

Evoluzione temporale di un modello di Ising tramite Trotterization

Candidato:

Lorenzo del Prete

Relatore:

Prof. Andrea Giachero

Co-relatore:

Dr. Stefano Barison

Quantum Simulation

è possibile simulare un sistema fisico su un computer quantistico?

OBIETTIVO

Simulazione di una XXX-Heisenberg Chain monodimensionale con calcoli effettuati sui processori quantistici di IBM Quantum tramite la decomposizione di Suzuki-Trotter

Quantum Computing

- Quantum bits (qubit)
- Sfera di Bloch
- Quantum gates

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Heisenberg Chain

- Catena monodimensionale di spin-1/2 utilizzata per descrivere la magnetizzazione dei materiali tenendo conto dell'interazione spin-spin
- Interazione nearest neighbours

$$\mathbb{H} = \bigotimes_{N} \mathbb{C}^{2}$$

CRITICITÀ

L'hamiltoniana è una matrice $2^N \times 2^N$ pertanto la diagonalizzazione tramite metodi computazionali cresce esponenzialmente di complessità con il crescere di N.

XXX-Heisenberg Chain

$$J_i = J \ \forall j = \{x, y, z\}$$

- J > 0 ferromagnetico
- Overlap di $\langle 10 | e \rangle$

$$\mathcal{H}_{XXX} = J \cdot [\sum_{i,j}^{N,\{x,y,z\}} S_i^j \cdot S_{i+1}^j]$$

$$P(t) = |\langle 10|U(t)|10\rangle|^2$$

Curve teoriche

Due spin

Tre spin

Decomposizione di Suzuki-Trotter

$$e^{t\sum_{i}^{N}A_{i}} \approx \prod_{i}^{N} e^{tA_{i}} + O(t^{2})$$

Formula di Baker-Campbell-Hausdorff

$$e^{Z} = e^{X} \cdot e^{Y} \to Z(X, Y) = log(e^{X}e^{Y}) = X + Y + \frac{1}{2}[X, Y] + \dots$$

...nella Heisenberg Chain

Due spin

$$U_2(t) \approx e^{-itS_x^{(0)} \cdot S_x^{(1)}} e^{-itS_y^{(0)} \cdot S_y^{(1)}} e^{-itS_z^{(0)} \cdot S_z^{(1)}}$$

N spin

$$dt = \frac{t}{n}$$

$$U_{N_{spin}} \approx \{\prod_{i=0}^{N_{spin}-1} e^{-i\frac{t}{n}H_2^{(i,i+1)}}\}^n + O(\frac{t^2}{n})$$

Sz

$$R_{ZZ}(\theta) = CNOT_{12} \cdot I \oplus R_Z(\theta) \cdot CNOT_{12}$$

Sx

$$R_{XX}(\theta) = \left[R_y(\frac{\pi}{2}) \otimes R_y(\frac{\pi}{2})\right] \cdot R_{ZZ}(\theta) \cdot \left[R_y(-\frac{\pi}{2}) \otimes R_y(-\frac{\pi}{2})\right]$$

Sy

$$R_{YY}(\theta) = \left[R_x(\frac{\pi}{2}) \otimes R_x(\frac{\pi}{2}) \right] \cdot R_{ZZ}(\theta) \cdot \left[R_x(-\frac{\pi}{2}) \otimes R_x(-\frac{\pi}{2}) \right]$$

Curve ideali con Trotter

Con un circuito più lungo

Errore algoritmico

$$O(\frac{t^2}{n})$$

$$\epsilon = \frac{|true_val - trott_val|}{true_val}$$

Circuito quantistico

influenza dell'ambiente sul sistema

Il rumore nell'hardware

Noise Model

- Bitphase flip
- Depolarizing channel
- Amplitude e phase damping

transpilation sulle QPU di IBM Quantum

Ottimizzazione del circuito

- Riscrittura del circuito per ottimizzazione sulla topologia dell'hardware
- Riduzione della profondità e della complessità del circuito
- Istruzioni conformi alla Instruction Set Architecture (ISA)

Transpilation

Curve con circuito ottimizzato

Lunghezza del circuito variabile

 Aumentare in modo lineare la lunghezza del circuito lungo l'intervallo temporale per ridurre l'errore

Curve ed errore con lunghezza variabile

Tecniche di mitigazione dell'errore

- Qubit -> scale atomiche, influenzato enormemente da fenomeni ambientali
- Pauli gate Twirling
- TREX su Gate di misura
- ZNE
- Digital gate folding
- Estrapolazione lineare
- Dynamical Decoupling

Simulazione su QPU di IBM Quantum

	Transpilation	VL	Transpilation + VL	Error Mitigation
MAE%	22,69%	17,82%	15,90%	13,39%

Risultati

Risultato ottenuto: MAE 13,39%

- 12 Trotter steps;
- Lunghezza del circuito variabile;
- Transpilation;
- Tecniche di mitigazione dell'errore.

Prospettive future

- Implementazione di tecniche di mitigazione dell'errore avanzate;
- Utilizzo degli approcci studiati per la simulazione con un maggior numero di spin.

Grazie per l'attenzione!