

Control variates with kernel smoothing: toward faster than root n rates

Benjamin Cohen, Arthur Gourrin, Julien Toucheboeuf, Hugues Rene-Bazin

Macs205a

Outline

Introduction

Monte Carlo with control variates

Kernel Smoothing methods

New utilisation of Kernel Smoothing

Numerical Simulation

Conclusion

Introduction

Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Introduction

Introduction

Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Introduction

- ▶ Problem : estimating $I = \int g(x)f(x)dx$, with $f: \mathbb{R}^d \mapsto \mathbb{R}$ a density
- How: thanks to a Monte Carlo method
- Goal: get a faster convergence thanks to:
 - Control variates methods
 - Improvements with Kernel smoothing

Introduction Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation

Conclusion

Outline

Monte Carlo with control variates

New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Control variable estimator

Estimator :
$$\hat{l}_n(\phi) = \frac{1}{n} \sum_{i=1}^n \frac{g(X_i)f(X_i) - \phi(X_i)}{q(X_i)}$$

with
$$\phi(x) = \sum_{k=1}^{m} \beta_k \phi_k(x)$$
 s.t. $\forall \int \phi_k = 0$.

UnBiased estimator & Variance to minimise

research of an optimal $\hat{\phi}$

▶ Optimisation problem : $\hat{\beta} \in \underset{\beta \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{n-1} \sum_{i=1}^n \left(\frac{f(X_i)g(X_i)}{q(X_i)} - \beta Z_i - \hat{l}_n(\beta) \right)^2$

Conclusion

- ► With $\forall i \in \{1,...,n\}, Z_i = (\frac{\phi_1(X_i)}{q(X_i)},...,\frac{\phi_m(X_i)}{q(X_i)})^T$.
- ▶ Hilbert projection Theorem : $\hat{\beta} = (Z_c^T Z_c)^{-1} (Z_c) G$.
- $ightharpoonup Z_c = (Z_1 \bar{Z}, Z_2 \bar{Z}, ..., Z_n \bar{Z})^T, \ \bar{Z} = \frac{1}{n} \sum_{i=1}^n Z_i$
- $G = \left(\frac{f(X_1)g(X_1)}{q(X_1)}, ..., \frac{f(X_n)g(X_n)}{q(X_n)}\right)^T$

Asymptotic behavior

Asymptotic convergence

$$\sqrt{n}(\hat{I}_n^{cv}(\hat{\beta})-I) \xrightarrow{d} \mathcal{N}(0,\sigma_m^2)$$

So:

8/24 March 23, 2022

- Result due to the TCL, and the Slutsky lemma
- Z as it was defined in the previous slide

Numeric Simulation

Figure: Plot of the log error for the three methods (1000 points)

- ▶ MC Legendre : OLS with the theoretical formula
- sklearn With the linear regression method

Introduction Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Outline

Kernel Smoothing methods

General Kernel smoothing method

- Kernels : for $h > 0, \int K_h = 1$
- General idea, approximate a function u, by $\hat{u}(x) = \frac{1}{n} \sum_{i} K_h(x X_i)$
- Problem : $\mathbb{E}[\hat{u}] = 1$. It means that it is not a control variate
- ► Control variate : $h_x(X) = \frac{K_h(x-X)}{g(X)} 1$.

Conclusion

New Optimisation problem

$$\hat{\alpha} \in \underset{\alpha \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{i} \left(\frac{f(X_i)g(X_i)}{q(X_i)} - \sum_{j=1}^{m} \alpha_j \left(\frac{K_h(X_i - X_j)}{q(X_i)} - 1 \right) \right)^2$$

Numeric simulation

Figure: Kernel Smoothing vs MC Naif (dim 1)

Figure: Kernel Smoothing vs MC Naif (dim 10)

Comparison Legendre versus Kernel approach

Figure: Log square error of Legendre & Kernels

Outline

New utilisation of Kernel Smoothing

New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Estimator $\tilde{\phi}_m(x)$

- New estimator of gf: $\tilde{\phi}_m(x) = \frac{1}{m} \sum_{i=1}^m \frac{g(X_j')f(X_j')}{q(X_i')} K_h(x X_j')$
- Mathematical model: Based on Kernels
- Solution : no OLS/LASSO this time

Conclusion Bias & Variance of $\tilde{\phi}_m(x)$

Bias

bias =
$$gf(x) + \int (gf(x - hu) - gf(x)) \times K(u)du$$

- $| \int (gf(x-hu)-gf(x))K(u)du \leq Lh\mathbb{E}[K_h] \times 1 \xrightarrow{h\to 0} 0$
- ▶ unbiased estimator when $h \rightarrow 0$.

Variance

$$\sigma_K^2(x) = \frac{1}{m} V_q(\frac{g(X_1')f(X_1')}{q(X_1')} K_h(x - X_1'))$$

From $\tilde{\phi}_m(x)$ to a control variate

We have almost an unbiased estimator of gf, but not yet a control variate:

Conclusion

$$\mathbb{E}[\frac{\tilde{\phi}_m}{q}(X)] = \frac{1}{m} \sum_{j=1}^m \frac{g(X_j')f(X_j')}{q(X_j')} \times 1 = \hat{\mu}_m$$

Solution:

- ► Take : $\forall i \in \{1,...,n\}, Z_{m,i} = \frac{\ddot{\phi}_m}{\sigma}(X_i) \hat{\mu}_m$
- Estimator :

$$\hat{I}_{n}^{cv}(\tilde{\phi}_{m}) = \frac{1}{n} \sum_{i=1}^{n} \frac{g(X_{i})f(X_{i}) - Z_{m,i}}{q(X_{i})}$$

Conclusion

Mean & Variance of $\hat{I}_{n}^{cv}(\tilde{\phi}_{m})$

Mean

$$\mathbb{E}[\hat{I}_n^{cv}(\tilde{\phi}_m)] = \mathbb{E}\Big[\frac{g(X_1)f(X_1) - Z_{m,1}}{q(X_1)}\Big] = I$$

Variance

19/24March 23, 2022

$$V(\hat{I}_{n}^{cv}(\tilde{\phi}_{m})) = \frac{V(\frac{g(X_{1})f(X_{1})}{q(X_{1})}) + V(\frac{\phi(X_{1})}{q(X_{1})})}{n} - 2Cov(\frac{g(X_{1})f(X_{1})}{q(X_{1})}, \frac{\phi(X_{1})}{q(X_{1})^{2}}) - I^{2}$$

Outline

Numerical Simulation

Introduction Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Simulation method

Two method were implemented:

- the OLS
- LASSO method

Numeric estimation of Monte Carlo I

Outline

Conclusion

Introduction Monte Carlo with control variates Kernel Smoothing methods New utilisation of Kernel Smoothing Numerical Simulation Conclusion

Conclusions and future works

- 3 different theoretical methods used
- Simulations made relying of thoose methods
- results : not really concluding

