1

Control Systems

G V V Sharma*

		Contents		7	Compensators 3
					7.1 Phase Lead
1	Signa	l Flow Graph	1		7.2 Lag Lead
	1.1	Mason's Gain Formula	1		7.3 Example 3
	1.2	Matrix Formula	1		
	1.3	Example	1	8	Gain Margin 3
		1			8.1 Introduction
2	Bode	Plot	1		8.2 Example
	2.1	Introduction	1		8.3 Example
	2.2	Example	1	9	Phase Margin 3
	2.3	Phase	3		9.1 Intoduction
					9.2 Example
3	Secon	d order System	3		
	3.1	Damping	3	10	Oscillator 3
	3.2	Example	3		10.1 Introduction
	3.3	Settling Time	3		10.2 Example
				4.4	D 44
4	Routh	n Hurwitz Criterion	3	11	Root Locus 3
	4.1	Routh Array	3		11.1 Introduction
	4.2	Marginal Stability	3	Ab	bstract—This manual is an introduction to control
	4.3	Stability	3		ems based on GATE problems.Links to sample Python
	4.4	Example	3	codes	s are available in the text.
	4.5	Example	3	Do	Oownload python codes using
		-		svn (co https://github.com/gadepall/school/trunk/
5	State-Space Model		3		control/codes
	5.1	Controllability and Observ-			
		ability	3		
	5.2	Second Order System	3		1 Signal Flow Graph
	5.3	Example	3	1.1	Mason's Gain Formula
	5.4	Example	3	1.2	Matrix Formula
	5.5	Example	3	13	Example
	5.6	Example	3	1.5	•
	5.7	Example	3		2 Bode Plot
		-		2.1	Introduction
6	Nyqu	ist Plot	3	2.2	Example
	6.1	Introduction	3	2.1.	For an LTI system, the Bode plot for its gain
	6.2	Example	3		defined as
					C() 201 III() (2.1.1)
*The author is with the Department of Electrical Engineering,					$G(s) = 20 \log H(s) \tag{2.1.1}$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

is as illustrated in the Fig. 2.1. Find the corner frequencies ω_{01} and ω_{02} from the plot.

Fig. 2.1

Solution: The corner frequencies can be calculated as follows:

$$slope = \frac{M_2 - M_1}{log\omega_2 - log\omega_1}$$

Therefore for ω_{02} ,

$$-40 = \frac{0 - 12}{\log 8 - \log \omega_{02}}$$

$$log8 - log\omega_{02} = \frac{12}{40}$$

$$log\omega_{02} = log8 - \frac{12}{40}$$

$$\omega_{02} = 4$$

And for ω_{01} ,

$$20 = \frac{0 - 12}{log0.5 - log\omega_{01}}$$

$$log0.5 - log\omega_{01} = \frac{-12}{20}$$

$$log\omega_{01} = log0.5 + \frac{12}{20}$$

$$\omega_{01} = 2$$

So, the corner frequencies are ω_{01} =2 and ω_{02}

2.2. Find the transfer function from the calculated frequencies.

Solution: By looking to the plot, we can say

that since the initial slope is +20, there must be a zero at the origin.

At ω_{01} , the change in slope is -20dB, so their exists one pole at this frequency.

At ω_{02} , the change in slope is -40dB, so their exists two pole at this frequency.

The denominators have the form $(1 + \frac{s}{\omega})$ So, the denominator of the transfer function is $(1 + \frac{s}{2})(1 + \frac{s}{4})^2$ Therefore, the transfer function is,

$$\frac{cs}{(1+\frac{s}{2})(1+\frac{s}{4})^2}$$

here c is some constant

2.3. Compare the above calculated transfer function with one of the options that best represents it.

$$(A)\frac{2s}{(1+0.5s)(1+0.25s)^2} \quad (B)\frac{4(1+0.5s)}{s(1+0.25s)}$$

$$(C)\frac{2s}{(1+2s)(1+4s)} \quad (D)\frac{4s}{(1+2s)(1+4s)^2}$$

Solution: From the above given option, we can see that option (A) best represents our transfer function.

$$\frac{2s}{(1+0.5s)(1+0.25s)^2}$$

2.4. Verify the above plot by plotting the transfer function.

Solution: The bode plot is Fig. 2.4:

The plot was plotted using the following code:

import numpy as np import control.matlab as ml import matplotlib.pyplot as plt

If using termux import subprocess import shlex #end if

num is the numerator of the trasfer function which is (2s)

Fig. 2.4: Plot of G(s)

```
# dem is the denominator of the transfer
    function which is (0.25s + 1)(0.25s + 1)
    (0.5s + 1)
num = np.array([2, 0])
den = np.polymul(np.array([0.5, 1]), np.array
    ([0.25, 1])
den = np.polymul(den, np.array([0.25, 1]))
# Generating the transfer function
g = ml.tf(num, den)
print("The transfer function is: ", g)
print("The poles of the above function are",
    ml.pole(g))
print("The zeros of the above function are",
    ml.zero(g)
# Generating the bode plot as well as plotting
mag, phase, w = ml.bode(g)
# If using termux
plt.savefig("./figs/ep18btech11016 plot.pdf")
plt.savefig("./figs/ep18btech11016 plot.eps")
subprocess.run(shlex.split("termux-open ./figs
    /ep18btech11016 plot.pdf"))
# else
plt.show()
```

- 2.3 Phase
- 3 Second order System
- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example
- **6** Nyouist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example
- 11 Root Locus
- 11.1 Introduction