Instruction Set

Refer to Table 1, which shows all the M68HC11 instructions in all possible addressing modes. For each instruction, the table shows the operand construction, the number of machine code bytes, and execution time in CPU E-clock cycles.

Table 1. Instruction Set (Sheet 1 of 8)

Mnemonic	Operation	peration Description Addressing Instruction						tion Condition Codes										
Milemonic	Operation	Description	Mode	Opcode	Operand	Cycles	s	X	Н	I	N	Z	٧	С				
ABA	Add Accumulators	$A + B \Rightarrow A$	INH	1B	_	2	_	_	Δ	_	Δ	Δ	Δ	Δ				
ABX	Add B to X	IX + (00 : B) ⇒ IX	INH	3A	_	3	_	_	_	_	_	_	_	_				
ABY	Add B to Y	IY + (00 : B) ⇒ IY	INH	18 3A	_	4	_	_	_	_	_	_	_	_				
ADCA (opr)	Add with Carry to A	$A + M + C \Rightarrow A$	A IMM A DIR A EXT A IND,X A IND,Y	89 99 B9 A9 18 A9	ii dd hh II ff	2 3 4 4 5	_	_	Δ	_	Δ	Δ	Δ	Δ				
ADCB (opr)	Add with Carry to B	$B + M + C \Rightarrow B$	B IMM B DIR B EXT B IND,X B IND,Y	C9 D9 F9 E9	ii dd hh II ff	2 3 4 4 5	_	_	Δ	_	Δ	Δ	Δ	Δ				
ADDA (opr)	Add Memory to A	$A + M \Rightarrow A$	A IMM A DIR A EXT A IND,X A IND,Y	8B 9B BB AB 18 AB	ii dd hh II ff	2 3 4 4 5	_	_	Δ	_	Δ	Δ	Δ	Δ				
ADDB (opr)	Add Memory to B	B + M ⇒ B	B IMM B DIR B EXT B IND,X B IND,Y	CB DB FB EB EB	ii dd hh II ff	2 3 4 4 5	_	_	Δ	_	Δ	Δ	Δ	Δ				
ADDD (opr)	Add 16-Bit to D	$D + (M : M + 1) \Rightarrow D$	IMM DIR EXT IND,X IND,Y	C3 D3 F3 E3 18 E3	jj kk dd hh II ff	4 5 6 6 7	_	_	_	_	Δ	Δ	Δ	Δ				
ANDA (opr)	AND A with Memory	$A \bullet M \Rightarrow A$	A IMM A DIR A EXT A IND,X A IND,Y	84 94 B4 A4 18 A4	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_				
ANDB (opr)	AND B with Memory	$B \bullet M \Rightarrow B$	B IMM B DIR B EXT B IND,X B IND,Y	C4 D4 F4 E4 18 E4	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_				
ASL (opr)	Arithmetic Shift Left	C b7 b0	EXT IND,X IND,Y	78 68 18 68	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	Δ				
ASLA	Arithmetic Shift Left A	C b7 b0	A INH	48	_	2	_	_	_	_	Δ	Δ	Δ	Δ				
ASLB	Arithmetic Shift Left B	C b7 b0	B INH	58	_	2	_	_	_	_	Δ	Δ	Δ	Δ				
ASLD	Arithmetic Shift Left D	← ← ← 0 C b7 A b0 b7 B b0	INH	05	_	3	_	_	_	_	Δ	Δ	Δ	Δ				

M68HC11E Series Programming Reference Guide, Rev. 2.1

lable 1. Ilistruction Set (Sheet 2 of 6)

			Addressing	Instruction				Condition Codes									
Mnemonic	Operation	Description	Mode	Opcode	Operand	Cycles	s	Х	Н	1	N	z	٧	С			
ASR	Arithmetic Shift		EXT	77	hh II	6	_	_	_	_	Δ	Δ	Δ	Δ			
	Right	b7 b0 C	IND,X IND,Y	67 18 67	ff ff	6 7											
ASRA	Arithmetic Shift	_	A INH	47	_	2	_	_	_	_	Δ	Δ	Δ	Δ			
	Right A	b7 b0 C															
ASRB	Arithmetic Shift Right B		B INH	57	_	2	_	_	_	_	Δ	Δ	Δ	Δ			
	Tilgitt D	b7 b0 C															
BCC (rel)	Branch if Carry Clear	? C = 0	REL	24	rr	3	_	_	-	-	_	-	-	-			
BCLR (opr) (msk)	Clear Bit(s)	$M \bullet (\overline{mm}) \Rightarrow M$	DIR IND,X	15 1D	dd mm ff mm	6 7	_	_	_	_	Δ	Δ	0	_			
(IIISK)			IND,X IND,Y	18 1D	ff mm	8											
BCS (rel)	Branch if Carry Set	? C = 1	REL	25	rr	3	_	_	_	_	_	_	_	_			
BEQ (rel)	Branch if = Zero	? Z = 1	REL	27	rr	3	_	_	_	_	_	_	_	_			
BGE (rel)	Branch if ∆ Zero	? N ⊕ V = 0	REL	2C	rr	3	_	_	_	_	_	_	_	_			
BGT (rel)	Branch if > Zero	? Z + (N ⊕ V) = 0	REL	2E	rr	3	_	_	_	_	_	_	_	_			
BHI (rel)	Branch if Higher	? C + Z = 0	REL	22	rr	3	_		_	_	_			_			
BHS (rel)	Branch if Higher or Same	? C = 0	REL	24	rr	3	_	_	_	_	_	_	_	_			
BITA (opr)	Bit(s) Test A with Memory	A • M	A IMM A DIR	85 95	ii dd	2	_	_	_	-	Δ	Δ	0	_			
	with McHory		A EXT	B5	hh II	4											
			A IND,X A IND,Y	A5 18 A5	ff ff	4 5											
BITB (opr)	Bit(s) Test B with Memory	B • M	B IMM B DIR	C5 D5	ii dd	2 3	_	_	-	_	Δ	Δ	0	_			
	with Memory		B EXT	F5	hh II	4											
			B IND,X B IND,Y	E5 18 E5	ff	4 5											
BLE (rel)	Branch if Δ Zero	? Z + (N ⊕ V) = 1	REL	2F	rr	3	_	_	_	_	_	_	_	_			
BLO (rel)	Branch if Lower	? C = 1	REL	25	rr	3	_	_	_	_	_	_	_	_			
BLS (rel)	Branch if Lower or Same	? C + Z = 1	REL	23	rr	3	_	_	_	_	_	_	_	_			
BLT (rel)	Branch if < Zero	? N ⊕ V = 1	REL	2D	rr	3	_	_	_	_	_	_	_	_			
BMI (rel)	Branch if Minus	? N = 1	REL	2B	rr	3	_	_	_	_	_	_	_	_			
BNE (rel)	Branch if not = Zero	? Z = 0	REL	26	rr	3	_	_	_	_	_	_	_	_			
BPL (rel)	Branch if Plus	? N = 0	REL	2A	rr	3	_	_	_	_	_	_	_	_			
BRA (rel)	Branch Always	? 1 = 1	REL	20	rr	3	_	_	_	_	_	_	_	_			
BRCLR(opr) (msk)	Branch if Bit(s) Clear	? M • mm = 0	DIR IND,X	13 1F	dd mm rr ff mm rr	6 7	_	_	_	_	_	_	_	_			
(rel)	D 1 N	0.1.0	IND,Y	18 1F	ff mm rr	8											
BRN (rel) BRSET(opr)	Branch Never Branch if Bit(s)	? 1 = 0 ? (M) • mm = 0	REL DIR	21 12	rr dd mm rr	3 6	_	_	_	_		_	_				
(msk)	Set	! (IVI) • IIIIII = 0	IND,X IND,Y	1E 18 1E	ff mm rr	7 8						_	_				
BSET (opr)	Set Bit(s)	$M + mm \Rightarrow M$	DIR	14	dd mm	6	_	_	_	_	Δ	Δ	0	_			
(msk)			IND,X IND,Y	1C 18 1C	ff mm ff mm	7 8											
BSR (rel)	Branch to Subroutine	See Figure 3–2	REL	8D	rr	6	_	_	_	_	_	_	_	_			
BVC (rel)	Branch if Overflow Clear	? V = 0	REL	28	rr	3	_		_	_		_	_	_			

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Ilistruction Set (Sheet 3 of

			Addressing	a	li	nstruction				C	onditio	on Cod	des		
Mnemonic	Operation	Description	Mode		code	Operand	Cycles	S	Х	Н	I	N	Z	٧	С
BVS (rel)	Branch if Overflow Set	? V = 1	REL		29	rr	3	_	_	_	_	_	_	_	_
CBA	Compare A to B	A – B	INH		11	_	2	_	_	_	_	Δ	Δ	Δ	Δ
CLC	Clear Carry Bit	0 ⇒ C	INH		0C	_	2	_	_	_	_	_	_	_	0
CLI	Clear Interrupt Mask	0 ⇒ I	INH		0E	_	2	-	_	_	0	-	-	_	_
CLR (opr)	Clear Memory Byte	$0 \Rightarrow M$	EXT IND,X IND,Y		7F 6F 6F	hh II ff ff	6 6 7	_	_	_	_	0	1	0	0
CLRA	Clear Accumulator A	$0 \Rightarrow A$	A INH		4F	_	2	_	_	-	-	0	1	0	0
CLRB	Clear Accumulator B	0 ⇒ B	B INH		5F	_	2	_	_	_	_	0	1	0	0
CLV	Clear Overflow Flag	$0\RightarrowV$	INH		0A	_	2	_	_	_	_	-	_	0	_
CMPA (opr)	Compare A to Memory	A – M	A IMM A DIR A EXT A IND,X A IND,Y		81 91 B1 A1 A1	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	Δ	Δ
CMPB (opr)	Compare B to Memory	B – M	B IMM B DIR B EXT B IND,X B IND,Y		C1 D1 F1 E1	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	Δ	Δ
COM (opr)	Ones Complement Memory Byte	\$FF − M ⇒ M	EXT IND,X IND,Y		73 63 63	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	0	1
COMA	Ones Complement A	\$FF – A ⇒ A	A INH		43	_	2	_	_	_	_	Δ	Δ	0	1
СОМВ	Ones Complement B	\$FF – B ⇒ B	B INH		53	_	2	_	_	_	_	Δ	Δ	0	1
CPD (opr)	Compare D to Memory 16-Bit	D – M : M + 1	IMM DIR EXT IND,X IND,Y		83 93 B3 A3 A3	jj kk dd hh II ff	5 6 7 7 7	_	_	_	_	Δ	Δ	Δ	Δ
CPX (opr)	Compare X to Memory 16-Bit	IX – M : M + 1	IMM DIR EXT IND,X IND,Y		8C 9C BC AC AC	jj kk dd hh II ff	4 5 6 6 7	_	_	_	_	Δ	Δ	Δ	Δ
CPY (opr)	Compare Y to Memory 16-Bit	IY - M : M + 1	IMM DIR EXT IND,X IND,Y		8C 9C BC AC AC	jj kk dd hh II ff	5 6 7 7 7	_	_	_	_	Δ	Δ	Δ	Δ
DAA	Decimal Adjust A	Adjust Sum to BCD	INH		19	_	2	_	_	_	_	Δ	Δ	Δ	Δ
DEC (opr)	Decrement Memory Byte	$M-1 \Rightarrow M$	EXT IND,X IND,Y		7A 6A 6A	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	_
DECA	Decrement Accumulator A	A − 1 ⇒ A	A INH		4A	_	2	_	_	_	_	Δ	Δ	Δ	_
DECB	Decrement Accumulator B	B − 1 ⇒ B	B INH		5A	_	2	_	_	_	_	Δ	Δ	Δ	_

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Ilistruction Set (Sheet 4 of 6)

			Addressing	Ir	struction				Co	nditio	n Coc	odes				
Mnemonic	Operation	Description	Mode	Opcode	Operand	Cycles	s	Х	Н	ı	N	Z	٧	С		
DES	Decrement Stack Pointer	SP − 1 ⇒ SP	INH	34	_	3	_	_	_	_	_	_	_	_		
DEX	Decrement Index Register X	$IX - 1 \Rightarrow IX$	INH	09	_	3	_	_	_	_	_	Δ	_	_		
DEY	Decrement Index Register Y	IY − 1 ⇒ IY	INH	18 09	_	4	_	_	_	_	_	Δ	_	_		
EORA (opr)	Exclusive OR A with Memory	$A \oplus M \Rightarrow A$	A IMM A DIR A EXT A IND,X A IND,Y	88 98 B8 A8 18 A8	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_		
EORB (opr)	Exclusive OR B with Memory	$B \oplus M \Rightarrow B$	B IMM B DIR B EXT B IND,X B IND,Y	C8 D8 F8 E8	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_		
FDIV	Fractional Divide 16 by 16	$D/IX\RightarrowIX;r\RightarrowD$	INH	03	_	41	_	_	_	_	_	Δ	Δ	Δ		
IDIV	Integer Divide 16 by 16	$D / IX \Rightarrow IX; r \Rightarrow D$	INH	02	_	41	_	_	_	_	_	Δ	0	Δ		
INC (opr)	Increment Memory Byte	$M + 1 \Rightarrow M$	EXT IND,X IND,Y	7C 6C 18 6C	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	_		
INCA	Increment Accumulator A	A + 1 ⇒ A	A INH	4C	_	2	_	_	_	_	Δ	Δ	Δ	_		
INCB	Increment Accumulator B	B + 1 ⇒ B	B INH	5C	_	2	_	_	_	_	Δ	Δ	Δ	_		
INS	Increment Stack Pointer	$SP + 1 \Rightarrow SP$	INH	31	_	3	_	_	_	_	_	_	-	_		
INX	Increment Index Register X	$IX + 1 \Rightarrow IX$	INH	08	_	3	_	_	_	_	_	Δ	-	_		
INY	Increment Index Register Y	IY + 1 ⇒ IY	INH	18 08	_	4	_	-	_	_	_	Δ	_	_		
JMP (opr)	Jump	See Figure 3–2	EXT IND,X IND,Y	7E 6E 18 6E	hh II ff ff	3 3 4	_	_	_	_	_	_	-	_		
JSR (opr)	Jump to Subroutine	See Figure 3–2	DIR EXT IND,X IND,Y	9D BD AD 18 AD	dd hh II ff ff	5 6 6 7	_	_	_	_	_	_	_	_		
LDAA (opr)	Load Accumulator A	$M\RightarrowA$	A IMM A DIR A EXT A IND,X A IND,Y	86 96 B6 A6 18 A6	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_		
LDAB (opr)	Load Accumulator B	$M\RightarrowB$	B IMM B DIR B EXT B IND,X B IND,Y	C6 D6 F6 E6 18 E6	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_		
LDD (opr)	Load Double Accumulator D	$M \Rightarrow A, M + 1 \Rightarrow B$	IMM DIR EXT IND,X IND,Y	CC DC FC EC 18 EC	jj kk dd hh II ff	3 4 5 5 6	_	_	_	_	Δ	Δ	0	_		

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Illatidetion Set (Sileet 3 of

			1	1	nstruction			Condition Codes						
Mnemonic	Operation	Description	Addressing Mode	Opcode	Operand	Cycles	S	Х	Н	I	N	Z	V	С
LDS (opr)	Load Stack Pointer	M : M + 1 ⇒ SP	IMM DIR EXT IND,X	8E 9E BE AE	jj kk dd hh II ff	3 4 5 5	_	_	_	_	Δ	Δ	0	_
LDX (opr)	Load Index Register X	M : M + 1 ⇒ IX	IND,Y IMM DIR EXT IND,X IND,Y	CE DE FE EE CD EE	ff jj kk dd hh II ff	6 3 4 5 5 6	_	_	_	_	Δ	Δ	0	_
LDY (opr)	Load Index Register Y	M : M + 1 ⇒ IY	IMM DIR EXT IND,X IND,Y	18 CE 18 DE 18 FE 1A EE 18 EE	jj kk dd hh II ff	4 5 6 6	_	_	_	_	Δ	Δ	0	_
LSL (opr)	Logical Shift Left		EXT IND,X IND,Y	78 68 18 68	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	Δ
LSLA	Logical Shift Left A	C b7 b0	A INH	48	_	2	_	_	_	_	Δ	Δ	Δ	Δ
LSLB	Logical Shift Left B	—————————————————————————————————————	B INH	58	_	2	_	_	_	_	Δ	Δ	Δ	Δ
LSLD	Logical Shift Left Double	C b7 A b0 b7 B b0	INH	05	_	3	_	_	_	_	Δ	Δ	Δ	Δ
LSR (opr)	Logical Shift Right	0	EXT IND,X IND,Y	74 64 18 64	hh II ff ff	6 6 7	_	_	_	_	0	Δ	Δ	Δ
LSRA	Logical Shift Right A	0 	A INH	44	_	2	_	_	_	_	0	Δ	Δ	Δ
LSRB	Logical Shift Right B	0	B INH	54	_	2	_	_	-	-	0	Δ	Δ	Δ
LSRD	Logical Shift Right Double	0	INH	04	_	3	_	_	_	_	0	Δ	Δ	Δ
MUL	Multiply 8 by 8	$A * B \Rightarrow D$	INH	3D	_	10	_	_	_	_	_	_	_	Δ
NEG (opr)	Two's Complement Memory Byte	0 − M ⇒ M	EXT IND,X IND,Y	70 60 18 60	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	Δ
NEGA	Two's Complement A	0 − A ⇒ A	A INH	40	_	2	_	-	-	-	Δ	Δ	Δ	Δ
NEGB	Two's Complement B	0 − B ⇒ B	B INH	50	_	2	_	_	_	_	Δ	Δ	Δ	Δ
NOP	No operation	No Operation	INH	01	_	2	_	_	_	_	_	_		
ORAA (opr)	OR Accumulator A (Inclusive)	$A + M \Rightarrow A$	A IMM A DIR A EXT A IND,X A IND,Y	8A 9A BA AA 18 AA	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_
ORAB (opr)	OR Accumulator B (Inclusive)	B + M ⇒ B	B IMM B DIR B EXT B IND,X B IND,Y	CA DA FA EA 18 EA	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Instruction Set (Sheet o of o)

	1		1	1	struction		l			nditio	n Cor	laa		
Mnemonic	Operation	Description	Addressing Mode	Opcode	Operand	Cycles	S	х	Н	I	N	Z	v	С
PSHA	Push A onto Stack	$A \Rightarrow Stk,SP = SP - 1$		36	— —	3	<u> </u>	_	_	<u>'</u>	—	_		_
PSHB	Push B onto Stack	$B \Rightarrow Stk, SP = SP - 1$	B INH	37	_	3	_	_	_	_	_	_	_	_
PSHX	Push X onto Stack (Lo First)	$IX \Rightarrow Stk, SP = SP - 2$	INH	3C	_	4	_	_	_	_	_	_	_	_
PSHY	Push Y onto Stack (Lo First)	$IY \Rightarrow Stk, SP = SP - 2$	INH	18 3C	_	5	_	-	-	-	_	_	_	_
PULA	Pull A from Stack	$SP = SP + 1$, $A \leftarrow Stk$	A INH	32	_	4	_	_	_	_	_	_	_	_
PULB	Pull B from Stack	$SP = SP + 1, B \Leftarrow Stk$	B INH	33	_	4	_	_	_	_	_	_	_	_
PULX	Pull X From Stack (Hi First)	$SP = SP + 2$, $IX \Leftarrow Stk$	INH	38	_	5	_	_	_	_	_	_	_	_
PULY	Pull Y from Stack (Hi First)	$SP = SP + 2$, $IY \Leftarrow Stk$	INH	18 38	_	6	_	_	_	_	_	_	_	_
ROL (opr)	Rotate Left	C b7 b0	EXT IND,X IND,Y	79 69 18 69	hh II ff ff	6 6 7	_	-	_	_	Δ	Δ	Δ	Δ
ROLA	Rotate Left A	C b7 b0	A INH	49	_	2	_	_	_	_	Δ	Δ	Δ	Δ
ROLB	Rotate Left B	C b7 b0	B INH	59	_	2	_	_	_	_	Δ	Δ	Δ	Δ
ROR (opr)	Rotate Right	b7 b0 C	EXT IND,X IND,Y	76 66 18 66	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	Δ	Δ
RORA	Rotate Right A	b7 b0 C	A INH	46	_	2	_	-	-	-	Δ	Δ	Δ	Δ
RORB	Rotate Right B	b7 b0 C	B INH	56	_	2	_	-	-	_	Δ	Δ	Δ	Δ
RTI	Return from Interrupt	See Figure 3–2	INH	3B	_	12	Δ	\	Δ	Δ	Δ	Δ	Δ	Δ
RTS	Return from Subroutine	See Figure 3–2	INH	39	_	5	_	_	_	_	_	-	_	_
SBA	Subtract B from A	$A-B\RightarrowA$	INH	10	_	2	_	-	-	-	Δ	Δ	Δ	Δ
SBCA (opr)	Subtract with Carry from A	$A-M-C\RightarrowA$	A IMM A DIR A EXT A IND,X A IND,Y	82 92 B2 A2 18 A2	ii dd hh II ff	2 3 4 4 5	_	_	-	_	Δ	Δ	Δ	Δ
SBCB (opr)	Subtract with Carry from B	$B-M-C\RightarrowB$	B IMM B DIR B EXT B IND,X B IND,Y	C2 D2 F2 E2 18 E2	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	Δ	Δ
SEC	Set Carry	1 ⇒ C	INH	0D	_	2	_	_	_	_	_	_	_	1
SEI	Set Interrupt Mask	1 ⇒ I	INH	0F	_	2	_	_	_	1	_	_	_	_
SEV	Set Overflow Flag	1 ⇒ V	INH	0В	_	2	_	_	_	-	_	_	1	_

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Ilistruction Set (Sheet 7 of t

	1		1	. mstruct				- · · · · ·		Condition Codes										
Mnemonic	Operation	Description	-	Addressing			struction					1								
		-	_	Mode	Op	code	Operand	Cycles	S	X	Н	I	N	Z	٧	С				
STAA (opr)	Store Accumulator A	$A\RightarrowM$	A A A	DIR EXT IND,X IND,Y	18	97 B7 A7 A7	dd hh II ff	3 4 4 5	_	_	_	_	Δ	Δ	0	_				
STAB (opr)	Store Accumulator B	$B\RightarrowM$	B B B	DIR EXT IND,X IND,Y	18	D7 F7 E7 E7	dd hh II ff ff	3 4 4 5	_	_	_	_	Δ	Δ	0	_				
STD (opr)	Store Accumulator D	$A \Rightarrow M, B \Rightarrow M + 1$		DIR EXT IND,X IND,Y	18	DD FD ED ED	dd hh II ff ff	4 5 5 6	_	_	_	_	Δ	Δ	0	_				
STOP	Stop Internal Clocks	_		INH		CF	_	2	_	-	_	-	_	-	_	_				
STS (opr)	Store Stack Pointer	SP ⇒ M : M + 1		DIR EXT IND,X IND,Y	18	9F BF AF AF	dd hh II ff ff	4 5 5 6	_	_	_	_	Δ	Δ	0	_				
STX (opr)	Store Index Register X	$IX \Rightarrow M: M+1$		DIR EXT IND,X IND,Y	CD	DF FF EF EF	dd hh II ff ff	4 5 5 6		_	_	_	Δ	Δ	0	_				
STY (opr)	Store Index Register Y	IY ⇒ M : M + 1		DIR EXT IND,X IND,Y	18 18 1A 18	DF FF EF EF	dd hh II ff ff	5 6 6	_	_	_	_	Δ	Δ	0	_				
SUBA (opr)	Subtract Memory from A	A − M ⇒ A	A A A A	IMM DIR EXT IND,X IND,Y	18	80 90 B0 A0 A0	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	Δ	Δ				
SUBB (opr)	Subtract Memory from B	B − M ⇒ B	A A A A	IMM DIR EXT IND,X IND,Y	18	C0 D0 F0 E0 E0	ii dd hh II ff	2 3 4 4 5	_	_	_	_	Δ	Δ	Δ	Δ				
SUBD (opr)	Subtract Memory from D	D − M : M + 1 ⇒ D		IMM DIR EXT IND,X IND,Y	18	83 93 B3 A3 A3	jj kk dd hh II ff	4 5 6 6 7	_	_	_	_	Δ	Δ	Δ	Δ				
SWI	Software Interrupt	See Figure 3–2		INH		3F	_	14	_	_	_	1	_	_	_	_				
TAB	Transfer A to B	$A\RightarrowB$		INH		16	_	2	_	_	_	_	Δ	Δ	0	_				
TAP	Transfer A to CC Register	A⇒CCR		INH		06	_	2	Δ	\downarrow	Δ	Δ	Δ	Δ	Δ	Δ				
TBA	Transfer B to A	$B \Rightarrow A$		INH		17	_	2	_	_	_	_	Δ	Δ	0	_				
TEST	TEST (Only in Test Modes)	Address Bus Counts		INH		00	_	*	_	_	_	_	_	_	_	_				
TPA	Transfer CC Register to A	$CCR \Rightarrow A$		INH		07	_	2	_	_	_	_	_	_	_	_				
TST (opr)	Test for Zero or Minus	M – 0		EXT IND,X IND,Y	18	7D 6D 6D	hh II ff ff	6 6 7	_	_	_	_	Δ	Δ	0	0				
TSTA	Test A for Zero or Minus	A – 0	Α	INH		4D	_	2	_	_	_	_	Δ	Δ	0	0				
TSTB	Test B for Zero or Minus	B – 0	В	INH		5D	_	2	_	-	_	_	Δ	Δ	0	0				
TSX	Transfer Stack Pointer to X	SP + 1 ⇒ IX		INH		30	_	3	_	-	_	-	_	_	_	_				

M68HC11E Series Programming Reference Guide, Rev. 2.1

Table 1. Ilistruction Set (Sheet 6 of 6)

Masassis	Operation	Description	Description Addressing Instruction Condition Co												
Mnemonic	· · Mode	Mode	Op	code	Operand	Cycles	s	Х	Н	ı	N	Z	٧	С	
TSY	Transfer Stack Pointer to Y	SP + 1 ⇒ IY	INH	18	30	_	4	_	_	_	_	_	_	_	_
TXS	Transfer X to Stack Pointer	IX − 1 ⇒ SP	INH		35	_	3	_	_	_	_	_	_	_	_
TYS	Transfer Y to Stack Pointer	IY − 1 ⇒ SP	INH	18	35	_	4	_	_	_	_	_	_	_	_
WAI	Wait for Interrupt	Stack Regs & WAIT	INH		3E	_	**	_	_	_	_	_	_	_	_
XGDX	Exchange D with X	$IX\RightarrowD,D\RightarrowIX$	INH		8F	_	3	_	-	-	_	_	_	-	_
XGDY	Exchange D with Y	$IY\RightarrowD,D\RightarrowIY$	INH	18	8F	_	4	_	_	_	_	_	_	_	_

Cycle

- * Infinity or until reset occurs
- 12 cycles are used beginning with the opcode fetch. A wait state is entered which remains in effect for an integer number of MPU E-clock cycles (n) until an interrupt is recognized. Finally, two additional cycles are used to fetch the appropriate interrupt vector (14 + n total).

Operands

dd = 8-bit direct address (\$0000-\$00FF) (high byte assumed to be \$00)

ff = 8-bit positive offset \$00 (0) to \$FF (255) (is added to index)

hh = High-order byte of 16-bit extended address

ii = One byte of immediate data

jj = High-order byte of 16-bit immediate data kk = Low-order byte of 16-bit immediate data II = Low-order byte of 16-bit extended address

mm = 8-bit mask (set bits to be affected)

rr = Signed relative offset \$80 (-128) to \$7F (+127)

(offset relative to address following machine code offset byte))

Operators

() Contents of register shown inside parentheses

← Is transferred to

↓ Is pushed onto stack

Boolean AND

Arithmetic addition symbol except where used as inclusive-OR symbol in Boolean formula

⊕ Exclusive-OR

* Multiply

: Concatenation

Arithmetic subtraction symbol or negation symbol (two's complement)

Condition Codes

Bit not changed

0 Bit always cleared

1 Bit always set

 Δ Bit cleared or set, depending on operation

→ Bit can be cleared, cannot become set