Predictive modeling ~= machine learning

- Make predictions of outcome on new data
- Extract the structure of historical data
- Statistical tools to summarize the training data into a executable predictive model
- Alternative to hard-coded rules written by experts

type (category)	# rooms (int)	surface (float m2)	public trans (boolean)
Apartment	3	50	TRUE
House	5	254	FALSE
Duplex	4	68	TRUE
Apartment	2	32	TRUE

type (category)	# rooms (int)	surface (float m2)	public trans (boolean)
Apartment	3	50	TRUE
House	5	254	FALSE
Duplex	4	68	TRUE
Apartment	2	32	TRUE

sold (float k€)
450
430
712
234

samples (train)

type (category)	# rooms (int)	surface (float m2)	public trans (boolean)
Apartment	3	50	TRUE
House	5	254	FALSE
Duplex	4	68	TRUE
Apartment	2	32	TRUE

sold (float k€)
450
430
712
234

features

target

samples (train)

type (category)	# rooms (int)	surface (float m2)	public trans (boolean)
Apartment	3	50	TRUE
House	5	254	FALSE
Duplex	4	68	TRUE
Apartment	2	32	TRUE

sold (float k€)
450
430
712
234

samples (test)

(1001)	Apartment	2	33	TRUE
	House	4	210	TRUE

?

Training text docs images sounds transactions

Predictive Modeling Data Flow

Predictive Modeling Data Flow

Predictive Modeling Data Flow

Applications in Business

- Forecast sales, customer churn, traffic, prices
- Predict CTR and optimal bid price for online ads
- Build computer vision systems for robots in the industry and agriculture
- Detect network anomalies, fraud and spams
- Recommend products, movies, music

- Library of Machine Learning algorithms
- Focus on established methods (e.g. ESL-II)
- Open Source (BSD)
- Simple fit / predict / transform API
- Python / NumPy / SciPy / Cython
- Model Assessment, Selection & Ensembles

Support Vector Machine

```
from sklearn.svm import SVC

model = SVC(kernel="rbf", C=1.0, gamma=1e-4)
model.fit(X_train, y_train)

y_predicted = model.predict(X_test)

from sklearn.metrics import f1_score
f1_score(y_test, y_predicted)
```

Random Forests

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=200)
model.fit(X_train, y_train)

y_predicted = model.predict(X_test)

from sklearn.metrics import f1_score
f1 score(y test, y predicted)
```


scikit-learn

Machine Learning in Python

Examples

· Simple and efficient tools for data mining and data analysis

Google" Custom Search

· Accessible to everybody, and reusable in various contexts

8 ▼ Google

- · Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors, random Examples

forest, ...

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

□ □

Search

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, Isomap, non-negative

matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

metrics. Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples