## Particle spectrograph

## Wave operator and propagator

|                                  |                                                           |                                                     |                                                    |                                                  |                                                               |                             |                                                      | Ī                                                                                                                                                                                                                                                                                              |                                                                                                          | o                                                         | 7#1<br>0+                                          |                                                           |                                                                                                                                                                                       | τ.                       | #1<br>0 <sup>+</sup>                                       |                          | $	au_{0}^{\#2}$                                           | $\sigma_0^{\#1}$                                                                              |                                                                                  |                                                                        |                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                          |                                                                                                                                                                                    |                                                                 |   |
|----------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------|--------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|
| $\tau_{1}^{\#2}\alpha$           | 0                                                         | 0                                                   | 0                                                  | $-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$       | $\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$ | 0                           | $\frac{4 k^2}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$ | $\sigma_{0}^{\#1} \dagger \frac{8 \beta_{1}}{\alpha_{0}^{2} - 4 \alpha_{0} \beta_{1} + 8 \alpha_{6} \beta_{1} k^{2}}$ $\tau_{0}^{\#1} \dagger \frac{i \sqrt{2} (\alpha_{0} - 4 \beta_{1})}{\alpha_{0} (\alpha_{0} - 4 \beta_{1}) k + 8 \alpha_{6} \beta_{1} k^{3}}$ $\tau_{0}^{\#2} \dagger 0$ |                                                                                                          |                                                           |                                                    |                                                           | $-\frac{i\sqrt{2}(\alpha_0-4\beta_1)}{\alpha_0(\alpha_0-4\beta_1)k+8\alpha_6\beta_1}$ $-\frac{\alpha_0-4\beta_1+2\alpha_6k^2}{k^2(\alpha_0^2-4\alpha_0\beta_1+8\alpha_6\beta_1)}$ $0$ |                          |                                                            |                          | 0 0                                                       | 0 0                                                                                           |                                                                                  | 0 <sup>#1</sup> † 6 <sup>#1</sup> †                                    | $\omega_{0}^{\#1} + \frac{\alpha_{0}}{2} - 2\beta_{1} + \alpha_{6} k^{2}$ $\frac{i(\alpha_{0}-4\beta_{1})k}{\sqrt{2}}$ |                                                                                                                                                                   | k <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c cccc} f_{0+}^{\#1} & f_{0}^{\#} \\ -\frac{i(\alpha_{0}-4\beta_{1})k}{\sqrt{2}} & 0 \\ -4\beta_{1}k^{2} & 0 \end{array} $             |                                                                          | ω <sub>0</sub> <sup>#1</sup><br>0                                                                                                                                                  |                                                                 |   |
| $\tau_{1}^{\#1}{}_{\alpha}$      | 0                                                         | 0                                                   | 0                                                  | 0                                                | 0                                                             | 0                           | 0                                                    | $\sigma_0^{+1}$                                                                                                                                                                                                                                                                                |                                                                                                          |                                                           | 0                                                  |                                                           |                                                                                                                                                                                       | 0                        |                                                            |                          | 0                                                         | $\frac{2}{\alpha_0 - 4 \beta_1}$                                                              |                                                                                  | f <sub>0</sub> <sup>#2</sup> †                                         |                                                                                                                        | 0                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                      | 0                                                                        | 0                                                                                                                                                                                  |                                                                 |   |
| $\sigma_{1}^{\#2}{}_{\alpha}$    | 0                                                         | 0                                                   | 0                                                  | $-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$ | $-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$                    | 0                           | $\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$  | $f_{1}^{\#2}$                                                                                                                                                                                                                                                                                  | 0                                                                                                        | 0                                                         | 0                                                  | $i(\alpha_0-4\beta_1)k$                                   | 0                                                                                                                                                                                     | 0                        | 0                                                          | generators               | cities                                                    |                                                                                               |                                                                                  | ∪ <sub>0</sub> -1 †                                                    |                                                                                                                        | $\omega_{2}^{#1}$ 0                                                                                                                                               | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0 \qquad 0 \\ \frac{\omega_0}{4} + \beta_1$                                                                                                           |                                                                          | $\frac{1}{2} (\alpha_0 - 4 \beta_1)$                                                                                                                                               |                                                                 |   |
| $\sigma_{1^{-}\alpha}^{\#1}$     | 0                                                         | 0                                                   | 0                                                  | 0                                                | $-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$              | 0                           | $\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$            | $\omega_{1}^{\#2}{}_{\alpha}  f_{1}^{\#1}{}_{\alpha}$                                                                                                                                                                                                                                          | 0 0                                                                                                      | 0 0                                                       | 0 0                                                | $\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}  0  -\frac{1}{2}i$ | 0 0                                                                                                                                                                                   | 0 0                      | 0 0                                                        | aints/gauge ge           | Multiplicities                                            | $\sigma_{1}^{\#2}\alpha == 0  3$                                                              | •                                                                                | $\frac{1}{2}\alpha\beta=0$ 3                                           | nts: 10                                                                                                                | $f_{2}^{\#1} \alpha \beta$ $i(\alpha_0 - 4\beta_1) k$                                                                                                             | β <sub>1</sub> 2 √2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\beta_1)^k}{2}  2\beta_1 k^2$ $0  -$                                                                                                            | $	au_2^{\#1}$ $	au_2^{\#1}$                                              | $\frac{2i\sqrt{2}}{\alpha_0 k} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$                                                                                  |                                                                 |   |
| $\tau_{1}^{\#1}_{\alpha\beta}$   | $\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$ | $-\frac{2ik}{(\alpha_0\!-\!4\beta_1)(1\!+\!k^2)^2}$ | $-\frac{2 k^2}{(\alpha_0 - 4 \beta_1)(1 + k^2)^2}$ | 0                                                | 0                                                             | 0                           | 0                                                    | $\omega_{1^{-}\alpha}^{\#1}$                                                                                                                                                                                                                                                                   | 0                                                                                                        | 0                                                         | 0                                                  | $\frac{1}{4} \left( \alpha_0 - 4  \beta_1 \right)$        | $-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$                                                                                                                                                | 0                        | $\frac{1}{2}$ $\tilde{l}$ ( $\alpha_0$ - 4 $\beta_1$ ) $k$ | Source constraints/gauge | SO(3) irreps                                              | $\tau_0^{\#2} == 0$ $\tau_1^{\#2} \alpha + 2 \vec{i} k \sigma_1^{\#}$                         | 0 ==                                                                             | $\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta = 0$       | Total constraints:                                                                                                     | $\omega_{2}^{\#1}$ $\omega_{2}^{\#1} \alpha \beta$                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_{2}^{\#1} + \alpha \beta - \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$ $\omega_{2}^{\#1} + \alpha \beta \chi \qquad 0$                               | $\sigma_{2}^{\#1}$                                                       | $\sigma_{2}^{\#1} + \alpha \beta = \frac{16\beta_{1}}{\alpha_{0}^{2} - 4\alpha_{0}\beta_{1}}$ $\tau_{2}^{\#1} + \alpha \beta = \frac{2i\sqrt{2}}{\alpha_{0}^{2} + \alpha_{0}^{2}}$ | $\sigma_{2}^{#1} + \alpha \beta \chi$ 0                         |   |
| $\sigma_{1+\alpha\beta}^{\#2}$   | $\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$            | $\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$            | $\frac{2 i k}{(\alpha_0 - 4 \beta_1)(1 + k^2)^2}$  | 0                                                | 0                                                             | 0                           | 0                                                    | $_{lphaeta} f_{1}^{\#1}$                                                                                                                                                                                                                                                                       | $\frac{\beta_1}{2}  \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$                                           | 0                                                         | 0                                                  | 0                                                         | 0                                                                                                                                                                                     | 0                        | 0                                                          | S                        | F ==                                                      | ratic (f $\frac{1}{2}$ ( $\alpha_0$ -                                                         |                                                                                  |                                                                        |                                                                                                                        | 2β1 α                                                                                                                                                             | ) <sub>χδ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        | $^{lphaeta}$ $	au_{lpha}$                                                | $_{lphaeta}+\ \omega^{lphaeta\chi}\ \sigma$                                                                                                                                        |                                                                 | _ |
| $\sigma_{1}^{\#1}_{\alpha\beta}$ | 0                                                         | + <sub>k</sub> <sup>2</sup> )                       | $-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$  | 0                                                | 0                                                             | 0                           | 0                                                    | $\omega_{1}^{\#1}{}_{lphaeta} \qquad \omega_{1}^{\#2}{}_{lphaeta}$                                                                                                                                                                                                                             | $\frac{1}{4} \left( \alpha_0 - 4 \beta_1 \right) \left  \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $ | $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \qquad \qquad 0$ | $-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}\qquad 0$ | 0 0                                                       | 0                                                                                                                                                                                     | 0 0                      | 0 0                                                        | 2<br>2                   | $ u_{lpha}^{X}_{\chi} $ $ \beta_{1} $ $ u_{lpha\chieta} $ | $\partial_{eta}f^{lphaeta}$ - $\omega_{eta}^{\delta}\partial^{eta}$ ( - $rac{1}{2}$ $lpha_0$ | $-2 \beta_1$ $\beta^{\alpha} f^{\alpha}_{\alpha}$ $-\omega^{\alpha\beta\lambda}$ | $\omega_{\alpha}^{\delta}_{\delta}$ $2 \beta_1 \partial$ $4 + 4 \beta$ | $\partial_{eta}f^{lpha_{eta}}$ $eta_{eta}f^{X}_{X}$ $eta_{eta}$ $eta_{eta}$                                            | $\frac{\beta}{\alpha} - \alpha_0 f^{\alpha\beta}$ $\frac{\partial^{\beta} f^{\alpha}}{\alpha} + \alpha$ $\frac{\partial^{\alpha\beta}}{\partial \beta} + \beta_1$ | $rac{\partial }{\partial eta } \partial _{eta } \omega _{eta } \ \partial _{eta } f ^{\prime } \ \partial _{eta } f _{eta } \ \partial _{eta } \ \partial _{eta } f _{eta } \ \partial $ | $\omega_{\alpha}^{X} + \alpha_{0} \delta$ $\alpha^{\beta} \partial_{x} \omega_{\alpha}^{X}$ $\delta^{\delta} \partial^{x} f_{\delta}^{\beta} + \delta$ | $eta_eta\omega^{lphaeta}$ - $lpha_0$ ) $eta_1$ $\partial_{\chi}$ $eta_2$ | $ \beta_{\alpha} + 2 \beta_{1} \omega_{\beta} $ $ f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} $ $ f^{\delta}_{\beta} \partial^{\chi} f_{\delta}^{\beta} +  $   | ${}^{\chi}_{\beta \chi} \partial^{\beta} f^{\alpha}_{\alpha} +$ | - |
|                                  | $\sigma_1^{\#1} + \alpha^{eta}$                           | $\sigma_{1}^{\#2} + \alpha^{eta}$                   | $\tau_1^{\#1} + \alpha\beta$                       | $\sigma_{1}^{\#1} +^{\alpha}$                    | $\sigma_1^{\#2} +^{lpha}$                                     | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_1^{\#2} +^{\alpha}$                            |                                                                                                                                                                                                                                                                                                | $\omega_{1}^{\#1} +^{\alpha\beta}$                                                                       | $\omega_{1}^{\#2} + ^{lphaeta}$                           | $f_1^{#1} + \alpha \beta$                          | $\omega_{1}^{\#1} +^{\alpha}$                             | $\omega_{1}^{\#2} +^{lpha}$                                                                                                                                                           | $f_{1}^{\#1} +^{\alpha}$ | $f_{1}^{\#2} +^{\alpha}$                                   |                          |                                                           |                                                                                               |                                                                                  |                                                                        |                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                          | $-\beta_1 \partial^X f_{\zeta}^{\beta} \partial^{\zeta}$ $] dz dy dx$                                                                                                              |                                                                 |   |

## Massive and massless spectra



Quadratic pole

Pole residue: 
$$\frac{1}{\alpha_0} > 0$$

Polarisations: 2

## Unitarity conditions

$$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid |\beta_1 > \frac{\alpha_0}{4}$$