

Update on MMC analysis

Francesco Toschi
DELight meeting, 08.08.2023

Where were we?

- Athermal phonons escape modeled as error function
- Minimizing chi-square with binned fit

Optimization of cuts

- "Basic" cuts throwing away very bad traces,
- Quality cuts selecting best traces based on baseline.


```
mask mean baseline = df['mean baseline'] < 138 #132.45
mask mean baseline &= df['mean baseline'] > 122 #129.6
mask_baseline_offset = df['baseline_offset'] > 129
mask baseline offset &= df['baseline offset'] < 133
mask std baseline = df['std baseline'] < 6
mask temperature = df['temperature'] > 3e4
mask\_amplitude = (df['OF\_ampl_0'] > 0)&(df['OF\_ampl_1'] > 0)
mask mean = df['mean'] < 20000
mask chi2 TF = df['TF chi2'] < 1000
mask rise time = df['rise time'] > 0.00001
```


Fit systematics

- Checking the fit for different initial values and binning → systematics
 - Define 2000 initial values (distribution based on experience)
 - Minimize chi-square of K_α using different binnings
- KAs = np.random.uniform(6, 15, N_params) SIGMA 0 = np.random.uniform(0.1, 0.7, N params)E2s = np.random.normal(3.26315e-06, 2e-6, N params) E1s = np.random.normal(0.532509, 0.3, N params)

ESC K = np.random.uniform(0, 0.15, N params)

- Estimate chi-square of K_β
- Repeat for:
 - looser and tighter cuts of mean_baseline
 - fit with and without escaping factor

Fit systematics – loose cut

Voigt + erf

1.5

How many fits failed?	Voigt (w/o escape)	Voigt + erf (w/ escape)
Acceptance	0.37%	1.91%

χ² preference for Voigt+erf

Fit systematics – loose cut

Voigt + erf

How many fits failed?	Voigt (w/o escape)	Voigt + erf (w/ escape)	1.5	140 120 sulg to
Acceptance	0.37%	1.91%		80 Anmper
3.5 Voigt Voigt + erf 2.5 Voigt 1.0 Voigt + erf $x^2/dof $ for $x^2/dof $ for $x^2/dof $	2.5 3.0 eak	1.6 Voigt + erf Voigt 1.5 Voigt 1.7 Voigt 1.8 Voigt 1.9 Voigt	1.0.5	$\sum_{i.0}^{1.5} \sum_{i.0}^{2.0} \sum_{i.0}^{2.5} \sum_{i.0}^{3.0} $

1.0

1.5

 χ^2 /dof for K_{α} peak

2.0

2.5

3.0

χ² preference for Voigt+erf

Fit systematics – tight cut

How many fits failed?	Voigt (w/o escape)	Voigt + erf (w/ escape)	
Acceptance	0.31%	0.34%	

No clear preference: losing statistics, losing information?

Picking minimum chi-square

ATHERMAL PHONONS ESCAPE

Picking minimum chi-square

ATHERMAL PHONONS ESCAPE

FWHM distribution

 $\chi_{\beta}^2 / \text{dof} < 2 \text{ and } \chi_{\alpha}^2 / \text{dof} < 2 \text{ (similar results with stricter } \chi_{\beta}^2 / \text{dof} < 1.2)$

Baseline resolution

After talking with Sebastian, he pointed that it is possible to calculate the optimal energy resolution for a given OF (thermal equilibrium).

Time domain

$$S(t) = aA(t) + n(t)$$
 \longrightarrow $\tilde{S}(\omega) = a\tilde{A}(\omega) + \tilde{n}(\omega)$

$$\tilde{S}(\omega) = a\tilde{A}(\omega) + \tilde{n}(\omega)$$

$$\chi^2 = \sum_n \frac{\left(\tilde{S}_n - a\tilde{A}_n\right)^2}{J_n}$$
, where $J_n = \langle \tilde{n}_n^2 \rangle$

$$\frac{\partial \chi^2}{\partial a} = 0 \to \hat{a} = \frac{\sum_n \frac{\tilde{A}_n^* \tilde{S}_n}{J_n}}{\sum_n \frac{|\tilde{A}_n|^2}{J_n}}$$

$$\sigma_a^2 = -\frac{1}{2} \left(\frac{\partial^2 \chi^2}{\partial a^2} \right)^{-1} = \left(\sum_n \left(\frac{|\tilde{S}_n|^2}{J_n} \right)^{-1} \right)^{-1}$$

Optimum Filter

Baseline resolution

After talking with Sebastian, he pointed that it is possible to calculate the optimal energy resolution for a given OF (thermal equilibrium).

$\Delta E_{FWHM} = 1.09 \text{ eV}$

- Based on Krantz thesis, the theoretical resolution is 0.64 eV (FWHM), but no active temperature stabilization during data taking (T ~ 7 mK), hence possible impact of temperature fluctuations.
- Considering a noise PSD + template using the same cut, we get same resolution → maybe T fluctuations do not impact PSD/templ.?

13

Summary of discussion with Sebastian

- Tighter baseline = less temperature fluctuations
 - This indicates that we are affected by T fluctuations
 - We cannot distinguish between athermal phonons escaping and T fluctuations, indeed chi-square shows no preference between the two models
- For the paper show the entire story (different fits with different cuts), as it shows that we are affected by T fluctuations
 - For DELight we need to have better temperature control/stability

Back-up slides

15

Correlation FWHM – esc_k

16