Condensate Clouds of Cool Objects

YIFAN ZHOU

STEWART OBSERVATORY
UNIVERSITY OF ARIZONA

May 20, 2015

Clouds

on the way to meteor crater

Uniqueness of Low T Atmosphere

- Complex chemistry and molecules
- Alkali opacity
- Condensation and cloud formation Condensate species:

```
MgSi_3, Mg_2Si_4, ... to H_2O, NH_3,...
```

WHAT DOES CLOUD MEAN?

solid/liquid particles formed by condensation

Marley & Robinson 2014

PHYSICAL PROCESSES

- dust particle formation
- the mixing of dust and gas
- dust growth and evaporation
- the feedback of condensation to chemical equilibrium.

LACK OF CONSTRAINTS

degeneracy of spectroscopy

Tsuji Model

- Precipitation described by critical temperature T_{cr}
- \blacksquare Cloud thickness varies with T_{cr}

ALLARD SETTL MODEL

- mixing, condensate, coagulation, and sedimentation time scales are bonded by particle size and condensate fraction
- particle size and condensate fraction are calculated to balance those time scales

ACKERMAN & MARLEY

- using a scaling factor to describe the relationship of sedimentation velocity and turbulent mixing
- prescribing a particle size distribution

HELLING & WOITKE

- Condensation starts with formation of seed particles
- seeds growing by gas-solid surface reaction

Comparison

Helling et. al. (2008)

Comparison

Comparison

Time resolved observation

Apai et. al. (2013)

Cloud Holes: Large Color Variations

Cloud Thickness: Small Color Variations

