## Advitiy payload: SSTV Radio

IIT Bombay Student Satellite Project

#### What is SSTV?

- SSTV (Slow-Scan TV) is picture transmission method used mainly by amateur radio operators, to transmit pictures via radio.
- Image is encoded to audio frequencies, transmitted through radio waves, received and decoded at the other end







## The Complete Payload



#### Bottlenecks foreseen

There exist no precedents within the team for the following:

- Conversion of digital value of frequency to audio freq. signal (AFSK).
- Onboard data storage and handling capabilities (no. of images)

Allocation of required bandwidth

# Conversion of digital value of frequency to audio signal.

- SSTV transmission mechanism
- The complete process requires audio frequency signal at certain value in the range of audible frequency to be given as input to FM transmitter.
- Possible modules: AD9833/2/5

#### Storage of Data

#### **Method of Transmission: PD90**

Image size: 320x256 pixels

With average: (320x256 pixels)x (2 Bytes on average per pixel) = 160 kB

For 1 picture storage requirement: 160 kB

For more images we will be requiring more storage.

Solution: Space grade EEPROM AT69170E (4 Mb of memory) can be used for this purpose.

One EEPROM can store 3 images. More can be used for higher number of images

## External Factors affecting success of payload

- Availability of FM Modules
  - FM module RDA1846 was found with a development board DRA818U/V
  - Problem: No proof of the board to be able to survive space environment
  - However, power amplifier RF5110G (COTS) successfully worked as Pratham's beacon, even though it wasn't space qualified
- Outreach Potential of the Payload
  - Tie-ins: Development of HAM/SSTV Receiving stations in schools
  - Subject to resource availability

#### On-Ground Testing

- Before and after integration, testing of the link by keeping the distance between the transmitter and receiver sufficiently large (~few kms) to establish proof of concept.
- Testing of the setup in anechoic chamber for characterization

#### Requirements on Communication

- Communication subsystem should be able to transmit SSTV signals throughout the world.
- They shall setup a ground station at IIT Bombay.
- They shall design low-cost receivers for use by other universities/villages/communities.

#### Requirements on Control Subsystem

• 3 axis stability/spin stability for antenna transmission

#### Requirements on Power Subsystem

- The transmitter module DRA818U/V has a power requirement of 3.375W.
- Earlier, power requirement by beacon and downlink: 2.74W and 2.30W respectively.
- However, with the increase in efficiency of solar panels (from Pratham's 18% to 27%), the power requirements are expected to be met (power produced would be 1.5 times the earlier)

#### Future Tasks

- Beacon and SSTV combined implementation
- Implementation of AFSK generator
- Implementation of storage of encoded image data
- Implementation of the FM transmitter setup
- Integration of the above setups
- Final integration of this complete setup

## Components Used

- AFSK Module AD9833
  - Low power(13mW) programmable waveform generator with 28 bit resolution (0.1Hz @ 25MHz reference clock)
  - Programmed via SPI
- FM transmitter RDA1846
  - Single chip transceiver for both VHF and UHF band with bandwidths 12.5kHz/25kHz
  - Programmed via I2C
- Transceiver module DRA818U (includes RDA1846)
  - Voice transceiver module for UHF band with bandwidth 25kHz and output power 27/30 dBm
  - Programmed via UART
- Power Amplifier RF5110G (if DRA818U is not used)
- Memory Element EEPROM
  - Size 4Mb

## PD90 protocol

• Sync pulse 20.000ms 1200hz

• Porch 2.080ms 1500hz

- Y scan (from odd line)
- R-Y (Cr) scan averaged for two lines
- B-Y (Cb) averaged for two lines
- Y scan (from even line)