Homework 3

Course: CO20-320241

30 September, 2019

Problem 3.1

Solution:

Distributive Law: DL Identity Law: IL Annulment Law: AL Complement Law: CL De Morgan's Theorem: DM Double Negation Law: DN

a)
$$x = (M+N)(\overline{M}+P)(\overline{N}+\overline{P}) =$$

$$DL:=(M\overline{M}+MP+N\overline{M}+NP)(\overline{N}+\overline{P})=$$

$$IL := (MP + N\overline{M} + NP)(\overline{N} + \overline{P}) =$$

$$DL := MP\overline{N} + MP\overline{P} + N\overline{MN} + N\overline{MP} + NP\overline{N} + NP\overline{P}$$

$$IL := M\overline{N}P + \overline{M}N\overline{P}$$

$$z = \overline{A}B\overline{C} + AB\overline{C} + B\overline{C}D =$$

$$DL := B\overline{C}(\overline{A} + A + D) =$$

$$CL := B\overline{C}(1+D) =$$

$$AL := B\overline{C}$$

c)
$$x = \overline{(M+N+P)Q} =$$

$$DM := \overline{M + N + P} + \overline{Q} =$$

$$DM := \overline{M} * \overline{N} * \overline{P} + \overline{Q}$$

$$z = \overline{ABC + DEF} =$$

$$DM := \overline{ABC} * \overline{DEF} =$$

$$DM:=(\overline{A}+\overline{B}+\overline{C})*(\overline{D}+\overline{E}+\overline{F})$$

$$z = \overline{A\overline{B} + C\overline{D} + EF} =$$

$$DM := \overline{A}\overline{\overline{B}} * \overline{C}\overline{\overline{D}} * \overline{EF} =$$

$$DM:=(\overline{A}+\overline{\overline{B}})*(\overline{C}+\overline{\overline{D}})*(\overline{E}+\overline{F})=$$

$$DN := (\overline{A} + B) * (\overline{C} + D) * (\overline{E} + \overline{F})$$

Throughout this problem, we use De Morgan's Theorem in every step and DN in some of the steps where we have double negation:

$$z = \overline{A + B\overline{C}} + D(\overline{E} + \overline{F}) =$$

$$= \overline{\overline{A} + B\overline{C}} * \overline{D} * (E + \overline{F}) =$$

$$= \overline{\overline{A} * \overline{B} * \overline{C}} * \overline{D} * \overline{E} * \overline{\overline{F}} =$$

$$= \overline{\overline{A} * (\overline{B} + \overline{\overline{C}})} * \overline{D}\overline{E}F =$$

$$= \overline{\overline{A} * (\overline{B} + C)} * (\overline{D}\overline{E}F) =$$

$$= (\overline{A} + \overline{\overline{B} + C}) * (\overline{D} + \overline{\overline{E}} + \overline{F}) =$$

$$= (A + \overline{B} * \overline{C}) * (\overline{D} + E + \overline{F}) =$$

$$= (A + B * \overline{C}) * (\overline{D} + E + \overline{F})$$

Problem 3.2

Solution:

Firstly, we obtain the following boolean expression from analyzing the circuit:

$$x = (\overline{A} \wedge \overline{B} \wedge D) \vee (A \wedge \overline{B} \wedge \overline{C}) \vee (\overline{A} \wedge \overline{B} \wedge \overline{C})$$

Now, from the expression above, we can create the Karnaugh Map by using gray encoding and plotting the 1s correspondingly.

Karnaugh map

	cd	cd	cd	cd	
ab	1	1	1	0	
āb	0	0	0	0	
ab	0	0	0	0	
a b	1	1	0	0	

After grouping the 1s in three different groups (two groups with two 1s and a group with a single 1) and analyzing the Karnaugh Map, we get the following simplified boolean expression: $\overline{ABD} + \overline{BC}$

Problem 3.3

Solution:

	Input	Output	
S	R	CLK	Q
0	0	1	Q ₀ (no change)
1	0	1	1
0	1	1	0
1	1	1	Ambiguous

Problem 3.4

Solution:

Inputs				Output
S	R	CLK		Q
0	0	\downarrow		Q ₀ (no change)
1	0	\downarrow		1
0	1	\downarrow		0
1	1	\downarrow		Ambiguous
	0	S R 0 0 1 0	S R CLK 0 0 ↓ 1 0 ↓	S R CLK 0 0 ↓ 1 0 ↓

Problem 3.5

Problem 3.6 Solution:

Problem 3.7

Solution:

a) The sequence that makes Y go HIGH is A, B, C because Y can go HIGH only when C goes HIGH while X is already HIGH. X can go HIGH only if B goes HIGH while A is HIGH.

b) Need for Start Pulse

We know that the outputs X and Y need to be cleared to 0 before applying the A, B and C signals. To clear the outputs, we need a negative going Start pulse at the R input. R of JK flip-flop is active LOW.

c) A D Flip-Flop may be implemented with a J-K Flip-Flop by tying the J input to the K input through an inverter, as it is shown below:

which is equivalent to:

