Section 4

• 中間的手法(13,14章)

中間的手法

13.1 半教師あり学習とは13.1.1 数値特徴の場合

• 半教師あり学習に適した数値特徴データの性質

半教師あり学習に適するデータ

半教師あり学習に適さないデータ

13.1.1 数値特徴の場合

- 半教師あり学習が可能なデータ
 - 半教師あり平滑性仮定
 - 二つの入力が高密度領域で近ければ、出力も関連している
 - クラスタ仮定
 - もし入力が同じクラスタに属するなら、それらは同じクラスになりやすい
 - 低密度分離
 - 識別境界は低密度領域にある
 - 多様体仮定
 - 高次元のデータは、低次元の多様体上に写像できる
 - 多様体:局所的に線形空間と見なせる空間

13.1.2 カテゴリ特徴の場合

- オーバーラップ
 - 文書からの評判分析の例

13.1.2 カテゴリ特徴の場合

• 特徴の伝播

13.1.3 半教師あり学習のアルゴリズム

- 半教師あり学習の基本的な考え方
 - 正解付きデータで識別器を作成
 - 正解なしデータで識別器のパラメータを調整
- 識別器に対する要求
 - 確信度の出力:正解なしデータに対する出力を信用 するかどうかの判定に必要

13.2 自己学習

- 自己学習のアルゴリズム
 - 1.正解付きデータで初期識別器を作成
 - 2.正解なしデータの識別結果のうち、確信度の高いものを、正解付きデータとみなす
 - 3.新しい正解付きデータで、識別器を学習
 - 4. 2, 3 を繰り返す

13.2 自己学習

- ・自己学習の性質
 - クラスタ仮定や低密度分離が満たされるデータに対しては、高い性能が期待できる
 - 低密度分離が満たされていない場合、初期識別器の 誤りが拡大してゆく可能性がある

13.3 共訓練

- 共訓練とは
 - 判断基準が異なる識別器を交互に用いる
 - ・ 片方の確信度が高いデータを、相手が正解付きデータとみなして学習

13.3 共訓練

- 共訓練の特徴
 - 学習初期の誤りに対して頑健
- 共訓練の問題点
 - それぞれが識別空間として機能する特徴集合を、 どのようにして作成するか
 - 全ての特徴を用いる識別器よりも高性能な識別器が 作成できるか

13.4 YATSI アルゴリズム

- YATSI(Yet Another Two-Stage Idea)
 アルゴリズムの考え方
 - 繰り返し学習による誤りの増幅を避ける

正解付きデータで作った識別器 で全データを識別

正解付きデータ :1 識別後の正解なしデータ :0.1 の重みで k-NN

調整可能

ラベル伝搬法

- ラベル伝搬法の考え方
 - 特徴空間上のデータをノードとみなし、類似度に基づいたグラフ構造を構築する
 - 近くのノードは同じクラスになりやすいという仮定 で、正解なしデータの予測を行う
 - 評価関数 (最小化)

$$J(\mathbf{f}) = \sum_{i=1}^{l} (y_i - f_i)^2 + \lambda \sum_{i < j} w_{ij} (f_i - f_j)^2$$

予測値と正解 ラベルを近づける

 f_i : i番目のノードの予測値

 y_i : i番目のノードの正解ラベル { -1, 0, 1}

 w_{ij} : i 番目のノードとj 番目のノードの結合の有無

隣接ノードの

予測値を近づける

ラベル伝搬法

- 1.データ間の類似度に基づいて、データをノード としたグラフを構築
- 類似度の基準
 - RBF $K(x, x') = \exp(-\gamma ||x x'||^2)$
 - 全ノードが結合
 - 連続値の類似度が与えられる
 - K-NN
 - 近傍の k 個のノードが結合
 - 結合の有無は 0 または 1 で表現
 - 省メモリ

ラベル伝搬法

2.ラベル付きノードからラベルなしノードにラベルを伝播させる操作を繰り返し、隣接するノードがなるべく同じラベルを持つように最適化

14. 強化学習14.1 強化学習とは

- 強化学習の設定
 - 教師信号が間接的
 - 報酬が遅れて与え られる
 - 探索が可能
 - ・ 状態が非確定的な 場合がある

14.2 1 状態問題の定式化 -K-armed bandit 問題 -

- K-armed bandit の定義
 - *K*本の腕を持つスロットマシン
 - i 番目の腕を引く行為: a_i
 - その行為の価値:Q(a_i)
 - 報酬 アが確定的な場合
 - 全ての可能な a_i を試み、 $Q(a_i) = r(a_i)$ が最大となる a_i を探す
 - 報酬 r_t が確率的な場合

$$Q_{t+1}(a_i) = Q_t(a_i) + \eta(r_{t+1}(a_i) - Q_t(a_i))$$

 η は t の増加に伴って、減少させる

14.2 1 状態問題の定式化 -K-armed bandit 問題 -

- どのように a_i を選ぶか
 - 常に $Q_i(a_i)$ が最大のものを選ぶ
 - もっと良い行為があるのに見逃してしまうかもしれない
 - いろいろな a_i を何度も試みる
 - 無駄な行為を何度も行ってしまうかもしれない
- ε-greedy 法
 - 確率 $1-\varepsilon$ で最良の行為を選び、確率 ε でランダムに 行為を選ぶ
- Boltzmann 分布を利用した方法
 - 温度 k を導入し、 k が下がるにつれて確率的振る舞いが少なくなるようにする

・マルコフ決定過程

- 状態遷移を伴う問題の定式化
- 時刻 t における状態 $s_t \in S$
- 時刻 t における行為 $a_t \in A(s_t)$
- 報酬 $r_{t+1} \in \mathbb{R}$ 確率分布 $p(r_{t+1}|s_t, a_t)$
- 次状態 $s_{t+1} \in S$ 確率分布 $P(s_{t+1}|s_t, a_t)$

- 強化学習の学習目標
 - 最適政策 π^*
 - 状態から行為へのマッピング
 - 累積報酬の期待値が最大となる政策
 - 累積報酬の期待値

$$V^{\pi}(s_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots)$$
$$= \mathbb{E}(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i})$$

 γ :割引率 $0 \le \gamma < 1$

• 最適政策に対する期待報酬

$$V^{*}(s_{t}) = \max_{a_{t}} Q^{*}(s_{t}, a_{t})$$

$$= \max_{a_{t}} \mathbb{E}(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i})$$

$$= \max_{a_{t}} \mathbb{E}(r_{t+1} + \gamma \sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i+1})$$

$$= \max_{a_{t}} \mathbb{E}(r_{t+1} + \gamma V^{*}(s_{t+1}))$$

• 状態遷移確率を明示

$$V^*(s_t) = \max_{a_t} (\mathbb{E}(r_{t+1}) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) V^*(s_{t+1}))$$

Q値による書き換え

$$Q^*(s_t, a_t) = \mathbb{E}(r_{t+1}) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

ベルマン方程式

14.4 モデルベースの手法

• 環境のモデル(状態遷移確率、報酬の確率分布) が与えられた場合の Q 値の求め方

Algorithm 14.1 Value iteration アルゴリズム

V(s) を任意の値で初期化

repeat

for all $s \in S$ do

for all $a \in A$ do

$$Q(s, a) \leftarrow \mathbb{E}(r|s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$$

end for

$$V(s) \leftarrow \max_a Q(s, a)$$

end for

until V(s) が収束

14.5 モデルフリーの手法

• 報酬と遷移が決定的な TD 学習

• ベルマン方程式

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

14.5 モデルフリーの手法

Algorithm 14.2 TD 学習 (報酬と遷移が決定的な場合)

Q(s,a) を 0 に初期化

for all エピソード do

repeat

探索基準に基づき行為 a を選択

行為 a を実行し、報酬 r と次状態 s' を観測

以下の式で Q を更新

$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$

$$s \leftarrow s'$$

until s が終了状態

end for

14.5 モデルフリーの手法

- 報酬と遷移が確率的な TD (Temporal Difference) 学習
 - ベルマン方程式

$$Q(s,a) \leftarrow Q(s,a) + \eta(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

TD 誤差

- 理論的には、各状態に無限回訪問可能な場合に収束
- 実用的には無限回の訪問は不可能なので、状態推定 関数等を用いて、複数の状態を同一とみなす等の工 夫が必要

Deep Q-learning

- Q(s, a) の推定に DNN を用いる
 - ネットワークの誤差に TD 誤差を用いる
 - 一部の問題においては、状態を推定しなくとも、局面そのものをネットワークの入力にできる
 - 例)ゲーム

Section4 のまとめ

- 半教師あり学習
 - 数値特徴の場合:一定の性質を満たす場合に有効
 - カテゴリ特徴の場合:言語データで有効な場合がある
 - 手法:自己学習、共訓練、ラベル伝搬法
- 強化学習
 - 変化する状態に対する最適な行為を求める学習
 - マルコフ決定過程による定式化を行い、 Q 値を最適 化する