Computer Organization

期末CPU作业

总体说明

DDL说明	代码提交	答辩	文档 (视频) 提交
正常进行	5月23日晚11:55	15周实验课上	6月17日中午12:00 (18周周四)
总分打九折	5月27日晚11:55	15周周五上午	6月17日中午12:00 (18周周四)

- ▶ 代码提交要求:包含CPU设计文件(含ip核说明文件xci)、仿真用的testbench文件、 上板测试用的约束文件、测试场景对应的asm以及coe文件(用于查重和答辩提问)
- ▶ 视频(可选)
 - ▶ 争取bonus的小组需录制项目功能演示视频,不争取bonus的小组对视频不做强制要求
- 文档
 - ► CPU功能及使用说明(CPI、是单周期还是多周期、复位信号、对于接口、uart的支持说明)
 - ▶ 顶层模块 (CPU内部接□连接图)
 - ▶ 子模块的设计说明(子模块功能、行为与时钟的关系、端□规格及必要说明)
 - ▶ 问题及总结

答辩基本要求

- ► 答辩前请按照p2页的DDL要求将相关文件及时做提交,迟交则按迟交折扣处理
- 答辩包括演示、问答两个环节。所有组员都必须到场并回答问题。
- ► 演示过程中需按要求完成单周期CPU的上板 (Minisys开发板) 测试
 - ► CPU的基本功能包括 支持minisy基本指令、支持1种输入设备、2种输出设备的IO处理
 - ► CPU的扩展功能 (可选)包括:
 - ▶ 支持只烧写一次FPGA芯片(写入CPU),通过uart接□做不同程序下发、执行的操作。
 - ▶ 测试场景:
 - ▶ 2 基本测试场景 (请参见p4, P5)
 - ▶ 1个自行发挥的扩展测试场景(与实际应用相关,使用其他的IO设备)(可选)
- 一 评分说明
 - ► 按基本功能满分100分为基数,"可选"部分为bonus (满分为20分)

基本测试场景1

- 1.使用24个拨码开关中的16+3=19个拨码开关,使用24个led灯中的17盏led灯
- 2. 该场景中的 1 请使用立即数的方式参与运算

SW23	SW22	SW21	动作	
0	0	0	编号连续的16盏led灯中奇数编号灯与偶数编号灯交替 闪烁(每隔约1秒动作一次)	
0	0	1	将SW15~SW0这16位作为输入赋值给VAL	
0	1	0	VAL=VAL+1(每隔约1秒动作一次)	
0	1	1	VAL=VAL-1(每隔约1秒动作一次)	
1	0	0	VAL左移1位(每隔约1秒动作一次)	
1	0	1	VAL逻辑右移1位(每隔约1秒动作一次)	
1	1	0	VAL算术右移1位(每隔约1秒动作一次)	

基本测试场景2

- 1. 使用拨码开关作为输入、使用7段数码显示管做输出
- 2. 操作数以及运算类型由拨码开关来指定

SW23	SW22	SW21	动作
0	0	0	读取SW15~SW8, SW7~SW0 作为基本的操作数x,y(无符号数)
0	0	1	计算VAL=x+y
0	1	0	计算VAL=x-y
0	1	1	VAL= x左移y位
1	0	0	VAL=x 逻辑右移 y位
1	0	1	VAL = x > y? 16'h0001 : 16'h0000
1	1	0	VAL = x & y
1	1	1	$VAL = x ^ y$