Lehramt Mathe Vorlesung 6 Semester 1

Paul Wolf

November 28, 2019

Contents

1	Später	2
2	1.2.34 Definition 2.1 i 2.2 ii 2.3 iv 2.4 v	2 2 2 2 3
3	1.2.35 Bemerkung/Definition 3.1 i	3 3 3
4	1.2.36 Satz (Satz von Archimedes für \mathbb{Q})	3
5	1.2.37 Folgerung	4
6	1.2.38 Bemerkung	4
7	1.2.39 Satz	4
8	1.2.40 Satz 8.1 i 8.2 ii 8.3 i 8.4 ii 8.4.1 a) 8.4.2 b	5 5 5 5 5 5 5
9	1.2.41 Definition	6
10	1.2.42 Bemerkung	6

11	1.2.43	S	at	Z																							6
12	1.2.43	E	3e	m	er	k	ur	ıg																			6
	12.1 i																										6
	12.2 ii																										6

1 Später

 $x^2=2$ hat keine Lösung in $\mathbb Q$. Das Äquivalent zu $\{x\in\mathbb Q:x^2\leq 2\}$ hat keine kleinste obere Schranke in $\mathbb Q$

2 1.2.34 Definition

Es sei K ein geordneter Körper (Standardbeispiel: \mathbb{Q} , später: \mathbb{R}). Weiter sei $M \subset K$

2.1 i

 $x \in K$ heißt obere (untere) Schranke für M_1 falls $m \le x (x \le m)$ für alle $m \in M$

Mitlaufendes Beispiel:

$$M:=\{x\in\mathbb{Q}:x^2\leq 2\}$$
 Ist $x^2\leq 2\Rightarrow \mid x\mid\leq \frac{3}{2}$ () z.B. da $\frac{3}{2}^2=\frac{9}{4}>2\Rightarrow x^2\leq 2\Rightarrow \mid x\mid\leq \frac{3}{2}$ Damit ist $x=\frac{2}{3}$ oberste Schraake und $x=-\frac{3}{2}$ untere Schraake von M

2.2 ii

M heißt nach oben (unten) beschränkt, falls M eine obere (untere) Schranke besitzt.

Mitlaufendes Beispiel:

M ist beschränkt, da M eine obere und untere Schranke hat!

iii

M heißt beschränkt, falls M nach oben und unten beschränkt ist

2.3 iv

Eine obere (untere) Schranke x von M heißt Supremum (Infinum) von M, falls $y \ge x (y \le x)$ für alle oberen (unteren) Schranken von M.

Mitlaufendes Beispiel:

 $x \in K$ ist Supermum von $M \subset K$ falls x die kleinste obere Schranke von M ist .

 $x \in K$ ist Infinium von $M \subset K$ falls x die größte untere Schranke von M ist.

2.4 v

Ein Spupermum (Infinum) von M heißt Maximum (Minimum) von M, falls zusätzlich $x \in M$ gilt.

Beispiel

```
M := \{ M \in \mathbb{Q} : -2 < m \le 3 \}
```

Dann ist -2 untere Schranke, 3 obere Schranke von M. -2 ist auch größte untere Schranke von M, also Infinum von M, also kein Minimum (da $-2 \notin M$), 3 ist kleiste obere Schranke von M, $3 \in M$, also sogar Maximum von M.

2=inf M(Minuimum existiert nicht)

 $3=\sup M=\max M$

3 1.2.35 Bemerkung/Definition

3.1 i

M ist beschränkt genau dann, wenn ein $y \in K$ mit $|m| \le y, m \in M$.

3.2 ii

Supermum und Infinum müssen NICHT existieren, auch wenn die vorliegende Menge beschränkt ist

Ist y doch $x \in K$ Supermum (Infinum) von $M \subset k$ so ist x aufgrund der Trichotomie schon eindeutig und wir schreiben: supM := x (inf M := x)

3.3 iii

Auch wenn für $M \subset k \ supM(infM)$ existieren, so braucht M kein kein Maximum (Minimum) besitzen. Ist y doch supM(infM) existent und gehört zu M, so setzen wir maxM := supM(supM := infM)

4 1.2.36 Satz (Satz von Archimedes für Q)

Sind $x,y\in\mathbb{Q},x,y>0$, dann existiert auch ein $m\in\mathbb{N}$ mit $nx=x,\ldots,x=\frac{n}{1}x>y$ x klein, y groß

Beweis

$$\begin{array}{l} x = \frac{p_1}{q_1}, y = \frac{p_2}{q_1}, \; p, q \in \mathbb{N} \\ \text{Setze} \; n := p_2 q_2 \; \text{Dann gilt} \; nx := \frac{n}{1} x = \frac{np_1}{q_1} = \frac{p_2 q_1 P_1}{q_1} = \frac{p_1 q_2}{1} * \frac{q_1 p_2}{q_1 q_2} \geq \frac{p_2}{q_2} = y \end{array}$$

Folgendes Korollar kann man natürlich auch direkt beweisen:

5 1.2.37 Folgerung

Fassen wir \mathbb{N} (wie üblich) als Teilmenge von \mathbb{Q} auf, so ist \mathbb{N} nach unten durch 1 und nicht nach oben beschränkt.

Weiter existiert zu jedem $x \in \mathbb{Q}$ ein $n \in \mathbb{N}$ mit m > x.

6 1.2.38 Bemerkung

In jedem Körper K kann man die Gleichung nx=y für jedes $y\in K$ und jedes $n\in\mathbb{N}$ eindeutig lösen.

Daraus folgt aus n * 1 > 0, also $x = (n-1)^{-1}y$.

Leider sieht dies bei Gleichungen $x^n=y$ ganz anders aus:

z.B.
$$x^2 = y$$
:

Ist
$$x \in K$$
 Lösung $\stackrel{x^2>0}{\Rightarrow} y > 0$

In keinem geordneten Körper k hat die Gleichung $x^2 = y$ eine Lösung für negatives $y \in k$. (\rightarrow Körper \mathbb{Q} der komplexen Zahlen).

Aber es kommt schlimmer:

7 1.2.39 Satz

Es gibt keine rationale Zahl $z \in \mathbb{Q}$ mit $x^2 = 2$.

$$x^2 = 1^2 + 1^2 = 2$$
$$x \notin \mathbb{Q} \to R$$

Beweis

1. wir zeigen zunächst : ist $p \in \mathbb{Z}, p^2$ gerade \Rightarrow p gerade Ansonsten:

P ungerade, aber p^2 gerade, also p = r + 1 für ein $r \in \mathbb{Z}$,

 $p^2 = 4r^2 + 4r + 1$, also auch ungerade

2. Wir nehmen an, dass $x \in \mathbb{Q}$ existiert mit $x^2 = 2.x > 0$.

Betrachte $\{R \in \mathbb{N} : x = \frac{s}{r} \text{ für ein } s \in \mathbb{N}\}$ Dann hat die Menge ein minimales Element q. Das heißt:Es gibt $p \in \mathbb{N}$ mit (*)

 $x = \frac{p}{q}$ und q ist kleinstmöglich.

Es folgt $x^4 = \frac{p^2}{q^2} = 2 \Rightarrow p^2 = 2q^2 \Rightarrow p$ gerade $\Rightarrow p = 2p_O$ mit einem $p_O \in \mathbb{N}$.

$$\Rightarrow 2q^2 = p^2 = 4p_O^2 \Rightarrow q^2 = 2p^2,$$
also $4 = 2q_O$ mit einem $q_O \in \mathbb{N}$.
$$\Rightarrow x = \frac{p}{q} = \frac{2p_O}{2q_O} = \frac{p_O}{q_O} \text{ und } q_O < q, q_O, p_O \in \mathbb{N}$$

Das ist ein Wiederspruch in (*), also war die Annahme $x^2 = 2$ falsch , damit gibt es also kein $x \in \mathbb{Q}$ mit $x^2 = 2$.

Zusammenhang von 1.2.39 war Existenz von Supermum bzw. Ininum.

8 1.2.40 Satz

Es sei k ein geordneter Körper $n\in\mathbb{N},c\in K,c>0$ Weiter sei $M:=\{x\in k:x^n\leq c,x\geq 0\}$

8.1 i

Damit ist M beschränkt und nicht leer

8.2 ii

Existiert s = suoM, so gilt $s^n = c$ und s ist die eindeutige positive Lösung der Gleichung $x^n = c$

Beweis

8.3 i

$$= \in M \Rightarrow M = \emptyset$$

o ist untere Schranke, da Minimum. 1+c ist obere Schranke, da für $x\in M$ gilt $x^n\leq c$ $(1+c)^n\Rightarrow x\leq 1+c$

8.4 ii

Ist
$$0 \le b \le a$$
 dann gilt $a^n - b^n \le n(a - b)n^{n-1}$
 $a^n - b^n \stackrel{1.2.12}{=} (a - b) = \sum_{\nu=0}^{n-1} a^{\nu} b^7 n - 1 - \nu \le (a - b)n * a^{n-1}$

8.4.1 a)

Angenommen
$$s^n > c$$
. Dann $\delta > c$ mit $(s - \delta)^n \le c$,
Setze in (*), $a = s, b = s - \delta, \delta = \frac{s^n - c}{ns^{n-1}}$
Zu $x \in M$, so ist $x^n \le c \le (s - \delta)^n$
 $\Rightarrow x \le s - \delta$, Wiederspruch zu $s = supM$.

8.4.2 b

Ähnlich: s^n kann nicht kleiner als c sein: a) und b) $\Rightarrow s^n = c$

9 1.2.41 Definition

Ein geordneter Körper k heißt vollständig geordneter Körper, falls jede nicht leere, nach oben beschränkte Teilmenge ein Supermum besitzt.

10 1.2.42 Bemerkung

Ist K wie in 1.2.41, $c \ge 0$, dann existiert genau ein x > 0mit $x^n = c$ $\sqrt[n]{c} = x$, $\sqrt{c} = \sqrt[2]{c}$

11 1.2.43 Satz

Es exisitert ein vollständig geordneter Körper \mathbb{R} , der eine Erweiterung von \mathbb{Q} ist.

12 1.2.43 Bemerkung

Die Elemente von \mathbb{R} heißen reelle. Es gibt

12.1 i

Für alle $x \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit n > x

12.2 ii

Sind $x,y \in \mathbb{R}$, x < y , so existiert $q \in \mathbb{Q}$ mit x < q < y 1.2.43 und 1.2.44 sind schwer!