### Feuille d'exercice n° 17 : Analyse asymptotique

Exercice 1 ( ) Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites réelles. Parmi les affirmations suivantes, dites lesquelles sont vraies (on les démontrera alors) et lesquelles sont fausses (on donnera un contre-exemple) :

- 1. Si  $(u_n)_{n\in\mathbb{N}}$  est bornée et  $v_n=O(u_n)$ , alors  $(v_n)_{n\in\mathbb{N}}$  est bornée.
- 2. Si  $(u_n)_{n\in\mathbb{N}}$  converge et  $v_n=O(u_n)$ , alors  $(v_n)_{n\in\mathbb{N}}$  converge.
- 3. Si  $(u_n)_{n\in\mathbb{N}}$  converge vers 0 et  $v_n=O(u_n)$ , alors  $(v_n)_{n\in\mathbb{N}}$  converge vers 0.
- 4. Si  $(u_n)_{n\in\mathbb{N}}$  est bornée et  $v_n=o(u_n)$ , alors  $(v_n)_{n\in\mathbb{N}}$  converge.
- 5. Si  $(u_n)_{n\in\mathbb{N}}$  converge et  $v_n \sim u_n$ , alors  $(v_n)_{n\in\mathbb{N}}$  converge.
- 6. Si  $v_n \sim u_n$ , alors  $(u_n v_n)_{n \in \mathbb{N}}$  converge vers 0.
- 7. Si  $v_n \sim u_n$  et  $(u_n)_{n \in \mathbb{N}}$  est bornée, alors  $(u_n v_n)_{n \in \mathbb{N}}$  converge vers 0.
- 8. Si  $(u_n v_n)_{n \in \mathbb{N}}$  converge vers 0 et  $(u_n)_{n \in \mathbb{N}}$  est bornée, alors  $v_n \sim u_n$ .

Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites réelles de limite  $+\infty$  telles que  $u_n=o(v_n)$ . Montrer qu'il existe une suite  $(w_n)_{n\in\mathbb{N}}$  de limite  $+\infty$  telle que  $u_n=o(w_n)$  et  $w_n=o(v_n)$ .

Exercice 3 Donner un exemple de suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  telles que  $u_n=O(v_n)$  mais qu'on n'ait ni  $u_n = o(v_n)$ , ni  $v_n = O(u_n)$ .

Exercice 4 ( ) — Encadrement et équivalents —

Soient  $(u_n)$ ,  $(v_n)$  et  $(w_n)$  trois suites ne s'annulant pas. On suppose que  $\forall n \in \mathbb{N}, u_n \leqslant v_n \leqslant w_n$  et que  $u_n \sim w_n$ . Que peut-on dire de  $(v_n)$ ?

Exercice 5 ( ) Trouver un équivalent simple des suites suivantes :

- 9.  $e^{\sin\frac{\pi}{n}} \sin\left(\sin\frac{\pi}{2n}\right)$
- 1.  $\ln \cos \frac{\pi}{n} + \tan \sin \frac{1}{n}$  5.  $\sqrt{n} \sin \frac{\pi}{n}$ 2.  $\ln \cos \frac{\pi}{n} + e^{\tan(\pi/n^2)} 1$  6.  $\ln(n+1) \ln(n+2)$ 3.  $3 + e^{1/n} \frac{6}{n}$  7.  $\frac{1}{n+1} \frac{1}{n+5} + \frac{4}{n^2}$ 4.  $\sqrt{1 + e^{-n}} \cos e^{-n}$  8.  $(n + \ln n)e^{-n+1}$
- 10.  $\ln \frac{1 + \cosh \frac{1}{n}}{2}$

- 11.  $e^{e^{e^{-n}}} e$

Montrer que  $\sum_{k=1}^{n} k! \underset{n \to +\infty}{\sim} n!$ Exercice 6

Déterminer un équivalent de la suite définie par  $u_n = (n+1)^{\frac{1}{n+1}} - n^{\frac{1}{n}}$ . Exercice 7 (\(\sum\_{\text{\lefta}}\))

1

Exercice 8 Soit  $(u_n)_{n\in\mathbb{N}^*}$  la suite définie par  $u_1=1$  et  $\forall n\in\mathbb{N}^*,\ u_{n+1}=\ln(n+u_n)$ .

- 1. Montrer que  $(u_n)_{n\in\mathbb{N}^*}$  possède une limite et la déterminer.
- 2. a) Montrer que :  $\forall x \in \mathbb{R}_+^*$ ,  $\ln x \leqslant x$ .
  - b) Montrer que :  $\forall n \in \mathbb{N}, n \ge 2, u_n \le \ln(2n)$ .
  - c) Montrer que :  $u_n \sim \lim_{n \to +\infty} \ln n$ .
  - d) Montrer que :  $u_n \ln n \underset{n \to +\infty}{\sim} \frac{\ln n}{n}$ .

## Exercice 9 (%)

- 1. Montrer que l'équation  $\ln x + x = k$  admet une unique solution  $x_k$ , quel que soit  $k \in \mathbb{N}$ . On définit ainsi une suite réelle  $(x_k)_{k \in \mathbb{N}}$ .
- 2. Montrer que l'on peut écrire :  $x_k = ak + b \ln k + c \frac{\ln k}{k} + o \left(\frac{\ln k}{k}\right)$ , où a, b et c sont des constantes que l'on déterminera.

**Exercice 10** ( $^{\circ}$ ) À quelle condition sur f et g a-t-on  $e^f \sim_a e^g$ ?

**Exercice 11** ( Soit f et g deux fonctions définies sur  $\mathbb{R}$ . On suppose que  $f(x) \underset{x \to +\infty}{\sim} g(x)$ . et que ces fonctions admettent une limite commune notée  $\ell \in \mathbb{R}$  lorsque x tend vers  $+\infty$ .

- 1. On suppose dans cette question que f et g sont à valeurs strictement positives.
  - (a) Montrer que si  $\ell \neq 1$ , alors :

$$\ln\left(f(x)\right) \underset{x \to +\infty}{\sim} \ln\left(g(x)\right)$$

- (b) Que pouvez-vous dire lorsque  $\ell=1$  ?
- 2. Parmi les équivalents suivants, lesquels sont systématiquement vrais ? (on pourra discuter selon les valeurs de  $\ell$ ).

(a) 
$$\arctan(f(x)) \underset{x \to +\infty}{\sim} \arctan(g(x))$$

(b) 
$$\sin(f(x)) \sim \sin(g(x))$$

**Exercice 12** ( ) Montrer que si  $f \sim f_1$  et  $g \sim g_1$  avec  $f_1 = o(g_1)$  alors  $f + g \sim g_1$ 

**Exercice 13** Étudier en  $+\infty$  et  $-\infty$  la fonction  $f(x) = \sqrt[3]{x^3 + 1} + \sqrt{x^2 + x + 1}$ .

# Exercice 14 ( )

1. Limite en 0 de 
$$\frac{\sin(x\ln(1+x^2))}{x\tan x}$$

2. Limite en 0 de 
$$\frac{\ln(1+\sin x)}{\tan(6x)}$$

3. Limite en 0 de 
$$(\ln(e+x))^{\frac{1}{x}}$$

4. Limite en 
$$+\infty$$
 de  $(\ln(1+e^{-x}))^{\frac{1}{x}}$ 

5. Limite en 
$$+\infty$$
 de  $\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$ 

6. Équivalent en 
$$+\infty$$
 de  $\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2}$ 

7. Limite en 0 de 
$$\frac{\tan(ax) - \sin(ax)}{\tan(bx) - \sin(bx)}$$

8. Limite en 
$$\frac{\pi}{4}$$
 de  $\left(x - \frac{\pi}{4}\right) \tan(x + \frac{\pi}{4})$ 

9. Limite en 
$$\frac{\pi}{4}$$
 de  $\frac{\cos(x) - \sin(x)}{(4x - \pi)\tan(x)}$ 

10. Équivalent en 0 de  $\frac{\tan(x-x\cos(x))}{\sin(x)+\cos(x)-1}$ 

13. Limite en  $\frac{1}{2}$  de  $(2x^2 - 3x + 1)\tan(\pi x)$ 

11. Équivalent en  $\frac{\pi}{4}$  de  $\left(\tan(2\,x) + \tan(x + \frac{\pi}{4})\right) \left(\cos(x + \frac{\pi}{4})\right)^2$ 

14. Limite en 0 de  $\frac{(\sin(x))^{\sin(x)} - 1}{(\tan(x))^{\tan(x)} - 1}$ 

12. Limite en 0 de  $x^{\frac{1}{1+2\ln(x)}}$ 

15. Équivalent en  $+\infty$  de  $\frac{\sqrt{1+x^2}}{\sin(\frac{1}{x})}\ln(\frac{x}{x+1})$ 

Exercice 15 ( ) Déterminer l'existence et la valeur des limites suivantes.

 $1. \lim_{x \to 1} \frac{x^x - 1}{\ln x}$ 

3.  $\lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin^2 x)}{\left(\frac{\pi}{2} - x\right)^2}$ 

5.  $\lim_{x \to +\infty} \sin \frac{1}{x} \tan \left( \frac{2\pi x}{4x+3} \right)$ 

2.  $\lim_{x \to 0} \left( \frac{x^2}{\ln(\cos x)} + \frac{2}{x^2} \sin^2 x \right)$  4.  $\lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin^2 x)}{\left(\frac{\pi}{2} - x\right)^2}$ 

6.  $\lim_{x \to 0^+} \ln x \tan(\ln(1+x))$ 

7.  $\lim_{x \to e} (\ln x)^{\tan \frac{\pi x}{2e}}$ 

Exercice 16

1.  $\sqrt{x}$  admet-elle un développement limité d'ordre  $n \ge 1$  en 0 ?

2. À quels ordres  $x^{\frac{13}{3}}$  admet-elle un développement limité en 0 ?

3. Soit  $n \in \mathbb{N}$ .  $|x|^n$  admet-elle un développement limité d'ordre n en 0?

Exercice 17 ( ) Donner le développement limité en 0 des fonctions :

1.  $x \mapsto \ln(\cos(x))$  (à l'ordre 6).

4.  $x \mapsto (\ln(1+x))^2$  (à l'ordre 4).

2.  $x \mapsto \tan(x)$  (à l'ordre 5).

5.  $x \mapsto \exp(\sin(x))$  (à l'ordre 3).

3.  $x \mapsto \sin(\tan(x))$  (à l'ordre 5).

6.  $x \mapsto \sin^6(x)$  (à l'ordre 9.)

Exercice 18 ( )

Former le développement asymptotique en  $+\infty$  de l'expression considérée à la précision demandée  $\,:\,$ 

1.  $\sqrt{x+1}$  à la précision  $\frac{1}{x^{3/2}}$  ;

2.  $x \ln(x+1) - (x+1) \ln x$  à la précision  $\frac{1}{x^2}$ ;

3.  $\left(\frac{x+1}{x}\right)^x$  à la précision  $\frac{1}{x^2}$ ;

4. Arctan x à la précision  $\frac{1}{r^3}$ .

Exercice 19 ( )

Faire un développement limité ou asymptotique en a à l'ordre n de :

2.  $\ln \sin x$  n = 3  $a = \frac{\pi}{4}$ . 3.  $(1+x)^{\frac{1}{x}}$  n = 3 a = 0. 4.  $x(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2})$  n = 2  $a = +\infty$ .

3

#### Exercice 20

- 1. Démontrer que  $\tan x$  et  $\tan' x$  admettent un développement limité en 0 à tout ordre. Expliquer comment obtenir le développement limité de  $\tan' x$  à partir de celui de  $\tan x$ .
- 2. En exploitant la relation  $\tan' x = 1 + \tan^2 x$ , donner le développement limité de  $\tan x$  en 0 à l'ordre

#### Exercice 21

- 1. Donner le développement limité de  $x\mapsto \int_x^{x^2}\sqrt{1+t^2}\,\mathrm{d}t$  en 0 à l'ordre 4.
- 2. Sur le même modèle, donner un développement limité de  $x \mapsto \int_{x}^{\frac{1}{x}} e^{-t^2} dt$  en 1 à l'ordre 3.

Exercice 22 ( ) Calculer les développements asymptotiques suivants :

$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$$
 en  $+\infty$  à 2 termes  $\ln\left(\sqrt{1+x}\right)$  en  $+\infty$  à 2 termes

Exercice 23 ( ) Déterminer les DL suivants à l'ordre 4 :

- 1. en 0 : a)  $\frac{\cos x}{\sqrt{1+x}}$  b)  $\frac{\sqrt{1+x}}{\cos x}$  c)  $\frac{\ln(1+x)}{\cos x}$  d)  $\frac{1+\cos x}{2+\sin x}$  e)  $\frac{\sin(x/2)}{e^{2x}}$  f)  $\frac{\ln(1+x)}{2-\cos x}$
- 2. en a : a)  $\frac{\sin(2x \pi/4)}{\cos x}$  et  $a = \pi/4$  b)  $\frac{\cos(x-1)}{\ln(1+x)}$  et a = 1 (ordre 2) c)  $\frac{e^{x-1}}{\ln x}$  et a = 1.

Calculer les limites des expressions suivantes lorsqu'elles existent :

- 1.  $(\tan x)^{\tan 2x}$  en  $\frac{\pi}{4}$
- 2.  $\frac{1}{x} \frac{1}{\ln(1+x)}$  en 0
- 3.  $\frac{(1+x)^{\frac{1}{x}} e}{x} \quad \text{en } 0$ 4.  $\frac{1}{2(1-\sqrt{x})} \frac{1}{3(1-\sqrt[3]{x})} \quad \text{en } 1$
- 5.  $\frac{1}{\sin^4 x} \left( \sin \frac{x}{1-x} \frac{\sin x}{1-\sin x} \right)$  en 0
- 6.  $\frac{(1+x)^{\frac{\ln x}{x}}-x}{x(x^x-1)}$  en 0

**Exercice 25** ( ) Soit  $f(x) = (\cos x)^{\frac{1}{x}}$  pour  $x \in ]-\frac{\pi}{2}, \frac{\pi}{2}[-\{0\}]$ .

Montrer que f est prolongeable par continuité en 0 et étudier la dérivabilité du prolongement de f.

Exercice 26 ( ) Soient u, v, f définies par :

$$u(x) = (x^3 - 2x^2 + 1)^{\frac{1}{3}}, \ v(x) = \sqrt{x^2 + x + 1}, \ f(x) = u(x) - v(x).$$

1. Donner l'équation d'une droite asymptote au graphe de f en  $-\infty$  et positionner f par rapport à cette asymptote.

4

2. Même étude en  $+\infty$ .

**Exercice 27** ( $^{\circ}$ ) Soit g la fonction  $x \mapsto \frac{\arctan x}{(\sin x)^3} - \frac{1}{x^2}$ .

- 1. Donner le domaine de définition de g.
- 2. Montrer qu'elle se prolonge par continuité en 0 en une fonction dérivable.
- 3. Déterminer la tangente en 0 au graphe de cette fonction et la position de ce graphe par rapport à celle-ci.

Exercice 28 ( ) Étudier la position du graphe de l'application  $x \mapsto \ln(1+x+x^2)$  par rapport à sa tangente en 0 et 1.

Étudier les branches infinies des fonctions : Exercice 29

1. 
$$f(x) = x^2 \arctan(\frac{1}{1+x^2})$$
.

2. 
$$g(x) = x\sqrt{\frac{x-1}{3x+1}}$$
.

Exercice 30 Soit 
$$f: \mathbb{R} \to \mathbb{R}$$
 de classe  $\mathscr{C}^2$  et  $a \in \mathbb{R}$ . Déterminer  $\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$ .

**Exercice 31** Soient a et b deux réels distincts et  $F(X) = \frac{1}{(X-a)^n(X-b)^n}$ . En utilisant la formule de Taylor en a pour  $f(X) = (X-a)^n F(X)$ , décomposer F sur  $\mathbb{R}$ .

Donner les natures des séries de terme général  $(u_n)$  (i.e., la suite  $\left(\sum_{n=1}^N u_n\right)_{N\in\mathbb{N}}$ ), avec : Exercice 32

1. 
$$u_n = \operatorname{th} \frac{1}{n} + \ln \frac{n^2 - n}{n^2 + 1}$$
 2.  $u_n = \frac{n^n}{n! e^n}$ 

$$2. \ u_n = \frac{n^n}{n! e^n}$$

3. 
$$u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$$

