Integrating Large Language Models into Reinforcement Learning

Gregor Kajda, Jonatan Hoffmann Hanssen, Adrian Duric

Supervisors: Katrine Nergård, Kai Olav Ellefsen

Aim of the Project

- RL in large environments
 - Large state and action spaces
 - Poor sampling efficiency
- LLMs can make the agent try smarter actions
- Our goal: integrate an LLM into the RL framework

Guiding Pretraining in Reinforcement Learning with Large Language Models

Project 11
Integrating Large Language Models into Reinforcement Learning

Danijar Hafner 2021, *Crafter*. Screenshot by author. MIT License

 Presents a method for using Large Language Models to explore a 2D environment more intelligently

Danijar Hafner 2021, *Crafter*. Screenshot by author. MIT License

- Presents a method for using Large Language Models to explore a 2D environment more intelligently
- LLM suggests actions for the agent to take based on a description of the state

Danijar Hafner 2021, *Crafter*. Screenshot by author. MIT License

- Presents a method for using Large Language Models to explore a 2D environment more intelligently
- LLM suggests actions for the agent to take based on a description of the state
- Improvements over other methods

Danijar Hafner 2021, *Crafter*. Screenshot by author. MIT License

Lichess 2023, *Double Bongcloud*. Screenshot by author APGL License

 A problem for RL is that rewards are often very rare and delayed

Lichess 2023, *Double Bongcloud*. Screenshot by author APGL License

- A problem for RL is that rewards are often very rare and delayed
- Furthermore, many problems have huge stateaction spaces

Lichess 2023, *Double Bongcloud*. Screenshot by author APGL License

- A problem for RL is that rewards are often very rare and delayed
- Furthermore, many problems have huge stateaction spaces
- Intrinsically Motivated RL attempts to solve this by rewarding:
 - Novelty of outcomes
 - Surprise

Lichess 2023, *Double Bongcloud*. Screenshot by author APGL License

- A problem for RL is that rewards are often very rare and delayed
- Furthermore, many problems have huge stateaction spaces
- Intrinsically Motivated RL attempts to solve this by rewarding:
 - Novelty of outcomes
 - Surprise
- "But not everything novel or unpredictable is useful"

Lichess 2023, *Double Bongcloud*. Screenshot by author APGL License

Exploration with LLMs (ELLM)

- Key insight: Humans do not explore uniformly
- We use intuition to explore plausibly useful behaviour first
- An LLM encodes information about human common-sense knowledge
- This can be used to make the agent explore more intelligently

Mossmouth 2013, *Mantrap*. Screenshot from https://spelunky.fandom.com/wiki/Mantrap (HD)?file=XBLA Mantrap.png

1)Observation captioned to natural language (C_{obs})

1)Observation captioned to natural language (C_{obs})
2)Text observation joined with LLM prompt

- 1)Observation captioned to natural language (C_{obs})
- 2)Text observation joined with LLM prompt
- 3)LLM gives suggestions

- 1)Observation captioned to natural language (C_{obs})
- 2)Text observation joined with LLM prompt
- 3)LLM gives suggestions
- 4)Agent does action

- 1)Observation captioned to natural language (C_{obs})
- 2)Text observation joined with LLM prompt
- 3)LLM gives suggestions
- 4)Agent does action
- 5)Action is also captioned (C_{transition})

- 1)Observation captioned to natural language (C_{obs})
- 2)Text observation joined with LLM prompt
- 3)LLM gives suggestions
- 4)Agent does action
- 5) Action is also captioned $(C_{transition})$
- 6) Agent is rewarded if action $R_{\text{int}} = \max \left(\Delta(C_{\text{transition}}(o_t, a_t, o_{t+1}), g_t^i), i \in [1..k].$ caption is semantically similar to a suggested action

Results

- Exploration with LLMs beats APT and RND, which are state of the art Intrinsically Motivated RL algorithms
- It also performs better on "downstream tasks"

Figure 4: Ground truth achievements unlocked per episode across pretraining, mean±std across 5 seeds.

Pre-Trained Language Models for Interactive Decision-Making

Universitetet i Oslo September 28th, 2023

environment

Introduction

.

- Reinforcement Learning
- Non-trivial planning and reasoning capabilities
- LM-based policy

- Active Data Gathering
- Why do LM perform so much better?

- LID → Pre-Trained Language Model for Interactive Decision-Making
- LID integrated into the policy network
- Convert goal, history and observations to text, and feed it to LM/LID.
- Receive "contextualized token" representation, which is averaged and used to predict next action.

Uses a standard LM, GPT-2, to process the input sequence rather than to predict future tokens

Next action a,

Figure 2: LID with the active data gathering procedure. By iteratively repeating the exploration, hindsight relabeling, and policy update, LID with active data gathering can learn an effective policy without using pre-collected expert data.

Tasks	Methods	Number of Demos				
		100	500	1K	5K	10K
GoToRedBall	BabyAI-Ori 16	81.0	96.0	99.0	99.5	99.9
	LID-Text (Ours)	93.9	99.4	99.7	100.0	100.0
GoToLocal	BabyAI-Ori 16	55.9	84.3	98.6	99.9	99.8
	LID-Text (Ours)					99.5
PickupLoc	BabyAI-Ori 16	28.0	58.0	93.3	97.9	99.8
	LID-Text (Ours)	28.7	73.4	99.0	99.6	99.8
PutNextLocal	BabyAI-Ori 16	14.3	16.8	43.4	81.2	97.7
	LID-Text (Ours)	11.1	93.0	93.2	98.9	99.9

	In-Distribution	Novel Scenes	Novel Tas
Random	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Goal-Object	0.8 ± 0.5	0.0 ± 0.0	0.4 ± 0.4
PPO	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
DQN+HER	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
LID-ADG (Ours)	$\textbf{46.7} \pm \textbf{2.7}$	$\textbf{32.2} \pm \textbf{3.3}$	$25.5 \pm 4.$

Table 2: Comparisons of methods without using expert data on VirtualHome. LID-ADG (Ours) is the only successful approach.

	In-Distribution	Novel Scenes	Novel Tasks
LID-ADG (Ours)	46.7 ± 2.7	32.2 ± 3.3	25.5 ± 4.1
PPO (LID-ADG Init)	53.7 ± 3.5	30.2 ± 3.4	$\textbf{27.8} \pm \textbf{2.7}$
DT (LID-ADG Data)	42.4 ± 1.5	21.6 ± 2.48	16.8 ± 1.0

Table 3: The proposed method with active data gathering, LID-ADG (Ours), can be used as an policy initializer for online RL or a data provider for offline RL.

OMNI: Open-endedness via Models of human Notions of Interestingness

JENNY ZHANG, JOEL LEHMAN, KENNETH STANLEY, JEFF CLUNE

Training Reinforcement Learning (RL) Agents in Large Environments

- Large environment → Large search space
- → Infinitely many possible tasks
 - Even when we only count tasks that the agent is able to learn

How do we choose which tasks to learn first?

- Large Language Models (LLMs) contain human knowledge
 - Humans know which tasks are interesting
- → An LLM could tell an RL agent which tasks to learn first

FIGURE 1 Minecraft - an example of an extremely large environment, with an infinitely large action space. Mojang 2011, *Minecraft*. Screenshot from https://minecraft.fandom.com/wiki/Gameplay

Method

PROMPT

You are a player in a game. You want to learn as many skills as possible.

You can do these tasks well: <tasks done well>.

Suggest whether the given tasks are interesting: <tasks to be determined>.

Algorithm 1 Mechanism to partition the task set into interesting and boring sets.

- 1: Sort the tasks based on the evaluated task success rates.
- 2: Create two empty sets, one to track the interesting tasks and one to track the boring tasks.
- 3: Identify the task with highest success rate and not in any of the sets. Add it to the interesting set.
- 4: Prompt the LM to determine if any of the remaining tasks are boring, contexted on the current set of interesting tasks. Tasks in the interesting set are input as <tasks done well> and tasks yet to be categorized are input as <tasks to be determined> in the LM prompt (above).
- 5: Update the boring set with tasks that the LM has determined as boring.
- 6: Repeat steps 3 5 until all tasks are in either set.

ALGORITHM

Usage in Practice

- Algorithm tested in Crafter
- RL agent trained using Proximal Policy Optimization (PPO)
 - State-of-the-art «standard» RL method
- OMNI's role: Suggest tasks for agent to perform
 - Interesting tasks will be chosen more often
 - Influences policy of RL agent (choosing an action)
- «Boring» tasks were added to show LLM's decisionmaking ability

FIGURE 3 Above: Danijar Hafner 2021, *Crafter*. Screenshot from [1]. Below: Example of actions considered interesting, and the order in which they should be completed.

Relevance to Our Project

- We also want to choose relevant actions
- Generalized algorithm
 - It may be used even in different environments
- Other ways of using LLMs also possible
 - For reward shaping, instead of policy
- Interpretation of «interestingness»
 - Interesting = action with highest success rate?
 - Interesting = action most similar to other interesting actions?
 - OMNI algorithm assumes the two above
 - Interesting = (performed) action most similar to goal?

FIGURE 4 Minigrid, the testing environment we use in our project [2]. Screenshot from https://minigrid.farama.org/

References

[1] J. Zhang et al., «OMNI: Open-endedness via Models of human Notions of Interestingness». https://arxiv.org/abs/2306.01711

[2] M. Chevalier-Boisvert et al., «Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks».

https://arxiv.org/abs/2306.13831

Our Approach

- LLM as policy
 - LLM gets state prompt
 - Answer becomes RL agent policy
- LLM as reward
 - LLM gets state prompt
 - Returns recommended action
 - Similar actions to recommended one are rewarded

You are a player playing a videogame. It is a top down turn based game, where each turn you can move in one of the four cardinal directions. You can see a red key 4 squares north and 2 squares east, and a red door 3 squares south of your location. What move should you do? Please only answer a single cardinal direction, without elaborating on you choice. For example: given a description such as this, you could respond with the singular word "East".

North

Above: Farama 2023, *Minigrid*. Screenshot by author. Below: Example prompt to LLM, and LLM response.

Current State (!) of the Project

Achieved so far To be improved

LLM can control agent directly in Minigrid environment	LLM (Llama 2) is not smart
Soon implemented conventional RL baseline (PPO)	Agent still not actually trained by LLM actions
Can reward similarity between observation and LLM recommendation	Final architecture not decided upon yet

Where We're Headed

Establish conventional RL baseline

- Finalize Proximal Policy Optimization (PPO)
- Measure results

Integrate LLM into Architecture

- Decide: LLM as policy or reward?
- Automate communication between LLM and RL agent
- Fit into RL framework

Testing and evaluation

- Our results vs. PPO only?
- Sampling efficiency improved?