

AMPLITUDE LINEARITY

Ratio

The output always changes with the same factor times by the change in the input, i.e.,

$$(V_{out}(t) - V_{out}(0))/(V_{in}(t) - V_{in}(0)) = \alpha$$

where a is the proportional constant (gain).

3

Q1

Sharp Eyes

If the following input (V_{in}) and output (V_{out}) relationships exist for different measurement systems, indicate whether each is linear or nonlinear and explain why:

- $V_{out}(t) = 5V_{in}(t);$
- b)
- c)
- d)
- e) f)
- $$\begin{split} &V_{out}(t) = 5V_{in}(t); \\ &V_{out}(t)/V_{in}(t) = 5t; \\ &V_{out}(t) = V_{in}(t) + 5; \\ &V_{out}(t) = V_{in}(t) + V_{in}(t); \\ &V_{out}(t) = V_{in}(t) *V_{in}(t); \\ &V_{out}(t) = V_{in}(t) + 10t; \\ &V_{out}(t) = V_{in}(t) + \sin(5) \\ &\text{If } (V_{out}(t) V_{out}(0)) = \alpha(V_{in}(t) V_{in}(0)), \text{ what will be the relation between } W_{out}(t) = \beta V_{out}(t) + C \text{ and } V_{in}(t)? \end{split}$$
 g) **h)**

Answer: $V_{out}(t) = V_{in}(t) * V_{in}(t)$; Answer: $V_{out}(t) - V_{out}(0) = V_{in}(t) * V_{in}(t) - V_{in}(0) * V_{in}(0)$ Proof by contradiction Assume, we have a constant a so that $V_{out}(t) - V_{out}(0) = a * (V_{in}(t) - V_{in}(0))$ $V_{in}(t) * V_{in}(t) - V_{in}(0) * V_{in}(0) = a * (V_{in}(t) - V_{in}(0))$ $V_{in}(t) * V_{in}(t) - V_{in}(0) * V_{in}(0) = a * (V_{in}(t) - V_{in}(0))$ $V_{in}(t) * V_{in}(t) - a V_{in}(t) + (aV_{in}(0) - V_{in}(0) * V_{in}(0)) = 0$ $D = a * a - 4 * (aV_{in}(0) - V_{in}(0) * V_{in}(0))$ $V_{in}(t) = (a \pm sqr(D))/2$ Content Coordinal Narrown Technological University

9

ANSWER TO Q1 *Note:* Any constant C, $V_{out}(t) = V_{in}(t) + C$ **→** Linear f) $V_{out}(t) = V_{in}(t) + 10t$; Answer: $V_{out}(t)-V_{out}(0) = V_{in}(t)+10t - (V_{in}(0)+10*0) = (V_{in}(t)-V_{in}(0))+10t$ Usually, we do not have a constant α → Non-linear Note: Any constant C, $V_{out}(t) = V_{in}(t) + Ct$ → Non-linear Assume, we have a constant a so that $V_{out}(t)\text{-}V_{out}(\theta) = a *(V_{in}(t) - V_{in}(\theta))$ Proof by $V_{in}(t) + \text{Ct} - V_{in}(0) - C\theta = a * (V_{in}(t) - V_{in}(0))$ $V_{in}(t) * (1-a) = V_{in}(0) + C\theta - \text{Ct} - aV_{in}(0)$ contradiction $V_{in}(t) = (V_{in}(0) + C0 - Ct - aV_{in}(0))/(1 - a)$

g) $V_{out}(t) = V_{in}(t) + C$; *Note: Any constant C, V_{out}(t) = V_{in}(t) + C* **→** Linear Answer: C=Sin(5), \rightarrow Linear

ANSWER TO Q1

11

ANSWER TO Q1

Generalization & Inheritance

h) If we have amplitude linearity wave $V_{out}(t)$ and $V_{in}(t)$: $(V_{out}(t)-V_{out}(0)) = \alpha(V_{in}(t)-V_{in}(0))$,

What will be the relation between $W_{out}(t)$ and $W_{in}(t)$: $W_{out}(t) = \beta V_{out}(t) + C$ and $W_{in}(t) = \beta V_{in}(t) + C$?

$$(V_{out}(t)-V_{out}(\theta))=\alpha(V_{in}(t)-V_{in}(\theta)),$$

$$W_{out}(t) = \beta V_{out}(t) + C$$

$$W_{out}(t) - W_{out}(\theta) = \beta V_{out}(t) + C - \beta V_{out}(\theta) - C = \beta \left(V_{out}(t) - V_{out}(\theta)\right) = \alpha \beta \left(V_{in}(t) - V_{in}(\theta)\right)$$

$$W_{out}(t) - W_{out}(0) = \alpha(\beta V_{in}(t) + C - \beta V_{in}(0) - C) = \alpha(W_{in}(t) - W_{in}(0))$$

 $W_{out}(t)$ and $W_{in}(t)$ are Linear related

Mathematic Reasoning 1) Proof by contradiction 2) Find a solution: Existing & but Unique?

13

FOURIER SERIES REPRESENTATION OF SIGNALS

The Fourier series representation of a periodical waveform f(t) is

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

where

 \mathcal{C}_{0} is the DC component of the signal, and the average value of the waveform over its period

 ω_0 is the fundamental or first (lowest) harmonic frequency defined as

$$\omega_0 = \frac{2\pi}{T} = 2\pi f_0$$

 f_0 is fundamental frequency in Hertz (Hz).

T is period

Content Copyright Nanyang Technological Universit

17

17

ANSWER TO Q2

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

			//)	
	Term	Fundamental frequency	Amplitude	Remark
F(t)=5sin(2πt)	n=1	$f_0 = \omega_0/2\pi = 2\pi/2\pi = 1$ Hz	5	F(t)=5cos(2πt-π/2)
$F(t) = 5\cos(2\pi t)$	n=1	$f_0 = \omega_0/2\pi = 2\pi/2\pi = 1$ Hz	5	
F(t) = -5cos(2πt)	n=1	$f_0 = \omega_0/2\pi = 2\pi/2\pi = 1$ Hz	5	Amplitude is the absolute value

Innovation: Complex → **Simple**

Learning: Simple → Complex

ntent Copyright Nanyang Technological University

Peak Amplitude

- In audio system measurements, telecommunications and other areas where the measured is a signal that swings above and below a zero value but is not sinusoidal, peak amplitude is often used.
- This is the maximum absolute value of the signal.

19

Peak-to-peak Amplitude

- Peak-to-peak amplitude is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative).
- With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope.

ANSWER TO Q3

The power we use at home has a frequency of 60 Hz. The period of this sine wave can be determined as follows:

$$T = \frac{1}{f} = \frac{1}{60} = 0.0166 \text{ s} = 0.0166 \times 10^3 \text{ ms} = 16.6 \text{ ms}$$

Content Convright Nanyana Technological University

UNITS OF PERIOD AND FREQUENCY

Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	10^{-3} s	Kilohertz (kHz)	10^3 Hz
Microseconds (μs)	10^{-6} s	Megahertz (MHz)	10 ⁶ Hz
Nanoseconds (ns)	$10^{-9} \mathrm{s}$	Gigahertz (GHz)	10 ⁹ Hz
Picoseconds (ps)	10^{-12} s	Terahertz (THz)	10 ¹² Hz

12

Q4

For the Fourier series given by

$$y(t) = 4 + \sum_{n=1}^{\infty} \left(\frac{2n\pi}{10} \cos \frac{n\pi}{4} t + \frac{120n\pi}{30} \sin \frac{n\pi}{4} t \right)$$

where t is the time in seconds,

- What is the fundamental frequency in hertz and radians per second, rad s-1? a.
- What is the period T associated with the fundamental frequency? b.
- Express this Fourier series as an infinite series containing sine terms only. c.

Ans:
$$f_0 = \frac{1}{8}$$
 Hz; T = 8 s; $y(t) = 4 + 4n\pi \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{4}t + 0.05\right)$

25

FOURIER SERIES REPRESENTATION OF SIGNALS

Define

$$C_n = \sqrt{{A_n}^2 + {B_n}^2}$$

$$\phi_{n}^{*} = arctan\left(\frac{A_{n}}{B_{n}}\right)$$

Then

$$F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \boldsymbol{\phi_n}^*)$$

That is, a period waveform can be represented by an infinite series of cosine of single amplitude and phase

ANSWER TO Q4

SOLUTION:

FION:
$$A_n = A_n$$

$$y(t) = 4 + \sum_{n=1}^{\infty} \frac{2n\pi}{10} \cos\left(\frac{n\pi t}{4}\right) + \sum_{n=1}^{\infty} \frac{120n\pi}{30} \sin\left(\frac{n\pi t}{4}\right)$$

At n = 1, we get $\omega_0 = \frac{\pi}{4}$ rad s⁻¹ or $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{8}$ Hz.

Note that frequency may be in rad s⁻¹ or Hz. When the unit is rad s⁻¹, we use the symbol ω. When the unit is Hz, we use the symbol f.

Hence the fundamental period T = 8 sec.

27

ANSWER TO Q4

To convert to the form $y(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin\left(\frac{2n\pi t}{T} + \phi_n^*\right)$

Where
$$C_{\mathbf{n}} = \sqrt{A_{\mathbf{n}}^2 + B_{\mathbf{n}}^2} = \sqrt{\left(\frac{2n\pi}{10}\right)^2 + \left(\frac{120n\pi}{30}\right)^2}$$

$$C_{\rm n} = n\pi \sqrt{\left(\frac{2}{10}\right)^2 + \left(\frac{120}{30}\right)^2} \approx 4n\pi$$

$$tan(\phi_n^*) = \frac{A_n}{B_n} = \frac{1}{20} = 0.05$$

ANSWER TO Q4

$$F(t) = C_0 + \sum_{n=1}^{\infty} \left(A_n \cos(n \omega_0 t) + B_n \sin(n \omega_0 t) \right)$$

$$= C_0 + \sum_{n=1}^{\infty} \sqrt{A_n^2 + B_n^2} \left(\frac{A_n}{\sqrt{A_n^2 + B_n^2}} \cos(n \omega_0 t) + \frac{B_n}{\sqrt{A_n^2 + B_n^2}} \sin(n \omega_0 t) \right)$$

$$= C_0 + \sum_{n=1}^{\infty} C_n \left(\sin(\phi_n^*) \cos(n \omega_0 t) + \cos(\phi_n^*) \sin(n \omega_0 t) \right)$$

$$= C_0 + \sum_{n=1}^{\infty} C_n \left[\sin(n \omega_0 t + \phi_n^*) \right]$$

$$\phi_n^* = \arctan\left(\frac{A_n}{B_n} \right), \sin(\phi_n^*) = \frac{A_n}{\sqrt{A_n^2 + B_n^2}}, \cos(\phi_n^*) = \frac{B_n}{\sqrt{A_n^2 + B_n^2}}$$

29

ANSWER TO Q4

c. To convert to the form
$$y(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin\left(\frac{2n\pi t}{T} + \phi_n^*\right)$$

Where
$$C_n = \sqrt{A_n^2 + B_n^2} = \sqrt{\left(\frac{2n\pi}{10}\right)^2 + \left(\frac{120n\pi}{30}\right)^2}$$

$$C_{\mathbf{n}} = n\pi \sqrt{\left(\frac{2}{10}\right)^2 + \left(\frac{120}{30}\right)^2} \approx 4n\pi$$

$$tan(\phi_n^*) = \frac{A_n}{B_n} = \frac{1}{20} = 0.05$$

 $\phi_n^* = tan^{-1}(0.05) = 0.05 \text{ radians}$

Hence,
$$y(t) = 4 + \sum_{n=1}^{\infty} 4n\pi \sin\left(\frac{n\pi t}{4} + 0.05\right)$$

FUNDAMENTAL FREQUENCY

For example: $y(t) = 4 + \frac{2\pi}{10}\cos\frac{2\pi}{4}t + \frac{4\pi}{10}\cos\frac{3\pi}{4}t + \frac{8\pi}{10}\cos\frac{4\pi}{4}t + \cdots$

Content Copyright Nanyang Technological Universi

31

FUNDAMENTAL FREQUENCY

For example: $y(t) = 4 + \frac{2\pi}{10}\cos\frac{2\pi}{4}t + \frac{4\pi}{10}\cos\frac{3\pi}{4}t + \frac{8\pi}{10}\cos\frac{4\pi}{4}t + \cdots$

This can be written as $y(t) = 4 + \sum_{n=1}^{\infty} \frac{2(n-1)\pi}{10} \cos \frac{n\pi}{4} t$

Copyright Nanyang Technological University

FUNDAMENTAL FREQUENCY

Note:

The <u>fundamental frequency</u> is always given by setting n = 1. The amplitude of this component may be zero. When this happens, it may not appear in the equation.

For example: $y(t) = 4 + \frac{2\pi}{10}\cos\frac{2\pi}{4}t + \frac{4\pi}{10}\cos\frac{3\pi}{4}t + \frac{8\pi}{10}\cos\frac{4\pi}{4}t + \cdots$

This can be written as $y(t) = 4 + \sum_{n=1}^{\infty} \frac{2(n-1)\pi}{10} \cos \frac{n\pi}{4} t$

When n=1, the fundamental frequency is $\frac{\pi}{4}$ rad s⁻¹ or $\frac{1}{8}$ Hz, although the amplitude is zero for this component, and not $\frac{\pi}{2}$ rad s⁻¹ or $\frac{1}{4}$ Hz for n = 2.

Content Conviolst Nanvana Technological Universit

33

33

Phase Angle

$$F(t) = C_{0} + \sum_{n=1}^{\infty} \left(A_{n} \cos(n\omega_{0}t) + B_{n} \sin(n\omega_{0}t) \right)$$

$$= C_{0} + \sum_{n=1}^{\infty} \sqrt{A_{n}^{2} + B_{n}^{2}} \left(\frac{A_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}} \cos(n\omega_{0}t) + \frac{B_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}} \sin(n\omega_{0}t) \right)$$

$$= C_{0} + \sum_{n=1}^{\infty} C_{n} \left(\cos(\phi_{n}) \cos(n\omega_{0}t) - \sin(\phi_{n}) \sin(n\omega_{0}t) \right)$$

$$= C_{0} + \sum_{n=1}^{\infty} C_{n} \cos(n\omega_{0}t + \phi_{n})$$

$$\phi_{n} = -\arctan\frac{B_{n}}{A_{n}}, \cos(\phi_{n}) = \frac{A_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}}, \sin(\phi_{n}) = -\frac{B_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}}$$

$$\phi_{n}^{*} = \arctan\left(\frac{A_{n}}{B_{n}}\right), \sin(\phi_{n}^{*}) = \frac{A_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}}, \cos(\phi_{n}^{*}) = \frac{B_{n}}{\sqrt{A_{n}^{2} + B_{n}^{2}}}$$

$$\phi_{n} = \phi_{n}^{*} - \frac{\pi}{2}$$

ent Copyright Nanyang Technological University

Phase Angle

$$F(t) = C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \boldsymbol{\phi}_n)$$

$$\boldsymbol{\phi}_n = -\arctan\frac{B_n}{A_n}, \cos(\boldsymbol{\phi}_n) = \frac{A_n}{\sqrt{A_n^2 + B_n^2}}, \sin(\boldsymbol{\phi}_n)$$

$$= -\frac{B_n}{\sqrt{A_n^2 + B_n^2}}$$

$$F(t) = C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t))$$

$$= C_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega_0 t) + B_n$$

$$\phi_n = \phi_{n} - \frac{\pi}{2}$$

$$Sin(\phi) = cos(\phi - \frac{\pi}{2})$$