

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 64 de 85	

Práctica No. 8

LABORATORIO DE MECATRÓNICA

Ingeniería Mecatrónica

No.	Nombre de la Unidad de	Nombre de la Práctica	Duración
Práctica	Aprendizaje		(horas)
8	Análisis de circuitos en CA	Circuitos RLC	2

Alumno (nombre y firma):	
Docente (nombre y firma):	
Fecha de la práctica:	
Calificación:	

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 65 de 85	

No. Práctica	Nombre de la Unidad de Aprendizaje	Nombre de la Práctica	Duración (horas)
8	Análisis de circuitos en CA	Circuitos RLC	2

I.- INTRODUCCIÓN

Un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina y un capacitor.

Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describe generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).

Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).

2 OBJETIVO (Competencia Específica a Desarrollar)	RESULTADOS DEL APRENDIZAJE
Desarrollar, construir y modelar parámetros de corriente y voltaje en circuitos RLC. Además de observar su respuesta.	Aprender el modelado y la respuesta de los circuitos RLC para el modelado y simulación de circuitos eléctricos

3.- CONOCIMIENTOS PREVIOS (Competencias previas)

El alumno deberá contar previamente con un conocimiento sobre circuitos RLC, mediciones e implementaciones.

4.- ACTIVIDADES DE ENSEÑANZA (Docente)

Explicar al alumno las principales herramientas para el llevar a cabo el modelado de circuitos RLC, además de aprender para medir parámetros.

5.- ACTIVIDADES DE APRENDIZAJE (Alumno)

Realiza la implementación de diversos circuitos, la medición de parámetros y comparar mediante cálculos, simulación y mediciones reales los datos obtenidos durante la práctica correspondiente mediante el software y validar dichos resultados mediante cálculos matemáticos.

6.- DESCRIPCIÓN DEL PROCEDIMIENTO

6.1 Equipo necesario y material de apoyo

- Software especializado para simular circuitos
- Computadora
- Osciloscopio
- Generador de funciones.

(Código:	MP-IM-01
١	No. de Revisión:	0
F	echa de Emisión:	Noviembre, 2019
ŀ	Hoja 66 de 85	

■ Hojas para tomar notas

6.2 Desarrollo de la práctica

- I.- Leer la práctica
- 2.- Realizar la implementación, simulación y cálculos correspondientes de los circuitos eléctricos presentados.
- 3.- Realizar mediciones con el osciloscopio de Multisim.
- 4.- Realizar la comparación entre los datos simulados y calculados (si es el caso).

Práctica

Circuito RLC

A) Primer ejercicio

- I) Dado el circuito determine la respuesta dada su ecuación diferencial, considere que requiere obtener el polinomio característico y ecuación característica. Y, por ende, resolver la ecuación diferencial de segundo orden.
- 2) Simule el circuito en Multisim

Figura No. I Circuito RLC I

Pasos

- -Implemente el circuito
- -Busque el icono Grapher de la siguiente Figura 2.

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 67 de 85	

Figura No. 2 Grapher

- -Seleccione la fleca lateral y le desplegará un menú, a continuación, seleccione la opción **Transient Analysis**
- En **Analysis parameters** seleccione un end time o tiempo final de 20segundos o en caso de que la señal obtenida no se aprecie en la gráfica a obtener aumente dicho tiempo
- -Vaya a la opción **Output**, seleccione de todas las variables la señal de voltaje y agréguela con el botón **Add** -Una vez agregada, de clic en el botón de hasta abajo **Simulate** y obtendrá la señal de salida que hay que validarla con el cálculo matemático (Figura 2).

Nota: considere que es un circuito en paralelo por lo que solo existe un solo voltaje, o el voltaje en cada elemento es el mismo.

Figura No. 3 Señal de salida ejemplo.

B) Segundo ejercicio

- I) Dado el circuito determine la respuesta dada su ecuación diferencial, considere que requiere obtener el polinomio característico y ecuación característica. Y, por ende, resolver la ecuación diferencial de segundo orden.
- 2) Simule el circuito en Multisim

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 68 de 85	

Figura No. 4 Circuito RLC 2.

C) Tercer ejercicio

- *I)* Dado el circuito determine la respuesta dada su ecuación diferencial, considere que requiere obtener el polinomio característico y ecuación característica. Y, por ende, resolver la ecuación diferencial de segundo orden.
- 2) Simule el circuito en Multisim

Figura No. 3 Circuito RLC 3.

6.3 Cálculos (si aplica)

Agregue los cálculos necesarios.

4.- INFORME DE RESULTADOS

Los resultados de la práctica se presentarán en la "Tabla para registro de resultados" que compare los datos simulados, los datos calculados y los datos reales, si es el caso.

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 69 de 85	

5.- CONCLUSIONES

Cada alumno de manera individual deberá presentar sus conclusiones con relación a la práctica desarrollada independientemente de que haya trabajado en equipo.

6.- ANEXOS

En caso de ser necesario o usted considere.

Anexo I. Manejo y uso del software.

Anexo 2. Dibujo del circuito

Anexo 2. Circuito construido

7.- EVALUACIÓN DEL DESEMPEÑO

No.	No. Concepto a evaluar en el alumno		Cumple	
	Guía de Observación		No	
ı	Asiste puntualmente al laboratorio			
2	Respeta el reglamento del laboratorio			
3	Atiende las recomendaciones del docente			
4	4 Participa activamente en la práctica			
5 Guarda o entrega el material y equipo utilizado				
	Lista de Cotejo			
6 Entrega puntualmente el reporte de la práctica				
7	7 El contenido del reporte está completo			
8	8 Los resultados del reporte son correctos			
9	9 Entrega resuelto el cuestionario de la práctica			
10 Las conclusiones están relacionadas con el tema				

Cada concepto evaluado como Si, equivale a 10 puntos de la calificación de la práctica.

Calificación:	100

7.- REFERENCIAS

Robert L. Boylestad, Introducción al análisis de circuitos, Pearson Prentice Hall, Décima edición, 2004, México. Richard C. Dorf - James A. Svoboda, Circuitos eléctricos: introducción al análisis y diseño, sexta edición, 2000.