DATA SCIENCE LAB - 04/05/2019

MÔ HÌNH PHÂN RÃ MA TRẬN POISSON KẾT HỢP BỘ TRI THỰC TIÊN NGHIỆM TRONG HỆ GỢI Ý

NGUYỄN VĂN TÚC

NỘI DUNG TRÌNH BÀY

- l. Tổng quan hệ gợi ý
- II. Tiếp cận bài toán
- III. Tri thức tiên nghiệm, kỹ thuật dropout
- IV. Mô hình đề xuất
- V. Thử nghiệm và đánh giá
- VI. Kết luận

I. Tổng quan hệ gợi ý (recommender system)

- * Hệ thống có khả năng gợi ý sản phẩm phù hợp có liên quan đến người dùng
- Được ứng dụng phổ biến trong các website tin tức, thương mại điện tử, quảng cáo hoặc xem phim trực tuyến.
- ❖ Ví dụ:
 - Hệ thống gợi ý video của Youtube, MyClip.vn
 - Trang web thương mại điện tử: Amazon.com

I. Tổng quan hệ gợi ý (recommender system)

- Bài toán hệ gợi ý: ước lượng đánh giá độ phù hợp của các sản phẩm chưa được người dùng xem xét, từ đó đưa ra gợi ý một cách phù hợp.
- Mô tả bài toán:
 - U người dùng, I sản phẩm
 - Ma trận tương tác user item
 - Các thông tin khác: user profile, item,...
 - Output: Mức độ phù hợp user item
- Các phương pháp tiếp cận:
 - Content-based filtering
 - Collaborative filtering

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	0	3	0	3	0
User 2	4	0	0	2	0
User 3	0	0	3	0	0
User 4	3	0	4	0	3
User 5	4	3	0	4	0

Tiếp cận dựa trên lọc nội dung (content-based filtering)

- * Xây dựng vector đặc trưng cho mỗi item.
- ❖ Dựa trên đặc điểm của các item từng được user đánh giá cao.
- Dè xuất item tương đồng với sở thích của user.

Tiếp cận dựa trên lọc nội dung (content-based filtering)

Tiếp cận dựa trên lọc cộng tác (collaborative filtering)

- Neighborhood-Based.
- Matrix Factorization.

II. Tiếp cận bài toán.

- Xét một hệ thống có:
 - U người dùng và I sản phẩm
 - Ma trận tương tác R = $\{r_{ui}\}^{U,I}_{u=1, i=1}$
 - Tìm β , θ sao cho $\beta^T \times \theta$ gần với R nhất
- Mô hình đồ thị xác suất cho phân rã ma trận.
 - β ma trận item features, θ ma trận user features.
 - Tương tác user u, item i:

$$r_{ui} = \beta^{T}_{i} \cdot \theta_{u}$$

II. Tiếp cận bài toán.

• Đặt $\bar{r} = \beta^T_i \theta_u$ là kỳ vọng của giá trị quan sát thực tế r_{ui} và tuân theo một hàm phân phối:

$$p_{ui}(r_{ui}|\bar{r}_{ui})$$

Ta có hàm mục tiêu:

$$P(R|\theta, \beta) = \prod_{u=1, i=1}^{U,I} p_{ui} = \prod_{u, i} p_{ui}$$

Dưa về dạng log:

$$L = \sum_{u=1, i=1}^{U, I} \log p_{ui} = \sum_{u, i} \log p_{ui}$$

1. Sử dụng phân phối Gauss.

+ Hàm xác suất P tuân theo phân phối Gaussian:

$$p(r_{ui}|\bar{r}_{ui}) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{1}{2}\left(\frac{r_{ui}-\bar{r}_{ui}}{\sigma}\right)^2}$$

- ightharpoonup Với σ thể hiện sự biến động của tương tác quan sát được r_{ui} quanh kỳ vọng \bar{r}_{ui}
- Đặt $\frac{1}{\sigma^2}$ = c, c: độ tin cậy của giá trị quan sát $r_{ui.}$
- * Hàm mục tiêu:

$$L = -\sum_{u=1,i=1}^{U,I} \frac{c}{2} (r_{ui} - \bar{r}_{ui})^2 + const$$
$$= -\sum_{u=1,i=1}^{U,I} \frac{c}{2} (r_{ui} - \beta_i^T \theta_u)^2 + const$$

1. Sử dụng phân phối Gauss.

Hàm mục tiêu:

$$L = -\sum_{u=1,i=1}^{U,I} \frac{c}{2} (r_{ui} - \bar{r}_{ui})^2 + const$$
$$= -\sum_{u=1,i=1}^{U,I} \frac{c}{2} (r_{ui} - \beta_i^T \theta_u)^2 + const$$

 r_u vector $I \times 1$ biểu diễn tương tác của người dùng u với I sản phẩm:

 r_i vector U x 1 biểu diễn tương tác của U người dùng với sản phẩm I

$$\clubsuit$$
 Đạo hàm L theo θ_u , β_l được công thức cập nhật: $\theta_u = (\beta \beta^T)^{-1} \beta r_u$
$$\beta_l = (\theta \theta^T)^{-1} \theta r_i$$

1. Sử dụng phân phối Gauss.

Mô hình phân rã Gauss với ràng buộc biến:

$$p(\theta_u|\lambda_U) \sim N(0, \lambda_U^{-1} I_K)$$

$$p(\beta_i|\lambda_I) \sim N(0, \lambda_I^{-1} I_K)$$

- Từ đó: $P(R|\theta, \beta, \lambda_U, \lambda_I) = p(R|\theta, \beta) p(\theta|\lambda_U) p(\beta|\lambda_I)$
- Hàm mục tiêu:

$$L = -\frac{c}{2} \sum_{u=1,i=1}^{U,I} (r_{ui} - \beta_i^T \theta_u)^2 - \frac{\lambda_U}{2} \sum_{u=1}^{U} \theta_u^T \theta_u - \frac{\lambda_I}{2} \sum_{i=1}^{I} \beta_i^T \beta_i + const$$

Công thức cập nhật:

$$\theta_{u} = (\beta \beta^{T} + \lambda_{U} I_{K})^{-1} \beta r_{u}$$
$$\beta_{I} = (\theta \theta^{T} + \lambda_{I} I_{K})^{-1} \theta r_{i}$$

2. Sử dụng phân phối Poisson.

ullet Giả thiết r_{ui} là các giá trị rời rạc tuân theo phân phối Poisson với kỳ vọng eta^{T}_{i} θ_{u}

$$p(r_{ui}|\beta_i^T \theta_u) = Poisson(\beta_i^T \theta_u)$$
$$= (\beta_i^T \theta_u)^{r_{ui}} \frac{\exp^{-\beta_i^T \theta_u}}{r_{ui}!}$$

Khi đó hàm mục tiêu:

$$\log p(R|\theta, \beta) = (\sum_{i, u, r_{ui} > 0}^{U, I} r_{ui} \log(\beta_i^T \theta_u) - \log r_{ui}!) - (\sum_{i=1}^{I} \beta_i^T) (\sum_{u=1}^{U} \theta_u)$$

2. Sử dụng phân phối Poisson.

- Sử dụng biến phụ và phương pháp suy diễn biến phân
- Với điều kiện: z_{uik} ~ Poisson(β_{ik}θ_{uk})

$$\sum_{k=1}^{K} z_{\text{uik}} = \mathsf{r}_{\text{ui}}$$

Sử dụng suy diễn biến phân với z_{ui}

$$q(z_{ui}|\phi_{ui}) \sim Multinomial(\phi_{ui})$$

$$\sum_{k} \phi_{uik} = 1$$

$$E_{q(z)}z_{uik} = r_{ui}\phi_{uik}$$

Hình: Mô hình đồ thị xác suất cho phân rã Poisson

Sử dụng suy diên biến phân thu hàm biên dưới (lower bound):

$$I = E_{q(z)} \log p(R, \beta, \theta, Z) - E_{q(z)} \log q(z)$$

Công thức cập nhật

$$\phi_{uik} \propto \beta_{ik}\theta_{uk}$$
 $\beta_{ik} = \frac{\sum_{u} r_{ui}\phi_{uik}}{\sum_{u} \theta_{u}}$ $\theta_{uk} = \frac{\sum_{i} r_{ui}\phi_{uik}}{\sum_{i} \beta_{i}}$

- \bullet Sử dụng các mức phân cấp cho θ và β
- $p(\beta_{ik}|a,b) \sim Gamma(a,b)$ $p(\theta_{uk}|c,d) \sim Gamma(c,d)$
- Mức phân cấp thứ 2 các tham số b và d được giả thiết tuân theo phân phối Gamma:

$$b_i \sim Gamma(a', a'/b')$$

$$d_u \sim Gamma(c', c'/d')$$

Hình: Mô hình đồ thị xác suất cho phân rã Poisson cấp 1

- Mô hình sinh:
- Mỗi sản phẩm i:
 - Lấy mẫu b_i ~ Gamma(a', a'/b')
 - Mỗi thành phần k, lấy mẫu: β_{ik} ~ Gamma(a,b_i)
- * Mỗi người dùng u:
 - d_u~ Gamma(c',c'/d')
 - θ_{uk} ~ Gamma(c,d_u)
- Mỗi cặp người dùng u, item i

$$r_{ui} \sim Poisson(\beta_i^T \theta_u)$$

Hình: Mô hình đồ thị xác suất cho phân rã Poisson cấp 2

 $q(b_i|\kappa_i) \sim Gamma(\kappa_i^{shp}, \kappa_i^{rte})$ $q(d_u|\tau_u \sim Gamma(\tau_u^{shp}, \tau_u^{rte})$

$$q(\beta, \theta, b, d, z) = \prod_{i,k} q(\beta_{ik}|\zeta_{ik}) \prod_{u,k} q(\theta_{uk}|\gamma_{uk}) \prod_i q(b_i|\kappa_i) \prod_u q(d_u|\tau_u) \prod_{u,i} q(z_{ui}|\phi_{ui})$$

Với các thành phần:

$$q(\beta_{ik}|\zeta_{ik}) \sim Gamma(\zeta_{ik}^{shp}, \zeta_{ik}^{rte})$$

$$q(\theta_{uk}|\gamma_{uk} \sim Gamma(\gamma_{uk}^{shp}, \gamma_{uk}^{rte})$$

$$q(z_{ui}|\phi_{ui}) \sim Multinomial(\phi_{ui})$$

$$q(b_i|\kappa_i) \sim Gamma(\kappa_i^{shp}, \kappa_i^{rte})$$

$$q(d_u|\tau_u \sim Gamma(\tau_u^{shp}, \tau_u^{rte})$$

$$\begin{split} \phi_{ui} &\propto \exp\{\Psi(\gamma_{uk}^{shp}) - \log \gamma_{uk}^{rte} + \Psi(\zeta_{ik}^{shp}) - \log(\zeta_{ik}^{rte})\} \\ \gamma_{uk}^{shp} &= c + \sum_{i=1}^{I} r_{ui} \phi_{uik} \\ \gamma_{uk}^{rte} &= \frac{\tau_{u}^{shp}}{\tau_{u}^{rte}} + \sum_{i=1}^{I} \zeta_{ik}^{shp} / \zeta_{ik}^{rte} \\ \tau_{u}^{rte} &= \frac{c'}{d'} + \sum_{k} \frac{\gamma_{uk}^{shp}}{\gamma_{uk}^{rte}} \\ \zeta_{ik}^{shp} &= a + \sum_{u=1}^{U} r_{ui} \phi_{uik} \\ \zeta_{ik}^{rte} &= \frac{\kappa_{i}^{shp}}{\kappa_{i}^{rte}} + \sum_{u=1}^{U} \gamma_{uk}^{shp} / \gamma_{uk}^{rte} \\ \kappa_{i}^{rte} &= \frac{a'}{b'} + \sum_{k} \frac{\zeta_{ik}^{shp}}{\zeta_{ik}^{rte}} \\ \end{split}$$

3. Mô hình gợi ý sử dụng phân rã Poisson kết hợp LDA.

- * Khai thác nội dung sản phẩm qua mô hình LDA.
- Sử dụng các thông tin từ các item có trong hệ thống.
- Mô hình sinh:
- Với người dùng u: θ_u ~ Gamma(c,d)
- Với mỗi sản phẩm i:
 - Lấy phân phối chủ đề: $\pi_i \sim \text{Dirichlet}(\alpha)$
 - Từ thứ n trong mô tả của sản phẩm i:
 - Lấy chủ đề $X_{in} \sim Categorical (\pi_i)$
 - Lấy từ w_{in} ~ Categorical (μ_{Xin})
 - Item features: $\beta_1 \sim N(\pi_I, \lambda^{-1}I_K)$
- Mỗi cặp user-item: $r_{ui} \sim Poisson(\beta_i^T \theta_u)$

Hình: Mô hình đồ thị xác suất cho phân rã Poisson - LDA

III. Tri thức tiên nghiệm, kỹ thuật dropout.

- Tri thức có trước về đối tượng.
- ❖ Kỹ thuật dropout: loại bỏ đi ngẫu nhiên đầu vào, các tương tác bị loại bỏ sẽ không được dùng trong việc học mô hình.
- Tri thức tiên nghiệm Glove.

Ẩnh: Minh họa tri thức từ nhúng

IV. Mô hình đề xuất.

- * Mô hình sử dụng thêm tri thức biểu diễn nhúng có trước của từ để tăng cường thêm thông tin từ sản phẩm.
- ❖ Việc học mô hình gồm 2 thành phần:
 - Học biểu diễn sản phẩm thông qua mạng neural W
 - Mô hình phân rã ma trận Poisson

Hình: Mô hình đồ thị xác suất cho phân rã Poisson kết hợp mạng neural

Mô hình sinh.

- Mỗi sản phẩm i:
 - Vector biểu diễn thông tin sản phẩm:

$$n_i = f(E,a_i;W)$$

• Vector biểu diễn thuộc tính của sản phẩm:

$$\beta_{I} = N(n_{i} \lambda^{-1}I_{K})$$

- Mỗi người dùng u:
 - Vector thuộc tính người dùng: θ_{uk} ~ Gamma(c,d)
- Mỗi cặp user-item:

$$r_{ui} \sim Poisson(\beta_i^T \theta_u)$$

Hình: Mô hình đồ thị xác suất cho phân rã Poisson kết hợp mạng neural

Học mô hình.

* Hàm mục tiêu:

L = log P(
$$\beta$$
, R | E,a,c,d) = log P(β | E,a) + log P(R | β ,c,d)
= $-\sum_{i=1}^{I} \frac{\lambda}{2} \|\beta_i - f(E,a_i; W)\|_2^2 + \log \int \sum_{z} P(R,z,\theta|\beta,c,d) d\theta$

Sử dụng kỹ thuật suy diễn biến phân với:

$$Q(\theta, z) = \prod_{u=1, i=1}^{U, I} q(z_{ui}|r_{ui}, \phi_{ui}) \prod_{u=1}^{U} \prod_{k=1}^{K} q(\theta_{uk}|\mathsf{shp}_{uk}, \mathsf{rte}_{uk})$$

Cập nhật W bằng stochastic gradient ascent:

$$I(W) = -\sum_{i=1}^{I} \frac{\lambda}{2} \|\beta_i - f(E, a_i; W)\|_2^2$$

Học mô hình.

Cập nhật β:

$$\beta_{ik} = \frac{-\sum_{u} \frac{\mathsf{shp}_{uk}}{\mathsf{rte}_{uk}} + \lambda \eta_{ik} + \sqrt{\Delta}}{2\lambda}$$
với
$$\Delta = \left(-\sum_{u} \frac{\mathsf{shp}_{uk}}{\mathsf{rte}_{uk}} + \lambda \eta_{ik}\right)^{2} + 4\lambda \sum_{k} r_{ui} \phi_{uik}$$

Cập nhật Ø:

$$\phi_{uik} = \frac{\exp \{\log \beta_{ik} + \psi (shp_{uk}) - \log (rte_{uk})\}}{\sum_{k=1}^{K} \exp \{\log \beta_{ik} + \psi (shp_{uk}) - \log (rte_{uk})\}} \text{if } r_{ui} > 0 \text{ else} = 0$$
 (2)

Cập nhật shp, rte:

$$\mathsf{shp}_{uk} = c + \sum_{i=1}^{I} r_{ui} \phi_{uik} \quad \mathsf{va} \quad \mathsf{rte}_{uk} = d + \sum_{i=1}^{I} \beta_{ik} \tag{3}$$

Học mô hình.

```
Thuật toán học kết hợp với dropout( học loại bỏ).
Input: Dữ liệu quan sát E, a, R, các siêu tham số c, d, \lambda
Output: Ước lượng W, \beta, \emptyset, shp, rte, \theta
Repeat
   for u =1 : U do
           Loại bỏ ngẫu nhiên tương tác của người dùng u với tỷ lệ loại bỏ dr
   endfor
   for i = 1 : | do
           Cập nhật \beta_1 bằng công thức (1)
   endfor
   for u = 1 : U, k = 1 : K do
          Cập nhật Ø<sub>uik</sub> bằng công thức (2)
           Cập nhật shp<sub>uk</sub> và rte<sub>uk</sub> bằng công thức (3)
    endfor
    Cập nhật W bằng stochastic gradient ascent.
Until hội tụ
```

V. Thử nghiệm, đánh giá.

❖ Bộ dữ liệu thử nghiệm.

Bộ dữ liệu	#người dùng	#sản phẩm	#độ dài mô tả
Citeulike	5551	16980	66.6
Movielens – 1M	6040	3681	4.7
Movielens – 10M	69878	10681	5.3
Movielens – 20M	138493	26744	5.5

V. Thử nghiệm, đánh giá.

• Độ đo: Sử dụng độ chính xác (precision) và độ phủ (recall) theo top-M sản phẩm dược dự đoán điểm cao nhất.

$$prec@M = \frac{1}{U} \sum_{u} \frac{M_{u}^{c}}{M}$$

$$rec@M = \frac{1}{U} \sum_{u} \frac{M_{u}^{c}}{M_{u}}$$

- ❖ M_u^c: số lượng sản phẩm đúng trong top M sản phẩm được gợi ý cho người dùng.
- ❖ M₁₁: số lượng sản phẩm được tương tác bởi người dùng u trong tập kiểm thử.

V. Thử nghiệm, đánh giá.

- Các mô hình so sánh:
- * WMF (Weighted matrix factorization) và HPF (hierarchical Poisson factorization) dựa trên phân rã ma trận Gaussian và Poisson nhưng không sử dụng thông tin sản phẩm.
- **CTMP** (collaborate topic model for Poisson) dựa trên phân rã ma trận Poisson kết hợp với LDA để học biểu diễn nội dung sản phẩm.
- Thiết lập tham số:
- ❖ WMF : hệ số cho phân rã Gauss: 0.01
- **CTMP**: tham số tiên nghiệm cho phân phối Poisson c =d = 0.3.
 - hệ sô Gauss cho phần nội dung: 1
- ❖ HPF: các hệ số tiên nghiệm đặt a = a' = c = c' = 0.3 và b' = d' = 1

Kết quả với mô tả ngắn

Movielens 1M.

Kết quả với mô tả ngắn

Movielens 10M.

Kết quả với mô tả ngắn

Movielens 20M.

Kết quả với mô tả thông thường.

Citeulike.

❖ Độ chính xác của gợi ý từ top -10 đến top − 100 trên bộ CiteUlike.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	5.89	4.78	4.09	3.55	3.16	2.88	2.66	2.48	2.32	2.2
PFEP - 0.1	5.84	4.75	4.09	3.55	3.22	2.94	2.71	2.54	2.38	2.25
PFEP - 0.2	5.97	4.91	4.19	3.61	3.24	2.96	2.73	2.55	2.4	2.27
PFEP - 0.3	5.87	4.77	4.11	3.59	3.19	2.9	2.69	2.52	2.38	2.25

❖ Độ bao phủ của gợi ý từ top -10 đến top – 100 trên bộ CiteUlike.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	9.41	14.47	18.28	21.41	24.17	26.68	28.85	30.92	32.74	34.53
PFEP - 0.1	9.35	14.52	18.51	21.79	24.62	27.09	29.42	31.5	33.44	35.2
PFEP - 0.2	9.45	14.88	18.76	21.72	24.67	27.19	29.4	31.55	33.58	35.19
PFEP - 0.3	9.5	14.63	18.72	21.83	24.74	27.3	29.63	31.8	33.8	35.53

❖ Độ chính xác của gợi ý từ top -10 đến top − 100 trên bộ Movielens 1M.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	14.46	23.04	29.52	34.69	38.97	42.74	45.83	48.75	51.28	53.49
PFEP - 0.1	14.72	23.58	30.15	35.43	39.84	43.51	46.77	49.6	52.1	54.3
PFEP - 0.2	14.8	23.65	30.21	35.5	39.79	43.64	46.96	49.79	52.34	54.64
PFEP - 0.3	14.66	23.48	30.29	35.66	40.1	43.8	47.2	50.1	52.63	54.83
PFEP - 0.4	14.44	23.27	29.73	34.96	39.44	43.14	46.54	49.49	52.1	54.33

❖ Độ bao phủ của gợi ý từ top -10 đến top – 100 trên bộ Movielens 1M.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	31.73	26.8	23.86	21.66	19.95	18.58	17.41	16.42	15.53	14.77
PFEP - 0.1	32.15	27.29	24.16	21.94	20.02	18.79	17.61	16.59	15.69	14.92
PFEP - 0.2	32.34	27.44	24.31	22	20.28	18.86	17.66	16.64	15.76	15
PFEP - 0.3	32.36	27.5	24.4	22.18	20.41	18.9	17.76	16.71	15.83	15.02
PFEP - 0.4	31.4	26.76	23.79	21.62	19.94	18.5	17.4	16.42	15.56	14.79

36

❖ Độ chính xác của gợi ý từ top -10 đến top − 100 trên bộ Movielens 10M.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	38.05	32.22	28.28	25.43	23.22	21.47	20.02	18.78	17.72	16.79
PFEP - 0.1	38.94	32.24	28.33	25.5	23.3	21.55	20.1	18.84	17.8	16.84
PFEP - 0.3	39.4	33.41	29.4	26.45	24.21	22.39	20.88	19.61	18.51	17.23

❖ Độ bao phủ trên bộ Movielens 10M:

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	15.92	25.36	31.73	36.58	40.45	43.7	46.64	49.07	51.23	53.16
PFEP - 0.1	15.84	25.37	31.85	36.7	40.6	43.84	46.64	49.07	51.23	53.16
PFEP - 0.3	16.32	26.08	32.8	37.28	41.5	45.23	47.84	50.3	52.81	54.7

❖ Độ chính xác của gợi ý từ top -10 đến top – 100 trên bộ Movielens 20M.

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	35.25	30	26.5	24	21.93	20.33	19	18	17	16.07
PFEP - 0.1	35.57	30.11	26.6	24.1	22.09	20.44	19.12	18.1	17.06	16.17
PFEP - 0.2	35.87	30.42	26.79	24.18	22.2	20.59	19.25	18.11	17.14	16.28
PFEP - 0.3	36.04	30.56	26.96	24.36	22.36	20.74	19.4	18.25	17.27	16.41

❖ Độ bao phủ:

	Top 10	20	30	40	50	60	70	80	90	100
PFEP	14.31	22.84	28.6	33.05	36.65	39.76	42.43	44.79	46.9	48.8
PFEP - 0.1	14.27	22.68	28.63	33.2	36.86	40	42.7	45	47.7	49.02
PFEP - 0.2	14.39	23.03	28.92	33.48	37.23	40.4	43.11	45.5	47.63	49.54
PFEP - 0.3	14.5	23.15	29.13	33.75	37.53	40.74	43.51	45.94	48.12	50.1

VI. Kết luận.

- * Các mô hình phân rã Poisson đem lại hiệu quả cao hơn so với các mô hình sử dụng phân rã Gaussian.
- Sử dụng bộ tri thức tiên nghiệm không hợp lý sẽ làm giảm chất lượng của mô hình.
- PFEP giúp tăng chất lượng gợi ý đối với cả sản phẩm với mô tả ngắn và mô tả trung bình, nhưng đem lại hiệu quả cao hơn với mô tả trung bình.
- PFEP kết hợp dropout vừa giúp cải thiện thời gian học và hiệu quả của mô hình.

Hết !!!

CẢM ƠN THẦY CÔ VÀ CÁC BẠN ĐÃ LẮNG NGHE.

5/4/2019