Ch11 假设检验 (Hypothesis Testing)

有效估计量: $Var(\hat{\theta}) = Var_0(\theta) = \left[nE\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^2 \right]^{-1}$

一致估计量: $\hat{\theta}_n \stackrel{P}{\to} \theta$, 如何判断一致统计量、函数不变性

设 $X_1, X_2 \cdots, X_n$ 是来自总体X的样本,总体的分布函数含未知参数 θ ,求统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \cdots, X_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \cdots, X_n)$ 使得 $P\left[\hat{\theta}_1(X_1, X_2, \cdots, X_n) < \theta < \hat{\theta}_2(X_1, X_2, \cdots, X_n)\right] \ge 1 - \alpha$

则称 $1 - \alpha$ 为置信度, $[\hat{\theta}_1, \hat{\theta}_2]$ 为 θ 的置信度为 $1 - \alpha$ 的置信区间

枢轴变量法

- 先找一个枢轴变量 $W(X_1, X_2, \dots, X_n; \theta)$
- 给定置信度 $1-\alpha$,找出临界值a和b使 $P[a < W < b] = 1-\alpha$
- 求解 $\hat{\theta}_1 < \theta < \hat{\theta}_2$,则 $[\hat{\theta}_1, \hat{\theta}_2]$ 为 θ 的置信度为 1α 的置信区间

根据样本信息来检验关于总体的某个假设是否正确,此类问题称为假设检验问题,可分为两类:

- ▶参数检验问题: 总体分布已知, 检验某未知参数的假设
- ▶非参数检验问题: 总体分布未知时的假设检验问题

假设检验方法(反证): 先假设所做的假设 H_0 成立, 然后从总体中取样, 根据样本来判断是否有 **不合理** 的现象出现, 最后做出接受或者拒绝所做假设的决定.

不合理的现象: 小概率事件在一次事件中几乎不会发生

某产品出厂检验规定次品率 $p \leq 0.04$ 才能出厂, 现从10000件产品中任抽取12件, 发现3件是次品, 问该批产品是否该出厂; 若抽样结果有1件次品, 问该批产品是否该出厂?

在假设检验中, 需要对 **不合理** 的小事件给出一个定性描述, 通常给出一上界 α , 当一事件发生的概率小于 α 时则成为小概率事件.

通常取 α =0.05,0.1,0.01, 其具体取值根据实际问题而定. 在假定 H_0 成立下, 根据样本提供的信息判断出不合理的现象 (概率小于 α 的事件发生), 则认为假设 H_0 不显著, α 被称为显著水平.

不否定假设 H_0 并不是肯定假设设 H_0 一定成立,而只能说差异不够显著,没达到否定的程度,所以假设检验被称为"显著性检验"

假设检验的分类和步骤

- \triangleright 原假设 H_0 : $\mu = \mu_0$ 和备选假设 H_1 : $\mu \neq \mu_0$, 称为 **双边假设检验**
- \triangleright 原假设 H_0 : $\mu \leq \mu_0$ 和备选假设 H_0 : $\mu > \mu_0$, 称为 **右边检验**
- ho 原假设 H_0 : $\mu \ge \mu_0$ 和备选假设 H_0 : $\mu < \mu_0$, 称为 **左边检验 右边检验和左边检验统称单边检验**
- 根据实际问题提出原假设 H_0 和备择假设 H_1
- 确定检验统计量(分布已知)
- 确定显著性水平α,并给出拒绝域
- 由样本计算统计量的实测值,判断是否接受原假设 H_0

假设某产品的重量服从N(500,16),随机取出5件产品,测得重量为509,507,498,502,508,问产品的期望是否正常?(显著性水平 $\alpha=0.05$)

假设检验:假设原判断 H_0 成立,根据样本的取值来判断是否有不合理的现象-小概率事件。然而小概率事件在一次试验中不发生并不意味着小概率事件不发生

两种错误

- igop 第**I类错误: 弃真** 即当 H_0 为真时仍可能拒绝 H_0
- igoplus 第II类错误: 存伪 即当 H_0 不成立时仍可能接受 H_0

假设检验的决定	真实情况: H ₀ 为真	真实情况: H ₀ 为假
拒绝 H ₀	第I类错误	正确
接受 H ₀	正确	第 II 类错误

Neymam-Pearson原则

犯第I类错误的概率为 α ,第II类错误的概率用 β 表示,即

$$\alpha = P[拒绝H_0|H_0为真]$$
 $\beta = P[接受H_0|H_0为假]$

这两类错误互相关联,当样本容量固定时,一类错误概率的减少导致另一类错误概率的增加

Neymam-Pearson原则: 在控制第I类错误的前提下, 尽可能减小第II类错误的概率

Z检验: 方差已知单个正态总体的期望检验

 X_1, X_2, \cdots, X_n 来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, 方差 σ^2 已知

检验原假设 H_0 : $\mu = \mu_0$ 和备择假设 H_1 : $\mu \neq \mu_0$.

样本均值 $\bar{X} = \sum_{i=1}^{n} X_i/n$,根据正态分布选择检验统计量

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

给定显著性水平 α ,得到拒绝域为 $|Z| \ge \mu_{\alpha/2}$,这种检验方法称为 Z 检验法

Z检验法的双边和单边检验

原假设 H_0 : $\mu = \mu_0$ 和备择假设 H_1 : $\mu \neq \mu_0$, 拒绝域为 $\{Z: |Z| \geq \mu_{\alpha/2}\}$

原假设 H_0 : $\mu \ge \mu_0$ 和备择假设 H_1 : $\mu < \mu_0$, 拒绝域为 $\{Z: Z \le -\mu_{\alpha}\}$

原假设 H_0 : $\mu \leq \mu_0$ 和备择假设 H_1 : $\mu > \mu_0$, 拒绝域为 $\{Z: Z \geq \mu_\alpha\}$

已知某产品的重量 $X \sim N(4.55,0.108^2)$,现随机抽取5个产品,其质量分别为4.28, 4.40, 4.42, 4.35, 4.27. 问产品的期望在 $\alpha = 0.05$ 下有无显著性变化. ($\mu_{0.025} = 1.96$)

某灯泡平均寿命要求不低于1000小时被称为合格,已知灯泡的寿命 $X \sim N(\mu, 100^2)$,现在随机抽取25件,其样本均值为 $\overline{X} = 960$.在显著性水平 $\alpha = 0.05$ 的情况下,检验这批灯泡是否合格. ($\mu_{0.05} = 1.645$)

t检验: 方差未知的单个正态总体的期望检验

 X_1, X_2, \cdots, X_n 来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,方差 σ^2 未知

检验**原假设H_0**: $\mu = \mu_0$ 和备择假设 H_1 : $\mu \neq \mu_0$.

均值 $\bar{X} = \sum_{i=1}^{n} X_i/n$ 方差 $S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2/(n-1)$ 根据正态分布的性质选择检验统计量

$$t = \frac{\overline{X} - \mu_0}{\sqrt{S^2/n}} \sim t(n-1).$$

给定显著性水平 α ,得到拒绝域为 $|t| \geq t_{\alpha/2}(n-1)$,这种检验方法称为t检验法

t检验法的双边和单边检验

原假设 H_0 : $\mu = \mu_0$ 和备择假设 H_1 : $\mu \neq \mu_0$, 拒绝域为 $\{t: |t| \geq t_{\alpha/2}(n-1)\}$

原假设 H_0 : $\mu \ge \mu_0$ 和备择假设 H_1 : $\mu < \mu_0$, 拒绝域为 $\{t: t \le -t_{\alpha}(n-1)\}$

原假设 H_0 : $\mu \le \mu_0$ 和备择假设 H_1 : $\mu > \mu_0$, 拒绝域为 $\{t: t \ge t_\alpha (n-1)\}$

方差已知的两个正态总体的期望差检验

设 X_1, X_2, \dots, X_n 是 来 自 总 体 $X \sim N(\mu_1, \sigma_1^2)$ 的 样 本 , 以 及 Y_1, Y_2, \dots, Y_m 是来自总体 $Y \sim N(\mu_2, \sigma_2^2)$ 的样本,若方差 σ_1^2 和 σ_2^2 已 知

原假设 H_0 : $\mu_1 - \mu_2 = \delta$,备择假设 H_1 : $\mu_1 - \mu_2 \neq \delta$

设样本均值 $\bar{X} = \sum_{i=1}^{n} X_i/n$ 和 $\bar{Y} = \sum_{i=1}^{m} Y_i/m$,根据正态分布的性质有

$$U = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{\sigma_1^2/n + \sigma_2^2/m}} \sim N(0,1)$$

给定显著性水平α

方差已知的两个正态总体的期望差检验

原假设 H_0 : $\mu_1 - \mu_2 = \delta$ 备择假设 H_1 : $\mu_1 - \mu_2 \neq \delta$, 拒绝域 $\{U\colon |U| \geq \mu_{\alpha/2}\}$

原假设 H_0 : $\mu_1 - \mu_2 \le \delta$ 备择假设 H_1 : $\mu_1 - \mu_2 > \delta$, 拒绝域 $\{U: U \ge \mu_\alpha\}$

原假设 H_0 : $\mu_1 - \mu_2 \ge \delta$ 备择假设 H_1 : $\mu_1 - \mu_2 < \delta$, 拒绝域 $\{U: U \le -\mu_{\alpha}\}$

本学期主要的学习内容

概率统计

- 了解概率与统计的概念、区别
- 概率与统计关系
- 随机现象:二重性
- 随机试验: 三特点(可重复、多结果、不确定)
- 样本空间、样本点
- 随机事件: 基本事件、不可能事件、必然事件
- 事件关系: \subset 、=、U、 、 \cap 、 \bar{A} **互斥与对立事件**的关系
- 事件运算: 幂等、交换、结合、分配、对偶

概率公理化

- 频率、频率的稳定性、频率与概率的关系
- 概率的公理化
- $P(\emptyset) = 0$
- $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$
- $P(A B) = P(A) P(AB) = P(A \cup B) P(B)$
- 容斥原理 $P(A \cup B) = P(A) + P(B) P(AB)$
- Union bound

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) \leqslant P(A_1) + P(A_2) + \cdots + P(A_n)$$

古典概型、几何概型

- 古典概型: 试验结果只有有限种可能、每种结果发生的可能性相同
 - > 计数原理、排列组合
 - ▶ 各种例题:产品抽样、生日驳论、抽签、matching、超几何
- 几何概型: 样本空间无限可测、基本事件等可能性
 - ▶ 概率计算就是长度、面积、体积的计算
 - ▶ 例题:规划公交车发车时间、三角形、见面问题
- 十二重计数/组合计数(不考)

条件概率

条件概率: P(B|A) = P(AB)/P(A)

乘法公式: $P(A_1A_2 \cdots A_n) = P(A_1)P(A_2|A_1)\cdots P(A_n|A_1A_2 \cdots A_{n-1})$

全概率公式:若事件 A_1, A_2, \dots, A_n 为样本空间 Ω 的一个划分,对任意事件B有 $P(B) = \sum_{i=1}^n P(BA_i) = \sum_{i=1}^n P(A_i) P(B|A_i)$

贝叶斯公式: 设 A_1, A_2, \cdots, A_n 为样本空间 Ω 的一个划分, 且事件B满足P(B) > 0. 对任意 $1 \le i \le n$ 有

$$P(A_i|B) = \frac{P(A_iB)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n} P(A_j)P(B|A_j)}$$

独立性

独立性:两个事件、多个事件相互独立性

相互独立性 两两独立性

事件的独立 事件的互斥(互不相容)

独立性的性质, 以及如何判断独立性

小概率原理: 若事件A在一次试验中发生的概率非常小,但经过多次独立地重复试验,事件A的发生是必然的

离散型随机变量

随机变量、离散型随机变量

分布列: $p_k = P(X = x_k)$ 分布列性质

期望: $E(X) = \sum_{k} p_{k} x_{k}$ 反映随机变量的平均值

对随机变量X和常数 $a,b \in R$, 有E(aX + b) = aE(X) + b

函数的期望: $E[g(X)] = \sum_{k\geq 1} g(x_k) p_k$

凸函数、Jensen不等式

方差: $Var(X) = E(X - E(X))^2 = E(X^2) - [E(X)]^2$

性质: $Var(aX + b) = a^2 Var(X)$, $E(X - E(X))^2 \le E(X - a)^2$

对 $X \in [a,b]$ 有 $Var(X) \le (b-E(X))(E(X)-a) \le (b-a)^2/4$

常用离散随机变量

- 0/1分布: $X \sim Ber(p)$, E(X) = p Var(X) = p(1-p)
- 二项分布: $X \sim B(n,p)$, E(X) = np Var(X) = np(1-p)
- 几何分布: $X \sim G(p)$, $E(X) = \frac{1}{p}$ $Var(X) = \frac{1-p}{p^2}$
 - 无记忆性: P(X > m + n | X > m) = P(X > n)
- 泊松分布: $X \sim P(\lambda)$, $E(X) = \lambda$ $Var(X) = \lambda$
 - 泊松定理: $\binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$

连续型随机变量

分布函数: $F(x) = P(X \le x)$

- 规范性: $F(x) \in [0,1]$ 且 $F(-\infty) = 0, F(+\infty) = 1$
- 右连续性: F(x + 0) = F(x)

连续随机变量、概率密度函数: $F(x) = \int_{-\infty}^{x} f(t)dt$

- 非负性: $f(x) \ge 0$
- 规范性: $\int_{-\infty}^{+\infty} f(t)dt = 1$

连续随机变量分布函数F(x)与f(x)的连续、可导关系

连续型随机变量P(X = x) = 0

期望 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ 及其性质

方差: $Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$

常用的连续型随机变量

均匀分布
$$X \sim U(a,b)$$
: $E(X) = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$

指数分布
$$X \sim e(\lambda)$$
: $E(X) = \frac{1}{\lambda}$ $Var(X) = \frac{1}{\lambda^2}$

指数分布的无记忆性:
$$P(X > s + t | X > t) = P(X > s)$$

正态分布 $X \sim N(\mu, \sigma^2)$ 定义 、图像

- 若 $X \sim N(\mu, \sigma^2)$, 则 $Y = (X \mu)/\sigma \sim N(0,1)$
- 若 $X \sim N(0,1)$, 则 $Y = \sigma X + \mu \sim N(\mu, \sigma^2)$

已知连续随机变量X的概率密度为 $f_X(x)$,求随机变量Y = g(X)的概率密度 $f_Y(y)$?

- 求解Y=g(X)的分布函数 $F_Y(y) = P(Y \le y) = \int_{g(x) \le y} f_X(x) dx$
- 利用分布函数和概率密度关系求解密度函数 $f_Y(y) = F_Y'(y)$

二维随机变量

二维联合分布函数 $F(x,y) = P(X \le x, Y \le y)$ 、性质 边缘分布函数 $F_X(x) = \lim_{y \to +\infty} F(x,y)$

随机变量X和Y的独立性

- 二维离散随机变量: 联合分布列、边缘分布列、独立性
- 二维连续随机变量: 联合概率密度、边缘概率密度
- 二维连续随机变量的独立性
- 二维正态分布 $N(\mu, \Sigma), N(\mu_x, \mu_x, \sigma_x^2, \sigma_y^2, \rho)$

$$f(x,y) = (2\pi)^{-2/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(\xi-\mu)^{\mathsf{T}} \Sigma^{-1} (\xi-\mu)}$$

正态分布的边缘概率密度,独立性

多维正态分布的定义、边缘分布、独立性、标准化

已知(X,Y)的分布, 求Z = g(X,Y)的分布(离散、连续)

多维随机变量函数的分布

多维随机变量函数 $\max(X,Y)$ 和 $\min(X,Y)$

$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

$$f_{XY}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx$$

$$f_{Y/X}(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx$$

$$X \sim B(n_1, p) 和Y \sim B(n_2, p) 独立, X + Y \sim B(n_1 + n_2, p)$$

$$X \sim P(\lambda_1) 和Y \sim P(\lambda_2) 独立, 则X + Y \sim P(\lambda_1 + \lambda_2)$$

$$X \sim N(\mu_1, \sigma_1^2) 和Y \sim N(\mu_2, \sigma_2^2) 独立, 则$$

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

若已知 X和Y的联合分布,计算Z = g(X,Y)的期望E[Z]

期望的性质E[aX + bY] = aE[X] + bE[Y]

独立: E[XY] = E[X]E[Y]非独立: $E[XY] \le \sqrt{E[X^2]E[Y^2]}$

随机变量X和Y的协方差为

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

协方差的性质: Cov(X,c) = 0, Cov(X,Y) = Cov(Y,X)

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$

$$X$$
与 Y 的相关系数 $\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$ 、性质

二维正态分布
$$\binom{X}{Y}$$
 ~ $N\left(\binom{\mu_1}{\mu_2}\binom{\sigma_1^2}{\rho\sigma_1\sigma_2} \frac{\rho\sigma_1\sigma_2}{\sigma_2^2}\right)$, ρ 为 X 与 Y 的相

关系数、X与Y独立 ⇔ X与Y不相关

随机向量X的协方差矩阵

半正定

$$Cov(X) = \Sigma = \begin{pmatrix} Cov(X_1, X_1) & \cdots & Cov(X_1, X_n) \\ Cov(X_2, X_1) & \cdots & Cov(X_2, X_n) \\ \vdots & & \vdots \\ Cov(X_n, X_1) & \cdots & Cov(X_n, X_n) \end{pmatrix}$$

正态分布相关的结论 $X = (X_1, X_2, \cdots, X_n)^{\mathsf{T}} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

条件分布与条件期望

条件概率密度: $f_{X|Y}(x|y) = f(x,y)/f_Y(y)$

条件分布函数: $F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(v|y) dv$

乘法公式: $f(x,y) = f_X(x)f_{Y|X}(y|x)$, $(f_X(x) > 0)$

独立性: $f_{Y|X}(y|x) = f_Y(y)$

多维正太分布的条件分布是正太分布

随机变量X的期望为 $E[X|Y=y] = \int_{-\infty}^{+\infty} x f(x|y) dx$

全期望公式: $E[X] = E[X|A]P(A) + E[X|\bar{A}](1 - P(A))$

集中不等式

Markov不等式: $P(X \ge \epsilon) \le \frac{E(X)}{\epsilon}$

Chebyshev不等式: $P(|X - \mu| > \epsilon) \le \frac{Var(X)}{\epsilon^2}$

单边Chebyshev不等式: $P(X - \mu \ge \epsilon) \le \frac{\sigma^2}{\sigma^2 + \epsilon^2}$

Hölder不等式: $E(|XY|) \leq (E(|X|^p))^{\frac{1}{p}} (E(|Y|^q))^{\frac{1}{q}}$

集中不等式

随机变量X的矩生成函数为 $M_X(t) = E[e^{tX}]$ 、性质

Chernoff方法: $P[X \ge \epsilon] \le \min_{t>0} \{e^{-t\epsilon}E[e^{tX}]\}.$

$$0/1$$
-随机变量 $P\left[\sum_{i=1}^{n} X_i \geq (1+\epsilon)\mu\right] \leq \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu}$

Rademacher随机变量: $P\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\geq\epsilon\right]\leq e^{-n\epsilon^{2}/2}$

有界: Chernoff引理

$$P\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] \ge \epsilon\right] \le e^{-2n\epsilon^{2}/(b-a)^{2}}$$

集中不等式(不考)

Bennet不等式:
$$P\left[\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu) \ge \epsilon\right] \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2+2\epsilon/3}\right)$$

Bernstein不等式:
$$P\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu \geq \epsilon\right] \leq \exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2} + 2b\epsilon}\right)$$

什么是大数定律、依概率收敛

Markov大数定律: 若随机变量序列 $\{X_i\}$ 满足 $\mathrm{Var}(\sum_{i=1}^n X_n)/n^2 \to 0$,则满足大数定律

Chebyshev大数定律: 若独立随机变量序列 $\{X_i\}$ 满足 $Var(X_i) \leq c$,则满足大数定律

Khintchine大数定律: 若独立同分布随机变量序列 $\{X_i\}$ 期望存在,则满足大数定律;

Bernoulli大数定律: 对二项分布 $X_n \sim B(n,p)$, 有 $X_n/n \stackrel{P}{\to} p$

- > 中心极限定理、依分布收敛
- ightharpoonup 林德贝格-勒维中心极限定理: 独立同分布随机变量,若 $E[X_k] = \mu$ 和 $Var(X_k) = \sigma^2$,则 $\sum_{k=1}^n X_k \stackrel{d}{\to} N(n\mu, n\sigma^2)$
- ▶ 棣 莫 弗 拉 普 拉 斯 中 心 极 限 定 理 : 若 $X_n \sim B(n,p)$, 则 $X_n \stackrel{d}{\to} N(np,np(1-p))$
- ▶ 李雅普诺夫定理: 独立不同分布中心极限定理

$$\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E[|X_k - \mu_k|^{2+\delta}] \to 0$$

总体: 研究对象的全体,用随机变量X表示(分布未知)

样本: 从总体中随机抽取一些个体,表示为 X_1,X_2,\cdots,X_n ,称 X_1,X_2,\cdots,X_n 为取自总体X的随机样本,其样本容量为n

抽样、样本值、样本的二重性、简单样本

样本的分布:
$$F(x_1, x_2, \dots, x_n) = F(x_1)F(x_2) \dots F(x_n)$$

 $f(x_1, x_2, \dots, x_n) = f(x_1)f(x_2) \dots f(x_n)$
 $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$

- \blacktriangleright 统计量: $g(X_1,X_2,\cdots,X_n)$ 关于 X_1,X_2,\cdots,X_n 连续、不含任意参数
- ▶ 样本均值、样本方差、样本标准差、修正后的样本方差、 k阶 原点矩/中心矩、次序统计量

三大统计分布

Γ-函数与分布(不考)

- ▶ Γ-函数、Γ-分布、性质、独立可加性
- ► 标准正态分布的平方Γ(1/2,1/2)

统计三大分布

- ▶ 自由度为n的 χ^2 分布: $Y = X_1^2 + X_2^2 + \cdots + X_n^2$
- $> \chi^2$ 分布性质、独立可加性
- $ightharpoonup t分布<math>T = X/\sqrt{Y/n}$ 、性质
- ▶ F分布及其性质

分布可加性

- → 如果 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$, 且X与Y独立, 那么 $X \pm Y \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2)$;
- ▶ 如果 $X \sim B(n_1, p)$ 和 $Y \sim B(n_2, p)$,且X与Y独立,那么 $X + Y \sim B(n_1 + n_2, p)$;
- ▶ 如果 $X \sim P(\lambda_1)$ 和 $Y \sim P(\lambda_2)$,且X与Y独立,那么 $X + Y \sim P(\lambda_1 + \lambda_2)$;
- ightharpoonup 如果 $X \sim \Gamma(\alpha_1, \lambda)$ 和 $Y \sim \Gamma(\alpha_2, \lambda)$,且X与Y独立,那么 $X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$
- ▶ 如果 $X \sim \chi^2(m)$ 和 $Y \sim \chi^2(n)$, 且 X 与 Y 独立,那么 $X + Y \sim \chi^2(m+n)$.

统计五大采样定理

1)设 X_1, X_2, \dots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本,则有 $\bar{X} =$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \sim N(\mu, \sigma^{2}/n) \qquad \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

- 2) 有 \overline{X} 和 S^2 相互独立,且 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$
- 3) $\frac{\bar{X}-\mu}{\sqrt{S^2/n}} \sim t(n-1)$

定理: 设 X_1, X_2, \dots, X_m 和 Y_1, Y_2, \dots, Y_n 分别来自总体 $N(\mu_X, \sigma_X^2)$ 和 $N(\mu_Y, \sigma_Y^2)$ 的两个独立样本,其修正样本方差分别为 S_X^2 和 S_Y^2 ,则

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1, n-1).$$

定理: 设 X_1, X_2, \cdots, X_m 和 Y_1, Y_2, \cdots, Y_n 分别来自总体 $N(\mu_X, \sigma^2)$ 和 $N(\mu_Y, \sigma^2)$ 的两个独立样本,令其样本均值分别 \bar{X} 和 \bar{Y} ,修正样本方差分别为 S_X^2 和 S_Y^2 ,则

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}} \sim t(m+n-2).$$

参数估计: 依据 X_1, X_2, \cdots, X_n 估计参数 θ 或函数 $g(\theta)$ 点估计

- 矩估计法: 样本矩去估计总体矩求参数θ
- 最大似然估计: $\hat{\theta} = \operatorname{argmax}_{\theta} L(x_1, x_2, \dots, x_m; \theta)$
- 最大似然估计的不变性

估计量的常用标准

- 无偏性: 无系统偏差
- 有效性: 估计量的方差越小越好, 有效统计量
- 一致性: 在数据足够多的情况下能有效估计统计量