期中專題

巨資一B 09170244 梁育誠 巨資三A 07170184 陳亞萱 社會三A 07115101 陳朱鋆

目錄 CONTENTS

1小組分工2個人心得3結果呈現

01 PART 01

第一部分 小組分工

小組分工

程式碼撰寫 巨資一B 09170244 梁育誠

資料彙整、報告整理 巨資三A 07170184 陳亞萱

社會三A 07115101 陳朱鋆

小組分工

第二部分 個人心得

組員心得

巨資一B 09170244 梁育誠

這次的實作對我來說較為困難,是自己從來沒有學習過的領域,所以跟著教材做出類似的模型,也讓我重複看了教材不知道幾次,能讓他更牢記在心上,也感謝組員之間的配合與鼓勵。

組員心得

巨資三A 07170184 陳亞萱

這次期中報告使用的是 Fashion MNIST 數據集,其中共有 10 種類別 7 萬筆不同商品的正面圖片,再實作出 MLP Classifier 去做訓練及測試,在訓練神經網路的過程中,不斷的修正所有的權重矩陣 W 和偏移值向量 b,找到「可讓總誤差的值極小化」的最佳權重配置做為其目標,提升網路正確性,因此要跑完一次 1000 筆的資料,都會花超過一小時呢!

在人工智慧導論的課程中,學習到的內容是從來沒有碰觸過的領域, 所以對我來說吸收起來是相對困難、緩慢的,雖然能了解其基本概 念,但在實際演練上卻沒有辦法獨立製作出模型,只能透過老師提 供的程式碼以及課堂中詳細的講解,才能逐步理解每一行程式碼的 意義和效用,期待能在下半學期收穫更多內容,並能獨立製作出可 以實際用來預測答案的模型。

組員心得

社會三A 07115101 陳朱鋆

在人工智慧導論的課程內容中,對我來說,是相對困難的,雖然對於 課堂所說明的訓練神經網路的基本概念,包含權重、梯度等計算有稍 微了解,上課中也有做筆記,不過在實際演練上卻沒有辦法製作出完 全正確的模型,只能透過老師提供的程式碼與課堂中的講解,逐步理 解其中的涵義。期中專題中,需要製作出一個MLP的分類器,因為尚 未具備製作模型的能力,因此只能在撰寫小組報告的過程中,透過組 員的講解與網路所查詢的資料,逐步理解每一行程式碼的使用方式與 帶來的效用,雖然在製作專題報告的過程前期,沒有辦法在製作模型 上提供有效的幫助,直至最後理解程式碼時,才讓我知道原來測試與 訓練的過程該如何以程式碼呈現,以及什麼樣的邏輯走向才能正確有 效地測試與訓練模型。

第三部分

結果呈現

結果呈現

```
Epoch:0/1000 Error_train:2.3138287709491028 Error_test:2.3130884797342763
Epoch:100/1000 Error_train:1.1706874722836471 Error_test:1.1810477184476882
Epoch:200/1000 Error_train:1.1558798388316691 Error_test:1.1650574412405486
Epoch:300/1000 Error_train:1.1247484881362513 Error_test:1.1395989771957074
Epoch:400/1000 Error_train:1.0858211791179915 Error_test:1.1012562450889722
Epoch:500/1000 Error_train:1.0505018957841499 Error_test:1.0691576833887337
Epoch:600/1000 Error_train:0.9930350613954297 Error_test:1.006429826453273
Epoch:700/1000 Error_train:0.9355536687670117 Error_test:0.9537144330169933
Epoch:800/1000 Error_train:0.9016577403124815 Error_test:0.9216148877136259
Epoch:900/1000 Error_train:0.8812719550109112 Error_test:0.9014193937458705
```


結果呈現

計算的過程中,曾達到近80%的準確率!