LG PIC 실습

LSTM

박석희 교수님

실습조교 이승문 ch273404@naver.com

08/12(월)

코드 및 데이터 다운로드

전통적 RNN(Recurrent Neural Network)

https://gooopy.tistory.com/54

 x_t

- 은닉층의 노드 결과값을 다음 은닉층의 노드에도
 전달하여 이전 데이터가 다음 출력에 영향을 주는 형태
- 시계열 데이터를 다루는데 최적인 neural network
- Time step이 늘어날수록 학습 과정에서의 역전파 시 gradient가 소멸되어 파라미터 업데이트가 불가능한 vanishing gradient problem 발생-**장기 의존성 문제**
- 즉, 입력 데이터가 커질 때 데이터 뒤쪽으로 갈수록 앞쪽 데이터를 잊는다는 의미

LSTM(Long Short-Term Memory models)

• RNN의 장기의존성 문제를 해결하기 위해 hidden state에 cell state를 추가

https://velog.io/@soup1997/LSTM-Long-Short-Term-Memory

https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/

LSTM의 구조

> Input gate

$$egin{aligned} i_t &= \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \ g_t &= anh(W_{xg}x_t + W_{hg}h_{t-1} + b_g) \end{aligned}$$

- 현재 정보를 기억하기 위한 게이트
- σ 를 통해 나온 결과인 i_t 는 0~1 범위, tanh를 통해 나온 결과인 g_t 는 -1~1 범위의 값을 가짐
- 두 값을 이용해 이번 스텝에 기억할 정보의 양을 결정

> Forget gate

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

- 과거 정보를 잊기 위한 게이트
- σ 를 통해 나온 결과인 f_t 는 0~1 범위를 가지며 삭제과정을 거친 정보의 양을 뜻함
- 0은 이전 정보를 모두 잊고, 1은 이전 정보를 온전히 기억한다는 뜻

LSTM의 구조

➤ Cell state layer(장기 상태)

⊙는 요소별 곱셈

$$C_t = f_t \odot C_{t-1} + i_t \odot g_t$$

- 이전 cell state와 input gate와 forget gate의 값을 이용해 셀 상태 C_t 를 구함
- 이전 시점의 셀 상태값과 입력 게이트의 결과를 얼마나 반영하는가를 결정하게 됨
- C_t 는 다음 셀로 전달됨

➤ Output gate layer(단기 상태)

$$egin{aligned} o_t &= \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o) \ h_t &= o_t \odot anh(C_t) \end{aligned}$$

https://velog.io/@soup1997/LSTM-Long-Short-Term-Memory

- Output gate를 통해 계산된 h_t 는 출력층의 y_t 를 구하는데 사용됨
- h_t 는 다음 셀로 전달됨

실습 날씨 데이터 예측

Miniforge jupyter notebook 실행

가상환경 만들기 envname에 원하는 이름 입력

(base) C:\Users\USER>mamba create -n envname python=3.9.12

Jupyter notebook 실행

(LGPIC2408) C:\Users\USER>pip install jupyter

Miniforge prompt에서 실행

mamba install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 -c pytorch

(base) C:\Users\USER>mamba activate LGPIC2408

라이브러리 install

!pip install numpy
!pip install -U matplotlib
!pip install pandas
!pip install pyarrow
!pip install seaborn
!pip install tensorflow
!pip install scikit-learn

초기 설정 및 데이터 다운로드

라이브러리 import

```
1 import os
2 import datetime
4 import IPython
5 import IPython.display
6 import matplotlib as mpl
7 import matplotlib.pyplot as plt
8 import numpy as np
9 import pandas as pd
10 import seaborn as sns
11 import tensorflow as tf
12 from sklearn.preprocessing import MinMaxScaler
13 import torch
14 from torch.utils.data import TensorDataset # 텐서데이터셋
15 from torch.utils.data import DataLoader # 데이터로더
16
17 mpl.rcParams['figure.figsize'] = (8, 6)
18 mpl.rcParams['axes.grid'] = False
```

데이터 불러오기

```
df = pd.read_csv("dataset/jena_climate_2009_2016.csv")
# Slice [start:stop:step], starting from index 5 take every 6th record.
df = df[5::6]
```

날씨 데이터세트

이 튜토리얼은 막스 플랑크 생물 지구화학 연구소 집에서 기록한 날씨 시계열 데이터세트 집를 사용합니다.

이 데이터세트에는 온도, 대기압 및 습도와 같은 14가지 특성이 있습니다. 이러한 데이터는 2003년부터 시작해 10분 간격으로 수집 되었습니다. 효율성을 위해 2009년과 2016년 사이에 수집된 데이터만 사용하겠습니다. 이 데이터세트 부분은 François Chollet이 자신이 저술한 책 Deep Learning with Python을 위해 준비했습니다.

	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
5	996.50	-8.05	265.38	-8.78	94.4	3.33	3.14	0.19	1.96	3.15	1307.86	0.21	0.63	192.7
11	996.62	-8.88	264.54	-9.77	93.2	3.12	2.90	0.21	1.81	2.91	1312.25	0.25	0.63	190.3
17	996.84	-8.81	264.59	-9.66	93.5	3.13	2.93	0.20	1.83	2.94	1312.18	0.18	0.63	167.2
23	996.99	-9.05	264.34	-10.02	92.6	3.07	2.85	0.23	1.78	2.85	1313.61	0.10	0.38	240.0
29	997.46	-9.63	263.72	-10.65	92.2	2.94	2.71	0.23	1.69	2.71	1317.19	0.40	0.88	157.0

데이터정리

	Date Time	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s) m	nax. wv (m/s)	wd (deg)
5 01.01.2	2009 01:00:00	996.50	-8.05	265.38	-8.78	94.4	3.33	3.14	0.19	1.96	3.15	1307.86	0.21	0.63	192.7
11 01.01.2	2009 02:00:00	996.62	-8.88	264.54	-9.77	93.2	3.12	2.90	0.21	1.81	2.91	1312.25	0.25	0.63	190.3
17 01.01.2	2009 03:00:00	996.84	-8.81	264.59	-9.66	93.5	3.13	2.93	0.20	1.83	2.94	1312.18	0.18	0.63	167.2
23 01.01.2	2009 04:00:00	996.99	-9.05	264.34	-10.02	92.6	3.07	2.85	0.23	1.78	2.85	1313.61	0.10	0.38	240.0
29 01.01.2	2009 05:00:00	997.46	-9.63	263.72	-10.65	92.2	2.94	2.71	0.23	1.69	2.71	1317.19	0.40	0.88	157.0
f=df.drop	= pd.to_dato p(['Tpot (K) 'p (mbar)',	','Tdew (degC)','VF	Pmax (mbar)','VPact (ml			'sh (g/kg)','	H2OC (mmol/mo	l)','rho (g	ı/m**3)','max. wv	(m/s)','wd (deg)'], axi	s=1)	

	p (mbar)	rh (%)	wv (m/s)	T (degC)
5	996.50	94.4	0.21	-8.05
11	996.62	93.2	0.25	-8.88
17	996.84	93.5	0.18	-8.81
23	996.99	92.6	0.10	-9.05
29	997.46	92.2	0.40	-9.63

시간 정보는 따로 저장 **압력과 상대습도, 바람 속도, 온도** 데이터만 사용 온도 데이터를 예측하기 위해 온도 데이터를 맨 오른쪽으로 이동

데이터 정리

1 df.describe()								
	p (mbar)	rh (%)	wv (m/s)	T (degC)				
count	70091.000000	70091.000000	70091.000000	70091.000000				
mean	989.212842	76.009788	1.702567	9.450482				
std	8.358886	16.474920	65.447512	8.423384				
min	913.600000	13.880000	-9999.000000	-22.760000				
25%	984.200000	65.210000	0.990000	3.350000				
50%	989.570000	79.300000	1.760000	9.410000				
75%	994.720000	89.400000	2.860000	15.480000				
max	1015.290000	100.000000	14.010000	37.280000				

1 wv = df['wv (m/s)'] $2 \text{ bad_wv} = \text{wv} == -9999.0$ $3 \text{ wv[bad_wv]} = 0.0$ 1 df.describe() rh (%) p (mbar) wv (m/s) T (degC) **count** 70091.000000 70091.000000 70091.000000 70091.000000 989.212842 76.009788 2.130539 9.450482 mean 8.358886 16.474920 1.543098 8.423384 std min 913.600000 13.880000 0.000000 -22.760000 25% 984.200000 65.210000 3.350000 0.990000 **50%** 989.570000 79.300000 1.760000 9.410000 994.720000 **75**% 89.400000 2.860000 15.480000 1015.290000 37.280000 100.000000 14.010000 max

• 바람 속도에 오류값 존재

-9999.0 오류값을 0으로 대체

데이터 확인

```
1 plot_cols = ['p (mbar)', 'T (degC)']
2 plot_features = df[plot_cols]
3 plot_features.index = date_time
4 _ = plot_features.plot(subplots=True)
5
6 plot_features = df[plot_cols][:480]
7 plot_features.index = date_time[:480]
8 _ = plot_features.plot(subplots=True)
```



```
실습
```

```
1 # 7일간의 데이터가 입력으로 들어가고 batch size는 임의로 지정

2 seq_length = 7

3 batch = 100

4 train_size = int(len(df)*0.7)

5 train_set = df[0:train_size]

6 train_date_time=date_time[0:train_size]

7 test_set = df[train_size-seq_length:]

8 test_date_time=date_time[train_size-seq_length:]
```

```
1 plot_cols = ['p (mbar)', 'T (degC)']
2 plot_features = train_set[plot_cols]
3 plot_features.index = train_date_time
4 _ = plot_features.plot(subplots=True)
5
6 plot_features = test_set[plot_cols]
7 plot_features.index = test_date_time
8 _ = plot_features.plot(subplots=True)
```



```
1 # Input scale
2 scaler_x = MinMaxScaler()
3 scaler_x.fit(train_set.iloc[:, :-1])
4
5 train_set.iloc[:, :-1] = scaler_x.transform(train_set.iloc[:, :-1])
6 test_set.iloc[:, :-1] = scaler_x.transform(test_set.iloc[:, :-1])
7
8 # Output scale
9 scaler_y = MinMaxScaler()
10 scaler_y.fit(train_set.iloc[:, [-1]])
11
12 train_set.iloc[:, -1] = scaler_y.transform(train_set.iloc[:, [-1]])
13 test_set.iloc[:, -1] = scaler_y.transform(test_set.iloc[:, [-1]])
```

	p (mbar)	rh (%)	wv (m/s)	T (degC)
5	996.50	94.4	0.21	-8.05
11	996.62	93.2	0.25	-8.88
17	996.84	93.5	0.18	-8.81
23	996.99	92.6	0.10	-9.05
29	997.46	92.2	0.40	-9.63

변수값들의 크기가 제각각이므로 0-1사이 값으로 스케일링

1 train out boad()

1 t	rain_set.ne	:ad()		
	p (mbar)	rh (%)	wv (m/s)	T (degC)
5	0.835433	0.934974	0.014989	0.251840
11	0.836642	0.921040	0.017844	0.237631
17	0.838859	0.924524	0.012848	0.238829
23	0.840371	0.914073	0.007138	0.234720
29	0.845107	0.909429	0.028551	0.224790

데이터셋 생성

```
1 a = [1, 2, 3, 4, 5, 6]
 2 device = torch.device('cpu')
3 # 데이터셋 생성 함수
 4 def build_dataset(time_series, seq_length):
                                                                      1 a[0:3]
      dataX = []
      dataY = []
                                                                    [1, 2, 3]
      for i in range(0, len(time series)-seq length):
          _x = time_series[i:i+seq_length, :]
          _y = time_series[i+seq_length, [-1]]
                                                                      1 a[3]
          # print(_x, "-->",_y)
          dataX.append(x)
                                                                     4
12
          dataY.append(_y)
13
14
      return np.array(dataX), np.array(dataY)
15
16 trainX, trainY = build_dataset(np.array(train_set), seq_length)
17 testX, testY = build_dataset(np.array(test_set), seq_length)
18
19 # 텐서로 변환
20 trainX_tensor = torch.FloatTensor(trainX)
21 trainY_tensor = torch.FloatTensor(trainY)
23 testX_tensor = torch.FloatTensor(testX)
24 testY_tensor = torch.FloatTensor(testY)
25 testX tensor = testX tensor.to(device)
26 testY_tensor = testY_tensor.to(device)
27 # 텐서 형태로 데이터 정의
28 dataset = TensorDataset(trainX_tensor, trainY_tensor)
29 # 데이터로더는 기본적으로 2개의 인자를 입력받으며 배치크기는 통상적으로 2의 배수를 사용
30 dataloader = DataLoader(dataset.
31
                         batch size=batch.
                         shuffle=True,
32
33
                         drop_last=True)
```

```
2 # 7개의 데이터가 입력으로 들어가고 batch size는 임의로 지정
3 \text{ seq\_length} = 7
4 \text{ batch} = 100
```

	p (mbar)	rh (%)	wv (m/s)	T (degC)	
1	0.835433	0.934974	0.014989	0.251840	Input, x1
2	0.836642	0.921040	0.017844	0.237631	iliput, XI
3	0.838859	0.924524	0.012848	0.238829	
4	0.840371	0.914073	0.007138	0.234720	
5	0.845107	0.909429	0.028551	0.224790	
6	0.836642	0.921040	0.017844	0.237631	
7	0.838859	0.924524	0.012848	0.238829	
8	0.840371	0.914073	0.007138	0.234720	Output, y1
9	0.845107	0.909429	0.028551	0.224790	

데이터셋 생성

```
1 a=[1,2,3,4,5,6]
 2 device = torch.device('cpu')
3 # 데이터셋 생성 함수
 4 def build_dataset(time_series, seq_length):
                                                                     1 a[0:3]
      dataX = []
      dataY = []
                                                                    [1, 2, 3]
      for i in range(0, len(time_series)-seq_length):
          _x = time_series[i:i+seq_length, :]
                                                                     1 a[3]
          _y = time_series[i+seq_length, [-1]]
          # print(_x, "-->",_y)
          dataX.append(x)
                                                                    4
          dataY.append(_y)
13
      return np.array(dataX), np.array(dataY)
15
16 trainX, trainY = build_dataset(np.array(train_set), seq_length)
17 testX, testY = build_dataset(np.array(test_set), seq_length)
18
19 # 텐서로 변환
20 trainX_tensor = torch.FloatTensor(trainX)
21 trainY_tensor = torch.FloatTensor(trainY)
23 testX_tensor = torch.FloatTensor(testX)
24 testY_tensor = torch.FloatTensor(testY)
25 testX tensor = testX tensor.to(device)
26 testY_tensor = testY_tensor.to(device)
27 # 텐서 형태로 데이터 정의
28 dataset = TensorDataset(trainX_tensor, trainY_tensor)
29 # 데이터로더는 기본적으로 2개의 인자를 입력받으며 배치크기는 통상적으로 2의 배수를 사용
30 dataloader = DataLoader(dataset.
31
                         batch size=batch.
                         shuffle=True,
32
33
                         drop_last=True)
```

2 seq_length = 7

	p (mbar)	rh (%)	wv (m/s)	T (degC)
1	0.835433	0.934974	0.014989	0.251840
2	0.836642	0.921040	0.017844	0.237631
3	0.838859	0.924524	0.012848	0.238829
4	0.840371	0.914073	0.007138	0.234720
5	0.845107	0.909429	0.028551	0.224790
6	0.836642	0.921040	0.017844	0.237631
7	0.838859	0.924524	0.012848	0.238829
8	0.840371	0.914073	0.007138	0.234720
9	0.845107	0.909429	0.028551	0.224790

Input, x2

Output, y2

LSTM 모델 작성

```
1 # 7일간의 데이터가 입력으로 들어가고 batch size는 임의로 지정
                               2 \text{ seq\_length} = 7
1 import torch.nn as nn
                               3 batch = 100
 2
3 # 설정값
4 data_dim = 5
5 \text{ hidden\_dim} = 10
6 output dim = 1
7 learning_rate = 0.01
8 \text{ nb\_epochs} = 100
10 class Net(nn Module):
      ##기본변수, layer를 초기화해주는 생성자
12
      def __init__(self, input_dim, hidden_dim, seq_len, output_dim, layers)
13
         super(Net, self). init ()
14
          self.hidden_dim = hidden_dim
                                            모델 변수
15
          self.seq_len = seq_len
16
          self.output_dim = output_dim
17
          self.layers = layers
18
          self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=layers,
19
21
                             batch_first=True)
22
          self.fc = nn.Linear(hidden_dim, output_dim, bias = True)
23
24
      # 학습 초기화를 위한 함수
                                                LSTM 구조 정의
25
      def reset_hidden_state(self):
26
          self.hidden = (
27
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim),
28
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim))
29
30
      # 예측을 위한 함수
31
      def forward(self, x):
32
          x, _status = self.lstm(x)
33
         x = self.fc(x[:, -1])
34
          return x
```

모델 training 함수 작성

```
def train_model(model, train_df, num_epochs = None, Ir = None, verbose = 10, patience = 10):
           criterion = nn.MSELoss().to(device)
           optimizer = torch.optim.Adam(model.parameters(), Ir = learning_rate)
            nb_epochs = num_epochs
            # epoch마다 loss 저장
           train hist = np.zeros(nb epochs)
           for epoch in range(nb_epochs):
                      avg_cost = 0
                       total_batch = len(train_df)
                       for batch_idx, samples in enumerate(train_df):
                                  x_train, y_train = samples
                                  # seg별 hidden state reset
                                  model.reset_hidden_state()
                                  # H(x) 계산
                                  outputs = model(x train)
                                  # cost 계산
                                    loss = criterion(outputs, y_train)
                                  # cost로 H(x) 개선
                                  optimizer.zero_grad()
                                  loss.backward()
                                  optimizer.step()
                                  avg_cost += loss/total_batch
                       train_hist[epoch] = avg_cost
                       if epoch % verbose == 0:
                                  print('Epoch:', '%04d' % (epoch), 'train loss:', '{:.4f}'.format(avg_cost))
                       # patience번째 마다 early stopping 여부 확인
                       if (epoch % patience == 0) & (epoch != 0):
                                  # loss가 커졌다면 early stop
                                  if train_hist[epoch-patience] < train_hist[epoch]:
                                              print('\mathbb{'\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\math
                                              break
            return model.eval(), train_hist
```

```
for batch_idx, samples in enumerate(train_df):
```

```
>>> for i, letter in enumerate(['A', 'B', 'C']):
... print(i, letter)
...
0 A
1 B
2 C
```

```
[tensor([[[0.8354, 0.9350, 0.0150, 0.2518],
          [0.8366, 0.9210, 0.0178, 0.2376],
          [0.8389, 0.9245, 0.0128, 0.2388],
          [0.8404, 0.9141, 0.0071, 0.2347],
          [0.8451, 0.9094, 0.0286, 0.2248],
          [0.8476, 0.9152, 0.0036, 0.2241],
          [0.8539, 0.9176, 0.1485, 0.2327]]
         [[0.8366, 0.9210, 0.0178, 0.2376],
          [0.8389, 0.9245, 0.0128, 0.2388],
          [0.8404, 0.9141, 0.0071, 0.2347],
          [0.8451, 0.9094, 0.0286, 0.2248],
          [0.8476, 0.9152, 0.0036, 0.2241],
          [0.8539, 0.9176, 0.1485, 0.2327]
          [0.8623, 0.9164, 0.0514, 0.2510]]]).
 tensor([[0.2510],
         [0.2585]])]
```

모델 학습

```
# 보험 학습
# 설정값

data_dim = 5
output_dim = 1
hidden_dim = 10
learning_rate = 0.01
nb_epochs = 100
net = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
model, train_hist = train_model(net, dataloader, num_epochs = nb_epochs, lr = learning_rate, verbose = 20, patience = 10)
```

```
10 class <u>Ne</u>t(nn.Module):
      # # 기본변수, layer를 초기화해주는 생성자
12
      def __init__(self, input_dim, hidden_dim, seq_len, output_dim, layers)
13
          super(Net, self).__init__()
14
          self.hidden_dim = hidden_dim
15
          self.seq_len = seq_len
16
          self.output dim = output dim
          self.layers = layers
17
18
19
          self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=layers,
                              # dropout = 0.1,
20
                              batch_first=True)
21
22
          self.fc = nn.Linear(hidden dim, output dim, bias = True)
23
24
      # 학습 초기화를 위한 함수
25
      def reset_hidden_state(self):
26
          self.hidden = (
27
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim),
28
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim))
29
30
      # 예측을 위한 함수
31
      def forward(self, x):
32
          x, _status = self.lstm(x)
          x = self.fc(x[:, -1])
34
          return x
```

```
def train_model(model, train_df, num_epochs = None, Ir = None, verbose = 10, patience = 10):
   criterion = nn.MSELoss().to(device)
    optimizer = torch.optim.Adam(model.parameters(), Ir = learning rate)
   nb_epochs = num_epochs
   # epoch마다 loss 저장
    train_hist = np.zeros(nb_epochs)
   for epoch in range(nb_epochs):
       avg cost = 0
        total_batch = len(train_df)
       for batch_idx, samples in enumerate(train_df):
           x_train, y_train = samples
           # seg별 hidden state reset
           model.reset_hidden_state()
           # H(x) 계산
           outputs = model(x_train)
            # cost 계산
           loss = criterion(outputs, y_train)
            # cost로 H(x) 개선
           optimizer.zero_grad()
            loss.backward()
           optimizer.step()
           avg cost += loss/total batch
        train_hist[epoch] = avg_cost
```

모델 학습

```
# 모델 학습
# 설정값
data_dim = 5
output dim = 1
hidden_dim = 10
learning_rate = 0.01
nb_epochs = 100

net = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
model, train_hist = train_model(net, dataloader, num_epochs = nb_epochs, lr = learning_rate, verbose = 20, patience = 10)

Epoch: 0000 train loss: 0.0159
Epoch: 0020 train loss: 0.0002
Epoch: 0040 train loss: 0.0002

Early Stopping: 0040 epoch
```

```
1 # epoch별 손실값
2 fig = plt.figure(figsize=(10, 4))
3 plt.plot(train_hist, label="Training loss")
4 plt.legend()
5 plt.show()
```


실습

```
# 모델 저장
PATH = "model1/model1.pth"
torch.save(model.state dict(), PATH)
# 불러오기
model = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
model.load_state_dict(torch.load(PATH), strict=False)
model.eval()
Net(
  (lstm): LSTM(5, 10, batch_first=True)
  (fc): Linear(in_features=10, out_features=1, bias=True)
```

```
# 예측 테스트
2 a=0
3 testX_tensor_100=testX_tensor[a:a+100]
4 testY_tensor_100=testY_tensor[a:a+100]
5 with torch.no_grad():
      pred = []
6
      for pr in range(len(testX_tensor_100)):
8
          model.reset_hidden_state()
          predicted = model(torch.unsqueeze(testX_tensor_100[pr], 0))
          predicted = torch.flatten(predicted).item()
          pred.append(predicted)
14
      # INVERSE
      pred_inverse = scaler_y.inverse_transform(np.array(pred).reshape(-1, 1))
      testY_inverse = scaler_y.inverse_transform(testY_tensor_100)
```

모델 테스트

```
1 fig = plt.figure(figsize=(10,3))
2 plt.plot(np.arange(len(pred_inverse)), pred_inverse, label = 'pred')
3 plt.plot(np.arange(len(testY_inverse)), testY_inverse, label = 'true')
4 plt.title("Test plot")
5 plt.legend()
6 plt.show()
```


Inde x	Features	Format	Description
1	Date Time	01.01.2009 00:10:00	Date-time reference
2	p (mbar)	996.52	내부 압력을 정량화하는 데 사용되는 파스칼 SI 유도 압력 단위. 기상 보고서는 일반적으로 대기 압을 밀리바 단위로 나타낸다. The pascal SI derived unit of pressure used to quantify internal pressure. Meteorological reports typically state atmospheric pressure in millibars.
3	T (degC)	-8.02	Temperature in Celsius
4	Tpot (K)	265.4	Temperature in Kelvin
5	Tdew (degC)	-8.9	습도에 대한 온도(섭씨) 이슬점은 공기 중 물의 절대량을 측정하는 것입니다. DP는 공기가 그 안 에 있는 모든 수분을 담을 수 없고 물이 응축되는 온도입니다. Temperature in Celsius relative to humidity. Dew Point is a measure of the absolute amount of water in the air, the DP is the temperature at which the air cannot hold all the moisture in it and water condenses.
6	rh (%)	93.3	상대 습도는 공기가 수증기로 얼마나 포화 상태 인지를 측정하는 측도이며, %RH는 수집 물체 내 에 포함된 물의 양을 결정합니다. Relative Humidity is a measure of how saturated the air is with water vapor, the %RH determines the amount of water contained within collection objects.
7	VPmax (mbar)	3.33	포화증기압 Saturation vapor pressure
8	VPact (mbar)	3.11	증기압 Vapor pressure
9	VPdef (mbar)	0.22	Vapor pressure deficit
10	sh (g/kg)	1.94	Specific humidity
11	H2OC (mmol/mol)	3.12	Water vapor concentration
12	rho (g/m ** 3)	1307.75	Airtight
13	wv (m/s)	1.03	Wind speed
14	max. wv (m/s)	1.75	Maximum wind speed
15	wd (deg)	152.3	Wind direction in degrees

https://deep-deep-deep.tistory.com/60

실습 LSTM 기반 워터펌프고장 예측

데이터 읽어오기

라이브러리 import

```
1 import numpy as np # linear algebra
2 import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
3 from sklearn.preprocessing import MinMaxScaler
4 import os
5 import torch
6 import torch.nn as nn
7 from torch.utils.data import TensorDataset # 텐서데이터셋
8 from torch.utils.data import DataLoader # 데이터로더
9 import matplotlib.pyplot as plt
```

데이터 읽어오기

```
df=pd.read_csv("dataset/sensor_LSTM.csv")
df
```


pump_sensor_data

Pump sensor data for predictive maintenance

Content

The data are from all available sensor, all of them are raw value. Total sensor are 52 unit.

Water pump maintenance: shutdown prediction

Python · pump_sensor_data

https://www.kaggle.com/datasets/nphantawee/pump-sensor-data/data https://www.kaggle.com/code/winternguyen/water-pump-maintenance-shutdown-prediction

데이터확인

1	data.	head(

	Unnamed:	0	timestamp	sensor_04	sensor_06	sensor_07	sensor_08	sensor_09	machine_status
0		0	2018-04-01 0:00	634.3750	13.41146	16.13136	15.56713	15.05353	NORMAL
1		1	2018-04-01 0:01	634.3750	13.41146	16.13136	15.56713	15.05353	NORMAL
2		2	2018-04-01 0:02	638.8889	13.32465	16.03733	15.61777	15.01013	NORMAL
3		3	2018-04-01 0:03	628.1250	13.31742	16.24711	15.69734	15.08247	NORMAL
4		4	2018-04-01 0:04	636.4583	13.35359	16.21094	15.69734	15.08247	NORMAL

맨 앞 5개 데이터 확인

센서 5개 데이터와 기계상태 데이터

1 data.describe()

	Unnamed: 0	sensor_04	sensor_06	sensor_07	sensor_08	sensor_09
count	220320.000000	220301.000000	215522.000000	214869.000000	215213.000000	215725.000000
mean	110159.500000	590.673936	13.501537	15.843152	15.200721	14.799210
std	63601.049991	144.023912	2.163736	2.201155	2.037390	2.091963
min	0.000000	2.798032	0.014468	0.000000	0.028935	0.000000
25%	55079.750000	626.620400	13.346350	15.907120	15.183740	15.053530
50%	110159.500000	632.638916	13.642940	16.167530	15.494790	15.082470
75%	165239.250000	637.615723	14.539930	16.427950	15.697340	15.118630
max	220319.000000	800.00000	22.251160	23.596640	24.348960	25.000000

데이터 특징 확인

Machine_status는 문자열 데이터라 확인 안됨

데이터 정리

```
실습
```

```
Nan 데이터 제거
1 data= data.dropna()
                                                               데이터 개수 조절
1 data=data[:80000]
                                                               번호, 시간 데이터 제거
1 data.drop(['Unnamed: 0', 'timestamp'],axis=1, inplace=True)
                                              기계 상태 데이터 확인
  1 data['machine_status'].value_counts()
machine_status
NORMAL
               75341
RECOVERING
                4655
BROKEN
Name: count, dtype: int64
 conditions = [(data['machine_status'] =='NORMAL'), (data['machine_status'] =='BROKEN'), (data['machine_status'] =='RECOYERING')]
 choices = [1, 0.1, 0.5]
 data['Operation'] = np.select(conditions, choices, default=0)
```

데이터 라벨 encoding-문자열 피쳐를 숫자 값으로 변환

데이터 시각화

1 df.shape (80000, 6)

Train, test 데이터 분할

```
1 seq_length = 20
2 batch = 100
3 train_size = int(len(df)*0.7)
4 train_set = df[0:train_size]
5 test_set = df[train_size-seq_length:]
```

Train: test = 7:3

데이터 스케일링

```
1 # Input scale
2 scaler_x = MinMaxScaler()
3 scaler_x.fit(train_set.iloc[:, :-1])
4
5 train_set.iloc[:, :-1] = scaler_x.transform(train_set.iloc[:, :-1])
6 test_set.iloc[:, :-1] = scaler_x.transform(test_set.iloc[:, :-1])
7
8 # Output scale
9 scaler_y = MinMaxScaler()
10 scaler_y.fit(train_set.iloc[:, [-1]])
11
12 train_set.iloc[:, -1] = scaler_y.transform(train_set.iloc[:, [-1]])
13 test_set.iloc[:, -1] = scaler_y.transform(test_set.iloc[:, [-1]])
```

	sensor_04	sensor_06	sensor_07	sensor_08	sensor_09	Operation
0	634.3750	13.41146	16.13136	15.56713	15.05353	1.0
1	634.3750	13.41146	16.13136	15.56713	15.05353	1.0
2	638.8889	13.32465	16.03733	15.61777	15.01013	1.0
3	628.1250	13.31742	16.24711	15.69734	15.08247	1.0
4	636.4583	13.35359	16.21094	15.69734	15.08247	1.0

변수값들의 크기가 제각각이므로 0-1사이 값으로 스케일링

	sensor_04	sensor_06	sensor_07	sensor_08	sensor_09	Operation
0	0.943783	0.735797	0.758245	0.726412	0.707483	1.0
1	0.943783	0.735797	0.758245	0.726412	0.707483	1.0
2	0.950529	0.731029	0.753825	0.728779	0.705442	1.0
3	0.934442	0.730632	0.763686	0.732499	0.708844	1.0
4	0.946897	0.732618	0.761986	0.732499	0.708844	1.0

데이터셋 생성

```
1 a = [1, 2, 3, 4, 5, 6]
 2 device = torch.device('cpu')
 3 # 데이터셋 생성 함수
 4 def build_dataset(time_series, seq_length):
                                                                      1 a[0:3]
      dataX = []
      dataY = []
                                                                    [1, 2, 3]
      for i in range(0, len(time series)-seq length):
          _x = time_series[i:i+seq_length, :]
          _y = time_series[i+seq_length, [-1]]
                                                                      1 a[3]
          # print(_x, "-->",_y)
          dataX.append(x)
                                                                     4
          dataY.append(_y)
      return np.array(dataX), np.array(dataY)
15
16 trainX, trainY = build_dataset(np.array(train_set), seq_length)
17 testX, testY = build_dataset(np.array(test_set), seq_length)
18
19 # 텐서로 변환
20 trainX_tensor = torch.FloatTensor(trainX)
21 trainY_tensor = torch.FloatTensor(trainY)
23 testX_tensor = torch.FloatTensor(testX)
24 testY_tensor = torch.FloatTensor(testY)
25 testX tensor = testX tensor.to(device)
26 testY_tensor = testY_tensor.to(device)
27 # 텐서 형태로 데이터 정의
28 dataset = TensorDataset(trainX_tensor, trainY_tensor)
29 # 데이터로더는 기본적으로 2개의 인자를 입력받으며 배치크기는 통상적으로 2의 배수를 사용
30 dataloader = DataLoader(dataset.
31
                         batch size=batch.
                         shuffle=True,
32
33
                         drop_last=True)
```

1 seq_length = 20

_	Operation	sensor_09	sensor_08	sensor_07	sensor_06	sensor_04	
	1.0	0.707483	0.726412	0.758245	0.735797	0.943783	1
Input	1.0	0.707483	0.726412	0.758245	0.735797	0.943783	2
x1	1.0	0.705442	0.728779	0.753825	0.731029	0.950529	3
			:				:
	1.0	0.708844	0.732499	0.763686	0.730632	0.934442	18
	1.0	0.708844	0.732499	0.761986	0.732618	0.946897	19
	1.0	0.707483	0.726412	0.758245	0.735797	0.943783	20
Output	1.0	0.705442	0.728779	0.753825	0.731029	0.950529	21
y1	1.0	0.708844	0.732499	0.763686	0.730632	0.934442	22
	1.0	0.708844	0.732499	0.761986	0.732618	0.946897	23

데이터셋 생성

```
1 a = [1, 2, 3, 4, 5, 6]
 2 device = torch.device('cpu')
 3 # 데이터셋 생성 함수
 4 def build_dataset(time_series, seq_length):
                                                                      1 a[0:3]
      dataX = []
      dataY = []
                                                                    [1, 2, 3]
      for i in range(0, len(time_series)-seq_length):
          _x = time_series[i:i+seq_length, :]
                                                                      1 a[3]
          _y = time_series[i+seq_length, [-1]]
          # print(_x, "-->",_y)
          dataX.append(x)
                                                                     4
          dataY.append(_y)
13
14
      return np.array(dataX), np.array(dataY)
15
16 trainX, trainY = build_dataset(np.array(train_set), seq_length)
17 testX, testY = build_dataset(np.array(test_set), seq_length)
18
19 # 텐서로 변환
20 trainX_tensor = torch.FloatTensor(trainX)
21 trainY_tensor = torch.FloatTensor(trainY)
23 testX_tensor = torch.FloatTensor(testX)
24 testY_tensor = torch.FloatTensor(testY)
25 testX tensor = testX tensor.to(device)
26 testY_tensor = testY_tensor.to(device)
27 # 텐서 형태로 데이터 정의
28 dataset = TensorDataset(trainX_tensor, trainY_tensor)
29 # 데이터로더는 기본적으로 2개의 인자를 입력받으며 배치크기는 통상적으로 2의 배수를 사용
30 dataloader = DataLoader(dataset.
31
                         batch size=batch.
                         shuffle=True,
32
33
                         drop_last=True)
```

1 seq_length = 20

	sensor_04	sensor_06	sensor_07	sensor_08	sensor_09	Operation	
1	0.943783	0.735797	0.758245	0.726412	0.707483	1.0	_
2	0.943783	0.735797	0.758245	0.726412	0.707483	1.0	
3	0.950529	0.731029	0.753825	0.728779	0.705442	1.0	Input
:				÷			x2
18	0.934442	0.730632	0.763686	0.732499	0.708844	1.0	
19	0.946897	0.732618	0.761986	0.732499	0.708844	1.0	
20	0.943783	0.735797	0.758245	0.726412	0.707483	1.0	
21	0.950529	0.731029	0.753825	0.728779	0.705442	1.0	
22	0.934442	0.730632	0.763686	0.732499	0.708844	1.0	Output
23	0.946897	0.732618	0.761986	0.732499	0.708844	1.0	y2

LSTM 모델 작성

```
seq_length = 20
1 import torch.nn as nn
 2
                                                                    batch = 100
3 # 설정값
4 data_dim = 6
5 \text{ hidden\_dim} = 10
                         모델 변수 설정
6 output_dim = 1
7 learning_rate = 0.01
8 \text{ nb\_epochs} = 100
10 class Net(nn.Module):
      ##기본변수, layer를 초기화해주는 생성자
12
      def __init__(self, input_dim, hidden_dim, seq_len, output_dim, layers)
13
         super(Net, self), init ()
14
         self.hidden_dim = hidden_dim
                                           모델 변수
15
          self.seq_len = seq_len
16
         self.output_dim = output_dim
17
          self.layers = layers
18
19
         self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=layers,
21
                            batch_first=True)
22
          self.fc = nn.Linear(hidden_dim, output_dim, bias = True)
23
24
      # 학습 초기화를 위한 함수
                                              LSTM 구조 정의
25
      def reset_hidden_state(self):
26
          self.hidden = (
27
                 torch.zeros(self.layers, self.seq_len, self.hidden_dim),
28
                 torch.zeros(self.layers, self.seq_len, self.hidden_dim))
29
30
      # 예측을 위한 함수
31
      def forward(self, x):
32
         x, _status = self.lstm(x)
33
         x = self.fc(x[:, -1])
34
          return x
```

모델 training 함수 작성

```
def train_model(model, train_df, num_epochs = None, Ir = None, verbose = 10, patience = 10):
           criterion = nn.MSELoss().to(device)
           optimizer = torch.optim.Adam(model.parameters(), Ir = learning_rate)
            nb_epochs = num_epochs
            # epoch마다 loss 저장
           train hist = np.zeros(nb epochs)
           for epoch in range(nb_epochs):
                       avg_cost = 0
                       total_batch = len(train_df)
                       for batch_idx, samples in enumerate(train_df):
                                  x_train, y_train = samples
                                  # seg별 hidden state reset
                                  model.reset_hidden_state()
                                  # H(x) 계산
                                  outputs = model(x train)
                                  # cost 계산
                                    loss = criterion(outputs, y train)
                                  # cost로 H(x) 개선
                                  optimizer.zero_grad()
                                  loss.backward()
                                  optimizer.step()
                                  avg_cost += loss/total_batch
                       train_hist[epoch] = avg_cost
                       if epoch % verbose == 0:
                                  print('Epoch:', '%04d' % (epoch), 'train loss:', '{:.4f}'.format(avg_cost))
                        # patience번째 마다 early stopping 여부 확인
                       if (epoch % patience == 0) & (epoch != 0):
                                  # loss가 커졌다면 early stop
                                  if train_hist[epoch-patience] < train_hist[epoch]:
                                              print('\mathbb{'\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\mathbb{'}\math
                                              break
            return model.eval(), train_hist
```

```
for batch_idx, samples in enumerate(train_df):
```

```
[0.9469, 0.7326, 0.7620, 0.7325, 0.7088, 1.0000]
       [0.9486, 0.7358, 0.7599, 0.7416, 0.7126, 1.0000]
       [0.9422, 0.7370, 0.7582, 0.7305, 0.7088, 1.0000]
        [0.9382. 0.7271. 0.7579. 0.7558. 0.7088. 1.0000]
       [0.9402, 0.7290, 0.7582, 0.7220, 0.7105, 1.0000]
        [0.9549, 0.7342, 0.7637, 0.7288, 0.7105, 1.0000]
        [0.9488, 0.7358, 0.7599, 0.7305, 0.7105, 1.0000]
        [0.9457. 0.7358. 0.7599. 0.7396. 0.7105. 1.0000]
       [0.9374. 0.7322. 0.7599. 0.7342. 0.7054. 1.0000]
       [0.9502, 0.7306, 0.7599, 0.7396, 0.7129, 1.0000]
        [0.9408, 0.7346, 0.7582, 0.7247, 0.7092, 1.0000]
        [0.9557, 0.7326, 0.7620, 0.7210, 0.7109, 1.0000]
       [0.9376, 0.7298, 0.7599, 0.7416, 0.7088, 1.0000].
       [0.9576, 0.7322, 0.7599, 0.7288, 0.7054, 1.0000],
       [0.9417, 0.7322, 0.7620, 0.7379, 0.7075, 1.0000],
       [0.9587, 0.7322, 0.7582, 0.7328, 0.7088, 1.0000]]
tensor([[1.],
        [1.]])
```

모델 학습

```
1 # 모델 학습
2 # 설정값
3 data_dim = 6
4 hidden_dim = 10
5 output_dim = 1
6 learning_rate = 0.001
7 nb_epochs = 100
8 net = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
9 model, train_hist = train_model(net, dataloader, num_epochs = nb_epochs, lr = learning_rate, verbose = 20, patience = 10)
```

```
10 class <u>Ne</u>t(nn.Module):
      # # 기본변수, layer를 초기화해주는 생성자
      def __init__(self, input_dim, hidden_dim, seq_len, output_dim, layers)
          super(Net, self).__init__()
13
14
          self.hidden_dim = hidden_dim
15
          self.seq_len = seq_len
16
          self.output dim = output dim
          self.layers = layers
17
18
          self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=layers,
19
                              # dropout = 0.1,
20
                              batch_first=True)
21
22
          self.fc = nn.Linear(hidden dim, output dim, bias = True)
23
24
      # 학습 초기화를 위한 함수
25
      def reset_hidden_state(self):
26
          self.hidden = (
27
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim),
28
                  torch.zeros(self.layers, self.seq_len, self.hidden_dim))
29
30
      # 예측을 위한 함수
31
      def forward(self, x):
32
          x, _status = self.lstm(x)
          x = self.fc(x[:, -1])
33
34
          return x
```

```
def train_model(model, train_df, num_epochs = None, Ir = None, verbose = 10, patience = 10):
   criterion = nn.MSELoss().to(device)
    optimizer = torch.optim.Adam(model.parameters(), Ir = learning rate)
   nb_epochs = num_epochs
   # epoch마다 loss 저장
    train hist = np.zeros(nb epochs)
   for epoch in range(nb_epochs):
       avg cost = 0
        total_batch = len(train_df)
       for batch_idx, samples in enumerate(train_df):
           x_train, y_train = samples
           # seg별 hidden state reset
           model.reset_hidden_state()
           # H(x) 계산
           outputs = model(x_train)
            # cost 계산
           loss = criterion(outputs, y_train)
            # cost로 H(x) 개선
           optimizer.zero_grad()
            loss.backward()
           optimizer.step()
           avg_cost += loss/total_batch
        train_hist[epoch] = avg_cost
```

모델 학습

```
# 모델 확습
# 설정값
data_dim = 6
output_dim = 1
hidden_dim = 10
learning_rate = 0.001
nb_epochs = 0
net = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
model, train_hist = train_model(net, dataloader, num_epochs = nb_epochs, lr = learning_rate, verbose = 5, patience = 10)

Epoch: 0000 train loss: 0.1265
Epoch: 0020 train loss: 0.0001
Epoch: 0040 train loss: 0.0001
Epoch: 0060 train loss: 0.0001
Epoch: 0080 train loss: 0.0000
```

```
1 # epoch별 손실값
2 fig = plt.figure(figsize=(10, 4))
3 plt.plot(train_hist, label="Training loss")
4 plt.legend()
5 plt.show()
```


실습

```
# 모델 저장
PATH = 'model2/model01.pth'
#torch.save(model.state dict(), PATH)
# 불러오기
model = Net(data_dim, hidden_dim, seq_length, output_dim, 1)
model.load_state_dict(torch.load(PATH), strict=False)
model.eval()
Net(
  (lstm): LSTM(6, 10, batch_first=True)
  (fc): Linear(in_features=10, out_features=1, bias=True)
```

```
# 예측 테스트
 2 a=12000
3 testX_tensor_2000=testX_tensor[a:a+2000]
4 testY_tensor_2000=testY_tensor[a:a+2000]
5 with torch.no_grad():
      pred = []
      for pr in range(len(testX_tensor_2000)):
8
          model.reset_hidden_state()
          predicted = model(torch.unsqueeze(testX_tensor_2000[pr], 0))
          predicted = torch.flatten(predicted).item()
13
          pred.append(predicted)
14
15
      # INVERSE
      pred_inverse = scaler_y.inverse_transform(np.array(pred).reshape(-1, 1))
16
      testY_inverse = scaler_y.inverse_transform(testY_tensor_2000)
```

모델 테스트

```
1 fig = plt.figure(figsize=(10,3))
2 plt.plot(np.arange(len(pred_inverse)), pred_inverse, label = 'pred')
3 plt.plot(np.arange(len(testY_inverse)), testY_inverse, label = 'true')
4 plt.title("Test plot")
5 plt.legend()
6 plt.show()
```

