

Agenda

Problem Statement Assumptions & Hypotheses about Data Data Engineering and Exploratory Data Analysis **Survey of Existing Solutions** Feature engineering **Analytical Models Proposed Solution and Model Selection** Model Performance Expectation for New Population Cohort Model Comparison with Existing Solution Health Care Impact - Real World Solution Weaknesses and Future Improvement Future Work (Other Models or Solutions)

Problem Statement

- According to the World Health Organization (WHO), stroke is the second leading cause of death globally, accounting for
 approximately 11% of all deaths. In oncology populations, cerebrovascular events such as stroke are a life-threatening
 yet frequently underdiagnosed complication, exacerbated by the complexity of cancer therapies and overlapping clinical
 presentations. Traditional risk assessment models often fail to detect early signals in this high-risk group.
- This project aims to develop a machine learning—driven predictive model that leverages longitudinal EMR data to enable individualized, real-time stroke risk stratification in hospitalized cancer patients, supporting early clinical intervention and reducing adverse neurological outcomes.

Assumptions & Hypotheses about Data

Assumptions

No multicollinearity among independent variables

Large sample size to predict properly

Logistic Regression: Lack of strongly influential outliers

Random Forest: Data is distributed normally

Classification Models KNN **Logistic Regression** Random Forest

Data Overview 1 – Feature Information

Stroke Prediction Dataset

Attribute Information

- 1) id: unique identifier
- 2) gender: "Male", "Female" or "Other"
- 3) age: age of the patient
- 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) ever_married: "No" or "Yes"
- 7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 8) Residence_type: "Rural" or "Urban"
- 9) avg_glucose_level: average glucose level in blood
- 10) bmi: body mass index
- 11) smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12) stroke: 1 if the patient had a stroke or 0 if not
- *Note: "Unknown" in smoking_status means that the information is unavailable for this patient

Data Profile

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):
    Column
                       Non-Null Count Dtype
                       5110 non-null
    id
                                      int64
                       5110 non-null
                                      object
    gender
                       5110 non-null
                                      float64
    age
                       5110 non-null
                                      int64
    hypertension
    heart disease
                       5110 non-null
                                      int64
    ever married
                       5110 non-null
                                      object
    work type
                       5110 non-null
                                      object
    Residence type
                       5110 non-null
                                       object
    avg glucose level 5110 non-null
                                      float64
 9
    bmi
                       4909 non-null
                                      float64
    smoking status
                       5110 non-null
                                      object
 11 stroke
                       5110 non-null
                                      int64
dtypes: float64(3), int64(4), object(5)
memory usage: 479.2+ KB
```

- 1 key column
- 3 numeric column
- 8 categorical columns

Data Overview 2 - Data Engineering - Interpolate

Interpolate Result

```
print("mean change: " + str(28.92728 - 28.893237))
print("std change: " + str(7.77531 - 7.854067))
# good interpolation result
```

mean change: 0.034043000000000049 std change: -0.0787569999999952

- Negligible change in mean and standard deviation
- Maintain distribution shape

BMI before interpolate

BMI after interpolate

Data Overview 3 – Statistics, Correlation & Heatmap

Data Summary Statistics

	count	mean	std	min	25%	50%	75%	max
id	5110.0	36517.829354	21161.721625	67.00	17741.250	36932.000	54682.00	72940.00
age	5110.0	43.226614	22.612647	0.08	25.000	45.000	61.00	82.00
hypertension	5110.0	0.097456	0.296607	0.00	0.000	0.000	0.00	1.00
heart_disease	5110.0	0.054012	0.226063	0.00	0.000	0.000	0.00	1.00
avg_glucose_level	5110.0	106.147677	45.283560	55.12	77.245	91.885	114.09	271.74
bmi	5110.0	28.927280	7.775310	10.30	23.600	28.100	33.10	97.60
stroke	5110.0	0.048728	0.215320	0.00	0.000	0.000	0.00	1.00

correlation table

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
id	1.000000	0.003538	0.003550	-0.001296	0.001092	0.000925	0.006388
age	0.003538	1.000000	0.276398	0.263796	0.238171	0.321631	0.245257
hypertension	0.003550	0.276398	1.000000	0.108306	0.174474	0.149985	0.127904
heart_disease	-0.001296	0.263796	0.108306	1.000000	0.161857	0.044599	0.134914
avg_glucose_level	0.001092	0.238171	0.174474	0.161857	1.000000	0.168539	0.131945
bmi	0.000925	0.321631	0.149985	0.044599	0.168539	1.000000	0.047351
stroke	0.006388	0.245257	0.127904	0.134914	0.131945	0.047351	1.000000

Heatmap

id	1	0.0035	0.0035	-0.0013	0.0011	0.00092	0.0064			1.0
age	0.0035	1	0.28	0.26	0.24	0.32	0.25			0.8
hypertension	0.0035	0.28	1	0.11	0.17	0.15	0.13			0.6
heart_disease	-0.0013	0.26	0.11	1	0.16	0.045	0.13			
avg_glucose_level	0.0011	0.24	0.17	0.16	1	0.17	0.13			0.4
bmi	0.00092	0.32	0.15	0.045	0.17	1	0.047			0.2
stroke	0.0064	0.25	0.13	0.13	0.13	0.047	1			0.0
	İ	эве	hypertension	heart_disease	vg_glucose_level	bmi	stroke	•	_	0.0

• Age & Stroke

Data Visualization 1 – Multiple Categories

Data Visualization 2 – Binary Categorical Column

Data Visualization 3 – Numerical columns

Data Visualization 4 – target variable

- Only 4.9% patient have stroke disease
- Stroke proportion highly imbalance

Survey of Existing Solution

Stroke Prediction Kaggle Project Using Same Dataset

Reason:

- 4.9% stroke cases are not captured evenly in both training set and test set.
- The model is not learning the pattern effectively for stroke cases.

Model Results:

- High Accuracy (94%)
- High precision & recall for non-stroke cases
- No precision & recall for stroke cases

Feature Engineering

Normalization

Original DataFrame

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
C	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.60	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	34.55	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.50	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.40	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.00	never smoked	1

• Standard scaler: Normalized age, avg_glucose_level and bmi.

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
C	9046	Male	1.051434	0	1	Yes	Private	Urban	2.706375	0.986902	formerly smoked	1
1	51676	Female	0.786070	0	0	Yes	Self-employed	Rural	2.121559	0.723221	never smoked	1
2	31112	Male	1.626390	0	1	Yes	Private	Rural	-0.005028	0.459540	never smoked	1
3	60182	Female	0.255342	0	0	Yes	Private	Urban	1.437358	0.703928	smokes	1
4	1665	Female	1.582163	1	0	Yes	Self-employed	Rural	1.501184	-0.633770	never smoked	1

Feature Engineering

Feature Creation & Transformations

• Convert categorical features to binary numeric columns

	Data Type	Nulls	Zeros	Min	Median	Max	Mean	Standard Deviation	Unique	Top Frequency
id	int64	0	0	67	36932	72940	36517.83	21159.65	5110	1
age	float64	0	0	-2	0.078	1.71	0.0000000000000000000000000000000000000	1.00	104	102
hypertension	int64	0	0	0	0	1	0.097	0.30	2	4612
heart_disease	int64	0	0	0	0	1	0.054	0.23	2	4834
avg_glucose_level	float64	0	0	-1	-0	3.66	0.000000000000000010	1	3979	6
bmi	float64	0	0	-2	-0	8.83	0.000000000000000025	1	520	41
stroke	int64	0	0	0	0	1	0.049	0.22	2	4861
male	int64	0	0	0	0	1	0.41	0.49	2	2995
married	int64	0	0	0	1	1	0.66	0.47	2	3353
private	int64	0	0	0	1	1	0.57	0.49	2	2925
self_employed	int64	0	0	0	0	1	0.16	0.37	2	4291
children	int64	0	0	0	0	1	0.13	0.34	2	4423
govt_job	int64	0	0	0	0	1	0.13	0.33	2	4453
never_worked	int64	0	0	0	0	1	0.0043	0.065	2	5088
urban	int64	0	0	0	1	1	0.51	0.50	2	2596
never_smoked	int64	0	0	0	0	1	0.37	0.48	2	3218
formerly_smoked	int64	0	0	0	0	1	0.17	0.38	2	4225
smokes	int64	0	0	0	0	1	0.15	0.36	2	4321
unknown_smoke	int64	0	0	0	0	1	0.30	0.46	2	3566

Feature Engineering

Feature Selection: Backward vs. Forward (Joint predictive ability)

Choose 15 features for trade-off between p-values and maximum AIC

Explanatory Variables

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5110 entries, 9046 to 44679
Data columns (total 15 columns):

Daca	COTUMNIS (COCAT IS	corumns).	
#	Column	Non-Null Count	Dtype
0	age	5110 non-null	float64
1	heart_disease	5110 non-null	int64
2	avg_glucose_level	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	married	5110 non-null	int64
5	formerly_smoked	5110 non-null	int64
6	self_employed	5110 non-null	int64
7	bmi	5110 non-null	float64
8	urban	5110 non-null	int64
9	private	5110 non-null	int64
10	male	5110 non-null	int64
11	smokes	5110 non-null	int64
12	govt_job	5110 non-null	int64
13	never_smoked	5110 non-null	int64
14	unknown_smoke	5110 non-null	int64
44	Cl+ C4/3\+	CA (4.3)	

dtypes: float64(3), int64(12)

memory usage: 638.8 KB

Response Variable

<class 'pandas.core.series.Series'>
Int64Index: 5110 entries, 9046 to 44679

Series name: stroke
Non-Null Count Dtype
---5110 non-null int64
dtypes: int64(1)

memory usage: 79.8 KB

Analytical Models

Model Selection	Reasons
Logistic Regression	Easy to implement, interpret, and very efficient to train
Random Forest	 Aggregate many decision trees to limit overfitting as well as error due to bias Robust to outliers and less affected by noise
KNN	No assumptions about data

16

Proposed Solution and Model Selection

Classification Report, Confusion Matrix, roc_auc_score, recall_score, brier score

brier1_KNN brier1_LogisticRegression brier_RandomForest

0.046036 0.040782

0.043324

$$Recall = rac{TP}{TP + FN}$$

Logistic Regression	Random Forest	KNN
Classification Report for LR Model:	Classification Report for RF Model:	Classification Report for KNN Model:
precision recall f1-score suppor	precision recall f1-score support	precision recall f1-score suppor
0 0.98 0.86 0.92 972 1 0.21 0.72 0.32 56	0 0.97 0.94 0.95 972 1 0.26 0.40 0.31 50	0 0.96 0.94 0.95 972 1 0.17 0.22 0.19 56
accuracy 0.85 1022 macro avg 0.60 0.79 0.62 1022 weighted avg 0.95 0.85 0.89 1022	accuracy 0.91 1022 macro avg 0.61 0.67 0.63 1022 weighted avg 0.93 0.91 0.92 1022	accuracy 0.91 1022 macro avg 0.56 0.58 0.57 1022 weighted avg 0.92 0.91 0.91 1022
Confusion Matrix for LR Model:	Confusion Matrix for RF Model:	Confusion Matrix for KNN Model:
[[835 137] [14 36]]	[[915 57] [30 20]]	[[917 55] [39 11]]
roc_auc_score for LR Model:	roc_auc_score for RF Model:	<pre>roc_auc_score for KNN Model:</pre>
0.7895267489711935	0.670679012345679	0.5817078189300412
recall_score for LR Model:	recall_score for RF Model:	recall_score for KNN Model:
0.72	0.4	0.22

Proposed Solution and Model Selection

Logistic regression model is the best-performing model

- Roc-Auc Curve
- Precision-Recall Curve

Proposed Solution and Model Selection

Logistic Regression model

- Highest AOC-ROC performance: 0.84
- Highest F1 score
- Relatively high precision and recall trade-off
- Lowest brier score: 0.04

brier1_KNN brier1_LogisticRegression brier_RandomForest

0.046036	0.040782	0.043324

Classification Report for LR Model:

	precision	recall	f1-score	support
0	0.98	0.86	0.92	972
1	0.21	0.72	0.32	50
accuracy			0.85	1022
macro avg	0.60	0.79	0.62	1022
weighted avg	0.95	0.85	0.89	1022

Confusion Matrix for LR Model:

roc_auc_score for LR Model:

0.7895267489711935

0.72

$$Recall = rac{TP}{TP + FN}$$

Model Performance Expectation for New Population Cohort

Can this model be used out-of-the-box for a new population cohort and why?

Reason 1

Train-test-split stratified will adjust proportion of stroke cases in train and test accordingly and automatically.

Reason 2

High recall on stroke cases give model great generalization ability on detecting potential stroke cases.

Reason 3

y_pred probability threshold test out the most appropriate cutoff for new model stroke probability.

Strategy¹

Stratified Ratio

Train-test-split stratified will keep the same proportion of data for train dataset and test dataset

High Recall

Higher recall minimize the false negative cases and avoid the risk of not detecting probably cases or delay treatment.

Probability Threshold

Different probability cutoff from 0 to 1 with 0.5 as each step to test out optimal stroke probability

Model Comparison with Existing Solution

New Logistic Regression model:

- Higher precision-recall for stroke cases
- Higher F1 score
- Lower false negative cases

Survey S	Solution	L	ogistic	Regressi	on
Confusion Mat	rix :				
[[929 0] [53 0]]					
Classification	on Report :				
	precision	recall	f1-score	support	
0	0.95	1.00	0.97	929	
1	0.00	0.00	0.00	53	
20011207			0.95	982	
accuracy macro avg	A 47	0.50	0.49		
weighted avg					
The Accuracy	of Logistic	Regression	is 94.6 %	6	

New Solution				
Classification Report for LR Model:				
	precision		f1-score	support
	•			
0	0.50	0.00	0.92	972 50
accuracy			0.85	1022
macro avg	0.60			
weighted avg	0.95	0.85	0.89	1022
Confusion Matrix for LR Model:				
[[835 137] [14 36]]				
roc_auc_score for LR Model:				
0.7895267489711935				
recall_score for LR Model:				
0.72				

Health Care Impact

Stroke Prediction: Early prediction and intervention

Early prediction

Efficiently predict the disease of a human, based on the symptoms and health history.

Medical Resources

Save medical resources and government budget by detecting disease at the early stage.

Early Interventions

Act as an early risk warning for high-risk individuals and a signal to monitor the patients' health conditions.

Mortality Rate

Decrease the mortality rate of potential individuals by increasing the prevention awareness of patients and their families.

Solution Weaknesses and Future Improvement

Future Work (Other Models or Solutions)

Data Collection

Increase data quantity and generate more data to improve model learning result.

Improve sampling of the data and include more patient sample with stroke disease.

Data & Feature Engineering

Try out other normalization methods on numerical columns.

Transform categorical features into different categories than before by combining similar categories.

Other models

Naive Bayes is easy to implement, highly scalable, and make real-time predictions

XGBoost works well with data that is nonlinear, nonmonotonic, or with segregated clusters.

References

- https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- https://www.cdc.gov/stroke/facts.htm
- https://www.verywellhealth.com/united-states-stroke-belt-4068563