Table 3-1:
 Summary of vector relations.

Tuble 2-1. Summary of vector relations.					
	Cartesian	Cylindrical	Spherical		
	Coordinates	Coordinates	Coordinates		
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ		
Vector representation A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$		
Magnitude of A $ A =$	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$		
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{R}}R_1$,		
	for $P = (x_1, y_1, z_1)$	for $P = (r_1, \phi_1, z_1)$	for $P = (R_1, \theta_1, \phi_1)$		
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = 1$		
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{R}} = 0$		
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}$		
	$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\phi} \times \hat{z} = \hat{r}$	$\hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}$		
	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}$	$\hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$		
Dot product $A \cdot B =$	$A_X B_X + A_Y B_Y + A_Z B_Z$	$A_r B_r + A_\phi B_\phi + A_Z B_Z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$		
Cross product A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\varphi}} & \hat{\mathbf{z}} \\ A_r & A_{\boldsymbol{\varphi}} & A_Z \\ B_r & B_{\boldsymbol{\varphi}} & B_Z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{vmatrix}$		
Differential length $d\mathbf{l} =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin\theta d\phi$		
Differential surface areas	$d\mathbf{s}_{x} = \hat{\mathbf{x}} dy dz$ $d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$ $d\mathbf{s}_\phi = \mathbf{\phi} \ dr \ dz$ $d\mathbf{s}_Z = \hat{\mathbf{z}}r \ dr \ d\phi$	$d\mathbf{s}_{R} = \hat{\mathbf{R}}R^{2} \sin \theta \ d\theta \ d\phi$ $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}}R \sin \theta \ dR \ d\phi$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}}R \ dR \ d\theta$		
Differential volume $dV =$	dx dy dz	r dr dφ dz	$R^2 \sin\theta \ dR \ d\theta \ d\phi$		

 Table 3-2:
 Coordinate transformation relations.

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[+]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ $z = z$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}\left[\sqrt[+]{x^2 + y^2}/z\right]$ $\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi + \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta \hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi + \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta \hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$	$A_R = A_x \sin \theta \cos \phi$ $+ A_y \sin \theta \sin \phi + A_z \cos \theta$ $A_\theta = A_x \cos \theta \cos \phi$ $+ A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$
Spherical to Cartesian	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_{X} = A_{R} \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_{Y} = A_{R} \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{Z} = A_{R} \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_Z = A_R \cos \theta - A_\theta \sin \theta$

Grad, Div, Curl and the Laplacian

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Conversion to Cartesian Coordinates		$x = \rho \cos \varphi$ $y = \rho \sin \varphi$ $z = z$	$x = r\cos\varphi\sin\theta y = r\sin\varphi\sin\theta$ $z = r\cos\theta$
Vector A	$A_x i + A_y j + A_z k$	$A_{ ho}\widehat{oldsymbol{ ho}}+A_{arphi}\widehat{oldsymbol{arphi}}+A_{z}\widehat{oldsymbol{z}}$	$A_r\widehat{r}+A_ heta\widehat{ heta}+A_arphi\widehat{oldsymbol{arphi}}$
Gradient $ abla \phi$	$\frac{\partial \phi}{\partial x}i + \frac{\partial \phi}{\partial y}j + \frac{\partial \phi}{\partial z}k$	$rac{\partial \phi}{\partial ho} \widehat{ ho} + rac{1}{ ho} rac{\partial \phi}{\partial arphi} \widehat{arphi} + rac{\partial \phi}{\partial z} \widehat{z}$	$\frac{\partial \phi}{\partial r}\widehat{r} + \frac{1}{r}\frac{\partial \phi}{\partial \theta}\widehat{\theta} + \frac{1}{r\sin\theta}\frac{\partial \phi}{\partial \varphi}\widehat{\varphi}$
Divergence $\nabla \cdot A$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial(ho A_ ho)}{\partial ho}+rac{1}{ ho}rac{\partial A_arphi}{\partialarphi}+rac{\partial A_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial A_{\theta} \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$
$\operatorname{Curl} abla imes A$	$\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$	$\begin{vmatrix} \frac{1}{\rho} \widehat{\rho} & \widehat{\varphi} & \frac{1}{\rho} \widehat{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\varphi} & A_{z} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{r^2 \sin \theta} \widehat{r} & \frac{1}{r \sin \theta} \widehat{\theta} & \frac{1}{r} \widehat{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_r & rA_{\theta} & rA_{\varphi} \sin \theta \end{vmatrix}$
Laplacian $ abla^2 \phi$	$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2}$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \varphi^2}$