ZAMAN UNIVERSITY

1

Data Structures and Algorithms

Chapter 5

Tree

Outline

 $\binom{2}{2}$

- Binary Trees
- Traversing Binary Tree
- Red-Black Trees
- Red-Black Tree Insertions
- 2-3-4 Trees

Outline

3

- Binary Trees
- Traversing Binary Tree
- Red-Black Trees
- Red-Black Tree Insertions
- 2-3-4 Trees

Traversing the Tree

- Traversing a tree means visiting each node in a specified order
- There are three simple ways to traverse a tree: preorder, inorder, and postorder.
- The order most commonly used for binary search trees is inorder
- An *inorder traversal* of a binary search tree will cause all the nodes to be visited in ascending order, based on their key values.

Inorder Traversal

- 5
- The simplest way to carry out a traversal is the use of recursion
- A recursive function to traverse the tree is called with a node as an argument. Initially, this node is the root.
- The function must perform only three tasks:
 - 1. Call itself to traverse the node's left subtree.
 - 2. Visit the node.
 - 3. Call itself to traverse the node's right subtree.
- C++ Code for traversing:

```
void inOrder(Node* pLocalRoot) {
   if( pLocalRoot != NULL ){
      inOrder(pLocalRoot->pLeftChild); //left child
      cout << pLocalRoot->iData << " "; //display node
      inOrder(pLocalRoot->pRightChild); //right child
   }
```

Traversing a 3-Node Tree

Example of Traversing a Tree Inorder

Preorder and Postorder Traversals

- A binary tree (not a binary search tree) can be used to represent an algebraic expression
- For example: algebraic expression A * (B + C) this
 is called *infix* notation; it's the notation normally
 used in algebra
- Tree representing an algebraic expression:

Preorder and Postorder Traversals (cont.)

Preorder	Postorder		
Preorder() member function:1. Visit the node.2. Call itself to traverse the node's left subtree.3. Call itself to traverse the node's right subtree.	Postorder() member function:1. Call itself to traverse the node's left subtree.2. Call itself to traverse the node's right subtree.3. Visit the node.		
Prefix: * A + B C	Postfix: A B C + *		
Prefix - Starting on the left, each operator is applied to the next two things in the expression.	Postfix - Starting on the right, each operator is applied to the two things on its left.		
Apply: * to A and +BC, in turn the expression +BC mean apply + to B and C give us (B+C). Inserting that into the original expression *A+BC (preorder) gives us A*(B+C).	Apply: 1. + to B and C give us (B+C); 2. * to A and (B+C) give us infix A*(B+C)		

Finding Maximum and Minimum Values

 Minimum value – go to the end of left child (node) of root;

Maximum value – go to the end of right child (node)

of root;

```
Node* minimum() {
  Node* pCurrent, pLast;
  pCurrent = pRoot; //start at root
  while(pCurrent != NULL){//until the
   pLast = pCurrent; //remember node
   //go to left child
   pCurrent = pCurrent->pLeftChild;
  }
  return pLast;
}
```


Efficiency of Binary Trees

		1
(11))

	// 11	//
Number of Nodes	Number of Levels	
1	1	
3	2	
7	3	
15	4	
31	5	
•••	•••	
1,023	10	
•••	•••	
32,767	15	
	•••	
1,048,575	20	
	•••	
33,554,432	25	

L – Number of Levels; N – Number of Nodes.

Thus,

$$N = 2^{L} - 1$$
$$L = log_{2}(N+1)$$

Outline

- Binary Trees
- Traversing Binary Tree
- Red-Black Trees
- Red-Black Tree Insertions
- 2-3-4 Trees

What is Red-Black Trees?

- Binary Search Trees, if data is inserted in a nonrandom sequence, the tree might become unbalanced, seriously degrading its performance.
- A Red-Black Tree can fix this by ensuring that the tree remains balanced at all times.

Balanced and Unbalanced Trees

- During insertion a series of nodes whose keys are in either ascending or descending order, thus binary tree becomes unbalanced
- With an unbalanced tree, the ability to quickly find (or insert or delete) a given element is lost
- When there are no branches, the tree becomes, in effect, a linked list.
- With linked list, we need O(n/2) for searching

Balanced Trees to the Rescue

- To guarantee the quick O(log N) search times a tree, we need to ensure that our tree is always balanced (or at least almost balanced)
- This means that each node in a tree must have roughly the same number of children on its left side as it has on its right
- In a red-black tree, balance is achieved during insertion and deletion.

Red-Black Tree Characteristics

- Red-Black Tree Characteristics:
 - The nodes are colored;
 - During insertion and deletion, rules are followed.
- Colored nodes, in Red-Black tree every node is either red or black.
- Red-Black rules:
 - 1. Every node is either red or black.
 - 2. The root is always black.
 - 3. If a node is red, its children must be black.
 - 4. Every path from the root to a leaf, or to a null child, must contain the same number of black nodes.

The Actions

- What actions can you take if one of the red-black rules is broken? There are two, and only two, possibilities:
 - You can change the colors of nodes.
 - You can perform rotations.

Try red-black tree on https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

18)

To be continued...