Graph Theory.
Graph V(G), EG).
(ohly one) Noot. (ohly one) Noot. Subgraph H. V(H) = V(A) E(H) = E(A)
(3) induced subgraph H. VCHJ = V(Q) 00
(4) connected Graph.
(5) degree degalv)
6 van neighbours
Z deg E (V) = 2 [F (G)].
Common types.
O complete graph Kn.

2 emply graph.

$$N = 3$$
, $\sqrt{7}$, $3^{3-2} = 3$

Uniform spanning tree.

Dodinition: T is a UST if it is uniformly distributed on J (the set of all spanning tracs) $P(T=t) = \frac{1}{|J|}.$ a fixed UST

Random walk on a finite graph G.

1 Markov chain

Pu, $w = \frac{1}{\deg_{G}(v)}$, fring $\in E(G)$ Pu, w = 0, other

Hitting time

Jy = inf { n 70, Xn= 14

C 第一次话间Vertice V 的时间)

Stopping time.

If J is a stopping time STEt1 = Ft

Cover time

 $t_{civ} = \sup_{V \in U(E)} \mathcal{J}_V = \inf_{v \in U(E)} \{n_{>0}: f_{x_0, \dots, x_n}\} = V(G)$

State of Q.

Recurrent (Fix): SRW start from Vertex V visits itself #00

Transient (4): SRW start from Vertex V visits itself #<00

Finite Greenvert définitely (positive recurrent)

Reversible Markov Chain (Him off)

 $\mathbb{Z}/\mathbb{Z}=\{0,\ldots\}$

expand to & Leternal Stationary Version)

 $X_{n} = \begin{cases} X'_{n} & \text{if } n \geq 0 \\ X'_{-N} & \text{if } n < 0 \end{cases}$

(Theorem &, exist Pij. It it can find Qji and Thi (Sadisty I Ti = 1), such that

TilPij = Tilgi.

Then, Qi, is the transition probability of the reverisble chain and ITIL is the stationary probability)

SRW on thite connected graph G.

is reversible and Tiv & deg (10).

proof: SRW is irreducible and positive

recurrent

detailed balance equation.

The degaling = The degaling

long time proportion of V to w low of w to v.

IN TO = 1

By theorem &, The is the stationary probability And I The I The degalor)

probability And I The Jaggers)

Aldons-Broder algorithm.

Connected, recurrent graph G, run a SRW starting at $X_0 \in V(G)$. Let T subgraph, VCT)=VG), including the edge along we first reach that vortex, i.e.

Example. χ_0 V. $J_V = 1$ $\{X_{J_V-1}, X_{J_V}\} = \{X_0, X_1\}$ $\{X_1, X_2, Y_3\} = \{X_0, X_1\}$ $v'. T_{v'} = 3 \{X_{T_{v'}-1}, X_{0v} = 186, X_{3}4\}$

prove the random subgraph T generated by A-B algorithm is a VST on Amite A. Connected Proof: OT is a spanning tree. 2 Vriform? R: a set of rooted spanning trees of Q. (Xn) nez: SRW on G. (Tk, Xk): rosted tree from A-B absorran using SRW from time K onwards k=0 $\chi_0=S$ (T_0,χ_0) k=1. $X_1=U$. T_1, U

 $K=2. X_2=5 (T_2,s)$

(In, Xn) nt & is an irreducible Markov chain with state space R. XK+1 depends on TK. TK is a measurable functional of Xx.Xx+1.... Tk+1 depends on Tk and XK+1. A length of & 5RW generates (Ep), subsquent SRW generates (E.f.) a length of m with positive probability Path exists Patine $q((t,p), (t',p')) = P(T_1=t', X_{-1}=p')[t_0=t, X_0=p)$ (后当在以户),前当在(长户)) $f(T_0, x_0) = T_{X_0}$ on X_{-1} q((t,p), (t',p'))= Jegg(p) for degg(p) values of (t',p')

2([t·p),[t',p'))=0, (t',p')&E(G)

Fixed (t', ρ') , $\#(t, \rho) = deg_G(\rho')$ () = (65 noted tree) (tipser 2(t,p),(t,p))=1 (Tij = TTi Pij) => Dup degalp) Da, p is independent of t.