100,000 ASTERDIDS DOWN THE BACK OF THE COUCH

I COIN I PLAY

WINT ATAKK KAC

ARTTETETAL TNTELLTGENEE

PREPARED BY MATT HOLMAN PAUL BLANKLEY RYAN JANSSEN

WITH MATT PAYNE.
MINOR PLANET CENTER

I COIN I PLAY

WITTH ATART THE

MISSING ASTEROIDS! CONNECTING ASTEROID TRACKLETS

Mandate from Congress:
Discover >90% of potentially hazardous asteroids with diameters >140 meters

Currently, we have 170m asteroid observations

MISSING ASTEROIDS! CONNECTING ASTEROID TRACKLETS

Asteroids 'tracklets' are found by matching 3+ detections in digital exposures

90% can be identified immediately. But there are **14 million** unmatched tracklets

Growing quickly as telescope aperture increases

A HARD PROBLEM...

- Observed from Earth, asteroid trajectories are highly nonlinear
- This, with the high density of asteroids makes naïve linking difficult
- Missing data (cannot tell asteroid pos'n/velocity in the radial direction)
- Sparse observations can be separated by weeks, months, or years
- Brute force is impractical with 14m observations (Current soln = $O(n^3)$!

Asteroid tracklets (from Earth's perspective)

PROPOSED SOLUTION

- When we apply a heliocentric transformation, the trajectories become clear!
- Similar to applying the kernel trick from 2d to 3d space
- Can then set a 'focal distance' by scanning radial distances/velocities

Asteroid tracklets (from the Sun's perspective)

CORE INTUITION WHY DOES HELIOCENTRIC LINKING WORK?

- Heliocentric transformation allows us to infer a nearconstant distance from the sun (we have a strong prior)
- Also helps us compare asteroid tracklets in a linear space, at a common time
- Enables clustering to identify observations as one object

OUR METHODOLOGY

- 1 DIVIDE SKY INTO 300 MONTHLY TIME SLICES, 800 SKY REGIONS
- 2. ASSERT THE (UNKNOWN)
 RADIAL DISTANCE FROM THE SUN

Dividing into sky regions allows for a more precise clustering

OUR METHODOLOGY

- 1 DIVIDE SKY INTO 300 MONTHLY TIME SLICES, 800 SKY REGIONS
- 2. ASSERT THE (UNKNOWN)
 RADIAL DISTANCE FROM THE SUN
- 3. ITERATE OVER RADIAL VELOCITIES, FIT FOR OTHER MOTION PARAMS
- 4. CLUSTER BASED ON RESULTING PARAMS: X/Y/Z POSITION, VELOCITY

4 of our 6 motion parameters are known, and 1 is relatively constant

Model is linear in the parameters (least squares fit)

OUR METHODOLOGY

TUNE CLUSTERING HYPERPARAMETERS OVER KNOWN TRAINING SET (THANKS TO MATT PAYNE, MINOR PLANET CENTER!)

TRAIN CLUSTER RADIUS/WEIGHTING

- 1 DIVIDE SKY INTO 300 MONTHLY TIME SLICES, 800 SKY REGIONS
- 2. ASSERT THE (UNKNOWN)
 RADIAL DISTANCE FROM THE SUN
- 3. ITERATE OVER RADIAL VELOCITIES, FIT FOR OTHER MOTION PARAMS
- 4 CLUSTER BASED ON RESULTING PARAMS: X/Y/Z POSITION, VELOCITY

We tune two hyper-parameters:

- 1) OPTIMAL **CLUSTER RADIUS**
- 2) **WEIGHTING** OF VELOCITY VS. POSITION

TUNING PERFORMANCE

OPTIMAL RADIUS: 0.0005-0.0010rad

Selected KD-tree clustering for speed (average case log(n))

Also had good results with agglomerative clustering

Total clusters detected vs. KD-tree cluster radius (training set)

Error rate vs. KD-tree cluster radius (training set)

CLUSTERING RESULTS

90% OF ASTEROIDS DETECTED WITH NEAR-ZERO ERROR!

Identified Asteroids (common colors = a single asteroid)

CONCLUSIONS

Conclusion: Strong tracklet linking with heliocentric transformation & KD-tree clustering

Also able to do so in just **O(n log n)** time, a scalable solution!!

Limitations: currently restricted to small (monthly) observation time window

Next Steps: Run the algorithm over all 14m tracklet observations!

Thanks To: The Minor Planet Center for training data, Scott and Brian for project support!

CIC

0

I COIN I PLAY

APPENDIX/SUPPORTING SLIDES

Training AUC

Agglomerative Clustering Dendogram (Truncated)

