Como Criar Um Componente no LTspice

Beleza pessoal! Vamos continuar nossa série de artigos para entender um pouco mais sobre o LTspice. Nesse post vamos criar um novo componente que obviamente não está disponível da biblioteca padrão do LTspice.

Organização dos Componentes no LTspice

Biblioteca Padrão (standard)

Como previamente visto em outro artigo podemos organizar os componentes dentro de determinados arquivos padrões. A ilustração a seguir mostra o path e os nomes das bibliotecas 'standard.???' no meu computador.

Por exemplo, o arquivo 'standard.dio' é onde se encontra os diodos. Se você abrir esse arquivo verá uma lista de diodos e seus respectivos parâmetros para simulação, então, podemos adicionar componentes, como já explicado em outro post.

Nessa mesma forma temos resistores, capacitores, transistores e outros componentes.

Componentes Avulsos

Outra forma de organização é para componentes avulsos, que não se encontram dentro das bibliotecas padrões. Por exemplo, um Opto-Acoplador 4N25.

Esses componentes são organizados em dois arquivos distintos, que são:

- 1) 4N25.asy (Símbolo)
- 2) 4N25.sub ou 4N25.lib (SPICE model)

E são localizados nos seguintes caminhos:

- 1) 4N25.asy > C:\Users\Ismael Lopes\Documents\LTspiceXVII\lib\sym\Optos
- 2) 4N25.sub > C:\Users\Ismael Lopes\Documents\LTspiceXVII\lib\sub

No meu caso em:

O arquivo 4N25.asy representa o símbolo do componente.

O arquivo 4N25.sub representa o modelo SPICE do componente.

O Esquemático

Monte o circuito a seguir. Se necessário consulte o artigo anterior para entender o básico de como montar circuitos no LTspice.

Atenção! Eu não encontrei na biblioteca padrão e nem nos componentes avulsos o Transistor N-MOSFET irf540n, então, teremos que criar dois arquivos para inclui-lo no LTspice.

O Transistor N-MOSFET irf540n

No Google eu encontrei o datasheet e também o SPICE model desse Transistor, então, vamos desenha-lo no LTspice, criando o símbolo, ou melhor o arquivo irf540n.asy.

No LTspice para criar um novo símbolo clique no menu 'File' e selecione [New Symbol].

No menu 'Draw' você encontra todas as opções para desenhar o componente, então, selecionarei a opção [Line] para desenhar as linhas do irf540n. Vamos reproduzir o símbolo do componente conforme seu datasheet.

É bem manual a construção do componente. A maioria dos traços são linhas, com exceção o circulo que contorna o componente.

Mesmo que ainda não esteja concluído salve o arquivo. Eu criei uma nova pasta, chamada [User], conforme mostrado a seguir. O nome do arquivo é irf540n.asy.

Confira no arquivo SPICE model a hierarquia dos terminais (pinos) do irf540n, sendo assim, vamos atribuir os pinos ao componente. Conforme mostrado a seguir.

```
.SUBCKT irf540n 1 2 3
* External Node Designations
*
* Node 1 -> Drain
* Node 2 -> Gate
* Node 3 -> Source
```

No menu 'Edit' selecione a opção [Add Pin/Port].

Pino 1 [Netlist Order] e Drain [Label]. Clique no botão [OK] e arraste e solte o pino no terminal correspondente do símbolo.

Observe que o pino 'Drain' foi conectado ao terminal superior do símbolo.

Repita as etapas anteriores, para atribuir os pinos '2 - Gate' e '3 - Source'. O símbolo ficará como mostrado a seguir.

Ainda não concluímos! Falta pouco.

No menu 'Edit' selecione a opção [Attributes] e depois [Edit Attributes].

Na janela 'Symbol Attribute Editor' insira os seguintes campos:

Symbol Type: Cell

Prefix: X

Value: irf540n

Depois clique no botão [OK].

No menu 'Edit' selecione a opção [Attributes] e depois [Attribute Window].

Selecione 'InstName', arraste e solte ao lado do componente.

Repita os passos anteriores, selecione 'Value', arraste e solte ao lado do componente.

Salve o componente, e feche a janela de edição do componente.

O Segundo Arquivo <irf540n.lib>

Agora renomei o arquivo SPICE model para irf540n.lib, copie-o e cole-o no seguinte caminho: C:\Users\Ismael Lopes\Documents\LTspiceXVII\lib\sub, conforme mostrado a seguir.

Ufa! Concluímos.

Agora é finalizar a montagem do esquemático, procurando normalmente o componente irf540n no LTspice.

Antes de simular, na barra de ferramentas, clique no botão [.op] para inserir a seguinte Diretiva SPICE ".lib irf540n.lib". Conforme mostrado no esquemático a seguir.

Vamos Simular!

O traço vermelho é a corrente na carga e o traço verde é a tensão entre Drain e Source, portanto, o chaveamento do Transistor N-MOSFET irf540n.

Foi criado com sucesso!

Gostou? Se sim, compartilhe e de seu feedback! Caso tenha dúvidas comente aqui embaixo.

Ismael Lopes