In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
 df

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	TCH	7
0	2011- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	1
1	2011- 11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	
2	2011- 11-01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	
3	2011- 11-01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	1
4	2011- 11-01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	1
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	1
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	1
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	1
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	1
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	1

209928 rows × 14 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209928 entries, 0 to 209927
Data columns (total 14 columns):

Duca	co camins	(COCAC 14 COCAMITS	/ •
#	Column	Non-Null Count	Dtype
0	date	209928 non-null	object
1	BEN	51393 non-null	float64
2	CO	87127 non-null	float64
3	EBE	51350 non-null	float64
4	NMHC	43517 non-null	float64
5	N0	208954 non-null	float64
6	N0_2	208973 non-null	float64
7	0_3	122049 non-null	float64
8	PM10	103743 non-null	float64
9	PM25	51079 non-null	float64
10	S0_2	87131 non-null	float64
11	TCH	43519 non-null	float64
12	T0L	51175 non-null	float64
13	station	209928 non-null	int64
dtype	es: float	64(12), int64(1),	object(1)

memory usage: 22.4+ MB

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	то
1	2011- 11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.
6	2011- 11-01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1.
25	2011- 11-01 02:00:00	1.8	0.3	2.8	0.20	34.0	76.0	3.0	34.0	21.0	8.0	1.71	7.
30	2011- 11-01 02:00:00	1.0	0.4	1.3	0.18	31.0	67.0	5.0	25.0	18.0	3.0	1.40	2.
49	2011- 11-01 03:00:00	1.3	0.2	2.4	0.22	29.0	72.0	3.0	33.0	20.0	8.0	1.75	6.
209862	2011- 08-31 22:00:00	0.4	0.1	1.0	0.06	1.0	13.0	33.0	21.0	6.0	5.0	1.26	0.
209881	2011- 08-31 23:00:00	0.9	0.1	1.8	0.16	11.0	45.0	30.0	32.0	17.0	3.0	1.34	4.
209886	2011- 08-31 23:00:00	0.6	0.1	1.1	0.05	1.0	12.0	48.0	19.0	7.0	5.0	1.26	0.
209905	2011- 09-01 00:00:00	0.6	0.1	1.3	0.15	6.0	35.0	34.0	21.0	12.0	3.0	1.32	3.
209910	2011- 09-01 00:00:00	0.7	0.1	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	1.25	0.

16460 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fcca2d3e080>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: v LinearRegression LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fccb1523fd0>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.30
                  897
          1.29
                  878
          1.28
                  856
          1.31
                  827
          1.27
                  820
          2.89
                     1
          3.06
                     1
          3.36
                     1
          2.99
                     1
          3.49
         Name: TCH, Length: 171, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 12828 2.0 3632

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fccb159c430>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

In [19]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[19]: <matplotlib.collections.PathCollection at 0x7fcca30222c0>

In [20]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [21]: en=ElasticNet()
en.fit(x_train,y_train)

Out[21]: v ElasticNet
ElasticNet()

In [22]: prediction2=rr.predict(x_test)
```

plt.scatter(y_test,prediction2)


```
In [23]: ens=en.score(x_test,y_test)
```

```
In [24]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.8279312677210368

Out [24]: 0.8141050323866895

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 12828
                  3632
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fcca2251600>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
          Text(0.5350877192982456, 0.35714285714285715, '0 3 <= 5.5 \neq 5.5 
         0.489 \times = 276 \times = [246, 182] \times = Yes')
          Text(0.5175438596491229, 0.21428571428571427, 'NMHC <= 0.205 \ngin
         i = 0.427 \setminus samples = 92 \setminus samples = [47, 105] \setminus samples = No'),
          Text(0.5087719298245614, 0.07142857142857142, 'gini = 0.499 \nsamp
         les = 41\nvalue = [33, 30]\nclass = Yes'),
          Text(0.5263157894736842, 0.07142857142857142, 'gini = 0.265 \nsamp
         les = 51\nvalue = [14, 75]\nclass = No'),
          Text(0.5526315789473685, 0.21428571428571427, 'PM10 <= 17.5 \ngini
         = 0.402\nsamples = 184\nvalue = [199, 77]\nclass = Yes'),
          Text(0.543859649122807, 0.07142857142857142, 'gini = 0.064\nsample
         es = 19\nvalue = [29, 1]\nclass = Yes'),
          Text(0.5614035087719298, 0.07142857142857142, 'gini = 0.427\nsamp
         les = 165 \cdot value = [170, 76] \cdot value = Yes'),
          Text(0.6052631578947368, 0.35714285714285715, 'NO <= 82.5 \setminus gini =
         0.439\nsamples = 167\nvalue = [89, 184]\nclass = No'),
          Text(0.5877192982456141, 0.21428571428571427, 'NO_2 <= 67.5 \setminus ngini
         = 0.426 \times = 153 \times = [76, 171] \times = No'),
          Text(0.5789473684210527, 0.07142857142857142, 'qini = 0.113\nsamp
         les = 49\nvalue = [5, 78]\nclass = No'),
```

In [39]:

```
print("Linear:", lis)
print("Lasso:", las)
print("Ridge:", rrs)
print("ElasticNet:",ens)
print("Logistic:",los)
print("Random Forest:",rfcs)
```

Linear: 0.8279633125878545 Lasso: 0.5823338875996914 Ridge: 0.8279312677210368 ElasticNet: 0.7138887521604254

Logistic: 0.7806804374240583 Random Forest: 0.8900364520048603

Best Model is Random Forest

Out[40]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	T
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	N
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	1
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	N
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	N
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	N
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	N
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	N
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	N
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	N

210720 rows × 14 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):

Duca	co camins	(COCAC 14 COCAMITS	/ •
#	Column	Non-Null Count	Dtype
0	date	210720 non-null	object
1	BEN	51511 non-null	float64
2	CO	87097 non-null	float64
3	EBE	51482 non-null	float64
4	NMHC	30736 non-null	float64
5	N0	209871 non-null	float64
6	N0_2	209872 non-null	float64
7	0_3	122339 non-null	float64
8	PM10	104838 non-null	float64
9	PM25	52164 non-null	float64
10	S0_2	87333 non-null	float64
11	TCH	30736 non-null	float64
12	T0L	51373 non-null	float64
13	station	210720 non-null	int64
dtype	es: float	64(12), int64(1),	object(1)

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	со	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	то
6	2012- 09-01 01:00:00	0.4	0.2	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.
30	2012- 09-01 02:00:00	0.4	0.2	0.7	0.24	1.0	5.0	55.0	5.0	5.0	2.0	1.33	0.
54	2012- 09-01 03:00:00	0.4	0.2	0.7	0.24	1.0	4.0	56.0	6.0	4.0	2.0	1.33	0.
78	2012- 09-01 04:00:00	0.3	0.2	0.7	0.25	1.0	5.0	54.0	6.0	5.0	2.0	1.34	0.
102	2012- 09-01 05:00:00	0.4	0.2	0.7	0.24	1.0	3.0	53.0	8.0	5.0	2.0	1.33	0.
													,
210654	2012- 02-29 22:00:00	0.6	0.3	0.5	0.09	1.0	35.0	57.0	25.0	21.0	3.0	1.12	2.
210673	2012- 02-29 23:00:00	2.0	0.4	2.4	0.21	16.0	79.0	20.0	37.0	25.0	12.0	1.33	6.
210678	2012- 02-29 23:00:00	0.7	0.3	0.6	0.09	1.0	27.0	63.0	22.0	18.0	3.0	1.11	1.
210697	2012- 03-01 00:00:00	1.5	0.4	1.7	0.21	16.0	79.0	17.0	28.0	21.0	11.0	1.34	4.
210702	2012- 03-01 00:00:00	0.6	0.3	0.5	0.09	1.0	23.0	61.0	18.0	16.0	3.0	1.11	1.

10916 rows × 14 columns

In [43]: df3=df3.drop(["date"],axis=1)

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression()
li.fit(x_train,y_train)

Out[46]:

▼ LinearRegression

LinearRegression()

```
In [47]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7fccc36d3010>


```
In [48]: lis=li.score(x_test,y_test)
```

```
In [49]: df3["TCH"].value_counts()
```

```
Out[49]: 1.30
                  737
          1.31
                  676
          1.32
                  644
          1.33
                  552
          1.29
                  529
          2.39
                     1
          2.20
                     1
          2.72
                     1
          3.11
                     1
          2.70
          Name: TCH, Length: 167, dtype: int64
```

```
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[50]: 1.0 8772

2.0 2144

Name: TCH, dtype: int64

In []:

Lasso

In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[51]: Lasso
Lasso(alpha=5)

In [52]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fccc3747370>


```
In [53]: las=la.score(x_test,y_test)
```

Ridge

```
In [54]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[55]: <matplotlib.collections.PathCollection at 0x7fccc37477f0>

In [56]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [57]: en=ElasticNet()
en.fit(x_train,y_train)

Out[57]: v ElasticNet
ElasticNet()

In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[58]: <matplotlib.collections.PathCollection at 0x7fccb2023b50>

2.4
2.2
2.0
1.8
```


2.0

2.5

3.0

1.5

0.7027769553239515

Out[60]: 0.6820735566707625

1.6

1.4

1.2

1.0

1.0

Logistic

```
In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[61]: Low
                 8772
                 2144
         High
         Name: TCH, dtype: int64
In [62]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [63]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7fccc36a6020>
          Low
                                                                       High
                Low
In [65]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [66]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [67]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(g1)
In [68]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [71]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: rfcs=grid_search.best_score_
In [73]: rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
                               plt.figure(figsize=(80,40))
                               plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[74]: [Text(0.53776041666666666, 0.9285714285714286, 'NMHC <= 0.275\ngini</pre>
                               = 0.315 \times = 4831 \times = [6147, 1494] \times = Yes'),
                                  Text(0.283854166666667, 0.7857142857142857, 'CO <= 0.35 \setminus gini = 0.35 
                               0.132 \times = 4074 \times = [6002, 460] \times = Yes'),
                                  = 0.084 \times = 3548 \times = [5413, 248] \times = Yes'),
                                  es = 2726 \setminus value = [4256, 103] \setminus class = Yes'),
                                  Text(0.041666666666666664, 0.35714285714285715, 'PM10 <= 10.5\ngi
                               ni = 0.01 \setminus samples = 1437 \setminus value = [2290, 12] \setminus samples = Yes'),
                                  Text(0.020833333333333333, 0.21428571428571427, 'NMHC <= 0.265 \ng
                               ini = 0.003 \setminus samples = 806 \setminus samples = [1291, 2] \setminus samples = Yes'),
                                  les = 787\nvalue = [1265, 0]\nclass = Yes'),
                                  Text(0.03125, 0.07142857142857142, 'gini = 0.133\nsamples = 19\nv
                               alue = [26, 2] \setminus class = Yes'),
                                  Text(0.0625, 0.21428571428571427, 'EBE <= 2.2 \ngini = 0.02 \nsample
                               es = 631\nvalue = [999, 10]\nclass = Yes'),
                                  Text(0.05208333333333333336, 0.07142857142857142, 'gini = 0.012\nsa
                                                                                                      [ ^ 4
In [75]: print("Linear:", lis)
print("Lasso:", las)
```

print("Ridge:", rrs) print("ElasticNet:",ens) print("Logistic:",los) print("Random Forest:",rfcs)

Linear: 0.7025995094680152 Lasso: -7.83493655487355e-06 Ridge: 0.7027769553239515

ElasticNet: 0.38196670444638303 Logistic: 0.8003053435114503 Random Forest: 0.9339087106113775

Best model is Random Forest