Андреев Артём Русланович

Группа: М32001

Практическая работа №5

О сравнении качества оценок

Задание:

Для трех распределений $X \sim N(a,\sigma), \ X \sim U\Big(a-\frac{\delta}{2}, a+\frac{\delta}{2}\Big)$ и распределения Лапласа или двойного показательного — "L(a,u)= $a+Exp_{\lambda}-Exp_{\lambda}, \ \lambda=\frac{1}{u}$ " (суммируемые показательные распределения независимы). Сравнить следующие оценки параметра а — математического ожидания и медианы всех распределений, \overline{X}_n - выборочного среднего, med_n - выборочной медианы и $\frac{x_{(1)}+x_{(n)}}{2}$ — полусуммы минимума и максимума вариационного ряда. Все оценки не смещены. Сравнивать оценки нужно с точки зрения квадратичного риска (т. е. для несмещеных оценок одномерного параметра — дисперсии оценки). При n=100 — объем выборки, m=100 — количество выборок, построить 100 оценок каждого вида и сравнить их выборочные среднеквадратичные отклонения, повторить при n=10000, m=100. Сравнить с теоретическими среднеквадратичными отклонениями. Результат — 6 таблиц и вывод о том какая из оценок с точки зрения квадратичного риска является наилучшей.

Нормальное распределение N(2, 3)

n = 100 / m = 100	\overline{X}_n	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.300000	0.375994	0.884155
σ-практическое	0.278473	0.339923	1.028827

n = 10000 / m = 100	\overline{X}_n	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.030000	0.037599	0.625192
σ-практическое	0.027601	0.037325	0.659871

Равномерное распределение U(0.5, 5.5)

n = 100 / m = 100	$\overline{\mathrm{X}}_{\mathrm{n}}$	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.144338	0.250000	0.035355
σ-практическое	0.157231	0.266318	0.034713

n = 10000 / m = 100	$\overline{\mathrm{X}}_{\mathrm{n}}$	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.014434	0.025000	0.000354
σ-практическое	0.013950	0.023161	0.000408

Распределение Лапласа L(3, 4)

n = 100 / m = 100	\overline{X}_n	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.565685	0.400000	3.794733
σ-практическое	0.586015	0.430053	3.386203

n = 10000 / m = 100	\overline{X}_n	med _x	$(x_{(1)} + x_{(n)})/2$
σ-теоретическое	0.056569	0.040000	3.794733
σ-практическое	0.054143	0.037247	3.797869

Вывод:

Теоретические оценки оказались близки к практическим. При увеличении выборки в 100 раз все оценки для всех распределений уменьшаются, кроме оценки полусуммы минимума и максимума вариационного ряда распределения Лапласа.

Наилучшие оценки:

- Для нормального распределения оценка выборочного среднего
- Для равномерного распределения оценка полусуммы минимума и максимума вариационного ряда
- Для распределения Лапласа оценка выборочной медианы