ДИСЦИПЛИНА **Схемотехника электронных устройств**полное название дисциплины без аббревиатуры

ИНСТИТУТ Радиотехнических и телекоммуникационных систем КАФЕДРА Радиоволновых процессов и технологий

полное название кафедры

РРБО-01,02-18, РИБО-01,02,03-18, РССО-01,02,03-18

номер групп/ы, для которых предназначены материалы

вид учебного Лекция

МАТЕРИАЛА лекция; материал к практическим занятиям; контрольно-измерительные материалы к практическим занятиям; руководство к КР/КП, практикам

ПРЕПОДАВАТЕЛЬ Тепляков Алексей Павлович

фамилия, имя, отчество

CEMECTP 5 cemectp

указать номер семестра обучения

8. Функциональные устройства на операционных усилителях

8.1. Основные понятия и определения

Операционный усилитель (ОУ) - это многокаскадный усилитель постоянного тока (УПТ) с дифференциальным входом, обладающий большим коэффициентом усиления для противофазных сигналов, имеющий малое выходное и большое входное сопротивления. ОУ выполняется в виде интегральной микросхемы и является самостоятельным активным элементом аналоговой схемотехники наряду с транзисторами. На основе ОУ можно создавать различные электронные устройства: усилители, генераторы, сумматоры, интеграторы, дифференциаторы, активные фильтры и другие устройства, реализация которых на ОУ значительно проще, чем на отдельных транзисторах.

На электрических схемах можно встретить следующие условные графические обозначения ОУ, представленные на рисунке 8.1.

Рисунок 8.1 — Условное изображение операционного усилителя на электрических схемах и типовая схема подключения

Первый вход ОУ является инвертирующим, он отмечается кружком, а второй вход — неинвертирующим. Выходное напряжение ОУ будет противофазно с сигналом, подаваемым на инвертирующий вход и синфазно с сигналом, приходящим на неинвертирующий вход. Поскольку на операционный усилитель поступают сразу два входных сигнала (напряжения), то выходное напряжение ОУ является функцией разности входных напряжений:

$$U_{\text{BMX}} = f(U_2 - U_1) = f(U_{\pi}), \qquad (8.1)$$

где $U_{\rm д} = U_2 - U_1$ – входной дифференциальный сигнал.

Для обеспечения работы ОУ как с положительными, так и с отрицательными входными сигналами питание ОУ осуществляется от двух разнополярных источников напряжения $+E_{\pi 1}$ и $-E_{\pi 2}$.

Зависимость выходного напряжения ОУ $U_{\scriptscriptstyle \mathrm{BMX}}$ от входного

дифференциального сигнала $U_{\rm д}$ называется амплитудной характеристикой (AX) операционного усилителя. График AX в упрощенном виде представлен на рисунке 8.2. На участке A'OA выходное напряжение ОУ линейно зависит от разности входных напряжений или от величины дифференциального сигнала:

$$U_{\text{вых}} = K_{\text{д}}(U_2 - U_1) = K_{\text{д}}U_{\text{д}}, \tag{8.3}$$

где $K_{\rm д}$ — дифференциальный коэффициент усиления на линейном участке AX.

Рисунок 8.2 – Амплитудная характеристика операционного усилителя

Для дифференциального сигнала ОУ, не охваченного отрицательной обратной связью, коэффициент усиления $K_{\rm д}$ является очень большим: $K_{\rm д}=10^4 \dots 10^5 \ (80\dots 100 \ {\rm дБ}), \ {\rm т.e.}$ протяженность линейного участка при напряжениях питания ОУ $|E_{\rm n}i|=6\dots 15$ В соответствует разностям входных сигналов не более нескольких десятков микровольт, что допускает использование ОУ без ООС только в режиме сравнения сигналов как компаратор.

Уровни выходных сигналов ОУ ограничены напряжениями насыщения выхода $+U_{\rm H}$ и $-U_{\rm H}$, величина которых определяется напряжениями питания и схемотехникой выходного каскада ОУ. На практике напряжение насыщения по абсолютной величине меньше напряжения питания на 1...1,5 В.

На участках ограничения выходного напряжения В'A' и AB на рисунке 8.2 коэффициент усиления ОУ равен нулю:

$$K_{\rm d} = \frac{\Delta U_{\rm BMX}}{\Delta U_{\rm d}} = 0. \tag{8.4}$$

При подаче на входы ОУ двух одинаковых по величине и по знаку напряжений, образующих синфазный сигнал, определяемый как

$$U_{\rm ch} = (U_1 + U_2)/2, (8.5)$$

напряжение на выходе можно записать в виде выражения:

$$U_{\text{вых c}\Phi} = K_{\text{c}\Phi}U_{\text{c}\Phi},\tag{8.6}$$

где $K_{\mathsf{c}\varphi}$ – коэффициент передачи синфазного сигнала.

Поскольку в состав операционного усилителя входит один или несколько дифференциальных каскадов, в которых по отношению к синфазному сигналу действует отрицательная ОС, то синфазный сигнал в ОУ значительно ослабляется: $K_{\rm c}_{\rm c} \approx 0$. Прохождение через ОУ синфазной составляющей оценивается коэффициентом ослабления синфазного сигнала:

$$K_{\text{occ}} = 20 \lg \frac{K_{\text{д}}}{K_{\text{c}\phi}} [\text{дБ}].$$
 (8.7)

 $K_{\rm occ}$ имеет значения в пределах 60-120 дБ.

8.2. Структура и характеристики операционного усилителя

Интегральный операционный усилитель (микросхема), структурная схема которого представлена на рисунке 8.3, включает в себя дифференциальный каскад (двухвходовой усилитель) на входе, за которым следует одновходовой усилитель напряжения, выполненный на ДУ с несимметричным входом и выходом, предназначенный для доведения общего коэффициента усиления ОУ до необходимой величины. Затем идёт схема сдвига уровня, компенсирующая потенциал, определяющий режим работы усилительного элемента в ДУ, и завершает структуру ОУ выходной каскад, являющийся двухтактным усилителем мощности с малым выходным сопротивлением и малым потреблением тока в режиме покоя.

Рисунок 8.3 – Структурная схема операционного усилителя

Для получения высокого входного сопротивления и большого коэффициента усиления во входном дифференциальном каскаде ОУ на биполярных транзисторах используются схемы, состоящие из составных транзисторов в каждом плече. При этом коэффициент усиления составного транзистора равен произведению коэффициентов усиления по току β_i транзисторов, соединенных по схеме Дарлингтона, а входное сопротивление ОУ при этом увеличивается в величину коэффициента β_1 первого транзистора, на вход которого подается сигнал. Более высокое входное сопротивление ОУ получают при выполнении входного ДУ на полевых транзисторах.

Вывод общего провода («земля») в операционных усилителях

отсутствует. «Земля» формируется вне корпуса ОУ в точке соединения минуса и плюса источников питания $+E_{\Pi 1}$ и $-E_{\Pi 2}$, как показано на рисунке 8.1. Относительно этой «земли» на входы ОУ подаются напряжения U_1 и U_2 и снимается выходной сигнал $U_{\rm Bbix}$.

В ОУ используется, как правило, симметричное двухполярное питание ($+E_{\pi 1}$ и $-E_{\pi 2}$) в пределах 5...20 В, обеспечивающего нулевой потенциал на выходе усилителя при положительных и отрицательных входных сигналах.

Поскольку ОУ является усилителем постоянного тока, на его выходе возможно присутствие напряжения смещения $U_{\rm вых} \neq 0$ при нулевых входных напряжениях (входы ОУ закорочены на «землю»). Поэтому в ОУ предусматриваются выводы для установки нулевого уровня выходного напряжения (Баланс «0»), а также выводы для подключения частотной коррекции с целью устранения самовозбуждения схемы.

ОУ является многокаскадным усилителем, и его суммарная АЧХ формируется путем перемножения АЧХ отдельных каскадов. Например, для трехкаскадного ОУ комплексная передаточная характеристика для дифференциального сигнала $K_{\pi}(jf)$ будет иметь следующий вид:

$$K_{\mu}(jf) = \frac{K_{\mu 0}}{\left(1 + j\frac{f}{f_{1}}\right)\left(1 + j\frac{f}{f_{2}}\right)\left(1 + j\frac{f}{f_{3}}\right)},\tag{8.8}$$

где $K_{\rm д0} = K_{\rm д01} K_{\rm д02} K_{\rm д03}$ — дифференциальный коэффициент усиления ОУ на нулевой частоте (постоянный ток), равный произведению коэффициентов усиления трёх каскадов для этой частоты.

удобства анализа устройств результирующая представляется в виде линейно-ломаной асимптотической логарифмической АЧХ (ЛАЧХ), которая также имеет название диаграмма Боде. Максимальная погрешность аппроксимации АЧХ, получаемой на основе непрерывной передаточной функции (8.8), будет образовываться в точках излома Боде. Координатами точек излома (полюсов полинома диаграммы знаменателя передаточной функции) будут являться частоты f_1, f_2, f_3 из формулы (8.8), соответствующие отдельным каскадам ОУ, причем $f_1 < f_2 <$ f_3 . Первая точка излома ЛАЧХ соответствует очень небольшой частоте $f_1 \approx$ 100 Гц по сравнению с f_2 и f_3 . Условный вид диаграммы Боде для трехкаскадного ОУ представлен на рисунке 8.4 пунктирной линией.

Каждый каскад в ОУ на высокой частоте добавляет фазовый сдвиг $\Delta \varphi < -90^\circ$. Для трёхкаскадного ОУ возможен сдвиг между входными и выходными сигналами $\Delta \varphi \to -270^\circ$. При этом наклон ЛАЧХ с каждой частотой излома f_i увеличивается на -20 дБ на декаду, как показано на рисунке 8.4, достигая после частоты f_3 наклона -60 дБ на декаду. Термин «декада» соответствует частотам,

отличающимся между собой в десять раз. Уклон ЛАЧХ может также измеряться в дБ на октаву. Термин «октава» соответствует частотам, отличающимся между собой в два раза. При этом 20 дБ/декада = 6 дБ/октава.

При введении в ОУ отрицательной обратной связи (ООС) возможно превращение её в положительную (ПОС) на некоторой частоте, на которой образуется сдвиг фаз $\Delta \varphi = -180^\circ$. При петлевом усилении $K_{\rm д0}\beta_{\rm oc} \ge 1$ на этой частоте в ОУ возникнет самовозбуждение, и он превратится в автогенератор колебаний.

Рисунок 8.4 — ЛАЧХ не скорректированного ОУ (пунктирная линия) и ЛАЧХ ОУ с проведенной коррекцией (сплошная линия)

Для обеспечения устойчивости схему ОУ, предназначенного для универсального применения, дополняют внешними цепи частотной коррекции, которые ограничивают сдвиг фаз до $\Delta \varphi < -120^\circ$ вплоть до частоты единичного усиления $f_{\rm T}$, на которой $K_{\rm Z}(f)=1$ или $K_{\rm Z}(f)[{\rm Z}{\rm E}]=0$, и уменьшают наклон ЛАЧХ до -20 дБ на декаду. В ряде ОУ цепи коррекции уже являются встроенными. Например, с внутренней коррекцией отечественной промышленностью выпускаются операционные усилители: 140УД6, 140УД7, 140УД8, 544УД1 и др.

В результате, скорректированный ОУ имеет такую же ЛАЧХ, что и фильтр нижних частот (ФНЧ) первого порядка, имеющий спад ЛАЧХ -20 дБ на декаду. Комплексный дифференциальный коэффициент передачи такого ОУ описывается выражением для ФНЧ:

$$K_{\mu}(jf) = \frac{K_{\mu 0}}{1 + j\frac{f}{f_{\kappa}}},$$
 (8.9)

где $K_{д0}$ – собственный коэффициент усиления на нулевой частоте (паспортные данные); $f_{\rm K}$ – верхняя граничная частота АЧХ скорректированного ОУ, на которой $K_{\rm L}(f)=K_{\rm L}(\sqrt{2})$; При этом $f_{\rm K}< f_1$.

АХЧ и ФЧХ скорректированного ОУ на основе передаточной функции (8.9) определяются по формулам:

для АЧХ
$$K_{\text{д}}(f) = \left| K_{\text{д}}(jf) \right| = K_{\text{д0}} / \sqrt{[1 + (f/f_{\text{K}})^2]};$$
 (8.10)

для
$$\Phi$$
ЧХ $\varphi(f) = -arctg(f/f_{\kappa})$. (8.11)

При представлении АЧХ скорректированного ОУ в виде диаграммы Боде или ЛАЧХ, показанной на рисунке 8.4 сплошной линией **1**, верхняя граничная частота f_{κ} будет соответствовать частоте излома или частоте среза, на которой образуется максимальная погрешность, равная 3 дБ, между ЛАЧХ и графиком АЧХ скорректированного ОУ, описываемым выражением (8.10). Для частот $f < f_{\kappa}$ ЛАЧХ скорректированного ОУ аппроксимируется равномерной функцией $K_{\rm d}(f) = K_{\rm d0}$, а на частотах $f > f_{\kappa}$ график ЛАЧХ спадает обратно пропорционально частоте, поскольку $K_{\rm d}(f) \cdot f = K_{\rm d0} \cdot f_{\kappa}$. Откуда

$$K_{\mathbf{A}}(f) = \mathbf{K}_{\mathbf{A}0} f_{\mathbf{K}} / f. \tag{8.12}$$

ЛАЧХ скорректированного ОУ удовлетворяет критерию устойчивости Боде, согласно которому ОУ, охваченный ОС, будет устойчив, если наклон ЛАЧХ ОУ без ОС не превышает -20 дБ/дек.

Произведение $K_{д0}f_{K}=\Pi$ называют площадью усиления. Для области частот $f>f_{K}$, где наблюдается линейный спад ЛАЧХ, справедливо выражение $K_{J}(f)\cdot f=\Pi-const.$ Поскольку на частоте единичного усиления $K_{J}(f_{T})=1$, то значение частоты единичного усиления совпадает с площадью усиления:

$$1 \cdot f_{\mathrm{T}} = K_{\mathrm{d}0} f_{\mathrm{K}} = \Pi. \tag{8.13}$$

Для современных ОУ значение частоты единичного усиления $f_{\rm T}$ составляет единицы — десятки мегагерц.

При использовании ОУ для построения усилительного каскада его охватывают отрицательной обратной связью (ООС) с помощью навесных элементов. При этом коэффициент усиления нового устройства $K_{\rm Дос}(f)$ из-за большой величины коэффициента усиления ОУ $K_{\rm д}=10^5$ или 100 дБ на низких и средних частотах будет определяться известной формулой:

$$K_{A_{\rm oc}}(f) = \frac{K_{A}(f)}{1 + \beta_{\rm oc}K_{A}(f)} \approx \frac{1}{\beta_{\rm oc}} - const, \tag{8.14}$$

поскольку величина петлевого усиления $\beta_{\rm oc} K_{\rm g}(f)\gg 1.$

Таким образом, свойства полученного устройства на этих частотах уже не будут зависеть от величины дифференциального коэффициента усиления, а будут всецело определяться только параметрами цепи обратной связи $\beta_{\rm oc}$.

С ростом частоты в области высоких частот дифференциальный коэффициент усиления $K_{\rm д}(f)$ уменьшается настолько, что величина петлевого усиления $\beta_{\rm oc}K_{\rm d}(f)\ll 1$. При этом, как следует из выражения (8.14), $K_{\rm doc}(f)\approx$

 $K_{\rm A}(f)$, т.е. график ЛАЧХ скорректированного ОУ без ООС на высоких частотах, начиная с частоты $f_{\rm B_{OC}}$, совпадает с графиком ЛАЧХ ОУ, охваченного цепью отрицательной ОС. График АЧХ операционного усилителя, охваченного частотно-независимой цепью ООС, показан в виде линейно-ломаной линии **2** на рисунке 8.4.

К основным параметрам ОУ относятся:

- Входное сопротивление ОУ $R_{\rm BX}$. Различают входное сопротивление для дифференциального сигнала $R_{\rm BX\,диф}=10^4\dots 10^7$ Ом для ОУ на биполярных транзисторах, $R_{\rm BX\,диф}=10^9$ Ом для ОУ на полевых транзисторах и входное сопротивление для синфазного сигнала $R_{\rm BX\,син}$ сопротивление между соединенными входами и общим проводом. Причем $R_{\rm BX\,cuh}\gg R_{\rm BX\,диф}$ для ОУ на биполярных транзисторах и составляет сотни мегаом.
 - Выходное сопротивление $R_{\text{вых}}$ составляет несколько десятков Ом.
- Допустимый выходной ток $I_{\rm Bыx} < 20$ мА, определяемый сопротивлением подключаемой нагрузки $R_{\rm H}$, минимальная величина которой для конкретного типа ОУ указывается в паспорте.
- Напряжение смещения нуля $e_{\rm cm}$ это разность напряжений между входами, при котором напряжение на выходе становится равным нулю. То есть $e_{\rm cm}$ компенсирует ненулевой потенциал на выходе ОУ, возникающий из-за неидеальности входного дифференциального каскада. Обычно $e_{\rm cm}$ = $2 \dots 6$ мВ в ОУ на биполярных транзисторах и $e_{\rm cm}$ = $30 \dots 100$ мВ в ОУ на полевых транзисторах.
- Входной ток смещения $I_{\rm BX~CM}$, обеспечивающий режим по постоянному току входного дифкаскада на биполярных транзисторах: $I_{\rm BX~CM}=0.08$ мкА. При дифкаскаде на полевых транзисторах входы ОУ практически ток не потребляют.
- Скорость изменения выходного напряжения $V_{U\mathrm{Bыx}}$ характеризует быстродействие ОУ и определяется в основном скоростью заряда корректирующего конденсатора: $V_{U\mathrm{Bыx}} = I_{\mathrm{ДУ}\,max}/C_{\mathrm{кор}}$. Она ограничивает амплитуду выходного сигнала $U_{\mathrm{Bыx}}$ при превышении критической частоты f_{K} : $V_{U\mathrm{Bыx}} = 2\pi U_{\mathrm{Bыx}} f_{\mathrm{K}}$. Для универсальных ОУ типичное значение $V_{U\mathrm{Bыx}} = 0.5$ В/мкс. Для быстродействующих ОУ $V_{U\mathrm{Bыx}} = 100$ В/мкс.
- Максимальное входное синфазное напряжение $U_{\text{вх сф}}$ обычно не превышает полного диапазона напряжений симметричных источников питания: $U_{\text{вх сф}} \leq \left| \pm \mathbf{E}_{\mathbf{n}_{1,2}} \right|$.

При анализе и построении схем на ОУ достаточно считать часть его основных параметров идеальными: $K_{\rm д0} \to \infty$; $R_{\rm вx} \to \infty$ или $I_{\rm вx} \to 0$ – входы не потребляют тока; $V_{\rm UBMX} \to \infty$; $e_{\rm cm} = 0$ при $U_{\rm выx} = 0$; $K_{\rm c\varphi} = 0$ – усиление

синфазного сигнала; дифференциальное входное напряжение (разность напряжений между входами), определяемое по формуле:

$$U_{\text{BX } \text{Д}} = U_{\text{H}} / K_{\text{ДO}} = \frac{E_{\text{II}} - (1.0 \dots 1.5 \text{ B})}{10^4 \dots 10^5} \approx 0.$$
 (8.15)

8.3. Построение функциональных устройств на операционных усилителях

Поскольку ОУ никогда не применяется без ООС из-за большого $K_{\rm до}$ (кроме компараторов), характеристики схем усилителей с ОУ зависят только от вида схемы и вида используемой обратной связи. Различают две основные схемы включения ОУ, охваченного отрицательной обратной связью: инвертирующую и неинвертирующую схемы. В зависимости от вида элемента в цепи обратной связи различают линейное и нелинейное включение ОУ. Во всех линейных схемах сигнал ОС подается на инвертирующий вход ОУ.

8.3.1. Инвертирующий усилитель на ОУ

Электрическая схема инвертирующего усилителя на ОУ приведена на рисунке 8.5.

Рисунок 8.5 – Схема инвертирующего усилителя на ОУ

 \dot{U}_1 через сопротивление Входной сигнал Z_1 поступает операционного усилителя DA. инвертирующий вход \mathbf{C} сопротивления Z_{oc} создается параллельная отрицательная обратная связь (OC) по напряжению. Выходной сигнал \dot{U}_2 по цепи ОС подается на инвертирующий вход ОУ в противофазе с входным сигналом \dot{U}_1 , компенсируя его. При этом напряжение между входами ОУ $\dot{U}_{\rm BX}$ стремится к нулю, так как дифференциальный коэффициент усиления ОУ очень большой $(K_{д0} \to \infty)$, и $\dot{U}_{\rm BX} = \dot{U}_2/K_{\rm д0} < E_{\rm II}/K_{\rm д0} \approx 0$. Вследствие этого узел «1» схемы на рисунке 8.5 можно считать виртуальным нулём. Из-за наличия виртуального нуля напряжения \dot{U}_1 и \dot{U}_2 оказываются приложенными соответственно к Z_1 и $Z_{\rm oc}$. Тогда протекающий через сопротивление Z_1 ток $\dot{I}_1 = \dot{U}_1 \, / Z_1$, и ток,

протекающий через сопротивление $Z_{\rm oc},\ \dot{I}_2 = -\,\dot{U}_2\,/Z_{\rm oc}.$

Так как входное сопротивление ОУ велико, то можно считать втекающий в него ток $I_{\rm BX}=0$. Тогда можно сделать вывод, что $\dot{I}_1=\dot{I}_2$. Подставляя в это равенство вместо токов определяющие их выражения, получаем равенство отношений $\dot{U}_1/Z_1=-\dot{U}_2/Z_{\rm oc}$. Из полученной пропорции находим коэффициент передачи по напряжению усилителя на ОУ, охваченного цепью обратной связи:

$$\dot{K}_u = \dot{U}_2 / \dot{U}_1 = -Z_{\rm oc} / Z_1.$$
 (8.16)

Выбирая в качестве использующихся в формуле комплексных сопротивлений резисторы: $Z_1 = R_1$ и $Z_{oc} = R_2$, получаем формулу для коэффициента передачи по напряжению инвертирующего усилителя на ОУ:

$$K_u = -R_2/R_1. (8.17)$$

При $R_1 = R_2$ получаем инвертирующий повторитель напряжения с $K_u = -1$.

Поскольку узел «1» схемы находится практически под нулевым потенциалом, входное сопротивление усилителя $Z_{\rm Bx}=Z_1=R_1$. При действующей в данном случае параллельной ООС по напряжению глубина обратной связи $|\dot{F}|=|1+\dot{\beta}_{\rm oc}K_{\rm d0}|\approx \infty$, и при этом выходное сопротивление ОУ уменьшается в $|\dot{F}|$ раз:

$$R_{\text{BMX OC}} = R_{\text{BMX OV}} / \infty \approx 0.$$
 (8.18)

Фактически же выходное сопротивление данной схемы с ООС по напряжению может составлять от долей Ома до нескольких единиц Ом.

8.3.2. Неинвертирующий усилитель на ОУ

Электрическая схема неинвертирующего усилителя на ОУ приведена на рисунке 8.6. При этом ОУ охватывается последовательной ООС по напряжению.

Рисунок 8.6 – Схема неинвертирующего усилителя на ОУ

При рассмотрении данной схемы будем считать, что втекающие в

операционный усилитель DA токи $I_{\rm Bx1}$ и $I_{\rm Bx2}$, пренебрежимо малы. В данной схеме усилителя входной сигнал \dot{U}_1 подается непосредственно на неинвертирующий вход ОУ. Часть усиленного напряжения \dot{U}_2 с выхода усилителя через делитель на сопротивлениях $Z_{\rm oc}$ и Z_1 подаётся на инвертирующий вход ОУ, формируя на сопротивлении Z_1 напряжение обратной связи (узел 1 схемы):

$$\dot{U}_{\beta} = \dot{U}_2 Z_1 / (Z_1 + Z_{\text{oc}}) = \dot{U}_2 \beta_{\text{oc}}, \tag{8.19}$$

где $eta_{
m oc}$ - коэффициент передачи цепи ОС $eta_{
m oc}$ определяется соотношением:

$$\beta_{\rm oc} = Z_1/(Z_1 + Z_{\rm oc}).$$
 (8.20)

В операционном усилителе может усиливаться только разностное напряжение $\dot{U}_{\rm BX}$ между его входами, определяемое как $\dot{U}_{\rm BX}=\dot{U}_1-\dot{U}_{\beta}$. Так как коэффициент передачи ОУ по отношению к дифференциальному сигналу очень большой ($K_{\rm Z0}\to\infty$), то разностное напряжение $\dot{U}_{\rm BX}$ является ничтожно малым. Тогда можно считать, что $\dot{U}_1=\dot{U}_{\beta}$ или $\dot{U}_1=\beta_{\rm oc}\dot{U}_2$. Используя выражение для коэффициента передачи цепи ОС (8.20), найдем коэффициент передачи неинвертирующего усилителя по напряжению:

$$\dot{K}_u = \dot{U}_2 / \dot{U}_1 = 1 / \beta_{\text{oc}} = (Z_1 + Z_{\text{oc}}) / Z_1 = 1 + Z_{\text{oc}} / Z_1.$$
 (8.21)

Выбирая в качестве используемых в схеме сопротивлений резисторы: $Z_1 = R_1$ и $Z_{\rm oc} = R_2$, получаем

$$K_u = 1 + R_2/R_1. (8.22)$$

Отметим, что входной сигнал \dot{U}_1 подаётся непосредственно на неинвертирующий вход ОУ, где втекающий входной ток $I_{\rm Bx1}$ является пренебрежимо малым. Поэтому входное сопротивление ОУ $R_{\rm Bx\,oy} > 10$ МОм. При построении неинвертирующего усилителя на ОУ используется последовательная ООС по напряжению, которая увеличивает входное сопротивление ОУ и уменьшает выходное сопротивление ОУ в величину глубины ОС или в фактор связи раз. Значение фактора связи определяется соотношением:

$$\dot{F} = 1 + \dot{\beta}_{00} K_{\pi 0}. \tag{8.23}$$

При этом, ввиду большой величины дифференциального коэффициента усиления ОУ $K_{\rm д0}=100\div120$ дБ, можно считать, что $|\dot{F}|\approx\infty$. Тогда входное сопротивление неинвертирующего усилителя $R_{\rm Bx\ oc}=R_{\rm Bx\ oy}|\dot{F}|\approx\infty$. Выходное сопротивление неинвертирующего усилителя

$$R_{\text{BMX OC}} = R_{\text{BX OV}} / |\dot{F}| \approx 0. \tag{8.24}$$

8.3.3. Неинвертирующий повторитель напряжения на ОУ

Неинвертирующий усилитель на ОУ, разработанный для единичного усиления, называется повторителем напряжения. В таком усилителе выходное напряжение равно входному по величине и совпадает с ним по фазе. Повторитель напряжения на ОУ обладает лучшими свойствами, чем эмиттерный повторитель на биполярном транзисторе, поскольку имеет намного более высокое входное сопротивление, практически нулевое выходное сопротивление, а выходное напряжение точно повторяет входное.

Схему повторителя напряжения на ОУ можно непосредственно получить из схемы неинвертирующего усилителя, показанной на рисунке 8.6. Для этого надо удалить из схемы резистор R_1 ($R_1 \to \infty$) и закоротить резистор обратной связи R_2 ($R_2 = 0$). При этом коэффициент передачи неинвертирующего усилителя приобретает значение $K_u = 1 + R_2/R_1 = 1$. Принципиальная схема повторителя напряжения на ОУ представлена на рисунке 6.7.

Рисунок 8.7 – Повторитель напряжения на ОУ

Напряжение $\dot{U}_{\rm BX}$ между входными зажимами ОУ запишем в следующем виде:

$$\dot{U}_{\text{BX}} = \dot{U}_1 - \dot{U}_2 = \dot{U}_1 - \dot{U}_{\text{BX}} K_{\text{A}0} \rightarrow \dot{U}_1 = \dot{U}_{\text{BX}} (1 + K_{\text{A}0}). \tag{8.25}$$

Тогда коэффициент передачи устройства по напряжению:

$$K_{u_{\Pi}} = \frac{\dot{U}_2}{\dot{U}_1} = \frac{\dot{U}_{\text{BX}} K_{\Pi 0}}{\dot{U}_{\text{BX}} (1 + K_{\Pi 0})} = \frac{K_{\Pi 0}}{1 + K_{\Pi 0}} = \frac{1}{1 + 1/K_{\Pi 0}} \approx 1,$$
 (8.26)

так как дифференциальный коэффициент усиления ОУ $K_{\rm д0}$ очень большой: $K_{\rm д0}=10^4\div 10^5$, и вторым слагаемым в знаменателе можно пренебречь.

Коэффициент передачи цепи ОС для повторителя напряжения на ОУ $\beta_{\rm oc} = \dot{U}_{\beta}/\dot{U}_2 = 1$, так как $\dot{U}_{\beta} = \dot{U}_2$ – в схеме повторителя реализуется 100% последовательная обратная связь по напряжению.

В этом случае входное сопротивление повторителя $R_{\rm BX\; II}$ представляет собой входное сопротивление ОУ $R_{\rm BX\; OV}$, умноженное в фактор связи раз:

$$R_{\text{BX II}} = R_{\text{BX Oy}} (1 + \beta_{\text{oc}} K_{\text{A0}}) = R_{\text{BX Oy}} K_{\text{A0}} \to \infty,$$
 (8.27)

т.е. оно очень велико и составляет не менее нескольких десятков мегаом.

Выходное сопротивление повторителя напряжения, наоборот, оказывается очень маленьким из-за глубокой ОС по напряжению.

$$R_{\text{вых п}} = \frac{R_{\text{вых оу}}}{1 + \beta_{\text{oc}} K_{\text{д0}}} = \frac{R_{\text{вых оу}}}{K_{\text{д0}}} \to 0.$$
 (8.28)

Ввиду таких свойств по входному и выходному сопротивлениям, повторитель напряжения является идеальным согласующим или буферным каскадом. Так как повторитель напряжения из-за охвата ОУ 100% обратной связью имеет единичный коэффициент усиления, то его полоса пропускания оказывается равной $f_{\rm T}$, т.е. для повторителя напряжения $f_{\rm B\,rp}=f_{\rm T}$. Поскольку повторитель напряжения на ОУ в рассмотренной схеме представляет собой усилитель постоянного тока (УПТ), то $f_{\rm H\,rp}=0$.

8.3.4. Инвертирующий сумматор напряжений на ОУ

Данная схема суммирования применяется, когда на выходе необходимо получить результат суммирования напряжений с некоторым коэффициентом передачи.

Рисунок 8.8 – Схема инвертирующего сумматора напряжений на ОУ

Ввиду большого дифференциального коэффициента усиления ОУ напряжение между входами ОУ $U_{\rm a6}=U_{\rm Bx\, д}=0$. Поскольку вход «б» соединен с землей через резистор $R_{\rm K}$, падение напряжения на котором пренебрежимо мало, потенциал узла «а» равен нулю. Узел «а» является виртуальным нулем. Тогда токи, протекающие по резисторам R_1, R_2, \ldots, R_n , будут определяться выражениями:

$$I_1 = \frac{U_{\text{BX}1}}{R_1}; I_2 = \frac{U_{\text{BX}2}}{R_2}; ...; I_n = \frac{U_{\text{BX}n}}{R_n}.$$
 (8.29)

Ток $I_{\rm oc}$, протекающий через резистор обратной связи $R_{\rm oc}$, определим, как

$$I_{\rm oc} = \frac{\varphi_{\rm a} - U_{\rm \scriptscriptstyle BbIX}}{R_{\rm oc}} = -\frac{U_{\rm \scriptscriptstyle BbIX}}{R_{\rm oc}} \,.$$
 (8.30)

На основе закона Кирхгофа запишем сумму токов для узла «а»:

$$\sum_{i=1}^{n} I_i = I_{\text{oc}}.$$
 (8.31)

Подставляя в формул (8.31) выражения для токов из (8.29) и (8.30), получаем связь входных токов с током в цепи обратной связи через элементы схемы:

$$-\frac{U_{\text{BMX}}}{R_{\text{oc}}} = \frac{U_{\text{BX1}}}{R_1} + \frac{U_{\text{BX2}}}{R_2} + \dots + \frac{U_{\text{BX}n}}{R_n},\tag{8.32}$$

откуда находим выражение для выходного напряжения сумматора на ОУ.

$$U_{\text{BMX}} = -\left(U_{\text{BX1}} \frac{R_{\text{oc}}}{R_1} + U_{\text{BX2}} \frac{R_{\text{oc}}}{R_2} + \dots + U_{\text{BX}n} \frac{R_{\text{oc}}}{R_n}\right). \tag{8.33}$$

Отношение сопротивлений $R_{\rm oc}/R_i=K_i$ называют коэффициентом передачи по i-входу или весовым коэффициентом. С учетом этого соотношение (8.33) можно переписать в более простом виде:

$$U_{\text{BbIX}} = -\sum_{i=1}^{n} U_{\text{BX}i} K_{i}. \tag{8.34}$$

При равных входных сопротивлениях сумматора $R_1 = R_2 = \cdots R_n = R$ будут равны и их коэффициенты передачи по каждому входу $K_1 = K_2 = \cdots K_n = K = R_{oc}/R$. Тогда выражение (8.34) принимает следующий вид:

$$U_{\text{вых}} = -K \sum_{i=1}^{n} U_{\text{вх}i} = -\frac{R_{\text{oc}}}{R} \sum_{i=1}^{n} U_{\text{вх}i}.$$
 (8.35)

Если в выражении (8.35) положить $R_{\rm oc} = R$, то сумматор будет выполнять простое алгебраическое суммирование входных напряжений с инверсией результата:

$$U_{\text{BbIX}} = -\sum_{i=1}^{n} U_{\text{BX}i}.$$
 (8.36)

В реальном ОУ через оба входа протекают токи смещения, которые хоть и имеют малую величину и примерно одинаковы, но они создают падения напряжения на подключенных к входам резисторах, которые могут отличаться. Из-за этого на выходе ОУ может возникнуть сдвиг напряжения, для компенсации которого к неинвертирующему входу сумматора подключают резистор $R_{\rm K}$, уравнивающий падения напряжений, вызванных токами смещения. Его величина рассчитывается по формуле:

$$R_{\rm K} = \frac{1}{1/R_1 + 1/R_2 + \dots + 1/R_n + 1/R_{\rm oc}}.$$
 (8.37)