MATH 620 HOMEWORK DUE 9/5

HIDENORI SHINOHARA

Exercise 0.1. Show that $\{e^{i_1} \otimes \cdots \otimes e^{i_k} \mid 1 \leq i_1, \cdots, i_k \leq n\}$ is a basis of $T^k(V^*)$. Find dim $T^k(V^*)$.

Proof.

• Linearly independent? Suppose $\sum c_{i_1,\dots,i_k}e^{i_1}\otimes\dots\otimes e^{i_k}=0$. Let $1 \leq j_1, \cdots, j_k \leq n$ be given.

$$\left(\sum_{i_1,\dots,i_k} c_{i_1,\dots,i_k} e^{i_1} \otimes \dots \otimes e^{i_k}\right) (e_{j_1},\dots,e_{j_k}) = 0$$

$$\Longrightarrow \sum_{i_1,\dots,i_k} c_{i_1,\dots,i_k} (e^{i_1} \otimes \dots \otimes e^{i_k}) (e_{j_1},\dots,e_{j_k}) = 0$$

$$\Longrightarrow \sum_{i_1,\dots,i_k} c_{i_1,\dots,i_k} e^{i_1} (e_{j_1}) \dots e^{i_k} (e_{j_k}) = 0$$

$$\Longrightarrow c_{j_1,\dots,j_k} e^{j_1} (e_{j_1}) \dots e^{j_k} (e_{j_k}) = 0$$

$$\Longrightarrow c_{j_1,\dots,j_k} = 0.$$

Therefore, each $c_{i_1,\dots,i_k}=0$. • Span? Let $f\in T^k(V^*)$. We claim that $f=\sum_{i_1,\dots,i_k}f(e_{i_1},\dots,e_{i_k})e^{i_1}\otimes \cdots$ $\cdots \otimes e^{i_k}$. Let $v_1, \cdots, v_k \in V$ be given. Since $\{e_1, \cdots, e_n\}$ is a

basis of V, so each v_i can be represented as $v_i = \sum_j c_i^j e_j$.

$$\begin{split} &(\sum_{i_{1},\cdots,i_{k}}f(e_{i_{1}},\cdots,e_{i_{k}})e^{i_{1}}\otimes\cdots\otimes e^{i_{k}})(v_{1},\cdots,v_{k})\\ &=(\sum_{i_{1},\cdots,i_{k}}f(e_{i_{1}},\cdots,e_{i_{k}})e^{i_{1}}\otimes\cdots\otimes e^{i_{k}})(c_{1}^{j}e_{j},\cdots,c_{k}^{j}e_{j})\\ &=\sum_{i_{1},\cdots,i_{k}}f(e_{i_{1}},\cdots,e_{i_{k}})[(e^{i_{1}}\otimes\cdots\otimes e^{i_{k}})(c_{1}^{j}e_{j},\cdots,c_{k}^{j}e_{j})]\\ &=\sum_{i_{1},\cdots,i_{k}}f(e_{i_{1}},\cdots,e_{i_{k}})[(c_{1}^{j}e^{i_{1}}(e_{j}))\cdots(c_{k}^{j}e^{i_{k}}(e_{j}))]\\ &=\sum_{i_{1},\cdots,i_{k}}f(e_{i_{1}},\cdots,e_{i_{k}})[(c_{1}^{i_{1}}e^{i_{1}}(e_{i_{1}}))\cdots(c_{k}^{i_{k}}e^{i_{k}}(e_{i_{k}}))]\\ &=\sum_{i_{1},\cdots,i_{k}}f(e^{i_{1}},\cdots,e_{i_{k}})c^{i_{1}}\cdots c^{i_{k}}\\ &=\sum_{i_{1},\cdots,i_{k}}f(c^{i_{1}}e_{i_{1}},\cdots,c^{i_{k}}e_{i_{k}})\\ &=\sum_{i_{1},\cdots,i_{k-1}}(\sum_{i_{k}}f(c^{i_{1}}e_{i_{1}},\cdots,c^{i_{k}}e_{i_{k}}))\\ &=\sum_{i_{1},\cdots,i_{k-1}}f(c^{i_{1}}e_{i_{1}},\cdots,c^{i_{k-1}}e_{i_{k-1}},\sum_{i_{k}}c^{i_{k}}e_{i_{k}}))\\ &=\sum_{i_{1},\cdots,i_{k-1}}f(c^{i_{1}}e_{i_{1}},\cdots,c^{i_{k-1}}e_{i_{k-1}},v_{k})\\ &\vdots\\ &=f(v_{1},\cdots,v_{k}). \end{split}$$

The dimension is n^k because each i_j can be any integer between 1 and n.

Exercise 0.2. Prove that $\{\partial_1, \dots, \partial_n\}$ is a basis of $T_p \mathbb{R}^n$.

Exercise 0.3. Show that $\{dx^1, \dots, dx^n\}$ is a basis of $T_p^* \mathbb{R}^n$ that is dual to $\{\frac{\partial}{\partial x^j}\}_{j=1}^n \subset T_p \mathbb{R}^n$.

Proof.

• Dual? Let $i, j \in \{1, \dots, n\}$. $dx^i(\frac{\partial}{\partial x^j}) = \frac{\partial}{\partial x^j}x^i$. The partial derivative of x^i with respect to x^j is 1 if i = j and 0 otherwise. Thus $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$.

• Linearly independent? Let $c_1, \dots, c_n \in \mathbb{R}$ be given. Suppose that $c_1 dx^1 + \dots + c_n dx^n = 0$. For any $i \in \{1, \dots, n\}$,

$$(c_1 dx^1 + \dots + c_n dx^n)(\partial_i) = 0 \implies c_1 (dx^1(\partial_i)) + \dots + c_n (dx^n(\partial_i)) = 0$$
$$\implies c_1(\partial_i (x^1)) + \dots + c_n(\partial_i (x^n)) = 0$$
$$\implies c_i \partial_i (x^i) = 0$$
$$\implies c_i = 0.$$

Therefore, $c_1 = \cdots = c_n = 0$. Therefore, $\{dx^1, \cdots, dx^n\}$ is indeed linearly independent.

• Span? Let $f \in T_p^* \mathbb{R}^n$ be given. We claim that $f = \sum_{i=1}^n f(\partial_i) dx^i$. Let $\sum_{i=1}^n c_i \partial_i \in T_p \mathbb{R}^n$ be given where c_i 's are in \mathbb{R} . (It makes sense to assume that every element in $T_p \mathbb{R}^n$ is in this form because we showed earlier that $\{\partial_1, \dots, \partial_n\}$ is a basis of $T_p \mathbb{R}^n$.)

$$(\sum_{i=1}^{n} f(\partial_{i}) dx^{i})(\sum_{j=1}^{n} c_{j} \partial_{j}) = \sum_{i=1}^{n} \left[f(\partial_{i}) dx^{i} (\sum_{j=1}^{n} c_{j} \partial_{j}) \right]$$

$$= \sum_{i=1}^{n} f(\partial_{i}) \left[\sum_{j=1}^{n} c_{j} dx^{i} (\partial_{j}) \right]$$

$$= \sum_{i=1}^{n} f(\partial_{i}) \left[\sum_{j=1}^{n} c_{j} \partial_{j} (x^{i}) \right]$$

$$= \sum_{i=1}^{n} f(\partial_{i}) c_{i}$$

$$= f(\sum_{i=1}^{n} c_{i} \partial_{i}).$$