Linear Regression - Evaluation Metric: R² (Goodness-of-Fit)

- How well the regression line fits the data wrt:
 - The correlation between the true value of the response variable and the predicted value
 - o Baseline model's performance

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

TOTal **S**um of **S**quared errors that compares the actual y values to the baseline model (the mean)

Question: What R² value should the model get closer to? 0 or 1

Goodness of Fit: R²

Linear Regression - Evaluation Metric: R² – Example

X	Y
3	40
10	35
11	30
15	32
22	19
22	26
23	24
28	22
28	18
35	6

Equation for Line of Best Fit: y = -0.94x + 43.7

Linear Regression - Evaluation Metric: R² - Example Cont.

X	Y	Predicted Y $y = -0.94x + 43.7$	Error	Error Squared	Distance between Y values and their mean	Mean distances squared
3	40					
10	35					
11	30					
15	32					
22	19					
22	26					
23	24					
28	22					
28	18					
35	6					
Mean:			Sum:		Sum:	

Linear Regression:
$$R^2 = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \overline{y})^2}$$
 - Example

X	Y	Predicted Y $y = -0.94x + 43.7$	Error	Error Squared	Distance between Y values and their mean	Mean distances squared
3	40	40.88	.88	.77	14.8	219.04
10	35	34.30	70	.49	9.8	96.04
11	30	33.36	3.36	11.29	4.8	23.04
15	32	29.60	-2.40	5.76	6.8	46.24
22	19	23.02	4.02	16.16	-6.2	38.44
22	26	23.02	-2.98	8.88	.8	.64
23	24	22.08	-1.92	3.69	-1.2	1.44
28	22	17.38	-4.62	21.34	-3.2	10.24
28	18	17.38	62	.38	-7.2	51.84
35	6	10.80	4.8	23.04	-19.2	368.65
Mean:	25.2		Sum:	91.81	Sum:	855.60

Logistic Regression It is not a regressor! It is a classifier!!

Classification

- Disease: Exist or not
- Email: Spam or Ham
- Weather: Rain or Sunny
- Transaction: Fraudulent or Genuine
- Income: Wealthy or Poor
- Target variable $y \in \{0, 1\}$
 - \circ 0 \rightarrow Negative class, e.g., Ham
 - o 1 → Positive class, e.g., Spam

binary classification problem with class probability estimation

Binary Classification – Example

- The fitted $h_{\beta}(x)$ using training data
- How to classify the samples:
- \circ Set a threshold, ($\tau = 0.5$)

$$> \text{ If } h_{\beta}(x) \ge \tau \qquad \Rightarrow y = 1$$

 \gt Else $h_{\beta}(x) \rightarrow y = 0$

- Let's approach this problem from what know
- Apply the ML model we learnt LM:

$$h_{\beta}(x_i) = \sum_{j=1}^p x_{i,j} \cdot \beta_j$$

- Samples to the left of t belongs to class 0 and
- > Samples to the right of t belongs to class 1

Binary Classification – Example Cont.

- Let's test it with a new sample
- From the set threshold, we know:
 - > X < t belongs to class 0
 - $> X \ge t$ belongs to class 1

- What if X was part of training sample
- New fitting causes miss classification

Binary Classification Cont.

- Observation
 - \circ Target variable: y = 0 or y = 1
 - o In LM, $h_{\beta}(x)$ can results a value < 0 or >1
 - It is not good enough to have the prediction in [0, 1]

- Solution
 - Logistic regression

$$\triangleright 0 \le h_{\beta}(x) \le 1$$

Logistic Regression Model Description

- It is based on the logistic (sigmoid) function $\sigma(z) = \frac{e^z}{1+e^z}$ for $-\infty < z < \infty$.
- To predict the likelihood of an outcome, y needs to be a function of the input variables, x.
- $z = h_{\beta}(x) \rightarrow \text{linear function of the input variables:}$

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{p-1} x_{p-1} = X \cdot \beta$$
.

• Based on the input variables, $X = \{x_1, x_2, ..., x_p\}$, and the set of parameters, β the probability of an event, y is given as:

$$p(y|X;\beta) = \sigma(z) = \frac{e^z}{1+e^z}$$

value of the logistic function varies from 0 to 1, as z increases

Logistic Regression - Classification

• For set of input variables, $X = \{x_1, x_2, ..., x_p\}$, and the set of parameters, β the probability of an event, y is given as:

$$p(y|X;\beta) = \sigma(z) = \frac{e^z}{1+e^z}$$

• By setting a **threshold**, τ one can easily convert the likelihood probability, $\sigma(z)$ into a binary classification label.

- Example:
 - Predict "y=1" if $\sigma(z) \ge 0.5$
 - Predict "y=0" if $\sigma(z) < 0.5$

- How do we estimate the best parameter β ?
 - \circ Consider an objective function, $J(\beta)$
 - Apply an optimizer (min or max) accordingly

Logistic Regression - Objective Function

model

- From linear regression what we know: $J(\beta) = \frac{1}{n} \sum_{i=1}^{n} [h_{\beta}(x_i) y_i]^2$
- Change the model to sigmoid function: $J(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{e^z}{1+e^z} y_i \right]^2$; $z = h_{\beta}(x_i)$

Logistic Regression: Maximum Likelihood Estimator

- The sigmoid classifier is fit through **learning** the best values for the parameters β by **maximizing** the **log** (joint) **conditional likelihood** probabilities of the two classes.
- Given training sample $\langle x_i | y_i \rangle$ and assume y can only take two values of 0 or 1, the log conditional likelihood is:

$$log(p_i) \leftarrow if y_i = 1$$
 and $log(1 - p_i) \leftarrow if y_i = 0$.

Note: $p_i = p(y = 1 | x_i; \beta)$, i.e., probability function of y=1 given x_i parameterized by β .

Then total log conditional likelihood (LCL):

$$LCL = \sum_{i:y_i=1} \log p_i + \sum_{i:y_i=0} \log (1-p_i)$$
 sum of the log conditional likelihood, by grouping together, the positive and negative training samples

Logistic Regression: MLE Cont.

Unifying the individual class likelihood (!):

$$l(\beta) = \sum_{i=1}^{n} y_i \cdot log(p(x_i)) + (1 - y_i) \cdot log(1 - p(x_i))$$

Note: it is equivalent to previous eq. since, if $y_i = 1$ (true), then $1 - y_i = 0$

• Now, let's substitute the expression for $p(y|x; \beta)$:

$$l(\beta) = \sum_{\substack{i=1\\n}}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(1 - \frac{1}{1 + e^{-\beta_i X_i}}\right)$$

$$l(\beta) = \sum_{\substack{i=1\\n}}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}}\right)$$

Logistic Regression

Why Logistic Regression: MLE Cont.

•
$$l(\beta) = \sum_{i=1}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}}\right) \leftarrow \text{from previous slide}$$

• Now, take y_i common term:

$$l(\beta) = \sum_{i=1}^{n} y_i \left[log \left(\frac{1}{1 + e^{-\beta_i X_i}} \right) - log \left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}} \right) \right] + log \left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}} \right)$$

Further simplify:

$$l(\beta) = \sum_{i=1}^{n} y_{i} \left[log(e^{\beta_{i}X_{i}}) \right] + log\left(\frac{e^{-\beta_{i}X_{i}}}{1 + e^{-\beta_{i}X_{i}}} \right) = \sum_{i=1}^{n} y_{i}\beta X_{i} + log\left(\frac{1}{1 + e^{\beta_{i}X_{i}}} \right)$$

$$l(\beta) = \sum_{i=1}^{n} y_i \beta X_i - log(1 + e^{\beta_i X_i})$$

• Optimal $m{\beta}_j'$ s: Find via maximizing the objective function $\rightarrow \max_{m{\beta}} m{l}(m{\beta})$

Logistic Regression

Logistic Regression: Maximum Likelihood Estimator Cont.

•
$$l(\beta) = \sum_{i=1}^{n} y_i \beta X_i - log(1 + e^{\beta_i X_i})$$

- Now, we choose values of β that make this equation as large as possible: $\beta = \underset{\beta}{\operatorname{arg}} \max l(\beta)$
- Maximizing involves derivatives over multiple iterations.
- E.g., stochastic gradient ascent:

$$\beta_j := \beta_j + \lambda \frac{\partial}{\partial \beta_j} LCL \qquad l(\beta)$$

- The gradient-based update of the parameters
- o Slightly changes the parameter values to increase the log likelihood based on one example at a time.

Logistic Regression: Diagnostics

What we know:

- \circ Sigmoid classifier is to assign class labels based on the predicted probability, $\sigma(z)$.
- \circ E.g., a customer can be classified with the label called "**Churn**" if $\sigma(z) \geq \tau$ (a high probability) that the customer will churn. Otherwise, i.e., $\sigma(z) < \tau$ a "**Remain**" label is assigned to the customer.
- O Generally, $\tau = 0.5$ is used as the **default threshold** to distinguish between any two class labels.

• Application specific τ :

- o to avoid false positives (e.g., predict Churn when actually the customer will Remain)
- o to avoid false negatives (e.g., predict Remain when the customer will actually Churn).

• How do we set an application specific τ :

- Using ROC graph, we can find it.
- A ROC graph is a 2D plot that summarizes a classifier performance over various threshold values with false positive rate on the x axis against true positive rate on the y axis

Diagnostics