## **Principal curvatures**

Let us consider a smooth surface shown in Figure 1. Let us consider point M at this surface. Let us choose such Cartesian system that:

- 1. Its origin is in M;
- xy plane coincides with the tangent plane passing through M.

In this coordinate system, the surface in the vicinity of M can be presented as z = z(x, y). Since the origin of the Cartesian system is in M, z(0,0) = 0. Due to our choice of the xy plane, the following is true:  $\left(\partial z(x,y)/\partial x\right)_{\substack{x=0\\y=0}} = 0$ ,  $\left(\partial z(x,y)/\partial y\right)_{\substack{x=0\\y=0}} = 0$ .

Let us decompose z = z(x, y) into the MacLoren's series in the vicinity of M:

$$z = \frac{1}{2} \left( \frac{\partial^2 z}{\partial x^2} \right)_{\substack{x=0 \\ y=0}} x^2 + \left( \frac{\partial^2 z}{\partial x \partial y} \right)_{\substack{x=0 \\ y=0}} xy + \frac{1}{2} \left( \frac{\partial^2 z}{\partial y^2} \right)_{\substack{x=0 \\ y=0}} y^2 + \text{higher-oder terms}$$

By a proper rotation of the coordinate system around the z-axis, it is always possible to attain the following expression:

$$z = \frac{1}{2} (k_1 x^2 + k_2 y^2) + \text{higher-oder terms}$$

 $k_1$  and  $k_2$  are called principal curvatures at point M.

 $R_1 \equiv 1/k_1$  and  $R_2 \equiv 1/k_2$  are called principal radii of curvature at point M.

 $K \equiv k_1 k_2$  is the Gaussian curvature at point M.

 $H \equiv (k_1 + k_2)/2$  is the mean (average) curvature at point M.



Figure 1