Groups Formulary

Raúl Ultralaser

Semigroups and groups

The simplest algebraic structure to recognize is a semigroup, which is defined as a nonempty set S with an associative binary operation.

Definition 1. Let (S, \cdot) be a semigroup. If there is an element e, in S such that

$$ex = x = xe$$
 for all $x \in S$,

then e is called the identity of the semigroup (S, \cdot) .

Definition 2. Let (S, \cdot) be a semigroup with identity e. Let $a \in S$. If there exist an element b in S such that

$$ab=e=ba$$

then b is called the inverse of a, and a is said to be invertible

Definition 3. A nonempty set G with a binary operation \cdot on G is called a group if the following axioms hold:

- (i) $a(bc) = (ab)c \text{ for all } a, b, c \in G.$
- (ii) There exist $e \in G$ such that ea = a for all $a \in G$.
- (iii) For every $a \in G$ there exist $a' \in G$ such that a'a = e

Theorem 1. A semigroup G is a group if and only if for all a, b in G, each of the equations ax = b and ya = b has a solution.

Theorem 2. A finite semigroup G is a group if and only if the cancelation laws hold for all elements in G; that is,

$$ab = ac \Rightarrow b = c$$
 and $ba = ca \Rightarrow b = c$

for all $a, b, c \in G$

Homomorphism

Definition 1. Let G, H be groups. A mapping

$$\phi: G \to H$$

is called a homomorphism if for all $x, y \in G$

$$\phi(xy) = \phi(x)\phi(y)$$

Furthermore, if ϕ is bijective, then ϕ is called an isomorphism of G onto H, and we write $G \simeq H$. If ϕ is just injective, that is, 1-1, then we say that ϕ is an isomorphism (or monomorphism) of G into H. if ϕ is surjective, that is, onto, then ϕ is called an epimorphism, A homomorphism of G into itself is called an endomorphism of G that is both G and onto is called an automorphism of G.

If $\phi: G \to H$ is called an intro homomorphism, then H is called a homomorphic image of G; also, G is said to be homomorphic to H. If $\phi: G \to H$ is a 1-1 homomorphism, then G is said to be embeddable in H, and we write $G \circlearrowleft H$.

Theorem 1. Let G and H be groups with identities e and e', respectively, and let $\phi: G \to H$ be a homomorphism. Then

- (i) $\phi(e) = e'$
- (ii) $\phi(x^{-1}) = (\phi(x))^{-1}$ for each $x \in G$.

Definition 2. Let G and H be groups, and let ϕ : $G \to H$ be a homomorphism. The kernel of ϕ is defined to be the set

$$Ker\phi = \{x \in G | \phi(x) = e'\}$$

where e' is the identity in H

Theorem 2. A homomorphism $\phi: G \to H$ is injective if and only if $Ker\phi = \{e\}$

Subgroups and cosets

Definition 1. Let (G, \cdot) be a group and let H be a subset of G. H is called a subgroup of G, written H < G, if H is a group relative to the binary operation in G.

Theorem 1. Let G be a group. A nonempty subset H of G is a subgroup of G if and only if either of the following holds:

- (i) For all $a, b \in H$, $ab \in H$, and $a^{-1} \in H$.
- (ii) For all $ab \in H$, $ab^{-1} \in H$.

Theorem 2. Let (G, \cdot) be a group. A nonempty finite subset H of G is a subgroup if and only if $ab \in H$ for all $a.b \in H$

Theorem 3. Let $\phi: G \to H$ be a homomorphism of groups. Then $Ker\phi$ is a subgroup of G and $Im\phi$ is a subgroup of H.

Definition 2. The center of a group G, written Z(G), is the set of those elements in G that commute with every element in G; that is,

$$Z(G) = \{ a \in G | ax = xa \text{ for all } x \in G \}$$

Theorem 4. The center of a group G is a subgroup of G

Theorem 5. Let H and K be subgroups of a group (G, \cdot) . Then HK is a subgroup of G if and only if HK = KH.

Theorem 6. Let S be a nonempty subset of a group G. Then the subgroup generated by S is the set M of all finite products $x_1, x_2, ..., x_n$ such that, for each i, $x_i \in S$ or $x_i^{-1} \in S$

Theorem 7. Let G be a group and $a \in G$

- (i) If $a^n = e$ for some integer $n \neq 0$, then o(a)|n
- (ii) If o(a) = m then for all integers $i, a^i = a^{r(i)}$, where r(i) is the remainder of i modulo m.
- (iii) [a] is of order m if and only if o(a) = m.

Corollary 1. If G is a finite group, then there exist a positive integer k such that $x^k = e$ for all $x \in G$.

Definition 3. Let H be a subgroup of G. Given $a \in G$, the set

$$aH = \{ah | h \in H\}$$

is called the left coset of H determined by a. A subset C of G is called a left coset of H in G if C = aH for some a in G. The set of all left cosets of H in G is written G/H

Definition 4. Let H be a subgroup of G. The cardinal number of the set of left (right) cosets of H in G is called the index of H in G and denoted by [G:H].

Theorem 8 (Lagrange). Let G be a finite group. Then the order of any subgroup of G divides the order of G.

Corollary 2. Let G be a finite group of order n. Then for every $a \in G$, o(a)|n, and, hence, $a^n = e$.

Consequently, every finite group of prime order is cyclic and, hence, abelian.

Cyclic groups

Theorem 1. Every cyclic group is isomorphic to \mathbb{Z} or to $\mathbb{Z}/(n)$ for some $n \in \mathbb{N}$

Theorem 2. Any two cyclic groups of the same order (finite or infinite) are isomorphic.

Theorem 3. Every subgroup of a cyclic group is cyclic.

Theorem 4. Let G be a finite cyclic group of order n, and let d be a positive divisor of n. Then G has exactly one subgroup of order d.

Permutation groups

Definition 1. Let X be a nonempty set. The group of all permutations of X under composition of mappings is called the symmetric group on X and is denoted by S_x . A subgroup of S_x is called a permutation group on X.

Definition 2. Let $\sigma \in S_n$. If there exist a list of distinct integers $x_1, ..., x_n \in n$, such that,

$$\sigma(x_i) = x_{i+1}, \qquad i = 1, ..., r - 1,$$

$$\sigma(x_r) = x_1,$$

$$\sigma(x) = x \qquad \text{if } x \notin \{x_1, ..., x_r\}.$$

then σ is called a cycle of length r and denoted by $(x_1,...,x_r)$. A cycle of length 2 is called a transposition.

Theorem 1 (Cayley). Every group is isomorphic to a permutation group.

Definition 3. The group of symmetries of a regular polygon P_n of n sides is called the dihedral group of degree n and denoted by D_n

Theorem 2. The dihedral group D_n is a group of order 2n generated by two elements σ, τ satisfying $\sigma^n = e = \tau^2$ and $\tau \sigma = \sigma^{n-1}\tau$, where

$$\sigma = (1 \ 2 \dots n), \quad \tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & n & \cdots & 2 \end{pmatrix}$$

Geometrically, σ is a rotation of the regular polygon P_n through an angle $2\pi/n$ in its own plane, and τ is a reflection (or a turning over) in the diameter through the vertex 1.

Definition 4. The dihedral group D_4 is called the octic group.

Generators and relations

Definition 1. Let G be a group generated by a subset X of G. A set of equations $(r_j = 1)_{j \in A}$ that suffice to construct the multiplication table of G is called a set of defining relations for the group $(r_j$ are products of elements of X).

The set X is called a set of generators. The system $(X; (r_j = 1)_{j \in A})$ is called a presentation of the group.

Normal subgroups

Normal subgroups and quotient groups

Definition 1. Let G be a group. A subgroup N of G is called a normal subgroup of G, written $N \triangleleft G$, if $xNx^{-1} \subset N$ for every $x \in G$.

Theorem 1. Let N be a subgroup of a group G. Then the following are equivalent.

- (i) $N \triangleleft G$
- (ii) $xNx^{-1} = N$ for every $x \in G$
- (iii) xN = Nx for every $x \in G$
- (iv) (xN)(yN) = xyN for all $x, y \in G$.

Theorem 2. Let N be a normal subgroup of the group G. Then G/N is a group under multiplication. The mapping $\phi: G \to G/N$, given by $x \mapsto xN$, is a surjective homomorphism, and $Ker\phi = N$

Definition 2. Let N be a normal subgroup of G. The group G/N is called the quotient group of G by N. The homomorphism $G \to G/N$, given by $x \mapsto xN$, is called the natural (or canonical) homomorphism of G onto G/N.

Definition 3. Let G be a group, and let S be a nonempty subset of G. The normalizer of S in G is the set

$$N(S) = \{ x \in G | xSx^{-1} = S \}$$

The normalizer of a singleton $\{a\}$ is written N(a).

Theorem 3. Let G be a group. For any nonempty subset S of G, N(S) is a subgroup of G. Further, for any subgroup H of G,

- (i) N(H) is the largest subgroup of G in which H is normal;
- (ii) if K is a subgroup of N(H), then H is a normal subgroup of KH.

Definition 4. Let G be a group. For any $a, b \in G$, $aba^{-1}b^{-1}$ is called a commutator in G. The subgroup of G generated by the set of all commutators in G is called the commutator subgroup of G (or the derived group of G) and denoted by G'

Theorem 4. Let G be a group, and let G' be the derived of G. Then

- (i) $G' \triangleleft G$
- (ii) G/G'isabelian
- (iii) if $H \triangleleft G$, then G/H is abelian if and only if $G' \subseteq H$.

Isomorphism theorems

Theorem 1 (First isomorphism theorem). Let $phi: G \to G'$ be a homomorphism of groups. Then

$$G/Ker\phi \simeq Im\phi$$

Hence, in particular, if ϕ is surjective, then

$$G/Ker\phi \simeq G'$$

Corollary 1. Any homomorphism $\phi: G \to G'$ of groups can be factored as

$$\phi = j \cdot \psi \cdot \eta$$

where $\eta: G \to G/Ker\phi$ is the natural homomorphism, $\psi: G/Ker\phi \to Im\phi$ is the isomorphism obtained in the theorem, and $j: Im\phi \to G'$ is the inclusion map.

$$G \xrightarrow{\phi} G'$$

$$\downarrow^{\eta} \qquad \qquad j \\
G/Ker\phi \xrightarrow{\phi} Im\phi$$

Theorem 2 (Second isomorphism theorem). Let H and N be subgroups of G, and $N \triangleleft G$. Then

$$H/H \cap N \simeq HN/N$$

The inclusion diagram shown below is helpful in visualizing the theorem. Because of this, the theorem is known as the "diamond isomorphism theorem".

Theorem 3 (Third isomorphism theorem). Let H and K be normal subgroups of G and $K \subset H$. Then

$$(G/K)(H/K) \simeq G/H$$

This theorem is also known as the "double quotient isomorphism theorem".

Theorem 4. Let G_1 and G_2 be groups, and $N_1 \triangleleft G_1, N_2 \triangleleft G_2$. Then $(G_1 \times G_2)/(N_1 \times N_2) \simeq (G_1/N_1) \times (G_/N_2)$.

Theorem 5 (correspondence theorem). Let ϕ : $G \to G'$ be a homomorphism of a group G onto a group G'. Then the following are true:

- (i) $H < G \Rightarrow \phi(H) < G'$.
- $(i)' \quad H' < G' \Rightarrow \phi^{-1}(H') < G.$
- (ii) $H \triangleleft G \Rightarrow \phi(H) \triangleleft G'$
- (ii)' $H' \triangleleft G' \Rightarrow \phi^{-1}(H') \triangleleft G$
- (iii) $H < G \text{ and } H \supset Ker \phi \Rightarrow H = \phi^{-1}(\phi(H))$
- (iv) The maping $H \mapsto \phi(H)$ is a 1-1 correspondence between the family of subgroups of G'; futhermore, normal subgroups of G correspond to normal subgroups of G'.

Corollary 2. Let N be a normal subgroup of G. Given any subgroup H' of G/N, there is a unique subgroup H of G such that H' = H/N. Further, $H \triangleleft G$ if and only if $H/N \triangleleft G/N$.

Definition 1. Let G be a group. A normal subgroup N of G is called a maximal normal subgroup if

- (i) $N \neq G$
- (ii) $H \triangleleft G$ and $H \supset N \Rightarrow H = N$ or H = G.

Definition 2. A group of G is said to be simple if G has no proper normal subgroups; that is, G has no normal subgroups except (e) and G.

Corollary 3. Let N be a proper normal subgroup of G. Then N is a maximal normal subgroup of G if and only if G/N is simple.

Corollary 4. Let H and K be a distinct maximal normal subgroups of G. Then $H \cap K$ is a maximal normal subgroup of H and also of K.

Automorphism

Recall that an automorphism of a group G is an isomorphism of G onto G. The set of all automorphism of G is denoted by Aut(G). We have seen that every $g \in G$ determines an automorphism I_g of G (called an inner automorphism) given by $x \mapsto gxg^{-1}$. The set of all inner automorphism of G is denoted by In(G).

Theorem 1. The set Aut(G) of all automorphism of a group G is a group under composition of mappings, and $In(G) \triangleleft Aut(G)$. Moreover,

$$G/Z(G) \simeq In(G)$$

Conjugacy and G-sets

Definition 1. Let G be a group and X a set. Then G is said to act on X if there is a mapping $\phi : G \times X \mapsto X$, with $\phi(a,x)$ written a * x, such that for all $a,b \in G, x \in X$,

(i)
$$a * (b * x) = (ab) * x$$

$$(ii)$$
 $e * x = x$

The mapping ϕ is called the action of G on X, and X is said to be a G – set.

Theorem 1. Let G be a group and let X be a set

- (i) If X is a G set, then the action of G on X induces a Homomorphism $\phi: G \mapsto S_x$.
- (ii) Any homomorphism $\phi: G \mapsto S_x$ induces and action of G onto X.

Theorem 2 (Cayley's theorem). Let G be a group. Then G is isomorphic into the symmetric group S_G .

Theorem 3. Let G be a group and H < G of index n. Then there is a homomorphism $\phi : G \mapsto S_n$ such that $Ker\phi = \bigcap_{x \in G} xHx^{-1}$

Corollary 1. Let G be a group with a normal subgroup H of index n. Then G/H is isomorphic into S_n .

Corollary 2. Let G be a simple group with a subgroup $\neq G$ of finite index n. Then G is isomorphic into S_n

Definition 2. Let G be a group acting on a set X, and let $x \in X$. Then the set

$$G_x = \{g \in G | gx = x\}$$

which can be easily shown to be a subgroup, is called the stabilizer (or isotropy) group of x in G.

Definition 3. Let G be a group acting on a set X, and let $x \in X$. Then the set

$$Gx = \{ax | a \in G\}$$

is called the orbit of x in G.

Theorem 4. Let G be a group acting on a set X. Then the set of all orbits in X under G is a partition of X. For any $x \in X$ there is a bijection $Gx \mapsto G/G_x$ and, hence,

$$|Gx| = [G:G_X].$$

Therefore, if X is a finite set,

$$|X| = \sum_{x \in C} [G : G_x],$$

where C is a subset of X containing exactly one element from each orbit.

Theorem 5. Let G be a group. Then the following are true:

- (i) The set of conjugate classes of G is a partition of G
- (ii) |C(a)| = [G:N(a)]
- (iii) If G is finite, $|G| = \sum [G:N(a)]$, a running over exactly one element from each conjugate class.

Definition 4. Let S and T be two subsets of a group G. Then T is said to be conjugate to S is there exist $x \in G$ such that $T = xSx^{-1}$.

Theorem 6. Let G be a group. Then for any subset S of G,

$$|C(S)| = [G:N(S)]$$
 $[N(S) = \{x \in G | x^{-1}Sx = S\}]$

Theorem 7. Let G be a finite group order of p^n , where p is prime and n > 0. Then.

- (i) G has a nontrivial center Z.
- (ii) $Z \cap N$ is nontrivial for any nontrivial normal subgroup N of G.
- (iii) If H is a proper subgroup of G, then H is properly contained in N(H); hence, if H is a sobgroup of order p^{n-1} , then $H \triangleleft G$.

Corollary 3. Every group of order p^2 (p is prime) is abelian.

Theorem 8 (Burnside). Let G be a finite group acting on a finite set X. Then the number k of orbits in X under G is

$$k = \frac{1}{|G|} \sum_{g \in G} |X_g|.$$

Normal series

Normal series

Definition 1. A sequence $(G_0, G_1, ..., G_r)$ of subgroups G is called a normal series (or subnormal series) of G if

$$\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_{r-1} \triangleleft G_r = G.$$

The factors of a normal series are the quotient groups $G_i/G_{i-1}, i \leq i \leq r$

Definition 2. A composition series of a group G is a normal series $(G_0, ..., G_r)$ without repetition whose factors G_i/G_{i-1} are all simple groups. These factors G_i/G_{i-1} are called composition factors of G.

Lemma 1. Every finite group has a composition series.

Definition 3. Two normal series $S = (G_0, G_1, ..., G_r)$ and $S' = (G'_0, G'_1, ..., G'_r)$ of G are said to be equivalent, written $S \sim S'$, if the factors of one series are isomorphic to the factors of the other after some permutation; that is,

$$G'_i/G'_{i-1} \simeq G_{\sigma(i)}/G_{\sigma(i)-1}$$
 $i = 1, ..., r,$

for some $\sigma \in S_r$.

Evidently, \sim is and equivalent relation.

Theorem 1 (**Jordan-Holder**). Any two composition series of a finite group are equivalent.

Solvable groups

Definition 1. A group G is said to be solvable if $G^k = \{e\}$ for some positive integer.

Theorem 1. Let G be a group. If G is solvable, then every subgroup of G and every homomorphic image of G are solvable. Conversely, if N is normal subgroup of G such that N and G/N are solvable, then G is solvable.

Theorem 2. A group G is solvable if and only if G has a normal series with abelian factors. Further, a finite group is solvable if and only if its composition factors are cyclic groups of prime order.

Nilpotent groups

Definition 1. A group G is said to be nilpotent if $Z_m(G) = G$ for some m. The smallest m such that $Z_m(G) = G$ is called the class of nilpotency of G.

Theorem 1. A group of order p^n (p prime) is nilpotent

Theorem 2. A group G is nilpotent if and only if G has a normal series

$$\{e\} = G_0 \subset G_1 \subset \cdots \subset G_m = G$$

such that $G_i/G_i-1 \subset Z(G/G_{i-1})$ for all i=1,...,m.

Corollary 1. Every nilpotent group is solvable.

Theorem 3. Let G be a nilpotent group. Then every subgroup of G and every homomorphic image of G are nilpotent.

Theorem 4. Let $H_1, ..., H_n$ be a family of nilpotent groups. Then $H_1 \times \cdots \times H_n$ is also nilpotent.

Permutation groups

Cyclic decomposition

Theorem 1. Any permutation $\sigma \in S_n$ is a product of pairwise disjoint cycles. This cyclic factorization is unique except for the order in which the cycles are written and the inclusion or omission of cycles of length 1.

Corollary 1. Every permutation can ve expressed as a product of transpositions.

Theorem 2. If $\alpha, \sigma \in S_n$ then $\tau = \alpha \sigma \alpha^{-1}$ is the permutation obtained by applying α to the symbols in σ . Hence, any two conjugate permutations in S_n have the same cycle structure.

Conversely, any two permutations in S_n with the same cycle structure are conjugate.

Corollary 2. There is a one-to-one correspondence between the set of conjugate of S_n and the set of partitions of n.

Alternating group

Simplicity of A_n

Structure theorems of groups

Direct products

Theorem 1. Let $H_1, ..., H_n$ be a family of subgroups of a group G, and let $H = H_1 \cdots H_n$. Then the fol-

lowing are equivalent:

- (i) $H_1 \times \cdots \times \simeq H$ under the canonical mapping that sends $(x_1, ..., x_n)$ to $x_1 \cdots x_n$.
- (ii) $H_i \triangleleft H$, and every element $x \in H$ can be uniquely expressed as $x = x_1 \cdots x_n, x_i \in H_i$.
- (iii) $H_i \triangleleft H$, and if $x_1 \cdots x_n = e$, then each $x_i = e$.
- (iv) $H_i \triangleleft H$, and $H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n) = \{e\}, \ 1 \le i \le n.$