Biological Modeling of Neural Networks

(PA)

Week 10 – Variability and Noise: The question of the neural code

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 10: NEURONAL DYNAMICS Ch. 7.1-7.3

Cambridge Univ. Press

10.1 Variability of spike trains

- experiments
- 10.2 Sources of Variability?
 Is variability equal to noise?
- 10.3 Poisson Model
 - homogeneous/inhomogeneous
- 10.4 Three definitions of Rate Code
- 10.5 Stochastic spike arrival
 - Membrane potential fluctuations

10.1 Variability in vivo – revi	iew from week 1
	motor cortex visual cortex
	to motor output

Spontaneous activity in vivo – review from week 1 Spontaneous activity in vivo Variability - of membrane potential? - of spike timing? awake mouse, cortex, freely whisking,

10.1 Variability

In vivo data → looks 'noisy'

In vitro data → fluctuations

Fluctuations

-of membrane potential -of spike times

fluctuations=noise?

relevance for coding?

source of fluctuations?

model of fluctuations?

Biological Modeling of Neural Networks

Week 10 - Variability and Noise: The question of the neural code

Wulfram Gerstner EPFL, Lausanne, Switzerland 10.1 Variability of spike trains

- experiments

10.2 Sources of Variability?
- Is variability equal to noise?

10.3 Poisson Model

- homogeneous/inhomogeneous 10.4 Three definitions of Rate Code

10.5 Stochastic spike arrival

- Membrane potential fluctuations

10.2. Sources of Variability

- Intrinsic noise (ion channels)

- -Finite number of channels
- -Finite temperature

10.2. Sources of Variability

- Intrinsic noise (ion channels)

- -Finite number of channels
- -Finite temperature

-Network noise (background activity)

- -Spike arrival from other neurons -Beyond control of experimentalist

Check intrinisic noise by removing the network

- Variability of interspike intervals (ISI) - Variability of spike trains: - Variabi

10.2. Sources of Variability	
In vivo data → looks 'noisy'	- Intrinsic noise (ion channels)
In vitro data →small fluctuations →nearly deterministic	-Network noise

A-Spike timing in vitro and in vivo [] Reliability of spike timing can be assessed by repeating several times the same stimulus [] Spike timing in vitro is more reliable under injection of constant current than with fluctuating current [] Spike timing in vitro is more reliable than spike timing in vivo B - Interspike Interval Distribution (ISI) [] An isolated deterministic leaky integrate-and-fire neuron driven by a constant current can have a broad ISI [] A deterministic leaky integrate-and-fire neurons can have a broad ISI [] A deterministic Hodgkin-Huxley model as in week 2 embedded into a randomly connected network of integrate-and-fire neurons can have a broad ISI

Biological Modeling of Neural Networks

Week 10 - Variability and Noise:

The question of the neural code \10.2 Sources of Variability?

Wulfram Gerstner EPFL, Lausanne, Switzerland 10.1 Variability of spike trains - experiments

- Is variability equal to noise?

10.3 Poisson Model

- homogeneous/inhomogeneous

10.4 Three definitions of Rate Code 10.5 Stochastic spike arrival

- Membrane potential fluctuations

10.3 Poisson Model

Homogeneous Poisson model: constant rate

Blackboard: Poisson model

Probability of finding a spike $P_F = \rho_0 \Delta t$

stochastic spiking → Poisson model

10.3 Interval distribution of Poisson Process

Probability of firing:

 $P_{\scriptscriptstyle F} = \rho_0 \, \Delta t$

(i) Continuous time prob to 'survive' $\Delta t \rightarrow 0$

(ii) Discrete time steps Blackboard: Poisson model

$$\frac{d}{dt}S(t_1 | t_0) = -\rho_0 S(t_1 | t_0)$$

Exercise 1.1 and 1.2: Poisson neuron

Start 9:50 - Next lecture at 10:15

Poisson rate ρ stimulus I_{O} 1.1. - Probability of NOT firing during time t?

1.2. - Interval distribution p(s)?

1.3. - How can we detect if rate switches from $\rho_{O} \rightarrow \rho_{1}$ (1.4 at home:)

-2 neurons fire stochastically (Poisson) at 20Hz.

Percentage of spikes that coincide within +/-2 ms?)

Week 10 – Two short quizzes (derivatives)	
dt')	

Tate changes $\rho(t)$ Probability of firing $P_F = \rho(t) \Delta t$ Survivor function $S(t \mid \hat{t}) = \exp(-\int_{\hat{t}}^{t} \rho(t') dt')$ Interval distribution $P(t \mid \hat{t}) = \rho(t) \exp(-\int_{\hat{t}}^{t} \rho(t') dt')$

Week 10 Quiz .3	
A Homogeneous Poisson Process: A spike train is generated by a homogeneous Poisson process with rate 25Hz with time steps of 0.1ms. [] The most likely interspike interval is 25ms. [] The most likely interspike interval is 40 ms. [] The most likely interspike interval is 0.1ms [] We can't say. B Inhomogeneous Poisson Process: A spike train is generated by an inhomogeneous Poisson process with a rate that oscillates periodically (sine wave) between 0 and 50Hz (mean 25Hz). A first spike has been fired at a time when the rate was at its maximum. Time steps are 0.1ms. [] The most likely interval before the next spike is 20ms. [] The most likely interval before the next spike is 40 ms. [] The most likely interval before the next spike is 0.1ms. [] We can't say.	
Biological Modeling of Neural Networks	
110.1 Variability of spike trains	
Week 10 – Variability and Noise: - experiments The question of the neural code 10.2 Sources of Variability?	
- Is variability equal to noise? Wulfram Gerstner 10.3 Poisson Model EPFL, Lausanne, Switzerland - homogeneous/inhomogeneous	
10.4 Three definitions of Rate Code 10.5 Stochastic spike arrival	
- Membrane potential fluctuations	
	_
10.4. Three definitions of Rate Codes	
3 definitions	

-Temporal averaging

- Averaging across repetitions

- Population averaging ('spatial' averaging)

10.4. Three definitions of Rate Codes

3 definitions

- √ -Temporal averaging (spike count) Problem: slow!!! ISI distribution (regularity of spike train) Fano factor (repeatability across repetitions)
 - Averaging across repetitions
 - Population averaging ('spatial' averaging)

10.4. Three definitions of Rate Codes 3 definitions - Temporal averaging - Averaging across repetitions Problem: not useful for animal!!! - Population averaging

Biological Modeling of Neural Networks Week 10 – Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne, Switzerland 10.1 Variability of spike trains - experiments 10.2 Sources of Variability? - Is variability equal to noise? 10.3 Poisson Model - homogeneous/inhomogeneous 10.4 Three definitions of Rate Code 10.5 Stochastic spike arrival - Membrane potential fluctuations

10.5. Stochastic Spike Arrival (Poisson model of input)

Blackboard now!

Probability of spike arrival:

$$P_F = K \rho_0 \Delta t$$

Take
$$\Delta t \rightarrow 0$$

spike train

ke
$$\Delta t \to 0$$
 expectation
$$S(t) = \sum_{k=1}^{K} \sum_{i=1}^{K} \delta(t - t_{k}^{f})$$

Week 10 - Exercise 2.1 NOW

Passive membrane

$$\tau \frac{d}{dt}u = -(u - u_{rest}) + RI^{syn}(t) \longrightarrow u(t) = \sum_{i} \int ds \, f(s) \, \delta(t - t_k^f - s)$$

A leaky integrate-and-fire neuron without threshold (=passive membrane) receives stochastic spike arrival, described as a homogeneous Poisson process. Calculate the mean membrane potential. To do so, use

the above formula. Start at 11:35, Discussion at 11:48

week 10 - Ouiz 5

A linear (=passive) membrane has a potential given by

$$u(t) = \sum \int dt' f(t-t') \delta(t'-t_k^f) + a$$

Suppose the neuronal dynamics are given by

$$\tau \frac{d}{dt} u = -(u - u_{rest}) + q \sum_{f} \delta(t - t^{f})$$

- [] the filter f is exponential with time constant τ
- [] the constant a is equal to the time constant $\, au$
- [] the constant a is equal to u_{rest}
- [] the amplitude of the filter f is proportional to q
- [] the amplitude of the filter f is q

for a passive membrane, we can analytically predict the mean of membrane potential fluctuations Passive membrane =Leaky integrate-and-fire without threshold Next week: 1) Calculate fluctuations 2) ADD THRESHOLD The leaky Integrate-and-Fire Deaky Integrate-and-Fire

Reading: W. Gerstner, W.M. Kistler, K. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Ch. 7: Cambridge, 201
Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996). Spikes - Exploring the neural code. MIT Press.
aisal, A., Selen, L., and Wolpert, D. (2008). Noise in the nervous system. Nat. Rev. Neurosci., 9:202
Sabbiani, F. and Koch, C. (1998). Principles of spike train analysis. In Koch, C. and Segev, I., editors,
ethods in Neuronal Modeling, chapter 9, pages 312-360. MIT press, 2nd edition.
oftky, W. and Koch, C. (1993). The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random
psps. J. Neurosci., 13:334-350.
Itein, R. B. (1967). Some models of neuronal variability. Biophys. J., 7:37-68.

week 10 – References and Suggested Reading

