```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import f1_score,recall_score,confusion_matrix,precision_score
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import ConfusionMatrixDisplay
    from sklearn.preprocessing import LabelEncoder
```

## In [2]: df = pd.read\_csv('census\_labeled (2).csv') df

| $\overline{}$ |   |   | _ ~ |     |  |
|---------------|---|---|-----|-----|--|
| ٦.            |   | - | 1 ) | , , |  |
| J             | u | L | ı   | . 1 |  |
|               |   |   | _   |     |  |

|        | county<br>name             | state          | county_population_increased_2015_2016 | year | female_total_population | fe |
|--------|----------------------------|----------------|---------------------------------------|------|-------------------------|----|
| 0      | Stark<br>County            | Ohio           | False                                 | 2010 | 192651                  |    |
| 1      | Summit<br>County           | Ohio           | False                                 | 2010 | 279592                  |    |
| 2      | Trumbull<br>County         | Ohio           | False                                 | 2010 | 108490                  |    |
| 3      | Tuscarawas<br>County       | Ohio           | False                                 | 2010 | 47279                   |    |
| 4      | Warren<br>County           | Ohio           | True                                  | 2010 | 105706                  |    |
|        |                            |                |                                       |      |                         |    |
| 4946   | Toa Alta<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 38559                   |    |
| 4947   | Toa Baja<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 43530                   |    |
| 4948   | Trujillo Alto<br>Municipio | Puerto<br>Rico | False                                 | 2015 | 36804                   |    |
| 4949   | Bayamón<br>Municipio       | Puerto<br>Rico | False                                 | 2015 | 99486                   |    |
| 4950   | Mayagüez<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 41540                   |    |
| 4951 r | ows × 42 co                | lumns          |                                       |      |                         |    |

```
In [3]: df.corr().iloc[:,0].sort_values().plot(kind='bar',figsize=(20,10))
```

#### Out[3]: <AxesSubplot:>



```
In [4]:
        df.female age under 5 pct = df.female total population*df.female age under 5 pct
        df.female age 5 to 9 pct = df.female total population*df.female age 5 to 9 pct/10
        df.female_age_10_to_14_pct = df.female_total_population*df.female_age_10_to_14_pd
        df.female_age_15_to_19_pct = df.female_total_population*df.female_age_15_to_19_pd
        df.female_age_20_to_24_pct = df.female_total_population*df.female_age_20_to_24_pd
        df.female_age_25_to_29_pct = df.female_total_population*df.female_age_25_to_29_pd
        df.female_age_30_to_34_pct = df.female_total_population*df.female_age_30_to_34_pd
        df.female age 35 to 39 pct = df.female total population*df.female age 35 to 39 pc
        df.female age 40 to 44 pct = df.female total population*df.female age 40 to 44 pc
        df.female_age_45_to_49_pct = df.female_total_population*df.female_age_45_to_49_pd
        df.female age 50 to 54 pct = df.female total population*df.female age 50 to 54 pc
        df.female_age_55_to_59_pct = df.female_total_population*df.female_age_55_to_59_pd
        df.female_age_60_to_64_pct = df.female_total_population*df.female_age_60_to_64_pd
        df.female age 65 to 69 pct = df.female total population*df.female age 65 to 69 pc
        df.female_age_70_to_74_pct = df.female_total_population*df.female_age_70_to_74_pd
        df.female_age_75_to_79_pct = df.female_total_population*df.female_age_75_to_79_pd
        df.female age 80 to 84 pct = df.female total population*df.female age 80 to 84 pc
        df.female_age_85_and_over_pct = df.female_total_population*df.female_age_85_and_o
```

In [5]: | df.male\_age\_under\_5\_pct = df.male\_total\_population\*df.male\_age\_under\_5\_pct/100 df.male\_age\_5\_to\_9\_pct = df.male\_total\_population\*df.male\_age\_5\_to\_9\_pct/100 df.male\_age\_10\_to\_14\_pct = df.male\_total\_population\*df.male\_age\_10\_to\_14\_pct/100 df.male age 15 to 19 pct = df.male total population\*df.male age 15 to 19 pct/100 df.male\_age\_20\_to\_24\_pct = df.male\_total\_population\*df.male\_age\_20\_to\_24\_pct/100 df.male\_age\_25\_to\_29\_pct = df.male\_total\_population\*df.male\_age\_25\_to\_29\_pct/100 df.male\_age\_30\_to\_34\_pct = df.male\_total\_population\*df.male\_age\_30\_to\_34\_pct/100 df.male\_age\_35\_to\_39\_pct = df.male\_total\_population\*df.male\_age\_35\_to\_39\_pct/100 df.male\_age\_40\_to\_44\_pct = df.male\_total\_population\*df.male\_age\_40\_to\_44\_pct/100 df.male\_age\_45\_to\_49\_pct = df.male\_total\_population\*df.male\_age\_45\_to\_49\_pct/100 df.male\_age\_50\_to\_54\_pct = df.male\_total\_population\*df.male\_age\_50\_to\_54\_pct/100 df.male\_age\_55\_to\_59\_pct = df.male\_total\_population\*df.male\_age\_55\_to\_59\_pct/100 df.male\_age\_60\_to\_64\_pct = df.male\_total\_population\*df.male\_age\_60\_to\_64\_pct/100 df.male\_age\_65\_to\_69\_pct = df.male\_total\_population\*df.male\_age\_65\_to\_69\_pct/100 df.male\_age\_70\_to\_74\_pct = df.male\_total\_population\*df.male\_age\_70\_to\_74\_pct/100 df.male\_age\_75\_to\_79\_pct = df.male\_total\_population\*df.male\_age\_75\_to\_79\_pct/100 df.male\_age\_80\_to\_84\_pct = df.male\_total\_population\*df.male\_age\_80\_to\_84\_pct/100 df.male\_age\_85\_and\_over\_pct = df.male\_total\_population\*df.male\_age\_85\_and\_over\_pd

#### In [6]: df

#### Out[6]:

|        | county<br>name             | state          | county_population_increased_2015_2016 | year | female_total_population | fe |
|--------|----------------------------|----------------|---------------------------------------|------|-------------------------|----|
| 0      | Stark<br>County            | Ohio           | False                                 | 2010 | 192651                  |    |
| 1      | Summit<br>County           | Ohio           | False                                 | 2010 | 279592                  |    |
| 2      | Trumbull<br>County         | Ohio           | False                                 | 2010 | 108490                  |    |
| 3      | Tuscarawas<br>County       | Ohio           | False                                 | 2010 | 47279                   |    |
| 4      | Warren<br>County           | Ohio           | True                                  | 2010 | 105706                  |    |
|        |                            |                |                                       |      |                         |    |
| 4946   | Toa Alta<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 38559                   |    |
| 4947   | Toa Baja<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 43530                   |    |
| 4948   | Trujillo Alto<br>Municipio | Puerto<br>Rico | False                                 | 2015 | 36804                   |    |
| 4949   | Bayamón<br>Municipio       | Puerto<br>Rico | False                                 | 2015 | 99486                   |    |
| 4950   | Mayagüez<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 41540                   |    |
| 1051 r | ows x 12 co                | lumne          |                                       |      |                         |    |

4951 rows × 42 columns

```
In [7]: df.groupby('year').mean()[['female_total_population' , 'male_total_population']].
```

#### Out[7]: <AxesSubplot:xlabel='year'>





#### Out[8]: <AxesSubplot:>



```
In [9]: df[df['county name'] == 'Comanche County']['female_total_population'].plot()
```

#### Out[9]: <AxesSubplot:>



In [10]: df[df['year'] == 2015].groupby('state').mean()

Out[10]:

|                         | year   | r female_total_population female_age_under_5_pct female_age_5_to_9_p |              | female_age_5_to_9_pct | fe |
|-------------------------|--------|----------------------------------------------------------------------|--------------|-----------------------|----|
| state                   |        |                                                                      |              |                       |    |
| Alabama                 | 2015.0 | 89143.095238                                                         | 5050.608714  | 5468.212810           |    |
| Alaska                  | 2015.0 | 79403.333333                                                         | 6072.043000  | 5882.711333           |    |
| Arizona                 | 2015.0 | 335736.100000                                                        | 20486.708400 | 22051.816000          |    |
| Arkansas                | 2015.0 | 77046.181818                                                         | 5067.847182  | 5069.264545           |    |
| California              | 2015.0 | 486521.025000                                                        | 30325.205850 | 30915.998200          |    |
| Colorado                | 2015.0 | 195333.500000                                                        | 11878.393667 | 12676.465250          |    |
| Connecticut             | 2015.0 | 229852.875000                                                        | 11458.595875 | 12754.876875          |    |
| Delaware                | 2015.0 | 162575.333333                                                        | 9013.996000  | 8918.158000           |    |
| District of<br>Columbia | 2015.0 | 352523.000000                                                        | 21151.380000 | 16216.058000          |    |
| Florida                 | 2015.0 | 251238.200000                                                        | 12997.283000 | 13441.668250          |    |
| Georgia                 | 2015.0 | 110586.833333                                                        | 6840.602417  | 7266.327694           |    |
| Hawaii                  | 2015.0 | 176723.500000                                                        | 11341.124000 | 10514.779500          |    |
| Idaho                   | 2015.0 | 89632.166667                                                         | 5951.454167  | 6342.694333           |    |
| Illinois                | 2015.0 | 245176.521739                                                        | 14505.460957 | 15026.626130          |    |
| Indiana                 | 2015.0 | 97037.800000                                                         | 6028.551080  | 6228.381920           |    |
| Iowa                    | 2015.0 | 81558.600000                                                         | 5211.838300  | 5106.576100           |    |
| Kansas                  | 2015.0 | 111713.250000                                                        | 7606.679625  | 7704.536375           |    |
| Kentucky                | 2015.0 | 84930.461538                                                         | 5253.495846  | 5179.018615           |    |
| Louisiana               | 2015.0 | 102766.941176                                                        | 6371.775824  | 6699.221059           |    |
| Maine                   | 2015.0 | 80153.333333                                                         | 3859.830167  | 3872.571333           |    |
| Maryland                | 2015.0 | 184531.625000                                                        | 10823.508938 | 10920.819187          |    |
| Massachusetts           | 2015.0 | 290250.166667                                                        | 14846.490917 | 15489.207750          |    |
| Michigan                | 2015.0 | 149194.172414                                                        | 8333.588483  | 8640.492931           |    |
| Minnesota               | 2015.0 | 139698.285714                                                        | 8812.171357  | 8766.692857           |    |
| Mississippi             | 2015.0 | 68622.300000                                                         | 4423.480000  | 4564.694600           |    |
| Missouri                | 2015.0 | 124968.764706                                                        | 7368.695706  | 7840.588706           |    |
| Montana                 | 2015.0 | 51600.333333                                                         | 3022.145833  | 3310.868167           |    |
| Nebraska                | 2015.0 | 173302.666667                                                        | 12425.769333 | 12289.589000          |    |
| Nevada                  | 2015.0 | 640444.000000                                                        | 38844.771000 | 40040.997500          |    |
| New<br>Hampshire        | 2015.0 | 96854.500000                                                         | 4476.466667  | 5137.968667           |    |
| New Jersey              | 2015.0 | 218243.857143                                                        | 12278.370238 | 12774.242524          |    |
| New Mexico              | 2015.0 | 83724.800000                                                         | 5295.618900  | 5459.034100           |    |

| state          |        |               |              |              |
|----------------|--------|---------------|--------------|--------------|
| New York       | 2015.0 | 248220.717949 | 14191.504615 | 13514.337385 |
| North Carolina | 2015.0 | 103859.600000 | 6086.529000  | 6521.071775  |
| North Dakota   | 2015.0 | 50070.750000  | 3557.710500  | 3227.447500  |
| Ohio           | 2015.0 | 128012.333333 | 7258.961256  | 7438.421436  |
| Oklahoma       | 2015.0 | 110964.454545 | 7368.013000  | 7331.494909  |
| Oregon         | 2015.0 | 120590.733333 | 6727.166333  | 7347.152867  |
| Pennsylvania   | 2015.0 | 151494.425000 | 8135.077100  | 8534.167850  |
| Puerto Rico    | 2015.0 | 71194.636364  | 3195.394364  | 3553.919091  |
| Rhode Island   | 2015.0 | 129885.250000 | 6411.557250  | 7384.320500  |
| South Carolina | 2015.0 | 101512.904762 | 5775.679286  | 6401.324095  |
| South Dakota   | 2015.0 | 72635.000000  | 5099.173000  | 4320.046000  |
| Tennessee      | 2015.0 | 116562.950000 | 7025.443650  | 7287.258700  |
| Texas          | 2015.0 | 228488.509434 | 16209.197415 | 16762.777283 |
| Utah           | 2015.0 | 210931.500000 | 17487.250500 | 17747.376500 |
| Vermont        | 2015.0 | 82838.000000  | 4307.576000  | 3727.710000  |
| Virginia       | 2015.0 | 102539.366667 | 6344.966900  | 6411.055667  |
| Washington     | 2015.0 | 175196.000000 | 10762.641263 | 11107.512947 |
| West Virginia  | 2015.0 | 53409.142857  | 2967.646571  | 2655.256000  |
| Wisconsin      | 2015.0 | 96752.391304  | 5626.738174  | 6115.312783  |
| Wyoming        | 2015.0 | 44979.000000  | 3015.035500  | 2896.641500  |

52 rows × 39 columns

year female\_total\_population female\_age\_under\_5\_pct female\_age\_5\_to\_9\_pct fe

#### In [11]: |df.nunique() Out[11]: county name 662 52 state 2 county population increased 2015 2016 6 year female\_total\_population 4859 4945 female age under 5 pct female\_age\_5\_to\_9\_pct 4945 female\_age\_10\_to\_14\_pct 4951 female age 15 to 19 pct 4945 female age 20 to 24 pct 4948 female\_age\_25\_to\_29\_pct 4949 female\_age\_30\_to\_34\_pct 4946 female\_age\_35\_to\_39\_pct 4951 female\_age\_40\_to\_44\_pct 4948 female\_age\_45\_to\_49\_pct 4947 female age 50 to 54 pct 4946 female\_age\_55\_to\_59\_pct 4946 4947 female\_age\_60\_to\_64\_pct female\_age\_65\_to\_69\_pct 4948 female\_age\_70\_to\_74\_pct 4945 female\_age\_75\_to\_79\_pct 4943 4937 female age 80 to 84 pct female\_age\_85\_and\_over\_pct 4943 male\_total\_population 4862 male\_age\_under\_5\_pct 4948 4947 male\_age\_5\_to\_9\_pct male\_age\_10\_to\_14\_pct 4945 4945 male age 15 to 19 pct male\_age\_20\_to\_24\_pct 4944 male\_age\_25\_to\_29\_pct 4949 male\_age\_30\_to\_34\_pct 4949 male\_age\_35\_to\_39\_pct 4947 male\_age\_40\_to\_44\_pct 4946 male\_age\_45\_to\_49\_pct 4946 male\_age\_50\_to\_54\_pct 4947 4949 male\_age\_55\_to\_59\_pct male\_age\_60\_to\_64\_pct 4946 4945 male age 65 to 69 pct male\_age\_70\_to\_74\_pct 4942 male\_age\_75\_to\_79\_pct 4943

male age 80 to 84 pct

dtype: int64

male\_age\_85\_and\_over\_pct

4943

4933

```
In [12]: df.groupby('state').mean()[['female_total_population', 'male_total_population']].r
```

Out[12]: <AxesSubplot:xlabel='state'>



```
In [13]: df.groupby('state').mean()['male_total_population'].sort_values().plot(kind = 'ba')
```

Out[13]: <AxesSubplot:xlabel='state'>



```
In [14]: df.groupby('state').mean()[['female_age_10_to_14_pct', 'male_age_10_to_14_pct']].r
```

Out[14]: <AxesSubplot:xlabel='state'>



```
In [15]: df.groupby('state').mean()[['female_age_15_to_19_pct', 'male_age_15_to_19_pct']].r
```

Out[15]: <AxesSubplot:xlabel='state'>



```
In [16]: df.groupby('year').mean()[['female_age_20_to_24_pct','male_age_20_to_24_pct']].p]
```

Out[16]: <AxesSubplot:xlabel='year'>



```
In [17]: df.groupby('year').mean()[['female_age_under_5_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct',
```

Out[17]: <AxesSubplot:xlabel='year'>



### Out[18]:

|        | county<br>name             | state          | county_population_increased_2015_2016 | year | female_total_population fe |
|--------|----------------------------|----------------|---------------------------------------|------|----------------------------|
| 0      | Stark<br>County            | Ohio           | False                                 | 2010 | 192651                     |
| 1      | Summit<br>County           | Ohio           | False                                 | 2010 | 279592                     |
| 2      | Trumbull<br>County         | Ohio           | False                                 | 2010 | 108490                     |
| 3      | Tuscarawas<br>County       | Ohio           | False                                 | 2010 | 47279                      |
| 4      | Warren<br>County           | Ohio           | True                                  | 2010 | 105706                     |
|        |                            |                |                                       |      |                            |
| 4946   | Toa Alta<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 38559                      |
| 4947   | Toa Baja<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 43530                      |
| 4948   | Trujillo Alto<br>Municipio | Puerto<br>Rico | False                                 | 2015 | 36804                      |
| 4949   | Bayamón<br>Municipio       | Puerto<br>Rico | False                                 | 2015 | 99486                      |
| 4950   | Mayagüez<br>Municipio      | Puerto<br>Rico | False                                 | 2015 | 41540                      |
| 4951 r | ows × 42 co                | lumns          |                                       |      | •                          |

# In [19]: import matplotlib.pyplot as plt df1 = [10595.805, 15657.152, 5858.460, 2600.345, 6765.184,] label = ['Stark County', 'Summit County', 'Trumbull County', 'Tuscarawas County', plt.pie(df1, labels = label, autopct = '%1.1f%%', explode = [0,0,0,0.1,0], shadow plt.title('female\_age\_under\_5\_pct') plt.axis('equal') plt.show()





```
In [21]: print(df[['county name', 'state', 'county population increased 2015 2016', 'year
                 'female_total_population', 'female_age_under_5_pct',
                 'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                 'female_age_15_to_19_pct', 'female_age_20_to_24_pct',
                 'female_age_25_to_29_pct', 'female_age_30_to_34_pct',
                 'female_age_35_to_39_pct', 'female_age_40_to_44_pct',
                 'female_age_45_to_49_pct', 'female_age_50_to_54_pct',
                'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                 'female_age_65_to_69_pct', 'female_age_70_to_74_pct',
                 'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                 'female_age_85_and_over_pct', 'male_total_population',
                 'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                 'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                 'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                 'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                 'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                 'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                 'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
                 'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                 'male age 85 and over pct']].corr(method = 'pearson'))
                                          year
                                                female_total_population
                                      1.000000
         year
                                                                0.006365
         female total population
                                                                1.000000
                                      0.006365
                                                               0.991554
         female age under 5 pct
                                     -0.003691
         female_age_5_to_9_pct
                                     -0.000372
                                                               0.989353
         female_age_10_to_14_pct
                                     -0.000764
                                                               0.990788
         female age 15 to 19 pct
                                     -0.007319
                                                               0.993002
         female_age_20_to_24_pct
                                      0.005537
                                                               0.988849
         female age 25 to 29 pct
                                      0.008643
                                                               0.988602
         female age 30 to 34 pct
                                                               0.993259
                                      0.012536
         female_age_35_to_39_pct
                                      0.001890
                                                               0.995898
         female_age_40_to_44_pct
                                     -0.006627
                                                               0.996320
```

-0.016901

-0.000530

0.017757

0.022927

0.054650

0.044979

0.019371

0 004004

0.996235

0.996743

0.995282

0.993040

0.983539

0.977261

0.973695

0 000001

female\_age\_45\_to\_49\_pct

female age 50 to 54 pct

female\_age\_55\_to\_59\_pct

female age 60 to 64 pct

female\_age\_65\_to\_69\_pct

female\_age\_70\_to\_74\_pct

female age 75 to 79 pct

£---1- --- 00 ±- 04 --+

```
In [22]: | dd = pd.DataFrame(np.random.random((52,42)), columns = ['county name', 'state',
                  'female_total_population', 'female_age_under_5_pct',
                  'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                  'female_age_15_to_19_pct', 'female_age_20_to_24_pct',
                  'female_age_25_to_29_pct', 'female_age_30_to_34_pct', 'female_age_35_to_39_pct', 'female_age_40_to_44_pct',
                  'female_age_45_to_49_pct', 'female_age_50_to_54_pct',
                  'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                  'female_age_65_to_69_pct', 'female_age_70_to_74_pct',
                  'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                  'female_age_85_and_over_pct', 'male_total_population',
                  'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                  'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                  'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                  'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                  'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                  'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                  'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                  'male age 85 and over pct'])
            = sns.heatmap(dd)
```



```
In [23]: cor = dd.corr()

In [24]: import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(50,40))

sns.heatmap(cor, annot=True, cmap = plt.cm.Reds)
plt.show()
```



```
In [25]: df['county name'].unique()
Out[25]: array(['Stark County', 'Summit County', 'Trumbull County',
                 'Tuscarawas County', 'Warren County', 'Wayne County',
                 'Wood County', 'Canadian County', 'Cleveland County',
                 'Comanche County', 'Creek County', 'Muskogee County',
                 'Oklahoma County', 'Payne County', 'Pottawatomie County', 'Rogers County', 'Tulsa County', 'Wagoner County', 'Benton County',
                 'Clackamas County', 'Deschutes County', 'Douglas County',
                 'Jackson County', 'Josephine County', 'Klamath County',
                 'Lane County', 'Linn County', 'Marion County', 'Multnomah County',
                 'Polk County', 'Umatilla County', 'Washington County',
                 'Yamhill County', 'Adams County', 'Allegheny County',
                 'Armstrong County', 'Beaver County', 'Berks County',
                 'Blair County', 'Bucks County', 'Butler County', 'Cambria County',
                 'Carbon County', 'Centre County', 'Chester County',
                 'Clearfield County', 'Columbia County', 'Crawford County',
                 'Cumberland County', 'Dauphin County', 'Delaware County',
                 'Erie County', 'Fayette County', 'Franklin County',
                 'Indiana County', 'Lackawanna County', 'Lancaster County',
                 'Lawrence County', 'Lebanon County', 'Lehigh County',
In [26]: | df['county name']=df['county name'].astype('category')
         df['county name']=df['county name'].cat.codes
         df['state']=df['state'].astype('category')
         df['state']=df['state'].cat.codes
         df['county_population_increased_2015_2016']=df['county_population_increased_2015_
         df['county_population_increased_2015_2016']=df['county_population_increased_2015]
In [27]: # Le = LabelEncoder()
         # encoded = le.fit_transform(df[['state']])
         # encoded
In [28]: # Le.inverse transform(encoded)
In [29]: # le = LabelEncoder()
         # encoded_1 = le.fit_transform(df[['county_population_increased_2015_2016']])
         # encoded 1
In [30]: # Le.inverse_transform(encoded_1)
In [31]: # le = LabelEncoder()
         # encoded 2 = le.fit transform(df[['county name']])
         # encoded 2
 In [ ]:
In [32]: |df['county_population_increased_2015_2016'].unique()
Out[32]: array([ 0,  1, -1], dtype=int8)
```

```
Out[33]:
                 county
                         state county_population_increased_2015_2016 year female_total_population female_
                  name
                                                                0 2010
              0
                    572
                           35
                                                                                       192651
              1
                    580
                           35
                                                                0
                                                                   2010
                                                                                       279592
              2
                    602
                                                                0
                                                                   2010
                                                                                       108490
                           35
              3
                    606
                                                                   2010
                                                                                        47279
                           35
              4
                    627
                                                                   2010
                                                                                       105706
                           35
              ...
                     ...
           4946
                    594
                           39
                                                                   2015
                                                                                        38559
           4947
                    595
                           39
                                                                0 2015
                                                                                        43530
                    601
                                                                                        36804
           4948
                           39
                                                                0 2015
           4949
                     40
                           39
                                                                0 2015
                                                                                        99486
           4950
                    371
                                                                0 2015
                                                                                        41540
                           39
          4951 rows × 42 columns
In [34]: |val = []
          ind = []
          for i,x in enumerate(df.county_population_increased_2015_2016):
               if x==-1:
                   val.append(x)
                   ind.append(i)
          print(ind)
          [398, 1472, 2342, 3124, 3954, 4250]
In [35]: df.drop(index = ind , inplace = True)
```

In [33]: df

In [36]: df

Out[36]:

|      | county<br>name | state | county_population_increased_2015_2016 | year | female_total_population | female_ |
|------|----------------|-------|---------------------------------------|------|-------------------------|---------|
| 0    | 572            | 35    | 0                                     | 2010 | 192651                  |         |
| 1    | 580            | 35    | 0                                     | 2010 | 279592                  |         |
| 2    | 602            | 35    | 0                                     | 2010 | 108490                  |         |
| 3    | 606            | 35    | 0                                     | 2010 | 47279                   |         |
| 4    | 627            | 35    | 1                                     | 2010 | 105706                  |         |
|      |                |       |                                       |      |                         |         |
| 4946 | 594            | 39    | 0                                     | 2015 | 38559                   |         |
| 4947 | 595            | 39    | 0                                     | 2015 | 43530                   |         |
| 4948 | 601            | 39    | 0                                     | 2015 | 36804                   |         |
| 4949 | 40             | 39    | 0                                     | 2015 | 99486                   |         |
| 4950 | 371            | 39    | 0                                     | 2015 | 41540                   |         |
|      |                |       |                                       |      |                         |         |

4945 rows × 42 columns

```
In [37]: X =df[['county name', 'state', 'year',
                  'female_total_population', 'female_age_under_5_pct',
                  'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                  'female_age_15_to_19_pct', 'female_age_20_to_24_pct',
                  'female_age_25_to_29_pct', 'female_age_30_to_34_pct',
                  'female_age_35_to_39_pct', 'female_age_40_to_44_pct',
                  'female_age_45_to_49_pct', 'female_age_50_to_54_pct', 'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                  'female_age_65_to_69_pct', 'female_age_70_to_74_pct', 'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                  'female_age_85_and_over_pct', 'male_total_population',
                  'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                  'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                  'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                  'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                  'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                  'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                  'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
                  'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                  'male age 85 and over pct']]
```

In [38]: y = df.county\_population\_increased\_2015\_2016

```
In [39]: X
Out[39]:
                 county
                         state
                               year female_total_population female_age_under_5_pct female_age_5_to_9_pct
                  name
                               2010
              0
                    572
                           35
                                                    192651
                                                                        10595.805
                                                                                              12137.013
              1
                    580
                           35
                               2010
                                                    279592
                                                                        15657.152
                                                                                              16216.336
                               2010
              2
                    602
                           35
                                                    108490
                                                                         5858.460
                                                                                               6400.910
              3
                    606
                           35
                               2010
                                                    47279
                                                                         2600.345
                                                                                               2458.508
              4
                    627
                           35
                               2010
                                                    105706
                                                                         6765.184
                                                                                               7399.420
              ...
                     ...
           4946
                    594
                           39
                               2015
                                                    38559
                                                                         1773.714
                                                                                               2583.453
           4947
                    595
                               2015
                                                    43530
                                                                         2002.380
                                                                                               3134.160
                           39
           4948
                    601
                           39
                               2015
                                                    36804
                                                                         1619.376
                                                                                               1803.396
                               2015
                                                                         4377.384
                                                                                               5372.244
           4949
                     40
                           39
                                                    99486
                              2015
           4950
                    371
                           39
                                                                         1703.140
                                                    41540
                                                                                               1287.740
          4945 rows × 41 columns
In [40]:
Out[40]: 0
                    0
          1
                    0
          2
                    0
          3
                    0
          4
                    1
          4946
                    0
          4947
                    0
          4948
                    0
          4949
                    0
          4950
          Name: county_population_increased_2015_2016, Length: 4945, dtype: int8
In [41]: | from sklearn.model_selection import train_test_split
In [42]: X_train , X_test , y_train, y_test = train_test_split(X, y , test_size = 0.3)
In [43]: | from sklearn.neighbors import KNeighborsClassifier
In [44]:
          KNN = KNeighborsClassifier()
In [45]: KNN.fit(X_train, y_train)
```

Out[45]: KNeighborsClassifier()

```
In [46]: # KNN.score(X_test, y_test)
In [47]: y_pred = KNN.predict(X_test)
In [48]: kn =accuracy_score(y_test , y_pred)
In [49]: print(kn)
         0.8638814016172507
In [50]: from sklearn.metrics import f1_score,recall_score,confusion_matrix,precision_scor
In [51]: confusion_matrix(y_test , y_pred)
Out[51]: array([[405, 97],
                 [105, 877]], dtype=int64)
In [52]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                800
                                                700
                                    97
            0
                                                600
          True label
                                                500
                                   877
                    105
                                                300
            1 .
                                                200
                     0
                        Predicted label
In [53]: |f1_score(y_test , y_pred, average='micro')
Out[53]: 0.8638814016172508
In [54]: |f1_score(y_test , y_pred, average='macro')
Out[54]: 0.8485616366384571
In [55]: recall_score(y_test , y_pred, average='macro')
Out[55]: 0.8499241323910063
In [56]: | precision_score(y_test , y_pred, average='macro')
Out[56]: 0.8472641623384467
```

```
In [57]: print(classification_report(y_test , y_pred))
                         precision
                                       recall f1-score
                                                           support
                     0
                              0.79
                                         0.81
                                                   0.80
                                                               502
                     1
                              0.90
                                         0.89
                                                   0.90
                                                               982
                                                   0.86
                                                              1484
              accuracy
             macro avg
                              0.85
                                         0.85
                                                   0.85
                                                              1484
          weighted avg
                              0.86
                                         0.86
                                                   0.86
                                                              1484
In [58]: from sklearn.svm import SVC
In [59]: | SVM = SVC(kernel ='sigmoid')
In [60]: SVM.fit(X_train , y_train)
Out[60]: SVC(kernel='sigmoid')
In [61]: y_pred = SVM.predict(X_test)
In [62]: sv = accuracy_score(y_test , y_pred)
Out[62]: 0.6138814016172507
In [63]: confusion_matrix(y_test , y_pred)
Out[63]: array([[201, 301],
                 [272, 710]], dtype=int64)
In [64]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                  700
                                                 - 600
                     201
                                    301
             0 -
                                                 - 500
          Frue label
                                                 - 400
                                    710
             1 -
                                                 - 300
                        Predicted label
```

```
In [65]: | f1_score(y_test , y_pred, average='micro')
Out[65]: 0.6138814016172507
In [66]: | f1_score(y_test , y_pred, average='macro')
Out[66]: 0.5624007101779305
In [67]: recall_score(y_test , y_pred)
Out[67]: 0.7230142566191446
In [68]: precision_score(y_test , y_pred)
Out[68]: 0.7022749752720079
In [69]: print(classification_report(y_test , y_pred))
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.42
                                       0.40
                                                 0.41
                                                            502
                    1
                             0.70
                                       0.72
                                                 0.71
                                                            982
             accuracy
                                                 0.61
                                                           1484
                             0.56
                                       0.56
                                                 0.56
                                                           1484
            macro avg
         weighted avg
                             0.61
                                       0.61
                                                 0.61
                                                           1484
In [ ]:
 In [ ]:
In [70]: | from sklearn.naive_bayes import GaussianNB
In [71]: GB = GaussianNB()
In [72]: GB.fit(X_train , y_train)
Out[72]: GaussianNB()
In [73]: |y_pred = GB.predict(X_test)
In [74]: | gb = accuracy_score(y_test ,y_pred )
         gb
Out[74]: 0.6428571428571429
```

```
In [75]: |confusion_matrix(y_test , y_pred)
Out[75]: array([[ 26, 476],
                 [ 54, 928]], dtype=int64)
In [76]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 800
             0
                     26
                                                 600
          True label
                                                  400
                                    928
             1
                                                 - 200
                      Ó
                        Predicted label
In [77]: | f1_score(y_test , y_pred, average='micro')
Out[77]: 0.6428571428571429
In [78]: | f1_score(y_test , y_pred, average='macro')
Out[78]: 0.4336089963504175
In [79]: recall_score(y_test , y_pred)
Out[79]: 0.945010183299389
In [80]: | precision_score(y_test , y_pred)
Out[80]: 0.6609686609686609
In [81]: print(classification_report(y_test , y_pred))
                         precision
                                      recall f1-score
                                                           support
                     0
                                         0.05
                                                   0.09
                                                               502
                              0.33
                     1
                              0.66
                                         0.95
                                                   0.78
                                                               982
                                                   0.64
                                                              1484
              accuracy
                              0.49
                                         0.50
                                                   0.43
                                                              1484
             macro avg
         weighted avg
                              0.55
                                         0.64
                                                   0.54
                                                              1484
In [ ]:
```

```
In [ ]:
In [82]: from sklearn import tree
In [83]: Tree = tree.DecisionTreeClassifier()
In [84]: Tree.fit(X_train , y_train)
Out[84]: DecisionTreeClassifier()
In [85]: y_pred = Tree.predict(X_test)
In [86]: | tree = accuracy_score(y_test ,y_pred )
          tree
Out[86]: 0.8342318059299192
In [87]: |confusion_matrix(y_test , y_pred)
Out[87]: array([[366, 136],
                 [110, 872]], dtype=int64)
In [88]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 800
                                                 700
                                    136
             0
                                                 600
          Frue label
                                                 500
                                                 400
                     110
                                    872
             1 -
                                                 300
                                                 200
                      Ó
                                     i
                        Predicted label
In [89]: | f1_score(y_test , y_pred, average='micro')
Out[89]: 0.8342318059299192
In [90]: |f1_score(y_test , y_pred, average='macro')
Out[90]: 0.8124240836082253
```

```
In [91]: recall_score(y_test , y_pred)
Out[91]: 0.8879837067209776
In [92]: precision_score(y_test , y_pred)
Out[92]: 0.8650793650793651
In [93]: print(classification_report(y_test , y_pred))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.77
                                      0.73
                                                0.75
                                                            502
                    1
                            0.87
                                      0.89
                                                0.88
                                                            982
                                                           1484
                                                0.83
             accuracy
            macro avg
                            0.82
                                      0.81
                                                0.81
                                                           1484
         weighted avg
                            0.83
                                      0.83
                                                0.83
                                                           1484
In [ ]:
In [94]: from sklearn.ensemble import RandomForestClassifier
In [95]: rfc = RandomForestClassifier()
In [96]: rfc.fit(X_train , y_train)
Out[96]: RandomForestClassifier()
In [97]: y_pred = rfc.predict(X_test)
In [98]: Rfc = accuracy_score(y_test ,y_pred )
Out[98]: 0.8685983827493261
In [99]: confusion_matrix(y_test , y_pred)
Out[99]: array([[336, 166],
                [ 29, 953]], dtype=int64)
```

```
In [100]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
```



```
In [101]: f1_score(y_test , y_pred, average='micro')
Out[101]: 0.8685983827493261
In [102]: f1_score(y_test , y_pred, average='macro')
Out[102]: 0.8411367794871119
In [103]: recall_score(y_test , y_pred)
Out[103]: 0.9704684317718941
In [104]: precision_score(y_test , y_pred)
Out[104]: 0.8516532618409294
```

```
In [105]: print(classification_report(y_test , y_pred))
                          precision
                                       recall f1-score
                                                            support
                      0
                               0.92
                                         0.67
                                                    0.78
                                                                502
                      1
                                         0.97
                               0.85
                                                    0.91
                                                                982
                                                    0.87
                                                               1484
               accuracy
              macro avg
                               0.89
                                         0.82
                                                    0.84
                                                               1484
           weighted avg
                               0.87
                                         0.87
                                                    0.86
                                                               1484
  In [ ]:
In [106]: from sklearn.ensemble import AdaBoostClassifier
In [107]: | Ada = AdaBoostClassifier()
In [108]: Ada.fit(X_train , y_train)
Out[108]: AdaBoostClassifier()
In [109]: y pred = Ada.predict(X test)
In [110]: Ada_acc = accuracy_score(y_test ,y_pred )
           Ada_acc
Out[110]: 0.7648247978436657
In [111]: |confusion_matrix(y_test , y_pred)
Out[111]: array([[236, 266],
                  [ 83, 899]], dtype=int64)
In [112]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                  800
                                                  700
              0
                                                  600
           Frue label
                                                  500
                                                  400
                                     899
                                                  300
              1 -
                                                  200
                                      i
                       0
                         Predicted label
```

```
In [113]: |f1_score(y_test , y_pred, average='micro')
Out[113]: 0.7648247978436657
In [114]: | f1_score(y_test , y_pred, average='macro')
Out[114]: 0.7061781246472006
In [115]: recall_score(y_test , y_pred)
Out[115]: 0.9154786150712831
In [116]: precision_score(y_test , y_pred)
Out[116]: 0.7716738197424893
In [117]: |print(classification_report(y_test , y_pred))
                                      recall f1-score
                         precision
                                                         support
                                        0.47
                                                  0.57
                     0
                              0.74
                                                             502
                      1
                              0.77
                                        0.92
                                                  0.84
                                                             982
                                                  0.76
                                                            1484
              accuracy
                              0.76
                                        0.69
                                                  0.71
                                                            1484
             macro avg
                                        0.76
                                                  0.75
                                                            1484
          weighted avg
                              0.76
  In [ ]:
In [118]: | from sklearn.ensemble import BaggingClassifier
In [119]: |ba = BaggingClassifier()
In [120]: ba.fit(X_train , y_train)
Out[120]: BaggingClassifier()
In [121]: y_pred = ba.predict(X_test)
In [122]: Ba_acc = accuracy_score(y_test ,y_pred )
          Ba acc
Out[122]: 0.9123989218328841
In [123]: |confusion_matrix(y_test , y_pred)
Out[123]: array([[422, 80],
                 [ 50, 932]], dtype=int64)
```

```
In [124]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                   900
                                                   800
              0
                                      80
                                                   700
                                                   600
           True label
                                                   500
                                                  300
                      50
                                     932
              1 .
                                                  200
                                                   100
                       0
                                      1
                         Predicted label
In [125]: | f1_score(y_test , y_pred, average='micro')
Out[125]: 0.9123989218328841
In [126]: | f1_score(y_test , y_pred, average='macro')
Out[126]: 0.9006670936835146
In [127]: recall_score(y_test , y_pred)
Out[127]: 0.9490835030549898
In [128]: precision_score(y_test , y_pred)
Out[128]: 0.9209486166007905
In [129]: print(classification_report(y_test , y_pred))
                          precision
                                        recall f1-score
                                                            support
                      0
                               0.89
                                          0.84
                                                    0.87
                                                                502
                      1
                               0.92
                                          0.95
                                                    0.93
                                                                982
               accuracy
                                                    0.91
                                                               1484
                                                    0.90
                               0.91
                                          0.89
                                                               1484
              macro avg
           weighted avg
                               0.91
                                          0.91
                                                    0.91
                                                               1484
```



```
In [131]: # Hyperparameter tunning
In [132]: # from sklearn.model_selection import GridSearchCV
# ba = BaggingClassifier(ba, n_estimators = 500, max_samples = 0.8, max_features
# ba = ba.fit(X_train, y_train)
In [133]: # y_pred = ba.predict(X_test)
```

```
In [134]: # Ba acc = accuracy score(y test ,y pred )
          # Ba acc
Out[134]: 0.8483827493261455
In [141]: from sklearn.model selection import GridSearchCV
          # defining parameter range
          param grid = \{'C': [0.1, 1, 10, 100, 1000],
                        'gamma': [1, 1.0, 0.01, 0.001, 0.0001],
                        'kernel': ['rbf']}
          grid = GridSearchCV(SVC(), param grid, refit = True, verbose = 3)
          # fitting the model for grid search
          grid.fit(X_train, y_train)
          Fitting 5 folds for each of 25 candidates, totalling 125 fits
          [CV 1/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.677 total time=
          5.4s
          [CV 2/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.676 total time=
          4.4s
          [CV 3/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.676 total time=
          4.3s
          [CV 4/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.676 total time=
          4.3s
          [CV 5/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.676 total time=
          4.3s
          [CV 1/5] END .....C=0.1, gamma=1.0, kernel=rbf;, score=0.677 total time=
          4.3s
          [CV 2/5] END .....C=0.1, gamma=1.0, kernel=rbf;, score=0.676 total time=
          4.3s
          [CV 3/5] END .....C=0.1, gamma=1.0, kernel=rbf;, score=0.676 total time=
          4.3s
          [CV 4/5] END .....C=0.1, gamma=1.0, kernel=rbf;, score=0.676 total time=
          4.4s
          FALL E /E ] END
                             4 A I. 1 I.C
                                                                  ^ <3< + + 1 + i
In [142]:
          # print best parameter after tuning
          print(grid.best_params_)
          # print how our model looks after hyper-parameter tuning
          print(grid.best_estimator_)
          {'C': 0.1, 'gamma': 1, 'kernel': 'rbf'}
```

SVC(C=0.1, gamma=1)

```
In [143]: y_pred = SVM.predict(X_test)
# print classification report
print(classification_report(y_test, y_pred ))
```

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 502     | 0.41     | 0.40   | 0.42      | 0            |
| 982     | 0.71     | 0.72   | 0.70      | 1            |
| 1484    | 0.61     |        |           | accuracy     |
| 1484    | 0.56     | 0.56   | 0.56      | macro avg    |
| 1484    | 0.61     | 0.61   | 0.61      | weighted avg |

```
In [144]: Svm_acc = accuracy_score(y_test ,y_pred )
Svm_acc
Out[144]: 0.6138814016172507
```

In [ ]: