Matrius i Vectors Examen final, problemas

Enero 2016

Todos los teléfonos deberán estar desconectados durante el examen. Pongan nombre y apellidos en cada hoja. Entreguen los problemas en hojas separadas y al menos una hoja por problema (aunque sea sólo con el nombre). En la parte de problemas pueden consultarse libros y apuntes propios.

Al terminar la parte de problemas dejen todo el material escrito en la tarima bajo la pizarra.

Horario:

• Problemas: de 9 a 12.50 horas

• Teoría: de 13 a 14 horas

1.- En \mathbb{R}^4 se consideran los subespacios

$$F = <(0, 1, 0, 1), (1, 0, 1, 0)>$$

y Gy H, dados por las ecuaciones

$$G: x + y + z = 0, \quad y + z + t = 0,$$

 $H: x + y + z + t = 0.$

Se pide calcular las dimensiones de F, G y H y determinar, mediante una base o ecuaciones independientes, $F \cap H$, $G \cap H$ y $(F \cap H) + (G \cap H)$, explicitando la dimensión de cada uno de ellos.

2.- Para un entero cualquiera $n \geq 2$ se considera la matriz

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & 1 & 0 & \dots & 0 & 2 \\ 1 & 1 & 1 & \dots & 0 & 3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1 & n-1 \\ 1 & 1 & 1 & \dots & 1 & a \end{pmatrix}$$

donde $a \in \mathbb{R}$. Se pide:

- (1) Demostrar que A tiene inversa si y sólo si $a \neq n-1$.
- (2) Calcular $\det A$.
- (3) Para n = 4 y a = 1 calcular A^{-1} y expresar A como producto de matrices elementales.
- 3.- Se suponen dados vectores linealmente independientes $A_1, \ldots, A_{n-1} \in \mathbb{R}^n$ y para cualquier $A \in \mathbb{R}^n$ se considera la matriz $(A_1, \ldots, A_{n-1}, A)$ cuyas columnas son A_1, \ldots, A_{n-1}, A .

Se pide demostrar que la aplicación

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$A \longmapsto \det(A_1, \dots, A_{n-1}, A)$$

es lineal, determinar su núcleo y demostrar que es exhaustiva.

4.- Si e_1, e_2, e_3 es una base de un espacio vectorial E, se consideran los endomorfismos f y g de E determinados por las relaciones

$$f(e_1) = -e_2,$$
 $f(e_2) = -e_1,$ $f(e_3) = e_1 + e_2 + e_3$
 $g(e_1) = e_1 + e_2 + e_3,$ $g(e_2) = -e_3,$ $g(e_3) = -e_1.$

Se pide determinar las matrices de f y g y demostrar que

$$(f \circ g)^2 = g^2$$
 y $(f \circ g)^4 = Id$.