Lagrange Multipliers

Theorem 1. Let g be a continuously differentiable function from $\mathbb{R}^2 \to \mathbb{R}$, and let S be the zero set of g. Suppose \mathbf{p} is a point of S where $\nabla g(\mathbf{p}) \neq \mathbf{0}$. Then there is a rectangle Q centered at \mathbf{p} and a differentiable curve $\varphi \colon \mathbb{R} \to \mathbb{R}^2$ with $\varphi(0) = \mathbf{p}$ and $\varphi'(0) \neq \mathbf{0}$ such that S and the image of φ agree inside Q. That is, a point of Q lies on the zero set S of g if and only if it lies on the image of the curve φ .

Theorem 2. Let f and g be continuously differentiable functions on \mathbb{R}^2 . Suppose that f attains its maximum or minimum value on the zero set S of g at the point \mathbf{p} , and that $\nabla g(\mathbf{p}) \neq \mathbf{0}$. Then there is a number λ such that

$$\nabla f(\mathbf{p}) = \lambda \nabla g(\mathbf{p}).$$

The number λ is called a Lagrange multiplier.

This theorem provides a recipe for locating the points $\mathbf{p} = (x, y)$ at which f attains its maximum and minimum values (if any) on the zero set of g (provided they are attained at points where the gradient vector $\nabla g \neq \mathbf{0}$). The vector equation gives two scalar equations in the unknowns x, y, λ , while g(x, y) = 0 is a third equation. In principle these three equations can be solved for x, y, λ . Each solution (x, y, λ) gives a candidate (x, y) for an extreme point. We can finally compare the values of f at these candidate points to ascertain where its maximum and minimum values on S are attained.

- 1 Lagrange Multipliers for z = f(x, y)
- **2** Lagrange Multipliers for w = f(x, y, z)
- 3 More Examples

Example 1. Find the point(s) on the cone $z^2 - x^2 - y^2 = 0$ that are closest to the point (1,3,1).

Example 2.
$$f(x,y) = x^2 + xy + y^2$$
 subject to $x^2 + y^2 = 8$
 $2x + y = \lambda 2x$
 $x + 2y = \lambda 2y$
 $\lambda \neq 0$.
 $2y(2x + y) = 2x(x + 2y)$
 $y(2x + y) = x(x + 2y)$

$$2xy + y^2 = x^2 + 2xy$$

 $x^2 = y^2$
 $x = \pm y$
If $x = -y$, get $2x^2 = 8$, so $x = 2$ or $x = -2$
If $x = y$, get $(2, 2)$ or $(-2, -2)$