Épreuve Physique Chimie Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-	Étude thermique d'un bâtiment		
01-	Préambule		
01-05	Modélisation de la pièce		
1	Il s'agit de la définition de la capacité thermique $dU = CdT$	1	
2	la capacité thermique volumique est une capacité thermique par	1	
	unité de volume donc $[C_v] = \frac{[U]}{[T][V]} = \frac{[E]}{\theta L^3}$ donc l'unité de C_v est		
	le J.K ⁻¹ .m ⁻³ . Le volume V de la pièce est donné par $V = abh$.		
	La capacité thermique est donc $C = VC_v = abhC_v = 1,25.10^5$		
	$J.K^{-1}$		
3	On applique le 1er principe entre t et t+dt à la pièce : $dE + dU =$	1	
	$\delta W + \delta Q$. Il n'y a pas de variation de l'énergie mécanique de la		
	pièce, ni de travail de force extérieure donc $dE = \delta W = 0$, donc $dU = \delta Q$. Le transfert thermique reçue par la pièce provient du		
	radiateur $\delta Q = Pdt$ et l'énergie interne est reliée à la température		
	par la capacité calorifique $dU = CdT$ donc $CdT = Pdt$ donc		
	$\frac{dT}{dt} = \frac{P}{C}$		
4	Sachant que $T(0) = T_0$ et $\frac{dT}{dt} = \frac{P}{C}$ on en déduit que $T(t) = \frac{dT}{dt}$	1	
	$\frac{P}{C}t+T_0$. graphe de la droite. Il faut attendre la durée t_f tel que		
	$T(t_f) = T_f \operatorname{donc} \frac{P}{C} t_f + T_0 = T_f \operatorname{donc} t_f = \frac{C}{P} (T_f - T_0).$		
5	On peut proposer la charge d'un condensateur ${\cal C}$ par un géné-	1	
	rateur de courant i. L'équation différentielle correspondante est		
	$i = C \frac{dU}{dt}$ avec U analogue à la température, i à la puissance du		
	radiateur P, C à la capacité thermique de la pièce.		
06-07	Influence des murs		
6	L'ensemble est supposé parfaitement isolé au niveau du sol et du	1	
	plafond donc on ne considère que les quatres murs latéraux de		
	surface $S_p = ah + bh + ah + bh = 2(a+b)h$. L'application numérique		
	nous donne $S_p = 65 \text{ m}^2$		

7	Le volume des murs est donné par $V_p = S_p L$. La capacité thermique du mur est $C_{mur} = c m_{mur} = c \rho V_p = c \rho S_p L$. On trouve numériquement $C_{mur} = 2, 1.10^7 \text{ J.K}^{-1}$. C_{mur} est grand devant C , or on a montré que $t_f = \frac{C}{P}(T_f - T_0)$, donc le temps de montée en température est beaucoup plus long lorsqu'on prend en considération l'épaisseur du mur.	1	
08-	Équation de la chaleur		
08-	Généralités		
8	La loi de Fourier $\vec{j} = -\lambda \overline{\text{grad}}T$, avec \vec{j} la densité de flux thermique surfacique, ou densité de courant thermique thermique, et λ la conductivité thermique. Le signe $-$ indique que le transfert thermique se fait toujours dans le sens des températures élevées vers les températures basses. $j(x,t) = \frac{\delta Q}{dSdt}$ est le transfert thermique par unité de surface et par unité de temps, à la position x et l'instant t . L'unité de j est donc le W.m $^{-2}$. $\vec{j} = -\lambda \overline{\text{grad}}T$, donc $[\lambda] = \frac{[j]}{[\text{grad}T]} = \frac{[j]L}{[T]} = E.T^{-1}.L^{-2}.L.\theta^{-1} = E.T^{-1}.L^{-1}.\theta^{-1}$ son unité est donc W.m $^{-1}$.K $^{-1}$	1	
9	D'après le premier principe $dH = \delta Q$ donc $cdm \frac{\partial T}{\partial t} dt = j(x,t)Sdt - j(x+dx,t)Sdt$ donc $c\rho Sdx \frac{\partial T}{\partial t} dt = -\frac{\partial j}{\partial x} dxSdt$ donc $c\rho \frac{\partial T}{\partial t} = -\frac{\partial j}{\partial x}$. La loi de Fourier donne $j = -\lambda \frac{\partial T}{\partial x}$. Donc $c\rho \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$	1	
10 -	Étude du régime stationnaire		
10	En régime stationnaire les grandeurs ne dépendent plus du temps donc $\frac{\partial T}{\partial t}=0$	1	
11	$\frac{\partial^2 T}{\partial x^2} = 0$, donc $T(x) = ax + b$ or $T_{int} = T(x = 0)$ et $T_{ext} = T(x = L)$. Donc $T(x) = \frac{T_{ext} - T_{int}}{L}x + T_{int}$. Tracer le graphe de la droite affine.	1	
12	La température moyenne est donnée par $T_{moy} = \frac{1}{L} \int_0^L T(x) dx = \frac{T_{int} + T_{ext}}{2}$. $T(x_p) = T_{moy}$ donc $x_p = \frac{L}{2}$.	1	
13	$\frac{T_{int} + T_{ext}}{2}. T(x_p) = T_{moy} \text{ donc } x_p = \frac{L}{2}.$ $j(x) = -\lambda \frac{\partial T}{\partial x} = -\lambda \frac{T_{ext} - T_{int}}{L} = \lambda \frac{T_{int} - T_{ext}}{L}. \text{ On remarque que } j \text{ ne dépend pas de } x.$	1	
14	Le radiateur doit compenser les pertes thermique donc $P=jS_p=\lambda \frac{T_{int}-T_{ext}}{L}S_p=6,5$ kW. Donc le radiateur installé ne suffit pas à maintenir une température intérieure de 20 °C, il faut isoler la pièce.	1	
15 -	Résistance thermique		
15	Par analogie, $R_{mur} = \frac{\Delta T}{P} = \frac{T_{int} - T_{ext}}{P} = \frac{T_{int} - T_{ext}}{jS_p} = \frac{L}{\lambda S_p}$. Son unité est d'après la première égalité des K.W ⁻¹ et l'application numérique donne $R_{mur} = 1, 5.10^{-3} \text{ K.W}^{-1}$.	1	

16 -	Modélisation électrique	
16 -	Circuit électrique	
16	L'analogie donne : le générateur de courant correspond au radiateur donc $I=P$, le condensateur C_1 correspond à la capacité thermique de la pièce donc $C_1=C$, la tension u_1 correspond à la différence de température entre la pièce et l'extérieur donc $u_1=T-T_{ext}$, la résistance R_1 correspond à la moitié intérieure du mur donc $R_1=\frac{R_{mur}}{2}$, le condensateur C_2 correspond à la capacité thermique du mur donc $C_2=C_{mur}$; la tension u_2 correspond à la différence de température entre la température moyenne du mur et l'extérieur donc $u_2=T_{moy}-T_{ext}$, R_2 correspond à la	
17	moitié extérieure du mur donc $R_2 = \frac{R_{mur}}{2}$. En régime permanent continu on obtient un pont diviseur de tension. Donc $u_2 = \frac{R_2}{R_1 + R_2} u_1$. Voir question ci-dessus $R_1 = R_2 = \frac{R_{mur}}{2}$.	1
18 -	Établissement de l'expression d'une impédance	
18	Il l'agit d'une résistance et d'un condensateur en parallèle donc les admittances s'ajoutent $\underline{Z_2} = \frac{1}{\frac{1}{R_2} + jC_2\omega} = \frac{R_2}{1 + jR_2C_2\omega}$	1
19	Il s'agit de deux dipôles en série donc $\underline{Z_1} = R_1 + \underline{Z_2}$	1
20	Le condensateur C_1 et l'impédance $\underline{Z_1}$ sont en parallèle donc les admittances s'ajoutent $\frac{\underline{i}}{\underline{u_1}} = jC_1\omega + \frac{1}{\underline{Z_1}}$ $Donc \frac{u_1}{i} = \frac{\overline{Z_1}}{1+jZ_1C_1\omega} = \frac{R_1+Z_2}{1+jR_1C_1\omega+jZ_2C_1\omega} =$	
21	$\begin{array}{ c c c c } Donc & \frac{u_1}{i} & = & \frac{Z_1}{1+jZ_1C_1\omega} & = & \frac{R_1+Z_2}{1+jR_1C_1\omega+jZ_2C_1\omega} & = \\ & \frac{R_1+\frac{R_2}{1+jR_2C_2\omega}}{1+jR_1C_1\omega+\frac{jR_2C_2\omega}{1+jR_2C_2\omega}} & = & \frac{R_2+R_1(1+jR_2C_2\omega)}{(1+jR_2C_2\omega)(1+jR_1C_1\omega)+jR_2C_1\omega} & = \\ & \frac{1+j\frac{R_1R_2}{R_1+R_2}C_2\omega}{1+j((R_1+R_2)C_1+R_2C_2)\omega-R_1R_2C_1C_2\omega^2}(R_1+R_2) & \end{array}$	1
22 -	Exploitation	
22	Faire les schémas équivalents à haute et basse fréquence, montrer que c'est en accord avec une fonction de transfert de passe-bas. Pour $\omega = 0$ alors $U_{10} = (R_1 + R_2)I_0 = R_{mur}P$.	1
23	Lorsque C_2 tend vers 0, c'est comme si on retirait le condensateur C_2 du circuit, on a donc $\frac{u_1}{i} = \frac{R_1 + R_2}{1 + j(R_1 + R_2)C_1\omega}$. Si C_2 tend vers $+\infty$ on remplace le condensateur C_2 par un fil, on a don $\frac{u_1}{i} = \frac{R_1}{1 + jR_1C_1\omega}$.	1
24	C'est un filtre passe-bas d'après les schéma équivalents haute et basse fréquences.	1
25	On obtient $H = \frac{1+j\frac{\alpha}{4}RC\omega}{1+j(1+\frac{\alpha}{2})RC\omega-\frac{\alpha}{4}(RC\omega)^2}$	1
26-	Diagramme de Bode	
26	en basse fréquence $H \sim \frac{j}{4} RC\omega$ où le tracé des deux asymptotes de pente 0 $\frac{j\frac{\alpha}{4}RC\omega}{-\frac{\alpha}{4}(RC\omega)^2} \sim \frac{1}{jRC\omega}$. D'où le tracé des deux asymptotes de pente 0 dB/décades (pour $\omega \ll \omega_0$) et -20 dB/décades (pour $\omega \gg \omega_0$) qui se croisent en $\omega_0 = \frac{1}{RC}$.	1

27	Si $\alpha = 200$ alors $H = \frac{1+j50RC\omega}{1+j101RC\omega-50(RC\omega)^2}$ donc on repère des zones rectilignes entre les trois pulsations de coupure $\omega_1 = \frac{1}{101RC}$, $\omega_2 = \frac{1}{50RC}$, et $\omega_3 = \frac{1}{7RC}$.	1	
28	$\omega_2 = \frac{1}{50RC}, \text{ et } \omega_3 = \frac{1}{7RC}.$ $H = \frac{1+j\frac{\omega}{\omega_2}}{1+j\frac{\omega}{\omega_1} + (j\frac{\omega}{\omega_3})^2}$	1	
29	La pulsation de coupure est définie à -3 dB, ici $\omega_c=8.10^{-5}$ rad.s ⁻¹ . La durée du régime transitoire est de l'ordre de $\tau=\frac{1}{\omega_c}=3h30$	1	
30-	Isolation		
30-	Importance de l'isolation		
30	L'épaisseur est faible on peut donc utiliser l'expression de la résistance thermique en 1D démontrer plus haut. On obtient $R_i = \frac{e}{\lambda S_p} = 1,5.10^{-3} \text{ K.W}^{-2}$ donc R_i est 10 fois plus grande R_{mur} , $R_i \gg R_{mur}$	1	
31	Pour une isolation par l'intérieur on ajoute R_i en série avec R_1 . Pour une isolation par l'extérieur on ajoute R_i en série avec R_2 .	1	
32	On est en régime permanent, donc les condensateurs sont des interrupteurs ouverts. Que l'isolation soit par l'intérieur ou l'extérieur le schéma équivalent est le même et $U_{10}=(R_{mur}+R_i)i$ donc $P=\frac{T_{int}-T_{ext}}{R_{mur}+R_i}=\frac{T_{int}-T_{ext}}{(1+\beta)R_{mur}}=0,65 \text{ kW}$	1	
33-	Isolation intérieure ou extérieure		
33	On a montré que la consommation est la même pour une isolation par l'intérieur ou par l'extérieur. Le choix se fera selon l'utilisation que l'on fait de la pièce. Si l'on veut maintenir une température constante dans la pièce et limiter les variations de température alors il faut choisir une isolation par l'extérieur, car la capacité thermique des murs s'ajoute à celle de la pièce, par contre le temps mis pour chauffer la pièce sera plus long. Si la pièce n'est pas utilisée en continue mais que l'on veut pouvoir chauffer ou refroidir rapidement la pièce, alors il faut réaliser une isolation par l'intérieur.	1	
34	$U_{10} = (1+\beta)R_{mur}I_0$, pour une isolation par l'extérieur on ajoute R_i à R_2 donc $U_{20} = \frac{(1/2+\beta)}{(1+\beta)}U_{10} = (\frac{1}{2}+\beta)R_{mur}I_0$, pour une isolation par l'intérieur on ajoute R_i à R_1 donc $U_{20} = \frac{(1/2)}{(1+\beta)}U_{10} = \frac{1}{2}R_{mur}I_0$	1	
35	Il faut remplacer R_1 ou R_2 par $(1/2 + \beta)R$ et $\frac{R}{2}$ dans l'expression établit plus haut, on obtient $H = \frac{1+j\frac{\alpha(1/2+\beta)}{2(1+\beta)}RC\omega}{1+j(1+\beta+\alpha/2)RC\omega-\frac{\alpha}{2}(1/2+\beta)(RC\omega)^2}$	1	
36	Il faut comparer les pulsations ω_1 , ω_2 , ω_3 pour choisir le diagramme de Bode correspondant. Si $\omega_3 \sim \omega_2 < \omega_1$, alors il s'agit du graphe a. Si $\omega_1 < \omega_2 < \omega_3$ alors il s'agit du graphe b.	1	