Lecture 5.2: Orthogonal matrices

Optimization and Computational Linear Algebra for Data Science

Orthogonal matrices

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is called an <u>orthogonal matrix</u> if its columns are an <u>orthonormal family</u>.

Example:
$$Td_n = \begin{pmatrix} 1 & 0 & -1 \\ 0 & \ddots & 1 \end{pmatrix}$$
 is an arthogonal motion motion of angle of angle of sino coso is orthogonal.

A proposition

Proposition

Let $A \in \mathbb{R}^{n \times n}$. The following points are equivalent:

1. A is orthogonal.

Orthogonal matrices & norm

Proposition

Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Then A preserves the dot product in the sense that for all $x, y \in \mathbb{R}^n$,

$$\langle \underline{\underline{A}}\underline{x}, \underline{\underline{A}}\underline{y} \rangle = \langle \underline{\underline{x}}, \underline{\underline{y}} \rangle.$$

In particular if we take $\underline{x=y}$ we see that A preserves the Euclidean norm: $\|Ax\|=\|x\|$.

$$\frac{\text{Proof}}{\text{Proof}}$$
: $\langle Ax, Ay \rangle = (Ax)^T (Ay) = x^T A^T A y$

$$= x^T y = \langle x, y \rangle = Idn$$