1.61 Soit les ensembles

1)
$$A = \{1, 2, 3, 4\},\$$

4)
$$D = \{2, 3\},\$$

2)
$$B = [1, 4] = \{x \in \mathbb{R} \mid 1 \le x \le 4\},\$$

5)
$$E = [2,3] = \{x \in \mathbb{R} \mid 2 \le x \le 3\},\$$

3)
$$C = [1, 4] = \{x \in \mathbb{R} \mid 1 < x < 4\},\$$

6)
$$F = |2,3| = \{x \in \mathbb{R} \mid 2 < x < 3\}.$$

Représenter, dans le plan \mathbb{R}^2 muni d'un repère cartésien, les ensembles

a)
$$A \times F$$
,

b)
$$A^2 \setminus C^2$$
,

c)
$$(B \triangle E)^2$$
.

1.62 Pour les quatre ensembles

$$A = \{0,1\}, \quad B = \{-1,1\}, \quad C = \{-2,0,2\} \quad \text{et} \quad D = \{0,2,4\}$$

déterminer

a)
$$\mathscr{P}(B)$$
,

c)
$$(D \setminus C) \times (A \cup B)$$
,

b)
$$A \triangle B \triangle C \triangle D$$
,

d)
$$\{X \subseteq D \mid X \notin \mathscr{P}(C)\}.$$

1.63 Soit A et B deux ensembles finis de cardinal respectif n et m, déterminer le cardinal de

a)
$$\mathcal{P}(A \times B)$$

b)
$$\mathscr{P}(A) \times \mathscr{P}(B)$$

c)
$$\mathscr{P}(A^k), k \geq 1$$

1.64 Paradoxe de Russell

Soit S l'ensemble contenant tous les ensembles X qui ne sont pas éléments d'eux-mêmes :

$$S = \{X \mid X \notin X\}.$$

a) Pour chacun des ensembles X suivants, décider s'il appartient ou non à S:

$$X=\varnothing, \qquad X=\left\{ \mathrm{Oui}, \mathrm{Non} \right\}, \qquad X=\left\{ 1,\left\{ 1\right\} \right\}, \qquad X=\mathbb{N}.$$

- b) Montrer que l'affirmation $S \in S$ conduit à une contradiction.
- c) Montrer que l'affirmation $S \notin S$ conduit, également, à une contradiction.

1.8 Solutions d'exercices choisis

1.1 a)
$$\{-1,0,1,2,3,4,5\}$$

c) Ø

b) $\{-3, -1, 1, 3\}$

d) $\{-1,0\}$

a) $\{1, 2, 3, 4\}$ 1.2

c) $\{-3, -2, -1, 0, 1, 2, 3\}$

b) Ø

d) $\{-4,4\}$

a) $A = \{-3, -2, -1, 0, 1, 2\}$ 1.3

c) $C = \{0, 1, 2, 3\}$

b) $B = \{-3, -1, 1\}$

d) $D = \{0, 3\}$

a) $\{1\} \notin \{0,1\}$ 1.4

d) $2 \in \{0, 1, 2\}$

g) Ø ∉ Ø

b) $\{-1\} \in \{\{-1\}, \{1\}\}$ e) $1 \notin \{\{1\}\}$

h) 0 ∉ Ø

c) $\{1,2\} \notin \{\{0\},\{1\},\{2\}\}\}$ f) $2 \notin \{\{0\},\{1\},\{2\}\}$

i) $\emptyset \in \{\emptyset\}$

 $A = B = D \ (C = \{-1, 1\})$ 1.5

1.7 a)
$$\{3\} \subseteq \{3,4\}$$

1.8

c)
$$\{\{2\}\}\subseteq \{\{0\},\{1\},\{2\}\}$$

e)
$$\varnothing \subseteq \mathbb{Z}$$

b)
$$\{3\} \not\subseteq \{\{3\}, \{4\}\}$$

d)
$$\{2,4\} \subseteq \{2,4\}$$

f)
$$\varnothing \subseteq \varnothing$$

a)
$$\{3\} \subset \{3,4\}$$

d)
$$\{\{4\}\} \not\subseteq \{\{1,2\},\{3,4\}\}$$

$$g) \{\emptyset\} \subseteq \{\emptyset\}$$

b)
$$\{3,4\} \not\subset \{3,4\}$$

h)
$$\varnothing \subset \{\varnothing\}$$

c)
$$\{2,3\} \not\subseteq \{\{2\},\{3\}\}$$

$$f) \ \{\varnothing\} \not\subseteq \varnothing$$

i)
$$\varnothing \subset \mathbb{Z}$$

1.10 a)
$$A \cup B = \{1, 2, 3, 4, 5, 9\}$$

d)
$$B \setminus A = \{5, 9\}$$

g)
$$A \setminus C = \{2, 4\}$$

b)
$$A \cap B = \{1\}$$

e)
$$(A \cup B) \cap C = \{1, 3\}$$

e)
$$(A \cup B) \cap C = \{1, 3\}$$
 h) $(A \setminus C) \setminus B = \{2, 4\}$

c)
$$A \setminus B = \{2, 3, 4\}$$

f)
$$A \sqcup (B \cap C) = \{1, 2, 3, 4\}$$

$$(A \setminus C) \setminus B = \{2,4\}$$

1.11 a)
$$A \triangle B = \{1, 2, 3, 7, 8, 9\}$$

f)
$$A \cup (B \cap C) = \{1, 2, 3, 4\}$$
 i) $A \setminus (C \setminus B) = \{1, 2, 4\}$

i)
$$A \setminus (C \setminus B) = \{1, 2, 1\}$$

$$A = \{1, 2, 3, 7, 6, 9\}$$

c)
$$B \triangle C = \{1, 3, 4, 6, 8\}$$

b)
$$B \triangle A = \{1, 2, 3, 7, 8, 9\}$$

d)
$$C \triangle \varnothing = C$$

1.12 a)
$$B \subseteq A$$

c)
$$A \cap B = \emptyset$$

e)
$$A = B$$

g)
$$A \subseteq B$$

b)
$$A \subseteq B$$

f)
$$A = B$$

h)
$$B=\varnothing$$

1.13 a) Voir figure 1.3.

b) L'identité est vraie car les colonnes 4 et 7 de la table donnée ci-dessous sont identiques.

\boldsymbol{A}	$\mid B \mid$	$A \cap B$	$ \overline{A \cap B} $	$\mid \overline{A}$	\overline{B}	$\overline{A} \cup \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

- c) Premièrement, supposons que $x \in \overline{A \cap B}$. Il s'en suit que $x \notin A \cap B$, c'est-à-dire que $x \notin A$ ou $x \notin B$. Dit autrement, $x \in \overline{A}$ ou $x \in \overline{B}$. Ainsi $x \in \overline{A} \cup \overline{B}$ et $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. Supposons maintenant que $x \in \overline{A} \cup \overline{B}$. On doit avoir $x \in \overline{A}$ ou $x \in \overline{B}$, c.-à-d. $x \notin A$ ou $x \notin B$. Il s'en suit que $x \notin A \cap B$ et donc $x \in \overline{A \cap B}$. Ceci montre que $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ et la propriété est vérifiée.
- 1.14 b) L'identité est vraie car les colonnes 5 et 8 de la table qui suit sont identiques.

A	B	$\mid C \mid$	$B \cup C$	$A \setminus (B \cup C)$	$A \setminus B$	$A \setminus C$	$(A \setminus B) \cap (A \setminus C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1
1	0	1	1	0	1	0	0
1	1	0	1	0	0	1	0
1	1	$\mid 1 \mid$	1	0	0	0	0

c) On veut montrer: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. On a d'une part

$$\begin{array}{ll} A \setminus (B \cup C) &=& A \cap \overline{(B \cup C)} & \text{ (définition de la différence} : S \setminus T = S \cap \overline{T}) \\ &=& A \cap \overline{(B} \cap \overline{C}) & \text{ (1re loi de De Morgan)} \\ &=& A \cap \overline{B} \cap \overline{C} & \text{ (associativité de l'intersection)} \end{array}$$

Figure 1.3 – Vérification de la deuxième loi de De Morgan : $\overline{A \cap B} = \overline{A} \cup \overline{B}$ à l'aide de diagrammes de Venn. Les surfaces pleines représentent le résultat des différentes opérations. La validité de la loi résulte de l'égalité des deux diagrammes de droite.

et d'autre part

$$(A \setminus B) \cap (A \setminus C) = (A \cap \overline{B}) \cap (A \cap \overline{C}) \qquad \text{(déf. de la différence)}$$

$$= A \cap \overline{B} \cap A \cap \overline{C} \qquad \text{(associativité de l'intersection)}$$

$$= (A \cap A) \cap \overline{B} \cap \overline{C} \qquad \text{(commutativité et associativité de } \cap)$$

$$= A \cap \overline{B} \cap \overline{C} \qquad \text{(idempotence : } A \cap A = A)$$

1.15 a)
$$A \setminus (A \setminus B) = A \cap \overline{(A \cap \overline{B})}$$
 (définition de la différence : $S \setminus T = S \cap \overline{T}$, $2 \times$) $= A \cap (\overline{A} \cup \overline{B})$ (2e loi de De Morgan) $= A \cap (\overline{A} \cup B)$ (involution) $= (A \cap \overline{A}) \cup (A \cap B)$ (distributivité de \cap) $= \emptyset \cup (A \cap B)$ (complémentarité) $= A \cap B$ (identité)

b) Premier développement :

$$(A \setminus B) \triangle B = (A \cap \overline{B}) \triangle B \qquad (\text{déf. de la différence})$$

$$= (A \cap \overline{B}) \setminus B) \cup (B \setminus (A \cap \overline{B})) \qquad (\text{déf. de la différence sym.})$$

$$= (A \cap \overline{B}) \cup (B \cap (\overline{A} \cap \overline{B})) \qquad (\text{déf. de la différence})$$

$$= (A \cap \overline{B}) \cup (B \cap (\overline{A} \cap \overline{B})) \qquad (\text{idempotence} : \overline{B} \cap \overline{B} = \overline{B})$$

$$= (A \cap \overline{B}) \cup (B \cap (\overline{A} \cup \overline{B})) \qquad (\text{involution} : \overline{\overline{B}} = B)$$

$$= (A \cap \overline{B}) \cup B \qquad (\text{absorption})$$

$$= (A \cup B) \cap (\overline{B} \cup B) \qquad (\text{distributivité de } \cup)$$

$$= (A \cup B) \cap \Omega \qquad (\text{complémentarité})$$

$$= A \cup B \qquad (\text{identité})$$

Autre développement :

$$(A \setminus B) \triangle B = (A \cap \overline{B}) \triangle B \qquad (\text{déf. de la différence})$$

$$= ((A \cap \overline{B}) \setminus B) \cup (B \setminus (A \cap \overline{B})) \qquad (\text{déf. de la différence sym.})$$

$$= (A \cap \overline{B}) \cap \overline{B}) \cup (B \cap (A \cap \overline{B})) \qquad (\text{déf. de la différence})$$

$$= (A \cap \overline{B}) \cup (B \cap (A \cap \overline{B})) \qquad (\text{idempotence})$$

$$= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup (A \cap \overline{B})) \qquad (\text{distributivité de } \cup)$$

$$= ((A \cap \overline{B}) \cup B) \cap \Omega \qquad (\text{complémentarité})$$

$$= (A \cup B) \cap (\overline{B} \cup B) \qquad (\text{distributivité de } \cup)$$

$$= (A \cup B) \cap \Omega \qquad (\text{complémentarité})$$

$$= (A \cup B) \cap \Omega \qquad (\text{complémentarité})$$

$$= (A \cup B) \cap \Omega \qquad (\text{identité})$$

$$= (A \cup B) \cap \Omega \qquad (\text{identité})$$

- **1.17** a) $A \triangle (B \triangle C) = \{2, 5, 8\}$
- d) $(A \cup B) \triangle (A \cup C) = \{8\}$
- b) $(A \triangle B) \triangle C = \{2, 5, 8\}$

- e) $A \cap (B \triangle C) = \{1, 3, 4, 6\}$
- c) $A \cup (B \triangle C) = \{1, 2, 3, 4, 5, 6, 8\}$
- f) $(A \cap B) \triangle (A \cap C) = \{1, 3, 4, 6\}$
- **1.19** a) A est fini $(A = \emptyset)$ et |A| = 0
 - b) B est fini et |B| = 26
 - c) C est infini (C =]0, 1[)
 - d) D est infini $(D = \{x \mid x = (2k+1)\pi, k \in \mathbb{Z}\})$
- 1.20 a) $|\{4\}| = 1$

e) $|\emptyset| = 0$

b) $|\{\{4\}\}| = 1$

f) $|\{\emptyset\}| = 1$

c) $|\{4,\{4\}\}| = 2$

g) $|\{\emptyset, \{4\}\}| = 2$

d) $|\{4,\{4\},\{4,4\}\}| = 2$

h) $|\{4,\{4\},\{4,\{4\}\}\}|=3$

1.21 a) 32

b) 29

c) Données incohérentes

- 1.22 $|A \cup B| = |A| + |B| |A \cap B|$
- **1.23** $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- **1.26** a) $\mathscr{P}(\{0\}) = \{\emptyset, \{0\}\}\$
 - b) $\mathscr{P}(\{x, y, z\}) = \{\varnothing, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}\$
 - c) $\mathscr{P}(\varnothing) = \{\varnothing\}$
 - d) $\mathscr{P}(\mathscr{P}(\{0\})) = \mathscr{P}(\{\emptyset, \{0\}\}) = \{\emptyset, \{\emptyset\}, \{\{0\}\}, \{\emptyset, \{0\}\}\})$
- 1.27 $2^n 2$
- 1.281023
- 1.29 26
- **1.30** a) $\mathscr{P}(A) = \{\varnothing, \{0\}, \{1\}, \{0, 1\}\}$
 - b) $\mathscr{P}(B) = \{\varnothing, \{-1\}, \{1\}, \{-1, 1\}\}\$
 - c) $\mathscr{P}(A \cup B) = \{\varnothing, \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\}\}\$
 - d) $\mathscr{P}(A) \cup \mathscr{P}(B) = \{\varnothing, \{-1\}, \{0\}, \{1\}, \{-1, 1\}, \{0, 1\}\}\$
 - e) $\mathscr{P}(A \cap B) = \{\varnothing, \{1\}\}\$
 - f) $\mathscr{P}(A) \cap \mathscr{P}(B) = \{\varnothing, \{1\}\}\$

1.33 a) $A \times B = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$

b)
$$B \times A = \{(x, a), (y, a), (x, b), (y, b), (x, c), (y, c)\}$$

c)
$$A \times B \times C = \{(a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1), (c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1)\}$$

d)
$$C^3 = C \times C \times C = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

e)
$$C \times \emptyset = \emptyset$$

f)
$$C \times \{\emptyset\} = \{(0,\emptyset), (1,\emptyset)\}$$

1.36 a)
$$(A \times B) \cup (B \times A)$$

b)
$$(B^2 \setminus F^2) \cup (D \times E) \cup (E \times D)$$

(a)

c)
$$((A \setminus F) \times B) \cup (B \times (A \setminus F)) \cup E^2$$

1.37 a)
$$|T \times U| = |T| \cdot |U| = 1 \cdot 2 = 2$$

b)
$$|S^3| = |S|^3 = 3^3 = 27$$

c)
$$|S \times \mathcal{P}(U)| = |S| \cdot |\mathcal{P}(U)| = |S| \cdot 2^{|U|} = 3 \cdot 2^2 = 12$$

d)
$$|\mathscr{P}(T) \times \mathscr{P}(U)| = |\mathscr{P}(T)| \cdot |\mathscr{P}(U)| = 2^{|T|} \cdot 2^{|U|} = 2^1 \cdot 2^2 = 8$$

Si A = B ou si l'un des deux ensembles au moins est égal à \emptyset 1.38

1.39
$$S = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$$

Non, contre-exemple : x = 1, $y = \{1\}$ et $z = \{\{1\}\}$, on a bien $x \in y$ et $y \in z$ mais $x \notin z$.

1.44 a)
$$1 \in \{1, \{1\}, 2, \{2\}\}$$

d)
$$\mathscr{P}(\{1\}) \not\subseteq \{1, 2, \{1, 2\}\}$$
 g) $(\varnothing, \varnothing) \notin \varnothing^2$

g)
$$(\emptyset,\emptyset) \notin \emptyset^2$$

b)
$$\{1,2\} \notin \{1,\{1\},2,\{2\}\}$$
 e) $\emptyset \in \mathscr{P}(\{1\})$

e)
$$\varnothing \in \mathscr{P}(\{1\})$$

h)
$$\{0,1\} \in \mathcal{P}(\{0,1\})$$

c)
$$\{1,2\} \subseteq \{1,\{1\},2,\{2\}\}$$
 f) $\{\emptyset\} \subseteq \mathcal{P}(\{1\})$

f)
$$\{\emptyset\} \subset \mathcal{P}(\{1\})$$

i)
$$\{0,1\} \not\subseteq \mathscr{P}(\{0,1\})$$

1.45 a)
$$\{3\} \notin A$$

e)
$$9 \in A$$

i)
$$\{\{3,9\},\{3,3\}\}\subseteq \mathscr{P}(A)$$

b)
$$\{\{0,2\},\{4\}\} \notin \mathscr{P}(A)$$

f)
$$\{\emptyset\} \notin \mathscr{P}(A)$$

j)
$$\{(5,5)\}\subseteq A^2$$

c)
$$\{\emptyset\} \not\subseteq A$$

g)
$$(7,7) \notin A$$

k)
$$(1,5,9) \in A^3$$

d)
$$(1,7) \in A^2$$

h)
$$\{(1,7)\} \not\subseteq \mathscr{P}(A^2)$$

1)
$$\{2, -1, 0\} \not\subseteq A$$

1.46 a) $\mathcal{P}(A)$

c)
$$\mathcal{P}(A)^2$$

b)
$$A^2$$

f)
$$\mathscr{P}(A)$$

1.47 a)
$$A^2$$

e)
$$\mathcal{P}(A)$$
, $\mathcal{P}(A^2)$ et $\mathcal{P}(\mathcal{P}(A))$

b)
$$\mathscr{P}(A)$$

c)
$$\mathscr{P}(\mathscr{P}(A))$$

d) A^2

h)
$$\mathscr{P}(A)$$

1.50
$$(A \cup B \cup C) \setminus (A \triangle B \triangle C)$$
 ou $((A \cap B) \cup (A \cap C) \cup (B \cap C)) \setminus (A \cap B \cap C)$ ou ...

1.51 a)
$$A = B$$

b)
$$B \subseteq A$$

c)
$$A \cap B = \emptyset$$

1.52 1)
$$\Omega = (A \cup B) \cup \overline{B} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

2)
$$B = \Omega \setminus \overline{B} = \{3, 4, 7, 9\}$$

3)
$$B \setminus (A \cup C) = (A \cup B) \setminus (A \cup C) = \{7, 9\}$$

4)
$$B \setminus A = B \setminus (A \cup C) = \{7, 9\} \text{ car } B \cap C = \emptyset$$

5)
$$A = (A \cup B) \setminus (B \setminus A) = \{2, 3, 4, 5\}$$

6)
$$C \setminus A = (A \cup C) \setminus A = \{6, 10, 11\}$$

7)
$$C = (C \setminus A) \cup (A \cap C) = \{5, 6, 10, 11\}$$

1.57 1) On sait que
$$|A \triangle B| = |A| + |B| - 2|A \cap B|$$
 (ex. 1.24). Ainsi

$$|A \cap B| = \frac{|A| + |B| - |A \triangle B|}{2} = \frac{7 + 6 - 5}{2} = 4$$

2)
$$|A^2 \times B| = |A^2| \cdot |B| = |A|^2 \cdot |B| = 7^2 \cdot 6 = 49 \cdot 6 = 294$$

3)
$$|\mathscr{P}(B)| = 2^{|B|} = 2^6 = 64$$

4)
$$|\mathscr{P}(A) \cup \mathscr{P}(B)| = |\mathscr{P}(A)| + |\mathscr{P}(B)| - |\mathscr{P}(A) \cap \mathscr{P}(B)|$$
 (ex. 1.22)
 $= |\mathscr{P}(A)| + |\mathscr{P}(B)| - |\mathscr{P}(A \cap B)|$ (ex. 1.31)
 $= 2^{|A|} + 2^{|B|} - 2^{|A \cap B|} = 2^7 + 2^6 - 2^4$
 $= 128 + 64 - 16 = 176$

1.60 a)

(ii)

b) $(B^2 \setminus C^2) \cup D^2$

1.61

1.62 a)
$$\mathscr{P}(B) = \{\varnothing, \{-1\}, \{1\}, \{-1, 1\}\}$$

b)
$$A \triangle B \triangle C \triangle D = \{-2, -1, 0, 4\}$$

c)
$$(D \setminus C) \times (A \cup B) = \{(4, -1), (4, 0), (4, 1)\}$$

d)
$$\{X \subseteq D \mid X \notin \mathscr{P}(C)\} = \{\{4\}, \{0,4\}, \{2,4\}, \{0,2,4\}\}$$

1.63 a)
$$2^{nm}$$

b)
$$2^{(n+m)}$$

c)
$$2^{n^k}, k \ge 1$$