MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name:	Last name:	Points:

Assignment 1, due Thursday, January 23, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let H be a (complex) Hilbert space and $L: H \to \mathbb{C}$ a bounded linear functional with kernel $M = \{x \in H: Lx = 0\} \neq H$. Prove that the orthogonal complement M^{\perp} is a subspace of dimension one.

Problem 2

Let f be a continuous, 2π -periodic function on \mathbb{R} , and α an irrational number. Show that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(2\pi n\alpha) = \frac{1}{2\pi}\int_{-\pi}^{\pi} f(t)dt.$$

Hint: First examine the special case $f(t)=e^{ikt}$ with $k\in\mathbb{Z}.$

Problem 3

Compute

$$\min_{\alpha,b,c\in\mathbb{R}}\int_{-1}^{1}|x^3-\alpha-bx-cx^2|^2dx.$$