فرض كتابي رقيم 3 الدورة الأولى (B)

المستوى: الثانية باكالوريا علوم تجريبية الأستاذ: محمد احبان

(1+1)

ثانويت محمد السادس التأهيليت الموسي الدراسي: 2017/2018

النمرين 1 **(ئ)**

: نعتبر المتتالية (U_n) المعرفة بناية \mathbb{N} ... $U_0 = 13$ $U_{n+1} = \frac{1}{2}U_n + 7$: \mathbb{N} من n لڪل $U_n < 14$ ان الترجع أن (1 (1): $\mathbb N$ من $N=14-U_n$ المتتالية العددية بحيث (2 لڪل المتتالية العددية العدادية العدادية العدادية العدادية (2 1 بين أن (V_n) متتائية هندسية أساسها $1\over 2$ ثم اكتب V_n بدلالة N(1+1) (U_n) ب) $U_n=14-\left(rac{1}{2}
ight)^n$ بن $\mathbb N$ ثم أحسب نهاية المتتالية $U_n=14-\left(rac{1}{2}
ight)^n$ (0,5+0,5) $u_n > 13.99$ ج)حدد أصغر قيمُة للعدد الصحيح الطبيعي التي تكون من أجلها (1)

النمرين 2 (14ن)

: ب $]0;+\infty$ الدالة العددية المعرفة على اg الدالة العددية المعرفة العددية ال

$$g(x) = 1 + x^2 - 2x^2 \ln(x)$$

$$\begin{array}{cccc}
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to+\infty}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to+\infty}\mathbf{g}(\mathbf{x}) & -1 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to+\infty}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}(\mathbf{x}) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & -2 \\
 & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim_{x}\to\mathbf{0}^+\mathbf{g}'(x) & \lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{g}'(x) & \lim$$

$$(1)$$
 عبد ول تغيرات الدالة g عبد الدالة g عبد

$$(0,5+0,5)$$
 . $]lpha;+\infty[$ ب α لكل α من المجال α استنتج أن α لكل α من المجال α لكل α من المجال و α

: با
$$]0;+\infty[$$
 على الدالة العددية المعرفة على $-(II$

$$f(x) = \frac{\ln(x)}{x^2 + 1}$$

 $(O; ec{i}; ec{j})$ منحناها في المستوى المنسوب إلى مم.م (Cf)

$$\lim_{\mathbf{x}\to +\infty}\mathbf{f}(\mathbf{x})$$
 و $\lim_{\mathbf{x}\to 0^+}\mathbf{f}(\mathbf{x})$ و $\mathbf{f}(\mathbf{x})$ و أحسب أ

$$(0,5+0,5)$$
 . (Cf) . (Cf)

(1)
$$f'(x) = \frac{g(x)}{x(1+x^2)^2}$$
 لكل $f(x) = \frac{g(x)}{x(1+x^2)^2}$ لكل أن أن

$$f(\alpha)=rac{1}{2lpha^2}$$
 ب) بین ان

$$f$$
 ضع جدو ل تغيرات الدالة f .

$$(1)$$
 . 1 عند النقطة ذات الافصول (T) عند المماس عند ((T) عند النقطة ذات الافصول (T)

$$(1)$$
 . $(f(lpha)\simeq 0.14$ و (T) . ((T) والمماس (T) والمماس) أنشئ المنحنى .