

BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação		versão: fev/25
Professor: Maurício k	(ubo	mauricio.fkubo@sp.senac.br

Sumário

1. Ap	resentação: Bacharelado em Sistemas de Informação [BSI]	3
1.1.	Definição de Sistemas de Informação	3
1.2.	O Profissional de Sistemas de Informação	3
1.3.	Habilidades de um Profissional de Sistemas de Informação	4
1.4.	Curso: Bacharelado em Sistemas de Informação	4
2. Inti	rodução aos Cursos de Tecnologia	6
2.1.	Áreas de Atuação de um Profissional de TI	7
2.2.	Desenvolvimento de Software	8
2.3.	Infraestrutura de TI e Redes	8
2.4.	Segurança da Informação e Cibersegurança	9
2.5.	Banco de Dados e Big Data	9
2.6.	Gestão e Governança de TI	10
2.7.	Inteligência Artificial, IoT e Computação em Nuvem	11
2.8.	Sistemas de Informação [SI]	11
2.8	.1. Componentes de um Sistema de Informação	12
2.8	.2. Tipos de Sistemas de Informação	13
2.8	.3. Principais Atividades	14
2.8	.4. Cargos e Perfis Profissionais	15
2.8	.5. Habilidade para o Profissional	16
2.8	.6. O Mercado de Trabalho	17
3. 0 9	Século XXI - A Era da Tecnologia Moderna	19
3.1.	A Revolução Digital e a Conectividade Global	19
3.1	.1. O Papel da Inteligência Artificial e Automação	20
3.1	.2. Big Data	22
3.1	.3. A Ascensão da Computação em Nuvem e a Era do <i>Software</i>	23
3.1	.4. Avanços na Saúde e Biotecnologia	25
3.1	.5. Tecnologia e Sustentabilidade	26
3.1	.6. Interseção entre as Tecnologias	26
3.2.	O Futuro da Tecnologia	28
3.3.	Perspectivas Tecnológicas para Sistemas de Informação	29

BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação		versão: fev/25
Professor: Maurício k	(ubo	mauricio.fkubo@sp.senac.br

4.	Lin	ha do Tempo: da Ciência da Computação ao Sistemas de Informação	30
	4.1.	Década de 1940–1950: A Fundação da Ciência da Computação	30
	4.2.	Década de 1960: A Era dos Computadores Comerciais	30
	4.3.	Década de 1970: A Consolidação de Bancos de Dados e Redes	31
	4.4.	Década de 1980: O Nascimento do Campo de Sistemas de Informação	32
	4.5.	Década de 1990: A Revolução da Internet	32
	4.6.	Século XXI: Big Data, Cloud Computing e IA	33
	4.7.	A Importância dos Sistemas de Informação nos dias Atuais	34
	4.7	.1. Tomada de Decisão Baseada em Dados [data-driven]	34
	4.7	.2. Transformação Digital e Inovação	35
	4.7	.3. Conexão entre Pessoas e Processos	35
	4.7	.4. Experiência do Cliente e Personalização	36
	4.7	.5. Segurança e Governança da Informação	37
	4.7	.6. Sustentabilidade e Responsabilidade Social	37
	4.7	.7. Uma Era Movida por Sistemas de Informação	38
5.	To	cnologia: A Espinha Dorsal de uma Empresa	20
Ο.			
	5.1.	Tecnologia nas Empresas	
		.1. Criação de Novas Oportunidades de Mercado	
		.2. Melhoria da Eficiência Operacional	
		.3. Facilitação da Tomada de Decisão Estratégica	
	5.2.	A Estratégia Empresarial	
	5.3.	Cadeia de Valor de Porter	42
	5.4.	Pessoas, Processos e Tecnologia [PPT]	
	5.5.	Ganhos: Escala, Automação e Inovação	46
	5.5	.1. Escala: Redução de Custos e Aumento da Eficiência	46
	5.5	.2. Automação: Redução de Custos e Aumento de Produtividade	46
	5.5	.3. Inovação: Diferenciação de Produto / Serviços	
	5.6.	Implementação da Tecnologia nos Processos Empresariais	47
	5.7	Cadeia Produtiva	18

1. Apresentação: Bacharelado em Sistemas de Informação [BSI]

Sistemas de Informação – [A Interseção entre Negócios e Tecnologia]: dentro do vasto campo da [TI], Sistemas de Informação [SI] se destaca como uma área que une Gestão Empresarial e Tecnologia. O grande diferencial é sua posição estratégica entre essas duas áreas, enquanto a [TI] tradicional foca na infraestrutura tecnológica [hardware, software e redes], e a Administração busca soluções para otimizar a empresa, os Sistemas de Informação [SI] conectam esses dois mundos para garantir que a tecnologia seja utilizada de forma alinhada aos objetivos organizacionais.

1.1. Definição de Sistemas de Informação

Os Sistemas de Informação [SI] podem ser definidos como a junção estruturada de **Pessoas**, **Processos e Tecnologias** [PPT], que trabalham em conjunto para coletar, armazenar, processar e distribuir informações dentro de uma organização. O objetivo é garantir que as empresas [gestores], tenham acesso as informações relevantes e confiáveis para facilitar a tomada de decisões estratégicas [data-driven] – este assunto será detalhado no tópico [2.8] deste material.

1.2. O Profissional de Sistemas de Informação

O profissional de [SI] deve ter habilidades tanto técnicas [TI], quanto gerenciais [Gestão]. Ele(a) atua na implementação, gestão e melhoria de sistemas tecnológicos, garantindo que atendam às necessidades das empresas e agreguem valor aos negócios, conforme algumas habilidades descritas a seguir:

1.3. Habilidades de um Profissional de Sistemas de Informação

- Pensamento analítico: capacidade de interpretar dados e transformálos em insights [ideias];
- Visão estratégica: compreensão das necessidades empresariais e sua relação com a tecnologia para alcançar os objetivos empresariais;
- Conhecimento técnico: programação, bancos de dados, arquitetura de TI, redes, segurança da informação entre outros conhecimentos na área de tecnologia;
- Conhecimento de negócios: ter uma compreensão do ambiente de negócios e saber como a tecnologia pode ser aplicada para melhorar processos e resultados é essencial;
- Gestão de projetos: habilidades para planejamento e coordenação de implementação de soluções tecnológicas.

1.4. Curso: Bacharelado em Sistemas de Informação

O curso **Bacharelado em Sistemas de Informação [BSI],** prepara profissionais para projetar, desenvolver e administrar sistemas e tecnologias de informação. Durante o curso, os estudantes aprendem a coordenar equipes de desenvolvimento de sistemas e a ter um pensamento computacional para propor e gerenciar sistemas de informação eficientes.

Os estudantes são incentivados a desenvolver habilidades empreendedoras e criativas, fundamentais no mercado de trabalho. O curso abrange uma variedade de disciplinas que incluem, mas não se limitam a programação. Na parte técnica serão apresentadas algumas disciplinas, fundamentais para o aprendizado, tais como: banco de dados,

redes de computadores, segurança da informação, engenharia de *software*, gestão de projetos de [TI], entre outras – para mais detalhes, consulte a grade curricular, disponível no anexo [01].

Além das competências técnicas, o curso também enfatiza a importância de *softskills* - [Habilidades Interpessoais e Comportamentais] como trabalho em equipe, comunicação e liderança. Os profissionais em Sistemas de Informação podem atuar em diversas áreas, como administração de redes, análise de sistemas, arquitetura da informação, gestão de banco de dados e gestão de projetos, além de áreas correlatas a tecnologia aplicada aos negócios.

"Nosso curso <u>não é apenas sobre códigos e algoritmos, mas sobre resolver problemas reais, criar soluções eficientes e atuar estrategicamente no mercado empresarial.</u> Aqui, vocês serão desafiados a pensar criticamente, trabalhar em equipe e se preparar para um futuro repleto de oportunidades".

Sejam bem-vindos ao futuro! Sejam bem-vindos ao mundo dos Sistemas de Informação [SI]

Abraços,

Prof. Maurício Kubo

2. Introdução aos Cursos de Tecnologia

Popularmente falando, quando alguém diz que estuda Tecnologia da Informação [TI], as pessoas costumam associar a algumas áreas específicas, geralmente relacionadas ao suporte técnico e programação. Algumas das associações mais comuns incluem:

Conserto de computadores e suporte técnico: muitas pessoas acreditam que estudar [TI], significa formatar computadores, instalar programas, remover vírus e configurar redes *wi-fi*. Isso acontece porque, por muito tempo, o conhecimento em informática foi visto como sinônimo de conserto de máquinas e periféricos - *Quem nunca ouviu isso?*

- "Ah, você faz TI? Meu computador está lento, pode dar uma olhada?" -

Programação e desenvolvimento de software: outro grande estereótipo é a associação de [TI], com programação e criação de *sites*, *apps* e sistemas. Embora muitas áreas dentro da tecnologia envolvam codificação, nem todo profissional de [TI], necessariamente programa – *este é o seu caso?*

- "Você faz TI? Então consegue criar um aplicativo para mim?" -

Hackers e segurança digital: muitas pessoas acreditam que quem estuda [TI], sabe invadir sistemas, roubar senhas ou "hackear" redes sociais. Isso vem da cultura popular e de filmes que retratam os profissionais de tecnologia como especialistas em invasões cibernéticas - Isso é o que meus amigos pensam!

- "Você faz TI? Consegue invadir o wi-fi do meu vizinho ou recuperar minha conta hackeada?" -

Jogos e e-sports: outra associação comum é com o mundo dos games. Algumas pessoas pensam que estudar [TI], significa desenvolver jogos ou ser um gamer profissional, já que muitos profissionais da área são entusiastas de tecnologia e videogames - *Isso é que a minha mãe pensa!*

- "Você faz TI? Então joga muito, né? Ou cria jogos?" -

Inteligência artificial e tecnologia futurista: com o crescimento da [IA], e da automação, algumas pessoas já associam [TI], a robôs, *machine learning* e inteligência artificial, acreditando que todo estudante da área trabalha com essas inovações - *Você já está neste nível?*

- "Você faz TI? Então está criando o próximo ou o concorrente do ChatGPT?" -

2.1. Áreas de Atuação de um Profissional de TI

A área de Tecnologia da Informação [TI], é ampla e diversificada, oferecendo diversas oportunidades de atuação para profissionais que desejam trabalhar com inovação, desenvolvimento tecnológico e transformação digital. O profissional de [TI], pode atuar, além dos casos citados, também é possível atuar em setores estratégicos dentro das organizações, garantindo que os sistemas, redes, segurança e processos tecnológicos estejam alinhados às necessidades do negócio.

A seguir, destacamos as principais áreas de atuação no setor de tecnologia, e até chegarmos ao campo de <u>Sistemas de Informação [SI]</u>, que é o nosso foco de atuação.

2.2. Desenvolvimento de Software

O desenvolvimento de software é uma das áreas mais conhecidas dentro da [TI], e envolve a criação, manutenção e otimização de aplicativos, sistemas e plataformas – geralmente, esses profissionais estão mais atrelados à **Ciência da Computação.** Os profissionais desta área atuam em diferentes frentes, tais como:

- Desenvolvimento web e mobile: atuar na criação de aplicações para navegadores e dispositivos móveis;
- Desenvolvimento de sistemas empresariais: softwares para otimizar processos internos, como [ERP e CRM];
- Desenvolvimento de jogos digitais: produção de games para diversas plataformas;
- Inteligência artificial e machine learning: implementação de algoritmos que permitem aprendizado e automação de processos.

2.3. Infraestrutura de TI e Redes

Essa área foca na manutenção da infraestrutura tecnológica da organização, garantindo que servidores, redes, bancos de dados e sistemas estejam sempre disponíveis e seguros, conforme as áreas:

- Administração de redes: gerenciamento da conectividade entre dispositivos e servidores;
- Gestão de data centers: monitoramento e manutenção de servidores físicos e em nuvem;

Senac	BACHARELADO EM SISTEMAS DE	E INFORMAÇÃO
Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação versão: fev/2		
Professor: Maurício	Kubo	mauricio.fkubo@sp.senac.br

- Suporte técnico e help desk: atendimento a usuários e solução de problemas técnicos;
- Computação em nuvem: implementação e manutenção de serviços como [AWS, Azure e Google Cloud].

2.4. Segurança da Informação e Cibersegurança

Com o aumento dos ataques cibernéticos, a segurança da informação tornouse uma área fundamental dentro da [TI]. Os profissionais desse setor garantem a proteção dos dados organizacionais e dos usuários.

- Análise de vulnerabilidades: identificação e correção de falhas de segurança;
- Pentest [teste de intrusão]: simulação de ataques para reforçar a proteção dos sistemas;
- Gestão de identidade e acessos: controle de permissões e autenticação de usuários;
- Compliance e governança de segurança: garantia de conformidade com leis e normas, como LGPD e ISO 27001.

2.5. Banco de Dados e Big Data

O gerenciamento de dados é essencial para a tomada de decisões nas organizações [data-driven]. Os profissionais dessa área lidam com armazenamento, processamento e análise de grandes volumes de informações, tais como:

Senac	BACHARELADO EM SISTEMAS DE	E INFORMAÇÃO
Curso: Bacharelado em Sistemas de Informação Período: 202		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação versão: fev/25		
Professor: Maurício Kubo		mauricio.fkubo@sp.senac.br

- Administração de banco de dados: gestão de sistemas como [MySQL, PostgreSQL, Oracle e SQL Server];
- Big Data e Data Analytics: processamento de grandes quantidades de dados para gerar insights estratégicos;
- Engenharia de dados: estruturação de pipelines de dados para otimizar análises;
- Ciência de dados: utilização de estatística e aprendizado de máquina para prever tendências e padrões.

2.6. Gestão e Governança de TI

A governança de [TI], busca alinhar a tecnologia às estratégias organizacionais, garantindo conformidade com normas, boas práticas e eficiência nos processos, tais como:

- Gerenciamento de projetos de [TI]: aplicação de metodologias como [5W2H, Ágeis (Scrum, Kanban) e PMBOK] para organizar e liderar projetos;
- Gestão de serviços de [TI]: implementação de frameworks como
 [ITIL] para garantir a qualidade dos serviços de TI;
- Governança e compliance: adoção de padrões como [COBIT e ISO/IEC 20000] para garantir boas práticas e conformidade regulatória.

2.7. Inteligência Artificial, IoT e Computação em Nuvem

O avanço das tecnologias emergentes tem criado novas oportunidades na área de [TI], tais como:

- Internet das coisas [IoT]: desenvolvimento e gestão de dispositivos inteligentes conectados à internet;
- Computação em nuvem: modelagem de arquiteturas escaláveis utilizando [AWS, Azure e Google Cloud];
- Inteligência artificial: implementação de soluções baseadas em aprendizado de máquina, redes neurais e automação;
- Blockchain e criptografia: desenvolvimento de soluções descentralizadas e seguras.

2.8. Sistemas de Informação [SI]

Um Sistema de Informação [SI], é uma combinação integrada de componentes que coletam, armazenam, processam e distribuem informações. Eles são utilizados por organizações para gerenciar as operações, interagir com clientes e fornecedores, além de aumentar a competitividade no mercado. Um Sistema de Informação é um conjunto organizado de recursos, como pessoas, equipamentos, *software*, dados e procedimentos, que são utilizados para coletar, processar, armazenar e distribuir informações. O objetivo principal de um [SI], é apoiar a tomada de decisão e a coordenação das atividades dentro de uma companhia.

Senac	BACHARELADO EM SISTEMAS DE INFORMAÇÃO	
Curso: Bacharelado em Sistemas de Informação Período: 20		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação versão: fev/25		
Professor: Maurício Kubo		mauricio.fkubo@sp.senac.br

2.8.1. Componentes de um Sistema de Informação

- Pessoas: usuários que interagem com o sistema, incluindo funcionários, gestores e técnicos;
- Hardware: equipamentos físicos como computadores, servidores, dispositivos de armazenamento e redes;
- Software: programas e aplicativos que processam dados, incluindo sistemas operacionais, software de aplicação e ferramentas de desenvolvimento;
- Dados: informações que são coletadas, armazenadas e processadas pelo sistema;
- Procedimentos: regras e diretrizes que definem como os dados são coletados, processados e distribuídos.

Os Sistemas de Informação são fundamentais para o sucesso das organizações modernas. Eles integram tecnologia, pessoas e processos para fornecer informações que apoiam a tomada de decisão, melhoram a eficiência operacional e proporcionam vantagem competitiva. Com a evolução constante da tecnologia, a importância dos Sistemas de Informação só tende a crescer, tornando-se ainda mais crucial para a gestão e o crescimento das empresas no ambiente dinâmico e competitivo.

2.8.2. Tipos de Sistemas de Informação

Sistemas de Processamento de Transações [TPS]

Função: coletam e processam dados de transações diárias da empresa, como vendas, pagamentos e inventários.

Exemplos: sistemas de ponto de venda e sistemas de contabilidade.

Sistemas de Informação Gerencial [SIG]

Função: fornecem informações para a gestão e suporte à tomada de decisões, gerando relatórios periódicos.

Exemplos: relatórios de desempenho e análise de vendas.

Sistemas de Apoio à Decisão [SAD]

Função: auxiliam na tomada de decisões não rotineiras e complexas, utilizando modelos analíticos e dados.

Exemplos: ferramentas de análise estatística e simulações financeiras.

Sistemas de Informação Executiva [EIS]

Função: fornecem informações agregadas e de alto nível para executivos, ajudando na tomada de decisões estratégicas.

Exemplos: dashboards de KPIs e análise de mercado.

Sistemas de Gestão do Conhecimento [SGC]

Função: facilitar a criação, compartilhamento e gerenciamento do conhecimento organizacional.

Exemplos: *intranets* e bases de conhecimento.

Sistemas de Informação Estratégica [SIE]

Função: auxiliam na formulação de estratégias competitivas e na implementação de ações.

Exemplos: análise SWOT, ferramentas de planejamento estratégico.

2.8.3. Principais Atividades

- Análise de requisitos: identificação das necessidades dos usuários e do negócio para desenvolver sistemas eficientes;
- Gestão de sistemas empresariais: implementação e manutenção de [ERP, CRM e sistemas de Business Intelligence - BI];
- Integração de sistemas: conexão entre diferentes tecnologias para garantir a comunicação eficiente dos dados;
- Transformação digital: uso de [TI], para modernizar processos e melhorar a competitividade das empresas;
- Gestão de dados e informação: organização e análise de dados para suporte à tomada de decisão empresarial.

2.8.4. Cargos e Perfis Profissionais

- Analista de sistemas: atua no desenvolvimento e manutenção de sistemas corporativos;
- Gerente de [TI]: coordena equipes e projetos tecnológicos dentro da organização;
- Analista de Business Intelligence: trabalha com análise de dados e geração de insights estratégicos;
- Arquiteto de soluções: planeja e implementa arquiteturas de [TI], alinhadas aos negócios.
- Consultor de [TI]: auxilia empresas na adoção de tecnologias para melhorar processos e inovação e aumento da competitividade empresarial.

A área de [TI], oferece inúmeras possibilidades de atuação, desde o desenvolvimento de *software* até a gestão de segurança, infraestrutura e inovação tecnológica.

Com o crescimento da transformação digital, os profissionais de [SI], tornam-se essenciais para garantir que as organizações aproveitem ao máximo as novas tecnologias, aumentando sua competitividade e eficiência no mercado global.

2.8.5. Habilidade para o Profissional

As habilidades exigidas pelo mercado para profissionais de Sistemas de Informação são um conjunto de competências técnicas e interpessoais que permitem a esses especialistas se destacarem em um ambiente de trabalho dinâmico e tecnologicamente avançado. As habilidades técnicas incluem conhecimento em programação, banco de dados, redes de computadores, segurança da informação e engenharia de software. Além disso, é essencial ter uma compreensão sólida de gestão de projetos de [TI] e análise de sistemas.

No entanto, as habilidades interpessoais, também conhecidas como *soft-skills*, são igualmente importantes. A capacidade de trabalhar em equipe, liderança e habilidades de gerenciamento de projetos são fundamentais. <u>Um profissional de sistemas de informação deve ser capaz de resolver problemas, mostrar empatia e ter flexibilidade para lidar com as mudanças constantes do setor.</u>

Outras habilidades valorizadas incluem:

Adaptabilidade: a tecnologia está sempre evoluindo, e os profissionais de [TI] devem ser capazes de se adaptar rapidamente a novas ferramentas, tecnologias e metodologias;

Comunicação eficaz: a habilidade de comunicar ideias complexas de forma clara e concisa é vital, tanto para o trabalho em equipe quanto para a interação com clientes e *stakeholders*;

Pensamento crítico e resolução de problemas: a capacidade de analisar problemas e desenvolver soluções inovadoras é altamente valorizada no campo de Sistemas de Informação;

Aprendizado contínuo: com as rápidas mudanças na tecnologia, é importante que os profissionais se comprometam com o aprendizado contínuo para manter suas habilidades atualizadas;

Visão estratégica: entender como a tecnologia da informação se encaixa nos objetivos gerais de uma organização e poder planejar estrategicamente para atender a essas necessidades é uma habilidade chave;

Conhecimento de negócios: ter uma compreensão do ambiente de negócios e saber como a tecnologia pode ser aplicada para melhorar processos e resultados é essencial.

Estas habilidades são fundamentais para o sucesso no mercado de trabalho atual e futuro para profissionais de Sistemas de Informação, e o desenvolvimento contínuo dessas áreas pode proporcionar uma vantagem competitiva significativa.

2.8.6. O Mercado de Trabalho

O mercado de trabalho para profissionais formados em Sistemas de Informação é promissor e diversificado. Com a crescente digitalização das empresas e a importância da tecnologia da informação para a competitividade e inovação, há uma demanda constante por especialistas capazes de desenvolver, implementar e gerenciar sistemas de informação eficientes.

Os profissionais em Sistemas de Informação podem encontrar oportunidades em uma variedade de setores, incluindo empresas de tecnologia, *startups*, instituições financeiras, órgãos governamentais e indústrias. Além disso, os profissionais de Sistemas de Informação podem optar por atuarem em uma única empresa, participar de projetos de consultoria de [TI], ou trabalhar de forma autônoma. Com experiência, muitos profissionais assumem cargos de liderança, gerenciando equipes e projetos de grande escala, ou se aventuram no universo das consultorias, onde podem aplicar seus conhecimentos em uma variedade de contextos empresariais.

3. O Século XXI - A Era da Tecnologia Moderna

O século XXI - [2001-2100] está marcado por uma revolução tecnológica sem precedentes. Nunca na história da humanidade a inovação evoluiu tão rapidamente, transformando a forma como vivemos, trabalhamos e nos relacionamos. Avanços como inteligência artificial [IA], *Big Data*, computação em nuvem, *internet* das coisas [IoT], e biotecnologia estão redefinindo o mundo, tornando este século a verdadeira [Era da Tecnologia Moderna].

As empresas vêm sendo forçadas a tomarem decisões e se conectarem com a sociedade, pois não basta entregar algum produto ou serviço, é necessário agregar valor para esses consumidores — daí a tecnologia vem como ferramenta para conseguir essa conexão. A tecnologias estão moldando o futuro das interações humanas, da economia global e das dinâmicas sociais. Abaixo, vamos explorar como cada uma dessas tecnologias impactam as organizações e a sociedade.

3.1. A Revolução Digital e a Conectividade Global

A internet, que já era uma força transformadora no final do século XX, tornouse onipresente no século XXI. Com a popularização dos dispositivos móveis, redes sociais e comunicação instantânea, o mundo se tornou <u>hiperconectado</u>.

A Internet das coisas [IoT]: desde *smartwatches* até casas inteligentes, a interconectividade entre dispositivos possibilita maior automação e eficiência;

5G e a conectividade ultrarrápida: o avanço das redes móveis permite novos patamares de inovação, como cidades inteligentes e veículos autônomos;

Redes sociais e cultura digital: plataformas como YouTube, Instagram e TikTok redefiniram o entretenimento, a publicidade e a forma como consumimos informações.

3.1.1. O Papel da Inteligência Artificial e Automação

A inteligência artificial [IA], está no centro da revolução tecnológica do século XXI, impactando desde a economia até o cotidiano das pessoas. Aprendizado de máquina, redes neurais e sistemas autônomos têm transformado áreas como saúde, transporte e comunicação.

A [IA], é a capacidade das máquinas de simular processos cognitivos humanos, como aprendizado, raciocínio e tomada de decisão. Ela já está presente em áreas como automação, saúde, educação e serviços financeiros.

Impacto nas Empresas:

Automação de tarefas: a [IA], substitui tarefas manuais repetitivas, permitindo que os funcionários se concentrem em atividades mais estratégicas;

Análise e previsão: empresas usam [IA], para prever demandas, identificar padrões de mercado e otimizar estratégias de *marketing*;

Assistentes virtuais e atendimento ao cliente: chatbots e assistentes como o ChatGPT / Gemini / Copilot / DeepSeek ajudam a melhorar o atendimento, reduzindo custos e aumentando a eficiência;

Inovação em produtos e serviços: tecnologias de [IA], permitem avanços como carros autônomos, diagnósticos médicos automatizados e sistemas de recomendação.

Impacto na Sociedade:

Transformação do mercado de trabalho: a automação está eliminando empregos tradicionais enquanto cria novas funções em áreas como ciência de dados e desenvolvimento de [IA];

Melhoria na saúde: a [IA], está revolucionando diagnósticos médicos, identificação precoce de doenças e desenvolvimento de medicamentos;

Desafios éticos: questões como viés em algoritmos, uso de [IA], para vigilância em massa e decisões autônomas levantam preocupações éticas e regulatórias;

Educação personalizada: a [IA], permite experiências de aprendizado adaptadas às necessidades de cada estudante, melhorando os resultados educacionais;

Automação e trabalho: máquinas inteligentes substituem funções repetitivas e ampliam a produtividade em setores como manufatura, logística e atendimento ao cliente;

Big Data e decisão baseada em dados: empresas utilizam análise de dados para prever comportamentos, personalizar serviços e otimizar processos;

Machine learning e processamento de linguagem natural: assistentes virtuais, como Siri e ChatGPT, demonstram como a [IA], está cada vez mais integrada à vida cotidiana, entendendo e interagindo com a linguagem humana.

3.1.2. Big Data

O *Big Data* refere-se à capacidade de coletar, armazenar e analisar grandes volumes de dados gerados continuamente por pessoas, dispositivos e sistemas. Essa tecnologia permite *insights* profundos e decisões orientadas por dados. A análise de grandes volumes de dados tem revolucionado a tomada de decisão em diversas indústrias.

Computação em nuvem: o acesso remoto a recursos de computação tornou-se essencial para negócios e consumidores;

Computação quântica: a exploração de sistemas quânticos promete resolver problemas que estão além do alcance dos computadores tradicionais.

Impacto nas Empresas:

Tomada de decisão baseada em dados: as empresas podem usar *Big Data* para prever tendências de mercado, entender o comportamento do consumidor e identificar novas oportunidades de negócios;

Personalização em massa: por meio da análise de dados, as empresas conseguem oferecer produtos e serviços altamente personalizados, melhorando a experiência do cliente;

Eficiência operacional: o *Big Data* otimiza processos internos, como gerenciamento de estoque, análise de risco e previsão de demanda;

Novos modelos de negócios: empresas como Amazon e Netflix utilizam *Big Data* para desenvolver modelos baseados em recomendações e preferências personalizadas.

Impacto na Sociedade:

Melhoria de serviços públicos: governos utilizam *Big Data* para otimizar o transporte público, prever desastres naturais e combater crimes;

Avanços na saúde: dados coletados de dispositivos vestíveis e registros médicos ajudam a identificar padrões de doenças e a personalizar tratamentos;

Preocupações com privacidade: o uso massivo de dados também levanta questões sobre segurança e ética, com indivíduos se preocupando com como seus dados pessoais estão sendo utilizados.

3.1.3. A Ascensão da Computação em Nuvem e a Era do Software

A transição de infraestruturas locais para a computação em nuvem democratizou o acesso à tecnologia. Serviços como [AWS, Google Cloud e Microsoft Azure], permitem que empresas e indivíduos armazenem e processem dados com eficiência e segurança.

A computação em nuvem fornece acesso remoto a recursos computacionais, como armazenamento, servidores e aplicações, por meio da *internet*. Essa tecnologia possibilita flexibilidade, escalabilidade e redução de custos.

Impacto nas Empresas:

Escalabilidade e redução de custos: empresas podem expandir seus recursos tecnológicos conforme necessário, pagando apenas pelo uso real, eliminando a necessidade de grandes investimentos em infraestrutura;

Colaboração e mobilidade: a nuvem facilita o trabalho remoto, permitindo que equipes distribuídas acessem documentos e sistemas em tempo real, de qualquer lugar;

Aceleração da inovação: a computação em nuvem dá às *startups* e empresas acesso a tecnologias avançadas como [IA e machine learning] sem grandes investimentos iniciais;

Segurança e recuperação de dados: soluções em nuvem oferecem *backups* automáticos e proteção contra desastres que minimizam perdas de dados.

Impacto na Sociedade:

Acessibilidade global: serviços baseados em nuvem, como educação *online* e telemedicina, tornam-se acessíveis para comunidades remotas ou subatendidas;

Redução do impacto ambiental: o uso eficiente de recursos de data centers em nuvem reduz a pegada de carbono em comparação com infraestruturas locais;

Dependência da conectividade: apesar dos benefícios, a computação em nuvem depende fortemente de uma infraestrutura

robusta de internet, limitando o acesso em áreas com conectividade fraca;

Escalabilidade e acessibilidade: negócios de todos os tamanhos podem crescer sem altos investimentos em *hardware;*

Segurança digital: com a digitalização massiva, novas soluções de cibersegurança emergem para proteger dados pessoais e corporativos;

Software como serviço [SaaS]: aplicações como Netflix, Spotify e Microsoft 365 são exemplos de como o modelo de consumo de *software* mudou.

3.1.4. Avanços na Saúde e Biotecnologia

A fusão entre tecnologia e medicina está prolongando a expectativa de vida e melhorando tratamentos médicos.

Medicina de precisão: o uso de [IA], e análise genética permite diagnósticos mais rápidos e tratamentos personalizados;

Impressão 3D e bioengenharia: próteses, órgãos artificiais e medicamentos personalizados são desenvolvidos com mais precisão;

Telemedicina e wearables: consultas médicas à distância e dispositivos como *smartwatches* auxiliam no monitoramento da saúde em tempo real.

3.1.5. Tecnologia e Sustentabilidade

A inovação também desempenha um papel crucial na luta contra as mudanças climáticas e na busca por um futuro sustentável.

Energias renováveis: o avanço das tecnologias em painéis solares, turbinas eólicas e baterias está tornando a energia limpa mais acessível;

Mobilidade sustentável: o crescimento dos carros elétricos e autônomos está reduzindo a emissão de carbono e tornando o transporte mais eficiente;

Construções inteligentes: o uso de materiais sustentáveis e automação na construção civil promove eficiência energética e redução de desperdícios.

3.1.6. Interseção entre as Tecnologias

Essas tecnologias frequentemente se sobrepõem, criando sinergias poderosas:

[Big Data + IA]: o *Big Data* fornece os dados necessários para que os algoritmos de [IA], aprendam e tomem decisões inteligentes. Por exemplo, empresas usam essas tecnologias para prever comportamento do cliente e personalizar experiências;

[Big Data + Cloud Computing]: a computação em nuvem oferece a infraestrutura necessária para armazenar e processar grandes volumes de dados, viabilizando análises em larga escala;

[Cloud Computing + IA]: plataformas de nuvem fornecem acesso a serviços de [IA], democratizando o uso dessa tecnologia para empresas de todos os tamanhos.

Benefícios Comuns:

Inovação e competitividade: empresas que adotam essas tecnologias conseguem inovar mais rápido e ganhar vantagem competitiva;

Aumento da eficiência: redução de custos, otimização de processos e melhoria nos resultados operacionais;

Inclusão digital e social: melhor acesso a serviços, oportunidades e informações.

Desafios e Cuidados Necessários:

Apesar dos benefícios, há desafios significativos que precisam ser enfrentados:

Privacidade e segurança: o uso de dados em grande escala e serviços baseados em nuvem aumenta o risco de violações de privacidade e ciberataques;

Desigualdade digital: o acesso limitado a tecnologias avançadas pode aumentar a desigualdade entre regiões e populações;

Impactos no emprego: a automação pode substituir milhões de empregos, exigindo que a força de trabalho seja requalificada;

Regulamentação e ética: há uma necessidade crescente de regulamentar o uso de [IA], e *Big Data* para evitar discriminação, viés e abuso.

[Big Data, Cloud Computing e IA], estão redefinindo os paradigmas das empresas e da sociedade. Essas tecnologias permitem uma tomada de decisão mais inteligente, eficiência operacional e personalização, mas exigem uma abordagem cuidadosa para mitigar riscos e maximizar benefícios. Organizações que conseguem incorporar essas inovações de forma ética e estratégica estarão melhor posicionadas para prosperar em um mundo cada vez mais digital e conectado.

Além disso, a ciência da computação continua a expandir suas fronteiras, com pesquisas em áreas emergentes como a *Internet* das Coisas [IoT], *blockchain* e cibersegurança. E nós, do Sistemas de Informação, estamos aguardando essas soluções tecnológicas para aplicarmos no mundo real, no mundo dos negócios.

3.2. O Futuro da Tecnologia

O século XXI ainda está longe do fim, mas a tecnologia continua evoluindo em um ritmo acelerado.

Computação quântica: essa revolução pode redefinir a capacidade de processamento e resolver problemas complexos em segundos;

Exploração espacial: empresas como SpaceX e Blue Origin estão levando a humanidade a um novo patamar, preparando viagens interplanetárias;

Integração cérebro-máquina: projetos como o Neuralink buscam conectar a mente humana diretamente a computadores, ampliando as capacidades cognitivas.

3.3. Perspectivas Tecnológicas para Sistemas de Informação

O século XXI é, sem dúvida, a [Era da Tecnologia Moderna]. A cada dia, novas descobertas estão moldando o presente e preparando o futuro. Se por um lado enfrentamos desafios como privacidade digital, impactos no mercado de trabalho e questões éticas, por outro, a inovação tecnológica está criando um mundo mais conectado, inteligente e eficiente.

E você, está preparado para este desafio?

"O futuro pertence àqueles que souberem adaptar-se, aprender e inovar nessa era de transformação digital".

4. Linha do Tempo: da Ciência da Computação ao Sistemas de Informação

A transição da ciência da computação para o campo de sistemas de informação reflete uma evolução natural do uso da tecnologia: do foco inicial em fundamentos matemáticos e computacionais para a aplicação prática em resolver problemas organizacionais e gerenciar informações. Essa jornada, que se desenvolveu ao longo do século XX, pode ser traçada em etapas históricas marcantes.

4.1. Década de 1940–1950: A Fundação da Ciência da Computação

Início da computação automática: durante a Segunda Guerra Mundial, matemáticos e engenheiros criaram máquinas para cálculos automáticos, como o ENIAC [1946]. Alan Turing introduziu o conceito de uma máquina universal que podia executar qualquer tarefa computável, o que estabeleceu as bases da teoria computacional.

Definição da ciência da computação: a ciência da computação emerge como um campo teórico focado em algoritmos, lógica e arquitetura de máquinas. Seu objetivo principal era construir computadores e resolver problemas computacionais.

Impacto: neste período, a computação era voltada para a criação e aperfeiçoamento de máquinas e programas com fundamentos matemáticos, sem aplicações amplas no mundo empresarial.

4.2. Década de 1960: A Era dos Computadores Comerciais

Mainframes e automação: empresas começaram a adotar os primeiros computadores comerciais, como o IBM System/360, para automação de tarefas contábeis e de processamento de dados em larga escala.

Gestão da informação: com o aumento do uso de computadores nas organizações, a necessidade de gerenciar grandes volumes de dados levou ao surgimento dos sistemas de processamento de dados [SPDs]. Esses sistemas organizavam informações de forma mais eficiente e confiável.

Educação em computação aplicada: universidades começaram a introduzir cursos voltados para aplicações práticas da ciência da computação, como análise de sistemas.

Transição: a ciência da computação começou a se desdobrar em áreas aplicadas, como processamento de dados para empresas, plantando as sementes para o futuro campo de Sistemas de Informação [SI].

4.3. Década de 1970: A Consolidação de Bancos de Dados e Redes

Bancos de dados relacionais: Edgar F. Codd, em 1970, introduziu o modelo relacional, que revolucionou a forma como os dados eram armazenados e manipulados. Ferramentas como o [Oracle Database], começaram a aparecer.

Sistemas de Informação Gerencial [SIG]: a crescente complexidade dos negócios levou à criação dos primeiros Sistemas de Informação Gerencial [SIG], que ofereciam relatórios e *insights* baseados em dados para apoiar a tomada de decisão.

Redes de computadores: a [ARPANET], precursora da *Internet*, começou a conectar sistemas, tornando a troca de informações entre computadores mais viável.

Impacto: aqui, o foco deixou de ser apenas em máquinas e algoritmos para incluir a gestão de dados e o suporte à decisão, criando uma ponte entre tecnologia e negócios.

4.4. Década de 1980: O Nascimento do Campo de Sistemas de Informação

Adoção de microcomputadores: com a introdução de PCs [como o IBM PC e o Apple Macintosh], os computadores se tornaram mais acessíveis para organizações e indivíduos.

Sistemas de informação como disciplina: nesta década, surge o campo acadêmico que estuda como integrar tecnologia da informação [TI], aos processos organizacionais. Ele combina elementos da ciência da computação, administração e análise de processos.

Software comercial e ERP: empresas como SAP e Oracle começaram a desenvolver *softwares* empresariais integrados para gerenciar recursos financeiros, humanos e operacionais.

Transição: sistemas de Informação evolui como uma disciplina independente, preocupada com a aplicação prática da [TI] <u>para resolver problemas organizacionais e gerenciar processos</u>.

4.5. Década de 1990: A Revolução da *Internet*

Popularização da internet: a *World Wide Web* [www] transformou a maneira como informações eram compartilhadas e consumidas, exigindo sistemas capazes de lidar com novos tipos de dados e interações.

Sistemas baseados na *web***:** o desenvolvimento de sistemas de informação baseados na *Internet* permitiu que empresas integrassem operações globais e interagissem diretamente com clientes.

TI estratégica: a tecnologia da informação passou a ser vista como uma ferramenta estratégica para criar vantagens competitivas, consolidando ainda mais o papel dos Sistemas de Informação no mundo dos negócios.

Impacto: sistemas de Informação se estabeleceu como uma área essencial para conectar tecnologia, dados e estratégia organizacional.

4.6. Século XXI: Big Data, Cloud Computing e IA

Explosão de dados: o crescimento exponencial de dados levou à adoção de tecnologias como *Big Data e Analytics*, permitindo decisões baseadas em grandes volumes de informações.

Computação em nuvem: sistemas de Informação evoluíram para plataformas acessíveis globalmente por meio da *Internet*, permitindo o uso de *softwares* como serviço [SaaS].

Inteligência artificial e machine learning: sistemas de informação começaram a incorporar algoritmos de aprendizado de máquina para análise preditiva, automação e personalização.

Transformação digital: as organizações passaram a depender de [SI] para liderar processos de digitalização, automatização e inovação.

Impacto: os Sistemas de Informação tornaram-se cruciais para empresas que buscam inovação, eficiência e competitividade no mercado global.

4.7. A Importância dos Sistemas de Informação nos dias Atuais

Os Sistemas de Informação [SI], tornaram-se indispensáveis em praticamente todas as áreas da sociedade moderna, desempenhando um papel estratégico no suporte à tomada de decisão, na inovação de processos organizacionais e na transformação digital. Sua evolução, desde os primórdios do processamento de dados na década de 1960 até as tecnologias avançadas do século XXI, consolidou os [SI], como o pilar central para conectar tecnologia, negócios e pessoas.

4.7.1. Tomada de Decisão Baseada em Dados [data-driven]

Uma empresa [data-driven] é aquela que baseia suas decisões e estratégias em dados concretos e análises detalhadas, em vez de intuições ou suposições. Isso significa integrar dados em todos os aspectos do negócio para melhorar a tomada de decisões, aumentar a eficiência e impulsionar o crescimento. Isso requer não apenas tecnologia, mas também uma mudança cultural dentro da organização.

Atualmente, as organizações enfrentam um ambiente de negócios cada vez mais competitivo e dinâmico. Sistemas de Informação são fundamentais para: coletar, processar e analisar dados em tempo real, permitindo decisões ágeis e embasadas.

Utilizar ferramentas como *Business Intelligence* [BI] e *Big Data Analytics* para transformar dados brutos em informações valiosas, além de se antecipar as tendências de mercado por meio de modelos preditivos, auxiliando empresas a se manterem competitivas.

Exemplo: grandes varejistas utilizam sistemas de informação para prever demandas sazonais, otimizar estoques e personalizar a experiência do cliente com base no histórico de compras.

4.7.2. Transformação Digital e Inovação

A transformação digital é impulsionada pelos Sistemas de Informação, que integram tecnologias disruptivas às operações organizacionais. Os [SI], viabilizam:

Automação de processos operacionais, reduzindo custos e aumentando a eficiência;

Adoção de tecnologias emergentes, como inteligência artificial [IA], blockchain e loT [Internet das Coisas], para criar novos modelos de negócios;

Implementação de computação em nuvem, permitindo acesso remoto a sistemas e dados de forma segura e escalável.

Exemplo: plataformas de entrega como iFood e Uber Eats utilizam [SI], para gerenciar pedidos, rastrear entregas em tempo real e otimizar rotas, oferecendo uma experiência digital eficiente.

4.7.3. Conexão entre Pessoas e Processos

Os [SI], facilitam a interação entre equipes, departamentos e até empresas parceiras, promovendo a colaboração e o alinhamento estratégico. Isso é essencial em:

Gestão de recursos humanos [RH], com plataformas que cuidam de recrutamento, treinamento e produtividade;

Sistemas integrados [ERP e CRM], que centralizam informações de diferentes áreas da empresa, permitindo que todos trabalhem em sinergia;

Ambientes de trabalho híbridos, onde os [SI], permitem a colaboração remota e a comunicação em tempo real.

Exemplo: empresas utilizam ferramentas como Microsoft Teams, Slack e Zoom para manter a produtividade e comunicação, mesmo com equipes distribuídas globalmente.

4.7.4. Experiência do Cliente e Personalização

Sistemas de Informação têm um impacto direto na forma como as empresas interagem com seus clientes. Eles possibilitam:

Personalização de produtos e serviços com base no comportamento e nas preferências dos consumidores;

Atendimento ao cliente automatizado, com *chatbots* e assistentes virtuais que oferecem suporte 24/7;

Análise do ciclo de vida do cliente, identificando oportunidades de fidelização e crescimento.

Exemplo: empresas como Netflix e Spotify utilizam [SI], para analisar o comportamento do usuário e recomendar conteúdos personalizados, aumentando a satisfação e o engajamento.

4.7.5. Segurança e Governança da Informação

Com a crescente quantidade de dados gerados diariamente, os [SI], também desempenham um papel crucial na segurança e governança:

Implementam políticas de proteção de dados, alinhadas a legislações como a LGPD [Lei Geral de Proteção de Dados] e o GDPR [Regulamento Geral de Proteção de Dados da UE];

Garantem integridade, confidencialidade e disponibilidade das informações organizacionais, protegendo contra ataques cibernéticos;

Automatizam auditorias e controles para atender a requisitos regulatórios.

Exemplo: bancos e *fintechs* utilizam [SI], para detectar fraudes, monitorar transações suspeitas e proteger dados sensíveis de clientes.

4.7.6. Sustentabilidade e Responsabilidade Social

Os Sistemas de Informação também desempenham um papel importante no apoio à sustentabilidade e práticas responsáveis:

Monitoram impactos ambientais de operações organizacionais;

Implementam soluções de [TI] verde, reduzindo o consumo de energia e otimizando recursos;

Geram relatórios de sustentabilidade, auxiliando empresas a adotar práticas éticas e transparentes.

Senac	BACHARELADO EM SISTEMAS DE INFORMAÇÃO	
Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação		versão: fev/25
Professor: Maurício Kubo		mauricio.fkubo@sp.senac.br

Exemplo: indústrias utilizam [SI], para monitorar emissões de carbono e adotar medidas para atingir metas de ESG [ambiental, social e governança].

4.7.7. Uma Era Movida por Sistemas de Informação

Atualmente, os Sistemas de Informação não são apenas ferramentas de suporte, mas sim motores de transformação e inovação em todas as áreas da sociedade. Seja no contexto corporativo, educacional, governamental ou social, os [SI] tornam a gestão de informações mais eficiente, conectam pessoas e promovem o crescimento sustentável.

À medida que a tecnologia continua a avançar, o papel dos Sistemas de Informação se torna ainda mais relevante, destacando-se como um pilar essencial para enfrentar os desafios do presente e moldar o futuro.

5. Tecnologia: A Espinha Dorsal de uma Empresa

A tecnologia é um componente vital na arquitetura empresarial, atuando como um catalisador para a transformação e competitividade das organizações. Ela permite a padronização e organização da infraestrutura de [TI] para se alinhar com os objetivos de negócios, facilitando o processo de análise, *design* e implementação de estratégias empresariais.

A arquitetura empresarial é guiada pelos requisitos de negócios e ajuda a definir como informações e tecnologia fluem juntas num modelo de negócio, tornando-se uma prioridade para empresas que buscam acompanhar novas tecnologias como nuvem, *IoT* e machine learning, que são essenciais para a transformação digital.

5.1. Tecnologia nas Empresas

A tecnologia da informação [TI] tem um papel fundamental na estratégia de negócios das organizações modernas. Ela impacta a estratégia de negócios de várias maneiras, incluindo a criação de novas oportunidades de mercado, a melhoria da eficiência operacional e a facilitação da tomada de decisão estratégica.

5.1.1. Criação de Novas Oportunidades de Mercado

A [TI] permite que as empresas explorem novos mercados e criem novos modelos de negócios. Por exemplo, o *e-business* é uma área que foi possibilitada pelo avanço da [TI], permitindo que as empresas operem *online* e alcancem clientes globais com facilidade. A [TI] também possibilita a personalização de produtos e serviços, atendendo às necessidades específicas dos clientes e criando uma vantagem competitiva.

Senac	BACHARELADO EM SISTEMAS DE INFORMAÇÃO	
Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação versão: fev/		versão: fev/25
Professor: Maurício Kubo		mauricio.fkubo@sp.senac.br

5.1.2. Melhoria da Eficiência Operacional

A automação de processos de negócios através da [TI] pode levar a uma significativa redução de custos e aumento da eficiência. Ferramentas de *software* podem otimizar a cadeia de suprimentos, gerenciar inventários e facilitar a comunicação interna. A [TI] também permite a integração de sistemas que podem simplificar operações e reduzir redundâncias.

5.1.3. Facilitação da Tomada de Decisão Estratégica

A [TI] fornece aos gestores ferramentas para coletar, processar e analisar grandes volumes de dados. Isso pode levar a *insights* mais profundos sobre o mercado, o comportamento do consumidor e as tendências internas da empresa. Com essas informações, os gestores podem tomar decisões mais assertivas e estratégicas.

Alinhamento estratégico

O conceito de alinhamento estratégico entre a [TI] e os negócios é crucial. Isso significa que a estratégia de [TI] deve estar em sincronia com a estratégia de negócios da empresa, garantindo que os investimentos em [TI] suportem os objetivos gerais da organização. Um alinhamento eficaz pode melhorar a capacidade de resposta da empresa às mudanças do mercado e às inovações tecnológicas.

Transformação digital

A [TI] é o motor da transformação digital, que é a transição de processos manuais para soluções digitais. Isso inclui a automação de tarefas, a integração de sistemas e a migração para a nuvem. Essas estratégias lideradas pela [TI] podem revolucionar a forma como as empresas operam, tornando-as mais ágeis e capazes de responder rapidamente às demandas do mercado.

Contribuições para a estratégia de negócios

A [TI] contribui para a estratégia de negócios ao melhorar a eficiência dos processos, gerenciar o relacionamento com os clientes, reduzir custos da cadeia de valor e melhorar a comunicação com colaboradores, clientes, fornecedores e outros parceiros de negócio.

Ela é uma ferramenta essencial para a competitividade das organizações. Ela não só suporta as operações diárias, mas também desempenha um papel estratégico ao possibilitar a inovação e ao fornecer as bases para a tomada de decisão estratégica e o alinhamento com os objetivos de negócios. As empresas que conseguem integrar efetivamente a [TI] em sua estratégia de negócios podem obter uma vantagem competitiva significativa, permitindo-lhes ser mais ágeis e inovadoras em um ambiente de negócios em constante mudança.

5.2. A Estratégia Empresarial

A estratégia empresarial é vital para o sucesso a longo prazo de qualquer organização. Ela não só orienta a empresa em direção aos seus objetivos, mas também ajuda a navegar pelas complexidades do ambiente de negócios. Uma estratégia bem elaborada e executada, pode significar a diferença entre liderar o mercado ou ficar para trás.

Uma estratégia empresarial é um plano abrangente formulado pela alta administração de uma empresa com o objetivo de alcançar resultados de longo prazo e sustentar vantagens competitivas no mercado. Ela serve como um roteiro para a organização, orientando decisões e ações que afetam sua posição no mercado, suas operações e seu futuro.

A estratégia empresarial define a direção em que a empresa pretende seguir e estabelece os fundamentos para a tomada de decisão em todos os níveis da organização. O propósito central é criar valor para os acionistas, clientes e outros *stakeholders*, garantindo a viabilidade e o crescimento contínuo da empresa. Para potencializar as ações em uma estratégia empresarial é necessário identificar as atividades na cadeia de valor, conforme o modelo proposto por Michael Porter.

5.3. Cadeia de Valor de Porter

A cadeia de valor de Porter é um modelo desenvolvido por Michael Porter, um renomado acadêmico e professor de estratégia empresarial, que descreve as atividades dentro de uma organização que agregam valor aos produtos ou serviços que ela oferece. O modelo foi introduzido pela primeira vez em 1985 no livro "Competitive Advantage: Creating and Sustaining Superior Performance" [Vantagem Competitiva: Criando e Sustentando um Desempenho Superior].

A ideia central da cadeia de valor é dividir as atividades de uma empresa em uma série de atividades distintas e inter-relacionadas que representam os estágios pelos quais um produto ou serviço passa desde a concepção até a entrega final ao cliente, bem como os processos de suporte que facilitam essas atividades.

Porter dividiu as atividades de uma empresa em duas categorias principais:

<u>Atividades Primárias:</u> essas são atividades relacionadas diretamente à criação, entrega e suporte de um produto ou serviço para os clientes. Elas incluem:

- Logística Interna: recebimento, armazenamento e distribuição de insumos.
- Operações: processos de transformação dos insumos em produtos finais.
- Logística Externa: armazenamento e distribuição dos produtos acabados para os clientes.
- Marketing e Vendas: promoção e venda dos produtos ou serviços.
- Serviços: suporte pós-venda, como instalação, garantia, manutenção, entre outros.

<u>Atividades de Suporte:</u> estas são atividades que apoiam e facilitam as atividades primárias, mas não estão diretamente envolvidas na criação do produto ou serviço. Elas incluem:

 Infraestrutura da Empresa: funções de apoio geral, como administração, finanças, gestão de qualidade etc.

Senac	BACHARELADO EM SISTEMAS DE	E INFORMAÇÃO
Curso: Bacharelado em Sistemas de Informação		Período: 2025.1
Disciplina: Arquitetura Empresarial e Tecnologia da Informação		versão: fev/25
Professor: Maurício Kubo		mauricio fkubo@sp senac br

- Gestão de Recursos Humanos: recrutamento, treinamento, remuneração etc.
- Aquisição: compra de insumos, fornecimento de materiais, etc.
- Desenvolvimento de Tecnologia: pesquisa e desenvolvimento de soluções tecnologia da informação para alcançar a vantagem competitiva sustentável, que este é o foco dos Sistemas de Informação.

A análise da cadeia de valor de Porter é frequentemente utilizada como uma ferramenta estratégica para identificar as fontes de vantagem competitiva de uma empresa, avaliando como as atividades individuais contribuem para o valor total entregue ao cliente e para os custos associados a esse valor. Isso permite que as empresas identifiquem áreas onde podem melhorar a eficiência, reduzir custos ou agregar valor, tornando-se mais competitivas no mercado. Nesse contexto da Cadeia de Valor, ela se torna o tripé do PPT [Pessoas, Processos e Tecnologia], que surge como uma abordagem complementar e essencial para potencializar as atividades descritas. A seguir, exploraremos como cada um desses elementos se conecta com o modelo de Porter.

5.4. Pessoas, Processos e Tecnologia [PPT]

Este conceito é um modelo estratégico que enfatiza a importância da integração harmoniosa entre os recursos humanos, os procedimentos operacionais e os sistemas tecnológicos dentro de uma organização.

As pessoas são o coração de qualquer empresa, trazendo habilidades, criatividade e a capacidade de inovação. Elas são fundamentais para interpretar dados, tomar decisões e executar processos.

Os processos, por sua vez, são as rotinas e procedimentos que garantem a consistência e a eficiência das operações, permitindo que a organização atinja seus objetivos de maneira sistemática e previsível.

<u>A tecnologia,</u> então, serve como uma ferramenta que potencializa as capacidades humanas e otimiza os processos, fornecendo soluções que podem transformar dados em *insights* valiosos e facilitar a execução de tarefas complexas.

A interdependência desses três elementos é crucial. Mudanças em um deles podem afetar significativamente os outros. Por exemplo, a introdução de uma nova tecnologia pode requerer a redefinição de processos e a requalificação das pessoas para que possam utilizá-la efetivamente. Da mesma forma, a mudança em um processo pode exigir ajustes na tecnologia utilizada e novas competências das pessoas. Portanto, uma abordagem holística que considere todos os três aspectos é essencial para o sucesso organizacional.

Alcançar um equilíbrio entre pessoas, processos e tecnologia não é uma tarefa fácil, mas as organizações que conseguem fazê-lo podem desenvolver uma vantagem competitiva significativa, através dos ganhos que serão tratados a seguir.

5.5. Ganhos: Escala, Automação e Inovação

Ao aplicar os conceitos Pessoas, Processos e Tecnologia [PPT], uma empresa pode obter ganhos significativos em termos de escala, automação e inovação. Esses elementos trabalham juntos para criar uma organização mais eficiente, ágil e competitiva no mercado. O ganho empresarial está intrinsecamente relacionado a esses três elementos-chave:

5.5.1. Escala: Redução de Custos e Aumento da Eficiência

Redução de custos: à medida que uma empresa cresce e aumenta sua escala de operações, ela geralmente pode obter economias de escala. Isso significa que o custo médio de produção de cada unidade de produto ou serviço tende a diminuir à medida que a produção total aumenta. Isso ocorre devido a uma distribuição mais eficiente dos custos fixos, como instalações, equipamentos e mão de obra.

Aumento da eficiência: com uma maior escala, uma empresa pode otimizar seus processos de produção, distribuição e logística. Isso inclui a implementação de melhores práticas, padrões de qualidade consistentes e uma utilização mais eficaz dos recursos disponíveis.

5.5.2. **Automação:** Redução de Custos e Aumento de Produtividade

Redução de custos de mão de obra: a automação de processos permite a substituição de trabalho manual por máquinas e sistemas automatizados. Isso não apenas reduz os custos trabalhistas associados, mas também pode aumentar a velocidade e a precisão das operações, reduzindo erros e retrabalhos.

Aumento da produtividade: máquinas e sistemas automatizados podem operar 24 horas por dia, 7 dias por semana, sem a necessidade de descanso ou intervalos. Isso aumenta a capacidade de produção e a eficiência operacional da empresa, permitindo que ela atenda a uma demanda maior em menos tempo.

5.5.3. Inovação: Diferenciação de Produto / Serviços

Diferenciação de produtos / serviços: inovação permite que uma empresa desenvolva produtos ou serviços únicos e diferenciados, que se destacam no mercado e agregam valor aos clientes. Essa diferenciação muitas vezes permite que a empresa cobre preços mais altos e alcance margens de lucro maiores.

5.6. Implementação da Tecnologia nos Processos Empresariais

A tecnologia, quando integrada de maneira eficaz com as pessoas e os processos, pode transformar radicalmente a eficiência e a eficácia de uma organização. No conceito de Pessoas, Processos e Tecnologia [PPT], a tecnologia serve como uma espinha dorsal que suporta e melhora as capacidades humanas e otimiza os processos. Ela permite que as pessoas se concentrem em tarefas criativas e estratégicas, deixando as operações rotineiras e repetitivas para serem automatizadas por sistemas tecnológicos. Além disso, a tecnologia pode facilitar a comunicação e colaboração entre equipes, quebrando barreiras geográficas e temporais.

Os processos, por sua vez, são aprimorados pela tecnologia através da padronização e da melhoria contínua. Sistemas de gestão integrados podem monitorar e analisar o desempenho em tempo real, permitindo ajustes ágeis

e informados. Isso não apenas aumenta a produtividade, mas também eleva a qualidade do produto ou serviço oferecido. A tecnologia também desempenha um papel crucial na coleta, armazenamento e análise de dados, o que é fundamental para a tomada de decisões baseada em evidências.

No entanto, a implementação de tecnologia não é uma panaceia; ela deve ser cuidadosamente alinhada com as pessoas e os processos para ser efetiva. O treinamento e o desenvolvimento contínuo dos colaboradores são essenciais para garantir que eles possam utilizar plenamente as ferramentas tecnológicas disponíveis. Da mesma forma, os processos devem ser flexíveis o suficiente para se adaptar às mudanças trazidas pela evolução tecnológica. Quando bem integrado, o trio de [Pessoas, Processos e Tecnologia] pode criar um ambiente de trabalho sinérgico que impulsiona a inovação e sustenta o crescimento a longo prazo, expandindo esses ganhos para toda Cadeia Produtiva.

5.7. Cadeia Produtiva

O conceito de cadeia produtiva refere-se ao conjunto de processos e atividades interconectados que são necessários para transformar matérias-primas em produtos finais e entregá-los aos consumidores. Este sistema complexo abrange desde a extração ou cultivo de recursos naturais até a fabricação, distribuição e venda de produtos acabados.

Cada etapa da cadeia produtiva é essencial para adicionar valor ao produto, e a eficiência e a coordenação entre as etapas são fundamentais para a competitividade das empresas e para a economia como um todo.

As cadeias produtivas são estruturadas em várias fases, começando pela extração de matérias-primas, que podem ser recursos minerais, agrícolas ou outros insumos naturais. Após a extração, esses materiais passam por

processos de transformação, que podem incluir refinamento, manufatura e montagem, dependendo do produto final desejado. Durante a transformação, é crucial manter padrões de qualidade e eficiência para garantir que o produto final atenda às expectativas dos consumidores e aos regulamentos do mercado.

Além da produção, a logística desempenha um papel vital na cadeia produtiva, envolvendo o transporte de matérias-primas para as fábricas e de produtos acabados para os distribuidores e varejistas. A logística eficiente é necessária para minimizar custos e tempo de entrega, o que pode ser um diferencial competitivo significativo. A última etapa da cadeia é a venda e distribuição dos produtos aos consumidores finais, que completa o ciclo produtivo.

A gestão eficaz da cadeia produtiva requer uma visão integrada de todas as suas etapas e a colaboração entre diferentes agentes econômicos, incluindo fornecedores, fabricantes, distribuidores e varejistas. A tecnologia da informação tem um papel cada vez mais importante nesse processo, permitindo a troca rápida de informações e a coordenação entre os participantes da cadeia.

As cadeias produtivas não são estáticas; elas evoluem constantemente devido a fatores como inovações tecnológicas, mudanças nas preferências dos consumidores e alterações no ambiente regulatório. As empresas que conseguem se adaptar rapidamente a essas mudanças e otimizar suas operações dentro da cadeia produtiva podem alcançar uma vantagem competitiva sustentável.