EE 40 – Semiconductor Basics II (pn Junction Diode)

EE 40 Spring 2012 Michel M. Maharbiz Slide 8-1

Carrier Drift

- The process in which charged particles move because of an electric field is called *drift*.
- Charged particles within a semiconductor move with an average velocity proportional to the electric field.
 - The proportionality constant is the carrier mobility.

Hole velocity
$$\overset{
ightarrow}{v_{_h}}=\mu_{_p}\overset{
ightarrow}{E}$$

Electron velocity
$$\stackrel{\rightarrow}{v_e} = -\mu_{\scriptscriptstyle n}\stackrel{\rightarrow}{E}$$

Notation:

$$\mu_{p} \equiv \text{hole mobility (cm}^{2}/\text{V·s})$$
 $\mu_{n} \equiv \text{electron mobility (cm}^{2}/\text{V·s})$

Velocity Saturation

In reality, carrier velocities saturate at an upper limit, called the saturation velocity (v_{sat}).

$$\mu = \frac{\mu_0}{1 + bE}$$

$$v_{sat} = \frac{\mu_0}{b}$$

$$v = \frac{\mu_0}{1 + \frac{\mu_0 E}{v}}$$

Drift Current

 Drift current is proportional to the carrier velocity and carrier concentration:

 $v_h t A = volume from which all holes cross plane in time t$

 $p v_h tA = \#$ of holes crossing plane in time t

 $q p v_h t A =$ charge crossing plane in time t

 $q p v_h A = \text{charge crossing plane per unit time} = \text{hole current}$

 \rightarrow Hole current per unit area (i.e. current density) $J_{p,drift} = q p v_h$

Conductivity and Resistivity

In a semiconductor, both electrons and holes conduct current:

$$\begin{split} \boldsymbol{J}_{p,drift} &= q p \mu_p E & \boldsymbol{J}_{n,drift} = -q n (-\mu_n E) \\ \boldsymbol{J}_{tot,drift} &= \boldsymbol{J}_{p,drift} + \boldsymbol{J}_{n,drift} = q p \mu_p E + q n \mu_n E \\ \boldsymbol{J}_{tot,drift} &= q (p \mu_p + n \mu_n) E \equiv \sigma E \end{split}$$

- · The conductivity of a semiconductor is
 - Unit: mho/cm
- The *resistivity* of a semiconductor is $\sigma \equiv qp\mu_p + qn\mu_n$
 - Unit: ohm-cm

$$\sigma \equiv qp\mu_p + qn\mu_n$$

$$\rho \equiv \frac{1}{\sigma}$$

Resistivity Example

 Estimate the resistivity of a Si sample doped with phosphorus to a concentration of 10¹⁵ cm⁻³ and boron to a concentration of 10¹⁷ cm⁻³. The electron mobility and hole mobility are 800 cm²/Vs and 300 cm²/Vs,

Electrical Resistance

Resistance
$$R \equiv \frac{V}{I} = \rho \frac{L}{Wt}$$

(Unit: ohms)

where ρ is the resistivity

Diffusion Examples

- Linear concentration profile
 - → constant diffusion current

$$J_{p,diff} = -qD_{p} \frac{c}{d}$$
$$= qD_{p} \frac{N}{L}$$

- Non-linear concentration profile
 - → varying diffusion current

$$J_{p,diff} = -qD_{p} \frac{dp}{dx}$$

$$= \frac{qD_{p}N}{L_{d}} \exp \frac{-x}{L_{d}}$$

Diffusion Current

 Diffusion current within a semiconductor consists of hole and electron components:

$$J_{p,diff} = -qD_{p} \frac{dp}{dx} \qquad J_{n,diff} = qD_{n} \frac{dn}{dx}$$

$$J_{tot,diff} = q(D_{n} \frac{dn}{dx} - D_{p} \frac{dp}{dx})$$

 The total current flowing in a semiconductor is the sum of drift current and diffusion current:

$$oxed{J_{tot} = oldsymbol{J}_{p,dri\!f\!t} + oldsymbol{J}_{n,dri\!f\!t} + oldsymbol{J}_{p,di\!f\!f} + oldsymbol{J}_{n,di\!f\!f}}$$

The Einstein Relation

 The characteristic constants for drift and diffusion are related:

$$\frac{D}{\mu} = \frac{kT}{q}$$

• Note that $\frac{kT}{q} \cong 26 \mathrm{mV}$ at room temperature (300K)

This is often referred to as the "thermal voltage".

The PN Junction Diode

When a P-type semiconductor region and an N-type semiconductor region are in contact, a PN junction diode is formed.

Cathode Anode

(b)

Diode Operating Regions

 In order to understand the operation of a diode, it is necessary to study its behavior in three operation regions: equilibrium, reverse bias, and forward bias.

 $V_{\rm D} = 0$ $V_{\rm D} < 0$ $V_{\rm D} > 0$ PN Junction PN Junction PN Junction in Equilibrium Under Reverse Bias Under Forward Bias

- Depletion Region
- Built-in Potential

Junction Capacitance

I/V Characteristics

Carrier Diffusion across the Junction

 Because of the differences in hole and electron concentrations on each side of the junction, carriers diffuse across the junction:

Notation:

 $n_n \equiv$ electron concentration on N-type side (cm⁻³)

 $p_n = \text{hole concentration on N-type side (cm}^{-3})$

 $p_p \equiv$ hole concentration on P-type side (cm⁻³)

 $n_p \equiv$ electron concentration on P-type side (cm⁻³)

Depletion Region

- As conduction electrons and holes diffuse across the junction, they leave behind ionized dopants. Thus, a region that is depleted of mobile carriers is formed.
 - The charge density in the depletion region is not zero.
 - The carriers which diffuse across the junction recombine with majority carriers, i.e. they are annihilated.

The Depletion Approximation

Because charge density $\neq 0$ in the depletion region, a large E-field exists in this region:

In the depletion region on the N side:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{qN_D}{\varepsilon_{si}}$$
$$E = \frac{qN_D}{\varepsilon_{si}} (x+b)$$

In the depletion region on the **P side**:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{-qN_A}{\varepsilon_{si}}$$

$$E = \frac{qN_A}{\varepsilon_{si}} (a - x)$$

$$aN_A = bN_D$$

Potential Distribution

- In the depletion region, the electric potential is quadratic since the electric field is linear
- The potential difference between the N and the P side is called built-in potential, V₀

$$E = -\frac{dV}{dx}$$
$$V = -\int E \cdot dx$$

Carrier Drift across the Junction

PN Junction in Equilibrium

 In equilibrium, the drift and diffusion components of current are balanced; therefore the net current flowing across the junction is zero.

$$egin{aligned} oldsymbol{J}_{p,dri\!f\!t} = & - oldsymbol{J}_{p,di\!f\!f} \ oldsymbol{J}_{n,dri\!f\!t} = & - oldsymbol{J}_{n,di\!f\!f} \end{aligned}$$

$$\boldsymbol{J}_{tot} = \boldsymbol{J}_{p,drift} + \boldsymbol{J}_{n,drift} + \boldsymbol{J}_{p,diff} + \boldsymbol{J}_{n,diff} = 0$$

Built-in Potential, Vo

 Because there is a large electric field in the depletion region, there is a significant potential drop across this region:

$$qp\mu_p E = qD_p \frac{dp}{dx} \implies p\mu_p \left(-\frac{dV}{dx}\right) = D_p \frac{dp}{dx}$$

$$\Rightarrow -\mu_p \int_{x_1}^{x_2} dV = D_p \int_{p_n}^{p_p} \frac{dp}{p}$$

$$\Rightarrow V(x_1) - V(x_2) = \frac{D_p}{\mu_p} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_A}{\left(n_i^2 / N_D\right)}$$

$$V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

(Unit: Volts)

Built-In Potential Example

Estimate the built-in potential for PN junction below.

$$\frac{kT}{q}\ln(10) \cong 26\text{mV} \times 2.3 \cong 60\text{mV}$$

$$N_{\rm D} = 10^{18} \, \text{cm}^{-3} \, N_A = 10^{15} \, \text{cm}^{-3}$$

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_D N_A}{n_i^2} \right) = (26 \text{mV}) \ln \left(\frac{10^{18} 10^{15}}{10^{20}} \right) = (26 \text{mV}) \ln \left(10^{13} \right)$$

Note:
$$\frac{kT}{q}\ln(10) \cong 26\text{mV} \times 2.3 \cong 60\text{mV}$$

$$V_0 = 60 \text{mV} \times 13 = 780 \text{mV}$$

Effect of Applied Voltage

- The quasi-neutral N-type and P-type regions have low resistivity, whereas the depletion region has high resistivity.
 - Thus, when an **external voltage** V_D is applied across the diode, almost all of this voltage **is dropped across the depletion region**. (Think of a voltage divider circuit.)
- If $V_D < 0$ (*reverse bias*), the potential barrier to carrier diffusion is increased by the applied voltage.
- If $V_D > 0$ (forward bias), the potential barrier to carrier diffusion is reduced by the applied voltage.

PN Junction under Reverse Bias

 A reverse bias increases the potential drop across the junction. As a result, the magnitude of the electric field in the depletion region increases and the width of the depletion region widens.

$$W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$$

Diode Current under Reverse Bias

- In equilibrium, the built-in potential effectively prevents carriers from diffusing across the junction.
- Under reverse bias, the potential drop across the junction increases; therefore, negligible diffusion current flows. A very small drift current flows, limited by the rate at which minority carriers diffuse from the quasi-neutral regions into the depletion region.

PN Junction Small-Signal Capacitance

 A reverse-biased PN junction can be viewed as a capacitor, for incremental changes in applied voltage.

Voltage-Dependent Capacitance

• The depletion width (W_{dep}) and hence the junction capacitance (C_i) varies with V_R .

 $\varepsilon_{\rm si} \cong 10^{-12}$ F/cm is the permittivity of silicon.

Reverse-Biased Diode Application

• A very important application of a reverse-biased PN junction is in a voltage controlled oscillator (VCO), which uses an LC tank. By changing V_R , we can change C, which changes the oscillation frequency.

$$f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

Summary

- Current flowing in a semiconductor is comprised of drift and diffusion components: $J_{tot} = qp\mu_p E + qn\mu_n E + qD_n \frac{dn}{dx} qD_p \frac{dp}{dx}$
- A region depleted of mobile charge exists at the junction between P-type and N-type materials.
 - A built-in potential drop (V_0) across this region is established by the charge density profile; it opposes diffusion of carriers across the junction. A reverse bias voltage serves to enhance the potential drop across the depletion region, resulting in very little (drift) current flowing across the junction.
 - The width of the depletion region (W_{dep}) is a function of the bias voltage (V_D).

$$W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) \left(V_0 - V_D\right)} \qquad V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

Reverse bias breakdown mechanisms

- One or both of the following effects occur once the reverse bias voltage gets high enough:
 - Zener breakdown (low voltages, ~< 5 V)
 - electric field increases across depletion region
 - depletion region grows
 - eventually, field exceeds the level required to break covalent bonds on crystal atoms, freeing minority carriers in large numbers and generating a large current
 - Avalanche breakdown (higher voltages, ~> 5V)
 - high electric fields accelerate electrons to such velocities that when they collide with atoms, they generate electron-hole pairs (which themselves get accelerated and produce more pairs... thus, an 'avalanche')