The b-functions for prehomogeneous vector spaces of commutative parabolic type and generalized universal Verma modules

Atsushi KAMITA

Department of Mathematics
Osaka City University
Osaka, 558-8585 Japan
E-mail: kamita@sci.osaka-cu.ac.jp

ABSTRACT. We shall give a uniform expression and a uniform calculation for the b-functions of prehomogeneous vector spaces of commutative parabolic type, which were previously calculated by case-by-case analysis. Our method is a generalization of Kashiwara's approach using the universal Verma modules. We shall also give a new proof for the criterion of the irreducibility of the generalized Verma module in terms of b-functions due to Suga [9], Gyoja [1], Wachi [11].

0 Introduction

In this paper we deal with the b-functions of the invariants on the flag manifolds G/P. In the case where P is a Borel subgroup, Kashiwara [4] determined the b-functions by using the universal Verma modules. Our method is a generalization of Kashiwara's approach.

Let \mathfrak{g} be a simple Lie algebra over the complex number field \mathbb{C} , and let G be a connected simply-connected simple algebraic group with Lie algebra \mathfrak{g} . Fix a parabolic subalgebra \mathfrak{p} of \mathfrak{g} . We denote the reductive part of \mathfrak{p} and the nilpotent part of \mathfrak{p} by \mathfrak{l} and \mathfrak{n} respectively. Let L be the subgroup of G corresponding to \mathfrak{l} . Let R be the symmetric algebra of the commutative Lie algebra $\mathfrak{p}/[\mathfrak{p},\mathfrak{p}]$. For a Lie algebra \mathfrak{a} we set $U_R(\mathfrak{a}) = R \otimes_{\mathbb{C}} U(\mathfrak{a})$ where $U(\mathfrak{a})$ denotes the enveloping algebra of \mathfrak{a} . The canonical map $\mathfrak{p} \to R$ induces a one-dimensional $U_R(\mathfrak{p})$ -module R_c . Let \mathbb{C}_{μ} be the one-dimensional \mathfrak{p} -module with weight μ . Set $R_{c+\mu} = R_c \otimes_{\mathbb{C}} \mathbb{C}_{\mu}$. Then $R_{c+\mu}$ is a one-dimensional $U_R(\mathfrak{p})$ -module.

For a character μ of \mathfrak{p} we regard μ as a weight of \mathfrak{g} , and let $V(\mu)$ be the irreducible \mathfrak{g} -module with highest weight μ . We assume that the weight μ of \mathfrak{g} is dominant integral. We define a $U_R(\mathfrak{g})$ -module homomorphism

$$\iota: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu} \to U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu))$$

by $\iota(1\otimes 1)=1\otimes 1\otimes v_{\mu}$, where v_{μ} is the highest weight vector of $V(\mu)$. For a $U_{R}(\mathfrak{g})$ -module homomorphism ψ from $U_{R}(\mathfrak{g})\otimes_{U_{R}(\mathfrak{p})}(R_{c}\otimes_{\mathbb{C}}V(\mu))$ to $U_{R}(\mathfrak{g})\otimes_{U_{R}(\mathfrak{p})}R_{c+\mu}$ the composite $\psi\iota$

is the multiplication on $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu}$ by an element ξ of R:

$$(0.1) \qquad U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} R_{c+\mu} = U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} R_{c+\mu}$$

$$\downarrow^{\xi \operatorname{id}} \qquad \qquad \downarrow^{\xi \operatorname{id}}$$

$$U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} (R_{c} \otimes_{\mathbb{C}} V(\mu)) \xrightarrow{\psi} U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} R_{c+\mu}.$$

The set Ξ_{μ} consisting of all $\xi \in R$ induced by homomorphisms from $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu))$ to $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu}$ as above is an ideal of R. We can construct a particular element $\psi_{\mu} \in \operatorname{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu)), U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu})$ by considering the irreducible decomposition of $V(\mu)$ as a \mathfrak{p} -module (see Section 2 below), however, the corresponding $\xi_{\mu} \in \Xi_{\mu}$ is not a generator of Ξ_{μ} in general. Note that Kashiwara [4] gave the generator of Ξ_{μ} when P is a Borel subgroup.

Let $\psi \in \operatorname{Hom}_{U_R(\mathfrak{g})}(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu)), U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu})$ and let $\xi \in \Xi_{\mu}$ be the corresponding element. Then as in Kashiwara [4] we can define a differential operator $P(\psi)$ on G satisfying

$$P(\psi)f^{\lambda+\mu} = \xi(\lambda)f^{\lambda}$$

for any character λ of \mathfrak{p} which can be regarded as a dominant integral weight of \mathfrak{g} . Here, f^{λ} denotes the invariant on G corresponding to λ (see Section 3 below) and ξ is regarded as a function on $\text{Hom}(\mathfrak{p},\mathbb{C})$.

In the rest of Introduction we assume that the nilpotent radical \mathfrak{n} of \mathfrak{p} is commutative. Then the pair (L,\mathfrak{n}) is a prehomogeneous vector space via the adjoint action of L. In this case there exists exactly one simple root α_0 such that the root space \mathfrak{g}_{α_0} is in \mathfrak{n} . We denote the fundamental weight corresponding to α_0 by ϖ_0 .

We define an element $\xi_0 \in R$ by

$$\xi_0(\lambda) = \prod_{\eta \in Wt(\varpi_0) \setminus \{\varpi_0\}} \left((\lambda + \rho + \varpi_0, \lambda + \rho + \varpi_0) - (\lambda + \rho + \eta, \lambda + \rho + \eta) \right) \quad (\lambda \in \mathbb{C}\varpi_0),$$

where $Wt(\varpi_0)$ is the set of the highest weights of irreducible \mathfrak{l} -submodules of $V(\varpi_0)$, and ρ is the half sum of positive roots of \mathfrak{g} .

THEOREM 0.1. We have $\xi_0 = \xi_{\varpi_0}$, and the ideal Ξ_{ϖ_0} of R is generated by ξ_0 .

We denote by ψ_0 the homomorphism satisfying $\psi_0 \iota = \xi_0 id$.

Let \mathfrak{n}^- be the nilpotent part of the parabolic subalgebra of \mathfrak{g} opposite to \mathfrak{p} . We can define a constant coefficient differential operator $P'(\psi_0)$ on $\mathfrak{n}^- \simeq \exp(\mathfrak{n}^-)$ by

$$(P(\psi_0)f)|_{\exp(\mathfrak{n}^-)} = P'(\psi_0)(f|_{\exp(\mathfrak{n}^-)}).$$

THEOREM 0.2. If the prehomogeneous vector space (L, \mathfrak{n}) is regular, then $P'(\psi_0)$ corresponds to the unique irreducible relative invariant of (L, \mathfrak{n}) , and $b(s) = \xi_0(s\varpi_0)$ is its b-function.

Moreover, using the commutative diagram (0.1) for ξ_0 and ψ_0 we give a new proof of the following criterion of the irreducibility of the generalized Verma module due to Suga [9], Gyoja [1], Wachi [11]:

 $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} \mathbb{C}_{s_0\varpi_0}$ is irreducible $\iff \xi_0((s_0-m)\varpi_0) \neq 0$ for any positive integer m.

The author expresses the gratitude to Professor T. Tanisaki for his valuable advice.

1 Prehomogeneous Vector Spaces

In this section we recall some basic facts on prehomogeneous vector spaces (see Sato and Kimura [7]).

- DEFINITION 1.1. (i) For a connected algebraic group G over the complex number field \mathbb{C} and a finite dimensional G-module V, the pair (G, V) is called a prehomogeneous vector space if there exists a Zariski open orbit in V.
 - (ii) We denote the ring of polynomial functions on V by $\mathbb{C}[V]$. A nonzero element $f \in \mathbb{C}[V]$ is called a relative invariant of a prehomogeneous vector space (G, V) if there exists a character χ of G such that $f(gv) = \chi(g)f(v)$ for any $g \in G$ and $v \in V$.
- (iii) A prehomogeneous vector space is called regular if there exists a relative invariant f such that the Hessian $H_f = \det(\partial^2 f/\partial x_i \partial x_j)$ is not identically zero, where $\{x_i\}$ is a coordinate system of V.

We call algebraically independent relative invariants f_1, f_2, \ldots, f_l basic relative invariants if for any relative invariant f there exist $c \in \mathbb{C}$ and $m_i \in \mathbb{Z}$ such that $f = c f_1^{m_1} \cdots f_l^{m_l}$.

Assume that (G,V) is a prehomogeneous vector space such that G is reductive. Then the dual space V^* of V is also a prehomogeneous vector space by $\langle gv^*,v\rangle=\langle v^*,g^{-1}v\rangle$, where $\langle \ ,\ \rangle$ is the natural pairing of V^* and V. If $f\in\mathbb{C}[V]$ is a relative invariant of (G,V) with character χ , then there exists a relative invariant f^* of (G,V^*) with character χ^{-1} . For $h\in\mathbb{C}[V^*]$ we define a constant coefficient differential operator $h(\partial)$ by

$$h(\partial) \exp\langle v^*, v \rangle = h(v^*) \exp\langle v^* v \rangle,$$

where $v \in V$ and $v^* \in V^*$. Then there exists a polynomial $b(s) \in \mathbb{C}[s]$ such that

$$f^*(\partial)f^{s+1} = b(s)f^s.$$

This polynomial is called the b-function of f. It is known that $\deg b = \deg f$ (see [6]).

2 Generalized Universal Verma Modules

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{h} . Let $\Delta \subset \mathfrak{h}^*$ be the root system and $W \subset GL(\mathfrak{h})$ the Weyl group. For $\alpha \in \Delta$ we denote the corresponding root space

by \mathfrak{g}_{α} . We denote the set of positive roots by Δ^+ and the set of simple roots by $\{\alpha_i\}_{i\in I_0}$, where I_0 is an index set. Let ρ be the half sum of positive roots of \mathfrak{g} . We set

$$\mathfrak{n}^{\pm} = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{\pm \alpha}, \quad \ \mathfrak{b}^{\pm} = \mathfrak{h} \oplus \mathfrak{n}^{\pm}.$$

For $i \in I_0$ let $h_i \in \mathfrak{h}$ be the simple coroot and $\varpi_i \in \mathfrak{h}^*$ the fundamental weight corresponding to i. We denote the longest element of W by w_0 . Let $(\ ,\)$ be the W-invariant nondegenerate symmetric bilinear form on \mathfrak{h}^* . We denote the irreducible \mathfrak{g} -module with highest weight $\mu \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i$ by $V(\mu)$ and its highest weight vector by v_{μ} . For a Lie algebra \mathfrak{a} we denote the enveloping algebra of \mathfrak{a} by $U(\mathfrak{a})$.

For a subset $I \subset I_0$ we set

$$\begin{split} \Delta_I &= \Delta \cap \sum_{i \in I} \mathbb{Z} \alpha_i, & \mathfrak{l}_I &= \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Delta_I} \mathfrak{g}_\alpha), \\ \mathfrak{n}_I^{\pm} &= \bigoplus_{\alpha \in \Delta^+ \backslash \Delta_I} \mathfrak{g}_{\pm \alpha}, & \mathfrak{p}_I^{\pm} &= \mathfrak{l}_I \oplus \mathfrak{n}_I^{\pm}, \\ \mathfrak{h}_I &= \mathfrak{h} / \sum_{i \in I} \mathbb{C} h_i, & \mathfrak{h}_I^* &= \sum_{i \in I_0 \backslash I} \mathbb{C} \varpi_i. \end{split}$$

Let W_I be the subgroup of W generated by the simple reflections corresponding to $i \in I$. We denote the longest element of W_I by w_I . Let $\mathfrak{h}_{I,+}^*$ be the set of dominant integral weights in \mathfrak{h}_I^* . For $\mu \in \mathfrak{h}_I^*$ we define a one-dimensional $U(\mathfrak{p}_I^+)$ -module $\mathbb{C}_{I,\mu}$ by

$$\mathbb{C}_{I,\mu} = U(\mathfrak{p}_I^+) / \big(U(\mathfrak{p}_I^+) \mathfrak{n}^+ + \sum_{h \in \mathfrak{h}} U(\mathfrak{p}_I^+) (h - \mu(h)) + U(\mathfrak{p}_I^+) (\mathfrak{n}^- \cap \mathfrak{l}_I) \big).$$

We denote the canonical generator of $\mathbb{C}_{I,\mu}$ by 1_{μ} . Set $M_I(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I^+)} \mathbb{C}_{I,\mu}$. We denote the irreducible \mathfrak{p}_I^+ -module with highest weight $\mu \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{j \notin I} \mathbb{Z} \varpi_j$ by $W(\mu)$.

Let G be a connected simply-connected simple algebraic group with Lie algebra \mathfrak{g} . We denote the subgroups of G corresponding to $\mathfrak{h}, \mathfrak{b}^{\pm}, \mathfrak{l}_{I}, \mathfrak{n}_{I}^{\pm}$ by $T, B^{\pm}, L_{I}, N_{I}^{\pm}$ respectively.

Let R_I be the symmetric algebra of \mathfrak{h}_I , and define a linear map $c:\mathfrak{h}\to R_I$ as the composite of the natural projection from \mathfrak{h} to \mathfrak{h}_I and the natural injection from \mathfrak{h}_I to R_I . Set $U_{R_I}(\mathfrak{a}) = R_I \otimes_{\mathbb{C}} U(\mathfrak{a})$ for a Lie algebra \mathfrak{a} .

We set for $\mu \in \mathfrak{h}_I^*$

$$R_{I,c+\mu} = U_{R_I}(\mathfrak{p}_I^+) / \big(U_{R_I}(\mathfrak{p}_I^+)\mathfrak{n}^+ + \sum_{h \in \mathfrak{h}} U_{R_I}(\mathfrak{p}_I^+)(h - c(h) - \mu(h)) + U_{R_I}(\mathfrak{p}_I^+)(\mathfrak{n}^- \cap \mathfrak{l}_I) \big).$$

We denote the canonical generator of $R_{I,c+\mu}$ by $1_{c+\mu}$.

DEFINITION 2.1. For $\mu \in \mathfrak{h}_I^*$ we call $M_{R_I}(c + \mu) = U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} R_{I,c+\mu}$ a generalized universal Verma module.

Note that $M_{R_{\emptyset}}(c)$ is the universal Verma module in Kashiwara [4]. For $\lambda \in \mathfrak{h}_{I}^{*}$ we regard \mathbb{C} as an R_{I} -module by $c(h_{i})1 = \lambda(h_{i})$. Then we have

$$\mathbb{C} \otimes_{R_I} M_{R_I}(c+\mu) = M_I(\lambda+\mu).$$

The next lemma is obvious.

LEMMA 2.2. $\text{End}_{U_{R_I}(\mathfrak{g})}(M_{R_I}(c+\mu)) = R_I.$

For $\mu \in \mathfrak{h}_I^*$ we define a $U_{R_I}(\mathfrak{g})$ -module homomorphism

$$\iota_{\mu}: M_{R_I}(c+\mu) \longrightarrow U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$$

by $\iota_{\mu}(1 \otimes 1_{c+\mu}) = 1 \otimes 1_c \otimes v_{\mu}$. We denote by Ξ_{μ} the ideal of R_I consisting of ξ such that there exists a homomorphism $\psi \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})}(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_I}(c+\mu))$ satisfying $\psi \iota_{\mu} = \xi$ id. Let us give a particular element ξ_{μ} of Ξ_{μ} for $\mu \in \mathfrak{h}_{I,+}^*$.

LEMMA 2.3. For $\mu_1, \mu_2 \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{j \notin I} \mathbb{Z} \varpi_j$ we define a function p_{μ_1, μ_2} on \mathfrak{h}_I^* by

$$p_{\mu_1,\mu_2}(\lambda) = (\lambda + \rho + \mu_1, \lambda + \rho + \mu_1) - (\lambda + \rho + \mu_2, \lambda + \rho + \mu_2),$$

which is regarded as an element of R_I . Then we have

$$p_{\mu_1,\mu_2} \operatorname{Ext}^1_{U_{R_I}(\mathfrak{g})} \left(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} W(\mu_1)), \ U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} W(\mu_2)) \right)$$

$$= 0.$$

PROOF. The action of the Casimir element of $U(\mathfrak{g})$ on $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} W(\mu))$ is given by the multiplication by $p_{\mu} \in R_I$, where $p_{\mu}(\lambda) = (\lambda + \rho + \mu, \lambda + \rho + \mu) - (\rho, \rho)$ for $\lambda \in \mathfrak{h}_I^*$. Using this action, we can easily check that $p_{\mu_1,\mu_2} = p_{\mu_1} - p_{\mu_2}$ is an annihilator. \square

LEMMA 2.4. For any $\mu \in \mathfrak{h}_{I,+}^*$ there exist \mathfrak{p}_I^+ -submodules F_1, F_2, \ldots, F_r of $V(\mu)$ and weights $\eta_1, \eta_2, \ldots, \eta_{r-1} \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{i \in I_0 \setminus I} \mathbb{Z} \varpi_i$ satisfying the following conditions:

- (i) $\mathbb{C}v_{\mu} = F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r = V(\mu)$.
- (ii) $F_{i+1}/F_i \simeq W(\eta_i)^{\oplus N_i}$ for some positive integer N_i .
- (iii) $\eta_i \neq \eta_j$ for $i \neq j$.

Proof. For a non-negative integer m we set

$$P(m) = \{\lambda \in \mathfrak{h}^* \mid \mu - \lambda = \sum_{i \in I_0} m_i \alpha_i \text{ and } \sum_{i \notin I} m_i = m\} \text{ and } V_m = \bigoplus_{\lambda \in P(m)} V(\mu)_{\lambda},$$

where $V(\mu)_{\lambda}$ is the weight space of $V(\mu)$ with weight λ . Then V_m is an \mathfrak{l}_I -module, and we have the irreducible decomposition

$$V_m = \tilde{W}(\eta_{m,1})^{\oplus N_{m,1}} \oplus \cdots \oplus \tilde{W}(\eta_{m,t_m})^{\oplus N_{m,t_m}}$$

where $\tilde{W}(\eta)$ is the irreducible \mathfrak{l}_I -module with highest weight η , and $\eta_{m,i} \neq \eta_{m,j}$ for $i \neq j$. For $1 \leq i \leq t_m$ we define a \mathfrak{p}_I^+ -submodule $F_{m,i}$ of $V(\mu)$ by

$$F_{m,i} = V_0 \oplus \cdots \oplus V_{m-1} \oplus \tilde{W}(\eta_{m,1})^{\oplus N_{m,1}} \oplus \cdots \oplus \tilde{W}(\eta_{m,i})^{\oplus N_{m,i}}.$$

Then we have the sequence

$$\mathbb{C}v_{\mu} = F_{0,1} \subsetneq \cdots \subsetneq F_{m-1,t_{m-1}} \subsetneq F_{m,1} \subsetneq F_{m,2} \subsetneq \cdots \subsetneq F_{m,t_m} \subsetneq \cdots \subsetneq F_{r,t_r} = V(\mu).$$

It is clear that the above sequence satisfies the conditions (ii) and (iii).

For $\mu \in \mathfrak{h}_{I,+}^*$, we fix the sequence $\{F_1, F_2, \ldots, F_r\}$ of \mathfrak{p}_I^+ -submodules of $V(\mu)$ satisfying the conditions of Lemma 2.4, and set $\xi_{\mu} = \prod_{i=1}^{r-1} p_{\mu,\eta_i} \in R_I$.

Theorem 2.5. For $\mu \in \mathfrak{h}_{I,+}^*$ we have $\xi_{\mu} \in \Xi_{\mu}$.

PROOF. It is clear that $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_1) \simeq M_{R_I}(c+\mu)$. Let ι_j be the canonical injection from $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_j)$ into $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1})$. We show that there exists a commutative diagram

$$(2.1) U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{1}) = M_{R_{I}}(c + \mu)$$

$$\downarrow \Pi_{i=1}^{j-1} p_{\mu,\eta_{i}}$$

$$U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}) \xrightarrow{\psi_{j}} M_{R_{I}}(c + \mu)$$

by the induction on j. Assume that there exists a commutative diagram (2.1) for $j \geq 1$. From the exact sequence

$$0 \longrightarrow U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}) \xrightarrow{\iota_{j}} U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1})$$

$$\longrightarrow U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}) \longrightarrow 0,$$

we have a long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}), \ M_{R_{I}}(c+\mu) \right)$$

$$\longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}), \ M_{R_{I}}(c+\mu) \right)$$

$$\longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}), \ M_{R_{I}}(c+\mu) \right)$$

$$\stackrel{\delta}{\longrightarrow} \operatorname{Ext}^{1}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}), \ M_{R_{I}}(c+\mu) \right) \longrightarrow \cdots.$$

Since $F_{j+1}/F_j \simeq W(\eta_j)^{\oplus N_j}$, we have $\delta(p_{\mu,\eta_j}\psi_j) = p_{\mu,\eta_j}\delta(\psi_j) = 0$ by Lemma 2.3. Hence there exists an element $\psi_{j+1} \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})}\left(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}), \ M_{R_I}(c+\mu)\right)$ such that

 $\psi_{j+1}\iota_j=p_{\mu,\eta_j}\psi_j$. Hence we have the commutative diagram

$$U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{1}) = = M_{R_{I}}(c + \mu)$$

$$\downarrow^{j-1} \dots \downarrow^{j-1} p_{\mu,\eta_{i}}$$

$$U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}) \xrightarrow{\psi_{j}} M_{R_{I}}(c + \mu)$$

$$\downarrow^{p_{\mu,\eta_{j}}}$$

$$U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}) \xrightarrow{\psi_{j+1}} M_{R_{I}}(c + \mu).$$

П

In particular $\psi_r \iota_{\mu} = \xi_{\mu}$. Therefore $\xi_{\mu} \in \Xi_{\mu}$.

Let ψ_{μ} be a homomorphism from $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$ to $M_{R_I}(c+\mu)$ satisfying $\psi_{\mu} \iota_{\mu} = \xi_{\mu}$. Note that ψ_{μ} is non-zero since $\xi_{\mu} \neq 0$.

Remark 2.6. (i) In general ξ_{μ} is not a generator of the ideal Ξ_{μ} . For example let \mathfrak{g} be a simple Lie algebra of type G_2 . We take the simple roots α_1 and α_2 such that α_1 is short. If $I = \{2\}$ and $\mu = \varpi_1$, then we have $\xi_{\mu} = (c(h_1) + 1)(c(h_1) + 2)(c(h_1) + 3)(2c(h_1) + 5)$ up to constant multiple. But $(c(h_1) + 1)(2c(h_1) + 5) \in \Xi_{\mu}$.

(ii) For $I=\emptyset$ it is shown in Kashiwara [4] that Ξ_{μ} is generated by

$$\prod_{\alpha \in \Delta^+} \prod_{j=0}^{\mu(h_{\alpha})-1} (c(h_{\alpha}) + \rho(h_{\alpha}) + j),$$

where h_{α} is the coroot corresponding to α .

3 Semi-invariants

Let λ be a dominant integral weight. We regard the dual space $V(\lambda)^*$ as a left \mathfrak{g} -module via $\langle xv^*, v \rangle = \langle v^*, -xv \rangle$ for $x \in \mathfrak{g}$, $v^* \in V(\lambda)^*$ and $v \in V(\lambda)$. We denote the lowest weight vector of $V(\lambda)^*$ by v_{λ}^* . We normalize v_{λ}^* by $\langle v_{\lambda}^*, v_{\lambda} \rangle = 1$.

Definition 3.1. We define a regular function f^{λ} on G by $f^{\lambda}(g) = \langle v_{\lambda}^*, gv_{\lambda} \rangle$.

For $b^{\pm} \in B^{\pm}$ and $g \in G$ we have

$$f^{\lambda}(b^-gb^+) = \lambda^-(b^-)\lambda^+(b^+)f^{\lambda}(g),$$

where λ^{\pm} is the character of B^{\pm} corresponding to λ . This function f^{λ} is called $B^{-} \times B^{+}$ -semi-invariant. Note that $f^{\lambda_{1}+\lambda_{2}}=f^{\lambda_{1}}f^{\lambda_{2}}$.

Let $\mu \in \mathfrak{h}_{I,+}^*$. We take a basis $\{v_{\mu,j}\}_{0 \leq j \leq n}$ of $V(\mu)$ consisting of weight vectors such that $v_{\mu,0} = v_{\mu}$ is the highest weight vector and $v_{\mu,n}$ is the lowest. We denote the dual basis of $V(\mu)^*$ by $\{v_{\mu,j}^*\}$. For a $U_{R_I}(\mathfrak{g})$ -module homomorphism

$$\psi: U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)) \longrightarrow M_{R_I}(c+\mu)$$

we define elements $Y'_i \in U_{R_I}(\mathfrak{n}_I^-)$ for $0 \leq j \leq n$ by

$$\psi(1 \otimes 1_c \otimes v_{\mu,j}) = Y_j' \otimes 1_{c+\mu},$$

and define an element $\xi \in \Xi_{\mu}$ by $\xi = \psi \iota_{\mu}$. Note that $Y'_0 = \xi$. Let $\pi : R_I \to U(\sum_{i \notin I} \mathbb{C}h_i)$ be the algebra isomorphism defined by $\pi(c(h_i)) = h_i - \mu(h_i)$ for $i \notin I$. Set $\pi(\sum_j a_j \otimes y_j) = \sum_j y_j \pi(a_j)$ for $a_j \in R_I$ and $y_j \in U(\mathfrak{n}_I^-)$. Clearly we have $y \otimes 1_{c+\mu} = \pi(y) \otimes 1_{c+\mu} \in M_{R_I}(c+\mu)$ $(y \in U_{R_I}(\mathfrak{n}_I^-))$. We set $Y_j = \pi(Y'_j)$. We define differential operators $P_{\mu}(\psi)$ and $\tilde{P}_{\mu}(\psi)$ on G by

$$(P_{\mu}(\psi)\varphi)(g) = \sum_{j=0}^{n} \langle gv_{\mu,j}^{*}, v_{\mu,0} \rangle (R(Y_{j})\varphi)(g),$$

$$(\tilde{P}_{\mu}(\psi)\varphi)(g) = \sum_{j=0}^{n} \langle gv_{\mu,j}^{*}, v_{\mu,n} \rangle (R(Y_{j})\varphi)(g),$$

where R(y) $(y \in U(\mathfrak{g}))$ is the left invariant differential operator induced by the right action of G on itself. Then we have the following theorem.

THEOREM 3.2. Let $\mu \in \mathfrak{h}_{I,+}^*$ and $\psi \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})}(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)}(R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_I}(c+\mu))$. Then we have

$$P_{\mu}(\psi)f^{\lambda+\mu} = \xi(\lambda)f^{\lambda}$$

for any $\lambda \in \mathfrak{h}_{I,+}^*$. Here ξ is the element of Ξ_{μ} defined by $\xi = \psi \iota_{\mu}$.

We omit the proof since it is almost identical to the one for [4, Theorem 2.1]. For a dominant integral weight λ we define a function \tilde{f}^{λ} on G by

$$\tilde{f}^{\lambda}(g) = \langle v_{w_0 \lambda}^*, g v_{\lambda} \rangle,$$

where $v_{w_0\lambda}^*$ is the highest weight vector which is normalized by $\langle v_{w_0\lambda}^*, \dot{w}_0 v_{\lambda} \rangle = 1$ and $\dot{w}_0 \in N_G(T)$ is a representative element of $w_0 \in W = N_G(T)/T$. Since $\tilde{f}^{\lambda}(\dot{w}_0 g) = f^{\lambda}(g)$, we obtain the following lemma.

LEMMA 3.3. Let $\lambda, \mu \in \mathfrak{h}_{I,+}^*$. For any $g \in G$ we have $(\tilde{P}_{\mu}(\psi)\tilde{f}^{\lambda})(\dot{w}_0g) = (P_{\mu}(\psi)f^{\lambda})(g)$.

By Theorem 3.2 we have the following corollary.

COROLLARY 3.4. Let $\mu \in \mathfrak{h}_{I,+}^*$. We have

$$\tilde{P}_{\mu}(\psi)\tilde{f}^{\lambda+\mu} = \xi(\lambda)\tilde{f}^{\lambda}$$

for any $\lambda \in \mathfrak{h}_{I,+}^*$. Here ξ is the element of Ξ_{μ} defined by $\xi = \psi \iota_{\mu}$.

Fig. 1: Commutative Parabolic Type

4 Commutative Parabolic Type

In the remainder of this paper we assume that

$$I = I_0 \setminus \{i_0\}$$

and that the highest root θ of \mathfrak{g} is in $\alpha_{i_0} + \sum_{i \neq i_0} \mathbb{Z}_{\geq 0} \alpha_i$. Then it is known that $[\mathfrak{n}_I^{\pm}, \mathfrak{n}_I^{\pm}] = \{0\}$ and the pairs $(L_I, \mathfrak{n}_I^{\pm})$ are prehomogeneous vector spaces via the adjoint action, which are called of commutative parabolic type. The all pairs (\mathfrak{g}, i_0) of commutative parabolic type are given by the Dynkin diagrams of Fig. 1. Here the white vertex corresponds to i_0 .

The pairs (\mathfrak{g}, i_0) such that the corresponding prehomogeneous vector spaces are regular are as follows: $(A_{2n-1}, n), (B_n, 1), (C_n, n), (D_n, 1), (D_{2n}, 2n)$ and $(E_7, 7)$. Then it is seen that $w_0\alpha_{i_0} = -\alpha_{i_0}$.

Since \mathfrak{n}_I^- is identified with the dual space of \mathfrak{n}_I^+ via the Killing form, the symmetric algebra $S(\mathfrak{n}_I^-)$ is isomorphic to $\mathbb{C}[\mathfrak{n}_I^+]$. By the commutativity of \mathfrak{n}_I^- we have $S(\mathfrak{n}_I^-) = U(\mathfrak{n}_I^-)$. Hence $\mathbb{C}[\mathfrak{n}_I^+]$ is identified with $U(\mathfrak{n}_I^-)$.

Set $\gamma_1 = \alpha_{i_0}$. For $i \geq 1$ we take the root γ_{i+1} as a minimal element in

$$\Gamma_i = \{ \alpha \in \Delta^+ \setminus \Delta_I \mid \alpha + \gamma_j \notin \Delta \text{ and } \alpha - \gamma_j \notin \Delta \cup \{0\} \text{ for all } j \leq i \}.$$

Let $r = r(\mathfrak{g})$ be the index such that $\Gamma_{r(\mathfrak{g})-1} \neq \emptyset$ and $\Gamma_{r(\mathfrak{g})} = \emptyset$. Note that $(\gamma_i, \gamma_j) = 0$ for $i \neq j$. It is known that all γ_i have the same length (see Moore [5]). Set $\mathfrak{h}^- = \sum_{i=1}^r \mathbb{C}h_{\gamma_i}$, where h_{γ_i} is the coroot corresponding to γ_i . For $1 \leq i \leq r$ we set $\lambda_i = -(\gamma_1 + \cdots + \gamma_i)$. Then we have the following lemmas.

LEMMA 4.1 (Moore [5]). For $\beta \in \Delta^+ \cap \Delta_I$ the restriction $\beta|_{\mathfrak{h}^-}$ is as follows.

- (i) $\beta|_{\mathfrak{h}^-}=0$. Then $\beta\pm\gamma_i\notin\Delta$ for any i.
- (ii) $\beta|_{\mathfrak{h}^-} = \frac{\gamma_j}{2}|_{\mathfrak{h}^-}$. Then $\beta \pm \gamma_i \notin \Delta$ for any $i \neq j$.
- (iii) $\beta|_{\mathfrak{h}^-} = \frac{\gamma_j \gamma_k}{2}|_{\mathfrak{h}^-} \ (j > k)$. Then $\beta \pm \gamma_i \notin \Delta$ for any $i \neq j, k$ and $\beta + \gamma_j \notin \Delta$.

Set $D = \{\alpha_i \mid i \in I\}$. For a subset S of Δ , $S(\mathfrak{h}^-)$ is defined by

$$S(\mathfrak{h}^{-}) = \{ \beta \in \sum_{i=1}^{r} \mathbb{Q} \gamma_i \mid \beta|_{\mathfrak{h}^{-}} = \alpha|_{\mathfrak{h}^{-}} \text{ for } \alpha \in S \}.$$

LEMMA 4.2 (Moore [5], Wachi [11]). (i) If (L_I, \mathfrak{n}_I^+) is regular, then we have

$$D(\mathfrak{h}^{-}) = \{\frac{1}{2}(\gamma_{i+1} - \gamma_i) \mid 1 \le i \le r - 1\} \cup \{0\}$$

$$\Delta_I \cap \Delta^+(\mathfrak{h}^{-}) = \{\frac{1}{2}(\gamma_j - \gamma_i) \mid 1 \le i \le j \le r\}$$

$$\Delta^+ \setminus \Delta_I(\mathfrak{h}^{-}) = \{\frac{1}{2}(\gamma_j + \gamma_i) \mid 1 \le i \le j \le r\}.$$

(ii) If (L_I, \mathfrak{n}_I^+) is not regular, then we have

$$D(\mathfrak{h}^{-}) = \{ \frac{1}{2} (\gamma_{i+1} - \gamma_i) \mid 1 \le i \le r - 1 \} \cup \{ -\frac{1}{2} \gamma_r \} \cup \{ 0 \}$$

$$\Delta_I \cap \Delta^+(\mathfrak{h}^-) = \{ \frac{1}{2} (\gamma_j - \gamma_i) \mid 1 \le i \le j \le r \} \cup \{ -\frac{1}{2} \gamma_i \mid 1 \le i \le r \}$$

$$\Delta^+ \setminus \Delta_I(\mathfrak{h}^-) = \{ \frac{1}{2} (\gamma_j + \gamma_i) \mid 1 \le i \le j \le r \} \cup \{ \frac{1}{2} \gamma_i \mid 1 \le i \le r \}.$$

LEMMA 4.3. If (L_I, \mathfrak{n}_I^+) is not regular, then $j \in I$ such that $\alpha_j|_{\mathfrak{h}^-} = -\frac{\gamma_r}{2}|_{\mathfrak{h}^-}$ is unique.

PROOF. Assume that for $j_1 \neq j_2$ we have $\alpha_{j_1} = \alpha_{j_2} = -\frac{\gamma_r}{2}$ on \mathfrak{h}^- . Let $h \in \mathfrak{h}^-$. Since $(\alpha_{j_1} + \alpha_{j_2})(h) = -\gamma_r(h)$, $\alpha_{j_1} + \alpha_{j_2} \notin \Delta$ by Lemma 4.2. So we have $(\alpha_{j_1}, \alpha_{j_2}) = 0$. Since $(\gamma_r, \alpha_{j_1}) > 0$ and $(\gamma_r + \alpha_{j_1}, \alpha_{j_2}) > 0$, $\beta = \gamma_r + \alpha_{j_1} + \alpha_{j_2} \in \Delta$. In particular $\beta \in \Delta^+ \setminus \Delta_I$. For any $1 \leq k \leq r$, $(\beta - \gamma_k)(h) = -\gamma_k(h)$, hence $\beta - \gamma_k \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ is not a root. Clearly $\beta + \gamma_k \notin \Delta$. Therefore $\beta \in \Gamma_{r+1}$. But by definition $\Gamma_{r+1} = \emptyset$. Thus $j_1 = j_2$.

LEMMA 4.4. $w_I \lambda_r = w_0 \varpi_{i_0} - \varpi_{i_0}$.

PROOF. Assume that (L_I, \mathfrak{n}_I^+) is regular. Then we have $w_I(w_0\varpi_{i_0} - \varpi_{i_0}) = -2w_I\varpi_{i_0} = -2\varpi_{i_0}$. By using Lemma 4.2 we can check $\lambda_r(h_i) = -2\delta_{i,i_0}$ easily (see Wachi [11]). Hence $\lambda_r = -2\varpi_{i_0}$, and the statement holds. Next we assume that (L_I, \mathfrak{n}_I^+) is not regular. Then there exists an index $j_0 \in I$ such that $\alpha_{j_0} = -\frac{\gamma_r}{2}$ as functions on \mathfrak{h}^- . By Lemma 4.3 this index j_0 is unique. Similarly to the regular case we have $\lambda_r = \varpi_{j_0} - 2\varpi_{i_0}$. Let $j'_0 \in I$ such that $w_I w_0 \alpha_{i_0} = \alpha_{j'_0}$. Then we have $w_I(w_0 \varpi_{i_0} - \varpi_{i_0}) = \varpi_{j'_0} - 2\varpi_{i_0}$, and we can check $\gamma_r + \alpha_{j'_0} \in \Delta$ by the direct calculation. Hence $\alpha_{j'_0} = -\frac{\gamma_r}{2}$ on \mathfrak{h}^- from Lemma 4.2. Therefore we have $j'_0 = j_0$.

The following fact is known (see [2], [8], [10]).

LEMMA 4.5. As an $ad(\mathfrak{l}_I)$ -module, $U(\mathfrak{n}_I^-)$ is multiplicity free, and

$$U(\mathfrak{n}_I^-) = \bigoplus_{\mu \in \sum_{i=1}^r \mathbb{Z}_{>0} \lambda_i} I(\mu),$$

where $I(\mu)$ is an irreducible \mathfrak{l}_I -submodule of $U(\mathfrak{n}_I^-)$ with highest weight μ .

Let $f_i \in U(\mathfrak{n}_I^-)$ be the highest weight vector of $I(\lambda_i)$. Since $U(\mathfrak{n}_I^-)$ is naturally identified with the symmetric algebra $S(\mathfrak{n}_I^-)$, we can determine the degree of $f \in U(\mathfrak{n}_I^-)$. If $f \in U(\mathfrak{n}_I^-)$ is a weight vector with weight $\mu \in -d\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i$, then f is homogeneous and $\deg f = d$. In particular $\deg f_i = i$.

For $\mu \in \mathfrak{h}_{I,+}^*$ we take the lowest weight vector $v_{w_0\mu}$ of $V(\mu)$. Then the $U_{R_I}(\mathfrak{g})$ -module $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$ is generated by $1 \otimes 1_c \otimes v_{w_0\mu}$. There exists a non-zero element $u_{\mu} \in U_{R_I}(\mathfrak{n}_I^-)$ such that $\psi_{\mu}(1 \otimes 1_c \otimes v_{w_0\mu}) = u_{\mu} \otimes 1_{c+\mu}$, where ψ_{μ} is a $U_{R_I}(\mathfrak{g})$ -module homomorphism defined in Section 2. Since $y(1 \otimes 1_c \otimes v_{w_0\mu}) = 0$ for any $y \in \mathfrak{l}_I \cap \mathfrak{n}^-$, $u_{\mu} \in U_{R_I}(\mathfrak{n}_I^-)$ is a lowest weight vector with weight $w_0\mu - \mu$ as an $\mathrm{ad}(\mathfrak{l}_I)$ -module. By Lemma 4.5 such a lowest weight vector is unique up to constant multiple. Therefore $u_{\mu} = a_{\mu}u_{\mu}^0$ where $a_{\mu} \in R_I \setminus \{0\}$ and $u_{\mu}^0 \in U(\mathfrak{n}_I^-)$ is the unique lowest weight vector with weight $w_0\mu - \mu$.

If $x(1 \otimes 1_c \otimes v_{w_0\mu}) = 0$ for $x \in U_{R_I}(\mathfrak{g})$, then we have $xu_{\mu}^0 \otimes 1_{c+\mu} = 0$ since $a_{\mu} \neq 0$. Hence we can define a $U_{R_I}(\mathfrak{g})$ -module homomorphism ψ_{μ}^0 from $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$ to $M_{R_I}(c+\mu)$ by

$$\psi_{\mu}^{0}(x(1\otimes 1_{c}\otimes v_{w_{0}\mu})) = xu_{\mu}^{0}\otimes 1_{c+\mu}$$

for any $x \in U_{R_I}(\mathfrak{g})$. We set $\xi_{\mu}^0 = \psi_{\mu}^0 \iota_{\mu} \in \Xi_{\mu}$.

Conversely, from the uniqueness of u_{μ}^{0} we have

$$\psi(1 \otimes 1_c \otimes v_{w_0\mu}) = au_\mu^0 \otimes 1_{c+\mu} = a\psi_\mu^0(1 \otimes 1_c \otimes v_{w_0\mu}) \quad (a \in R_I)$$

for any $\psi \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})} \left(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)), \ M_{R_I}(c+\mu) \right)$. Therefore we have the following.

PROPOSITION 4.6. Let $\mu \in \mathfrak{h}_{I,+}^*$. We have $\Xi_{\mu} = R_I \xi_{\mu}^0$.

We call the above homomorphism ψ^0_μ the minimal map in this paper. Let \tilde{f}_r be the lowest weight vector of the irreducible \mathfrak{l}_I -module generated by f_r .

PROPOSITION 4.7. Let $\mu = m\varpi_{i_0} \in \mathfrak{h}_{I,+}^*$. Under the identification $\exp : \mathfrak{n}_I^- \simeq N_I^-$ we have

$$(\tilde{P}_{\mu}(\psi_{\mu}^{0})\varphi)|_{\mathfrak{n}_{I}^{-}} = \tilde{f}_{r}(\partial)^{m}(\varphi|_{\mathfrak{n}_{I}^{-}}).$$

PROOF. Let $\{v_i\}_{0 \leq i \leq n}$ be a basis of $V(\mu)$ consisting of weight vectors such that v_n has the lowest weight $w_0\mu$. We denote the dual basis by $\{v_i^*\}$. We define elements $Y_i' \in U_{R_I}(\mathfrak{n}_I^-)$ by $\psi_\mu^0(1 \otimes 1_c \otimes v_i) = Y_i' \otimes 1_{c+\mu}$. Set $Y_i = \pi(Y_i')$ Then we have

$$(\tilde{P}_{\mu}(\psi_{\mu}^{0})\varphi)(g) = \sum_{i=0}^{n} \langle gv_{i}^{*}, v_{n} \rangle (R(Y_{i})\varphi)(g).$$

For $g \in N_I^-$ we have $\langle gv_i^*, v_n \rangle = \delta_{i,n}$. Therefore it is sufficient to show that

$$(4.1) R(Y_n) = \tilde{f}_r^m(\partial)$$

By the definition of ψ^0_μ , Y_n is the lowest weight vector of $\operatorname{ad}(\mathfrak{l}_I)$ -module $U(\mathfrak{n}_I^-)$ with weight $w_0\mu - \mu = m(w_0\varpi_{i_0} - \varpi_{i_0})$. By Lemma 4.4 the weight of \tilde{f}_r is $w_0\varpi_{i_0} - \varpi_{i_0}$. Hence we have $Y_n = \tilde{f}_r^m$ up to constant multiple. Since \mathfrak{n}_I^- is commutative, we have $R(y) = y(\partial)$ for any $y \in U(\mathfrak{n}_I^-)$. Hence the equation (4.1) holds.

For $1 \le p \le r = r(\mathfrak{g})$ we set

$$\Delta_{(p)}^+ = \{ \beta \in \Delta^+ \mid \beta|_{\mathfrak{h}^-} = \frac{\gamma_j + \gamma_k}{2}|_{\mathfrak{h}^-} \text{ for some } 1 \le j \le k \le p \}.$$

By Lemma 4.2 we have $\Delta_{(p)}^+ \subset \Delta^+ \setminus \Delta_I$. We define subspaces $\mathfrak{n}_{(p)}^\pm$ of \mathfrak{g} by $\mathfrak{n}_{(p)}^\pm = \sum_{\beta \in \Delta_{(p)}^+} \mathfrak{g}_{\pm\beta}$. Set $\mathfrak{l}_{(p)} = [\mathfrak{n}_{(p)}^+, \mathfrak{n}_{(p)}^-]$ and $I_{(p)} = \{i \in I \mid \mathfrak{g}_{\alpha_i} \subset \mathfrak{l}_{(p)}\}$. Then we have the following.

LEMMA 4.8 (see Wallach [12] and Wachi [11]). Set $\mathfrak{g}_{(p)} = \mathfrak{n}_{(p)}^- \oplus \mathfrak{l}_{(p)} \oplus \mathfrak{n}_{(p)}^+$. Then $\mathfrak{g}_{(p)}$ is a simple subalgebra of \mathfrak{g} with simple roots $\{\alpha_{i_0}\} \sqcup \{\alpha_i \mid i \in I_{(p)}\}$, and the pair $(\mathfrak{g}_{(p)}, i_0)$ is of regular commutative parabolic type. For any $1 \leq j \leq p$ we have $f_j \in U(\mathfrak{n}_{(p)}^-)$, and f_p is a basic relative invariant of $(L_{(p)}, \mathfrak{n}_{(p)}^+)$, where $L_{(p)}$ is the subgroup of L_I corresponding to $\mathfrak{l}_{(p)}$.

This fact will be used in the subsequent sections.

5 Regular Type

In this section we assume that the prehomogeneous vector space $(L_I, \mathfrak{n}_I^{\pm})$ is regular. We take γ_i, λ_i and f_i $(1 \leq i \leq r = r(\mathfrak{g}))$ as in Section 4. Then we have $w_0 \varpi_{i_0} = -\varpi_{i_0}$ and the highest weight vector $f_r \in U(\mathfrak{n}_I^-) \simeq \mathbb{C}[\mathfrak{n}_I^+]$ is the unique basic relative invariant of (L_I, \mathfrak{n}_I^+) with character $2\varpi_{i_0}$. In particular $f_r \in U(\mathfrak{n}_I^-)$ is also the lowest weight vector as an \mathfrak{l}_I -module.

PROPOSITION 5.1. Let b(s) be the b-function of the basic relative invariant of (L_I, \mathfrak{n}_I^-) . Then for $m \in \mathbb{Z}_{>0}$ we have

$$\xi_{m\varpi_{i_0}}^0(s\varpi_{i_0}) = b(s+m-1)b(s+m-2)\cdots b(s)$$

up to constant multiple.

PROOF. For any $l \in L_I$ and $n \in \mathfrak{n}_I^-$ we have

$$\tilde{f}^{\varpi_{i_0}}(l\exp(n)l^{-1}) = (w_0\varpi_{i_0} - \varpi_{i_0})(l)\tilde{f}^{\varpi_{i_0}}(\exp(n)) = -2\varpi_{i_0}(l)\tilde{f}^{\varpi_{i_0}}(\exp(n)).$$

Thus $\tilde{f}^{\varpi_{i_0}}|_{\mathfrak{n}_I^-}$ is the basic relative invariant of (L_I,\mathfrak{n}_I^-) under the identification $\mathfrak{n}_I^- \simeq N_I^-$. Hence we have

$$f_r(\partial)^m \tilde{f}^{(m+s)\varpi_{i_0}}|_{\mathfrak{n}_I^-} = f_r(\partial)^m (\tilde{f}^{\varpi_{i_0}}|_{\mathfrak{n}_I^-})^{s+m} = b(s+m-1)b(s+m-2)\cdots b(s)\tilde{f}^{s\varpi_{i_0}}|_{\mathfrak{n}_I^-}.$$

From Corollary 3.4 we have

$$\tilde{P}_{m\varpi_{i_0}}(\psi^0_{m\varpi_{i_0}})\tilde{f}^{(s+m)\varpi_{i_0}}=\xi^0_{m\varpi_{i_0}}(s\varpi_{i_0})\tilde{f}^{s\varpi_{i_0}}.$$

Therefore the statement holds by Proposition 4.7.

In the rest of this section we shall show that $\xi_{\varpi_{i_0}} = \xi_{\varpi_{i_0}}^0$ up to constant multiple.

LEMMA 5.2. For any $1 \le j \le r$ we have $w_I \gamma_j = \gamma_{r-j+1}$.

PROOF. By Lemmas 4.1 and 4.2 we have $\gamma_r + \alpha_i \notin \Delta$ for any $i \in I$. Therefore γ_r is the highest weight of the irreducible $\operatorname{ad}(\mathfrak{l}_I)$ -module \mathfrak{n}_I^+ . Since $\alpha_{i_0} = \gamma_1$ is the lowest weight of \mathfrak{n}_I^+ , $w_I\gamma_1 = \gamma_r$. Let $1 < i \leq [\frac{r}{2}]$. Assume that $w_I\gamma_j = \gamma_{r-j+1}$ for $1 \leq j \leq i-1$. Since $j \neq i$, we have $\gamma_{r-i+1} \pm w_I\gamma_j = \gamma_{r-i+1} \pm \gamma_{r-j+1} \notin \Delta \cup \{0\}$. Hence $w_I\gamma_{r-i+1} \pm \gamma_j \notin \Delta \cup \{0\}$, and we have $w_I\gamma_{r-i+1} \in \Gamma_i$. By definition $\gamma_i \leq w_I\gamma_{r-i+1}$. So we have $w_I\gamma_i \geq \gamma_{r-i+1}$. Let us show that $w_I\gamma_i \leq \gamma_{r-i+1}$. By Lemma 4.2 there exist γ_k and γ_l such that $k \leq l$ and $w_I\gamma_i(h) = \frac{\gamma_k + \gamma_l}{2}(h)$ for any $h \in \mathfrak{h}^-$. In particular $(w_I\gamma_i, \gamma_l) > 0$. Now we have $(w_I\gamma_i, \gamma_m) = (\gamma_i, w_I\gamma_m) = (\gamma_i, \gamma_{r-m+1}) = 0$ for $r-i+2 \leq m \leq r$. Hence $l \leq r-i+1$. Since $(w_I\gamma_i, \gamma_l) > 0$, $\gamma_l - w_I\gamma_i \in \Delta \cup \{0\}$. For $h \in \mathfrak{h}^-$ we have $(\gamma_l - w_I\gamma_i)(h) = \frac{\gamma_l - \gamma_k}{2}(h)$. By Lemma 4.2 $\gamma_l - w_I\gamma_i \in \Delta^+ \cup \{0\}$. Therefore we have $w_I\gamma_i \leq \gamma_l \leq \gamma_{r-i+1}$.

Hence the lowest weight $w_I \lambda_{r-1}$ of the irreducible component $I(\lambda_{r-1})$ of $U(\mathfrak{n}_I^-)$ is $\lambda_r + \alpha_{i_0}$.

LEMMA 5.3. For any $1 \le p \le r = r(\mathfrak{g})$ we have

$$e_{i_0}f_p\otimes 1_{c+\mu}\in U_{R_I}(\mathfrak{l}_I\cap\mathfrak{n}^-)(f_{p-1}\otimes 1_{c+\mu})\subset M_{R_I}(c+\mu),$$

where $e_{i_0} \in \mathfrak{g}_{\alpha_{i_0}} \setminus \{0\}$.

PROOF. By Lemma 4.8 it is sufficient to show that the statement holds for p = r. We define $y \in U_{R_I}(\mathfrak{n}_I^-)$ by

$$e_{i_0}(f_r \otimes 1_{c+\mu}) = y \otimes 1_{c+\mu}.$$

Since f_r is the lowest weight vector of the $\operatorname{ad}(\mathfrak{l}_I)$ -module $U(\mathfrak{n}_I^-)$ and $[e_{i_0},\mathfrak{l}_I\cap\mathfrak{n}^-]=\{0\}$, y is the lowest weight vector as an $\operatorname{ad}(\mathfrak{l}_I)$ -module. Moreover the weight of y is $\lambda_r+\alpha_{i_0}=w_I\lambda_{r-1}$, which is the lowest weight of the irreducible component $I(\lambda_{r-1})=\operatorname{ad}(U(\mathfrak{l}_I))f_{r-1}$. Therefore $y\otimes 1_{c+\mu}\in U_{R_I}(\mathfrak{l}_I\cap\mathfrak{n}^-)(f_{r-1}\otimes 1_{c+\mu})$.

COROLLARY 5.4. Let $u \in U(\mathfrak{n}^+)$ with weight $k\alpha_{i_0} + \sum_{i \in I} m_i \alpha_i$. Then we have

$$uf_r \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k} \otimes 1_{c+\mu}).$$

PROOF. We shall show the statement by the induction on k. If k=0, then the statement is clear. Assume that k>0, and the statement holds for k-1. We write $u=\sum_j u_j e_{i_0} u'_j$, where $u_j \in U(\mathfrak{l}_I \cap \mathfrak{n}^+)$ and $u'_j \in U(\mathfrak{n}^+)$. Then the weight of u'_j is in $(k-1)\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i$, and hence we have

$$uf_r \otimes 1_{c+\mu} \in \sum_i u_j e_{i_0} U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k+1} \otimes 1_{c+\mu}) \subset U_{R_I}(\mathfrak{l}_I)(e_{i_0} f_{r-k+1} \otimes 1_{c+\mu}).$$

Here note that $[e_{i_0}, U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)] = 0$. By Lemma 5.3 we have

$$e_{i_0}f_{r-k+1}\otimes 1_{c+\mu}\in U_{R_I}(\mathfrak{l}_I\cap\mathfrak{n}^-)(f_{r-k}\otimes 1_{c+\mu}).$$

Therefore we obtain

$$uf_r \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I)(f_{r-k} \otimes 1_{c+\mu}) = U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k} \otimes 1_{c+\mu}).$$

Theorem 5.5. We have $\xi_{\varpi_{i_0}} = \prod_{j=1}^r p_{\varpi_{i_0},\lambda_j+\varpi_{i_0}} \in \mathbb{C}^{\times} \xi_{\varpi_{i_0}}^0$, where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$.

PROOF. Let $v_{-\varpi_{i_0}}$ be the lowest weight vector of $V(\varpi_{i_0})$. Since f_r is the lowest weight vector of $U(\mathfrak{n}_I^-)$ with weight $-2\varpi_0$, we have $\psi^0_{\varpi_{i_0}}(1\otimes 1_c\otimes v_{-\varpi_{i_0}})=f_r\otimes 1_{c+\varpi_{i_0}}$. It is clear that

$$\varpi_{i_0} - w_0 \varpi_{i_0} = 2\varpi_{i_0} = -\lambda_r \in r\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i.$$

Set $P(j) = \{\lambda \mid \varpi_{i_0} - \lambda \in j\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i\}$. We define an \mathfrak{l}_I -submodule V_j of $V(\varpi_{i_0})$ by

$$V_j = \bigoplus_{\lambda \in P(j)} V(\varpi_{i_0})_{\lambda}$$

(cf. Section 2). Note that $V_j \neq 0$ for $0 \leq j \leq r$. We take the irreducible decomposition of V_j

$$V_j = \tilde{W}(\eta_{j,1}) \oplus \cdots \oplus \tilde{W}(\eta_{j,t_j}),$$

where $\tilde{W}(\eta)$ is an irreducible \mathfrak{l}_I -module with highest weight η . Let $v_{j,k}$ be the highest weight vector of $\tilde{W}(\eta_{j,k})$. There exists an element $u_{j,k} \in U(\mathfrak{n}^+)$ such that $u_{j,k}v_{-\varpi_{i_0}} = v_{j,k}$. Then the weight of $u_{j,k}$ is in $(r-j)\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i$. By Corollary 5.4 we have

$$\psi^0_{\varpi_{i_0}}(1\otimes 1_c\otimes v_{j,k})=u_{j,k}\psi^0_{\varpi_{i_0}}(1\otimes 1_c\otimes v_{-\varpi_{i_0}})=u_{j,k}f_r\otimes 1_{c+\varpi_{i_0}}\in U_{R_I}(\mathfrak{l}_I\cap\mathfrak{n}^-)f_j\otimes 1_{c+\varpi_{i_0}}.$$

Since $v_{i,k}$ is the highest weight vector, we have

$$\psi^0_{\varpi_{i_0}}(1\otimes 1_c\otimes v_{j,k})\in R_I(f_j\otimes 1_{c+\varpi_{i_0}}).$$

In particular $\eta_{j,k} = \lambda_j + \varpi_{i_0}$, and the irreducible decomposition of $V(\varpi_{i_0})$ as an \mathfrak{l}_I -module is given by

$$V(\varpi_{i_0}) = \bigoplus_{j=0}^r \tilde{W}(\lambda_j + \varpi_{i_0})^{\oplus N_j},$$

where we set $\lambda_0=0$. Therefore we have $\xi_{\varpi_{i_0}}=\prod_{j=1}^r p_{\varpi_{i_0},\lambda_j+\varpi_{i_0}}$, which is regarded as a polynomial function on $\mathbb{C}\varpi_{i_0}$. Since $\deg p_{\varpi_{i_0},\lambda_j+\varpi_{i_0}}=1$ for $j\geq 1$, we have $\deg \xi_{\varpi_{i_0}}=r$. Now we have $\deg \xi_{\varpi_{i_0}}^0=\deg b(s)=\deg f_r=r$. From Proposition 4.6 we have $\xi_{\varpi_{i_0}}\in\mathbb{C}^\times\xi_{\varpi_{i_0}}^0$, hence the statement holds.

For $1 \leq i < j \leq r$ we set $c_{i,j} = \sharp \{\alpha \in \Delta_I \cap \Delta^+ \mid \alpha|_{\mathfrak{h}^-} = \frac{\gamma_j - \gamma_i}{2}|_{\mathfrak{h}^-}\}$. It is known that $c_{i,j} = \sharp \{\alpha \in \Delta^+ \setminus \Delta_I \mid \alpha|_{\mathfrak{h}^-} = \frac{\gamma_j + \gamma_i}{2}|_{\mathfrak{h}^-}\}$ and this number is independent of i or j (see [13]). Set $c_0 = c_{i,j}$. Then we have $(2\rho, \gamma_j) = d_0(1 + c_0(j-1))$, where $d_0 = (\alpha_{i_0}, \alpha_{i_0})$. In particular $(2\rho, \lambda_j) = -jd_0(1 + \frac{j-1}{2}c_0)$. Since $(\gamma_i, \gamma_j) = \delta_{i,j}d_0$, we have $(\varpi_{i_0}, \varpi_{i_0}) = (\lambda_j + \varpi_{i_0}, \lambda_j + \varpi_{i_0})$ for $1 \leq j \leq r$. Hence we have

$$p_{\overline{\omega}_{i_0}, \lambda_j + \overline{\omega}_{i_0}}(s\overline{\omega}_{i_0}) = -2(s\overline{\omega}_{i_0} + \rho, \lambda_j) = jd_0(s + 1 + \frac{j-1}{2}c_0).$$

6 Non-regular Type

Assume that the prehomogeneous vector space (L_I, \mathfrak{n}_I^+) is not regular. We take γ_i , λ_i and f_i $(1 \leq i \leq r = r(\mathfrak{g}))$ as in Section 4. For $\mu = m\varpi_{i_0} \in \mathfrak{h}_{I,+}^*$ we denote by \tilde{v}_{μ} the highest weight vector of the irreducible \mathfrak{l}_I -submodule of $V(\mu)$ generated by the lowest weight vector of $V(\mu)$. The weight of \tilde{v}_{μ} is $w_I \mu$. We take $u \in U_{R_I}(\mathfrak{n}_I^-)$ as $\psi_{\mu}^0(1 \otimes 1_c \otimes \tilde{v}_{\mu}) = u \otimes 1_{c+\mu}$. By definition of ψ_{μ}^0 we have $u \in U(\mathfrak{n}_I^-)$. Moreover u is the highest weight vector of $U(\mathfrak{n}_I^-)$ with weight $w_I w_0 \mu - \mu = w_I(w_0 \mu - \mu)$. By Lemma 4.4 we have $w_I(w_0 \mu - \mu) = m\lambda_r$. Therefore we have $u = f_r^m$. Set $\xi_{\mu}^0 = \psi_{\mu}^0 \iota_{\mu} \in R_I$.

We define subalgebras $\mathfrak{g}_{(r)}$, $\mathfrak{l}_{(r)}$ and $\mathfrak{n}_{(r)}^{\pm}$ of \mathfrak{g} as in Lemma 4.8. We set $\tilde{\mathfrak{p}}^+ = \mathfrak{l}_{(r)} \oplus \mathfrak{n}_{(r)}^+$. We denote by $\tilde{V}(\mu)$ the irreducible $\mathfrak{g}_{(r)}$ -module with highest weight μ . Let \tilde{I}_0 be an index set of simple roots of $\mathfrak{g}_{(r)}$, that is, $\tilde{I}_0 = I_{(r)} \sqcup \{i_0\}$ (see Lemma 4.8). We set $\tilde{I} = I_{(r)}$ and $\tilde{\mathfrak{g}} = \mathfrak{g}_{(r)}$ for simplicity. Let \tilde{R} be an enveloping algebra of $\sum_{i \in \tilde{I}_0} \mathbb{C} h_i / \sum_{i \in \tilde{I}} \mathbb{C} h_i$. Since we have the canonical identification $R_I \simeq \tilde{R}$, a $U_{R_I}(\tilde{\mathfrak{g}})$ -submodule

$$\tilde{M}(c+\mu) = U_{R_I}(\tilde{\mathfrak{g}}) \otimes_{U_{R_I}(\tilde{\mathfrak{p}}^+)} R_{I,c+\mu}$$

of $M_{R_I}(c + \mu)$ is a generalized universal Verma module associated with $\tilde{\mathfrak{g}}$. We define an element $\tilde{\xi}_{\mu}^0$ of $\tilde{R} \simeq R_I$ by the multiplication map on $\tilde{M}(c + \mu)$ induced by the minimal map

$$\tilde{\psi}^0_{\mu}: U_{R_I}(\tilde{\mathfrak{g}}) \otimes_{U_{R_I}(\tilde{\mathfrak{p}}^+)} (R_{I,c} \otimes_{\mathbb{C}} \tilde{V}(\mu)) \to \tilde{M}(c+\mu).$$

Then we have the following.

PROPOSITION 6.1. (i) Under the identification $\tilde{R} \simeq R_I$ we have $\xi_{\mu}^0 = \tilde{\xi}_{\mu}^0$ for $\mu \in \mathfrak{h}_{I,+}^*$.

- (ii) $\xi_{\varpi_{i_0}} \in \mathbb{C}^{\times} \xi_{\varpi_{i_0}}^0$.
- PROOF. (i) We have $U(\tilde{\mathfrak{g}})v_{\mu} \simeq \tilde{V}(\mu)$, and \tilde{v}_{μ} is its lowest weight vector. Since we have $\tilde{\psi}_{\mu}^{0}(1 \otimes 1_{c} \otimes \tilde{v}_{\mu}) = f_{r}^{m} \otimes 1_{c+\mu}$, the restriction ψ_{μ}^{0} on $U_{R_{I}}(\tilde{\mathfrak{g}}) \otimes_{U_{R_{I}}(\tilde{\mathfrak{p}}^{+})} (R_{I,c} \otimes_{\mathbb{C}} U(\tilde{\mathfrak{g}})v_{\mu})$ is $\tilde{\psi}_{\mu}^{0}$. Hence we have $\xi_{\mu}^{0} \otimes 1_{c+\mu} = \psi_{\mu}^{0}(1 \otimes 1_{c} \otimes v_{\mu}) = \tilde{\psi}_{\mu}^{0}(1 \otimes 1_{c} \otimes v_{\mu}) = \tilde{\xi}_{\mu}^{0} \otimes 1_{c+\mu}$.
 - (ii) Since the pair $(\tilde{\mathfrak{g}}, i_0)$ is of regular type, we have $\deg \tilde{\xi}_{\varpi_{i_0}}^0 = r$ (see the proof of Theorem 5.5). Similarly to the proof of Theorem 5.5 we can show that $\deg \xi_{\varpi_{i_0}} = r$. By (i) we have $\deg \xi_{\varpi_{i_0}}^0 = \deg \xi_{\varpi_{i_0}}$. Since $\Xi_{\varpi_{i_0}} = R_I \xi_{\varpi_{i_0}}^0$ and $\xi_{\varpi_{i_0}} \in \Xi_{\varpi_{i_0}}$, we have $\xi_{\varpi_{i_0}} \in \mathbb{C}^{\times} \xi_{\varpi_{i_0}}^0$.

As a result, we have the following.

THEOREM 6.2. For any pair (\mathfrak{g}, i_0) of commutative parabolic type, the ideal $\Xi_{\varpi_{i_0}}$ is generated by $\xi_{\varpi_{i_0}}$.

7 Irreducibility of Verma Modules

Let (L_I, \mathfrak{n}_I^-) be a prehomogeneous vector space of commutative parabolic type. Set $\{i_0\} = I_0 \setminus I$. In this section we give a new proof of the following well-known fact (Suga [9], Gyoja [1], Wachi [11]).

THEOREM 7.1. Let $\lambda = s_0 \varpi_{i_0} \in \mathfrak{h}_I^*$. $M_I(\lambda)$ is irreducible if and only if $\xi_{\varpi_{i_0}}^0(\lambda - m\varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$.

We take $f_i \in U(\mathfrak{n}_I^-)$ $(1 \le i \le r = r(\mathfrak{g}))$ as in Section 4.

LEMMA 7.2. Let e_i^- be a nonzero element of $\mathfrak{g}_{-\alpha_i}$. There exist $y_0, y_1, \ldots, y_t \in \mathfrak{n}_{(r)}^-$ and $i_1, \ldots, i_t \in I_{(r)}$ such that

(7.1)
$$f_r = \sum_{k=0}^t y_k \operatorname{ad}(e_{i_k}^- \cdots e_{i_1}^-) f_{r-1},$$

and $ad(e_{i_k}^-)f_{r-1} = 0$ for $k \ge 2$.

This lemma is proved by direct calculations for each case. In [3] there are explicit decompositions of quantum counterparts $f_{q,r}$ of f_r satisfying the properties of Lemma 7.2. We can get the decomposition (7.1) from the quantum counterpart via q = 1. For example, in the case of type A, f_r is a determinant and the decomposition (7.1) corresponds to a cofactor decomposition.

PROPOSITION 7.3. Let $a_i \in \mathbb{Z}_{>0}$ and let $a_{i+1}, \ldots, a_r \in \mathbb{Z}_{\geq 0}$. There exists $u \in U(\mathfrak{n}^-)$ such that

$$uf_i^{a_i} f_{i+1}^{a_{i+1}} \cdots f_r^{a_r} \otimes 1_{\lambda} = f_i^{a_i-1} f_{i+1}^{a_{i+1}+1} \cdots f_r^{a_r} \otimes 1_{\lambda}.$$

PROOF. By Lemmas 4.8 and 7.2 we have

$$f_{i+1} = \sum_{k=0}^{t} y_k \operatorname{ad}(u_k) f_i,$$

where $y_k \in \mathfrak{n}_{(i+1)}^-$ and $u_k = e_{j_k}^- \cdots e_{j_1}^-$ such that $j_1, \ldots, j_t \in I_{(i+1)}$ and $\operatorname{ad}(e_{j_l}^-) f_i = 0$ for l > 1. Note that for p > i we have $y_k \in \mathfrak{n}_{(p)}^-$ and $j_k \in I_{(p)}$. Since f_p is the lowest weight vector of an $\operatorname{ad}(\mathfrak{l}_{(p)})$ -module $U(\mathfrak{n}_{(p)}^-)$, we have

$$ad(u_k)(f_i^{a_i}f_{i+1}^{a_{i+1}}\cdots f_r^{a_r}) = (ad(u_k)f_i^{a_i})f_{i+1}^{a_{i+1}}\cdots f_r^{a_r}.$$

If $k \geq 1$, then we have

$$ad(u_k)(f_i^{a_i}) = a_i \ ad(e_{j_k}^- \cdots e_{j_2}^-)((ad(e_{j_1}^-)f_i)f_i^{a_i-1})$$
$$= a_i \ (ad(u_k)f_i)f_i^{a_i-1}.$$

Hence for $u = y_0 + a_i^{-1} \sum_{k=1}^t y_k u_k$, we have

$$uf_{i}^{a_{i}}f_{i+1}^{a_{i+1}}\cdots f_{r}^{a_{r}}\otimes 1_{\lambda} = y_{0}f_{i}^{a_{i}}f_{i+1}^{a_{i+1}}\cdots f_{r}^{a_{r}}\otimes 1_{\lambda} + \sum_{k=1}^{t}y_{k}(\operatorname{ad}(u_{k})f_{i})f_{i}^{a_{i}-1}f_{i+1}^{a_{i+1}}\cdots f_{r}^{a_{r}}\otimes 1_{\lambda}$$
$$= f_{i}^{a_{i}-1}f_{i+1}^{a_{i+1}+1}\cdots f_{r}^{a_{r}}\otimes 1_{\lambda}.$$

COROLLARY 7.4. Let $K(\neq 0)$ be a submodule of $M_I(\lambda)$ for $\lambda \in \mathfrak{h}_I^*$. We have $f_r^n M_I(\lambda) \subset K$ for $n \gg 0$.

PROOF. If $K = M_I(\lambda)$, then the statement is clear. Assume that $\{0\} \neq K \subsetneq M_I(\lambda)$. By Lemma 4.5 any highest weight vector of $M_I(\lambda)$ as an \mathfrak{l}_I -module is given by the following form:

$$f_1^{a_1}\cdots f_r^{a_r}\otimes 1_{\lambda}$$
.

Since K has the highest weight vector as an \mathfrak{l}_I -module, there exists an element $f_1^{a_1} \cdots f_r^{a_r} \otimes 1_{\lambda} \in K$ such that $(a_1, \ldots, a_r) \neq 0$. By Proposition 7.3 for $n \gg 0$ there exists $u \in U(\mathfrak{n}^-)$ such that

$$f_r^n \otimes 1_\lambda = u(f_1^{a_1} \cdots f_r^{a_r} \otimes 1_\lambda) \in K.$$

Hence for any $y \in U(\mathfrak{n}_I^-)$ we have

$$f_r^n(y \otimes 1_\lambda) = y f_r^n \otimes 1_\lambda \in K$$
,

and the statement holds.

Let us prove Theorem 7.1 by using the commutative diagram

(7.2)
$$M_{R_{I}}(c+\mu) = M_{R_{I}}(c+\mu)$$

$$\downarrow^{\iota_{\mu}} \qquad \qquad \downarrow^{\xi_{\mu}^{0}}$$

$$U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)) \xrightarrow{\psi_{\mu}^{0}} M_{R_{I}}(c+\mu),$$

where $\mu \in \mathfrak{h}_{I,+}^*$.

Set $\lambda = s_0 \varpi_{i_0}$. We denote the highest weight vector of $V(\mu)$ by v_{μ} . Let \tilde{v}_{μ} be the highest weight vector of the irreducible \mathfrak{l}_I -module generated by the lowest weight vector of \mathfrak{g} -module $V(\mu)$. For a positive integer m, we set $\mu = \mu_m = m\varpi_{i_0}$. Considering the functor $\mathbb{C} \otimes_{R_I} (\cdot)$, where \mathbb{C} has the R_I -module structure via $c(h_i)1 = (\lambda - \mu)(h_i)$, we obtain the following commutative diagram from (7.2):

$$M_{I}(\lambda) = M_{I}(\lambda)$$

$$\iota_{m} \downarrow \qquad \qquad \downarrow \xi_{\mu}^{0}(\lambda - \mu)$$

$$U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_{I}^{+})} (\mathbb{C}_{I,\lambda-\mu} \otimes_{\mathbb{C}} V(\mu)) \xrightarrow{\psi_{m}^{0}} M_{I}(\lambda),$$

where $\iota_m(1 \otimes 1_{\lambda}) = 1 \otimes 1_{\lambda-\mu} \otimes v_{\mu}$ and $\psi_m^0(1 \otimes 1_{\lambda-\mu} \otimes \tilde{v}_{\mu}) = f_r^m \otimes 1_{\lambda}$.

Assume that $M_I(\lambda)$ is irreducible. Since $\psi_m^0 \neq 0$, we have $\operatorname{Im} \psi_m^0 = M_I(\lambda)$. The weight space of $U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I^+)} (\mathbb{C}_{I,\lambda-\mu} \otimes_{\mathbb{C}} V(\mu))$ with weight λ is $\mathbb{C}(1 \otimes 1_{\lambda-\mu} \otimes v_{\mu})$, hence there exists $a \in \mathbb{C} \setminus \{0\}$ such that

$$1 \otimes 1_{\lambda} = \psi_m^0(a \otimes 1_{\lambda - \mu} \otimes v_{\mu}) = a\psi_m^0 \iota_m(1 \otimes 1_{\lambda}) = a\xi_{\mu}^0(\lambda - \mu) \otimes 1_{\lambda} \neq 0.$$

By Propositions 5.1 and 6.1 we have

$$\xi_{\mu}^{0}(\lambda-\mu) = \xi_{\varpi_{i_0}}^{0}(\lambda-\varpi_{i_0})\xi_{\varpi_{i_0}}^{0}(\lambda-2\varpi_{i_0})\cdots\xi_{\varpi_{i_0}}^{0}(\lambda-m\varpi_{i_0}).$$

Therefore we have $\xi_{\varpi_{i_0}}^0(\lambda - m\varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$.

Conversely, we assume that $\xi_{\varpi_{i_0}}^0(\lambda - m\varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$. We set

$$N(m) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_{\tau}^+)} (\mathbb{C}_{I,\lambda-\mu_m} \otimes_{\mathbb{C}} V(\mu_m)).$$

Since $\xi_{\mu_m}^0(\lambda - \mu_m) = \xi_{\varpi_{i_0}}^0(\lambda - \varpi_{i_0})\xi_{\varpi_{i_0}}^0(\lambda - 2\varpi_{i_0})\cdots\xi_{\varpi_{i_0}}^0(\lambda - m\varpi_{i_0}) \neq 0$, we have

$$\psi_m^0(\xi_{\mu_m}^0(\lambda - \mu_m)^{-1} \otimes 1_{\lambda - \mu_m} \otimes v_{\mu_m}) = \xi_{\mu_m}^0(\lambda - \mu_m)^{-1} \psi_m^0 \iota_m(1 \otimes 1_{\lambda})$$

= 1 \times 1_\tau.

Hence ψ_m^0 is surjective, and we have an isomorphism

$$N(m)/\mathrm{Ker}\psi_m^0 \simeq M_I(\lambda): \overline{1 \otimes 1_{\lambda-\mu_m} \otimes \tilde{v}_{\mu_m}} \mapsto f_r^m \otimes 1_{\lambda}$$

for any m. Under this identification we have

$$\overline{1 \otimes 1_{\lambda - \mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} = f_r^{n+1} \otimes 1_{\lambda} = f_r^n \left(f_r \otimes 1_{\lambda} \right) = f_r^n \overline{1 \otimes 1_{\lambda - \mu_1} \otimes \tilde{v}_{\mu_1}}.$$

Let $K \neq 0$ be a submodule of $M_I(\lambda)$. By Corollary 7.4 for $n \gg 0$ we have

$$\overline{1 \otimes 1_{\lambda - \mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} = f_r^n \overline{1 \otimes 1_{\lambda - \mu_1} \otimes \tilde{v}_{\mu_1}} \in K.$$

Hence we have

$$M_I(\lambda) = N(n+1)/\mathrm{Ker}\psi_{n+1}^0$$

= $U(\mathfrak{g})\overline{1 \otimes 1_{\lambda-\mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} \subset K.$

Therefore $K = M_I(\lambda)$, and $M_I(\lambda)$ is irreducible. We complete the proof of Theorem 7.1.

References

- [1] A. Gyoja, Highest weight modules and b-functions of semi-invariants, Puble. Res. Inst. Math. Sci. **30** (1994), 353–400.
- [2] K. Johnson, On a ring of invariant polynomials on a hermitian symmetric spaces, *J. Alg.* **67** (1980), 72–81.
- [3] A. Kamita, Quantum b-functions of prehomogeneous vector spaces of commutative parabolic type, J. Alg. 244 (2001), 581–603.
- [4] M. Kashiwara, The universal Verma module and the *b*-function, *Adv. Stud. Pure Math.* **6** (1985), 67–81.
- [5] C. C. Moore, Compactifications of symmetric spaces. II: the Cartan domains, Amer. J. Math. 86 (1964), 358–378
- [6] M. Sato, Theory of prehomogeneous vector spaces (Algebraic part) The English translation of Sato's lecture from Shintani's Note (translated by M. Muro), *Nagoya Math. J.* **120** (1990), 1–34.
- [7] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, *Nagoya Math. J.* **65** (1977), 1–155.
- [8] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, *Invent. Math.* **9** (1969), 61–80.
- [9] S. Suga, Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, *Osaka J. Math.* **28** (1991), 323–346.

- [10] M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441–475.
- [11] A. Wachi, Contravariant forms on generalized Verma modules and b-functions, Hiroshima Math. J. 29 (1999), 193–225.
- [12] N. R. Wallach, The analytic continuation of the discrete series. II, Trans. Amer. Math. Soc. 251 (1979), 19–37.
- [13] N. R. Wallach, Polynomial differential operators associated with Hermitian symmetric spaces, Proceedings of Fuji-Kawaguchiko conference on representation theory of Lie groups and Lie algebras, World Scientific (1992).