

Algorithms 演算法

Single Source Shortest Path

— 7.3 Dijkstra's Algorithm —

Professor Chien-Mo James Li 李建模 Electrical Engineering Department National Taiwan University

Outline

- Single Source Shortest Paths, CH24
 - Bellman-Ford Algorithm [1956~1958]
 - Dijkstra's Algorithm [1959]
 - * Algorithm
 - * Proof
 - Directed Acyclic Graph [1972]
 - Linear Programming
- All-pairs Shortest Paths, CH25

	complexity	notice
B-Ford	O(VE)	Negative weight ok
Dijkstra	O(E lg V)	No negative weight
DAG	$\Theta(V+E)$	DAG only

Edsger W. Dijkstra (1930-2002)

- Dutch computer scientist and mathematical scientist.
- Professor of mathematics at Eindhoven University of Technology
- 1972 ACM Turing Award Recipient

"The question of whether computers can think is like the question of whether submarines can swim."

Dijkstra's Idea

- Idea: Every time choose one lightest vertex into shortest-path tree
 - similar to Prim's MST
- Why greedy-choice is ok? because all weights are non-negative

Dijkstra Is Greedy Algorithm

Greedy Choice Property

- Proof: cut and paste
- Suppose SPT₁ is optimal solution
 - u is lightest vertex crossing the cut
 - but SPT₁ connects to v rather than u
- Replace v by u to obtain SPT₂, which is also an optimal solution

Dijkstra's Algorithm (1)

- Greedy algorithm: choose lightest vertex in V-S to add to set S
 - ◆ S = set of vertices already in shortest-path tree
 - V-S = set of vertices not yet determined

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


Fig 24.6

Dijkstra's Algorithm (2)

- Black vertices ∈ S
- Gray vertices are lightest vertices $\in V-S$

Dijkstra's Algorithm (3)

- Black vertices ∈ S
- Gray vertices are lightest vertices $\in V-S$

Convergence Property

(Lemma 24.14) Let $s \sim u \rightarrow v$ be a shortest path.

If $u.d = \delta(s, u)$ prior to RELAX(u, v, w), then $v.d = \delta(s, v)$ after RELAX(u, v, w)

Proof:

$$v.d \le u.d + w(u,v)$$
 (after RELAX)
= $\delta(s,u) + w(u,v)$
= $\delta(s,v)$ (by Lemma 24.1)

Dijkstra is Correct

(Theorem 24.6) Loop invariance:

At the start of each while loop iteration $v.d = \delta(s, v)$ for each vertex $v \in S$

- Initialization: Initially, $S = \emptyset$, so trivially true
- Termination: At end, $Q = \emptyset$, S = V, $v \cdot d = \delta(s, v)$ for each vertex $v \in V$
- **Maintenance:**
 - * Let u be lightest vertex when u is added to S
 - * Let $p = \text{shortest path from } s \sim u$
 - Decompose p into p_1 and p_2
 - y =first vertex along p that's in V-S
 - $-x \in S$ be y's predecessor

DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE (G, s) $S = \emptyset$ O = G.Vwhile $Q \neq \emptyset$ u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ for each vertex $v \in G.Adi[u]$ RELAX(u, v, w)

Fig 24.7

Dijkstra Is Correct (2)

- when u is added to S,
 - * $x.d=\delta(s,x)$
 - * Relaxed (x, y), so $y.d = \delta(s, y)$ (convergence property)
- because y is before u on the shortest path p

$$y.d = \delta(s, y) \le \delta(s, u) \le u.d$$

because u is lightest vertex (chosen before y)

$$u.d \le y.d$$

So

$$y.d = \delta(s, y) = \delta(s, u) = u.d$$

QED

Time Complexity

- Similar to Prim's MST algorithm, keep a min-priority queue
 - but compute v.d, and use SP weights as keys

DIJKSTRA(G, w, s)			
1	INITIALIZE-SINGLE-SOURCE (G, s)		
2	$S = \emptyset$		
3	Q = G.V		
4	while $Q \neq \emptyset$		
5	u = EXTRACT-MIN(Q)		
6	$S = S \cup \{u\}$		
7	for each vertex $v \in G.Adj[u]$		
8	Relax(u, v, w)		

	Binary Heap (min-heap)	Fibonacci heap
Insert, <i>V</i> times	$\mathbf{O}(V)$	$\mathbf{O}(V)$
extract-min, <i>V</i> times	$O(V \lg V)$	$O(V \lg V)$
Decreasekey <i>E</i> times	$O(E \lg V)$	O(E)
total	$O((V+E) \lg V)$ $=O(E \lg V)$	$O(E + V \lg V)$

Dijkstra is O(E lg V)

Summary

- Single Source Shortest Paths, CH24
 - Bellman-Ford Algorithm [1956~1958]
 - Dijkstra's Algorithm [1959]
 - * O(*E* Ig *V*)
 - * no negative weight allowed
 - Directed Acyclic Graph [1972]
 - Linear Programming
- All-pairs Shortest Paths, CH25

	complexity	notice
B-Ford	O(VE)	Negative weight ok
Dijkstra	$O(E \lg V)$	No negative weight
DAG	$\Theta(V+E)$	DAG only

FFT

- Q: for graph with negative weight, can we add a positive number to all edges? so we can solve it faster
 - e.g. add 4 to all edges

