Partie I: Théorie

Question 1

Expliquez en quoi la notion de réduction calculatoire est importante pour donner des éléments de sécurité concernant les schémas cryptographiques à clé publique. Explicitez votre raisonnement au cas d'El Gamal en chiffrement en montrant que casser cet algorithme est polynomialement équivalent à un autre problème mathématique. Un esprit de synthèse est demandé.

Question 2

Expliquez le principe de la cryptanalyse linéaire. Donnez les différentes étapes nécessaires pour monter l'attaque et donnez les grandes lignes de celles-ci. Discuter la complexité de l'attaque (le nombre de données nécessaires).

Partie II : Exercices

Question 3

Cette question concerne le RSA à trois facteurs. Il s'agit d'un RSA classique dans lequel le module RSA est le produit de trois facteurs, au lieu de deux classiquement. Considérons les nombres premiers p=3, q=5 et r=7. Dénotons par Φ la fonction totient d'Euler.

- 1. Calculer le module RSA à trois facteurs (que l'on dénotera n) et $\Phi(n)$.
- 2. Parmi les nombres 12 et 13, déterminer ceux qui satisfont les hypothèses d'exposant de chiffrement et pour ceux-la calculer l'exposant de déchiffrement correspondant.
- 3. Déchiffrer le message 17 pour le(s) exposant(s) retenu(s) au point précédent. Utiliser la méthode la plus efficace que vous connaissez.

Question 4 On souhaite factoriser n=165 par la méthode de Dixon en utilisant la base $\{2,3,5\}$. On supposera dans l'exercice que le généra-

teur aléatoire fournit les nombres {14, 15, 16, 30, 45, 75}. Dans les calculs modulaires intervenant dans l'algorithme, vous pouvez utiliser toutes les techniques que vous connaissez pour limiter le calcul mental au maximum.

Question 5

Le but de cet exercice est de construire un protocole de Diffie-Hellman particulier.

Soit un nombre premier p impair. Considérons l'anneau $(\mathbb{Z}/p^2\mathbb{Z},+,*)$. Considérons le sous-ensemble G de $\mathbb{Z}/p^2\mathbb{Z}$ avec

$$G = \left\{ [x + p^2 \mathbb{Z}] \mid x \equiv 1 \bmod p \right\}.$$

- 1. Décrire l'ensemble des représentants minimaux des classes de cet ensemble et déduisez que la cardinalité de G est p.
- 2. Montrer que (G, *) est un groupe (d'ordre p).
- 3. Montrer que $[p+1+p^2\mathbb{Z}]$ est un générateur de G.
- 4. Pout tout n=0...p-1, donner le représentant minimal de la classe obtenue via le calcul de $[p+1+p^2\mathbb{Z}]^n$. (piste : binôme de Newton : $(x+y)^n = \sum_{i=0}^n C_n^i x^i y^{n-i}$ et $C_n^i = \frac{n!}{i!(n-i)!}$). Déduire de votre formule que l'application

$$\Gamma:\{0,\cdots,p-1\} \to G: n \mapsto [p+1+p^2\mathbb{Z}]^n$$

est une bijection.

- 5. Supposons que Alice et Bob souhaitent déterminer en commun une clé $K \in G$. Pour cela :
 - Alice tire au hasard $x \in \{0, \dots, p-1\}$ (et le garde secret), calcule $\alpha = [p+1+p^2\mathbb{Z}]^x$ et envoie α à Bob via un canal non sécurisé.
 - Bob tire au hasard $y \in \{0, \dots, p-1\}$ (et le garde secret), calcule $\beta = [p+1+p^2\mathbb{Z}]^y$ et l'envoie β à Alice via un canal non sécurisé.

On demande:

- (a) Comment Alice et Bob déterminent une clé commune à partir de ces échanges?
- (b) Montrer qu'une attaquant passif (qui n'intervient pas dans les échanges) est capable de déterminer facilement (en temps polynomial) la clé commune (piste : déterminer Γ^{-1}). Comment s'appelle l'application Γ^{-1} ?
- (c) Qu'en déduisez-vous?

Question 6

Considérons le système de chiffrement symétrique suivant. Pour chaque message M choisi de façon aléatoire dans l'espace $\{00,01,10\}$, on choisit une clé K choisie de façon aléatoire dans $\{00,01,10\}$. L'opération de chiffrement consiste à faire le "XOR" de M et de K, i.e. $C = M \oplus K$.

- 1. Donner le mécanisme de déchiffrement.
- 2. Calculer l'information mutuelle entre le message et le chiffré. (piste : I(X,Y) = I(Y,X) où $I(\cdot,\cdot)$ est l'information mutuelle). Exprimer votre réponse en terme de rationnels et valeurs $log_2(k)$ où les k's sont des naturels non-nuls. Simplifier votre formule au maximum.
- 3. Est-ce que ce système est parfait? Si ce n'est pas le cas, comment le modifier pour qu'il le soit en gardant la taille des espaces des messages et des clés.