MÉTODOS DE REMUESTREO

Tema 4. Remuestreos en Modelos Lineales y Series Temporales.

basado en

B. Efron, R. Tibshirani (1993). An Introduction to the bootstrap.

O. Kirchkamp (2017). Resampling methods.

Curso 2018/19

- ▶ En el modelo clásico de regresión lineal se tiene un conjunto de n parejas de observaciones $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ tal que cada \mathbf{x}_i es un par $\mathbf{x}_i = (\mathbf{c}_i, y_i)$.
- ▶ Cada \mathbf{c}_i es un vector de dimensión p tal que $\mathbf{c}_i = (c_{i1}, c_{i2}, \dots, c_{ip})$ se suele denominar como vector de *covariables* o *predictores*.
- y; es un número real denominado respuesta.
- Se define la esperanza condicional de la respuesta y_i dado el predictor c_i como

$$\mu_i = E\left(y_i|\mathbf{c}_i\right)$$

para i = 1, 2, ..., n.

La suposición básica de los modelos lineales es que μ_i es una combinación lineal de los componentes del vector \mathbf{c}_i

$$\mu_i = \mathbf{c}_i \boldsymbol{\beta} = \sum_{j=1}^p c_{ij} \beta_j$$

- ▶ El vector de parámetros $\beta = (\beta_1, \dots, \beta_p)'$ es desconocido de modo que se trata de estimarlo mediante los datos observados $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$.
- El término *lineal* se refiere a la forma lineal de la esperanza, no a que las términos de \mathbf{c}_i puedan estar elevados a un exponente dado.
- ▶ La estructura habitual es (para i = 1, 2, ..., n)

$$y_i = \mathbf{c}_i \boldsymbol{\beta} + \varepsilon_i$$

Los términos de error ε_i se asume que proceden de una distribución desconocida F que tiene esperanza igual a 0:

$$F \to (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$$

tal que $E_F(\varepsilon_i) = 0$.

► Esto implica que

$$E(y_i|\mathbf{c}_i) = E(\mathbf{c}_i\beta + \varepsilon_i|\mathbf{c}_i) = E(\mathbf{c}_i\beta|\mathbf{c}_i) + E(\varepsilon_i|\mathbf{c}_i) = \mathbf{c}_i\beta$$

 \triangleright Ya que al ser ε_i independientes de \mathbf{c}_i entonces

$$E(\varepsilon_i|\mathbf{c}_i) = E(\varepsilon_i) = 0$$

Para estimar los parámetros de la regresión β a partir de los datos originales, se toma un valor inicial, digamos **b** de β ,

$$ECM(\mathbf{b}) = \sum_{i=1}^{n} (y_i - \mathbf{c}_i \mathbf{b})^2$$

De modo que el estimador de mínimos cuadrados de β es el valor $\widehat{\beta}$ de **b** que minimiza el error cuadrático medio

$$\mathrm{ECM}(\widehat{oldsymbol{eta}}) = \min_{oldsymbol{b}} \left(\mathrm{ECM}(oldsymbol{b}) \right).$$

- Se define la llamada *matriz de diseño* como **C**, de orden $n \times p$, tal que la fila i—ésima es \mathbf{c}_i , y se denomina \mathbf{y} al vector $(y_1, y_2, \dots, y_n)'$
- ► Entonces el estimador de mínimos cuadrados es la solución de las ecuaciones normales

$$\mathbf{C}'\mathbf{C}\widehat{oldsymbol{eta}}=\mathbf{C}'\mathbf{y}$$

es decir

$$\widehat{oldsymbol{eta}} = \left(\mathbf{C}' \mathbf{C}
ight)^{-1} \mathbf{C}' \mathbf{y}$$

- ► En R hay muchos paquetes estadísticos que permiten trabajar con métodos de regresión.
- ► La orden básica en R es 1m.
- Ver, por ejemplo, como tutoriales:

Curso completo sobre métodos de regresión con R:

```
\label{lem:http://www.et.bs.ehu.es/~etptupaf/nuevo/ficheros/estad3/nreg1.pdf
```

Tutorial corto sobre métodos de regresión con R:

```
http://www.montefiore.ulg.ac.be/~kvansteen/GBI00009-1/ac20092010/Class8/Using%20R%20for%20linear%20regression.pdf
```

Supongamos un ejemplo muy simple sobre dos vectores de datos:

```
conc = c(10,20,30,40,50)
signal = c(4,22,44,60,82)

lm.r = lm(signal ~ conc)
summary(lm.r)

plot(conc, signal)
abline(lm.r)
```

```
Call:
lm(formula = signal \sim conc)
Residuals:
 1 2 3 4 5
0.4 -1.0 1.6 -1.8 0.8
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.80000 1.66933 -9.465 0.0025 **
      1.94000 0.05033 38.544 3.84e-05 ***
conc
Signif. codes: 0 '***' 0.001 '**'
0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.592 on 3 degrees of freedom
Multiple R-squared: 0.998, Adjusted R-squared: 0.9973
F-statistic: 1486 on 1 and 3 DF. p-value: 3.842e-05
```


Coeficientes del modelo

0.4 -1.0 1.6 -1.8 0.8

```
coef(lm.r)

(Intercept) conc
    -15.80 1.94

# Residuos del modelo
resid(lm.r)
```

```
# Valores predichos
fitted(lm.r)

1 2 3 4 5
3.6 23.0 42.4 61.8 81.2
```

```
# Intervalos de confianza para los parametros confint(lm.r)
```

```
2.5 % 97.5 %
(Intercept) -21.11256 -10.48744
conc 1.77982 2.10018
```

```
layout(matrix(1:4,2,2))
plot(lm.r)
```



```
newconc = c(5, 15, 25, 35, 45)

# Prediction de nuevas observaciones
predict(lm.r, data.frame(conc=newconc), level=0.9,
interval="confidence")
```

```
fit lwr upr
1 -6.1 -9.502218 -2.697782
2 13.3 10.858090 15.741910
3 32.7 30.923250 34.476750
4 52.1 50.323250 53.876750
5 71.5 69.058090 73.941910
```

- Ninguno de los cálculos anteriores requiere el uso del bootstrap, pero la aplicación al modelo de regresión lineal simple sirve como base para otros modelos más complejos.
- ▶ El modelo de probabilidad $P \rightarrow \mathbf{x}$ para la regresión lineal tiene dos componentes: $P = (\beta, F)$ donde β es el vector de parámetros de la regresión y F es la distribución de los errores.
- ▶ En principio, se dispone del estimador de $\widehat{\beta}$ de mínimos cuadrados. Pero hace falta estimar F.
- Si β fuese *conocido* entonces se podrían calcular los errores como $\varepsilon_i = y_i \mathbf{c}_i \beta$ para i = 1, 2, ..., n y se estimaría F mediante su distribución empírica.

No se conoce β pero se puede usar $\widehat{\beta}$ para calcular los errores aproximados o *residuos*

$$\widehat{\varepsilon}_i = y_i - \mathbf{c}_i \widehat{\boldsymbol{\beta}}$$

para
$$i = 1, 2, ..., n$$

ightharpoonup Se usa la distribución empírica de $\widehat{\varepsilon}_i$

$$\widehat{F}$$
 $ightarrow$ probabilidad igual a $1/n$ en $\widehat{\varepsilon}_i$

para $i=1,2,\ldots,n$, de modo que \widehat{F} tiene esperanza igual a 0.

- ▶ A partir de $\widehat{P} = (\widehat{\beta}, \widehat{F})$ se calculan los muestras bootstrap $\widehat{P} \to \mathbf{x}^*$
- ▶ Para generar x* se toma primero una muestra aleatoria de términos de error

$$\widehat{F} \to (\varepsilon_1^*, \varepsilon_2^*, \dots, \varepsilon_n^*) = \varepsilon^*$$

- ightharpoonup Cada ε_i^* es igual a cualquiera de los *n* valores de $\widehat{\varepsilon}_i$ con probabilidad 1/n
- Así, las respuestas boostrap se generan mediante

$$y_i^* = \mathbf{c}_i \widehat{\boldsymbol{\beta}} + \varepsilon_i^*$$

para i = 1, 2, ..., n donde $\widehat{\beta}$ es el mismo para todo i.

- ightharpoonup En conjunto, las muestras bootstrap son $\mathbf{x}_i^* = (\mathbf{c}_i, y_i^*)$
- Se observa que los valores c_i (vector de covariables) son iguales tanto en los datos originales como en los datos bootstrap. Esto se debe a que c_i son valores fijos y no aleatorios.
- ightharpoonup El estimador bootstrap \widehat{eta}^* es el valor que minimiza el error cuadrático residual

$$\sum_{i=1}^{n} \left(y_i^* - \mathbf{c}_i \widehat{\boldsymbol{\beta}}^* \right)^2 = \min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i^* - \mathbf{c}_i \mathbf{b} \right)^2$$

y con las ecuaciones normales aplicadas a los datos bootstrap se obtiene

$$\widehat{oldsymbol{eta}}^* = \left(\mathbf{C}' \mathbf{C}
ight)^{-1} \mathbf{C}' \mathbf{y}^*$$

ightharpoonup El error estándar de los componentes de $\hat{\beta}^*$ se obtiene de manera directa

$$\operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^*\right) = \left(\mathbf{C}'\mathbf{C}\right)^{-1} \mathbf{C}' \operatorname{Var}(\mathbf{y}^*) \mathbf{C} \left(\mathbf{C}'\mathbf{C}\right)^{-1}$$
$$= \widehat{\sigma}_F^2 \left(\mathbf{C}'\mathbf{C}\right)^{-1}$$

- ▶ ya que $Var(\mathbf{y}^*) = \widehat{\sigma}_F^2 \mathbf{I}$ donde \mathbf{I} es la matriz identidad.
- Así, el estimador bootstrap del error estándar es igual al usual en regresión lineal.

Ejemplo de Regresión bootstrap con residuos

Se simula un modelo de regresión lineal con errores distribuidos según una normal

```
N = 15
sd = 1.5
x = rnorm(N)
y = 3*x + sd*rnorm(N)^2
est = lm(y ~ x)

kk = residuals(est)
beta = coef(est)
```

Ejemplo de Regresión bootstrap con residuos

```
bootResid = replicate(5000,
    {epsilon = sample(kk, replace=TRUE);
    coef(lm((cbind(1,x)%*%beta + epsilon) ~ x))[2]}
)
library(latticeExtra)
densityplot(~bootResid, plot.points=FALSE,
auto.key=list(columns=2), xlab=expression(beta[1]))
```


Ejemplo de Regresión bootstrap con residuos

```
# Otra opcion simulando directamente
# desde el modelo de regresion estimado
bootResid2=replicate(5000,
coef(lm(simulate(est)[,1] ~ x))[2])
densityplot(~bootResid2, plot.points=FALSE,
auto.key=list(columns=2), xlab=expression(beta[1]))
```


Regresión bootstrap con la librería simpleboot

```
library(simpleboot)

lmodel = lm(y ~ x)

# Bootstrap con residuos
lboot2 = lm.boot(lmodel, R=1000, rows=FALSE)
summary(lboot2)
```

Regresión bootstrap con la librería simpleboot

```
# Grafico de los datos y de la recta de regresion
# original junto con
# + 1.96 veces el error estandar bootstrap
# - 1.96 veces el error estandar bootstrap
plot(1boot2)
```


- Hay otro método alternativo para aplicar el bootstrap en regresión, que es remuestreando las parejas de valores $\mathbf{x}_i = (\mathbf{c}_i, y_i)$
- ▶ De este modo, una muestra bootstrap consiste en

$$x^* = \{(\mathbf{c}_{i_1}, y_{i_1}), (\mathbf{c}_{i_2}, y_{i_2}), \dots, (\mathbf{c}_{i_n}, y_{i_n})\}$$

para i_1, i_2, \ldots, i_n , que es una muestra aleatoria de números enteros entre 1 y n.

▶ ¿Qué método es mejor, el que remuestrea residuos o el que remuestrea parejas?

- La respuesta depende de cómo se considere el modelo de regresión.
- Si en el modelo se asume que el error correspondiente a la diferencia entre y_i y la media $\mu_i = c_i \beta$ no depende de \mathbf{c}_i , esto implica que tiene la misma distribución F sin importar cuál sea el valor de \mathbf{c}_i .
- ▶ El bootstrap con parejas es menos sensible a la suposición anterior y lo único que se requiere es que las parejas originales $\mathbf{x}_i = (\mathbf{c}_i, y_i)$ se remuestreen de manera aleatoria de una distribución F en los vectores p+1 dimensionales (\mathbf{c}, y) .

```
N = 15
sd = 1.5
x = rnorm(N)
y = 3*x + sd*rnorm(N)^2
est = lm(y \sim x)
library(latticeExtra)
xyplot(y \sim x) + layer(panel.abline(est))
```



```
bootPair = replicate (5000, {
ind = sample(1:N, replace=TRUE);
coef(lm(y[ind] \sim x[ind]))[2]
})
# est tiene los valores de la recta de regresion original
betaEst = coef(est)[2]
sdBeta = sqrt(vcov(est)[2, 2])
# Grafico de la distribucion del estadistico beta original
# y el estadistico beta remuestreado
densityplot(bootPair, plot.points=FALSE, ylim=c(0,.75),
 xlab=expression(beta[1])) +
layer(panel.abline(v=betaEst))+
layer (panel.mathdensity (args=list (mean=betaEst, sd=sdBeta),
col="orange", n=100))
```


Si se compara el valor del error estándar bootstrap $\hat{\sigma}_{\beta}$ con respecto al error estándar del modelo de regresión original:

```
sd(bootPair)
[1] 0.7883879

sqrt(vcov(est)[2,2])
[1] 0.8749494
```

Regresión bootstrap con la librería simpleboot

```
N = 15
sd = 1.5
x = rnorm(N)
y = 3*x + sd*rnorm(N)^2

library(simpleboot)
lmodel = lm(y ~ x)

lboot2 = lm.boot(lmodel, R=1000)
summary(lboot2)
```

Regresión bootstrap con la librería simpleboot

```
BOOTSTRAP OF LINEAR MODEL (method = rows)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
1.336 2.421

Bootstrap SD's:
(Intercept) x
0.6074143 0.5885158
```

```
# Grafico de la recta de regresion con las bandas
# +/- 1.96 veces el error estandar bootstrap
plot(lboot2)
```


Regresión bootstrap con la librería boot

```
N = 15
sd = 0.5
x = rnorm(N)
y = 10*x + sd*rnorm(N)^2
datos = data.frame(y,x)

# Regresion basada en parejas o filas
boot.reg = function(data, i){
   mod = lm(y ~ x, data=data[i, ])
   coef(mod)
}
```

Regresión bootstrap con la librería boot

```
library(boot)
boot.1 = boot(data=datos, statistic=boot.reg, R=2000)
boot.1

plot(boot.1, index=1)
plot(boot.1, index=2)
```

Histogram of t 25 8.0 2.0 Density \$ 0. 4.0 0.5 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 -3 -2 -1 0 2 3 Quantiles of Standard Normal

Regresión bootstrap con la librería boot

```
# Regresion basada en residuos
boot.reg2 = function(losdatos, i){
  modelo = lm(y ~ x, data=losdatos)
  yhat = fitted(modelo)
  e = resid(modelo)
  y.star = yhat + e[i]
  modelB = lm(y.star ~ x)
  coef(modelB)
}
```

Regresión bootstrap con la librería boot

```
boot.2 = boot(data=datos, statistic=boot.reg2, R=2000)
boot.2

plot(boot.2, index=1)
plot(boot.2, index=2)
```


ANOVA unifactorial con Bootstrap

- Una manera cómoda de aplicar bootstrap en técnicas ANOVA es mediante la librería WRS2.
- Esta librería permite trabajar también con medias recortadas (trimming means) y funciona bien en el caso de heterocedasticidad y falta de normalidad.

```
library(WRS2)
help(viagra)

# Se aplica un ANOVA unifactorial asumiendo normalidad
summary(aov(libido ~ dose, data=viagra))
```

```
Df Sum Sq Mean Sq F value Pr(>F)

dose 2 20.13 10.067 5.119 0.0247 *

Residuals 12 23.60 1.967

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

ANOVA unifactorial con Bootstrap

Se aplica un remuestreo bootstrap

```
{\tt t1waybt(libido} \, \sim \, {\tt dose} \, , \, \, {\tt tr=0} \, , \, \, {\tt nboot=1000} \, , \, \, {\tt data=viagra})
```

```
Test statistic: 4.3205
p-value: 0.06886
Variance explained 0.645
Effect size 0.803
```

Se puede aplicar también un análisis post-hoc por parejas de categorías.

```
mcppb20(libido \sim dose, tr=0, nboot=1000, data=viagra, crit=0.05)
```

```
psihat ci.lower ci.upper p-value
placebo vs. low -1.0 -2.2 0.4 0.222
placebo vs. high -2.8 -4.2 -1.4 0.000
low vs. high -1.8 -3.2 -0.6 0.035
```

ANOVA bifactorial con Bootstrap

► Se puede considerar también un ANOVA bifactorial

```
\begin{array}{ll} \textbf{help}(\texttt{goggles}) \\ \textbf{t2way}(\texttt{attractiveness} \sim \texttt{gender*alcohol}, \\ \\ \textbf{data=goggles}, \ \texttt{tr=0}) \end{array}
```

```
value p.value
gender 2.0323 0.164
alcohol 40.0983 0.001
gender:alcohol 24.4083 0.001
```

ANOVA bifactorial con Bootstrap

Se puede usar también un análisis post-hoc

```
mcp2atm(attractiveness \sim gender*alcohol, data=goggles, tr=0)
```

```
psihat ci.lower
                                  ci.upper p-value
gender1
                11.250 -4.82883
                                  27.32883 0.16374
alcohol1
             -1.875 -18.53329 14.78329 0.77361
alcoho12
              34.375 18.65382
                                  50.09618 0.00001
alcoho13
             36.250 18.82376
                                  53.67624 0.00002
gender1:alcohol1 -1.875 -18.53329 14.78329 0.77361
gender1:alcohol2 -28.125 -43.84618 -12.40382 0.00014
gender1:alcohol3 -26.250 -43.67624 -8.82376 0.00081
```

 Otra alternativa es aplicar el bootstrap basado en modelos con la librería boot.

```
# Se generan unos datos artificiales
Nj = c(41, 37, 42, 40)
Ntot = sum(Nj)
muJ = rep(c(-1, 0, 1, 2), Nj)
MisDatos = data.frame(IV=factor(rep(LETTERS[1:4],Nj)),
DV = rnorm(Ntot, muJ, 6))
head(MisDatos)
```

```
IV DV

1 A 5.6002327

2 A 6.6621069

3 A -3.6669250

4 A 1.1622087

5 A -0.9911518

6 A 3.9720186
```

```
with(MisDatos, tapply(DV, IV, mean))
-0.993078 1.242881 1.175913 1.120702
with (MisDatos, tapply (DV, IV, var))
40.75370 30.33736 44.86708 42.91103
with(MisDatos,tapply(DV,IV,length))
41 37 42 40
```

 $(anoriginal = anova(lm(DV \sim IV, data=MisDatos)))$

Un ANOVA clásico obtiene

```
Analysis of Variance Table
Response: DV
          Df Sum Sq Mean Sq F value Pr(>F)
   3 235.0 78.342 2.0802 0.1051
ΤV
Residuals 156 5875.2 37.662
(Fbase = anoriginal["IV", "F value"])
[1] 2.0802
(pBase = anoriginal["IV", "Pr(>F)"])
```

[1] 0.1050664

Aplicando la librería boot:

```
mediaglobal = mean(MisDatos$DV)
E = MisDatos DV - mediaglobal ## residuos
Boot.Anova = function(dat, i) {
    media.star = mediaglobal + E[i]
    anBS = anova(lm(media.star \sim IV, data=dat))
    return(anBS["IV", "F value"])
library(boot)
booAnova = boot(MisDatos, statistic=Boot.Anova,
R = 1000)
booAnova
```

► Se obtiene

```
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = MisDatos, statistic = Boot.Anova, R = 1000)

Bootstrap Statistics:
    original bias std. error
t1* 2.080173 -1.075454 0.8386613
```

```
Fstar = booAnova$t
Fmayor = (Fstar > Fbase)
# P-valor remuestreado
(pValBS = (sum(Fmayor) / length(Fmayor)))
```

```
[1] 0.099
```

ANOVA unifactorial con Bootstrap no paramétrico

Alternativamente se puede remuestrear de manera directa:

```
meanstar = with(MisDatos, tapply(DV,IV,mean))
cuentas = with(MisDatos, tapply(DV,IV,length))

grpA = MisDatos$DV[MisDatos$IV=="A"] - meanstar[1]
grpB = MisDatos$DV[MisDatos$IV=="B"] - meanstar[2]
grpC = MisDatos$DV[MisDatos$IV=="C"] - meanstar[3]
grpD = MisDatos$DV[MisDatos$IV=="D"] - meanstar[4]

simIV = MisDatos$IV
R = 1000
```

ANOVA unifactorial con Bootstrap no paramétrico

```
Fstar = numeric(R)
# Tenemos una distribucion F bootstrapeada en "Fstar"
# basada en medias de grupos iguales (la hipotesis nula),
# pero no se asumen normalidad ni homogeneidad
for (i in 1:R) {
  groupA = sample(grpA, size=cuentas[1], replace=T)
  groupB = sample(grpB, size=cuentas[2], replace=T)
 groupC = sample(grpC, size=cuentas[3], replace=T)
 groupD = sample(grpD, size=cuentas[4], replace=T)
  simDV = c(groupA,groupB,groupC,groupD)
  simdata = data.frame(simDV,simIV)
 Fstar[i] = oneway.test(simDV~simIV,
             data=simdata)$statistic
```

ANOVA unifactorial con Bootstrap no paramétrico

[1] 0.08

```
quantile(Fstar,.95)

95%
2.328775

Fbase = anoriginal["IV", "F value"]  # anoriginal[1,5]
Fmayor = (Fstar > Fbase)

# P-valor remuestreado
pValBS = (sum(Fmayor) / length(Fmayor))
pValBS
```

► Se considera un modelo de serie AR(1) simple

$$y_t = \beta y_{t-1} + \varepsilon_t$$

donde $\varepsilon_t \sim N(0,1)$.

Se simulan unos datos

```
N = 150
epsilon = rnorm(N)
y = epsilon
for(i in 2: N){
     y[i] = y[i-1]*0.7 + epsilon[i]
}

plot.ts(ts(y), t="l", ylab="Tu serie")
```


O bien usando el comando de R

```
arima.sim(n=N, list(ar=0.7), innov=epsilon, n.start=1,
start.innov=0)
```

```
Time Series:
Start = 1
End = 150
Frequency = 1
[1] -1.65475863 -0.38318004 0.63597925 0.81702209
0.99204425 2.30593597 ......
```

Se puede estimar β por máxima verosimilitud, usando el comando arima

```
(est.arima = arima(y, order=c(1,0,0), include.mean=FALSE))
```

¿Cuáles son los métodos que se podrían aplicar en este caso?

- ▶ Bootstrap de parejas de puntos: Aquí NO se puede hacer porque se rompe la estructura de la serie temporal.
- ▶ Bootstrap de residuos: se preserva la estructura original de la serie cuando se asume la estrutura de dependencia entre los residuos.
- ► Bootstrap de mediante bloques móviles (moving blocks): se preserva la estructura original de la serie.

Para construir la muestra bootstrap se usan los residuos estimados.

```
kk = residuals(est.arima)
betaB = coef(est.arima)

betaBoot = replicate(5000, {
    epsilon = sample(kk, size=N, replace=TRUE)
    eso = arima.sim(n=N, list(ar=betaB), innov=epsilon,
    n.start=1, start.innov=0)
    coef(arima(eso, order=c(1,0,0), include.mean=FALSE))
}
)
```

► Se compara el estimador bootstrap del error estándar, con el obtenido de la sere original mediante *EMV*:

```
c(sd(betaBoot), sqrt(vcov(est.arima)))
[1] 0.05965961 0.05882693
```

```
library(latticeExtra)

sdBeta = sqrt(vcov(est.arima))
densityplot(~betaBoot, plot.points=FALSE) +
layer(panel.abline(v=0.7)) +
layer(panel.mathdensity(args=list(mean=betaB,
sd=sdBeta), col="black", n=100))
```


 Supongamos ahora que se supone de manera errónea que el proceso es un AR(2)

$$y_t = \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$$

▶ Se estiman entonces los parámetros, suponiendo que es un AR(2).

```
est2 = arima(y, order=c(2,0,0), include.mean=FALSE)
est2
```

ightharpoonup Se puede estudiar la precisión de β_2

```
kk = residuals(est2)
(betaB = coef(est2))
```

```
ar1 ar2
0.56215491 0.09843461
```

```
betaBoot2 = replicate(5000,{
   epsilon = sample(kk ,N, replace=TRUE)
   eso = arima.sim(n=N, list(ar=betaB), innov=epsilon)
   coef(arima(eso, order=c(2,0,0), include.mean=FALSE))}
)
```

lacktriangle Se puede estudiar y comparar también la desviación estandar de eta_2

```
c(sd(betaBoot2[2,]), sqrt(vcov(est2.arima)[2,2]))
```

```
[1] 0.08139569 0.08225318
```

```
seB = sqrt(diag(vcov(est2.arima)))
library(latticeExtra)
densityplot(betaBoot2[2,],plot.points=FALSE)+
layer(panel.abline(v=betaB[2]))+
layer(panel.mathdensity(args=list(mean=betaB[2],
sd=seB[2]),col="black",n=100))
```


Bloques móviles (moving blocks)

- ► En el esquema del bootstrap mediante análisis de residuos se asume que se *sabe* cuál es el proceso que genera los datos.
- Pero, en el esquema de bloques móviles se asume solo que un bloque de datos corto tiene un patrón de comportamiento semejante.
- ► Por ejemplo

```
N = 150
blockLen = 5
blockNum = N/blockLen
```


Bloques móviles (moving blocks)

```
betaBlock = replicate (5000, {
start = sample(1:(N-blockLen+1),
size=blockNum, replace=TRUE);
blockedIndices =
c(sapply(start, function(x) seq(x,x+blockLen-1)))
eso = y[blockedIndices]
coef(arima(eso, order=c(1,0,0), include.mean=FALSE))
})
c(sd(betaBlock), sqrt(vcov(est.arima)))
```

```
[1] 0.06217682 0.05449991
```

```
densityplot(~ betaBoot + betaBlock, xlab="",
plot.points=FALSE, auto.key=list(columns=2)) +
layer(panel.abline(v=0.7))
```


Se puede usar el comando tsboot de la librería boot

```
library(boot)
N = 150
epsilon = rnorm(N)
# Simulas un AR(1)
y = arima.sim(n=N, list(ar=0.6), innov=epsilon,
n.start=1, start.innov=0)
bootf = function(miserie){
  fit = ar(miserie, order.max=1) # modelo AR(1)
  return(fit$ar)
```

tsboot con bloques móviles.

```
# bootstrap por bloques cada uno con longitud 10
boot2 = tsboot(y, bootf, R=5000, l=10, sim="fixed")

teta.star = as.vector(boot2$t)
summary(teta.star)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1151 0.4533 0.5130 0.5049 0.5622 0.7179
```

```
# IC de percentil
quantile(teta.star, probs=c(0.025, 0.975))
```

```
2.5% 97.5%
0.3242073 0.6427601
```

```
ar1 = ar(y, order.max=1) # Ajustas un AR(1)
armodel = list(order=c(1,0,0), ar=ar1$ar)
bootf = function(miserie){
fit = ar(miserie, order.max=1) # modelo AR(1)
return(fit$ar)
bootsim = function(res, n.sim, argumentos){
 # generacion de series replicadas con arima.sim
 rg1 = function(n, res){ sample(res, n, replace=TRUE) }
 ts.orig = argumentos$ts
 ts.mod = argumentos$model
 return (mean (ts.orig) + ts(arima.sim (model=ts.mod,
 n=n.sim, rand.gen=rg1, res=as.vector(res))))
```

tsboot con remuestreo de residuos

```
boot1= tsboot(y, bootf, R=1000, sim="model",
n.sim=length(y), orig.t=FALSE, ran.gen=bootsim,
ran.args=list(ts=y, model=armodel))

teta.star = as.vector(boot2$t)
summary(teta.star)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1151 0.4533 0.5130 0.5049 0.5622 0.7179

# IC de percentil
```

quantile(teta.star, probs=c(0.025,0.975))

```
2.5% 97.5%
0.3242073 0.6427601
```

Modelos GLM con bootstrap

Se pueden considerar modelos lineales generalizados

```
library(boot)
help(remission)
model.boot = function(data, indices){
   sub.data = data[indices,]
   model = glm(r ~ LI, family="binomial",
   data=sub.data)
   coef (model)
glm.boot = boot(remission, model.boot, R=2000)
glm.boot
```

Modelos GLM con bootstrap

Se obtiene

```
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = remission, statistic = model.boot, R = 2000)

Bootstrap Statistics:
    original bias std. error
t1* -3.777140 -2.624717 24.69725
t2* 2.897264 2.670815 25.08782
```

Modelos GLM con bootstrap

Los correspondientes intervalos de confianza son

```
boot.ci(glm.boot, index=1, type="bca")
```

```
Intervals:
Level BCa
95% (-8.601, -1.329)
Calculations and Intervals on Original Scale
```

```
boot.ci(glm.boot, index=2, type="bca")
```

```
Intervals:
Level BCa
95% (0.677, 8.908)
Calculations and Intervals on Original Scale
```