INFO7374 Progress Report

Summary	This codelab is the final project progress report
URL	https://github.com/ll1195831146/Infor7374-AI/tree/master/Final%20Project
Category	Photo tagging
Environment	Keras, Python
Status	Done
Feedback Link	https://github.com/II1195831146/Infor7374-Al/tree/master/Final%20Project/issues
Author	Yuchen He, Lei Liu, Xiangyu Chen

Final Project: INFO 7374 Special Topics in Info Systems

Milestones

Current project status compared to plan

Hyper-parameter

Experiments

Results

Residual Attention Network for Image Classification

What went well? What are you working on to improve?

Went Well:

Working On:

Steps so you can achieve the promised deliverables next week.

How can Professor or the TA help if there are any major sticky points.

Kaggle Competition

--iMet Collection 2019

04.10.2019

Competition URL: https://www.kaggle.com/c/imet-2019-fgvc6

Xiangyu Chen Lei Liu Yuchen He Final Project: INFO 7374 Special Topics in Info Systems

Milestones

Timeframe	Delivery	
Day 1-4	Data Preprocessing and Exploratory Data Analysis	
Day 5-10	Model Building, Training	
Day 11-12	Model selection and Performance	
Day 13-14	Documentation	

Current project status compared to plan

Hyper-parameter

SIZE = 256 NUM_CLASSES = 1103 LR_MAX=1e-3 EPOCHS=7 BATCH_SIZE=256

Experiments

Pre-trained Model Name	Loss	F2 Score	
ResNet-50	5.5789	0.202	
InceptionResNetV2	3.9787	0.367	
Vgg19	5.1273	0.0757	
Xception	3.9788	0.358	

Results

0.4

0.5

Residual Attention Network for Image Classification

Layer	Output Size	Attention-56	Attention-92
Conv1	112×112	7×7 , 64, stride 2	
Max pooling	56×56	3×3 stride 2	
Residual Unit	56×56	$\begin{pmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{pmatrix} \times 1$	
Attention Module	56×56	Attention ×1	Attention ×1
Residual Unit	28×28	$\begin{pmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{pmatrix} \times 1$	
Attention Module	28×28	Attention ×1	Attention ×2
Residual Unit	14×14	$\begin{pmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{pmatrix} \times 1$	
Attention Module	14×14	Attention ×1	Attention ×3
Residual Unit	7×7	$\begin{pmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{pmatrix} \times 3$	
Average pooling	1×1	7×7 stride 1	
FC,Softmax	1000		
params×	10^{6}	31.9	51.3
FLOPs×	10^{9}	6.2	10.4
Trunk de	pth	http56/blog.	csdn. n 92 /wspba

What went well? What are you working on to improve?

Went Well:

- 1. Pre-trained model: Inception ResNet V2
- 2. Model in Progress: Residual Attention CNN

Working On:

- 1. Warm-up model: using callback function
- 2. Data Augmentation
- 3. Model in the Consideration: Multi-Attention CNN http://openaccess.thecvf.com/content_ICCV_2017/papers/Zheng_Learning_Multi-Attention_Convolutional_ICCV_2017_paper.pdf

Steps so you can achieve the promised deliverables next week.

- Build Multi-Attention CNN & Residual Attention CNN model based on Inception ResNet V2
- 2. Compare and select best one in our experiments
- 3. Optimize hyper-parameters and model to achieve highest f2 score in limited running time(9 hours)

How can Professor or the TA help if there are any major sticky points.