Leaving Certificate 2020

Marking Scheme

Mathematics

Higher Level

Paper 2

Blank Page

Marking Scheme - Paper 2, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	А	В	С	D	E
No of categories	2	3	4	5	6
5 mark scales		0, 2, 5	0, 3, 4, 5	0, 2, 3, 4, 5	
10 mark scales			0, 4, 8, 10	0, 3, 5, 8, 10	
15 mark scales			0, 5, 10, 15	0, 4, 7, 11, 15	
20 mark scales					
25 mark scales					

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

NOTE: In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Rounding and units penalty to be applied only once in each section (a), (b), (c) etc. Throughout the scheme indicate by use of * where an arithmetic error occurs.

Summary of mark allocations and scales to be applied

Section A		Section B	
Question 1	450	Question 7	406
(a)	15D	(a)(i)	10C
(b)	10D	(a)(ii)	10C
		(a)(iii)	10C
Question 2		(b)	10D
(a)	10D	(c)	5D
(b)	15D	(d)	10D
•		.	
Question 3		Question 8	
(a)	15C	(a)(i)	15D
(b)	10D	(a)(ii)	10D
		(b)(i)	5B
Question 4		(b)(ii)	10D
(a)	10C	(c)	10C
(b)	15D	(d)	10D
		(e)	10D
Question 5			
(a)(i)	15C	Question 9	
(a)(ii)	5C	(a)	15C
(b)	5C	(b)	5C
		(c)	5D
Question 6			
(a)	10D		
(b)(i)	10C		
(b)(ii)	5C		

Model Solutions & Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution – 25 Marks	Marking Notes
(a)		
	Slope of <i>BC</i> $m = \frac{3+12}{-4-6} = -\frac{3}{2}$	Scale 15D (0, 4, 7, 11, 15)
	102	Low Partial Credit:
	Equation BC $3x + 2y + 6 = 0.$	Slope formula with some substitution
	Perp. Distance from A to line BC	Equation of line formula with some substitution
	$\frac{3(2)+2(-6)+6}{\sqrt{3^2+2^2}} = \frac{6-12+6}{\sqrt{13}} = \frac{0}{\sqrt{13}} = 0.$	Effort at finding are of triangle ABC
		Mid Partial Credit:
	Therefore <i>A, B</i> and <i>C</i> are collinear.	Equation of <i>BC</i>
		High Partial Credit:
		Perp. Distance formula with some
		substitution from relevant line
		Area of triangle ABC = 0 but perp. distance not explicit
		Full credit (–1)
		Distance = 0 but conclusion omitted
		Area of triangle $ABC = 0$ and perp. dist. = 0 but conclusion omitted

(b)

Slope of
$$a = \frac{1}{2}$$

Slope of $b = \tan 60^{\circ} = \sqrt{3}$

$$\tan \theta = \pm \frac{\sqrt{3} - \frac{1}{2}}{1 + \frac{\sqrt{3}}{2}} = \pm \frac{2\sqrt{3} - 1}{2 + \sqrt{3}}$$
$$= \pm \frac{(2\sqrt{3} - 1)(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})}$$
$$= \pm (-8 + 5\sqrt{3})$$
$$\theta = \tan^{-1}(-8 + 5\sqrt{3})$$

Or

 $\theta = 33.435^{\circ}$

$$\theta + \tan^{-1}\frac{1}{2} + 120^{\circ} = 180^{\circ}$$

 $\theta + 26.565^{\circ} + 120^{\circ} = 180^{\circ}$
 $\theta = 33.435^{\circ}$

Scale 10D (0, 3, 5, 8, 10)

Low Partial Credit:

Slope of
$$a = \frac{1}{2}$$

Slope of $b = \tan 60^{\circ}$

Mid Partial Credit:

Tan formula with some relevant substitution

High Partial Credit:

Tan formula fully substituted

Full credit (-1)

$$\theta = +\tan^{-1}(-8 + 5\sqrt{3})$$

Scale 10D (0, 3, 5, 8, 10)

Low Partial Credit:

Slope of
$$a = \frac{1}{2}$$

120°

Mid Partial Credit:

$$\tan^{-1}\frac{1}{2} + 120^{\circ}$$

High Partial Credit:

$$\theta + 26.565^{\circ} + 120^{\circ} = 180^{\circ}$$
 and fails to finish

Q2	Model Solution – 25 Marks	Marking Notes
(a)	Centre: $(2,-1)$ Radius: $\sqrt{2^2 + (-1)^2 + 4} = 3$ Distance from centre to B: $\sqrt{90}$ Pythagoras: $ BT ^2 = 90 - 3^2 = 81$ $\Rightarrow BT = 9$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Centre or radius Mid Partial Credit: $\sqrt{90}$ High Partial Credit: Pythagoras fully substituted (: $ BT ^2$)
(b)	Centre $(-g, 0)$. Radius = $\sqrt{g^2 + (0)^2 - c} = 5$ $\Rightarrow g^2 - c = 25$ Equation (i) Equation is $x^2 + y^2 + 2gx + c = 0$ Sub (1, 4): $1^2 + 4^2 + 2g(1) + c = 0$ $\Rightarrow 17 + 2g + c = 0$ Equation (ii) Solve (i) and (ii) $17 + 2g + (g^2 - 25) = 0$ $\Rightarrow g^2 + 2g - 8 = 0$ Solve for g: $g = 2$ and $g = -4$ Centres are $(-2, 0)$ and $(4, 0)$ Equations: $(x + 2)^2 + y^2 = 25$, $(x - 4)^2 + y^2 = 25$ Or	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Centre (- g, 0) or equivalent Some substitution of (1, 4) into general equation of circle Mid Partial Credit: 2 relevant equations in g and c High Partial Credit: Quadratic in g (g² + 2g - 8 = 0 or equivalent)

Centre:
$$(-g,0)$$

$$\sqrt{(1+g)^2 + (4-0)^2} = 5$$
$$(1+g)^2 = 9$$
$$1+g = \pm 3$$

$$g = -4 \text{ or } g = 2$$

Equations:

$$(x + 2)^2 + y^2 = 25,$$

 $(x - 4)^2 + y^2 = 25$

or

Centres (-2,0) and (4,0); radius =5

Equations:

$$(x + 2)^2 + y^2 = 25,$$

 $(x - 4)^2 + y^2 = 25$

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

Centre (-g,0) or equivalent

Some substitution into distance formula

Mid Partial Credit:

Distance formula fully substituted

High Partial Credit:

Quadratic in g

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

Diagram with (1, 0) identified

Mid Partial Credit:

-2 or 4 identified

High Partial Credit:

g = -4 and g = 2

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$\frac{6}{\sin 17^{\circ}} = \frac{ HF }{\sin 35^{\circ}}$ $ HF = \frac{6 \sin 35^{\circ}}{\sin 17^{\circ}} = 11.77$ $\frac{11.77}{\sin 95^{\circ}} = \frac{x}{\sin 33^{\circ}}$ $x = \frac{11.77(\sin 33^{\circ})}{\sin 95^{\circ}}$ $x = 6.43 \text{ m}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: $ \angle FHE = 17^{\circ}$ $ \angle GHF = 33^{\circ}$ Some relevant substitution into relevant formula High Partial Credit: $ HF $ found and stops $ HE = 16 \cdot 17$ found and stops Incorrect value of $ HF $ (or $ HE $) used correctly to find x
(b)	$ \angle BOA = 60^{\circ} \implies \angle COA = 30^{\circ}$ $\sin \angle COA = \frac{r}{DO} = \frac{1}{2}$ $\implies DO = 2r$ $\implies OC = 3r$ $Area c = \pi r^{2}$ $Area s = \pi (3r)^{2} = 9\pi r^{2}$ $Area s : Area c = 9 : 1 \implies k = 9$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: 30° Area $c = \pi r^2$ Mid Partial Credit: $ DO = 2r$ High Partial Credit: $ OC = 3r$

Q4	Model Solution – 25 Marks	Marking Notes
(a)		
	Reference angle: $\frac{\pi}{6}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit:
	2^{nd} Quadrant: $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$	30° or –30° Mention of 2 nd or 4 th quadrants
	$\frac{\theta}{2} = \frac{5\pi}{6} + 2n\pi$ 5π	Mid Partial Credit 150° or 330° or equivalent
	$\theta = \frac{5\pi}{3} + 4n\pi$ $n = 0 \implies \theta = \frac{5\pi}{3} = 300^{\circ}$	High Partial Credit: 150° and 330° or equivalent
	$4^{\text{nd}} \text{ Quadrant: } 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$	
	$\frac{\theta}{2} = \frac{11\pi}{6} + 2n\pi$ $\theta = \frac{11\pi}{3} + 4n\pi$	
	$n = 0 \implies \theta = \frac{11\pi}{3} = 660^{\circ}$	
(b)		Scale 10D (0, 3, 5, 8, 10)
	Area of $\triangle COA = \text{Area of Sector} - 21$	Low Partial Credit:
	$=\frac{1}{2}r^2\theta - 21 = 8.4$	Area of ΔCOA
		Area of Sector <i>COA</i>
	Area of $\triangle COA$: $\frac{1}{2} CO 7 \sin 1.2 = 8.4$	
	8.4	Mid Partial Credit:
	$ CO = \frac{8.4}{3.5 \sin 1.2} = 2.57$	Area of $\triangle COA = \text{Area of Sector} - 21$
	BC = 7 - 2.6 = 4.4 cm	High Partial Credit:
		$\frac{1}{2} CO 7 \sin 1.2 = 8.4$
		Full credit (–1)
		Distance $ CO $ found and stops

Q5	Model Solution – 25 Marks	Marking Notes
(a) (i)	$P(B A) = \frac{P(A \cap B)}{P(A)}$ $P(B A) = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: Formula for $P(B A)$ High Partial Credit: Formula fully substituted
(a) (ii)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{11}{12} = \frac{3}{4} + P(B) - \frac{1}{2}$ $\frac{11}{12} - \frac{1}{4} = P(B) = \frac{2}{3}$ Check if: $P(A) \times P(B) = P(A \cap B)$ $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2} = P(A \cap B)$ $\Rightarrow \text{Independent}$ or $P(B A) = P(B)$ $\frac{2}{3} = \frac{2}{3}$ $\Rightarrow \text{Independent}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Condition for independent events High Partial Credit: $P(B) = \frac{2}{3}$ $P(A) \times P(B) = P(A \cap B) \text{ fully checked for any relevant value (< 1) of } P(B) \text{ with a valid conclusion}$

(b)

Add	1	1	2	3
1	2	2	3	4
1	2	2	3	4
2	3	3	4	5
3	4	4	5	6

Rem.	1	1	2	3
1	2	2	0	1
1	2	2	0	1
2	0	0	1	2
3	1	1	2	0

Lee has 6 chances to win.
The others only have 5 chances

⇒ It is not a fair game

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

Any relevant listing of remainders/sums

High Partial Credit:

All remainders listed but no conclusion or incorrect conclusion or unsound conclusion

Q6	Мо	del So	lution – 2	25 Marks		Marking Notes
Q6 (a)	Mo	vw	D 0·3 ×0·7 0·21	P 0.6×0.25 0.15 $0.21 + 0.3$		Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Any relevant probability from line 1 written Mid Partial Credit: Any 1 relevant probability from line 3 formulated or written High Partial Credit: All 3 relevant probability from line 3
(b) (i)	$\binom{5}{2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^3 \frac{1}{4} = \frac{135}{2048}$					formulated or written Scale 10C (0, 4, 8, 10) Low Partial Credit: $\binom{5}{2}$ or $\frac{3}{4}$ or $\left(\frac{1}{4}\right)^2$ or $\left(\frac{1}{4}\right)^3$ High Partial Credit: $\binom{5}{2}\left(\frac{1}{4}\right)^x\left(\frac{3}{4}\right)^y$ where $x, y \neq 1$
(b) (ii)	P(2 or less) = P(0 pass + 1 pass + 2 pass) P(0 pass) = $\left(\frac{1}{2}\right)^n$ P(1 pass) = $\left[\binom{n}{1}\left(\frac{1}{2}\right)^1\left(\frac{1}{2}\right)^{n-1}\right]$ P(2 pass) = $\left[\binom{n}{2}\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^{n-2}\right]$ P(≤ 2) = $\frac{1}{2^n} + \left[\frac{n}{2^n}\right] + \left[\frac{n(n-1)}{2^{n+1}}\right]$ = $\frac{2 + 2n + n^2 - n}{2^{n+1}} = \frac{n^2 + n + 2}{2^{n+1}}$ $\Rightarrow a = 1, b = 1, c = 2.$				$\begin{bmatrix} 1 \\ 2 \\ \frac{n-1}{n+1} \end{bmatrix}$ $= \frac{n^2 + n}{2^{n+1}}$	Low Partial Credit: $P(0 \text{ pass} + 1 \text{ pass} + 2 \text{ pass})$ $High Partial Credit:$ $Any two of \left(\frac{1}{2}\right)^n \text{ or } \left[\binom{n}{1}\left(\frac{1}{2}\right)^1\left(\frac{1}{2}\right)^{n-1}\right] \text{ or } \left[\binom{n}{2}\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^{n-2}\right]$

Q7	Model Solution – 55 Marks	Marking Notes
(a) (i)	$9^{2} = 3 \cdot 3^{2} + h^{2}$ $h^{2} = 81 - 10 \cdot 89$ $h = 8 \cdot 37$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Pythagoras formulated High Partial Credit: $\sqrt{9^2 - 3 \cdot 3^2}$ or equivalent
(a) (ii)	$CSA = \pi r l = \pi 3.3(9) = 93.31 \text{ cm}^2$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Formula for CSA with some substitution High Partial Credit: Formula fully substituted
(a) (iii)	Circumference of cup = $2\pi r = 2\pi(3.3)$ Arc length of sector = $\frac{2\pi \times 9\theta}{360^{\circ}}$ $2\pi(3.3) = \frac{2\pi \times 9\theta}{360^{\circ}}$ $\theta = \frac{3.3(360)}{9} = 132^{\circ}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Formula for circumference or arc length with some substitution High Partial Credit: Both formulas fully substituted
(b)	$\frac{3.3}{8.37} = \frac{r}{7.37}$ $r = 2.905 \text{ cm}$ $v = \frac{1}{3}\pi (2.905)^2 7.37$ 65.16 cm^3 65.2 cm^3	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Any relevant effort to find r using similar triangles Mid Partial Credit: r found High Partial Credit: Volume formula fully substituted Note: If $r = 3.3$ used then award MPC at most

(c)		
	Volume of water in one second $\pi 0.8^2 (2.5)$	Scale 5D (0, 2, 3, 4, 5)
	$= 5.0265 \text{ cm}^3$	Low Partial Credit:
	= 5.0265 cm ³	Any relevant effort to find volume of water
	Time taken is $\frac{65.2}{\pi 0.8^2 (2.5)} = 13$	Mid Partial Credit: $\pi 0.8^2 (2.5)$
		High Partial Credit:
		Time formula fully substituted
		, ,
		Note : Accept work using candidates volume
		from part (b)
(1)		
(d)	3.3 r	Scale 10D (0, 3, 5, 8, 10)
	$\frac{3\cdot 3}{8\cdot 37} = \frac{r}{h}$	Low Partial Credit:
		Effort to link r and h
	$r = \frac{3 \cdot 3h}{8 \cdot 37}$	
		Mid Partial Credit
	$v = \frac{1}{3}\pi \left(\frac{3\cdot 3h}{8\cdot 37}\right)^2 h = 60$	r and h linked
	$60 \times 8.37^2 \times 3$	High Partial Credit:
	$h^3 = \frac{60 \times 8.37^2 \times 3}{\pi 3.3^2}$	$h^3 = \frac{60 \times 8 \cdot 37^2 \times 3}{\pi^{3/2}}$ or equivalent
		$\pi 3.3^2$
	$h = \sqrt[3]{\frac{60 \times 8.37^2 \times 3}{\pi 3.3^2}} = 7.169$	
	x = 8.37 - 7.169 = 1.2	
1		

Q8	Model Solution – 70 Marks	Marking Notes
(a) (i)	$z = \frac{x - \bar{x}}{\sigma}$ $\frac{x - 280}{90} = 0.68$	Scale 15D(0, 4, 7, 11, 15) Low Partial Credit: μ or σ identified
	$\Rightarrow x = 341.2$	Mid Partial Credit: 0.68
	x = 342	High Partial Credit: Equation in x fully substituted and stops or continues incorrectly
(a) (ii)	Eileen's z-score = $\frac{260-280}{90}$ = $-0.222 = z$	Scale 10D(0, 3, 5, 8, 10) Low Partial Credit:
	40% z-score $= -0.25$ i.e. z score for $60%$ $-0.222 > -0.25$ Eileen is eligible to re-sit the test.	μ or σ identified $ \frac{\text{Mid Partial Credit:}}{\frac{260-280}{90}} \text{ or } -0.222 \text{ or } -0.25 $
	or $P(0.222) = 0.5871$ $1 - 0.5871 = 0.4129$	High Partial Credit: $-0.222 \text{ and } -0.25$ Note: Allow -0.26
	41·29%	
(b) (i)	95% of the of the data lies in the interval $-1.96 \le z \le 1.96$	Scale 5B (0, 2, 5) Partial Credit: 95% without context

(b) (ii)

$$1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{2500}} = 0.01568$$

$$=> \hat{p}(1-\hat{p}) = 2500 \left(\frac{0.01568^2}{1.96^2} \right)$$
$$\implies \hat{p}^2 - \hat{p} + \frac{4}{25} = 0$$

$$\hat{p} = \frac{1 \pm \sqrt{1 - 4\left(\frac{4}{25}\right)}}{2} = \frac{1 \pm \frac{3}{5}}{2}$$

$$\hat{p} = \frac{4}{5} \text{ or } \frac{1}{5}$$

$$\frac{1}{5}$$
 outside the range
$$\Rightarrow \hat{p} = \frac{4}{5}$$

Scale 10D(0, 3, 5, 8, 10)

Low Partial Credit:

$$\sqrt{rac{\widehat{p}(1-\widehat{p})}{2500}}$$
 or equivalent written

Mid Partial Credit: Formula fully substituted

High Partial Credit: ${\rm Quadratic\ in\ form\ } a\hat{p}^2+b\hat{p}+c=0$

(c)

 H_0 : Mean weight of bags has not changed H_1 : Mean weight of bags has changed

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{13 \cdot 1 - 12}{\frac{4 \cdot 5}{\sqrt{80}}} = 2 \cdot 186$$
$$2 \cdot 186 > 1 \cdot 96$$

Mean weight of the bags has changed

Scale 10C (0, 4, 8, 10)

Low Partial Credit:
CI formulated with some correct substitution

1.96 H_0 or H_1

High Partial Credit: z score fully substituted

(d)

$$P(\text{weight} > 3000)$$

 $= P(\text{Average of those on bus} > \frac{3000}{40})$

$$P(\bar{x} > 75) = 1 - P(\bar{x} < 75)$$

$$z = \frac{75 - 73}{\frac{12}{\sqrt{40}}}$$

$$= 1.054$$

This gives a proportion of 0.8531.

$$1 - 0.8531 = 0.1469$$

$$= 14.69\%$$

This is the probability that the bus with 40 passengers will be above the maximum weight allowance.

Scale 10D (0, 3, 5, 8, 10)

Low Partial Credit:

 $\overline{40}$ μ or σ identified

Mid Partial Credit:

z formula fully substituted

High Partial Credit:

1.054

(e)

Median is $12.5 \Rightarrow D + E = 25$

LQ is $7.5 \Rightarrow B + C = 15$

IQR is 12 and 12 + 7.5 = 19.5

 \Rightarrow The upper quartile = 19.5

F + G = 39

G = 23 so F = 39 - 23 = 16

Now B + C + D + E + F+G = 79

The total is $8 \times 13.5 = 108$

So A + H = 108 - 79 = 29

H - A = 21 (range)

A = 4 and H = 25

D + E = 25 so D = 11, E = 14 (cannot be 12)

and 13 also cannot be 10 and 15)

B + C = 15 so B = 6, C = 9 (cannot be 7 and

8 also cannot be 5 and 10)

The list is:

11

Scale 10D (0, 3, 5, 8, 10)

Low Partial Credit:

One unknown number given One relevant equation written

Mid Partial Credit

Three unknown numbers given Three relevant equations written

High Partial Credit:

Five unknown numbers given Five relevant equations written

Q9	Model Solution – 25 Marks	Marking Notes
(a)	$d = \sqrt{\left(90 - \frac{15}{2}\right)^2 + \left(\frac{30}{2}\right)^2}$ $d = \sqrt{(82.5)^2 + (15)^2}$ $d = 83.85 \text{ km}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: \[\frac{15}{2} \text{ or } \frac{30}{2} \] Indication of Pythagoras High Partial Credit: Pythagoras fully substituted
(b)	$5^{2} = (90 - 15t)^{2} + (30t)^{2}$ $s^{2} = 8100 - 2700t + 225t^{2} + 900t^{2}$ $s^{2} = 1125t^{2} - 2700t + 8100$ $s = (1125t^{2} - 2700t + 8100)^{\frac{1}{2}}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: 90 – 15t or 30t High Partial Credit: Pythagoras fully substituted
(c)	$s = (1125t^2 - 2700t + 8100)^{\frac{1}{2}}$ $\frac{ds}{dt} = \frac{(2250t - 2700)}{2\sqrt{1125t^2 - 2700t + 8100}}$ $\Rightarrow 2250t - 2700 = 0$ $t = \frac{2700}{2250} = 1.2 \text{ hours}$ $s = (1125t^2 - 2700t + 8100)^{\frac{1}{2}}$ $s = (1125(1.2)^2 - 2700(1.2) + 8100)^{\frac{1}{2}}$ $s = 80.4984 \approx 80.5 \text{ km}$	Scale 5D(0, 2, 3, 4, 5) Low Partial Credit: Any correct differntiation Mid Partial Credit: Value of t found High Partial Credit: Formula for s fully substituted Incorrect value of t (found through calculus) substituted and worked correctly. Note: No calculus ⇒ 0 credit

Marcanna breise as ucht freagairt trí Ghaeilge

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú **síos**.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.

Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc \times 5% = $9.9 \Rightarrow$ bónas = 9 marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle [300 – bunmharc] × 15%, agus an marc bónais sin a shlánú **síos**. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmhare	Marc Bónais	
226	11	
227 – 233	10	
234 - 240	9	
241 – 246	8	
247 – 253	7	
254 – 260	6	
261 – 266	5	
267 – 273	4	
274 – 280	3	
281 – 286	2	
287 – 293	1	
294 – 300	0	