CS3130 Homework 2

Phillip Janowski (pajmc2@mail.umsl.edu) October 7, 2018

Question 1.

Explain, if
$$3^{n+1}$$
 is: $O(3^n)$; $\Omega(3^n)$; $\Theta(3^n)$.
For $O(3^n)$
 $0 \le 3^{n+1} \le C * 3^n$
 $3^{n+1} = 3 * 3^n = C * 3^n : 3^{n+1} \in O(3^n)$
For $\Omega(3^n)$
 $3^{n+1} \ge C * 3^n$
 $3^{n+1} = 3 * 3^n = C * 3^n : 3^{n+1} \in \Omega(3^n)$
NOT DONE \downarrow
For $\Theta(3^n)$
 $C_1 * 3^n \le 3^{n+1} \le C_2 * 3^n$
 $3^{n+1} = 3 * 3^n = C * 3^n : 3^{n+1} \in \Theta(3^n)$

Question 2.

Explain, if
$$3^{3n}$$
 is: $O(3^n)$; $\Omega(3^n)$; $\Theta(3^n)$. $3^{3n} \notin O(3^n)$, $\in \Omega(3^n)$, $\notin \Theta(3^n)$ 3^{3n} will always grow faster than any $C*3^n$ therefore it will only be in $\Omega(3^n)$ $f(n) \geq C*g(n)$

Question 3.

f(n)	g(n)	О	0	Ω	ω	Θ
8^n	$8^{n/2}$	No	No	Yes	Yes	No
$\sqrt{n^k}$ (k being an even integer)	2^n	Yes	Yes	No	Yes	No
$\log(n^n)$	ln(n!)					

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} C \neq 0 & f(n) \in \Theta(g(n)) \leftrightarrow g(n) \in \Theta(f(n)) \\ 0 & f(n) \in o(g(n)) \to f(n) \in O(g(n)) \\ \infty & f(n) \in \omega(g(n)) \to f(n) \in \Omega(g(n)) \end{cases}$$

$$\begin{array}{l} f(n) \in \omega(g(n)) \leftrightarrow f(n) \in o(g(n)) \\ \lim_{x \to \infty} \frac{8^x}{8^{x/2}} \to \lim_{x \to \infty} 8^{x/2} = \infty : : 8^n \in \Omega(8^{x/2}), \in \omega(8^{n/2}) \\ \lim_{x \to \infty} \frac{\sqrt{x^k}}{2^x} \\ \sqrt{1x^k} \text{ results in a polynomial function and } 2^n \text{ is exponential} \\ \therefore \lim_{x \to \infty} \frac{\sqrt{x^k}}{2^x} = 0 \text{ and is } o(g(n)), \omega(g(n)) \text{ and } O(g(n)) \end{array}$$

Question 4.

$$\begin{split} T(n) &= 2T(n-1) + 1; T(1) = 5. \\ T(n) &= 2T(n-1) + 1 = 2(2T(n-2)) + 1 = 2^2T(n-2) + 2 + 1 \\ &= 2^3T(T(n-3) + 2^2 + 2 + 1 = 2^4T(n-4) + 2^3 + 2^2 + 2 + 1 \\ &= \dots = 2^{n-1}T(1) + 2^{n-2} + 2^{n-3} + \dots + 2 + 1 \\ &= 2^{n-1} * 5 + (1 + 2 + 2^2 + \dots + 2^{n-2}) = 2^{n-1} * 5 + \frac{2^{n-1}-1}{1} \\ &= 6 * 2^{n-1} - 1 \end{split}$$

Question 5.

For the recurrence
$$T(n) = \begin{cases} 1 & n=1 \\ 3T(\frac{n}{3}+1 & n>1 \end{cases}$$
 where $= 3^k$