Instructions for Running the RF Sensor Test Harness

Introduction

This document is a step-by-step set of instructions for downloading and operating the RF Sensor Test Harness. The RF Sensor Test Harness consists of a Python web server, LabVIEW server (LabVIEW player), and a web browser. The player accepts the waveforms via HTTP, converts the binary waveform files to TDMS (a LabVIEW specific file format), and plays the waveforms.

Hardware Prerequisites¹

- National Instruments PXIe-1085 (chassis)
- National Instruments PXIe-8880 (controller)
- National Instruments PXIe-5646 (VST)

Software Prerequisites

- Windows 7 or higher
- LabVIEW 2017
 - An FPGA bit file is needed to run the modified version of the VST Player. The bit file is included with an
 installation of "NI Streaming Host Example for the NI PXIe-5644R-45R" which is available online via the
 JKI Package Manager.
- Python 2.7 with the following packages:
 - Flask 0.12
 - Requests
 - Pycurl 7.43

Procedure

Download the RF Sensor Test Harness master branch from https://github.com/usnistgov/RF Sensor Test Harness. Expand the compressed file to the controller (PXIe-8880) hosting LabVIEW.

1) Starting the RF Sensor Test Harness (Python Server, LabVIEW player, and web browser)

- a) Locate and double click the "StartUp.bat" file located in the "RF Sensor Test Harness master" folder as shown in Figure 1.
 - The Python status window will appear as shown in Figure 1a.
 - The LabVIEW player will appear as shown in Figure 2a.
 - A web browser will be launched automatically.
- b) Start the LabVIEW player by right clicking on the "v1" as shown in Figure 2a. Select "Start" to initiate the session (Figure 2b). A Debug web service window will appear as shown in Figure 3. Click "OK".
 - The RF Sensor Test Harness user interface (web browser) is already launched and will appear as shown in Figure 4.

¹Certain commercial equipment, instruments, or materials are identified in this document in order to specify the procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

• Press "log in". The default user name and password are "admin" and "default".

Figure 1: Start up in directory

Starting server and loading web service.

Figure. 1a: Python window

Figure 2a: LabVIEW project window

Figure 2b: Start up LabVIEW player

Figure 2c: Stop LabVIEW player

Login
Username:
| admin | Password:
| Login | Cogin |

Figure 4: RF Sensor Test Harness user interface

Figure 5: waveforms.txt file

Figure 6: Location for global variables status

2) Playing the waveforms

- a) Locate the "waveforms.txt" file located in your "Test" folder. See Figure 5.
 - Enter the full path of the "waveforms.txt" file into the "Input File Location" field of the user interface and press "Input_From_File" to play the waveforms as shown in Figure 4.

The initial run of the RF Sensor Test Harness will convert the included waveforms from binary (.dat) to .tdms format prior to playing the waveforms. As a result, there will be a delay of 60 s before the waveforms play. Once each of the waveforms is converted to .tdms, each waveform will play sequentially with no delay. The new TDMS files will appear in the "Test" directory as shown in Figure 8.

The status of the waveform conversions and waveform playing can be monitored on the GlobalVariables.vi Front Panel.

b) Go to the LabVIEW project and expand the folder "99 – Others". Double click the "GlobalVariables.vi". The GlobalVariables.vi front panel will appear as shown in Figure 7.

Figure 7: Status of waveform playback

Note: the waveforms can be viewed on your spectrum analyzer. See optional step 5 for configuring your spectrum analyzer.

Figure 8: TDMS files

Figure 9: Location of SCPI commands

3) Stopping the RF Sensor Test Harness (Python Server, LabVIEW player)

- To stop the Python web server, select the running Python screen as shown in Figure 1a. Press "Ctrl + C".
- To stop the LabVIEW player, right-click on "v1" as shown in Figure 2c. Select "Stop".

4) Customizing the waveform parameters (optional)

• The waveforms.txt file included in the download uses the following convention: <Path>\waveform.dat, Center Frequency, Scale Factor, Waveform Gain

- The included "WaveformBatch.bat" file can be used to create a new waveforms.txt file. Change the center frequency, scale factor, and waveform gain located in the WaveformBatch.bat file and save the file.
- Double-click the updated batch file to create a new waveforms.txt file.
- Repeat step 2a to play the updated waveforms.

5) Configuring your spectrum analyzer (optional)

The spectrum analyzer settings are controlled with SCPI commands. The address for the VISA connection will need to be changed.

- To change the VISA address, go to the LabVIEW Project Explorer, expand the Dependencies tab.
- Locate and open the "SpectrumAnn SCPI commands.vi" as shown in Figure 9.
- Enter the VISA address for your instrument. See Figure 11.
- Expand the menu in the case structure to reveal the spectrum analyzer settings for the different waveforms as shown in Figure 12.

If manual configurations are preferred, the "local" key on the spectrum analyzer will end the remote session.

Figure 10: Spectrum analyzer configuration front panel

Figure 11: Spectrum analyzer settings

Figure 12: Spectrum analyzer settings

Technical Contacts

Dr. Raied Caromi, raied.caromi@nist.gov

Dr. Michael Souryal, souryal@nist.gov

LIST OF ACRONYMS

FPGA field programable gate array
HTTP hypertext transfer protocol

PCI Peripheral Component Interconnect
PXIe PCI extensions for instrumentation

RF radio frequency

SCPI Standard Commands for Programmable Instruments

TDMS Technical Data Management System

VISA Virtual Instrument Software Architecture

VST vector signal transceiver