numerička analiza elektroenergetskog sustava - pismeni ispit 003(38848)

1. rujna 2

TONISLAU POLSAK

2) 4	1)	2
3) 5	2)	4
700	3)	5
Mover		Mobor

Odredi napone u mreži pomoću ubrzane razdvojene Newton Raphson metode. Dovoljna je jedna iteracija. Bazna snaga je 100MVA. Nazivni napon vodova je 110kV

$$S_{teret2} = 100 + j25 \text{ MVA};$$

$$S_{\text{teret3}} = 0 + j10 \text{ MVA};$$

Zadano je početno stanje:

$$U_1 = 110 L0^{\circ} kV;$$

$$U_2 = 107 L - 4^{\circ} kV;$$

 $U_3 = 107 L-4^{\circ} kV$.

Y matrica (u	p.u.):	
0.00 - j15.13	0.00 + j15.13	
0.00 + j15.13	0.00 - j45.38	0.00 + j30.25
	0.00 + 120 25	

$$\bigcirc \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longleftarrow}$$

11=14=	
43	-29
-29	29

2> Zadana su dva transformatora u paralelnom radu sa sljedećim podacima:

T1	T2
S = 100 MVA	S = 100 MVA
$u_k = 8\%$	u _k = 8%
a = 231/110 kV	a = 220/110 kV

Odredi snagu na sekundaru ako je na primaru narinut napon 220kV i snaga 100 MW. (Sb=100MVA)

Ddredi struju (u amperima) tropolnog kratkog spoja, te doprinose struje generatora 1 i generatora 3 u slučaju tropolnog kratkog spoja na čvorištu 3. Vodovi imaju jednake parametre U_n=110 kV; X₁=0.33 Ω/km. Generatori također imaju jednake parametre X"=20% (pri U_n=110kV); S_n=100 MVA.

DAMIE	SORMAN	
	ime i prezime	

1)	106	
2)	100	
3)	100	
	100	(5)

Odredi struju (u amperima) tropolnog kratkog spoja i struje u svim vodovima na slici u slučaju tropolnog kratkog spoja na čvorištu 2. Vodovi imaju jednake parametre U_n=400 kV; X₁=0.41 Ω/km. Generator ima parametre X"=20% (pri U_n=400kV); S_n=100 MVA. Mreža je prije nastanka kratkog spoja neopterećena.

Odredi Π shemu (u per unit S_b = 100 MVA) transformatora 400/220kV s podacima:

$$S_n = 300 \text{ MVA}$$

$$u_k = 10\%$$

$$P_{cu} = 450 \text{ kW}$$

$$i_0 = 1\%$$

$$P_{fe} = 100 \text{ kW}$$

$$a=1$$

te izračunaj gubitke snage kod S₂ = -100 + 0j MVA; U₂= 410 kV.

Napravi jedan korak Gauss-Seidel metode pomoću Y-matrice. Početni naponi su nazivni U_n=400 kV. Referentni čvor je 1.

$$S_{teret2} = 170 + j0 \text{ MVA};$$

$$S_{\text{teret}3} = 30 + j0 \text{ MVA};$$

1	2	3
	•	

Y matrica u pu vrijednostima na S_B=100MVA:

1,25 - j24,94	-1,25 + j24,94	
-1,25+j24,94	3,74 - j74,81	-2,49 + j49,88
	2 40 + 140 00	2.40 :40 00

Odredi matricu admitancije, injekcije snage u čvorištima, te aktivne i reaktivne gubitke u cijeloj mreži na slici. Svi vodovi su jednaki i imaju parametre

 $R_1 = 0.12 \Omega / km;$

 $X_1 = 0.41 \Omega / \text{km};$

 $B_1 = 0.0028 \text{ mS/km};$

1=20 km.

Naponi čvorišta su

U2=108.758 L-1.95° kV;

U₃=109.059 L-1.99 kV.

Odredi struju tropolnog kratkog spoja. Vodovi su jednaki i imaju parametre U_n=110 kV; X₁=0.41 Ω/km; l=20 km. Transformatori su jednaki i imaju parametre S_n=40 MVA; U_{n1}=110 kV; U_{n2}=35 kV; u_k=10%. Utjecaj vanjske mreže može se nadomjestiti reaktancijom 12.1 Ω na 110 kV. Mreža je u praznom hodu.

- Čvorište 1 je referentno čvorište. Vodovi imaju jednake parametre U_n=110 kV; X₁=0.41 Ω/km. Zadatak riješi pomoću istosmjernih tokova snage.
 Odredi:
 - a) tokove radne snage u mreži
 - b) kutove napona u sva tri čvorišta

$$U_n = 110 \text{ kV}$$

 $U_{ref} = 110.0 \text{ kV}$
 $S_b = 100 \text{ MVA}$

$$P_{\text{teret}3} = 155 \text{ MW}$$

$$P_{\text{teret}3} = 20 \text{ MW}$$

$$P_{\text{gsn3}} = 50 \text{ MW}$$

