

10 – Classical Computer Vision for Robotics

Robotics and Computer Vision BPC-PRP

Ing. Petr Šopák Brno University of Technology 2025

"Imagine living without vision – that's how robots experience the world without computer vision."

What will we learn today?

- The Standard Pipeline of Computer Vision
- Camera as a Sensor
- Introduction to Images and Preprocessing
- Segmentations and Feature Description
- From vision to Action

Next Lecture:

Advance Computer Vision – CNN and more

What is Computer Vision?

Definition of the term computer vision, its applications and limitations. Then, a discussion of the standard pipeline.

What is Computer Vision?

- A field of AI that enables machines to "see" and understand visual data
- Tries to mimic the Human vision
- Transforms images or videos into useful information

 The Goal: recognize, interpret, and react to what is seen

^{1.} Xie, E.. "Using Computer Vision to Find the Best Cat Photo". Medium, 2020. [online]. Available: <u>Using Computer Vision to Find the Best Cat Photo | by Emily Xie | TDS Archive | Medium</u>

^{2.} CRM-UAM, "VisionRace". GitHub Repository, 2019. Available: https://github.com/CRM-UAM/VisionRace

Computer Vision - Uses

• Example Uses:

- Autonomous navigation
- Healthcare image processing
- Augument Reality
- OCR
- Quality Inspection
- Barcode and OQ code recognition
- Security systems
- Generative Applications
- 3D Reconstruction
- More ...

Computer Vision - Challenges

Why Computer Vision is hard?

- System sees pixels, not objects
- Sensitive to lighting, angle and occlusion
- Struggles with Generalization
- Requires huge dataset (Labeled)
- Vulnerable to noise
- Intra-class variation
- Image Stitching

What is Perception?

Standard Pipeline of Computer Vision

Example:

Camera as a Sensor

Introduction to how machines capture visual information using cameras. Cover camera types, important parameters, and limitations that affect imagebased processing.

CCD – Charge-Coupled Device

- Photoelectric effect
- Photons are converted into electron-proton pair
- Charge shifters move charge from each pixel one by one to the ADC
- The ADC is typically very precise lower noise, higher dynamic range

CMOS - Complementary Metal-Oxide-Semiconductor

- Every pixel has own photodiode and amplifier
- To get the pixel value we measure the current that the photodiode generates
- Each pixel value can be measured in a different time (subwindowing, rolling shutter)
- Large number of accompanying electronics reduce the sensing space
- Example: Rasberry Pi Camera

CMOS – Complementary Metal-Oxide-Semiconductor

- Every pixel has its own photodiode and amplifier
- To get the pixel value we measure the current that the photodiode generates
- Each pixel value can be measured in a different time (subwindowing, rolling shutter)
- Large number of accompanying electronics reduce the sensing space
- Rasberry Pi Camera
 - RGB CMOS sensor
 - Rolling shutter
 - Bayer mask
 - Demosaicing

Sensor Structure and Pixel-Color Filtration

- Every pixel is a potential well that traps excited electrons till they're read out
- To maximize sensitivity, each pixel has its own micro lens that focuses light
- Color differentiation is achieved through the filtering
- Our eyes are most sensitive to green color, so
 Bayer filters have 2 green filters for every red and blue

CMOS vs CCD

	CCD	CMOS
Price	High	Low
Power con.	High	Low
Quality	High	Low
Noise	Low	High
Dynamic Range	High	Low
Resolution	High	Mid
Sensing Speed	Mid	High
Fill Factor	High	Mid

Other Types of Camera Sensors

- RGB cameras
- Monochrome Cameras
- IR Cameras (NIR or thermal)
- Depth Cameras
- Hyperspectral / Multispectral Cameras
- Line Scan Camera

Image Preprocessing

Understanding what an image is and how we can operate on it — the foundation for understanding image preprocessing.

What is an Image?

18

- An image is 2D array of pixels
- Each pixel stores intensity or color information
- Basic Types of Images:
 - Grayscale Image
 - RGB Image
 - Binary Image
 - HSV / HSL Image
 - Thermal Image
 - And more...

Image Preprocessing

10 – Classical Computer Vision for Robotics

- Raw images are often too noisy, too detailed, or inconsistent
- Preprocessing helps us:
 - Standardize input (size, color format)
 - Enhance relevant information
 - Remove noise and distortions
 - Simplify the image for analysis

Image Preprocessing - examples

Image Segmentation

Dividing the image into meaningful parts — the first step toward understanding structure and content.

Image Segmentation – Finding What Matters

10 – Classical Computer Vision for Robotics

- Segmentation means dividing an image into meaningful parts
- Helps isolate objects, regions, or features
- Simple methods: thresholding, contour detection, region growing
- Advanced: semantic or instance segmentation (deep learning)

Image Segmentation – Sematic and Instance

G - Original Image

H - Semantic segmentation

I - Instance segmentation

J - Panoptic segmentation

Feature Extraction and Description

Identifying and describing visual patterns — the key to recognition and matching

Feature Extraction & Description

- Extracts distinctive information from the image
- Transforms image regions into numerical descriptors
- Types of features:
 - Local: corners, blobs (e.g. ORB, SIFT)
 - Global: color histograms, HOG, shape descriptors
- Used for matching, tracking, recognition

26

What Happens After Description?

FACULTY OF ELECTRICAL department of control

ENGINEERING and instrumentation

AND COMMUNICATION

From understanding to outcome — the final step of vision processing.

Final step – What Happens now?

- The standard computer vision pipeline often ends with:
 - Classification What is it?
 - Identification Who is it? / Which specific object is this?
 - (Verification Is it the same as..?)
 - Matching Is it similar to a known pattern?
 - Localization Where is it in the image/space?

Classification + Localization

Object Detection

CAT

DOG, DOG, CAT

^{1.} NIKISHAEV, A., Shape Context descriptor and fast character recognision. Medium, 2018. [online]. Available: Shape Context descriptor and fast characters recognition | by Andrey Nikishaev | Machine Learning World | Medium 2. PATEL, A., What is Object Detection?. Medium, 2020. [online]. Available: What is Object Detection?. Longitude of the context descriptor and fast characters recognision. | by Andrey Nikishaev | Machine Learning World | Medium 2018. [online]. Available: What is Object Detection?. | by Ashish Patel | ML Research Lab | Medium 2018. [online]. Available: What is Object Detection?. | by Ashish Patel | ML Research Lab | Medium 2018. [online]. Available: What is Object Detection?.

Practical Application: ArUco Marker Detection

Applying the vision pipeline to detect, identify, and locate square binary markers in the real world

What is ArUco Marker

- Black-and-white square designed for easy detection by computer vision systems
- Each marker contains:
 - A black border (used for shape detection)
 - A binary inner grid encoding a unique ID (4x4, 5x5, 6x6 bits)
- Markers are grouped into dictionaries (e.g. DICT_5X5_100)

Advantages:

- Simple and lightweight
- Fast to detect
- Robust to perspective, lighting and partial occlusion
- Provide Object ID, and Precise location and orientation

- Step-By-Step Detection Process:
 - Capture Image
 - Preprocess (convert to grayscale, apply thresholding)
 - Find contures locate square shapes
 - Check corner order make sure it's properly oriented
 - Warp the square to get front-facing view
 - Split the marker into cells read the binary values
 - Compare agains dictionary decode the marker ID
 - (Optional) Estimate pose

ArUco Detection Process - OpenCV example

31

- Step-By-Step Detection Process:
 - Load the input image or camera frame
 - Convert the image to grayscale cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
 - Get the ArUco dictionary auto dictionary = cv::aruco::getPredefinedDictionary(cv::atuco::DICT_4x4_50);
 - **Detect Markers** cv::aruco::detectMarkers(gray, dictionary, corners, ids);
 - Print the detected marker IDs
 - (Optional) Draw markers on the image cv::aruco::drawDetectedMarkers(frame, croners, ids);
 - (Optional) Estimate the pose of each marker cv::aruco::estimatePoseSingleMarkers(corners, markerLength, cameraMatric, distCoeffs, Rvecs, tvecs);

Summary

- Standard Vision Pipeline
 - Sensors (CMOS, CCD, other types)
 - Image Preprocessing
 - Image Segmentation
 - Feature Extraction
 - Final Step
- ArUco marker ID detection and Pose estimation

Summary

- Computer vision its challenges and applications
- Standard Vision Pipeline
 - Sensors (CMOS, CCD, other types)
 - Image Preprocessing
 - Image Segmentation
 - Feature Extraction
 - Final Step
- ArUco marker ID detection and Pose estimation

Summary

- Computer vision its challenges and applications
- Standard Vision Pipeline
 - Sensors (CMOS, CCD, other types)
 - Image Preprocessing
 - Image Segmentation
 - Feature Extraction
 - Final Step
- ArUco marker ID detection and Pose estimation

35

Ing. Petr Šopák

xsopak00@vutbr.cz

Brno University of Technology Faculty of Electrical Engineering and Communication Department of Control and Instrumentation

Robotics and Al Research Group