Mã số: 18120078

1. Câu 7.3

(a)
$$x(t) = 1 + cos(2000\pi t) + sin(4000\pi t)$$

Ta có:
 $X(j\omega) = 0$ khi $|\omega| > 4000\pi$
 $\Rightarrow \omega_N = 2(4000\pi) = 8000\pi$

(b)
$$x(t) = \frac{\sin(4000\pi t)}{\pi t}$$

Ta có: $X(j\omega) = \frac{1}{4000\pi} rect(\frac{j\omega}{4000\pi}) = 0$ khi $|\omega| > 4000\pi$
 $\Rightarrow \omega_N = 2(4000\pi) = 8000\pi$

(c)
$$x(t) = \left(\frac{\sin(4000\pi t)}{\pi t}\right)^2$$

Ta có thể thấy $X(j\omega)$ là tích của 2 hàm rect nên $X(j\omega)$ có dạng hàm tri có giá trị bằng 0 với $|\omega| > 8000\pi$

 $\Rightarrow \omega_N = 2(8000\pi) = 16000\pi$

2. Câu 7.7

Ta có:

$$x_1(t) = h_1(t) * \left[\sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT) \right]$$

Và:

$$x_0(t) = h_0(t) * \left[\sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT) \right]$$

Thực hiện Fourier Transform cho 2 phương trình trên ta được:

$$\begin{cases} X_1(j\omega) = H_1(j\omega)X(j\omega) \\ X_0(j\omega) = H_0(j\omega)X(j\omega) \end{cases}$$

Ta cần tìm một hàm tiếp ứng xung $H_d(j\omega)$ thỏa:

$$X_0(j\omega)H_d(j\omega)X_1(j\omega)$$

Ta có: $h_1(j\omega)$ có dạng hàm tri còn hàm $h_0(j\omega)$ có dạng hàm rect, nên ta có được mối liên hệ giữa chúng như sau:

$$h_1(t) = \left\{ \frac{1}{\sqrt{T}} h_0(t + \frac{T}{2}) \right\} * \left\{ \frac{1}{\sqrt{T}} h_0(t + \frac{T}{2}) \right\}$$

Biến đổi FT, ta có:

$$H_1(t) = \frac{1}{T}e^{j\omega T}(H_0(j\omega))^2$$

Mà:

$$X_1(j\omega) = H_1(j\omega)X(j\omega)$$

$$= \frac{1}{T}e^{j\omega T}(H_0(j\omega))^2X(j\omega)$$

$$= \frac{1}{T}e^{j\omega t}H_0(j\omega)X(j\omega)$$

Vây:

$$H_d(j\omega) = \frac{1}{T}e^{j\omega T}H_0(j\omega) = \frac{1}{T}e^{j\omega T/2}\left\{e^{j\omega T/2}H_0(j\omega)\right\} = e^{j\omega T/2}\frac{1}{T}Tsinc(\frac{\omega T}{2}) = e^{j\omega T/2}\frac{2sin(\omega T)}{\omega T}$$

- 3. Câu 7.8
- 4. Câu 7.21
 - (a) $N_{\omega} = 2(5000\pi) = 10000\pi \Rightarrow T_{max} = \frac{2\pi}{10000\pi} > T = 10^{-4}$ Vậy có thể khôi phục lại được x(t).
 - (b) $N_\omega=2(15000\pi)=30000\pi\Rightarrow T_{max}=\frac{2\pi}{30000\pi}< T=10^{-4}$ Vậy không thể khôi phục lại được x(t)
 - (c) Do $\mathcal{I}m(X(j\omega))$ không xác định nên ta không thể tìm được N_{ω} của x(t). Vì vậy không thể đảm bảo có thể phục hồi được x(t) với $T=10^{-4}$
 - (d) Tương tự câu a Vậy có thể khôi phục lại được x(t).
 - (e) Tương tự câu b
 Vậy không thể khôi phục lại được $\mathbf{x}(\mathbf{t})$
 - (f) Ta có $X(j\omega)=0$ khi $|\omega|>7500\pi \Rightarrow N_{\omega}=15000\pi \Rightarrow T_{max}=\frac{2\pi}{15000\pi}>T=10^{-4}$ Vậy có thể khôi phục lại được $\mathbf{x}(\mathbf{t})$
 - (g) $|X(j\omega)|=0$ khi $|\omega|>5000\pi \Rightarrow X(j\omega)=0$ khi $|\omega|>5000\pi$ Vậy tương tự câu a, ta có thể khôi phục được x(t)
- 5. Câu 7.22

Thực hiện Fourier Transform lên phương trình, ta có:

$$Y(j\omega) = X_1(j\omega)X_2(j\omega)$$

Do đó, $Y(j\omega)=0$ khi $|\omega|>1000\pi \Rightarrow N_{\omega}=2000\pi \Rightarrow T_{max}=\frac{2\pi}{2000\pi}=10^{-3}$ Vậy, sử dụng hàm impulse train với tần số $T<10^{-3}$ thì có thể khôi phục lại được y(t)

6. Câu 7.24

$$\text{Dăt } \hat{s}(t) = s(t) - 1$$

Do đó, Fourier Transform của $\hat{s}(t)$ có thể dễ dàng thầy được như sau:

$$\hat{S}(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T)$$

Từ đó, ta có:

$$S(j\omega) = \hat{S}(j\omega) - 2\pi\delta(\omega)$$

$$= \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega)$$

Do $w(t) = s(t)x(t) \Rightarrow W(j\omega) = S(j\omega)X(j\omega)$

(a) Với $\Delta = \frac{T}{3}$

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/3)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega)$$

Ta có thể thấy $W(j\omega)$ sẽ là lặp lại của $X(j\omega)$ với khoảng cách giữa mỗi đoạn lặp lại là $2\pi/T$ Do đó, ω_M không được nhỏ hơn $\pi/T \Rightarrow T_{max} = \pi/\omega_M$

(b) Với $\Delta = \frac{T}{4}$

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/4)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega)$$

Có thể thấy $S(j\omega)=0$ khi $k=0,\pm 2,\pm 4,...$, do đó, $X(j\omega)$ lặp lại trong $W(j\omega)$ với khoảng cách tăng lên đến $4\pi/T$ Do đó, ω_M không được nhỏ hơn $2\pi/T\Rightarrow T_{max}=2\pi/\omega_M$

7. Câu 7.25

Ta có thể biểu diễn $x_r(kT)$ như sau:

$$x_r(kT) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin \left[\pi(k-n)\right]}{\pi(k-n)}$$

Có thể thấy:

$$\frac{\sin\left[\pi(k-n)\right]}{\pi(k-n)} = \begin{cases} 0, & k \neq n \\ 1, & k = n \end{cases}$$

Do đó:

$$x_r(kT) = x(kT)$$

8. Câu 7.26

Ta có thể thấy khi tần số lấy mẫu tăng, giá trị $2\pi/T - \omega_2$ sẽ tiến về 0.

- 9. Câu 7.27
- 10. Câu 7.36

Ta có:

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

Với $N_{\omega} = \frac{2\pi}{T}$, ta có thể phục hồi được tín hiệu gốc như sau:

$$x(T) = x_p(t) * h(t)$$

Với:

$$h(t) = \frac{\sin(\pi t/T)}{\pi t/T}$$

Do đó,

$$\frac{dx(t)}{dt} = x_p(t) * \frac{dh(t)}{dt}$$

Đặt $g(t) = \frac{dh(t)}{dt}$, ta có:

$$\frac{dx(t)}{dt} = x_p(t) * g(t) = \sum_{n=-\infty}^{\infty} x(nT)g(t - nT)$$

Vậy:

$$g(t) = \frac{dh(t)}{dt} = \frac{\cos(\pi t/T)}{t} - \frac{T\sin(\pi t/T)}{\pi t^2}$$