Revisit of Postulate 2

 Recall Postulate 2: the evolution of a closed quantum system is described by a unitary transformation

$$\quad \quad |\psi\rangle \ at \ t_1 \ \xrightarrow{unitary \ transformation} |\psi'\rangle \ at \ t_2 \\$$

 Postulates of quantum mechanics does not tell us how the open system will evolve → We need to guess from the given postulates. → Density Matrix

Density matrix

- Section 2.4 The density operator
- When two particles are entangled, if we measure one of the particles but don't know the measurement result, how can we represent the quantum state of the other particle?
 - $|\psi^{-}\rangle = [|0\rangle_{A}|1\rangle_{B} |1\rangle_{A}|0\rangle_{B}]/\sqrt{2}$
 - If A measures $|0\rangle_A$, B remains in $|1\rangle_B$ state.
 - If A measures $|1\rangle_A$, B remains in $|0\rangle_B$ state.
 - From the above state $|\psi^-\rangle$, we know that $|0\rangle_B$ or $|1\rangle_B$ will remain with 50% of probability.
 - $\rho_B = \frac{1}{2} |0\rangle_{BB} \langle 0| + \frac{1}{2} |1\rangle_{BB} \langle 1| = \begin{bmatrix} 1/2 & 0\\ 0 & 1/2 \end{bmatrix}$
 - What happens if A was measured in $|D\rangle_A \otimes |A\rangle_A$ basis?
 - $\rho_B = \frac{1}{2} |A\rangle_{BB} \langle A| + \frac{1}{2} |D\rangle_{BB} \langle D| = \begin{bmatrix} 1/2 & 0\\ 0 & 1/2 \end{bmatrix}$
 - The same result will be obtained with measurements in other basis or even without any measurements.

Ensembles of quantum states

- Section 2.4.1
- Suppose a quantum system is in one of a number of states $|\psi_i\rangle$, where i is an index, with respective probabilities p_i .
- $\{p_i, |\psi_i\rangle\}$ is called an *ensemble* of *pure states*.
- The density operator (or density matrix) is defined as

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|.$$

- Example
 - 90% of $|0\rangle$ and 10% of $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$

$$\rho = \frac{9}{10} |0\rangle\langle 0| + \frac{1}{10} |+\rangle\langle +| = \frac{19|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1|}{20} = \begin{bmatrix} \frac{19}{20} & \frac{1}{20} \\ \frac{1}{20} & \frac{1}{20} \end{bmatrix}$$

Reformulation of postulate 2

- Reformulation of all the postulates in terms of density matrix
- Postulate 2
 - Example: 90% of $|0\rangle$ and 10% of $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ $|0\rangle \xrightarrow{U} U|0\rangle, |+\rangle \xrightarrow{U} U|+\rangle \Rightarrow \rho_{final} = \frac{9}{10}(U|0\rangle)(\langle 0|U^{\dagger}) + \frac{1}{10}(U|+\rangle)(\langle +|U^{\dagger})$
 - Initial state $|\psi_i\rangle$ with probability of $p_i \rightarrow U |\psi_i\rangle$ with the same probability of p_i

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \xrightarrow{U} \sum_{i} p_{i} (U|\psi_{i}\rangle \langle \psi_{i}|U^{\dagger}) = U\rho U^{\dagger}$$

Reformulation of postulate 3

- Postulate 3
 - Example: 90% of $|0\rangle$ and 10% of $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, $M_0 = |0\rangle\langle 0|$ and $M_1 = |1\rangle\langle 1|$. What is the probability of measuring 0?
 - $p(0|0) = \langle 0|M_0^{\dagger}M_0|0\rangle = 1$, $p(0|+) = \langle +|M_0^{\dagger}M_0|+\rangle = \frac{1}{2}$.
 - Total probability is $0.9 \times 1 + 0.1 \times \frac{1}{2} = 0.95$
 - If initial state was $|\psi_i\rangle$, the probability of getting result m is $p(m|i) = \langle \psi_i | M_m^\dagger M_m | \psi_i \rangle = \operatorname{tr} \left(M_m^\dagger M_m | \psi_i \rangle \langle \psi_i | \right)$
 - Note $\langle \beta | \alpha \rangle = \langle \beta | \left(\sum_{j=1}^{n} |j\rangle \langle j| \right) | \alpha \rangle = \sum_{j=1}^{n} \langle j | \alpha \rangle \langle \beta | j \rangle = \operatorname{tr}(|\alpha\rangle \langle \beta|)$

$$p(m) = \sum_{i} p_{i} \cdot p(m|i) = \sum_{i} p_{i} \operatorname{tr} \left(M_{m}^{\dagger} M_{m} |\psi_{i}\rangle \langle \psi_{i}| \right) = \operatorname{tr} \left(M_{m}^{\dagger} M_{m} \rho \right)$$

Example: from previous page, $\rho = \begin{bmatrix} \frac{19}{20} & \frac{1}{20} \\ \frac{1}{20} & \frac{1}{20} \end{bmatrix}$.

$$M_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow p(m) = \operatorname{tr}\left(M_m^{\dagger} M_m \rho\right) = \operatorname{tr}\left(\begin{bmatrix} \frac{19}{20} & 0 \\ 0 & 0 \end{bmatrix}\right) = 0.95$$

Reformulation of postulate 3

- Postulate 3
 - From the previous page,
 - if initial state was $|\psi_i\rangle$, the probability of getting result m is $p(m|i) = \langle \psi_i | M_m^{\dagger} M_m | \psi_i \rangle$.
 - $p(m) = \operatorname{tr}(M_m^{\dagger} M_m \rho).$
 - After measurement of $|\psi_i\rangle$ with result m,
 - $|\psi_i^m\rangle = \frac{M_m|\psi_i\rangle}{\sqrt{\langle\psi_i|M_m^{\dagger}M_m|\psi_i\rangle}} \text{ with probability of } p(i|m)$
 - $\rightarrow \rho_m = \sum_i p(i|m) |\psi_i^m\rangle \langle \psi_i^m| = \sum_i p(i|m) \frac{M_m |\psi_i\rangle \langle \psi_i | M_m^{\dagger}}{\langle \psi_i | M_m^{\dagger} M_m |\psi_i\rangle}$
 - ightharpoonup By elementary probability theory, $p(i|m) = \frac{p(m,i)}{p(m)} = p(m|i)p_i/p(m)$
 - $\rightarrow \rho_m = \sum_i p_i \frac{M_m |\psi_i\rangle \langle \psi_i | M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)} = \frac{M_m \rho M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)}$

Ensembles of quantum states

- A quantum system whose state $|\psi\rangle$ is known exactly is said to be in a pure state $\Rightarrow \rho = |\psi\rangle\langle\psi|$
- Otherwise, ρ is in a mixed state. Or mixture of the different pure states in the ensemble.
- $\operatorname{tr}(\rho^2) = \begin{cases} 1 & \Rightarrow \text{Pure state} \\ < 1 & \Rightarrow \text{Mixed state} \end{cases}$
- Mixture of mixed states
 - A quantum state is prepared in the state ρ_i with probability p_i for $i = 1 \cdots n \xrightarrow{?} \rho = \sum_{i=1}^{n} p_i \rho_i$
 - Proof
 - ρ_i will arise from some ensemble $\{p_{ij}, |\psi_{ij}\rangle\}$ of pure states \rightarrow $\{p_1 \cdot p_{1j}, |\psi_{1j}\rangle\}, \{p_2 \cdot p_{2j}, |\psi_{2j}\rangle\}, ..., \{p_n \cdot p_{nj}, |\psi_{nj}\rangle\}$
 - $\rho = \sum_{i=1}^{n} \sum_{j=1}^{m_i} p_i \cdot p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}| = \sum_{i=1}^{n} p_i \sum_{j=1}^{m_i} p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}| = \sum_{i=1}^{n} p_i \rho_i$