- Uma árvore T é uma estrutura:
 - vazia, denotada por T = ∅, ou
 - composta por:
 - um *nó* R chamado de *nó raiz*
 - 0 ou mais árvores disjuntas T₁, T₂, ... associadas a R; tais árvores são chamadas de *subárvores* de R
- Um conjunto de árvores é chamado de floresta

• Forma usual de se representar uma árvore:

• Forma usual de se representar uma árvore:

- Nomenclatura relacionada a árvores:
 - Se T é uma subárvore de uma raiz R, então:
 - os nós de T são todas as raízes de subárvores de R (e também as raízes de subárvores de subárvores, etc.), além da raiz de T
 - um nó com 0 subárvores é chamado de folha
 - a raiz de T é um *nó filho* de R e R é *pai* da raiz de T
 - R é ancestral a todos os nós de T
 - Todos os nós de T são descendentes de R

- Nomenclatura relacionada a árvores:
 - Uma sequência v₀,...,v_k de nós de uma árvore T tal que dois nós consecutivos pertencem à relação "é filho de" ou "é pai de" é chamada de *caminho* de tamanho k de T

Exemplos:

E,C,A

D,G,I

C,A,D,G

- Nomenclatura relacionada a árvores:
 - O nível de um nó P de uma árvore T é o número de vértices do caminho que vai de P até a raiz de T

Exemplos:

nível de A = 1 nível de B, C, D = 2 nível de E, F, G = 3 nível de H, I, J = 4

- Nomenclatura relacionada a árvores:
 - A altura h(P) de um nó P é o número de nós do maior caminho que vai de P até uma folha descendente de P
 - A altura h(T) de uma árvore T é a altura de sua raiz

$$h(B) = 1$$

$$h(C) = 2$$

$$h(D) = 3$$

$$h(A) = 4$$

$$h(T) = h(A) = 4$$

- Nomenclatura relacionada a árvores:
 - Uma árvore T é ordenada se há uma ordem definida entre as subárvores associadas à raiz de T

Se as árvores ao lado são consideradas iguais, então são não ordenadas. Caso contrário, são ordenadas.

 Uma árvore ordenada é dita *m-ária* se cada nó possui m subárvores (binária = 2-ária, ternária = 3-ária, quaternária = 4-ária, etc.), algumas podendo ser vazias

Exemplo de árvore ternária (e também quaternária, 5-ária, 6-ária, etc.)

 Numa árvore binária ordenada de raiz R, a primeira subárvore de cada nó é chamada de subárvore à esquerda de R (e sua raiz de filho esquerdo de R) e a segunda subárvore de subárvore à direita de R (e sua raiz de filho direito de R)

- B é filho esquerdo e C é filho direito de A
- F é filho direito de C, que não possui filho esquerdo
- G não possui nem filho esquerdo nem filho direito

 Uma árvore estritamente m-ária é aquela na qual cada nó possui 0 ou m filhos

- A árvore ao lado não é estritamente binária
- Se um nó for adicionado como filho de C, a árvore se torna estritamente binária

 Uma árvore m-ária completa é aquela na qual todo nó com alguma subárvore vazia está no último ou penúltimo níveis

- A árvore ao lado não é completa (C está no antepenúltimo nível)
- Se um nó for adicionado como filho de C, a árvore se torna completa

 Uma árvore m-ária cheia é aquela na qual todo nó com alguma subárvore vazia está no último nível

Exemplo de uma árvore binária cheia

Para pensar:

- Qual a altura máxima de uma árvore binária com n nós?
- Qual a altura máxima de uma árvore estritamente binária com n nós?
- Qual a altura mínima de uma árvore binária com n nós?
- Numa árvore binária cheia com n nós, qual o número de nós no último nível?

Para pensar:

- Qual a altura máxima de uma árvore binária com n nós? n
- Qual a altura máxima de uma árvore estritamente binária com n nós? (n+1)/2
- Qual a altura mínima de uma árvore binária com n nós? [Ig(n+1)]
- Numa árvore binária cheia com n nós, qual o número de nós no último nível? (n+1)/2

- Como implementar uma árvore m-ária?
 - Alocação de nós:
 - sequencial
 - encadeada
 - Agrupamento de filhos:
 - sequencial
 - o encadeada

- Como implementar uma árvore m-ária?
 - Alocação encadeada de nós

Espaço: $\theta(mN)$ $O(N^2)$

```
//opção 1: alocação sequencial dos filhos
var M: Inteiro ← <valor de m>
estrutura No<TChave, TElem>:
    Chave: <TChave>
    Elem: <TElem>
    NosFilhos[1..M]: ^No
estrutura Arvore<TChave, TElem>:
    Raiz: ^No<TChave, TElem>
    m: Inteiro
procedimento Constroi(ref T: Arvore,
                        m: Inteiro)
    T.Raiz, T.m \leftarrow NULO, m
var T: Arvore<Caracter, ^Elemento>
Constroi(T, M)
```


- Como implementar uma árvore m-ária?
 - Alocação encadeada de nós

var T: Arvore<Caracter, ^Elemento>

Constroi(T, M)

Chave: A
Prox
NosFilhos
Chave: B
Prox
Prox
NosFilhos
NosFilhos

Espaço:

 $\theta(N)$

- Como implementar uma árvore m-ária?
 - Alocação encadeada de nós

Espaço: θ(N)

```
//opção usual quando árvore é binária
estrutura No<TChave, TElem>:
    Chave: <TChave>
                                             Chave:
    Elem: <TElem>
    Esq: ^No, Dir: ^No
                                             Esq
                                                      Dir
estrutura Arvore<TChave, TElem>:
    Raiz: ^No<TChave, TElem>
procedimento Constroi(ref T: Arvore)
    T.Raiz \leftarrow NULO
                                  Chave:
                                                        Chave:
                                            В
var T: Arvore<Caracter,</pre>
                 ^Elemento>
                                   Esq
                                            Dir
                                                        Esq
                                                                  Dir
Constroi(T)
```

 Note que, nas duas implementações anteriores, não há diferenças no estrutura No a menos de uma rerotulação dos campos NosFilhos e Prox para, respectivamente, Esq e Dir

 Em outras palavras, podemos representar qualquer árvore m-ária por uma árvore binária -- aumentado a importância desta última

- Como implementar uma árvore binária? (continuação)
 - Alocação sequencial de nós

```
var MAX_N: Inteiro ← <NÚMERO MÁXIMO DE ELEMENTOS>
//os nós são armezados em
//níveis, da esquerda para direita
estrutura No <TChave, TElem>:
    Chave: <TElem>
    Elem: <TElem>
                                                 В
estrutura Arvore <TChave, TElem>:
    Val[1..MAX N]: No<TChave, TElem>
    N: Inteiro //quantidade de nós
                                               D
                //da árvore
procedimento Constroi(ref T: Arvore)
                                        T.Val
    T.N \leftarrow 0
                                                C
                                                   D
var T: Arvore
                                                                   MAX N
Constroi(T)
```

- Como implementar uma árvore binária? (continuação)
 - Alocação sequencial de nós

```
var MAX_N: Inteiro ← <NÚMERO MÁXIMO DE ELEMENTOS>
//os nó¶
//níveis Pode deixar muitos espaços
estrutur
           sem uso... por isso, uso
    Chav
           adequado para árvores
    Elen
                 completas
                                                  В
estrutur
    Val[1..MAX_N]: No<TChave, TElem>
    N: Inteiro //quantidade de nós
                                                D
                //da árvore
procedimento Constroi(ref T: Arvore)
                                          T.Val
    T.N \leftarrow 0
                                                  C
                                                     D
var T: Arvore
                                                                     MAX N
Constroi(T)
```

- Como implementar uma árvore binária?
 - Alocação sequencial de nós

Para pensar:

Dado um nó V na posição i, em que posição estão:

- o pai de V?
- os filhos de V?

- Como implementar uma árvore binária?
 - Alocação sequencial de nós

Para pensar:

Dado um nó V na posição i, em que posição estão:

- o pai de V? Li/2J
- os filhos de V? 2i e 2i+1

 Uma floresta pode ser representada computacionalmente criando-se artificialmente um nó raiz que une todas as árvores

Percursos

Buscas em Árvores

- Um percurso é uma visitação ordenada dos nós
- Como não há uma ordem natural entre os nós (como é o caso das listas lineares), cada percurso pode visitar os nós em ordem distinta. Exemplos de percursos clássicos:
 - o em pré-ordem
 - o em pós-ordem
 - em in-ordem (ou em ordem simétrica)
 - o em nível

 Um percurso em pré-ordem numa árvore T é aquele que visita o nó raiz de T e, em seguida, percorre em pré-ordem as subárvores da esquerda e da direita, nesta ordem

Pré-ordem:

Visitas ocorrem na ordem: A, B, D, G, C, E, H, I, F

Percurso em Pré-Ordem

PercursoPreOrdem(T.Raiz)

```
procedimento PercursoPreOrdem(T: ^No)
    se T ≠ NULO então
        escrever (T^.Chave)
        PercursoPreOrdem(T^.Esq)
        PercursoPreOrdem(T^.Dir)

procedimento PercursoPreOrdem(ref T: Arvore)
```

 Um percurso em pós-ordem numa árvore T é aquele que percorre em pós-ordem as subárvores da esquerda e da direita, nesta ordem, e, em seguida, visita o nó raiz de T

Pós-ordem:

Visitas ocorrem na ordem: G, D, B, H, I, E, F, C, A

Percurso em Pós-Ordem

```
procedimento PercursoPosOrdem(T: ^No)

se T ≠ NULO então
    PercursoPosOrdem(T^.Esq)
    PercursoPosOrdem(T^.Dir)
    escrever (T^.Chave)
Tempo:

### 0(N)

### 0(N)

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.00

### 1.
```

```
procedimento PercursoPosOrdem(ref T: Arvore)
PercursoPosOrdem(T.Raiz)
```

 Um percurso em in-ordem (ou em ordem simétrica) numa árvore T é aquele que percorre em in-ordem a subárvore da esquerda, depois visita o nó raiz de T, e, em seguida, percorre em in-ordem a subárvore da direita

In-ordem:

Visitas ocorrem na ordem: D, G, B, A, H, E, I, C, F

Percurso em In-Ordem

```
procedimento PercursoInOrdem(T: ^No)
se T ≠ NULO então
    PercursoInOrdem(T^.Esq)
    escrever (T^.Chave)
    PercursoInOrdem(T^.Dir)
Tempo:
θ(N)
```

```
procedimento PercursoInOrdem(ref T: Arvore)
PercursoInOrdem(T.Raiz)
```

 Um percurso em níveis numa árvore T é aquele que visita os nós por ordem ascendente de nível e, entre aqueles de mesmo nível, da esquerda para direita

Em nível:

Visitas ocorrem na ordem: A, B, C, D, E, F, G, H, I

```
procedimento PercursoEmNiveis(T: ^No)
   var TProx: ^No, F: Fila<^No>
   Enfileira(F, T)
   enquanto Tamanho(F) > 0 faça
      TProx \leftarrow Desenfileira(F)
      se TProx ≠ NULO então
                                               Tempo:
         escrever(TProx^.Chave)
                                                \theta(N)
         Enfileira(F, TProx^.Esq)
         Enfileira(F, TProx^.Dir)
procedimento PercursoEmNiveis(ref T: Arvore)
```

PercursoEmNiveis(T.Raiz)

- 1. Faça um procedimento que em cada nó P de uma árvore dada como entrada atualize um campo chamado:
 - a. Altura com a altura de P
 - b. Nível com o nível de P
 - c. SomaChaveD, com a soma de todas as chaves de nós descendentes de P, mais a chave do próprio P
 - d. SomaChaveD2, com a soma de todas as chaves de nós descendentes de P
 - e. SomaChaveA, com a soma de todas as chaves de nós dos quais P é descendente, mais a chave do próprio P
 - f. SomaChaveA2, com a soma de todas as chaves de nós dos quais P é descendente
 - g. PNivel com a porcentagem que o valor da chave de P representa em relação à soma de todas as chaves de nós que se encontram no mesmo nível de P

- Faça um procedimento que execute um percurso em níveis que, para aqueles nós num mesmo nível da árvore, a ordem de visita seja da direita para a esquerda
- 3. Decidir se duas árvores binárias dadas de entrada são idênticas, isto é, contém os mesmos elementos exatamente nas mesmas posições
- 4. Decidir se, dadas duas árvores binárias de entrada, uma é subárvore da outra, isto é, um nó de uma árvore é raiz de uma subárvore idêntica à segunda
- 5. Verificar se uma árvore T m-ária dada de entrada é balanceada, conforme os seguintes critérios de balanceamento:
 - a. T é balanceada se para quaisquer folhas u e v, as distâncias de u e v até raiz difere de no máximo 1
 - b. T é balanceada se para qualquer nó T' de T, a diferença das alturas das subárvores à esquerda e à direita de T' é no máximo 1

- 6. Faça algoritmos que, dada uma árvore binária cujos elementos são inteiros, computem:
 - a. o número de valores
 - b. o produto dos valores
 - c. a soma dos valores em folhas da árvore
 - d. o major valor
 - e. uma lista ligada com os nós que não são folhas
 - f. o menor valor dentre aqueles associados a nós que não possuem subárvores vazias
 - g. a maior soma de valores dos nós de uma subárvore (uma subárvore de T é a árvore que se obtém tomando-se um nó X de T e eliminando-se de T todos os nós que não sejam X ou não descendam de X)

- 7. Dada uma árvore binária T de altura H, criar H listas ligadas de forma que para cada 1 ≤ i ≤ H haja uma lista ligada com os nós de altura i
- 8. Dada uma árvore binária T com número de níveis J, criar J listas ligadas tal que para cada 1 ≤ i ≤ J haja uma lista ligada com os nós de nível i
- 9. Dado um ponteiro para um nó de uma árvore que acaba de ser visitado, determinar o próximo nó que será visitado em relação a cada percurso abaixo usando o menor número possível de operações. (Exemplos são dados no formato (nó de entrada → nó de saída) considerando-se a árvore usada de exemplo para os percursos)
 - a. in-ordem (ordem simétrica). (Ex: B \rightarrow A; A \rightarrow H; I \rightarrow C)
 - b. pré-ordem (Ex: A \rightarrow B; G \rightarrow C; H \rightarrow I)
 - c. pós-ordem (Ex: D \rightarrow B; B \rightarrow H)
 - d. em nível (Ex: B \rightarrow C; F \rightarrow G; H \rightarrow I)

Assuma que cada nó possui um ponteiro para o nó pai

- 10. Prove ou refute: Para que duas árvores sejam idênticas, é suficiente possuírem a mesma sequência de visitas aos nós nos percursos:
 - a. em níveis
 - b. em pré-ordem
 - c. em pós-ordem
 - d. em in-ordem
 - e. em pré-ordem e in-ordem
 - f. em pós-ordem e in-ordem
 - g. em pré-ordem e pós-ordem
 - h. em pré-ordem e em níveis

- 11. Em uma árvore cheia representada com alocação sequencial, determine a posição i no vetor representando os nós da árvore onde está o nó que atende cada uma das propriedades abaixo:
 - a. possui o neto na posição p. Ex: p = 12 ⇒ i = 3.
 - b. que é o k-ésimo nó da esquerda para direita no nível ℓ . Ex: k = 3, ℓ = 3 \Rightarrow i = 10.
 - c. que se chega após navegar a partir da raiz r nós à direita seguido de ℓ nós à esquerda. Ex: d = 2, $\ell = 1 \Rightarrow i = 14$.
- 12. Sobre árvores estritamente m-árias com n nós, responda:
 - a. Qual a altura máxima dentre tais árvores?
 - b. Qual a altura mínima dentre tais árvores?

- 13. Elabore um algoritmo com complexidade de tempo θ(N) que atribua ao campo Niv de cada um dos N nós de uma árvore binária com o respectivo nível do nó usando percursos (a) pré-ordem; (b) in-ordem, (c) pós-ordem e (d) em nível
- 14. Elabore um algoritmo com complexidade de tempo θ(N) que escreva as chaves de uma árvore binária T dada de entrada tal que cada nível de T apareça numa linha de saída.