Evaluation of the Eppler 1210 Airfoil

January 19, 2020

1 Introduction

- 1. show airfoil
- 2. table of freestream conditions and Re
- 3. xfoil estimates of:
 - $\bullet\,$ max L/D ratio, and AoA at which this occurs
 - max C_l , and AoA at which this occurs
 - Note: take both of the above directly from airfoil tools.com, at the closest reynolds number available

Figure 1: Eppler 1210 Airfoil shown in Pointwise

Table 1: Operating conditions for all cases

Quantity	Value
Pressure	103,000 Pa
Temperature	298 K
Velocity	17.88 ms^{-1}
Viscosity	$1.789e-05 \text{ kgm}^{-1}\text{s}^{-1}$
Re #	1,224,315

Table 2: XFoil Predictions, Re = 1e9, ncrit = 9 (clean wind tunnel)

	Value	AoA
Max L/D	117.1309	8
$\operatorname{Max} C_L$	1.8542	16

2 Methodology

- 1. 4 shots of grid: 1. LE 2. TE 3. near-field for entire shape 4. the entire grid domain. Note: should show T-rex feature that was used
- 2. table 1: cell count and normal-to-wall spacing used, list BC, list reference values, list submodels chosen (i.e. viscous model), provide numerical scheme and spacial accuracy

2.1 Screenshots of grid

Figure 2: Farfield

Figure 3: Nearfield

Figure 4: Leading edge

Figure 5: Trailing edge

Table 3: General grid information

	Value			
Cell count	inner mesh:			
	outer mesh			
Normal-to-wall dist	1e-5 (UNITS?)			
Boundary condition	airfoil surface: wall, $\Delta s=1e-5$			
	(might have to specify at inlet and such, check)			
Reference values	A bunch of different ones here, 1.789e-05 kgm ⁻¹ s ⁻¹			
Submodels	viscous: transitional SST			
Numerical Schemes	gradient: least-squares cell based			
	pressure: second order			
	momentum: second order upwind			
	turbulent kinetic energy: first order upwind			
	specific dissipation rate: first order upwind			
	specific dissipation rate: first order upwind			
	intermittency: first order upwind			
	momentum thickness Re: first order upwind			

3 Results

- 1. plot lift and drag coeff histories for proof of convergence history for ALL Runs (appendix)
- 2. Table of C_l , C_d , L/D, C_m

- 3. plots of the items in the table and compared against Xfoil data at the closest Re # (take directly from airfoiltools.com)
- 4. streamlines and pressure contours to depict flow near airfoil
 - 1 plot for each case
 - $\bullet\,$ use the same contour levels
- 5. y+ curves (for 0° AoA case)
- 6. plot showing turbulent boundary layer development (0° AoA case)

3.1 Plots of convergence history for all runs

See Appendix A

3.2 Table of final force/moment coefficient values

Table 4: Some aerodynamic coefficients

AoA (°)	C_l	C_d	C_m	L/D
-7	-0.2475	0.0129	-0.0317	-19.1200
-4	0.0771	0.0106	-0.1102	7.3024
-2	0.1864	0.0105	-0.1368	17.7983
0	0.5159	0.0106	-0.0891	48.5390
5	1.0736	0.0119	-0.3562	90.3674
8.5	1.4360	0.0173	-0.4419	82.7872
12	1.7358	0.0261	-0.5071	66.4839
14.5	1.8475	0.0381	-0.5246	48.5187
17	1.6456	0.0890	-0.4857	18.4886
19.5	1.3897	0.1635	-0.4471	8.4988
22	1.2712	0.2341	-0.4433	5.4310

Figure 6: Comparison of aerodynamic coefficients from Xfoil and CFD

3.3 Pressure contours and streamlines

Figure 7: Pressure contours and streamlines for AoA = -7°

Figure 8: Pressure contours and streamlines for $AoA = -4^{\circ}$

Figure 9: Pressure contours and streamlines for AoA = -2 $^{\circ}$

Figure 10: Pressure contours and streamlines for AoA = 0°

Figure 11: Pressure contours and streamlines for AoA = 5°

Figure 12: Pressure contours and streamlines for AoA = 12°

Figure 13: Pressure contours and streamlines for AoA = 14.5°

Figure 14: Pressure contours and streamlines for AoA = 17°

Figure 15: Pressure contours and streamlines for AoA = 19.5°

Figure 16: Pressure contours and streamlines for AoA = 22°

3.4 y+ Curve

Figure 17: y plus graph

3.5 Turbulent Boundary Layer Development

Figure 18: Boundary layer near trailing edge of wing

4 Discussion

Is the agreement between your CFD model and XFOIL within this same tolerance level for lift and drag? (10% error bar) Taking the XFoil data as "experimental," and the CFD data as numerical prediction, error bars of $\pm 10\%$ were drawn from each XFoil data point. Observing the C_l first in Fig. 19, XFoil and CFD agree very well with the exception of AoA = -2 deg (I need to double check this run), where there is a noticeable deviation. Notice that the point of separation is earlier for CFD predictions. In this case, the CFD simulation might be more trustworthy, as it is difficult to predict separation, especially with low-fidelity methods. Regarding C_d , the CFD generally overpredicted the XFoil solution as seen in Figs. 20a and 20b. The former is at small negative AoAs, where the CFD prediction is about 10% above XFoil prediction. This was as close as the two solutions ever got, higher AoAs lead to larger discrepancies, where the CFD prediction increasingly overpredicts the XFoil estimates.

Figure 19: C_l and C_d comparisons including error bar of $\pm 10\%$

(a) Zoomed-in view of section of C_d

(b) Another zoomed-in view of section of C_d