1/21: I) Do the following (VSEPR) problems from your text (Miessler et al. (2014)): Chapter 3: #8, 9f-i, 20, 29.

- 3.8 Give Lewis dot structures and sketch the shapes of the following:
 - a. $SeCl_4$

b. I₃

c. $PSCl_3$

d. $\mathrm{IF_4}^-$

e. PH_2^-

f. TeF_4^{2-}

g. N_3^-

$$[\dot{N} = N = N\dot{]}^{-}$$

$$N == N == N$$

 $h. SeOCl_4$

$$\begin{array}{c|c}
Cl & & \\
Cl & \cdot & & \\
Cl & & \\
Cl & & Cl
\end{array}$$

i. PH_4^+

- 3.9 Give Lewis dot structures and sketch the shapes of the following.
 - f. $IO(OH)_5$

 \mathbf{g} . $SOCl_2$

h. $ClOF_4^-$

i. XeO_2F_2

 ${\bf 3.20}$ Predict and sketch the structure of the (as yet) hypothetical ion ${\rm IF_3}^{2-}$.

3.29 Sketch the most likely structure of PCl_3Br_2 and explain your reasoning.

Answer. Bromine is more electropositive than chlorine. Thus, by Bent's rule, the bromines will bond to the hybrid orbitals with greater s-character (the equatorial sp^2 ones) first.

II) Assign the symmetry point group to the 13 ions and molecules in problems #8, 9f-i in Chapter 3 of your text.

3.8

- III) Assign the symmetry point group of the following molecules and objects. Ignore the H atoms in (a), (e), and (g). Note that (e) has pseudooctahedral geometry and (g) is square-planar.
 - a) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h . Therefore, the above molecule is of the C_{2h} point group.

b) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h Therefore, the above molecule is of the C_{2h} point group.

c) POCl₃

Answer. Not low or high symmetry. Has a C_3 axis. No perpendicular C_2 axes. No σ_h . Has three σ_v planes all offset by 60°.

Therefore, POCl₃ is of the C_{3v} point group.

d) Tennis ball (including the seam)

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes.

Therefore, a tennis ball is of the C_{2v} point group.

e) $trans-[CrCl_2(H_2O)_4]^+$

Answer. Not low or high symmetry. Has a C_4 axis. Has 4 perpendicular C_2 axes. Has σ_h . Therefore, trans- $[CrCl_2(H_2O)_4]^+$ is of the D_{4h} point group.

f) 1,3,5-trichlorobenzene.

Answer. Not low or high symmetry. Has a C_3 axis. Has 3 perpendicular C_2 axes. Has σ_h . Therefore, 1,3,5-trichlorobenzene is of the D_{3h} point group.

g) trans-Pt(NH₃)₂Cl₂

Answer. Not low or high symmetry. Has a C_2 axis. Has 2 perpendicular C_2 axes. Has σ_h . Therefore, $\text{TeF}_4^{\ 2^-}$ is of the D_{2h} point group.

h)	$\mathrm{SF}_{5}\mathrm{Cl}$	
	Answer. Not low or high symmetry. Has a C_4 axis. No perpendicular C_2 axes. No σ_h . I perpendicular σ_v planes and two perpendicular σ_d planes. Therefore, SF ₅ Cl is of the C_{4v} point group.	Has two
i)	BFClBr	
	Answer. BFClBr is of the C_s point group.	
j)	$\mathrm{PF_2}^+$	
	Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . I perpendicular σ_v planes.	Has two
	Therefore, PF_2^+ is of the C_{2v} point group.	

IV) In the octahedral ion ${\rm FeF_6}^{3-}$, what symmetry elements are destroyed if two *trans* F ions are moved away from the ${\rm Fe^{3+}}$ center in an equidistant fashion?

Answer. If the described change is made, the point group changes from O_h to D_{4h} . In this change, every C_3 and S_6 axis, two of the three C_4 axes, and every σ_d that does not contain the axis along which the F ions are stretched are destroyed.