Multivariate linear (and affine) discrete-time deterministic models (1)

Ben Bolker and Steve Walker

Annual plant example

Parameters: seed production γ , overwinter survival σ , first-year germination α , second-year germination β . Homogeneous second-order linear model: $N(t) = \gamma \alpha \sigma N(t-1) + \gamma \sigma^2 (1-\alpha) \beta N(t-2)$.

For homogeneous linear equations of any order, 0 is an equilibrium. Find other eq. by (1) plugging in trial solution $C\lambda^t$; (2) dividing through by $C\lambda^{n-1}$; (3) solve for λ by finding roots of *characteristic equation*; (4) possibly plugging in initial conditions (N(0), N(-1), ...) to solve for constants c_i in particular solution $\sum c_i \lambda_i^t$ (ignoring repeated-root case).

In this case with $a = \gamma \alpha \sigma$, $b = \gamma \sigma^2 (1 - \alpha) \beta$, we have $\lambda^2 - a\lambda - b = 0 \rightarrow \lambda = (a \pm \sqrt{a^2 + 4b})/2$. Given that $\lambda > 1 \leftrightarrow a + b > 1$, population grows if $\gamma > 1/(\alpha \sigma + \beta (1 - \alpha) \sigma^2)$.

Or we can set this up as a matrix equation:

$$\begin{pmatrix} P(t+1) \\ S(t+1) \end{pmatrix} = \begin{pmatrix} \gamma \alpha \sigma & \sigma \beta \\ \gamma \sigma (1-\alpha) & 0 \end{pmatrix} \begin{pmatrix} P(t) \\ S(t) \end{pmatrix}$$

Basic model: x(t+1) = Ax(t). For example, juvenile/adult model: fractions $\{s_J, s_A\}$ of juveniles and adults survive; adults have f offspring each (on average); surviving juveniles become adults. So $A(t+1) = s_A A(t) + s_J J(t)$, J(t+1) = f A(t) or $A(t+1) = s_A A(t) + s_J f A(t-1)$. This can be written as a matrix equation,

$$\begin{bmatrix} J(t+1) \\ A(t+1) \end{bmatrix} = \begin{bmatrix} 0 & f \\ s_J & s_A \end{bmatrix} \begin{bmatrix} J(t) \\ A(t) \end{bmatrix}$$

Fixed points

 $x\star$ is a fixed point if $x\star=Ax\star$, $0=(A-I)x\star$ where I is the identity matrix. The null space of A-I has all the fixed points. If A-I is invertible, we find $0=(A-I)^{-1}(A-I)x\star$, which implies $0=Ix\star$, or $x\star=0$. However, if A-I is not invertible, there is an n-r dimensional space of fixed-points, where n is the number of rows/columns in A-I and r is the rank of that

matrix. A helpful trick is that a matrix is invertible if its determinant is non-zero. For example, the determinant of the juvenile-adult model is $-fs_J$, which is not zero and so the only fixed point is at the origin.

In Python, the rank, inverse, and determinant of a matrix B are given by numpy.linalg.matrix_rank(B), numpy.linalg.inv(B), and numpy.linalg.det(B).

Time-dependent solution

Four approaches:

$$\begin{array}{ll} \textbf{recursion} & \boldsymbol{x}(1) = \boldsymbol{A}\boldsymbol{x}(0), \text{ then } \boldsymbol{x}(2) = \boldsymbol{A}\boldsymbol{A}\boldsymbol{x}(0), \text{ and in} \\ \text{general } \boldsymbol{x}(t) = \underbrace{\boldsymbol{A}...\boldsymbol{A}}_{t-\text{times}} \boldsymbol{x}(0). \end{array}$$

matrix powers We can define matrix powers, so that $x(t) = A^t x(0)$. However, this method doesn't provide much insight.

diagonalization Gain insight by *diagonalizing* $\boldsymbol{A} = \boldsymbol{SDS}^{-1}$, where \boldsymbol{S} is a matrix whose columns are the eigenvectors of \boldsymbol{A} and \boldsymbol{D} is a matrix with eigenvalues on the diagonal and zeros everywhere else. Substituting into the matrix power equation, $\boldsymbol{x}(t) = (\boldsymbol{SDS}^{-1})^t \boldsymbol{x}(0) = \underline{\boldsymbol{SDS}^{-1}\boldsymbol{SDS}^{-1}}...\boldsymbol{SDS}^{-1}\boldsymbol{x}(0) = \underline{\boldsymbol{SDS}^{-1}\boldsymbol{SDS}^{-1}}\boldsymbol{x}(0),$

because the $S^{-1}S$ terms cancel.

series Let $c = S^{-1}x(0)$. This allows us to write $x(t) = \sum_i c_i d_i^t v_i$, where c_i , d_i , and v_i is the ith element of c, eigenvalue, and eigenvector respectively. This form also lets us see the importance of the dominant eigenvalue (i.e. eigenvalue with largest absolute value) – because all the eigenvalues get raised to the power of time, as time increases all other terms except for the dominant become neglible. Therefore, for t sufficiently large, $x(t) \approx c_1 d_1^t v_1$, where d_1 is the dominant eigenvalue. What happens when $d_1 = 1$? What happens when $d_1 = d_2$? Try it out in \mathbb{R}

change of variables Let $y(t) = S^{-1}x(t)$. Then the model becomes y(t+1) = Dy(t). But since D is diagonal, this model is exceptionally simple. It is actually just a bunch of decoupled univariate models (Why?) and you know how to handle those.

Eigen-tips (mostly for the 2 by 2 case)

If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, determinant is $\Delta = a_{11}a_{22} - a_{12}a_{21}$, trace is $T = a_{11} + a_{22}$, and eigen values obey $d_1 + d_2 = T$ and $d_1d_2 = \Delta$. This leads to the characteristic polynomial $d_i^2 - Td_i + \Delta$. And so the eigenvalues obey $d_i = \frac{T \pm \sqrt{T^2 - 4\Delta}}{2}$. Finally, if v_i and d_i are an eigenvector/eigenvalue pair for A, then $Av_i = d_iv_i$ (i.e. a matrix and a single scalar value to the same thing to an eigenvector!).

Example: for the juvenile-adult model, we have $d_i = \frac{s_A \pm \sqrt{s_A^2 + 4s_J f}}{2}$. For each eigenvalue, solve $\begin{bmatrix} 0 & f \\ s_J & s_A \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = d \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ to find the eigen vectors. For

the dominant eigenvalue, this is,

$$fv_2 = \frac{s_A + \sqrt{s_A^2 + 4s_J f}}{2} v_1$$
$$s_J v_1 + s_A v_2 = \frac{s_A + \sqrt{s_A^2 + 4s_J f}}{2} v_2$$

Could keep going but you get the idea. Simplify this system. Do the same for the other eigenvalue. Write down a time-dependent solution for this model with your computations. What are the conditions for stability of the fixed point at the origin?

Affine model

Multivariate bucket/line-up: x(t+1) = b + Ax(t). For fixed points solve x*=b+Ax*. If A-I is invertible, then the solution is $x*=(A-I)^{-1}b$. Same stability conditions as in the linear case. Can you reparameterize this model such that the fixed point is a parameter? It would be nice to just read off the fixed point woudn't it?