Gesture recognition

1. Introduction

MediaPipe is an open source data stream processing machine learning application development framework developed by Google. It is a graph-based data processing pipeline for building and using multiple forms of data sources, such as video, audio, sensor data, and any time series data.

MediaPipe is cross-platform and can run on embedded platforms (Raspberry Pi, etc.), mobile devices (iOS and Android), workstations and servers, and supports mobile GPU acceleration. MediaPipe provides cross-platform, customizable ML solutions for real-time and streaming media.

The core framework of MediaPipe is implemented in C++ and provides support for languages such as Java and Objective C. The main concepts of MediaPipe include Packet, Stream, Calculator, Graph and Subgraph.

Features of MediaPipe:

- End-to-end acceleration: Built-in fast ML inference and processing accelerates even on commodity hardware.
- Build once, deploy anywhere: Unified solution for Android, iOS, desktop/cloud, web and IoT.
- Ready-to-use solutions: cutting-edge ML solutions that showcase the full capabilities of the framework.
- Free and open source: frameworks and solutions under Apache2.0, fully extensible and customizable.

2. Gesture recognition

Gesture recognition designed with the right hand in mind can be accurately recognized when certain conditions are met. The recognized gestures are: [Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Ok, Rock, Thumb_up (like), Thumb_down (thumb down), Heart_single (one-handed heart) \(\begin{align*}
\), 14 categories in total.

2.1.Startup

Input command:

cd ~/yahboomcar_ws/src/yahboomcar_mediapipe/scripts
python3 11_GestureRecognition.py

2.2 Source code

Code path: ~/yahboomcar_ws/src/yahboomcar_mediapipe/scripts

```
#!/usr/bin/env python3
# encoding: utf-8
import math
import time
import cv2 as cv
import numpy as np
import mediapipe as mp
class handDetector:
    def __init__(self, mode=False, maxHands=2, detectorCon=0.5, trackCon=0.5):
        self.tipIds = [4, 8, 12, 16, 20]
        self.mpHand = mp.solutions.hands
        self.mpDraw = mp.solutions.drawing_utils
        self.hands = self.mpHand.Hands(
            static_image_mode=mode,
            max_num_hands=maxHands,
            min_detection_confidence=detectorCon,
            min_tracking_confidence=trackCon
        )
        self.lmList = []
        self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0,
255), thickness=-1, circle_radius=6)
        self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255,
0), thickness=2, circle_radius=2)
    def get_dist(self, point1, point2):
        x1, y1 = point1
        x2, y2 = point2
        return abs(math.sqrt(math.pow(abs(y1 - y2), 2) + math.pow(abs(x1 - x2),
2)))
    def calc_angle(self, pt1, pt2, pt3):
        point1 = self.lmList[pt1][1], self.lmList[pt1][2]
        point2 = self.lmList[pt2][1], self.lmList[pt2][2]
        point3 = self.lmList[pt3][1], self.lmList[pt3][2]
        a = self.get_dist(point1, point2)
        b = self.get_dist(point2, point3)
```

```
c = self.get_dist(point1, point3)
        try:
            radian = math.acos((math.pow(a, 2) + math.pow(b, 2) - math.pow(c,
2)) / (2 * a * b))
            angle = radian / math.pi * 180
        except:
            angle = 0
        return abs(angle)
    def findHands(self, frame, draw=True):
        self.lmList = []
        img = np.zeros(frame.shape, np.uint8)
        img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        self.results = self.hands.process(img_RGB)
        if self.results.multi_hand_landmarks:
            for i in range(len(self.results.multi_hand_landmarks)):
                if draw: self.mpDraw.draw_landmarks(frame,
self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS,
self.lmDrawSpec, self.drawSpec)
                self.mpDraw.draw_landmarks(img,
self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS,
self.lmDrawSpec, self.drawSpec)
                for id, 1m in
enumerate(self.results.multi_hand_landmarks[i].landmark):
                    h, w, c = frame.shape
                    cx, cy = int(lm.x * w), int(lm.y * h)
                    self.lmList.append([id, cx, cy])
        return frame, img
    def frame_combine(slef,frame, src):
        if len(frame.shape) == 3:
            frameH, frameW = frame.shape[:2]
            srcH, srcW = src.shape[:2]
            dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
            dst[:, :framew] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        else:
            src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
            frameH, frameW = frame.shape[:2]
            imgH, imgW = src.shape[:2]
            dst = np.zeros((frameH, frameW + imgW), np.uint8)
            dst[:, :framew] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        return dst
    def fingersUp(self):
        fingers=[]
        # Thumb
        if (self.calc_angle(self.tipIds[0],
                            self.tipIds[0] - 1,
                            self.tipIds[0] - 2) > 150.0) and (
                self.calc_angle(
                    self.tipIds[0] - 1,
                    self.tipIds[0] - 2,
```

```
self.tipIds[0] - 3) > 150.0): fingers.append(1)
        else:
            fingers.append(0)
        # 4 finger
        for id in range(1, 5):
            if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] -</pre>
2][2]:
                fingers.append(1)
            else:
                fingers.append(0)
        return fingers
    def get_gesture(self):
        gesture = ""
        fingers = self.fingersUp()
        if self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[1]][2] and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[2]][2]
and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[3]][2]
and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[4]][2]
: gesture = "Thumb_down"
        elif self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and</pre>
/
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2]</pre>
and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2]</pre>
and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2]</pre>
and \
                self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2,
self.tipIds[1] - 3) < 150.0 : gesture = "Thumb_up"</pre>
        if fingers.count(1) == 3 or fingers.count(1) == 4:
            if fingers[0] == 1 and (
                    self.get_dist(self.lmList[4][1:], self.lmList[8][1:])
<self.get_dist(self.lmList[4][1:], self.lmList[5][1:])</pre>
            ): gesture = "OK"
            elif fingers[2] == fingers[3] == 0: gesture = "Rock"
            elif fingers.count(1) == 3: gesture = "Three"
            else: gesture = "Four"
        elif fingers.count(1) == 0: gesture = "Zero"
        elif fingers.count(1) == 1: gesture = "One"
        elif fingers.count(1) == 2:
            if fingers[0] == 1 and fingers[4] == 1: gesture = "Six"
            elif fingers[0] == 1 and self.calc_angle(4, 5, 8) > 90: gesture =
"Eight"
            elif fingers[0] == fingers[1] == 1 and self.get_dist(self.lmList[4]
[1:], self.lmList[8][1:]) < 50: gesture = "Heart_single"
            else: gesture = "Two"
        elif fingers.count(1)==5:gesture = "Five"
        if self.get_dist(self.lmList[4][1:], self.lmList[8][1:]) < 60 and \</pre>
                self.get_dist(self.lmList[4][1:], self.lmList[12][1:]) < 60 and</pre>
/
```

```
self.get_dist(self.lmList[4][1:], self.lmList[16][1:]) < 60 and</pre>
                self.get_dist(self.lmList[4][1:], self.lmList[20][1:]) < 60 :</pre>
gesture = "Seven"
        if self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and \</pre>
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2]</pre>
and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2]</pre>
and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2]</pre>
and \
                self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2,
self.tipIds[1] - 3) > 150.0 : gesture = "Eight"
        return gesture
Zero One Two Three Four Five Six Seven Eight
ok: ok
Rock: rock
Thumb_up : 点赞
Thumb_down: 拇指向下
Heart_single: 单手比心
1.1.1
if __name__ == '__main__':
    capture = cv.VideoCapture(0)
    capture.set(6, cv.VideoWriter.fourcc('M', 'J', 'P', 'G'))
    capture.set(cv.CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv.CAP_PROP_FRAME_HEIGHT, 480)
    print("capture get FPS : ", capture.get(cv.CAP_PROP_FPS))
    pTime = cTime = 0
    hand_detector = handDetector(detectorCon=0.75)
    while capture.isOpened():
        ret, frame = capture.read()
        # frame = cv.flip(frame, 1)
        frame, img = hand_detector.findHands(frame, draw=False)
        if len(hand_detector.lmList) != 0:
            totalFingers = hand_detector.get_gesture()
            cv.rectangle(frame, (0, 430), (230, 480), (0, 255, 0), cv.FILLED)
            cv.putText(frame, str(totalFingers), (10, 470),
cv.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)
        if cv.waitKey(1) & 0xff == ord('q'): break
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime
        text = "FPS : " + str(int(fps))
        cv.putText(frame, text, (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0,
255), 1)
        dist = hand_detector.frame_combine(frame, img)
        cv.imshow('dist', dist)
        # cv.imshow('frame', frame)
        # cv.imshow('img', img)
    capture.release()
    cv.destroyAllWindows()
```