Quiz-II MTH-204, MTH-204A ABSTRACT ALGEBRA Spring-2023 Date: 18th April 2023

Time Allowed: 30 mins (6.15-6.45 PM)

Max. Marks: 15

Write your answer in the space provided and explain all the major steps

1. List up to isomorphism all abelian groups of order 2100. Among them determine which are cyclic. [3]

Ans: $2100 = 3 \times 7 \times 5^2 \times 2^2$. So the number of non-isomorphic abelian groups of order 2100 is $p(2) \times p(2) = 4$ where p(2) is the number of partitions of 2.

So the groups are

- (1) $\mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}$.
- (2) $\mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_5$.
- (3) $\mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5$.
- $(4) \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_{25}.$

Among the above list only $\mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_{25}$ is cyclic as we know that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ iff (m, n) = 1.

2. Find a subnormal series of $GL_2(\mathbb{R})$. Does it have a composition series? Justify your answer. [4]

Ans: $\{I\} \triangleleft SL_2(\mathbb{R}) \triangleleft GL_2(\mathbb{R})$ is a subnormal series of $GL_2(\mathbb{R})$.

We know that if $GL(2,\mathbb{R})$ has a composition series, then every normal subgroup also has a composition series. However the subgroup generated by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$,

$$N := \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle$$

is a normal subgroup of $GL(2,\mathbb{R})$ and is isomorphic to \mathbb{Z} . Since \mathbb{Z} doesn't have a composition series, we conclude that $GL(2,\mathbb{R})$ has no composition series.

3. Are the principal ideals I = (7) and J = (13) maximal in $\mathbb{Z}[i]$? Explain your answer. [3]

Ans: Note that 7 is irreducible as for 7 = (a+ib)(c+id), we have $49 = 7.7 = (a^2+b^2)(c^2+d^2)$, implies that either a+ib or c+id is a unit. On the other hand 13 = (2+3i)(2-3i) is not irreducible. Since $\mathbb{Z}[i]$ is a PID the ideal $I = \langle 7 \rangle$ is maximal but $J = \langle 13 \rangle$ is not maximal.

4. Show that there is no commutative ring with the identity whose additive group is isomorphic to $\frac{\mathbb{Q}}{\mathbb{Z}}$. [5]

Ans: Let R be a ring with identity such that its additive group is isomorphic to $\frac{\mathbb{Q}}{\mathbb{Z}}$ and let f be the group isomorphism between them. Since every element of $\frac{\mathbb{Q}}{\mathbb{Z}}$ is of finite order, order of f(1) is n say. Then n.f(1) = f(n.1) = 0 and since f is injective we have n.1 = 0. Then n.f(a) = f(n,a) = f

n.f(a) = f(n.a) = f(n.(1.a)) = f((n.1).a) = f(0.a) = 0. So it says that every element of \mathbb{Q} is of order less than n. Which is a contradiction.

-ROUGH