1 ^{re} S.T.M.G.	Mercredi 30 avril 2 014	Bilan annuel
Correction		

Exercice 1: (3 points)

Les justifications n'étaient pas exigées.

- **1°**) Le taux *t* est égal à 180%. D'après le cours, on multiplie la valeur par 1 + *t* donc par 1 + 1,80 donc : **Réponse c :** Il a été multiplié par 2,80.
- **2°**) t = 25%. Le taux réciproque t' est tel que : $1 + t' = \frac{1}{1+t}$. Ici, $\frac{1}{1+t} = \frac{1}{1+0.25} = 0.8$.

Ainsi, 1 + t' = 0.8 donc t' = 0.8 - 1 donc :

Réponse a : -20%.

3°) Le taux d'évolution global t est tel que $1 + t = (1 + t_1)(1 + t_2)$ avec ici $t_1 = +5\%$ et $t_2 = -2\%$.

Ainsi: 1 + t = (1 + 0.05)(1 - 0.02) = 1.029 donc t = 1.029 - 1 = 0.029. Donc:

Réponse d: +2,90%.

Exercice 2:

(6 points)

1°) u_1 est le nombre d'adolescents ayant regardé l'émission la première semaine. D'après l'énoncé, $u_1 = 400$.

2°) La semaine suivante, l'audience a augmenté de 5% donc $u_2 = u_1(1+5\%) = 400 \times 1,05 = 420$.

 $u_2 = 420$. La deuxième semaine, 420 adolescents ont regardé l'émission.

De même $u_3 = u_2(1+5\%) = 420 \times 1,05 = 441$.

 $u_3 = 441$. La troisième semaine, 441 adolescents ont regardé l'émission.

- **3°)** En suivant la logique précédente, $u_{n+1} = u_n \times 1{,}05$
- **4°)** D'après le cours, la suite (u_n) est une suite géométrique de raison q = 1,05 et de premier terme $u_1 = 400$. En effet, pour passer d'un terme au terme suivant, on multiplie toujours par le même nombre 1,05.
- **5°)** On sait que $u_2 = u_1 \times 1,05$. De même $u_3 = u_2 \times 1,05 = \underbrace{u_1 \times 1,05}_{} \times 1,05 = u_1 \times 1,05^2$.

Par le même raisonnement, on a : $u_4 = u_3 \times 1,05 = \underbrace{u_1 \times 1,05^2}_{u_3} \times 1,05 = u_1 \times 1,05^3$.

On continue jusqu'à obtenir $u_n = u_1 \times 1,05^{n-1}$.

6°) Le nombre d'adolescents regardant l'émission lors de la douzième semaine est égal à u_{12} .

D'après la formule précédente, $u_{12} = u_1 \times 1,05^{11} \approx 684$. Le tableau de valeur de la calculatrice permet d'obtenir le même résultat.

 $u_{12} \approx 684$. La finale a été regardé par 684 adolescents la douzième semaine.

(7 points)

Partie A Lectures graphiques

Exercice 3:

- 1°) Le coût de fabrication de 6 meubles revient à 600€. Le coût de fabrication de 13 meubles revient à 2 000€.
- **2°**) Pour x = 13, la courbe \mathscr{C} est au-dessus de la courbe \mathscr{R} donc le coût de fabrication de 13 meubles est supérieur à la recette obtenue en vendant les meubles. Donc ce n'est pas rentable pour l'artisan de fabriquer et vendre 13 meubles.
- 3°) Pour un coût de fabrication de 900 €, l'artisan peut fabriquer 8 meubles
- 4°) Le bénéfice est positif lorsque la courbe \mathscr{R} est au-dessus de la courbe \mathscr{C} . Cela est vrai sur l'intervalle [1,5;12,5] (valeurs approchées). Le nombre de meubles à construire est évidemment un nombre entier.

Pour être bénéficiaire, l'entreprise doit donc construire entre 2 et 12 meubles

Partie B Étude du bénéfice

1°) B(x) = $-10x^2 + 140x - 180$ avec a = -10. Sur \mathbb{R} , on a donc le tableau de variations suivant :

2°) Le maximum est obtenu pour $x = \frac{-b}{2a} = \frac{-140}{2 \times (-10)} = 7$.

Pour que le bénéfice soit maximal, il faut fabriquer 7 meubles

- 3°) B(7) = $-10 \times 7^2 + 140 \times 7 180 = -490 + 980 180 = 310$. Le bénéfice maximal est égal à 310€.
- **4°)** $\Delta = b^2 4ac$ avec a = -10, b = 140 et c = -180 donc $\Delta = 140^2 4 \times (-10) \times (-180) = 12400$. Le discriminant de B est positif donc l'équation B(x) = 0 admet deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$
 $= \frac{-140 - \sqrt{12400}}{2 \times (-10)}$ = $\frac{-140 + \sqrt{12400}}{2 \times (-10)}$
 ≈ 12.6 ≈ 1.4

Les solutions de l'équation B(x) = 0 sont donc (au dixième près) : 1,4 et 12,6

*

Exercice 4:

1°) Il y a 80 biscuits dont 40 à la vanille et 24 à l'orange. Le reste est à la noix de coco. Puisque 80 – 40 – 24 = 16, il y a 16 biscuits à la noix de coco.

Donc:
$$p(N) = \frac{16}{80} = 0.2$$

- 2°) voir ci-contre
- **3°)** $V \cap C$ est l'événement : « obtenir un biscuit à la vanille avec des pépites de chocolat ». On suit le chemin de l'arbre $V \rightarrow C$ donc : $p(V \cap C) = \frac{40}{80} \times \frac{60}{100} = \frac{2400}{8000}$. Ainsi, $p(V \cap C) = 0.3$.
- **4°**) Il y a trois chemins pour obtenir un biscuit avec des pépites de chocolat : $V \cap C$, $O \cap C$ et $N \cap C$. Ainsi,

$$p(C) = p(V \cap C) + p(O \cap C) + p(N \cap C)$$

$$= \frac{40}{80} \times \frac{60}{100} + \frac{24}{80} \times \frac{25}{100} + \frac{16}{80} \times 0$$

$$= 0.3 + 0.075 + 0$$

$$p(C) = 0.375$$

(4 points)