ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕВЫСШЕГО ОБРАОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)»

Кафедра физики

ОТЧЕТ

по лабораторной работе №3

«Исследование динамики колебательного и вращательного движения»

Выполнила: Гренадерова А.А.

Группа №3374 (Факультет КТИ)

Преподаватель: Мыльников И.Л.

Санкт-Петербург

Контрольные вопросы

Вопрос №39:Выведите формулу $I_k = \frac{m}{8} (D_{ex}^2 + D_{in}^2)$

 I_k – момент инерции кольца

 D_{ex} — внешний диаметр кольца

m – масса кольца

 D_{in} – внутренний диаметр кольца

$$I_{k} = \int_{0}^{2\pi} \int_{r}^{R} pr^{2} (rd\phi dr) = p2\pi \left(\frac{R^{4} - r^{4}}{4}\right) =$$

$$=p\pi(R^2-r^2)\frac{R^2+r^2}{2}=m\frac{R^2+r^2}{2}=m\frac{\left(\frac{D_{ex}}{2}\right)^2+\left(\frac{D_{in}}{2}\right)^2}{2}=>$$

$$=>I_{k}=\frac{m}{8}(D_{ex}^{2}+D_{in}^{2})$$

Вопрос №36: Что такое мощность потерь?

Мощность потерь — это величина, которая показывает количество энергии, которая теряется или расходуется в процессе передачи сигнала или электроэнергии в системе. Она измеряется в ваттах (W) и часто используется для оценки эффективности работы системы.

Мощность потерь может возникать в различных системах и устройствах, включая электрические цепи, сети передачи данных, технические процессы и т.д. Эта потеря энергии может быть вызвана различными причинами, такими как сопротивление проводников, диссипация тепла, потери сигнала и другие факторы.

$$P = I^2 R$$

где Р — мощность потерь

I — ток, протекающий через систему

R — сопротивление системы

Цель работы:

Исследование динамики колебательного движения на примере крутильного маятника, определение момента инерции маятника, модуля сдвига материала его подвеса и характеристик колебательной системы с затуханием (логарифмического декремента затухания и добротности колебательной системы).

Приборы и принадлежности:

Крутильный маятник, секундомер, масштабная линейка, микрометр. Применяемый в работе крутильный маятник представляет собой диск 1, закрепленный на упругой стальной проволоке 2, свободный конец которой зажат в неподвижном кронштейне 3. На кронштейне расположено кольцо 4, масса которого известна. Кольцо 4 можно положить сверху на диск 1, изменив тем самым момент инерции маятника. Для отсчета значений угла поворота маятника служит градуированная шкала 5, помещенная на панели прибора снизу от диска 1.

Исследуемые закономерности:

Момент инерции (аналог инертной массы тела при его поступательном движении) — физическая величина, характеризующая инертные свойства твердого тела при его вращении. В соответствии с одной из формулировок основного уравнения динамики вращательного движения

$$M = I\varepsilon$$

где момент инерции I связывает угловое ускорение тела є и момент сил M, действующих на него.

Если твердое тело вращается вокруг неподвижной оси, то момент инерции относительно этой оси вычисляется как сумма произведений элементарных масс Δm_i , составляющих тело, на квадраты их расстояний r_i до оси вращения,

т.е.
$$\sum_i \Delta m_i r_i^2 = \sum_i \rho \Delta V_i r_i^2$$

где ρ – плотность тела, ΔV_i – элементы объема. Таким образом, момент инерции является аддитивной величиной.

При повороте тела, закрепленного на упругом подвесе, в результате деформации сдвига возникает вращающий момент упругих сил $M = -k\phi$, где $k - \kappa$ оэффициент кручения, зависящий от упругих свойств материала подвеса, его размеров и формы, ϕ - угол поворота диска маятника.

При малых углах поворота, без учета сил трения в подвесе, крутильные колебания маятника являются гармоническими, а уравнение движения тела имеет вид

$$\frac{d^2\varphi}{dt^2} = -\omega_0^2\varphi$$

где частота собственных колебаний гармонического осциллятора

$$\omega = \sqrt{\frac{k}{I}},$$

где 1 - момент инерции диска крутильного маятника.

Сопротивление движению маятника (трение) создает тормозящий момент, пропорциональный скорости движения маятника,

$$M_R = -R \frac{d\Phi}{dt},$$

где R - коэффициент сопротивления. С учетом сил сопротивления уравнение движения маятника принимает вид

$$\frac{d^2\varphi}{dt^2} + 2\beta \frac{d\varphi}{dt} + \omega_0^2 \varphi = 0$$

и является уравнением движения осциллятора с затуханием.

Если $\omega_0^2 - \beta^2 > 0$, движение крутильного маятника описывается уравнением затухающих колебаний

$$\varphi(t) = A_0 e^{-\frac{t}{\tau}} \cos\omega t,$$

где A_0 - начальная амплитуда колебаний маятника, $\tau = 1/\beta$ - время затухания, определяющее скорость убывания амплитуды A(t) маятника, численно равное времени, за которое амплитуда убывает в e раз.

$$\begin{array}{c} A_0 \\ A_0 \\ \hline \\ 0 \\ \end{array}$$

$$A(\tau)=A_0/e$$
.

 ω - частота колебаний осциллятора с затуханием, связанная с собственной частотой соотношением

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$

Время затухания τ также выражается через момент инерции I и коэффициент сопротивления R выражением

$$\tau = \frac{2I}{R}$$

Крутильный маятник как диссипативная система.

Убывание энергии происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло, идет процесс диссипации энергии. Скорость диссипации энергии (мощность потерь)

$$P_d = -\frac{dW(t)}{dt} = \frac{2W(t)}{\tau},$$

где
$$W(t) = W_0 e^{-\frac{2t}{\tau}}$$
,где $W_0 = \frac{kA_0^2}{2}$

ГРОТОКОЛНАБЛЮДЕНИЙ

Лабораторная работа N3

Исследование динамики колебательного и вращательного движения

№	t _д , c	t _{0д} , с	t _k , c	t _{0к} , с	
1					
	9,72	34,69	13,56	74,97	
2					
	9,75	32,5	13,69	74,97	
3					
	9,78	33,28	13,37	76,41	
4					
	9,71	30,13	13,5	72,19	
5					
	9,72	33,75	13,69	76,5	

l, mm	d, mm	D _{ex} , мм	D _{in} , MM	D_0 , MM	H_0 , mm	т, г	ρ, κε/м ³
62	0 2,4	247	58,5	247	25,2	1276	1180

Обработка результатов измерений

№	<i>t</i> д, с	$\Delta t_{\rm II}$,	<i>∆t</i> д^2, с^2	<i>t</i> _{0Д} , с	∆ t₀д,	<i>∆to</i> д^2,
		c			c	c^2
1	9,72	-0,016	0,000256	34,69	1,82	3,3124
2	9,75	0,014	0,000196	32,5	-0,37	0,1369
3	9,78	0,044	0,001936	33,28	0,41	0,1681
4	9,71	-0,026	0,000676	30,13	-2,74	7,5076
5	9,72	-0,016	0,000256	33,75	0,88	0,7744
	Среднее=9,736		$\Sigma = 0.00332$	Среднее=32,87		Σ =11,8994

<i>t</i> _K , c	<i>∆ t</i> _K , c	Δt_{κ}^2 , c ²	<i>t</i> _{0K} , c	Δ t _{0K} , c	$\Delta to_{\kappa}^2,$ c^2
13,56	-0,002	4E-06	74,97	-0,038	0,001444
13,69	0,128	0,016384	74,97	-0,038	0,001444
13,37	-0,192	0,036864	76,41	1,402	1,965604
13,5	-0,062	0,003844	72,19	-2,818	7,941124
13,69	0,128	0,016384	76,5	1,492	2,226064
Среднее=13,562		$\Sigma = 0.07348$	Среднее=75,008		Σ =12,13568

$$\Delta k = t_{p,n} \sqrt{\frac{\sum (\overline{k} - k_i)^2}{n(n-1)}} \; , \label{eq:deltak}$$

$$\Delta t_{\text{Д}} = 2.8 \sqrt{\frac{0.00332}{5(5-1)}} = 0.036 \text{ c}$$

$$\Delta t_{\text{Д0}} = 2.8 \sqrt{\frac{11.8994}{5(5-1)}} = 2.160 \text{ c}$$

$$\Delta t \kappa = 2.8 \sqrt{\frac{0.07348}{5(5-1)}} = 0.0170 \text{ c}$$

$$\Delta to\kappa = 2.8 \sqrt{\frac{12.13568}{5(5-1)}} = 2.181 \text{ c}$$

Приборная погрешность $\theta_t = 0.005 \, c$

$$\Delta t_{\text{A}} = \sqrt{\Delta t_{\partial}^2 + \theta_t^2} = 0.036 \text{ c}$$
 $t_{\text{A}} = (9.74 \pm 0.04) c, \text{ c P=95\%}$ $\Delta t \theta_{\text{A}} = \sqrt{\Delta t_{0\partial}^2 + \theta_t^2} = 2.160 \text{ c}$ $t \theta_{\text{A}} = (33 \pm 2) c, \text{ c P=95\%}$

$$\Delta t \kappa = \sqrt{\Delta t_k^2 + \theta_t^2} = 0.170 \text{ c}$$
 $t_k = (13.56 \pm 0.17) c, \text{cP} = 95\%$

$$\Delta to\kappa = \sqrt{\Delta t_o^2 + \theta_t^2} = 2.18 \text{ c}$$
 $t_{ok} = (75\pm 2) c, \text{ c P} = 95\%$

2. Рассчитайте периоды (T = t/n) колебаний диска без кольца и с кольцом $T_{_{\rm H}} = \overline{T}_{_{\rm H}} \pm \Delta \overline{T}_{_{\rm H}}, T_{_{\rm K}} = \overline{T}_{_{\rm K}} \pm \Delta \overline{T}_{_{\rm K}}$ с P = 95%.

$$\overline{T_{\text{A}}} = \frac{\overline{t_{\text{A}}}}{\frac{10}{10}} = \frac{9,74}{10} = 0,974 \text{ c}$$

$$\overline{T_{\rm K}} = \frac{\overline{t_{\rm K}}}{10} = \frac{13,56}{10} = 1,356 \text{ c}$$

Вычислим частные производные от функции T(t)=t/n и полные погрешности.

$$a_{\overline{t_{\kappa}}}(\overline{t_{\kappa}}) = \frac{dT_{\kappa}(\overline{t_{\kappa}})}{d\overline{t_{\kappa}}} = 0.1,$$

$$a_{\overline{t_{\pi}}}(\overline{t_{\pi}}) = \frac{dT_{\pi}(\overline{t_{\pi}})}{d\overline{t_{\pi}}} = 0.1,$$

$$\overline{\Delta T_{\text{A}}} = a_{\overline{t_{\text{A}}}} * \overline{T_{\text{A}}} = 0.10 \text{ c}$$

$$\overline{\Delta T_{\scriptscriptstyle K}} = a_{\overline{t_{\scriptscriptstyle K}}} * \overline{T_{\scriptscriptstyle K}} = 0.14 \text{ c}$$

$$T_{\rm A} = 0.97 \pm 0.10 \,\mathrm{c};$$

$$T_{\kappa} = 1.36 \pm 0.14 \,\mathrm{c}$$

3. Рассчитаем время затухания с кольцом и без него $(\tau(t_0) = \frac{t_0}{\ln(2)})$.

$$\overline{\tau_{\scriptscriptstyle K}} = \frac{\overline{t_{\scriptscriptstyle oK}}}{\underline{ln2}} = 108,202c$$

$$\overline{\tau_{\text{A}}} = \frac{\overline{t_{\text{o}\text{A}}}}{\ln 2} = 47,609 \text{c}$$

Вычислим частные производные и полные погрешности.

$$a_{\overline{t_{0\mathtt{K}}}}(\overline{t_{0\mathtt{K}}}) = \frac{d\tau_{\mathtt{K}}(\overline{t_{0\mathtt{K}}})}{d\overline{t_{0\mathtt{K}}}} = 1.4427, \quad a_{\overline{t_{0\mathtt{M}}}}(\overline{t_{0\mathtt{M}}}) = \frac{d\tau_{\mathtt{M}}(\overline{t_{0\mathtt{M}}})}{d\overline{t_{0\mathtt{M}}}} = 1.4427$$

$$\overline{\Delta \tau_{\rm K}} = 1,4427*0,017=0,02$$

$$\overline{\Delta \tau_{\text{A}}} = 1,4427*0,04=0,06$$

$$\tau_{\rm K} = 108,20 \pm 0,02 \,{\rm c}$$

$$\tau_{\rm M} = 47,61 \pm 0,06 \, {\rm c}$$

4. Рассчитаем собственные частоты маятника с кольцом и без него(
$$\omega(T) = \frac{2\pi}{T}$$
). Сначала рассчитаем частоту колебаний осциллятора с затуханием.

$$\overline{\omega_{\scriptscriptstyle K}} = \frac{2\pi}{\overline{T_{\scriptscriptstyle K}}}$$
 : $\overline{\omega_{\scriptscriptstyle A}} = \frac{2\pi}{\overline{T_{\scriptscriptstyle A}}}$ =

$$\overline{\omega_{ exttt{K}}}$$
= 4,620 рад/с $\overline{\omega_{ exttt{A}}}$ = 6,478 рад/с

Вычисляем частные производные и полные погрешности.

$$a_{\overline{T_{\kappa}}} = \frac{d\omega_{\kappa}(\overline{T_{\kappa}})}{d\overline{T_{\kappa}}}$$

$$a_{\overline{T_{\kappa}}} = \frac{d\omega_{\kappa}(\overline{T_{\kappa}})}{d\overline{T_{\kappa}}}$$

$$\Delta\overline{\omega_{\kappa}} = |a_{\overline{T_{\kappa}}} \cdot \Delta\overline{T_{\kappa}}|$$

$$\Delta\overline{\omega_{\kappa}} = |a_{\overline{T_{\kappa}}} \cdot \Delta\overline{T_{\kappa}}|$$

$$a_{\overline{T_{\rm K}}} = -2*3,14*1,36^2 = -11.109 \frac{{\rm pag}}{{\rm c}^2};$$
 $a_{\overline{T_{\rm A}}} = -2*3,14*0,97^2 = -5.912 \frac{{\rm pag}}{{\rm c}^2};$ $\Delta \overline{\omega}_{\rm K} = 11.109*0.14 = 1,6~{\rm pag/c};$ $\Delta \overline{\omega}_{\rm A} = 5.912*0.10 = 0,6~{\rm pag/c};$

$$\omega_{\scriptscriptstyle K} = \overline{\omega}_{\scriptscriptstyle K} \pm \Delta \overline{\omega}_{\scriptscriptstyle K} = (4.6 \pm 1,6) {\rm pag/c}$$
 $\omega_{\scriptscriptstyle A} = \overline{\omega}_{\scriptscriptstyle A} \pm \Delta \overline{\omega}_{\scriptscriptstyle A} = (6.5 \pm 0,6) {\rm pag/c}$

Теперь можно рассчитать собственную частоту колебаний ($\omega_0(\omega, \tau) = \sqrt{\omega^2 + \frac{1}{\tau}}$).

$$\overline{\omega_{0\kappa}} = \omega_{0\kappa}(\overline{\omega_{\kappa}}, \overline{\tau_{\kappa}}) = \sqrt{\overline{\omega_{\kappa}}^2 + \frac{1}{\overline{\tau_{\kappa}}^2}}$$

$$\overline{\omega_{0\pi}} = \omega_{0\pi}(\overline{\omega_{\pi}}, \overline{\tau_{\pi}}) = \sqrt{\overline{\omega_{\pi}}^2 + \frac{1}{\overline{\tau_{\pi}}^2}}$$

$$\overline{\omega}_{0\mathrm{K}} = \sqrt{4.6^2 + \frac{1}{108.2^2}} = 4.6 \; \mathrm{pag/c}; \; \overline{\omega}_{0\mathrm{д}} = \sqrt{6.5^2 + \frac{1}{47.61^2}} = 6.50 \; \mathrm{pag/c}$$

Вычисляем частные производные.

$$a_{\overline{\omega_{\kappa}}} = \frac{d\omega_{0\kappa}(\overline{\omega_{\kappa}}, \overline{\tau_{\kappa}})}{d\overline{\omega_{\kappa}}} = \frac{\overline{\omega_{\kappa}}}{\sqrt{\overline{\omega_{\kappa}}^2 + \frac{1}{\overline{\tau_{\kappa}}^2}}} = 0.99999$$

$$a_{\overline{\omega_{\pi}}} = \frac{d\omega_{0\pi}(\overline{\omega_{\pi}}, \overline{\tau_{\pi}})}{d\overline{\omega_{\pi}}} = \frac{\overline{\omega_{\pi}}}{\sqrt{\overline{\omega_{\pi}}^2 + \frac{1}{\overline{\tau_{\pi}}^2}}} = 1$$

$$b_{\overline{\tau_{\kappa}}} = \frac{d\omega_{0\kappa}(\overline{\omega_{\kappa}}, \overline{\tau_{\kappa}})}{d\overline{\tau_{\kappa}}} = -\frac{1}{\overline{\tau_{\kappa}}^3 \sqrt{\overline{\omega_{\kappa}}^2 + \frac{1}{\overline{\tau_{\kappa}}^2}}} = -1.716*10^{\circ}(-7)$$

$$b_{\overline{\tau_{\Lambda}}} = \frac{d\omega_{0\kappa}(\overline{\omega_{\Lambda}}, \overline{\tau_{\Lambda}})}{d\overline{\tau_{\Lambda}}} = -\frac{1}{\overline{\tau_{\kappa}}^3 \sqrt{\overline{\omega_{\kappa}}^2 + \frac{1}{\overline{\tau_{\kappa}}^2}}} = -1.426*10^{\circ}(-6)$$

Вычисляем полную погрешность функций.

$$\Delta \overline{\omega_{0\kappa}} = \sqrt{(a_{\overline{\omega_{\kappa}}} \cdot \Delta \overline{\omega_{\kappa}})^2 + (b_{\overline{\tau_{\kappa}}} \cdot \Delta \overline{\tau_{\kappa}})^2} = 1,6$$
 рад/с

$$\Delta \overline{\omega_{0_{\text{A}}}} = \sqrt{(a_{\overline{\omega_{\text{A}}}} \cdot \Delta \overline{\omega_{\text{A}}})^2 + (b_{\overline{\tau_{\text{A}}}} \cdot \Delta \overline{\tau_{\text{A}}})^2} = 0.06 \quad \frac{\text{рад}}{c}$$

Запишем результат измерения и округлим его.

$$\omega_{0\kappa} = \overline{\omega}_{0\kappa} \pm \Delta \overline{\omega}_{0\kappa} = (4.6 \pm 1.6)$$
рад/с $\omega_{0\pi} = \overline{\omega}_{0\pi} \pm \Delta \overline{\omega}_{0\pi} = (6.50 \pm 0.06)$ рад/с

Рассчитаем момент инерции диска мятника разными способами.
 Для этого сначала рассчитаем момент инерции кольца.

$$I_{\kappa} = \frac{m}{8} \left(D_{ex}^2 + D_{in}^2 \right)$$

Где D_{ex} — внешний диаметр кольца, m — масса кольца, D_{in} — внутренний диаметр кольца.

$$I_{\text{K}} = \frac{1.276}{8} (0.247^2 + 0.0585^2) = 0.0103 \text{ kg} * \text{m}^2$$

6. Рассчитать момент инерции диска $I_{\rm д}=\overline{I}_{\rm д}\pm\Delta\overline{I}_{\rm д}$ с P=95%. Для вывода формулы погрешности $\Delta\overline{I}_{\rm д}$ удобно формулу (2) записать в виде $I_{\rm д}=\frac{I_{\rm K}\omega_{0{\rm K}}^2}{\omega_{0{\rm L}}^2-\omega_{0{\rm K}}^2}$ и прологарифмировать это выражение.

$$I_{\text{Д}} = \frac{0.0103*4.6^2}{6.5^2 - 4.6^2} = 0.01033 \kappa 2 * M^2$$

$$a_{\overline{T}_{K}} = \frac{df}{d\overline{T}_{K}} = -2\frac{I_{K}}{\frac{\overline{T}_{K}^{3}}{\overline{T}_{\pi}^{2}} - 1} = -0.012$$

$$b_{\overline{T}_{A}} = \frac{df}{d\overline{T}_{A}} = \frac{2\overline{T}_{\kappa}^{2} * I_{\kappa} * \overline{T}_{A}}{\left(\overline{T}_{\kappa}^{2} - \overline{T}_{A}^{2}\right)^{2}} = 0,0407$$

Вычисляем полную погрешность функции

$$\Delta I_{A} = \sqrt{(a_{\overline{T}_{K}} * \Delta \overline{T}_{K})^{2} + (b_{\overline{T}_{A}} * \Delta \overline{T}_{A})^{2}} = 1,7*10^{-4} (\text{kg}^{*}\text{m}^{2})$$

Записываем результат измерения и округляем его.

$$\bar{I}_{_{\rm I\! I}} \pm \bar{\Delta} I_{_{\rm I\! I}} = (103,3\ \pm 1,7\)*10^{-4} ({\rm kg}^*{\rm m}^2)$$

7. Теперь рассчитаем момент инерции диска маятника, исходя из его размеров и плотности материала.

Формула: $I_{\rm д}=\frac{1}{32}\cdot\pi\cdot\rho_0\cdot h_0\cdot D_0^4$, где ρ_0 – плотность материала, из которого изготовлен диск, h_0 – толщина диска маятника, D_0 – диаметр диска маятника. $I_{\rm д}=\frac{1}{32}\cdot\pi\cdot 1180\cdot 0,0252\cdot 0,247^4$ =0,011 (кг · м²)

Полученный результат немного больше экспериментального значения из-за присутствия погрешностей при измерении и расчетах.

8. Определим коэффициент кручения и модуль сдвига материала подвеса. Найдём коэффициент кручения $k_{\rm A}=\omega_{\rm 0A}^2\cdot I_{\rm A}$. Найдем $\overline{k_{\rm A}}=\overline{\omega_{\rm 0A}^2\cdot I_{\rm A}}=0,42$ Дж. Вычисляем частные производные от функции.

$$a_{\overline{\omega_{0_A}}} = \frac{dk_{\text{A}}(\overline{\omega_{0_A}}, \overline{I_{\text{A}}})}{\overline{\omega_{0_A}}} = 2 \cdot \overline{I_{\text{A}}} \cdot \overline{\omega_{0_A}} = 0,13 \quad \frac{\text{K}\Gamma \cdot \text{M}^2}{c}$$

$$a_{\overline{I_{\text{A}}}} = \frac{dk_{\text{A}}(\overline{\omega_{0_{\text{A}}}}, \overline{I_{\text{A}}})}{\overline{I_{\text{A}}}} = \overline{\omega_{0_{\text{A}}}}^2 = 42,25 \quad \frac{1}{c^2}$$

$$\Delta \overline{k_{\text{A}}} = \sqrt{(a_{\overline{\omega_{0_{\text{A}}}}} \cdot \Delta \overline{\omega_{0_{\text{A}}}})^2 + (a_{\overline{I_{\text{A}}}} \cdot \Delta \overline{I_{\text{A}}})^2} = 0,17 \quad \text{Дж}$$

Записываем результат измерения и округляем его.

$$k_{\rm A} = \overline{k_{\rm A}} \pm \Delta \overline{k_{\rm A}} = (0.42\pm0.17)$$
Дж

Рассчитаем среднее значение модуля сдвига G по формуле: $\overline{G}=\frac{32\cdot\overline{k_{\rm A}}\cdot l}{\pi\cdot d^4}=79{,}95$ Гпа. Где l — длина подвеса, d — диаметр подвеса, $\overline{k_{\rm A}}$ — коэффициент кручения.

Модуль сдвига G связан с модулем Юнга, характеризующим сопротивление материала сжатию или растяжению, соотношением $E = 2G(1+\nu)$. Коэффициент Пуассона $\nu = \varepsilon_{\perp}/\varepsilon_{\parallel}$ — отношение поперечной и продольной относительной деформации образца материала и для металлов близок к 0.3.

 Определим полную энергию, мощность потерь и добротность маятника. Пользуясь соответствующими соотношениями, определим средние значения указанных величин.

Определяем начальное значение полной энергии: $W_0 = \frac{kA_0^2}{2} = \frac{k\pi^2}{72} = 0,018$ Дж

Вычислим мощности потерь: $P_d = \frac{2}{\overline{\tau_a}} W_0 = 0,0008 \text{B} \text{т}$.

Так же вычислим добротности маятника: $Q=\pi \frac{\overline{\tau_{\text{A}}}}{\overline{T_{\text{A}}}}=$ 154

10. Постройте для маятника без кольца графики зависимости угла поворота маятника $\varphi = \varphi(t)$ и амплитуды A = A(t) его колебаний от времени t.

$$\varphi(t) = A_0 \cdot e^{\frac{-t}{\tau_A}} \cdot \cos(\overline{\omega_A} \cdot t) = \frac{\pi}{6} \cdot e^{\frac{-t}{47.61}} \dot{6}_1^{\cos} (6.5t)$$

Вывод;

В ходе работы измерено время 4 разных колебательных систем. Рассчитаны характеристики затухающих колебаний, какие как период, время затухания, частота колебания, собственная частота колебания, логарифмический декремент затухания и добротность колебательной системы. Для крутильных движений рассчитан модуль сдвига и модуль Юнга. Рассчитаны моменты инерции диска. Момент инерции рассчитан двумя способами: в эксперименте и теоретически. Значение получили $I_{\text{дтеор}} = 0.011 \text{ кг} \cdot \text{м}^2$ и $\bar{I}_{\text{д}} \pm \bar{\Delta} I_{\text{д}} = (0.01033 \pm 0.00017) \text{кг}^*\text{м}^2$. Теоретическое значение не входит в доверительный интервал с вероятностью р=95%. Для одного эксперимента построены графические зависимости. Результаты хорошо согласуются с теоретическими.