HAUSAUFGABENBLATT 1 MATHEMATISCHE METHODEN

Dr. Michael Czerner

Abgabetermin 25.10.2021

Aufgabe 1: Ableitungen

Berechnen Sie die folgenden Ableitungen:

a) $\frac{\mathrm{d}}{\mathrm{d}x}\sin(kx^2)$

e) $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x)$

b) $\frac{\mathrm{d}}{\mathrm{d}x}x\sin(x)$

f) $\frac{\mathrm{d}}{\mathrm{d}x}a\ln(b\cosh(cx))$

c) $\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^{-x^2}$

g) $\frac{\mathrm{d}}{\mathrm{d}x}x^{x^x}$

d) $\frac{\mathrm{d}}{\mathrm{d}x}\cosh(x)$

 $-e^{-x}$ $\sinh(x)$

Hinweise: $\cosh(x) = \frac{e^x + e^{-x}}{2}$, $\sinh(x) = \frac{e^x - e^{-x}}{2}$, $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$

Aufgabe 2: Integrale

Berechnen Sie die folgenden bestimmten und unbestimmten Integrale:

a) $\int_{a}^{b} x^{2} e^{cx} dx$

e) $\int_{1}^{2} \frac{1}{x} dx$

b) $\int_0^{\pi} \sin(x) \cos(x) dx$ (Hinweis: Partielle Integration)

 $f) \int e^{3k-1} \, \mathrm{d}k$

(Hinweis: Partielle Integra

g) $\int_{-1}^{1} \sqrt{1 - x^2} \, dx$ (Hinweis: Substituiere $x = \sin(y)$)

c) $\int \left(\frac{3}{2}t^2 + 4t\right) dt$
d) $\int_{-5}^{5} \sqrt[3]{u^7} du$

h) $\int_{a}^{b} \frac{1}{1+x^{2}} dx$ (Hinweis: Substituiere $x = \tan(y)$)

Aufgabe 3: Methoden zur Integration

Berechnen Sie die folgenden Integrale mit geeigneten Methoden:

a)
$$\int_{-1}^{4} \sqrt{2x+3} \, dx$$

$$d) \int \frac{1}{x^2 - 9} \, dx$$

b)
$$\int_{1}^{2} x \ln(x) \, \mathrm{d}x$$

e)
$$\int \sin(x)^5 \cos(x) \, \mathrm{d}x$$

c)
$$\int_0^x \frac{e^t}{5 + 2e^t} dt$$

f)
$$\int_{-2}^{2} \frac{x^3}{\sqrt{16-x^2}} dx$$

Aufgabe 4: Uneigentliche Integrale

Berechnen Sie die folgenden uneigentlichen Integrale:

a)
$$\int_0^\infty x e^{-x^2} dx$$

b)
$$\int_{1}^{\infty} x^{a} dx \text{ mit } a < -1$$

Aufgabe 5: Grenzwerte

Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x \to 0} \frac{\sin(2x)}{x}$$

b)
$$\lim_{x \to \infty} \frac{6x^2 + 4}{3x^2 + 2x + 5}$$

c)
$$\lim_{x \to \infty} \frac{x^2}{x+1}$$

d)
$$\lim_{x \to \infty} \frac{e^{-x}}{x^3}$$