Künstliche Intelligenz Bayes'sche Netze

Jun.-Prof. Dr.-Ing. Stefan Lüdtke

Universität Rostock

Institut für Visual & Analytic Computing

Motivation

- Die Full Joint erlaubt es uns, jede Query zu beantworten
- Aber: Größe der Full Joint wächst exponentiell mit Anzahl der Variablen
- Können (bedingte) Unabhängigkeit ausnutzen, um Verteilung schlauer zu repräsentieren
- Bayes'sches Netz: Repräsentation einer
 Wahrscheinlichkeitsverteilung, in der die (Un)abhängigkeiten
 zwischen Variablen explizit gemacht werden

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- a set of nodes, one per variable
- a directed, acyclic graph (link pprox "directly influences")
- a conditional distribution for each node given its parents:

$$\mathbf{P}(X_i|Parents(X_i))$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

 $Toothache \ {\it and} \ Catch \ {\it are} \ {\it conditionally} \ {\it independent} \ {\it given} \ Cavity$

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Compactness

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$
 e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

Global semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$
e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Belief Netork (Example)

В	Ε	P(a)
Т	\dashv	0.95
T	\perp	0.94
\perp	Т	0.29
\perp	\perp	0.001

Α	P(j)
\vdash	0.90
\perp	0.05

Α	P(m)
T	0.70
\perp	0.01

What is P(b | j, m)?

Inference Tasks

Basic inference task in BNs: Compute the posterior probability of a (set of) variable(s) given some evidence.

Notation:

- ▶ Let *N* be a Bayesian Network over the set of variables *V*
- ► Let *X* be a random variable we are interested in (query variable)
- ▶ Let $E = \{E_1, E_2, ..., E_n\}$ be a set of evidence variables
- ▶ Let e be one particular observed event, i.e., an assignment of values to *E*
- We call $Y = V \setminus (\{X\} \cup E)$ the set of hidden (non-query) variables

Basic inference task:

Compute $P(X \mid e)$ wrt. the dependencies defined by N

Exact Inference by Enumeration

From the laws of conditional probabilities we know:

$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

▶ Using the laws of probability, we find:

$$P(X \mid e) = \frac{\sum_{y} P(X, e, y)}{P(e)}$$

with y being an assignment to all variables in Y.

▶ I.e., we can compute $P(X \mid e)$ by summing over all possible assignments of the hidden variables.

Compute P(b | j, m) by Enumeration

- ► From
 - the definitions for conditional probabilities, the chain rule, and
 - independence assumptions of the domain, we get:

$$P(b | j, m) = \frac{P(b, j, m)}{P(j, m)} = c \cdot P(b, j, m)$$

$$= c \cdot \sum_{e' \in \text{dom}_E} \sum_{a' \in \text{dom}_A} P(b, j, m, e', a')$$

$$= c \cdot \sum_{e' \in \text{dom}_E} \sum_{a' \in \text{dom}_A} P(b)P(e')P(a' | b, e')P(j | a')P(m | a')$$

$$= c \cdot P(b) \sum_{e' \in \text{dom}_E} P(e') \sum_{a' \in \text{dom}_A} P(a' | b, e')P(j | a')P(m | a')$$

Notation:

- lower case letters represent assigned random variables, i.e., b is the short-hand notation for $B=\top$
- "primed" lower case letters represent variables over which sums are computed, e' only occurs within the $\sum_{e' \in dom_E}$

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Complexity of the Inference by Enumeration

- In the worst case, we have to sum out almost all the variables
- For *n* Boolean variables, the complexity is in the order of $O(n2^n)$

What is P(b | j, m) again?

$$P(b \mid j, m) = c \cdot P(b) \sum_{e' \in dom_{E}} P(e') \sum_{a' \in dom_{A}} P(a' \mid b, e') P(j \mid a') P(m \mid a')$$

$$= c \cdot P(b) \sum_{e' \in dom_{E}} P(e') (P(a \mid b, e') P(j \mid a) P(m \mid a) +$$

$$P(\neg a \mid b, e') P(j \mid \neg a) P(m \mid \neg a))$$

$$= c \cdot P(b) (P(e) (P(a \mid b, e) P(j \mid a) P(m \mid a) +$$

$$P(\neg a \mid b, e) P(j \mid \neg a) P(m \mid \neg a)) +$$

$$P(\neg e) (P(a \mid b, \neg e) P(j \mid a) P(m \mid a) +$$

$$P(\neg a \mid b, \neg e) P(j \mid \neg a) P(m \mid \neg a))$$

Internal structure of the Formula

There is an internal structure due to the summation over possible assignments:

$$P(b \mid j, m) = c \cdot P(b) \Big(P(e) \big(P(a \mid b, e) \frac{P(j \mid a) P(m \mid a)}{P(j \mid \neg a) P(m \mid \neg a)} + P(\neg a \mid b, e) \frac{P(j \mid \neg a) P(m \mid \neg a)}{P(j \mid a) P(m \mid a)} + P(\neg a \mid b, \neg e) \frac{P(j \mid a) P(m \mid a)}{P(j \mid \neg a) P(m \mid \neg a)} \Big)$$

- ► Certain sub-formulae can be re-used, e.g.:
 - P(m | a)
 - $P(m \mid \neg a)$
 - $P(i \mid a)$
 - $P(j \mid \neg a)$

Complexity of the Inference by Enumeration and Caching

- In the worst case, we have to sum out almost all the variables
- But we can safe some results for re-usage

Exact Inference by Variable Elimination

- We can utilise the structure of the equation
- Sum out the variables from "right to left" and store the intermediate results
- Problem: How to store the intermediate results?
- ▶ Solution: The intermediate results are called *Factors*

Factorisation of P(B | j, m)

▶ The equation for the distribution over *B* given *j* and *m*:

$$P(B \mid j, m) = c \cdot \underbrace{P(B)}_{f_1(B)} \cdot \underbrace{\sum_{e' \in \text{dom}_E} \underbrace{P(e')}_{f_2(E)} \cdot \sum_{a' \in \text{dom}_A} \underbrace{P(a' \mid b, e')}_{f_3(A,B,E)} \cdot \underbrace{\underbrace{P(j \mid a')}_{f_4(J,A)} \cdot \underbrace{P(m \mid a')}_{f_5(M,A)}}_{f_4(J,A)} \underbrace{\underbrace{\underbrace{\underbrace{P(j \mid a')}_{f_5(M,A)} \cdot \underbrace{P(j \mid a')}_{f_5(M,A)} \cdot \underbrace{P(m \mid a')}_{f_5(M,A)}}_{f_5(M,A)}}_{f_6(A) = (f'_4 * f'_5)} \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{P(a \mid b, e')}_{f_3(A,B,E)} \cdot \underbrace{F'_3(A,B,E)}_{f_3(A,B,E)} \cdot \underbrace{F'_3(A,B,E)}_{f_3(A,B,E)}}_{f_3(B,E) = (f_2 * f_8)}}_{f_{10}(B) = (\sum_E f_9)} \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{P(a' \mid b, e')}_{f_3(A,B,E)} \cdot \underbrace{F'_3(A,B,E)}_{f_3(A,B,E)} \cdot \underbrace{F'_3(A,B,E)}_{f_3(A,B,E)}}_{f_{10}(B) = (\sum_E f_9)}}$$

- Operations of factors:
 - Primitive sub-expressions are renamed, e.g., $P(B) = f_1(B)$
 - Values can be assigned to variables, e.g., $f_4'(A) = f_4^j = f_4^{j-\top}$
 - Factors can be multiplied, e.g., $f_6(A) = (f_4 * f_5)$
 - Variable can be summed out, e.g., $f_8(B, E) = (\sum_A f_7)$

Factors

- An *n*-dimensional factor f is a (representation of a) function from n random variables X_1, \ldots, X_n to a positive real number.
 - A factor can be a probability distribution (summing up to 1)
 - but it does not need to be
- ▶ Notation for factor f over $X_1, ..., X_j$: $f(X_1, ..., X_j)$
- A simple example of a factor over three binary random variables

(X,	Υ,	<i>Z</i>):

Χ	Υ	Z	val
Т	Т	Т	0.1
Т	\top	\perp	0.9
Т	\perp	Т	0.2
Т	\perp	\perp	0.8
\perp	\top	Т	0.4
\perp	\top	\perp	0.6
\perp	\perp	Т	0.3
\perp	\perp	\perp	0.7

Operations on Factors: Assignment of Values to Variables

We can assign some or all of the variables of a factor:

- ► $f(X_1=v_1, X_2, ..., X_j)$, where $v_1 \in dom(X_1)$: is a factor over $X_2, ..., X_j$.
- ► $f(X_1=v_1, X_2=v_2, ..., X_j=v_j)$ is a number, it is the value of f when each X_i has value v_i .
- ▶ Notation for $f(X_1=v_1, X_2, ..., X_j)$: $f(X_1, X_2, ..., X_j)^{X_1=v_1}$

Operations on Factors: Assignment of Values to Variables (Example)

_				
	X	Y	Ζ	val
	Т	Т	\vdash	0.1
	Т	\top	\perp	0.9
	Т	\perp	Т	0.2
f :	Т	\perp	\perp	8.0
	上	Т	Т	0.4
	\perp	T	\perp	0.6
	\perp	\perp	Т	0.3
	\perp	\perp	\perp	0.7

	Y	Ζ	val
	Т	\top	0.1
$f^{X=t}$:	Т	\perp	0.9
	上	Т	0.2
	\perp	\perp	8.0

$$f^{X=t,Z=f}: \begin{array}{|c|c|}\hline Y & val \\\hline \top & 0.9 \\ \bot & 0.8 \\\hline \end{array}$$

$$f^{X=t,Y=f,Z=f} = 0.8$$

Operations on Factors: Product of Two Factors

The *product* of factor $f_1(X, Y)$ and $f_2(Y, Z)$, where Y are the variables in common, is the factor $(f_1 * f_2)(X, Y, Z)$ defined by:

$$(f_1 * f_2)(X, Y, Z) = f_1(X, Y)f_2(Y, Z).$$

Operations on Factors: Product of Two Factors (Example)

	Α	В	val
	\top	\dashv	0.1
f_1 :	T	\perp	0.9
	\perp	Т	0.2
	\perp	\perp	8.0

	В	C	val
	Т	\perp	0.3
²:	Т	\perp	0.7
	\perp	Т	0.6
	\perp	\perp	0.4

	Α	E
	\top	
	Т	٦
	Т	
$(f_1 * f_2)$:	Т	
	\perp	

Α	В	С	val
\top	Т	Τ	0.03
Τ	Т	\perp	0.07
\top	\perp	Т	0.54
\top	\perp	\perp	0.36
\perp	T	Т	0.06
\perp	T	\perp	0.14
\perp	\perp	Т	0.48
上	\perp	\perp	0.32

Operations on Factors: Summing out a Variable from a Factor

We can *sum out* a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$. This results in a factor on X_2, \ldots, X_j , defined as follows:

$$(\sum_{X_1} f)(X_2, \dots, X_j) = f(X_1, \dots, X_j)^{X_1 = v_1} + \dots + f(X_1, \dots, X_j)^{X_1 = v_k}$$

$$= \sum_{v \in \text{dom}(X_1)} f(X_1, X_2, \dots, X_j)^{X_1 = v}$$

Operations on Factors: Summing out a Variable from a Factor (Example)

	Α	В	С	val
	Т	Т	\perp	0.03
	Т	Т	\perp	0.07
	Т	\perp	Т	0.54
<i>f</i> 3:	Т	\perp	\perp	0.36
	丄	\top	Т	0.06
	丄	\top	\perp	0.14
	丄	\perp	Т	0.48
	丄	\perp	\perp	0.32
•			•	

$(\sum_B f_3)$:	Α	С	val
	Т	\vdash	0.57
	Т	\perp	0.43
	\perp	Т	0.54
	上	\perp	0.46

Exact Inference by Variable Elimination Factorisation of P(B | j, m)

$$P(B \mid j, m) = c \cdot \underbrace{P(B)}_{f_1(B)} \cdot \underbrace{\sum_{e' \in \text{dom}_E} \underbrace{P(e')}_{f_2(E)} \cdot \sum_{a' \in \text{dom}_A} \underbrace{P(a' \mid b, e')}_{f_3(A, B, E)} \cdot \underbrace{P(j \mid a')}_{f_3(A, B, E)} \cdot \underbrace{P(m \mid a')}_{f_3(A, A)} \underbrace{\underbrace{f'_4(A) = f'_j}_{f_3(A, B)} \cdot \underbrace{f'_5(A) = f'_5}_{f_5(A) = f'_5}}_{f_5(A) = f'_5(A)} \underbrace{\underbrace{f'_4(A) = f'_j}_{f_3(A, B, E)} \cdot \underbrace{f'_5(A) = f'_5}_{f_5(A) = f'_5(A)}}_{f_5(A, B, E) = (f'_2 * f'_5)} \underbrace{\underbrace{f'_5(A) = f'_5}_{f_5(A) = f'_5}}_{f_5(B, E) = (f'_2 * f_3)} \underbrace{\underbrace{f'_5(A) = f'_5}_{f_5(A) = f'_5}}_{f_{11}(B) = (f_1 * f_{10})}$$

- ▶ Assign the value $M = \top$ in $f_5'(A) = f_5^{M=\top}$
- Compute $f_6(A) = (f_4' * f_5')$
- ▶ Sum out A and compute $f_8(B, E) = (\sum_A f_7)$

Zusammenfassung

- Bayes'sche Netze sind natürliche Repräsentation für Verteilungen mit bedingten Unabhängigkeiten
- Topologie + CPTs= Kompakte Repräsentation der Full Joint
- Einfach zu spezifizieren, auch für Nichtexperten
- Exakte Inferenz durch Aufzählen nur in einfachen Fällen möglich
- Variable Elimination ist ein effizienterer exakter Inferenzalgorithmus
- Noch effizienter: Approximative Inferenzalgorithmen (hier nicht behandelt)