Triple sum

Given 3 arrays a, b, c of different sizes, find the number of distinct triplets (p, q, r) where p is an element of a, written as $p \in a$, $q \in b$, and $r \in c$, satisfying the criteria: $p \le q$ and $q \ge r$.

For example, given a = [3, 5, 7], b = [3, 6], and c = [4, 6, 9], we find four distinct triplets: (3, 6, 4), (3, 6, 6), (5, 6, 4), (5, 6, 6).

Function Description

Complete the *triplets* function in the editor below. It must return the number of distinct triplets that can be formed from the given arrays.

triplets has the following parameter(s):

• a, b, c: three arrays of integers .

Input Format

The first line contains 3 integers lena, lenb, and lenc, the sizes of the three arrays. The next 3 lines contain space-separated integers numbering lena, lenb, and lenc respectively.

Constraints

 $1 \le lena, lenb, lenc \le 10^5$

 $1 \leq \text{ all elements in } a, b, c \leq 10^8$

Output Format

Print an integer representing the number of distinct triplets.

Sample Input 0

3 2 3 1 3 5 2 3 1 2 3

Sample Output 0

8

Explanation 0

The special triplets are (1,2,1), (1,2,2), (1,3,1), (1,3,2), (1,3,3), (3,3,1), (3,3,2), (3,3,3).

Sample Input 1

3 3 3 1 4 5 2 3 3 1 2 3

Sample Output 1

5

Explanation 1

The special triplets are (1,2,1),(1,2,2),(1,3,1),(1,3,2),(1,3,3)

Sample Input 2

```
434
1357
579
791113
```

Sample Output 2

```
12
```

Explanation 2

The special triplets are

(1,7,7), (1,9,7), (1,9,9), (3,7,7), (3,9,7), (3,9,9), (5,7,7), (5,9,7), (5,9,9), (7,7,7), (7,9,7), (7,9,9), (