7 October 2021 10:38

#### Illustration 1

Find voltage V<sub>1</sub> and V<sub>2</sub> as marked in the given circuit using voltage division rule.



$$(5+1) || 3 = 2 \Omega$$

$$V_1 = V \times \frac{R_1}{R_1 + R_2} = \frac{10 \times 10}{10 + 2} = \frac{100}{12} = 8.333V$$
 $V_2 = V \times \frac{R_2}{R_1 + R_2} = \frac{10 \times 2}{10 + 2} = 1.667 V$ 

## Illustration 2

Find voltage  $V_5$  as marked in the given circuit using voltage division rule.



### Illustration 3

Find current  $I_x$  as marked in the given circuit using current division rule.



I<sub>2</sub>

 $R \mid \mid \frac{R}{N} \Rightarrow \frac{R}{N+1}$ 

101104)+4





$$T_2 = 12 \times \frac{8}{8+10} = 5.333 A$$

$$4\Omega I_2 = 5.333A$$

$$VI_1$$

$$8\Omega I_2 = 8\Omega$$

$$VI_1$$

$$8\Omega I_2 = 8\Omega$$

$$T_{\varkappa} = 5.333 \times 24 - 4A$$

### Illustration 4

Find current in 6 K $\Omega$  resistor by converting current source to a voltage source.



## Illustration 5

Reduce the following circuit to a current source in parallel with a resistor across the terminals A & B.

Reduce the following circuit to a current source in parallel with a resistor across the terminals A & B.



## Illustration 6

Find the voltage across 12  $\Omega$  resistor (i.e.,  $V_{x})$  by source transformation method.



$$200 - 20I - 12I - 8I - 40 = 0$$

$$I = 4A$$

$$V_{ba} = 4 \times 12 = 48 \text{ Volts}$$

$$V_{x} = V_{ab} = -V_{ba} = -48 \text{ Volts}$$

$$I = -4A$$

$$I = -4A$$

$$I = -4A$$

THE THE

# **Quiz Question**

Determine current flowing through 10 Ohm resistor. All resistances are in Ohms.

