

November 2, 2011

KATAMY Corporation 302 E. Ohmer Rd., Mayville, Michigan, 48744, United States

Dear Jim R Brozovich,

Enclosed you will find your file copy of a Part 15 Certification (FCC ID: Z4Y-KINGPOLAR211R).

For your reference, TCB review normally takes 1 week. Approval will then be granted when no query is sorted.

Please contact me if you have any questions regarding the enclosed material.

Sincerely,

Shawn Xing Manager

Enclosure

KATAMY Corporation

Application
For
Certification
(FCC ID: Z4Y-KINGPOLAR211R)

Superregenerative Receiver

Sample Description: Display Device Model: ACC147

Additional Model: ACC163, ACC189

SZ11090259-2

Billy Li

November 2, 2011

Billy li

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

EXHIBIT 9: Test Equipment List

TRF no.: FCC 15C_RX-SRa FCC ID: Z4Y-KINGPOLAR211R

i

MEASUREMENT/TECHNICAL REPORT

KATAMY Corporation - MODEL: ACC147 Additional Model: ACC163, ACC189 FCC ID: Z4Y-KINGPOLAR211R

This report concerns (check one:) Origi	nal Grant X	Class II Change
Equipment Type: Superregenerative Receive	<u>er</u>	
Deferred grant requested per 47 CFR 0.45	57(d)(1)(ii)? Yes	No_X
Company Name agrees to notify the Comp	If yes, defer un mission by: date	date
of the intended date of announcement of to on that date.	the product so that the gr	rant can be issued
Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for [10-1-10 Edition] provision.	Yes unintentional radiator -	
Report prepared by:		
	Shawn Xing Intertek Testing Service Kejiyuan Branch 6/F, Block D, HuaHan B Road, Nanshan District Phone: (86 755) 8601675 Fax: (86 755) 8601675	Building, Longshan , Shenzhen, China. 288

Table of Contents

1.0	General Description	2
1.1	Product Description	2
1.2	Related Submittal(s) Grants	
1.3	Test Methodology	
1.4	Test Facility	3
2.0	System Test Configuration	5
2.1	Justification	
2.2	EUT Exercising Software	
2.3	Special Accessories	
2.4	Equipment Modification	
2.5	Measurement Uncertainty	
2.6	Support Equipment List and Description	
3.0	Emission Results	8
3.1	Field Strength Calculation	9
3.2	Radiated Emission Configuration Photograph	. 10
3.3	Radiated Emission Data	
3.4	Conducted Emission Configuration Photograph	
3.5	Conducted Emission Data	. 13
4.0	Equipment Photographs	. 17
5.0	Product Labelling	. 19
6.0	Technical Specifications	. 21
7.0	Instruction Manual	22
7.0	Instruction Manual	. 23
8.0	Miscellaneous Information	. 25
8.1	Stabilization Waveform	
8.2	Emissions Test Procedures	. 27
9 0 T e	est Equipment List	30

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.pdf
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
Test Setup Photo	Conducted Emission	conducted photos.pdf
External Photo	External Photo	external photos.pdf
Internal Photo	Internal Photo	internal photos.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
Test Report	Stabilization Waveform	superreg.pdf
Cover Letter	Letter of Agency	agency.pdf

EXHIBIT 1

GENERAL DESCRIPTION

1.0 **General Description**

1.1 Product Description

The equipment under test (EUT) is a receiver for a Display Device operating at 433.93 MHz. The EUT is power by 2 x 6Vdc Lead-acid rechargeable batteries or powered by ac/dc adapter (Input: 100-240Vac, 50/60Hz; Output: 13.8Vdc, 0.8A). The EUT will emit an audible beep & flash light when the user presses the corresponding one of the two keys of the transmitter.

The Model: ACC163, ACC189 are the same as the Model: ACC147 in hardware aspect. The models are difference in packaging and marketing purpose only.

Antenna Type: Integral Antenna.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is a single application for certification of a receiver. The transmitter, associated with this receiver, has FCC ID: Z4Y-KINGPOLAR113T and has been filed at the same time.

1.3 Test Methodology

Radiated emission measurement was performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in a Semi-anechoic Chamber. Preliminary scans were performed in the Semi-anechoic Chamber only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The Semi-anechoic facility used to collect the radiated data is **Interterk Testing Services Shenzhen Ltd. Kejiyuan Branch** and located at 6F, D Block, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The device was powered from Full charging 2 x 6Vdc Lead-acid rechargable batteries or powered by ac/dc adapter (Input: 100-240Vac, 50/60Hz; Output: 13.8Vdc, 0.8A) when testing.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. The step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated with ac/dc adapter and placed at the edge of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a cardboard box, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it received continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

2.4 Equipment Modification

Any modifications installed previous to testing by KATAMY Corporation will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Kejiyuan Branch.

2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

Description	Manufacturer	Model No.	
AC/DC Adapter	KATAMY	Model: 3P10-A1015 Input: 100-240Vac, 50/60Hz; Output: 13.8Vdc, 0.8A	

All the items listed under section 2.0 of this report are

Confirmed by:

Shawn Xing Manager Intertek Testing Services Shenzhen Ltd Kejiyuan Branch. Agent for KATAMY Corporation

November 2, 2011

Date

Signature

EXHIBIT 3

EMISSION RESULTS

3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where $FS = Field Strength in dB\mu V/m$

 $RR = RA - AG \text{ in } dB\mu V$ LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V/m$

 $AF = 7.4 \text{ dB} \qquad \qquad RR = 23.0 \text{ dB}\mu\text{V}$ $CF = 1.6 \text{ dB} \qquad \qquad LF = 9.0 \text{ dB}$

AG = 29.0 dBFS = RR + LF

 $FS = 23 + 9 = 32 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 433.820 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.doc.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 4.5 dB

TEST PERSONNEL:
Billy li
Signature
Billy Li, Team Leader
Typed/Printed Name
November 2, 2011
Date

Applicant: KATAMY Corporation Date of Test: November 2, 2011

Model: ACC147 Test Mode: Receive

Table 1

FCC Class B Radiated Emissions

Polarization	Frequency	Reading	Pre-	Antenna	Net	Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(dBµV/m)	(dBµV/m)	
			(dB)				
Н	433.600	39.4	20.0	16.5	35.9	46.0	-10.1
Н	433.713	43.3	20.0	16.5	39.8	46.0	-6.2
Н	433.820	44.9	20.0	16.6	41.5	46.0	-4.5
Н	434.040	44.5	20.0	16.6	41.1	46.0	-4.9
Н	434.150	42.1	20.0	16.7	38.8	46.0	-7.2
Н	434.263	38.5	20.0	16.7	35.2	46.0	-10.8
Н	435.368	31.4	20.0	25.3	36.7	46.0	-9.3
Н	864.382	33.4	20.0	25.5	38.9	46.0	-7.1
Н	869.658	30.7	20.0	26.1	36.8	46.0	-9.2

NOTES: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. All emissions below 1000MHz are below the QP limit and all emissions above 1000MHz are below the AV limit.
- 5. Peak detector was used when the frequency above 1000MHz.

Test Engineer: Billy Li

3.4 Conducted Emissions Configuration Photograph

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photo.pdf.

3.5 Conducted Emissions Data

TEST PERSONNEL:

Worst Case Neutral-Conducted Configuration at 3.894 MHz

Judgement: Passed by 4.6 dB margin

Billy li	
Billy Li, Team Leader	

Billy Li, Team Leader
Typed/Printed Name

November 2, 2011

Date

Applicant: KATAMY Corporation

Model: ACC147 Test Mode: Receive Date of Test: November 2, 2011

Graph & Table 2 Conducted Emissions

Live Line

Result Table QP

Frequency (MHz)	QuasiPeak (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.154	59.8	L1	9.6	6.0	65.8
0.222	48.6	L1	9.7	14.1	62.7
0.542	43.5	L1	9.6	12.5	56.0
0.786	44.7	L1	9.7	11.3	56.0
1.494	47.6	L1	9.7	8.4	56.0
3.922	45.8	L1	9.8	10.2	56.0

Result Table AV

Frequency (MHz)	CAverage (dB μ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.154	47.8	L1	9.6	8.0	55.8
0.222	31.1	L1	9.7	21.6	52.7
0.542	30.8	L1	9.6	15.2	46.0
0.786	30.3	L1	9.7	15.7	46.0
1.494	31.9	L1	9.7	14.1	46.0
3.922	30.8	L1	9.8	15.2	46.0

Test Engineer: Billy Li

Applicant: KATAMY Corporation

Model: ACC147 Test Mode: Receive Date of Test: November 2, 2011

Graph & Table 3 Conducted Emissions

Neutral Line

Result Table QP

Frequency (MHz)	QuasiPeak (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.158	59.7	N	9.6	5.9	65.6
0.238	45.2	N	9.6	17.0	62.2
0.318	45.7	N	9.7	14.1	59.8
0.790	44.7	N	9.7	11.3	56.0
1.266	47.2	N	9.8	8.8	56.0
3.894	51.4	N	9.8	4.6	56.0

Result Table AV

Frequency	CAverage	Line	Corr.	Margin	Limit
(MHz)	(dB μ V)		(dB)	(dB)	(dB μ V)
0.158	46.6	N	9.6	9.0	55.6
0.238	31.5	N	9.6	20.7	52.2
0.318	31.6	Ν	9.7	18.2	49.8
0.790	30.1	N	9.7	15.9	46.0
1.266	31.8	N	9.8	14.2	46.0
3.894	32.5	N	9.8	13.6	46.0

Test Engineer: Billy Li

EXHIBIT 4 EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: external photos.doc and internal photos.doc.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

EXHIBIT 6 TECHNICAL SPECIFICATIONS

6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the stabilizing process (including a plot of the stabilized waveform) and the test procedure.

8.1 Stabilization Waveform

Previous to the testing, the superregenerative receiver was stabilized as outlined in the test procedure. For the electronic filing, the plot saved with filename: superreg.pdf shows the fundamental emission when a signal generator was used to stabilize the receiver. Please note that the antenna was placed as close as possible to the EUT for clear demonstration of the waveform and that accurate readings are not possible from this plot.

8.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Shenzhen Ltd. Kejiyuan Brach in the measurements of superregenerative receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003. Superregenerative receivers are stabilized prior to measurement by generating a signal well above the receiver threshold whose frequency is tuned until the emissions stabilize into a line spectrum. The signal is usually generated as CW with a R&S SML03 signal generator and a short whip antenna and is at a level of several hundred to several thousand mV/m. Plots of the stabilized signal will be shown. If a modulated signal is used, it will be noted.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from 30MHz to 2000MHz. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

8.2 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

EXHIBIT 9

TEST EQUIPMENT LIST

9.0 <u>Test Equipment List</u>

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-03	BiConiLog Antenna	ETS	3142C	00066460	02-Jul-11	02-Jul-12
SZ061-08	Horn Antenna	ETS	3115	00092346	15-Oct-11	15-Oct-12
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	17-May-11	17-May-12
SZ185-01	EMI Receiver	R&S	ESCI	100547	08-Mar-11	08-Mar-12
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	06-Mar-11	06-Mar-12
SZ062-02	RF Cable	RADIALL	RG 213U		24-Sep-11	24-Mar-12
SZ062-06	RF Cable	RADIALL	0.04- 26.5GHz		03-Sep-11	03-Mar-12
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	08-Mar-11	08-Mar-12
SZ187-01	LISN	R&S	ENV216	100072	12-Nov-10	12-Nov-11
SZ187-02	LISN	R&S	ENV216	100073	12-Nov-10	12-Nov-11
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	12-Nov-10	12-Nov-11
SZ188-03	Shielding Room	ETS	RFD-100	4100	10-Sep-11	10-Sep-12
SZ180-01	Signal Generator	R&S	SML03	103286	08-Mar-11	08-Mar-12
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	08-Mar-11	08-Mar-12