

SRM Institute of Science and Technology

Ramapuram Campus Department of Mathematics

Question Bank of Module-2(Fourier Series) (2020–2021-ODD)

Subject.Code: 18MAB201T

Subject.Name: Transforms and Boundary Value Problems

Year/Sem: II/III Part-A(1*20=20) Branch: Common to All branches

Module-2(Fourier Series)

1*20=20

1.	sin x is a periodic function with period (a) π (b) $\frac{\pi}{2}$ (c) 2π (d) 4π	ANS -	(CLO-2, Remember)
2.	Which one of the following function is an even function (a) (a) sin x (b) x (c) e ^x (d) x ²	ANS -	(CLO-2, Remember)
3.	$\int_{-a}^{a} f(x)dx = 0 \text{ if } f(x) \text{ is}$ (a)odd (b) even (c) periodic (iv) zero	ANS- a	(CLO-2, Remember)
4.	$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \text{ if } f(x) \text{ is}$ (a) even (b) odd (c) neither even nor odd (iv) periodic	ANS -	(CLO-2, Remember)
5.	$\int_{-\pi}^{\pi} x dx \text{ is equal to}$ (a) $2\int_{0}^{\pi} x dx$ (b) 0 (c) $2\int_{0}^{\pi} (-x) dx$ (iv) $4\int_{0}^{\pi/2} x dx$	ANS -	(CLO-2, Remember)

6.	tan x is a periodic function with period (a) π (b) 2π (c) 3π (d) $\pi/2$		(CLO-2,
	(a) n (b) 2n (c) 3n (d) n/2	ANS -	Remember)
7.	The constant a_0 of the Fourier series for the function $f(x)=x$ is $0 \le x \le 2\pi$ (a) 2π (b) π (c) 3π (d) 0	ANS -	(CLO-2, Apply)
8.	The constant a_0 of the Fourier series for the function $f(x) = k$, $0 \le x \le 2\pi$ (a) k (b) $2k$ (c) 0 (d) $\frac{k}{2}$	ans - b	(CLO-2, Apply)
9.	If $f(x)$ is an odd function in (-I,I) then value of a_n in the Fourier series expansion of $f(x)$ is (a) $\frac{2}{1} \int_{0}^{1} f(x) \cos nx dx$ (b) 0 (c) $\frac{2}{1} \int_{0}^{1} f(x) \sin nx dx$ (d) $\frac{1}{1} \int_{-1}^{1} x dx$	ANS —	(CLO-2, Remember)
10.	If $f(x)$ is an even function in $(-\pi, \pi)$ then the value of b_n in the Fourier series expansion of $f(x)$ is (a) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ (b) $\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$ (c) 0 (d) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$	ANS –	(CLO-2, Remember)
11.	The RMS value of $f(x)$ in $a \le x \le b$ is $(a) \ 0 (b) \ \sqrt{\sum_{a}^{b} [f(x)]^{2} dx} \qquad (c) \ \sqrt{\sum_{a}^{b} [f(x)]^{2} dx} \qquad (d) \ \sqrt{\sum_{a}^{b} f(x) dx}$	ANS —	(CLO-2, Remember)
12.	The RMS value of $f(x) = x$ in $-1 \le x \le 1$ is (a) 1 (b) 0 (c) $\frac{1}{\sqrt{3}}$ (d) -1	ANS –	(CLO-2, Apply)
13.	If $y = 1$ is the RMS value of $y = 1$ in (0, 2l) then $\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ is	ANS —	(CLO-2, Remember)

	(a) $\frac{\overline{y}^2}{2}$ (b) \overline{y} (c) $\frac{\overline{y}}{2}$ (d) \overline{y}^2	d	
14.	Half range cosine series for $f(x)$ in $(0, \pi)$ is (a) $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$ (b) $\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ (c) $\sum_{n=1}^{\infty} b_n \sin nx$ (d) $\sum_{n=1}^{\infty} a_n \cos nx$	ANS –	(CLO-2, Remember)
15.	Half range sine series for $f(x)$ in $(0, \pi)$ is $(a) \sum_{n=1}^{\infty} a_n \cos nx \ (b) \ \frac{a_0}{2} + \sum a_n \cos nx \ (c) \sum_{n=1}^{\infty} b_n \sin nx \ (d)$ $\frac{a_0}{2} - \sum a_n \cos nx$	ANS -	(CLO-2, Remember)
16.	The function defined by $f(x) = \begin{cases} x, & -\pi \le x \le 0 \\ -x, & 0 \le x \le \pi \end{cases}$ is (a) odd (b) neither odd nor even (c) periodic (d) even	ANS-	(CLO-2, Remember)
17.	The function $f(x) = \begin{cases} g(x), & 0 \le x \le \pi \\ -g(-x), & -\pi \le x \le 0 \end{cases}$ is (a) even function (b) odd function (c) increasing function (d) periodic function	ANS -	(CLO-2, Remember)
18.	The value of Fourier series of $f(x)$ in $0 < x < 2\pi$ at $x = 0$ is (a) $f(0)$ (b) $f(2\pi)$ (c) $\frac{f(0) + f(2\pi)}{2}$ (d) 0	ANS- C	(CLO-2, Remember)
19.	A function $f(x)$ with period T if (a) $f(x+T) = f(T)$ (b) $f(x+T) = f(x)$ (c) $f(x+T) = -f(x)$ (d) $f(x+T).f(x) = 0$	ANS-	(CLO-2, Remember)
20.	An example for a function which neither even nor odd (a) $x \sin x$ (b) e^{ax} (c) $x^2 \sin x$ (d) $x \cos x$	ANS-	(CLO-2, Apply)
21.	Write the formula for finding Euler's constant of a_0 Fourier series in $(0,2\pi)$		

22	$a) a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx \qquad b) \ a_0 = \frac{2}{\pi} \int_0^{2\pi} f(x) dx$ $c) a_0 = \frac{l}{\pi} \int_0^{2\pi} f(x) dx \qquad d) \ a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$	Ans (a)	(CLO-2 Remember)
22.	Sum the Fourier series for $f(x) = \begin{cases} x & 0 < x < 1 \\ 2 & 1 < x < 2 \end{cases}$ at $x = 0$ (a) 2 (b) 1 (c) 3 (d)0	Ans (b)	Remember)
23.	Sum the Fourier series for $f(x) = \begin{cases} x & 0 < x < 1 \\ 2 & 1 < x < 2 \end{cases}$ at $x = 1$ (a) $\frac{1}{3}$ (b) $\frac{1}{6}$ (c) $\frac{3}{2}$ (d) $\frac{1}{4}$	Ans (c)	(CLO-2 Remember)
24.	What is the constant term a_0 and the coefficient of cosnx, a_n in the Fourier series expansion of $f(x) = x - x^3$ in $(-\pi, \pi)$? (a) $\frac{\pi}{3}$, 0 (b) $0, \pi$ (c) $0, \frac{\pi}{2}$ (d) $0, 0$	Ans (d)	(CLO-2 Remember)
25	Write the formula for finding Euler's constant of a_n Fourier series in $(0,2\pi)$ $a) a_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos nx dx \qquad b) \ a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx$ $c) a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx \qquad d) \ a_n = \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx dx$	Ans (b)	(CLO-2 Remember)
26.	State Parseval's Identity for full range expression of $f(x)$ as Fourier series in (0,2 l) $a) \frac{1}{2l} \int_{0}^{2l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{1}^{\infty} (a_{n}^{2} + b_{n}^{2})$ $b) \frac{1}{l} \int_{0}^{l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{1}^{\infty} (a_{n}^{2} + b_{n}^{2})$ $c) \frac{1}{l} \int_{0}^{2l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{2} + \frac{1}{2} \sum_{1}^{\infty} (a_{n}^{2} + b_{n}^{2})$ $d) \frac{1}{2l} \int_{0}^{2l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{4} \sum_{0}^{\infty} (a_{n}^{2} + b_{n}^{2})$		
27	What is the constant term a_0 and the coefficient of cosnx, a_n in the Fourier series expansion of $f(x) = x^3$ in $(-\pi, \pi)$? (a) $0,0$ (b) $\pi,1$ (c) $\frac{\pi}{2},0$ (d) $\frac{\pi}{3},0$	Ans (a)	(CLO-2 Remember)

	Write the formula for finding Euler's constant of b_n Fourier series in $(0,2\pi)$		
28	$a)b_{n} = \frac{1}{2\pi} \int_{0}^{\pi} f(x) \sin nx dx \qquad b) \ b_{n} = \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$ $c)b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx d) \ b_{n} = \frac{1}{2\pi} \int_{0}^{\pi} f(x) \sin nx dx$	Ans (c)	(CLO-2 Remember)
	Find a Fourier sine series for the function $f(x)=1$; $0 < x < \pi$.	Anc	(CLO-2
29.	$ a) \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n} b) \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n} c) \frac{4}{3\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{2n} d) \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n} $	Ans (a)	Remember)
30	Find a_n in expanding e^{-x} as Fourier series in $(-\pi, \pi)$ $a) \frac{(-1)^{n+1}}{(1+n^2)} 2\cosh \pi b) \frac{(-1)^n}{(1+n^2)} \cosh \pi$ $c) \frac{(-1)^n}{\pi (1+n^2)} 2\cosh \pi d) \frac{(-1)^{n+1}}{\pi (1+n^2)} \cosh \pi$	Ans (c)	(CLO-2 Remember)
31	Find the value of a_n for $f(x)=c$ in $(0,10)$ in cosine series expansion (a) 10 (b) c (c) $c/10$ (d)0	Ans (d)	(CLO-2 Remember)
32	If $f(x)$ is an odd function defined in $(-l, l)$ what are the values of a_0 and a_n ? (a) $0,0$ (b) $0,2l$ (c) $2l,0$ (d) $1,1$	Ans (a)	(CLO-2 Remember)
33	Find b_n in the expansion of cosx as a Fourier series in $(-\pi, \pi)$ (a) $\frac{\pi}{3}$ (b) π (c) $\frac{\pi}{2}$ (d) 0	Ans (d)	(CLO-2 Remember)
34	Find a_0 in the expansion of $f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$ (a) $\frac{\pi}{2}$ (b) π (c) $-\frac{\pi}{2}$ (d) $-\pi$	Ans (c)	(CLO-2 Remember)
35	finding Euler's constant of a_0 for $f(x) = \frac{1}{2}(\pi - x)$ in $-\pi < x < \pi$ (a) $\frac{\pi}{3}$ (b) π (c) $\frac{\pi}{2}$ (d) 0	Ans (b)	(CLO-2 Remember)
36	Find the fourier constant a_n of periodicity 3 for $f(x) = 2x-x^2$ in $0 < x < 3$	Ans	(CLO-2

$a)\left(\frac{-3}{n^3\pi^2}\right)$	$b)\left(\frac{9}{n^3\pi^2}\right) c)\left(\frac{-9}{n^2\pi^2}\right) d)\left(\frac{9}{n^2\pi^2}\right)$	(c)	Remember)