# Interferometric stabilisation of a fibre-based optical computer

Experimental study

Denis Verstraeten

**ULB** - Opera Photonics

June 28, 2019



## Outline

- Reservoir Computing
- 2 Photonic reservoir computer with wavelength division multiplexed neurons
- 3 Interferometric stabilisation of reservoir cavity
- 4 Conclusion

#### Introduction

- Limits of Moore's law slowly reached
- Optical computers can be fast
- Optical computers  $\longrightarrow$  boolean logic
- Development of photonic reservoir computing

## Reservoir computing

- Special kind of artificial neural network
- Applications in :
  - Real-time data processing
  - Chaotic time series prediction
  - Speech-recognition
  - Financial forecasting
  - **.**..
- Machine learning computationally light
- $_{ t A}$  Few constraints  $\Longrightarrow$  implementation in physical systems!

#### Mathematical model



Bernal, Fok, and Pidaparthi 2012

- x : state vector (activation levels
   of the neurons)
- u : input signal
- y : output signal
- W<sup>in</sup>: input matrix
- **W**: connection matrix
- Wout : output matrix

$$\begin{aligned} &\mathsf{x}(n+1) = \mathsf{f}\left(\mathsf{W}^{\mathsf{in}}u(n+1) + \mathsf{Wx}(n)\right) \\ &y(n+1) = \mathsf{W}^{\mathsf{out}}\;\mathsf{x}(n+1) \end{aligned}$$

## Photonic reservoir computing

Time Division Multiplexing of the neurons



- Encoding of the neurons :
  - Intensity of the light :  $x_i = |E_i|^2$  (Paquot et al. 2012)
  - ▶ **Phaser** of the electric field :  $x_i = E_i$  (Vinckier et al. 2015)

#### Numerical simulations - NARMA10



Simulation with 50 neurons. Normalised Mean Square Error of 0.1541.

## Outline

- Reservoir Computing
- 2 Photonic reservoir computer with wavelength division multiplexed neurons
- 3 Interferometric stabilisation of reservoir cavity
- 4 Conclusion

## Wavelength division multiplexing of the neurons



Akrout et al. 2016

- $\blacksquare$  Input : monochromatic laser modulated in amplitude  $\to u(n)$
- Optical cavity stabilisation with intra-cavity phase modulation
- Output: wavelength demultiplexing and linear combination

## Frequency coupling of the neurons - phase modulator

$$Ee^{i\omega t} \xrightarrow{\Omega} Ee^{i\omega t}e^{im\sin(\Omega t)} = E\sum_{n=-\infty}^{\infty} J_n(m)e^{i(\omega+n\Omega)t}$$

- $\int_{n}$ : Bessel function of order n
- m: modulation depth
- $_{ t A}$   $\Omega$  : modulation frequency pprox 20 GHz



 $\hookrightarrow$  Only 13 neurons !

# Cavity transfer function without phase modulation



## Reflectivity :

$$\mathcal{R}(\omega) = 1 - rac{1}{1 + \mathcal{F} \sin^2\left(rac{\omega}{\mathsf{FSR}}
ight)}$$



## $\hookrightarrow \mathsf{Symmetric}$

# Cavity transfer function with phase modulation



#### Transfer matrix

Denis Verstraeten (ULB)

# Cavity transfer function with phase modulation

$$\mathcal{R}(\omega) = \sum_{n=-\eta}^{\eta} |R_{n,0}(\omega)|^2$$



 $\hookrightarrow$  More complex  $\Rightarrow$  hard to stabilise!

## Outline

- Reservoir Computing
- 2 Photonic reservoir computer with wavelength division multiplexed neurons
- 3 Interferometric stabilisation of reservoir cavity
- 4 Conclusion

# Classical cavity stabilisation





- Stabilisation of  $V_{\text{ref}}$  using  $V_{\text{pz}}$
- Limitation : symmetry

## Pound-Drever-Hall technique





- Phase modulation + lock-in amplification
- Error function anti-symmetric
  - $\hookrightarrow$  Better performances !

# PDH technique for reservoir cavity with phase modulation





- Linear regions with steep slopes
- $\hookrightarrow$  PDH error signal can be used !

## Cavity stabilisation performances

- PDH parameters to explore
- Reservoir computer performances degraded by phase noise and modulation amplitude ⇒ tradeoff!
- $_{ t A}$  Figure of merit : Challenger  $= \sigma_{ t PDH} \cdot \Delta \varphi$ 
  - → Should be minimised!

## Results

| Rank | A <sub>PDH</sub> [V <sub>PP</sub> ] | $ u_{PDH}[kHz]$ | $arepsilon^*$ [a.u.] | $\phi$ [rad] | Challenger [mrad <sup>2</sup> ] |
|------|-------------------------------------|-----------------|----------------------|--------------|---------------------------------|
| #1   | 0.4                                 | 781             | 400                  | 1.3          | 292                             |
| #2   | 0.2                                 | 781             | -300                 | -1.43        | 327                             |
| #3   | 0.4                                 | 781             | 700                  | 1.45         | 337                             |
| #4   | 0.3                                 | 781             | 500                  | 1.31         | 362                             |
| #5   | 0.4                                 | 781             | 600                  | 1.39         | 377                             |

- $_{ t A}$  Best modulation frequency  $u_{ t PDH} = 781\,{ t kHz}$
- A However, measurements not very reproducible so far...
- Not possible to use the cavity as a reservoir computer ⇒ still too much noise
  - $\Rightarrow$  still too much noise

## Outline

- Reservoir Computing
- 2 Photonic reservoir computer with wavelength division multiplexed neurons
- 3 Interferometric stabilisation of reservoir cavity
- 4 Conclusion

#### Conclusion

- Wavelength division multiplexed optical reservoir computer
- Optical cavity stabilisation with intra-cavity phase modulation → Pound-Drever-Hall technique
- $\blacksquare$  Experimental exploration of PDH settings  $\longrightarrow$  optimal tradeoff for stabilisation performances  $^1$

Denis Verstraeten (ULB)

<sup>&</sup>lt;sup>1</sup>Erratum : Appendix A : All the values should be divided by two except  $\varepsilon^*$  and  $\phi$ , and Challenger which should be divided by four.

# Appendix : Pound-Drever-Hall (with details !)

