Correction

- 1. Soit $z: I \to \mathbb{R}$ deux fois dérivable et $\varphi: I \to \mathbb{R}$ définie par $\varphi(t) = \cos t z(t)$. φ est deux fois dérivable et $\varphi''(t) = \cos t \cdot z''(t) 2\sin t \cdot z'(t) \cos(t) \cdot z(t)$.
 - z est solution sur I de l'équation différentielle considérée ssi $\varphi'' = 0$ i.e.

$$\exists \lambda, \mu \in \mathbb{R}, \forall t \in I, \varphi(t) = \lambda t + \mu \text{ ce qui donne } z(t) = \frac{\lambda t + \mu}{\cos t}.$$

- 2. Soit $y: J \to \mathbb{R}$ deux fois dérivable et $z: I \to \mathbb{R}$ définie par $z(t) = y(\sin t)$.
 - z est deux fois dérivable et $\forall x \in J, y(x) = z(\arcsin x)$.

On a
$$y'(x) = \frac{z'(\arcsin x)}{\sqrt{1-x^2}}$$
 et $y''(x) = \frac{z''(\arcsin x)}{1-x^2} + \frac{xz'(\arcsin x)}{(1-x^2)^{3/2}}$.

Par suite:

$$\forall x \in J, (1 - x^2)y''(x) - 3xy'(x) - y(x) = 0$$

$$\Leftrightarrow \forall x \in J, z''(\arcsin x) - \frac{2x}{\sqrt{1 - x^2}} z'(\arcsin x) - z(\arcsin x) = 0$$

$$\Leftrightarrow \forall t \in I, z''(t) - \frac{2\sin t}{\cos t}z'(t) - z(t) = 0$$

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R}, \forall t \in I, z(t) = \frac{\lambda t + \mu}{\cos t}$$

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R}, \forall x \in J, y(x) = \frac{\cos t}{\sqrt{1 - x^2}}$$

3.a
$$\exists \lambda, \mu \in \mathbb{R}, f(x) = \frac{\lambda \arcsin x + \mu}{\sqrt{1 - x^2}}$$
.

f est donc \mathcal{C}^{∞} par opérations sur les fonctions \mathcal{C}^{∞} .

3.b Par la formule de Leibniz :

$$((1-x^2)f''(x))^{(n)} = (1-x^2)f^{(n+2)}(x) - 2nxf^{(n+1)}(x) - n(n-1)f^{(n)}(x)$$

et
$$(3xf'(x))^{(n)} = 3xf^{(n+1)}(x) + 3nf^{(n)}(x)$$
.

En dérivant à l'ordre n l'équation $(1-x^2)f''(x) - 3xf'(x) - f(x) = 0$

on obtient:
$$(1-x^2)f^{(n+2)}(x) - (2n+3)xf^{(n+1)}(x) - (n+1)^2f^{(n)}(x) = 0$$
.

On peut aussi procéder par récurrence, c'est plus sûr mais aussi plus lourd.

3.c En évaluant en $0: f^{(n+2)}(0) - n^2 f^{(n)}(0) = 0$ d'où $a_{n+2} = (n+1)^2 a_n$.

3.d
$$a_{2p+1} = (2p)^2 a_{2p-1} = (2p)^2 (2p-2)^2 ... 2^2 .a_1 = 2^{2p} (p!)^2 a_1$$

$$a_{2p} = (2p-1)^2 a_{2p-2} = (2p-1)^2 (2p-3)^2 \dots 1^2 a_0 = \frac{((2p)!)^2}{2^{2p} (p!)^2} a_0.$$

4.a $f: x \mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$ est solution de l'équation différentielle étudiée avec $a_0 = 0$ et $a_1 = 1$.

La formule de Taylor-Young donne :
$$\frac{\arcsin x}{\sqrt{1-x^2}} = \sum_{k=0}^{2n+1} \frac{a_k}{k!} x^k + o(x^{2n+1}) = \sum_{p=0}^{n} \frac{2^{2p} (p!)^2}{(2p+1)!} x^{2p+1} + o(x^{2n+1}).$$

4.b $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$ est solution de l'équation différentielle étudiée avec $a_0 = 1$ et $a_1 = 0$.

La formule de Taylor-Young donne

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{2n} \frac{a_k}{k!} x^k + o(x^{2n}) = \sum_{n=0}^{n} \frac{(2p)!}{2^{2p} (p!)^2} x^{2p} + o(x^{2n}).$$

4.c En intégrant ce DL et sachant $\arcsin 0 = 0$: $\arcsin x = \sum_{p=0}^{n} \frac{(2p)!}{2^{2p}(2p+1)(p!)^2} x^{2p+1} + o(x^{2n+1})$

5. Le coefficient de x^{2n+1} dans le $DL_{2n+1}(0)$ de $\frac{\arcsin x}{\sqrt{1-x^2}}$ est $\frac{2^{2n}(n!)^2}{(2n+1)!}$.

D'autre part on obtient un coefficient en x^{2n+1} dans le développement du produit $\operatorname{arcsin} x \times \frac{1}{\sqrt{1-x^2}}$ en croisant un x^{2k+1} du DL de $\operatorname{arcsin} x$ avec un $x^{2(n-k)}$ du DL de $\frac{1}{\sqrt{1-x^2}}$, par suite le coefficient de x^{2n+1} dans le $DL_{2n+1}(0)$ de $\operatorname{arcsin} x \times \frac{1}{\sqrt{1-x^2}}$ est encore

$$\sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(2k+1)(k!)^{2}} \times \frac{(2(n-k))!}{2^{2(n-k)}((n-k)!)^{2}} = \frac{1}{2^{2n}} \sum_{k=0}^{n} \frac{1}{2k+1} \frac{(2k)!}{(k!)^{2}} \frac{(2(n-k))!}{((n-k)!)^{2}}$$

d'où l'identité :
$$\sum_{k=0}^{n} \frac{1}{2k+1} \binom{2k}{k} \binom{2(n-k)}{n-k} = \frac{16^{n}}{(n+1)\binom{2n+1}{n}}$$
 mais était-ce raisonnable ?