

SlicerROS2: ROS for Medical Robots

Hamlyn Symposium on Medical Robotics

June 26th, 2023

Presented by: Laura Connolly

Mentors: Professors Gabor Fichtinger & Parvin Mousavi & Russell H. Taylor

Background

Image-guided robotic interventions are medical procedures that integrate sophisticated robotic and imaging technologies, primarily to perform minimally invasive surgery ¹

Building robotic IGT systems

Photo credit: www.brainlab.com

Building robotic <u>IGT</u> systems

Photo credit: www.brainlab.com

3D Slicer

- Open source, medical imaging platform (over 1 million downloads in the past 10 years)
- Several built-in extensions
- Can be used for:
 - 1. Segmentation
 - 2. Image analysis
 - 3. Surgical navigation
 - 4. Tracked imaging
 - 5. Adaptive radiation therapy
 - 6. Volume reconstruction
 - 7. Virtual and Augmented Reality
 - 8. ...

PLUS toolkit

 Software toolkit for data acquisition, preprocessing, and calibration for navigated image-guided interventions

Highlights

Position data acquisition from various devices, including electromagnetic trackers (Ascension, NDI Aurora) and optical trackers (OptiTrack, NDI Polaris and Certus, Claron MicronTracker)

Image acquisition from ultrasound systems: through direct digital interface (for Ultrasonix, BK, Interson, Telemed, Philips ultrasound scanners) and through framegrabbers

Data acquisition from commercial surgical navigation systems: Medtronic I StealthStation navigation system (receives tracking data and planning volume), BrainLab navigation system (receives tracking data, planning volume, and landmarks; through OpenIGTLink)

Ultrasound image simulation: B-mode images are generated from multiple moving objects (such as bones, soft tissue, tools), each defined by a simple surface mesh.

SlicerIGT

Building robotic <u>IGT</u> systems

Photo credit: www.brainlab.com 6 / 21

Building robotic IGT systems

Photo credit: www.brainlab.com 6 / 21

Robot operating system (ROS)

- ROS is a set of libraries that make it easier to develop robot applications
- Examples:
 - Inverse kinematics solvers already implemented
 - Movelt package that does motion planning
 - tf maintains the transformation chain between links

Medical robotics research platforms

jhu-cisst/cisst-saw

Meta project to compile cisst libraries along with SAW components

- The daVinci Research Kit (dVRK) is a community effort for researching telerobotic surgery
- The *cisst* package is a collection of libraries for computer-assisted intervention systems
- The Surgical Assistant Workstation (SAW)
 is a platform for robotics, stereo vision,
 and intraoperative imaging

Bridging robotics and IGT platforms

Bridging 3D Slicer and ROS

Bridging robotics and IGT platforms

SlicerROS2

- We built SlicerROS2 to give developers
 access to the full suite of tools in 3D Slicer
 & ROS at the same time
- The platform can be used to prototype image-guided robotic systems

How does it work?

ROS side 3D Slicer side

SlicerROS2 in action

SlicerROS2 in action

- Part of a collaboration with Dr. Axel Krieger & the IMERSE Lab at JHU (https://imerse.lcsr.jhu.edu)
- Tongue tumor resection with the DaVinci robot

Clinical example: Breast conserving surgery

- Breast conserving surgery (BCS) is a common treatment option for breast cancer patients
- Over 30% of these procedures result in incomplete tumor resection

NaviKnife

- The *NaviKnife* system is a platform developed at Queen's University that uses electromagnetic (EM) navigation to localize the tumor in BCS
- Built entirely with SlicerIGT

Forbidden region virtual fixture

- Tracked ultrasound and tumor contour identification done in NaviKnife interface
- Haptic feedback
 actuated with the Omni
 Bundle robot

Virtual fixture implementation

```
position subscriber = self.ros2Node.CreateAndAddSubscriberNode("vtkMRMLROS2SubscriberPoseStampedNode", "/arm/measured cp")
feedback publisher = self.ros2Node.CreateAndAddPublisherNode("vtkMRMLROS2PublisherPoseStampedNode", "/arm/servo cp")
release publisher = self.ros2Node.CreateAndAddPublisherNode("vtkMRMLROS2PublisherWrenchStampedNode", "/arm/servo cf")
breachWarningNode = slicer.mrmlScene.GetFirstNodeByName("BreachWarning")
self.addObserver(self.logic.breachWarningNode, vtk.vtkCommand.ModifiedEvent, self.logic.virtualFixture)
def virtualFixture(self):
    if (breachWarningNode.isToolTipInsideModel()):
        pose = vtk.vtkMatrix4x4()
        position subscriber.GetLastMessage(pose)
        feedback publisher.Publish(pose)
    else:
        wrench = vtk.vtkDoubleArray()
        release publisher.Publish(wrench)
```

- Built on top of the NaviKnife architecture
- Only 13 lines of python code!

Conclusions

- Get started with SlicerROS2 today!
- Reach out if you have any questions, requests for additional features, feedback, etc.

Contact info: laura.connolly@queensu.ca

https://slicer-ros2.readthedocs.io/en/latest/

Acknowledgements

Funding sources:

National Institutes of Health (NIH) R01EB020667

(MPI: Tokuda, Krieger, Fuge, Leonard)

NSERC-CGSD Award (2022)

Walter C. Sumner Foundation Fellowship (2022-2023)

Mitacs Globalink Research Award (2021)

Michael Smith Foreign Study Supplement (MS-FSS)

Developers and collaborators:

SlicerROS2: Anton Deguet, Aravind S. Kumar, Simon Leonard, Junichi

Tokuda, Axel Krieger, Peter Kazanzides, Russell H. Taylor

SlicerIGT: Andras Lasso, Tamas Ungi, Csaba Pinter, Kyle Sunderland

