

Prüfbericht-Nr.:

50045317 001

Auftrags-Nr.: Order No.:

Order date:

154157285

2016.04.03

Seite 1 von 22

Test Report No.:

Auftragsdatum:

Page 1 of 22

Kunden-Referenz-Nr.:

Client Reference No.:

ID-RF SAS

639393

Auftraggeber: Client:

121 RUE DES HETRES, ST CYR EN VAL, France

Prüfgegenstand:

Z-Wave Controller

Test item:

CRC-3US-1 Bezeichnung / Typ-Nr.:

Identification / Type No.:

FCC ID: 2AIHGCRC-3US-1

IC: 21504-CRC3US1

Auftrags-Inhalt: Order content:

Complete test

Prüfgrundlage: Test specification: FCC CFR47 Part 15, Subpart C Section 15.249

ANSI C63.10: 2013

RSS-Gen Issue 4. November 2014 RSS-210 Issue 8, December 2010

Wareneingangsdatum: Date of receipt:

2016.03.30

Prüfmuster-Nr.:

A000351921-001

Test sample No.:

Prüfzeitraum: Testing period: 2016.04.07 to 2016.04.10

Ort der Prüfung:

MRT Technology(Suzhou)

Place of testing: Co., Ltd.

Prüflaboratorium:

TÜV Rheinland (Shanghai) Co., Ltd.

Testing laboratory:

geprüft von / tested by:

Pass

Prüfergebnis*: Test result*:

kontrolliert von I reviewed by:

Elliot Zhang / Senior Project Engineer 2016.08.11 Datum Name / Stellung Name / Position

Unterschrift Signature

2016.08.11

Shi Li / Section Manager Name / Stellung

Datum Unterschr Name / Position Date Signature

Sonstiges / Other

Date

Zustand des Prüfgegenstandes bei Anlieferung: Condition of the test item at delivery:

Prüfmuster vollständig und unbeschädigt Test item complete and undamaged

* Legende:

1 = sehr gut

2 = gut

3 = befriedigend

4 = ausreichend

5 = mangelhaft

P(ass) = entspricht o.g. Prüfgrundlage(n)

F(ail) = entspricht nicht o.g. Prüfgrundlage(n)

N/A = nicht anwendbar

N/T = nicht getestet

Leaend:

4 = sufficient

1 = verv good

3 = satisfactory

5 = poor

N/T = not tested

P(ass) = passed a.m. test specification(s)

F(ail) = failed a.m. test specification(s)

N/A = not applicable

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

Seite 2 von 22

Produkte Products

Prüfbericht - Nr.: 50045317 001

Test Report No. Page 2 of 22

TEST SUMMARY

5.1.1 ANTENNA REQUIREMENT

RESULT: Pass

5.1.2 FIELD STRENGTH OF FUNDAMENTAL EMISSIONS

RESULT: Pass

5.1.3 RADIATED EMISSIONS

RESULT: Pass

5.1.4 20DB BANDWIDTH AND 99% BANDWIDTH

RESULT: Pass

5.1.5 RF EXPOSURE STATEMENT

RESULT: Pass

Products

Seite 3 von 22 Prüfbericht - Nr.: 50045317 001 Page 3 of 22 Test Report No. Contents GENERAL REMARKS4 1.1 COMPLEMENTARY MATERIALS4 2. Test Sites4 2.1 TEST FACILITIES4 2.2 2.3 TRACEABILITY6 2.4 CALIBRATION6 2.5 MEASUREMENT UNCERTAINTY......6 3. GENERAL PRODUCT INFORMATION7 3.1 3.2 RATINGS AND SYSTEM DETAILS7 3.3 INDEPENDENT OPERATION MODES7 3.4 3.5 TEST SET-UP AND OPERATION MODES8 4. 4.1 TEST OPERATION AND TEST SOFTWARE8 4.2 4.3 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT8 4.4 COUNTERMEASURES TO ACHIEVE EMC COMPLIANCE......8 5. Test Results 9 TRANSMITTER REQUIREMENT & TEST SUITES9 5.1 5.1.1 Antenna Requirement 9 5.1.2 5.1.3 5.1.4 20dB Bandwidth and 99% Bandwidth 19 5.1.5 LIST OF TABLES22 6. 7. LIST OF FIGURES22

 Prüfbericht - Nr.:
 50045317 001
 Seite 4 von 22

 Test Report No.
 Page 4 of 22

1. General Remarks

1.1 Complementary Materials

Null.

2. Test Sites

2.1 Test Facilities

MRT Technology (Suzhou) Co., Ltd.

D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China

The used test equipment is in accordance with CISPR 16 for measurement of radio interference.

The Federal Communications Commission has reviewed the technical characteristics of the radiated and conducted emission facility, and has found these test facilities to be in compliance with the requirements of section 2.948 of the FCC rules. The description of the test facility is listed under FCC registration number 809388.

The Industry Canada has reviewed the technical characteristics of the radiated and conducted emission facility, and has found these test facilities to be in compliance. The description of the test facility is listed under chambers filing number 11384A.

 Prüfbericht - Nr.:
 50045317 001
 Seite 5 von 22

 Test Report No.
 Page 5 of 22

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Conducted Emissions

Instrument	Manufacturer	Type No.	Serial No.	Cali. Due Date
EMI Test Receiver	R&S	ESR7	101209	2016.11.03
Two-Line V-Network	R&S	ENV216	101683	2016.11.03
Two-Line V-Network	R&S	ENV216	101684	2016.11.03
Temperature/Humidity Meter	Yuhuaze	N/A	N/A	2016.12.20

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	2016.12.08
EMI Test Receiver	R&S	ESR7	101209	2016.11.03
Preamplifier	Schwarzbeck	BBV 9721	9721-008	2017.04.16
Preamplifier	Agilent	83017A	MY53270040	2017.03.29
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	2016.12.14
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	2016.11.07
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	2016.11.07
Broadband Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170549	2017.01.04
Digital Thermometer & Hygrometer	Minggao	N/A	N/A	2016.11.30

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Serial No.	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MY52090106	2017.05.08
USB Wideband Power Sensor	Boonton	55006	8911	2017.05.08
Temperature/Humidity Meter	Yuhuaze	N/A	N/A	2016.12.20

Software	Version	Function
e3	V8.3.5	EMI Test Software

 Prüfbericht - Nr.:
 50045317 001
 Seite 6 von 22

 Test Report No.
 Page 6 of 22

2.3 Traceability

All measurement equipment calibrations are traceable to NIST or where calibration is performed outside the United States, to equivalent nationally recognized standards organizations.

2.4 Calibration

Equipment requiring calibration is calibrated periodically by the manufacturer or according to manufacturer's specifications. Additionally all equipment is verified for proper performance on a regular basics using in house standards or comparisons.

2.5 Measurement Uncertainty

Table 2: Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 1GHz	±0.39dB
	> 1GHz	±0.68dB
Radiated Emission	30MHz - 1GHz	±5.34dB
	> 1GHz	±5.40dB

> Seite 7 von 22 Prüfbericht - Nr.: 50045317 001 Page 7 of 22 Test Report No.

3. General Product Information

3.1 Product Function and Intended Use

The EUT (Equipment Under Test) is a Z-Wave Controller. For details refer to the User Manual and Circuit Diagram.

3.2 Ratings and System Details

Kind of Equipment : Z-Wave Controller
Type Designation : CRC-3US-1
Operating Frequency : 908.42 MHz
Modulation Type : FSK
Operation Voltage : DC 3.3V (by Battery)
Antenna Type : PCB Antenna

3.3 Independent Operation Modes

The basic operation modes are:

A. On

- 1. Transmitting
- 2. Receiving
- B. Standby
- C. Off

3.4 Noise Generating and Noise Suppressing Parts

Refer to the Circuit Diagram.

3.5 Submitted Documents

- Bill of Material - Circuit Diagram - PCB Layout - Instruction Manual - Photo Document - Rating Label

 Prüfbericht - Nr.:
 50045317 001
 Seite 8 von 22

 Test Report No.
 Page 8 of 22

4. Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The equipment under test (EUT) was configured to measure its maximum power level. The test modes were adapted accordingly in reference to the instructions for use.

4.2 Test Operation and Test Software

Test operation refers to test setup in chapter 5. All testing were performed according to the procedures in ANSI C63.10: 2013.

4.3 Special Accessories and Auxiliary Equipment

Null.

4.4 Countermeasures to achieve EMC Compliance

The test sample which has been tested contained the noise suppression parts as described in the Constructional Data Form or the Technical Construction File. No additional measures were employed to achieve compliance.

 Prüfbericht - Nr.:
 50045317 001
 Seite 9 von 22

 Test Report No.
 Page 9 of 22

5. Test Results

5.1 Transmitter Requirement & Test Suites

5.1.1 Antenna Requirement

RESULT: Pass

Table 3: Antenna Requirement

FCC 15.203 – Antenna Requirement 1

Requirement: No antenna other than that furnished by the responsible party shall be

used with the device.

Use of a permanently attached antenna, or

Use an antenna that uses a unique coupling to the intentional

radiator.

Results: Antenna type: PCB Antenna

Verdict: PASS

FCC 15.204 – Antenna Requirement 2

Requirement: An intentional radiator may be operated only with the antenna with

which it is authorized. If an antenna is marketed with the intentional radiator, it shall be of a type which is authorized with the intentional

radiator.

Results: Only one integral antenna can be used

Verdict: PASS

RSS-Gen 6.3 – External Control

Requirement: The device shall not have any external controls accessible to the user

that enable it to be adjusted, selected or programmed to operate in

violation of the limits prescribed in the applicable RSS.

Results: The device does not have any transmitter external controls accessible

to the user that can be adjusted and operated in violation of the limits of

this standard.

Verdict: PASS

 Prüfbericht - Nr.:
 50045317 001
 Seite 10 von 22

 Test Report No.
 Page 10 of 22

RSS-Gen 8.3 – Antenna Requirement

Requirement: Testing shall be performed using the highest gain antenna of each

combination of licence-exempt transmitter and antenna type, with the

transmitter output power set at the maximum level.

Results: The device has only one internal undetachable antenna. And testing

was performed with the transmitter output power set at the maximum

level.

Verdict: PASS

Products

 Prüfbericht - Nr.:
 50045317 001
 Seite 11 von 22

 Test Report No.
 Page 11 of 22

5.1.2 Field Strength of Fundamental Emissions

RESULT: Pass

Date of testing : 2016.04.07 Test standard : FCC Part 15.249

RSS-210 Issue 8 December 2010

Test procedure : ANSI C63.10: 2013 Limit : FCC Part 15.249(a)

Clause A2.9(a) of RSS-210 Issue 8 December 2010

Kind of test site : 3m Semi-Anechoic Chamber

Figure 1: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT X Axis

Table 4: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT X Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.433	93.562	69.361	-20.438	114.000	24.201	PK
908.433	93.402	69.200	-0.598	94.000	24.201	QP

 Prüfbericht - Nr.:
 50045317 001
 Seite 12 von 22

 Test Report No.
 Page 12 of 22

Figure 2: Field Strength of Fundamental Emissions, Antenna Vertical, EUT X Axis

Table 5: Field Strength of Fundamental Emissions, Antenna Vertical, EUT X Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.428	84.254	60.052	-29.746	114.000	24.201	PK
908.428	83.962	59.760	-10.038	94.000	24.201	QP

 Prüfbericht - Nr.:
 50045317 001
 Seite 13 von 22

 Test Report No.
 Page 13 of 22

Figure 3: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Y Axis

Table 6: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Y Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.424	93.546	69.345	-20.454	114.000	24.201	PK
908.424	92.732	68.530	-1.268	94.000	24.201	QP

 Prüfbericht - Nr.:
 50045317 001
 Seite 14 von 22

 Test Report No.
 Page 14 of 22

Figure 4: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Y Axis

Table 7: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Y Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.423	86.045	61.843	-27.955	114.000	24.201	PK
908.423	85.442	61.240	-8.558	94.000	24.201	QP

Prüfbericht - Nr.: 50045317 001
Test Report No.

Seite 15 von 22 *Page 15 of 22*

Figure 5: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Z Axis

Table 8: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Z Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.430	93.418	69.217	-20.582	114.000	24.201	PK
908.430	92.762	68.560	-1.238	94.000	24.201	QP

Seite 16 von 22 *Page 16 of 22*

Produkte Products

Prüfbericht - Nr.: 50045317 001
Test Report No.

Figure 6: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Z Axis

Table 9: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Z Axis

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
908.413	85.411	61.209	-28.589	114.000	24.201	PK
908.413	84.672	60.470	-9.328	94.000	24.201	QP

> 50045317 001 Seite 17 von 22 Prüfbericht - Nr.: Page 17 of 22

Test Report No.

5.1.3 Radiated Emissions

RESULT: Pass

: 2016.04.07 Date of testing Test standard : FCC Part 15.249

RSS-210 Issue 8 December 2010

Test procedure : ANSI C63.10: 2013 Frequency range : 9kHz – 30MHz

30MHz – tenth harmonic of the highest

fundamental frequency

: FCC Part 15.249(a) & FCC Part 15.249(e), Limit

FCC Part 15.249(d) & FCC Part 15.209;

Clause A2.9(a) of RSS-210 Issue 8 December 2010, Clause A2.9(b) of RSS-210 Issue 8 December 2010 &

Table 4 of RSS-Gen Issue4 November 2014

: 3m Semi-Anechoic Chamber Kind of test site

Table 10: Radiated Emissions, 9kHz - 30MHz

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре
0.105	44.043	23.845	-63.137	107.180	20.198	QP
2.175	27.371	6.960	-42.129	69.500	20.412	QP
6.216	24.786	4.701	-44.714	69.500	20.085	QP

Table 11: Radiated Emissions, 30MHz – 10th harmonic of the highest fundamental frequency

Frequency [MHz]	Measure Level [dBuV/m]	Reading Level [dBuV]	Over Limit [dB]	Limit [dBuV/m]	Factor [dB]	Туре	Antenna Polarity
46.005	12.666	-2.340	-27.334	40.000	15.007	QP	Н
55.220	13.288	-1.360	-26.712	40.000	14.648	QP	Н
112.935	12.012	-0.420	-31.488	43.500	12.432	QP	Н
364.650	14.664	-1.420	-31.336	46.000	16.085	QP	Н
390.355	16.199	-0.310	-29.801	46.000	16.509	QP	Н
533.430	19.061	0.230	-26.939	46.000	18.832	QP	Н
2725.500	46.852	49.363	-27.148	74.000	-2.510	PK	Н
4544.500	43.804	42.578	-30.196	74.000	1.226	PK	Н
8913.500	44.510	33.977	-29.490	74.000	10.534	PK	I
46.005	17.156	2.150	-22.844	40.000	15.007	QP	V
50.370	13.260	-1.680	-26.740	40.000	14.940	QP	V
101.780	10.574	-2.630	-32.926	43.500	13.204	QP	V
354.950	14.352	-1.580	-31.648	46.000	15.932	QP	V

Prüfbericht - Nr.:	50045317 001	Seite 18 von 22
Test Report No.		Page 18 of 22

520.820	18.294	-0.340	-27.706	46.000	18.634	QP	V
636.735	20.730	0.210	-25.270	46.000	20.520	QP	V
2725.500	45.285	47.796	-28.715	74.000	-2.510	PK	٧
8174.000	45.647	36.041	-28.353	74.000	9.606	PK	٧

Note:

- 1. The Bold rows in the above table are the results for the Harmonic Radiated Emission.
- 2. The measurements using an average detector for the frequency above 1GHz were not performed since the results measured with a Peak detector are totally meet the average limit.

 Prüfbericht - Nr.:
 50045317 001
 Seite 19 von 22

 Test Report No.
 Page 19 of 22

5.1.4 20dB Bandwidth and 99% Bandwidth

RESULT: Pass

Date of testing : 2016.04.10 Test standard : FCC Part 15.215

RSS-Gen Issue4 November 2014

Test procedure : ANSI C63.10: 2013 Limit : FCC Part 15.215(c)

Clause 6.6 of RSS-Gen Issue4 November 2014

Figure 7: 20dB Bandwidth and 99% Bandwidth

Table 12: 20dB Bandwidth and 99% Bandwidth

Channel Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]
908.4	71.78	87.423

Prüfbericht - Nr.: 50045317 001 Seite 20 von 22
Page 20 of 22

Test Report No.

5.1.5 RF Exposure Statement

RESULT: Pass

Evaluate standard : FCC KDB # 447498 D01 V06

RSS-102 Issue 5

Calculated Output Power

The maximum measured transmitter power is the following:

Frequency [GHz]	Field Strength of Fundamental Emissions [dBuv/m]	Field Strength of Fundamental Emissions [dBm]	Field Strength of Fundamental Emissions [mW]
0.908433	93.562	-1.67	0.681

Note:Relation between power, electric field strength,E

A simple relation can be established for perfect, ideal cases (which means free space, far field conditions) between E(V/m), D distance between the transmitting radio equipment and the point of measurement (m), e.i.r.p.(W).

$$E = \sqrt{\frac{30(e.i.r.p.)}{D}}$$

This represents a site gain of 4dB. The field strength as E(V/m) can be converted to dB(uV/m) as follows:

 $E(dB(uV/m)) = 120 + 20\log E$

Evaluation for FCC

According to FCC KDB # 447498 D01 V06, Clause 4.3.1

(a) For 100MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

 $\frac{\text{(max. power of channel, including tune - up tolerance, mW)}}{\text{(min. test separation distance, mm)}} \times \sqrt{f(GHz)}$

 \leq 3.0, for 1-g SAR, and \leq 7.5, for 10-g extremity SAR

So, the max allowed power for 1-g SAR with distance 5mm at 0.908433GHz is 15.73783mW

And the max allowed power for 10-g extremity SAR with distance 5mm at 0.908433GHz is 39.34457mW

The maximum conducted output power of the EUT is: 0.681mW which is totally lower than the SAR test exclusion thresholds.

Products

Prüfbericht - Nr.: 50045317 001

Seite 21 von 22Page 21 of 22

Test Report No.

Evaluation for IC

According to table 1 and note 4 of RSS-102 Issue 5, March 2015

 ${\bf Table~1:~SAR~evaluation-Exemption~limits~for~routine~evaluation~based} \\ {\bf on~frequency~and~separation~distance}^{4,5}$

Frequency	Exemption Limits (mW)					
(MHz)	At separation	At separation	At separation	At separation	At separation	
	distance of	distance of	distance of	distance of	distance of	
	≤5 mm	10 mm	15 mm	20 mm	25 mm	
≤300	71 mW	101 mW	132 mW	162 mW	193 mW	
450	52 mW	70 mW	88 mW	106 mW	123 mW	
835	17 mW	30 mW	42 mW	55 mW	67 mW	
1900	7 mW	10 mW	18 mW	34 mW	60 mW	
2450	4 mW	7 mW	15 mW	30 mW	52 mW	
3500	2 mW	6 mW	16 mW	32 mW	55 mW	
5800	1 mW	6 mW	15 mW	27 mW	41 mW	

Frequency	Exemption Limits (mW)				
(MHz)	At separation	At separation	At separation	At separation	At separation
	distance of	distance of	distance of	distance of	distance of
	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300	223 mW	254 mW	284 mW	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	80 mW	92 mW	105 mW	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	170 mW	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

For frequencies (835 MHz to 1900 MHz), the conservative limit of 1900MHz can be used for exemption limits.

So, the max allowed power for 1-g SAR with distance 5mm at 908.433MHz is 7mW

The maximum conducted output power of the EUT is: 0.681mW which is totally lower than the SAR test exclusion thresholds.

Conclusion

SAR data is not required for either FCC or IC.

 Prüfbericht - Nr.:
 50045317 001
 Seite 22 von 22

 Test Report No.
 Page 22 of 22

\sim		_ ('	T - I-	
h	I ICT	ΔT	ıanı	IDC
U.	List	OI.	ıav	163

Table 1: List of Test and Measurement Equipment Table 2: Measurement Uncertainty Table 3: Antenna Requirement Table 4: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT X Axis Table 5: Field Strength of Fundamental Emissions, Antenna Vertical, EUT X Axis Table 6: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Y Axis Table 7: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Y Axis Table 8: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT Z Axis Table 9: Field Strength of Fundamental Emissions, Antenna Vertical, EUT Z Axis Table 10: Radiated Emissions, 9kHz – 30MHz Table 11: Radiated Emissions, 30MHz – 10 th harmonic of the highest fundamental frequency Table 12: 20dB Bandwidth and 99% Bandwidth	6 9 11 12 13 14 15 16 17
Figure 1: Field Strength of Fundamental Emissions, Antenna Horizontal, EUT X Axis	12 13 14