Aula 11 Fluxo de Calor

Plano da Aula

Introdução:

• Transferência de calor; lei de Fourier.

Fluxo de calor:

 Medição do fluxo, o fluxo na superfície da Terra

Produção de calor:

 Produção radiogênica no manto, concentrações isotópicas, produção radiogênica no passado.

Introdução

O manto terrestre é sólido, mas a sua reologia muda com a temperatura:

- Em escalas de tempo geológico, a região da listosfera próxima a superfície da Terra (25-50 km) é elástica.
- O manto sublitosférico, por outro lado, tem um comportamento mais "fluido". Este comportamento "fluido" permite a convecção.

Litosfera e astenosfera

Transferência de Calor

A distribuição interna da temperatura depende da taxa de perda do calor pela superfície (fluxo térmico).

Existem três mecanismos para a transferência de calor:

- Condução colisões moleculares
- Convecção movimento do meio
- Radiação ondas eletromagnéticas

Transferência de Calor

Os mecanismos de transferência são: condução, convecção e radiação.

Condução

É um processo difusivo no qual as moléculas transmitem sua energia cinética para outras moléculas por colisão comelas.

Convecção

É um processo onde um fluido quente ascende e toma o lugar do fluido frio, que desce e toma o lugar do fluido quente.

Radiação

Energia transportada por ondas eletromagnéticas no infravermelho (radiação térmica) é absorvida, fazendo elétrons saltar para níveis mais altos de energia.

Transferência do Calor Interno

Na Terra, os mecanismos de condução e convecção são os mais importantes.

- O mecanismo predominante na litosfera é a CONDUÇÃO.
- O mecanismo predominante no manto profundo é a CONVECÇÃO.

Na litosfera oceânica, o transporte por convecção devido à circulação de água nas dorsais é importante.

Lei de Fourier

A relação básica para a condução do calor é a lei de Fourier.

$$q = -k dT/dy$$

onde

- q é o fluxo de calor (W/m²)
- Té a temperatura (K)
- k é a condutividade térmica (W m⁻¹ K⁻¹)

O sinal negativo indica que o calor flui de quente para o frio.

Exemplo: Fluxo através de uma placa

Quando mantemos a diferença de temperatura constante:

$$dT/dy = -\Delta T/l \rightarrow T = T_0 + \Delta T (1-y/l)$$

$$q = k (\Delta T/l)$$

Fluxo de Calor

Fornece informação sobre a produção de calor na Terra e a distribuição da temperatura no seu interior.

Medição do Fluxo de Calor

A medição do fluxo de calor envolve a medição de gradientes térmicos perto da superfície e a lei de Fourier.

Das minas:

 $dT/dy = 20-30 \text{ K km}^{-1}$

 $k = 2-3 \text{ W m}^{-1} \text{ K}^{-1}$

 $q = 40-90 \text{ mW m}^{-2}$

(q é positiva para cima)

Medições no continente

A medição do gradiente térmico em áreas continentais exige furos profundos (> 300 m), para evitar variações climáticas.

A temperatura é medida na água.

Evitar circulação do fluido de perfuração

- Medida na parte inferior (durante).
- Medida do perfil temperatura (depois)

Medição da condutividade térmica

Submetendo amostras dos furos a fluxos de calor conhecidos e medindo a temperatura no laboratório.

T₁, T₂ e T_H são medidos para uma faixa de espessuras

$$\frac{T_1 - T_2}{T_H - T_1} = \frac{k_b d}{k_r l} + \frac{2\delta k_b}{lk_c}$$

o coeficiente angular dá uma estimativa de k_r.

Medições no oceano

Variações climáticas não alteram a temperatura da água do fundo do oceano; esta água é mantida a 1-2 °C.

- Uma sonda em forma de agulha é jogada de um navio.
- A condutividade térmica é medida com um aquecedor.

Fluxo na Superfície da Terra

Consideramos regiões oceânicas e regiões continentais separadamente.

Fluxo em regiões continentais

O fluxo de calor médio para todos os continentes é de 65 ± 1,6 mW m⁻².

- As regiões tectonicamente ativas podem ter fluxo de calor elevado, mas abrangem áreas pequenas.
- O valor médio representa assim a contribuição das regiões tectonicamente estáveis.

O fluxo total continental é 1,30 10¹³ W.

Correlação entre fluxo de calor (q_0) e produção de calor radiogênico (ρH_0) .

Nas regiões estáveis há uma correlação entre fluxo e isótopos radioativos,

- O 50% do fluxo é gerado pela radioatividade (U,Th,K)
- Fluxo de calor da superfície diminui com a idade das rochas.

Fluxo em regiões oceánicas

O fluxo de calor médio para todos os oceanos é de 101 ± 2,2 mW m⁻².

- A contribuição da produção de calor por isótopos radioativos é despre-zível (~2 %).
- A característica mais marcante é a dependência do fluxo de calor com a idade do assoalho oceânico.

O fluxo total oceánico é de 3,13 10¹³ W.

Fluxo global

O fluxo total pode ser obtido através de

$$Q = q_c A_c + q_o A_o$$

onde $q_c=65 \text{ mW/m}^2$, $A_c=2 \cdot 10^8 \text{ km}^2$, $q_o=101 \text{ mW/m}^2 \text{ e } A_o=3,1 \cdot 10^8 \text{ km}^2$.

O fluxo total para o planeta é de 4,43 10¹³ W e, dividindo pela área total do planeta

$$q = 87 \text{ mW/m}^2$$

Produção de calor

Uma parte substancial do calor perdido através da superfície da Terra vem do decaimento de elementos radioativos.

Produção de calor

Mas uma parte da perda de calor deve vir do resfriamento secular da Terra ao longo do tempo geológico.

Calor radiogênico

Definimos H como a produção média de calor radioativo por unidade de massa.

$$H = Q_{rad}/M (W kg^{-1})$$

Quais são as produções de calor radiogênico na crosta e no manto?

```
Fontes - Sotopos | Crosta | Continental (50%) | Oceânica (2%) | Manto | Resfriamento do manto (20%)
```

Calor radiogênico no manto

Já vimos que o fluxo de calor global é de 4,43 10¹³ W.

Para achar o calor radiogênico do manto, Q_m, precisamos correções:

- Calor radiogênico da crosta (Q_{cr}): $Q_{cr} = 37 \text{ mW/m}^2 \times 2 \cdot 10^8 \text{ km}^2 = 0,74 \cdot 10^{13} \text{ W}$
- Calor do resfriamento (~20%):
 Q_m = 0,8 x (4,43-0,74) 10¹³ W = 2,95 10¹³ W

 $H = 2,95 \cdot 10^{13} \text{ W}/4,0 \cdot 10^{24} \text{ kg} = 7,38 \cdot 10^{-12} \text{ W}/\text{kg}.$

Concentrações isotópicas

O calor radioativo é gerado pelos isótopos ²³⁵U, ²³⁸U, ²³²Th e ⁴⁰K. Assim,

$$H_0 = C_0^U H^U + C_0^{Th} H^{Th} + C_0^K H_K$$

onde C_0^X é a concentração e H_X é a produção de calor.

Como as razões C_0^{Th}/C_0^{U} (=4) e C_0^{K}/C_0^{U} (=10⁴) são estáveis, expressamos

$$H_0 = C_0^{U}(H^{U}+C_0^{Th}/C_0^{U}H^{Th} + C_0^{K}/C_0^{U}H_K)$$

Concentrações isotópicas

Como $H=7,38 \ 10^{-12} \ W/kg$,

 C_0^{U} = 3,1 10⁻⁸ kg/kg = 31 ppb

Table 4.2 Rates of Heat Release H and Half-Lives $\tau_{1/2}$ of the Important Radioactive Isotopes in the Earth's Interior

	H	$\tau_{1/2}$	Concentration C
Isotope	$(W kg^{-1})$	(yr)	$(kg kg^{-1})$
²³⁸ U	9.46×10^{-5}	4.47×10^{9}	30.8×10^{-9}
^{235}U	$5.69 imes 10^{-4}$	7.04×10^{8}	0.22×10^{-9}
U	9.81×10^{-5}		31.0×10^{-9}
$^{232}\mathrm{Th}$	2.64×10^{-5}	1.40×10^{10}	124×10^{-9}
$^{40}\mathrm{K}$	2.92×10^{-5}	1.25×10^{9}	36.9×10^{-9}
K	3.48×10^{-9}		31.0×10^{-5}

Note: Heat release is based on the present mean mantle concentrations of the heat-producing elements.

A produção de calor no passado pode ser relacionada com a produção de calor atual através das meias-vidas dos isótopos radioativos.

A lei do decaimento radioativo é

$$C = C_0 \exp [t \ln 2/\tau_{1/2}]$$

E a produção passada pode ser achada através de

$$H = \sum_{i=1}^{N} C_0^{X} H^{X} \exp(t \ln 2/\tau^{X}_{1/2})$$

Substituindo os valores da tabela:

Substituindo os valores da tabela:

Substituindo os valores da tabela:

