Data ScienceBootcamp

Frédéric Oru

Segmentation des glomérules dans les coupes histologiques de reins

Le problème à résoudre

Comment délimiter automatiquement les glomérules sur une image histologique de rein ?

La solution

Classification + Localization

Object Detection

Instance Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

CAT

Single Object

DOG, DOG, CAT

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Mask R-CNN

Mise en oeuvre

Moyens

Data : 200 images avec cerclages des glomérules

- Modèle: implémentation Matterport sur Github

- Machine: Google Cloud Platform avec 1 GPU P100

Phase d'apprentissage (~ 2 heures)

Résultats

Temps d'inférence :

• ~2 s / image vs 5-10 min pour un humain

Performance :

- Validation set : correspondance des masques à 88%
- Tests sur d'autres marqueurs que celui d'entraînement
 - ~ 72% => besoin d'enrichir le train dataset

coloration IgG x15 => Perfect

coloration IgG x30 => Good

coloration IgG x10 => some missing

HES x15 => Good

Predictions

PAS x15 => Not so good

Predictions

Next Steps

Next steps

- Enrichir le jeu de données, optimiser le modèle

Porter le modèle sur Google App Engine

— A suivre sur https://github.com/Fred-Oru/Segmenting-Histology-Images

Data Science Bootcamp

Des questions?

