

WHAT IS CLAIMED IS:

- 1. A method of exposing a target material to an ion beam in an ion implantation system, the
 method comprising the steps of:
 quantifying an amount of ion beam neutralization; and
 controlling a characteristic of the ion beam of the implantation system based upon
 the amount of ion beam neutralization.
- 1 2. The method of claim 1, wherein the target material is a semiconductor substrate.
- The method of Claim 1, wherein the target material is any substance to be implanted
 using the ion beam.
- The method of claim 1, wherein the step of quantifying is conducted by a first device
 capable of detecting an ion beam and a second device capable of detecting an ion beam.
- 1 5. The method of claim 1, wherein a characteristic is selected from a group consisting of:
- beam current, beam energy, beam scan rate, vacuum, gas pressure, and ion dose.

1	6. The method of claim 1, wherein the step of quantifying includes:
2	determining a reference ratio at a first ion beam current at a first location of a
3	processing chamber and a second location of a processing chamber, wherein
4	the first location is further from a first target of the ion beam than the second
5	location;
6	determining a current ratio of a second ion beam current at the first location and the
7	second location, wherein the second ion beam current is being used to
8	process a second target;
9	determining a charge neutralization component of the ion beam at the second target
10	location based on the reference ratio and the current ratio.
1	7. The method of Claim 6, wherein the reference ratio is determined when a relatively high-
2	level, stable vacuum exists along the ion beam line and no target material is present.
1	8. The method of Claim 6, wherein the reference ratio is determined at the beginning of
2	implantation when a relatively high-level, stable vacuum exists along the ion beam line
3	and target material is present.
1	9. The method of claim 1, wherein the step of controlling includes:
2	modifying the ion dose based upon the charge neutralization component to create a
3	total dose; and
4	adjusting a process parameter based on the total dose.
7	adjusting a process parameter sused on the total dose.
1	10. The method of claim 9, wherein a process parameter is selected from a group consisting
2	of: beam current, beam energy, beam scan rate, vacuum, gas pressure, and ion dose.

2

1 2

1 11. The method of Claim 4, wherein the second device is fixed in place and sited adjacent to 2 the target position. 1 12. The method of Claim 4, wherein the second device is moveable and sited adjacent to the 2 target position during measurement. 1 13. The method of Claim 4, wherein the second device is fixed in place and sited behind the 2 target position. 1 14. The method of Claim 4, wherein the second device is moveable and sited behind the 2 target position. 1 15. The method of Claim 4, wherein the second device is sited along the beam path to the 2 target position. 1 16. The method of Claim 6, wherein the reference ratio is in the range of approximately 2 100:1 to 1:1. 1 17. The method of claim 16, wherein the range of the reference ratio is dependent upon the

15

18. The method of Claim 16, wherein the reference ratio may be a previously stored value

location of the first device with reference to the second device.

retrieved from control software.

•

1	19. A system comprising:
2	memory;
3	a processor operably connected to said memory;
4	a program of instructions, said program of instructions including instructions to
5	manipulate said processor to:
6	quantify an amount of ion beam neutralization; and
7	control a characteristic of the ion beam of an ion implantation system based upon the
8	amount of ion beam neutralization.
1	20. The system of claim 19, wherein the step of quantifying is conducted by a first device
2	capable of detecting and ion beam and a second device capable of detecting an ion
3	beam.
1	21. The system of claim 19, wherein a characteristic is selected from a group consisting of:
2	beam current, beam energy, beam scan rate, vacuum, gas pressure, and ion dose.
1	22. The system of claim 19, wherein the step of quantifying includes:
2	determining a reference ratio at a first ion beam current at a first location of a
3	processing chamber and a second location of a processing chamber, wherein
4	the first location is further from a first target of the ion beam than the second
5	location;
6	determining a current ratio of a second ion beam current at the first location and the
7	second location, wherein the second ion beam current is being used to
8	process a second target;
9	determining a charge neutralization component of the ion beam at the second target
10	location based on the reference ratio and the current ratio.

3

I	23. The system of claim 19, wherein the step of controlling includes:
2	modifying the ion dose based upon the charge neutralization component to create a
3	total dose; and
4	adjusting a process parameter based on the total dose.
1	24. The system of claim 23, wherein a process parameter is selected from a group consisting
2	of:

beam current, beam energy, beam scan rate, vacuum, gas pressure, and ion dose.