

Energy demand model for CREEM

Wojciech Adaszynski

The problem

Finding good model for predicting energy consumption of building in the system.

Goals

- A method to calculate energy forecast.
- Efficient algorithm for retrieving and processing data from database.
 - Increase in accuracy of our predictions.

Current method

Average relative error: δ = 17.25%

Current method

Average relative error: δ = 38%

- 1) Find relevant patterns in the measurements
 - 2) Cluster data to smaller chunks
 - 3) Apply two-variable regression

How to divide our measurements?

Finding correlation.

$$X = \{x : x = |Internal - temperature|\}$$

$$Y = \{y : y = consumption - Profile\}$$

Finding a line of best fit

$$y = s \cdot |(x-t)| + i + p$$

y – consumption, x – temperature t – internal temperature, i – intercept, p - profile

How to improve our model?

1) Set division based on HDD/CDD

2) Checking variables correlation

3) Baseload

Checking variables correlation

Pearson correlation coefficient throughout the day

Set division based on HDD/CDD

Final results

Before: $\delta = 23.3\%$

After: $\delta = 20.2\%$

Future improvements

- 1) Different correlation type (non-linear distributions)
 - 2) Subtracting baseload from consumption
 - 3) Decision analysis / removing outliers

Implementation

- 1) Python Script for retrieving and calculating data
 - mysql connector
 - numpy library
 - Matplotlib charts
 - 2) Testing suit for results comparison

Links

https://github.com/wojciechAdaszynski/EnergyForecaster

http://www.onlinestatbook.com

http://www.docs.scipy.org/doc/