Math 4547: Real Analysis I

Farhan Sadeek

February 9, 2025

1 The Real Numbers

1.1 The Real Numbers

Theorem 1.1.1

There is no rational number x such that $x^2 = 2$.

1.2 Field Axioms

1.2.1 Addition Axioms

Proposition 1.2.1

If a + x = a for all real numbers a, then x = 0. This means that 0 is the only additive identity.

Proposition 1.2.2

If a + x = a + y then x = y. In particular, this means that additive inverses are unique.

Proposition 1.2.3

$$-(-a) = a$$

Proposition 1.2.4

$$-(a+b) = (-a) + (-b)$$

Proposition 1.2.5

$$-0 = 0$$

1.2.2 Multiplication Axioms

Proposition 1.2.6

If $a \times b = a$ for all real numbers a, then b = 1.

Proposition 1.2.7

If $a \neq 0$ and $a \times b = a \times c$, then b = c.

Proposition 1.2.8

If $a \neq 0$, then $a^{-1} \neq 0$ and $\frac{1}{\left(\frac{1}{a}\right)} = a$.

Proposition 1.2.9

If $a \neq 0$, $b \neq 0$, and $a \times b \neq 0$, then $\frac{1}{(a \times b)} = \left(\frac{1}{a}\right) \times \left(\frac{1}{b}\right)$.

Proposition 1.2.10

 $(a + b) \times c = a \times c + b \times c$

Proposition 1.2.11

 $a \times 0 = 0$

Proposition 1.2.12

If $a \times b = 0$, then either a = 0 or b = 0 (or both).

Proposition 1.2.13

 $a \times (-b) = -(a \times b)$. In particular, note that $a \times (-1) = -a$.

Proposition 1.2.14

 $(-1)\times(-1)=1$

1.3 The Order Axioms

Proposition 1.3.1

 $1 \in P$

Proposition 1.3.2

a > b if and only if -a < -b. In particular, x > 0 if and only if -x < 0.

Proposition 1.3.3

For all real numbers x, y, z:

- 1. If x > 0 and y > 0, then x + y > 0.
- 2. If x > 0 and y > 0, then $x \times y > 0$.
- 3. If x > y and y > z, then x > z.

Proposition 1.3.4 (Inequalities Shift I)

Let x, y, z be reals such that x < y. Then x + z < y + z.

Proposition 1.3.5 (Inequalities Shift II)

Let x, y, z be reals such that x < y and 0 < z. Then zx < zy.

Corollary 1.3.6

Let x, y, z be reals such that x < y and z < 0. Then zx > zy.

Corollary 1.3.7

 $a^2 \ge 0$ for any real a.

Proposition 1.3.8

If $x \in P$, then $1/x \in P$.

Corollary 1.3.9

If $x, y \in P$ and x < y then 1/y < 1/x.

Example 1.3.10

 $\max(x, y) = -\min(-x, -y)$

Theorem 1.3.11 (The Triangle Inequality)

For any real numbers a, b, we refer to this as the Δ inequality.

$$|a+b| \le |a| + |b|$$

with equality if and only if $(a \ge 0 \text{ and } b \ge 0)$ or (a < 0 and b < 0).

Proposition 1.3.12

$$|ab| = |a||b|$$

Theorem 1.3.13 (Bernoulli's Inequality)

Let x be a real number with x > -1 and let n be a positive integer. Then

$$(1+x)^n \ge 1 + nx$$

1.4 Completeness Axiom

Proposition 1.4.1

A maximum (if it exists) of a set B is unique. Similarly, a minimum is unique.

Proposition 1.4.2

If $E \subseteq \mathbb{R}$ has a maximum, then max $E = \sup E$.

Proposition 1.4.3 (The Approximation Property)

Let $E \subseteq \mathbb{R}$ be bounded above and non-empty and let $\epsilon > 0$. Then there exists $x \in E$ such that

$$\sup E - \epsilon < x \le \sup E$$

Corollary 1.4.4

Let E be bounded above and non-empty. There is a function $a: \mathbb{N} \to \mathbb{R}$, such that for all n we have

$$\sup E - \frac{1}{n} < a(n) \le \sup E.$$

Theorem 1.4.5

Let F be a non-empty set which is bounded below. Then the set of lower bounds of F has a greatest element. This element is known as the greatest lower bound or infimum of F and is written inf F.