1.2 Determine the current flowing through an element if the charge flow is given by

(a)
$$q(t) = (3) \text{ mC}$$

(b)
$$q(t) = (4t^2 + 20t - 4) C$$

(c)
$$q(t) = (15e^{-3t} - 2e^{-18t}) nC$$

(d)
$$q(t) = 5t^2(3t^3 + 4)$$
 pC

(e)
$$q(t) = 2e^{-3t} \sin(20\pi t) \mu C$$

1.9 The current through an element is shown in Fig. 1.26. Determine the total charge that passed through the element at:

(a)
$$t = 1$$
 s (b) $t = 3$ s (c) $t = 5$ s

i (A) 10

5

0 1 2 3 4 5 t (s)

- **1.16** Figure 1.27 shows the current through and the voltage across an element.
 - (a) Sketch the power delivered to the element for t > 0.
 - (b) Find the total energy absorbed by the element for the period of 0 < t < 4s.

1.18 Find the power absorbed by each of the elements in Fig. 1.29.

1.38 How much energy does a 10-hp motor deliver in 30 minutes? Assume that 1 horsepower = 746 W.