Rudin's Principles of Mathematical Analysis, 3rd ed Connor Baker, June 2017

Numerical Sequences and Series: Selected Exercises

1. Prove that convergence of $\{s_n\}$ implies convergence of $\{|s_n|\}$. Is the converse true? Proof. 2. Calculate $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.

Proof. We begin by multiplying by the algebraic conjugate:

$$\lim_{n\to\infty}\left[(\sqrt{n^2+n}-n)\cdot\frac{\sqrt{n^2+n}+n}{\sqrt{n^2+n}+n}\right]=\lim_{n\to\infty}\left[\frac{n^2+n-n^2}{\sqrt{n^2+n}+n}\right]=\lim_{n\to\infty}\left[\frac{n}{\sqrt{n^2+n}+n}\right].$$

Tentatively trying to evaluate the limit yields a composition of algebraic indeterminate forms:

$$\lim_{n \to \infty} \left[\frac{n}{\sqrt{n^2 + n} + n} \right] = \frac{\infty}{\sqrt{\infty} + \infty} = \frac{\infty}{\infty + \infty}.$$

We proceed by multiplying by a form of one:

$$\lim_{n \to \infty} \left[\frac{n}{\sqrt{n^2 + n} + n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \right] = \lim_{n \to \infty} \left[\frac{\frac{n}{n}}{\sqrt{\frac{n^2}{n^2} + \frac{n}{n^2} + \frac{n}{n}}} \right] = \lim_{n \to \infty} \left[\frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \right].$$

From this point, we can now successfully evaluate the limit.

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \right] = \frac{1}{\sqrt{1 + \frac{1}{\infty} + 1}} = \frac{1}{\sqrt{1 + 0 + 1}} = \frac{1}{2}.$$

3. If
$$s_1 = \sqrt{2}$$
, and

$$s_{n+1} = \sqrt{2 + s_n}, (n = 1, 2, 3, ...),$$

prove that $\{s_n\}$ converges, and that $s_n < 2$ for $n = 1, 2, 3, \ldots$

Proof. We begin by proving that $s_n < 2, \forall n \in \mathbb{N}$.

Let n = 1. Then $s_1 = \sqrt{2} < 2$, and the base case holds.

Inductive hypothesis: Assume that for $n \leq k$, the following is true: $s_k < 2$.

Let n = k + 1. Then $s_{k+1} = \sqrt{2 \cdot s_k} = \sqrt{2} \cdot \sqrt{s_k}$. By the inductive hypothesis, $\sqrt{2} \cdot \sqrt{s_k} < \sqrt{2} \cdot \sqrt{2} = 2$.

By the Principle of Mathematical Induction, $s_n < 2$ for all $n \in \mathbb{N}.$

4. Find the upper and lower limits of the sequence $\{s_n\}$ defined by

$$s_1 = 0;$$
 $s_{2m} = \frac{s_{2m-1}}{2};$ $s_{2m+1} = \frac{1}{2} + s_{2m}.$

Proof. \Box

5. For any two real sequences $\{a_n\},\{b_n\}$, prove that

$$\lim_{n \to \infty} \sup(a_n + b_n) \le \lim_{n \to \infty} \sup(a_n) + \lim_{n \to \infty} \sup(b_n)$$

provided the sum on the right is not of the form $\infty - \infty$.

Proof. \Box