IV107 BIOINFORMATIKA

Datum: Jméno:

Kontrolní test obsahuje 8 otázek s volbou (vždy 0.5 b), 8 otázek s krátkou odpovědí (vždy 1.5 b) a dvě schémy (po 2 body). Nejvyšší počet bodů, který můžete získat je tedy 20. Na vypracování odpovědí máte max. 50 minut. Na poslední stránce je k dispozici tabulka genetického kódu.

ČÁST TIPOVACÍ (je jedna správná/nejlepší odpověd; nesprávná odpověd není penalizována)

A01 Který tok genetických informací v biologických systémech není považován za běžný, ale naopak představuje nejznámější výjimku souvisejíci se životním cyklem skupiny virů?

```
a - protein -> ribozom -> DNA
```

b - DNA -> RNA -> protein

c - DNA <- RNA

d - dideoxynukleotid <-> deoxynukleotid

A02 Jakými symboly se běžně značí nukleotidy v sekvenci RNA?

a - A,C,G,T

b - A, C, G, U

c - A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y

d - 0.1

A03 Regulační oblastí eukaryotického genu je zejména

a – exon

b – intron

c - promotor

d – adaptor

A04 Jaký je přibližný počet párů bazí v sekvenci jedné kopie lidského genomu?

a - 3000

b - 20000

c - 20 000 000

d - 3 000 000 000

A05 Který komplex nebo protein "porovnává" nebo "využívá" při své biologické funkci kodony na mRNA a antikodony na tRNA?

a - RNA polymeráza

b - DNA polymeráza

c - ribozom

d - transkripční faktor

A06 Geny společného původu a obdobné funkce ve dvou odlišných organizmech se nazývají

- a paralelní
- b homologní
- c paralogní
- d ortologní

A07 Abychom naštěpili neznámou DNA s rovnoměrným zastoupením bazí pomoci restrikční endonukleázy na menší fragmenty, musí sekvence, kterou endonukleáza rozeznává být

- a kratší
- b s nizším obsahem cytozinu
- c s vysším obsahem cytozinu
- d s vysším obsahem cytozinu a guaninu

A08 Které tvrzení neplatí? -> Genetický kód...

- a ...je degenerovaný
- b ...je u mnohých organizmů stejný, ale existují drobné odchylky od standardu
- c ...propojuje informace v DNA a proteinech
- d ...je jedinečný pro každého jedince, s výjimkou klonů (např. jednovaječná dvojčata)

ČÁST KRÁTKÝCH ODPOVĚDÍ

B01 S jakou frekvencí (kolikrát na určité délce) by se nejspíš vyskytovala sekvence AGTCCGT v hypotetickém genomu s náhodným pořadím bazí, s obsahem 40% cytozinu?

B02 Napište sekvenci RNA komplementární k sekvenci 5'-CGATTGACG-3':

B03 Zarovnáváme sekvence AGTCA a AGATA globálně algoritmem dynamického programování. Skóre za shodu je 3, neshodu -1, mezeru -2. Jaké číslo doplníme namísto otazníku?

A - 10

B04 Jakou sekvenci aminokyselin kóduje mRNA se sekvencí 5'-CGAUCAUGGGAUGUCGCCGA-3' pokud translace začne na šesté pozici?
B05 Vyjmenujte základní komponenty sekvenační reakce u Sangerovy metody
B06 Co je to sekundární struktura proteinů?
B07 Jaký je rozdíl mezi databázemi PDB a UniProt. Co mají společné?
B08 Jaké různé důsledky může mít bodová mutace (záměna, stráta nebo nabytí jednoho nukleotidu) na sekvenci proteinu kódovaného úsekem DNA obsahujícím takouto mutaci?
ČÁST SCHEMATICKÁ CO1 Znázorněte graficky strukturu DNA a vyznačte všechny biologicky význačné komponenty a
vlastnosti.

C02 Načrtněte rozhraní běžného genomového prohlížeče s typickými částmi pro ovládání a vizualizaci. Označte důležité součásti popiskem.

POMOCNÉ TABULKY

Tabulka kodonů genetického kódu:

```
AAA AAG = Lys
AAU AAC = Asn
ACA ACC ACG ACU = Thr
AGA AGG = Arg
AGC AGU = Ser
AUA AUC AUU = Ile
AUG = Met
CAA CAG = Gln
CAC CAU = His
CCA CCC CCG CCU = Pro
CGA CGC CGG CGU = Arg
CUA CUC CUG CUU = Leu
GAA GAG = Glu
GAC GAU = Asp
GCA GCC GCG GCU = Ala
GGA GGC GGG GGU = Gly
GUA GUC GUG GUU = Val
UAA UAG UGA = STOP
UAC UAU = Tyr
UCA UCC UCG UCU = Ser
UGC UGU = Cys
UGG = Trp
UUA UUG = Leu
UUC UUU = Phe
```