5(a). Solve the PDE $(D^2-D^{-2}+D+3D-2)z = e^{(x-y)}-x^2y$ SOLUTION

Given equation can be re written as

$$[(D+D_1'(D-D_1')+2(D+D_1')-(D-D')-2)z=e^{x-y}-x^2y$$

$$(D-D'+2)(D+D'+1)z = e^{x-y} - x^2y$$

C.F. =
$$e^{-2x}\phi_1(y+x) + e^x\phi_2(y-x)$$

 ϕ_1, ϕ_2 being arbitrary constants.

P.I. corresponding to ex-y

$$\Rightarrow \frac{1}{(D^2 - D'^2 + D + 3D' - 2)} e^{x - y} = \frac{1}{1 - 1 + 1 + (3) - 2} e^{x - y}$$
$$= \frac{e^{x - y}}{2}$$

P.I. corresponding to
$$(-x^2y)$$

$$\Rightarrow \frac{1}{D^2 - D_3^2 + D + 3D' - 2} (-x^2y) = \frac{1}{2} \left(1 + \frac{(D - D')}{2} \right)^{-1} (1 - (D + D'))^{-1} x^2 y$$

$$= \frac{1}{2} \left(1 + \frac{(D - D')}{2} \right)^{-1} \left(1 + (D + D') + (D + D')^2 ... \right) x^2 y$$

$$= \frac{1}{2} \left(1 + \left(\frac{D - D'}{2} \right)^{-1} \left(x^2 y + 2xy + x^2 + xy + 4x + 6 \right) \right)$$

$$= \frac{1}{2} \left(1 - \left(\frac{D - D'}{2} \right) + \left(\frac{D - D'}{2} \right)^2 - \left(\frac{D - D'}{2} \right)^3 \left(x^2 y + 2xy + x^2 + 2y + 4x + 6 \right) \right)$$

$$= \frac{1}{2} \left(1 - \frac{D}{2} + \frac{D'}{2} + \frac{D^2}{4} + \frac{D^2}{4} - \frac{DD'}{2} + \frac{3D'D^2}{8} ... \right) \left(x^2 y + 2xy + x^2 + 2y + 4x + 6 \right)$$

$$= \frac{1}{2} \left(x^2 y + 2xy + x^2 + 2y + 4x + 6 - \frac{1}{2} (2xy + 2y + 2x + 4) \right)$$

$$+ \frac{1}{2} \left(x^2 + 2x + 2 \right) + \frac{1}{4} \left(2y + 2 \right) + \frac{1}{4} \left(0 \right) - \left(2x + 2 \right) \frac{3}{8} (2)$$
P. I. = $\frac{1}{2} \left(x^2 y + xy + 3x^2 / 2 + 3y / 2 + 3x + 21 / 4 \right)$

P.I.=
$$\frac{1}{2} (x^2y + xy + 3x^2/2 + 3y/2 + 3x + 21/4)$$

$$\therefore \text{ General solution } = e^{-2x}\phi_1(y+x) + e^x\phi_2(y-x) + \frac{1}{2}e^{x-y} + \frac{1}{2}\left(x^2y + xy + \frac{3x^2}{2} + \frac{3y}{2} + 3x + 21/4\right)$$

5(b). Solve the PDE $(x+2z)\frac{\partial z}{\partial x} + (4zx-y)\frac{\partial z}{\partial y} = 2x^2 + y$.

SOLUTION

Lagranges auxiliary equations are given by $\frac{dx}{x+2z} = \frac{dy}{4xz-y} = \frac{dz}{2x^2+y}$ (1)

Choose y,x,-2z as multiplirs

$$(1) = \frac{ydx + xdy - 2zdz}{y(x+2z) + x(4xz-y) - 2z(2x^2 + y4)} = \frac{d(xy-z^2)}{0}$$

$$= xy - z^2 = c_1 \qquad \dots (2)$$

Choosing 2x, -1, -1 as multipliers

$$\frac{2xdx - dy - dz}{2x(x+2z) - (4xz - y) - (2x^2 + y4)} = \frac{d(x^2 - y - z)}{0}$$

$$x^2 - y - z = c_2$$

from (2) and (3). solution is given by

$$\phi(xy - z^2, x^2 - y - z) = 0$$

being arbitrary functions.

TICAL SCIENCES

....(3)

6(a). Find surface satisfying $\frac{\partial^2 z}{\partial r^2} = 6x + 2$ and touching $z = x^3 + y^3$ along its section by the plane x+y+1=0.

SOLUTION

$$\frac{\partial^2 z}{\partial x^2} = 6x + 2$$

$$\frac{\partial p}{\partial x} = 6x + 2$$

$$p = 3x^2 + 2x + \phi(y)$$

$$z = x^3 + x^2 + x\phi(y) + \psi(y)$$
(1)

Given surface satisfies $z = x^3 + y^3$ and (x+y+1) = 0. (1) & (2) touch along their common section by x+y+1=0.

The values of $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ from (1) & (2) must be the same.

The values of
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ from (1) & (2) must be the same.

$$\therefore \text{ from (1) } \frac{\partial z}{\partial x} = 3x^2 + 2x + \phi(y) \qquad(4)$$
from the given surface $\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(x^3 + y^3) = 3x^2 \qquad(5)$
Equating, (4) = (5) $\Rightarrow 3x^2 = 3x^2 + 2x + \phi(y)$

from the given surface
$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(x^3 + y^3) = 3x^2$$
5)

Equating, (4) = (5)
$$\Rightarrow$$

$$3x^2 = 3x^2 + 2x + \phi(y)$$

 $\phi(y) = -2x$ as $x+y+1=0$.

$$\phi(y) = 2y+2$$
(6)

$$\frac{\partial z}{\partial y} = x\phi'(y) + \psi'(y)$$

$$\frac{\partial z}{\partial y} = x\phi'(y) + \psi'(y)$$

$$\frac{\partial z}{\partial y} = x(2) + \psi'(y)$$
from (6) $\phi'(y) = 2$

$$\frac{\partial z}{\partial y} = 3y^2$$

$$3y^2 = 2x + \psi'(y)$$

from (2)

$$\frac{\partial z}{\partial y} = 3y^2$$

$$3y^2 = 2x + \psi'(y)$$

$$\psi'(y) = 3y^2 - 2x$$

$$\psi'(y) = 3y^2 + 2(y+1)$$

$$\psi(y) = y^3 + y^2 + 2y + c$$

 $Z = x^3 + x^2 + x(2y+2) + y^3 + y^2 + 2y + c$

$$Z = x^3 + y^3 + x^2 + 2xy + y^2 + 2x + 2y + c$$

Putting $z \approx x^3 + y^3$, x + y = -1

Given c = 1

:.

$$\therefore$$
 $Z = x^3 + y^3 + (x + y + 1)^2$ Required solution

Let the bar be placed along x axis with its one end at origin and other end at x = 1.

$$\frac{\partial y}{\partial t} = k \frac{\partial^2 y}{\partial x^2}$$
(1) heat equations

Boundary conditions $y_x(1, t) = 0$ y(0,t) = 10.

Initial conditions y(x,0)=1-x

Taking y(x, t) = u(x, t) + 10

Boundary condition changes to

$$u(x,0) = -(x+9)$$
(4)

$$u(x,t) = X(x) T(t)$$

 $XT' = kX''T$

Suppose
$$u(x,t) = X(x) T(t)$$

$$\vdots \qquad XT' = kX''T$$

$$\frac{T'}{\kappa T} = \frac{X''}{X} = \mu$$

$$\Rightarrow \qquad X'' - \mu X = 0$$

$$T' - \mu kT = 0$$
From (2) and (3) $X'(1)T(t)=0$; $X(0)T(t)=0$

$$T(t) \text{ depends on } t \text{ and for some } t, T(t)\neq 0.$$

$$\Rightarrow X'(1) = 0, X(0) = 0$$
From (5)
$$Case(i): \mu = 0$$

$$X(x) = Ax + B$$

$$X'(1) = 0 \Rightarrow A = 0$$

$$X(0) = 0 \Rightarrow B = 0$$

$$\vdots X(x) = 0 \therefore \text{ we reject } \mu = 0.$$

$$\Rightarrow$$
 X'(1) = 0, X(0) = 0

$$X(x) = Ax + B$$

 $X'(1) = 0 \Rightarrow A = 0$
 $X(0) = 0 \Rightarrow B = 0$

 \therefore X(x) = 0 \therefore we reject $\mu = 0$.

Case(ii) $\mu = \lambda^2$, $\lambda \neq 0$.

$$X'' - \mu x = 0$$

 $X'' - \lambda^2 X = 0$
 $X = A e^{\lambda x} + B e^{-\lambda x}$
 $X'(1) = A\lambda e^{\lambda} + Be^{-\lambda}$
 $X(0) = A + B$
 $X'(1) = 0; X(0) = 0$

$$\Rightarrow$$
 A = 0, B = 0

٠.

$$\mu = \lambda^{2}$$

$$\mu = -\lambda^{2}, \ \lambda \neq 0$$

$$X'' + \lambda^{2}X = 0$$

$$X(x) = A \cos \lambda x + B \sin \lambda x$$

$$X'(1) = -A \sin \lambda + B \lambda \cos \lambda = 0$$

$$X(0) = A = 0$$

$$\cos \lambda = 0 \Rightarrow \lambda = (2n-1) \frac{\pi}{2}$$

$$X_n(n) = B_n \sin \left(\frac{2n-1}{2}\pi x\right)$$

From(6)
$$T-\mu kT = 0$$

 $T + \left[\left(\frac{2n-1}{2}\right)\pi\right]^2 kT = 0$

$$\Rightarrow T_n(t) = D_n e^{-c_n^{-2}t}$$

$$\begin{bmatrix} c_n^2 = \frac{(2n-1)^2}{4}\pi^2 k \end{bmatrix}$$

$$\therefore u_n(x,t) = X(x)T(t)$$

$$\Rightarrow u_n(x,t) = E_n \left[\sin\frac{(2n-1)\pi x}{2}\right] e^{-c_n^{-2}t}$$

$$u(x,t) = \sum_{n=1}^{\infty} E_n \left[\sin\frac{(2n-1)\pi x}{2}\right] e^{-c_n^{-2}t}$$
Putting $t = 0$

$$u(x,0) = \sum_{n=1}^{\infty} E_n \sin\frac{(2n-1)\pi x}{2}$$

$$-(x+9) = \sum_{n=1}^{\infty} E_n \sin\frac{(2n-1)\pi x}{2}$$

$$\therefore E_n = \frac{2}{2} \int_0^1 (-x-9) \sin\frac{(2n-1)\pi x}{2} dx$$

$$\therefore E_n = -2 \left[\frac{(x+9)(-\cos\left(\frac{2n-1}{2}\right)\pi x)}{(2n-1)\pi/2} - \frac{(-1)\sin\frac{(2n-1)\pi x}{2}}{(2n-1)^2\pi^2/4}\right]_0^1$$

$$E_n = \frac{8(-1)^n}{(2n-1)\pi^2} - \frac{36}{(2n-1)\pi}$$

$$y(x,t) = 10 + E_n \left[\sin(2n-1) \frac{\pi x}{2} \right] e^{-c_n^2 t}$$

Required solutions.