

Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Currais Novos

Redes de Computadores e Aplicações

Aula 16 – Protocolo IP

Objetivos

- Conhecer o Protocolo IP;
- Saber como funiona o Protocolo IP e quais são seus campos;
- Aprender a função de todos os campos que compõem o datagrama IP;

Introdução

- A camada de rede do modelo TCP/IP é equivalente à camada 3(Rede) do Modelo OSI;
 - Responsável por receber pacotes de dados oriundos da camada de transporte e dividi-los em datagramas;
 - Adicionam a informação do endereço lógico de origem e de destino;

Introdução

- Em seguida o datagrama é enviado a camada inferior, ou seja, a camada de interface de rede(enlace), que é responsável por colocar os datagramas dentro de quadros para serem transfiridos na rede pela camada física;
- No receptor ocorre o processo inverso;
 - Não há confirmação de recebimento de datagramas, esse controle é feito pela camada de transporte;

Introdução

- Alguns protocolos que atuam nessa camada são:
 - IP (Internet Protocol);
 - ICMP (Internet Control Message Protocol);
 - IGMP (Internet Group Management Protocol);

Internet Protocol - IP

- Disponível em duas versões:
 - IPv4 (versão 4);
 - IPv6 (versão 6);
- O IPv6 foi desenvolvido graças a necessidade de uma maior quantidade de endereços IP;

IPv4

- É um protocolo não orientado a conexão;
 - Não verifica se o datagrama chegou ou não ao destino;
 - Não envia confirmação de recebimento e também não solicita retransmissão;

Estrutura do Datagrama IPv4

0	4	. 8	16	19	24	31
VERS	HLEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS	FRAG	MENT OFFSET	
TIME TO LIVE		PROTOCOL	HEADER CHECKSUM			
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP	OPTIONS (IF ANY)			PADDING	
DATA						

Estrutura do Datagrama IPv4

- O campo Options + PAD podem não existir;
 - Reduzindo assim o cabeçalho para 20 bytes;
 - A área de dados não tem tamanho fixo, portanto o tamanho de um datagrama IP tem tamanho variável;

Estrutura do Datagrama IPv4

- O tamanho máximo de um datagrama IP é de 65.535 bytes, incluindo aí o cabeçalho;
 - Área de dados 65.515 bytes ou 65.511 bytes;
 - Depende se os campos Opções e PAD forem utilizados, eles totalizam 4 bytes (32 bits);

- Vers(version/versão)
 - Indica a versão do protocolo IP usado;
 - Valor 4 para IPv4;
 - Valor 6 para IPv6;
- Hlen(Header Length/Tamanho do cabeçalho)
 - Indica o comprimento do cabeçalho dado um número de palavras de 32 bits;
 - Número mínimo é 5(20 bytes);

- Service Type(Tipo de Serviço)
 - Informa a qualidade de serviço desejada para entregar do datagrama;
- Total length(Tamanho Total)
 - Indica o número total de bytes que compõem o datagrama;
 - Tamanho máximo de 16 bits, logo número máximo é 2^16;

- Identification(Identificação)
 - Usado para identificar o datagrama;
 - Quando o transmissor cria e envia o datagrama é atribuído a ele o número de identificação;
 - Ele é utilizado caso o datagrama seja fragmentado no caminho ao destino;
- Flags
 - Usado para controlar a fragmentação do datagrama;

- Fragment Offset (Offset do Fragmento)
 - Também é utilizado para controle da fragmentação;
- TTL(Time To Live/Tempo de Vida)
 - Tempo máximo de vida do datagrama;
 - Cada vez que o datagrama passa por um gateway esse número é decrementado;
 - Caso ele chegue a zero o datagrama é descartado;
 - Evitar que datagramas fiquem perdidos pela rede;

- Protocol(Protocolo)
 - Indica o protocolo que pediu o envio do datagrama, através de um código numérico;

Valor	Protocolo
0	Reservado
1	ICMP
2	IGMP
3	GGP
4	IP
6	ТСР
8	EGP
17	UDP
50	ESP(IPSec)
51	AH(IPSec)

- Header Cheksun (Cheksun do Cabeçalho)
 - Calcula o cheksun apenas do cabeçalho, portanto não uso o campo de dados;
 - Vantagem pois o tempo de cálculo é menor pois considera apenas o cabeçalho;
 - Caso o cálculo dê erro, o datagrama é descartado pelo roteador;

- Source IP Address(Endereço IP de Origem)
 - Endereço IP de origem;
- Destination IP Address(Endereço IP de Destino)
 - Endereço IP de destino;
- Options + PAD
 - Campo opcional, usado para testes e verificação da rede, caso o options não complete a palavra de 32 bits, o PAD completa com zeros;

- Data(Dados)
 - Dados que o datagrama IP está encapsulando;
 - Possui tamanho variável;

Referência

- SOARES, Luiz F.; LEMOS, Guido e COLCHER, Sérgio. Redes de Computadores: Das LANs, MANs e WANs às Redes ATM, Ed. Campus.
- ROSS, Keith e KUROSE, JAMES. Redes de Computadores e a Internet: Uma nova abordagem, Ed. Addison Wesley.
- TORRES, Gabriel. Redes de Computadores, Ed. Nova Terra.
- TENENBAUM, Andrew. S.. Redes de computadores, Ed. Campus. 4ª Edição.

