Jonathan Frankel

EPIGENETIC DEVELOPMENT IN NEURAL NETWORKS

Biology Background: the Ontogeny of a Multicellular Organism

- A M-O starts out as a single cell, but during the course of it life ends up as a community of trillions of cells
- Cellular Differentiation is the mechanism for growth and development
- Intercellular signaling and response are responsible for regulating cellular morphogenesis

Cellular Communication: Signal Transduction

Possible behaviors:

- •Secrete chemicals in response
- Chemotaxis
- •Transcribe protein from RNA

CONTACT-DEPENDENT: Contact-dependent signaling requires cell to be in direct membrane to membrane contact with each other. Many of the same types of signal molecules are used in endocrine, paracrine, and neuronal signaling. The crucial differences lie in the speed and selectivity with which the signals are delivered to their targets.

NEURONAL: Neuronal signals are transmitted along axons to remote target cells.

PARACRINE: Paracrine signals are released by cells into the extracellular medium in their neighborhood and act locally.

Astor & Adami:

A Developmental Model for the Evolution of Artificial Neural Networks

- Why a developmental model?
- Classical ANNs are fabricated to solve classification problems
- Apply biological realism towards scientific explanation, rather than simply using ANNs as an engineering tool

Simulation of the "organism" occurs in a 2-D lattice

Each hexagonal
"common" cell
contains a
concentration of
various proteins,
and may or may
not contain a
neuron. Gray cells
are the boundary
"skin."

Four Protein Types

External: diffusive

Internal: non-

diffusive

Cell-type: emitted

by a cell and

diffused

Neurotransmitters:

direct cell-cell

communication

(non-diffusive)

Laws of the Universe

- Diffusion occurs discretely across the cells, and discretely across increments of time
- Through diffusion, a gradient can be set for communication
- The placement of sensors and actuators is hard-coded into the genome

The Genome

- The genome determines the behavior of the cells in response to its environment (local concentrations of proteins)
- This is in contrast to the genome of classical evolutionary ANNs, where it explicitly encodes the connection weights and/or learning rule of the system

The Genome

- Cell behavior is governed by gene regulation and gene expression
- Gene regulation (in this simulation) is equivalent to cell type, which is determined by the presence or absence of cell-type protein
- Gene expression is computed by the input of the protein make-up of the cell's substrate

Genetic Structure

Each gene is composed of a string of condition atoms— Each of which is a function taking the value of a protein concentration in the cell's local substrate and returning the evaluated condition of the cell.

Condition atoms

Repressive

Туре	Represses its gene if	
SUP {CTPx}	cell is not of type CTPx	
NSUP {CTPx}	cell is of type CTPx	
ANY {PTx}	$\{PTX\} = 0$	
NNY {PTx}	$\{PTx\} \neq 0$	

Silences the entire gene if condition is met

Evaluative

Туре	Evaluation value Φ	
SUB {PTx}	$\Phi(\Theta, SUB[PTX])$	$= R_0^1(\Theta - \{ PTX \})$
ADD {PTx}	$\Phi(\Theta, ADD[PTX])$	$= R_0^1(\Theta + \{ PTX \})$
MUL {PTx}	$\Phi(\Theta, \text{MUL[PTx]})$	$= \Theta * \{PTx\}$
AND {PTx}	$\Phi(\Theta, AND[PTx])$	$= \min(\Theta, \{PTX\})$
NAND {PTx}	$\Phi(\Theta, \text{NAND[PTx]})$	$= 1 - \min(\Theta, \{PTX\})$
OR{PTx}	$\Phi(\Theta, OR[PTx])$	$= \max(\Theta, \{PTx\})$
NOR {PTx}	$\Phi(\Theta, NOR[PTx])$	$= 1 - \max(\Theta, \{PTx\})$
NOC	$\Phi(\Theta, NOC)$	= Θ ; the neutral condition
NNY {PTx}	$\Phi(\Theta, \text{NNY[PTx]})$	$= \Theta$, if $\{PTx\} = 0$
ANY {PTx}	$\Phi(\Theta, ANY[PTX])$	$= \Theta$, if $\{PTx\} \neq 0$

Gene Evaluation:

- The final evaluated condition of the cell is determined via a recursive function:
- where each Φ in the nest is a condition atom, and Θ_0 is the initial evaluated condition of the cell, given by:
- $\Theta_0 = \begin{cases} 1, & \text{if } b_1 \text{ is of type MUL, AND, NAND, SUB, ANY, NNY} \\ 0, & \text{if } b_1 \text{ is of type ADD, OR, NOR} \end{cases}$

Gene Expression:

C is the complete gene, C1 is the sub-condition comprising the repressive atoms, C2 comprises the evaluative condition atoms.

Morphogenesis & communication

The expression of each gene results in a "developmental command," influenced by the overall condition value of the cell after the evaluated condition is computed and expressed

Morphogenesis & communication

Expression	Command description	Influence of condition value
PRD {XY}	produce substrate XY	production quantity
GDR {XY}	grow dendrite following gradient of XY	probability to grow
GRA {XY}	grow axon following gradient of xy	probability to grow
SPL {CTPx}	divide. Offspring is of type CTPx	probability to split
EXT	excitatory stimulus	increase rate
INH	inhibitory stimulus	decrease rate
MOD+{NTx}	increase connection weights	strengthening factor
MOD-{NTx}	decrease connection weights	weakening factor
RLX {NTx}	relax weights slightly	multiplier
DFN {NTx}	define the type of neurotransmitter	none
NOP	null action, neutrality	

Morphogenesis & communication

- The commands are functions taking as input the overall condition value
- Growth commands take a directional value as additional input (the direction of a gradient)
- Neural modulation commands take a neurotransmitter type as additional input

Dendritic Growth

a) t=4. The sensor cell just started to produce SPT0.

b) t=5. Once the neuron cell has detected non-zero concentrations of SPT0, it starts to grow a dendritic connection.

Dendritic Growth

c) t=6. The growing dendrite follows the gradient of SPT0, ...

d) t=7 ... while the sensor cell-type protein keeps on diffusing.

Dendritic Growth

e) t=8. Finally, the growing dendrite approaches the sensor cell ...

f) t=9 ... and establishes the dendritic connection.

Learning(!)

- Neural networks are established through growth factors – signals sent from neighboring cells encouraging the development of axons and dendrites
- Learning rules are not explicitly programmed in
- Rather, they are the product of genetic expression
- Good learning rules are adaptive

Learning(!)

Neuron 4 is inhibited because this gene lowers the cell's evaluated condition according to the NTx neurotransmitter. More importantly, a weighted sum is implemented in the expression of the genome.

Implementing Logic Functions

Growing a Network

Growing a Network

Growing a Network

Evolution

- Genomes are never hand-coded, so connections and learning rules are not specified
- Moreover, they are both removed from direct selection
- Having a network capable of learning is adaptive (as selected for by the researcher), but the genome codes for various cell type behaviors

- The key to success in abstraction is implementing functions while implementing as little structure as possible
- In a real cell, the genome is not read off each time there is an input chemical
- Rather, input signal can be stored in the cytoplasm or organelles, or cause morphological changes without the production of new proteins

- Moreover, there are many cell behaviors that this simulation lacks:
 - Taxis cell movement
 - Apoptosis cell death
 - Rigid, invariant structure of the organism

- But there is a computational pressure for simplification of the model
- The larger the genome, the larger the search space
- Astor & Adami's solution is to put there systems up on the web, similar to Folding@Home

Resources

- J. C. Astor, C. Adami. A Developmental Model for the Evolution of Artificial Neural Networks. Artificial Life 2000 6:3, 189-218
- Jonathan Bard (2008) Morphogenesis. Scholarpedia, 3(6):2422
- Jamie Davies (2008) Cellular mechanisms of morphogenesis. Scholarpedia, 3(2):3615
- David Secko (2003) CONVERSING AT THE CELLULAR LEVEL: AN INTRODUCTION TO SIGNAL TRANSDUCTION. The Science Creative Quarterly. [http://www.scq.ubc.ca/conversing-at-the-cellular-level-an-introduction-to-signal-transduction/]