Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 133.0 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 657.07 657.06 Bølgelengde (nm) 657.05 657.04 657.03 0 10 20 30 40 50 60 70 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 10.00, tilsynelatende blå størrelseklass $m_B=11.31$

Stjerna B: Tilsynelatende visuell størrelseklasse m_V = 10.00, tilsynelatende blå størrelseklass $m_B = 12.31$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 4.96, tilsynelatende

blå størrelseklass m_B = 6.27

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 4.96, tilsynelatende blå størrelseklass $m_B = 7.27$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.15 og store halvakse a=55.10 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.15 og store halvakse a=65.07 AU.

Filen 1F.txt

Ved bølgelengden 447.00 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 7.00 6.90 Tilsynelatende størrelsklasse m_V 6.80 6.70 6.60 6.50 6.40 6.30 20 40 ò 100 120 60 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 17.00 solmasser, temperatur på 49.40 Kelvin og tetthet 7.99e-21 kg per kubikkmeter

Gass-sky B har masse på 14.80 solmasser, temperatur på 65.50 Kelvin og tetthet 2.99e-21 kg per kubikkmeter

Gass-sky C har masse på 36.40 solmasser, temperatur på 16.50 Kelvin og

tetthet 1.24e-20 kg per kubikkmeter

Gass-sky D har masse på 12.20 solmasser, temperatur på 34.70 Kelvin og tetthet 9.70e-21 kg per kubikkmeter

Gass-sky E har masse på 12.60 solmasser, temperatur på 85.10 Kelvin og tetthet 6.24e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE B) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE C) stjernas energi kommer fra Planck-stråling alene

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) kjernen består av karbon og oksygen og er degenerert

Filen 1L.txt

Stjerne A har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 8.87

Stjerne B har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 4.13

Stjerne C har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 1.61

Stjerne D har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V

= 6.75

Stjerne E har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 9.36

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

2 ·

1 -

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.7510000000000000088818 AU.

Tangensiell hastighet er 44682.874284535042534117 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.536 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.050 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.778.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9380 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00063 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=700.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9885 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 766.50 nm.

Filen 4A.txt

Stjernas masse er 4.97 solmasser.

Stjernas radius er 0.75 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -400 200 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.87 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.30 solmasser.

r-koordinaten til det innerste romskipet er
r $=12.96~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=23.54~\mathrm{km}.$