라즈베리파이를 이용한

오픈소스 IoT 플랫폼

오픈소스와 라즈베리파이

GNU, LINUX, FSF, Open Source

- 1983년 Richard Stallman started GNU project
- 1985 Free Software Foundation
- 1991 New LINUX Kernel by Linus Torvalds
- 1998 Netscape Browser Source Code

• Arduino의 등장

- 2005년 이탈리아. Massimo Banzi, David Cuartielles
- Atmel 8bit AVR MCU, User Friendly 개발환경 제공

Raspberry Pi

- 2012년 영국 Raspberry Foundation (Eben Upton)
- 2013년 10월 공식집계 200만대 판매

라즈베리파이는...

라즈베리파이 재단(Raspberry Pi Foundation) 이사 장 Eben Upton이 캠브리지 재직시절 공학과정 학 생들의 physical 컴퓨팅 교육을 위한 플랫폼을 만든 것이 그 시작이었다고 한다.

라즈베리파이의 특징

- 초저가 (\$35미만),초소형(명함크기), ARM11 탑재, 리눅스 컴퓨터
- 각 종 개발 환경 제공 (C, C++, Python, Scratch 등)
- 사용자 프로그램 가능한 H/W (GPIO, UART, I2C, SPI 등)
- 수 많은 사용자들이 만들어내는 방대한 오픈소스 콘텐츠

라즈베리 파이(Raspberry Pi) H/W 사양

모델A

모델 B

모델 B+

SDRAM 256MB

Ethernet ×

USB 1 Port

Storage SD Card

Display HDMI, RCA

Audio HDMI, 3.5ΦStereo

GPIO 26Pin

512MB

 \bigcirc

2 Port

SD Card

HDMI, RCA

HDMI, 3.5ΦStereo

26Pin

512MB

 \bigcirc

4 Port

Micro SD Card

HDMI, <u>3.5Ф</u>

HDMI, 3.5ΦStereo

40Pin

User Programmable GPIO Pin-Map

Raspberry Pi B+ J8 Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)		Ground	20
21	GPIO09 (SPI_MISO)		(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground		(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	000	(I2C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

라즈베리파이 Physical Computing

• 회로구성


```
제어코드작성( C with WiringPi.h )
```

```
#include <stdio.h>
#include <wiringPi.h>
#define SW1 1
                     // BCM_GPI0 18
#define LED1 4
                     // BCM_GP10 23
                     // BCM_GP10 24
#define LED2 5
int main (void) {
 printf("gpio input test~\mun");
 wiringPiSetup();
 pinMode(SW1, INPUT );
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 while(1) {
   digitalWrite(LED1, 0); // Off
   digitalWrite(LED2, 0); // Off
   while(digitalRead(SW1) == 0) {
     digitalWrite(LED1, 1); // On
     digitalWrite(LED2, 1); // On
  return 0;
```

Korea Electronics Telecommunication Training Institute

```
제어코드작성
(Python)
```

```
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPI0.setup(23, GPI0.0UT)
GP10.setup(24, GP10.0UT)
GPIO.setup(18, GPIO.IN)
print "On SW or press Ctrl+C to quit"
try:
    while True:
        GPIO.output(23, False)
        GPIO.output(24, False)
        while GPIO.input(18) == 0:
            GPIO.output(23, True)
            GPIO.output(24, True)
except KeyboardInterrupt:
    GP10.cleanup()
    print "bye~ "
```


• 라즈베리파이 카메라 제어코드 작성 (Python)

```
import time
import picamera
import RPi.GPI0 as GPI0

GPI0.setmode(GPI0.BCM)
GPI0.setup(18, GPI0.IN)

with picamera.PiCamera( ) as camera:
    camera.start_preview( )
    GPI0.wait_for_edge(18, GPI0.FALLING)
```

camera.stop_preview()

camera.capture('/home/pi/Desktop/image.jpg')

라즈베리파이 Pysical Coputing 사례

3D Scanner

(http://www.instructables.com/id/Multiple-Raspberry-PI-3D-Scanner/)

IoT 플랫폼으로서의 라즈베리파이 응용 사례

물달라고 트윗하는 라즈베리 플라워(http://cafe.naver.com/openrt/1460/)

