13 Moments

In the following $(\Omega, \mathcal{A}, \mathbf{P})$ will denote our canonical probability space.

Definition 13.1. Let $X, Y : \Omega \to \mathbb{R}$ be random variables.

(i) If $X \in \mathcal{L}^1(\mathbf{P})$, then X is called **integrable** and we call

$$\mathbf{E}[X] := \int X d\mathbf{P}$$

the **expectation** or **mean** of X. If $\mathbf{E}[X] = 0$, then X is called **centered**. More generally, we also write $\mathbf{E}[X] = \int X d\mathbf{P}$ if only X^- or X^+ is integrable.

(ii) If $n \in \mathbb{N}$ and $X \in \mathcal{L}^n(\mathbf{P})$, then the quantities

$$m_k := \mathbf{E}[X^k], \text{ for any } k = 1, \dots, n,$$

are called the kth moments of X.

(iii) If $X \in \mathcal{L}^2(\mathbf{P})$, then X is called **square integrable** and

$$\mathbf{Var}[X] := \mathbf{E}[X^2] - \mathbf{E}[X]^2$$

is the **variance** of X. The number

$$\sigma := \sqrt{\mathbf{Var}[X]}$$

is called the **standard deviation** of X.

(iv) If $X, Y \in \mathcal{L}^2(\mathbf{P})$, then we define the **covariance** of X and Y by

$$Cov[X, Y] := \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])].$$

X and Y are called **uncorrelated** if $\mathbf{Cov}[X,Y]=0$ and **correlated** otherwise. \square Remark 13.2.

- (i) The definition in (ii) is sensible since $\mathcal{L}^n(\mathbf{P}) \subset \mathcal{L}^k(\mathbf{P})$ for all $k = 1, \dots, n$.
- (ii) The standard deviation of X makes sense in definition (iii) since

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] \ge 0.$$

(iii) If $X, Y \in \mathcal{L}^2(\mathbf{P})$, then $XY \in \mathcal{L}^1(\mathbf{P})$ since $|XY| \leq X^2 + Y^2$. Hence the definition in (iv) makes sense and we have

$$\mathbf{Cov}[X, Y] = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y].$$

In particular, Var[X] = Cov[X, X].

Now, we collect the most important rules of expectations. All of these properties are direct consequences of the corresponding properties of the integral.

Property 13.3 (Rules for expectations). Let $X, Y, Z_n : \Omega \to \mathbb{R}$, $n \in \mathbb{N}$, be integrable random variables.

(i) [Linearity] Let $a, b \in \mathbb{R}$. Then aX + bY is integrable and

$$\mathbf{E}[aX + bY] = a\mathbf{E}[X] + b\mathbf{E}[Y].$$

(ii) If $X \geq 0$ a.s., then

$$\mathbf{E}[X] = 0 \quad \Leftrightarrow \quad X = 0 \text{ a.s.}$$

- (iii) [Monotonicity] If $X \leq Y$ a.s., then $\mathbf{E}[X] \leq \mathbf{E}[Y]$ with equality iff X = Y a.s.
- (iv) [Triangle inequality] $|\mathbf{E}[X]| \leq \mathbf{E}[|X|]$.
- (v) If $Z_n \geq 0$ a.s. for all $n \in \mathbb{N}$, then

$$\mathbf{E}\left[\sum_{n=1}^{+\infty} Z_n\right] = \sum_{n=1}^{+\infty} \mathbf{E}[Z_n].$$

(vi) If $Z_n \uparrow Z$, then

$$\mathbf{E}[Z] = \lim_{n \to +\infty} \mathbf{E}[Z_n].$$

Proof. Exercise.

Property 13.4. Let $X : \Omega \to \mathbb{R}$ be a random variable and let $h : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be measurable. Then $h \circ X \in \mathcal{L}^1(\mathbf{P})$ iff $h \in \mathcal{L}^1(\mathbf{P}_X)$, and in this case:

$$\mathbf{E}[h \circ X] = \int h(x) \mathbf{P}_X(dx).$$

Proof. Exercise. \Box

Remark 13.5. Let $X,Y:\Omega\to\mathbb{R}$ be indentically distributed random variables, by virtude of the property above:

(i) If $X, Y \in \mathcal{L}^1(\mathbf{P})$, then $\mathbf{E}[X] = \mathbf{E}[Y]$.

(ii) If
$$X, Y \in \mathcal{L}^2(\mathbf{P})$$
, then $\mathbf{Var}[X] = \mathbf{Var}[Y]$.

Again probability theory comes into play when independence enters the stage; that is, when we exit the realm of linear integration theory.

Theorem 13.6. Let $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ be independent random variables. If one of the following conditions holds:

(i)
$$X_1, ..., X_n \ge 0$$

(ii)
$$X_1, \ldots, X_n \in \mathcal{L}^1(\mathbf{P})$$

then

$$\mathbf{E}[X_1 \cdots X_n] = \mathbf{E}[X_1] \cdots \mathbf{E}[X_n].$$

Lemma 13.7. Let $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ be independent random variables. Then

$$\mathbf{P}_{(X_1,\ldots,X_n)}=\mathbf{P}_{X_1}\otimes\cdots\otimes\mathbf{P}_{X_n}.$$

Proof. Exercise. \Box

Lemma 13.8. Let $X, Y : \Omega \to \mathbb{R}$ be independent random variables and let $h : \mathbb{R}^2 \to \mathbb{R}$ be measurable. If one of the following conditions holds:

- (i) $h \ge 0$
- (ii) $h(X,Y) \in \mathcal{L}^1(\mathbf{P})$

then

$$\mathbf{E}[h(X,Y)] = \int h \, \mathbf{P}_X \otimes \mathbf{P}_Y.$$

In particular, if h(x,y)=f(x)g(y) where $f,g:\mathbb{R}\to\mathbb{R}$ are measurable functions and one of the following conditions holds:

- (i) $f, g \ge 0$
- (ii) $f(X), g(Y) \in \mathcal{L}^1(\mathbf{P})$

then

$$\mathbf{E}[f(X)g(Y)] = \mathbf{E}[f(X)]\mathbf{E}[g(Y)].$$

Proof. Exercise.

(Proof of theorem 13.6.) Exercise.

In the following, an important identity that simplifies the calculation of the expected value of the sum of a random number of random quantities.

Theorem 13.9 (Wald's equation). Let $T, X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be independent random variables in $\mathcal{L}^1(\mathbf{P})$ with $\mathbf{P}[T \in \mathbb{N}_0] = 1$ and X_1, X_2, \ldots identically distributed. Define:

$$S_T := \sum_{i=1}^T X_i.$$

Then $S_T \in \mathcal{L}^1(\mathbf{P})$ and

$$\mathbf{E}[S_T] = \mathbf{E}[T]\mathbf{E}[X_1].$$

Proof. Exercise. \Box

Property 13.10 (Rules for variance and covariance). Let $X, Y, X_1, \ldots, X_n : \Omega \to \mathbb{R}$ be square integrable random variables and $\alpha \in \mathbb{R}$, and let $E = \{Z : \Omega \to \mathbb{R} ; Z \in \mathcal{L}^2(\mathbf{P})\}$. Then:

- (i) $Var[X] = 0 \Leftrightarrow X = E[X]$ a.s.
- (ii) The map $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \mathbf{E}[(X-x)^2]$, is minimal at $\mathbf{E}[X]$ with $f(\mathbf{E}[X]) = \mathbf{Var}[X]$.
- (iii) $\operatorname{Var}[\alpha X] = \alpha^2 \operatorname{Var}[X].$
- (iv) The map $\mathbf{Cov}: E \times E \to \mathbb{R}$ is a positive semidefinite symmetric bilinear form.
- (v) If $X_1 + \cdots + X_n$ are uncorrelated, then

$$\mathbf{Var}[X_1 + \dots + X_n] = \mathbf{Var}[X_1] + \dots + \mathbf{Var}[X_n].$$

(vi) [Cauchy-Schwarz inequality]

$$\mathbf{Cov}[X,Y]^2 \leq \mathbf{Var}[X]\mathbf{Var}[Y].$$

Equality holds iff there are $a,b,c\in\mathbb{R}$ with |a|+|b|+|c|>0 and aX+bY+c=0 a.s.

Proof. Exercise. \Box

Example 13.11. Let $X: \Omega \to \mathbb{R}$ be a random variable.

- (i) Let $p \in [0, 1]$ and let $X \sim \operatorname{Ber}_p$. Then $\mathbf{E}[X] = p$ and $\mathbf{Var}[X] = p(1 p)$.
- (ii) Let $n \in \mathbb{N}$ and $p \in [0,1]$, and let $X \sim B_{n,p}$. Then $\mathbf{E}[X] = np$ and $\mathbf{Var}[X] = np(1-p)$.
- (iii) Let $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, and let $X \sim \mathcal{N}_{\mu,\sigma^2}$. Then $\mathbf{E}[X] = \mu$ and $\mathbf{Var}[X] = \sigma^2$.
- (iv) Let $\theta > 0$ and let $X \sim \exp_{\theta}$. Then $\mathbf{E}[X] = \frac{1}{\theta}$ and $\mathbf{Var}[X] = \frac{1}{\theta^2}$.

In the following, an important identity that simplifies the calculation of the variance value of the sum of a random number of random quantities.

Theorem 13.12 (Blackwell-Girshick equation). Let $T, X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be independent random variables in $\mathcal{L}^2(\mathbf{P})$ with $\mathbf{P}[T \in \mathbb{N}_0] = 1$ and X_1, X_2, \ldots identically distributed. Define:

$$S_T := \sum_{i=1}^T X_i.$$

Then $S_T \in \mathcal{L}^2(\mathbf{P})$ and

$$\mathbf{Var}[S_T] = \mathbf{Var}[T]\mathbf{E}[X_1]^2 + \mathbf{E}[T]\mathbf{Var}[X_1].$$

Throughout these exercises $X, Y, T, X_1, X_2, \ldots : \Omega \to \mathbb{R}$ are random variables.

Exercise 13.1. Let $h : \mathbb{R} \to \mathbb{R}$ be measurable and let X and Y be identically distributed. Prove the following propositions.

- (i) h(X) is integrable iff h(Y) is integrable.
- (ii) In this case we have $\mathbf{E}[h(X)] = \mathbf{E}[h(Y)]$.

Exercise 13.2. Let X be integrable and with symmetric distribution. Prove the following propositions.

- (i) $\mathbf{E}[X] = 0$.
- (ii) If $h: \mathbb{R} \to \mathbb{R}$ is measurable and odd, then h(X) has symmetric distribution.
- (iii) If $X \sim \mathcal{N}_{0,1}$, then $\mathbf{E}[X^k] = 0$ for every odd $k \geq 1$.

Exercise 13.3. Prove that if $X \in \mathcal{L}^1(\mathbf{P})$ and has density f, then

$$\mathbf{E}[X] = \int x f(x) \lambda(dx).$$

Exercise 13.4. Assume that (X,Y) are uniformly distributed on a circle with radius a, then

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{1}{\pi a^2} & \text{if } x^2 + y^2 \le a^2, \\ 0 & \text{elsewhere.} \end{cases}$$

Find $\mathbf{E}[X]$.

Exercise 13.5. Suppose that X and Y are independent with probability densities:

$$f_X(x) = \begin{cases} \frac{8}{x^3} & \text{if } x > 2, \\ 0 & \text{elsewhere,} \end{cases}$$

and

$$f_Y(x) = \begin{cases} \frac{2}{y} & \text{if } 0 < y < 1, \\ 0 & \text{elsewhere,} \end{cases}$$

Find $\mathbf{E}[XY]$.

Exercise 13.6. Let $X_1, X_2, \ldots \geq 0$ be i.i.d. Prove the following propositions.

(i)
$$\limsup_{n\to+\infty}\frac{1}{n}X_n=\begin{cases} 0 \text{ a.s.} & \text{if } \mathbf{E}[X_1]<+\infty,\\ +\infty \text{ a.s.} & \text{if } \mathbf{E}[X_1]=+\infty. \end{cases}$$

(ii) For any $c \in]0,1[$:

$$\sum_{n=1}^{+\infty} e^{X_n} c^n \begin{cases} <+\infty \text{ a.s.} & \text{if } \mathbf{E}[X_1]<+\infty, \\ =+\infty \text{ a.s.} & \text{if } \mathbf{E}[X_1]=+\infty. \end{cases}$$

Exercise 13.7. Let $\Omega =]0,1[$, \mathcal{A} be the class of Borel sets and \mathbf{P} be the Lebesgue measure. If $X_n(\omega) = \sin(2\pi n\omega)$, n = 1, 2, ..., then prove that $X_1, X_2, ...$ are uncorrelated but not independent.

Exercise 13.8. Prove that if $P[X \in [0,1]] = 1$, then $Var[X] \le 1/4$.

Exercise 13.9. By investing in a particular stock, a person can make a profit in one year of \$4,000 with probability 0.3 or take a loss of \$1,000 with probability 0.7.

- (i) What is the person's expected gain?
- (ii) What is the variance?

Exercise 13.10. Suppose that X represents the number of errors per 100 lines of software code and has the following probability distribution:

- (i) Find the variance of X
- (ii) Find the mean and variance of 3X 2.

Exercise 13.11. Let a six-sided die. Take the number on the die (call it T) and roll that number of six-sided dice to get the numbers X_1, \ldots, X_T , and add up their values. What is the expected value of this sum?

Exercise 13.12. Let a particle in the x axis with probability 2/3 to move one meter to the right and 1/3 to move one meter to the left. Take a number on \mathbb{N}_0 and call it T; suppose that $T \sim \text{Poi}_3$. Then starting at the origin, the particle performs T movements along the axis, say X_1, \ldots, X_T . What is the expected final position of this particle?