Thermochemical Equations and Stoichiometry Worksheet

Purpose: To reinforce your understanding of the stoichiometry of thermochemical equations.

Answer the questions below in the spaces provided.

1. Consider the following thermochemical equation:

 $2\mathbb{Z} nS_{(s)} + 3O_{2(g)} \rightarrow 2\mathbb{Z} nO_{(s)} + 2SO_{2(g)}$

 $\Delta H^0 = -878.2 \, \text{kJ}$

(a) How much heat is released when 3.0 mol ZnS(s) reacts with excess oxygen?

 $[A: 1.3 \times 10^3 \text{ kg}]$

(b) How much heat is released when 2.3 \times 10^{-2} mol ZnS $_{\rm (i)}$ reacts with excess oxygen?

[A: 10 kJ]

(e) What is the enthalpy change when 223.9 g ZnS(s) reacts with excess oxygen

 $[A: \Delta H = -1009 \text{ kJ}]$

(d) What is the entiralpy change when 0.96 g ZnOz, is produced?

 $[A: \Delta H = -5.2 \text{ kJ}]$

- 2. Slaked lime (Ca(OH)_{2(a)}) is produced when lime (calcium oxide, CaO_(a)) reacts with liquid water, 65.2 kJ of heat is released for each mol of Ca(OH)₂ that is produced.
 - (a) Write a thermochemical equation for the reaction.

[A:
$$CaO_{(0)} + H_2O_{(0)} \rightarrow Ca(OH)_2$$
 $\Delta H = -65.2 \text{ kJ}$]

(b) What is the enthalpy change when 523.3 kg of lime reacts with excess water?

[A:
$$\Delta H = -6.08 \times 10^5 \text{ kJ}]$$

3. The following reaction represents the complete combustion of hexane, C_6H_{140} , at SATP.

$$C_6H_{14(2)} + \frac{19}{2}O_{2(3)} \rightarrow 6CO_{2(3)} + 7H_2O_{(7)} \quad \Delta H^2 = -4163 \text{ kJ}$$

(a) If 0.537 mol of carbon dioxide is produced in the reaction represented by the equation above, how much heat is released by the reaction?

[A: 373 kJ]

(b) If 25.0 kg of hexane is burned in sufficient oxygen, how much heat will be released?

[A: $1.21 \times 10^6 \text{ kJ}$]

(c) What mass of hexane is required to produce 1.0×10^5 kJ of heat by complete combustion?

[A: 2.1 kg]