Componenti connesse degli aperti di \mathbb{R}^n

Cor. X connesso e loc. cpa \Rightarrow X cpa.

Prop. X loc. cpa e II-numerabile $\Rightarrow \mathcal{P}(X) = \mathcal{C}(X)$ numerabile.

Dim. X è unione topologica delle componenti cpa e queste sono aperte. $\forall P \in \mathcal{P}(X)$ scegliamo $a_P \in P$ (assioma della scelta).

 $A := \{a_P \mid P \in \mathcal{P}(X)\} \subset X \text{ sottospazio discreto } \Rightarrow A \text{ è } II\text{-numerabile } \Rightarrow A \cong \mathcal{P}(X) \text{ al più numerabile } \Rightarrow \mathcal{P}(X) \text{ al più numerabile.}$

Oss. $U \subset \mathbb{R}^n$ aperto $\Rightarrow U$ loc. cpa. $\forall x \in U \exists r_x > 0$ t.c. $B(x, r_x) \subset U \Rightarrow \mathcal{J}_x = \{B(x, r) \mid 0 < r < r_x\}$ base di intorni aperti convessi quindi cpa.

Cor. $U \subset \mathbb{R}^n$ aperto $\Rightarrow U$ unione numerabile di aperti disgiunti e connessi per archi e $\mathcal{P}(U) = \mathcal{C}(U)$.

Teor. $X \subset \mathbb{R}$ connesso $\Leftrightarrow X$ è un punto o un intervallo $\Leftrightarrow X \subset \mathbb{R}$ cpa.

Dim. I punti e gli intervalli sono cpa quindi connessi. Resta da dimostrare che $X \subset \mathbb{R}$ connesso e $\#X > 1 \Rightarrow X$ intervallo.

Per assurdo, supponiamo che $\exists a < b < c$ t.c. $a, c \in X$ e $b \notin X \Rightarrow a \in U :=]-\infty, b[\cap X =]-\infty, b] \cap X$ aperto e chiuso non vuoto in X t.c. $c \notin U \Rightarrow X$ sconnesso, contraddizione.

Teor (dei valori intermedi). $f: X \to \mathbb{R}$ continua non costante con X connesso $\Rightarrow f(X)$ intervallo.

Cor. $U \subset \mathbb{R}$ aperto $\Leftrightarrow U$ unione numerabile di intervalli aperti disgiunti.

Lem. $f:[a,b] \rightarrow [c,d]$ continua e biiettiva $\Rightarrow f(\{a,b\}) = \{c,d\}$.

Dim. Per assurdo, $c < f(a) < d \Rightarrow f(]a,b]) = [c,f(a)[\cup]f(a),d]$ connesso, contraddizione. Analogamente per f(b).

Teor. $f: \mathbb{R} \to \mathbb{R}$ continua e biiettiva \Rightarrow f omeomorfismo.

Dim. $\forall a < b \Rightarrow f([a, b]) = [c, d] \Rightarrow f([a, b]) = [c, d] \Rightarrow f \text{ aperta.}$

N.B. $f: \mathbb{R}^n \to \mathbb{R}^n$ continua e biiettiva $\Rightarrow f$ omeomorfismo, ma non abbiamo gli strumenti per dimostrarlo se $n \geqslant 2$.

Lezione 18 Omotopia

Omotopia

X, Y spazi topologici, I = [0, 1].

Def. Un'omotopia da X a Y è un'applicazione continua $H: X \times I \rightarrow Y$.

 $H: X \times I \to Y \rightsquigarrow h_s: X \to Y, h_s(x) := H(x,s), \forall x \in X, \forall s \in I.$

N.B. Assumeremo continue tutte le applicazioni tra spazi topologici.

Def. $f, g: X \to Y$ sono *omòtope* se $\exists H: X \times I \to Y$ t.c. $h_0 = f$ e $h_1 = g$. Se f e g sono omotope scriviamo $f \simeq g$.

Oss. $f \simeq g \Leftrightarrow \exists H : X \times I \to Y$ t.c. H(x,0) = f(x) e H(x,1) = g(x), $\forall x \in X$. Durante l'omotopia f si "deforma" in g in modo continuo.

Oss. Un'omotopia $H: X \times I \to Y$ è un cammino nello spazio delle applicazioni continue $C(X,Y) := \{f: X \to Y \mid f \text{ continua}\}.$

Def. $f, g: X \to Y$ sono omotope relativamente ad $A \subset X$ se $f|_A = g|_A$ e $\exists H: X \times I \to Y$ t.c. $h_0 = f$, $h_1 = g$ e $h_s|_A = f|_A$, $\forall s \in I$. Scriviamo $f \simeq_A g$ oppure $f \simeq g$ (rel A).

Oss. $f \simeq_A g \Leftrightarrow \exists H: X \times I \to Y \text{ t.c. } H(x,0) = f(x), \ H(x,1) = g(x), \ \forall x \in X, \ e \ H(x,s) = f(x), \ \forall x \in A, \ \forall s \in I.$

Durante l'omotopia relativa f si "deforma" in g senza modifiche su $A \subset X$.

Per le omotopie consideriamo le operazioni tra cammini.

Def.

- 1) $f: X \to Y \rightsquigarrow H_f: X \times I \to Y$, $H_f(x, s) \stackrel{\text{def}}{=} f(x)$ omotopia stazionaria.
- 2) $H: X \times I \to Y \rightsquigarrow \bar{H}: X \times I \to Y$ omotopia inversa $\bar{H}(x,s) \stackrel{\text{def}}{=} H(x,1-s)$.
- 3) $H, K: X \times I \rightarrow Y \text{ t.c. } h_1 = k_0: X \rightarrow Y \sim \rightarrow$

 $H * K : X \times I \rightarrow Y$ concatenazione di $H \in K$

$$(H * K)(x, s) \stackrel{\text{def}}{=} \begin{cases} H(x, 2s), & 0 \leqslant s \leqslant \frac{1}{2} \\ K(x, 2s - 1), & \frac{1}{2} \leqslant s \leqslant 1 \end{cases}$$

Oss. \simeq e \simeq_A sono relazioni d'equivalenza su C(X,Y).

Oss.
$$f_0 \stackrel{F}{\simeq} f_1: X \to Y \in g_0 \stackrel{G}{\simeq} g_1: Y \to Z \Rightarrow g_0 \circ f_0 \stackrel{H}{\simeq} g_1 \circ f_1$$

(\simeq è compositiva) $H(x, s) = G(F(x, s), s).$

Def. $f: X \to Y$ è un'equivalenza omotopica tra X e Y se $\exists g: Y \to X$ t.c. $g \circ f \simeq \operatorname{id}_X$ e $f \circ g \simeq \operatorname{id}_Y$. g è detta inversa omotopica di f.

N.B. L'inversa omotopica se esiste non è necessariamente unica, né iniettiva, né suriettiva.

Def. Diciamo che X e Y sono omotopicamente equivalenti o che hanno lo stesso tipo d'omotopia se $\exists f: X \to Y$ equivalenza omotopica, $X \simeq Y$.

Oss. $f: X \to Y$ omeomorfismo $\Rightarrow f$ equivalenza omotopica con inversa omotopica $f^{-1}: Y \to X$. Quindi $X \cong Y \Rightarrow X \simeq Y$.

Lezione 18 Omotopia

Oss. \simeq relazione d'equivalenza tra spazi topologici più debole di omeo.

N.B. Indichiamo un punto o uno spazio puntiforme non specifico con *.

Def. Uno spazio top. è contraibile se ha il tipo d'omotopia di un punto.

Oss. In altre parole X contraibile \Leftrightarrow X \simeq *.

Prop. X contraibile \Leftrightarrow id_X \simeq costante.

In inglese un'applicazione omotopa a costante è detta null-homotopic.

Dim. $\implies j: X \to *$ equivalenza omotopica, $i: * \to X$ inversa omotopica di $j \Rightarrow \mathrm{id}_X \simeq i \circ j = \mathrm{costante}$.

Esempio. $U \subset \mathbb{R}^n$ convesso $\Rightarrow U$ contraibile: scegliamo $u_0 \in U \leadsto H: U \times I \to U, \ H(x,s) = (1-s)x + su_0 \Rightarrow h_0 = \mathrm{id}_U, \ h_1 = u_0.$ $\mathbb{R}^n, \ B^n \in I^n$ contraibili.

Prop. X contraibile \Rightarrow X connesso per archi.

Dim.
$$H: X \times I \to X$$
 t.c. $h_0 = x_0$ costante e $h_1 = \mathrm{id}_X$. $\forall x \in X \rightsquigarrow \gamma_x: I \to X$, $\gamma_x(t) = H(x,t) \Rightarrow \gamma_x(0) = x_0$, $\gamma_x(1) = x \Rightarrow X$ cpa.

Def. $r: X \to A$ è una retrazione continua se $A \subset X$ e $r|_A = \mathrm{id}_A$.

Def. $H: X \times I \to X$ (retrazione per) deformazione forte (risp. debole) di X su $A \subset X$ se:

- 1) $h_0 = id_X$
- 2) $h_s|_A = \mathrm{id}_A$, $\forall s \in I$ (risp. per s = 1)
- 3) $h_1(X) = A$.

X si retrae per deformazione su A e scriviamo $X \subseteq A$ se $\exists H$ deformazione.

Oss. Nell'esempio precedente H è retrazione per deformazione forte del convesso U su un suo punto.

Oss. H deformazione di X su $A \Rightarrow r := h_1 \mid : X \rightarrow A$ retrazione.

Oss. X contraibile $\Leftrightarrow X$ ammette deformazione debole su un punto.

Oss. $X : A \Rightarrow i_A : A \stackrel{\simeq}{\hookrightarrow} X$ ha inversa omotopica $r : X \stackrel{\simeq}{\to} A \Rightarrow X \simeq A$.

Oss. Retrazione per deformazione = omotopia tra id_X e retrazione.