# **Unit 3: Coordinate geometry**

**Subunit 3.2: Circles** 

| 12 | A diameter of a circle | C has end-points at (              | -3 $-5$ ) and $(7$ $-3$ ) |
|----|------------------------|------------------------------------|---------------------------|
| 12 | A diameter of a circle | C <sub>1</sub> has chu-points at ( | -3, $-3$ ) and $(7, 3)$ . |

| (a) | Find an equation of the circle $C_1$ . | [3] |
|-----|----------------------------------------|-----|
|     |                                        |     |
|     |                                        |     |
|     |                                        |     |
|     |                                        |     |
|     |                                        |     |
|     |                                        |     |



The circle  $C_1$  is translated by  $\binom{8}{4}$  to give circle  $C_2$ , as shown in the diagram.

| <b>(b)</b> | Find an equation of the circle $C_2$ .                    | [2] |
|------------|-----------------------------------------------------------|-----|
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
|            |                                                           |     |
| The        | two circles intersect at points $R$ and $S$ .             |     |
| (c)        | Show that the equation of the line RS is $y = -2x + 13$ . | [4] |

| ) | Find an equation of the circle. |  |
|---|---------------------------------|--|
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |
|   |                                 |  |



The diagram shows the circle with equation  $(x-2)^2 + y^2 = 8$ . The chord AB of the circle intersects the positive y-axis at A and is parallel to the x-axis.

[3]

(a) Find, by calculation, the coordinates of A and B.

| ( <b>b</b> ) | Find the volume of revolution when the shaded segment, bounded by the circle and the chord $AB$ , is rotated through 360° about the $x$ -axis. [5] |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                    |
|              |                                                                                                                                                    |
|              |                                                                                                                                                    |
|              |                                                                                                                                                    |

5

| 5. 1.41                      |    |
|------------------------------|----|
| and the coordinates of $B$ . | [6 |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |
|                              |    |



The diagram shows the circle with centre C(-4,5) and radius  $\sqrt{20}$  units. The circle intersects the *y*-axis at the points A and B. The size of angle ACB is  $\theta$  radians.

| (a) | Find the equation of the tangent to the circle at the point $(-6,9)$ .      | [3] |
|-----|-----------------------------------------------------------------------------|-----|
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
| (b) | Find the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ . | [2] |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
| (c) | Find the value of $\theta$ correct to 4 significant figures.                | [3] |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |
|     |                                                                             |     |

.....

6



The diagram shows a circle C of radius r, where x > 0 and y > 0 for all points on C. The least distance between any point on C and the x-axis is 8 units, and the least distance between any point on C and the y-axis is 5 units.

| (a) | State the coordinates of the centre of the circle in terms of $r$ .                                       | [1]         |
|-----|-----------------------------------------------------------------------------------------------------------|-------------|
| (b) | Given that the distance between the origin and the centre of the circle is 15 units, find the va of $r$ . | alue<br>[3] |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
| (c) | The point on the circle furthest from the origin is denoted by $P$ .                                      |             |
|     | Find the gradient of the tangent to the circle at <i>P</i> .                                              | [2]         |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |
|     |                                                                                                           |             |

| 10 | The        | e coordinates of the points $A$ and $B$ are $(-1, -2)$ and $(7, 4)$ respectively. |    |
|----|------------|-----------------------------------------------------------------------------------|----|
|    | (a)        | Find the equation of the circle, $C$ , for which $AB$ is a diameter.              | [4 |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    | <b>(b)</b> | Find the equation of the tangent, $T$ , to circle $C$ at the point $B$ .          | [4 |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |
|    |            |                                                                                   |    |

| The | equation of a circle with centre C is $x^2 + y^2 - 8x + 4y - 5 = 0$ .                                         |     |
|-----|---------------------------------------------------------------------------------------------------------------|-----|
| (a) | Find the radius of the circle and the coordinates of $C$ .                                                    | [3] |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
|     |                                                                                                               |     |
| The | point O also lies on the circle and PO is parallel to the views                                               |     |
|     | point $Q$ also lies on the circle and $PQ$ is parallel to the $x$ -axis.  Write down the coordinates of $Q$ . |     |
|     | point $Q$ also lies on the circle and $PQ$ is parallel to the $x$ -axis.  Write down the coordinates of $Q$ . | [2] |
|     |                                                                                                               | [2] |
|     |                                                                                                               | [2] |

| 10 | (a) | The coordinates of two points $A$ and $B$ are $(-7, 3)$ and $(5, 11)$ respectively. |     |
|----|-----|-------------------------------------------------------------------------------------|-----|
|    |     | Show that the equation of the perpendicular bisector of AB is $3x + 2y = 11$ .      | [4] |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    | (L) |                                                                                     |     |
|    | (b) | A circle passes through A and B and its centre lies on the line $12x - 5y = 70$ .   | [5] |
|    |     | Find an equation of the circle.                                                     | [5] |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |
|    |     |                                                                                     |     |

The equation of a circle is  $x^2 + y^2 - 4x + 6y - 77 = 0$ . (a) Find the x-coordinates of the points A and B where the circle intersects the x-axis. [2] ..... **(b)** Find the point of intersection of the tangents to the circle at *A* and *B*. [6] ..... .....

.....

| The point A has coordinates $(1, 5)$ and the line $l$ has gradient $-\frac{2}{3}$ and passes through A. A circle has centre $(5, 11)$ and radius $\sqrt{52}$ . |                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| (a)                                                                                                                                                            | Show that $l$ is the tangent to the circle at $A$ . [2]                                                    |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
| <b>(b)</b>                                                                                                                                                     | Find the equation of the other circle of radius $\sqrt{52}$ for which $l$ is also the tangent at $A$ . [3] |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |
|                                                                                                                                                                |                                                                                                            |  |

| Poi        | nts $A(-2, 3)$ , $B(3, 0)$ and $C(6, 5)$ lie on the circumference of a circle with centre $D$ . |     |
|------------|-------------------------------------------------------------------------------------------------|-----|
| (a)        | Show that angle $ABC = 90^{\circ}$ .                                                            | [2] |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
| <b>(b)</b> | Hence state the coordinates of $D$ .                                                            | [1] |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
| (c)        | Find an equation of the circle.                                                                 | [2] |
| (-)        |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
| The        | e point $E$ lies on the circumference of the circle such that $BE$ is a diameter.               |     |
|            | Find an equation of the tangent to the circle at $E$ .                                          | [5] |
|            |                                                                                                 |     |
|            |                                                                                                 |     |
|            |                                                                                                 |     |

|   | Find the coordinates of the centre of the circle and the radius. Hence find the coordinates of towest point on the circle.             |
|---|----------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                        |
|   |                                                                                                                                        |
| • |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
| • |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
| • |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
|   | Find the set of values of the constant $k$ for which the line with equation $y = kx - 5$ intersects the circle at two distinct points. |
|   |                                                                                                                                        |
|   |                                                                                                                                        |
| • |                                                                                                                                        |
|   |                                                                                                                                        |

| Find the values of $a$ and $b$ and hence find the coordinates of the centre of the circle.                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
| Find the equation of the tangent to the circle at the point $A$ , giving your answer in the $px + qy = k$ , where $p$ , $q$ and $k$ are integers. |
|                                                                                                                                                   |
|                                                                                                                                                   |

(a) Find the equation of BC.

7



The diagram shows the circle with equation  $(x-2)^2 + (y+4)^2 = 20$  and with centre C. The point B has coordinates (0, 2) and the line segment BC intersects the circle at P.

[2]

| (b) | Hence find the coordinates of $P$ , giving your answer in exact form. [5] |
|-----|---------------------------------------------------------------------------|
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |



The diagram shows a circle P with centre (0, 2) and radius 10 and the tangent to the circle at the point A with coordinates (6, 10). It also shows a second circle Q with centre at the point where this tangent meets the y-axis and with radius  $\frac{5}{2}\sqrt{5}$ .

| (a) | write down the equation of circle <i>P</i> .                                                                                          | .1]       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                                                       |           |
|     |                                                                                                                                       |           |
| (b) | Find the equation of the tangent to the circle $P$ at $A$ .                                                                           | [2]       |
|     |                                                                                                                                       |           |
|     |                                                                                                                                       |           |
|     |                                                                                                                                       |           |
|     |                                                                                                                                       |           |
| (c) | Find the equation of circle $Q$ and hence verify that the y-coordinates of both of the points intersection of the two circles are 11. | of<br>[3] |
|     |                                                                                                                                       |           |
|     |                                                                                                                                       | •••       |
|     |                                                                                                                                       |           |

| 10 | The | equation of a circle is $(x-a)^2 + (y-3)^2 = 20$ . The line $y = \frac{1}{2}x + 6$ is a tangent to the circle at the at $P$ . |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------|
|    | (a) | Show that one possible value of $a$ is 4 and find the other possible value. [5]                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    | (b) | For $a = 4$ , find the equation of the normal to the circle at $P$ . [4]                                                      |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |
|    |     |                                                                                                                               |

| Find the two possible values of $m$ and, for each value of $m$ , the tangent touches the circle. | , find the coordinates of the point at whice [8 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |
|                                                                                                  |                                                 |

| b) For the greater value of a, find the equation of the diameter which is perpendicular to the tangent. | a)         | Find the two possible values of the constant <i>a</i> . |
|---------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         |            |                                                         |
|                                                                                                         | <b>o</b> ) |                                                         |
|                                                                                                         |            |                                                         |

| ind the area of the triangle formed b | y the tangents to the o | ircle at $P$ and $Q$ , and the | e line $x = -2$ . | [8]   |
|---------------------------------------|-------------------------|--------------------------------|-------------------|-------|
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   | ••••• |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   | ••••• |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   | ••••• |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   | ••••• |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   | ••••• |
|                                       |                         |                                |                   |       |
|                                       |                         |                                |                   |       |