III. PERSAMAAN DAN FUNGSI KUADRAT

MATERI

- 1. Bentuk umum fungsi kuadrat : f (x)= $ax^2 + bx + c$, $a \ne 0$
- 2. Grafik fungsi kuadrat berupa parabola
- 3. Grafik fungsi kuadrat ditinjau dari tanda (nilai) a dan D (dengan $D = b^2 4.a.c$)
 - Untuk a > 0/ a positif (grafik selalu terbuka ke atas) ada 3 jenis :`

Jadi a>0 membuat grafik terbuka ke atas, dan D menentukan keadaan grafik memotong atau menyinggung atau tidak sama sekali terhadap sumbu X

- Untuk a < 0 (grafik terbuka ke bawah)</p>
- 4. Unsur unsur grafik fungsi kuadrat:

Menentukan unsur – unsur grafik fungsi kuadrat jika diketahui persamaan grafiknya ($y = a x^2 + b x + c$) atau diketahui gambarnya:

➤ Untuk menentukan titik potong dengan sumbu X : Cari saja dua bilangan x₁ dan x₂ yang memenuhi

$$x_1 + x_2 = -\frac{b}{a}$$

maka titik potong dg sumbu X-nya adalah (x1, 0) dan (x2, 0)

> Untuk menentukan persamaan sumbu simetri :

Gunakan rumus $x = -\frac{b}{2a}$ atau

$$x = \frac{x_1 + x_2}{2}$$

> Untuk menentukan titik potong dengan sumbu Y:

Lihat saja c nya pada persamaan tersebut.

Sebab titik potong dengan sumbu Y adalah (0, c)

Contoh : $y = 3 x^2 + 5x + 1$; maka titik potong dengan sumbu Y- nya adalah (0,1) Jika $y = -2 x^2 + 3x - 4$; maka titik potong dengan sumbu Y-nya adalah (0, -4)

 \triangleright Titik puncak/ titik balik (x_b, y_b)

$$x_b = -\frac{b}{2a}$$
 atau dapat di cari dengan $x_b = \frac{x_1 + x_2}{2}$

 $y_b = -\frac{D}{4a}$ atau subtitusikan x_b ke persamaan, sehingga

 $menjadi \quad y_b = ax_b^2 + bx_b + c$

Dan ingat $D=b^2-4ac$ (diskriminan)

CONTOH

- 1. Koordinat titik ekstrem kurva dengan persamaan $y = x^2 4x + 9$ adalah....
 - a. (-2,21)
 - b. (-2,9)
 - c. (0,9)
 - d. (2,9)
 - e. (2,5)

Penyelesaian:

Jelas a = 1, b= -4, c = 9

Titik ekstrim = titik balik = titik puncak

$$x_b = -\frac{b}{2a} = -\frac{(-4)}{2.1} = \frac{4}{2} = 2$$

$$y_b = x_b^2 - 4x_b + 9 = 2^2 - 4.2 + 9 = 4 - 8 + 9 = 5$$

(jadi untuk mencari y_b dengan cara menggantikan x dengan x_b pada persamaan yang diketahui)

Jadi titik ekstrimnya: (2,5) (E)

2. Koordinat titik potong grafik fungsi kuadrat $y = 3x^2 + 7x - 6$ dengan sumbu X adalah

a.
$$\left(\frac{2}{3},0\right)$$
 dan $\left(-3,0\right)$

a.
$$\left(\frac{2}{3},0\right)$$
 dan $\left(-3,0\right)$ d. $\left(-3,0\right)$ dan $\left(-\frac{3}{2},0\right)$

b.
$$\left(\frac{2}{3},0\right)$$
 dan $\left(3,0\right)$

b.
$$\left(\frac{2}{3},0\right)$$
 dan $\left(3,0\right)$ e. $\left(0,\frac{3}{2}\right)$ dan $\left(0,-3\right)$

c.
$$\left(\frac{3}{2},0\right)$$
 dan $\left(-3,0\right)$

Penyelesaian:

- (i). Titik potong dengan sumbu X, jelas y-nya / yang dibelakang harus 0, jadi pilihan E jelas salah.
- (ii). Kemudian cari dua bilangan di posisi x yang jumlahnya =

$$-\frac{b}{a} = -\frac{7}{3}$$
, maka jawabannya (**A**) sebab

$$\frac{2}{3} + (-3) = \frac{2-9}{3} = -\frac{7}{3}$$

- 1. Koordinat titik balik dari grafik fungsi kuadrat yang persamaannya y = (x - 6)(x + 2) adalah(UN 2010)
 - (-2, 0)
 - (-1, -7)b.
 - (1, -15)c.
 - (2, -16)d.
 - (3, -24)
- 2. Koordinat titik potong kurva $y = x^2 2x 8$ dengan sumbu X adalah
 - a. (-4,0) dan (-2,0)
 - b. (-4,0) dan (2,0)
 - c. (-2,0) dan (4,0)
 - d. (2,0) dan (4,0)
 - e. (2,0) dan (8,0)
- 3. Koordinat titik puncak dari grafik $y = x^2 6x + 5$ adalah
 - a. (6, 5)

http://matematrick.blogspot.com

- d.(-3,32)
- b. (3, -4)
- e. (6,5)
- c. (3, -14)
- 4. Nilai minimum fungsi kuadrat $f(x) = 2x^2 2x + 6$ adalah

a.
$$\frac{11}{2}$$
 b. $\frac{9}{2}$ c. $\frac{7}{2}$ d. $\frac{5}{2}$ e. $\frac{1}{2}$

b.
$$\frac{9}{2}$$

$$\frac{7}{2}$$

d.
$$\frac{5}{2}$$

e.
$$\frac{1}{2}$$

5. Koordinat titik potong grafik fungsi kuadrat

 $y = 3x^2 - x - 2$ dengan sumbu X dan sumbu Y adalah(UN 2010)

a.
$$(-1,0)$$
, $\left(\frac{2}{3},0\right)$, dan $(0,2)$

b.
$$\left(-\frac{2}{3},0\right)$$
, (1,0), dan (0, -2)

c.
$$\left(-\frac{2}{3},0\right)$$
, (1,0), dan $\left(0,-\frac{2}{3}\right)$

d.
$$\left(-\frac{2}{3},0\right)$$
, (-1,0), dan (0, -1)

e.
$$\left(\frac{3}{2},0\right)$$
, (1,0), dan (0, 3)

6. Persamaan sumbu simetri grafik fungsi kuadrat

$$y = 5x^2 - 20x + 1$$
 adalah(UN 2011)

- a. x = 4
- b. x = 2
- c. x = -2
- d. x = -3
- e. x = -4

http://matematrick.blogspot.com

Menyusun Persamaan Grafik Fungsi Kuadrat

1. Jika diketahui titik – titk potong dengan sumbu X ((x₁, 0) dan (x2, 0) diketahui)

Persamaannya : $y = a(x - x_1).(x - x_2)$

Cara singkatnya: $y = x^2 - (x_1 + x_2)x + x_1.x_2$, kemudian disesuaikan (lihat contoh)

2. Jika diketahui koordinat titik puncak / titik balik ((x_b , y_b) diketahui)

Persamaannya: $y = a(x - x_h)^2 + y_h$

CONTOH HOTKOD

1. Persamaan grafik fungsi di bawah ini adalah

Penyelesaian:

Jelas $x_1 = 1$ dan $x_2 = 2$ dan memotong sumbu Y di titik (0, 6)

Cara Biasa:

$$Y = a (x-1) . (x-2)$$

 $Y = a (x^2-3x+2)$

Grafik memotong sumbu Y di titk (0,6),

Artinya untuk x = 0, y = 6, maka : 6 = a ($0^2 - 3.0 + 2$)

$$6 = a.2$$

Jadi Persamann fungsinya adalah:

$$Y = 3. (x^2 - 3x + 2)$$

$$Y = 3 x^2 - 9x + 6$$
 (pilihan D)

Cara singkat:

susun saja bentuk $y = x^2 - (x_1 + x_2)x + x_1.x_2$

$$y = x^2 - 3x + 2$$
 (berarti a=1, b=-3, c=2)

kemudian lihat bahwa grafik memotong sumbu y di (0,6),

maka c harus 6, padahal:

pada $y = x^2 - 3x + 2$, c = 2 sehingga <u>agar 2 jadi 6</u> kalikan saja dengan 3. maka hasilnya:

$$y = 3. (x^2 - 3 x + 2)$$

 $y = 3x^2 - 9x + 6$ (jawaban D).

- 2. Persamaan grafik fungsi kuadrat mempunyai titik ekstrim (-1, 4) dan melalui titik (0, 3) adalah (UN 2010)
 - a. $y = -x^2 + 2x 3$
 - b. $y = -x^2 + 2x + 3$
 - c. $y = -x^2 2x + 3$
 - d. $y = -x^2 2x 5$
 - e. $y = -x^2 2x + 5$

Penyelesaian:

Jelas $x_b = -1$, $y_b = 4$, dan grafik melalui titik (0,3)

Cara Biasa

$$y = a(x - (-1))^2 + 4$$

$$y = a(x+1)^2 + 4$$

Grafik melalui (0.3) berarti untuk x = 0, y = 3, maka :

$$3 = a (0+1)^{\frac{3}{2}} + 4^{\frac{3}{2}} + 9x + 6$$

$$3 = a \cdot 1 + 4$$

$$3 = a + 4$$

Maka a = -1, sehingga persamaannya : $y = -1.(x+1)^2 + 4$

$$Y = -1.(x^2 + 2x + 1) + 4$$

$$Y = -x^2 - 2x - 1 + 4$$

$$Y = -x^2 - 2x + 3 (C)$$

Cara singkat:

Jelas bahwa grafik melalui titik (0,3) ini tidak lain titik potong dengan sumbu Y, berarti c=3, sehingga pilihan yang mungkin adalah B dan C.

Jelas
$$x_b = -1$$
, padahal $x_b = \frac{x_1 + x_2}{2}$,

$$\Leftrightarrow$$
 $x_1 + x_2 = 2 x_b = 2.(-1) = -2$

dan kita punya bahwa $x_1 + x_2 = -\frac{b}{a}$, maka antara pilihan B dan

C pilih saja yang nilai $-\frac{b}{a}$ = -2.

Jadi jawabannya C.

Kesimpulan dari cara singkat adalah : pilih saja pilihan yang

memenuhi
$$-\frac{b}{a} = 2x_b$$
.

1. Persamaan grafik fungsi kuadrat dibawah ini adalah

a.
$$y = -2x^2 + 4x + 3$$

b. $y = -2x^2 + 2x + 3$
c. $y = -x^2 - 2x + 3$

e.
$$v = -x^2 + 2x + 3$$

2. Persamaan grafik fungsi di bawah ini adalah

3. Persamaan grafik di bawah ini adalah

a.
$$y = -x^2 + 4x + 5$$

b.
$$y = -x^2 - 4x + 5$$

c.
$$y = -2x^2 + x + 5$$

d.
$$y = -2x^2 - x + 5$$

e.
$$y = -\frac{1}{2}x^2 + x + 5$$

4. Persamaan grafik fungsi di bawah ini adalah ...

5. Persamaan grafik fungsi pada gambar di bawah ini adalah

a.
$$y = \frac{1}{2}x^2 - 2x - 2$$

b.
$$y = \frac{1}{2}x^2 + 2x - 2$$

c.
$$y = \frac{1}{2}x^2 + 2x + 2$$

$$X$$
 d. $y = -\frac{1}{2}x^2 + 2x + 2$

e.
$$y = -\frac{1}{2}x^2 - 2x + 2$$

(petunjuk : grafik menyinggung sumbu X, berarti $x_1 = x_2 = 2$ atau pakai titik puncak)

6. Persamaan grafik fungsi kuadarat yang memotong sumbu X di titik (1,0) dan (3,0) serta melalui titik (-1,-16)adalah

a.
$$y = 2x^2 - 8x + 6$$

b.
$$y = x^2 + 4x - 21$$

c.
$$y = x^2 + 4x - 5$$

d.
$$y = -2x^2 + 8x - 6$$

e.
$$y = -2x^2 + 4x - 10$$
 (UN 2011)

Akar-Akar Persamaan Kuadrat

1. Bentuk umum Persamaan kuadrat:

$$ax^{2} + bx + c = 0, a \neq 0, a, b, c \in R$$

2. Menentukan akar akar persamaan kuadrat

Cara Biasa: - Faktorisasi

$$ax^{2} + bx + c = 0$$

$$\frac{1}{a}(ax+m).(ax+n) = 0$$
dengan
$$m+n = b; dan m.n = a.c$$

- Melengkapkan kuadrat sempurna
- Rumus abc

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Cara Singkat: (jika memungkinkan)

Pakai saja rumus jumlah dan hasil kali akar – akar persamaan kuadrat

$$\rightarrow x_1 \bullet x_2 = \frac{c}{a}$$

Dengan maksud : cari saja dua bilangan (x_1 dan x_2) yang memenuhi rumus jumlah dan hasil kali tersebut. <u>Catatan :</u> biasanya cukup dicari/ dipilih saja dua bilangan

(
$$x_1$$
 dan x_2) yang memenuhi $x_1 + x_2 = -\frac{b}{a}$.

3. Jumlah dan hasil kali akar – akar persamaan kuadrat Jika x_1 dan x_2 akar – akar persamaan kuadrat $ax^2 + bx + c = 0, \text{ maka berlaku :}$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 \bullet x_2 = \frac{c}{a}$$

4. Persamaan yang sering digunakan terkait jumlah dan hasil kali akar – akar persamaan kuadrat :

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2.x_1 x_2$$

$$= \left(-\frac{b}{a}\right)^2 - 2.\frac{c}{a}$$

$$= \frac{b^2}{a^2} - 2.\frac{c}{a}$$

$$\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1.x_1 + x_2.x_2}{x_1.x_2} = \frac{x_1^2 + x_2^2}{x_1.x_2} = \frac{(x_1 + x_2)^2 - 2.x_1.x_2}{x_1.x_2}$$

Catatan: akar persamaan kuadrat tidak selalu dinyatakan dalam x_1 dan x_2 , kadang dinyatakan dalam α dan β , p dan a. dsb.

5. Menyusun Persamaan Kuadrat (PK)

Kasus 1:

Jika diketahui akar – akarnya (x₁ dan x₂)

Maka Cara penyelesaiannya:

Cara I : pakai pola $(x - x_1).(x - x_2) = 0$

Cara II : pakai pola $x^2 - (x_1 + x_2)x + x_1.x_2 = 0$

Kasus 2:

Jika akar – akar persamaan kuadrat yang akan disusun berhubungan dengan akar – akar persamaan kuadrat yang lain

Maka Cara penyelesaiannya:

Dengan mengubah bentuk dari akar – akar tersebut agar dapat disubtitusi ke persamaan kuadrat yang lain

Secara lengkapnya perhatikan uraian berikut :

Jika Diketahui persamaan kuadrat ax² + bx + c =0, memiliki akar – akar α dan β , maka :

(i). Untuk menyusun persamaan kuadrat baru yang memiliki akar – akar k lpha dan k eta ,Caranya :

Ganti saja x pada ax² + bx + c = 0 dengan $\frac{x}{L}$, sehingga

diperoleh PK baru:

$$a(\frac{x}{k})^2 + b.(\frac{x}{k}) + c = 0$$
 dan seterusnya...

(kali masuk jadi bagi)

(ii). Untuk menyusun PK baru yang akar – akarnya $\frac{\alpha}{k}$ dan

$$\frac{\beta}{k}$$
, Caranya:

Ganti saja x pada $ax^2 + bx + c = 0$ dengan kx, sehingga diperoleh PK baru:

a(kx) 2 +b.kx + c = 0, dan seterusnya ...

(bagi masuk jadi kali)

(iii). Untuk menyusun PK baru yang akar- akarnya $\alpha + k$ dan $\beta + k$, Caranya:

Ganti saja x pada $ax^2 + bx + c = 0$ dengan x - k, sehingga diperoleh PK baru: $a(x - k)^{2} + b.(x - k) + c = 0$, dan seterusnya ...

(+ masuk jadi -)

(iv). Untuk menyusun PK baru yang akar-akarnya $\alpha - k \operatorname{dan} \beta - k$, Caranya:

Ganti saja x pada $ax^2 + bx + c = 0$ dengan x + k, sehingga diperoleh PK baru: $a(x + k)^{2} + b.(x + k) + c = 0$, dan seterusnya ...

(- masuk jadi +)

Catatan: cara ini dipakai untuk kasus PK baru yang bentuk akar- akarnya simetris (x1dan x2 serupa),dan tidak berlaku untuk akar – akar yang bentuknya tidak simetris (misalkan akan disusun PK baru yang akar akarnya $\frac{\alpha}{k}$ dan $\beta - k$)

CONTOH

- 1. Akar akar persamaan kuadrat $5x^2 6x 8 = 0$ adalah
 - a. $-\frac{4}{5}$ dan -2 c. $\frac{4}{5}$ dan 2
 - b. $\frac{4}{5}$ dan -2
- d. $-\frac{4}{5}$ dan 2
- e. $-\frac{1}{5}$ dan 2

Penyelesaian:

Cara Singkat:

Jelas: Nilai $-\frac{b}{a} = -\frac{(-6)}{5} = \frac{6}{5}$, maka pilih saja pada pilihan

tersebut yang jika dijumlahkan nilainya $\frac{6}{5}$.

Sehingga jawabannya D, karena $-\frac{4}{5} + 2 = \frac{-4 + 10}{5} = \frac{6}{5}$

- 2. Persamaan kuadrat $4x^2 + 3x + 6 = 0$ mempunyai akar akar α dan β . Nilai $\alpha^2 + \beta^2 = ...$
 - a. $-5\frac{3}{4}$
- b. $-2\frac{7}{16}$
- c. $-2\frac{5}{16}$

Penyelesaian:

Jelas
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2.\alpha\beta$$

$$= \left(-\frac{3}{4}\right)^2 - 2.\frac{6}{4}$$

$$= \frac{9}{16} - 3$$

$$= \frac{9 - 48}{16} = \frac{-39}{16} = -2\frac{7}{16} \text{ (jawaban : B)}$$

3. Akar – akar persamaan kuadrat $x^2 – 3x + 1 = 0$ adalah α dan β . Persamaan kuadrat baru yang akar – akarnya 3α dan 3ß adalah

d.
$$x^2 - 9x + 3 = 0$$

e.
$$x^2 - 9x + 9 = 0$$

Penyelesaian:

Ganti saja x pada persamaan $x^2 - 3x + 1 = 0$ dengan $\frac{x}{3}$, maka

Persamaan kuadratnya adalah:

$$\left(\frac{x}{3}\right)^2 - 3 \cdot \frac{x}{3} + 1 = 0$$

$$\frac{x^2}{9} - x + 1 = 0 \text{ (x 9)}$$

$$x^2 - 9x + 9 = 0$$
 (E)

- 1. Akar akar persamaan kuadrat $2x^2 9x + 7 = 0$ adalah
 - a. 1 dan 7
- c. 1 dan $3\frac{1}{2}$
- b. $\frac{1}{2}$ dan 7 d. -1 dan $3\frac{1}{2}$
 - e. -1 dan -7
- 2. Akar-akar persamaan kuadrat $x^2 3x + 2 = 0$ adalah A dan B, dengan A > B. Nilai A + 2B adalah
 - a. -5
- d. 4
- b. -4
- e. 5
- 3. Akar-akar dari $2x^2 3x 9 = 0$ adalah x_1 dan x_2 . Nilai dari $x_1^2 + x_2^2 =$
 - a. $11\frac{1}{4}$

b. $6\frac{3}{4}$

- 4. Akar akar persamaan kuadrat 3 x^2 4 x + 2 = 0 adalah α dan β . Nilai dari $(\alpha + \beta)^2 - 2\alpha\beta = ...$

http://matematrick.blogspot.com

- b. 1
- e. 0
- c. $\frac{4}{9}$

- 5. Diketahui akar- akar persamaan kuadrat $2x^2 7x 6 = 0$ adalah x_1 dan x_2 . Nilai $\frac{1}{x_1} + \frac{1}{x_2}$ adalah (UN 2010)
 - a. -3
 - b. $-\frac{7}{6}$
- 6. Persamaan kuadrat $3x^2 x + 2 = 0$ mempunyai akar akar α dan β . Nilai ($\alpha + \beta$)² + $2\alpha\beta = ...$

- 7. Persamaan kuadrat $2x^2 + 3x + 6 = 0$ mempunyai akar akar α dan β . Nilai $\alpha^2 + \beta^2 = ...$
 - a. $-5\frac{3}{4}$
 - b. $-3\frac{3}{4}$
 - c. $-2\frac{3}{4}$
 - d. $3\frac{1}{4}$
 - e. $3\frac{3}{4}$
- 8. Akar-akar persamaan kuadrat $x^2 4x 2 = 0$ adalah α dan β . Nilai dari $\frac{2}{\alpha} + \frac{2}{\beta} = \dots$

 - c. -1
 - d. 4
- 9. Persamaan kuadrat $x^2 3x 2 = 0$ mempunyai akar-akar x_1 dan x_2 . Nilai dari $x_1^2 x_2 + x_1 x_2^2 = ...$

b.
$$\frac{11}{4}$$

e. 6.

10. Akar – akar persamaan kuadrat $x^2 - 3x + 1 = 0$ adalah x_1 dan x_2 . Persamaan kuadrat baru yang akar – akarnya $2x_1$ dan $2x_2$ adalah

a.
$$x^2 + 3x + 3 = 0$$

b.
$$x^2 - 3x + 3 = 0$$

c.
$$x^2 + 3x - 3 = 0$$

d.
$$x^2 + 6x + 4 = 0$$

e.
$$x^2 - 6x + 4 = 0$$

11. Akar – akar persamaan kuadrat $2x^2 + x + 6 = 0$ adalah α dan β . Persamaan kuadrat baru yang akar – akarnya

$$\frac{\alpha}{3} dan \frac{\beta}{3}$$
 adalah

a.
$$6x^2 + x + 2 = 0$$

b.
$$6x^2 + x + 3 = 0$$

c.
$$18x^2 - 3x + 6 = 0$$

d.
$$18x^2 + 2x - 6 = 0$$

e.
$$18x^2 + 2x + 6 = 0$$

12. Akar – akar persamaan kuadrat $x^2 - 3x + 1 = 0$ adalah x_1 dan x_2 . Persamaan kuadrat baru yang akar – akarnya $3x_1$ dan $3x_2$ adalah

a.
$$x^2 + 3x + 3 = 0$$

b.
$$x^2 - 3x + 3 = 0$$

c.
$$x^2 + 3x - 3 = 0$$

d.
$$x^2 - 9x + 3 = 0$$

e.
$$x^2 - 9x + 9 = 0$$

13. Jika x_1 dan x_2 akar-akar persamaan $3x^2 - x + 9 = 0$,

maka nilai
$$\frac{x_1}{x_2} + \frac{x_2}{x_1} =$$
 (UN 2011)

a.
$$-\frac{53}{27}$$

b.
$$-\frac{3}{27}$$

c.
$$\frac{1}{27}$$

d.
$$\frac{3}{27}$$

http://matematrick.blogspot.com

e.
$$\frac{54}{27}$$

14. Akar-akar persamaan kuadrat $2x^2 - 13x - 7 = 0$ adalah x_1 dan x_2 . Jika $x_2 > x_1$, maka nilai $2x_1 + 3x_2 =$ (UN 2011)