Challenge 9

Valerie Parra Cortés

28 de abril de 2020

Preprocesamiento

Una vez se descargaron los datos, se eliminaron los registros asociados a las clases que no nos interesaban para el problema de clasificación binario. Posteriormente codificamos las clases. En este caso codificamos la clase Jazz & Blues con 0, mientras que la clase Soul & Reagge representado por el número 1.

Dependencias

1. Keras Versión 2.3.1

2. Numpy Versión: 1.18.1

3. Sklearn Versión 0.22.2

División de los datos

Se usó el 10% de los datos totales para la etapa final de prueba. Del 90% restante se tomó el 10% para validación entre modelos. La división final de los datos se muestra a continuación:

	Clase 0	Clase 1
Entrenamiento	3514	3249
Validación	419	416
Prueba	401	351
Total	4334	4016

Cuadro 1: División de los datos para el entrenamiento, la validación y la prueba

Selección de modelo

Para resolver el SVM se escogió un kernel gausiano. Este modelo en keras viene implementado de la siguiente formula:

$$e^{-\gamma||x-x'||^2} \tag{1}$$

Dónde gamma es un hiperparámetro que regula el ancho de la función gaussiana. Adicionalmente tenemos que determinar el valor apropiado para la constante C, por lo que hay que ajustar estos dos hiperparámetros por validación cruzada. Los valores utilizados para los hiperparámetros son los siguientes:

- 1. Constante de regularización C: la constante de regularización podría tomar los siguientes valores [100, 50, 25, 10, 1, 0, 1, 0,001, 0,0001, 0,00001]
- 2. **gamma**: [0,000001, 0,00001, 0,0001, 0,001, 0,01, 0,1, 0,5, 0,8, 1, 5, 25, 50, 100]

Resultados

Para visualizar los resultados de la validación cruzada se hizo un mapa de calor con todas los accuracy obtenidos el cual se puede apreciar en la Figura 1. Como podemos ver en esta figura los mejores desempeños del modelo en $\gamma \in [1 \cdot 10^{-6} - 0.5] \land C \in [0.1 - 100]$, la tabla completa con los resultados puede encontrarse en la sección de Anexos. En este problema en particular tenemos dos modelos con el mayor desempeño $C = 25 \ \gamma = 0.01 \ y \ C = 10 \ \gamma = 0.01$, ambos con una exactitud de 87.5 %, por lo que se pasará a evaluar estos dos modelos con otros indicadores.

Figura 1: Mapa de calor con las exactitudes logradas en la validación cruzada

Entrenamiento modelo final

		Real		
		0	1	
Predicho	0	352	67	
	1	52	364	

Cuadro 2: Matriz de confusión para el modelo $C=25 \wedge \gamma=0.01$

		Real		
		0	1	
Predicho	0	357	62	
	1	60	356	

Cuadro 3: Matriz de confusión para el modelo $C=10 \land \gamma=0.01$

Se entrenaron los dos modelos que mejor desempeño arrojaron en la validación cruzada y se sacó la matriz de confusión de ambos modelos los cuales se pueden ver en las Tablas 2 y 3. Los dos modelos tienen una matriz muy parecida, por lo que se calcularon otros indicadores utilizados para evaluar el desempeño de los modelos (Tabla 4). El modelo 1 se obtiene mejor sensitividad mientras que el modelo 2 tiene menor especifidad, es decir cada modelo comete ligeramente más error clasificando una de las clases. La mejor precisión está en el modelo 2, pero ligeramente, por lo que se puede decir que estos modelos presentan prácticamente el mismo desempeño.

	C=25	C=10
Recall	0.844	0.851
Especificidad	0.871	0.856
Precisión	0.854	0.855

Cuadro 4: Resumen de los indicadores para ambos modelos

Anexos

C	Gamma	Accuracy	C	Gamma	Accuracy	C	Gamma	Accuracy
25	0.01	0.875	1	0.5	0.66755319	1	100	0.53324468
10	0.01	0.875	10	1.00E-06	0.62101064	0.1	1.00E-06	0.53324468
100	0.001	0.86968085	1	1.00E-05	0.61968085	0.1	1.00E-05	0.53324468
1	0.01	0.86968085	0.1	0.0001	0.61835106	0.1	0.5	0.53324468
1	0.1	0.86968085	100	0.8	0.57845745	0.1	0.8	0.53324468
50	0.01	0.86835106	50	0.8	0.57845745	0.1	1	0.53324468
100	0.1	0.86702128	25	0.8	0.57845745	0.1	5	0.53324468
50	0.1	0.86702128	10	0.8	0.57845745	0.1	25	0.53324468
25	0.1	0.86702128	1	0.8	0.56382979	0.1	50	0.53324468
50	0.001	0.86569149	100	1	0.55984043	0.1	100	0.53324468
10	0.1	0.86569149	50	1	0.55984043	0.001	1.00E-06	0.53324468
100	0.01	0.86303191	25	1	0.55984043	0.001	1.00E-05	0.53324468
25	0.001	0.85505319	10	1	0.55984043	0.001	0.0001	0.53324468
10	0.001	0.84707447	1	1	0.55585106	0.001	0.001	0.53324468
0.1	0.01	0.84707447	100	5	0.54388298	0.001	0.01	0.53324468
100	0.0001	0.83909574	50	5	0.54388298	0.001	0.1	0.53324468
50	0.0001	0.83510638	25	5	0.54388298	0.001	0.5	0.53324468
25	0.0001	0.83510638	10	5	0.54388298	0.001	0.8	0.53324468
1	0.001	0.8337766	1	5	0.54388298	0.001	1	0.53324468
100	1.00E-05	0.83111702	100	25	0.54255319	0.001	5	0.53324468
10	0.0001	0.82978723	50	25	0.54255319	0.001	25	0.53324468
25	1.00E-05	0.82845745	25	25	0.54255319	0.001	50	0.53324468
50	1.00E-05	0.82579787	10	25	0.54255319	0.001	100	0.53324468
0.1	0.001	0.82180851	1	25	0.54255319	0.001	1.00E-06	0.53324468
100	1.00E-06	0.81914894	100	50	0.53457447	0.001	1.00E-05	0.53324468
10	1.00E-05	0.81914894	100	100	0.53457447	0.001	0.0001	0.53324468
1	0.0001	0.81914894	50	50	0.53457447	0.001	0.001	0.53324468
25	1.00E-06	0.81781915	50	100	0.53457447	0.001	0.01	0.53324468
50	1.00E-06	0.81648936	25	50	0.53457447	0.001	0.1	0.53324468
0.1	0.1	0.81515957	25	100	0.53457447	0.001	0.5	0.53324468
100	0.5	0.6875	10	50	0.53457447	0.001	0.8	0.53324468
50	0.5	0.6875	10	100	0.53457447	0.001	1	0.53324468
25	0.5	0.6875	1	50	0.53457447	0.001	5	0.53324468
10	0.5	0.6875	1	1.00E-06	0.53324468	0.001	25	0.53324468
0.001	50	0.53324468	0.0001	0.01	0.53324468	0.0001	25	0.53324468
0.001	100	0.53324468	0.0001	0.1	0.53324468	0.0001	50	0.53324468
0.0001	1.00E-06	0.53324468	0.0001	0.5	0.53324468	0.0001	100	0.53324468
0.0001	1.00E-05	0.53324468	0.0001	0.8	0.53324468	1.00E-05	1.00E-06	0.53324468
0.0001	0.0001	0.53324468	0.0001	1	0.53324468	1.00E-05	1.00E-05	0.53324468
0.0001	0.001	0.53324468	0.0001	5	0.53324468	1.00E-05	0.0001	0.53324468
1.00E-05	0.01	0.53324468	1.00E-05	1	0.53324468	1.00E-05	0.001	0.53324468
1.00E-05	0.1	0.53324468	1.00E-05	5	0.53324468	1.00E-05	50	0.53324468
1.00E-05	0.5	0.53324468	1.00E-05	25	0.53324468	1.00E-05	100	0.53324468
1.00E-05	0.8	0.53324468		4				