



ring nodes :  
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
 ring bonds :  
 1-2 1-3 1-4 1-5 1-6 1-7 2-3 4-6 5-7 8-9 8-13 9-10 10-11 10-14 11-12  
 11-17 12-13 14-15 15-16 16-17 18-19 18-23 19-20 20-21 21-22 22-23  
 exact/norm bonds :  
 1-2 1-3 1-4 1-5 1-6 1-7 2-3 4-6 5-7 8-9 8-13 9-10 10-11 10-14 11-12  
 11-17 12-13 14-15 15-16 16-17  
 normalized bonds :  
 18-19 18-23 19-20 20-21 21-22 22-23

G1:[\*1-\*2], [\*3-\*4]

Match level :  
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom  
 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom  
 20:Atom 21:Atom 22:Atom 23:Atom

L1 STRUCTURE UPLOADED

=> d his

(FILE 'HOME' ENTERED AT 16:47:40 ON 23 JUN 2008)

FILE 'REGISTRY' ENTERED AT 16:48:02 ON 23 JUN 2008  
L1 STRUCTURE UPLOADED

=> d 11

L1 HAS NO ANSWERS  
L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

=> s 11  
SAMPLE SEARCH INITIATED 16:48:39 FILE 'REGISTRY'  
SAMPLE SCREEN SEARCH COMPLETED - 674 TO ITERATE

100.0% PROCESSED 674 ITERATIONS 9 ANSWERS  
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE \*\*COMPLETE\*\*  
BATCH \*\*COMPLETE\*\*  
PROJECTED ITERATIONS: 11923 TO 15037  
PROJECTED ANSWERS: 9 TO 360

L2 9 SEA SSS SAM L1

=> s 11 full  
FULL SEARCH INITIATED 16:48:45 FILE 'REGISTRY'  
FULL SCREEN SEARCH COMPLETED - 13767 TO ITERATE

100.0% PROCESSED 13767 ITERATIONS 123 ANSWERS  
SEARCH TIME: 00.00.01

L3 123 SEA SSS FUL L1

=> fil caplus  
COST IN U.S. DOLLARS SINCE FILE TOTAL  
FULL ESTIMATED COST ENTRY SESSION  
178.36 178.57

FILE 'CAPLUS' ENTERED AT 16:48:53 ON 23 JUN 2008  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Jun 2008 VOL 148 ISS 26  
FILE LAST UPDATED: 22 Jun 2008 (20080622/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply.  
They are available for your review at:

<http://www.cas.org/legal/infopolicy.html>

=> s 13/prep  
1197 L3

4592047 PREP/RL  
 L4 102 L3/PREP  
 (L3 (L) PREP/RL)

=> s 14 and py<=2003  
 23982101 PY<=2003  
 L5 32 L4 AND PY<=2003

=> d 1-32 bib abs

L5 ANSWER 1 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2003:951123 CAPLUS  
 DN 140:16816  
 TI Method for producing highly pure tris-ortho metalated organoiridium  
 compounds  
 IN Stoessel, Philipp; Bach, Ingrid; Spreitzer, Hubert; Becker, Heinrich  
 PA Covion Organic Semiconductors G.m.b.H., Germany  
 SO PCT Int. Appl., 30 pp.  
 CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

|      | PATENT NO.                                                                                                       | KIND | DATE      | APPLICATION NO.  | DATE         |
|------|------------------------------------------------------------------------------------------------------------------|------|-----------|------------------|--------------|
| PI   | WO 2003099959                                                                                                    | A1   | 20031204  | WO 2003-EP5281   | 20030520 <-- |
|      | W: CN, JP, KR, US                                                                                                |      |           |                  |              |
|      | RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,<br>IT, LU, MC, NL, PT, RO, SE, SI, SK, TR    |      |           |                  |              |
|      | DE 10223337                                                                                                      | A1   | 20031204  | DE 2002-10223337 | 20020525 <-- |
|      | EP 1516033                                                                                                       | A1   | 20050323  | EP 2003-737966   | 20030520     |
|      | EP 1516033                                                                                                       | B1   | 20070627  |                  |              |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK |      |           |                  |              |
|      | CN 1656195                                                                                                       | A    | 20050817  | CN 2003-811959   | 20030520     |
|      | JP 2005531590                                                                                                    | T    | 20051020  | JP 2004-508204   | 20030520     |
|      | US 20050131232                                                                                                   | A1   | 20050616  | US 2005-515104   | 20050126     |
|      | US 7179915                                                                                                       | B2   | 20070220  |                  |              |
| PRAI | DE 2002-10223337                                                                                                 | A    | 20020525  |                  |              |
|      | WO 2003-EP5281                                                                                                   | W    | 20030520  |                  |              |
| OS   | CASREACT 140:16816; MARPAT                                                                                       |      | 140:16816 |                  |              |
| GI   |                                                                                                                  |      |           |                  |              |

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

AB Methods for producing highly pure tris-ortho metalated organoiridium  
 compds. described by the general formulas I and II (A, A' = independently  
 selected N or C-H; X, X' = independently selected -CH:CH-, -CR:CH-,  
 -CR:CR-. N-H, N-R1, O, S, or Se; R, R' = independently selected F, Cl<Br,  
 NC2, CN, (un)branched or cyclic Cl-20 alkyl or alkoxy groups in which  
 ≥1 nonadjacent CH2 groups may be replaced by -O-, -S-, -NR1-, or  
 -CONR2- and in which ≥1 H may be replaced by F, C4-14 (hetero)aryl  
 groups which may have ≥1 nonarom. substituents R, where R  
 substituents on the same or different rings may combine to form a further  
 mono- or polycyclic ring system; R1,R2 = independently selected H or Cl-30  
 aliphatic or aromatic hydrocarbon residues; m = 0-4; and n = 0-2) are described  
 which entail reacting compds. described by the general formulas IrY3.nH2O,  
 III, and IV (Y = F, Cl, Br, OH, (un)branched or cyclic Cl=0 alkoxy groups,  
 or phenoxy groups) with compds. described by the general formulas V and VI  
 and a Lewis acid. Compds. described by the general formulas I and II are

also claimed whose purity is >99.0% as determined by HPLC. Use of the compds. as chromophores in electronics is discussed (no data).

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2003:874573 CAPLUS

DN 139:3'1625

TI Organic electroluminescent device and its production method  
IN Suzurizato, Yoshiyuki; Yamada, Taketoshi; Kita, Hiroshi  
PA Konica Minolta Holdings Inc., Japan  
SO Jpn. Kokai Tokkyo Koho, 32 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

| PATENT NO.     | KIND | DATE     | APPLICATION NO. | DATE         |
|----------------|------|----------|-----------------|--------------|
| JP 2003317946  | A    | 20031107 | JP 2002-120841  | 20020423 <-- |
| JP 2008066759  | A    | 20080321 | JP 2007-305561  | 20071127     |
| JP 2002-120841 | A3   | 20020423 |                 |              |

AB The invention relates to an organic electroluminescent device comprising organic

layers sandwiched between an anode and a cathode, wherein, at least, one of the organic layers is formed by a wet process, such as ink-jet printing, spin coating, etc., using the solution containing the organic compound having the

glass transition temperature in 80-250 °C and purified by a sublimation method. One of the organic layers prepared by the wet process may be an electroluminescent layer that comprises a host material and a phosphorescent guest material.

L5 ANSWER 3 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:818436 CAPLUS

DN 139:323663

TI Preparation of metal complexes containing carbazole derivatives for organic electroluminescent materials

IN Kobayashi, Satoshi; Doi, Shuji; Mikami, Satoshi

PA Sumitomo Chemical Company, Limited, Japan

SO PCT Int. Appl., 96 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 2

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO.  | DATE         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|--------------|
| WO 2003084973                                                                                                                                                                                                                                                                                                                                                         | A1   | 20031016 | WO 2003-JP3494   | 20030324 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                  |              |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG                                                                                                    |      |          |                  |              |
| TW 277617                                                                                                                                                                                                                                                                                                                                                             | B    | 20070401 | TW 2003-92106272 | 20030321     |
| AU 2003220974                                                                                                                                                                                                                                                                                                                                                         | A1   | 20031020 | AU 2003-220974   | 20030324 <-- |
| GB 2404380                                                                                                                                                                                                                                                                                                                                                            | A    | 20050202 | GB 2004-23314    | 20030324     |
| GB 2404380                                                                                                                                                                                                                                                                                                                                                            | B    | 20060823 |                  |              |
| DE 10392453                                                                                                                                                                                                                                                                                                                                                           | T5   | 20050414 | DE 2003-10392453 | 20030324     |

|                      |    |          |                |          |
|----------------------|----|----------|----------------|----------|
| JP 2004002344        | A  | 20040108 | JP 2003-84772  | 20030326 |
| JP 2004002755        | A  | 20040108 | JP 2003-84773  | 20030326 |
| US 20050147843       | A1 | 20050707 | US 2004-508861 | 20040924 |
| PRAI JP 2002-86173   | A  | 20020326 |                |          |
| JP 2002-86174        | A  | 20020326 |                |          |
| WO 2003-JP3494       | W  | 20030324 |                |          |
| OS MARPAT 139:323663 |    |          |                |          |
| GI                   |    |          |                |          |



**AB** This patent relates to the preparation of metal complexes having a metal complex structure permitting luminescence from the triplet excited state and a monovalent group represented by the general formula (I) [wherein A is arylene or the like; R<sub>1</sub> and R<sub>2</sub> are each independently halogeno or the like; R<sub>3</sub> is alkyl or the like; a is an integer of 0 to 3; and b is an integer of 0 to 4] or (II) [wherein D is arylene or the like; R<sub>4</sub> and R<sub>5</sub> are each independently halogen or the like; and c and d are each an integer of 0 to 4]; and luminescent devices made by using the same. The metal complexes are superior to luminescent materials of the prior art in luminous efficiency and can form luminescent layers by coating. Thus, an iridium complex polymer prepared from a composition comprising 9,9-diocetyl-2,7-dibromo fluorene, bis(2-phenylpyridine)[2-(bromopyridine)pyridine]iridium(III), tris[2-(bromophenyl)pyridine]iridium(II), [2-(phenyl)pyridine]bis[2-(bromophenyl)pyridine]iridium(III), tris(2-phenylpyridine)iridium(III) (all three ligands in the Ir complexes are orthometalated), and a monomer made from the reaction of N-ethyl-3-carbazolecarboxaldehyde and a reaction product of 1,4-dibromo-2,5-bis(bromomethyl)benzene with tri-Et phosphite was dissolved in chloroform (0.2 weight%) and spin-coated to form a thin film which showed illumination intensity 1.97 at 450 nm, 1.78 at 476 nm, and 1.67 at 523 nm.

RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 4 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2003:758915 CAPLUS

DN 139:381596

TI Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode

AU Tsuboyama, Akira; Iwawaki, Hironobu; Furugori, Manabu; Mukaide, Taihei; Kamatani, Jun; Igawa, Satoshi; Moriyama, Takashi; Miura, Seishi; Takiguchi, Takao; Okada, Shinjiro; Hoshino, Mikio; Ueno, Kazunori  
CS OL Project, Canon Inc., Atsugi Kanagawa, 243-0193, Japan

SO Journal of the American Chemical Society (2003), 125(42), 12971-12979

CODEN: JACSAT; ISSN: 0002-7863

PB American Chemical Society

DT Journal

LA English

OS CASREACT 139:381596

AB Phosphorescence studies of facial homoleptic cyclometalated Ir(III) complexes were carried out. The complexes studied have the general structure Ir(III)(C-N)3, where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinate, 1-(thiophen-2-yl)isoquinolinate, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinate. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence  $\Phi_p = 0.08-0.29$ , emission peaks  $\lambda_{max} = 558-652$  nm, and emission lifetimes  $\tau = 0.74-4.7 \mu s$ . Bathochromic shifts of the Ir(thpy)3 family [the complexes with 2-(thiophen-2-yl)pyridine derivs.] are observed by introducing appropriate substituents, e.g., Me, trifluoromethyl, or thiophen-2-yl. However,  $\Phi_p$  of the red emissive complexes ( $\lambda_{max} > 600$  nm) becomes small, caused by a significant decrease of the radiative rate constant, kr. In contrast, the complexes with the 1-arylisouquinoline ligands have marked red shifts of  $\lambda_{max}$  and very high  $\Phi_p$  (0.19-0.26). These complexes possess dominantly 3MLCT (metal-to-ligand charge transfer) excited states and have kr values approx. 1 order of magnitude larger than those of the Ir(thpy)3 family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinate)3 as a phosphorescent dopant produces very high efficiency (external quantum efficiency  $\eta_{ex} = 10.3\%$  and power efficiency 8.0 lm/W at 100 cd/m<sup>2</sup>) and pure-red emission with 1931 CIE (Commission Internationale de l'Eclairage) chromaticity coordinates ( $x = 0.68$ ,  $y = 0.32$ ).

RE.CNT 51 THERE ARE 51 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 5 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:494585 CAPLUS

DN 140:32970

TI Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: Remarkable external quantum efficiency over a wide range of current

AU Su, Ying-Ju; Huang, Heh-Lung; Li, Chien-Le; Chien, Chin-Hsiung; Tao, Yu-Tai; Chou, Pi-Tai; Datta, Swarup; Liu, Rai-Shung

CS Department of Chemistry, National Tsinghua University, Hsinchu, 30043, Taiwan

SO Advanced Materials (Weinheim, Germany) (2003), 15(11), 884-888

CODEN: ADVMEW; ISSN: 0935-9648

PB Wiley-VCH Verlag GmbH & Co. KGaA

DT Journal

LA English

AB Outstanding performance as an emissive dopant in organic light-emitting devices is shown by red phosphorescent Ir complexes based on an isoquinoline framework. Remarkably high efficiency can be maintained in the devices at high currents with a negligible effect from either triplet-triplet (T-T) annihilation or saturation of the excited states.

RE.CNT 30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 6 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:391359 CAPLUS

DN 139:117521

TI Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes

AU Tamayo, Arnold B.; Alleyne, Bert D.; Djurovich, Peter I.; Lamansky, Sergey; Tsyba, Irina; Ho, Nam N.; Bau, Robert; Thompson, Mark E.  
CS Department of Chemistry, University of Southern California, Los Angeles, CA, 90089-0744, USA  
SO Journal of the American Chemical Society (2003), 125(24), 7377-7387  
CODEN: JACSAT; ISSN: 0002-7863  
PB American Chemical Society  
DT Journal  
LA English  
OS CASREACT 139:117521  
AB The synthesis, structures, electrochem., and photophysics of facial (fac) and meridional (mer) tris-cyclometalated Ir(III) complexes are reported. The complexes have the general formula Ir(C.cxa.N)3 [where C.cxa.N is a monoanionic cyclometalating ligand; 2-phenylpyridyl (ppy), 2-(*p*-tolyl)pyridyl (tpy), 2-(4,6-difluorophenyl)pyridyl (46dfppy), 1-phenylpyrazolyl (ppz), 1-(4,6-difluorophenyl)pyrazolyl (46dfppz), or 1-(4-trifluoromethylphenyl)pyrazolyl (tfmppz)]. Reaction of the dichloro-bridged dimers [(C.cxa.N)2Ir( $\mu$ -Cl)2Ir(C.cxa.N)2] with 2 equiv of HC.cxa.N at 140–150° forms the corresponding meridional isomer, while higher reaction temps. give predominantly the facial isomer. Both facial and meridional isomers can be obtained in good yield (>70%). The meridional isomer of Ir(tpy)3 and facial and meridional isomers of Ir(ppz)3 and Ir(tfmppz)3 were structurally characterized using x-ray crystallog. The facial isomers have nearly identical bond lengths (average Ir-C = 2.018 Å, average Ir-N = 2.123 Å) and angles. The three meridional isomers have the expected bond length alternations for the differing trans influences of Ph and pyridyl/pyrazolyl ligands. Bonds that are trans to Ph groups are longer (Ir-C average = 2.071 Å, Ir-N average = 2.031 Å) than when they are trans to heterocyclic groups. The Ir-C and Ir-N bonds with trans N and C, resp., have bond lengths very similar to those observed for the corresponding facial isomers. DFT calcns. of both the singlet (ground) and the triplet states of the compds. suggest that the HOMO levels are a mixture of Ir and ligand orbitals, while the LUMO is predominantly ligand-based. All of the complexes show reversible oxidation between 0.3 and 0.8 V, vs. Fc/Fc+. The meridional isomers are easier to oxidize by .apprx.50–100 mV. The phenylpyridyl-based complexes have reduction potentials between -2.5 and -2.8 V, whereas the phenylpyrazolyl-based complexes exhibit no reduction up to the solvent limit of -3.0 V. All of the compds. have intense absorption bands in the UV region assigned into 1( $\pi \rightarrow \pi^*$ ) transitions and weaker MLCT (metal-to-ligand charge transfer) transitions that extend to the visible region. The MLCT transitions of the pyrazolyl-based complexes are hypsochromically shifted relative to those of the pyridyl-based compds. The phenylpyridyl-based Ir(III) tris-cyclometalates exhibit intense emission both at room temperature and at 77 K, whereas the phenylpyrazolyl-based derivs. emit strongly only at 77 K. The emission energies and lifetimes of the phenylpyridyl-based complexes (450–550 nm, 2–6  $\mu$ s) and phenylpyrazolyl-based compds. (390–440 nm, 14–33  $\mu$ s) are characteristic for a mixed ligand-centered/MLCT excited state. The meridional isomers for both pyridyl and pyrazolyl-based cyclometalates show markedly different spectroscopic properties than do the facial forms. Isolated samples of mer-Ir(C.cxa.N)3 complexes can be thermally and photochem. converted to facial forms, indicating that the meridional isomers are kinetically favored products. The lower thermodn. stabilities of the meridional isomers are likely related to structural features of these complexes; i.e., the meridional configuration places strongly trans influencing Ph groups opposite each other, whereas all three Ph groups are opposite pyridyl or pyrazolyl groups in the facial complexes. The strong trans influence of the Ph groups in the meridional isomers leads to the observation that they are easier to oxidize, exhibit broad, red shifted emission, and have lower quantum efficiencies than their facial

RE.CNT 76 THERE ARE 76 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 7 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2003:373899 CAPLUS  
DN 138:392822  
TI Light emitting polymer composition, and organic electroluminescence device  
and production process thereof  
IN Sakakibara, Mitsuhiro; Yasuda, Hiroyuki; Negoro, Yasunori  
PA JSR Corporation, Japan  
SO Eur. Pat. Appl., 20 pp.  
CODEN: EPXXDW  
DT Patent  
LA English  
FAN.CNT 1

| PATENT NO.                                                                                                                   | KIND | DATE     | APPLICATION NO. | DATE         |
|------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI EP 1311138                                                                                                                | A1   | 20030514 | EP 2002-24822   | 20021107 <-- |
| EP 1311138                                                                                                                   | B1   | 20040929 |                 |              |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK |      |          |                 |              |
| JP 2003221484                                                                                                                | A    | 20030805 | JP 2002-314421  | 20021029 <-- |
| JP 3896947                                                                                                                   | B2   | 20070322 |                 |              |
| US 20030116788                                                                                                               | A1   | 20030626 | US 2002-290370  | 20021108 <-- |
| US 6872474                                                                                                                   | B2   | 20050329 |                 |              |
| PRAI JP 2001-344253                                                                                                          | A    | 20011109 |                 |              |
| JP 2001-344254                                                                                                               | A    | 20011109 |                 |              |

OS MARPAT 138:392822

AB A light emitting polymer composition is described comprising a polymer component and a phosphorescent agent contained in the polymer component, wherein the polymer component is composed of a hole transporting component formed from 50 to 99 mol% of a hole transporting monomer and an electron transporting component formed from 50 to 1 mol% of an electron transporting monomer. The polymer component is a copolymer composed of 50 to 99 mol% of structural units derived from the hole transporting monomer and 50 to 1 mol% of structural units derived from the electron transporting monomer, or is composed of a hole transporting polymer obtained from the hole transporting monomer and an electron transporting polymer obtained from the electron transporting monomer, and a proportion of the hole transporting polymer to the electron transporting polymer is 50:50 to 99:1 in terms of a molar ratio reduced to the monomers. An organic electroluminescence device is also described comprising a functional organic material layer which functions as a light emitting layer or hole transport layer and is formed by a light emitting polymer composition comprising the polymer component and the phosphorescent agent contained in the polymer component. A method of fabricating the organic electroluminescence device is also described.

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 8 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2003:300704 CAPLUS  
DN 138:321402  
TI Preparation of iridium complexes with fluorinated 2-phenylpyridine for  
electroluminescent devices  
IN Hirata, Hiroki; Sugino, Maki; Ogi, Katsumi  
PA Mitsubishi Materials Corp., Japan  
SO Jpn. Kokai Tokkyo Koho, 13 pp.  
CODEN: JKXXAF  
DT Patent  
LA Japanese

FAN.CNT 1

|      | PATENT NO.                  | KIND    | DATE                 | APPLICATION NO. | DATE         |
|------|-----------------------------|---------|----------------------|-----------------|--------------|
| PI   | JP 2003113190<br>JP 3991726 | A<br>B2 | 20030418<br>20071017 | JP 2002-67918   | 20020313 <-- |
| PRAI | JP 2001-230756              | A       | 20010731             |                 |              |
| OS   | MARPAT 138:321402<br>GI     |         |                      |                 |              |



AB In preparation of title complexes I ( $m, n = 0-1; m + n = 1$ ) from Ir(III) acetylacetone (II) and monofluorinated 2-phenylpyridine, the monofluoro compound is prepared in THF by treatment of  $FC_6H_4X$  ( $X = Cl, Br, iodine$ ) with (A) organolithium compound and  $ZnCl_2$ , or (B)  $Mg$ , followed by condensation of the resulting  $FC_6H_4ZnCl$  or Grignard reagent, resp., with 2-halopyridine. E.g., a THF solution of 3- $FC_6H_4Br$  was treated with  $BuLi/hexane$ , THF solution of  $ZnCl_2$ , a mixture of 2-bromopyridine, Pd catalyst, and THF, and then with II to give 62%  $L_3Ir$  (where  $L$  = orthometalated 2-(3-fluorophenyl)pyridine), vs. 44%, when  $Et_2O$  was used instead.

L5 ANSWER 9 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:300702 CAPLUS

DN 138:321401

TI Preparation of electroluminescent fluorophenylpyridine iridium complexes

IN Hirata, Hiroki; Sugino, Makie; Ogi, Katsumi

PA Mitsubishi Materials Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 23 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

|      | PATENT NO.                                   | KIND    | DATE                 | APPLICATION NO. | DATE         |
|------|----------------------------------------------|---------|----------------------|-----------------|--------------|
| PI   | JP 2003113164<br>JP 3991728                  | A<br>B2 | 20030418<br>20071017 | JP 2002-67920   | 20020313 <-- |
| PRAI | JP 2001-230757                               | A       | 20010731             |                 |              |
| OS   | CASREACT 138:321401; MARPAT 138:321401<br>GI |         |                      |                 |              |



AB The complexes I ( $m, n = 0-4; 2 \leq m + n \leq 8$ ) are prepared by reaction of fluoro 2-phenylpyridines II ( $m, n = \text{same as I}$ ) with Ir(III) acetylacetone (III), wherein II are prepared from halobenzenes and halopyridines via organozinc compds. or Grignard reagents using THF as a solvent. 1-Bromo-4-fluorobenzene was treated with Mg in THF at  $40^\circ$  for 8 h, condensed with 5-fluoro-2-chloropyridine using Pd catalyst at  $10^\circ$  for 4 h, and treated with III in glycerin at  $190^\circ$  under 2.66 kPa for 10 h to give tris[5-fluoro-2-(4-fluorophenyl)pyridine]iridium.

L5 ANSWER 10 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2003:300700 CAPLUS

DN 138:321399

TI Fluorine-substituted iridium complexes, preparation of them, and their intermediates

IN Hirata, Hiroki; Sugino, Maki  
 PA Mitsubishi Materials Corp., Japan  
 SO Jpn. Kokai Tokkyo Koho, 14 pp.  
 CODEN: JKXXAF

DT Patent  
 LA Japanese

FAN.CNT 1

|      | PATENT NO.           | KIND              | DATE     | APPLICATION NO. | DATE         |
|------|----------------------|-------------------|----------|-----------------|--------------|
| PI   | JP 2003113161        | A                 | 20030418 | JP 2002-67917   | 20020313 <-- |
|      | JP 3991725           | B2                | 20071017 |                 |              |
| PRAI | JP 2001-126506       | A                 | 20010424 |                 |              |
|      | JP 2001-230758       | A                 | 20010731 |                 |              |
| OS   | CASREACT 138:321399; | MARPAT 138:321399 |          |                 |              |
| GI   |                      |                   |          |                 |              |

AB The complexes I ( $m + n = 1$ ;  $0 \leq m \leq 1$ ;  $0 \leq n \leq 1$ ; F substitution occurs one position other than position 1, 6, 7, 10, and 12 to N atom), useful as organic electroluminescent materials (no data), are prepared by treating iridium(III) acetylacetone with 2, 3, 4, 5, 8, 9, 10, or 11-fluoro-2-phenylpyridine. Fluoro-2-phenylpyridine II ( $m + n = 1$ ;  $0 \leq m \leq 1$ ;  $0 \leq n \leq 1$ ), 2-FC<sub>6</sub>H<sub>4</sub>Cl, and fluoro-2-pyridylmagnesium halides III (X = Cl, Br, I) as intermediates for I are also claimed. A mixture of Mg and THF was treated with THF solution of PhBr at 50° for 3 h. The Grignard reagent was added dropwise to a mixture of 5-fluoro-2-chloropyridine and Pd catalyst and the mixture was further stirred at 40° for 2 h to give 5-fluoro-2-phenylpyridine. This was treated with Ir(III) acetylacetone in glycerin at 2.66 kPa and 190° for 10 h to give (5-fluoro-2-phenylpyridine)3Ir.

L5 ANSWER 11 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2003:234684 CAPLUS  
 DN 139:69358  
 TI Selective one-pot synthesis of facial tris-ortho-metalated iridium(III) complexes using microwave irradiation  
 AU Konno, Hideo; Sasaki, Yoshiyuki  
 CS Natl. Inst. of Adv. Ind. Sci. and Technol. (AIST), Ibaraki, 305-8569, Japan  
 SO Chemistry Letters (2003), 32(3), 252-253  
 CODEN: CMLTAG; ISSN: 0366-7022  
 PB Chemical Society of Japan  
 DT Journal  
 LA English  
 OS CASREACT 139:69358  
 AB We report on a novel method for the production of two facial tris-ortho-metalated iridium(III) complexes, fac-[Ir(ppy)<sub>3</sub>] ((1) ppyH = 2-phenylpyridine) and fac-[Ir(tpy)<sub>3</sub>] ((2) tpyH = 2-(p-tolyl)pyridine), by reaction of IrCl<sub>3</sub>·3H<sub>2</sub>O with a large excess of the corresponding 2-arylpypyridine under microwave irradiation. The method does not require a dehalogenating reagent such as AgCF<sub>3</sub>SO<sub>3</sub>, and facial tris-orthometalated iridium(III) complexes can be obtained rapidly, selectively and efficiently.  
 RE.CNT 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 12 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2002:964786 CAPLUS  
 DN 138:47038  
 TI Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds  
 IN Grushin, Vladimir; Lecloux, Daniel D.; Petrov, Viacheslav. A.; Wang, Ying E. I. Du Pont de Nemours & Co., USA  
 PA U.S. Pat. Appl. Publ., 21 pp., Cont.-in-part of U.S. Ser. No. 879,014.  
 SO CODEN: USXXCO  
 DT Patent  
 LA English  
 FAN.CNT 4

| PATENT NO.                                                                           | KIND | DATE     | APPLICATION NO. | DATE         |
|--------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI US 20020190250                                                                    | A1   | 20021219 | US 2001-27421   | 20011220 <-- |
| US 6670645                                                                           | B2   | 20031230 |                 |              |
| US 20020121638                                                                       | A1   | 20020905 | US 2001-879014  | 20010612 <-- |
| EP 1424382                                                                           | A2   | 20040602 | EP 2004-4541    | 20010627     |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, FI, CY, TR |      |          |                 |              |
| EP 1431288                                                                           | A2   | 20040623 | EP 2004-4542    | 20010627     |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,                   |      |          |                 |              |

IE, FI, CY, TR  
 EP 1431289 A2 20040623 EP 2004-4543 20010627  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, FI, CY, TR  
 CA 2455844 A1 20030731 CA 2001-2455844 20011226 <--  
 WO 2003063555 A1 20030731 WO 2001-US49522 20011226 <--  
 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,  
 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,  
 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,  
 LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,  
 PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,  
 US, UZ, VN, YU, ZA, ZW  
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,  
 KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,  
 GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA,  
 GN, GQ, GW, ML, MR, NE, SN, TD, TG  
 CN 1520702 A 20040811 CN 2001-823216 20011226  
 EP 1466506 A1 20041013 EP 2001-991428 20011226  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR  
 JP 2005516040 T 20050602 JP 2003-563272 20011226  
 TW 238819 B 20050901 TW 2001-90133244 20011231  
 US 20040089867 A1 20040513 US 2003-696349 20031029  
 US 7276726 B2 20071002  
 US 20040106007 A1 20040603 US 2003-696095 20031029  
 US 7075102 B2 20060711  
 US 20040108507 A1 20040610 US 2003-696003 20031029  
 US 6946688 B2 20050920  
 US 20040188673 A1 20040930 US 2003-696060 20031029  
 US 7129518 B2 20061031  
 US 20040191959 A1 20040930 US 2003-696401 20031029  
 US 7078725 B2 20060718  
 US 20040094769 A1 20040520 US 2003-699411 20031030  
 US 7199392 B2 20070403  
 PRAI US 2000-215362P P 20000630  
 US 2000-224273P P 20000810  
 US 2001-879014 A2 20010612  
 EP 2001-950576 A3 20010627  
 US 2001-27421 A3 20011220  
 WO 2001-US49522 W 20011226  
 OS MARPAT 138:47038  
 AB Ir(III) compds. with substituted 2-phenylpyridines, phenylpyrimidines, and phenylquinolines, and devices, especially electroluminescent devices, that are made with the Ir(III) compds., are described. Precursor ligands for the devices are also described.  
 L5 ANSWER 13 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2002:893926 CAPLUS  
 DN 138:311205  
 TI Optical and electroluminescent properties of a new green emitting Ir(III) complex  
 AU Das Rupasree, R.; Lee, Chang-Lyoul; Noh, Yong-Young; Kim, Jang-Joo  
 CS Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, 500712, S. Korea  
 SO Optical Materials (Amsterdam, Netherlands) (2003), 21(1-3), 143-146  
 CODEN: OMATET; ISSN: 0925-3467  
 PB Elsevier Science B.V.  
 DT Journal  
 LA English  
 AB The authors synthesized and characterized a new green Ir(III) complex, Ir(mpp)<sub>3</sub>, with the ligand 3-methyl-2-phenylpyridine (Hmpp) and fabricated

phosphorescent light emitting devices with the complex as a triplet emissive dopant in PVK. The PL and EL spectra of the PVK film doped with the complex confirm an efficient energy transfer from carbazole excimer to Ir complex. The device showed a maximum external quantum efficiency of 4.5% for 2% Ir(mpp)<sub>3</sub> doping concns., and a peak luminance of 25,000 cd/m<sup>2</sup>. The device demonstrates the effect brought in by the fine-tuning of the ligand, 2-phenylpyridine as the Me substitution in the pyridine ring.

RE.CNT 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 14 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2002:752364 CAPLUS

DN 137:286117

TI Polymeric phosphorescent metal complexes and polymer light-emitting devices employing the complexes

IN Ikehira, Hideyuki; Ueoka, Takahiro; Doi, Shuji; Kurita, Yasuyuki

PA Sumitomo Chemical Company, Limited, Japan

SO Eur. Pat. Appl., 49 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.                                                                                                   | KIND | DATE     | APPLICATION NO. | DATE         |
|------|--------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI   | EP 1245659                                                                                                   | A1   | 20021002 | EP 2002-6665    | 20020326 <-- |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR |      |          |                 |              |
|      | SG 92833                                                                                                     | A1   | 20021119 | SG 2002-1515    | 20020320 <-- |
|      | US 20020193532                                                                                               | A1   | 20021219 | US 2002-103848  | 20020325 <-- |
|      | JP 2003171659                                                                                                | A    | 20030620 | JP 2002-86099   | 20020326 <-- |
|      | JP 4048810                                                                                                   | B2   | 20080220 |                 |              |
|      | JP 2007182458                                                                                                | A    | 20070719 | JP 2007-101555  | 20070409     |
|      | JP 2007277558                                                                                                | A    | 20071025 | JP 2007-101554  | 20070409     |
|      | JP 2008019443                                                                                                | A    | 20080131 | JP 2007-185416  | 20070717     |
| PRAI | JP 2001-89623                                                                                                | A    | 20010327 |                 |              |
|      | JP 2001-302909                                                                                               | A    | 20010928 |                 |              |
|      | JP 2002-86099                                                                                                | A3   | 20020326 |                 |              |

AB Polymeric light-emitting substances having a polystyrene reduced number-average mol. weight of 103-108 are described which comprise in the main chain or side chain a metal complex structure showing light emission from the triplet excited state. Methods of producing the polymeric light-emitting substances involving catalytic copolymer are discussed. Complexes of formula (L)<sub>o</sub>-M-(Ar)<sub>m</sub>-X are described where M = a metal with atomic number  $\geq 50$  and showing a possibility of intersystem crossing between the singlet state and the triplet state in this complex by a spin-orbital mutual action; Ar = a ligand bonded to M via  $\geq 1$  of a N, O, C, S and P atom, with bonding to a polymer at an arbitrary position; L represents a H, hydrocarbon group with 1-10 C atoms, carboxylate group with 1-10 C atoms, diketonate group with 1-10 C atoms, halogen atom, amide group, imide group, alkoxide group, alkylmercapto group, carbonyl ligand, arylene ligand, alkene ligand, alkyne ligand, amine ligand, imine ligand, nitrile ligand, isonitrile ligand, phosphine ligand, phosphine oxide ligand, phosphite ligand, ether ligand, sulfone ligand, sulfoxide ligand or sulfide ligand; m = integer of 1-5; o = integer of 0-5; ; and X is a halogen atom, arylsulfonyloxygroup, or alkylsulfonyloxy group. Polymer light-emitting devices employing the luminescent polymer metal complexes are also discussed.

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 15 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2002:693261 CAPLUS

DN 137:239825  
 TI Metal coordination compound, luminescence device and display apparatus  
 IN Tsuboyama, Akira; Okada, Shinjiro; Takiguchi, Takao; Miura, Seishi;  
 Moriyama, Takashi; Kamatani, Jun; Furugori, Manabu  
 PA Canon Kabushiki Kaisha, Japan  
 SO Eur. Pat. Appl., 38 PP.  
 CODEN: EPXXDW  
 DT Patent  
 LA English  
 FAN.CNT 1

|      | PATENT NO.                                                                                                   | KIND | DATE     | APPLICATION NO. | DATE         |
|------|--------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI   | EP 1239526                                                                                                   | A2   | 20020911 | EP 2002-5113    | 20020307 <-- |
|      | EP 1239526                                                                                                   | A3   | 20040407 |                 |              |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR |      |          |                 |              |
|      | JP 2002332292                                                                                                | A    | 20021122 | JP 2002-42440   | 20020220 <-- |
|      | US 20030068536                                                                                               | A1   | 20030410 | US 2002-90838   | 20020306 <-- |
|      | US 6974639                                                                                                   | B2   | 20051213 |                 |              |
|      | US 20060022588                                                                                               | A1   | 20060202 | US 2005-202113  | 20050812     |
|      | US 7354662                                                                                                   | B2   | 20080408 |                 |              |
| PRAI | JP 2001-64204                                                                                                | A    | 20010308 |                 |              |
|      | JP 2002-42440                                                                                                | A    | 20020220 |                 |              |
|      | US 2002-90838                                                                                                | A3   | 20020306 |                 |              |
| OS   | MARPAT 137:239825                                                                                            |      |          |                 |              |
| GI   |                                                                                                              |      |          |                 |              |



AB An electroluminescence device having a layer containing a specific metal coordination compound is provided. The metal coordination compound is represented by:  $MLmL'n$  ( $M = Ir, Pt, Rh, Pd$ ;  $L$  and  $L'$  = mutually different bidentate ligands;  $m = 1-3$ ;  $n = 0-2$ ;  $m+n = 2$  or 3); a partial structure  $MLm = I$ , a partial structure  $ML'n = II$  or  $III$  ( $CyN1$  and  $CyN2$  = cyclic group capable of having a substituent, including a nitrogen and bonded to the metal  $M$  via the nitrogen atom;  $CyC1$  and  $CyC2$  = cyclic group capable of having a substituent, including a carbon atom and bonded to the metal atom  $M$  via the carbon atom; the optional substituent of the cyclic groups is halogen, cyano group, nitro group, Cl-8 trialkylsilyl, etc.;  $E$  and  $G$  = C1-20 alkyl). The metal coordination compound of  $MLmL'n$  is characterized by having at least one aromatic substituent for at least one of  $CyN1$ ,  $CyN2$ ,  $CyC1$  and  $CyC2$ . The metal coordination compound having the aromatic substituent is effective in providing high-efficiency luminescence, long-term high luminance, and less deterioration by current passing.

L5 ANSWER 16 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2002:594856 CAPLUS

DN 137:140633

TI Method for the production of highly pure, tris-ortho-metalated

organo-iridium compounds  
IN Stoessel, Philipp; Spreitzer, Hubert; Becker, Heinrich  
PA Covion Organic Semiconductors GmbH, Germany  
SO PCT Int. Appl., 29 pp.  
CODEN: PIXXD2

DT Patent  
LA German

FAN.CNT 1

|      | PATENT NO.                                                                        | KIND | DATE     | APPLICATION NO.  | DATE         |
|------|-----------------------------------------------------------------------------------|------|----------|------------------|--------------|
| PI   | WO 2002060910                                                                     | A1   | 20020808 | WO 2002-EP920    | 20020130 <-- |
|      | W: CN, JP, KR, US                                                                 |      |          |                  |              |
|      | RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR    |      |          |                  |              |
|      | DE 10104426                                                                       | A1   | 20020808 | DE 2001-10104426 | 20010201 <-- |
|      | EP 1366054                                                                        | A1   | 20031203 | EP 2002-710817   | 20020130 <-- |
|      | EP 1366054                                                                        | B1   | 20050406 |                  |              |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY, TR |      |          |                  |              |
|      | JP 20040526700                                                                    | T    | 20040902 | JP 2002-561478   | 20020130     |
|      | JP 3984167                                                                        | B2   | 20071003 |                  |              |
|      | CN 1527835                                                                        | A    | 20040908 | CN 2002-804212   | 20020130     |
|      | CN 1781926                                                                        | A    | 20060607 | CN 2005-10127217 | 20020130     |
|      | US 20040077862                                                                    | A1   | 20040422 | US 2003-470811   | 20031124     |
|      | US 7084273                                                                        | B2   | 20060801 |                  |              |
|      | US 20060252936                                                                    | A1   | 20061109 | US 2006-483359   | 20060707     |
| PRAI | DE 2001-10104426                                                                  | A    | 20010201 |                  |              |
|      | CN 2002-804212                                                                    | A3   | 20020130 |                  |              |
|      | WO 2002-EP920                                                                     | W    | 20020130 |                  |              |
|      | US 2003-470811                                                                    | A1   | 20031124 |                  |              |

OS CASREACT 137:140633; MARPAT 137:140633

AB The invention relates to a method for the production of highly pure tris-ortho-metallated organo-iridium compds. and to pure metal-organic compds. (especially d8 metal compds.) which can be used in the near future as active components (functional materials) serving as chromophoric components in a series of different applications that can be included within the electronics industry in the broadest sense. Thus, reaction of iridium(III) acetylacetone with 2-phenylpyridine in ethylene glycol at 200-210° gave 96% fac-tris[2-(2-pyridyl-κN)phenyl-κC]iridium(III) after treatment with 1N HCl. The product obtained was 99.9% pure.

RE.CNT 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 17 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2002:450073 CAPLUS  
DN 137:40190  
TI Deuterated semiconducting organic compounds used for optoelectronic devices  
IN Li, Xiao-Chang Charles; Ueno, Kazunori  
PA Canon Kabushiki Kaisha, Japan  
SO PCT Int. Appl., 36 pp.  
CODEN: PIXXD2

DT Patent  
LA English

FAN.CNT 1

|    | PATENT NO.                                                                                                                                                                                         | KIND | DATE     | APPLICATION NO. | DATE         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI | WO 2002047440                                                                                                                                                                                      | A1   | 20020613 | WO 2001-US46282 | 20011206 <-- |
|    | W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, |      |          |                 |              |

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,  
 PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,  
 US, UZ, VN, YU, ZA, ZW  
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,  
 CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,  
 BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG  
 US 20020076576 A1 20020620 US 2000-732511 20001207 <--  
 US 6579630 B2 20030617  
 AU 2002027201 A 20020618 AU 2002-27201 20011206 <--  
 EP 1342392 A1 20030910 EP 2001-996091 20011206 <--  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR  
 JP 2004515506 T 20040527 JP 2002-549032 20011206  
 JP 4065521 B2 20080326  
 US 20030129439 A1 20030710 US 2003-347680 20030122 <--  
 US 6699599 B2 20040302  
 US 20030134140 A1 20030717 US 2003-347681 20030122 <--  
 US 6677060 B2 20040113  
 US 20030138657 A1 20030724 US 2003-347682 20030122 <--  
 US 6686067 B2 20040203  
 PRAI US 2000-732511 A 20001207  
 WO 2001-US46282 W 20011206

AB Organic semiconductors are described which comprise a linear conjugated organic compound or a polymer, a cyclic ring, a fused cyclic ring, a heterocyclic ring, a fused heterocyclic ring, a chelate or organometallic material described by the general formula CaMb (C = conjugated chromophore; M = Li, Na, K, Be, Mg, Ca, Ti, Cr, Mo, Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Zn, Cd, B, Al, Ga, In, Si, N, or P; and a and b = independently 1-10) wherein protons linked to the conjugated bonds are partially or fully deuterated. Preferably, the chromophore has ≥5 conjugated bonds. The semiconductor may be luminescent or promote energy transfer and it may have charge injection, hole blocking, or exciton blocking properties. Organic electroluminescent devices employing the semiconductors are also described.

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 18 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2002:428917 CAPLUS  
 DN 137:26190  
 TI Electroluminescence element and electroluminescent display device containing the same  
 IN Kamatani, Jun; Okada, Shinjiro; Tsuboyama, Akira; Takiguchi, Takao; Miura, Seishi; Noguchi, Koji; Moriyama, Takashi; Igawa, Satoshi; Furugori, Manabu  
 PA Canon Kabushiki Kaisha, Japan  
 SO PCT Int. Appl., 143 PP.  
 CODEN: PIXXD2  
 DT Patent  
 LA Japanese  
 FAN.CNT 2

| PATENT NO.                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI WO 2002044189                                                                                                                                                                                                                                                                                                                                      | A1   | 20020606 | WO 2001-JP10487 | 20011130 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW |      |          |                 |              |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                    |      |          |                 |              |

|                                                                                                              |    |           |                  |              |
|--------------------------------------------------------------------------------------------------------------|----|-----------|------------------|--------------|
| AU 2002022566                                                                                                | A  | 20020611  | AU 2002-22566    | 20011130 <-- |
| EP 1348711                                                                                                   | A1 | 20031001  | EP 2001-998553   | 20011130 <-- |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR |    |           |                  |              |
| CN 1474826                                                                                                   | A  | 20040211  | CN 2001-819112   | 20011130     |
| CN 1781925                                                                                                   | A  | 20060607  | CN 2005-10125184 | 20011130     |
| EP 1881050                                                                                                   | A2 | 20080123  | EP 2007-120391   | 20011130     |
| EP 1881050                                                                                                   | A3 | 20080402  |                  |              |
| R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,<br>NL, PT, SE, TR                         |    |           |                  |              |
| EP 1889891                                                                                                   | A2 | 20080220  | EP 2007-120387   | 20011130     |
| EP 1889891                                                                                                   | A3 | 20080326  |                  |              |
| R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,<br>NL, PT, SE, TR                         |    |           |                  |              |
| US 20030068526                                                                                               | A1 | 20030410  | US 2002-73012    | 20020212 <-- |
| US 7147935                                                                                                   | B2 | 20061212  |                  |              |
| KR 750756                                                                                                    | B1 | 20070820  | KR 2003-707223   | 20030529     |
| US 20060177694                                                                                               | A1 | 20060810  | US 2006-329181   | 20060111     |
| KR 803805                                                                                                    | B1 | 20080214  | KR 2007-701971   | 20070126     |
| US 20070212570                                                                                               | A1 | 20070913  | US 2007-688580   | 20070320     |
| US 20070216294                                                                                               | A1 | 20070920  | US 2007-694754   | 20070330     |
| KR 2007087038                                                                                                | A  | 20070827  | KR 2007-715888   | 20070712     |
| KR 798561                                                                                                    | B1 | 20080128  |                  |              |
| KR 2007087039                                                                                                | A  | 20070827  | KR 2007-715889   | 20070712     |
| KR 2007087040                                                                                                | A  | 20070827  | KR 2007-715890   | 20070712     |
| KR 2007087041                                                                                                | A  | 20070827  | KR 2007-715891   | 20070712     |
| KR 825182                                                                                                    | B1 | 20080424  |                  |              |
| KR 2007087042                                                                                                | A  | 20070827  | KR 2007-715892   | 20070712     |
| KR 825183                                                                                                    | B1 | 20080424  |                  |              |
| KR 2007087043                                                                                                | A  | 20070827  | KR 2007-715893   | 20070712     |
| KR 798562                                                                                                    | B1 | 20080131  |                  |              |
| PRAI JP 2000-364650                                                                                          | A  | 200001130 |                  |              |
| JP 2001-64205                                                                                                | A  | 20010308  |                  |              |
| JP 2001-128928                                                                                               | A  | 20010426  |                  |              |
| CN 2001-819112                                                                                               | A3 | 20011130  |                  |              |
| EP 2001-998553                                                                                               | A3 | 20011130  |                  |              |
| WO 2001-JP10487                                                                                              | W  | 20011130  |                  |              |
| US 2002-73012                                                                                                | A3 | 20020212  |                  |              |
| KR 2003-707223                                                                                               | A3 | 20030529  |                  |              |
| US 2006-329181                                                                                               | A3 | 20060111  |                  |              |
| KR 2007-701971                                                                                               | A3 | 20070126  |                  |              |
| OS MARPAT 137:26190                                                                                          |    |           |                  |              |
| GI                                                                                                           |    |           |                  |              |



**AB** The invention relates to a luminescent element characterized by having a layer containing a metal coordination compound which has a partial structure  $MLmL'n$  represented by the following general formula I ( $A, B =$  isoquinolyl group residue;  $M =$  metal) and which as a whole is preferably represented by the following formula  $MLmL'n$  ( $M =$  Ir, Pt, Rh, Pd;  $m = 1, 2, 3$ ;  $n = 0, 1, 2$ ;  $ML =$  compound I;  $ML'n =$  compound II-IV;  $A', B', B'' =$  ring group residue;  $E, G =$  C1-20 alkyl;  $J = H, C1-20 alkyl$ ). The luminescence element shows the high luminescent efficiency and the good stability.

**RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT**

**L5 ANSWER 19 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2002:268568 CAPLUS**

**DN 136:310035**

**TI Preparation of ortho-metallated iridium complexes or their tautomers**

**IN Kimura, Keizo; Igarashi, Tatsuya**

**PA Fuji Photo Film Co., Ltd., Japan**

**SO Jpn. Kokai Tokkyo Koho, 17 pp.**

**CODEN: JKXXAF**

**DT Patent**

**LA Japanese**

**FAN.CNT 1**

| PATENT NO.           | KIND | DATE     | APPLICATION NO. | DATE         |
|----------------------|------|----------|-----------------|--------------|
| PI JP 2002105055     | A    | 20020410 | JP 2000-298529  | 20000929 <-- |
| PRAI JP 2000-298529  |      | 20000929 |                 |              |
| OS MARPAT 136:310035 |      |          |                 |              |

AB Ir complexes I [Z11, Z12, Z21, Z22 = nonmetallic atomic group required to form a 5-6-membered (un)substituted (condensed) ring; L1, L2 = direct bond, divalent group; Y1, Y2 = N, C; if Y1 = N, then Q1 = direct bond; if Y1 = C, then Q1 = double bond; if Y2 = N, then Q2 = direct bond; if Y2 = C, then Q2 = double bond] or their tautomers, useful as electroluminescent materials (no data), are prepared from Ir compds. II (Z11, Z12, L1, Y1, Q1 = same as above; R1, R3 = aliphatic group, aryl, heterocyclyl; R2 = H, substituent; R1 and R2 or R2 and R3 may be bonded together to form a ring) or their tautomers. II or their tautomers are prepared by hexahaloiridate(III) salts or hexahaloiridate(IV) salts via diiridium complexes III (X = halo; Z11, Z12, Q1, L1 = same as above) or their tautomers. A mixture of K<sub>3</sub>IrCl<sub>6</sub>, 2-phenylpyridine, and glycerol was stirred at 180° for 2 h to give diiridium complex. MeOH solution of NaOMe was added dropwise to a mixture of the complex, AcCH<sub>2</sub>CO<sub>2</sub>Me, and CHCl<sub>3</sub> at room temperature over 20 min and the reaction mixture was further stirred at room temperature for 5 h to give II (R1 = R3 = Me, R2 = H, CQ<sub>1</sub>Y<sub>1</sub>Z<sub>11</sub> = benzene ring; L1 = direct bond, Z12 makes a pyridine ring together with N). This acetylacetone complex was further treated with 2-phenylpyridine in glycerin at 170° for 2 h to give tris(2-phenylpyridine)iridium.

L5 ANSWER 20 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:237969 CAPLUS

DN 136:286688

TI Electroluminescent display device with high brightness and efficiency comprising metal coordination compound

IN Takiguchi, Takao; Mizutani, Hidemasa; Okada, Shinjiro; Tsuboyama, Akira; Miura, Seishi; Moriyama, Takashi; Igawa, Satoshi; Kamatani, Jun; Furugori, Manabu

PA Canon Kabushiki Kaisha, Japan

SO Eur. Pat. Appl., 49 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.                                                                                   | KIND | DATE     | APPLICATION NO. | DATE         |
|------|----------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI   | EP 1191613                                                                                   | A2   | 20020327 | EP 2001-122938  | 20010925 <-- |
|      | EP 1191613                                                                                   | A3   | 20020717 |                 |              |
|      | EP 1191613                                                                                   | B1   | 20060329 |                 |              |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO |      |          |                 |              |
|      | JP 2003146996                                                                                | A    | 20030521 | JP 2001-284599  | 20010919 <-- |
|      | US 2002064681                                                                                | A1   | 20020530 | US 2001-961075  | 20010924 <-- |
|      | US 6815091                                                                                   | B2   | 20041109 |                 |              |
|      | EP 1598879                                                                                   | A2   | 20051123 | EP 2005-18186   | 20010925     |
|      | EP 1598879                                                                                   | A3   | 20080514 |                 |              |
|      | R: DE, FR, GB                                                                                |      |          |                 |              |
|      | US 20050014025                                                                               | A1   | 20050120 | US 2004-912128  | 20040806     |
|      | US 7026062                                                                                   | B2   | 20060411 |                 |              |
|      | US 20060014047                                                                               | A1   | 20060119 | US 2005-226258  | 20050915     |
| PRAI | JP 2000-292492                                                                               | A    | 20000926 |                 |              |
|      | JP 2000-292493                                                                               | A    | 20000926 |                 |              |
|      | JP 2000-358741                                                                               | A    | 20001127 |                 |              |
|      | JP 2000-358742                                                                               | A    | 20001127 |                 |              |
|      | JP 2001-255537                                                                               | A    | 20010827 |                 |              |
|      | JP 2001-284599                                                                               | A    | 20010919 |                 |              |
|      | US 2001-961075                                                                               | A3   | 20010924 |                 |              |
|      | EP 2001-122938                                                                               | A3   | 20010925 |                 |              |
|      | US 2004-912128                                                                               | A3   | 20040806 |                 |              |

OS MARPAT 136:286688



AB A luminescence device is principally constituted by a pair of electrodes and an organic compound layer disposed between. The layer contains a metal coordination compound represented by the formula I ( $M = Ir, Rh, Pd; n = 2, 3; X_1-X_8 = halogen, nitro, trifluoromethyl, Cl-8-trialkylsilyl, C_2-20-alkyl$  capable of including one or two non-neighboring methylene groups which can be replaced with  $-O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH-, -C(\text{tptbond.C})-$  and capable of including hydrogen atom which can be replaced with fluorine atom; with the proviso that at least one of  $X_1$  to  $X_8$  is a substituent other than hydrogen atom, and  $X_2$  and  $X_3$  cannot be fluorine atom at the same time). The object of the present invention is to provide an electroluminescence device capable of providing a high-efficiency luminescent state at a high brightness (or luminance) for a long period while minimizing the deterioration in energized state.

L5 ANSWER 21 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2002:221136 CAPLUS

DN 136:254380

TI Organometallic complexes as phosphorescent emitters in organic LEDs  
IN Thompson, Mark E.; Djurovich, Peter; Lamansky, Sergey; Murphy, Drew;  
Kwong, Raymond; Abdel-Razzaq, Feras; Forrest, Stephen R.; Baldo, Marc A.;  
Burrows, Paul E.

PA The Trustees of Princeton University, USA; The University of Southern California

SO U.S. Pat. Appl. Publ., 77 pp., Cont.-in-part of U. S. Ser. No. 274,609,  
abandoned.

CODEN: USXXXCO

DT Patent

LA English

FAN.CNT 5

|    | PATENT NO.                                                                                               | KIND | DATE     | APPLICATION NO.  | DATE         |
|----|----------------------------------------------------------------------------------------------------------|------|----------|------------------|--------------|
| PI | US 20020034656                                                                                           | A1   | 20020321 | US 2001-883734   | 20010618 <-- |
|    | US 6830828                                                                                               | B2   | 20041214 |                  |              |
|    | US 6097147                                                                                               | A    | 20000801 | US 1998-153144   | 19980914 <-- |
|    | EP 1729327                                                                                               | A1   | 20061206 | EP 2006-16911    | 20000511     |
|    | R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,<br>NL, PT, SE, AL, LT, LV, MK, RO, SI |      |          |                  |              |
| CN | 1840607                                                                                                  | A    | 20061004 | CN 2005-10109631 | 20001129     |
| EP | 1933395                                                                                                  | A1   | 20080618 | EP 2008-3327     | 20001129     |

R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,  
 NL, PT, SE, TR, AL, LT, LV, MK, RO, SI  
 US 20030017361 A1 20030123 US 2002-171235 20020613 <--  
 US 6902830 B2 20050607  
 US 20040262576 A1 20041230 US 2004-870788 20040616  
 US 7001536 B2 20060221  
 JP 2005344124 A 20051215 JP 2005-241794 20050823  
 US 20060029829 A1 20060209 US 2005-233605 20050922  
 US 7291406 B2 20071106  
 JP 2007254755 A 20071004 JP 2007-140927 20070528  
 US 20070296332 A1 20071227 US 2007-879379 20070716  
**PRAI** US 1998-153144 A2 19980914  
 US 1999-274609 B2 19990323  
 US 1999-311126 B2 19990513  
 US 1999-452346 B2 19991201  
 EP 2000-932308 A3 20000511  
 JP 2000-619011 A3 20000511  
 CN 2000-817482 A3 20001129  
 EP 2000-980863 A3 20001129  
 JP 2001-541304 A3 20001129  
 US 2001-883734 A3 20010618  
 US 2002-171235 A3 20020613  
 US 2004-870788 A1 20040616  
 US 2005-233605 A1 20050922

OS MARPAT 136:254380

AB Emissive layers of organic light-emitting devices are described which comprise a phosphorescent organometallic compound for enhancing the quantum efficiency of the organic light-emitting device. Preferably the emissive mol. is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium, and osmium complexes. The organic light-emitting devices optionally contain an exciton blocking layer. In particular, organic light-emitting devices with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands and M is a metal which forms octahedral complexes, are described. A method of making a composition of the formula L2MX is described which entails combining a bridged dimer of formula L2M( $\mu$ -Cl)2ML2 with a Bronsted acid XH to make the desired organometallic complex. Display devices incorporating the light-emitting devices are also described.

RE.CNT 170 THERE ARE 170 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 22 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:31593 CAPLUS

DN 136:93307

TI Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds

IN Petrov, Viacheslav A.; Wang, Ying; Grushin, Vladimir

PA E. I. Du Pont de Nemours & Co., USA

SO PCT Int. Appl., 41 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 4

|    | PATENT NO.                                                                                                                                                                                         | KIND | DATE     | APPLICATION NO. | DATE         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|--------------|
| PI | WO 2002002714                                                                                                                                                                                      | A2   | 20020110 | WO 2001-US20539 | 20010627 <-- |
|    | WO 2002002714                                                                                                                                                                                      | A3   | 20021024 |                 |              |
|    | W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, |      |          |                 |              |

LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO,  
 RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ,  
 VN, YU, ZA, ZW  
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,  
 DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,  
 BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG  
 CA 2411624 A1 20020110 CA 2001-2411624 20010627 <--  
 AU 2001071550 A 20020114 AU 2001-71550 20010627 <--  
 EP 1295514 A2 20030326 EP 2001-950576 20010627 <--  
 EP 1295514 B1 20060802  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR  
 JP 2004503059 T 20040129 JP 2002-507959 20010627  
 EP 1424382 A2 20040602 EP 2004-4541 20010627  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, FI, CY, TR  
 EP 1431288 A2 20040623 EP 2004-4542 20010627  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, FI, CY, TR  
 EP 1431289 A2 20040623 EP 2004-4543 20010627  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, FI, CY, TR  
 AU 2001271550 B2 20050512 AU 2001-271550 20010627  
 AT 335386 T 20060815 AT 2001-950576 20010627  
 TW 593623 B 20040621 TW 2001-90115959 20010629  
 CA 2455844 A1 20030731 CA 2001-2455844 20011226 <--  
 WO 2003063555 A1 20030731 WO 2001-US49522 20011226 <--  
 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,  
 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,  
 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KE, KR, KZ, LC, LK, LR,  
 LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,  
 PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,  
 US, UZ, VN, YU, ZA, ZW  
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,  
 KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,  
 GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA,  
 GN, GQ, GW, ML, MR, NE, SN, TD, TG  
 CN 1520702 A 20040811 CN 2001-823216 20011226  
 EP 1466506 A1 20041013 EP 2001-991428 20011226  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR  
 JP 2005516040 T 20050602 JP 2003-563272 20011226  
 KR 838010 B1 20080612 KR 2002-717946 20021228  
 PRAI US 2000-215362P P 20000630  
 US 2000-224273P P 20000810  
 EP 2001-950576 A3 20010627  
 WO 2001-US20539 W 20010627  
 WO 2001-US49522 W 20011226  
 OS MARPAT 136:93307  
 GI



AB Organic electroluminescent devices are described which employ an emitting layer comprising  $\geq 20$  weight % pf  $\geq 1$  compound described by the general formula  $\text{IrLalLbLcxL}'y\text{L}''z$  ( $x = 0$  or  $1$ ,  $y = 0$ ,  $1$ , or  $2$ , and  $z = 0$  or  $1$ , with the proviso that  $x = 0$  or  $y + z = 0$  and when  $y = 2$  then  $z = 0$ ;  $\text{L}'$  = a bidentate ligand or a monodentate ligand, and is not a phenylpyridine, phenylpyrimidine, or phenylquinoline with the proviso that: when  $\text{L}'$  is a monodentate ligand,  $y + z = 2$ , and when  $\text{L}'$  is a bidentate ligand,  $z = 0$ ;  $\text{L}''$  = a monodentate ligand, and is not a phenylpyridine, and phenylpyrimidine, or phenylquinoline; and  $\text{L}_a$ ,  $\text{L}_b$ , and  $\text{L}_c$  the same or different compds. are described by the general formula I; adjacent pairs of R1-4 and R5-8 can be joined to form a five- or six-membered ring, at least one of R1-8 is selected from F,  $\text{C}_n\text{F}_{2n+1}$ ,  $\text{OC}\text{F}_{2n+1}$ , and  $\text{OCF}_2\text{X}$ ;  $n = 1-6$ ; and  $\text{X} = \text{H}$ , Cl, or Br, and A = C or N, provided that when A = N, there is no R1). The electroluminescent compds. as well as selected substituted 2-phenylpyridines, phenylpyrimidines, and phenylquinolines that may be used to make the compds. are also described.

L5 ANSWER 23 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2001:932827 CAPLUS

DN 136:61303

TI Organic electroluminescent devices using condensed heterocyclic rings  
 IN Taguchi, Toshiki; Mishima, Masayuki; Ise, Toshihiro; Okada, Hisashi  
 PA Fuji Photo Film Co., Ltd., Japan  
 SO Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

| PATENT NO.          | KIND | DATE     | APPLICATION NO. | DATE         |
|---------------------|------|----------|-----------------|--------------|
| PI JP 2001357977    | A    | 20011226 | JP 2000-175981  | 20000612 <-- |
| PRAI JP 2000-175981 |      | 20000612 |                 |              |
| OS MARPAT 136:61303 |      |          |                 |              |

GI



AB The invention relates to an organic electroluminescent device comprising a pair of electrodes sandwiching  $\geq 1$  layer(s) containing  $\geq 1$  condensed heterocyclic compds. represented by I ( $X = \text{C}$ ,  $\text{N}$ ;  $Z_1$  and  $Z_2$  may form a N-containing heterocycl) and ortho metal (Ir) complexes. The device shows high luminance, luminescent efficiency, and superior in durability.

L5 ANSWER 24 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2001:732080 CAPLUS

DN 136:247965

TI Design and synthesis of photoluminescent deuterated chromophores  
 AU Ueno, Kazunori; Yamada, Naoki; Tanabe, Hiroshi; Li, Xiao-Chang Charles  
 CS Electrophotographic Research Center, Canon Inc., Tokyo, Japan  
 SO Japanese Journal of Deuterium Science (2001), 10(1), 25-34  
 CODEN: JJDSFY; ISSN: 1343-0718

PB Japanese Society for Deuterium Science

DT Journal

LA English

AB A completely deuterated phosphorescent complex, fac-tris (2-phenylpyridine) Iridium-Ir (PPy)<sub>3</sub>-d<sub>24</sub>, and a fluorescent polymer, poly (p-phenylenevinylene) (PPV-d6), were prepared and characterized. Electronic absorption and photoluminescent emission spectroscopy showed that both materials have similar optoelectronic properties as their normal analogs. Compared with normal PPV, the PPV-d6 showed 20% enhancement of photoluminescence.

RE.CNT 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 25 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2001:729805 CAPLUS

DN 135:295943

TI Polymeric fluorescent substance, production method thereof, and polymer light-emitting device using the same

IN Doi, Shuji; Tsubata, Yoshiaki

PA Sumitomo Chemical Co., Ltd., Japan

SO Eur. Pat. Appl., 38 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.                                                                                                  | KIND | DATE     | APPLICATION NO.  | DATE         |
|------|-------------------------------------------------------------------------------------------------------------|------|----------|------------------|--------------|
| PI   | EP 1138746                                                                                                  | A1   | 20011004 | EP 2001-302966   | 20010329 <-- |
|      | EP 1138746                                                                                                  | B1   | 20040526 |                  |              |
|      | R: AI, BE, CH,<br>DE, DK, ES, FR,<br>GB, GR, IT, LI,<br>LU, NL, SE, MC,<br>PT,<br>IE, SI, LT,<br>LV, FI, RO |      |          |                  |              |
|      | TW 288761                                                                                                   | B    | 20071021 | TW 2001-90107456 | 20010329     |
|      | JP 2001342459                                                                                               | A    | 20011214 | JP 2001-100621   | 20010330 <-- |
|      | US 20020027623                                                                                              | A1   | 20020307 | US 2001-820946   | 20010330 <-- |
|      | US 6696180                                                                                                  | B2   | 20040224 |                  |              |
|      | KR 770961                                                                                                   | B1   | 20071030 | KR 2001-17013    | 20010330     |
| PRAI | JP 2000-98717                                                                                               | A    | 20000331 |                  |              |

AB Polymeric fluorescent substances are described which have a polystyrene-reduced number-average mol. weight of 103 to 108, and comprises in the

main chain  $\geq 1$  repeating units described by the general formula -Ar<sub>1</sub>-(CR<sub>1</sub>:CR<sub>2</sub>)<sub>n</sub>- (Ar<sub>1</sub> = a C<sub>6</sub>-60 arylene group, a C<sub>4</sub>-60 heterocyclic group, or a group comprising a metal complex having, as a ligand,  $\geq 1$  C<sub>4</sub>-60 organic compds.; Ar<sub>1</sub> may have  $\geq 1$  substituents; each of R<sub>1</sub> and R<sub>2</sub> = independently selected H, Cl-20 alkyl, C<sub>6</sub>-60 aryl, C<sub>4</sub>-60 heterocyclic, and cyano groups; and n = 0 or 1) wherein 0.05-10 mol% of all repeating units in the polymeric fluorescent substance have branching polymeric chains. Methods for producing the materials are also described which entail reacting appropriate precursors. Light-emitting devices employing the substances and displays and light sources employing the devices are also described.

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 26 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2001:682100 CAPLUS

DN 136:12454

TI Reduction of self-quenching effect in organic electrophorescence emitting devices via the use of sterically hindered spacers in phosphorescence molecules

AU Xie, Hong Zhi; Liu, Man Wah; Wang, Oi Yan; Zhang, Xiao Hong; Lee, Chun Sing; Hung, Liang Sun; Lee, Shuit Tong; Teng, Pang Fei; Kwong, Hoi Lun; Zheng, Hui; Che, Chi Min

CS Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, Peop. Rep.

China  
SO Advanced Materials (Weinheim, Germany) (2001), 13(16), 1245-1248  
CODEN: ADVMEW; ISSN: 0935-9648  
PB Wiley-VCH Verlag GmbH  
DT Journal  
LA English  
AB The photoluminescence (PL) and electroluminescence (EL) properties of new Ir complex, Ir(mppy)<sub>3</sub>, prepared by introducing a pinene group as spacer on the framework of 2-phenylpyridine, were examined. The identity of the product was carried out by <sup>1</sup>H NMR. Mass spectral anal. showed a mol. ionic peak at a m/e ratio of 937.6 corresponding to Ir(mppy)<sub>3</sub><sup>+</sup> with fragments at a m/e ratio of 689.5 and 434.3, resp. corresponding to Ir(mpp)<sub>2</sub><sup>+</sup> and Irmpy<sup>+</sup>. The absorption and PL spectra of Ir(mppy)<sub>3</sub> were measured in degassed MeOH solution in its solid state at room temperature, and in ice glass at 77 K. To study the EL properties, the new Ir compound was used as an emitting dopant for fabricating EL devices with various doping concns. In these devices, 4,4'-dicarbazolyl-1,1-biphenyl (CBP) acted as a host material. N,N'-di-1-naphthyl-N,N'-diphenyl-biphenyl-4,4'-diamine and tris(8-hydroxyquinolato)aluminum(III) were used as hole-transport layer and an electron transport layer, resp. Current-voltage characteristics of the Ir complex doped devices were measured and they were fairly insensitive to the doping concentration of Ir(mppy)<sub>3</sub>. The luminance-current studies revealed a gradual increase of brightness when the concentration of Ir(mppy)<sub>3</sub> in CBP was increased. Ir(mppy)<sub>3</sub> exhibited very strong green phosphorescence emission with a PL quantum yield of 0.71 in solution and a relative short lifetime of 0.33 μs in solid. Self-quenching was significantly reduced for this compound in solution even at high concentration because the sterically hindered pinene spacer in the phosphor mol. led to min. bimol. interaction.. Bright green emission was observed from EL devices based on this Ir complex, and external quantum efficiency increased with increasing Ir(mppy)<sub>3</sub> concentration, confirming that the aggregation quenching was almost negligible in these phosphorescence devices.  
RE.CNT 19 THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 27 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 2001:581384 CAPLUS  
DN 135:349716  
TI New, efficient electroluminescent materials based on organometallic Ir complexes  
AU Grushin, Vladimir V.; Herron, Norman; LeCloud, Daniel D.; Marshall, William J.; Petrov, Viacheslav A.; Wang, Ying  
CS Central Research and Development, Experiment Station, E. I. DuPont de Nemours and Co., Inc., Wilmington, DE, 19880-0328, USA  
SO Chemical Communications (Cambridge, United Kingdom) (2001), (16), 1494-1495  
CODEN: CHCOFS; ISSN: 1359-7345  
PB Royal Society of Chemistry  
DT Journal  
LA English  
OS CASREACT 135:349716  
GI



AB Reaction of aqueous  $\text{IrCl}_3$  with fluorinated 2-arylpypyridines in the presence of  $\text{AgO}2\text{CCF}_3$  afforded fifteen fac-tris-cyclometalated arylpyridine Ir complexes (e.g., I) exhibiting excellent processing and electroluminescent properties which can be fine-tuned via systematic control of the nature and position of the substituents on the aromatic rings. Single-crystal x-ray structures were obtained for I and three other analogous cyclometalated arylpyridine Ir complexes. Nearly all the arylpyridine Ir complexes exhibited fully reversible reduction and oxidation waves.

RE.CNT 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 28 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2001:417332 CAPLUS

DN 135:53380

TI Complexes of form L2MX as phosphorescent dopants for organic LEDs  
IN Thompson, Mark E.; Djurovich, Peter; Lamansky, Sergey; Murphy, Drew;  
Kwong, Raymond; Abdel-Razzaq, Feras; Forrest, Stephen R.; Baldo, Marc A.;  
Burrows, Paul E.

PA Trustees of Princeton University, USA; University of Southern California  
SO PCT Int. Appl., 88 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 5

|    | PATENT NO.                                                                                                                                                                                                                                                                                                                                           | KIND | DATE     | APPLICATION NO.  | DATE         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|--------------|
| PI | WO 2001041512                                                                                                                                                                                                                                                                                                                                        | A1   | 20010607 | WO 2000-US32511  | 20001129 <-- |
|    | W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,<br>HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,<br>LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NZ, PL, PT, RO, RU,<br>SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,<br>ZA, ZW |      |          |                  |              |
|    | RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,<br>DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,<br>BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                     |      |          |                  |              |
| EP | 1252803                                                                                                                                                                                                                                                                                                                                              | A1   | 20021030 | EP 2000-980863   | 20001129 <-- |
|    | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                         |      |          |                  |              |
| JP | 2003515897                                                                                                                                                                                                                                                                                                                                           | T    | 20030507 | JP 2001-541304   | 20001129 <-- |
| CN | 1840607                                                                                                                                                                                                                                                                                                                                              | A    | 20061004 | CN 2005-10109631 | 20001129     |
| EP | 1933395                                                                                                                                                                                                                                                                                                                                              | A1   | 20080618 | EP 2008-3327     | 20001129     |
|    | R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,<br>NL, PT, SE, TR, AL, LT, LV, MK, RO, SI                                                                                                                                                                                                                                         |      |          |                  |              |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                  |          |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|
| TW 581762           | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20040401 | TW 2000-89125494 | 20001130 |
| KR 794975           | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20080116 | KR 2002-706966   | 20020530 |
| JP 2005344124       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20051215 | JP 2005-241794   | 20050823 |
| KR 2007087061       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20070827 | KR 2007-716045   | 20070713 |
| KR 2008027968       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20080328 | KR 2008-704971   | 20080228 |
| PRAI US 1999-452346 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19991201 |                  |          |
| CN 2000-817482      | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20001129 |                  |          |
| EP 2000-980863      | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20001129 |                  |          |
| JP 2001-541304      | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20001129 |                  |          |
| WO 2000-US32511     | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20001129 |                  |          |
| KR 2002-706966      | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20020530 |                  |          |
| KR 2007-716045      | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20070713 |                  |          |
| OS MARPAT 135:53380 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                  |          |
| AB                  | Organic light-emitting devices are described in which an emitter layer comprises compds. (e.g., as dopants within a host) which are described by the general formula L2MX (L and X are inequivalent bidentate ligands; and M is a metal which forms octahedral complexes). Devices with emitter layers comprising phosphorescent compds. described by the general formula LL'L''M (L, L', and L'' = inequivalent bidentate ligands) and comprising L'''2M (L''' = a monoanionic bidentate ligand coordinated to M through an sp <sup>2</sup> carbon and a heteroatom; and wherein the heteroatoms of the two L ligands are in a trans configuration) are also described. The preparation of L2MX by combining a bridged dimer described by the general formula L2M( $\mu$ -Cl)2ML2 with a Bronsted acid XH to make an organometallic complex of formula LMX is also described. Synthetic options allow insertion of fluorescent mols. into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers. 3-Methoxy-2-phenylpyridine. |          |                  |          |

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 29 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
 AN 2001:145489 CAPLUS  
 DN 134:340555  
 TI Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes  
 AU Lamansky, Sergey; Djurovich, Peter; Murphy, Drew; Abdel-Razzaq, Feras; Kwong, Raymond; Tsypa, Irina; Bortz, Manfred; Mui, Becky; Bau, Robert; Thompson, Mark E.  
 CS Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA  
 SO Inorganic Chemistry (2001), 40(7), 1704-1711  
 CODEN: INOCAJ; ISSN: 0020-1669  
 PB American Chemical Society  
 DT Journal  
 LA English  
 OS CASREACT 134:340555  
 AB The preparation, photophysics, and solid state structures of octahedral organometallic Ir complexes with several different cyclometalated ligands are reported. IrCl<sub>3</sub>·nH<sub>2</sub>O cleanly cyclometalates a number of different compds. (i.e., 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy), benzoquinoline (bqz), 2-phenylbenzothiazole (bt), 2-(1-naphthyl)benzothiazole (bsn), and 2-phenylquinoline (pq)), forming the corresponding chloride-bridged dimers, C-N2Ir( $\mu$ -Cl)2IrC-N2 (C-N is a cyclometalated ligand) in good yield. These chloride-bridged dimers react with acetyl acetone (acacH) and other bidentate, monoanionic ligands such as picolinic acid (picH) and N-methylsalicylimine (salH), to give monomeric C-N2Ir(LX) complexes (LX = acac, pic, sal). The emission spectra of these complexes are largely governed by the nature of the cyclometalating ligand, leading to  $\lambda_{max}$  values from 510 to 606 nm for the complexes reported here. The strong spin-orbit coupling of iridium mixes the formally forbidden 3MLCT and 3 $\pi$ - $\pi^*$  transitions

with the allowed 1MLCT, leading to a strong phosphorescence with good quantum efficiencies (0.1-0.4) and room temperature lifetimes in the microsecond regime. The emission spectra of the C-N2Ir(LX) complexes are surprisingly similar to the fac-IrC-N3 complex of the same ligand, even though the structures of the two complexes are markedly different. The crystal structures of two of the C-N2Ir(acac) complexes (i.e., C-N =ppy and tpy) have been determined. Both complexes show cis-C,C', trans-N,N' disposition of the two cyclometalated ligands, similar to the structures reported for other complexes with a "C-N2Ir" fragment. NMR data (1H and 13C) support a similar structure for all of the C-N2Ir(LX) complexes. Close intermol. contacts in both (ppy)2Ir(acac) and (tpy)2Ir(acac) lead to significantly red shifted emission spectra for crystalline samples of the ppy and tpy complexes relative to their solution spectra.

RE.CNT 53 THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 30 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 1994:191965 CAPLUS  
DN 120:191965  
OREF 120:33987a,33990a  
TI Facial tris cyclometalated rhodium(3+) and iridium(3+) complexes: their synthesis, structure, and optical spectroscopic properties  
AU Colombo, Mirco G.; Brunold, Thomas C.; Riedener, Toni; Guedel, Hans U.; Fortsch, Marcel; Buergi, Hans-Beat  
CS Inst. Anorg., Anal. Phys. Chem., Univ. Bern, Bern, 3000, Switz.  
SO Inorganic Chemistry (1994), 33(3), 545-50  
CODEN: INOCAJ; ISSN: 0020-1669  
DT Journal  
LA English  
OS CASREACT 120:191965  
AB The synthesis of the facial tris cyclometalated complexes fac-[Rh(ppy)3] (ppyH = 2-phenylpyridine), fac-[Ir(ppy)3], and fac-[Ir(tpy)3] [tpyH = 2-(2-thienyl)pyridine] by a generalized method is described. The conformation of the complexes is discussed on the basis of the 1H NMR spectra, and for fac-[Ir(tpy)3], the room-temperature crystal structure is presented. The excited-state properties are investigated by absorption, luminescence, and luminescence line-narrowing spectroscopy in different media. The lowest excited states of fac-[Rh(ppy)3] and fac-[Ir(tpy)3] embedded in poly(Me methacrylate) (PMMA) correspond to ligand-centered  $3\pi-\pi^*$  transitions at 21,500 and 18,340 cm<sup>-1</sup>, resp., whereas for fac-[Ir(ppy)3], a metal to ligand charge-transfer (3MLCT) lowest excited state is found. Evidence for a mixing of charge-transfer character into the  $3\pi-\pi^*$  lowest excited states is provided by the short luminescence decay times.

L5 ANSWER 31 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 1991:185715 CAPLUS  
DN 114:185715  
OREF 114:31379a,31382a  
TI A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metallated complexes of iridium(III) with substituted 2-phenylpyridines  
AU Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J.  
CS Dep. Chem., Univ. California, Santa Barbara, CA, 93106, USA  
SO Inorganic Chemistry (1991), 30(8), 1685-7  
CODEN: INOCAJ; ISSN: 0020-1669  
DT Journal  
LA English  
OS CASREACT 114:185715  
AB Reaction of 2-phenylpyridine (Hppy) with Ir(acac)<sub>3</sub> (acac = acetylacetonato) in refluxing glycerol gives the fac-tris-ortho-metalate

of Ir(III), fac-Ir(ppy)3 in high yield (45%). Phenyl-ring-substituted derivs. of 2-phenylpyridine (R-Hppy) were prepared by cross-coupling of 2-bromopyridine with substituted bromobenzenes. These react with Ir(acac)3 in a manner analogous to Hppy to give similarly high yields (40-75%) of their resp. tris-ortho-metallates, fac-Ir(R-ppy)3.

L5 ANSWER 32 OF 32 CAPLUS COPYRIGHT 2008 ACS on STN  
AN 1985:113724 CAPLUS  
DN 102:113724  
OREF 102:17879a,17882a  
TI Excited-state properties of a triply ortho-metallated iridium(III) complex  
AU King, K. A.; Spellane, P. J.; Watts, Richard J.  
CS Dep. Chem., Univ. California, Santa Barbara, CA, 93106, USA  
SO Journal of the American Chemical Society (1985), 107(5), 1431-2  
CODEN: JACSAT; ISSN: 0002-7863  
DT Journal  
LA English  
OS CASREACT 102:113724  
AB The first triply o-metallated complex of 2-phenylpyridine (ppy) with Ir(III), fac-Ir(ppy)3, has been prepared and characterized by 1H and 13C NMR spectroscopies. The metal-to-ligand charge-transfer (MLCT) excited state has a 2-μs lifetime in deoxygenated ambient-temperature MePh or MeCN and emits with a luminescence quantum yield of 0.4 + 0.1. The 5-μs lifetime measured at 77 K suggests a near-unity luminescence yield at low temps. This MLCT excited state is a strong reducing agent with an estimated oxidation potential of +1.8 V vs. SCE.

=>

---Logging off of STN---

=>

Executing the logoff script...

=> LOG Y

| COST IN U.S. DOLLARS                       | SINCE FILE ENTRY | TOTAL SESSION |
|--------------------------------------------|------------------|---------------|
| FULL ESTIMATED COST                        | 103.12           | 281.69        |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE ENTRY | TOTAL SESSION |
| CA SUBSCRIBER PRICE                        | -25.60           | -25.60        |

STN INTERNATIONAL LOGOFF AT 16:55:50 ON 23 JUN 2008