Diabetics Data Analysis

Project Purpose

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether a patient has diabetes based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Data View

Pregnancies: Number of times pregnant

Glucose: The plasma glucose concentration in the oral glucose tolerance test after two hours

BloodPressure: Diastolic blood pressure (mm Hg) **SkinThickness**: Triceps skin fold thickness (mm)

Insulin: 2-Hour serum insulin (mu U/ml)

BMI: Body mass index (weight in kg/(height in m)^2)

DiabetesPedigreeFunction: This function calculates the likelihood of having diabetes based on the lineage of a descendant

Age: Age (years)

Outcome: Class variable (have the disease (1) or not (0))

```
[1] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

[2] from google.colab import files
uploaded = files.upload()

[Choose Files diabetes.csv
• diabetes.csv(text/csv) - 23875 bytes, last modified: 10/6/2022 - 100% done
Saving diabetes.csv to diabetes.csv

[3] df=pd.read_csv("diabetes.csv")
```

Showig First N values of the dataset

[4]	df.	head(10)								
		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
	5	5	116	74	0	0	25.6	0.201	30	0
	6	3	78	50	32	88	31.0	0.248	26	1
	7	10	115	0	0	0	35.3	0.134	29	0
	8	2	197	70	45	543	30.5	0.158	53	1
	9	8	125	96	0	0	0.0	0.232	54	1

[6] df.describe()

mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958 std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951 min 0.000000 </th <th></th> <th>Pregnancies</th> <th>Glucose</th> <th>BloodPressure</th> <th>SkinThickness</th> <th>Insulin</th> <th>BMI</th> <th>DiabetesPedigreeFunction</th> <th>Age</th> <th>Outcome</th>		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951 min 0.000000 0.0000	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
min 0.000000	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 0.243750 24.000000 0.000000 50% 3.000000 117.000000 72.000000 23.000000 32.000000 32.000000 0.372500 29.000000 0.000000 75% 6.00000 140.250000 80.00000 32.000000 127.250000 36.600000 0.626250 41.000000 1.000000	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
50% 3.000000 117.000000 72.000000 23.000000 32.000000 32.000000 0.372500 29.000000 0.000000 75% 6.00000 140.250000 80.00000 32.000000 127.250000 36.600000 0.626250 41.000000 1.000000	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
75 % 6.00000 140.250000 80.00000 32.00000 127.250000 36.600000 0.626250 41.000000 1.000000	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
max 17.000000 199.000000 122.000000 99.00000 846.00000 67.100000 2.420000 81.000000 1.000000	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

[7] df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column
                              Non-Null Count Dtype
0 Pregnancies
                              768 non-null
                                              int64
1 Glucose
2 BloodPressure
                              768 non-null
                                              int64
                              768 non-null
                                              int64
3 SkinThickness
4 Insulin
5 BMI
                             768 non-null
                                              int64
                              768 non-null
                                              int64
                              768 non-null
                                              float64
 6 DiabetesPedigreeFunction 768 non-null
                                              float64
                              768 non-null
    Age
 8 Outcome
                              768 non-null
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

To find number of unique values

[8] df.nunique()

Pregnancies	17
Glucose	136
BloodPressure	47
SkinThickness	51
Insulin	186
BMI	248
DiabetesPedigreeFunction	517
Age	52
Outcome	2
dtype: int64	

[9] df["Outcome"].value_counts()*100/len(df)

0 65.104167 1 34.895833

Name: Outcome, dtype: float64

Finding no. of values that are zero

[10] (df[df.columns]==0).sum()

```
Pregnancies
Glucose
                            111
                              5
BloodPressure
                             35
SkinThickness
                            227
                            374
Insulin
BMI
                             11
DiabetesPedigreeFunction
                             0
                              0
Age
Outcome
                            500
dtype: int64
```

replace all 0's with median

```
[11] for i in ["Glucose", "BloodPressure", "Insulin", "BMI"]:
    df[i].replace(to_replace = 0, value = df[i].median(), inplace=True)
```

```
[12] (df[df.columns]==0).sum()
     Pregnancies
                                 111
     Glucose
                                   0
     BloodPressure
                                   0
     SkinThickness
                                 227
     Insulin
                                   0
                                   0
     DiabetesPedigreeFunction
                                   0
                                   0
     Age
     Outcome
                                 500
     dtype: int64
```

```
ax=sns.histplot(x=df.Age,data=df,hue=df.Outcome)
for p in ax.patches:
    ax.annotate('{:.1f}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
```


women with diabetes are predominantly in age group of 22 to 35 age bracket. as age increases the frequency of women with diabetes decreases

```
[15] plt.hist(df[df["Outcome"]==0]["Age"],bins=5)
    plt.show()
```


Women without diabetes are predominantly in age group of 22 to 35 age bracket. this is bracket also has highest diabetes risk among women

This pridicts that internal factor that are causing diabities are Insulin,BMI, Glucose and external features are Pregnensies and Age

D	df.corr()										
₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	E
	Pregnancies	1.000000	0.128213	0.208615	-0.081672	-0.055697	0.021546	-0.033523	0.544341	0.221898	
	Glucose	0.128213	1.000000	0.218937	0.074455	0.357573	0.231400	0.137327	0.266909	0.492782	82
	BloodPressure	0.208615	0.218937	1.000000	0.007937	-0.028721	0.281132	-0.002378	0.324915	0.165723	
	SkinThickness	-0.081672	0.074455	0.007937	1.000000	0.397161	0.381740	0.183928	-0.113970	0.074752	
	Insulin	-0.055697	0.357573	-0.028721	0.397161	1.000000	0.189022	0.178029	-0.015413	0.148457	
	BMI	0.021546	0.231400	0.281132	0.381740	0.189022	1.000000	0.153506	0.025744	0.312249	
	DiabetesPedigreeFunction	-0.033523	0.137327	-0.002378	0.183928	0.178029	0.153506	1.000000	0.033561	0.173844	
	Age	0.544341	0.266909	0.324915	-0.113970	-0.015413	0.025744	0.033561	1.000000	0.238356	
	Outcome	0.221898	0.492782	0.165723	0.074752	0.148457	0.312249	0.173844	0.238356	1.000000	

[23] plt.figure(figsize=(20,10))
 sns.heatmap(df.corr(),annot=True)

Drawn states that most important factors are BMI, age , pregnancy, glucose, insulin. The least important features are skin thickness and blood pressure.

- 1. maintain a healthy BMI to prevent high glucose and insulin level
- 2. glucose and insulin level as you get older
- 3. if you are pregnant be careful about your glucose and insulin levels.

plt.pie(x=df["Outcome"].value_counts(),data=df,autopct="%1.2f%%",labels=["No","Yes"],shadow=True)
plt.show()

 \square

The following factors affect the risk of diabetes, according to the data analysis:

- 1. Pregnancies: More pregnancies mean higher diabetes risk.
- 2. Glucose: Diabetes is more likely with high glucose levels (above 140).
- 3. Blood pressure: Blood pressure between 60 and 90 has more diabetic people than other ranges.
- 4. Skin thickness: Skin thickness makes diabetes more likely.
- 5. Insulin: Insulin levels influence diabetes, and higher insulin levels increase the diabetes pol
- 6. BMI: Higher BMI (above 30) increases the risk of diabetes.
- 7. Age: Age makes diabetes more likely.

Project Link: https://colab.research.google.com/drive/15hRxETpp4GdNv4zSykvnbeZrufb9MKhs?usp=sharing

Github Link: https://github.com/ankit5163/Diabetics analysis mreiskill P2.git