

Feature Selection in der Data Science Pipeline am Beispiel von medizinischen Diagnosen

Dr. Cristian Axenie

Inhalt

- Data Science Pipelines
- Grundlagen der Feature Selection
- Methodik der Feature Selection
- Umsetzung in der medizinischen Diagnostik: die Krebsklassifizierung
 - Anwendung der Methoden zur Feature-Selektion
 - Data-Engineering-Pipelines
 - Analyse und Auswertung
- Fazit

Data Science Pipelines

Feature-Selection: Auswahl der wichtigsten / relevanten / informativen / erklärbaren / beschreibenden Features zur Verbesserung der Vorhersagequalität!

Grundlagen der Feature-Selection

Methodik der Feature Selection

Methodik der Feature Selection

Methodik der Feature Selection

Brustkrebs-Diagnose

Breast Cancer Wisconsin (Diagnostic) Data Set

Download Data Folder Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

569 Patientinnen, 30 Features

10 Charakteristika des Brustmassenzellkerns wurden gemessen:

- Radius (Mittelwert aller Abstände vom Zentrum zu Punkten auf dem Perimeter)
- Textur (Standardabweichung der Grauskala-Werte)
- Umfang
- Fläche
- Glattheit (lokale Variation der Radiuslängen)
- Kompaktheit (Umfang^2 / Fläche 1,0)
- Konkavität (Stärke der konkaven Teile der Kontur)
- Konkavitätspunkte (Anzahl der konkaven Teile der Kontur)
- Symmetrie
- Fraktale Dimension ("Küstenlinienapproximation" 1)

Für jedes Feature werden 3 Maße angegeben:

- Kleinste
- Standardfehler
- · Größte/"schlechteste

Aufgabe: Die Brustmasse als gut- oder bösartig zu klassifizieren

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

 χ^2

Demo-Code auf Github

```
# Download des Krebs-Datensatzes
import seaborn as sns
from sklearn import preprocessing
(X, y) = load_breast_cancer(return_X_y=True, as_frame=True)
```

minimum-Redundancy-Maximum-Relevance (mRMR)

import pymrmr
rel_feat = pymrmr.mRMR(X, 'MID', 20)

X_new = X[X.columns.intersection(rel_feat)]

* Überblick über die filtrierte Daten↔

Demo-Code auf Github

Feature Selection Ergebnisvergleich

Chi-Quadrat-Test

	Name	Wert	Entscheidung
0	mean radius	266.1049171951787	True
1	mean texture	93.8975080986333	True
2	mean perimeter	2011.102863767906	True
3	mean area	53991.65592375089	True
4	mean compactness	0.14989926383938243	False
5	mean concavity	5.403075490732707	True

mRMR

	Name	Wert
0	mean area	3.655
1	worst area	3.483
2	mean perimeter	3.314
3	worst perimeter	2.623
4	worst radius	2.228
5	area error	1.729

Klassifizierung Modell

Anwendung von Entscheidungsbäumen

Data-Engineering-Pipelines Auswertung

- Daten-Skalierung + Baseline-Klassifikator (Entscheidungsbäumen)
- Daten-Skalierung + Chi-Quadrat-Test + Baseline-Klassifikator
- Daten-Skalierung + mRMR + Baseline-Klassifikator

Demo-Code auf Github

[■] Baseline (Entscheidungsbaum-Klassifikator)

Chi-Quadrat Feature Selection (K=20) + Entscheidungsbaum-Klassifikator

Fazit

Die Feature-Selection ist:

- nützlich, wenn wir die Anzahl der für die Verarbeitung benötigten Ressourcen reduzieren müssen, ohne wichtige oder relevante Informationen zu verlieren
- ein wichtiger Schritt in der Data-Engineering-Pipeline, bevor das Prädiktivmodell erstellt wird
- domänen- und datenspezifisch
- unterstützt eine bessere Analyse und Interpretation der Vorhersagen

Feature Selection in der Data Science Pipeline am Beispiel von medizinischen Diagnosen

Auswertung

Kullback-Leibler-Divergenz (KL-Divergenz) bezeichnen ein Maß für die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen.

Transinformation Definition über die Kullback-Leibler-Divergenz:

$$I(X;Y) = D(p(x,y)||p(x)p(y))$$