

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer 2015 Examination

Subject & Code: Engg Maths (17216) Model Answer Page No: 1/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The Answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's Answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Page No: 2/31

Subject & Code: Engg Maths (17216)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIAINS	Marks
1)	a)	Attempt any TEN of the following: If $\frac{10}{3+4i} = a+ib$, find a and b. $\frac{10}{3+4i} = a+ib$ $\therefore \frac{10}{3+4i} \times \frac{3-4i}{3-4i} = a+ib$ $\therefore \frac{30-40i}{3^2-(4i)^2} = a+ib$ $\therefore \frac{30-40i}{9+16} = a+ib$ $\therefore \frac{30-40i}{25} = a+ib$ $\therefore \frac{30-40i}{25} = a+ib$ $\therefore \frac{30}{25} - \frac{40}{25}i = a+ib$ $\therefore \frac{6}{5} - \frac{8}{5}i = a+ib$ $\therefore a = \frac{6}{5} and b = -\frac{8}{5}$	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Marks 2
	b) Ans.	If $z = 3+4i$, find $z^2 - 6z + 25$ $z^2 - 6z + 25 = (3+4i)^2 - 6(3+4i) + 25$ $= 3^2 + 2 \cdot 3 \cdot 4i + 4i^2 - 18 - 24i + 25$ $= 9 + 24i - 16 - 18 - 24i + 25$ $= 0$ OR $z^2 = (3+4i)^2 = 9 + 24i - 16 = -7 + 24i$ $-6z = -6(3+4i) = -18 - 24i$ $\therefore z^2 - 6z + 25 = -7 + 24i - 18 - 24i + 25$ $= 0$	1/ ₂ 1 1/ ₂ 1 1/ ₂ 1/ ₂	2

Page No: 3/31

Subject & Code: Engg Maths (17216)

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.	If $f(x) = x^2 + 6x + 10$, find $f(2) + f(-2)$		Marks
-,		$\prod_{j \in \mathcal{J}} (\lambda_j - \lambda_j + 0\lambda + 10), \text{ Initial } J(\lambda_j + J(-\lambda_j))$		
	Ans.	$f(x) = x^2 + 6x + 10$	1/	
		$\therefore f(2) = 2^2 + 6(2) + 10 = 26$	1/2	
		$f(-2) = (-2)^2 + 6(-2) + 10 = 2$	1/2	
		$\therefore f(2) + f(-2) = 28$	1	2
		OR		
			1	
		$f(2) + f(-2) = [2^{2} + 6(2) + 10] + [(-2)^{2} + 6(-2) + 10]$	1	
		= 28	1	2
	d)	If $f(x) = \frac{a^x + a^{-x}}{2}$, prove that the function is even function.		
	Ans.	$f(-x) = \frac{a^{-x} + a^{-(-x)}}{2}$	1/2	
		$a^{-x} + a^{x}$	1/.	
		$=\frac{a^{-x}+a^x}{2}$	1/2	
		$=f\left(x\right)$	1/2	
		$\therefore f(x)$ is an even function.	1/2	2
	e)	Evaluate $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$		
	Ans.	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$	1/2	
		$=\lim_{x\to 3}(x+3)$	1/2	
		=3+3	1/2	
		= 6	1/2	2
		OR		
		$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{x^2 - 3^2}{x - 3}$	1/2	
		$=2\times3^{2-1}$	1	
		= 6	1/2	2
				_

Subject & Code: Engg Maths (17216) **Page No:** 4/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	f)	Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$		
	Ans.	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{x^2}$	1/2	
		$= \lim_{x \to 0} 2 \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2} \right)^2$	1/2	
		$=2\left(1\times\frac{1}{2}\right)^2$	1/2	
		$=\frac{1}{2} or 0.5$	1/2	2
		OR		
		$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \times \frac{1 + \cos x}{1 + \cos x}$	1/2	
		$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{\sin^2 x}{x^2} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \left[\frac{\sin x}{x} \right]^2 \times \frac{1}{1 + \cos x}$	1/2	
		$= [1]^2 \times \frac{1}{1 + \cos 0}$	1/2	
		$=\frac{1}{2}$	1/2	2
	g)	Evaluate $\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x$		
	Ans.	$Put \ x+1=t \qquad \therefore t \to \infty$ $\therefore \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x = \lim_{t \to \infty} \left(\frac{t-1}{t}\right)^{t-1}$ $= \lim_{t \to \infty} \left(1 - \frac{1}{t}\right)^{t-1}$	1/2	

Subject & Code: Engg Maths (17216) **Page No:** 5/31

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
1)		$= \lim_{t \to \infty} \left(1 - \frac{1}{t} \right)^t \times \left(1 - \frac{1}{t} \right)^{-1}$ $= \lim_{t \to \infty} \left(1 - \frac{1}{t} \right)^{-t \times -1} \times \left(1 - \frac{1}{t} \right)^{-1}$	1/2	
		$= e^{-1} \times (1 - 0)^{-1}$ $= e^{-1}$ $= e^{-1}$	1/ ₂ 1/ ₂	2
		If $y = e^x \cdot \sin x$, find $\frac{dy}{dx}$		
	Ans.	$\therefore \frac{dy}{dx} = e^x \cdot \frac{d}{dx} (\sin x) + \sin x \cdot \frac{d}{dx} (e^x)$	1/2	
		$= e^{x} \cdot \cos x + \sin x \cdot e^{x}$ $= e^{x} (\cos x + \sin x)$	1 1/2	2
	i)	If $y = \tan^{-1} \left(\frac{a+x}{1-ax} \right)$, find $\frac{dy}{dx}$		
	Ans.	$y = \tan^{-1} \left(\frac{a+x}{1-ax} \right)$		
		$Put \ a = \tan A, \ x = \tan B$		
		$\therefore y = \tan^{-1} \left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} \right)$		
		$= \tan^{-1} \left[\tan \left(A + B \right) \right]$ $= A + B$		
		$= \tan^{-1} a + \tan^{-1} x$	1	
		$\therefore \frac{dy}{dx} = \frac{1}{1+x^2}$	1	2
		OR [The same can be solved by applying directly the result		
		$\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left(\frac{a+b}{1-ab} \right).$ This is also allowed.]		
		$y = \tan^{-1} \left(\frac{a+x}{1-ax} \right)$		
		$= \tan^{-1} a + \tan^{-1} x$	1	
		$\therefore \frac{dy}{dx} = \frac{1}{1+x^2}$	1	2

Subject & Code: Engg Maths (17216)

Page No: 6/31

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)	j)	If $x = a \sec t$ and $y = b \tan t$, find $\frac{dy}{dx}$		
	Ans.	$x = a \sec t$		
		dx = asset tan t		
		$\therefore \frac{dx}{dt} = a \sec t \tan t$	1/2	
		$y = b \tan t$		
		$\therefore \frac{dy}{dt} = b \sec^2 t$	1/2	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dx}}$		
		$\therefore \frac{dy}{dx} = \frac{/dt}{dx/}$		
		dt	1/2	
		$= \frac{b \sec^2 t}{a \sec t \tan t}$	72	
		$=\frac{b}{a\sin t}$	1/2	2
	1.)	Prove that the root of the equation $x^3 - x - 4 = 0$ lies between 0		
	k)	and 2.		
		$x^3 - x - 4 = 0$		
	Ans.	$x^{3} - x - 4 = 0$ $f(x) = x^{3} - x - 4$ $f(0) = -4$ $f(2) = 2$		
		$\therefore f(0) = -4$	1	
		f(2) = 2	1/2	
		∴ root lies between 0 and 2.	1/2	2
		Find the first iteration by using legalife method for the		_
	<i>l</i>)	Find the first iteration by using Jacobi's method for the following equations:		
		4x + y + 3z = 17, $x + 5y + z = 14$, $2x - y + 8z = 12$		
	_			
	Ans.	$\therefore x = \frac{1}{4}(17 - y - 3z)$ $y = \frac{1}{5}(14 - x - z)$		
		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	
		$y - \frac{14 - x - z}{5}$		
		$z = \frac{1}{8}(12 - 2x + y)$		
		Starting with $x_0 = 0 = y_0 = z_0$		
		$x_1 = 4.25$	1	
		$y_1 = 2.8$		2
		$z_1 = 1.5$		
L	l		<u> </u>	<u> </u>

Subject & Code: Engg Maths (17216) **Page No:** 7/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.	Attempt any FOUR of the following:		Widiks
	a)	If $f(x) = \tan x$ then show that $f(2x) = \frac{2f(x)}{1 - f^2(x)}$		
		$f(2x) = \tan(2x)$	1	
	Ans.	$=\frac{2\tan x}{1-\tan^2 x}$	1½	
		$=\frac{2f(x)}{1-f^2(x)}$	1½	4
	b)	Simplify using DeMovire's theorem		
		4		
		$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos \frac{3}{5}\theta + i\sin \frac{3}{5}\theta\right)^5 \left(\cos \frac{4}{5}\theta + i\sin \frac{4}{5}\theta\right)^{10}}$		
	Ans.	$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}$		
		$ \left(\cos\frac{3}{5}\theta + i\sin\frac{3}{5}\theta\right)^{5} \left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10} $		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{3\times4} \left(\cos\theta + i\sin\theta\right)^{-5\times\frac{4}{5}}}{\left(\cos\theta + i\sin\theta\right)^{\frac{3}{5}\times5} \left(\cos\theta + i\sin\theta\right)^{\frac{4}{5}\times10}}$	1/2+1/2+	
			1/2+1/2	
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-4}}{\left(\cos\theta + i\sin\theta\right)^{3} \left(\cos\theta + i\sin\theta\right)^{8}}$	1	
		$= (\cos\theta + i\sin\theta)^{12-4-3-8}$		
		$= (\cos\theta + i\sin\theta)^{-3}$	1/ ₂ 1/ ₂	4
		$=\cos 3\theta - i\sin 3\theta$,-	_
		OR		
		$(\cos 3\theta + i\sin 3\theta)^4 = (\cos \theta + i\sin \theta)^{3\times 4} = (\cos \theta + i\sin \theta)^{12}$	1/2	
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}} = \left(\cos \theta + i\sin \theta\right)^{-5\times\frac{4}{5}} = \left(\cos \theta + i\sin \theta\right)^{-4}$	1/2	
		$\left(\cos\frac{3}{5}\theta + i\sin\frac{3}{5}\theta\right)^5 = \left(\cos\theta + i\sin\theta\right)^{\frac{3}{5}\times5} = \left(\cos\theta + i\sin\theta\right)^3$	1/2	
		$\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10} = \left(\cos\theta + i\sin\theta\right)^{\frac{4}{5}\times 10} = \left(\cos\theta + i\sin\theta\right)^{8}$	1/2	

Page No: 8/31

Subject & Code: Engg Maths (17216)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Quei	$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos \frac{3}{5}\theta + i\sin \frac{3}{5}\theta\right)^5 \left(\cos \frac{4}{5}\theta + i\sin \frac{4}{5}\theta\right)^{10}}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-4}}{\left(\cos\theta + i\sin\theta\right)^{3} \left(\cos\theta + i\sin\theta\right)^{8}}$	1	
		$= (\cos \theta + i \sin \theta)^{12-4-3-8}$ $= (\cos \theta + i \sin \theta)^{-3}$	1/2	
		$= (\cos \theta + i \sin \theta)$ $= \cos 3\theta - i \sin 3\theta$	1/2	4
	c)	Separate into real and imaginary part of $sin(x+iy)$		
	Ans.	$\sin(x+iy) = \sin x \cos iy + \cos x \sin iy$ $= \sin x \cosh y + i \cos x \sinh y$	2 2	4
	d)	Express in polar form $1-\sqrt{3}i$		
	Ans.	Let $z = 1 - \sqrt{3}i$		
		$\therefore r = \sqrt{\left(1\right)^2 + \left(-\sqrt{3}\right)^2} = 2$	1	
		$\theta = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right) = -60^{\circ} \text{ or } -\frac{\pi}{3}$	1	
		$\therefore z = r(\cos\theta + i\sin\theta)$ $= 2\left[\cos(-60^{\circ}) + i\sin(-60^{\circ})\right] \qquad or \qquad 2\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right]$	1½	
		$= 2\left[\cos 60^{\circ} - i\sin 60^{\circ}\right] \qquad or \qquad 2\left[\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}\right]$	1/2	4
		$\therefore r = \sqrt{(1)^2 + \left(-\sqrt{3}\right)^2} = 2$	1	
		$\theta = 360^{\circ} - \tan^{-1} \left(\frac{\sqrt{3}}{1} \right) or 2\pi - \tan^{-1} \left(\frac{\sqrt{3}}{1} \right)$		
		$=300^{\circ} \qquad or \qquad \frac{5\pi}{3}$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Page No: 9/31

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg Maths (17216)

Que. Sub. Total **Model Answers** Marks No. Que. Marks 2) $\therefore z = r(\cos\theta + i\sin\theta)$ $= 2\left[\cos 300^{\circ} + i\sin 300^{\circ}\right] \quad or \quad 2\left|\cos \frac{5\pi}{3} + i\sin \frac{5\pi}{3}\right|$ 2 4 Show that $(1+i)^{12} + (1-i)^{12} = -128$ e) Ans. $\left(1+i\right)^{12} = \left\lceil \left(1+i\right)^2 \right\rceil^6$ $\frac{1}{2}$ $= \left[1 + 2i + i^2\right]^6$ $=[1+2i-1]^6$ $\frac{1}{2}$ $\frac{1}{2}$ $= [2i]^6$ $1/_{2}$ 1 $\therefore (1-i)^{12} = -64$ 4 $\therefore (1+i)^{12} + (1-i)^{12} = -128$ 1 OR 1/2+1/2 $\therefore (1+i)^{12} + (1-i)^{12} = \left[(1+i)^2 \right]^6 + \left[(1-i)^2 \right]^6$ $= [1+2i+i^2]^6 + [1-2i+i^2]^6$ $= [1+2i-1]^6 + [1-2i-1]^6$ 1/2+1/2 $= [2i]^6 + [-2i]^6$ $\frac{1}{2} + \frac{1}{2}$ =-64-644 =-128OR $\therefore r = \sqrt{1^2 + 1^2} = \sqrt{2}$ $1/_{2}$ $\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}$ 1/2 $\therefore 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ $\frac{1}{2}$ $\therefore (1+i)^{12} = \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^{12}$

THE PART OF THE PA

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg Maths (17216)

Page No: 10/31

Que. Sub. Total **Model Answers** Marks No. Que. Marks 2) $= \sqrt{2}^{12} \left(\cos 12 \times \frac{\pi}{4} + i \sin 12 \times \frac{\pi}{4} \right)$ $\frac{1}{2}$ $=64(\cos 3\pi + i\sin 3\pi)$ $\therefore (1-i)^{12} = 64(\cos 3\pi - i\sin 3\pi)$ $1/_{2}$ $\therefore (1+i)^{12} + (1-i)^{12} = 64(\cos 3\pi + i\sin 3\pi) + 64(\cos 3\pi - i\sin 3\pi)$ $=128\cos 3\pi$ 1 4 =-128 $1/_{2}$ If $f(x) = \log\left(\frac{x+1}{x-1}\right)$ then show that $f\left(\frac{1+x^2}{2x}\right) = 2f(x)$ f) $\therefore f\left(\frac{1+x^2}{2x}\right) = \log\left(\frac{\frac{1+x^2}{2x}+1}{\frac{1+x^2}{2x}-1}\right)$ Ans. 1 $=\log\left(\frac{1+x^2+2x}{1+x^2-2x}\right)$ 1 $= \log \left\lceil \frac{\left(x+1\right)^2}{\left(x-1\right)^2} \right\rceil$ $1/_{2}$ $=\log\left(\frac{x+1}{x-1}\right)^2$ $1/_{2}$ $=2\log\left(\frac{x+1}{x-1}\right)$ $1/_{2}$ =2f(x) $\frac{1}{2}$ 4

Subject & Code: Engg Maths (17216) **Page No:** 11/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	a)	Attempt any FOUR of the following: Find $f(t)$, if $f(x) = \frac{2x+5}{3x-4}$ and $t = \frac{5+4x}{3x-2}$		
	Ans.	$f(t) = \frac{2t+5}{3t-4}$	1/2	
		$= \frac{2\left(\frac{5+4x}{3x-2}\right)+5}{3\left(\frac{5+4x}{3x-2}\right)-4}$	1/2	
		$= \frac{2(5+4x)+5(3x-2)}{\frac{3(5+4x)-4(3x-2)}{3x-2}} \qquad or \qquad \frac{2(5+4x)+5(3x-2)}{3(5+4x)-4(3x-2)}$	1	
		$= \frac{10 + 8x + 15x - 10}{15 + 12x - 12x + 8}$ 23x	1	
		$=\frac{23x}{23}$ $=x$	1/ ₂ 1/ ₂	4
	b)	Evaluate $\lim_{x\to 0} \frac{3^x + 3^{-x} - 2}{x^2}$		
	Ans.	$\lim_{x \to 0} \frac{3^x + 3^{-x} - 2}{x^2} = \lim_{x \to 0} \frac{3^x + \frac{1}{3^x} - 2}{x^2}$	1/2	
		$= \lim_{x \to 0} \frac{\left(3^{x}\right)^{2} + 1 - 2\left(3^{x}\right)}{\frac{3^{x}}{x^{2}}}$	1/2	
		$= \lim_{x \to 0} \frac{(3^x - 1)^2}{x^2} \times \frac{1}{3^x}$	1	
		$= \lim_{x \to 0} \left(\frac{3^x - 1}{x} \right)^2 \times \frac{1}{3^x}$	1/2	
		$= (\log 3)^2 \times \frac{1}{3^0}$	1	
		$= (\log 3)^2$	1/2	4

Subject & Code: Engg Maths (17216) **Page No:** 12/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel His Weis	IVICINO	Marks
3)	c)	If $f(x) = x^2 - 3x + 4$ and $f(1-x) = f(2x+1)$		
	Ans.	f(1-x) = f(2x+1)		
		$\therefore (1-x)^2 - 3(1-x) + 4 = (2x+1)^2 - 3(2x+1) + 4$	$\frac{1}{2} + \frac{1}{2}$	
		$\therefore 1 - 2x + x^2 - 3 + 3x + 4 = 4x^2 + 4x + 1 - 6x - 3 + 4$	1/2 + 1/2	
		$\therefore x^2 + x + 2 = 4x^2 - 2x + 2$		
		$\therefore -3x^2 + 3x = 0$ or $3x^2 - 3x = 0$	1	
		$\therefore x = 0, 1$	1/2 + 1/2	4
		OR		
		$f(1-x) = (1-x)^2 - 3(1-x) + 4$	1/2	
		$=1-2x+x^2-3+3x+4$		
		$=x^2+x+2$	1/2	
		$f(2x+1) = (2x+1)^2 - 3(2x+1) + 4$	1/2	
		$=4x^2+4x+1-6x-3+4$		
		$=4x^2-2x+2$	1/2	
		But f(1-x) = f(2x+1)		
		$\therefore x^2 + x + 2 = 4x^2 - 2x + 2$	1	
		$\therefore -3x^2 + 3x = 0 \qquad or \qquad 3x^2 - 3x = 0$	1	
		$\therefore x = 0, 1$	1/2 + 1/2	4
	d)	Evaluate $\lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^3 - 4x^2 - 3x + 18}$		
	Ans.	$\lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^3 - 4x^2 - 3x + 18} = \lim_{x \to 3} \frac{(x - 3)(x - 3)(x - 1)}{(x - 3)(x - 3)(x + 2)}$	1½	
		$=\lim_{x\to 3}\frac{x-1}{x+2}$	1	
			1	
		$=\frac{3-1}{3+2}$	1	
		$=\frac{2}{5} or 0.4$	1/2	4
		OR		

Subject & Code: Engg Maths (17216) **Page No:** 13/31

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.			Marks
,		$\lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^3 - 4x^2 - 3x + 18} = \lim_{x \to 3} \frac{(x - 3)(x^2 - 4x + 3)}{(x - 3)(x^2 - x - 6)}$	1/2	
		$= \lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - x - 6}$ $(x - 3)(x - 1)$	1/2	
		$= \lim_{x \to 3} \frac{(x-3)(x-1)}{(x-3)(x+2)}$	1/2	
		$=\lim_{x\to 3}\frac{x-1}{x+2}$	1	
		$=\frac{3-1}{3+2}$	1	
		$=\frac{2}{5} or 0.4$	1/2	4
	e)	Evaluate $\lim_{x\to\infty} \left(\sqrt{x^2+x+1}-x\right)$		
	Ans.	$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - x \right)$		
		$= \lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - x \right) \times \frac{\sqrt{x^2 + x + 1} + x}{\sqrt{x^2 + x + 1} + x}$	1/2	
		$= \lim_{x \to \infty} \frac{x^2 + x + 1 - x^2}{\sqrt{x^2 + x + 1} + x}$	1/2	
		$=\lim_{x\to\infty} \frac{x+1}{\sqrt{x^2+x+1}+x}$	1/2	
		$=\lim_{x\to\infty} \frac{\frac{x+1}{x}}{\sqrt{x^2+x+1}+x}$		
		\overline{x}		
		$= \lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt{\frac{x^2 + x + 1}{x^2} + \frac{x}{x}}}$	1/2	
		$= \lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2} + 1}}$	1/2	
		$= \frac{1+0}{\sqrt{1+0+0}+1}$	1	
		$=\frac{1}{2}$	1/2	4

Subject & Code: Engg Maths (17216) **Page No:** 14/31

No. Que. Model Answers Marks f) Evaluate $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3}$ $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x\to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $\lim_{x\to 0} \frac{2\sin x \left(2\sin x\right)}{x^3}$ $\lim_{x\to 0} \frac{2\sin x \left(2\sin x\right)}{x^3}$ $\lim_{x\to 0} \frac{4\sin x \cdot \sin x}{x} \cdot \left(\frac{\sin x}{2}\right)$ $\lim_{x\to 0} \frac{\sin x}{x} \cdot \left(\frac{\sin x}{2}\right)$ $\lim_{x\to 0} \frac{\sin x}{x} \cdot \left(\frac{\sin x}{2}\right)$ $\lim_{x\to 0} \frac{\cos x}{x^3} = \lim_{x\to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x\to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $\lim_{x\to 0} \frac{2\sin x \left(1 - \cos x\right)}{x^3}$	Que.	Sub.		1	Total
Ans. $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x\to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $= \lim_{x\to 0} \frac{2\sin x \left(1 - \cos x\right)}{x^3}$ $= \lim_{x\to 0} \frac{2\sin x \left(2\sin^2\left(\frac{x}{2}\right)\right)}{x^3}$ $= \lim_{x\to 0} \frac{4\sin x \cdot \sin^2\left(\frac{x}{2}\right)}{x^3}$ $= \lim_{x\to 0} 4 \cdot \frac{\sin x}{x} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2}\right)$ $= 4 \cdot 1 \cdot \left(1 \times \frac{1}{2}\right)^2$ $= 1$ OR $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x\to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $= \lim_{x\to 0} \frac{2\sin x \left(1 - \cos x\right)}{x^3}$ $= \lim_{x\to 0} \frac{2\sin x \left(1 - \cos x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} \frac{2\sin x \left(1 - \cos^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} \frac{2\sin^2 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x\to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$	-		Model Answers	Marks	Marks
$= \lim_{x \to 0} \frac{2 \sin x \left(1 - \cos x\right)}{x^3}$ $= \lim_{x \to 0} \frac{2 \sin x \left(2 \sin^2 \left(\frac{x}{2}\right)\right)}{x^3}$ $= \lim_{x \to 0} \frac{4 \sin x \cdot \sin^2 \left(\frac{x}{2}\right)}{x^3}$ $= \lim_{x \to 0} \frac{4 \sin x}{x} \cdot \left(\frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2}\right)$ $= \frac{1}{x^3} \cdot \left(1 \times \frac{1}{2}\right)^2$ $= \lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x^3} = \lim_{x \to 0} \frac{2 \sin x - 2 \sin x \cos x}{x^3}$ $= \lim_{x \to 0} \frac{2 \sin x \left(1 - \cos x\right)}{x^3}$ $= \lim_{x \to 0} \frac{2 \sin x \left(1 - \cos x\right)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x \left(1 - \cos^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin^2 x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin^2 x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$	3)	f)	Evaluate $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3}$		
$= \lim_{x \to 0} \frac{2\sin x \left(2\sin^2\left(\frac{x}{2}\right)\right)}{x^3}$ $= \lim_{x \to 0} \frac{4\sin x \cdot \sin^2\left(\frac{x}{2}\right)}{x^3}$ $= \lim_{x \to 0} 4 \cdot \frac{\sin x}{x} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2}\right)^2$ $= 1$ OR $\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x \to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x \left(1 - \cos x\right)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x \left(1 - \cos^2 x\right)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x \left(1 - \cos^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin^2 x}{x^3}\right) \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin^2 x}{x^3}\right) \times \frac{1}{1 + \cos x}$		Ans.		1/2	
$= \lim_{x \to 0} \frac{4\sin x \cdot \sin^{2}\left(\frac{x}{2}\right)}{x^{3}}$ $= \lim_{x \to 0} 4 \cdot \frac{\sin x}{x} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2}\right)^{2}$ $= 4 \cdot 1 \cdot \left(1 \times \frac{1}{2}\right)^{2}$ $= 1$ OR $\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^{3}} = \lim_{x \to 0} \frac{2\sin x - 2\sin x \cos x}{x^{3}}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^{3}}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^{3}} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos^{2}x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (\sin^{2}x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^{2}x (\sin^{2}x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^{2}x (\sin^{2}x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^{3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^{3} \times \frac{1}{1 + \cos x}$			• • • • • • • • • • • • • • • • • • • •		
$= \lim_{x \to 0} 4 \cdot \frac{\sin x}{x} \cdot \left(\frac{\sin \left(\frac{x}{2} \right)}{\frac{x}{2}} \times \frac{1}{2} \right)^{2}$ $= 4 \cdot 1 \cdot \left(1 \times \frac{1}{2} \right)^{2}$ $= 1$ OR $\lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x^{3}} = \lim_{x \to 0} \frac{2 \sin x - 2 \sin x \cos x}{x^{3}}$ $= \lim_{x \to 0} \frac{2 \sin x (1 - \cos x)}{x^{3}}$ $= \lim_{x \to 0} \frac{2 \sin x (1 - \cos x)}{x^{3}} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x (1 - \cos^{2} x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x (\sin^{2} x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin^{3} x}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x} \right)^{3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x} \right)^{3} \times \frac{1}{1 + \cos x}$ $= 1 \lim_{x \to 0} 2 \left(\frac{\sin x}{x} \right)^{3} \times \frac{1}{1 + \cos x}$				1	
$= 4 \cdot 1 \cdot \left(1 \times \frac{1}{2}\right)^{2}$ $= 1$ OR $\lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x^{3}} = \lim_{x \to 0} \frac{2 \sin x - 2 \sin x \cos x}{x^{3}}$ $= \lim_{x \to 0} \frac{2 \sin x (1 - \cos x)}{x^{3}} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x (1 - \cos^{2} x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin x (\sin^{2} x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin^{2} x (\sin^{2} x)}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2 \sin^{2} x}{x^{3}} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2 \left(\frac{\sin x}{x}\right)^{3} \times \frac{1}{1 + \cos x}$ $1/2$				1/2	
OR $\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x \to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (\sin^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^2 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= 1 + \frac{1}{1 + \cos x}$ $= 1 + \frac{1}{1 + \cos x}$ $= 1 + \frac{1}{1 + \cos x}$			$= \lim_{x \to 0} 4 \cdot \frac{\sin x}{x} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2} \right)^{2}$	1	
$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3} = \lim_{x \to 0} \frac{2\sin x - 2\sin x \cos x}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (\sin^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= 1 + \frac{1}{1 + \cos x}$			=1		4
$= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (\sin^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ 1			OR		
$= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (1 - \cos^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin x (\sin^2 x)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ $1/2$				1/2	
$= \lim_{x \to 0} \frac{2\sin x \left(\sin^2 x\right)}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ 1/2			$= \lim_{x \to 0} \frac{2\sin x (1 - \cos x)}{x^3} \times \frac{1 + \cos x}{1 + \cos x}$	1/2	
$= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} 2\left(\frac{\sin x}{x}\right)^3 \times \frac{1}{1 + \cos x}$ 1				1/2	
			$= \lim_{x \to 0} \frac{2\sin^3 x}{x^3} \times \frac{1}{1 + \cos x}$	1/2	
$=2(1)^3 \times \frac{1}{1+\cos \theta}$				1	
=1				1/ ₂ 1/ ₂	4

Subject & Code: Engg Maths (17216) **Page No:** 15/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Que.	Attempt any FOUR of the following:		IVICITY
	a)	Find $\frac{dy}{dx}$, if $y = \cos^{-1}(2x^2 - 1)$		
	Ans.	$Put \ x = \cos \theta$	1/2	
		$\therefore y = \cos^{-1}\left(2x^2 - 1\right)$		
		$=\cos^{-1}\left(2\cos^2\theta-1\right)$	1/2	
		$=\cos^{-1}(\cos 2\theta)$	1/2	
		$=2\theta$	1/2	
		$=2\cos^{-1}x$	1	
		$\therefore \frac{dy}{dx} = -2 \cdot \frac{1}{\sqrt{1 - x^2}}$	1	4
		OR		
		$Put \ x = \sin \theta$	1/2	
		$\therefore y = \cos^{-1}\left(2x^2 - 1\right)$		
		$=\cos^{-1}\left(2\sin^2\theta-1\right)$	1/2	
		$=\cos^{-1}\left(-\cos 2\theta\right)$	1/2	
		$=\pi-2\theta$	1/2	
		$=\pi-2\sin^{-1}x$	1	
		$\therefore \frac{dy}{dx} = -2 \cdot \frac{1}{\sqrt{1 - x^2}}$	1	4
		OR		
		$y = \cos^{-1}\left(2x^2 - 1\right)$	1	
		$\therefore \cos y = 2x^2 - 1$		
		$\therefore -\sin y \frac{dy}{dx} = 4x$	2	
		$\therefore \frac{dy}{dx} = -\frac{4x}{\sin y}$	1	
				4
		OR		
		$y = \cos^{-1}\left(2x^2 - 1\right)$		
		$\therefore \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(2x^2 - 1\right)^2}} \cdot \frac{d}{dx} \left(2x^2 - 1\right)$	1	
		$= -\frac{1}{\sqrt{1 - \left(4x^4 - 4x^2 + 1\right)}} \cdot (4x)$	1	

Subject & Code: Engg Maths (17216) **Page No:** 16/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)		$= -\frac{1}{\sqrt{-4x^4 + 4x^2}} \cdot (4x)$ $= -\frac{1}{\sqrt{4x^2 (1 - x^2)}} \cdot (4x)$ $= -\frac{1}{2x\sqrt{1 - x^2}} \cdot (4x)$ $= -\frac{2}{\sqrt{1 - x^2}}$	1	4
	b)	If $x^2 + y^2 - xy = 0$, find $\frac{dy}{dx}$.		
	Ans.	$x^{2} + y^{2} - xy = 0$ $\therefore 2x + 2y \frac{dy}{dx} - \left(x \frac{dy}{dx} + y\right) = 0$	1	
		$\therefore 2x + 2y \frac{dy}{dx} - x \frac{dy}{dx} - y = 0$	1	
		$\therefore 2x - y + (2y - x)\frac{dy}{dx} = 0 \qquad or \qquad (2y - x)\frac{dy}{dx} = -2x + y$	1	
		$\therefore \frac{dy}{dx} = -\frac{2x - y}{2y - x} \qquad or \qquad \frac{dy}{dx} = \frac{-2x + y}{2y - x}$	1	4
	c)	If $x = a(1 + \cos \theta)$, $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$.		
	Ans.	$x = a(1 + \cos \theta)$		
		$\therefore \frac{dx}{d\theta} = a(-\sin\theta) = -a\sin\theta$ $y = a(1-\cos\theta)$	1	
		$\therefore \frac{dy}{d\theta} = a \sin \theta$	1	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$		
		$=\frac{a\sin\theta}{-a\sin\theta}$	1	
		=-1	1	4

Subject & Code: Engg Maths (17216) **Page No:** 17/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Quie.	OR		11202210
		OK		
		$x = a(1 + \cos \theta) = a + a\cos \theta$	1/2	
		$\therefore a\cos\theta = x - a$ $y = a(1 - \cos\theta) = a - a\cos\theta$		
		$\therefore a\cos\theta = a - y$	1/2	
		$\therefore x - a = a - y$	1	
		$\therefore 1 = -\frac{dy}{dx}$	1	
		$\therefore \frac{dy}{dx} = -1$	1	4
	d)	Using first principle, find derivative of $f(x) = \tan x$.		
	Ans.	$f(x) = \tan x$		
		$\therefore f(x+h) = \tan(x+h)$ $f(x+h) - f(x)$		
		$\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
		$= \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h}$	1	
		$\sin(r+h) \sin r$		
		$= \lim_{h \to 0} \frac{\frac{\sin(x+h) - \sin x}{\cos(x+h) - \cos x}}{h}$	1/2	
		$= \lim_{h \to 0} \left[\frac{\sin(x+h)\cos x - \sin x \cos(x+h)}{\cos(x+h)\cos x} \right]$	1/2	
		$= \lim_{h \to 0} \left[\frac{\sin(x+h-x)}{\cos(x+h)\cos x} \times \frac{1}{h} \right]$	1/2	
		$= \lim_{h \to 0} \left[\frac{\sin h}{\cos (x+h)\cos x} \times \frac{1}{h} \right]$		
		$= \lim_{h \to 0} \left[\frac{1}{\cos(x+h)\cos x} \times \frac{\sin h}{h} \right]$	1/2	
		$=\frac{1}{\cos x \cos x} \times 1$	1/2	
		$\cos x \cos x$ $= \sec^2 x$	1/2	
			, =	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Page No: 18/31

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg Maths (17216)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks	
4)	Que.			IVIAINS	
_,	e)	If u and v are differentiable functions of x and $y = u + v$, then prove			
		that $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$.			
	A				
	Ans.	1/2			
		1/2			
		$\therefore y + \delta y = (u + \delta u) + (v + \delta v)$ $\therefore \delta y = (u + \delta u) + (v + \delta v) - y$			
		$= u + \delta u + v + \delta v - (u + v)$			
		$= u + \delta u + v + \delta v - (u + v)$ $= \delta u + \delta v$	1/2		
		$\therefore \frac{\delta y}{\delta x} = \frac{\delta u + \delta v}{\delta x} = \frac{\delta u}{\delta x} + \frac{\delta v}{\delta x}$	1/2		
		$\delta y = \lim_{n \to \infty} \delta y = \lim_{n \to \infty} \delta u + \delta v$			
		$\therefore \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[\frac{\delta u}{\delta x} + \frac{\delta v}{\delta x} \right]$	1		
	$\therefore \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{\delta u}{\delta x} + \lim_{\delta x \to 0} \frac{\delta v}{\delta x}$				
		1			
		1	4		
	f) If $x^y = e^{x-y}$, prove $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$				
	Ans.	Given $x^y = e^{x-y}$			
		$\therefore y \log x = x - y$	1/2		
		$\therefore y \log x + y = x$			
		$\therefore y(\log x + 1) = x$			
		$x = \frac{x}{x}$	1/2		
		$\therefore y = \frac{x}{\log x + 1}$	/2		
		$\therefore \frac{dy}{dx} = \frac{(\log x + 1)\frac{d}{dx}(x) - x\frac{d}{dx}(\log x + 1)}{(\log x + 1)^2}$			
		· · · · · · · · · · · · · · · · · · ·			
		$\therefore \frac{dy}{dx} = \frac{\left(\log x + 1\right) \cdot 1 - x\left(\frac{1}{x} + 0\right)}{\left(\log x + 1\right)^2}$	1		
		$\int_{0}^{\infty} dx dx = (\log x + 1)^2$			
		$dy = \log x + 1 - 1$			
		$\therefore \frac{dy}{dx} = \frac{\log x + 1 - 1}{\left(\log x + 1\right)^2}$	1		
		$\therefore \frac{dy}{dx} = \frac{\log x}{\left(\log x + 1\right)^2}$	1	4	
]	

Subject & Code: Engg Maths (17216) **Page No:** 19/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	Que.	Attempt any FOUR of the following:		WIGHTS
	a)	Evaluate $\lim_{x \to 3} \frac{\log x - \log 3}{x - 3}$		
	Ans.	$\lim_{x \to 3} \left[\frac{\log x - \log 3}{x - 3} \right] \qquad \qquad \underbrace{ \begin{vmatrix} \text{Let } x = 3 + h & \text{or} & x - 3 = h \\ \text{as } x \to 3, h \to 0 \end{vmatrix}}_{}$	1	
		$= \lim_{h \to 0} \left[\frac{\log(3+h) - \log 3}{3+h-3} \right]$		
		$=\lim_{h\to 0}\frac{1}{h}\log\left(\frac{3+h}{3}\right)$	1	
		$=\lim_{h\to 0}\log\left(1+\frac{h}{3}\right)^{1/h}$	1/2	
		$=\lim_{h\to 0}\log\left(1+\frac{h}{3}\right)^{3/h}\times^{1/3}$	1/2	
		$=\log e^{\frac{1}{3}}$	1/2	
		$= \frac{1}{3} \log e$		
		$=\frac{1}{3}$	1/2	4
	b)	Evaluate $\lim_{x \to 0} \frac{\left(5^x - 1\right)\tan x}{\sqrt{x^2 + 16} - 4}$		
	Ans.	$\lim_{x \to 0} \frac{\left(5^x - 1\right)\tan x}{\sqrt{x^2 + 16} - 4} = \lim_{x \to 0} \frac{\left(5^x - 1\right)\tan x}{\sqrt{x^2 + 16} - 4} \times \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 16} + 4}$	1	
		$= \lim_{x \to 0} \frac{(5^x - 1)\tan x}{x^2 + 16 - 16} \times (\sqrt{x^2 + 16} + 4)$		
		$= \lim_{x \to 0} \frac{(5^x - 1)\tan x}{x^2} \times (\sqrt{x^2 + 16} + 4)$	1	
		$= \lim_{x \to 0} \frac{5^x - 1}{x} \times \frac{\tan x}{x} \times \left(\sqrt{x^2 + 16} + 4\right)$		
		$= \log 5 \times 1 \times \left(\sqrt{0^2 + 16} + 4\right)$	1	
		$=8\log 5$	1	4

Subject & Code: Engg Maths (17216) **Page No:** 20/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	1120 1201 1 220 11 020	1,101118	Marks
5)	c)	Find the root of the equation $x^3 - 9x + 1 = 0$ which lies between 2 and 3 using Regula-Falsi method.		
	Ans.	$f(x) = x^3 - 9x + 1$		
		$\therefore f(2) = -9$	1/2	
		f(3)=1	1/2	
		\therefore the root is in $(2, 3)$.	1/2	
		$\therefore x_1 = \frac{2f(3) - 3f(2)}{f(3) - f(2)} = 2.9$	1/2	
		f(2.9) = -0.711	1/2	
		\therefore the root is in $(2.9, 3)$.	/-	
		$\therefore x_2 = 2.942$	1/2	
		$\therefore f(2.942) = -0.0139$	1/2	
		\therefore the root is in $(2.942, 3)$.		
		$\therefore x_3 = 2.943$	1/2	4
		OR		
		$f(x) = x^3 - 9x + 1$		
		$\therefore f(2) = -9$	1/2 1/2	
		f(3) = 1	1/2	
		\therefore the root is in $(2, 3)$.		
		a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ $f(x)$		
		2 3 -9 1 2.9 -0.711	1	
		2.9 3 -0.711 1 2.942 -0.0139 2.942 3 -0.0139 1 2.943	$\begin{vmatrix} 1 \\ \frac{1}{2} \end{vmatrix}$	
		2.712 0 0.0107 1 2.710	,-	4
	d)	Find a root of $x^3 - 9x^2 - 18 = 0$ by Newton-Raphson method (carry out 3 iterations).		
	Ans.	$x^3 - 9x^2 - 18 = 0$		
		$x - 9x - 18 = 0$ $\therefore f(x) = x^3 - 9x^2 - 18$		
			1/2	
		$\therefore f'(x) = 3x^2 - 18x$	1/2	
		f(9) = -18	1/2	
		f(10) = 82		

Subject & Code: Engg Maths (17216) **Page No:** 21/31

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5)		$x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 9x^2 - 18}{3x^2 - 18x}(*)$ $= \frac{2x^3 - 9x^2 + 18}{3x^2 - 18x}(**)$	1	
		OR OR	OR	
		$\frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(3x^2 - 18x) - (x^3 - 9x^2 - 18)}{3x^2 - 18x}(*)$ $= \frac{2x^3 - 9x^2 + 18}{3x^2 - 18x}(**)$ Start with $x = 0$	1	
		Start with $x_0 = 9$, $\therefore x_1 = 9.222$	1/2	
		$x_1 = 9.222$ $x_2 = 9.212$	1/2	
		$x_3 = 9.212$	1/2	4
		 Note i) Once the formula (*) is formed, writing the direct values of x_i's is permissible, as we allow it in case of Table Format for either bisection method or regula-falsi method. Note ii) To calculate directly the values of x_i's, students may use the formula (*) instead of formulating the reduced form (**) of (*). This is also considerable. No marks to be deducted. The same is also applicable in the next example. 		
		OR		
		$x^{3} - 9x^{2} - 18 = 0$ $\therefore f(x) = x^{3} - 9x^{2} - 18$		
		$\therefore f'(x) = 3x^2 - 18x$	1/2	
		$\therefore f(9) = -18$	1/2	
		f(10) = 82	1/2	
		$\therefore \text{ start with } x_0 = 9$ $\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$= 9 - \frac{f(9)}{f'(9)}$ $= 9 - \frac{-18}{81}$		
		= 9.222	1	

Subject & Code: Engg Maths (17216) **Page No:** 22/31

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.			Marks
		$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 9.222 - \frac{f(9.222)}{f'(9.222)}$ $= 9.222 - \frac{0.880}{89.140}$		
		$= 9.212$ $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$	1	
		$=9.212 - \frac{f(9.212)}{f'(9.212)}$		
		$=9.212 - \frac{-0.00947}{88.767}$ $=9.212$	1/2	4
	e)	Using Newton-Raphson method, find the approximate value of $\sqrt{10}$ (carry out 3 iterations).	,,,	
	Ans.	Let $x = \sqrt{10}$ $\therefore x^2 - 10 = 0$		
		$\therefore f(x) = x^2 - 10$		
		$\therefore f'(x) = 2x$	1/2	
		$\therefore f(3) = -1$	1/2	
		f(4) = 6	1/2	
		$x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - 10}{2x} \qquad(*)$		
		$=\frac{x^2+10}{2x}(**)$	1	
		OR $xf'(x) - \left[f(x) \right] x(2x) = (x^2 + 10)$	OR	
		$\frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(2x) - (x^2 - 10)}{2x}(*)$	1	
		$=\frac{x^2+10}{2x}(**)$	1	
		Start with $x_0 = 3$,		
		$\therefore x_1 = 3.167$ $x_1 = 3.162$	1/2	
		$x_2 = 3.162$ $x_3 = 3.162$	1/ ₂ 1/ ₂	4
	1	$N_3 = 3.102$	12	4

Subject & Code: Engg Maths (17216) **Page No:** 23/31

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.			Marks
,		Note: If the problem is solved by taking $f(x) = x - \sqrt{10}$, no		
		marks to be given since to find various values of $f(x)$		
		OR		
		Let $x = \sqrt{10}$		
		$\therefore x^2 - 10 = 0$		
		$\therefore f(x) = x^2 - 10$		
		$\therefore f'(x) = 2x$	1/2	
		$\therefore f(3) = -1$	1/2	
		f(4) = 6	1/2	
		$\therefore \text{ start with } x_0 = 3$		
		$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$=3-\frac{f(3)}{f'(3)}$		
		$=3-\frac{-1}{6}$		
		= 3.167	1	
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$		
		$=3.167 - \frac{f(3.167)}{f'(3.167)}$		
		$=3.167 - \frac{0.0299}{6.334}$	1	
		= 3.162		
		$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$		
		$=3.162 - \frac{f(3.162)}{f'(3.162)}$		
		$=3.162 - \frac{-0.0018}{6.324}$		
			1/2	4
		= 3.162	/2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg Maths (17216) Page No: 24/31

Que.	Sub.		Mod	del Answers			Marks	Total	
No.	Que.		1/10/				Walks	Marks	
5)	f)	Find the root of equa (carry out 3 iteration		-4x+1=0 u	ısing bise	ction method			
	Ans.	$x^3 - 4x + 1 = 0$							
		$f(x) = x^3 - 4x + 1$							
		$\therefore f(0) = 1$	1/2						
		f(1) = -2					1/2		
		\therefore the root is in $(0, 1)$.					1/2		
		$\therefore x_1 = \frac{0+1}{2} = 0.5$							
		f(0.5) = -0.875					1/2		
		\therefore the root is in $(0, 0.5)$	5).						
		$\therefore x_2 = \frac{0 + 0.5}{2} = 0.25$	1/2						
		f(0.25) = 0.016	1/2						
		\therefore the root is in (0.25,	0.5).						
		$\therefore x_3 = \frac{0.25 + 0.5}{2} = 0.3^{\circ}$	75				1/2	4	
				OR					
		$x^3 - 4x + 1 = 0$							
		$f(x) = x^3 - 4x + 1$							
		$\therefore f(0) = 1$					1/2		
		f(1) = -2					1/2		
		$\therefore \text{ the root is in } (0, 1).$					1/2		
		a	b	$x = \frac{a+b}{2}$	f(x)				
		0	1	0.5	-0.875		1		
		0	0.5	0.25	0.016		1	4	
		0.25	0.5	0.375			1/2	-	
		Note (*): In numerical methods problems only, writing							
		directly the exact values of functions, such as here in							
		this example f(0) or f(1), is allowed. Note for Numerical Problems: For practical purpose, generally							
		the values of fraction							
		points by the method	l of rou	<mark>nded-off. Th</mark>	us the sol	<mark>ution is taken</mark>			
		up to 3 decimal poin	ts only.	Further if an	nswer is t	runcated			

Subject & Code: Engg Maths (17216) **Page No:** 25/31

Model Answers Marks	Que.	Sub.			Total
for last decimal point/s. Due to the use of advance calculators, such as modern scientific non-programmable calculators, 1/3 is a stually 0.333333333333333333333333333333333333	-		Model Answers	Marks	Marks
$x^{3}-4x+1=0$ $f(x) = x^{3}-4x+1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\therefore x_{1} = \frac{1+2}{2} = 1.5$ $\therefore f(1.5) = -1.625$ $\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_{2} = \frac{1.5+2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_{3} = \frac{1.75+2}{2} = 1.875$ OR $x^{3}-4x+1=0$ $f(x) = x^{3}-4x+1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} x \\ 4 \end{vmatrix}$	5)		for last decimal point/s. Due to the use of advance calculators, such as modern scientific non-programmable calculators, 1/3 is actually 0.333333333333333333333333333333333333		
$f(x) = x^3 - 4x + 1$ $f(1) = -2$ $f(2) = 1$ $f(2) = 1$ $f(3) = -1.625$ $f(1.75) = -1.625$ $f(1.75) = -0.641$ $f(1.75) = -0.641$ $f(3) = x^3 - 4x + 1 = 0$ $f(4) = x^3 - 4x + 1$ $f(5) = -2$ $f(2) = 1$ $f(3) = -2$ $f(4) = 1$ $f(5) = 1$ f			OR		
$ \begin{array}{c} \therefore f(1) = -2 \\ f(2) = 1 \\ \therefore \text{ the root is in } (1, 2). \\ \therefore x_1 = \frac{1+2}{2} = 1.5 \\ \therefore f(1.5) = -1.625 \\ \therefore \text{ the root is in } (1.5, 2). \\ \therefore x_2 = \frac{1.5+2}{2} = 1.75 \\ \therefore f(1.75) = -0.641 \\ \therefore \text{ the root is in } (1.75, 2). \\ \therefore x_3 = \frac{1.75+2}{2} = 1.875 $ OR $ x^3 - 4x + 1 = 0 \\ f(x) = x^3 - 4x + 1 \\ \therefore f(1) = -2 \\ f(2) = 1 \\ \therefore \text{ the root is in } (1, 2). $ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$x^3 - 4x + 1 = 0$		
$f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\therefore x_1 = \frac{1+2}{2} = 1.5$ $\therefore f(1.5) = -1.625$ $\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_2 = \frac{1.5+2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75+2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & -\cdots \end{vmatrix}$			$f(x) = x^3 - 4x + 1$		
$\therefore \text{ the root is in } (1, 2).$ $\therefore x_1 = \frac{1+2}{2} = 1.5$ $\therefore f(1.5) = -1.625$ $\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_2 = \frac{1.5+2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75+2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & -\cdots \end{vmatrix}$			$\therefore f(1) = -2$	1/2	
$\therefore \text{ the root is in } (1, 2).$ $\therefore x_1 = \frac{1+2}{2} = 1.5$ $\therefore f(1.5) = -1.625$ $\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_2 = \frac{1.5+2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75+2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} x & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & -\cdots \end{vmatrix}$			f(2)=1		
$\therefore f(1.5) = -1.625$ $\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_2 = \frac{1.5 + 2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$			\therefore the root is in $(1, 2)$.	1/2	
$\therefore \text{ the root is in } (1.5, 2).$ $\therefore x_2 = \frac{1.5+2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75+2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$			$\therefore x_1 = \frac{1+2}{2} = 1.5$	1/2	
$\therefore x_2 = \frac{1.5 + 2}{2} = 1.75$ $\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & 1.5 & -1.625 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$			f(1.5) = -1.625	1/2	
$\therefore f(1.75) = -0.641$ $\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$			\therefore the root is in $(1.5, 2)$.		
$\therefore \text{ the root is in } (1.75, 2).$ $\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$ OR $x^3 - 4x + 1 = 0$ $f(x) = x^3 - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ \frac{1}{1.5} & 2 & 1.55 & -1.625 \\ \frac{1.5}{1.75} & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & 1.5 & -1.625 \\ \frac{1}{1.75} & 2 & 1.875 & \end{vmatrix}$			$\therefore x_2 = \frac{1.5 + 2}{2} = 1.75$	1/2	
OR $x^{3} - 4x + 1 = 0$ $f(x) = x^{3} - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $x = \frac{a+b}{2} \qquad f(x)$ $\frac{1}{1} \qquad \frac{2}{1.5} \qquad \frac{1.5}{1.75} \qquad \frac{-1.625}{-0.641}$ $\frac{1}{1.75} \qquad \frac{1}{2} \qquad \frac{1.875}{1.875} \qquad \frac{1}{1.5}$			f(1.75) = -0.641	1/2	
OR $x^{3} - 4x + 1 = 0$ $f(x) = x^{3} - 4x + 1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$			\therefore the root is in $(1.75, 2)$.		
OR $x^{3}-4x+1=0$ $f(x) = x^{3}-4x+1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ 1 & 2 & 1.5 & -1.625 \\ 1.5 & 2 & 1.75 & -0.641 \\ 1.75 & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$			$\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$	1/2	1
$x^{3}-4x+1=0$ $f(x) = x^{3}-4x+1$ $\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $x = \frac{a+b}{2} \qquad f(x)$ $\frac{1}{1.5} \qquad \frac{2}{1.75} \qquad \frac{1.625}{1.0641}$ $\frac{1}{1.75} \qquad \frac{1}{2} \qquad \frac{1.875}{1.875} \qquad \frac{1}{1}$			_	/ 4	*
$\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ \hline 1 & 2 & 1.5 & -1.625 \\ \hline 1.5 & 2 & 1.75 & -0.641 \\ \hline 1.75 & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & $					
$\therefore f(1) = -2$ $f(2) = 1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{vmatrix} a & b & x = \frac{a+b}{2} & f(x) \\ \hline 1 & 2 & 1.5 & -1.625 \\ \hline 1.5 & 2 & 1.75 & -0.641 \\ \hline 1.75 & 2 & 1.875 & \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & $			$f(x) = x^3 - 4x + 1$		
$f(2)=1$ $\therefore \text{ the root is in } (1, 2).$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1/2	
$\begin{array}{ c c c c c c } \therefore & \text{the root is in } (1, 2). \\ \hline & a & b & x = \frac{a+b}{2} & f(x) \\ \hline & 1 & 2 & 1.5 & -1.625 \\ \hline & 1.5 & 2 & 1.75 & -0.641 \\ \hline & 1.75 & 2 & 1.875 & \\ \hline \end{array}$				1/2	
1 2 1.5 -1.625 1.5 2 1.75 -0.641 1.75 2 1.875			\therefore the root is in $(1, 2)$.	1/2	
1 2 1.5 -1.625 1.5 2 1.75 -0.641 1.75 2 1.875					
1.5 2 1.75 -0.641 1 1.75 2 1.875 1/2			a b $x = \frac{a+b}{2}$ $f(x)$		
1.75 2 1.875 1/2			1 2 1.5 -1.625	1	
1.75 2 1.875 1/2 4					
				1/2	4

Subject & Code: Engg Maths (17216) **Page No:** 26/31

Oue.	Que. Sub. Total							
No.	Que.	Model Answers	Marks	Marks				
6)		Attempt any FOUR of the following:						
	a)	Find $\frac{d^2y}{dx^2}$, if $x = a\cos\theta$, $y = a\sin\theta$						
	Ans.	$x = a\cos\theta, y = a\sin\theta$						
		$\therefore x^2 + y^2 = a^2 \cos^2 \theta + a^2 \sin^2 \theta = a^2 \left(\cos^2 \theta + \sin^2 \theta\right)$						
		$\therefore x^2 + y^2 = a^2$	1					
		$\therefore 2x + 2y \frac{dy}{dx} = 0$						
		$\therefore \frac{dy}{dx} = -\frac{x}{y}$	1					
		$\therefore \frac{d^2 y}{dx^2} = -\frac{y - x \frac{dy}{dx}}{y^2}$	1					
		$\therefore \frac{d^2 y}{dx^2} = -\frac{y - x\left(-\frac{x}{y}\right)}{y^2}$	1/2					
		$\therefore \frac{d^2y}{dx^2} = -\frac{y^2 + x^2}{y^3}$	1/2	4				
		OR						
		$x = a\cos\theta, y = a\sin\theta$						
		$\therefore x^2 + y^2 = a^2 \cos^2 \theta + a^2 \sin^2 \theta = a^2 \left(\cos^2 \theta + \sin^2 \theta\right)$						
		$\therefore x^2 + y^2 = a^2$	1					
		$\therefore 2x + 2y \frac{dy}{dx} = 0$	1					
		$\therefore x + y \frac{dy}{dx} = 0$						
		$\therefore 1 + y \frac{d^2 y}{dx^2} + \frac{dy}{dx} \cdot \frac{dy}{dx} = 0$	1/2					
		$\therefore y \frac{d^2 y}{dx^2} = -1 - \left(-\frac{x}{y}\right)^2$	1/2					
		$\therefore y \frac{d^2 y}{dx^2} = -1 - \frac{x^2}{y^2}$						
		$\therefore y \frac{d^2 y}{dx^2} = \frac{-y^2 - x^2}{y^2}$	1/2					
		$\therefore \frac{d^2y}{dx^2} = \frac{-y^2 - x^2}{y^3}$	1/2	4				

Subject & Code: Engg Maths (17216) **Page No:** 27/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Thiswell	IVIAINS	Marks
6)	Que.	$x = a \cos \theta$ $\therefore \frac{dx}{d\theta} = -a \sin \theta$ $y = a \sin \theta$ $\therefore \frac{dy}{d\theta} = a \cos \theta$ $\therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta}{-a \sin \theta} = -\cot \theta$ $\therefore \frac{d}{d\theta} \left(\frac{dy}{dx} \right) = \cos ec^2 \theta$ $d (dy)$	1/ ₂ 1/ ₂ 1/ ₂ 1 1 1/ ₂	Warks
	b)	$\therefore \frac{d^2 y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx} \right) \cdot \frac{d\theta}{dx} \text{ or } \frac{\frac{d}{d\theta} \left(\frac{dy}{dx} \right)}{\frac{dx}{d\theta}}$ $= \cos ec^2 \theta \times \frac{1}{-a \sin \theta}$ $= -\frac{1}{a} \cos ec^3 \theta$ Solve the following equations by Gauss elimination method: $2x + y + z = 10, \ 3x + 2y + 3z = 18, \ x + 4y + 9z = 16$	1 1/2	4
	Ans.	6x+3y+3z = 30 $3x+2y+3z = 18$ $$	1/2 + 1/2	
		∴ $x = 7$ ∴ $y = 12 - 3x = 12 - 21 = -9$ ∴ $z = 10 - 2x - y = 10 - 14 + 9 = 5$ ∴ $x = 7$, $y = -9$, $z = 5$ OR	1 1 1	4

Page No: 28/31

Subject & Code: Engg Maths (17216)	Sub	ject	&	Code:	Engg	Maths	(17216)	
------------------------------------	-----	------	---	-------	------	-------	---------	--

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
6)		4x + 2y + 2z = 20 6x + 4y + 6z = 36		
		3x+2y+3z=18 $x+4y+9z=16$ and	1/ 1 1/	
			$1/_2 + 1/_2$	
		$x - z = 2 \qquad 5x - 3z = 20$		
		3x - 3z = 6		
		5x - 3z = 20		
		- + -		
		-2x = -14		
		$\therefore x = 7$	1	
		$\therefore z = x - 2 = 7 - 2 = 5$	1	
		y = 10 - 2x - z = 10 - 14 - 5 = -9	1	
		$\therefore x = 7, y = -9, z = 5$		4
		OR		
		6x + 3y + 3z = 30 3x + 2y + 3z = 18	$\frac{1}{2} + \frac{1}{2}$	
		6x+4y+6z = 36 and $3x+12y+27z = 48$,2 ,2	
				
		$-y - 3z = -6 \qquad -10y - 24z = -30$		
		-10y - 30z = -60		
		-10y - 24z = -30		
		+ + +		
		-6z = -30	1	
		$\therefore z = 5$	1	
		$\therefore y = 6 - 3z = 6 - 15 = -9$	1	
		$\therefore x = 16 - 4y - 9z = 16 + 36 - 45 = 7$		4
		$\therefore \boxed{x=7, y=-9, z=5}$		1
		Note: In the method I, first x is eliminated and then z is		
		eliminated to find the value of y first. Whereas in the method II, first y is eliminated and then z is eliminated	l to	
		find the value of x first. Similarly in the method III, first		
		is eliminated and then y is eliminated to find the value		
		x first. These are just illustrations to get desire solution		
		But student may follow another order of solution just of this line of solution i. e., to say in the method I, student		
		may first eliminate x and then y to find the value of z		
		first, appropriate marks to be given as per above schen	ne	
		<mark>of marking.</mark>		

Page No: 29/31

Subject & Code: Engg Maths (17216)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	c)	Solve the following equations by Gauss-Seidal method by taking two iterations. $10x+y+z=12$, $2x+10y+z=13$, $2x+2y+10z=14$		
	Ans.	$10x + y + z = 12$ $2x + 10y + z = 13$ $2x + 2y + 10z = 14$ $\therefore x = \frac{1}{10}(12 - y - z)$ $y = \frac{1}{10}(13 - 2x - z)$ $z = \frac{1}{10}(14 - 2x - 2y)$ Starting with $x_0 = 0 = y_0 = z_0$ $x_1 = 1.2$ $y_1 = 1.06$ $z_1 = 0.948$ $x_2 = 0.999$ $y_2 = 1.005$ $z_2 = 0.999$	1/2 1/2 1/2 1/2 1/2 1/2 1/2	4
	d) Ans.	Solve the following equations by Jacobi's method by performing two iterations only. $15x+2y+z=18$, $2x+20y-3z=19$, $3x-6y+25z=22$ $15x+2y+z=18$ $2x+20y-3z=19$		
		$3x - 6y + 25z = 22$ $\therefore x = \frac{1}{15}(18 - 2y - z)$ $y = \frac{1}{20}(19 - 2x + 3z)$ $z = \frac{1}{25}(22 - 3x + 6y)$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg Maths (17216) Page No: 30/31

Que. Sub. Total Marks Model Answers No. Que. Marks 6) Starting with $x_0 = 0 = y_0 = z_0$ $1/_{2}$ $x_1 = 1.2$ $\frac{1}{2}$ $y_1 = 0.95$ $\frac{1}{2}$ $z_1 = 0.88$ $1/_{2}$ $x_2 = 1.015$ $\frac{1}{2}$ $y_2 = 0.962$ $\frac{1}{2}$ $z_2 = 0.964$ 4 Solve by Jacobi's method, carry out two iterations only. e) 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 1510x + y + 2z = 13Ans. 3x + 10y + z = 142x + 3y + 10z = 15 $\therefore x = \frac{13 - y - 2z}{10}$ $y = \frac{14 - 3x - z}{10}$ 1 $z = \frac{15 - 2x - 3y}{10}$ Starting with $x_0 = 0 = y_0 = z_0$ $\frac{1}{2}$ $x_1 = 1.3$ $1/_{2}$ $y_1 = 1.4$ $\frac{1}{2}$ $z_1 = 1.5$ $\frac{1}{2}$ $x_2 = 0.86$ $\frac{1}{2}$ $y_2 = 0.86$ $\frac{1}{2}$ 4 $z_2 = 0.82$

Subject & Code: Engg Maths (17216) **Page No:** 31/31

Que.	Sub.		<u> </u>	Total
No.	Que.	Model Answers	Marks	Marks
6)	f)	If $y = e^{m\sin^{-1}x}$, prove $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = m^2y = 0$		
	Ans.	Given $y = e^{m \sin^{-1} x}$		
		$\therefore \log y = m \sin^{-1} x$ $\therefore \frac{1}{y} \cdot \frac{dy}{dx} = m \cdot \frac{1}{\sqrt{1 - x^2}}$	1	
		$\therefore \sqrt{1 - x^2} \cdot \frac{dy}{dx} = my$ $\therefore (1 - x^2) \cdot \left(\frac{dy}{dx}\right)^2 = m^2 y^2$		
		$\therefore (1-x^2) \cdot 2 \cdot \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 \cdot (-2x) = m^2 \cdot 2y \cdot \frac{dy}{dx}$	1	
		$\therefore 2\frac{dy}{dx} \left[\left(1 - x^2 \right) \frac{d^2y}{dx^2} - x \frac{dy}{dx} \right] = 2\frac{dy}{dx} \left(m^2 y \right)$		
		$\therefore (1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = m^2y$	1	
		$\therefore (1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - m^2y = 0$	1	4
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		