Numeri complessi #Analisi1

(p = rho)

Numeri complessi:

 $x^2+1=0$ non ha soluzioni in R e in nessun campo X, infatti su un campo X ordinato vale $x^2>0 \quad \forall x \in X$ $1>0=>x^2+1\geq 1>0 \quad \forall x \in X$

Introduciamo l'unità immaginaria: i, definita dalla seguente proprietà: $i^2 = -1$

 $C = \{ z = a + ib : a,b \in \mathbb{R}, i^2 = -1 \}$

z = a + ib prende il nome di forma algebrica del numero complesso $z \in C$

a = Re-z parte reale di $z \in C$

b = Im-z parte immaginaria di $z \in C$

Osservazione: Re-z, Im-z \in R, \forall z \in C Esempio: z = 3 - 2i Re-z = 3 Im-z = -2

Per definizione, $\forall z=a+ib \in C$, $\forall w=x+iy \in C$, $a,b,x,y \in R$:

- z+w = (a+x) + i(b+y)
- -z*w = (ax-by) + i(ay+bx)

Osservazione: le operazioni +,* in C vengono formalmente definite come somme e prodotti di polinomi a coefficienti reali (di grado al più 1) in i, con più la regola aggiuntiva i² = -1

Teorema: C con +,* è un campo, cioè soddisfa le proprietà (S_1) - (S_4) , (P_1) - (P_4) , (SP)

- In C l'elemento neutro di * è I = 1 + i0 infatti \forall a,b ∈R (a + ib)(1 + i0) = a + ib
- In C se z = a + ib, $z \neq 0$, $z^{-1} = 1/z = x/(x^2+y^2) i*[y/(x^2+y^2)]$ è il reciproco di z

Osservazione: $R \subset C$ è sottocampo, cioè C estende R $x \in R < --> x + i0 \in C$ inoltre (a + i0) + (x + i0) = (a + x) + i0 = a + x (a + i0)(x + i0) = ax + i0 = ax

Osservazione: R può essere identificato coi punti di una retta - C può essere identificato coi punti di un piano

 $z = x + iy \in C$, con $x,y \in R$

x rappresenta lo spostamento dall'origina in ascissa y rappresenta lo spostamento dall'origina in ordinata

In questa identificazione, R corrisponde all'asse delle ascisse II piano prende il nome di piano complesso o di Gauss in C II piano di prende il nome di piano cartesiano in \mathbb{R}^2

In particolare, inoltre, ogni numero complesso può anche essere pensato come vettore nel piano applicato in 0 e avente l'altro estremo in (x,y) rappresentato da 0 a (x,y)

Somma in C:

La somma di due numeri complessi è la somma di due vettori perché $\forall z=x+iy \in C \ \forall w=a+ib \in C$

$$z+w = (x + a) + i(y + b)$$

Sommare due numeri complessi z e w corrisponde a sommare i corrispondenti vettori che li rappresentano, tramite la regola del parallelogramma

Il significato geometrico della somma nel piano complesso è una traslazione

Somme: traslazioni Prodotti: rotazioni e dilatazioni

Definizione: dato ∀z=x+iy ∈C chiamiamo

- $-\underline{z} = x iy$ complesso coniugato di z
- $-|z| = \sqrt{(x^2+y^2)}$ modulo di z

Osservazione:

- $-|z| \ge 0 \quad \forall z \in C$
- -|z|=0 se e solo se z=0
- |z| è la lunghezza del segmento di estremi 0,z nel piano cioè la distanza di 0 da z (teorema di Pitagora)
- \underline{z} è il simmetrico di z rispetto all'asse reale z = \underline{z} se e solo se Im-z = 0 cioè se e solo se z ∈R

Osservazione:

se Im-z = costante retta orizzontale // Re (x)
se Re-z = costante retta verticale // Im (y)
se |z| = costante = p circonferenza in 0 con raggio p

Osservazione:

-
$$z^*z = (x + iy)(x - iy) = x^2 + y^2 = |z|^2 \quad \forall z = x + iy \in C$$

$$- |z| = |\underline{z}| \quad \forall z \in C$$

$$-1/z = \underline{z} / (z^*\underline{z}) = \underline{z} / |z|^2 \quad \forall z \in \mathbb{C} \setminus \{0\}$$

$$-\underline{(z+w)} = \underline{z} + \underline{w} \quad \forall z, w \in C$$

$$- (z^*w) = z^*w \quad \forall z, w \in C$$

$$-z/w = (z * \underline{w}) / (w * \underline{w}) = (z * \underline{w}) / |w|^2 \quad \forall z \in \mathbb{C}, \ \forall w \in \mathbb{C} \setminus \{0\}$$

Equazioni in C:

$$z^2 + 2Re-z - i*Im-z + \underline{z} = 0$$

sostituire $z = x + iy$ Re-z = x Im-z = y

creare un si sistema associato a due equazioni, una con le parti reali e una con quelle immaginarie

risolvere il sistema e considerare tutte le soluzioni x,y ∈R

Forma trigonometrica e forma esponenziale:

Per individuare $z \in C$ possiamo assegnare Re-z, Im-z $\in R$ e scrivere z = x + iy

Alternativamente possiamo individuare z assegnando p = $\sqrt{(x^2+y^2)}$ = |z|, la distanza di z da 0 e δ = arg z (argomento di z), l'angolo orientato formato dal semiasse delle x > 0 e dalla semiretta uscente da 0 e passante per z (+ in senso antiorario, - in senso orario andando dal semiasse alla semiretta)

$$|z| = p$$
 arg $z = \partial$

Osservazione:

- -p = |z| = costante > 0 = circonferenza centrale in 0 con raggio p
- Arg $z = \partial$ = costante => semiretta (senza l'origine) uscente da 0

Osservazione:

- |0| = 0
- Arg z = 0 non è ben definito
- L'argomento di un numero $z \in C\setminus\{0\}$ è definito a meno di multipli interi di 2π , cioè se ∂ = arg z anche ∂ + $2k\pi$ lo è $\forall k \in R$

Osservazione:

-
$$p = |x| = \sqrt{(x^2+y^2)}$$

per $z = x + iy \neq 0 ->$

$$-x = p*\cos \theta = \cos \theta = x/p = x/(x^2+y^2)$$

$$-y = p*sin \partial = sin \partial = y/p = y/(x^2+y^2)$$

- In particolare se $x \neq 0 \Rightarrow \tan \theta = v/x$

ATTENZIONE quadrante dell'angolo:

in generale:

- Può non essere $\partial = \arccos \left[x/(x^2 + y^2) \right]$
- Può non essere $\partial = \arcsin \left[\frac{y}{(x^2 + y^2)} \right]$
- Può non essere ∂ = arctan (y/x)

 ∂ = arctan (y/x) se z \in I,IV quadrante

 ∂ = arctan (y/x) + π se z \in II,III quadrante

Osservazione: si chiama argomento principale di z l'unico argomento di z in $[0,2\pi)$ o in $[-\pi,\pi)$ a seconda delle convenzioni

```
Definizione: dato z \in C, z = x + iy
z = x + iy \qquad \qquad \text{forma algebrica}
p(\cos \partial + i*\sin \partial) \qquad \qquad \text{forma trigonometrica}
p*e^{i\partial} \qquad \qquad \text{forma esponenziale}
```

Osservazione: $\forall \partial \in \mathbb{R}$ vale $e^{i\partial} = \cos \partial + i \cdot \sin \partial$ formula di Eulero

Teorema (Formula di De Moivre):

dati z,w ∈C, se:

$$z = r(\cos \theta + i*\sin \theta) = r*e^{i\theta}$$

 $w = R(\cos \theta + i*\sin \theta) = R*e^{i\theta}$

$$z^*w = r^*R[\cos(\partial + \beta) + i^*\sin(\partial + \beta)] = rR^*e^{i(\partial + \beta)}$$

inoltre se $w \neq 0$

$$z/w = r/R[cos(\partial - B) + i*sin(\partial - B)] = r/R*e^{i(\partial - B)}$$

Osservazione:

- $|z^*w| = |z|^*|w| \text{ arg}(z^*w) = \text{arg } z + \text{arg } w$
- |z/w| = |z| / |w| arg(z/w) = arg z arg wscegliendo z = 1 troviamo che se $w = R(\cos \beta + i*\sin \beta)$ $1/w = 1/R (\cos \beta - i*\sin \beta) = 1/R*e^{-i\beta}$

 Formule coerenti con l'algebra degli esponenziali anche se coinvolgono numeri complessi

Osservazione: se z \in C, n \in N -> z = r(cos ∂ + i*sin ∂) = r*e $^{i\partial}$

Per De Moivre se n ∈N

$$z^{n} = r^{n}(\cos n^*\partial + i^*\sin n^*\partial) = r^{n}*e^{in\partial}$$

 $z^{-n} = r^{-n}(\cos n^*\partial - i^*\sin n^*\partial) = r^{-n}*e^{-in\partial}$ se $z \neq 0$

Formule di De Moivre:

$$z^*w = r^*R[\cos(\partial + \beta) + i^*\sin(\partial + \beta)] = rR^*e^{i(\partial + \beta)}$$

Dimostrazione:

 $z^*w = r(\cos \partial + i^*\sin \partial) * R(\cos \beta + i^*\sin \beta) = rR[(\cos \partial * \cos \beta - \sin \partial * \sin \beta) + i^*(\sin \partial * \cos \beta + \sin \beta * \cos \delta)] =$

= identità trigonometrica (coseno e seno della somma) = $rR[cos(\partial + \beta) + i*sin(\partial + \beta)] = rR*e^{i(\partial + \beta)}$

Osservazione: la dimostrazione della formula di De Moivre per il quoziente è analoga

Definizione: se $w \in C$, $n \in N$, $n \ge 1$ allora

ogni numero complesso $z \in C$ t.c. $z^n = w$ si chiama radice n-esima (complessa) di w

Teorema: se $w \in C$, $n \in N$, $n \ge 1$ allora

esistono esattamente n radici complesse n-esime distinte di w

Inoltre se $w=r^*e^{i\beta}=r(\cos\beta+i^*\sin\beta)$ allora le n radici complesse nesime $z_0,z_1,...,z_n$ hanno la forma seguente:

$$z_k = r^{1/n}(\cos \theta_k + i*\sin \theta_k) = r^{1/n} * e^{i\theta_k} \cos \theta_k = \beta/n + (2k\pi)/n$$

k = 0,...,n-1

Tutte le radici n-esime si sparpagliano nel piano in maniera ordinata,

rappresentando i vertici di un poligono regolare inscritto nella circonferenza di raggio p

Dimostrazione: Dati $w = Re^{ie}$, $R \neq 0$, cerchiamo $z = pe^{i\partial}$ t.c. $z^n = w => (De Moivre) z^n = p^n e^{i\partial n} = w = Re^{i\beta} =>$

=> {p^n = R;
$$n = \beta + 2h\pi$$
 $h \in Z$ } => {p = R^1/2 (radice reale); $\theta = \beta/n + (2h\pi)/n$ $h \in Z$ }

Sono radici n-esime complesse di w, non distinte, dividiamo h per n $h=q^*n+k$ q=quoziente, k=resto $=> q \in Z, k \in \{0,1,...,n-1\}$ $=> (2\pi R)/n = 2q\pi + (2k\pi)/2$

Se h_1 , $h_2 \in Z$ hanno lo stesso k, quando si divide per n, essi individuano lo stesso numero complesso z_k , perché danno luogo ad argomenti sfasati di un multiplo intero di 2π . Quindi le radici complesse n-esime distinte si n sono tante quanti i possibili resti della divisione di un intero per n, cioè n, esse sono:

$$z_k = R^{1/n}(\cos \theta_k + i*\sin \theta_k)$$

 $\theta_k = \beta/n + (2k\pi)/n \quad k \in \{0,1,...,n-1\}$

Osservazione: tutte le radici n-esime complesse di w hanno lo stesso modulo $|z_0| = |z_1| = ... = |z_{n-1}| = |w|^{1/n}$

Nel piano complesso giacciono nella circonferenza centrata in 0 e con raggio $\left|\mathbf{w}\right|^{1/n}$

Due radici successive, inoltre, hanno argomento che differisce di $(2\pi)/n$, angolo fisso (cioè l'angolo al centro è lo stesso per ogni coppia di radici successive)

Quindi le n radici n-esime distinte si dispongono a formare un poligono regolare di n lati, inscritto nella circonferenza di centro 0 e raggio $R^{1/n}$

Osservazione: le radici n.esime complesse di un numero w ∈C formano un insieme di n numeri complessi, in particolare la radice n-esima complessa non è una funzione da C in C

Osservazione: De Moivre

$$z = r^*e^{i\partial}$$
, $w = R^*e^{i\beta} =>$

$$z^*w = rR^*e^{i(\partial + \beta)} \qquad z/w = r/R^*e^{i(\partial - \beta)} \text{ con } w \neq 0$$

$$|z^*w| = |z| * |w| \qquad |z/w| = |z| / |w|$$

$$arg(z^*w) = arg z + arg w arg(z/w) = arg - arg w$$

Moltiplicare z^*w da come risultato nel piano complesso una rotazione di z par all'angolo β = arg w (+ in senso antiorario, - in senso orario) e una dilatazione o omotetia di un fattore pari a R = |w|

Equazioni di secondo grado in C:

$$az^2 + bz + c = 0$$
 ha due soluzioni con molteplicità: $con \Delta = b^2 - 4ac > 0$ $z_{0'}z_1 = (-b \pm \sqrt{\Delta}) / 2a$ reali distinte

con
$$\Delta = b^2 - 4ac = 0$$

 $z_{0}, z_{1} = (-b \pm 0) / 2$ areali coincidenti

con
$$\Delta = b^2 - 4ac < 0$$

 $z_{0}, z_{1} = (-b \pm 1*\sqrt{\Delta}) / 2a$ complesse coniugate

Più in generale se se a,b,c \in C, a \neq 0, allora

 $az^2 + bz + c = 0$ ammette due soluzioni in C (con molteplicità) che si scrivono:

$$z_{0}, z_{1} = (-b \pm \sqrt{\Delta}) / 2a$$
 con $az^{2} + bz + c = 0 \in C$

qui la radice è intesa in senso complesso, restituisce 2 valori opposti in segno, cioè della forma $z^* e - z^* con z^* \in C$

vale:
$$az^2 + bz + c = a(z - z_0)(z - z_1)$$

Teorema fondamentale dell'algebra:

un'equazione polinomiale
$$a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0$$

con a_n , a_{n-1} , ..., a_1 , $a_0 \in C$, $a_n \ne 0$, $n \in N$, $n \ge 1$

ha esattamente n soluzioni in C, se ciascuna di esse è contata con la dovuta molteplicità (cioè possono non essere distinte) dette z_0 ,

 $z_1, ..., z_n$ tali soluzioni vale $\forall z \in C$

$$a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = a_n (z - z_0)(z - z_1)...(z - z_{n-1})$$