

Concours d'entrée 2006-2007

Composition de physique

Durée : 2 heures

0.1 0.2 0.3 0.4 0.5/ 0.6 0.7 0.8 /0.9

I- [21 pts] Un oscillateur

Un oscillateur mécanique (C) est constitué par un solide (S), de masse m, attaché à l'extrémité A d'un ressort horizontal de raideur k = 80 N/m dont l'autre extrémité B est fixe. Le solide peut se déplacer sur un rail horizontal. La position de son centre de gravité G est repérée, à une date t, par son abscisse x = OG, O étant sa position à l'équilibre.

A) Étude théorique

On néglige toute force de frottement.

- 1. Établir l'équation différentielle qui décrit les oscillations de (C).
- 2. Déterminer l'expression de la période propre T₀ de ces oscillations.

B) Étude expérimentale

1- Oscillations libres

Un système d'acquisition des données, connecté à un ordinateur, nous donne la courbe la figure ci-dessus représentant les variations de x en fonction du temps.

- a. Déterminer, à l'aide du graphique ci-dessus, la durée T d'une oscillation du solide.
- b. Déterminer la puissance moyenne dissipée entre les dates 0 et 3T.

2- Oscillations forcées

On relie maintenant l'extrémité B du ressort à un vibreur de fréquence f réglable et on réalise plusieurs enregistrements, chacun pour une valeur donnée de f. On relève, dans le tableau ci-dessous, l'amplitude X_m des oscillations, relativement à chaque valeur de f.

- a. En utilisant le tableau, déterminer, en le justifiant, une valeur approchée de T₀.
- **b**. Déterminer alors la valeur de m.
- c. Ou'obtiendrait-on:
 - i. en l'absence de toute force de frottement?

f (Hz)	1,5	2,0	2,5	2,8	3,0	3,2	3,3	3,6	4,0	4,5
X _m (cm)	0,4	0,6	1,0	1,5	2,1	2,3	2,0	1,5	1,0	0,7

ii. dans le cas où on augmente l'intensité des forces de frottement?

C) La molécule de chlorure d'hydrogène

La molécule de chlorure d'hydrogène (HCl) peut être modélisée par un oscillateur harmonique de masse $m_H = 1,67 \times 10^{-27}$ kg, et de raideur k'. L'énergie potentielle d'interaction entre les deux atomes de cette molécule peut être ramenée à :

$$E_P(x) = \frac{0.27 e^2}{4\pi\epsilon_0 r_0^3} x^2; \text{ avec}: \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ SI}; \text{ e} = 1,60 \times 10^{-19} \text{ C}; \text{ et } r_0 = 1,3 \times 10^{-10} \text{ m}; \text{ où } r_0 \text{ est la distance}$$

entre les deux atomes à l'équilibre et x le déplacement de l'atome d'hydrogène par rapport à sa position d'équilibre avec $x \ll r_0$.

Cette molécule, excitée par une onde électromagnétique de fréquence v, oscille avec une amplitude maximale X_m où $X_m \ll r_0$. Déterminer, en le justifiant, la valeur de ν .

En (eV)

n = 3

0 -0,38

-0,85

-13,60

II- [18 pts] Atome d'hydrogène et diffraction

A- Atome d'hydrogène

La figure ci-contre montre quelques niveaux énergétiques de l'atome d'hydrogène.

- **1.** Déterminer, en le justifiant, le comportement d'un atome d'hydrogène pris à l'état fondamental lorsqu'il reçoit un photon d'énergie : a) 12,75 eV ; b) 10,99 eV et c) 15,61 eV.
- **2.** Le retour d'un atome d'hydrogène d'un niveau excité (n>1) au niveau fondamental donne naissance à la série de Lyman. Calculer les longueurs d'onde extrêmes des radiations correspondant à cette série.

4. Préciser, en le justifiant, la radiation appartenant au spectre visible.

Données: $h = 6.626 \times 10^{-34} \text{ J.s}$; $c = 2.998 \times 10^8 \text{ m/s}$; $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J.}$

B- Diffraction

On réalise une expérience de diffraction à l'aide de la lumière émise par une lampe à hydrogène munie de quatre filtres, chaque filtre laissant passer une radiation monochromatique. On place, en face de cette lampe, une fente de largeur a=0,5 mm. Pour chacune des quatre radiations, on observe une figure de diffraction sur un écran situé à une distance D=1,600 m de la fente.

La mesure de la largeur L de la tache centrale donne, pour les radiations utilisées, les valeurs respectives : $L_1 = 4,20 \text{ mm}$; $L_2 = 3,11 \text{ mm}$; $L_3 = 2,78 \text{ mm}$ et $L_4 = 2,63 \text{ mm}$. Soit α la largeur angulaire de la tache centrale (voir figure ci-contre).

- 1. Déterminer les longueurs d'onde des quatre radiations monochromatiques utilisées.
- 2. Déterminer, en le justifiant, la transition correspondant à l'émission de chacune de ces radiations.

III- [21 pts] Une analogie

Première partie : Décroissance exponentielle de la charge d'un condensateur

Un condensateur (C), de capacité C = 0.22 mF et portant une charge initiale Q_0 , est placé en série dans un circuit comportant un conducteur ohmique (R) de résistance R, un interrupteur (K) et des fils de connexion.

On ferme (K) à la date $t_0 = 0$. À la date t_0 (C) porte la charge q (q>0) et le circuit est parcouru par un courant d'intensité i. Un dispositif approprié nous permet d'obtenir les variations de q en fonction du temps (graphique de la figure ci-contre).

- 1. Faire le schéma du montage en indiquant le **sens réel** du courant et en précisant l'armature portant la charge q.
- 2. Établir l'équation différentielle décrivant l'évolution de q en fonction du temps.

- 3. La solution de cette équation est de la forme $q = A_1 + B_1 e^{-\alpha t}$ où A_1 , B_1 et α sont des constantes.
- a. Déterminer A_1 , B_1 et $1/\alpha$ et préciser la signification de $1/\alpha$.
- b. Écrire, en fonction de R, C et t, l'expression donnant le nombre
- N_e des électrons portés par l'armature qui porte un excès d'électrons.
- 4. En s'aidant du graphique ci-contre, retrouver la valeur de $1/\alpha$. En déduire la valeur de R.
- 5. Déterminer la relation entre i et N_e.
- 6. Déterminer l'énergie fournie par le condensateur entre les dates $t_0 = 0$ et $t_1 = 1/\alpha$.

Deuxième partie : Décroissance exponentielle du radon 220 Lors d'une séance expérimentale, on étudie la décroissance radioactive de l'activité A d'un échantillon de radon 220 ($^{220}_{86}$ Rn). La figure ci-contre montre l'allure de la courbe donnant les variations de A en fonction du temps.

polonium (Po). Écrire l'équation bilan de cette désintégration. 2. L'expression instantanée de l'activité A est donnée par: $A = A_0e^{-\lambda t}$,

- ii. Déterminer, en le justifiant, la grandeur physique de la première partie qui est analogue à l'activité de la seconde partie.
- b. Comment peut-on déterminer graphiquement la valeur de $1/\lambda$? Déterminer sa valeur.
- 3. Au bout de quel temps peut-on considérer que l'échantillon radioactif de radon s'est pratiquement désintégré complètement ?
- 4. En comparant les deux figures, montrer que la radioactivité a un caractère aléatoire.
- 5. Déterminer l'énergie libérée par l'échantillon de radon 220 entre les dates $t_0 = 0$ et $t_1 = 1/\lambda$. On donne : m(Rn) = 220,011384 u ; m(Po) = 216,001905 u ; $m(\alpha) = 4,002603$ u; 1 = 931,5 MeV/c².

Concours d'entrée 2006-2007

Durée: 2 heures

Solution de physique

I- Un oscillateur

A) Étude théorique

A) Étude théorique (1/2)
1. Pas de frottement, conservation de $E_m(C)$: $E_m = E_C + E_{P\acute{e}} = \frac{1}{2} mV^2 + \frac{1}{2} kx^2 = constante$.

Dérivons par rapport au temps : mV_1 + $kx \dot{x} = 0$; $\ddot{x} + \frac{k}{m}x = 0$ (Levec $\dot{x} \neq 0$.

2. Cette équation est de la forme $\ddot{x} + \omega_0^2 x = 0$, $\Rightarrow \omega_0 = \sqrt{\frac{k}{m}}$ et $T_0 = \frac{2\pi}{\omega_0}$, donc $T_0 = 2\pi \sqrt{\frac{m}{k}}$

B) Étude expérimentale

1- Oscillations libres

a. On a 3T = 0.94 s \Rightarrow T = 0.94/3 = 0.313 s.

b. $P_{\text{moy}}^{1/2} = \frac{|\Delta E_{\text{m}}|}{\Delta t}$; $|\Delta E_{\text{m}}| =$; $|\Delta E_{\text{p}}(\text{maximale})| = \frac{1}{2} \text{ k} \left(X_{\text{mfinale}}^2 - X_{\text{minitiale}}^2\right) = \frac{1}{2} 80(9-4) \times 10^{-4} = 2 \times 10^{-2} \text{ J}$

Et $\Delta t = 3T = 0.94$ s. Ainsi: $P_{\text{moy}} = 2 \times 10^{-2} / 0.94 = 2.13 \times 10^{-2} \text{ W.}$

2. Oscillations forcées

a. D'après le tableau, l'amplitude des oscil·lations prend une valeur maximale (résonance d'amplitude) lorsque la fréquence f des excitations vaut f = 3,2 Hz. D'après le graphique, (oscillations libres) les oscillations sont faiblement amorties, done $f \approx f_0 \Rightarrow T_0 \approx T = 1/f = 1/3, 2 = 0.3125 \approx 0.313 \text{ s} \cdot 1$

b. $T_0 = 2\pi \sqrt{\frac{m}{k}}$; $m = \frac{kT_0^2}{4\pi^2} = 80 \times 0.313^2 / 4\pi^2 = 0.199 \text{ kg}$

c.i. En l'absence de toute force de frottement, l'amplitude X_m passe par une très grande valeur $(X_m \to \infty)_1$ pour $T = T_0$ et il y a un risque de rupture du ressort.

ii. Lorsqu'on augmente l'intensité des forces de frottement, l'amplitude X_m diminue et la pseudo-période $\frac{1}{2}$ de résonance d'amplitude est plus grande que T_0 . La résonance, qui était aigue, devient de moins en moins aigue pour devenir floue. (Tant qu'on n'a pas encore atteint le régime critique) 1

C) La molécule de chlorure d'hydrogène

Détermination de k' : Ep(x) = $\frac{1}{2}$ k'x² = $\frac{0.27e^2}{4\pi\epsilon_0 r_0^3}$ $\frac{x^2}{1}$ k' = $\frac{2 \times 0.27 \times 1.6^2 \times 10^{-38} \times 9 \times 10^9}{1.3^3 \times 10^{-30}}$ = 56,63 N/m(1)

La fréquence propre des oscillations de la molécule est : $v_0 = \frac{1}{2\pi} \sqrt{\frac{k'}{m}} \Rightarrow v_0 = \frac{1}{2\pi} \sqrt{\frac{56,63}{1,67 \times 10^{-27}}}$

 \Rightarrow $v_0 = 2.93 \times 10^{13}$ Hz. Ainsi, la résonance d'amplitude a lieu pour $v = v_0 = 2.93 \times 10^{13}$ Hz $\left(\frac{1}{2}\right)$

II- Atome d'hydrogène et diffraction

A- Atome d'hydrogène

1. a) Un gain d'énergie de 12,75 eV mènerait l'atome d'hydrogène à une énergie de : 2. 13,60 + 12,75 = -0,85 eV.

Cette énergie est celle du niveau n = 4. Le photon est bien absorbé, l'atome passe au niveau n = 4.

- b) Un gain d'énergie de 10,99 eV mènerait l'atome d'hydrogène à une énergie de :
- 13,60 + 10,99 = 2,61 eV. Cette valeur ne correspond à aucun niveau d'énergie de l'atome d'hydrogène. Cet atome reste donc au niveau fondamental, le photon en question n'est pas absorbé.
- c) Cet apport d'énergie (15,61 eV) dépasse l'énergie d'ionisation (13,60 eV). L'atome est donc ionisé. 2
- **2. a.** À la plus grande longueur d'onde correspond la plus petite énergie émise par l'atome d'hydrogène qui correspond au passage du niveau excité n = 2

 $(E_2 = -3,40 \text{ eV})$ au niveau fondamental $(E_1 = -13,60 \text{ eV})$. L'énergie émise est donc :

 $E_{21} = E_2 - E_1 = -3,40 - (-13,60) = 10,20 \text{ eV} = 10,20 \times 1,602 \times 10^{-19} \text{ J} = 1,634 \times 10^{-18} \text{ J}.$

L'onde associée au photon émis possède la plus petite fréquence v_{21} et la plus grande longueur d'onde λ_{21} satisfaisant à : $E_{21} = h \ v_{21} = h.c / \lambda_{21}$

 $\lambda_{21} = \text{h.c/E}_{21} = 6,624 \times 10^{-34} \times 2,998 \times 10^{8} / (1,636 \times 10^{-18}). \Rightarrow \lambda_{21} \ 121,5 \times 10^{-34} = 121,5 \text{ nm}.$

b. La plus grande longueur d'onde correspond à l'émission d'un photon ayant la plus petite énergie donc ceci correspond au passage du niveau n = 3 au niveau n = 2:

 $E_{32} = 1.89 \text{ eV} = 1.89 \times 1.602 \times 10^{-19} \text{ J} = 3.028 \times 10^{-19} \text{ J}.$

L'onde associée au photon émis possède une longueur d'onde :

 $\lambda_{32} = \text{h.c/E}_{32} = 6,626 \times 10^{-34} \times 2,998 \times 10^{-8} / (3,028 \times 10^{-19})$; $\lambda_{32} = 6,56 \times 10^{-7} \text{ m} = 656 \text{ nm}$.

c. La radiation de longueur d'onde λ_{32} est visible, car sa longueur d'onde dans le vide est comprise entre 400 nm et 800 nm. Donc la série de Balmer comporte des radiations visibles. Par contre, $\lambda_{21} < 400 \text{ nm} \Rightarrow$ la série Lyman comporte des radiations ultraviolettes.

B- Diffraction

1. On sait que $\alpha = 2\theta$ avec $\theta = \lambda/a$. D'après la figure $\tan \alpha = L/D = \alpha$, car L/D est très faible. (3)

Mais $\alpha = 2\theta$; donc: $L/D = 2\lambda/a \Rightarrow \lambda = La/2D$. En appliquant cette relation, on obtient:

(2) $\lambda_1 = 4.2 \times 10^{-3} \times 0.5 \times 10^{-3} / 2 \times 1.6 = 6.56 \times 10^{-7} \text{ m}; \lambda_2 = 4.86 \times 10^{-7} \text{ m}; \lambda_3 = 4.34 \times 10^{-7} \text{ m et } \lambda_4 = 4.11 \times 10^{-7} \text{ m}; \lambda_5 = 4.34 \times 10^{-7} \text{ m}; \lambda_6 = 6.56 \times 10^{-7} \text{ m}; \lambda_7 = 4.34 \times 10^{-7} \text{ m}; \lambda_8 =$

2. Elles appartiennent à la série de Balmer car elles sont visibles (400 nm < λ < 800 nm). Les 4 transitions doivent correspondre au passage des niveaux excités n = 3, 4, 5 et 6 au niveau excité n = 2 : λ_1 de n = 3 à n = 2; λ_2 de n = 4 à n = 2; λ_3 de n = 5 à n = 2 et λ_4 de n = 6 à n = 2. (Ou bien en faisant le calcul)

III- Une analogie

A- Décroissance exponentielle de la charge d'un condensateur

1. On a
$$u_C$$
 = Ri. Mais u_C = $\frac{q}{C}$ et i = $-\frac{dq}{dt}$, donc : $\frac{q}{C}$ = $-R\frac{dq}{dt}$.
Finalement : $\frac{dq}{dt} + \frac{1}{RC} = 0$

2. **a**. Pour
$$t_0 = 0$$
: $Q_0 = A_1 + B_1$; $\frac{dq}{dt} = -\alpha B_1 e^{-\alpha t} \Rightarrow -\alpha B_1 e^{-\alpha t} + \frac{1}{RC} (A_1 + B_1 e^{-\alpha t}) = 0$

 $\Rightarrow A_1 = 0 \text{ et } \alpha = \frac{1/2}{RC}. \text{ Ainsi : } B_1 = Q_0 \text{ et } 1/\alpha = RC. 1/\alpha = \tau \text{ constante de temps}$

b. l'armature qui porte un excès d'électrons porte à la date t la charge -q; donc : $N_e = -q/(-e) = q/e$;

(avec
$$Q_0 = 2.20 \times 10^{-4} C$$
)
 $N_e = \frac{Q_0}{e} e^{-\frac{t}{RC}} \Rightarrow N_e = 1.375 \times 10^{15} e^{-\frac{t}{RC}}$ électrons

3. Sur le graphique $1/\alpha = \tau = 80$ s (point de rencontre de la tangente à l'origine avec l'asymptote).

$$1/2$$
 RC = $\tau = 80$ s \Rightarrow R = $80/0,22 \times 10^{-3} = 3,640 \times 10^{5}$ Ω . $1/2$

4. L'expression instantanée de
$$i : i = -\frac{dq}{dt} = -e \frac{dN_e}{dt} \Rightarrow \frac{i}{e} = -\frac{dN_e}{dt}$$

5. L'énergie fournie par le condensateur $W = W_0 - W\tau = \frac{1}{2} \frac{Q_0^2}{C} - \frac{1}{2} \frac{q^2}{C}$ avec $q = 0.37Q_0 = 80 \times 10^{-6}C$

$$W = \frac{1}{2 \times 0.22 \times 10^{-3}} [(220 \times 10^{-6})^2 - (80 \times 10^{-6})^2] = 9,55 \times 10^{-5} \text{ J}$$

B- Décroissance exponentielle du radon 220

1.
$$^{220}_{86}$$
Rn $\rightarrow ^{216}_{84}$ Po $+ ^{4}_{2}$ He

2. a i. Nombre moyen de désintégrations par unité de temps et A = - dN/dt

(1/2) ii. $A = -\frac{dN}{dt}$ est équivalente à l'intensité du courant i divisée par $e : \frac{i}{e} = -\frac{dN_e}{dt}$;

Ainsi A est équivalente à $\frac{1}{e}$.

- **1**/**b**. λ joue le même rôle que α dans la première partie. Donc $1/\lambda$ est l'intersection de la tangente à la courbe à $t_0 = 0$ avec l'axe des temps. $1/\lambda = 80$ s et $\lambda = 0.0125$ s⁻¹.
- 3. Par équivalence à la première partie, on peut dire qu'après $5(1/\lambda) = 400 \text{ s}$
- 4. Pour la désintégration, les points se distribuent autour de la courbe ; donc son caractère est aléatoire.
- 5. Au bout de t_1 , le nombre de noyaux qui se sont désintégrés= $N_0 N = 1/\lambda [A_0(1 e^{-\lambda t})] = 80[220(1 e^{-1})]$ $N_0 - N = 1,11 \times 10^4$ noyaux.
- L'énergie libérée par la désintégration d'un noyau : $E_1 = \Delta m c^2$ $\Delta m = (220,011384 - 216,001905 - 4,002603) = 6,87 \times 10^{-3} u$
- (1)E₁ = 6,87×10⁻³ × 931,5 = 6,399 MeV.
- L'énergie totale libérée entre $t_0 = 0$ et $t_1 = 1/\lambda$; $E = (N_0 N)$ $E_1 = 1,11 \times 10^4 \times 6,399 = 71033$ MeV.