

Figure 1: A simplex is a generalization of a triangle to higher numbers of dimensions, but here the 2-dimensional simplex is illustrated and this is just a triangle. A simplex is not regular in general. In the description of the downhill simplex algorithm the vertices is ordered so $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \dots f(\mathbf{x}_{n+1})$.

13 - downhill simplex

Figure 2: This illustrates reflection (a) and expansion (b). In reflection the worst point is reflected through \mathbf{x}_0 , the center of the remaining points to give a new point \mathbf{x}_r . Expansion goes from \mathbf{x}_0 to \mathbf{x}_r and continues the same distance again in the same direction to give \mathbf{x}_e

Figure 3: Contraction (a) and reduction (b). In contraction a new point \mathbf{x}_c is chosen which is half way between the worst point \mathbf{x}_{n+1} and \mathbf{x}_0 , the centre of the remaining points. In reduction the triangle is shrunk to half its size while keeping the best point.

Figure 4: A flow chart for the downhill simplex algorithm. At the start, at the top, the points are put in order so that \mathbf{x}_{n+1} is the worst point and \mathbf{x}_1 is the best. Next the reflected point is calculated to give \mathbf{x}_r and $f(\mathbf{x}_r)$ is calculated. By comparing to the $f(\mathbf{x}_i)$ it can be decided if \mathbf{x}_r is the best point, that is $f(\mathbf{x}_r) < f(\mathbf{x}_1)$ and the flow chart has two branches depending on the answer. This carries out until an oval is reached, one or more points are changed and the process repeats.