PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/21328
C12N 15/12, C07K 14/705, C12N 5/10, 15/57, 9/48, 9/14, 15/55	A2	(43) International Publication Date: 22 May 1998 (22.05.98)
(21) International Application Number: PCT/JPS (22) International Filing Date: 7 November 1997 (C		(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
(30) Priority Data: 8/301429 13 November 1996 (13.11.90	6)]	Published Without international search report and to be republished upon receipt of that report.
(71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP] Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanag (JP). PROTEGENE INC. [JP/JP]; 2-20-3, N. Meguro-ku, Tokyo 153 (JP).]; 4- awa 22	1, 19
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229 (JP). SEKINE, Shingo [JP/JP]; 4-4-1, Nishi-Ohnuma, Sagamihara-shi, Kanagawa 229 (JP). YAMAGUCHI, Tomoko [JP/JP]; 5-13-11, Takasago, Katsushika-ku, Tokyo 125 (JP). KOBAYASHI, Midori [JP/JP]; 647-2, Chougo, Fujisawa-shi, Kanagawa 252 (JP).). - -
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osoka 540 (JP).		

(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

Proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25 and DNAs encoding said proteins exemplified by cDNAs containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50. Said proteins can be provided by expressing cDNAs encoding human proteins having transmembrane domains and recombinants of these human cDNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	· SK	Słovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belginm	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Æ	Ireland	MN	Mongolia .	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	L	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

DESCRIPTION

Human Proteins Having Transmembrane Domains and DNAs Encoding These Proteins

TECHINICAL FIELD

The present invention relates to human proteins having transmembrane domains, DNAs encoding these proteins and eukaryotic cells expressing those DNAs. The proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be used as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be used as gene sources for large-scale production of the proteins encoded by said cDNAs. Moreover, the cells introduced with DNAs encoding transmembrane proteins therein and expressing transmembrane proteins in large amounts can be used for detection of the corresponding ligands as well as screening of novel low molecular medicines.

BACKGROUND ART

Membrane proteins play important roles, as signal receptors, ion channels, transporters, etc., for the material transportation and the information transmission which are mediated by the cell membrane. Their examples include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on,

2

WO 98/21328 PCT/JP97/04056

where the genes for many of them have been cloned already.

It has been clarified that the abnormalities of these membrane proteins are related to a number of hitherto cryptogenic diseases. For example, a gene for a membrane protein having 12 transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has been clarified that several membrane proteins act as the receptors when a virus infects the cells. For example, HIV-1 is revealed to infect into the cells through the mediation of a membrane protein fusin, a membrane protein on the T-cell membrane, having a CD-4 antigen and 7 transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to the elucidation of the causes of many diseases, whereby isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, many of membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in the animal cells to express the cDNA and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a biological technique for the change in the membrane permeability. However, this method is applicable only to cloning of a gene for a membrane protein with a known function.

In general, membrane proteins possess hydrophobic

3

transmembrane domains inside the proteins which are synthesized in the ribosome and then remain in the phospholipid to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

The object of the present invention is to provide novel human proteins having transmembrane domains, DNAs encoding said proteins and transformed eukaryotic cells capable of expressing said DNAs.

As the result of intensive studies, the present inventors were successful in cloning of cDNAs having transmembrane domains from a human full-length cDNA bank, thereby completing the present invention. That is to say, the present invention provides proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25 that are human proteins having transmembrane domains. The present invention also provides DNAs encoding said proteins such as cDNAs containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50 and transformed eukaryotic cells capable of expressing said DNAs.

Each of the proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc, a method for preparation of the peptide by the chemical synthesis on the basis of the amino acid sequence of the present invention, or a method for

4

production with the recombinant DNA technology using the DNA encoding the transmembrane domains of the present invention, wherein the method for obtainment by the recombinant DNA technology is employed preferably. For example, an in vitro expression can be achieved by preparation of an RNA by the in vitro transcription from a vector having a cDNA of the present invention, followed by the in vitro translation using this RNA as a template. Also, the recombination of the translation domain to a suitable expression vector by the method known in the art leads to the expression of a large amount of the encoded protein by using prokaryotic cells (e.g. Escherichia coli, Bacillus subtilis) or eukaryotic cells (e.g. yeasts, insect cells, animal cells).

In the case in which a protein of the present invention is expressed by a microorganism such as Escherichia coli, the translation region of a cDNA of the present invention is constructed in an expression vector having an origin, a promoter, ribosome-binding site(s), cDNA-cloning site(s), a terminator, etc. that can be replicated in the microorganism and, after transformation of the host cells with said expression vector, the thus-obtained transformant incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In that case, a protein fragment containing an optional region can be obtained by performing the expression with inserting an initiation codon and a termination codon before and after the optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion encoding said cDNA can be obtained by cleavage of said fusion

protein with an appropriate protease.

In the case wherein a protein of the present invention is to be produced in eukaryotic cells, the translation region of said cDNA may be subjected to recombination to an expression vector for eukaryotic cells having a promoter, a splicing domain, a poly(A) addition site, etc. and transfected into the eukaryotic cells so that the protein is produced as a membrane protein on the cell membrane surface. As the expression vector, there are exemplified pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, etc. Examples of the eukaryotic cells are mamamlian animal culture cells (e.g. simian renal cells COS7, chinese hamster ovarian cells CHO), blast yeasts, fission yeasts, silkworm yeasts, South African clawed toad oocytes, etc. However, any eukaryotic cells may be used insofar as the protein of the invention can be expressed on the cell membrane surface. order to introduce the expression vector into the eukaryotic cells, there may be used any per se conventional method such as electroporation method, calcium phosphate method, liposome method or DEAE dextran method.

For separation and purification of the protein of the invention from the culture after expression of such protein in prokaryotic cells or eukaryotic cells, conventional separation operations may be adopted, if necessary, in their proper combinaion. Examples of the conventional separation operations are treatment with a denaturing agent (e.g. urea) or a surfactant, ultrasonic treatment, enzymatic digestion, salting out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric point

6

electrophoresis, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, etc.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25. These fragments can be used as antigens for preparation of the antibodies. Also, the proteins of the present invention that have signal sequences appear in the form of maturation proteins on the cell surface, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, many membrane proteins are subjected to the processing on the cell surface to be converted to the secretor forms. These secretor proteins or peptides shall come within the scope of the present invention. When glycosylation sites are present in the amino acid sequences, expression in appropriate animal cells affords glycosylated proteins. Therefore, these glycosylated proteins or peptides also shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs encoding the above-mentioned proteins. Said DNAs can be obtained using the method by chemical synthesis, the method by cDNA cloning, and so on.

7

Each of the cDNAs of the present invention can be cloned from, for example, a cDNA library of the human cell origin. The cDNA is synthesized using as a template a poly(A)⁺ RNA extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNA can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)] as illustrated in Examples in order to obtain a full-length clone in an effective manner.

The primary selection of a cDNA encoding a human protein transmembrane domain(s) is performed by the having sequencing of a partial base sequence of the cDNA clone selected at random from the cDNA library, sequencing of the amino acid sequence encoded by the base sequence, and recognition of the presence or absence of hydrophobic site(s) in the resulting N-terminal amino acid sequence region. Next, the secondary selection is carried out by determination of the whole base sequence by the sequencing and the protein expression by the in vitro translation. The ascertainment of the cDNA of the present invention for encoding the protein having the secretory signal sequence is performed by using the signal sequence detection method [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. In other words, the ascertainment for the coding portion of the inserted cDNA fragment to function as a signal sequence is provided by fusing a cDNA fragment encoding the N-terminus of the target protein with a cDNA encoding the protease domain of urokinase and then expressing the resulting cDNA in COS7 cells to detect the urokinase activity in the cell culture medium. On the other hand, the N-terminal region is judged to remain in the membrane in the case where the urokinase activity is not detected in the cell culture medium.

The cDNAs of the present invention are characterized by containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50 and any of the base sequences represented by Sequence No. 51 to Sequence No. 75. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

	quence mber	HP Number	Cells	Number of Bases	Number of Amino Acid
			······		Residues
1,	26, 51	HP00442	HT-1080	986	205
2,	27, 52	HP00804	Leucocyte	1824	371
3,	28, 53	HP01098	Stomach	1076	179
			cancer		
4,	29, 54	HP01148	Liver	1591	347
5,	30, 55	HP01293	Liver	1888	554
6,	31, 56	HP10013	KB	2033	350
7,	32, 57	HP10034	HT-1080	911	209
8,	33, 58	HP10050	HT-1080	601	163

9

ſ,

9, 34, 59	HP10071	Stomach cancer	394	92
10, 35, 60	HP10076	บ937	732	172
11, 36, 61	HP10085	U937	697	149
12, 37, 62	HP10122	Stomach cancer	1186	188
13, 38, 63	HP10136	U937	1409	215
14, 40, 64	HP10175	Stomach cancer	974	112
15, 41, 65	HP10179	KВ	925	114
16, 41, 66	HP10196	HT-1080	1115	327
17, 42, 67	HP10235	HT-1080	1721	373
18, 43, 68	HP10297	Stomach cancer	1504	183
19, 44, 69	HP10299	Stomach cancer	532	116
20, 45, 70	HP10301	KB	662	152
21, 46, 71	HP10302	Liver	2373	559
22, 47, 72	HP10304	U-2 OS	1404	330
23, 48, 73	HP10305	U-2 OS	893	108
24, 49, 74	нр10306	U-2 OS	690	101
25, 50, 75	HP10328	KB	2186	372

Hereupon, the same clone as any of the cDNAs of the present invention can be easily obtained by screening of the cDNA library constructed from the cell line or the human tissue employed in the present invention, by the use of an oligonucleotide probe synthesized on the basis of the corresponding cDNA base sequence depicted in Sequence No. 51 to Sequence No. 75.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Therefore, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence No. 51 to Sequence No. 75 shall come within the scope of the present invention.

In a similar manner, any protein that is produced by these modifications comprising insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides shall come within the scope of the present invention, as far as said protein possesses the activity of the corresponding protein having the amino acid sequence represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence of the base sequence represented by Sequence No. 26 to No. 50 or of the base sequence represented by Sequence No. 51 to No. 75. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be used as the probes for the gene diagnosis.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the structure of the secretory signal sequence detection vector pSSD3.

Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00442.

Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00804.

Figure 4: A figure showing the result on the northern-blot hybridization of clone HP00804.

Figure 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01098.

Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01148.

Figure 7: A figure showing the result on the northern-blot hybridization of clone HP01148.

Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01293.

Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10013.

Figure 10: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10034.

Figure 11: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10050.

Figure 12: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10071.

Figure 13: A figure depicting the

12

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10076.

depicting Figure 14: Α fiqure hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10085.

Figure 15: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10122.

figure depicting Α Figure 16: hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10136.

figure depicting the A Figure 17: hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10175.

depicting the Figure 18: Α figure hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10179.

Α figure depicting the Figure 19: hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10196.

Α figure depicting the Figure 20: hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10235.

figure depicting the Figure 21: Α hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10297.

figure depicting the Figure 22: Α hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10299.

13

WO 98/21328 PCT/JP97/04056

Figure 23: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10301.

Figure 24: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10302.

Figure 25: A figure depicting the hydrophobicity/hydrophil the protein encoded by clone HP10304.

Figure 26: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10305.

Figure 27: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10306.

Figure 28: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10328.

BEST MODE FOR CARRING OUT INVENTION EXAMPLE

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature [Molecular Cloning. A Laboratory Manual*, Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from

TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Preparation of Poly(A) + RNA

The fibrosarcoma cell line HT-1080 (ATCC CCL 121), the epidermoid carcinoma cell line KB (ATCC CRL 17), the histiocyte lymphoma cell line U937 (ATCC CRL 1593), the osterosarcoma U-2 OS (ATCC HTB 96), a leukocyte isolated from the peripheral blood, tissues of stomach cancer delivered by the operation, and liver were used for human cells to extract mRNAs. Each of the cell lines was cultured by a conventional procedure.

After about 1 g of human tissues was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, total mRNAs were prepared in accordance with the literature [Okayama, H. et al., "Methods in Enzymology" Vol. 164, Academic Press, 1987]. These mRNAs were subjected to chromatography using an oligo(dT)-cellulose column washed with 20 mM Trishydrochloric acid buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A) RNA in accordance with the above-mentioned literature.

(2) Construction of cDNA Library

To a solution of 10 µg of the above-mentioned poly(A)[†] RNA in 100 mM Tris-hydrochloric acid buffer solution (pH 8) was added one unit of an RNase-free, bacterium-origin alkaline phosphatase and the resulting solution was allowed to react at 37°C for one hour. After the reaction solution

underwent the phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin pyrophosphatase (Epicenter Technologies) and the resulting solution at a total volume of 100 μ l was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a decapped poly(A)⁺ RNA solution.

To a solution of the decapped poly(A)⁺ RNA and 3 nmol of a DNA-RNA chimeric oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') in a mixed aqueous solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol were added 50 units of T4 RNA ligase and the resulting solution at a total volume of 30 μ l was allowed to react at 20°C for 12 hours. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a chimeric oligo-capped poly(A)⁺ RNA.

After the vector pKAl developed by the present inventors (Japanese Patent Kokai Publication No. 1992-117292) was digested with KpnI, an about 60-dT tail was inserted by a terminal transferase. This product was digested with EcoRV to remove the dT tail at one side and the resulting molecule was used as a vectorial primer.

After 6 µg of the previously-prepared chimeric oligo-

PCT/JP97/04056

capped poly(A) + RNA was annealed with 1.2 µg of the vectorial primer, the product was dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), mixed with 200 units of a reverse transferase (GIBCO-BRL), and the resulting solution at a total volume of 20 µl was allowed to react at 42°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thusobtained pellets were dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM NaCl, 10 mM MqCl2, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and the resulting solution at a total volume of 20 µl was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 20 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl2, 10 mM $(NH_4)_2SO_4$, and 50 $\mu g/ml$ bovine serum albumin. Thereto were added 60 units of Escherichia coli DNA ligase and the resulting solution was allowed to react at 16°C for 16 hours. To the reaction solution were added 2 µl of 2 mM dNTP, 4 units of Escherichia coli DNA polymerase I, and 0.1 unit of Escherichia coli DNase H and the resulting solution was allowed to react at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used to transform Escherichia coli DH12S (GIBCO-BRL). The

transformation was carried out by the electroporation method. A portion of the transformant was inoculated on a 2xYT agar culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. A colony grown on the culture medium was randomly picked up and inoculated on 2 ml of the 2xYT culture medium containing 100 μg/ml ampicillin, which was incubated at 37°C overnight. The culture medium was centrifuged to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. After the plasmid DNA was double-digested with EcoRI and NotI, the product was subjected to 0.8% agarose gel electrophoresis to determine the size of the cDNA insert. In addition, by the use of the obtained plasmid as a template, the sequence reaction using M13 universal primer labeled with a fluorescent dye and Taq polymerase (a kit of Applied Biosystems Inc.) was carried out and the product was analyzed by a fluorescent DNA-sequencer (Applied Biosystems Inc.) to determine the base sequence of the cDNA 5'-terminal of about 400 bp. The sequence data were filed as a homo-protein cDNA bank data base.

(3) Selection of cDNAs Encoding Proteins Having Transmembrane Domains

The base sequence registered in the homo-protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminal of the portion encoded by ORF. These clones were sequenced from the both 5' and 3' directions by using the deletion method to

PCT/JP97/04056

determine the whole base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Bio. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of putative transmembrane domain(s) in the amino acid sequence of an encoded protein, this protein was considered as a membrane protein.

(4) Construction of Secretory Signal Detection Vector pSSD3

One microgram of pSSD1 carrying the SV40 promoter and a
cDNA encoding the protease domain of urokinase [YokoyamaKobayashi, M. et al., Gene 163: 193-196 (1995)] was digested
with 5 units of BglII and 5 units of EcoRV. Then, after
dephosphorylation at the 5' terminal by the CIP treatment, a
DNA fragment of about 4.2 kbp was purified by cutting off
from the gel of agarose gel electrophoresis.

Two oligo DNA linkers, L1 (5'-GATCCCGGGTCACGTGGGAT-3') (5'-ATCCCACGTGACCCGG-3'), were synthesized and L2 phosphorylated by T4 polynucleotide kinase. After annealing linkers, followed by ligation with of the both previously-prepared pSSD1 fragment by T4 DNA Escherichia coli JM109 was transformed. A plasmid pSSD3 was prepared from the transformant and the objective recombinant was confirmed by the determination of the base sequence of the linker-inserted fragment. Figure 1 illustrates the structure of the thus-obtained plasmid. The present plasmid vector carries three types of blunt-end formation restriction enzyme sites, SmaI, PmaCI, and EcoRV. Since these cleavage sites are positioned in succession at an interval of 7 bp, selection of an appropriate site in combination of three types of frames for the inserting cDNA allows to construct a vector expressing a fusion protein.

(5) Functional Verification of Secretory Signal Sequence

Whether the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the abovementioned steps functions as the secretory signal sequence was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site that existed at the downstream of the portion expected for encoding the secretory signal sequence. In the case in which this restriction enzyme site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the mung-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter and a cDNA encoding the secretory sequence at the downstream of the promoter was separated by agarose gel electrophoresis. This fragment was inserted between the pSSD3 HindIII site and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal portion of the target cDNA and the urokinase protease domain.

After Escherichia coli (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, the helper phage M13KO7 (50 µl) was added and the

incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there was used as a control a suspension of single-stranded particles prepared in the same manner from the vector pKAl-UPA containing pSSD3 and a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

The simian-kidney-origin culture cells, COS7, were incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 \times 10 5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 hydrochloric acid (pH 7.5) (TDMEM). To the cells were added 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 µl of TRANSFECTAM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4)

WO 98/21328

containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM potassium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. The diameter of the thus-obtained clear circle was taken as an index for the urokinase activity. In the case in which a cDNA fragment codes for the amino acid sequence that functions as a secretory signal sequence, a fusion protein is secreted to form a clear circle by its urokinase activity. Therefore, in the case in which a clear circle is not formed, the fusion protein remains as trapped in the membrane and the cDNA fragment is considered to code for a transmembrane domain.

(6) Protein Synthesis by In Vitro Translation

The plasmid vector carrying the cDNA of the present the in vitro utilized for invention was transcription/translation by the $T_{N}T$ rabbit reticulocyte lysate kit (Promega Biotec). In this case, [35]methionine was added and the expression product was labeled with the radioisotope. All reactions were carried out by following the protocols attached to the kit. Two micrograms of the plasmid was allowed to react at 30°C for 90 minutes in total 25 ml of a reaction solution containing 12.5 μl of the $T_N T$ rabbit reticulocyte lysate, 0.5 µl of the buffer solution (attached to the kit), 2 µl of an amino acid mixture (methionine-free), 2 μ l (0.37 MBq/ μ l) of [35 S]methionine (Amersham Corporation), 0.5 μl of T7 RNA polymerase, and 20 U of RNasin. To 3 μl of WO 98/21328

PCT/JP97/04056

the reaction solution was added 2 µl of an SDS sampling buffer (125 mM Tris-hydrochloric acid buffer solution, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting solution was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(7) Northern Blot Hybridization

The northern blot hybridization was carried out in order to examine the expression pattern in the human tissues. Membranes on which poly(A)⁺ RNAs isolated from each of the human tissues are blotted are purchased from Clontech Inc. cDNA fragments which were excised from the objective clones with appropriate restriction enzymes were subjected to separation by agarose gel electrophoresis followed by labeling with [³²P] dCPT (Amersham Corporation) using the Random Primer Labeling Kit (Takara Shuzo Co., Ltd.). Hybridization was carried out using a solution attached to the blotted membrane in accordance to the protocol.

(8) Expression in COS7

Escherichia coli having an expression vector of the protein of the invention was infected with helper phage M13K07, and single stranded phage was obtained by the above method. Using the thus obtained phage, the expression vector was introduced into simian kidney-originated culture cells COS7 according to the above method. Cultivation was carried out at 37°C in the presence of 5 % CO₂ for 2 hours and then in a medium containing [35 S]cysteine for 1 hour. The cells

23

PCT/JP97/04056

were collected, dissolved and subjected to SDS-PAGE, whereby a band corresponding to a protein as the expression product, which was not present in the COS cells, was revealed.

(9) Clone Examples

<HP00442> (Sequence Number 1, 26, 51)

Determination of the whole base sequence for the cDNA insert of clone HP00442 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 618 bp, and a 3'-non-translation region of 287 bp. The ORF codes for a protein consisting of 205 amino acid residues 5 transmembrane Figure 2 depicts domains. with hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation did not reveal the formation of distinct bands for the translation products and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the proteolipid protein PPA1 of the baker's yeast proton ATPase (SWISS-PROT Accession No. P23968). Table 2 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the proteolipid protein PPA1 of the baker's yeast proton ATPase (PL). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 56.8% in the entire region

24

except for the N-terminal.

Table 2

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. H87379), but the present protein can not be predicted from this sequence.

The proteolipid protein PPAl of the baker's yeast proton ATPase is a membrane protein essential to the growth

25

of cells [Apperson, M. et al., Biochem. Biophys. Res. Commun. 168: 574-579 (1990)]. Accordingly, the protein of present invention, which is homologous to said protein, is considered to be essential to the growth of human cells and can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of the present protein. <HP00804> (Sequence Number 2, 27, 52)

Determination of the whole base sequence for the cDNA insert of clone HP00804 obtained from the human leukocyte cell cDNA libraries revealed the structure consisting of a 5'-non-translation region of 132 bp, an ORF of 1116 bp, and a 3'-non-translation region of 576 bp. The ORF codes for a protein consisting of 371 amino acid residues with 7 transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle. The result of the in vitro translation did not reveal the formation of distinct bands for the translation products.

Examination of the expression pattern in the tissues by the northern blot hybridization using the cDNA fragment of the present invention revealed that the expression occurred in all tissues examined as shown in Figure 4. Therefore, the protein of the present invention is considered to be a housekeeping protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat NMDA receptor - glutamate-binding subunit (GenBank Accession No. S61973). Table 3 indicates the comparison of the amino acid sequences

between the human protein of the present invention (HP) and the rat NMDA receptor - glutamate-binding subunit (RN). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and represents an amino acid residue analogous to that in the protein of the present invention. This subunit consists of 516 amino acid residues and a region from glutamine at position 68 to arginine at position 342 possessed a 92.6 % homology with the C-terminal 270 amino acid residues in the protein of the present invention. However, any homology was not observed in the N-terminal region. Hereupon, a characteristic repeated sequence that is rich with proline, tyrosine, and glycine was observed in the N-terminal region of the protein of the present invention.

Table 3

SVFTFVAEVKGFVRENVWTYYVSYAVFFISLIVLSCCGDFRRKHPWNLVALSVLTASLSY

HP MSHEKSFLVSGDNYPPPNPGYPGGPQPPMPPYAQPPYPGAPYPQPPFQPSPYGQPGYPHG

	****.*******
RN	AIFTFVGEVKGFVRANVWTYYVSYAIFFISLIVLSCCGDFRKKHPWNLVALSILTISLSY
HP	MVGMIASFYNTEAVIMAVGITTAVCFTVVIFSMQTRYDFTSCMGVLLVSMVVLFIFAILC

RN	MVGMIASFYNTEAVIMAVGITTAVCFTVVIFSMQTRYDFTSCMGVLLVSVVVLFIFAILC
НР	IFIRNRILEIVYASLGALLFTCFLAVDTQLLLGNKQLSLSPEEYVFAALNLYTDIINIFL

RN	IFIRNRILEIVYASLGALLFTCFLAVDTQLLLGNKQLSLSPEEYVFAALNLYTDIINIFL
НР	YILTIIGRAKE

RN	YILTIIGRSQGIGQAPAQVAWWAQTHAPAMTLPSVLPPLWFPAMAWSRGSPSRPRVCTLQ

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. W25936), but any of them was shorter than the present cDNA and did not contain the initiation codon.

The rat NMDA receptor - glutamate-binding subunit has been found as one of the subunits of the NMDA receptor complex which exists specifically in the brain [Kumar. K. N. et al., Nature 354: 70-73 (1991)]. Despite a high homology with the protein of the present invention, the subunit shows different expression patterns in the N-terminal sequence and the tissues, whereby both molecules are considered to possess different functions. Since the protein of the present invention possesses 7 transmembrane

domains which are characteristic to channels and transporters, this protein is considered to play a role as a channel and a transporter. Because the protein of the present invention is a housekeeping protein essential to the cells, the present protein can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of this protein.

<HP01098> (Sequence Number 3, 28, 53)

Determination of the whole base sequence for the cDNA insert of clone HP01098 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 61 bp, an ORF of 540 bp, and a 3'-non-translation region of 475 bp. The ORF codes for a protein consisting of 179 amino acid residues with one transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 20 kDa that was almost consistent with the molecular weight of 20,625 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was completely identical with a 18-kDa subunit of the canine microsomal signal peptidase (SWISS-PROT Accession No. P21378). Therefore, it was verified that the cDNA of the present invention codes for the human homologue of the 18-kDa subunit of the microsomal signal peptidase.

The search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs

29

possessing the homology of 90% or more (for example, Accession No. T60549), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

The 18-kDa subunit of the canine microsomal signal peptidase has been found as one of subunits of the signal peptidase complex that exist in the microsome [Schelness, G. S. & Blobel, G., J. Biol. Chem. 265: 9512-9519 (1990)]. The signal peptidase is an enzyme that cleaves the signal sequence upon secretion of a secretory protein at the endoplasmic reticulum. Therefore, the cDNA of the present invention can be utilized for the production of the present protein as well as for the diagnosis and the treatment of diseases caused by the abnormality of the present protein. < HP01148> (Sequence Number 4, 29, 54)

Determination of the whole base sequence for the cDNA insert of clone HP01148 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 101 bp, an ORF of 1044 bp, and a 3'-non-translation region of 446 bp. The ORF codes for a protein consisting of 347 amino acid residues with one transmembrane domain at the N-terminal. Figure 6 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified, upon transduction into the COS7 cells of an expression vector in which a HindIII-PvuII fragment containing a cDNA fragment encoding the N-terminal 178

amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 41 kDa that was almost consistent with the molecular weight of 38,101 predicted from the ORF.

Examination of the expression pattern in the tissues by the northern blot hybridization using the cDNA fragment of the present invention revealed that a strong expression occurred in the spleen, as shown in Figure 7. It was also indicated that a slight expression occurred in the liver.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the bovine WCl antigen (SWISS-PROT Accession No. P30205). Table 4 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the bovine WCl antigen (WC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 38%.

Table 4

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGW

WC VLPQCNDFLSQPAGSAASKESSPYCSDSRQLRLVDGGGPCGGRVEILDQGSWGTICDDDW

HP

HP	DIKDVAVLCRELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEV
	. *..*
WC	DLDDARVVCRQLGCGEALNATGSAHFGAGSGPIWLDDLNCTGKESHVWRCPSRGWGR
HP	YDCSHEEDAGASCENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRA
	.**.*.****. * .* *** ***
WC	HDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDIT
ĦР	AKVVCRQLGCGRAVLTQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGFWGKNTCNHD
	*.*****
WC	VSVICRQLGCGDSGSLNTSVGLRE-GSRPRWVDLIQCRKMDTSLWQCPSGPWKYSSCSPK
ĦР	EDTWVECEDPFDLRLVGGDNLCSGRLEVLHKGVWGSVCDDNWGEKE
	*** *** ****.** ** ***
WC	EEAYISCEGRRPKSCPTAAACTDREKLRLRGGDSECSGRVEVWHNGSWGTVCDDSWSLAE
HР	DQVVCKQLGCGKSLSPSFRDRKCYGPGVGRTWLDNVRCSGEEQSLEQCQHRFWGFHDCTH

WC	AEVVCQQLGCGQALE-AVR-SAAFGPGNGSIWLDEVQCGGRESSLWDCVAEPWGQSDCKH
HP	QEDVAVICSG
	.* *
WC	EEDAGVRCSGVRTTLPTTTAGTRTTSNSLPGIFSLPGVLCLILGSLLFLVLVILVTQLLR

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H91200), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The bovine WCl antigen has been found as a membrane

antigen which is expressed specifically in $\gamma\delta$ T cells [Wijngaard, P. L. J. et al., J. Immunol. 149: 3273-3277 (1992)]. The region showing an analogy is called the scavenger receptor cysteine-rich domain (SRCR) which also exists as a repeated sequence in macrophage scavenger receptors [Matsumoto, A. et al., Proc. Natl. Acad. Sci. USA 87: 9133-9137 (1990)], T cell differentiation antigen CD6 [Aruffo, A. et al., J. Exp. Med. 174: 949-952 (1991)], and so on. Since the present protein is expressed specifically in the spleen, This protein is considered to be deeply associated with the functions of the spleen and also to function as a receptor in the same manner as other SRCR family members.

<HP01293> (Sequence Number 5, 30, 55)

Determination of the whole base sequence for the cDNA insert of clone HP01293 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 89 bp, an ORF of 1665 bp, and a 3'-non-translation region of 134 bp. The ORF codes for a protein consisting of 554 amino acid residues with 12 transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat cation transporter

(GenBank Accession No. X78855). Table 5 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the mouse interstitial cell protein (MM). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 78.1% among the entire regions.

Table 5

ĦР	MPTVDDILEQVGESGWFQKQAFLILCLLSAAFAPICVGIVFLGFTPDHHCQSPGVAELSQ
	****** ***** ****** *******
RN	MPTVDDVLEQVGEFGWFQKQAFLLLCLISASLAPIYVGIVFLGFTPGHYCQNPGVAELSQ
HP	RCGWSPAEELNYTVPGLGPAGEA-FLGQCRRYEVDWNQSALSCVDPLASLATNRSHLPLG
	***** ********** ** ** ** ** ** ** ** *
RN	RCGWSQAEELNYTVPGLGPSDEASFLSQCMRYEVDWNQSTLDCVDPLSSLVANRSQLPLG
HР	PCQDGWVYDTPGSSIVTEFNLVCADSWKLDLFQSCLNAGFFFGSLGVGYFADRFGRKLCL

RN	PCEHGWVYDTPGSSIVTEFNLVCGDAWKVDLFQSCVNLGFFLGSLVVGYIADRFGRKLCL
нр	LGTVLVNAVSGVLMAFSPNYMSMLLFRLLQGLVSKGNWMAGYTLITEFVGSGSRRTVAIM
	* *.**.**** * .*.* ********************
RN	LVTTLVTSVSGVLTAVAPDYTSMLLFRLLQGMVSKGSWVSGYTLITEFVGSGYRRTTAIL
HP	YQMAFTVGLVALTGLAYALPHWRWLQLAVSLPTFLFLLYYWCVPESPRWLLSQKRNTEAI

YQMAFTVGLVGLAGVAYAIPDWRWLQLAVSLPTFLFLLYYWFVPESPRWLLSQKRTTRAV HP KIMDHIAQKNGKLPPADLKMLSLEEDVTEKLSPSFADLFRTPRLRKRTFILMYLWFTDSV ** ****** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** RIMEQIAQKNGKVPPADLKMLCLEKDASKKRSPSFADLFRTPNLRKHTVILMYLWFSCAV HP LYOGLILHMGATSGNLYLDFLYSALVEIPGAFIALITIDRVGRIYPMAVSNLLAGAACLV LYQGLIMHVGATGANLYLDFFYSSLVEFPAAFIILVTIDRIGRIYPIAASNLVTGAACLL HP MTFISPDLHWLNIIIMCVGRMGITIAIQMICLVNAELYPTFVRNLGVMVCSSLCDIGGII RN MIFIPHELHWLNVTLACLGRMGATIVLQMVCLVNAELYPTFIRNLGMMVCSALCDLGGIF HP TPFIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLG-RKAKPK RN TPFMVFRIMEVWQALPLILFGVLGLTAGAMTLLLPETKGVALPETIEEAENLGRRKSKAK HP ENTIYLKVQTSEPSGT ****** *** . . . * . * RN ENTIYLQVQTGKSSST

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there did not exist any human gene and human EST possessing the homology of 90% or more.

The rat cation transporter has been found as a membrane protein that relates to the drug excretion in the kidney [Grundemann, D. et al., Nature 372: 549-552 (1994)]. Accordingly, the protein of the present invention which is homologous to this transporter is considered to possess a

35

similar function and can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of this protein. In addition, since the present protein is considered to relate to the drug excretion, the cells in which this protein is expressed can be utilized as a tool for the drug design of these drugs. Furthermore, since the present protein is expressed principally in the liver and the kidney, a molecule that is prepared so as to possess an affinity to this protein is applicable for the drug delivery system into these tissues.

<HP10013> (Sequence Number 6, 31, 56)

Determination of the whole base sequence for the cDNA insert of clone HP10013 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 96 bp, an ORF of 1053 bp, and a 3'-non-translation region of 884 bp. The ORF codes for a protein consisting of 350 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Figure 9 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein functioned as a signal sequence at the N-terminal from the observation that the urokinase activity was detected in the culture medium, upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoO65I fragment (treated with the mungbean nuclease) containing a cDNA fragment encoding the Nterminal 65 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-I membrane protein. The in vitro translation resulted in the formation of a translation product of 39 kDa that was almost consistent with the molecular weight of 39,008 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H07998), but any of them was shorter than the present cDNA and did not contain the initiation codon.

<HP10034> (Sequence Number 7, 32, 57)

Determination of the whole base sequence for the cDNA insert of clone HP10034 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 175 bp, an ORF of 630 bp, and a 3'-non-translation region of 106 bp. The ORF codes for a protein consisting of 209 amino acid residues with 4 transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 22,432 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human tumor-associated antigen

WO 98/21328

L6 (SWISS-PROT Accession No. P30408). Table 6 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human tumorassociated antigen L6 (L6). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 31.8%.

Table 6

HP	MVSSPCTQASSRTCSRILGLSLGTAALPAAGANVALLLPNWDVTYLLRGLLGRHAMLGTG
	..***. **. **** . *.*
L6	MCYGKCARCIGHSLVGLALLCIAANILLYFPNGETKYASENHLSRFVWFFSG
HP	LWGGGLMVLTAA-ILISL-MGWRYGCFSKSGLCRSVLTALLSGGLALLGALICFVTSG
	. ****. * . * . * * * * * * *
L6	IVGGGLLMILLPAFVFIGLEQDDCCGCCGHENCGKRCAMLSSVLAALIGIAGSGYCVIVAA
HP	VALKDGPFCMFDVSSFNQTQAVKYGYPFKDLHSRNYLYDRSLWNSVCLEPSAAVVWHVSL
	***** * **** * ***** * *****
L6	LGLAEGPLCL-DSLGQWNYTFASTEGQYLLDTSTWSE-CTEPKHIVEWNVSL
HP	FSALLCISLLQLLLVVVHVINSLLGLFCSLCEK
	** ** * *** * * *
L6	FSILLALGGIEFILCLIQVINGVLGGICGFCCSHQQQYDC

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there did not exist any human gene and human EST possessing the homology of 90% or more.

The human tumor-associated antigen L6 is a member of the membrane antigen TM4 super-family proteins that are expressed abundantly on the cell surface of human tumors [Marken, J. S. et al., Proc. Natl. Acad. Sci. USA 89: 3503-3507 (1992)]. Since these membrane antigens are expressed specifically in specific cells and in cancer cells, an antibody that is prepared so as to bind to this antigen is applicable for a variety of diagnoses and as a carrier for the drug delivery. Furthermore, cells in which such a membrane antigen is expressed by transduction of the membrane antigen gene are applicable to the detection of the corresponding ligand.

<HP10050> (Sequence Number 8, 33, 58)

Determination of the whole base sequence for the cDNA insert of clone HP10050 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 9 bp, an ORF of 492 bp, and a 3'-non-translation region of 100 bp. The ORF codes for a protein consisting of 163 amino acid residues with one transmembrane domain. Figure 11 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was almost consistent with the molecular weight of 18,364 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H03117), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10071> (Sequence Number 9, 34, 59)

Determination of the whole base sequence for the cDNA insert of clone HP10071 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 46 bp, an ORF of 279 bp, and a 3'-non-translation region of 69 bp. The ORF codes for a protein consisting of 92 amino acid residues with 2 transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 12 kDa that was almost consistent with the molecular weight of 10,094 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R097442), but many sequences were not

distinct and the same ORF as that in the present cDNA was not identified.

<HP10076> (Sequence Number 10, 35, 60)

Determination of the whole base sequence for the cDNA insert of clone HP10076 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 519 bp, and a 3'-non-translation region of 132 bp. The ORF codes for a protein consisting of 172 amino acid residues with 2 transmembrane domains. Figure 13 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoO651 (treated with mung-bean nuclease) fragment containing a cDNA fragment encoding the N-terminal 167 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 24 kDa that was almost consistent with the molecular weight of 18,450 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein of 23.1 kDa (SWISS-PROT Accession No. P34222). Table 7 indicates the comparison of the amino acid sequences between the human protein of the present

invention (HP) and the baker's yeast hypothetical membrane protein of 23.1 kDa (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 47.5% in the C-terminal region of 139 amino acid residues.

Table 7

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed

some ESTs possessing the homology of 90% or more (for example, Accession No. T74847), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10085> (Sequence Number 11, 36, 61)

Determination of the whole base sequence for the cDNA insert of clone HP10085 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 150 bp, an ORF of 450 bp, and a 3'-non-translation region of 97 bp. The ORF codes for a protein consisting of 149 amino acid residues with one transmembrane domain at the N-terminal. Figure 14 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoRI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 57 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 20 kDa that was almost consistent with the molecular weight of 17,307 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human early activation antigen

CD69 (SWISS-PROT Accession No. Q07108). Table 8 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human early activation antigen CD69 (CD). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 36.6% in the C-terminal region of 112 amino acid residues.

Table 8

TIIDNIEEMNFLRRYKCSSDHWIGLKMAKNRTGQWVDGATFTKSFGMRGSEGCAYLSDDG

.**. **.**. **. **. **. **. **.

CD AVIDSEKDMNFLKRYAGREEHWVGLKKEPGHPWKWSNGKEFNNWFNVTGSDKCVFLKNTE

HP AATARCYTERKWICRKRIH

... **. ***.*

CD VSSMECEKNLYWICNKPYK

44

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H11808), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

The human early activation antigen CD69 is a glycoprotein that appears on the surface of activated lymphocytes and a member of the C-type lectin super-family [Hamann, J. et al., J. Immunol. 150: 4920-4927 (1993)]. Since these membrane antigens are expressed specifically in some specific cells, an antibody that is prepared so as to bind to this antigen is applicable for a variety of diagnoses and as a carrier for the drug delivery. Furthermore, cells in which such a membrane antigen is expressed by transduction of the membrane antigen gene are applicable to the detection of the corresponding ligand. <hr/>

Determination of the whole base sequence for the cDNA insert of clone HP10122 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 138 bp, an ORF of 567 bp, and a 3'-non-translation region of 481 bp. The ORF codes for a protein consisting of 188 amino acid residues with 2 transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 22 kDa that was almost consistent with the

45

molecular weight of 21,175 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T80360), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10136> (Sequence Number 13, 38, 63)

Determination of the whole base sequence for the cDNA insert of clone HP10136 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 648 bp, and a 3'-non-translation region of 680 bp. The ORF codes for a protein consisting of 215 amino acid residues with one transmembrane domain at the C-terminal. Figure 16 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 28 kDa that was almost consistent with the molecular weight of 24,740 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast protein transport protein SLY2 (SWISS-PROT Accession No. P22214). Table 9 indicates the comparison of the amino acid

sequences between the human protein of the present invention (HP) and the baker's yeast protein transport protein SLY2 (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 36.1% in the entire regions.

Table 9

***	AND A MACCADINA DOLDY A A CHONDONOCORDI ONDOCO ADOLDODI MOCCODED CELEBRACAME
нР	MVILITMIARVADGLPLAASMQEDEQSGRDLQQYQSQAKQLFRKLNEQSPTRCTLEAGAMT
	*. *.* * **** .* *
sc	MIKSTLIYRE-DGLPLCTSVDNENDPSLFEQKQKVKIVVSRLTPQSATEATLESGSFE
HP	FHYIIEQGVCYLVLCEAAFPKKLAFAYLEDLHSEFDEQHGKKVPTVS-RPYSFIEFDTFI
	.** *.*.*****.**. ** *
sc	IHYLKKSMVYYFVICESGYPRNLAFSYLNDIAQEFEHSFANEYPKPTVRPYQFVNFDNFL
HP	QKTKKLYIDSRARRNLGSINTELQDVQRIMVANIEEVLQRGEALSALDSKANNLSSLSKK
	*.*** * * *** ** .*** **** ***
sc	QMTKKSYSDKKVQDNLDQLNQELVGVKQIMSKNIEDLLYRGDSLDKMSDMSSSLKETSKR
HP	YRQDAKYLNMRSTYAKLAAVAVFFIMLIVYVRFWWL
	***. **. **. ***.
sc	YRKSAQKINFDLLISQYAPI-VIVAFFFVFL-FWWIFLK

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed

some ESTs possessing the homology of 90% or more (for example, Accession No. R80136), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

The baker's yeast protein transport protein SLY2 has been known to be essential for endoplasmic reticulum-to-Golgi protein transport and to be also associated with the control of the cell cycle [Dascher, C. et al., Mol. Cell. Biol. 11: 872-885 (1991)]. Therefore, the cDNA of the present invention can be utilized for the production of the present protein as well as for the diagnosis and the treatment of diseases caused by the abnormality of the present protein.

<HP10175> (Sequence Number 14, 39, 64)

Determination of the whole base sequence for the cDNA insert of clone HP10175 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 173 bp, an ORF of 339 bp, and a 3'-non-translation region of 462 bp. The ORF codes for a protein consisting of 112 amino acid residues with 4 transmembrane domains. Figure 17 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation resulted in the formation of a translation product of 13 kDa that was almost consistent with the molecular weight of 11,564 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

48

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. W52852), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10179> (Sequence Number 15, 40, 65)

Determination of the whole base sequence for the cDNA insert of clone HP10179 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 121 bp, an ORF of 345 bp, and a 3'-non-translation region of 459 bp. The ORF codes for a protein consisting of 114 amino acid residues with 4 transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 14 kDa that was almost consistent with the molecular weight of 12,078 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. However, this protein was analogous to the protein encoded by the cDNA clone Hp 10175 of the present invention. Table 10 indicates the comparison of the amino acid sequences between the protein encoded by HP 10179 and the protein encoded by HP 10175. - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue

analogous to that in the protein of the present invention. The both proteins possessed a homology of 80.8% in the entire regions.

Table 10

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N55991), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10196> (Sequence Number 16, 41, 66)

Determination of the whole base sequence for the cDNA insert of clone HP10196 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 9 bp, an ORF of 984 bp, and a 3'-non-translation region of 122 bp. The ORF codes for a protein consisting of 327 amino acid residues with one transmembrane domain at the N-

terminal. Figure 19 depicts the

hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-BglIII fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 162 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 37 kDa that was almost consistent with the molecular weight of 36,163 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T17026), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

<HP10235> (Sequence Number 17, 42, 67)

Determination of the whole base sequence for the cDNA insert of clone HP10235 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 5

bp, an ORF of 1122 bp, and a 3'-non-translation region of 594 bp. The ORF codes for a protein consisting of 373 amino acid residues with 11 transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human nucleolar protein HNP36 (EMBL Accession No. X86681). Table 11 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human nucleolar protein HNP36 (NP). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 45.3% in the entire regions.

Table 11

HP MTLCAMLPLLLFTYLNSFLHQRIPQSVRILGSLVAILLVFLITAILVKVQLDALPFFVIT

HP MIKIVLINSFGAILQGSLFGLAGLLPASYTAPIMSGQGLAGFFASVAMICAIASGSELSE

NP MASVCFINSFSAVLQGSLFGQLGTMPSTYSTLFLSGQGLAGIFAALAMLLSMASGVDAET

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R57372), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The human nucleolar protein HNP36 has been found as a gene product that plays a role in the growth and multiplication of cells [Williams, J. B. & Lanahan, A. A., Biochem. Biophys. Res. Commun. 213: 325-333 (1995)].

53

Accordingly, the protein of present invention, which is homologous to said protein, is considered to be a housekeeping protein essential to the growth and multiplication of cells and thereby can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of the present protein.

<HP10297> (Sequence Number 18, 43, 68)

Determination of the whole base sequence for the cDNA insert of clone HP10297 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 62 bp, an ORF of 552 bp, and a 3'-non-translation region of 890 bp. The ORF codes for a protein consisting of 183 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 21 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 24 kDa that was almost consistent with the molecular weight of 20,574 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R47823), but many sequences are not distinct and the same ORF as that in the present cDNA was not

54

identified.

<HP10299> (Sequence Number 19, 44, 69)

Determination of the whole base sequence for the cDNA insert of clone HP10299 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 92 bp, an ORF of 351 bp, and a 3'-non-translation region of 89 bp. The ORF codes for a protein consisting of 116 amino acid residues with one transmembrane domain at the N-terminal. Figure 22 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-VspI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 65 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 13 kDa that was almost consistent with the molecular weight of 12,498 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein of 16.5 kDa (SWISS-PROT Accession No. P42834). Table 12 indicates the comparison of the amino acid sequences between the human protein of the present

55

invention (HP) and the baker's yeast hypothetical membrane protein of 16.5 kDa (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 53.0% in the C-terminal region of 66 amino acid residues.

Table 12

MASTVVAVGLTIAAAGFAGRYVLQAMKHMEPQVKQVF

HP

- SC MVLPIIIGLGVTMVALSVKSGLNAWTVYKTLSPLTIAKLNNIRIENPTAGYRDALKFKSS
- HP QSLPKSAFSGGYYRGGFEPKMTKREAALILGVSP----TANKGKIRDAHRRIMLLNHPDK

*.***.*.** ***..*. **. *. ****.

- SC LIDEELKNRLNQYQGGFAPRMTEPEALLILDISAREINHLDEKLLKKKHRKAMVRNHPDR
- HP GGSPYIAAKINEAKDLLEGQAKK

*****.*******..**

SC GGSPYMAAKINEAKEVLERSVLLRKR

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R27748), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

56

<HP10301> (Sequence Number 20, 45, 70)

Determination of the whole base sequence for the cDNA insert of clone HP10301 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 91 bp, an ORF of 459 bp, and a 3'-non-translation region of 112 bp. The ORF codes for a protein consisting of 152 amino acid residues with four transmembrane domains. Figure 23 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 18 kDa that was almost consistent with the molecular weight of 16,516 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N28828), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10302> (Sequence Number 21, 46, 71)

Determination of the whole base sequence for the cDNA insert of clone HP10302 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 133 bp, an ORF of 1680 bp, and a 3'-non-translation region of 560 bp. The ORF codes for a protein consisting of 559 amino acid residues with 12

transmembrane domains. Figure 24 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N72434), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

<HP10304> (Sequence Number 22, 47, 72)

Determination of the whole base sequence for the cDNA insert of clone HP10304 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 10 bp, an ORF of 993 bp, and a 3'-non-translation region of 313 bp. The ORF codes for a protein consisting of 330 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 25 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 36 kDa that was almost

58

consistent with the molecular weight of 36,840 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N26840), but the same ORF as that in the present cDNA was not identified.

<HP10305> (Sequence Number 23, 48, 73)

Determination of the whole base sequence for the cDNA insert of clone HP10305 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 109 bp, an ORF of 327 bp, and a 3'-non-translation region of 457 bp. The ORF codes for a protein consisting of 108 amino acid residues with one transmembrane domain. Figure 26 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-ApaI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 162 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted

59

in the formation of a translation product of 15 kDa that was almost consistent with the molecular weight of 12,199 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H02768), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10306> (Sequence Number 24, 49, 74)

Determination of the whole base sequence for the cDNA insert of clone HP10306 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 229 bp, an ORF of 306 bp, and a 3'-non-translation region of 155 bp. The ORF codes for a protein consisting of 101 amino acid residues with 2 transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 14 kDa that was almost consistent with the molecular weight of 12,029 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence

of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H44711), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10328> (Sequence Number 25, 50, 75)

Determination of the whole base sequence for the cDNA insert of clone HP10328 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 117 bp, an ORF of 1119 bp, and a 3'-non-translation region of 950 bp. The ORF codes for a protein consisting of 372 amino acid residues with one transmembrane domain. Figure 28 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-PmaCI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 129 amino acid residues in the present protein was inserted at the HindIII-SmaI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 41 kDa that was almost consistent with the molecular weight of 42,514 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

WO 98/21328

61

protein was analogous to the Drosophila neurological secretory signal protein (GenBank Accession No. U41449). Table 13 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the Drosophila neurological secretory signal protein (DM). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 38.6% in the middle region of 202 amino acid residues.

Table 13 ·

HP MKYLRHRRPNATLILAIGAFTLLLFSLLVSPPTCKVQEQPPAIPEALAWPTPPTRPAPAP MQSKHRKLLLRCLLVLPLILLVDYCGLLTHL DM HP CHANTSMVTHPDFATQPQHVQNFLLYRHCRHFPLLQDVPPSKCAQPVFLLLVIKSSPSNY ** * ..*** . * DM HKLNPERHFHYPLNDDTGSGSASSGLDKFAYLRVPSFTAEVPVDQPARLTMLIKSAVGNS HP VRRELLRRTWGRERKVRGLQLRLLFLVGTASNPHEARKVNRLLELEAQTEGDILQWDFHD *** .**** *** .**.***... ...*.. DM RRREATRTWGYEGRFSDVHLRRVFLLGTAEDS--EKDVAW----ESREHGDILQADFTD HP SFFNLTLKQVLFLQWQETRCANASFVLNGDDDVFAHTDNMVFYL----QDHDPGRHLFVG __** *** _* _.*... * * ****.. .* DM AYFNNTLKTMLGMRWASEQFNRSEFYLFVDDDYYVSAKNVLKFLGRGRQSHQPE-LLFAG HP QLIQNVGPIRAFWSKYYVPEVVTQNERYPPYCGGGGFLLSRFTAAALRRAAHVLDIFPID

- DM HVFQ-TSPLRHKFSKWYVSLEEYPFDRWPPYVTAGAFILSQKALRQLYAASVHLPLFRFD
- HP DVFLGMCLELEGLKPASHSGIRTSGVRAPSQHLSSFDPCFYRDLLLVHRFLPYEMLLMWD
- DM DVYLGIVALKAGISLQHCDDFRFHRPAYKGPDSYSSVIASHEFGDPEEMTRVWNECRSAN
- HP ALNQPHLTCGNQTQIY

DM YA

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R75815), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

The present invention provides human proteins having transmembrane domains, cDNAs encoding said proteins and eykaryotic cells expressing said cDNA. All of the proteins of the present invention are putative proteins controlling the proliferation and differentiation of the cells, because said proteins exist on the cell membrane. Therefore, the proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. Furthermore, said DNAs can be used for the expression of large amounts of said proteins. The cells expressing large amounts of membrane proteins with transfection of these membrane protein genes can be applied

to the detection of the corresponding ligands, the screening of novel low-molecular medicines, and so on.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel

64

polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors

65

of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

66

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J.

67

Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Po lyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 -Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and

Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark,S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic

activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be

70

possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration

71

of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a Induction of long-term tolerance by B lymphocyte subject. antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et

al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis

(see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

74

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an

MHC class IIα chain protein and an MHC class IIβ chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J.

Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl.
Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J.
Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol.
135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500, 1986; Bowmanet al., J. Virology
61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988;
Bertagnolli et al., Cellular Immunology 133:327-341, 1991;
Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992. Dendritic cell-dependent assays (which will identify,

among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995;

78

Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without

limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Preshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss,

Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced

81

craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament De novo tendon/ligament-like tissue formation tissue. induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or

other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic

PCT/JP97/04056

WO 98/21328

disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

83

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

84

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin— or inhibin—related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin— β group, may be useful as a fertility inducing

85

therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells.

Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of

infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

87

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Liquand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptor involved in cell-cell interactions and their ligands (including without limitation, cellular

adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting

89

cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other

90

factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating

91

deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

SEQUENCE LISTING

Sequence No.: 1

Sequence length: 205

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP00442 Sequence description

195

Met Thr Gly Leu Ala Leu Leu Tyr Ser Gly Val Phe Val Ala Phe Trp 5 Ala Cys Ala Leu Ala Val Gly Val Cys Tyr Thr Ile Phe Asp Leu Gly 25 Phe Arg Phe Asp Val Ala Trp Phe Leu Thr Glu Thr Ser Pro Phe Met 45 40 Trp Ser Asn Leu Gly Ile Gly Leu Ala Ile Ser Leu Ser Val Val Gly 55 Ala Ala Trp Gly Ile Tyr Ile Thr Gly Ser Ser Ile Ile Gly Gly Gly 70 **75** Val Lys Ala Pro Arg Ile Lys Thr Lys Asn Leu Val Ser Ile Ile Phe Cys Glu Ala Val Ala Ile Tyr Gly Ile Ile Met Ala Ile Val Ile Ser 105 Asn Met Ala Glu Pro Phe Ser Ala Thr Asp Pro Lys Ala Ile Gly His 120 Arg Asn Tyr His Ala Gly Tyr Ser Met Phe Gly Ala Gly Leu Thr Val 135 Gly Leu Ser Asn Leu Phe Cys Gly Val Cys Val Gly Ile Val Gly Ser 150 155 Gly Ala Ala Leu Ala Asp Ala Gln Asn Pro Ser Leu Phe Val Lys Ile Leu Ile Val Glu Ile Phe Gly Ser Ala Ile Gly Leu Phe Gly Val Ile 185 190 180 Val Ala Ile Leu Gln Thr Ser Arg Val Lys Met Gly Asp

200

205

Sequence No.: 2

Sequence length: 371

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte Clone name: HP00804 Sequence description

Met Ser His Glu Lys Ser Phe Leu Val Ser Gly Asp Asn Tyr Pro Pro Pro Asn Pro Gly Tyr Pro Gly Gly Pro Gln Pro Pro Met Pro Pro Tyr 25 Ala Gln Pro Pro Tyr Pro Gly Ala Pro Tyr Pro Gln Pro Pro Phe Gln 40 Pro Ser Pro Tyr Gly Gln Pro Gly Tyr Pro His Gly Pro Ser Pro Tyr Pro Gln Gly Gly Tyr Pro Gln Gly Pro Tyr Pro Gln Gly Gly Tyr Pro 70 75 65 Gln Gly Pro Tyr Pro Gln Glu Gly Tyr Pro Gln Gly Pro Tyr Pro Gln 90 Gly Gly Tyr Pro Gln Gly Pro Tyr Pro Gln Ser Pro Phe Pro Pro Asn 105 Pro Tyr Gly Gln Pro Gln Val Phe Pro Gly Gln Asp Pro Asp Ser Pro 115 Gln His Gly Asn Tyr Gln Glu Glu Gly Pro Pro Ser Tyr Tyr Asp Asn Gln Asp Phe Pro Ala Thr Asn Trp Asp Asp Lys Ser Ile Arg Gln Ala 155 150 Phe Ile Arg Lys Val Phe Leu Val Leu Thr Leu Gln Leu Ser Val Thr 165 Leu Ser Thr Val Ser Val Phe Thr Phe Val Ala Glu Val Lys Gly Phe 185 Val Arg Glu Asn Val Trp Thr Tyr Tyr Val Ser Tyr Ala Val Phe Phe 200 Ile Ser Leu Ile Val Leu Ser Cys Cys Gly Asp Phe Arg Arg Lys His 210 215 Pro Trp Asn Leu Val Ala Leu Ser Val Leu Thr Ala Ser Leu Ser Tyr 235 230 Met Val Gly Met Ile Ala Ser Phe Tyr Asn Thr Glu Ala Val Ile Met 250 245

94

Ala Val Gly Ile Thr Thr Ala Val Cys Phe Thr Val Val Ile Phe Ser 265 Met Gln Thr Arg Tyr Asp Phe Thr Ser Cys Met Gly Val Leu Leu Val 280 275 Ser Met Val Val Leu Phe Ile Phe Ala Ile Leu Cys Ile Phe Ile Arg Asn Arg Ile Leu Glu Ile Val Tyr Ala Ser Leu Gly Ala Leu Leu Phe 315 Thr Cys Phe Leu Ala Val Asp Thr Gln Leu Leu Gly Asn Lys Gln 330 Leu Ser Leu Ser Pro Glu Glu Tyr Val Phe Ala Ala Leu Asn Leu Tyr 345 Thr Asp Ile Ile Asn Ile Phe Leu Tyr Ile Leu Thr Ile Ile Gly Arg 365 360 355 Ala Lys Glu

Sequence No.: 3

370

Sequence length: 179

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098
Sequence description

Met Leu Ser Leu Asp Phe Leu Asp Asp Val Arg Arg Met Asn Lys Arg 10 5 Gln Leu Tyr Tyr Gln Val Leu Asn Phe Gly Met Ile Val Ser Ser Ala Leu Met Ile Trp Lys Gly Leu Met Val Ile Thr Gly Ser Glu Ser Pro 40 Ile Val Val Leu Ser Gly Ser Met Glu Pro Ala Phe His Arg Gly 55 Asp Leu Leu Phe Leu Thr Asn Arg Val Glu Asp Pro Ile Arg Val Gly 65 Glu Ile Val Val Phe Arg Ile Glu Gly Arg Glu Ile Pro Ile Val His 90 Arg Val Leu Lys Ile His Glu Lys Gln Asn Gly His Ile Lys Phe Leu 110 105 100

His Arg Glu

Sequence No.: 4

Sequence length: 347

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01148
Sequence description

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly 1 Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu 50 Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu 70 75 Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys 90 Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr 100 Asp Cys Ser His Glu Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu 120 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 160 155 145 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys

170 175 165 Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 185 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 215 210 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 235 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 250 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn 265 Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly 280 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 295 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln 315 305 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330 His Gln Glu Asp Val Ala Val Ile Cys Ser Gly 345 340

Sequence No.: 5

Sequence length: 554

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01293
Sequence description

 Met
 Pro
 Thr
 Val
 Asp
 Asp
 Asp
 Leu
 Glu
 Gln
 Val
 Glu
 Ser
 Gly
 Trp

 1
 5
 6
 Ala
 Phe
 Leu
 Ile
 Leu
 Cys
 Leu
 Leu
 Ser
 Ala
 Ala
 Phe

 Ala
 Pro
 Ile
 Cys
 Val
 Gly
 Ile
 Val
 Phe
 Leu
 Gly
 Phe
 Thr
 Pro
 Asp
 His

 His
 Cys
 Gln
 Ser
 Pro
 Gly
 Val
 Ala
 Glu
 Leu
 Ser
 Gln
 Arg
 Cys
 Gly
 Trp

	50					55					60				
Ser	Pro	Ala	Glu	Glu	Leu	Asn	Tyr	Thr	Val	Pro	G1y	Leu	Gly	Pro	Ala
65					70					75					80
Gl y	G1u	Ala	Phe	Leu 85	Gly	Gln	Суs	Arg	Arg 90	Tyr	Glu	Val	Asp	Trp 95	Asn
Gln	Ser	Ala	Leu	Ser	Cys	Val	Asp	Pro	Leu	Ala	Ser	Leu	Ala	Thr	Asn
			100					105					110		
Arg	Ser	His	Leu	Pro	Leu	Gly	Pro	Cys	Gln	Asp	Gly	Trp	Va1	Tyr	Asp
		115					120					125			
Thr	Pro	Gly	Ser	Ser	Ile	Val	Thr	Glu	Phe	Asn	Leu	Va1	Cys	Ala	Asp
	130					135					140				
Ser	Trp	Lys	Leu	Asp	Leu	Phe	Gln	Ser	Cys	Leu	Asn	Ala	Gly	Phe	Phe
145					150					155					160
Phe	Gly	Ser	Leu	Gly	Val	Gly	Tyr	Phe	Ala	Asp	Arg	Phe	Gly	Arg	Lys
,				165					170					175	
Leu	Cys	Leu	Leu	Gly	Thr	Val	Leu	Val	Asn	Ala	Va1	Ser	Gly	Va1	Leu
			180	•				185					190		
Met	Ala	Phe	Ser	Pro	Asn	Tyr	Met	Ser	Met	Leu	Leu	Phe	Arg	Leu	Leu
		195					200					205			
Gln	Gly	Leu	Val	Ser	Lys		Asn	Trp	Met	Ala		Tyr	Thr	Leu	Ile
	210					215					220		_		
	Glu	Phe	Val	Gly		Gly	Ser	Arg	Arg		Val	Ala	Ile	Met	
225		_			230		_			235			_		240
Gln	Met	Ala	Phe		Val	Gly	Leu	Val		Leu	Thr	GIA	Leu		Tyr
_				245		_	_		250			_	_	255	_1
Ala	Leu	Pro	His	Trp	Arg	Trp	Leu		Leu	ALA	VAL			Pro	Thr
	_	m.1	260	_		m		265	TT - 1	n	01		270		m
Phe	Leu		Leu	Leu	Tyr	Tyr	-	Cys	VAL	Pro	GIU		Pro	Arg	rrp
•	•	275	01-	¥	A	A	280	C1	A1.	T1 -	T	285	Mat	A 0.50	U :
Leu		Ser	Gln	Lys	Arg		Inr	GIU	AIR	TTE		116	net	Asp	пте
71-	290	61 -	T	.	C1-	295	T 0	D=0	Dro	A 1 a	300	T 011	T ~~ 0	Wat	T 011
	ATB	GIN	Lys	Asn	-	ràs	rea	PIG	PIO	315	Asp	Leu	гуя	net	320
305	T	C1	Glu	A 0.70	31,0	Th.	Cln	T 470	ĭ 011	•	Dro	Sor	Pho	A10	
ser	Leu	GIU	GIU	325	VAL	IIII	GIU	Lys	330	Ser	LIO	Ser	rne	335	пор
T	Dho	A = ~	Thr		A+m	Lon	Ara	Lve		The	Pho	Tle	T.e.1		Tor
ren	гце	ия	340	110	mg	Deu	шg	345	мь	****	LIIC	110	350	111.	-,-
Lon	Trn	Pho	Thr	Acn	Sor	Va 1	T.em		G1n	G1v	Len	Tle		Hie	Met
ren	ırp	355	IIII	veh	Jei	Val	360		OIII	U L,	Deu	365	200	1120	
C1'#	ΑTο		Ser	G1 w	Aen	Len		Len	Agn	Phe	I.em		Ser	Ala	I.en
GLY	370	****	Der	U L y		375	-,-	~~ u	P	~ 40	380	-,-			
Va 1		Ile	Pro	G] v	Ala		Ile	Ala	Lev	Ile		Ile	Asp	Arg	Val
385		~		,	390					395			- 2		400
	Arg	Ile	Tyr	Pro		Ala	Val	Ser	Asn		Leu	Ala	Gly	Ala	

98

				405					410					415	
Cys	Leu	Val	Met	Ile	Phe	Ile	Ser	Pro	Asp	Leu	His	Trp	Leu	Asn	Ile
			420					425					430		
Ile	Ile	Met	Cys	Val	Gly	Arg	Met	Gly	Ile	Thr	Ile	Ala	Ile	Gln	Met
		435					440					445			
Ile	Cys	Leu	Va1	Asn	Ala	Glu	Leu	Tyr	Pro	Thr	Phe	Val	Arg	Asn	Leu
	450					455					460				
Gly	Val	Met	Val	Сув	Ser	Ser	Leu	Cys	Asp	Ile	Gly	Gly	Ile	Ile	Thr
465					470					475					480
Pro	Phe	Ile	Val	Phe	Arg	Leu	Arg	Glu	Va1	Trp	Gln	Ala	Leu	Pro	Leu
				485					490					495	
Ile	Leu	Phe	Ala	Val	Leu	Gly	Leu	Leu	Ala	Ala	Gly	Val	Thr	Leu	Leu
			500					505					510		
Leu	Pro	Glu	Thr	Lys	Gly	Val	Ala	Leu	Pro	Glu	Thr	Met	Lys	Asp	Ala
		515					520					525			
Glu	Asn	Leu	Gly	Arg	Lys	Ala	Lys	Pro	Lys	Glu	Asn	Thr	Ile	Tyr	Leu
	530					535					540				
Lys	Val	Gln	Thr	Ser	Glu	Pro	Ser	Gly	Thr						
545					550										

Sequence No.: 6

Sequence length: 350

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10013 Sequence description

 Met
 Ala
 Val
 Phe
 Val
 Val
 Leu
 Leu
 Ala
 Leu
 Val
 Ala
 Gly
 Val
 Leu
 Gly

 Asn
 Glu
 Phe
 Ser
 Ile
 Leu
 Lys
 Ser
 Pro
 Gly
 Ser
 Val
 Val
 Phe
 Arg
 Asn
 Asn
 Val
 Ala
 A

Lys Gly Val Asn Lys Leu Ala Leu Pro Pro Gly Ser Val Ile Ser Tyr 90 Pro Leu Glu Asn Ala Val Pro Phe Ser Leu Asp Ser Val Ala Asn Ser 105 100 Ile His Ser Leu Phe Ser Glu Glu Thr Pro Val Val Leu Gln Leu Ala Pro Ser Glu Glu Arg Val Tyr Met Val Gly Lys Ala Asn Ser Val Phe 135 Glu Asp Leu Ser Val Thr Leu Arg Gln Leu Arg Asn Arg Leu Phe Gln 155 150 Glu Asn Ser Val Leu Ser Ser Leu Pro Leu Asn Ser Leu Ser Arg Asn 165 170 Asn Glu Val Asp Leu Leu Phe Leu Ser Glu Leu Gln Val Leu His Asp 185 Ile Ser Ser Leu Leu Ser Arg His Lys His Leu Ala Lys Asp His Ser 205 200 Pro Asp Leu Tyr Ser Leu Glu Leu Ala Gly Leu Asp Glu Ile Gly Lys 215 Arg Tyr Gly Glu Asp Ser Glu Gln Phe Arg Asp Ala Ser Lys Ile Leu 230 225 235 Val Asp Ala Leu Gln Lys Phe Ala Asp Asp Met Tyr Ser Leu Tyr Gly Gly Asn Ala Val Val Glu Leu Val Thr Val Lys Ser Phe Asp Thr Ser 265 Leu Ile Arg Lys Thr Arg Thr Ile Leu Glu Ala Lys Gln Ala Lys Asn 280 Pro Ala Ser Pro Tyr Asn Leu Ala Tyr Lys Tyr Asn Phe Glu Tyr Ser 290 Val Val Phe Asn Met Val Leu Trp Ile Met Ile Ala Leu Ala Leu Ala 310 315 Val Ile Ile Thr Ser Tyr Asn Ile Trp Asn Met Asp Pro Gly Tyr Asp 330 325 Ser Ile Ile Tyr Arg Met Thr Asn Gln Lys Ile Arg Met Asp 345 340 350

Sequence No.: 7

Sequence length: 209

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10034

Sequence description

Met Val Ser Ser Pro Cys Thr Gln Ala Ser Ser Arg Thr Cys Ser Arg 5 10 Ile Leu Gly Leu Ser Leu Gly Thr Ala Ala Leu Phe Ala Ala Gly Ala 25 Asn Val Ala Leu Leu Pro Asn Trp Asp Val Thr Tyr Leu Leu Arg 40 Gly Leu Leu Gly Arg His Ala Met Leu Gly Thr Gly Leu Trp Gly Gly 60 55 Gly Leu Met Val Leu Thr Ala Ala Ile Leu Ile Ser Leu Met Gly Trp 75 70 Arg Tyr Gly Cys Phe Ser Lys Ser Gly Leu Cys Arg Ser Val Leu Thr 90 Ala Leu Leu Ser Gly Gly Leu Ala Leu Leu Gly Ala Leu Ile Cys Phe 100 Val Thr Ser Gly Val Ala Leu Lys Asp Gly Pro Phe Cys Met Phe Asp Val Ser Ser Phe Asn Gln Thr Gln Ala Trp Lys Tyr Gly Tyr Pro Phe 135 Lys Asp Leu His Ser Arg Asn Tyr Leu Tyr Asp Arg Ser Leu Trp Asn 150 145 Ser Val Cys Leu Glu Pro Ser Ala Ala Val Val Trp His Val Ser Leu 170 Phe Ser Ala Leu Leu Cys Ile Ser Leu Leu Gln Leu Leu Val Val 185 Val His Val Ile Asn Ser Leu Leu Gly Leu Phe Cys Ser Leu Cys Glu 200 205 195

Lув

Sequence No.: 8
Sequence length: 163
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080

Clone name: HP10050 Sequence description

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu Ser Ser 25 Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly Lys Arg Pro 40 Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu Pro Glu Asp Glu 55 Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly Tyr Asp Lys Asp Pro 65 Val Leu Asp Val Trp Asn Met Arg Leu Val Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe Val Ala Tyr Leu Pro Asp Tyr 105 Arg Cys Thr Gly Cys Pro Arg Ala Trp Asp Gly Met Lys Glu Trp Ser 120 Arg Arg Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro 150 155 160 145 -Glu Asp Glu

Sequence No.: 9
Sequence length: 92

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10071 Sequence description

Met Thr Lys Leu Ala Gln Trp Leu Trp Gly Leu Ala Ile Leu Gly Ser

1 5 10 15

Thr Trp Val Ala Leu Thr Thr Gly Ala Leu Gly Leu Glu Leu Pro Leu
20 25 30

Ser Cys Gln Glu Val Leu Trp Pro Leu Pro Ala Tyr Leu Leu Val Ser

35 40 45

102

Sequence No.: 10
Sequence length: 172
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10076
Sequence description

Met Glu Tyr Leu Ala His Pro Ser Thr Leu Gly Leu Ala Val Gly Val 10 Ala Cys Gly Met Cys Leu Gly Trp Ser Leu Arg Val Cys Phe Gly Met 20 Leu Pro Lys Ser Lys Thr Ser Lys Thr His Thr Asp Thr Glu Ser Glu 40 Ala Ser Ile Leu Gly Asp Ser Gly Glu Tyr Lys Met Ile Leu Val Val 55 Arg Asn Asp Leu Lys Met Gly Lys Gly Lys Val Ala Ala Gln Cys Ser 65 His Ala Ala Val Ser Ala Tyr Lys Gln Ile Gln Arg Arg Asn Pro Glu 90 Met Leu Lys Gln Trp Glu Tyr Cys Gly Gln Pro Lys Val Val Lys 105 100 Ala Pro Asp Glu Glu Thr Leu Ile Ala Leu Leu Ala His Ala Lys Met 120 Leu Gly Leu Thr Val Ser Leu Ile Gln Asp Ala Gly Arg Thr Gln Ile 135 Ala Pro Gly Ser Gln Thr Val Leu Gly Ile Gly Pro Gly Pro Ala Asp 160 150 145

170

Leu Ile Asp Lys Val Thr Gly His Leu Lys Leu Tyr

165

Sequence No.: 11 Sequence length: 149

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10085

Sequence description

Met Met Thr Lys His Lys Lys Cys Phe Ile Ile Val Gly Val Leu Ile

Thr Thr Asn Ile Ile Thr Leu Ile Val Lys Leu Thr Arg Asp Ser Gln
20 25 30

10

Ser Leu Cys Pro Tyr Asp Trp Ile Gly Phe Gln Asn Lys Cys Tyr Tyr

Phe Ser Lys Glu Glu Gly Asp Trp Asn Ser Ser Lys Tyr Asn Cys Ser
50 55 60

Thr Gln His Ala Asp Leu Thr Ile Ile Asp Asn Ile Glu Glu Met Asn 65 70 75 80

Phe Leu Arg Arg Tyr Lys Cys Ser Ser Asp His Trp Ile Gly Leu Lys
85 90 95

Met Ala Lys Asn Arg Thr Gly Gln Trp Val Asp Gly Ala Thr Phe Thr

Lys Ser Phe Gly Met Arg Gly Ser Glu Gly Cys Ala Tyr Leu Ser Asp 115 120 125

Asp Gly Ala Ala Thr Ala Arg Cys Tyr Thr Glu Arg Lys Trp Ile Cys 130 135 140

Arg Lys Arg Ile His

145

Sequence No.: 12 Sequence length: 188

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10122
Sequence description

Met Ser Thr Met Phe Ala Asp Thr Leu Leu Ile Val Phe Ile Ser Val 5 Cys Thr Ala Leu Leu Ala Glu Gly Ile Thr Trp Val Leu Val Tyr Arg 20 Thr Asp Lys Tyr Lys Arg Leu Lys Ala Glu Val Glu Lys Gln Ser Lys 40 Lys Leu Glu Lys Lys Lys Glu Thr Ile Thr Glu Ser Ala Gly Arg Gln Gln Lys Lys Lys Ile Glu Arg Gln Glu Glu Lys Leu Lys Asn Asn Asn 75 70 . Arg Asp Leu Ser Met Val Arg Met Lys Ser Met Phe Ala Ile Gly Phe Cys Phe Thr Ala Leu Met Gly Met Phe Asn Ser Ile Phe Asp Gly Arg 105 100 Val Val Ala Lys Leu Pro Phe Thr Pro Leu Ser Tyr Ile Gln Gly Leu 120 Ser His Arg Asn Leu Leu Gly Asp Asp Thr Thr Asp Cys Ser Phe Ile 140 135 130 Phe Leu Tyr Ile Leu Cys Thr Met Ser Ile Arg Gln Asn Ile Gln Lys 155 150 Ile Leu Gly Leu Ala Pro Ser Arg Ala Ala Thr Lys Gln Ala Gly Gly 165 170 175 Phe Leu Gly Pro Pro Pro Pro Ser Gly Lys Phe Ser

185

Sequence No.: 13
Sequence length: 215
Sequence type: Amino acid

180

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10136
Sequence description

Met Val Leu Leu Thr Met Ile Ala Arg Val Ala Asp Gly Leu Pro Leu

10 Ala Ala Ser Met Gln Glu Asp Glu Gln Ser Gly Arg Asp Leu Gln Gln Tyr Gln Ser Gln Ala Lys Gln Leu Phe Arg Lys Leu Asn Glu Gln Ser Pro Thr Arg Cys Thr Leu Glu Ala Gly Ala Met Thr Phe His Tyr Ile 55 Ile Glu Gln Gly Val Cys Tyr Leu Val Leu Cys Glu Ala Ala Phe Pro 75 Lys Lys Leu Ala Phe Ala Tyr Leu Glu Asp Leu His Ser Glu Phe Asp 90 85 Glu Gln His Gly Lys Lys Val Pro Thr Val Ser Arg Pro Tyr Ser Phe 100 Ile Glu Phe Asp Thr Phe Ile Gln Lys Thr Lys Lys Leu Tyr Ile Asp Ser Arg Ala Arg Arg Asn Leu Gly Ser Ile Asn Thr Glu Leu Gln Asp 135 Val Gln Arg Ile Met Val Ala Asn Ile Glu Glu Val Leu Gln Arg Gly 155 145 150 Glu Ala Leu Ser Ala Leu Asp Ser Lys Ala Asn Asn Leu Ser Ser Leu 170 165 Ser Lys Lys Tyr Arg Gln Asp Ala Lys Tyr Leu Asn Met Arg Ser Thr 190 185 Tyr Ala Lys Leu Ala Ala Val Ala Val Phe Phe Ile Met Leu Ile Val 205 200 195 Tyr Val Arg Phe Trp Trp Leu 210

Sequence No.: 14 Sequence length: 112 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10175
Sequence description

Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe Gly

1 5 10 15

Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys Ala

106

| Ser | Val | Pro | Ser | Leu | Ala | Ala | Gly | Leu | Leu | Phe | Gly | Ser | Leu | Ala | Ala | Gly | Leu | Leu | Phe | Gly | Ser | Leu | Ala | Ala | Gly | Leu | Leu | Phe | Gly | Ser | Leu | Ala | Ala | Ser | Gly | Leu | Gly | Ala | Tyr | Gln | Leu | Ser | Gln | Asp | Pro | Arg | Asn | Val | Trp | Val | Sor | Sor

Sequence No.: 15
Sequence length: 114

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens
Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10179
Sequence description

Met Glu Lys Pro Leu Phe Pro Leu Val Pro Leu His Trp Phe Gly Phe

Gly Tyr Thr Ala Leu Val Val Ser Gly Gly Ile Val Gly Tyr Val Lys
20 25 30

Thr Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu

Ala Gly Leu Gly Ala Tyr Gln Leu Tyr Gln Asp Pro Arg Asn Val Trp
50 55 60

Gly Phe Leu Ala Ala Thr Ser Val Thr Phe Val Gly Val Met Gly Met
65 70 75 80

65 70 75 80
Arg Ser Tyr Tyr Gly Lys Phe Met Pro Val Gly Leu Ile Ala Gly

Ala Ser Leu Leu Met Ala Ala Lys Val Gly Val Arg Met Leu Met Thr 100 105 110

Ser Asp

107

Sequence length: 327

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Pibrosarcoma

Cell line: HT-1080 Clone name: HP10196 Sequence description

Met Ala Ala Ala Ala Ala Ala Ala Ala Ala Thr Asn Gly Thr Gly Gly 5 Ser Ser Gly Met Glu Val Asp Ala Ala Val Val Pro Ser Val Met Ala 25 Cys Gly Val Thr Gly Ser Val Ser Val Ala Leu His Pro Leu Val Ile 40 Leu Asn Ile Ser Asp His Trp Ile Arg Met Arg Ser Gln Glu Gly Arg 55 Pro Val Gln Val Ile Gly Ala Leu Ile Gly Lys Gln Glu Gly Arg Asn 70 75 65 Ile Glu Val Met Asn Ser Phe Glu Leu Leu Ser His Thr Val Glu Glu 90 Lys Ile Ile Asp Lys Glu Tyr Tyr Tyr Thr Lys Glu Glu Gln Phe 105 Lys Gln Val Phe Lys Glu Leu Glu Phe Leu Gly Trp Tyr Thr Thr Gly Gly Pro Pro Asp Pro Ser Asp Ile His Val His Lys Gln Val Cys Glu 135 140 Ile Ile Glu Ser Pro Leu Phe Leu Lys Leu Asn Pro Met Thr Lys His 150 155 Thr Asp Leu Pro Val Ser Val Phe Glu Ser Val Ile Asp Ile Ile Asn 170 165 Gly Glu Ala Thr Met Leu Phe Ala Glu Leu Thr Tyr Thr Leu Ala Thr 185 Glu Glu Ala Glu Arg Ile Gly Val Asp His Val Ala Arg Met Thr Ala 195 Thr Gly Ser Gly Glu Asn Ser Thr Val Ala Glu His Leu Ile Ala Gln 215 220 His Ser Ala Ile Lys Met Leu His Ser Arg Val Lys Leu Ile Leu Glu 235 230 Tyr Val Lys Ala Ser Glu Ala Gly Glu Val Pro Phe Asn His Glu Ile 245 250 255

108

 Leu Arg
 Glu Ala
 Tyr
 Ala
 Leu Cys
 His Cys
 Leu Pro
 Val
 Leu Ser
 Thr

 Asp
 Lys
 The Lys
 Thr
 Asp
 Phe
 Tyr
 Asp
 Gln
 Cys
 Asn
 Asp
 Val
 Gly
 Leu

 Met
 Ala
 Tyr
 Leu
 Gly
 Thr
 Ile
 Thr
 Lys
 Thr
 Cys
 Asn
 Thr
 Met
 Asn
 Gln

 Phe
 Val
 Asn
 Lys
 Thr
 Lys
 Thr
 Cys
 Asn
 Thr
 Met
 Asn
 Gln

 Phe
 Val
 Asn
 Lys
 Phe
 Asn
 Val
 Leu
 Tyr
 Asp
 Arg
 Gln
 Gly
 Ile
 Arg

 305
 Tyr
 Tyr
 Asp
 Arg
 Gly
 Ile
 Phe
 Phe

Sequence No.: 17
Sequence length: 373
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

325

Cell kind: Fibrosarcoma Cell line: HT-1080 Clone name: HP10235

Sequence description

Met Thr Leu Cys Ala Met Leu Pro Leu Leu Phe Thr Tyr Leu Asn 5 10 Ser Phe Leu His Gln Arg Ile Pro Gln Ser Val Arg Ile Leu Gly Ser 25 20 Leu Val Ala Ile Leu Leu Val Phe Leu Ile Thr Ala Ile Leu Val Lys 40 Val Gln Leu Asp Ala Leu Pro Phe Phe Val Ile Thr Met Ile Lys Ile 55 60 Val Leu Ile Asn Ser Phe Gly Ala Ile Leu Gln Gly Ser Leu Phe Gly 75 70 65 Leu Ala Gly Leu Leu Pro Ala Ser Tyr Thr Ala Pro Ile Met Ser Gly 90 85 Gin Gly Leu Ala Gly Phe Phe Ala Ser Val Ala Met Ile Cys Ala Ile 105 Ala Ser Gly Ser Glu Leu Ser Glu Ser Ala Phe Gly Tyr Phe Ile Thr 125 Ala Cys Ala Val Ile Ile Leu Thr Ile Ile Cys Tyr Leu Gly Leu Pro 140 135

Arg Leu Glu Phe Tyr Arg Tyr Tyr Gln Gln Leu Lys Leu Glu Gly Pro

109

145					150					155					160
G1y	Glu	Gln	Glu	Thr	Lys	Leu	Авр	Leu	Ile	Ser	Lys	Gly	Glu	Glu	Pro
				165					170					175	
Arg	Ala	Gly	Lys	Glu	Glu	Ser	Gly	Val	Ser	Val	Ser	Asn	Ser	Gln	Pro
			180					185					190		
Thr	Asn	Glu	Ser	His	Ser	Ile	Lys	Ala	Ile	Leu	Lys	Asn	Ile	Ser	Va1
		195					200					205			
Leu	Ala	Phe	Ser	Val	Cys	Phe	Ile	Phe	Thr	Ile	Thr	Ile	Gly	Met	Phe
	210					215	•				220				
Pro	Ala	Val	Thr	Val	Glu	Val	Lys	Ser	Ser	Ile	Ala	Gly	Ser	Ser	Thr
225					230					235				•	240
Trp	Glu	Arg	Tyr	Phe	Ile	Pro	Val	Ser	Cys	Phe	Leu	Thr	Phe	Asn	Ile
				245					250					255	
Phe	Asp	Trp	Leu	Gly	Arg	Ser	Leu	Thr	Ala	Va1	Phe	Met	Trp	Pro	Gly
			260					265					270		
Lys	Asp	Ser	Arg	Trp	Leu	Pro	Ser	Leu	Val	Leu	Ala	Arg	Leu	Val	Phe
		275					280					285			
Val	Pro	Leu	Leu	Leu	Leu	Cys	Asn	Ile	Lys	Pro	Arg	Arg	Tyr	Leu	Thr
	290					295					300				
Val	Val	Phe	Glu	His	Asp	Ala	Trp	Phe	Ile	Phe	Phe	Met	Ala	Ala	Phe
305					310					315					320
Ala	Phe	Ser	Asn	Gly	Tyr	Leu	Ala	Ser	Leu	Cys	Met	Cys	Phe	Gly	Pro
				325					330					335	
Lys	Lys	Va1	Lys	Pro	Ala	Glu	Ala	Glu	Thr	A1a	Gly	Ala	Ile	Met	Ala
			340					345					350		
Phe	Phe	Leu	CA2	Leu	Gly	Leu	Ala	Leu	Gly	Ala	Val	Phe	Ser	Phe	Leu
		355					360					365			
Phe	Arg	Ala	Ile	Val											
	370														

Sequence No.: 18
Sequence length: 183
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10297 Sequence description

110

Met	Lys	Leu	Leu	Ser	Leu	Val	Ala	Val	Val	Gly	Cys	Leu	Leu	Val	Pro
1				5					10					15	
Pro	Ala	Glu	Ala	Asn	Lys	Ser	Ser	Glu	Asp	Ile	Arg	Сув	Lys	Суз	Ile
			20					25					30		
Cvs	Pro	Pro	Tyr	Arg	Asn	Ile	Ser	Gly	His	Ile	Tyr	Asn	Gln	Asn	Val
•	٠	35	•				40	-				45			
Ser	G1n	Lvs	Asp	Суз	Asn	Cys	Leu	His	Val	Val	Glu	Pro	Met	Pro	Val
	50	_,-		-,-		55					60				
Dro		Hic	Aen	Val	Glu		Tvr	Cvs	Leu	Leu		Glu	Cvs	Arp	Tvr
65	019	11.0	p	•••	70		-,-	٠,٠		75			٠, ۵	6	80
		_	_				~1 -		W. 7		71-	TT - 1	~1 -		
Glu	Glu	Arg	Ser	Thr	Thr	Thr	TTE	гÀв		TTE	тте	VAL	TTG		Leu
				85					90					95	
Ser	Val	Val	Gly	Ala	Leu	Leu	Leu	Tyr	Met	Ala	Phe	Leu	Met	Leu	Va1
			100					105					110		
Asp	Pro	Leu	Ile	Arg	Lys	Pro	Asp	Ala	Tyr	Thr	Glu	Gln	Leu	His	Asn
		115					120					125			
Glu	Glu	G1u	Asn	Glu	Asp	Ala	Arg	Ser	Met	Ala	Ala	Ala	Ala	Ala	Ser
	130					135					140				
Leu	Gly	Gly	Pro	Arg	Ala	Asn	Thr	Val	Leu	G1u	Arg	Val	Glu	Gly	Ala
145	-	•		_	150					155					160
Gln	Gln	Arg	Trp	Lys	Leu	Gln	Val	Gln	Glu	Gln	Arg	Lys	Thr	Val	Phe
			•	165		•			170		Ü	-		175	
Asp	Arg	His	Lvs	Met	Leu	Ser									
-ro F	6		180												
			TOA												

Sequence No.: 19
Sequence length: 116
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299
Sequence description

Sequence No.: 20
Sequence length: 152
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Gly Ser Gly Pro Lys Cys Cys His

Cell line: KB

Clone name: HP10301 Sequence description

Met Ala Val Leu Ser Lys Glu Tyr Gly Phe Val Leu Leu Thr Gly Ala Ala Ser Phe Ile Met Val Ala His Leu Ala Ile Asn Val Ser Lys Ala 25 Arg Lys Lys Tyr Lys Val Glu Tyr Pro Ile Met Tyr Ser Thr Asp Pro Glu Asn Gly His Ile Phe Asn Cys Ile Gln Arg Ala His Gln Asn Thr 55 Leu Glu Val Tyr Pro Pro Phe Leu Phe Phe Leu Ala Val Gly Gly Val 70 Tyr His Pro Arg Ile Ala Ser Gly Leu Gly Leu Ala Trp Ile Val Gly 90 85 Arg Val Leu Tyr Ala Tyr Gly Tyr Tyr Thr Gly Glu Pro Ser Lys Arg 105 Ser Arg Gly Ala Leu Gly Ser Ile Ala Leu Leu Gly Leu Val Gly Thr 115 120 Thr Val Cys Ser Ala Phe Gln His Leu Gly Trp Val Lys Ser Gly Leu 140 130

112

145 150

Sequence No.: 21
Sequence length: 559

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP10302
Sequence description

Met Ala Pro Thr Leu Gln Gln Ala Tyr Arg Arg Trp Trp Met Ala 5 10 Cys Thr Ala Val Leu Glu Asn Leu Phe Phe Ser Ala Val Leu Leu Gly Trp Gly Ser Leu Leu Ile Ile Leu Lys Asn Glu Gly Phe Tyr Ser Ser 40 Thr Cys Pro Ala Glu Ser Ser Thr Asn Thr Thr Gln Asp Glu Gln Arg 55 Arg Trp Pro Gly Cys Asp Gln Gln Asp Glu Met Leu Asn Leu Gly Phe 70 75 65 Thr Ile Gly Ser Phe Val Leu Ser Ala Thr Thr Leu Pro Leu Gly Ile Leu Met Asp Arg Phe Gly Pro Arg Pro Val Arg Leu Val Gly Ser Ala 105 Cys Phe Thr Ala Ser Cys Thr Leu Met Ala Leu Ala Ser Arg Asp Val 120 115 Glu Ala Leu Ser Pro Leu Ile Phe Leu Ala Leu Ser Leu Asn Gly Phe 140 135 Gly Gly Ile Cys Leu Thr Phe Thr Ser Leu Thr Leu Pro Asn Met Phe 150 145 Gly Asn Leu Arg Ser Thr Leu Met Ala Leu Met Ile Gly Ser Tyr Ala 170 Ser Ser Ala Ile Thr Phe Pro Gly Ile Lys Leu Ile Tyr Asp Ala Gly 185 Val Ala Phe Val Val Ile Met Phe Thr Trp Ser Gly Leu Ala Cys Leu 200 Ile Phe Leu Asn Cys Thr Leu Asn Trp Pro Ile Glu Ala Phe Pro Ala 220 210 Pro Glu Glu Val Asn Tyr Thr Lys Lys Ile Lys Leu Ser Gly Leu Ala

113

225					230					235					240
Leu	Asp	His	Lys	Val	Thr	Gly	Asp	Leu	Phe	Tyr	Thr	His	Val	Thr	Thr
				245					250					255	
Met	Gly	Gln	Arg	Leu	Ser	Gln	Lys	Ala	Pro	Ser	Leu	Glu	Asp	Gly	Ser
			260					265					270		
Asp	Ala	Phe	Met	Ser	Pro	Gln	Asp	Val	Arg	Gly	Thr	Ser	G1u	Asn	Leu
		275					280					285			
Pro	G1u	Arg	Ser	Val	Pro	Leu	Arg	Lys	Ser	Leu	Cys	Ser	Pro	Thr	Phe
	290					295					300				•
Leu	Trp	Ser	Leu	Leu	Thr	Met	Gly	Met	Thr	Gln	Leu	Arg	Ile	Ile	Phe
305					310	·				315					320
Tyr	Met	Ala	Ala	Val	Asn	Lys	Met	Leu	Glu	Tyr	Leu	Val	Thr	Gly	Gly
				325					330					335	
Gln	Glu	His	Glu	Thr	Asn	Glu	Gln	Gln	Gln	Lys	Val	Ala	Glu	Thr	Val
			340					345					350		
Gly	Phe	Tyr	Ser	Ser	Val	Phe	Gly	Ala	Met	Gln	Leu	Leu	Cys	Leu	Leu
		355					360					365			
Thr	Сув	Pro	Leu	Ile	G1y	Tyr	Ile	Met	Asp	Trp	Arg	Ile	Lys	Asp	Cys
	370					375					380				
Val	Asp	Ala	Pro	Thr	Gln	Gly	Thr	Val	Leu	Gly	Asp	Ala	Arg	Asp	Gly
385					390					395					400
Val	Ala	Thr	Lys	Ser	Ile	Arg	Pro	Arg	Tyr	Cys	Lys	Ile	Gln	Lys	Leu
				405					410					415	
Thr	Asn	Ala	Ile	Ser	Ala	Phe	Thr	Leu	Thr	Asn	Leu	Leu	Leu	Val	Gly
			420					425					430		
Phe	Gly	Ile	Thr	Cys	Leu	Ile	Asn	Asn	Leu	His	Leu	G1n	Phe	Val	Thr
		435					440					445			
Phe	Val	Leu	His	Thr	Ile	Val	Arg	Gly	Phe	Phe	His	Ser	Ala	Cys	Gly
	450					455					460				
Ser	Leu	Tyr	Ala	Ala	Val	Phe	Pro	Ser	Asn	His	Phe	Gly	Thr	Leu	Thr
465					470					475					480
Gly	Leu	Gln	Ser	Leu	Ile	Ser	Ala	Val	Phe	Ala	Leu	Leu	Gln	${\tt Gln}$	Pro
				485					490					495	
Leu	Phe	Met	Ala	Met	Val	Gly	Pro	Leu	Lys	Gly	Glu	Pro	Phe	Trp	Val
			500		•			505					510		
Asn	Leu	G1y	Leu	Leu	Leu	Phe	Ser	Leu	Leu	G1y	Phe	Leu	Leu	Pro	Ser
		515					520					525			
Tyr	Leu	Phe	Tyr	Tyr	Arg	Ala	Arg	Leu	G1n	Gln	Glu	Tyr	Ala	Ala	Asn
•	530		-	-		535					540				
Gly		Gly	Pro	Leu	Lys	Val	Leu	Ser	Gly	Ser	Glu	Val	Thr	Ala	
545		-			550				-	555					

Sequence length: 330 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10304 Sequence description

Met	Glu	Gly	Ala	Pro	Pro	Gly	Ser	Leu	Ala	Leu	Arg	Leu	Leu	Leu	Phe
1				5					10					15	
Val	Ala	Leu	Pro	Ala	Ser	Gly	Trp	Leu	Thr	Thr	Gly	Ala	Pro	Glu	Pro
			20					25					30		
Pro	Pro	Leu	Ser	Gly	Ala	Pro	Gln	Asp	Gly	Ile	Arg	Ile	Asn	Val	Th
		35					40					45			
Thr	Leu	Lys	Авр	Asp	Gly	Asp	Ile	Ser	Lys	Gln	Gln	Val	Val	Leu	Ası
	50					55					60				
Ile	Thr	Tyr	Glu	Ser	Gly	Gln	Val	Tyr	Val	Asn	Asp	Leu	Pro	Val	Ası
65					. 70					75					80
Ser	Gly	Val	Thr	Arg	Ile	Ser	Cys	Gln	Thr	Leu	Ile	Va1	Lys	Asn	Glı
				85					90					95	
Asn	Leu	Glu	Asn	Leu	Glu	Glu	Lys		Tyr	Phe	G1y	Ile		Ser	Va.
			100					105					110		
Arg	Ile	Leu	Val	His	Glu	Trp		Met	Thr	Ser	Gly		Ser	Leu	Glı
		115					120					125			
Leu	Ile	Val	Ile	Gln	G1u	Glu	Val	Val	Glu	Ile		Gly	Lys	Gln	Va.
	130					135					140				
Gln	Gln	Lys	Asp	Val		Glu	Ile	Asp	Ile		Va1	Lys	Asn	Arg	
145					150					155			_		160
Val	Leu	Arg	His		Asn	Tyr	Thr	Leu		Leu	Glu	Glu	Ser	Met	Let
				165		_			170			_	_	175	_
Tyr	Ser	Ile		Arg	Asp	Ser	Asp		Leu	Phe	Thr	Leu		Asn	Lei
			180	_			_	185					190	_	_
Ser	Lys	•	Glu	Ser	Val	Ser		Leu	GIn	Thr	Thr		GIn	Tyr	Let
		195					200			_	1	205	_		_
Ile	Arg	Asn	Val	Glu	Thr		Val	Asp	Glu	Asp		Leu	Pro	Gly	ГÀ
	210					215			_	_	220	_	_	_	
Leu	Pro	Glu	Thr	Pro		Arg	Ala	Glu	Pro		Ser	Ser	Tyr	Lys	
225					230	_				235	_	_			24
Met	Cys	Gln	Trp		Glu	Lys	Phe	Arg		Asp	Leu	Cys	Arg	Phe	Tr
				245					250					255	

115

330

 Ser
 Asn
 Val
 Phe
 Pro
 Val
 Phe
 Phe
 Gln
 Phe
 Leu
 Asn
 Ile
 Met
 Val
 Val

 Gly
 Ile
 Thr
 Gly
 Ala
 Ala
 Val
 Val
 Ile
 Thr
 Ile
 Leu
 Lys
 Val
 Phe
 Phe

 Pro
 Val
 Ser
 Glu
 Tyr
 Lys
 Gly
 Ile
 Leu
 Glu
 Lys
 Val
 Asp
 Val

 11e
 Pro
 Val
 Thr
 Ala
 Ile
 Asn
 Leu
 Tyr
 Pro
 Asp
 Glu
 Lys
 Arg

 305
 Ile
 Asn
 Leu
 Thr
 Cys
 Ile
 I

Sequence No.: 23
Sequence length: 108
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

325

Cell kind: Osterosarcoma

Cell line: HU-2 OS Clone name: HP10305 Sequence description

 Met
 Ser
 Leu
 Thr
 Ser
 Ser
 Ser
 Val
 Arg
 Val
 Glu
 Trp
 Ile
 Ala
 Ala

 Val
 Thr
 Ile
 Ala
 Ala
 Gly
 Thr
 Ala
 Ala
 Ile
 Gly
 Tyr
 Leu
 Ala
 Tyr
 Lys

 Arg
 Phe
 Tyr
 Val
 Lys
 Asp
 His
 Arg
 Asn
 Lys
 Ala
 Met
 Ile
 Asn
 Leu
 His

 Arg
 Phe
 Tyr
 Val
 Lys
 Asp
 His
 Arg
 Asn
 Lys
 Asp
 Asp
 His
 Arg
 Asn
 Phe
 Asp
 His
 Asp
 Arg
 Cys
 Arg
 Arg
 Ala
 Phe
 Asp
 Asp
 Met
 Glu
 Asp
 Asp
 Arg
 Phe
 Asp
 Arg
 Arg
 Cys
 Trp
 Arg
 Ser
 Lys
 Phe
 Arg
 Arg
 Arg
 Cys
 Trp
 A

105

Sequence No.: 24
Sequence length: 101
Sequence type: Amino acid

100

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10306 Sequence description

Met Asn Leu Glu Arg Val Ser Asn Glu Glu Lys Leu Asn Leu Cys Arg

1 5 10 15

Lys Tyr Tyr Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp Leu Val 20 . 25 30

Asn Ile Phe Trp Phe Phe Arg Glu Ala Phe Leu Val Pro Ala Tyr Thr 35 40 45

Glu Gln Ser Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val Gly Phe
50 55 60

Leu Phe Trp Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe Gln Ile 65 70 75 80

Tyr Arg Pro Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe Thr Ile 85 90 95

Pro Leu Gly Thr Pro 100

Sequence No.: 25 Sequence length: 372

Sequence type: Amino acid .

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

1

Clone name: HP10328
Sequence description

Met Lys Tyr Leu Arg His Arg Arg Pro Asn Ala Thr Leu Ile Leu Ala

5 10 1

Ile Gly Ala Phe Thr Leu Leu Leu Phe Ser Leu Leu Val Ser Pro Pro 20 25 30

Thr Cys Lys Val Gln Glu Gln Pro Pro Ala Ile Pro Glu Ala Leu Ala

		35					40					45			
Trp	Pro	Thr	Pro	Pro	Thr	Arg	Pro	Ala	Pro	Ala	Pro	Cys	His	Ala	Asn
•	50					55					60				
Thr	Ser	Met	Va1	Thr	His	Pro	Asp	Phe	Ala	Thr	Gln	Pro	Gln	His	Val
65					70		_			75					80
Gln	Asn	Phe	Leu	Leu	Tyr	Arg	His	Cys	Arg	His	Phe	Pro	Leu	Leu	Gln
				85					90					95	
Asp	Val	Pro	Pro	Ser	Lys	Cys	Ala	Gln	Pro	Val	Phe	Leu	Leu	Leu	Val
_			100					105					110		
Ile	Lys	Ser	Ser	Pro	Ser	Asn	Tyr	Val	Arg	Arg	Glu	Leu	Leu	Arg	Arg
		115					120					125			
Thr	Trp	Gly	Arg	Glu	Arg	Lys	Val	Arg	Gly	Leu	${\tt Gln}$	Leu	Arg	Leu	Leu
	130					135					140				
Phe	Leu	Val	Gly	Thr	Ala	Ser	Asn	Pro	His	Glu	Ala	Arg	Lys	Val	Asn
145					150					155					160
Arg	Leu	Leu	Glu	Leu	Glu	Ala	Gln	Thr	His	Gly	Asp	Ile	Leu	Gln	Trp
				165					170					175	
Asp	Phe	His	Asp	Ser	Phe	Phe	Asn	Leu	Thr	Leu	Lys	Gln	Val	Leu	Phe
			180					185					190		
Leu	Gln	Trp	Gln	Glu	Thr	Arg	_	Ala	Asn	Ala	Ser		Val	Leu	Asn
		195					200					205			
Gly	-	Asp	Asp	Val	Phe		His	Thr	Asp	Asn		Val	Phe	Tyr	Leu
_	210			_		215		_			220		_		
	Asp	His	Asp	Pro	_	Arg	His	Leu	Phe		GLy	GIn	Leu	IIe	
225		01		~1 _	230	47-	Db -	m	C	235	M	m	VI - 7	D	240
Asn	VAI	GTÀ	Pro		Arg	ALB	Pne	rrp		ьуs	Tyr	Tyr	Val		GIU
¥7_ 1	17_1	m	C1-	245	<i>C</i> 1	A	T	D==0	250 P=0	Т	Crro	C1	Gly	255	C1
AHT	AHT	1111	260	ИВП	GLU	мg	Tyr	265	FIU	ıyı	Cys	GLY	270	GIY	GLŸ
Pho	Lon	ĭ ou		A = 0	Dho	Thr	A10		A 7 o	Lon	Ara	Ara	Ala	A1 a	Hic
Inc	neu	275	DEL	mg	Inc	1111	280	ша	1114	Deu	B	285	******	*****	11.5
Va 1	Len		Tle	Phe	Pro	Tle		Asn	Va 1	Phe	Len		Met	Cvs	Leu
14.	290	шор		1110		295	P	-1.0 p			300	02)		-,-	
Glu		Glu	G1v	Leu	Lvs		Ala	Ser	His	Ser		Ile	Arg	Thr	Ser
305			,		310					315	,				320
	Val	Arg	Ala	Pro	Ser	Gln	His	Leu	Ser	Ser	Phe	Asp	Pro	Cys	
_		J		325					330			_		335	
Tyr	Arg	Asp	Leu	Leu	Leu	Val	His	Arg	Phe	Leu	Pro	Tyr	Glu	Met	Leu
_	_	_	340					345					350		
Leu	Met	Trp	Asp	Ala	Leu	Asn	Gln	Pro	Asn	Leu	Thr	Сув	Gly	Asn	Gln
		355					360					365			
Thr	Gln	Ile	Tyr												
	370	•													

118

Sequence No.: 26
Sequence length: 615

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP00442
Sequence description

ATGACGGGGC	TAGCACTGCT	CTACTCCGGG	GTCTTCGTGG	CCTTCTGGGC	CTGCGCGCTG	60
GCCGTGGGAG	TCTGCTACAC	CATTTTTGAT	TTGGGCTTCC	GCTTTGATGT	GGCATGGTTC	120
CTGACGGAGA	CTTCGCCCTT	CATGTGGTCC	AACCTGGGCA	TTGGCCTAGC	TATCTCCCTG	180
TCTGTGGTTG	GGGCAGCCTG	GGGCATCTAT	ATTACCGGCT	CCTCCATCAT	TGGTGGAGGA	240
GTGAAGGCCC	CCAGGATCAA	GACCAAGAAC	CTGGTCAGCA	TCATCTTCTG	TGAGGCTGTG	300
GCCATCTACG	GCATCATCAT	GGCAATTGTC	ATTAGCAACA	TGGCTGAGCC	TTTCAGTGCC	360
ACAGACCCCA	AGGCCATCGG	CCATCGGAAC	TACCATGCAG	GCTACTCCAT	GTTTGGGGCT	420
GGCCTCACCG	TAGGCCTGTC	TAACCTCTTC	TGTGGAGTCT	GCGTGGGCAT	CGTGGGCAGT	480
GGGGCTGCCC	TGGCCGATGC	TCAGAACCCC	AGCCTCTTTG	TAAAGATTCT	CATCGTGGAG	540
ATCTTTGGCA	GCGCCATTGG	CCTCTTTGGG	GTCATCGTCG	CAATTCTTCA	GACCTCCAGA	600
GTGAAGATGG	GTGAC					615

Sequence No.: 27

Sequence length: 1113

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte Clone name: HP00804 Sequence description

ATGTCCCATG	AAAAGAGTTT	TTTGGTGTCT	GGGGACAACT	ATCCTCCCCC	CAACCCTGGA	60
TATCCGGGGG	GGCCCCAGCC	ACCCATGCCC	CCCTATGCTC	AGCCTCCCTA	CCCTGGGGCC	120
CCTTACCCAC	AGCCCCCTTT	CCAGCCCTCC	CCCTACGGTC	AGCCAGGGTA	CCCCCÁTGGC	180
CCCAGCCCCT	ACCCCCAAGG	GGGCTACCCA	CAGGGTCCCT	ACCCCCAAGG	GGGCTACCCA	240
CAGGGCCCCT	ACCCACAAGA	GGGCTACCCA	CAGGGCCCCT	ACCCCCAAGG	GGGCTACCCC	300

CAGGGGCCAT	ATCCCCAGAG	CCCCTTCCCC	CCCAACCCCT	ATGGACAGCC	ACAGGTCTTC	360
CCAGGACAAG	ACCCTGACTC	ACCCCAGCAT	GGAAACTACC	AGGAGGAGGG	TCCCCCATCC	420
TACTATGACA	ACCAGGACTT	CCCTGCCACC	AACTGGGATG	ACAAGAGCAT	CCGACAGGCC	480
TTCATCCGCA	AGGTGTTCCT	AGTGCTGACC	TTGCAGCTGT	CGGTGACCCT	GTCCACGGTG	540
TCTGTGTTCA	CTTTTGTTGC	GGAGGTGAAG	GGCTTTGTCC	GGGAGAATGT	CTGGACCTAC	600
TATGTCTCCT	ATGCTGTCTT	CTTCATCTCT	CTCATCGTCC	TCAGCTGTTG	TGGGGACTTC	660
CGGCGAAAGC	ACCCCTGGAA	CCTTGTTGCA	CTGTCGGTCC	TGACCGCCAG	CCTGTCGTAC	720
ATGGTGGGGA	TGATCGCCAG	CTTCTACAAC	ACCGAGGCAG	TCATCATGGC	CGTGGGCATC	780
ACCACAGCCG	TCTGCTTCAC	CGTCGTCATC	TTCTCCATGC	AGACCCGCTA	CGACTTCACC	840
TCATGCATGG	GCGTGCTCCT	GGTGAGCATG	GTGGTGCTCT	TCATCTTCGC	CATTCTCTGC	900
ATCTTCATCC	GGAACCGCAT	CCTGGAGATC	GTGTACGCCT	CACTGGGCGC	TCTGCTCTTC	960
ACCTGCTTCC	TCGCAGTGGA	CACCCAGCTG	CTGCTGGGGA	ACAAGCAGCT	GTCCCTGAGC	1020
CCAGAAGAGT	ATGTGTTTGC	TGCGCTGAAC	CTGTACACAG	ACATCATCAA	CATCTTCCTG	1080
TACATCCTCA	CCATCATTGG	CCGCGCCAAG	GAG			1113

Sequence No.: 28
Sequence length: 537

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098 Sequence description

ATGCTGTCTC	TAGACTTTTT	GGACGATGTG	CGGCGGATGA	ACAAGCGGCA	GCTCTATTAT	60
CAAGTCCTAA	ATTTTGGAAT	GATTGTCTCA	TCGGCACTAA	TGATCTGGAA	GGGGTTAATG	120
GTAATAACTG	GAAGTGAAAG	TCCGATTGTA	GTGGTGCTCA	GTGGCAGCAT	GGAACCTGCA	180
TTTCATAGAG	GAGATCTTCT	CTTTCTAACA	AATCGAGTTG	AAGATCCCAT	ACGAGTGGGA	240
GAAATTGTTG	TTTTTAGGAT	AGAAGGAAGA	GAGATTCCTA	TAGTTCACCG	AGTCTTGAAG	300
ATTCATGAAA	AGCAAAATGG	GCATATCAAG	TTTTTGACCA	AAGGAGATAA	TAATGCGGTT	360
CATGACCGAG	GCCTCTATAA	ACAAGGACAA	CATTGGCTAG	AGAAAAAGA	TCTTCTCCCC	420
AGAGCCAGGG	GATTTGTTCC	TTATATTGGA	ATTGTGACGA	TCCTCATGAA	TGACTATCCT	480
AAATTTAAGT	ATGCAGTTCT	CTTTTTGCTG	GGTTTATTCG	TGCTGGTTCA	TCGTGAG	537

Sequence No.: 29

Sequence length: 1041

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

120

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01148
Sequence description

ATGGCTCTGC	TATTCTCCTT	GATCCTTGCC	ATTTGCACCA	GACCTGGATT	CCTAGCGTCT	60
CCATCTGGAG	TGCGGCTGGT	GGGGGGCCTC	CACCGCTGTG	AAGGGCGGGT	GGAGGTGGAA	120
CAGAAAGGCC	AGTGGGGCAC	CGTGTGTGAT	GACGGCTGGG	ACATTAAGGA	CGTGGCTGTG	180
TTGTGCCGGG	AGCTGGGCTG	TGGAGCTGCC	AGCGGAACCC	CTAGTGGTAT	TTTGTATGAG	240
CCACCAGCAG	AAAAAGAGCA	AAAGGTCCTC	ATCCAATCAG	TCAGTTGCAC	AGGAACAGAA	300
GATACATTGG	CTCAGTGTGA	GCAAGAAGAA	GTTTATGATT	GTTCACATGA	AGAAGATGCT	360
GGGGCATCGT	GTGAGAACCC	AGAGAGCTCT	TTCTCCCCAG	TCCCAGAGGG	TGTCAGGCTG	420
GCTGACGGCC	CTGGGCATTG	CAAGGGACGC	GTGGAAGTGA	AGCACCAGAA	CCAGTGGTAT	480
ACCGTGTGCC	AGACAGGCTG	GAGCCTCCGG	GCCGCAAAGG	TGGTGTGCCG	GCAGCTGGGA	540
TGTGGGAGGG	CTGTACTGAC	TCAAAAACGC	TGCAACAAGC	ATGCCTATGG	CCGAAAACCC	600
ATCTGGCTGA	GCCAGATGTC	ATGCTCAGGA	CGAGAAGCAA	CCCTTCAGGA	TTGCCCTTCT	660
GGGCCTTGGG	GGAAGAACAC	CTGCAACCAT	GATGAAGACA	CGTGGGTCGA	ATGTGAAGAT	720
CCCTTTGACT	TGAGACTAGT	AGGAGGAGAC	AACCTCTGCT	CTGGGCGACT	CGACCTGCTG	780
CACAAGGGCG	TATGGGGCTC	TGTCTGTGAT	GACAACTGGG	GAGAAAAGGA	GGACCAGGTG	840
GTATGCAAGC	AACTGGGCTG	TGGGAAGTCC	CTCTCTCCCT	CCTTCAGAGA	CCGGAAATGC	900
TATGGCCCTG	GGGTTGGCCG	CATCTGGCTG	GATAATGTTC	GTTGCTCAGG	GGAGGAGCAG	960
TCCCTGGAGC	AGTGCCAGCA	CAGATTTTGG	GGGTTTCACG	ACTGCACCCA	CCAGGAAGAT	1020
GTGGCTGTCA	TCTGCTCAGG	A				1041

Sequence No.: 30

Sequence length: 1662

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01293
Sequence description

ATGCCCACCG	TGGATGACAT	TCTGGAGCAG	GTTGGGGAGT	CTGGCTGGTT	CCAGAAGCAA	60
GCCTTCCTCA	TCTTATGCCT	GCTGTCGGCT	GCCTTTGCGC	CCATCTGTGT	GGGCATCGTC	120
TTCCTGGGTT	TCACACCTGA	CCACCACTGC	CAGAGTCCTG	GGGTGGCTGA	GCTGAGCCAG	180
CGCTGTGGCT	GGAGCCCTGC	GGAGGAGCTG	AACTATACAG	TGCCAGGCCT	GGGGCCCGCG	240
GGCGAGGCCT	TCCTTGGCCA	GTGCAGGCGC	TATGAAGTGG	ACTGGAACCA	GAGCGCCCTC	300

AGCTGTGTAG	ACCCCCTGGC	TAGCCTGGCC	ACCAACAGGA	GCCACCTGCC	GCTGGGTCCC	360
TGCCAGGATG	GCTGGGTGTA	TGACACGCCC	GGCTCTTCCA	TCGTCACTGA	GTTCAACCTG	420
GTGTGTGCTG	ACTCCTGGAA	GCTGGACCTC	TTTCAGTCCT	GTTTGAATGC	GGGCTTCTTC	480
TTTGGCTCTC	TCGGTGTTGG	CTACTTTGCA	GACAGGTTTG	GCCGTAAGCT	GTGTCTCCTG	540
GGAACTGTGC	TGGTCAACGC	CGTGTCGGGC	GTGCTCATGG	CCTTCTCGCC	CAACTACATG	600
TCCATGCTGC	TCTTCCGCCT	GCTGCAGGGC	CTGGTCAGCA	AGGGCAACTG	GATGGCTGGC	660
TACACCCTAA	TCACAGAATT	TGTTGGCTCG	GGCTCCAGAA	GAACGGTGGC	GATCATGTAC	720
CAGATGGCCT	TCACGGTGGG	CCTCCTCCCC	CTTACCGGGC	TGGCCTACGC	CCTGCCTCAC	780
TGGCGCTGGC	TGCAGCTGGC	AGTCTCCCTG	CCCACCTTCC	TCTTCCTGCT	CTACTACTGG	840
TGTGTGCCGG	AGTCCCCTCG	GTGGCTGTTA	TCACAAAAA	GAAACACTGA	AGCAATAAAG	900
ATAATGGACC	ACATCGCTCA	AAAGAATGGG	AAGTTGCCTC	CTGCTGATTT	AAAGATGCTT	960
TCCCTCGAAG	AGGATGTCAC	CGAAAAGCTG	AGCCCTTCAT	TTGCAGACCT	GTTCCGCACG	1020
CCGCGCCTGA	GGAAGCGCAC	CTTCATCCTG	ATGTACCTGT	GGTTCACGGA	CTCTGTGCTC	1080
TATCAGGGGC	TCATCCTGCA	CATGGGCGCC	ACCAGCGGGA	ACCTCTACCT	GGATTTCCTT	1140
TACTCCGCTC	TGGTCGAAAT	ccceeeecc	TTCATAGCCC	TCATCACCAT	TGACCGCGTG	1200
GGCCGCATCT	ACCCCATGGC	CGTGTCAAAT	TTGTTGGCGG	GGGCAGCCTG	CCTCGTCATG	1260
ATTTTTATCT	CACCTGACCT	GCACTGGTTA	AACATCATAA	TCATGTGTGT	TGGCCGAATG	1320
GGAATCACCA	TTGCAATACA	AATGATCTGC	CTGGTGAATG	CTGAGCTGTA	CCCCACATTC	1380
GTCAGGAACC	TCGGAGTGAT	CGTGTGTTCC	TCCCTGTGTG	ACATAGGTGG	GATAATCACC	1440
CCCTTCATAG	TCTTCAGGCT	GAGGGAGGTC	TGGCAAGCCT	TGCCCCTCAT	TTTGTTTGCG	1500
GTGTTGGGCC	TGCTTGCCGC	GGGAGTGACG	CTACTTCTTC	CAGAGACCAA	GGGGGTCGCT	1560
TTGCCAGAGA	CCATGAAGGA	CGCCGAGAAC	CTTGGGAGAA	AAGCAAAGCC	CAAAGAAAAC	1620
ACGATTTACC	TTAAGGTCCA	AACCTCAGAA	CCCTCGGGCA	CC		1662

Sequence No.: 31

Sequence length: 1050

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10013
Sequence description

ATGGCTGTGT	TTGTCGTGCT	CCTGGCGTTG	GTGGCGGGTG	TTTTGGGGAA	CGAGTTTAGT	60
ATATTAAAAT	CACCAGGGTC	TGTTGTTTTC	CGAAATGGAA	ATTGGCCTAT	ACCAGGAGAG	120
CGGATCCCAG	ACGTGGCTGC	ATTGTCCATG	GCCTTCTCTG	TGAAAGAAGA	CCTTTCTTGG	180
CCAGGACTCG	CAGTGGGTAA	CCTGTTTCAT	CGTCCTCGGG	CTACCGTCAT	GGTGATGGTG	240
AAGGGAGTGA	ACAAACTGGC	TCTACCCCCA	GGCAGTGTCA	TTTCGTACCC	TTTGGAGAAT	300
GCAGTTCCTT	TTAGTCTTGA	CAGTGTTGCA	AATTCCATTC	ACTCCTTATT	TTCTGAGGAA	360

ACTCCTGTTG	TTTTGCAGTT	GGCTCCCAGT	GAGGAAAGAG	TGTATATGGT	AGGGAAGGCA	420
AACTCAGTGT	TTGAAGACCT	TTCAGTCACC	TTGCGCCAGC	TCCGTAATCG	CCTGTTTCAA	480
GAAAACTCTG	TTCTCAGTTC	ACTCCCCCTC	AATTCTCTGA	GTAGGAACAA	TGAAGTTGAC	540
CTGCTCTTTC	TTTCTGAACT	GCAAGTGCTA	CATGATATTT	CAAGCTTGCT	GTCTCGTCAT	600
AAGCATCTAG	CCAAGGATCA	TTCTCCTGAT	TTATATTCAC	TGGAGCTGGC	AGGTTTGGAT	660
GAAATTGGGA	AGCGTTATGG	GGAAGACTCT	GAACAATTCA	GAGATGCTTC	TAAGATCCTT	720
GTTGACGCTC	TGCAAAAGTT	TGCAGATGAC	ATGTACAGTC	TTTATGGTGG	GAATGCAGTG	780
GTAGAGTTAG	TCACTGTCAA	GTCATTTGAC	ACCTCCCTCA	TTAGGAAGAC	AAGGACTATC	840
CTTGAGGCAA	AACAAGCGAA	GAACCCAGCA	AGTCCCTATA	ACCTTGCATA	TAAGTATAAT	900
TTTGAATATT	CCGTGGTTTT	CAACATGGTA	CTTTGGATAA	TGATCGCCTT	GGCCTTGGCT	960
GTGATTATCA	CCTCTTACAA	TATTTGGAAC	ATGGATCCTG	GATATGATAG	CATCATTTAT	1020
AGGATGACAA	ACCAGAAGAT	TCGAATGGAT				1050

Sequence No.: 32

Sequence length: 627

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10034 Sequence description

ATGGTGTCCT	CTCCCTGCAC	GCAGGCAAGC	TCACGGACTT	GCTCCCGTAT	CCTGGGACTG	60
AGCCTTGGGA	CTGCAGCCCT	GTTTGCTGCT	GGGGCCAACG	TGGCACTCCT	CCTTCCTAAC	120
TGGGATGTCA	CCTACCTGTT	GAGGGGCCTC	CTTGGCAGGC	ATGCCATGCT	GGGAACTGGG	180
CTCTGGGGAG	GAGGCCTCAT	GGTACTCACT	GCAGCTATCC	TCATCTCCTT	GATGGGCTGG	240
AGATACGGCT	GCTTCAGTAA	GAGTGGGCTC	TGTCGAAGCG	TGCTTACTGC	TCTGTTGTCA	300
CGTGGCCTGG	CTTTACTTGG	AGCCCTGATT	TGCTTTGTCA	CTTCTGGAGT	TGCTCTGAAA	360
GATGGTCCTT	TTTGCATGTT	TGATGTTTCA	TCCTTCAATC	AGACACAAGC	TTGGAAATAT	420
GGTTACCCAT	TCAAAGACCT	GCATAGTAGG	AATTATCTGT	ATGACCGTTC	GCTCTGGAAC	480
TCCGTCTGCC	TGGAGCCCTC	TGCAGCTGTT	GTCTGGCACG	TGTCCCTCTT	CTCCGCCCTT	540
CTGTGCATCA	GCCTGCTCCA	GCTTCTCCTG	GTGGTCGTTC	ATGTCATCAA	CAGCCTCCTG	600
GGCCTTTTCT	GCAGCCTCTG	CGAGAAG				627

Sequence No.: 33
Sequence length: 489

Sequence type: Nucleic acid

Strandedness: Double

123

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10050 Sequence description

ATGGCGGCTG	GGCTGTTTGG	TTTGAGCGCT	CGCCGTCTTT	TGGCGGCAGC	GGCGACGCGA	60
SSCTCCCG	CCGCCGCGT	CCGCTGGGAA	TCTAGCTTCT	CCAGGACTGT	GGTCGCCCCG	120
TCCGCTGTGG	CGGGAAAGCG	GCCCCAGAA	CCGACCACAC	CGTGGCAAGA	GGACCCAGAA	180
CCCGAGGACG	AAAACTTGTA	TGAGAAGAAC	CCAGACTCCC	ATGGTTATGA	CAAGGACCCC	240
GTTTTGGACG	TCTGGAACAT	GCGACTTGTC	TTCTTCTTTG	GCGTCTCCAT	CATCCTGGTC	300
CTTGGCAGCA	CCTTTGTGGC	CTATCTGCCT	GACTACAGGT	GCACAGGGTG	TCCAACAGCG	360
TGGGATGGGA	TGAAAGAGTG	GTCCCGCCGC	GAAGCTGAGA	GGCTTGTGAA	ATACCGAGAG	420
GCCAATGGCC	TTCCCATCAT	GGAATCCAAC	TGCTTCGACC	CCAGCAAGAT	CCAGCTGCCA	480
GAGGATGAG						489

Sequence No.: 34

Sequence length: 276

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10071 Sequence description

ATGACGAAAT	TAGCGCAGTG	GCTTTGGGGA	CTAGCGATCC	TGGGCTCCAC	CTGGGTGGCC	60
CTGACCACGG	GAGCCTTGGG	CCTGGAGCTG	CCCTTGTCCT	GCCAGGAAGT	CCTGTGGCCA	120
CTGCCGCCT	ACTTGCTGGT	GTCCGCCGGC	TGCTATGCCC	TEGECACTET	GGGCTATCGT	180
GTGGCCACTT	TTCATGACTG	CGAGGACGCC	GCACGCGAGC	TGCAGAGCCA	GATACAGGAG	240
GCCCGAGCCG	ACTTAGCCCG	CAGGGGGCTG	CGCTTC			276

Sequence No.: 35
Sequence length: 516

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10076
Sequence description

ATGGAATATT	TGGCTCATCC	CAGTACACTC	GGCTTGGCTG	TTGGAGTTGC	TTGTGGCATG	60
TGCCTGGGCT	GGAGCCTTCG	AGTATGCTTT	GGGATGCTCC	CCAAAAGCAA	GACGAGCAAG	120
ACACACACAG	ATACTGAAAG	TGAAGCAAGC	ATCTTGGGAG	ACAGCGGGGA	GTACAAGATG	180
ATTCTTGTGG	TTCGAAATGA	CTTAAAGATG	GGAAAAGGGA	AAGTGGCTGC	CCAGTGCTCT	240
CATGCTGCTG	TTTCAGCCTA	CAAGCAGATT	CAAAGAAGAA	ATCCTGAAAT	GCTCAAACAA	300
TGGGAATACT	GTGGCCAGCC	CAAGGTGGTG	GTCAAAGCTC	CTGATGAAGA	AACCCTGATT	360
GCATTATTGG	CCCATGCAAA	AATGCTGGGA	CTGACTGTAA	GTTTAATTCA	AGATGCTGGA	420
CGTACTCAGA	TTGCACCAGG	CTCTCAAACT	GTCCTAGGGA	TTGGGCCAGG	ACCAGCAGAC	480
CTAATTGACA	AAGTCACTGG	TCACCTAAAA	CTTTAC			516
	TGCCTGGGCT ACACACACAG ATTCTTGTGG CATGCTGCTG TGGGAATACT GCATTATTGG CGTACTCAGA	TGCCTGGGCT GGAGCCTTCG ACACACACAG ATACTGAAAG ATTCTTGTGG TTCGAAATGA CATGCTGCTG TTTCAGCCTA TGGGAATACT GTGGCCAGCC GCATTATTGG CCCATGCAAA CGTACTCAGA TTGCACCAGG	TGCCTGGGCT GGAGCCTTCG AGTATGCTTT ACACACACAG ATACTGAAAG TGAAGCAAGC ATTCTTGTGG TTCGAAATGA CTTAAAGATG CATGCTGCTG TTTCAGCCTA CAAGCAGATT TGGGAATACT GTGGCCAGCC CAAGGTGGTG GCATTATTGG CCCATGCAAA AATGCTGGGA CGTACTCAGA TTGCACCAGG CTCTCAAACT	TGCCTGGGCT GGAGCCTTCG AGTATGCTTT GGGATGCTCC ACACACACAG ATACTGAAAG TGAAGCAAGC ATCTTGGGAG ATTCTTGTGG TTCGAAATGA CTTAAAGATG GGAAAAGGGA CATGCTGCTG TTTCAGCCTA CAAGCAGATT CAAAGAAGAA TGGGAATACT GTGGCCAGCC CAAGGTGGTG GTCAAAGCTC GCATTATTGG CCCATGCAAA AATGCTGGGA CTGACTGTAA	TGCCTGGGCT GGAGCCTTCG AGTATGCTTT GGGATGCTCC CCAAAAGCAA ACACACACAG ATACTGAAAG TGAAGCAAGC ATCTTGGGAG ACAGCGGGGA ATTCTTGTGG TTCGAAATGA CTTAAAGATG GGAAAAGGGA AAGTGGCTGC CATGCTGCTG TTTCAGCCTA CAAGCAGATT CAAAGAAGAA ATCCTGAAAT TGGGAATACT GTGGCCAGCC CAAGGTGGTG GTCAAAGCTC CTGATGAAGA GCATTATTGG CCCATGCAAA AATGCTGGGA CTGACTGTAA GTTTAATTCA CGTACTCAGA TTGCACCAGG CTCTCAAACT GTCCTAGGGA TTGGGCCAGG	ATGGAATATT TGGCTCATCC CAGTACACTC GGCTTGGCTG TTGGAGTTGC TTGTGGCATG TGCCTGGGCT GGAGCCTTCG AGTATGCTTT GGGATGCTCC CCAAAAGCAA GACGAGCAAG ACACACACAG ATACTGAAAG TGAAGCAAGC ATCTTGGGAG ACAGCGGGA GTACAAGATG ATTCTTGTGG TTCGAAATGA CTTAAAGATG GGAAAAGGGA AAGTGGCTGC CCAGTGCTCT CATGCTGCTG TTTCAGCCTA CAAGCAGATT CAAAGAAGAA ATCCTGAAAT GCTCAAACAA TGGGAATACT GTGGCCAGCC CAAGGTGGTG GTCAAAGCTC CTGATGAAGA AACCCTGATT GCATTATTGG CCCATGCAAA AATGCTGGGA CTGACTGTAA GTTTAATTCA AGATGCTGGA CGTACTCAGA TTGCACCAGG CTCTCAAACT GTCCTAGGGA TTGGGCCAGG ACCAGCAGAC CTAATTGACA AAGTCACTGG TCACCTAAAA CTTTAC

Sequence No.: 36

Sequence length: 447

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10085
Sequence description

ATGATGACCA	AACATAAAAA	GTGTTTTATA	ATTGTTGGTG	TTTTAATAAC	AACTAATATT	60
ATTACTCTGA	TAGTTAAACT	AACTCGAGAT	TCTCAGAGTT	TATGCCCCTA	TGATTGGATT	120
GGTTTCCAAA	ACAAATGCTA	TTATTTCTCT	AAAGAAGAAG	GAGATTGGAA	TTCAAGTAAA	180
TACAACTGTT	CCACTCAACA	TGCCGACCTA	ACTATAATTG	ACAACATAGA	AGAAATGAAT	240
TTTCTTAGGC	GGTATAAATG	CAGTTCTGAT	CACTGGATTG	GACTGAAGAT	GGCAAAAAT	300
CGAACAGGAC	AATGGGTAGA	TGGAGCTACA	TTTACCAAAT	CGTTTCGCAT	GAGAGGGAGT	360
GAAGGATGTG	CCTACCTCAG	CGATGATGGT	GCAGCAACAG	CTAGATGTTA	CACCGAAAGA	420
AAATGGATTT	GCAGGAAAAG	AATACAC				447

Sequence No.: 37 Sequence length: 564

125

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stonach cancer

Clone name: HP10122
Sequence description

ATGAGCACTA	TGTTCGCGGA	CACTCTCCTC	ATCGTTTTTA	TCTCTGTGTG	CACGGCTCTG	60
CTCGCAGAGG	GCATAACCTG	GGTCCTGGTT	TACAGGACAG	ACAAGTACAA	GAGACTGAAG	120
GCAGAAGTGG	AAAAACAGAG	TAAAAAATTG	GAAAAGAAGA	AGGAAACAAT	AACAGAGTCA	180
GCTGGTCGAC	AACAGAAAAA	GAAAATAGAG	AGACAAGAAG	AGAAACTGAA	GAATAACAAC	240
AGAGATCTAT	CAATGGTTCG	AATGAAATCC	ATGTTTGCTA	TTGGCTTTTG	TTTTACTGCC	300
CTAATGGGAA	TGTTCAATTC	CATATTTGAT	GGTAGAGTGG	TGGCAAAGCT	TCCTTTTACC	360
CCTCTTTCTT	ACATCCAAGG	ACTGTCTCAT	CGAAATCTGC	TGGGAGATGA	CACCACAGAC	420
TGTTCCTTCA	TTTTCCTGTA	TATTCTCTGT	ACTATGTCGA	TTCGACAGAA	CATTCAGAAG	480
ATTCTCGGCC	TTGCCCCTTC	ACGAGCCGCC	ACCAAGCAGG	CAGGTGGATT	TCTTGGCCCA	540
CCACCTCCTT	CTGGGAAGTT	CTCT		•		564

Sequence No.: 38
Sequence length: 645

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10136
Sequence description

ATGGTGTTGC	TAACAATGAT	CGCCCGAGTG	GCGGACGGGC	TCCCGCTGGC	CGCCTCGATG	60
CAGGAGGACG	AACAGTCTGG	CCGGGACCTT	CAACAGTATC	AGAGTCAGGC	TAAGCAACTC	120
TTTCGAAAGT	TGAATGAACA	GTCCCCTACC	AGATGTACCT	TGGAAGCAGG	AGCCATGACT	180
TTTCACTACA	TTATTGAGCA	GGGGGTGTGT	TATTTGGTTT	TATGTGAAGC	TGCCTTCCCT	240
AAGAAGTTGG	CTTTTGCCTA	CCTAGAAGAT	TTGCACTCAG	AATTTGATGA	ACAGCATGGA	300
AAGAAGGTGC	CCACTGTGTC	CCGACCCTAT	TCCTTTATTG	AATTTGATAC	TTTCATTCAG	360
AAAACCAAGA	AGCTCTACAT	TGACAGTCGT	GCTCGAAGAA	ATCTAGGCTC	CATCAACACT	420
GAATTGCAAG	ATGTGCAGAG	GATCATGGTG	GCCAATATTG	AAGAAGTGTT	ACAACGAGGA	480
GAAGCACTCT	CAGCATTGGA	TTCAAAGGCT	AACAATTTGT	CCAGTCTGTC	CAAGAAATAC	540

CGCCAGGATG	CGAAGTACTT	GAACATGCGT	TCCACTTATG	CCAAACTTGC	AGCAGTAGCT	600
GTATTTTCA	TCATGTTAAT	AGTGTATGTC	CGATTCTGGT	GGCTG		645

Sequence No.: 39

Sequence length: 336

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10175
Sequence description

ATGCAGGACA	CTGGCTCAGT	AGTGCCTTTG	CATTGGTTTG	GCTTTGGCTA	CGCAGCACTG	60
GTTGCTTCTG	GTGGGATCAT	TGGCTATGTA	AAAGCAGGCA	GCGTGCCGTC	CCTGGCTGCA	120
GGGCTGCTCT	TTGGCAGTCT	AGCCGGCCTG	GGTGCTTACC	AGCTGTCTCA	GGATCCAAGG	180
AACGTTTGGG	TTTTCCTAGC	TACATCTGGT	ACCTTGGCTG	GCATTATGGG	AATGAGGTTC	240
TACCACTCTG	GAAAATTCAT	GCCTGCAGGT	TTAATTGCAG	GTGCCAGTTT	GCTGATGGTC	300
GCCAAAGTTG	GAGTTAGTAT	GTTCAACAGA	CCCCAT			336

Sequence No.: 40 Sequence length: 342

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10179
Sequence description

ATGGAGAAGC	CCCTCTTCCC	ATTAGTGCCT	TTGCATTGGT	TTGGCTTTGG	CTACACAGCA	60
CTGGTTGTTT	CTGGTGGGAT	CGTTGGCTAT	GTAAAAACAG	GCAGCGTGCC	GTCCCTGGCT	120
GCAGGGCTGC	TCTTCGGCAG	TCTAGCCGGC	CTGGGTGCTT	ACCAGCTGTA	TCAGGATCCA	180
AGGAACGTTT	GGGGTTTCCT	AGCCGCTACA	TCTGTTACTT	TTGTTGGTGT	TATGGGAATG	240
AGATCCTACT	ACTATGGAAA	ATTCATGCCT	GTAGGTTTAA	TTGCAGGTGC	CAGTTTGCTG	300
ATGGCCGCCA	AAGTTGGAGT	TCGTATGTTG	ATGACATCTG	AT		342

127 .

Sequence No.: 41
Sequence length: 981

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10196 Sequence description

ATGGCGGCGG	CGCCGCCGC	GGCTGCAGCT	ACGAACGGGA	CCGGAGGAAG	CAGCGGGATG	60
GAGGTGGATG	CAGCAGTAGT	CCCCAGCGTG	ATGGCCTGCG	GAGTGACTGG	GAGTGTTTCC	120
GTCGCTCTCC	ATCCCCTTGT	CATTCTCAAC	ATCTCAGACC	ACTGGATCCG	CATGCGCTCC	180
CAGGAGGGC	GGCCTGTGCA	GGTGATTGGG	GCTCTGATTG	GCAAGCAGGA	GGGCCGAAAT	240
ATCGAGGTGA	TGAACTCCTT	TGAGCTGCTG	TCCCACACCG	TGGAAGAGAA	GATTATCATT	300
GACAAGGAAT	ATTATTACAC	CAAGGAGGAG	CAGTTTAAAC	AGGTGTTCAA	GGAGCTGGAG	360
TTTCTGGGTT	GGTATACCAC	AGGGGGGCCA	CCTGACCCCT	CGGACATCCA	CGTCCATAAG	420
CAGGTGTGTG	AGATCATCGA	GAGCCCCCTC	TTTCTGAAGT	TGAACCCTAT	GACCAAGCAC	480
ACAGATCTTC	CTGTCAGCGT	TTTTGAGTCT	GTCATTGATA	TAATCAATGG	AGAGGCCACA	540
ATGCTGTTTG	CTGAGCTGAC	CTACACTCTG	GCCACAGAGG	AAGCGGAACG	CATTGGTGTA	600
GACCACGTAG	CCCGAATGAC	AGCAACAGGC	AGTGGAGAGA	ACTCCACTGT	GGCTGAACAC	660
CTGATAGCAC	AGCACAGCGC	CATCAAGATG	CTGCACAGCC	GCGTCAAGCT	CATCTTGGAG	720
TACGTCAAGG	CCTCTGAAGC	GGGAGAGGTC	CCCTTTAATC	ATGAGATCCT	GCGGGAGGCC	780
TATGCTCTGT	GTCACTGTCT	CCCGGTGCTC	AGCACAGACA	AGTTCAAGAC	AGATTTTTAT	840
GATCAATGCA	ACGACGTGGG	GCTCATGGCC	TACCTCGGCA	CCATCACCAA	AACGTGCAAC	900
ACCATGAACC	AGTTTGTGAA	CAAGTTCAAT	GTCCTCTACG	ACCGACAAGG	CATCGGCAGG	960
AGAATGCGCG	GGCTCTTTTT	C				981

Sequence No.: 42

Sequence length: 1119

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10235 Sequence description

ATGACCCTAT	GTGCCATGCT	GCCCTGCTG	TTATTCACCT	ACCTCAACTC	CTTCCTGCAT	60
CAGAGGATCC	CCCAGTCCGT	ACGGATCCTG	GGCAGCCTGG	TGGCCATCCT	GCTGGTGTTT	120
CTGATCACTG	CCATCCTGGT	GAAGGTGCAG	CTGGATGCTC	TGCCCTTCTT	TGTCATCACC	180
ATGATCAAGA	TCGTGCTCAT	TAATTCATTT	GGTGCCATCC	TGCAGGGCAG	CCTGTTTGGT	240
CTGGCTGGCC	TTCTGCCTGC	CAGCTACACG	GCCCCCATCA	TGAGTGGCCA	GGGCCTAGCA	300
GGCTTCTTTG	CCTCCGTGGC	CATGATCTGC	GCTATTGCCA	GTGGCTCGGA	GCTATCAGAA	360
AGTGCCTTCG	GCTACTTTAT	CACAGCCTGT	GCTGTTATCA	TTTTGACCAT	CATCTGTTAC	420
CTGGGCCTGC	CCCGCCTGGA	ATTCTACCGC	TACTACCAGC	AGCTCAAGCT	TGAAGGACCC	480
GGGGAGCAGG	AGACCAAGTT	GGACCTCATT	AGCAAAGGAG	AGGAGCCAAG	AGCAGGCAAA	540
GAGGAATCTG	GAGTTTCAGT	CTCCAACTCT	CAGCCCACCA	ATGAAAGCCA	CTCTATCAAA	600
GCCATCCTGA	AAAATATCTC	AGTCCTGGCT	TTCTCTGTCT	GCTTCATCTT	CACTATCACC	660
ATTGGGATGT	TTCCAGCCGT	GACTGTTGAG	GTCAAGTCCA	GCATCGCAGG	CAGCAGCACC	720
TGGGAACGTT	ACTTCATTCC	TGTGTCCTGT	TTCTTGACTT	TCAATATCTT	TGACTGGTTG	780
GGCCGGAGCC	TCACAGCTGT	ATTCATGTGG	CCTGGGAAGG	ACAGCCGCTG	GCTGCCAAGC	840
CTGGTGCTGG	CCCGCCTGGT	GTTTGTGCCA	CTGCTGCTGC	TGTGCAACAT	TAAGCCCCGC	900
CGCTACCTGA	CTGTGGTCTT	CGAGCACGAT	GCCTGGTTCA	TCTTCTTCAT	GGCTGCCTTT	960
GCCTTCTCCA	ACGGCTACCT	CGCCAGCCTC	TGCATGTGCT	TCGGGCCCAA	GAAAGTGAAG	1020
CCAGCTGAGG	CAGAGACCGC	AGGAGCCATC	ATGGCCTTCT	TCCTGTGTCT	GGGTCTGGCA	1080
CTGGGGGGTG	TTTTCTCCTT	CCTGTTCCGG	GCAATTGTG			1119

Sequence No.: 43

Sequence length: 549

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10297 Sequence description

ATGAAGCTCT	TATCTTTGGT	GGCTGTGGTC	GGGTGTTTGC	TGGTGCCCCC	AGCTGAAGCC	60
AACAAGAGTT.	CTGAAGATAT	CCGGTGCAAA	TGCATCTGTC	CACCTTATAG	AAACATCAGT	120
GGGCACATTT	ACAACCAGAA	TGTATCCCAG	AAGGACTGCA	ACTGCCTGCA	CGTGGTGGAG	180
CCCATGCCAG	TGCCTGGCCA	TGACGTGGAG	GCCTACTGCC	TGCTGTGCGA	GTGCAGGTAC	240
GAGGAGCGCA	GCACCACCAC	CATCAAGGTC	ATCATTGTCA	TCTACCTGTC	CGTGGTGGGT	300
GCCCTGTTGC	TCTACATGGC	CTTCCTGATG	CTGGTGGACC	CTCTGATCCG	AAAGCCGGAT	360
GCATACACTG	AGCAACTGCA	CAATGAGGAG	GAGAATGAGG	ATGCTCGCTC	TATGGCAGCA	420
GCTGCTGCAT	CCCTCGGGGG	ACCCCGAGCA	AACACAGTCC	TGGAGCGTGT	GGAAGGTGCC	480
CAGCAGCGGT	GGAAGCTGCA	GGTGCAGGAG	CAGCGGAAGA	CAGTCTTCGA	TCGGCACAAG	540
ATGCTCAGC						549

129

Sequence No.: 44
Sequence length: 348

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299
Sequence description

ATGGCCAGTA	CAGTGGTAGC	AGTTGGACTG	ACCATTGCTG	CTGCAGGATT	TGCAGGCCGT	60
TACGTTTTGC	AAGCCATGAA	GCATATGGAG	CCTCAAGTAA	AACAAGTTTT	TCAAAGCCTA	120
CCAAAATCTG	CCTTCAGTGG	TGGCTATTAT	AGAGGTGGGT	TTGAACCCAA	AATGACAAAA	180
CGGGAAGCA	GCATTAATAC	TAGGTGTAAG	CCCTACTGCC	AATAAAGGGA	AAATAAGAGA	240
GCTCATCGAC	GAATTATGCT	TTTAAATCAT	CCTGACAAAG	GAGGATCTCC	TTATATAGCA	300
GCCAAAATCA	ATGAAGCTAA	AGATTTACTA	GAAGGTCAAG	CTAAAAAA		348

Sequence No.: 45
Sequence length: 456

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10301 Sequence description

ATGGCTGTCC	TCTCTAAGGA	ATATGGTTTT	GTGCTTCTAA	CTGGTGCTGC	CAGCTTTATA	60
ATGGTGGCCC	ACCTAGCCAT	CAATGTTTCC	AAGGCCCGCA	AGAAGTACAA	AGTGGAGTAT	120
CCTATCATGT	ACAGCACGGA	CCCTGAAAAT	GGGCACATCT	TCAACTGCAT	TCAGCGAGCC	180
CACCAGAACA	CGTTGGAAGT	GTATCCTCCC	TTCTTATTTT	TTCTAGCTGT	TGGAGGTGTT	240
TACCACCCGC	GTATAGCTTC	TGGCCTGGGC	TTGGCCTGGA	TTGTTGGACG	AGTTCTTTAT	300
GCTTATGGCT	ATTACACGGG	AGAACCCAGC	AAGCGTAGTC	GAGGAGCCCT	GGGGTCCATC	360
GCCCTCCTGG	GCTTGGTGGG	CACAACTGTG	TGCTCTGCTT	TCCAGCATCT	TGGTTGGGTT	420
AAAAGTGGCT	TECCCACTEG	ACCCAAATGC	TGCCAT			456

Sequence No.: 46

Sequence length: 1677

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP10302
Sequence description

ATGGCCCCCA	CGCTGCAACA	GGCGTACCGG	AGGCGCTGGT	GGATGGCCTG	CACGGCTGTG	60
CTGGAGAACC	TCTTCTTCTC	TGCTGTACTC	CTGGGCTGGG	GCTCCCTGTT	GATCATTCTG	120
AAGAACGAGG	GCTTCTATTC	CAGCACGTGC	CCAGCTGAGA	GCAGCACCAA	CACCACCCAG	180
GATGAGCAGC	GCAGGTGGCC	AGGCTGTGAC	CAGCAGGACG	AGATGCTCAA	CCTGGGCTTC	240
ACCATTGGTT	CCTTCGTGCT	CAGCGCCACC	ACCCTGCCAC	TGGGGATCCT	CATGGACCGC	300
TTTGGCCCCC	GACCCGTGCG	GCTGGTTGGC	AGTGCCTGCT	TCACTGCGTC	CTGCACCCTC	360
ATGGCCCTGG	CCTCCCGGGA	CGTGGAAGCT	CTGTCTCCGT	TGATATTCCT	GGCGCTGTCC	420
CTGAATGGCT	TTGGTGGCAT	CTGCCTAACG	TTCACTTCAC	TCACGCTGCC	CAACATGTTT	480
GGGAACCTGC	GCTCCACGTT	AATGGCCCTC	ATGATTGGCT	CTTACGCCTC	TTCTGCCATT	540
ACGTTCCCAG	GAATCAAGCT	GATCTACGAT	GCCGGTGTGG	CCTTCGTGGT	CATCATGTTC	600
ACCTGGTCTG	GCCTGGCCTG	CCTTATCTTT	CTGAACTGCA	CCCTCAACTG	GCCCATCGAA	660
GCCTTTCCTG	CCCCTGAGGA	AGTCAATTAC	ACGAAGAAGA	TCAAGCTGAG	TGGGCTGGCC	720
CTGGACCACA	AGGTGACAGG	TGACCTCTTC	TACACCCATG	TGACCACCAT	GGGCCAGAGG	780
CTCAGCCAGA	AGGCCCCCAG	CCTGGAGGAC	GGTTCGGATG	CCTTCATGTC	ACCCCAGGAT	840
GTTCGGGGCA	CCTCAGAAAA	CCTTCCTGAG	AGGTCTGTCC	CCTTACGCAA	GAGCCTCTGC	900
TCCCCCACTT	TCCTGTGGAG	CCTCCTCACC	ATGGGCATGA	CCCAGCTGCG	GATCATCTTC	960
TACATGGCTG	CTGTGAACAA	GATGCTGGAG	TACCTTGTGA	CTGGTGGCCA	GGAGCATGAG	1020
ACAAATGAAC	AGCAACAAAA	GGTGGCAGAG	ACAGTTGGGT	TCTACTCCTC	CGTCTTCGGG	1080
GCCATGCAGC	TGTTGTGCCT	TCTCACCTGC	CCCCTCATTG	GCTACATCAT	GGACTGGCGG	1140
ATCAAGGACT	GCGTGGACGC	CCCAACTCAG	GGCACTGTCC	TCGGAGATGC	CAGGGACGGG	1200
GTTGCTACCA	AATCCATCAG	ACCACGCTAC	TGCAAGATCC	AAAAGCTCAC	CAATGCCATC	1260
AGTGCCTTCA	CCCTGACCAA	CCTGCTGCTT	GTGGGTTTTG	GCATCACCTG	TCTCATCAAC	1320
AACTTACACC	TCCAGTTTGT	GACCTTTGTC	CTGCACACCA	TTGTTCGAGG	TTTCTTCCAC	1380
TCAGCCTGTG	GGAGTCTCTA	TGCTGCAGTG	TTCCCATCCA	ACCACTTTGG	GACGCTGACA	1440
GGCCTGCAGT	CCCTCATCAG	TGCTGTGTTC	GCCTTGCTTC	AGCAGCCACT	TTTCATGGCG	1500
ATGGTGGGAC	CCCTGAAAGG	AGAGCCCTTC	TGGGTGAATC	TGGGCCTCCT	GCTATTCTCA	1560
CTCCTGGGAT	TCCTGTTGCC	TTCCTACCTC	TTCTATTACC	GTGCCCGGCT	CCAGCAGGAG	1620
TACGCCGCCA	ATGGGATGGG	CCCACTGAAG	GTGCTTAGCG	GCTCTGAGGT	GACCGCA	1677

Sequence No.: 47 Sequence length: 990

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS
Clone name: HP10304
Sequence description

ATGGAGGGG CTCCACCGGG G	STCGCTCGCC	CTCCGGCTCC	TGCTGTTCGT	GGCGCTACCC	60
GCCTCCGGCT GGCTGACGAC G	GGCGCCCCC	GAGCCGCCGC	CGCTGTCCGG	AGCCCCACAG	120
GACGGCATCA GAATTAATGT A	ACTACACTG	AAAGATGATG	GGGACATATC	TAAACAGCAG	180
GTTGTTCTTA ACATAACCTA T	rgagagtgga	CAGGTGTATG	TAAATGACTT	ACCTGTAAAT	240
AGTGGTGTAA CCCGAATAAG C	CTGTCAGACT	TTGATAGTGA	AGAATGAAAA	TCTTGAAAAT	300
TTGGAGGAAA AAGAATATTT T	CGGAATTGTC	AGTGTAAGGA	TTTTAGTTCA	TGAGTGGCCT	360
ATGACATCTG GTTCCAGTTT G	CAACTAATT	GTCATTCAAG	AAGAGGTAGT	AGAGATTGAT	420
GGAAAACAAG TTCAGCAAAA G	GATGTCACT	GAAATTGATA	TTTTAGTTAA	GAACCGGGGA	480
GTACTCAGAC ATTCAAACTA T	PACCETCCCT	TTGGAAGAAA	GCATGCTCTA	CTCTATTTCT	540
CGAGACAGTG ACATTTATT T	PACCETTCCT	AACCTCTCCA	AAAAAGAAAG	TGTTAGTTCA	600
CTGCAAACCA CTAGCCAGTA T	CTTATCAGG	AATGTGGAAA	CCACTGTAGA	TGAAGATGTT	660
TTACCTGGCA AGTTACCTGA A	AACTCCTCTC	AGAGCAGAGC	CGCCATCTTC	ATATAAGGTA	720
ATGTGTCAGT GGATGGAAAA G	STTTAGAAAA	GATCTGTGTA	GGTTCTGGAG	CAACGTTTTC	780
CCAGTATTCT TTCAGTTTTT G	SAACATCATG	GTGGTTGGAA	TTACAGGAGC	AGCTGTGGTA	840
ATAACCATCT TAAAGGTGTT T	TTTCCCAGTT	TCTGAATACA	AAGGAATTCT	TCAGTTGGAT	900
AAAGTGGACG TCATACCTGT G	GACAGCTATC	AACTTATATC	CAGATGGTCC	AGAGAAAAGA	960
GCTGAAAACC TTGAAGATAA A	AACATGTATT				990

Sequence No.: 48
Sequence length: 324

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10305 Sequence description

132

GCTGGGACAG	CTGCAATTGG	TTATCTAGCT	TACAAAAGAT	TTTATGTTAA	AGATCATCGA	120
AATAAAGCTA	TGATAAACCT	TCACATCCAG	AAAGACAACC	CCAAGATAGT	ACATGCTTTT	180
GACATGGAGG	ATTTGGGAGA	TAAAGCTGTG	TACTGCCGTT	GTTGGAGGTC	CAAAAAGTTC	240
CCATTCTGTG	ATGGGGCTCA	CACAAAACAT	AACGAAGAGA	CTGGAGACAA	TGTGGGCCCT	300
CTGATCATCA	AGAAAAAGA	AACT				324

Sequence No.: 49
Sequence length: 303

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10306 Sequence description

ATGAACCTGG	AGCGAGTGTC	CAATGAGGAG	AAATTGAACC	TGTGCCGGAA	GTACTACCTG	60
GGGGGGTTTG	CTTTCCTGCC	TTTTCTCTGG	TTGGTCAACA	TCTTCTGGTT	CTTCCGAGAG	120
GCCTTCCTTG	TCCCAGCCTA	CACAGAACAG	AGCCAAATCA	AAGGCTATGT	CTGGCGCTCA	180
GCTGTGGGCT	TCCTCTTCTG	GGTGATAGTG	CTCACCTCCT	GGATCACCAT	CTTCCAGATC	240
TACCGGCCCC	GCTGGGGTGC	CCTTGGGGAC	TACCTCTCCT	TCACCATACC	CCTGGGCACC	300
CCC						303

Sequence No.: 50

Sequence length: 1116

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10328
Sequence description

ATGAAGTATC	TCCGGCACCG	GCGGCCCAAT	GCCACCCTCA	TTCTGGCCAT	CGGCGCTTTC	60
ACCCTCCTCC	TCTTCAGTCT	GCTAGTGTCA	CCACCCACCT	GCAAGGTCCA	GGAGCAGCCA	120
CCGGCGATCC	CCGAGGCCCT	GGCCTGGCCC	ACTCCACCCA	CCCGCCCAGC	CCCGGCCCCG	180

133

TGCCATGCCA ACACCTCTAT GGTC	ACCCAC CCGGACTTCG	CCACGCAGCC	GCAGCACGTT	240
CAGAACTTCC TCCTGTACAG ACAC	TGCCGC CACTITCCCC	TGCTGCAGGA	CGTGCCCCCC	300
TCTAAGTGCG CGCAGCCGGT CTTC	CTGCTG CTGGTGATCA	AGTCCTCCCC	TAGCAACTAT	360
GTGCGCCGCG AGCTGCTGCG GCGC	ACGIGG GGCCGCGAGC	GCAAGGTACG	GGGTTTGCAG	420
CTGCGCCTCC TCTTCCTGGT GGGC	ACAGCC TCCAACCCGC	ACGAGGCCCG	CAAGGTCAAC	480
CGGCTGCTGG AGCTGGAGGC ACAG	ACTCAC GGAGACATCC	TGCAGTGGGA	CTTCCACGAC	540
TCCTTCTTCA ACCTCACGCT CAAG	CAGGIC CIGITCITAC	AGTGGCAGGA	GACAAGGTGC	600
GCCAACGCCA GCTTCGTGCT CAAC	GGGGAT GATGACGTCT	TTGCACACAC	AGACAACATG	660
GTCTTCTACC TGCAGGACCA TGAC	CCTGGC CGCCACCTCT	TCGTGGGGCA	ACTGATCCAA	720
AACGTGGGCC CCATCCGGGC TTTT	TGGAGC AAGTACTATG	TGCCAGAGGT	GGTGACTCAG	780
AATGAGCGGT ACCCACCCTA TTGT	GGGGGT GGTGGCTTCT	TGCTGTCCCG	CTTCACGGCC	840
GCTGCCCTGC GCCGTGCTGC CCAT	GTCTTG GACATCTTCC	CCATTGATGA	TGTCTTCCTG	900
GGTATGTGTC TGGAGCTTGA GGGA	CTGAAG CCTGCCTCCC	ACAGCGGCAT	CCGCACGTCT	960
GGCGTGCGGG CTCCATCGCA ACAC	CTGTCC TCCTTTGACC	CCTGCTTCTA	CCGAGACCTG	1020
CTGCTGGTGC ACCGCTTCCT ACCT	TATGAG ATGCTGCTCA	TGTGGGATGC	GCTGAACCAG	1080
CCCAACCTCA CCTGCGGCAA TCAG	ACACAG ATCTAC		•	1116

Sequence No.: 51

Sequence length: 986

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080

Clone name: HP00442 Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 699 Characterization method: E

Sequence description

AGACTGCGGG ACGGACGGTG GAC	CGCTGGGA CGCGTTTGTA	GCTCCGGCCC CGCCGTTCCG	60
ACCCCCGCG CCGTCGCCGC C A	ATG ACG CGG CTA GCA	CTG CTC TAC TCC GGG	111
M	et Thr Gly Leu Ala	Leu Leu Tyr Ser Gly	
	1 5	10	
GTC TTC GTG GCC TTC TGG G	SCC TGC GCG CTG GCC	GTG GGA GTC TGC TAC	159
Val Phe Val Ala Phe Trp A	la Cys Ala Leu Ala	Val Gly Val Cys Tyr	
15	20	25	
ACC ATT TTT GAT TTG GGC T	TTC CGC TTT GAT GTG	GCA TGG TTC CTG ACG	207
Thr Ile Phe Asp Leu Gly P	Phe Arg Phe Asp Val	Ala Trp Phe Leu Thr	

			30					35					40			
GAG	ACT	TCG	CCC	TTC	ATG	TGG	TCC	AAC	CTG	GGC	ATT	GGC	CTA	GCT	ATC	255
G1u	Thr	Ser	Pro	Phe	Met	Trp	Ser	Asn	Leu	Gly	Ile	Gly	Leu	Ala	Ile	•
		45					50					55				
TCC	CTG	TCT	GTG	GTT	GGG	GCA	CCC	TGG	GGC	ATC	TAT	TTA	ACC	GGC	TCC	303
Ser	Leu	Ser	Val	Val	Gly	Aļa	Ala	Trp	Gly	Ile	Tyr	Ile	Thr	Gly	Ser	
	60					65					70					
TCC	ATC	ATT	GGT	GGA	GGA	GTG	AAG	GCC	CCC	AGG	ATC	AAG	ACC	AAG	AAC	351
Ser	Ile	Ile	G1y	Gly	Gly	Val	Lys	Ala	Pro	Arg	Ile	Lys	Thr	Lys	Asn	
75					80					85					90	
CTG	GTC	AGC	ATC	ATC	TTC	TGT	GAG	GCT	GTG	GCC	ATC	TAC	GGC	ATC	ATC	399
Leu	Val	Ser	Ile	Ile	Phe	Cys	Glu	Ala	Val	Ala	Ile	Tyr	Gly	11e	I1e	
				95					100					105		
ATG	GCA	ATT	GTC	ATT	AGC	AAC	ATG	GCT	GAG	CCT	TTC	AGT	GCC	ACA	GAC	447
Met	Ala	Ile	Val	Ile	Ser	Asn	Met	Ala	Glu	Pro	Phe	Ser	Ala	Thr	Asp	
			110					115					120			
CCC	AAG	GCC	ATC	GGC	CAT	CGG	AAC	TAC	CAT	GCA	GGC	TAC	TCC	ATG	TTT	495
Pro	Lys	Ala	Ile	Gly	His	Arg	Asn	Tyr	His	Ala	Gly	Tyr	Ser	Met	Phe	
		125					130					135				
			CTC													543
Gly	Ala	Gly	Leu	Thr	Val	Gly	Leu	Ser	Asn	Leu	Phe	Cys	Gly	Val	Cys	
	140					145					150					
			GTG													591
Va1	Gly	Ile	Va1	Gly	Ser	G1y	Ala	Ala	Leu	Ala	Asp	Ala	G1n	Asn	Pro	
155					160					165					170	
			GTA													639
Ser	Leu	Phe	Val	Lys	Ile	Leu	Ile	Val	Glu	Ile	Phe	G1y	Ser	Ala	Ile	
				175					180				•	185		
															AAG -	687
Gly	Leu	Phe	Gly	Val	Ile	Val	Ala	Ile	Leu	Gln	Thr	Ser		Val	Lys	
			190					195					200			
			TAG	ATGA:	TAT (STGT	egg T(GG G(GCCG'	rgcc:	T CA	CT				730
Met	Gly	_														
		205			•											
															AGAGGC	
															CACTGC	
															AGCTGC	
					TC C	ACCC	TCAA	c cc.	ATCT	TCCT	AGT	GTTT(GTG .	AAAT	AAACTT	
CCT	A ሞሞሞ	STC '	TCCC'	TC.												986

Sequence No.: 52

Sequence length: 1824

Sequence type: Nucleic acid

135

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte
Clone name: HP00804
Sequence characteristics

Code representing characteristics: CDS

Existence site: 133.. 1248 Characterization method: E

Sequence description

GGC	CAG	CTG A	AGCG(CCG(CC GA	AGCGC	GTG(GGG	STGC	GGGC	GCA'	rcgg(CCA !	TCAC	CGCGCG	60
GCCG	CGCA	AGC (GAC	ACCG	eg co	STAC	CGGC	TG	CGGC	GCCC	GGC	CACC	GG (GCGG/	ACCGCG	120
GAAC	CCGA	AGG (CC AT	rg T(CC CA	AT GA	AA AA	AG AG	T T	TT T	rg g	rg T	CT G	GG GA	AC AAC	171
			Me	et Se	er H	is G	lu Ly	rs Se	er Pl	he Le	eu Va	al Se	er G	ly A	sp Asn	
				1				5				:	10			
TAT	CCT	CCC	CCC	AAC	CCT	GGA	TAT	CCG	GGG	GGG	CCC	CAG	CCA	CCC	ATG	219
Tyr	Pro	Pro	Pro	Asn	Pro	Gly	Tyr	Pro	Gly	G1y	Pro	Gln	Pro	Pro	Met	
	15					20					25					
CCC	CCC	TAT	GCT	CAG	CCT	CCC	TAC	CCT	eee	GCC	CCT	TAC	CCA	CAG	CCC	267
Pro	Pro	Tyr	Ala	Gln	Pro	Pro	Tyr	Pro	Gly	Ala	Pro	Tyr	Pro	G1n	Pro	
30					35					40					45	
CCT	TTC	CAG	CCC	TCC	CCC	TAC	GGT	CAG	CCA	GGG	TAC	CCC	CAT	GGC	CCC	315
Pro	Phe	Gln	Pro	Ser	Pro	Tyr	Gly	Gln	Pro	Gly	Tyr	Pro	His	Gly	Pro	•
				50					55					60		
AGC	CCC	TAC	CCC	CAA	GGG	GGC	TAC	CCA	CAG	GGT	CCC	TAC	CCC	CAA	GGG	363
Ser	Pro	Tyr	Pro	Gln	Gly	Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	G1n	Gly	
			65					70					75			
GGC	TAC	CCA	CAG	GGC	CCC	TAC	CCA	CAA	GAG	GGC	TAC	CCA	CAG	GGC	CCC	411
Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	Gln	Glu	Gly	Tyr	Pro	Gln	Gly	Pro	
		80					85					90				
TAC	CCC	CAA	GGG	GGC	TAC	CCC	CAG	GGG	CCA	TAT	CCC	CAG	AGC	CCC	TTC	459
Tyr	Pro	Gln	Gly	Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	Gln	Ser	Pro	Phe	
	95					100					105					
CCC	CCC	AAC	CCC	TAT	GGA	CAG	CCA	CAG	GTC	TTC	CCA	GGA	CAA	GAC	CCT	507
Pro	Pro	Asn	Pro	Tyr	Gly	Gln	Pro	Gln	Val	Phe	Pro	G1y	Gln	Asp	Pro	
110					115					120					125	
GAC	TCA	CCC	CAG	CAT	GGA	AAC	TAC	CAG	GAG	GAG	GGT	CCC	CCA	TCC	TAC	555
Asp	Ser	Pro	Gln	His	Gly	Asn	Tyr	Gln	Glu	Glu	Gly	Pro	Pro	Ser	Tyr	
				130					135					140		
TAT	GAC	AAC	CAG	GAC	TTC	CCT	GCC	ACC	AAC	TGG	GAT	GAC	AAG	AGC	ATC	603
Tyr	Asp	Asn	Gln	Asp	Phe	Pro	Ala	Thr	Asn	Trp	Asp	Asp	Lys	Ser	Ile	

136

			145					150					155			
CGA	CAG	GCC	TTC	ATC	CGC	AAG	GTG	TTC	CTA	GTG	CTG	ACC	TTG	CAG	CTG	651
Arg	Gln	Ala	Phe	Ile	Arg	Lys	Val	Phe	Leu	Val	Leu	Thr	Leu	Gln	Leu	
		160					165					170				
TCG	GTG	ACC	CTG	TCC	ACG	GTG	TCT	GTG	TTC	ACT	TTT	GTT	GCG	GAG	GTG	699
Ser	Va1	Thr	Leu	Ser	Thr	Val	Ser	Val	Phe	Thr	Phe	Val	Ala	Glu	Val	
	175					180					185					
AAG	GGC	TTT	GTC	CGG	GAG	AAT	GTC	TGG	ACC	TAC	TAT	GTC	TCC	TAT	GCT	747
Lys	Gly	Phe	Val	Arg	Glu	Asn	Va1	Trp	Thr	Tyr	Tyr	Val	Ser	Tyr	Ala	
190	-				195					200					205	
GTC	TTC	TTC	ATC	TCT	CTC	ATC	GTC	CTC	AGC	TGT	TGT	GGG	GAC	TTC	CGG	795
Va1	Phe	Phe	Ile	Ser	Leu	Ile	Val	Leu	Ser	Cys	Cys	Gly	Asp	Phe	Arg	
				210					215			-		220		
CGA	AAG	CAC	CCC	TGG	AAC	CTT	GTT	GCA	CTG	TCG	GTC	CTG	ACC	GCC	AGC	843
Arg	Lys	His	Pro	Trp	Asn	Leu	Val	Ala	Leu	Ser	Val	Leu	Thr	Ala	Ser	
Ū	•		225	<u>-</u>			•	230					235			
CTG	TCG	TAC	ATG	GTG	GGG	ATG	ATC	GCC	AGC	TTC	TAC	AAC	ACC	GAG	GCA	891
Leu	Ser	Tyr	Met	Val	Gly	Met	Ile	Ala	Ser	Phe	Tyr	Asn	Thr	Glu	Ala	
		240			-		245					250				
GTC	ATC	ATG	GCC	GTG	GGC	ATC	ACC	ACA	GCC	GTC	TGC	TTC	ACC	GTC	GTC	939
Val	Ile	Met	Ala	Val	Gly	Ile	Thr	Thr	Ala	Val	Cys	Phe	Thr	Val	Val	
	255				-	260					265					
ATC	TTC	TCC	ATG	CAG	ACC	CGC	TAC	GAC	TTC	ACC	TCA	TGC	ATG	GGC	GTG	987
Ile	Phe	Ser	Met	Gln	Thr	Arg	Tyr	Asp	Phe	Thr	Ser	Cys	Met	Gly	Val	
270					275					280					285	
CTC	CTG	GTG	AGC	ATG	GTG	GTG	CTC	TTC	ATC	TTC	GCC	ATT	CTC	TGC	ATC	1035
Leu	Leu	Val	Ser	Met	Val	Va1	Leu	Phe	Ile	Phe	Ala	Ile	Leu	Cys	Ile	
				290					295					300		
TTC	ATC	CGG	AAC	CGC	ATC	CTG	GAG	ATC	GTG	TAC	GCC	TCA	CTG	GGC	GCT	1083
Phe	Ile	Arg	Asn	Arg	Ile	Leu	Glu	Ile	Val	Tyr	Ala	Ser	Leu	Gly	Ala	
			305					310					315			
CTG	CTC	TTC	ACC	TGC	TTC	CTC	GCA	GTG	GAC	ACC	CAG	CTG	CTG	CTG	GGG	1131
Leu	Leu	Phe	Thr	Сув	Phe	Leu	Ala	Val	Asp	Thr	Gln	Leu	Leu	Leu	Gly	
		320					325					330				
AAC	AAG	CAG	CTG	TCC	CTG	AGC	CCA	GAA	GAG	TAT	GTG	TTT	GCT	GCG	CTG	1179
Asn	Lys	Gln	Leu	Ser	Leu	Ser	Pro	Glu	Glu	Tyr	Va1	Phe	Ala	Ala	Leu	
	335					340					345					
AAC	CTG	TAC	ACA	GAC	ATC	ATC	AAC	ATC	TTC	CTG	TAC	ATC	CTC	ACC	ATC	1227
Asn	Leu	Tyr	Thr	Asp	Ile	Ile	Asn	Ile	Phe	Leu	Tyr	Ile	Leu	Thr	Ile	
350					355					360					365	
ATT	GGC	CGC	GCC	AAG	GAG	TAG	CCGA	SCT (CCAG	CTCG	CT G	TGCC				1270
Ile	Gly	Arg	Ala	Lys	Glu											
	-	_		370												
000	PC & C/	~ Tree /	~ C & C(~~~ ~	ce e	CTCC.	ACCC	r cc	~~~ !!	CCA	CCC	CACTO	200	ልርርም	. ተ ለ ርጥጥ	1330

CCCCTCTCTC	TTGTCCCCAG	GCACAGCCTA	GGGAAAAGGA	TGCCTCTCTC	CAACCCTCCT	1390
GTATGTACAC	TGCAGATACT	TCCATTTGGA	CCCGCTGTGG	CCACAGCATG	GCCCCTTTAG	1450
TCCTCCCGCC	CCCGCCAAGG	GGCACCAAGG	CCACGTTTCC	GTGCCACCTC	CTGTCTACTC	1510
ATTGTTGCAT	GAGCCCTGTC	TGCCAGCCCA	CCCCAGGGAC	TGGGGGCAGC	ACCAGGTCCC	1570
GGGGAGAGGG	ATTGAGCCAA	GAGGTGAGGG	TGCACGTCTT	CCCTCCTGTC	CCAGCTCCCC	1630
AGCCTGGCGT	AGAGCACCCC	TCCCCTCCCC	CCCACCCCC	TGGAGTGCTG	CCCTCTGGGG	1690
ACATGCGGAG	TGGGGGTCTT	ATCCCTGTGC	TGAGCCCTGA	GGGCAGAGAG	GATGGCATGT	1750
TTCAGGGGAG	GGGGAAGCCT	TCCTCTCAAT	TTGTTGTCAG	TGAAATTCCA	ATAAATGGGA	1810
TTTGCTCTCT	GCCT					1824

Sequence No.: 53

Sequence length: 1076

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098
Sequence characteristics

Code representing characteristics: CDS

Existence site: 62.. 601 Characterization method: E

Sequence description

AGTTCCGCCC GCTGGTCATC GCGCCCTTTC CCCTGCCGGT GTCCTGCTCG CCGTCC	CCGC 60
C ATG CTG TCT CTA GAC TTT TTG GAC GAT GTG CGG CGG ATG AAC AAG	CGG 109
Met Leu Ser Leu Asp Phe Leu Asp Asp Val Arg Arg Met Asn Lys	Arg
1 5 · 10 15	
CAG CTC TAT TAT CAA GTC CTA AAT TTT GGA ATG ATT GTC TCA TCG GG	CA 157
Gln Leu Tyr Tyr Gln Val Leu Asn Phe Gly Met Ile Val Ser Ser A	la
20 25 30	
CTA ATG ATC TGG AAG GGG TTA ATG GTA ATA ACT GGA AGT GAA AGT C	CG 205
Leu Met Ile Trp Lys Gly Leu Met Val Ile Thr Gly Ser Glu Ser P	ro
35 40 45	
ATT GTA GTG GTG CTC AGT GGC AGC ATG GAA CCT GCA TTT CAT AGA G	GA 253
Ile Val Val Leu Ser Gly Ser Met Glu Pro Ala Phe His Arg G	ly
50 55 60	
GAT CTT CTC TTT CTA ACA AAT CGA GTT GAA GAT CCC ATA CGA GTG G	GA 301
Asp Leu Leu Phe Leu Thr Asn Arg Val Glu Asp Pro Ile Arg Val G.	ly
65 70 75	80
GAA ATT GTT GTT TIT AGG ATA GAA GGA AGA GAG ATT CCT ATA GTT C	AC 349

Glu	Ile	Val	Val	Phe	Arg	Ile	Glu	Gly	Arg	Glu	Ile	Pro	Ile	Val	His	
				85					90					95		
CGA	GTC	TTG	AAG	ATT	CAT	GAA	AAG	CAA	TAA	GGG	CAT	ATC	AAG	TTT	TTG	397
Arg	Va1	Leu	Lys	Ile	His	Glu	Lys	Gln	Asn	Gly	His	Ile	Lys	Phe	Leu	
			100					105					110			
ACC	AAA	GGA	GAT	AAT	AAT	GCG	GTT	GAT	GAC	CGA	GGC	CTC	TAT	AAA	CAA	.445
Thr	Lys	G1y	Asp	Asn	Asn	Ala	Val	Asp	Asp	Arg	Gly	Leu	Tyr	Lys	Gln	
		115					120					125				
GGA	CAA	CAT	TGG	CTA	GAG	AAA	AAA	GAT	GTT	GTG	GGG	AGA	GCC	AGG	GGA	493
G1y	G1n	His	Trp	Leu	Glu	Lys	Lys	Asp	Val	Val	Gly	Arg	Ala	Arg	Gly	
	130					135					140					
TTT	GTT	CCT	TAT	ATT	GGA	ATT	GTG	ACG	ATC	CTC	ATG	AAT	GAC	TAT	CCT	541
Phe	'Val	Pro	Tyr	Ile	Gly	Ile	Val	Thr	Ile	Leu	Met	Asn	Asp	Tyr	Pro	
145					150					155					160	
AAA	TTT	AAG	TAT	GCA	GTT	CTC	TTT	TTG	CTG	gg T	TTA	TTC	GTG	CTG	GTT	589
Lys	Phe	Lys	Tyr	Ala	Val	Leu	Phe	Leu	Leu	Gly	Leu	Phe	Val	Leu	Va1	
				165					170					175		
CAT	CGT	GAG	TA A	AGAA	GCC 1	rgcc:	r t gc:	rg T	CCT	GGA	A GA	r				630
His	Arg	Glu														
GCC1	ATAG:	III :	TCGT:	TACT	GG A	igit:	rgga	G TAC	GATA	CTGG	TCT	GTGA!	rtg (G T GG/	AATGGA	690
GAA	CACA	CGT	G TT G(GTGC'	TT C	rccc:	ragc	A CT	GTT	IGCA	TTAC	STTT	ATG :	TTTC	CATGCC	750
															CAGTCA	
															TTTTT	
															ACTTCT	
AAA	STGC	CTA (CAGA	GACT'	TG T	AAAT(SAAA	A TG	CAGC'	ICTG	CAC	GAGT:	TTG A	AAAC	CGTCAT	990
ACC:	rcct:	ICT A	ATTA	GGAA'	TG G	CATA:	TACT	G AG	STGG'	ICGT	AAG'	rctt/	AAC '	TTCT	TTAAAA	
TTA	ATA	AAA (GACT	TTGC.	AC A	PTGA	3									1076

Sequence No.: 54

Sequence length: 1591

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01148
Sequence characteristics

Code representing characteristics: CDS

Existence site: 102.. 1145 Characterization method: E

Sequence description

GTCC	CTCC	CTC	TTAAC	ATAC	T TO	CAGO	TAAA	ACT	[AAA]	TTA!	GCTG	CTT	GG G	ACC?	CCT	TC 60
TAGO	CTTA	AAA	TTTCA	GCTC	A TO	CACCI	TCAC	CTO	CCTI	rgg t	C AT	e GC	CT CT	rg Ci	T AT	TC 116
											Me	t Al	la Le	eu Le	eu P	he
												1				5
TCC	TTG	ATC	CTT	GCC	ATT	TGC	ACC	AGA	CCT	GGA	TTC	CTA	GCG	TCT	CCA	164
Ser	Leu	Ile	Leu	Ala	Ile	Cys	Thr	Arg	Pro	Gly	Phe	Leu	Ala	Ser	Pro	
				10					15					20		
TCT	GGA	GTG	CGG	CTG	GTG	GGG	GGC	CTC	CAC	CGC	TGT	GAA	GGG	CGG	GTG	212
Ser	Gly	Va1	Arg	Leu	Val	Gly	Gly	Leu	His	Arg	Cys	Glu	Gly	Arg	Val	
			25					30					35			
GAG	GTG	GAA	CAG	AAA	GGC	CAG	TGG	GGC	ACC	GTG	TGT	GAT	GAC	GGC	TGG	260
Glu	Va1	G1v	ı Gln	Lys	Gly	Gln	Trp	Gly	Thr	Val	Cys	Asp	Asp	Gly	Trp	
		40)				45					50				
GAC	ATT	AAG	GAC	GTG	GCT	GTG	TTG	TGC	CGG	GAG	CTG	GGC	TGT	GGA	GCT	308
Asp	Ile	Lys	: Asp	Va1	Ala	Val	Leu	Cys	Arg	Glu	Leu	Gly	Cys	Gly	Ala	
	55			•		60					65					
GCC	AGC	GG#	ACC	CCT	AGT	GGT	ATT	TTG	TAT	GAG	CCA	CCA	GCA	GAA	AAA	356
Ala	Ser	Gly	7 Thr	Pro	Ser	Gly	Ile	Leu	Tyr	Glu	Pro	Pro	Ala	Glu	Lys	
70					75					80					85	
GAG	CAA	AAG	GTC	CTC	ATC	CAA	TCA	GTC	AGT	TGC	ACA	GGA	ACA	GAA	GAT	404
Glu	Gln	Lys	Val	Leu	Ile	Gln	Ser	Val	Ser	Cys	Thr	Gly	Thr	Glu	Asp	
				90					95				•	100		
			CAG													
Thr	Leu	Ala	ı Gln	Cys	Glu	G1n	Glu	Glu	Va1	Tyr	Asp	Cys	Ser	His	Glu	1
			105					110					115			
			r GGG													
Glu	Asp	Ala	a Gly	Ala	Ser	Cys	Glu	Asn	Pro	Glu	Ser	Ser	Phe	Ser	Pro	•
		120					125					130				
			GGT													
Val	Pro	Gli	ı Gly	Val	Arg	Leu	Ala	Asp	Gly	Pro	Gly	His	Cys	Lys	Gly	•
	135					140					145					
			A GTG													
Arg	Val	Glı	ı Val	Lys	His	Gln	Asn	Gln	Trp		Thr	Val	Cys	Gln	Thr	•
150					155					160					165	
			CTC													
Gly	Trp	Se	r Leu	Arg	Ala	Ala	Lys	Val	Val	Cys	Arg	Gln	Leu	Gly	Cys	1
				170					175					180		
			r Gta													
Gly	Arg	Ala	a Val	Leu	Thr	Gln	Lys			Asn	Lys	His		Tyr	Gly	•
			185					190					195	0.		
			CATC													
Arg	Lys	Pr	o Ile	Trp	Leu	Ser	Gln	Met	Ser	Сув	Ser	Gly	Arg	Glu	Ala	l

200 205 210	
ACC CTT CAG GAT TGC CCT TCT GGG CCT TGG GGG AAG AAC ACC	TGC AAC . 788
Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly Lys Asn Thr	Cys Asn
215 220 225	
CAT GAT GAA GAC ACG TGG GTC GAA TGT GAA GAT CCC TTT GAC	TTG AGA 836
His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp Pro Phe Asp	Leu Arg
230 235 240	245
CTA GTA GGA GGA GAC AAC CTC TGC TCT GGG CGA CTG GAG GTG	CTG CAC 884
Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg Leu Glu Val	Leu His
250 255	260
AAG GGC GTA TGG GGC TCT GTC TGT GAT GAC AAC TGG GGA GAA	AAG GAG 932
Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu	Lys Glu
265 270 275	
GAC CAG GTG GTA TGC AAG CAA CTG GGC TGT GGG AAG TCC CTC	TCT CCC 980
Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly Lys Ser Leu	Ser Pro
280 285 290	
TCC TTC AGA GAC CGG AAA TGC TAT GGC CCT GGG GTT GGC CGC	ATC TGG 1028
Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly Val Gly Arg	Ile Trp
295 300 305	
CTG GAT AAT GTT CGT TGC TCA GGG GAG GAG CAG TCC CTG GAG	
Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln Ser Leu Glu	Gln Cys
310 315 320	325
CAG CAC AGA TIT TGG GGG TIT CAC GAC TGC ACC CAC CAG GAA	
Gln His Arg Phe Trp Gly Phe His Asp Cys Thr His Gln Glu	Asp Val
330 335	340
GCT GTC ATC TGC TCA GGA TAGTATCCTG GTGTTGCTTG ACCTGGCC	1170
Ala Val Ile Cys Ser Gly	
345	
CCCCTGGCCC CGCCTGCCCT CTGCTTGTTC TCCTGAGCCC TGATTATCCT C	
CTGGGGCTCA GGCTTGAGCC ACTACTCCCT CATCCCCTCA GGAGTCTGAA C	
ATGCCTTACT CTCAGGGACA AGCAGCCCCC ATTGCTGCCT GTAGATGTGA G	
TCCCTCTTGC TGGGGAAGAT GAGCTTCCAT GTATCCTGTG CTCAACCCTG A	
ACTGGTTCTG GCCTTTCCTG CCTTTTCTCA AGCTGCCTGG AATCCTCAAA C	
TGGTCAGATG TGCAGACCAT TACTAAGGTC TATGTCTGCA AACATTACTA A	
TATTACTAAT CTATGTCTGC AAACATTAAA GGAATGAAAC AATGAAAGGA A	
G	1591

Sequence No.: 55

Sequence length: 1888

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

PCT/JP97/04056 WO 98/21328

141														
Original source: Organism species: Homo sapiens Cell kind: Liver Clone name: HP01293 Sequence characteristics Code representing characteristics: CDS Existence site: 90 1754 Characterization method: E Sequence description														
CCTTTCAAA GATCTCTGAG GGAGACATTG CACCTGGCCA CTGCAGCCCA GAGCAGGTCT 60														
GGCCACGGCC ATGAGCATGC TGAGCCATC ATG CCC ACC GTG GAT GAC ATT CTG	113													
Met Pro Thr Val Asp Asp Ile Leu														
. 1 5														
GAG CAG GTT GGG GAG TCT GGC TGG TTC CAG AAG CAA GCC TTC CTC ATC	161													
Glu Gln Val Gly Glu Ser Gly Trp Phe Gln Lys Gln Ala Phe Leu Ile														
10 15 20														
TTA TGC CTG CTG GCC GCC TTT GCG CCC ATC TGT GTG GGC ATC GTC	209													
Leu Cys Leu Leu Ser Ala Ala Phe Ala Pro Ile Cys Val Gly Ile Val														
25 30 35 40	257													
TTC CTG GGT TTC ACA CCT GAC CAC CAC TGC CAG AGT CCT GGG GTG GCT	231													
Phe Leu Gly Phe Thr Pro Asp His His Cys Gln Ser Pro Gly Val Ala 45 50 55														
GAG CTG AGC CAG CGC TGT GGC TGG AGC CCT GCG GAG GAG CTG AAC TAT	305													
Glu Leu Ser Gln Arg Cys Gly Trp Ser Pro Ala Glu Glu Leu Asn Tyr	505													
60 65 70														
ACA GTG CCA GGC CTG GGG CCC GCG GGC GAG GCC TTC CTT GGC CAG TGC	353													
Thr Val Pro Gly Leu Gly Pro Ala Gly Glu Ala Phe Leu Gly Gln Cys														
75 80 85														
AGG CGC TAT GAA GTG GAC TGG AAC CAG AGC GCC CTC AGC TGT GTA GAC	401													
Arg Arg Tyr Glu Val Asp Trp Asn Gln Ser Ala Leu Ser Cys Val Asp														
90 95 100														
CCC CTG GCT AGC CTG GCC ACC AAC AGG AGC CAC CTG CCG CTG GGT CCC	449													
Pro Leu Ala Ser Leu Ala Thr Asn Arg Ser His Leu Pro Leu Gly Pro														
105 110 115 120														
TGC CAG GAT GGC TGG GTG TAT GAC ACG CCC GGC TCT TCC ATC GTC ACT	497													
Cys Gln Asp Gly Trp Val Tyr Asp Thr Pro Gly Ser Ser Ile Val Thr														
125 130 135														
GAG TTC AAC CTG GTG TGT GCT GAC TCC TGG AAG CTG GAC CTC TTT CAG	545													

150 140 145 TCC TGT TTG AAT GCG GGC TTC TTC TTT GGC TCT CTC GGT GTT GGC TAC 593 Ser Cys Leu Asn Ala Gly Phe Phe Phe Gly Ser Leu Gly Val Gly Tyr 160 165 155

Glu Phe Asn Leu Val Cys Ala Asp Ser Trp Lys Leu Asp Leu Phe Gln

TTT	GCA	GAC	AGG	TTT	GGC	CGT	AAG	CTG	TGT	CTC	CTG	GGA	ACT	GTG	CTG	641
Phe	Ala	Asp	Arg	Phe	G1y	Arg	Lys	Leu	Cys	Leu	Leu	Gly	Thr	Va1	Leu	
	170					175					180					
GTC	AAC	GCG	GTG	TCG	ĠGC	GTG	CTC	ATG	GCC	TTC	TCG	CCC	AAC	TAC	ATG	689
Val	Asn	Ala	Val	Ser	Gly	Val	Leu	Met	Ala	Phe	Ser	Pro	Asn	Tyr	Met	
185					190					195					200	
TCC	ATG	CTG	CTC	TTC	CGC	CTG	CTG	CAG	GGC	CTG	GTC	AGC	AAG	GGC	AAC	737
Ser	Met	Leu	Leu	Phe	Arg	Leu	Leu	Gln	Gly	Leu	Val	Ser	ГÀЗ	Gly	Asn	
				205					210					215		
			GGC													785
Trp	Met	Ala	Gly	Tyr	Thr	Leu	Ile	Thr	Glu	Phe	Val	Gly	Ser	Gly	Ser	
			220					225					230			
			GTG													833
Arg	Arg	Thr	Val	Ala	Ile	Met		Gln	Met	Ala	Phe		Val	Gly	Leu	
		235					240					245				
			ACC		•											881
Val		Leu	Thr	Gly	Leu		Tyr	ALA	Leu	Pro		Trp	Arg	Trp	ren	
	250					255		m=0	050	-	260	000	WAC	**	mc c	020
			GTC													929
	Leu	Ala	Val	Ser		Pro	Thr	Pne	Leu		Leu	Leu	Tyr	ıyı	280	
265			~ . ~	500	270	000	mcc	C ID C	mm A	275	CAA		ACA	A A C		977
			GAG													377
Cys	VAI	Pro	Glu		PLO	wrg	rrp	rea	290	ser	GIII	шуъ	nrg	295		
CAA	CCA	۸۳۸	AAG	285	ልሞር	GAC	CAC	ATC		CAA	AAG	AAT	GGG		TTG	1025
			Lys													
GIU	VTG	116	300	IIC	TICL	дор	410	305	****		2,0		310	_,-		
ССТ	ССТ	CCT	GAT	TTA	AAG	ATG	CTT		CTC	GAA	GAG	GAT		ACC	GAA	1073
			Авр													
		315			_,		320					325				
AAG	CTG		CCT	TCA	TTT	GCA	GAC	CTG	TTC	CGC	ACG	CCG	CGC	CTG	AGG	1121
			Pro													
•	330					335	_				340					
AAG	CGC	ACC	TTC	ATC	CTG	ATG	TAC	CTG	TGG	TTC	ACG	GAC	TCT	GTG	CTC	1169
Lys	Arg	Thr	Phe	Ile	Leu	Met	Tyr	Leu	Trp	Phe	Thr	Asp	Ser	Val	Leu	
345	_				350					355					360	
TAT	CAG	GGG	CTC	ATC	CTG	CAC	ATG	GGC	GCC	ACC	AGC	GGG	AAC	CTC	TAC	1217
Tyr	Gln	Gly	Leu	Ile	Leu	His	Met	Gly	Ala	Thr	Ser	Gly	Asn	Leu	Tyr	
				365					370					375		
CTG	GAT	TTC	CTT	TAC	TCC	GCT	CTG	GTC	GAA	ATC	CCG	GGG	GCC	TTC	ATA	1265
Leu	Asp	Phe	Leu	Tyr	Ser	Ala	Leu	Val	Glu	Ile	Pro	Gly	Ala	Phe	Ile	
			380					385					390			
GCC	CTC	ATC	ACC	ATT	GAC	CGC	GTG	GGC	CGC	ATC	TAC	CCC	ATG	GCC	GTG	1313
A1a],en	Ile	Thr	T1e	Asn	Arg	Val	G1v	Aro	Ile	Tyr	Pro	Met	Ala	Val	

		395				•	400					405				
TCA	AAT	TTG	TTG	GCG	GGG	GCA	GCC	TGC	CTC	GTC	ATG	ATT	TTT	ATC	TCA	1361
Ser	Asn	Leu	Leu	Ala	Gly	Ala	Ala	Cys	Leu	Val	Met	Ile	Phe	Ile	Ser	
	410					415					420					
CCT	GAC	CTG	CAC	TGG	TTA	AAC	ATC	ATA	ATC	ATG	TGT	GTT	GGC	CGA	ATG	1409
Pro	Авр	Leu	His	Trp	Leu	Asn	Ile	Ile	Ile	Met	Сув	Val	Gly	Arg	Met	
425					430					435					440	
GGA	ATC	ACC	ATT	GCA	ATA	CAA	ATG	ATC	TGC	CTG	GTG	AAT	GCT	GAG	CTG	1457
G1y	Ile	Thr	Ile	Ala	Ile	Gln	Met	Ile	Cys	Leu	Val	Asn	Ala	Glu	Leu	
				445					450					455		
TAC	CCC	ACA	TTC	GTC	AGG	AAC	CTC	GGA	GTG	ATG	GTG	TGT	TCC	TCC	CTG	1505
Tyr	Pro	Thr	Phe	Val	Arg	Asn	Leu	Gly	Va1	Met	Val	Cys	Ser	Ser	Leu	
			460					465					470			
T GT	GAC	ATA	GCT	GGG	ATA	ATC	ACC	CCC	TTC	ATA	GTC	TTC	AGG	CTG	AGG	1553
Суs	Asp	Ile	Gly	Gly	Ile	Ile	Thr	Pro	Phe	Ile	Val	Phe	Arg	Leu	Arg	
		475					480					485				
GAG	GTC	TGG	CAA	GCC	TTG	CCC	CTC	ATT	TTG	TTT	GCG	GTG	TTG	GGC	CTG	1601
Glu	Val	Trp	Gln	Ala	Leu	Pro	Leu	Ile	Leu	Phe	Ala	Val	Leu	G1y	Leu	
	490					495					500	•				
CTT	CCC	GCG	GGA	GTG	ACG	CTA	CIT	CTT	CCA	GAG	ACC	AAG	GGG	GTC	GCT	1649
Leu	Ala	Ala	Gly	Val	Thr	Leu	Leu	Leu	Pro	Glu	Thr	Lys	Gly	Val	Ala	
505					510					515					520	
TTG	CCA	GAG	ACC	ATG	AAG	GAC	GCC	GAG	AAC	CTT	GGG	AGA	AAA	GCA	AAG	1697
Leu	Pro	Glu	Thr	Met	Lys	Asp	Ala	Glu	Asn	Leu	Gly	Arg	Lys	Ala	Lys	
				525			•		530					535		
CCC	AAA	GAA	AAC	ACG	ATT	TAC	CTT	AAG	GTC	CAA	ACC	TCA	GAA	CCC	TCG	1745
Pro	Lys	Glu	Asn	Thr	Ile	Tyr	Leu	Lys	Val	Gln	Thr	Ser	G1u	Pro	Ser	
			540					545					550			
GGC	ACC	TGAC	GAGA	GAT (GTTT:	rgcg(C G	ATGT	CGTG	T TG	GAGG	GATG	AAG	ATGG	AG	1800
Gly	Thr															
TTA!	CCT	CTG (CAGÁ	AATT	CC TA	AGAC	CCT:	r CA	CTTC	ICTG	TAT	CTT	CCT	CATA	CTTGCC	1860
TAC	CCCC	AAA :	TTAA'	TATC	AG TO	CCTA	AAG									1888

Sequence No.: 56

Sequence length: 2033

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10013 Sequence characteristics

Code representing characteristics: CDS

Existence site: 97.. 1149 Characterization method: E

GAGTCCGAGC GCGTCACCTC CTCACGCTGC GGCTGTCGCC CGTGTCCCGC CGGCCCGTTC	60
CGTGTCGCCC CGCAGTGCTG CGGCCGCCGC GGCACC ATG GCT GTG TTT GTC GTG	114
Met Ala Val Phe Val Val	
1 5	
CTC CTG GCG TTG GTG GCG GGT GTT TTG GGG AAC GAG TTT AGT ATA TTA	162
Leu Leu Ala Leu Val Ala Gly Val Leu Gly Asn Glu Phe Ser Ile Leu	
10 15 20	
AAA TCA CCA GGG TCT GTT GTT TTC CGA AAT GGA AAT TGG CCT ATA CCA	210
Lys Ser Pro Gly Ser Val Val Phe Arg Asn Gly Asn Trp Pro Ile Pro	
25 30 35	
GGA GAG CGG ATC CCA GAC GTG GCT GCA TTG TCC ATG GGC TTC TCT GTG	258
Gly Glu Arg Ile Pro Asp Val Ala Ala Leu Ser Met Gly Phe Ser Val	
40 45 50	
AAA GAA GAC CTT TCT TGG CCA GGA CTC GCA GTG GGT AAC CTG TTT CAT	306
Lys Glu Asp Leu Ser Trp Pro Gly Leu Ala Val Gly Asn Leu Phe His	
55 60 65 70	
CGT CCT CGG GCT ACC GTC ATG GTG ATG GTG AAG GGA GTG AAC AAA CTG	354
Arg Pro Arg Ala Thr Val Met Val Met Val Lys Gly Val Asn Lys Leu	
75 80 85	
GCT CTA CCC CCA GGC AGT GTC ATT TCG TAC CCT TTG GAG AAT GCA GTT	402
Ala Leu Pro Pro Gly Ser Val Ile Ser Tyr Pro Leu Glu Asn Ala Val	
90 95 100	4.50
CCT TTT AGT CTT GAC AGT GTT GCA AAT TCC ATT CAC TCC TTA TTT TCT	450
Pro Phe Ser Leu Asp Ser Val Ala Asn Ser Ile His Ser Leu Phe Ser	
105 110 115	400
GAG GAA ACT CCT GTT GTT TTG CAG TTG GCT CCC AGT GAG GAA AGA GTG	498
Glu Glu Thr Pro Val Val Leu Gln Leu Ala Pro Ser Glu Glu Arg Val	
120 125 130	54.6
TAT ATG GTA GGG AAG GCA AAC TCA GTG TTT GAA GAC CTT TCA GTC ACC	546
Tyr Met Val Gly Lys Ala Asn Ser Val Phe Glu Asp Leu Ser Val Thr	
135 140 145 150	594
TTG CGC CAG CTC CGT AAT CGC CTG TTT CAA GAA AAC TCT GTT CTC AGT	J94
Leu Arg Gln Leu Arg Asn Arg Leu Phe Gln Glu Asn Ser Val Leu Ser	
155 160 165	642
TCA CTC CCC CTC AAT TCT CTG AGT AGG AAC AAT GAA GTT GAC CTG CTC	U42
Ser Leu Pro Leu Asn Ser Leu Ser Arg Asn Asn Glu Val Asp Leu Leu	

170		175	180
	CTG CAA GTG CTA	CAT GAT ATT TCA AGC	TTG CTG TCT 690
		His Asp Ile Ser Ser	
185	190	195	
CGT CAT AAG CAT	CTA GCC AAG GAT	CAT TCT CCT GAT TTA	TAT TCA CTG 738
Arg His Lys His I	Leu Ala Lys Asp	His Ser Pro Asp Leu	Tyr Ser Leu
200	205	210	
GAG CTG GCA GGT	TTG GAT GAA ATT	GGG AAG CGT TAT GGG	GAA GAC TCT 786
Glu Leu Ala Gly I	Leu Asp Glu Ile	Gly Lys Arg Tyr Gly	Glu Asp Ser
215	220	225	230
		ATC CTT GTT GAC GCT	
Glu Gln Phe Arg	Asp Ala Ser Lys	Ile Leu Val Asp Ala	
	235	240	245
		TAT GGT GGG AAT GCA	
Phe Ala Asp Asp l	Met Tyr Ser Leu	Tyr Gly Gly Asn Ala	
250		255	260
		ACC TCC CTC ATT AGG	
		Thr Ser Leu Ile Arg	Lys Thr Arg
265	270	275	COC MAM AAC 079
		AAG AAC CCA GCA AGT	
		Lys Asn Pro Ala Ser	Pro tyr Asn
280	285	290	AAC ATG GTA 1026
		TAT TCC GTG GTT TTC	
		Tyr Ser Val Val Phe 305	310
295	300 ATC CCC TTC CCC	TTG GCT GTG ATT ATC	
		Leu Ala Val Ile Ile	
-	315	320	325
		TAT GAT AGC ATC ATT	
		Tyr Asp Ser Ile Ile	
330		335	340
	ATT CGA ATG GAT	TGAATGTTAC CTGTGCCA	GA ATTA 1170
Thr Asn Gln Lys			,
345	350		
GAAAAGGGGG TTGGA	AATTG GCTGTTTTG	T TAAAATATAT CTTTTAG	TGT GCTTTAAAGT 1230
AGATAGTATA CTTTA	CATTT ATAAAAAA	A ATCAAATTTT GTTCTTT	ATT TTGTGTGTGC 1290
CTGTGATGTT TTTCT	AGAGT GAATTATAG	T ATTGACGTGA ATCCCAC	TGT GGTATAGATT 1350
CCATAATATG CTTGA	ATATT ATGATATAG	C CATTTAATAA CATTGAT	TTC ATTCTGTTTA 1410
ATGAATTTGG AAATA	TGCAC TGAAAGAAA	T GTAAAACATT TAGAATA	GCT CGTGTTATGG 1470
AAAAAAGTGC ACTGA	ATTTA TTAGACAAA	C TTACGAATGC TTAACTT	CTT TACACAGCAT 1530
=		A CTATGAACAA TTTGTAA	
ATGTAAATAA CTCTG	SAAACA AGAGAAAAG	G TTTTTAACTT AGAGTAG	CCC TAAAATATGG 1650
		A CTGTATCTGA GTAACAG	
TTTAACCCTC TTCTG	CAAGT TTGTTGACC	T ACATGGGCTA ATATGGA	TAC TAAAAATACT 1770

ACATTGATCT	AAGAAGAAAC	TAGCCTTGTG	GAGTATATAG	ATGCTTTTCA	TTATACACAC	1830
AAAAATCCCT	GAGGGACATT	TTGAGGCATG	AATATAAAAC	ATTTTTATTT	CAGTAACTTT	1890
TCCCCCTGTG	TAAGTTACTA	TGGTTTGTGG	TACAACTTCA	TTCTATAGAA	TATTAAGTGG	1950
AAGTGGGTGA	ATTCTACTTT	TTATGTTGGA	GTGGACCAAT	GTCTATCAAG	AGTGACAAAT	2010
AAAGTTAATG	ATGATTCCAA	AAC				2033

Sequence No.: 57
Sequence length: 911

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10034

Sequence characteristics

Code representing characteristics: CDS

Existence site: 176.. 805 Characterization method: E

ACGCCTGGGT GACCTCTA	CG TATATACAGA GC	CTCCCTGG CCCTCCT	GGA AAGAGTCCTG 60
GAAAGACAAC CTTCAGGT	CC AGCCCTGGAG CT	GAGGAGT GGAGCCC	CAC TCTGAAGACG 120
CAGCCTTTCT CCAGGTTC	TG TCTCTCCCAT TC	TGATTCTT GACACCA	GAT GCAGG ATG 178
			Met .
			1
GTG TCC TCT CCC TGC	ACG CAG GCA AGC	TCA CGG ACT TGC	TCC CGT ATC 226
Val Ser Ser Pro Cys	Thr Gln Ala Ser	Ser Arg Thr Cys	Ser Arg Ile
5	10		15
CTG GGA CTG AGC CTT	GGG ACT GCA GCC	CTG TTT GCT GCT	GGG GCC AAC 274
Leu Gly Leu Ser Leu	Gly Thr Ala Ala	Leu Phe Ala Ala	Gly Ala Asn
20	25	30	
GTG GCA CTC CTC CTT	CCT AAC TGG GAT	GTC ACC TAC CTG	TTG AGG GGC 322
Val Ala Leu Leu Leu	Pro Asn Trp Asp	Val Thr Tyr Leu	Leu Arg Gly
35	40	45	
CTC CTT GGC AGG CAT	GCC ATG CTG GGA	ACT GGG CTC TGG	GGA GGA GGC 370
Leu Leu Gly Arg His	Ala Met Leu Gly	Thr Gly Leu Trp	Gly Gly Gly
50	55 .	60	65
CTC ATG GTA CTC ACT	GCA GCT ATC CTC	ATC TCC TTG ATG	GGC TGG AGA 418
Leu Met Val Leu Thr	Ala Ala Ile Leu	Ile Ser Leu Met	Gly Trp Arg

				70					75					80		
TAC	GGC	TGC	TTC	AGT	AAG	AGT	GGG	CTC	TGT	CGA	AGC	GTG	CTT	ACT	GCT	466
Tyr	G1y	Cys	Phe	Ser	Lys	Ser	Gly	Leu	Cys	Arg	Ser	Val	Leu	Thr	Ala	
			85					90					95			
CTG	TTG	TCA	GGT	GGC	CTG	GCT	TTA	CTT	GGA	GCC	CTG	ATT	TGC	TTT	GTC	514
Leu	Leu	Ser	Gly	Gly	Leu	Ala	Leu	Leu	G1y	Ala	Leu	Ile	Суз	Phe	Va1	
		100					105					110				
ACT	TCT	GGA	GTT	GCT	CTG	AAA	GAT	GGT	CCT	TTT	TGC	ATG	TTT	GAT	GTT	562
Thr	Ser	Gly	Val	Ala	Leu	Lys	Asp	G1y	Pro	Phe	Сув	Met	Phe	Asp	Val	
	115					120					125					
TCA	TCC	TTC	AAT	CAG	ACA	CAA	GCT	TGG	AAA	TAT	GGT	TAC	CCA	TTC	AAA	610
Ser	Ser	Phe	Asn	Gln	Thr	${\tt Gln}$	Ala	Trp	Lys	Tyr	Gly	Tyr	Pro	Phe	Lys	
130					135					140					145	
GAC	CTG	CAT	AGT	AGG	AAT	ŢAŢ	CTG	TAT	GAC	CGT	TCG	CTC	TGG	AAC	TCC	658
Asp	Leu	His	Ser	Arg	Asn	Tyr	Leu	Tyr	Asp	Arg	Ser	Leu	Trp	Asn	Ser	
				150					155					160		
GTC	TGC	CTG	GAG	CCC	TCT	GCA	GCT	GTT	GTC	TGG	CAC	GTG	TCC	CTC	TTC	706
Val	Cys	Leu	Glu	Pro	Ser	Ala	Ala	Val	Val	Trp	His	Val	Ser	Leu	Phe	
			165					170					175			
TCC	GCC	CTT	CTG	TGC	ATC	AGC	CTG	CTC	CAG	CTT	CTC	CTG	GTG	GTC	GTT	754
Ser	Ala	Leu	Leu	Сув	Ile	Ser	Leu	Leu	Gln	Leu	Leu	Leu	Val	Va1	Val	
		180					185		,			190				
CAT	GTC	ATC	AAC	AGC	CTC	CTG	GGC	CTT	TTC	TGC	AGC	CTC	TGC	GAG	AAG	802
His	Va1	Ile	Asn	Ser	Leu	Leu	Gly	Leu	Phe	Cys	Ser	Leu	Сув	Glu	Lys	
	195					200					205					
TGA	CAGG	AGA	AACC1	PTCA	CTT	CAAC	CA 1	recer	GTT:	EA TO	CATC	ATCG(CTO	STCT	rgaa	860
TCC	PTTC	PAC A	ACC	CTC	C T	CCA	TTAT	P AA	CAA	CTT	cccc	ነጥሞጥ/	ACC 1	r		911

Sequence No.: 58
Sequence length: 601

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080
Clone name: HP10050
Sequence characteristics

Code representing characteristics: CDS

Existence site: 10.. 501 Characterization method: E

Sequence description

CCAT	CTG	C A	rg go	CG G(CT GO	G C	rg T'	et G	ST T	TG A	GC G	CT C	GC C	GT C	TT	TTG 5	1
		Me	et Al	la Al	La G	ly Le	eu Pl	ne G	ly L	eu S	er A	la A	rg A	rg L	eu	Leu	
			1				5					10				•	
GCG	GCA	GCG	GCG	ACG	CGA	GGG	CTC	CCG	GCC	GCC	CGC	GTC	CGC	TGG	GA	A 9	9
Ala	Ala	Ala	Ala	Thr	Arg	Gly	Leu	Pro	Ala	Ala	Arg	Val	Arg	Trp	G1	.u	
1.5					20					25					3	30	
TCT	AGC	TTC	TCC	AGG	ACT	GTG	GTC	GCC	CCG	TCC	GCT	GTG	GCG	GGA	AA	14 14	7
Ser	Ser	Phe	Ser	Arg	Thr	Val	Val	Ala	Pro	Ser	Ala	Val	Ala	Gly	Ly	ŗ s	
				35					40					45			
CGG	CCC	CCA	GAA	CCG	ACC	ACA	CCG	TCC	CAA	GAG	GAC	CCA	GAA	CCC	GA	LG 19	5
Arg	Pro	Pro	Glu	Pro	Thr	Thr	Pro	Trp	Gln	Glu	Asp	Pro	Glu	Pro	G1	.u	
			50					55					60				
GAC	GAA	AAC	TTG	TAT	GAG	AAG	AAC	CCA	GAC	TCC	CAT	GGT	TAT	GAC	AA	AG 24	3
Asp	G1u	Asn	Leu	Tyr	G1u	Lys	Asn	Pro	Asp	Ser	His	Gly	Tyr	Asp	Ly	78	
		65					70					75					
GAC	CCC	GTT	TTG	GAC	GTC	TGG	AAC	ATG	CGA	CTT	GTC	TTC	TTC	TTT	GG	C 29	1
Asp	Pro	Val	Leu	Asp	Va1	Trp	Asn	Met	Arg	Leu	Va1	Phe	Phe	Phe	G1	L y	
	80					85					90						
GTC	TCC	ATC	ATC	CTG	GTC	CTT	GGC	AGC	ACC	TTT	GTG	GCC	TAT	CTG	CC	T 33	9
Val	Ser	Ile	Ile	Leu	Val	Leu	Gly	Ser	Thr	Phe	Val	Ala	Tyr	Leu	Pr	:o	
95					100					105					11	LO	
GAC	TAC	AGG	TGC	ACA	GGG	TGT	CCA	AGA	CCC	TGG	GAT	GGG	ATG	AAA	GA	VG 38	7
Asp	Tyr	Arg	Cys	Thr	Gly	Cys	Pro	Arg	Ala	Trp	Asp	Gly	Met	Lys	G1	lu	
	•			115					120					125			
TGG	TCC	CGC	CGC	GAA	GCT	GAG	AGG	CTT	GTG	AAA	TAC	CGA	GAG	GCC	AA	AT 43	5
Trp	Ser	Arg	Arg	Glu	Ala	Glu	Arg	Leu	Val	Lys	Tyr	Arg	Glu	Ala	As	n	
			130					135					140				
GGC	CTT	CCC	ATC	ATG	GAA	TCC	AAC	TGC	TTC	GAC	CCC	AGC	AAG	ATC	CA	AG 48	3
Gly	Leu	Pro	Ile	Met	Glu	Ser	Asn	Cys	Phe	Asp	Pro	Ser	Lys	Ile	G1	ın	
		145					150					155					
CTG	CCA	GAG	GAT	GAG	TGA	CCAG	TTG	CTAA	GTGG	ee c	TCAA	GAAG	C AC			53	C
Leu	Pro	Glu	Asp	Glu													
	160																
CGC	CTTC	ccc .	ACCC	CCTG	CC T	GCCA	TTCT	G AC	CTCT	TCTC	AGA	GCAC	CTA	ATTA	AAG	GGG 59	C
CTG	AAAG'	TCT (G													60	1

Sequence No.: 59

Sequence length: 394

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

149

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10071 Sequence characteristics

Code representing characteristics: CDS

Existence site: 47.. 325 Characterization method: E

Sequence description

AACATCCGGG CCGCGCGGG AAGGGGAGAC GTGGGGTAGA GTGACC ATG ACG AA	AA 55
Met Thr Ly	78
1	
TTA GCG CAG TGG CTT TGG GGA CTA GCG ATC CTG GGC TCC ACC TGG G	TG 103
Leu Ala Gln Trp Leu Trp Gly Leu Ala Ile Leu Gly Ser Thr Trp V	7al
5 10 15	
GCC CTG ACC ACG GGA GCC TTG GGC CTG GAG CTG CCC TTG TCC TGC C	AG 151
Ala Leu Thr Thr Gly Ala Leu Gly Leu Glu Leu Pro Leu Ser Cys G	ln
20 25 30	35
GAA GTC CTG TGG CCA CTG CCC GCC TAC TTG CTG GTG TCC GCC GGC T	rgc 199
Glu Val Leu Trp Pro Leu Pro Ala Tyr Leu Leu Val Ser Ala Gly C	:ys
40 45 50	-
TAT GCC CTG GGC ACT GTG GGC TAT CGT GTG GCC ACT TTT CAT GAC T	rGC 247
Tyr Ala Leu Gly Thr Val Gly Tyr Arg Val Ala Thr Phe His Asp C	:ys
55 60 65	
GAG GAC GCC GCA CGC GAG CTG CAG AGC CAG ATA CAG GAG GCC CGA G	SCC 295
Glu Asp Ala Ala Arg Glu Leu Gln Ser Gln Ile Gln Glu Ala Arg A	lla
70 75 80	
GAC TTA GCC CGC AGG GGG CTG CGC TTC TGACAGCCTA ACCCCATT	340
Asp Leu Ala Arg Arg Gly Leu Arg Phe	
85 90	
CCTGTGCGGA CAGCCCTTCC TCCCATTTCC CATTAAAGAG CCAGTTTATT TTCT	394

Sequence No.: 60

Sequence length: 732

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma

150

Cell line: U937 Clone name: HP10076 Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 600 Characterization method: E

AGA	AACG'	rgt	TCGC	rgccc	CA GA	AAGA	AGGGA	A AGO	3CGC(SAGT	GAG	AAA	GA (GTA	TGTAG	60
ATG	CCT	CCA	AATC	CTTGO	GT T	ATG	GAA	TAT	TTG	GCT	CAT	CCC	AGT	ACA	CTC	111
						Met	Glu	Tyr	Leu	Ala	His	Pro	Ser	Thr	Leu	
						1				5					10	
GGC	TTG	GCT	GTT	GGA	GTT	GCT	TGT	GGC	ATG	TGC	CTG	GGC	TGG	AGC	CTT	159
Gly	Leu	Ala	Val	Gly	Val	Ąlа	Cys	Gly	Met	Cys	Leu	Gly	Trp	Ser	Leu	
				15					20					25		
CGA	GTA	TGC	TTT	GGG	ATG	CTC	CCC	AAA	AGC	AAG	ACG	AGC	AAG	ACA	CAC	207
Arg	Val	Cys	Phe	Gly	Met	Leu	Pro	Lys	Ser	Lys	Thr	Ser	Lys	Thr	His	
			30					35					40			
			GAA													255
Thr	Asp	Thr	Glu	Ser	Glu	Ala		Ile	Leu	Gly	Asp		Gly	Glu	Tyr	
		45					50					55				
			CTT													303
Lys		Ile	Leu	Val	Val	_	Asn	Asp	Leu	Lys		GIA	Lys	GTA	Lys	
	60					65					70			~~~	A MM	251
			CAG													351
	ALA	ALA	Gln	Cys		HIS	АДА	ALA	VAL		ALA	Tyr	ràs	GIN		
75	404	464	TAA	CCT	80	ATC	CTC		CAA	85 TCC	CAA	TAC	ሞርሞ	ecc	90 CAC	399
			Asn													333
GIH	ALR	ме	АВЦ	95	GIU	rie C	neu	Був	100	1LP	GLU	-,-	Oy 5	105	GIM	
ccc	AAG	CTC	GTG		AAA	GCT	CCT	GAT		GAA	ACC	CTG	ATT		TTA	447
			. Val													
	 , 0		110		-,-			115					120			
TTG	GCC	CAT	GCA	AAA	ATG	CTG	GGA		ACT	GTA	AGT	TTA	ATT	CAA	GAT	495
			Ala													
		125		•			130					135			_	
GCT	GGA	CGT	ACT	CAG	ATT	GCA	CCA	GGC	TCT	CAA	ACT	GTC	CTA	GGG	ATT	543
Ala	Gly	Arg	Thr	G1n	Ile	Ala	Pro	Gly	Ser	Gln	Thr	Val	Leu	Gly	Ile	
	140					145		_			150					
GGG	CCA	GGA	CCA	GCA	GAC	CTA	ATT	GAC	AAA	GTC	ACT	GGT	CAC	CTA	AAA	591
Gly	Pro	G1 _y	Pro	Ala	Asp	Leu	Ile	Asp	Lys	Val	Thr	G1y	His	Leu	Lys	
155					160					165					170	
CTT	TAC	TAG	GTGG	ACT	TTGA	TATG.	AC A	ACAA	CCCC'	T CC	ATCA	CAAG	TGT			640
Leu	Tyr															

TTGAAGCCTG TCAGATTCTA ACAACAAAAG	CTGAATTTCT	TCACCCAACT TAAATGTTCT	700
TGAGATGAAA ATAAAACCTA TTCCCATGTT	CT		732
Sequence No.: 61			
Sequence length: 697			
Sequence type: Nucleic acid			
Strandedness: Double			
Topology: Linear			
Sequence kind: cDNA to mRNA			
Original source:			
Organism species: Homo sapiens	•		
Cell kind: Lymphoma			
Cell line: U937			
Clone name: HP10085			
Sequence characteristics			
Code representing characterist	ics: CDS		
Existence site: 151 600			
Characterization method: E			
Sequence description			
TATACCTCTA GTTTGGAGCT GTGCTGTAAA			60
AATAAAGTTA CAACTTTGAA GAGAGTTTCT			120
AATCAAAACG CTGATTAAAA GAAGCACGGT			174
		r Lys His Lys Lys Cys	
	1	5	222
TIT ATA ATT GTT GGT GTT TTA ATA			222
Phe Ile Ile Val Gly Val Leu Ile	Thr Thr Asn		
10 15		20	270
GTT AAA CTA ACT CGA GAT TCT CAG			2/0
Val Lys Leu Thr Arg Asp Ser Gln			
25 30	35	•	210
GGT TTC CAA AAC AAA TGC TAT TAT			318
Gly Phe Gln Asn Lys Cys Tyr Tyr			
45	50	55	366
AAT TCA AGT AAA TAC AAC TGT TCC			300
Asn Ser Ser Lys Tyr Asn Cys Ser			
60	65	70	414
ATT GAC AAC ATA GAA GAA ATG AAT			414
Ile Asp Asn Ile Glu Glu Met Asn	rne Leu Arg		
75 80		85	
TCT GAT CAC TGG ATT GGA CTG AAG	ATG GCA AAA	AAT CGA ACA GGA CAA	462

Ser Asp His Trp Ile Gly Leu Lys Met Ala Lys Asn Arg Thr Gly Gln

								:	152								
	90					95					100						
TGG	GTA	GAT	GGA	GCT	ACA	TTT	ACC	AAA	TCG	TTT	GGC	ATG	AGA	GGG	AGT	510)
Trp	Va1	Asp	Gly	Ala	Thr	Phe	Thr	Lys	Ser	Phe	Gly	Met	Arg	Gly	Ser		
105					110					115					120		
GAA	GGA	TGT	GCC	TAC	CTC	AGC	GAT	GAT	GGT	GCA	GCA	ACA	GCT	AGA	TGT	558	i
Glu	Gly	Cys	Ala	Tyr	Leu	Ser	Asp	Asp	Gly	Ala	Ala	Thr	Ala	Arg	Cys		
				125					130					135			
TAC	ACC	GAA	AGA	AAA	TGG	ATT	TGC	AGG	AAA	AGA	ATA	CAC	TAA			600	ļ
Tyr	Thr	G1u	Arg	Lys	Trp	Ile	Cys	Arg	Lys	Arg	Ile	His					
			140					145									
GTT/	AATG:	rct A	AAGA:	TAAT	C GC	AAA	ATAG	A AA	ATAAC	CATT	ATTA	AAGT	GTA A	AAAC	CAGCAA	660	ı
AGT/	ACTT	TTT :	TAAT	raaa(A A	AGTT	CGAG:	r TT	rgta(C						697	,
Sequ	1enc	e No	.: 62	2													
Sequ	ienc	e lei	ngth	: 118	36												
Sequ	ienc	e ty j	pe: l	Nucle	eic a	acid											
Str	ande	ines	s: De	ouble	9												
Topo	olog	y: L	inea	r													
Sear	ience	e kir	nd:	DNA	to r	nRNA											

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10122 Sequence characteristics

Code representing characteristics: CDS

Existence site: 139.. 705 Characterization method: E

AAGTGCGATC TTCGGGCTC	GT CAGAGTTGG	T CTGTTACTCG	GTGGTGGCGG AGTCTACGGA	60
AGCCGTTTTC GCTTCACT	TT TCCTGGCTG	T AGAGCGCTTT	CCCCTGGCG GGTGAGAGTG	120
CAGAGACGAA GCTGCGAG	ATG AGC ACT	ATG TTC GCG	GAC ACT CTC CTC ATC	171
	Met Ser Thr	Met Phe Ala	Asp Thr Leu Leu Ile	
	1	5	10	
GTT TTT ATC TCT GTG	TGC ACG GCT	CTG CTC GCA	GAG GGC ATA ACC TGG	219
Val Phe Ile Ser Val	Cys Thr Ala	Leu Leu Ala	Glu Gly Ile Thr Trp	
15		20	25	
GTC CTG GTT TAC AGG	ACA GAC AAG	TAC AAG AGA	CTG AAG GCA GAA GTG	267
Val Leu Val Tyr Arg	Thr Asp Lys	Tyr Lys Arg	Leu Lys Ala Glu Val	
30	35	i	40	
GAA AAA CAG AGT AAA	AAA TTG GAA	AAG AAG AAG	GAA ACA ATA ACA GAG	315
Glu Lys Gln Ser Lys	Lys Leu Glu	Lys Lys Lys	Glu Thr Ile Thr Glu	
45	50		55	

WO 98/21328

153

PCT/JP97/04056

TCA	GCT	GGT	CGA	CAA	CAG	AAA	AAG	AAA	ATA	GAG	AGA	CAA	GAA	GAG	AAA	363
Ser	Ala	Gly	Arg	Gln	Gln	Lys	Lys	Lys	Ile	Glu	Arg	Gln	G1u	Glu	Lys	
60					65					70					75	
CTG	AAG	AAT	AAC	AAC	AGA	GAT	CTA	TCA	ATG	GTT	CGA	ATG	AAA	TCC	ATG	411
Leu	Lys	Asn	Asn	Asn	Arg	Asp	Leu	Ser	Met	Va1	Arg	Met	Lys	Ser	Met	
				80					85					90		
TTT	GCT	ATT	GGC	TTT	TGT	TTT	ACT	GCC	CTA	ATG	GGA	ATG	TTC	AAT	TCC	459
Phe	Ala	Ile	G1y	Phe	Cys	Phe	Thr	Ala	Leu	Met	Gly	Met	Phe	Asn	Ser	
			95					100					105			
ATA	TTT	GAT	GGT	AGA	GTG	GTG	GCA	AAG	CTT	CCT	TTT	ACC	CCT	CTT	TCT	507
Ile	Phe	Asp	Gly	Arg	Val	Val	Ala	Lys	Leu	Pro	Phe	Thr	Pro	Leu	Ser	
		110					115					120				
TAC	ATC	CAA	GGA	CTG	TCT	CAT	CGA	AAT	CTG	CTG	GGA	GAT	GAC	ACC	ACA	555
Tyr	Ile	Gln	Gly	Leu	Ser	Ħis	Arg	Asn	Leu	Leu	Gly	Asp	Asp	Thr	Thr	
	125					130					135					
GAC	TGT	TCC	TTC	ATT	TTC	CTG	TAT	ATT	CTC	TGT	ACT	ATG	TCG	ATT	CGA	603
Asp	Cys	Ser	Phe	Ile	Phe	Leu	Tyr	Ile	Leu	Cys	Thr	Met	Ser	Ile	Arg	
140					145					150					155	
CAG	AAC	ATT	CAG	AAG	ATT	CTC	GGC	CTT	CCC	CCT	TCA	CGA	GCC	GCC	ACC	651
Gln	Asn	Ile	Gln	Lys	Ile	Leu	Gly	Leu	Ala	Pro	Ser	Arg	Ala	Ala	Thr	
				160					165					170		
AAG	CAG	GCA	GGT	GGA	TTT	CTT	GGC	CCA	CCA	CCT	CCT	TCT	GGG	AAG	TTC	699
Lys	Gln	Ala	Gly	Gly	Phe	Leu	Gly	Pro	Pro	Pro	Pro	Ser	Gly	Lys	Phe	
			175					180					185			
TCT	TGA	ACTC	AAG A	AACT	CTTT	AT T	rtct/	ATCA:	r TC	TTTC:	TAGA	CAC	ACAC	A.		750
Ser																
CAT	CAGA	CTG (CAA (CTGT	TT TO	STAG	CAAG	A GC	CATA	geta Geta	GCC:	TTAC:	TAC	TTGG	CCTCT	810
TTC	PAGT'	TTT (GAAT'	IATT:	TC TA	AAGC	CTTT'	r GG(STAT	GATT	AGA	GTGA	AAA !	TGGC.	AGCCAG	870
CAA	ACTT	GAT A	AGTG(CTTT'	rg g	rcc t /	AGAT	G AT	TTTT	ATCA	AAT	AAGT	GGA '	TTGA:	ITAGTI	930
AAG:	TTCA	GGT A	AATG:	PTTA:	TG T	AATG	AAAA	A CA	AATA	GCAT	CCT	CTT	GTT '	TCAT:	TTACAT	990
AAG:	TATT:	TTC :	I G T G	GGAC	CG A	CTCT	CAAG	G CA	CTGT	GTAT	GCC	CTGC	AAG '	TTGG(CTGTCT	1050
ATG	AGCA!	TTT A	AGAGA	ATTT	AG A	AGAA	AAAT'	TAC	STTT	STTT	AAC	CCTT	GTA A	ACTG:	rttgti	1110
TTG:	rtgt:	rgt :	TTTT:	TTTT	CA A	GCCA/	AATA	CATO	GACA'	TAAG	ATC	AATA	AAG .	AGGC	CAAATT	1170
TTT	AGCT	GTT :	TAT	GT			• 0									1186

Sequence No.: 63

Sequence length: 1409

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

154

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10136

Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 729
Characterization method: E

ATA	CTG	TG :	rcgc@	GCGG	A GO	SAAG1	rgago	ACC	GCG	CAA	GGG	CTT	cc o	GCC1	AGTGTT	60
GGA!	CCCI	CT A	AGTT1	rg tg <i>i</i>	AA G	ATG	GTG	TTG	CTA	ACA	ATG	ATC	GCC	CGA	GTG	111
						Met	Val	Leu	Leu	Thr	Met	Ile	Ala	Arg	'Val	
						. 1				5					10	
GCG	GAC	GGG	CTC	CCG	CTG	GCC	GCC	TCG	ATG	CAG	GAG	GAC	GAA	CAG	TCT	159
Ala	Asp	Gly	Leu	Pro	Leu	Ala	Ala	Ser	Met	Gln	Glu	Asp	Glu	Gln	Ser	
				15					20					25		
GGC	CGG	GAC	CTT	CAA	CAG	TAT	CAG	AGT	CAG	GCT	AAG	CAA	CTC	TTT	CGA	207
Gly	Arg	Asp	Leu	Gln	Gln	Tyr	Gln	Ser	Gln	Ala	Lys	Gln	Leu	Phe	Arg	
			30					35					40			
AAG	TTG	AAT	GAA	CAG	TCC	CCT	ACC	AGA	TGT	ACC	TTG	GAA	GCA	GGA	GCC	255
Lys	Leu	Asn	Glu	Gln	Ser	Pro	Thr	Arg	Cys	Thr	Leu	Glu	Ala	Gly	Ala	
		45					50					55				
ATG	ACT	TTT	CAC	TAC	ATT	ATT	GAG	CÁG	GGG	GTG	TGT	TAT	TTG	GTT	TTA	303
Met	Thr	Phe	His	Tyr	Ile	Ile	G1u	Gln	Gly	Val	Cys	Tyr	Leu	Val	Leu	
	60					65					70					
TGT	GAA	GCT	GCC	TTC	CCT	AAG	AAG	TTG	GCT	TTT	GCC	TAC	CTA	GAA	GAT	351
Cys	Glu	Ala	Ala	Phe	Pro	Lys	Lys	Leu	Ala	Phe	Ala	Tyr	Leu	Glu	Asp	
75					80					85					90	
TTG	CAC	TCA	GAA	TTT	GAT	GAA	CAG	CAT	GGA	AAG	AAG	GTG	CCC	ACT	GTG	399
Leu	His	Ser	Glu	Phe	Asp	G1u	Gln	His	Gly	Lys	Lys	Val	Pro	Thr	Va1	
				95					100					105		
TCC	CGA	CCC	TAT	TCC	TTT	ATŢ	GAA	TTT	GAT	ACT	TTC	ATT	CAG	AAA	ACC	447
Ser	Arg	Pro	Tyr	Ser	Phe	Ile	Glu	Phe	Asp	Thr	Phe	Ile	Gln	Lys	Thr	
			110					115					120			
AAG	AAG	CTC	TAC	ATT	GAC	AGT	CGT	GCT	CGA	AGA	AAT	CTA	GGC	TCC	ATC	495
Lys	Lys	Leu	Tyr	Ile	Asp	Ser	Arg	Ala	Arg	Arg	Asn	Leu	Gly	Ser	Ile	
		125					130					135				
AAC	ACT	GAA	TTG	CAA	GAT	GTG	CAG	AGG	ATC	ATG	GTG	GCC	AAT	ATT	GAA	543
Asn	Thr	Glu	Leu	Gln	Asp	Val	Gln	Arg	Ile	Met	Val	Ala	Asn	Ile	Glu	
	140					145					150					
GAA	GTG	TTA	CAA	CGA	GGA	GAA	GCA	CTC	TCA	GCA	TTG	GAT	TCA	AAG	GCT	591
Glu	Val	Leu	Gln	Arg	Gly	Glu	Ala	Leu	Ser	Ala	Leu	Asp	Ser	Lys	Ala	
155					160					165					170	

155

AAC	AAT	TTG	TCC	AGT	CTG	TCC	AAG	AAA	TAC	CGC	CAG	GAT	GCG	AAG	TAC	639
Asn	Asn	Leu	Ser	Ser	Leu	Ser	Lys	Lys	Tyr	Arg	Gln	Asp	Ala	Lys	Tyr	
				175					180					185		
TTG	AAC	ATG	CGT	TCC	ACT	TAT	GCC	AAA	CTT	GCA	GCA	GTA	GCT	GTA	TTT	687
Leu	Asn	Met	Arg	Ser	Thr	Tyr	Ala	Lys	Leu	Ala	Ala	Val	Ala	Val	Phe	
			190					195					200			
TTC	ATC	ATG	TTA	ATA	GTG	TAT	GTC	CGA	TTC	TGG	TGG	CTG	TGA	A		730
Phe	Ile	Met	Leu	Ile	Val	Tyr	Va1	Arg	Phe	Trp	Trp	Leu				
		205					210					215				
ATA	TGA	ATA	CAGT	CACT	GG TA	AAGG	GAGA/	CC	TAGA	ACCC	AGTA	AGGT	GTA	TATT!	TTCA	GG 790
AAA	CTGA	GCT	CACA	GAGA'	rg T	GTAT:	raga.	A TC	CAAG'	rgga	ACT:	rctg(CCT	CTAA	AGAC	CT 850
TGC	AAGA	AAA	GAGA'	TGCC	CT G	AAAA'	rgaa.	GG'	TTGC	ACCT	CAT	TAA!	rga .	AGCT:	TAAC	CC 910
TAT	STAG	AAA	GTCT	CTTT	CG G	GGC7	AGAG	CT	TTCT	CTGG	GTG	CCAA	GCC	ATATA	ATAT	TA 970
GGG	ATA	GTA	GATT	G TT A	AT T	TÇGT:	rttt:	r cc	CTCC	CAGT	GCA:	rttt.	AAA .	AACA	GCAC'	TG 1030
GCT	GGG	CAT	TCTC	ATTC:	TC T	GATG(GAGC	TA C	CAAT	GAGA	TTT	AACT	TAG	TCAA	CCTG	TG 1090
CTAC	CAA	CAT	TCTG	AAAT:	TC C	TTCA	AAGA	A GG	CAGT	CCTT	TGG	GAAG	STG	TTTT:	TTTT'	TT 1150
TTT	TTTT	TTT	TŢTG/	ACTC:	TA A	TCAAC	CATT	CT	TTTG'	TTGG	TGA	CATT	TGT	GATT:	TTCA	GT 1210
AAT	CTGA	GTT	TTTG	ATGG(CC T	TTTA	AACA	A GA	CTCC	AGTA	TGT	BAAG	STT .	AATT(GCTG'	TG 1270
CTC	CACA	GAT	CTTG!	TCTA:	TT G	GCCC	CTGT	A GA	AAGT'	PAAC	CTT	rgtt(GTT	TTCC:	PTTT.	AT 1330
AAT'	r t gc'	PTA	TTGC	ACAA:	IT G	CTTT	AGGG'	r AA	g tga .	ATTA	TAT'	PAAG.	ATG	CCTT	GAAA'	TT 1390
ATAC	CAC	TCC	TTGA	TTAA	3											1409

Sequence No.: 64
Sequence length: 974

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10175
Sequence characteristics

Code representing characteristics: CDS

Existence site: 174.. 512 Characterization method: E

Sequence description

Met

CAG	GAC	ACT	GGC	TCA	GTA	GTG	CCT	TTG	CAT	TGG	TTT	GGÇ	TTT	GGC	TAC	224
Gln	Asp	Thr	Gly	Ser	Va1	Va1	Pro	Leu	His	Trp	Phe	Gly	Phe	Gly	Tyr	•
			5					10					15			
GCA	GCA	CTG	GTT	GCT	TCT	GGT	GGG	ATC	ATT	GGC	TAT	GTA	AAA	GCA	GGC	272
Ala	Ala	Leu	Val	Ala	Ser	Gly	Gly	Ile	Ile	Gly	Tyr	Val	Lys	Ala	Gly	•
		20					25					30				
AGC	GTG	CCG	TCC	CTG	GCT	GCA	GGG	CTG	CTC	TIT	GGC	AGT	CTA	GCC	GGC	320
Ser	Val	Pro	Ser	Leu	Ala	Ala	Gly	Leu	Leu	Phe	Gly	Ser	Leu	Ala	Gly	
	35					40					. 45					
CTG	GGT	GCT	TAC	CAG	CTG	TCT	CAG	GAT	CCA	AGG	AAC	GTT	TGG	GTT	TTC	368
Leu	Gly	Ala	Tyr	G1n	Leu	Ser	Gln	Asp	Pro	Arg	Asn	Val	Trp	Val	Phe	
50					55					60					65	
CTA	GCT	ACA	TCT	GGT	ACC	TTG	GCT	GGC	ATT	ATG	GGA	ATG	AGG	TTC	TAC	416
Leu	Ala	Thr	Ser	Gly	Thr	Ļeu	Ala	Gly	Ile	Met	Gly	Met	Arg	Phe	Tyr	
				70					75					80		
CAC	TCT	GGA	AAA	TTC	ATG	CCT	GCA	GGT	TTA	ATT	GCA	CCT	GCC	AGT	TTG	464
His	Ser	Gly	Lys	Phe	Met	Pro	Ala	Gly	Leu	Ile	Ala	Gly	Ala	Ser	Leu	
			85					90					95			
			GCC													509
Leu	Met	Val	Ala	Lys	Val.	Gly	Val	Ser	Met	Phe	Asn	Arg	Pro	His		
		100					105					110				
			C AT													560
															CATTT	
															ACAAA(
															rgatt(
															AAATG'	
															TGAAAA	
AAA	GTCT'	TTT .	AGGA	GATT	TA C	AATA	TCTG'	T TC	TTTT(GCTC	ATC	TTAG.	ACC .	ACAG.	ACTGA	
TTT	GAAA	TTA	TGTT	AAGT	GA A	ATAT	CAAT	G TA	ATA	AAGT	TTA	CTAT	AAA '	TAAT		974

Sequence No.: 65

Sequence length: 925

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10179 Sequence characteristics

Code representing characteristics: CDS

Existence site: 122.. 466
Characterization method: E
Sequence description

AAT(CGCG	TT	CCGGA	AGAG/	VC C	rggc'	CCT	G TG	rccco	CGG	CTT	CGC'	CC	GTAG'	rggact	60
CCG	cecc	CT	TCGG	CAGA!	rg CA	AGGC	TGGG	GT/	AGTC:	CCT	TTC	rgga(CTG .	AGAA	GAGAAG	120
ATG	GAG	AAG	CCC	CTC	TTC	CCA	TTA	GTG	CCT	TTG	CAT	TGG	TTT	GGC	TTT	168
Met	G1u	Lys	Pro	Leu	Phe	Pro	Leu	Val	Pro	Leu	His	Trp	Phe	Gly	Phe	
1				5					10					15		
GGC	TAC	ACA	GCA	CTG	GTT	GTT	TCT	GGT	GGG	ATC	GTT	GGC	TAT	GTA	AAA	216
G1y	Tyr	Thr	Ala	Leu	Val	Val	Ser	Gly	Gly	Ile	Val	Gly	Tyr	Val	Lys	
			20					25					30			
ACA	GGC	AGC	GTG	CCG	TCC	CTG	GCA	GCA	GGG	CTG	CTC	TTC	GGC	AGT	CTA	264
Thr	Gly	Ser	Val	Pro	Ser	Leu	Ala	Ala	Gly	Leu	Leu	Phe	Gly	Ser	Leu	
		35					40					45				
GCC	GGC	CTG	GGT	GCT	TAC	CAG	CTG	TAT	CAG	GAT	CCT	AGG	AAC	GTT	TGG	312
Ala	G1y	Leu	Gly	Ala	Tyr	G1n	Leu	Tyr	Gln	Asp	Pro	Arg	Asn	Val	Trp	
	50					- 55			•		60					
GGT	TTC	CTA	GCC	GCT	ACA	TCT	GTT	ACT	TTT	GTT	GGT	GTT	ATG	GGA	ATA	360
Gly	Phe	Leu	Ala	Ala	Thr	Ser	Val	Thr	Phe	Val	G1y	Val	Met	Gly	Met	
65					70				•	75		-			80	
AGA	TCC	TAC	TAC	TAT	GGA	AAA	TTC	ATG	CCT	GTA	GGT	TTA	ATT	GCA	GGT	408
Arg	Ser	Tyr	Tyr	Tyr	Gly	Lys	Phe	Met	Pro	Val	Gly	Leu	Ile	Ala	G1y	
				85					90					95		
GCC	AGT	TTG	CTG	ATG	GCC	GCC	AAA	GTT	GGA	GTT	CGT	ATG	TTG	ATG	ACA	456
Ala	Ser	Leu	Leu	Met	Ala	Ala	Lys	Val	Gly	Val	Arg	Met	Leu	Met	Thr	
			100					105					110			
TCT	GAT	TAG	CAGA	AGT (CATG!	TTCG	CA GO	CTTG	GACT	CATO	GAAG	SATT	AAA	AATC:	r	510
Ser	Asp															
GCA:	TCTT	CCA	CTAT:	TTTC	AA T	GTAT:	raag/	A GA	AATA	AGTG	CAG	CATT	ГТТ	GCAT	CTGACA	570
TTT	TACC'	ľAA	AAAA	AAAA	AG A	CACC	AAAT:	T TG	GCGG.	AGGG	GTG	SAAA	ATC	AGTT(GTTACC	630
ATT	ATAA	CCC	TACA	GAGG!	TG G	TGAG	CATG!	I AA	CATG	AGCT	TAT	rgag.	ACC	ATCA	TAGAGA	690
TCG	ATTC:	TTG	TATA:	TTGA:	TT T	TATC:	rctt:	T CT	GTAT	CTAT	AGG:	PAAA'	CT	CAAG	GGTAAA	750
ATG'	TTAG	STG	TTGA	CATT	GA G	AACC	CTGA	A AC	CCCA	TCC	CTG	CTCA	GAG	GAAC	agtgtg	810
AAA	AAAA	ATC	TCTT	GAGA	GA T	TTAG.	AATA:	r cr	TTTC:	TTTT	GCT	CATC	TTA	GACC	ACAGAC	870
TCA	CTTTT	ZAA	ATTA	TCTT	AA G	TGAA	ATAT	C AA	TGAA	ATA	AAG'	TTTA	CTA	TAAA'	T	925

Sequence No.: 66

Sequence length: 1115

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

158

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10196 Sequence characteristics

Code representing characteristics: CDS

Existence site: 10.. 993 Characterization method: E

51	G ACC	C GG	G AA	A T	A GC	T GC.	e Go	CG G(CG G(CG G(CG G(C GC	rg go	A A	GGA	GCGG
	y Thr	n G1	ır As	a Th	a Al	a Al	la Al	La Al	la Al	la Al	la Al	La AJ	et Al	Me		
				.0	1				5				1			
99	GTG	AGC	CCC	GTC	GTA	GCA	GCA	GAT	GTG	GAG	ATG	GGG	AGC	AGC	GGA	GGA
	Va1	Ser	Pro	Val	Val	Ala	Ala	Asp	Val	Glu	Met	Gly	Ser	Ser	Gly	Gly
	30					25					20		•			15
147	CTT	CCC	CAT	CTC	GCT	GTC	TCC	GTT	AGT	GGG	ACT	GTG	GGA	TGC	GCC	ATG
	Leu	Pro	His	Leu	Ala	Val .	Ser	Val	Ser	Gly	Thr	Val	Gly	Cys	Ala	Met
		45					40					35				
195	GAG	CAG	TCC	CGC	ATG	CGC .	ATC	TGG	CAC	GAC	TCA	ATC	AAC	CTC	ATT	GTC
	Glu	Gln	Ser	Arg	Met	Arg	Ile	Trp	His	Asp	Ser	Ile	Asn	Leu	Ile	Val
			60					55					50			
243	GGC	GAG	CAG	AAG	GGC	ATT	CTG	GCT	GGG	ATT	GTG	CAG	GTG	CCT	CGG	GGG
	Gl y	Glu	Gln	Lys	Gly	Ile	Leu	Ala	Gly	Ile	Val	Gln	Val	Pro	Arg	Gly
				75					70					65		
291	GTG	ACC	CAC	TCC	CTG	CTG	GAG	TTT	TCC	AAC	ATG	GTG	GAG	ATC	AAT	CGA
	Val	Thr	His	Ser	Leu	Leu	Glu	Phe	Ser	Asn	Met	Val	Glu	Ile	Asn	Arg
					90					85					80	
339	GAG	GAG	AAG	ACC	TAC	TAT	TAT	GAA	AAG	GAC	ATT	ATC	ATT	AAG	GAG	GAA
	Glu	Glu	Lys	Thr	Tyr	Tyr	Tyr	Glu	Lys	Asp	Ile	Ile	Ile	Lys	G1u	Glu
	110					105					100					95
387	ACC	TAT	TGG	CCT	CTG	TTT	GAG	CTG	GAG	AAG	TTC	GTG	CAG	AAA	TTT	CAG
	Thr	Tyr	Trp	G1y	Leu	Phe	Glu	Leu	Glu	Lys	Phe	Val	Gln	Lys	Phe	G1n
		125					120					115				
435	GTG	CAG	AAG	CAT	GTC	CAC	ATC	GAC	TCG	CCC	GAC	CCT	CCA	eec	GGG	ACA
	Val	Gln	Lys	His	Val	His	Ile	Asp	Ser	Pro	Asp	Pro	Pro	Gly	Gly	Thr
			140					135					130			
483	ACC	ATG	CCT	AAC	TTG	AAG	CTG	TTT	CTC	CCC	AGC	GAG	ATC	ATC	GAG	TGT
	Thr	Met	Pro	Asn	Leu	Lys	Leu	Phe	Leu	Pro	Ser	Glu	Ile	Ile	Glu	Cys
				155					150					145		
531	ATA	GAT	TTA	GTC	TCT	GAG	TTT	GTT	AGC	GTC	CCT	CTT	GAT	ACA	CAC	AAG
	Ile	Asp	Ile	Val	Ser	Glu	Phe	Val	Ser	Val	Pro	Leu	Asp	Thr	His	Lvs

	160					165					170					
ATC	TAA	GGA	GAG	GCC	ACA	ATG	CTG	TTT	GCT	GAG	CTG	ACC	TAC	ACT	CTG	579
Ile	Asn	Gly	Glu	Ala	Thr	Met	Leu	Phe	Ala	Glu	Leu	Thr	Tyr	Thr	Leu	
175					180					185					190	
GCC	ACA	GAG	GAA	GCG	GAA	CGC	ATT	CCT	GTA	GAC	CAC	GTA	GCC	CGA	ATG	627
Ala	Thr	Glu	Glu	Ala	Glu	Arg	Ile	Gly	Val	Asp	His	Val	Ala	Arg	Met	
				195					200					205		
ACA	GCA	ACA	CCC	AGT	GGA	GAG	AAC	TCC	ACT	GTG	GCT	GAA	CAC	CTG	ATA	675
Thr	Ala	Thr	G1y	Ser	Gly	Glu	Asn	Ser	Thr	Va1	Ala	Glu	His	Leu	Ile	
			210			•		215					220			
GCA	CAG	CAC	AGC	GCC	ATC	AAG	ATG	CTG	CAC	AGC	CGC	GTC	AAG	CTC	ATC	723
Ala	Gln	His	Ser	Ala	Ile	Lys	Met	Leu	His	Ser	Arg	Val	Lys	Leu	Ile	
		225					230					235				
TTG	GAG	TAC	GTC	AAG	CCC	ŢCT	GAA	GCG	GGA	GAG	GTC	CCC	TTT	AAT	CAT	771
Leu	Glu	Tyr	Val	Lys	Ala	Ser	Glu	Ala	Gly	Glu	Val	Pro	Phe	Asn	His	
	240					245					250					
GAG	ATC	CTG	CGG	GAG	GCC	TAT	GCT	CTG	TGT	CAC	TGT	CTC	CCG	GTG	CTC	819
Glu	Ile	Leu	Arg	Glu	Ala	Tyr	Ala	Leu	Cys	His	Cys	Leu	Pro	Val	Leu	
255					260					265					270	
AGC	ACA	GAC	AAG	TTC	AAG	ACA	GAT	TTT	TAT	GAT	CAA	TGC	AAC	GAC	GTG	867
Ser	Thr	Asp	Lys	Phe	Lys	Thr	Asp	Phe	Tyr	qaA	Gln	Cys	Asn	Asp	Val	
				27 5					280				•	285		
GGG	CTC	ATG	GCC	TAC	CTC	GGC	ACC	ATC	ACC	AAA	ACG	TGC	AAC	ACC	ATG	915
Gly	Leu	Met	Ala	Tyr	Leu	Gly	Thr	Ile	Thr	Lys	Thr	Cys	Asn	Thr	Met	
			290					295					300			
AAC	CAG	TTT	GTG	AAC	AAG	TTC	AAT	GTC	CTC	TAC	GAC	CGA	CAA	GGC	ATC	963
Asn	Gln	Phe	Val	Asn	Lys	Phe	Asn	Val	Leu	Tyr	Asp	Arg	Gln	Gly	Ile	
		305					310					315				
GGC	AGG	AGA	ATG	CGC	GGG	CTC	TTT	TTC	TGA'	rgago	GT					1000
Gly	Arg	Arg	Met	Arg	Gly	Leu	Phe	Phe								
	320					325										
ACT:	TGAA	egg (CTGA:	PGGA (CA GO	GGT	CAGG	C AAC	TAT	CCCA	AAG	GGA	ec o	CACT	ACACTT	1060
CCT	TCAC	ACA A	AACC	CTC	PC A'	TAAT	PAAA	A CCC	CAC	CAGC	CCC:	rcac	CAC (CCT	2	1115

Sequence No.: 67

Sequence length: 1721

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

160

Cell line: HT-1080 Clone name: HP10235 Sequence characteristics

Code representing characteristics: CDS

Existence site: 6.. 1127 Characterization method: E

ATGTC ATG ACC CTA TGT GCC ATG CTG CCC CTG CTG TTA TTC ACC TAC CTC	50
Met Thr Leu Cys Ala Met Leu Pro Leu Leu Phe Thr Tyr Leu	
1 5 10 15	
AAC TCC TTC CTG CAT CAG AGG ATC CCC CAG TCC GTA CGG ATC CTG GGC	98
Asn Ser Phe Leu His Gln Arg Ile Pro Gln Ser Val Arg Ile Leu Gly	
20 . 25 30	
AGC CTG GTG GCC ATC CTG CTG GTG TTT CTG ATC ACT GCC ATC CTG GTG	146
Ser Leu Val Ala Ile Leu Leu Val Phe Leu Ile Thr Ala Ile Leu Val	
35 40 45	
AAG GTG CAG CTG GAT GCT CTG CCC TTC TTT GTC ATC ACC ATG ATC AAG	194
Lys Val Gln Leu Asp Ala Leu Pro Phe Phe Val Ile Thr Met Ile Lys	
50 55 60	
ATC GTG CTC ATT AAT TCA TTT GGT GCC ATC CTG CAG GGC AGC CTG TTT	242
Ile Val Leu Ile Asn Ser Phe Gly Ala Ile Leu Gln Gly Ser Leu Phe	
65 70 75	
GGT CTG GCT GGC CTT CTG CCT GCC AGC TAC ACG GCC CCC ATC ATG AGT	290
Gly Leu Ala Gly Leu Leu Pro Ala Ser Tyr Thr Ala Pro Ile Met Ser	
80 85 90 95	
GGC CAG GGC CTA GCA GGC TTC TTT GCC TCC GTG GCC ATG ATC TGC GCT	338
Gly Gln Gly Leu Ala Gly Phe Phe Ala Ser Val Ala Met Ile Cys Ala	
100 105 110	
ATT GCC AGT GGC TCG GAG CTA TCA GAA AGT GCC TTC GGC TAC TTT ATC	386
Ile Ala Ser Gly Ser Glu Leu Ser Glu Ser Ala Phe Gly Tyr Phe Ile	
115 120 125	
ACA GCC TGT GCT GTT ATC ATT TTG ACC ATC ATC TGT TAC CTG GGC CTG	434
Thr Ala Cys Ala Val Ile Ile Leu Thr Ile Ile Cys Tyr Leu Gly Leu	
130 135 140	
CCC CGC CTG GAA TTC TAC CGC TAC TAC CAG CAG CTC AAG CTT GAA GGA	482
Pro Arg Leu Glu Phe Tyr Arg Tyr Tyr Gln Gln Leu Lys Leu Glu Gly	
145 150 155	
CCC GGG GAG CAG GAG ACC AAG TTG GAC CTC ATT AGC AAA GGA GAG GAG	530
Pro Gly Glu Glu Glu Thr Lys Leu Asp Leu Ile Ser Lys Gly Glu Glu	
160 165 170 175	
CCA AGA GCA GGC AAA GAG GAA TCT GGA GTT TCA GTC TCC AAC TCT CAG	578
Pro Arg Ala Gly Lys Glu Glu Ser Gly Val Ser Val Ser Asn Ser Gln	
180 185 190	

CCC	ACC	AAT	GAA	AGC	CAC	TCT	ATC	AAA	GCC	ATC	CTG	AAA	AAT	ATC	TCA	626
Pro	Thr	Asn	Glu	Ser	His	Ser	Ile	Lys	Ala	Ile	Leu	Lys	Asn	Ile	Ser	
			195					200					205			
GTC	CTG	GCT	TTC	TCT	GTC	TGC	TTC	ATC	TTC	ACT	ATC	ACC	ATT	GGG	ATG	674
Val	Leu	Ala	Phe	Ser	Val	Cys	Phe	Ile	Phe	Thr	Ile	Thr	Ile	Gly	Met	
		210					215					220				
TTT	CCA	GCC	GTG	ACT	GTT	GAG	GTC	AAG	TCC	AGC	ATC	GCA	GGC	AGC	AGC	722
Phe	Pro	Ala	Val	Thr	Va1	Glu	Val	Lys	Ser	Ser	Ile	Ala	Gly	Ser	Ser	
	225					230			,		235					
ACC	TGG	GAA	CGT	TAC	TTC	TTA	CCT	GTG	TCC	TGT	TTC	TTG	ACT	TTC	AAT	770
Thr	Trp	Glu	Arg	Tyr	Phe	Ile	Pro	Va1	Ser	Cys	Phe	Leu	Thr	Phe	Asn	
240					245					250					255	
ATC	TTT	GAC	TGG	TTG	GGC	CGG	AGC	CTC	ACA	GCT	GTA	TTC	ATG	TGG	CCT	818
Ile	Phe	Asp	Trp	Leu	Gly	Arg	Ser	Leu	Thr	Ala	Va1	Phe	Met	Trp	Pro	
				260					265					270		
GGG	AAG	GAC	AGC	CGC	TGG	CTG	CCA	AGC	CTG	GTG	CTG	GCC	CGG	CTG	GTG	866
Gly	Lys	Asp	Ser	Arg	Trp	Leu	Pro	Ser	Leu	Val	Leu	Ala	Arg	Leu	Val	
			275					280					285			
TTT	GTG	CCA	CTG	CTG	CTG	CTG	TGC	AAC	ATT	AAG	CCC	CGC	CGC	TAC	CTG	914
Phe	Val	Pro	Leu	Leu	Leu	Leu	Cys	Asn	Ile	Lys	Pro	Arg	Arg	Tyr	Leu	
		290					295					300				
ACT	GTG	GTC	TTC	GAG	CAC	GAT	GCC	TGG	TTC	ATC	TTC	TTC	ATG	GCT	GCC	962
Thr	V a1	Val	Phe	Glu	His	Asp	Ala	Trp	Phe	Ile	Phe	Phe	Met	Ala	Ala	
	305					310					315					
			TCC													1010
Phe	Ala	Phe	Ser	Asn	Gĺy	Tyr	Leu	Ala	Ser	Leu	Cys	Met	Cys	Phe	Gly	
320					325					330					335	
			GTG													1058
Pro	Lys	Lys	Va1	Lys	Pro	Ala	Glu	Ala	Glu	Thr	Ala	Gly	Ala	Ile	Met	
				340					345					350		
			CTG													1106
Ala	Phe	Phe	Leu	Cys	Leu	Gly	Leu	Ala	Leu	G1y	Ala	Val	Phe	Ser	Phe	
			355					360					365			
CTG	TTC	CGG	GCA	ATT	GTG	TGA	CAAA	GGA '	TGGA	CAGA	AG G	ACTG	C			1150
Leu	Phe	Arg	Ala	Ile	Val											
		370						•								
															AGTGG7	
															GGATCI	
															GGCTCA	
															CTCTGA	
															GTCTC1	
															GGGTGG	
															CTGCGC	
CTC	CTCC	TCT	CTCT	TCTC	TC C	ATGT	CCCC	с тс	CCAA	CTCC	CCA	TGCC	CAG	TTCT	TACCCA	1630

162

TCATGCACCC TGTACAGTTG CCACGTTACT GCCTTTTTA AAAATATATT TGACAGAAAC 1690 CAGGTGCCTT CAGAGGCTCT CTGATTTAAA T 1721

Sequence No.: 68

Sequence length: 1504

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer Clone name: HP10297

Sequence characteristics

Code representing characteristics: CDS

Existence site: 63.. 614 Characterization method: E

CTTTT	GCG	GC '	TGCA	GCGG	GC I	TGTA	CCTC	T CC	GGCI	TTGC	TGG	CCCA	GCA	AGCC	TGAT	AA 60
GC AT	G A	AG (CTC	TTA	TCT	TTG	GTG	GCT	GTG	GTC	GGG	TGT	TTG	CTG	GTG	107
Me	t L	ys I	Leu	Leu	Ser	Leu	Val	Ala	Val	Val	Gly	Cys	Leu	Leu	Val	
:	1				5					10					15	
CCC C	CA (GCT	GAA	GCC	AAC	AAG	AGT	TCT	GAA	GAT	ATC	: CGG	TGC	: AAA	TGC	155
Pro P	ro .	Ala	Glu	Ala	Asn	Lys	Ser	Ser	Glu	ı Asp	Ile	Arg	Cys	Lys	Cys	
				20)				25	i				30)	
ATC T	GT (CCA	CCT	TAT	AGA	AAC	ATC	: AGT	GGG	CAC	: ATT	TAC	AAC	CAG	: AAT	203
Ile C	ys :	Pro	Pro	Tyr	Arg	Asn	Ile	e Ser	Gly	His	: Ile	Tyr	Ası	Glr	Asn	
			35					40)				45	5		
GTA T	CC (CAG	AAG	GAC	TGC	AAC	TGC	CTG	CAC	GTG	GTG	GAG	CCC	ATG	CCA	251
Val S	er (Gln	Lys	Asp	Cys	Asn	Суя	Leu	His	. Val	. Val	. Glu	Pro	Met	Pro	
		50					55	5				60)			
GTG C	CT (GGC	CAT	GAC	GTG	GAG	GCC	TAC	TGC	CTG	CTG	TGC	GAG	TGC	: AGG	299
Val P	ro (Gly	His	Asp	Val	Glu	Ala	Tyr	Cys	Leu	Lev	Cys	Glu	ı Cys	Arg	
	65					70)				75	i				
TAC G	AG (GAG	CGC	AGC	ACC	ACC	ACC	ATC	: AAG	GTC	: ATC	TTA :	GTC	ATC	TAC	347
Tyr G	1u (Glu	Arg	Ser	Thr	Thr	Thr	: Ile	Lys	Val	. Ile	: Ile	Val	Ile	Tyr	
80					85	;				90)				95	
CTG T	CC (GTG	GTG	GGT	GCC	CTG	TTG	CTC	TAC	ATG	GCC	TTC	CTG	ATG	CTG	395
Leu S	er '	Val	Val	Gly	Ala	Leu	Lev	. Leu	. Tyr	Met	: Ala	Phe	Leu	. Met	: Leu	
				100)				105	;				110)	
GTG G	AC (CCT	CTG	ATC	CGA	AAG	CCG	GAT	GCA	TAC	: ACT	GAG	CAA	CTG	CAC	443
Val A	sp :	Pro	Leu	Ile	Arg	Lys	Pro	Asp	Ala	Tyr	Thr	Glu	Glu	Lev	His	

115	120	125	
AAT GAG GAG GAG AAT GAG	GAT GCT CGC TCT ATG	GCA GCA GCT GCT GCA	491
Asn Glu Glu Glu Asn Glu	Asp Ala Arg Ser Met	Ala Ala Ala Ala	
130	135	140	
TCC CTC GGG GGA CCC CGA	GCA AAC ACA GTC CTG	GAG CGT GTG GAA GGT	539
Ser Leu Gly Gly Pro Arg	Ala Asn Thr Val Leu	Glu Arg Val Glu Gly	
145	150	155	
GCC CAG CAG CGG TGG AAG	CTG CAG GTG CAG GAG	CAG CGG AAG ACA GTC	587
Ala Gln Gln Arg Trp Lys	Leu Gln Val Gln Glu	Gln Arg Lys Thr Val	
160 165	170	175	
TTC GAT CGG CAC AAG ATG	CTC AGC TAGATGGGCT G	GTGTGGTTG GGTCAAGGC	640
Phe Asp Arg His Lys Met	Leu Ser		
180			
CCCAACACCA TGGCTGCCAG C	TTCCAGGCT GGACAAAGCA	GGGGGCTACT TCTCCCTTCC	700
CTCGGTTCCA GTCTTCCCTT T	AAAAGCCTG TGGCATTTTT	CCTCCTTCTC CCTAACTTTA	760
GAAATGTTGT ACTTGGCTAT T	TTGATTAGG GAAGAGGGAT	GTGGTCTCTG ATCTCTGTTG	820
TCTTCTTGGG TCTTTGGGGT T	GAAGGGAGG GGGAAGGCAG	GCCAGAAGGG AATGGAGACA	880
TTCGAGGCGG CCTCAGGAGT G	GATGCGATC TGTCTCTCT	GGCTCCACTC TTGCCGCCTT	940
CCAGCTCTGA GTCTTGGGAA T	GTTGTTACC CTTGGAAGAT	AAAGCTGGGT CTTCAGGAAC	1000
TCAGTGTCTG GGAGGAAAGC A	TGGCCCAGC ATTCAGCATG	TGTTCCTTTC TGCAGTGGTT	1060
CTTATCACCA CCTCCCTCCC A	GCCCCAGCG CCTCAGCCCC	AGCCCCAGCT CCAGCCCTGA	1120
GGACAGCTCT GATGGGAGAG C	TGGGCCCCC TGAGCCCACT	GGGTCTTCAG GGTGCACTGG	1180
AAGCTGGTGT TCGCTGTCCC C			1240
ACTCTGCTGC CGGTCCCCTC A	CCTGCACTT GAGGGGTCTG	GGCAGTCCCT CCTCTCCCCA	1300
GTGTCCACAG TCACTGAGCC A			1360
ATCTGAACAC CACAGCCCCT G			1420
GTGCATGGAG AGAAAATTTT G	TCCTCTTGT CTTAGAGTTG	TGTGTAAATC AAGGAAGCCA	1480
TCATTAAATT GTTTTATTTC T	CTC		1504

Sequence No.: 69
Sequence length: 532

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299
Sequence characteristics

Code representing characteristics: CDS

Existence site: 93.. 443 Characterization method: E

Sequence description

GCT(CTCTC	GT A	AAAG	CGT	C AC	GTG	rtgg	CGG	CGGC	CTCT	GAG	CTGG	SAT (GAGC	CGTGCT	60
CCC	GTG	SAA (GCAAC	GGA(C C	CAGC	CGGA	cc cc	ATG	GCC	AGT	ACA	GTG	GTA	GCA	113
									Met	Ala	Ser	Thr	Val	Val	Ala	
									1				5			
GTT	GGA	CTG	ACC	ATT	GCT	GCT	GCA	GGA	TTT	GCA	GGC	CGT	TAC	GTT	TTG	161
Val	Gly	Leu	Thr	Ile	Ala	Ala	Ala	Gly	Phe	Ala	Gly	Arg	Tyr	Va1	Leu	
		10					15					20				
CAA	GCC	ATG	AAG	CAT	ATG	GAG	CCT	CAA	GTA	AAA	CAA	GTT	TTT	CAA	AGC	209
G1n	Ala	Met	Lys	His	Met	G1u	Pro	Gln	Va1	Lys	Gln	Val	Phe	Gln	Ser	
	25					30					35					
CTA	CCA	AAA	TCT	GCC	TTC	AGT	GGT	GGC	TAT	TAT	AGA	GGT	GGG	TTT	GAA	257
Leu	Pro	Lys	Ser	Ala	Phe	Ser	Gly	Gly	Tyr	Tyr	Arg	Gly	Gly	Phe	Glu	
40					45					50					55	
CCC	AAA	ATG	ACA	AAA	CGG	GAA	GCA	GCA	TTA	ATA	CTA	GGT	GTA	AGC	CCT	305
Pro	Lys	Met	Thr	Lys	Arg	Glu	Ala	Ala	Leu	Ile	Leu	Gly	Val	Ser	Pro	
				60					65					70		
ACT	GCC	AAT	AAA	GGG	AAA	ATA	AGA	GAT	GCT	CAT	CGA	CGA	ATT	ATG	CTT	353
Thr	Ala	Asn	Lys	G1y	Lys	Ile	Arg	Asp	Ala	His	Arg	Arg	Ile	Met	Leu	
			75					80					85			
TTA	AAT	CAT	CCT	GAC	AAA	GGA	GGA	TCT	CCT	TAT	ATA	GCA	GCC	AAA	ATC	401
Leu	Asn	His	Pro	Asp	Lys	Gly	G1y	Ser	Pro	Tyr	Ile	Ala	Ala	Lys	Ile	
		90					95					100				
AAT	GAA	GCT	AAA	GAT	TTA	CTA	GAA	GGT	CAA	GCT	AAA	AAA	TGA	AGTA	AAT	450
Asn	Glu	Ala	Lys	Asp	Leu	Leu	Glu	Gly	Gln	Ala	Lys	Lys				
	105					110					115					
GTA:	rgat(SAA '	TTTT	AAGT:	TC G	TATT	AGTT'	T AT	GTAT	ATGA	GTA	CTAAC	GTT	TTTA:	TAATAA	
AAT	CCT	CAG	AGCT	ACAA'	TT T	r										532

Sequence No.: 70 Sequence length: 662

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10301 Sequence characteristics

165

Code representing characteristics: CDS

Existence site: 92.. 550 Characterization method: E

TCTZ	MGCCC	ice (36666	A G	,666	ساحار	Z CCI	MUM	الحال	GCI	テレひし	HG I	1116	110160	. 60
TCC	AGCT	STT (GAAG	GTG/	AT CO	CAGA	CCA	A G A	ATG (CT (STC (CTC	TCT .	AAG (GAA	112
								1	let /	Ala V	7al 1	Leu	Ser 1	Lys (Glu	
								•	1				5			
TAT	GGT	TTT	GTG	CTT	CTA	ACT	GGT	GCT	GCC	AGC	TTT	ATA	ATG	GTG	GCC	160
Tyr	Gly	Phe	Val	Leu	Leu	Thr	Gly	Ala	Ala	Ser	Phe	Ile	Met	Val	Ala	
		. 10					15					20				
CAC	CTA	GCC	ATC	AAT	GTT	TCC	AAG	GCC	CGC	AAG	AAG	TAC	AAA	GTG	GAG	208
His	Leu	Ala	Ile	Asn	Va1	Ser	Lys	Ala	Arg	Lys	Lys	Tyr	Lys	Val	Glu	
	25					30					35					
TAT	CCT	ATC	ATG	TAC	AGC	ACG	GAC	CCT	GAA	AAT	GGG	CAC	ATC	TTC	AAC	256
Tyr	Pro	Ile	Met	Tyr	Ser	Thr	Asp	Pro	Glu	Asn	G1y	His	Ile	Phe	Asn	
40					45					50					55	
TGC	ATT	CAG	CGA	GCC	CAC	CAG	AAC	ACG	TTG	GAA	GTG	TAT	CCT	CCC	TTC	304
Cys	Ile	Gln	Arg	Ala	His	Gln	Asn	Thr	Leu	Glu	Wa1	Tyr	Pro	Pro	Phe	
	6			60					65					70		
TTA	TTT	TTT	CTA	GCT	GTT	GGA	GGT	GTT	TAC	CAC	CCG	CGT	ATA	GCT	TCT	352
Leu	Phe	Phe	Leu	Ala	Val	Gly	Gly	Val	Tyr	His	Pro	Arg	Ile	Ala	Ser	
			75					80					85			
GGC	CTG	GGC	TTG	GCC	TGG	ATT	GTT	GGA	CGA	GTT	CTT	TAT	GCT	TAT	GGC	400
Gly	Leu	Gly	Leu	Ala	Trp	Ile	Va1	Gly	Arg	Va1	Leu	Tyr	Ala	Tyr	Gly	
		90					95					100				
TAT	TAC	ACG	GGA	GAA	CCC	AGC	AAG	CGT	AGT	CGA	GGA	GCC	CTG	GGG	TCC	448
Tyr	Tyr	Thr	Gly	Glu	Pro	Ser	Lys	Arg	Ser	Arg	Gly	Ala	Leu	Gly	Ser	
	105					110					115					
ATC	GCC	CTC	CTG	GGC	TTG	GTG	GGC	ACA	ACT	GTG	TGC	TCT	GCT	TTC	CAG	496
Ile	Ala	Leu	Leu	Gly	Leu	Val	G1y	Thr	Thr	Val	Cys	Ser	Ala	Phe	Gln	
120					125					130					135	
			TGG													544
His	Leu	Gly	Trp	Val	Lys	Ser	Gly	Leu	Gly	Ser	Gly	Pro	Lys	Cys	Cys	
				140					145					150		
CAT	TAA	AGAA'	TTA !	ragg(GGTT:	TA A	AAAC'	rctc.	A TT	CATT	PTAA	ATG				590
His																
																4
ACT:	TACC	TTT .	ATTT	CCAG'	TT A	CATT	TTTT'	T TC	TAAA'	TATA	ATA	AAAA	CTT .	ACCT	GGCATO	
AGC	CTCA	TAC	CT												•	662

166

Sequence length: 2373 Sequence type: Nucleic acid Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP10302
Sequence characteristics

Code representing characteristics: CDS

Existence site: 134.. 1813 Characterization method: E

GAAG	ACC	CA	CGCC	CGCC	C GC	GCTC/	AGGG	TG	GCCC	CACG	GGA	CTCC	GGA (CGCG	CCGCG	A	60
AAGC	GTT	CG (CTCC	CGGAG	e co	STCC	CAG	C TG	CTGG	CTGC	TCA	TTTG	CCG (GTGA	CCGGA	.G	120
GCTC	:CGG	CC A	AGC A	ATG (CC (CCC A	ACG (CTG (CAA (CAG (SCC S	TAC (CGG A	AGG	CGC		169
			1	let A	Ala 1	Pro 1	thr I	Leu (Gln (3ln A	Ala '	Tyr A	Arg A	Arg .	Arg		
				1				5					10				
TGG	TGG	ATG	GCC	TGC	ACG	GCT	GTG	CTG	GAG	AAC	CTC	TTC	TTC	TCT	GCT		217
Trp	Trp	Met	Ala	Cys	Thr	Ala	Val	Leu	G1u	Asn	Leu	Phe	Phe	Ser	Ala		
		15					20					25					
			GGC														265
Val	Leu	Leu	Gly	Trp	Gly	Ser	Leu	Leu	Ile	Ile		Lys	Asn	Glu	Gly		
	30					35					40						
			AGC														313
	Tyr	Ser	Ser	Thr		Pro	Ala	Glu	Ser		Thr	Asn	Thr	Thr	Gln		
45		•			50			8.3		55					60		
			CGC														361
Asp	Glu	Gln	Arg	_	Trp	Pro	Gly	Cys		Gln	Gln	Asp	Glu		Leu		
				65					70					75			
			TTC														409
Asn	Leu	Gly		Thr	Ile	GLy	Ser			Leu	Ser	Ala		Thr	Leu		
			80					85					90				
			ATC														457
Pro	Leu	_	Ile	Leu	Met	Asp		Phe	Gly	Pro	Arg		Val	Arg	Leu		
		95					100					105					
															GCC		505
Val		Ser	Ala	Cys	Phe			Ser	Cys	Thr			Ala	Leu	Ala		
	110					115					120						
			GTG														553
Ser	Arg	Asp	Val	Glu	Ala	Leu	Ser	Pro	Leu		Phe	Leu	Ala	Leu	Ser		
125					130					135					140		

CTG	AAT	GGC	TTT	GGT	GGC	ATC	TGC	CTA	ACG	TTC	ACT	TCA	CTC	ACG	CTG	601
Leu	Asn	Gly	Phe	Gly	Gly	Ile	Cys	Leu	Thr	Phe	Thr	Ser	Leu	Thr	Leu	
				145					150					155		
CCC	AAC	ATG	TTT	GGG	AAC	CTG	CGC	TCC	ACG	ATT	ATG	GCC	CTC	ATG	ATT	649
Pro	Asn	Met	Phe	Gly	Asn	Leu	Arg	Ser	Thr	Leu	Met	Ala	Leu	Met	Ile	
			160					165					170	٠.		
GGC	TCT	TAC	GCC	TCT	TCT	GCC	ATT	ACG	TTC	CCA	GGA	ATC	AAG	CTG	ATC	697
G1y	Ser	Tyr	Ala	Ser	Ser	Ala	Ile	Thr	Phe	Pro	Gly	Ile	Lys	Leu	Ile	
		175					180					185				
TAC	GAT	GCC	CCT	GTG	GCC	TTC	GTG	GTC	ATC	ATG	TTC	ACC	TGG	TCT	GGC	745
Tyr	Asp	Ala	G1y	Val	Ala	Phe	Val	Val	Ile	Met	Phe	Thr	Trp	Ser	Gly	
	190					195					200					
CTG	GCC	TGC	CTT	ATC	TTT	CTG	AAC	TGC	ACC	CTC	AAC	TGG	CCC	ATC	GAA	793
Leu	Ala	Cys	Leu	Ile	Phe	Leu	Asn	Cys	Thr	Leu	Asn	Trp	Pro	Ile	Glu	
205					210					215					220	
GCC	TTT	CCT	GCC	CCT	GAG	GAA	GTC	AAT	TAC	ACG	AAG	AAG	ATC	AAG	CTG	841
Ala	Phe	Pro	Ala	Pro	Glu	G1u	Va1	Asn	Tyr	Thr	Lys	Lys	Ile	Lys	Leu	
				225					230					235		
AGT	ccc	CTG	GCC	CTG	GAC	CAC	AAG	GTG	ACA	GGT	GAC	CTC	TTC	TAC	ACC	889
Ser	Gly	Leu	Ala	Leu	Asp	His	Lys	Val	Thr	Gly	Asp	Leu	Phe	Tyr	Thr	
			240					245					250			
	GTG															937
His	Val	Thr	Thr	Met	Gly	Gln	Arg	Leu	Ser	Gln	Lys	Ala	Pro	Ser	Leu	
		255					260					265				
GAG	GAC	GGT	TCG	GAT	GCC	TTC	ATG	TCA	CCC	CAG	GAT	GTT	CGG	GGC	ACC	985
Glu	Asp	G1y	Ser	Asp	Ala	Phe	Met	Ser	Pro	Gln	Asp	Val	Arg	Gly	Thr	
	270					275					280					
	GAA															1033
Ser	Glu	Asn	Leu	Pro	Glu	Arg	Ser	Va1	Pro	Leu	Arg	Lys	Ser	Leu		
285					290					295					300	
	CCC															1081
Ser	Pro	Thr	Phe		Trp	Ser	Leu	Leu		Met	Gly	Met	Thr		Leu ·	
				305					310					315		
	ATC															1129
Arg	Ile	Ile		Tyr	Met	Ala	Ala		Asn	Lys	Met	Leu		Tyr	Leu	
			320					325					330			
	ACT															1177
Val	Thr	Gly	Gly	Gln	Glu	His		Thr	Asn	Glu	Gln		Gln	Lys	Val	
		335					340					345				
	GAG															1225
Ala	Glu		Val	Gly	Phe		Ser	Ser	Val	Phe		Ala	Met	Gln	Leu	
	350					355					360		.			
	TGC															1273
T	C	T	T	of the sec	CTTC	Dro	Ton	T1 ^	C1 77	Tvr	TIA	Met	Acn	Ten	Ara	

365					370					375			•		380	
ATC	AAG	GAC	TGC	GTG	GAC	GCC	CCA	ACT	CAG	GGC	ACT	GTC	CTC	GGA	GAT	1321
Ile	Lys	Asp	Cys	Val	Asp	Ala	Pro	Thr	Gln	Gly	Thr	Val	Leu	Gly	Asp	
				385					390					395		
GCC	AGG	GAC	GGG	GTT	GCT	ACC	AAA	TCC	ATC	AGA	CCA	CGC	TAC	TGC	AAG	1369
Ala	Arg	Asp	Gly	Val	Ala	Thr	Lys	Ser	Ile	Arg	Pro	Arg	Tyr	Cys	Lys	
			400					405					410			
ATC	CAA	AAG	CTC	ACC	TAA	GCC	ATC	AGT	GCC	TTC	ACC	CTG	ACC	AAC	CTG	1417
Ile	Gln	Lys	Leu	Thr	Asn	Ala	Ile	Ser	Ala	Phe	Thr	Leu	Thr	Asn	Leu	
		415					420					425				
			GGT													1465
Leu	Leu	Va1	Gly	Phe	Gly	Ile	Thr	Cys	Leu	Ile	Asn	Asn	Leu	His	Leu	
	430					435					440					
			ACC													1513
Gln	Phe	Va1	Thr	Phe	Val	Leu	His	Thr	Ile	Va1	Arg	Gly	Phe	Phe		
445					450					455					460	
			GGG													1561
Ser	Ala	Cys	Gly	Ser	Leu	Tyr	Ala	Ala		Phe	Pro	Ser	Asn		Phe	
				465					470					475		
			ACA													1609
Gly	Thr	Leu	Thr	Gly	Leu	Gln	Ser		Ile	Ser	Ala	Val		Ala	Leu	
			480		l _a			485					490			
			CCA													1657
Leu	Gln		Pro	Leu	Phe	Met		Met	Val	GLA	Pro		ràs	GTÀ	GIU	
		495					500		O	mmo	mo 4	505	OFF	004	WILL C	1705
			GTG													1703
Pro		_	Val	Asn	Leu		ren	Leu	Leu	Pne		Leu	ren	GLY	rne	
	510		TCC	m	CMC	515	TP A TP	TPAC	CCT	ccc	520	CTC	CAC	CAG	CAC	1753
			Ser													1,00
		PIO	ser	Tyr	530	rne	TAT	ıyı	мg	535	ALE	Leu	GLII	GIH	540	
525		ccc	AAT	ccc		ccc	CCA	CTG	AAG		СТТ	AGC	ccc	тст		1801
			Asn													
Tyr	MIA	Ala	Von	545		OL,	110	200	550			-	,	555		
CTC	ACC	CCA	TAG.			AGAC	CAAG	GG A			A					1840
	Thr			11011	010 .											
V		12														
CAG	CCAA	TCA	AGGC	CTGA	GC A	ACCA	AAAG	G AG	TGCC	CCAT	ATG	GCTT	TTC	TACC	TGTAAC	1900
															TGTAAA	1960
															CCATTG	2020
															AGGAGA	2080
															GATCGG	2140
															TCTGTG	2200
															GGTGCC	2260

169

AGCTGTGTCC TGGGTTAGG	G GTTGGGGGTC	GGCCCCTTCC	AGGGCCAGGA	GGGCAGGTTC	2320
CCTCTCTGGT GCTGCTGCT	T GCAAGTCTTA	GAGGAAATAA	AAAGGGAAGT	GAG	2373

Sequence No.: 72

Sequence length: 1316

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS
Clone name: HP10304
Sequence characteristics

Code representing characteristics: CDS

Existence site: 11.. 1003 Characterization method: E

GTTC	TCCA	AG	ATG	GAG	GGC	GCT	CCA	CCG	GGG	TCG	CTC	GCC	CTC	CGG	CTC	49
			Met	Glu	Gly	Ala	Pro	Pro	Gly	Ser	Leu	Ala	Leu	Arg	Leu	
			1				5					10				
CTG	CTG	TTC	GTO	GCG	CTA	CCC	GCC	: TCC	GGC	TGG	CTG	ACG	ACG	GGG	: GCC	97
Leu	Leu	Phe	Va]	Ala	Leu	Pro	Ala	Ser	Gly	Trp	Lev	. Thr	Thr	G13	7 Ala	
	15					20	1				25	;				
CCC	GAG	CCG	CCC	CCG	CTG	TCC	GGA	GCC	CCA	CAG	GAC	: GGC	ATC	AG/	ATT A	145
Pro	Glu	Pro	Pro	Pro	Leu	Ser	G13	r Ala	Pro	Gln	ı Asp	Gly	Ile	Arg	; Ile	
30					35					40)				45	
AAT	GTA	ACT	AC.	CTC	AAA S	GAT	GA1	GGG	GAC	ATA	TCI	AAA 1	CAG	CAC	GTT	193
Asn	Va1	Thr	Th	Let	ı Lys	Asp	Ası	Gl _y	Asp	Ile	Ser	Lys	Gln	Glı	val	
				50)				55	;				60)	
GTT	CTT	AAC	ATA	ACC	TAT :	GAG	AG	GGA	A CAG	GTG	TAT	GTA	raa .	GA	TTA	241
Val	Leu	Asn	Ile	? Thi	. Tyr	Glu	Ser	: G13	Gln	Val	. Tyr	Val	Asn	. Asj	Leu	
			6.	5		٠		70)				75	;		
CCT	GTA	AAT	AG'	r GG1	C GTA	ACC	CG/	ATA	A AGC	TG1	CAG	ACT	TTG	ATA	A GTG	289
Pro	Val	Asn	Se	c Gl y	7 Val	Thr	Arg	, Ile	e Ser	Cys	Glr	ı Thr	Lev	110	e Val	
		80	1				85	5				90)			
AAG	AAT	GAA	AA'	CT	r GAA	. AA	TTO	GAG	GAA	AAA	GA/	IAT A	TTI	: GG/	ATT	337
Lys	Asn	G1u	Ası	ı Let	ı Glu	Ası	Lei	1 G11	ı Glu	ι L y ε	s Glu	ı Tyr	Phe	G1	, Ile	
·	95					100	•				105	5				
GTC	AGT	GTA	AG	AT:	r tta	GTI	' CA'	GA(TGG	CC1	TATO	ACA	TCI	: GG:	r TCC	385
															y Ser	

110					115					120					125	
AGT	TTG	CAA	CTA	ATT	GTC	ATT	CAA	GAA	GAG	GȚA	GTA	GAG	ATT	GAT	GGA	433
Ser	Leu	Gln	Leu	Ile	Val	Ile	Gln	Glu	Glu	Val	Val	Glu	Ile	Asp	Gly	
				130					135					140		
AAA	CAA	GTT	CAG	CAA	AAG	GAT	GTC	ACT	GAA	ATT	GAT	ATT	TTA	GTT	AAG	481
Lys	Gln	Val	Gln	G1n	Lys	Asp	Val	Thr	Glu	Ile	Asp	Ile	Leu	Val	Lys	
			145					150					155		•	
AAC	CGG	GGA	GTA	CTC	AGA	CAT	TCA	AAC	TAT	ACC	CTC	CCT	TTG	GAA	GAA	529
Asn	Arg	Gly	Val	Leu	Arg	His	Ser	Asn	Tyr	Thr	Leu	Pro	Leu	Glu	Glu	
		160					165					170				
AGC	ATG	CTC	TAC	TCT	ATT	TCT	CGA	GAC	AGT	GAC	ATT	TTA	TTT	ACC	CTT	577
Ser	Met	Leu	Tyr	Ser	Ile	Ser	Arg	Asp	Ser	Asp	Ile	Leu	Phe	Thr	Leu	
	175					180					185					
CCT	AAC	CTC	TCC	AAA	AAA	GAA	AGT	GTT	AGT	TCA	CTG	CAA	ACC	ACT	AGC	625
Pro	Asn	Leu	Ser	Lys	Lys	Glu	Ser	Val	Ser	Ser	Leu	Gln	Thr	Thr	Ser	
190					195					200					205	
CAG	TAT	CTT	ATC	AGG	TAA	GTG	GAA	ACC	ACT	GTA	GAT	GAA	GAT	GTT	TTA	673
${\tt Gln}$	Tyr	Leu	Ile	Arg	Asn	Val	Glu	Thr	Thr	Val	Asp	Glu	qaA	Val	Leu	
				210			•		215					220		
CCT	GGC	AAG	TTA	CCT	GAA	ACT	CCT	CTC	AGA	GCA	GAG	CCG	CCA	TCT	TCA	721
Pro	Gly	Lys	Leu	Pro	Glu	Thr	Pro	Leu	Arg	Ala	Glu	Pro	Pro	Ser	Ser	
			225					230					235			
TAT	AAG	GTA	ATG	TGT	CAG	TGG	ATG	GAA	AAG	TTT	AGA	AAA	GAT	CTG	TGT	769
Tyr	Lys	Val	Met	Cys	Gln	Trp	Met	Glu	Lys	Phe	Arg	ГÀе	Asp	Leu	Cys	
		240					245					250				
AGG	TTC	TGG	AGC	AAC	GTT	TTC	CCA	GTA	TTC	TTT	CAG	TTT	TTG	AAC	ATC	817
Arg	Phe	Trp	Ser	Asn	Va1	Phe	Pro	Val	Phe	Phe	Gln	Phe	Leu	Asn	Ile	
	255					260					265					
ATG	GTG	GTT	GGA	ATT	ACA	GGA	GCA	GCT	GTG	GTA	ATA	ACC	ATC	TTA	AAG	865
Met	Val	Val	Gly	Ile	Thr	Gly	Ala	Ala	Val	Val	Ile	Thr	Ile	Leu	Lys	
270					275					280					285	
						GAA										913
Val	Phe	Phe	Pro		Ser	Glu	Tyr	Lys	Gly	Ile	Leu	Gln	Leu	_	Lys	
				290					295					300		
						ACA										961
Val	Asp	Val		Pro	Val	Thr	Ala	Ile	Asn	Leu	Tyr	Pro	Asp	Gly	Pro	
			305					310					315			
						CTT							TAA	AACG	CCA	1010
Glu	Lys	_	Ala	Glu	Asn	Leu		Asp	Lys	Thr	Cys					
		320					325					330				
															TTAATE	
															SACTGO	
															rgcagt	
GGC1	CAT	CC :	rg'ta/	ATCC	CA GO	SACT	rtgg	G AGO	GCCA	ATGC	GGGG	CGGA!	CA (CGAG	STCAGA	1250

1/1	
TCAAGACCAT CCTGCCAACA TGGTGAAACC CTGTCTCTAC TAAAAAAAAAT AAAAAAGTTA	1310
GCTGGG	1316
Sequence No.: 73	
Sequence length: 893	
Sequence type: Nucleic acid	
Strandedness: Double	
Topology: Linear	
Sequence kind: cDNA to mRNA	
Original source:	
Organism species: Homo sapiens	
Cell kind: Osterosarcoma	
Cell line: U-2 OS	
Clone name: HP10305	
Sequence characteristics	
Code representing characteristics: CDS Existence site: 110 436	
Characterization method: E	
Sequence description	
Sequence description	
ATCGCGGAGT CGGTGCTTTA GTACGCCGCT GGCACCTTTA CTCTCGCCGG CCGCGCGAAC	60
CCGTTTGAGC TCGGTATCCT AGTGCACACG CCTTGCAAGC GACGGCGCC ATG AGT CTG	118
Met Ser Leu	
1	
ACT TCC AGT TCC AGC GTA CGA GTT GAA TGG ATC GCA GCA GTT ACC ATT	166
Thr Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala Val Thr Ile	
5 10 15	
GCT GCT GGG ACA GCT GCA ATT GGT TAT CTA GCT TAC AAA AGA TTT TAT	214
Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys Arg Phe Tyr	
20 25 30 35	
GTT AAA GAT CAT CGA AAT AAA GCT ATG ATA AAC CTT CAC ATC CAG AAA	262
Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His Ile Gln Lys	
40 45 50	
GAC AAC CCC AAG ATA GTA CAT GCT TTT GAC ATG GAG GAT TTG GGA GAT	310
Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp Leu Gly Asp	
55 60 65	
AAA GCT GTG TAC TGC CGT TGT TGG AGG TCC AAA AAG TTC CCA TTC TGT	358
Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe Pro Phe Cys	
70 75 80	,
GAT GGG GCT CAC ACA AAA CAT AAC GAA GAG ACT GGA GAC AAT GTG GGC	406
Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp Asn Val Gly	
85	

CCT CTG ATC ATC AAG AAA AAA GAA ACT TAAATGGACA CTTTTGA

172

100	10)5				
TGCTGCAAAT	CAGCTTGTCG	TGAAGTTACC	TGATTGTTTA	ATTAGAATGA	CTACCACCTC	510
TGTCTGATTC	ACCTTCGCTG	GATTCTAAAT	GTGGTATATT	GCAAACTGCA	GCTTTCACAT	570
TTATGGCATT	TGTCTTGTTG	AAACATCGTG	GTGCACATTT	GTTTAAACAA	AAAAAAAA	630
AAAAAGGAAA	AACCAACCTC	ATGGCCTGTG	GGTTATTTTG	GTCTTGTAAG	GATCCATTTC	690
TTTAAAATAC	TGACATATAG	AGTTGTACCT	TATATAGAAT	ATAGTTGTAT	CTTGAAGTCA	750
ACATATTAAA	TTATTCTCAA	AATTATGTAT	TTGCAGATTG	TACTTGTAAG	TTTCAAAGAA	810
AAATTACCAT	CTTTTCATAT	TGACCTGGAA	ACTAAATAGG	ATGTGATTCA	GCTACATTAA	870
TTTCTTAATA	CAATCTAGGA	AAG				893

Sequence No.: 74
Sequence length: 690

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS
Clone name: HP10306
Sequence characteristics

Code representing characteristics: CDS

Existence site: 230.. 535 Characterization method: E

60	GAAACC	AGGG	CTC (TAA	CTAC	AGA	AAG/	CCA	CTCG	rtgc	T G	rgca	rccc'	CA :	AGC	TAAC
120	GAGGAA	CCGG	CCA (ACC	AGG	CTA	GTAG	AA :	AACT	CATA	CG TO	CAAAC	CGCG	CT (GCG:	TGGG
180	CAAGGC	GGTC:	TA (TAC	CTG	CAT	CTT	AT(rcg T	TTGT	rg g:	GCG:	CTGG	CTC (GCT	GTG/
238	AC CTG	rg aa	CT A	CAG	AGC	CCC	CCGG	AC(GAC(CTTG	AC C	CAG	cccc	etc (GTC	TTG
	sn Leu	et As	Me													
		1														
286	TAC	TAC	AAG	CGG	TGC	CTG	AAC	TTG	AAA	GAG	GAG	AAT	TCC	GTG	CGA	GAG
	Tyr	Tyr	Lys	Arg	Cys	Leu	Asn	Leu	Lys	Glu	Glu	Asn	Ser	Val	Arg	Glu
					15					10					5	
334	TTC	ATC	AAC	GTC	TTG	TGG	CTC	TTT	CCT	CTG	TTC	GCT	TTT	GGG	GGG	CTG
	Phe	Ile	Asn	Val	Leu	Trp	Leu	Phe	Pro	Leu	Phe	Ala	Phe	Gly	Gly	Leu
	35					30					25					20
382	AGC	CAG	GAA	ACA	TAC	GCC	CCA	GTC	CTT	TTC	GCC	GAG	CGA	TTC	TTC	TGG
	Ser	Gln	Glu	Thr	Tyr	Ala	Pro	Va1	Leu	Phe	Ala	Glu	Arg	Phe	Phe	Trp
		50					45					40				

173

430
478
526
580
TT 640
690

Sequence No.: 75

Sequence length: 2186

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10328
Sequence characteristics

Code representing characteristics: CDS

Existence site: 118.. 1236 Characterization method: E

ACTO	TTTC	TT (GGC:	rccc	A GO	CTGAC	SAGG!	A GCA	AGGT/	AGAG	GGG	CAGAC	GC (GGA(CTGTCG		60
TCTC	GGGG	AG (CGCC	CAG	A GO	CTC	CTCAG	GCC	CGAC	CCCA	GAC	CTG	CT (GCC/	AGG		117
ATG	AAG	TAT	CTC	CGG	CAC	CGG	CGG	CCC	AAT	GCC	ACC	CTC	ATT	CTG	GCC		165
Met	Lys	Tyr	Leu	Arg	His	Arg	Arg	Pro	Asn	Ala	Thr	Leu	Ile	Leu	Ala		
1				5					10					15			
ATC	GGC	GCT	TTC	ACC	CTC	CTC	CTC	TTC	AGT	CTG	CTA	GTG	TCA	CCA	CCC	•	213
Ile	Gly	Ala	Phe	Thr	Leu	Leu	Leu	Phe	Ser	Leu	Leu	Val	Ser	Pro	Pro		
			20					25					30				
ACC	TGC	AAG	GTC	CAG	GAG	CAG	CCA	CCG	GCG	ATC	CCC	GAG	GCC	CTG	GCC		261
Thr	Cys	Lys	Val	Gln	Glu	Gln	Pro	Pro	Ala	Ile	Pro	Glu	Ala	Leu	Ala		
		35	•				40					45					

TGG	CCC	ACT	CCA	CCC	ACC	CGC	CCA	GCC	CCG	GCC	CCG	TGC	CAT	GCC	AAC	309
Trp	Pro	Thr	Pro	Pro	Thr	Arg	Pro	Ala	Pro	Ala	Pro	Cys	His	Ala	Asn	
	50					55					60					
ACC	TCT	ATG	GTC	ACC	CAC	CCG	GAC	TTC	GCC	ACG	CAG	CCG	CAG	CAC	GTT	357
Thr	Ser	Met	Val	Thr	His	Pro	Asp	Phe	Ala	Thr	Gln	Pro	Gln	His	Val	
65					70					75					80	
CAG	AAC	TTC	CTC	CTG	TAC	AGA	CAC	TGC	CGC	CAC	TTT	CCC	CTG	CTG	CAG	405
Gln	Asn	Phe	Leu	Leu	Tyr	Arg	His	Cys	Arg	His	Phe	Pro	Leu	Leu	Gln	
				85					90					95		
GAC	GTG	ccc	CCC	TCT	AAG	TGC	GCG	CAG	CCG	GTC	TTC	CTG	CTG	CTG	GTG	453
Asp	Va1	Pro	Pro	Ser	Ľys	Cys	Ala	Gln	Pro	Val	Phe	Leu	Leu	Leu	Val	
			100					105					110			
ATC	AAG	TCC	TCC	CCT	AGC	AAC	TAT	GTG	CGC	CGC	GAG	CTG	CTG	CCC	CGC	501
Ile	Lys	Ser	Ser	Pro	Ser	Asn	Tyr	Val	Arg	Arg	Glu	Leu	Leu	Arg	Arg	
		115					120					125				
				GAG												549
Thr	Trp	Gly	Arg	Glu	Arg	Lys	Val	Arg	G1y	Leu	Gln	Leu	Arg	Leu	Leu	
	130					135					140					
				ACA												597
Phe	Leu	Val	Gly	Thr	Ala	Ser	Asn	Pro	His	Glu	Ala	Arg	Lys	Val		
145					150					155					160	
				CTG												645
Arg	Leu	Leu	Glu	Leu	Glu	Ala	Gln	Thr	His	Gly	Asp	Ile	Leu		Trp	
				165					170					175		
				TCC												693
Asp	Phe	His	Asp	Ser	Phe	Phe	Asn		Thr	Leu	Lys	Gln		Leu	Phe	
			180					185					190			
				GAG												741
Leu	Gln	-	Gln	Glu	Thr	Arg		Ala	Asn	Ala	Ser		VAL	Leu	Asn	
		195					200		~.~		A 150	205		m 4 C	OBC	700
				GTC												789
GLA		Asp	Asp	Val	Pne		HIS	The	Asp	Asn		AHT	Pne	Tyr	Leu	
~.~	210	O 4 M	040	CCT	000	215	CAC	OWC	mm/c	CTC	220	CAA	CTC	ATTC	CAA	837
																637
	Asp	HIS	Asp	Pro		vrR	пте	ren	гце	235		GIII	Leu	TTE	240	
225	oma	000	000	ATC	230	COM	70 FO FO	800	ACC			ጥ ል ጥ	CTC	CCA		885
																883
Asn	VAI	GIA	PTO	Ile	Arg	ATH	Pne	пр		ràs	ıyı	ıyı	AHT		GIU	
000	omo		~.~	245	CAC	ccc	T. C	CCA	250	SPAST	TO TO	ccc	CCT	255	ccc	033
				AAT												933
AUT	VAL	IDE		Asn	GIU	arg	ıyr			TÀL	. Uys	GTÀ	270	GIÀ	GTÀ	
		C BBC	260		₩ ₩ △	ACC	000	265		CTC	ccc	CCT		ccc	CAT	981
				CGC												301
Phe	Leu	Leu	Ser	Arg	rne	Inr	A18	ALA	ALA	ren	Arg	Arg	ALA	ATS	nis	

		275					280					285				
GTC	TTG	GAC	ATC	TTC	CCC	ATT	GAT	GAT	GTC	TTC	CTG	GGT	ATG	TGT	CTG	1029
Val	Leu	Asp	Ile	Phe	Pro	Ile	Asp	Asp	Va1	Phe	Leu	Gly	Met	Cys	Leu	
	290					295					300					
GAG	CTT	GAG	GGA	CTG	AAG	CCT	GCC	TCC	CAC	AGC	GGC	ATC	CGC	ACG	TCT	1077
Glu	Leu	Glu	Gly	Leu	Lys	Pro	Ala	Ser	His	Ser	G1y	Ile	Arg	Thr	Ser	
305					310					315					320	
GGC	GTG	CGG	GCT	CCA	TCG	CAA	CAC	CTG	TCC	TCC	TTT	GAC	CCC	TGC	TTC	1125
Gly	Va1	Arg	Ala	Pro	Ser	G1n	His	Leu	Ser	Ser	Phe	Asp	Pro	Cys	Phe	
				325					330					335		
TAC	CGA	GAC	CTG	CTG	CTG	GTG	CAC	CGC	TTC	CTA	CCT	TAT	GAG	ATG	CTG	1173
Tyr	Arg	Asp	Leu	Leu	Leu	Val	His	Arg	Phe	Leu	Pro	Tyr	Glu	Met	Leu	•
			340					345					350			
CTC	ATG	TGG	GAT	GCG	CTG	AAC	CAG	CCC	AAC	CTC	ACC	TGC	GGC	AAT	CAG	1221
Leu	Met	Trp	Asp	Ala	Leu	Asn	Gln	Pro	Asn	Leu	Thr	Cys	Gly	Asn	Gln	
		355					360					365				
ACA	CAG	ATC	TAC	TGA	GTCA	GCA :	TCAG	GGTC	cc c	AGCC'	TCTG	GC'	TCCT	G		1270
Thr	Gln	Ile	Tyr													
	370															
															TGAGCA	1330
															AACTCC	1390
															GGAGGA	1450
															GCTAGA	1510
															CTCACC	1570
															GCTCCG	1630
															TATAAA	1690
															AACTCA	1750
															TG TGGG	1810
															GAAAGT	1870
															CCCAAG	1930
															AGGCAT	1990
															TCACCC	2050
															CCCAGC	2110
TTC	AGGC	CTC	AGTG	TCTG	CC A	GTCA	AGCT	T CA	CAGG	CATT	GTG	ATGG	CCC	AGCC	TTGGGG	2170
AAT	ΔΤΑΑ	AAT	тттс	TC												2186

176

Claims

- 1. A protein containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25.
- 2. A DNA encoding any of the proteins as described in Claim 1.
- 3. A cDNA containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50.
- 4. A cDNA as described in Claim 3 which comprises any of the base sequences represented by Sequence No. 51 to Sequence No. 75.
- 5. A transformed eukaryotic cell capable of expressing any of DNAs as described in Claim 2 to 4 and producing a protein as described in Claim 1.

Fig. 1

16 Peripheral blood

8 Pancreas

leukocyte

Fig.

 $_{\rm H} \lambda _{\rm q} {\rm tobpoptcifh} \backslash _{\rm H} \lambda _{\rm q} {\rm tobpijicifh}$

leukocyte

8 Pancreas

Amino acid Residue Number

 ${\tt H} \lambda {\tt q} {\tt xobyopicif} \lambda \backslash {\tt H} \lambda {\tt q} {\tt xobyijicif} \lambda$

Ηλακοδμορτατελ\Ηλακοδμτητατελ

Ηλατοδυορίτιτλ\Ηλατοδυτζίτιτ

Ηλατοδρορίς τλ\Ηλατοδρίζιτη

Ηλακοδμορίς τε λίμλα κοδμίζις τε λ

Ηλατοδρορίς τλ\Ηλατοδρί] τις τλ

Ηλακοδμορίς τέλ Ηλακοδμί Τις τέλ

Ηλακοδμορίς τα γιλακοδμί τις τε

Ηλακοδμορτετελ\Ηλακοδμτητετελ

Ηλακοδμορίςτελ\Ηλακοδμίζιςτελ

Ηλακοδμορτατελ\Ηλακοδμήτατελ

ηλακοδρορίςτελ\ηλακοδρίτιτε

Ηλατοδυορτατελ\Ηλατοδυτητατελ

Amino acid Residue Number

Ηλαχοδμορτςτάλ\Ηλαχοδμτητςτάλ

 $_{\rm H}$ Aqrobyopicit $_{\rm A}$ \HAqrobyiJicit $_{\rm A}$

Ηλατορμορίς την Ηγατορηίζει τη

27/28

 ${\tt H}{\tt A}{\tt q}{\tt xobyopicif}{\tt A}{\tt N}{\tt H}{\tt A}{\tt q}{\tt xobyijicif}{\tt A}$

Fig. 28

ηλακοδυορίς τη Αλακοδυί Τις τη