Plan du cours

I.	Int	roduction	1
n.	Foi	nction affine	1
	1.	Définition	1
	2.	Réprésentation graphique d'une fonction affine	2
		a) Propriétés	2
		b) Comment représenter graphiquement	
		une fonction affine	4
m.	Va	riations et signe d'une fonction affine	7
	1.	Variations d'une fonction affine	7
	2.	Signe d'une fonction affine	9

Chapitre 2: Fonctions affines

I. Introduction

(Voir cahier d'exercices)

II. Fonction affine

1. Définition

Définition

Une fonction f, définie sur \mathbb{R} , est **affine** s'il existe deux réels m et p tel que, pour tout x, f(x) = mx + p.

Où m est le coefficient directeur et p est l'ordonnée à l'origine.

Exemples:

(a) $f: x \mapsto -2x + 7$ est une fonction affine

(b) $f: x \mapsto \frac{8x-5}{9}$ est une fonction affine

(c) $f: x \mapsto 11x$ est une fonction affine

(d) $f: x \mapsto 450$ est une fonction affine

(e) $f: x \mapsto 11 - \sqrt{2}x$ est une fonction affine

(f) $f: x \mapsto 12x^2 + 30$

(g) $f: x \mapsto \frac{3}{x} - \frac{1}{2}$

10				
éf	ın	тт		n
C I			LU.	

Soi	t f une fonction affine définie sur \mathbb{R} par $f(x) = mx + p$.
	• Si $p = 0$ alors $f(x) = \dots$ La fonction f est alors \dots
	• Si $m=0$ alors $f(x)=\ldots$ La fonction f est alors \ldots
	Réprésentation graphique d'une fonction affine Propriétés
1)	
rop S	Propriétés

Chapitre 2: Fonctions affines

Propriété

Soient f une fonction affine définie par f(x) = mx + p et (d) la droite qui la représente dans un repère.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points **quelconques** de (d).

$$\bullet \quad m = \frac{\cdots \cdots}{\cdots \cdots} = \frac{\cdots \cdots}{\cdots \cdots} = \frac{\cdots \cdots}{\cdots \cdots}$$

Lorsque
$$\Delta x = x_B - x_A = 1$$
, alors $\Delta y = y_B - y_A = m$

• p est l'image de 0 par la fonction f, c'est donc l'ordonnée du point d'intersection de la droite représentative de f avec l'axe des ordonnées.

Exemples : A partir des représentations graphiques ci-dessous, retrouver l'expression algébrique de chaque fonction.

b) Comment représenter graphiquement une fonction affine

• En utilisant 2 points et leur image :

On veut représenter graphiquement la fonction affine $f: x \mapsto \frac{1}{3}x + 2$. On sait que la représentation graphique de f est une droite. Pour tracer une droite, il suffit de connaître **deux points** de celle-ci. Pour cela nous allons choisir deux abscisses quelconques et calculer ensuite

Pour tracer une droite, il suffit de connaître **deux points** de celle-ci. Pour cela, nous allons choisir deux abscisses quelconques et calculer ensuite l'image de chacune d'elles par la fonction f.

X									
f(x)									

On place ensuite les deux points dont les coordonnées se lisent en colonnes dans le tableau et on trace la droite.

• En utilisant le coefficient directeur (m) :

On veut représenter graphiquement la fonction affine $g: x \mapsto 2x + 3$.

La fonction g est une fonction affine, donc sa représentation graphique est une droite d.

Son ordonnée à l'origine est égale à p=3, donc le point A(0;3) appartient à d.

Le coefficient directeur est m=2, donc $\frac{\Delta y}{\Delta x}=2$ cest-à-dire $\Delta y=2\times \Delta x$. On choisit par exemple $\Delta x=1$; on obtient alors $\Delta y=2$.

En partant de A, on se déplace de 1 en abscisses, et alors de 2 en ordonnées.

Exemples : A partir des expressions algébriques de chaque fonction, tracer les représentations graphiques de celle-ci dans un repère orthonormé.

On définit deux fonctions affines telles que f(x) = -5x + 1 et $g(x) = \frac{1}{4}x - 3$

III. Variations et signe d'une fonction affine

1. Variations d'une fonction affine

Définition

Une fonction f **est croissante** sur un intervalle I signifie que sur l'intervalle I , si les valeurs de la variable x augmentent, alors les images f(x) augmentent aussi.

Traduction mathématique : Pour tous x_1 et x_2 de l tels que $x_1 \le x_2$, alors $f(x_1) \le f(x_2)$.

(On dit qu'une fonction croissante conserve l'ordre.)

Illustration graphique:

Définition

Une fonction f **est décroissante** sur un intervalle l signifie que sur l'intervalle l , si les valeurs de la variable x augmentent, alors les images f(x) diminuent aussi.

Traduction mathématique : Pour tous x_1 et x_2 de l tels que $x_1 \le x_2$, alors $f(x_1) \ge f(x_2)$.

(On dit qu'une fonction décroissante inverse l'ordre.)

Illustration graphique:

Théorème

Soit f une fonction affine définie par : f(x) = mx + p.

- *f* est croissante si, et seulement si,
- f est constante si, et seulement si,
- f est décroissante si, et seulement si,

DEMONSTRATION:

Construction des tableaux de variations.

On en déduit les tableaux de variations possibles de f, selon le signe de m.

• Pour m > 0:

• Pour m < 0:

2. Signe d'une fonction affine

Soit f(x) = mx + p une fonction affine, avec $m \neq 0$.

On cherche ici pour quelle valeur de x, la fonction f s'annule.

On résout $f(x) = 0 \dots \dots \dots \dots$

On en déduit les tableaux de signes possibles de f, selon le signe de m.

• Pour m > 0:

• Pour m < 0:

Exemples : Dresser le tableau de signes des fonctions affines définies par f(x) = 2x + 5 et g(x) = -3x + 6.