Filter

Name	Nathan Varghese
Identity Key	Nava 3000

	Level	Completed
O	Beginner	3
	Intermediate	0
\Q	Advanced	0
\&>	Expert	0

Goal	
3	

Total Completed			
3			

Filter

CSCI 5722: Computer Vision Fall 2024 Dr. Tom Yeh

1D Filters

CSCI 5722/4722 Computer Vision

1D Signal

I[i] 1 4 5 -2 3 7 9 6 8 -1 2

Element-wise Operation

Cross Correlation

Neighborhood

Neighborhood

Cross Correlation as Matrix Multiplication

3.14+7+9 = 57

* Doesn't add up!

pad with -1 Neighbor

L1 -1 2 3 1

C 2 1 0 2 3 1 0

R2 0 2 | -1 -1

14/9 7/9 -4/9

0 3 5/19 2*

(

2120 100

2(2y) + y + 2(2y-2) = 3 4y+y+4y-4=3 4y+y+4y-4=3 4y-4=3 10

sum(a) = 3; sum(b) = 7;sum(c) = 7

Mean filter

pad with 0

a


```
3 4 3 \ 2 1 1
```

```
sum(a) = 1; sum(b) = 7;

sum(c) = 4
```

Up or Down?

Math: Cross-Correlation

$$I(i-1) = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$I(i-1) = 0 \quad 1 \quad 4 \quad 5 \quad 2 \quad 3 \quad 7 \quad D$$

$$I[i] = 1 \quad 4 \quad 5 \quad 2 \quad 3 \quad 7 \quad 9 \quad C$$

$$I(i+1) = 4 \quad 5 \quad 2 \quad 3 \quad 7 \quad 9 \quad 0 \quad R$$

$$H[u] = 1 \quad 0 \quad 1 \quad 4 \quad 4 \quad -2 \quad -2 \quad 5 \quad 6 \quad -7$$

$$= \frac{1}{u=1} \quad H(u)I(i+u)$$

Math: Convolution

Cross Correlation vs. Convolution

Properties

$$H \otimes F = F \otimes H$$
 $H * F = F * H$

Multiple Channels

CSCI 5722/4722 Computer Vision

Color: floating value representation

RGB [] Grayscale

RGB: Float [] Integer

Range: [0, 255]

Scaling 1D Filtering

CSCI 5722/4722 Computer Vision

Single Channel

0	1	2	3			
1	2	3				
2	3					

1	1	0
0	1	1

Two Channels

0	0	1
1	0	0

1	1	0
0	0	1

Add One Channel

Add One Filter

Add One Neighbor

Add One Input

Add 1 Neighbor

Copy, add rows and columns Show your work

Add 1 Channel

Copy, add rows and columns Show your work

а

☐ ☐ Add 1 Neighbor + 1 Filter

Copy, add rows and columns Show your work

а

Add 2 inputs

Copy, add rows and columns Show your work

a

Scale to 2 channels, 3 filters

Copy, add rows and columns Show your work

X

K

Z

sum(a)=12; sum(b)=14

Scale to 4 channels, 5 filters, 6 inputs Copy, add rows and columns Show your work shape(K) =shape(X) =shape(Z) =

sum(a)=22;sum(b)=24