

Aggregate Demand I: Building the IS-LM Model

Presentation Slides

Macroeconomics

N. Gregory Mankiw

IN THIS CHAPTER, YOU WILL LEARN:

- the IS curve and its relation to:
 - the Keynesian cross
 - the loanable funds model
- the LM curve and its relation to:
 - the theory of liquidity preference
- how the IS-LM model determines income and the interest rate in the short run when P is fixed

Context

ADAS

 Chapter 10 introduced the model of aggregate demand and aggregate supply.

Long run:

- prices flexible
- output determined by factors of <u>production &</u> technology
- unemployment equals its natural rate

Short run:

- prices fixed
- output determined by aggregate demand
- unemployment <u>negatively related to output</u>

Context

- This chapter develops the IS-LM model, the basis of the aggregate demand curve.
- We focus on the short run and assume the price level is fixed (so the SRAS curve is horizontal).
- Chapters 11 and 12 focus on the closedeconomy case.
- Chapter 13 presents the open-economy case.

11.1 The Goods Market and the IS Curve

The Keynesian cross

- A simple closed-economy model in which income is determined by expenditure. (due to J. M. Keynes)
- Notation:

```
I = planned investment
PE = C + I + G = planned expenditure
Y = real GDP = actual expenditure
```

Difference between actual & planned expenditure
 unplanned inventory investment

Elements of the Keynesian cross

consumption function:

$$C = C(Y - T)$$

govt policy variables: G = G, T = T

$$G = \overline{G}, \quad T = \overline{T}$$

for now, planned

investment is exogenous:

$$oldsymbol{I}=oldsymbol{ar{I}}$$

planned expenditure:
$$PE = C(Y - \overline{I}) + \overline{I} + \overline{G}$$

equilibrium condition:

actual expenditure = planned expenditure

$$Y = PE$$

Graphing planned expenditure

Graphing the equilibrium condition

The equilibrium value of income

Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

An increase in government purchases

Solving for ΔY

$$\mathbf{Y} = \mathbf{C} + \mathbf{I} + \mathbf{G}$$

$$\Delta \mathbf{Y} = \Delta \mathbf{C} + \Delta \mathbf{I} + \Delta \mathbf{G}$$

$$= \Delta \mathbf{C} + \Delta \mathbf{G}$$

$$= \mathsf{MPC} \times \Delta \mathbf{Y} + \Delta \mathbf{G}$$

equilibrium condition

in changes

because *I* exogenous

because $\Delta \mathbf{C} = MPC \Delta \mathbf{Y}$

Collect terms with ΔY on the left side of the equals sign:

$$(1 - MPC) \times \Delta Y = \Delta G$$

Solve for ΔY :

$$\Delta \mathbf{Y} = \left(\frac{1}{1 - \mathsf{MPC}}\right) \times \Delta \mathbf{G}$$

The government purchases multiplier

Definition: the increase in income resulting from a \$1 increase in *G*.

In this model, the govt purchases multiplier equals

$$\frac{\Delta \mathbf{Y}}{\Delta \mathbf{G}} = \frac{1}{1 - \mathsf{MPC}}$$

Example: If MPC = 0.8, then

$$\frac{\Delta \mathbf{Y}}{\Delta \mathbf{G}} = \frac{1}{1 - 0.8} = 5$$

An increase in *G* causes income to increase <u>5 times</u> as much!

Why the multiplier is greater than 1

- Initially, the increase in G causes an equal increase in \mathbf{Y} : $\wedge \mathbf{Y} = \wedge \mathbf{G}$.
- But $\uparrow Y \rightarrow \uparrow C$

 - → further 1 **C**
 - → further † **Y**
- So the final impact on income is much bigger than the initial ΔG .

An increase in taxes

Solving for ΔY due to ΔT

$$\Delta \mathbf{Y} = \Delta \mathbf{C} + \Delta \mathbf{I} + \Delta \mathbf{G}$$
 eq'm condition in changes
$$= \Delta \mathbf{C}$$
 I and \mathbf{G} exogenous
$$= \mathsf{MPC} \times (\Delta \mathbf{Y} - \Delta \mathbf{T})$$

Solving for ΔY : $(1 - MPC) \times \Delta Y = -MPC \times \Delta T$

Final result:

$$\Delta Y = \left(\frac{-\text{MPC}}{1-\text{MPC}}\right) \times \Delta T$$

The tax multiplier

def: the change in income resulting from a \$1 increase in *T*:

$$\frac{\Delta \mathbf{Y}}{\Delta \mathbf{T}} = \frac{-\mathsf{MPC}}{1 - \mathsf{MPC}}$$

If MPC = 0.8, then the tax multiplier equals

$$\frac{\Delta Y}{\Lambda T} = \frac{-0.8}{1 - 0.8} = \frac{-0.8}{0.2} = -4$$

The tax multiplier

...is *negative:*

A tax increase reduces **C**, which reduces income.

...is greater than one (in absolute value):

A change in taxes has a multiplier effect on income.

...is smaller than the govt spending multiplier: Consumers save the fraction (1 – MPC) of a tax cut, so the initial boost in spending from a tax cut is smaller than from an equal increase in **G**.

Exercise

- 1. Use the Keynesian cross model to predict the impact on equilibrium GDP of the following. In each case, state the direction of the change and give a formula for the size of the impact.
- a. An increase in government purchases
- b. An increase in taxes
- c. Equal-sized increases in both government purchases and taxes

Exercise

2. In the Keynesian cross model, assume that the consumption function is given by

$$C = 120 + 0.8 (Y - T).$$

Planned investment is 200; government purchases and taxes are both 400.

- a. Graph planned expenditure as a function of income.
- **b.** What is the equilibrium level of income?

- c. If government purchases increase to 420, what is the new equilibrium income? What is the multiplier for government purchases?
- d. What level of government purchases is needed to achieve an income of 2,400? (Taxes remain at 400.)
- e. What level of taxes is needed to achieve an income of 2,400? (Government purchases remain at 400.)

The IS curve

def: a graph of all combinations of *r* and *Y* that result in goods market equilibrium

i.e. actual expenditure (output) = planned expenditure

The equation for the IS curve is:

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$

Deriving the IS curve

Why the IS curve is negatively sloped

- A fall in the interest rate motivates firms to increase investment spending, which drives up total planned spending (*PE*).
- To restore equilibrium in the goods market, output (a.k.a. actual expenditure, **Y**) must increase.

The IS curve and the loanable funds model

Fiscal Policy and the IS curve

- We can use the IS-LM model to see how fiscal policy (G and T) affects aggregate demand and output.
- Let's start by using the Keynesian cross to see how fiscal policy shifts the IS curve...

Shifting the *IS* curve: $\triangle G$

At any value of r, $\uparrow G \rightarrow \uparrow PE \rightarrow \uparrow Y$

...so the *IS* curve shifts to the right.

The horizontal distance of the IS shift equals

$$\Delta \mathbf{Y} = \frac{1}{1 - \mathsf{MPC}} \Delta \mathbf{G}$$

Now you TRY Shifting the IS curve: $\triangle T$

- Use the diagram of the Keynesian cross to show how an increase in taxes shifts the IS curve.
- If you can, determine the size of the shift.

ANSWERS

Shifting the IS curve: $\triangle T$

At any value of r, $\uparrow T \rightarrow \downarrow C \rightarrow \downarrow PE$

...so the *IS* curve shifts to the left.

The horizontal distance of the IS shift equals

$$\Delta \mathbf{Y} = \frac{-\mathsf{MPC}}{1-\mathsf{MPC}} \Delta \mathbf{7}$$

11.2 The Money Market and the LM Curve

The theory of liquidity preference

- Due to John Maynard Keynes.
- A simple theory in which the interest rate is determined by money supply and money demand.

Money supply

The supply of real money balances is fixed:

$$(M/P)^s = \overline{M}/\overline{P}$$

Money demand

Demand for real money balances:

$$(M/P)^d = L(r)$$

Equilibrium

The interest rate adjusts to equate the supply and demand for money:

$$\overline{M}/\overline{P} = L(r)$$

How the Fed raises the interest rate

To increase *r*, Fed reduces *M*

CASE STUDY: Monetary Tightening & Interest Rates

- Late 1970s: $\pi > 10\%$
- Oct 1979: Fed Chairman Paul Volcker announces that monetary policy would aim to reduce inflation
- Aug 1979–April 1980:
 Fed reduces *M/P* 8.0%
- Jan 1983: π = 3.7%

How do you think this policy change would affect nominal interest rates?

Monetary Tightening & Interest Rates, cont.

The effects of a monetary tightening on nominal interest rates

	short run	long run
model	liquidity preference (Keynesian)	Quantity theory, Fisher effect (Classical)
prices	sticky	flexible
prediction	$\Delta i > 0$	$\Delta i < 0$
actual outcome	8/1979: <i>i</i> = 10.4% 4/1980: <i>i</i> = 15.8%	8/1979: <i>i</i> = 10.4% 1/1983: <i>i</i> = 8.2%

The LM curve

Now let's put **Y** back into the money demand function:

$$(M/P)^d = L(r,Y)$$

The *LM* curve is a graph of all combinations of *r* and *Y* that equate the supply and demand for real money balances.

The equation for the *LM* curve is:

$$ar{M}/ar{P}=L(r,Y)$$

Deriving the LM curve

Mankiw, *Macroeconomics*, 10e, © 2019 Worth Publishers

Why the LM curve is upward sloping

- An increase in income raises money demand.
- Since the supply of real balances is fixed, there is now excess demand in the money market at the initial interest rate.
- The interest rate must rise to restore equilibrium in the money market.

How $\triangle M$ shifts the LM curve

Now you TRY Shifting the *LM* curve

- Suppose a wave of credit card fraud causes consumers to use cash more frequently in transactions.
- Use the liquidity preference model to show how these events shift the LM curve.

ANSWERS Shifting the *LM* curve

11.3 The Short-Run Equilibrium

The short-run equilibrium

The short-run equilibrium is the combination of r and Y that simultaneously satisfies the equilibrium conditions in the goods & money markets:

$$\boldsymbol{Y} = \boldsymbol{C}(\boldsymbol{Y} - \overline{\boldsymbol{T}}) + \boldsymbol{I}(\boldsymbol{r}) + \overline{\boldsymbol{G}}$$

$$ar{M}/ar{P}=L(r,Y)$$

Equilibrium interest rate

Preview of Chapter 12

In Chapter 12, we will

- use the IS-LM model to analyze the impact of policies and shocks.
- learn how the aggregate demand curve comes from IS-LM.
- use the IS-LM and AD-AS models together to analyze the short-run and long-run effects of shocks.
- use our models to learn about the Great Depression.

CHAPTER SUMMARY

1. Keynesian cross

- basic model of income determination
- takes fiscal policy & investment as exogenous
- fiscal policy has a multiplier effect on income

2. IS curve

- comes from Keynesian cross when planned investment depends negatively on interest rate
- shows all combinations of r and Y
 that equate planned expenditure with
 actual expenditure on goods & services

CHAPTER SUMMARY

3. Theory of liquidity preference

- basic model of interest rate determination
- takes money supply & price level as exogenous
- an increase in the money supply lowers the interest rate

4. LM curve

- comes from liquidity preference theory when money demand depends positively on income
- shows all combinations of r and Y that equate demand for real money balances with supply

CHAPTER SUMMARY

5. IS-LM model

 Intersection of IS and LM curves shows the unique point (Y, r) that satisfies equilibrium in both the goods and money markets.