Single-Parameter Models (Contd.)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 11, 2018

Recap

- A probabilistic model consists of the observations ${\bf y}$ and one or more unknowns θ
- Assuming the unknowns as <u>random variables</u>, can define a joint distribution $p(y, \theta)$ over y and θ
- Apply the conditioning formula (Bayes rule) to infer the posterior distribution over the unknowns

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}, \theta)}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}} \propto \mathsf{Likelihood} \times \mathsf{Prior}$$

where marginal likelihood $p(\mathbf{y}) = \int p(\mathbf{y}|\theta)p(\theta)d\theta = \mathbb{E}_{p(\theta)}[p(\mathbf{y}|\theta)]$ (also called "model evidence")

ullet The posterior predictive distribution for new data $oldsymbol{y}_*$ conditioned on the past data $oldsymbol{y}$

$$\underbrace{p(\boldsymbol{y}_*|\boldsymbol{y})}_{\substack{\text{posterior} \\ \text{predictive}}} = \int \underbrace{p(\boldsymbol{y}_*|\theta)}_{\substack{\text{point} \\ \text{predictive}}} p(\theta|\boldsymbol{y}) d\theta = \mathbb{E}_{p(\theta|\boldsymbol{y})}[p(\boldsymbol{y}_*|\theta)]$$

- .. i.e., posterior-weighted average of point predictive distributions $p(\mathbf{y}_*|\theta)$ over all values of θ
- Note: Even if it is not explicit in the notation, the terms such as $p(y|\theta)$, $p(\theta)$, p(y) are usually conditioned on other things too, e.g, the model index and their respective fixed hyperparameters

Recap

- Instead of inferring the full posterior, another option is to do point estimation of parameters
 - Cheaper alternative of full posterior inference, but doesn't capture the uncertainty in θ
- Examples: Maximum likelihood estimation (MLE) and Maximum-a-Posteriori (MAP) estimation
- Given N i.i.d. observations $\mathbf{y} = \{y_1, \dots, y_N\}$ from a model $p(\mathbf{x}|\theta)$
 - MLE: Maximizes the (log of) likelihood $p(y|\theta)$ w.r.t. θ

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \log p(y|\theta) = \arg\max_{\theta} \sum_{n=1}^{N} \log p(y_n|\theta)$$

• MAP: Maximizes the (log of) posterior $p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)p(\theta)$ w.r.t. θ

$$\hat{\theta}_{MAP} = \arg\max_{\theta} [\log p(\mathbf{y}|\theta) + \log p(\theta)] = \arg\max_{\theta} \sum_{n=1}^{N} \log p(y_n|\theta) + \log p(\theta)$$

- Loss function view: Negative log-lik. (NLL) = loss function. Negative log-prior = regularizer
- With point estimation, we cannot get posterior predictive $p(\mathbf{y}_*|\mathbf{y})$ but only point predictive $p(\mathbf{y}_*|\hat{\theta})$

Recap

- ullet Coin toss example. Each likelihood term is Bernoulli: $p(oldsymbol{x}_n| heta)= heta^{oldsymbol{x}_n}(1- heta)^{1-oldsymbol{x}_n}$
- Assume Beta prior on θ : $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$, α, β are fixed hyperparams
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned} p(heta|\mathbf{X}) & \propto & \prod_{n=1}^N p(\mathbf{x}_n| heta)p(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

- The above posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Conjugate prior: If posterior has the same form as the prior (which is the case above both Beta)
- The probability of next toss being head

$$p(\mathbf{x}_{N+1} = 1 | \mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1 | \theta) p(\theta | \mathbf{X}) d\theta = \int_0^1 \theta \times \text{Beta}(\theta | \alpha + \mathbf{N}_1, \beta + \mathbf{N}_0) d\theta = \mathbb{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0} \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] = \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}_0}[\theta] \mathbf{E}_{p(\theta | \mathbf{X})}[\theta] \mathbf{E}_{p(\theta | \mathbf{X}$$

• Thus the posterior predictive distribution $p(\mathbf{x}_{N+1}|\mathbf{X}) = \text{Bernoulli}(\mathbb{E}[\theta|\mathbf{X}])$

Single-Parameter Model: Gaussian with Known Variance

• Consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- ullet Assume the mean $\mu\in\mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- ullet Let's estimate μ given the data f X using fully Bayesian inference (not MLE/MAP)
- ullet We first need a prior distribution for the unknown param. μ
- Let's choose a Gaussian prior on μ , i.e., $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ with μ_0, σ_0^2 as fixed
- Therefore this is also a single-parameter model (only μ is the unknown)

Single-Parameter Models: Gaussian with Known Variance

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• Simplifying the above (using completing the squares trick) gives $p(\mu|\mathbf{X}) \propto \exp\left[-\frac{(\mu-\mu_N)^2}{2\sigma_N^2}\right]$ with

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

- Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)
- \bullet Consider what happens as N (number of observations) grows very large?
 - ullet The posterior's variance σ_N^2 approaches σ^2/N (and goes to 0 as $N o \infty$)
 - ullet The posterior's mean μ_N approaches $ar{x}$ (which is also the MLE solution)

Single-Parameter Models: Gaussian with Known Variance

- What is the posterior predictive distribution $p(x_*|\mathbf{X})$ of a new observation x_* ?
- Using the inferred posterior $p(\mu|\mathbf{X})$, we can find the posterior predictive distribution

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu,\sigma^2)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma^2+\sigma_N^2)$$

- Note that, as per the above, the uncertainty in distribution of x_* now has two components
 - σ^2 : Due to the noisy observation model
 - σ_N^2 : Due to the uncertainty in the estimate of the mean μ
- ullet In contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ (e.g., MLE/MAP) would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu,\sigma^2)p(\mu|\mathbf{X})d\mu \approx p(x_*|\hat{\mu},\sigma^2) = \mathcal{N}(x_*|\hat{\mu},\sigma^2)$$

- .. which doesn't incorporate the uncertainty in our estimate of μ (since we used a point estimate)
- Note that as $N \to \infty$, both approaches would give the same $p(x_*|\mathbf{X})$ since $\sigma_N^2 \to 0$

Single-Parameter Models: Gaussian with Known Mean

ullet Again consider N i.i.d. observations $old X=\{x_1,\dots,x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu,\sigma^2)$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2)$$
 and $p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^N p(x_n|\mu,\sigma^2)$

- ullet Assume the variance $\sigma^2 \in \mathbb{R}_+$ of the Gaussian is unknown and assume mean μ to be known/fixed
- Let's estimate σ^2 given the data **X** using fully Bayesian inference (not MLE/MAP)
- We first need a prior distribution for σ^2 . What prior $p(\sigma^2)$ to choose in this case?
- If we want a conjugate prior, it should have the form form as the likelihood

$$p(x_n|\mu,\sigma^2) \propto (\sigma^2)^{-1/2} \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$

• An inverse-gamma prior $IG(\alpha, \beta)$ has this form (α, β) are shape and scale hyperparams, resp)

$$p(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} \exp\left[-rac{eta}{\sigma^2}
ight]$$
 (note: mean of $IG(lpha,eta) = rac{eta}{lpha-1}$)

• (Verify) The posterior $p(\sigma^2|\mathbf{X}) = IG(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N}(x_n - \mu)^2}{2})$. Again IG due to conjugacy.

Working with Gaussians: Variance vs Precision

• Often, it is easier to work with the precision (=1/variance) rather than variance

$$p(x_n|\mu,\tau) = \mathcal{N}(x|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left[-\frac{\tau}{2}(x_n - \mu)^2\right]$$

• If mean is known, for precision $Gamma(\alpha, \beta)$ is a conjugate prior to Gaussian likelihood

$$p(\tau) \propto (\tau)^{(\alpha-1)} \exp\left[-\beta \tau\right]$$
 (note: mean of Gamma $(\alpha, \beta) = \frac{\alpha}{\beta}$)

.. where α and β are the shape and rate hyperparamers, respectively, for the Gamma

- (Verify) The posterior $p(\tau|\mathbf{X})$ will also be $\mathsf{Gamma}(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N}(x_n \mu)^2}{2})1$
- Note: Gamma distribution can be defined in terms of shape and scale or shape and rate parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both shape and scale (which we saw) as well as shape and rate parametrizations.

Another Single-Parameter Model Probabilistic Linear Regression (with fixed hyperparamers)

Linear Regression

- Given: Data \mathcal{D} with N training examples $\{\boldsymbol{x}_n,y_n\}_{n=1}^N$, features: $\boldsymbol{x}_n\in\mathbb{R}^D$, response $y_n\in\mathbb{R}$
- $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]^{\top}$: $N \times D$ feature matrix, $\mathbf{y} = [y_1 \dots y_N]^{\top}$: $N \times 1$ resp. vector
- Assume a "noisy" linear model with regression weight vector $\mathbf{w} \in \mathbb{R}^D$: $y_n = \mathbf{w}^\top \mathbf{x}_n + \epsilon_n$
- Gaussian noise: $\epsilon_n \sim \mathcal{N}(0, \beta^{-1})$, β : precision (inverse variance) of Gaussian
- Thus each response y_n also has a Gaussian distribution: $P(y_n|\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}^{\top}\mathbf{x}_n, \beta^{-1})$

• Goal: Learn regression weight vector w (this is our unknown θ) to predict y_* for a new x_*

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\mathbf{x} \in \mathbb{R}^D$ of real numbers
- Defined by a **mean vector** $\mu \in \mathbb{R}^D$ and a $D \times D$ **cov. matrix** Σ (its inverse is precision matrix)

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

- The covariance matrix Σ must be symmetric and positive definite
 - All eigenvalues are positive
 - $z^{\top}\Sigma z > 0$ for any real vector z

Likelihood and Prior

- Assuming i.i.d. observations, the likelihood model $p(y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n)$
- Note: Here data \mathcal{D} refers to (\mathbf{X}, \mathbf{y}) but input \mathbf{X} is not being modeled; only \mathbf{y} is being modeled
- As we saw, each likelihood term is a univariate Gaussian: $p(y_n|\boldsymbol{w},\boldsymbol{x}_n) = \mathcal{N}(y_n|\boldsymbol{w}^{\top}\boldsymbol{x}_n,\beta^{-1})$
- Collectively, the overall likelihood p(y|w,X) will be an N dimensional multivariate Gaussian

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y_n | \mathbf{w}^{\top} \mathbf{x}_n, \beta^{-1}) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)$$

• The unknown parameter $\mathbf{w} \in \mathbb{R}^D$. Can assume a zero mean D-dim multivar. Gaussian prior

$$p(\boldsymbol{w}|\lambda) = \prod_{d=1}^{D} \mathcal{N}(w_d|0,\lambda^{-1}) = \mathcal{N}(\boldsymbol{w}|\mathbf{0},\lambda^{-1}\mathbf{I}_D)$$

where λ denotes the precision of the Gaussian (how shrunk it is towards the mean)

• The Gaussian prior $p(\mathbf{w}|\lambda) \propto \exp\left[-\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}\right]$ is akin to imposing an ℓ_2 regularizer (and λ is like the regularization constant)

The Graphical Model Notation

(Hyperparameters not shown as they are fixed/known)

The Posterior

ullet The posterior over the weight vector $oldsymbol{w}$ (for now, we will assume hyperparams eta and λ to be fixed)

$$P(\boldsymbol{w}|\mathbf{X},\boldsymbol{y},\beta,\lambda) = \frac{P(\boldsymbol{w}|\lambda)P(\boldsymbol{y}|\boldsymbol{w},\mathbf{X},\beta)}{P(\boldsymbol{y}|\mathbf{X},\beta,\lambda)}$$

• Computing $P(w|X, y, \beta, \lambda)$ (like Bernoulli-Beta case, doing it only upto proportionality constant)

$$P(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda) \propto P(\mathbf{w}|\lambda)P(\mathbf{y}|\mathbf{w},\mathbf{X},\beta)$$

After some algebra, this gets simplified into the following (proof on the next two slides)

$$\begin{split} P(\boldsymbol{w}|\mathbf{X},\boldsymbol{y},\boldsymbol{\beta},\lambda) &= \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \\ \text{where} \quad \boldsymbol{\Sigma} &= (\boldsymbol{\beta}\sum_{n=1}^{N}\boldsymbol{x}_{n}\boldsymbol{x}_{n}^{\top} + \lambda\mathbf{I}_{D})^{-1} = (\boldsymbol{\beta}\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D})^{-1} \\ \boldsymbol{\mu} &= \boldsymbol{\Sigma}(\boldsymbol{\beta}\sum_{n=1}^{N}y_{n}\boldsymbol{x}_{n}) = \boldsymbol{\Sigma}(\boldsymbol{\beta}\mathbf{X}^{\top}\boldsymbol{y}) = (\mathbf{X}^{\top}\mathbf{X} + \frac{\lambda}{\boldsymbol{\beta}}\mathbf{I}_{D})^{-1}\mathbf{X}^{\top}\boldsymbol{y} \end{split}$$

The "Completing The Square" Trick for Gaussian Posterior

• Plugging in the respective distributions for $p(\mathbf{w}|\lambda)$ and $p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta)$, we will get

$$\rho(\mathbf{w}|\mathbf{X}, \mathbf{y}, \beta, \lambda) \propto \rho(\mathbf{w}|\lambda)\rho(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_{D})\mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_{N}) \\
\propto \exp\left(-\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}\right) \exp\left(-\frac{\beta}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w})\right) \\
= \exp\left[-\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w} - \frac{\beta}{2}(\mathbf{y}^{\top}\mathbf{y} + \mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{y})\right] \\
\propto \exp\left[-\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w} - \frac{\beta}{2}(\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{y})\right] \\
= \exp\left[-\frac{1}{2}\left(\mathbf{w}^{\top}(\lambda\mathbf{I}_{D} + \beta\mathbf{X}^{\top}\mathbf{X})\mathbf{w} - 2\beta\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{y}\right)\right]$$

• We will now try to bring the exponent into a quadratic form to see if it corresponds to some Gaussian. So basically, we will use the "complete the square" trick

The "Completing The Square" Trick for Gaussian Posterior

- So we had.. $p(w|\mathbf{X}, \mathbf{y}, \beta, \lambda) \propto \exp\left[-\frac{1}{2}\left(\mathbf{w}^{\top}(\lambda \mathbf{I}_D + \beta \mathbf{X}^{\top} \mathbf{X})\mathbf{w} 2\beta \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}\right)\right]$
- Let's see if we can bring the above posterior into the form of a Gaussian

$$\mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto \exp\left[-\frac{1}{2}(\boldsymbol{w} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{w} - \boldsymbol{\mu})\right] = \exp\left[-\frac{1}{2}(\boldsymbol{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{w} - 2\boldsymbol{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu})\right]$$

- Let's multiply and divide $\rho(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda) \propto \exp\left[-\frac{1}{2}\left(\mathbf{w}^{\top}(\lambda\mathbf{I}_{D}+\beta\mathbf{X}^{\top}\mathbf{X})\mathbf{w}-2\beta\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{y}\right)\right]$ by $\exp\left[-\frac{1}{2}\mathbf{\mu}^{\top}\mathbf{\Sigma}^{-1}\mathbf{\mu}\right]$
- This gives the following up to a prop. constant (remember $\mu^{\top} \Sigma^{-1} \mu$ is constant w.r.t. w):

$$\rho(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda) \propto \exp\left[-\frac{1}{2}\left(\mathbf{w}^{\top}(\lambda\mathbf{I}_{D}+\beta\mathbf{X}^{\top}\mathbf{X})\mathbf{w}-2\beta\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{y}+\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right)\right]$$

• Finally comparing with the expression of $\mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ we can see that

$$\Sigma = (\lambda I_D + \beta X^{\top} X)^{-1}$$

$$\Sigma^{-1} \mu = \beta X^{\top} y \Rightarrow \mu = \Sigma (\beta X^{\top} y)$$

• Note: The above expression for the posterior can also be directly obtained using properties of Gaussian distributions (we will see those in the coming lectures)

Information within the Posterior

ullet As we saw, the posterior over the weight vector $oldsymbol{w}$

$$\begin{split} P(\boldsymbol{w}|\mathbf{X}, \boldsymbol{y}, \boldsymbol{\beta}, \boldsymbol{\lambda}) &= \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ \text{where} \quad \boldsymbol{\Sigma} &= (\boldsymbol{\beta} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^\top + \lambda \mathbf{I}_D)^{-1} = (\boldsymbol{\beta} \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_D)^{-1} \\ \boldsymbol{\mu} &= \boldsymbol{\Sigma}(\boldsymbol{\beta} \sum_{n=1}^{N} y_n \mathbf{x}_n) = \boldsymbol{\Sigma}(\boldsymbol{\beta} \mathbf{X}^\top \boldsymbol{y}) = (\mathbf{X}^\top \mathbf{X} + \frac{\lambda}{\boldsymbol{\beta}} \mathbf{I}_D)^{-1} \mathbf{X}^\top \boldsymbol{y} \end{split}$$

- ullet Note the form of the mean μ of the posterior. Equivalent to the solution of ridge regression.
 - ullet Also, if we do a direct MAP estimation for $oldsymbol{w}$, we will have $oldsymbol{w}_{MAP}=oldsymbol{\mu}$
- ullet Setting λ to 0 makes μ equivalent to the MLE solution
- ullet However, MLE and MAP are only point estimates whereas we now have the full posterior over $oldsymbol{w}$
- Therefore, the solution given by the full posterior in a way subsumes MAP/MLE solutions

Posterior Predictive Distribution

- Now we want to use the posterior over w to make predictions (response y_* for a new input x_*)
- The posterior predictive distribution in this case will be

$$p(y_*|x_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \int p(y_*|x_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)d\mathbf{w}$$

• The result and therefore the posterior predictive will be another Gaussian (we will see proof later)

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}, \beta, \lambda) = \mathcal{N}(\boldsymbol{\mu}^\top \mathbf{x}_*, \beta^{-1} + \mathbf{x}_*^\top \mathbf{\Sigma} \mathbf{x}_*)$$

ullet In contrast, MLE and MAP make "plug-in" predictions (using the point estimate of $oldsymbol{w}$)

$$p(y_*|x_*, w_{MLE}) = \mathcal{N}(w_{MLE}^\top x_*, \beta^{-1})$$
 - MLE prediction $p(y_*|x_*, w_{MAP}) = \mathcal{N}(w_{MAP}^\top x_*, \beta^{-1})$ - MAP prediction

• Important: Unlike MLE/MAP, the variance of y_* also depends on the input x_* (this, as we will see later, will be very useful in sequential decision-making problems such as active learning)

Posterior Predictive Distribution: An Illustration

Black dots are training examples

Regions with more training examples have smaller predictive variance

Nonlinear Regression?

- Can extend the linear regression model to handle nonlinear regression problems
- One way is to replace the feature vectors \mathbf{x} by a nonlinear mapping $\phi(\mathbf{x})$

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \phi(\mathbf{x}), \beta^{-1})$$

ullet The nonlinear mapping can be defined directly, e.g., for a one-dimensional feature x

$$\phi(x) = [1, x, x^2]$$

- Alternatively, a kernel function can be used to implicitly define the nonlinear mapping
- More on nonlinear regression when we discuss Gaussian Processes

What about the hyperparameters of the regression model?

- If hyperparameters are to be estimated, we will have a hierarchical/multiparameter model
- Posterior inference in slighltly more involved in this case
- Iterative methods required to learn the weight vector and the hyperparameters, e.g.,
 - Marginal likelihood maximization for hyperparameter estimation
 - Expectation maximization (EM)
 - MCMC or variational inference
- More on this later..