Lista de Exercícios 2

Controle Estatístico de Qualidade - 02/2020

- 1. (4.2) Com respeito ao exercício 1 da Lista de Exercícios 1, qual a porcentagem esperada de eixos que não deverão atender às especificações (34,745; 35,183)? Calcule e interprete o *Cpk* do processo. **(5,86%; 0,55)**
- 2. (4.5) Com respeito ao exercício 3.2 (olhar anexo) do livro, se as especificações do processo sal 135 ± 4, encontre a porcentagem de itens não conformes desse processo. Análise o Cp e o Cpk e explique por que não são iguais. (9,6%, Cp = 0,66, Cpk = 0,44)
- 3. (4.7) Amostras de tamanho 6 são regularmente retiradas de uma linha de produção em intervalos de tempos regulares. Para cada amostra, são calculados os valores das estatísticas \overline{X} e S. Após 30 amostras analisadas, obteve-se:

$$\sum_{i=1}^{30} \overline{X_i} = 600 \qquad \sum_{i=1}^{30} S_i = 71, 4$$

- a. Se os limites de especificação são estabelecidos a 18 \pm 7,5, qual a porcentagem esperada de itens não conformes? Obtenha e interprete os valores de Cp e Cpk. Qual deles é mais confiável? Por quê? (1,4%, Cp = 1,00, Cpk = 0,733, Cpm = 0,781)
- b. De quanto se deve reduzir a variabilidade do processo para que mais de 99% dos itens atendam às especificações? (Suponha que a média do processo não pode ser alterada.) (de 2,50 para 2,36)
- 4. (4.8) Os dados da tabela abaixo referem-se à média amostral (\overline{X}) e à amplitude (R de 20 amostras de tamanho quatro (n = 4), referentes ao volume de certo produto.

Amostra	\bar{X}	R	Amostra	\bar{X}	R 2,0	
1	1000,7	2,2	11	1000,0		
2	998,2	7,3	12	1000,0	3,5	
3	999,0	8,1	13	1001,7	3,0	
4	998,9	4,2	14	997,7	0,5 4,5	
5	1000,0	10,3	15	998,9		
6	1002,1	8,7	16	1002,4	4,1	
7	999,4	1,5	17	1000,0	5,5	
8	1001,3	4,4	18	1005,7	1,0	
9	998,0	3,5	19	1002,0	4,3	
10	998,7	6,0	20	1001,0	3,9	

Tabela 4.7 Média e amplitude de 20 amostras de tamanho 4.

Determine a porcentagem de itens fora das especificações (994,0 - 1006,0) o Cpk e o Cp, para as seguintes situações:

a. A média $\mu = 1000, 0$ e o desvio-padrão $\sigma = 2, 0$.

$$(0,27\%, Cp = 1,00, Cpk = 1,00)$$

b. A média μ aumenta para 1002,0 e o desvio-padrão mantém-se em $\sigma = 2, 0$.

$$(2,30\%, Cp = 1,00, Cpk = 0,667)$$

- c. A média μ aumenta 1002,0 e o desvio-padrão dobra, passando portanto para σ = 4, 0. (18,2%, Cp = 0,50, Cpk = 0,333)
- 5. (4.13) Determine a média e o desvio-padrão do processo, bem como a porcentagem de itens fora das especificações, para LIE = 12,00, LSE = 24,00, Cpk = 0,800 e
 Cpm = 0,857 (considere pelo menos quatro casas decimais nos cálculos e que a característica tem distribuição normal). (μ₀ = 19,20; σ₀ = 3,00; PFE = 6,3%)
- 6. (4.14) Determine a média e o desvio-padrão do processo, bem como a porcentagem de itens fora das especificações, para LIE = 88,00, LSE = 112,00, Cp = 1,00 e Cpm = 0,80 (considere pelo menos quatro casas decimais nos cálculos e que a característica tem distribuição normal). (μ_0 = 97 ou 103; σ_0 = 4,00; PFE = 1,222%)
- 7. (4.15) Determine a média e o desvio-padrão do processo para PFE=1,222%, LIE=88,00, LSE=112,00, Cpm=0,80 (considere pelo menos quatro casas decimais nos cálculos e que a característica tem distribuição normal). (μ_0 = 97 ou 103; σ_0 = 4,00)

8. (4.16) Para n = 4, os limites de um gráfico de \overline{X} são: LIC = 96, 16 e LSC = 107, 84. X tem distribuição normal com desvio-padrão 4,00. As especificações de X são: LIE = 91,00, LSE = 115,00. Com o processo ajustado, determine o risco α , a PFE e o Cpm. Com o processo desajustado (a média do processo desloca-se para 104,00), determine o risco β , a PFE e o Cpm.

(processo ajustado $\Rightarrow \alpha$ = 0,35%; PFE = 0,36%; Cpm = 0,97 Processo desajustado $\Rightarrow \beta$ = 97,26%; PFE = 0,36%; Cpm = 0,97)

Anexo

Exercício 3.2: Os dados da tabela abaixo são valores de \overline{X} e R de 25 amostras de tamanho n = 5, tomadas de um processo de produção. Determine os limites dos gráficos de controle de \overline{X} e R para esse processo.

Tabela 3.17 Média e amplitude de 25 amostras de tamanho 5.

\overline{X}	R	\bar{X}	R	\ddot{X}	R	\bar{X}	R	\bar{X}	R
134,5	3	134,1	6	133,6	8	135,0	5	135,1	4
134,2	4	132,6	4	131,9	3	134,9	7	133,7	2
131,6	4	133,8	3	141,0	9	133,5	4	132,8	1
131,5	4	134,8	7	135,4	8	131,7	3	133,5	3
135,0	5	134,0	12	134,0	6	134,0	8	134,2	2