МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Организация ЭВМ и систем»

Тема: Организация связи Ассемблера с ЯВУ на примере программы построения частотного распределение попаданий псевдослучайных целых чисел в заданные интервалы.

Студентка гр. 9383		Орлов Д.С.
Преподаватель		Ефремов М.А.
	Санкт-Петербург	

2020

2020

Цель работы.

Научиться реализовывать связь Ассемблера и ЯВУ. Написать программу построения частотного распределения попаданий псевдослучайных чисел в заданные интервалы.

Задание.

На языке высокого уровня (Pascal или C) генерируется массив псевдослучайных целых чисел, изменяющихся в заданном диапазоне и имеющих равномерное распределение.

Необходимые датчики псевдослучайных чисел находятся в каталоге Tasks\RAND_GEN (при его отсутствии программу датчика получить у преподавателя).

Далее должен вызываться ассемблерный модуль(модули) для формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы. В общем случае интервалы разбиения диапазона изменения псевдослучайных чисел могут иметь различную длину.

Результирующий массив частотного распределения чисел по интервалам, сформированный на ассемблерном уровне, возвращается в программу, реализованную на ЯВУ, и затем сохраняется в файле и выводится на экран средствами ЯВУ.

Исходные данные.

- 1. Длина массива псевдослучайных целыхчисел NumRanDat (<=16K, K=1024)
- 2. Диапазон изменения массива псевдослучайных целых чисел [Xmin, Xmax], значения могут быть биполярные;
 - 3. Количество интервалов, на которые разбивается диапазон изменения массива псевдослучайных целых чисел NInt (<=24)
- 4. Массив левых границ интервалов разбиения LGrInt (должны принадлежать интервалу [Xmin, Xmax]).

Для бригад с четным номером: подпрограмма формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы реализуется в виде двух ассемблерных модулей, первый из которых формирует распределение исходных чисел по интервалам единичной длины и возвращает его в вызывающую программу на ЯВУ как промежуточный результат. Это распределение должно выводиться в текстовом виде для контроля. Затем вызывается второй ассемблерный модуль, который по этому промежуточному распределению формирует окончательное распределение псевдослучайных целых чисел по интервалам произвольной длины (с заданными границами).

Ход работы.

В ходе работы была реализована программа из 3-х модулей, 1 на С++ (ЯВУ) и 2 других на ассемблере.

На ЯВУ написан main.cpp, который собирает от пользователя входную информацию и перенаправляет ее в ассемблерные модули. Так же здесь осуществляется вывод данных в консоль и файл.

На ассемблере написано 2 модуля. Первый реализует распределение чисел по единичным отрезкам. Это сделано с помощью команды loop. Циклически записывается в новый массив количество повторений каждого числа.

Второй модуль формирует распределение тех же чисел, но уже по заданным интервалам. Это происходит благодаря нескольким циклам, в которых левые границы переводятся в неотрицательные числа и сопоставляются числам с таким же индексом из массива, полученного в первом модуле.

Связь между модулями осуществлена с помощью спецификатора extern, который позволяет выполнять раздельную компиляцию модулей.

Исходный код см. в приложении А.

Тестирование.

		Ι			
No	Исходные данные	Резул		Von no vysov	
1	NumDatRan=100	JNO	№ Лев.гр. Кол-во чисел		
	xmin=-50	1	-50	4	
	xmax=50	2	-43	14	
	NInt=10	3	-30	28	
	LGrInt={-50, -43, -30, 0, 10, 12, 15,	4	0	7	
	30, 40, 49 }	5	10	1	
		6	12	6	
		7	15	18	
		8	30	11	
		9	40	11	
		10	49	0	
2	lenArr = 40	№	Лев.гр.	Кол-во чисел	
	xmin= -20	1	-20	15	
	xmax= 20	2	-10	7	
	NInt= 4	3	0	11	
	LGrInt={-20, -10, 0, 10 }	4	10	7	
3	lenArr =1100	№	Лев.гр.	Кол-во чисел	
	xmin=0	1	0	48	
	xmax=100	2	5	211	
	NInt=7	3	23	360	
	LGrInt={0, 5, 23, 56, 70, 75, 90}	4	56	149	
		5	70	56	
		6	75	155	
		7	90	121	
4	lenArr =80	№	Лев.гр.	Кол-во чисел	
	xmin=0	1	0	14	

	xmax=10	2	2	13
	NInt=5	3	4	13
	LGrInt={ 0, 2, 4, 6, 8}	4	6	15
		5	8	25
5	lenArr =16000	№	Лев.гр. Кол-во чисел	
	xmin=-8	1	-8	3956
	xmax=8	2	-4	1982
	NInt=6	3	-2	2071
	LGrInt={ -8 -4 -2 0 3 6}	4	0	2983
		5	3	3002
		6	6	2006

Выводы.

Была реализована связь модуля на ЯВУ и модулей на Ассемблере.

ПРИЛОЖЕНИЕ А.

ИСХОДНЫЙ КОД ПРОГРАММЫ.

```
Название файла: lab6.cpp
#include <ctime>
#include <random>
#include <iostream>
#include <fstream>
extern "C" {
     void first(int* result, int* arr, int minX);
void second(int* result, int lenResult, int* LGrInt, int nInt, int minX,
int maxX, int* output);
int main() {
     int lenArr;
     int minX, maxX;
     int nInt;
     srand(time(NULL));
     std::cout << "Size of array = 16 * N, input N: ";
     std::cin >> lenArr;
     if (lenArr > 16 * 1024) {
          std::cout << "\nError of size!\n";
           return 0;
     std::cout << "\nInput Min X: ";</pre>
     std::cin >> minX;
     std::cout << "\nInput Max X: ";</pre>
     std::cin >> maxX;
     std::cout << "\nInput count of intervals (<= 24): ";</pre>
     std::cin >> nInt;
     if (nInt <= 0 || nInt > 24) {
    std::cout << "\nError of count intervals\n";</pre>
           return 0;
     std::cout << "\nInput left borders: ";</pre>
     int* LGrInt = new int[nInt];
     for (int i = 0; i < nInt; i++) {
    std::cin >> LGrInt[i];
    if (LGrInt[i] > maxX || LGrInt[i] < minX) {
        std::cout << "\nBorder out of array!\n";</pre>
                return 0;
           }
     }
     int* arr = new int[lenArr];
for (int j = 0; j < lenArr; j++)
    arr[j] = minX + rand() % (maxX - minX + 1);</pre>
     int* result = new int[abs(maxX - minX) + 1];
     for (int k = 0; k <= abs(maxX - minX); k++)
    result[k] = 0;</pre>
     int lenResult = abs(maxX - minX) + 1;
     //first(result, arr, minx);
```

```
int* output = new int[nInt + 1];
      for (int k = 0; k \le nInt; k++)
           output[k] = 0;
      //second(result, lenResult, LGrInt, nInt, minX, maxX, output);
      std::ofstream file;
      file.open("./output.txt");
     for (int i = 1; i < nInt; i++) {
    std::cout << i << ") ";
    file << i << ") ";</pre>
           std::cout << "Border: " << LGrInt[i - 1] << " ";
file << "Border: " << LGrInt[i - 1] << " ";</pre>
           int count = 0;
           for (int j = 0; j <= abs(maxX - minX); j++) {
    if (output[j] >= LGrInt[i - 1] && output[j] < LGrInt[i])</pre>
           }
           std::cout << "count in interval: " << count << "\n";
file << "count in interval: " << count << "\n";</pre>
      }
      std::cout << '\n';</pre>
     file.close();
     delete[] LGrInt;
delete[] arr;
delete[] result;
delete[] output;
      return 0;
}
 Название файла: first.asm
.686
.MODEL flat, C
.DATA
. CODE
PUBLIC C first
first PROC C res: dword, arr: dword, minx: dword
      push esi
      push edi
      push ebp
      mov edi, res
      mov esi, arr
myloop:
      mov ebx, [esi]
sub ebx, minx
      mov ebp, [edi + 4*ebx]
      inc ebp
mov [edi + 4*ebx], ebp
      add esi, 4
      loop myloop
```

```
pop ebp
pop edi
pop esi
    ret
first ENDP
End
 Название файла: second.asm
 .686
 .MODEL flat, C
 .DATA
 .CODE
 PUBLIC C second
 second PROC C result: dword, lenresult: dword, leftborders: dword, nint:
dword, minx: dword, maxx: dword, output: dword
      push esi
      push edi
      push ebp
      mov esi, leftborders
      mov ecx, nint
      mov eax, 0
 filoop:
      mov eax, [esi]
      sub eax, minx
      mov [esi], eax
      mov esi, 4
 loop filoop
 mov edi, result
 mov ecx, nint
 mov esi, leftborders
 sub ebx, ebx
```

```
mov eax, [esi]
sloop:
    push ecx
    mov ecx, eax
    push esi
    mov esi, output
    tloop:
        mov eax, [edi]
        add [esi+4*ebx], eax
        add edi, 4
    loop tloop
    pop esi
    mov eax, [esi]
    add esi, 4
    sub eax, [esi]
    neg eax
    inc ebx
    pop ecx
loop sloop
mov esi, output
mov ecx, nint
sub eax, eax
foloop:
    add eax, [esi]
```

add esi, 4

```
noop foloop

mov esi, output
sub eax, lenresult
neg eax
add [esi+4*ebx], eax

pop ebp
pop edi
pop esi

second ENDP
```

END