

Équations différentielles

Exercice: (Solution)

Soit $\alpha \in \mathbb{R}.$ On considère sur] - 1; 1[l'équation différentielle :

$$(1 - t2)y'' - \alpha ty' + \alpha y = 0 : (\mathcal{E}_{\alpha}).$$

1. On suppose que $\alpha = 2$.

Déterminer les solutions de (\mathcal{E}_2) développables en série entière.

En déterminer une expression explicite.

A-t-on toutes les solutions de (\mathcal{E}_2) ?

2. On suppose que $\alpha = 3$.

Soit $n \in \mathbb{N}$ tel que $n \geqslant 3$.

Pour tout $P \in \mathbb{R}_n[X]$ on définit

$$\varphi(P) = (1 - X^2)P'' - 3XP'.$$

- (a) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- (b) Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_n[X]$.
- (c) L'endomorphisme φ est-il diagonalisable? En déduire toutes les solutions polynomiales de (\mathcal{E}_3) .
- 3. On suppose que $\alpha = 1$.

Résoudre l'équation différentielle (\mathscr{E}_1) en utilisant le changement de variable $t=\sin(x)$.