MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA I

Numer zadania	Numer czynności	Etapy rozwiązania zadania	Liczba punktów
1.	1.1.	Przedstawienie liczby <i>a</i> w postaci $x + y\sqrt{3}$: $a = 2 - \sqrt{3}$.	1
	1.2.	Zapisanie liczby <i>b</i> w postaci potęgi liczby 3: $b = 3^{0.5}$.	1
	1.3.	Wyznaczenie liczby c , której 80% jest równe sumie liczb a i b : c =2,5.	1
2.	2.1.	Wyznaczenie mocy zbioru Ω : $\overline{\Omega} = 5!$.	1
	2.2.	Wyznaczenie liczby zdarzeń sprzyjających zdarzeniu A : $= A = 2! \cdot 3!$	1
	2.3.	Obliczenie $P(A)$, podanie wyniku w postaci ułamka nieskracalnego: $P(A) = \frac{1}{10}$.	1
		Rozwiązanie za pomocą drzewa: 1 pkt – wykonanie poprawnego rysunku drzewa, 1 pkt – oznaczenie prawdopodobieństwa na gałęzi, 1 pkt – obliczenie prawdopodobieństwa.	
3.	3.1.	Wyznaczenie wartości a , dla której miejscem zerowym funkcji f jest liczba -1 : $a=4$.	1
	3.2.	Wyznaczenie wartości a , dla której prosta będąca wykresem funkcji f jest nachylona do osi OX pod kątem 60° : $a = \sqrt{3}$.	1
	3.3.	Wyznaczenie takiej wartości a , dla której równanie $ax + 4 = 2a + 4$ ma nieskończenie wiele rozwiązań: $a = 0$.	1
	4.1.	Obliczenie średniej miesięcznej płacy w zakładzie: 438.	1
4.	4.2.	Obliczenie wariancji miesięcznej płacy: 2436.	2
	4.3.	Obliczenie odchylenia standardowego i zaokrąglenie otrzymanego wyniku: 49,4.	1
5.	5.1	Zastosowanie wzoru na sumę kolejnych wyrazów ciągu arytmetycznego: $S_n = \frac{(1+n)n}{2}$ lub $S_{n-1} = \frac{n(n-1)}{2}$ i zapisanie równości w postaci np. $n^2 = 2 \cdot S_{n-1} + n$.	2
	5.2.	Doprowadzenie prawej strony równości do postaci n^2 .	1
6.	6.1.	Podanie zbioru rozwiązań nierówności $f(x) \le 3: (-\infty, 0) \cup (2, +\infty)$.	1
	6.2.	Zapisanie najmniejszej i największej wartości funkcji f w przedziale $\langle 0, 3 \rangle$: najmniejsza wartość jest równa 0, a największa jest równa 4.	2

	6.3.	Odczytanie z wykresu miejsc zerowych funkcji f : $x_1 = -1$, $x_2 = 3$ oraz współrzędnych punktu przecięcia wykresu z osią OY .	1
	6.4.	Wyznaczenie współczynnika a : $a = -1$.	1
	6.5.	Zapisanie wzoru funkcji f w postaci iloczynowej: $f(x) = -(x+1)(x-3)$.	1
	7.1.	Zapisanie wyrazu a_{n+1} : $a_{n+1} = \frac{2-3n}{7}$ lub $a_{n+1} = \frac{5-3(n+1)}{7}$.	1
	7.2.	Wyznaczenie różnicy ciągu: $a_{n+1} - a_n = -\frac{3}{7}$ oraz zapisanie wniosku: ciąg (a_n) jest ciągiem arytmetycznym.	1
7.	7.3.	Wyznaczenie wyrazów ciągu (a_n) : $a_4 = -1$; $a_{11} = -4$.	1
	7.4.	Wykorzystanie definicji lub własności ciągu geometrycznego do zapisania warunków zadania.	1
	7.5.	Zapisanie równania (alernatywy równań) z jedną niewiadomą <i>x</i> .	1
	7.6.	Rozwiązanie równania i podanie odpowiedzi: $x = 0$.	1
	8.1.	Zapisanie zależności: $h = 2r + 6$.	1
8.	8.2.	Zapisanie zależności: $2\pi r^2 + 2\pi rh = 378\pi$.	1
	8.3.	Doprowadzenie do równania z jedną niewiadomą r lub h .	1
	8.4.	Przekształcenie równania do postaci uporządkowanej, rozwiązanie go, wyznaczenie długości promienia i długości wysokości walca: np. $r^2 + 2r - 63 = 0$ (lub $h^2 - 8h - 240 = 0$), $r = 7 \land h = 20$.	2
	8.5.	Obliczenie objętości walca: $V = 980\pi$.	1
	9.1.	Zapisanie założenia: $R \setminus \{0\}$.	1
	9.2.	Doprowadzenie nierówności wymiernej do postaci $x(3-x) \le 0$ lub $\frac{3-x}{x} \le 0$, gdzie $x \ne 0$.	1
	9.3.	Rozwiązanie nierówności wymiernej: $x \in (-\infty, 0) \cup (3, \infty)$.	1
9.	9.4.	Zaznaczenie zbioru A na osi liczbowej.	1
	9.5.	Wykorzystanie geometrycznej interpretacji wartości bezwzględnej do wyznaczenia zbioru B : $B = (-4, 2)$.	1
	9.6.	Zaznaczenie zbioru <i>B</i> na osi liczbowej.	1
	9.7.	Wyznaczenie sumy: $A \cup B = (-\infty, 2) \cup (3, +\infty)$.	1
	9.8.	Wyznaczenie różnicy: $A \setminus B = (-\infty, -4) \cup (3, \infty)$.	1

10.	10.1.	Sporządzenie rysunku z odpowiednimi oznaczeniami.	1
	10.2.	Obliczenie długości ramion trapezu: np. $c = 4\sqrt{3}$; $d = 12$.	2
	10.3.	Obliczenie pola trapezu (wykorzystanie warunku: $a+b=c+d$): $P=12(3+\sqrt{3})$.	1
	10.4.	Obliczenie długości rzutów prostokątnych ramion trapezu na dłuższą podstawę trapezu : np. $x = 2\sqrt{3}$; $y = 6\sqrt{3}$.	2
	10.5.	Rozwiązanie układu równań, w którym niewiadomymi są dłuższa i krótsza podstawa trapezu: $a = 6\sqrt{3} + 6$; $b = 6 - 2\sqrt{3}$.	2

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.