(Fall 2001Midterm)

An ideal gas mixture was put together by mixing the contents of three vessels, each containing a single component ideal gas at the specified temperature and pressure listed below.

Vessel	Component in	Molar Mass,	Volume of the	Temperature,	Pressure,
number	the vessel	(kg/kmol)	vessel, (m ³)	(°C)	(kPa)
1	CH ₄	16	0.85	0	800
2	CO_2	44	0.30	25	400
3	N_2	28	0.35	35	600

The mixed gas was transferred to a fourth container whose volume was known to be 1.0 m³. The mixture was then heated to a temperature of 400 K. Calculate the following for this mixture:

- a. Number of moles of each component in the mixture.(4.5 points)
- b. Mass of each component in the mixture. (4.5 points)
- c. Mass fraction of CO_2 in the mixture.(2 points)
- d. Mole fraction of CH₄ in the mixture. (2 points)
- e. Pressure of the mixture after heating to 400 K. (4 points)
- f. Partial pressure of CH₄ after heating to 400 K (3 points)