{u}$ is an n-vector $\longleftrightarrow \boldsymbol{u} = (u_1, u_2, ..., u_n)$

Euclidean 2-space R²
all the 2-vectors (as points) in xy-plane
Euclidean 3-space R³
all the 3-vectors (as points) in xyz-space

How to express subsets of **R**ⁿ?

Example 3.1.8.1

Set notation

$$\rightarrow S = \{ (u_1, u_2, u_3, u_4) \mid u_1 = 0 \text{ and } u_2 = u_4 \}$$
 implicit form

type of elements conditions on the components is 4-vector

$$(0, 0, 0, 0), (0, 1, 5, 1), (0, \pi, -3, \pi) \in S$$

$$(0, 2, 2, 3), (1, 1, 1, 1) \notin S$$

general form (0, a, b, a) a, b: parameters

 \mathbb{R}^4

$$S = \{ (0, a, b, a) \mid a, b \in \mathbb{R} \}$$
 explicit form

How to express subsets of **R**ⁿ?

Set notation for subsets of Rⁿ

Implicit form

Explicit form Not always possible to express in explicit form

$$S = \{ (0, a, b, a) \mid a, b \in \mathbf{R} \}$$

Don't write $\{a, b \in \mathbb{R} \mid (0, a, b, a) \}$

Chapter 3 Vector spaces

13

Solution set as a subset of \mathbf{R}^n

Example 3.1.8.2

Chapter 3 Vector spaces

Line and plane as subsets of \mathbb{R}^2 and \mathbb{R}^3

Example 3.1.8.3

A line/plane in the xy-plane/ xyz-space can be regarded as a collection of points.

a collection of vectors

$$2y - x = 1$$
 (4, 2.5)
(3, 2)
(2, 1.5)
(1, 1)

L is a subset of \mathbb{R}^2

P is a subset of \mathbb{R}^3

Set notations of lines and planes

Example 3.1.8.3

```
Lines in xy-plane
```

```
Implicit form: \{(x, y) \mid ax + by = c \}

Explicit form: \{\left(\frac{c - bt}{a}, t\right) \mid t \in \mathbb{R} \}
```

Planes in xyz-space

```
Implicit form: \{(x, y, z) \mid ax + by + cz = d\}

Explicit form: \{\left(\frac{d - bs - ct}{a}, s, t\right) \mid s, t \in \mathbb{R}\}
```

Lines in xyz-space

```
Implicit form: \{(x, y, z) \mid \text{eqn of the line }\}?
```

Explicit form: { (general solution) | 1 parameter }?

Chapter 3 Vector spaces

Line as a subset of **R**³

Example 3.1.8.2 (revisited)

$$\begin{cases} x + y + z = 0 \\ x - y + 2z = 1 \end{cases}$$
 two planes

solution set (explicit form)

$$-\{ (0.5 - 1.5t, -0.5 + 0.5t, t) \mid t \in \mathbb{R} \}$$

This represents a line in the xyz-space

$$\rightarrow$$
 (0.5, -0.5, 0) + (-1.5 t , 0.5 t , t)

$$(0.5, -0.5, 0) + t(-1.5, 0.5, 1)$$

a point on the line

the direction of the line

Line as a subset of \mathbb{R}^3

Example 3.1.8.3(c)

Set notation (explicit)

```
\{(a_0 + at, b_0 + bt, c_0 + ct) \mid t \text{ in } \mathbb{R}\} t: parameter
          a_0, b_0, c_0, a, b, c are fixed real numbers
                      a, b, c not all zero
   \{(a_0, b_0, c_0) + t(a, b, c) \mid t \text{ in } \mathbf{R}\}
                                the direction of the line
a point on the line
              (a_0, b_0, c_0) (a, b, c)
                  origin (a, b, c)
```

Line as a subset of \mathbb{R}^3

Example 3.1.8.3(c)

Set notation (Implicit) $\{(x, y, z) \mid \text{eqn of the line }\}$?

A line in \mathbb{R}^3 cannot be represented by a single linear equation.

But it can be regarded as the intersection of two planes P_1 and P_2 .

Suppose the equations of the two planes are given by

$$P_1$$
: $a_1x + b_1y + c_1z = d_1$ P_2 : $a_2x + b_2y + c_2z = d_2$

Set notation (implicit)

$$\{ (x, y, z) \mid a_1x + b_1y + c_1z = d_1 \text{ and } a_2x + b_2y + c_2z = d_2 \}$$

refer to 3.1.8.2

Chapter 3 Vector spaces

Number of elements in a set

Notation 3.1.9 & Example 3.1.10

For a finite set S, we denote the number of elements of S by |S|

$$S_1 = \{ 1, 2, 3, 4 \}$$
 $| S_1 | = 4$
 $S_2 = \{ (1, 2, 3, 4) \}$ $| S_2 | = 1$
 $S_3 = \{ (1,2,3), (2,3,4) \}$ $| S_3 | = 2$