Lane-Emden equations with Hardy potential and measure data

Mousomi Bhakta
Department of Mathematics
IISER-Pune

IISc–IISER-Pune Math Symposium September 18, 2021

We consider the Lane-Emden equations with Hardy potential

$$-L_{\mu}u=u^{p}\quad\text{in }\Omega,\tag{E}$$

and the Lane-Emden systems of the form

$$\begin{cases}
-L_{\mu}u = v^{p} & \text{in } \Omega, \\
-L_{\mu}v = u^{q} & \text{in } \Omega,
\end{cases}$$
(S)

where

$$L_{\mu} := \Delta + \frac{\mu}{\delta^2}, \quad \delta(x) := \mathsf{dist}(x, \partial\Omega)$$

 $0 < \mu < C_H(\Omega)$, $1 and <math>\Omega$ be a C^2 bounded domain in \mathbb{R}^N (N > 3).

 $C_H(\Omega)$ is the best constant in the Hardy inequality

$$C_H(\Omega)\int_{\Omega} \frac{\varphi^2}{\delta^2} dx \leq \int_{\Omega} |\nabla \varphi|^2 dx \quad \forall \varphi \in H_0^1(\Omega).$$

where Ω is any bounded domain with Lipschitz boundary.

- $C_H(\Omega) \in (0, \frac{1}{4}]$
- if Ω is convex then $C_H(\Omega) = \frac{1}{4}$.
- $C_H(\Omega)$ is achieved if and only if $C_H(\Omega) < \frac{1}{4}$.

Marcus-Mizel-Pinchover, Trans. AMS'1998

Brezis-Marcus, Ann. Sc. Norm. Super. Pisa'1997 proved that for every $\mu < \frac{1}{4}, \ \exists ! \ \lambda_{\mu,1} \ \text{s.t.}$

$$\mu = \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} (|\nabla u|^2 - \lambda_{\mu,1} u^2) dx}{\int_{\Omega} \frac{u^2}{\delta^2} dx}$$

and the infimum is achieved i.e., $\lambda_{\mu,1}$ is an eigenvalue of $-L_{\mu}$. They also proved that $\lambda_{\mu,1}$ is simple, the corresponding eigenfunction $\varphi_{\mu,1}$ is positive and $\lambda_{\mu,1}>0$ when $\mu< C_H(\Omega)$. Further, by Marcus-Shafrir, Ann. Sc. Norm. Super. Pisa'2000

$$\varphi_{\mu,1} \sim \delta^{\alpha}$$
,

where

$$\alpha := \frac{1 + \sqrt{1 - 4\mu}}{2}.$$

i.,e.,
$$\frac{1}{2} < \alpha < 1$$
.

When $\mu=0$, equation (E) with measure boundary data were studied by Bidaut-Véron and Vivier'2000, Bidaut-Véron and Yarur'2002 in which various existence results and apriori estimates were established based on delicate estimate of Green kernel and Poisson kernel of $-\Delta$ in Ω .

BVP with L_{μ} operator and absorption nonlinearity with measure data

$$-L_{\mu} + u^{p} = 0$$
 in Ω , $u = \nu$ on $\partial \Omega$

has been introduced in Marcus-Nguyen, AIHP Non Linéaire'2017, Math. Ann'2019.

For $\mu \in (0, C_H(\Omega))$, BVP for (E) (i.e., with source nonlinearity) with measure data has been studied in Nguyen, CVPDE'2017.

The condition $\mu \in (0, C_H(\Omega))$ is imposed as Martin kernel K_μ of L_μ in Ω exists in this range.

$$K_{\mu}(x,y) := \lim_{\Omega \ni z \to y} \frac{G_{\mu}(x,z)}{G_{\mu}(x_0,z)}, \quad \forall x \in \Omega, \ y \in \partial\Omega,$$

where $x_0 \in \Omega$ is a fixed reference point and G_μ is Green kernel of L_μ

Moreover, the following two-sided estimate holds

$$K_{\mu}(x,y) \sim \delta(x)^{\alpha} |x-y|^{-(N+2\alpha-2)} \quad \forall x \in \Omega, y \in \partial\Omega.$$

Theorem (Ancona, Ann. Math'1987)

Representation theorem. For every positive bounded Borel measure ν , the function

$$\mathbb{K}_{\mu}[\nu](x) := \int_{\partial\Omega} K_{\mu}(x,y) d\nu(y) \quad \forall \, x \in \Omega$$

is L_{μ} -harmonic, i.e., $L_{\mu}(\mathbb{K}_{\mu}[\nu]) = 0$ and conversely, \forall positive L_{μ} harmonic function u, $\exists !$ bounded Borel measure ν s.t. $u = \mathbb{K}_{\mu}[\nu]$.

The measure ν s.t. $u = \mathbb{K}_{\mu}[\nu]$ is called the L_{μ} boundary measure of u.

• If $\mu = 0$, then this ν is equivalent to the classical measure boundary trace of u.

Definition (Measure boundary trace)

Let $u \in W^{1,p}_{loc}(\Omega)$ for some p > 1. We say that u possesses an M-boundary trace on Ω if there exists $\nu \in \mathfrak{M}(\partial\Omega)$ s.t. for every uniform C^2 exhaustion D_n and every $h \in C(\bar{\Omega})$

$$\int_{\partial D_n} u \lfloor \partial D_n h dS \to \int_{\partial \Omega} h d\nu.$$

Here $u \mid \partial D_n$ the Sobolev trace.

- If $0 < \mu < C_H(\Omega)$, $\forall \nu \in \mathfrak{M}_+(\partial \Omega)$, measure boundary trace of $\mathbb{K}_{\mu}[\nu]$ is 0.
- \leadsto the classical notion of boundary trace no longer plays an important role in describing the boundary behavior of L_{μ} -harmonic function or solutions of (E).
- ightharpoonup We need to introduce the notion of L_{μ} boundary trace which is defined as follows

Let D_n be a uniformly Lipschitz exhaustion of Ω with $x_0 \in D_n$ for all large n and $P_\mu^{D_n}$ and $\omega_\mu^{x_0,D_n}$ denote the Poisson kernel of L_μ and the harmonic measure of L_μ in D_n (relative to the fixed reference point x_0) respectively, i.e.,

$$d\omega_{\mu}^{\mathsf{x}_0,D_n} = P_{\mu}^{D_n}(\mathsf{x}_0,\cdot)dS$$
 on ∂D_n .

Definition (L_{μ} boundary trace)

A non-negative Borel function u defined in Ω has an L_{μ} boundary trace $\nu \in \mathfrak{M}(\partial \Omega)$ if

$$u \lfloor \partial D_n d\omega_\mu^{x_0,D_n} \rightharpoonup \nu$$

i.e.,

$$\lim_{n\to\infty}\int_{\partial D_n} uhd\omega_{\mu}^{\mathsf{x}_0,D_n} = \int_{\partial \Omega} hd\nu \quad \forall \ h\in C(\bar{\Omega})$$

for all uniformly Lipschitz exhaustion D_n of Ω .

Lemma (Marcus, PAFA'2020)

If D_n is a uniformly Lipschitz exhaustion of Ω then for every positive L_μ harmonic function $u = \mathbb{K}_\mu[\nu]$,

$$u \lfloor \partial D_n d\omega_{\mu}^{x_0,D_n} \rightharpoonup \nu,$$

i.e., L_{μ} boundary trace of $\mathbb{K}_{\mu}[\nu]$ is ν .

For every positive Radon measure τ in Ω , define

$$\mathbb{G}_{\mu}[\tau](x) := \int_{\Omega} G_{\mu}(x,y) d\tau(y).$$

- L_{μ} boundary trace of $(\mathbb{G}_{\mu}[\tau]) = 0$.
- Let u be a positive L_{μ} -superharmonic function. Then there exist $\nu \in \mathfrak{M}_{+}(\partial\Omega)$ and $\tau \in \mathfrak{M}_{+}(\Omega,\delta^{\alpha})$ s.t.

$$u = \mathbb{G}_{\mu}[\tau] + \mathbb{K}_{\mu}[\nu].$$

Another equivalent definition of trace:

A nonnegative function $u \in W^{1,p}_{loc}(\Omega)$ is said to have a normalized boundary trace $\nu \in \mathfrak{M}_+(\partial\Omega)$ if

$$\lim_{\beta \to 0} \beta^{\alpha - 1} \int_{\Sigma_{\alpha}} |u(x) - \mathbb{K}_{\mu}[\nu](x)| dS(x) = 0,$$

where $\Sigma_{\beta} := \{x \in \Omega : \delta(x) = \beta\}.$

We denote normalized boundary trace as tr*.

Now consider the BVP of the form

$$\begin{cases}
-L_{\mu}u = u^{p} & \text{in } \Omega, \\
\operatorname{tr}^{*}(u) = \rho\nu & \text{on } \partial\Omega,
\end{cases}$$

$$(P_{\rho})$$

where ρ is a positive parameter and $\nu \in \mathfrak{M}_{+}(\partial\Omega)$ with norm 1.

Definition (Weak solution of (P_{ρ}))

- (i) A function u is called a weak solution of (E) if $u^p \in L^1_{loc}(\Omega)$ and (E) is satisfied in the sense of distributions in Ω .
- (ii) A function u is called a weak solution of (P_{ρ}) if u is a weak solution of (E) and has boundary trace $\rho\nu$.

Theorem (Nguyen, CVPDE'2017)

The following statements are equivalent:

- (i) u is a positive weak solution of (P_{ρ}) .
- (ii) $u^p \in L^1(\Omega, \delta^{\alpha})$ and $u = \mathbb{G}_{\mu}[u^p] + \mathbb{K}_{\mu}[\rho \nu]$.
- (iii) $u \in L^1(\Omega, \delta^{\alpha-1})$, $u^p \in L^1(\Omega, \delta^{\alpha})$ and

$$-\int_{\Omega}uL_{\mu}\phi dx=\int_{\Omega}u^{p}\phi dx-\int_{\Omega}\mathbb{K}_{\mu}[\rho\nu]L_{\mu}\phi dx\quad\forall\,\phi\in X(\Omega),$$

where
$$X(\Omega) := \{ \psi \in C^2(\Omega) : \delta^{1-\alpha} L_{\mu} \psi \in L^{\infty}(\Omega), \ \delta^{-\alpha} \psi \in L^{\infty}(\Omega) \}.$$

$$N_{\mu} := \frac{N + \alpha}{N + \alpha - 2}.$$

Theorem (Nguyen, CVPDE'2017)

Let $\rho > 0$, p > 1 and $\nu \in \mathfrak{M}^+(\partial \Omega)$ with $\|\nu\|_{\mathfrak{M}(\partial \Omega)} = 1$.

- *I. Subcritical case:* $p \in (1, N_{\mu})$. There exists $\rho^* \in (0, \infty)$ s.t.
 - (i) If $\rho \in (0, \rho^*]$ then problem (P_ρ) admits a minimal positive weak solution $\underline{u}_{\rho\nu}$. Moreover,

$$C^{-1}\rho\mathbb{K}_{\mu}[\nu] \leq \underline{u}_{\rho\nu} \leq C\rho\mathbb{K}_{\mu}[\nu]$$
 a.e. in Ω ,

where C > 0 (independent of ρ). If, in addition, $\{\rho_n\}_{n \geq 1}$ be such that $0 < \rho_n \uparrow \rho^*$ then

$$\underline{u}_{\rho_n\nu}\uparrow\underline{u}_{\rho^*\nu}$$
 in $L^1(\Omega;\delta^{\alpha-1})$ and $L^p(\Omega;\delta^{\alpha})$.

- (ii) If $\rho > \rho^*$ then (P_{ρ}) does not admit any positive solution.
- II. Supercritical case: $p \geq N_{\mu}$. For every $\rho > 0$ and $z \in \partial \Omega$, there is no positive weak solution of (P_{ρ}) with $\nu = \delta_z$, where δ_z is the Dirac mass concentrated at $z \in \partial \Omega$.

Multiplicity result for (P_{ρ})

Theorem (B.,-Mukherjee-Nguyen '2021)

Assume N > 3, $p \in (1, N_{\mu})$ and $\nu \in \mathfrak{M}^{+}(\partial \Omega)$ such that $\|\nu\|_{\mathfrak{M}(\partial \Omega)} = 1$. Let $\rho^{*} > 0$ be the threshold value as in previous theorem. Then

- (i) for any $\rho \in (0, \rho^*)$, problem (P_ρ) admits a second positive weak solutions u such that $u > \underline{u}_{\rho\nu}$, where $\underline{u}_{\rho\nu}$ is the minimal solution of (P_ρ) , constructed in previous theorem.
- (ii) (P_{ρ}) admits a unique positive solution when $\rho = \rho^*$.

In order to construct the 2nd solution, we first consider an auxiliary problem

$$\begin{cases}
-L_{\mu}u = (\underline{u}_{\rho\nu} + u^{+})^{p} - \underline{u}_{\rho\nu}^{p} & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

$$(\widetilde{P}_{\rho})$$

and we construct a positive variational solution v_{ρ} of (\widetilde{P}_{ρ}) using mountain pass theorem when $\rho \in (0, \rho^*)$.

Definition

An element $u \in H^1_0(\Omega)$ is said to be a variational solution of (\widetilde{P}_{ρ}) if

$$\int_{\Omega} \nabla u \cdot \nabla \phi dx - \mu \int_{\Omega} \frac{u\phi}{\delta^2} dx = \int_{\Omega} \left[(u^+ + \underline{u}_{\rho\nu})^p - \underline{u}_{\rho\nu}^p \right] \phi dx \quad \forall \phi \in H_0^1(\Omega).$$

Then we prove that v_{ρ} is a weak solution of

$$\begin{cases} -L_{\mu}v = (\underline{u}_{\rho\nu} + v)^{p} - \underline{u}_{\rho\nu}^{p} & \text{in } \Omega, \\ \operatorname{tr}^{*}(v) = 0 & \text{in } \partial\Omega. \end{cases}$$

Put $u = v_{\rho} + \underline{u}_{\rho\nu}$ $\rightarrow u$ is a weak solution of (P_{ρ}) . Next, we consider the system of the form

$$\begin{cases}
-\Delta u - \frac{\mu}{\delta^2} u = v^p & \text{in } \Omega, \\
-\Delta v - \frac{\mu}{\delta^2} v = u^q & \text{in } \Omega, \\
u = \rho \nu, v = \sigma \tau & \text{on } \partial \Omega,
\end{cases}$$

$$(S_{\rho,\sigma})$$

where ρ,σ are positive parameters, ν,τ are Borel measures on $\partial\Omega$ with $\|\mu\|=1=\|\nu\|$, $0< p\leq q< N_{\mu},\ pq\neq 1.$

Theorem (Gkikas-Nguyen, JDE'2019)

Assume, $\mathbb{K}_{\mu}[\tau + \nu] \in L^q(\Omega, \delta^{\alpha})$. Then system $(S_{\rho,\sigma})$ has a weak solution $(\underline{u}_{\rho\nu}, \underline{v}_{\sigma\tau})$ for any ρ , σ small enough if pq > 1 and for any $\rho > 0$, $\sigma > 0$ if pq < 1.

Moreover, $(\underline{u}_{\rho\nu}, \underline{v}_{\sigma\tau})$ is the minimal positive weak solution of $(S_{\rho,\sigma})$ in the sense that if (\tilde{u}, \tilde{v}) is another weak solution of $(S_{\rho,\sigma})$ such that $\tilde{u}, \tilde{v} > 0$, then $\tilde{u} \geq \underline{u}_{\rho\nu}$ and $\tilde{v} \geq \underline{v}_{\sigma\tau}$ a.e. in Ω .

Multiplicity for system $(S_{\rho,\sigma})$

Theorem (B.,-Mukherjee-Nguyen'2021)

Assume $N \geq 3$, ρ , $\sigma > 0$ and 1 . If <math>N = 3, we assume in addition that $q < \frac{4p}{p+1}$. Let $0 \leq \nu$, $\tau \in L^r(\partial\Omega)$, for some $r > \frac{N-1}{1-\alpha}$, with $\|\nu\|_{L^r(\partial\Omega)} = \|\tau\|_{L^r(\partial\Omega)} = 1$. There exists $t^* > 0$ such that if $\max\{\rho,\sigma\} < t^*$ then system $(S_{\rho,\sigma})$ admits a second solution (u,v) such that

$$u > \underline{u}_{\rho\nu}$$
 and $v > \underline{v}_{\sigma\tau}$ in Ω ,

where $(\underline{u}_{\rho\nu},\underline{v}_{\sigma\tau})$ is the minimal solution of $(S_{\rho,\sigma})$, constructed as in previous theorem.

Open questions

- Can we relax ν , $\tau \in L^r(\partial\Omega)$ in the above multiplicity proof for system $(S_{\rho,\sigma})$?
- Instead does the above multiplicity result for system $(S_{\rho,\sigma})$ hold for $\tau, \nu \in \mathfrak{M}^+(\partial\Omega)$ with $\mathbb{K}_{\mu}[\tau + \nu] \in L^q(\Omega, \delta^{\alpha})$?

Thank you