CSDS 440: Assignment 7

Shaochen (Henry) ZHONG, sxz517 Mingyang TIE, mxt497

Due and submitted on 10/23/2020 Fall 2020, Dr. Ray

Problem 30

For K_1 to be a valid kernel, we must have $K_1(x,y) = \varphi_1(x)\varphi_1(y)$ where ϕ is a non-linear mapping of its input. Due to the same principle, we also have $K_2(x,y) = \varphi_2(x)\varphi_2(y)$. Which gives us:

$$K(x,y) = aK_1(x,y)K_2(x,y)$$

$$= a(\varphi_1(x)\varphi_1(y) \cdot \varphi_2(x)\varphi_2(y)$$

$$= a[(\sum_{i=1}^n \varphi_{1i}(x)\varphi_{1i}(y)) \cdot (\sum_{j=1}^n \varphi_{2j}(x)\varphi_{2j}(y))]$$

$$= a\sum_{i=1}^n \sum_{j=1}^n \varphi_{1i}(x)\varphi_{1i}(y)\varphi_{2j}(x)\varphi_{2j}(y)$$

$$= \sum_{i=1}^n \sum_{j=1}^n (\sqrt{a} \varphi_{1i}(x)\varphi_{2j}(x)) \cdot (\sqrt{a} \varphi_{1i}(y)\varphi_{2j}(y))$$

$$= \varphi(x)\varphi(y) \begin{cases} \varphi(x) = \sqrt{a} \varphi_{1i}(x)\varphi_{2j}(x) \\ \varphi(y) = \sqrt{a} \varphi_{1i}(y)\varphi_{2j}(y) \end{cases}$$

As the above φ is created upon multiplying a constant \sqrt{a} with non-linear mapping φ_1 and φ_2 , it is also a non-linear mapping; and K is therefore a valid kernel.