Exercise 1a):

The output for logistic regression model predicting whether a female is a liver patient for females in the data set follows.

The LOGISTIC Procedure

Model Information			
Data Set	WORK.FLIVER		
Response Variable	LiverPatient		
Number of Response Levels	2		
Model binary log			
Optimization Technique Fisher's scoring			

Number of Observations Read	135
Number of Observations Used	133

Response Profile		
Ordered Value	Total Frequency	
1	Yes	86
2	No	47

Probability modeled is LiverPatient='Yes'.

Note: 2 observations were deleted due to missing values for the response or explanatory variables.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	174.771	165.308	
SC	177.662	194.211	
-2 Log L	172.771	145.308	

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	27.4635	9	0.0012		
Score	16.2424	9	0.0620		
Wald	10.8317	9	0.2874		

Analysis of Maximum Likelihood Estimates					tes
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-5.9427	3.2385	3.3674	0.0665
Age	1	0.00510	0.0135	0.1423	0.7061
ТВ	1	-0.6743	1.2841	0.2757	0.5995
DB	1	2.0098	2.3780	0.7143	0.3980
Alkphos	1	0.00159	0.00185	0.7354	0.3911
Alamine	1	0.00269	0.00982	0.0750	0.7841
Aspartate	1	0.00708	0.00880	0.6476	0.4210
TP	1	1.8478	0.9939	3.4559	0.0630
ALB	1	-3.3686	1.9835	2.8842	0.0895
AGRatio	1	4.4397	3.0060	2.1813	0.1397

Odds Ratio Estimates			
Effect	Point Estimate	95% Wald Confidence Limits	
Age	1.005	0.979	1.032
ТВ	0.510	0.041	6.313
DB	7.462	0.071	788.928
Alkphos	1.002	0.998	1.005
Alamine	1.003	0.984	1.022
Aspartate	1.007	0.990	1.025
TP	6.346	0.905	44.516
ALB	0.034	< 0.001	1.680
AGRatio	84.745	0.234	>999.999

Association of Predicted Probabilities and Observed Responses			
Percent Concordant	72.1	Somers' D	0.441
Percent Discordant	27.9	Gamma	0.441
Percent Tied	0.0	Tau-a	0.203
Pairs	4042	c	0.721

We first fit the model by using all of the predictors and will see if there are any influential points. By looking at the diagnostics results, we can see that there are no influential points, so now we will perform model selection.

Model Information			
Data Set	WORK.FLIVER		
Response Variable	LiverPatient		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique Fisher's scoring			

Number of Observations	Read	135
Number of Observations	Used	133

Response Profile		
Ordered Value LiverPatient Frequ		
1	Yes	86
2	No	47

Probability modeled is LiverPatient='Yes'.

Note: 2 observations were deleted due to missing values for the response or explanatory variables.

Backward Elimination Procedure

Step 0. The following effects were entered:

Intercept Age TB DB Alkphos Alamine Aspartate TP ALB AGRatio

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	174.771	165.308	
SC	177.662	194.211	
-2 Log L	172.771	145.308	

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	27.4635	9	0.0012
Score	16.2424	9	0.0620
Wald	10.8317	9	0.2874

Step 1. Effect Alamine is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	174.771	163.384	
SC	177.662	189.397	
-2 Log L	172.771	145.384	

Testing Global Null Hypothesis: BETA=0				
Test Chi-Square DF Pr > ChiSe				
Likelihood Ratio	27.3872	8	0.0006	
Score	16.2122	8	0.0394	
Wald	10.7249	8	0.2178	

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
0.0753	1	0.7837		

Step 2. Effect Age is removed:

Model Convergence Status

Model Fit Statistics			
Intercept and Criterion Only Covariate			
AIC	174.771	161.502	
SC	177.662	184.625	
-2 Log L	172.771	145.502	

Testing Global Null Hypothesis: BETA=0				
Test Chi-Square DF Pr > ChiSo				
Likelihood Ratio	27.2690	7	0.0003	
Score	16.1689	7	0.0236	
Wald	10.6758	7	0.1534	

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
0.1945	2	0.9073		

Step 3. Effect TB is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	174.771	159.843	
SC	177.662	180.076	
-2 Log L	172.771	145.843	

Testing Global Null Hypothesis: BETA=0				
Test Chi-Square DF Pr > ChiSo				
Likelihood Ratio	26.9278	6	0.0001	
Score	15.4399	6	0.0171	
Wald	10.3134	6	0.1121	

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
0.5042	3	0.9180	

Step 4. Effect Alkphos is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept and Covariates		
AIC	174.771	158.883	
SC	177.662	176.225	
-2 Log L	172.771	146.883	

Testing Global Null Hypothesis: BETA=0			
Test Chi-Square DF Pr > ChiS			
Likelihood Ratio	25.8882	5	<.0001
Score	13.7504	5	0.0173
Wald	9.6890	5	0.0845

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
1.3077	4	0.8601	

Step 5. Effect AGRatio is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept and Covariates		
AIC	174.771	159.511	
SC	177.662	173.962	
-2 Log L	172.771	149.511	

Testing Global Null Hypothesis: BETA=0			
Test	DF	Pr > ChiSq	
Likelihood Ratio	23.2607	4	0.0001
Score	12.7100	4	0.0128
Wald	9.7616	4	0.0446

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
3.1875	5	0.6711	

Step 6. Effect ALB is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept and Covariates		
AIC	174.771	158.888	
SC	177.662	170.450	
-2 Log L	172.771	150.888	

Testing Global Null Hypothesis: BETA=0			
Test Chi-Square DF Pr > ChiS			
Likelihood Ratio	21.8831	3	<.0001
Score	10.6654	3	0.0137
Wald	8.4241	3	0.0380

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
4.4901	6	0.6107	

Step 7. Effect TP is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept and Covariates		
AIC	174.771	157.757	
SC	177.662	166.428	
-2 Log L	172.771	151.757	

Testing Global Null Hypothesis: BETA=0			
Test Chi-Square DF Pr > ChiS			
Likelihood Ratio	21.0140	2	<.0001
Score	10.4082	2	0.0055
Wald	7.7916	2	0.0203

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
5.2748	7	0.6265	

Step 8. Effect DB is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	174.771	163.433	
SC	177.662	169.214	
-2 Log L	172.771	159.433	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	13.3381	1	0.0003	
Score	7.1865	1	0.0073	
Wald	5.8270	1	0.0158	

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSo			
9.6079	8	0.2936	

Note: No (additional) effects met the 0.05 significance level for removal from the model.

	Summary of Backward Elimination				
Step	Effect Removed	DF	Number In	Wald Chi-Square	Pr > ChiSq
1	Alamine	1	8	0.0750	0.7841
2	Age	1	7	0.1179	0.7313
3	ТВ	1	6	0.2963	0.5862
4	Alkphos	1	5	0.7373	0.3905
5	AGRatio	1	4	1.9648	0.1610
6	ALB	1	3	1.3591	0.2437
7	TP	1	2	0.8626	0.3530
8	DB	1	1	2.8598	0.0908

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-0.1213	0.3061	0.1571	0.6918
Aspartate	1	0.0164	0.00679	5.8270	0.0158

Odds Ratio Estimates				
Effect	Point 95% Wald Estimate Confidence Limits			
Aspartate	1.017	1.003	1.030	

Association of Predicted Probabilities and Observed Responses			
Percent Concordant	60.4	Somers' D	0.223
Percent Discordant	38.1	Gamma	0.227
Percent Tied	1.6	Tau-a	0.103
Pairs	4042	c	0.612

P	Partition for the Hosmer and Lemeshow Test					
		LiverPati	ent = Yes	LiverPat	ient = No	
Group	Total	Observed	Expected	Observed	Expected	
1	11	5	5.72	6	5.28	
2	12	8	6.40	4	5.60	
3	14	10	7.70	4	6.30	
4	12	7	6.76	5	5.24	
5	13	6	7.51	7	5.49	
6	13	9	7.73	4	5.27	
7	15	7	9.37	8	5.63	
8	13	7	8.79	6	4.21	
9	13	11	10.08	2	2.92	
10	17	16	15.94	1	1.06	

Hosmer and Lemeshow Goodness-of-Fit Test			
Chi-Square	DF	Pr > ChiSq	
6.9186	8	0.5454	

We have now our final model with only Aspartate predictor.

Exercise 1b):

Looking at the table Model Fit statistics, the Log Likelihood column values under Intercept and Covariates can be compared to the Intercept Only column values. We have small values for both AIC and SC(163.433 and 169.214), so we may conclude that model with predictors will be better. The global tests indicate there is at least one significant parameter estimate. Hosmer-Lemeshow'stest gives us p-value of 0.5454, which is larger than 0.05, hence we may conclude that we accept null hypothesis, and our model fits okay. There are no influential points based on cbar and diagnostics look fine.

Exercise 1c):

The odds ratio for Aspartate is 1.017, and it is significant. We performed backward selection and can see now that the confidence interval does not include 1. The odds of an adult female being a liver patient with liver disease increase by a factor of 1.017 with a one unit increase in Aspartate.

Exercise 2a):

The output for logistic regression model predicting whether a male is a liver patient for males in the data set follows.

Model Information				
Data Set	WORK.MLIVER			
Response Variable	LiverPatient			
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	423
Number of Observations Used	421

Response Profile			
Ordered Value	LiverPatient	Total Frequency	
1	Yes	316	
2	No	105	

Probability modeled is LiverPatient='Yes'.

Note: 2 observations were deleted due to missing values for the response or explanatory variables.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	406.917	
SC	478.979	447.343	
-2 Log L	472.936	386.917	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	86.0193	9	<.0001	
Score	47.0936	9	<.0001	
Wald	38.0177	9	<.0001	

Analysis of Maximum Likelihood Estimates					
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-2.5252	1.5712	2.5832	0.1080
Age	1	0.0182	0.00837	4.7514	0.0293
TB	1	0.0124	0.0835	0.0220	0.8821
DB	1	0.3607	0.2351	2.3544	0.1249
Alkphos	1	0.00124	0.00102	1.4966	0.2212
Alamine	1	0.0148	0.00677	4.7905	0.0286
Aspartate	1	0.00254	0.00370	0.4711	0.4925
TP	1	0.6511	0.4389	2.2010	0.1379
ALB	1	-1.2062	0.8548	1.9915	0.1582
AGRatio	1	0.9500	1.3066	0.5287	0.4671

Odds Ratio Estimates				
Effect	Point Estimate	95% Wald Confidence Limits		
Age	1.018	1.002	1.035	
ТВ	1.012	0.860	1.192	
DB	1.434	0.905	2.274	
Alkphos	1.001	0.999	1.003	
Alamine	1.015	1.002	1.028	
Aspartate	1.003	0.995	1.010	
TP	1.918	0.811	4.533	
ALB	0.299	0.056	1.598	
AGRatio	2.586	0.200	33.478	

Association of Predicted Probabilities and Observed Responses					
Percent Concordant78.1Somers' D0.562					
Percent Discordant	21.9	Gamma	0.562		
Percent Tied 0.0 Tau-a 0.2					
Pairs	33180	c	0.781		

We first fit the model by using all of the predictors and will see if there are any influential points. By looking at the diagnostics results, we can see that there are no influential points, so now we will perform model selection.

Model Information			
Data Set WORK.MLIVE			
Response Variable LiverPatient			
Number of Response Levels 2			
Model binary logit			
Optimization Technique Fisher's scoring			

Number of Observations Read	423
Number of Observations Used	421

Response Profile			
Ordered Value LiverPatient Frequen			
1	Yes	316	
2	No	105	

Probability modeled is LiverPatient='Yes'.

Note: 2 observations were deleted due to missing values for the response or explanatory variables.

Backward Elimination Procedure

Step 0. The following effects were entered:

Intercept Age TB DB Alkphos Alamine Aspartate TP ALB AGRatio

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	406.917	
SC	478.979	447.343	
-2 Log L	472.936	386.917	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	86.0193	9	<.0001	
Score	47.0936	9	<.0001	
Wald	38.0177	9	<.0001	

Step 1. Effect TB is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	404.945	
SC	478.979	441.329	
-2 Log L	472.936	386.945	

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	85.9909	8	<.0001
Score	47.0878	8	<.0001
Wald	38.0201	8	<.0001

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
0.0231	1	0.8791	

Step 2. Effect Aspartate is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	403.467	
SC	478.979	435.808	
-2 Log L	472.936	387.467	

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	85.4694	7	<.0001
Score	46.7901	7	<.0001
Wald	37.5502	7	<.0001

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
0.4915	2	0.7821		

Step 3. Effect AGRatio is removed:

Model Convergence Status

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	402.205	
SC	478.979	430.503	
-2 Log L	472.936	388.205	

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	84.7314	6	<.0001
Score	46.7888	6	<.0001
Wald	37.5716	6	<.0001

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
1.1998	3	0.7530	

Step 4. Effect Alkphos is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	474.936	401.843	
SC	478.979	426.099	
-2 Log L	472.936	389.843	

Testing Global Null Hypothesis: BETA=0			
Test Chi-Square DF Pr > ChiSo			
Likelihood Ratio	83.0930	5	<.0001
Score	43.0511	5	<.0001
Wald	36.9307	5	<.0001

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
2.4948	4	0.6456	

Note: No (additional) effects met the 0.05 significance level for removal from the model.

	Summary of Backward Elimination					
Step	Effect Removed	DF	Number In	Wald Chi-Square	Pr > ChiSq	
1	ТВ	1	8	0.0220	0.8821	
2	Aspartate	1	7	0.4707	0.4927	
3	AGRatio	1	6	0.7016	0.4023	
4	Alkphos	1	5	1.2995	0.2543	

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-1.4297	0.9551	2.2405	0.1344		
Age	1	0.0190	0.00836	5.1573	0.0231		
DB	1	0.4484	0.1751	6.5559	0.0105		
Alamine	1	0.0188	0.00531	12.5841	0.0004		
TP	1	0.4192	0.2052	4.1745	0.0410		
ALB	1	-0.7260	0.2925	6.1621	0.0131		

	Odds Ratio Estimates				
Effect	Point Estimate	95% Confiden	Wald ce Limits		
Age	1.019	1.003	1.036		
DB	1.566	1.111	2.207		
Alamine	1.019	1.008	1.030		
TP	1.521	1.017	2.274		
ALB	0.484	0.273	0.858		

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	77.2	Somers' D	0.544	
Percent Discordant	22.8	Gamma	0.544	
Percent Tied	0.0	Tau-a	0.204	
Pairs	33180	c	0.772	

Partition for the Hosmer and Lemeshow Test						
		LiverPati	ent = Yes	LiverPati	ient = No	
Group	Total	Observed	Expected	Observed	Expected	
1	42	19	19.54	23	22.46	
2	42	25	23.26	17	18.74	
3	42	27	25.20	15	16.80	
4	42	22	27.58	20	14.42	
5	42	32	29.99	10	12.01	
6	42	32	32.45	10	9.55	
7	42	36	35.24	6	6.76	
8	42	40	38.70	2	3.30	
9	42	40	41.06	2	0.94	
10	43	43	42.97	0	0.03	

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	Chi-Square DF Pr > ChiSq					
6.3252	8	0.6109				

We have now our final model with Age, DB, Alamine, TP and ALB predictors.

Exercise 2b):

Looking at the table Model Fit statistics, the Log Likelihood column values under Intercept and Covariates can be compared to the Intercept Only column values. We have small values for both AIC and SC(401.843 and 426.099), so we may conclude that model with predictors will be better. The global tests indicate there is at least one significant parameter estimate. Hosmer-Lemeshow's test gives us p-value of 0.6109, which is larger than 0.05, hence we may conclude that we accept null hypothesis, and our model fits okay. There are no influential points based on cbar and diagnostics look fine.

Exercise 2c):

The odds ratio for Age is 1.019, for DB is 1.566, for Alamine is 1.019, for TP is 1.521 and for ALB is 0.483 and they are significant. We performed backward selection and can see now that the confidence intervals do not include 1. The odds of an adult male being a liver patient with liver disease increase by a factor of 1.019 with a one unit increase in Aspartate when others are constant. The odds of an adult male being a liver patient with liver disease increase by a factor of 1.019 with a one unit increase in DB when others are constant. The odds of an adult male being a liver patient with liver disease increase by a factor of 1.019 with a one unit increase in Alamine when others are constant. The odds of an adult male being a liver patient with liver disease increase by a factor of 1.521 with a one unit increase in TP when others are constant. The odds of an adult male being a liver patient with liver disease increase by a factor of 0.484 with a one unit increase in ALB when others are constant. By looking at the results we can see that we need more predictors to model predicting whether a male is a liver patient rather than predicting a female.

Exercise 3a):

We first consider a gamma log-linear model for four ounce drinks consumed per day as a function of four different predictors.

Model Information		
Data Set	WORK.BUPA	
Distribution	Gamma	
Link Function	Log	
Dependent Variable	four_oz	

Criteria For Assessing Goodness Of Fit				
Criterion	DF	Value	Value/DF	
Deviance	331	307.7732	0.9298	
Scaled Deviance	331	379.0762	1.1452	
Pearson Chi-Square	331	250.5826	0.7570	
Scaled Pearson X2	331	308.6361	0.9324	
Log Likelihood		-966.2582		
Full Log Likelihood		-966.2582		
AIC (smaller is better)		1944.5163		
AICC (smaller is better)		1944.7716		
BIC (smaller is better)		1967.4190		

	Analysis Of Maximum Likelihood Parameter Estimates						
Parameter	DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi-Square	Pr > ChiSq
Intercept	1	-3.2618	1.0536	-5.3267	-1.1969	9.59	0.0020
mcv	1	0.0511	0.0117	0.0281	0.0740	19.01	<.0001
alkphos	1	0.0011	0.0025	-0.0039	0.0061	0.19	0.6650
sgot	1	0.0126	0.0065	-0.0002	0.0255	3.74	0.0532
gammagt	1	0.0040	0.0016	0.0008	0.0072	5.87	0.0154
Scale	1	1.2317	0.0852	1.0756	1.4105		

Note: The scale parameter was estimated by maximum likelihood.

	LR Statistics For Type 1 Analysis						
Source	2*LogLikelihood	2*LogLikelihood DF Chi-Square Pr > ChiSq					
Intercept	-1987.4451						
mcv	-1954.8558	1	32.59	<.0001			
alkphos	-1953.1587	1	1.70	0.1927			
sgot	-1938.9391	1	14.22	0.0002			
gammagt	-1932.5163	1	6.42	0.0113			

LR Statistics For Type 3 Analysis					
Source	DF	Chi-Square	Pr > ChiSq		
mcv	1	18.13	<.0001		
alkphos	1	0.19	0.6639		
sgot	1	3.92	0.0478		
gammagt	1	6.42	0.0113		

First thing we can notice is that p-values for the predictors alkphos and sgot are larger than 0.05, so they are not statistically significant. However, to get to a final main effects model from here, we would want to remove terms one at a time based on type 3 and type 1 analyses. So both analyses say that we need to remove alkphos variable. Now we fit the model without alkphos.

Model Information		
Data Set	WORK.BUPA	
Distribution	Gamma	
Link Function	Log	
Dependent Variable	four_oz	

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	332	307.9265	0.9275			
Scaled Deviance	332	379.0939	1.1418			
Pearson Chi-Square	332	252.3314	0.7600			
Scaled Pearson X2	332	310.6498	0.9357			
Log Likelihood		-966.3526				
Full Log Likelihood		-966.3526				
AIC (smaller is better)		1942.7051				
AICC (smaller is better)		1942.8870				
BIC (smaller is better)		1961.7907				

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-3.2055	1.0456	-5.2548	-1.1562	9.40	0.0022		
mcv	1	0.0512	0.0117	0.0282	0.0741	19.11	<.0001		
sgot	1	0.0130	0.0065	0.0002	0.0257	3.97	0.0462		
gammagt	1	0.0040	0.0016	0.0008	0.0072	6.05	0.0139		
Scale	1	1.2311	0.0851	1.0751	1.4098				

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 1 Analysis							
Source	2*LogLikelihood DF Chi-Square Pr > Chi						
Intercept	-1987.4451						
mcv	-1954.8558	1	32.59	<.0001			
sgot	-1939.3421	1	15.51	<.0001			
gammagt	-1932.7051	1	6.64	0.0100			

LR Statistics For Type 3 Analysis							
Source	rce DF Chi-Square Pr > ChiS						
mcv	1	18.22	<.0001				
sgot	1	4.16	0.0413				
gammagt	1	6.64	0.0100				

We have removed alkphos variable and now see that sgot has become significant, p-value is 0.0462<0.05.

Exercise 3b):

So we have selected our best model based on Type 1 and Type 3 Analysis. Looking at the p-values for the parameter estimates, we can conclude that all of them are statistically significant. Residuals appear to have an upward trend, and it is also can be seen from the diagnostics plot. For the mcv variable, one increase in four_oz would result in an expected exp(0.0512)=1.053 multiplicative increase in number of four_oz. For sgot variable, one increase in four_oz would result in an expected exp(0.0130)=1.013 multiplicative increase in number of four_oz. For gammagt variable, one increase in four_oz would result in an expected exp(0.0040)=1.004 multiplicative increase in number of four_oz.

Exercise 4a):

We now consider log-linear Poisson model for the same variable(four oz).

Model Information			
Data Set	WORK.BUPA		
Distribution	Poisson		
Link Function	Log		
Dependent Variable	four_oz		

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	340	1705.9394	5.0175			
Scaled Deviance	340	1705.9394	5.0175			
Pearson Chi-Square	340	1722.7243	5.0668			
Scaled Pearson X2	340	1722.7243	5.0668			
Log Likelihood		2402.9285				
Full Log Likelihood		-1413.7027				
AIC (smaller is better)		2837.4055				
AICC (smaller is better)		2837.5824				
BIC (smaller is better)		2856.6232				

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-3.4612	0.4462	-4.3358	-2.5866	60.16	<.0001	
mcv	1	0.0535	0.0049	0.0439	0.0631	118.29	<.0001	
alkphos	1	0.0029	0.0011	0.0007	0.0051	6.88	0.0087	
sgot	1	0.0066	0.0020	0.0028	0.0105	11.34	0.0008	
gammagt	1	0.0036	0.0005	0.0027	0.0045	57.20	<.0001	
Scale	0	1.0000	0.0000	1.0000	1.0000			

Note: The scale parameter was held fixed.

LR Statistics For Type 1 Analysis								
Source	Deviance DF Chi-Square Pr > ChiSq							
Intercept	2063.2971							
mcv	1840.9124	1	222.38	<.0001				
alkphos	1823.5016	1	17.41	<.0001				
sgot	1756.8215	1	66.68	<.0001				
gammagt	1705.9394	1	50.88	<.0001				

LR Statistics For Type 3 Analysis							
Source DF Chi-Square Pr > Chis							
mcv	1	119.91	<.0001				
alkphos	1	6.80	0.0091				
sgot	1	11.02	0.0009				
gammagt	1	50.88	<.0001				

We can see that p-values for all of the variables are less than 0.05, and we can conlude that all of them are significant. This is also can be confirmed by Type 1 and Type 3 analyses.

We can see from the previous model that our scaled deviance over degrees of freedom is far from 1(=5.0175), so there is a need to consider overdispersed Poisson as well.

Model Information			
Data Set	WORK.BUPA		
Distribution	Poisson		
Link Function	Log		
Dependent Variable	four_oz		

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	340	1705.9394	5.0175			
Scaled Deviance	340	340.0000	1.0000			
Pearson Chi-Square	340	1722.7243	5.0668			
Scaled Pearson X2	340	343.3453	1.0098			
Log Likelihood		478.9125				
Full Log Likelihood		-1413.7027				
AIC (smaller is better)		2837.4055				
AICC (smaller is better)		2837.5824				
BIC (smaller is better)		2856.6232				

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-3.4612	0.9995	-5.4202	-1.5021	11.99	0.0005		
mcv	1	0.0535	0.0110	0.0319	0.0751	23.58	<.0001		
alkphos	1	0.0029	0.0025	-0.0020	0.0078	1.37	0.2415		
sgot	1	0.0066	0.0044	-0.0020	0.0152	2.26	0.1327		
gammagt	1	0.0036	0.0011	0.0015	0.0057	11.40	0.0007		
Scale	0	2.2400	0.0000	2.2400	2.2400				

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis										
Source	rce Deviance Num DF Den DF F Value Pr > F Chi-Square Pr > Cl										
Intercept	2063.2971										
mcv	1840.9124	1	340	44.32	<.0001	44.32	<.0001				
alkphos	1823.5016	1	340	3.47	0.0634	3.47	0.0625				
sgot	1756.8215	1	340	13.29	0.0003	13.29	0.0003				
gammagt	1705.9394	1	340	10.14	0.0016	10.14	0.0015				

	LR Statistics For Type 3 Analysis									
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq				
mcv	1	340	23.90	<.0001	23.90	<.0001				
alkphos	1	340	1.36	0.2452	1.36	0.2444				
sgot	1	340	2.20	0.1393	2.20	0.1384				
gammagt	1	340	10.14	0.0016	10.14	0.0015				

First thing we can notice is that p-values for the predictors alkphos and sgot are larger than 0.05, so they are not statistically significant. To get to a final main effects model from here, we would want to remove terms one at a time based on type 3 and type 1 analyses.

Model Information					
Data Set	WORK.BUPA				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	four_oz				

Criteria For Assessing Goodness Of Fit								
Criterion		Value	Value/DF					
Deviance	342	1725.4831	5.0453					
Scaled Deviance	342	342.0000	1.0000					
Pearson Chi-Square	342	1770.7497	5.1776					
Scaled Pearson X2	342	350.9721	1.0262					
Log Likelihood		474.3365						
Full Log Likelihood		-1423.4746						
AIC (smaller is better)		2852.9491						
AICC (smaller is better)		2853.0195						
BIC (smaller is better)		2864.4798						

Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq			
Intercept	1	-3.3887	0.9841	-5.3175	-1.4598	11.86	0.0006			
mcv	1	0.0564	0.0109	0.0351	0.0777	26.89	<.0001			
gammagt	1	0.0045	0.0009	0.0028	0.0063	26.69	<.0001			
Scale	0	2.2462	0.0000	2.2462	2.2462					

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis									
Source	Source Deviance Num DF Den DF F Value Pr > F Chi-Square Pr > Ch									
Intercept	2063.2971									
mcv	1840.9124	1	342	44.08	<.0001	44.08	<.0001			
gammagt	1725.4831	1	342	22.88	<.0001	22.88	<.0001			

LR Statistics For Type 3 Analysis									
Source	Num DF Den DF F Value Pr > F Chi-Square Pr > Chis								
mcv	1	342	27.22	<.0001	27.22	<.0001			
gammagt	1	342	22.88	<.0001	22.88	<.0001			

We removed both alkphos and sgot predictors since they were not significant, and Type 1 analysis also confirmed that we can remove alkphos. However removing just alkphos was not enough, so Type 3 analysis showed that sgot could be removed first actually.

Exercise 4b):

Now we got our final models for regular log-linear Poisson and overdispersed Poisson.

1. Log-linear Poisson: Looking at the p-values for the parameter estimates, we can conclude that all of them are statistically significant. Residuals appear to have an upward trend, and it is also can be seen from the diagnostics plot. For the mcv variable, one increase in four_oz would result in an expected exp(0.0535)=1.055 multiplicative increase in number of four_oz. For alkphos variable, one increase in four_oz would result in an expected exp(0.0029)=1.003 multiplicative increase in number of four_oz. For gammagt variable, one increase in four_oz would result in an expected exp(0.0066)=1.007 multiplicative increase in number of four_oz. For gammagt variable, one increase in four_oz would result in an expected exp(0.0036)=1.004 multiplicative increase in number of four_oz. 2. Overdispersed Poisson: Looking at the p-values for the parameter estimates, we can conclude that all of them are statistically significant. Residuals appear to have an upward trend, and it is also can be seen from the diagnostics plot. For the mcv variable, one increase in four_oz would result in an expected exp(0.0564)=1.058 multiplicative increase in number of four_oz. For gammagt variable, one increase in four_oz would result in an expected exp(0.0045)=1.0045 multiplicative increase in number of four_oz. As we can see the diagnostic plots were almost identical in all cases. However, looking at the estimates we can conclude that it will be reasonable to consider overdispersed Poisson model, since it is simple(involves only two predictors) and the estimates are little bit higher compared to the estimates in the previous (Gamma and regular Poisson models).