Transition probabilities by conditionalization Born with prob p, die with q, and divide by sum for conditional probability, stipulating change. This rules out loops.

where p' := 1 - p, q' := 1 - q and

$$s := 2pp' + p^2$$
 $s_1 := pq' + p'q + pq$ $s_2 := 2qq' + q^2$.

If p = q then $s = s_1 = s_2$, reducing to $s = 3p^2$ if p = p' and 2pp' as $p \to 0$

Allen relation	probabilities	p = q	p = q = p'	$p = q \to 0$
eq	p^2q^2/ss_2	p^4/s^2	1/9	0
b,bi	pp'^2q/ss_1	$p^2p'^2/s^2$	1/9	1/4
m,mi	$p^2p'q/ss_1$	$p^{3}p'/s^{2}$	1/9	0
s,si	p^2qq'/ss_2	$p^{3}p'/s^{2}$	1/9	0
o,oi	$p^2p'qq'^2/ss_1s_2$	$p^3p'^3/s^3$	1/27	1/8
d,di	$p^2p'qq'^2/ss_1s_2$	$p^3p'^3/s^3$	1/27	1/8
f,fi	$p^2p'q^2q'/ss_1s_2$	$p^4p'^2/s^3$	1/27	0

Remarks

- 1. The exponent on s, separating Suliman's two classes $(1/3^2, 1/3^3)$, is the number of (genuine) choices along the way from the initial to the final state. A path is given by 2 choices iff it pass through a red arc.
- 2. Suliman's 1/9 class includes representatives from Fernando-Vogel's long, medium and short strings. Note also that s and f get different probabilities (above), contra Fernando-Vogel where the direction of time does not matter, and the difference between s and f dissolves (interchangeable by reversing direction).
- 3. For comparison with birth-death process (Wikipedia) in queueing theory, let $p, q \to 0$ to eliminate simultaneous events.
- 4. Doubling p (whilst remaining ≤ 1) reduces p' = 1 p by varying degrees (depending on p): solve for k in 1 2p = k(1 p) to get

$$k = \frac{1 - 2p}{1 - p}.$$

- 5. There is no distinction between the old and young in a birth-death process. In the probability table above, overlap o and during d are equiprobable.
- 6. If the old die before the young, then o should be more probable than d. This suggests raising q (if not p) with time. Does the inertial mechanism degrade (wear out) over time? Why is it not enough that $(1-q)^n \to 0$ as $n \to \infty$?
- 7. The previous item suggests p and q differ. One way is to let there be only one state of being unborn, but many of being alive (a precondition for dying), leading to a single p but many q_i 's (for age i). Inasmuch as any run uses only finitely many i's, finite automata will do.
- 8. Birth-death processes suggest for this case, two born rates λ_0, λ_1 and two death rates μ_1, μ_2 . But it is not immediately obvious how these relate to p and q. Do rates (given in units of time) come before probabilities p, q (which can be specified without mentioning time)?
- 9. If $p = 2q \to 0$, then $ss_1 \to 2pp'(pq' + pp'/2)$ and so prob(b) \to

$$\frac{p^2{p'}^2/2}{2pp'(pq'+pp'/2)} = \frac{p'}{4(q'+p'/2)} = \frac{1}{4(q'/p'+1/2)} \to 1/6$$

and $ss_1s_2 \rightarrow 2p^2p'q'(pq'+pp'/2)$ so prob(o) \rightarrow

$$\frac{p^3p'{q'}^2/2}{2p^2p'q'(pq'+pp'/2)} = \frac{q'}{4(q'+p'/2)} = \frac{1}{4(1+p'/2q')} \to 1/6$$