人工智能之 自動化光學檢測 實務

Yi-Yung Chen

適用影片單元02~單元03

- 簡單線性回歸
- ▶ 多元線性回歸
- 多項式回歸
- ▶ 評估回歸模型的表現

多元線性回歸 vs. 多項式線性回歸

■ 簡單線性回歸 (Simple Linear)

▶ 多元線性回歸 (Multiple Linear)

$$y = b_0 + b_1 \times x_1 + b_2 \times x_2 + b_3 \times x_3 + \dots + b_n \times x_n$$

■ 多項式回歸 (Polynomial Linear)

簡單線性回歸

- $y = w_1 \times x + w_2$
 - ightharpoonup Salary = $w_1 \times Experience + w_2$
 - y = 9450x + 25792, $R^2 = 0.957$ (from Excel)

最小平方和

Error Function

- Mean Absolute Error
 - $Error = \frac{1}{m} \sum_{i=1}^{m} |y \hat{y}|$
- Mean Squared Error

$$Error = \frac{1}{2m} \sum_{i=1}^{m} (y - \hat{y})^2$$

- Question:
 - Which one will offer higher absolute error
 - Which one will offer higher squared error

Gradient Descent

- Gradient of Error Function
 - $w_i \to w_i \alpha \frac{\partial}{\partial w_i} Error$
- Mean Squared Error

- Mean Absolute Error

多元線性回歸

- $y = b_0 + b_1 \times x_1 + b_2 \times x_2 + \dots + b_n \times x_n$
 - 可視為兩個向量的內積
- ▶ 多元線性回歸的條件
 - ► Linearity (線性)
 - Homoscedasticity (等方差性)
 - Multivariate normality (多元常態分佈)
 - Independence of errors (誤差獨立)
 - ► Lack of multicollinearity (無多重共線性)

虛擬變量 (Dummy Variables)

Profit	R&D Spend	Administration	Marketing Spend	State	New York	California
192261.8	165349.2	136897.8	471784.1	New York	1	0
191792.1	162597.7	151377.6	443898.5	California	0	1
191050.4	153441.5	101145.6	407934.5	California	0	1
182902	144372.4	118671.9	383199.6	New York	1	0
166187.9	142107.3	91391.77	366168.4	California	0	1
$y = b_0$	$b_1 \cdot x_1$	$b_2 \cdot x_2$	$b_3 \cdot x_3$		$b_4 \cdot D_1$	$\underline{D_2} = 1 - \underline{D_1}$

$$y = b_0 + b_1 \times x_1 + b_2 \times x_2 + b_3 \times x_3 + b_4 \times x_4$$

Building a Model

- All-in
 - Preparing for Backward Elimination
- Backward Elimination (反向淘汰)
- ► Forward Selection (順向選擇)
- Bidirectional Elimination (雙向淘汰) _
- Score Comparison (訊息量比較)

= Stepwise Regression (逐步回歸)

Backward Elimination (反向淘汰)

- Step 1: Select a significance level to stay in the model
 - ► E.g. SL = 0.05
- Step 2: Fit the full model with all possible predictors
- Step 3: Consider the predictor with the highest P-value
 - If P > SL, to go Step 4, otherwise go to **FIN** (your model is ready)
- Step 4: Remove the predictor
- ► Step 5: Fit model without this variable

Forward Selection (順向選擇)

- Step 1: Select a significance level to enter the model
 - E.g. SL = 0.05
- Step 2: Fit all simple regression models $y \sim x_n$
 - Select the one with the lowest P-value
- Step 3: Keep this variable and fit all possible models with one extra predictor added to the one(s) you already have
- Step 4: Consider the predictor with the lowest P-value
 - If P < SL, to go Step 3, otherwise go to **FIN** (your model is ready)

Bidirectional Elimination (雙向淘汰)

Step 1: Select a significance level to enter and to stay in the model

$$\blacksquare$$
 E.g. $SL_{enter} = 0.05$, $SL_{stay} = 0.05$

Step 2: Perform the next step of Forward Selection

► New variables must have: P < SL_{enter} to enter

Step 3: Perform ALL steps of Backward Elimination

ightharpoonup Old variables must have P < SL_{stay} to stay

Step 4: No new variables can enter, and no old variables can exit

► FIN (your model is ready)

Score Comparison (信息量比較)

- Step 1: Select a criterion of goodness of fit
 - Akaike criterion (AIC)
- Step 2: Construct All Possible Regression Models
 - 2^N-1 total combinations
 - ► E.g. 10 columns means 1,023 models
- ► Step 3: Select the one with the best criterion
 - **►** FIN (your model is ready)

決定係數 R²

- ▶ 決定係數 (coefficient of determination)
 - **因變量**的變異中,可由**自變量**解釋部分所占的比例

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

決定係數的陷阱

▶ 自變量越多越好嗎?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = w_0 + w_1 \times x_1$$

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2$$

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3$$

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 \cdots$$

R² will never decrease

Adjusted R²

如何懲罰過多無用的自變量?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adj
$$R^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

- p: number of regressors
- n: sample size

- 1. p 變大 2. 懲罰係數變大
 - 3. Adj R²變小

感謝聆聽