UNIVERSITÉ de MONTPELLIER

— Faculté des sciences — Département de Mathématiques Année 2018–2019 Algèbre Linéaire et Analyse 2 HLMA203 LICENCE 1ère année Série 1 & Série 3

Contrôle Final: session 2

Date: 26 juin 2019 **Heure**: 16h00

Durée: 3 heures (hors tiers-temps) Document et calculatrice interdits

Exercice $\S 1: \mathbf{QCM}$. Qualifier les assertions suivantes par \mathbf{V} (vraie) ou \mathbf{F} (fausse), sur la copie ; bien reporter, au préalable, une colonne avec tous les numéros (sans les assertions), dans l'ordre, mêmes ceux sans réponse. Toute réponse fausse est comptée négativement.

- 1. Pour toutes matrices carrées A et B (même ordre), nous avons AB = BA ou AB = -BA.
- 2. Un polynôme réel premier n'est pas nécessairement de degré 1.
- 3. La trace d'un automorphisme (endomorphisme bijectif) peut être nulle.
- 4. Le développement limité (ordre n-1) de f' s'obtient en dérivant celui de f (ordre n).
- 5. En x=0, le développement limité de $\ln(1+x)$ à l'ordre 2, est $x-x^2/2+O(x^3)$.
- 6. Toute primitive de $\ln(x)$ sur \mathbb{R}_+^* s'écrit $(\ln x)^2/2 + C$, pour une certaine constante C.
- 7. Pour chaque entier n > 0, le déterminant définit une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.
- 8. Pour tout $A \in \mathcal{M}_{2019}(\mathbb{R})$, nous avons $\det(-A) = -\det(A)$.
- 9. La fonction $f(x) = e^{e^x}$ est une primitive de la fonction $F(x) = e^{e^x + x}$.
- 10. Pour tous s.e.v F et G d'un e.v E, nous avons $\dim(F+G) \geq \dim(F) + \dim(G)$.

Exercice §2. Soient les matrices réelles
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
 et $B_{\lambda} = \begin{pmatrix} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & 1 \\ 1 & 1 & \lambda & 1 \\ 1 & 1 & 1 & \lambda \end{pmatrix}$.

1

- 1. Calculer le déterminant de A.
- 2. Pour quelle(s) valeur(s) du paramètre λ la matrice B_{λ} n'est pas inversible?

Exercice $\S 3$. Soit S, l'ensemble des solutions de l'équation différentielle linéaire :

$$(\mathcal{E})$$
 $y \in \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}), xy' + y - e^{x} = 0.$

- 1. Résoudre l'équation homogène associée (\mathcal{E}_0) .
- 2. Trouver un élément particulier de S (méthode de la Variation de la Constante).
- 3. Décrire toute la droite affine S.
- 4. En déduire l'unique élément $f \in S$ telle que $\lim_{x\to 0} f(x) = 1$.

Exercice §4 : puissances d'une matrice. On considère l'endomorphisme u de $E = \mathbb{R}^3$, défini par u(x, y, z) = (4x + y + 3z, 2x + 2z, -2x - y - z).

Partie I. Soit A, la matrice de u relativement à la base canonique $\mathcal{E} = (e_1, e_2, e_3)$.

- 1. Calculer le déterminant et la trace de A.
- 2. L'application u est-elle surjective?
- 3. Vérifier que le noyau de u est une droite dirigée par le vecteur $f_1 = e_1 e_2 e_3$.
- 4. Pour $f_2 = (-1, 0, 1)$ et $f_3 = (2, 1, -1)$, montrer que nous avons $Im(u) = Vect(f_2, f_3)$.
- 5. Vérifier que la famille $\mathcal{F} = (f_1, f_2, f_3)$ est une base de E.
- 6. Avons-nous une formule de décomposition en somme directe $E = Ker(u) \oplus Im(u)$?

Partie II. La matrice de passage de \mathcal{E} à \mathcal{F} est notée P.

- 1. Expliciter P et, pour chaque $i \in \{1, 2, 3\}$, évaluer u en f_i .
- 2. En déduire directement la matrice B de u, celle relative à la base \mathcal{F} .
- 3. Quelle formule relie les matrices A et B?
- 4. Par récurrence, montrer les formules : $A^n = PB^nP^{-1}$, $n \ge 1$.
- 5. Procéder au calcul de A^n , pour tout entier $n \geq 1$.

Exercice §5. Soient les polynômes $P = X^4 + 2X^3 + 3X^2 + 4X + 2$ et $Q = X^4 - X^3 + 2X^2 - 2X$.

- 1. Calculer les polynômes unitaires pqcd(P,Q) et ppcm(P,Q).
- 2. Décomposer P et Q en facteurs premiers dans $\mathbb{R}[X]$.
- 3. Décomposer P et Q en facteurs premiers dans $\mathbb{C}[X]$.

Exercice §6. Calcul de $I = \int_0^{\pi/2} (x \cos x)^2 dx$ et $J = \int_0^{\pi/2} (x \sin x)^2 dx$.

- 1. Trouver une primitive de la fonction $f(x) = x^2 \cos(2x)$.
- 2. En déduire les nombres I et J (au besoin, utiliser $\cos(a+b) = \cos a \cos b \sin a \sin b$).