Use Bellman Ford's Algorithm to find the <u>shortest</u> <u>path</u> of a maze.

Using Bellman Ford Algorithm

Step 0: At the time of initialization, all of the vertices except the source are marked by ∞ and the source is marked by 0.

Step 1: In the first step, all the vertices which are reachable from the source S, are updated by minimum cost. Hence, vertices A and B are updated.

Step 2: In the next step, all the vertices which are reachable from A and B are updated by minimum cost. Thus, vertices C and D are updated.

Step 3: Following the same logic, all the vertices which are reachable from C and D are updated by minimum cost. Thus, vertices F, I and J are updated.

Step 4: Following the same logic, all the vertices which are reachable from F, I and J are updated by minimum cost. Thus, vertices G, H, K and L are updated.

Step 5: Following the same logic, all the vertices which are reachable from G, H, K and L are updated by minimum cost. Thus, vertices M and E are updated.

Step 6:

Hence, the minimum distance between vertex S and vertex E is 18. Based on the predecessor information, the path is S \rightarrow B \rightarrow D \rightarrow J \rightarrow L \rightarrow E.

Comparing the performance of Dijkstra's Algorithm and Bellman Ford Algorithm in solving this question

```
Algorithm: Dijkstra's-Algorithm (G, w, s) for each vertex v \in G.V // Initial values takes O(V) v.d := \infty v.|| := NIL s.d := 0 S := 0 Q := G.V while Q \neq 0 u := Extract-Min (Q) S := S U \{u\} for each vertex v \in G.adj[u] // Through every vertex takes O(E) if v.d > u.d + w(u, v) v.d := u.d + w(u, v) v.fl := u
```

Dijkstra's Algorithm:

If extract min function is implemented using linear search, the complexity of this algorithm is O(V^2 + E).

If extract min function use min-heap search, it will takes O(logV) time which makes the final time complexity become O(VlogV + E)

```
Bellman-Ford-Algorithm (G, w, s)

for each vertex v & G.V // Initial values takes O(V)

v.d := \infty
v.\Pi := NIL

s.d := 0

for i = 1 to |G.V| - 1 // Nested loop takes O(VE)

for each edge (u, v) & G.E

if v.d > u.d + w(u, v)

v.d := u.d +w(u, v)

v.\Pi := u

for each edge (u, v) & G.E // Through every edge takes O(E)

if v.d > u.d + w(u, v)

return FALSE

return TRUE
```

Bellman Ford Algorithm: O(V+E+VE) = O(VE)

Comparing the steps

Bellman Ford Algorithm: Needs two cycles, 26 steps.

Dijkstra's Algorithm: 11 steps

	Initial	step1(S)	step2(S,A,B)	step3(S,A,B,C)	step4(S,A,B,C,D)	step5(S,A,B,C,D,F)
Vertex	S	$S \rightarrow A$	$S \rightarrow B$	$B \to C$	$B \to D$	$D \rightarrow F$
S	0	0	θ	0	0	0
Α	∞	1	1	1	1	1
В	∞	3	3	3	3	3
С	∞	∞	∞	5	5	5
D	œ	∞	co	5	5	5
F	∞	∞	∞	∞	∞	6
G	∞	∞	∞	∞	∞	00
Н	∞	∞	∞	∞	∞	∞
1	∞	∞	∞	∞	∞	8
J	00	∞	co	∞	∞	7
K	œ	∞	co	∞	∞	∞
L	∞	∞	œ	∞	∞	∞
М	00	∞	co	∞	∞	00
E	œ	00	∞	co	∞	∞

	step6(S,A,B,C,D,F,G)	step7(S,A,B,C,D,F,G,H)	step8(S,A,B,C,D,F,G,J)	step9(S,A,B,C,D,F,G,J,L)	step10(S,A,B,C,D,F,G,J,L,M)	step1
Vertex	$F \to G$	F→H	$D \to J$	$J \to L$	$L \rightarrow M$	L→E
S	0	0	0	0	0	0
Α	1	1	1	1	1	1
В	3	3	3	3	3	3
С	5	5	5	5	5	5
D	5	5	5	5	5	5
F	6	6	6	6	6	6
G	11	11	11	11	11	11
Н	∞	11	11	11	11	11
I	8	8	8	8	8	8
J	7	7	7	7	7	7
K	∞	∞	∞	12	12	12

L	∞	∞	∞	10	10	10
М	00	∞	∞	∞	11	11
Е	∞	∞	∞	∞	18	18

After comparing, when data set is large, the Dijkstra's Algorithm usually is faster than the Bellman Ford Algorithm.

 $Google\ Slide:\ \underline{https://docs.google.com/presentation/d/1d07YLFiVSCvRhVJHAVbLu16vdYXcJHwEDWKM6qU9gp0/edit?usp=sharing}$

 $Git Hub: \underline{https://github.com/blueandhack/Maze-Project}\\$