Recommender Systems

Dan Becker

Recommenders Everywhere

Dan Becker.

You might also be interested in these accounts.

Recommended for you

Shop for items based on what you've viewed.

targeted advertising

Top Picks for Dan

Answer This

What You'll Learn

How to build, evaluate, deploy and improve models that make recommendations to users.

Example Data

Item

	Α	В	С	D	
Al	1	?	2	?	
Bob	?	2	3	4	
Cat	3	?	1	5	
Dan	?	2	?	?	
Ed	2	?	?	1	

Binary Data

Item

	A	В	С	D	
Al	0	1	0	1	
Bob	0	0	1	0	
Cat	0	1	1	1	
Dan	1	0	0	1	
Ed	0	1	0	0	

Most Popular Techniques

Popularity

- Most viewed, most well-liked, etc
- Not customized to users

User-User

- Recommend items liked by users with similar ratings
- Computational challenges when more users than items

Item-Item

- Recommend items similar to what the current user rated favorably
- · Covered in this lecture

Matrix Factorization Methods

- Estimate each user's underlying preferences for product characteristics
- · Covered in next lectures

User Ratings as Vectors

Item

	A	В	С	D	
Al	1	?	2	?	
Bob	?	2	3	4	
Cat	3	?	1	5	

User

Item Ratings as **Vectors**

Item

	A	В	C	D
Al	1	?	2	?
Bob	?	2	3	4
Cat	3	?	1	5
Dan	?	2	?	?
Ed	2	?	?	1
	V		V	

Measuring Similarity

Metric Name	Useful For	Formula
Cosine	Numeric Ratings	$\frac{A \bullet B}{[A][B]}$
Jacard	Binary / Event Data	$\frac{A \cap B}{A \cup B}$

Measuring Similarity

Metric Name	Useful For	Formula
Cosine	Numeric Ratings	$\frac{A \bullet B}{[A][B]}$
Jacard	Binary / Event Data	$\frac{A \cap B}{A \cup B}$

Cosine Sim

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R}_i)(R_{u,j} - \bar{R}_j)}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R}_i)^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R}_j)^2}}.$$

Adjusted Cosine Sim

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R_u})(R_{u,j} - \bar{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R_u})^2}}.$$

Item-Item Recommendation Algorithm

In The Middle of the Night

- Compute similarity metric for all pairs of items
- Create "neighborhood" of similar items for each item to rate

At Request Time

Predict scores for candidate items

Item-Item Recommendation Algorithm

At Request Time

Predict scores for candidate items

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)}$$

Item-Item Recommendation Algorithm

Why Item-Item rather Than User-User

Caching

Item correlations more stable

Similarity Calculation (Speed)

Lower algorithmic complexity

Similarity Calculation (Quality)

User-pairs with only 1 overlapping rating **Validation Strategies**

Simple Time-Based

Validation Strategies

More Complex Time-Based

Validation Strategies

K-Fold

Thought Experiment: Why Doesn't This Work

Another Bad Validation Strategy

Validation Strategies

Purely Random Holdout (Optionally K-fold)

Item

