Zadanie 1.

Zmienna X ma rozkład o gęstości $f(x) = \frac{1}{2} \cdot x^2 \cdot e^{-x}$ określonej na przedziale $(0, \infty)$.

Zmienna losowa Y ma rozkład o gęstości $g(y) = \frac{1}{\sqrt{6 \cdot \pi}} \cdot \exp\left(-\frac{(y-3)^2}{6}\right)$ określonej

na całej osi liczb rzeczywistych. Kowariancja tych zmiennych wynosi -3. Wariancja zmiennej (X+Y) wynosi:

- (A) 0
- (B) 1.5
- (C) 3
- (D) 4.5
- (E) podane informacje o parze zmiennych losowych są sprzeczne

Zadanie 2.

W urnie znajduje się 10 kul białych i 10 kul czarnych. Wybieramy z urny kolejno, *bez zwracania* po jednej kuli aż do momentu wyciągnięcia po raz pierwszy kuli czarnej. Wartość oczekiwana liczby wyciągniętych białych kul jest równa:

- (A) 5
- (B) $\frac{1}{2}$
- (C) $\frac{10}{11}$
- (D) 1
- (E) $\frac{19}{20}$

Wskazówka: można uprościć rozwiązanie, wyobrażając sobie iż 20 kul (w tym 10 białych i 10 czarnych) poddanych zostało losowej permutacji

Zadanie 3.

Talia składa się z 52 kart, po 13 kart każdego z 4 kolorów: *trefl, karo, kier, pik.* W każdym kolorze 4 karty to *figury*, zaś pozostałe 9 kart to *blotki*.

Z dobrze potasowanej talii wybieramy kolejno 2 karty *bez zwracania*. Rozważmy następujące zdarzenia losowe:

 A_1 = "pierwsza wybrana karta jest *blotką kierową*"

 B_1 = "pierwsza wybrana karta jest *blotką treflową*"

 C_1 = "pierwsza wybrana karta jest *figurą kierową*"

 D_1 = "pierwsza wybrana karta jest *figurą treflową*"

 E_1 = "pierwsza wybrana karta jest *pikiem*"

 T_2 = "druga wybrana karta jest *treflem*"

 K_2 = "druga wybrana karta jest *kierem* lub *figurą treflową*"

Wybierz tę z poniższych relacji, która jest prawdziwa:

(A)
$$\operatorname{Pr}(K_2 \cap T_2 | A_1) = \operatorname{Pr}(K_2 | A_1) \cdot \operatorname{Pr}(T_2 | A_1)$$

(B)
$$\operatorname{Pr}(K_2 \cap T_2 | B_1) = \operatorname{Pr}(K_2 | B_1) \cdot \operatorname{Pr}(T_2 | B_1)$$

(C)
$$\operatorname{Pr}(K_2 \cap T_2 | C_1) = \operatorname{Pr}(K_2 | C_1) \cdot \operatorname{Pr}(T_2 | C_1)$$

(D)
$$\operatorname{Pr}(K_2 \cap T_2|D_1) = \operatorname{Pr}(K_2|D_1) \cdot \operatorname{Pr}(T_2|D_1)$$

(E)
$$\operatorname{Pr}(K_2 \cap T_2|E_1) = \operatorname{Pr}(K_2|E_1) \cdot \operatorname{Pr}(T_2|E_1)$$

Zadanie 4.

Załóżmy, że niezależne zmienne losowe X_1 , X_2 , X_3 , X_4 mają rozkłady wykładnicze o wartościach oczekiwanych odpowiednio: 1, 2, 3 i 4.

$$Pr(X_1 = min\{X_1, X_2, X_3, X_4\})$$
 wynosi:

- (A) 0,46
- (B) 0,48
- (C) 0,50
- (D) 0,52
- (E) 0,54

Wskazówka zauważ, iż zdarzenie powyższe jest równoważne zdarzeniu, iż pierwsza ze zmiennych przyjęła wartość mniejszą lub równą minimum z trzech pozostałych

Zadanie 5.

O zmiennych losowych X_1, X_2, \ldots, X_n o tej samej wartości oczekiwanej równej μ oraz tej samej wariancji równej σ^2 zakładamy, iż:

$$COV(X_i, X_j) = \rho \cdot \sigma^2$$
 dla $i \neq j$.

Zmienne losowe $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n$ są nawzajem niezależne oraz niezależne od zmiennych losowych X_1, X_2, \ldots, X_n , i mają rozkłady prawdopodobieństwa postaci:

$$\Pr(\varepsilon_i = 1) = \Pr(\varepsilon_i = -1) = \frac{1}{2}.$$

Wariancja zmiennej losowej $S = \sum_{i=1}^{n} \varepsilon_i \cdot X_i$ wynosi:

(A)
$$n \cdot (\mu^2 + \sigma^2)$$

(B)
$$n \cdot (\mu^2 + \sigma^2 \cdot (1+\rho))$$

(C)
$$n \cdot (\mu^2 + \sigma^2) + n \cdot (n-1) \cdot \rho$$

(D)
$$n \cdot (\mu^2 + \sigma^2 + (n-1) \cdot \sigma^2 \cdot \rho)$$

(E)
$$n \cdot (\mu^2 + (n-1) \cdot \sigma^2 \cdot \rho)$$

Uwaga: chodzi o poprawność wzoru ogólną, tzn. dla dowolnych dopuszczalnych wartości parametrów n, ρ, σ^2, μ .

Zadanie 6.

Niech $X_{\scriptscriptstyle 1}, X_{\scriptscriptstyle 2}, \dots, X_{\scriptscriptstyle n}$ będzie próbką prostą z rozkładu o gęstości:

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} \cdot x^{\frac{1}{\theta} - 1} & dla & x \in (0, 1) \\ 0 & dla & x \notin (0, 1) \end{cases}$$

Jeśli $\hat{\theta}$ jest estymatorem największej wiarogodności nieznanego parametru $\theta>0$, to jego wariancja wynosi:

- (A) $\frac{2 \cdot \theta^2}{n}$
- (B) $\frac{\theta}{\sqrt{n}}$
- (C) $\frac{\theta^2}{n}$
- (D) $2 \cdot \theta^2$
- (E) $\frac{\left(\theta^2 + \theta\right)}{n}$

Zadanie 7.

 U_1,U_2,\ldots są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale (0,1). Obserwujemy pojedynczą zmienną losową X, i rozpatrujemy następujące hipotezy:

 $H_{\scriptscriptstyle 0}\colon \ \ X \ \ {
m marozkład} \ \ {
m taki, jak} \ \ \ {
m min} \left\{U_{\scriptscriptstyle 1}, U_{\scriptscriptstyle 2}, U_{\scriptscriptstyle 3} \right\}$

 $H_{\mathrm{1}} \colon \ X \ \mathrm{ma\ rozkład\ taki, jak} \ \min \Bigl\{ U_{\mathrm{1}}, U_{\mathrm{2}} \Bigr\}$

Najmocniejszy test na poziomie istotności $\alpha = \frac{1}{8}$ ma moc równą:

- $(A) \qquad \frac{1}{4}$
- (B) $\sqrt[2]{\frac{1}{8}}$
- (C) $\frac{1}{2}$
- (D) $\sqrt[3]{\frac{1}{4}}$
- (E) $\frac{3}{4}$

Zadanie 8.

Wykonujemy n rzutów kością do gry i weryfikujemy hipotezę H_0 mówiącą, że kość jest rzetelna - tzn. że każda liczba oczek pojawia się z jednakowym prawdopodobieństwem równym $\frac{1}{6}$. Standardowy test χ^2 na poziomie istotności 0.001 odrzuca hipotezę zerową, jeśli obliczona wartość statystyki χ^2 przekracza 20.515 (kwantyl rzędu 0.999 rozkładu χ^2 z pięcioma stopniami swobody). Przypuśćmy, że wykonaliśmy tylko n=6 rzutów. Jest to zbyt mało, żeby asymptotyczne przybliżenie rozkładu χ^2 było zadowalające. Faktyczny rozmiar testu: "odrzucamy H_0 , jeśli wartość statystyki χ^2 przekroczy 20.515" wynosi:

- (A) $\frac{1}{6^5}$
- (B) $\frac{5}{6^5}$
- (C) $\frac{1}{6^4}$
- (D) $\frac{5}{6^4}$
- (E) $\frac{31}{6^5}$

Zadanie 9.

Dwie niezależne próbki proste: X_1, X_2, \ldots, X_n oraz Y_1, Y_2, \ldots, Y_n pochodzą z tego samego rozkładu normalnego o parametrach (μ, σ^2) . Jeden statystyk ma do dyspozycji pierwszą próbkę, drugi zaś drugą próbkę. Obaj statystycy znają wariancję σ^2 , żaden nie zna wartości oczekiwanej μ . Każdy z nich buduje na podstawie swojej próbki przedział ufności dla μ na poziomie ufności 0.8. Prawdopodobieństwo, iż przedziały zbudowane przez nich okażą się rozłączne, wynosi:

- (A) 0.04
- (B) 0.40
- (C) 0.02
- (D) 0.07
- (E) 0.36

Zadanie 10.

Na początku doświadczenia w urnie I znajdują się 3 kule białe, zaś w urnie II - 3 kule czarne. Losujemy po jednej kuli z każdej urny - po czym kulę wylosowaną z urny I wrzucamy do urny II, a tę wylosowaną z urny II wrzucamy do urny I. Czynność tę powtarzamy wielokrotnie. Granica (przy $n \to \infty$) prawdopodobieństwa, iż obie kule wylosowane w n-tym kroku są jednakowego koloru, wynosi:

- $(A) \qquad \frac{2}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{4}{10}$
- (D) $\frac{1}{3}$
- (E) $\frac{1}{4}$

Egzamin dla Aktuariuszy z 23 października 1999 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI		
Pesel			

Zadanie nr	Odpowiedź	Punktacja*
1	Е	
2	С	
3	В	
4	В	
5	A	
6	C	
7	A	
8	A	
9	D	
10	С	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.