A neural model for perceptual organization of 3D surfaces

Brian Hu, Rüdiger von der Heydt, and Ernst Niebur Johns Hopkins University bhu6@jhmi.edu

March 18th, 2015

Scene understanding

- Scene understanding
- Motor planning

- Scene understanding
- Motor planning
- Spatial navigation

- Scene understanding
- Motor planning
- Spatial navigation
- Etc.

Intermediate-level vision: features

The traditional view is that rapid visual processing only requires access to features

Intermediate-level vision: surfaces

 An alternative view is that surfaces, not features, organize intermediate-level vision

Intermediate-level vision: surfaces

 An alternative view is that surfaces, not features, organize intermediate-level vision

How are surfaces represented in the brain? How is this surface representation computed?

Perceptual organization in 2D

- Red: feedback grouping circuit for solid line object
- Blue: feedback grouping circuit for dashed line object

Zhou et al., 2000 Craft et al., 2007 Mihalas et al., 2011 Russell et al., 2014

Perceptual organization in 3D

Perceptual organization in 3D

Our model

Our model

Model details

- Input to the model is a pair of stereo images
- Neural activity is modeled as a continuous variable (i.e. rate coding)
- Neurons are zero-threshold linear, with excitatory feedforward/feedback connections, and inhibitory lateral connections
- Attention is modeled as an additive input at the level of planar grouping neurons

Psychophysical experiments

 Subjects had to search for odd-colored target among distractors within a cued disparitydefined surface

Psychophysical experiments

- Efficient search is characterized by low reaction times (i.e. pop-out search)
- We simulate response enhancement of disparity-selective cells on the attended plane instead of reaction times

Surface Modulation Index

Conclusion

- Planar grouping cells organize the scene and also provide "handles" for top-down attention
- Our model reproduces psychophysical results from a visual search task requiring attention to be directed to surfaces
- Competition between grouping cells results in surface enhancement of the attended plane and suppression of other planes

Acknowledgement

This work is supported by the Office of Naval Research grant N000141010278, the National Institutes of Health grant R01EY016281-02, and the Visual Neuroscience Training Program fellowship (T32EY07143).

Questions?

References

- [1] K. Nakayama, Z. J. He, and S. Shimojo, "Visual surface representation: a critical link between lower-level and higher-level vision," in Visual Cognition: An Invitation to Cognitive Science, 2nd ed., S. Kosslyn and D. Osherson, Eds. The MIT Press, 1995, vol. 2, ch. 1, pp. 1-70.
- [2] Z. J. He and K. Nakayama, "Visual attention to surfaces in three dimensional space," Proc. Natl. Acad. Sci. U. S. A., vol. 9, no. 24, pp. 11 155-11 159, 1995, pMID: 7479956.
- [3] H. Zhou, H. S. Friedman, and R. von der Heydt, "Coding of border ownership in monkey visual cortex," J. Neurosci., vol. 20, no. 17, pp. 6594-6611, 2000, pMID: 10964965.
- [4] E. Craft, H. Sch utze, E. Niebur, and R. von der Heydt, "A neural model of figure-ground organization," Journal of Neurophysiology, vol. 97, no. 6, pp. 4310-26, 2007, pMID: 17442769.
- [5] S. Mihalas, Y. Dong, R. von der Heydt, and E. Niebur, "Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects," Proceedings of the National Academy of Sciences, vol. 108, no. 18, pp. 7583-8, 2011, pMC3088583.
- [6] J. A. Marshall, G. J. Kalarickal, and E. B. Graves, "Neural model of visual stereomatching: slant, transparency and clouds," Network: Computation in Neural Systems, vol. 7, no. 4, pp. 635-669, 1996.
- [7] A. F. Russell, S. Mihalas, R. von der Heydt, E. Niebur, and R. Etienne-Cummings, "A model of proto-object based saliency," Vision Research, vol. 94, pp. 1-15, 2014.

