# NIST Signature 후보 알고리즘 MAYO

정보컴퓨터공학과 권혁동



- 2023년 7월 NIST에서 발표한 추가 서명 알고리즘 후보
  - Round 1에서는 40개의 후보가 통과
  - Multivariate 기반에는 11개의 후보가 존재
  - <u>한국형 양자내성암호 공모전인 KpqC에 등재된 후보도 존재</u>

| Code                                                         | Isogeny | Lattice                                                                        | MPC-in-the-Head                                 | Multivariate                                                    | Symmetric                                     | Others                                                       |
|--------------------------------------------------------------|---------|--------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| CROSS<br>Enhanced pqsigRM<br>FuLeeca<br>LESS<br>MEDS<br>Wave | SQIsign | EagleSign<br>EHTv3 and EHTv4<br>HAETAE<br>HAWK<br>HuFu<br>Raccoon<br>SQUIRRELS | MIRA<br>MiRitH<br>MQOM<br>PERK<br>RYDE<br>SDitH | 3WISE Biscuit DME-Sign HPPC MAYO PROV QR-UOV SNOVA TUOV UOV VOX | AlMer<br>Ascon-Sign<br>FAEST<br>SHPINCS-alpha | ALTEQ<br>eMLE-Sig 2.0<br>KAZ-SIGN<br>Preon<br>Xifrat1-Sign.I |

- Oil and Vinegar 기반을 사용한 알고리즘
  - 비슷한 유형인 Unbalanced Oil and Vinegar 알고리즘도 존재
  - UOV는 MAYO와 함께 Round 1 후보로 진출함

- MAYO는 Oil and Vinegar의 변형 알고리즘
  - Matthias 박사가 개발
  - 기본적인 구조는 Oil and Vinegar과 동일
  - Oil and Vinegar의 키 크기를 매우 줄인 구조



- 보안수준 1은 2 종류의 매개변수를 제공함
  - MAYO-I은 공개키 크기가 작지만 서명이 크고 MAYO-II는 이와 반대
  - 소스코드는 일반, 최적화, AVX 최적화 세 종류로 제공

| Algorithm       | MAYO-I     | MAYO-II    | MAYO-III   | MAYO-V     |
|-----------------|------------|------------|------------|------------|
| Security level  | 1          | 1          | 3          | 5          |
| Secret key size | 24 bytes   | 24 bytes   | 32 bytes   | 40 bytes   |
| Public key size | 1168 bytes | 5488 bytes | 2656 bytes | 5008 bytes |
| Signature size  | 321 bytes  | 180 bytes  | 577 bytes  | 838 bytes  |

- 기본 레퍼런스 코드의 성능 (AES-NI 제외)
  - Intel Xeon E3-1225 v3 (Haswell, 3.20GHz)
  - Ubuntu 20.04.5, clang compiler
  - 1,000회 반복의 중앙 값 사용

| Scheme   | Keygen     | ExpandSK   | ExpandPK   | ExpandSK<br>+Sign | ExpandPK<br>+Verify |
|----------|------------|------------|------------|-------------------|---------------------|
| MAYO-I   | 2,964,948  | 3,865,364  | 1,526,032  | 6,787,356         | 2,996,968           |
| MAYO-II  | 6,348,792  | 7,512,512  | 2,031,976  | 9,290,400         | 2,813,708           |
| MAYO-III | 10,670,888 | 14,403,980 | 5,166,728  | 23,816,456        | 9,619,732           |
| MAYO-V   | 27,467,616 | 38,061,916 | 12,344,572 | 59,571,696        | 21,619,600          |

- 공식 코드는 cmake로 공유됨
  - Cmake → Makefile → 컴파일
- 그러나 시스템에 따라서는 컴파일 문제가 생김
  - 컴파일러 문제로 추정되나.. 해결하지 못함
- Xcode 상에서 컴파일이 편리함
  - ARM 구현을 위해서면 더욱





- Xcode로 이식하는 것에 성공
  - Bitslice 구현을 ARM 명령어를 통해서 병렬화 하는 것을 목표로 구현 중



# Q&A