Singular Value Decomposition

Not very matrix has an eigendecomposition, but every matrix has a singular value decomposition (SVD)

SVD: $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be decomposed into

$$A = U\Sigma V^T$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$, $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ is such that the (i, i)-entry is a (nonnegative) singular value of \mathbf{A} .

Low-rank Approximation

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank k and $r \in \{1, \dots, k-1\}$, find $\hat{\mathbf{A}} \in \mathbb{R}^{m \times n}$ with rank $(\hat{\mathbf{A}}) \leq r$ such that $\|\mathbf{A} - \hat{\mathbf{A}}\|_2$ or $\|\mathbf{A} - \hat{\mathbf{A}}\|_F$ is minimum

Solution: Truncated SVD

SVD of A:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^T = \sum_{i=1}^k \sigma_i u_i v_i^T$$

where $\sigma_1 \ge \cdots \ge \sigma_k > \sigma_{k+1} = \cdots = \sigma_{\min\{m,n\}} = 0$ are the singular values of **A**

$$\hat{\mathbf{A}} = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

Image Compression

original image, size: 639 x 853

Image compression (cont'd)

compressed image with r = 10

compressed image with r = 20

compressed image with r = 15

compressed image with r = 30

Matrix Computations Chapter 1 Introduction

Section 1.2 Review of Linear Algebra

Jie Lu ShanghaiTech University

Notation

```
\mathbb{R}
                the set of real numbers or real space
                the set of complex numbers or complex space
\mathbb{R}^n
                n-dimensional real space
\mathbb{C}^n
                n-dimensional complex space
\mathbb{R}^{m \times n}
                the set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                the set of all m \times n complex-valued matrices
                                                        a = x + j\beta
a^* = x - i\beta
                scalar in C
а
a*
                conjugate of a \in \mathbb{C}
х
                vector
x_i, [\mathbf{x}]_i ith entry of \mathbf{x}
Α
            matrix
a_{ij}, [\mathbf{A}]_{ij} (i,j)-entry of \mathbf{A}
\mathbb{S}^n
                the set of all n \times n real symmetric matrices, i.e, \mathbf{A} \in \mathbb{R}^{n \times n} and
                a_{ij} = a_{ji} for all i, j = 1, \ldots, n
\mathbb{H}^n
                the set of all n \times n complex Hermitian matrices, i.e, \mathbf{A} \in \mathbb{C}^{n \times n}
                and a_{ij} = a_{ii}^* for all i, j
```

Vector

• $\mathbf{x} \in \mathbb{R}^n$: \mathbf{x} is a real-valued *n*-dimensional column vector, i.e.,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad x_i \in \mathbb{R} \text{ for all } i$$

- $\mathbf{x} \in \mathbb{C}^n$: \mathbf{x} is a complex-valued *n*-dimensional column vector
- Transpose: $\mathbf{x}^T = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}$
- Hermitian transpose: $\mathbf{x}^H = \begin{bmatrix} x_1^*, & x_2^*, & \dots, & x_n^* \end{bmatrix}$

Matrix

• $\mathbf{A} \in \mathbb{R}^{m \times n}$: **A** is a real-valued $m \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R} \text{ for all } i, j$$

- $\mathbf{A} \in \mathbb{C}^{m \times n}$: **A** is a complex-valued $m \times n$ matrix
- We may write

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, & \mathbf{a}_2, & \dots, & \mathbf{a}_n \end{bmatrix}$$

where $\mathbf{a}_i \in \mathbb{R}^m$ is the *i*th column of matrix A

Matrix (Cont'd)

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be
 - square if m = n;
 - tall if m > n;
 - fat if *m* < *n*.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
 - upper triangular if $a_{ii} = 0$ for all i > j;
 - lower triangular if $a_{ij} = 0$ for all i < j.

Examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{8} & 3 & 0 \end{bmatrix}.$$

Matrix Transpose

Given a $m \times n$ matrix **A**.

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & & & \vdots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T} \end{bmatrix}$$

is a $n \times m$ matrix

- The following properties hold:

 - $(AB)^T = B^T A^T$ $(A^T)^T = A$ $(A + B)^T = A^T + B^T$

Matrix Transpose (Cont'd)

• Hermitian transpose: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$,

$$\mathbf{A}^{H} = \begin{bmatrix} a_{11}^{*} & a_{21}^{*} & \dots & a_{m1}^{*} \\ a_{12}^{*} & a_{22}^{*} & \dots & a_{m2}^{*} \\ \vdots & & & \vdots \\ a_{1n}^{*} & a_{m2}^{*} & \dots & a_{mn}^{*} \end{bmatrix} \in \mathbb{C}^{n \times m}$$

- The following properties hold:
 - $(AB)^H = B^H A^H$
 - $(\mathbf{A}^H)^H = \mathbf{A}$
 - $(A + B)^H = A^H + B^H$

Matrix Trace and Matrix Power

• Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, the trace of \mathbf{A} is

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

- $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
- tr(AB) = tr(BA) for A, B of proper sizes
- Matrix power: Given $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{k \text{ times}}$$

Some Common Vectors and Matrices

All-one vectors: We use the notation

$$\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

to denote a vector of all 1's

- Zero vectors or matrices: We use the notation 0 to denote either a vector of all zeros or a matrix of all zeros
- Unit vectors: We use the notation

$$\mathbf{e}_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$$

to denote a unit vector whose i-th entry is 1 and other entries are all zero

Some Common Vectors and Matrices (Cont'd)

• Identity matrix:

$$\underline{\tilde{I}} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

The empty entries are assumed to be zero by default

• Diagonal matrices: We use the notation

$$\operatorname{Diag}(a_1,\ldots,a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$

to denote a diagonal matrix whose diagonal entries are a_1, \ldots, a_n For $\mathbf{a} = \begin{bmatrix} a_1, \ldots, a_n \end{bmatrix}^T$, we use the shorthand notation $\mathrm{Diag}(\mathbf{a})$

A subset
$$S$$
 of \mathbb{R}^{m} is said to be a subspace if for any $\mathbf{x}, \mathbf{y} \in S$ and any $\alpha, \beta \in \mathbb{R}$, $\alpha \mathbf{x} + \beta \mathbf{y} \in S$

If
$$S$$
 is a subspace and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$, then any linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$, i.e., $\sum_{i=1}^n \alpha_i \mathbf{a}_i$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, lies in S

$$\left[\alpha_1 \alpha_1 + \alpha_2 \alpha_2 + \alpha_3 \alpha_3 + \alpha_4 \alpha_4 + \alpha_5 \alpha_5 + \alpha_5 \alpha_5$$

• Let S_1, S_2 be subspaces of \mathbb{R}^m • $S_1 + S_2 := \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in S_1, \mathbf{y} \in S_2 \}$ is a subspace • $S_1 \cap S_2$ is a subspace • $S_2 \cap S_3$ is a subspace • $S_1 \cap S_2$ is a subspace • $S_2 \cap S_3$ is a subspace • $S_3 \cap S_3$ i

Span

The span of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R}^m \;\middle|\; \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \; \alpha_1,\ldots,\alpha_n \in \mathbb{R}\right\}$$

- $\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ is the set of all linear combinations of $\mathbf{a}_1,\ldots,\mathbf{a}_n$
- $\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ is a subspace

Theorem

Let S be a subspace of \mathbb{R}^m . There exists a positive integer n and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$ such that $S = \operatorname{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

• We can always represent a subspace by a span

$$Ax = [a_1 \cdots a_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + \cdots + x_n a_n$$
Range and Nullspace

The range (space) of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n \}$$

• $\mathcal{R}(\mathbf{A})$ is the span of the columns of \mathbf{A}

The nullspace of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

$$\forall x, x' \in \mathcal{N}(A),$$

 $Ax = Ax' = 0$
 $\forall x', f \in \mathbb{R},$

subspace in IR

- N(A) is a subspace
- $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{B})$ for some integer r > 0 and $\mathbf{B} \in \mathbb{R}^{n \times r}$ $\mathcal{A}(\mathcal{A} + \mathcal{A}) = 0$

Adx & fox ENCA

Linear Independence

 $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are said to be linearly independent if

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} \neq \mathbf{0} \quad \text{for all } \alpha = \left[\alpha_{1}, \dots, \alpha_{n}\right]^{T} \in \mathbb{R}^{n} \text{ with } \alpha \neq \mathbf{0}$$

and linearly dependent otherwise

• Equivalent definition of linear dependence: $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly dependent if there exists $\alpha \in \mathbb{R}^n$, $\alpha \neq \mathbf{0}$ such that

$$\sum_{i=1}^{n} \alpha_i \mathbf{a}_i = \mathbf{0}$$

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent, then any \mathbf{a}_j cannot be a linear combination of the other \mathbf{a}_i 's

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly dependent, then there exists an \mathbf{a}_j such that \mathbf{a}_i is a linear combination of the other \mathbf{a}_i 's

• If $\mathbf{a}_1, \dots \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent, then $n \leq m$

• If $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent and $\mathbf{y} \in \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$, then the coefficient $\alpha = [\alpha_1, \dots, \alpha_n]^T$ for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is unique, i.e., there does not exist $\beta = [\beta_1, \dots, \beta_n]^T \in \mathbb{R}^n$, $\beta \neq \alpha$ such that $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{a}_i$ Assume to the contrary that $\exists \beta \neq \alpha \leq b$. $\mathbf{y} = \sum_{i=1}^n \beta_i \alpha_i$ $0 = \mathbf{y} - \mathbf{y} = \sum_{i=1}^n \alpha_i \alpha_i - \sum_{i=1}^n \beta_i \alpha_i = \sum_{i=1}^n (\alpha_i - \beta_i) \alpha_i$ Since $\alpha_1, \dots, \alpha_n$ are linearly independent. $\alpha_i - \beta_i = 0$ $\forall i = 1, \dots, n$ Contradiction

Let $\{a_1, \ldots a_n\} \subset \mathbb{R}^m$, and denote $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$ as an index subset with $k \leq n$ and $i_j \neq i_\ell$ for all $j \neq \ell$. A vector subset $\{a_{i_1}, \ldots, a_{i_k}\}$ is called a maximal linearly independent subset of $\{a_1, \ldots a_n\}$ if both of the following conditions hold:

- 1. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is linearly independent
- 2. $\{a_{i_1}, \ldots, a_{i_k}\}$ is not contained by any other linearly independent subset of $\{a_1, \ldots a_n\}$
 - A set of non-redundant vectors from $\{a_1, \dots a_n\}$

Example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subsets of $\{a_1,a_2,a_3,a_4\}$ are

$$\begin{aligned} \{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \\ \{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}, \\ \{a_1, a_2, a_3\}, \quad \{a_1, a_2, a_4\}, \quad \{a_1, a_3, a_4\} \end{aligned}$$

The maximal linearly independent subsets are

Example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subsets of $\{a_1,a_2,a_3,a_4\}$ are

$$\begin{aligned} &\{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \\ &\{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}, \\ &\{a_1, a_2, a_3\}, \quad \{a_1, a_2, a_4\}, \quad \{a_1, a_3, a_4\} \end{aligned}$$

The maximal linearly independent subsets are

$$\{a_1, a_2, a_3\}, \{a_1, a_2, a_4\}, \{a_1, a_3, a_4\}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,i} a_{i,i} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_i = d_{i,k} a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k} a_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

$$x = \sum_{i=1}^{k} d_i a_{i,k} + \dots + d_{i,k}$$

Facts:

- $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}$ is a maximal linearly independent subset of $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ if and only if $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k},\mathbf{a}_j\}$ is linearly dependent for any $j\in\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$
- If $\{a_{i_1},\ldots,a_{i_k}\}$ is a maximal linearly independent subset of $\{a_1,\ldots a_n\}$, then

Basis

Let $S \subseteq \mathbb{R}^m$ be a subspace with $S \neq \{0\}$.

A vector set $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}\subset\mathbb{R}^m$ is called a basis for $\mathcal S$ if both of the following hold:

- 1. $\mathbf{b}_1, \dots, \mathbf{b}_k$ are linearly independent
- 2. $S = \text{span}\{\mathbf{b}_1, ..., \mathbf{b}_k\}$
 - If $\{a_{i_1}, \ldots, a_{i_k}\}$ is a maximal linearly independent vector subset of $\{a_1, \ldots, a_n\}$, then $\{a_{i_1}, \ldots, a_{i_k}\}$ is a basis for $\mathrm{span}\{a_1, \ldots, a_n\}$
 - ullet Given ${\cal S}$, there can be multiple bases
 - All bases for S have the same number of elements, i.e., if $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ and $\{\mathbf{c}_1, \dots, \mathbf{c}_\ell\}$ are bases for S, then $k = \ell$

Dimension of a Subspace

The dimension of a subspace S with $S \neq \{0\}$, denoted by dim S, is the number of elements of any basis for S

- $\dim\{\mathbf{0}\} = 0$
- represent effective degrees of freedom of the subspace

Examples:

- dim $\mathbb{R}^m = m$
- If k is the number of maximal linearly independent vectors of $\{a_1, \ldots, a_n\}$, then $\dim \operatorname{span}\{a_1, \ldots, a_n\} = k$

Dimension of a Subspace (Cont'd)

Let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces

• If $S_1 \subseteq S_2$, then $\dim S_1 \leq \dim S_2$

Suppose
$$S_1 \subseteq S_2$$
 and $S_1 = \dim S_2$, then $S_1 = S_2$
 $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$ and $S_3 \subseteq S_2$
 $S_2 \subseteq S_3 \subseteq S_3$ and $S_3 \subseteq S_3 \subseteq S_3$ and $S_4 \subseteq S_2 \subseteq S_3 \subseteq S_3$
 $S_2 \subseteq S_3 \subseteq S$

• $\dim(S_1 + S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2)$ $S_1 = S_2$ = $S_1 = S_2$

Rank

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\operatorname{rank}(\mathbf{A})$, is the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$

- \bullet Equivalently, $\mathrm{rank}(\textbf{A})$ is the maximum number of linearly independent columns of A
- $\dim \mathcal{R}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$

Facts:

- $rank(\mathbf{A}) = rank(\mathbf{A}^T)$, i.e., the rank of \mathbf{A} is also the maximum number of linearly independent rows of \mathbf{A}
- $\operatorname{rank}(\mathbf{A} + \mathbf{B}) \le \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$
- $rank(AB) \le min\{rank(A), rank(B)\}$
 - The equality holds when the columns of A are linearly independent and the rows of B are linearly independent

Rank (Cont'd)

- Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to
 - have full column rank if all the columns of A are linearly independent
 - $\mathbf{A} \in \mathbb{R}^{m \times n}$ full column rank $\iff m \ge n$, rank $(\mathbf{A}) = n$
 - have full row rank if all the rows of A are linearly independent
 - $\mathbf{A} \in \mathbb{R}^{m \times n}$ full row rank $\iff m \le n$, rank $(\mathbf{A}) = m$
 - have full rank if rank(A) = min{m, n}, i.e., it has either full column rank or full row rank
 - be rank deficient if $rank(\mathbf{A}) < min\{m, n\}$

Invertible Matrices

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be nonsingular or invertible if the columns of \mathbf{A} are linearly independent, and singular or non-invertible otherwise

• Alternatively, **A** is singular if Ax = 0 for some $x \neq 0$

The inverse of an invertible **A**, denoted by \mathbf{A}^{-1} , is a $n \times n$ square matrix satisfying

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}.$$

Invertible Matrices (Cont'd)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a nonsingular matrix

- A⁻¹ always exists and is unique
- A⁻¹ is nonsingular
- $AA^{-1} = I$
- $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$, where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are nonsingular
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
 - As a shorthand notation, we denote $\mathbf{A}^{-T} = (\mathbf{A}^{T})^{-1}$