# Algorithm Library $^*$

# nickluo

# November 9, 2021

| C   | ontents                                                         | 8.6 2-SAT                                         |
|-----|-----------------------------------------------------------------|---------------------------------------------------|
| 1   | vimre 1                                                         | 8.7 有根树同构                                         |
|     |                                                                 | 8.9 MCS 求 PEO                                     |
| 2   | $\mathbf{Z}$                                                    | 8.10 最大团                                          |
|     | 吃扣粉 <b>片</b> 世界                                                 | 8.11 最小树形图 1                                      |
| 3   | 随机数生成器 2                                                        | 8.12 二分图最大权匹配 (KM) 1                              |
| 4   | 数列与计数 2                                                         | 8.13 一般图最大权匹配 1                                   |
| •   | 4.1 多项式板子                                                       | 8.14 无向图最小割                                       |
|     | 4.2 牛顿迭代                                                        | a distribution                                    |
|     | 4.3 MTT                                                         | 9 字符串 2                                           |
|     | 4.4 FWT                                                         | 9.1 后缀树组 2                                        |
|     | 4.5 BM 5                                                        | 9.2 后缀自动机                                         |
|     | 4.6 numbers 6                                                   | 9.3 Manacher                                      |
|     | 4.6.1 伯努利数6                                                     | 9.4 回义自幼代                                         |
|     | 4.6.2 第一类斯特林数 7                                                 | 9.6 Z Function                                    |
|     | 4.6.3 第二类斯特林数 7                                                 | 5.0 Z Function                                    |
|     | 4.6.4 斯特林反演                                                     | 10 计算几何 2                                         |
|     | 4.6.5 Burnside 引理 7                                             | 10.1 基本操作                                         |
|     | 4.7 树的计数 7                                                      | 10.2 半平面交                                         |
| 5   | 数论 8                                                            | 10.3 凸包操作                                         |
| J   | 5.1 判素数 (miller-rabin)                                          | 10.4 动态维护凸壳 2                                     |
|     | 5.2 二次剩余 (Cipolla)                                              | 11 #/k                                            |
|     | 5.3 杜教筛                                                         | 11 其他 2                                           |
|     | 5.4 min_25                                                      | 11.1 网络流 (ISAP)                                   |
|     | 5.5 直线下整点个数 9                                                   | 11.2 M给机 (HLPP)                                   |
|     | 5.6 定理                                                          | 11.3 取小页用机                                        |
|     | 5.6.1 扩展欧拉定理 10                                                 | 11.5 Simpson 积分                                   |
|     | 5.6.2 卢卡斯定理 10                                                  | 11.6 线性规划                                         |
|     | 5.6.3 威尔逊定理 10                                                  | 11.7 积分表                                          |
|     | AN IN THE PINCE                                                 | 11.8 Dreadnought                                  |
| 6   | 线性代数<br>10                                                      | 11.8.1 弦图                                         |
|     | 6.1 线性基                                                         | 11.8.2 五边形数 3                                     |
|     | 6.2 矩阵求逆                                                        | 11.8.3 重心                                         |
|     | 6.3 矩阵特征多项式                                                     | 11.8.4 三角公式                                       |
| 7   | 数据结构 11                                                         | 11.9 cheat.pdf                                    |
|     | 7.1 左偏树                                                         |                                                   |
|     | 7.2 LCT                                                         | 1                                                 |
|     | 7.3 KD-Tree                                                     | 1 vimrc                                           |
|     |                                                                 | filetype plugin indent on                         |
| 8   | 图论 13                                                           | syntax on                                         |
|     | 8.1 点双                                                          | set softtabstop=4 shiftwidth=4 smarttab expandtab |
|     | 8.2 全局平衡二叉树                                                     | set mouse=a backspace=2                           |
|     | 8.3 求欧拉回路                                                       | set number relativenumber ruler                   |
|     | 8.4 SPFA                                                        | <pre>set listchars=trail:\$ list</pre>            |
|     | 8.5 虚树                                                          |                                                   |
|     | The template of these templates is based on the ply-template by | <pre>let mapleader = " "</pre>                    |
| pal | ayutm                                                           | inoremap jk <esc></esc>                           |

```
inoremap bbb {<enter>}<esc>0
                                                          for (unsigned i = 1; i < SZ; ++i)
                                                              ww[i] = ww[i - 1] * mul;
nmap <Leader>go :call GoSh()<CR>
                                                          has_prep = true;
                                                      }
func GoSh()
    exec "w"
                                                      void fft(i64 a[], int lg, bool flag) {
    exec "! ./go.sh a"
                                                          prep();
endfunc
                                                          int n = 1 \ll lg;
                                                          if (flag) reverse(a + 1, a + n);
                                                          static int rev[SZ], rev_lg = -1;
    {f Z}
\mathbf{2}
                                                          if (rev_lg != lg) {
                                                              for (int i = 0; i < n; ++i)
filetype plugin indent on
                                                                   rev[i] = (rev[i >> 1] >> 1) | ((i & 1)
syntax on
                                                          << lg >> 1);
set softtabstop=4 shiftwidth=4 smarttab expandtab
                                                              rev_lg = lg;
set mouse=a backspace=2
                                                          }
set number relativenumber ruler
                                                          for (int i = 0; i < n; ++i)
set listchars=trail:$ list
                                                              if (rev[i] > i) swap(a[i], a[rev[i]]);
                                                          for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
let mapleader = " "
inoremap jk <esc>
                                                              i64 *x = a, *y = a + m, xx, yy; int *w,
inoremap bbb {<enter>}<esc>0
                                                          mul[SZ];
                                                              for (int i = 0, j = 0, step = SZ / 1; i <
nmap <Leader>go :call GoSh()<CR>
                                                          m; ++i, j += step)
func GoSh()
                                                                  mul[i] = ww[j].v;
    exec "w"
                                                              for (int i = 0; i < n; i += 1) {
    exec "! ./go.sh a"
                                                                  w = mul;
endfunc
                                                                   for (int j = 0; j < m; ++j, ++x, ++y,
                                                          ++w) {
    随机数生成器
3
                                                                      xx = *x;
                                                                      yy = *y \% MOD * *w;
                                                                       *x = xx + yy;
                                                                       *y = xx - yy;

¬ rnd(chrono::steady_clock().now().time_since_epoch().count());
                                                                  x += m:
    数列与计数
                                                                   y += m;
     多项式板子
                                                              if (1 >> 15 & 1)
                                                                  for (int i = 0; i < n; ++i)
// SZ: size * 4
                                                                      a[i] %= MOD;
const size_t SZ = 1 << 19;</pre>
using Poly = vector<Z>;
                                                          for (int i = 0; i < n; ++i) {
using i64 = long long;
                                                              a[i] %= MOD;
                                                              if (flag) (a[i] *= inv[n].v) %= MOD;
template <typename InputZ, typename Output>
                                                              if (a[i] < 0) a[i] += MOD;
void sp_copy(InputZ begin, InputZ end, Output
                                                          }
→ output) {
    while (begin != end) *output++ = begin++->v;
                                                      void fft(Z a[], int lg, bool flag) {
                                                          static i64 ta[SZ];
int get_lg(int x) {
                                                          sp_copy(a, a + (1 << lg), ta);</pre>
    return 32 - __builtin_clz(x) - ((x & (-x)) ==
                                                          fft(ta, lg, flag);
   x);
                                                          copy(ta, ta + (1 << lg), a);
}
                                                      }
Z \text{ inv}[SZ + 5], ww[SZ];
                                                      Poly operator += (Poly &f, const Poly &g) {
void prep() {
                                                          if (g.size() > f.size()) f.resize(g.size());
    static bool has_prep = false;
                                                          auto it = f.begin();
    if (has_prep) return;
                                                          auto jt = g.begin();
    inv[0] = inv[1] = 1;
                                                          while (jt != g.end()) *it++ += *jt++;
    for (unsigned i = 2; i \le SZ; ++i)
                                                          return f;
        inv[i] = MOD - MOD / i * inv[MOD % i];
                                                      }
    ww[0] = 1;
                                                      Poly operator + (const Poly &f, const Poly &g) {
    Z \text{ mul} = \text{qpow}(3, (MOD - 1) / SZ);
                                                          Poly ret = f; return ret += g;
```

```
copy(arr, arr + n
                                                                                    , ta);
Poly operator -= (Poly &f, const Poly &g) {
                                                           copy(brr, brr + (n >> 1), tb);
    if (g.size() > f.size()) f.resize(g.size());
                                                           fft(ta, lg, 0);
                                                           fft(tb, lg, 0);
    auto it = f.begin();
    auto jt = g.begin();
                                                           for (int i = 0, _ = 1 << lg; i < _; ++i)
    while (jt != g.end()) *it++ -= *jt++;
                                                               ta[i] = (2 - ta[i] * tb[i]) * tb[i];
    return f;
                                                           fft(ta, lg, 1);
                                                           copy(ta, ta + n, brr);
Poly operator - (const Poly &f, const Poly &g) {
    Poly ret = f; return ret -= g;
                                                      Poly calc_inv(const Poly &f) {
                                                           static Z a[SZ], b[SZ];
Poly operator * (const Poly &f, const Poly &g) {
                                                           int lg = get_lg(f.size());
    u32 n = f.size() + g.size() - 1;
                                                           memset(a, 0, sizeof(Z) << lg);</pre>
    if ((i64) f.size() * g.size() <= 2048) {</pre>
                                                           copy(f.begin(), f.end(), a);
        static u64 ans[SZ];
                                                           calc_inv(a, b, 1 << lg);
        memset(ans, 0, sizeof(u64) * n);
                                                           return Poly(b, b + f.size());
        for (u32 i = 0; i < f.size(); ++i)
            for (u32 j = 0; j < g.size(); ++j)
                                                      Poly operator / (const Poly &f, const Poly &g) {
                if ((ans[i + j] += (u64) f[i].v *
                                                           if (f.size() < g.size()) return Poly();</pre>
                                                           Poly tf = f; reverse(tf.begin(), tf.end());
   g[j].v) >> 62)
                     ans[i + j] %= MOD;
                                                           Poly tg = g; reverse(tg.begin(), tg.end());
                                                           tg.resize(f.size() - g.size() + 1);
        Poly ret(n);
        for (u32 i = 0; i < n; ++i) ret[i] =
                                                           Poly ret = tf * calc_inv(tg);
    ans[i] % MOD;
                                                           ret.resize(f.size() - g.size() + 1);
                                                           reverse(ret.begin(), ret.end());
        return ret;
                                                           return ret;
    Poly ret(f.size() + g.size() - 1);
    static i64 a[SZ], b[SZ];
                                                      Poly& operator /= (Poly &f, const Poly &g) {
    int lg = get_lg(n);
                                                           return f = f / g;
    memset(a, 0, sizeof(i64) << lg);
                                                      }
    memset(b, 0, sizeof(i64) << lg);</pre>
                                                      Poly operator % (const Poly &f, const Poly &g) {
    sp_copy(f.begin(), f.end(), a);
                                                           Poly ret = f - (f / g) * g;
    sp_copy(g.begin(), g.end(), b);
                                                           ret.resize(g.size() - 1);
                                                          return ret;
    fft(a, lg, 0);
    fft(b, lg, 0);
    for (u32 i = 0, _ = 1 << lg; i < _; ++i)
                                                      Poly& operator %= (Poly &f, const Poly &g) {
        (a[i] *= b[i]) %= MOD;
                                                           return f = f % g;
    fft(a, lg, 1);
                                                      }
                                                      Poly calc_der(const Poly &f) {
    copy(a, a + n, ret.begin());
                                                           Poly ret(f.size() - 1);
    return ret;
                                                           for (u32 i = 1; i < f.size(); ++i) ret[i - 1]</pre>
Poly& operator *= (Poly &f, const Poly &g) {
                                                          = f[i] * i;
    return f = f * g;
                                                           return ret;
Poly& operator *= (Poly &f, const Z &x) {
                                                      Poly calc_pri(const Poly &f) {
    for (Z &c : f) c *= x;
                                                           prep();
    return f;
                                                           Poly ret(f.size() + 1);
                                                           for (u32 i = 1; i <= f.size(); ++i) ret[i] =
Poly operator * (const Poly &f, const Z &x) {
                                                       \rightarrow f[i - 1] * inv[i];
    Poly ret = f; return ret *= x;
                                                           return ret;
                                                      }
void calc_inv(Z arr[], Z brr[], int n) {
                                                      Poly calc_ln(const Poly &f) {
    if (n == 1) {
                                                           assert(f[0].v == 1);
        brr[0] = qpow(arr[0], MOD - 2);
                                                          Poly g = calc_der(f) * calc_inv(f);
                                                           g.resize(f.size() - 1);
                                                          return calc_pri(g);
    calc_inv(arr, brr, n >> 1);
                                                      Poly calc_exp(int arr[], int n) {
    int lg = get_lg(n << 1);</pre>
    static Z ta[SZ], tb[SZ];
                                                           if (n == 1) {
    memset(ta, 0, sizeof(Z) << lg);</pre>
                                                               assert(arr[0] == 0);
    memset(tb, 0, sizeof(Z) << lg);</pre>
                                                               return Poly{1};
```

```
}
    Poly f = calc_exp(arr, n >> 1);
    Poly tf = f;
    tf.resize(n);
    Poly a = Poly(arr, arr + n);
    Poly g = f * (Poly{1} - calc_ln(tf) + a);
    g.resize(n);
    return g;
Poly calc_exp(const Poly &f) {
    static int a[SZ];
    int lg = get_lg(f.size());
    memset(a, 0, sizeof(int) << lg);</pre>
    sp_copy(f.begin(), f.end(), a);
    Poly ret = calc_exp(a, 1 << lg);</pre>
    ret.resize(f.size());
    return ret;
Poly operator ^ (const Poly &f, const int &e) {
    u32 trail = 0;
    for (u32 i = 0; i < f.size(); ++i)</pre>
        if (f[i].v) break; else ++trail;
    if ((i64) trail * e >= f.size())
        return Poly(f.size(), 0);
    Z lst = f[trail], inv = qpow(lst, MOD - 2);
    Poly g;
    for (u32 i = trail; i < f.size(); ++i)</pre>
        g.emplace_back(f[i] * inv);
    Poly ret = calc_exp(calc_ln(g) * e) *
   qpow(lst, e);
    Poly t0 = Poly(trail * e, 0);
    ret.insert(ret.begin(), t0.begin(), t0.end());
    ret.resize(f.size());
    return ret;
Poly& operator ^= (Poly &f, const int &e) {
    return f = f ^ e;
```

#### 4.2 牛顿迭代

**问题描述:**给出多项式 G(x), 求解多项式 F(x) 满足:

$$G(F(x)) \equiv 0 \pmod{x^n}$$

答案只需要精确到  $F(x) \mod x^n$  即可。 实现原理:考虑倍增,假设有:

$$G(F_t(x)) \equiv 0 \pmod{x^t}$$

对  $G(F_{t+1}(x))$  在模  $x^{2t}$  意义下进行 Taylor 展开:

$$G(F_{t+1}(x)) \equiv G(F_t(x)) + \frac{G'(F_t(x))}{1!} (F_{t+1}(x) - F_t(x)) \pmod{x^{2t}}$$

那么就有:

$$F_{t+1}(x) \equiv F_t(x) - \frac{G(F_t(x))}{G'(F_t(x))} \pmod{x^{2t}}$$

**注意事项**:G(F(x)) 的常数项系数必然为 0, 这个可以作为 求解的初始条件。

多项式求逆原理:  $\Diamond G(x) = x * A - 1$  (其中 A 是一个多项 式系数),根据牛顿迭代法有:

$$F_{t+1}(x) \equiv F_t(x) - \frac{F_t(x) * A(x) - 1}{A(x)}$$
  
$$\equiv 2F_t(x) - F_t(x)^2 * A(x) \pmod{x^{2t}}$$

#### 注意事项:

- 1. F(x) 的常数项系数必然不为 0,否则没有逆元;
- 2. 复杂度是  $O(n \log n)$  但是常数比较大  $(10^5$  大概需要 0.3
- 3. 传入的两个数组必须不同, 但传入的次数界没有必要是 2 的次幂;

**多项式取指数和对数作用:**给出一个多项式 A(x), 求一个多 项式 F(x) 满足  $e^A(x) - F(x) \equiv 0 \pmod{x^n}$ 。 **原理:**令  $G(x) = \ln x - A$  (其中 A 是一个多项式系数),根

据牛顿迭代法有:

$$F_{t+1}(x) \equiv F_t(x) - F_t(x)(\ln F_t(x) - A(x)) \pmod{x^{2t}}$$

求  $\ln F_t(x)$  可以用先求导再积分的办法, 即:

$$\ln A(x) = \int \frac{F'(x)}{F(x)} \, \mathrm{d}x$$

多项式的求导和积分可以在 O(n) 的时间内完成,因此总复 杂度为  $O(n \log n)$ 。

应用:加速多项式快速幂。

#### 注意事项:

- 1. 进行 log 的多项式必须保证常数项系数为 1, 否则必须 要先求出  $\log a[0]$  是多少;
- 2. 传入的两个数组必须不同, 但传入的次数界没有必要是 2 的次幂;
- 3. 常数比较大,  $10^5$  的数据求指数和对数分别需要 0.37s和 0.85s 左右的时间, 注意这里 memset 几乎不占用时。

# 4.3 MTT

```
// N: size * 4
// MOD
const size_t N = 1 << 18;</pre>
const int MOD = 1E9 + 7;
struct Complex {
    double a, b;
    Complex() {}
    Complex(double a, double b) : a(a), b(b) {}
    Complex operator + (const Complex &c) const {
        return Complex(a + c.a, b + c.b);
    Complex operator - (const Complex &c) const {
        return Complex(a - c.a, b - c.b);
    Complex operator * (const Complex &c) const {
        return Complex(a * c.a - b * c.b, a * c.b
    + b * c.a);
    Complex conj() const {
```

```
Complex dd = (e[i] - e[j].conj()) *
        return Complex(a, -b);
    }
                                                         Complex(0, -.5);
} w[N];
                                                              f[j] = da * dc + da * dd * Complex(0, 1);
void prep() {
                                                              g[j] = db * dc + db * dd * Complex(0, 1);
    const double PI = acos(-1);
    for (int i = 0; i <= N >> 1; ++i) {
                                                          fft(f, lg); fft(g, lg);
        double ang = 2 * i * PI / N;
                                                          for (int i = 0; i < n + m - 1; ++i) {
        w[i] = Complex(cos(ang), sin(ang));
                                                              i64 da = round(f[i].a / tot); da %= MOD;
                                                              i64 db = round(f[i].b / tot); db %= MOD;
    }
}
                                                              i64 dc = round(g[i].a / tot); dc %= MOD;
                                                              i64 dd = round(g[i].b / tot); dd %= MOD;
struct _ {
    _() { prep(); }
                                                              c[i] = (da + ((db + dc) << 15) + (dd <<
                                                          30)) % MOD;
void fft(Complex a[], int lg) {
                                                      }
    int n = 1 \ll lg;
    static int rev[N], rev_lg = -1;
    if (rev_lg != lg) {
                                                      4.4 FWT
        for (int i = 0; i < n; ++i)
                                                      // N: size * 2
            rev[i] = rev[i >> 1] >> 1 | ((i & 1)
                                                      const size_t N = 1 << 17;</pre>
    << lg >> 1);
                                                      void div2(Z &x) {
        rev_lg = lg;
    }
                                                          if (x.v \& 1) x.v += MOD;
                                                          x.v >>= 1;
    for (int i = 0; i < n; ++i)
        if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
                                                      void fwt_and(Z a[], int n, bool rev) {
    for (int m = 1, l = 2; m < n; m <<= 1, l <<=
                                                          for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
   1) {
        static Complex ww[N];
                                                              for (int i = 0; i < n; i += 1)
        for (int i = 0, j = 0, step = \mathbb{N} / 1; i <
                                                                  for (int j = 0; j < m; ++j)
   m; ++i, j += step)
                                                                      if (rev) a[i + j] -= a[i + j + m];
            ww[i] = w[j];
                                                                      else a[i + j] += a[i + j + m];
        Complex *xx = a, *yy = a + m, x, y;
                                                      }
        for (int i = 0, j; i < n; i += 1) {
                                                      void fwt_or(Z a[], int n, bool rev) {
            for (j = 0; j < m; ++j, ++xx, ++yy) {
                                                          for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
                x = *xx; y = *yy * ww[j];
                *xx = x + y;
                                                              for (int i = 0; i < n; i += 1)
                *yy = x - y;
                                                                  for (int j = 0; j < m; ++j)
            }
                                                                      if (rev) a[i + j + m] -= a[i + j];
            xx += m;
                                                                      else a[i + j + m] += a[i + j];
            yy += m;
        }
                                                      void fwt_xor(Z a[], int n, bool rev) {
    }
                                                          for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
}
                                                      → 1)
void mul(int a[], int b[], int c[], int n, int m)
                                                              for (int i = 0; i < n; i += 1)
                                                                  for (int j = 0; j < m; ++j) {
    static Complex d[N], e[N], f[N], g[N];
                                                                      Z xx = a[i + j], yy = a[i + j +
    int lg = 0;
                                                      \hookrightarrow m];
    while ((1 << lg) < n + m) ++ lg;
    int tot = 1 << lg;</pre>
                                                                      a[i + j] = xx + yy;
                                                                      a[i + j + m] = xx - yy;
    for (int i = 0; i < n; ++i)
                                                                      if (rev) {
        d[i] = Complex(a[i] & 32767, a[i] >> 15);
                                                                           div2(a[i + j]);
    for (int i = 0; i < m; ++i)
                                                                           div2(a[i + j + m]);
        e[i] = Complex(b[i] & 32767, b[i] >> 15);
    fft(d, lg); fft(e, lg);
                                                                  }
    for (int i = 0; i < tot; ++i) {
                                                      }
        int j = i ? tot - i : 0;
        Complex da = (d[i] + d[j].conj()) *
   Complex(.5, 0);
                                                      4.5 BM
        Complex db = (d[i] - d[j].conj()) *
                                                      // N: size * 2
    Complex(0, -.5);
                                                      const size_t N = 1E4 + 5;
        Complex dc = (e[i] + e[j].conj()) *
                                                      using Poly = vector<Z>;
    Complex(.5, 0);
```

```
Poly ret(p.size());
namespace Rec {
u64 tmp[N];
                                                               for (size_t i = 0; i < p.size(); ++i)</pre>
void mul(Z a[], Z b[], Z c[], int n, int m) {
                                                                   ret[i] = p[i] * x;
    for (int i = 0; i < n; ++i)
                                                               return ret;
        for (int j = 0; j < m; ++j)
             if ((tmp[i + j] += (u64) a[i].v *
                                                          Poly solve(const Poly &a) {
   b[j].v) >> 62)
                                                               Poly P, R; int cnt = 1;
                                                               for (size_t i = 0; i < a.size(); ++i) {</pre>
                 tmp[i + j] \%= MOD;
    for (int i = 0; i < n + m - 1; ++i) {
                                                                   Poly tmp = P; tmp.insert(begin(tmp), MOD -
        c[i] = tmp[i] % MOD; tmp[i] = 0;
                                                              1);
    }
                                                                   Z delta = 0;
}
                                                                   for (size_t j = 0; j < tmp.size(); ++j)</pre>
void get_mod(Z a[], Z b[], Z c[], int n, int m) {
                                                                        delta += tmp[j] * a[i - j];
    static Z tc[N];
                                                                   if (delta.v) {
    copy(a, a + n, tc);
                                                                       vector<Z> t(cnt);
    Z iv = qpow(b[m - 1], MOD - 2);
                                                                       R.insert(begin(R), begin(t), end(t));
    for (int i = n; i-- >= m; ) {
                                                                       P += R * (MOD - delta);
        Z \text{ mul} = tc[i] * iv;
                                                                       R = tmp * qpow(delta, MOD - 2);
        for (int j = m, k = i; j--; --k)
                                                                       cnt = 0;
             tc[k] -= mul * b[j];
                                                                   } else {
    }
                                                                        ++cnt;
    copy(tc, tc + m - 1, c);
                                                               }
void _solve(Z a[], Z b[], i64 n, int m) {
                                                               for (size_t i = P.size(); i < a.size(); ++i) {</pre>
    if (n < m - 1) {
        b[n] = 1; return;
                                                                   for (size_t j = 0; j < P.size(); ++j)</pre>
                                                                       cur += a[i - 1 - j] * P[j];
    static Z ta[N], tb[N];
                                                                   assert(cur.v == a[i].v);
    if (n & 1) {
        solve(a, b, n - 1, m);
                                                               return P;
                                                          }
        ta[1] = 1;
        mul(b, ta, tb, m, 2);
        get_mod(tb, a, b, m + 1, m);
                                                          int main() {
                                                               vector<Z> p(read());
    } else {
         _{solve(a, b, n >> 1, m)};
                                                               i64 m = read();
        mul(b, b, tb, m, m);
                                                               generate(begin(p), end(p), read);
        get_mod(tb, a, b, (m << 1) - 1, m);
                                                               Poly P = BM::solve(p);
                                                               for (Z x : P) cout << x << ' ';</pre>
                                                               cout << ' \setminus n';
Z solve(const Poly &init, const Poly &a, i64 n) {
                                                               cout << Rec::solve(p, P, m) << ' \ n';
    int m = a.size();
                                                               return 0;
    static Z ta[N], b[N];
                                                          }
    for (int i = 0; i < m; ++i)</pre>
        ta[i] = 0 - a[m - 1 - i];
                                                          4.6 numbers
    ta[m] = 1;
                                                          4.6.1 伯努利数
    _{\text{solve}}(\text{ta, b, n, m + 1});
    Z ans = 0;
                                                          伯努利数满足
    for (int i = 0; i < m; ++i)
        ans += init[i] * b[i];
                                                                     B_0 = 1, \sum_{j=0}^{m} {m+1 \choose j} B_j = 0 \ (m > 0).
    return ans;
}
}
                                                          等式两边同时加上 B_{m+1},并设 n=m-1,得
namespace BM {
                                                                           \sum_{i=0}^{n} \binom{n}{i} = [n=1] + B_n
Poly& operator += (Poly &p, const Poly &q) {
    if (q.size() > p.size()) p.resize(q.size());
    for (size_t i = 0; i < q.size(); ++i)</pre>
                                                          设 \hat{B}(x) = \sum_{i=0}^{\infty} B_i \cdot \frac{x^i}{i!},则
        p[i] += q[i];
    return p;
                                                                     \hat{B}(x)e^x = x + \hat{B}(x) \Rightarrow \hat{B}(x) = \frac{x}{e^x - 1}
Poly operator * (const Poly &p, Z x) {
```

$$0^{k} + 1^{k} + \dots + n^{k}$$

$$= k! [x^{k}] \frac{e^{(n+1)x} - 1}{x} \cdot \hat{B}(x)$$

$$= k! \sum_{i=0}^{k} \frac{B_{i}}{i!} \cdot \frac{(n+1)^{k-i+1}}{(k-i+1)!}$$

$$= \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{i} \cdot (n+1)^{k-i+1}$$

#### 4.6.2 第一类斯特林数

记  $S_1(n,k)$  为将 n 个不同元素分为 k 个环排列的方案数. 由组合意义得,

$$S_1(n,k) = S_1(n-1,k-1) + (n-1)S_1(n-1,k)$$

$$x^{\overline{n}} = \sum_{i=0}^{n} S_1(n,i)x^i$$

$$x^{\underline{n}} = \sum_{i=0}^{n} (-1)^{n-i}S_1(n,i)x^i$$

$$\sum_{i=0}^{n} S_1(n,i)x^i = \prod_{i=0}^{n-1} (x+i)$$

注意最后等式的右半部分,可以使用递增 + 点值平移  $O(n \log n)$  牛顿迭代. 求出第 n 行斯特林数.

#### 4.6.3 第二类斯特林数

记  $S_2(n,k)$  为将 n 个不同元素分至 k 个相同的盒子 (每个盒子至少一个元素) 的方案数. 由组合意义得,

$$S_2(n,k) = S_2(n-1,k-1) + kS_2(n-1,k)$$

$$x^n = \sum_{i=0}^n S_2(n,i)x^i$$

$$S_2(n,k) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n$$

$$\frac{S_2(n,k)}{k!} = \sum_{i=0}^k \frac{i^n}{i!} \cdot \frac{(-1)^{k-i}}{(k-i)!}$$

是一个卷积的形式,可以 FFT 求出某一行第二类斯特林数.

#### 4.6.4 斯特林反演

$$x^{n} = \sum_{i=0}^{n} S_{2}(n, i)x^{i}$$

$$= \sum_{i=0}^{n} S_{2}(n, i) \sum_{j=0}^{i} (-1)^{i-j} S_{1}(i, j)x^{j}$$

$$= \sum_{i=0}^{n} x^{i} \sum_{i=1}^{n} (-1)^{j-i} S_{2}(n, j) S_{1}(j, i)$$

设

$$g_n = \sum_{i=0}^n S_2(n,i) f_i,$$

贝门

$$f_n = \sum_{i=0}^{n} (-1)^{n-i} S_1(n, i) g_i.$$

#### 4.6.5 Burnside 引理

设置换群为 G, 染色集合为 X.

若染色  $x \in X$  在置换 f 的作用下得到染色  $y \in X$ ,则称 x,y 等价. 由置换群的定义,我们可以得到等价类,使得等价类内任意两个染色等价.

设  $X^g(g \in G)$  表示在置换 g 下的不动点,即

$$X^g = \{x \mid x \in X, gx = x\}.$$

则等价类个数

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

例 LOJ 6538 烷基计数,对于一棵有根树,每个节点至多三个儿子,且这些儿子排列同构. 求有多少个 n 个节点的等价类.

考虑其生成函数 f(x). 根节点有 3 个儿子 (儿子可以为空,因为循环同构,我们不需讨论 0,1,2 个儿子的情况),排列的置换群有 6 种,其中 (1,2,3)染色方案数为  $f(x)^3$ , (1,3,2),(2,1,3),(3,2,1)染色方案为  $f(x^2)f(x)$ , (2,3,1),(3,1,2)染色方案为  $f(x^3)$ . 所以

$$f(x) = x \times \frac{f(x)^3 + 3f(x^2)f(x) + 2f(x^3)}{6} + 1.$$

# 4.7 树的计数

1. 有根树计数: n+1 个结点的有根树的个数为

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

其中,

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

2. 无根树计数: 当n为奇数时,n个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$

当 n 为偶数时, n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$$

3. n 个结点的完全图的生成树个数为

$$n^{n-2}$$

4. 矩阵—树定理:图 G 由 n 个结点构成,设 A[G] 为图 G 的邻接矩阵、D[G] 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 C[G] = D[G] - A[G] 的任意一个 n-1 阶主子式的行列式值。

# 数论

```
5.1 判素数 (miller-rabin)
i64 Rand() {
```

```
return (i64) rand() * rand() + rand();
i64 mul_mod(i64 a, i64 b, i64 mod) {
    i64 tmp = (long double) a * b / mod;
    i64 \text{ ret} = a * b - tmp * mod;
    while (ret >= mod) ret -= mod;
    while (ret < 0) ret += mod;</pre>
    return ret;
};
i64 pow_mod(i64 base, i64 e, i64 mod) {
    i64 ret = 1;
    for (; e; e >>= 1) {
        if (e & 1) ret = mul_mod(ret, base, mod);
        base = mul_mod(base, base, mod);
    }
    return ret;
};
const int pri[] {
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29
};
bool isp(i64 num) {
    for (int x : pri) if (num == x) return true;
    i64 a = num - 1;
    int b = 0;
    while (!(a & 1)) {
        a >>= 1; ++b;
    for (int p : pri) {
        i64 x = pow_mod(p, a, num), y = x;
        for (int i = 0; i < b; ++i) {
            y = mul_mod(x, x, num);
            if (y == 1 && x != 1 && x != num - 1)
                return false;
            x = y;
        }
        if (y != 1) return false;
    }
    return true;
vector<i64> fac;
i64 gcd(i64 a, i64 b) {
    return b ? gcd(b, a % b) : a;
void rho(i64 n) {
    if (isp(n)) {
        fac.emplace_back(n);
        return;
    while (true) {
```

```
i64 \times 0 = Rand() \% n, \times 1 = \times 0, d = 1, c =
   Rand() % n, cnt = 0;
        while (d == 1) {
            x0 = (mul_mod(x0, x0, n) + c) % n;
            d = \gcd(abs(x1 - x0), n);
            ++cnt;
            if (!(cnt & (cnt - 1))) x1 = x0; //
   Floyd 倍增判环
        }
        if (d < n) {
            rho(d); rho(n / d); return;
    }
}
5.2 二次剩余(Cipolla)
欧拉判定:
```

$$x^{\frac{p-1}{2}} \equiv \begin{pmatrix} \underline{x} \\ p \end{pmatrix} \pmod{p}$$

```
// input mod
// method: cipolla(int n)
int mod;
namespace Cipolla {
int omega;
int sqr(int x) {
    return (i64) x * x % mod;
struct Number {
    int x, y;
    Number() {}
    Number(int x, int y = 0) : x(x), y(y) {}
    Number operator * (const Number &n) const {
        Number ret;
        ret.x = ((i64) x * n.x + (i64) y * n.y %
    mod * omega) % mod;
        ret.y = ((i64) x * n.y + (i64) y * n.x) %
   mod;
        return ret;
    }
    Number& operator *= (const Number &n) {
        return *this = *this * n;
};
Number npow(Number base, int e) {
    Number ret(1);
    for (; e; e >>= 1) {
        if (e & 1) ret *= base;
        base *= base;
    return ret;
int get_num(int n) {
    while (true) {
        int x = rand();
        int tmp = (sqr(x) - n) \% mod;
        if (tmp < 0) tmp += mod;
        if (qpow(tmp, (mod - 1) / 2) == mod - 1) {
            omega = tmp;
```

return x;

```
}
                                                     Z calc_f(int p, int c) {
    }
                                                         return p ^ c;
}
int cipolla(int n) {
                                                     Z S(i64 n, int x) {
    if (!n) return 0;
    if (qpow(n, (mod - 1) / 2) != 1) {
                                                         // 求 \sum f(1 ~ n 中最小质因子 >= pri[x])
        return -1;
                                                         if (n <= 1 || pri[x] > n) return 0;
    }
                                                         Z ret = g0[get_id(n)] + g1[get_id(n)];
    int a = get_num(n);
                                                         if (x == 1) ret += 2; // #6035 特殊 f(2) = 2 +
    Number res = npow(Number(a, 1), (mod + 1) /
                                                        1 = 3 != 1
   2);
                                                         ret -= pg0[x - 1] + pg1[x - 1];
                                                         // 当前 ret 为 \sum f(1 ~ n 中 >= pri[x] 的质
    assert(!res.y);
    return res.x;
                                                      → 数)
}
                                                         for (int k = x; k \le pcnt; ++k) {
}
                                                             i64 p1 = pri[k], p2 = p1 * pri[k];
                                                             if (p2 > n) break;
5.3 杜教筛
                                                             for (int e = 1; p2 \le n; p2 = (p1 = p2) *
                                                         pri[k], ++e) {
// prep_calc[N]: pre-calculated
                                                                 ret += S(n / p1, k + 1) *
map<i64, i64> mp;
                                                         calc_f(pri[k], e);
i64 calc(i64 n) {
                                                                 ret += calc_f(pri[k], e + 1);
    if (n < N) return pre_calc[n];</pre>
    if (mp.count(n)) return mp[n];
                                                         }
    i64 ret = 1LL * n * (n + 1) / 2; // 这里改成
                                                         return ret;
   (f * q) 的前缀和
    for (i64 1 = 2, r; 1 <= n; 1 = r) {
        r = n / (n / 1) + 1;
                                                     int main() {
        ret -= (r - 1) * calc(n / 1); // 这里 r -
                                                         n = read();
   1 改成 g 在 [1, r] 的和
                                                         lim = sqrt(n + .5);
                                                         prep();
    return mp[n] = ret;
                                                         int cnt = 0;
                                                         for (i64 i = 1, j; i \le n; i = j + 1) {
                                                             i64 t;
                                                             j = n / (t = val[++cnt] = n / i);
5.4 \quad \min \quad 25
                                                             (t \le \lim ? id1[t] : id2[i]) = cnt;
const size_t N = 2E5 + 5; // 2 * sqrt(N)
                                                             t %= MOD;
                                                             g0[cnt] = 1 - Z(t);
i64 n, lim, val[N];
                                                             g1[cnt] = (t - 1) * (t + 2) / 2 % MOD;
int id1[N], id2[N];
bool npr[N]; int pri[N], pcnt; Z pg0[N], pg1[N];
                                                         for (int i = 1; i <= pcnt; ++i) {
Z g0[N], g1[N];
                                                             // 筛掉最小质因子为 pri[i] 的数
                                                             i64 bnd = (i64) pri[i] * pri[i];
void prep() {
                                                             if (bnd > n) break;
    for (int i = 2; i < (int) N; ++i) {
                                                             for (int j = 1, id; val[j] >= bnd; ++j) {
        if (!npr[i]) {
                                                                  id = get_id(val[j] / pri[i]);
            pri[++pcnt] = i;
                                                                  g0[j] = (g0[id] - pg0[i - 1]);
            pg0[pcnt] = pg0[pcnt - 1] - 1;
                                                                  g1[j] -= (g1[id] - pg1[i - 1]) *
            pg1[pcnt] = pg1[pcnt - 1] + i;
                                                         pri[i];
                                                             }
        for (int j = 1, k; j \le pcnt && (k = i *
                                                         }
   pri[j]) < (int) N; ++j) {</pre>
                                                         // q[i] = \sum 1~val[i] 中质数
            npr[k] = true;
                                                         cout << 1 + S(n, 1) << ' \setminus n';
            if (i % pri[j] == 0) break;
                                                         return 0;
        }
                                                     }
    }
}
                                                     5.5 直线下整点个数
int get_id(i64 x) {
                                                     // Quasar
    return x <= lim ? id1[x] : id2[n / x];</pre>
                                                     // calc \sum_{i=0}^{n-1} [(a+bi)/m]
                                                     // n, a, b, m > 0
                                                     LL solve(LL n, LL a, LL b, LL m) {
```

```
if(b == 0)
                                                                     a = vector<vector<Z>>(n, vector<Z>(m));
        return n * (a / m);
                                                                 }
    if(a >= m \mid \mid b >= m)
                                                                 void do_diag(Z x) {
                                                                     for (size_t i = 0; i < n && i < m; ++i)</pre>
         return n * (a / m) + (n - 1) * n / 2 * (b
    / m) + solve(n, a % m, b % m, m);
                                                             \rightarrow a[i][i] = x;
    return solve((a + b * n) / m, (a + b * n) % m,
    m, b);
                                                                 Matrix& operator += (const Matrix &mat) {
}
                                                                     assert(n == mat.n && m == mat.m);
                                                                     for (size_t i = 0; i < n; ++i) for (size_t
                                                                 j = 0; j < m; ++j) a[i][j] += mat.a[i][j];</pre>
5.6 定理
                                                                     return *this;
5.6.1 扩展欧拉定理
                                                                 }
     \int a^{b \bmod \varphi(m)}
                                                                 Matrix operator + (const Matrix &mat) const {
                          (\gcd(a, m) = 1)
                                                                     Matrix ret = *this; return ret += mat;
                          (\gcd(a,m) \neq 1, b < \varphi(m))
                                                     \pmod{m}
       a^{(b \bmod \varphi(m)) + \varphi(m)} \pmod{\gcd(a, m) \neq 1, b \geq \varphi(m)}
                                                                 Matrix operator * (const Matrix &mat) const {
                                                                     assert(m == mat.n);
5.6.2 卢卡斯定理
                                                                     Matrix ret(n, mat.m);
                                                                     for (size_t i = 0; i < n; ++i)</pre>
\forall 质数 p, n, m \in \mathbb{N}^+,
                                                                          for (size_t j = 0; j < mat.m; ++j)</pre>
                                                                               for (size_t k = 0; k < m; ++k)
         \binom{n}{m} \equiv \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \binom{n \bmod p}{m \bmod p} \pmod p
                                                                                   ret.a[i][j] += a[i][k] *
                                                                mat.a[k][j];
                                                                     return ret;
5.6.3 威尔逊定理
                                                                 }
                                                                 Matrix& operator *= (const Z &x) {
对于质数 p, 有 (p-1)! \equiv -1 \pmod{p} (证明 2,3,\ldots,p-2
                                                                     for (size_t i = 0; i < n; ++i) for (size_t
可以逆元两两配对)高斯的扩展:
                                                                 j = 0; j < m; ++j) a[i][j] *= x;
 \prod_{1 \leq k \leq m, \gcd(k,m)=1} k \equiv \begin{cases} -1, & \text{if } m=4, p^{\alpha}, 2p^{\alpha}, \\ 1, & \text{otherwise.} \end{cases}
                                                                     return *this;
                                                \pmod{m}
                                                                 }
                                                                 Matrix operator * (const Z &x) const {
                                                                     Matrix ret = *this; return ret *= x;
                                                                 Matrix& operator *= (const Matrix &mat) {
     线性代数
                                                                return *this = *this * mat; }
                                                                 Matrix get_inv() const {
6.1 线性基
                                                                     assert(n == m);
                                                                     Matrix m = *this, r(n, n); r.do_diag(1);
// N: size
                                                                     for (size_t i = 0; i < n; ++i) {</pre>
const size_t N = 50;
                                                                          int pivot = -1;
u64 base[N];
                                                                          for (size_t j = i; j < n; ++j) if
void add(u64 val) {
                                                            \rightarrow (m.a[j][i].v && !~pivot) pivot = j;
    for (int i = 49; ~i; --i) if (val >> i & 1)
                                                                          assert(~pivot);
         if (!base[i]) {
                                                                          for (size_t j = i; j < n; ++j) {
             for (int j = 0; j < i; ++j) if (val >>
                                                                               swap(m.a[i][j], m.a[pivot][j]);
    j & 1) val ^= base[j];
                                                                               swap(r.a[i][j], r.a[pivot][j]);
             base[i] = val;
                                                                          }
              for (int j = i + 1; j < 50; ++j) if
                                                                          Z \text{ mul} = \text{qpow}(\text{m.a[i][i]}, \text{MOD} - 2);
    (base[j] >> i & 1) base[j] ^= val;
                                                                          for (size_t j = 0; j < n; ++j) { // 矩
             break;
                                                                 阵求逆时切勿从 i 开始枚举
         } else {
                                                                              m.a[i][j] *= mul; r.a[i][j] *=
             val ^= base[i];

    mul;

         }
}
                                                                          for (size_t j = 0; j < n; ++j) {
                                                                               if (j == i) continue;
6.2 矩阵求逆
                                                                               Z mul = m.a[j][i]; if (!mul.v)
struct Matrix {
                                                                 continue;
                                                                               for (size_t k = 0; k < n; ++k) {</pre>
    size_t n, m;
    vector<vector<Z>> a;
                                                                                   m.a[j][k] -= mul * m.a[i][k];
```

r.a[j][k] -= mul \* r.a[i][k];

Matrix() {}

Matrix(size\_t n, size\_t m) : n(n), m(m) {

```
}
                }
                                                              }
                assert(!m.a[j][i].v);
            }
                                                              Z inv = qpow(mat[j][j - 1], MOD - 2);
        }
                                                              for (int k = j + 1; k < n; ++k) {
        for (size_t i = 0; i < n; ++i) {
                                                                  Z u = mat[k][j - 1] * inv;
            for (size_t j = 0; j < n; ++j)
                                                                  for (int p = 0; p < n; ++p) mat[k][p]</pre>
    assert(m.a[i][j].v == (i == j));
                                                          -= u * mat[j][p];
        }
                                                                  for (int p = 0; p < n; ++p) mat[p][j]</pre>
        return r;
                                                          += u * mat[p][k];
                                                              }
};
                                                          }
                                                          vector<Poly> p(1, Poly(1, 1));
Matrix qpow(Matrix base, int e) {
                                                          for (int k = 0; k < n; ++k) {
    Matrix ret(2, 2); ret.do_diag(1);
                                                              Poly po = p.back();
    for (; e; e >>= 1) {
                                                              po.insert(begin(po), 0);
        if (e & 1) ret *= base;
                                                              po -= p.back() * mat[k][k];
        base *= base;
                                                              for (int i = 0; i < k; ++i) {
    }
                                                                  Z mul = mat[i][k];
                                                                  for (int j = i; j < k; ++j) mul *=</pre>
    return ret;
}
                                                          mat[j + 1][j];
                                                                  po -= p[i] * mul;
ostream& operator << (ostream &os, const Matrix
p.emplace_back(po);
    for (size_t i = 0; i < mat.n; ++i) {
        for (size_t j = 0; j < mat.m; ++j) os <<</pre>
                                                          return p.back();
   mat.a[i][j] << ' ';
                                                      }
        os << ' \setminus n';
    }
                                                          数据结构
    return os;
}
                                                            左偏树
                                                      7.1
    矩阵特征多项式
                                                      // N
                                                      struct Node {
// nflsoj 333
                                                          int lc, rc, val, dis;
using Poly = vector<Z>;
                                                          Node() {}
Poly& operator -= (Poly &p, const Poly &q) {
                                                      } t[N];
    if (q.size() > p.size()) p.resize(q.size());
                                                      int arr[N], rt[N];
    for (u32 i = 0; i < q.size(); ++i) p[i] -=
                                                      bool del[N];
  q[i];
                                                      int merge(int x, int y) {
    return p;
                                                          if (!x || !y) return x | y;
                                                          if (arr[y] < arr[x]) swap(x, y);
Poly operator * (const Poly &p, const Z &v) {
                                                          t[x].rc = merge(t[x].rc, y);
    Poly ret(p.size());
                                                          if (t[t[x].lc].dis < t[t[x].rc].dis)</pre>
    for (u32 i = 0; i < p.size(); ++i) ret[i] =</pre>
                                                              swap(t[x].lc, t[x].rc);
   p[i] * v;
                                                          t[x].dis = t[t[x].rc].dis + 1;
    return ret;
                                                          return x;
                                                      }
Poly charac_poly(vector<Poly> mat) {
                                                      7.2 LCT
    int n = (int) mat.size();
    assert(n == (int) mat[0].size());
                                                      // N
    for (int j = 1; j < n; ++j) {
                                                      const size_t N = 1E5 + 5;
        if (!mat[j][j - 1].v) {
                                                      int pa[N], ch[N][2], siz[N], val[N];
            for (int i = j + 1; i < n; ++i) {
                                                      bool tag[N];
                if (mat[i][j - 1].v) {
                                                      void update(int x) {
                    for (int p = 0; p < n; ++p)
                                                          swap(ch[x][0], ch[x][1]);
    swap(mat[i][p], mat[j][p]);
                                                          tag[x] = 1;
                    for (int p = 0; p < n; ++p)
   swap(mat[p][i], mat[p][j]);
                                                      void pushdown(int x) {
                    break;
                                                          if (tag[x]) {
                }
                                                              if (ch[x][0]) update(ch[x][0]);
```

```
if (ch[x][1]) update(ch[x][1]);
                                                      }
        tag[x] = 0;
                                                      7.3
                                                           KD-Tree
}
void pushup(int x) {
    siz[x] = siz[ch[x][0]] + val[x] +
                                                      using P = pair<int, int>;
                                                      #define fi first
    siz[ch[x][1]];
                                                      #define se second
}
                                                      const size_t N = 2E5 + 5;
int getd(int x) {
                                                      struct Node {
    return ch[pa[x]][0] == x ? 0 : ch[pa[x]][1] ==
                                                          int xl, yl, xm, ym, xr, yr;
   x ? 1 : -1;
}
                                                          int lc, rc, pa;
                                                          i64 sum, val, tag;
void rotate(int x) {
                                                          int cnt; bool exist;
    int y = pa[x], z = pa[y], k = getd(x);
                                                          Node() {}
    if (\neg getd(y)) ch[z][getd(y)] = x;
                                                      } t[N];
    pa[x] = z; pa[y] = x;
                                                      int tot;
    ch[y][k] = ch[x][k ^ 1];
                                                      P point[N];
    ch[x][k^1] = y;
                                                      map<P, int> mp;
    if (ch[y][k]) pa[ch[y][k]] = y;
                                                      int build(int 1, int r, bool d = 0, int pa = 0) {
    pushup(y);
                                                          if (1 > r) return 0;
void splay(int x) {
                                                          int x = ++tot;
                                                          t[x].pa = pa;
    static int stk[N];
                                                          int mid = (1 + r) >> 1;
    int y = x, tp = 0;
                                                          nth_element(point + 1, point + mid, point + r
    stk[++tp] = y;

→ + 1,

    while (\neg getd(y)) stk[++tp] = y = pa[y];
                                                                   [&](const P &p, const P &q) {
    while (tp) pushdown(stk[tp--]);
                                                               P a = p, b = q;
    while (~getd(x)) {
                                                               if (d) swap(a.fi, a.se), swap(b.fi, b.se);
        y = pa[x];
                                                               return a < b;
        if (~getd(y))
                                                          });
            rotate(getd(x) ^ getd(y) ? x : y);
                                                          mp[point[mid]] = x;
                                                          t[x].xl = t[x].xm = t[x].xr = point[mid].fi;
    }
                                                          t[x].yl = t[x].ym = t[x].yr = point[mid].se;
    pushup(x);
                                                          if ((t[x].lc = build(1, mid - 1, d ^ 1, x))) {
                                                               int y = t[x].lc;
void access(int x) {
                                                               chkmin(t[x].xl, t[y].xl); chkmax(t[x].xr,
    for (int y = 0; x; x = pa[y = x]) {
        splay(x);
                                                       \rightarrow t[y].xr);
                                                               chkmin(t[x].yl, t[y].yl); chkmax(t[x].yr,
        val[x] += siz[ch[x][1]];
                                                       \rightarrow t[y].yr);
        ch[x][1] = y;
        val[x] -= siz[ch[x][1]];
                                                          if ((t[x].rc = build(mid + 1, r, d ^ 1, x))) {
        pushup(x);
                                                               int y = t[x].rc;
    }
                                                               chkmin(t[x].xl, t[y].xl); chkmax(t[x].xr,
}
void makeroot(int x) {
                                                          t[y].xr);
                                                               chkmin(t[x].yl, t[y].yl); chkmax(t[x].yr,
    access(x);
                                                          t[y].yr);
    splay(x);
    update(x);
                                                          return x;
void link(int x, int y) {
                                                      void pushup(int x) {
    makeroot(x);
                                                          t[x].sum = t[t[x].lc].sum + t[t[x].rc].sum;
    access(y); splay(y);
    pa[x] = y;
                                                          if (t[x].exist) t[x].sum += t[x].val;
    val[y] += siz[x];
                                                      void update(int x, i64 v) {
    pushup(y);
                                                          t[x].sum += v * t[x].cnt;
                                                          t[x].val += v;
i64 split(int x, int y) {
                                                          t[x].tag += v;
    makeroot(y);
    access(x); splay(x);
                                                      void pushdown(int x) {
    // x \rightarrow y is now a link from the root
    return (i64) (siz[x] - siz[y]) * siz[y];
                                                          if (t[x].tag) {
```

```
if (t[x].lc) update(t[x].lc, t[x].tag);
                                                          for (int v: g[u]) {
        if (t[x].rc) update(t[x].rc, t[x].tag);
                                                               if (!dfn[v]) {
        t[x].tag = 0;
                                                                   dfs1(v, u); ++child;
    }
                                                                   low[u] = min(low[u], low[v]);
}
                                                                   if (low[v] >= dfn[u]) {
void link_pd(int x) {
                                                                       cut[u] = true;
    static int stk[N];
                                                                       ++cc;
    int tp = 0;
                                                                       do bcc[cc].emplace_back(stk[tp]);
    for (; x; x = t[x].pa) stk[++tp] = x;
                                                                       while (stk[tp--] != v);
    while (tp) pushdown(stk[tp--]);
                                                                       bcc[cc].emplace_back(u);
                                                                   }
void modify(int x, int a, int b, int val) {
                                                               } else
    if (!x || t[x].xr < a || t[x].yr < b) return;
                                                                   low[u] = min(low[u], dfn[v]);
    if (t[x].xl \ge a \&\& t[x].yl \ge b) return
\rightarrow update(x, val);
                                                          if (!child) {
    pushdown(x);
                                                               cut[u] = true;
    if (t[x].xm \ge a \&\& t[x].ym \ge b) t[x].val +=
                                                               bcc[++cc].emplace_back(u);
                                                      }
   modify(t[x].lc, a, b, val);
    modify(t[x].rc, a, b, val);
    pushup(x);
                                                            全局平衡二叉树
                                                      8.2
void doit(int x, int y, int d) {
                                                      vector<int> g[];
                                                      int siz[], son[], lsiz[];
    int u = mp[\{x, y\}];
                                                      int pa[], ch[][2];
    link_pd(u);
                                                      T val[], sum[];
    i64 e = t[u].val * d;
                                                      void dfs1(int u, int p = 0) {
    t[u].exist ^= 1;
                                                          siz[u] = 1;
    for (; u; u = t[u].pa) {
                                                          for (int v : g[u]) {
        t[u].cnt += d;
                                                               if (v == p) continue;
        t[u].sum += e;
    }
                                                               dfs1(v, u);
                                                               siz[u] += siz[v];
    modify(1, x + 1, y + 1, d);
                                                               if (siz[v] > siz[son[u]]) son[u] = v;
}
                                                          }
void query(int x, int a, int b, i64 &sum, int
                                                      }
void dfs2(int u, int p = 0) {
    if (!x || t[x].xl > a || t[x].yl > b) return;
                                                          for (int v : g[u]) {
    if (t[x].xr <= a && t[x].yr <= b) {</pre>
                                                               if (v == p) continue;
        sum += t[x].sum;
                                                               dfs2(v, u);
        cnt += t[x].cnt;
                                                               if (v == son[u]) continue;
        return;
                                                               lsiz[u] += siz[v];
    }
                                                               // val[v] -> val[u]
    pushdown(x);
     \label{eq:total_sym}  \mbox{if } (\mbox{t[x].ym} <= \mbox{b \&\&} 
                                                          sum[u] = val[u];
   t[x].exist) {
        sum += t[x].val;
                                                      int build(vector<int> &vc, int 1, int r) {
        cnt += 1;
                                                          if (1 > r) return 0;
    }
                                                          int tot = 0;
    query(t[x].lc, a, b, sum, cnt);
                                                          for (int i = 1; i <= r; ++i) tot +=
    query(t[x].rc, a, b, sum, cnt);

    lsiz[vc[i]];

}
                                                          for (int i = 1, sum = 0; i <= r; ++i)
                                                               if ((sum += lsiz[vc[i]]) * 2 >= tot) {
    图论
                                                                   int x = vc[i];
                                                                   if ((ch[x][0] = build(vc, 1, i - 1)))
8.1 点双
                                                          pa[ch[x][0]] = x;
                                                                   if ((ch[x][1] = build(vc, i + 1, r)))
void dfs1(int u, int p = 0) {
                                                          pa[ch[x][1]] = x;
    static int tme = 0, stk[N], tp;
                                                                   return x;
    dfn[u] = low[u] = ++tme;
                                                               }
    stk[++tp] = u;
                                                      }
    int child = 0;
```

```
8.4 SPFA
int build(int u) {
    static bool vis[N];
                                                      // input: N, n - number of vertices
    vector<int> stk;
                                                      // output: dis - distance, return - no negative
    for (int v = u; v; v = son[v]) {
                                                      → loops
        vis[v] = true;
                                                      int dis[N], cnt[N];
        stk.emplace_back(v);
                                                      bool inque[N];
                                                      bool spfa(int n) {
    int x = build(stk, 0, (int) stk.size() - 1);
                                                          memset(dis, 0x3f, sizeof dis);
    for (int v = u; v; v = son[v])
                                                          queue<int> que;
        for (int w : g[v])
                                                          que.emplace(0);
            if (!vis[w]) pa[build(w)] = v;
                                                          dis[0] = 0; inque[0] = true; cnt[0] = 1;
    return x;
                                                          while (!que.empty()) {
}
                                                               int u = que.front(); que.pop();
int rt;
                                                               inque[u] = false;
int build() { rt = build(1); }
                                                              for (auto [v, w] : g[u]) {
void pushup(x) {
                                                                   if (chkmin(dis[v], dis[u] + w) &&
    sum[x] = val[x];
                                                          !inque[v]) {
    if (ch[x][0]) sum[x] = sum[ch[x][0]] + sum[x];
                                                                       que.emplace(v);
    if (ch[x][1]) sum[x] = sum[x] + sum[ch[x][1]];
                                                                       inque[v] = true;
                                                                       if (++cnt[v] > n) return false;
void modify(int x) {
                                                                   }
    int y;
                                                              }
    while ((x = pa[y = x])) {
                                                          }
        if (ch[x][0] != y && ch[x][1] != y)
                                                          return true;
            // del sum[y] \rightarrow val[x]
        pushup(y);
        if (ch[x][0] != y && ch[x][1] != y)
                                                           虚树
                                                      8.5
            // add sum[y] -> val[x]
                                                      // 需要快速求 lca (LCA::get_lca)
    pushup(y);
}
                                                      void add_edge(int u, int v) {
                                                          // 虚树中一条 u -> v 的边
8.3 求欧拉回路
// input: N, k, graph
                                                      void build(vector<int> &vc) {
// output: print_ans (an euler tour whose length
                                                          vc.emplace_back(1);
   is \langle geq k \rangle
                                                          sort(vc.begin(), vc.end(), [](int x, int y) {
                                                              return dfn[x] < dfn[y];</pre>
int k;
                                                          });
bool vis[N];
                                                          vc.erase(unique(vc.begin(), vc.end()),
vector<int> g[N];

  vc.end());
vector<int> ans1, ans2;
                                                          static int stk[N];
void print_ans(const vector<int> &vc) {
                                                          int tp = 1;
    for (int x : vc) cout << x << ' ';</pre>
                                                          stk[tp] = 1;
    exit(0);
                                                          for (unsigned i = vc[0] == 1; i < vc.size();</pre>
                                                          ++i) {
void dfs(int u) {
                                                              int u = vc[i], lca = LCA::get_lca(u,
    vis[u] = true;
                                                          stk[tp]);
    if (ans1.size() >= k) print_ans(ans1);
                                                              while (tp > 1 && dfn[stk[tp - 1]] >=
    for (int v : g[u]) {
                                                          dfn[lca]) {
        if (vis[v]) continue;
                                                                   add_edge(stk[tp - 1], stk[tp]); --tp;
        ans1.emplace_back(u);
        dfs(v);
                                                              if (dfn[lca] < dfn[stk[tp]]) {</pre>
        ans1.pop_back(); ans2.emplace_back(u);
                                                                   add_edge(lca, stk[tp]); --tp;
        if (ans2.size() >= k) {
            reverse(begin(ans2), end(ans2));
                                                              if (!tp || dfn[stk[tp]] < dfn[lca]) {</pre>
            print_ans(ans2);
                                                                   stk[++tp] = lca;
        }
    }
                                                              stk[++tp] = u;
}
                                                          }
```

```
for (; tp > 1; --tp) {
                                                      unsigned long long magic[N];
        add_edge(stk[tp - 1], stk[tp]);
                                                      std::pair<unsigned long long, int> hash[N];
}
                                                      void solve(int root) {
                                                           magic[0] = 1;
                                                           for (int i = 1; i <= n; ++i) {
8.6 2-SAT
                                                               magic[i] = magic[i - 1] * MAGIC;
// Quasar
int stamp, comps, top;
                                                           std::vector<int> queue;
int dfn[N], low[N], comp[N], stack[N];
                                                           queue.push_back(root);
                                                           for (int head = 0; head < (int)queue.size();</pre>
void add(int x, int a, int y, int b) {
                                                           ++head) {
    edge[x << 1 \mid a].push_back(y << 1 \mid b);
                                                               int x = queue[head];
                                                               for (int i = 0; i < (int)son[x].size();</pre>
                                                           ++i) {
void tarjan(int x) {
                                                                   int y = son[x][i];
    dfn[x] = low[x] = ++stamp;
                                                                   queue.push_back(y);
    stack[top++] = x;
    for (int i = 0; i < (int)edge[x].size(); ++i)</pre>
                                                           }
                                                           for (int index = n - 1; index >= 0; --index) {
        int y = edge[x][i];
                                                               int x = queue[index];
        if (!dfn[y]) {
                                                               hash[x] = std::make_pair(0, 0);
            tarjan(y);
            low[x] = std::min(low[x], low[y]);
                                                               std::vector<std::pair<unsigned long long,</pre>
        } else if (!comp[y]) {
                                                           int> > value;
            low[x] = std::min(low[x], dfn[y]);
                                                               for (int i = 0; i < (int)son[x].size();</pre>
                                                           ++i) {
                                                                   int y = son[x][i];
    if (low[x] == dfn[x]) {
                                                                   value.push_back(hash[y]);
        comps++;
                                                               }
        do {
                                                               std::sort(value.begin(), value.end());
            int y = stack[--top];
            comp[y] = comps;
                                                               hash[x].first = hash[x].first * magic[1] +
        } while (stack[top] != x);
                                                          37;
    }
                                                               hash[x].second++;
}
                                                               for (int i = 0; i < (int)value.size();</pre>
                                                          ++i) {
bool solve() {
                                                                   hash[x].first = hash[x].first *
    int counter = n + n + 1;
                                                           magic[value[i].second] + value[i].first;
    stamp = top = comps = 0;
                                                                   hash[x].second += value[i].second;
    std::fill(dfn, dfn + counter, 0);
    std::fill(comp, comp + counter, 0);
                                                               hash[x].first = hash[x].first * magic[1] +
    for (int i = 0; i < counter; ++i) {</pre>
                                                           41:
        if (!dfn[i]) {
                                                               hash[x].second++;
            tarjan(i);
        }
                                                      }
    }
    for (int i = 0; i < n; ++i) {
                                                      8.8 支配树
        if (comp[i << 1] == comp[i << 1 | 1]) {</pre>
                                                       // Dreadnought
            return false;
                                                       vector<int> prec[N], succ[N];
        answer[i] = (comp[i << 1 | 1] < comp[i <<</pre>
                                                      vector<int> ord;
                                                       int stamp, vis[N];
   1]); // DAG 序更大的 SCC 编号更小
                                                       int num[N];
                                                       int fa[N]:
    return true;
                                                       void dfs(int u) {
}
                                                         vis[u] = stamp;
                                                        num[u] = ord.size();
      有根树同构
8.7
                                                         ord.push_back(u);
                                                         for (int i = 0; i < (int)succ[u].size(); ++i) {</pre>
const unsigned long long MAGIC = 4423;
                                                           int v = succ[u][i];
```

```
dom[u] = dom[buf2[u]];
    if (vis[v] != stamp) {
      fa[v] = u;
                                                          }
                                                        }
      dfs(v);
                                                      }
    }
  }
}
                                                           MCS 求 PEO
                                                      8.9
int fs[N], mins[N], dom[N], sem[N];
                                                      // 一个图是弦图当且仅当它有 PEO
int find(int u) {
                                                      // input: N
  if (u != fs[u]) {
                                                      // n: number of vertices
    int v = fs[u];
                                                      // q: edges
    fs[u] = find(fs[u]);
    if (mins[v] != -1 \&\& num[sem[mins[v]]] <
                                                      const size_t N = 1E4 + 5;
  num[sem[mins[u]]]) {
      mins[u] = mins[v];
                                                      int n; vector<int> g[N];
  }
                                                      int label[N], pos[N], peo[N];
  return fs[u];
                                                      vector<int> que[N];
void merge(int u, int v) { fs[u] = v; }
                                                      int main() {
vector<int> buf[N];
                                                          for (int i = 1; i <= n; ++i) {
int buf2[N];
void mark(int source) {
                                                              que[0].emplace_back(i);
  ord.clear();
                                                          int j = 0;
  ++stamp;
                                                          for (int i = n; i >= 1; --i) {
  dfs(source);
                                                              int u;
  for (int i = 0; i < (int)ord.size(); ++i) {</pre>
                                                              while (j \ge 0) {
    int u = ord[i];
                                                                  while (!que[j].empty()) {
    fs[u] = u, mins[u] = -1, buf2[u] = -1;
                                                                      u = que[j].back();
                                                                      if (pos[u]) {
  for (int i = (int)ord.size() - 1; i > 0; --i) {
                                                                           que[j].pop_back();
    int u = ord[i], p = fa[u];
                                                                      } else {
    sem[u] = p;
    for (int j = 0; j < (int)prec[u].size(); ++j)</pre>
                                                                           break;
                                                                      }
      int v = prec[u][j];
                                                                  if (!que[j].empty()) break;
      if (use[v] != stamp) continue;
      if (num[v] > num[u]) {
                                                                  --j;
                                                              }
        find(v); v = sem[mins[v]];
                                                              assert(j >= 0);
                                                              pos[u] = i; peo[i] = u;
      if (num[v] < num[sem[u]]) {</pre>
                                                              for (int v : g[u]) {
        sem[u] = v;
                                                                  if (!pos[v]) {
                                                                      ++label[v];
    }
                                                                       que[label[v]].emplace_back(v);
    buf[sem[u]].push_back(u);
                                                                       if (label[v] > j) j = label[v];
    mins[u] = u;
    merge(u, p);
                                                              }
    while (buf[p].size()) {
                                                          }
      int v = buf[p].back();
                                                      }
      buf[p].pop_back();
      find(v);
      if (sem[v] == sem[mins[v]]) {
                                                             最大团
                                                      8.10
        dom[v] = sem[v];
                                                      // Dreadnought
      } else {
                                                      // Super Fast Maximum Clique
        buf2[v] = mins[v];
                                                      // To Build Graph: Maxclique(Edges, Number of
      }
                                                      → Nodes)
    }
                                                      // To Get Answer: mcqdyn(AnswerNodes Index Array,

→ AnswserLength)

  dom[ord[0]] = ord[0];
                                                      typedef bool BB[N];
  for (int i = 0; i < (int)ord.size(); ++i) {</pre>
                                                      struct Maxclique {
    int u = ord[i];
                                                        const BB* e; int pk, level; const float Tlimit;
    if (~buf2[u]) {
```

```
if((float)S[level].i1 / ++pk < Tlimit)</pre>
 struct Vertex{ int i, d; Vertex(int
                                                           degree_sort(Rp);//diff
\rightarrow i):i(i),d(0){}};
 typedef vector<Vertex> Vertices; typedef
                                                                  color_sort(Rp);
                                                                  S[level].i1++, level++;//diff
   vector<int> ColorClass;
 Vertices V; vector<ColorClass> C; ColorClass
                                                                  expand_dyn(Rp);

→ QMAX, Q;

                                                                  level--;//diff
 static bool desc_degree(const Vertex &vi, const
                                                               else if((int)Q.size() > (int)QMAX.size())
  Vertex &vj){
   return vi.d > vj.d;
                                                           QMAX = Q;
 }
                                                               Q.pop_back();
 void init_colors(Vertices &v){
                                                             }
   const int max_degree = v[0].d;
                                                             else return;
   for(int i = 0; i < (int)v.size(); i++) v[i].d
                                                             R.pop_back();
   = min(i, max_degree) + 1;
                                                         }
 }
 void set_degrees(Vertices &v){
                                                         void mcqdyn(int* maxclique, int &sz){
   for(int i = 0, j; i < (int)v.size(); i++)</pre>
                                                           set_degrees(V); sort(V.begin(), V.end(),
     for(v[i].d = j = 0; j < int(v.size()); j++)</pre>

→ desc_degree); init_colors(V);
                                                           for(int i = 0; i < (int)V.size() + 1; i++)</pre>
       v[i].d += e[v[i].i][v[j].i];
 }
                                                           S[i].i1 = S[i].i2 = 0;
 struct StepCount{ int i1, i2;
                                                           expand_dyn(V); sz = (int)QMAX.size();

    StepCount():i1(0),i2(0){} };

                                                           for(int i = 0; i < (int)QMAX.size(); i++)</pre>
 vector<StepCount> S;
                                                           maxclique[i] = QMAX[i];
 bool cut1(const int pi, const ColorClass &A){
                                                         }
   for(int i = 0; i < (int)A.size(); i++) if</pre>
                                                         void degree_sort(Vertices &R){
  (e[pi][A[i]]) return true;
                                                           set_degrees(R); sort(R.begin(), R.end(),
   return false;
                                                           desc_degree);
 }
                                                         }
 void cut2(const Vertices &A, Vertices &B){
                                                         Maxclique(const BB* conn, const int sz, const
   for(int i = 0; i < (int)A.size() - 1; i++)</pre>
                                                           float tt = 0.025) \
     if(e[A.back().i][A[i].i])
       B.push_back(A[i].i);
                                                           : pk(0), level(1), Tlimit(tt){
 }
 void color_sort(Vertices &R){
                                                           for(int i = 0; i < sz; i++)
   int j = 0, maxno = 1, min_k =
                                                           V.push_back(Vertex(i));
\rightarrow max((int)QMAX.size() - (int)Q.size() + 1, 1);
   C[1].clear(), C[2].clear();
                                                           e = conn, C.resize(sz + 1), S.resize(sz + 1);
   for(int i = 0; i < (int)R.size(); i++) {</pre>
     int pi = R[i].i, k = 1;
                                                          }
     while(cut1(pi, C[k])) k++;
                                                       };
     if(k > maxno) maxno = k, C[maxno +
   1].clear();
                                                              最小树形图
                                                       8.11
     C[k].push_back(pi);
                                                       // oi-wiki
     if(k < min_k) R[j++].i = pi;</pre>
                                                       // tarjan \ dmst - O(n + m \setminus log \ m)
                                                       #define maxn 102
   if(j > 0) R[j - 1].d = 0;
                                                       #define INF Ox3f3f3f3f
   for(int k = min_k; k <= maxno; k++)</pre>
                                                       struct UnionFind {
     for(int i = 0; i < (int)C[k].size(); i++)</pre>
                                                         int fa[maxn << 1];</pre>
       R[j].i = C[k][i], R[j++].d = k;
                                                         UnionFind() { memset(fa, 0, sizeof(fa)); }
 }
                                                         void clear(int n) { memset(fa + 1, 0,
 void expand_dyn(Vertices &R){// diff -> diff

    sizeof(int) * n); }

\rightarrow with no dyn
                                                         int find(int x) { return fa[x] ? fa[x] =
   S[level].i1 = S[level].i1 + S[level - 1].i1 -
                                                          find(fa[x]) : x; }
\rightarrow S[level].i2;//diff
                                                         int operator[](int x) { return find(x); }
   S[level].i2 = S[level - 1].i1;//diff
                                                       };
   while((int)R.size()) {
                                                       struct Edge {
     if((int)Q.size() + R.back().d >
                                                         int u, v, w, w0;
   (int)QMAX.size()){
                                                       }:
       Q.push_back(R.back().i); Vertices Rp;
                                                       struct Heap {
   cut2(R, Rp);
                                                         Edge *e;
       if((int)Rp.size()){
```

```
a = id[ed[a]->u];
  int rk, constant;
                                                            } while (a == b && Q[a]);
 Heap *lch, *rch;
                                                            if (a == b) break;
 Heap(Edge *_e) : e(_e), rk(1), constant(0),
→ lch(nullptr), rch(nullptr) {}
                                                            if (!mark[a]) continue;
 void push() {
                                                            // 对发现的环进行收缩,以及环内的结点重新编号,总
    if (lch) lch->constant += constant;
                                                          权值更新。
    if (rch) rch->constant += constant;
                                                            for (a = b, n++; a != n; a = p) {
    e->w += constant;
                                                              id.fa[a] = fa[a] = n;
    constant = 0;
                                                              if (Q[a]) Q[a]->constant -= ed[a]->w;
 }
                                                              Q[n] = merge(Q[n], Q[a]);
};
                                                              p = id[ed[a]->u];
Heap *merge(Heap *x, Heap *y) {
                                                              nxt[p == n ? b : p] = a;
  if (!x) return y;
  if (!y) return x;
                                                          }
 if (x\rightarrow e\rightarrow w + x\rightarrow constant > y\rightarrow e\rightarrow w +
                                                        }
\rightarrow y->constant) swap(x, y);
 x \rightarrow push();
                                                        i64 expand(int x, int r);
 x->rch = merge(x->rch, y);
                                                        i64 expand_iter(int x) {
 if (!x->lch \mid | x->lch->rk < x->rch->rk)
                                                          i64 r = 0;
\rightarrow swap(x->lch, x->rch);
                                                          for (int u = nxt[x]; u != x; u = nxt[u]) {
  if (x->rch)
                                                            if (ed[u]->w0 >= INF)
   x->rk = x->rch->rk + 1;
                                                              return INF;
  else
    x->rk = 1;
                                                              r += expand(ed[u]->v, u) + ed[u]->w0;
 return x;
                                                          }
                                                          return r;
Edge *extract(Heap *&x) {
 Edge *r = x->e;
                                                        i64 expand(int x, int t) {
  x->push();
                                                          i64 r = 0;
 x = merge(x->lch, x->rch);
                                                          for (; x != t; x = fa[x]) {
  return r;
                                                            r += expand iter(x);
}
                                                            if (r >= INF) return INF;
                                                          }
vector<Edge> in[maxn];
                                                          return r;
int n, m, fa[maxn << 1], nxt[maxn << 1];</pre>
Edge *ed[maxn << 1];</pre>
                                                        void link(int u, int v, int w) {
Heap *Q[maxn << 1];</pre>
                                                        \rightarrow in[v].push_back({u, v, w, w}); }
UnionFind id;
                                                        int main() {
void contract() {
                                                          int rt;
 bool mark[maxn << 1];</pre>
                                                          scanf("%d %d %d", &n, &m, &rt);
  // 将图上的每一个结点与其相连的那些结点进行记录。
                                                          for (int i = 0; i < m; i++) {
 for (int i = 1; i <= n; i++) {</pre>
                                                            int u, v, w;
    queue<Heap *> q;
                                                            scanf("%d %d %d", &u, &v, &w);
    for (int j = 0; j < in[i].size(); j++)</pre>
                                                            link(u, v, w);

¬ q.push(new Heap(&in[i][j]));

                                                          }
    while (q.size() > 1) {
                                                          // 保证强连通
      Heap *u = q.front();
                                                          for (int i = 1; i <= n; i++) link(i > 1 ? i - 1
      q.pop();
                                                        \hookrightarrow : n, i, INF);
      Heap *v = q.front();
                                                          contract();
      q.pop();
                                                          i64 ans = expand(rt, n);
      q.push(merge(u, v));
                                                          if (ans >= INF)
                                                            puts("-1");
    Q[i] = q.front();
                                                            printf("%lld\n", ans);
 mark[1] = true;
                                                          return 0;
 for (int a = 1, b = 1, p; Q[a]; b = a, mark[b] = }
\rightarrow true) {
    //寻找最小入边以及其端点, 保证无环。
    do {
      ed[a] = extract(Q[a]);
```

# 8.12 二分图最大权匹配 (KM)

```
int n;
// n, N 两侧点数
// 需定义 INF
namespace KM {
i64 arr[N][N];
bool visl[N], visr[N];
int matchl[N], matchr[N], matcht[N];
i64 slack[N], expl[N], expr[N];
void change_match(int v) {
    for (; v; swap(v, matchl[matcht[v]])) {
        matchr[v] = matcht[v];
}
void find_path(int s) {
    queue<int> que;
    que.emplace(s);
    visl[s] = true;
    while (true) {
        while (!que.empty()) {
            int 1 = que.front();
            que.pop();
            for (int r = 1; r \le n; ++r) {
                if (visr[r]) continue;
                i64 \text{ gap} = expl[l] + expr[r] -
   arr[1][r];
                if (gap > slack[r]) continue;
                matcht[r] = 1;
                if (gap == 0) {
                    if (!matchr[r]) return
    change_match(r);
                    que.emplace(matchr[r]);
                    visl[matchr[r]] = visr[r] =
    true;
                } else {
                    slack[r] = gap;
            }
        }
        int v = -1;
        for (int r = 1; r \le n; ++r) {
            if (!visr[r] && (!~v || slack[r] <</pre>
   slack[v])) {
                v = r;
            }
        }
        assert(~v);
        i64 delta = slack[v];
        for (int i = 1; i <= n; ++i) {
            if (visl[i]) expl[i] -= delta;
            if (visr[i]) expr[i] += delta; else
   slack[i] -= delta;
        if (!matchr[v]) return change_match(v);
        que.emplace(matchr[v]);
        visl[matchr[v]] = visr[v] = true;
    }
}
i64 km() {
    for (int l = 1; l <= n; ++l) {
```

```
for (int r = 1; r \le n; ++r) {
            expl[1] = max(expl[1], arr[1][r]);
    }
    for (int l = 1; l <= n; ++l) {
        fill(slack + 1, slack + n + 1, INF);
        memset(visl, 0, sizeof(bool) * (n + 1));
        memset(visr, 0, sizeof(bool) * (n + 1));
        memset(matcht, 0, sizeof(int) * (n + 1));
        find_path(1);
    }
    i64 \text{ ans} = 0;
    for (int i = 1; i <= n; ++i) ans +=
    arr[i] [matchl[i]];
    return ans;
}
}
8.13 一般图最大权匹配
// uoj #81 claris
#include<bits/stdc++.h>
#define DIST(e)
\Rightarrow (lab[e.u]+lab[e.v]-g[e.u][e.v].w*2)
using namespace std;
typedef long long 11;
const int N=1023,INF=1e9;
struct Edge{
  int u,v,w;
} g[N][N];
int n,m,n_x,lab[N],match[N],slack[N],st[N],pa[N],

    flower_from[N][N],S[N],vis[N];

vector<int> flower[N];
deque<int> q;
void update slack(int u,int x){
  if(!slack[x]||DIST(g[u][x])<DIST(g[slack[x]][x]_</pre>
   ))slack[x]=u;
}
void set_slack(int x){
  slack[x]=0;
  for(int u=1; u<=n; ++u)</pre>
    if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)update__;
   slack(u,x);
}
void q_push(int x){
  if(x<=n)return q.push_back(x);</pre>
  for(int i=0; i<flower[x].size();</pre>
   i++)q_push(flower[x][i]);
}
void set_st(int x,int b){
  st[x]=b;
  if(x<=n)return;</pre>
  for(int i=0; i<flower[x].size();</pre>
   ++i)set st(flower[x][i],b);
int get_pr(int b,int xr){
 int pr=find(flower[b].begin(),flower[b].end(),x
→ r)-flower[b].begin();
  if(pr%2==1){
    reverse(flower[b].begin()+1,flower[b].end());
```

return (int)flower[b].size()-pr;

```
}
                                                       void expand_blossom(int b){
                                                          for(int i=0; i<flower[b].size(); ++i)</pre>
  else return pr;
}
                                                            set_st(flower[b][i],flower[b][i]);
void set_match(int u,int v){
                                                          int xr=flower_from[b][g[b][pa[b]].u],pr=get_pr(
  match[u]=g[u][v].v;
                                                           b,xr);
  if(u<=n)return;</pre>
                                                         for(int i=0; i<pr; i+=2){</pre>
  Edge e=g[u][v];
                                                            int xs=flower[b][i],xns=flower[b][i+1];
  int xr=flower_from[u][e.u],pr=get_pr(u,xr);
                                                            pa[xs]=g[xns][xs].u;
  for(int i=0; i<pr;</pre>
                                                            S[xs]=1,S[xns]=0;
++i)set_match(flower[u][i],flower[u][i^1]);
                                                            slack[xs]=0,set_slack(xns);
  set_match(xr,v);
                                                            q_push(xns);
                                                         }
  rotate(flower[u].begin(),flower[u].begin()+pr,f_
    lower[u].end());
                                                          S[xr]=1,pa[xr]=pa[b];
                                                          for(int i=pr+1; i<flower[b].size(); ++i){</pre>
void augment(int u,int v){
                                                            int xs=flower[b][i];
  int xnv=st[match[u]];
                                                            S[xs]=-1,set_slack(xs);
  set_match(u,v);
                                                         }
  if(!xnv)return;
                                                         st[b]=0;
                                                       }
  set_match(xnv,st[pa[xnv]]);
  augment(st[pa[xnv]],xnv);
                                                       bool on_found_Edge(const Edge &e){
                                                          int u=st[e.u],v=st[e.v];
int get_lca(int u,int v){
                                                          if(S[v]==-1){
                                                            pa[v]=e.u,S[v]=1;
  static int t=0;
                                                            int nu=st[match[v]];
  for(++t; u||v; swap(u,v)){
    if(u==0)continue;
                                                            slack[v]=slack[nu]=0;
    if(vis[u]==t)return u;
                                                            S[nu]=0,q_push(nu);
                                                         }
    vis[u]=t;
    u=st[match[u]];
                                                         else if(S[v]==0){
    if(u)u=st[pa[u]];
                                                            int lca=get_lca(u,v);
  }
                                                            if(!lca)return augment(u,v),augment(v,u),1;
  return 0;
                                                            else add_blossom(u,lca,v);
}
                                                         }
void add_blossom(int u,int lca,int v){
                                                         return 0;
                                                       }
  int b=n+1;
  while(b \le n_x \& st[b])++b;
                                                       bool matching(){
  if(b>n_x)++n_x;
                                                          fill(S,S+n_x+1,-1),fill(slack,slack+n_x+1,0);
  lab[b]=0,S[b]=0;
                                                          q.clear();
                                                          for(int x=1; x<=n_x; ++x)</pre>
  match[b] = match[lca];
  flower[b].clear();
                                                            if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(_|
  flower[b].push_back(lca);
  for(int x=u,y; x!=lca; x=st[pa[y]])
                                                          if(q.empty())return 0;
    flower[b].push_back(x),flower[b].push_back(y=_
                                                         for(;;){

    st[match[x]]),q_push(y);

                                                            while(q.size()){
  reverse(flower[b].begin()+1,flower[b].end());
                                                              int u=q.front();
  for(int x=v,y; x!=lca; x=st[pa[y]])
                                                              q.pop_front();
    flower[b].push_back(x),flower[b].push_back(y=_
                                                              if(S[st[u]]==1)continue;
    st[match[x]]),q_push(y);
                                                              for(int v=1; v<=n; ++v)
  set_st(b,b);
                                                                if(g[u][v].w>0&&st[u]!=st[v]){
  for(int x=1; x<=n_x; ++x)g[b][x].w=g[x][b].w=0;
                                                                  if(DIST(g[u][v])==0){
  for(int x=1; x<=n; ++x)flower_from[b][x]=0;</pre>
                                                                    if(on_found_Edge(g[u][v]))return 1;
  for(int i=0; i<flower[b].size(); ++i){</pre>
    int xs=flower[b][i];
                                                                  else update_slack(u,st[v]);
    for(int x=1; x<=n_x; ++x)</pre>
                                                                }
                                                            }
   if(g[b][x].w==0||DIST(g[xs][x])<DIST(g[b][x]))
                                                            int d=INF;
        g[b][x]=g[xs][x],g[x][b]=g[x][xs];
                                                            for(int b=n+1; b<=n_x; ++b)</pre>
                                                              if(st[b] == b&&S[b] == 1) d=min(d, lab[b]/2);
    for(int x=1; x<=n; ++x)</pre>
      if(flower_from[xs][x])flower_from[b][x]=xs;
                                                            for(int x=1; x<=n_x; ++x)</pre>
  }
                                                              if(st[x]==x\&\&slack[x]){
  set_slack(b);
                                                                if(S[x]==-1)d=min(d,DIST(g[slack[x]][x]));
```

```
else
    if(S[x]==0)d=min(d,DIST(g[slack[x]][x])/2);
    for(int u=1; u<=n; ++u){</pre>
      if(S[st[u]]==0){
        if(lab[u] <= d) return 0;</pre>
        lab[u]-=d;
      }
      else if(S[st[u]]==1)lab[u]+=d;
    }
    for(int b=n+1; b<=n_x; ++b)</pre>
      if(st[b]==b){
         if(S[st[b]]==0)lab[b]+=d*2;
        else if(S[st[b]]==1)lab[b]-=d*2;
    q.clear();
    for(int x=1; x<=n_x; ++x)</pre>
      if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&DIS_|
    T(g[slack[x]][x])==0)
        if(on_found_Edge(g[slack[x]][x]))return 1;
    for(int b=n+1; b<=n x; ++b)</pre>
      if(st[b] == b&&S[b] == 1&&lab[b] == 0) expand_blos_|
    som(b);
  }
  return 0;
pair<ll,int> weight_blossom(){
  fill(match, match+n+1,0);
  n_x=n;
  int n_matches=0;
  11 tot_weight=0;
  for(int u=0; u<=n;</pre>
++u)st[u]=u,flower[u].clear();
  int w_max=0;
  for(int u=1; u<=n; ++u)</pre>
    for(int v=1; v<=n; ++v){</pre>
      flower_from[u][v]=(u==v?u:0);
      w_{max}=max(w_{max},g[u][v].w);
    }
  for(int u=1; u<=n; ++u)lab[u]=w_max;</pre>
  while(matching())++n_matches;
  for(int u=1; u<=n; ++u)</pre>
    if (match[u] &&match[u] <u)</pre>
      tot_weight+=g[u][match[u]].w;
  return make_pair(tot_weight,n_matches);
}
int main(){
  cin>>n>>m;
  for(int u=1; u<=n; ++u)</pre>
    for(int v=1; v<=n; ++v)</pre>
      g[u][v]=Edge \{u,v,0\};
  for(int i=0,u,v,w; i<m; ++i){</pre>
    cin>>u>>v>>w;
    g[u][v].w=g[v][u].w=w;
  cout<<weight blossom().first<<'\n';
  for(int u=1; u<=n; ++u)cout<<match[u]<<' ';</pre>
}
```

# 8.14 无向图最小割

```
// Quasar
int cost[maxn] [maxn], seq[maxn], len[maxn], n, m, pop, |
bool used[maxn];
void Init(){
  int i,j,a,b,c;
  for(i=0;i<n;i++) for(j=0;j<n;j++) cost[i][j]=0;
  for(i=0;i<m;i++){
    scanf("%d %d %d",&a,&b,&c); cost[a][b]+=c;
    cost[b][a]+=c;
  pop=n; for(i=0;i<n;i++) seq[i]=i;
}
void Work(){
  ans=inf; int i,j,k,l,mm,sum,pk;
  while(pop > 1){
    for(i=1;i<pop;i++) used[seq[i]]=0;</pre>
    used [seq[0]]=1;
    for(i=1;i<pop;i++)</pre>
    len[seq[i]]=cost[seq[0]][seq[i]];
    pk=0; mm=-inf; k=-1;
    for(i=1;i<pop;i++) if(len[seq[i]] > mm){
    mm=len[seq[i]]; k=i; }
    for(i=1;i<pop;i++){</pre>
      used[seq[l=k]]=1;
      if(i==pop-2) pk=k;
      if(i==pop-1) break;
      mm = -inf;
      for(j=1;j < pop;j++) if(!used[seq[j]])
        if((len[seq[j]]+=cost[seq[1]][seq[j]]) >
    mm)
          mm=len[seq[j]], k=j;
    }
    sum=0;
    for(i=0;i<pop;i++) if(i != k)</pre>
    sum+=cost[seq[k]][seq[i]];
    ans=min(ans,sum);
    for(i=0;i<pop;i++)</pre>
      cost[seq[k]][seq[i]]=cost[seq[i]][seq[k]]+= |
    cost[seq[pk]][seq[i]];
    seq[pk]=seq[--pop];
  }
  printf("%d\n",ans);
```

# 9 字符串

#### 9.1 后缀树组

```
// input: n, s
// output: sa, rnk, hei
// method: init(const string@); calc_sa();

-- calc_hei();
struct GetSa {
   int n;
   string s;
   vector<int> sa, rnk, hei;
   GetSa() {}
   void init(const string &_s) {
```

```
bool ed[V];
        s = _s; n = _s.size();
    }
                                                      void add(int po, int c) {
                                                          int p = lst, np = ++tot;
    void calc_sa() {
                                                          s[po] = c;
        sa.resize(n);
        rnk.resize(n);
                                                          len[np] = len[lst] + 1;
        vector<int> x(n), y(n);
                                                          pos[np] = po;
        for (int i = 0; i < n; ++i) x[i] = s[i];
                                                          ed[np] = true;
                                                          for (; p && !ch[p][c]; p = par[p])
        int tot = *max_element(ALL(x)) + 1;
        vector<int> cnt(tot);
                                                              ch[p][c] = np;
        for (int i = 0; i < n; ++i) ++cnt[x[i]];
                                                          if (p) {
        partial_sum(ALL(cnt), begin(cnt));
                                                              int q = ch[p][c];
                                                              if (len[p] + 1 == len[q]) {
        for (int i = 0; i < n; ++i)
                                                                  par[np] = q;
            sa[--cnt[x[i]]] = i;
        for (int 1 = 1; ; 1 <<= 1) {
                                                              } else {
            vector<int> cnt(tot);
                                                                  int nq = ++tot;
                                                                  len[nq] = len[p] + 1;
            int p = n;
            for (int i = n - 1; i < n; ++i) y[--p]
                                                                  par[nq] = par[q];
   = i;
                                                                  pos[nq] = pos[q];
            for (int i = 0; i < n; ++i)
                                                                  memcpy(ch[nq], ch[q], sizeof ch[q]);
                                                                  for (; p && ch[p][c] == q; p = par[p])
                if (sa[i] >= 1) y[--p] = sa[i] -
   1;
                                                                       ch[p][c] = nq;
            for (int i = 0; i < n; ++i)
                                                                  par[q] = par[np] = nq;
                                                              }
   ++cnt[x[y[i]]];
            partial_sum(ALL(cnt), begin(cnt));
                                                          } else {
            for (int i = 0; i < n; ++i)
                                                              par[np] = 1;
                                                          }
                sa[--cnt[x[y[i]]]] = y[i];
            y[sa[0]] = 0;
                                                          lst = np;
            for (int i = 1; i < n; ++i)
                                                      int fch[V][AL], cnt;
                y[sa[i]] = y[sa[i-1]] +
                    (x[sa[i-1]] < x[sa[i]] | |
                                                      void dfs(int u = 1) {
    (sa[i]+l < n && (sa[i-1]+l >= n | |
                                                          if (!u) return;
  x[sa[i-1]+l] < x[sa[i]+l]));
                                                          if (ed[u]) {
            tot = y[sa.back()] + 1;
                                                              ++cnt;
            x.swap(y);
                                                              sa[cnt] = pos[u];
            if (tot == n) break;
                                                              rnk[pos[u]] = cnt;
        copy(ALL(x), begin(rnk));
                                                          for (int v : fch[u]) dfs(v);
    }
                                                      }
    void calc_hei() {
                                                      void build() {
        hei.resize(n);
                                                          for (int i = 2; i <= tot; ++i)</pre>
        for (int i = 0, j = 0; i < n; ++i) {
                                                              fch[par[i]][s[pos[i] + len[par[i]]]] = i;
            if (!rnk[i]) continue;
                                                          dfs();
                                                      }
            int ii = sa[rnk[i]-1];
            if (j) --j;
            while (ii+j < n && i+j < n && s[ii+j]
                                                      9.3 Manacher
    == s[i+j]) ++j;
                                                      void manacher(int n, char s[], int f[]) {
            hei[rnk[i]] = j;
                                                          int id = 0, r = 0;
        }
                                                          for (int i = 1; i < n; ++i) {
    }
                                                              f[i] = r > i ? min(f[2 * id - i], r - i) :
};
                                                              while (f[i] \le i \&\& i + f[i] \le n \&\& s[i +
9.2 后缀自动机
                                                         f[i] == s[i - f[i]])
// N: length of string
                                                                  ++f[i];
// AL: alphabet size
                                                              if (i + f[i] > r) \{ id = i; r = i + f[i];
// method: add(), build()
                                                         }
namespace Sam {
                                                          }
const size t V = N << 1;</pre>
                                                      }
const size_t AL = 26;
int ch[V][AL], par[V], len[V], pos[V], tot = 1,
\rightarrow lst = 1, s[N];
```

#### 9.4 回文自动机

```
// N: length of string
// method: prep, add
namespace PAM {
const size_t AL = 26;
int n, s[N];
int tot, lst, ch[N][AL], par[N], len[N], dep[N];
void prep() {
   par[0] = par[1] = 1;
   s[0] = len[1] = -1;
   lst = tot = 1;
int get_link(int x) {
   for (; s[n] != s[n - len[x] - 1]; x = par[x])
   return x;
}
int add(int c) {
    s[++n] = c;
    int p = get_link(lst);
    if (!ch[p][c]) {
        int np = ++tot;
        len[np] = len[p] + 2;
        par[np] = ch[get_link(par[p])][c];
        dep[np] = dep[par[np]] + 1;
        ch[p][c] = np;
   return dep[lst = ch[p][c]];
}
}
9.5 Lyndon 分解
// input: n, s[]
void lyndon() {
    for (int i = 0; i < n; ) {
        int j = i, k = i + 1;
        for (; k < n \&\& s[j] \le s[k]; ++k)
            j = s[j] < s[k] ? i : j + 1;
        while (i <= j) i += k - j; // right pos
    }
   return 0;
}
9.6 Z Function
void z_func(string s, int f[]) {
    int 1 = 0, r = 0;
    for (int i = 1; i < (int) s.size(); ++i) {</pre>
```

f[i] = i < r ? min(r - i, f[i - 1]) : 0;

s[f[i]] == s[i + f[i]]) ++f[i];if (i + f[i] > r) r = (l = i) + f[i];

while (i + f[i] < (int) s.size() &&

}

}

#### 计算几何 10

# 10.1 基本操作

```
// Dreadnought
struct Point {
 Point rotate(const double ang) { // 逆时针旋转
    return Point(cos(ang) * x - sin(ang) * y,
   cos(ang) * y + sin(ang) * x);
 }
 Point turn90() { // 逆时针旋转 90 度
    return Point(-y, x);
};
Point isLL(const Line &11, const Line &12) {
  double s1 = det(12.b - 12.a, 11.a - 12.a),
        s2 = -det(12.b - 12.a, 11.b - 12.a);
 return (l1.a * s2 + l1.b * s1) / (s1 + s2);
bool onSeg(const Line &1, const Point &p) { // 点

→ 在线段上

 return sign(det(p - 1.a, 1.b - 1.a)) == 0 &&
   sign(dot(p - 1.a, p - 1.b)) \le 0;
Point projection(const Line &1, const Point &p) {
→ // 点到直线投影
 return 1.a + (1.b - 1.a) * (dot(p - 1.a, 1.b -
double disToLine(const Line &1, const Point &p) {
 return abs(det(p - 1.a, 1.b - 1.a) / (1.b -
→ 1.a).len());
}
double disToSeg(const Line &1, const Point &p) {
→ // 点到线段距离
 return sign(dot(p - 1.a, 1.b - 1.a)) *

    sign(dot(p - 1.b, 1.a - 1.b)) != 1 ?

    disToLine(1, p) : min((p - 1.a).len(), (p -
   1.b).len());
}
Point symmetryPoint(const Point a, const Point b)
→ { // 点 b 关于点 a 的中心对称点
 return a + a - b;
Point reflection(const Line &1, const Point &p) {
→ // 点关于直线的对称点
 return symmetryPoint(projection(1, p), p);
// 求圆与直线的交点
bool isCL(Circle a, Line 1, Point &p1, Point &p2)
  double x = dot(1.a - a.o, 1.b - 1.a),
        y = (1.b - 1.a).len2(),
        d = x * x - y * ((1.a - a.o).len2() - a.r
\rightarrow * a.r);
 if (sign(d) < 0) return false;</pre>
 d = max(d, 0.0);
 Point p = 1.a - ((1.b - 1.a) * (x / y)), delta =
\rightarrow (l.b - l.a) * (sqrt(d) / y);
```

```
p1 = p + delta, p2 = p - delta;
                                                        Point p = (c1.0 * -c2.r + c2.o * c1.r) / (c1.r)
 return true;
                                                       - c2.r);
                                                        Point p1, p2, q1, q2;
// 求圆与圆的交面积
                                                        if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1,
double areaCC(const Circle &c1, const Circle &c2)
                                                          if (c1.r < c2.r) swap(p1, p2), swap(q1, q2);
 double d = (c1.o - c2.o).len();
                                                          ret.push_back(Line(p1, q1));
  if (sign(d - (c1.r + c2.r)) >= 0) {
                                                          ret.push_back(Line(p2, q2));
   return 0;
                                                      }
 }
  if (sign(d - abs(c1.r - c2.r)) \le 0) {
                                                      return ret;
    double r = min(c1.r, c2.r);
                                                    }
                                                    // 求圆到圆的内共切线, 按关于 c1.o 的顺时针方向返回
    return r * r * PI;
                                                       两条线
  double x = (d * d + c1.r * c1.r - c2.r * c2.r) /
                                                    vector<Line> intanCC(const Circle &c1, const
    (2 * d),

    Gircle &c2) {

         t1 = acos(x / c1.r), t2 = acos((d - x) / c1.r)
                                                      vector<Line> ret;
   c2.r):
                                                      Point p = (c1.0 * c2.r + c2.o * c1.r) / (c1.r + c2.o * c1.r) / (c1.r + c2.o * c1.r)
 return c1.r * c1.r * t1 + c2.r * c2.r * t2 - d *
                                                     \hookrightarrow c2.r);
   c1.r * sin(t1);
                                                      Point p1, p2, q1, q2;
}
                                                      if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1,
// 求圆与圆的交点, 注意调用前要先判定重圆
                                                     → q2)) { // 两圆相切认为没有切线
bool isCC(Circle a, Circle b, Point &p1, Point
                                                        ret.push_back(Line(p1, q1));
ret.push_back(Line(p2, q2));
 double s1 = (a.o - b.o).len();
                                                      }
  if (sign(s1 - a.r - b.r) > 0 || sign(s1 -
                                                      return ret;

→ abs(a.r - b.r)) < 0) return false;</pre>
                                                    }
  double s2 = (a.r * a.r - b.r * b.r) / s1;
                                                    bool contain(vector<Point> polygon, Point p) { //
 double aa = (s1 + s2) * 0.5, bb = (s1 - s2) *
                                                     → 判断点 p 是否被多边形包含,包括落在边界上
\rightarrow 0.5;
                                                      int ret = 0, n = polygon.size();
 Point o = (b.o - a.o) * (aa / (aa + bb)) + a.o;
                                                      for(int i = 0; i < n; ++ i) {
 Point delta = (b.o - a.o).unit().turn90() *
                                                        Point u = polygon[i], v = polygon[(i + 1) %
→ newSqrt(a.r * a.r - aa * aa);
                                                     \hookrightarrow n];
 p1 = o + delta, p2 = o - delta;
                                                        if (onSeg(Line(u, v), p)) return true;
 return true;
                                                        if (sign(u.y - v.y) \le 0) swap(u, v);
                                                        if (sign(p.y - u.y) > 0 \mid \mid sign(p.y - v.y) \le
// 求点到圆的切点, 按关于点的顺时针方向返回两个点
                                                       continue;
bool tanCP(const Circle &c, const Point &p0, Point
                                                        ret += sign(det(p, v, u)) > 0;
}
 double x = (p0 - c.o).len2(), d = x - c.r * c.r;
                                                      return ret & 1;
  if (d < EPS) return false; // 点在圆上认为没有切
                                                    vector<Point> convexCut(const vector<Point>&ps,
 Point p = (p0 - c.o) * (c.r * c.r / x);
                                                     → Line 1) { // 用半平面 (q1,q2) 的逆时针方向去切
 Point delta = ((p0 - c.o) * (-c.r * sqrt(d) /
                                                       凸多边形
\rightarrow x)).turn90();
                                                      vector<Point> qs;
 p1 = c.o + p + delta;
                                                      int n = ps.size();
 p2 = c.o + p - delta;
                                                      for (int i = 0; i < n; ++i) {
 return true;
                                                        Point p1 = ps[i], p2 = ps[(i + 1) \% n];
                                                        int d1 = sign(det(l.a, l.b, p1)), d2 =
// 求圆到圆的外共切线, 按关于 c1.o 的顺时针方向返回
                                                     \rightarrow sign(det(1.a, 1.b, p2));
                                                        if (d1 \ge 0) qs.push_back(p1);
vector<Line> extanCC(const Circle &c1, const
                                                        if (d1 * d2 < 0) qs.push_back(isLL(Line(p1,</pre>
\rightarrow p2), 1));
 vector<Line> ret;
                                                      }
  if (sign(c1.r - c2.r) == 0) {
                                                      return qs;
   Point dir = c2.o - c1.o;
    dir = (dir * (c1.r / dir.len())).turn90();
                                                    vector<Point> convexHull(vector<Point> ps) { // 求
   ret.push_back(Line(c1.o + dir, c2.o + dir));
                                                     → 点集 ps 组成的凸包
   ret.push_back(Line(c1.o - dir, c2.o - dir));
                                                      int n = ps.size(); if (n <= 1) return ps;</pre>
  } else {
                                                      sort(ps.begin(), ps.end());
```

```
vector<Point> qs;
  for (int i = 0; i < n; qs.push_back(ps[i++]))</pre>
                                                    while (q.size() > 2 \&\& !check(q[q.size() - 2],
    while (qs.size() > 1 &&
                                                     q[q.size() - 1], q[0])) q.pop_back();
   sign(det(qs[qs.size()-2],qs.back(),ps[i])) <=</pre>
                                                    while (q.size() > 2 && !check(q[1], q[0],
→ 0) qs.pop_back();
                                                   \rightarrow q[q.size() - 1])) q.pop_front();
 for (int i = n - 2, t = qs.size(); i \ge 0;
                                                    vector<Point> ret;
   qs.push_back(ps[i--]))
                                                    for (int i = 0; i < (int)q.size(); ++i)</pre>

    ret.push_back(intersect(q[i], q[(i + 1) %))

   while ((int)qs.size() > t &&

    sign(det(qs[(int)qs.size()-2],qs.back(),ps[i]))

¬ q.size()]));
return ret;
  qs.pop_back(); return qs;
                                                  }
                                                  10.3 凸包操作
10.2 半平面交
                                                  // Dreadnought
// Dreadnought
struct Point {
                                                     给定凸包, $\log n$ 内完成各种询问, 具体操作有 :
                                                     1. 判定一个点是否在凸包内
  int quad() const { return sign(y) == 1 ||
   (sign(y) == 0 \&\& sign(x) >= 0);
                                                     2. 询问凸包外的点到凸包的两个切点
                                                     3. 询问一个向量关于凸包的切点
};
                                                     4. 询问一条直线和凸包的交点
struct Line {
                                                     inf 为坐标范围,需要定义点类大于号
 bool include(const Point &p) const { return
\rightarrow sign(det(b - a, p - a)) > 0; }
                                                     改成实数只需修改 sign 函数, 以及把 long long 改为
 Line push() const{ // 将半平面向外推 eps
                                                      double 即可
    const double eps = 1e-6;
                                                     构造函数时传入凸包要求无重点,面积非空,以及
   Point delta = (b - a).turn90().norm() * eps;
                                                     pair(x,y) 的最小点放在第一个
    return Line(a - delta, b - delta);
                                                     */
 }
                                                  const int inf = 1000000000;
};
                                                  struct convex
bool sameDir(const Line &10, const Line &11) {
→ return parallel(10, 11) && sign(dot(10.b -
→ 10.a, 11.b - 11.a)) == 1; }
                                                    vector<point> a, upper, lower;
bool operator < (const Point &a, const Point &b) {</pre>
                                                    convex(vector<point> _a) : a(_a) {
  if (a.quad() != b.quad()) {
                                                      n = a.size();
   return a.quad() < b.quad();</pre>
                                                      int ptr = 0;
 } else {
                                                      for(int i = 1; i < n; ++ i) if (a[ptr] < a[i])
    return sign(det(a, b)) > 0;
                                                      ptr = i;
 }
                                                      for(int i = 0; i <= ptr; ++ i)</pre>
                                                   → lower.push_back(a[i]);
bool operator < (const Line &10, const Line &11) {</pre>
                                                      for(int i = ptr; i < n; ++ i)</pre>
  if (sameDir(10, 11)) {
                                                      upper.push_back(a[i]);
   return 11.include(10.a);
                                                      upper.push_back(a[0]);
  } else {
                                                    }
    return (10.b - 10.a) < (11.b - 11.a);
                                                    int sign(long long x) { return x < 0 ? -1 : x >
                                                   → 0; }
                                                    pair<long long, int> get_tangent(vector<point>
bool check(const Line &u, const Line &v, const
                                                   int l = 0, r = (int)convex.size() - 2;
→ }
                                                      for(; 1 + 1 < r; ) {
vector<Point> intersection(vector<Line> &l) {
                                                        int mid = (1 + r) / 2;
  sort(l.begin(), l.end());
                                                        if (sign((convex[mid + 1] -
  deque<Line> q;
                                                     convex[mid]).det(vec)) > 0) r = mid;
 for (int i = 0; i < (int)l.size(); ++i) {</pre>
                                                        else 1 = mid;
    if (i && sameDir(l[i], l[i - 1])) {
                                                      }
     continue;
                                                      return max(make_pair(vec.det(convex[r]), r),
    }
                                                      make_pair(vec.det(convex[0]), 0));
   while (q.size() > 1 && !check(q[q.size() - 2],

¬ q[q.size() - 1], l[i])) q.pop_back();

                                                    void update_tangent(const point &p, int id, int
   while (q.size() > 1 && !check(q[1], q[0],
                                                      &i0, int &i1) {
→ l[i])) q.pop_front();
                                                      if ((a[i0] - p).det(a[id] - p) > 0) i0 = id;
    q.push_back(l[i]);
                                                      if ((a[i1] - p).det(a[id] - p) < 0) i1 = id;
```

```
}
                                                      binary_search((int)lower.size() - 1,
 void binary_search(int 1, int r, point p, int
                                                     (int)lower.size() - 1 + id, p, i0, i1);
binary_search((int)lower.size() - 1 + id,
                                                     (int)lower.size() - 1 + (int)upper.size(), p,
   if (l == r) return;
   update_tangent(p, 1 % n, i0, i1);
                                                     i0, i1);
   int sl = sign((a[1 % n] - p).det(a[(1 + 1) %
                                                      return true;
\rightarrow n] - p));
   for(; 1 + 1 < r; ) {
                                                    // 求凸包上和向量 vec 叉积最大的点, 返回编号, 共线
     int mid = (1 + r) / 2;

→ 的多个切点返回任意一个

     int smid = sign((a[mid % n] - p).det(a[(mid
                                                    int get_tangent(point vec) {
   + 1) % n] - p));
                                                      pair<long long, int> ret = get_tangent(upper,
     if (smid == sl) l = mid;
     else r = mid;
                                                      ret.second = (ret.second + (int)lower.size() -
                                                     1) % n;
   update_tangent(p, r % n, i0, i1);
                                                      ret = max(ret, get_tangent(lower, vec));
 }
                                                      return ret.second;
 int binary_search(point u, point v, int 1, int
→ r) {
                                                    // 求凸包和直线 u,v 的交点,如果无严格相交返回
   int sl = sign((v - u).det(a[l % n] - u));
                                                  \rightarrow false. 如果有则是和 (i, next(i)) 的交点, 两个点
   for(; 1 + 1 < r; ) {
                                                    无序,交在点上不确定返回前后两条线段其中之一
     int mid = (1 + r) / 2;
                                                   bool get_intersection(point u, point v, int &i0,
     int smid = sign((v - u).det(a[mid % n] -
                                                     int &i1) {
  u));
                                                      int p0 = get_tangent(u - v), p1 =
     if (smid == sl) l = mid;
                                                      get_tangent(v - u);
     else r = mid;
                                                      if (sign((v - u).det(a[p0] - u)) * sign((v - u).det(a[p0] - u))
   }
                                                  \rightarrow u).det(a[p1] - u)) < 0) {
   return 1 % n;
                                                       if (p0 > p1) swap(p0, p1);
                                                       i0 = binary_search(u, v, p0, p1);
 // 判定点是否在凸包内, 在边界返回 true
                                                       i1 = binary_search(u, v, p1, p0 + n);
 bool contain(point p) {
                                                       return true;
   if (p.x < lower[0].x \mid\mid p.x > lower.back().x)
                                                      } else {
  return false;
                                                       return false;
   int id = lower_bound(lower.begin(),
  lower.end(), point(p.x, -inf)) -
                                                   }
  lower.begin();
                                                  };
   if (lower[id].x == p.x) {
     if (lower[id].y > p.y) return false;
                                                  10.4 动态维护凸壳
   } else if ((lower[id - 1] - p).det(lower[id] -
  p) < 0) return false;</pre>
                                                  // CodeChef TSUM2
   id = lower_bound(upper.begin(), upper.end(),
                                                  // 动态维护凸壳, 求 $x$ 为横坐标时的最大取值
→ point(p.x, inf), greater<point>()) -
                                                  // 一个直线 y = kx + b 可用平面上的点 (k, b) 表示
  upper.begin();
                                                  // 两个点的斜率,即两条直线交点横坐标的相反数,因此可
   if (upper[id].x == p.x) {
                                                  → 以用两点的斜率衡量某一条直线可否删除
     if (upper[id].y < p.y) return false;</pre>
                                                  // 具体地, 设 l1.k < l2.k < l3.k, l2 可以删除当且仅
   } else if ((upper[id - 1] - p).det(upper[id] -
                                                    当 11 与 12 的交点 > 12 与 13 的交点, 即 (12 -
  p) < 0) return false;</pre>
                                                     11) % (13 - 12) > 0
   return true;
                                                  struct Point {
                                                      i64 x, y;
 // 求点 p 关于凸包的两个切点, 如果在凸包外则有序返
                                                      Point(i64 x = 0, i64 y = 0):
→ 回编号, 共线的多个切点返回任意一个, 否则返回
                                                         x(x), y(y) \{ \}

    false

                                                      Point operator - (const Point &p) const {
 bool get_tangent(point p, int &i0, int &i1) {
                                                         return Point(x - p.x, y - p.y);
   if (contain(p)) return false;
   i0 = i1 = 0;
                                                      i64 operator % (const Point &p) const {
   int id = lower_bound(lower.begin(),
                                                         return x * p.y - y * p.x;
   lower.end(), p) - lower.begin();
                                                      }
   binary_search(0, id, p, i0, i1);
                                                      bool operator < (const Point &p) const {
   binary_search(id, (int)lower.size(), p, i0,
                                                         if (x != p.x) return x < p.x;
  i1);
                                                         return y < p.y;</pre>
   id = lower_bound(upper.begin(), upper.end(),
   p, greater<point>()) - upper.begin();
```

```
};
                                                                       if (!comp(jt->p - kt->p, it->p -
bool comp(const Point &p, const Point &q) { // p's

    jt->p)) {

                                                                           s.erase(jt);
   slope greater than q's
    return p % q < 0;
                                                                       } else {
                                                                           break;
struct Node {
    Point p;
                                                                   } else {
    mutable Point slope;
                                                                       break;
    bool type;
    Node() : type(false) {}
    Node(Point p) : p(p), type(false) {
                                                               while (has_rht(it)) {
    bool operator < (const Node &n) const {</pre>
                                                                   jt = it; ++jt;
        assert(!type);
                                                                   if (has_rht(jt)) {
        if (n.type) {
                                                                       kt = jt; ++kt;
            return comp(slope, n.slope);
                                                                       if (!comp(jt->p - it->p, kt->p -
                                                           jt->p)) {
        } else {
            return p < n.p;</pre>
                                                                           s.erase(jt);
                                                                       } else {
    }
                                                                           break;
};
                                                                       }
                                                                   } else {
struct Hull {
                                                                       break:
    using iter = set<Node>::iterator;
    set<Node> s;
    Hull() {}
                                                               update_border(it);
    bool has_lft(iter it) {
                                                           }
        return it != s.begin();
                                                           i64 query(i64 k) {
                                                               assert(!s.empty());
    bool has_rht(iter it) {
        return ++it != s.end();
                                                               Node n;
    }
                                                               n.slope = Point(1, -k);
    void update_border(iter it) {
                                                               n.type = true;
                                                               auto it = s.lower bound(n);
            if (has_lft(it)) {
                                                               if (it != s.begin()) --it;
                                                               return k * it->p.x + it->p.y;
                iter jt = it; --jt;
                it->slope = it->p - jt->p;
                                                           }
            } else {
                                                      };
                it->slope = Point(1, (i64) 1e14);
                                                             其他
                                                      11
        }
        if (has_rht(it)) {
                                                      11.1 网络流(ISAP)
            iter jt = it; ++jt;
            jt->slope = jt->p - it->p;
                                                      // N: vertices, M: edges
        }
                                                      // method: add_edge(int u, int v, int cap),
    }
                                                       \rightarrow maxflow(int s, int t)
    void add(const Point &p) {
                                                      struct Maxflow {
        iter it = s.emplace(Node(p)).first, jt,
                                                           struct Edge {
   kt:
                                                               int to, cap, nxt;
         if \ (has\_lft(it) \ \&\& \ has\_rht(it)) \ \{ \\
                                                               Edge(int to = 0, int cap = 0, int nxt =
            jt = it; --jt;
                                                       → 0):
            kt = it; ++kt;
                                                                   to(to), cap(cap), nxt(nxt) {}
            if (!comp(it->p - jt->p, kt->p -
                                                           } e[M];
   it->p)) {
                                                           int head[N], cur[N], d[N], f[N], tot = 1;
                s.erase(it);
                                                           int n, s, t;
                return;
                                                           void add_edge(int u, int v, int cap) {
            }
                                                               e[++tot] = Edge(v, cap, head[u]); head[u]
        while (has_lft(it)) {
                                                               e[++tot] = Edge(u, 0, head[v]); head[v]
            jt = it; --jt;
                                                          = tot;
            if (has_lft(jt)) {
                                                           }
                kt = jt; --kt;
```

```
int dfs(int v, int fl = INF) {
                                                              if (h[v] < INF) --cnt[h[v]];</pre>
        if (v == t) return fl;
                                                              h[v] = nh;
                                                              if (h[v] == INF) return;
        int ret = 0;
        for (int &i = cur[v]; i; i = e[i].nxt) {
                                                              ++cnt[h[v]];
            if (e[i].cap && d[e[i].to] + 1 ==
                                                              \max_h = h[v];
   d[v]) {
                                                              vc1[h[v]].emplace_back(v);
                int tmp = dfs(e[i].to, min(fl,
                                                              if (rest[v]) vc2[h[v]].emplace_back(v);
  e[i].cap));
                ret += tmp; fl -= tmp;
                                                          void relabel(int t) {
                e[i].cap -= tmp;
                                                              cnt upd h = \max h = 0;
                e[i ^ 1].cap += tmp;
                                                              fill(h, h + n + 1, INF);
                                                              fill(cnt, cnt + n + 1, 0);
                if (!fl) return ret;
            }
                                                              for (int i = 0; i <= max_h; ++i) {
        }
                                                                  vc1[i].clear();
        cur[v] = head[v];
                                                                  vc2[i].clear();
        if (!(--f[d[v]])) d[s] = n;
                                                              }
        ++f[++d[v]];
                                                              queue<int> que;
        return ret;
                                                              que.emplace(t);
    }
                                                              update_h(t, 0);
    int maxflow(int _s, int _t) {
                                                              while (!que.empty()) {
        n = _n; s = _s; t = _t;
                                                                  int u = que.front(); que.pop();
        memset(cur, 0, sizeof cur);
                                                                  for (int i = head[u]; i; i = e[i].nxt)
        memset(d, 0, sizeof d);
                                                         {
        memset(f, 0, sizeof f);
                                                                      int v = e[i].to;
        f[0] = n;
                                                                      if (h[u] + 1 < h[v] && e[i ^
        int ret = 0;
                                                          1].cap) {
        while (d[s] < n) ret += dfs(s);
                                                                          update_h(v, h[u] + 1);
        return ret;
                                                                          que.emplace(v);
    }
                                                                      }
} flow;
                                                                  }
                                                              }
11.2 网络流 (HLPP)
                                                          }
                                                          void push(int i) {
// N: vertices, M: edges
                                                              int u = e[i ^1].to, v = e[i].to;
// method: add_edge(int u, int v, i64 cap),
                                                              i64 w = min((i64) rest[u], e[i].cap);
\rightarrow maxflow(int s, int t)
                                                              if (!w) return;
struct Maxflow {
                                                              if (!rest[v]) vc2[h[v]].emplace_back(v);
    int n;
                                                              e[i].cap -= w; e[i ^ 1].cap += w;
    struct Edge {
                                                              rest[u] -= w; rest[v] += w;
        int to; i64 cap; int nxt;
        Edge() {}
                                                          void push_flow(int u) {
        Edge(int to, i64 cap, int nxt) : to(to),
                                                              int nh = INF;

    cap(cap), nxt(nxt) {}
                                                              for (int &i = cur[u], j = 0; j < deg[u]; i</pre>
    } e[M << 1];
                                                          = e[i].nxt, ++j) {
    int tot_e, head[N], cur[N], deg[N];
                                                                  if (!i) i = head[u];
    Maxflow() {
                                                                  int v = e[i].to;
        memset(this, 0, sizeof *this);
                                                                  if (e[i].cap) {
        tot_e = 1;
                                                                      if (h[u] == h[v] + 1) {
    }
                                                                          push(i);
    void add_edge(int u, int v, i64 cap) {
                                                                          if (!rest[u]) return;
        e[++tot_e] = {v, cap, head[u]}; head[u] =
                                                                      } else if (nh > h[v] + 1) {
   tot_e;
                                                                          nh = h[v] + 1;
        e[++tot_e] = \{u, 0, head[v]\}; head[v] =
                                                                      }
   tot e;
                                                                  }
        ++deg[u]; ++deg[v];
                                                              }
    }
                                                              if (cnt[h[u]] > 1) {
    int cnt_upd_h, max_h, h[N], cnt[N]; i64
                                                                  update_h(u, nh);
→ rest[N];
                                                              } else {
    vector<int> vc1[N], vc2[N];
                                                                  for (int i = h[u]; i <= max_h; ++i) {
    void update_h(int v, int nh) {
                                                                      for (int v : vc1[i]) update_h(v,
        ++cnt_upd_h;
                                                         INF);
```

```
vc1[i].clear();
                                                             kk=aug(ii->t,min(ii->u,ll));
            }
                                                          ll-=kk,ii->u-=kk,ii->op->u+=kk;
        }
                                                             if(!ll) return in[p]=0,limit;
    }
    int maxflow(int s, int t, int lim = 10000) {
                                                        }
        rest[s] = 1E18;
                                                         return limit-ll;
        relabel(t);
        for (int i = head[s]; i; i = e[i].nxt)
                                                      PII mincostFlow(){
   push(i);
                                                         for(int i=S;i<=T;++i) dist[i]=i==T?inf:0;</pre>
        for (int &i = max_h; ~i; --i) {
                                                         while(!Q.empty()) Q.pop(); Q.push(PII(0,T));
                                                         while(!Q.empty()){
            while (!vc2[i].empty()) {
                int u = vc2[i].back();
                                                           int x=Q.top().first,y=Q.top().second;
                vc2[i].pop_back();
                                                           Q.pop(); if(dist[y]<x) continue;
                                                           for(edge *ii=V[y];ii;ii=ii->nxt)
                if (h[u] != i) continue;
                                                           \label{linear_cop} \mbox{ if} \mbox{ (ii->p->u\&\&ii->v+x<dist[ii->t] }
                push_flow(u);
                if (cnt_upd_h > lim) relabel(t);
                                                               dist[ii->t]=ii->v+x,Q.push(PII(dist[ii->t]
            }
                                                       → ],ii->t));
                                                               }
                                                               maxflow=mincost=0;
        return rest[t];
    }
                                                               do{
} flow;
                                                               do{
                                                               memset(in,0,sizeof(in));
                                                               }while(aug(S,maxflow));
11.3 最小费用流
                                                               }while(modlabel());
// dreadnought
                                                               return PII(maxflow,mincost);
// Q is a priority_queue<PII, vector<PII>,
\hookrightarrow qreater<PII> >
// for an edge(s, t): u is the capacity, v is the
                                                       11.4 模拟退火
\rightarrow cost, nxt is the next edge,
// op is the opposite edge
                                                       void simulateAnneal() {
// this code can not deal with negative cycles
                                                           const double INIT_TEMP = 2e5;
typedef pair<int,int> PII;
                                                           const double DELTA = 0.997;
struct edge{ int t,u,v; edge *nxt,*op;
                                                           const double EPS = 1e-14;
→ }E[MAXE],*V[MAXV];
                                                           double curx = ansx, cury = ansy;
int D[MAXN], dist[MAXN], maxflow, mincost; bool
                                                           for (double temp = INIT_TEMP; temp > EPS; temp

    in[MAXN];

                                                           *= DELTA) {
bool modlabel(){
                                                               double xx = curx + ((rand() << 1) -
 while(!Q.empty()) Q.pop();
                                                           RAND_MAX) * temp;
 for(int i=S;i<=T;++i) if(in[i])</pre>
                                                               double yy = cury + ((rand() << 1) -</pre>

    D[i]=0,Q.push(PII(0,i)); else D[i]=inf;

                                                          RAND_MAX) * temp;
 while(!Q.empty()){
                                                               double cure = calcEnergy(xx, yy);
    int x=Q.top().first,y=Q.top().second; Q.pop();
                                                               double diff = cure - anse;
    if(y==T) break; if(D[y]<x) continue;</pre>
                                                               if (diff < 0) {</pre>
    for(edge *ii=V[y];ii;ii=ii->nxt) if(ii->u)
                                                                   ansx = curx = xx;
      if(x+(ii->v+dist[ii->t]-dist[y])<D[ii->t]){
                                                                   ansy = cury = yy;
        D[ii->t]=x+(ii->v+dist[ii->t]-dist[y]);
                                                                   anse = cure;
        Q.push(PII(D[ii->t],ii->t));
                                                               } else if (exp(-diff / temp) * RAND_MAX >
                                                          rand()) {
 }
                                                                   curx = xx;
  if(D[T]==inf) return false;
                                                                   cury = yy;
 for(int i=S;i<=T;++i) if(D[i]>D[T])
                                                               }
   dist[i]+=D[T]-D[i];
                                                           }
                                                      }
 return true;
int aug(int p,int limit){
                                                              Simpson 积分
                                                       11.5
  if(p==T) return
                                                       // Quasar

→ maxflow+=limit,mincost+=limit*dist[S],limit;
                                                       double area(const double &left, const double
  in[p]=1; int kk,ll=limit;
                                                       for(edge *ii=V[p];ii;ii=ii->nxt) if(ii->u){
                                                           double mid = (left + right) / 2;
    if(!in[ii->t]&&dist[ii->t]+ii->v==dist[p]){
```

```
return (right - left) * (calc(left) + 4 *
   calc(mid) + calc(right)) / 6;
}
double simpson(const double &left, const double
const double &eps, const double
   &area_sum) {
   double mid = (left + right) / 2;
   double area_left = area(left, mid);
   double area_right = area(mid, right);
   double area_total = area_left + area_right;
   if (std::abs(area_total - area_sum) < 15 *</pre>
   eps) {
       return area_total + (area_total -
   area_sum) / 15;
   }
   return simpson(left, mid, eps / 2, area_left)
        + simpson(mid, right, eps / 2,
   area_right);
}
double simpson(const double &left, const double
return simpson(left, right, eps, area(left,
   right));
```

# 11.6 线性规划

```
// Dreadnought
// 求 $\max\{cx\,/\,Ax \leq b, x \geq 0\}$ 的解
typedef vector<double> VD;
VD simplex(vector<VD> A, VD b, VD c) {
  int n = A.size(), m = A[0].size() + 1, r = n, s
\rightarrow = m - 1;
 vector<VD> D(n + 2, VD(m + 1, 0)); vector<int>
\rightarrow ix(n + m);
 for (int i = 0; i < n + m; ++ i) ix[i] = i;
 for (int i = 0; i < n; ++ i) {
   for (int j = 0; j < m - 1; ++ j) D[i][j] =
→ -A[i][j];
   D[i][m-1] = 1; D[i][m] = b[i];
    if (D[r][m] > D[i][m]) r = i;
 }
 for (int j = 0; j < m - 1; ++ j) D[n][j] = c[j];
 D[n + 1][m - 1] = -1;
 for (double d; ; ) {
    if (r < n) {
      int t = ix[s]; ix[s] = ix[r + m]; ix[r + m]
      D[r][s] = 1.0 / D[r][s]; vector<int>
   speedUp;
      for (int j = 0; j \le m; ++ j) if (j != s) {
        D[r][j] *= -D[r][s];
        if(D[r][j]) speedUp.push_back(j);
     for (int i = 0; i <= n + 1; ++ i) if (i !=
→ r) {
        for(int j = 0; j < speedUp.size(); ++ j)</pre>
```

```
D[i][speedUp[j]] += D[r][speedUp[j]] *
  D[i][s];
       D[i][s] *= D[r][s];
     f(s) = -1; s = -1;
   for (int j = 0; j < m; ++ j) if (s < 0 ||
  ix[s] > ix[j]
     if (D[n + 1][j] > EPS || (D[n + 1][j] > -EPS
  && D[n][j] > EPS)) s = j;
   if (s < 0) break;
   for (int i = 0; i < n; ++ i) if (D[i][s] <
  -EPS)
     if (r < 0 || (d = D[r][m] / D[r][s] -
   D[i][m] / D[i][s]) < -EPS
         || (d < EPS \&\& ix[r + m] > ix[i + m])) r
  = i:
   if (r < 0) return VD(); // 无边界
 if (D[n + 1][m] < -EPS) return VD(); // 无解
 VD x(m-1);
 for (int i = m; i < n + m; ++ i) if (ix[i] < m -
\rightarrow 1) x[ix[i]] = D[i - m][m];
 return x; // 最优值在 D[n][m]
```

# 11.7 积分表

```
\int \frac{1}{1+x^2} dx = \tan^{-1} x \quad \int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}
\int \frac{x}{a^2+x^2} dx = \frac{1}{2} \ln |a^2+x^2| \int \frac{x^2}{a^2+x^2} dx = x - a \tan^{-1} \frac{x}{a}
\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}
\int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \frac{x}{a}
\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2}
\int \frac{x}{\sqrt{a^2-x^2}} dx = -\sqrt{a^2-x^2}
\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} +
  \frac{4ac-b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx^+c)} \right|
\int x^n e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} \, dx\int \sin^2 ax \, dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax \quad \int \sin^3 ax \, dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}
\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \quad \int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}
\int \tan ax dx = -\frac{1}{a} \ln \cos ax \quad \int \tan^2 ax dx = -x + \frac{1}{a} \tan ax
\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax
\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2} \int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}
```

#### 11.8 Dreadnought

#### 11.8.1 弦图

设 next(v) 表示 N(v) 中最前的点. 令 w\* 表示所有满足  $A \in B$  的 w 中最后的一个点, 判断  $v \cup N(v)$  是否为极大团, 只需判断是否存在一个  $w \in w*$ , 满足 Next(w) = v 且  $|N(v)| + 1 \le |N(w)|$  即可.

#### 11.8.2 五边形数

## 11.9 cheat.pdf

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=0}^{\infty} (-1)^n (1 - x^{2n+1}) x^{n(3n+1)/2}$$

see the next page:)

## 11.8.3 重心

半径为 r , 圆心角为  $\theta$  的扇形重心与圆心的距离为  $\frac{4r\sin(\theta/2)}{3\theta}$  半径为 r , 圆心角为  $\theta$  的圆弧重心与圆心的距离为  $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$ 

## 11.8.4 三角公式

$$\begin{split} &\sin(a\pm b) = \sin a \cos b \pm \cos a \sin b \ \cos(a\pm b) = \cos a \cos b \mp \sin a \sin b \\ &\tan(a\pm b) = \frac{\tan(a) \pm \tan(b)}{1\mp \tan(a)\tan(b)} \ \tan(a) \pm \tan(b) = \frac{\sin(a\pm b)}{\cos(a)\cos(b)} \\ &\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2}) \\ &\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})\cos(a) - \cos(b) = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2}) \\ &\sin(na) = n\cos^{n-1}a\sin a - \binom{n}{3}\cos^{n-3}a\sin^3a + \binom{n}{5}\cos^{n-5}a\sin^5a - \dots \\ &\cos(na) = \cos^na - \binom{n}{2}\cos^{n-2}a\sin^2a + \binom{n}{4}\cos^{n-4}a\sin^4a - \dots \end{split}$$

|                                                                                                                                                                                                                                                                                                                 | Theoretical                                                                                                                                                                                                                                                                                                                                                                 | Computer Science Cheat Sheet                                                                                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Definitions                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Series                                                                                                                                                                                                                                                     |  |  |
| f(n) = O(g(n))                                                                                                                                                                                                                                                                                                  | iff $\exists$ positive $c, n_0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$ .                                                                                                                                                                                                                                                                                      | $\sum_{i=1}^{n} i = \frac{n(n+1)}{2},  \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},  \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$                                                                                                                           |  |  |
| $f(n) = \Omega(g(n))$                                                                                                                                                                                                                                                                                           | iff $\exists$ positive $c, n_0$ such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$ .                                                                                                                                                                                                                                                                                      | i=1 $i=1$ $i=1$ In general:                                                                                                                                                                                                                                |  |  |
| $f(n) = \Theta(g(n))$                                                                                                                                                                                                                                                                                           | iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ .                                                                                                                                                                                                                                                                                                                            | $\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[ (n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left( (i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$                                                                                                                   |  |  |
| f(n) = o(g(n))                                                                                                                                                                                                                                                                                                  | iff $\lim_{n\to\infty} f(n)/g(n) = 0$ .                                                                                                                                                                                                                                                                                                                                     | $\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$                                                                                                                                                                       |  |  |
| $\lim_{n \to \infty} a_n = a$                                                                                                                                                                                                                                                                                   | iff $\forall \epsilon > 0$ , $\exists n_0$ such that $ a_n - a  < \epsilon$ , $\forall n \ge n_0$ .                                                                                                                                                                                                                                                                         | Geometric series:                                                                                                                                                                                                                                          |  |  |
| $\sup S$                                                                                                                                                                                                                                                                                                        | least $b \in \mathbb{R}$ such that $b \ge s$ , $\forall s \in S$ .                                                                                                                                                                                                                                                                                                          | $\begin{cases} \sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, & c \neq 1,  \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c},  \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c},   c  < 1, \end{cases}$                                                            |  |  |
| $\inf S$                                                                                                                                                                                                                                                                                                        | greatest $b \in \mathbb{R}$ such that $b \le s$ , $\forall s \in S$ .                                                                                                                                                                                                                                                                                                       | $\begin{cases} \sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, & c \neq 1,  \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, &  c  < 1. \end{cases}$                                                                               |  |  |
| $ \liminf_{n \to \infty} a_n $                                                                                                                                                                                                                                                                                  | $\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$                                                                                                                                                                                                                                                                                                        | Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$                                                                                                                                  |  |  |
| $\limsup_{n \to \infty} a_n$                                                                                                                                                                                                                                                                                    | $\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$                                                                                                                                                                                                                                                                                                        | i=1 $i=1$                                                                                                                                                                                                                                                  |  |  |
| $\binom{n}{k}$                                                                                                                                                                                                                                                                                                  | Combinations: Size $k$ subsets of a size $n$ set.                                                                                                                                                                                                                                                                                                                           | $\sum_{i=1}^{n} H_i = (n+1)H_n - n,  \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left( H_{n+1} - \frac{1}{m+1} \right).$                                                                                                                         |  |  |
| $\begin{bmatrix} n \\ k \end{bmatrix}$                                                                                                                                                                                                                                                                          | Stirling numbers (1st kind): Arrangements of an $n$ element set into $k$ cycles.                                                                                                                                                                                                                                                                                            | $1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$                                                                                                                             |  |  |
| $\left\{ egin{array}{c} n \\ k \end{array} \right\}$                                                                                                                                                                                                                                                            | Stirling numbers (2nd kind):<br>Partitions of an $n$ element<br>set into $k$ non-empty sets.                                                                                                                                                                                                                                                                                | $ 4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $ |  |  |
| $\binom{n}{k}$                                                                                                                                                                                                                                                                                                  | 1st order Eulerian numbers:<br>Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with $k$ ascents.                                                                                                                                                                                                                                                             | $8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$                                                                                                                                |  |  |
| $\binom{n}{k}$                                                                                                                                                                                                                                                                                                  | 2nd order Eulerian numbers.                                                                                                                                                                                                                                                                                                                                                 | <b>10.</b> $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ <b>11.</b> $\binom{n}{1} = \binom{n}{n} = 1,$                                                                                                                                                         |  |  |
| $C_n$                                                                                                                                                                                                                                                                                                           | Catalan Numbers: Binary trees with $n+1$ vertices.                                                                                                                                                                                                                                                                                                                          | <b>12.</b> $\binom{n}{2} = 2^{n-1} - 1,$ <b>13.</b> $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                 | = =                                                                                                                                                                                                                                                                                                                                                                         | $16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                 | $18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix},  19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix},  20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!,  21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$ |                                                                                                                                                                                                                                                            |  |  |
| <b>22.</b> $\binom{n}{0} = \binom{n}{n-1} = 1$ , <b>23.</b> $\binom{n}{k} = \binom{n}{n-1-k}$ , <b>24.</b> $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$ ,                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |  |  |
| $25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0 \text{ otherwise}} \right. \left. {1 \atop k=0, \atop 0 \text{ otherwise}} \right. $ $26. \left\langle {n \atop 1} \right\rangle = 2^n - n - 1, $ $27. \left\langle {n \atop 2} \right\rangle = 3^n - (n+1)2^n + {n+1 \choose 2}, $            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |  |  |
| $28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$ |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                 | $ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $                                                                                                                                                                                                                                                                                                                            | <b>32.</b> $\left\langle {n \atop 0} \right\rangle = 1,$ <b>33.</b> $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$                                                                                                                           |  |  |
| ,, ,,                                                                                                                                                                                                                                                                                                           | $(-1)$ $\left\langle \left\langle \left$                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |  |  |
| $36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{\infty}$                                                                                                                                                                                                                                | $\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left( x + n - 1 - k \right), $ $2n$                                                                                                                                                                                                                                                      | 37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n-1} \binom{k}{m} (m+1)^{n-k},$                                                                                                                                                   |  |  |

$$38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{m}{k} \binom{x+k}{2n},$$

**40.** 
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

**42.** 
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

**44.** 
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \textbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$\mathbf{46.} \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \left[ \begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

**48.** 
$${n \brace \ell + m} {\ell + m \choose \ell} = \sum_k {k \brace \ell} {n - k \brack m} {n \brack k},$$
 **49.** 
$${n \brack \ell + m} {\ell + m \brack \ell} = \sum_k {k \brack \ell} {n - k \brack m} {n \brack k}.$$

**41.** 
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43. 
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

$$(n-m)!\binom{n}{m} = \sum_{k} {n+1 \brack k+1} {n \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$(m-n) (m+n) (m+k)$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:  

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

#### Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If  $\exists \epsilon > 0$  such that  $f(n) = O(n^{\log_b a - \epsilon})$ 

$$T(n) = \Theta(n^{\log_b a}).$$

If 
$$f(n) = \Theta(n^{\log_b a})$$
 then  $T(n) = \Theta(n^{\log_b a} \log_2 n)$ .

If  $\exists \epsilon > 0$  such that  $f(n) = \Omega(n^{\log_b a + \epsilon})$ , and  $\exists c < 1$  such that  $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that  $T_i$  is always a power of two. Let  $t_i = \log_2 T_i$ . Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let  $u_i = t_i/2^i$ . Dividing both sides of the previous equation by  $2^{i+1}$  we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply  $u_i = i/2$ . So we find that  $T_i$  has the closed form  $T_i = 2^{i2^{i-1}}$ . Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
,  $T(1) = 1$ .

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let  $m = \log_2 n$ . Summing the left side we get  $T(n) - 3^m T(1) = T(n) - 3^m =$  $T(n) - n^k$  where  $k = \log_2 3 \approx 1.58496$ . Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let  $c = \frac{3}{2}$ . Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left( \frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so  $T(n) = 3n^k - 2n$ . Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$
  
=  $T_i$ .

And so 
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by  $x^i$ .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually  $G(x) = \sum_{i=0}^{\infty} x^i g_i$ .
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of  $x^i$  in G(x) is  $g_i$ . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum: 
$$\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose  $G(x) = \sum_{i \ge 0} x^i g_i$ . Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for 
$$G(x)$$
: 
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions: 
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$
 
$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$
 
$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So 
$$g_i = 2^i - 1$$
.

|    |                        |                 | Theoretical Computer Science C                                                                                                       |
|----|------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|
|    | $\pi \approx 3.14159,$ | $e \approx 2.7$ | 71828, $\gamma \approx 0.57721$ , $\phi = \frac{1+\gamma}{2}$                                                                        |
| i  | $2^i$                  | $p_i$           | General                                                                                                                              |
| 1  | 2                      | 2               | Bernoulli Numbers ( $B_i = 0$ , odd $i \neq 1$ )                                                                                     |
| 2  | 4                      | 3               | $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{3}$                                                                 |
| 3  | 8                      | 5               | $B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$                                                                    |
| 4  | 16                     | 7               | Change of base, quadratic formula:                                                                                                   |
| 5  | 32                     | 11              | $\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                                    |
| 6  | 64                     | 13              | - Su                                                                                                                                 |
| 7  | 128                    | 17              | Euler's number e:                                                                                                                    |
| 8  | 256                    | 19              | $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$                                                          |
| 9  | 512                    | 23              | $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.$                                                                          |
| 10 | 1,024                  | 29              | $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}.$                                                           |
| 11 | 2,048                  | 31              | 107                                                                                                                                  |
| 12 | 4,096                  | 37              | $\left(1+\frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right)^n$                                |
| 13 | 8,192                  | 41              | Harmonic numbers:                                                                                                                    |
| 14 | 16,384                 | 43              | $1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, .$ |
| 15 | 32,768                 | 47              | / 2 / 6 / 12 / 60 / 20 / 140 / 280 / 2520 /                                                                                          |
| 16 | 65,536                 | 53              | $ \ln n < H_n < \ln n + 1, $                                                                                                         |
| 17 | 131,072                | 59              | $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$                                                                                  |
| 18 | 262,144                | 61              | (")                                                                                                                                  |
| 19 | 524,288                | 67              | Factorial, Stirling's approximation:                                                                                                 |
| 20 | 1,048,576              | 71              | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,                                                                                          |
| 21 | 2,097,152              | 73              | $-(n)^n$ (1)                                                                                                                         |
| 22 | 4,194,304              | 79              | $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$                                     |
| 23 | 8,388,608              | 83              | Ackermann's function and inverse:                                                                                                    |
| 24 | 16,777,216             | 89              | $\begin{cases} 2^j & i = 1 \end{cases}$                                                                                              |
| 25 | 33,554,432             | 97              | $a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 0 \end{cases}$                                    |
| 26 | 67,108,864             | 101             |                                                                                                                                      |
| 27 | 134,217,728            | 103             | $\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$                                                                                           |
| 28 | 268,435,456            | 107             | Binomial distribution:                                                                                                               |
| 29 | 536,870,912            | 109             | $\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - 1$                                                                              |
| 30 | 1,073,741,824          | 113             |                                                                                                                                      |
| 31 | 2,147,483,648          | 127             | $E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$                                                                             |
| 32 | 4,294,967,296          | 131             | $\kappa=1$                                                                                                                           |
|    | Pascal's Triangl       | e               | Poisson distribution: $e^{-\lambda}\lambda^k$                                                                                        |
|    | 1                      |                 | $\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{1 - k},  E[X] = \lambda.$                                                                |

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61803,$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -.61803$$

Continuous distributions: If

$$\Pr[a < X < b] = \int_a^b p(x) \, dx,$$

Probability

then p is the probability density function of X. If

$$\Pr[X < a] = P(a),$$

then P is the distribution function of X. If P and p both exist then

$$P(a) = \int_{-\infty}^{a} p(x) \, dx.$$

Expectation: If X is discrete

$$\operatorname{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

If X continuous then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$$

Variance, standard deviation:

$$VAR[X] = E[X^{2}] - E[X]^{2},$$
  
$$\sigma = \sqrt{VAR[X]}.$$

For events A and B:

$$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$$

$$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$$

iff A and B are independent.

$$\Pr[A|B] = \frac{\Pr[A \wedge B]}{\Pr[B]}$$

For random variables X and Y:

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

if X and Y are independent.

$$E[X + Y] = E[X] + E[Y],$$
  
$$E[cX] = c E[X].$$

Bayes' theorem:

$$\Pr[A_i|B] = \frac{\Pr[B|A_i]\Pr[A_i]}{\sum_{j=1}^n \Pr[A_j]\Pr[B|A_j]}.$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$$

$$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[ \bigwedge_{j=1}^{k} X_{i_j} \right].$$

Moment inequalities:

$$\Pr[|X| \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \mathrm{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$$

Geometric distribution:

$$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

$$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \quad E[X] = \lambda.$$

Normal (Gaussian) distribution:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad E[X] = \mu.$$

The "coupon collector": We are given a random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

 $nH_n$ .

#### Trigonometry



Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$
 
$$\csc a = C/A, \quad \sec a = C/B,$$
 
$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
,  $\frac{AB}{A+B+C}$ .

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x),$$
  $\csc x = \cot \frac{x}{2} - \cot x,$ 

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ 

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x,$$
  $\sin 2x = \frac{2\tan x}{1 + \tan^2 x},$   
 $\cos 2x = \cos^2 x - \sin^2 x,$   $\cos 2x = 2\cos^2 x - 1,$ 

$$\cos 2x = \cos^2 x$$
  $\sin^2 x$ ,  $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ 

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
  $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$ 

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org

http://www.csc.lsu.edu/~seiden

#### Matrices

Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Determinants:  $\det A \neq 0$  iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 $2 \times 2$  and  $3 \times 3$  determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceg - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

## Hyperbolic Functions

#### Definitions:

$$\begin{split} \sinh x &= \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}, \\ \tanh x &= \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x}, \\ \operatorname{sech} x &= \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}. \end{split}$$

#### Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$
 
$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$
 
$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$
 
$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$
 
$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$
 
$$\sinh 2x = 2\sinh x \cosh x,$$
 
$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$
 
$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$
 
$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$
 
$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$
 
$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

| $\theta$                        | $\sin \theta$        | $\cos \theta$        | $\tan \theta$        |
|---------------------------------|----------------------|----------------------|----------------------|
| 0                               | 0                    | 1                    | 0                    |
| $\frac{\pi}{6}$ $\frac{\pi}{4}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ |
| $\frac{\pi}{4}$                 | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    |
| $\frac{\pi}{3}$ $\frac{\pi}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           |
| $\frac{\pi}{2}$                 | 1                    | 0                    | $\infty$             |

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

#### More Trig.



$$c^2 = a^2 + b^2 - 2ab\cos C.$$

Area:

$$\begin{split} A &= \frac{1}{2}hc, \\ &= \frac{1}{2}ab\sin C, \\ &= \frac{c^2\sin A\sin B}{2\sin C}. \end{split}$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$\tan x = -i\frac{e^{ix} + e^{-ix}}{e^{ix} + e^{-ix}},$$
$$= -i\frac{e^{2ix} - 1}{e^{2ix}},$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}.$$

#### Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: An edge connecting a ver-Loop tex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. SimpleGraph with no loops or : : : multi-edges. $C \equiv r_n \mod m_n$ A sequence $v_0e_1v_1\ldots e_\ell v_\ell$ . Walkif $m_i$ and $m_j$ are relatively prime for $i \neq j$ . TrailA walk with distinct edges. Path $\operatorname{trail}$ with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ ComponentΑ maximal connected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \bmod b$ . DAGDirected acyclic graph. EulerianGraph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p$ . Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of xCut-setA minimal cut. $S(x) = \sum_{d \mid r} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ $Cut\ edge$ A size 1 cut. k-Connected A graph connected with the removal of any k-1Perfect Numbers: x is an even perfect numk-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. $k \cdot c(G - S) < |S|$ . Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$ . have degree k. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$ Möbius inversion: k-regular k-Factor Α spanning subgraph. A set of edges, no two of Matching which are adjacent. CliqueA set of vertices, all of If which are adjacent. $G(a) = \sum_{d|a} F(d),$ Ind. set A set of vertices, none of which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{u} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right),$ $\sum_{v \in V} \deg(v) = 2m.$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$ If G is planar then n-m+f=2, so f < 2n - 4, m < 3n - 6.

 $+O\left(\frac{n}{(\ln n)^4}\right).$ 

| Notation:            |                          |  |  |  |
|----------------------|--------------------------|--|--|--|
| E(G)                 | Edge set                 |  |  |  |
| V(G)                 | Vertex set               |  |  |  |
| c(G)                 | Number of components     |  |  |  |
| G[S]                 | Induced subgraph         |  |  |  |
| $\deg(v)$            | Degree of $v$            |  |  |  |
| $\Delta(G)$          | Maximum degree           |  |  |  |
| $\delta(G)$          | Minimum degree           |  |  |  |
| $\chi(G)$            | Chromatic number         |  |  |  |
| $\chi_E(G)$          | Edge chromatic number    |  |  |  |
| $G^c$                | Complement graph         |  |  |  |
| $K_n$                | Complete graph           |  |  |  |
| $K_{n_1, n_2}$       | Complete bipartite graph |  |  |  |
| $\mathrm{r}(k,\ell)$ | Ramsey number            |  |  |  |
| Coometry             |                          |  |  |  |

#### Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero.  $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0$ . Cartesian Projective  $(x, y) \quad (x, y, 1)$   $y = mx + b \quad (m, -1, b)$   $x = c \quad (1, 0, -c)$  Distance formula,  $L_p$  and  $L_\infty$  metric:

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{p \to \infty} \left[ |x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle  $(x_0, y_0)$ ,  $(x_1, y_1)$  and  $(x_2, y_2)$ :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points  $(x_0, y_0)$  and  $(x_1, y_1)$ :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Any planar graph has a vertex with de-

gree  $\leq 5$ .

Wallis' identity:  

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series: 
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left( 1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

#### Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[ \frac{d^k}{dx^k} \left( \frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1. 
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1. 
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2.  $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ , 3.  $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ 

3. 
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx}$$

**4.** 
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.**  $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$ , **6.**  $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$ 

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7. 
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11. 
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12. 
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13. 
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$\mathbf{14.} \ \frac{d(\csc u)}{dx} = -\cot u \, \csc u \frac{du}{dx}.$$

15. 
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

$$16. \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17. 
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18. 
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

**19.** 
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$20. \ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21. 
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22. 
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23. 
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

**24.** 
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25. 
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

**26.** 
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27. 
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28. 
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

**29.** 
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

30. 
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31. 
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

32. 
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

**3.** 
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
,  $n \neq -1$ , **4.**  $\int \frac{1}{x}dx = \ln x$ , **5.**  $\int e^x dx = e^x$ ,

**4.** 
$$\int \frac{1}{x} dx = \ln x, \qquad 5. \int e^x dx$$

6. 
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7. 
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

$$8. \int \sin x \, dx = -\cos x,$$

$$\mathbf{9.} \quad \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

9. 
$$\int \cos x \, dx = \sin x,$$
11. 
$$\int \cot x \, dx = \ln|\cos x|,$$

12. 
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

**12.** 
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.**  $\int \csc x \, dx = \ln|\csc x + \cot x|$ ,

14. 
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15. 
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

17. 
$$\int \sin^2(ax)dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

$$\int \sin^2(ux)ux = \frac{1}{2a}(ux) \sin(ux)\cos x$$

$$19. \int \sec^2 x \, dx = \tan x,$$

**21.** 
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

**23.** 
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

**25.** 
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

**26.** 
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad \textbf{27.} \int \sinh x \, dx = \cosh x, \quad \textbf{28.} \int \cosh x \, dx = \sinh x,$$

20. 
$$\int \csc^{-x} dx = -\frac{1}{n-1} + \frac{1}{n-1} \int \csc^{-x} dx, \quad n \neq 1, \quad 27. \int \sinh x \, dx = \cosh x, \quad 28. \int \cosh x \, dx = \sinh x,$$
29. 
$$\int \tanh x \, dx = \ln|\cosh x|, \quad 30. \int \coth x \, dx = \ln|\sinh x|, \quad 31. \int \operatorname{sech} x \, dx = \arctan \sinh x, \quad 32. \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33. 
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

**34.** 
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2} x$$

**33.** 
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 **34.**  $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$  **35.**  $\int \operatorname{sech}^2 x \, dx = \tanh x,$ 

**36.** 
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

$$\int x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0$$

**38.** 
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

**39.** 
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

**40.** 
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

**42.** 
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**43.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 **44.**  $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$  **45.**  $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$ 

$$44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$

**46.** 
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

48. 
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

**50.** 
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

**52.** 
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

**54.** 
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**56.** 
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

**58.** 
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

**60.** 
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

**16.** 
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

**18.** 
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$\int \cos (ax)ax = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

20. 
$$\int \csc^2 x \, dx = -\cot x$$
,  
22.  $\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$ ,

**24.** 
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

27. 
$$\int \sinh x \, dx = \cosh x$$
, 28.  $\int \cosh x \, dx = \sinh x$ ,

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x,$$

37. 
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

**41.** 
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi}{2} \arcsin \frac{\pi}{a}, \quad a > 0,$$

45. 
$$\int \frac{1}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

47. 
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|, \quad a > 0,$$

**49.** 
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

**51.** 
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

**53.** 
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

**55.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

57. 
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

**59.** 
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

**61.** 
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

**62.** 
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

**63.** 
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

**64.** 
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

**65.** 
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

**66.** 
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

**67.** 
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

**68.** 
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

**69.** 
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

**70.** 
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71. 
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

**72.** 
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73. 
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

**74.** 
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

**75.** 
$$\int x^n \ln(ax) \, dx = x^{n+1} \left( \frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

**76.** 
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbf{E} f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{x^{\underline{n+1}}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$=1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\begin{array}{lll} \frac{1}{1-x} & = 1+x+x^2+x^3+x^4+\cdots & = \sum\limits_{i=0}^{\infty} x^i, \\ \frac{1}{1-cx} & = 1+cx+c^2x^2+c^3x^3+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{1}{1-x^n} & = 1+x^n+x^{2n}+x^{3n}+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{x}{(1-x)^2} & = x+2x^2+3x^3+4x^4+\cdots & = \sum\limits_{i=0}^{\infty} ix^i, \\ \frac{x}{(1-x)^2} & = x+2x^2+3^nx^3+4^nx^4+\cdots & = \sum\limits_{i=0}^{\infty} i^nx^i, \\ e^x & = 1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots & = \sum\limits_{i=0}^{\infty} i^nx^i, \\ \ln(1+x) & = x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \ln\frac{1}{1-x} & = x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots & = \sum\limits_{i=1}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \sin x & = x-\frac{1}{3}x^3+\frac{1}{3}x^5-\frac{1}{i1}x^7+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ \cos x & = 1-\frac{1}{2}x^2+\frac{1}{4}x^4-\frac{1}{6!}x^6+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ (1+x)^n & = 1+nx+\frac{n(n-1)}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{1}{(1-x)^{n+1}} & = 1+(n+1)x+\binom{n+2}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{x}{e^x-1} & = 1-\frac{1}{2}x+\frac{1}{12}x^2-\frac{1}{720}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{B_ix^i}{i!}, \\ \frac{1}{\sqrt{1-4x}} & = 1+2x+6x^2+20x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} & = 1+2x+6x^2+20x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i}{i}x^i, \\ \frac{1}{1-x}\ln\frac{1}{1-x} & = x+\frac{3}{2}x^2+\frac{11}{6}x^3+\frac{12}{25}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{11}{24}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}x^i}{i}, \\ \frac{x}{1-x-x^2} & = x+x^2+2x^3+3x^4+\cdots & = \sum\limits_{i=0}^{\infty} F_{ii}x^i. \end{array}$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If  $b_i = \sum_{j=0}^i a_i$  then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left( \sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker

# Theoretical Computer Science Cheat Sheet Escher's Knot Expansions: $\frac{1}{(1-x)^{n+1}}\ln\frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} x^i,$ $(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} {i \choose n} \frac{n! x^{i}}{i!},$ $x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$ $=\sum_{i=1}^{\infty} {n \brack i} x^{i},$ $=\sum_{i=0}^{i=0} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n!x^i}{i!},$ $= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) \qquad = \sum_{i=1}^{\infty} \frac{1}{i^x}$ $\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$ $=\sum_{i=1}^{\infty}\frac{\mu(i)}{i^x},$ $= \prod \frac{1}{1 - n^{-x}},$ Stieltjes Integration If G is continuous in the interval [a, b] and F is nondecreasing then $\zeta^2(x)$ = $\sum_{i=1}^{\infty} \frac{d(i)}{x^i}$ where $d(n) = \sum_{d|n} 1$ , $\int_{a}^{b} G(x) \, dF(x)$ exists. If $a \leq b \leq c$ then $\zeta(x)\zeta(x-1)$ = $\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{d|n} d$ , $\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$ $= \frac{2^{2n-1}|B_{2n}|}{(2n)!} \pi^{2n}, \quad n \in \mathbb{N},$

$$\begin{split} &\int_a^b \left(G(x) + H(x)\right) dF(x) = \int_a^b G(x) \, dF(x) + \int_a^b H(x) \, dF(x), \\ &\int_a^b G(x) \, d\left(F(x) + H(x)\right) = \int_a^b G(x) \, dF(x) + \int_a^b G(x) \, dH(x), \\ &\int_a^b c \cdot G(x) \, dF(x) = \int_a^b G(x) \, d\left(c \cdot F(x)\right) = c \int_a^b G(x) \, dF(x), \\ &\int_a^b G(x) \, dF(x) = G(b)F(b) - G(a)F(a) - \int_a^b F(x) \, dG(x). \end{split}$$
 the integrals involved exist and  $F$  recesses a derivative  $F'$  at an

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

#### Cramer's Rule

 $\sqrt{\frac{1-\sqrt{1-x}}{x}} = \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$ 

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$ 

 $\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^i,$ 

 $e^x \sin x \qquad = \sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^i,$ 

 $= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(4^{i}-2)B_{2i}x^{2i}}{(2i)!},$ 

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let  $A = (a_{i,j})$  and B be the column matrix  $(b_i)$ . Then there is a unique solution iff  $\det A \neq 0$ . Let  $A_i$  be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 00
 47
 18
 76
 29
 93
 85
 34
 61
 52

 86
 11
 57
 28
 70
 39
 94
 45
 02
 63

 95
 80
 22
 67
 38
 71
 49
 56
 13
 04

 59
 96
 81
 33
 07
 48
 72
 60
 24
 15

 73
 69
 90
 82
 44
 17
 58
 01
 35
 26

 68
 74
 09
 91
 83
 55
 27
 12
 46
 30

 37
 08
 75
 19
 92
 84
 66
 23
 50
 41

 14
 25
 36
 40
 51
 62
 03
 77
 88
 99

 21
 32
 43
 54
 65
 06
 10
 89
 97
 78

 42
 53
 64

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$
  
where  $k_i \ge k_{i+1} + 2$  for all  $i$ ,  $1 \le i < m$  and  $k_m \ge 2$ .

## Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left( \phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$
  

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$