Genotype likelihoods, allele frequencies, and SNP calling from NGS data

Tyler Linderoth
Physalia lcWGS course 2025

The library for an individual homozygous for the A allele will consist only of As.

The library for a heterozygous individual at a site contains both As and **G**s.

The library for an individual homozygous for the **G** allele will consist only of **G**s.

Depth ~ Poisson ($\lambda = 4$)

 $E[depth] = \lambda$

 $Var[depth] = \lambda$

Expect 4 reads, all with As at this ref position.

different alleles is just like flipping a coin.

A alleles \sim Binomial (nreads, p=0.5)

G G granded

Expect 2 A alleles and 2 G alleles

Depth \sim Poisson ($\lambda = 4$)

 $E[depth] = \lambda$

 $Var[depth] = \lambda$

Expect 4 reads, all with

A As at this ref position.

different alleles is just like flipping a coin.

E[A depth] = np = 0.5 n

Var[A depth] = np(1-p) = 0.25 n

Expect 2 A alleles and 2 G alleles

Sequence to average depth of 4x.

Depth \sim Poisson ($\lambda = 4$)

 $E[depth] = \lambda$

 $Var[depth] = \lambda$

Sequencing error.
Rates of ~0.1% for some Illumina platforms.

Sequencing (sampling) the two different alleles is just like flipping a coin.

A alleles \sim Binomial (n reads, p = 0.5)

Var[A depth] = np(1-p) = 0.25 n

SAMtools mpileup representation of sequencing data for two individuals

Example sequencing data for one individual at Chr1:472

Maternally and paternally inherited chromosome 1 of a diploid individual.

Example sequencing data for one individual at Chr1:472

Maternally and paternally inherited chromosome 1 of a diploid individual.

Example sequencing data for one individual at Chr1:472

Maternally and paternally inherited chromosome 1 of a diploid individual.

This individual could have any of the following 10 genotypes (we can only see the sequencing data):

AA, AC, AG, AT, CG, CC, CT, GG, GT, TT

How do we figure out which genotype they are most likely to have based on the observed sequence data?

Genotype likelihoods

$$P(\text{Data}|\text{Genotype}=bh) = L(\text{Genotype}\,bh) = \text{likelihood of genotype}\,bh$$

$$b\,,h \in \{\text{A}\,,\text{C}\,,\text{G}\,,\text{T}\}$$

Possible genotypes: AA, AC, AG, AT, CG, CC, CT, GG, GT, TT

Possible genotypes: AA, AC, AG, AT, CG, CC, CT, GG, GT, TT

Scaffold position read bases

(C allele)

AAG

472

base qualities DFG

P(observed *i*-th read | C allele)

true genotype P(observed *i*-th read | A allele)

P(Data|Genotype = AC) =X

Assumed true genotype

Probability of sampling maternal chromosome (A allele)

Probability of sampling paternal chromosome

(A allele)

Assumed true genotype

(C allele)

P(observed read A | A allele)

maternal chromosome

(A allele)

Assumed true genotype

Assuming equal probability of changing to any of the possible 3 erroneous bases.

paternal chromosome

(C allele)

P(observed read A | C allele)

P(Data|Genotype=AC)=
$$\frac{1}{2} \times 1 - \epsilon_1 + \frac{1}{2} \times \epsilon_1 \times \frac{1}{3}$$

Probability of sampling Probability of sampling

Scaffold position read bases base qualities Chr1 472 AAG DEG

$$P(Data|Genotype = AC) = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \times 1 - \epsilon_1 \end{bmatrix} \times \begin{bmatrix} \frac{1}{2} \\ \times 1 \end{bmatrix} \times \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \times 1 \end{bmatrix} \times \begin{bmatrix} \frac{1}{2} \\ \times$$

General genotype likelihood expression

 $b,h \in \{A,C,G,T\}$

P(Data | Genotype=
$$bh$$
)= $\prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right)$

$$(\mathbf{D}_{aba} \mid \mathbf{C}_{aba} = \mathbf{b}_{b}) - \mathbf{D}_{aba}$$

$$\mathbf{T} = \left(\mathbf{T} \left(\mathbf{i} \right) \right)$$

 $\begin{vmatrix} L_b^{(i)} = P(\text{observed read} = x_i | \text{assumed true allele} = b) \\ L_h^{(i)} = P(\text{observed read} = x_i | \text{assumed true allele} = h) \end{vmatrix} \begin{vmatrix} \frac{\epsilon_i}{3} & \text{if } b, h \neq x_i \\ 1 - \epsilon_i & \text{if } b, h = x_i \end{vmatrix}$

Representation of genotype likelihoods in ANGSD

Representation of genotype likelihoods in ANGSD

Instead of a single genotype, AG, we have a distribution over all possible genotypes:

Genotype	AA	AC	AG	AT	СС	CG	СТ	GG	GT	TT
Log ₁₀ likelihood	-2.49	-3.08	-0.91	-3.08	-7.43	-5.26	-7.43	-4.96	-5.26	-7.43

$$= 10^{\frac{-20}{10}} = 0.01$$

Representation of genotype likelihoods in ANGSD

Instead of a single genotype, AG, we have a distribution over all possible genotypes:

Genotype	AA	AC	AG	AT	СС	CG	СТ	GG	GT	ТТ
Log ₁₀ likelihood	-2.49	-3.08	-0.91	-3.08	-7.43	-5.26	-7.43	-4.96	-5.26	-7.43

Maximum likelihood estimate of the genotype

$$= 10^{\frac{-20}{10}} = 0.01$$

Exercise. Calculate genotype likelihoods with ANGSD.

Estimating allele frequencies

When genotypes are known, allele frequencies can be calculated by simply counting alleles.

	Ind1	Ind2	Ind3	Ind4	Ind5	Ind6	Ind7	Ind8	Ind9	Ind10
Site 1	0	0	1	0	0	0	1	1	0	0
Site 2	0	2	0	0	1	0	0	0	1	0

frequency (MAF) 0.3

Minor

allele

Genotype notation

- 0 = zero minor alleles
- 1 = one minor alleles
- 2 = two minor alleles

Estimating allele frequencies

When genotypes are known, allele frequencies can be calculated by simply counting alleles.

. ,	Ind1	Ind2	Ind3	Ind4	Ind5	Ind6	Ind7	Ind8	Ind9	Ind10		equency (MAF)
Site 1	0	0	1	0	0	0	1	1	0	0	=	0.3
Site 2	0	2	0	0	1	0	0	0	1	0	=	0.4

Minor

allele

But how do you estimate allele frequencies when you have a distribution of genotype likelihoods?

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

$$D_i = \text{ sequencing data for individual } i$$

$$f = \text{ population minor allele frequency}$$

$$\frac{\text{Genotype notation}}{0 = \text{zero minor alleles}}$$

$$1 = \text{one minor alleles}$$

$$2 = \text{two minor alleles}$$

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

This the likelihood of genotype *g* for individual *i* calculated as shown previously.

$$D_i = \text{ sequencing data for individual } i$$

$$f = \text{ population minor allele frequency}$$

$$\frac{\text{Genotype notation}}{0 = \text{zero minor alleles}}$$

$$1 = \text{ one minor alleles}$$

$$2 = \text{ two minor alleles}$$

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

This the likelihood of genotype *g* for individual *i* calculated as shown previously.

Hardy-Weinberg frequency of genotypes.

$$D_i$$
= sequencing data for individual i
 f = population minor allele frequency

Genotype notation

Genotype frequencies under Hardy-Weinberg Equilibrium (HWE)

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

An "infinitely" large population of sexually reproducing diploid organisms segregating for alleles A and a, and for which

- Mating is random.
- Generations are nonoverlapping.
- Allele frequencies are the same in males and females.
- No migration, mutation, or selection.

Genotype frequencies under Hardy-Weinberg Equilibrium (HWE)

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

Offspring are formed through independent draws of gametes from this population, expressed as (f. + f.)², which expanded yield

expressed as $(f_A + f_a)^2$, which expanded yields: $f_{AA} = f_A^2 = (1 - f_a)^2 = P(Genotype = AA|f_a)$ $f_{Aa} = 2f_A f_a = 2(1 - f_a)f_a = P(Genotype = 1|f_a)$ $f_{aa} = f_a^2 = P(Genotype = 2|f_a)$

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

Summing over the possible genotypes accounts for genotyping uncertainty.

Marginal probabilities are used to account for uncertainty in various quantities associated with low coverage sequencing. In general, for random variables X and Y

$$P(X=x) = \sum_{y} P(X=x|Y=y) P(Y=y)$$

Maximum likelihood estimation of allele frequencies

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

The value of f that maximizes the likelihood function above yields a maximum likelihood estimate of f:

$$\hat{f} = \operatorname{argmax}_{f} P(Data|f)$$

Using the ML allele frequency estimate to identify polymorphic sites

$$P(\text{Data}|f) = \prod_{i=1}^{n} \sum_{g \in \{0,1,2\}} P(D_i|\text{Genotype}_i = g) P(\text{Genotype}_i = g|f)$$

$$\hat{f} = \operatorname{argmax}_{f} P(Data|f)$$

Probability of the sequencing data when f = 0, i.e., the site is monomorphic (null case).

$$\lambda = -2\ln\left(\frac{P(\text{Data}|f_0)}{P(\text{Data}|\hat{f})}\right) = -2[\ln(P(\text{Data}|f_0)) - \ln(P(\text{Data}|\hat{f}))]$$

$$\lambda \sim \chi^2(1 \, \text{degree of freedom})$$
 — Call SNPs at a given level of statistical confidence.

Exercise. Estimate allele frequencies with ANGSD.

Can we use other information from our data to further increase our genotyping accuracy?

6	,	DEGEGG	9	/ · / / · / / · /	DABGIIIII	5	,,.,.	>AB/A	6	.,,	FGC 🗀	
6	,	DEGEGG	9	, . , , . , , . ,	DABGIIIII	5	,,.,.	>ABDA	6	.,,	3GGDGD	
6	,	DEGEGG	9	, . , , . , , . ,	DABGIIIII	5	,,.,.	>ABDA	6	.,,	3GGBGB	
6	,	DEGEGG	10	,.,,.,,^].	DABGIIIIE	5	,,.,.	>AB/A	6	.,,	3GGBGB	
6	,	DEGEGG	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>AB/A	6	.,,	3GGBGB	
6	,	DEGEGG	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABDA	6	.,,	BGGBGB	
6	,	DEGEGG	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABDA	6	C,,	5G/BGB]
7	,^].	DEGEGGE	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABDA	6	.,,	5GIBGB	
7	, .	DEGEGGG	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABDA	6	.,,	5GIBGB	
8	,.^],	DEGEGGGB	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABDA	6	.,,	5GIBGB	
8	, . ,	DEGEGGGB	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>AB/A	6	.,,	DGIBGB	
8	, . ,	DEGEGGGB	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>ABAA	6	.,,	DGIBGB	
8	,	DEGEGGGB	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>/BAA	6	.,,	DGIBGB	
9	,.,^],	DEGEGGGBE	10	, . , , . , , . , .	DABGIIIII	5	,,.,.	>BBAA	6	.,,	DGIBGB	
9	.GgG,,	DEGEGGGBG	10	, . , , . , , . , .	D3BGIIIII	5	,,.,C	>BBAA	6	.,,	DGIBGB	
9		DEGEGGGBG	10		D3BGIIIII	5		>BBAA	6		/GIBGB	

Wouldn't it be awesome if you knew what the frequency of C was in the population.

Bayesian Inference

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\sum_{\theta} P(X|\theta)P(\theta)}$$

X = Data $\theta = Parameter$

Distribution plots from Bink 2008

Using Bayes' Theorem, the posterior probability of genotype g is

$$P(Genotype=g|Data) = \frac{P(Data|Genotype=g)P(Genotype=g)}{\sum_{g \in \{0,1,2\}} P(Data|Genotype=g)P(Genotype=g)}$$

Using Bayes' Theorem, the posterior probability of genotype g is

$$P(Genotype = g|Data) = \frac{P(Data|Genotype = g)P(Genotype = g)}{\sum_{g \in \{0,1,2\}} P(Data|Genotype = g)P(Genotype = g)}$$

Using Bayes' Theorem, the posterior probability of genotype q is

Likelihood of genotype *q* calculated as shown previously.

Given an estimate of the population minor allele frequency, f, under HWE

$$P(Genotype=0|f)=(1-f)^2$$

$$P(Genotype=1|f)=2f(1-f)$$

$$P(Genotype=2|f)=f^2$$

 $\frac{P(\text{Data}|\text{Genotype}=g)P(\text{Genotype}=g)}{\sum P(\text{Data}|\text{Genotype}=g)P(\text{Genotype}=g)}$ P(Genotype = g|Data) = $q \in \{0,1,2\}$

Using Bayes' Theorem, the posterior probability of genotype g is

Likelihood of genotype *g* calculated as shown previously.

Note: factors like inbreeding can easily be incorporated into the genotype posterior probabilities by conditioning on the allele frequency and inbreeding coefficient.

$$P(Genotype=g|Data) = \frac{P(Data|Genotype=g)P(Genotype=g)}{\sum_{g \in \{0,1,2\}} P(Data|Genotype=g)P(Genotype=g)}$$

Example genotype posterior probability distribution

Assume we estimate f(A) = 0.7, f(G) = 0.3

Genotype	pe Log ₁₀ Prior		Posterior probability		
AA	-2.49	$P(Genotype = AA) = 0.7^2 = 0.49$	0.03		
AG	-0.91	$P(Genotype = AG) = 2 \times 0.7 \times 0.3 = 0.42$	0.97		
GG	-4.96	$P(Genotype = GG) = 0.3^2 = 0.09$	0.00		

Example genotype posterior probability distribution

Assume we estimate f(A) = 0.7, f(G) = 0.3

We could call most probable genotype, AG, and have an associated degree of confidence (prob = 0.97).

Genotype	Log ₁₀ likelihood	Prior	Posterior probability		
AA	-2.49	$P(Genotype = AA) = 0.7^2 = 0.49$	0.03		
AG	-0.91	$P(Genotype = AG) = 2 \times 0.7 \times 0.3 = 0.42$	0.97		
GG	-4.96	$P(Genotype = GG) = 0.3^2 = 0.09$	0.00		

Exercise. Calculate genotype posterior probabilities and call genotypes with ANGSD.