Численное решение волнового уравнения

Д. Ю. Бобрышев^{1,*} and С. М. М. Аль-Хадж Аюб^{,**}

 1 Московский физико-технический институт, Институт
ский пер., 9, Долгопрудный, Московская обл., 141701

Received 22 Maя, 2024

Abstract—Основной целью данной работы является наблюдение различных эффектов, возникающих при решении волнового уравнения. Численное решение выполнено при помощи метода конечных элементов, написано на языке C++ с использованием библиотеки FEniCS.

Keywords and phrases: Волновое уравнение, FEniCS

1. ВВЕДЕНИЕ

Волновое уравнение (1) является одним из основных уравнений математической физики. При помощи волнового уравнения описываются различные колебательные процессы, например, распространение звуковой волны в среде, распространение электромагнитных волн. В данной работе мы будем использовать теорминологию, используемую в электродинамике, а полученное решение следует интерпретировать как распространение электромагнитной волны.

$$\Delta u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \tag{1}$$

При решении волнового уравнения возникает ряд интересных эффектов. Например, выполняется принцип Гюйгенса-Френеля: каждая точка волнового фронта является источником вторичных когерентных сферических волн. При некоторых условиях, как следствие этого приниципа, имеет место дифракция: явление огибания предметов световой волной. Так, например, если осветить узкую щель плоской монохроматической волной, на достаточно удалённом экране можно наблюдать последовательность светлых полос. Наблюдение дифракции является одной из основных целей работы.

Из принципа Гюйгенса-Френеля следует закон преломления волны при прохождении границы двух сред с различными показателями преломления. Преломлённая волна имеет иную скорость распространения, поэтому у преломлённой волны угол между направлением распространения и нормалью к поверхности оказывается иным, чем угол между нормалью и направлением распространения падающей волны. Данное явление можно использовать, например, для фокусировки волны в точку. Для этого используются линзы. Исследование свойств линз также является важной частью работы.

Для решения волнового уравнения мы использовали метод конечных элементов. Основной идеей данного метода является разбиение пространства, на котором необходимо получить решение, на некоторое конечное количество элементов: точек со связывающих их отрезками. Для каждой пары отрезков, имеющих общую точку, можно ввести линейную функцию v_k , и число u_k , а саму функцию аппроксимировать как сумму базисных функций v_k , умноженных на коэффициент u_k . Таким образом, дифференциальное уравнение с некоторыми граничными условиями можно приближённо представить в виде системы линейных уравнений, которую можно решить относительно u_k , и, таким образом, получить приближённо функцию и. Метод конечных элементов реализован в библиотеке FEniCS, которую мы использовали для получения численного решения волнового уравнения.

^{*} E-mail: bobryshev.diu@phystech.edu

^{**} E-mail: al-khadzh.aiub.sm@phystech.edu

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ