E-commerce Platform Search Function – Java

Exercise Title: Search Optimization in E-commerce

Module: Data Structures and Algorithms

Track: DN 4.0 DotNet FSE Deep Skilling Program

Objective

To implement and analyze different search algorithms—Linear Search and Binary Search—in an e-commerce platform, improving the performance of product searches based on Big O analysis.

Concepts Applied

- * Algorithm Analysis: Asymptotic Notation (Big O)
- * Time Complexity Evaluation
- * Linear and Binary Search Algorithms
- * Object-Oriented Programming (OOP) with Java
- * Data Preparation and Sorting

Problem Summary

Build an efficient search system where:

- * Each product is represented by a Product class with attributes like productId, productName, and category.
- * You implement both linear search (for unsorted data) and binary search (for sorted data).
- * Analyze and compare both search methods based on best, average, and worst-case performance using Big O notation.
- * Conclude which method is better suited for the e-commerce use case.

Deliverables

- * A Product class with relevant search attributes
- * Linear search implementation using an unsorted array
- * Binary search implementation using a sorted array
- * Analysis of search performance in comments or separate documentation
- * Organized week-wise folder structure for submission

Tools & Technologies

- * Java
- * IDE (IntelliJ, Eclipse, or VS Code)

Evaluation Criteria

- * Accurate implementation of both search algorithms
- * Clear understanding of algorithm complexity through comments or print statements
- * Proper use of Java OOP to define Product objects
- * Clear documentation of results and conclusions
- * Organized folder structure (e.g., Week1/SearchFunctionExample)
- * Code successfully compiled, tested, and uploaded to GitHub

Self-Evaluation Checklist

- * Product class created with necessary attributes
- * Linear Search implemented for unsorted product list

- * Binary Search implemented for sorted product list

 * Time complexity (Big O) of both algorithms is well understood and documented

 * Code structured and commented clearly

 * Folder structure follows week-wise submission format

 * Code compiled and tested successfully

 * Uploaded to public GitHub repository