Számítógépes Grafika

Valasek Gábor valasek@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2012/2013. őszi félév

Tartalom

- Motiváció
- Moordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

Hogyan írjuk le a virtuális világunkat?

- A virtuális terünk egy-egy pontját miként adjuk meg, hogyan tároljuk a számítógépen?
 - → Koordináta-rendszerek
- Az egyszerű geometriai építőelemeket (egyenes, sík, háromszög stb.) hogyan adjuk meg?
 - → Leírás különböző koordináta-rendszerekben

- Hogyan írjuk le a virtuális világunkat?
 - A virtuális terünk egy-egy pontját miként adjuk meg, hogyan tároljuk a számítógépen?
 - → Koordináta-rendszerek
 - Az egyszerű geometriai építőelemeket (egyenes, sík, háromszög stb.) hogyan adjuk meg?
 - → Leírás különböző koordináta-rendszerekben

- Hogyan írjuk le a virtuális világunkat?
 - A virtuális terünk egy-egy pontját miként adjuk meg, hogyan tároljuk a számítógépen?
 - → Koordináta-rendszerek
 - Az egyszerű geometriai építőelemeket (egyenes, sík, háromszög stb.) hogyan adjuk meg?
 - → Leírás különböző koordináta-rendszerekben

- Hogyan írjuk le a virtuális világunkat?
 - A virtuális terünk egy-egy pontját miként adjuk meg, hogyan tároljuk a számítógépen?
 - → Koordináta-rendszerek
 - Az egyszerű geometriai építőelemeket (egyenes, sík, háromszög stb.) hogyan adjuk meg?
 - → Leírás különböző koordináta-rendszerekben

- Hogyan írjuk le a virtuális világunkat?
 - A virtuális terünk egy-egy pontját miként adjuk meg, hogyan tároljuk a számítógépen?
 - → Koordináta-rendszerek
 - Az egyszerű geometriai építőelemeket (egyenes, sík, háromszög stb.) hogyan adjuk meg?
 - → Leírás különböző koordináta-rendszerekben

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - ightarrow pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - \rightarrow pont pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - \rightarrow pont pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - \rightarrow pont pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - \rightarrow pont pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekrel

- Pont: az euklideszi sík/tér egy eleme, amelynek semmiféle kiterjedése sincs.
- Vektor: geometriailag egy eltolás, aminek iránya és hossza van. A tér egy pontjához azt a másikat rendeli hozzá, ami az adott irányban, a vektornak megfelelő távolságban van.
 - \rightarrow pont + vektor = pont
 - \rightarrow pont pont = vektor
 - Értelmezve vannak rá további műveletek: összeadás, kivonás, skalárral szorzás, vektoriális szorzat (eredményük vektorok), skaláris szorzat (eredménye skalár)
- Egy pont és egy vektor a választott koordináta-rendszerbeli kordinátáinak megadásával definiálható. DE: figyeljünk az elvégezhető műveletekre!

- A továbbiakban, ha két pontot veszünk, akkor feltesszük, hogy azok nem esnek egybe (tehát két különböző pontról beszélhetünk)
- Ugyanígy, három pontnál feltesszük, hogy nem esnek egy egyenesbe
- Ha egyeneseket, síkokat veszünk őket is különbözőnek tekintjük, illetve ha több síkot veszünk, azt is kizárjuk, hogy mind egyező állású legyen

- A továbbiakban, ha két pontot veszünk, akkor feltesszük, hogy azok nem esnek egybe (tehát két különböző pontról beszélhetünk)
- Ugyanígy, három pontnál feltesszük, hogy nem esnek egy egyenesbe
- Ha egyeneseket, síkokat veszünk őket is különbözőnek tekintjük, illetve ha több síkot veszünk, azt is kizárjuk, hogy mind egyező állású legyen

- \bullet Pontok: $\textbf{a} \in \mathbb{E}^2, \textbf{b} \in \mathbb{E}^3$, ...
- Vektorok: $\mathbf{v} \in \mathbb{R}^n$, n = 2, 3, ...
 - spec.: $[\mathbf{v}]_0 \in \mathbb{R}^n$ olyan vektor, amely egység hosszú, azaz $|[\mathbf{v}]_0| = ||[\mathbf{v}]_0||_2 = 1$
- Egyenesek: e, f, g, ...
- Síkok: S, ...
- Mátrixok: $M, \mathbf{M} \in \mathbb{R}^{n \times m}$

- Pontok: $\mathbf{a} \in \mathbb{E}^2, \mathbf{b} \in \mathbb{E}^3$, ...
- Vektorok: $\mathbf{v} \in \mathbb{R}^n, n = 2, 3, ...$
 - spec.: $[\mathbf{v}]_0 \in \mathbb{R}^n$ olyan vektor, amely egység hosszú, azaz $|[\mathbf{v}]_0| = ||[\mathbf{v}]_0||_2 = 1$.
- Egyenesek: e, f, g, ...
- Síkok: S, ...
- Mátrixok: $M, \mathbf{M} \in \mathbb{R}^{n \times m}$

- Pontok: $\mathbf{a} \in \mathbb{E}^2, \mathbf{b} \in \mathbb{E}^3, \dots$
- Vektorok: $\mathbf{v} \in \mathbb{R}^n, n = 2, 3, ...$
 - spec.: $[\mathbf{v}]_0 \in \mathbb{R}^n$ olyan vektor, amely egység hosszú, azaz $|[\mathbf{v}]_0| = ||[\mathbf{v}]_0||_2 = 1$.
- Egyenesek: e, f, g, ...
- Síkok: S, ...
- Mátrixok: $M, \mathbf{M} \in \mathbb{R}^{n \times m}$

- Pontok: $\mathbf{a} \in \mathbb{E}^2, \mathbf{b} \in \mathbb{E}^3$, ...
- Vektorok: $\mathbf{v} \in \mathbb{R}^n, n = 2, 3, ...$
 - spec.: $[\mathbf{v}]_0 \in \mathbb{R}^n$ olyan vektor, amely egység hosszú, azaz $|[\mathbf{v}]_0| = ||[\mathbf{v}]_0||_2 = 1$.
- Egyenesek: e, f, g, ...
- Síkok: S, ...
- Mátrixok: $M, \mathbf{M} \in \mathbb{R}^{n \times m}$

• A tér pontjainak egyértelmű leírására szám n-esek segítségével

pl.:
$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{E}^3$$

- Lehetővé teszi az algebrai és analitikus eszköztár felhasználását geometriai problémák megoldására
- Egy, a problémához jól illeszkedő koordináta-rendszerben a probléma leírása egyszerűbb lehet

A tér pontjainak egyértelmű leírására szám n-esek segítségével

$$\mathsf{pl.:}\; \mathbf{p} = \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \in \mathbb{E}^3$$

- Lehetővé teszi az algebrai és analitikus eszköztár felhasználását geometriai problémák megoldására
- Egy, a problémához jól illeszkedő koordináta-rendszerben a probléma leírása egyszerűbb lehet

A tér pontjainak egyértelmű leírására szám n-esek segítségével

$$\mathsf{pl.:}\; \mathbf{p} = \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \in \mathbb{E}^3$$

- Lehetővé teszi az algebrai és analitikus eszköztár felhasználását geometriai problémák megoldására
- Egy, a problémához jól illeszkedő koordináta-rendszerben a probléma leírása egyszerűbb lehet

A tér pontjainak egyértelmű leírására szám n-esek segítségével

$$\mathsf{pl.:}\; \mathbf{p} = \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \in \mathbb{E}^3$$

- Lehetővé teszi az algebrai és analitikus eszköztár felhasználását geometriai problémák megoldására
- Egy, a problémához jól illeszkedő koordináta-rendszerben a probléma leírása egyszerűbb lehet

Tartalom

- Motiváció
- Moordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- 3 Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

Descartes-féle, derékszögű koordináta-rendszer

- Descartes, 1637.: Értekezés a módszerről (Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences)
- Legtöbbször ezzel találkozunk, ez a legegyszerűbb és legelterjettebb megadási mód

Descartes-féle, derékszögű koordináta-rendszer

- Descartes, 1637.: Értekezés a módszerről (Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences)
- Legtöbbször ezzel találkozunk, ez a legegyszerűbb és legelterjettebb megadási mód

- Az euklidészi tér [sík] minden véges pontjához egyértelműen hozzárendel egy rendezett, valós (x, y, z) [(x, y)] számpárt.
- A térben derékszögű koordináta-rendszert határoz meg egy kezdőpont (origó, O), és egy ortonormált bázis: három egymásra páronként merőleges egységvektor: i, j és k (utóbbiak az x, y, z tengelyek irányát adják meg).
- Ekkor egy p pont x, y, z koordinátái sorban az origóból a p-be mutató vektor i, j, k bázisvektorokra vett előjeles merőleges vetületével egyezik meg.
- *Emlékeztető*: az **a** vektor előjeles merőleges vetületete a $[\mathbf{b}]_0$ egységvektorra $\langle \mathbf{a}, [\mathbf{b}]_0 \rangle = |\mathbf{a}| \cos \angle (\mathbf{a}, [\mathbf{b}]_0)$

- Az euklidészi tér [sík] minden véges pontjához egyértelműen hozzárendel egy rendezett, valós (x, y, z) [(x, y)] számpárt.
- A térben derékszögű koordináta-rendszert határoz meg egy kezdőpont (origó, O), és egy ortonormált bázis: három egymásra páronként merőleges egységvektor: i, j és k (utóbbiak az x, y, z tengelyek irányát adják meg).
- Ekkor egy p pont x, y, z koordinátái sorban az origóból a p-be mutató vektor i, j, k bázisvektorokra vett előjeles merőleges vetületével egyezik meg.
- *Emlékeztető*: az **a** vektor előjeles merőleges vetületete a $[\mathbf{b}]_0$ egységvektorra $\langle \mathbf{a}, [\mathbf{b}]_0 \rangle = |\mathbf{a}| \cos \angle (\mathbf{a}, [\mathbf{b}]_0)$

- Az euklidészi tér [sík] minden véges pontjához egyértelműen hozzárendel egy rendezett, valós (x, y, z) [(x, y)] számpárt.
- A térben derékszögű koordináta-rendszert határoz meg egy kezdőpont (origó, O), és egy ortonormált bázis: három egymásra páronként merőleges egységvektor: i, j és k (utóbbiak az x, y, z tengelyek irányát adják meg).
- Ekkor egy p pont x, y, z koordinátái sorban az origóból a p-be mutató vektor i, j, k bázisvektorokra vett előjeles merőleges vetületével egyezik meg.
- *Emlékeztető*: az **a** vektor előjeles merőleges vetületete a $[\mathbf{b}]_0$ egységvektorra $\langle \mathbf{a}, [\mathbf{b}]_0 \rangle = |\mathbf{a}| \cos \angle (\mathbf{a}, [\mathbf{b}]_0)$

- Az euklidészi tér [sík] minden véges pontjához egyértelműen hozzárendel egy rendezett, valós (x, y, z) [(x, y)] számpárt.
- A térben derékszögű koordináta-rendszert határoz meg egy kezdőpont (origó, O), és egy ortonormált bázis: három egymásra páronként merőleges egységvektor: i, j és k (utóbbiak az x, y, z tengelyek irányát adják meg).
- Ekkor egy p pont x, y, z koordinátái sorban az origóból a p-be mutató vektor i, j, k bázisvektorokra vett előjeles merőleges vetületével egyezik meg.
- *Emlékeztető*: az **a** vektor előjeles merőleges vetületete a $[\mathbf{b}]_0$ egységvektorra $\langle \mathbf{a}, [\mathbf{b}]_0 \rangle = |\mathbf{a}| \cos \angle (\mathbf{a}, [\mathbf{b}]_0)$

Előjeles merőleges vetület

Szemléletesebben: A p(a, b, c) az a pont, amit az origóból az x tengely mentén a egységet lépve, majd az y tengely mentén b egységet lépve, végül a z tengely mentén c egységet lépve kapunk.

 Vagyis a fenti értelmezés szerint, felhasználva az egységnyi hosszú, koordinátatengelyek irányába mutató i, j, k bázisvektorokat, az [a, b, c]^T koordináták a következő pontot azonosítják:

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 Vagyis a fenti értelmezés szerint, felhasználva az egységnyi hosszú, koordinátatengelyek irányába mutató i, j, k bázisvektorokat, az [a, b, c]^T koordináták a következő pontot azonosítják:

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 Vagyis a fenti értelmezés szerint, felhasználva az egységnyi hosszú, koordinátatengelyek irányába mutató i, j, k bázisvektorokat, az [a, b, c]^T koordináták a következő pontot azonosítják:

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{o} + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$= \mathbf{o} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- Két pont távolsága számítható: $d^2 = (x_2 x_1)^2 + (y_2 y_1)^2$
- Egyrészt ez: lemérendő távolság a fenti pedig a háromszög oldalaira emelt négyzetek lemért területe
- Descartes-koordinátákkal: algebrai egyenlet, ami $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$
 ismeretében kiszámítható

- Két pont távolsága számítható: $d^2 = (x_2 x_1)^2 + (y_2 y_1)^2$
- Egyrészt ez: lemérendő távolság a fenti pedig a háromszög oldalaira emelt négyzetek lemért területe
- Descartes-koordinátákkal: algebrai egyenlet, ami $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és

- Két pont távolsága számítható: $d^2 = (x_2 x_1)^2 + (y_2 y_1)^2$
- Egyrészt ez: lemérendő távolság a fenti pedig a háromszög oldalaira emelt négyzetek lemért területe
- Descartes-koordinátákkal: algebrai egyenlet, ami $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$
 ismeretében kiszámítható

- Két pont távolsága számítható: $d^2 = (x_2 x_1)^2 + (y_2 y_1)^2$
- Egyrészt ez: lemérendő távolság a fenti pedig a háromszög oldalaira emelt négyzetek lemért területe
- Descartes-koordinátákkal: algebrai egyenlet, ami $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$
 ismeretében kiszámítható

Tartalom

- Motiváció
- Moordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- 3 Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

- Egy o kezdőpont (referenciapont) és egy abból induló félegyenes (polártengely) határozza meg.
- ullet Egy ${f p}$ pont helyét két adat azonosítja: (r,ϕ)
 - $r \ge 0$: a **p** pont **o**-tól vett távolsága
 - $\phi \in [0, 2\pi)$: az **o**-n és **p**-n átmenő egyenes polártengellyel bezárt szöge

- Egy o kezdőpont (referenciapont) és egy abból induló félegyenes (polártengely) határozza meg.
- ullet Egy ${f p}$ pont helyét két adat azonosítja: (r,ϕ)
 - $r \ge 0$: a **p** pont **o**-tól vett távolsága
 - $\phi \in [0, 2\pi)$: az **o**-n és **p**-n átmenő egyenes polártengellyel bezárt szöge

- Egy o kezdőpont (referenciapont) és egy abból induló félegyenes (polártengely) határozza meg.
- ullet Egy ${f p}$ pont helyét két adat azonosítja: (r,ϕ)
 - $r \ge 0$: a **p** pont **o**-tól vett távolsága
 - $\phi \in [0, 2\pi)$: az **o**-n és **p**-n átmenő egyenes polártengellyel bezárt szöge

- Egy o kezdőpont (referenciapont) és egy abból induló félegyenes (polártengely) határozza meg.
- ullet Egy ${f p}$ pont helyét két adat azonosítja: (r,ϕ)
 - $r \ge 0$: a **p** pont **o**-tól vett távolsága
 - $\phi \in [0, 2\pi)$: az **o**-n és **p**-n átmenő egyenes polártengellyel bezárt szöge

- Egy o kezdőpont (referenciapont) és egy abból induló félegyenes (polártengely) határozza meg.
- ullet Egy ${f p}$ pont helyét két adat azonosítja: (r,ϕ)
 - $r \ge 0$: a **p** pont **o**-tól vett távolsága
 - $\phi \in [0, 2\pi)$: az **o**-n és **p**-n átmenő egyenes polártengellyel bezárt szöge

• Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$

•
$$x = r \cos \phi$$

•
$$y = r \sin \phi$$

• Descartes \rightarrow polár: $(x, y) \rightarrow (r, \varphi)$

•
$$r = \sqrt{x^2 + y^2}$$

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$

$$= atan^2(y, x)$$

- Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$
 - $x = r \cos \phi$
 - $y = r \sin \phi$
- Descartes \rightarrow polár: $(x, y) \rightarrow (r, \varphi)$

•
$$r = \sqrt{x^2 + y^2}$$

9

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$

- Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$
 - $x = r \cos \phi$
 - $y = r \sin \phi$
- Descartes \rightarrow polár: $(x, y) \rightarrow (r, \varphi)$

•
$$r = \sqrt{x^2 + y^2}$$

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$

- Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$
 - $x = r \cos \phi$
 - $y = r \sin \phi$
- Descartes \rightarrow polár: $(x, y) \rightarrow (r, \varphi)$

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$

- Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$
 - $x = r \cos \phi$
 - $y = r \sin \phi$
- Descartes \rightarrow polár: $(x,y) \rightarrow (r,\varphi)$

•
$$r = \sqrt{x^2 + y^2}$$

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$

- Polár \rightarrow Descartes: $(r, \varphi) \rightarrow (x, y)$
 - $x = r \cos \phi$
 - $y = r \sin \phi$
- Descartes \rightarrow polár: $(x, y) \rightarrow (r, \varphi)$

•
$$r = \sqrt{x^2 + y^2}$$

•

$$\phi = \begin{cases} arctg(\frac{y}{x}), & x > 0 \land y \ge 0 \\ arctg(\frac{y}{x}) + 2\pi, & x > 0 \land y < 0 \\ arctg(\frac{y}{x}) + \pi, & x < 0 \\ \frac{\pi}{2}, & x = 0 \land y > 0 \\ \frac{3\pi}{2}, & x = 0 \land y < 0 \end{cases}$$
$$= atan2(y, x)$$

- A fentiek teljesülnek, amennyiben a Descartes origó és a polár referenciapont, illetve a Descartes x-tengely és a polártengely megegyezik.
- De mi van, ha x=0,y=0? Ilyenkor r=0 mellett tetszőleges szöggel visszakapjuk az origót! Nem egyértelmű a polár szög, az r=0-át még azelőtt ellenőrizzük, hogy a fenti konverziós képleteket próbálnánk használni

- A fentiek teljesülnek, amennyiben a Descartes origó és a polár referenciapont, illetve a Descartes x-tengely és a polártengely megegyezik.
- De mi van, ha x = 0, y = 0? Ilyenkor r = 0 mellett tetszőleges szöggel visszakapjuk az origót! Nem egyértelmű a polár szög, az r = 0-át még azelőtt ellenőrizzük, hogy a fenti konverziós képleteket próbálnánk használni

- A fentiek teljesülnek, amennyiben a Descartes origó és a polár referenciapont, illetve a Descartes x-tengely és a polártengely megegyezik.
- De mi van, ha x=0,y=0? Ilyenkor r=0 mellett tetszőleges szöggel visszakapjuk az origót! Nem egyértelmű a polár szög, az r=0-át még azelőtt ellenőrizzük, hogy a fenti konverziós képleteket próbálnánk használni

Megjegyzések

- Általában akkor használjuk, hogy az ábrázolni kívánt dolgokhoz jól illeszkedik, pl. körmozgás
- Hátrányai: egyik PKR-ből a másikba áttérni költséges, deriváltak számítása költséges, ...

Megjegyzések

- Általában akkor használjuk, hogy az ábrázolni kívánt dolgokhoz jól illeszkedik, pl. körmozgás
- Hátrányai: egyik PKR-ből a másikba áttérni költséges, deriváltak számítása költséges, ...

Gömbi koordináták

- Térbeli polár-koordináták; egy alapsík (és annak PKR-e) illetve egy arra merőleges "Z tengely"
- Egy térbeli **p** pontot három adat reprezentál: (r, φ, θ)
 - ullet ρ, φ : a P pont alapsíkra vett vetületének polárkoordinátái
 - $\theta \in [0,\pi]$: az O és P-t összekötő egyenes Z tengellyel bezárt szöge
 - r: a \mathbf{p} pont és az origó távolsága (ha r=0 akkor ismét bármi lehet a két polárszög! Konverziók előtt ezt ellenőrizni kell)

Gömbi koordináták

- Térbeli polár-koordináták; egy alapsík (és annak PKR-e) illetve egy arra merőleges "Z tengely"
- Egy térbeli **p** pontot három adat reprezentál: (r, φ, θ)
 - \bullet ρ, φ : a P pont alapsíkra vett vetületének polárkoordinátái
 - $\theta \in [0,\pi]$: az O és P-t összekötő egyenes Z tengellyel bezárt szöge
 - r: a **p** pont és az origó távolsága (ha r=0 akkor ismét bármi lehet a két polárszög! Konverziók előtt ezt ellenőrizni kell)

Gömbi koordináták

- Térbeli polár-koordináták; egy alapsík (és annak PKR-e) illetve egy arra merőleges "Z tengely"
- Egy térbeli **p** pontot három adat reprezentál: (r, φ, θ)
 - ullet ho, φ : a P pont alapsíkra vett vetületének polárkoordinátái
 - $\theta \in [0, \pi]$: az O és P-t összekötő egyenes Z tengellyel bezárt szöge
 - r: a **p** pont és az origó távolsága (ha r=0 akkor ismét bármi lehet a két polárszög! Konverziók előtt ezt ellenőrizni kell)

Gömbi koordináták

- Térbeli polár-koordináták; egy alapsík (és annak PKR-e) illetve egy arra merőleges "Z tengely"
- Egy térbeli **p** pontot három adat reprezentál: (r, φ, θ)
 - ullet ho, arphi: a P pont alapsíkra vett vetületének polárkoordinátái
 - $\theta \in [0,\pi]$: az O és P-t összekötő egyenes Z tengellyel bezárt szöge
 - r: a \mathbf{p} pont és az origó távolsága (ha r=0 akkor ismét bármi lehet a két polárszög! Konverziók előtt ezt ellenőrizni kell)

Gömbi koordináták

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi o Descartes: $(r, \varphi, \theta) o (x, y, z)$ $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta$
- Descartes o gömbi: $(x, y, z) o (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes: $(r, \varphi, \theta) \rightarrow (x, y, z)$

$$x = r \cos \varphi \sin \theta$$
, $y = r \sin \varphi \sin \theta$, $z = r \cos \theta$

• Descartes o gömbi: $(x,y,z) o (r,\varphi,\theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes: $(r, \varphi, \theta) \rightarrow (x, y, z)$

$$x = r \cos \varphi \sin \theta$$
, $y = r \sin \varphi \sin \theta$, $z = r \cos \theta$

• Descartes o gömbi: $(x, y, z) o (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

 $\varphi = atan2(y, x)$
 $\theta = \arccos \frac{z}{r}, \qquad r \neq 0$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi o Descartes: $(r, \varphi, \theta) o (x, y, z)$ $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta$
- Descartes \rightarrow gömbi: $(x, y, z) \rightarrow (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes: $(r, \varphi, \theta) \rightarrow (x, y, z)$ $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta$
- Descartes \rightarrow gömbi: $(x, y, z) \rightarrow (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes: $(r, \varphi, \theta) \rightarrow (x, y, z)$ $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta$
- Descartes \rightarrow gömbi: $(x, y, z) \rightarrow (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes: $(r, \varphi, \theta) \rightarrow (x, y, z)$ $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta$
- Descartes \rightarrow gömbi: $(x, y, z) \rightarrow (r, \varphi, \theta)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

• Hasznos például a földfelszín pontjainak azonosítására (de ott $\theta \in [-\pi/2, \pi/2]$).

Tartalom

- Motiváció
- Moordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- 3 Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

Descartes koordináta-rendszer Polákoordináta-rendszer Baricentrikus koordináták Homogén koordináták

Baricentrikus koordináták - intuitív kép

Baricentrikus koordináták - intuitív kép

Descartes koordináta-rendszer Polákoordináta-rendszer Baricentrikus koordináták Homogén koordináták

Baricentrikus koordináták

- August Ferdinand Möbius [1827]
- Motiváció: sokszor egy konkrét, véges része érdekes csak számunkra a térnek. Ennek a Descartes-félénél egy "kiegyensúlyozottabb" reprezentációját keressük.
- A baricentrikus koordináták nem függnek egy pont önkényes origónak választásától

Baricentrikus koordináták

- August Ferdinand Möbius [1827]
- Motiváció: sokszor egy konkrét, véges része érdekes csak számunkra a térnek. Ennek a Descartes-félénél egy "kiegyensúlyozottabb" reprezentációját keressük.
- A baricentrikus koordináták nem függnek egy pont önkényes origónak választásától

Baricentrikus koordináták

- August Ferdinand Möbius [1827]
- Motiváció: sokszor egy konkrét, véges része érdekes csak számunkra a térnek. Ennek a Descartes-félénél egy "kiegyensúlyozottabb" reprezentációját keressük.
- A baricentrikus koordináták nem függnek egy pont önkényes origónak választásától

Descartes koordináta-rendszer Polákoordináta-rendszer Baricentrikus koordináták Homogén koordináták

Motiváció: intervallumok

Milyen u, v súlyokat helyezzünk a rúd végére, hogy kiegyensúlyozott legyen ha a háromszöggel jelzett pontnál emeljük fel?

Motiváció: intervallumok

- Akkor nem billen el, ha (x-a)u=(b-x)v, ahol x a háromszög pozíciója
- Az u, v-nek csak az arányát köti meg a fenti, tegyük fel a továbbiakban, hogy u+v=1
- Ekkor a súlyok a következők kell, hogy legyenek:

$$u = \frac{x - a}{b - a}, v = \frac{b - x}{b - a}$$

Motiváció: intervallumok

- Akkor nem billen el, ha (x-a)u=(b-x)v, ahol x a háromszög pozíciója
- ullet Az u,v-nek csak az arányát köti meg a fenti, tegyük fel a továbbiakban, hogy u+v=1
- Ekkor a súlyok a következők kell, hogy legyenek:

$$u = \frac{x - a}{b - a}, v = \frac{b - x}{b - a}$$

Motiváció: intervallumok

- Akkor nem billen el, ha (x-a)u=(b-x)v, ahol x a háromszög pozíciója
- ullet Az u,v-nek csak az arányát köti meg a fenti, tegyük fel a továbbiakban, hogy u+v=1
- Ekkor a súlyok a következők kell, hogy legyenek:

$$u = \frac{x - a}{b - a}, v = \frac{b - x}{b - a}$$

- Mechanikai analógia: pontrendszer tömegközéppontja
- Legyen a síkban 3 pontunk és helyezzünk minden \mathbf{p}_i pontba $m_i \in \mathbb{R}$ súlyt. Ekkor a tömegközéppont:

$$\mathbf{m} = \sum_{i=0}^{2} \frac{m_i}{\sum_{i=0}^{n} m_i} \mathbf{p}_i$$

- Mechanikai analógia: pontrendszer tömegközéppontja
- Legyen a síkban 3 pontunk és helyezzünk minden \mathbf{p}_i pontba $m_i \in \mathbb{R}$ súlyt. Ekkor a tömegközéppont:

$$\mathbf{m} = \sum_{i=0}^{2} \frac{m_i}{\sum_{i=0}^{n} m_i} \mathbf{p}_i$$

- Mechanikai analógia: pontrendszer tömegközéppontja
- Legyen a síkban 3 pontunk és helyezzünk minden \mathbf{p}_i pontba $m_i \in \mathbb{R}$ súlyt. Ekkor a tömegközéppont:

$$\mathbf{m} = \sum_{i=0}^{2} \frac{m_i}{\sum_{i=0}^{n} m_i} \mathbf{p}_i$$

- Mechanikai analógia: pontrendszer tömegközéppontja
- Legyen a síkban 3 pontunk és helyezzünk minden \mathbf{p}_i pontba $m_i \in \mathbb{R}$ súlyt. Ekkor a tömegközéppont:

$$\mathbf{m} = \sum_{i=0}^{2} \frac{m_i}{\sum_{i=0}^{n} m_i} \mathbf{p}_i$$

Baricentrikus koordináták

• Ha \mathbb{E}^n -ben az $\mathbf{a}_0,...,\mathbf{a}_n$ pontok kifeszítik a teret (azaz nem esnek egy n-1 dimenziós altérbe), akkor a tér bármely \mathbf{x} pontjához találhatóak $\lambda_0,...,\lambda_n$ valós számok úgy, hogy

$$\mathbf{x} = \sum_{i=0}^{n} \lambda_i \mathbf{a}_i,$$

ahol a λ_i baricentrikus koordinátákra teljesül, hogy

$$\sum_{i=0}^{n} \lambda_i = 1.$$

- Síkban tehát 3 általános állású pont kell (olyanok, amelyek nem esnek sem egy egyenesbe, sem egy pontba), a térben 4 általános állású pont
- Ha ∀i-re λ_i ≥ 0, akkor konvex kombinációról beszélünk és a pontok konvex burkába esnek a kombináció eredményei.
- Az affin transzformációk nem változtatják meg a baricentrikus koordinátákat (lásd később)

- Síkban tehát 3 általános állású pont kell (olyanok, amelyek nem esnek sem egy egyenesbe, sem egy pontba), a térben 4 általános állású pont
- Ha ∀i-re λ_i ≥ 0, akkor konvex kombinációról beszélünk és a pontok konvex burkába esnek a kombináció eredményei.
- Az affin transzformációk nem változtatják meg a baricentrikus koordinátákat (lásd később)

- Síkban tehát 3 általános állású pont kell (olyanok, amelyek nem esnek sem egy egyenesbe, sem egy pontba), a térben 4 általános állású pont
- Ha ∀i-re λ_i ≥ 0, akkor konvex kombinációról beszélünk és a pontok konvex burkába esnek a kombináció eredményei.
- Az affin transzformációk nem változtatják meg a baricentrikus koordinátákat (lásd később)

Baricentrikus → Descartes konverzió

- Legyenek (u, v, w) egy pont baricentrikus koordinátái a $\mathbf{p}_1 = (x_1, y_1), \mathbf{p}_2 = (x_2, y_2), \mathbf{p}_3 = (x_3, y_3) \in \mathbb{E}^2$ általános állású pontokra vonatkoztatva.
- Ekkor az (u, v, w)-vel azonosított $\mathbf{x}(x, y, z)$ pont Descartes koordinátái $\mathbf{x} = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3$, azaz

$$x = ux_1 + vx_2 + wx_3$$
$$y = uy_1 + vy_2 + wy_3$$

Baricentrikus → Descartes konverzió

- Legyenek (u, v, w) egy pont baricentrikus koordinátái a $\mathbf{p}_1 = (x_1, y_1), \mathbf{p}_2 = (x_2, y_2), \mathbf{p}_3 = (x_3, y_3) \in \mathbb{E}^2$ általános állású pontokra vonatkoztatva.
- Ekkor az (u, v, w)-vel azonosított $\mathbf{x}(x, y, z)$ pont Descartes koordinátái $\mathbf{x} = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3$, azaz

$$x = ux_1 + vx_2 + wx_3$$

 $y = uy_1 + vy_2 + wy_3$

$$ullet$$
 Legyen $\Delta(\mathbf{a},\mathbf{b},\mathbf{c}):=\left|egin{array}{ccc} 1 & 1 & 1 \ a_{\scriptscriptstyle X} & b_{\scriptscriptstyle X} & c_{\scriptscriptstyle X} \ a_{\scriptscriptstyle Y} & b_{\scriptscriptstyle Y} & c_{\scriptscriptstyle Y} \end{array}
ight|, \ \mathbf{a},\mathbf{b},\mathbf{c}\in\mathbb{E}^2$

- A Δ(a, b, c) mennyiség az a, b, c pontok által meghatározott háromszög előjeles területének duplája (pozitív, ha óra járásával ellentétes irányban adottak a csúcspontok, különben negatív)
- Ha \mathbb{E}^3 -ban vagyunk: $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \langle (\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{a}), \mathbf{n} \rangle$, ahol n a három pont síkjának normálisa.

$$ullet$$
 Legyen $\Delta(\mathbf{a},\mathbf{b},\mathbf{c}):=\left|egin{array}{ccc} 1 & 1 & 1 \ a_{\mathsf{x}} & b_{\mathsf{x}} & c_{\mathsf{x}} \ a_{\mathsf{y}} & b_{\mathsf{y}} & c_{\mathsf{y}} \end{array}
ight|, \ \mathbf{a},\mathbf{b},\mathbf{c}\in\mathbb{E}^2$

- A Δ(a, b, c) mennyiség az a, b, c pontok által meghatározott háromszög előjeles területének duplája (pozitív, ha óra járásával ellentétes irányban adottak a csúcspontok, különben negatív)
- Ha \mathbb{E}^3 -ban vagyunk: $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \langle (\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{a}), \mathbf{n} \rangle$, ahol n a három pont síkjának normálisa.

$$\bullet \ \mathsf{Legyen} \ \Delta(\mathbf{a},\mathbf{b},\mathbf{c}) := \left| \begin{array}{ccc} 1 & 1 & 1 \\ a_x & b_x & c_x \\ a_y & b_y & c_y \end{array} \right|, \ \mathbf{a},\mathbf{b},\mathbf{c} \in \mathbb{E}^2$$

- A Δ(a, b, c) mennyiség az a, b, c pontok által meghatározott háromszög előjeles területének duplája (pozitív, ha óra járásával ellentétes irányban adottak a csúcspontok, különben negatív)
- Ha \mathbb{E}^3 -ban vagyunk: $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \langle (\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{a}), \mathbf{n} \rangle$, ahol **n** a három pont síkjának normálisa.

Descartes → baricentrikus konverzió

• Egy $\mathbf{x} \in \mathbb{E}^2$ pont baricentrikus koordinátái a következők lesznek a $\mathbf{p}_1 = (x_1, y_1), \mathbf{p}_2 = (x_2, y_2), \mathbf{p}_3 = (x_3, y_3) \in \mathbb{E}^2$ általános állású pontokra vonatkoztatva:

$$u = \frac{\Delta(\mathbf{x}, \mathbf{p}_2, \mathbf{p}_3)}{\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}$$
$$v = \frac{\Delta(\mathbf{p}_1, \mathbf{x}, \mathbf{p}_3)}{\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}$$
$$w = \frac{\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{x})}{\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}$$

Tartalom

- Motiváció
- Moordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- 3 Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

• Vetítsük egy e egyenes pontjait az x tengelyre egy k pontból!

• Vetítsük egy e egyenes pontjait az x tengelyre egy k pontból!

- ullet A ${f d}'$ pont nincs az euklideszi síkon (\mathbb{E}^2), mivel a ${f k}$ -n és ${f d}$ -n áthaladó vetítősugár párhuzamos az x tengellyel
- Ötlet: bővítsük ki E²-t!
- → tekintsük "pontnak" az egyenesek egyező állását (irányát) is, azaz minden egyenesen legyen még egy "pontja"
- Ez a pont az egyenes ideális pontja.

- ullet A ${f d}'$ pont nincs az euklideszi síkon (\mathbb{E}^2), mivel a ${f k}$ -n és ${f d}$ -n áthaladó vetítősugár párhuzamos az x tengellyel
- Ötlet: bővítsük ki \mathbb{E}^2 -t!
- → tekintsük "pontnak" az egyenesek egyező állását (irányát) is, azaz minden egyenesen legyen még egy "pontja"
- Ez a pont az egyenes ideális pontja.

- A \mathbf{d}' pont nincs az euklideszi síkon (\mathbb{E}^2), mivel a \mathbf{k} -n és \mathbf{d} -n áthaladó vetítősugár párhuzamos az x tengellyel
- Ötlet: bővítsük ki \mathbb{E}^2 -t!
- → tekintsük "pontnak" az egyenesek egyező állását (irányát) is, azaz minden egyenesen legyen még egy "pontja"
- Ez a pont az egyenes ideális pontja.

- ullet A ${f d}'$ pont nincs az euklideszi síkon (\mathbb{E}^2), mivel a ${f k}$ -n és ${f d}$ -n áthaladó vetítősugár párhuzamos az x tengellyel
- Ötlet: bővítsük ki \mathbb{E}^2 -t!
- → tekintsük "pontnak" az egyenesek egyező állását (irányát) is, azaz minden egyenesen legyen még egy "pontja"
- Ez a pont az egyenes ideális pontja.

- Egyenes = egyenes + 1 ideális pont úgy, hogy:
 - Párhuzamos egyenesek ideális pontja megegyezik ("találkoznak a végtelenben")
 - Egy sík ideális pontjai egy egyenesen vannak, ez a sík ideális egyenese
 - Párhuzamos síkok ideális egyenese megegyezik
 - A tér ideális elemei (pontok, egyenesek) egy síkban vannak, ez a tér ideális síkja

- Egyenes = egyenes + 1 ideális pont úgy, hogy:
 - Párhuzamos egyenesek ideális pontja megegyezik ("találkoznak a végtelenben")
 - Egy sík ideális pontjai egy egyenesen vannak, ez a sík ideális egyenese
 - Párhuzamos síkok ideális egyenese megegyezik
 - A tér ideális elemei (pontok, egyenesek) egy síkban vannak, ez a tér ideális síkja

- Egyenes = egyenes + 1 ideális pont úgy, hogy:
 - Párhuzamos egyenesek ideális pontja megegyezik ("találkoznak a végtelenben")
 - Egy sík ideális pontjai egy egyenesen vannak, ez a sík ideális egyenese
 - Párhuzamos síkok ideális egyenese megegyezik
 - A tér ideális elemei (pontok, egyenesek) egy síkban vannak, ez a tér ideális síkja

- Egyenes = egyenes + 1 ideális pont úgy, hogy:
 - Párhuzamos egyenesek ideális pontja megegyezik ("találkoznak a végtelenben")
 - Egy sík ideális pontjai egy egyenesen vannak, ez a sík ideális egyenese
 - Párhuzamos síkok ideális egyenese megegyezik
 - A tér ideális elemei (pontok, egyenesek) egy síkban vannak, ez a tér ideális síkja

- Egyenes = egyenes + 1 ideális pont úgy, hogy:
 - Párhuzamos egyenesek ideális pontja megegyezik ("találkoznak a végtelenben")
 - Egy sík ideális pontjai egy egyenesen vannak, ez a sík ideális egyenese
 - Párhuzamos síkok ideális egyenese megegyezik
 - A tér ideális elemei (pontok, egyenesek) egy síkban vannak, ez a tér ideális síkja

- ullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - o ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy *bármely* (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ..

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ...

- \bullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ..

- ullet Homogén sík: az \mathbb{E}^2 projektív lezárása, azaz \mathbb{E}^2 egy kitüntetett ideális egyenessel
 - Projektív síkban két pont meghatároz egy egyenest
 - Két egyenes meghatároz egy pontot (!)
 - ...
- Homogén tér: az \mathbb{E}^3 projektív lezárása, azaz \mathbb{E}^3 egy kitüntetett ideális síkkal
 - Három pont meghatároz egy síkot
 - Három sík meghatároz egy pontot (!)
 - (HF: igaz az, hogy bármely (tetszőleges) három sík meghatároz egy pontot a projektív térben, ami mind a három síkon rajta van? Milyen esetekben nem?)
 - ..

 Az euklideszi tér minden pontjához hozzárendelünk egy számnégyest, homogén koordinátákat:

$$\mathbf{p}(x, y, z) \rightarrow [x, y, z, 1]$$

$$\approx h[x, y, z, 1]$$

$$= [hx, hy, hz, h], h \neq 0$$

• az összes $\mathbf{v} = [x, y, z]^T$ vektorhoz pedig: $[x, y, z] \rightarrow [x, y, z, 0]$ $\approx h[x, y, z, 0]$ $= [hx, hy, hz, 0], h \neq 0$

 Az euklideszi tér minden pontjához hozzárendelünk egy számnégyest, homogén koordinátákat:

$$\mathbf{p}(x, y, z) \rightarrow [x, y, z, 1]$$

$$\approx h[x, y, z, 1]$$

$$= [hx, hy, hz, h], h \neq 0$$

• az összes
$$\mathbf{v} = [x, y, z]^T$$
 vektorhoz pedig:
 $[x, y, z] \rightarrow [x, y, z, 0]$
 $\approx h[x, y, z, 0]$
 $= [hx, hy, hz, 0], h \neq 0$

 Az euklideszi tér minden pontjához hozzárendelünk egy számnégyest, homogén koordinátákat:

$$\mathbf{p}(x, y, z) \rightarrow [x, y, z, 1]$$

$$\approx h[x, y, z, 1]$$

$$= [hx, hy, hz, h], h \neq 0$$

• az összes $\mathbf{v} = [x, y, z]^T$ vektorhoz pedig:

$$[x, y, z] \rightarrow [x, y, z, 0]$$

$$\approx h[x, y, z, 0]$$

$$= [hx, hy, hz, 0], h \neq 0$$

 Az euklideszi tér minden pontjához hozzárendelünk egy számnégyest, homogén koordinátákat:

$$\mathbf{p}(x, y, z) \rightarrow [x, y, z, 1]$$

$$\approx h[x, y, z, 1]$$

$$= [hx, hy, hz, h], h \neq 0$$

• az összes $\mathbf{v} = [x, y, z]^T$ vektorhoz pedig:

$$[x, y, z] \rightarrow [x, y, z, 0]$$

$$\approx h[x, y, z, 0]$$

$$= [hx, hy, hz, 0], h \neq 0$$

Motiváció Koordináta-rendszerek Egyenesek és síkok leírása Összefoglalás Descartes koordináta-rendszer Polákoordináta-rendszer Baricentrikus koordináták Homogén koordináták

- Mit ábrázol az $[x_1, x_2, x_3, x_4]$ projektív térbeli elem?
 - Ha x₄ ≠ 0, akkor egy közönséges pontról van szó, aminek koordinátái homogén (vagy projektív) osztás után

$$[x_1,x_2,x_3,x_4]\approx [\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4},1]=\textbf{p}(\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4})$$

- Ha $x_4=0$, de $x_1^2+x_2^2+x_3^2\neq 0$ (=nem mind nulla), akkor egy ideális pontról van szó, az $[x_1,x_2,x_3]$ vektorral egyező állású egyenesekhez rendeltről.
- Ha $x_i = 0$, i = 1, 2, 3, 4, akkor nincs értelmezve.

- Mit ábrázol az $[x_1, x_2, x_3, x_4]$ projektív térbeli elem?
 - Ha x₄ ≠ 0, akkor egy közönséges pontról van szó, aminek koordinátái homogén (vagy projektív) osztás után

$$[x_1, x_2, x_3, x_4] \approx [\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4}, 1] = p(\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4})$$

- Ha $x_4 = 0$, de $x_1^2 + x_2^2 + x_3^2 \neq 0$ (=nem mind nulla), akkor egy ideális pontról van szó, az $[x_1, x_2, x_3]$ vektorral egyező állású egyenesekhez rendeltről.
- Ha $x_i = 0$, i = 1, 2, 3, 4, akkor nincs értelmezve.

- Mit ábrázol az $[x_1, x_2, x_3, x_4]$ projektív térbeli elem?
 - Ha x₄ ≠ 0, akkor egy közönséges pontról van szó, aminek koordinátái homogén (vagy projektív) osztás után

$$[x_1,x_2,x_3,x_4]\approx [\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4},1]=\textbf{p}(\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4})$$

- Ha $x_4=0$, de $x_1^2+x_2^2+x_3^2\neq 0$ (=nem mind nulla), akkor egy ideális pontról van szó, az $[x_1,x_2,x_3]$ vektorral egyező állású egyenesekhez rendeltről.
- Ha $x_i = 0$, i = 1, 2, 3, 4, akkor nincs értelmezve.

- Mit ábrázol az $[x_1, x_2, x_3, x_4]$ projektív térbeli elem?
 - Ha x₄ ≠ 0, akkor egy közönséges pontról van szó, aminek koordinátái homogén (vagy projektív) osztás után

$$[x_1,x_2,x_3,x_4]\approx [\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4},1]=\textbf{p}(\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4})$$

- Ha $x_4 = 0$, de $x_1^2 + x_2^2 + x_3^2 \neq 0$ (=nem mind nulla), akkor egy ideális pontról van szó, az $[x_1, x_2, x_3]$ vektorral egyező állású egyenesekhez rendeltről.
- Ha $x_i = 0$, i = 1, 2, 3, 4, akkor nincs értelmezve.

- Mit ábrázol az $[x_1, x_2, x_3, x_4]$ projektív térbeli elem?
 - Ha x₄ ≠ 0, akkor egy közönséges pontról van szó, aminek koordinátái homogén (vagy projektív) osztás után

$$[x_1,x_2,x_3,x_4]\approx [\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4},1]=\textbf{p}(\frac{x_1}{x_4},\frac{x_2}{x_4},\frac{x_3}{x_4})$$

- Ha $x_4=0$, de $x_1^2+x_2^2+x_3^2\neq 0$ (=nem mind nulla), akkor egy ideális pontról van szó, az $[x_1,x_2,x_3]$ vektorral egyező állású egyenesekhez rendeltről.
- Ha $x_i = 0$, i = 1, 2, 3, 4, akkor nincs értelmezve.

Nevezetes homogén alakok

• Legyen $c \neq 0$ tetszőleges, nem nulla valós szám. Ekkor a következő néhány példa nevezetes pontokra:

```
[0,0,0,c] az origó
[c,0,0,0] az x tengely ideális pontja
[0,c,0,0] az y tengely ideális pontja
[0,0,c,0] az z tengely ideális pontja
```

Nevezetes homogén alakok

- Legyen $c \neq 0$ tetszőleges, nem nulla valós szám. Ekkor a következő néhány példa nevezetes pontokra:
 - [0,0,0,c] az origó
 - [c, 0, 0, 0] az x tengely ideális pontja
 - [0, c, 0, 0] az y tengely ideális pontja
 - [0,0,c,0] az z tengely ideális pontja

Nevezetes homogén alakok

- Legyen $c \neq 0$ tetszőleges, nem nulla valós szám. Ekkor a következő néhány példa nevezetes pontokra:
 - [0,0,0,c] az origó
 - [c, 0, 0, 0] az x tengely ideális pontja
 - [0, c, 0, 0] az y tengely ideális pontja
 - [0,0,c,0] az z tengely ideális pontja

Nevezetes homogén alakok

- Legyen $c \neq 0$ tetszőleges, nem nulla valós szám. Ekkor a következő néhány példa nevezetes pontokra:
 - [0,0,0,c] az origó
 - [c, 0, 0, 0] az x tengely ideális pontja
 - [0, c, 0, 0] az y tengely ideális pontja
 - [0,0,c,0] az z tengely ideális pontja

Nevezetes homogén alakok

- Legyen $c \neq 0$ tetszőleges, nem nulla valós szám. Ekkor a következő néhány példa nevezetes pontokra:
 - [0,0,0,c] az origó
 - [c, 0, 0, 0] az x tengely ideális pontja
 - [0, c, 0, 0] az y tengely ideális pontja
 - [0,0,c,0] az z tengely ideális pontja

- A projektív síkon a pont és az egyenes, a projektív térben a pont és a sík duális fogalmak
- Figyeljünk, hogy egyes tulajdonságok az euklideszi térből nem jönnek át:
 - Egy egyenes egy pontja nem osztja két részre az egyenest! De: két különböző pontja már két részre osztja
 - Egy síkot egy egyenese nem osztja két részre az síkot! De: két különböző állású egyenese már két részre osztja
 - Két pontot összekötő egyenes szakasz sem egyértelmű! (Az egyenes ideális pontja "összeragasztja" az egyenes két végét)

- A projektív síkon a pont és az egyenes, a projektív térben a pont és a sík duális fogalmak
- Figyeljünk, hogy egyes tulajdonságok az euklideszi térből nem jönnek át:
 - Egy egyenes egy pontja nem osztja két részre az egyenest! De: két különböző pontja már két részre osztja
 - Egy síkot egy egyenese nem osztja két részre az síkot! De: két különböző állású egyenese már két részre osztja
 - Két pontot összekötő egyenes szakasz sem egyértelmű! (Az egyenes ideális pontja "összeragasztja" az egyenes két végét

- A projektív síkon a pont és az egyenes, a projektív térben a pont és a sík duális fogalmak
- Figyeljünk, hogy egyes tulajdonságok az euklideszi térből nem jönnek át:
 - Egy egyenes egy pontja nem osztja két részre az egyenest! De: két különböző pontja már két részre osztja
 - Egy síkot egy egyenese nem osztja két részre az síkot! De: két különböző állású egyenese már két részre osztja
 - Két pontot összekötő egyenes szakasz sem egyértelmű! (Az egyenes ideális pontja "összeragasztja" az egyenes két végét

- A projektív síkon a pont és az egyenes, a projektív térben a pont és a sík duális fogalmak
- Figyeljünk, hogy egyes tulajdonságok az euklideszi térből nem jönnek át:
 - Egy egyenes egy pontja nem osztja két részre az egyenest! De: két különböző pontja már két részre osztja
 - Egy síkot egy egyenese nem osztja két részre az síkot! De: két különböző állású egyenese már két részre osztja
 - Két pontot összekötő egyenes szakasz sem egyértelmű! (Az egyenes ideális pontja "összeragasztja" az egyenes két végét)

- A projektív síkon a pont és az egyenes, a projektív térben a pont és a sík duális fogalmak
- Figyeljünk, hogy egyes tulajdonságok az euklideszi térből nem jönnek át:
 - Egy egyenes egy pontja nem osztja két részre az egyenest! De: két különböző pontja már két részre osztja
 - Egy síkot egy egyenese nem osztja két részre az síkot! De: két különböző állású egyenese már két részre osztja
 - Két pontot összekötő egyenes szakasz sem egyértelmű! (Az egyenes ideális pontja "összeragasztja" az egyenes két végét)

Tartalom

- Motiváció
- 2 Koordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

Motiváció

- Most már tudjuk a terünk pontjait több koordináta-rendszerben is reprezentálni
- Hogyan tudjuk az egyszerűbb dolgokat leírni, mint például az egyenes vagy a sík?
- Az elsődlegesen a Descartes-féle derékszögű koordináta-rendszerben vizsgáljuk a fenti kérdést

Motiváció

- Most már tudjuk a terünk pontjait több koordináta-rendszerben is reprezentálni
- Hogyan tudjuk az egyszerűbb dolgokat leírni, mint például az egyenes vagy a sík?
- Az elsődlegesen a Descartes-féle derékszögű koordináta-rendszerben vizsgáljuk a fenti kérdést

Motiváció

- Most már tudjuk a terünk pontjait több koordináta-rendszerben is reprezentálni
- Hogyan tudjuk az egyszerűbb dolgokat leírni, mint például az egyenes vagy a sík?
- Az elsődlegesen a Descartes-féle derékszögű koordináta-rendszerben vizsgáljuk a fenti kérdést

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow \text{mi van ha vissza akarjuk "fordítani"?}$
 - parametrikus: $\mathbf{p}(t) = \left[\begin{array}{c} x(t) \\ y(t) \end{array} \right], t \in \mathbb{R}$
 - implicit: $x^2 + y^2 9 = 0$

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow mi$ van ha vissza akarjuk "fordítani"?
 - parametrikus: $\mathbf{p}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, t \in \mathbb{R}$
 - implicit: $x^2 + y^2 9 = 0$

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow \text{mi van ha vissza akarjuk "fordítani"?}$
 - ullet parametrikus: $\mathbf{p}(t) = \left[egin{array}{c} x(t) \\ y(t) \end{array}
 ight], t \in \mathbb{R}$
 - implicit: $x^2 + y^2 9 = 0$

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow \text{mi van ha vissza akarjuk "fordítani"?}$
 - ullet parametrikus: $\mathbf{p}(t) = \left[egin{array}{c} x(t) \\ y(t) \end{array}
 ight], t \in \mathbb{R}$
 - implicit: $x^2 + y^2 9 = 0$

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow \text{mi van ha vissza akarjuk "fordítani"?}$
 - ullet parametrikus: $\mathbf{p}(t) = \left[egin{array}{c} x(t) \\ y(t) \end{array}
 ight], t \in \mathbb{R}$
 - implicit: $x^2 + y^2 9 = 0$

Tartalom

- Motiváció
- 2 Koordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- 3 Egyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

Egyenes megadása

- Középiskolában: y = mx + b
- Probléma: mi legyen a függőleges egyenesekkel?

Egyenes megadása

- Középiskolában: y = mx + b
- Probléma: mi legyen a függőleges egyenesekkel?

- Az egyenes megadható egy $\mathbf{p}(p_x, p_y)$ pontjával és egy, az egyenes irányára merőleges $\mathbf{n} = [n_x, n_y]^T \neq \mathbf{0}$ normálvektorral:
- ullet Az egyenes pontjai azon ${f x}(x,y)$ pontok, amelyek kielégítik a

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$

 $(x - p_x)n_x + (y - p_y)n_y = 0$

egyenletet

- Az egyenes megadható egy $\mathbf{p}(p_x, p_y)$ pontjával és egy, az egyenes irányára merőleges $\mathbf{n} = [n_x, n_y]^T \neq \mathbf{0}$ normálvektorral:
- Az egyenes pontjai azon $\mathbf{x}(x,y)$ pontok, amelyek kielégítik a

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$
$$(x - p_x)n_x + (y - p_y)n_y = 0$$

egyenletet

- Az egyenes megadható egy $\mathbf{p}(p_x, p_y)$ pontjával és egy, az egyenes irányára merőleges $\mathbf{n} = [n_x, n_y]^T \neq \mathbf{0}$ normálvektorral:
- ullet Az egyenes pontjai azon ${f x}(x,y)$ pontok, amelyek kielégítik a

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$

 $(x - p_x)n_x + (y - p_y)n_y = 0$

egyenletet.

- Az egyenes megadható egy $\mathbf{p}(p_x, p_y)$ pontjával és egy, az egyenes irányára merőleges $\mathbf{n} = [n_x, n_y]^T \neq \mathbf{0}$ normálvektorral:
- ullet Az egyenes pontjai azon ${f x}(x,y)$ pontok, amelyek kielégítik a

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$
$$(x - p_x)n_x + (y - p_y)n_y = 0$$

egyenletet.

Az egyenes homogén, implicit egyenlete a síkban

- Az ax + by + c = 0 alakot hívjuk az egyenes implicit egyenletének.
- A fentiek alapján $a = n_x$, $b = n_y$ és $c = -(p_x n_x + p_y n_y)$, $a^2 + b^2 \neq 0$ választással a **p** ponton átmenő, **n** normálisú egyenes implicit egyenletét kapjuk.
- Ha $a^2 + b^2 = 1$, akkor *Hesse-féle normalizált alakról* beszélünk

Az egyenes homogén, implicit egyenlete a síkban

- Az ax + by + c = 0 alakot hívjuk az egyenes implicit egyenletének.
- A fentiek alapján $a = n_x$, $b = n_y$ és $c = -(p_x n_x + p_y n_y)$, $a^2 + b^2 \neq 0$ választással a **p** ponton átmenő, **n** normálisú egyenes implicit egyenletét kapjuk.
- Ha $a^2 + b^2 = 1$, akkor *Hesse-féle normalizált alakról* beszélünk

Az egyenes homogén, implicit egyenlete a síkban

- Az ax + by + c = 0 alakot hívjuk az egyenes implicit egyenletének.
- A fentiek alapján $a = n_x$, $b = n_y$ és $c = -(p_x n_x + p_y n_y)$, $a^2 + b^2 \neq 0$ választással a **p** ponton átmenő, **n** normálisú egyenes implicit egyenletét kapjuk.
- Ha $a^2 + b^2 = 1$, akkor *Hesse-féle normalizált alakról* beszélünk

A homogén egyenlet determináns alakja

• Ha az egyenesünket két, $\mathbf{p}(p_x, p_y)$, $\mathbf{q}(q_x, q_y)$ pontjával adjuk meg, akkor azon $\mathbf{x}(x, y)$ pontok fekszenek az egyenesen, amelyekre

$$\left|\begin{array}{ccc} x & y & 1 \\ p_x & p_y & 1 \\ q_x & q_y & 1 \end{array}\right| = 0$$

• Megjegyzés: a fenti determináns az $\mathbf{x}(x,y)$, $\mathbf{p}(p_x,p_y)$, $\mathbf{q}(q_x,q_y)$ pontok által meghatározott háromszög (előjeles) területe, ami =0 \equiv a három pont egy egyenesbe esik

A homogén egyenlet determináns alakja

• Ha az egyenesünket két, $\mathbf{p}(p_x, p_y)$, $\mathbf{q}(q_x, q_y)$ pontjával adjuk meg, akkor azon $\mathbf{x}(x, y)$ pontok fekszenek az egyenesen, amelyekre

$$\left|\begin{array}{ccc} x & y & 1 \\ p_x & p_y & 1 \\ q_x & q_y & 1 \end{array}\right| = 0$$

• Megjegyzés: a fenti determináns az $\mathbf{x}(x,y)$, $\mathbf{p}(p_x,p_y)$, $\mathbf{q}(q_x,q_y)$ pontok által meghatározott háromszög (előjeles) területe, ami $=0\equiv$ a három pont egy egyenesbe esik

Az egyenes parametrikus egyenlete - irányvektorral, síkban és térben

• Az egyenes megadható egy $\mathbf{p}(p_x, p_y, p_z)$ pontjával és egy, az egyenes irányával megegyező irány $\mathbf{v} = [v_x, v_y, v_z]^T \neq \mathbf{0}$ irányvektorral:

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow x(t) = p_x + tv_x$$

$$\mathbf{y}(t) = p_y + tv_y$$

$$\mathbf{z}(t) = p_z + tv_z$$

Az egyenes parametrikus egyenlete - irányvektorral, síkban és térben

• Az egyenes megadható egy $\mathbf{p}(p_x, p_y, p_z)$ pontjával és egy, az egyenes irányával megegyező irány $\mathbf{v} = [v_x, v_y, v_z]^T \neq \mathbf{0}$ irányvektorral:

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow x(t) = p_x + tv_x$$

$$\mathbf{y}(t) = p_y + tv_y$$

Az egyenes parametrikus egyenlete - irányvektorral, síkban és térben

• Az egyenes megadható egy $\mathbf{p}(p_x, p_y, p_z)$ pontjával és egy, az egyenes irányával megegyező irány $\mathbf{v} = [v_x, v_y, v_z]^T \neq \mathbf{0}$ irányvektorral:

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow$$

$$x(t) = p_x + tv_x$$

$$y(t) = p_y + tv_y$$

$$z(t) = p_z + tv_z$$

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow \mathbf{x}(t) = (1 - t)\mathbf{p} + t\mathbf{q} \rightarrow \mathbf{x}(t) = (1 - t)p_x + tq_x$$

$$\mathbf{y}(t) = (1 - t)p_y + tq_y$$

$$\mathbf{z}(t) = (1 - t)p_z + tq_z$$

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow \mathbf{x}(t) = (1 - t)\mathbf{p} + t\mathbf{q} \rightarrow \mathbf{x}(t) = (1 - t)p_x + tq_x$$

$$\mathbf{y}(t) = (1 - t)p_y + tq_y$$

$$\mathbf{z}(t) = (1 - t)p_z + tq_z$$

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow \mathbf{x}(t) = (1 - t)\mathbf{p} + t\mathbf{q} \rightarrow$$

$$v(t) = (1-t)p_{x} + tq_{x}$$

 $v(t) = (1-t)p_{y} + tq_{y}$

$$y(t) = (1-t)p_y + tq_y$$

 $z(t) = (1-t)p_z + tq_z$

$$z(t) = (1-t)p_z + tq_z$$

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v} \rightarrow \mathbf{x}(t) = (1 - t)\mathbf{p} + t\mathbf{q} \rightarrow \mathbf{x}(t) = (1 - t)p_x + tq_x$$

$$\mathbf{y}(t) = (1 - t)p_y + tq_y$$

$$\mathbf{z}(t) = (1 - t)p_z + tq_z$$

Homogén koordinátás alak

• A kibővített (projektív) sík egy egyenese megadható az $\mathbf{e} = [e1, e2, e3]$ valós számhármassal, úgynevezett vonalkoordinátákkal, amelyek felhasználásával az egyenes minden $\mathbf{x} = [x_1, x_2, x_3]^T$ pontjára

$$\mathbf{ex} = e_1 x_1 + e_2 x_2 + e_3 x_3 = 0$$

• Az sík minden $[x_1, x_2, 0]$ ideális pontjára illeszkedő ideális egyenes vonalkoordinátái [0, 0, 1].

Homogén koordinátás alak

• A kibővített (projektív) sík egy egyenese megadható az $\mathbf{e} = [e1, e2, e3]$ valós számhármassal, úgynevezett vonalkoordinátákkal, amelyek felhasználásával az egyenes minden $\mathbf{x} = [x_1, x_2, x_3]^T$ pontjára

$$\mathbf{ex} = e_1 x_1 + e_2 x_2 + e_3 x_3 = 0$$

• Az sík minden $[x_1, x_2, 0]$ ideális pontjára illeszkedő ideális egyenes vonalkoordinátái [0, 0, 1].

Az egyenes polár koordinátás alakja

• Az origón áthaladó, a polártengellyel θ szöget bezáró irányú egyenesek polárkoordinátás (implicit) egyenlete:

$$\varphi = \theta$$

• Ha az egyenesünk nem halad át az origón, akkor legyen (r_0, φ_0) a metszéspontja az egyenesünknek és egy arra merőleges, origón áthaladó egyenesnek. Ekkor az egyenesünk polárkoordinátái közül a sugár a polárszög függvényeként felírható a következő alakban:

$$r(\varphi) = \frac{r_0}{\cos(\varphi - \varphi_0)}$$

Az egyenes polár koordinátás alakja

• Az origón áthaladó, a polártengellyel θ szöget bezáró irányú egyenesek polárkoordinátás (implicit) egyenlete:

$$\varphi = \theta$$

• Ha az egyenesünk nem halad át az origón, akkor legyen (r_0, φ_0) a metszéspontja az egyenesünknek és egy arra merőleges, origón áthaladó egyenesnek. Ekkor az egyenesünk polárkoordinátái közül a sugár a polárszög függvényeként felírható a következő alakban:

$$r(\varphi) = \frac{r_0}{\cos(\varphi - \varphi_0)}$$

Az egyenes polár koordinátás alakja

Tartalom

- Motiváció
- 2 Koordináta-rendszerek
 - Descartes koordináta-rendszer
 - Polákoordináta-rendszer
 - Baricentrikus koordináták
 - Homogén koordináták
- Segyenesek és síkok leírása
 - Motiváció
 - Egyenes
 - Sík
- Összefoglalás

A sík normálvektoros egyenlete

• A sík megadható egy $\mathbf{p}(p_x, p_y, p_z)$ pontjával és a síkra merőleges $\mathbf{n} = [n_x, n_y, n_z]^T$ normálvektorával. Ekkor a sík minden \mathbf{x} pontjára:

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$

ullet Félterek: $\langle {f x}-{f p},{f n}
angle \ <0,\ \langle {f x}-{f p},{f n}
angle \ >0$

A sík normálvektoros egyenlete

• A sík megadható egy $\mathbf{p}(p_x, p_y, p_z)$ pontjával és a síkra merőleges $\mathbf{n} = [n_x, n_y, n_z]^T$ normálvektorával. Ekkor a sík minden \mathbf{x} pontjára:

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$

ullet Félterek: $\langle {f x}-{f p},{f n}
angle~<0,~\langle {f x}-{f p},{f n}
angle~>0$

Az sík homogén, implicit egyenlete

- A sík implicit egyenletének alakja ax + by + cz + d = 0
- Előbbiből a = n_x, b = n_y, c = n_z és
 d = -n_xp_x n_yp_y n_zp_z választásal a **p** ponton áthaladó, **r** normálvektorú sík egyenletét kapjuk
- Hesse normál-alak itt is, ha $a^2 + b^2 + c^2 = 1$

Az sík homogén, implicit egyenlete

- A sík implicit egyenletének alakja ax + by + cz + d = 0
- Előbbiből a = n_x, b = n_y, c = n_z és
 d = -n_xp_x n_yp_y n_zp_z választásal a **p** ponton áthaladó, **n** normálvektorú sík egyenletét kapjuk
- Hesse normál-alak itt is, ha $a^2 + b^2 + c^2 = 1$

Az sík homogén, implicit egyenlete

- A sík implicit egyenletének alakja ax + by + cz + d = 0
- Előbbiből a = n_x, b = n_y, c = n_z és
 d = -n_xp_x n_yp_y n_zp_z választásal a **p** ponton áthaladó, **n** normálvektorú sík egyenletét kapjuk
- Hesse normál-alak itt is, ha $a^2 + b^2 + c^2 = 1$

A homogén egyenlet determináns alakja

• Determináns segítségével is megadhatjuk a sík egyenletét, a következő determináns csak $\mathbf{p}(p_x, p_y, p_z)$, $\mathbf{q}(q_x, q_y, q_z)$, $\mathbf{r}(r_x, r_y, r_z)$ pontok által kifeszített sík X pontjaira lesz nulla:

$$\begin{vmatrix} x & y & z & 1 \\ p_x & p_y & p_z & 1 \\ q_x & q_y & q_z & 1 \\ r_x & r_y & r_z & 1 \end{vmatrix} = 0$$

A sík parametrikus egyenlete - három pontból

A síkot meghatározza három, nem egy egyenesbe eső pontja,
 p, q, r. Ekkor a sík minden véges x pontja megkapható

$$\mathbf{x}(s,t) = \mathbf{p} + s(\mathbf{q} - \mathbf{p}) + t(\mathbf{r} - \mathbf{p})$$

alakban, ahol $s, t \in \mathbb{R}$.

Ez egy baricentrikus megadás:

$$\mathbf{x}(s,t) = (1-s-t)\mathbf{p} + s\mathbf{q} + t\mathbf{r}$$
niszen $(1-s-t)+s+t=1$

A sík parametrikus egyenlete - három pontból

A síkot meghatározza három, nem egy egyenesbe eső pontja,
 p, q, r. Ekkor a sík minden véges x pontja megkapható

$$\mathbf{x}(s,t) = \mathbf{p} + s(\mathbf{q} - \mathbf{p}) + t(\mathbf{r} - \mathbf{p})$$

alakban, ahol $s, t \in \mathbb{R}$.

• Ez egy baricentrikus megadás:

$$\mathbf{x}(s,t) = (1-s-t)\mathbf{p} + s\mathbf{q} + t\mathbf{r}$$
 hiszen $(1-s-t)+s+t=1$

A sík parametrikus egyenlete - kifeszítő vektorokkal

 A sík jellemezhető egy pontjával és két kifeszítő vektorával (bázisvektorával) is:

$$\mathbf{x}(s,t) = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$$

ullet Az előbbiből is kaphatjuk ezt $oldsymbol{u} = oldsymbol{q} - oldsymbol{p}$, $oldsymbol{v} = oldsymbol{r} - oldsymbol{p}$ választással

A sík parametrikus egyenlete - kifeszítő vektorokkal

 A sík jellemezhető egy pontjával és két kifeszítő vektorával (bázisvektorával) is:

$$\mathbf{x}(s,t) = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$$

ullet Az előbbiből is kaphatjuk ezt $oldsymbol{u} = oldsymbol{q} - oldsymbol{p}$, $oldsymbol{v} = oldsymbol{r} - oldsymbol{p}$ választással

Homogén koordinátás alak

• A kibővített tér egy síkja is megadható "síkkordinátákkal", egy olyan $\mathbf{s} = [s_1, s_2, s_3, s_4]$ négyessel, amely a sík minden $\mathbf{x} = [x_1, x_2, x_3, x_4]^T$ pontjára

$$\mathbf{sx} = s_1 x_1 + s_2 x_2 + s_3 x_3 + s_4 x_4 = 0$$

- [0, 0, 0, c] az ideális sík
- [c, 0, 0, 0] az YZ koordinátatengely
- [0, c, 0, 0] az XZ koordinátatengely
- [0,0,c,0] az XY koordinátatengely

- [0,0,0,c] az ideális sík
- [c, 0, 0, 0] az YZ koordinátatengely
- [0, c, 0, 0] az XZ koordinátatengely
- [0,0,c,0] az XY koordinátatengely

- [0,0,0,c] az ideális sík
- [c, 0, 0, 0] az YZ koordinátatengely
- [0, c, 0, 0] az XZ koordinátatengely
- [0,0,c,0] az XY koordinátatengely

- [0,0,0,c] az ideális sík
- \bullet [c, 0, 0, 0] az YZ koordinátatengely
- [0, c, 0, 0] az XZ koordinátatengely
- [0,0,c,0] az XY koordinátatengely

Összefoglalás

- Láttuk hogyan írhatunk le és tárolhatunk számítógépen pontokat és egyszerű geometriai ponthalmazokat
- Ajánlott olvasmány: Krammer Gergely oldala

Összefoglalás

- Láttuk hogyan írhatunk le és tárolhatunk számítógépen pontokat és egyszerű geometriai ponthalmazokat
- Ajánlott olvasmány: Krammer Gergely oldala