

Software & TX Design Engenharia de Software - 1ESPA

Global Solution 2025

Detecção precoce de enchentes

moskitto

João Vitor de Matos Araujo - RM559246 Gabriel Kato Peres - RM560000 Gabriel Couto Ribeiro - RM559579

Índice

- 1 Contexto do problema
- 2 Descrição da solução
- Escopo do produto

 Stakeholders e parceiros envolvidos;

 Descrição técnica e funcional da solução
 - Backlog do produto Papéis da equipe
 - 5 Casos de uso e Fluxos de interação
 - 6 Protótipos e UX Design

Entendimento do problema

Centenas de pontos de alagamento, ruas e avenidas intransitáveis, pessoas ilhadas em carros e linhas de trens paradas. Isso infelizmente é a realidade de muitos cidadãos brasileiros, principalmente da população que habita grandes cidades.

Todas essas enchentes urbanas recorrentes, agravadas pelo entupimento de bueiros, causam prejuízos materiais, riscos à saúde pública e comprometem a mobilidade urbana.

Estudo aponta que enchentes de 2024 foram maior desastre natural da história do RS e sugere caminhos para futuro com eventos extremos mais frequentes

Levantamento realizado por instituições de ensino e pesquisa, órgãos públicos, associações profissionais e outras entidades indica maior ocorrência e agravamento de enchentes especialmente na região Sul.

https://www.gov.br/ana/pt-br/assuntos/noticias-e-eventos/noticias/estudo-aponta-que-enchentes-de-2024-foram-maior-desastre-natural-da-historia-do-rs-e-sugere-caminhos-para-futuro-com-eventos-extremos-mais-frequentes

Toda espécie de resíduos é jogada pelos bueiros das cidades. Os mais comuns são papéis de bala, sacos e embalagens plásticas, garrafas PET e restos de comida. Com todo esse lixo, não há bueiro que não entupa e consiga dar vazão à água.

A presença de mecanismos de alertas precoces reduziriam danos materiais e <u>salvariam</u> vidas.

Descrição da solução

A solução propõe o uso do microcontrolador ESP32 com sensores de nível de água e umidade instalados em bueiros espalhados pela cidade. Utilizando lógica embarcada, os dispositivos monitoram em tempo real o nível da água e transmitem dados via MQTT para um broker (Fiware). Os dados são exibidos em um dashboard que engloba o uso de Python e Django, que também dispara alertas quando os níveis atingem limites predefinidos.

Desse modo, quando os níveis de medição estiverem críticos, a prefeitura junto com a Defesa Civil pode transmitir alertas e atuar na contenção de danos.

Qual o diferencial da solução?

HIDROLOGIA

Dispositivo emite em tempo real alertas contra enchentes

Desenvolvido na USP de São Carlos, sistema é destinado a cidades que sofrem inundações causadas pelo transbordamento de rios

Projeto da FAPESP: cerca de R\$ 15 mil por unidade.

https://revistapesquisa.fapesp.br/dispositivo-emite-em-tempo-real-alertas-contraenchentes/

- Nossa solução: menos de R\$ 300 por unidade, graças ao uso de ESP32, sensores comuns e plataformas de código aberto (Mosquitto e FIWARE).
- Isso permite escala em cidades pequenas, com orçamento limitado, viabilizando a instalação em dezenas de bueiros críticos, e não apenas em pontos isolados.

Stakeholders

- <u>Prefeituras Municipais:</u> principais beneficiárias da solução, responsáveis pela infraestrutura urbana.
- <u>Defesa Civil</u>: responsável por agir rapidamente em situações de risco.
- Moradores de áreas de risco: usuários indiretos da solução, recebem alertas preventivos.
- <u>Equipe Técnica de TI e Urbanismo:</u> responsáveis pela implementação, integração e manutenção da solução.

Descrição técnica e funcional

....

Caixa selada com ESP32, bateria e circuitos, fixada na lateral superior do bueiro, fora da linha d'água principal. (50R\$)

Instalado na parte superior do bueiro, voltado para baixo. (10R\$)

Utilizando apenas a função da umidade. Instalado próximo à base do bueiro, detectando acúmulo antecipado de água. (40R\$)

bateria Li-ion com painel solar afixado externamente (próximo à tampa do bueiro) ou alimentação elétrica municipal. Já o custo do ESP32 pode variar entre 28\$ e 50\$.

Backlog do Produto

História do Usuário	Funcionalidade	Critério de Aceite
Como técnico da Defesa	Quero visualizar o nível	Dashboard exibe dados em
Civil	de água em tempo real	tempo real
Como cidadão	Quero ser avisado em caso de enchente	Notificação chega antes do alagamento ocorrer
Como	Quero acessar o histórico	Dashboard exibe gráficos e
geógrafo/urbanista	de enchentes por local	relatórios mensais

Papéis da equipe

Dev IoT

implementação do código no ESP32 e integração com sensores.

Dev Back-End

configuração do broker MQTT e base de dados (FIWARE ou Mosquitto).

Dev Front-End

criação do dashboard em python.

UX Designer

desenvolvimento da interface com foco em clareza e resposta rápida.

Casos de uso e fluxos de interação

Monitoramento de Bueiros

Sensor detecta

Esp32 processa os dados

Envia via MQTT e o Dashboard exibe os dados

Envio de Alerta

Sensor detecta nível crítico Esp32 processa os dados

Alerta para o usuário final via HTTP ou SMS

Protótipos e UX Design