DEFCON RUSSIA

Аппаратная виртуализация и вредоносное ПО

Никита Абдуллин nabdullin@gmail.com

15.07.2011

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

Перспективы

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

Перспективы

лат. virtualis — «обладающий силой» лат. virtus — превосходство, мощь, достоинство, мужественность

лат. virtualis — «обладающий силой» лат. virtus — превосходство, мощь, достоинство, мужественность

- ~ 1650-e r.r.
 - "being something in essence or fact, though not in name"

- ~ 1960-e г.г.
 - Виртуализация создание кажущегося окружения (для <...>)

- Зачем:
 - Изоляция
 - Эмуляция
 - Управляемость

- Виртуализация сервисов
- Виртуализация приложений
- Виртуализация ресурсов
- Виртуализация аппаратуры (платформы, hardware virtualization)
 - Полная (QEMU, например)
 - (Частичная)
 - Паравиртуализация (Xen, KVM, ...)

Виртуализация аппаратуры (hardware virtualization)

VS.

Аппаратная виртуализация (hardware-based virtualization)

Программная виртуализация (software-based virtualization)

VS.

Аппаратная виртуализация (hardware-based virtualization)

• Аппаратная виртуализация (hardwareassisted/hardware-based virtualization, HVM, VMX) – семейство технологий, позволяющих предоставлять для программной среды (ОС) полностью эмулируемое (виртуальное) окружение с прозрачным доступом к аппаратному обеспечению.

- 1964 IBM СР/40 полная
- 1966 IBM M44/44X пара + вирт.память
- 1972 IBM VM/370 гипервизор
- 1974 критерии Попека-Голдберга
- 1998 VMWare
- 2005 Intel, AMD расширения для аппаратной виртуализации

Критерии Попека-Голдберга

- Принципы
 - Эквивалентность
 - Эффективность
 - Контроль VMM над ресурсами
- Набор инструкций
 - Привилегированные
 - Чувствительные по управлению
 - Чувствительные по поведению
- Требования
 - 1. чувствительные ⊆ привилег ированные
 - 2. если нет задержек → вложенная виртуализация

- Intel VT, AMD-V
- Управление непосредственным доступом из виртуальной среды к реальным устройствам
 - AMD IOMMU
 - Intel VT-d
- Поддержка вложенной (nested) виртуализации
 - Intel EPT
 - AMD RVI
- Прочие плюшки

- Он же VMM (Virtual Machine Monitor)
 - Контролирует гостевые среды
 - Следит за распределением ресурсов
 - Переключает контекст исполнения

— ...

- Надо управлять исполнением
 - Установка перехватчиков на некоторые инструкции (есть обязательные)
- Надо управлять памятью
 - Структуры управления вирт. памятью
 - Надо поддерживать копии таблицы страниц
 - Shadow page tables/ Nested page tables
 - Что будет в TLB?
 - Будем тегировать записи в TLB

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

Перспективы

- Гипервизор имеет максимум (?!) полномочий
- Гипервизор может разделять и властвовать
 - А гостевые среды без модификации работают с реальным железом, и почти без накладных расходов

- VMM:
 - VMWare
 - MS Virtual PC
 - MS Hyper-V
 - Xen
 - Oracle VM
 - Qubes
 - KVM
 - **—** ...

Microsoft®

- Средства защиты
 - BitVisor
 - Viton

- Средства защиты
 - HookSafe
 - HyperSight

Memory Protection

Hypervisor + HookSafe

- Отладчики
 - hyperdbg
 - virtdbg

Злые гипервизоры

Злые гипервизоры

- 2006, Дж. Рутковска: Introducing Stealth Malware Taxonomy
- 4 типа РПС
 - Тип 0
 - **—** Тип 1
 - Тип 2
 - Тип 3

- SMM (System Maintenance Mode)
 - Наиболее привилегированный режим процессора,
 предназначенный для узкоспециализированных задач настройки и диагностики
- Специфические уязвимости в аппаратном обеспечении
 - 2008, Ю.Булыгин
 - 2008, A.Терешкин, R. Wojtczuk: РПС в чипсете мат. платы
 - 2010, L. Duflot: РПС в сетевом адаптере, внедрение через переполнение аппаратного буфера
- Аппаратная виртуализация РПС-гипервизор

Злые гипервизоры

- Реальных РПС in the wild не слышно.
- Исследователями созданы:
 - 1. 2006, MS Research: SubVirt (Windows, Intel VT)
 - 2. 2006, Dino Dai Zovi: Vitriol (Mac OS X, Intel VT)
 - 3. 2006-2008, Дж.Рутковска, А.Терешкин: BluePill (Windows, AMD-V и Intel VT)

Злые гипервизоры

- Реальных РПС in the wild не слышно.
- Исследователями созданы:
 - 1. 2006, MS Research: SubVirt (Windows, Intel VT)
 - 2. 2006, Dino Dai Zovi: Vitriol (Mac OS X, Intel VT)
 - 3. 2006-2008, Дж.Рутковска, А.Терешкин: BluePill (Windows, AMD-V и Intel VT)

Bluepill

- Изначально только поддержка AMD-V
- 2007-2008: доступен исходный код модифицированной версии 0.32, поддерживающей Intel VT
- Выполнен в виде драйвера
- Переводит ОС в гостевой режим во время ее работы и почти ничего не делает

Bluepill

Злые гипервизоры

Злые гипервизоры

- И как обнаружить подобное чудо?
 - Гостевая ОС не может выйти за пределы навязанной ей gPT
 - Гипервизор может перехватить любые инструкции и сделать что угодно

Злые гипервизоры

- И как обнаружить подобное чудо?
 - Гостевая ОС не может выйти за пределы навязанной ей gPT
 - Гипервизор может перехватить любые инструкции и сделать что угодно

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

Обнаружение гипервизоров

• попытка обнаружить = атака

Обнаружение гипервизоров

- Аппаратная виртуализация не идеальна
 - Накладные расходы
 - CPU bugs
 - Неполный контроль над оборудованием
 - Уязвимости во все поля

Атаки, использующие неотъемлемые свойства аппаратной виртуализации

- Атаки на запрещенные в определенных режимах инструкции
 - малая известность относительно редко используются разработчиками традиционных РПС
 - детерминизм данная конкретная аппаратная конфигурация содержит фиксированный набор особенностей и ошибок реализации
- Атаки с использованием вложенной виртуализации

Атаки с использованием оценок производительности

- Атаки с использованием таймеров
 - Базовая оценка производительности с попыткой «поймать» код гипервизора на перехвате
- Атаки с использованием профилирования ресурсов
 - Попытка определить характер использования RAM и кэшей процессора гипервизором
- Атаки с использованием синхронизации
 - Использование нескольких потоков исполнения (ядер) для десинхронизации действий гипервизора на них

Атаки с использованием оценок производительности

- Таймеры масса вариантов
 - NTP
 - Часы в периферии
 - DSP звуковой карты
 - GPU

Атаки с использованием оценок производительности

- Таймеры масса вариантов
 - NTP
 - Часы и таймеры в периферии
 - DSP звуковой карты
 - GPU

Атаки на конкретные уязвимости

- Дж. Рутковска, А. Терешкин, R.Wojtczuk
 - 2008: Xen owning trilogy
 - 2011: Атака на VT-d в Xen

Xen owning trilogy

- Атака на DMA из dom0
 - Драйвера диска и сетевого интерфейса
- Обход VT-d
 - DMA Remapping
 - Баг в конкретном BIOS
- Xen под Bluepill

Xen owning trilogy

Атака на VT-d в Xen

Атака на VT-d в Xen

- MSI (Message Signaling Interrupts)
 - PCI-е транзакция на адрес 0xFEEXXXXX служит определенным сигналом для процессора
 - В пакете MSI передается вектор прерывания (аналогичный тем, что в IDT)
- MSI настраиваются из гостевых доменов
- Генерим MSI особого вида, указывающий куда надо

Атака на VT-d в Xen

- SIPI (Start-up Inter Processor Interrupt)
 - BIOS инициализирует многопроцессорную систему используя SIPI
 - SIPI и MSI не просто так похожи
- Инъекция syscall
- Инъекция #АС

SIPI

Инъекция syscall

Инъекция #АС

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

- Как не дать себя обнаружить:
 - Подготовиться заранее
 - Быть начеку и контратаковать
 - Убрать улики и удалиться

- Как не дать себя обнаружить:
 - Подготовиться заранее
 - Быть начеку и контратаковать
 - Убрать улики и удалиться

- Стратегия 0
 - Пытаться знать обо всех мыслимых способах обнаружения
 - Держать в коде гипервизора контрприемы к ним
- Выиграет тот, у кого глубже уровень рефлексии
- С уровнем рефлексии объем кода очень сильно растет

- Стратегия 1
 - Ничего не писать на диск, жить только в памяти
 - Следить за подозрительными паттернами инструкций гостевой ОС
 - В случае чего быстро выгрузиться из памяти
- Придумана в BluePill, называется BlueChicken
- Ее можно обойти 🙂

- Стратегия 2
 - Не реагировать на попытки обнаружения
 - Сфокусироваться на качестве (добрым)
 - Сфокусироваться на эффекте (злым)

Сравнительная характеристика атак

Тип метода обнаружения	Сложность реализации атаки	Сложность реализации противодейств ия	Целесообразн ость реализации атаки	Целесообразн ость реализации противодейств ия	Вероятность атаки	Вероятность противодейст вия
Особенности (CPU bugs)	высокая	высокая	низкая	низкая	низкая	средняя
Вложенность виртуализаци и	высокая	средняя	средняя	средняя	средняя	высокая
Таймеры	низкая	низкая	средняя	высокая	высокая	высокая
Профилирова ние	средняя	высокая	высокая	высокая	высокая	средняя
Синхронизац ия	низкая	высокая	высокая	средняя	средняя	средняя
Уязвимости	наивысшая	средняя	средняя	высокая	средняя	высокая

Аппаратная виртуализация и вредоносное ПО

Виртуализация

Добрые и злые гипервизоры

Обнаружение гипервизоров и атаки на них

Противодействие обнаружению

- Недостатки РПС-гипервизоров
 - Сложность разработки:
 - BluePill 4 человек*месяц для базовой функциональности гипервизора
 - По оценка авторов, еще до 1 человек*года для реализации маскировки и вредоносной функциональности
 - Сложность сокрытия самого наличия режима виртуализации

• Да и зачем, разве мало РПС типа 0-2?

• Да и зачем, разве мало РПС типа 0-2?

- Доверенный, одобренный производителем аппаратуры гипервизор, загруженный первым это почти панацея. Еще есть ТРМ.
- Просить пароль при входе в режим VMX
- Просто отключить

- Доверенный, одобренный производителем аппаратуры гипервизор, загруженный первым это почти панацея. Еще есть ТРМ.
- Просить пароль при входе в режим VMX
- Просто отключить

- Добрые гипервизоры нужны и будут процветать
- Следует ожидать:
 - Полноценных средств защиты с поддержкой HVM
 - Гипервизоров, надежно изолирующих гостевые среды
 - Qubes?

- Атаки на уязвимости в легитимных гипервизорах
 - Сложно искать
 - Сложно эксплуатировать
 - Привязка к оборудованию

DEFCON RUSSIA

Keywords

Intel: VT-x, VT-d, EPT

AMD: AMD-V, SVM, IOMMU, NPT, RVI

bluepill, bitvisor, hyperdbg