Mishal Assif P K

Resume

mishalassif.github.io -
 mishal2@illinois.edu

in linkedin.com/in/mishalassif -
 github.com/Mishalassif

EDUCATION

University of Illinois Urbana-Champaign

Urbana-Champaign, USA

Present

Ph.D in Electrical Engineering, CPI: 3.97/4.00 Indian Institute of Technology Bombay

Bombay, India

B. Tech + M. Tech in Mechanical Engineering, CPI: 8.63/10.00

August 2019

RESEARCH INTERESTS

I am broadly interested in the theory and applications of control, optimization and learning. I mostly use topological/geometric and stochastic tools in my research, mainly focusing on:

- Topological machine learning; Biparametric persistent homology, Stochastic differential topology.
- Control and Optimization; Geometric nonlinear control, Robust optimization.

PUBLICATIONS

Preprints of all papers are available on my arXiv page.

- 1. M. Assif P K Singularities of Gaussian random maps into the plane. Submitted to Journal of Applied and Computational Topology.
- 2. M. Assif P K, Y. Baryshnikov Biparametric persistence of smooth filtrations. Submitted to Computational Geometry.
- 3. M. Assif P K, M. R. Sheriff, D. Chatterjee Measure of quality of finite-dimensional linear systems: A frame-theoretic view. Systems and Control Letters, Vol.151, 2021.
- 4. M. Assif P K, D. Chatterjee, R. Banavar Scenario approach for minmax optimization in the nonconvex setting: Positive results and caveats. SIAM Journal on Optimization, Vol.30(2), 2020.
- 5. M. Assif P K, D. Chatterjee, R. Banavar A simple proof of the discrete time geometric Pontryagin maximum principle. Automatica, Vol.114, 2020.
- 6. M. Assif, R. Banavar, A. M. Bloch, M. Camarinha, L. Colombo *Variational collision avoidance on Riemannian manifolds*. Proceedings of the IEEE Conference on Decision and Control, 2018.

PRESENTATIONS

1. Geometric Pontryagin Maximum Principle for discrete time optimal control, 12th ICMAT Summer School on Geometry, Mechanics and Control, Spain, 2018.

EXPERIENCE

University of Illinois Urbana-Champaign, Dept. of ECE

Graduate Research Assistant, Advisor: Prof. Yuliy Baryshnikov

Fall 2019 - Present

- Developed a geometric theory for understanding biparametric persistent homology (BPH).
- Studied the average complexity of BPH of Gaussian random fields.
- Working on applications of BPH to 3D shape classification and retrieval.

Corteva Agriscience

Research Intern Summer 2020

- Created mathematical models for understanding the onset of insect resistance in a variety of seeds under different chemical scenarios.
- Generated software tools that describe insect resistance predictions and various management practices used to influence resistance behavior.

• Studied the effect of a combination of insect resistance management tactics and their economic and environmental impact.

AUV-IITB, Autonomous Underwater Vehicle Team

Software developer

2015 - 2016

- Worked as part of a ~20 member team in the development of an underwater robot that can autonomously localize and perform realistic missions based on feedback from visual, inertial and acoustic sensors.
- Secured second place at the International AUVSI Robosub competition 2016.
- Maintained a modular software stack written in C++ and Python, using ROS for integration of various subsystems.
- Implemented a finite state machine for planning the execution flow of the robot.
- Developed and tuned a PID controller for controlling the 5 degrees of freedom of the AUV.
- Created various ancillary tools such as drivers for sensors, simulators and runtime debug interfaces.

PROJECTS

Ogithub.com/Mishalassif/height-persist

Fall 2021-Present

3D Object classification using the Persistent homology transform (PHT)

- Created a pipeline that takes a CAD model in obj/off format and vectorizes it using the Persistent homology transform.
- Trained a random forest classifier on the output of the vectorizing pipeline and obtained an accuracy of 80% on the ModelNet40 dataset containing 40 classes of CAD models.
- Working on training a neural network on the output to obtain higher accuracy. The sparse nature of the PHT features make this task challenging.

SOFTWARE SKILLS

Programming Python, C++, Matlab, Mathematica.

ML tools PyTorch, scikit-learn, Tensorflow.

Other tools LATEX, Git, ROS, Gazebo, OpenCV.

RELEVANT COURSES

- Probability: Probability and random processes, Information theory, Stochastic processes.
- ML: Pattern recognition, Generative AI models, High dimensional geometric data analysis, Statistical learning theory.
- Math: Algebraic topology (I, II), Differentiable manifolds (I, II), Lie groups and Lie algebras.
- Control theory: Differential geometric control, Adaptive and Nonlinear control, Optimization.

TEACHING ASSISTANTSHIPS

• ECE 486 Control Systems, UIUC.

Fall 2020/Spring 2021

- ME 310 Microprocessors and Automatic Control(Theory + Lab), IITB. Fall
 - Fall 2018/Spring 2019
- SC 624 Differential Geometric Methods in Control, IITB.

 $Spring\ 2018$

REFERENCES

- Yuliy Baryshnikov (ymb@illinois.edu), Professor, Electrical and Computer Engineering, UIUC.
- Debasish Chatterjee (dchatter@iitb.ac.in), Professor, Systems and Control Engineering, FIT Bombay.