### Modélisation du transport d'un polluant

Projet d'introduction à la recherche

Léo Baty, Chiheb Eddine Najjar, Nathan Godey, Régis Santet, Song Phuc Duong,
Clément Lasuen
sous la direction de
Damiano Lombardi et Sebastien Boyaval
Laboratoire INRIA

2 juin 2018

#### Sommaire

- Introduction
- Méthodes
  - Proper Orthogonal Decomposition
  - Champs de vitesse étudiés
  - Approche eulerienne
  - Approche lagrangienne
- Résultats et interpretations
  - Approche eulerienne
    - Champ de vitesse uniforme
       Écoulements cellulaires
  - Approche lagrangienne
    - Champ de vitesse uniforme
    - Écoulements cellulaires
    - Ochamp de vitesse de Lamb-Oseen
- Conclusion

### Introduction



FIGURE 1: Explosion de Deepwater Horizon, 20/04/2010

## Equation de transport

$$\partial_t c + u \cdot \nabla c = 0$$

c(x,t): concentration en polluant à la position  $x \in (0,1)^2 = \Omega$  à l'instant  $t \in [0,T]$  u : champ de vitesse, dépend a priori de x et de t

## Champs de vitesse étudiés

Champ de vitesse uniforme

$$\begin{cases} u_x = ||u||\cos(\theta) \\ u_y = ||u||\sin(\theta) \end{cases}$$



FIGURE 2: Écoulement constant avec un angle  $\theta$ 

### Champs de vitesse étudiés

Écoulements cellulaires

$$\psi(x,y) = \sin(2\pi x)\sin(2\pi y) + \theta_0\cos(2\pi\theta_1 x)\cos(2\pi\theta_2 y) \theta_0 \in [0,2.5] \text{ et } (\theta_1,\theta_2) \in [0.5,4]^2$$



FIGURE 3: Champs de vitesse pour deux jeux de paramètres

### Champs de vitesse étudiés

Champ de vitesse de Lamb-Oseen

$$\mathbf{V}(r,\theta,t) = \frac{\Gamma}{2\pi r} \left( 1 - \exp\left(\frac{-r^2}{4\nu t + r_c^2}\right) \right) \mathbf{u}_{\theta}$$



FIGURE 4: Écoulement Lamb-Oseen



FIGURE 5: Condition initiale...



FIGURE 6: ... et après un certain temps

Méthode des volumes finis

# Approche eulerienne Modèle réduit

### Approche lagrangienne

 $X(\xi,t)\in\mathbb{R}^{n\times 2}$  désigne les positions, à l'instant  $t\in[0,T]$ , des particules qui étaient initialement aux positions  $\xi\in\mathbb{R}^{n\times 2}$ 

$$\begin{cases} \partial_t X = v(X(\xi, t), t) \\ X(\xi, 0) = \xi \end{cases}$$

#### Hypothèses

$$v\in\mathcal{C}^0(\mathbb{R}^{n\times 2}\times\mathbb{R})\bigcap W^{1,\infty}(\mathbb{R}^{n\times 2}\times\mathbb{R})$$

#### Théorème de Cauchy-Lipschitz

Existence et unicité d'une solution locale pour des temps arbitraires

#### Conséquence

Le transport est à vitesse finie

## Approche lagrangienne

Résolution numérique

Schéma de Crank-Nicholson :

$$X^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X^{(k+1)}, t^{k+1}))$$

Algorithme du point fixe :

$$\left\{ \begin{array}{c} X_0^{(k+1)} = X^{(k)} \\ X_1^{(k+1)} = X^{(k)} + \Delta t v(X^{(k)}, t^k) \\ X_{r+1}^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X_r^{(k+1)}, t^{k+1})) \end{array} \right.$$

Champ de vitesse uniforme

16 simulations,  $\theta \in [0, \frac{\pi}{2}]$ 



FIGURE 7: Tracé du log des valeurs singulières en fonction du rang

Champ de vitesse uniforme

#### Rôle des modes propres :









Champ de vitesse uniforme



Condition initiale, 10 modes



Condition initiale, 20 modes

Champ de vitesse uniforme



Condition initiale, 50 modes



Condition initiale, 100 modes

Champ de vitesse uniforme



Condition initiale, 200 modes



Condition initiale, 500 modes

Champ de vitesse uniforme



A mi-parcours, 10 modes



A mi-parcours, 20 modes

Champ de vitesse uniforme



A mi-parcours, 50 modes



A mi-parcours, 100 modes

Champ de vitesse uniforme



A mi-parcours, 200 modes



A mi-parcours, 500 modes

Ecoulements cellulaires

#### 64 simulations en volumes finis

- $\bullet$  On se place sur  $[-0.5, 1.5] \times [-0.5, 1.5]$
- Maillage de 2<sup>7</sup> mailles de côté
- $(x_0, y_0, \theta_0) \in [0.25, 0.75] \times [0.25, 0.75] \times [0, 2.5]$  tirés uniformément



# Approche eulerienne Ecoulements cellulaires

### $Reconstruction \ "in-range":\\$



Snapshot à mi-parcours, 200 modes



A mi-parcours, 200 modes

# Approche eulerienne Ecoulements cellulaires

#### Reconstruction "out of range" :



Snapshot à mi-parcours, 500 modes



A mi-parcours, 200 modes

#### Prise en en compte de la positivité de la concentration

Recherche des coefficients  $(a_i)_i$  tels que :

$$(a_j)_j = \operatorname{argmin} \lVert c_* - \sum_j a_j arphi_j 
Vert_{L^2} ext{ s.c. } \sum_j a_j arphi_j \geq 0$$



## Approche lagrangienne

Champ de vitesse uniforme



FIGURE 8: log des valeurs singulières pour 8000 particules



 $F_{IGURE}$  9: log des valeurs singulières pour 500 particules



FIGURE 10: simulation pour 100 particules,  $\theta_0 = \theta_1 = \theta_2 = 0.5$ 



FIGURE 11: simulation pour 100 particules,  $\theta_0 = \theta_1 = \theta_2 = 0.5$ 



FIGURE 12: simulation pour 100 particules,  $\theta_0 = \theta_1 = \theta_2 = 0.5$ 



FIGURE 13: simulation pour 100 particules,  $\theta_0 = \theta_1 = \theta_2 = 0.5$ 

#### Approche lagrangienne Champ de vitesse de Lamb-Oseen



FIGURE 14: log des valeurs singulières pour 100 particules

## For Further Reading I



A. Author.

Handbook of Everything.

Some Press, 1990.



S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.