CS57300 PURDUE UNIVERSITY SEPTEMBER 29, 2021

DATA MINING

DECISION TREE

HOW TO AVOID OVERFITTING IN DECISION TREES

- Post-pruning
 - > Separate the training data into a training set and a validation set (i.e., a pruning set).
 - Fully grow a tree
 - Use the pruning set to evaluate the utility of pruning (i.e. deleting) nodes from the tree
- Pre-pruning
 - Apply a statistical test to decide whether to expand a node
 - Add penalty terms in scoring functions to prefer trees with smaller sizes

PRE-PRUNING METHODS

Stop growing tree at some point during top-down construction when there is no longer sufficient data to make reliable decisions

Gain(S,Income)= 0.029 Gini-Gain (S,Income)= 0.020 $\chi^2 = 0.57$

IS THIS SPLIT REALLY MEANINGFUL?

PRE-PRUNING METHODS

- Approach:
 - Choose threshold on feature score (e.g., information gain, gini gain)
 - Stop splitting if the best feature score is below threshold
 - Threshold can be decided through significance in statistical test or cross validation

EXAMPLE: DETERMINE CHI-SQUARE THRESHOLD ANALYTICALLY

- Chi-square has known sampling distribution, can look up significance threshold
 - Degrees of freedom= (#rows-1)(#cols-1)
 - 3*2 table:5.99 is 95% critical value
- Stop growing when chi-square feature score is not statistically significant

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

K-FOLD CROSS VALIDATION

- Randomly partition training data into k folds
- For i=1 to k
 - Learn model on D ith fold; evaluate model on ith fold
- Average results from all k trials

EXAMPLE: CHOOSING A GINI THRESHOLD WITH CROSS VALIDATION

- For i in 1.. k
 - For t in threshold set (e.g, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
 - Learn decision tree on Train; with Gini gain threshold t (i.e. stop growing when max Gini gain is less than t)
 - Evaluate learned tree on Test_i (e.g., with accuracy)
 - Set t_{max,i} to be the t with best performance on Test_i
- Set t_{max} to the average of t_{max,i} over the k trials
- Relearn the tree on all the data using t_{max} as Gini gain threshold

ALGORITHM COMPARISON

- CART
 - Evaluation criterion:Gini gain
 - Search algorithm:
 Heuristic, greedy search
 - Pruning mechanism:
 Cross-validation to select gini threshold

- C4.5
 - Evaluation criterion:Information gain
 - Search algorithm:
 Heuristic, greedy search
 - Pruning mechanism:Reduce error pruning

NAIVE BAYES VS. DECISION TREES

- Naive Bayes
 - Probabilistic classification: output posterior class distribution $p(y|\mathbf{x})$, and model the underlying probability distributions
 - Parametric model
 - Model space: parameters in prior distributions p(y) and conditional distributions $p(\mathbf{x}|y)$
 - Scoring function: likelihood function / posterior probability of observing the data
 - Search: Convex optimization

- Decision trees
 - Discriminative classification: output class labels and model the decision boundary directly
 - Non-parametric model
 - Model space: all possible trees that can be generated from the set of attributes: different attribute to use on each node, different ways to split continuous variables into intervals, different depth of the tree, etc.
 - Scoring function: misclassification rate
 - Search: Greedy, heuristic search

DECISION TREES MODEL DECISION BOUNDARIES

NEAREST NEIGHBOR

NEAREST NEIGHBOR

- Discriminative classification, non-parametric, instance-based method
- Assumes that all points are represented in p-dimensional space
- Learning
 - > Stores (i.e., memorizes) all the training data
- Prediction
 - Look for "nearby" training examples
 - Classification is made based on class labels of neighbors

FROM 1NN TO KNN

- Training set: (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , ..., (\mathbf{x}_n, y_n) where $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]$ is a feature vector of p attributes and y_i is a discrete class label
- To predict a class label for new instance j: Find the training instance point \mathbf{x}_i such that $d(\mathbf{x}_i, \mathbf{x}_j)$ is minimized; Let $f(\mathbf{x}_j) = y_i$
- Key idea: Find instances that are "similar" to the new instance and use their class labels to make prediction for the new instance
 - Note that the Notice of the

1NN DECISION BOUNDARY

For each training example *i*, we can calculate its **Voronoi cell**, which corresponds to the space of points for which i is their nearest neighbor

All points in such a Voronoi cell are labeled by the class of the training point,

forming a Voronoi tessellation of the feature space

NEAREST NEIGHBOR: MODEL SPACE

- ▶ How many neighbors to consider (i.e., choice of *K*)?
 - ... Usually a small value is used, e.g. K<10
- What distance measure d() to use?
 - ... Euclidean L₂ distance is often used
- \blacktriangleright What function g() to combine the neighbors' labels into a prediction?
 - ... Majority vote is often used

PREDICTIVE MODELING

NEAREST NEIGHBOR: SEARCH

Scoring function: Misclassification rate

K=1, training error = 0!

K=7

K=15

Is this a good choice of K?

NEAREST NEIGHBOR: CHOOSE K THROUGH CROSS VALIDATION

Divide the training dataset into *k* folds and conduct *k*-fold cross validation using different values of *K* for the KNN model (*k* and *K* here are different

things!)

Choose K=5!

18

PREDICTIVE MODELING

NEAREST NEIGHBOR: SUMMARY

- Strengths:
 - Simple model, easy to implement
 - Very efficient learning: Only need to memorize all training data points
- Weaknesses:
 - Inefficient inference: need to compute distance to all training data points and select the nearest *k* ones.
 - Curse of dimensionality:
 - As number of features increase, you need an exponential increase in the size of the data to ensure that you have nearby examples for any given data point

LOGISTIC REGRESSION

PREDICTIVE MODELING

LOGISTIC REGRESSION

- Probabilistic classification
 - Output is the posterior (positive) class probability $P(y=1|\mathbf{x})$
 - Output is in the range [0, 1]
- Can we map the posterior class probability to another range that is easier to process?

PREDICTIVE MODELING

DIFFERENT WAYS OF EXPRESSING PROBABILITY

• Suppose $p=P(y=1|\mathbf{x}), q=1-p=P(y=0|\mathbf{x})$

		min		max
standard probability	p	0	0.5	1
odds	p / q	0	1	+ ∞
log odds (logit)	log(p/q)	$-\infty$	0	(+∞)

$$log(p/q) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0$$

LOGISTIC REGRESSION KNOWLEDGE REPRESENTATION

$$p = P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}}$$

Logistic function:

logistic(x) :=
$$\frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

HOW ABOUT CATEGORICAL VARIABLES?

- Ordinal variable
 - Categorical variables for which the possible values are ordered
 - GPA: A, B, C, D, E, F
 - ▶ Map sorted ordinal variable values to an increasing sequence of numbers, e.g., A=1, B=2, C=3, D=4, E=5, F=6
- Nominal variable
 - Categorical variable for which the possible values have no natural order
 - Eye color: blue, green, brown
 - One-hot encoding: Use N-1 binary variables to represent the N possible values of a nominal variable, e.g., blue = [1, 0], green = [0, 1], brown=[0, 0]