

Lecture 5: Failure in Rocks (Ref: Fossen; Twiss & Moores)

• Failure: Rock is unable to support stress increase without permanent deformation

Non-linear behavior between stress and strain

- Brittle Failure Rock breaks to form continuous fractures resulting in the loss of cohesion.
- **Ductile Failure Material deforms permanently without losing cohesion.**
 - Brittle Failure 1. Development of new fracture in an intact rock
 - 2. Slip on a pre-existing fracture in a previously fractured rock

Different Types of Fractures

Relative displacement is

Parallel to the fracture;

Relative displacement is

perpendicular to fracture

Relative displacement is Parallel to the fracture; parallel to edge of fracture perpendicular to edge of fracture

Extension Fractures (Joints)

Shear Fractures (Faults/ Fault zones)

Brittle Failure

Experimental Deformation

Shear Fractures: Form under confined compression; at angles $< 45^{\circ}$ to maximum Compressive stress σ_1 ; displacement parallel to fracture surface

• Generally in conjugate pairs, bisected by σ_1

Faults

Brittle Failure

Experimental Deformation

Extension Fractures: Fracture plane perpendicular to σ_3 (minimum principal stress) & parallel to σ_1 ; displacement approximately normal to fracture surface.

• contain $\sigma_1 \& \sigma_2$

• Form under low/no confining P; low differential stress

very low strain

If σ_3 is tensile σ_1 is axial (uniaxial tension)stress (uniaxial compression; σ_3 is $\cong 0$)

 σ_3 is minimum compressive stress

Stress Distribution & Faulting

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Anderson's Theory

Stress Distribution & Faulting

Anderson's Fault Theory (1940's)

Some Assumptions:

- Earth surface has no shear stress
- Earth surface is a principal plane of stress; principal stresses are normal & parallel to it
- Principal axis is perpendicular to earth's surface
- Isotropic material

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Dip of the fault = 60°

Normal fault

Figure 17.16 Section based on a deep seismic line across the northern North Sea. This section has been interpreted in terms of pure shear (b) as well as simple shear (c) and may be considered to contain elements of both models. Based on Odinsen *et al.* (2000).

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Reverse fault

Dip of the fault $=30^{\circ}$

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Reverse fault

Dip of the fault $=30^{\circ}$

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Reverse fault

Dip of the fault $=30^{\circ}$

(Long et al., 2011)

Strike-slip fault

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Strike-slip fault

Figure 5.14 Forces related to plate tectonics (blue arrows) and stress regimes expected from these forces. The maximum stress axis in continental plates is expected to be horizontal except for the upper part of rift zones (continental rift not shown), passive margins and elevated parts of orogenic belts.

Dip of the fault = 90°