Juan Pablo Ruiz

September 15, 2017

1 / 23

Bluetooth

Communication protocol for PC peripheral devices

2 / 23

Bluetooth and others evolution

More bandwidth, but one exception

Wi-Fi				
802.11	2Mbps			
802.11b	11Mbps			
802.11g	54Mbps			
802.11n	135Mbps			

Ethernet			
802.3i	10Mbps		
802.3u	100Mbps		
802.3ab	1000Mbps		
802.3an	10000Mbps		

Bluetooth		
v1.1	1Mbps	
v2.0	3Mbps	
v3.0	54Mpbs	
v4.0 (BTLE)	0.3Mbps	

Bluetooth low energy

It's good at small, discrete data transfers

4 / 23

 A new radio, new protocol stack, new profile architecture and a new qualification regime

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection
- Designed to be LOWEST cost and EASY to implement

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection
- Designed to be LOWEST cost and EASY to implement
- Very small silicon footprint and thereby very low cost

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection
- Designed to be LOWEST cost and EASY to implement
- Very small silicon footprint and thereby very low cost
- Very secure through optional 128 bit AES encryption

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection
- Designed to be LOWEST cost and EASY to implement
- Very small silicon footprint and thereby very low cost
- Very secure through optional 128 bit AES encryption
- Very low power designed to be asleep

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells
- New advertising mechanism, for ease of discovery & connection
- Designed to be LOWEST cost and EASY to implement
- Very small silicon footprint and thereby very low cost
- Very secure through optional 128 bit AES encryption
- Very low power designed to be asleep

	Voice	Data	Audio	Video	State
Bluetooth ACL / HS	x	Υ	Υ	X	X
Bluetooth SCO/eSCO	Υ	X	X	X	X
Bluetooth low energy	X	X	X	X	Υ
Wi-Fi	(VoIP)	Υ	Υ	Υ	X
Wi-Fi Direct	Υ	Υ	Υ	X	X
ZigBee	X	X	X	X	Υ
ANT	X	X	X	X	Υ

State = low bandwidth, low latency data

Low Power

Terminology - roles

- Broadcaster: Transmitter only
- Observer: Receiver only
- Peripheral: Supports slave role
- Central:
 - Supports master roles
 - Supports multiple connections
 - ▶ Initates connectfions to peripherals

Note: One device my support multiple roes

Advertising

- Broadcasting data. The way to let know to other devices that you are present.
- Transmit on all advertising cahnnel on each connection interval.
- Connectable or non-conectable.

10 / 23

Once a connection is made:

- Master informs slave of hopping sequence and when to wake
- All subsequent transactions are performed in the 37 data channels
- Transactions can be encrypted
- ¬ Both devices can go into deep sleep between transactions.

Profile setup

- Profile:
 - ▶ In, BLE and application is considered as a Profile designed to exchange data.
 - Overall application functionality
- **Service:** Sub-functionality that consists of characteristics.
- Characteristics: Performs its service functionality.

Profile example, heart rate

September 15, 2017

Bluetooth Low Energy Power Consumption

- BLE stack will only be consuming current at the peak level while it is transmitting.
- BLE device is transmitting only for a small percentage of the total time that the device is connected.

¹Texas Insturments, Measuring Bluetooth® Low Energy Power Consumption, Application Note AN092 « 🗆 » « 🗗 » « 📱 » « 📜 » 🧵 🦠 🦠 🤉

Bluetooth GAP (Generic Access Profile) roles

Figure 2- Current Consumption versus Time during a single Connection Event

BLE Bluetooth Low Energy September 15, 2017

15 / 23

Bluetooth GAP (Generic Access Profile) roles

	Time [µs]	Current [mA]
State 1 (wake-up)	400	6.0
State 2 (pre-processing)	315	7.4
State 3 (pre-Rx)	80	11.0
State 4 (Rx)	275	17.5
State 5 (Rx-to-Tx)	105	7.4
State 6 (Tx)	115	17.5
State 7 (post-processing)	1325	7.4
State 8 (pre-Sleep)	160	4.1

```
 \begin{array}{l} [~(400~\mu s)^*(6~mA) + (340~\mu s)^*(7.4~mA) + (80~\mu s)^*(11~mA) + (190~\mu s)^*(17.5~mA) + (105~\mu s)^*(7.4~mA) \\ + (115~\mu s)^*(17.5~mA) + (1280~\mu s)^*(7.4~mA) + (165~\mu s)^*(4.1~mA)] / (2675~\mu s) = 8.2463~mA \end{array}
```

 $[(1000 \text{ ms} - 2.675 \text{ ms})^*(0.001 \text{ mA}) + (2.675 \text{ ms})^*(8.2463 \text{ mA})]/(1000 \text{ ms}) = 0.0230 \text{ mA}$

BLE Bluetooth Low Energy September 15, 2017 16 / 23

³Texas Insturments, Measuring Bluetooth® Low Energy Power Consumption, Application Note AN092 ←□ ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← 壹 ト ← □ ← ○ へ

Bluetooth GAP (Generic Access Profile) roles

(230mAh)/(0.023mA) = 10000 hours = 416 days = 1.14 years

BLE

Bluetooth LE Layers

Bluetooth LE Layers

2.6 x 2.6mm

