Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 16240 SBE 37 V2 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 07-Mar-25 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = -9.960744e-003

	TEMP C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
,	,	` ,	` ,	` ,	, ,	` ,
22.0	0000	0.0000	0.00000	2785.74	0.00000	0.00000
0.9	999	34.5800	2.95768	5123.85	2.94397	-0.01370
4.4	1999	34.5611	3.26300	5305.83	3.28658	0.02358
14.9	999	34.5227	4.23938	5833.96	4.30611	0.06673
18.5	5000	34.5147	4.58266	5918.31	4.46868	-0.11397
24.0	0000	34.5067	5.13764	6306.54	5.19752	0.05988
29.0	0000	34.5030	5.65675	6555.18	5.63431	-0.02244
32.5	5001	34.5014	6.02727	6725.20	5.91241	-0.11486

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

