JMTS-12: Probability and Random Processes

Fall 2020

M. Bode

Orga

Textbook:

Henry Stark & John W. Woods

Probability and Random Processes with Applications to Signal Processing

Chapters 1-4 ... parts of 5+6 if time permits

Main platform: campusnet ... course page !!!

In online meetings, use headsets if possible...

TAs:

Chhandosee Bhattacharya, Abhieshree Dhami

Why study probability?

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

- Gambling(coins, dice, cards)
- Forecasts
- Think of examples ...

Gambling

Chapter 1

1.1 Why study probability?

- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

Want to know your chances to gain or lose ...

Forecasts

Chapter 1

1.1 Why study probability?

- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

Is it going to rain later, today?

... or tomorrow .. Or next week?

How can we tell?

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

1.2 The different kinds of probability

- Favorable cases/ all
- Observe frequencies
- Intuitive
- Axiomatic approach

Favorable cases/ all

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

- Dice
- Coins
- Rain/no rain?

Imagine those cases ...

Observe frequencies

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

Think of an unfair die ... and roll it many times.

Intuitive

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

What about rain, today?

... tomorrow... next week?

Aggregate similar situations...

Think of humidity, clouds in the sky, or the day of the week ...

Axiomatic approach

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

Have a solid ground for your reasoning ... the math part

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

1.3 Misuses, miscalculations, and paradoxes in probability

Example: Medical sreening of a population

All people (suppose 100 Mio)

Sick people (suppose 1 Mio)

People with symptom ... (suppose hospital says: 95% of ``sick´´ show symptom also suppose, overall, 20 Mio show the symptom.

How many are sick and show the symptom? How many are healthy and show the symptom?

Is this a ``useful´´ symptom? ... change the numbers...

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

1.4 Sets, fields, events

 Ω : whole set (universal set)

Ø: empty set

E, F: subsets of Ω

Field (algebra): family ${\mathcal M}$ of subsets of Ω

- Including Ω and \emptyset
- $E, F \in \mathcal{M} \Rightarrow EF = E \cap F \in \mathcal{M}$ and $E \cup F \in \mathcal{M}$
- $E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$

 σ -Field: A field ${\mathcal M}$ where also

$$E_i \in \mathcal{M}(i=1,2,...) \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{M} \text{ and } \bigcap_{i=1}^{\infty} E_i \in \mathcal{M}$$

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

1.5 Axiomatic definition of probability

 Ω : Sample description set (all your possible outcomes \bullet)

 \mathcal{F} : σ -field of events (on Ω)

 $E, F \in \mathcal{F}$: events

P: Probability measure ... maps an event $E \in \mathcal{F}$ to its probability P[E].

Together, (Ω, \mathcal{F}, P) are called a probability space.

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

Kolmogorov's Axioms:

- $1) \quad P[E] \ge 0$
- 2) $P[\Omega] = 1$
- 3) $P[E \cup F] = P[E] + P[F]$ if $EF = \emptyset$ (E,F are disjoint events)
- 4) Similarly, $P[\bigcup_{i=1}^{\infty} E_i] = \sum_{i=1}^{\infty} P[E_i]$ if $E_i E_j = \emptyset$ for all $i \neq j$

This implies

a)
$$P[\emptyset] = 0$$

b) $P[EF^c] = P[E] - P[EF]$

Why? Find those events in the picture.

Chapter 1

- 1.1 Why study probability?
- 1.2 The different kinds of probability
- 1.3 Misuses, miscalculations, and paradoxes in probability
- 1.4 Sets, fields, events
- 1.5 Axiomatic definition of probability

This implies

a)
$$P[\emptyset] = 0$$

b)
$$P[EF^{c}] = P[E] - P[EF]$$

Why?

a)
$$1 = P[\Omega] = P[\Omega \cup \emptyset] = P[\Omega] + P[\emptyset]$$

b)
$$P[E] = P[E \cap \Omega] = P[E \cap (F \cup F^c)] =$$

$$P[EF] + P[EF^c]$$

Which axioms have been used in the steps above?

The End

Next time: cont. chp. 1