Dependable Hybrid Systems Design: a Refinement Approach

Dominique Méry Zheng Cheng

Jan 27th, 2020

Where were we?

- Overview of hybrid system
- Review of calculus
- Review of Event-B
- Develop theories in Event-B

Outlines

Design Hybrid Systems in Event-B Smart Heating System Refinement Strategy for Hybrid System Design

▶ 2 modes: ON/OFF

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- \blacktriangleright Sample at δ s

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- ightharpoonup Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- ightharpoonup Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- ▶ Safety: $T_{min} \le T \le T_{max}$

Refinement Strategy for Hybrid System Design

Smart Heating System (Generic M0)

Smart Heating System (Generic M0)

Checklist:

- Generic hybrid system state trajectory
- Generic safety property
- Big-step semantics
- Proof obligations

Smart Heating System (Domain-specific M1)

Smart Heating System (Domain-specific M1)

Checklist:

- Concrete system state trajectory
- Concrete safety property
- Big-step semantics
- Data refinement
- Proof obligations

Smart Heating System (Time-triggered M2)

Smart Heating System (Time-triggered M2)

Checklist:

- ▶ Time pointer
- Refined system state trajectory
- Refined safety property
- Small-step semantics
- Invariant preservation
- ► Lab Practice: https://github.com/veriatl/LORIA_WEEK2

Smart Heating System (Close-loop M3)

Smart Heating System (Close-loop M3)

Checklist:

- Variable for close-loop mode control
- Prediction (Controller)
- Progression (Plant)

Smart Heating System (Control Logic M4)

Checklist:

- Revisit the description of heating system
- ► Complete case analysis

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do

- ▶ 2 modes: ON/OFF
- ightarrow the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- $\rightarrow \ \mathsf{monotonicity}$

- 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- \rightarrow monotonicity
- ightharpoonup Sample at δ s
- $\rightarrow\,$ Decision at sampling time

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- ightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
 - Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode

- 2 modes: ON/OFF
- ightarrow the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- ightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
 - Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode
 - ▶ Safety: $T_{min} \le T \le T_{max}$

Case 1: ON mode, $T(now) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta + t_{act}) \leq T_{max}$, Stay ON

Case 2: ?