

Hardianto Tandi Seno - Challenge Chapter II

Data Science

Studi Kasus:

Banyaknya perusahaan telekomunikasi membuat pelanggan memiliki hak untuk dapat menentukan provider yang sesuai dengan preferensi sehingga memungkinkan terjadinya peralihan dari satu provider ke provider yang lain (Customer Churn).

Penyebab yang dapat ditimbulkan dari customer churn ini dapat menyebabkan berkurangnya pendapatan bagi perusahaan telekomunikasi sehingga penting untuk dapat ditangani

Hal ini membuat kami sebagai junior data scientist di suatu perusahaan telekomunikasi diminta untuk melakukan prediksi customer churn berdasarkan history data yang dimiliki oleh perusahaan tersebut

Dataset yang dimiliki perusahaan terdiri dari beberapa kolom, diantaranya:

- state: Negara bagian di mana pelanggan tinggal.
- account_length: Lamanya waktu (dalam hari atau bulan) pelanggan telah dikaitkan dengan penyedia layanan.
- area_code: Kode area telepon yang terkait dengan nomor telepon pelanggan.
- international_plan: Indikator biner (ya/tidak) yang menunjukkan apakah pelanggan memiliki paket panggilan internasional.
- voice_mail_plan: Indikator biner (ya/tidak) yang menunjukkan apakah pelanggan memiliki paket pesan suara.
- number_vmail_messages: Jumlah pesan suara yang diterima pelanggan.
- total_day_minutes: Jumlah total menit yang digunakan pelanggan selama panggilan siang hari.
- total_day_calls: Jumlah total panggilan yang dilakukan pelanggan pada siang hari.
- total_day_charge: Total biaya yang ditagihkan ke pelanggan untuk panggilan siang hari.
- total_eve_minutes: Jumlah total menit yang digunakan pelanggan selama panggilan malam.
- total_eve_calls: Jumlah total panggilan yang dilakukan pelanggan pada malam hari.
- total_eve_charge: Total biaya yang ditagihkan ke pelanggan untuk panggilan malam hari.
- total_night_minutes: Jumlah total menit yang digunakan pelanggan selama panggilan malam hari.
- total_night_calls: Jumlah total panggilan yang dilakukan pelanggan pada malam hari.
- total_night_charge: Total biaya yang ditagihkan ke pelanggan untuk panggilan malam hari.
- total_intl_minutes: Jumlah total menit internasional yang digunakan oleh pelanggan.
- total_intl_calls: Jumlah total panggilan internasional yang dilakukan oleh pelanggan.
- total_intl_charge: Total biaya yang ditagihkan ke pelanggan untuk panggilan internasional.
- number_customer_service_calls: Jumlah panggilan layanan pelanggan yang dilakukan oleh pelanggan.
- **churn**: Indikator biner (ya/tidak) yang menunjukkan apakah pelanggan telah melakukan churn (yaitu, berhenti menggunakan layanan).

HASIL INTERPRETASI PREDIKSI CUSTOMER CHURN

- Melakukan proses import library yang diperlukan (Pandas, Numpy, Matplotlib, Seaborn, scikit-learn, pickle, dll)
- Membaca Train Data dengan menggunakan Pandas

	state	account_length	area_code	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_minutes
0	ОН	107	area_code_415	no	yes	26	161.6	123	27.47	195.5
1	NJ	137	area_code_415	no	no		243.4	114	41.38	121.2
2	ОН	84	area_code_408	yes	no		299.4	71	50.90	61.9
3	ОК	75	area_code_415	yes	no		166.7	113	28.34	148.3
4	MA	121	area_code_510	no	yes	24	218.2	88	37.09	348.5

Hasil read Train data dengan Pandas (Beberapa kolom awal)

Melakukan beberapa proses analisis statistika dan EDA, diantaranya:

state 0 account_length 0 area_code 0 international_plan 0 voice_mail_plan 0 number_vmail_messages 0 total_day_minutes	
area_code 0 international_plan 0 voice_mail_plan 0 number_vmail_messages 0	0
international_plan 0 voice_mail_plan 0 number_vmail_messages 0	0
voice_mail_plan 0 number_vmail_messages 0	0
number_vmail_messages 0	an 0
	0
total day minutes	sages 0
total_day_minutes 0	es 0
total_day_calls 0	0
total_day_charge 0	9 0
total_eve_minutes 0	es 0
total_eve_calls 0	0
total_eve_charge 0	9 0
total_night_minutes 0	ites 0
total_night_calls 0	.s 0
total_night_charge 0	ge 0
total_intl_minutes 0	es 0
total_intl_calls 0	9
total_intl_charge 0	ge 0
number_customer_service_calls 0	service_calls 0
churn 0	0
dtype: int64	
(4250, 20)	

Melihat adanya missing value dan shape pada data


```
data[data.duplicated()]
    state account_length area_code international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day_calls
```

Melihat kemungkinan adanya data yang terduplikat

data.de	escribe()								
	account_length	number_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_minutes	total_eve_calls	total_eve_charge	total_night_minutes
count	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000
mean	100.236235	7.631765	180.259600	99.907294	30.644682	200.173906	100.176471	17.015012	200.527882
std	39.698401	13.439882	54.012373	19.850817	9.182096	50.249518	19.908591	4.271212	50.353548
min	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	73.000000	0.000000	143.325000	87.000000	24.365000	165.925000	87.000000	14.102500	167.225000
50%	100.000000	0.000000	180.450000	100.000000	30.680000	200.700000	100.000000	17.060000	200.450000
75%	127.000000	16.000000	216.200000	113.000000	36.750000	233.775000	114.000000	19.867500	234.700000
max	243.000000	52.000000	351.500000	165.000000	59.760000	359.300000	170.000000	30.540000	395.000000

Melihat statistik deskriptif pada data numerik untuk mengetahui adanya indikasi outlier atau tidak pada data

Melihat distribusi penyebaran data numerik. Bisa terlihat bahwa rata-rata kolomnya itu sudah hampir terdistribusi normal. Hanya saja terdapat beberapa kolom yang distribusi datanya tidak seimbang (skewed), seperti number_vmail_messages, total_intl_calls, number_customer_service_calls

						Corre	lation o	f Numei	rical Col	umns					
account_length -	1.000	-0.007	-0.002	0.023	-0.002	-0.010	0.006	-0.010	-0.010	-0.002	-0.010	0.005	0.014	0.004	0.001
number_vmail_messages	-0.007	1.000	0.002	-0.007	0.002	0.011	0.004	0.011	0.018	0.002	0.018	0.005	0.007	0.005	-0.015
total_day_minutes -	-0.002	0.002	1.000	0.001	1.000	-0.013	0.006	-0.013	0.010	-0.005	0.010	-0.021	0.004	-0.021	-0.003
total_day_calls -	0.023	-0.007	0.001	1.000	0.001	0.009	0.004	0.009	0.002	-0.005	0.002	0.009	0.009	0.009	-0.016
total_day_charge	-0.002	0.002	1.000	0.001	1.000	-0.013	0.006	-0.013	0.010	-0.005	0.010	-0.021	0.004	-0.021	-0.003
total_eve_minutes	-0.010	0.011	-0.013	0.009	-0.013	1.000	0.003	1.000	-0.014	0.012	-0.014	-0.004	0.012	-0.003	-0.010
total_eve_calls -	0.006	0.004	0.006	0.004	0.006	0.003	1.000	0.003	0.008	-0.012	0.008	-0.013	0.005	-0.013	0.007
total_eve_charge	-0.010	0.011	-0.013	0.009	-0.013	1.000	0.003	1.000	-0.014	0.012	-0.014	-0.004	0.012	-0.003	-0.010
total_night_minutes	-0.010	0.018	0.010	0.002	0.010	-0.014	0.008	-0.014	1.000	0.024	1.000	-0.000	-0.024	-0.000	-0.014
total_night_calls	-0.002	0.002	-0.005	-0.005	-0.005	0.012	-0.012	0.012	0.024	1.000	0.024	0.001	0.004	0.001	-0.009
total_night_charge	-0.010	0.018	0.010	0.002	0.010	-0.014	0.008	-0.014	1.000	0.024	1.000	-0.000	-0.024	-0.000	-0.014
total_intl_minutes	0.005	0.005	-0.021	0.009	-0.021	-0.004	-0.013	-0.004	-0.000	0.001	-0.000	1.000	0.019	1.000	-0.014
total_intl_calls -	0.014	0.007	0.004	0.009	0.004	0.012	0.005	0.012	-0.024	0.004	-0.024	0.019	1.000	0.019	-0.015
total_intl_charge -	0.004	0.005	-0.021	0.009	-0.021	-0.003	-0.013	-0.003	-0.000	0.001	-0.000	1.000	0.019	1.000	-0.014
mber_customer_service_calls ·	0.001	-0.015	-0.003	-0.016	-0.003	-0.010	0.007	-0.010	-0.014	-0.009	-0.014	-0.014	-0.015	-0.014	1.000
	account_length -	_vmail_messages -	total_day_minutes -	total_day_calls -	total_day_charge -	total_eve_minutes -	total_eve_calls -	total_eve_charge -	tal_night_minutes -	total_night_calls_	otal_night_charge -	total_intl_minutes -	total intl calls	total_intl_charge -	mer_service_calls -

Melihat korelasi antar kolom pada numerik. Hasil data dari pengecekan korelasi pada tiap kolom dengan menggunakan heatmap menunjukkan bahwa terdapat beberapa kolom yang memiliki hubungan korelasi (munculnya pola yang sama pada waktu yang bersamaan) yang positif sempurna (bernilai 1).

Melihat potensi outlier pada kolom data numerik dengan menggunakan boxplot. Hasilnya menunjukkan bahwa terdapat beberapa kolom yang memiliki outlier, sehingga akan dihapus dengan menggunakan metode z-score

Melihat perbandingan data terkait klasifikasi churn atau tidak pada kolom target. Datanya bersifat imbalanced (tidak seimbang).

Kolom target ini akan dilakukan proses label encoding untuk dapat memudahkan analisis lebih lanjut. Hasil analisis terkait dengan tingkat churn pada customer adalah sebagai berikut :

Pada grafik disamping, terlihat bahwa area_code_415 memiliki tingkat churn yang tinggi dibandingkan dengan 2 area_code lainnya.

Hal ini membuat perusahaan dapat mengidentifikasi faktor-faktor unik yang mempengaruhi perilaku pelanggan di daerah tersebut.

Selain itu, bisa dilakukan analisis lanjutan untuk faktor-faktor tertentu seperti kualitas layanan, harga, atau preferensi pelanggan yang berperan

Kolom target ini akan dilakukan proses label encoding untuk dapat memudahkan analisis lebih lanjut. Hasil analisis terkait dengan tingkat churn pada customer adalah sebagai berikut :

Pada grafik disamping, terlihat bahwa customer yang tidak mengaktifkan voice_main_plan memiliki tingkat churn yang sangat tinggi dibandingkan dengan yang mengaktifkan voice_mail_plan-nya

Penyebab hal ini terjadi bisa karena customer merasa kurang puas dengan layanan tersebut atau mungkin mereka tidak menggunakan fitur-fitur lain yang disediakan oleh layanan tersebut. Ini bisa menjadi indikator bahwa perusahaan perlu memperbaiki atau meningkatkan layanan voice mail plan agar customer bisa bertahan.

Kolom target ini akan dilakukan proses label encoding untuk dapat memudahkan analisis lebih lanjut. Hasil analisis terkait dengan tingkat churn pada customer adalah sebagai berikut :

Pada grafik disamping, terlihat bahwa customer yang tidak mengaktifkan international_plan memiliki tingkat churn yang sangat tinggi dibandingkan dengan yang mengaktifkan international_plan-nya

Penyebab hal ini terjadi bisa jadi sama seperti kasus voice_mail_plan. Sehingga, perusahaan perlu memperbaiki atau meningkatkan international plan agar customer bisa bertahan.

Kolom target ini akan dilakukan proses label encoding untuk dapat memudahkan analisis lebih lanjut. Hasil analisis terkait dengan tingkat churn pada customer adalah sebagai berikut :

State AK (Alaska), menjadi state dengan tingkat churn terendah. Sedangkan NJ (New Jersey) menjadi state dengan tingkat churn tertinggi

Hal ini bisa disebabkan oleh kualitas provider di tiap daerah itu berbeda, persaingan harga yang cukup ketat sehingga memungkinkan customer untuk berganti provider sesuai dengan layanan yang sesuai dengan keinginan, dan lain-lain

Melakukan penambahan kolom fitur pada data berupa total menit customer per hari, total panggilan yang dilakukan, dan total biaya yang dikeluarkan customer

total_calls	total_charges
329	55.54
328	59.00
248	65.02
356	49.36
314	76.28
	329 328 248 356

Melakukan tes hipotesis pada beberapa kolom fitur terhadap kolom target pada data, dan berikut hasilnya:

Test statistic: -13.439870415300485 p-value: 2.332712336238055e-40

Reject the null hypothesis. There is a significant difference in average total_minutes between churned and non-churned customers.

Ini dapat diinterpretasikan sebagai indikasi bahwa variabel total menit (total_minutes) mungkin memiliki pengaruh atau peran yang signifikan dalam memprediksi perilaku churn pelanggan.

Test statistic: 0.3027328330651385 p-value: 0.7621082965640166

Fail to reject the null hypothesis. There is no significant difference in average total_calls between churned and non-churned customers.

Ini dapat diinterpretasikan sebagai indikasi bahwa variabel total panggilan (total_call) tidak memiliki pengaruh atau peran yang signifikan dalam memprediksi perilaku churn pelanggan.

Test statistic: -15.69270961944851 p-value: 5.424598212128414e-54

Reject the null hypothesis. There is a significant difference in average total_charges between churned and non-churned customers.

Ini dapat diinterpretasikan sebagai indikasi bahwa variabel total biaya (total_charges) memiliki pengaruh atau peran yang signifikan dalam memprediksi perilaku churn pelanggan.

Melakukan beberapa tahapan data preprocessing sebelum masuk ke pemodelan:

Length rows before remove outlier: 4250 Length rows after remove outlier: 4031

- 1. Menghilangkan outlier pada data
- 2. Melakukan encoding pada categorical data (Label Encoding & One-Hot Encoding)
- 3. Melakukan Feature Scaling menggunakan Normalization (MinMaxScaler)

Detail penerapannya dapat dilihat pada file .ipynb

Melakukan proses pemodelan dengan 3 model, yaitu Logistic Regression, KNN, dan Decision Tree. Dalam proses pemodelan ini dibagi menjadi beberapa pengujian, diantaranya:

Penerapan langsung tanpa adanya parameter dan metode tambahan:

Training Logis			gression:	
Accuracy: 0.86		Proces we	B. C3310111	
Precision: 0.6	5735			
Recall: 0.2558	3			
F1 Score: 0.37	708			
	precision	recall	f1-score	support
0	0.88	0.98	0.93	721
1	0.67	0.26	0.37	129
accuracy			0.87	850
macro avg	0.78	0.62	0.65	850
weighted avg	0.85	0.87	0.84	850

Training K-NN Evaluation metrics for K-NN: Accuracy: 0.8541 Precision: 0.5641							
Recall: 0.170	5						
F1 Score: 0.2	619						
	precision	recall	f1-score	support			
	0.87	0.98	0.92	721			
	0.56	0.17	0.26	129			
accuracy			0.85	850			
macro avg	0.72	0.57	0.59	850			
weighted avg	0.82	0.85	0.82	850			
macro avg			0.59	850			

Training DecisionTreeClassifier Evaluation metrics for DecisionTreeClassifier: Accuracy: 0.9482 Precision: 0.8058 Recall: 0.8682 F1 Score: 0.8358						
E	recision	recall	f1-score	support		
0	0.98	0.96	0.97	721		
1	0.81	0.87	0.84	129		
accuracy			0.95	850		
macro avg	0.89	0.92	0.90	850		
weighted avg	0.95	0.95	0.95	850		

Terlihat bahwa model Decision Tree mendapatkan nilai Accuracy, Precision, Recall, dan F-1 Score yang lebih baik dan stabil dari 2 model lainnya.

Sedangkan untuk model Logistic Regression dan KNN, nilai Precision, Recall, dan F-1 Scorenya terbilang rendah

Melakukan proses pemodelan dengan 3 model, yaitu Logistic Regression, KNN, dan Decision Tree. Dalam proses pemodelan ini dibagi menjadi beberapa pengujian, diantaranya:

Penerapan metode SMOTE untuk imbalancing data:

Logistic Regr	ression precision	recall	f1-score	support
	pi cersion	i ccuii	11 30010	зиррог с
0	0.94	0.78	0.85	721
1	0.37	0.71	0.49	129
			services c	9202003
accuracy			0.77	850
macro avg	0.65	0.75	0.67	850
weighted avg	0.85	0.77	0.80	850

KNN				
	precision	recall	f1-score	support
0	0.92	0.75	0.83	721
1	0.31	0.73	0.41	129
_	0.51	0.01	0.41	127
accuracy			0.73	850
macro avg	0.61	0.68	0.62	850
weighted avg	0.82	0.73	0.76	850

Metode ini hanya diaplikasikan untuk 2 model saja terkait dengan pengujian yang pertama.

Hasilnya menunjukkan bahwa nilai Precision & Accuracy pada kedua model mengalami penurunan, namun nilai Recall & F-1 Score nya mengalami peningkatan meskipun nilainya masih terbilang cukup rendah.

Melakukan proses pemodelan dengan 3 model, yaitu Logistic Regression, KNN, dan Decision Tree. Dalam proses pemodelan ini dibagi menjadi beberapa pengujian, diantaranya:

Penerapan metode GridSearchCV:

	e for	for Logist Logistic Re recision		0.8697058	
	0 1	0.88 0.67	0.98 0.26	0.93 0.38	721 129
accur	асу			0.87	850
macro	avg	0.77	0.62	0.65	850
weighted	avg	0.85	0.87	0.84	850

Best parameters Best score for				
р	recision	recall	f1-score	support
0	0.87	0.99	0.92	721
1	0.67	0.16	0.25	129
accuracy			0.86	850
macro avg	0.77	0.57	0.59	850
weighted avg	0.84	0.86	0.82	850

				{'max_depth': 08823529411765	5}
	precisio	n recall	f1-score	support	
	0.9	7 0.99	0.98	721	
1	0.9	6 0.84	0.90	129	
accuracy			0.97	850	
macro ave	9.9	7 0.92	0.94	850	
weighted ave	0.9	7 0.97	0.97	850	

Penerapan GridSearchCV ini dilakukan untuk mencari model terbaik berdasarkan hyperparameter yang digunakan dalam model tersebut.

Hasilnya menunjukkan bahwa model Logistic Regression & KNN tidak mengalami peningkatan yang berarti.

Sedangkan model Decision Tree peningkatannya cukup terasa jika nilainya dibandingkan dengan nilai hasil model tanpa parameter dan metode tertentu.

Melakukan proses pemodelan dengan 3 model, yaitu Logistic Regression, KNN, dan Decision Tree. Dalam proses pemodelan ini dibagi menjadi beberapa pengujian, diantaranya:

Penerapan metode PCA:

Training Logistic Regression Evaluation metrics for Logistic Regression: Accuracy: 0.8674 Precision: 0.6471 Recall: 0.2115 F1 Score: 0.3188						
	precision	recall	f1-score	support		
0	0.88	0.98	0.93	907		
1	0.65	0.21	0.32	156		
accuracy			0.87	1063		
macro avg	0.76	0.60	0.62	1063		
weighted avg	0.84	0.87	0.84	1063		

Training K-NN Evaluation metrics for K-NN: Accuracy: 0.8598 Precision: 0.5686 Recall: 0.1859 F1 Score: 0.2802						
		precision	recall	f1-score	support	
		0.87	0.98	0.92	907	
		0.57	0.19	0.28	156	
	accuracy			0.86	1063	
	macro avg	0.72	0.58	0.60	1063	
	weighted avg	0.83	0.86	0.83	1063	

Training DecisionTreeClassifier Evaluation metrics for DecisionTreeClassifier: Accuracy: 0.9078 Precision: 0.6747 Recall: 0.7179 F1 Score: 0.6957						
	precision	recall	f1-score	support		
9	0.95	0.94	0.95	907		
1	0.67	0.72	0.70	156		
accuracy			0.91	1063		
macro avg	0.81	0.83	0.82	1063		
weighted avg	0.91	0.91	0.91	1063		

Penerapan PCA ini dilakukan untuk mereduksi dimensi dari data yang mengalami peningkatan akibat proses one-hot encoder yang telah dilakukan sebelumnya.

Hasilnya menunjukkan bahwa model Logistic Regression & KNN terdapat beberapa penurunan metric.

Sedangkan model Decision Tree penurunannya cukup terasa jika nilainya dibandingkan dengan nilai hasil model tanpa parameter dan metode tertentu.

		reeClassif		{'max_depth': 8823529411765 support	5}
ø 1	0.97 0.96	0.99 0.84	0.98 0.90	721 129	
accuracy macro avg weighted avg	0.97 0.97	0.92 0.97	0.97 0.94 0.97	850 850 850	

Hasil model akhir yang memiliki metrik evaluasi yang baik yaitu menggunakan Decision Tree dengan tambahan metode hyperparameter tuning dengan GridSearchCV

	Probablilites Prediction	Count
0	0.000000	86
1	0.005263	46
2	0.011561	42
3	0.022467	510
4	0.024793	22
5	0.090909	37
6	0.125000	4
7	0.272727	3
8	0.727273	3
9	0.875000	4
10	0.909091	37
11	0.975207	22
12	0.977533	510
13	0.988439	42
14	0.994737	46
15	1.000000	86

- Melakukan save pada hasil pemodelan (dalam hal ini Decision Tree + GridSearchCV)
- Mengakses test data lalu lakukan flow yang sama seperti pada training data
- Melakukan load model yang telah di save sebelumnya
- Menguji prediksi pada test data

	Probablilites Prediction	Count
0	0.000000	86
1	0.005263	46
2	0.011561	42
3	0.022467	510
4	0.024793	22
5	0.090909	37
6	0.125000	4
7	0.272727	3
8	0.727273	3
9	0.875000	4
10	0.909091	37
11	0.975207	22
12	0.977533	510
13	0.988439	42
14	0.994737	46
15	1.000000	86

Hasil pengujian pada test data dengan melihat probabilitas hasil prediksi menghasilkan beberapa kesimpulan:

- Model cenderung sangat yakin pada beberapa prediksi (seperti pada probabilitas 0 dan 1)
- Jumlah sampel terbesar terdapat pada probabilitas 0.022467 dan 0.977533, yang mungkin mengindikasikan bahwa model mungkin cukup baik dalam membedakan dua kelas dan memberikan prediksi yang tegas

Alur Selengkapnya dapat dilihat pada file .ipynb yang dikumpulan bersama Presentasi ini

Thank You