Exercise II.6.1

Mario Román

April 30, 2017

The group of invertible $n \times n$ matrices with entries in \mathbb{R} is denoted $GL_n(\mathbb{R})$. Similarly, $GL_n(\mathbb{C})$ denotes the group of $n \times n$ invertible matrices with complex entries. Consider the following sets of matrices:

- $SL_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) \mid \det(M) = 1 \};$
- $SL_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) \mid \det(M) = 1 \};$
- $O_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) \mid MM^t = M^tM = I_n \};$
- $SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) \mid \det(M) = 1 \};$
- $U(n) = \{ M \in GL_n(\mathbb{C}) \mid MM^{\dagger} = M^{\dagger}M = I_n \};$
- $SU(n) = \{M \in U_n(\mathbb{C}) \mid \det(M) = 1\};$

Here I_n stands for the $n \times n$ identity matrix, M^t is the transpose of M, M^{\dagger} is the conjugate transpose of M, and $\det(M)$ denotes the determinant of M. Find all possible inclusions among these sets, and prove that in every case the smaller set is a subgroup of the larger one.

We are dealing with three different properties:

- 1. The matrix has entries in \mathbb{C} .
- 2. The matrix has its conjugate transpose as its inverse, $MM^{\dagger} = I_n$.
- 3. The matrix has determinant 1, det(M) = 1.

None of them implies the others. The three properties give rise to this three-dimensional cube

