Probit与logit模型的应用 以model 1 example为例

刘晶芳 (15320171151900) 余星月 (15320171151888)

一、 多项 probit/logit模型

模型设置:个体面临的选择有时是多值的,而不仅仅是二值的。例如课堂中Ketchup的例子。对于解释变量只随个体i而变,不随方案j而变。我们可以应用以下公式:

$$U_{ij} = \alpha + \gamma_j income_i + \varepsilon_{ij}$$

通过推导, 我们可以得到

$$P(y_i = j | x_i) = \frac{\exp(x_i \beta_j)}{\sum_{k=1}^{J} \exp(x_k \beta_k)}$$

假设 $\{\varepsilon_{i,i}\}$ 为iid且logit模型中服从I型极值分布; probit模型中服从正态分布。

(一) 多项 probit 模型

(1) model 1 example 综述

数据集来源:链接为https://l.xmu.edu.cn/mod/folder/view.php?id=37114

解释变量: income

被解释变量: choice、有四个选择可选、分别为: heinz、hunts、delmonte、stb

描述性分析:

Ketchup数据存储格式为浮点型存储,9个字符的一般格式。

storage variable	display name	value type	format	label
choice	float	%9.0g	choice	the brand purchased
income	float	%9.0g		•

数据观测值为800,其中,chocie变量的均值为2.1,标准差为0.801,最小值为1,最大值为4,符合我们对choice标签中的定义。Income变量的均值为52.8,标准差12.17,最大值为89,最小值为25.

Variable	Obs	Mean	Std.Dev.	Min	Max	
choice	800	2.100	0.801	1	4	
income	800	52.80	12.17	24.92	86.92	14

四个品牌中,可以看出在总样本中,heinz所选择的比重最高,占比51.13%,即有一半人选择该品牌。商店自营品牌以及hunts选择比例相近。

choice	Freq.	Percent	Cum.
stb	177^{-1}	22.13	22.13
heinz	409	51.13	73.25
hunts	171	21.38	94.63
delmonte	43	5.380	100
Total	800	100	

(2) 多元probit模型(以stb为basicoutcome)

Probit回归结果

	(1)	(2)	(3)	(4)
VARIABLES	stb	heinz	hunts	delmonte
o.income	-			
ocons	0			
	(0)			
income		0.204***	0.124***	0.0936***
		(0.0135)	(0.0128)	(0.0153)
Constant		-9.208***	-5.554***	-5.014***
		(0.616)	(0.566)	(0.690)
Observations	800	800	800	800

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.

(二) 多项logit模型

(1) 被解释变量: choice 解释变量: income

(3) 多项logit模型 (以stb 为basic outcome)

Looit回归结果

		LOgIL四归结:	术	
	(1)	(2)	(3)	(4)
VARIABLES	stb	heinz	hunts	delmonte
o.income	-			
ocons	0			
	(0)			
income		0.276***	0.172***	0.117***
		(0.0199)	(0.0187)	(0.0240)
Constant		-12.54***	-7.658***	-6.396***
		(0.907)	(0.822)	(1.071)
Observations	800	800	800	800
	a 1			

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.

结果分析:我们考虑choice只随个体而改变而不随方案改变的情况。当仅考虑choice 仅受个体变量、即income的效应、我们得到了显著性表现良好的答案。可以看出、 相对于超市自营产品, heinz这个品牌受收入的影响相对其他品牌更大。且两种模型 的表现一致。

条件logit模型

- (1) 模型设置:与上述多项logit模型不同,有些解释变量可能及随个体改变,也 随方案改变。这种解释变量既包括随方案与个体而变的变量,也包括随方案 而变但不随个体而变的变量。我们将此类问题模型称为条件logit模型。
- (2) 被解释变量: choice 解释变量: price

	(1)			
VARIABLES	choice			
2.brand	2.423***			
	(0.145)			
3.brand	1.718***			
	(0.159)			
4.brand	0.716***			
	(0.216)			
price	-4.518***			
•	(0.285)			
Observations	3,200			
Standard errors in parentheses				

*** p<0.01, ** p<0.05, * p<0.1

结果分析: 我们这里考虑choice只受方案而变的情况,即这里仅考虑品牌价格与选择 之间的关系,因此只考虑从品牌价格不考虑income。上表显示,如果income的解释 变量取值相同,则最优可能选择的是heinz,但此为非线性模型,故不易通过系数来 评价边际效应。只能比较品牌选择受价格的影响程度大小。

混合probit/logit模型 三、

模型设置 上述分别考虑了解释变量不随方案而变的多项logit/probit模型,以及解释 变量随方案而变的条件logit模型。大多数情况下,我们要考虑两者混合的模型。模 型表示为:

$$U_{\text{ij}} = \alpha + \delta \text{price}_{\text{ij}} + \gamma_j income_i + \varepsilon_{ij}$$

(一) 混合probit模型

(1) 被解释变量: choice

解释变量: income、price

(2)

混合probit回归

	(1)	(2)	(3)	(4)
VARIABLES	brand	heinz	hunts	delmonte
income		0.200***	0.134***	0.0333
		(0.0177)	(0.0197)	(0.0243)
price	-3.424***			
-	(0.529)			
Constant	, ,	-7.822***	-4.834***	-1.077
		(0.725)	(0.903)	(1.012)
Observations	3,200	3,200	3,200	3,200
	G. 1 1			

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

(二) 混合Logit模型

(1) 被解释变量: choice

解释变量: income、price

(2)

Lo	oit	回	1	1

		2082.77		
	(1)	(2)	(3)	(4)
VARIABLES	brand	heinz	hunts	delmonte
				-
income		0.277***	0.180***	0.107***
		(0.0209)	(0.0198)	(0.0258)
price	-4.418***			
	(0.330)			
Constant		-10.89***	-6.305***	-3.832***
		(0.946)	(0.872)	(1.169)
Observations	3,200	3,200	3,200	3,200

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

结果分析: 我们考虑choice随个体和方案同时改变的情况。以上两个表格,与R下的结果基本保持一致: 在Probit模型下,在品牌为delmonte下的imcome、constant为不显著,其余为显著;在Logit模型下结果均为显著。相比于基本超市品牌而言,顾客选择购买heinz受收入的影响会大于其他两种品牌(hunts and delmonte)。对比两个表格,Logit和Probit模型的实证结果并不保持一致(至少对于delmonte而言probit模型表现为不显著),这表明,二者之间存在差异。