Homework 4

Madilyn Simons

- 1. Consider Z₄ = 0,1,2,3. We know 0 is not a zero divisor since a zero divisor is a nonzero element by definition. We know that 1 is not a zero because 1x = x for all x and then x must be 0 if 1x = 0. We know that 2 IS a zero divisor because 2 · 2 = 4 = 0. We know that 3 is not a zero divisor because 3 and 4 are relatively prime, meaning any zero element of Z₄ must be a multiple of 4, which equals 0. Therefore, there does exist a ring with one zero divisor.
- 2. First, let us prove that \cong is symmetric. Since $f: R \to S$ is an isomorphism, this means that f is bijective. Let f(r) = s for some $r \in R$ and some $s \in S$. If f is bijective, there exists some function $g: S \to R$ such that g(s) = g(f(r)) = r.

To prove g is injective, let $s, s' \in S$ and $r, r' \in R$ such that $s \neq s'$, $r \neq r'$, f(s) = r, and f(s') = r'. As such, g(s) = g(f(r)) = r and g(s') = g(f(r')) = r'. Since $r \neq r'$, this implies that if $s \neq s'$, then $r \neq r'$ and g must be injective.

Because Im f = S, there is an $r \in R$ for all $s \in S$ such that s = f(r). Because g(s) = g(f(r)) = r, Im g = R and g is surjective.

We can prove that g(s) + g(s') = g(s + s') as such:

$$g(s)+g(s')=g(f(r))+g(f(r'))=r+r'=g(f(r+r'))=g(f(r)+f(r'))=g(s+s')$$

We can prove g(s)g(s') = g(ss') as such:

$$g(s)g(s') = g(f(r))g(f(r')) = rr' = g(f(rr')) = g(f(r)f(r')) = g(ss')$$

Therefore, g is an isomorphism and \cong is symmetric.

Next, we prove that \cong is transitive. If f and g are isomorphisms, then there exists $r \in R$, $s \in S$, and t in T such that f(r) = s and g(s) = t. As such, let $h: R \to T$ be the function such that h(r) = g(f(r)) = g(s) = t.

Let g(s') = t' for some $s' \in S$ and t'inT such that $s \neq s'$ and $t \neq t'$.

We know h is injective because h(r) = g(f(r)) = g(s) = t and h(r') = g(f(r')) = g(s') = t' and $t \neq t'$.

We know h is surjective because the Im f is S and Im g is T. Therefore, for all $t \in T$ there is a solution to h(r) = t.

We prove h(r) + h(r') = h(r + r') as such:

$$h(r) + h(r') = g(f(r)) + g(f(r')) = g(f(r+r')) = h(r+r')$$

We prove h(r)h(r') = h(rr') as such:

$$h(r)h(r') = g(f(r))g(f(r')) = g(f(r)f(r')) = g(f(rr')) = h(rr')$$

Therefore h is an isomorphism and \cong is transitive.

- 3. Assume $\mathbb C$ and $\mathbb R$ are isomorphic and $f:\mathbb C\to\mathbb R$. By the definition of isomorphism, we know that $f(1)=f(1\cdot 1)=f(1)f(1)=f(1)^2$. If $f(1)=f(1)^2$, then f(1) must either be 0 or 1. Assume f(1)=0. Then, for an $c\in\mathbb C$, $f(c)=f(c\cdot 1)=f(c)f(1)=f(c)\cdot 0=0$, and this is a contradiction since isomorphisms are bijective. Therefore, f(1)=1. Again, by the definition of isomorphism, f(-1)=-f(1)=-1. Now let r=f(i). As such, $r^2=f(i)f(i)=f(i^1)=f(-1)=-1$. However, this is a contradiction because there is no $r\in\mathbb R$ such $r^2=-1$. Therefore $\mathbb C$ and $\mathbb R$ are not isomorphic.
- 4. TODO
- 5. Let $f: R \to \mathbb{Q}[\sqrt{2}]$ be the function $f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}) = a + b\sqrt{2}$ such that $a, b \in \mathbb{Q}$.

To prove injection, let $c,d\in\mathbb{Q}$ such that $a\neq c$ and $b\neq d$. Also, assume $f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix})=f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$. As such:

$$f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}) = f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})a + b\sqrt{2} = c + d\sqrt{2}a - c = \sqrt{2}(d-b)\sqrt{2} = (a-c)/(d-b)$$

Since $\sqrt{2}$ is an irrational number and (a-c)/(d-b) is a rational number, this is a contradiction. Thus, f is injective.

We know that f is surjective because Im $f = \mathbb{Q}$.

We can prove
$$f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}) + f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix}) = f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} + \begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$
 as such:
$$f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}) + f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$
$$= (a+bi) + (c+di) = (a+c) + (b+d)i$$
$$= f(\begin{bmatrix} a+c & b+d \\ 2(b+d) & a+c \end{bmatrix})$$
$$= f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} + \begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$
We can prove
$$f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix})f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix}) = f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$
 as such:
$$f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix})f(\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$
$$= (a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$$
$$= f(\begin{bmatrix} ac+2bd & ad+bc \\ 2(ad+bc) & ac+2bd \end{bmatrix}) = f(\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}\begin{bmatrix} c & d \\ 2d & c \end{bmatrix})$$

Therefore, f is an isomorphism and R is isomorphic to $\mathbb{Q}[\sqrt{2}]$.

6. The rings are not isomorphic because $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/35\mathbb{Z}$ is a 170-element set and $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/21\mathbb{Z}$ is an 180-element set and it is not possible to have a surjective function from an 170-element set to an 180-element set.