Visualizing Graph Dynamics and Similarity for Enterprise Network Security and Management

Qi Liao, Aaron Striege+ and Nitesh Chawla Computer Science and Engineering University of Notre-Dame, USA.

Enterprise Network Management

Traditional Logging

- □ Network connectivity *logging* usually in form of *IP addresses* and *port numbers*.
- ☐ Traditional Cisco **NetFlow** definition:

Ingress	IP	IP	Src	Dst	Src	Dst
Interface	Protocol	TOS	IP	IP	port	port

- Where, but not Who and What
- ☐ Visual analysis of hosts, users and applications is more important and harder than traditional IP/ports visualization [Hertzog06, Lalanne07, Liao08]

Introduction

- □ Security management of enterprise networks is hard
 - Users and applications
 - Complex interrelationships
 - So <u>dynamic</u>, constantly changing
 - No clean signal. Traditional data mining for anomaly detection falls short
- ☐ Understanding the **dynamics** / similarities is non-trivial
 - Important step for anomaly detection

Similarity visualization

- ☐ First step to understand abnormality
- □ Key questions:
 - What are the changes?
 - What changes are (ab)normal?
 - How different (or similar) from day-to-day activities?
 - How to effectively visualize them?

Dynamic and noisy data(hosts, users, applications)

Similarity visualization

Insights
(variants, invariants, abnormal behaviors, root causes ...)

Hierarchical Similarity Visualization

Graphs

Top-down manner (overview + context)

- HUA connectivity graphs
- Bipartite graphs
- Similarity graphs

Inter-graphs

Among network graphs across multiple timelines.

Intra-graph

 Identify similar structure within each individual

nodes

 Dynamic of neighborhoods changes at each individual node level.

Similarity/Difference Visualization

Variance vs. invariance

Differential view

Visualizing graph property changes

Graph distance

- Quantification through normalized distance functions:
- ☐ Schenker: 2003, Bunke 1998, 2007.
- MCS based:

$$d(g_1, g_2) = 1 - \frac{|mcs(g_1, g_2)|}{\max(|g_1|, |g_2|)}$$

☐ Graph edit distance (GED) based:

$$d(g_1, g_2) = \frac{|g_1| + |g_2| - 2|mcs(g_1, g_2)|}{|g_1| + |g_2|}$$

Graph distance

MDS view (cluster evolution)

Top network components responsible

Day 14 -

Day 15

Dynamic interactive and exploration

Queries for degree trend

Hierarchical Similarity Visualization

Inter-graphs Intra-graph nodes

Intra-graph clustering visualization

- HUA connectivity graphs
- (Multi-)bipartite graphs
- Similarity graphs

HUA Graph Model

- Heterogeneous graph
- 4D space
 - ☐ Hosts, Users, Applications (*HUA*), Time

Examples (HU, HA)

Contribution: the ability to visualize the various combinations of HUA

Intra-graph clusters visualization

Cluster similarity visualization

- Visualizing the intra-graph clusters can provide:
 - Understanding of network usage pattern
 - Closely related community formed by similar hosts, users, apps.
 - Insight and potential anomaly analysis
- Quantify graphs changes through cluster distance
 - similar to Rand Index [Rand 1971]

$$dist(C_1, C_2) = 1 - \frac{SS + DD}{SS + SD + DD + DS}$$

Bipartite graphs

The general HUA connectivity graphs can be separated into (multi-)bipartite graphs.

host:iss-node030.cse.nd.edu L domain:128.105.175.0 R host:iss-node007.cse.nd.edu R host:iss-node032.cse.nd.edu L host:cclweb03.cse.nd.edu L domain:64.12.30.0 R host:cclweb00.cse.nd.edu L host:loco27.cse.nd.edu R host:129.74.153.243 L host:loco01.cse.nd.edu R host:cvrl-c0-15.cse.nd.edu L host:cvrl-c0-22.cse.nd.edu R host:cclscratch00.cse.nd.edu L host:bartok.helios.nd.edu R host:cclws00.cse.nd.edu L host:loco21.cse.nd.edu R host:classical.cselab.nd.edu L host:iss-node006.cse.nd.edu R host:chamber.cselab.nd.edu L domain:207.171.185.0 R host:cclws03.cse.nd.edu R host:thermometer.cse.nd.edu L host:cclsun12.cse.nd.edu L domain:64.124.109.0 R host:cvrl-c0-1.cse.nd.edu L domain:141.161.133.0 R host:129.74.154.230 L host:cvrl-c0-9.cse.nd.edu R host:cvrl-c0-2.cse.nd.edu L domain:205.188.211.0 R host:sc0-03.cse.nd.edu L host:msvpn-p1.cc.nd.edu R host;sc0-04.cse.nd.edu L host:styx.cse.nd.edu R host:cse-ibm-02.cse.nd.edu L host:confucius.helios.nd.edu R

host

host

Multi-bipartite graphs

Quadripartite graph

Biclique communities Users

Applications

Similarity graphs

- Previous
 - HUA heterogeneous graphs
 - (multi-)bipartite graphs
- □ Similarity graphs
 - Heterogeneity → Homogeneity
 - Push similarity into the edge weights
 - ☐ (Example)
 - □ nodes = users
 - edge weights = number of applications they share.

Hierarchical Similarity Visualization

Dynamics of Node Degrees

Node Dynamics/Similarity Visualization

- Neighborhood changes
- Hosts:
 - users
- ☐ Users:
 - hosts
 - applications
- Applications:
 - users
 - src/dst hsots
- Quick and easy visualization
 - 2D scatter plots

day i

Node Similarity Visualization

Node Similarity Visualization

11/15/2010

Node Similarity Visualization

Conclusion

- Visualizing dynamic relationships among hosts, users, and applications vs. traditional IP/port-based Netflow monitoring.
- Importance and challenges of similarity / differences of network graphs
 - Security / forensics / policy audit
 - Network management, troubleshoot
 - Anomaly analysis
- □ Similarity visualization: a promising approach.
- Novel transformation of graphs
 - HUA connectivity graphs, MDS graphs, (multi-)bipartite graphs, similarity graphs
- ☐ Hierarchical similarity visualization framework
 - Inter-graphs, intra-graphs, nodes
- ☐ More info available at http://netscale.cse.nd.edu/Lockdown