Blatt Nr. 02/1 Name: Bauer, Aaron

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,102 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/2 Name: Baumbach, Jonas

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,103 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/3 Name: Becher, Nicolas

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,104 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/4 Name: Beck, Jannis

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,105 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/5 Name: Bös, Cedric

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,106 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/6 Name: Büttner, Nico

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,107 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/7 Name: Chen, Jiuli

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,108 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/8 Name: Deibl, Nino

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,109 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/9 Name: Deißenberger, Fabian

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,110 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/10 Name: Englert, Lisa

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,111 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/11 Name: Gottschalk, Paul

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,112 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/12 Name: Grimmer, Lukas

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,113 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/13 Name: Hammerl, Jonas

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,114 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/14 Name: Hoffmann, Erik

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,115 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/15 Name: Hollemann, Stephan

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,116 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/16 Name: Hoxha, Lyra

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,117 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/17 Name: Jansen, Theodor

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,118 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/18 Name: Karunaikumar, Pooshwikaa

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,119 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/19 Name: Kauppert, Florian

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,120 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/20 Name: Klupp, Björn

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,121 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/21 Name: Köberlein, Kai

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,122 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/22 Name: Kropfgans, Hans

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,123 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/23 Name: Lagerbauer, Daniel

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,124 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/24 Name: Marbaise, Sonja

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,125 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/25 Name: Mass, Agnessa

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,126 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/26 Name: Mehler, Iannis

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,127 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/27 Name: Meurer, Nils

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,128 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/28 Name: Miksch, Daniel

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,129 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/29 Name: Munne, Sophia

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,130 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/30 Name: Öffner, Raphael

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,131 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/31 Name: Pastuschka, Tim

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,132 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/32 Name: Patzwald, Lara

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,133 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/33 Name: Penny, Sean

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,134 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/34 Name: Rech, Victor

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,135 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/35 Name: Reuß, Erik

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,136 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/36 Name: Rieger, Daniel

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,137 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/37 Name: Römer, Jakob

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,138 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/38 Name: Röpke, Ludwig

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,139 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/39 Name: Schäberle, Joanna

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,140 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/40 Name: Schlagenhauf, Larissa

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,141 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/41 Name: Schneidereit, Noah

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,142 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/42 Name: Schomburg, Daniel

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,143 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/43 Name: Seelmann, Josef

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,144 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/44 Name: Spitzner, Joshua

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,145 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/45 Name: Stolz, Eduard

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,146 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/46 Name: Suppes, Maxim

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,147 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/47 Name: Tan, Jun Wei

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,148 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/48 Name: Uder, Anne

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,149 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/49 Name: Volpert, Moritz

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,150 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/50 Name: Wagner, Jonas

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,151 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/51 Name: Waldmann, Richard

$\chi^\text{2}\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,152 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/52 Name: Wolf, Erik

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,153 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/53 Name: Ziegler, Julius

χ^2 -Test

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,154 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?

Blatt Nr. 02/54 Name: Ziegler, Moritz

$\chi^2\text{-Test}$

1. Test auf Poissonverteilung

Es wird die Messung aus Aufgabe 1 des ersten Übungsblattes wiederholt. Diesmal erhalten wir folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	40	85	92	62	25	19	7	4	2

Es soll nun die Annahme geprüft werden, dass die Messwerte keine Stichprobe aus einer poissonverteilten Grundgesamtheit mit dem Mittelwert μ = 2,155 sind.

- a.) Formulieren Sie zunächst die zu prüfende Nullhypothese!
- b.) Führen Sie nun den Test durch, achten Sie dabei auf eine korrekte Zusammenfassung der Klassen und geben Sie den sich dabei ergebenden Wert für χ^2 an! Achten Sie dabei insbesondere auf die Nachvollziehbarkeit Ihrer Arbeitsschritte.
- c.) Wie viele Freiheitsgrade ergeben sich für Ihren Test?
- d.) Ist Ihre Nullhypothese auf einem Irrtumsniveau von 5 % haltbar?
- e.) Welche Aussagen können Sie somit bezüglich der Ihrer Messung zu Grunde liegenden Verteilung tätigen?