PHYSICAL QUANTITIES AND UNITS

Physical quantities

- In physics, a physical quantity is **any physical property that can be quantified**, that is, be measured using numbers. Examples of physical quantities are mass, amount of substance, length, time, temperature, electric current, light intensity, force, velocity, density, and many others.
- A physical quantity is made up of magnitude and unit.

- Types of physicsl quantities are Fundamental quantities and Derived quantities.
 - Fundamental Quantities: Fundamental quantities are those that are defined directly by the process of measurement only. They are not defined in terms of other quantities; their units are not defined in terms of other units. For example mass, length, time, temperature, electric current, amount of substance and luminous intensity..
 - Derived quantities: The quantities, which can be expressed in terms of the fundamental quantities are called derived quantities. For example volume, velocity, Pressure etc.

Base units

• Base units are the fundamental units of measurements. The following are base units;

Quantity		Base Units	
Name	Symbol	Name	Symbol
Mass	m	Kilogram	kg
Length	1	Meter	m
Time	t	Second	S
Temperature	Т	Kelvin	K
Electric Current	Ι	Ampere	A
Amount of substance	n	mole	mol
Luminous intensity	I _v	candela	cd

- All units (not above) can be broken down to base units.
- Homogeneity can be used to prove equations.
- An equation is homogenous if base units on left hand side are the same as base units on right hand side.
- This may not work every time due to the fact that it does not take pure numbers into account (E_k formula).

Multiples and Submultiples

Multiples	Prefix	Symbol
10^3	Kilo	k
10^{6}	Mega	M
10 ⁹	Giga	G
10^{12}	Tera	Т

Submultiples	Prefix	Symbol
10^{-3}	Milli	m
10^{-6}	Micro	μ
10 ⁻⁹	Nano	n
10^{-12}	Pico	p

Estimations

Mass of a person	70 kg
Height of a person	1.5 m
Walking speed	1 m/s
Speed of a car on the motorway	30 m/s
Volume of a can of a drink	300 cm ³
Density of water	1000 kgm ⁻³
Density of air	1kgm ⁻³
Weight of an apple	1 N
Current in a domestic appliance	13 A
e.m.f of a car battery	12 V
Hearing range	20 Hz to 20,000 Hz
Young's Modulus of a material	Something × 10 ¹¹

Scalar and Vector

- Scalar: Scalar quantitiy have magnitude only, cannot be -ve. Eg; speed, mass, energy, distance etc.
- Vector: Vector quantitiy have magnitude and direction, can be -ve. Eg; velocity, force, momentum, moment, displacement etc.