$Real\ Analysis$

Assignment №6

Instructor: Dr. Eric Westlund

David Oniani
Luther College
oniada01@luther.edu

December 18, 2020

3.3.1 Per **Heine-Borel Theorem**, K is closed and bounded. Then since K is bounded, $\sup K$ and $\inf K$ must both exist.

Let us first prove that $\sup K \in K$. Suppose, for the sake of contradiction, that $\sup K \notin K$. Then it follows that $\sup K$ is the limit point of K. However, since K is closed, $\sup K \in K$ and we face a contradiction. Thus, $\sup K \in K$

Let us now prove that $\inf K \in K$. Similarly, suppose, for the sake of contradiction, that $\inf K \notin K$. Then it follows that $\inf K$ is the limit point of K. However, since K is closed, $\inf K \in K$ and we face a contradiction. Thus, $\inf K \in K$

Finally, we have shown that if K is compact and nonempty, then $\sup K$ and $\inf K$ both exist and are elements of K.

3.3.2 (a) \mathbb{N} is not compact.

compact.

This is the case since a sequence $a_n = (n)$ has no subsequence that is convergent and by **Theorem 3.3.1**, \mathbb{N} is not compact.

(b) $\mathbb{Q} \cap [0,1]$ is not compact.

Recall that \mathbb{Q} is dense in \mathbb{R} . Then there must exist a sequence $(a_n) \subseteq \mathbb{Q}$ s.t. $(a_n) \to \frac{1}{\sqrt{3}}$. Now, as every ϵ -neighborhood contains rational numbers, it is a limit point. However, $\frac{1}{\sqrt{3}} \notin \mathbb{Q}$ as $\frac{1}{\sqrt{3}}$ is irrational. Thus, **by Theorem 3.3.1** $\mathbb{Q} \cap [0,1]$ cannot be compact.

(c) The Cantor set is compact.

The Cantor set is an intersection of closed sets, and hence, it is closed. Additionally, the Cantor set is a subset of [0,1] and thus, it is bounded. Now, since the Cantor set is both closed and bounded, it follows by **Theorem 3.3.1** that the Cantor set is compact.

- (d) The set $\{1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}\mid n\in\mathbb{N}\}$ is not compact. Notice that $\lim_{n\to\infty}\{1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}\mid n\in\mathbb{N}\}=\lim_{n\to\infty}\sum_{n=1}^{\infty}\frac{1}{n^2}$ converges to 2. Hence, the sum is a limit point of the set. However, the sum is not in the set and thus, by Theorem 3.3.1, it follows that the set $\{1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}\mid n\in\mathbb{N}\}$ is not
- (e) The set $\{1,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\cdots\mid n\in\mathbb{N}\}$ is compact.

Let us denote this set by S. Then notice that $S_1 = 1$ and the rest of the terms can be calculated using the formula $S_n = \frac{n-1}{n}$ with n > 1. Also notice that $\lim_{n \to \infty} \frac{n}{n-1} = 1$. Hence, the set S contains its own only limit point. Additionally, it is easy to see that every element of the set lies between 0 and 1 (inclusive). Thus, by Theorem 3.3.1, we get that The set $\{1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \mid n \in \mathbb{N}\}$ is compact.

- 3.3.11 From 3.3.2 we know that there are three sets which are not compact:
 - 1. N
 - $2. \mathbb{Q} \cap [0,1]$
 - 3. $\{1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \mid n \in \mathbb{N}\}$
 - For (1) \mathbb{N} , consider an open cover $C_1 = \{(n 0.5, n + 0.5) \mid n \in \mathbb{N}\}$. Then C_1 has no finite subcover.
 - For (2) $\mathbb{Q} \cap [0,1]$, consider an open cover $C_2 = \{(-3, \frac{1}{\sqrt{3}} \frac{1}{n}), (\frac{1}{\sqrt{3}} + \frac{1}{n}, 3) \mid n \in \mathbb{N}\}.$ Then C_2 has no finite subcover.
 - For (3) $\{1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \mid n \in \mathbb{N}\}$, consider an open cover $C_3 = \{(0, \sum_{m=1}^n \frac{1}{m^2}) \mid n \in \mathbb{N}\}$. Then C_3 has no finite subcover.
- 3.4.5 Suppose, for the sake of contradiction and without a loss of generality, that A and B are nonempty subsets of $\mathbb R$ s.t. $A \cap B \neq \emptyset$ and there exist disjoint open sets U and V s.t. $A \subseteq U$ and $B \subseteq V$. Let $x \in A \cap \overline{B}$. Then it follows that $x \in U \cap \overline{V}$. Now, since $U \cap V = \emptyset$, we get that $x \in U$ and $x \in \overline{V}$. Now, notice that any ϵ -neighborhood $V_{\epsilon}(x)$ contains an element of V. Thus, $V_{\epsilon}(x)$ is not contained in U. We get $A \cap B = \emptyset$ and we face a contradiction since we assumed that $A \cap B \neq \emptyset$. Hence, A and B are separated.

3.4.7 (a) Recall that the set of irrational numbers \mathbb{I} is dense in \mathbb{R} . This means that $\forall r_1, r_2 \in \mathbb{R}$ with $r_1 < r_2, \exists i \in \mathbb{I}$ s.t. $r_1 < i < r_2$. Let $U = \mathbb{Q} \cap (-\infty, i)$ and let $V = \mathbb{Q} \cap (i, +\infty)$. Then it is easy to see that $Q = U \cap V$ where U and V are separated. Now, it is clear that $\overline{U} \subset (-\infty, i]$ and thus, $\overline{U} \cap V = \emptyset$. Similarly, $\overline{V} \subset [i, -\infty)$ and therefore, $U \cap \overline{V} = \emptyset$. Finally, we get that \mathbb{Q} is totally disconnected since given any two distinct points r_1, r_2 there exist separated sets U and V with $r_1 \in U, r_2 \in V$, and $U \cap V = \mathbb{Q}$.

 ${\rm (b)}\ \ \textbf{Yes, the set of irrational numbers is totally disconnected}.$

Let us now show this fact.

Notice that $\mathbb{I} = \mathbb{R} - \mathbb{Q}$. Recall that \mathbb{Q} is dense in \mathbb{R} . It follows that $\forall i_1, i_2 \in \mathbb{I}$ with

 $i_1 < i_2, \exists q \in \mathbb{Q} \text{ s.t. } i_1 < q < i_2.$ Now, let $U = \mathbb{I} \cap (-\infty, q)$ and let $V = \mathbb{I} \cap (q, +\infty)$. Then $U \cup V = \mathbb{I}$. Let $X = (-\infty, q)$ and let $Y = (q, +\infty)$. Then $U \subseteq X$ and $Y \subseteq V$. Notice that X and Y are totally disconnected sets. Then, according to what we showed in **Exercise 3.4.5**, U and V must be separated. Hence, \mathbb{I} is totally disconnected.

3.4.9 (a) Notice that for the length of O, the following stands:

$$|O| \le \sum_{n=1}^{\infty} 2\left(\frac{1}{2^n}\right)$$

It follows that O does not fully cover \mathbb{R} and thus, $F = O^c$ is nonempty. Now, O contains all rational numbers and thus $F = O^c \subseteq \mathbb{I}$. Furthermore, O is an open set as it is constructed by an arbirary countable union of open neighborhoods. Hence, $F = O^c$ must be closed. Hence, we have shown that F is a closed, nonempty set consisting only of irrational numbers.

(b) No, F does not contain any nonempty open intevals and yes, F is totally disconnected.

Let us now prove these facts.

Let $r_1, r_2 \in \mathbb{R}$ with $r_1 < r_2$. Recall that \mathbb{Q} is dense in \mathbb{R} . Then $\exists q \in \mathbb{Q}$ s.t. $r_1 < q < r_2$. Now, since $q \in O$, $(r_1, r_2) \cap O = \emptyset$ and thus $(r_1, r_2) \not\subseteq F$. Hence, F does not contain any nonempty open intevals.

F is totally disconnected since it is a subset of irrational numbers \mathbb{I} (shown in **Exercise 3.4.9** (a)). We have shown in **Exercise 3.4.7** (b) that the set of irrational numbers \mathbb{I} is totally disconnected. Hence, F is also totally disconnected.