Scale Invariance and Itakura–Saito Loss: A Field-Theoretic Interpretation, a Unified Bound and a Worked Example

Olivier Croissant (2025)

Contents

1	Introduction	1
2	From Loss to Field Theory	2
3	Linearized Regime and Mass Term	2
4	Propagator and Conformal Limit	2
5	Implications for Optimization	3
6	Spectral Conditioning and Robustness	3
7	Holographic Analogy	3
8	Generalized Speed Limit in Networks	3
9	Setup: NTK Dynamics with IS Loss	4
10	A Discrete Light-Cone for Prediction Influence	5
11	Spectral Stability, Convergence Rate, and Hessian Conditioning	6
12	Exponential Tails beyond Strict Locality	6
13	Putting It Together	6
14	Concrete 1D Example (Tri-diagonal Kernel)	7
15	Conclusion of the Example	7
16	Conclusion	7

1 Introduction

This section summarizes and reformulates the results of Appendix D and E of "Risk-Averse Reinforcement Learning with Itakura–Saito Loss" by Udovichenko et al. (2025). It provides a selfcontained account of the geometric, field-theoretic, and statistical interpretations of the Itakura–Saito (IS) loss, highlighting how scale and conformal invariance enhance robustness and optimization in machine learning.

2 From Loss to Field Theory

The IS loss can be recast as an energy functional. Let $\varphi(x)$ be a field representing predictions, and y(x) the target. We define the action

$$S[\varphi] = \int dx \left[\lambda \left(\frac{d\varphi}{dx} \right)^2 + \frac{y(x)}{\varphi(x)} - \log \left(\frac{y(x)}{\varphi(x)} \right) - 1 \right], \tag{1}$$

where λ is a regularization parameter. This variational formulation highlights that minimizing IS loss corresponds to minimizing an energy functional with both local and global consistency terms.

3 Linearized Regime and Mass Term

Consider expansion around a constant target $y(x) = y_0$. Let $\varphi(x) = y_0 + \varepsilon(x)$ with $\varepsilon \ll y_0$. The IS potential expands as

$$V_{\rm IS}(y_0,\varphi) \approx \frac{1}{2} \left(\frac{\varepsilon}{y_0}\right)^2.$$
 (2)

The linearized action reads

$$S[\varepsilon] \approx \int dx \left[\lambda \left(\frac{d\varepsilon}{dx} \right)^2 + \frac{1}{2y_0^2} \varepsilon(x)^2 \right].$$
 (3)

This is equivalent to a Gaussian field theory with mass

$$m^2 = \frac{1}{2y_0^2}. (4)$$

4 Propagator and Conformal Limit

The propagator G(x) satisfies

$$\left(-\lambda \frac{d^2}{dx^2} + \frac{1}{2y_0^2}\right) G(x) = \delta(x). \tag{5}$$

The solution in 1D is

$$G(x) = \frac{y_0}{\sqrt{2\lambda}} \exp\left(-\frac{|x|}{\sqrt{2\lambda}y_0}\right). \tag{6}$$

In the conformal limit $y_0 \to \infty$ (or $\lambda \to 0$), this reduces to

$$G(x) \sim \frac{1}{|x|},\tag{7}$$

showing absence of intrinsic scale, power-law correlations, and emergent conformal symmetry.

5 Implications for Optimization

The IS loss has favorable conditioning compared to MSE:

$$L_{\text{MSE}}(\theta) = \frac{1}{2} ||f(\theta) - y||^2, \tag{8}$$

$$L_{\rm IS}(\theta) = \sum_{i} \left(\frac{y_i}{f_i(\theta)} - \log \frac{y_i}{f_i(\theta)} - 1 \right). \tag{9}$$

Locally, if $f = y + \varepsilon$,

$$L_{\rm IS}(f) \approx \frac{1}{2y^2} \varepsilon^2,$$
 (10)

which is equivalent to a rescaled MSE, with weighting $\propto 1/y^2$. Thus:

- Large $y \Rightarrow$ weaker penalty,
- Small $y \Rightarrow$ stronger penalty.

This implicit normalization acts like natural gradient descent, improving stability.

6 Spectral Conditioning and Robustness

Theorem (informal). Let $\varphi \sim G$ be a Gaussian ensemble of models, and let $G_{\text{conf}} \subset G$ be the subset where the IS-induced action is conformally invariant. Define $\lambda(\varphi)$ as a spectral measure of the Hessian. Then

$$\mathbb{E}_{\varphi \in G_{\text{conf}}}[\text{Var}(\lambda(\varphi))] < \mathbb{E}_{\varphi \in G}[\text{Var}(\lambda(\varphi))]. \tag{11}$$

Hence conformal invariance reduces spectral variance, flattening the Hessian spectrum, and leading to better-conditioned optimization.

7 Holographic Analogy

In the limit $y_0 \to \infty$, the IS-induced action reduces to

$$S[\varepsilon] = \int dx \,\lambda \left(\frac{d\varepsilon}{dx}\right)^2,\tag{12}$$

a massless scalar field theory (a 1D CFT). This exhibits long-range correlations $G(x) \sim 1/|x|$. The analogy with AdS/CFT suggests that the IS-trained boundary predictions enforce global consistency in the latent "bulk" representation space, contributing to robustness.

8 Generalized Speed Limit in Networks

Consider a network (graph, lattice, or computational circuit) represented as a set of nodes V and edges E, with a metric distance d(x,y) between nodes and local interaction rules. Each node $x \in V$ has a state $\varphi_x(t)$ evolving in time t according to local update dynamics. Let \mathcal{O}_x denote an observable localized at node x.

We are interested in the maximal speed at which influence, information, or correlations can propagate across the network.

Theorem 1 (Unified Network Propagation Bound). Suppose the network satisfies:

- (i) **Locality:** updates of φ_x depend only on nodes within a bounded neighborhood of x;
- (ii) Finite interaction strength: each local update is Lipschitz-bounded with constant g (energy, bandwidth, or Lipschitz factor);
- (iii) Well-defined metric: the graph admits a distance d(x,y).

Then there exists a finite velocity v > 0, called the network propagation speed, such that for any two observables $\mathcal{O}_x(t)$, $\mathcal{O}_v(0)$ localized at nodes $x, y \in V$, one has

$$\left| \langle \mathcal{O}_x(t), \mathcal{O}_y(0) \rangle \right| \le C \exp\left(-\frac{d(x,y) - vt}{\xi} \right),$$
 (13)

where C, ξ are constants depending on the system.

Interpretations

- In quantum spin systems, this reduces to the Lieb–Robinson bound, with v the Lieb–Robinson velocity.
- In **communication networks**, v corresponds to maximum edge capacity and d(x, y) to path length (network diameter).
- In distributed computing / consensus, v^{-1} is proportional to the spectral gap of the Laplacian (algebraic connectivity).
- In **neural or Boolean circuits**, v corresponds to layers per unit time, so d(x,y)/v gives the minimal circuit depth for influence.
- In machine learning with IS loss, conformal invariance enforces scale-free conditioning, but the Hessian spectrum still constrains v, preventing arbitrarily fast convergence.

Consequences

This theorem implies:

- 1. No network, physical or computational, can propagate information instantaneously; there is always a finite "light-cone" of influence.
- 2. Conformal/scale invariance improves robustness by smoothing propagation and flattening spectra, but does not remove the fundamental bound v.
- 3. Robust generalization in learning systems may thus be interpreted as emerging from a *generalized causality constraint*.

9 Setup: NTK Dynamics with IS Loss

Let $\{(x_i, y_i)\}_{i=1}^n$ be training samples and let $f_{\theta}(x) \in \mathbb{R}$ be a scalar model output. Denote the vector of predictions $f_{\theta} := (f_{\theta}(x_1), \dots, f_{\theta}(x_n))^{\top} \in \mathbb{R}^n$ and targets $y \in \mathbb{R}^n$.

For a single datum (y_i, f_i) , the Itakura–Saito loss is

$$\ell_{\rm IS}(y_i, f_i) = \frac{y_i}{f_i} - \log\left(\frac{y_i}{f_i}\right) - 1.$$

One computes

$$\frac{\partial \ell_{\rm IS}}{\partial f_i} = \frac{f_i - y_i}{f_i^2}, \qquad \frac{\partial^2 \ell_{\rm IS}}{\partial f_i^2} \Big|_{f_i = y_i} = \frac{1}{y_i^2}.$$

Near $f \approx y$, the loss is locally quadratic with diagonal curvature $W := \text{diag}(1/y_1^2, \dots, 1/y_n^2)$ and gradient $\nabla_f L \approx W(f-y)$.

Assume training by (full-batch) gradient descent with step size $\eta > 0$ and lazy training/NTK linearization:

$$f_{t+1} = f_t - \eta K \nabla_f L(f_t) \approx f_t - \eta K W (f_t - y),$$

where $K \in \mathbb{R}^{n \times n}$ is the (empirical) Neural Tangent Kernel (NTK) at initialization (held fixed in the linearization). Define the *prediction error* $e_t := f_t - y$. Then the error dynamics is linear:

$$e_{t+1} = \left(I - \eta A\right) e_t, \qquad A := KW. \tag{14}$$

Locality assumption. Let the training points be nodes of a graph (V, E) with graph distance d(i, j). We assume K is range-R local:

$$K_{ij} = 0$$
 whenever $d(i,j) > R$. (15)

This covers common cases: convolutional architectures on grids (finite receptive field), graph neural networks with R-hop message passing, and localized kernels. Note that W is diagonal and hence preserves sparsity patterns when multiplied.

10 A Discrete Light-Cone for Prediction Influence

We study how a perturbation at sample j at step 0 can influence sample i after t steps. Let $J_t := \partial f_t/\partial f_0$ be the Jacobian of the prediction map under (14). With $e_t = (I - \eta A)^t e_0$ and $f_t = y + e_t$, we have $J_t = (I - \eta A)^t$.

Lemma 1 (Bandedness under locality). If K satisfies (15) with range R and W is diagonal, then for all integers $t \ge 0$

$$A^{t} = (KW)^{t}$$
 is range-tR local: $(A^{t})_{ij} = 0$ whenever $d(i, j) > tR$.

Proof. By (15), A = KW has the same sparsity as K (since W is diagonal). Products of range-R local matrices convolve ranges additively: if B and C are range- R_B and range- R_C local, then $(BC)_{ij} = \sum_k B_{ik}C_{kj}$ can be nonzero only if there exists k with $d(i,k) \leq R_B$ and $d(k,j) \leq R_C$, hence $d(i,j) \leq R_B + R_C$ by triangle inequality. Iterating gives that A^t is range-tR local.

Theorem 2 (Discrete light-cone under IS training). Under (15), for any $t \ge 0$,

$$(J_t)_{ij} = ((I - \eta A)^t)_{ij} = 0$$
 whenever $d(i, j) > tR$.

Equivalently, a unit perturbation at node j at step 0 cannot affect $f_t(i)$ if d(i,j) > tR.

Proof. Expand $(I - \eta A)^t = \sum_{k=0}^t {t \choose k} (-\eta)^k A^k$. By Lemma 1, A^k is range-kR local. If d(i,j) > tR, then for all $k \le t$ we have d(i,j) > kR, so $(A^k)_{ij} = 0$, hence the sum has zero (i,j) entry.

Theorem 2 gives an *exact* light-cone with discrete speed v = R nodes per step. Thus, the maximum propagation speed is an architectural/locality property; it is *independent* of curvature or step size (subject to stability below).

11 Spectral Stability, Convergence Rate, and Hessian Conditioning

While v is set by locality (R), the rate at which errors decay inside the cone depends on the spectrum of A = KW.

Lemma 2 (Linear stability). If $\rho(A)$ denotes the spectral radius of A, then gradient descent (14) is linearly stable if

$$0 < \eta < \frac{2}{\lambda_{\max}(A)}.$$

Under this condition, $||e_t|| \leq \kappa (1 - \eta \lambda_{\min}^+)^t ||e_0||$ in any A-compatible norm, where λ_{\min}^+ is the smallest positive eigenvalue of A and κ depends on the eigenbasis conditioning.

Role of IS curvature. Near $f \approx y$, the Hessian w.r.t. predictions is $H_f \approx W = \text{diag}(1/y_i^2)$. Thus A = KW rescales rows/columns of K by $1/y_i^2$, acting as an *implicit preconditioner*. If the target magnitudes $\{|y_i|\}$ vary widely, W flattens the effective spectrum of A relative to MSE (W = I), reducing the condition number and improving convergence rates—without changing the locality range R (and hence without increasing v).

12 Exponential Tails beyond Strict Locality

In many architectures, K is not strictly banded but has fast off-diagonal decay:

$$|K_{ij}| \leq C_0 e^{-d(i,j)/\xi_0}.$$

Since W is diagonal and bounded (assume $0 < w_{\min} \le W_{ii} \le w_{\max} < \infty$), standard submultiplicative estimates yield constants $C, \xi > 0$ such that

$$\left|\left(A^t\right)_{ij}\right| \ \leq \ C \, e^{-\frac{d(i,j)-vt}{\xi}}, \quad v:=\frac{R}{\Delta t} \text{ for an effective step-time } \Delta t=1,$$

i.e. a Lieb–Robinson type bound: exponential suppression outside a linear light-cone. This recovers the qualitative form used in quantum spin systems.

13 Putting It Together

- Speed bound (causality). The maximum propagation speed v is set by architectural locality (receptive field/message-passing radius R) and is *independent* of the Hessian spectrum. IS loss does not change R.
- Conditioning & robustness. IS loss induces $W = \text{diag}(1/y^2)$, normalizing errors by target scale. This improves spectral conditioning of A = KW and hence accelerates convergence inside the light-cone; it also reduces sensitivity to heteroscedastic targets.
- Conformal invariance. Because IS depends only on the ratio y/f, it is scale-invariant: $(y, f) \mapsto (ay, af)$ leaves the loss unchanged. In the continuum/regularized limit, this connects to the conformal picture (Appendix D/E): conditioning improves via spectrum flattening, yet the causal speed limit v persists.

14 Concrete 1D Example (Tri-diagonal Kernel)

Let the samples lie on a 1D chain with distance d(i, j) = |i - j|. Suppose

$$K = \begin{bmatrix} \ddots & \ddots & & & & \\ \ddots & \alpha & \beta & & & \\ & \beta & \alpha & \beta & & \\ & & \beta & \alpha & \ddots & \\ & & & \ddots & \ddots & \\ & & & \ddots & \ddots & \\ \end{bmatrix}, \quad \beta \neq 0,$$

i.e. R=1 (nearest-neighbor). Then by Lemma 1, $(KW)^t$ is (2t+1)-banded, so

$$(J_t)_{ij} = 0$$
 if $|i - j| > t$.

Thus a perturbation at index j can influence at most indices i with $|i-j| \le t$ after t steps: v = 1 node/step. If $|y_i|$ varies, IS sets $W_{ii} = 1/y_i^2$, which rescales influence magnitudes but cannot create entries outside the (2t+1)-band. Stability requires $\eta < 2/\lambda_{\max}(KW)$; the IS normalization typically reduces λ_{\max} relative to MSE, widening the stable step-size range.

15 Conclusion of the Example

Under NTK linearization and locality, neural prediction dynamics trained with IS loss obey a strict finite propagation speed:

Speed: v = R (nodes/step) (architectural, not spectral).

IS/conformal invariance improves *conditioning* (Hessian spectrum), enhancing robustness and convergence *within* the cone, but cannot exceed the causal speed set by locality.

16 Conclusion

The IS loss:

- Encodes scale invariance by penalizing relative errors,
- Exhibits **conformal invariance** in the continuum/high-target limit,
- Statistically improves **Hessian conditioning**,
- Provides robust optimization and generalization.

This field-theoretic and spectral interpretation gives a principled explanation of why IS-based training is more stable and robust than standard MSE.