1

Disseny de la Capa de Gestió de Dades

- Introducció
- Tecnologia de les Bases de Dades Relacionals
- · Disseny Lògic:
 - Traducció diagrama de classes
 - Restriccions d'Integritat
 - Informació Derivada
- · Disseny Operacions
- Bibliografia

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

2

Què és i com s'aconsegueix la persistència?

Persistència:

- és la capacitat que molts sistemes software requereixen per emmagatzemar i obtenir dades usant un sistema d'emmagatzematge permanent.
- Els objectes es poden fer persistents en:
 - Bases de dades orientades a objectes
 - Bases de dades relacionals
 - Bases de dades objecte-relacional
 - etc.

Com hi influeix la tecnologia de les Bases de Dades?

Dependència tecnològica:

- Propietats que es volen assolir (requisits no funcionals)
- Recursos tecnològics disponibles
 - · família del llenguatge de programació
 - · família del sistema gestor de bases de dades (SGBD)

Determina:

- L'arquitectura del sistema software i els patrons que s'usaran

El disseny que fem depèn del SGBD utilitzat

Ens centrem la persistència usant SGBD relacionals

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

4

Tecnologia de les Bases de Dades Relacionals Components de dades

- Esquema de base de dades:

Unitat administrativa per agrupar components.

- Relacions (taules):

Permeten emmagatzemar informació físicament. Un esquema de relació es denota per: $R(Atr_1, Atr_2, ..., Atr_n)$

- Restriccions:

Estableixen condicions que la base de dades ha de satisfer. Són gestionades pel propi SGBD.

- Vistes:

Són relacions derivades (calculades), no emmagatzemades físicament. El seu esquema i contingut es deriven a partir d'una consulta relacional.

Tecnologia de les Bases de Dades Relacionals Components de procés

- Procediments emmagatzemats (stored procedures):

Funcions que s'emmagatzemen a la BD i es tracten com uns objectes més de la BD.

- Disparadors (triggers):

Són regles ECA (Esdeveniment, Condició, Acció) que permeten executar una Acció quan es produeix un Esdeveniment i se satisfà la Condició.

Els exemples que posarem estan fets en el SGBD Informix

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

6

Tecnologia de les Bases de Dades Relacionals Disseny lògic de la base de dades

Traducció del diagrama de classes

- Cas Domain Model: partim del diagrama normalitzat (sense les classes provinents de l'aplicació dels patrons)
- Cas Transaction Script: partim del diagrama d'especificació o el normalitzat

· Tractament de les restriccions d'integritat i informació derivada

 Fem ús dels elements proporcionats per la tecnologia relacional (Claus, Triggers, Procediments, ...)

Assignació de comportament

 Les responsabilitats assignades a la capa de gestió de dades, s' implementen fent ús dels elements proporcionats per la tecnologia relacional (Sql, Procediments, Triggers, ...)

Eventualment, es pot decidir implementar íntegrament a la capa de dades alguna responsabilitat assignada conjuntament a les capes de domini + dades

Tecnologia de les Bases de Dades Relacionals Disseny lògic de la BD

- · L'esquema conceptual conté classes d'objectes
- Els **SGBDs relacionals** implementen **taules relacionals** del tipus: taula1 (<u>atr1</u>, atr2, ..., atrn), on <u>atr1</u> = clau primària i atrn = clau forana

____ Disseny lògic

- Traducció dels elements de l'esquema conceptual a components implementables pels SGBDs relacionals.
 - Classes → taules
 - Associacions entre classes d'objectes → taules, atributs, vistes
 - Aspectes no contemplats per les taules relacionals:
 - associacions *n*-àries, amb *n* > 2
 classes associatives

 Tractament ja conegut; transformacions ja realitzades si hem normalitzat
 - associacions binàries * *
 - jerarquies d'especialització (i, per tant, herència)
 - · identificadors interns
 - · operacions associades a les classes d'objectes

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

8

Tecnologia de les Bases de Dades Relacionals Disseny lògic de la BD, associacions binàries

Es tradueix a:

Dept (<u>nom-d</u>, ciutat)

Empleat (<u>codi</u>, nom-emp, <u>nom-d</u>)

Es tradueix a:
Interval (<u>data, inici)</u>
Pista (<u>número)</u>
Manteniment (<u>núm-pista, data, inici)</u>

Nota: Es consideren intervals d'una hora

Tecnologia de les Bases de Dades Relacionals Disseny lògic de la BD, jerarquies d'especialització (2)

Estratègia	Avantatges	Desavantatges
Class Table Inheritance	Simple Canviable	Poc eficient (múltiples accessos per objecte)
Concrete Table Inheritance	Eficient (un accés per objecte)	Poc canviable (propagació de canvis fets a les superclasses)
Single Table Inheritance	Eficient (un accés per objecte) Canviable	Pèrdua d'espai (però la BD pot ajudar)

No hi ha una estratègia clarament millor

• consulteu l'administrador de Bases de Dades!

Tecnologia de les Bases de Dades Relacionals Tractament de les restriccions d'integritat

- Els SGBD relacionals proporcionen diverses funcionalitats per tractar les restriccions d'integritat:
 - restriccions de columna
 - not null
 - distinct
 - unique
 - · primary key
 - · references taula (foreign key)
 - check (condició)
 - etc.

Podem assignar directament al SGBD relacional les responsabilitats corresponents

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades 14 Tecnologia de les Bases de Dades Relacionals Tractament de les restriccions d'integritat, exemple Persona (dni. nom, adreça, e-mail) Persona Familiar (dni. soci) dni: String Soci (dni, númSoci) nom: String adreça: String Rebut (dniSoci. mes. pagat) e-mail: String [0..1] Càrrec(id-càrrec. data, import, descripció, soci, mes) {disjoint, complete} Restriccions d'Integritat textuals Soci Familiar - Clau: (Persona, dni) númSoci: Integer => Clau primària de Persona: dni - Clau: (Soci, númSoci) ⇒ Clau primària de Soci: dni i Τé ⇒ clau alternativa númSoci: unique(númSoci) - No hi pot haver dos rebuts amb el mateix soci i mes Rebut Càrrec => Clau primària de Rebut: (dniSoci, mes) mes: Mes data: Data pagat: Bool import: Diner - Tots els càrrecs d'un rebut tenen una data dins de mes desc.: String => Check de Càrrec: check(month(data) = mes)

Tecnologia de les Bases de Dades Relacionals Tractament de la informació derivada

- Els atributs i les associacions derivats es poden calcular o materialitzar
- Si es calcula:
 - Cal assignar a algú la responsabilitat de calcular el valor d'aquesta informació.
 - · A les operacions de la capa de domini
 - A la capa de gestió de dades (al propi SGBD), mitjançant vistes que, quan es consulten, proporcionen automàticament la informació especificada.
- Si es materialitza:
 - Cal assignar a algú la responsabilitat de mantenir consistent el valor d'aquesta informació
 - · A les operacions de la capa de domini
 - A la capa de gestió de dades (al propi SGBD), normalment mitjançant disparadors (triggers)
- En la decisió hi influeix el temps de càlcul, la freqüència d'accés i l'espai ocupat.

Tecnologia de les Bases de Dades Relacionals Tractament de la informació derivada, cas materialitzat, exemple dni: String

Deute = suma import de rebuts no pagats Import = suma import dels càrrecs Soci (<u>dni.</u> númSoci, deute)
Rebut (<u>dniSoci. mes.</u> pagat, import)
Càrrec(<u>id-car.</u> data, import, desc., soci, mes)

Dues alternatives:

- Assignar la responsabilitat a la capa de domini
- Assignant la responsabilitat de materialitzar al SGBD:
 - · Mitjançant disparadors

CREATE TRIGGER inc-import INSERT ON Càrrec REFERENCING new AS nou FOR EACH ROW

(UPDATE Rebut r SET r.import = r.import + nou.import WHERE nou.dniSoci = r.dniSoci AND nou.mes = r.mes)

CREATE TRIGGER dec-import DELETE ON Càrrec REFERENCING old AS vell FOR EACH ROW

(UPDATE Rebut r SET r.import = r.import - vell.import WHERE vell.dniSoci = r.dniSoci AND vell.mes = r.mes)

· Alguns SGBD poden permetre materialitzar la informació directament

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

18

Tecnologia de les Bases de Dades Relacionals Disseny d'operacions, assignació de responsabilitats al SGBD

- Els llenguatges actuals d'especificació no permeten definir un comportament actiu de l'esquema conceptual.
- En canvi, els SGBD relacionals sí que ho permeten.
- Per tant, en alguns casos els contractes d'especificació defineixen aspectes que el SGBD pot gestionar directament.

A disseny es pot assignar aquesta responsabilitat al SGBD

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

20

Tecnologia de les Bases de Dades Relacionals Disseny d'operacions, procediments emmagatzemats

- · Serveixen per:
 - Simplificar el desenvolupament d'aplicacions
 - Millorar el rendiment de la base de dades
 - Controlar les operacions que els usuaris realitzen contra la base de dades
- · Poden comprometre la portabilitat

Tecnologia de les Bases de Dades Relacionals Disseny d'operacions, procediments emmagatzemats

Soci (<u>dni.</u> númSoci, deute, <u>núm-cc</u>) Rebut (<u>dniSoci, mes.</u> pagat, import) CompteCorrent (<u>núm-cc.</u> saldo)

CREATE PROCEDURE **PagarRebut** (dniS, mesEmissió)
RETURNING INTEGER, CHAR(50);
DEFINE codi-error INTEGER;
ON EXCEPTION SET codi-error, miss-error; RETURN codi-error, miss-error END EXCEPTION;

IF ((SELECT COUNT(*) FROM rebut WHERE mes=mesEmissió AND dniSoci=dniS)=1) THEN
LET import,I-pagat = (SELECT import, pagat FROM rebut WHERE mes=mesEmissió AND dniSoci=dniS));
IF ('Y' = I-pagat) THEN RAISE EXCEPTION 2, 'El rebut ja està pagat';
ELIF LET saldo, núm-cc = (SELECT c.saldo,c.núm-cc FROM soci s, comptecorrent c WHERE s.núm-cc=c.núm-cc
and s.dni=dniS);

IF saldo < import THEN RAISE EXCEPTION 3, 'El soci no té prou saldo';

ELSE UPDATE rebut SET pagat = 'Y' WHERE mes=mesEmissió AND dniSoci=dniS;

UPDATE soci s SET s.deute = s.deute-import WHERE númSoci = s.dni;

UPDATE comptecorrent c SET c.import = c.import-import WHERE núm-cc =c.núm-cc ENDIF

ELSE RAISE EXCEPTION 1, 'El soci no té rebut aquest mes'; END IF;

RETURN 0,' Rebut Pagat';

END PROCEDURE;

Capa Gestió de Dades: Traducció Model Conceptual a Esquema Base de Dades

22

Bibliografia

- M. Fowler
 Patterns of Enterprise Application Architecture
 Addison-Wesley, 2003
- H. Garcia-Molina, J. Ullman, J. Widom Database Systems Implementation Prentice-Hall, 2000.