EK210: Engineering Design

Lecture notes for Engineering Design

Giacomo Cappelletto

Published: September 08, 2025 Last updated: September 08, 2025

Contents

Lecture 1:	Engineering Design Definition	. 1
	Key Concepts	. 1
	Objectives vs Functions vs Specifications	
	Other Key Terms	. 2
Lecture 2:	Problem Statements	
	Examples	. 2
	Functional Analysis: Glass Box Method	. 3
	Glass Box Components	
	Example: Screwdriver Glass Box	. 3
	Worked Example: Lead Pencil Glass Box	. 3
	Key Steps for Glass Box Analysis	
Lecture 4:	Engineering Design Process	

Lecture 1: Engineering Design Definition

Engineering Design

Definition 1.1

A systematic, intelligent process in which designers generate, evaluate, and specify designs for devices, systems, or processes whose form and function achieve clients' objectives and users' needs while satisfying a specified set of constraints.

Key Concepts

Objectives vs Functions vs Specifications

Objectives Note 1.1

Attributes that a client or user would like in a product.

- Example: "Make a brown frying pan", "Make it cheap", "Make it transparent"
- Often vague and require clarification through proper questioning

Functions Note 1.2

Things the product is supposed to do (verb-noun pairs).

- Example: "Measure temperature", "Withstand impact", "Resist breakage"
- · Engineering perspective of what must be achieved
- · Active form vs. objectives as "states of being"

Specifications Note 1.3

Engineering statements of functions that must be exhibited and can be measured.

- Example: Coefficient of thermal expansion < X value
- Example: Fracture toughness > Y value
- Example: Thermal conductivity specification

Other Key Terms

Metrics Definition 1.2

A scale upon which achievement of design objectives can be measured.

Constraints Definition 1.3

Restrictions or limitations on a product's performance.

- Example: "Cannot be metal", "Must cost under \$5"
- · Can be explicit or implicit

Lecture 2: Problem Statements

Good Problem Statement Requirements

Note 2.1

- 1. Clear statement of WHO, WHAT, and WHY
- 2. General doesn't constrain specific means/solutions
- 3. Specific enough to guide design decisions

Examples

Poor Problem Statement

Example 2.1

"The goal of our project is to design an infrared thermometer"

Issues:

- · Constrains means (infrared)
- Doesn't explain what/who/why

Good Problem Statements

Example 2.2

"The goal is to design a device to measure the temperature of everyone walking through the front door at Boston Medical Center as a preliminary indicator of either COVID-19 or influenza."

"The goal is to design a device to measure temperature in a home setting for use with telemedicine tracking of elderly patients."

Why these work:

- · Clear WHO, WHAT, WHY
- · No specific means mentioned
- Sufficient detail for design direction

Lecture 3: Functional Analysis: Glass Box Method

Glass Box Analysis

Definition 3.

A systematic method for determining functional requirements by analyzing inputs, outputs, and the functions needed to transform them.

Glass Box Components

All glass boxes have three possible inputs and outputs:

- Energy
- Information
- · Material

Example: Screwdriver Glass Box

Table 1: Glass box functional analysis for a screwdriver

INPUTS	FUNCTIONS	OUTPUTS
Energy (supplied by user)	Enable grip (plastic cylinder, rubberized handle, wood, rectangular)	Energy (torque)
Information (location, object)	Attach to object (wood, metal, flathead, phillips, interchangeable)	

Worked Example: Lead Pencil Glass Box

Let's work through a complete glass box analysis for a lead pencil.

Step 1: Define the objective

- · Product: Lead pencil
- · Objective: Create marks on paper for writing/drawing

Step 2-5: Complete Glass Box Analysis

Table 2: Glass box functional analysis for a lead pencil

INPUTS	FUNCTIONS	OUTPUTS
Energy (user pressure & motion)	Hold graphite (wood casing, mechanical housing, plastic tube, metal ferrule)	Material (graphite marks on paper)
Information (content, location)	Enable user grip	Information (written content)
Material (paper)	(hexagonal shape, round shape, textured surface, rubber grip)	

Step 6: Analysis and selection For a traditional wooden pencil:

- Hold graphite: Wood casing → inexpensive, easy to sharpen, natural grip
- Enable grip: Hexagonal shape → prevents rolling, comfortable hold, easy manufacturing

Key Steps for Glass Box Analysis

- 1. Set boundaries define what's inside vs outside your system
- 2. Identify inputs what Energy/Information/Material enters?

- 3. Identify outputs what Energy/Information/Material exits?
- 4. Determine functions what must happen to transform inputs to outputs?
- 5. List means brainstorm ways each function could be achieved

Lecture 4: Engineering Design Process

The five-stage systematic process:

- 1. Problem Definition Frame problem, clarify objectives, identify constraints, establish functions
- 2. Conceptual Design Generate alternative concepts, evaluate and select best approach
- 3. Preliminary Design Size and estimate attributes, model and analyze chosen design
- 4. Detailed Design Refine and optimize, build prototype, fix design details
- 5. Communication Document specifications, justification, and design decisions

Important Principles

Note 4.

- · Cross-functional teamwork required
- No single "best" answer to design problems
- Communication skills (oral & written) are critical
- Don't jump to final solution too quickly explore alternatives

* * *

References