פרק 6: התפלגות משותפת של משתנים מקריים (סיכום)

אם Xו- Y הם משתנים מקריים בדידים, אז **פונקציית ההסתברות המשותפת** שלהם מוגדרת, לכל xו- y ממשיים, Y הם משתנים מקריים בדידים, אז $P_{X,Y}(x,y)=1$. $P_{X,Y}(x,y)=P\{X=x,Y=y\}$ על-ידי

את פונקציית ההסתברות השולית של P_X ו- P_X ו- P_X ו- P_X את פונקציית ההסתברות השולית של $P_X(x) = \sum_y P\{X = x, Y = y\} = \sum_y p_{X,Y}(x,y)$ המשותפת של $P_X(x) = \sum_y P\{X = x, Y = y\} = \sum_y p_{X,Y}(x,y)$

$$p_Y(y) = \sum_{x}^{y} P\{X = x, Y = y\} = \sum_{x}^{y} p_{X,Y}(x, y)$$

. כאשר p_{X} ושל Y נקראות פונקציות ההסתברות השולית של p_{X} ושל p_{X} בהתאמה.

b -ו a ממשיים, על-ידי: אורת, לכל b ו- a ממשיים, לכל אור משתנים מקריים בונקציית ההתפלגות המצטברת המשותפת של משתנים מקריים בא

$$F_{X,Y}(a,b) = P\{X \le a, Y \le b\} = \sum_{y:y \le b} \sum_{x:x \le a} p_{X,Y}(x,y)$$

$$F_Y(b) = P\{X < \infty, Y \le b\} = F_{X,Y}(\infty,b)$$
 ו-
$$F_X(a) = P\{X \le a, Y < \infty\} = F_{X,Y}(a,\infty)$$
 : כמו כן :

. בהתאמה לא ושל X ושל אולית המצטברת ההתפלגות ההתפלגות פונקציות פונקציות ההתפלגות לא F_{Y} ו-

את כל האמור לעיל אפשר להכליל ל**התפלגות משותפת של n משתנים מקריים**.

ההתפלגות המולטינומית: (התפלגות משותפת בדידה)

נאמר שלמשתנים המקריים הבדידים X_r,\ldots,X_2 יש התפלגות משותפת מולטינומית, אם פונקציית ההסתברות $P\{X_1=n_1,\ldots,X_r=n_r\}=rac{n!}{n_1!\ldots n_r!}\cdot p_1^{n_1}\cdot\ldots\cdot p_r^{n_r}$: המשותפת שלהם היא

. עבור n שלם עבור $\sum_{i=1}^r n_i = n$ עבור אסכומן 1, וכן הסתברויות מסמנים מסמנים p_r ,... , p_2 , p_1 , כאשר,

, תוצאות אפשריות שונות r מקרי מקרי מקרי המורכב מn חזרות בלתי-תלויות על ניסוי, בעל תוצאות המחרכב מ p_r,\ldots,p_2 , אונות בהסתברויות בהסתברויות המתקבלות בהסתברויות מקרי המתקבלות בהסתברויות מתקבלות בהסתברויות מתקבלות בהסתברויות מתקבלות בהסתברויות מתקבלות בתחים המתקבלות בתחירת בתחירת מתקבלות בתחירת בתחירת בתחירת המתקבלות בתחירת בתחיר

.i המשתנה המקרי X_i , לכל i=1,...,r, מוגדר כמספר החזרות בניסוי המולטינומי שבהן מתקבלת התוצאה

. המאורע את מדקבלת בניסוי המולטינומי. את מספר הפעמים שכל אחת מחקבלת בניסוי המולטינומי. $\{X_1 = n_1, \dots, X_r = n_r\}$

- . $\underline{X} \sim Mult(n,p)$ אם לווקטור המשתנים המקריים \underline{X} יש התפלגות מולטינומית, מסמנים .1 הערות:
 - (n, p_1) ההתפלגות המולטינומית אינה אלא התפלגות המולטינומית המולטינומית r=2 .2
- i=1,...,r כאשר (n,p_i) , כאשר בינומית עם הפרמטרים א התפלגות היא התפלגות השולית של כל X_i היא התפלגות בינומית עם הפרמטרים ו
- $i \neq j$ כאשר $(n, p_i + p_i)$, בהתפלגות של כל סכום $X_i + X_i$ היא התפלגות בינומית עם הפרמטרים.
 - .5 המשתנים המקריים $X_r, ..., X_2, X_1$ תלויים זה בזה.
- . $(n-k\,,\frac{p_i}{1-p_j})$ היא בינומית עם הפרמטרים , k=0,...,n לכל , $X_i\,|\,X_j=k$ של .6
 - (פרק 7) . $\operatorname{Cov}(X_i, X_j) = -np_i p_j$ מתקיים $i \neq j$.7

משתנים מקריים בלתי-תלויים

 $_{\cdot}$ המשתנים המקריים הבדידים X וY נקראים בלתי-תלויים אם לכל x ו- y ממשיים מתקיים

$$p_{X,Y}(x,y)=p_X(x)\,p_Y(y)$$
 $F_{X,Y}(x,y)=F_Y(x)F_Y(y)$: ותנאי אי-תלות שקול הוא

המשתנים המקריים הבדידים x_n, \dots, x_2, x_1 נקראים **בלתי-תלויים** אם לכל תת-קבוצה של x_n, \dots, x_2, x_1 משתנים המקריים : x_n, \dots, x_2, x_1 מספרים מספרים ממשיים x_n, \dots, x_2, x_1 מתוכם x_n, \dots, x_2, x_1

$$P\{X_{i_1} = x_1, \dots, X_{i_r} = x_r\} = P\{X_{i_1} = x_1\} \cdot \dots \cdot P\{X_{i_r} = x_r\}$$

$$P\{X_{i_1} \le x_1, \dots, X_{i_r} \le x_r\} = P\{X_{i_1} \le x_1\} \cdot \dots \cdot P\{X_{i_r} \le x_r\}$$
 : ותנאי אי-תלות שקול הוא

. Xבלתי-תלות הוא יחס סימטרי. כלומר, אם Xבלתי-תלוי ב-Y, אז כמובן Yבלתי-תלוי ב-X

טענה (2.1): המשתנים המקריים הבדידים X ו-Y בלתי-תלויים אם ורק אם ניתן לרשום את פונקציית החסתברות המשותפת שלהם $p_{X,Y}$ בצורה –

$$p_{x,y}(x,y) = h(x)g(y)$$
 , ממשיים ,

טענה (דוגמה 2ב): אם מספר המופעים שמתרחשים במרווח-זמן נתון הוא משתנה מקרי פואסוני עם הפרמטר - אז האם תכונה מסוימת מתקיימת בכל אחד מהמופעים המתרחשים בהסתברות p, אז

מספר המופעים שמתקיימת בהם התכונה במרווח-הזמן הנתון הוא משתנה מקרי פואסוני עם הפרמטר λp ; מספר המופעים שלא מתקיימת בהם התכונה במרווח-זמן זה הוא משתנה מקרי פואסוני עם הפרמטר λp ; ושני המשתנים המקריים הפואסוניים האלו בלתי-תלויים זה בזה.

סכום של משתנים מקריים בדידים

יהיו X ו-Y משתנים מקריים בדידים. ההתפלגות של המשתנה המקרי X+Y מתקבלת מאחת מן המשוואות Y+Y יהיו Y+Y=a ממשי. או $P\{X+Y=a\}=\sum_{x}P\{X=x,Y=a-x\}$

 $P\{X+Y=a\} = \sum_{x} P\{X=x\} P\{Y=a-x\} = \sum_{y} P\{X=a-y\} P\{Y=y\} \quad \text{constant} \quad X \text{ in } X \text{ in }$

טענות (סכום של משתנים מקריים בלתי-תלויים)

- X_n ,... , X_2 , X_1 ואם , i=1,2,...,n לכל λ_i לכל הפרמטר פואסוני עם השתנה מקרי פואסוני עם הברמטר , $\sum_{i=1}^n \lambda_i$ הוא משתנה מקרי פואסוני עם הפרמטר $\sum_{i=1}^n X_i$ הוא משתנים מקריים, מוכיחים באינדוקציה.)
- X_n ,... , X_2 , X_1 ואם , i=1,2,...,n לכל (n_i,p) לכל מפרמטרים מקרי בינומי עם הפרמטרים , $\left(\sum_{i=1}^n n_i,p\right)$ בלתי-תלויים זה בזה, אז $\sum_{i=1}^n X_i$ הוא משתנה מקרי בינומי עם הפרמטרים (את המקרה הכללי, ל-n משתנים מקריים, מוכיחים באינדוקציה.)

ההיים זה בלתי-תלויים אה X_n ,..., X_2 , X_1 הוא משתנה מקרי גיאומטרי עם הפרמטר p לכל p בלתי-תלויים הביה, x_i הוא משתנה מקרי בינומי שלילי עם הפרמטרים $\sum_{i=1}^n X_i$ הוא משתנה מקרי בינומי שלילי עם הפרמטרים .

(מוכיחים ישירות ל-n=2, ואת המקרה הכללי מוכיחים באינדוקציה.)

התפלגויות מותנות

אם X ו-Y הם משתנים מקריים בדידים, פונקציית ההסתברות של X בתנאי בתנאי Y=y מוגדרת הם על-ידי: $P\{Y=y\}>0$ ולכל Y=y שעבורו

$$p_{X|Y}(x|y) = P\{X = x \mid Y = y\} = \frac{P\{X = x, Y = y\}}{P\{Y = y\}}$$
; $\sum_{x} p_{X|Y}(x|y) = 1$

 $P\{X = x | Y = y\} = P\{X = x\}$ בלתי-תלויים זה בזה מקבלים כי:

$$P{Y = y \mid X = x} = P{Y = y}$$

X אינה החתפלגות השווה להתפלגות של Y=y אינה אינה תלויה ב-y ושווה להתפלגות של בהינתן כלומר, הולהיפך). ובמילים אחרות, לערך הידוע של משתנה מקרי אחד אין השפעה על ההתפלגות של המשתנה המקרי השני.

Y=y היא: אבתנאית ההתפלגות המצטברת של

$$F_{X|Y}(a|y) = P\{X \le a \mid Y = y\} = \sum_{x: x \le a} P\{X = x \mid Y = y\}$$

טענה (דוגמה 4ב): אם X ו-Y הם משתנים מקריים פואסוניים בלתי-תלויים עם הפרמטרים λ_1 ו- λ_2 , בהתאמה, אז ההתפלגות של המשתנה המקרי המותנה X בהינתן X+Y=n היא בינומית עם הפרמטרים . $\frac{\lambda_1}{\lambda_1+\lambda_2} \cdot n$

הכללת הטענה האחרונה: אם X_2 , X_1 ו- X_2 הם משתנים מקריים פואסוניים בלתי-תלויים עם הפרמטרים הכללת הטענה האחרונה: אז ההתפלגות המשותפת המותנית של המשתנים המקריים X_3 , ו- X_2 , X_1 בהינתן $\left(\frac{\lambda_1}{\lambda_1+\lambda_2+\lambda_3},\frac{\lambda_2}{\lambda_1+\lambda_2+\lambda_3},\frac{\lambda_3}{\lambda_1+\lambda_2+\lambda_3}\right) - n$ היא מולטינומית עם הפרמטרים n ו- n ו- n ו- n היא מולטינומית עם הפרמטרים n ו- n ו- n ו- n בהינתן n ו- n היא מולטינומית עם הפרמטרים n ו- n ו- n ו- n היא מולטינומית עם הפרמטרים n ו- n ו- n היא מולטינומית עם הפרמטרים n ו- n ו- n היא מולטינומית עם הפרמטרים n היא מולטינומית ביינומית ביינומים n היא מולטינומית ביינומית ביינומי

סענה: אם X ו- (n_X,p) ו- (n_X,p) ו- (n_X,p) בהתאמה, בהתאמה, בהתאמה אז האתנים מקריים בינומיים בלתי-תלויים עם הפרמטרים בא אז המשתנה המקרי המותנה X בהינתן X+Y=n היא היפרגיאומטרית עם הפרמטרים הפרמטרים וווער $n=n_X$, $N=n_X+n_Y$