Overview of chemical processes with OpenFOAM

Assumption: The attendee has already completed basic/advanced OpenFOAM training Focus is on "reactingFoam" type cases, with a brief survey of other solvers/methods

- 1. Introduction (0.25 hr)
 - a. Motivation/chemical applications
 - b. Flames, Sprays, Multiphase applications
- 2. Brief review (recap) of OpenFOAM (0.5 hr)
 - a. OpenFOAM v11 ... (focusing on chemistry)
 - i. What's new in v11 (comparison to v10)
 - ii. Comparison to chemistry in v2306
 - b. Review of the OpenFOAM directory structure
 - c. Running a case
 - i. Parallel processing
 - ii. Residual monitoring
 - d. ParaView / paraFoam post processing
- 3. Dictionaries & case structure I (1.75 hrs)
 - a. Key equations for single phase species transport and reaction
 - i. Species transport equation overview (YEqn)
 - ii. Energy equation overview (EEqn)
 - iii. Changes to fvSchemes, fvSolution
 - b. Files/dictionaries used for species transport & reaction
 - i. Setting up species (0 directory, physicalProperties)
 - ii. physicalProperties
 - 1. Thermo model selection (rho vs. psi thermos)
 - 2. Mixture options
 - iii. Thermo file format
 - 1. NASA polynomials
 - 2. Sutherland properties
 - iv. Reactions file format
 - 1. Structure
 - 2. Units
 - a. Kmols
 - b. Ta = EA/R
 - 3. Reaction types (Arrhenius, etc.)
 - 4. CHEMKIN mechanism conversion
 - v. chemistryProperties
 - 1. Solver selection (Euler implicit, ODE)
 - 2. Chemical acceleration (more details later)
 - a. ISAT
 - b. DRM
 - vi. combustionModel

- 1. Overview of combustion model choices (more details later)
- 4. Example case #1 (part 1) laminar flow species transport and homogeneous reaction (0.5 hr)
 - a. Laminar flow case setup (Le = 1)
 - b. Reactions off
 - c. Reactions on
 - d. Post process

End of Day #1

Day #2

- 1. Dictionaries & case structure II (0.5 hr)
 - a. Basic case setup for species transport & reaction, continued
 - i. Radiation modeling (brief overview -> more in Joel's heat transfer class)
 - 1. P1
 - 2. fvDOM
 - 3. view factors
 - ii. Species transport (laminar)
 - 1. Le = 1
 - 2. Fickian diffusion
 - 3. Maxwell Stefan
 - 4. Using Cantera to get diffusion coefficients
 - iii. Local time stepping
- 2. Example case #2 species transport & laminar reaction example (0.5 hr)
 - a. Repeat Example case #1 but with different transport assumptions, LTS
- 3. Turbulent homogeneous chemistry (1 hr)
 - a. Brief review of RANS
 - b. Brief review of LES
 - c. Turbulent combustion models
 - i. EDC (multiple variants)
 - ii. PaSR
 - d. Species transport (turbulent)
- 4. Example case #3 turbulent flame (validation case) (0.5 hr)
 - a. Convert CHEMKIN to OpenFOAM
 - b. Transient vs. LTS
 - c. Chemical acceleration (ISAT, DRM)
 - d. Species transport model
 - e. Radiation modeling
 - f. Compare to data
- 5. Additional techniques (0.5 hr)
 - a. Conjugate heat transfer (brief overview -> more in Joel's heat transfer class)
 - b. Buoyancy
 - c. Constant transport properties & liquid phase reactions

End Day #2

Start Day #3

- 1. Additional techniques (0.75 hr)
 - a. chemFoam
 - b. saving mole fractions
 - c. Porous media
 - d. Zone Combustion
 - e. Membranes
 - f. Real gas (Peng Robinson Equation of State)
 - g. Adaptive mesh refinement
 - h. Load balancing
- 2. Tips and tricks (0.25 hr)
 - a. Start with chemistry off
 - b. solverFreq for radiative heat transfer
 - c. Time step size
 - d. fvSchemes selection (upwind vs. Gauss limitedLinear01, etc.)
 - e. fvModels selection (PBiCGStab, pressure solver, relaxation, etc.)
 - f. RANS vs. LES chemistry
 - g. Ideas for solving crashes...
- 3. Overview of other chemical tools in OpenFOAM (0.75 hr)
 - a. XiFluid
 - b. Lagrangian
 - i. Sprays
 - ii. Shrinking core/coal particle
 - c. Films
 - d. Multiphase
 - i. Reactions
 - ii. Mass transfer
 - iii. Phase change
- 4. Summary (0.25 hr)
- 5. Q&A (1 hr)