6 Appendix

6.1 Selected CBC parameters

The CBC parameters are taken (mostly unchanged) from the CBC command line help. Only the CBC parameters that are useful in a CMPL context are described afterwards.

Usage CBC parameters:

%opt cbc solverOption [solverOptionValue]

Double parameters:

dualB(ound) doubleValue

Initially algorithm acts as if no gap between bounds exceeds this value

Range of values is 1e-20 to 1e+12, default 1e+10

dualT(olerance) doubleValue

For an optimal solution no dual infeasibility may exceed this value Range of values is 1e-20 to 1e+12, default 1e-07

objective(Scale) doubleValue

Scale factor to apply to objective

Range of values is -1e+20 to 1e+20, default 1

primalT(olerance) doubleValue

For an optimal solution no primal infeasibility may exceed this value

Range of values is 1e-20 to 1e+12, default 1e-07

primalW(eight) doubleValue

Initially algorithm acts as if it costs this much to be infeasible

Range of values is 1e-20 to 1e+20, default 1e+10

rhs(Scale) doubleValue

Scale factor to apply to rhs and bounds

Range of values is -1e+20 to 1e+20, default 1

Branch and Cut double parameters:

allow(ableGap) doubleValue

Stop when gap between best possible and best less than this

Range of values is 0 to 1e+20, default 0

artif(icialCost) doubleValue

Costs >= these are treated as artificials in feasibility pump 0.0 off - otherwise variables with costs >= these are treated as artificials and fixed to lower bound in feasibility pump

Range of values is 0 to 1.79769e+308, default 0

cuto(ff) doubleValue

All solutions must be better than this value (in a minimization sense).

This is also set by code whenever it obtains a solution and is set to value of objective for solution minus cutoff increment.

Range of values is -1e+60 to 1e+60, default 1e+50

fix(OnDj) doubleValue

Try heuristic based on fixing variables with reduced costs greater than this

If this is set integer variables with reduced costs greater than this will be fixed before branch and bound - use with extreme caution!

Range of values is -1e+20 to 1e+20, default -1

fraction(forBAB) doubleValue

Fraction in feasibility pump

After a pass in feasibility pump, variables which have not moved about are fixed and if the pre-processed model is small enough a few nodes of branch and bound are done on reduced problem. Small problem has to be less than this fraction of original.

Range of values is 1e-05 to 1.1, default 0.5

inc(rement) doubleValue

A valid solution must be at least this much better than last integer solution

Whenever a solution is found the bound on solutions is set to solution (in a minimization sense) plus this. If it is not set then the code will try and work one out.

Range of values is -1e+20 to 1e+20, default 1e-05

inf(easibilityWeight) doubleValue

Each integer infeasibility is expected to cost this much

Range of values is 0 to 1e+20, default 0

integerT(olerance) doubleValue

For an optimal solution no integer variable may be this away from an integer value

Range of values is 1e-20 to 0.5, default 1e-06

preT(olerance) doubleValue

Tolerance to use in presolve

Range of values is 1e-20 to 1e+12, default 1e-08

pumpC(utoff) doubleValue

Fake cutoff for use in feasibility pump

0.0 off - otherwise add a constraint forcing objective below this value in feasibility pump

Range of values is -1.79769e+308 to 1.79769e+308, default 0

pumpI(ncrement) doubleValue

Fake increment for use in feasibility pump

0.0 off - otherwise use as absolute increment to cut off when solution found in feasibility pump

Range of values is -1.79769e+308 to 1.79769e+308, default 0

ratio(Gap) doubleValue

If the gap between best solution and best possible solution is less than this fraction of the objective value at the root node then the search will terminate.

Range of values is 0 to 1e+20, default 0

reallyO(bjectiveScale) doubleValue

Scale factor to apply to objective in place

Range of values is -1e+20 to 1e+20, default 1

sec(onds) doubleValue

maximum seconds

After this many seconds coin solver will act as if maximum nodes had been reached.

Range of values is -1 to 1e+12, default 1e+08

tighten(Factor) doubleValue

Tighten bounds using this times largest activity at continuous solution

Range of values is 0.001 to 1e+20, default -1

Integer parameters:

idiot(Crash) integerValue

This is a type of 'crash' which works well on some homogeneous problems. It works best on problems with unit elements and rhs but will do something to any model. It should only be used before primal. It can be set to -1 when the code decides for itself whether to use it, 0 to switch off or n > 0 to do n passes.

Range of values is -1 to 99999999, default -1

maxF(actor) integerValue

Maximum number of iterations between refactorizations

Range of values is 1 to 999999, default 200

maxIt(erations) integerValue

Maximum number of iterations before stopping

Range of values is 0 to 2147483647, default 2147483647

passP(resolve) integerValue

How many passes in presolve

Range of values is -200 to 100, default 5

pO(ptions) integerValue

If this is > 0 then presolve will give more information and branch and cut will give statistics

Range of values is 0 to 2147483647, default 0

slp(Value) integerValue

Number of slp passes before primal

If you are solving a quadratic problem using primal then it may be helpful to do some sequential Lps to get a good approximate solution.

Range of values is -1 to 50000, default -1

slog(Level) integerValue

Level of detail in (LP) Solver output

Range of values is -1 to 63, default 1

subs(titution) integerValue

How long a column to substitute for in presolve

Normally Presolve gets rid of 'free' variables when there are no more than 3 variables in column. If you increase this the number of rows may decrease but number of elements may increase.

Range of values is 0 to 10000, default 3

Branch and Cut integer parameters:

cutD(epth) integerValue

Depth in tree at which to do cuts

Cut generators may be - off, on only at root, on if they look possible and on. If they are done every node then that is that, but it may be worth doing them every so often. The original method was every so many nodes but it is more logical to do it whenever depth in tree is a multiple of K. This option does that and defaults to -1 (off -> code decides).

Range of values is -1 to 999999, default -1

cutL(ength) integerValue

Length of a cut

At present this only applies to Gomory cuts. -1 (default) leaves as is. Any value >0 says that all cuts <= this length can be generated both at root node and in tree. 0 says to use some dynamic lengths. If value >=10,000,000 then the length in tree is value%10000000 - so 10000100 means unlimited length at root and 100 in tree.

Range of values is -1 to 2147483647, default -1

dense(Threshold) integerValue

Whether to use dense factorization

Range of values is -1 to 10000, default -1

depth(MiniBab) integerValue

Depth at which to try mini BAB

Rather a complicated parameter but can be useful. -1 means off for large problems but on as if -12 for problems where rows+columns<500, -2 means use Cplex if it is linked in. Otherwise if negative then go into depth first complete search fast branch and bound when depth>= -value-2 (so -3 will use this at depth>=1). This mode is only switched on after 500 nodes. If you really want to switch it off for small problems then set this to -999. If >=0 the value doesn't matter very much. The code will do approximately 100 nodes of fast branch and bound every now and then at depth>=5. The actual logic is too twisted to describe here.

Range of values is -2147483647 to 2147483647, default -1

diveO(pt) integerValue

Diving options

If >2 && <8 then modify diving options

- -3 only at root and if no solution,
- -4 only at root and if this heuristic has not got solution,
- -5 only at depth <4,
- -6 decay, 7 run up to 2 times

if solution found 4 otherwise.

Range of values is -1 to 200000, default 3

hOp(tions) integerValue

Heuristic options

1 says stop heuristic immediately allowable gap reached. Others are for feasibility pump - 2 says do exact number of passes given, 4 only applies if initial cutoff given and says relax after 50 passes, while 8 will adapt cutoff rhs after first solution if it looks as if code is stalling.

Range of values is -9999999 to 9999999, default 0

hot(StartMaxIts) integerValue

Maximum iterations on hot start

Range of values is 0 to 2147483647, default 100

log(Level) integerValue

Level of detail in Coin branch and Cut output

If 0 then there should be no output in normal circumstances. 1 is probably the best value for most uses, while 2 and 3 give more information.

Range of values is -63 to 63, default 1

maxN(odes) integerValue

Maximum number of nodes to do

Range of values is -1 to 2147483647, default 2147483647

maxS(olutions) integerValue

Maximum number of solutions to get

You may want to stop after (say) two solutions or an hour. This is checked every node in tree, so it is possible to get more solutions from heuristics.

Range of values is 1 to 2147483647, default -1

passC(uts) integerValue

Number of cut passes at root node

The default is 100 passes if less than 500 columns, 100 passes (but stop if drop small if less than 5000 columns, 20 otherwise

Range of values is -9999999 to 9999999, default -1

passF(easibilityPump) integerValue

How many passes in feasibility pump

This fine tunes Feasibility Pump by doing more or fewer passes.

Range of values is 0 to 10000, default 30

passT(reeCuts) integerValue

Number of cut passes in tree

Range of values is -9999999 to 9999999, default 1

small(Factorization) integerValue

Whether to use small factorization

If processed problem <= this use small factorization

Range of values is -1 to 10000, default -1

strong(Branching) integerValue

Number of variables to look at in strong branching

Range of values is 0 to 999999, default 5

thread(s) integerValue

Number of threads to try and use

To use multiple threads, set threads to number wanted. It may be better to use one or two more than number of cpus available. If 100+n then n threads and search is repeatable (maybe be somewhat slower), if 200+n use threads for root cuts, 400+n threads used in sub-trees.

Range of values is -100 to 100000, default 0

trust(PseudoCosts) integerValue

Number of branches before we trust pseudocosts

Range of values is -3 to 2000000, default 5

Keyword parameters:

bscale option

Whether to scale in barrier (and ordering speed)

Possible options: off on off1 on1 off2 on2, default off

chol(esky) option

Which cholesky algorithm

Possible options: native dense fudge(Long_dummy) wssmp_dummy

crash option

Whether to create basis for problem

If crash is set on and there is an all slack basis then Clp will flip or put structural variables into basis with the aim of getting dual feasible. On the whole dual seems to be better without it and there are alternative types of 'crash' for primal e.g. 'idiot' or 'sprint'.

Possible options: off on so(low_halim) ha(lim_solow(JJF mods)), dfeault off

cross(over) option

Whether to get a basic solution after barrier

Interior point algorithms do not obtain a basic solution (and the feasibility criterion is a bit suspect (JJF)). This option will crossover to a basic solution suitable for ranging or branch and cut. With the current state of quadratic it may be a good idea to switch off crossover for quadratic (and maybe presolve as well) - the option maybe does this.

Possible options: on off maybe presolve, default on

dualP(ivot) option

Dual pivot choice algorithm

Possible options: auto(matic) dant(zig) partial steep(est), default auto(matic)

fact(orization) option

Which factorization to use

Possible options: normal dense simple osl, default normal

gamma((Delta)) option

Whether to regularize barrier

Possible options: off on gamma delta onstrong gammastrong deltastrong, default off

KKT option

Whether to use KKT factorization

Possible options: off on, default off

perturb(ation) option

Whether to perturb problem

Possible options: on off, default on

presolve option

Presolve analyzes the model to find such things as redundant equations, equations which fix some variables, equations which can be transformed into bounds etc etc. For the initial solve of any problem this is worth doing unless you know that it will have no effect. on will normally do 5 passes while using 'more' will do 10. If the problem is very large you may need to write the original to file using 'file'.

Possible options for presolve are: on off more file, default on

primalP(ivot) option

Primal pivot choice algorithm

Possible options: auto(matic) exa(ct) dant(zig) part(ial) steep(est) change sprint, default auto(matic)

scal(ing) option

Whether to scale problem

Possible options: off equi(librium) geo(metric) auto(matic) dynamic rows(only), default auto(matic)

spars(eFactor) option

Whether factorization treated as sparse

Possible options: on off, default on

timeM(ode) option

Whether to use CPU or elapsed time

cpu uses CPU time for stopping, while elapsed uses elapsed time. (On Windows, elapsed time is always used).

Possible options: cpu elapsed, default cpu

vector option

If this parameter is set to on ClpPackedMatrix uses extra column copy in odd format.

Possible options: off on, default off

Branch and Cut keyword parameters:

clique(Cuts) option

Whether to use Clique cuts

Possible options: off on root ifmove forceOn onglobal, default ifmove

combine(Solutions) option

Whether to use combine solution heuristic

This switches on a heuristic which does branch and cut on the problem given by just using variables which have appeared in one or more solutions. It obviously only tries after two or more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default on

combine2(Solutions) option

Whether to use crossover solution heuristic

This switches on a heuristic which does branch and cut on the problem given by fixing variables which have same value in two or more solutions. It obviously only tries after two or more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default off

cost(Strategy) option

How to use costs as priorities

This orders the variables in order of their absolute costs - with largest cost ones being branched on first. This primitive strategy can be surprisingly effective. The column order option is obviously not on costs but easy to code here.

Possible options: off pri(orities) column(Order?) 01f(irst?) 01l(ast?) length(?), default off

cuts(OnOff) option

Switches all cuts on or off

This can be used to switch on or off all cuts (apart from Reduce and Split). Then you can do individual ones off or on See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default on

Dins option

This switches on Distance induced neighborhood Search. See Rounding for meaning of on both before

Possible options: off on both before often, default off

DivingS(ome) option

This switches on a random diving heuristic at various times. C - Coefficient, F - Fractional, G - Guided, L - LineSearch, P - PseudoCost, V - VectorLength. You may prefer to use individual on/off See Rounding for meaning of on,both,before

Possible options: off on both before, default off

DivingC(oefficient) option

Whether to try DiveCoefficient

Possible options: off on both before, default on

DivingF(ractional) option

Whether to try DiveFractional

Possible options: off on both before, default off

DivingG(uided) option

Whether to try DiveGuided

Possible options: off on both before, default off

DivingL(ineSearch) option

Whether to try DiveLineSearch

Possible options: off on both before, default off

DivingP(seudoCost) option

Whether to try DivePseudoCost

Possible options: off on both before, default off

DivingV(ectorLength) option

Whether to try DiveVectorLength

Possible options: off on both before, default off

feas(ibilityPump) option

This switches on feasibility pump heuristic at root. This is due to Fischetti, Lodi and Glover and uses a sequence of Lps to try and get an integer feasible solution. Some fine tuning is available by passFeasibilityPump and also pumpTune. See Rounding for meaning of on,both,before

Possible options: off on both before, default on

flow(CoverCuts) option

This switches on flow cover cuts (either at root or in entire tree)

See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove

gomory(Cuts) option

Whether to use Gomory cuts

The original cuts - beware of imitations! Having gone out of favor, they are now more fashionable as LP solvers are more robust and they interact well with other cuts. They will almost always give cuts (although in this executable they are limited as to number of variables in cut). However the cuts may be dense so it is worth experimenting (Long allows any length). See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn long, default ifmove

greedy(Heuristic) option

Whether to use a greedy heuristic

Switches on a greedy heuristic which will try and obtain a solution. It may just fix a percentage of variables and then try a small branch and cut run. See Rounding for meaning of on,both,before

Possible options: off on both before, default on

heur(isticsOnOff) option

Switches most heuristics on or off

Possible options: off on, default on

knapsack(Cuts) option

This switches on knapsack cuts (either at root or in entire tree)

Possible options: off on root ifmove forceOn onglobal forceandglobal, default ifmove

lift(AndProjectCuts) option

Whether to use Lift and Project cuts

Possible options: off on root ifmove forceOn, default off

local(TreeSearch) option

This switches on a local search algorithm when a solution is found. This is from Fischetti and Lodi and is not really a heuristic although it can be used as one. When used from Coin solve it has limited functionality. It is not switched on when heuristics are switched on.

Possible options: off on, default off

mixed(IntegerRoundingCuts) option

This switches on mixed integer rounding cuts (either at root or in entire tree) See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove

naive(Heuristics) option

Really silly stuff e.g. fix all integers with costs to zero!. Do option does heuristic before preprocessing

Possible options: off on both before, default off

node(Strategy) option

What strategy to use to select nodes

Normally before a solution the code will choose node with fewest infeasibilities. You can choose depth as the criterion. You can also say if up or down branch must be done first (the up down choice will carry on after solution). Default has now been changed to hybrid which is breadth first on small depth nodes then fewest.

Possible options: hybrid fewest depth upfewest downfewest updepth downdepth, default fewest

pivotAndC(omplement) option

Whether to try Pivot and Complement heuristic

Possible options: off on both before, default off

pivotAndF(ix) option

Whether to try Pivot and Fix heuristic

Possible options: off on both before, default off

preprocess option

This tries to reduce size of model in a similar way to presolve and it also tries to strengthen the model - this can be very useful and is worth trying. Save option saves on file presolved.mps. equal will turn <= cliques into ==. sos will create sos sets if all 0-1 in sets (well one extra is allowed) and no overlaps. trysos is same but allows any number extra. equalall will turn all valid inequalities into equalities with integer slacks.

Possible options: off on save equal sos trysos equalall strategy aggregate forcesos, default sos

probing(Cuts) option

This switches on probing cuts (either at root or in entire tree) See branchAndCut for information on options. but strong options do more probing

Possible options: off on root ifmove forceOn onglobal forceOnBut forceOnBut forceOnBut forceOnButStrong strongRoot, default forceOnStrong

rand(omizedRounding) option

Whether to try randomized rounding heuristic

Possible options: off on both before, default off

reduce(AndSplitCuts) option

This switches on reduce and split cuts (either at root or in entire tree) See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default off

residual(CapacityCuts) option

Residual capacity cuts. See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default off

Rens option

This switches on Relaxation enforced neighborhood Search. on just does 50 nodes 200 or 1000 does that many nodes. Doh option does heuristic before preprocessing

Possible options: off on both before 200 1000 10000 dj djbefore, default off

Rins option

This switches on Relaxed induced neighborhood Search. Doh option does heuristic before preprocessing

Possible options: off on both before often, default on

round(ingHeuristic) option

This switches on a simple (but effective) rounding heuristic at each node of tree. On means do in solve i.e. after preprocessing, Before means do if doHeuristics used, off otherwise, and both means do if doHeuristics and in solve.

Possible options: off on both before, default on

two(MirCuts) option

This switches on two phase mixed integer rounding cuts (either at root or in entire tree) See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn, default root

Vnd(VariableNeighborhoodSearch) option

Whether to try Variable Neighborhood Search

Possible options: off on both before intree, default off

Actions:

barr(ier) Solve using primal dual predictor corrector algorithm

dualS(implex) Do dual simplex algorithm

either(Simplex) Do dual or primal simplex algorithm

initialS Solve to continuous

This just solves the problem to continuous - without adding any cuts

outDup takes duplicate rows etc out of integer model

primalS Do primal simplex algorithm

reallyS Scales model in place

stat Print some statistics

tightLP Poor person's preSolve for now

Branch and Cut actions:

branch Do Branch and Cut

6.2 Selected GLPK parameters

The following parameters are taken from the GLPK command line help.

Only the GLPK parameters that are useful in a CMPL context are described afterwards.

Usage GLPK parameters:

%opt glpk solverOption [solverOptionValue]

General options:

simplex use simplex method (default)

interior use interior point method (LP only)

scale scale problem (default)

noscale do not scale problem

ranges *filename* write sensitivity analysis report to filename in

printable format (simplex only)

tmlim *nnn* limit solution time to nnn seconds

memlim *nnn* limit available memory to nnn megabytes

wlp *filename* write problem to filename in CPLEX LP format

wglp *filename* write problem to filename in GLPK format

wcnf filename write problem to filename in DIMACS CNF-SAT format

log filename write copy of terminal output to filename

LP basis factorization options:

luf LU + Forrest-Tomlin update

(faster, less stable; default)

cbg LU + Schur complement + Bartels-Golub update

(slower, more stable)

cgr LU + Schur complement + Givens rotation update

(slower, more stable)

Options specific to simplex solver:

primal use primal simplex (default)

dual use dual simplex

std use standard initial basis of all slacks

adv use advanced initial basis (default)

bib use Bixby's initial basis

steep use steepest edge technique (default)

nosteep use standard "textbook" pricing

relax use Harris' two-pass ratio test (default)

norelax use standard "textbook" ratio test

presol use presolver (default; assumes scale and adv)

nopresol do not use presolver

exact use simplex method based on exact arithmetic

xcheck check final basis using exact arithmetic

Options specific to interior-point solver:

nord use natural (original) ordering

qmd use quotient minimum degree ordering

amd use approximate minimum degree ordering (default)

symamd use approximate minimum degree ordering

Options specific to MIP solver:

nomip consider all integer variables as continuous (allows solving MIP as pure LP)

first branch on first integer variable

last branch on last integer variable

mostf branch on most fractional variable

drtom branch using heuristic by Driebeck and Tomlin (default)

pcost branch using hybrid pseudocost heuristic (may be useful for hard instances)

dfs backtrack using depth first search

bfs backtrack using breadth first search

bestp backtrack using the best projection heuristic

bestb backtrack using node with best local bound (default)

intopt use MIP presolver (default)

nointopt do not use MIP presolver

binarize replace general integer variables by binary ones (assumes intopt)

fpump apply feasibility pump heuristic

gomory generate Gomory's mixed integer cuts

mir generate MIR (mixed integer rounding) cuts

cover generate mixed cover cuts

clique generate clique cuts

cuts generate all cuts above

mipgap *tol* set relative mip gap tolerance to tol

minisat translate integer feasibility problem to CNF-SAT and solve it with MiniSat

solver

objbnd bound add inequality obj <= bound (minimization) or obj >= bound

(maximization) to integer feasibility problem (assumes minisat)