Jaydev Singh Rao

Curriculum Vitae

Interests

- Statistical physics and Complex Systems
- o Computational Physics and Numerical Computing
- Open Source Scientific Software

Education

2019 – 2024 Indian Institute of Science Education and Research, Bhopal, India Bachelor and Master of Science (BS-MS), Department of EECS ¹ CPI (current): 9.60/10.0

2017 – 2019 **Kendriya Vidhyalaya**, Udaipur, Rajasthan, India AISSCE ², Central Board of Secondary Education Performance: 92.0%

Research Experience

2021 – 2022 Spin-systems and properties of their inter-configuration distances Supervisor: Prof. Markus Heyl, Theoretical Physics III, University of Augsburg, Germany

- Studied the theory of phase transitions in classical spin systems, mainly the Ising model and the XY model. Also implemented cluster based Monte-Carlo algorithm for these above models to study the critical point and the finite size effects.
- Used the Monte-Carlo generated configurations to study the behavior of nearest neighbor distances around the critical point and explored the possibility of characterizing the critical point using these distances.
- Derived probabilistic bounds which, along with numerical results helped in relating the the behavior of such distances to the structure factors of the individual configurations.
- Studied the theory of the quantum XY model and its solution using fermionic mapping. Also explored the possible application of previous results on this model using quantum Monte-Carlo.

¹Electrical Engineering and Computer Science

² All India Senior School Certificate Examination

2022 Higher order susceptibilities in 3-state Potts model with applications to the QCD critical point

Supervisor: Prof. Rajiv Gavai, Dept. of Physics, IISER Bhopal, India

- Implemented numerical simulation of 3-state potts model using cluster based Wolff Monte-Carlo algorithm. Also performed extensive analysis of the benefits of the cluster based algorithm near the critical point in contrast to Metropolis algorithm.
- Analyzed the behaviour of higher order susceptibilities i.e. higher cumulants of the mean magnetization, in the critical region.
- Explored the possibility of studying the crossover phenomena in this model using these higher order susceptibilities for applications in characterizing the QCD critical point using this model.

2021 Simulating the Maki-Thompson model on a network

Supervisor: Prof. Kundan Kandhway, Dept. of EECS, IISER Bhopal, India

- Studied the theory of stochastic propagation of information through a population, particularly the Maki-Thompson model.
- Implemented the Maki-Thompson model on a network as a set of coupled differential equations for each node.
- Numerically studied the dependence of rumor spreading on the degree distribution of nodes and the interaction rates determining the flow through edges.

Other Experience

June – Sept Open Source Contributor, The Julia Programming Language.

2022 Contributed to the open source molecular dynamics library **Molly.jl** by implementing multithreaded *Replica Exchange Molecular Dynamics (REMD)* algorithms. This project was funded by *Google Summer of Code 2022*. Project Link.

Positions of Responsibility

April–July Teaching Assistant, IISER Bhopal, Introduction to Programming, ECS102.

2022 Duties included guiding first year undergraduate student through *programming labs* and *invigilation* during exams.

Achievements and Honors

2022 Selected for **Google Summer of Code** for funding of an open source software project.

Software Skills

PROGRAMMING LANGUAGES: Julia, Python, C SCIENTIFIC SOFTWARES: Mathematica, Matlab OTHERS: HPC, LATEX, Bash scripting, Git & GitHub