REPORT

PHD17008 Aradhya Neeraj Mathur

Q1.

NOTE: the pseudocode has been used to implement the question 4 5.1, 5.2.

The pseudocode for question 4 is as follows

$$G += R(t+1)$$

$$Q(s, a) = (Q(s, a) * count(S,a) + G) / (count(S,a) + 1)$$

While the pseudocode in book maintains a list of the returns and then calculates the average my method keeps track of the count of each state action pair and the multiplies the older Q value with the old count and adds the current updated return and then divides by the new count which is essentially equivalent to the mean.

Q4 Value diagrams

Fig 5.1

For 500000 episodes

Non usable Ace

The code has been explained in the notebook
Usable Ace

For 10000 episodes

Non usable Ace

Usable Ace

Fig 5.2

Usable Ace

Non Usable Ace

Policy diagram

Non Usable Ace

Non Usable Ace Policy Hit:0, Stick:1

Usable Ace Policy Hit:0, Stick:1

Fig 5.3

X axis: number of episodes y axis: MSE error in value

It can be observed from the graphs that the error of ordinary sampling is more than importance sampling.

Q6.

Empirical RMS error, averaged over states for TD0 and MC for different alpha values

Q7.

Q Learning Vs sarsa for sum of rewards y axis:sum of rewards x axis:episodes

54.56 equation 5.6. calculated weighted importance sampling using the following egn VISI = Ete mile Tax a 2 ex 260 (e: T(t)-1 Equation analogous for Q(s,a). If we collect and cover the state asim pairs in TES, a) we can expres QCS, a) as (S,a) = E P 6+1: T(t)-1 G t Peti:T(E)-1 = } E Peti:T(t)-1

THE TO (Ac |Si) EET(S, a) T(t) is The first time of termination after timet and Gt superesunts outurns from time tal bill tlt)