Examen VWO

2017

tijdvak 1 maandag 15 mei 13.30 - 16.30 uur

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Dit examen bestaat uit 15 vragen.

Voor dit examen zijn maximaal 71 punten te behalen.

Voor elk vraagnummer staat hoeveel punten met een goed antwoord behaald kunnen worden.

Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord meestal geen punten toegekend als deze verklaring, uitleg of berekening ontbreekt.

Geef niet meer antwoorden (redenen, voorbeelden e.d.) dan er worden gevraagd. Als er bijvoorbeeld twee redenen worden gevraagd en je geeft meer dan twee redenen, dan worden alleen de eerste twee in de beoordeling meegeteld.

Formules

Goniometrie

$$\sin(t+u) = \sin(t)\cos(u) + \cos(t)\sin(u)$$

$$\sin(t-u) = \sin(t)\cos(u) - \cos(t)\sin(u)$$

$$\cos(t+u) = \cos(t)\cos(u) - \sin(t)\sin(u)$$

$$\cos(t-u) = \cos(t)\cos(u) + \sin(t)\sin(u)$$

$$\sin(2t) = 2\sin(t)\cos(t)$$

$$\cos(2t) = \cos^{2}(t) - \sin^{2}(t) = 2\cos^{2}(t) - 1 = 1 - 2\sin^{2}(t)$$

Rakende grafieken?

De functies f en g zijn gegeven door:

$$f(x) = \ln(x)$$
 en
 $g(x) = \frac{1}{2e} \cdot x^2$

 $_{5p}$ 1 Ga na met exacte berekening of de grafieken van f en g elkaar raken.

Bewegen over een lijn

Gegeven is lijn k met vergelijking $y = -\frac{1}{2}x + 3$. Op deze lijn ligt het punt P.

Vector \overrightarrow{OP} wordt om de oorsprong over 90° linksom gedraaid. Zo ontstaat vector $\overrightarrow{OP'}$.

Vector \overrightarrow{PQ} heeft dezelfde richting en dezelfde lengte als $\overrightarrow{OP'}$. Zie de figuur.

figuur

Wanneer het punt P over lijn k beweegt, zal het punt Q over een lijn m bewegen. In de figuur is m gestippeld weergegeven.

4p **2** Stel een vergelijking van lijn m op.

Gegeven zijn de cirkels c_1 en c_2 . Cirkel c_1 heeft middelpunt $M_1(-2,0)$ en straal 2. Cirkel c_2 heeft middelpunt $M_2(6,0)$ en straal 6.

Voor elke positieve waarde van r is er één cirkel c_3 met middelpunt M_3 en straal r zó dat geldt:

- $-M_3$ ligt boven de x-as;
- c_3 raakt aan cirkel c_1 én aan cirkel c_2 .

In figuur 1 is de situatie getekend voor $r=2\frac{1}{2}$ en in figuur 2 voor $r=4\frac{1}{2}$. Verder is in beide figuren driehoek $M_1M_2M_3$ getekend.

figuur 1 $r = 2\frac{1}{2}$

V C_3 C_3 M_1 C_1 C_2 C_2

figuur 2 $r = 4\frac{1}{2}$

De grootte van $\angle M_1M_2M_3$ is afhankelijk van r: voor elke waarde van r geldt:

$$\cos(\angle M_1 M_2 M_3) = \frac{r+12}{2r+12}$$

4p **3** Bewijs de juistheid van deze formule.

Als r onbegrensd toeneemt, nadert de grootte van $\angle M_1M_2M_3$ tot een limiet.

3p 4 Bereken exact deze limiet in graden.

Er is één waarde van r waarvoor c_3 niet alleen raakt aan c_1 en c_2 , maar ook aan de x-as. In figuur 3 is deze situatie weergegeven, waarbij cirkel c_3 voor een deel is getekend.

Cirkel c_3 raakt de x-as in punt P.

figuur 3

 $\mathbf{5}$ **b** Bereken exact de waarde van r in deze situatie.

De baan van een punt P wordt gegeven door de volgende bewegingsvergelijkingen:

$$\begin{cases} x(t) = \cos(t) + \sin(2t) \\ y(t) = 2\cos(t) \end{cases}$$
 met t in seconden en x en y in meter.

Als t loopt van 0 tot 2π , doorloopt P de baan precies één keer. In figuur 1 is deze baan weergegeven. Ook is te zien waar P zich bevindt op t=0 en in welke richting P zich dan beweegt.

figuur 1

figuur 2

Bereken met behulp van differentiëren de maximale snelheid van het punt P in meter per seconde. Rond je antwoord af op één decimaal.

Voor $0 \le t \le 2\pi$ zijn er vier tijdstippen waarop de x-coördinaat en de y-coördinaat van P aan elkaar gelijk zijn. Op deze tijdstippen bevindt P zich achtereenvolgens in de punten A, O, B en O. Zie figuur 2.

7 Bereken exact hoeveel seconden de beweging van A naar B duurt.

Een punt Q maakt dezelfde beweging als P, maar Q loopt π seconden vóór op P.

De bewegingsvergelijkingen van ${\it Q}$ zijn dan:

$$\begin{cases} x(t) = \cos(t+\pi) + \sin(2(t+\pi)) \\ y(t) = 2\cos(t+\pi) \end{cases}$$

Als $t = \frac{1}{2}\pi$ en als $t = \frac{3}{2}\pi$, vallen P en Q samen. Op alle andere tijdstippen is er sprake van een lijnstuk PQ.

4p 8 Bewijs dat de helling van lijnstuk PQ onafhankelijk van t is.

5р

De functie f is gegeven door:

$$f(x) = \frac{5}{4x - 6}$$

De lijn k met vergelijking $y = x - 3\frac{1}{2}$ snijdt de grafiek van f in twee punten, A en B. Zie figuur 1. De coördinaten van punt A zijn $(1, -2\frac{1}{2})$.

figuur 1

4p **9** Bereken exact de coördinaten van punt B.

Het vlakdeel V wordt ingesloten door de grafiek van f, de x-as, de y-as en de lijn k. In figuur 2 is dit vlakdeel grijs gemaakt.

 ${\it V}$ wordt gewenteld om de ${\it x}$ -as. Zo ontstaat een omwentelingslichaam.

5p **10** Bereken exact de inhoud van dit omwentelingslichaam.

figuur 2

De grafiek van f wordt a eenheden naar boven verschoven. Zo ontstaat de grafiek van een functie g. De waarde van a kan zowel positief als negatief zijn.

De functie g heeft een inverse functie. De grafiek van de inverse functie van g heeft één verticale asymptoot. Ook de grafiek van g heeft een verticale asymptoot. Gegeven is, dat de afstand tussen deze twee verticale asymptoten gelijk is aan 4.

4p 11 Bereken exact de mogelijke waarden van a.

De (lucht)temperatuur tijdens een bepaald soort **natuurlijke brand** kan worden beschreven met het volgende model:

$$T_{\text{nat}}(t) = 20 + 1050 \cdot e^{-\ln^2(t) + 6\ln(t) - 9}$$

Hierin is $T_{\rm nat}$ de temperatuur in °C en t de tijd in minuten vanaf het begin van de brand. De bijbehorende grafiek is weergegeven in figuur 1.

figuur 1 natuurlijke brand

In de figuur is te zien dat de temperatuur bij deze natuurlijke brand een maximum bereikt.

5p 12 Bereken exact deze maximale temperatuur.

Deuren worden getest op hun brandwerendheid door ze in een laboratorium aan een brand bloot te stellen.

De temperatuur tijdens zo'n **laboratoriumbrand** verloopt anders dan bij de natuurlijke brand, namelijk volgens de formule:

$$T_{\text{lab}}(t) = 20 + 345 \cdot \log(8t + 1)$$

Hierin is T_{lab} de temperatuur in °C en t de tijd in minuten vanaf het begin van de brand. De bijbehorende grafiek is weergegeven in figuur 2.

figuur 2 laboratoriumbrand

Temperaturen onder de 300 °C leveren geen blijvende schade aan de deur op. Pas vanaf een temperatuur van 300 °C heeft een deur onder de brand te lijden. Het tijdstip t waarop deze temperatuur bij de laboratoriumbrand wordt bereikt, is afgerond op twee decimalen 0,69. Zie figuur 2.

^{4p} **13** Bereken algebraïsch het tijdstip *t* waarop de temperatuur bij de laboratoriumbrand de waarde 300 °C bereikt. Rond je antwoord af op drie decimalen.

In de rest van deze opgave bekijken we een deur die wordt blootgesteld aan een laboratoriumbrand. Deze deur blijkt precies 30 minuten stand te houden. Men vraagt zich af hoe berekend kan worden of zo'n deur tijdens de natuurlijke brand óók 30 minuten standhoudt.

In figuur 3 is het vlakdeel grijs gemaakt dat wordt ingesloten door de grafiek van $T_{\rm lab}$, de horizontale lijn met vergelijking $T=300\,$ en de verticale lijn met vergelijking $t=30\,$.

figuur 3 laboratoriumbrand

De Amerikaan Simon Ingber deed in 1928 de volgende veronderstelling:

De deur bezwijkt tijdens de natuurlijke brand op dát tijdstip t_b , waarvoor geldt dat de oppervlakte tussen de grafiek van $T_{\rm nat}$, de horizontale lijn met vergelijking T=300 en de verticale lijn met vergelijking $t=t_b$ gelijk is aan de oppervlakte van het grijze vlakdeel in figuur 3.

Onderzoek of volgens de veronderstelling van Ingber de deur tijdens de natuurlijke brand minstens 30 minuten standhoudt.

Let op: de laatste vraag van dit examen staat op de volgende pagina.

Perforatie

Voor elke waarde van p, met $p \neq 0$, is de functie f_p gegeven door:

$$f_p(x) = \frac{px^2 + 4px + 6}{(x^2 + 1)(x - 2)}$$

Er is één waarde van p waarvoor de grafiek van f_p een perforatie heeft.

6p 15 Bereken exact de coördinaten van die perforatie.