

RECEIVED

DEC 10 2002

TECH CENTER 1600/2900

9/16

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	A
1	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P						
2		R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S					
3			N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T				
4				D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W			
5					C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y		
6						Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	
7							E	G	H	I	L	K	M	F	P	S	T	W	Y	V	A
8								G	H	I	L	K	M	F	P	S	T	W	Y	V	A
9									H	I	L	K	M	F	P	S	T	W	Y	V	A
10										I	L	K	M	F	P	S	T	W	Y	V	A
11											L	K	M	F	P	S	T	W	Y	V	A
12												K	M	F	P	S	T	W	Y	V	A
13													M	F	P	S	T	W	Y	V	A
14														F	P	S	T	W	Y	V	A
15															P	S	T	W	Y	V	A
16																S	T	W	Y	V	A
17																	T	W	Y	V	A
18																	W	Y	V	A	
19																		Y	V	A	
20																			V	A	
21																				A	
22																					
23																					
24																					
25																					
26																					

Figure 8A. Hypothetical protein (top row) and peptides overlapping by one residue

RECEIVED

DEC 10 2002

TECH CENTER 1600/2900

10/16

	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	C	L	L	G
1																					
2																					
3																					
4																					
5																					
6																					
7																					
8	R																				
9	R	N																			
10	R	N	D																		
11	R	N	D	C																	
12	R	N	D	C	Q																
13	R	N	D	C	Q	E															
14	R	N	D	C	Q	E	G														
15	R	N	D	C	Q	E	G	H													
16	R	N	D	C	Q	E	G	H	I												
17	R	N	D	C	Q	E	G	H	I	L											
18	R	N	D	C	Q	E	G	H	I	L	K										
19	R	N	D	C	Q	E	G	H	I	L	K	M									
20	R	N	D	C	Q	E	G	H	I	L	K	M	F								
21	R	N	D	C	Q	E	G	H	I	L	K	M	F	P							
22	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S						
23	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T						
24		D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W					
25			C	Q	E	G	H	I	L	K	M	F	P	S	T	W	C				
26				Q	E	G	H	I	L	K	M	F	P	S	T	W	C	L			
27					E	G	H	I	L	K	M	F	P	S	T	W	C	I	I		
28																					

Figure 8B. Hypothetical protein (top row) and peptides overlapping by one residue