Automatic Paraphrasing via Sentence Reconstruction and Roundtrip Translation

IJCAI 2021

MONTREAL

Zilu Guo¹, Zhongqiang Huang², Kenny Q. Zhu¹, Guandan Chen², Kaibo Zhang², Boxing Chen² and Fei Huang²

Abstract

Paraphrase generation plays key roles in NLP tasks such as question answering, machine translation, and information retrieval. In this paper, we propose a novel framework for paraphrase generation. It simultaneously decodes the output sentence using a pretrained wordset-to-sequence model and a round-trip translation model. We evaluate this framework on Quora, WikiAnswers, MSCOCO and Twitter, and show its advantage over previous state-of-the-art unsupervised methods and distantly-supervised methods by significant margins on all datasets. For Quora and WikiAnswers, our framework even performs better than some strongly supervised methods with domain adaptation. Further, we show that the generated paraphrases can be used to augment the training data for machine translation to achieve substantial improvements.

Introduction

Paraphrase: a pair of sentences with similar meaning, but different wording.

Two kinds of underlying semantics:

- 1. Word set
- 2. The translation in another language

word set: (man, sit, bike, bench)

A man is sitting on a bench next to a bike
A man is sitting on a bench next to a bicycle
A man sits on a bench by a bike
Man sitting on a bench near a personal bicycle
A man is sitting on a bench with a bike

Table 1. Paraphrases formed from a word set.

How to generate parpahrase:

Step 1. Generate a word set from the input

Step 2. Translate the input into another language

Step 3. Generate paraphrase through the word set and the translation with a hybrid decoder

Data Augmentation For NMT (English -- X)

Step 1. Extract English sentences from the training pairs

Step 2. Generate paraphrase For English sentences

Step 3. Combine the paraphrase and the X language from the original training pair to get new training pairs

Figure 1. Our Paraphrasing Framework

Algorithm 1 Paraphrasing Framework

Input: Original sentence $X = [x_1, x_2, \cdots];$

- Output: Paraphrase $Y = [y_1, y_2, \cdots];$ 1: Reduce X to a set of keywords KWS by removing
- stopwords; 2: Obtain WS from KWS by random replacement with
- 3: Translate X into Language L_2 : $Z = [z_1, z_2, \cdots]$;
- 4: Encode WS with set2seq to hidden state H_{ws} ;
- 5: Encode Z with L_2 - L_1 translation model to hidden state H_{bt} ;
- 6: Initialize: $Y = [], y_0 = BOS, t = 0;$
- 7: while $y_t = EOS$ and t < length-limit do
- 8: t = t + 1;
- Calculate y_t with Eqn. 3;
- 10: Y.append (y_t) ;
- 11: end while
- 12: **return** Y;

Figure 2. Detail For our framework

Results

L1 to L2 Translation Model

Approach

Set2seq model:

Input Token Sequence

Trained with in-domain & nonparallel data Trained on a single GTX-2080 GPU for 3 hours

Round-trip Translation model:

Trained with WMT17 parallel zh-en dataset
Trained on two GTX-2080
GPUs for 3 days

Set2seq-common model:

Trained with WMT17 English monolingual data
Trained on a single GTX-2080
GPU for 1.5 days

		Quora			WikiAnswers				
	Model	iBLEU	BLEU	R-1	R-2	iBLEU	BLEU	R-1	R-2
Supervised	DNPG (SOTA)	18.01	25.03	63.73	37.75	34.15	41.64	57.32	25.88
	Pointer-generator	5.04	6.96	41.89	12.77	21.87	27.94	53.99	20.85
Supervised +	Transformer+Copy	6.17	8.15	44.89	14.79	23.25	29.22	53.33	21.02
Domain-Adapted	MTL+Copy	7.22	9.83	47.08	19.03	21.87	30.78	54.10	21.08
	DNPG	10.39	16.98	56.01	28.61	25.60	35.12	<u>56.17</u>	23.65
Unsupervised	CGMH	9.94	15.73	48.73	26.12	20.05	26.45	43.31	16.53
	UPSA	<u>12.02</u>	<u>18.18</u>	<u>56.51</u>	30.69	24.84	32.39	54.12	21.45
Distantly-	Liu et al. [2020]	9.90	15.03	52.65	23.18	-	-	-	-
	ParaNMT(round-trip translation)	10.69	15.75	52.28	25.12	14.94	20.01	30.55	10.23
	ParaBank	9.92	14.71	50.03	23.80	13.14	17.56	28.97	9.34
Supervised -	set2seq (ours)	13.54	20.85	58.27	32.59	25.98	33.41	55.95	23.08
	set2seq-common+RTT (ours)	12.60	18.85	57.13	31.19	25.04	33.43	55.81	23.12
	set2seq+RTT (ours)	14.66	22.53	59.98	34.09	28.27	37.42	56.71	24.94
		MSCOCO		Twitter					
	Model	iBLEU	BLEU	Rouge1	Rouge2	iBLEU	BLEU	Rouge 1	Rouge2
Unsupervised	CGMH	7.84	11.45	32.19	8.67	4.18	5.32	19.96	5.44
	UPSA	9.26	14.16	37.18	11.21	4.93	6.87	28.34	8.53
Distantly- Supervised –	Liu et al. [2020]	6.67	9.86	22.14	6.21	-	-	-	-
	ParaNMT(round-trip translation)	7.39	10.71	30.74	8.68	7.57	10.79	35.38	14.74
	ParaBank	6.45	9.48	29.22	8.35	6.50	9.71	34.56	13.92
	set2seq (ours)	11.54	17.61	39.87	13.67	5.72	7.48	31.65	10.89
	set2seq-common+RTT (ours)	9.07	13.44	35.90	11.05	9.73	14.30	39.23	18.82
	set2seq+RTT (ours)	11.39	17.93	40.28	14.04	9.95	13.97	38.96	18.32

Table 2. Compared with baseline methods

Model Variants	iBLEU	BLEU_{ref}	BLEU_{src}
set2seq+RTT ·	14.66	22.53	56.17
⊕ excluding stopwords⊕ retaining high-IDF	13.46	22.15	64.75
	13.78	23.92	77.47
⊕ position encoding	14.07	23.26	68.60

Table 3. Ablation Study

	Accuracy		Fluency		
Method	Score	Agreement	Score	Agreement	
CGMH	3.15	0.55	3.42	0.50	
UPSA	3.49	0.54	3.51	0.55	
DNPG(Adapted)	3.32	0.48	3.62	0.54	
RTT	3.37	0.59	4.18	0.58	
set2seq+RTT(ours)	3.78	0.57	4.13	0.55	

Table 4. Human evaluation

	Size	Orig. Pairs	Augmented
De-En	150k	12.89	15.06
	300k	15.67	17.20
Zh-En	150k	10.21	11.99
	300k	12.10	14.07
Ru-En	150k	16.88	18.55
	300k	19.30	21.09

Table 5. Results For NMT data augmentation

¹ Shanghai Jiao Tong University

² Alibaba Damo Academy