# HAI6011 - Exercices de révisions

Benoît Huftier

2022

# Création de la table d'analyse

# Enoncé

Soit la grammaire  $G = (\{a, b, c, f, g, h\}, \{S, B, C, D, E, F\}, R, S)$  avec les règles R suivantes :

$$\begin{array}{cccc} S & \rightarrow & aBDh \\ B & \rightarrow & cC \\ C & \rightarrow & bC|\varepsilon \\ D & \rightarrow & EF \\ E & \rightarrow & g|\varepsilon \\ F & \rightarrow & f|\varepsilon \end{array}$$

Décrivez la table d'analyse de la grammaire G.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Pour pouvoir créer une table d'analyse, il faut que la grammaire soit non récursive à gauche. C'est le cas ici.

La première chose à faire est de calculer les **premiers** de chaque symboles. Ensuite il faudra calculer les **suivants** des symboles non terminaux. Les premiers de terminaux sont simples, c'est seulement eux-mêmes :

- $premiers(a) = \{a\}$
- premiers(b) = {b}
- ...

Pour les non terminaux, on regarde chacune des règles où ils sont situés en partie gauche :

- Si  $X \to \varepsilon$  alors  $\varepsilon \in premiers(X)$
- Si  $X \rightarrow Y_1 Y_2 \dots Y_n$ 
  - **1** {premiers( $Y_1$ ) −  $\varepsilon$ } ⊂ premiers(X)
  - ② Si  $\varepsilon \in premiers(Y_i)$  on recommence au point 1 avec i à la place de 1.
  - **3** Si on arrive à i = n et  $\varepsilon \in premiers(Y_n)$  alors  $\varepsilon \in premiers(X)$

Pour que ce soit plus simple, je conseille de commencer par calculer les premiers des derniers non terminaux.

Pour notre cas nous avons donc :

- $premiers(F) = \{f, \varepsilon\}$
- $premiers(E) = \{g, \varepsilon\}$
- $premiers(D) = \{premiers(E) \varepsilon\} \cup \{premiers(F) \varepsilon\} \cup \{\varepsilon\}$
- $premiers(C) = \{b, \varepsilon\}$
- $premiers(B) = \{c\}$
- $premiers(S) = \{a\}$

Ils découlent tous de leurs règles respectives. Le seul qui diffère légèrement, c'est D. On lui a donné les premiers de E et comme E était effaçable alors on lui a donné les premiers de F. Ce dernier était également effaçable alors on a ajouté  $\varepsilon$ .

#### Finalement:

•  $premiers(D) = \{f, g, \varepsilon\}$ 



Maintenant que nous avons calculer les premiers, nous pouvons calculer les suivants. Il y a quatre règles à connaître :

- $\bullet$  \$  $\in$  suivants(S) où \$ représente la fin du flot et S est l'axiome de la grammaire.
- ② Soit une règle  $A \to \alpha B\beta$  alors  $\{premiers(\beta) \varepsilon\} \subset suivants(B)$
- **3** Soit une règle  $A \to \alpha B$  alors  $suivants(A) \subset suivants(B)$
- **3** Soit une règle  $A \to \alpha B\beta$  et  $\varepsilon \in premiers(\beta)$  alors  $suivant(A) \subset suivants(B)$

La règle 4 découle directement de la règle 3. En effet, il faut juste voir  $\beta$  comme un élément effaçable, ce qui revient à la règle 3.

Notez que cette fois ci, lorsque l'on calcule les suivants d'un non terminal, il faut regarder les règles qui possèdent ce symbole en **partie gauche**.

Cette fois, je conseille de commencer par calculer les suivants des premiers non terminaux.

### Pour notre cas nous avons donc :

- suivants(S) = {\$}
- $suivants(B) = \{premiers(D) \varepsilon\} \cup \{premiers(h) \varepsilon\}$
- suivants(C) = suivants(B)
- $suivants(D) = \{premiers(h) \varepsilon\}$
- $suivants(E) = \{premiers(F) \varepsilon\} \cup suivants(D)$
- suivants(F) = suivants(D)

## Une petite explication s'impose :

- les suivants de C et F sont respectivement les suivants de B et D car ils se situent uniquement en fin de partie droite (utilisation des règles  $B \to cC$  et  $D \to EF$ ). <sup>1</sup>
- D n'est suivi que par h dans la règle  $S \to aBDh$ , d'où la valeur de suivants(D)

7 / 11

- B est suivi par Dh dans cette même règle, comme D est effaçable  $(\varepsilon \in premers(D))$ , alors on ajoute les premiers de D, mais aussi ceux de h.
- Enfin, E est suivi par F dans la règle  $D \to EF$ , comme F est effaçable  $(\varepsilon \in premiers(F))$ , alors il se retrouve en fin de règle et on lui ajoute donc les suivants de D.

#### Finalement:

- suivants(S) = {\$}
- $suivants(B) = \{f, g, h\}$
- $suivants(C) = \{f, g, h\}$
- $suivants(D) = \{h\}$
- $suivants(E) = \{f, h\}$
- suivants(F) = {h}

<sup>1.</sup> Notez que logiquement, on aurait du avoir  $suivants(C) \subset suivants(C)$  avec la règle  $C \to bC$ , mais c'est logique.

Finalement on crée la table d'analyse, assez simplement.

Premièrement, on instancie la table complète : une ligne par symbole de  $V_N$ , une colonne par symbole de  $V_T \cup \{\$\}$ .

Pour chaque règle  $X \to \alpha$ :

- On écrit la règle à la case M[X,x] pour chaque  $x \in premiers(\alpha)$ .
- Si  $\varepsilon \in premiers(\alpha)$ , on écrit la règle à la case M[X, y] pour chaque  $y \in suivants(X)$ .

|   | а | Ь | С | f | g | h | \$ |
|---|---|---|---|---|---|---|----|
| S |   |   |   |   |   |   |    |
| В |   |   |   |   |   |   |    |
| С |   |   |   |   |   |   |    |
| D |   |   |   |   |   |   |    |
| Ε |   |   |   |   |   |   |    |
| F |   |   |   |   |   |   |    |

Initialisation de la table



|   | а         | Ь | С | f | g | h | \$ |
|---|-----------|---|---|---|---|---|----|
| S | S 	o aBSh |   |   |   |   |   |    |
| В |           |   |   |   |   |   |    |
| С |           |   |   |   |   |   |    |
| D |           |   |   |   |   |   |    |
| Ε |           |   |   |   |   |   |    |
| F |           |   |   |   |   |   |    |

On regarde la règle  $S \rightarrow aBSh$ 

 $premiers(aBSh) = \{a\}$  donc on ajoute la règle à la case [S,a].



|   | а         | Ь | С | f | g | h | \$ |
|---|-----------|---|---|---|---|---|----|
| S | S 	o aBSh |   |   |   |   |   |    |
| В |           |   |   |   |   |   |    |
| С |           |   |   |   |   |   |    |
| D |           |   |   |   |   |   |    |
| Ε |           |   |   |   |   |   |    |
| F |           |   |   |   |   |   |    |

On regarde la règle  $S{
ightarrow}aBSh$ 

 $premiers(aBSh) = \{a\}$  donc on ajoute la règle à la case [S,a]. 3  $\varepsilon \notin premiers(aBSh)$  donc on n'ajoute pas d'autre règle.

|   | а         | Ь | С                  | f | g | h | \$ |
|---|-----------|---|--------------------|---|---|---|----|
| S | S 	o aBSh |   |                    |   |   |   |    |
| В |           |   | $B \rightarrow cC$ |   |   |   |    |
| С |           |   |                    |   |   |   |    |
| D |           |   |                    |   |   |   |    |
| Ε |           |   |                    |   |   |   |    |
| F |           |   |                    |   |   |   |    |

On regarde la règle  $B \rightarrow cC$ 

 $premiers(cC) = \{c\}$  donc on ajoute la règle à la case [B,c].



|   | а         | Ь | С                  | f | g | h | \$ |
|---|-----------|---|--------------------|---|---|---|----|
| S | S 	o aBSh |   |                    |   |   |   |    |
| В |           |   | $B \rightarrow cC$ |   |   |   |    |
| С |           |   |                    |   |   |   |    |
| D |           |   |                    |   |   |   |    |
| Ε |           |   |                    |   |   |   |    |
| F |           |   |                    |   |   |   |    |

On regarde la règle  $B \rightarrow cC$ 

 $premiers(cC) = \{c\}$  donc on ajoute la règle à la case [B,c]. 5  $\varepsilon \notin premiers(cC)$  donc on n'ajoute pas d'autre règle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

|   | а         | Ь                  | С                  | f | g | h | \$ |
|---|-----------|--------------------|--------------------|---|---|---|----|
| S | S 	o aBSh |                    |                    |   |   |   |    |
| В |           |                    | $B \rightarrow cC$ |   |   |   |    |
| С |           | $C \rightarrow bC$ |                    |   |   |   |    |
| D |           |                    |                    |   |   |   |    |
| Ε |           |                    |                    |   |   |   |    |
| F |           |                    |                    |   |   |   |    |

On regarde la règle  $C \rightarrow bC$ 

 $premiers(bC) = \{b\}$  donc on ajoute la règle à la case [C,b].

|   | а         | Ь       | С       | f | g | h | \$ |
|---|-----------|---------|---------|---|---|---|----|
| S | S 	o aBSh |         |         |   |   |   |    |
| В |           |         | B 	o cC |   |   |   |    |
| С |           | C 	o bC |         |   |   |   |    |
| D |           |         |         |   |   |   |    |
| Ε |           |         |         |   |   |   |    |
| F |           |         |         |   |   |   |    |

On regarde la règle  $C \rightarrow bC$ 

 $premiers(bC) = \{b\}$  donc on ajoute la règle à la case [C,b]. 7  $\varepsilon \notin premiers(bC)$  donc on n'ajoute pas d'autre règle.



|   | а         | Ь       | С       | f | g | h | \$ |
|---|-----------|---------|---------|---|---|---|----|
| S | S 	o aBSh |         |         |   |   |   |    |
| В |           |         | B 	o cC |   |   |   |    |
| С |           | C 	o bC |         |   |   |   |    |
| D |           |         |         |   |   |   |    |
| Ε |           |         |         |   |   |   |    |
| F |           |         |         |   |   |   |    |

On regarde la règle  $C \rightarrow \varepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle.



|   | а         | Ь       | С       | f                  | g                  | h              | \$ |
|---|-----------|---------|---------|--------------------|--------------------|----------------|----|
| S | S 	o aBSh |         |         |                    |                    |                |    |
| В |           |         | B 	o cC |                    |                    |                |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | C 	o arepsilon |    |
| D |           |         |         |                    |                    |                |    |
| Ε |           |         |         |                    |                    |                |    |
| F |           |         |         |                    |                    |                |    |

On regarde la règle  $C \rightarrow \varepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle. 9

 $\varepsilon \in premiers(\varepsilon)$  donc on ajoute la règle à tous les suivants de C.  $suivants(C) = \{f, g, h\}$ .



|   | а         | Ь       | С                  | f                 | g                  | h                  | \$ |
|---|-----------|---------|--------------------|-------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |                    |                   |                    |                    |    |
| В |           |         | $B \rightarrow cC$ |                   |                    |                    |    |
| С |           | C 	o bC |                    |                   | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |                    | $D 	o 	extit{EF}$ | D 	o EF            |                    |    |
| Ε |           |         |                    |                   |                    |                    |    |
| F |           |         |                    |                   |                    |                    |    |

On regarde la règle D o EF

 $premiers(EF) = \{premiers(E) - \varepsilon\} \cup \{premiers(F) - \varepsilon\} \cup \{\varepsilon\} = \{f, g, \varepsilon\}$  donc on ajoute la règle au case [D, f] et [D, g].

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

|   | а         | Ь                  | С       | f       | g                  | h       | \$ |
|---|-----------|--------------------|---------|---------|--------------------|---------|----|
| S | S 	o aBSh |                    |         |         |                    |         |    |
| В |           |                    | B 	o cC |         |                    |         |    |
| С |           | $C \rightarrow bC$ |         |         | $C 	o \varepsilon$ |         |    |
| D |           |                    |         | D 	o EF | D 	o EF            | D 	o EF |    |
| Ε |           |                    |         |         |                    |         |    |
| F |           |                    |         |         |                    |         |    |

On regarde la règle  $D \rightarrow EF$ 

$$premiers(EF) = \{premiers(E) - \varepsilon\} \cup \{premiers(F) - \varepsilon\} \cup \{\varepsilon\} = \{f, g, \varepsilon\}$$
 donc on ajoute la règle au case  $[D, f]$  et  $[D, g]$ . 11

 $\varepsilon \in premiers(EF)$  donc on ajoute la règle à tous les suivants de D.  $suivants(D) = \{h\}$ 

Benoît Huftier HA|601| - révisions 2022

10 / 11

|   | а         | Ь       | С       | f                  | g                  | h                  | \$ |
|---|-----------|---------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                    |                    |    |
| В |           |         | B 	o cC |                    |                    |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | $D 	o 	extit{EF}$  | $D 	o 	extit{EF}$  | D 	o EF            |    |
| Ε |           |         |         |                    | E 	o g             |                    |    |
| F |           |         |         |                    |                    |                    |    |

On regarde la règle  $E \rightarrow g$ 

 $premiers(g) = \{g\}$  donc on ajoute la règle à la case [E,g].

|   | а         | Ь       | С       | f                  | g                  | h                  | \$ |
|---|-----------|---------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                    |                    |    |
| В |           |         | B 	o cC |                    |                    |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | D 	o EF            | D 	o EF            | D 	o EF            |    |
| Ε |           |         |         |                    | E	o g              |                    |    |
| F |           |         |         |                    |                    |                    |    |

On regarde la règle  $E \rightarrow g$ 

 $premiers(g) = \{g\}$  donc on ajoute la règle à la case [E,g]. 13

 $\varepsilon \notin premiers(g)$  donc on n'ajoute pas d'autre règle.



|   | а         | Ь       | С       | f                 | g                  | h       | \$ |
|---|-----------|---------|---------|-------------------|--------------------|---------|----|
| S | S 	o aBSh |         |         |                   |                    |         |    |
| В |           |         | B 	o cC |                   |                    |         |    |
| С |           | C 	o bC |         |                   | $C 	o \varepsilon$ |         |    |
| D |           |         |         | $D 	o 	extit{EF}$ | D 	o EF            | D 	o EF |    |
| Ε |           |         |         |                   | E	o g              |         |    |
| F |           |         |         |                   |                    |         |    |

On regarde la règle  $E{
ightarrow}arepsilonarepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle.



|   | а         | Ь                  | С       | f                  | g                  | h                  | \$ |
|---|-----------|--------------------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |                    |         |                    |                    |                    |    |
| В |           |                    | B 	o cC |                    |                    |                    |    |
| С |           | $C \rightarrow bC$ |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |                    |         | $D 	o 	extit{EF}$  | D 	o EF            | D 	o EF            |    |
| Ε |           |                    |         | $E 	o \varepsilon$ | E 	o g             | $E 	o \varepsilon$ |    |
| F |           |                    |         |                    |                    |                    |    |

On regarde la règle  $E \rightarrow \varepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle. 15

 $\varepsilon \in premiers(\varepsilon)$  donc on ajoute la règle à tous les suivants de E.  $suivants(E) = \{f, h\}$ .



|   | а         | Ь       | С       | f                  | g                  | h                  | \$ |
|---|-----------|---------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                    |                    |    |
| В |           |         | B 	o cC |                    |                    |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | $D 	o 	extit{EF}$  | $D 	o 	extit{EF}$  | D 	o EF            |    |
| Ε |           |         |         | $E 	o \varepsilon$ | E	o g              | $E 	o \varepsilon$ |    |
| F |           |         |         | $F \rightarrow f$  |                    |                    |    |

On regarde la règle  $F \rightarrow f$ 

 $premiers(f) = \{f\}$  donc on ajoute la règle à la case [F,f].



|   | а         | Ь       | С       | f                  | g                           | h                  | \$ |
|---|-----------|---------|---------|--------------------|-----------------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                             |                    |    |
| В |           |         | B 	o cC |                    |                             |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C \rightarrow \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | D 	o EF            | D 	o EF                     | D 	o EF            |    |
| Ε |           |         |         | $E 	o \varepsilon$ | E 	o g                      | $E 	o \varepsilon$ |    |
| F |           |         |         | $F \rightarrow f$  |                             |                    |    |

On regarde la règle  $F \rightarrow f$ 

 $premiers(f) = \{f\}$  donc on ajoute la règle à la case [F,f]. 17

 $\varepsilon \notin premiers(f)$  donc on n'ajoute pas d'autre règle.

|   | а         | Ь       | С       | f                  | g                  | h                  | \$ |
|---|-----------|---------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                    |                    |    |
| В |           |         | B 	o cC |                    |                    |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | $D 	o 	extit{EF}$  | $D 	o 	extit{EF}$  | D 	o EF            |    |
| Ε |           |         |         | $E 	o \varepsilon$ | E	o g              | $E 	o \varepsilon$ |    |
| F |           |         |         | $F \rightarrow f$  |                    |                    |    |

On regarde la règle  $F \rightarrow \varepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle.



|   | а         | Ь       | С       | f                  | g                  | h                  | \$ |
|---|-----------|---------|---------|--------------------|--------------------|--------------------|----|
| S | S 	o aBSh |         |         |                    |                    |                    |    |
| В |           |         | B 	o cC |                    |                    |                    |    |
| С |           | C 	o bC |         | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ |    |
| D |           |         |         | D 	o EF            | D 	o EF            | D 	o EF            |    |
| Ε |           |         |         | $E 	o \varepsilon$ | E 	o g             | $E 	o \varepsilon$ |    |
| F |           |         |         | $F \rightarrow f$  |                    | F 	o arepsilon     |    |

On regarde la règle  $F \rightarrow \varepsilon$ 

 $premiers(\varepsilon) = \{\varepsilon\}$  donc on n'ajoute pas de règle. 19

 $\varepsilon \in premiers(\varepsilon)$  donc on ajoute la règle à tous les suivants de F.  $suivants(F) = \{h\}$ .



|   | а         | Ь                  | С       | f                  | g                  | h                  | \$     |
|---|-----------|--------------------|---------|--------------------|--------------------|--------------------|--------|
| S | S 	o aBSh | ERREUR             | ERREUR  | ERREUR             | ERREUR             | ERREUR             | ERREUR |
| В | ERREUR    | ERREUR             | B 	o cC | ERREUR             | ERREUR             | ERREUR             | ERREUR |
| С | ERREUR    | $C \rightarrow bC$ | ERREUR  | $C 	o \varepsilon$ | $C 	o \varepsilon$ | $C 	o \varepsilon$ | ERREUR |
| D | ERREUR    | ERREUR             | ERREUR  | D 	o EF            | D 	o EF            | D 	o EF            | ERREUR |
| Ε | ERREUR    | ERREUR             | ERREUR  | $E 	o \varepsilon$ | E 	o g             | $E 	o \varepsilon$ | ERREUR |
| F | ERREUR    | ERREUR             | ERREUR  | $F \rightarrow f$  | ERREUR             | $F 	o \varepsilon$ | ERREUR |

Nous avons fini de regarder toutes les règles.

Chaque case vide est maintenant remplacée par une erreur.

 On remarque que la grammaire n'est pas ambiguë. Si elle l'avait été, il y aurait eu plusieurs action par case.

On qualifie cette grammaire de grammaire LL(1).