DataRoot courses research project

Gender Recognition by Voice Made by Honcharov Danylo

Tasks:

Explore the data

Choose 2 models and metrics for quality assurance.

 Implement the models and compare them.

- Make some conclusion s and ways to improve result
- Prepare iPython notebook and presentation.

Exploring data. Questions:

Is data balanced?

Statistical properties of data.

Possible correlations?

Have we some features that more useful than others?

Graphical representation of data

Exploring data. Illustrations:

Meanfun feature: • IRQ feature:

Exploring data. Illustrations:

Mode feature:

Meanfreq feature:

Researching models and metrics:

Logistic regression

Support Vector Machines

Logistic regression:

Finding best regularization for logistic regression in train set:

Best accuracy: 0.967836955656 best C: 0.2

How evaluate quality of classification:

```
Confusion matrix:
```

Male Female

Male: 156 7

Female: 4 150

Male f_measure 0.9659442724458206 Female f measure 0.9646302250803858

- 1. Precision
- 2. Recall
- 3. Accuracy
- 4. F-measure
- 5. Confusion matrix

SVM. Default kernels:

SVM. GridSearch:

 Characteristics of best kernel, found by GrindSearch:

```
{'C': 1.10000000000000001, 'degree': 1.0, 'gamma': 0.151, 'kernel': 'poly'}
0.981072555205
             precision recall f1-score
                                            support
                 1.00
                           0.96
                                     0.98
                                                 166
          Θ
                 0.96
                           1.00
                                     0.98
                                                151
avg / total
                 0.98
                           0.98
                                     0.98
                                                317
```

Simple perceptron.

Conslusions:

Exploring:

- Data is balanced
- Data have some useful features, that we can use
- We have nice visualization of data
- Data have some correlations between features.

Simple perceptron:

- This archaic thing worked
- We even find starting learning rate (which not influence much, cause we adjust rate to epochs)

SVM:

- Best default kernels linear and rbf
- Best parametrized kernel, found by GridSearch polynomial kernel
- Parametres of svm was explored
- Have some vizualization.

Logistic regression:

- Worked well
- Best C value 0.2
- Result of classification was explored

Global:

- Numpy is lifesaver. Really.
- Pandas as cool, as pandas.
- Scikit-learn like a knife.
 Swiss knife.
- Matplotlib. I thought, it can nothing. I was wrong. Easy in use,good-looking plots.

Ways to improve:

Logistic regression:

 This model pretty simple, but have a good result. Nothing to improve, I think.

Simple perceptron:

- Make more complicated version (or maybe versions, many of them) with backpropagation
- Realize it with other libs, like Theano

SVM:

- Realize own version, that will be working with big dataset
- Search widely in space of parameters

Global:

Learn:

- Theano
- TensorFlow
- OpenCV
- xgboost

Thank you for attention.

