2022 年普通高等学校招生全国统一考试 (新高考全国 II 卷) 数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 已知集合 $A = \{-1,1,2,4\}, B = \{x | |x-1| \le 1\}, \, \text{则 } A \cap B = ($
- A. $\{-1,2\}$
- B. {1,2}
- C. $\{1,4\}$
- D. $\{-1,4\}$

【答案】B

【解析】

【分析】求出集合B后可求 $A \cap B$.

【详解】 $B = \{x \mid 0 \le x \le 2\}$, 故 $A \cap B = \{1, 2\}$,

故选: B.

2.
$$(2+2i)(1-2i) = ($$

A. -2 + 4i

B. -2-4i

C. 6 + 2i

D. 6 - 2i

【答案】D

【解析】

【分析】利用复数的乘法可求(2+2i)(1-2i).

【详解】(2+2i)(1-2i)=2+4-4i+2i=6-2i,

故选: D.

4. 已知向量
$$\vec{a} = (3,4), \vec{b} = (1,0), \vec{c} = \vec{a} + t\vec{b}$$
,若 $<\vec{a},\vec{c}> = <\vec{b},\vec{c}>$,则 $t = ($

А. -6

В. -5

C. 5

D. 6

【答案】C

【解析】

【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得

【详解】解:
$$\vec{c} = (3+t,4)$$
, $\cos \vec{a}$, $\vec{c} = \cos b$, \vec{c} , 即 $\frac{9+3t+16}{5|\vec{c}|} = \frac{3+t}{|\vec{c}|}$, 解得 $t = 5$,

故选: C

5. 有甲、乙、丙、丁、戊 5 名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()

- A. 12 种
- B. 24 种
- C. 36 种
- D. 48 种

【答案】B

【解析】

【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解

【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3\x2\x2\x2\x2\x2\x2\x4\text{和不同的排列方式,故选:B

6. 若
$$\sin(\alpha + \beta) + \cos(\alpha + \beta) = 2\sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right)\sin\beta$$
,则(

A.
$$\tan(\alpha - \beta) = 1$$

B.
$$\tan(\alpha + \beta) = 1$$

C.
$$\tan(\alpha - \beta) = -1$$

D.
$$\tan(\alpha + \beta) = -1$$

【答案】C

【解析】

【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.

【详解】由已知得: $\sin \alpha \cos \beta + \cos \alpha \sin \beta + \cos \alpha \cos \beta - \sin \alpha \sin \beta = 2(\cos \alpha - \sin \alpha) \sin \beta$

 $\exists \mathbb{P} \colon \sin \alpha \cos \beta - \cos \alpha \sin \beta + \cos \alpha \cos \beta + \sin \alpha \sin \beta = 0 ,$

$$\mathbb{EI}: \sin(\alpha - \beta) + \cos(\alpha - \beta) = 0,$$

所以
$$\tan(\alpha - \beta) = -1$$
,

故选: C

7. 已知正三棱台的高为 1,上、下底面边长分别为 $3\sqrt{3}$ 和 $4\sqrt{3}$,其顶点都在同一球面上,则该球的表面积为(

A. 100π

B. 128π

C. 144π

D. 192π

【答案】A

【解析】

【分析】根据题意可求出正三棱台上下底面所在圆面的半径 r_1, r_2 ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.

【详解】设正三棱台上下底面所在圆面的半径 r_1, r_2 ,所以 $2r_1 = \frac{3\sqrt{3}}{\sin 60^\circ}$, $2r_2 = \frac{4\sqrt{3}}{\sin 60^\circ}$,即 $r_1 = 3, r_2 = 4$,设球心到上下底面的距离分别为 d_1, d_2 ,球的半径为 R,所以 $d_1 = \sqrt{R^2 - 9}$, $d_2 = \sqrt{R^2 - 16}$, 故 $\left| d_1 - d_2 \right| = 1$ 或 $d_1 + d_2 = 1$,即 $\left| \sqrt{R^2 - 9} - \sqrt{R^2 - 16} \right| = 1$ 或 $\sqrt{R^2 - 9} + \sqrt{R^2 - 16} = 1$,解得 $R^2 = 25$ 符合题意,所以球的表面积为 $S = 4\pi R^2 = 100\pi$. 故选: A.

8. 已知函数 f(x) 的定义域为 **R**,且 f(x+y)+f(x-y)=f(x)f(y), f(1)=1,则 $\sum_{k=1}^{22} f(k)=(x+y)$

A. -3

B. -2

C. 0

D. 1

【答案】A

【解析】

【分析】根据题意赋值即可知函数 f(x) 的一个周期为 6,求出函数一个周期中的 f(1),f(2),…,f(6) 的值,即可解出.

【详解】因为 f(x+y)+f(x-y)=f(x)f(y),令 x=1,y=0 可得, 2f(1)=f(1)f(0),所以 f(0)=2,令 x=0 可得, f(y)+f(-y)=2f(y),即 f(y)=f(-y),所以函数 f(x) 为偶函数,令 y=1 得, f(x+1)+f(x-1)=f(x)f(1)=f(x),即有 f(x+2)+f(x)=f(x+1),从而可知 f(x+2)=-f(x-1), f(x-1)=-f(x-4),故 f(x+2)=f(x-4),即 f(x)=f(x+6),所以函数 f(x)的一个周期为 6.

因为
$$f(2) = f(1) - f(0) = 1 - 2 = -1$$
, $f(3) = f(2) - f(1) = -1 - 1 = -2$, $f(4) = f(-2) = f(2) = -1$,

$$f(5) = f(-1) = f(1) = 1$$
, $f(6) = f(0) = 2$, 所以

一个周期内的 $f(1)+f(2)+\cdots+f(6)=0$. 由于22除以6余4,

所以
$$\sum_{k=1}^{22} f(k) = f(1) + f(2) + f(3) + f(4) = 1 - 1 - 2 - 1 = -3$$
.

故选: A.

二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

9. 已知函数
$$f(x) = \sin(2x + \varphi)(0 < \varphi < \pi)$$
 的图像关于点 $\left(\frac{2\pi}{3}, 0\right)$ 中心对称,则(

A.
$$f(x)$$
在区间 $\left(0, \frac{5\pi}{12}\right)$ 单调递减

B.
$$f(x)$$
在区间 $\left(-\frac{\pi}{12}, \frac{11\pi}{12}\right)$ 有两个极值点

C. 直线
$$x = \frac{7\pi}{6}$$
 是曲线 $y = f(x)$ 的对称轴

D. 直线
$$y = \frac{\sqrt{3}}{2} - x$$
 是曲线 $y = f(x)$ 的切线

【答案】AD

【解析】

【分析】根据三角函数的性质逐个判断各选项,即可解出.

【详解】由题意得:
$$f\left(\frac{2\pi}{3}\right) = \sin\left(\frac{4\pi}{3} + \varphi\right) = 0$$
, 所以 $\frac{4\pi}{3} + \varphi = k\pi$, $k \in \mathbb{Z}$,

$$\mathbb{P} \varphi = -\frac{4\pi}{3} + k\pi, k \in \mathbb{Z} ,$$

又
$$0 < \varphi < \pi$$
 ,所以 $k = 2$ 时, $\varphi = \frac{2\pi}{3}$,故 $f(x) = \sin\left(2x + \frac{2\pi}{3}\right)$.

对 A,当
$$x \in \left(0, \frac{5\pi}{12}\right)$$
时, $2x + \frac{2\pi}{3} \in \left(\frac{2\pi}{3}, \frac{3\pi}{2}\right)$,由正弦函数 $y = \sin u$ 图象知 $y = f(x)$ 在 $\left(0, \frac{5\pi}{12}\right)$ 上是单调递减;

对 B, 当 $x \in \left(-\frac{\pi}{12}, \frac{11\pi}{12}\right)$ 时, $2x + \frac{2\pi}{3} \in \left(\frac{\pi}{2}, \frac{5\pi}{2}\right)$,由正弦函数 $y = \sin u$ 图象知 y = f(x) 只有 1 个极值点,

由 $2x + \frac{2\pi}{3} = \frac{3\pi}{2}$,解得 $x = \frac{5\pi}{12}$,即 $x = \frac{5\pi}{12}$ 为函数的唯一极值点;

对 C, 当 $x = \frac{7\pi}{6}$ 时, $2x + \frac{2\pi}{3} = 3\pi$, $f(\frac{7\pi}{6}) = 0$, 直线 $x = \frac{7\pi}{6}$ 不是对称轴;

对 D, 由
$$y' = 2\cos\left(2x + \frac{2\pi}{3}\right) = -1$$
 得: $\cos\left(2x + \frac{2\pi}{3}\right) = -\frac{1}{2}$,

解得
$$2x + \frac{2\pi}{3} = \frac{2\pi}{3} + 2k\pi$$
 或 $2x + \frac{2\pi}{3} = \frac{4\pi}{3} + 2k\pi, k \in \mathbb{Z}$,

从而得: $x = k\pi$ 或 $x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$,

所以函数 y = f(x) 在点 $\left(0, \frac{\sqrt{3}}{2}\right)$ 处的切线斜率为 $k = y'\big|_{x=0} = 2\cos\frac{2\pi}{3} = -1$,

切线方程为:
$$y - \frac{\sqrt{3}}{2} = -(x - 0)$$
即 $y = \frac{\sqrt{3}}{2} - x$.

故选: AD.

12. 若 x, y 满足 $x^2 + y^2 - xy = 1$, 则 ()

A. $x + y \le 1$

B. $x + y \ge -2$

C. $x^2 + v^2 \le 2$

D. $x^2 + y^2 \ge 1$

【答案】BC

【解析】

【分析】根据基本不等式或者取特值即可判断各选项的真假.

【详解】因为 $ab \le \left(\frac{a+b}{2}\right)^2 \le \frac{a^2+b^2}{2} (a,b\hat{1} \mathbf{R}), 由 x^2 + y^2 - xy = 1$ 可变形为,

 $(x+y)^2 - 1 = 3xy \le 3\left(\frac{x+y}{2}\right)^2$,解得 $-2 \le x+y \le 2$,当且仅当 x = y = -1时, x+y = -2,当且仅当

x = y = 1时, x + y = 2, 所以 A 错误, B 正确;

由 $x^2 + y^2 - xy = 1$ 可变形为 $(x^2 + y^2) - 1 = xy \le \frac{x^2 + y^2}{2}$,解得 $x^2 + y^2 \le 2$,当且仅当 $x = y = \pm 1$ 时取等号,所以 C 正确;

因为
$$x^2 + y^2 - xy = 1$$
变形可得 $\left(x - \frac{y}{2}\right)^2 + \frac{3}{4}y^2 = 1$,设 $x - \frac{y}{2} = \cos\theta$,所以

$$x = \cos\theta + \frac{1}{\sqrt{3}}\sin\theta, y = \frac{2}{\sqrt{3}}\sin\theta$$
,因此

$$x^{2} + y^{2} = \cos^{2}\theta + \frac{5}{3}\sin^{2}\theta + \frac{2}{\sqrt{3}}\sin\theta\cos\theta = 1 + \frac{1}{\sqrt{3}}\sin2\theta - \frac{1}{3}\cos2\theta + \frac{1}{3}\sin\theta\cos\theta$$

$$=\frac{4}{3}+\frac{2}{3}\sin\left(2\theta-\frac{\pi}{6}\right)\in\left[\frac{2}{3},2\right]$$
,所以当 $x=\frac{\sqrt{3}}{3},y=-\frac{\sqrt{3}}{3}$ 时满足等式,但是 $x^2+y^2\geq 1$ 不成立,所以 D

错误.

故选: BC.

三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13. 已知随机变量 X 服从正态分布 $N(2,\sigma^2)$,且 $P(2 < X \le 2.5) = 0.36$,则 P(X > 2.5) =______.

【答案】
$$0.14 ## \frac{7}{50}$$
.

【解析】

【分析】根据正态分布曲线的性质即可解出.

【详解】因为
$$X \sim N(2,\sigma^2)$$
, 所以 $P(X < 2) = P(X > 2) = 0.5$, 因此

$$P(X > 2.5) = P(X > 2) - P(2 < X \le 2.5) = 0.5 - 0.36 = 0.14$$
.

故答案为: 0.14.

【答案】 ①.
$$y = \frac{1}{e}x$$
 ②. $y = -\frac{1}{e}x$

【解析】

【分析】分x>0和x<0两种情况,当x>0时设切点为 $\left(x_{0},\ln x_{0}\right)$,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出 x_{0} ,即可求出切线方程,当x<0时同理可得;

【详解】解: 因为 $y = \ln |x|$,

当 x > 0 时 $y = \ln x$, 设切点为 $(x_0, \ln x_0)$, 由 $y' = \frac{1}{x}$, 所以 $y'|_{x=x_0} = \frac{1}{x_0}$, 所以切线方程为

$$y - \ln x_0 = \frac{1}{x_0} (x - x_0),$$

又切线过坐标原点,所以一 $\ln x_0 = \frac{1}{x_0} (-x_0)$,解得 $x_0 = e$,所以切线方程为 $y-1 = \frac{1}{e} (x-e)$,即 $y = \frac{1}{e} x$;

当 x < 0 时 $y = \ln(-x)$, 设切点为 $(x_1, \ln(-x_1))$, 由 $y' = \frac{1}{x}$, 所以 $y'|_{x=x_1} = \frac{1}{x_1}$, 所以切线方程为

$$y - \ln(-x_1) = \frac{1}{x_1}(x - x_1)$$
,

又切线过坐标原点,所以一 $\ln(-x_1) = \frac{1}{x_1}(-x_1)$,解得 $x_1 = -e$, 所以切线方程为 $y-1 = \frac{1}{-e}(x+e)$, 即

$$y = -\frac{1}{e}x;$$

故答案为: $y = \frac{1}{e}x$; $y = -\frac{1}{e}x$

15. 设点 A(-2,3), B(0,a) ,若直线 AB 关于 y=a 对称的直线与圆 $(x+3)^2+(y+2)^2=1$ 有公共点,则 a 的取值范围是

【答案】
$$\left[\frac{1}{3}, \frac{3}{2}\right]$$

【解析】

【分析】首先求出点 A 关于 Y = a 对称点 A' 的坐标,即可得到直线 I 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;

【详解】解: A(-2,3) 关于 y = a 对称的点的坐标为 A'(-2,2a-3), B(0,a) 在直线 y = a 上,

所以 A'B 所在直线即为直线 l , 所以直线 l 为 $y = \frac{a-3}{-2}x + a$, 即 (a-3)x + 2y - 2a = 0 ;

圆 $C:(x+3)^2+(y+2)^2=1$, 圆心C(-3,-2), 半径r=1,

依题意圆心到直线l的距离 $d = \frac{\left| -3(a-3)-4-2a \right|}{\sqrt{(a-3)^2+2^2}} \le 1$,

即
$$(5-5a)^2 \le (a-3)^2 + 2^2$$
,解得 $\frac{1}{3} \le a \le \frac{3}{2}$,即 $a \in \left[\frac{1}{3}, \frac{3}{2}\right]$;

故答案为:
$$\left[\frac{1}{3}, \frac{3}{2}\right]$$

四、解答题: 本题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤.

17. 已知 $\{a_n\}$ 为等差数列, $\{b_n\}$ 是公比为 2 的等比数列,且 $a_2-b_2=a_3-b_3=b_4-a_4$.

- (1) 证明: $a_1 = b_1$;
- (2) 求集合 $\{k | b_k = a_m + a_1, 1 \le m \le 500\}$ 中元素个数.

【答案】(1)证明见解析;

(2) 9.

【解析】

【分析】(1) 设数列 $\{a_n\}$ 的公差为d,根据题意列出方程组即可证出;

(2) 根据题意化简可得 $m = 2^{k-2}$,即可解出.

【小问1详解】

设数列
$$\{a_n\}$$
的公差为 d ,所以,
$$\begin{cases} a_1+d-2b_1=a_1+2d-4b_1\\ a_1+d-2b_1=8b_1-\left(a_1+3d\right) \end{cases}$$
,即可解得, $b_1=a_1=\frac{d}{2}$,所以原命题得证.

【小问2详解】

由(1)知,
$$b_1=a_1=\frac{d}{2}$$
,所以 $b_k=a_m+a_1\Leftrightarrow b_1\times 2^{k-1}=a_1+(m-1)d+a_1$,即 $2^{k-1}=2m$,亦即

 $m = 2^{k-2} \in [1,500]$,解得 $2 \le k \le 10$,所以满足等式的解 $k = 2,3,4,\cdots,10$,故集合

$$\{k \mid b_k = a_m + a_1, 1 \le m \le 500\}$$
 中的元素个数为 $10 - 2 + 1 = 9$.

18. 记 $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 分别以 a, b, c 为边长的三个正三角形的面积依次

为
$$S_1, S_2, S_3$$
, 已知 $S_1 - S_2 + S_3 = \frac{\sqrt{3}}{2}, \sin B = \frac{1}{3}$.

(1) 求 △*ABC*的面积;

(2) 若 $\sin A \sin C = \frac{\sqrt{2}}{3}$, 求 b.

【答案】(1)
$$\frac{\sqrt{2}}{8}$$

 $(2) \frac{1}{2}$

【解析】

【分析】(1) 先表示出 S_1, S_2, S_3 ,再由 $S_1 - S_2 + S_3 = \frac{\sqrt{3}}{2}$ 求得 $a^2 + c^2 - b^2 = 2$,结合余弦定理及平方关系求得 ac ,再由面积公式求解即可;

(2) 由正弦定理得 $\frac{b^2}{\sin^2 B} = \frac{ac}{\sin A \sin C}$, 即可求解.

【小问1详解】

曲题意得
$$S_1 = \frac{1}{2} \cdot a^2 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} a^2$$
, $S_2 = \frac{\sqrt{3}}{4} b^2$, $S_3 = \frac{\sqrt{3}}{4} c^2$, 则 $S_1 - S_2 + S_3 = \frac{\sqrt{3}}{4} a^2 - \frac{\sqrt{3}}{4} b^2 + \frac{\sqrt{3}}{4} c^2 = \frac{\sqrt{3}}{2}$,

即 $a^2+c^2-b^2=2$,由余弦定理得 $\cos B=\frac{a^2+c^2-b^2}{2ac}$,整理得 $ac\cos B=1$,则 $\cos B>0$,又 $\sin B=\frac{1}{3}$,

$$\text{III } \cos B = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}, \quad ac = \frac{1}{\cos B} = \frac{3\sqrt{2}}{4}, \quad \text{III } S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{\sqrt{2}}{8};$$

【小问2详解】

由正弦定理得:
$$\frac{b}{\sin B} = \frac{a}{\sin A} = \frac{c}{\sin C}$$
, 则 $\frac{b^2}{\sin^2 B} = \frac{a}{\sin A} \cdot \frac{c}{\sin C} = \frac{ac}{\sin A \sin C} = \frac{\frac{3\sqrt{2}}{4}}{\frac{\sqrt{2}}{3}} = \frac{9}{4}$, 则 $\frac{b}{\sin B} = \frac{3}{2}$,

$$b = \frac{3}{2}\sin B = \frac{1}{2}.$$

- 21. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F(2,0),渐近线方程为 $y = \pm \sqrt{3}x$.
- (1) 求C的方程;
- (2) 过 F 的直线与 C 的两条渐近线分别交于 A, B 两点,点 $P(x_1,y_1)$, $Q(x_2,y_2)$ 在 C 上,且 $x_1 > x_2 > 0$, $y_1 > 0$. 过 P 且斜率为 $-\sqrt{3}$ 的直线与过 Q 且斜率为 $\sqrt{3}$ 的直线交于点 M.从下面①②③中选取两个作为条件,证明另外一个成立:

①M在AB上;②PQ//AB;③|MA|=|MB|.

注: 若选择不同的组合分别解答,则按第一个解答计分.

【答案】(1)
$$x^2 - \frac{y^2}{3} = 1$$

(2) 见解析

【解析】

【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;

(2) 先分析得到直线 AB 的斜率存在且不为零,设直线 AB 的斜率为 k, $M(x_0, y_0)$,由③|AM| = |BM|等价分析得到 $x_0 + ky_0 = \frac{8k^2}{k^2 - 3}$; 由直线 PM 和 QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线 PQ 的斜率 $m = \frac{3x_0}{y_0}$,由②PQ / /AB 等价转化为 $ky_0 = 3x_0$,由①M 在直线 AB 上等价于 $ky_0 = k^2(x_0 - 2)$,然后选择两个作为已知条件一个作为结论,进行证明即可.

【小问1详解】

右焦点为 F(2,0), $\therefore c = 2$, ∵ 渐近线方程为 $y = \pm \sqrt{3}x$, $\therefore \frac{b}{a} = \sqrt{3}$, $\therefore b = \sqrt{3}a$, $\therefore c^2 = a^2 + b^2 = 4a^2 = 4$, $\therefore a = 1$, $\therefore b = \sqrt{3}$.

∴ C 的方程为:
$$x^2 - \frac{y^2}{3} = 1$$
;

【小问2详解】

由己知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,

若选由①②推③或选由②③推①: 由②成立可知直线 AB 的斜率存在且不为零;

若选①③推②,则M 为线段 AB 的中点,假若直线 AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F,此时由对称性可知P、Q关于x 轴对称,与从而 $x_1=x_2$,已知不符;

总之,直线 AB 的斜率存在且不为零.

设直线 AB 的斜率为 k, 直线 AB 方程为 y = k(x-2),

则条件①M在AB上,等价于 $y_0 = k(x_0 - 2) \Leftrightarrow ky_0 = k^2(x_0 - 2)$;

两渐近线的方程合并为 $3x^2 - y^2 = 0$,

联立消去 y 并化简整理得: $(k^2-3)x^2-4k^2x+4k^2=0$

设
$$A(x_3, y_3), B(x_3, y_4)$$
, 线段中点为 $N(x_N, y_N)$, 则 $x_N = \frac{x_3 + x_4}{2} = \frac{2k^2}{k^2 - 3}, y_N = k(x_N - 2) = \frac{6k}{k^2 - 3}$

设 $M(x_0, y_0)$,

则条件③|AM| = |BM|等价于 $(x_0 - x_3)^2 + (y_0 - y_3)^2 = (x_0 - x_4)^2 + (y_0 - y_4)^2$,

移项并利用平方差公式整理得:

$$(x_3 - x_4) [2x_0 - (x_3 + x_4)] + (y_3 - y_4) [2y_0 - (y_3 + y_4)] = 0$$
,

$$\left[2x_{0}-\left(x_{3}+x_{4}\right)\right]+\frac{y_{3}-y_{4}}{x_{3}-x_{4}}\left[2y_{0}-\left(y_{3}+y_{4}\right)\right]=0\text{ , } \exists\exists\ x_{0}-x_{N}+k\left(y_{0}-y_{N}\right)=0\text{ , }$$

$$\mathbb{E} x_0 + k y_0 = \frac{8k^2}{k^2 - 3};$$

由题意知直线 PM 的斜率为 $-\sqrt{3}$, 直线 QM 的斜率为 $\sqrt{3}$,

$$\therefore \boxplus y_1 - y_0 = -\sqrt{3} (x_1 - x_0), y_2 - y_0 = \sqrt{3} (x_2 - x_0),$$

$$\therefore y_1 - y_2 = -\sqrt{3} (x_1 + x_2 - 2x_0),$$

所以直线
$$PQ$$
 的斜率 $m = \frac{y_1 - y_2}{x_1 - x_2} = -\frac{\sqrt{3}(x_1 + x_2 - 2x_0)}{x_1 - x_2}$,

直线
$$PM: y = -\sqrt{3}(x - x_0) + y_0$$
, 即 $y = y_0 + \sqrt{3}x_0 - \sqrt{3}x$,

代入双曲线的方程
$$3x^2-y^2-3=0$$
,即 $\left(\sqrt{3}x+y\right)\left(\sqrt{3}x-y\right)=3$ 中,

得:
$$(y_0 + \sqrt{3}x_0) \left[2\sqrt{3}x - (y_0 + \sqrt{3}x_0) \right] = 3$$
,

解得
$$P$$
 的横坐标: $x_1 = \frac{1}{2\sqrt{3}} \left(\frac{3}{y_0 + \sqrt{3}x_0} + y_0 + \sqrt{3}x_0 \right)$,

同理:
$$x_2 = -\frac{1}{2\sqrt{3}} \left(\frac{3}{y_0 - \sqrt{3}x_0} + y_0 - \sqrt{3}x_0 \right)$$
,

$$\therefore x_1 - x_2 = \frac{1}{\sqrt{3}} \left(\frac{3y_0}{y_0^2 - 3x_0^2} + y_0 \right), \ x_1 + x_2 - 2 \ x_0 = -\frac{3x_0}{y_0^2 - 3x_0^2} - x_0$$

$$\therefore m = \frac{3x_0}{y_0},$$

:.条件②PQ//AB等价于 $m=k \Leftrightarrow ky_0 = 3x_0$,

综上所述:

条件①M在AB上,等价于 $ky_0 = k^2(x_0 - 2)$;

条件②PQ//AB等价于 $ky_0 = 3x_0$;

条件③
$$|AM| = |BM|$$
等价于 $x_0 + ky_0 = \frac{8k^2}{k^2 - 3}$;

选①②推③:

由①②解得:
$$x_0 = \frac{2k^2}{k^2 - 3}$$
, $\therefore x_0 + ky_0 = 4x_0 = \frac{8k^2}{k^2 - 3}$, \therefore ③成立;

选①③推②:

由①③解得:
$$x_0 = \frac{2k^2}{k^2 - 3}$$
, $ky_0 = \frac{6k^2}{k^2 - 3}$,

$$\therefore ky_0 = 3x_0$$
, \therefore ②成立;

选②③推①:

曲②③解得:
$$x_0 = \frac{2k^2}{k^2 - 3}$$
, $ky_0 = \frac{6k^2}{k^2 - 3}$, $x_0 - 2 = \frac{6}{k^2 - 3}$,

$$\therefore ky_0 = k^2(x_0 - 2)$$
, \therefore ①成立.

- 22. 已知函数 $f(x) = xe^{ax} e^x$.
- (1) 当a = 1时,讨论f(x)的单调性;
- (2) 当x > 0时, f(x) < -1, 求a的取值范围;

(3) 设
$$n \in \mathbb{N}^*$$
, 证明: $\frac{1}{\sqrt{1^2+1}} + \frac{1}{\sqrt{2^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} > \ln(n+1)$.

【答案】(1) f(x)的减区间为 $(-\infty,0)$,增区间为 $(0,+\infty)$.

- (2) $a \le \frac{1}{2}$
- (3) 见解析

【解析】

【分析】(1) 求出f'(x), 讨论其符号后可得f(x)的单调性.

- (2) 设 $h(x) = xe^{ax} e^x + 1$,求出h''(x),先讨论 $a > \frac{1}{2}$ 时题设中的不等式不成立,再就 $0 < a \le \frac{1}{2}$ 结合放缩法讨论h'(x)符号,最后就 $a \le 0$ 结合放缩法讨论h(x)的范围后可得参数的取值范围.
- (3) 由 (2) 可得 $2 \ln t < t \frac{1}{t}$ 对任意的 t > 1 恒成立,从而可得 $\ln(n+1) \ln n < \frac{1}{\sqrt{n^2 + n}}$ 对任意的 $n \in N^*$ 恒成

立,结合裂项相消法可证题设中的不等式.

【小问1详解】

当
$$a = 1$$
 时, $f(x) = (x-1)e^x$,则 $f'(x) = xe^x$,

当x < 0时, f'(x) < 0, 当x > 0时, f'(x) > 0,

故f(x)的减区间为 $(-\infty,0)$,增区间为 $(0,+\infty)$.

【小问2详解】

设 $h(x) = xe^{ax} - e^x + 1$, 则h(0) = 0,

又 $h'(x) = (1+ax)e^{ax} - e^{x}$, 设 $g(x) = (1+ax)e^{ax} - e^{x}$,

则 $g'(x) = (2a + a^2 x) e^{ax} - e^x$,

若 $a > \frac{1}{2}$,则 g'(0) = 2a - 1 > 0,

因为g'(x)为连续不间断函数,

故存在 $x_0 \in (0, +\infty)$, 使得 $\forall x \in (0, x_0)$, 总有 g'(x) > 0,

故g(x)在 $(0,x_0)$ 为增函数,故g(x)>g(0)=0,

故h(x)在 $(0,x_0)$ 为增函数,故h(x)>h(0)=-1,与题设矛盾.

若 $0 < a \le \frac{1}{2}$, 则 $h'(x) = (1+ax)e^{ax} - e^x = e^{ax + \ln(1+ax)} - e^x$,

下证:对任意x > 0,总有 $\ln(1+x) < x$ 成立,

证明: 设 $S(x) = \ln(1+x)-x$, 故 $S'(x) = \frac{1}{1+x}-1 = \frac{-x}{1+x} < 0$,

故S(x)在 $(0,+\infty)$ 上为减函数,故S(x)<S(0)=0即 $\ln(1+x)$ <x成立.

由上述不等式有 $e^{ax+\ln(1+ax)}-e^x < e^{ax+ax}-e^x = e^{2ax}-e^x \le 0$,

故 $h'(x) \le 0$ 总成立, 即h(x)在 $(0,+\infty)$ 上为减函数,

所以h(x) < h(0) = -1

当 $a \le 0$ 时,有 $h'(x) = e^{ax} - e^x + axe^{ax} < 1 - 1 + 0 = 0$,

所以h(x)在 $(0,+\infty)$ 上为减函数,所以h(x) < h(0) = -1.

综上, $a \leq \frac{1}{2}$

【小问3详解】

取 $a = \frac{1}{2}$,则 $\forall x > 0$, 总有 $xe^{\frac{1}{2}x} - e^x + 1 < 0$ 成立,

 $\Leftrightarrow_{t=e^{\frac{1}{2}x}}, \quad \text{if } t > 1, t^2 = e^x, x = 2 \ln t$

故 $2t \ln t < t^2 - 1$ 即 $2 \ln t < t - \frac{1}{t}$ 对任意的 t > 1 恒成立.

所以对任意的
$$n \in N^*$$
,有 $2 \ln \sqrt{\frac{n+1}{n}} < \sqrt{\frac{n+1}{n}} - \sqrt{\frac{n}{n+1}}$,

整理得到:
$$\ln(n+1)-\ln n < \frac{1}{\sqrt{n^2+n}}$$
,

$$tx + \frac{1}{\sqrt{1^2 + 1}} + \frac{1}{\sqrt{2^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} > \ln 2 - \ln 1 + \ln 3 - \ln 2 + \dots + \ln (n + 1) - \ln n$$

$$= \ln(n+1),$$

故不等式成立.

【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.