

* RF Exposure

1. Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Emilias for interminant reministry e Emposare. The emposare is carearated.							
Emaguan ay Ranga	Electric Field	Magnetic Field	Power Density	Averaging Time			
Frequency Range	Strength [V/m]	Strength [A/m]	[mW/cm²]	[minute]			
Limits for General Population / Uncontrolled Exposure							
0.3 ~ 1.34	614	1.63	*(100)	30			
1.34 ~ 30	824/f	2.19/f	$*(180/f^2)$	30			
30 ~ 300	27.5	0.073	0.2	30			
300 ~ 1 500	/	/	f/1 500	30			
1 500 ~ 15 000	/	/	1.0	30			

f=frequency in MZ, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad \left(\Rightarrow R = \sqrt{PG/4\pi S} \right)$$

 $S = power density [mW /cm^2]$

P = Power input to antenna [mW]

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = 15.28 [mW] (11.84 dBm) Antenna gain = 0.62 [mW] (-2.05 dBi)				
100 mW, at 20 cm from an antenna 6 [dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ $= 0.079 \ 18 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$			
15.28 mW, at 20 cm from an antenna -2.05 [dBi]	$S = PG/4\pi R^2 = 0.001 \ 90 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$			

2. RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.

3. Calculation Result of RF Exposure

* 802.11b

Channel	Frequency	Ant Gain	power	power	Power Density at 20 cm	Power Density at 2.5 cm
	[MHz]	[dBi]	[dBm]	[mW]	[mW/cm²]	[mW/cm²]
Lowest	2 412	0.62	10.54	11.32	0.001 41	0.089 93
Middle	2 437	0.62	10.89	12.27	0.001 52	0.097 48
Highest	2 462	0.62	10.83	12.11	0.001 50	0.096 14

* 802.11g

002.115						
Channel	Fraguancy	Ant Gain	nowar	nower	Power Density	Power Density
Channel Frequency	Ant Gain power	power	at 20 cm	at 2.5 cm		
	[MHz]	[dBi]	[dBm]	[mW]	[mW/cm²]	[mW/cm²]
Lowest	2 412	0.62	11.44	13.93	0.001 73	0.110 64
Middle	2 437	0.62	11.84	15.28	0.001 90	0.121 31
Highest	2 462	0.62	11.52	14.19	0.001 76	0.112 70

* 802.11n HT20

Channel	Frequency	Ant Gain	power	power	Power Density at 20 cm	Power Density at 2.5 cm
	[MHz]	[dBi]	[dBm]	[mW]	[mW/cm²]	$[\mathrm{mW/cm^2}]$
Lowest	2 412	0.62	11.99	15.80	0.001 96	0.125 45
Middle	2 437	0.62	11.79	15.10	0.001 87	0.119 94
Highest	2 462	0.62	11.48	14.08	0.001 75	0.111 79

* 802.11n HT40

Channal	F	A mit Conin		power	Power Density	Power Density
Channel	Frequency	Ant Gain	power		at 20 cm	at 2.5 cm
	[MHz]	[dBi]	[dBm]	[mW]	[mW/cm²]	[mW/cm²]
Lowest	2 422	0.62	10.88	12.25	0.001 52	0.097 26
Middle	2 437	0.62	11.58	14.38	0.001 78	0.114 21
Highest	2 452	0.62	10.96	12.46	0.001 55	0.098 96