P.05

Claims:

This is a listing of the amended and currently pending claims in this patent application:

In the Claims:

- (Previously Presented) A low coefficient of thermal expansion cermet 1. material comprising:
- a first phase of grains selected from the group consisting of carbides, nitrides, carbonitrides, and borides of W, Ti, Mo, Nb, V, Si, Hf, Ta, Cr, and mixtures thereof; and

a second phase of iron-based binder alloy bonding the first phase of grains together and consisting essentially of a blend of iron with Co, Ni, C and Mn;

wherein the binder alloy has a coefficient of thermal expansion of less than about 10 ppm/°C within a temperature range of from 100 to 700°C.

- 2. (Original) The cermet material as recited in claim 1 wherein the first phase is WC.
- (Original) The cermet material as recited in claim 1 wherein the first 3. phase is WC-TiC-TaC.
- (Original) The cermet material as recited in claim 1 wherein the first 4. phase is TiC.
- 5. (Original) The cermet material as recited in claim 1 wherein the first phase is TiC-TiCN.
 - (Canceled) 6.

1 310 203 0567

- 7. (Previously Presented) The cermet material as recited in claim 1 wherein the iron-based binder alloy comprises in the range of from about 10 to 30 percent by weight Co, and 10 to 40 percent by weight Ni based on the total weight of the binder alloy.
 - 8. (Canceled)
 - 9. (Canceled)
- 10. (Original) The cermet material as recited in claim 1 comprising in the range of from about 5 to 30 percent by weight of the binder alloy based on the total weight of the cermet material.
- 11. (Original) The cermet material as recited in claim 1 wherein the difference between the coefficient of thermal expansion for the binder alloy and the first phase of grains is less than about 5 ppm/°C.
- 12. (Original) The cermet material as recited in claim 11 wherein the difference between the coefficient of thermal expansion for the binder alloy and the first phase of grains is less than about 2 ppm/°C.
- 13. (Original) A rock bit comprising a body having a number of legs that extend therefrom, cutting cones rotatably disposed on an end of each leg, a plurality of cutting inserts disposed in the cutting cones, wherein the cutting inserts are formed from the cermet material recited in claim 1.
- 14. (Previously Presented) A low coefficient of thermal expansion cermet composition comprising:

3

P.07

a first phase of grains selected from the group consisting of carbides, nitrides, carbonitrides, and borides of W, Ti, Mo, Nb, V, Si, Hf, Ta, Cr, and mixtures thereof; and a second phase of iron-based binder alloy bonding the first phase of grains together and consisting essentially of a mixture of Co, Ni, Fe, C and Mn;

Jeffer Mangels 6th #22

wherein the cermet composition has a coefficient of thermal expansion less than that of conventional WC-Co at the same temperature and having the same metal content at a temperature range of from 100 to 700°C; and

wherein the binder alloy comprises in the range of from about 10 to 30 percent by weight of the total weight of the cermet material.

- (Original) The cermet composition as recited in claim 14 wherein the 15. first phase is WC.
- (Original) The cermet composition as recited in claim 14 wherein the 16. first phase is WC-TiC-TaC.
- (Original) The cermet composition as recited in claim 14 wherein the 17. first phase is TiC.
- (Original) The cermet composition as recited in claim 14 wherein the 18. first phase is TiC-TiCN.
- (Previously Presented) The cermet composition as recited in claims 15, 19. 16, 17, and 18 wherein the iron-based binder alloy comprises from about 10 to 30 percent by weight Co, and about 10 to 40 percent by weight nickel based on the total weight of the binder alloy.

P.08

(Original) The cermet composition as recited in claim 19 wherein the 20. binder alloy has a coefficient of thermal expansion of less than about 10 ppm/°C within a temperature range of from 100 to 700°C.

Jeffer Mangels 6th #22

- (Original) The cermet composition as recited in claim 19 wherein the 21. difference between the coefficient of thermal expansion for the binder alloy and the first phase of grains is less than about 2 ppm/°C.
 - 22. (Canceled)
 - 23. (Canceled)
 - 24. (Canceled)
- (Previously Presented) A low coefficient of thermal expansion cermet 25. material comprising:
- a first phase of grains selected from the group consisting of carbides, nitrides, carbonitrides, and borides of W, Ti, Mo, Nb, V, Si, Hf, Ta, Cr, and mixtures thereof, and
- a second phase of binder alloy bonding the first phase of grains together and formed from a mixture of metals selected from the group consisting of Co, Ni, Fe, W, Mo, Ti, Ta, V, Nb, C, B, Cr, and Mn; and
- a third phase selected from the group of materials consisting of Co, Ni, Fe, W, Mo, Ti, Ta, V, Nb, alloys thereof, and alloys with materials selected from the group consisting of B, Cr, and Mn, wherein the first and second phases form particles that are disbursed within the third phase;

wherein the binder alloy has a coefficient of thermal expansion of less than about 10 ppm/°C within a temperature range of from 100 to 700°C.

- 26. (Original) The cermet material as recited in claim 25 wherein the cermet material has a coefficient of thermal expansion that is less than that of conventional WC-Co at the same temperature and having the same metal binder content.
- 27. (Original) The cermet material as recited in claim 25 wherein the cermet material has a coefficient of thermal expansion of less than or equal to about 6 ppm/°C within a temperature range of from 100 to 700°C.
 - 28. (Canceled)
- 29. (Preciously Presented) The cermet material as recited in claim 25 wherein the binder alloy is iron based and comprises in the range of from about 10 to 30 percent by weight Co, and 10 to 40 percent by weight Ni based on the total weight of the binder alloy.
 - 30. (Canceled)
 - 31. (Canceled)
- 32. (Original) The cermet material as recited in claim 25 comprising in the range of from about 1 to 30 percent by weight of the binder alloy based on the total weight of the cermet material.
- 33. (Previously Presented) A rotary cone rock bit comprising:

 a body having a number of legs that extend therefrom;

 cutting cones rotatably disposed on an end of each leg;

 a plurality of cutting inserts disposed in the cutting cones, wherein the cutting inserts are formed from a cermet material comprising a first phase of grains and a second ductile

LA 3260340 vl

1 310 203 0567

phase bonding the grains, wherein the first phase of grains is selected from the group consisting of carbides, nitrides, carbonitrides, and borides of W, Ti, Mo, Nb, V, Si, Hf, Ta, Cr and mixtures thereof, wherein the second ductile phase is an iron-based binder alloy consisting essentially of Co, Ni, Fe, C and Mn;

wherein the binder alloy has a coefficient of thermal expansion less than about 6 ppm/°C within a temperature range of from 100 to 700°C.

- 34. (Original) The rock bit as recited in claim 33 wherein the difference between the coefficient of thermal expansion for the binder alloy and the first phase of grains is less than about 2 ppm/°C.
 - 35. (Canceled)
 - 36. (Canceled)
- 37. (Presently Presented) The rock bit as recited in claim 33 wherein the iron-based binder alloy comprises in the range of from about 10 to 30 percent by weight Co, and 10 to 40 percent by weight Ni based on the total weight of the binder alloy.
 - 38. (Canceled)
 - (Canceled)
- 40. (Previously Presented) The rock bit as recited in claim 33 comprising in the range of from about 10 to 30 percent by weight of the binder alloy based on the total weight of the cernet material.

1 310 203 0567

41. (Currently Amended) The rock bit as recited in claim 33 wherein the cermet material further comprises a continuous further ductile phase, wherein particles formed from the grains and binder alloy are disbursed therein, the further ductile phase being selected from the group consisting of Co, Ni, Fe, W, Mo, Ti, Ta, V, Nb, alloys thereof, and alloys with materials selected from the group consisting of B, Cr, and Mn and alloys thereof;

wherein the cermet comprising the further ductile phase has a coefficient of thermal expansion less than that of conventional WC-Co at the same temperature and having the same metal content.

- 42. (Previously Presented) The rock bit as recited in claim 33 wherein the cermet material has a coefficient of thermal expansion that is less than that of conventional WC-Co at the same temperature and having the same metal content within a temperature range of from 100 to 700°C.
- 43. (Previously Presented) A low coefficient of thermal expansion cermet composition comprising:

a first structural phase comprising a hard material selected from the group of compounds consisting of carbides, nitrides, carbonitrides, and borides from groups IVA, VA, and VIA of the periodic table;

a second structural phase comprising a ductile binder material formed from a mixture of metals selected from the group consisting of Co, Ni, Fe, W, Mo, Mn, Cu, Al, Nb, C, Ti, and Ta, the second structural phase being in contact with at least a portion of the first structural phase;

wherein the cermet composition comprises a repeating arrangement of structural units each having an ordered microstructure of first and second structural phases; wherein the ductile binder has a coefficient of thermal expansion less than about 10 ppm/°C within a temperature range of from 100 to 700°C.

1 310 203 0567

- 44. (Original) The cermet composition as recited in claim 43 wherein the difference between the coefficient of thermal expansion for the first and second structural phases is less than about 2 ppm/°C.
- 45. (Original) The cermet composition as recited in claim 43 wherein the binder material comprises a mixture of Co, Ni and Fe and comprises up to approximately 60 percent by weight Co, and up to approximately 50 percent by weight nickel based on the total weight of the binder alloy.
- 46. (Original) The cermet composition as recited in claim 45 wherein the binder alloy comprises in the range of from about 10 to 30 percent by weight Co, and 10 to 40 percent by weight Ni based on the total weight of the binder alloy.
 - 47. (Canceled)