upel.agh.edu.pl

SW: Instrukcja - Hough

6 — 8 minut

Tomasz Kryjak, Piotr Pawlik

PRZETWARZANIE OBRAZÓW CYFROWYCH

Transformata Hougha

Cel:

- zapoznanie z transformatą Hougha dla pojedynczego punktu, kilku punktów, prostych figur
- wykorzystanie transformaty Hougha do detekcji linii prostych na rzeczywistym obrazie
- transformata Hougha w przestrzeni ab

Transformacja Hough'a

Transformacja Hougha dla prostych jest metodą detekcji współliniowych punktów. Każda prosta może być jednoznacznie przedstawiona za pomocą dwóch parametrów. Przestrzeń tych parametrów to przestrzeń Hougha. Najczęściej wykorzystywanymi parametrami w tej metodzie są współczynniki $\rho, \theta \rho, \theta$ opisujące równanie prostej w postaci normalnej:

$$\rho = x \cdot \cos(\theta) + y \cdot \sin(\theta) \rho = x \cdot \cos(\theta) + y \cdot \sin(\theta)$$

gdzie: $\rho\rho$ - promień wodzący, $\theta\theta$ - kąt pomiędzy $\rho\rho$ a osią OX.

1 z 5

Własności transformaty Hougha:

- prostej w przestrzeni kartezjańskiej odpowiada punkt w przestrzeni Hougha
- pękowi prostych przechdzących przez punkt w przestrzeni kartezjańskiej odpowiada krzywa sinusoidalna w przestrzeni Hougha
- punkty leżące na tej samej prostej (w przestrzeni kartezjańskiej)
 korespondują z sinusoidami przechodzącymi przez wspólny punkt
 w przestrzeni Hougha.
 - Metoda wyliczania transformaty Hougha składa się z następujących kroków:
- przez każdy badany (różny od zera) punkt obrazu prowadzony jest pęk prostych, przechodzących przez ten punkt
- każda z tych prostych transformowana jest do przestrzeni Hougha i tworzy tam punkt o współrzędnych ρ,θρ,θ
- w ten sposób, każdy punkt obrazu pierwotnego (pęk prostych) jest odwzorowany w sinusoidalną krzywą w przestrzeni Hougha
 Przestrzeń Hougha jest przestrzenią akumulacyjną tzn. punkty sinusoidalnych krzywych, wygenerowanych dla punktów obrazu pierwotnego dodają się w miejscach, w których krzywe te przecinają się. Powstałe w ten sposób (w przestrzeni Hougha) maksima odpowiadają zbiorom punktów, należących do jednej prostej. Współrzędne ρ,θρ,θ tego maksimum jednoznacznie określają położenie prostej na obrazie pierwotnym.
- Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all;

2 z 5 06.06.2018, 17:58

- 2. Stwórz "obraz" macierz samych zer o rozmiarze 11x11 (funkcja zeros).
- 3. Wartość jednego, wybranego punktu z obrazu ustal na 1.
- 4. Wykonaj transformatę Hougha "obrazu":
- wykorzystaj funkcję hough
- ustal parametry: 'RhoResolution',0.1, rozdzielczość promienia wodzącego
 - 'ThetaResolution',0.5 rozdzielczość kata (w stopniach)
- funkcja zwraca macierz H (przestrzeń Hougha) oraz dwa wektory
 theta i rho
- 5. Wyświetl przestrzeń Hougha za pomocą funkcji imshow. Warto wykorzystać skalowanie []. Jak "wygląda" pojedynczy punkt w przestrzeni Hougha?
- 6. Dodaj kolejny punkt do "obrazu". Jak zmienia się przestrzeń Hougha?
- 7. Do "obrazu" dodaj jeszcze dwa punkty współliniowe. Zaobserwuj zmiany w przestrzeni Hougha.
 - W tym podpunkcie pokazane zostanie praktycznie wykorzystanie transformaty Hougha do detekcji prostych na sztucznym rysunku.
- 1. Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all; Wczytaj obraz "kwadraty.tif". Wyświetl go.
- 2. Wykonaj detekcję krawędzi jedną z metod gradientowych. Ważne aby obraz krawędzi był jak najlepszej jakości - co oznacza cienkie (nawet niekoniecznie ciągłe) krawędzie - dla tego przypadku nie powinno być trudne do uzyskania. Wyświetl obraz po detekcji krawędzi.

3 z 5 06.06.2018, 17:58

- 3. Wykonaj transformatę Hougha obrazu krawędziowego. Wykorzystaj funkcję hough z parametrami domyślnymi (rozdzielczość kątowa 1 stopień, a przestrzenna 1 piksel).
- 4. Wyświetl macierz H. Czy widoczna jest taka liczba maksimów jakiej się spodziewamy?
- 5. W Image Processing Toolbox dostępna jest funkcja do automatycznej analizy przestrzeni Hougha - wyszukiwania maksimów - houghpeaks. Jako parametry przyjmuje ona macierz H oraz ilość poszukiwanych maksimów. Dodatkowo można podać próg powyżej którego punkt uznawany jest za maksimum oraz rozmiar otoczenia jakie zostanie wyzerowane po detekcji maksimum (szczegóły w help'ie). Funkcja zwraca współrzędne maksimów.
- 6. Wykorzystaj funkcję houghpeaks poszukujemy 8 maksimów.
- 7. Kolejną użyteczną funkcją z *IPT* jest houghlines. Funkcja na podstawie wektorów *rho* i *theta* oraz rezultatu działania funkcji houghpeaks wyznacza linie obecne na obrazie. Funkcja zwraca wektor struktur z opisem wykrytych linii.
- 8. Wyznacz linie obecne na obrazie houghlines. Do wyświetlania linii wykorzystaj przykładowy kod umieszczony w pomocy do funkcji houghlines (odpowiedni fragment).
- 9. Pokaż wyniki prowadzącemu.
 - Bazując na kodzie stworzonym w punkcie B wyszukamy linie na obrazie rzeczywistym.
- 1. Wczytaj obraz "lab112.bmp". Wyświetl go.
- 2. Wykorzystując wszystkie poznane techniki przetwarzania obrazów (filtracja, przekształcenia morfologiczne, binaryzację, detekcję

4 z 5 06.06.2018, 17:58

SW: Instrukcja - Hough

krawędzi) wyodrębnij krawędzie samych kwadratów - tak aby były jak najlepszej jakości (cienkie) - jednocześnie eliminując z obrazu zakłócenia.

- 3. Wykorzystaj kod z podpunktu B i przeprowadź detekcję linii na obrazie.
- 4. Wypróbuj działanie transformacji Hougha na obrazie "dom.tif". Zobacz jak wygląda przestrzeń Hougha. Wybierz odpowiednią liczbę maksimów.
- 5. Pokaż wyniki prowadzącemu.

Przestrzeń $\rho,\theta\rho,\theta$ nie jest jedyną przestrzenią w której punkt odpowiada parametrom prostej. Np. można spróbować wykorzystać tradycyjne równanie prostej:

$$y=ax+by=ax+b$$

W tej przestrzeni reprezentacją **pęku prostych** jest **prosta**. Przeprowadź działania analogiczne jak w punkcjie A, tylko zamast matlabowej funkcji hough użyj funkcji houghAB wczytanej z archiwum, która realizuje transformatę Hougha w przestrzeni ab.

Dlaczego reprezentacja ab nie jest powrzechnie używana w transformacie Hougha? (przetestuj/sprawdź czy dla wszystkich prostych reprezentacja **ab** daje oczekiwane wyniki - **W SZCZEGÓLNOŚCI SPRAWDŹ PROSTE PIONOWE**). Pokaż wyniki prowadzącemu.

Ostatnia modyfikacja: środa, 6 czerwiec 2018, 10:29

5 z 5