Escupio 1 $\int \frac{2 \times +3}{\times -5} d \times$

$$\int \frac{2 \times +3}{\times -5} dx = \int \frac{2 \times -10 + 13}{\times -5} dx = \int \frac{2 + \frac{13}{\times -5}}{\times -5} dx$$

Se volero usare l'algoritus!

Escupio 2 $\int \frac{x^3}{x^2-1} dx$

Quiudi
$$\frac{\times^3}{\times^2-1} = \times + \frac{\times}{\times^2-1}$$

$$\int \frac{x^3}{x^2-1} dx = \int \left(x + \frac{1}{2} \frac{2x}{x^2-1}\right) dx = \frac{1}{2} x^2 + \log |x^2-1|$$

Esempio3
$$\int \frac{x+3}{x^2-1} dx$$

2: Fattorizzagione
$$\times^2 - 1 = (x+1)(x-1)$$

3: Sistema Diverse
$$\frac{x+3}{x^2-1} = \frac{A}{x+1} + \frac{3}{x-1} = \frac{A(x-1)+B(x+1)}{x^2-1}$$

Gruando 11 mumeratore: $x=4$ no $4=2B$ no $B=2$
 $x=-1$ no $2=-2A$ no $A=-1$

Quindi la decomposizione zu fratti semplici è

 $\frac{x+3}{x^2-1} = \frac{-1}{x+1} + \frac{2}{x-1}$

[Verifica!]

[4: Jutegrone] $\int \frac{x+3}{x^2-1} = -\log|x+1| + 2\log|x-1| = \log\frac{(x-1)^2}{1x+1}$

Esemplo $4\int \frac{1}{(x^2+1)^2} dx$

[3] Decomposizione Se uno 1 fratti semplici è già decomposto e use 20 devo integrane.

Harmite: $\frac{1}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{d}{dx} = \frac{Cx+D}{x^2+1}$
 $= \frac{Ax+B}{x^2+1} + \frac{d}{dx} = \frac{Cx+D}{x^2+1}$
 $= \frac{Ax+B}{x^2+1} + \frac{d}{dx} = \frac{Cx+D}{x^2+1}$

Sistema Dinesae: $A=0$ $\cos pp x^3$ $A=0$ $\cos pp x^2$ $B=\frac{1}{2}$
 $A-2D=0$ $\cos pp x^2$ $B=\frac{1}{2}$

Quindi $\frac{1}{(x^2+1)^2} = \frac{1}{2} = \frac{1}{x^2+1} + \frac{d}{dx} = \frac{1}{x^2+1}$

Usrifica!]

Guindi $\frac{1}{(x^2+1)^2} = \frac{1}{2} = \frac{1}{x^2+1} + \frac{1}{2} = \frac{x}{x^2+1}$

Usrifica!]

Usrifica!

[Alternativa] trucco e poi per porti

$$\int \frac{1+x^2-x^2}{(x^2+1)^2} dx = \int \frac{1+x^2-x^2}{(x^2+1)^2} dx$$

$$= \int \frac{1+x^2}{1+x^2} dx - \int \frac{x^2}{(x^2+1)^2} dx$$

$$= \int \frac{1}{1+x^2} dx - \int \frac{x^2}{(x^2+1)^2} dx$$

$$= \int \frac{1}{1+x^2} dx - \int \frac{x^2}{(x^2+1)^2} dx$$

$$= \frac{1}{2} \frac{x}{x^2+1} + \operatorname{anctau} x - \frac{1}{2} \operatorname{anctau} x$$
Allo desso wood si possovo fine trite a potense

$$\int \frac{1}{(1+x^2)^{1/2}} dx = \int \frac{1+x^2-x^2}{(1+x^2)^{1/2}} dx = \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx - \int \frac{x}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{1}{(1+x^2)^{1/2}} dx + \int \frac{1}{(1+x^2)^{1/2}} dx$$

$$= \int \frac{$$

Quiudi
$$\int \frac{x}{x^2 + 5 \times + 6} dx = -2 \int \frac{1}{x + 2} dx + 3 \int \frac{1}{x + 3}$$

$$= -2 \log |x + 2| + 3 \log |x + 3|$$

$$= \log \frac{|x + 3|^{\frac{5}{2}}}{(x + 2)^2}$$

$$= \log \frac{|x + 3|^{\frac{5}{2}}}{(x + 2)^2}$$

$$= 2 \cdot \frac{|x + 3|^{\frac{5}{2}}}{(x + 1)(x + 1$$

$$x^{4} = -4$$

$$x = \frac{\pm 4 \pm i}{12}$$

Quindi sui complessi so fatorizzone, poi arcoppio i fatori $\lambda_{2} \in \lambda_{3}$

$$e \lambda_{1} \in \lambda_{4}$$

$$2^{9} \bmod : Seura munei complessi$$

$$x^{4} + 1 = x^{4} + 2x^{2} + 1 - 2x^{2}$$

$$= (x^{2} + 1)^{2} - ((2x)^{2})$$

$$A^{2} - B^{2}$$

$$= (x^{2} + 1)^{2} - ((2x)^{2})$$

$$A^{2} - B^{2}$$

$$= (x^{2} + 1)^{2} - ((2x)^{2})$$

$$A^{2} - B^{2}$$

$$= (x^{2} + 1)^{2} - ((2x)^{2})$$

$$A^{2} - B^{2}$$

$$= (x^{2} + 1)^{2} - ((2x)^{2})$$

$$= (x^{2} + 1)^{2} - ((2x)^$$