Análisis de Imágenes

Imágenes con NSAMP324

Imagen de típica de NSAMP324, EXPOSURE_0, NROW_400, NCOL_700 que se han tomado

EXTENSIÓN 1

Se obtiene el offset del oScan para sustraerlo a toda la extensión, despues se le ajusta una doble gaussiana a la distribución para obtener la sigma de la distribución.

Para este ajuste* los parámetros, en ADUs, son:

• Media: 13.446142932241575

• Sigma: 56.93356195198389

Ganancia: 214.02829966606933

*El ajuste se puede mejorar ajustando **tres** o **cuatro gaussianas**.

- La sigma en ADUs se cambia a sigma en electrones. sig_electrones: 0.26600950454128086 e-
- Los datos del area activa se cambian de ADUs a electrones, y se usan 4 sigmas como filtro para detectar los eventos

Events: 90							
	lmage ID	Extension	Matrix Size (px)	Event Size SK (px)	Total Charge (keV)	Mean Charge SK (keV)	Barycenter_SK (px)
Event ID							
1	25	1	6x1	6	8878.474609	1479.745972	[2.5, 0.0]
2	25	1	110x179	823	238470.953125	289.757996	[61.7084, 100.2637]
3	25	1	5x1	5	29310.044922	5862.008789	[2.0, 0.0]
4	25	1	10x8	46	30713.402344	667.682983	[3.9783, 3.3043]
5	25	1	4x1	4	329.412323	82.352997	[1.5, 0.0]
86	25	1	10x8	48	20723.628906	431.742004	[4.7917, 3.2708]
87	25	1	1x1	1	13.605139	13.605000	[0.0, 0.0]
88	25	1	9x5	37	24961.433594	674.632996	[3.7838, 2.2432]
89	25	1	6x4	21	5184.435059	246.878006	[2.381, 1.6667]
90	25	1	2x3	5	5292.279297	1058.456055	[0.6, 0.8]

Se genera un DataFrame con información de cada evento

La mayoría del ruido se eliminó con todo el proceso anterior y todos los eventos se pueden aislar correctamente.

Muons Detected: 12 [31, 33, 35, 40, 41, 42, 44, 45, 56, 57, 81, 82]

Con esto es posible aplicar el filtro de muones usual y asegurar que se identificarán algunos de ellos. Para el filtro se ocupa un **solidity** de **0.7**, y una relación de **elipcidad** de **4.5***.

*Estos parámetros pueden moverse para "mejorar" o "empeorar" el filtro. Para cada muon se calcula su proyección sobre el eje XY, la longitud que atravieza de la CCD (Delta L), su carga, la energía que depositó en la CCD (dE/dL) y el ángulo del azimuth.

	Diagonal XY (cm)	Delta L (cm)	Charge (e-)	dE/dL (e-/cm)	Angle (°)
Event ID					
31	0.038821	0.082239	52.947223	643.819213	28.167183
33	0.051145	0.088724	58.269254	656.744703	35.200738
35	0.048480	0.087216	80.900312	927.589589	33.770272
40	0.084230	0.111135	91.915828	827.067802	49.280058
41	0.038683	0.082174	55.206430	671.820319	28.082592
42	0.039258	0.082447	53.953250	654.402342	28.435100
44	0.051481	0.088919	90.310406	1015.648378	35.378106
45	0.046252	0.085997	29.769768	346.171358	32.536318
56	0.096526	0.120721	85.854570	711.183786	53.089982
57	0.052252	0.089368	57.367555	641.928130	35.781144
81	0.010248	0.073221	0.150822	2.059828	8.045553
82	0.042829	0.084205	35.288578	419.077553	30.572047

Haciendo esto con muchas imágenes se puede obtener una distribución con suficiente estadística de cada cantidad.

El valor que nos da la ecuación de Bethe-Bloch nos dá el valor promedio del dE/dL

$$-\frac{dE}{dx} = 2\pi N_{\rm a} r_{\rm e}^2 m_{\rm e} c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_{\rm e} \gamma^2 v^2 W_{\rm max}}{I^2} \right) - 2\beta^2 - \delta - 2 \frac{C}{Z} \right]$$

Pero el valor mas probable se obtiene de la distribución de Landau.

$$\Delta_{\rm mp} = \xi \left[\ln(\xi/\varepsilon) + 0.198 - \delta \right],$$

$$\xi = 2\pi N_{\rm a} r_{\rm e}^2 m_{\rm e} c^2 \rho \frac{Z}{A} \left(\frac{z}{\beta} \right)^2 x.$$

$$\ln \varepsilon = \ln \frac{(1 - \beta^2)I^2}{2mc^2 \beta^2} + \beta^2.$$

La curva color azul es la distribución de **energías** de los muones, escogiendo un valor de **550 MeV** (que se encuentra mas o menos a la mitad del máximo) podemos encontrar el valor promedio y el valor mas probable de la energía depositada en **0.0725 cm** de silicio (CCD).

Se encontró que el valor **promedio** es de **≈269.15 KeV***, y un valor **mas probable** de **≈208.36 KeV***.

*Estos valores se deben de corroborar, además de que solo son valores de referencia para los muones con 550 MeV de energía.

Imágenes con NSAMP1

Imagen de típica de NSAMP1, EXPOSURE_1200, NROW_700, NCOL_700 que se han tomado (se cuentan con ≈2200 imágenes).

A este tipo de imágenes se les ajusta una distribución gaussiana simple cuyos parámetros, en ADUs, son:

Media: -1.1774476Sigma: 961.546814

Para la ganancia se usa la que se encontró para las imágenes de NSAMP324*

Ganancia de cada extensión: [227, 220.4, 94.72, 197.7] en ADUs/e-

*Esto se ha discutido y no es del todo correcto realizarlo.

- La sigma en ADUs se cambia a sigma en electrones. sig_electrones: 4.2353377048701635 e-
- Los datos del area activa se cambian de ADUs a electrones, y se usan 4 sigmas como filtro para detectar los eventos

Events: 336							
	lmage ID	Extension	Matrix Size (px)	Event Size (px)	Total Charge (e-)	Mean Charge (e-)	Barycenter (px)
Event ID							
1	7	1	18x16	97	31340.277344	323.096008	[7.8247, 6.6598]
2	7	1	9x7	57	12456.944336	218.542999	[3.8596, 2.807]
3	7	1	1x1	1	19.776739	19.777000	[0.0, 0.0]
4	7	1	1x1	1	19.076300	19.076000	[0.0, 0.0]
5	7	1	2x1	2	43.082115	21.541000	[0.5, 0.0]

332	7	1	1x1	1	17.199646	17.200001	[0.0, 0.0]
333	7	1	1x1	1	17.494801	17.495001	[0.0, 0.0]
334	7	1	1x1	1	22.873655	22.874001	[0.0, 0.0]
335	7	1	1x1	1	17.803171	17.802999	[0.0, 0.0]
336	7	1	1x1	1	18.054272	18.054001	[0.0, 0.0]

Se pueden detectar prácticamente todos los eventos de la extensión.

Muons Detected: 8 [9, 41, 63, 98, 105, 134, 158, 201]

Los parámetros son los mismos que para las imágenes de NSAMP324, es decir, un solidity de 0.7 y una elipcidad de 4.5.

Simulación de Muones

 Hasta la fecha ya se cuenta con la simulación de la distribución del ángulo azimutal que sigue la ecuación Nsinθcos²θ, la distribución angular φ, la distribución de energía de Smith-Duller y la distribución de longitudes de muones que atraviesan la CCD.

Esta distribución es lo que mas **tiempo de cómputo** toma para calcular, se tiene que intentar optimizar.

Distribución de Longitudes 4000 Eventos Simulados: 100000 Grosor de la CCD: 0.0725 cm 3500 3000 2500 2000 1500 1000 500 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

```
Tiempo de cálculo: 0:03:32.071490
Muones Simulados: 100000
Tamaño de los planos: (2 x 2) cm^2
Muones que Impactaron la CCD: 62069
Muones que tuvieron una longitud negativa: 0
```