

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

FROM FIG. 5A

195

CU MONITORS GAP DURING PLURALITY OF SIGNATURE SEQUENCE FRAMES IN THE AUTHENTICATION INTERVAL AND PERFORMS CORRELATIONS DURING EACH GAP.

197

CU COUNTS THE NUMBER OF GAPS IN AUTHENTICATION INTERVAL THAT HAVE ACTIVITY AND COMPARES THAT NUMBER TO THE TOTAL NUMBER OF FRAMES IN THE AUTHENTICATION INTERVAL TO DETERMINE IF THE 50% ACTIVITY LEVEL LIMIT HAS BEEN EXCEEDED.

50% ACTIVITY
DETECTED

GREATER THAN
50% ACTIVITY

204

CU BROADCASTS MESSAGE TO ALL RU'S INSTRUCTING ALL RU'S ATTEMPTING SYNCHRONIZATION TO EXECUTE THEIR COLLISION RESOLUTION PROTOCOLS.

206

EACH RU ATTEMPTING TO SYNCHRONIZE EXECUTES A RANDOM DECISION WHETHER TO CONTINUE ATTEMPTING TO SYNCHRONIZE OR TO STOP, WITH A 50% PROBABILITY OF EITHER OUTCOME.

208

RU'S THAT HAVE DECIDED TO CONTINUE RETRANSMIT THEIR SIGNATURE WITH THE SAME TIMING AS WAS USED ON THE LAST ITERATION

TO FIG. 5C

FIG. 5B

FIG. 5C

FIG. 6
DEAD RECKONING RE-SYNC

FIG. 7
PRECURSOR EMBODIMENT

```

graph TD
    XMIT[XMIT FRAME TIMING] --> CPU[CPU]
    CPU --> RU[RU DIGITAL MODEM]
    RU --- TIMESLOT["TIMESLOT # ENABLE"]

```

The diagram illustrates the signal flow from the XMIT FRAME TIMING input to the RU DIGITAL MODEM. The XMIT FRAME TIMING signal first enters the CPU, which then outputs to the RU DIGITAL MODEM. A feedback line labeled "TIMESLOT # ENABLE" originates from the RU DIGITAL MODEM and loops back to the CPU.

8
FIG.

FIG. 9

FIG. 10

FIG. 11

FIG. 13

FIG. 12

FIG. 14

FIG. 15

FIG. 16

PREFERRED TRELLIS ENCODER

FIG. 17

FIG. 18

0000	111	111	
0001	001	111	$= 1 - j$
0010	001	001	$= 1 + j$
0011	111	001	$= -1 + j$
0100	011	111	$= 3 - j$
0101	001	011	$= 1 + 3*j$
0110	101	001	$= -3 + j$
0111	111	101	$= -1 - 3*j$
1000	011	011	$= +3 + 3*j$
1001	101	011	$= -3 + 3*j$
1010	101	101	$= -3 - 3*j$
1011	011	101	$= 3 - 3*j$
1100	111	011	$= -1 + 3*j$
1101	101	111	$= -3 - j$
1110	001	101	$= 1 - 3*j$
1111	011	001	$= 3 + j$

FIG. 19

INFORMATION
VECTOR [B]
FOR EACH
SYMBOL

$$\begin{bmatrix} 0110 \\ 1111 \\ 1101 \\ 0100 \\ \vdots \end{bmatrix}$$

ORTHOGONAL
CODE MATRIX

$$X \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,144} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,144} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

FIG. 20A

REAL
PART OF
INFO
VECTOR
[b] FOR
FIRST
SYMBOL

$$405 \begin{bmatrix} +3 \\ -1 \\ -1 \\ +3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ -8 \end{bmatrix} \quad 407 \quad 409$$

$$[b_{\text{REAL}}] \times [\text{CODE MATRIX}] = [R_{\text{REAL}}] = \text{"CHIPS OUT" ARRAY-REAL}$$

FIG. 20B

MAPPING FOR FALL-BACK MODE - LSB'S

$$11 \oplus -3 \\ -1 - 3 * j$$

LSBs y1 y0	PHASE 1+jQ
00	0
01	90
10	180
11	-90

MSBs y3 y2	PHASE difference (2nd+1st symbol)
00	0
01	90
10	180
11	-90

LSB=00	1+jQ WHEN LSB=00	1+jQ WHEN LSB=01	1+jQ WHEN LSB=10	1+jQ WHEN LSB=11
0	3-j	1+j3	-3+j	-1-j3
90	1+j3	-3+j	-1-j3	3-j
180	-3+j	-1-j3	3-j	1+j3
-90	-1-j3	3-j	1+j3	-3+j

FIG. 21

FIG. 22

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

CURREIVER
FIG. 31

CU TRANSMITTER
FIG. 32

FIG. 35

FIG. 36

FIG. 37
FINE TUNING TO
CENTER BARKER CODE

FIG. 38

RU RANGING

FIG. 45

CU RANGING AND CONTENTION RESOLUTION

FIG. 47

CONTENTION RESOLUTION - RU
USING BINARY STACK

FIG. 48

FIG. 49

FIG. 50

FIG. 51

STATE MACHINE

FIG. 52

FIG. 53A

FIG. 53B

FIG. 53C

FIG. 54

SIMPLE CU SPREAD SPECTRUM RECEIVER
FIG. 55

FIG. 56

SIMPLE RU SPREAD SPECTRUM TRANSMITTER

FIG. 57
SYNCHRONOUS TDMA SYSTEM

OFFSET (CHIPS)	1B ASIC		2A ASIC	
	RGSRH	RGSRL	RGSRH	RGSRL
0	0x0000	0x8000	0x0001	0x0000
1/2	0x0000	0xC000	0x0001	0x8000
1	0x0000	0x4000	0x0000	0x8000
-1	0x0001	0x0000	0x0002	0x0000

FIG. 58

TRAINING ALGORITHM

SE FUNCTION

FIG. 59

INITIAL 2-STEP TRAINING ALGORITHM

2-STEP INITIAL EQUALIZATION TRAINING

FIG. 60

FIG. 61

NOTE: THRLD COEFF = 7F00H THRLD STABLE = 10^{-3}

PERIODIC 2-STEP TRAINING ALGORITHM

FIG. 62

RACM CORRECTION

NOTE: $\text{THRLD}_{\text{AMP}} = \text{TBD}$

$\text{THRLD}_{\text{PHASE}} = \text{TBD}$

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

EQ CONVERGENCE CHECK

NOTE: $\text{THRLD}_{\text{CONVERGE}} = 10^{-5}$

FIG. 64

POWER ALIGNMENT FLOW CHART

NOTE: $\text{TH} = 600\text{H}$

$N = 12$

FIG. 65

FIG. 66

TOTAL TURN AROUND (TTA) IN FRAMES = OFFSET

FIG. 67

FIG. 68

CONTROL MESSAGE (DOWNSTREAM) AND FUNCTION (UPSTREAM)
PROPAGATION IN A 3 FRAMES TTA CHANNEL

FIG. 69

FIG. 70

OVERALL VIEW OF THE CU SENSING WINDOWS
IN A "BOUNDLESS RANGING" ALGORITHM

FIG. 71

CHIP\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	...	0
2	1	0	0	1	1	1	1	...	
3	0	0	0	1	1	1			
4	0	0	0	1	0	0	0	...	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	...	

FIG. 72