PPHA 30546 Machine Learning Problem Set 1

Richard Campo in collaboration with Julia Klauss

```
In [1]: from IPython.display import Image
   import pandas as pd
   import os
   import seaborn as sns
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   from IPython.display import display
```

Chapter 2: Question 3

(a)

```
In [4]: # https://stackoverflow.com/a/11855133
Image(filename="./Machine Learning Pset 1 Curves.png")
```

Out[4]:

(b)

• Bias decreases as flexibility increases because the model can overfit the data. Bias tends to decrease faster at lower levels of flexibility because adding just a little curvature can

- allow the model to fit the data much better, but once you have lots of flexibility, adding more won't do much.
- Variance increases as flexibility increases because the model is more sensitive to new training data. Variance tends to increase at an increasing rate because very flexible models will change more than less flexible models when provided new training data due to overfitting.
- Training error decreases as flexibility increases because the model can fit the data more closely. Eventually, the most flexible model can correctly predict every point in the data by overfitting.
- Test error first decreases and then increases as flexibility increases. When flexibility is low, adding flexibility allows the model to more closely fit the training data and accurately predict the test data. However, when flexibility is high, adding flexibility causes overfitting, which lowers training error but increases test error.
- Irreducible error is a constant = Var(ε)

Chapter 2: Question 5

The advantage of a very flexibile approach is that the model can more closely fit the training data and more accurately predict the test data. However, the disadvantage of a very flexible approach is that the model can overfit the training data, meaning the model will make very accurate predictions on the training data, but not generalize to the test data.

A more flexible approach is preferred when the true underlying relationship in the data is very nonlinear because a line can't fit the data well. On the other hand, a less flexible approach is preferred when the true underlying relationship in the data is linear or approximately linear because flexible methods will overfit the data.

Chapter 2: Question 10

(a)

```
In [2]: PATH = r"C:\Users\RichardCampo\Documents\GitHub\Machine-Learning\Boston"
    df_boston = pd.read_csv(os.path.join(PATH, "Boston.csv"))
```

(b)

```
In [3]: print(df_boston.shape)
    df_boston.head()
    (506, 14)
```

Out[3]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90

There are 506 rows and 14 columns in the dataset. Rows represent census tracts in the Boston area and columns represent variables describing each census tract. Additional information about the variables is available in the data description text file.

(c)

```
In [4]: # Plot first 5 variables to make it easier to read
sns.pairplot(df_boston.iloc[:, :5])
```

Out[4]: <seaborn.axisgrid.PairGrid at 0x1c12913e2f0>

Looking at the scatterplots, there is a positive correlations between nitric oxide concentration and the number of acres zoned for industry in a census district, which is unsurprising. It also looks like there is a negative association between the number of acres zoned for residential buildings and the amount of nitric oxide and amount of acres zoned for industry. This also makes sense. Lastly, per capita crime appears to be positively correlated with the concentration of nitric oxides. We could make the same plots using the other variables in the data set, but these have been excluded to save space.

(d)

```
Out[5]: CRIM
                   1.000000
        RAD
                   0.622029
        TAX
                   0.579564
        LSTAT
                   0.452220
        NOX
                   0.417521
        INDUS
                   0.404471
        AGE
                   0.350784
        PTRATIO
                   0.288250
        CHAS
                  -0.055295
        ZN
                  -0.199458
        RM
                  -0.219940
                  -0.377365
        DIS
                   -0.377904
        MDEV
                  -0.385832
        Name: CRIM, dtype: float64
```

Most of the predictors are at least weakly associated with crime. The strongest correlation is between per capita crime and access to radial highways, maybe because areas close to highways are poorer or maybe because criminals use highways to move illegal drugs. Property tax rate is also positively associated with crime, perhaps because property taxes are higher closer to the city center where crime is more prevalent. Lastly, LSTAT, the percentage of people in the census district who are "lower status" (presumably in terms of income), is also positively correlated with per capita crime, which is what we expect.

(e)

```
In [42]: print(df_boston[["CRIM", "TAX", "PTRATIO"]].describe())
         df_boston[["CRIM", "TAX", "PTRATIO"]].hist()
                    CRIM
                                TAX
                                        PTRATIO
       count 506.000000 506.000000 506.000000
               3.593761 408.237154 18.455534
       mean
                8.596783 168.537116
       std
                                      2.164946
       min
                0.006320 187.000000 12.600000
               0.082045 279.000000
       25%
                                      17.400000
       50%
                0.256510 330.000000
                                      19.050000
                3.647423 666.000000
                                      20.200000
       75%
               88.976200 711.000000
                                      22.000000
       max
Out[42]: array([[<Axes: title={'center': 'CRIM'}>,
                 <Axes: title={'center': 'TAX'}>],
                [<Axes: title={'center': 'PTRATIO'}>, <Axes: >]], dtype=object)
```


Most census tracts have low crime per capita since the mean is only about 3.6. However, a small number of census tracts have high per capita crime rates, up to a maximum of almost 89.

Census tracts in Boston have full-value property tax rates per \$10,000 that vary from 187 to 711, but there is a large valley between about 450 and 650. A large group of census tracts have high property tax rates, possibly because they are close to the city center.

Lastly, pupil-teacher ratios vary from 12.6 to 22 pupils per teacher, with a large number of census districts having 20 to 21 pupils per teacher. These higher ratio census districts may also be closer to the city center where schools tend to have less funding per student.

(f)

```
In [6]: borders = len(df_boston[df_boston["CHAS"] == 1])
    print(borders)
    print(borders/len(df_boston) * 100, "%")
```

35 6.91699604743083 %

35 of the 506 census tracts border the Charles River, or about 7% of census tracts in the dataset.

```
df_boston["PTRATIO"].median()
 Out[7]: 19.05
         The median pupil-teacher ratio of census tracts in the dataset is 19.05 pupils per teacher.
         (h)
         df_boston.loc[[df_boston["MDEV"].idxmin()]]
Out[11]:
                CRIM ZN INDUS CHAS NOX
                                                 RM
                                                       AGE
                                                               DIS RAD
                                                                          TAX PTRATIO
                                                                                            В
         398 38.3518 0.0
                              18.1
                                     0.0 0.693 5.453 100.0 1.4896
                                                                                    20.2 396.9
                                                                    24.0 666.0
In [46]: min_row_index = df_boston["MDEV"].idxmin()
         min_row = df_boston.loc[[min_row_index]]
         # https://stackoverflow.com/a/53649492
         fig, axs = plt.subplots(4, 4, figsize=(12, 8), constrained_layout=True)
         fig.suptitle("Histograms with Min MDEV Tract Highlighted", fontsize=16, y=1.05)
         # Plot a histogram showing distribution for each variable with red line
         # showing the value for the census tract with lowest MDEV.
         for ax, column in zip(axs.flatten(), df_boston.columns):
             sns.histplot(df_boston[column], bins=20, color='blue', ax=ax)
             ax.axvline(x=min_row[column].values[0], color='red', linestyle='dashed')
```

ax.set_title(column)

Histograms with Min MDEV Tract Highlighted

The census tract with the lowest median value of owner-occupied homes is located in row 398 and has a median home value of 5,000. This is much lower than the median value of 21.2 thousand. This census tract also has high crime per capita, an above average amount of industrially zoned space, above average nitric oxide concentration, low average number of rooms per building, very old buildings, low distance to the city employment centers, high accessibility to radial highways, high property taxes, a high pupil-teacher ratio, and a high proportion of people with low incomes.

This helps show that median home value is correlated with many of the other variables in our data set, so we want to use multiple regression to isolate the partial effects of each variable.

(i)

13

```
In [47]: print(len(df_boston.loc[df_boston["RM"] > 7]))
   print(len(df_boston.loc[df_boston["RM"] > 8]))
64
```

There are 64 census tracts where the average number of rooms per home is greater than 7, and there are 13 census tracts where the average number of rooms per home is more than 8.

```
In [48]: more_than_8 = df_boston.loc[df_boston["RM"] > 8].mean()
avg_values = df_boston.mean()
```

```
comparison = pd.concat([more_than_8, avg_values], axis = 1)
comparison.columns = ["more_than_8", "avg_values"]
print(comparison)
```

more_than_8	avg_values
0.718795	3.593761
13.615385	11.363636
7.078462	11.136779
0.153846	0.069170
0.539238	0.554695
8.348538	6.284634
71.538462	68.574901
3.430192	3.795043
7.461538	9.549407
325.076923	408.237154
16.361538	18.455534
385.210769	356.674032
4.310000	12.653063
44.200000	22.532806
	0.718795 13.615385 7.078462 0.153846 0.539238 8.348538 71.538462 3.430192 7.461538 325.076923 16.361538 385.210769 4.310000

Census tracts with more than eight rooms per dwelling tend to have low crime, have less industrially zoned land, are more likely to border the Charles River, have a smaller share of low income residents, and have high median home values. These are likely the fancier, wealthier areas of Boston where people can afford large, expensive homes.

Chapter 3: Question 3

(a)

The "true" regression model is:

$$salary = \beta_0 + \beta_1 GPA + \beta_2 IQ + \beta_3 level + \beta_4 GPA \times IQ + \beta_5 GPA \times level + \epsilon$$

We estimate the model:

$$\widehat{salary} = 50 + 20(GPA) + 0.07(IQ) + 35(level) + 0.01(GPA \times IQ) - 10(GPA \times level)$$

The answer is (ii). For a fixed value of IQ and GPA, college graduates earn more on average than high school graduates. This is because β_3 , the coefficient of level is 35, meaning a college graduate can expect a \$35,000 higher starting salary than a high school graduate on average, all else constant. The estimated coefficient of -10 for the interaction of GPA and level indicates that for college graduates, the slope of GPA is more shallow, but we are interested in the average difference between levels for this question, not GPA.

(b)

Based on our model, we predict that the starting salary of a college graduate with an IQ of 110 and a GPA of 4.0 will be

$$50 + 20(4.0) + 0.07(110) + 35(1) + 0.01(4.0)(110) - 10(4.0)(1) = 137.1$$

(c)

False. Just because the coefficient for the interaction between GPA and IQ is small does not mean there is little evidence of an interaction effect. The formula for a t-test to check if the coefficient is statistically significant is:

$$t = rac{\hat{eta}_j - eta_j}{SE(\hat{eta}_j)}$$

This means that even if the estimated coefficient is small, as long as the standard error is also very small, the coefficient could be statistically significant.

Chatper 3: Question 15

(a)

```
In [8]: predictors = list(df_boston.columns)
    predictors.remove("CRIM")

univar_coefs = {} # for part (c)

for predictor in predictors:
    X = df_boston[predictor]
    X = sm.add_constant(X) # add intercept to regression model
    y = df_boston["CRIM"]

    model = sm.OLS(y, X).fit()

# Extract coefficient variable names and values for part (c)
    univar_coefs[predictor] = model.params[predictor]

    print(f"Regression results for {predictor}:")
    display(model.summary())
    print("\n")
```

Regression results for ZN:

D	Dep. Variable:		C	RIM	R-s	quared:	0.040
	Mod	el:	OLS Ad		Adj. R-s	quared:	0.038
	Method:		east Squ	ares	F-s	tatistic:	20.88
	Date: Wed		, 17 Jan 2024 Prob (Prob (F-st	atistic):	6.15e-06
	Tim	ne:	14:1	8:54	Log-Like	elihood:	-1795.8
No. O	bservatio	ns:		506		AIC:	3596.
	Of Residua	ıls:		504		BIC:	3604.
	Df Mod	el:		1			
Cova	Covariance Type:			nonrobust			
	coef	std err	t	P> t	[0.025	0.975]	
const	4.4292	0.417	10.620	0.000	3.610	5.249	
ZN	-0.0735	0.016	-4.570	0.000	-0.105	-0.042	
	Omnibus	: 568.36	6 D ur	bin-W	atson:	0.862	

Notes:

Prob(Omnibus):

Skew:

Kurtosis:

5.270

41.103

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.000 **Jarque-Bera (JB):** 32952.356

Prob(JB):

Cond. No.

0.00

28.8

Regression results for INDUS:

OLS Regression Results

_	.,		<u> </u>	NIA 4	_	0.164	
Бер	. Variable	2:	CF	RIM	K-s	quared:	0.164
	Mode	l:	(DLS	Adj. R-s	0.162	
	Method	l: Le	ast Squa	ires	F-s	98.58	
	Date	e: Wed, 1	17 Jan 20	024 P i	rob (F-st	atistic):	2.44e-21
	Time	: :	14:18	3:54	Log-Like	elihood:	-1760.9
No. Obs	ervations	s:	į	506		AIC:	3526.
Df	Residuals	s:	į	504		BIC:	3534.
-	Df Mode	l:		1			
Covaria	nonrob	ust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-2.0509	0.668	-3.072	0.002	-3.362	-0.739	
INDUS	0.5068	0.051	9.929	0.000	0.407	0.607	
O	mnibus:	585.528	Durb	in-Wat	son:	0.990	
Prob(On	nnibus):	0.000	Jarque	e-Bera	(JB): 4	1469.710	
	Skew:	5.456		Prob	(JB)·	0.00	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

25.1

Regression results for CHAS:

Kurtosis:

45.987

OLS Regression Results

Dep. Variable		e:	C	CRIM	F	R-squared:	0.003
	Mode	el:		OLS	Adj. F	R-squared:	0.001
	Metho	d: Le	east Squ	iares	ı	F-statistic:	1.546
	Dat	e: Wed,	17 Jan 2	2024 I	Prob (F	-statistic):	0.214
	Tim	e:	14:1	8:55	Log-L	ikelihood:	-1805.3
No. Ob	servation	s:		506		AIC:	3615.
D	f Residual	s:		504		BIC:	3623.
	Df Mode	el:		1			
Covar	iance Typ	e:	nonro	bust			
	coof	std err	t	Ds IAI	[0.02	E 0.07E1	
	coei	sta err	٠,	P> t	[0.02	5 0.975]	
const	3.7232	0.396	9.404	0.000	2.94	5 4.501	
CHAS	-1.8715	1.505	-1.243	0.214	-4.82	9 1.086	
			_				
	Omnibus:	562.698	Dur	bin-Wa	atson:	0.822	
Prob(C	mnibus):	0.000	Jarqu	ue-Bera	a (JB):	30864.755	
	Skew:	5.205		Pro	b(JB):	0.00	
	Kurtosis:	39.818		Cond	d. No.	3.96	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for NOX:

Dep. Variable:	CRIM	R-squared:	0.174
Model:	OLS	Adj. R-squared:	0.173
Method:	Least Squares	F-statistic:	106.4
Date:	Wed, 17 Jan 2024	Prob (F-statistic):	9.16e-23
Time:	14:18:55	Log-Likelihood:	-1757.6
No. Observations:	506	AIC:	3519.
Df Residuals:	504	BIC:	3528.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-13.5881	1.702	-7.986	0.000	-16.931	-10.245
NOX	30.9753	3.003	10.315	0.000	25.076	36.875

Omnibus:	591.496	Durbin-Watson:	0.994
Prob(Omnibus):	0.000	Jarque-Bera (JB):	42994.381
Skew:	5.544	Prob(JB):	0.00
Kurtosis:	46.776	Cond. No.	11.3

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for RM:

OLS Regression Results

Dep. Variable		e:	CRIM		R-squared:		0.048
	Mode	el:		OLS	Adj. F	R-squared:	0.046
	Metho	d: L	east Squ	ıares		F-statistic:	25.62
	Dat	e: Wed,	17 Jan 2	2024	Prob (F	-statistic):	5.84e-07
	Tim	e:	14:1	8:55	Log-L	ikelihood:	-1793.5
No. Ol	oservation	ıs:		506		AIC:	3591.
D	f Residua	ls:		504		BIC:	3600.
	Df Mode	el:		1			
Covai	riance Typ	e:	nonro	bust			
	coef	std err	t	P> t	[0.02	5 0.975]	
const	20.5060	3.362	6.099	0.000	13.90	27.111	
RM	-2.6910	0.532	-5.062	0.000	-3.73	6 -1.646	
	Omnibus:	576.890) D ur	bin-W	atson:	0.883	
Prob(0	Omnibus):	0.000	Jarqı	ue-Ber	a (JB):	36966.825	
	Skew:	5.36	1	Pro	b(JB):	0.00	
	Kurtosis:	43.477	7	Con	d. No.	58.4	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for AGE:

Dep. Variable:		e:	: CRIM			R-squared:		
	Model:			OLS	Adj. R-squared:		0.121	
	Metho	d: L	east Squ	iares	F-	statistic:	70.72	
	Dat	e: Wed,	, 17 Jan 2	2024 I	Prob (F-	statistic):	4.26e-16	
	Tim	e:	14:1	8:55	Log-Lil	celihood:	-1772.9	
No. Ok	oservation	s:		506		AIC:	3550.	
D	f Residual	s:		504		BIC:	3558.	
	Df Mode	el:		1				
Covariance Type: nonrobust								
	iance Typ	e:	nonro	bust				
-								
		e. std err		P> t	[0.025	0.975]		
const	coef	std err			_	0.975] -1.898		
	coef	std err	t	P> t	_	_		
const	coef -3.7527	std err 0.944	t	P> t 0.000	-5.608	-1.898		
const	coef -3.7527	std err 0.944 0.013	-3.974 8.409	P> t 0.000	-5.608 0.082	-1.898		
const	coef -3.7527 0.1071	std err 0.944 0.013	-3.974 8.409 0 Dur	P> t 0.000 0.000	-5.608 0.082	-1.898 0.132		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

195.

Regression results for DIS:

Kurtosis:

43.426

Dep. Variable:	: (CRIM		quared:	0.143
Model:		OLS	Adj. R-s	quared:	0.141
Method:	Least Squ	ıares	F-statistic:		83.97
Date:	Wed, 17 Jan 2	2024 P	Prob (F-st	atistic):	1.27e-18
Time:	14:1	8:55	Log-Like	elihood:	-1767.1
No. Observations:		506		AIC:	3538.
Df Residuals:		504		BIC:	3547.
Df Model:		1			
Covariance Type:	nonro	nonrobust			
coef s	td err t	P> t	[0.025	0.975]	
const 9.4489	0.731 12.934	0.000	8.014	10.884	
DIS -1.5428	0.168 -9.163	0.000	-1.874	-1.212	
Omnibus:	577.090 Du r	bin-Wa	tson:	0.957	

Omnibus:	577.090	Durbin-Watson:	0.957
Prob(Omnibus):	0.000	Jarque-Bera (JB):	37542.100
Skew:	5.357	Prob(JB):	0.00
Kurtosis:	43.815	Cond. No.	9.32

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for RAD:

OLS Regression Results

De	ep. Variabl	e:	C	RIM	R	-squared:	0.387
	Mode	el:		OLS	Adj. R	-squared:	0.386
	Metho	d: L	east Squ	ares	ı	-statistic:	318.1
	Date	e: Wed	, 17 Jan 2	2024 P	rob (F	-statistic):	1.62e-55
	Time	e:	14:1	8:55	Log-L	ikelihood:	-1682.3
No. Ol	bservation	s:		506		AIC:	3369.
D	of Residual	s:		504		BIC:	3377.
	Df Mode	el:		1			
Cova	riance Typ	e:	nonro	bust			
	coef	std err	t	P> t	[0.02	5 0.975]	
const	-2.2709	0.445	-5.105	0.000	-3.14	5 -1.397	
RAD	0.6141	0.034	17.835	0.000	0.54	6 0.682	
	Omnibus:	654.23	2 D ur	bin-Wa	tson:	1.336	
Prob(0	Omnibus):	0.00	0 Jarq ı	ıe-Bera	(JB):	74327.568	
Prob(C	Omnibus): Skew:	0.00 6.44	•		(JB): o(JB):	74327.568 0.00	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

19.2

Regression results for TAX:

Kurtosis:

60.961

De	p. Variabl	le:	CR	RIM	R-sq	uared:	0.336
	Mode	el:	C	DLS .	Adj. R-sq	uared:	0.335
	Metho	d: Le	east Squa	res	F-sta	atistic:	254.9
	Dat	t e: Wed,	17 Jan 20)24 P r	ob (F-sta	tistic):	9.76e-47
	Tim	ie:	14:18	:55	Log-Likel	ihood:	-1702.5
No. Ob	servation	ns:	5	506		AIC:	3409.
D	f Residua	ls:	5	504		BIC:	3418.
	Df Mode	el:		1			
Covar	iance Typ	e:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
			_		-	-	
const	-8.4748	0.818	-10.365	0.000	-10.081	-6.868	
TAX	0.0296	0.002	15.966	0.000	0.026	0.033	
	Omnibus:	634.003	Durb	in-Wat	son.	1.252	
		00000					
Prob(C)mnibus):	0.000	Jarque	e-Bera	(JB): 63°	141.063	
	Skew:	6.134		Prob	(JB):	0.00	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.16e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for PTRATIO:

OLS Regression Results

Dep. Variable:	CRIM	R-squared:	0.083
Model:	OLS	Adj. R-squared:	0.081
Method:	Least Squares	F-statistic:	45.67
Date:	Wed, 17 Jan 2024	Prob (F-statistic):	3.88e-11
Time:	14:18:55	Log-Likelihood:	-1784.1
No. Observations:	506	AIC:	3572.
Df Residuals:	504	BIC:	3581.
Df Model:	1		
Covariance Type:	nonrobust		
coef	std err t	P> t [0.025 0.	975]

	coef	std err	t	P> t	[0.025	0.975]
const	-17.5307	3.147	-5.570	0.000	-23.714	-11.347
PTRATIO	1.1446	0.169	6.758	0.000	0.812	1.477

0.909	Durbin-Watson:	568.808	Omnibus:
34373.378	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	5.256	Skew:
160.	Cond. No.	41.985	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for B:

De	p. Variabl	e:	C	RIM	R	-squared:	0.142
	Mode	el:		OLS	Adj. R	-squared:	0.141
	Metho	d: Le	east Squ	ares	F	-statistic:	83.69
	Dat	e: Wed,	17 Jan 2	.024 P	rob (F	-statistic):	1.43e-18
	Tim	e:	14:18	8:55	Log-L	ikelihood:	-1767.2
No. Ok	servation	s:		506		AIC:	3538.
D	f Residual	s:		504		BIC:	3547.
	Df Mode	el:		1			
Covar	iance Typ	e:	nonrol	oust			
	coef	std err	t	P> t	[0.02	5 0.975]	
const	16.2680	1.430	11.376	0.000	13.45	8 19.078	
В	-0.0355	0.004	-9.148	0.000	-0.04	3 -0.028	
	Omnibus:	591.626	Durl	bin-Wa	tson:	1.001	
Prob(C	Omnibus):	0.000	Jarqu	ie-Bera	(JB):	43282.465	
	Skew:	5.543		Prob	o(JB):	0.00	
		3.3 .3			. ()-		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.49e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for LSTAT:

De	p. Variabl	e:	C	RIM	F	R-squared:	0.205
	Mode	el:	(OLS	Adj. F	R-squared:	0.203
	Metho	d: Le	ast Squ	ares	I	F-statistic:	129.6
	Dat	e: Wed,	17 Jan 2	024 I	Prob (F	-statistic):	7.12e-27
	Tim	e:	14:18	8:55	Log-L	ikelihood:	-1748.2
No. Ob	servation	s:		506		AIC:	3500.
Di	f Residual	s:		504		BIC:	3509.
	Df Mode	el:		1			
Covari	iance Typ	e:	nonrol	oust			
							
	coef	std err	t	P> t	[0.02	25 0.975]	
const	-3.2946	0.695	-4.742	0.000	-4.66	-1.930	
LSTAT	0.5444	0.048	11.383	0.000	0.4	0.638	
(Omnibus:	600.766	Durk	oin-Wa	atson:	1.184	
Prob(O	mnibus):	0.000	Jarqu	e-Bera	a (JB):	49637.173	
	Skew:	5.638		Pro	b(JB):	0.00	
	Kurtosis:	50.193		Con	d. No.	29.7	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression results for MDEV:

Dep	o. Variable	e:	CF	RIM	R-sq	uared:	0.149
	Mode	l:	C	DLS	Adj. R-sq	uared:	0.147
	Method	l: Le	ast Squa	res	F-st	atistic:	88.15
	Date	e: Wed,	17 Jan 20)24 P ı	rob (F-sta	itistic):	2.08e-19
	Time	2:	14:18	:55	Log-Like	ihood:	-1765.3
No. Ob	servations	s:	Ę	506		AIC:	3535.
Df	Residuals	s:	Ē	504		BIC:	3543.
	Df Mode	l:		1			
Covari	ance Type	e:	nonrob	ust			
	anaf	std err		P> t	[0.025	0.975]	
	coei	sta err		P> t	[0.025	0.975]	
const	11.7202	0.935	12.539	0.000	9.884	13.557	
MDEV	-0.3606	0.038	-9.389	0.000	-0.436	-0.285	
	,	FF0 202				1 000	
	Omnibus:	559.282	Durb	in-Wat	son:	1.000	
Prob(O	mnibus):	0.000	Jarque	e-Bera	(JB): 32	809.507	
	Skew:	5.114		Prob	(JB):	0.00	
	Kurtosis:	41.099		Cond.	No.	64.5	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Almost every predictor on its own is significantly correlated with the per capita crime rate, as we can see from the p-values that are substantially lower than 0.05. The only exception is whether the census tract borders the Charles River, which is weakly correlated with lower per capita crime, but the estimated coefficient is not statistically significant at the 5% level.

```
In [50]: for predictor in predictors:
    X = df_boston[predictor]
    X = sm.add_constant(X)
    y = df_boston["CRIM"]

    model = sm.OLS(y, X).fit()

# Create Figure and Axes objects
fig, ax = plt.subplots(figsize=(6, 4))

# Plot the data points
```

```
scatter = ax.scatter(
    X.iloc[:, 1], # exclude intercept column
    y
    )

# Plot the regression line
line = ax.plot(
    X.iloc[:, 1], # exclude intercept column
    model.predict(X),
    color='red'
    )

ax.set_title(f"Linear Regression for {predictor}")
ax.set_xlabel(predictor)
ax.set_ylabel("CRIM")

# Display the plot
plt.show()
```

Linear Regression for ZN

Linear Regression for INDUS

Linear Regression for CHAS

Linear Regression for AGE

Linear Regression for DIS

PTRATIO

We can see that there are some correlations for each of the predictors except "CHAS," the dummy for whether the census tract borders the Charles River. There is a weak negative correlation between "CHAS" and "CRIM," but it looks like most census tracts have relatively low crime and do not border the Charles River. The tracts with high crime per capita do not border the Charles River, however.

We can also see that many of the relationships between predictors and CRIM look nonlinear, which suggests we may want to use a polynomial regression to allow our line of best fit to curve to better fit the data.

(b)

```
In [9]: X = df_boston[predictors]
X = sm.add_constant(X)
y = df_boston["CRIM"]

model = sm.OLS(y, X).fit()
model.summary()
```

	_		
Dep. Variable:	CRIM	R-squared:	0.448
Model:	OLS	Adj. R-squared:	0.434
Method:	Least Squares	F-statistic:	30.73
Date:	Wed, 17 Jan 2024	Prob (F-statistic):	2.04e-55
Time:	14:23:37	Log-Likelihood:	-1655.7
No. Observations:	506	AIC:	3339.
Df Residuals:	492	BIC:	3399.
Df Model:	13		
Covariance Type:	nonrobust		
	_		

	coef	std err	t	P> t	[0.025	0.975]
const	17.4184	7.270	2.396	0.017	3.135	31.702
ZN	0.0449	0.019	2.386	0.017	0.008	0.082
INDUS	-0.0616	0.084	-0.735	0.463	-0.226	0.103
CHAS	-0.7414	1.186	-0.625	0.532	-3.071	1.588
NOX	-10.6455	5.301	-2.008	0.045	-21.061	-0.230
RM	0.3811	0.616	0.619	0.536	-0.829	1.591
AGE	0.0020	0.018	0.112	0.911	-0.033	0.037
DIS	-0.9950	0.283	-3.514	0.000	-1.551	-0.439
RAD	0.5888	0.088	6.656	0.000	0.415	0.763
TAX	-0.0037	0.005	-0.723	0.470	-0.014	0.006
PTRATIO	-0.2787	0.187	-1.488	0.137	-0.647	0.089
В	-0.0069	0.004	-1.857	0.064	-0.014	0.000
LSTAT	0.1213	0.076	1.594	0.112	-0.028	0.271
MDEV	-0.1992	0.061	-3.276	0.001	-0.319	-0.080

1.515	Durbin-Watson:	662.271	Omnibus:
82701.666	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	6.544	Skew:
1.58e+04	Cond. No.	64.248	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.58e+04. This might indicate that there are strong multicollinearity or other numerical problems.

When we just look at the partial effects of each predictor, fewer are predictive of the crime rate per capita. Now, only amount of residential zoning, nitric oxide emissions, distance from employment centers, access to radial highways, and median home value are significant at the 5% significance level.

For these predictors, we can reject the null hypothesis that there is no predicted effect of the independent variable on the per capita crime rate in Boston, holding the other predictors constant. We have evidence in favor of the alternative hypothesis that these predictors do have an expected effect on Boston per capita crime rates, holding the other predictors constant.

For the predictors with p-values greater than 0.05: INDUS, CHAS, RM, AGE, TAX, PTRATIO, and LSTAT, we fail to reject the null hypothesis that these variables have no expected effect on crime rate per capita.

(c)

	coefficients	multivariate	coefficients
IIIIVariate	COETTICIENTS	militivariate	COETTICIENTS

ZN	-0.073521	0.044919
INDUS	0.506847	-0.061576
CHAS	-1.871545	-0.741435
NOX	30.975259	-10.645500
RM	-2.691045	0.381070
AGE	0.107131	0.002011
DIS	-1.542831	-0.994992
RAD	0.614137	0.588838
TAX	0.029563	-0.003746
PTRATIO	1.144613	-0.278731
В	-0.035535	-0.006855
LSTAT	0.544406	0.121269
MDEV	-0.360647	-0.199218

```
In [12]: fig, ax = plt.subplots()
         ax.scatter(
             uni_vs_multi['univariate coefficients'],
             uni_vs_multi['multivariate coefficients'],
             color='blue'
         ax.set_title('Univariate vs Multivariate Coefficients')
         ax.set_xlabel('Univariate Coefficients')
         ax.set_ylabel('Multivariate Coefficients')
         # Add labels for each point
         for i, label in enumerate(uni_vs_multi.index):
             ax.annotate(
                 label,
                 # coordinates
                 (uni_vs_multi['univariate coefficients'][i],
                  uni_vs_multi['multivariate coefficients'][i])
         plt.show()
         print(df_boston["NOX"].corr(df_boston["RAD"]))
```

Univariate vs Multivariate Coefficients

0.6114405634855775

We can see from the scatterplot that most of the univariate coefficients were similar though more positive than their multivariate counterparts. The coefficient that changed the most was nitric oxide concentration, which was a strong positive predictor of a higher per capita crime rate in the univariate regression, but actually predicts a lower per capita crime rate when we isolate its partial effect.

This may be because areas with high nitric oxide concentrations tend to be more industrial and closer to the city center, so they tend to have more crime on average. However, high nitric oxide concentrations actually are associated with lower crime rates, all else constant. The difference comes from the fact that NOX is correlated with other variables that are positively associated with crime, such as access to radial highways, which were confounding the univariate model.

(d)

```
In [13]: for predictor in predictors:
    X = df_boston[predictor]
    X_squared = X**2
    X_cubed = X**3

    X_squared = X_squared.rename(f"{predictor}^2")
    X_cubed = X_cubed.rename(f"{predictor}^3")
```

```
X = pd.concat([X, X_squared, X_cubed], axis=1)
X = sm.add_constant(X)

y = df_boston["CRIM"]

model = sm.OLS(y, X).fit()

print(f"Regression results for {predictor}:")
display(model.summary())
print("\n")
```

Regression results for ZN:

OLS Regression Results

				,			
Dep. Variable:		:	CRIM			R-squared:	0.058
Model:		:	OLS		Adj.	R-squared:	0.052
Method:		: Lea	Least Squares		F-statistic:		10.24
Date:		: Wed, 1	Wed, 17 Jan 2024		Prob (F-statistic):		1.49e-06
Time:		:	14:48:39		Log-Likelihood:		-1791.1
No. Observations:		:	506		AIC:		3590.
Df Residuals:		:	502			BIC:	3607.
Df Model:		:		3			
Covariance Type:		:	nonrobust				
	coef	f std e	rr	t	P> t	[0.025	0.975]
const	coe f			t 11.133	P> t 0.000	[0.025 3.969	_
const ZN		3 0.43	33	11.133		3.969	_
	4.8193	3 0.43 3 0.17	33	11.133	0.000	3.969	5.670
ZN^2	4.8193 -0.3303	3 0.43 3 0.17 4 0.00	33 10 04	11.133 -3.008 1.670	0.000 0.003 0.096	3.969	5.670 -0.115 0.014
ZN^2 ZN^3	4.8193 -0.3303 0.0064	3 0.43 0.11 0.00 3.14e-0	33 10 04 05	11.133 -3.008 1.670	0.000 0.003 0.096 0.232	3.969 -0.546 -0.001	5.670 -0.115 0.014
ZN^2 ZN^3	4.8193 -0.3303 0.0064 -3.753e-05	3 0.43 3 0.11 4 0.00 5 3.14e-0	333 10)4)5	11.133 -3.008 1.670 -1.196 Durbin-V	0.000 0.003 0.096 0.232 Vatson:	3.969 -0.546 -0.001 -9.92e-05	5.670 -0.115 0.014 2.41e-05
ZN^2 ZN^3	4.8193 -0.3303 0.0064 -3.753e-05 Omnibus:	3 0.43 3 0.11 4 0.00 5 3.14e-0 570.003 0.000	333 10)4)5	11.133 -3.008 1.670 -1.196 Durbin-V	0.000 0.003 0.096 0.232 Vatson:	3.969 -0.546 -0.001 -9.92e-05 0.879 33886.468	5.670 -0.115 0.014 2.41e-05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.89e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for INDUS:

OLS Regression Results

Dep. Variable:	CRIM	R-squared:	0.257
Model:	OLS	Adj. R-squared:	0.252
Method:	Least Squares	F-statistic:	57.86
Date:	Wed, 17 Jan 2024	Prob (F-statistic):	3.88e-32
Time:	14:48:39	Log-Likelihood:	-1731.0
No. Observations:	506	AIC:	3470.
Df Residuals:	502	BIC:	3487.
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	3.6410	1.576	2.310	0.021	0.545	6.737
INDUS	-1.9533	0.483	-4.047	0.000	-2.901	-1.005
INDUS^2	0.2504	0.039	6.361	0.000	0.173	0.328
INDUS^3	-0.0069	0.001	-7.239	0.000	-0.009	-0.005

Omnibus:	611.416	Durbin-Watson:	1.118
Prob(Omnibus):	0.000	Jarque-Bera (JB):	51547.097
Skew:	5.815	Prob(JB):	0.00
Kurtosis:	51.059	Cond. No.	2.47e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.47e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for CHAS:

Dep. Variable:	CRIM	R-squared:	0.003
Model:	OLS	Adj. R-squared:	-0.001
Method:	Least Squares	F-statistic:	0.7710
Date:	Wed, 17 Jan 2024	Prob (F-statistic):	0.463
Time:	14:48:39	Log-Likelihood:	-1805.3
No. Observations:	506	AIC:	3617.
Df Residuals:	503	BIC:	3629.
Df Model:	2		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	3.7232	0.396	9.395	0.000	2.945	4.502
CHAS	1.108e+14	2.71e+14	0.409	0.683	-4.22e+14	6.43e+14
CHAS^2	-5.578e+13	1.36e+14	-0.409	0.683	-3.24e+14	2.12e+14
CHAS^3	-5.5e+13	1.35e+14	-0.409	0.683	-3.19e+14	2.09e+14

0.822	Durbin-Watson:	562.637	Omnibus:
30853.674	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	5.204	Skew:
5.51e+16	Cond. No.	39.811	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.7e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Regression results for NOX:

Dep	. Variable	: :			CRIM	F	R-squared:	0.292
	Mode	l:			OLS	Adj. F	R-squared:	0.288
	Method	l:	Lea	st So	quares	F-statistic:		69.14
	Date	e: V	Ved, 1	7 Jar	n 2024	Prob (F	-statistic):	1.94e-37
	Time	e:		14	1:48:39	Log-L	ikelihood:	-1718.6
No. Obs	ervations	5:			506		AIC:	3445.
Df	Residuals	: :			502		BIC:	3462.
ı	Df Mode	l:			3			
Covaria	nce Type	e:		non	robust			
	C	oef	std	err	t	P> t	[0.025	0.975]
const	230.14		std 33.7		t 6.822	P> t 0.000	[0.025 163.864	0.975] 296.420
const	_	421		734			-	_
	230.14	421 021	33.7	734 360	6.822	0.000	163.864	296.420
NOX	230.14	421 021 265	33.7	734 860 859	6.822	0.000	163.864 -1599.791	296.420 -928.414
NOX NOX^2 NOX^3	230.14 -1264.10 2223.22	421 021 265 894	33.7 170.8 280.6	734 360 559	6.822 -7.398 7.921	0.000 0.000 0.000 0.000	163.864 -1599.791 1671.816	296.420 -928.414 2774.637
NOX NOX^2 NOX^3	230.14 -1264.10 2223.22 -1232.38 mnibus:	421 021 265 894	33.7 170.8 280.6 149.6	734 860 659 687	6.822 -7.398 7.921 -8.233	0.000 0.000 0.000 0.000	163.864 -1599.791 1671.816 -1526.479	296.420 -928.414 2774.637
NOX NOX^2 NOX^3	230.14 -1264.10 2223.22 -1232.38 mnibus:	421 021 265 894 612	33.7 170.8 280.6 149.6	734 860 659 687	6.822 -7.398 7.921 -8.233 urbin-W	0.000 0.000 0.000 0.000	163.864 -1599.791 1671.816 -1526.479	296.420 -928.414 2774.637

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.36e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for RM:

Dep. Variable	:	CRI	М	R-squa	red:	C	0.068
Model	:	0	LS A	\dj. R-squa	red:	C	0.063
Method	: Lea	ast Squar	es	F-stat	istic:	1	2.29
Date	: Wed, 1	7 Jan 202	24 Pro	ob (F-statis	stic):	9.06	e-08
Time	:	14:48:4	40 L	og-Likelih	ood:	-17	788.2
No. Observations	:	50	06		AIC:	3	3584.
Df Residuals	:	50	02		BIC:	3	8601.
Df Model	:		3				
Covariance Type	:	nonrobu	ıst				
coef	std err	t	P> t	[0.025	0.9	75]	
const 111.9002	64.460	1.736	0.083	-14.744	238.	545	
RM -38.7040	31.284	-1.237	0.217	-100.167	22.	759	
RM^2 4.4655	5.005	0.892	0.373	-5.369	14.	300	
RM^3 -0.1694	0.264	-0.643	0.521	-0.687	0.	348	
Omnibus:	586.445	Durbi	n-Wats	on:	0.919		

Kurtosis:	45.461	Cond. No.	5.36e+04
Skew:	5.484	Prob(JB):	0.00
Prob(Omnibus):	0.000	Jarque-Bera (JB):	40548.719
Omnibus:	586.445	Durbin-Watson:	0.919

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.36e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for AGE:

			_	•			
Dep	o. Variable:			CRIM		R-squared:	0.172
	Model:			OLS	Adj.	0.167	
	Method:	Lea	st S	Squares		34.86	
	Date:	Wed, 1	7 Ja	an 2024	Prob (F-statistic):	1.76e-20
	Time:		1	4:48:40	Log-	Likelihood:	-1758.2
No. Obs	servations:			506		AIC:	3524.
Df	Residuals:			502		BIC:	3541.
			3				
Covari	ance Type:		nor	nrobust			
	coef	f std e	err	t	P> t	[0.025	0.975]
const	-2.5592	2.7	71	-0.924	0.356	-8.003	2.884
AGE	0.2743	0.1	86	1.471	0.142	-0.092	0.641
AGE^2	-0.0072	0.0	04	-1.987	0.047	-0.014	-8.25e-05
AGE^3	5.737e-05	2.11e-	05	2.719	0.007	1.59e-05	9.88e-05
C	Omnibus:	577.859	C	Ourbin-\	Vatson:	1.027	7
Prob(O	mnibus):	0.000	Ja	rque-Be	era (JB):	39629.126	5
	Skew:	5.342		Pr	ob(JB):	0.00)
1	Kurtosis:	45.018		Co	nd. No.	4.74e+06	5

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.74e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for DIS:

De	o. Variable	•	CRI	М	R-squ	ared:	0.276
	Model	•	0	LS A	Adj. R-squ	ared:	0.272
	Method	: Lea	ast Squar	es	F-sta	tistic:	63.74
	Date	: Wed, 1	7 Jan 20	24 Pro	ob (F-stat	istic):	6.20e-35
	Time	•	14:48:	40 L	og-Likelil	nood:	-1724.4
No. Ob	servations	•	50	06		AIC:	3457.
Df	Residuals	•	50	02		BIC:	3474.
	Df Model	•		3			
Covari	ance Type	•	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975	5]
const	29.9496	2.448	12.235	0.000	25.140	34.75	9
DIS	-15.5172	1.737	-8.931	0.000	-18.931	-12.10	4
DIS^2	2.4479	0.347	7.061	0.000	1.767	3.12	9
DIS^3	-0.1185	0.020	-5.802	0.000	-0.159	-0.07	8
C	Omnibus:	577.986	Durbi	n-Wats	on:	1.133	

Omnibus:	577.986	Durbin-Watson:	1.133
Prob(Omnibus):	0.000	Jarque-Bera (JB):	42441.952
Skew:	5.310	Prob(JB):	0.00
Kurtosis:	46.592	Cond. No.	2.10e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.1e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for RAD:

Dep	. Variable	:	CR	IM	R-sq	uared:	0.396
·	Model	•	C	LS A	Adj. R-sq	uared:	0.392
	Method	: Lea	ast Squa	res	F-sta	atistic:	109.5
	Date	: Wed, 1	7 Jan 20	24 Pr	ob (F-sta	tistic):	1.47e-54
	Time	:	14:48:	:40 L	.og-Likeli	ihood:	-1678.7
No. Obs	ervations	:	5	06		AIC:	3365.
Df	Residuals	:	5	02		BIC:	3382.
1	Df Model	:		3			
Covaria	nce Type	:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.6050	2.057	-0.294	0.769	-4.645	3.435	
RAD	0.5122	1.047	0.489	0.625	-1.545	2.569	
RAD^2	-0.0750	0.149	-0.504	0.615	-0.368	0.218	
RAD^3	0.0032	0.005	0.699	0.485	-0.006	0.012	
Oı	mnibus:	657.375	Durb	in-Wats	son:	1.349	
Prob(On		0.000			JB): 766		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 5.43e+04

Prob(JB):

0.00

[2] The condition number is large, 5.43e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for TAX:

Skew:

Kurtosis:

6.487

61.881

Dep	o. Variable:		CRIM		R-squared:	0.365
	Model:		OLS	Adj.	R-squared:	0.361
	Method:	Least	Squares		F-statistic:	96.10
	Date:	Wed, 17 .	lan 2024	Prob (I	F-statistic):	3.69e-49
	Time:		14:48:40	Log-	Likelihood:	-1691.3
No. Obs	servations:		506		AIC:	3391.
Df	Residuals:		502		BIC:	3407.
	Df Model:		3			
Covaria	ance Type:	no	onrobust			
	coef	std er	r t	P> t	[0.025	0.975]
const	coef 19.0705				[0.025 -4.166	0.975] 42.307
const		11.827	7 1.612	0.107	-	-
	19.0705	11.827 0.096	7 1.612 5 -1.589	0.107	-4.166	42.307
TAX TAX^2	19.0705 -0.1524	0.096	7 1.612 5 -1.589 0 1.476	0.107 0.113 0.141	-4.166 -0.341 -0.000	42.307 0.036 0.001
TAX TAX^2	19.0705 -0.1524 0.0004	0.096 0.000 1.89e-07	7 1.612 5 -1.589 0 1.476	0.107 0.113 0.141 0.247	-4.166 -0.341 -0.000	42.307 0.036 0.001
TAX TAX^2 TAX^3	19.0705 -0.1524 0.0004 -2.193e-07	11.827 0.096 0.000 1.89e-07	7 1.612 5 -1.589) 1.476 7 -1.158 Durbin-V	0.107 0.113 0.141 0.247 Vatson:	-4.166 -0.341 -0.000 -5.91e-07	42.307 0.036 0.001
TAX TAX^2 TAX^3	19.0705 -0.1524 0.0004 -2.193e-07 Omnibus: 6	11.827 0.096 0.000 1.89e-07	7 1.612 5 -1.589 0 1.476 7 -1.158 Durbin-V	0.107 0.113 0.141 0.247 Vatson:	-4.166 -0.341 -0.000 -5.91e-07	42.307 0.036 0.001

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.16e+09. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for PTRATIO:

Dep. Var	iable:	C	CRIM	R-:	squared:	0.112
M	lodel:		OLS .	Adj. R-	squared:	0.107
Me	thod:	Least Squ	iares	F-	statistic:	21.21
	Date: We	ed, 17 Jan 2	2024 Pr	ob (F-s	tatistic):	5.99e-13
	Time:	14:4	8:40 I	Log-Lik	elihood:	-1775.9
No. Observa	tions:		506		AIC:	3560.
Df Resid	duals:		502		BIC:	3577.
Df M	lodel:		3			
Covariance	Туре:	nonro	bust			
	coef	std err	t	P> t	[0.025	0.975]
const	coef 474.0255	std err 156.823		P> t 0.003	[0.025 165.915	_
const PTRATIO			3.023		-	_
333.33	474.0255	156.823	3.023 -2.959	0.003	165.915	782.135 -27.487
PTRATIO	474.0255 -81.8089	156.823 27.649	3.023 -2.959	0.003	165.915 -136.131	782.135 -27.487 7.764
PTRATIO^2	474.0255 -81.8089 4.6039 -0.0842	156.823 27.649 1.609 0.031	3.023 -2.959 2.862	0.003 0.003 0.004 0.007	165.915 -136.131 1.444	782.135 -27.487 7.764
PTRATIO^2 PTRATIO^3	474.0255 -81.8089 4.6039 -0.0842	156.823 27.649 1.609 0.031	3.023 -2.959 2.862 -2.724	0.003 0.003 0.004 0.007	-136.131 -13444 -0.145	782.135 -27.487 7.764
PTRATIO^2 PTRATIO^3 Omnik Prob(Omnib	474.0255 -81.8089 4.6039 -0.0842 Dus: 572.9 us): 0.0	156.823 27.649 1.609 0.031	3.023 -2.959 2.862 -2.724 bin-Wat	0.003 0.003 0.004 0.007 son:	165.915 -136.131 1.444 -0.145 0.949	782.135 -27.487 7.764

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.02e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for B:

D	ep. Variable:		CRIM		R-squared:	0.144
	Model:		OLS	Adj.	R-squared:	0.139
	Method:	Least	Squares		F-statistic:	28.14
	Date:	Wed, 17	Jan 2024	Prob ((F-statistic):	7.83e-17
	Time:		14:48:40	Log-	Likelihood:	-1766.8
No. O	bservations:		506		AIC:	3542.
ı	Df Residuals:		502		BIC:	3558.
	Df Model:		3			
Cova	ariance Type:	: no	onrobust			
	coef	std err	t	P> t	[0.025	0.975]
const			-	P> t 0.000	[0.025 13.448	0.975] 22.531
const	17.9898	2.312	7.782		-	_
	17.9898 -0.0845	2.312 0.056	7.782	0.000	13.448	22.531
В	17.9898 -0.0845 0.0002	2.312 0.056 0.000	7.782 -1.497 0.760	0.000 0.135	13.448 -0.196 -0.000	22.531
B B^2	17.9898 -0.0845 0.0002	2.312 0.056 0.000	7.782 -1.497 0.760	0.000 0.135 0.447 0.509	13.448 -0.196 -0.000 -1.15e-06	22.531 0.026 0.001 5.7e-07
B^2 B^3	17.9898 -0.0845 0.0002 -2.895e-07	2.312 0.056 0.000 4.38e-07 589.534	7.782 -1.497 0.760 -0.661 Durbin-V	0.000 0.135 0.447 0.509	13.448 -0.196 -0.000 -1.15e-06	22.531 0.026 0.001 5.7e-07
B^2 B^3	17.9898 -0.0845 0.0002 -2.895e-07 Omnibus:	2.312 0.056 0.000 4.38e-07 589.534	7.782 -1.497 0.760 -0.661 Durbin-N	0.000 0.135 0.447 0.509	13.448 -0.196 -0.000 -1.15e-06 : 0.990	22.531 0.026 0.001 5.7e-07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.59e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Regression results for LSTAT:

Dep. \	Variable:		CRIN	1	R-squ	ared:	0.214
	Model:		OL	S Ac	lj. R-squ	ared:	0.210
1	Method:	Leas	t Square	S	F-stat	istic:	45.67
	Date:	Wed, 17	Jan 202	4 Prob	(F-stati	stic):	4.13e-26
	Time:		14:48:4) Lo	g-Likelih	ood:	-1745.0
No. Obser	vations:		50	6		AIC:	3498.
Df Re	esiduals:		502	2		BIC:	3515.
D	f Model:		:	3			
Covarian	ce Type:	r	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975	5]
const	1.0836	2.032	0.533	0.594	-2.909	5.07	6
LSTAT	-0.4133	0.466	-0.887	0.375	-1.328	0.50	2
LSTAT^2	0.0530	0.030	1.758	0.079	-0.006	0.11	2
LSTAT^3	-0.0008	0.001	-1.423	0.155	-0.002	0.00	0
0	nibus: 6	507.032	Durbin			1.239	

Notes:

Prob(Omnibus):

Skew:

Kurtosis:

5.717

51.941

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.2e+04. This might indicate that there are strong multicollinearity or other numerical problems.

0.000 **Jarque-Bera (JB):** 53255.699

Prob(JB):

Cond. No.

0.00

5.20e+04

Regression results for MDEV:

			_				
Dep. \	/ariable:		CRIM		R-squar	ed:	0.416
	Model:		OLS	Adj.	R-squar	ed:	0.413
ı	Method:	Leas	t Squares		F-statis	tic:	119.2
	Date:	Wed, 17	Jan 2024	Prob	(F-statist	ic):	2.65e-58
	Time:		14:48:40	Log-	Likeliho	od:	-1670.0
No. Obser	vations:		506		Δ	AIC:	3348.
Df Re	esiduals:		502		В	BIC:	3365.
Dt	f Model:		3				
Covarian	ce Type:	n	onrobust				
	coef	std err	t	P> t	[0.025	0.97	' 5]
const	52.9386	3.366	15.725	0.000	46.325	59.5	53
MDEV	-5.0774	0.435	-11.668	0.000	-5.932	-4.2	22
MDEV^2	0.1551	0.017	8.995	0.000	0.121	0.1	89
MDEV^3	-0.0015	0.000	-7.277	0.000	-0.002	-0.0	01
Om	nibus: 5	68.100	Durbin-\	Natson :	: 1.	.360	

1.360	Durbin-Watson:	568.100	Omnibus:
47296.533	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	5.084	Skew:
3.67e+05	Cond. No.	49.259	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.67e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Several predictors have statistically significant polynomial terms at the 5% level, including the proportion of indutrially zoned acres, nitric oxide concentration, proportion of homes built before 1940, distance from employment centers, pupil-teacher ratio, and median home value. This makes sense if we look at the plots from part (a) since many of the relationships are flat and then spike up. These relationships can be modeled better with a curve than with a straight line, though curves are still not perfect. A model that can spike up and down like KNN might be able to fit the data better. We could also try taking the natural log of the per capita crime rate to reduce the spikiness.