Assignment 4

BY:

Alaa Hesham Mahmoud	201500638

1 | 16 QAM Figures

Constellation of the 16 transmitted symbols

Results Comment: There are 16 symbols, the distance between each symbol and its adjacent is fixed.

Constellation of the 16 transmitted symbols using gray coding

Results Comment: Gray coding makes any symbol differs from its adjacent symbol in one bit.

Constellation of the noisy 16 received symbols

Results Comment :Noise makes symbols deviates from its accurate positions , ML rule is used to determine which symbol has been transmitted .

Results comment: The more the SNR, the less the BER.

Results comment :As I have used rect function for pulse shaping in time domain , psd is a sinc fcn in freq domain.

2 | BFSk Figures

Results comment: Most likely you are expecting to receive a constellation diagram like this

However the other one is also correct as it draws the inphase and quadrature components.

We may reformulate
$$s(t)$$
 in the expanded form
$$s(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(\frac{\pi t}{T_b}\right) \cos(2\pi f_c t) \mp \sqrt{\frac{2E_b}{T_b}} \sin\left(\frac{\pi t}{T_b}\right) \sin(2\pi f_c t)$$

$$+ \text{sign: transmitting symbol 0; } - \text{sign: transmitting symbol 1.}$$

You can get deduce it by correlating it with the two basis function.

Results comment: we can see the effect of noise as it deviates points from circle circumference.

Results comment :As I have used rect function for pulse shaping in time domain , psd is a sinc fcn in freq domain.

SNR per bit (Eb/N0) Vs BER Curve for BFSK Modulation Scheme Theoretically

Results comment: The more the SNR, the less the BER.

SNR per bit (Eb/N0) Vs BER Curve for BFSK Modulation Scheme using Simulation

Results comment: The more the SNR, the less the BER. There are two points i the whole simulation deviated from this rule, I consider them as outlier.

3 | Comparisons

PSD

PSD for Bpsk

PSD of QPSK

Results comment : There are two observations

- 1- If we consider -20 db is the first null, then Qpsk reaches first null faster than BPSK.
- 2- Peak value of Qpsk is larger than BPSK.

Both observations are consistent with theory .

Theoretical relation between QPSK and BPSK

PSD for 16-QAM

PSD for BFSK

SNR VERSUS BER

For BPSK

Zewail City of Science and Technology University of Science and Technology CIE 428 - fall 2019

For Qpsk

Results comment: We can see BPSK and QPSK have the same BER for same SNR. This is consistent with theory.

For 16-QAM

Results comment: we can see that BER of 16 QAM is larger than BPSK, QPSK for the same SNR which is expected as separation between symbols decreases.

For BFSK

Results comment: If we compared between BFSK receiver to maintain the same BER as in a BPSK receiver, the bit energy to noise density ratio, Eb/NO, has to be doubled.

BPSK:
$$P_e = \frac{1}{2}erfc\left(\sqrt{\frac{E_b}{N_0}}\right)$$
 BFSK: $P_e = \frac{1}{2}erfc\left(\sqrt{\frac{E_b}{2N_0}}\right)$

4 | References

[1] Viswanathan, M. (2013). Simulation of digital communication systems using matlab. 2nd ed. Mathuranathan Viswanathan.