Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Contents

Background

Sampling and inference

Experiments

Examples

- ► Messages sent between people over time
- ► Protein-protein interactions

Number of edges

Power law degree distribution

Sparsity and power law

Empirical study

SNAP dataset [1]	# of vertices	# of edges
Ask Ubuntu	159,316	964,437
UCI social network	1,899	20,296
:	:	:

Ask Ubuntu

UCI social network

dense

Sparse

Vertex exchangeable dense

Sparse

Vertex exchangeable Preferential attachment

dense

Sparse

Vertex exchangeable Edge exchangeable

Pitman Yor

Preferential attachment

Edge exchangeable models [2], [3]

Factorizable ("rank one") paintbox representation

Factorizable ("rank one") paintbox representation

Sequence of edges: ((3,6),(1,5),(1,7))

Paintbox representation

Consequences for edge exchangeable models:

- ▶ Rate of vertex arrival gets slower and slower
 ⇒ sublinear sparsity: #vertices = o(#edges)
- ► Edges pile up \Rightarrow linear scaling of degrees: $d_{j,n} = \Theta(n)$

Beta Neutral-to-the-left Model [4]

New vertex

- 1. Generate arrival times $1 = T_1 < T_2 < T_3 < \dots$ in any way.
- 2. Generate ends of edges sequentially:

Is the next arrival time equal to n + 1? $\mathbb{P}[\to j] \propto \deg_{i,n} - \alpha$

Sequence of paintboxes representation

Sampling and inference

Why a paper on sampling and inference for BNTL models?

Sampling and inference

Why a paper on sampling and inference for BNTL models?

- ► Inference is notoriously difficult for *non-exchangeable* structures
- ▶ Need to identify *exchangeable substructures*

Exchangeable substructure

Gibbs structure

The joint probability has Gibbs structure due to left-neutrality

$$P(\mathsf{graph}|\mathbf{T}) = \prod_{j=1}^K P(\mathsf{choose}\; j\; d_j - 1 \; \mathsf{times} \; \mathsf{out} \; \mathsf{of} \; n - T_j \; \mathsf{trials} \;)$$

- ightharpoonup K = # vertices
- ▶ n = #edges
- ▶ d_i = degree of vertex j
- ▶ T_j = arrival time of vertex j

Gibbs structure

Explicitly,

$$p(\mathsf{graph}|\mathbf{T}) = \frac{\Gamma(d_1 - \alpha)}{\Gamma(n - K\alpha)} \prod_{j=2}^{K} \frac{\Gamma(T_j - j\alpha)\Gamma(d_j - \alpha)}{\Gamma(T_j - 1 - (j-1)\alpha)\Gamma(1 - \alpha)}$$

- ightharpoonup K = # vertices
- ▶ n = #edges
- ▶ d_i = degree of vertex j
- $ightharpoonup T_j = arrival time of vertex j$

Available data

Observation	Unobserved variables
Entire history	α, ϕ, Ψ
Degrees in arrival order	$lpha, \phi, oldsymbol{\Psi}, oldsymbol{T}$
Snapshot	$lpha, \phi, \mathbf{\Psi}, \mathbf{T}, \sigma$

- $ightharpoonup \alpha = \mathsf{BTNL} \; \mathsf{parameter} \in (-\infty, 1)$
- $lackbox{}\phi = {
 m arrival\ distribution\ parameters}$
- $\mathbf{\Psi}$ = latent sociabilities
- ightharpoonup T = arrival times
- $ightharpoonup \sigma = arrival order$

Gibbs sampler

Variable	Gibbs sampling scheme
α	MCMC, e.g. slice sampling
ϕ	Depends on arrival dist. family Λ_ϕ
Ψ	$egin{aligned} \Psi_j graph, oldsymbol{\Psi}_{ackslash} &\sim Beta(d_j-lpha, ar{d}_{j-1}-(j-1)lpha) \ & where \ ar{d}_j &= \sum_{i=1}^j d_j \ & can marginalise out \ oldsymbol{\Psi} \end{aligned}$
Т	Simple update for T_j , can't move past neighbours
σ	Initialise in descending degree order use M-H with adjacent swap proposal $\sigma_j \leftrightarrow \sigma_{j+1}$ fast to compute due to Gibbs structure

Point estimation

If entire history observed, maximum a posterior (or maximum likelihood) estimates for α, ϕ computable

Experiments

- ► Gibbs: parameter recovery
- ► Gibbs: scalability
- ▶ Point estimation with massive graphs

Parameter recovery

- ightharpoonup Simulate 500 edges with fixed lpha
- lacktriangle Arrivals either \mathcal{PYP} or Geom
- ► Observe final snapshot of the graph

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	-2637.0 ± 0.1
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	0.043 ± 0.003	$\textbf{-2382.6}\pm0.2$

Scalability

▶ Simulate with fixed α and Geom(β) arrivals

	100 edges	10000 edges
$\frac{1}{ \hat{\alpha} - \alpha^* }$	0.12 ± 0.01	0.01 ± 0.00
$ \hat{\beta} - \beta^* $	0.02 ± 0.00	0.00 ± 0.00
Effective Sample Size	0.90 ± 0.04	0.75 ± 0.08
Runtime (s)	21 ± 0	2267 ± 2

- ► Runtime linear in #edges
- ▶ Most expensive Gibbs update is for T

MLEs for SNAP datasets

- ► SNAP datasets
- \blacktriangleright Fit point estimates for α, ϕ
- ▶ Fit: coupled \mathcal{PYP} , uncoupled \mathcal{PYP} and Geom(β) arrivals

MLEs for SNAP datasets

Ask Ubuntu

 \blacktriangleright Estimates of \mathcal{PYP} parameters vary significantly between coupled and uncoupled

$$\hat{\theta}, \hat{\alpha} = 18080, 0.25$$

 $\hat{\theta}, \hat{\alpha}, \hat{\tau} = -0.99, -2.54, 0.99$

- ▶ Edge exchangeable models misspecified $(\eta > 2)$
- ightharpoonup Using Geom estimates η well

Conclusion

- ▶ BNTL models are *flexible*
- ▶ BNTL models are tractable

References

- Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [3] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, 2017. In press.
- [4] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.