Francesco Scolz Attimis, 30/08/2025

Youth Stress Predictor

Machine Learning for a healthier future

Problem to solve

Creating a **predictive model** that can reliably **classify stress types** among teens (aged 14 - 21) by a series of **questions** about their life

Evaluation metric will be **Macro F1-score**, which ensures that the model's performance is evaluated equally for every class, even in imbalance situations

The minimum score requirement for this project will be 0.8 (80%)

Why solve this problem

Stress among new generations is becoming an increasing problem over time

This problematic reflects on a lot of areas in life such as school, sports and even relationships

- With No / Minimal stress, people tend to be undermotivated and less productive
- **Eustress** (the "good" stress) is the **sweet spot**: motivation without ending in worse
- Distress (the "bad" stress) is when large amounts of this create anxiety and fears, completely
 overriding the potential benefits

By building a **preliminary model** that can screen potential patients, we can aim to **cut health expenses** on **useless medical visits**, while still providing a solid prevention base

This is just a **probabilistic model**, and it **does not aim** to **substitute professional help**

Do not rely on these predictions, treating them as always true

The **information** is provided **"as is"**, and it has **no legal or medical value**

The dataset

We used an open-source dataset from Kaggle, which can be found at this <u>link</u>

It contains data from a **survey**, ran on **all-aged individuals**, with answers on **questions** like "Have you recently experienced stress in your life?" or "Do you have trouble concentrating on your academic tasks?"

The answers, except for gender and age, are in a range from 1 (strongly disagree) to 5 (strongly agree)

Explorative analysis

Firstly, we checked for missing / impossible values, which weren't found, so we moved to the next step

We **transformed** some columns to be **readable** from **our models** by One-Hot Encoding non-numerical values

After **preprocessing** the data, we conducted an **explorative analysis** on data distributions and correlations with the target column (Primary_Stress_Type)

Explorative analysis

Data distributions contained a lot of bell curves, sometimes shifted to some side (known as skewed curves), suggesting fair and honest answers through the survey

Explorative analysis

Feature correlations with the target columns, on the other hand, seemed to have a strong linear correlation. This means that as values grow, stress intensity rises too (No stress \rightarrow Eustress \rightarrow Distress)

With this knowledge, we can start creating fine-tuned models to our problem

Modeling

Different models were tested, but ultimately a **simple Logistic Regression** achieved the best performance, with a **Macro F1-score** of **85.38%**.

This indicates that across all stress classes (None, Eustress, Distress), the model achieved an average **F1-score** of over 85%.

The reason a **simple model** can **outperform** more **sophisticated alternatives** likely lies in the **data structure**: linear correlations are better captured by linear models such as Logistic Regression.

Without a thorough exploratory data analysis, these insights could not have been uncovered.

Testing and demo

The model can be currently found in this **GitHub Repository** as **.pkl** file (for external implementations)

It can also be used **online as demo** on the **Hugging Face platform** at this <u>link</u>

Conclusions

With a Macro F1-score of 85.38%, this model provides a solid baseline for further research. However, limitations remain, such as the small sample size and limited model testing

Looking forward, models of this type could be deployed in **healthcare settings** to reduce **staff workload** and **associated costs**, while **continuing to be trained** alongside **medical-approved professionals**, ensuring a high-quality training experience.

Conclusions

This project **aims** to **demonstrate** what can be **accomplished with technology**, even **without** a dedicated budget. Just a **laptop**, an **internet connection**, and a **lot of dedication**

For more projects like this, feel free to **explore** my <u>GitHub</u> and <u>Linkedin</u> pages, which are full of **interesting** work

Thank you for your attention