Продвинутый Spark

План на неделю

План на неделю

С нуля решим на Spark задачу классификации текстов

Реализуем модель «мешка слов»

План на неделю

С нуля решим на Spark задачу классификации текстов

Реализуем модель «мешка слов»

Обучим вручную логистическую регрессию

→ Модель «мешка слов»:

good movie	
not a good movie	
did not like	

good	movie	not	a	did	like
1	1	0	0	0	0
1	1	1	1	0	0
0	0	1	0	1	1

→ Модель «мешка слов»:

	,	good	movie	not	a	did	like
good movie		1	1	0	0	0	0
not a good movie		1	1	1	1	0	0
did not like		0	0	1	0	1	1

Ә Для векторизации нужен словарь: «слово» → индекс

→ Модель «мешка слов»:

	good	movie	not	a	did	like
good movie	1	1	0	0	0	0
not a good movie	1	1	1	1	0	0
did not like	0	0	1	0	1	1

- Ә Для векторизации нужен словарь: «слово» → индекс
- 😜 Словарь нужен на каждой машине

→ Модель «мешка слов»:

	good	movie	not	a	did	like
good movie	1	1	0	0	0	0
not a good movie	1	1	1	1	0	0
did not like	0	0	1	0	1	1

- → Для векторизации нужен словарь: «слово» → индекс
- Оловарь нужен на каждой машине

- Считаем «слово» → hash(«слово»)
 - Возьмем большое число корзинок хэш-функции (2³²)
 - Не занимает памяти и легко распараллеливается

- Считаем «слово» → hash(«слово»)
 - Возьмем большое число корзинок хэш-функции (2³²)
 - Не занимает памяти и легко распараллеливается

Пример хэш-функции (полиномиальная):

$$hash(s) = s[0] + s[1]p^1 + \dots + s[n]p^n$$

s — строчка

p — фиксированное простое число

s[i] — код символа

$$hash(good) = 0$$
 $hash(movie) = 1$
 $hash(not) = 2$
 $hash(a) = 3$
 $hash(did) = 3$
 $hash(like) = 4$

good movie
not a good movie
did not like

0	1	2	3	4
1	1	0	0	0
1	1	1	1	0
0	0	1	1	1

$$hash(good) = 0$$
 $hash(movie) = 1$
 $hash(not) = 2$
 $hash(a) = 3$
 $hash(did) = 3$
 $hash(like) = 4$

	U			3	4
good movie	1	1	0	0	0
not a good movie	1	1	1	1	0
did not like	0	0	1	1	1

Чем больше корзинок хэш-функции, тем меньше шанс коллизии!

- Легко сделать из 32-битного хэша (просто считаем полином в int32) столько корзинок, сколько захотим:
 - \circ «слово» \rightarrow hash («слово») % 2^{22}
 - о «слово» → hash («слово») % 2²⁴

- Легко сделать из 32-битного хэша (просто считаем полином в int32) столько корзинок, сколько захотим:
 - о «слово» → hash («слово») % 2²²
 - о «слово» → hash («слово») % 2²⁴

Ошибка падает как log (бит в хэше):

- 🔁 Датасет для обучения:
 - о 0.4 млн пользователей
 - 3.2 млн писем
 - 40 млн слов

- 🔁 Датасет для обучения:
 - о 0.4 млн пользователей
 - 3.2 млн писем
 - 40 млн слов
- Добавим персональные слова в модель:
 - для каждого слова добавим еще одно вида: «пользователь1_слово»
 - о получим 16 трлн новых признаков!

Хэшированные 16 трлн признаков дают существенный прирост качества

- Хэшированные 16 трлн признаков дают существенный прирост качества
- Хэширование перестает влиять на качество
 не персональной модели уже на 22 битном хэше

Хорошо работает даже на пользователях, которых не было в обучении!

- Хорошо работает даже на пользователях, которых не было в обучении!
- Все персональные зависимости были учтены новыми признаками, а глобальные стали универсальнее

Для векторизации текста нужно держать в памяти словарь: «слово» → индекс

Для векторизации текста нужно держать в памяти словарь: «слово» → индекс

Можно без словаря: «слово» → hash («слово») % 2^{24}

Для векторизации текста нужно держать в памяти словарь: «слово» → индекс

Можно без словаря: «слово» → hash («слово») % 2^{24}

Хэширование позволяет работать с огромным количеством признаков, оно реализовано в промышленном пакете vowpal wabbit

Для векторизации текста нужно держать в памяти словарь: «слово» → индекс

Можно без словаря: «слово» → hash («слово») % 2^{24}

Хэширование позволяет работать с огромным количеством признаков, оно реализовано в промышленном пакете vowpal wabbit

Далее: поговорим о логистической регрессии

 x^i — признаки i-го объекта $y^i \in \{0,1\}$ — класс i-го объекта w — коэффициенты модели $p^i = \sigma(w^T x^i)$ — вероятность класса 1 для i-го объекта

 x^i — признаки i-го объекта $y^i \in \{0,1\}$ — класс i-го объекта w — коэффициенты модели $p^i = \sigma(w^Tx^i)$ — вероятность класса 1 для i-го объекта

Mинимизируем log-loss:

$$-\sum_{i} y^{i} \log(p^{i}) + (1-y^{i}) \log(1-p^{i})$$

 x^i — признаки i-го объекта $y^i \in \{0,1\}$ — класс i-го объекта w — коэффициенты модели $p^i = \sigma(w^T x^i)$ — вероятность класса 1 для i-го объекта

Mинимизируем log-loss:

$$-\sum_{i} y^{i} \log(p^{i}) + (1 - y^{i}) \log(1 - p^{i})$$

Шагая в итерациях в направлении антиградиента:

$$w_{new} = w - \alpha \sum_{i} x^{i} (p^{i} - y^{i})$$

$$x^i$$
 — признаки i -го объекта $y^i \in \{0,1\}$ — класс i -го объекта w — коэффициенты модели $p^i = \sigma(w^T x^i)$ — вероятность класса 1 для i -го объекта

Независимо считаем для каждого блока набора данных вклад в градиент:

$$\sum_{i} x^{i} (p^{i} - y^{i})$$

 x^i — признаки i-го объекта $y^i \in \{0,1\}$ — класс i-го объекта w — коэффициенты модели $p^i = \sigma(w^T x^i)$ — вероятность класса 1 для i-го объекта

Независимо считаем для каждого блока набора данных вклад в градиент:

$$\sum_{i} x^{i} (p^{i} - y^{i})$$

Собираем на драйвере финальную сумму и делаем шаг:

$$w_{new} = w - \alpha \sum_{i} x^{i} (p^{i} - y^{i})$$

Для наглядности будем обучать градиентным спуском, который легко распараллелить

Для наглядности будем обучать градиентным спуском, который легко распараллелить

Промышленные пакеты, такие как vowpal wabbit, делают L-BFGS шаг для более быстрой сходимости

Для наглядности будем обучать градиентным спуском, который легко распараллелить

Промышленные пакеты, такие как vowpal wabbit, делают L-BFGS шаг для более быстрой сходимости

Мы готовы к решению задачи в Spark!