

Faculty of Engineering

Advanced Machine Learning

Lecture 0: Introduction

Machine Learning VS Deep Learning?

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Source:Argility.com

Machine Learning # Deep Learning

Deep Learning = Machine Learning

- Deep Learning ~ Neural Networks (multiLayer)
- Neural Networks
 - Phase 1: 1950 1960 (Hessian Learning)
 - Phase 2: 1975 1990 (introducción de la "backpropagation")
 - Phase 3: 2005 ... (Deep Learning)
- Why the DeepLearning has not appeared before?
 - Lack of data (storing data was expensive)
 - Lack of Computation brute force

Lack of data:

Mondragon Unibertsitatea Faculty of Engineering

DNA Storage

Lack of data:

could one day rival o	or exceed today's storage technology.				WEIGHT OF DNA		
	0	Hard disk	Flash memory	Bacterial DNA	NEEDED TO STORE WORLD'S		
Read-write speed (µs per bit)	>	~3,000– 5,000	~100	<100	DATA		
Data retention (years)	>	>10	>10	>100	A		
Power usage watts per gigabyte)	>	~0.04	~0.01–0.04	<10-10	~1 kg		
Data density (bits per cm³)	>	~1013	~1016	~1019	onature		

source: nature.com

source: Time magazine

We have achieved a good state for Neural Networks and Deep Learning

The "Father" of Deep Learning: Geoffrey Hinton

THE GODFATHER OF DEEP LEARNING From "Lunatic Fringe" to "Lunatic Core"

What is Deep Learning??

Mondragon Unibertsitatea Faculty of Engineering

How does the human brain "work"?

Mondragon Unibertsitatea Faculty of Engineering

Human Neuron VS ANN Neuron (or perceptron)

neurons interconections

Advanced Machine Learning

Neurons interconnection (Shallow Learning)

Neuron Interconnection (Deep Learning)

- Why Deep Learning?
 - Traditional ML needs hand engineered features
 - Time consuming
 - not scalable
 - Can we learn the underlying features directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Conclusions:

NNs date back decades, so why the resurgence?

ne resurgence?

1952

1958

:

1986

1995

:

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection& Storage

IM GENET

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Frameworks

- * not percentages! weights that depend on:
 - work offers
 - google searches
 - scientific papers
 - Deep Learning books
 - GitHub activity

Interest dates:

- Tensorflow Nov. 2015
- Keras Mar. 2015 (theano)
- PyTorch Oct 2016
- Caffe Abril 2017
- Theano 2007

theano

- First deep learning Framework (Open Source)
- Made by Montreal university
- python based
- discontinued since 2017

- Open source
- written in LUA with C, Lua, C++ interfaces
- flexible and easy model creation

**TensorFlow **

- GOOGLE Open Source Framework
- One of the most used nowadays
- Interfaces for: python, C,Java,GO, R, Julia
- Complex but very flexible

Mondragon Unibertsitatea Faculty of Engineering

K Keras

- Interface for simplifying the DL model creation
- created by François Chollet (google engineer)
- based on python (interfaces: Python & R)
- Google has integrated Keras on tensorflow 2.0
- Can be used on top of Theano, Tensorflow o CNTK
- Simple but flexibility is lost as a tradeoff

- Caffe: Modularity and speed centered framework for CNN
- Written in C++ (interfaces: C++, Python & Matlab)
- If only CNN are going to be used, it is the best
- Caffe2: Facebook: Caffe + many pretrained models, in order to develop applications faster

Mondragon Unibertsitatea Faculty of Engineering

PYTORCH

- Torch has no python interface and Facebook has developed it
- Simple, fast and flexible
- along tensorflow+keras the most used framework

mxnet

- DL from Amazon
- Interfaces: JavaScript, R, Go, Python & C++
- Few developers, little documentation
- Gluon is the "Keras" of MXNET

Mondragon Unibertsitatea Faculty of Engineering

- DEEPLEARNING 4J
 - open source and commercial
 - can import almost every model created with the other frameworks
 - best Java option
 - can run on top of Spark

CNTK

- DL from Microsoft (OpenSource y Comercial)
- written in C++
- Interfaces Python (keras), c++, cmd, .net
- very good performance under windows

Community / University

ML modeling

Distributed DL FrameWorks

- Almost every framework until now, is a single computer
- But new frameworks are appearing that bassically run on top of spak

DL FW with distributed learning

Distributed DL Frameworks

- Main Idea (Learning phase):
 - a. pass subset of data to nodes (with hadoop, you skip this part)
 - b. replicate master model in workers
 - c. pass initial parameters
 - d. Each node responds with upgraded parametros (per Epoch)
 - e. Master model renews the parameters depending the response of the node

Distributed DL Frameworks

- Main Idea (Diagnosis):
 - a. pass subset of data to each node
 - b. Replicate Trained Model in workers
 - c. every node evaluates the data

Distributed DL Frameworks

- The use of these, depends on the existing amount of data
- The learning phase gets complicated with Distributed DL
- The evaluation phase is easier to deploy

Theory in this Lecture:

- Context and Frameworks
- 1. Deep Learning basics
 - 1.1. Artificial Neural Networks
 - 1.2. ML basics for NN (RECAP)
- 2. Supervised learning with DL:
 - 2.1. Recurrent Neural Networks
 - 2.2. Convolutional Neural Networks
- 3. Unsupervised / Self-Supervised learning with DL:
 - 3.1. Self Organizing Maps
 - 3.2. Generative Modelling
- 4. Conclusions

Evaluation of course

RA141 Datu aurreratuen analisi eta aurreprozesamendu kontzeptuak identifikatzen ditu

PBL Hours -> 8 + 19 = 27h
Exam Hours -> 2 + 6 = 8h
Theory Hours -> 13h Project Hours -> 9 + 18= 26h
Project Hours -> 9 + 18= 26h

IKASTE-EMAITZAK

FORMAZIO-AKTIBITATEAK	IO	IG	OG
Banaka zein taldean egindako POPBL/proiektuei lotutako memoriak, txostenak, ikusentzunezko materiala, etab., garatzea, idaztea eta aurkeztea	3 h.	8 h.	11 h.
Banakako lana eta ikasketa, probak eta azterketak eta/edo kontrol-puntuak	1 h.	2 h.	3 h.
Ikasgelan aurkeztea klase parte-hartzaileetan ikasgaiekin loturiko kontzeptu eta prozedurak	4 h.		4 h.
Ariketa, problema nahiz praktikak egin eta ebaztea bakarka eta taldean	5 h.	7 h.	12 h.

EBALUAZIO-SISTEMAK P Froga idatziak, kodifikazio/programaziokoak eta ahozko %100

Froga idatziak, kodifikazio/programaziokoak eta ahozko indibidualak ikasgaiari buruzko konpetentzia teknikoak ebaluatzeko

ERREKUPERAKETA-MEKANISMOAK

Banakako proba idatziak eta ahozkoak gaiari buruzko gaitasun teknikoak ebaluatzeko

IO - Irakastorduak: 13 h. IG - Irak. gabekoak: 17 h. OG - Orduak guztira: 30 h.

RA142 Bere kabuz zein taldean, soluzioak proposatu eta garatzen ditu, zeintzuen oinarrian datuen analisia dagoen, eta, betiere, ikaskuntza automatiko aurreratuaren kontzeptuak erabiliz

FORMAZIO-AKTIBITATEAK	IO	IG	OG			
Banaka zein taldean egindako POPBL/proiektuei lotutako me materiala, etab., garatzea, idaztea eta aurkeztea	5 h.	11 h.	16 h.			
Banakako lana eta ikasketa, probak eta azterketak eta/edo ki	1 h.	4 h.	5 h.			
Ikasgelan aurkeztea klase parte-hartzaileetan ikasgaiekin loturiko kontzeptu eta prozedurak					9 h.	
Ariketa, problema nahiz praktikak egin eta ebaztea bakarka eta taldean				11 h.	15 h.	
EBALUAZIO-SISTEMAK		ERREKUPERAKETA-MEKANISMOAK				
Txostenak ariketak egiteari, kasuen azterketari, ordenagailuko praktikei, simulazio praktikei, eta laborategiko		Banakako proba idatziak eta ahozkoak gaiari buruzko gaitasun teknikoak ebaluatzeko				
Gaitasun teknikoa, PBL/proiektuan inplikatzea, egindako lana, lortutako emaitzak, entregatutako dokumentazioa, aurkezpena eta defentsa teknikoa	%40					
Froga İdatziak, kodifikazio/programaziokoak eta ahozko indibidualak ikasgaiari buruzko konpetentzia teknikoak ehaluatzeko	%20					

Installing environment for this course

- Basically, tensorflow 2.x already packs Keras. (CPU)
 - create python environment with python 3.7 (3.8 not supported yet)
 - install either using conda or pip tensorflow
- If your system has an NVIDIA GPU:
 - Install Nvidia Drivers
 - Install Nvidia CUDA
 - create python environment with python 3.7
 - CONDA install tensorflow-GPU (automatically installs cudNN)
- OR simply....
 - Use google COLAB
 - Colab gives you free GPU and TPU access

Colaboratory (also known as Colab) is a free <u>Jupyter</u> notebook environment that runs in the cloud and stores its notebooks on <u>Google Drive</u>.

Deep Learning in Real Life

- Google maps Prediction system:
 - How long will it take to arrive in bilbao, on april 20th at 3:00pm?
 - How crowded is Eroski today at 15:00?
 - How is traffic right now?
- Emails:
 - Smart Spam filtering
 - Smart Email Categorization
- Grading and Assessment
 - Plagiarism checkers
- Banking/Fintech
 - Fraud Prevention
 - Credit Decisions
- Social Networking
 - Face identification
 - Nudes blocking
- Shopping
 - Recommender systems
- Voice Related
 - Text to speech
 - translators
 - Personal assistants
- Games
 - Al playing Agents alpha zero
- Autonomous vehicle
- Misc:
 - Deep Fakes
- VEEERY LONG ETC.

Eskerrik asko Muchas gracias Thank you

Ekhi Zugasti

ezugasti@mondragon.edu

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu