Pa baza documentului Curs partea 2 _Formal black box testing_Test generation from Finite State Models.pdf

- 1. Se consideră, în figura de mai jos, o specificare SUT (Specification Under Test) și o implementare IUT (Implementation Under Test) a acestei specificări, reprezentate sub formă de mașini cu număr finit de stări;
 - a. ce tip de eroare conține IUT, raportat la SUT? (de operație, de transfer, extra stare, stare lipsă)
 - b. determinați o multime P de acoperire a tuturor tranzițiilor din SUT (transition cover set);
 slide 41, 42
 - c. determinați o mulțime W de caracterizare a stărilor din SUT; specificați ce secvențe din W disting între stările (s1,s2), (s1,s3), ··· (s3,s4); slide 23 sau slide 25-31
 - d. aplicati metoda W (Chow) pentru construirea unei mulțimi de test T slide 44, 45
 - e. Indicați în T o secvența pe care mașinile nu sunt echivalente.

SUT

SOLUTIE

a) de transfer

IUT

b) Arborele de testare este:

De aici se obtine $P=\{\varepsilon, x, y, xy, xx, yx, yy, yyx, yyy\}$

c) Direct, observand modelul: (slide 23)

		s1	s2	s3	s4
	s1	-	у	Х	уу
	s2	-	-	Χ	у
	s3	-	-	-	Х
	s4	-	-	-	-

Multimea de caracterizare W = $\{x,y,yy\}$ **NU ESTE UNICA**

Sau aplicand algoritmul: (slide 25-31)

aplicaria digeritiriai: (ciide ze					
Stare	lesire		Stare urmatoare		
curenta	Х	У	Х	у	
s1	1	0	s3	s2	
s2	1	1	s2	s4	
s3	0	0	s2	s1	
s4	1	0	s3	s4	

Regrupam starile care au iesiri identice => Q11={s1,s4}, Q12={s2}, Q13={s3}

Dupa acest pas se obtin secventele de dimensiune 1 care disting intre starile care se afla in grupe diferite. Acolo unde ambele intrari disting intre stari se alege in mod aleatoriu una dintre ele => multimea de caracterizare W nu este unica

De exemplu, intre s2 si s3 disting si x si y. Putem alege oricare dintre cele doua. Eu aleg x.

	s1	s2	s3	s4
s1	-	у	Х	
s2	-	-	X	у
s3	-	-	-	Х
s4	-	-	-	-

Model Subject 1 si Rezolvare

Adaugam indicele al doilea, care reprezinta indicele de grup

Tabelul P1 va fi:

ld	Stare	Stare urmatoare			
grup	curenta	Х	У		
1	s1	s33	s2 2		
	s4	s33	s4 1		
2	s2	s22	s41		
3	s3	s22	s11		

Acum ne uitam la al doilea indice. Observam ca acesta difera pentru intrarea y => starile s1 si s4 vor fi in grupuri separate la pasul urmator = > vom avea 4 grupuri: Q21={s1}, Q22={s2}, Q23={s3}, Q24={s4}

Tabelul P2 va fi urmatorul: (se actualizeaza indicele de grup cu id-ul grupului din care face parte starea respectiva)

<u> </u>					
ld	Stare	Stare urmatoare			
grup	curenta	Х	у		
1	s1	s33	s22		
2	s2	s22	s44		
3	s3	s22	s11		
4	s4	s33	s44		

Toate starile sunt separate => sfarsit => exista o secventa de intrare de dimensiune 2 care distinge intre starile s1 si s4 => ne uitam in tabelul P2 sa vedem pentru ce intrare difera al doilea indice. Observam ca acesta difera pentru y. Cum s2 si s4 sunt distinse de y => s1 si s4 vor fi distinse prin secventa yy.

Actualizam tabelul:

	s1	s2	s3	s4
s1	-	у	Х	уу
s2	-	-	X	у
s3	-	-	-	Х
s4	-	-	-	-

Multimea de caracterizare $W = \{x,y,yy\}$

e) yyxx lesirea pe SUT este 0110, pe IUT este 0111

De exersat punctele b, c, d pe urmatoarele modele: 1)

2)

SUT