The 64th William Lowell Putnam Mathematical Competition Saturday, December 6, 2003

- A-1 Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers, $n = a_1 + a_2 + \cdots + a_k$, with k an arbitrary positive integer and $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$? For example, with n = 4 there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.
- A=2 Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative real numbers. Show that

$$(a_1 a_2 \cdots a_n)^{1/n} + (b_1 b_2 \cdots b_n)^{1/n}$$

$$\leq [(a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n)]^{1/n}.$$

A-3 Find the minimum value of

$$|\sin x + \cos x + \tan x + \cot x + \sec x + \csc x|$$

for real numbers x.

A-4 Suppose that a,b,c,A,B,C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$|ax^2 + bx + c| \le |Ax^2 + Bx + C|$$

for all real numbers x. Show that

$$|b^2 - 4ac| \le |B^2 - 4AC|.$$

A–5 A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1,-1) that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck (n-1)-paths.

A-6 For a set S of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1 \in S$, $s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?

B-1 Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

- B–2 Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$, form a new sequence of n-1 entries $\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of n-2 entries, and continue until the final sequence produced consists of a single number x_n . Show that $x_n < 2/n$.
- B-3 Show that for each positive integer n,

$$n! = \prod_{i=1}^{n} \operatorname{lcm}\{1, 2, \dots, \lfloor n/i \rfloor\}.$$

(Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.)

B-4 Let

$$f(z) = az^4 + bz^3 + cz^2 + dz + e$$

= $a(z - r_1)(z - r_2)(z - r_3)(z - r_4)$

where a,b,c,d,e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.

- B-5 Let *A*, *B*, and *C* be equidistant points on the circumference of a circle of unit radius centered at *O*, and let *P* be any point in the circle's interior. Let *a*, *b*, *c* be the distance from *P* to *A*, *B*, *C*, respectively. Show that there is a triangle with side lengths *a*, *b*, *c*, and that the area of this triangle depends only on the distance from *P* to *O*.
- B–6 Let f(x) be a continuous real-valued function defined on the interval [0,1]. Show that

$$\int_0^1 \int_0^1 |f(x) + f(y)| \, dx \, dy \ge \int_0^1 |f(x)| \, dx.$$