Inteligência Artificial

Prof. Ilaim Costa Jr.

Agenda

Disciplina de IA

- Programa da disciplina
- Bibliografia
- Calendário
- Avaliações

Introdução à Inteligência Artificial

- O que é Inteligência Artificial?
- Fundamentos da IA
- Histórico da IA

Parte I

O que é Inteligência Artificial?

Campo da Inteligência Artificial

- A Inteligência Artificial procura entender e construir entidades inteligentes
- · Razões para se estudar IA
 - descobrir mais sobre nós mesmos (Filosofia e Psicologia)
 - construir entes inteligentes que são interessantes e úteis

Questão Fundamental

 Como que um cérebro pequeno e lento é capaz de perceber, entender, predizer e manipular um mundo muito maior e mais complexo do que si próprio?

IA é um ciência nova, com muitas questões em aberto

O Que é Inteligência Artificial

- · Há várias definições!
- As definições de livros texto mais conhecidos estão categorizadas de acordo com duas dimensões:
 - Raciocínio e processos de pensamento
 - Comportamento
- · Medem desempenho
 - Com relação ao desempenho humano
 - Com relação a um conceito ideal de inteligência (racionalidade)

O Que é Inteligência Artificial

· Há várias definições!

	Sucesso em termos de desempenho humano	Conceito ideal de inteligência
Pensamento e raciocínio	Sistemas que pensam como o homem(I)	Sistemas que pensam racionalmente (II)
comportamento	Sistemas que agem como o homem(III)	Sistemas que agem racionalmente (IV)

Definições de IA

- (I) "A automação das atividades que nós associamos com o pensamento humano, atividades tais como tomada de decisão, resolução de problemas, aprendizagem, ..." (Bellman, 1978)
- (II) "O Estudo das computações que tornam possível a percepção, raciocínio, e ações" (Winston, 1992)

Definições de IA

- (III) "O estudo da construção de computadores que podem executar tarefas que, neste momento, as pessoas são mais capazes" (Rich and Knight, 1991)
- (IV) "O ramo da Ciência da Computação que se preocupa com a automação do comportamento inteligente" (Luger and Stubblefield, 1993)

Classes de Definições

1) Agindo como humano:

- a abordagem do teste de Turing

2) Pensando como humanos:

a abordagem cognitiva

3) Pensando racionalmente:

- a abordagem das leis do pensamento

4) Agindo racionalmente:

a abordagem do agente racional

1) Agindo como Humanos: Teste de Turing

- O teste de Turing, proposto por Alan Turing (1950), constitui uma definição operacional e satisfatória de inteligência.
 - O teste define comportamento inteligente como a habilidade de se alcançar desempenho equivalente ao humano em todas as tarefas cognitivas, de forma a enganar um interrogador

1) Teste de Turing

Interrogador

1) Teste de Turing

- Para passar no teste, um computador necessitaria das seguintes habilidades:
 - processamento de linguagem natural -comunicação eficaz na língua falada
 - representação do conhecimento -- armazenar informação suprida antes e durante a interrogação
 - raciocínio automatizado -- usar a informação armazenada para responder a questões e chegar a conclusões
 - aprendizagem de máquina -- se adaptar a novas circunstâncias e detectar e extrapolar padrões

1) Teste de Turing Completo

- O teste de Turing completo inclui um sinal de vídeo que permite o interrogador testar as habilidades cognitivas do sujeito.
- Para passar neste teste, o computador necessitará de habilidades adicionais
 - visão computacional -- para percepção de objetos
 - robótica -- para manipulação de objetos

2) Pensamento Humano: Abordagem Cognitiva

- Se vamos dizer que um certo programa pensa como um homem, então devemos ser capazes de determinar como que o homem pensa.
- Duas formas de se atingir o interior da mente humana
 - instrospecção -- tentar capturar nossos próprios pensamentos
 - experimentos psicológicos

2) Pensamento Humano: Abordagem Cognitiva

 Um vez conhecida uma teoria suficientemente precisa do pensamento humano, se torna possível expressá-la como um programa de computador

2) Pensamento Humano: Abordagem Cognitiva

- Newel e Simon (1961) desenvolveram um programa GPS (General Problem Solver).
 - Eles não se contentaram com a habilidade do programa de resolver problemas
 - Eles se preocuparam em comparar os passos do programa com os de uma pessoa

3) Pensamento Racional: As Leis do Pensamento

- Aristóteles foi o primeiro a tentar codificar o "pensamento correto," isto é, processos de raciocínio irrefutáveis.
- Seus famosos silogismos produziram padrões para estruturas de argumentação que sempre geram deduções corretas, dado que as premissas são verdadeiras
 - "Sócrates é homem; todo homem é mortal; portanto Sócrates é mortal."

3) Pensamento Racional: As Leis do Pensamento

- Acreditava-se que as leis do pensamento governam a operação da mente, dando início ao campo da lógica
- Em 1965, foram produzidos programas que, dado tempo e memória suficientes, tomavam a descrição de um problema em notação lógica e encontravam uma solução

3) Pensamento Racional: As Leis do Pensamento

- Dois obstáculos para esta abordagem:
 - Não é nada trivial transformar conhecimento e estado em termos formais

 Há uma diferença imensa entre sermos capazes de resolver um problema "em princípio" e fazê-lo na prática

4) Agindo Racionalmente: Abordagem do Agente Racional

- · Duas definições
 - Ação racional: Agir racionalmente significa atingir os seus objetivos, dados os seus conhecimentos e crenças
 - Agente: um agente é qualquer entidade com capacidade de percepção e ação
- · Dentro desta abordagem, IA é vista como o estudo e construção de agentes racionais

Agente Inteligente

4) Abordagem do Agente Racional

- Tradicionalmente, agir racionalmente significa raciocinar logicamente ao se atingir uma conclusão
- Na vida real, racionalidade não é apenas inferência correta.
 - Há outras formas de agir racionalmente que não envolvem necessariamente inferência
 - Exemplo:
 - a ação de se remover a mão de um fogão aquecido
 - esta ação é mais eficaz do que uma deliberação lenta e cuidadosa

4) Abordagem do Agente Racional

- O estudo de IA como o projeto de agentes racionais tem, portanto, duas vantagens
 - Ele é mais geral do que as "leis do pensamento"
 - inferência correta é um mecanismo útil para se atingir racionalidade, não é necessária
 - Ele é mais aberto ao desenvolvimento científico do que as abordagens baseadas no comportamento e pensamento humano
 - Racionalidade é mais claramente definida e mais geral

4) Abordagem do Agente Racional

- Veremos em breve que, em ambientes complexos, não é possível se atingir racionalidade perfeita--ou seja, sempre fazer a coisa certa.
 - A demanda computacional é simplesmente excessiva
- Aqui, a questão de relevância é a racionalidade limitada
 - agir apropriadamente quando não existe tempo suficiente para executar todas as computações

Parte II

Fundamentos

Fundamentos de IA

Apesar da Inteligência Artificial ser uma ciência jovem, ela herdou muitas idéias de outras disciplinas:

- Da Psicologia, nós temos ferramentas para investigar a mente humana
- Da Matemática, nós temos teorias formais da lógica, probabilidade, e computação
- Da Linguística, nós temos teorias da estrutura e significado da língua.
- Da Ciência da Computação, nós temos ferramentas para construir agentes inteligentes

1) Filosofia (428 A.C. - Hoje)

- As escritas de Platão (428 A.C.) envolvem política, matemática, física, astronomia, e muitos outros ramos da filosofia.
 - Juntamente com seu tutor Sócrates, e seu aluno Aristóteles, Platão desenvolveu as fundações da cultura e pensamento ocidental
- Aristóteles desenvolveu um sistema informal de silogismos para raciocínio, que em princípio permite gerar mecanicamente conclusões válidas, dadas premissas verdadeiras

2) Matemática (800 - presente)

- A filosofia contribuiu ao desenvolvimento da IA, mas para que IA se tornasse uma ciência formal, foi necessário um nível de formalização em três áreas principais:
 - computação
 - lógica
 - probabilidade

2) Matemática -- Lógica

 A lógica tem início com Aristóteles, mas se manteve filosófica até George Boole (1815–1864) introduzir sua linguagem formal para realizar inferência lógica em 1847

2) Matemática -- Computação

- De uma forma simples, uma classe de problemas é dita intratável se o tempo necessário para resolver instâncias cresce exponencialmente com o tamanho da instância
 - Exemplo: (Ordenação de n números)
 - Algoritmo 1
 - Testar as T(n) = n! possibilidades; n! >= 2n
 - Algoritmo 2
 - Merge-sort T(n) = n log(n)

2) Matemática -- Probabilidade

- A teoria da probabilidade teve início com Guillermo Cardano (1501-1576)
- Fermat (1601-1665), Pascal (1623-1662), Bernoulli (1654-1705), e Laplace (1749-1827) avançaram a teoria e introduziram novos métodos estatísticos
- Bernoulli introduziu o conceito de "grau de confiança" para probabilidade, um conceito subjetivo
- Thomas Bayes (1702-1761) propôs uma regra para atualização de probabilidades subjetivas, dadas novas evidências

3) Psicologia (1879--presente)

- Kenneth Craik publicou "The Nature of Explanation"
 - Ele afirmou que crenças, objetivos, e passos de raciocínio podem ser componentes válidos e úteis de uma teoria do comportamento humano, sendo estes científicos, tanto quanto o uso da pressão e da temperatura para falar sobre gases.

3) Psicologia (1879--presente)

- Craik especificou três passos de um agente baseado em conhecimento
 - o estímulo deve ser traduzido na representação interna
 - a representação é manipulada pelos processos cognitivos para derivar novas representações internas
 - essas novas representações são então traduzidas em ações

4) Ciência da Computação

- Para que a Inteligência Artificial tenha êxito, precisamos de duas coisas:
 - inteligência e
 - artefato
- O computador é universalmente considerado como o melhor artefato com possibilidade de demonstrar comportamento inteligente
 - ENIAC foi o primeiro computador de propósito geral, eletrônico e digital, construído na Universidade da Pensilvânia.
 - Sua primeira aplicação foi a computação de tabelas de disparo de artilharia

4) Ciência da Computação

- A cada geração os hardware tem aumentado sua capacidade e velocidade, e seu preço tem caído.
 - A engenharia de computação tem tido êxito, duplicando a velocidade dos computadores a cada ano
 - Se espera também que computadores massivamente paralelos possam aumentar ainda mais a capacidade de processamento
- IA também paga tributos à área de software (sistemas operacionais, linguagens de programação, etc.)

5) Lingüística (1957-presente)

- B. F. Skinner publicou "Verbal Behavior", uma monografia detalhada sobre a abordagem comportamental ao aprendizado da linguagem.
- · Noam Chomsky publicou "Syntatic Structures"
 - Chomsky mostrou que a teoria do comportamento não trata o aspecto de criatividade em linguagem--ela não explica como que uma criança pode compreender e construir novas sentenças que ela não tenha visto antes

5) Lingüística (1957-presente)

- Mais tarde, desenvolvimentos em Lingüística mostraram que o problema é consideravelmente mais complexo.
 - A língua é ambígua e imprecisa.
 - Isto significa que para se compreender a linguagem, é necessário entender do assunto tratado e do contexto
 - A compreensão da estrutura da sentença não é suficiente

Parte III

Histórico da IA

História de Inteligência Artificial

- Os primórdios da Inteligência Artificial (1943-1956)
- Entusiasmo inicial, grandes expectativas (1952-1969)
- Uma dose de realidade (1966-1974)

Os primórdios da Inteligência Artificial (1943-1956)

- O primeiro trabalho de IA foi realizado por Warren McCulloc e Walter Pitts (1943)
 - Eles propuseram um neurônio artificial caracterizado por estar ativo (on) ou inativo (off)
 - O chaveamento para "on" ocorre em resposta a um estímulo suficientemente grande de seus neurônios vizinhos
 - Eles mostraram que qualquer função computável pode ser computada por uma rede de neurônios

Os primórdios da IA (1943-1956)

- Donald Hebb (1949) demonstrou que uma regra de atualização simples, para modificar os pesos das conexões entre neurônios, poderia aprender um comportamento desejável
- Marvin Minsky e Dean Edmonds construíram o primeiro computador neural em 1951.
 Ironicamente, Minsky mais tarde provou teoremas que contribuíram para o fim das pesquisas em redes neurais até meados de 1970

Os primórdios da IA (1943-1956)

 Allen Newell e Herbert Simon desenvolveram o primeiro programa capaz de "raciocinar," o Provador Lógico.

Entusiasmo Inicial

· Os primeiros anos de IA foram cheios de sucesso

Entusiasmo Inicial

- Foi surpreendente ver que computadores rudimentares podiam fazer coisas que eram remotamente inteligentes
- Iniciando em 1952, Arthur Samuel escreveu uma série de programas para o jogo de damas que eventualmente se tornaram campeões
 - Ao mesmo tempo, ele mostrou que um computador pode ir além do que lhe é dito
 - O programa rapidamente aprendeu a superar seu criador

Entusiasmo Inicial

- Em 1958, John McCarthy definiu uma linguagem de alto nível chamada LISP, que mais tarde se tornou dominante em inteligência artificial.
 - McCarthy e seus colegas também criaram o conceito de tempo compartilhado

Uma Dose de Realidade (1966-1974)

- No começo, os pesquisadores em IA não eram tímidos ao fazerem predições de sucesso
- A primeira dificuldade surgiu porque os primeiros programas continham pouco ou nenhum conhecimento específico do domínio
 - Os sucessos iniciais ocorreram em função de manipulações simbólicas simples

Uma Dose de Realidade

- O segundo tipo de dificuldade é a intratabilidade de muitos problemas que a Inteligência Artificial estava tentando resolver
- A terceira dificuldade surgiu de limitações fundamentais nas estruturas básicas que são usadas para gerar comportamento inteligente
 - Por exemplo, em 1969, Minsky e Papert mostraram em seu livro "Perceptrons" que embora perceptrons possam ser treinados a aprender qualquer coisa dentro de sua capacidade de representação, eles podem representar muito pouco

Sistemas Baseados em Conhecimento (1969-1979)

- As primeiras técnicas para resolução de problemas eram de propósito geral, baseadas em mecanismos de busca.
 - Essas técnicas eram ditas fracas porque não utilizavam informação específica do domínio
- Pesquisadores da Universidade de Stanford desenvolveram um programa de inferência da estrutura molecular, tendo como base informações de espectometria de massa
 - The Dendral System

Knowledge-based Systems

 O dendral system foi o primeiro sistema baseado em conhecimento a atingir sucesso:

>>

- a esperteza era derivada de um número grande de regras de propósito específico
- Isto marcou o início dos sistemas especialistas
- Aplicações em medicina (diagnóstico)

A IA se Torna uma Indústria

- O primeiro sistema especialista bem-sucedido, RI, foi desenvolvido e implantado na Digital Equipment Corporation (DEC)
 - O programa ajudava a configurar pedidos de novos computadores, e em 1986 ele era responsável por uma economia da ordem de US\$40 milhões de dólares
- O crescimento da indústria de IA também incluiu empresas como Carnegie Group, Inference, e Intellicorp que ofereciam software para construção de sistemas especialistas

O Retorno das Redes Neurais (1986-presente)

- Embora a Ciência da Computação tenha desprezado o campo das redes neurais após a publicação do livro Perceptrons, por Minsky e Papert, trabalhos de pesquisa continuaram em outros domínios, especialmente na Física.
- A motivação principal veio nos anos 80 quando pelo menos 4 grupos re-inventaram o algoritmo de propagação reversa (backpropagation algorithm), inicialmente proposto por Bryson e Ho, em 1969.
 - Os algoritmos foram aplicados a vários problemas de aprendizagem em Ciência da Computação e Psicologia

Eventos Mais Recentes

- Nos últimos anos, a Inteligência Artificial sofreu profundas modificações no conteúdo e metodologia da pesquisa.
- Agora é mais comum
 - Se basear em teorias existentes do que propor novas teorias
 - Alegar resultados com base em teoremas existentes ou experimentação extensiva
 - Mostrar resultados de relevância prática do que demonstrar por meio de problemas simples

Eventos Mais Recentes

- O campo do reconhecimento de voz é um exemplo deste novo padrão
 - Nos anos 70, várias arquiteturas foram experimentadas, a maioria delas ad hoc e frágeis
 - As abordagens recentes baseadas em Hidden Markov Models (HMM) dominam a área.
 - Primeiro, HMMs são baseadas em uma teoria matemática rigorosa
 - Segundo, elas são geradas através de treinamento sobre bases de dados grandes
 - Terceiro, HMM são robustas, usadas na indústria

Eventos Mais Recentes

- O livro de Judea Pearl, Probabilistic Reasoning in Intelligent Systems, marcou o início da utilização da teoria de probabilidades e de decisão em IA.
 - A rede Bayesiana (Bayesian Net, Belief Net) é um formalismo inventado para permitir o raciocínio eficiente sobre evidências incertas

Exemplos de Aplicação da IA

- Matemática: demonstração de teoremas, resolução simbólica de equações, geometria, etc.
- Pesquisa operacional: otimização e busca heurística em geral
- Jogos: xadrez, damas, etc.
- Processamento de linguagem natural: tradução automática, verificadores ortográficos e sintáticos, interface vocal, reconhecimento da fala, de locutor, etc.
- Sistemas tutores: modelagem do aluno, escolha de estratégias pedagógicas, etc.
- Percepção: visão, tato, audição, olfato, paladar...
- Robótica (software e hardware): manipulação, navegação, monitoramento, etc.

Exemplos de Aplicação da IA

- Sistemas especialistas: Atividades que exigem conhecimento especializado e não formalizado
 - Tarefas: diagnóstico, previsão, monitoramento, análise, planejamento, projeto, etc.
 - Áreas: medicina, finanças, engenharia, química, indústria, arquitetura, arte, computação,...

Computação:

- engenharia de software (sobretudo na Web)
- programação automática
- interfaces adaptativas
- bancos de dados dedutivos e ativos
- mineração de dados (data mining)
- sistemas distribuídos, etc.

Exemplos de Aplicação da IA - Produção de jogos e histórias interativas

- Como modelar o ambiente físico e o comportamento/personalidade dos personagens?
- Como permitir uma boa interação com usuário?

The Sims

FIFA Soccer

Exemplos de Aplicação da IA - Controle de robôs

 Como obter navegação segura e eficiente, estabilidade, manipulação fina e versátil?

E no caso de ambientes dinâmicos e imprevisíveis?

HAZBOT: ambientes com atmosfera inflamável

Exemplos de Aplicação da IA - Automação de sistemas complexos

- Como modelar os componentes do sistema e dar-lhes autonomia?
- Como assegurar uma boa comunicação e coordenação entre estes componentes?

Exemplos de Aplicação da IA - Busca de informação na Web

Como localizar a informação relevante?

Exemplos de Aplicação da IA - Previsão

- Como prever o valor do dólar (ou o clima) amanhã?
- Que dados são relevantes? Há comportamentos recorrentes?

Exemplos de Aplicação da IA - Detecção de Intrusão e Filtragem de Spam

- Como saber se uma mensagem é lixo ou de fato interessa?
- Como saber se um dado comportamento de usuário é suspeito e com lidar com isto?

Exemplos de Aplicação da IA – Sistemas de Controle

- Como brecar o carro sem as rodas deslizarem em função da velocidade, atrito, etc.?
- Como focar a câmera em função de luminosidade, distância, etc.?
- Como ajustar a temperatura em da quantidade de roupa, fluxo de água, etc.?

O que estes problemas têm em comum?

- Grande complexidade (número, variedade e natureza das tarefas)
- Não há "solução algorítmica", mas existe conhecimento
- Modelagem do comportamento de um ser inteligente (conhecimento, aprendizagem, iniciativa, etc.)

IA - Limitações

 Ainda existem muitas limitações nas questões relacionadas à Inteligência Artificial?

Órgãos/Empresas de IA

- Empresas especializadas em IA:
 - http://dmoz.org/Computers/Artificial Intelligence/Companies/
- Grandes empresas desenvolvendo e utilizando IA:
 - IBM, HP, Sun, Microsoft, Unisys, Google, Amazon.com, ...
- Grandes empresas utilizando IA:
 - www.businessweek.com/bw50/content/mar2003/a3826072.htm
 - Wal-Mart, Abbot Labs, US Bancorp, LucasArts, ...
- Órgãos governamentais utilizando IA:
 - US National Security Agency

Pluridisciplinaridade da IA

Inspiração

- •Filosofia
- Matemática
 - Lógica
 - Proba. e Estat
 - Cálculo
- Pesquisa Operacional
- Economia
- Sociologia
- Lingüística
- Psicologia
- Biologia
- Automação e Controle
- Computação tradicional

Problemas

- Busca heurística
- Representação do conhecimento e Raciocínio automático
- Planejamento
- Aprendizagem e Aquisição de Conhecimento
- Sistemas Multi-Agente
- Reconhecimento de Padrões

Aplicações

- Jogos
- Sistemas Especialistas
- Percepção Computacional
 - Visão
 - Processamento de Voz
 - Integração de Sensores
- Processamento de Linguagem Natural
- Robótica
 - Navegação
 - Manipulação

Tarefas

- Classificação
- Previsão
- Monitoramento
- Diagnóstico e Interpretação
- Conserto
- Escalonamento
- Alocação
- Filtragem
- Descoberta
- Design
- Controle
- Simulação

Referências

Stuart Russel and Peter Norvig, Artificial
 Intelligence: A Modern Approach, Prentice Hall,
 1995.

Fim

· Obrigado pela presença!

