Equação do calor e o problema da adega

Caio Tomás de Paula¹

¹Departamento de Matemática, Universidade de Brasília, Brasil.

Relatório entregue como parte do trabalho final do curso de Introdução a Métodos Computacionais em Equações Diferenciais Parciais (IMCEDP) do Programa de Pós-Graduação em Matemática (PPGMAT), ministrado pelo prof. Dr. Yuri Dumaresq Sobral no segundo semestre letivo de 2023 da Universidade de Brasília. O objetivo do trabalho foi resolver, numericamente, a equação do calor. Foi utilizada [?] como referência principal para o trabalho, além das notas de aula do curso.

I. INTRODUÇÃO

Estamos interessados em estudar a variação da temperatura do solo terrestre a uma dada profundidade x no instante t. Desconsiderando a curvatura da terra e a variação diária de temperatura da superfície, podemos modelar a distribuição de temperatura u(x,t) à profundidade x no tempo t por uma equação do calor unidimensional:

$$u_t = \kappa u_{xx}$$

A difusividade térmica do solo terrestre será considerada $\kappa=6.3\text{m}^2/\text{ano}$. Note que estamos desconsiderando o calor oriundo do núcleo da Terra, já que não há forçamento na equação. Vamos assumir que $u \xrightarrow{x\to\infty} 0$. Vamos também assumir que a temperatura f(t) na superfície (x=0) assume apenas dois valores: uma temperatura de "verão" durante metade do ano e uma temperatura de "inverno" durante a outra metade. Esse padrão se repete todo ano, i.e., a temperatura é periódica em x=0 com período de I ano.

Em símbolos,

$$f(t) = \begin{cases} T_s, & 0 \le t < 1/2 \\ T_w, & 1/2 \le t \le 1, \end{cases}$$

onde T_s denota a temperatura no verão e T_w denota a temperatura no inverno, com t em anos.

Vamos tomar a condição inicial $u(x, 0) = f(t)e^{-q_1x}$, com $q_1 = 0.71 \text{m}^{-1}$. Por fim, vamos tomar u(L, t) = 0, com L suficientemente longo para que essa condição seja válida.

Em resumo, queremos resolver o PVIC

$$\begin{cases} u_t = \kappa u_{xx}, \ 0 \le x \le L, t \ge 0 \\ u(x, 0) = f(t)e^{-q_1 x} \\ u(0, t) = f(t) \\ u(L, t) = 0 \end{cases}$$

Queremos resolver este problema numericamente e responder a algumas perguntas. Mais especificamente, vamos resolver este problema usando tanto o método de Euler explícito (e mostrar sua ordem) quanto o método de Crank-Nicolson, encontrar a profundidade ideal para uma adega de vinhos e resolver uma variação do problema com difusividade variável.

Antes de partir para a solução numérica, vamos fazer algumas considerações sobre a solução analítica do problema. Primeiro, note que podemos escrever

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i n t/T},$$
 (I.I)

com $C_n \in \mathbb{C}$ tais que $\overline{C_n} = C_{-n}$ e T=1 ano. É possível mostrar que, em um tempo t, uma substância se difunde aproximadamente $\sqrt{\kappa t}$ unidades. Sendo assim, na escala de tempo de interesse (1 ano), temos

$$\sqrt{\kappa T} = \sqrt{6.3} \approx 2.5 \text{ m.} \tag{1.2}$$

Vamos tomar o ansatz

$$u(x,t) = \sum_{n=-\infty}^{\infty} C_n \omega_n(x) e^{2\pi i n t/T},$$
 (1.3)

com $C_n \in \mathbb{C}$ tais que $\overline{C_n} = C_{-n}$, de modo que u é real. Vamos impor as seguintes condições:

- (i) cada uma das parcelas satisfaz a equação do calor
- (i) $\omega_n(0) \equiv 1$, de modo que a representação de f(t) seja recuperada
- (i) $\omega_n(x)$ é limitado e tende a o quando $x \to \infty$ ($n \ne 0$), uma vez que a temperatura a profundidades muito grandes não é sensível a variações de temperatura na superfície.

A condição (i) nos dá

$$\frac{\mathrm{d}^2 \omega_n}{\mathrm{d} x^2} = p_n^2 \omega_n, \ p_n^2 = \frac{2\pi i n}{\kappa T}.\tag{1.4}$$

Consequentemente,

$$p_n = \pm (1 \pm i)q_n$$
, com $q_n = \sqrt{\frac{|n|\pi}{\kappa T}} > 0$ (1.5)

e o sinal \pm depende do sinal de n. Desta forma, a solução geral da EDO de ω_n é dada por

$$\omega_n(x) = A_n e^{(1\pm i)q_n x} + B_n e^{-(1\pm i)q_n x}.$$
 (1.6)

Da condição (iii) segue que $A_n\equiv 0$ e da condição (ii) segue que $B_n\equiv 1$. Portanto, obtemos

$$\omega_n(x) = e^{-(1\pm i)q_n x} \tag{1.7}$$

e, assim,

$$u(x,t) = \sum_{n=-\infty}^{\infty} C_n e^{-(1\pm i)q_n x} e^{2\pi i n t/T}.$$
 (1.8)

¹ [?, p. 129]

Escrevendo $C_n = |C_n|e^{-i\gamma_n}$, segue que

$$u(x,t) = C_0 + 2\sum_{n=1}^{\infty} |C_n| e^{-q_n x} \cos\left(\frac{2\pi nt}{T} + \gamma_n - q_n x\right). \quad (1.9)$$

Vamos interpretar esta solução. Note que o termo do cosseno representa uma onda de frequência $2\pi n/T$ e número de onda q_n . Por conta disto, a n-ésima "onda parcial" se propaga com velocidade

$$\frac{2\pi n}{q_n T} = \sqrt{\frac{4\pi \kappa |n|}{T}}. (1.10)$$

Como há um amortecimento exponencial na direção de propagação e este amortecimento cresce com $\sqrt{|n|}$, segue que a contribuição mais importante para a solução vem do termo com n=1. Para os valores numéricos que estamos considerando, segue que

$$q_1 = \frac{1}{2\pi} \sqrt{\frac{4\pi\kappa}{T}} \approx 0.71 \text{m}^{-1}.$$
 (1.11)

Agora, note que o ponto x_1 tal que $q_1x_1=\pi$ é tal que a temperatura $u(x_1,t)$ é oposta em fase à temperatura u(0,t). Dito de outro modo, $x_1=\pi/q_1\approx 4.4$ m é a profundidade na qual a temperatura do solo tem fase oposta à temperatura da superfície. Isto significa que se na superfície a temperatura é de verão então à profundidade x_1 a temperatura é de inverno. Além disso, a variação

de temperatura é $e^{-\pi}\approx 4\%$ da variação na superfície. Isto torna esta profundidade ideal para uma adega de vinhos!

II. MÉTODOS NUMÉRICOS

Começamos resolvendo a equação com o método de Euler explícito, que converge para $\kappa\mu \le 1/2$. Por conta desta restrição ao número de Courant, não podemos escolher Δt e Δx de forma displicente.

Também utilizamos o método de Crank-Nicolson para resolver o problema. Este método, dado por

$$-\alpha u_{\ell+1}^{n+1} + (1+2\alpha)u_{\ell}^{n+1} - \alpha u_{\ell-1}^{n+1} = \alpha u_{\ell+1}^{n} + (1-2\alpha)u_{\ell}^{n} + \alpha u_{\ell-1}^{n} \quad (2.1)$$

com $\alpha=\kappa\mu/2$ é implícito, incondicionalmente estável e consistente (logo convergente pelo Teorema de Equivalência de Lax). Consequentemente, temos maior liberdade na escolha de Δt e Δx , o que torna este método mais indicado para o cômputo da solução por grandes intervalos de tempo. A implicitude do método nos obriga a resolver um sistema linear a cada iteração. Para tanto, usamos o algoritmo da matriz tridiagonal (ou de Thomas) para resolver o sistema.

III. CÓDIGOS UTILIZADOS

Este projeto pode ser encontrado neste link, incluindo os códigos utilizados para o cômputo da solução e o código-fonte deste documento.

[?]