Functional Dependencies (II)

R&G Chapter 19

Annoucement

Final exam

- 9:30am 12noon, Saturday, December 17, 2016
- For both CS442 and CPE442 students

In Last Lecture

- Data redundancy
 - Update, insertion, deletion anomaly
- Source for redundancy: functional dependencies (FDs)
 - X → Y: Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)
- To remove data redundancy
 - FD-driven schema decomposition

Rules of Inference

- Armstrong's Axioms (AA) (X, Y, Z are <u>sets</u> of attributes):
 - *Reflexivity*: If $X \supseteq Y$, then $X \to Y$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Some additional rules (that follow from AA):
 - *Union*: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$

Example

Given:

- -Relation R = {A,B,C,G,H,I}
- -FDs: A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H

Questions: Prove the following FDs by using AA rules

- (1) A -> H,
- (2) $AG \rightarrow I$
- (3) $CG \rightarrow HI$

Closure of FDs

 An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.

 F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F. (includes "trivial dependencies")

Computing FD Closure

- Typically we want to check if a given FD X→ Y can be implied from a given set of FDs F.
- It is equivalent to checking whether $X \rightarrow Y$ is in F⁺.
- An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X^+) wrt F. $X^+ = Set$ of attributes A such that $X \to A$ is in F^+
 - Initialize X⁺ := X
 - Repeat until no change: if there is an FD U → V in F such that U is in X+, then add V to X+
 - Check if Y is in X⁺ (i.e., $X \rightarrow Y$ is in F⁺)

Attribute Closure (Example 1)

- R(ABCDE)
- F={A->D, D->B, B->C, E->B}
- What's A+, D+, E+, ACE+?

Attribute Closure (Example 2)

- R = {A, B, C, D, E}
- $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is B → E in F⁺ ?
 - $B^+ = B$
 - $B^+ = BCD$
 - $B^+ = BCDA$
 - $B^+ = BCDAE \dots Yes!$

FD Closure VS. Finding Key

- Computing FD closure can be used to find the keys of a relation.
 - If X^+ = {all attributes of R}, then X is a <u>superkey</u> for R.
 - Question: How to check if X is a candidate key?
 - Answer: check whether any subset Y of X satisfies:

```
Y^+ = \{all attributes of R\}
```

Key Calculation

- R = {A, B, C, D, E}
- $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is D a superkey of R?
- Is B a superkey of R?
- Is B a candidate key of R?
- Is AD a superkey of R?
- Is AD a candidate key of R?
- Is ADE a candidate key of R?

How to Determine Candidate Keys?

An efficient solution:

- When computing FD closure, we distinguish attributes into three categories
 - L: attributes only appear at the left side of all given FDs
 - R: attributes <u>only</u> appear at the <u>right</u> side of all given FDs
 - M: attributes that appear on <u>both</u> sides of all given FDs
- The principle:
 - Attributes in L: each candidate key should include ALL attributes in L;
 - Attributes in M may be part of keys
 - Attributes in R will NOT be part of any key

Determine the keys (example 1)

- Database : R(A, B, C, D)
- FDs: (AB -> C, C-> B, C-> D)
- What are the candidate keys of R?

Determine the keys (example 2)

- Database : R(A, B, C)
- FDs: (A->B, B-> C, C-> A)
- What are the candidate keys of R?

L	M	R
	A, B, C	

- $-A^+ = \{ABC\}$
- $B^+ = \{BCA\}$
- $-C^{+} = \{CAB\}$
- Keys: A, B, C