Inferential Statistics

Jan 2020

Simple probability rules

Table 1: Probabilities

Definition	Formula
events with opposite outcomes	P(A) + P(B) = 1
both independent events occuring	P(A&B) = P(A) * P(B)
at least 1 occur of mutually exclusive	$P(A \cup B) = P(A) + P(B)$
at least 1 occur non-mutually exclusive	$P(A \cup B) = P(A) + P(B) - P(A \& B)$
conditional probs: prob A occurs if B occured	$P(A \mid B) = \frac{P(A \& B)}{P(B)}$

Bayes' Rule application in medical diagnostics

Accura	cy Rates	Bayer's Formula	
sensitivity	$P(+ \mid D)$	+predVal	$P(D \mid +) = \frac{P(+ D)P(D)}{P(+ D)P(D) + P(+ \sim D)P(\sim D)}$ $P(\sim D \mid -) = \frac{P(- \sim D)P(\sim D)}{P(- \sim D)P(\sim D) + P(- D)P(D)}$
specificity	$P(-\mid \sim D)$	-predVal	$P(\sim D \mid -) = \frac{P(-\mid \sim D)P(\sim D)}{P(-\mid \sim D)P(\sim D) + P(-\mid D)P(D)}$

¹ prevalence: (D) event patient has disease; (~D) event patient doesnt have disease ² (\$+\$) positive test result; (\$-\$) negative test result

Diagnostic Likelihood Ratios	Pre/Post test odds w/DLR (Post=DLR*Pre)	
$DLR_{+} = \frac{P(+ D)}{P(+ \sim D)}$	data w/disease present	$\frac{P(D +)}{P(\sim D +)} = \left(\frac{P(+ D)}{P(+ \sim D)}\right)\left(\frac{P(D)}{P(\sim D)}\right)$
$DLR_{-} = \frac{P(- D)}{P(- \sim D)}$	data w/disease not present	$\frac{\stackrel{\longleftarrow}{P(D -)}}{P(\sim D -)} = \left(\frac{\stackrel{\longleftarrow}{P(- D)}}{P(- \sim D)} \left(\frac{\stackrel{\longleftarrow}{P(D)}}{P(\sim D)}\right)$

- \bullet +predVal:prob patients has disease given positive test result
- \bullet -predVal:prob patient doesnt have disease given negative test value
- DLR_{+} =large usually
- DLR_{-} =small usually
- data w/ disease: post > pre
- data wo disease: post < pre

Elements characterizing a distribution

Abbreviations	Meaning
E(X)	expected value of iid (population mean)
p(x)	probability of discrete variable (PMF)
n	sample size
μ	population mean
\overline{X}	sample mean
σ^2	population variance
s^2	sample variance
σ	population standard deviation
S	sample standard deviation
λ	mean/variance poisson distribution
t	total monitoriing time poisson
df	degrees of freedom (n-1)

Definition	Formula
population mean	$E(X) = \sum_{x} x * p(x)$
variance	$Var(x) = E(x^2) - E(x)^2$
standard deviation	$SD = \sqrt{(variance)}$
variance of sample mean	$Var(\overline{X}) = \frac{\sigma^2}{n}$
standard error of mean	$SEM = \frac{\sigma^n}{\sqrt{n}}$
standard error of sample mean	$SE(\overline{X}) = \frac{s}{\sqrt{n}}$

¹ increase in variance/SD= increase in spread, vice versa

Useful Rcommands:

- pbinom(x, size=n, prob=0.0, lower.tail=T/F): calcs prob of getting greater (F) or less (T) than x
- qnorm(percent, mean=mu, sd=sigma, lower.tail=T/F): calc the xVAl on the quantile/percent from the left (T) or the right (F) end of the distribution curve, also calcs quantile associated with test (th%) when all other parameters left as default
- pnorm(x, mean=mu, sd=sigma, lower.tail=T/F): calcs prob that choose a random variable less than (T) or more than (F) x or with quantile value gives pVal when alternative mean is less than (T) or greater than (F) the hypo mean
- rnorm(n, mean=mu, sd=sigma): generate desired number of random normal samples with specific μ and σ
- ppois(x, lamda=rate x t, lower.tail=T/F): calcs prob of getting a value less than (T) or greater than (F) than x
- binom.test(probability, n)\$conf.int: calcs the 95% CI without relying on CLT, better to use when have small n
- poisson.test(x, t)\$conf: calcs 95% CI for rate related poisson
- qt(percentage, df): calc t-qunatile when given percent as probability and degrees of freedom

- t.test(V2, V1, diffV, paired=T/F, var.equal=T/F)\$conf: calc CI for t test, for paired and independent variables, variations on use specified below. without varConf, then print t,df,pValue,95%CI,sample mean estimate
- qt(q=quantile, df=df, lower,tail=T/F): distribution function of t distribution, quantile would be the t-stat, calc p-value according to the alternative mean being **greater than (F)** or **less than (T)** the mean hypothesis
- power.t.test(power, delta, sd, type, alt): calculates power even with missing values, specify specific need with \$power,delta,n etc. more details below
- quantile(vector, c(0.025, 0.975", "sample(vector, vectorLength * BootstrapNum, replace=TRUE): caclulates the variable values at the indicated th% values, another way to calculate CI
- sample(vector, vLength * bootstrapNum, replace=T): resamples data points from vector by a specified number of time (vector length x bootstrapNum) and saves its in a single longer vector. Used in bootstraping and permutations

Types of distributions

- a. Bernoulli's distriution:
- PMF of Binomial random variables: $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
- calculation in R:
 - 1. $choose(n, x) * p^x * (1-p)^(n-x) + choose(n, x)....$
 - n=total number of trials, x=target/desired number of successes
 - at least \Rightarrow repeat choose() calc from x 'til n
 - 2. pbinom(x-1, size=n, prob=p, lower.tail=TRUE/FALSE)
 - at least \Rightarrow lower.tail=FALSE
- b. Normal/Gaussian distribution:
- normally distributed random variable characterized as: $X \sim N(\mu, \sigma^2) == \text{sampleSize(mean,variance)}$
- standard normal distribution (Z): when $\mu = 0$ and $\sigma = 1 -> Z \sim N(0,1)$
- $Z = \frac{X-\mu}{\sigma}$; $X = \mu + \sigma Z$

Standard normal distribution-Memorize

Table 2: SD and percentile of normal distribution

$\overline{Z(SD)}$	th %	Z(SD)	th %
-2.330	1.0	1.280	90.0
-1.960	2.5	1.645	95.0
-1.645	5.0	1.960	97.5
-1.280	10.0	2.330	99.0
1	- /	1 04)	

 1 in R: qnorm(th %) -> Z

- when given μ , σ and q(th%quantile), can calculate the variable of that quantile using:
 - $-\mu + \sigma Z$
 - qnorm(q, μ , σ , lower.tail=TRUE)
- to calculate probability of picking a random variable....
 - $-Z = \frac{X-\mu}{\sigma} \Rightarrow \pm 1/2/3 \text{ SD(Z)} \Rightarrow \frac{(68/95/99)}{2} = x \Rightarrow 50 \pm x \text{(less or greater)} = \text{probability}$
 - pnorm(indicateVal or q, μ , σ , lower.tail=TRUE/FALSE)
 - * lower.tail=TRUE(less than) or FALSE (greater than)
- c. Poisson distribution
- useful for rates: $X \sim Poisson(\lambda t)$ and $\lambda = E\left[\frac{X}{t}\right]$
 - $-\lambda = \text{rate}, t = \text{total time}$
 - ppois(indicateVal, lamda=rate*t, lower.tail=TRUE/FALSE)
- example: num of ppl at bus stop is Poisson with a mean of 2.5/hr. Survey for 4 hours, prob that 3 or **fewer** people show up for the whole time?
 - Rcode: ppois(3, lambda=2.5*4, lower.tail=TRUE) -> 0.01033605
- Poisson approximates binomial when n is large and p is small
 - $-\lambda = np$ rather than rate*t
 - ppois() and pbinom() results in very close probabilities

Central Limit Theorem (CLT)

a. when variables are iid and n is large, they become a standard normal distibution where N(0,1), then: $\bar{X} \sim N(\mu, \frac{\sigma^2}{\sqrt{n}})$ -> convergence to normality

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- b. convergence to normality poor when sample proportion is close to 0 or 1 (in formula replace means with proportions) or when n is small
- c. Z-stat under standard normal distribution (N(0,1)): $Z=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$

Confidence intervals

- default: 95% for μ is $\bar{X} \pm 2(\frac{\sigma}{\sqrt{n}})$
- CI for normal distribution:
 - calc quantile(Z) for CI (example 90%): $\frac{100-90}{2} + 90$ ⇒ qnorm(0.95)=1.644854
 - calc CI with Z-stat: $\bar{X} \pm ZxSE(\bar{X})$
 - * Rcode: \bar{X} + c(-1,1) x gnorm(0.975) x sd(X)/sqrt(length(X))
- CI for binomial: $\bar{p} \pm Z(\sqrt{\frac{p(1-p)}{n}})$
 - Wald: maximize to get largest CI $(p=\frac{1}{2})$: $\bar{p}\pm\frac{1}{\sqrt{n}}$ (formula to use without R)
 - Rcode: $\bar{p} + c(-1, 1)xqnorm(0.975)xsqrt(\bar{p}x(1-\bar{p})/n)$
 - Rcode: binom.test(numSuccesses, totalTrials)\$conf.int
- CI for poisson: $\hat{\lambda} \pm Z\sqrt{\frac{\hat{\lambda}}{t}}$ when $\hat{\lambda} = \frac{X}{t}$
 - $\ Rcode: \ numSuccesses/totalTime + c(-1,1) \ x \ qnorm (0.975) \ x \ sqrt((numSuccess/totalTime)/totalTime) \ del{eq:code}$
 - Rcode: poisson.test(numSuccesses, totalTime)\$conf

t Confidence Intervals

- a. Student t-test (depends on small n): $t = \frac{\overline{x} \mu}{\frac{s}{\sqrt{n}}}$
- t-quantile in R: qt(percent, df)
- t distribution (larger tails, lower mean peak) \rightarrow increase $n \rightarrow$ t-intervals become Z-intervals (higher mean peak and smaller tails)
- b. CI with t-stat: $\overline{X} \pm t_{(n-1)} * SE(\overline{X})$
- c. CI for paired observations (paired t-Test):
 - \overline{X} = difference between the observations (stored as a vector)
 - Rcode: mean(\overline{X}) + c(-1, 1) x qt(0.975, df) x sd(\overline{X})/sqrt(n)
 - Rcode: t.test(diffVector)\$conf.int
 - Rcode: t.test(Ob2Vector, Ob1Vector, paired=TRUE)\$conf.int
 - Rcode(paired observations in single vector): t.test(ObVector ~ I(relevel(categoryVector, 2ndOb-Category)), paired=TRUE, data=dataFrame)\$conf.test
- d. CI for 2 independent variables with pooled variance (sp)
- $sp = \sqrt{(\frac{(df_x s_x^2) + (df_y s_y^2)}{n_x + n_y 2})}; \ \mu_y \mu_x \pm t_{n_x + n_y 2} * sp * \sqrt{(\frac{1}{n_x} + \frac{1}{n_y})}$
- Rcode:
 - 1) $sp < -nx(times)sx^2 + ny(times)sy^2$
 - 2) ns < -nx + ny 2
 - 3) sp <- $\operatorname{sqrt}(\operatorname{sp/ns})$ OR sp <- $\operatorname{sqrt}((\operatorname{dfx} \operatorname{var}(\operatorname{Vector}X) + \operatorname{dfy} \operatorname{var}(\operatorname{Vector}Y))/18)$

4) muy - mux +
$$c(-1,1)$$
 * $qt(0.975, ns)$ * $sp*sqrt(1/nx+1/ny)$

when interval ranges from neg. to pos. (aka contain 0), cant rule out that means of 2 groups are equal

- Rcode: t.test(Vector2, Vector1, paired=FALSE, var.equal=TRUE)\$conf
- e. CI for 2 independent variables with unequal variance

•
$$df = \frac{(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y})^2}{(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y})^2}$$
; $SE = \sqrt{(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y})}$; $\mu_y - \mu_x \pm t_{df} * SE$

- Rcode:
 - 1) num <- $(sx^2/nx + sy^{2/ny})$ 2
 - 2) den $<- sx^{4/nx}2/nx-1 + sy^{4/ny}2/ny-1$
 - 3) df <- num/def
 - 4) muy-mux + c(-1,1) x qt(0.975, df) x $sqrt(sx^{2/nx+sy}2/ny)$
- Rcode: t.test(Vector2, Vector1, paired=FALSE, var.equal=FALSE)\$conf

Hypothesis Testing

- type I error: reject true H_o ; $\alpha = 0.05$
- $C = \mu_{Ho} + 1.645 * \frac{s}{\sqrt{n}}; Z = \frac{\overline{X} \mu_{Ho}}{\frac{s}{\sqrt{n}}}$
- when $H_{\alpha}: \mu > \mu_o$ then.....
 - $-H_o: \mu = C \text{ and } H_\alpha: \mu > C$
 - OR use Z (for large n): if test statistic $Z > Z_{1-\alpha}(1.645)$ then reject H_o
- when $H_{\alpha}: \mu < \mu_o$ then $Z < Z_{\alpha}(-1.645)$ then reject H_o if thats the case

 $H_{\alpha} = \mu \neq \mu_{o}$ then $Z_{1-\frac{\alpha}{2}}\!\!<\!Z\!\!<\!Z_{\frac{\alpha}{2}}$ then reject

if $\mu \geq C$ (or $\mu \leq C$), then only 5% chance a random draw from distribution is larger than C (or less than C)

if observed mean fell in shaded red/green area, then reject the true $H_o: \mu = \mu_o$ with probability of 5%

- general rule of rejection(H_o): $\frac{(\overline{X} \mu_o)\sqrt{n}}{s} > Z_{1-\alpha}$
- with small n then calc t rather than Z

$$-t = \frac{\overline{X} - \mu_{Ho}}{\frac{s}{\sqrt{n}}}$$

$$-\alpha = qt(0.95, df)$$

$$-\overline{X} = \frac{t*sd(\mu_y - \mu_x)}{\sqrt{n}}$$

- t-statistic indicated the number of estimated std error btw H_{α} and H_{o} means
- one sided t test: $t > \alpha$ reject H_o or $t < \alpha$ fail to reject H_o
- -2 sided t test: $H_{\alpha}: \mu \neq \mu_o$, reject H_o if qt(0.975, df) < t < qt(0.025, df)
- t-test in R:
 - * Rcode: t.test(V2-V1) OR t.test(V2, V1, paired=TRUE), print: t/df/p-value/95% CI and sample estimate mean of \overline{X}
 - * with CI, if not contain 0 (μ_o) then can safely reject hypothesis (or making Type I error), if contail 0, then fail to reject H_o

P values

p-value (under the null hypothesis) states how extreme t-values is towards the alternative hypothesis based on observed data. Its also the smallest alpha value at which to reject the H_o

- Rcode: qt(q=quantile, df=df, lower,tail=T/F) & pnorm(q=quantile, lower.tail=T/F)
 - lower.tail=FALSE: $H_{\alpha}: \mu > \mu_o$ ($\overline{X} > quantile$)
 - lower.tail=TRUE: $H_{\alpha}: \mu < \mu_o \ (\overline{X} \leq quantile)$
 - when value less than 0.05 -> significant (if H_o true then see large t-stat at 1%)
- p-value in 2-sided test
 - when have 2 possible outcomes, must calculate p-values for $H_{\alpha}: \mu > \mu_{o}$ and $H_{\alpha}: \mu < \mu_{o}$ at $\alpha = 0.05$, then multiply the smaller of the two by 2 which then is the official p-value
 - pbinom(x, size=n, prob=p, lower.tail=TRUE)=a
 - pbinom(x, size=n, prob=p, lower.tail=FALSE)=b
 - -2*(a or b)=p-value
- p-value in poisson distribution
 - $-H_o: \lambda = \alpha * t \text{ and } H_\alpha: \lambda > \alpha$
 - $-\alpha$ = rate (benchmark), x= less/greater (TRUE/FALSE) than variable want to see for specified rate
 - Rcode: ppois(x, lambda=rate x t, lower.tail=T/F) -> p-value

Power

- type II error: accept false H_o
- $\beta = \text{prob of Type II error}$
- $1-\beta = \text{prob of rejecting false } H_o \text{ aka power}$
- power is the prob $\mu > Z_{1-\alpha}$
- when thinking of the 2 different hypothesis as distributions: $H_o: \overline{X} \sim N(\mu_o, \frac{\sigma^2}{n})$ and $H_\alpha: \overline{X} \sim N(\mu_o, \frac{\sigma^2}{n})$
 - power determine how much of H_{α} distribution is the right of $Z_{1-\alpha}$ in H_{α}
- ** the further to the right, the greater the effectsize = $\frac{\Delta}{\sigma}$ when $\Delta = \mu_{\alpha} \mu o^{**}$
 - good to know:

$$-\uparrow (\mu_{\alpha} - \mu_{o}) \Rightarrow \uparrow (1 - \beta) \text{ when } H_{\alpha} : \mu > \mu_{o}$$

$$-\downarrow (\mu_{\alpha} - \mu_{o}) \Rightarrow (1 - \beta) = \alpha$$

$$-\uparrow \mu_{\alpha} \& n \Rightarrow \uparrow (1 - \beta)$$

$$-\uparrow \sigma \Rightarrow \downarrow (1 - \beta)$$

$$-\uparrow \alpha \Rightarrow \uparrow (1 - \beta)$$

- Rcode: pnorm(q= μ_o + qnorm(0.95), mean= μ_α , lower.tail=T/F) \Rightarrow power(%)
- power (%) indicates the probability (%) of rejecting H_o when the true value of μ is μ_{α}
- if $H_{\alpha}: \mu \neq \mu_o$ then use qnorm(0.975)(FALSE) or qnorm(0.025)(FALSE), depending on the direction of μ_{α}
- when solving for power really only need: $\frac{\sqrt{n}(\mu_{\alpha}-\mu_{o})}{\sigma}$
- calc power with either t or Z stat: $1 \beta = P(\overline{X} > \mu_o + Z_{1-\alpha}(\frac{\sigma}{\sqrt{n}})); 1 \beta = P(\frac{\overline{X} \mu_o}{\frac{s}{\sqrt{n}}} > t_{1-\alpha,df})$
- When $delta(\Delta)$ positive, $H_{\alpha}: \mu > \mu_o$
 - Rcode: power.t.test(n=n, delta=delta/sigma, sd=sigma, type="one.sample", alt="one.sided")\$power
 - Rcode: power.t.test(power=1-beta, delta=delta/sigma, type="one.sample", alt="one.sided")\$n
 - Rcode: power.t.test(power=power, n=n, sd=sigma, type="one.sample", alt="one.sided")\$delta
 - * power and n values remains the same so long as the effect size (delta/SD) remains constant

Multiple testing

Abbreviations	Meaning
m	number of test
V	number of falsely declared significants
R	number of true H_o
μ_o	number of test declared significant
$E(\frac{V}{R})$	false discoveries rate (FDR)
$E(\frac{V}{\mu_o})$	false positive rate, simi to Type I error
$P(V \ge 1) < \alpha$	prob of at least 1 false positive being detected, aka family wise error rate (FWER)

no p-value correction: $m*\alpha$ = number of anticipated false positives

Multi test correction (independent tests):

- Bonferroni Correction:
 - control FWER
 - calc: $\alpha_{FWER} = \frac{\alpha}{m}$
 - only accept: $p < \alpha_{FWER}$
- Benjamini-Hochberg (BH) Method:
 - control FDR
 - p-value compared to a value dependeing on its ranking
 - set FDR at α -> calc p-values -> order from smallest to largest (i) -> result significant when $p_i \leq \frac{\alpha * i}{m}$
- adjust p-value approach:
 - check amount of false positives in R: sum(pValueVector < 0.05)
 - adjusting pvalue in R: p.adjust(pValueVector, method="bonferroni/BH")

Resampling

- 1) Bootstraping (non-parametric):
 - use observed data to construct estimated population distribution using randm sampling with replacement, then use distribution to estimate stat distribution
 - applifying original observed data into a matrix:
 - n <- length(vector)
 - B <- bootstrap#
 - sam <- sample(vector, n*B, replace=TRUE)
 - resampled <- matrix(sam, B, n)
 - using matrix to create estimated stat of population:
 - meds <- apply(resampled, 1, median)
 - $\operatorname{sd}(\operatorname{meds})$
 - quantile(meds, c(0.025, 0.975)) -> CI
 - Bootstrap package in R by broom
- 2) Permutation testing:
 - to determine if data stats are independent of its group labels via sampling and permutation
 - Rcode:
 - target <- vector w/data points of interest of multiple groups
 - group <- vector w/ group labels of all groups of interest
 - testStat <- function(w, g) mean(w[g=="X"]) mean(g[=="Y"]
 - * can use another stat rathern than mean
 - observedStat <- testStat(target, group)
 - permutations <- sapply(1:#maxTimesDesire, function(i) testStat(target, sample(group)))
 - mean(permutations > obseredStat)
 - * examine number of times got larger simulated stat compared to observed stat
 - * if "0" then p-value=0, so data was independent of group label