

Spelling Correction

Independent Word Spelling Correction

Dr. Rajendra Prasath

Indian Institute of Information Technology Sri City, Chittoor

> Topics to be covered

- Recap:
 - Phrase Queries
 - Proximity Search
 - Permuterm Index
 - Bi-gram Indexes
- Spelling Correction
 - Independent Word Spelling Correction
 - Spelling Detection
 - Specific tasks in Spelling Correction
 - Spelling Suggestion
 - More topics to come up ... Stay tuned ...!!

Recap: Information Retrieval

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).
- During these days, we frequently think first of web search, but there are many other cases:
 - E-mail search
 - Searching your laptop
 - Corporate knowledge bases
 - Legal information retrieval
 - Images / Patent / Transportation Related Searches
 - and so on . . .

Recap: Wild-card queries: *

- mon*: find all docs containing any word beginning with "mon".
- Easy with binary tree (or B-tree) dictionary: retrieve all words in range: mon ≤ w < moo
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: nom ≤ w < non

From this, how can we enumerate all terms meeting the wild-card query **pro*cent**?

Recap: Permuterm index

- Add a \$ to the end of each term
- Rotate the resulting term and index them in a B-tree
- For term hello, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello where \$ is a special symbol.

Spelling Correction

Non-word Spelling Error - An Example

acress

Words within 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Type
acress	actress	t	_	deletion
acress	cress	-	a	insertion
acress	caress	ca	ac	transposition
acress	access	C	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	Insertion / deletion

How to we perform Channel Modeling?

Channel model

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1} w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

Kernighan, Church, Gale 1990

Smoothing probabilities: Add-1 smoothing

- But if we use the confusion matrix example, unseen errors are impossible!
- They'll make the overall probability 0. That seems too harsh
 - e.g., in Kernighan's chart q→a and a→q are both 0, even though they're adjacent on the keyboard!
- A simple solution is to add 1 to all counts and then if there
 is a | A | character alphabet, to normalize appropriately:

If substitution,
$$P(x|w) = \frac{\sup[x,w]+1}{\operatorname{count}[w]+A}$$

Channel model for acress

Candidate Correction	Correct Letter	Error Letter	x/w	P(x w)
actress	t	-	c ct	.000117
cress	_	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.00000209
across	0	е	elo	.0000093
acres	_	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x/w	P(x w)	P(w)	10 ⁹ * P(x/w)* P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.00000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x/w	P(x w)	P(w)	10 ⁹ *P(x/w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	_	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

SPELLING CORRECTION WITH THE NOISY CHANNEL

Context-Sensitive Spelling Correction

Real-word spelling errors

- ... leaving in about fifteen minuets to go to her house.
- The design an construction of the system...
- Can they lave him my messages?
- The study was conducted mainly be John Black.

 25-40% of spelling errors are real words (Kukich 1992)

Context-sensitive spelling error fixing

- For each word in sentence (phrase, query ...)
 - Generate candidate set
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
 - (all of this can be pre-computed!)
- Choose best candidates
 - Noisy channel model

Noisy channel for real-word spell correction

- Given a sentence x₁,x₂,x₃,...,x_n
- Generate a set of candidates for each word x_i
 - Candidate(x_1) = { x_1 , w_1 , w'_1 , w''_1 ,...}
 - Candidate(x_2) = { x_2 , w_2 , w'_2 , w''_2 ,...}
 - Candidate(x_n) = { x_n , w_n , w'_n , w''_n ,...}
- Choose the sequence W that maximizes $P(W|x_1,...,x_n)$

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)$$

Incorporating context words: Context-sensitive spelling correction

- Determining whether actress or across is appropriate will require looking at the context of use
- We can do this with a better language model
- A bigram language model conditions the probability of a word on (just) the previous word

$$P(w_1...w_n) = P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1})$$

Incorporating context words

- For unigram counts, P(w) is always non-zero
 - if our dictionary is derived from the document collection
- This won't be true of $P(w_k | w_{k-1})$. We need to smooth
- We could use add-1 smoothing on this conditional distribution
- But here's a better way interpolate a unigram and a bigram:
 - $PI_{i}(w_{k} | w_{k-1}) = \lambda P_{uni}(w_{k}) + (1-\lambda)Pb_{i}(w_{k} | w_{k-1})$
 - $Pb_i(w_k | w_{k-1}) = C(w_{k-1}, w_k) / C(w_{k-1})$

All Important Points

- Note that we have several probability distributions for words
 - Keep them straight!
 - You might want/need to work with log probabilities:
 - $\log P(w1...wn) = \log P(w1) + \log P(w2|w1) + ... + \log P(wn|wn-1)$
 - Otherwise, be very careful about floating point underflow
- Our query may be words anywhere in a document
 - We'll start the bigram estimate of a sequence with a unigram estimate
 - Often, people instead condition on a start-ofsequence symbol, but not good here
 - Because of this, the unigram and bigram counts have different totals – not a problem

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress | versatile)=.000021 P(whose | actress) = .0010
- P(across | versatile) = .000021 P(whose | across) = .000006
- P("versatile actress whose") = $.000021*.0010 = 210 \times 10-10$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10-10$

Noisy channel for real-word spell correction

Simplification: One error per sentence

- Out of all possible sentences with one word replaced
 - w_1 , w''_2 , w_3 , w_4 two **off** thew
 - W_1, W_2, W'_3, W_4 two of the
 - w'''_1, w_2, w_3, w_4 too of thew
 - •
- Choose the sequence W that maximizes P(W)

Where to get the probabilities?

Language model

- Unigram
- Bigram
- etc

Channel model

- Same as for non-word spelling correction
- Plus need probability for no error, P(w | w)

Probability of no error

- What is the channel probability for a correctly typed word?
- P("the" | "the")
 - If you have a big corpus, you can estimate this percent correct
- But this value depends strongly on the application
 - .90 (1 error in 10 words)
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)

Peter Norvig's "thew" example

X	W	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.00007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.000008	0.000004	0.03
thew	thwe	ew we	0.000003	0.0000004	0.0001

State of the art noisy channel

- We never just multiply the prior and the error model
- Independence assumptions > probabilities not commensurate
- Instead: Weight them

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)^{\lambda}$$

Learn λ from a development test set

Improvements to channel model

- Allow richer edits (Brill and Moore 2000)
 - ent→ant
 - ph→f
 - le→al
- Incorporate pronunciation into channel (Toutanova and Moore 2002)
- Incorporate device into channel
 - Not all Android phones need have the same error model
 - But spell correction may be done at the system level

Summary

In this class, we focused on:

- (a) Recap: Positional Indexes
 - Positional Index Size
 - Wild card Queries
 - iii. Permuterm index
- (b) Spelling Correction
 - i. Types of Spelling Correction
 - ii. Noisy Channel modelling for Spell Correction
 - iii. Spelling Suggestions

Acknowledgements

Thanks to ALL RESEARCHERS:

- Modern Information Retrieval Baeza-Yates and Ribeiro-Neto, Addison Wesley, 1999.
- Introduction to Information Retrieval Manning, Raghavan and Schutze, Cambridge University Press, 2008.
- Search Engines Information Retrieval in Practice W. Bruce Croft, D. Metzler, T. Strohman, Pearson, 2009.
- Information Retrieval Implementing and Evaluating Search Engines Stefan Büttcher, Charles L. A. Clarke and Gordon V. Cormack, MIT Press, 2010.
- Many Authors who contributed to SIGIR / WWW / KDD / ECIR / CIKM / WSDM and other top tier conferences
- Prof. Mandar Mitra, Indian Statistical Institute, Kolkatata (https://www.isical.ac.in/~mandar/)

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- You may ask for one-to-one meeting

Best Approach

You may leave me an email any time (email is the best way to reach me faster)

Questions It's Your Time

