MA 102 (Mathematics II)

Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 1

(1) Consider the Euclidean norm $||X|| = \sqrt{x_1^2 + \dots + x_n^2}$ and show that $|||X|| - ||Y|| | \le ||X - Y||$ for $X, Y \in \mathbb{R}^n$. Show that the vectors X and Y are orthogonal if and only if

$$||X + Y||^2 = ||X||^2 + ||Y||^2.$$

- (2) Let $(X_k) \subset \mathbb{R}^n$ and $X \in \mathbb{R}^n$. Show that $X_k \to X$ in \mathbb{R}^n if and only if for every $Y \in \mathbb{R}^n$ the sequence $(\langle X_k, Y \rangle) \subset \mathbb{R}$ converges to $\langle X, Y \rangle$, that is, $\langle X_k, Y \rangle \to \langle X, Y \rangle$ in \mathbb{R} .
- (3) Let $(X_k) \subset \mathbb{R}^n$ be such that $X_k \to X$ for some $X \in \mathbb{R}^n$. Show that the sequence $(\|X_k\|) \subset \mathbb{R}$ converges to $\|X\|$. Additionally suppose that $X \neq 0$ and $X_k \neq 0$ for all k, and define $Y_k := X_k / \|X_k\|$ and $Y := X / \|X\|$. Show that $Y_k \to Y$.
- (4) Let $(X_k) \subset \mathbb{R}^n$ and $X, Y \in \mathbb{R}^n$. Suppose that $X_k \to X$ and that $\langle X_k, Y \rangle = 0$ for all k. Show that $\langle X, Y \rangle = 0$.
- (5) Convert from rectangular coordinates (x, y, z) to spherical coordinates (ρ, ϕ, θ) . (a) $(1, \sqrt{3}, -2)$, (b) $(1, -1, \sqrt{2})$.
- (6) Convert from spherical coordinates (ρ, ϕ, θ) to rectangular coordinates (x, y, z). (a) $(5, \pi/6, \pi/4)$, (b) $(7, \pi/2, \pi/2)$.
- (7) Convert from cylindrical coordinates (r, θ, z) to spherical coordinates (ρ, ϕ, θ) . (a) $(\sqrt{3}, \pi/6, 3)$, (b) $(1, \pi/4, -1)$.
- (8) Convert from spherical coordinates (ρ, ϕ, θ) to cylindrical coordinates (r, θ, z) . (a) $(5, \pi/4, 2\pi/3)$, (b) $(1, \pi/2, 7\pi/6)$.
- (9) For each of the following sets in their mentioned spaces, identify (i) interior points, (ii) limit points, (iii) boundary points, (iv) Closure of the set.
 - (a) Space = \mathbb{R} , $S = \{1, 2, 3, 4\}$
 - (b) Space = \mathbb{R} , $S = \mathbb{Q}$
 - (c) Space = \mathbb{R} , $S = \{x \in \mathbb{R} : 0 < x < 1\}$
 - (d) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1 \text{ and } y = 0\}$
 - (e) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1 \text{ and } y \in \mathbb{R}\}$
 - (f) Space = \mathbb{R}^2 , $S = \mathbb{Q}^c \times \mathbb{Q}$
 - (g) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 100\}$
 - (h) Space = \mathbb{R}^3 , $S = \{ (\frac{1}{n}, 0, 0) \in \mathbb{R}^3 : n \in \mathbb{N} \}$

- (10) For each of the following sets in their mentioned spaces, find out whether the given set is (i) open, (ii) closed, (iii) bounded.
 - (a) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : xy > 0\}$
 - (b) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \text{ and } y \ge 0\}$

 - (c) Space = \mathbb{R}^2 , $S = \{(x, y) \in \mathbb{R}^2 : y < 1\}$ (d) Space = \mathbb{R}^3 , $S = \left\{ \left(\frac{1}{k}, k, 0\right) \in \mathbb{R}^3 : k \in \mathbb{N} \right\}$