Projekt 1 – Prezentacja końcowa

Przemysław Olender, Dominik Pawlak

```
grades_df = pd.read_csv('school_grades_dataset.csv')
print(grades_df.shape)
grades_df.head()
```

(649, 33)

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	1	1	3	4	0	11	11
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	2	9	11	11
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	6	12	13	12
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	0	14	14	14
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	0	11	13	13

5 rows × 33 columns

Pierwsze zależności

Niemalliniowa korelacja między G1, a G2

Ważne cechy

Ważne cechy

Usuwanie danych

- W zbiorze nie ma braków, nie trzeba więc wykonywać imputacji.
- 15 uczniów w zbiorze danych otrzymało 0 punktów z egzaminu końcowego.

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
163	GP	М	18	U	LE3	Т	1	1	other	other	 2	3	5	2	5	4	0	11	9	0
440	MS	М	16	U	GT3	Т	1	1	at_home	services	 5	4	5	4	5	3	0	7	0	0
519	MS	М	16	R	GT3	Т	2	1	other	services	 5	2	1	1	1	2	0	8	7	0
563	MS	М	17	U	GT3	Т	2	2	other	other	 1	2	1	2	3	5	0	7	0	0
567	MS	М	18	R	GT3	Т	3	2	services	other	 2	3	1	2	2	5	0	4	0	0

5 rows x 33 columns

Encoding

- W ramce znajduje się bardzo dużo kolumn kategorycznych, część z nich to odpowiedzi tak lub nie, w innych możemy znaleźć podział na kilka kategorii.
- Aby pozbyć się zmiennych kategorycznych użyliśmy encodingu, binarne odpowiedzi przekształciliśmy na 0 (no) i 1 (yes).
- Inne kategorię przykształciliśmy mapując średnią liczbę punktów zdobytą na egzaminie przez osoby do niej należące.

Grupowanie wyników

Aby nie przewidywać dokładnej liczby punktów jaką otrzymał uczeń podzieliliśmy wyniki na przedziały:

wynik	grupa	oznczenie w ramce	liczność			
0-9	niezaliczony	1	85			
10-11	słaby	2	201			
12-13	średni	3	154			
14-15	dobry	4	112			
16-20	bardzo dobry	5	82			

Pierwsze modele

Stworzyliśmy pierwsze modele, zaczęliśmy modelowanie dokładnej wartości wyniku egzaminu przy uzyciu wszystkich cech:

xgboost accuarcy: 0.36649214659685864 Logistic Regression accuracy: 0.31413612565445026 RandomForestClassifier accuracy: 0.450261780104712 DecisionTreeClassifier accuracy: 0.45549738219895286

Spróbowaliśmy też nie uzywając G1 I G2:

xgboost accuarcy: 0.17801047120418848 Logistic Regression accuracy: 0.16753926701570682 RandomForestClassifier accuracy: 0.17277486910994763 DecisionTreeClassifier accuracy: 0.18848167539267016

Wyniki były bardzo słabe

Regresja liniowa

Jako, że kolumny G1, G2 I G3 są liniowo zależne spróbowaliśmy użyć regresji liniowej do przewidywania wyniku. Wytrenowany model ma niskie RMSE I bardzo wysoki score.

RMSE: 0.9450989370465289

R-squared: 0.8596527332651904

Jeśli zaokrąglimy wyniki do liczb całkowitych, to jakość modelu spada, nadal jednak wygląda lepiej niż przewidywanie wyniku za pomocą klasyfikacji.

Odesetek dobrze predykowanych zaokrąglonych wyników:

0.4816753926701571

Ponowne modelowanie

Po podziale zmiennej celu na kubełki, ponownie użyliśmy przedstawionych wcześniej modeli. Wyniki były dużo lepsze.

xgboost accuarcy: 0.3193717277486911 Logistic Regression accuracy: 0.28272251308900526 RandomForestClassifier accuracy: 0.31413612565445026 DecisionTreeClassifier accuracy: 0.32460732984293195

Również wybraliśmy najważniejsze kolumny:

xgboost accuarcy: 0.2879581151832461 Logistic Regression accuracy: 0.2931937172774869 RandomForestClassifier accuracy: 0.28272251308900526 DecisionTreeClassifier accuracy: 0.27225130890052357

Dalsze modelowanie

- Jeszcze raz powtórzyliśmy trenowanie modeli, tym razem sprawdziliśmy też jak zachowują się dla 7 najważniejszych cech (już z G1 I G2) przy użyciu RFE.
- Zdecydowaliśmy się rozwinąć analogiczne dwa modele: regresji logistycznej i lasu losowego. W tym celu używaliśmy narzędzi GridSearch i RFE.

Logistic regression accuracy: 0.6544502617801047 Logistic regression accuracy: 0.6910994764397905. (po zastosowaniu RFE) Decision Tree accuracy: 0.6178010471204188

Decision Tree accuracy: 0.6387434554973822. (po zastosowaniu RFE)

Random Forest accuracy: 0.7277486910994765

Random Forest accuracy: 0.6910994764397905. (po zastosowaniu RFE)

XGBoost accuracy: 0.6649214659685864

XGBoost accuracy: 0.6492146596858639. (po zastosowaniu RFE)

Regresja logistyczna

W pierwszej kolejności użyliśmy narzędzia Grid Search, które pozwoliło nam znaleźć najlepsze parametry dla naszego modelu. Zaprogramowaliśmy w nim parametry: C, class_weight, fit_intercept, I1_ratio, solver. Najlepszy model uzyskano dla podanych poniżej parametrów.

```
Best: 0.693066 using {'C': 0.4, 'class_weight': None, 'fit_intercept': True, 'l1_ratio': 0.0, 'solver': 'newton-cg'}
```

 Dla uzyskanego modelu stworzyliśmy następnie pętle znajdującą optymalną liczbę zmiennych użytych w narzędziu RFE.

Wynik dla regresji logistycznej: 0.7486910994764397. (po zastosowaniu RFE dla 11 zmiennych)

Otrzymany model oceniliśmy również innymi miarami

F1-score: 0.7449279510229163 Precision: 0.7513956018937493 Recall: 0.7486910994764397

Las losowy

 Znów zaczęliśmy od użycia GridSearch, aby znaleźć najlepsze parametry modelu. Szukaliśmy optymalnych wartości dla parametrów criterion, class_weight oraz max_depth.

Best: 0.747120 using {'class_weight': 'balanced_subsample', 'criterion': 'gini', 'max_depth': 5}

- Następnie użyliśmy RFE aby sprawdzić dla których cech model jest najbardziej optymalny.
- Inne miary dla ostatecznego modelu to:

F1-score: 0.7272386623852753 Precision: 0.7345616330948538

Recall: 0.7329842931937173