Outline

UE App.Stat II

Objectif

Jeu de donnée

## Data Challenge

Apprentissage Statistique II – Data Challenge

Objectif: prédire la résistance à la streptomycine d'une souche de Mycobaterium tuberculosis à partir de ses gènes rrs, rpsL et gidB.

#### Donnée d'entrée pour chaque souche :

- ▶ 1 séquence nucléique contenant la concaténation des 3 gènes
- ▶ 1 phénotype binaire R/S

#### Jeu de données :

- training set : 2991 génomes (918 R et 2073 S)
- ▶ test set : 1497 génomes

Critère de performance : "balanced-accuracy" (moyenne de sensi. et spéci.)

## A hot topic!

#### Outline

#### UE App.Stat II

#### Objectif

Jeu de donnée:

#### scientific reports

OPEN Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN

Xingyan Kuang<sup>(1)</sup>, Fair Wang<sup>(1)</sup>, Kyle M. Hennadez<sup>(2)</sup>, Zhenyu Zhang<sup>(1)</sup>



bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and should not guide health-related behavior or be reported in the press as conclusive.

New Results

Check for updates

A Follow this preprint

A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis

⊙ Anna G. Green, ⊙ Chang H.Yoon, Michael L. Chen, Luca Freschi, ⊙ Matthias I. Gröschel, Isaac Kohane, Andrew Beam, Maha Farhat

doi: https://doi.org/10.1101/2021.12.06.471431

⇒ Scientific Reports, 14 février 2022.

Robert L. Grossman<sup>1,250</sup>

⇒ bioRxiv, 7 décembre 2021.

## Objectif

Jeu de donnée

## Objectifs

Objectif #1 : prédire la résistance à la streptomycine d'une souche de *Mycobaterium tuberculosis* à partir de ses gènes *rrs*, *rpsL* et *gidB*.

► critère de performance : "balanced-accuracy" (moyenne de sensi. et spéci.)

Objectif #2 : évaluer l'intérêt des approches de "deep learning" dans ce contexte

- construire une "baseline" au moyen d'algorithmes "standards"
- essayer de faire mieux avec différentes architectures et manières de représenter les séquences

### A rendre pour le 09/01, 19h (via moodle) :

- prédictions sur le jeu de test
  - ▶ fichier texte **predictions-group-XXX.txt** de 1497 lignes
  - ▶ chaque ligne = R ou S (pas de 0/1, +1/-1 ou autre)
- rapport d'analyse
  - 8 pages maxi
  - expliciter les différentes architectures mises en oeuvre et leur intérêt

#### Critères d'évaluation :

- performance (balanced accuracy)
- clarté du rapport
- créativité et exhaustivité (surprenez moi!)

# Session pratique - prise en main du jeu de données

### Jeu de données

▶ Longeur de la séquence  $\sim$  2654 bp :





- $\Rightarrow$  longueur (concaténée) minimum / maximum = 2043 / 2706
- ► Les jeux de train / test :



| df_test.head(10) |   |                                                        |
|------------------|---|--------------------------------------------------------|
|                  |   | seq                                                    |
| idx              |   |                                                        |
|                  | 0 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 1 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 2 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 3 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 4 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 5 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 6 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 7 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 8 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  | 9 | ${\tt ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGC}$ |
|                  |   |                                                        |

UE App.Stat II

Objectif

Jeu de données

Jeu de données

- ► Pré-traitement des séquences
  - One-hot encoding, kmers tokens, kmers profiles...
  - Ouvrir le notebook DataChallenge\_sequence-preprocessing.ipynb

- ► Baseline Random Forest
  - validation croisée / GridSearchCV par RF sur profils de kmers
  - Ouvrir le notebook <u>DataChallenge\_RF-baseline.ipynb</u>