- Q1. Recall the 8-queen problem discussed in class and reduce it to a 4-queen problem and consider the following:
 - State: 4 queens on the board. One queen per column.
 - \circ **Variables**: x_0 ; x_1 ; x_2 ; x_3 where x_i is the row position of the queen in column i. Assume that there is one queen per column.
 - o **Domain** for each variable: $x_i \in \{0, 1, 2, 3\}, \forall i$.
 - Initial state: a random state.
 - Goal state: 4 queens on the board. No pair of queens are attacking each other.
 - Neighbour relation:
 - Version A: Move a single queen to another square in the same column.
 - Version B: Swap the row positions of two queens.
 - Cost function: The number of pairs of queens attacking each other, directly or indirectly.

For the following questions, consider **version B** of the neighbour relation: **swap the row positions of two queens**.

i. [2 pts] How many neighbors are there for a state?

ii. [10 pts] Start with the initial state $x_0 = 3$; $x_1 = 1$; $x_2 = 2$; $x_3 = 0$. Show the steps of executing the hill climbing algorithm until it terminates. State the cost at the current state and then compute cost at each step.

			Q
	Q		
		Q	
Q			

Note, if multiple neighbours have the same cost, choose the neighbour where the pair of queens swapped has the smallest subscript/column number. For example, when we can swap either (x_0 ; x_4) or (x_2 ; x_3), we will swap (x_0 ; x_4). When we can swap either (x_2 ; x_3) or (x_2 ; x_3) we will swap (x_2 ; x_3).

iii. [5 pts] Consider the following configuration and let the current state be $x_0 = 0$; $x_1 = 0$; $x_2 = 0$; $x_3 = 0$. What is the cost of this state? Is this a local optimum?

Q	Q	Q	Q