Thực hành Máy Học Ứng dụng Buổi 4

Hồi quy tuyến tính và phương pháp tập hợp mô hình

Muc tiêu:

- Úng dụng giải thuật hồi quy tuyến tính và phương pháp tập hợp mô hình
- Kiểm thử và đánh giá

A. HÒI QUY TUYẾN TÍNH

1. Ví dụ dự đoán giá nhà (bài tập ví dụ trên lớp)

Cho tập dữ liệu gồm 3 phần tử như bảng bên dưới,

X	1	2	4
Y	2	3	6

Anh/chị hãy thực hiện các yêu cầu sau:

- ➤ Biểu diễn tập dữ liệu lên mặt phẳng toạ độ Oxy
- Tìm hàm hồi quy h(x) với giá trị khởi tạo theta0=0, theta1=1, tốc độ học: 0.2, số bước lặp: 2
- Vẽ đường hồi quy lên mặt phẳng toạ độ
- Dự đoán giá trị y cho các phần tử có x có giá trị lần lượt là 0, 3, 5

Hướng dẫn

a. Biểu diễn dữ liệu lên mặt phẳng toạ đô

```
import numpy as np
import matplotlib.pyplot as plt

X = np.array([1,2,4])
Y = np.array([2,3,6])

plt.axis([0,5,0,8])
plt.plot(X,Y,"ro",color="blue")
plt.xlabel("Gia tri thuoc tinh X")
plt.ylabel("Gia tri du doan Y")
plt.show()
```



```
b. Tìm hàm hồi quy với theta0 = 0, theta1 = 1, tốc đô học = 0.2, số lần lặp là 1
                  for i=1 to m, {
                     \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}
                  }
def LR1(X,Y,eta,lanlap, theta0,theta1):
   m = len(X) # so luong phan tu
   for k in range(0,lanlap):
       print("Lan lap: ", k)
       for i in range(0,m):
           h_i= theta0 + theta1*X[i]
           #theta0
           theta0 = theta0 + eta*(Y[i]-h_i)*1
           print ("Phan tu ", i, "y=", Y[i], "h=",h_i,"gia tri theta0 = ",round(theta0,3))
           theta1 = theta1 + eta*(Y[i]-h_i)*X[i]
           print ("Phan tu ", i, "gia tri theta1 = ",round(theta1,3))
   return [round(theta0,3),round(theta1,3)]
theta = LR1(X,Y,0.2,1,0,1)
theta
          Kết quả cho 1 lần lặp: theta = LR1(X,Y,0.2,1,0,1)
               >>> theta = LR1(X,Y,0.2,1,0,1)
               Lan lap: 0
               Phan tu 0 y= 2 h= 1 gia tri theta0 = 0.2
               Phan tu 0 gia tri theta1 = 1.2
               Phan tu 1 y= 3 h= 2.6 gia tri theta0 = 0.28
               Phan tu 1 gia tri theta1 = 1.36
               Phan tu 2 y= 6 h= 5.72 gia tri theta0 = 0.336
               Phan tu
                         2 gia tri theta1 = 1.584
              >>> theta
               [0.336, 1.584]
          Kết quả cho 2 lần lặp: theta2 = LR1(X,Y,0.2,2,0,1)
              [>>> theta
               [0.29, 1.572]
```

c. Vẽ đường hồi quy

```
theta = LR1(X,Y,0.2,1,0,1) # theta 1 budc
X1= np.array([1,6])
Y1= theta[0] + theta[1]*X1

theta2 = LR1(X,Y,0.2,2,0,1) # theta 2 budc lap
X2= np.array([1,6])
Y2= theta2[0] + theta2[1]*X2

plt.axis([0,7,0,10])
plt.plot(X,Y,"ro",color="blue")

plt.plot(X1,Y1,color="violet") # duong hoi quy lan lap 1
plt.plot(X2,Y2,color="green") # duong hoi quy lan lap 2

plt.xlabel("Gia tri thuoc tinh X")
plt.ylabel("Gia tri du doan Y")
plt.show()
```


d. Thay đổi tốc độ học bằng 0.1, anh/chị vẽ đường hồi quy màu hồng cho 1 lần lặp và màu xanh lá cây cho 2 lần lặp và so sánh với kết quả ở bước câu c.

e. Dự báo cho phần tử mới tới Dự báo giá trị y cho 3 phần tử sau: x=0, x=3, x=5

```
# Du bao
y1 = theta[0] + theta[1]*0
y2 = theta[0] + theta[1]*3
y3 = theta[0] + theta[1]*5
```

Hoặc sử dụng vòng lặp for

```
# Du bao

XX = [0,3,5]

for i in range(0,3):

YY = theta[0] + theta[1]*XX[i]

print (round(YY,3))

Kết quả dự đoán 2 lần lặp:

theta = LR1(X,Y,0.2,2,0,1)|

X=0 => y=0.29

X=3 => y=5.006

X=5 => y=8.15
```

- 2. Sử dụng thư viện scikit-learn của Python để tìm các giá trị theta
- Đoc dữ liêu từ file csv

```
# doc dữ liệu từ file Housing.csv
import pandas as pd
dt = pd.read_csv("Housing_2019.csv", index_col=0)
dt.iloc[2:4,]
X= dt.iloc[:,[1,2,3,4,10]]
X.iloc[1:5,]
y = dt.price
```

Hiển thị dữ liệu tương quan giữa diện tích (lotsize) và giá nhà (price)
 nlt scatter (dt lotsize dt price)

```
plt.scatter(dt.lotsize, dt.price)
plt.show()
```


 Sử dụng sklearn để tìm các giá trị theta, sinh viên thực hành đoạn code bên dưới và trả lời các câu hỏi sau:

- Có bao nhiêu thuộc tính, đó là những thuộc tính nào đã được sử dụng để dư đoán giá nhà?
- Xác định số lượng theta và các giá trị của nó.
- Dữ liệu được sử dụng để huấn luyện mô hình?
- o Dữ liệu được sử dụng để dự báo mô hình?
- Độ chính xác được đánh giá bằng chỉ số gì và giá trị của nó?

```
# đọc dữ liệu từ file Housing.csv
import pandas as pd
dt = pd.read_csv("Housing_2019.csv", index_col=0)
dt.iloc[2:4,]
X= dt.iloc[:,[1,2,3,4,10]]
X.iloc[1:5,]
y = dt.price
plt.scatter(dt.lotsize, dt.price)
plt.show()
import sklearn
from sklearn import linear_model
lm = linear_model.LinearRegression()
lm.fit(X[1:520],y[1:520])
print (round(lm.intercept_,3))
print (lm.coef_)
y = dt.price
y_{\text{test}} = y[-20:]
X_{\text{test}} = X[-20:]
y_pred = lm.predict(X_test)
y_pred
y_test
```

```
# danh gia
from sklearn.metrics import mean_squared_error
import numpy as np
err = mean_squared_error(y_test, y_pred)
print (round(err,3))
np.sqrt(err)
```

B. PHƯƠNG PHÁP TẬP HỢP MÔ HÌNH

Áp dụng giải thuật Bagging trên tập dữ liệu dự đoán giá nhà

Dự đoán giá nhà (bài toán hồi quy) với cây quyết định

```
import pandas as pd
from sklearn.metrics import mean_squared_error
import numpy as np
dt = pd.read_csv("Housing_2019.csv", index_col=0)
X= dt.iloc[:,[1,2,4,10]]
Y = dt.price
import sklearn
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=1.0/3, random_state=100)
len(X_train) #1199
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
tree = DecisionTreeRegressor(random_state = 0)
bagging_regtree = BaggingRegressor(base_estimator=tree, n_estimators=10, random_state=42)
bagging_regtree.fit(X_train, y_train)
y_pred = bagging_regtree.predict(X_test)
err = mean_squared_error(y_test, y_pred)
np.sqrt(err)
```

Dự đoán giá nhà (bài toán hồi quy) với hồi quy tuyến tính

```
import pandas as pd
from sklearn.metrics import mean_squared_error
import numpy as np
dt = pd.read_csv("Housing_2019.csv", index_col=0)
X= dt.iloc[:,[1,2,4,10]]
Y = dt.price
import sklearn
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=1.0/3, random_state=100)
len(X_train) #1199
from sklearn.ensemble import BaggingRegressor
from sklearn import linear_model
lm = linear_model.LinearRegression()
bagging_reg = BaggingRegressor(base_estimator=lm, n_estimators=10, random_state=42)
bagging_reg.fit(X_train, y_train)
y_pred = bagging_reg.predict(X_test)
err = mean_squared_error(y_test, y_pred)
err #362862254.1975257
```