₂₈ Contents

29	1	Intr	oducir	ng Fusion Reactor Design	17		
30		1.1	Distin	guishing Pulsed from Steady-State	18		
31		1.2	Pricing	Pricing a Fusion Reactor			
32		1.3	Model	ing Fusion Systems	21		
33		1.4	Discus	ssing HTS Magnet Technology	22		
34	3	For	malizir	ng the Systems Model	41		
35		3.1	Explai	ining Static Variables	42		
36		3.2	Conne	ecting Dynamic Variables	42		
37		3.3	Enforc	cing Power Balance	46		
38			3.3.1	Collecting Power Sources	46		
39			3.3.2	Approximating Radiation Losses	48		
40			3.3.3	Estimating Heat Conduction Losses	49		
41			3.3.4	Writing the Lawson Parameter	51		
42			3.3.5	Finalizing the Primary Constraint	53		
43		3.4	Collec	ting Limiting Constraints	56		
44			3.4.1	Introducing the Beta Limit	56		
45			3.4.2	Giving the Kink Safety Factor	58		
46			3.4.3	Working under the Wall Loading Limit	58		
47			3.4.4	Setting a Maximum Power Cap	60		
48			3.4.5	Listing the Heat Loading Limit	61		
49		3.5	Summ	narizing the Fusion Systems Model	62		
50	4	Des	igning	a Pulsed Tokamak	65		

51	4.1	Model	ling Plasmas as Circuits	66
52		4.1.1	Drawing the Circuit Diagram	66
53		4.1.2	Plotting Pulse Profiles	68
54		4.1.3	Specifying Circuit Variables	73
55		4.1.4	Constructing the Pulse Length	77
56	4.2	Produ	icing Flux Balance	78
57		4.2.1	Rearranging the Circuit Equation	78
58		4.2.2	Adding Poloidal Field Coils	79
59	4.3	Impro	ving Tokamak Geometry	81
60		4.3.1	Defining Central Solenoid Dimensions	81
61		4.3.2	Calculating Component Thicknesses	82
62		4.3.3	Revisiting Central Solenoid Dimensions	85
63	4.4	Piecin	g Together the Generalized Current	87
64	4.5	Simpli	ifying the Generalized Current	88
65		4.5.1	Recovering the Steady Current	89
66		4.5.2	Extracting the Pulsed Current	89
67		453	Rationalizing the Generalized Current	91

68	5	Cor	npletir	ng the Systems Model	93
69		5.1	Descri	ibing a Simple Algebra	93
70		5.2	Gener	alizing Previous Equations	95
71			5.2.1	Including Limiting Constraints	95
72			5.2.2	Minimizing Intermediate Quantities	97
73			5.2.3	Pinning Dynamic Variables	98
74			5.2.4	Detailing the Equation Solver	98
75		5.3	Wrapp	ping up the Logic	101
76	6	Pre	senting	g the Code Results	103
77		6.1	Testin	g the Code against other Models	104
78			6.1.1	Comparing with the PSFC ARC Reactor	105
79			6.1.2	Contrasting with the ARIES ACT Studies	106
80			6.1.3	Benchmarking with the Process DEMO Designs	108
81		6.2	Develo	oping Prototype Reactors	115
82			6.2.1	Navigating around Charybdis	119
83			6.2.2	Pinning down Proteus	119
84			6.2.3	Highlighting Operation Differences	120
85		6.3	Learni	ing from the Data	120
86			6.3.1	Picking a Design Point	120
87			6.3.2	Utilizing High Field Magnets	125
88			6.3.3	Looking at Design Alternatives	128
89	7	Pla	nning	Future Work for the Model	135
90		7.1	Incorp	porating Stellarator Technology – Ladon	135
91		7.2	Makin	ng a Composite Reactor – Janus	136
92		7.3	Bridgi	ing Confinement Scalings – Daedalus	137
93		7.4	Addre	essing Model Shortcomings	138
94			7.4.1	Integrating Pedestal Temperature Profiles	139
95			7.4.2	Expanding the Radiation Loss Term	139
96			7.4.3	Taking Flux Sources Seriously	139

97	8	Concluding Reactor Discussion			
98	\mathbf{A}	Cat	aloging Model Variables	143	
99		A.1	Static Variables	143	
100		A.2	Dynamic Variables	144	
101		A.3	Intermediate Variables	144	
102	В	Sim	ulating with Fussy.jl	145	
103		B.1	Getting the Code to Work	145	
104		B.2	Sorting out the Codebase	146	
105			B.2.1 Typing out Structures	147	
106			B.2.2 Referencing Input Decks and Solutions	149	
107			B.2.3 Acknowledging Utility Functions	149	
108			B.2.4 Mentioning Base Level Files	149	
109		В.3	Delving into Reactor Methods	150	
110		B.4	Demonstrating Code Usage	151	
111			B.4.1 Initializing the Workspace	152	
112			B.4.2 Running a Study	152	
113			B.4.3 Extracting Results	153	
114			B.4.4 Plotting Curves	154	
115	\mathbf{C}	Disc	cussing Fusion Power	159	
116		C.1	Theoretical Background	159	
117		C.2	Bosch-Hale Reactivity	161	
118	D	Sele	ecting Plasma Profiles	165	
119		D.1	Density – n	165	
120		D.2	Temperature – T	167	
121		D.3	Pressure – p	169	
122		D.4	Bootstrap Current – f_{BS}	169	
100		D 5	Volume Averaged Powers	171	

124	${f E}$	Det	ermining Plasma Flux Surfaces	173
125		E.1	Flux Surface Coordinates	174
126		E.2	Cross-sectional Area and Volume	175
127		E.3	Surface and Volume Integrals	176
128	\mathbf{F}	Exp	anding on the Bootstrap Current	179
129		F.1	Summarized Results	179
130		F.2	Detailed Analysis	181
131	\mathbf{G}	Elal	porating on the Current Drive	187
132		G.1	Summarized Results	187
133		G.2	Detailed Analysis	188
134	\mathbf{G}	Con	npending Code Plots	187
135		G.1	Magnet Strength Scans	188
136		G.2	Cost Sensitivity Studies	209
137	Re	efere	nces	225

List of Figures

139	1-1	Cut-Away of Tokamak Reactor	18
140	1-2	Comparison of Pulsed and Steady-State Current	19
141	1-3	Steady State Magnet Components	23
142	1-4	Pulsed Magnet Components	23
143	3-1	Current Balance in a Tokamak	45
144	3-2	Power Balance in a Reactor	52
145	3-3	H-Mode Confinement Time Scaling	54
146	4-1	A Simple Plasma Transformer Description	67
147	4-2	Time Evolution of Circuit Profiles	69
148	4-3	Dimensions of Tokamak Cross-Section	82
149	5-1	Equation Selection for Fusion System	94
150	5-2	$\label{eq:minimize} \mbox{Minimize Cost Step II/III-Optimize Reactor} \ \dots \ \dots \ \dots \ \dots \ \dots$	99
151	6-1	ARC and ACT Studies Cost Dependence on the H Factor	107
152	6-2	ARC Model Comparison	110
153	6-3	ARIES ACT I Model Comparison	111
154	6-4	ARIES ACT II Model Comparison	112
155	6-5	DEMO Steady Model Comparison	113
156	6-6	DEMO Pulsed Model Comparison	114
157	6-7	Designing Reactor Prototypes	116
158	6-8	Steady State Prototype Comparison	117
159	6-9	Pulsed Prototype Comparison	118
160	6-10	Limiting Constraint Regimes	121

161	6-11	Steady State Cost Curves	23
162	6-12	Pulsed Cost Curves	24
163	6-13	Pulsed B_{CS} Sensitivities	26
164	6-14	Pulsed Monte Carlo Sampling	27
165	6-15	Bootstrap Current Monte Carlo Sampling	29
166	6-16	Internal Inductance Sensitivities	30
167	6-17	Pulsed H Sensitivities	32
168	6-18	Steady State Current Drive Efficiency	33
169	6-19	Current Drive Efficiency vs Launch Angle	34
170	7-1	Cut-Away of Stellarator Reactor	36
171	7-2	Current Balance in a Tokamak	37
172	B-1	A Blank Plot	55
173	B-2	An Empty Plot	56
174	B-3	An Unscaled Plot	56
175	B-4	A Scaled Plot	57
176	C-1	Comparing Nuclear Fusion and Fission	30
177	C-2	The D-T Fusion Reaction	31
178	D-1	Radial Plasma Profiles	35
179	E-1	Cut-Away of Tokamak Reactor	73
180	E-2	Dimensions of Tokamak Cross-Section	76

List of Tables

182	3.1	Dynamic Variables	42
183	4.1	Piecewise Linear Scheme for Pulsed Operation	69
184	4.2	Example TF Coils and Central Solenoid Critical Values	85
185	5.1	Main Equation Bank	96
186	6.1	ARC Variables	110
187	6.2	ACT I Variables	111
188	6.3	ACT II Variables	112
189	6.4	DEMO Steady Variables	113
190	6.5	DEMO Pulsed Variables	114
191	6.6	Charybdis Variables	117
192	6.7	Proteus Variables	118
193	6.8	Proteus and Charybdis Comparison	119
194	A.1	List of Static Variables	143
195	A.2	List of Dynamic Variables	144
196	A.3	List of Intermediate Variables (Noncomprehensive)	144
197	C.1	Bosch-Hale Parametrization Coefficients	163
198	C.2	Tabulated Bosch-Hale Reactivities	163

199 List of Equations

200	1.1	Magnetic Energy – W_M	20
201	1.3	Cost-per-Watt – C_W	21
202	3.1	Scanned Temperature – \overline{T}	43
203	3.3	Current Fractions – f	44
204	3.6	Power Balance – P	46
205	3.8	Plasma Resistance – R_P	47
206	3.10	Ohmic Power – P_{Ω}	47
207	3.14	Bremsstrahlung Power – P_{BR}	49
208	3.19	Heat Conduction Losses – P_{κ}	50
209	3.22	Triple Product $-\overline{n} \cdot \overline{T} \cdot \tau_E$	52
210	3.24	Generalized Confinement Time Scaling Law – τ_E	53
211	3.25	Loss Power – P_{src}	54
212	3.26	ELMy H-Mode Confinement Time Scaling Law – τ_E^H	55
213	3.27	Primary Constraint – B_0	55
214	3.34	Plasma Pressure – \overline{p}	57
215	3.37	Troyon Beta Limit – β_N	57
216	3.40	Kink Safety Factor – q_*	58
217	3.42	Surface Area – S_P	59
218	3.44	Wall Loading Limit – P_W	59
219	3.46	Electric Power – P_E	60
220	3.50	Maximum Power Limit – P_{max}	61
221	3.54	Heat Loading Limit – q_{DV}	62
222	4.12	Ramp-Up Time – τ_{RU}	70
223	4.16	Flattop Time – τ_{FT}	71

224	4.17	Ramp-Down Time – τ_{RD}	72
225	4.19	Dwell Time – τ_{DW}	72
226	4.20	Duty Factor – f_{duty}	73
227	4.23	Inductive Current – I_{ID}	74
228	4.26	Central Solenoid Inductance – L_1	75
229	4.29	Plasma Inductance – L_2	76
230	4.34	Mutual Inductance – M	76
231	4.40	Central Solenoid Flux – Φ_{CS}	78
232	4.42	Ramp-Up Flux – Φ_{RU}	79
233	4.43	Flattop Flux – Φ_{FT}	79
234	4.44	PF Coil Flux – Φ_{PF}	79
235	4.48	Plasma Perimeter – l_p	80
236	4.50	Vertical Field Strength – B_V	80
237	4.53	Flux Balance – Φ	81
238	4.56	Blanket Thickness – b	83
239	4.57	TF Coil Thickness – c	84
240	4.61	Central Solenoid Thickness – d	84
241	4.64	Central Solenoid Height – h_{CS}	86
242	4.65	Central Solenoid Inner Radius – R_{CS}	86
243	4.75	Generalized Current – I_P	88
244	5.3	General Model Equation – $G(\overline{T})$	95
245	5.10	General Model Solution – $\gamma_{RB\{I,T\}}$	100
246	7.1	L-Mode Confinement Time Scaling Law – τ_E^L	138
247	7.2	I-Mode Confinement Time Scaling Law – τ_E^I	138
248	C.2	Fusion Energy – E_F	160
249	C.3	Neutron Power – P_n	160
250	C.4	Alpha Power – P_{α}	160
251	C.9	Bosch-Hale Reactivity – $\langle \sigma v \rangle$	162
252	E.14	Shaping Parameter – g	175
253	E.24	Volume Integral – Q_V	177

254	E.25	Surface Integral – Q_S	177
255	F.7	Internal Inductance $-l_i$	180

$_{\tiny{\tiny{2381}}}\ Appendix\ F$

Expanding on the Bootstrap Current

The bootstrap current fraction – f_{BS} – is an important parameter that enters in the design of tokamak reactors. It must be calculated with reasonable accuracy to determine how much external current drive is required. The value of f_{BS} thus has a strong impact on the overall fusion energy gain. Obtaining reasonable accuracy requires a moderate amount of analysis, which is presented in a following section. The results are summarized below.

F.1 Summarized Results

The analysis is based on an expression for the bootstrap current valid for arbitrary cross section assuming (1) equal temperature electrons and ions $T_e = T_i = T$, (2) large aspect ratio $\epsilon \ll 1$, and (3) negligible collisionality $\nu_* \to 0$. Under these assumptions the bootstrap current $\mathbf{J}_{BS} \approx J_{BS} \mathbf{e}_{\phi}$ has the form

$$J_{BS} = -3.32 f_T R_0 n T \left(\frac{1}{n} \frac{dn}{d\psi} + 0.054 \frac{1}{T} \frac{dT}{d\psi} \right)$$
 (F.1)

Here, $f_T \approx 1.46 (r/R_0)^{1/2}$ is an approximate expression for the trapped particle fraction and ψ is the poloidal flux.

The analysis next section shows that Eq. (F.1) leads to an expression for the bootstrap fraction, assuming for simplicity elliptical flux surfaces, that can be written as:

$$f_{BS} = \frac{I_{BS}}{I} = \frac{2\pi a^2 \kappa}{I} \int_0^1 J_{BS} \, \rho \, d\rho = \frac{K_{BS}}{K_n} \frac{\overline{n} \, \overline{T} R_0^2}{I_P^2}$$
 (F.2)

$$K_{BS} = 4.879 \cdot K_n \cdot \left(\frac{1 + \kappa^2}{2}\right) \cdot \epsilon^{5/2} \cdot H_{BS} \tag{F.3}$$

$$H_{BS} = (1 + \nu_n)(1 + \nu_T)(\nu_n + 0.054\nu_T) \int_0^1 \frac{\rho^{5/2} (1 - \rho^2)^{\nu_n + \nu_T - 1}}{b_p} d\rho$$
 (F.4)

$$b_p(\rho) = \frac{-e^{\gamma \rho^2} (\gamma \rho^2 - 1 - \gamma) - 1 - \gamma}{\rho (e^{\gamma} - 1 - \gamma)}$$
 (F.5)

$$\overline{J}_{\phi}(\rho) = -\frac{I}{\pi a^2 \kappa} \left[\frac{\gamma^2 (1 - \rho^2) e^{\gamma \rho^2}}{e^{\gamma} - 1 - \gamma} \right]$$
 (F.6)

In this expression b_p is a normalized form of the poloidal magnetic field derived from a prescribed model for the *total* flux surface averaged current density profile $\overline{J}_{\phi}(\rho)$. The $\overline{J}_{\phi}(\rho)$ profile, in analogy with the density and temperature profiles, is not selfconsistent but is chosen to have a plausible experimental shape characterized by the parameter γ . The profile can have either an on-axis ($\gamma < 1$) or off-axis peak ($\gamma > 1$). The normalized internal inductance l_i and radial location of the current peak ρ_m are related to the value of γ by:

$$l_i = \frac{4\kappa}{1 + \kappa^2} \int_0^1 b_p^2 \rho \, d\rho \tag{F.7}$$

2403

$$\rho_m = \begin{cases} \left(\frac{\gamma}{\gamma - 1}\right)^{1/2}, & \gamma > 1\\ 0, & \gamma < 1 \end{cases}$$
 (F.8)

404 F.2 Detailed Analysis

The starting point for the analysis is the general expression for the bootstrap current in a tokamak with arbitrary cross section.⁴³ This expression can be simplified by assuming (1) equal temperature electrons and ions $T_e = T_i = T$, (2) large aspect ratio $\epsilon \ll 1$, and (3) negligible collisionality $\nu_* \to 0$. The bootstrap current $\mathbf{J}_{BS} \approx J_{BS} \mathbf{e}_{\phi}$ reduces to

$$J_{BS} = -3.32 f_T R_0 n T \left(\frac{1}{n} \frac{dn}{d\psi} + 0.054 \frac{1}{T} \frac{dT}{d\psi} \right)$$
 (F.9)

Several values of the trapped particle fraction f_T have been given in the literature.⁴⁴
For simplicity we use a form valid for large aspect ratio. This is a slightly optimistic
value but saves a large amount of detailed calculation. It can be written as,

$$f_T \approx 1.46(r/R_0)^{1/2} = 1.46\epsilon^{1/2}\rho^{1/2}$$
 (F.10)

Here, as in the main text, ρ is a radial-like flux surface label that varies between $0 \le \rho \le 1$. In other words $\psi = \psi(\rho)$. Under these assumptions the bootstrap current reduces to:

$$J_{BS} = -4.85 R_0 \epsilon^{1/2} \left(\frac{\rho^{1/2} nT}{d\psi/d\rho} \right) \left(\frac{1}{n} \frac{dn}{d\rho} + 0.054 \frac{1}{T} \frac{dT}{d\rho} \right)$$
 (F.11)

Since we have specified profiles for $n(\rho)$ and $T(\rho)$ all that remains in order to be able to evaluate $J_{BS}(\rho)$ is to determine $\psi' = d\psi/d\rho$. Keep in mind that at this point, in spite of the approximations that have been made, the expression for $J_{BS}(\rho)$ is still valid for arbitrary cross section.

The analysis that follows shows how to calculate ψ' for an arbitrary cross section including finite aspect ratio. As an example an explicit expression for large aspect ratio, finite elongation ellipse is obtained. Consider the Grad-Shafranov equation for the flux: $\Delta^*\psi = -\mu_0 R J_{\psi}$. We integrate this equation over the volume of an arbitrary

2424 flux surface making use of Gauss' theorem, which leads to:

$$\int_{S} \frac{\mathbf{n} \cdot \nabla \psi}{R^2} dS = -\mu_0 \int_{V} \frac{J_{\phi}}{R} d\mathbf{r}$$
 (F.12)

Next, assume that the coordinates of the flux surface can be expressed in terms of ρ and an angular-like parameter α with $0 \le \alpha \le 2\pi$. In other words, the flux surface coordinates can be written as $R = R(\rho, \alpha) = R_0 + ax(\rho, \alpha)$ and $Z = Z(\rho, \alpha) = ay(\rho, \alpha)$. The functions $R(\rho, \alpha)$ and $Z(\rho, \alpha)$ are assumed to be known. The term on the left hand side can be evaluated by noting that

$$d\mathbf{l} = dl\mathbf{t} \tag{F.13}$$

$$dl = (R_{\alpha}^2 + Z_{\alpha}^2)^{1/2} d\alpha \tag{F.14}$$

$$\mathbf{t} = \frac{R_{\alpha}\mathbf{e}_R + Z_{\alpha}\mathbf{e}_Z}{(R_{\alpha}^2 + Z_{\alpha}^2)^{1/2}}$$
 (F.15)

$$\mathbf{n} = \mathbf{e}_{\phi} \times \mathbf{t} = \frac{Z_{\alpha} \mathbf{e}_{R} - R_{\alpha} \mathbf{e}_{Z}}{(R_{\alpha}^{2} + Z_{\alpha}^{2})^{1/2}}$$
 (F.16)

$$dS = Rd\phi dl = 2\pi R(R_{\alpha}^2 + Z_{\alpha}^2)^{1/2} d\alpha \tag{F.17}$$

2425 It then follows that

$$\mathbf{n} \cdot \nabla \psi = \frac{1}{(R_{\alpha}^2 + Z_{\alpha}^2)^{1/2}} \left(Z_{\alpha} \frac{\partial \psi}{\partial R} - R_{\alpha} \frac{\partial \psi}{\partial Z} \right) = \frac{1}{(R_{\alpha}^2 + Z_{\alpha}^2)^{1/2}} \frac{d\psi}{d\rho} Z_{\alpha} \rho_R - R_{\alpha} \rho_Z \quad (\text{F.18})$$

We can rewrite the last term by noting that

$$dR = R_{\rho}d\rho + R_{\alpha}d\alpha \quad \rightarrow \quad d\rho = \left(Z_{\alpha}dR - R_{\alpha}dZ\right) / \left(R_{\rho}Z_{\alpha} - R_{\alpha}Z_{\rho}\right)$$

$$dZ = Z_{\rho}d\rho + Z_{\alpha}d\alpha \quad \rightarrow \quad d\alpha = \left(-Z_{\rho}dR + R_{\rho}dZ\right) / \left(R_{\rho}Z_{\alpha} - R_{\alpha}Z_{\rho}\right)$$
(F.19)

2427 from which follows

$$\rho_R = \frac{Z_\alpha}{(R_\rho Z_\alpha - R_\alpha Z_\rho)}$$

$$\rho_Z = -\frac{R_\alpha}{(R_\rho Z_\alpha - R_\alpha Z_\rho)}$$
(F.20)

the normal gradient reduces to

$$\mathbf{n} \cdot \nabla \psi = \frac{R_{\alpha}^2 + Z_{\alpha}^2}{(R_{\rho} Z_{\alpha} - R_{\alpha} Z_{\rho})} \frac{d\psi}{d\rho}$$
 (F.21)

Using this relation we see that the left hand side of Eq. (F.12) can now be written as:

$$\int_{S} \frac{\mathbf{n} \cdot \nabla \psi}{R^2} dS = 2\pi \frac{d\psi}{d\rho} \int_{0}^{2\pi} \frac{R_{\alpha}^2 + Z_{\alpha}^2}{(R_{\rho} Z_{\alpha} - R_{\alpha} Z_{\rho})} \frac{d\alpha}{R}$$
 (F.22)

Consider now the right hand side of Eq. (F.12). The critical assumption is that the current density is approximated by its flux surface averaged value, $J_{\phi}(\rho, \alpha) \approx \overline{J}_{\phi}(\rho)$. This is obviously not self-consistent with the Grad-Shafranov equation. Even so, it should suffice for present purposes where we only need to evaluate global volume integrals. Also, in the same spirit as prescribing $n(\rho)$ and $T(\rho)$ we assume that $\overline{J}_{\phi}(\rho)$ is also prescribed. Under these assumptions the right hand side of Eq. (F.12) simplifies to:

$$-\mu_0 \int_V \frac{J_\phi}{R} d\mathbf{r} = -2\pi\mu_0 \int_A J_\phi dA$$

$$= -2\pi\mu_0 \int_0^\rho d\rho \int_0^{2\pi} J_\phi \left(R_\rho Z_\alpha - R_\alpha Z_\rho \right) d\alpha \qquad (F.23)$$

$$\approx -2\pi\mu_0 \int_0^\rho d\rho \left[\overline{J}_\phi \int_0^{2\pi} \left(R_\rho Z_\alpha - R_\alpha Z_\rho \right) d\alpha \right]$$

Combining the results in Eqs. (F.22) and (F.23) leads to the required general expression for $d\psi/d\rho$,

$$\frac{d\psi}{d\rho} \int_0^{2\pi} \frac{R_\alpha^2 + Z_\alpha^2}{(R_\rho Z_\alpha - R_\alpha Z_\rho)} \frac{d\alpha}{R} = -\mu_0 \int_0^\rho d\rho \left[\overline{J}_\omega \int_0^{2\pi} (R_\rho Z_\alpha - R_\alpha Z_\rho) d\alpha \right]$$
 (F.24)

Next, to help specify a plausible choice for \overline{J}_{ϕ} it is useful to define the kink safety

factor and the actual local safety factor. The kink safety factor is defined by

$$q_* = \frac{2\pi a^2 B_0}{\mu_0 R_0 I} \left(\frac{1 + \kappa^2}{2} \right) \tag{F.25}$$

2442 where

$$I = \int J_o dA = \int_0^1 d\rho \left[\overline{J}_o \int_0^{2\pi} \left(R_\rho Z_\alpha - R_a Z_\rho \right) d\alpha \right]$$
 (F.26)

2443 This leads to

$$\frac{1}{q_*} = \frac{\mu_0 R_0}{2\pi a^2 B_0} \left(\frac{2}{1+\kappa^2}\right) \int_0^1 d\rho \left[\overline{J}_\phi \int_0^{2\pi} \left(R_\rho Z_\alpha - R_\alpha Z_\rho\right) d\alpha\right]$$
 (F.27)

2444 Similarly, the local safety factor can be expressed as

$$q(\rho) = \frac{F(\rho)}{2\pi} \int \frac{dl}{RB_p}$$
 (F.28)

Here, $F(\rho) = RB_o$. Substituting $RB_p = \mathbf{n} \cdot \nabla \psi$ then yields

$$q(\rho) = \frac{F(\rho)}{2\pi\psi'} \int_0^{2\pi} \frac{1}{R} \left(R_\rho Z_\alpha - R_\alpha Z_\rho \right) d\alpha \tag{F.29}$$

with $\psi' = d\psi/d\rho$.

For present purposes we can obtain relatively simple analytic expressions for all the quantities of interest by assuming the flux surfaces are concentric ellipses, characterized by $R = R_0 + a\rho\cos\alpha$ and $Z = \kappa a\rho\sin\alpha$. We assume low β so that $F(\rho) \approx R_0 B_0$. This model accounts for elongation but neglects the effects of triangularity and finite aspect ratio. The derivatives in Eqs. (F.24), (F.27) and (F.29) can now be easily evaluated. Also, after some trial and error we chose $\overline{J}_{\phi}(\rho)$ to be a plausible profile which is peaked off-axis at $\rho = \rho_m$.

$$\overline{J}_{\phi}(\rho) = -\frac{I}{\pi a^2 \kappa} \left[\frac{\gamma^2 (1 - \rho^2) e^{\gamma \rho^2}}{e^{\gamma} - 1 - \gamma} \right]$$
 (F.30)

2454 Here, $\gamma = 1/(1 - \rho_m^2)$.

These profiles are substituted into Eq. (F.24) after which each of the integrals can be evaluated analytically. A straightforward calculation yields:

$$\rho \frac{d\psi}{d\rho} = -2\mu_0 R_0 a^2 \left(\frac{\kappa^2}{1+\kappa^2}\right) \int_0^{\rho} \overline{J}_{\phi} \rho d\rho$$

$$= \frac{\mu_0 R_0 I}{\pi} \left(\frac{\kappa}{1+\kappa^2}\right) \frac{(1+\gamma-\gamma\rho^2) e^{\gamma\rho^2} - 1 - \gamma}{e^{\gamma} - 1 - \gamma}$$
(F.31)

²⁴⁵⁷ The safety factors are given by

$$\frac{1}{q_*} = \frac{\psi'(1)}{\kappa a^2 B_0}$$

$$\frac{q(\rho)}{q_*} = \frac{\rho \psi'(1)}{\psi'(\rho)}$$
(F.32)

Eq. (F.31) is now substituted into the expression for the bootstrap current given by Eq. (F.11). The resulting expression can then be integrated over the plasma cross section to yield the bootstrap fraction. A straightforward calculation leads to:

$$f_{BS} = \frac{I_{BS}}{I} = \frac{2\pi a^2 \kappa}{I} \int_0^1 J_{BS} \, \rho \, d\rho = \frac{K_{BS}}{K_n} \frac{\overline{n} \, \overline{T} R_0^2}{I_P^2}$$
 (F.33)

$$K_{BS} = 4.879 \cdot K_n \cdot \left(\frac{1+\kappa^2}{2}\right) \cdot \epsilon^{5/2} \cdot H_{BS} \tag{F.34}$$

$$H_{BS} = (1 + \nu_n)(1 + \nu_T)(\nu_n + 0.054\nu_T) \int_0^1 \frac{\rho^{5/2} (1 - \rho^2)^{\nu_n + \nu_T - 1}}{b_p} d\rho$$
 (F.35)

$$b_p(\rho) = \frac{-e^{\gamma \rho^2} (\gamma \rho^2 - 1 - \gamma) - 1 - \gamma}{\rho \left(e^{\gamma} - 1 - \gamma \right)}$$
 (F.36)

This is the desired result.

Appendix G

Elaborating on the Current Drive

The driven current fraction $-f_{CD}$ – is an important parameter that enters in the design of steady-state tokamak reactors. It must be calculated with reasonable accuracy to determine how much bootstrap current is required. The value of f_{CD} thus has a strong impact on the overall fusion energy gain. Obtaining reasonable accuracy requires a moderate amount of analysis, which is presented in a following section.

The results are summarized below.

2467 G.1 Summarized Results

We assume that current drive is provided by lower hybrid waves because of the corresponding relatively high efficiency and naturally occurring off-axis peaking which aligns with the bootstrap current. The externally driven lower hybrid current (I_{CD}) is given in terms of the current drive efficiency, η_{CD} , defined as follows:⁴⁵

$$I_{CD} = \eta_{CD} \frac{P_H}{\overline{n}_{20} R_0} = \frac{\eta_{CD}}{Q} \frac{P_F}{\overline{n}_{20} R_0}$$
 (G.1)

Here, for simplicity and slightly optimistically, we assume that 100% of the klystron RF power, P_H , is absorbed in the plasma.

The current drive fraction – $f_{CD} = I_{CD}/I_P$ – can then be written as,

$$f_{CD} = K_{CD} \frac{\eta_{CD} \bar{n}_{20} R_0^2(\hat{\sigma}v)}{I_M}$$

$$K_{CD} = 278 \frac{f_D^2 \varepsilon^2 \kappa}{Q} = 0.634$$
(G.2)

Typical values for η_{CD} are around 0.3.⁴⁵ However, this current drive efficiency is actually a function of: \overline{n} , \overline{T} , and B_0 . This dependence must be included in the design to obtain reliable results. A self consistent calculation of $\eta_{CD} = \eta_{CD}(\overline{n}, \overline{T}, B_0)$ requires considerable analysis, the details of which are presented next section.

2479 G.2 Detailed Analysis

To design a steady state fusion reactor, it is necessary to calculate η_{CD} for lower hybrid current drive (LHCD). Recall that the driven lower hybrid current I_{CD} is related to the lower hybrid RF klystron power absorbed by the plasma P_H by the relation:

$$I_{CD} = \eta_{CD} \frac{P_H}{n_{20}R} \tag{G.3}$$

Here, $P_H = \eta_{RF} P_{RF}$, with P_{RF} equal to the total wall power used for current drive (plus heating) and $\eta_{RF} \approx 0.5$ is the conversion efficiency from wall power to RF absorbed power. Also, $n_{20} = n_{20}(\rho_j)$ and $R = R(\rho_j, \theta)$ are the density and major radius evaluated at the minor radius $\rho = \rho_j$ and launch angle θ with ρ_j corresponding to the location of the peak driven current density: $J_{max} = J_{CD}(\rho_j, \theta)$. The angle θ is a known quantity set by the experimental configuration while ρ_j is yet to be determined.

The value of η_{CD} is related to a normalized quantity $\tilde{\eta}$, the efficiency usually calculated in the literature, by a series of connecting formulas. The inter-relations start with

$$\eta_I = \frac{\int_A J_{CD} dA}{\int_V S_H dV} \approx \frac{1}{2\pi} \left[\frac{J_{CD}}{RS_H} \right]_{\rho_j,\theta} = \frac{\eta_{LH}}{2\pi R} \left[\frac{J_{CD}}{RS_{LH}} \right]_{\rho_J,\theta}$$
 (G.4)

where $\eta_I = I_{CD} = P_H \text{ A/W}$ is the overall current drive efficiency measuring how many

delivered watts of klystron RF power are required to drive one ampere of current. For simplicity and slightly optimistically all delivered power is assumed to be absorbed by the plasma. Also, $S_H(\rho, \theta)$ is the klystron power density delivered to the plasma, whose absorption is localized around $\rho = \rho_j$.

Due to various losses, only a fraction of the absorbed klystron power, $\eta_{LH} \approx 0.75$, 2498 actually drives current. These losses have to do with the fact that the power spectrum 2499 arising from a realistic waveguide array has both positive and negative lobes – it 2500 is not an ideal positive delta function. The combination of finite spectral width 2501 plus oppositely driven current from the negative lobe implies that only a portion of 2502 the total absorbed power actually drives a net positive current. The result of this 2503 discussion is that the power density, S_{LH} , driving lower hybrid current is related to 2504 the delivered klystron power density by $S_{LH} = \eta_{LH} S_H$. 2505

Now, the efficiency, $\tilde{\eta}$ usually calculated in the literature is defined by:

$$\tilde{\eta}\left(\rho_{J},\theta\right) = \left[\frac{J_{CD}/env_{T_{e}}}{S_{LH}/m_{e}n\nu_{0}v_{Te}^{2}}\right]_{\rho_{i},\theta} \tag{G.5}$$

$$v_{T_e}(\rho_J) = \left[\frac{2T_e}{m_e}\right]_{\rho_J}^{1/2} \tag{G.6}$$

$$\nu_0\left(\rho_J\right) = \left[\frac{\omega_{pe}^4 \ln \Lambda}{2\pi n_e v_{Te}^3}\right]_{\rho_J} \tag{G.7}$$

2506 It then follows that

$$\eta_I = \frac{\eta_{LH}}{2\pi} \left[\frac{e}{Rm_e \nu_0 v_{Te}} \right]_{\rho_j, \theta} \tilde{\eta} \left(\rho_J, \theta \right)$$
 (G.8)

From Eq. (G.3), we see that $\eta_{CD} = \eta_I [n_{20}R]_{\rho_j,\theta}$, which leads to the desired conversion relation:

$$\eta_{CD} = \frac{\eta_{LH}}{2\pi} \left[\frac{en_{20}}{m_e \nu_0 v_{T_e}} \right]_{\rho_j} \tilde{\eta} \left(\rho_J, \theta \right) = 0.06108 \frac{\eta_{LH}}{\ln \Lambda} T_k \tilde{\eta}$$
 (G.9)

²⁵⁰⁹ An expression for $\tilde{\eta}$

Needed for the design code is an expression for $\tilde{\eta}(\rho_j, \theta)$. Such an expression, valid for arbitrary ρ , has been determined by Ehst and Karney³⁶ – based on a sophisticated theoretical analysis combined with extensive numerical results. Once ρ_j is determined we set $\rho = \rho_j$ in the expression for $\tilde{\eta}(\rho, \theta)$. Ehst and Karney find that a good fit for $\tilde{\eta}(\rho, \theta)$ can be written as:

$$\tilde{\eta} = CMR\eta_0 \tag{G.10}$$

For LHCD, the parameters appearing in Eq. (G.10) have the form:

$$M = 1 \tag{G.11}$$

$$R(\rho, \theta) = 1 - \frac{\varepsilon^n \rho^n (x_r^2 + w^2)^{1/2}}{\varepsilon^n \rho^n x_r + w}$$
 $n = 0.77$ $x_r = 2.47$ (G.12)

$$C(\rho, \theta) = 1 - \exp(-c^m x_t^{2m})$$
 $m = 1.38$ $c = 0.778$ (G.13)

$$\eta_0(\rho, \theta) = \frac{K}{w} + D + \frac{8w^2}{5 + Z_{eff}}$$

$$K = \frac{2.12}{Z_{eff}}$$

$$D = \frac{3.83}{Z_{eff}^{0.707}}$$
(G.14)

All quantities have been defined except for $x_t^2(\rho, \theta)$ and $w(\rho, \theta)$. The quantity w is a normalized form of the resonant particle velocity which absorbs energy and momentum from the lower hybrid wave,

$$w(\rho, \theta) = \frac{\omega}{k_{\parallel} v_{Te}} = \frac{c}{v_{Te}} \frac{1}{n_{\parallel}}$$
 (G.15)

with n_{\parallel} the parallel index of refraction. The value of $n_{\parallel}(\rho,\theta)$ will be discussed shortly.

The quantity x_t^2 is a toroidal correction associated with the fact that trapped particles

cannot contribute to toroidal current flow. It can be expressed in terms of the local

mirror ratio by

$$x_t^2(\rho,\theta) = w^2 \left(\frac{B}{B_M - B}\right) \tag{G.16}$$

where from simple guiding center theory assuming that $B \approx B_{\phi}$

$$B_M = \frac{B_0}{1 - \varepsilon \rho} \tag{G.17}$$

$$B = \frac{B_0}{1 + \varepsilon \rho \cos \theta} \tag{G.18}$$

²⁵²² Calculation of $n_{\parallel}^2(\rho,\theta)$

The next step in the evaluation of η_{CD} is the calculation of $n_{\parallel}^2(\rho,\theta)$. Its value is determined by the requirements for accessibility from the plasma edge into the absorption layer. The relevant physics follows from an analysis of the cold plasma dispersion relation given by

$$n_{\perp}^{2}(\rho,\theta) = -\frac{K_{\parallel}}{2K_{\perp}} \left\{ n_{\parallel}^{2} - K_{\perp} + \frac{K_{A}^{2}}{K_{\parallel}} \pm \left[\left(n_{\parallel}^{2} - K_{\perp} + \frac{K_{A}^{2}}{K_{\parallel}} \right)^{2} + \frac{4K_{\perp}K_{A}^{2}}{K_{\parallel}} \right]^{1/2} \right\}$$
 (G.19)

The plus sign corresponds to the desired root and is often referred to as the slow wave.

2529 In the lower hybrid regime the relevant ordering of parameters is

$$\omega_{pe}/\Omega_e \sim \omega_{pi}/\omega \sim n_{\parallel} \sim 1$$

$$\omega_{pi}/\Omega_i \sim \omega/\Omega_i \sim \Omega_e/\omega \sim n_{\perp} \sim m_i/m_e^{1/2} \gg 1$$
(G.20)

2530 leading to the following simple forms for the elements of the dielectric tensor

$$K_{\perp}(\rho,\theta) = 1 + \frac{\omega_{pe}^2}{\Omega_e^2} - \frac{\omega_{pi}^2}{\omega^2} \sim 1$$

$$K_A(\rho,\theta) = \frac{\omega_{pe}^2}{\omega\Omega_e} \sim m_i/m_e^{1/2}$$

$$K_{\parallel}(\rho) = -\frac{\omega_{pe}^2}{\omega^2} \sim m_i/m_e$$
(G.21)

The first requirement for accessibility is that the function under the square root be positive. When this function passes through zero there is a double root for n_{\perp}^2 causing a mode conversion from the slow wave to the fast wave. The fast wave does

not propagate into the plasma. It is reflected back out through the plasma surface, obviously an undesirable result. Avoiding mode conversion requires a sufficiently large value of n_{\parallel}^2 to keep to keep the function under the square root positive. This value must satisfy

$$n_{\parallel}^{2}(\rho,\theta) \ge \left[K_{\perp}^{1/2} + \left(-\frac{K_{A}^{2}}{K_{\parallel}}\right)^{1/2}\right]^{2}$$
 (G.22)

Since $\eta_{CD} \propto 1/n_{\parallel}^2$ we see that current drive efficiency is maximized when $n_{\parallel}^2(\rho, \theta)$ is minimized – the inequality in Eq. (G.22) must be set to equality.

At this point there is an important subtlety that must be taken into account. The 2540 issue is that the wavelength spectrum of the applied klystron source is not a delta 2541 function – it has a finite half width, $\Delta n_{\parallel} \approx 0.2$ and a negative lobe. For simplicity, we have modeled the spectrum as rectangular and ignore the negative lobe. The 2543 negative lobe is accounted for through the value of η_{LH} , since this power obviously 2544 does not drive current in the desired direction. Now, Eq. (G.22) is an inequality and 2545 we want to minimize $n_{\parallel}^{2}(\rho,\theta)$ over all ρ for the given θ where the power is absorbed. 2546 Therefore, we must use the equality sign in Eq. (G.22) for the strictest case – that 2547 $n_{\parallel}(\hat{\rho}_{J},\theta) = n_{\parallel}(\rho_{J},\theta) - \Delta n_{\parallel}$ where $\hat{\rho}_{J}$ and ρ_{J} (both as yet undetermined) are the 2548 corresponding strictest and average radii where power is absorbed. 2549

With this in mind, after substituting the simplified expressions for the elements of
the dielectric tensor we obtain

$$n_{\parallel}^{2}(\hat{\rho}_{J},\theta) = \left[\left(1 - \frac{1 - \hat{\omega}^{2}}{\hat{\omega}^{2}} X \right)^{1/2} + X^{1/2} \right]^{2}$$

$$X(\hat{\rho}_{J},\theta) = \omega_{pe}^{2}(\hat{\rho}_{J}) / \Omega_{e}^{2}(\hat{\rho}_{J},\theta)$$

$$\hat{\omega}^{2}(\hat{\rho}_{J},\theta) = \omega^{2} / \Omega_{e}(\hat{\rho}_{J},\theta) \Omega_{i}(\hat{\rho}_{J},\theta)$$
(G.23)

The question now is how do we choose the frequency: $\hat{\omega}$? There are actually three constraints on the frequency and we must choose the strictest one to determine $\hat{\omega}^2$.

The constraints are as follows:

$$\omega^2 > \omega_{LH}^2 (\hat{\rho}_J, \theta)$$
 Avoid mode conversion before reaching $\hat{\rho}_J, \theta$

$$\omega^2 > 4\omega_{LH}^2 (\hat{\rho}_J, \theta)$$
 Avoid the PDI before reacing $\hat{\rho}_J, \theta$ (G.24)
$$\omega^2 > k_\perp^2 (\hat{\rho}_J, \theta) v_\alpha^2$$
 Avoid coupling to α particles before reaching $\hat{\rho}_J, \theta$

Here, ω_{LH}^2 ($\hat{\rho}_J$, θ) = $\omega_{pi}^2/\left(1+\omega_{pe}^2/\Omega_e^2\right)$ is the square of the lower hybrid frequency and $v_\alpha = (2E_\alpha/m_\alpha)^{1/2}$ is the alpha particle speed. Also, PDI denotes parametric decay instability. The second and third constraints are approximate values, used here for simplicity.

Each of these constraints is substituted into the expression for n_{\parallel}^2 . We find that in the regime of interest the α particle coupling requirement is the strictest. We thus choose the frequency to satisfy $\omega/k_{\perp}=v_{\alpha}$, or in normalized units:

$$n_{\perp}^{2}\left(\hat{\rho}_{J},\theta\right) = \frac{c^{2}}{v_{\alpha}^{2}} \tag{G.25}$$

This expression is simplified by evaluating n_{\perp}^2 using Eq. (G.19) coupled with n_{\parallel}^2 given by Eq. (G.22)

$$n_{\perp}^{2}(\hat{\rho}_{J},\theta) = -\frac{K_{\parallel}}{K_{\perp}^{1/2}} \left(-\frac{K_{A}^{2}}{K_{\parallel}} \right)^{1/2} = \frac{m_{i}}{m_{e}} \frac{X^{3/2}}{\hat{\omega} \left[\hat{\omega}^{2} (1+X) - X \right]^{1/2}}$$
(G.26)

Eq. (G.26) is a quadratic equation for $\hat{\omega}^2$, which can be easily solved, yielding:

$$\hat{\omega}^{2}(\hat{\rho}_{J},\theta) = \frac{1}{2} \frac{X}{1+X} + \frac{1}{2} \left[\frac{X^{2}}{(1+X)^{2}} + 4\gamma^{2} \frac{X^{3}}{1+X} \right]^{1/2}$$

$$\gamma = \frac{m_{i}}{m_{e}} \frac{1}{n_{+}^{2}} = \frac{2m_{i}E_{\alpha}}{m_{e}m_{\alpha}c^{2}} = 8.562$$
(G.27)

This value of $\hat{\omega}^2$ is substituted into Eq. (G.23) to obtain the desired expression for $n_{\parallel}^2 = n_{\parallel}^2(X)$.

2567 Calculation of $\hat{ ho}_j$

The calculation of $\hat{\rho}_j$ requires a very lengthy analysis of Landau damping. We can bypass this complication by making use of a simple rule of thumb that is reasonably accurate. This rule states that lower hybrid power is absorbed and driven current produced in a somewhat narrow layer of the plasma profile whose location is determined by the requirement that the parallel phase velocity be approximately equal to three times the electron thermal speed,

$$\frac{\omega}{k_{\parallel}} \approx 3v_T$$
 (G.28)

The equation can be rewritten in terms of \hat{n}_{\parallel} leading to a transcendental algebraic equation for $\hat{\rho}_{j}$,

$$(1 + \nu_T) \left(1 - \hat{\rho}_J^2 \right)^{\nu_T} n_{\parallel}^2 \left(\hat{\rho}_J, \theta \right) = \frac{m_e c^2}{18\overline{T}} = \frac{28.39}{\overline{T}_k}$$
 (G.29)

This is a simple equation to solve numerically.

²⁵⁷⁷ Calculation of ρ_i

The last step in the analysis is to map the results at the strictest absorption location – (ρ, θ) – to the center of the absorption layer – (ρ_J, θ) where the current drive efficiency is defined. This is easily done by noting that power is always absorbed in at the local radius where $\omega/k_{\parallel} = 3v_{Te}$. Consequently, the relations at ρ_J are related to those at $\hat{\rho}_J$ by:

$$(1 + \nu_T) (1 - \hat{\rho}_J^2)^{\nu_T} n_{\parallel}^2 (\hat{\rho}_J, \theta) = \frac{28.39}{\overline{T}_k}$$

$$(1 + \nu_T) (1 - \rho_J^2)^{\nu_T} n_{\parallel}^2 (\rho_J, \theta) = \frac{28.39}{\overline{T}_k}$$
(G.30)

Since $n_{\parallel}(\hat{\rho}_{J},\theta)=n_{\parallel}(\rho_{J},\theta)-\Delta n_{\parallel}$, it follows that $\hat{\rho}_{J}$ and ρ_{J} are related by:

$$\frac{\left(1 - \rho_J^2\right)^{\nu_T}}{\left(1 - \hat{\rho}_J^2\right)^{\nu_T}} = \left[1 - \frac{\Delta n_{\parallel}}{n_{\parallel} \left(\rho_J, \theta\right)}\right]^2 \to \rho_J^2 = 1 - \left(1 - \hat{\rho}_J^2\right) \left[1 - \frac{\Delta n_{\parallel}}{n_{\parallel} \left(\rho_J, \theta\right)}\right]^{2/\nu_T}$$
(G.31)

Note that in general: $\rho_J > \hat{\rho}_J$. The strictest location determining $n_{\parallel}(\hat{\rho}_J, \theta)$ is the innermost radial point on the temperature profile where power is absorbed.

2586 Abridged Modus Operandi

Assume the following quantities are given as inputs: $B_0, \theta, \overline{n}_{20}, \overline{T}_k, \varepsilon, \Delta n_{\parallel}, \eta_{LH}$. Carry out the following steps:

2589 1. Solve the equations below simultaneously to determine $n_{\parallel}^{2}\left(\hat{\rho}_{J},\theta\right),\hat{\omega}^{2}\left(\hat{\rho}_{J},\theta\right)$, and $\hat{\rho}_{J}$

2590

$$n_{\parallel}^{2}(\hat{\rho}_{J},\theta) = \left[\left(1 - \frac{1 - \hat{\omega}^{2}}{\hat{\omega}^{2}} X \right)^{1/2} + X^{1/2} \right]^{2}$$

$$\hat{\omega}^{2}(\hat{\rho}_{J},\theta) = \frac{1}{2} \frac{X}{1+X} + \frac{1}{2} \left[\frac{X^{2}}{(1+X)^{2}} + 4\gamma^{2} \frac{X^{3}}{1+X} \right]^{1/2}$$

$$(G.32)$$

$$(1 + \nu_{T}) \left(1 - \hat{\rho}_{J}^{2} \right)^{\nu_{T}} n_{\parallel}^{2} \left(\hat{\rho}_{J}, \theta \right) = \frac{m_{e}c^{2}}{2\overline{T}} = \frac{28.39}{\overline{T}_{L}}$$

2591 2. Solve for $\tilde{\eta}(\hat{\rho}_J, \theta)$

$$\tilde{\eta}\left(\hat{\rho}_{J},\theta\right) = CMR\eta_{0} \tag{G.33}$$

3. Solve for $n_{\parallel}(\rho_J, \theta)$

$$n_{\parallel}(\rho_J, \theta) = n_{\parallel}(\hat{\rho}_J, \theta) + \Delta n_{\parallel} \tag{G.34}$$

4. Solve for ρ_J

$$\rho_J^2 = 1 - \left(1 - \hat{\rho}_J^2\right) \left[1 - \frac{\Delta n_{\parallel}}{n_{\parallel} \left(\rho_J, \theta\right)}\right]^{2/\nu_T}$$
 (G.35)

- 5. Re-evaluate $\tilde{\eta}(\rho_J, \theta)$ by substituting the values of ρ_J , $n_{\parallel}(\rho_J, \theta)$ into Eq. (G.33).
- Solve for η_{CD}

$$\eta_{CD} = \frac{1}{2\pi} \left(\frac{e n_{20}}{m_e \nu_0 v_{Te}} \right) \tilde{\eta} = 0.06108 \frac{\eta_{LH}}{\ln \Lambda} (1 + \nu_T) \overline{T}_k \left(1 - \rho_J^2 \right)^{\nu_r} \tilde{\eta} \left(\rho_J, \theta \right)$$
 (G.36)

In the end there will have to be some iteration with the rest of the analysis to make sure the values of \overline{n}_20 and \overline{T}_k are self-consistent.

References

- ²⁵⁴⁸ [1] W. Biel, M. Beckers, R. Kemp, R. Wenninger, and H. Zohm, "Systems code studies on the optimization of design parameters for a pulsed DEMO tokamak reactor," *Fusion Engineering and Design*, vol. 123, pp. 206–211, 2017.
- ²⁵⁵¹ [2] G. Federici, C. Bachmann, W. Biel, L. Boccaccini, F. Cismondi, et al., "Overview of the design approach and prioritization of R&D activities towards an EU DEMO," Fusion Engineering and Design, vol. 109, pp. 1464–1474, 2016.
- [3] C. Kessel, M. Tillack, F. Najmabadi, F. Poli, K. Ghantous, N. Gorelenkov,
 X. Wang, et al., "The ARIES advanced and conservative tokamak power plant study," Fusion Science and Technology, vol. 67, no. 1, pp. 1–21, 2015.
- ²⁵⁵⁷ [4] G. Lee, J. Kim, S. Hwang, C.-S. Chang, H.-Y. Chang, M. Cho, B. Choi, K. Kim, K. Cho, et al., "The KSTAR project: An advanced steady state superconducting tokamak experiment," Nuclear Fusion, vol. 40, no. 3Y, p. 575, 2000.
- ²⁵⁶⁰ [5] J. P. Freidberg, *Plasma physics and fusion energy*. Cambridge university press, 2008.
- 2562 [6] B. Sorbom, J. Ball, T. Palmer, et al., "ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets,"

 Fusion Engineering and Design, vol. 100, pp. 378–405, 2015.
- M. Kovari, R. Kemp, H. Lux, P. Knight, J. Morris, and D. Ward, ""PROCESS":
 A systems code for fusion power plants—Part 1: Physics," Fusion Engineering
 and Design, vol. 89, no. 12, pp. 3054–3069, 2014.
- 2568 [8] B. Meszaros *et al.*, "DEMO Input File." http://ccfe.ac.uk/assets/ 2569 Documents/Other/DEMO1_Reference_Design_-_2015_April_(_EU_2MDKFH_ 2570 v1_0.txt.
- ²⁵⁷¹ [9] H. Fountain, "A Dream of Clean Energy at a Very High Price." https://www.nytimes.com/2017/03/27/science/fusion-power-plant-iter-france. html, 2017. Accessed: 2018-12-6.
- ²⁵⁷⁴ [10] J. Tirone, "World's Biggest Science Experiment Seeks More Time and Money." https://www.bloomberg.com/news/articles/2016-06-15/

- world-s-biggest-science-experiment-seeks-more-time-and-money, 2016. Accessed: 2018-12-6.
- ²⁵⁷⁸ [11] D. J. Griffiths, "Introduction to electrodynamics," 2005.
- ²⁵⁷⁹ [12] T. Hartmann, "Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant," 2013.
- ²⁵⁸² [13] J. Freidberg, F. Mangiarotti, and J. Minervini, "Designing a tokamak fusion reactor—How does plasma physics fit in?," *Physics of Plasmas*, vol. 22, no. 7, p. 070901, 2015.
- ²⁵⁸⁵ [14] J. Jean, "HELIOS: a zero-dimensional tool for next step and reactor studies," Fusion Science and Technology, vol. 59, no. 2, pp. 308–349, 2011.
- ²⁵⁸⁷ [15] C. Reux, L. Di Gallo, F. Imbeaux, J.-F. Artaud, P. Bernardi, J. Bucalossi, G. Ciraolo, et al., "DEMO reactor design using the new modular system code SYCOMORE," Nuclear Fusion, vol. 55, no. 7, p. 073011, 2015.
- ²⁵⁹⁰ [16] C. Bustreo, G. Casini, G. Zollino, T. Bolzonella, and R. Piovan, "FRESCO, a simplified code for cost analysis of fusion power plants," *Fusion Engineering and Design*, vol. 88, no. 12, pp. 3141–3151, 2013.
- ²⁵⁹³ [17] H. Zohm, "On the minimum size of DEMO," Fusion science and technology, vol. 58, no. 2, pp. 613–624, 2010.
- ²⁵⁹⁵ [18] Z. Dragojlovic, A. R. Raffray, F. Najmabadi, C. Kessel, L. Waganer, L. El²⁵⁹⁶ Guebaly, and L. Bromberg, "An advanced computational algorithm for systems
 ²⁵⁹⁷ analysis of tokamak power plants," *Fusion Engineering and Design*, vol. 85, no. 2,
 ²⁵⁹⁸ pp. 243–265, 2010.
- ²⁵⁹⁹ [19] E. Fable, C. Angioni, M. Siccinio, and H. Zohm, "Plasma physics for fusion reactor system codes: Framework and model code," Fusion Engineering and Design, vol. 130, pp. 131–136, 2018.
- ²⁶⁰² [20] I. H. Hutchinson, "Principles of plasma diagnostics," *Plasma Physics and Controlled Fusion*, vol. 44, no. 12, p. 2603, 2002.
- ²⁶⁰⁴ [21] J. D. Lawson, "Some criteria for a power producing thermonuclear reactor," ²⁶⁰⁵ Proceedings of the Physical Society. Section B, vol. 70, no. 1, p. 6, 1957.
- ²⁶⁰⁶ [22] J. Cordey, K. Thomsen, A. Chudnovskiy, O. Kardaun, T. Takizuka, J. Snipes, M. Greenwald, L. Sugiyama, F. Ryter, A. Kus, *et al.*, "Scaling of the energy confinement time with β and collisionality approaching ITER conditions," *Nuclear fusion*, vol. 45, no. 9, p. 1078, 2005.
- ²⁶¹⁰ [23] N. Uckan, "ITER physics design guidelines at high aspect ratio," tech. rep., Oak Ridge National Lab., 1991.

- [24] B. LaBombard, E. Marmar, J. Irby, J. Terry, R. Vieira, G. Wallace, D. Whyte,
 S. Wolfe, S. Wukitch, S. Baek, et al., "ADX: a high field, high power density,
 advanced divertor and RF tokamak," Nuclear Fusion, vol. 55, no. 5, p. 053020,
 2015.
- ²⁶¹⁶ [25] Y. Suzuki, H. Ninomiya, A. Ogata, A. Kameari, and H. Aikawa, "Tokamak circuit," *Japanese Journal of Applied Physics*, vol. 16, no. 12, p. 2237, 1977.
- [26] O. Mitarai, S. W. Wolfe, A. Hirose, and H. M. Skarsgard, "Alternating current tokamak reactor with long pulses," Fusion technology, vol. 15, no. 2P1, pp. 204–213, 1989.
- ²⁶²¹ [27] S. Hirshman and G. Neilson, "External inductance of an axisymmetric plasma," ²⁶²² The Physics of fluids, vol. 29, no. 3, pp. 790–793, 1986.
- ²⁶²³ [28] P. Libeyre, N. Mitchell, D. Bessette, Y. Gribov, C. Jong, and C. Lyraud, "Detailed design of the ITER central solenoid," *Fusion Engineering and Design*, vol. 84, no. 7-11, pp. 1188–1191, 2009.
- ²⁶²⁶ [29] J. P. Freidberg, A. Cerfon, and J. Lee, "Tokamak elongation—how much is too much? Part 1. Theory," *Journal of Plasma Physics*, vol. 81, no. 6, 2015.
- [30] L. Giancarli, V. Chuyanov, M. Abdou, M. Akiba, B. Hong, R. Lässer, C. Pan, Y. Strebkov, et al., "Breeding blanket modules testing in ITER: an international program on the way to DEMO," Fusion Engineering and Design, vol. 81, no. 1-7, pp. 393–405, 2006.
- [31] E. Doyle, W. Houlberg, Y. Kamada, V. Mukhovatov, T. Osborne, A. Polevoi,
 G. Bateman, J. Connor, J. Cordey, T. Fujita, et al., "Plasma confinement and
 transport," Nuclear Fusion, vol. 47, no. 6, p. S18, 2007.
- ²⁶³⁵ [32] H. Lux, R. Kemp, E. Fable, and R. Wenninger, "Radiation and confinement in 0D fusion systems codes," *Plasma Physics and Controlled Fusion*, vol. 58, no. 7, p. 075001, 2016.
- [33] G. Giruzzi, J. Artaud, M. Baruzzo, T. Bolzonella, E. Fable, L. Garzotti,
 I. Ivanova-Stanik, R. Kemp, D. King, M. Schneider, et al., "Modelling of pulsed
 and steady-state DEMO scenarios," Nuclear Fusion, vol. 55, no. 7, p. 073002,
 2015.
- ²⁶⁴² [34] C. Roach, M. Walters, R. Budny, F. Imbeaux, T. Fredian, M. Greenwald, J. Stillerman, D. Alexander, J. Carlsson, J. Cary, et al., "The 2008 public release of the international multi-tokamak confinement profile database," Nuclear Fusion, vol. 48, no. 12, p. 125001, 2008.
- [35] J. Menard, S. Gerhardt, M. Bell, J. Bialek, A. Brooks, J. Canik, J. Chrzanowski,
 M. Denault, L. Dudek, D. Gates, et al., "Overview of the physics and engineering design of nstx upgrade," Nuclear Fusion, vol. 52, no. 8, p. 083015, 2012.

- ²⁶⁴⁹ [36] D. Ehst and C. Karney, "Approximate formula for radiofrequency current drive efficiency with magnetic trapping," *Nuclear fusion*, vol. 31, no. 10, p. 1933, 1991.
- [37] U. Stroth, M. Murakami, R. Dory, H. Yamada, S. Okamura, F. Sano,
 and T. Obiki, "Energy confinement scaling from the international stellarator
 database," Nuclear Fusion, vol. 36, no. 8, p. 1063, 1996.
- [38] L. Giannone, J. Baldzuhn, R. Burhenn, P. Grigull, U. Stroth, F. Wagner,
 R. Brakel, C. Fuchs, H. Hartfuss, K. McCormick, et al., "Physics of the density
 limit in the W7-AS stellarator," Plasma physics and controlled fusion, vol. 42,
 no. 6, p. 603, 2000.
- [39] D. Whyte, A. Hubbard, J. Hughes, B. Lipschultz, J. Rice, E. Marmar, M. Greenwald, I. Cziegler, A. Dominguez, T. Golfinopoulos, et al., "I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod,"
 Nuclear Fusion, vol. 50, no. 10, p. 105005, 2010.
- ²⁶⁶² [40] H.-S. Bosch and G. Hale, "Improved formulas for fusion cross-sections and thermal reactivities," *Nuclear fusion*, vol. 32, no. 4, p. 611, 1992.
- ²⁶⁶⁴ [41] Z. Hartwig and Y. Podpaly, "The magnetic fusion energy formulary," 2012.
- [42] J. D. Huba, "NRL plasma formulary," tech. rep., Naval Research Lab Washington
 DC Plasma Physics Div, 2006.
- ²⁶⁶⁷ [43] J. Wesson and D. J. Campbell, *Tokamaks*, vol. 149. Oxford University Press, 2668 2011.
- ²⁶⁶⁹ [44] C. Kessel, "Bootstrap current in a tokamak," *Nuclear Fusion*, vol. 34, no. 9, p. 1221, 1994.
- ²⁶⁷¹ [45] J. Jacquinot, S. Putvinski, G. Bosia, A. Fukuyama, R. Hemsworth, S. Konovalov, W. Nevins, F. Perkins, K. Rasumova, F. Romanelli, et al., "Plasma auxiliary heating and current drive," *Nuclear Fusion*, vol. 39, no. 12, pp. 2495–2539, 1999.