Chap. 5 Multistage Cube/Shuffle-Exchange Networks

- based on Cube interconnection functions
- alternatively, based on Shuffle-Exchange functions
- can use in:
 - SIMD
 - multiple-SIMD
 - MIMD
 - partitionable SIMD/MIMD

Multistage Cube Network

- N inputs/outputs
- Log₂N stages
- N/2 switches/stage
- Distributed routing tag control
- Partitionable

OUTLINE

- 1. multistage cube structure
- 2. paths through the multistage cube
- 3. routing tag control for the multistage cube
- 4. partitioning the multistage cube
- 5. relationships among multistage cube-type networks

Multistage Cube Network Topology

Aliases

- omega network
- flip network
- indirect binary n-cube network
- SW-banyan network (s=f=2)
- butterfly network
- multistage shuffle-exchange network
- baseline network
- delta network
- generalized cube network

Used/Proposed for

- STARAN
- PASM
- Ultracomputer
- IBM RP3
- BBN Butterfly
- Dataflow Machines
- Cedar

Generalized Cube Network Structure

- conceptually based on two-input/two-output device interchange box
- $m = log_2 N$ stages of boxed for $N \times N$ network
- N/2 boxes per stage
- each box individually controlled
- network could be bidirectional

Processor-to-Memory configuration

 assume unidirectional and same device at network input j and output j

PE: processing element proc./mem. pair

PE-to-PE configuration

• connection pattern between stages: at stage i link labels differ in ith bit

INTERCHANGE BOX
TWO INPUT, TWO OUTPUT DEVICE

GENERALIZED CUBE TOPOLOGY FOR N = 8

GENERALIZED CUBE TOPOLOGY FOR N = 8

GENERALIZED CUBE TOPOLOGY FOR N = 8

GENERALIZED CUBE TOPOLOGY FOR N = 8

Example 1-to-1 Connection

 $3\rightarrow 5$

GENERALIZED CUBE TOPOLOGY FOR N = 8.

Destination D= d2d, do

Example 1-to-1 Connection

 $S_2S_1S_0 \rightarrow d_2d_1d_0$ $O I I \rightarrow I O I$

GENERALIZED CUBE TOPOLOGY FOR N = 8.

Only one path from a given source to a given destination

Three Dimensional Cube Structure, with Vertices Labeled from 0 to 7 Binary.

Stage 0
Stage 1
Stage 2

Packet Switching vs. Circuit Switching

- Packet fixed size packet moves from one stage to next
 - occupies only 1 stage at a time
 - storage for packets at each box
- Circuit establish complete path through network and hold for whole transmission
 - occupies log₂N boxes
 - no storage at boxes
- Tradeoffs— currently under study, factors involved include:
 - implementation details
 - protocols
 - average message size
 - fixed or variable size messages
 - network load

Example Permutation

input i to output i+1 mod 8

GENERALIZED CUBE TOPOLOGY FOR N = 8.

Example Permutation

input i to output i+1 mod 8

GENERALIZED CUBE TOPOLOGY FOR N = 8.

Number of Permutations:

$$\log_2 N * (N/2)$$
 Boxes

Each Box

$$2^{\log_2 N * (N/2)} << N!$$

N CUBE N!4 16 248 4K 40K

"Useful" Permutations (SIMD)

Network Conflicts

MIMD mode (not "passable" permutation)

two inputs desire same output one must wait

Example Broadcast

$$2 \rightarrow \{4, 5, 6, 7\}$$

GENERALIZED CUBE TOPOLOGY FOR N = 8.

GENERALIZED CUBE TOPOLOGY FOR N = 8.

Network Control - Routing Tags

- control distributed
- each network input device determines own tag
- tag is header for message
- XOR scheme for 1-to-1
 - $-m = log_2 N$ bits per tag
 - Source $S = s_{m-1} \cdot \cdot \cdot s_1 s_0$
 - Destination D = $d_{m-1} \cdot \cdot \cdot d_1 d_0$
 - $\operatorname{Tag} T = t_{m-1} \cdot \cdot \cdot t_1 t_0 = S \oplus D$
 - stage i box examines t_i
 (each box set independently)

 $t_i = 0 \rightarrow \text{set straight}$

 $t_i = 1 \rightarrow set exchange$

- use for 1-to-1 or permutations
- add m-bit broadcast mask for broadcasts
- tag can be used for return message and source info

$$T = S \oplus D = D \oplus S$$

$$S = D \oplus T$$

Routing Tag Example

$$S = 3 = 011$$
 $D = 5 = 101$ $T = S \oplus D = 110$

Broadcast Routing Tag

One port to 2^j ports

can be at most j bits that differ between any pair of destination port addresses.

Port S \rightarrow ports $\{D_1,D_2,...,D_{2^i}\}$

Routing =S \oplus D_I info.

Broadcast = $D_i \oplus D_k$ (must differ in j positions)

ex. S = 1100 $D_1 = 0000$ 0 $D_2 = 0001$ 1

 $D_3 = 0010$ 2

 $D_4 = 0011$ 3

route = 1101 (S \oplus D₂)

broadcast = 0011 ($D_1 \oplus D_4$)

Stage i look at ith bit of route (r_i) and broadcast (b_i)

 $b_i = 0$, use r_i : 1 exchange, 0 straight

 $b_i = 1$: broadcast (ignore r_i)

CUBE for N=16

STAGE

Network Control - Destination Tags

- $m = log_2 N$ bits per tag
- Tag = Destination D = $d_{m-1}...d_1d_0$
- Stage i box examines d_i
 (each box set independently)

$$d_i = 0 \rightarrow \text{upper box output}$$

 $d_i = 1 \rightarrow \text{lower box output}$

$$\begin{array}{c} p_{m-1}...p_{i+1} \, 0 \, p_{i-1}...p_0 \\ \\ p_{m-1}...p_{i+1} \, 1 \, p_{i-1}...p_0 \end{array} \\ \begin{array}{c} -p_{m-1}...p_{i+1} \, 0 \, p_{i-1}...p_0 \\ \\ -p_{m-1}...p_{i+1} \, 1 \, p_{i-1}...p_0 \end{array}$$

- use for 1-to-1 or permutations
- add m-bit broadcast mask for broadcasts
- tag can be used for check for correct destination

Destination Tag Example

$$S = 3 = 011$$
 $D = 5 = 101$ $T = D = 101$

GENERALIZED CUBE TOPOLOGY FOR N = 8

Tag Generation

static

precomputed by compiler processor fetches from memory faster algorithm execution compiler takes longer

dynamic

processor determines destination processor determines routing tag tag can be data conditional process assignment to processor need not be known at compile time

could implement both -

choose most appropriate.

Partitioning of Network

- form independent subnetworks
- each subnetwork has properties of Generalized Cube
- each partition size power of two
- partition sizes can vary
- routing tags can still be used
- operating system can use routing tags to enforce partitions
- no need for centralized network control
- many different ways to partition

Reasons for Partitioning

- multiple SIMD machine
 - set of CU's
 - partition PE's into independent SIMD machines
- reconfigurable SIMD/MIMD machines
 - partition system into independent SIMD/MIMD subsystems (PASM)
 - fault tolerance
 - multiple users
 - efficient size
 - program development
 - subtask parallelism
- SIMD machine
 - single CU, same program
 - multiple data sets
 - can improve efficiency
- MIMD machine
 - group PE's which communicate
 - reduce network conflicts

CUBE for N=/6

Partitioning the Generalized Cube Network

- all I/O ports in subnetwork of size 2^s agree in m-s bit positions
- interchange boxes used by this subnetwork set to straight in stages that correspond to these m—s bit positions
- other s stages make up subnetwork of size 2^s
- partitioning choices
 - which stage to force to straight to divide (sub)network in half
 - which subnetwork to further subdivide
- follows from theory of partitioning single stage Cube in Chap. 4
- transverse subnetwork from input to output, i^{th} stage not forced to straight is logical stage s-i, where $1 \le i \le s$
- for logical numbering of ports within subnetwork
 - select from physical port address s bit positions in which ports disagree, in order, to use as logical number
 - can complement any of the s bit positions as part of the mapping
 - e.g., N = 16, subnetwork size 4 = $\{12, 13, 14, 15\}$ $p_3p_2p_1p_0 \rightarrow p_1p_0 \text{ or } p_1\overline{p_0} \text{ or } \overline{p_1}p_0 \text{ or } \overline{p_1}\overline{p_0}$

Partitioning Generalized Cube

Count permute his!

i.			
~ // · / · / · / · / · / · / · / · / · /			

Multistage Cube-Type Networks

Relationship between generalized cube topology and:

- 1. SW-Banyan Networks
- 2. Omega (multistage shuffle exchange) Network
- 3. STARAN Flip Network
- 4. Indirect Binary n-Cube Network

Comparison of Multistage Cube-Type Networks

- topology actual interconnection patterns used to connect a set of N inputs to a set of N outputs
- interchange box type

90 . OF

2-function: straight or exchange

4-function: straight, exchange, upper broadcast, or lower broadcast

control structure

individual stage control: one control signal sets the state of all boxes in a stage (all are set to same state)

partial stage control: i+1 control signals set the state of stage i (stage i divided into i+1 sets of boxes, all boxes in same set are in same state)

individual box control: separate control signal sets the state of each box

Generalized Cube Network

- Generalized Cube topology
- 4-function interchange boxes
- individual box control

Banyan Networks - Class of Graphs

SW - Banyan Subclass - Charles of the Spread = 2, Fanout = 2

Stage 2

Stage 1

Stage 0

Relationship Between SW-Banyan (S = F = 2; L = m) and Generalized Cube Networks

- Topology: equivalent, based on constructive definition of SW-banyans, definition of Generalized Cube, and treating edges as interchange boxes, and nodes as links
- box type: not specified for SW-Banyan (graph)
- control scheme: not specified for SW-Banyan (graph)

Omega Network multistage shuffle-exchange network

For $N = 2^m$ shuffle connects

$$\mathtt{p}_{m-1}\cdots\mathtt{p}_{1}\mathtt{p}_{0}\to\mathtt{p}_{m-2}\cdots\mathtt{p}_{1}\mathtt{p}_{0}\mathtt{p}_{m-1}$$

Omega Network for N = 8

Links labelled to show relation to shuffle

Omega Network for N=8

Omega Network for N = 8

Omega = Generalized Cube

GENERALIZED CUBE TOPOLOGY FOR N - 8.

Relationship Between Generalized Cube and Omega Networks

- topology
 - Recall from Chap. 3 Shuffle-Exchange \rightarrow Cube algorithm

$$\begin{split} \operatorname{cube}_{j}(P) &= \operatorname{shuffle}^{j}(\operatorname{exchange}(\operatorname{shuffle}^{m-j}(P))) \\ &= \operatorname{p}_{m-1/j+1} \overline{\operatorname{p}}_{j} \operatorname{p}_{j-1/0} \end{split}$$

- data entering stage j box in omega has been shuffled m—j times
- setting a box to exchange is like performing the exchange function
- stage j acts like cube;
- topologies are equivalent
- box type: 4-function for both
- control scheme: individual box for both

STARAN Flip Network

implemented for N = 256SIMD Machine

shown for N = 8

Flip control

1 bit controls each stage
all boxes in a stage either straight or
all boxes exchange

STARAN Flip Network

shift control - i + 1 bits for stage i different types of uniform shifts

Ex. $x \rightarrow x + 1 \mod N$

OA exchange 1B straight
1A 2B
2A 2C

 $0 \rightarrow 1, 3 \rightarrow 4$

STARAN Network Shift Control

		Control Signals					
Shift	Group Size	0A	1A	1B	2A	2B	<u>2C</u>
4-1	8	1	1	0	1	Ö	0
+2	8	$\bar{0}$	1	1	1	1	0
+4	8	0	0	0	1	1	1
- +1 -	4	1	1	0	0	0	0 -
+2	4	0	1	1	0	0	0
+1	2	1	0	0	0	0	0

partition on bit position 2

STARAN Flip Network

Generalized Cube with order of stages reversed

STARAN Shift Control

- related to Chap. 3 Cube → PM2I algorithm and Chap. 4 Cube partitioning results
- each shift of $+2^i \mod N \equiv PM2_{+i}$
- Chap. 3 Cube \rightarrow PM2_{+i} algorithm: for j=m-1 step -1 to i do cube; $[X^{m-j}1^{j-i}X^i]$
- STARAN flip network does cube₀, cube₁,...

for
$$j = i$$
 to $m-1$ do
$$cube_{j} [X^{m-j}0^{j-i}X^{i}]$$
ex. $i = 0, m = 3$

$$cube_{0} [XXX]$$

$$cube_{1} [XX0]$$

$$cube_{2} [X00]$$

STARAN Shift Controls

$$0A = [XXX], 1A = [XX0], 1B = [XX1], 2A = [X00],$$

 $2B = [X01], 2C = [X1X].$

Cube
$$\rightarrow PM2_{+i}$$

for
$$j = i$$
 to $m-1$ do
$$cube_i [X^{m-j}0^{j-i}X^i]$$

$$\begin{array}{ccc} +1 & \operatorname{cube}_0 & [\mathrm{XXX}] \\ & \operatorname{cube}_1 & [\mathrm{XX0}] \\ & \operatorname{cube}_2 & [\mathrm{X00}] \\ +2 & \operatorname{cube}_1 & [\mathrm{XXX}] \\ & \operatorname{cube}_2 & [\mathrm{X0X}] \\ +4 & \operatorname{cube}_2 & [\mathrm{XXX}] \end{array}$$

STARAN Shift Control N=8

0: 0A: XXX +1
1: 1A: XX0 +1
1B: XX1
2: 2A: X00 +1
2B: X01
2C: X1X
$$+2$$

 $+4$

STARAN Shift Controls

$$0A = [XXX], 1A = [XX0], 1B = [XX1], 2A = [X00],$$

 $2B = [X01], 2C = [X1X].$

PM2₊₀:

$$cube_0$$
 [XXX] $\equiv 0A = 1$

$$cube_1 [XX0] \equiv 1A = 1$$

$$cube_2 [X00] \equiv 2A = 1$$

PM2₊₁:

$$cube_1 [XXX] \equiv 1A = 1B = 1$$

$$cube_2 [X0X] \equiv 2A = 2B = 1$$

$PM2_{+2}$:

$$cube_2 \ [XXX] \equiv 2A = 2B = 2C = 1$$

STARAN for N=16

Shift Controls Needed

STARAN Shift Controls

$$0A = [XXX], 1A = [XX0],$$

 $1B = [XX1], 2A = [X00],$
 $2B = [X01], 2C = [X1X].$

- for shifting $+2^{j}$ within groups of size 2^{k}
 - all elements in a group numbered consecutively
 - all elements in a group agree in high-order m-k bit positions
 - partition by disallowing use of cube; for $k \leq i < m$
- Ex. k = 2, N = 8, j = 0, +1 shift $cube_0 [XXX] \equiv 0A = 1$ $cube_1 [XX0] \equiv 1A = 1$ $4 \rightarrow 5, 5 \rightarrow 4 \rightarrow 6, 6 \rightarrow 7, 7 \rightarrow 6 \rightarrow 4$

• Ex.
$$k = 2$$
, $N = 8$, $j = 1$, $+2$ shift

cube₁ [XXX]
$$\equiv$$
 1A = 1B = 1

4 \rightarrow 6, 6 \rightarrow 4, 5 \rightarrow 7, 7 \rightarrow 5

Relationship of STARAN Flip Network to Generalized Cube Network

- topology STARAN network equivalent to Generalized Cube with stages in reverse order
- box type: STARAN is 2-function

 Generalized Cube is 4-function
- control scheme: STARAN is partial stage and individual stage

 Generalized Cube is individual box

Indirect Binary n-Cube $(n = log_2 N)$ for N = 8

same topology as STARAN flip individual box control only straight or exchange stage order reverse of Generalized Cube

Permutations - cannot do same permutations due to reversed order stages, e.g., 0 to 5 and 1 to 7

Generalized Cube for N=8

Indirect Binary n-Cube for N = 8

If Generalized Cube can perform permutation f, then Indirect Binary n-Cube can perform f⁻¹

$$P \to f(P) \qquad f(P) \to P = f^{-1}(f(P))$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 4 \quad 4 \quad 2 \quad 2 \quad 1 \quad 1$$

$$2 \quad 1 \quad 1 \quad 2 \quad 2 \quad 0$$

$$1 \quad 4 \quad 4 \quad 2 \quad 2 \quad 1 \quad 1$$

$$2 \quad 2 \quad 4 \quad 4 \quad 4 \quad 4 \quad P$$

$$1 \quad 5 \quad 6 \quad 6 \quad 6 \quad 6 \quad 5 \quad 5 \quad T$$

$$6 \quad 3 \quad 3 \quad 5 \quad 5 \quad 6 \quad 6$$

$$7 \quad 7 \quad 7 \quad 7 \quad 7 \quad 7$$

$$5TAGE 2 \qquad 0$$

Generalized Cube for N = 8

Indirect Binary n-Cube for N = 8

If logically relabel each I/O port P as Reverse (P), where $Reverse(p_{m-1}...p_1p_0) = p_0p_1...p_{m-1}$ then can use Generalized Cube to emulate Indirect Binary n-Cube, and vice versa.

Indirect Binary n-Cube for N = 8

Permutations - cannot do same permutations due to reversed order stages, e.g., 0 to 5 and 1 to 7

Generalized Cube for N = 8

Indirect Binary n-Cube for N = 8

Fault Detection and/or Location Techniques for Multistage Cube Networks

- 1. send destination address
- 2. parity/ECC on data/tags at I/O ports
- 3. parity/ECC at each interchange box
- 4. use handshaking protocol
- 5. timer for timeouts
- 6. test bit-patterns
- 7. combinations of above

Techniques for Making Multistage Cube Networks Fault Tolerant

- 1. extra stage
- 2. extra links
- 3. extra switches
- 4. extra interchange box (switch) complexity
- 5. extra network
- 6. extra bits for ECC
- 7. extra control bit/byte slice degrade/spares parity/ECC across slices
- 8. extra passes
- 9. combinations of above

Advantages of Cube Network Include:

- up to N simultaneous transfers
- partitionable into independent subnetworks
- one device can broadcast to all or subset
- distributed network control using routing tags
- variety of implementation options
- can use SIMD in addition to MIMD

EXTRA STAGE CUBE NETWORK

- 1. network structure single fault tolerant
- 2. paths through network
- 3. routing tag control
- 4. partitioning
- 5. multiple fault handling
- 6. enhancement

Advantages of Cube Network Include:

- up to N simultaneous transfers
- partitionable into independent subnetworks
- one device can broadcast to all or subset
- distributed network control using routing tags
- variety of implementation options
- can use SIMD in addition to MIMD

Disadvantage:

• only one path between given source and given destination - not single fault tolerant

Extra Stage Cube

- Based on "popular" multistage cube network
- All advantages of multistage cube network
- Single-fault tolerant
- Robust given two faults
- Techniques for determining if particular multiple faults prevent full functioning, and if so, which I/O ports affected

Extra Stage Cube

- single-fault tolerant
- add extra stage to input side of Generalized Cube
 stage m (m = log₂ N)
- stage m pairs lines disser in 0th bit (like stage 0)
- simple bypass circuitry for stages m and 0

Detail of Stage m and 0 Interchange Box

- stage m normally disabled
- stage 0 normally enabled.

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

NO FAULTS

STAGE

m = log_ N

DISABLED

STAGE O

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

NO FAULTS

STAGE m = log_ N DISABLED

STAGE O ENABLED

JUST LIKE GENERALIZED CUBE

Fault Model

- I/O ports and bypass circuits assumed fault-free
- data not passed through a faulty link or interchange box _ 'quek at" faulty may be problem.

Fault Detection and Location

- test patterns
- dynamic parity checking

Concern

recovery once fault is located

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

primary path - use if not faulty (same as Generalized Cube)

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

primary path - use if not faulty (same as Generalized Cube)

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

primary path-use if not faulty
(same as Generalized Cube)
secondary path-use if primary path
has fault

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

primary path-use if not faulty (same as Generalized Cube) secondary path - use if primary path
has fault

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

breadcast from 3 to 4 and 6
primary path - use if not faulty
(same as Generalized Cube)

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

broadcast from 3 to 4 and 6
primary path - use if not faulty
(same as Generalized Cube)

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

troadcast path from 3 to 4 and 6
primary path - use if not faulty

(same as Generalized Cube)
secondary path - use if primary path

faulty

- with stages m and 0 enabled there exist two paths between any source and any destination
- the two paths have no links in common
- excluding stages m and 0, the paths have no boxes in common
- with a single fault there exists at least one faultfree path between any source and destination

broadcast path from 3 to 4 and 6 primary path - use if not faulty (same as Generalized Cube) secondary path - use if primary path faulty

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE $\log_2 N$ OR O

STAGE O BOX FAULT use STAGE m = log 2 N instead

ENABLE STAGE M DISABLE STAGE D

- EXTRA STAGE, STAGE 3 (= LOG₂N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

STAGE O BOX FAULT USE STAGE M = log 2 N instead

ENABLE STAGE m

DISABLE STAGE O

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE 0
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

STAGE O BOX FAULT use STAGE m = log 2 N instead

ENABLE STAGE M DISABLE STAGE O

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

STAGE M BOX FAULT

DISABLE STAGE m

ENABLE STAGE O

JUST LIKE GENERALIZED CUBE

Permuting with the ESC

Permuting:

routing all N inputs to the N outputs simultaneously

No Faults:

ESC can perform in one pass

all Generalized Cube performable permutations

Single Fault:

ESC can perform in at most two passes all Generalized Cube performable permutations

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE 0
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

INPUT I TO OUTPUT I + 1
(HOD N)

NO FAULTS

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

INPUT I TO OUTPUT I + 1

(HOD N)

FAULTS

PASS 1: ALL WITH OK PRIMARY PATHS

(ALL EXCEPT 4+6)

PASS 2: 4+6 USE SECONDARY PATHS

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

PASS 1: ALL WITH GOOD PRIMARY PATHS
(ALL EXCEPT 4+6)

I TO I+1 HOD N

- EXTRA STAGE, STAGE 3 (= LOG₂N), IS A COPY OF STAGE 0
- INCLUDES CIRCUITRY TO BYPASS STAGE $\log_2 N$ OR O

NO CONFLICTS

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

NO FAULTS

- EXTRA STAGE, STAGE 3 (= LOG₂N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

INPUT I TO OUTPUT I+1

(HOD N)

NO FAULTS

STAGE O FAULT MAY NEED 2 PASSES

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

PASS 1: DO STAGES 2+1

- EXTRA STAGE, STAGE 3 (= LOG₂N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

PASS 2: DO STAGE O USING STAGE M

Elimination of fault-free hardware requirements

- ESC required input demuxes and output muxes to be fault free
- Design so there are two physical ports for each logical port to the network
- Single failure no longer denies access to the network

Fault Model

Dual I/O ports aliminate need for input DEMUX + output K

If no fault (or stage m box fault) disable stage m, enable stage 0

If stage 0 box fault enable stage m, disable stage 0

If stage i box fault, 1 ≤ i < m, or link fault use primary path if it does not include fault use secondary path if primary path includes fault

How is it determined if primary path includes fault?

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

FAULT LABELS SENT TO ALL PES (FAULT NOT STAGE M OR O BOX)

BOX: PORT LABELS

AND STAGE

000,010 = 000

LINK: LINK LABEL 01!

AND STAGE -217- 2

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

FAULT LABELS SENT TO ALL PES (FAULT NOT STAGE M OR O BOX)

BOX: PORT LABELS AND STAGE

000,010 = 000

LINK: LINK LABEL

011

Given fault label the source forms

Destin

1. If stage i box fault

$$d_{m-1}\cdots d_{i+1}Xs_{i-1}\cdots s_1$$

2. If stage i link fault

$$d_{m-1}\cdots d_is_{i-1}\cdots s_1s_0$$

If formed value matches the primary path is faulty.

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

LINK FAULT: 011, 2

 $7 \rightarrow 2$ S=111 D=010 $d_2 = 1$, So=011 match - blocked (primary)

 $0 \rightarrow 1$ s=000 D=001 d_2 s, s₀=000 no match - not blocked

(primary)

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

BOX FAULT: OXO, 1

Broadcast paths - use routing tag R, broadcast mask B

1. If stage i box fault

1 to 1
$$d_{m-1} \cdots d_{i+1} X s_{i-1} \cdots s_0$$
broadcast
$$use \quad W = w_{m-1} \cdots w_1 w_0$$

$$w_{i-1} \cdots w_0 = s_{i-1} \cdots s_0$$

$$w_i = X$$

$$w_j \text{ for } i < j < m:$$

$$\text{if } b_j = 1 \text{ then } w_j = X$$

$$\text{if } b_j = 0 \text{ then } w_j = s_j \oplus r_j$$

(common d_i)

compare to fault label

2. If stage i link fault

1 to 1
$$d_{m-1} \cdots d_i s_{i-1} \cdots s_0$$
broadcast
$$w = w$$

use $W = w_{m-1} \cdot \cdot \cdot w_1 w_0$ to compare

$$\begin{aligned} w_{i-1} & \cdots w_0 = s_{i-1} & \cdots s_0 \\ w_j & \text{for } i \leqslant j < m; \\ & \text{if } b_j = 1 \text{ then } w_j = X \\ & \text{if } b_j = 0 \text{ then } w_j = s_j \oplus r_j \\ & \text{(common } d_j) \end{aligned}$$

THE EXTRA STAGE CUBE NETWORK

- EXTRA STAGE, STAGE 3 (= LOG_2N), IS A COPY OF STAGE 0
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

LINK FAULT: 111, 1

101 110 111 $S_2 \oplus I_2 S_1 \oplus I_1 S_0$ $5 \rightarrow 6 + 7$ R=011 B=001 W₂ W₁ W₀=111

match-blocked (primary)

000 010 011 $S_2 \oplus \Gamma_2 S_1 \oplus \Gamma_1 S_0$ 0-72+3 R=010 B=001 W2 W, W0 = C)
no match - not blocked
(primary)

THE EXTRA STAGE CUBE NETWORK

- EXTRA STAGE, STAGE 3 (= LOG2N), IS A COPY OF STAGE O
- INCLUDES CIRCUITRY TO BYPASS STAGE LOG2N OR O

BOX FAULT: XO1, 2

Fast test to determine if primary path may be faulty

Compare s₀ to low-order bit of fault label

- if different, fault not on primary
- if same, fault may be on primary so use secondary (may cause unnecessary use of secondary paths)

BOX FAULT: OXI

```
0-7/ So=0 PRIMARY NOT BLOCKED

1-3 So=1 PRIMARY MAY BE BLOCKED (IT.IS)

5-7 So=1 PRIMARY MAY BE BLOCKED (ITIS NO
```


· · · · · · · · · · · · · · · · · · ·	Fault Location	Routing Tag T	
	No fault	$T^{\bullet} = Xt_{m-1} \dots t_1t_0$	
	Stage 0 box	$T^{\bullet} = t_0 t_{m-1} \dots t_1 X$	
	Stage i box, $1 \le i < m$, or any link	$T^{\bullet} = 0 t_{m-1} \dots t_1 t_0$ if primary path is fault-free;	
		$T^* = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault	
	Stage m box	$T^{\bullet} = Xt_{m-1} \dots t_1 t_0$	

7=305 = 110 = 1/2+, to 011 101

Fault Location

Routing Tag Tag

No fault

Stage O box

Stage i box, $1 \le i < m$, or any link

 $T^{\bullet} = Xt_{m-1} \cdot \cdot \cdot t_1t_0 = X//O$

 $T^{\bullet} = t_0 t_{m-1} \dots t_1 X$

 $T^{\bullet} = 0 t_{m-1} \dots t_1 t_0$ if primary path is fault-free;

 $T^{\circ} = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault

Stage m box

$T^{\circ} = Xt_{m-1} \dots t_1 t_0$

3-75 7=305 = 110 = 12+, to

Fault Location	Routing Tag T	
No fault	$T^{\bullet} = X t_{m-1} \dots t_1 t_0 = X //O$	
Stage 0 box	$T^{\circ} = t_0 t_{m-1} \dots t_1 X$	
Stage i box, $1 \le i < m$, or any link	$T^{\bullet} = 0 t_{m-1} \dots t_1 t_0$ if primary path is fault-free;	
	$T^{\bullet} = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault	

Stage m box $T^{\bullet} = Xt_{m-1} \dots t_1 t_0$

STAGE 3

2

•

C

$$3 \rightarrow 5$$
 $7 = 3 \oplus 5 = 1/0$
011 101 $t_2 t_1 t_0$

Fault Location	Routing Tag T
No fault	$T^{\bullet} = Xt_{m-1} \dots t_1 t_0$
Stage 0 box	$T^{\circ} = X t_{m-1} \dots t_1 t_0$ $T^{\circ} = t_0 t_{m-1} \dots t_1 X 0 t_2 t_1 t_0$
Stage i box, $1 \le i < m$,	$T^{\bullet} = 0 t_{m-1} \dots t_1 t_0 = 0 / / 0$ if primary path is fault-free:
or any link	if primary path is fault-free:

 $T^{\circ} = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault

Stage m box $T^{\bullet} = Xt_{m-1} \dots t_1 t_0$

One-to-One Routing Tags for the ESC Network

$$(X = 0 \text{ or } 1)$$

$$3 \rightarrow 5$$
 $T = 3 \oplus 5 = 1/0$
 $611 \quad 101 \quad t_2 + t_1 + t_0$

Fault Location

Routing Tag T

No fault

Stage 0 box

Stage i box, $1 \le i < m$, or any link

Stage m box

 $T^{\bullet} = Xt_{m-1} \dots t_1t_0$

 $T^{\bullet} = t_0 t_{m-1} \dots t_1 X$

 $T^{\circ} = 0 t_{m-1} \dots t_1 t_0$ $t_3^{\ast} t_2^{\ast} t_1^{\ast} t_0^{\ast}$ if primary path is fault-free; $t_1 t_0 = t_1 t_0 = t_1 t_0$ if primary path contains fault

 $T^{\bullet} = Xt_{m-1} \dots t_1 t_0$

STAGE 3

2

ı

0

start myon after morning finday

One-to-One Routing Tags for the ESC Network (X = 0 or I)

4 - 7 T = 407 = 011

Fault Location

Routing Tag To

No fault

Stage 0 box

Stage i box, $1 \le i < m$, or any link

 $T^{\bullet} = Xt_{m-1} \dots t_1 t_0 = XO//$

 $T^{\bullet} = t_0 t_{m-1} \dots t_1 X$

 $T^{\circ} = 0 t_{m-1} \dots t_1 t_0$ if primary path is fault-free;

 $T^{\bullet} = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault

Stage m box

 $T^{\bullet} = Xt_{m-1} \dots t_1 t_0$

STAGE 3

2

ı

0

Fault Location		Routing Tag T	
•	Stage i box, $1 \le i < m$, or any link	$T^{\bullet} = 0 t_{m-1} \dots t_1 X = / 0 / X$ $T^{\bullet} = 0 t_{m-1} \dots t_1 t_0$ if primary path is fault-free;	
		$T^* = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault	
	Stage m box	$T^{\bullet} = Xt_{m-1} \dots t_1 t_0$	

2

STAGE . 3

$$4 - 7 7 7 = 407 = 011$$
 $100 111 + 2+, +0$

Fault Location

Routing Tag To

No fault

Stage 0 box

Stage i box, $1 \le i < m$, or any link

 $T^{\circ} = X t_{m-1} \dots t_1 t_0 \qquad \qquad \qquad +_{\frac{1}{2}} \tau_{\frac{1}{2}}^{*}$

 $T^{\circ} = t_0 t_{m-1} \dots t_1 X \stackrel{\tau_3}{\circ} \frac{\tau_2 \tau_1 \tau_0}{\tau_2 \tau_1 \tau_0}$

 $T^{\circ} = 0 t_{m-1} \dots t_1 t_0 = 00 / /$ if primary path is fault-free;

 $T^{\circ} = 1t_{m-1} \dots t_1 \overline{t_0}$ if primary path contains fault

Stage m box

$$T^{\bullet} = Xt_{m-1} \dots t_1 t_0$$

3

0

Fault Location

Routing Tag T

No fault

Stage 0 box

Stage i box, $1 \le i < m$, or any link

 $T^{\bullet} = Xt_{m-1} \dots t_1t_0$

 $T^{\bullet} = t_0 t_{m-1} \dots t_1 X$

 $T^{\circ} = 0 t_{m-1} \dots t_1 t_0 \dots t_2 t_7 t_5$ if primary path is fault-free; $t_2 t_7 t_5$ $T^{\circ} = 1 t_{m-1} \dots t_1 t_0 = |0| | = |0| |$ if primary path contains fault

Stage m box

 $T^* = Xt_{m-1} \dots t_1 t_0$

STAGE 3

2

I

0

Broadcast Routing Tags for the ESC Network (X = 0 or 1)

Fault Location	Routing Tag R* B*-
No fault	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0$ $R^{\bullet} = Xb_{m-1} \dots b_1 b_0$
Stage 0 box	$R^* = r_0 r_{m-1} \dots r_1 X$ $R^* = b_0 b_{m-1} \dots b_1 X$
Stage i box, $1 \le i < m$, or any link	$R^{\bullet} = 0r_{m-1} \dots r_1 r_0$ $B^{\bullet} = 0b_{m-1} \dots b_1 b_0$ if primary path is fault-free;
• •	$R^{\bullet} = 1r_{m-1} \dots r_1 \overline{r_0}$ $R^{\bullet} = 0b_{m-1} \dots b_1 b_0$ if primary broadcast path contains fault
Stage m box	$R^{\circ} = Xr_{m-1} \cdot \cdot \cdot r_1 r_0$ $R^{\circ} = Xb_{m-1} \cdot \cdot \cdot b_1 b_0$

Broadcast Routing Tags for the ESC Network (X = 0 or 1)

Fault Location

Routing Tag R* B*-

·	
No fault	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0 = X/I/ = r_3^{+} r_2^{+} r_3^{+} $
Stage 0 box	$R^* = r_0 r_{m-1} \dots r_1 X$ $R^* = b_0 b_{m-1} \dots b_1 X$
Stage i box, $1 \le i < m$, or any link	$R^{\circ} = 0r_{m-1} \dots r_1 r_0$ $B^{\circ} = 0b_{m-1} \dots b_1 b_0$ if primary path is fault-free;
	$R^{\bullet} = 1r_{m-1} \dots r_1 \overline{r_0}$ $B^{\bullet} = 0b_{m-1} \dots b_1 b_0$ if primary broadcast path contains fault
Stage m box	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0 = \times 111$

Broadcast Routing	Tags for the ESC Network $(X = 0 \text{ or } 1)$
3-4+6	R=304=111 B=406=010
	121,10 b2b, b0

	X./.o	626,60
Fault Location	Routing Tag	R*, B*
No fault		
Stage 0 box	$R^{\circ} = Xr_{m-1} \dots r_1 r_0$ $R^{\circ} = Xb_{m-1} \dots b_1 b_0$ $R^{\circ} = r_0 r_{m-1} \dots r_1 X = r_0$	12 r, X 1 1 X = r*= * r* r*
Stage i box, $1 \le i < m$, or any link	$R^{\circ} = r_0 r_{m-1} \dots r_1 X = f$ $B^{\circ} = b_0 b_{m-1} \dots b_1 X = 0$ $R^{\circ} = 0 r_{m-1} \dots r_1 r_0$ $B^{\circ} = 0 b_{m-1} \dots b_1 b_0$ if primary path is fault-free	م ^{ح ها} ۲
	$R^* = 1r_{m-1} \dots r_1 \overline{r_0}$ $B^* = 0b_{m-1} \dots b_1 b_0$ if primary broadcast path calculations	
Stage m box	$R^{\circ} = Xr_{m-1} \dots r_1 r_0$ $R^{\circ} = Xb_{m-1} \dots b_1 b_0$	ourant isint
enable	dia 1/2	

STAGE 3

Broadcast Routing Tags for the ESC Network (X = 0 or 1) 3 - 74 + 6 R = 3 - 4 = 1/1 B = 4 - 6 = 0/00/1 = 100 / 10 626,60

Fault Location	Routing Tag R*, B*-	
No fault	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0$ $B^{\bullet} = Xb_{m-1} \dots b_1 b_0$	
Stage 0 box	$R^{\bullet} = r_0 r_{m-1} \dots r_1 X$ $R^{\bullet} = b_0 b_{m-1} \dots b_1 X$	
Stage i box, $1 \le i < m$, or any link	$R^* = 0r_{m-1} \dots r_1 r_0 = 0 / / = r_3^* r_2^* r_1^* r_2^*$ $B^* = 0b_{m-1} \dots b_1 b_0 = 0000 = b_3^* b_2^* b_3^* b_3^*$ if primary path is fault-free;	
	$R^{\circ} = 1r_{m-1} \dots r_1 \overline{r_0}$ $B^{\circ} = 0b_{m-1} \dots b_1 b_0$ if primary broadcast path contains fault	
Stage m box	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0$ $B^{\bullet} = Xb_{m-1} \dots b_1 b_0$	

Broadcast Routing Tags for the ESC Network (X = 0 or 1) $3 \rightarrow 4+6$ $R=3 \oplus 4=1/1$ $B=4 \oplus 6=0/0$ $12^{r}/70$ $b_{2}b_{1}b_{0}$

	2110	, b2b, b0
Fault Location	Routing Tag	R*, B*.
No fault	$R^{\bullet} = Xr_{m-1} \cdots r_1 r_0$ $B^{\bullet} = Xb_{m-1} \cdots b_1 b_0$	
Stage 0 box	$R^{\bullet} = r_0 r_{m-1} \dots r_1 X B^{\bullet} = b_0 b_{m-1} \dots b_1 X$	•
Stage i box, $1 \le i < m$, or any link	$R^{\bullet} = 0r_{m-1} \dots r_1 r_0$ $R^{\bullet} = 0b_{m-1} \dots b_1 b_0$ if primary path is fault-free	::=r**c*c*
•	$R^{\circ} = 1r_{m-1} \cdots r_1 \overline{r_0} = 1/2$ $B^{\circ} = 0b_{m-1} \cdots b_1 b_0 = 0$ if primary broadcast path	17 - 111 -
Stage m box	$R^{\bullet} = Xr_{m-1} \dots r_1 r_0$ $B^{\bullet} = Xb_{m-1} \dots b_1 b_0$	
enable	anat la	

STAGE 3

2

0

Fault Handling in Extra Stage Cube

- if no fault
 - disable stage m, enable stage 0
 - use routing tag $T^* = Xt_{m-1}...t_1t_0$
- stage 0 box fault
 - disable stage 0, enable stage m, notify devices
 - use routing tag $T^* = t_0 t_{m-1}...t_1 X$
- stage i box fault, $1 \le i < m$, or link fault
 - enable stage m and 0
 - send devices fault label
 stage i, link J → (i, J, link)
 stage i, box with link J → (i, J, box)
 - link: compare $d_{m-1}...d_{i+1}d_{i}s_{i-1}...s_{1}s_{0}$ to J box: compare $d_{m-1}...d_{i+1}Xs_{i-1}...s_{1}s_{0}$ to J if no match use $T^{*} = 0$ $t_{m-1}...t_{1}t_{0}$ if match use $T^{*} = 1$ $t_{m-1}...t_{1}\overline{t_{0}}$
- permutations similar two passes
- broadcasting similar need m+1 bit broadcast mask

Fault Location	Destination Tag D*
No fault	$D^* = X d_{m-1}d_1d_0$
Stage 0 box	$D^* = d_0 d_{m-1} d_1 X$
Stage i box, 1≤i <m< td=""><td>$D^* = s_0 d_{m-1} d_1 d_0$</td></m<>	$D^* = s_0 d_{m-1} d_1 d_0$
or any link	if primary path is fault-free
	$D^* = \overline{s}_0 d_{m-1} d_1 d_0$
	if primary path contains fault
Stage m box	$D^* = X d_{m-1}d_1 d_0$

One-to-One Destination Tags for the ESC Network

$$(X = 0 \text{ or } 1)$$

$$3 \longrightarrow 5$$

Fault Location

$$D = /O/ = d_2 d_1 d_0$$
Destination Tag D*

No fault

Stage 0 box

Stage i box, 1≤i<m or any link

Stage m box

 $D^* = X d_{m-1}...d_1 d_0 = X/O/$

 $D^* = d_0 d_{m-1} ... d_1 X$

 $D^* = s_0 d_{m-1} ... d_1 d_0$

if primary path is fault-free

 $D^* = \overline{s}_0 d_{m-1} ... d_1 d_0$

if primary path contains fault

 $D^* = X d_{m-1} ... d_1 d_0 = X 101$

STAGE

2

ı

٥

One-to-One Destination Tags for the ESC Network

$$(X = 0 \text{ or } 1)$$

$$3 \rightarrow 5$$

Fault Location

 $D= |O| = d_2 d_1 d_0$ Destination Tag D*

No fault

Stage 0 box

Stage i box, 1≤i<m or any link $D^* = X d_{m-1}...d_1 d_0 d_0 d_2 d_1 X$

 $D^* = d_0 d_{m-1} ... d_1 X = I I O X$

 $D^* = s_0 d_{m-1} ... d_1 d_0$

if primary path is fault-free

 $D^* = \overline{s}_0 d_{m-1} ... d_1 d_0$

if primary path contains fault

 $D^* = Xd_{m-1}...d_1d_0$

Stage m box enable

Fault Location

 $S = 0/1 = s_2 s_1 s_0$ $D = 10/1 = d_2 d_1 d_0$ Destination Tag D*

No fault

Stage 0 box

Stage i box, 1≤i<m

or any link

 $D^* = X d_{m-1}...d_1d_0$

 $D^* = d_0 d_{m-1} ... d_1 X$ $s_0 d_2 d_1 d_0$

 $D^* = s_0 d_{m-1} ... d_1 d_0 = / / O /$

if primary path is fault-free

 $D^* = \overline{s}_0 d_{m-1} ... d_1 d_0$

if primary path contains fault

Stage m box $D^* = X d_{m-1}...d_1 d_0$

enable enable

officered enabl

STAGE 3

2

One-to-One Destination Tags for the ESC Network

$$(X = 0 \text{ or } 1)$$

 $3 \rightarrow 5$ $S = 0// = 5_2 5_5 5_0$ $D = 10/ = d_2 d_1 d_0$

Fault Location

Destination Tag D

No fault

Stage 0 box

Stage i box, 1≤i<m

or any link

 $D^* = X d_{m-1}...d_1d_0$

 $D^* = d_0 d_{m-1} ... d_1 X$

 $D^* = s_0 d_{m-1} ... d_1 d_0$

if primary path is fault-free $\overline{s}_0 d_2 d_1 d_0$ $D^* = \overline{s}_0 d_{m-1} ... d_1 d_0 = 0 / 0 /$

if primary path contains fault

Stage m box

 $D^* = X d_{m-1} ... d_1 d_0$

- similar to Generalized Cube
- example Group A: 0-3 Group B: 4-7

- similar to Generalized Cube
- example Group A: 0-3 Group B: 4-7, red shows independence of groups

- similar to Generalized Cube
- example Group A: 0-3 Group B: 4-7

 red shows independence of groups

 primary and secondary paths exist

 within partition

STAGE 3

2

- same as Generalized Cube, except cannot partition on stage 0
- each subnetwork is independent ESC network
- each subnetwork is single fault tolerant (if boxes are bypassed individually)
- if box forced to straight is faulty, two partitions affected (single fault in each)

Multiple Faults

- 1. If one fault in stage 0 and one fault elsewhere, then some source/destination pairs not possible.
- 2. If one fault in stage m and one fault elsewhere, then some source/destination pairs not possible.
- 3. No faulty stage 0 or stage m boxes: Fault Labels $(a_{m-1} \cdots a_1 a_0, i)$ $(b_{m-1} \cdots b_4 b_0, j)$ $1 \le j \le i < m$

If $a_{m-1} \cdot \cdot \cdot a_i \neq b_{m-1} \cdot \cdot \cdot b_i$ OR $a_{j-1} \cdot \cdot \cdot a_1 \overline{a_0} \neq b_{j-1} \cdot \cdot \cdot b_1 b_0$ then there is a fault-free path for all source/destination pairs

If both equal - no connection between these pairs:

$$s_{i-1} \cdot \cdot \cdot s_1 = a_{i-1} \cdot \cdot \cdot a_1$$

$$d_{m-1} \cdot \cdot \cdot d_j = b_{m-1} \cdot \cdot \cdot b_j$$

$$(s_{m-1} \cdot \cdot \cdot s_i, s_0, d_{j-1} \cdot \cdot \cdot d_0 \text{ arbitrary})$$

(system control unit checks this)

Multiple Fault Tolerance for ESC

- assume fault label A is from stage i, and fault label B is from stage j, $j \le i$
- consider primary and secondary paths from S to D
- stage i output link: primary $d_{m-1/i}s_{i-1/0}$ and secondary $d_{m-1/i}s_{i-1/1}\overline{s}_0$
- stage j output link: primary $d_{m-1/j}s_{j-1/0}$ and secondary $d_{m-1/j}s_{j-1/1}s_0$
- \bullet at stages i and j the primary and secondary paths both have $d_{m-1/i}$ and $s_{j-1/1}$ and are complements in bit position 0
- if $a_{m-1/i} \neq b_{m-1/i}$ both paths not blocked (since if $a_{m-1/i} = d_{m-1/i}$, then $b_{m-1/i} \neq d_{m-1/i}$ and vice versa)
- similar if $a_{j-1/1}\overline{a}_0 \neq b_{j-1/0}$
- only if $a_{m-1/i} = b_{m-1/i}$ and $a_{j-1/1}\overline{a}_0 = b_{j-1/0}$ are some S/D pairs blocked
- these S/D pairs are:

$$\begin{aligned} d_{m-1/j} &= b_{m-1/j} & (\rightarrow d_{m-1/i} = a_{m-1/i}) \\ s_{i-1/1} &= a_{i-1/1} & (\rightarrow s_{j-1/1} = b_{j-1/1}) \\ \rightarrow & d_{m-1/j} s_{j-1/1} = b_{m-1/1} \text{ and} \\ d_{m-1/i} s_{i-1/1} &= a_{m-1/1} \\ & \text{and} \quad s_0 = a_0 = \overline{b}_0 \text{ or } \overline{s}_0 = a_0 = \overline{b}_0 \end{aligned}$$

• $s_{m-1/i}$ and $d_{j-1/0}$ and s_0 may vary: $2^{(m-i)+1+j}$ pairs

Consider probability that two arbitrary faults will cause loss of full functioning capability

- 2 box faults
- 2 link faults
- 1 box fault and 1 link fault

From:

"Modifications to Improve the Fault Tolerance of the Extra Stage Cube Interconnection Networks," Adams and Siegel, 1984 Int'l. Conf. Parallel Processing.

NOT IN BOOK,

** BUT HE WILL HAND OUT PAPER *

Consider probability that two arbitrary network faults will cause loss of full functioning capability

- 2 box faults
- 2 link faults
- 1 box fault and 1 link fault

Must block both primary and secondary path for an input/output pair

2 faulty boxes

Consider probability that two arbitrary network faults will cause loss of full functioning capability

- 2 box faults
- 2 link faults
- 1 box fault and 1 link fault

2 faulty links

Consider probability that two arbitrary network faults will cause loss of full functioning capability

- 2 box faults
- 2 link faults
- 1 box fault and 1 link fault

Stage bypassing - / stage O box fault, entire stage O bypassed

with stage O disabled, only one path between any source / destination any other single fault prevents full functioning

Stage bypassing - I stage m box fault, entire stage m bypassed

with stage m disabled, only one path between any source / destination any other single fault prevents full functioning

Enhancement to ESC

Box bypassing - (vs. stage bypassing)

Stage 0 faulty box bypass (disable) only faulty box
(not all of stage 0)
enable all of stage m

Stage m faulty box bypass (disable) only faulty box
(not all of stage m)
enable all of stage 0

All other faults - handle same way as before

Box bypassing - Stage O

only paths that need faulty box blocked

Box bypassing - Stage O

only paths that need faulty box blocked

Ex. one 0 -1 path blocked

Ex. no 6 - 7 paths blocked (one would be by stage bypassing)

improves chance to survive multiple faults

Box bypassing - stage m

only paths that need faulty box blocked

Box bypassing - stage m

only paths that need faulty box blocked

Ex. one 0-1 path blocked Ex. no 6-7 paths blocked (one would be by stage bypassing)

improves chance to survive multiple faults

Probability of Loss of

Full Functioning Capability Given 2 Faults Occur

P(BF | F) = probability box fault, given a fault

P(LF | F) = probability link fault, given a fault

$$P(LF | F) = 1 - P(BF | F)$$

P(loss | N,2) = probability loss of full functioning capability given 2 faults occur in a network of size N

Full Functioning Capability = can connect any input to any output

Probability of Loss of

Full Functioning Capability Given 2 Faults Occur

P(BF | F) = probability box fault, given a fault

P(LF | F) = probability link fault, given a fault

$$P(LF|F) = 1 - P(BF|F)$$

P(loss | N,2) = probability loss of full functioning capability given 2 faults occur in a network of size N

Full Functioning Capability = can connect any input to any output

Analysis:

Given two faults and stage bypassing

$$P(\log | N, 2) = \left[\frac{(4Nm-2N)+(4N-6m-2)}{N(m+1)^2-2(m-1)} \right] * P^2(BF|F) + \left[\frac{2Nm+(4N-4m-4)}{Nn^2+Nm} \right] * 2 * P(BF|F) * P(LF|F) + \left[\frac{4N-3m-4}{Nm^2-m} \right] * P^2(LF|F)$$

Given two faults and box bypassing

$$P(loss|N,2) = \left[\frac{14N-6m-18}{N(m+1)^2-2(m-1)}\right] * P^2(BF|F) + \left[\frac{8N-4m-8}{Nm^2+Nm}\right] * 2 * P(BF|F) * P(LF|F) + \left[\frac{4N-3m-4}{Nm^2-m}\right] * P^2(LF|F)$$

Verified by simulation for $N=4,\ 8,\ 16,\ and\ 32$

Extra Stage Cube Advantages

- 1. all advantages of multistage cube
 - distributed network control using routing tags
 - partitionable into independent subnetworks
 - one device can broadcast to all or subset
 - can use for SIMD in addition to MIMD
 - variety of implementation options
- 2. single fault tolerant (1 to 1, broadcasts, 2 passes for permutations)
- 3. each partition single fault tolerant (box bypassing)
- 4. robust for 2 faults (box bypassing) (any S to any D ~90%)
- 5. when multiple faults occur
 - degradation (if any) determinable: amount and which S/D pairs affected