

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «	Информатика и системы	управления»	
— КАФЕДРА «Пр	ограммное обеспечение	ЭВМ и информ	ационные технологии»
	r	1-1	
	Отч	•• ••	
	UT4	eT	
	по лабораторно	й работе N	<u>[o</u> 1
	no viacopa i opiio	n puodici	•
TT	П		
Название:	Программная реализ	вация приоли	женного
аналитическ	ого метода и численн	ых алгоритм	ов первого и
второго поря	адковточности при ре	ешении задач	и Коши для ОДУ.
	: Моделирование		
Студент	ИУ7-65Б		Д.О. Склифасовский
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподователь	•		В.М. Градов
_			

(Подпись, дата)

(И.О. Фамилия)

Цель работы: получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

1 Метод Пикара

$$y^{(1)} = \frac{x^3}{3}$$

$$y^{(2)} = \frac{x^3}{3} + \frac{x^7}{63}$$

$$y^{(3)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$y^{(4)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{4x^{27}}{3341878155} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{x^{31}}{109876902975}$$

2 Метод Эйлера

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$
, где $f(x, y) = x^2 + y^2$

3 Метод Рунге-Кутта

$$y_{n+1} = y_n + h((1 - \alpha)k_1 + \alpha k_2)$$

$$k_1 = f(x_n, y_n)$$

$$k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1)$$

$$\alpha = \frac{1}{2} \text{ or } 1$$

Результаты

X	1 approx	2 approx	3 approx	4 approx	euler	runge-kutta	
0.00	0.00	0.00	0.00	0.00	0	0	
0.05	0.00	0.00	0.00	0.00	4.16791	4.169168	
0.10	0.00	0.00	0.00	0.00	0.00033	0.000333	
0.15	0.00	0.00	0.00	0.00	0.00112	0.001125	İ
0.20	0.00	0.00	0.00	0.00	0.00266	0.002667	ĺ
0.25	0.01	0.01	0.01	0.01	0.00520	0.005209	ĺ
0.30	0.01	0.01	0.01	0.01	0.00900	0.009004	İ
0.35	0.01	0.01	0.01	0.01	0.01430	0.014303	
0.40	0.02	0.02	0.02	0.02	0.02136	0.021360	
0.45	0.03	0.03	0.03	0.03	0.03043	0.030436	
0.50	0.04	0.04	0.04	0.04	0.04179	0.041793	
0.55	0.06	0.06	0.06	0.06	0.05570	0.055704	
0.60	0.07	0.07	0.07	0.07	0.07244	0.072451	
0.65	0.09	0.09	0.09	0.09	0.09233	0.092332	
0.70	0.11	0.12	0.12	0.12	0.11566	0.115664	
0.75	0.14	0.14	0.14	0.14	0.14278	0.142791	
0.80	0.17	0.17	0.17	0.17	0.17408	0.174086	
0.85	0.20	0.21	0.21	0.21	0.20996	0.209970	
0.90	0.24	0.25	0.25	0.25	0.25091	0.250915	
0.95	0.29	0.30	0.30	0.30	0.29745	0.297462	
1.00	0.33	0.35	0.35	0.35	0.35023	0.350243	
1.05	0.39	0.41	0.41	0.41	0.40999	0.410001	
1.10	0.44	0.47	0.48	0.48	0.47762	0.477631	
1.15	0.51	0.55	0.55	0.55	0.55420	0.554216	
1.20	0.58	0.63	0.64	0.64	0.64108	0.641095	
1.25	0.65	0.73	0.74	0.74	0.73993	0.739945	
1.30	0.73	0.83	0.85	0.85	0.85288	0.852904	
1.35	0.82	0.95	0.98	0.98	0.98272	0.982745	
1.40	0.91	1.08	1.12	1.13	1.13312	1.133145	
1.45	1.02	1.23	1.29	1.31	1.30905	1.309082	
1.50	1.13	1.40	1.49	1.51	1.51745	1.517493	
1.55	1.24	1.58	1.71	1.76	1.76828	1.768340	
1.60	1.37	1.79	1.98	2.05	2.07642	2.076492	
1.65	1.50	2.03	2.29	2.41	2.46508	2.465184	
1.70	1.64	2.29	2.67	2.86	2.97276	2.972914	
1.75	1.79	2.58	3.11	3.42	3.66827	3.668502	
1.80	1.94	2.92	3.65	4.15	4.68797	4.688382	
1.85	2.11	3.29	4.29	5.10	6.34614	6.346962	
1.90	2.29	3.71	5.08	6.37	9.56580	9.567946	
1.95	2.47	4.17	6.04	8.10	18.7405	18.75082	
2.00	2.67	4.70	7.22	10.48	313.035	318.7335	
2.05	2.87	5.29	8.67	13.83	None	None	
2.10	3.09	5.95	10.46	18.61	None	None	
2.15	3.31	6.68	12.68	25.50	None	None	
2.20	3.55	7.51	15.43	35.57	None	None	

Листинги

Листинг 1 – Метод Пикара

```
def pikar(approx, x):
    approximation = {
        1 : pow(x, 3) / 3.0,
        2 : pow(x, 3) / 3.0 + pow(x, 7) / 63.0,
```

Листинг 2 – Метод Эйлера

```
def euler(x, h):
    y = 0
    x0 = h
    while (x0 < x + h / 2):
        try:
        y += h * (pow(y, 2) + pow(x0, 2))
        x0 += h
        except:
        return 'None'
    return y</pre>
```

Листинг 3 – Рунге-Кутта

```
def runge_kutta(x, h, alpha):
    func = lambda x, u : pow(x, 2) + pow(u, 2)

y = 0

x0 = h

while (x0 < x + h / 2):
    try:
    k1 = func(x0, y)

k2 = func(x0 + h / (2 * alpha), y + h / (2 * alpha) *
    k1)</pre>
```

```
y += h * ((1 - alpha) * k1 + alpha * k2)
x0 += h
except:
return 'None'
return y
```

Ответы на вопросы

1) Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата ценивать до второй цифры после запятой. Обосновать свой ответ.

Ответ: при оценке значений до 2-й цифры после запятой:

- Для первого [0, 0.65]
- Для второго [0, 1.05]
- Для третьего [0, 1.35]
- Для четвертого [0, 1.35]

Из-за того, что нельзя точно гарантировать, что 4-ое приближение вычисляется верно (необходимо приближение более высокого порядка), интервалы 3-го и 4-го приближений одинаковые.

Интервалы разные, так как, чем больше приближение, тем точнее результат.

2) Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Ответ: Численные методы работают итеративно, поэтому результаты зависят от величины шага. Необходимо выбирать такой шаг, при умень-

шении которого результат будет меняться незначительно. В данной задании таким шагом является 10^{-5} , так как значение не сильно отличается при шаге равном 10^{-6} . Доказательство:

h	Эйлера	Рунге-Кутта		
10^{-3}	142.627	431.1348		
10^{-4}	277.362	327.977		
10^{-5}	313.035	318.7335		
10^{-6}	317.245	317.8234		

3) Какого значение функций при x=2, т.е. привести значение u(2)

Ответ:

X	1-е прибл.	2-е прибл.	3-е прибл.	4-е прибл.	Эйлера	Рунге-Кутта
2.00	2.67	4.70	7.22	10.48	313.035	318.7335