FW 599 Special Topics: Multivariate Analysis of Ecological Data in R

Lecture 2: Data Transformation and Standardization

Thursday, October 3, 2024



# Lecture 2: Data Transformation and Standardization

- Transformation
- Standardization
- Univariate Metrics of Ecological Diversity



Recap: Data Distributions



| Distribution      | Characteristics                          | Suited For                                  |
|-------------------|------------------------------------------|---------------------------------------------|
| Normal            | Symmetrical, bell-shaped                 | Environmental variables, trait measurements |
| Poisson           | Right-skewed, mean = variance            | Integer/count data                          |
| Binomial          | Can be symmetric or skewed               | Presence/absence                            |
| Negative Binomial | Right-skewed, over-<br>dispersed counts  | Aggregated counts (i.e, N per unit)         |
| Log-Normal        | Right-skewed, log-<br>transformed normal | Species abundance                           |
| Gamma             | Right-skewed, flexible shape             | Environmental variables                     |
| Beta              | Flexible shapes, bounded on [0,1]        | Proportional data                           |
| Uniform           | Constant probability over interval       | Indicative of complete randomness           |



Normal/Log-Normal





Normal/Log-Normal





Poisson – count data. *How many times is an event likely to occur over a given period/area?* 





Exploratory Analysis: Homogeneity of Variance

**Homoscedasticity** means that the variances of the error terms are equal for all observations

The variance in a sampled population remains the same, regardless of the mean

This means that Poisson distributed data are not homoscedastic!



Transformation (a.k.a "Coding")



- Ensure normality
- Stabilize variance
- Handle outliers



- Ensure normality
- Stabilize variance
- Handle outliers

Some multivariate techniques (e.g., PCA, MANOVA) assume data are normally distributed.



- Ensure normality
- Stabilize variance
- Handle outliers

Like normality, homoscedasticity is a key assumption of many statistical methods.



- Ensure normality
- Stabilize variance
- Handle outliers

Outliers can disproportionately influence the results of multivariate analyses



# Transformation: Types of Transformations

- Logarithmic
- Square (N) Root
- Box-Cox
- Logit
- Angular/Arcsine
- Dummy Coding or Rank Transformation



### Transformation: Log Transformation

$$Y' = log(Y)$$

- Reduces right-skewness
- Stabilizes variance
- Linearizes exponential growth patterns

**Use for:** species abundance, biomass



### Transformation: Log Transformation

$$Y' = log(Y)$$

- Reduces right-skewness
- Stabilizes variance
- Linearizes exponential growth patterns

**Use for:** species abundance, biomass

$$\mathbf{Y'} = \log(\mathbf{Y} + 1) \quad \mathbf{Y'} = \log(\mathbf{Y} + \mathbf{y}_{\min})$$



# Transformation: Square (N) Root Transformation

$$Y' = Y^{1/2}$$

- Reduces right-skewness (less so than logtransforming)
- Stabilizes variance
- Handles count data well

Use for: count data, population densities



# Transformation: Square (N) Root Transformation

$$Y' = Y^{1/N}$$

- Reduces right-skewness (less so than logtransforming)
- Stabilizes variance
- Handles count data well

Use for: count data, population densities

Use larger N for higher counts, greater skew



# Transformation: Box-Cox Transformation

$$\mathbf{Y'} = \frac{\mathbf{Y}^{\lambda} - 1}{\lambda}$$
 for  $\lambda \neq 0$   
 $\mathbf{Y'} = \log(\mathbf{Y})$  for  $\lambda = 0$ 

- Normalizes data
- Stabilizes variance
- Can be used to identify optimal power transformation

**Use for:** environmental measures (e.g., concentrations), biomass



## Transformation: Comparison





## Transformation: Comparison





## Transformation: Comparison





# Transformation: Logit Transformation

$$\mathbf{Y'} = \log(\frac{\mathbf{Y}}{1-\mathbf{Y}})$$

- Transforms proportional data to unbounded data
- Normalizes proportions or probabilities

**Use for:** proportional data (e.g., area covered, survival rates, species or dietary composition)



# Transformation: Angular/Arcsine Transformation

$$\mathbf{Y'} = \arcsin(\sqrt{\mathbf{Y}})$$

Transforms proportional data to standardize variance

**Use for:** proportional data (e.g., area covered, survival rates, species or dietary composition)



### Transformation: Dummy Coding

- Transforms categorical variables into numerical format
- Allows for inclusion of categorical data in statistical models
- Each category of the categorical variable is represented by a separate binary variable

| Species | Species B | Species C |
|---------|-----------|-----------|
| А       | 0         | 0         |
| В       | 1         | 0         |
| С       | 0         | 1         |
| Α       | 0         | 0         |
| В       | 1         | 0         |



### Transformation: Fuzzy Coding

- Assigns partial membership values to categorical variables
- Ideal for scenarios with overlapping or ambiguous categories
- Relies on a "membership function"



## Transformation: Fuzzy Coding

e.g., "low," "medium," and "high"





Greenacre and Primicerio

### Transformation: Fuzzy Coding





## Standardization



- Ensure comparability
- Equalize variable weighting
- Reduce impact of collinearity
- Improve distance calculations



- Ensure comparability
- Equalize variable weighting
- Reduce impact of collinearity
- Improve distance calculations

Variables with larger scales can dominate the analysis, leading to biased results



- Ensure comparability
- Equalize variable weighting
- Reduce impact of collinearity
- Improve distance calculations

Standardization ensures that each variable is given equal importance in the analysis



- Ensure comparability
- Equalize variable weighting
- Reduce impact of collinearity
- Improve distance calculations

Collinearity between variables can inflate standard errors and lead to unstable estimates



- Ensure comparability
- Equalize variable weighting
- Reduce impact of collinearity
- Improve distance calculations

Differences in scales can distort the distance metrics for methods like PCA and NMDS



# Standardization: Linear Transformation

Used to put quantitative descriptors on the same scale





Legendre and Legendre

### Standardization: Centering

$$X' = X - \overline{X}$$

Where  $\overline{X}$  is the mean

- Centers data around zero but maintains shape and spread of data
- Centering can occur by row or by column

**Use for:** simplifying interpretation of covariance and correlation matrices



Standardization: Ranging (i.e., Min-Max Normalization)

$$\mathbf{X'} = \frac{\mathbf{X} - \mathbf{X}_{\min}}{\mathbf{X}_{\max} - \mathbf{X}_{\min}}$$

Where  $\mathbf{X}_{min}$  and  $\mathbf{X}_{max}$  are the minimum and maximum values of the original data

- Scales data to a specified range (0-1)
- Preserves relationships among data points but adjusts their scale

Use for: normalizing scores to a specific range



#### Standardization: Z-Scores

$$Z = \frac{X - \mu}{\sigma}$$

Where X = original data,  $\mu$  = mean,  $\sigma$  = standard deviation

- Centers data around mean 0 and standard deviation of 1
- Removes units, makes data dimensionless and comparable

**Use for:** variables with different measurement units



## Standardization: Double Standardization

- Adjust each row and column by its sum or mean
- Ensures equal weight for objects (sites) and descriptors (species)



## Standardization: Chord Transformation

- Reduces impact of varying magnitudes of species abundances among samples
- Emphasizes relative importances of species within a sample
- Normalizes each sample vector to have a "length" of 1



## Standardization: Chord Transformation

Normalizes each sample vector to have a "length" of 1

Calculate length of each sample (object) vector:

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \dots \mathbf{x}_n^2}$$

Normalize each sample vector

$$\mathbf{x}' = \mathbf{x}/||\mathbf{x}||$$



## Standardization: Hellinger Transformation

- Downweighs the influence of dominant species
- Square root each species' abundance
- Normalize: divide each species' square rooted abundance by the square root of the sum of squared-square root abundances

$$\mathbf{x}_{ij} = \frac{\sqrt{x_{ij}}}{\sqrt{x_{1j}^2 + x_{2j}^2 + \dots x_{nj}^2}}$$





















































What units should you use for your response variable?











N = 1





What units should you use for your response variable?

| 100 m | _ |   |  |
|-------|---|---|--|
|       |   |   |  |
| 200 m |   | _ |  |
|       |   |   |  |
| 125 m |   |   |  |



What units should you use for your response variable?



$$N = 7$$

100 m





200 m



$$N = 16$$

125 m



$$N = 1$$



What units should you use for your response variable?



$$N = 0.7/m$$

10 m



20 m

N = 0.35/m



$$N = 1.28/m$$

12.5 m



$$N = 0.2/m$$



What units should you use for your response variable?



10 m



N = 5 (/11)20 m



12.5 m



$$N = 1 (/3)$$



Univariate Metrics of Ecological Diversity



Univariate Metrics of Ecological Diversity: Species Richness

**Species Richness**: the number of species present in a given area





# Univariate Metrics of Ecological Diversity: Species-Area Relationships

The larger the sampling area, the more likely one is to encounter "rare" species

1 ha
N = 2

4 ha





# Univariate Metrics of Ecological Diversity: Species-Area Relationships

The larger the sampling area, the more likely one is to encounter "rare" species

$$S = cA^z$$

Where **S** = number of species, **A** = area, and **c** and **z** are constants

$$N = 2$$

4 ha



9 ha





# Univariate Metrics of Ecological Diversity: Species-Area Relationships





## Univariate Metrics of Ecological Diversity: Species Diversity

#### **Shannon-Weaver Diversity Index**

$$\mathbf{H}^{\cdot} = -\sum (p_i \ln p_i)$$

where  $p_i$  is the proportion of individuals of species i

#### Simpson's Diversity Index

**D** = 1 - 
$$\sum \rho_i^2$$

where  $p_i$  is the proportion of individuals of species i

Probability that two randomly selected individuals belong to a different species



# Univariate Metrics of Ecological Diversity: Species Diversity

| Criteria                               | Shannon-Weaver (H`) | Simpson's (D)                          |  |
|----------------------------------------|---------------------|----------------------------------------|--|
| Sensitivity to evenness                | High                | Moderate                               |  |
| Sensitivity to rare species            | High                | Low                                    |  |
| Dominance weighting                    | Low                 | High                                   |  |
| Ideal for high species richness        | Yes                 | No                                     |  |
| Ideal for low species richness         | No                  | Yes                                    |  |
| Community stability and dominance      | Less suited         | Well suited                            |  |
| Comparative studies of evenness        | More informative    | Less informative                       |  |
| Long-term monitoring                   | Suitable            | Less sensitive to rare species changes |  |
| Appropriate for dominant species focus | Less appropriate    | More appropriate                       |  |



## Univariate Metrics of Ecological Diversity: Species Evenness

$$\mathbf{E} = \frac{\mathbf{H}}{\ln(\mathbf{S})}$$
 where  $\mathbf{H}$  is Shannon-Weaver Diversity

 $\mathbf{E} = \frac{\mathbf{D}}{\mathbf{S}}$  where **D** is Simpson's Diversity and **S** is species richness



H' = 1.61E = 1.00

 $\mathbf{D} = 0.80$  $\mathbf{E} = 0.16$ 



## Univariate Metrics of Ecological Diversity: Species Evenness

$$\mathbf{E} = \frac{\mathbf{H}}{\ln(\mathbf{S})}$$
 where  $\mathbf{H}$  is Shannon-Weaver Diversity

 $\mathbf{E} = \frac{\mathbf{D}}{\mathbf{S}}$  where **D** is Simpson's Diversity and **S** is species richness



$$\mathbf{H}$$
 = 1.30  $\mathbf{E} = 0.81$ 

$$\mathbf{D} = 0.67$$
  
 $\mathbf{E} = 0.13$ 



## Univariate Metrics of Ecological Diversity: Functional Diversity

**Functional Diversity**: the range of different biological functions or roles that species within a community perform

- Feeding habits
- Reproductive strategies
- Other ecological roles



### Conclusion: Summary of Key Points

- Is transformation necessary?
  - More likely for species data
- Is standardization necessary?
  - More likely for environmental data
- Have you appropriately accounted for differences in sampling effort?



### Questions?

