Apprentissage semi-supervisé par prédiction de rotations d'images

Synthèse et présentation des résultats du projet de Deep Learning

Data Saiyentist

M2 Data Science : Santé, Assurance, Finance

Vendredi 31 Mars 2023

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 1

Table of Contents

- Introduction
- 2 Traitement des données
- 3 Baselines
- A RotNet
- 5 Extension : Augmentation des données
- **6** Conclusion
- Bibliographie

Introduction

Contexte : Jeu de données MNIST réduit à 100 labels

Figure: Aperçu du jeu de données MNIST

3 / 17

Introduction

Objectifs du projet

- Implémenter des baselines
- Implémenter un RotNet et analyser/ comparer ses performances

- → Utilisation de Pytorch
- → Code disponible sur https://github.com/DataSaiyentist/RotNet

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 4/17

Traitement des données

Normalisation particulière des données

Figure: Exemple de normalisation

Data Saiyentist RotNet sur MNIST

Traitement des données

Extraction des données

Figure: Exemple de projections et de profils

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 6 /

Traitement des données

Augmentation des données

Figure: Exemples d'augmentation de données

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 7 /

Baselines

MLPC: Multilayer Perceptron Classifier (avec données extraites)

Architecture du MLPC Input Layer Linear (112, 128, relu) Linear (128, 64, relu) Dropout (p = 0.2)Linear (64, 10, softmax) Output Layer

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 8 / 17

Figure: Matrice de confusion du MLPC

 $\mathsf{Accuracy} = 0.66$

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 9 / 17

Algorithmes naïfs

CNN: Convolutional Neural Network

Architecture du CNN

Figure: Matrice de confusion du CNN

Accuracy = 0.71

Data Saiyentist

RotNet sur MNIST Vendredi 31 Mars 2023

RotNet: Gidaris et al. 2018

Principe du RotNet

Objectifs

- Appliquer des rotations à chaque image non-labellisée
 - → 4 fois plus de données
 - → l'ensemble est labellisé (angle de rotation)
- Construire un CNN qui prédit la rotation des images
- Réapprendre ce CNN (transfer learning) pour classifier les chiffres manuscrits avec les données labellisées

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 12/17

RotNet: Gidaris et al. 2018

Architecture du RotNet

Input Layer
Conv2d (1, 32, kernel_size = 3, relu)
Conv2d (32, 32, kernel_size = 3, relu)
Conv2d (32, 32, kernel_size = 3, relu)
Conv2d (32, 64, kernel_size = 3, relu)
Conv2d (64, 64, kernel_size = 3, relu)
Conv2d (64, 64, kernel_size = 3, relu)
$\boxed{MaxPool2d\; (kernel_size = 2, stride = 2) \to flatten}$
Linear (3136, 1024, relu)
Linear (1024, 4, softmax)
Output Layer

13 / 17

Figure: Matrice de confusion du RotNet

 $\mathsf{Accuracy} = 0.77$

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023

Extension : Augmentation des données

avec CNN et RoNet

Figure: Matrice de confusion du CNN et du RotNet UNIVERSITE

Accuracy du CNN = 0.85, Accuracy du RotNet = 0.83

PARIS-SACLAY

Data Saiyentist RotNet sur MNIST Vendredi 31 Mars 2023 15/17

Conclusion

- Non hyper-paramétrisation
- Expérimentation/ Paradigme du semi-supervisé
- Perspectives d'amélioration

16 / 17

Bibliographie

- Spyros Gidaris, Praveer Singh, Nikos Komodakis, "Unsupervised representation learningby predicting image rotations", 2018, ICLR
- Fu Jie Huang, Y-Lan Boureau, Yann LeCun, et al. "Unsupervised learning of invariant feature hierarchies with applications to object recognition in Computer Vision and Pattern Recognition", 2007, IEEE Conference on, pp. 1–8.
- 3 L. Deng, "The MNIST Database of Handwritten Digit Images for Machine Learning Research", 2012, IEEE Signal Processing Magazine, vol. 29, no 6, p. 141-142

