SPRAWOZDANIE Z ĆWICZENIA 4:

Odwzorowanie Gaussa-Krügera: układy współrzędnych płaskich stosowanych w Polsce

Maja Kret nr 1, gr. 2 325693

Wydział Geodezji i Kartografii Politechnika Warszawska

Spis treści

1	Cel	ćwiczenia	2
2	Wst	tęp teoretyczny	2
	2.1	Układ współrzędnych płaskich PL-2000	2
	2.2	Układ współrzędnych płaskich PL-1992	2
	2.3	Układ współrzędnych płaskich UTM	2
	2.4	Układ współrzędnych płaskich LAEA	2
	2.5	Układ współrzędnych płaskich LCC	2
3		ne do ćwiczenia ebieg ćwiczenia	3
5	Wy	niki ćwiczenia	4
	5.1	Transformacje z biblioteką pyproj	4
	5.2	Redukcje długości	5
	5.3	Redukcje azymutów	5
	5.4	Pole trapezu	6
6	Wn	ioski	6
7	Kod	ł źródłowy	8

1 Cel ćwiczenia

Celem ćwiczenia jest transformacja współrzędnych geodezyjnych punktów do układów współrzędnych płaskich stosowanych w Polsce. Następnie należy wyznaczyć długości, azymuty odcinków oraz pole trapezu złożonego z tych odcinków.

2 Wstęp teoretyczny

2.1 Układ współrzędnych płaskich PL-2000

Odwzorowanie Gaussa-Krügera elipsoidy globalnej WGS84. Układ składa się z 4 stref numerowanych od 5 do 8. Każda ze stref obejmuje trzystopniowy pas. Stosowany na potrzeby wykonania map w skali większej niż 1:10 000. Zniekształcenia oscylują w obrębie wartości -7,7cm/km do +7cm/km Współrzędne analizowane w tym ćwiczeniu zawierają się w strefie 5 z południkiem osiowym 15°.

2.2 Układ współrzędnych płaskich PL-1992

Odwzorowanie Gaussa-Krügera elipsoidy lokalnej GR80. Układ ten jest jednolity i obejmuje cały obszar Polski. Południkiem środkowym jest południk 19°, a skala podobieństwa wynosi 0.9993. Zniekształcenie na południku osiowym wynosi -70cm/km, a an skrajnie wschodnich obszarach kraju dochodzi do +90cm/km. Ze względu na duże wartości zniekształceń stosowany jest do map w skali 1:10 000 i mniejszych.

2.3 Układ współrzędnych płaskich UTM

Universal Transverse Mercator - uniwersalne poprzeczne odwzorowanie Merkatora jest stosowane na całym świecie do celów nawigacyjnych i wojskowych. Jest do odwzorowanie w pasach 6°, ze skalą na południku środkowym 0.9996. Polska znajduje się w pasach 33, 34 i 35.

2.4 Układ współrzędnych płaskich LAEA

Lambert Azimuthal Equal Area - układ współrzędnych płaskich utworzony na podstawie przyporządkowania punktów na elipsoidzie GRS80 według teorii azymutalnego odwzorowania Lamberta. Układ LAEA używany jest w mapach o skalach 1:500 000 i mniejszych. Jest dobry do pomiaru długości i powierzchni, ale nieodpowiedni do pomiaru kątów i kierunków.

2.5 Układ współrzędnych płaskich LCC

Lambert Conformal Conic jest opary na odwzorowaniu stożkowym Lamberta. Stosowany jest na potrzeby wydawania map w skalach 1:500 000 i mniejszych gdy ważne jest zachowanie prawdziwego kształtu. Nadaje się do pomiarów katów i kierunków, ale nie do pomiaru długości i powierzchni.

3 Dane do ćwiczenia

Układ	EPSG	Zakres
PL-2000	2176	Polska - strefa 5
PL-1992	2180	Polska
UTM	32633	Świat - strefa 33
LAEA	3035	Europa
LCC	3034	Europa

Tabela 1: Układy współrzędnych płaskich i ich kod EPSG

nr	φ	λ
1	53°45′00.00000″	15°15′00.00000″
2	54°06′33.75763″	15°15′00.00000″
3	54°05′58.80144″	16°46′43.41406″
4	53°44′25.04170″	16°46′43.41406″

Tabela 2: Współrzędne analizowanych punktów

4 Przebieg ćwiczenia

- 1. **Transformacje współrzędnych:** Wszystkie współrzędne zostały poddane transformacji do układów współrzędnych płaskich za pomocą biblioteki pyproj (kod źródłowy 2). Metoda przeliczenia bazuje na kodach EPSG układu wejściowego i wyjściowego i zwraca wynik w metrach.
- 2. Redukcje długości: Dokonano redukcji długości (kod źródłowy 3), więc dokonano obliczeń:
 - (a) długości odcinków na płaszczyźnie układu PL-2000
 - (b) długości odcinków na płaszczyźnie Gaussa-Krügera
 - (c) redukcji długości
 - (d) ostatecznej długości na elipsoidzie.
- 3. Redukcje azymutów: Dokonano redukcji azymutów (kod źródłowy 3), dokonując obliczeń:
 - (a) kątów kierunkowych w współrzędnych płaskich
 - (b) zbieżności południków
 - (c) redukcji kierunków
 - (d) ostatecznego azymutu na elipsoidzie.
- 4. **Pole trapezu:** Pole powierzchni zostało obliczone za pomocą wzorów Gaussa (kod źródłowy 2) dla wszystkich analizowanych układów współrzędnych.
- 5. **Stworzenie tabel:** Wszystkie grupy danych zostały zapisane do tabel biblioteki pandas w celu dodania do sprawozdania.

5 Wyniki ćwiczenia

5.1 Transformacje z biblioteką pyproj

nr	X	у
1	5516490.727	5957660.601
2	5516349.663	5997657.405
3	5616347.760	5998010.911
4	5617351.461	5958019.885

Tabela 3: Współrzędne punktów w układzie PL-2000

nr	X	у
1	252846.028	660446.270
2	254962.295	700391.989
3	354799.469	695092.080
4	353546.705	655129.270

Tabela 4: Współrzędne punktów w układzie PL-1992

nr	Х	У
1	516485.400	5955736.129
2	516344.382	5995720.012
3	616310.177	5996073.405
4	617313.554	5956095.297

Tabela 5: Współrzędne punktów w układzie UTM

nr	x	у
1	4667032.566	3417280.404
2	4664091.927	3457181.890
3	4763796.950	3464409.230
4	4767591.881	3424568.613

Tabela 6: Współrzędne punktów w układzie LAEA

nr	X	у
1	4334584.794	3000070.553
2	4331838.799	3038655.338
3	4428320.820	3045476.812
4	4431864.387	3006957.453

Tabela 7: Współrzędne punktów w układzie LCC

Tabele 3 -7 przedstawiają współrzędne punktów czworokąta w układach współrzędnych płaskich obowiązujących w Polsce. Współrzędne wyrażone są w metrach i zostały obliczone za pomocą biblioteki

pyproj.

5.2 Redukcje długości

Układ	Dł. dana $[m]$	poprawka [cm/km]	poprawka względna [cm]	poprawka względna [m]
PL- 2000	40000.000	-7, 7 - +7	-308 - +280	-3.08 - +2.80
F L- 2000	100000.000	-7, 7 - +7	-770 - +700	-7.70 - +7.00
DI 1009	40000.000	-70 - +90	-2800 - +3600	-28.00 - +36.00
PL-1992	100000.000	-70 - +90	-7000 - +9000	-70.00 - +90.00

Tabela 8: Oczekiwane oscylacje w współrzędnych

W tabeli 8 przedstawiono zniekształcenia współrzędnych w obrębie jednej strefy w układzie PL-2000. Analizowane punkty 3 i 4 przechodzą już na strefę 6, co oznacza, że zniekształcenie długości do i od tych punktów może być większe. Najmniejszych zniekształceń można się spodziewać przy linii 1 - 2, która całkowicie leży wewnątrz, ale nie w samym środku strefy 5.

W tabeli zawarto również zniekształcenia długości dla układu PL-2000. Pomiędzy południkami 15° a 17° spodziewamy się zniekształceń w obrębie 0 do -40 cm na km.

A-B	Dł. dane	Dł.Vincenty	PL-2000	PL-1992
1 - 2	40000.000	40000.000	40000.020	40018.352
2 - 3	100000.000	100000.000	100006.118	100019.479
3 - 4	40000.000	40000.000	40006.588	39999.022
4 - 1	100000.000	100862.551	100868.882	100882.559

Tabela 9: Długości odcinków na elipsoidzie

W tabeli 9 dokonano porównania długości linii w kolumnach przedstawiających kolejno:

- 1. Długości linii dane w ćwiczeniu 3
- 2. Długości linii zamkniętego trapezu obliczonych w ćwiczeniu 3 za pomocą algorytmu Vincentego
- 3. Długości zredukowane z płaszczyzny układu PL-2000 na elipsoidę
- 4. Długości zredukowane z płaszczyzny układu PL-1992 na elipsoidę

5.3 Redukcje azymutów

A-B	Az. dany	Az. Kivioj	Az. Vincenty A-B	Az. Vincenty B-A
1 - 2	0°00′00.00000′′	0°00′00.00000′′	0°00′00.00000″	180°00′00.00000″
2 - 3	90°00′00.00000″	91°14′18.34038″	90°00′00.00000″	271°14′18.34038″
3 - 4	180°00′00.00000″	180°00′00.00000′′	180°00′00.00000″	360°00′00.00000″
4 - 1	270°00′00.00000″	269°59′51.09899″	271°13′49.11409″	89°59′51.09899′′

Tabela 10: Azymuty odcinków z ćwiczenia 3

A-B	Azymut A-B	Azymut B-A
1 - 2	90°24′11.77172″	270°24′17.45732″
2 - 3	0°26′53.23813″	180°21′55.40451″
3 - 4	272°52′47.13538″	92°52′13.50021″
4 - 1	181°20′10.55727″	2°00′03.55518″

Tabela 11: Azymuty odcinków w układzie PL-2000

nr	Azymut A-B	Azymut B-A
1 - 2	87°10′31.05466″	267°09′58.51621″
2 - 3	357°12′31.12435″	177°07′23.71614″
3 - 4	269°38′38.92025″	89°38′27.86829″
4 - 1	178°06′26.67372″	358°46′36.23174″

Tabela 12: Azymuty odcinków w układzie PL-1992

Tabela 10 przedstawia azymuty dane w ćwiczeniu 3 oraz te wyliczone za pomocą algorytmu Kivioja i Vincentego.

W wartościach azymutów w tabelach 11 i 12 występują odstępstwa na poziomie od 30" do 2°.

5.4 Pole trapezu

Układ	Pole $[m^2]$	Pole $[km^2]$
WGS 84	4016880873.853	4016.881
PL-2000	4016769500.134	4016.770
PL-1992	4015113362.314	4015.113
UTM	4014174886.310	4014.175
LAEA	4016817517.040	4016.818
LCC	3756510722.070	3756.511

Tabela 13: Pole powierzchni w układach współrzędnych płaskich

W tabeli 13 przedstawiono wyniki obliczeń pól powierzchni dla układów współrzędnych płaskich. Wszystkie obliczenia zostały wykonane za pomocą metody Gaussa. Pierwszy wiersz przedstawia pole obliczone w ramach ćwiczenia 3, które uzyskano z użyciem funkcji geometry_area_perimeter. Najbardziej zbliżone wyniki uzyskano dla układów PL-2000 i LAEA. Wynik dla układu LCC jest najbardziej odległy od pozostałych. Jest to spowodowane stożkowym sposobem odwzorowania powierzchni na płaszczyznę, które nie zachowuje powierzchni ani odległości.

6 Wnioski

Na wybór układu współrzędnych płaskich wpływa wiele czynników. Dla Polski, obowiązującym i najdokładniejszym jest układ PL-2000, ale przy mapach w skali 1:10 000 i mniejszych zalecany jest układ PL-1992. Układy LAEA i LCC są stosowane w całej Europie i stanowią ważny element systemu odniesień przestrzennych. Układ UTM jest uniwersalny i stosowany na całym świecie.

Warto zwrócić uwagę na odstępstwa w obliczonych długościach i polach powierzchni, które są spowodowane odwzorowaniem ich na płaszczyznę. Na ich dokładność będzie bezpośrednio wpływać wybór układu współrzędnych płaskich. Innym aspektem są azymuty, które przy odwzorowaniu Gaussa-Krügera mogą być zniekształcone nawet o ponad 1°. Takie błędy mogą mieć duży wpływ na pomiary kątów i kierunków.

7 Kod źródłowy

Kod źródłowy 1: Zamiany jednostek kątowych

```
degree_sign = u"\N{DEGREE SIGN}"
    # Radiany na stopnie, minuty, sekundy
    def rad2dms(rad):
        dd = np.rad2deg(rad)
        dd = dd
        deg = int(np.trunc(dd))
        mnt = int(np.trunc((dd-deg) * 60))
        sec = ((dd-deg) * 60 - mnt) * 60
        mnt = abs(mnt)
        sec = abs(sec)
        if sec > 59.99999:
             sec = 0
            mnt += 1
        if sec < 10:
             sec = f"0{sec:.5f}"
        else:
            sec = f"{sec:.5f}"
        if mnt < 10:</pre>
             mnt = f"O\{mnt\}"
        dms = (f"{deg}{degree_sign} {mnt}, {sec},")
        return dms
22
    # Stopnie dziesiętne na stopnie, minuty, sekundy
23
    def deg2dms(dd):
24
        deg = int(np.trunc(dd))
25
        mnt = int(np.trunc((dd-deg) * 60))
26
        sec = ((dd-deg) * 60 - mnt) * 60
27
        mnt = abs(mnt)
        sec = abs(sec)
        if sec < 10:
             sec = f"0{sec:.5f}"
        else:
            sec = f"{sec:.5f}"
        if mnt < 10:</pre>
            mnt = f"O{mnt}"
35
        dms = (f"{deg}{degree_sign} {mnt}', {sec}','")
36
```

```
import numpy as np
    from pyproj import Proj, transform, CRS, Transformer, Geod
    import plotly.graph_objects as go
    import plotly.io as pio
    import matplotlib.pyplot as plt
    import pandas as pd
    from shapely.geometry import LineString, Point, Polygon
    # Kody układów współrzędnych
    input\_code = 4326
10
    output_names = ['PL-2000', 'PL-92', 'UTM', 'LAEA', 'LCC']
11
    output_codes = [2176, 2180, 32633, 3035, 3034]
12
13
    input_proj = CRS.from_epsg(4326)
14
    proj_2000 = CRS.from_epsg(2176)
15
    proj_92 = CRS.from_epsg(2180)
16
    proj_utm = CRS.from_epsg(32633)
17
    proj_laea = CRS.from_epsg(3035)
    proj_lcc = CRS.from_epsg(3034)
20
    output_projections = [proj_2000, proj_92, proj_utm, proj_laea, proj_lcc]
21
22
    # Współrzędne punktów
23
    phis = [53.75, 54.10937712005116, 54.099667067097876, 53.74028936233757]
24
    lambdas = [15.25, 15.25, 16.778726126645378, 16.778726126645378]
25
    lamb0 = np.radians(15)
26
27
    x1_out, x2_out, x3_out, x4_out = [], [], []
28
    y1_out, y2_out, y3_out, y4_out = [], [], [],
29
    x_{out} = [x1_{out}, x2_{out}, x3_{out}, x4_{out}]
31
    y_out = [y1_out, y2_out, y3_out, y4_out]
32
33
    # Petla transformacji
34
    for proj in output_codes:
35
        for i in range(4):
36
            transformer = Transformer.from_crs(input_code, proj)
37
            y, x = transformer.transform(phis[i], lambdas[i])
38
            x_out[i].append(x)
39
            y_out[i].append(y)
40
            P2176 = 0
            P2180 = 0
            P32633 = 0
            P3035 = 0
            P3034 = 0
46
47
            areas_{epsg} = [P2176, P2180, P32633, P3035, P3034]
48
```

```
P2176_con = 0
49
             P2180_con = 0
50
             P32633_{con} = 0
51
             P3035_con = 0
52
             P3034_con = 0
53
             areas_con_epsg = [P2176_con, P2180_con, P32633_con, P3035_con,
54
      P3034_con]
55
             # Pętla pola powierzchni
56
             for u in range(5):
                 for i in range(4):
                     # kij
                     j = (i + 1) \% 4
                     k = (i - 1) \% 4
61
                     # Gauss
62
                     area = x_out[i][u] * (y_out[j][u] - y_out[k][u])
63
                     area_con = y_out[i][u] * (x_out[j][u] - x_out[k][u])
64
                     areas_epsg[u] += area
65
                     areas_con_epsg[u] += area_con
67
             areas_epsg = [round(abs(areas_epsg[i] / 2), 3) for i in range(5)]
68
             areas_con_epsg = [round(abs(areas_con_epsg[i] / 2), 3) for i in range
69
      (5)]
```

Kod źródłowy 3: Redukcje odległości i azymutów

```
# Parametry elipsoidy
    a = 6378137.0
    a2 = a ** 2
    e2 = 0.00669438002290
    b2 = a2 * (1 - e2)
    e22 = (a2 - b2) / b2
    # Współczynnik zniekształcenia
    m2000 = 0.999923
    m1992 = 0.9993
11
    # Promienie krzywizny
12
    def M_and_N(phi):
13
        sin_phi = np.sin(phi)
14
        M = a * (1 - e2) / (1 - e2 * sin_phi**2) **(3/2)
15
        N = a / np.sqrt(1 - e2 * sin_phi**2)
16
        return M, N
17
18
    lengths_elip2000 = []
19
    lengths_elip1992 = []
21
    azimuths_2000 = []
    azimuths_back_2000 = []
    azimuths_1992 = []
24
```

```
azimuths_back_1992 = []
26
    P_1_2000 = 0
27
    P_2_2000 = 0
28
    P_1_1992 = 0
29
    P_2_1992 = 0
30
    areas_table = [P_1_2000, P_2_2000, P_1_1992, P_2_1992]
31
32
    phis = np.deg2rad(phis)
33
    lambdas = np.deg2rad(lambdas)
    # Redukcje
    for i in range(4):
        # kij
38
        j = (i + 1) \% 4
39
        k = (i - 1) \% 4
41
        # Redukcja długości
42
        phi_m = (phis[i] + phis[j]) / 2
43
        M, N = M_and_N(phi_m)
44
        Rm = np.sqrt(M * N)
45
46
        # Długość odcinka na płaszczyźnie
        length_2000 = np.sqrt((x_out[i][0] - x_out[j][0])**2 +
      (y_out[i][0] - y_out[j][0])**2)
        length_1992 = np.sqrt((x_out[i][1] - x_out[j][1])**2 +
      (y_out[i][1] - y_out[j][1])**2)
51
52
        # Długość odcinka na płaszczyźnie Gaussa-Krugera
53
        length_gk2000 = length_2000 / m2000
54
        length_gk1992 = length_1992 / m1992
55
56
        # Redukcja długości
57
        r2000 = length_gk2000 /10000 * (y_out[i][0] ** 2 + y_out[i][0] *
58
      y_out[j][0] + y_out[j][0] ** 2) / (6 * Rm ** 2)
59
        r1992 = length_gk1992 /10000 * (y_out[i][1] ** 2 + y_out[i][1] *
      y_out[j][1] + y_out[j][1] ** 2) / (6 * Rm ** 2)
61
        # Długość odcinka na elipsoidzie
        length_elip2000 = length_gk2000 - r2000 / 100
        length_elip1992 = length_gk1992 - r1992 / 100
        lengths_elip2000.append(round(length_elip2000, 3))
        lengths_elip1992.append(round(length_elip1992, 3))
67
68
        # Redukcja azymutów
69
        d_lambda = lambdas[i] - lamb0
        t = np.tan(phis[0])
71
        eta2 = e22 * np.cos(phis[i]) ** 2
72
73
```

```
for u in range(2):
             # Kat kierunkowy
             delta_x = x_out[j][u] - x_out[i][u]
76
             delta_y = y_out[j][u] - y_out[i][u]
             alpha_ab = np.arctan2(delta_y, delta_x)
78
             delta_x = x_out[i][u] - x_out[j][u]
79
             delta_y = y_out[i][u] - y_out[j][u]
80
             alpha_ba = np.arctan2(delta_y, delta_x)
             # Zbieżność południków
             gamma_a = (d_lambda * np.sin(phis[i])) + ((d_lambda ** 3 / 3) *
           np.sin(phis[i]) * np.cos(phis[i]) ** 2 * (1 + 3 * eta2 + 2 * eta2 ** 2))
           + ((d_lambda ** 5 / 15) * np.sin(phis[i]) * np.cos(phis[i]) ** 4
           * (2 - t ** 2))
87
             gamma_b = (d_lambda * np.sin(phis[j])) + ((d_lambda ** 3 / 3) *
88
           np.sin(phis[j]) * np.cos(phis[j]) ** 2 * (1 + 3 * eta2 + 2 * eta2 ** 2))
89
           + ((d_lambda ** 5 / 15) * np.sin(phis[j]) * np.cos(phis[j]) ** 4
90
           * (2 - t ** 2))
91
92
             # Redukcja kierunków
93
             delta_ab = (x_out[j][u] - x_out[i][u]) *
           (2 * y_out[u][i] + y_out[u][j]) / (6 * Rm ** 2)
95
             delta_ba = (x_out[i][u] - x_out[j][u]) *
           (2 * y_out[u][j] + y_out[u][i]) / (6 * Rm ** 2)
             # Azymut odcinka
             A_ab = alpha_ab + gamma_a + delta_ab
100
             A_ba = alpha_ba + gamma_b + delta_ba
101
             A_ab = np.degrees(A_ab)
102
             A_ba = np.degrees(A_ba)
103
             if A_ab < 0:</pre>
104
               A_ab += 360
105
             if A ba < 0:
106
               A_ba += 360
107
108
             if u == 0:
109
110
                 azimuths_2000.append(A_ab)
                 azimuths_back_2000.append(A_ba)
             elif u == 1:
                 azimuths_1992.append(A_ab)
113
                 azimuths_back_1992.append(A_ba)
114
```

Spis tabel

1	Układy współrzędnych płaskich i ich kod EPSG	3
2	Współrzędne analizowanych punktów	3
3	Współrzędne punktów w układzie PL-2000	4
4	Współrzędne punktów w układzie PL-1992	4
5	Współrzędne punktów w układzie UTM	4
6	Współrzędne punktów w układzie LAEA	4
7	Współrzędne punktów w układzie LCC	4
8	Oczekiwane oscylacje w współrzędnych	5
9	Długości odcinków na elipsoidzie	5
10	Azymuty odcinków z ćwiczenia 3	5
11	Azymuty odcinków w układzie PL-2000	6
12	Azymuty odcinków w układzie PL-1992	6
13	Pole powierzchni w układach współrzędnych płaskich	6
Spis	kodów źródłowych	
1	Zamiany jednostek kątowych	8
2	Transformacje współrzędnych i pole powierzchni	9
3	Redukcje odległości i azymutów	10