Language Models

COSC 6336: Natural Language Processing Spring 2018

Language Models

- ★ They assign a probability to a sequence of words:
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
 - Spell Correction:
 - The office is about fifteen minuets from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - Summarization, question-answering, OCR correction and many more!

More Formally

- ★ Given a sequence of words predict the next one:
 - \circ P(W₅|W₁,W₂,W₃,W₄)
- ★ Predict the likelihood of a sequence of words:
 - $P(W) = P(W_1, W_2, W_3, W_4, W_5...W_n)$
- ★ How do we compute these?

Chain Rule

- ★ Recall the definition of conditional probabilities:
 - \circ p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)
- ★ More variables:
 - P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
- ★ The Chain Rule in General
 - $P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)...P(x_n|x_1, ..., x_{n-1})$

Back to sequence of words

P("I am the fire that burns against the cold") = $P(I) \times P(am|I) \times P(the|I am) \times P(fire|I am the) \times P(that|I am the fire) \times P(burns|I am the fire that) \times P(against|I am the fire that burns) \times P(the|I am the fire that burns against) \times P(cold|I am the fire that burns against the)$

★ How do we estimate these probabilities?

count(I am the fire that burns against the cold)

count(I am the fire that burns against the)

★ Any problems with this formulation?

We shorten the context (history)

Markov Assumption:

 $P(\text{cold} \mid I \text{ am the fire that burns against the}) \approx P(\text{cold} \mid \text{burns against the})$

This is:
$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$$

When N = 1, this is a unigram language model:

$$P(w_1 w_2 \dots w_n) \approx \prod_{i} P(w_i)$$

When k = 2, this is a bigram language model:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k|w_{k-1})$$

Count-based language models

- ★ We can extend to trigrams, 4-grams, 5-grams
- ★ In general this is an insufficient model of language
- ★ because language has long-distance dependencies:
 - "The computer which I had just put into the machine room on the fifth floor crashed."
- ★ But we can often get away with N-gram models

Estimating bigram probabilities

We rely on the Maximum Likelihood Estimate:

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})}$$

An example

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \quad \begin{array}{l} < \text{s> I am Sam } \\ < \text{s> Sam I am } \\ < \text{s> I do not like green eggs and ham } \end{array}$$

$$P({\tt I}|{\tt ~~}) = \frac{2}{3} = .67 \qquad P({\tt Sam}|{\tt ~~}) = \frac{1}{3} = .33 \qquad P({\tt am}|{\tt I}) = \frac{2}{3} = .67 \\ P({\tt~~ }|{\tt Sam}) = \frac{1}{2} = 0.5 \qquad P({\tt Sam}|{\tt am}) = \frac{1}{2} = .5 \qquad P({\tt do}|{\tt I}) = \frac{1}{3} = .33~~$$

Raw bigram counts from the Berkeley restaurant project

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram counts from the Berkeley restaurant project

Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

What kinds of knowledge?

- ★ P(english|want) = .0011
- \star P(chinese|want) = .0065
- \star P(to|want) = .66
- \star P(eat | to) = .28
- \star P(food | to) = 0
- \star P(want | spend) = 0
- \star P (i | <s>) = .25

Are all our problems solved?

Zeros

Training set:

... denied the allegations

... denied the reports

... denied the claims

... denied the request

P("offer" | denied the) = 0

Test set:

... denied the offer

... denied the loan

If there is a single bigram with prob 0 we will assign 0 prob to the entire test set!

Smoothing Intuition (taken from D. Klein)

•When we have sparse statistics:

P(w | denied the)

- 3 allegations
- 2 reports
- 1 claims
- 1 request
- •Steal probability mass to generalize better

P(w | denied the)

- 2.5 allegations
- 1.5 reports
- 0.5 claims
- 0.5 request
- 2 other
- 7 total

Laplace Smoothing

- ★ Add one to all counts
- ★ Unigram counts:

$$P(w_i) = \frac{c_i}{N}$$

★ Laplace counts:

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

- ★ Disadvantages:
 - Drastic change in probability mass
- ★ But for some tasks Laplace smoothing is a reasonable choice

Leveraging Hierarchy of N-grams: Backoff

- ★ Adding one to all counts is too drastic
- ★ What about relying on shorter contexts?
 - Let's say we're tying to compute P(against | that burns), but count(that burns against) = 0
 - We backoff to a shorter context: P(against | that burns) ≈ P(against | burns)
- ★ We backoff to a lower n-gram
- ★ Katz Backoff (discounted backoff)

$$P_{BO}(w_n|w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n|w_{n-N+1}^{n-1}), & \text{if } C(w_{n-N+1}^n) > 0\\ \alpha(w_{n-N+1}^{n-1})P_{BO}(w_n|w_{n-N+2}^{n-1}), & \text{otherwise.} \end{cases}$$

Leveraging Hierarchy of N-grams: Interpolation

★ Better idea: why not always rely on lower order N-grams?

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$
 Subject to: $\sum_i \lambda_i = 1$

★ Even better, condition on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Absolute Discounting

Bigram count in training	Bigram count in held out set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

For each bigram count in training data, what's the count in held out set?

Approx. a 0.75 difference!

Absolute Discounting

$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) - d}{\sum_{v} C(w_{i-1}v)} + \lambda(w_{i-1})P(w_i)$$

How much do we want to trust unigrams?

- ★ Instead of P(w): "How likely is w"
- ★ P_{continuation}(w): "How likely is w to appear as a novel continuation?
- ★ For each word, count the number of bigram types it completes

$$P_{\text{CONTINUATION}}(w) = \frac{|\{v : C(vw) > 0\}|}{|\{(u', w') : C(u'w') > 0\}|}$$

Interpolated Kneser-Ney

 \bigstar Intuition: Use estimate of $P_{CONTINUATION}(w_i)$

$$P_{KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{\sum_{v} c_{KN}(w_{i-n+1}^{i-1}v)} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1})$$

Evaluating Language Models

- ★ Ideal: Evaluate on end task (extrinsic)
- ★ Intrinsic evaluation: use perplexity:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

Perplexity is inversely proportional to the probability of W

Lower perplexity is better

LMs trained on 38 million words and tested on 1.5 million words from WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Practical Issues

- ★ We compute everything in log space:
 - Avoids issues with underflow
 - Faster

Advanced Language Models

- ★ Discriminative models:
 - choose n-gram weights to improve a task, not to fit the training set
- ★ Caching Models
 - Recently used words are more likely to appear

Advanced Language Models

- ★ Deep Learning for Language Models:
 - Neural Language Models have been quite the success lately (Bengio et al., 2003; Mikolov et al., 2010) in tasks such as speech recognition and machine translation
- ★ Although, Kneser-Ney has been shown to be competitive and even outperformed neural language models over smaller corpora (cf. Chen et al., 2016)

