op07中文资料

时间: 2009-05-16 07:42:22 来源: 资料室 作者:

op07的功能介绍: Op07芯片是一种低噪声,非斩波稳零的<mark>双极性运算放大器集成电路</mark>。由于OP07具有非常低的输入失调电压 (对于 OP07A 最大为25μV),所以 OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于 OP07A 为300V/mV) 的特点,这种低失调、高开环增益的特性使得 OP07特别适用于高增益的测量设备和<mark>放大传感器的微弱信号</mark>等方面。

特点:

超低偏移: 150µV 最大。

低输入偏置电流: 1.8nA。 低失调电压漂移: 0.5μV/℃。 超稳定,时间: 2μV/month 最大 高电源电压范围: ±3V 至±22V

N DIP8 (Plastic Package)

图1 OP07外型图片

OPO7芯片引脚功能说明:

1和8为偏置平衡(调零端), 2为反向输入端, 3为正向输入端, 4接地, 5空脚 6为输出, 7接电源+

图3 OP07内部电路图

ABSOLUTE MAXIMUM RATINGS 最大额定值

Sym bol 符号	Parameter 参数	Value 数值	Unit 单位
VCC	Supply Voltage 电源电压	±22	V
Vid	Differential Input Voltage 差分输入电压	±30	V
Vi	Input Voltage 输入电压	±22	V
Tope	Operating Temperature 工作温度	-40 to	°C
r	Operating reinperature 工作価度	+105	C
Tstg	Storage Temperature 贮藏温度	-65 to +150	$^{\circ}$ C

电气特性

虚拟通道连接= ± 15V , Tamb = 25 ℃ (除非另有说明)

Sym bol 符号	Parameter 参数及测试条件	最小	典型	最大	Unit 单位
Vio	Input Offset Voltage 输入失调电压0℃ ≤ Tamb ≤ +70℃	-	60	1 5 0 2 5	μV
	Long Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性	-	0.4	2	μV/M O
DVio	Input Offset Voltage Drift 输入失调电压漂移	-	0.5	1. 8	μ V / °C
lio	Input Offset Current 输入失调电流 0℃≤Tamb≤ +70℃	-	0.8	6 8	nA
DIio	Input Offset Current Drift 输入失调电流漂移	-	15	5 0	pA/ ℃
lib	Input Bias Current 输入偏置电流 0℃≤Tamb ≤ +70℃	-	1.8	7 9	nA
DIib	Input Bias Current Drift 输入偏置电流漂移	-	15	5 0	pA/ ℃
Ro Rid	Open Loop Output Resistance 开环输出电阻 Differential Input Resistance 差分输入电阻	-	60 33	-	Ω M Ω
Ric	Common Mode Input Resistance 共模输入电阻	-	12 0	-	GΩ
Vicm	Input Common Mode Voltage Range 输入共模电压范 围 0℃ ≤ Tamb ≤ +70℃	±13 ±13	±1 3.5	-	V
CMR	Common Mode Rejection Ratio (Vi =Vicm min)共模 抑制比 0° C \leq Tamb \leq +70 $^{\circ}$ C	100 97	12 0	-	dB
SVR	Supply Voltage Rejection Ratio 电源电压抑制比(VCC = ±3to ±18V) 0℃ ≤ Tamb ≤ +70℃	90	10 4	-	dB

			86			
Avd	Large Signal Voltage Gain 大 信号电压增益	VCC = ± 15 , RL = $2K\Omega$, VO = $\pm 10V$,	120	40 0	-	V/m
		0° C \leq Tamb \leq +105 $^{\circ}$ C	100		-	V/111
		$VCC = \pm 3V$, $RL = 500W$, $VO = \pm 0.5V$	100	40 0	-	
		$RL = 10K\Omega$	±12	±1 3		
Vop	Output Voltage Swing 输出电压	$RL= 2k\Omega$	±11.5	±1 2.8	-	V
р	摆幅	$RL= 1K\Omega$		±1 2		
		$0^{\circ}C \leq Tamb \leq +70^{\circ}C RL = 2K\Omega$	±11	-		
SR	Slew Rate 转换率($RL = 2K\Omega, CL = 100pF)$	-	0.1 7	-	V/μS
GBP	Gain Bandwidth F 100pF, $f = 100kHz$	Product 带宽增益(RL =2KΩ,CL = z)	-	0.5	-	MHz
Icc	Supply Current -(r ≤ Tamb ≤ +70°C	no load) 电源电流(无负载) 0℃ VCC = ±3V	-	2.7 0.6 7	5 6 1. 3	mA
en	Equivalent Input Noise Voltage 等 效输入噪声电压	f = 10Hz	-	11	2	
		f = 100Hz	-	10. 5	1 3. 5	<u>nV</u> √Hz
		f = 1kHz	-	10	1 1. 5	
in	Equivalent Input Noise Current 等效输入噪声电流	f = 10Hz	-	0.3	0. 9	
		f = 100Hz	-	0.2	0. 3	<u>PA</u> √Hz
		f = 1kHz	-	0.1	0. 2	

图4 输入失调电压调零电路

应用电路图:

图5 典型的偏置电压试验电路

图6 老化电路

图7 典型的低频噪声放大电路

图8 高速综合放大器

图9 选择偏移零电路

图10 调整精度放大器

图11 高稳定性的热电偶放大器

图12 精密绝对值电路

以上翻译自 SGS-THOMSON 的 OP07