Business 4720 - Class 15 Neural Networks using Python

Joerg Evermann

Faculty of Business Administration Memorial University of Newfoundland jevermann@mun.ca

Unless otherwise indicated, the copyright in this material is owned by Joerg Evermann. This material is licensed to you under the Creative Commons by-attribution non-commercial license (CC BY-NC 4.0)

This Class

What You Will Learn:

- Deep Learning Concepts
 - Neural Network
 - Activation Functions
 - Gradients
 - Backpropagation
 - Regularization with Dropouts
- Deep Learning in Python using Tensoflow
 - Tensors
 - Models
 - Training

Based On

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: *An Introduction to Statistical Learning with Applications in R.* 2nd edition, corrected printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapter 10

Kevin P. Murphy: *Probabilistic Machine Learning – An Introduction*. MIT Press 2022.

https://probml.github.io/pml-book/book1.html Chapter 13.14.15

Tensorflow Guides

https://www.tensorflow.org/quide

Resources

Implementations are available on the following GitHub repo:

https://github.com/jevermann/busi4720-ml

The project can be cloned from this URL:

https://github.com/jevermann/busi4720-ml.git

Resources

Tensorflow Playground: https://playground.tensorflow.org

Biological Neuron

- Brain cell
- Connected to other brain cells
- ▶ Receives, modulates and emits electro-chemical stimulus ("activation")

Artificial Neuron

$$y = \psi(b + \sum_{i} w_{i} x_{i})$$

- ► Multiple **input** connections *x_i*
- ► Weighted using weights w_i
- Add a bias term b
- ▶ Apply *nonlinear* activation function ψ

Popular Activation Functions

Sigmoid	$\sigma(z) = \frac{e^z}{1+e^z}$
Hyperbolic tangent	$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{e^z - e^{-z}}{e^z + e^{-z}} = 2\sigma(2z) - 1$
Softplus	$\sigma_+(z) = \log(1 + e^a)$
Rectified linear unit	ReLU(z) = max(a, 0)
Leaky ReLU	$LReLU(z) = max(z,0) + \alpha min(z,0)$
Exponential linear unit	$ELU(z) = max(z,0) + min(\alpha(e^z-1),0)$
Swish, Sigmoid linear unit	$SiLU(z) = z\sigma(z)$
Gaussian error linear unit	$GeLU(z) = z\Phi(z)$

Fully Connected Hidden Layer

Source: ISLR2 Figure 10.1

Fully Connected Multilayer Network

Source: ISLR2 Figure 10.4

Multiple Outputs either

- Multi-objective learning
- Multi-class classification

"Softmax" activation

$$\Pr(Y = m|X) = \frac{e^{Z_m}}{\sum_{l=0}^n e^{Z_l}}$$

Estimating Parameters

Typical Loss Functions

- Regression: MSE, MAE, Huber
- Classification: Cross-Entropy or KL-Divergence after softmax on multiple output nodes

Parameters

Parameter vector $\theta = (w, b)$ with weights w and biases b.

Optimization

► (Stochastic) gradient descent (SGD)

Regularization

- ▶ "Dropout"
- ► L1 and/or L2 penalization (as in lasso, ridge)
- Early stopping

Gradient Descent

- Begin with initial parameter values
- 2 Repeat until convergence
 - 2.1 Find direction of descent (decrease in loss function value, given by the gradient vector ∇L of partial derivatives)
 - 2.2 Move a step in that direction (adjust parameters, step size determined by **learning rate**)

Consider the loss L at a certain input X as a function of parameter values θ . Then, at each step t, update parameters θ using learning rate γ :

$$\theta_{t+1} = \theta_t - \gamma \nabla L(\theta)|_{\theta_t, X}$$

Optimization Problems

- Slow convergence
- ▶ No convergence (oscillations)
- Premature convergence (local optimimum)

Murphy, Figure 8.11

Optimization Options

Learning Rate

- Fixed step size
- ▶ Adaptive learning rate λ_t
- Momentum methods
- Optimal learning rate ("line search")

Training Neural Networks – Epochs and Minibatches

- Using the full training set for every update step is expensive (or impossible)
- Approximate true gradient by using a small sample of the training set for each step, the minibatch
 - Average gradients over minibatch
 - Minibatch should be independent and random
 - Minibatch size should not be "too small"
- Multiple passes over the training set until convergence (a local or global optimimum is found), the epochs
 - Avoid repetition by shuffling the training set before each epoch
 - Early stopping for regularization

Optimization Options - Stochastic Gradient Descent

► Random inputs *X* to gradients by random draws from training set

$$\theta_{t+1} = \theta_t - \lambda_t \nabla L(\theta)|_{\theta_t, X}$$

- Requires adaptive learning rate
- Typical learning rate schedules: Piecewise constant, exponential decay, polynomial decay

Source: Murphy Figure 8.18

Optimization Options - AdaGrad

Adaptive Gradient

- Originally developed for sparse gradient vectors
- Adapt by previous squared gradients
- ▶ Overall learning rate λ_t is adapted
- ► Typically: $\lambda_t = \lambda_0$

$$\theta_{t+1} = \theta_t - \lambda_t \frac{1}{\sqrt{s_t + \epsilon}} \nabla L(\theta)|_{\theta_t, X}$$

$$s_t = \sum_{ au=1}^t ig(
abla L(heta)|_{ heta_ au,X} ig)^2$$
 Sum of squared gradients

Optimization Options – RMSProp

- Exponentially weighted moving average of the past (instead of the sum as in AdaGrad)
- Prevents too early learning rate reduction

$$s_{t+1} = \beta s_t + (1 - \beta) \left(\nabla L(\theta) |_{\theta_t, X} \right)^2$$

Optimization Options - AdaDelta

 \blacktriangleright Maintains exponentially weighted average of previous updates δ

$$\theta_{t+1} = \theta_t + \Delta \theta_t$$

$$\Delta \theta_t = -\lambda_t \frac{\sqrt{\delta_{t-1} + \epsilon}}{\sqrt{s_t + \epsilon}} \nabla L(\theta)|_{\theta_t, X}$$

$$\delta_t = \beta \delta_{t-1} + (1 - \beta)(\Delta \theta_t)^2$$

Optimization Options – Momentum Methods

- Intuition: Keep going in the direction that was previously good, avoid "sharp turns"
- Standard momentum:

$$m_{t+1} = \beta m_t - \nabla L(\theta)|_{\theta_t, X}$$

$$\theta_{t+1} = \theta_t - \lambda m_{t+1}$$

 $\begin{array}{c} {\rm Momentum} \\ {\rm Parameter\ update} \\ {\rm Typical\ } \beta \ {\rm is} \approx 0.9 \end{array}$

Nesterov Momentum: Looks ahead and evaluates gradient at approximate next parameter values

$$m_{t+1} = \beta m_t - \lambda_t \nabla L(\theta)|_{\theta_t + \beta m_t, X}$$

$$\theta_{t+1} = \theta_t + m_{t+1}$$

Nesterov Momentum Parameter update

Optimization Options - AdaM

Adaptive Moment Estimation

Combine adaptive learning rate with momentum

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla L(\theta)|_{\theta_t, X}$$

$$s_t = \beta_2 s_{t-1} + (1 - \beta_2) (\nabla L(\theta)|_{\theta_t, X})^2$$

$$\theta_{t+1} = \theta_t - \lambda_t \frac{1}{\sqrt{s_t} + \epsilon} m_t$$

Training Neural Networks – Vanishing Gradients

Problem

- Sigmoid and tanh functions are bounded for large positive or negative pre-activation values ("saturating activation functions")
- ► Long chains of neurons (e.g. in stacked fully-connected layers) can diminish the "error signal", i.e. the gradient

Possible Solutions

- Use non-saturating activation functions, e.g. ReLU, leaky ReLU, ELU, etc.
- Use additive rather multiplicative architectures, e.g. "ResNet" (residual networks)
- Standardize activations at every layer
- Carefully choose initial parameter values

Training Neural Networks – ResNet Architecture

Allows gradients to bypass a layer that suffers from lack of learning (vanishing gradient, saturated activation)

Source: Murphy, Figure 13.15

Training Neural Networks – Exploding Gradients

Problem

► Long chains of neurons can vastly increase the error

Possible Solution

► Gradient clipping

$$g' = \min(1, \frac{1}{||c||_2})g$$

Training Neural Networks – Parameter Initialization Heuristics

- ▶ Random values from normal distribution: $\theta \sim N(0, \sigma^2)$
- "Xavier Initialization"/"Glorot Initialization"

$$\sigma^2 = \frac{2}{n_{\rm in} + n_{\rm out}}$$

where n_{in} is the number of incoming connections and n_{out} is the number of outgoing connections from each neuron

"LeCun Initialization"

$$\sigma^2 = \frac{1}{n_{\rm in}}$$

"He Initialization"

$$\sigma^2 = \frac{2}{n_{ii}}$$

Regularization – Dropout

- Randomly (per observation) remove a fraction of units in a layer, or equivalently,
- Randomly set the output of a fraction of units to 0
- Typically only done at train time, not test time

Tensorflow

- Originally developed by Google, Version 1.0 in 2017
- Automatic differentiation/gradients
- Distributed computing
- Parallel computing on multiple GPU
- Wide range of loss functions
- ▶ Wide range of optimizers
- Wide range of neural network types and activation functions

Keras

- Originally developed as a user-friendly, high-level abstraction layer for different ML frameworks, including Tensorflow, Theano, PyTorch
- Wide range of standard neural network layers
- Simplified training loops

Regression using Keras

Import required packages:

```
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
```

Read a CSV file:

```
# Use the Boston housing data set
boston_data = \
    pd.read_csv("https://evermann.ca/busi4720/boston.csv")
```

Separate features and target:

```
boston_features = boston_data.copy()
boston_labels = boston_features.pop('medv')
```


Regression using Keras [cont'd]

Define the NN model with one hidden fully-connected layer (64 neurons) and one fully-connected output layer (1 neuron) in sequence. No activation function is given, so this is a linear regression model:

```
boston_model = tf.keras.Sequential([
  layers.Dense(64, activation=None),
  layers.Dense(1, activation=None)
])
```

Set the loss function and the optimizer:

```
boston_model.compile(
  loss = tf.keras.losses.MeanSquaredError(),
  optimizer = tf.keras.optimizers.Adam())
```

Fit/train the model for 25 epochs:

```
boston_model.fit(boston_features,
boston_labels, epochs=25)
boston_model.summary()
```


Regression in Keras [cont'd]

The Normalization layer normalizes numeric features:

```
norm_layer = layers.Normalization()
```

The adapt () function computes means and variances of the data so the layer can normalize the data when the model is fit. Requires numpy array.

```
norm_layer.adapt(boston_features.to_numpy())
```

Add the normalization layer to the model. A ReLU activation is used that makes this a non-linear regression model:

```
norm_boston_model = tf.keras.Sequential([
  norm_layer,
  layers.Dense(64, activation='relu'),
  layers.Dense(1, activation=None)
])
```

Regression in Keras [cont'd]

Set loss and optimizer and ask Keras to keep track of the MSE and MAE metrics.

```
norm_boston_model.compile(
   loss = tf.keras.losses.MeanSquaredError(),
   optimizer = tf.keras.optimizers.Adam(),
   metrics = ['mse', 'mae'])
```

The fit function returns a history of the metrics we asked for:

```
train_hist = \
   norm_boston_model.fit(
   boston_features,
   boston_labels,
   batch_size=20,
   epochs=50,
   validation_split=0.33)
```


Regression in Keras [cont'd]

Plot the training history using Plotly Express

Hands-On Exercises

- ► Modify the above code to include different activation functions, e.g. "tanh", "sigmoid", or "elu". Comment on the learning progress and loss function values.
- Modify the above code to change the number of neurons in the "Dense" layer. Comment on the learning progress and loss function values.
- Modify the architecture to add one or more "Dense" layers with different numbers of units. Comment on the learning progress and loss function values.

Classification in Keras

The Wage dataset from the ISLR2 library for R has been adapted to include a column wagequart, the quartile of the wage. Many features are categorical.

```
# Read data and separate features from target labels
wage_data = \
    pd.read_csv("https://evermann.ca/wage.csv")
wage_features = wage_data.copy()
wage_labels = wage_features.pop('wagequart') - 1
```

Classification in Keras [cont'd]

Treat each categorical string feature and convert to **one-hot encoding**.

One-hot encoding is similar to binary dummy variables (contrasts) in linear models, but have no default level; a feature with n different categories requires n binary variables (not n-1 as in linear model contrasts).

Keep track of the inputs and the pre-processed inputs:

```
inputs = {}
preproc_inputs = []
```



```
for cat_feature in ['maritl', 'race', 'education', \
               'jobclass', 'health', 'health ins']:
    # An Input variable is a placeholder that
    # accepts data input when training or predicting
    input = tf.keras.Input(shape=(1,),
                           name=cat feature.
                           dtvpe=tf.string)
    # This StringLookup layer accepts a string and
    # outputs its category as a one-hot vector
    lookup = layers.StringLookup(
        name=cat feature+" lookup",
        output_mode="one_hot")
    # Adapt it to the different strings in the data
    lookup.adapt(wage_features[cat_feature])
    # And tie the input to this laver
    onehot = lookup(input)
    inputs[cat_feature] = input
    preproc_inputs.append(onehot)
```

Define and input and a Normalizaton layer for the numerical variable age:

Define and input and a one-hot encoding IntegerLookup layer for the numeric variable year:

Concatenate the pre-processing outputs to one long vector with a Concatenate layer. Call this layer with the list of prec-processed inputs:

```
preprocessed_inputs = \
    layers.Concatenate(name="concat")(preproc_inputs)
```

Build a pre-processing model whose inputs is the dict of Input variables, and whose output are the results of calling the layers:

Build the classification model as a Sequential model:

```
class_model = tf.keras.Sequential(name="classification")
class_model.add(layers.Dense(64, activation="relu"))
class_model.add(layers.Dropout(0.25))
class_model.add(layers.Dense(32, activation="relu"))
class_model.add(layers.Dropout(0.25))
class_model.add(layers.Dense(4, activation="softmax"))

# Alternatively:
# class_model.add(layers.Dense(4, activation=None))
# class_model.add(layers.Softmax())
```

The output of the pre-processing model is the input to the classification model:

```
class_results = class_model(preproc_model(inputs))
class_model.summary()
```

The final model takes the inputs, and has the classification model results as outputs:

Compile the model with loss function, optimizer and request training metrics:

```
wage_model.compile(
   loss=tf.keras.losses.SparseCategoricalCrossentropy(
      from_logits=False),
   optimizer=tf.keras.optimizers.Adam(
      learning_rate=0.001,
      beta_1 = 0.9,
      beta_2 = 0.999,
      epsilon = 1e-07),
   metrics=[
      tf.keras.metrics.SparseCategoricalAccuracy(),
      tf.keras.metrics.KLDivergence()])
```

Note: Specifying from_logits=True for the loss can save the softmax activation or layer at the bottom of the sequential classification model.

Create the input data as a dict of numpy arrays to match the Input variables:

Write log information to a directory for loading into **Tensorboard**:

TensorBoard

TensorBoard is a tool to visualize neural network models and their trainging and validation data/performance.

https://commons.wikimedia.org/wiki/File:Tensorboard_1.jpg

Train the model for 25 epochs:

```
wage_hist = wage_model.fit(
    x = wage_feature_dict,
    y = wage_labels,
    validation_split=0.333,
    batch_size=20,
    epochs = 25,
    callbacks=[tensorboard_callback])
```

Plot the training history using Plotly Express

```
import plotly.express as px
hist = pd.DataFrame({
    'training': \
wage_hist.history['sparse_categorical_accuracy'],
    'validation': \
wage_hist.history['val_sparse_categorical_accuracy']})
hist['epoch'] = np.arange(hist.shape[0])
hist = pd.melt(hist,
               id vars='epoch',
               value vars=['training', 'validation'])
fig = px.line(hist, x='epoch', v='value',
                    color='variable')
fig.show()
```

Call TensorBoard from the terminal, providing the log directory

```
tensorboard --logdir tensorboard_logs
```

Then go to http://localhost:6006 in your web browser.

TensorBoard

Early Stopping

Another useful callback function:

```
earlystop_callback = tf.keras.callbacks.EarlyStopping(
   monitor = 'val_loss',
   patience = 3,
   mode = 'min',
   # or 'max' or 'auto' depending on monitor metric
   restore_best_weights = True)
```

Hands-On Exercises

- Examine the model summaries for the pre-processing, the classification, and the complete wage model. Explain the number of trainable and total parameters, and also explain the output shapes of each layer.
- ► Make the "wage" prediction a binary classification problem:
 - 1 Modify the wage_labels and combine classes 0, 1 and classes 2, 3 (class numbers should be 0 or 1)
 - 2 Modify the classification network to have a single output node
 - 3 Use the BinaryCrossentropy loss
 - 4 Return the following metrics as part of the training history:
 - Precision
 - ► Recall
 - ► AUC
 - 5 Plot the metrics after training

