Abstract	Algebra	Assignments	(C)	BinaryPhi
	0		\sim	• • /

Name:	Assignment: Number 4
Score:	Last Edit: June 8, 2022 PDT
Problem 1: Definitions	
(a) Assuming $\{G_1; \circ\}$ and	d $\{G_2; *\}$ are two groups and f is a map from G_1 to G_2 , if:
	$f(a \circ b) = f(a) * f(b), \forall a, b \in G_1,$
the map f is called a	·
If G_1 and G_2 are two f is called an	same groups,
If a $_$ f is called a $_$	f is an injection (one-to-one),
	f is a surjection (onto),
	f is a bijection (one-to-one correspondence, invertible), and G_1 and G_2 are
(b) Supplement:	
$f:A \rightarrow$	$B, \forall a, b \in A, \text{ such that } f(a) = f(b) \Longrightarrow a = b.$
	$f: A \to B, \forall b \in B, \exists a \in A \text{ s.t. } f(a) = b.$

 $f:A \to B, \forall b \in B, \text{exists a unique } a \in A \text{ s.t. } f(a) = b.$

(c)	Assuming f is a group homomorphism from group G_1 to group G_2 , then the set of
	all elements from G_1 which map to element e in G_2 is called the of group homomorphism f , which is denoted by Mathematically written as:
	$\underline{\qquad} := \{g_1 \in G_1 \mid f(g_1) = e\}.$
	Assuming f is a group homomorphism from group G_1 to group G_2 , e_1, e_2 are the identity elements in G_1, G_2 respectively, $\circ, *$ are the operations in G_1, G_2 respectively, prove that $f(e_1) = e_2$ and $\forall a \in G_1, f(a^{-1}) = f(a)^{-1}$.
	Assuming f is a group homomorphism from group G_1 to group G_2 , $H < G_1$, prove that the image set of H , $f(H)$ is a subgroup of G_2 .

(f)	Assuming G is a group, $H \triangleleft G$, ι is a map from G to G/H :
	$\iota(a) = aH, \ \forall a \in G.$
	Then, ι is an epimorphism, and is called the from group G to quotient group G/H .
(g)	Group Isomorphism Theorem I \mid Fundamental Theorem on Group Homomorphisms
	Prove that if f is an epimorphism from group G_1 to group G_2 , $G_1/\ker f \cong G_2$.

(h) Group Isomorphism Theorem II

Let G be a group, $N \triangleleft G$, and H is a subgroup of G. Then:

- 1. HN is a subgroup of G which contains N.
- 2. $(H \cap N) \triangleleft H$.
- 3. $HN/N \cong H/(H \cap N)$.

(i) Group Isomorphism Theorem III

Let G be a group, $N \triangleleft G, N \triangleleft G, N \subseteq H$. Then:

- 1. $H/N \triangleleft G/N$
- 2. $(G/N)/(H/N) \cong G/H$

(j) Group Isomorphism Theorem IV | Correspondence Theorem

Assume f is an epimorphism from group G_1 to G_2 , and the kernel of group homomorphism f is $F = \ker f$. We have:

- 1. The map from a subgroup of G_1 that contains N to a subgroup of G_2 is bijective.
- 2. The bijection from the subgroup of G_1 that contains N to the subgroup of G_2 is also a map from a normal subgroup onto a normal subgroup.
- 3. For a normal subgroup $H \triangleleft G_1$ such that H contains $N, G_1/H \cong G_2/f(H)$.

Problem 2: Prove:

(a)	Assuming f	is a	group	homomorp	phism	${\rm from}$	group	G_1	to G_2 ,	we l	nave	ker	f <	$\triangleleft G_1$.

(b) Assuming f is a group homomorphism from group G_1 to group G_2 , then f is monomorphism \iff ker $f = \{e_1\}$, where e_1 is the identity of G_1 .

	$a \circ b = a + b - a \times b,$	$\forall a, b \in \mathbb{Z}.$	
Prove that $\{\mathbb{Z}, \circ\}$ is a momentum operation multiplication		c to a monoid of $\mathbb Z$ with respe	ct to the

Define a binary operation \circ in the integer set $\mathbb Z$ such that:

Problem 3:

Problem 4:	Let G be a group, prove the following statements:
$m \longrightarrow 0$	m^{-1} is an automorphism of G if and only if G is an Abelian Group.
Problem 5:	Assume G is an abelian group, prove that
	$\forall n \in \mathbb{Z}, m \longrightarrow m^n$ is an endomorphism of G

Prove that $\phi(G)$ is abelian if and only if $\forall a, b \in G, aba^{-1}b^{-1} \in \ker \phi$.	

Let $\phi: G \longrightarrow H$ be a group homomorphism.

Problem 6:

		$\{\mathbb{Z}, \times\} \longrightarrow \{\mathbb{Z},$	*}	
		• Q defined by		
oblem 8: The ve the expression	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o		\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	
	of the binary o	peration "*" on	\mathbb{Q} such that	