Precondition: *root* points to a non-empty tree. We will remove the maximum value in **S**.

NonEmptyTree(root, $S = L \cup \{v\} \cup R$)

$$r = \text{null}$$
?

r = null

v is the maximum value in **S**. **L** = **S**\{v}.

max = v; newRoot = l; delete root; return (newRoot, max);

We have retrieved v, the maximum value in S, and subtracted it from S to give $L = S \setminus \{v\}$.

 $r \neq \text{null}$

r points to a NonEmptyTree. The maximum value of **S** is in **R**.

NonEmptyTree(root, $S = L \cup \{v\} \cup R$)

(nr, max) = removeMax(r);
root.r = nr; return (root, max);

The tree represents $L \cup \{v\} \cup R \setminus \{max\}$, which $= S \setminus \{max\}$ because the sets are disjoint.

NonEmptyTree(root, **S**\{max})