MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2017

Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

• The items that are contained in this examination are to be used solely in the school for which they are

- purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.

 The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the
- agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2017

T 9gs9

MATHEMATICS METHODS **SEMESTER 2 (UNITS 3 AND 4) EXAMINATION**

CALCULATOR-FREE MARKING KEY

(52 Marks) Section One: Calculator-free

Question 1(a)

Question 1(u)	
Solution	
k + 2k + 0.5k + 0.5k + k = 1	
5k = 1	
$k = \frac{1}{5}$	
Marking key/mathematical behaviours	Marks
• correctly solves for k .	1

Question 1(b)	
Solution	
No, This is not a discrete probability distribution as $P(5)$ has a negative value and probabilities need to positive.	
Marking key/mathematical behaviours	Marks
recognises the properties of discrete probability distributions	1
relates above property back to the question to justify answer	1

Question 1(c)

Q 4 4 5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	
Solution	
$\mu = np = 90$	
$\therefore \sigma^2 = 6^2 = 36$	
$\sigma^2 = np(1-p)$	
36=90(1-p) Expand and solve for p	
∴ <i>p</i> =0.6	
$\frac{6}{10}n = 90$ Sub value of p and solve for n.	
Marking key/mathematical behaviours	Marks
determines variance	1
 solves for parameter, p 	1
• solves for parameter, <i>n</i>	1

© MAWA 2017 Page 2

CALCULATOR-FREE MARKING KEY

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question Q

τ	 indicates the need to include every member of the population
Marks	Marking key/mathematical behaviours
	A census involves every member of the population being tested/questioned/investigated
	Solution

Question 2(b)

	dnicker)
τ	 indicates that there would be no items left for sale (no marks for cheaper or
Marks	Marking key/mathematical behaviours
	Solution There would be no stoves left to sell as all of them would have broken down.

Question 2(c)

т	indicates use of a suitable random selection method (based on serial numbers or other method)
Marks	Marking key/mathematical behaviours
	Use the unique serial numbers to select a random sample or similar
	Solution

Question 2(d)

τ	 indicates use of a suitable selection method
Marks	Marking key/mathematical behaviours
	Using the list of the serial numbers, select every 400^{th} stove
	Solution

					_
(ı)	(g)	5	uo	เวรส	nλ

τ	 differentiates correctly
τ	 correct use of the quotient rule
Marks	Marking key/mathematical behaviours
	$\frac{x \text{ ris } x + x \text{ soo} + 2}{\frac{z(x \text{ soo} + 2)}{z(x \text{ ris} -) - 1 \times (x \text{ soo} + 2)}} = \frac{x(x \text{ ris} -) - 1 \times (x \text{ soo} + 2)}{z(x \text{ roo} + 2)} = (x)^{1/2}$
	Solution

Question 3(a) (ii)

τ	differentiates correctly	•
τ	correct use of the chain rule	•
Marks	ing key/mathematical behaviours	Marki
	$\int \int \int \int \partial u du du = \int \partial u du du = 0$	$(x)_{i}f$
	uoi	Soluti

TIOS AWAM ◎	Page 3
-------------	---------------

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question 3(b)

CALCULATOR-FREE MARKING KEY

Solution

Differentiating both sides: $f''(x)f(x) + f'(x)^2 = 0$

$$f''(x) = -\frac{f'(x)^2}{f(x)}$$

But
$$f'(x) = \frac{1}{f(x)}$$
 and so $f''(x) = -\frac{1}{f(x)^3}$ i.e. $f''(x)f(x)^3 = -1$

Marking key	//mathematical behaviours	Marks
• use	s product rule correctly	1
• obta	ains correct expression for $f''(x)$	1
	1	1
• repl	laces $f'(x)$ with $f(x)$	

Question 4(a)(i)

Solution Approximately 200 samples are involved	
Marking key/mathematical behaviours	
States the number of samples (allow 190 to 210)	1

Question 4(a)(ii)

Solution	
Find the mean of the sample proportions, (from the graph) ≈ 0.4	
May use sample proportion as an estimate of the population proportion	
Marking key/mathematical behaviours	
• identifies sample proportion as 0.4 (by reference to the graph or calculation)	1
 uses the sample proportion as an estimate for the population proportion 	1

Question 4(b)

Solution			
 Survey is restricted to listeners of one particular station and therefore not representative of the population Survey is using a self-selection model and this indicates bias 			
 Timing may exclude some groups of people 			
 Access to a telephone is presumed 			
 People could respond more than once 			
 Nature of the question means football fans may be more likely to respond 			
Marking key/mathematical behaviours			
Lists one possibility	1		
Lists a second possibility	1		

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 9(b)

Marking key/mathematical behaviours	
• asymptote at $x = 4$	1
• y intercept at (0,1)	1
•	1
• x intercept at $(-4,0)$	1
 graph of standard logarithm function reflected in both axes 	

Question 8(c)

.8.0 = 24.0 + 8ε.0 = (at most 60 minutes) = 0.38 + 0.42 = 0.8. From the graph, read the relative frequencies for the parking times (0,30] mins and (30, 60] (i) Solution

(ii) relative frequency of vehicles parked between 1 and 1.5hrs = 0.14.

 $200 \times 0.14 = 28 \text{ vehicles}.$

necessities stores (ie. Grocery store, bakery, pharmacy, clothing shop).

Businesses that would tailor to this time length could be a nearby caté or a mini mall with a few One possible answer: The data shows that 80% of the vehicles are parked for at most 60 minutes. Answers will vary.

One possible answer: On which day of the week was the data collected? Answers will vary.

Marks	arking key/mathematical behaviours	۱۷
τ	sums the two relative frequencies required	•
Ţ	multiplies the relative frequency by the total number of parked cars	
Ţ	links to a type of business requiring less than 1 hour of parking	•

τ	links question to day of the week or other plausible variable.	•
τ	links to a type of business requiring less than 1 hour of parking	•
τ	multiplies the relative frequency by the total number of parked cars	•
τ	sums the two relative frequencies required	•
Marks	akiuð keð/wstuewsticsi beugalonis	31/

Question 9(a)

$\Delta = 0$.9.i,	Since the point $(2,2,1)$ lies on the graph, $2 = \log_{10}(2,2+3) + c$
	Since the graph has a vertical asymptote at $x=-3$, $b=3$
	Solution

Since the point $(\xi,0)$ lies on the graph, $\beta = \log_a + 2$, $\delta = \log_a (\xi,0)$

and hence a = 3

Раде **8**

Marking key/mathematical behaviours

T102 AWAM ©

τ'τ'τ

Marking key/mathematical behaviours

p = q = q = q if q = p = q

If $a \neq b$ then $\log_a b$ and $\log_b a$ have opposite signs (#) and are unequal.

ьяде **2**

Question 6(b)(ii)

Marking key/mathematical behaviours

τ • deduces that $\log_a b$ and $\log_a b$ have opposite signs if b = bτ Marks

complete proof correctly

If a > b then $\log_a b > 0$ i.e. negative

Obtains equation (#) or equivalent

 $x + 2 = \sqrt{\frac{x + 24y}{2}}$ and hence $\sqrt{x + 24y}$ i.e.

(#) $(x + x)^{S} = \frac{1}{\sqrt{2}} = \lim_{x \to \infty} (x + x)^{S} = \lim_{x \to \infty} (x + x)^{S}$

 Finds integral accurately Uses constants to achieve numerator of -8x

τ τ Determines (or uses) derivative of denominator τ • Recognises $\frac{(x)}{f}$ τ Marks

Note that:

obtains correct answer

Question 6(b)(i)

Obtains correct answer

Marking key/mathematical behaviours

Solution

Question 6(a)

 $z + |x|^2 + |x|^2 + |x|^2 = 1$

Marking key/mathematical behaviours

 $xb_{\frac{x8-1}{x+x-1}} \int \frac{01}{8} = xb_{\frac{x01}{x+x-1}} \int \therefore$ x = 1 - 4x = 0

MATHEMATICS METHODS

τ

τ

τ

Marks

MARKING KEY

CALCULATOR-FREE

Marks

Question 7(a)

Solution	
$A = -\int_{1}^{4} \left(\frac{-8}{\sqrt{x}} \dot{c} \right) dx \dot{c}$	
$\lambda \int_{1}^{4} \frac{8}{\sqrt{x}} dx$	

Marking key/mathematical behaviours	
sets up integral in either form	1

Question 7(b)

Solution	
$A = \int_{1}^{4} \frac{8}{\sqrt{x}} dx$	
$= \left[16\sqrt{x}\right]_{1}^{4}$	
=16(2) - 16	
=16 square units	
Marking key/mathematical behaviours	Marks
integrates correctly	1
correctly evaluates the integral	1

Question 7(c)

Solution
$$\int_{1}^{a} \frac{-8}{\sqrt{x}} dx = -25$$

$$\Rightarrow -16\sqrt{a} + 16 = -25$$

$$-16\sqrt{a} = -41$$

$$a = \frac{41^{2}}{16^{2}}$$

Marking key/mathematical behaviours	
correctly states the equation to be solved	1
• solves for <i>a</i>	1

Question 8(a)

Ouestion 8(b)

Substitutes into the correct formula	Q. 100 110 110 110 110 110 110 110 110 11	
$E(x) = \int_{-\infty}^{\infty} xw(x)dx$ $= \int_{12}^{32} x(\frac{1}{20})dx$ $= \left[\frac{1}{20} \times \frac{x^2}{2}\right]_{12}^{32}$ $= \frac{1}{40}(32^2 - 12^2)$ $= 22$ $\therefore E(x) = 22$ Marking key/mathematical behaviours • Substitutes into the correct formula	Solution	
$= \int_{12} x \left(\frac{1}{20}\right) dx$ $= \left[\frac{1}{20} \times \frac{x^2}{2}\right]_{12}^{32}$ $= \frac{1}{40} (32^2 - 12^2)$ $= 22$ $\therefore E(x) = 22$ Marking key/mathematical behaviours • Substitutes into the correct formula		
$= \left[\frac{1}{20} \times \frac{x^2}{2}\right]_{12}^{32}$ $= \frac{1}{40}(32^2 - 12^2)$ $= 22$ $\therefore E(x) = 22$ Marking key/mathematical behaviours • Substitutes into the correct formula	$=\int_{12}^{32}x(\frac{1}{20})dx$	
$= 22$ $\therefore E(x) = 22$ Marking key/mathematical behaviours • Substitutes into the correct formula 1	$= \left[\frac{1}{20} \times \frac{x^2}{2}\right]_{12}^{32}$	
$\therefore E(x) = 22$ Marking key/mathematical behaviours • Substitutes into the correct formula 1	$=\frac{1}{40}(32^2-12^2)$	
Marking key/mathematical behaviours • Substitutes into the correct formula 1	=22	
Substitutes into the correct formula	$\therefore E(x) = 22$	
Substitutes into the correct formula		
	Marking key/mathematical behaviours	Marks
		1
Integrates correctly and arrives at the required answer	Integrates correctly and arrives at the required answer	1