MATH 162 – SPRING 2010 – FINAL EXAM – MAY 7, 2010 VERSION 01 MARK TEST NUMBER 01 ON YOUR SCANTRON

STUDENT NAME SOLUTIONS
STUDENT ID
RECITATION INSTRUCTOR—
INSTRUCTOR————————————————————————————————————
RECITATION TIME

INSTRUCTIONS

- 1. Fill in all the information requested above and the version number of the test on your scantron sheet.
- 2. This booklet contains 25 problems, each one is worth 8 points. The maximum score is 200 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes and calculators are not allowed.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1) The area of the triangle with vertices P(1,2,1), Q(-1,3,2) and R(3,1,1) is equal to

A) 2
$$\overrightarrow{PQ} = \langle -2, 1, 1 \rangle \text{ and } \overrightarrow{PR} = \langle 2, -1, 0 \rangle$$
B) $4\sqrt{2}$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = |\overrightarrow{i} \overrightarrow{j} \overrightarrow{k}| = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle 1, -2, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, -1, 0 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1 \rangle \xrightarrow{\overrightarrow{R}} | = \langle -2, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1, 1, 1, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \rangle$$

$$\overrightarrow{O} = \langle -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$$

2) Let P(2,4), Q(3,-1) and R(1,3) be 3 points. The cosine of the angle between vectors \overrightarrow{PQ} and \overrightarrow{QR} is

A)
$$\frac{-3}{\sqrt{52}}$$

B) $\frac{2}{\sqrt{40}}$

C) $\frac{-2}{\sqrt{40}}$

D) $\frac{3}{\sqrt{52}}$

E) $\frac{-22}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$
 $\frac{-2}{\sqrt{520}}$

3) The area of the region bounded by the curves $y = 2 - x^2$ and y = x is

A)
$$\frac{42}{5}$$

C)
$$\frac{37}{4}$$

E)
$$\frac{38}{3}$$

intersection:
$$2-x^2=x$$

$$0 = \chi^2 + \chi - 2$$

$$0 = (x+2)(x-1)$$

$$\rightarrow x = -2, 1$$

$$\rightarrow x = -2, 1$$

Area =
$$\int_{-2}^{1} [(2-x^2)-(x)] dx$$

= $(2x - \frac{1}{3}x^3 - \frac{1}{2}x^2)|_{-2}^{1}$
= $(2 - \frac{1}{3} - \frac{1}{2}) - (-4 + \frac{8}{3} - 2) = \frac{9}{3}$

4) The region bounded by y = 2x, y = 0 and x = 2 is rotated about the y-axis. The volume of the resulting solid of revolution (using the disk/washer method) is

$$(A) \int_0^4 \pi \left(4 - \left(\frac{y}{2}\right)^2\right) dy$$

B)
$$\int_{0}^{4} \pi \left(2 - \frac{y}{2}\right)^{2} dy$$

C)
$$\int_0^4 \pi (2x)^2 dx$$

$$D) \int_0^2 2\pi (2x) \ dx$$

E)
$$\int_0^2 2\pi ((2x)^2 - 2) dx$$

$$x = \frac{y}{2}$$

$$x = 2$$

$$x = 2$$

Volume =
$$\int_{0}^{4} \pi \left[2^{2} - \left(\frac{4}{2} \right)^{2} \right] dy$$

5) The region of the first quadrant bounded by the curves y = x and $y = \sqrt{x}$ is rotated about the axis x = 1. The volume of the resulting solid of revolution (using the cylindrical shells method) is equal to

A)
$$2\pi \int_{0}^{1} x(\sqrt{x} - x) \ dx$$

(B)
$$2\pi \int_0^1 (1-x)(\sqrt{x}-x) \ dx$$

C)
$$2\pi \int_0^1 (1-2x)(\sqrt{x}-x) \ dx$$

D)
$$2\pi \int_0^1 (1-x)(x-\sqrt{x}) \ dx$$

E)
$$2\pi \int_0^1 x(x-\sqrt{x}) dx$$

Valume =
$$\int_{0}^{1} 2\pi \left(1-x\right) \left(\sqrt{x}-x\right) dx$$

6) If the work required to stretch a spring 1/2 ft beyond its natural length is 8 ft—lbs, how much work is needed to stretch it 1/3 ft beyond its natural length?

A)
$$\frac{4}{9}$$
 ft-lbs

$$(B)$$
 $\frac{32}{9}$ ft-lbs

D)
$$\frac{8}{3}$$
 ft-lbs

E)
$$\frac{8}{6}$$
 ft-lbs

$$\int_{0}^{\infty} kx \, dx = 8 \text{ ft-16}$$

$$\Rightarrow \frac{k}{2} \chi^2 \Big|_0^{\chi_2} = 8 \Rightarrow \frac{k}{8} = 8 \Rightarrow k = 64$$

$$\int_{0}^{1/3} 64 \times dx = 32 \times \Big|_{0}^{1/3} = \frac{32}{9} \cdot f_{4-165}$$

$$\int u \, dv = uv - \int v \, du$$

let u = function first in Log Investors Ala Trig Exp

7)
$$\int_{2}^{\ln 10} xe^{x} dx =$$

A)
$$\ln 10^9 - e^2$$

B)
$$90 + e^2$$

C)
$$90 - e^2$$

D)
$$\ln 10^{10} + 3e^2$$

$$\widehat{\text{(E)}} \ln 10^{10} - 10 - e^2$$

Let
$$u = x$$
 and $dv = e^{x} dx$
then $du = dx$ and $v = e^{x}$

$$\int_{2}^{h_{10}} xe^{x} dx = xe^{x} \Big|_{2}^{h_{10}} - \int_{e^{x}}^{h_{10}} dx$$

$$= (xe^{x} - e^{x}) \Big|_{2}^{h_{10}}$$

$$= ((h_{10})(h) - 10) - (2e^{2} - e^{2})$$

$$= 10h_{10} - 10 - e^{2}$$

$$= h_{10}^{h_{10}} - 10 - e^{2}$$

8)
$$\int_0^{\pi/6} \sin x \cos^3 x \ dx =$$

A)
$$\frac{1}{64}$$

B)
$$\frac{1}{4}$$

(C)
$$\frac{7}{64}$$

(D) $\frac{-9}{64}$

E)
$$\frac{-7}{64}$$

$$u(0) = \omega > 0 = 1$$
, $u(76) = \cos 76 = 5/2$

$$\begin{aligned}
& * = \int_{1}^{3} u^{3}(-du) = -\frac{1}{4}u^{4} \Big|_{1}^{\frac{3}{2}} \\
& = -\frac{1}{4}\left(\frac{9}{16} - 1\right) \\
& = -\frac{9}{64} + \frac{16}{64} = \frac{7}{64}
\end{aligned}$$

9) Which integral arises when one uses a trigonometric substitution to evaluate

A)
$$\int 4\sin^2\theta \, d\theta$$

(b) $\int 4\sec^3\theta \, d\theta$

(c) $\int 4\tan^2\theta \sec^2\theta \, d\theta$

(d) $\int 4\tan^2\theta \sec^2\theta \, d\theta$

(e) $\int 4\tan^2\theta \sec^2\theta \, d\theta$

(f) $\int 4\tan^2\theta \sec^2\theta \, d\theta$

(g) $\int 4\sec^2\theta \, d\theta$

(h) $\int 4\sec^2\theta \, d\theta$

(g) $\int 4\sec^2\theta \, d\theta$

(h) $\int 4\tan^2\theta \sec^2\theta \, d\theta$

(g) $\int 4\tan^2\theta \cot^2\theta \, d\theta$

(g) $\int 4\tan^2\theta \cot^2\theta \, d\theta$

(g) $\int 4\tan^2\theta \cot^2\theta \, d\theta$

(g) $\int 4\tan^2\theta \, d\theta$

(g) $\partial \theta$

(g) $\partial \theta$

(g) $\partial \theta$

(g) $\partial \theta$

11)
$$\int_{1}^{\infty} \frac{\pi}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \left(-\frac{1}{x} \right)^{t}$$
A) the integral diverges

B)
$$\pi \ln 2$$

$$= \lim_{t \to \mathcal{S}} \left(-\frac{T}{t} + T \right) = 0 + T = T$$
D) π

E) 2π

12) The curve $y = x^2$, $2 \le x \le 3$ is rotated about the line y = -1. The resulting surface has area given by

A)
$$\int_2^3 2\pi (x^2 - 1)\sqrt{1 + x^4} dx$$

B)
$$\int_{2}^{3} 2\pi (x+1)\sqrt{1+4x^2} \ dx$$

C)
$$\int_{2}^{3} 2\pi(x)\sqrt{1+4x^2} dx$$

(D)
$$\int_{2}^{3} 2\pi (x^{2} + 1)\sqrt{1 + 4x^{2}} dx$$

E)
$$\int_{2}^{3} 2\pi (x^{2} - 1)\sqrt{1 + 4x^{2}} dx$$

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}$$

13) The area of the region of the first quadrant bounded by $y = 2 - x^2$, y = x and the y-axis is equal to $\frac{7}{6}$. Find the x-coordinate of the centroid of the region.

$$\overline{X} = \frac{M}{76}$$

intersection:
$$2-x^2=x$$

$$0=x^2+x-2$$

$$=(x+2)(x-1)$$

$$M_{y} = \int_{0}^{1} x (2-x^{2}-x) dx$$

$$= \int_{0}^{1} (2x-x^{3}-x^{2}) dx$$

$$= (x^{2}-\frac{1}{4}x^{4}-\frac{1}{3}x^{3})|_{0}^{1}$$

$$= (-\frac{1}{4}-\frac{1}{3}=\frac{12-3-4}{12}=\frac{5}{12}$$

14) The limit of the sequence $a_n = n \sin\left(\frac{1}{n}\right)$ is equal to

 $\lim_{N\to\infty} n \sin\left(\frac{1}{n}\right) = \lim_{N\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$

- 15) Which of the following statements are true about the series $\sum a_n$?
- talse. I'm an =1 and \(\sum_h \) divages I) If $\lim_{n\to\infty} na_n = 1$, the series converges.
- II) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the series converges. $\sum_{n=1}^{\infty} a_n$ also diverges.
- A) All three are correct
- All three are incorrect
 - C) I and II are correct, III is false
 - D) II and III are correct, I is false
 - E) I and III are correct, II is false

The Cimit of 1 in the Ratio and Root Test is inconclusive.

Examples: \(\frac{1}{h} \) diverges and I in Converges

Both of these series have limit in Ratio and Rost Tests.

16) What can be said about the convergence of the following series

$$S_1 = \sum_{n=1}^{\infty} n \sin\left(\frac{1}{n^3}\right), \quad S_2 = \sum_{n=1}^{\infty} \frac{\ln n}{n^2}, \quad S_3 = \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}?$$

A) S_1 and S_2 converge, S_3 diverges

- B) S_1 and S_3 diverge, S_2 converges
- (C)) S_1 , S_2 and S_3 converge
- D) S_1 , S_2 and S_3 diverge

$$\left| n \sin \left(\frac{1}{n^3} \right) \right| = \left(\frac{1}{n^2} \right) \left| \frac{\sin \left(\frac{1}{n^3} \right)}{\ln \left(\frac{1}{n^2} \right)} \right| < \frac{1}{n^2}$$

and I'm converges

:. S, converges absolutely.

E) S_1 and S_3 diverge, S_2 converges

Solverges:
$$\frac{l_1}{l_1^2} < \frac{l_2}{l_1^2} = \frac{1}{l_1^{3/2}}$$
 and $\frac{1}{l_1^{3/2}} = \frac{1}{l_1^{3/2}}$ converges $(p=\frac{3}{2}>1)$

S₃ converges:
$$\frac{1}{n^2 a_n n} < \frac{1}{n^2}$$
 for $n > e$ and $\frac{\sigma}{n} < \frac{1}{n^2}$ converges.

Therefore $\frac{\sigma}{n} < \frac{1}{n^2 a_n} < \frac{1}{n$

17) Which of the following series diverge?

$$S_{1} = \sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}}, \quad S_{2} = \sum_{n=1}^{\infty} (-1)^{n} \frac{n^{2}+n}{n^{3}+n^{2}+n}, \quad S_{3} = \sum_{n=2}^{\infty} \frac{1}{n^{2} \ln n}$$

$$(A) S_{1} \text{ only.} \qquad S_{1} \text{ diverges}; \quad \lim_{N \to \infty} \frac{\frac{n^{2}+1}{N^{2}}}{\frac{1}{N}} = 1 > 0 \text{ and } \sum_{n=2}^{\infty} \frac{1}{n} \text{ diverges}$$

$$(B) S_{2} \text{ only.} \qquad S_{2} \text{ converges}; \quad \lim_{N \to \infty} \frac{n^{2}+n}{N^{3}+n^{2}+n} = 0.$$

$$(C) S_{1} \text{ and } S_{2} \text{ only.} \qquad S_{2} \text{ converges}; \quad \lim_{N \to \infty} \frac{n^{2}+n}{N^{3}+n^{2}+n} = 0.$$

$$(D) S_{2} \text{ and } S_{3} \text{ only.} \qquad \text{let } f(N) = \frac{x^{2}+x}{X^{2}+X^{2}+x}. \quad \text{Note } f(N) = \frac{x+1}{X^{2}+x+1} \text{ for } x \neq 0.$$

$$(F(N) = \frac{x^{2}+x}{X^{2}+x+1} - \frac{(x+1)(2x+1)}{(x^{2}+x+1)^{2}} = \frac{-(x^{2}+2)}{(x^{2}+x+1)^{2}} < 0.$$

$$(D) S_{2} \text{ and } S_{3} \text{ only.} \qquad \text{let } f(N) = \frac{x^{2}+x}{X^{2}+x^{2}+x}. \quad \text{Note } f(N) = \frac{x+1}{X^{2}+x+1} \text{ for } x \neq 0.$$

$$(F(N) = \frac{(1/x^{2}+x+1)^{2}}{(x^{2}+x+1)^{2}} = \frac{-(x^{2}+2)}{(x^{2}+x+1)^{2}} < 0.$$

$$(C) S_{1} \text{ and } S_{2} \text{ only.} \qquad S_{2} \text{ converges} \text{ by } \text{ Alternating } \text{ Senies } \text{ Test.}$$

18) Which statement is true about the following series

$$S_1 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{1}{3}}}, \quad S_2 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}, \quad S_3 = \sum_{n=1}^{\infty} (-1)^n \sin(\frac{n\pi}{2})$$
?

- A) All are conditionally convergent.
- B) All are divergent.
- (C) S_1 is conditionally convergent, S_2 is absolutely convergent and S_3 is divergent
- D) S_1 is absolutely convergent, S_2 is conditionally convergent and S_3 diverges

E)
$$S_1$$
 and S_2 are conditionally convergent; S_3 is absolutely convergent.
 S_1 cond. com. $\sum_{N=1}^{\infty} \frac{(-1)^N}{N^{1/3}} \cos W_1$ (Act Sev. Test); $\sum_{N=1}^{\infty} \frac{1}{N^{1/3}} \sin V_1$ (p -Sevies $p = 1$)
 S_2 alos. com. $\sum_{N=1}^{\infty} \frac{1}{N^{1/3}} \cos W_1$ (p -Sevies . $p = 4 > 1$)
 S_3 diverges . $\lim_{N\to\infty} (-1)^N \sin \left(\frac{N\pi}{2}\right) \neq 0$ Note: $\sin \left(\frac{N\pi}{2}\right) = \pm 1$, $N = 1, 2, 3, \dots$

- 19) The radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{(n+1)^3}$ satisfy
- A) The radius is equal to 1 and the interval is (0,1).
- B) The radius is equal to 2 and the interval is (0, 2).
- C) The radius is equal to 1 and the interval is (1,3).
- D) The radius is equal to 1 and the interval is (1, 3].
- (E) The radius is equal to 1 and the interval is [0, 2].

Ratio Test; $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ $= \lim_{n\to\infty} \left| \frac{(x-1)^{n+1}}{(n+2)^3} \cdot \frac{(n+1)^3}{(x-1)^n} \right|$

=
$$\lim_{N\to\infty} |X-1| \frac{(N+1)^3}{(N+2)^3} = |X-1|$$

- and $|X-1| < | \rightarrow -| < X-1 < |$ $\rightarrow 0 < X < 2$
- Convergence at endpts: $X = 0 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n(-1)^n}{(n+1)^3} = \sum_{n=1}^{\infty} \frac{1}{(n+1)^3} = \sum_{n=1}^{\infty} \frac{$
- 20) Let $f(x) = \sum_{n=1}^{\infty} \frac{2^n}{n^2} (x-1)^n$. We can say that the third derivative of f at the point 1 is equal to

A)
$$f^{(3)}(1) = 10$$
.
$$\frac{f^{(h)}(1)}{h!} = \frac{2^{h}}{h^{2}}$$

B)
$$f^{(3)}(1) = \frac{14}{5}$$
.
C) $f^{(3)}(1) = \frac{13}{6}$. $\Rightarrow f^{(3)}(1) = \frac{2}{3}$

(D)
$$f^{(3)}(1) = \frac{16}{3}$$
. $\Rightarrow f^{(3)}(1) = \frac{8}{9} \cdot 6 = \frac{16}{3}$.

21) Which of the following is a power series representation of the function

$$f(x) = \frac{x-1}{x^2 - 2x + 10}?$$

$$A) \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{n+1}}{9^{n+1}} \qquad f(x) = \frac{x-1}{(x^2 - 2x + 1)} + 0 = (x-1)\left(\frac{1}{9 + (x-1)^2}\right)$$

$$E) \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{2n+1}}{3^{n+1}} \qquad = \frac{x-1}{9} \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{2n+2}}{9^n} \qquad = \frac{x-1}{9} \sum_{n=0}^{\infty} \left(-\left(\frac{x-1}{3}\right)^2\right)^n$$

$$E) \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^n}{3^{n+1}} \qquad = \frac{x-1}{9} \sum_{n=0}^{\infty} \left(-\left(\frac{x-1}{3}\right)^2\right)^n$$

22) The foci of the ellipse
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 are

A)
$$(-3,0)$$
 and $(3,0)$

B)
$$(-5,0)$$
 and $(5,0)$

(C)
$$(0, -\sqrt{7})$$
 and $(0, \sqrt{7})$

D)
$$(-\sqrt{7}, 0)$$
 and $(\sqrt{7}, 0)$

E)
$$(0, -3)$$
 and $(0, 3)$

 $c^2 = 16 - 9 = 7 \rightarrow C = \pm \sqrt{7}$

23) The graph of the curve given by the equation $r = 1 - 2\cos\theta$ looks mostly like

B)

C)

$$\frac{\theta}{1-2\cos\theta} = \frac{1}{1} = \frac{3\pi}{3}$$

24) Which of the following are polar coordinates of the point whose Cartesian coordinates are $(-1, -\sqrt{3})$?

A)
$$r = 1$$
, $\theta = \frac{\pi}{3}$.

B)
$$r = 2$$
, $\theta = \frac{2\pi}{3}$

C)
$$r = 2$$
, $\theta = \frac{7\pi}{6}$

E)
$$r = 2$$
, $\theta = \frac{7\pi}{6}$

$$(r,\theta) = \left(2, \frac{4\pi}{3}\right)$$

25) The complex number $\frac{1+3i}{3+4i}$ is equal to

A)
$$7 + \frac{2}{3}i$$

B) $\frac{2}{3} + \frac{1}{3}i$
C) $\frac{3}{5} + \frac{1}{5}i$
D) $\frac{2}{5} + \frac{3}{5}i$
E) $\frac{3}{7} + \frac{1}{7}i$

$$= \frac{3 + 5i - 12i^{2}}{9 - 16i^{2}}$$

$$= \frac{3 + 5i + 12}{9 + 16}$$

$$= \frac{15 + 5i}{25}$$

$$= \frac{15}{25} + \frac{5}{25}i$$

 $= \frac{3}{5} + \frac{1}{5}i$