

Algorithmique et Programmation (TALA330A L3 INALCO)

Caroline Parfait caroline.parfait@sorbonne-universite.fr

2021-2022

Obtic, Sorbonne Center for Artificial Intelligence STIH EA 4509, Sorbonne Université

Plan de la présentation

1. L'OCTET

2. Représentation des entiers naturels : Notations Décimale et Binaire

3. Arbres Binaires

4. Notation Hexadécimale

L'OCTET

L'octet

La mémoire :

- composée de cellules mémoires capables de retenir un bit.
- composée de cellules dans un seul composant et quelques circuits électroniques pour gérer le tout

Électronique - un mot :

- L'état d'un circuit mémoire, se décrit par une suite finie de 0 et de 1.
- Par exemple, le mot 100 décrit l'état d'un circuit composé de trois circuits mémoires un bit, respectivement dans l'état 1, 0 et 0.

L'octet

les octets: Dans la mémoire des ordinateurs, les circuits mémoires un bit sont souvent groupés par huit. On utilise souvent des nombres exprimés en notation binaire, c'est-à-dire en base deux, sur un, deux, quatre ou huit octets, soit 8, 16, 32 ou 64 bits.

1 octet = 8 bits

1 octet permet de représenter 2⁸, c'est-à-dire 256 valeurs différentes. Un ou plusieurs octets permettent ainsi de coder des valeurs numériques ou des caractères.

Le bit ne peut prendre que 2 valeurs : 0 ou 1

L'octet, les unités

Les bits sont groupés et manipulés par paquets de 8 (ils ne sont pas stockés individuellement) :

- 8 bits = 1 octet = 1 byte
- 1 Kilo octet = 1 Ko = 1000 octets (avant 1998 : 1024 octets)
- $1~{\sf M\'ega}$ octet $=1~{\sf Mo}=1000~{\sf Ko}$
- 1 Giga octet = 1 Go = 1000 Mo
- 1 Téra octet = 1 To = 1000 Go

Notations Décimale et Binaire

Représentation des entiers naturels :

Numérotation décimale et binaire

- □ Définir la notation décimale et la notation binaire?
 - Les humains utilisent la notation décimale pour exprimer les nombres entiers naturels,
 - Les ordinateurs utilisent une base 2 pour calculer.
- Notation Décimale :

Un ensemble de dix chiffres d'où le nom de notation décimale. Les chiffres utilisés sont : 0.1.2.3.4.5.6.7.8.9

■ Notation binaire?

Les ordinateurs actuels utilisent des transistors pour calculer qui ne possèdent que deux états : 0 et 1.

A quoi sert la notation binaire?

- Actuellement, dans les systèmes numériques comme les ordinateurs, toutes les informations, qu'il s'agisse de nombres, de textes, d'images, de sons ou encore de vidéos, sont codées sous forme binaire.
- Le système binaire est un système de numération positionnel utilisant la base deux.
- Les chiffres utilisés sont : 0 et 1

Représentation décimale	Représentation binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101

Comment passer de la notation décimale à la notation binaire ?

 On regroupe les objets par paquets de 2 en réalisant des divisions successives jusqu'à obtenir un quotient égal à 0.

L'écriture du nombre se fait alors de droite à gauche ou de bas en haut :

13 = 1101

Comment passer de la notation binaire à la notation décimale ?

1110

 1110_2 est l'addition de droite à gauche de zéro unité, une deuzaine, une quatraine, une huitaine.

Soit mathématiquement:

$$1110 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 14$$

Exercices:

https://info.blaisepascal.fr/isn-codages-exercices

Arbres Binaires

Le codage de Huffman

```
http:
//lwh.free.fr/pages/algo/compression/huffman.html
```

Le codage de Shannon-Fano

```
http:
//lwh.free.fr/pages/algo/compression/ShannonFano.html
```

- Calcul Hexadécimal Base 16
- La notation Hexadécimale consiste via un système de correspondance à crypter des données.
- La notation Hexadécimale peut être utilisée sur un réseau, pour crypter votre clé Wifi (Souvenez vous, on vous demande généralement 8 ou 16 caractères).

Décimal	Binaire	Héxadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Exemple avec le nombre décimal : 2350

2350/r16 = 146 avec un reste de **14** 146/r16 = 9 avec un reste de **2** 9/R16 = 0 avec un reste de **9**

Exemple avec le nombre décimal : 2350

2350/r16 = 146 avec un reste de **14** 146/r16 = 9 avec un reste de **2** 9/R16 = 0 avec un reste de **9**

Je sais que 14 en notation héxadécimale équivaut à E, 2 reste 2, 9 reste 9 soit : 92E

Convertisseur https://sebastienguillon.com/test/
javascript/convertisseur.html