COGNOME	. NOME	MATRICOLA
○ Gr. 1 Bader (A-G)	○ Gr. 2 Cioffi (H-Z)	

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Sia V uno spazio vettoriale sul campo reale e sia W un suo sottoinsieme. Cosa vuol dire che W è un sottospazio vettoriale di V? Dare un esempio di sottospazio vettoriale proprio (cioè diverso da tutto \mathbb{R}^3) di \mathbb{R}^3 .

- 2. Si consideri il sistema lineare : $\begin{cases} x-y-z+t &= 0\\ 3x-3y+z-t &= 0\\ x-y-2z+2t &= 0 \end{cases}$
 - (i) Con il metodo di eliminazione di Gauss, calcolarne le soluzioni;
 - (ii) dire (giustificando la risposta) se l'insieme delle soluzioni di tale sistema è un sottospazio di \mathbb{R}^4 e, in caso affermativo, calcolarne la dimensione e scriverne una base.

- 3. Sia V uno spazio vettoriale sul campo reale.
 - (i) Cosa vuol dire che V ha dimensione 3?
 - (ii) Se V ha dimensione 3 e $S = \{v, w, u, z\}$ è un sistema di vettori di V a due a due distinti, possiamo dire che S è linearmente dipendente? \bigcirc Si \bigcirc No Perché?

4. Calcolare una base del nucleo ed una base dell'immagine dell' applicazione lineare $g: \mathbb{R}^4 \mapsto \mathbb{R}^3$ tale che g(x,y,z,t) = (x-2y,z-y,x-y-z).

5. Calcolare il determinante della matrice $A = \begin{pmatrix} 1 & \sqrt{2} & 0 & 1 \\ 1 & -2 & 0 & 1 \\ 1 & \sqrt{2} & 0 & 1 \\ 2 & 1 & 5 & 7 \end{pmatrix}$

- **6.** Data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(x, y, z) = (x, -y, x z),
 - (i) calcolare autovalori ed autospazi di f;
 - (ii) dire, giustificando la risposta, se f è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di f.

7. Fissato nel piano della geometria elementare un riferimento cartesiano monometrico ortogonale, dimostrare che le rette r:(x,y)=t(1,4)+(1,0) e s:x+4y-1=0 sono ortogonali e calcolarne il punto di intersezione.

8. Fissato nello piano della geometria elementare un riferimento cartesiano monometrico ortogonale, rappresentare la circonferenza passante per i punti P(1,1), Q(1,9), R(-1,9) e calcolarne centro e raggio.

- 9. Fissato nello spazio della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino il piano $\pi: x+y-z-1=0$, la retta $r: \begin{cases} x-y+z=0\\ 3x-3y+2z=1 \end{cases}$ ed i punti $A(-1,1,0),\ B(0,1,0).$ Si rappresentino
 - (i) la retta per A ortogonale a π ;
 - (ii) il piano per A parallelo a r e ortogonale a π ;
 - (iii) la sfera tangente a π in B passante per l'origine.