Combined Speaker Clustering and Role Recognition in Conversational Speech

Nikolaos Flemotomos, Pavlos Papadopoulos, James Gibson, Shrikanth Narayanan

University of Southern California Signal Analysis and Interpretation Laboratory

> Interspeech 2018 September 4

Speaker Role Recognition

- Goal: assign a specific *role* to each speaker turn
 - role: characterized by the task a speaker performs and the objectives related to it

Speaker Role Recognition

- Goal: assign a specific role to each speaker turn
 - role: characterized by the task a speaker performs and the objectives related to it
- Examples:
 - broadcast news programs
 - business meetings
 - psychotherapy sessions

Speaker Role Recognition

- Goal: assign a specific role to each speaker turn
 - role: characterized by the task a speaker performs and the objectives related to it
- Examples:
 - broadcast news programs
 - business meetings
 - psychotherapy sessions

• Turn-level vs. Speaker-level SRR

Turn-level SRR

• each turn classified independently

Turn-level SRR

- each turn classified independently
- only role-specific information taken into account

Speaker-level SRR

• a role is assigned to each same-speaker cluster

Speaker-level SRR

- a role is assigned to each same-speaker cluster
- error propagation between the modules

Solution?

Can we effectively combine speaker-specific and role-specific information towards better SRR performance?

Solution?

Can we effectively combine speaker-specific and role-specific information towards better SRR performance?

Framework

- speakers $\{S_i\}_{i=1}^N$
- roles $\{R_i\}_{i=1}^N$
- turns x_1, x_2, \cdots, x_T

- Speaker Clustering module: $(p_{1i})_{i=1}^N, (p_{2i})_{i=1}^N, \cdots, (p_{Ti})_{i=1}^N, \text{ s.t. } x_k \leftarrow S_m \text{ iff } p_{km} = \max_i p_{ki}$
- Role Recognition module: $(q_{1i})_{i=1}^N, (q_{2i})_{i=1}^N, \cdots, (q_{Ti})_{i=1}^N, \text{ s.t. } x_k \leftarrow R_m \text{ iff } q_{km} = \max_i q_{ki}$

•
$$x_k$$
 is represented by the $2N$ scores $(p_{ki})_{i=1}^N$ and $(q_{ki})_{i=1}^N$

Framework

- speakers $\{S_i\}_{i=1}^N$
- roles $\{R_i\}_{i=1}^N$
- turns x_1, x_2, \cdots, x_T

• Speaker Clustering module: $(p_{1i})_{i=1}^N, (p_{2i})_{i=1}^N, \cdots, (p_{Ti})_{i=1}^N, \text{ s.t. } x_k \leftarrow$

$$(p_{1i})_{i=1}^N, (p_{2i})_{i=1}^N, \cdots, (p_{Ti})_{i=1}^N, \text{ s.t. } x_k \leftarrow S_m \text{ iff } p_{km} = \max_i p_{ki}$$

• Role Recognition module:

$$(q_{1i})_{i=1}^N, (q_{2i})_{i=1}^N, \cdots, (q_{Ti})_{i=1}^N, \text{ s.t. } x_k \leftarrow R_m \text{ iff } q_{km} = \max_i q_{ki}$$

• optimal mapping $M: \{S_i\}_{i=1}^N \to \{R_i\}_{i=1}^N$ defined as

$$\hat{M} = \arg\min_{M} \sum_{k=1}^{T} \mathbb{I}(M(S'_{k}) \neq R'_{k}) d_{k} \text{ (}d_{k} \text{ is } x_{k} \text{'s duration)}$$

all possible mappings $\stackrel{M}{\swarrow}$ $\stackrel{k=1}{\swarrow}$ speaker clustering module prediction

Speaker Clustering Module

Speaker Clustering module

- BIC-based algorithm, with one Gaussian modeling each cluster
- features: 13 MFCCs
- p_{ki} is the per-frame log-likelihood wrt the Gaussian corresponding to the *i*th speaker, averaged over the voiced frames of the turn x_k

Speaker Clustering Module

Speaker Clustering module

- BIC-based algorithm, with one Gaussian modeling each cluster
- features: 13 MFCCs
- p_{ki} is the per-frame log-likelihood wrt the Gaussian corresponding to the *i*th speaker, averaged over the voiced frames of the turn x_k

will be mapped to the corresponding role \leftarrow

Role Recognition Module

Role Recognition module – LM-based

- train one *n*-gram Language Model (LM) for each role
- q_{ki} is the negative log-perplexity of x_k wrt the LM corresponding to the *i*th role

Role Recognition module – AM-based

- train one GMM Acoustic Model (AM) for each role
- features: 13 MFCCs
- q_{ki} is the per-frame log-likelihood wrt the AM corresponding to the *i*th role, averaged over the voiced frames of the turn x_k

Datasets

Dyadic interactions from the psychology domain

- *MI corpus*: Motivational Interviewing sessions between Therapist (T) and Client (Cl)
- ADOS corpus: Autism Diagnostic Observation Schedule assessments between Psychologist (P) and Child (Ch)

Table: Descriptive analysis of the corpora used.

	MI-train	MI-test	ADOS-train	ADOS-test
#sessions		101	141	132
mean_dur		33.14min	3.67min	3.67min
std_dur		17.42min	1.34min	1.65min
dur-T/P	47.30h	26.35h	2.63h	2.52h
dur-Cl/Ch	52.96h	25.87h	2.97h	2.98h
#T/P	123	53	-	-
#Cl/Ch		-	89	81

 ${\bf The rap ist/P sychologist}$

Client/Child

• no overlapping speakers between the train/test sets

Experimental Framework

- train the LMs (3-gram models) and AMs (512-component GMMs) for all the roles on the training set
- linear support vector machine as meta-classifier

- 5-fold cross-validation on the test set
- evaluation metric: Misclassification Rate (MR)

$$MR = \frac{\text{\#misclassified frames}}{\text{total \#frames}} = \frac{\sum_{k} \mathbb{I}(R_k \neq \hat{R}_k) d_k}{\sum_{k} d_k}$$

true role

Table: Misclassification Rates (%) of the different components when used independently and when combined.

 \mathcal{R}^{\dagger} : 0-error algorithm, SC: Speaker Clustering, LM & AM: Language & Acoustic Model

Table: Misclassification Rates (%) of the different components when used independently and when combined.

 \mathcal{R}^{\dagger} : 0-error algorithm, SC: Speaker Clustering, LM & AM: Language & Acoustic Model

	$\left egin{array}{l} \mathrm{SC} + \mathcal{R}^\dagger \ \mathrm{piped} \end{array} \right $	LM only	SC+LM comb	AM only	SC+AM comb	AM+LM comb	$\begin{array}{c} \mathrm{SC+AM+LM} \\ \mathrm{comb} \end{array}$
MI ADOS		$9.49 \\ 12.37$		$\begin{vmatrix} 35.45 \\ 14.03 \end{vmatrix}$	$\frac{3.66}{10.58}$	9.17 8.02	2.71 5.98

averaged log-likelihood

Table: Misclassification Rates (%) of the different components when used independently and when combined.

 $\mathcal{R}^{\dagger}\colon$ 0-error algorithm, SC: Speaker Clustering, LM & AM: Language & Acoustic Model

	$\left \begin{smallmatrix} \mathrm{SC} + \mathcal{R}^\dagger \\ \mathrm{piped} \end{smallmatrix} \right $	LM only	SC+LM comb	AM only	SC+AM comb	AM+LM comb	$\begin{array}{c} \mathrm{SC+AM+LM} \\ \mathrm{comb} \end{array}$
MI ADOS	3.59 12.67	$\begin{array}{ c c } 9.49 \\ 12.37 \end{array}$	2.76 7.70	$35.45 \\ 14.03$	3.66 10.58	9.17 8.02	$2.71 \\ 5.98$

acou

Table: Misclassification Rates (%) of the different components when used independently and when combined.

 $\mathcal{R}^{\dagger}\colon$ 0-error algorithm, SC: Speaker Clustering, LM & AM: Language & Acoustic Model

							1			
		$\left egin{array}{l} \mathrm{SC} + \mathcal{R}^\dagger \\ \mathrm{piped} \end{array} \right $	LM only	SC+LM comb	AM only	SC+AM comb	AM+LM comb	SC+AM com		
	MI ADOS	$\begin{vmatrix} 3.59 \\ 12.67 \end{vmatrix}$	$\begin{array}{ c c } 9.49 \\ 12.37 \end{array}$	$\frac{2.76}{7.70}$	35.45 14.03	3.66 10.58	9.17 8.02	$2.7 \\ 5.9$		
	-45	sentation	of a tu	•	-42			a de la companya de l		
(AM_T)	-50	Cl T		$\log(ar{n}(r_{-} AM_{D}))$	-44 -46 -48	Ch P		•	300 turns of the test set in each graph	
$\log(\bar{p}(x))$	-55			الموراتيان	-50			•	size proportional to duration	
	-5	$\log(\bar{p}(x_a))$	AM_{Cl}	-45	-	$-52 -50 -48$ $\log(\bar{p}(x_a $		-42		
		(a) M	[(b) ADO	OS		USC SAME	`

(Psychologist vs. Child)

averaged log-likelihood

(Therapist vs. Client)

Table: Misclassification Rates (%) of the different components when used independently and when combined.

 $\mathcal{R}^{\dagger} \colon$ 0-error algorithm, SC: Speaker Clustering, LM & AM: Language & Acoustic Model

$\begin{array}{c c} & \operatorname{SC} + \mathcal{R}^{\dagger} \\ & \operatorname{piped} \end{array}$	LM	SC+LM	AM	SC+AM	AM+LM	SC+AM+LM
	only	comb	only	comb	comb	comb
$ \begin{array}{c c} MI & 3.59 \\ ADOS & 12.67 \end{array} $	$ \begin{array}{c} 9.49 \\ 12.37 \end{array} $		$\begin{vmatrix} 35.45 \\ 14.03 \end{vmatrix}$	$\frac{3.66}{10.58}$	9.17 8.02	$\frac{2.71}{5.98}$

Final relative improvement wrt piped architecture:

- 24.5% for the MI corpus (Therapist vs. Client)
- 52.8% for the ADOS corpus (Psychologist vs. Child)

Conclusions

We proposed a framework to incorporate speaker-specific and role-specific information for the SRR task, overcoming the problem of error propagation.

Drawbacks

- more data required to train the meta-classifier
- we evaluated using manually derived speaker turns and transcriptions

Future Work

- apply the method to multi-role databases
- formulate the framework to accommodate more than one speaker clustering and/or role recognition modules

