

. . .

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (PULE 26)

4/11

FIG. 6

FIG. 7
SUBSTITUTE SHEET (RULE 26)

7/11

r=6 FIG. 8

Thymosin \$4 Stimulates
Re-epithelialization in the Rat
Cornea at 24 Hours:
Dose Response Experiment

SUBSTITUTE SHEET (RULE 26)

Structural Formula of Thymosin Beta 4

O CH3 CH2 CH2 CH2 CH2 CH2 CH2	CH2 O	NH-CH-C-	_
O = 0 CH CH CH CH	CH2 0	Glu	10
CH3 CH5 CH7	0 = 0 	NH-CH-C-R	6
H ₃ C+OH	CH2 O	SH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH	
	CH3 0	NH-CH-C-	7
S - CH C - OH CH2	CH2 O	Met	9
HO-D-	CH2 O	ANH-CH-C-	۶.
CH2 CH2	0 = 0 	Pro Pro	4
CH2 CH2 CH2 CH2	CH2 CH2 - 1	-NH-CH-C: Lys	3
O = U -	CH2 O	- NH - CH - C	Ź
CH2NH2 CH2 CH2 CH2 CH2 CH2 CH2	0 = 0 - CH ₂ - CH ₂	Ser Ser	-
	0=0	CH3 C	Į

FIG. 10a

SUBSTITUTE SHEET (RULE 26)

9 / 11

Amino Acid Sequence of Thymosin eta 4 and other eta-Thymosins

														E E
40	AGES	AGES	STES	AK	AK	SEIS	AS	ATA	AATS	AK	Æ	YNQRS	A	ტ
35	LIX EQEDQ	EQEKQ	EQEKQ	EQEKQ	EQEKQ	EQEKR	EQEKQ AS	EQEKQ	EQEKA AATS	EQEKQ	EQELT	OOEKE	ODEKE	EQEKQ (
30	XITEH:	SKETI	SKETI	TKETI	KNTLP TKETI	TKETI	TKETI	TKETI	SKETI	TKETI	TKETI	SKETI	TKETI	TKOTI
25	KNPLP	KNPLP	KNPLP	KNILP		KNILP	TKLKK TETQE KNPLP	KNPLP	KNPLP	KANTLP	KNILP	KNILP	KOLLP	KNILP
20	TETQE	TETQE	AKLKK TETQE	TETQE	TETQE	TETQE	TETQE	TETQE	TKLKK TETQE	TETQE	TETAE	E E	TETAE	SKLKK TETQE
15	SKLKK	SKLKK		AKLKK	AKLKK	AKLKK	TKLKK	TKLKK	TKLKK	AKLKK	TKLKK	SKLKK	SKLKK	SKLKK
	HELLX AEI EKFDK	EKFDK	EKFDK	NSFDK	NSFDK	ASFDK	ASFDK	SNFDK	TSFDK	ASFDK	SSFDK	EIFDK	ANFDK	STFDK
ហ	DMAEI	DMAEI	DMAEI	DLGEI	DMGEI	DMGEI	NILEEV	DLAEV	DISEV	DMGEI	DISEV SSFDK	DLSEV ETFDK	FVSEV	DVSEV STFDK
	ac-SDKP DMAEI	ac-AKDP	ac-SDKP	ac-ADKP	ac-ADKP	ac-ADKP	ac-SDKP	ac-SDKP	ac-SDKP	ac-ADKP	ac-SDKP	ac-SDKP	ac-SDKP	ac-ADKP
	$^{^{1}eta_{4}}$	${ t I}{eta_4}$ Ala	${ t T}{eta}_4^{ t X}$ en	1eta_9	$T\beta_9$ Met	$^{\mathrm{T}eta_{\mathrm{10}}}$	$^{\mathrm{T}eta_{11}}$	$T\beta_{12}$	${ t T}{eta_{12}}$ perch	$T\beta_{13}$	$T\beta_{14}$	T\$15 6	$_{ m I}eta$ scallops $_{i}$	T eta sea urch $_{z}$

Phylogenetic Distribution of Thymosin 84-Like Peptides

-			
Species	First peptide	Second peptide	Third peptide
Human	β4	β10	β15
Rat, mouse, cat	β4	β10	β ₁₅ (rat tumor)
Calf	β4	В	
Pig, sheep	β4	β ₉ Met	
Horse, chicken, gecko	β4		
Xenopus laevis	β ₄ ^{Xen}		
Rainbow trout	β11	β12	
Perch	β ₁₂ perch		
Whale	β13		
Sea urchin	β14	Bsea urchin	
Scallop	Bscallop		

FIG. 11b