

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: May 09 ~ June 10, 2013 Test Report S/N: LR500111306E

Test Site: LTA Co., Ltd.

CERTIFICATION OF COMPLIANCE

FCC ID

APPLICANT

SS4HM45

BLUEBIRD INC.

Equipment Class : Part 15 Spread Spectrum Transmitter (DSS)

Manufacturing Description : Industrial PDA
Manufacturer : BLUEBIRD INC.

Model name : HM45

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2402 ~ 2480MHz

RF power : Max 7.57 dBm – Conducted

Data of issue : June 11, 2013

This test report is issued under the authority of:

Jae-Ho Lee, Manager

The test was supervised by:

Young-Jin Lee, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 FREQUENCY HOPPING SYSTEM REQUIREMENTS	6
3.3 TECHNICAL CHARACTERISTICS TEST	8
3.3.1 CARRIER FREQUENCY SEPARATION	8
3.3.2 NUMBER OF HOPPING FREQUENCIES	10
3.3.3 20 dB BANDWIDTH	12
3.3.4 TIME OF OCCUPANCY (Dwell Time)	16
3.3.5 TRANSMITTER OUTPUT POWER	21
3.3.6 BAND – EDGE & SPURIOUS	25
3.3.7 FIELD STRENGTH OF HARMONICS	31
3.3.8 AC CONDUCTED EMISSIONS	35
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	38

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	2015-03-06	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	Updating	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : BLUEBIRD INC.

Address : (Dogok-dong, SEI Tower 13~14), ., 39, Eonju-ro30-gil, Gangnam-gu,

Seoul, Korea

Tel / Fax : Tel : +82-70-7730-8210 / Fax :+82-2-548-0870

2-2 Equipment Under Test (EUT)

Trade name : Plentre

Model name : HM45

Serial number : Identical prototype

Date of receipt : April 22, 2013

EUT condition : Pre-production, not damaged

Antenna type : PCB antenna with Max. 0.4 dBi gain

Frequency Range : 2402 ~ 2480MHz

RF output power : Max. 7.57 dBm - Conducted

Number of channels : 79

Duty cycle : 79.68 % Channel spacing : 1MHz

Channel Access Protocol : Frequency Hopping Spread Spectrum (FHSS)

Power Source : DC 3.7 V by Battery

Power for Adaptor. : Input: 100-240VAC, 0.3A Output: 5.0VDC, 2A

Firmware Version : V 1.0.0

2-3 Tested frequency

Bluetooth LOW		MID	HIGH
Frequency (MHz) 2402		2441	2480

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies	> 15 hops		С
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz		С
15.247(a)	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 250 mWatt		С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	D 11 - 1	С
15.109 Field Strength		-	Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С
15.203	Antenna requirement	-	-	С

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The BLUEBIRD INC., FCC ID: SS4HM45 unit complies with the

requirement of §15.203.

The antenna type is PCB antenna.

Note 2: The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

Note3: TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the BLUEBIRD INC., FCC ID: SS4HM45

3.2 Frequency Hopping System Requirements

3.2.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2.2 EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3.2.3 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

3.3 Transmitter requirements

3.3.1 Carrier Frequency Separation

Procedure:

The test follows DA000705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = $2 \sim 3$ MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 10 kHz (1% of the span or more) Sweep = auto

VBW = 10 kHz Detector function = peak

Trace = max hold

Measurement Data:

Test Results		
Carrier Frequency Separation (MHz) Result		
0.9986	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

<u>Carrier Frequency Separation</u> <u>Basic Mode</u>

EDR Mode

3.3.2 Number of Hopping Frequencies

Procedure:

The test follows DA000705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to (Bluetooth):

Frequency range Start = 2400.0MHz, Stop = 2483.5 MHz RBW = 100 kHz (1% of the span or more) Sweep = auto

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = $\max \text{ hold}$ Span > 40MHz

Measurement Data: Complies

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels...

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to (Bluetooth):

Center frequency = the highest, middle and the lowest channels

Span = 3 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 30 kHz Sweep = auto

 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

Measurement Data: Basic Mode

Frequency	Channal No	Test Results(MHz)
(MHz)	Channel No.	20dB Bandwidth
2402	0	0.824
2441	39	1.042
2480	78	1.046

Measurement Data: EDR Mode

Frequency	Channel No.	Test Results(MHz)
(MHz)		20dB Bandwidth
2402	0	1.342
2441	39	1.342
2480	78	1.342

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

N/A

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Channel 1 of basic mode 20 dB Bandwidth

Channel 2 of basic mode 20 dB Bandwidth

Channel 3 of basic mode

20 dB Bandwidth

Channel 1 at EDR mode

<u>Channel 2 at EDR mode</u> <u>20 dB Bandwidth</u>

Channel 3 at EDR mode 20 dB Bandwidth

3.3.4 Time of Occupancy (Dwell Time)

Procedure:

The test follows DA000705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

RBW = 100 KHz $VBW = 100 \text{ KHz} (VBW \ge RBW)$

Trace = max hold Detector function = peak

Measurement Data (Bluetooth):

Mode	Number of transmission ina 31.6s (79Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	30(Times / 3sec) *10.533 = 315.99	0.464	146.62	400
DH3	15(Times / 3sec) *10.533 = 158.00	1.717	271.29	400
DH5	10(Times / 3sec) *10.533 = 105.33	2.957	311.46	400
EDR 3Mbps DH5	10(Times / 3sec) *10.533 = 105.33	2.971	312.94	400

- See next pages for actual measured spectrum plots.
- dwell time = $\{(\text{number of hopping per second / number of slot}) \times \text{duration time per channel}\} \times 0.4 \text{ ms}$

Minimum Standard:

0.4 seconds within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

DH1 at basic mode Spectrum 4 Spectrum 2 X (X) Spectrum Spectrum 3 Ref Level 20.50 dBm Offset 0.50 dB @ RBW 100 kHz 30 dB 🍩 SWT **VBW** 100 kHz Att 5 ms SGL ●1Pk Max 3.50 dB D2[1] 463.77 µs -M1[1] -64.63 dBm 10 dBm-1.02174 ms 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--70 dBm-691 pts CF 2.441 GHz 500.0 µs/ Ready 7 Spectrum 3 Spectrum 4 Spectrum 2 Spectrum Ref Level 20.50 dBm Offset 0.50 dB - RBW 100 kHz 3 s VBW 100 kHz Att 30 dB . SWT SGL 1Pk Max 10 dBm-0 dBm--10 dBm -60 dBm--70 dBm-CF 2.441 GHz 691 pts 300.0 ms/ Ready

DH5 at basic mode

DH5 at EDR mode with 3Mbps 7 Spectrum 3 Spectrum 4 X Spectrum 2 Spectrum Ref Level 20.50 dBm Offset 0.50 dB - RBW 100 kHz Att 30 dB . SWT VBW 100 kHz 5 ms SGL 1Pk Max D2[1] -5.68 dB 2.97101 ms 10 dBm--M1[1] -57.52 dBm 246.38 µs 0 dBm--10 dBn -20 dan -30 d6m -40 d8m -70 dBm-500.0 µs/ CF 2.441 GHz 691 pts Spectrum 3 Spectrum 2 (X) X Spectrum 4 Spectrum Offset 0.50 dB - RBW 100 kHz Ref Level 20.50 dBm Att 30 dB . SWT VBW 100 kHz 35 SGL ● 1Pk Max 10 dBm-0 dBm--10 dBm--20 d8m--30 dBm -40 d8m -70 dBm-300.0 ms/ CF 2.441 GHz 691 pts

3.3.5 Transmitter Output Power

Procedure:

The test follows DA000705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 10 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)

 $VBW = 3 \text{ MHz} (VBW \ge RBW)$ Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Basic Mode

Frequency	CI.		Test Results	
(MHz)	Ch.	dBm	mW	Result
2402	0	7.15	5.19	Complies
2441	39	7.57	5.71	Complies
2480	78	6.52	4.49	Complies

Measurement Data: EDR Mode

Frequency	Ch		Test Results		
(MHz)	Ch.	dBm	mW	Result	
2402	0	5.94	3.93	Complies	
2441	39	5.91	3.90	Complies	
2480	78	4.96 3.13 Compli		Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:	< 250 mW
	250 mW

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Channel 1 Basic mode

Channel 2 Basic mode

Channel 3 Basic mode

EDR mode

3.3.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = $10\sim30 \text{ MHz}$ Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Band – edge Lower edge

Upper edge

Band-edges in the restricted band 2310-2390 MHz measurement

F	Reading [dBuV/m]		Reading			(Correction	Limits		Limits Result		Margin	
Frequency			Dol		Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV /	' Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak AV / Peak		AV /	Peak		
2384.3	36.9	48.2	Н	28.2	30.1	54.0	74.0	35.0	46.3	19.0	27.7		

Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m] AV / Peak				Del	(Correction Factor	Limits [dBuV/m]				Result [dBuV/m]		Margin [dB]	
[MHz]			Pol.	Antenna	Amp. Gain + Cable Loss	AV /	' Peak	AV /	Peak	AV /	Peak				
2489.5	35.9	46.4	Н	28.2	30.1	54.0	74.0	34.0	44.5	20.0	29.5				

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

<u>Unwanted Emission – Low channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – Middle channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

3.3.7 Field Strength of Harmonics

Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA000705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 9 KHz ~ 10th harmonic.

 $RBW = 120 \text{ kHz} (9 \text{ KHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

below 30MHz

below 1GHz (30MHz to 1GHz)

above 1GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit include from 9KHz to 30MHz.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: (Above 1GHz)

Frequency	Rea	ding		(Correction		Lin	nits	Res	sult	Margin	
rrequency	[dBuV/m]		Pol.		Factor	D.C.F	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
4804	36.5	47.1	Н	33.1	31.2	-30.54	54.0	74.0	7.9	18.5	46.1	55.5
-	-	_	-	-	-	-	-	-	-	_	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Rea	Reading		C	Correction		Limits		Result		Margin	
rrequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/Peak		AV/Peak AV / Peal	
4882	37.3	48.1	Н	33.1	31.2	-30.54	54.0	74.0	8.7	19.5	45.3	54.5
-	-	-	-	-	-	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-
Fraguanay	Rea	ding		C	Correction		Lim	Limits		sult	Margin	
Frequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBuV/m]		[dBu	V/m]	[d	в]
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/	Peak	AV /	Peak
4960	35.7	46.4	Н	33.1	31.2	-30.54	54.0	74.0	7.1	17.8	46.9	56.2
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	_

- No other emissions were detected at a level greater than 20dB below limit.
- D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(2.971 \text{ms}/100 \text{ms}) = -30.54$

Measurement Data: (9kHz - 30MHz)

Frequency	Reading [dBuV/m] Pol.		Pol.	Correction Factor		Limits [dBuV/m]		Result		Margin [dB]	
[MHz]	AV / Peak			Antenna Amp.Gain+Cak		AV / Peak		AV / Peak		AV /	Peak
-	-	-	-	-	-	-	-	-	-	-	-
	No emissions were detected at a level greater than 20dB below limit.										
-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-

^{*}No emissions were detected at a level greater than 20dB below limit.

Radiated Emissions -BT mode

836.50

32.90

7.60

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

 EUT/Model No.: HM45
 TEST MODE: BT mode

 Temp Humi : 25 / 56
 Tested by: PARK H W

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

46.00

5.50

100

226 HORIZONTAL

40.50

3.3.8 AC Conducted Emissions

Procedure:

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003.

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Conducted Emissions - BT mode - LINE

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : HM45 Phase : LINE

Test Mode : BT mode Test Power : 120 / 60

Temp./Humi. : 25 / 46 Test Engineer : PARK H W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

Conducted Emissions - BT mode - NEUTRAL

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

 EUT / Model No. : HM45
 Phase : NEUTRAL

 Test Mode : BT mode : Test Power
 : 120 / 60

 Temp./Humi. : 25 / 46
 Test Engineer : PARK H W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Expiration date of Calibration
1	Spectrum Analyzer	FSV-30	100757	R&S	2014-01-15
2	Spectrum Analyzer	8594E	3649A03649	НР	2014-03-26
3	Spectrum Analyzer	8563E	3425A02505	НР	2014-03-26
4	VECTOR SIGNAL GENERATOR (~6GHz)	8648C	3623A02597	НР	2014-03-25
5	Signal Generator	83711B	US34490456	НР	2014-03-25
6	Attenuator (3dB)	8491A	37822	НР	2014-09-22
7	Attenuator (10dB)	8491A	63196	НР	2014-09-22
8	Test Receiver	ESHS10	828404/009	R&S	2014-03-25
9	EMI Test Receiver	ESCI7	100722	R&S	2013-09-22
10	RF Amplifier	8447D OPT 010	2944A07684	НР	2014-09-22
11	RF Amplifier	8449B	3008A02126	НР	2014-03-25
12	Horn Antenna (1~18GHz)	3115	114105	ETS	2014-01-26
13	DRG Horn (Small) (18~40GHz)	3116B	81109	ETS-Lindgren	2014-03-15
14	DRG Horn (Small) (18~40GHz)	3116B	133350	ETS-Lindgren	2014-03-15
15	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2014-09-20
16	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2013-10-12
17	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
18	Power Divider	11636A	06243	НР	2014-09-22
19	DC Power Supply	6674A	3637A01657	Agilent	-
20	Frequency Counter	5342A	2826A12411	НР	2014-03-25
21	Power Meter	EPM-441A	GB32481702	НР	2014-03-25
22	Power Sensor	8481A	US41030291	HP	2013-09-22
23	Audio Analyzer	8903B	3729A18901	НР	2013-09-22
24	Modulation Analyzer	8901B	3749A05878	НР	2013-09-22
25	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	2013-09-22
26	Stop Watch	HS-3	601Q09R	CASIO	2014-03-26
27	LISN	ENV216	100408	R&S	2013-09-22
28	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2014-06-27
29	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-
30	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-
31	Active Loop Antenna	FMZB 1519	1519-031	SCHWARZBECK	2014-12-14