

UM242-T

先进双极性恒流斩波驱动技术。
DC10-40V供电
光电隔离信号输入/输出
有过压、欠压、过流、相间短路保护功能
具备脱机功能,适配电流小于2.2A及以下步进电机。
3挡输出相电流设置,自动半流功能,3挡细分设置,最
大32细分,满足各种机械传动。

细分:200-6400 VDC:10-40V 2.2A(Peak)

额定电压	10-40VDC	输出电流	0.6-2.2A	
额定电流	2.2A MAX	细分档设置	3档拨码开关设定	
电流设定	3挡拨码开关设定	尺寸	86*20*55mm	
控制信号	PUL&DIR	重量	0.1KG	
控制方式	方向+脉冲	存储环境	-20~80℃,避免阳光照射	
最高分辨率	6400PPR	适用电机	20-57mm混合式步进电机	

特点:

- 本驱动器有完善的保护功能,能最大限度的保护驱动器和电机的安全。
- 当驱动器过热、输出过流、相间短路报警中任何一个报警产生时,驱动器面板上的红色状态指示灯会亮起,同时自动切断电机使能,使电机处于脱机状态。
- 在设定电流、细分是务必使驱动器处于不加电源的状态,这样可避免因电流突变对驱动器功率逆变部分。
- 产生的冲击,参数设定完毕,重新上电后新的电流、细分参数才会生效。不规范的操作可能会造成驱动器的损坏。

细分设定

细分数	Pulse/rev	SW1	SW2	SW3
1	200	ON	ON	OFF
2/A	400	ON	OFF	ON
4	800	ON	OFF	OFF
2/B	400	OFF	ON	ON
8	1600	OFF	ON	OFF
16	3200	OFF	OFF	ON
32	6400	OFF	OFF	OFF

- *为改善电机低速时的噪音和振动,利用细分功能是理想的选择
- *本驱动器的细分设定是通过改变拨码开 关SW1、SW2、SW3位的状态来实现。

电流设定

SW4	SW5	SW6	Peak	RMS
ON	ON	ON	0.6A	0.42A
ON	ON	OFF	1.1A	0.75A
ON	OFF	ON	1.2A	0.85A
ON	OFF	OFF	1.5A	1.06A
OFF	ON	ON	1.7A	1.21A
OFF	ON	OFF	1.9A	1.34A
OFF	OFF	ON	2.0A	1.41A
OFF	OFF	OFF	2.2A	1.56A

- *配套不同的电机、需设定驱动器输出电流与之对应;设定输出电流一般参考步进电机铭牌上标准的电流值,这个值即为电机的峰值电流(Peak)。
- *本驱动器的电流设定是通过改变拨码开关SW4、SW5、SW6位的状态来实现。

控制信号时序图

T1:PUL和DIR信号为高速光耦隔离输入;支持共阳、共阴以及差分3中接口方式;脉冲下降沿有效;宽电平接受范围5V。 T2:ENA信号为脱机信号,有效时电机无励磁(FREE)状态。

典型接线方式

设定半流

- 1、本驱动器的半流功能为自动半流功能,无需设置。
- 2、驱动器在控制脉冲信号停止施加0.5秒左右,会自动进入半电流状态,这时电机相电流为运行时的70%以降低功耗减少电机发热,收到信的控制脉冲后驱动器自动退出半电流状态。

安装尺寸

Unit:mm

典型接线方式

A-4线电机接法

B-6线电机全绕组接法

C-6线电机半绕组接法

D-B线电机并联接法

E-8线电机串联接法

F-8线电机半绕组接法

- 1、电机铭牌上标注的电气参数为单个绕组的电气参数。
- 2、6线电机全绕组,其相电阻为单个绕组的2倍,相电感为单个绕组的4倍,因此6电机全绕组接法可在低速区获得更大的输出力矩,但同时也会导致高速时输出力矩降低。使用这种接线方式时应按额定电流的70%设定,以降低电机发热。
- 3、8线电机并联时,其相电阻为单个绕组50%,相电感与单绕组相等,相电流为单个绕组的2倍,因此可获得更高的转速和力矩输出。
- 4、8线电机并联时,其相电阻为单个绕组的2倍,相电感为单个绕组的4倍,因此可在低速区获得更大的输出力矩,但同时也会导致高速时输出力矩降低。使用这种接线方式时应按额定电流的70%设定,以降低电机发热。
- 5、6线和8线的半绕组连接方式与4线电机连接方式无异。