Basic Exploratory Data Analysis on Lagos House Prices

• The dataset contains 5336 records of rental properties around 7 location in Lagos. The dataset was sourced from a Nigeria real estate company.

```
In [1]: # import the necessary libraries
import numpy as np
import pandas as pd

# for visuals
import seaborn as sns
import matplotlib.pyplot as plt

In [2]: # load and read the dataset file
'''inside the quotation mark, paste your file path of the dataset'''
lagos_data = pd.read_csv(r'C:\Users\user\OneDrive\Documents\ML Notebooks\Python_for_Da
```

Out[2]: location bed bath toilet price Property_Type Parking_Space Security Electricity Furn 0 700000.0 0 0 yaba 2 Mini flat 0 700000.0 Mini flat 0 1 yaba 2 0 0 1 650000.0 Mini flat 0 0 0 2 yaba 2 3 450000.0 Mini flat 0 0 0 yaba 1 1 Detached 0 3 0.000008 0 1 yaba 3 4 duplex 5331 ajah 2 600000.0 Mini flat 1 0 0 5332 ajah 700000.0 Mini flat 0 Semi detached 5333 4 1700000.0 1 0 0 ajah duplex 5334 500000.0 Mini flat 0 0 ajah Semi detached 5 1800000.0 0 1 1 5335 ajah duplex

5336 rows × 15 columns

In [3]: # check first 5 rows
lagos_data.head()

lagos_data

Out[3]:	lo	cation	bed	bath	toilet		price	Property_Type	Parking_Space	Security	Electricity	Furnishec
	0	yaba	1	1	2	700	0.000	Mini flat	0	0	0	(
	1	yaba	1	1	2	700	0.000	Mini flat	0	0	0	(
	2	yaba	1	1	2	650	0.000	Mini flat	0	0	0	(
	3	yaba	1	1	1	450	0.000	Mini flat	0	0	0	C
	4	yaba	3	3	4	800	0.000	Detached duplex	0	1	0	(
1												•
In [4]:		eck las s_data										
Out[4]:		locatio	on be	ed ba	th to	ilet	pr	ice Property_T	ype Parking_Sp	ace Secu	rity Electr	icity Furn
	5331	aja	ah	1	1	2	60000	0.0 Mini	flat	1	0	0
	5332	aja	ah	2	2	2	70000	0.0 Mini	flat	1	0	0
	5333	aja	ah	4	4	5	170000	0.0 Semi detac duլ	hed olex	1	0	0
	5334	aja	ah	1	1	2	50000	0.0 Mini	flat	0	0	0
	5335	aja	ah	4	4	5	180000	0.0 Semi detac duլ	hed olex	1	1	0

Data Inspection and Manipulation

```
bed
                             int64
                             int64
        bath
        toilet
                             int64
                           float64
        price
        Property_Type
                           object
        Parking Space
                             int64
        Security
                             int64
        Electricity
                             int64
        Furnished
                             int64
        Security_Doors
                             int64
        CCTV
                             int64
        Pool
                             int64
        Gym
                             int64
        BO
                             int64
        dtype: object
        # info of the data
In [8]:
        lagos_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5336 entries, 0 to 5335
        Data columns (total 15 columns):
             Column
                              Non-Null Count Dtype
             ____
                              -----
                                             ----
         0
             location
                              5336 non-null
                                              object
         1
             bed
                              5336 non-null
                                              int64
         2
             bath
                              5336 non-null
                                             int64
         3
             toilet
                              5336 non-null
                                              int64
                                              float64
         4
             price
                              5336 non-null
         5
             Property_Type
                              5336 non-null
                                              object
         6
             Parking Space
                              5336 non-null
                                              int64
         7
             Security
                              5336 non-null
                                              int64
         8
             Electricity
                              5336 non-null
                                              int64
         9
             Furnished
                              5336 non-null
                                              int64
         10 Security_Doors 5336 non-null
                                              int64
         11 CCTV
                              5336 non-null
                                              int64
         12
             Pool
                              5336 non-null
                                              int64
         13
             Gym
                              5336 non-null
                                              int64
         14 BQ
                              5336 non-null
                                              int64
        dtypes: float64(1), int64(12), object(2)
        memory usage: 625.4+ KB
In [9]:
        # checking for missing values
        lagos_data.isnull().sum() # isna().sum()
```

location

Out[7]:

object

```
location
Out[9]:
         bed
                             0
                             0
         bath
         toilet
                             0
         price
                             0
         Property_Type
                             0
                             0
         Parking Space
         Security
                             0
         Electricity
                             0
         Furnished
                             0
         Security_Doors
                             0
         CCTV
                             0
         Pool
                             0
                             0
         Gym
         BQ
                             0
         dtype: int64
```

```
In [10]: # visualize the missing values
  plt.figure(figsize = (10, 6))
  plt.title('Visualizing missing values')
  sns.heatmap(lagos_data.isnull(), cbar = True, cmap = 'magma_r')
  plt.show()
```



```
In [11]: # statistical descriptive analysis of the numerical features
    lagos_data.describe().astype('int')
```

Out[11]:		bed bath toilet price		price	Parking_Space	Security	Electricity	Furnished	Security_Doors	CC	
	count	5336	5336	5336	5336	5336	5336	5336	5336	5336	53
	mean	1	1	1	645566	0	0	0	0	0	
	std	0	0	0	469305	0	0	0	0	0	
	min	1	1	1	150	0	0	0	0	0	
	25%	1	1	1	350000	0	0	0	0	0	
	50%	1	1	1	500000	0	0	0	0	0	
	75 %	1	2	2	800000	0	0	0	0	0	
	max	5	5	5	2450000	1	1	1	1	1	

Exploratory Data Analysis: Relationship, Insights and Visualization

- Univariate Analysis
- Bivariate Analysis
- Multivariate Analysis

Univariate Analysis

• considering one feature of the dataset

```
lagos_data.columns
In [12]:
         Index(['location', 'bed', 'bath', 'toilet', 'price', 'Property_Type',
Out[12]:
                 'Parking_Space', 'Security', 'Electricity', 'Furnished',
                 'Security_Doors', 'CCTV', 'Pool', 'Gym', 'BQ'],
               dtype='object')
In [13]:
         # How many listing are there per location?
         count_listing = lagos_data['location'].value_counts().sort_values(ascending = False)
         count_listing
         location
Out[13]:
         yaba
                          1460
         ajah
                           900
                           728
         surulere
         gbagada
                           692
         ikorodu
                           578
         lekki phase 1
                           521
                           457
         ikeja
         Name: count, dtype: int64
In [14]: # visualize using bar chart
         ax = count_listing.plot(kind='bar', figsize=(10, 6), title='Location Listing',
                                  xlabel='Location', ylabel='Count of Listing', legend=False)
         # annotate
         ax.bar_label(ax.containers[0], label_type='edge')
```

```
# pad the spacing between the number and edge of the figure
ax.margins(y=0.1)

# rotate the x-labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')

# show the visual
plt.show()
```


Observation

Yaba has the highest count of listing with a total value of 1460 while Ikeja has the lowest count of listing with total value of 457

Bivariate Analysis

• Considering two features, their relationship and its visualization

```
In [15]: # summary statistics per location and price
lagos_data.groupby(['location'])['price'].describe().astype('int')
```

	location								
	ajah	900	693335	475287	120000	400000	500000	800000	2400000
	gbagada	692	742290	451011	150	400000	600000	900000	2300000
	ikeja	457	772700	506704	4000	450000	600000	850000	2300000
	ikorodu	578	155095	138067	16000	100000	100000	160000	1500000
le	kki phase 1	521	1211013	489304	3000	800000	1300000	1500000	2450000
	surulere	728	589189	335065	130000	350000	500000	700000	2300000
	yaba	1460	550986	331439	250	350000	450000	650000	2000000

min

std

25%

50%

75%

max

Out[15]:

count

mean

```
In [16]: #view distribution of prices by location
  plt.figure(figsize = (12, 8))
  sns.boxplot(x = 'location', y = 'price', data = lagos_data)
  plt.title('Distribution of prices by location')
  plt.show()
```



```
Out[17]:
         lekki phase 1
                            0
         gbagada
                            1
         ajah
                            3
         ikeja
                            5
                            5
         yaba
                            8
         ikorodu
         surulere
                          12
         Name: CCTV, dtype: int64
In [18]: # visualize using bar chart
         ax = cctv_loc.plot(kind='barh', figsize=(10, 6), title='Location with CCTV Camera',
                                  ylabel='Count of CCTV', xlabel='Location', legend=False)
         # annotate
         ax.bar_label(ax.containers[0], label_type='edge')
         # pad the spacing between the number and edge of the figure
         ax.margins(y=0.1)
         # show the visual
         plt.show()
```

location


```
Property_Type
Out[21]:
         Massionette house
                                    2200000.0
         Terraced duplex
                                     750000.0
         Penthouse flat
                                     700000.0
         Semi detached bungalow
                                     600000.0
         Blocks of flats
                                     500000.0
         Detached bungalow
                                     400000.0
         Semi detached duplex
                                      60000.0
         Flat / apartment
                                      45000.0
         Detached duplex
                                       4000.0
         Mini flat
                                       3000.0
         Self contain
                                        150.0
         Name: price, dtype: float64
```


Observation

Self contain is the cheapest house type with a price of 150 followed by Mini-flat with a price of 3000.

```
In [24]: # To know the location for the cheapest self contain
    self_loc = lagos_data.groupby(['location', 'Property_Type'])['price'].min().astype('ir
    self_loc
```

Out[24]:

Property_Type	Blocks of Detached pe flats bungalow		Detached Flat / duplex apartment		Massionette house	Mini flat	Penthouse flat	S ₍ conta	
location									
ajah	650000.0	600000.0	500000.0	180000.0	NaN	200000.0	700000.0	120000	
gbagada	650000.0	1000000.0	900000.0	45000.0	NaN	150000.0	800000.0	150	
ikeja	1000000.0	1500000.0	4000.0	300000.0	NaN	200000.0	NaN	180000	
ikorodu	NaN	450000.0	NaN	120000.0	NaN	16000.0	NaN	36000	
lekki phase 1	NaN	400000.0	250000.0	600000.0	2200000.0	3000.0	1600000.0	10000	
surulere	500000.0	1500000.0	1000000.0	350000.0	NaN	150000.0	850000.0	130000	
yaba	600000.0	NaN	800000.0	300000.0	NaN	35000.0	800000.0	25(

lekki phase 1 630938000.0 ajah 624002009.0 Name: price, dtype: float64

```
In [30]: # Create a list of labels for the pie chart
labels = list(top3_loc.index)

# Create a list of values for the pie chart
values = list(top3_loc.values)

# Create the pie chart
plt.pie(values, labels=labels, autopct='%1.1f%%')

# Add a title to the pie chart
plt.title('Top 3 locations by price')

# Display the pie chart
plt.show()
```

Top 3 locations by price


```
# Bottom 3 Location by Price
In [32]:
         bot3_loc = lagos_data.groupby('location')['price'].sum().sort_values(ascending = False
         bot3 loc
         location
Out[32]:
         surulere 428930009.0
                 353124000.0
         ikeja
         ikorodu
                    89645000.0
         Name: price, dtype: float64
In [33]: # Create a list of labels for the donut chart
         labels = list(bot3_loc.index)
         # Create a list of values for the donut chart
         values = list(bot3_loc.values)
         # Create the outer ring of the donut chart
         outer_colors = ['#FF5733', '#FFC300', '#DAF7A6']
         # Create the inner ring of the donut chart
         inner_colors = ['#FF5733', '#FFC300', '#DAF7A6']
         # Create the donut chart with two rings
         fig, ax = plt.subplots()
         # Set the width of the outer ring to 0.3
         wedgeprops = {'width': 0.3, 'edgecolor': 'white'}
```

```
# Create the outer ring
outer = ax.pie(values, labels=labels, colors=outer_colors, wedgeprops=wedgeprops, star

# Set the width of the inner ring to 0.5
wedgeprops = {'width': 0.5, 'edgecolor': 'white'}

# Create the inner ring
inner = ax.pie([sum(values)], colors=inner_colors, radius=0.7, wedgeprops=wedgeprops,

# Add a title to the donut chart
ax.set_title('Bottom 3 locations by price')

# Add a legend to the donut chart
ax.legend(outer[0], labels, loc='upper left')

# Display the donut chart
plt.show()
```

Bottom 3 locations by price


```
In [35]: # Locations with swimming pool facilities
         pool_loc = lagos_data.groupby('location')['Pool'].sum().sort_values(ascending = False)
         pool loc
         location
Out[35]:
         lekki phase 1 15
         gbagada
                          7
         ikeja
                           5
         surulere
                          3
         ajah
                           1
         yaba
                           1
         ikorodu
         Name: Pool, dtype: int64
        !pip install squarify
In [36]:
```

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: squarify in c:\users\user\appdata\roaming\python\pytho

n39\site-packages (0.4.3)

```
import squarify
# filter out zero values
pool_loc = pool_loc[pool_loc > 0]

# Define the treemap layout
fig, ax = plt.subplots(figsize=(8, 8))
```

```
squarify.plot(sizes=pool_loc.values, label=pool_loc.index, alpha=0.8)

# Add a title to the treemap chart
ax.set_title('Locations with swimming pool facilities')

# Remove axis ticks and labels
plt.axis('off')

# Display the treemap chart
plt.show()
```

Locations with swimming pool facilities

Multivariate Analysis

• it is considering two or more features, their relationship and its visualization

```
In [43]: # visualize property type and furnished apartment by price
plt.figure(figsize = (20, 10))
sns.boxplot(x = 'Property_Type', y = 'price', data = lagos_data, hue = 'Furnished')
plt.show()
```



```
In [44]: # visualize CCTV Camera and Furnished apartment by Price
plt.figure(figsize = (20, 10))
sns.barplot(x = 'CCTV', y = 'price', data = lagos_data, hue = 'Furnished')

# add Labels and title
plt.xlabel('CCTV')
plt.ylabel('Price')
plt.title('CCTV Camera and Furnished apartment by Price')

# add Legend
plt.legend(title = 'Furnished', loc = 'upper right')

# show the chart
plt.show()
```



```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5336 entries, 0 to 5335
        Data columns (total 15 columns):
        #
           Column
                         Non-Null Count Dtype
        ---
           -----
                         -----
        0
            location
                         5336 non-null object
        1
            bed
                         5336 non-null int64
        2
            bath
                         5336 non-null int64
        3
            toilet
                         5336 non-null
                                       int64
        4
            price
                         5336 non-null float64
        5
            Property_Type 5336 non-null object
        6
            Parking_Space 5336 non-null
                                       int64
        7
            Security
                         5336 non-null int64
           Electricity
                         5336 non-null int64
            Furnished 5336 non-null
        9
                                       int64
        10 Security_Doors 5336 non-null int64
        11 CCTV
                         5336 non-null int64
        12 Pool
                         5336 non-null int64
        13 Gym
                         5336 non-null
                                      int64
        14 BQ
                         5336 non-null int64
        dtypes: float64(1), int64(12), object(2)
        memory usage: 625.4+ KB
In [47]:
        # select numerical columns
        # calculate the correlation matrix
        corr_matrix = lagos_data[num_cols].corr()
        # visualize the correlation matrix
        plt.figure(figsize = (12, 10))
        sns.heatmap(corr_matrix, annot = True)
```

Out[47]: <AxesSubplot:>


```
In [48]: num_col1 = ['price', 'Security', 'Electricity']

# calculate the correlation matrix
corr_matrix = lagos_data[num_col1].corr()

# visualize the correlation matrix
plt.figure(figsize = (10, 6))
sns.heatmap(corr_matrix, annot = True)
```

Out[48]: <AxesSubplot:>


```
In [53]: # scatter plot
sns.scatterplot(x = 'bed', y = 'price', data = lagos_data)
plt.show()
```



```
In [52]: lagos_data['bed']
                   1
Out[52]:
          1
                   1
          2
                   1
          3
                   1
          4
                   3
          5331
                  1
                   2
          5332
          5333
                   4
          5334
                   1
          5335
                   4
```

Name: bed, Length: 5336, dtype: int64

```
In [54]: # regplot
sns.regplot(x = 'bed', y = 'price', data = lagos_data)
plt.show()
```


In []: