End Semester Back Examination 2023

Name of the course: B.Tech

Semester: I

Name of the paper: Engineering Mathematics - I

Paper Code: TMA - 101

Time: 3 hours

Maximum Marks: 100

Note:

(i) All questions are compulsory.(ii) Answer any two sub questions among a, b and c in each main question.

(iii) Total marks in each main question are twenty.

(iv) Each sub part carries 10 marks.

Q.I	$(10\times2=20 \text{ Marks})$	
(a)	Using elementary transformations find the inverse of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$.	
(b)	Verify Cayley – Hamilton theorem for the matrix, $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ Hence find A^{-1} .	CO: 1
(c)	Find the eigen values and eigen vectors of the following matrix. $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$	
Q.2	$(10\times2=20 \text{ Marks})$	
(a)	If $y = \sin(m\sin^{-1}x)$, prove that $(1-x^2)y_{n+2} - (2n+1)x \cdot y_{n+1} + (m^2 - n^2)y_n = 0$.	
(b)	If $u = \log_e \left(x^3 + y^3 + z^3 - 3xyz \right)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right)^2 u = \frac{9}{\left(x + y + z \right)^2}$.	CO: 2
(c)	Discuss the convergence of the series $\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} +$	•
Q.3	$(10 \times 2 = 20 \text{ Marks})$	
(a)	Find the point upon the plane $ax+by+cz=p$ at which the function $f=x^2+y^2+z^2$ has a maximum value and find this maximum f .	
(b)	The temperature T at any point (x, y, z) in space is $T = 400 xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.	CO: 3
(c)	If $u = xy + yz + zx$, $v = x^2 + y^2 + z^2$ and $w = x + y + z$, determine whether there is a functional relationship between u, v, w and if so, find it.	

Q.4	$(10\times2=20 \text{ Marks})$		
(a)	Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy dx dy$ and hence evaluate the same.	CO: 4	
(b)	Find the volume of tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $x + y + z = a$.		
(c)	Evaluate (i) $\int_0^\infty \sqrt[4]{x} \cdot e^{-\sqrt{x}} dx$, (ii) $\int_0^1 x^4 \left(1 - \sqrt{x}\right)^5 dx$		
Q.5	$(10 \times 2 = 20 \text{ Marks})$		
(a)	Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$.	CO: 5	in the second
(b)	Evaluate $\iint_S (yz\hat{i} + zx\hat{j} + xy\hat{k}) \cdot d\vec{s}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.		
(c)	Apply Stoke's theorem to find the value of $\int_C (y dx + z dy + x dz)$, where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and $x + z = a$.	. A. g. A. was en more	