Examples

2/42

Outline

Low-rank approximation: a tool for data modeling

Ivan Markovsky

University of Southampton

1/42

Examples

A setting for data modeling

Solution methods

Exact line fitting

the points $w_i = (x_i, y_i)$, i = 1, ..., N lie on a line (*) \updownarrow ere is $(a, b, c) \neq 0$ such that $ax_i + by_i + c = 0$ for i = 1

there is $(a,b,c) \neq 0$, such that $ax_i + by_i + c = 0$, for i = 1,...,N

there is $(a,b,c) \neq 0$, such that $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$

$$\operatorname{rank}\left(\begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix}\right) \leq 2 \tag{**}$$

Examples

A setting for data modeling

Solution methods

A setting for data modeling Solution methods

- restatement of problem (*) as an equivalent problem (**)
- however, (**) is a standard problem in linear algebra
- the solution generalizes to
 - 1. multivariable data (points in \mathbb{R}^q) fitted by an affine set
 - 2. time-series fitting by linear time-invariant dynamical models
 - 3. data fitting by nonlinear models

3/42 4/42

Exact conic section fitting

the points $w_i = (x_i, y_i)$, i = 1, ..., N lie on a conic section \updownarrow

there are $A = A^{\top}$, b, c, at least one of them nonzero, such that $w_i^{\top} A w_i + b^{\top} w_i + c = 0$, for i = 1, ..., N

 \updownarrow

there is $(a_{11}, a_{12}, a_{22}, b_1, b_2, c) \neq 0$, such that

$$\begin{bmatrix} a_{11} & 2a_{12} & b_1 & a_{22} & b_2 & c \end{bmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1y_1 & \cdots & x_Ny_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$$

5/42

Examples

A setting for data modeling

Solution method

N < 5 → nonunique fit

• *N* = 5 (different points) → unique fit

• $N > 5 \implies$ generically no conic section fits the data exactly

the points $w_i = (x_i, y_i), i = 1, ..., N$ lie on a conic section

$$\operatorname{rank}\left(\begin{bmatrix}x_1^2 & \cdots & x_N^2 \\ x_1y_1 & \cdots & x_Ny_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1\end{bmatrix}\right) \leq 5$$

6/42

Examples

A setting for data modeling

Solution method

Exact fitting by linear homogeneous recurrence relations with constant coefficients

the sequence $w = (w_1, \dots, w_T)$ is generated by linear recurrence relations with lag $\leq \ell$

there is
$$a = (a_0, a_1, \dots, a_\ell) \neq 0$$
, such that

$$a_0 w_i + a_1 w_{i+1} + \dots + a_\ell w_{i+\ell} = 0$$
, for $i = 1, \dots, T - \ell$

 \mathbb{I}

there is $a = (a_0, a_1, \dots, a_\ell) \neq 0$, such that

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} w_1 & w_2 & \cdots & w_{T-\ell} \ w_2 & w_3 & \cdots & w_{T-\ell+1} \ dots & dots & dots \ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{aligned} \end{bmatrix} = oldsymbol{a}^ op \mathscr{H}_\ell(w) = 0$$

7/42

the sequence $w = (w_1, \dots, w_T)$ is a linear recursion with lag $\leq \ell$

 $\mathsf{rank} \left(\begin{bmatrix} w_1 & w_2 & \cdots & w_{T-\ell} \\ w_2 & w_3 & \cdots & w_{T-\ell+1} \\ \vdots & \vdots & & \vdots \\ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{bmatrix} \right) \leq \ell$

- $T \le 2\ell \iff$ there is exact fit (independent of w)
- $T > 2\ell \implies$ generically there is no exact fit

9/42

Examples

A setting for data modeling

Solution methods

Data, model class, and exact fitting test

	line fitting	conic section fitting	$\begin{array}{c} \text{linear} \\ \text{recurrence} \\ \text{with lag} \leq \ell \end{array}$	GCD
data	points (in \mathbb{R}^2)	points (in \mathbb{R}^2)	sequence	pair of polynomials
model class	lines (in \mathbb{R}^2)	conic sections	autonomous LTI systems	polynomials with nontrivial GCD
exact fitting test	rank condition	rank condition	rank condition	rank condition

Examples A setting for data modeling Solution method

Existence of greatest common divisor

$$\rho(z) := p_0 + p_1 z + \dots + p_m z^m \quad \text{and} \quad q(z) := q_0 + q_1 z + \dots + q_n z^n$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\text{rank} \begin{pmatrix} p_0 & q_0 & \\ \vdots & \ddots & \vdots & \ddots \\ p_m & p_0 & q_n & q_0 \\ & \ddots & \vdots & \ddots & \vdots \\ p_m & p_0 & q_n & q_0 \\ & \ddots & \vdots & \ddots & \vdots \\ p_m & q_n & q_n \end{pmatrix} \leq m + n - \ell$$

10/42

Examples A setting for data modeling Solution methods

exact fitting test \iff rank condition

11/42 12/42

Outline

Examples

A setting for data modeling

Solution methods

13/42

Examples

A setting for data modeling

Solution method

Exact vs approximate models

- •
 ß is an exact model for
 ② if
 ② ⊂
 ß

 otherwise
 ß is an approximate model for
 ②
- $\mathscr{B} = \mathscr{U}$ is a (trivial) exact model for any $\mathscr{D} \subset \mathscr{U}$

 - → notion of model complexity
- any model is approximate model for any data set
 - we need to quantify the approximation accuracy
 - → notion of model accuracy (w.r.t. the data)

Abstract setting for data modeling

• data space \mathscr{U} examples: \mathbb{R}^q , $(\mathbb{R}^q)^T$, $\mathbb{R}[z] \times \mathbb{R}[z]$, $\{\text{true, false}\}$

• data $\mathscr{D} = \{\mathscr{D}_1, \dots, \mathscr{D}_N\} \subset \mathscr{U}$ $\mathscr{D}_i \in \mathscr{U}$ — observation, relalization, or outcome

• model $\mathscr{B} \subset \mathscr{U}$ an exclusion rule, declares what outcomes are possible

• model class $\mathcal{M} \subset 2^{\mathcal{U}}$

14/42

Examples

A setting for data modeling

Solution method

Summary

- data set $\mathscr{D} \subset \mathscr{U}$ $\xrightarrow{\text{data modeling problem}}$ $\text{model } \mathscr{B} \in \mathscr{M}$
 - set of all possible observations ${\mathscr U}$
 - model class M
- basic criteria in any data modeling problem are:
 - · "simple" model and
 - · "good" fit of the data by the model

contradicting objectives

· core issue in data modeling complexity-accuracy trade-off

15/42 16/42

Notes

- in the classical setting, models are viewed as equations and a model class is a parameterized equation
- in our setting, models are subsets of the data space $\mathscr U$ and equations are used as representations of models
- allows us to define equivalence of model representations
- · establish links among data modeling methods
- model complexity and misfit (lack of fit) b/w data and model have appealing geometrical definitions

17/42

Examples

A setting for data modeling

Solution method

Linear model complexity

- a linear model ${\mathscr B}$ is a subspace of ${\mathscr U}$ (${\mathscr U}$ is a vector space)
- the complexity of $\mathcal B$ is defined as its dimension
- in the linear case

$$\mathscr{D} \subset \mathscr{B} \Longrightarrow \operatorname{span}(\mathscr{D}) \subset \mathscr{B}$$

and the rank of the data matrix is $\leq \dim(\mathcal{B})$

• span(\mathcal{D}) — the smallest linear model, consistent with \mathcal{D}

Model complexity

- the "smaller" a model is the more powerful/useful it is
- the "bigger" a model is the more complex it is
- we prefer simple models over complex ones
- exact modeling problem:
 find the least complex model that fits the data exactly

18/42

Example

A setting for data modeling

Solution methods

Model accuracy

- let $\mathscr U$ be a normed vector space with norm $\|\cdot\|$
- the distance between the data \mathscr{D} and a model \mathscr{B}

$$\operatorname{dist}(\mathscr{D},\mathscr{B}) := \min_{\widehat{\mathscr{D}} \subset \mathscr{B}} \|\mathscr{D} - \widehat{\mathscr{D}}\| \tag{1}$$

measures the lack of fit (misfit) between $\mathscr D$ and $\mathscr B$

(1) is the projection of the data on the model

19/42 20/42

Examples

A setting for data modeling

lution mothode

mples A setting for data modeling Solution

Example: $\mathcal{U} = \mathbb{R}^2$, \mathscr{B} linear, Euclidean norm

21/42

Examples

A setting for data modeling

Solution method

Complexity-accuracy trade-off

- a linear model ${\mathscr B}$ is a subspace of ${\mathscr U}$
- a complexity measure of \mathscr{B} is its dimension $\dim(\mathscr{B})$
- misfit distance from \mathscr{D} to \mathscr{B}

$$M(\mathscr{D},\mathscr{B}) := \operatorname{dist}(\mathscr{D},\mathscr{B}) := \min_{\widehat{\mathscr{D}} \subset \mathscr{B}} \|\mathscr{D} - \widehat{\mathscr{D}}\|_{\mathscr{U}}$$

• data modeling problem: given $\mathscr{D}\subset\mathscr{U}$ and $\|\cdot\|_{\mathscr{U}}$

 $\begin{array}{ll} \text{minimize} & \text{over all linear models } \mathscr{B} & \begin{bmatrix} \dim(\mathscr{B}) \\ M(\mathscr{D},\mathscr{B}) \end{bmatrix} & \text{(DM)} \end{array}$

• a bi-objective optimization problem

Example: $\mathcal{U} = \mathbb{R}^2$, \mathscr{B} quadratic, Euclidean norm

22/42

Examples

A setting for data modeling

Solution method

The data matrix $\mathcal{S}(p)$

- the data set \mathscr{D} can be parameterized by a real vector $p \in \mathbb{R}^{n_p}$ via a map $\mathscr{S} : \mathbb{R}^{n_p} \to \mathbb{R}^{m \times n}$
- $\mathscr S$ depends on the application $(\mathscr S \text{ is affine in case of linear models})$
- in static linear modeling problems, $\mathcal{S}(p)$ is unstructured
- in dynamic LTI modeling problems, $\mathcal{S}(p)$ is block-Hankel
- fact

$$\dim(\mathscr{B}) \ge \operatorname{rank}(\mathscr{S}(p)) \tag{*}$$

23/42 24/42

The approximation criterion

- $\|\widehat{\mathbf{g}} \widehat{\mathbf{g}}\|_{\mathcal{A}} = \|\mathbf{p} \widehat{\mathbf{p}}\| = \|\widetilde{\mathbf{p}}\|$
- weighted 1-, 2-, and ∞-(semi)norms:

$$\begin{split} \|\widetilde{\rho}\|_{w,1} &:= \|w \odot \widetilde{\rho}\|_1 := \sum_{i=1}^{n_p} |w_i \widetilde{\rho}_i| \\ \|\widetilde{\rho}\|_{w,2} &:= \|w \odot \widetilde{\rho}\|_2 := \sqrt{\sum_{i=1}^{n_p} (w_i \widetilde{\rho})^2} \\ \|\widetilde{\rho}\|_{w,\infty} &:= \|w \odot \widetilde{\rho}\|_{\infty} := \max_{i=1,\dots,n_p} |w_i \widetilde{\rho}_i| \end{split}$$

- w nonnegative vector, specifying the weights
- • — element-wise product
- in the stochastic setting of errors-in-variables modeling, || \cdot | corresponds to the distribution of the measurement noise

25/42

A setting for data modeling

- (LRA) low-rank approximation problem
- (RM) rank minimization problem
- method for solving (RM) can solve (LRA) (using bisection) and vice verse
- varying $r, e \in [0, \infty)$ the solutions of (LRA) and (RM) sweep the trade-off curve (Pareto optimal solutions of (DM))
- r is discrete and "small" e is continuous and generally unknown
- in applications, an upper bound for r is often specified

Low-rank approximation and rank minimization

A setting for data modeling

• (DM) becomes a matrix approximation problem:

minimize over
$$\widehat{p} = \begin{bmatrix} \operatorname{rank} \left(\mathscr{S}(\widehat{p}) \right) \\ \| p - \widehat{p} \| \end{bmatrix}$$
 (DM')

- two possible scalarizations:
- 1. misfit minimization with a bound *r* on the model complexity minimize over $\widehat{p} \parallel p - \widehat{p} \parallel$ subject to rank $(\mathscr{S}(\widehat{p})) \leq r$ (LRA)
- 2. model complexity minimization with a bound e on the misfit minimize over \widehat{p} rank $(\mathscr{S}(\widehat{p}))$ subject to $\|p-\widehat{p}\| \le e$ (RM)

26/42

A setting for data modeling

Example: approximate line fitting in \mathbb{R}^2

can be solved globally using the singular value decomposition of the data matrix

27/42

28/42

Example: approximate conic section fitting in \mathbb{R}^2

 $\text{minimize} \quad \text{over } \mathscr{B} \in \{ \text{conic sections} \} \quad \operatorname{dist}(\mathscr{D},\mathscr{B})$

minimize over \widehat{x}_i , \widehat{y}_i , i = 1, ..., N $\sum_{i=1}^{N} \left\| \begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \widehat{x}_i \\ \widehat{y}_i \end{bmatrix} \right\|_2^2$

$$\text{subject to} \quad \text{rank} \left(\begin{bmatrix} \widehat{x}_1^2 & \cdots & \widehat{x}_N^2 \\ \widehat{x}_1 \widehat{y}_1 & \cdots & \widehat{x}_N \widehat{y}_N \\ \widehat{x}_1 & \cdots & \widehat{x}_N \\ \widehat{y}_1^2 & \cdots & \widehat{y}_N^2 \\ \widehat{y}_1 & \cdots & \widehat{y}_N \\ 1 & \cdots & 1 \end{bmatrix} \right) \leq 5$$

29/42

Examples

A setting for data modeling

Solution methods

Algorithms

- with a few exceptions (LRA) and (RM) are non-convex optimization problems
- · all general methods are heuristics
- main classes of methods for solving (LRA) and (RM) are:
 - global optimization
 - local optimizations
 - convex relaxations
 - subspace methods and
 - · methods based on nuclear norm heuristics

Outline

Examples

A setting for data modeling

Solution methods

30/42

32/42

Example

A setting for data modeling

Solution methods

Unstructured low-rank approximation

$$\widehat{D}^* := \operatorname*{arg\,min}_{\widehat{D}} \|D - \widehat{D}\|_{\mathrm{F}} \quad \mathrm{subject\ to} \quad \mathrm{rank}(\widehat{D}) \leq r$$

Theorem (closed form solution)

Let $D = U\Sigma V^{\top}$ be the SVD of D and define

An optimal low-rank approximation solution is

$$\widehat{D}^* = U_1 \Sigma_1 V_1^{\top}, \qquad (\widehat{\mathscr{B}}^* = \ker(U_2^{\top}) = \operatorname{colspan}(U_1)).$$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$.

31/42

Structured low-rank approximation

No closed form solution is known for the general SLRA problem

$$\widehat{p}^* := \arg\min_{\widehat{p}} \|p - \widehat{p}\| \quad \text{subject to} \quad \operatorname{rank} \left(\mathscr{S}(\widehat{p})\right) \leq r.$$

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

$$\min_{R, \ RR^{\top} = I_{m-r}} \left(\min_{\widehat{p}} \|p - \widehat{p}\| \quad \text{subject to} \quad R\mathscr{S}(\widehat{p}) = 0 \right)$$

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that $R\mathscr{S}(\widehat{p}) = 0 \iff G(R)\widehat{p} = 0$.

33/42

A setting for data modeling

Solution methods

Nuclear norm heuristics

- leads to a semidefinite optimization problem
- existing algorithms with provable convergence properties and readily available high quality software packages
- additional advantage is flexibility: affine inequality constraints in the data modeling problem still leads to semidefinite optimization problems
- disadvantage: the number of optimization variables depends quadratically on the number of data points
- in my experience, the nuclear norm heuristics is less effective than alternative heuristics

Variable projection vs. alternating projections

Two ways to approach the double minimization:

 Variable projections (VARPRO): solve the inner minimization analytically

$$\min_{R,\ RR^\top = I_{m-r}} \text{vec}^\top \left(R \mathscr{S}(\widehat{p}) \right) \left(G(R) G^\top(R) \right)^{-1} \text{vec} \left(R \mathscr{S}(\widehat{p}) \right)$$

 \rightarrow a nonlinear least squares problem for R only.

 Alternating projections (AP): alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.

34/42

A setting for data modeling

Solution methods

Nuclear norm heuristics for SLRA

- nuclear norm: $||M||_* = \text{sum of the singular values of } M$
- regularized nuclear norm minimization

minimize over
$$\widehat{p}$$
 $\|\mathscr{S}(\widehat{p})\|_* + \gamma \|p - \widehat{p}\|$ subject to $\widehat{G}\widehat{p} \leq h$

using the fact

$$\|M\|_* < \mu \iff \frac{1}{2} (\operatorname{trace}(U) + \operatorname{trace}(V)) < \mu \text{ and } \begin{bmatrix} U & M^\top \\ M & V \end{bmatrix} \succeq 0$$

we obtain an equivalent SDP problem

minimize over
$$\widehat{p}$$
, U , V , v $\frac{1}{2} (\operatorname{trace}(U) + \operatorname{trace}(V)) + \gamma v$ subject to $\begin{bmatrix} U & \mathscr{S}(\widehat{p})^{\top} \\ \mathscr{S}(\widehat{p}) & V \end{bmatrix} \succeq 0$, $\|p - \widehat{p}\| < v$, $G\widehat{p} \leq h$

35/42 36/42 Examples A setting for data modeling Solution methods Examples A sc

Nuclear norm heuristics for SLRA

- convex relaxation of (LRA) $\text{minimize} \quad \text{over } \widehat{p} \quad \|p-\widehat{p}\| \quad \text{subject to} \quad \|\mathscr{S}(\widehat{p})\|_* \leq \mu$ (RLRA)
- motivation: approx. with appropriately chosen bound on the nuclear norm tends to give solutions $\mathscr{S}(\widehat{p})$ of low rank
- (RLRA) can also be written in the equivalent form $\text{minimize} \quad \text{over } \widehat{p} \quad \|\mathscr{S}(\widehat{p})\|_* + \gamma \|p \widehat{p}\| \qquad \text{(RLRA')}$ $\gamma \text{regularization parameter related to } \mu \text{ in (RLRA)}$
- this is a regularized nuclear norm minimization problem

37/42

Examples A setting for data modeling

Solution methods

Hankel structured problem's trade-off curves

Examples A setting for data modeling Solution methods

Unstructured problem's trade-off curve

A setting for data modeling

Solution methods

38/42

Conclusions

common pattern in data modeling

data is exact for a model of bounded complexity

 \updownarrow

matrix constructed from the data is rank deficient

- ullet exact modeling pprox rank computation
- approximate modeling is a biobjective opt. problem accuracy vs complexity trade-off
- computationally approx. modeling leads to SLRA and RM

39/42 40/

Examples A setting for data modeling Solution methods Examples A setting for data modeling Solution methods

- regularized nuclear norm min. is a general and flexible tool
- can be used as a relaxation for low-rank approximation problems with the following desirable features:
 - arbitrary affine structure
 - any weighted 2-norm or even a weighted semi-norm
 - affine inequality constraints
 - regularization
- issues:
 - effectiveness in comparison with other heuristics
 - currently applicable to small sample sizes problems only

Questions?

41/42 42/42