- 1)Faça um programa em que carregue uma matriz 6 x 4 com números inteiros. Recalcule a matriz digitada, onde cada linha será multiplicada pelo maior elemento da linha em questão. Mostre a matriz resultante. A matriz será carregada com números aleatórios de 0 a 100. O programa irá ser repetido até que seja digitado 's'.
- 2) Faça um programa que carregue uma matriz 5 x 5 com números inteiros randômicos de 0 a 100, em seguida, crie dois vetores de cinco posições cada um, que contenham, respectivamente, as somas das linhas e das colunas da matriz. Escreva a matriz e os vetores criados.
- 3) Dada uma matriz de números inteiros de dimensão 5x5, preenchida de forma randômica de 0 a 100, verificar se existem elementos repetidos.
- 4) Dada uma matriz de números inteiros de dimensão 5x5, preenchida de forma randômica de 100 a 300, verificar se existem números que são divisíveis por 3. Escrever os números encontrados.
- 5) Faça um programa que preencha um matriz 10 x 10 com números inteiros de forma randômica no intervalo 0 a 500. Em seguida, o programa solicita que seja informado um número e faz a busca pelo número digitado na matriz. Se o número informado estiver presente na matriz, o programa exibe uma mensagem "Número encontrado" e descrever a quantidade de vezes que o numero está repetido, caso contrário, exiba a mensagem "Numero não localizado". O programa deverá finalizar a busca se for digitado um número negativo.
- 6)Faça um programa que preencha um matriz 5 x 5 com números inteiros não repetidos de forma randômica no intervalo 0 a 500 e escreva a matriz gerada.
- 7) Faça um programa que preencha um matriz 10×10 com números inteiros pares não repetidos de forma randômica no intervalo 0 a 1000 e escreva a matriz gerada.

8)Faça um programa que preencha um matriz 5 x 5 preenchida de forma randômica com números de 0 a 100 da seguinte forma:

- 9) Faça um programa que preencha um matriz 5×5 de forma randômica com números de 0 a 100, em seguida, troque os elementos da 1° linha com os elementos da 1° coluna, os da 2° linha com a 2° coluna, os da 2° linha com a 2° coluna, os da 2° linha com a 2° coluna e os os da 2° linha com a 2° coluna.
- 10) Faça um programa que controle a pontuação de um campeonato de futebol. O número de equipes será definido por uma variável constante, no caso, 5 Times disputam o campeonato. Em um vetor de tamanho definido pela constante, (no caso, 5) serão armazenados os nomes dos times. Em um matriz (definidos na constante, no caso, de dimensão 5x4) é armazenada a pontuação dos jogos (os times jogam entre sí). Cada linha da matriz corresponde a uma posição no vetor, o que faz com que a primeira linha da matriz contenha os ponto dos times da primeira posição do vetor, a segunda linha da matriz corresponde a segunda posição do vetor e assim por diante.. O placar de cada jogo será definido de forma aleatória, com, no máximo, 4 gols por equipe. Vitória conta 3 pontos para o vencedor e 0 para o derrotado, empate 1 ponto para cada equipe.

 Ao final de inserção de dados, o programa deve calcular o números máximo de pontos de cada equipe. Exemplo

Vetor dos times							
	0	1	2	3	4		
	Inter	Grêmio	Santos	Vasco	Sport		

Matriz	Matriz dos jogos e pontos das equipes							
	Jogo 1	Jogo 2	Jogo 3	Jogo 4				
posição	0	1	2	3				
0	3	3	1	1				
1	0	1	3	1				
2	0	1	3	1				
3	1	0	0	0				
4	1	1	1	3				