黑体辐射

TABLE 12.2 Blackbody Radiation Functions

TABLE 12.2 Blackbody Radiation Functions				
λT	-	$I_{\lambda,b}(\lambda,T)/\sigma T^5$	$I_{\lambda,b}(\lambda,T)$	
(μm·K)	$F_{(0 o \lambda)}$	$(\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{sr})^{-1}$	$I_{\lambda, b}(\lambda_{\max}, T)$	
200	0.000000	0.375034×10^{-27}	0.000000	
400	0.000000	0.490335×10^{-13}	0.000000	
600	0.000000	0.104046×10^{-8}	0.000014	
800	0.000016	0.991126×10^{-7}	0.001372	
1,000	0.000321	0.118505×10^{-5} 0.523927×10^{-5}	0.016406	
1,200 1,400	0.002134 0.007790	0.323927×10^{-4} 0.134411×10^{-4}	0.072534 0.186082	
1,600	0.007790	0.249130	0.344904	
1,800	0.039341	0.375568	0.519949	
2,000	0.066728	0.493432	0.683123	
2,200	0.100888	0.589649×10^{-4}	0.816329	
2,400	0.140256	0.658866	0.912155	
2,600	0.183120	0.701292	0.970891	
2,800	0.227897	0.720239	0.997123	
2,898	0.250108	0.722318×10^{-4}	1.000000	
3,000	0.273232	0.720254×10^{-4}	0.997143	
3,200	0.318102	0.705974	0.977373	
3,400	0.361735	0.681544	0.943551	
3,600	0.403607	0.650396	0.900429	
3,800	0.443382	0.615225×10^{-4}	0.851737	
4,000	0.480877	0.578064	0.800291	
4,200	0.516014	0.540394	0.748139	
4,400	0.548796	0.503253	0.696720	
4,600	0.579280	0.467343	0.647004	
4,800	0.607559	0.433109	0.599610	
5,000	0.633747	0.400813	0.554898	
5,200	0.658970	0.370580×10^{-4}	0.513043	
5,400	0.680360	0.342445	0.474092	
5,600	0.701046	0.316376	0.438002	
5,800 6,000	0.720158 0.737818	0.292301 0.270121	0.404671 0.373965	
6,200	0.754140	0.249723×10^{-4}	0.375965	
6,400	0.769234	0.230985	0.319783	
6,600	0.783199	0.213786	0.295973	
6,800	0.796129	0.198008	0.274128	
7,000	0.808109	0.183534	0.254090	
7,200	0.819217	0.170256×10^{-4}	0.235708	
7,400	0.829527	0.158073	0.218842	
7,600	0.839102	0.146891	0.203360	
7,800	0.848005	0.136621	0.189143	
8,000	0.856288	0.127185	0.176079	
8,500	0.874608	0.106772×10^{-4}	0.147819	
9,000	0.890029	0.901463×10^{-5}	0.124801	
9,500	0.903085	0.765338	0.105956	
10,000	0.914199	0.653279×10^{-5}	0.090442	
10,500	0.923710	0.560522	0.077600	
11,000	0.931890	0.483321	0.066913	
11,500	0.939959	0.418725	0.057970	
12,000	0.945098 0.955139	0.364394×10^{-5} 0.279457	0.050448 0.038689	
13,000 14,000	0.953139	0.217641	0.030131	
15,000	0.969981	0.171866×10^{-5}	0.023794	
16,000	0.973814	0.177429	0.019026	
18,000	0.980860	0.908240×10^{-6}	0.019020	
20,000	0.985602	0.623310	0.008629	
25,000	0.992215	0.276474	0.003828	
30,000	0.995340	0.140469×10^{-6}	0.001945	
40,000	0.997967	0.473891×10^{-7}	0.000656	
50,000	0.998953	0.201605	0.000279	
75,000	0.999713	0.418597×10^{-8}	0.000058	
100,000	0.999905	0.135752	0.000019	
۲ ^۸ _	. (^λ			

$$F_{(0\to\lambda)} \equiv \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\int_0^{\infty} E_{\lambda,b} d\lambda} = \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\sigma T^4} = \int_0^{\lambda T} \frac{E_{\lambda,b}}{\sigma T^5} d(\lambda T) = f(\lambda T)$$
 (12.3)

辐射基本概念

不透明材料 (Opaque) 半透明材料 Irradiation

ρ	反射率 Reflectivity	$\rho = \frac{G_{ref}}{G}$	I	强度	Intensity
α	吸收率 Absorptivity	$\alpha = \frac{G_{abs}}{G}$	E	放射	Emission
			G	照射	Irradiation
ε 发射率 Emissivity		$I = E + G_{Edit}$	辐射度	Radiosity	
τ	透射率 Transmissivity $ au = \frac{1}{2}$	$\tau = \frac{G_{tr}}{}$	$J = E + G_{\overline{D}}$ = $E + \rho G$	111171775	,
		$\tau = \frac{G}{G}$	q	净热辐射率	Net radiation heat rate

能量守恒	
任意介质	$\rho + \alpha + \tau = 1$
不透明介质	$\rho + \alpha = 1$

热力平衡 (吸收=发射)

推导结论

立体角 计算公式

黑体辐射 (理想物体) Blackbody Radiation

 $= \sin \theta d\theta d\phi$

普朗克分布 Planck distribution

韦恩定律 Wien's displacement law $\lambda_{Max}T = C_3 = 2898 \,\mu\text{m}$

一个完整半球的立体角计算如下 $\sin \theta \, d\theta \, d\phi = 2\pi \, \text{sr}$

> $C_1 = 3.742 \times 10^8 \ W \cdot \mu m^4 / m$ $C_2 = 1.439 \times 10^4 \ \mu m \cdot h$

斯蒂芬-玻尔兹曼定律 The Stefan—Boltzmann Law

 $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$

 $E_h = \pi I_h =$

辐射角系数 法则

- Reciprocity Relation $A_iF_{ij} = A_jF_{ji}$
- Summation Rule $\sum_{j=1}^N F_{ij} = 1$

细分面 Subdivided Surface

View Factor 角系数

$$+ \overline{Y} (1 + \overline{X}^2)^{1/2} \tan^{-1} \frac{\overline{Y}}{(1 + \overline{X}^2)^{1/2}} - \overline{X} \tan^{-1} \overline{X} - \overline{Y} \tan^{-1} \overline{Y} \right\}$$

$$F_{ij} = \frac{1}{2} \{ S - [S^2 - 4(r_j/r_i)^2]^{1/2} \}$$

辐射阻

$$R_{
m ar{lpha}}$$
福射阻 $=rac{1-arepsilon}{arepsilon A}$ $R_{
m ar{lpha}}$ 间辐射阻 $=rac{1}{AF}$

Case 1 两表面 Two-surface Enclosure

最简单类型,辐射热交换仅发生在两个表面

$$q_1 = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

Case 2 辐射屏障 Radiation Shield Case 3 重辐射 Reradiating Surface

