Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法具有牛顿法的一些优点,但没有牛顿法的计算负担。在这方面,BFGS和 CG 很像。然而,BFGS使用了一个更直接的方法近似牛顿更新。回顾牛顿更新由下式给出

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0), \tag{8.32}$$

其中,H是 J 相对于  $\theta$  的Hessian矩阵在  $\theta_0$  处的估计。运动牛顿法的主要计算难点在于计算Hessian逆  $H^{-1}$ 。拟牛顿法所采用的方法(BFGS是其中最突出的)是用矩阵  $M_t$  近似逆,迭代地低秩更新精度以更好近似  $H^{-1}$ 。

BFGS近似的说明和推导出现在很多关于优化的教科书中,包括Luenberger (1984)。

当Hessian逆近似  $M_t$  更新时,下降方向  $\rho_t$  为  $\rho_t = M_t g_t$ 。该方向上的线性搜索用于决定该方向上的步长  $\epsilon^*$ 。参数的最后更新为:

|   | $oldsymbol{	heta}_{t+1} = oldsymbol{	heta}_t + \epsilon^* oldsymbol{ ho}_t.$ | (8.33) |
|---|------------------------------------------------------------------------------|--------|
| , |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |
|   |                                                                              |        |



