Nota: La indicación de la puntuación de los ejercicios es sobre 10 puntos, pero esta parte del examen final solo representa 5 puntos de la nota del examen final.

Ejercicio 1 (1.9 puntos)

a) (0.4 puntos)

D=0x602A

loop=**0x950C**

Criterio de valoración: 0,2 puntos por cada respuesta correcta.

b) (0.6 puntos)

Instrucción	@ memoria y contenido
SUB R6, R4, R5	Mem _w [0x9510] = 0x0975
BNZ RO, impar	Mem _w [0x9514] = 0x8102
ST 16(R2), R5	Mem _w [0x951A] = 0x4550

Criterio de valoración: 0,2 puntos por fila correcta. Si todas las direcciones de memorias fuesen correctas pero desplazadas, se contarían como correctas pero se restaría 0,1 puntos (mínimo 0 puntos)

c) (0.6 puntos)

@memoria	Valor
0x6000	06
0x6001	88
0x6002	82
0x6003	FA
0x6004	25
0x6005	BA
0x6006	0F
0x6007	00

@memoria	Valor
0x6008	01
0x6009	9A
0x600A	02
0x600B	01
0x600C	FE
0x600D	FF
0x600E	10
0x600F	00

@memoria	Valor
0x6010	A 3
0x6011	F2
0x6012	0A
0x6013	0A
0x6014	0A
0x6015	0A
0x6016	06
0x6017	00

@memoria	Valor
0x6018	88
0x6019	FF
0x601A	08
0x601B	01
0x601C	0A
0x601D	0A
0x601E	0A
0x601F	0 A
	_

Criterio de valoración: -0,1 puntos por cada valor erróneo. Si TODOS los valores son correctos, pero están desplazados de su posición de memoria correcta el ejercicio puntuará como 0.4 puntos.

d) (0.3 puntos)

 $N_{total} = 37$

 $N_{lentas} = 9$

Nrápidas= 28

Criterio de valoración: 0,1 puntos por cada respuesta correcta.

Ejercicio 2 (2 puntos)

a) (0.4 puntos)

Nodo / Estado (Mnemo Salida)	Instrucción en IR (en ensamblador)	Valor del IR (en hexadecimal)
Cmp	CPMLTU R1, R2, R3	0x14CC
D	BNZ R4, -16	0x89F0
In	IN R5, 50	0xAA32
Movi	MOVI R6, 0xAC	0x9CAC

Criterio de valoración: 0,1 puntos por cada fila correcta.

b) (0.8 puntos)

Nodo / Estado (Mnemo Salida)	Instrucción en IR (en ensamblador)	Contenido ROM_OUT (en hexadecimal)
Cmp	CPMLTU R1, R2, R3	0x041100
D	BNZ R4, -16	0x0020B0
In	IN R5, 50	0x140802
Movi	MOVI R6, 0xAC	0x040266

Criterio de valoración: 0,2 puntos por cada fila correcta.

c) (0.8 puntos)

Estado Salida)			Palabra de Control																	
Nodo / Estado (Mnemo Salida)	Instrucción en IR (en ensamblador)	@A	@B	Pc/Rx	Ry/N	OP	F	P/I/L/A	@D	WrD	Wr-Out	Rd-In	Wr-Mem	Ldlr	LdPc	Byte	Alu/R@	R@/Pc	N (hexa)	ADDR-IO (hexa)
Cmp	CPMLTU R1,R2,R3	010	011	0	1	01	100	00	001	1	0	0	0	x	0	x	x	x	xxxx	CC
D	BNZ R4, -16	100	111	1	0	00	100	хх	xxx	0	0	0	0	0	0	x	x	x	FFE0	F0
In	IN R5, 50	101	000	x	x	xx	xxx	10	101	1	0	1	0	x	0	x	x	x	xxxx	32
Movi	MOVI R6, 0xAC	110	010	x	0	10	001	00	110	1	0	0	0	x	0	x	x	x	FFAC	AC

Criterio de valoración: Sea k el mínimo número de filas y/o columnas que cubren todas las casillas de la tabla que están mal (1, 0 o x). La nota de este ejercicio es el MAXIMO(0.8 - 0.2k, 0).

Ejercicio 3 (0.9 puntos)

Instrucción a ejecutar	Cambios en el e	Cambios en el estado del computador								
STB -11(R2), R4	PC=0x86AE	$MEM_{b}[0x677E]=0x89$								
JALR R2, R4	PC=0x6788	R2=0x86AE								
LD R6, 17(R3)	PC=0x86AE	R6=0x3264								

Criterio de valoración: 0,3 puntos por cada fila correcta.

Ejercicio 4 (1.8 puntos)

```
.data
                            ;se necesita un espacio en la memoria para almacenar los 50 valores
       aux: .space 50*2
.text
                            ;R0 contiene el número de iteraciones del bucle para leer los valores
       MOVI R0, 50
       MOVI R1, lo(aux)
       MOVHI R1, hi(aux)
       ;bucle leer datos
buc1: IN
            R2, 9
       BZ
            R2, buc1
       IN
            R2, 12
       ST
             0(R1), R2
       ADDI R1, R1, 2
                         ;se actualiza la dirección de memoria para almacenar el siguiente valor
       ADDI R0, R0, -1
       BNZ R0, buc1
       ;bucle escribir datos
      MOVI R0, 50
                           ;R0 contiene el número de iteraciones del bucle para enviar los valores
            R2, 3
buc2: IN
            R2, buc2
       BZ
                           ;se recorre el bucle al revés
       ADDI R1, R1, -2
            R3, 0(R1)
       LD
       OUT
            6, R3
       ADDI R0, R0, -1
      BNZ R0, buc2
.end
```

Criterio de valoración:

- 1.8 puntos si el algoritmo funciona y ocupa menos de 21 instrucciones SISA
- 1.5 puntos si el algoritmo funciona y ocupa 21 o más instrucciones SISA
- Si no funciona, la suma de los siguientes apartados correctos:
 - +0.2 si se ha declarado el vector de memoria
 - +0.2 si se ha inicializado un registro con la dirección inicial del vector
 - o +0.2 si se ha escrito correctamente las instrucciones que leen el valor del dispositivo de entrada
 - o +0.2 si se ha escrito correctamente las instrucciones que envían el valor al dispositivo de salida
 - o +0.2 si se han escrito dos códigos que realizan un bucle que se ejecuta 50 veces
 - o +0.1 si se actualiza correctamente el registro que contiene la dirección de memoria donde se almacena los valores
 - o +0.1 si se actualiza correctamente el registro que contiene la dirección de memoria de donde se leen los valores

Ejercicio 5 (1.2 puntos)

a) T_c correspondiente al nodo de **D** (decode).

 T_c (**Decode**) = 100+110+120+60+900 (REG \rightarrow ROM_OUT \rightarrow MUX4-1 \rightarrow MUX2-1 \rightarrow ALU-slow \rightarrow R@) = 1290 ut

b) T_c correspondiente al nodo de Addi.

 T_c (Addi)= $\frac{100+110+120+60+900+120+60}{100+110+120+60}$ (REG \rightarrow ROM_OUT \rightarrow MUX4-1 \rightarrow MUX2-1 \rightarrow ALU-slow \rightarrow MUX4-1 \rightarrow MUX2-1 \rightarrow REG) = $\frac{1470}{100}$ ut

c) T_c correspondiente al nodo de **Stb**.

 T_c (Stb)= 100+110+60+1000 (REG \rightarrow ROM_OUT \rightarrow MUX2-1 \rightarrow MEMORY) = 1270 ut

d) T_c correspondiente al nodo de **Nop**.

 T_c (Nop)= 100+80 (REG_estado o REG_IR \rightarrow ROM_Q+ \rightarrow REG_estado) = 180 ut

Criterio de valoración: evaluación binaria por cada apartado: correcta (0,3 puntos) o incorrecta (0 puntos)

Ejercicio 6 (2.2 puntos)

a) (0.2 puntos)

CO: Código de operación de la Instrucción, I₁₅ I₁₄ I₁₃ I₁₂ (en hexadecimal)

e: Bit de extensión del código de operación (I₈)

Q: Estado (en decimal)

ROMout: Mnemotécnico de salida

Grafo:

Para resolver este ejercicio se necesitan añadir sólo cuatro estados nuevos cuyas tareas se describen en los siguientes apartados. Si se han usado más estados, la implementación es correcta y coherente con el apartado b), también se considerará el ejercicio correcto.

Criterio de valoración: Evaluación binaria de todo el grafo (bien o mal). 0.2 puntos si están todos los arcos con todas las etiquetas, en cualquier otro caso la nota es 0 puntos.

b) (0.8 puntos)

Nodo	Mnemotécnico	Acciones
E0	F	$IR \leftarrow Mem_w[PC] // PC \leftarrow PC+2$
E1	D	RX ← Ra // RY ← Rb // R@ ← PC+SE(N8)*2
E18	ABne1	RX ← Ra // Ra ← PC+SE(N6)
E19	ABne2	Ra ← RX + 2 // RX ← Ra
E20	ABne3	RX ← Ra // RY ← Rb // R@ ← RX+SE(N6)
E21	ABne4	if (CMPEQ(RX,RY)==0x0000) {PC ← R@}

Criterio de valoración: El ejercicio tiene evaluación binaria (correcta o incorrecta) por fila. Si se han usado más estados que la solución planteada no pasa nada, si la solución es correcta y coherente con el apartado a) y c) se considerará correcta. La puntuación se reparte equitativamente entre las líneas de la solución planteada.

*) Hay otras soluciones posibles con más estados. Una solución más intuitiva pero menos óptima consiste en primero actualizar Ra, y luego repetir 2 veces: Comprobar si Ra!=Rb y actualizar PC+SE(N6). Al hacerse la comprobación i la suma 2 veces es como si actualizásemos el PC con SE(N6)*2

E18: Ra \leftarrow RX+2 E19: RX \leftarrow Ra // RY \leftarrow Rb // R@ \leftarrow PC+SE(N6) E20: if (CMPEQ(RX,RY)==0x0000) {PC \leftarrow R@} E21: RX \leftarrow Ra // RY \leftarrow Rb // R@ \leftarrow PC+SE(N6) E22: if (CMPEQ(RX,RY)==0x0000) {PC \leftarrow R@}

c) (0.8 puntos)

@ROM	Bnz	Bz	WrMem	RdIn	WrOut	WrD	Ldlr	Byte	R@/Pc	Alu/R@	Pc/Rx	Ry/N	P/I/L/A ₁	P/I/L/A ₀	OP ₁	OP_0	MxN ₁	MxN₀	MxF	F ₂	Ę.	Р.	Mx@D1	Mx@D ₀	Nodo (Mnemo)
18	0	0	0	0	0	1	0	X	X	x	1	0	0	0	0	0	0	0	1	1	0	0	1	0	ABne1
19	0	0	0	0	0	1	0	x	X	x	0	0	0	0	0	0	1	1	1	1	0	0	1	0	ABne2
20	0	0	0	0	0	0	X	x	X	x	0	0	X	X	0	0	0	0	1	1	0	0	X	X	ABne3
21	0	1	0	0	0	0	X	X	X	0	0	1	X	X	0	1	X	X	1	0	1	1	X	X	ABne4

Criterio de valoración: Sea k el mínimo número de filas y/o columnas que cubren todas las casillas de la tabla que están mal (1, 0 o x). La nota de este ejercicio es el MAXIMO(0.8 - 0.2k, 0). Si la solución propuesta en el apartado b) no resuelve el enunciado planteado en la pregunta del examen, no se corrige este apartado c) ya que no tiene sentido para el problema.

La solución más simple es con 4 estados nuevos. Si el apartado a) y b) son correctos, pero se han usado más estados no pasa nada, simplemente el criterio de corrección se adaptará al número de estados que se hayan usado (cada fila tiene un peso de 0.8 puntos dividido entre el número de estados usados).

d) (0.2 puntos)

ROM
$$Q + [0x0A8] = 0x07$$

ROM
$$Q + [0x035] = 0x10$$

Criterio de valoración: 0,1 puntos por cada respuesta correcta.

e) (0.2 puntos)

Nciclos Original = 142

Nciclos Nueva instrucción = 112

Criterio de valoración: 0,1 puntos por cada respuesta correcta.