University of California Los Angeles

Numerical Studies of Turbulence in LAPD

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics

by

Brett Cory Friedman

Abstract of the Dissertation

Numerical Studies of Turbulence in LAPD

by

Brett Cory Friedman

Doctor of Philosophy in Physics
University of California, Los Angeles, 2012
Professor Troy A. Carter, Chair

To be completed

The dissertation of Brett Cory Friedman is approved.

Warren B. Mori

George J. Morales

Russel E. Caflisch

Troy A. Carter, Committee Chair

University of California, Los Angeles 2012

To be completed \dots

Table of Contents

1	Intr	oduction	1	
2	Tur	bulence and Instability	2	
	2.1	The Kolmogorov Paradigm of Turbulence	2	
	2.2	The Standard Plasma Paradigm of Linear Instability	2	
	2.3	Nonlinear Stability Effects	2	
	2.4	Nonlinear Stability Effects in Plasma Physics	2	
3	$\operatorname{Th}\epsilon$	Braginskii Fluid Model and LAPD	3	
	3.1	LAPD Suitability to a Fluid Model	3	
	3.2	The Braginskii Equations	3	
	3.3	The Vorticity Equation	3	
	3.4	Minimizing the Equation Set for LAPD Parameters	3	
4	LA	PD Simulation Details	4	
	4.1	The Equations	4	
	4.2	Finite Difference Schemes	4	
	4.3	Sources	4	
	4.4	Boundary Conditions	4	
	4.5	Profiles and Parameters	4	
5	Linear Instabilities			
	5.1	Drift Waves	5	
	5.2	Conducting Wall Mode	5	

6	The	Nature of LAPD Turbulence	6	
	6.1	A Visual Examination	6	
	6.2	A Statistical Examination	6	
7	Energy Dynamics Formalism			
	7.1	Total Energy and Dynamics	7	
	7.2	Spectral Energy Dynamics	7	
8	Non	llinear Instability for the Periodic Simulation	8	
	8.1	The Energy Spectra	8	
	8.2	Energy Dynamics Result	8	
	8.3	n=0 Suppression	8	
9	Energy Dynamics for the Non-periodic Simulations			
	9.1	The Importance of Axial Boundary Conditions	9	
	9.2	Fourier Decomposing Non-periodic Functions	9	
	9.3	Energy Dynamics Results	9	
	9.4	Linear vs Nonlinear Structure Correlation	9	
10	Fini	te Mean Flow Simulations	10	
	10.1	The LAPD Biasing Experiment	10	
	10.2	New Linear Instabilities	10	
	10.3	Statistical Comparisons to Experiment	10	
	10.4	Energy Dynamics Results	10	
11	Com	alusian	11	

A	The	BOUT++ Code	12
	A.1	The Object-Oriented Fluid Framework	12
	A.2	Explicit Finite Differences	12
	A.3	The Physics Inputs	12
В	Grid	Convergence	13

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGMENTS

To be completed \dots

VITA

2007 B.S. (Physics), University of California, Irvine.

Publications

- B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and B. Dudson, Energy dynamics in a simulation of LAPD turbulence, Phys. Plasmas, 102307 (2012).
- D. A. Schaffner, T. A Carter, G. D. Rossi, D. S. Guice, J. E. Maggs, S. Vincena, and B. Friedman, Modification of Turbulent Transport with Continuous Variation of Flow Shear in the Large Plasma Device, Phys. Rev. Lett. 109, 135002 (2012).
- S. Zhou, W. W. Heidbrink, H. Boehmer, R. McWilliams, T. A. Carter, S. Vincena, B. Friedman, and D. Schaffner, Sheared-flow induced confinement transition in a linear magnetized plasma, Phys. Plasmas 19, 012116 (2012).
- B. Friedman, M. V. Umansky, and T. A. Carter, Grid convergence study in a simulation of LAPD turbulence, Contrib. Plasma Phys. 52, 412 (2012).
- M. V. Umansky, P. Popovich, T. A. Carter, B. Friedman, and W. M. Nevins, Numerical simulation and analysis of plasma turbulence the Large Plasma Device, Phys. Plasmas 18, 055709 (2011).
- P. Popovich, M.V. Umansky, T.A. Carter, and B. Friedman, Modeling plasma

turbulence and transport in the Large Plasma Device, Phys. Plasmas 17, 122312 (2010).

- P. Popovich, M.V. Umansky, T.A. Carter, and B. Friedman, Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device, Phys. Plasmas 17, 102107 (2010).
- S. Zhou, W. W. Heidbrink, H. Boehmer, R. McWilliams, T. A. Carter, S. Vincena, S. K. P. Tripathi, P. Popovich, B. Friedman, and F. Jenko, Turbulent transport of fast ions in the Large Plasma Device, Phys. Plasmas 17, 092103 (2010).
- B. Friedman, M. V. Umansky, and T. A. Carter, Grid convergence study in a simulation of LAPD turbulence, Contrib. Plasma Phys. 52, 412 (2012).

Introduction

Turbulence and Instability

- 2.1 The Kolmogorov Paradigm of Turbulence
- 2.2 The Standard Plasma Paradigm of Linear Instability
- 2.3 Nonlinear Stability Effects
- 2.4 Nonlinear Stability Effects in Plasma Physics

The Braginskii Fluid Model and LAPD

- 3.1 LAPD Suitability to a Fluid Model
- 3.2 The Braginskii Equations
- 3.3 The Vorticity Equation
- 3.4 Minimizing the Equation Set for LAPD Parameters

LAPD Simulation Details

- 4.1 The Equations
- 4.2 Finite Difference Schemes
- 4.3 Sources
- 4.4 Boundary Conditions
- 4.5 Profiles and Parameters

Linear Instabilities

- 5.1 Drift Waves
- 5.2 Conducting Wall Mode

The Nature of LAPD Turbulence

- 6.1 A Visual Examination
- 6.2 A Statistical Examination

Energy Dynamics Formalism

- 7.1 Total Energy and Dynamics
- 7.2 Spectral Energy Dynamics

Nonlinear Instability for the Periodic Simulation

- 8.1 The Energy Spectra
- 8.2 Energy Dynamics Result
- 8.3 n=0 Suppression

Energy Dynamics for the Non-periodic Simulations

- 9.1 The Importance of Axial Boundary Conditions
- 9.2 Fourier Decomposing Non-periodic Functions
- 9.3 Energy Dynamics Results
- 9.4 Linear vs Nonlinear Structure Correlation

Finite Mean Flow Simulations

- 10.1 The LAPD Biasing Experiment
- 10.2 New Linear Instabilities
- 10.3 Statistical Comparisons to Experiment
- 10.4 Energy Dynamics Results

Conclusion

APPENDIX A

The BOUT++ Code

- A.1 The Object-Oriented Fluid Framework
- A.2 Explicit Finite Differences
- A.3 The Physics Inputs

APPENDIX B

Grid Convergence