

O. Embreus and M. Hoppe

- Fully implicit, non-linear, self-consistent solver for runaway generation during tokamak disruptions (time-linearized mode also available)
- Numerical conservation of particle number and positivity
- Flux-averaged and bounce-averaged treatment of dynamics ("1.5D")
- Treating electrons as up to 4 separate populations (thermal, hot-tail, kinetic runaway, fluid runaway)
- Two-component code
 - ▶ High-performance kernel written in C++17 (with PETSc for linear algebra)
 - User-friendly frontend written in Python

Scalar quantities

- $ightharpoonup I_p(t)$: Total plasma current
- $\psi_{\text{edge}}(t)$: Poloidal magnetic flux at plasma edge
- $ightharpoonup V_{loop,wall}(t)$: Loop voltage at the (resistive) wall

■ Fluid quantities

- $ightharpoonup E_{\parallel}(t,r)$: Parallel electric field
- $ightharpoonup n_{cold}(t,r)$: Cold electron density
- $ightharpoonup n_{hot}(t, r)$: Hot electron density
- $ightharpoonup n_i(Z, Z_0; t, r)$: Ion (charge state) densities
- $ightharpoonup n_{RE}(t,r)$: Runaway density
- $ightharpoonup j_{\text{hot}}(t,r)$: Hot electron current density
- \blacktriangleright $i_{\Omega}(t,r)$: Ohmic current density
- $ightharpoonup j_{tot}(t,r)$: Total current density
- \blacktriangleright $\psi_p(t,r)$: Poloidal magnetic flux
- $ightharpoonup T_{cold}(t, r)$: Cold electron temperature
- \blacktriangleright $W_{\text{cold}}(t,r)$: Cold electron energy content (kinetic+binding)

Hot-tail grid quantities

• $f_{hot}(t, r, p, \xi)$: Hot electron distribution function

Runaway grid quantities

 $ightharpoonup f_{RE}(t, r, p, \xi)$: Runaway electron distribution function

Scalars

- $I_p(t)$: Total plasma current
- $\Psi_{\text{edge}}(t)$: Poloidal magnetic flux at plasma edge

Densities

- \blacksquare $n_{\text{cold}}(t, r)$: Cold electron density
- \blacksquare $n_{hot}(t, r)$: Hot electron density
- \blacksquare $n_i(Z, Z_0; t, r)$: lon densities
- \blacksquare $n_{RE}(t,r)$: Runaway density
- \blacksquare $n_{tot}(t, r)$: Total electron density

Distribution functions

- **I** $f_{hot}(t, r, p, \xi)$: Hot electrons
- $f_{RE}(t, r, p, \xi)$: Runaway electrons

Current densities

- = $j_{hot}(t, r)$: Hot electron current density
- $\mathbf{j}_{\Omega}(t,r)$: Ohmic current density
- $\mathbf{j}_{tot}(t,r)$: Total current density

Other quantities

- \blacksquare $E_{\parallel}(t,r)$: Parallel electric field
- $\psi_p(t,r)$: Poloidal magnetic flux
- $T_{cold}(t, r)$: Cold electron temperature