

飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

Figure 8.7 Road map for Ch. 8.

Contents

- Introduction
- Key concepts and history
- Lagrange Equation
- Orbit equation
- Space vehicle trajectories
- Kepler's laws

Question

- What's the problem of geocentric theory (地心说)?
- Why Kepler's laws are so important to the development of modern science?

How you were convinced that

- 1. The earth is a sphere?
- 2. The earth is spinning around its axis?
- 3. The earth rotates around the sun?

Please provide your own observation and reasoning.

Lunar eclipse (月食)

The start rails

All the stars rotate together with fixed relative position.

But, there're five exceptions

History: from geocentric to heliocentric model

Explanation of planet (行星)

Ptolemy 托勒密,~90 B.C.

History: development of geocentric model

History: from geocentric to heliocentric model

- The sun is at the center, all the planets rotate around the sun.
- Only the moon rotates around the earth.
- The earth spins around its axis, while the star background is still

Copernicus 哥白尼, 1473-1543

History: comparison of geocentric heliocentric model

History: Skepticism of geocentric model

- 1572: Superstar explosion (超星爆炸)
- 1577: Great comet of 1577 (大彗星)

Tycho Brahe (第谷), 1546 - 1601

History: the model of Tycho (第谷模型)

- The earth is still the center of universe
- Other planets rotates around the sun

However, Tycho is not good at math. At the year of 1600, he find Kepler ...

History: Kepler's model (开普勒模型)

heliocentric theory +

Ellipse orbit

开普勒, 1571-1630

Orbit calculation

Orbit design of Chang' e 5 mission

Orbit calculation for celestial sphere and spacecraft are similar

Orbit calculation

Orbit design of Chang' e 5 mission

Initial capture orbit

FIGURE 5: Basic orbit geometry.

FIGURE 13: Two-impulse TEI strategy illustration.

Zhong-Sheng Wang et al., *Orbit Design Elements of Chang'e 5 Mission*, Space: Science & Technology, 2021

Lagrange equation

Definition

$$\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{x}} \right) - \frac{\partial B}{\partial x} = 0$$

Lagrangian function

$$B \equiv T - \Phi = \frac{1}{2}m(\dot{x})^2 - mgx$$

Kinetic energy

$$T = \frac{1}{2}mV^2 = \frac{1}{2}m(\dot{x})^2$$

Potential energy

$$\Phi = wx = mgx$$

Lagrange equation

Definition

$$\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{x}} \right) - \frac{\partial B}{\partial x} = 0$$

$$B = \frac{1}{2}m(\dot{x})^2 - mgx$$

$$\Rightarrow \frac{\partial B}{\partial \dot{x}} \equiv m\dot{x}, \quad \frac{\partial B}{\partial x} \equiv -mg$$

$$\Rightarrow m\frac{d\dot{x}}{dt} - (-mg) = 0$$

$$\Rightarrow m\ddot{x} + mg = 0$$

$$\Rightarrow \ddot{x} = -g$$

Equivalent to Newton's second law!

Lagrange equation

For general spatial coordinates q_1, q_2, q_3

Velocity: \dot{q}_1 , \dot{q}_2 , \dot{q}_2

Kinetic energy: $T(q_1, q_2, q_3, \dot{q}_1, \dot{q}_2, \dot{q}_2)$

Potential energy: $\Phi(q_1, q_2, q_3)$

$$B \equiv T - \Phi$$

$$q_1$$
 coordinate: $\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{q}_1} \right) - \frac{\partial B}{\partial q_1} = 0$

$$q_2$$
 coordinate: $\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{q}_2} \right) - \frac{\partial B}{\partial q_2} = 0$

$$q_3$$
 coordinate: $\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{q}_3} \right) - \frac{\partial B}{\partial q_3} = 0$

Force and energy

The average forces acting on GOEC satellite: (Altitude 250 km)

source	central	flattening	atmospheric	Solar	Sun (3 rd
	gravity	Earth	drag	radiation	body)
acceleration [m/s ²]	9	1 × 10 ⁻²	3 × 10 ⁻⁶	5 × 10 ⁻⁹	5 × 10 ⁻⁷

Force and energy

$$F = \frac{GmM}{r^2}$$

$$d\Phi = F dr = \frac{GmM}{r^2} dr$$

Figure 8.10 Movement of a small mass in the gravitational field of a large mass.

Force and energy

$$\int_0^{\Phi} d\Phi = \int_{\infty}^r \frac{GmM}{r^2} dr$$

Figure 8.10 Movement of a small mass in the gravitational field of a large mass.

Force and energy

Kinetic energy of the spacecraft in polar coordinate system:

$$T = \frac{1}{2}mV^2 = \frac{1}{2}[\dot{r}^2 + (r\dot{\theta})^2]m$$

Figure 8.11 Polar coordinate system.

Equation of motion

$$k^2 \equiv GM = 3.986 \times 10^{14} \,\mathrm{m}^3/\mathrm{s}^2$$

The lagrangian function is:

$$B = T - \Phi = \frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2] + \frac{GmM}{r}$$

$$B = \frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2] + \frac{mk^2}{r}$$

Equation of motion

$$B = \frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2] + \frac{mk^2}{r}$$

From lagrangian equation: $\frac{\partial B}{\partial \dot{\theta}} = mr^2 \dot{\theta} \qquad \frac{\partial B}{\partial \theta} = 0$

$$\frac{\partial B}{\partial \dot{\theta}} = mr^2 \dot{\theta}$$

$$\frac{\partial B}{\partial \theta} = 0$$

$$\frac{d}{dt} \left(\frac{\partial B}{\partial \dot{x}} \right) - \frac{\partial B}{\partial x} = 0 \qquad \qquad \frac{d}{dt} (mr^2 \dot{\theta}) = 0$$

$$\frac{d}{dt}(mr^2\dot{\theta}) = 0$$

 $mr^2\dot{\theta}$ = angular momentum = const

Equation of motion

$$B = \frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2] + \frac{mk^2}{r}$$

Lagrangian equation in *r* direction:

$$\frac{\partial B}{\partial \dot{r}} = m\dot{r} \qquad \frac{\partial B}{\partial r} = -\frac{mk^2}{r^2} + mr\dot{\theta}^2$$

$$\frac{d}{dt}m\dot{r} + \frac{mk^2}{r^2} - mr\dot{\theta}^2 = 0$$

$$m\ddot{r} - mr\dot{\theta}^2 + \frac{mk^2}{r^2} = 0$$

Equation of motion

$$m\ddot{r} - mr\dot{\theta}^2 + \frac{mk^2}{r^2} = 0$$

Define $r^2\dot{\theta} \equiv h = \text{angular momentum per unit mass}$

$$\ddot{r} - \frac{h^2}{r^3} + \frac{k^2}{r^2} = 0$$

Solution r = ?

Equation of motion

Solution for orbit equation

$$r = \frac{h^2/k^2}{1 + A(h^2/k^2)\cos(\theta - C)}$$

where A and C are constants

Discussion

Standard form of conic section (圆锥截面) in Polar coordinate

$$r = \frac{p}{1 + e\cos(\theta - C)}$$

where $p = h^2/k^2$ $e = A(h^2/k^2)$ is eccentricity

If e = 0, the path is a *circle*.

If e < 1, the path is an *ellipse*.

If e = 1, the path is a parabola.

If e > 1, the path is a *hyperbola*.

Circle e = 0

Discussion

$$r = \frac{p}{1 + e\cos(\theta - C)}$$

Ellipse $e \le 1$

Discussion

$$r = \frac{p}{1 + e\cos(\theta - C)}$$

Parabola e = 1

Hyperbola e > 1

With some algebraic manipulations, we have

Eccentricity (偏心率)
$$e = \sqrt{1 + \frac{2h^2H}{mk^4}}$$

where
$$H \equiv T - |\Phi| = -\frac{1}{2}m\frac{k^4}{h^2}(1 - e^2)$$

Type of trajectory

Ty	pe of Trajectory	e	Energy Relation		
Ell	lipse	< 1	$\frac{1}{2}mV^2 < \frac{GMm}{r}$		
Par	rabola	= 1	$\frac{1}{2}mV^2 = \frac{GMm}{r}$		
Ну	perbola	> 1	$\frac{1}{2}mV^2 > \frac{GMm}{r}$	Transfer orbit	

Discussion

For circular orbit
$$e = \sqrt{1 + \frac{2h^2H}{mk^4}} = 0$$

$$H = T - |\Phi| = -\frac{1}{2} m \frac{k^4}{h^2} (1 - e^2)$$
$$r = \frac{p}{1 + e \cos(\theta - C)}$$

where
$$p = h^2/k^2$$

$$H = -\frac{mk^4}{2h^2}$$
 , and $r = \frac{h^2}{k^2}$

Circular velocity:

$$\frac{1}{2}mV^2 = -\frac{m}{2}\frac{k^2}{r} + \frac{k^2m}{r} = \frac{k^2m}{2r}$$

$$V = \sqrt{\frac{k^2}{r}} = \sqrt{\frac{GM}{r}}$$

We can also obtain directly by

$$\frac{GmM}{r^2} = m\frac{V^2}{r}$$

$$\Rightarrow V = \sqrt{\frac{GM}{r}} = 7.9 \ km/s$$

Circle e = 0

For earth,
$$GM = 3.986 \times 10^{14} \, m^3/s^2$$
, $r = 6.4 \times 10^6 m$

Parabolic trajectory (e = 1)

$$e = \sqrt{1 + \frac{2h^2H}{mk^4}} = 1 \qquad \Rightarrow H \equiv T - |\Phi| = 0$$

$$\frac{1}{2}mV^2 = \frac{GMm}{r} = \frac{k^2m}{r}$$

Orbit equation

Parabolic velocity

$$V = \sqrt{\frac{2k^2}{r}} = \sqrt{\frac{2GM}{r}}$$

 $= 11.2 \, km/s$ Escape Velocity

Parabola e = 1

Practice

Example 8.1

At the end of a rocket launch of a space vehicle, the burnout velocity is 9 km/s in a direction due north and 3° above the local horizontal. The altitude above sea level is 500 mi. The burnout point is located at the 27th parallel (27°) above the equator. Calculate and plot the trajectory of the space vehicle.

Figure 8.14 Burnout conditions for Example 8.1.

A list of Kepler's First

- First to correctly explain planetary motion, thereby, becoming founder of celestial mechanics and the first "natural laws" in the modern sense;
- First to explain the process of vision by refraction within the eye;
- First to formulate eyeglass designing for nearsightedness and farsightedness;
- First to explain the use of both eyes for depth perception.
- First to explain the principles of **how** a telescope works;
- First to explain that the tides are caused by the Moon.
- First to derive the birth year of Christ, that is now universally accepted.
- ...

Source: https://www.nasa.gov/kepler/education/johannes

Kepler's Laws of Planetary Motion

- 1. Planets move in ellipses with the Sun at one focus (**The First Law**).
- 2. The radius vector describes equal areas in equal times (**The Second Law**).
- 3. The period of a planet's orbit squared is equal to the size semi-major axis of the orbit cubed when it is expressed in astronomical units (**The Third Law**).

Source: https://www.nasa.gov/kepler/education/johannes

The second law

Figure 8.16 Area swept out by the radius vector in moving through angle $d\theta$.

Figure 8.17 Illustration of the variation in velocity at different points along the orbit.

The second law

$$mr^2\dot{\theta}$$
 = angular momentum = const

$$\frac{dA}{dt} = \frac{\frac{1}{2}r^2d\theta}{dt} = \frac{1}{2}r^2\dot{\theta}$$

Figure 8.16 Area swept out by the radius vector in moving through angle $d\theta$.

Figure 8.18 Illustration of apogee, perigee, and semimajor and semiminor axes. 远地点、近地点和半长轴和半短轴

$$r_{\text{max}} = \frac{h^2/k^2}{1 - e} \cos \theta = -1, C = 0$$

$$r_{\min} = \frac{h^2/k^2}{1+e}$$
 $\cos \theta = 1, C = 0$

$$r = \frac{p}{1 + e\cos(\theta - C)}$$

Period (周期):
$$au^2 = \frac{4\pi^2}{k^2}a^3$$

$$a = \frac{1}{2}(r_{\text{max}} + r_{\text{min}}) = \frac{1}{2} \frac{h^2}{k^2} \left(\frac{1}{1 - e} + \frac{1}{1 + e} \right) = \frac{h^2/k^2}{1 - e^2}$$

$$\frac{\tau_1^2}{\tau_2^2} = \frac{a_1^3}{a_2^3} = \text{Const}$$

Practice

Example 8.2

The period of revolution of the earth about the sun is 365.256 days. The semimajor axis of the earth's orbit is 1.49527×10^{11} m. The semimajor axis of the orbit of Mars is 2.2783×10^{11} m. Calculate the period of Mars.

From Kepler's third law:

$$\tau_2 = \tau_1 \left(\frac{a_2}{a_1}\right)^{3/2}$$

The Mars

TED interview of Elon Mask