Математический Анализ - 2

Авторы текущего конспекта:

Жуков Андрей | github Мелисов Тимур | github

Версия от 27.10.2025 20:50

Содержание

1	Jier	т кихи	J		
	1.1	Брус. Мера бруса	3		
	1.2	Свойства меры бруса в \mathbb{R}^n	3		
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения	3		
	1.4	Интегральная сумма Римана. Интегрируемость по Риману	4		
	1.5	Пример константной функции	5		
	1.6	Пример неинтегрируемая функция	5		
	1.7	Вычисление многомерного интеграла	5		
2	Лекция 2				
	2.1	Необходимое условие интегрирования	7		
	2.2	Свойства интеграла Римана	7		
	2.3	Множество меры нуль по Лебегу	8		
	2.4	Свойства множества меры нуль по Лебегу	8		
3	Лекция 3				
	3.1	Критерий замкнутости	12		
4	Лекция 4				
	4.1	Замкнутый брус — компакт	13		
	4.2	Критерий компактности	14		
5	Лекция 5				
	5.1	Теорема Вейерштрасса о непрерывной функции на компакте	16		
	5.2	Расстояние между двумя множествами	16		
	5.3	Расстояние между непересекающимися компактами	16		
	5.4	Колебание функции на множестве	17		
	5.5	Колебание функции в точке	17		
	5.6	Колебание функции, непрерывной в точке	17		
	5.7	Пересечение разбиений бруса	17		
	5.8	Критерий Лебега об интегрируемости функции по Риману	18		
	5.9	Измельчение разбиения	20		

6	Лег	кция 6	21
	6.1	Нижняя и верхняя суммы Дарбу	21
	6.2	Нижняя сумма Дарбу не больше верхней	21
	6.3	Монотонность сумм относительно измельчений разбиения	21
	6.4	Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе	21
	6.5	Верхние и нижние интегралы Дарбу	21
7	Лен	кция 7	22
	7.1	Интеграл Дарбу как предел сумм Дарбу	22
	7.2	Критерий Дарбу интегрируемости функции по Риману	23
	7.3	Интегрирование по допустимым множествам	23
8	Лен	кция 8	25
	8.1	Интегрирование по допустимым множествам(Продолжение)	25
	8.2	Теорема Фубини	25
	8.3	Теорема о замене переменных в кратном интеграле	27

1.1 Брус. Мера бруса

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant b_i, i \in \{1, n\}\}$$
$$= [a_1, b_1] \times \ldots \times [a_n, b_n]$$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\}$ может быть отрезком, интервалом и т.д.

Пример брусов размерности с 1 по 3

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.2 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имеют общих внтренних точек, и $\bigcup_{i=1}^{\kappa}I_i=I,$ то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

1.3 Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

$$d(M) = \sup_{x,y \in M} \|x - y\|$$
, где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Пример диаметра для разных ограниченных множеств(Для всех трёх он равен d)

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}d(I_i)$ Определение. Пусть $\forall\ I_i$ выбрана точка $\xi_i\in I_i$. Тогда, набор $\xi=\{\xi_i\}_{i=1}^k$ будем называть отмеченными точками

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f:I \to \mathbb{R}$ определена на I**Определение.** Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I $(f:I \to \mathbb{R})$, если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \,\exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta :$$

$$|\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Обозначение: $f \in \mathcal{R}(I)$

Пример интегрирования в \mathbb{R}^2 по определению

1.5 Пример константной функции

Пусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Пример неинтегрируемая функция

Имеется брус $I = [0,1]^n,$ а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint\limits_{\substack{0\leqslant x\leqslant 1\\0\leqslant y\leqslant 1}} xy\mathrm{d}x\mathrm{d}y$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i нижние правые вершины ячеек

Имеется функция f = xy, $|I| = \frac{1}{n^2}$

$$\sigma(f,\mathbb{T},\xi) = \sum_{i=1}^n \sum_{i=0}^{n-1} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2} \quad = \frac{1}{n^4} \sum_{i=1}^n \sum_{i=0}^{n-1} i \cdot j = \frac{1}{n^4} \sum_{i=1}^n i \sum_{j=0}^{n-1} j \quad = \frac{n(n-1)}{n^4} \sum_{i=1}^n i = \frac{n^2(n+1)(n-1)}{4n^4} \sum_{i=1}^n i = \frac{n^2(n+1$$

Заметим, что
$$\lim_{n \to \infty} \frac{n^2(n+1)(n-1)}{4n^4} = \frac{1}{4}$$

Рисунок того как мы выбираем в примере точки на разбиение

2.1 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. $f \in \mathcal{R}(I) \implies \exists A \in \mathbb{R}$, такая что $\forall \varepsilon > 0$, а значит для $\varepsilon = 1$ тоже:

$$\exists \delta > 0 \colon \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} \leqslant \delta$$
 верно $|\sigma(f, \mathbb{T}, \xi) - A| < 1$

Отсюда

$$A-1 < \sigma < A+1 \implies \sigma$$
 ограничена

2. С другой стороны, так как предположили, что f — неограничена на I

$$\forall \, \mathbb{T} = \{I_i\}_{i=1}^k \quad \exists i_0 \colon f$$
 неограничена на I_{i_0}

Тогда рассмотрим интегральную сумму

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i \neq i_0} f(\xi_i) \cdot |I_i| + f(\xi_{i_0}) \cdot |I_{i_0}|$$

Выбором подходящего ξ_{i_0} можно сделать $f(\xi_{i_0})$ сколь угодно большой $\implies \sigma$ будет не ограничена - противоречние Из противоречния пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.2 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I): \exists A_f, \text{что} \quad \forall \varepsilon > 0 \ \exists \delta_1 > 0 \ \forall (\mathbb{T}, \xi): \Delta_{\mathbb{T}} < \delta_1 \quad \text{ верно} \left| \sigma(f, \mathbb{T}, \xi) - \int_I f \mathrm{d}x \right| =: |\sigma_f - A_f| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$
 $g \in \mathcal{R}(I): \exists A_g, \text{что} \quad \forall \varepsilon > 0 \ \exists \delta_2 > 0 \ \forall (\mathbb{T}, \xi): \Delta_{\mathbb{T}} < \delta_2 \quad \text{ верно} \left| \sigma(g, \mathbb{T}, \xi) - \int_I g \mathrm{d}x \right| =: |\sigma_g - A_g| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$

Тогда $\forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < min(\delta_f, \delta_g) = \delta :$

$$|\sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha A_f + \beta A_g| = \left| \sum (\alpha f(\xi_i) + \beta g(\xi_i)) \cdot |I_i| - \alpha A_f - \beta A_g \right| \leqslant$$

$$\leqslant |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \frac{\varepsilon}{|\alpha| + |\beta| + 1} < \varepsilon$$

2. Монотонность

$$f,g \in \mathcal{R}(I); \ f \leqslant g$$
 на $I \implies \int_I f \mathrm{d}x \leqslant \int_I g \mathrm{d}x$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} \colon \forall \, \varepsilon > 0 \,\, \exists \delta : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta, \,\, \text{выполняется} \,\, |\sigma_f - A_f| < \varepsilon$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$\begin{cases} A_f - \varepsilon < \sigma_1 < A_f + \varepsilon \\ A_g - \varepsilon < \sigma_2 < A_g + \varepsilon \\ \sigma_f \leqslant \sigma_g \end{cases}$$

Отсюда

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f - \varepsilon < A_g + \varepsilon \implies A_f < A_g + 2\varepsilon \qquad \forall \varepsilon > 0$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на
$$I$$

$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup |f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup |f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

2.3 Множество меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть **множеством меры 0 по Лебегу**, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

•
$$M \subset \bigcup_i I_i$$

•
$$\sum_{i} |I_i| < \varepsilon \quad \forall \varepsilon > 0$$

Пример: $a \in \mathbb{R}$ — точка.

$$I=[a-rac{arepsilon}{3},a+rac{arepsilon}{3}] \implies |I|=rac{2arepsilon}{3}0 \implies a$$
 — множество меры нуль по Лебегу

2.4 Свойства множества меры нуль по Лебегу

1. Если в определении $\{I_i\}$ заменить на открытые брусы, то определение останется верным.

Доказательство. Пусть $\{I_i\}$ — открытые брусы, тогда $\forall \varepsilon>0$ \exists не более чем счетный набор $\{I_i\}$: $M\subset\bigcup_i I_i$ и $\sum |I_i|<\varepsilon$

Пусть $\{\bar{I}_i\}$ — открытые брусы + границы = замкнутые брусы I_i , причём объем "добавленных" плоскостей будет нулевой, так как объем бруса n-1 размерности, будет нулевым для объема бруса размерности n

$$M\subset \bigcup_i I_i\subset \bigcup_i ar{I}_i,$$
 при этом $|I_i|=|ar{I}_i|$

Если

$$\forall \varepsilon \; \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \varepsilon \; \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

Докажем в обратную сторону. Мы хотим увеличить замкнутый брус в два раза и увеличенный брус взять открытым.

Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_i^1, b_i^1] \times \ldots \times [a_i^n, b_i^n], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Так как $\left(\frac{a_i^k}{2},\frac{b_i^k}{2}\right)$ — центр i-го бруса в k-ом измерении, увеличить изначальный брус в два раза по этому измерению можно сдвинувшись от центра не на половину, а на целую сторону, то есть на $b_i^k-a_i^k$

Таким образом:

$$\tilde{I}_{i} = \left(\frac{a_{i}^{1} + b_{i}^{1}}{2} - (b_{i}^{1} - a_{i}^{1}); \frac{a_{i}^{1} + b_{i}^{1}}{2} + (b_{i}^{1} - a_{i}^{1})\right) \times \dots \times \left(\frac{a_{i}^{n} + b_{i}^{n}}{2} - (b_{i}^{n} - a_{i}^{n}); \frac{a_{i}^{n} + b_{i}^{n}}{2} + (b_{i}^{n} - a_{i}^{n})\right) \\
\implies V_{2} = \sum_{i} |\tilde{I}_{i}| = 2^{n} \cdot V_{1} < \varepsilon$$

2. Если $M\subset\mathbb{R}^n$ - множество меры нуль по Лебегу, то из $L\subset M\implies L$ - множество меры нуль по Лебегу

Доказательство. Докажем по транзитивности

$$\forall \, arepsilon \, > 0, \, \, \exists$$
 не более чем счетный набор $\{I_i\}: L \subset M \subset \bigcup_i I_i \implies L \subset \bigcup_i I_i$

По условию нам дано, что для $M\subset\bigcup_i I_i$ верно $\sum_i |I_i|<\varepsilon$, и тоже самое выполнено и для $L\subset\bigcup_i I_i$, тогда L по определнию является множеством меры нуль по Лебегу

3. Не более чем счетное объединение множеств меры нуль по Лебегу, тоже является множеством меры нуль по Лебегу

Доказательство. пусть $M=\bigcup_i^\infty M_k$ - объединение не более чем счетного числа множеств $\forall k\ M_k$ - множество меры нуль по Лебегу $\implies \forall k,\ \forall\, \varepsilon>0\ \exists \{I_i\}_{i=1}^\infty$ по определению множества меры нуль для них верно

•
$$M_k \subset \bigcup_{i=1}^{\infty} I_i^{k-1}$$

$$\bullet \ \sum_{i} |I_{i}| < \varepsilon_{k} \quad \ \forall \, \varepsilon_{k} > 0$$

 $^{^{1}}I_{i}^{k}$ - это i-ый для $M_{k},$ а не степень

Отсюда получаем $M=\bigcup_i^\infty M_k\subset \bigcup_i^\infty I_i^k$ и $\sum_{k=1}^\infty \sum_{i=1}^\infty |I_i^k|<\sum_{k=1}^\infty \varepsilon_k$ - если теперь взять $\varepsilon_k=rac{\varepsilon}{2^k},$ то мы получим

$$\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} < \varepsilon$$

Определение. Пусть имеется $M \subset \mathbb{R}^n$. Точку $x_0 \in M$ будем называть *внутренней* точкой M, если

$$\exists \, \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$$

Определение. Точку $x_0 \in M$ будем называть *внешней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset (\mathbb{R}^n \setminus M)$$

Пример. M = [0; 1). тогда

$$\left\{ egin{aligned} x=0.5 & - ext{внутренняя} \ x=0 & - ext{ не внутренняя} \ x=2 & - ext{внешняя} \end{aligned}
ight.$$

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *граничной* точкой M, если

$$\forall \varepsilon > 0: (B_{\varepsilon}(x_0) \cap M) \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$$

Обозначение. ∂M — множетсво всех граничных точек M

Синяя область - пример множества внутренних точек Зеленые - пример внешних (изображена часть точек) Красные границы - пример множества граничных точек (пример ∂M)

Пример. $M = [0; 1) \Longrightarrow x = 0; 1$ — граничные

Определение. Точку $x_0 \in M$ будем называть *изолированной* точкой M, если

$$\exists \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M = \varnothing$$

Пример. $M = [0; 1] \cup \{3\} \Longrightarrow x = 3$ — изолированная

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть npedenьной точкой M, если

$$\forall \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$$

Примечание. Из определения следует, что изолированные точки не являются предельными

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть точкой прикосновения M, если

$$\forall \varepsilon > 0: B_{\varepsilon}(x_0) \cap M \neq \emptyset$$

Примечание. Точки прикосновения = изолированные точки \oplus предельные точки

Пример точек

Красные - изолированные. Зелёные - предельные

Синие точки - точки прикосновения

Определение. Множество всех точек прикосновения M называется замыканием M и обозначается как \overline{M}

Пример. $M = (0; 1) \cup (1; 2] \Longrightarrow \overline{M} = [0; 2]$

Пример. $M = \{x \in [0;1] : x \in \mathbb{Q}\} \Longrightarrow \overline{M} = [0;1]$

Определение. Множество $M \subset \mathbb{R}^n$ называется $\mathit{открытым}$, если все его точки внутренние

Определение. Множество $M\subset R^n$ называется замкнутым, если $\mathbb{R}^n\setminus M$ — открыто

Пример.
$$\begin{cases} (0;1) & -\text{ открыто в } \mathbb{R} \\ [0;1] & -\text{ замкнуто, т.к. } (-\infty;0) \cup (1;+\infty) \text{ открыто в } \mathbb{R} \\ [0;1) & -\text{ ни открыто, ни замкнуто в } \mathbb{R} \end{cases}$$

Определение. Множество $K \subset \mathbb{R}^n$ называется *компактом*, если из \forall его покрытия открытыми множествами можно выделить конечное подпокрытие

Примечание. Если хотя бы для какого-то покрытия это не выполняется, то K — не компакт

Пример. Пусть
$$M=(0,1)$$
 покроем $\left\{A_n=\left(0;1-\frac{1}{n}\right)\right\}_{n=1}^\infty$ При $n\to\infty$ $M\subset\bigcup_{n=1}^\infty A_n$, но \forall фиксированного $N\colon M\not\subset\bigcup_{n=1}^\infty\Longrightarrow$ не компакт Определение. Множество $M\subset\mathbb{R}^n$ — называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

3.1 Критерий замкнутости

Теорема. M — замкнуто $\Longleftrightarrow M$ содержит **все** свои предельные точки

Доказательство. Докажем необходимость и достаточность

- 1. (Heoбxoдимость) Докажем \Longrightarrow от противного
 - Пусть x_0 предельная для M и $x_0 \notin M$. Тогда, $\forall \, \varepsilon > 0 \, \stackrel{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$ и $x_0 \in \mathbb{R}^n$
 - По условию M замкнуто, то есть $\mathbb{R}^n \setminus M$ открыто \Longrightarrow все его точки внутренние и $\exists r > 0$:

$$B_r(x_0)\subset \mathbb{R}^n\setminus M\Longrightarrow \stackrel{\circ}{B_r(x_0)}\subset \mathbb{R}^n\setminus M$$
 и $\stackrel{\circ}{B_r}(x_0)\cap M=\varnothing$

Пришли к противоречию $\Longrightarrow M$ содержит все свои предельные точки

2. (Достаточность) Докажем \Leftarrow

Пусть y_0 — не является предельной для M, то есть $y_0 \in \mathbb{R}^n \setminus M \Longrightarrow \exists r > 0$:

$$\begin{cases} \overset{\circ}{B_r}(y_0) \cap M = \varnothing \\ y_0 \in \mathbb{R}^n \setminus M \end{cases} \Longrightarrow B_r(y_0) \subset \mathbb{R}^n \setminus M$$

 $\Longrightarrow \mathbb{R}^n \backslash M$ — открытое и состоит из всех точек, не являющихся предельными $\Longrightarrow M$ — замкнуто по определению

4.1 Замкнутый брус — компакт

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

Доказательство. Пойдем от противного

Пусть $I = [a_1; b_1] \times \ldots \times [a_n; b_n]$

- 1. Положим, что I не компакт. Значит, существует его покрытие $\{A_{\alpha}\}$ открытые множества, такие что $I \subset \{A_{\alpha}\}$, не допускающее выделения конечного подклорытия
- 2. Поделим каждую сторону пополам. Тогда, $\exists I_1$, такой что не допускает конечного подпокрытия. Иначе, I компакт
- 3. Аналогично, повторим процесс и получим систему вложенных брусов:

$$I \supset I_1 \supset I_2 \supset \dots$$

То есть на каждой стороне возникает последовательность вложенных отрезков, которые стягиваются в точку $a = (a_1, \dots, a_n)$

Последовательность вложенных брусов в \mathbb{R}^2 : на каждом шаге выбираем квадрат, что по предположению нельзя покрыть(выделен цветом) и делим его на 4 части. В итоге стягиваются в точку.

При этом,
$$\exists a = \bigcap_{i=1}^{\infty} I_i$$

4.
$$a \in I \Longrightarrow a \in \bigcup A_{\alpha} \Longrightarrow \exists \alpha_0 : a \in \underbrace{A_{\alpha_0}}_{\text{открытое}} \Longrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(a) \subset A_{\alpha_0}$$

5. Из построения получили, что $I\supset I_1\supset\ldots\supset a\Longrightarrow \exists N: \forall n>N\ I_n\subset B_\varepsilon(a)\subset A_{\alpha_0}$

Получается, что $\forall n>N$ I_n покрывается одним лишь A_{α_0} из системы $\{A_{\alpha}\}$

Получаем противоречие тому, что любое I_n не допускает конечного подпокрытия, а у нас получилось, что $I_n \in A_{\alpha_0} \forall n > N \Longrightarrow I$ – компакт

Примечание. Любое ограниченное множество можно вписать в замкнутый брус. Потому что можно вокруг него описать шарик, который точно можно вписать в брус

4.2 Критерий компактности

Теорема. $K \subset \mathbb{R}^n$. K — компакт \iff K замкнуто и ограниченно

Доказательство. Докажем необходимость (=>)

• Ограниченность. K — компакт $\Longrightarrow \forall \{A_{\alpha}\}_{\alpha \in \mathbb{N}}$ — можно выделить конечное подпокрытие \Longrightarrow \Longrightarrow Пусть $\{A_{\alpha}\}=\{B_{n}(0)\}_{n=1}^{\infty} \Longrightarrow \exists N \in \mathbb{N}: \forall n > N \ K \subset \bigcup_{n=1}^{N} B_{n}(0)$ и так как $B_{n}(0)$ — вложены шары \Longrightarrow $K \subset B_{N}(0) \Longrightarrow$ по определению K — ограничено

Пример покрытия K вокруг точки 0 с помощью шаров

• Замкнутость. Пойдем от противного. K — компакт, тогда возьмем $\{B_{\frac{\delta(x)}{2}}(0)\}_{x \in K}$ — покрытие открытыми шарами, где $\delta(x) = \rho(x, x_0)$. x_0 — предельная точка, которая $\notin K$ (или же $\in \mathbb{R}^n \setminus K$)

Так как
$$K$$
 — компакт, $\exists x_1,\dots,x_s:K\subset \bigcup_{i=1}^s B_{\frac{\delta(x_i)}{2}}(x_i)$

Пусть $\delta = \min_{1 \leqslant i \leqslant s} \delta(x_i)$, тогда

$$B_{\frac{\delta}{2}}(x_0) \cap \bigcup_{i=1}^{s} B_{\frac{\delta(x_i)}{2}}(x_i) = \varnothing \Longrightarrow B_{\frac{\delta}{2}}(x_0) \subset \mathbb{R}^n \setminus K$$
$$\Longrightarrow \mathring{B}_{\frac{\delta}{2}}(x_0) \cap K = \varnothing$$

Значит, x_0 не является предельной точкой K, что противоречит нашему предположению

Пример как мы строим $B_{rac{\delta}{2}}$ вокруг точки $x_0.$

Синие точки - середины отрезков на которых они лежат

Доказательство. Докажем достаточность

K- замкнуто и ограничено $\Longrightarrow \exists r>0: B_r(0)\supset K\Longrightarrow \exists I-$ замкнутый брус, такой что

$$K \subset I$$
 и $I = [-r; r]^n$

Пусть $\{A_{\alpha}\}_{{\alpha}\in\mathbb{N}}$ — произвольное покрытие открытыми множествами для K. Тогда, $I\subset\{A_{\alpha}\}\cup\underbrace{\{\mathbb{R}^n\setminus K\}}_{\text{открыто}}$. Так как I — компакт, то \exists конечное подпокрытие

$$\{A_{\alpha_i}\}_{i=1}^m \cup \{\mathbb{R}^n \setminus K\} \supset I \supset K$$
— покрытие для I

Значит, $K\subset \{A_{\alpha_i}\}_{i=1}^m$ — конечное и $\{A_{\alpha}\}$ — произвольное, тогда K — компакт по определению

Строим замкнутый брус вокруг точки 0, пользуясь существованием конечного покрытия покрываем наш компакт K

5.1 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K \in \mathbb{R}^n$ — компакт и функция $f: K \mapsto \mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшее и наименьшее значения.

Доказательство. • Ограниченность. От противного: пусть существует последовательность $\{x^k\} \subset K: |f(x^k)| > k$. Из ограниченности K следует ограниченность последовательности $\{x^k\}$, и как следствие ограничены последовательности отдельных коордиант:

$$|x_i^k| = \sqrt{|x_i^k|^2} \leqslant \sqrt{\sum_{i=1}^n |x_i^k|^2} = ||x^k|| \leqslant C$$
 для некоторого C

По теореме Больцано-Вейерштрасса у $\{x_1^k\}$ существует сходящаяся подпоследовательность $x_1^{k_{j_1}} \to a_1, j_1 \to \infty$. Для последовательности $\{x_2^{k_{j_1}}\}$ существует сходящаяся последовательность $x_2^{k_{j_2}} \to a_2, j_2 \to \infty$. И т.д. Получаем сходящуюся подпоследовательность:

$$x^{k_j} = (x_1^{k_j}, x_2^{k_j}, \dots, x_n^{k_j}) \to (a_1, a_2, \dots, a_n) = a$$

Точка a — предельная для K. В силу замкнутости K т. $a \in K$. А из непрерывности функции f получаем $f(x^{k_j}) \to f(a)$. А с другой стороны, $f(x^{k_j}) \to \infty$ из выбора исходной последовательности. **противоречие**

• Достижение наибольшего (наименьшего) значения. Итак, мы доказали, что f — ограничена на K. Выберем последовательность $\{x^k\}$:

$$\sup_{K} f - \frac{1}{k_j} \le f(x^{k_j}) \le \sup_{K} f$$

в силу непрерывности f:

$$\sup_K f \le f(a) \le \sup_K f$$

Получаем $f(a) = \sup_K f$, т.е. максимальное значение достиигается в точке x = a. Для $\inf_K f$ доказательство аналогично

5.2 Расстояние между двумя множествами

Определение. Расстоянием между двумя множествами X и Y, где $X,Y \subset \mathbb{R}^n$ будем называть число $\rho(X,Y)$:

$$\rho(X,Y) = \inf_{\substack{x \in X \\ y \in Y}} ||x - y||$$

Примеры:

1.
$$X \cap Y \neq \emptyset \implies \rho(X,Y) = 0$$

2.
$$\rho(X,Y) = 0 \implies X \cap Y \neq \emptyset$$
? — нет, пример: $X = (0,1); (Y = (1;2)$ - не компакты

5.3 Расстояние между непересекающимися компактами

Теорема. Если $K_1,K_2\subset\mathbb{R}^n$ — компакты и $K_1\cap K_2=\varnothing$, то $\rho(K_1,K_2)>0$

Доказательство. Функция f(x,y) = ||x-y|| определена на $K_1 \times K_2 \subset \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$, причем f-непрерывная функция. По теореме Вейерштрасса эта функция достигает своего максимального и минимального значений. Т.е. существуют $x_0 \in K_1, y_0 \in K_1 : f(x_0, y_0) = \rho(K_1, K_2)$. А $f(x_0, y_0) = 0$ тогда и только тогда, когда $x_0 = y_0$.

5.4 Колебание функции на множестве

Определение. Колебанием функции f на множестве $M \subset \mathbb{R}^n$ будем называть число $\omega(f, M)$:

$$\omega(f, M) = \sup_{x, y \in M} |f(x) - f(y)| = \sup_{x \in M} f(x) - \inf_{y \in M} f(y)$$

5.5 Колебание функции в точке

Определение. Колебанием функции f в точке $x_0 \in M \subset \mathbb{R}^n$ будем называть число

$$\omega(f,x_0) := \lim_{r \to 0+} \omega(f,B^M_r(x_0)), \quad$$
где $B^M_r = B_r(x_0) \cap M$

Напоминание: По определению, функция $f: M \to \mathbb{R}$ непрерывна в точке $x_o \in M$, если $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in M \; |x - x_0| < \delta \iff x \in B_\delta(x_0) \cap M$ верно $|f(x) - f(x_0)| < \varepsilon$

5.6 Колебание функции, непрерывной в точке

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n$; $f: M \mapsto \mathbb{R}$. f — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$

Доказательство. • Необходимость

f — непрерывна в т. $x_0 \in M \implies \forall \, \varepsilon > 0 \,\,\exists \delta > 0: \,\, \forall x \in B_\delta(x_0) \cap M = B^M_\delta(x_0) \implies |f(x) - f(x_0)| < rac{\varepsilon}{3}$ Рассмотрим $\omega(f,x_0) := \lim_{\delta \to 0+} \omega(f,B^M_\delta(x_0))$:

$$\omega(f, B_{\delta}^{M}(x_{0})) = \sup_{x, y \in B_{\delta}(x_{0})} |f(x) - f(y)| \le \sup_{x \in B_{\delta}(x_{0})} |f(x) - f(x_{0})| + \sup_{y \in B_{\delta}(x_{0})} |f(y) - f(x_{0})| \le \frac{2\varepsilon}{3} < \varepsilon$$

При
$$\varepsilon \to 0 \implies \delta \to 0$$
 и $\omega(f, B^M_{\delta}(x_0)) \to 0$, т.е. $\omega(f, x_0) = 0$

• Достаточность

Пусть $0 = \omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B_{\delta}^M(x_0))$, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad \forall x, y \in B_{\delta}^{M}(x_{0}) \quad \sup_{x, y \in B_{\delta}^{M}(x_{0})} |f(x) - f(y)| < \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}^{M}(x_0) \implies |f(x) - f(x_0)| < \varepsilon \implies$$

Определение. Если какое-то свойство не выполняется лишь на множестве меры нуль, то говорят, что это свойство выполняется почти всюду.

Пример:

1.
$$f(x) = \begin{cases} 1, x \in \mathbb{R} \setminus \mathbb{Z} \\ 0, x \in \mathbb{Z} \end{cases}$$
 — непрерывна почти всюду на \mathbb{R}

$$2. \ f(x) = \begin{cases} 1, x \in [0,1] \cap \mathbb{Q} \\ 0, x \notin [0,1] \cap \mathbb{Q} \end{cases} \quad - \text{ разрывна в любой точке } \implies \text{ HE является непрерывной почти всюду.}$$

5.7 Пересечение разбиений бруса

Определение. Пусть $\mathbb{T}_1=\{I_k^1\}$ и $\mathbb{T}_2=\{I_m^2\}$ — два разбиения бруса $I\subset\mathbb{R}^n$.

Пересечением разбиений
$$(\mathbb{T}_1 \cap \mathbb{T}_2)$$
 будем называть мн-во всех брусов $\{I_{ij}\}: \forall I_{ij}$
$$\begin{cases} 1) \exists k: I_{ij} \in \{I_k^1\} \\ 2) \exists m: I_{ij} \in \{I_m^2\} \\ 3) \{I_{ij}\} - \text{ разбиение бруса } I \end{cases}$$

5.8 Критерий Лебега об интегрируемости функции по Риману

Теорема. Если $I \subset \mathbb{R}^n$ — замкнутый невырожденный брус, $f: I \to \mathbb{R}$, то $f \in R(I) \iff f$ ограничена и непрерывна почти всюду на I

Доказательство. • Необходимость

Если f интегрируема, то она ограничена по необходимому условию интегрируемости. Осталось показать, что множества разрыва меры нуль. От противного: пусть это не так.

Обозначим множество всех точек разрыва ф-ии f на I за T и заметим, что $T=\bigcup_{k\in\mathbb{N}}T_k$, где

 $T_k = \{x \in I | \omega(f,x) \ge \frac{1}{k}\}$. Если T не меры нуль, то существует T_{k_0} не меры нуль (если они все меры нуль, то по свойству множеств меры нуль счетное объединение таких множеств тоже было бы меры нуль).

Для произвольного разбиения $\mathbb{T}=\{I_i\}_{i=1}^m$ бруска I разобъем эти бруски на две кучи: первая $A=\{I_i|I_i\cap T_{k_0}\neq\varnothing,\omega(f,I_i)\geq\frac{1}{2k_0}\}$ и вторая $B=\mathbb{T}\setminus A$. Покажем что A является покрытием множества T_{k_0} , т.е. $T_{k_0}\subset\bigcup_{i:I_i\in A}I_i$ любая точка $x\in T_{k_0}$ является либо

- а) внутренней для некоторого бруска I_i . В этом случае $\omega(f,I_i) \ge \omega(f,x) \ge \frac{1}{k_0} > \frac{1}{2k_0}$, т.е. $I_i \in A$, либо
- b) точка x лежит на границе некоторого количества брусков (не более чем 2^n штук). Тогда хотя бы на одном из них колебание $\omega(f,I_i)\geq \frac{1}{2k_0}$ (т.е. $I_i\in A$): если бы такого не нашлось, то в любой малой окрестности $B_\varepsilon(x)$ выполняется следующее:

$$\omega(f,x) \le \sup_{x',x'' \in B_{\varepsilon}(x)} |f(x') - f(x'')| \le \sup_{x' \in B_{\varepsilon}(x)} |f(x') - f(x)| + \sup_{x'' \in B_{\varepsilon}(x)} |f(x) - f(x'')| < \frac{1}{2k_0} + \frac{1}{2k_0} = \frac{1}{k_0}$$

т.е. $x \notin T_{k_0}$ — противоречие.

Таким образом, каждая точка $x\in T_{k_0}$ покрывается некоторым бруском $I_i\in A$, т.е. A - покрытие T_{k_0} . Тогда существует $c:\sum_{i:I_i\in A}|I_i|\geq c>0$ для всех разбиений $\mathbb T$ (если бы меняя разбиения мы могли получить сумму объемов этих брусков сколь угодно маленькую, то получилось бы, что T_{k_0} меры нуль)

Возьмем два набора отмеченных точек ξ^1 и ξ^2 . На брусках из кучки B будем их брать одинаковыми, т.е. для $I_i \in B$ $\xi_i^1 = \xi_i^2$. А на брусках из кучки A будем брать такие, чтобы

$$f(\xi_i^1) - f(\xi_i)^2 \ge \frac{1}{3k_0}$$
 (у нас там колебания $\ge 1/2k_0$, так что такие найдутся)

Получаем:

$$|\sigma(f, \mathbb{T}, \xi^1) - \sigma(f, \mathbb{T}, \xi^2) = \left| \sum_i (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right|$$

$$= \left| \sum_{i:I_i \in A} (f(\xi_i^1) - f(\xi_i^2)) |I_i| + \sum_{i:I_i \in B} (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right|$$

$$= \left| \sum_{i:I_i \in A} (f(\xi_i^1) - f(\xi_i^2)) |I_i| \right| \ge \frac{1}{3k_0} \sum_{i:I_i \in A} |I_i| \ge \frac{c}{3k_0} > 0$$

т.е. интегральные суммы не могут стремиться к одному и тому же числу, значит f не интегрируема — **противоречие**.

• Достаточность

Для любого $\varepsilon>0$ рассмотрим $T_{\varepsilon}=\{x\in I|\omega(f,x)\geq\varepsilon\}$. Покажем, что это множество - компакт. Ограниченность очевидна (подмножества бруска), а замкнутость проверим от противного. Пусть a - предельная точка $T_{\varepsilon}:\ a\not\in T_{\varepsilon}$. Т.к. она предельная, то существует $\{x^k\}:x^k\in B_{\frac{1}{k}}(a)$. Т.к. $B_{\frac{1}{k}}$ - открытые шары, то наши точки лежат в них с окрестностями, т.е. сущесвтуют $\delta_k:B_{\delta_k}(x_K)\subset B_{\frac{1}{k}}(a)$. Тогда

$$\omega(f, B_{\frac{1}{h}}(a)) \ge \omega(f, B_{\delta_k}(x_K)) \ge \omega(f, x_k) \ge \varepsilon$$

Переходя к пределу $k \to \infty$: $\omega(f,a) \ge \varepsilon$, т.е. $a \in T_\varepsilon$ - противоречие. Значит T_ε - замкнуто, и, следовательно, компактно.

Множество T_{ε} - множество меры нуль (как подмножество множества меры нуль). Значит, его можно покрыть не более чем счетным объединением открытых брусков $I_i:\sum_i |I_i|<\varepsilon$. Т.к. это открытое покрытие, а T_{ε} - компакт,

то существует конечное подпокрытие: $T_{\varepsilon} \subset \bigcup_{i=1}^m I_i$, при этом $\sum_{i=1}^m |I_i| < \varepsilon$.

Обозначим три множества: $C_1 = \bigcup_{i=1}^m I_i$, $C_2 = \bigcup_{i=1}^m I_i'$, $C_3 = \bigcup_{i=1}^m I_i''$, где I_i' , где I_i' , где I_i' , где I_i' - бруски, полученные гомотетией с центром в центре I_i с коэффициентом 2 и 3 соответственно.

Заметим, что

a)
$$|C_3| \leq \sum_{i=1}^m |I_i''|| = 3^n \sum_{i=1}^m |I_i| < 3^n \varepsilon$$

- b) расстояние $\rho(\partial C_2, \partial C_3) = \delta_1 > 0$ (теорема про расстояние между компактами)
- с) Множество $K = I \setminus (C_2 \setminus \partial C_2)$ компакт. Кстати, любое множество с диаметром меньше δ_1 либо польностью лежит в C_3 , либо полностью в K.
- d) $T_{\varepsilon} \cap K = \varnothing$, т.к. $T_{\varepsilon} \subset C_1 \subset C_2$. Следовательно, $\forall x \in K \ \omega(f,x) < \varepsilon$. Тогда по теореме Кантора-Гейне $\exists \delta_2 > 0: \ \forall x \in K \ \omega(f,B_{\delta_2}(x)) < \varepsilon + \varepsilon = 2 \ \varepsilon$

Выберем $\delta=\min\{\delta_1,\delta_2\}$. Тогда для любых разбиений $\mathbb{T}_1=\{I_k^1\},\mathbb{T}_2=\{I_i^2\}:\lambda\mathbb{T}_1<\delta,\lambda(\mathbb{T}_2)<\delta$

Рассмотрим пересечение этих разбиений $\mathbb{T} = \mathbb{T}_1 \cap \mathbb{T}_2$, т.е. такое разбиение $\mathbb{T} = \{I_{ik}\}$, что $I_k^1 = I_{i_1k} \bigsqcup \ldots \bigsqcup I_{i_mk}$ и $I_i^2 = I_{ik_1} \bigsqcup \ldots \bigsqcup I_{ik_l}$. Очевидно $\lambda(\mathbb{T}) < \delta$.

Для произвольных наборов отмеченных точек:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}_2, \xi^2)| \le |\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| + |\sigma(f, \mathbb{T}_2, \xi^2) - \sigma(f, \mathbb{T}, \xi)|$$

Рассмотрим отдельное слагаемое:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| = \left| \sum_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \sum_{I_{ij} \in C_3} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| + \sum_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \leq 2M \cdot e^n \varepsilon + 2\varepsilon |I_{ij}| + \varepsilon |I_{ij}|$$

т.к. f ограничена некоторой константой M и см пункты a),d), то

Т.к. для (\mathbb{T}_2, ξ^2) все выкладки аналогичные, то получаем:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| < \varepsilon(2M \cdot 3^n + 2|I|)$$

Следовательно, существует предел $\lim_{\lambda(\mathbb{T})\to 0} \sigma(f,\mathbb{T},\xi)$ (Критерий коши для функций)

5.9 Измельчение разбиения

Определение. Разбиение $\mathbb{T}_1=\{I_k^1\}$ будем называть измельчением разбиения $\mathbb{T}_2=\{I_m^2\}$, если $\forall k \; \exists m: I_k^1 \in I_m^2 \implies \mathbb{T}=\mathbb{T}_1\cap\mathbb{T}_2$ является измельчением \mathbb{T}_1 и \mathbb{T}_2

Рис. 1: Пересечение разбиений \mathbb{T}_1 и \mathbb{T}_2

6.1 Нижняя и верхняя суммы Дарбу

Определение. Пусть I - замкнутый брус, $f: I \mapsto \mathbb{R}$, $\mathbb{T} = \{I_i\}_{i=1}^K$ -разбиение бруса $I, m_i = \inf_{I_i}(f)$, и $M_i = \sup_{I_i}(f)$. Тогда числа $\underline{S}(f,\mathbb{T}) = \sum_{i=1}^K m_i |I_i|$ и $\overline{S}(f,\mathbb{T}) = \sum_{i=1}^K M_i |I_i|$ будем называть **нижней и верхней суммой Дарбу** соответственно

6.2 Нижняя сумма Дарбу не больше верхней

Теорема.

$$\underline{\mathbf{S}}(f,\mathbb{T}) = \int_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Доказательство.

$$\underline{\mathbf{S}}(f, \mathbb{T}) = \sum_{i=1}^{K} m_i |I_i| = \sum_{i} \inf_{\xi_i} (f(\xi_i)) |I_i| = \inf_{\xi} \sum_{i} f(\xi_i) |I_i| = \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \leq \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = \sum_{i} (f(\xi_i)) |I_i| = \sum_{i} M_i |I_i| = \overline{\mathbf{S}}(f, \mathbb{T})$$

6.3 Монотонность сумм относительно измельчений разбиения

Теорема. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$\underline{S}(f, \mathbb{T}) \leq \underline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T})$$

Доказательство. Если $L \subset M$, то $\inf L \ge \inf M$ и $\sup L \le \sup M$, тогда:

$$\underline{\mathbf{S}}(f, \mathbb{T}) \leq \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \leq \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f, \mathbb{T})$$

6.4 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе

Теорема. $\forall \mathbb{T}_1, \mathbb{T}_2 : \underline{S}(f, \mathbb{T}_1) \leq \overline{S}(f, \mathbb{T}_2)$

Доказательство. $\forall \mathbb{T}_1, \mathbb{T}_2$ рассмотрим $\tilde{\mathbb{T}} = \mathbb{T}_1 \cap \mathbb{T}_2$, тогда по 6.3:

$$S(f, \mathbb{T}_1) \leq S(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T}_2)$$

6.5 Верхние и нижние интегралы Дарбу

Определение. Верхним и нижним интегралом Дарбу будем называть числа соответственно

$$\overline{\mathcal{I}} := \inf_{\mathbb{T}} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \underline{\mathcal{I}} := \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T})$$

7.1 Интеграл Дарбу как предел сумм Дарбу

Теорема. Пусть $I\subset \mathbb{R}^n$ — замкнутый брус, а $f:I\mapsto \mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \text{ } \mathbf{M} \qquad \underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$$

Доказательство. Докажем, что $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T}) \quad (= \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T}))$

- 1. f-ограничена на $I \implies \exists C > 0: \forall x \in I \quad |f(x)| \leqslant C$
- 2. т.к. по определению $\underline{I} = \sup_{\mathbb{T}} \underline{\mathbf{S}}(f,\mathbb{T})$, то $\forall \, \varepsilon > 0 \,\, \exists \, \mathbb{T}_1 = \{I_i^1\}_{i=1}^{m_1} : \,\, \underline{\mathcal{I}} \varepsilon < \underline{\mathbf{S}}(f,\mathbb{T}_1) \leqslant \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon < \underline{\mathcal{I}} + \varepsilon$
- 3. Пусть $G = \bigcup_{i=1}^{m_1} \partial I_i^1$ объединение границ брусов $I_i^1 \in \mathbb{T}_1$ (без повторов). Тогда G множество меры нуль по Лебегу (т.к. границы мн-ва меры нуль по Лебегу)
- 4. Пусть \mathbb{T}_2 произвольное разбиение $I: \mathbb{T}_2 = \{I_i^2\}_{i=1}^{m_2}$ Рассмотрим два множества брусов:

$$A=\{I_i^2\in\mathbb{T}_2:I_i^2\cap G\neq\varnothing\} \qquad \text{и}\qquad B=\mathbb{T}_2\setminus A \implies$$
 $\forall\, \varepsilon>0 \,\,\exists \delta(\varepsilon)>0:\forall\, \mathbb{T}_2:\Delta_{\mathbb{T}_2}<\delta \,\, \text{верно, что}\,\, \sum_{I_i^2\in A}|I_i^2|<\varepsilon$

т.к. наши брусочки I_i^2 по построению лежат в G, а по 3 пункту оно множество меры нуль.

разбиение T_1

Граница G бруса T_1

Какое-то разбиение T_2

Как прошлые разбиения и граница G выглядят на одном рисунке

Как выглядят множества A и B

5. С другой стороны $\forall I_i^2 \in B$ верно, что $I_i^2 \in \mathbb{T}_1 \cap \mathbb{T}_2$

Хотим рассмотреть

$$|\underline{\mathcal{I}} - \underline{\mathbf{S}}(f, \mathbb{T}_2)| = |I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) + \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| \leqslant \underbrace{|I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)|}_* + \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)|}_{**}$$

$$< \varepsilon + 2C \varepsilon = \varepsilon (1 + 2C)$$

* из пункта 2: $\underline{\mathcal{I}} - \varepsilon < \underline{\mathbf{S}}(f, \mathbb{T}_1) \leqslant \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) \leqslant \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon \implies |\underline{\mathcal{I}} - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)| < \varepsilon$

** Пояснение ниже

$$\begin{split} |\underline{\mathbf{S}}(f,\mathbb{T}_1\cap\mathbb{T}_2) - \underline{\mathbf{S}}(f,\mathbb{T}_2)| &= \left|\sum_{I_i^2\in B} m_i |I_i^2| + \sum_{I_i\in\mathbb{T}_1\cap A} m_i |I_i^2| - \sum_{I_i^2\in B} m_i |I_i^2| - \sum_{I_i^2\in A} m_i |I_i^2| \right| &\quad \Pi e p e x o d \ c \ p a в н о м \ no \ n y н к т y \ 5 \\ &\leqslant \left|\sum_{I_i\in\mathbb{T}_1\cap A} m_i |I_i^2| \right| + \left|\sum_{I_i^2\in A} m_i |I_i^2| \right| \\ &\leqslant 2 \left|\sum_{I_i^2\in A} m_i |I_i^2| \right| &\quad C n e \partial y o u u \ddot{u} \ n e p e x o d \ no \ n y n \kappa m y \ 4 \\ &\leqslant 2 C \left|\sum_{I_i^2\in A} |I_i^2| \right| &\quad C n e \partial y o u u \ddot{u} \ n e p e x o d \ no \ n y n \kappa m y \ 4 \\ &\leqslant 2 C \varepsilon \end{split}$$

7.2 Критерий Дарбу интегрируемости функции по Риману

 $I\in\mathbb{R}^n$ — замкнутый брус, $f:I\mapsto\mathbb{R}, f\in\mathcal{R}(I)\Longleftrightarrow f$ — ограничена на I и $\underline{\mathcal{I}}=\overline{\mathcal{I}}$

Доказательство. Необходимость

- $f \in \mathcal{R}(I) \Longrightarrow$ по необходимому условию интегрируемости функции по Риману на замкнутом брусе, f ограничена на I
- Покажем, что $\mathcal{I} = \mathcal{I}, \overline{\mathcal{I}} = \mathcal{I} \Longrightarrow \mathcal{I} = \overline{\mathcal{I}}$

1.
$$f \in \mathcal{R}(I) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta \ |\sigma(f, \mathbb{T}, \xi) - \mathcal{I}| < \varepsilon$$

$$\begin{array}{ll} 2. \ \ \underline{\mathcal{I}} = \sup_{\mathbb{T}} \underline{\mathbf{S}}(f,\mathbb{T}) = \lim_{\Delta \to 0} \underline{\mathbf{S}}(f,\mathbb{T}) \Longrightarrow |\, \underline{\mathcal{I}} - \underline{\mathbf{S}}\,| < \varepsilon \\ \forall \, \varepsilon > 0 \ \exists \delta \ \exists \mathbb{T} : \Delta_{\mathbb{T}} < \delta : |\, \underline{\mathcal{I}} - \underline{\mathbf{S}}\,| < \varepsilon \end{array}$$

$$\begin{split} 3. \ \ &\underline{\mathbf{S}}(\mathbb{T},\!\xi) = \inf_{\xi} \sigma(f,\!\mathbb{T},\!\xi) \\ \forall &\mathbb{T}, \, \forall \, \varepsilon > 0 \, \, \exists \xi : |\, \underline{\mathbf{S}} - \! \sigma| < \varepsilon \end{split}$$

$$|\mathcal{I} - \mathcal{I}| \le |\mathcal{I} - \mathcal{I} - \sigma + \sigma + S - S| \le |\mathcal{I} - \sigma| + |\mathcal{I} - S| + |\sigma - S| < 3\varepsilon$$

Доказательство. Достаточность

f — ограничена и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$. Имеем

$$\underline{\underline{S}}(f,\mathcal{T}) = \inf_{\xi} \leqslant \sigma(f,\mathbb{T},\xi) \leqslant \sup_{\xi} (f,\mathbb{T},\xi) = \overline{\underline{S}}(f,\mathbb{T})$$

Тогда, при $\lim_{\Delta_{\mathbb{T}}\to 0} \underline{S} = \underline{\mathcal{I}}$, $\lim_{\Delta_{\mathbb{T}}\to 0} \overline{S} = \overline{\mathcal{I}}$ получаем $\underline{\mathcal{I}} = \overline{\mathcal{I}}$ (Условие ограниченности f даёт нам возможность применять неравенство выше)

7.3 Интегрирование по допустимым множествам

Определение. Множество $D \subset \mathbb{R}^n$ называется допустимым, если

- \bullet D ограниченно
- ullet ∂D множество меры нуль по Лебегу

Пример. Допустимого и не допустимого множества

1.
$$D_1 = (0,1)$$

- ограничено да
- $\partial D_1 = \{0\} \cup \{1\}$ мн-во меры нуль да

 D_1 - допустимое множество

$$2. D_2 = [0,1] \cap \mathbb{Q}$$

- ограничено да
- $\partial D_2 = [0,1]$ мн-во меры нуль нет

 D_2 - не допустимое множество

Определение. Пусть $D \subset \mathbb{R}^n$ — допустимое множество, $f:D \to \mathbb{R}$. Тогда, интегралом Римана f по D называется число \mathcal{I} :

$$\mathcal{I} = \int\limits_D f(\overline{x}) \mathrm{d}\overline{x} = \int\limits_{I \supset D} f \cdot \chi_D(\overline{x}) \mathrm{d}\overline{x}, \, \mathrm{гдe} \,\, \chi_D = \begin{cases} 1, \overline{x} \in D \\ 0, \overline{x} \not \in D \end{cases}$$

Если $\mathcal{I} < \infty$, то $f \in \mathcal{R}(D)$

Закрашенная область не вносит вклад в объем $\mathrm{так}\ \mathrm{kak}\ f(x)\cdot\chi_D=0$

8.1 Интегрирование по допустимым множествам(Продолжение)

Корректность определения допустимых множеств. Пусть $D \subset I_1 \subset \mathbb{R}^n, D \subset I_2 \subset \mathbb{R}^n$ - замкнутые брусы, тогда

$$\int_{I_1} f \cdot \chi_D \mathrm{d}x \, \, \mathbf{u} \, \int_{I_2} f \cdot \chi_D \mathrm{d}x$$

либо существуют и равны, либо оба не существуют вообще

Как выглядят наши множества I_1, I_2, I, D

Доказательство. Введем $I = I_1 \cap I_2 \supset D$, I не пустое по построению. Покажем существование

- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ ограничена на $I_1 \Longrightarrow f \cdot \chi_D$ ограничена на $D \Longrightarrow f$ ограничена на I_2
- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ непрерывна почти всюду на $I_1 \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на $D \Longrightarrow$ в худшем случае для $f \cdot \chi_D$ на I_2 добавятся разрывы на $\partial D \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на I_2
- Тогда, $f \cdot \chi_D \in \mathcal{R}(I_1) \Longleftrightarrow f \cdot \chi_D \in \mathcal{R}(I_2)$

Покажем равенство

- ullet Пусть \mathbb{T}_i разбиение на $I_i:\mathbb{T}_1$ и \mathbb{T}_2 совпадают на I
- ullet Пусть ξ^i отмеченные точки для \mathbb{T}_i
- $\bullet \ \ \sigma(f\chi_D, \mathbb{T}_1, \xi^1) = \sum_j f\chi_D(\xi^1_j) |I^1_j| = \sum_j f(\xi^1_j) |I^1_j| = \sum_j f(\xi^2_j) |I^2_j| = \sum_j f\chi_D(\xi^2_j) |I^2_j| = \sigma(f\chi_D, \mathbb{T}_2, \xi^2)$

Примечание. Все свойства интеграла Римана и критерия Лебега для бруса справедливы и для других допустимых множеств

8.2 Теорема Фубини

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^m, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и \forall фиксированного $x \in I_x \implies f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

Примечание. аналагочино, если взять для \forall фиксированного $y \in I_y$

Доказательство. Воспользуемся тем, что $f \in \mathcal{R}(I_x \times I_y), \ f \in \mathcal{R}(I_y),$ а также Критерием Дарбу

• $\mathbb{T}_x = \{I_i^x\}$ — разбиение на I_x , $\mathbb{T}_y = \{I_j^y\}$ — разбиение на I_y , $\mathbb{T}_{x,y} = \{I_i^x \times I_j^y\} = \{I_{ij}\}$ — разбиение на $I_x \times I_y$, и при этом верно $|I_i^x| \cdot |I_j^y| = |I_{ij}|$

$$\underline{\mathbf{S}}(f, \mathbb{T}_{x,y}) = \sum_{i,j} \inf_{(x,y) \in I_{ij}} f(x,y) |I_{ij}| \underset{\text{рис. ниже}}{\leqslant} \sum_{i,j} \inf_{x \in I_i^x} \left(\inf_{y \in I_j^y} f(x,y) \cdot |I_j^y| \right) |I_i^x| = \sum_{i} \inf_{I_i^x} \underbrace{\left(\sum_{j} \inf_{I_j^y} f(x,y) |I_j^y| \right)}_{\underline{\mathbf{S}}(f(y), \mathbb{T}_y)} |I_i^x|$$

$$\leqslant \sum_{i} \inf_{I_i^x} \underbrace{\left(\int_{I_y} f(x,y) \mathrm{d}y \right)}_{g(x)} |I_i^x| \leqslant \underline{\mathbf{S}}(g(x), \mathbb{T}_x)$$

$$\leqslant \overline{\mathbf{S}}(g(x), \mathbb{T}_x)$$

$$\underline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \leqslant \underline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \Longrightarrow \exists \, \overline{\mathcal{I}} = \lim_{\delta \to 0} \underline{\mathbf{S}}(g(x), \mathbb{T}_x) = \int_{I_x \times I_y} f(\overline{x}, \overline{y}) \mathrm{d}\overline{x} \mathrm{d}\overline{y}$$

Примечание. Последний знак неравенства, получен аналогичными действиями для длинного неравенства выше, просто развернув в обратную сторону знаки неравенства для sup

Если зафиксировать какой-то x и искать inf по y то он всегда будет больше, чем inf на всей области

Пример. Случай, где нельзя интегрировать по т. Фубини

Возьмем следущую функцию

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 на $[-1;1] \times [-1;1]$

Она не интегрируема по Риману на данной области области, т.к. функция неограничена

$$\lim_{y \to 0} f(0, y) = \lim_{y \to 0} \frac{-y^2}{y^4} = -\infty$$

Что будет, если мы не поверили и решили применить т. Фубине? Вычислим интеграл $\int\limits_0^1 \left(\int\limits_0^1 f(x,y)dy\right) dx$. Заметим следущее внесение под дифференциал

$$\frac{d}{dy}\left(\frac{y}{x^2+y^2}\right) = \frac{x^2+y^2-2y^2}{(x^2+y^2)^2} = \frac{x^2-y^2}{x^2+y^2}$$

Получаем, тогда

$$\int\limits_{0}^{1} \left(\int\limits_{0}^{1} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dy \right) dx = \int\limits_{0}^{1} \left(\int\limits_{0}^{1} d \left(\frac{y}{x^{2} + y^{2}} \right) \right) dx = \int\limits_{0}^{1} \frac{1}{1 + x^{2}} dx = \frac{\pi}{4}$$

Теперь сошлемся на то что f(x,y)=-f(y,x) и получим что $\int\limits_0^1 \left(\int\limits_0^1 f(x,y)dx\right)dy=-\frac{\pi}{4}$

8.3 Теорема о замене переменных в кратном интеграле

Теорема. (Без доказательства) Пусть имеется $M_1, M_2 \in \mathbb{R}^n$ — открытые множества. $\varphi: M_1 \longrightarrow M_2$ — биективно, φ, φ^{-1} — непрерывно дифференцируемые отображения

 $D:\overline{D}\subset M_1$ — допустимое множество

 $f:\varphi(D)\longrightarrow \mathbb{R}$

 $f \in \mathcal{R}(\varphi(D)) \Longleftrightarrow f(\varphi(t)) \cdot |\det J_{\varphi}(t)| \in \mathcal{R}(D)$ и

$$\int_{\varphi(D)} f(x) dx = \int_{D} f(\varphi(t)) \cdot |\det J_{\varphi}(t)| dt, \text{ где } J = \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial t_{1}} & \cdots & \frac{\partial \varphi_{1}}{\partial t_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{n}}{\partial t_{1}} & \cdots & \frac{\partial \varphi_{n}}{\partial t_{n}} \end{pmatrix}$$

Примечание. $(x_1,\ldots,x_n)\stackrel{arphi}{\longrightarrow} (t_1,\ldots,t_n)$, где $x_i=arphi_i(t_1,\ldots,t_n)$

Пример. Ранее мы переходили к полярным координатам так: $(x,y) \to (r,\varphi)$, при этом $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$

$$J = \begin{pmatrix} \cos \varphi & -\sin \varphi \cdot r \\ \sin \varphi & \cos \varphi \cdot r \end{pmatrix}$$
$$|J_{\varphi^{-1}}| = |J_{\varphi}|^{-1}$$

Отображение допустимого множества в новые координаты