esprit*	Examen				
Ecole Supérieure Privée d'Ingénierie et de Technologies	Semestre : 1 ☐ 2 ■				
	Session : Principale Rattrapage				
Module: Architecture des microcontrôleurs Enseignants: AYARI Nidhal, CHERIF Nozha, HAOUEL Jihène, JEDIDI Hassen, SARRAY Ines, SOUAKI Ghofrane, , TEBER Feten. Classes: 2A, 2P et 3B					
Documents autorisés : OUI	NON Nombre de pages : 2				
Date: 19/05/2015	Heure : 11h15 Durée : 1h30				

Sujet B: Système: Station de services et lavage automobiles

Pour le bien-être de ses ouvriers notamment dans les conditions climatiques critiques et pour des raisons de sécurité à toute heure, le propriétaire d'une station de services et de lavage automobiles souhaite un système à base d'un microcontrôleur Pic 16F84 pour organiser le travail de ses ouvriers. L'établissement est divisé en deux compartiments : Services et Lavage.

Tous les ouvriers devraient être bien installés dans une salle confortable en attendant les clients, cependant ils peuvent être interrompus et sollicités par :

- Soit un client qui a appuyé sur l'un des boutons disponibles dans le compartiment des services : bouton_service_Carburant(RB5), bouton_service_Entretien(RB6) et bouton_service_Achats produits (RB7).
 - L'appui sur l'un des boutons provoque, dans la salle des ouvriers, l'allumage de la led correspondante au service demandé (led_carburant RA0, led_entretien RA1, led_achat RA2) pendant 3s.
- Soit un client capté par le détecteur de présence binaire devant le compartiment de lavage (1 si une voiture est détectée, 0 sinon sur la pin RB0), et ceci va engendrer dans la salle des ouvriers l'allumage de la led_lavage RA3 et au même temps un afficheur de type 7segments BCD (connecté aux pins RB1,RB2,RB3,et RB4) indique le nombre total des voitures lavées, qui varie entre 0 et 9 maximum par jour, pendant 3s.
- Soit un autre collègue se trouvant à l'extérieur, qui a besoin d'aide urgente et qui s'est manifesté par appui 3 fois sur un bouton_help (RA4), ceci engendrera dans la salle, l'allumage de toutes les leds et l'afficheur indique le mot « A1DE » pendant 3s.

TRAVAIL DEMANDE:

Ecrire le code C qui répond aux besoins de notre système.

Remarque: Un bouton appuyé envoie 0 logique.

Rappel: L'afficheur 7segments_BCD possède 4 pins d'entrée RB1,RB2,RB3,RB4 et en fonction de leurs états, l'afficheur indique automatiquement les valeurs dans le tableau ci-joint:

BON TRAVAIL

RB4	RB3	RB2	RB1	Valeur affichée sur l'afficheur
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A (10)
1	0	1	1	B (11)
1	1	0	0	C (12)
1	1	0	1	D (13)
1	1	1	0	E (14)
1	1	1	1	F(15)

ANNEXE: Datasheet PIC 16F84 (MICROCHIP)

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7								bit 0

bit 7 RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin

bit 5 TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)

bit 4 T0SE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	ſ
	GIE bit 7	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit 0	Ĺ

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

0 = Disables the EE Write Complete interrupt

bit 5 T0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

bit 4 INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

bit 2 T0IF: TMR0 Overflow Interrupt Flag bit

bit 3

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

bit 1 INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state