RECEIVED
CENTRAL FAX CENTER

Applicants:

Mark Ledeboer et al.

Application No.:

10/700,333

UEU 2 1 2006

AMENDMENTS TO THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A compound of formula I:

I

or a pharmaceutically acceptable salt thereof, wherein:

- R¹ is a phenyl, cyclohexyl, cyclopentyl, pyridyl, morpholino, piperazinyl, or piperidinyl group, wherein R¹ Q /_F[‡],
- Q is a C₁₋₂ alkylidene chain wherein one methylene unit of Q is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O);
- Arth is a 5-7 membered saturated, particulty unsaturated, or fully unsaturated monocyclic ring having 0-3 hetero items independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; v/herein Arth is optionally substituted with q independent occurrences of Z-RZ; wherein q is 0-5, Z is a bond or is a C1-C6 alkylidene chain wherein up to two non-adjacent methylene units of Z are optionally and independently replaced by CO, CO2, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO2, NRCONR, SO, SO2, NRSO2, SO2NR, NRSO2NR, O, S, or NR; and each occurrence of RZ is independently selected from R', halogen, NO2, CN, OR', SR', N(R')2, NR'COR', NR'CON(R')2,

Mark Ledeboer et al.

Application No.:

10/700,333

NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

each occurrence of R is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group; and each occurrence of R' is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or R and R', two occurrences of R, or two occurrences of R', are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 Z^{l} is N;

 Z^{7} is $C(U)_{n}R^{Y}$;

T and U are each independently a bond or a saturated or unsaturated C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CC₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; m and π are each independently 0 or 1;

RX and RY are each independently selected from R or Ar1;

Z² is N or CR²; Z³ is N or CR³; Z⁴ is N or CR⁴; Z⁵ is N or CR⁵; and Z⁶ is N or CR⁶, wherein each occurrence of R², R³, R⁴, R⁵ or R⁶ is independently R^U or (V)_pR^V, provided that a) no more than three of Z², Z³, Z⁴, Z⁵ or Z⁶ is N, and b) at least one of Z³, Z⁴ or Z⁵ is CR³, CR⁴, or CR⁵, respectively, and at least one of R³, R⁴, or R⁵ is R^U.

each occurrence of R^U is NRCOR⁷, CONR(R⁷), SO₂NR(R⁷), NRSO₂R⁷,

NRCONR(R⁷), NRSO₂NR(R⁷), or CONRNR(R⁷), wherein R⁷ is (CH₂)_r-Y-R⁸, and
t is 0, 1, or 2, Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -

Mark Ledeboer et al.

Application No.:

10/700,333

S(CH₂)₂, or -NR⁹(CH₂)₂, and R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form an optionally substituted 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur;

each occurrence of V is a bond or a saturated or unsaturated C_{1.6} alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, COINR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR;

each occurrence of p is 0 or 1;

each occurrence of RV is R or Ar2; and

Ar² is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with r independent occurrences of W-R^W; wherein r is 0-3, W is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of W are optionally replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^W is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

provided that:

a) when Z⁷ is CH and ring B is phenyl and at least one of R³ or R⁴ is NHCOR⁷, then R¹ is not phenyl only substituted with two or three occurrences of OR'; and
 b) when Z⁷ is CH and ring B is phenyl and at least one of R³ of R⁴ is NHCOR⁷, SO₂R⁷, CONRR⁷, then R¹ is not phenyl only substituted with one occurrence of CON(R')₂ in the para position.

Mark Ledeboer et al.

Application No.:

10/700,333

2-4. (Canceled)

- 5. (Currently amended) The compound of claim 1, wherein R¹ is an optionally substituted from phenyl, cyclohexyl, or pyridyl group.
- 6. (Original) The compound of claim 1, wherein R¹ is optionally substituted phenyl.
- 7. (Original) The compound of claim 1, wherein q is 0, 1, 2, or 3 and each independent occurrence of ZR^Z is C₁₋₄alkyl, N(R')₂, OR', SR', CON(R')₂, NR'COR', NR'SO₂R', or SO₂N(R')₂.
- 8. (Original) The compound of claim 1, wherein q is 1 and ZR^z is -NH₂, -OH, C₁.

 4alkoxy, or -S(O)₂NH₂.
- 9. (Original) The compound of claim 1, wherein q is 1, and ZR^Z is in the meta position and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂.
- 10. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are hydrogen, halogen, NO₂, CN, OR, SR or N(R)₂, or C₁₋₄aliphatic optionally substituted with oxo, OR, SR, N(R)₂, halogen, NC₂ or CN.
- 11. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each independently hydrogen, Me, OH, ONle or $N(R)_2$.
- 12. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each hydrogen.
- 13. (Original) The compound of claim 1, wherein ring B is one of rings i-xiv:

Mark Ledeboer et al.

Application No.: 10/700,333

14. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted aryl or heteroaryl moiety.

Mark Ledeboer et al.

Application No.:

10/700,333

- 15. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety.
- 16. (Original) The compound of claim 1, wherein R⁷ is -CH₂-Y-R⁸, and Y is NR⁹, O or S, and R⁸ is an optionally substituted aryl or heteroaryl moiety.
- 17. (Original) The compound of claim 1, wherein R⁷ is -CH₂-Y-R⁸, and Y is NR⁹, O or S, and R⁸ is an optionally substituted aryl moiety.
- 18. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur.
- 19. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered aryl or heteroaryl group having one of the formulae:

Mark Ledeboer et al.

Application No.:

10/700,333

20. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered heteroaryl group having one of the formulae:

21. (Original) The compound of claim 1, wherein R⁸ and R⁹, taken together, form a group having one of the formulae:

- 22. (Original) The compound of claim 1, wherein r is 0 or 1.
- 23. (Original) The compound of claim 19, 20, or 21, wherein r is 1, 2, or 3, and each occurrence of halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$.

Mark Ledeboer et al.

Application No.:

10/700,333

24. (Original) The compound of claim 19, 20, or 21, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety selected from one of groups b through r.

- 25. (Original) The compound of claim 24, wherein R⁸ is an optionally substituted heteroaryl group b-i, k-i, or l-i.
- 26. (Original) The compound of claim 1, wherein t is 1, Y is O, S or NR⁹, and R⁸ is optionally substituted phenyl.
- 27. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together form an optionally substituted group selected from s, u or v.
- 28. (Previously presented) The compound of claim 1, wherein Z³ or Z⁵ is CR³ or CR⁵, respectively, and R³ or R⁵ is NRC(O)R⁷, wherein R⁷ is (CH₂)₁-Y-R⁸, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have the formula II-A:

$$\begin{array}{c|c} R^{1} & \text{NH} \\ N & N \\ R^{Y}_{n}(U) & Z^{2} & N \\ R^{X}(T)_{m} & Z^{6} & B \\ Z^{5} & Z^{4} & O \end{array}$$

II-A

29. (Previously presented) The compound of claim 28, wherein ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas

Mark Ledeboer et al.

Application No.:

10/700,333

II-A-i, II-A-ii, II-A-iii, II-A-iv, II-A-v, II-A-viii, II-A-ix, II-A-x, II-A-xi, II-A-xii, or II-A-xiii:

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 \\
R^1 & NH \\
R^2 & R & R^4
\end{array}$$

II-A-i

II-A-iii

$$\begin{array}{c|cccc}
R^1 & NH & & & \\
N & N & R^2 & R & & \\
R^Y_n(U) & & & & & & \\
R^X(T)_m & & & & & & \\
R^5 & & & & & & \\
\end{array}$$

II-A-v

II-A-vii

Mark Ledeboer et al.

Application No.: 1

10/700,333

II-A-viii

II-A-ix

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 & R \\
R^Y_n(U) & B & N & Q
\end{array}$$

 Π -A-x

II-A-xi

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R \\
R^{Y}_{n}(U) & N & R \\
R^{X}(T)_{m} & N & R \\
N & N & R^{4}
\end{array}$$

II-A-xii

II-A-xiii

30. (Canceled)

31. (Previously presented) The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $NRC(O)R^7$, wherein R^7 is $(CH_2)_1-Y-R^3$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , $-OCH_2$ -, $-SCH_2$, $-NR^9CH_2$, $O(CH_2)_2$ -, $-S(CH_2)_2$, or $-NR^9(CH_2)_2$, and

Mark Ledeboer et al.

Application No.:

10/700,333

wherein R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have formula II-B:

$$R^{1} N +$$

$$N =$$

$$R^{Y}_{n}(U)$$

$$R^{X}(T)_{m}$$

$$Z^{2} Z^{3}$$

$$Z^{5}$$

$$R$$

$$R^{7}$$

II-B

32. (Previously presented) The compound of claim 31, wherein ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-B-i, II-B-ii, II-B-iii, II-B-iv, II-B-vi, II-B-viii, II-B-xii, or II-B-xiv:

II-B-i

П-В-іі

II-B-iii

II-B-iv

Mark Ledeboer et al.

Application No.:

10/700,333

II-B-vi

II-B-viii

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 \\
R^{Y}_{n}(U) & B & R^3 \\
R^{X}(T)_{m} & R^6 & N & R^7
\end{array}$$

II-B-ix

II-B-xii

∏-B-xiv

33. (Canceled)

34. (Previously presented) The compound of claim 1, wherein Z^3 or Z^5 is CR^3 or CR^5 , respectively, and R^3 or R^5 is $C(C^1)N(R)(R^7)$, wherein R^7 is $(CH_2)_{r-}Y-R^8$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken

Mark Ledeboer et al.

Application No.:

10/700,333

together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have formula **II-C**:

$$R^{1} NH$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{r_{1}}} Z^{2} \xrightarrow{II-C} R^{X}$$

35. (Previously presented) The compound of claim 34, wherein ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-C-i, II-C-ii, II-C-iii, II-C-iv, II-C-v, II-C-vii, II-C-viii, II-C-x, II-C-xi, II-C-xii, or II-C-xiii:

$$\begin{array}{c|c}
R^1 & \text{NH} \\
N & N & R^2 & O \\
R^1 & N & R^2 & O \\
R^2 & N & R^3 & R^4 & R
\end{array}$$

II-C-ii

R¹
NH
N O O N
R⁷
R⁷
R¹
R⁸
R⁸
R⁷

II-C-iii

II-C-iv

Mark Ledeboer et al.

Application No.:

10/700,333

$$\begin{array}{c|cccc}
R^1 & & & & & \\
N & & & & & & \\
N & & & & & & \\
R^Y_n(U) & & & & & & \\
R^X(T)_m & & & & & & \\
R^5 & & & & & \\
\end{array}$$

II-C-v

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & O \\
R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} & R^{4}
\end{array}$$

II-C-viii

II-C-ix

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 & O \\
R^1 & NH & R^2 & O \\
R^2 & NH & R^2 & O \\
R^3 & R^4 & R^5 & R^5
\end{array}$$

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 & O \\
R^1 & NH & R^2 & O \\
R^2 & R^3 & R^4
\end{array}$$

II-C-x

П-С-хі

Mark Ledeboer et al.

Application No.:

10/700,333

II-C-xii

II-C-xiii

36. (Canceled)

37. (Previously presented) The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_{t^-}Y \cdot R^8$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , $-OCH_2$ -, $-SCH_2$, $-NR^9CH_2$, $O(CH_2)_2$ -, $-S(CH_2)_2$, or $-NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have formula II-D:

$$R^{1} \cap H$$

$$R^{Y}_{n}(U) \cap Z^{2} \cap Z^{3} \cap R^{7}$$

$$H-D$$

38. (Previously presented) The compound of claim 37, wherein ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas Π-D-i, Π-D-ii, Π-D-iii, Π-D-iv, Π-D-vi, Η-D-viii, Η-D-ix, Π-D-xii, or Π-D-xiv:

Mark Ledeboer et al.

Application No.:

10/700,333

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^5
 R^5

II-D-i

II-D-ii

$$\begin{array}{c|c} R^1 & NH \\ N & N & R^2 \\ R^Y_{n}(U) & & B & R^3 \\ R^X(T)_m & & N & N & N \end{array}$$

Π-D-iii

II-D-iv

II-D-vi

∏-D-viii

Mark Ledeboer et al.

Application No.:

10/700,333

П-D-ix

II-D-xii

II-D-xiv

39. (Canceled)

40. (Previously presented) The compound of claim 1, where R¹ is optionally substituted phenyl and ring B is an optionally substituted phenyl group and compounds have the general formula IV:

$$q(R^{Z}Z)$$

NH

NA

N

R

R

R

R

R

R

R

R

IV

41. (Previously presented) The compound of claim 40, wherein, R³ is NRCOR⁷ and compounds have the general formula IV-A-(i):

Mark Ledeboer et al.

Application No.:

10/700,333

$$q(R^{Z}Z)$$

NH

 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{B}
 R^{A}
 R^{A}

42. (Previously presented) The compound of claim 40, wherein R⁴ is NRCOR⁷ and compounds have the general formula IV-B-(i):

43. (Previously presented) The compound of claim 40, wherein R³ is CONRR⁷ and compounds have the general formula IV-C-(i):

$$q(R^{Z}Z)$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{θ}
 R^{θ}
 R^{ϕ}
 R^{ϕ}

Mark Ledeboer et al.

Application No.:

10/700,333

44. (Previously presented) The compound of claim 40, wherein R⁴ is CONRR⁷ and compounds have the general formula IV-D-(i):

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ R^{Y}_{n}(U) & & & & \\ & & & & \\ R^{X}(T)_{m} & & & \\ & & & \\ R^{6} & & & \\ & & & \\ R^{5} & & \\ \end{array} \begin{array}{c} & & \\ R^{3} \\ & & \\ R^{7} \end{array}$$

IV-D-(i)

45. (Currently amended) The compound of claim 40, wherein R¹ is optionally substituted phenyl, ring A is pyrimidinyl, ring B is phenyl, and R², R⁵, and R⁶ are each hydrogen, and compounds have the general <u>formula</u>VI:

- (Currently amended) The compound of claim 40 or 45, wherein
 (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -SO₂NH₂;
 (b) R³ is NRCOR⁷, wherein R⁷ is (CH₂)₁-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a), or is an optionally substituted heteroaryl moiety selected from one of groups b through r, and wherein r is 0 or 1, and WR^W substituents are halogen. C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
 (c) R⁴ is hydrogen.
- 47. (Previously presented) The compound of claim 40 or 45, wherein:

Mark Ledeboer et al.

Application No.:

10/700,333

- (a) q is 0 or 1 and \mathbb{ZR}^2 is -NH₂, -OH, \mathbb{C}_{1-4} alkoxy, or -SO₂NH₂;
- (b) R³ is CONRR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a) or is an optionally substituted heteroaryl moiety selected from one of groups b through r, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1.4}alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR, and (c) R⁴ is hydrogen.
- .
- 48. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and $\mathbb{ZR}^{\mathbb{Z}}$ is -NH₂, -OH, \mathbb{C}_{1} -alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $NRCOR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups **b** through **z**, and wherein **r** is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R³ is hydrogen.
- 49. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups b through z, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R³ is hydrogen.
- 50. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and $\mathbb{Z}\mathbb{R}^Z$ is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂;

Mark Ledeboer et al.

Application No.:

10/700,333

(b) R³ is NRCOR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and

- (c) R⁴ is hydrogen.
- 51. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and \mathbb{ZR}^2 is -NH₂, -OH, \mathbb{C}_{1-4} alkoxy, or -S(O)₂NH₂;
 - (b) R^3 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
 - (c) R⁴ is hydrogen.
- 52. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and $\mathbb{ZR}^{\mathbb{Z}}$ is -NH₂, -OH, C_{1.4}alkoxy, or -S(O)₂NH₂;
 - (b) R⁴ is NRCOR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents include halogen, C₁₋₄alkyl, NH₂, OH, SH, SO₂NH₂, C₁₋₄alkoxy, C₁. 4thioalkyl, CH₂OR, CH₂N(R)₂, or CH₂SR; and
 - (c) R³ is hydrogen.
- 53. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and $\mathbb{ZR}^{\mathbb{Z}}$ is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂;
 - (b) R⁴ is CONRR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group

Mark Ledeboer et al.

Application No.:

10/700,333

selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and (c) R^3 is hydrogen.

54. (Previously presented) The compound of claim 1, having one of the following structures:

Applicants: Application No.:

Mark Ledeboer et al.

10/700,333

Mark Ledeboer et al.

Application No.:

10/700,333

IV-B(i)-12

Mark Ledeboer et al.

Application No.: 10/700,333

IV-B(i)-14

Mark Ledeboer et al.

Application No.:

10/700,333

Mark Ledeboer et al.

Application No.:

10/700,333

- 55. (Original) A pharmaceutical composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- 56. (Currently amended) The composition of claim 55, further comprising an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, a treatment for Alzheimer's Discase, a treatment for Parkinson's Discase, an agent for treating Multiple Sclerosis (MS), a treatment for asthma, an agent for treating schizophrenia, an anti-inflammatory agent [[,]] or an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an agent for treating a blood disorder, or an agent for treating an immunodeficiency disorder.
- 57. (Currently amended) A method of inhibiting JAK kinase activity in a biological sample <u>in vitro</u> or a patient, comprising the step of contacting said biological sample or patient with:
 - a) the composition of claim 55; or
 - b) the compound of claim 1.
- 58. (Currently amended) A method of treating or lessening the severity of a disease or disorder selected from <u>rheumatoid arthritis</u>, <u>allergic or type I</u> hypersensitivity reaction, asthma, familial amyotrophic lateral sclerosis (FALS) or

Mark Ledeboer et al.

Application No.:

10/700,333

transplant rejection, an immune response, an autoimmune disease, a neurodegenerative disorder, or a solid or hematologic malignancy comprising administering to a patient in need thereof a compound of claim 1 or a composition of claim 55.

59. (Canceled)