```
In [23]: import pandas as pd
import numpy as np
import imblearn
from imblearn.under_sampling import NearMiss
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoCV
```

Creating The Data Set

```
df = pd.read_csv('diabetes.csv')
In [5]:
        undersample = NearMiss(version=1)
        X = df.loc[:, df.columns != 'Diabetes_binary']
        y = df.loc[:, df.columns == 'Diabetes_binary']
        X, y = undersample.fit_resample(X, y)
        print(X.info())
        print(y.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 70692 entries, 0 to 70691
        Data columns (total 21 columns):
           Column
                                  Non-Null Count Dtype
         0
            HighBP
                                  70692 non-null float64
         1
           HighChol
                                  70692 non-null float64
                                  70692 non-null float64
         2
            CholCheck CholCheck
         3
            BMI
                                  70692 non-null float64
         4
            Smoker
                                  70692 non-null float64
                                  70692 non-null float64
         5
            Stroke
          HeartDiseaseorAttack 70692 non-null float64
                                  70692 non-null float64
         7
            PhysActivity
         8
           Fruits
                                  70692 non-null float64
         9
                                  70692 non-null float64
            Veggies
         10 HvyAlcoholConsump
                                  70692 non-null float64
         11 AnyHealthcare
                                  70692 non-null float64
                                  70692 non-null float64
         12 NoDocbcCost
         13 GenHlth
                                  70692 non-null float64
         14 MentHlth
                                  70692 non-null float64
                                70692 non-null float64
         15 PhysHlth
                                 70692 non-null float64
         16 DiffWalk
                                  70692 non-null float64
         17 Sex
         18 Age
                                  70692 non-null float64
                                  70692 non-null float64
         19 Education
         20 Income
                                  70692 non-null float64
        dtypes: float64(21)
        memory usage: 11.3 MB
        None
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 70692 entries, 0 to 70691
        Data columns (total 1 columns):
         # Column
                             Non-Null Count Dtype
         0
            Diabetes_binary 70692 non-null float64
        dtypes: float64(1)
        memory usage: 552.4 KB
        None
```

Splitting The Dataset

Out[16]:

	HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	HeartDiseaseorAttack	PhysA			
0	-1.212894	0.876922	0.074482	-1.061978	1.158253	-0.225623	-0.384172	0.5			
1	-1.212894	-1.140353	0.074482	0.377975	1.158253	-0.225623	-0.384172	0.5			
2	0.824475	0.876922	0.074482	1.017954	-0.863369	-0.225623	-0.384172	0.5			
3	-1.212894	0.876922	0.074482	0.377975	-0.863369	-0.225623	-0.384172	0.5			
4	0.824475	-1.140353	0.074482	2.777896	-0.863369	-0.225623	-0.384172	0.5			
5 rows × 22 columns											

Looking At The Results That LassoCV Yields

```
In [25]: lasso = LassoCV(cv=5, random_state=0).fit(X_train_scaled, y_train)

coef = lasso.coef_
col = X.columns
for index in range(len(coef)):
    if coef[index] > 0.015:
        print(f'{col[index]}: {np.round(coef[index], 3)}')
```

C:\Users\Felipe\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_
descent.py:1571: DataConversionWarning: A column-vector y was passed when a 1
d array was expected. Please change the shape of y to (n_samples,), for exam
ple using ravel().

y = column_or_1d(y, warn=True)

HighBP: 0.031 BMI: 0.065 Smoker: 0.016

HeartDiseaseorAttack: 0.029 HvyAlcoholConsump: 0.017

GenHlth: 0.11 MentHlth: 0.016 PhysHlth: 0.024 DiffWalk: 0.03

Looking At The Results That Correlation Yields

In [18]: corr = df_undersampled_train.corr()
corr

Out[18]:

		HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	HeartDise
	HighBP	1.000000	0.290281	0.019190	0.252404	0.132512	0.119859	_
	HighChol	0.290281	1.000000	0.012837	0.129130	0.125240	0.081647	
	CholCheck	0.019190	0.012837	1.000000	-0.004101	-0.005190	-0.000986	
	ВМІ	0.252404	0.129130	-0.004101	1.000000	0.063508	0.057133	
	Smoker	0.132512	0.125240	-0.005190	0.063508	1.000000	0.072942	
	Stroke	0.119859	0.081647	-0.000986	0.057133	0.072942	1.000000	
Hea	artDiseaseorAttack	0.192153	0.160192	-0.003985	0.098065	0.144389	0.233298	
	PhysActivity	-0.185341	-0.123335	0.019316	-0.255187	-0.102905	-0.126957	
	Fruits	-0.103985	-0.089436	0.015673	-0.158303	-0.102695	-0.046131	
	Veggies	-0.123597	-0.084961	0.010999	-0.123689	-0.060063	-0.084637	
Hv	yAlcoholConsump	0.022629	0.028740	-0.005638	0.000244	0.066169	-0.008613	
	AnyHealthcare	-0.032929	-0.023433	0.079857	-0.064963	-0.028095	-0.028131	
	NoDocbcCost	0.077367	0.065678	-0.059807	0.129655	0.042161	0.077127	
	GenHlth	0.322079	0.223396	-0.020087	0.345232	0.181521	0.223366	
	MentHith	0.124688	0.117957	-0.027875	0.201497	0.108281	0.141691	
	PhysHith	0.188203	0.139995	-0.014818	0.255436	0.140699	0.210303	
	DiffWalk	0.225602	0.147227	-0.009001	0.316306	0.140045	0.236295	
	Sex	-0.011667	-0.007690	-0.010735	-0.044020	0.115278	-0.019964	
	Age	0.275838	0.163192	0.022321	-0.112717	0.145365	0.083517	
	Education	-0.227568	-0.134820	0.006402	-0.201685	-0.171960	-0.120345	
	Income	-0.282530	-0.163382	0.031126	-0.242094	-0.152527	-0.194099	
	Diabetes_binary	-0.012546	-0.011030	-0.002274	-0.004097	-0.006953	-0.002408	

22 rows × 22 columns

These Are The Correlation Results

```
corr_target = abs(corr["Diabetes_binary"])
In [19]:
         relevant_features = corr_target[corr_target>0.006]
         relevant_features
Out[19]: HighBP
                            0.012546
         HighChol
                            0.011030
         Smoker
                            0.006953
         Fruits
                            0.006887
         AnyHealthcare
                            0.007229
         MentHlth
                            0.011795
         DiffWalk
                            0.012193
         Sex
                            0.012702
         Income
                            0.008735
         Diabetes_binary 1.000000
         Name: Diabetes_binary, dtype: float64
```

Creating A Variable Containing The Training and Testing Splits Of The Correlation Variables

- The Features that were selected for correlation:
 - Sex
 - HighBP
 - DiffWalk
 - MentHlth
 - HighChol
 - AnyHealthCare
 - Smoker
 - Fruits
 - Income
- Below is going to be the creation and presentation of the dataframe to see its details

```
In [20]: X_selected_train = df_undersampled_train.loc[:, ['Sex', 'HighBP', 'DiffWalk',
                             'Fruits','Income']]
        print(X_selected_train.info())
        'Fruits','Income']]
        print(X_selected_test.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 49484 entries, 0 to 49483
        Data columns (total 9 columns):
                          Non-Null Count Dtype
            Column
            -----
                          -----
         0
            Sex
                          49484 non-null float64
           HighBP
                          49484 non-null float64
         1
         2
          DiffWalk
                          49484 non-null float64
                          49484 non-null float64
         3
            MentHlth
         4
            HighChol
                          49484 non-null float64
            AnyHealthcare 49484 non-null float64
         5
                          49484 non-null float64
            Smoker
         7
            Fruits
                          49484 non-null float64
                          49484 non-null float64
         8
            Income
        dtypes: float64(9)
        memory usage: 3.4 MB
        None
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 21208 entries, 0 to 21207
        Data columns (total 9 columns):
            Column
                          Non-Null Count Dtype
            -----
                          -----
         0
                          21208 non-null float64
            Sex
           HighBP
         1
                          21208 non-null float64
         2
            DiffWalk
                          21208 non-null float64
                          21208 non-null float64
         3
            MentHlth
         4
           HighChol
                          21208 non-null float64
         5
            AnyHealthcare 21208 non-null float64
                          21208 non-null float64
         6
            Smoker
         7
            Fruits
                          21208 non-null float64
                          21208 non-null float64
             Income
        dtypes: float64(9)
        memory usage: 1.5 MB
        None
```

Creating A Variable Containing The Training and Testing Splits Of The Lasso Variables

- The Featurs that were selected for Lasso:
 - HighBP
 - BMI
 - Smoker
 - HeartDiseaseorAttack
 - HvyAlcoholConsump
 - GenHlth

- MentHlth
- PhysHlth
- DiffWalk
- Below is the creating of the datadrame containing the features and presentation of details concerning them

```
In [29]: X_selected_train = df_undersampled_train.loc[:, ['HighBP', 'BMI', 'Smoker', 'Heat
                                                        'GenHlth', 'MentHlth', 'PhysHli
         print(X_selected_train.info())
        X_selected_test = df_undersampled_test.loc[:, ['HighBP', 'BMI', 'Smoker', 'Hear']
                                                      'GenHlth', 'MentHlth', 'PhysHlth
         print(X_selected_test.info())
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 49484 entries, 0 to 49483
         Data columns (total 9 columns):
            Column
                                   Non-Null Count Dtype
             -----
            HighBP
                                 49484 non-null float64
                                 49484 non-null float64
            BMI
          1
          2
            Smoker
                                  49484 non-null float64
          3
             HeartDiseaseorAttack 49484 non-null float64
            HvyAlcoholConsump 49484 non-null float64
          4
                                  49484 non-null float64
           GenHlth
                                 49484 non-null float64
          6
             MentHlth
          7
                                 49484 non-null float64
             PhysHlth
             DiffWalk
                                 49484 non-null float64
         dtypes: float64(9)
         memory usage: 3.4 MB
         None
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 21208 entries, 0 to 21207
         Data columns (total 9 columns):
          # Column
                                  Non-Null Count Dtype
            HighBP
                                 21208 non-null float64
                                 21208 non-null float64
          1
            BMI
          2 Smoker
                                 21208 non-null float64
          3 HeartDiseaseorAttack 21208 non-null float64
            HvyAlcoholConsump 21208 non-null float64
          4
          5 GenHlth
                                 21208 non-null float64
                                 21208 non-null float64
             MentHlth
             PhysHlth
                                 21208 non-null float64
                                 21208 non-null float64
             DiffWalk
         dtypes: float64(9)
         memory usage: 1.5 MB
         None
```

Both Methods Are Going To Be Tested On Models From Step 1 And The Method With The Best Results Will Be Choosen

• In the future tests you will see that Lasso performs the best having a significantly greater accuracy than the correlation set