

=>
Uploading 902.str

02/25/98

L8 STRUCTURE UPLOADED

=> s 18

SAMPLE SEARCH INITIATED 08:33:02
SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.02

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 0 TO 0
PROJECTED ANSWERS: 0 TO 0

L9 0 SEA SSS SAM L8

=> s 18 full

FULL SEARCH INITIATED 08:33:09
FULL SCREEN SEARCH COMPLETED - 2 TO ITERATE
100.0% PROCESSED 2 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.03

L10 0 SEA SSS FUL L8

=> d 18

L8 HAS NO ANSWERS
L8 STR

G1 MeO, Eto

Structure attributes must be viewed using STN Express query preparation.

=> fil marpat

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	114.46	315.75

FILE 'MARPAT' ENTERED AT 08:33:24 ON 25 FEB 1998
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 1998 American Chemical Society (ACS)

MOST RECENT CITATIONS FOR PATENTS FROM FIVE MAJOR ISSUING AGENCIES
 (COVERAGE TO THESE DATES IS NOT COMPLETE):

US	5700895	23 DEC 1997
DE	19725447	18 DEC 1997
EP	814124	29 DEC 1997
JP	10016376	20 JAN 1998
WO	9749682	31 DEC 1997

NOTICE: MARPAT started covering 1998 patents on 9 February 1998,
 with the first entry at 128:61273 for JP10001462 A2, published on
 6 January 1998.

*** YOU HAVE NEW MAIL ***

=> s 18

SAMPLE SEARCH INITIATED 08:33:29
 SAMPLE SCREEN SEARCH COMPLETED - 7 TO ITERATE
 100.0% PROCESSED 7 ITERATIONS 0 ANSWERS
 SEARCH TIME: 00.00.21

FULL FILE PROJECTIONS:	ONLINE	**COMPLETE**
	BATCH	**COMPLETE**
PROJECTED ITERATIONS:	7 TO	299
PROJECTED ANSWERS:	0 TO	0

L11 0 SEA SSS SAM L8

=> s 18 full

FULL SEARCH INITIATED 08:33:57
 FULL SCREEN SEARCH COMPLETED - 150 TO ITERATE
 96.7% PROCESSED 145 ITERATIONS 1 ANSWERS
 100.0% PROCESSED 150 ITERATIONS 1 ANSWERS
 SEARCH TIME: 00.00.35

L12 1 SEA SSS FUL L8

=> d 112 bib ab

L12 ANSWER 1 OF 1 MARPAT COPYRIGHT 1998 ACS
 AN 123:82961 MARPAT
 TI Preparation of organic nitrate esters having antiinflammatory and/or
 analgesic activity
 IN Del Soldato, Piero
 PA Nicox Ltd., Ire.
 SO PCT Int. Appl., 46 pp.
 CODEN: PIXXD2
 PI WO 9509831 A1 950413
 DS W: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, JP, KG, KP,
 KR, KZ, LK, LR, LT, LV, MD, MG, MN, NO, NZ, PL, RO, RU, SI, SK,
 TJ, TT, UA, US, UZ, VN
 RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FR, GA, GB, GR,
 IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG
 AI WO 94-EP3182 940923
 PRAI GB 93-20599 931006
 IT 94-MI916 940510
 DT Patent
 LA English
 OS CASREACT 123:82961
 AB The title compds. MCOY[C(A)(B)]nONO₂ [A, B = H, (un)branched alkyl;

M = Q1, Q2, 2-(6-methoxy)naphthyl, etc.; n = 1-10], usually as analgesics, antiinflammatory agents, and blood platelet aggregation inhibitors, are prepd. Thus, 2-(6-methoxy-2-naphthyl)propionic acid was converted into its Na carboxylate salt with NaOEt, the salt condensed with 1-bromo-4-chlorobutane, and the 4-chlorobutyl 2-(6-methoxy-2-naphthyl)propionate intermediate nitrated by reaction with AgNO₃, producing the 4-nitratabutyl ester, II.

L8

STR

G1 MeO, EtO

Structure attributes must be viewed using STN Express query preparation.

=> d 112 ide can

L12 ANSWER 1 OF 1 MARPAT COPYRIGHT 1998 ACS
AN 123:82961 MARPAT

MSTR 1

G1 = G2 / alkylene (SO)
G2 = (1-10) CH₂
G3 = 9 / 30 / 40 / 53

G4 = 55 / 68 / 81

G5 = O / NH / 89

G6 = alkyl
MPL: claim 1
NTE: additional ring formation specified

MSTR 2

G1 = 89 / Cl / 91

G3 = 9 / 30 / 40 / 53

G4 = 55 / 68 / 81

MPL: claim 15

MSTR 3

G3—G1—G4

G1 = G2 / alkylene (SO)
G2 = (1-10) CH₂
G3 = Cl / Br / NH₂ / alkylamino
G4 = Cl / Br / I
MPL: claim 15
NTE: additional ring formation specified

MSTR 4

G3—G1—OH

G1 = G2 / alkylene (SO)
G2 = (1-10) CH₂
G3 = Cl / Br / NH₂ / alkylamino
MPL: claim 16
NTE: additional ring formation specified

123:82961

=> fil beilstein

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	85.24	400.99
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-0.49	-0.49

FILE 'BEILSTEIN' ENTERED AT 08:36:51 ON 25 FEB 1998
COPYRIGHT (c) 1998 Beilstein Chemiedaten und Software GmbH, Beilstein
Institut fuer Literatur der organischen Chemie

FILE LAST UPDATED: 22 FEB 1998

FILE COVERS 1779 TO 1997.

*** CAS REGISTRY NUMBERS FOR 4,355,879 SUBSTANCES AVAILABLE ***
*** FILE CONTAINS 7,169,346 SUBSTANCES ***

* PLEASE NOTE THAT THERE ARE NO FORMATS FREE OF COST. *
* SET NOTICE FEATURE: THE COST ESTIMATES CALCULATED FOR SET NOTICE *
* ARE BASED ON THE HIGHEST PRICE CATEGORY. THEREFORE, THESE *
* ESTIMATES MAY NOT REFLECT THE ACTUAL COSTS. *
* FOR PRICE INFORMATION SEE HELP COST *

*** YOU HAVE NEW MAIL ***

=> s 18

SAMPLE SEARCH INITIATED 08:37:02
SCREENING
SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.09

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
PROJECTED ITERATIONS: BATCH **COMPLETE**
PROJECTED ANSWERS: 0 TO 0
0 TO 0

L13 0 SEA SSS SAM L8

=> s 18 full

FULL SEARCH INITIATED 08:37:29
FULL SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.14

L14 0 SEA SSS FUL L8

=>
Uploading 902570.str

L1 STRUCTURE UPLOADED

=> d 11

L1 HAS NO ANSWERS

L1 STR

02/25/98

Structure attributes must be viewed using STN Express query preparation.

=> s 11

SAMPLE SEARCH INITIATED 08:12:08
SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 0 TO 0
PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 08:12:16
FULL SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.01

L3 0 SEA SSS FUL L1

=> fil marpat

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	113.82	113.97

FILE 'MARPAT' ENTERED AT 08:12:22 ON 25 FEB 1998
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 1998 American Chemical Society (ACS)

FILE CONTENT: 1988-PRESENT (VOL 104 ISS 14-VOL 128 ISS 7) (980213/ED)

MOST RECENT CITATIONS FOR PATENTS FROM FIVE MAJOR ISSUING AGENCIES
(COVERAGE TO THESE DATES IS NOT COMPLETE):

US 5700895 23 DEC 1997
DE 19725447 18 DEC 1997
EP 814124 29 DEC 1997
JP 10016376 20 JAN 1998
WO 9749682 31 DEC 1997

NOTICE: MARPAT started covering 1998 patents on 9 February 1998,
with the first entry at 128:61273 for JP10001462 A2, published on
6 January 1998.

=> s 11

SAMPLE SEARCH INITIATED 08:12:27
SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.02

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 0 TO 0
PROJECTED ANSWERS: 0 TO 0

L4 0 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 08:12:34
FULL SCREEN SEARCH COMPLETED - 37 TO ITERATE
100.0% PROCESSED 37 ITERATIONS (1 INCOMPLETE) 3 ANSWERS
SEARCH TIME: 00.00.12

L5 3 SEA SSS FUL L1

=> d 15 1-3 bib ide

L5 ANSWER 1 OF 3 MARPAT COPYRIGHT 1998 ACS
(ALL HITS ARE ITERATION INCOMPLETES)
AN 125:114476 MARPAT
TI Preparation of diol bis-(benzoates or heterocyclcarboxylates) as
antiinflammatory agents and platelet aggregation inhibitors
IN Del Soldato, Piero; Sannicolo, Francesco; Benincori, Tiziana
PA Laboratori Alchemia S.R.L., Italy
SO PCT Int. Appl., 90 pp.
CODEN: PIXXD2
PI WO 9615809 A2 960530
DS W: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI,
GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, TJ
RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FR, GA, GB, GR,
IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG
AI WO 95-EP4556 951120
PRAI IT 94-MI2362 941122
DT Patent
LA English
AN 125:114476 MARPAT

MSTR 1A

G1—G2—G4—G3—G1
2 4

G1 = R / (SC 85 / 226 / 372 / 436 / 447 / 483 / 568 /
676)

G2 = R / (SC O / C(O))

G3 = R / (SC O / C(O))

G4 = O / S / NH / 6 / Cb (SO) / phenylene (SO) /
Cb<EC (10) C, AN (2-) C, AR (1-), BD (ALL) N, RC (2),
RS (2) E6 (0) OTHER> (SO) / Hy<EC (1-2) N (0) OTHERQ (4-5)
C, AN (2-) C (0) N, AR (1-), BD (ALL) N, RC (1), RS (1) E6>
(SO) / Hy<EC (2) N (3) C (0) OTHERQ, AR (1-), BD (2) D,
RC (1), RS (1) E5> (SO) / Hy<EC (2) N (7) C (0) OTHERQ,
AR (1-), BD (6) N (1) D, FA (2) C, RC (2),
RS (1) E5 (1) E6 (0) OTHER> (SO) / arylene (SO) / 52-2 51-4 /
73-2 79-4

G5 = cycloalkyl / alkyl

G14 = O / S

G19 = 95 / 117 / 137 / 165 / 185 / 208 / 251 / 277 / 328 /
396 / 409 / 542 / 668

G20 = H / Et
G21 = H / 223

G22 = 245 / 310 / 359 / 426

G23 = 451 / 464 / 471 / 533 / 554 / 562

G24 = 488 / 502 / 519 / 651

G25 = 587 / 612 / 638

G26 = Me / H

G27 = H / CF₃

MPL: claim 1

MSTR 1B ITERATION INCOMPLETE

G2 = R / (SC O / C(O))

G3 = R / (SC O / C(O))

G4 = 8 / C(O) / 12-2 13-4 / Ak (SO) / 15-2 16-4 / 17-2 19-4 / 26-2 28-4 / 29-2 31-4 / 39-2 40-4 / 54-2 58-4 / G18 / (SC G5 / 696-2 698-4 / 700-2 702-4)

G5 = (2-4) CH₂
 G6 = H / cycloalkyl / alkyl
 G7 = alkylene (SO)
 G8 = arylene (SO)
 G9 = (1-3) CH₂
 G10 = O / phenylene (SO) / Hy<AR (1-),
 RS (0-) E5 (0-) E6 (0) OTHER> (SO) / 25-17 22-19

G11 = CH₂ / C(O)
 G12 = (1-6) CHOH
 G13 = 35 / OH

G15 = S / 59-55 60-57 / 61-55 62-57 / 66

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)
 G18 = (1-4) CHOH
 G19 = 95 / 117 / 137 / 165 / 185 / 208 / 251 / 277 / 328 /
 396 / 409 / 542 / 668

G20 = H / Et
 G21 = H / 223.

G27 = H / CF₃
 MPL: claim 1

MSTR 1C

G2 = R / (SC O / C(O))
 G3 = R / (SC O / C(O))
 G4 = 8 / C(O) / 12-2 13-4 / Ak (SO) / 15-2 16-4 /
 17-2 19-4 / 26-2 28-4 / 29-2 31-4 / 39-2 40-4 / 54-2 58-4 /
 G18 / (SC G5 / 696-2 698-4 / 700-2 702-4)

G5 = (2-4) CH₂
 G6 = H / cycloalkyl / alkyl
 G7 = alkylene (SO)
 G8 = arylene (SO)
 G9 = (1-3) CH₂

G10 = O / phenyl (SO) / Hy<AR (1-),
RS (0-) E5 (0-) E6 (0) OTHER> (SO) / 25-17 19

G11 = CH2 / C(O)
G12 = (1-6) CHOH
G13 = 35 / OH

G15 = S / 59-55 60-57 / 61-55 62-57 / 66

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)
G18 = (1-4) CHOH
G22 = 245 / 310 / 359 / 426

MPL: claim 1

MSTR 1D

$G_2 = R / (SCO / C(O))$
 $G_3 = R / (SCO / C(O))$
 $G_4 = 8 / C(O) / 12-2\ 13-4 / Ak(SO) / 15-2\ 16-4 /$
 $17-2\ 19-4 / 26-2\ 28-4 / 29-2\ 31-4 / 39-2\ 40-4 / 54-2\ 58-4 /$
 $G_{18} / (SCG_5 / 696-2\ 698-4 / 700-2\ 702-4)$

$G_5 = (2-4)\ CH_2$
 $G_6 = H / \text{cycloalkyl} / \text{alkyl}$
 $G_7 = \text{alkylene (SO)}$
 $G_8 = \text{arylene (SO)}$
 $G_9 = (1-3)\ CH_2$
 $G_{10} = O / \text{phenylene (SO)} / \text{Hy<AR (1-),}$
 $RS(0-) E_5(0-) E_6(0) \text{ OTHER> (SO) / 25-17 22-19}$

$G_{11} = CH_2 / C(O)$
 $G_{12} = (1-6)\ CHOH$
 $G_{13} = 35 / OH$

G15 = S / 59-55 60-57 / 61-55 62-57 / 66

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)

G18 = (1-4) CHOH

MPL: claim 1

MSTR 1E

G1 = 436 / 568

G2 = R / (SC O / C(O))

G3 = R / (SC O / C(O))

G4 = 8 / C(O) / 12-2 13-4 / Ak (SO) / 15-2 16-4 /
 17-2 19-4 / 26-2 28-4 / 29-2 31-4 / 39-2 40-4 / 54-2 58-4 /
 G18 / (SC G5 / 696-2 698-4 / 700-2 702-4)

G5 = (2-4) CH₂
 G6 = H / cycloalkyl / alkyl
 G7 = alkylene (SO)
 G8 = arylene (SO)
 G9 = (1-3) CH₂
 G10 = O / phenylene (SO) / Hy<AR (1-),
 RS (0-) E5 (0-) E6 (0) OTHER> (SO) / 25-17 22-19

G11 = CH₂ / C(O)
 G12 = (1-6) CHOH
 G13 = 35 / OH

G15 = S / 59-55 60-57 / 61-55 62-57 / 66

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)
 G18 = (1-4) CHOH
 G25 = 587 / 612 / 638

G26 = Me / H
 MPL: claim 1

MSTR 1F

$\text{G5} = (2-4) \text{ CH}_2$
 $\text{G6} = \text{H} / \text{cycloalkyl} / \text{alkyl}$
 $\text{G7} = \text{alkylene (SO)}$
 $\text{G8} = \text{arylene (SO)}$
 $\text{G9} = (1-3) \text{ CH}_2$
 $\text{G10} = \text{O} / \text{phenylene (SO)} / \text{Hy<AR (1-),}$
 $\text{RS (0-)} \text{ E5 (0-)} \text{ E6 (0)} \text{ OTHER> (SO)} / 25-17 22-19$

$\text{G11} = \text{CH}_2 / \text{C(O)}$
 $\text{G12} = (1-6) \text{ CHOH}$
 $\text{G13} = 35 / \text{OH}$

$\text{G15} = \text{S} / 59-55 60-57 / 61-55 62-57 / 66$

$$G16 = (1-5) \ 63-67-5-57$$

G17 = alkyl (SO) / aryl (SO)

$$G18 = (1-\bar{4}) \text{ CHOH}$$

G23 = 451 / 464 / 471 / 533 / 554 / 562

MPL: claim 1

MSTR 1G

$$G_2 = R / (SC_O / C(O))$$

$$G3 = R / (SC \circ / C(O))$$

$$G_4 = \infty / G(\infty) / 12-2 \ 13-4 / A_k (so) / 15-2 \ 16-4 /$$

17-2 19-4 / 26-2 28-4 / 29-2 31-4 / 39-2 40-4 / 54-2 58-4 /
G18 / (SC G5 / 696-2 698-4 / 700-2 702-4)

G5 = (2-4) CH₂
 G6 = H / cycloaliphatic alkyl
 G7 = alkylene (SO)
 G8 = arylene (SO)
 G9 = (1-3) CH₂
 G10 = O / phenylene (SO) / Hy<AR (1-),
 RS (0-) E5 (0-) E6 (0) OTHER> (SO) / 25-17 22-19

G11 = CH₂ / C(O)
 G12 = (1-6) CHOH
 G13 = 35 / OH

G15 = S / 59-55 60-57 / 61-55 62-57 / 66

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)
 G18 = (1-4) CHOH
 G24 = 488 / 502 / 519 / 651

MPL: claim 1

MSTR 1H

$G_2 = R / (SC\ O / C(O))$
 $G_3 = R / (SC\ O / C(O))$
 $G_4 = 8 / C(O) / 12-2\ 13-4 / Ak\ (SO) / 15-2\ 16-4 /$
 $17-2\ 19-4 / 26-2\ 28-4 / 29-2\ 31-4 / 39-2\ 40-4 / 54-2\ 58-4 /$
 $G_{18} / (SC\ G_5 / 696-2\ 698-4 / 700-2\ 702-4)$

$G_5 = (2-4)\ CH_2$
 $G_6 = H / \text{cycloalkyl} / \text{alkyl}$
 $G_7 = \text{alkylene (SO)}$
 $G_8 = \text{arylene (SO)}$
 $G_9 = (1-3)\ CH_2$
 $G_{10} = O / \text{phenylene (SO)} / \text{Hy<AR (1-),}$
 $\text{RS (0-)}\ E_5\ (0-)\ E_6\ (0)\ \text{OTHER> (SO) / 25-17 22-19}$

$G_{11} = CH_2 / C(O)$
 $G_{12} = (1-6)\ CHOH$
 $G_{13} = 35 / OH$

$G_{15} = S / 59-55\ 60-57 / 61-55\ 62-57 / 66$

\$—S O—G16 N—G17

G16 = (1-5) 63-61 65-57

G17 = alkyl (SO) / aryl (SO)

$$G18 = (1-4) \text{ CHOH}$$

MPL: claim 1

L5 ANSWER 2 OF 3 MARPAT COPYRIGHT 1998 ACS

AN 124:201789 MARPAT

TI Preparation of aryl nitrate ester compounds having antiinflammatory
ans well as analgesic and antithrombotic activities

'IN DEL Soldato, Piero, Sannicolo, Francesco

PA Nicox Ltd., Ire.

SO PCT Int. Appl., 87 pp.

CODEN: PIXXD2

PI WO 9530641 A1 951116

DS W: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, JP, KG, KP,

KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SI,
SK, TJ, TT, UA, US, UZ, VN

RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FR, GA, GB, GR,
IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG

AI WO 95-EP1233 950404

PRAI IT 94-MI916 940510

IT 94-MI1731 940809

DT Patent

LA English

AN 124:201789 MARPAT

MSTR 1A

$$G_1 = 4 / 126 / 149 / 326 / 424 / 480 / 525 / 589 / 602 / \\ 625 / \mathbf{635} / 660 / 678 / 712 / 717 / 735$$

Ph-p-C₆H₄C(O)-CH₂-G15-G26

G29-G27-C(O)-G24

G2 = O / 7

G3 = H / alkyl<(1-10)>
 G4 = Ph (SR (1-2) G5) / 18 / 26 / 36 / 57 / 64 / 80 / 103

G5 = (1) G6 / (-1) G8
 G6 = 9 / Hy<EC (0-) N (0-) O (0-) S (0) OTHERQ, RC (1),
 RS (1) M5 (1) X6>

G7 = Me / Et / alkyl<(3-5)>
 G8 = OH / X / alkyl<(1-4)> / alkoxy<(1-4)> /
 perfluoroalkyl<(1-4)> / CF₃ / NO₂ / NH₂ / alkylamino<(1-4)> /
 dialkylamino<(1-4)>
 G9 = o-C₆H₄ (SO (1-2) G10) / 42-35 43-5 / 52-35 53-5 /
 778-35 779-5

G10 = (-1) G6 / (-1) G8

G11 = 134 / 137

G12 = H / alkyl<(1-3)>
G13 = H / alkyl<(1-6)> / alkoxy<(1-6)> / Cl / F / Br
G14 = (2-) H / alkyl<(1-6)> / alkoxy<(1-6)> / Cl / F / Br
G15 = 150 / 153 / CHMe

G16 = H / alkyl<(1-12)> (SO)
G17 = 163 / 173 / 187 / 201 / 215 / 237 / 249 / 263 /
264 / 275 / 285 / 294 / 303 / 306 / 315 / 330 / 353 / 385 /
395 / 407 / 372 / 413

G18 = H / alkyl<(1-6)> (SO alkoxy carbonyl<(1-6)>) / alkyl<(1-6)> (SR CO₂H) / alkyl carbonyl<(1-6)> (SO (1-) X) / CH₂Ph (SO (1-) X) / COPh (SO (1-) X)
 G19 = H / (-1) G20 / (1) G22
 G20 = X / OH / CN / alkyl<(1-6)> (SO G21) / alkoxy<(1-6)> / COMe / OCH₂Ph / alkylthio<(1-6)> / perfluoroalkyl<(1-3)> / NO₂ / NH₂ / SO₂NH₂ / dialkylaminosulfonyl<(1-6)> / alkylsulfonyl<(1-3)> (SR (2) F)
 G21 = OH / CO₂H
 G22 = X / CN / alkyl<(1-6)> (SO (1-) OH) / alkoxy<(1-6)> / COMe / NHCOMe / OCH₂Ph / alkylthio<(1-6)> / perfluoroalkyl<(1-3)> / OH / alkyl<(1-6)> (SR CO₂H) / NO₂ / NH₂ / alkylamino<(1-6)> / dialkylamino<(1-6)> / SO₂NH₂ / dialkylaminosulfonyl<(1-6)> / alkylsulfonyl<(1-3)> (SR (2) F)
 G23 = H / alkylthio<(1-4)>
 G24 = H / OH
 G25 = Ph (SO (1-) G26) / heteroaryl / thieryl / furyl (SO OH) / pyridyl
 G26 = OH / X / alkyl carbonyl<(1-6)> / alkoxy<(1-6)> / alkyl<(1-6)> / cyclopentyl / cyclohexyl / cycloheptyl
 G27 = 425 / C=CH₂

^{HC}—G28
 425

G28 = H / alkyl<(1-6)> (SO (2) F) / Me
 G29 = 435 / 445 / 446

G30 = alkyl<(1-6)> / cycloalkyl<(3-7)> / 448 / alkyl<(1-3)> (SR (3) F) / CH=CH₂ / ethynyl / X / alkoxy<(1-6)> / alkoxy<(1-7)> (SR (2) F) / 452 / CN / 453 /

Ph (SO alkyl<(1-8)>) / OMe

G31 = alkoxy<(1-7)> / alkylthio<(1-7)>
G33 = alkyl<(2-5)> / alkoxy<(2-3)> / 456 / OPh / SPh / cycloalkyl<(5-7)> (SO (1) alkyl<(1-2)>) / Bu-i

G34 = 737-1 738-3 / 481-1 503-3 / 739-1 742-3 / 743-1 746-3 / 747-1 753-3 / 760-1 763-3

G35 = H / alkyl<(1-4)>
G36 = phenylene
G37 = H / alkyl<(1-4)> / alkoxy<(1-4)> / Cl / F / Br
G38 = H / Cl
G39 = phenylene
G40 = alkylene<(1-20)> / cycloalkylene<(5-7)> (SO)
G41 = (2-3) CH₂
G42 = phenylene
G43 = phenylene (SO (1) CO₂H)
G44 = (0-5) 754-750 757-3

G45 = (1-) H / Me
G46 = (0-5) 766-762 768-3

G47 = CO₂H (SO)
DER: or salts
MPL: claim 1

NTE: additional ring formation is allowed
NTE: substitution restricted

MSTR 1B

G1 = 481 / 560 / 574

G4 = 737-1 738-3 / 4-1 6-3 / 739-1 742-3 / 743-1 746-3 /
747-1 753-3 / 760-1 763-3

G5 = phenylene
G34 = 503 / 547

G40 = alkylene<(1-20)> / cycloalkylene<(5-7)> (SO)
G41 = (2-3) CH₂
G42 = phenylene
G43 = phenylene (SO (1) CO₂H)
G44 = (0-5) 754-750 757-3

G45 = (1-) H / Me
G46 = (0-5) 766-762 768-3

DER: or salts
 MPL: claim 1
 NTE: additional ring formation is allowed
 NTE: substitution is restricted

L5 ANSWER 3 OF 3 MARPAT COPYRIGHT 1998 ACS
 AN 123:82961 MARPAT
 TI Preparation of organic nitrate esters having antiinflammatory and/or analgesic activity
 IN ~~Del Soldato, Piero~~
 PA Nicox Ltd., Ire.
 SO PCT Int. Appl., 46 pp.
 CODEN: PIXXD2
 PI WO 9509831 A1 950413
 DS W: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, JP, KG, KP,
 KR, KZ, LK, LR, LT, LV, MD, MG, MN, NO, NZ, PL, RO, RU, SI, SK,
 TJ, TT, UA, US, UZ, VN
 RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FR, GA, GB, GR,
 IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG
 AI WO 94-EP3182 940923
 PRAI GB 93-20599 931006
 IT 94-MI916 940510
 DT Patent
 LA English
 OS CASREACT 123:82961
 AN 123:82961 MARPAT

MSTR 1

G1 = G2 / alkylene (SO)
 G2 = (1-10) CH₂
 G3 = 9 / 30 / 40 / 53

G4 = 55 / 68 / 81

G5 = O / NH / 89

G6 = alkyl
MPL: claim 1
NTE: additional ring formation specified

MSTR 2

G1 = 89 / Cl / 91

G3 = 9 / 30 / 40 / 53

G4 = 55 / 68 / 81

MPL: claim 15

MSTR 3

G3—G1—G4

G1 = G2 / alkylene (SO)
G2 = (1-10) CH₂
G3 = Cl / Br / NH₂ / alkylamino
G4 = Cl / Br / I
MPL: claim 15
NTE: additional ring formation specified

MSTR 4

G3—G1—OH

G1 = G2 / alkylene (SO)
G2 = (1-10) CH₂
G3 = Cl / Br / NH₂ / alkylamino
MPL: claim 16
NTE: additional ring formation specified

=> fil beilstein

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	87.32	201.29

FILE 'BEILSTEIN' ENTERED AT 08:14:01 ON 25 FEB 1998
COPYRIGHT (c) 1998 Beilstein Chemiedaten und Software GmbH, Beilstein
Institut fuer Literatur der organischen Chemie

FILE LAST UPDATED: 22 FEB 1998

FILE COVERS 1779 TO 1997.

*** CAS REGISTRY NUMBERS FOR 4,355,879 SUBSTANCES AVAILABLE ***
*** FILE CONTAINS 7,169,346 SUBSTANCES ***

* PLEASE NOTE THAT THERE ARE NO FORMATS FREE OF COST. *
* SET NOTICE FEATURE: THE COST ESTIMATES CALCULATED FOR SET NOTICE *
* ARE BASED ON THE HIGHEST PRICE CATEGORY. THEREFORE, THESE *
* ESTIMATES MAY NOT REFLECT THE ACTUAL COSTS. *
* FOR PRICE INFORMATION SEE HELP COST *

*** YOU HAVE NEW MAIL ***

=> s 11

SAMPLE SEARCH INITIATED 08:14:07
SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE
100.0% PROCESSED 0 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.08

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS:
PROJECTED ANSWERS:

0 TO 0
0 TO 0

L6 0 SEA SSS SAM L1

=> s l1 full

FULL SEARCH INITIATED 08:14:24

SCREENING

FULL SCREEN SEARCH COMPLETED - 0 TO ITERATE

100.0% PROCESSED 0 ITERATIONS

0 ANSWERS

SEARCH TIME: 00.00.21

L7 0 SEA SSS FUL L1