

2016中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2016

数据定义未来

360云盘底层Cassandra+Storm介绍 郭东东、倪传雷

- Cassandra+Storm整体架构及现状
- Cassandra系统改进及实践
- Storm系统改进及实践

Cassandra+Storm集群现状

• 集群规模

主机规模	备份规模	数据规模	单日新增
13000台	8000台	400PB	500TB

单集群规模	集群容量	
150台(24/3T)	9P	
300台(24/3T)	18P	
600台(36/4T)	79P	

Cassandra+Storm集群现状

• 主要问题:

- 扇区、磁盘故障、主机故障导致副本缺失
- 新写入数据副本可能不足(ONE/QUORUM)
- 系统自带机制不能保证副本及时修复:
 - 读修复、Hinthandoff、Repair操作局限性
 - 损坏的SSTable在内存索引中,但磁盘数据读异常

- 文件/磁盘自动摘除
 - 目的:
 - 去腐生肌
 - 消除影响
 - 基于统计
 - 文件异常访问次数
 - 摘除文件比例

- 数据节点定期扫描修复
 - 目的:
 - 磁盘/文件故障摘除即启动修复
 - 尽快恢复全副本的状态
 - 修复方式:
 - 确定故障所属Range
 - RowScan + Diff
 - KeyScan + Read (ALL)

- 增量数据的检查修复
 - 目的:
 - 保证新写入数据副本数足够
 - 解决hinthandoff缺点
 - 处理方式:
 - 新增辅助表: proxycheck
 - 副本不足记入辅助表
 - 数据节点写失败: 超时/拒绝
 - 数据节点停机
 - 读修复

Cassandra系统改进-数据分配策略

• 主要问题:

- 基于集群的数据Partition策略,不灵活
- 不同Keyspace根据数据类型及访问需求,需要不同的Partition策略
- 部分KeySpace 有范围Scan的需求

Cassandra系统改进-数据分配策略

- 基于KeySpace的Partition策略:
 - 支持RandomPartitioner和ByteOrderedPartitioner
 - 修改表的Meta信息存储,增加Partition策略
 - 增加不同Partition的Token对应关系
 - 修改访问接口内部实现,实现不同Partition的兼容性

Cassandra系统改进-EraserCode

- 主要问题:
 - 数据规模原来越大,储存成本越来越高
 - SimpleStrategy,NetworkTpStrategy 存储3副本成本太高

Cassandra系统改进-EraserCode

- 基于Stripe的EC存储策略:
 - 数据切分成N段子数据
 - N段子数据计算出P个校验值
 - N+P段数据依序存储在环上

Cassandra系统改进-EraserCode

- EC存储数据切分及存储原理:
 - 数据内容按照大小切分成N个字段
 - 子段的Key,有前缀+Value的Md5
 - 原始Key只存储子Key列表

Storm系统改进-大文件缓存

• 主要问题:

- 部分Storm topology依赖数据量较大,如机器学习模型
- 规模达数百兆,导致topology启动时间过长
- 数据变化不大

Storm系统改进-大文件缓存

- 大文件缓存:
 - 大文件采用类似Jar管理方式,由supervisor管理
 - topology下线之后并不立即删除,长时间不用才释放

Storm系统改进-应用Jar包P2P分发

- 主要问题:
 - topology的jar包比较大
 - worker 数量在上千台服务器上
 - topology启动耗时比较长

Storm系统改进-应用Jar包P2P分发

- P2P软件分发:
 - Storm集成P2P分发软件功能
 - Nimbus到Supervisor节点软件包的快速分发

