MATH10101, for supervision in week 08. Counting. Definition of GCD — SOLUTIONS

Q1.

- (*) (i) Write down one example of a function $f: \{1, 2, 3, 4\} \rightarrow \{a, b, c, d\}$ such that f is not injective but the restriction, $f|_{\{1,2,3\}}$, of f onto the subset $\{1,2,3\}$ of the domain is injective.
 - (ii) Prove that there are n(n!) functions $f: \mathbb{N}_n \to \mathbb{N}_n$ such that the restriction $f|_{\mathbb{N}_{n-1}}$ is injective.

Q1 - solution.

(*) (i) One possible example is given by f(1) = a, f(2) = b, f(3) = c and f(4) = c.

The function f is not injective because $3 \neq 4$ in the domain of f but f(3) = f(4). Recall that the restriction $f|_{\{1,2,3\}}$ is the function with domain $\{1,2,3\}$, defined by the same rule as f but only for the arguments 1, 2 and 3. This rule says $1 \mapsto a$, $2 \mapsto b$ and $3 \mapsto c$; by inspection, the function thus defined on $\{1,2,3\}$ is injective.

(ii) Recall from the lectures that the number of injective functions from a finite set X to a finite set Y is $\frac{n!}{(n-m)!}$ where n=|Y| and m=|X|. Setting $X=\mathbb{N}_{n-1}$ and $Y=\mathbb{N}_n$, this gives $\frac{n!}{(n-(n-1))!}=\frac{n!}{1!}=n!$ injective functions from $\mathbb{N}_{n-1}=\{1,2,\ldots,n-1\}$ to $\mathbb{N}_n=\{1,2,\ldots,n\}$.

(Aside: this is the same as the number of injective = bijective functions from \mathbb{N}_n to \mathbb{N}_n . Think why this is so.)

This means that the restriction $f|_{\mathbb{N}_{n-1}}$, which is required to be injective, can be chosen in n! possible ways.

But if $f|_{\mathbb{N}_{n-1}}$ is given — meaning that the values $f(1), f(2), \ldots, f(n-1)$ are selected — then to define the function f on \mathbb{N}_n , one only needs to select the value f(n). There is no restriction on f(n) so f(n) can be any element of \mathbb{N}_n , i.e., there are n choices for f(n). This means that each injective function $\mathbb{N}_{n-1} \to \mathbb{N}_n$ is the restriction of n possible functions $f: \mathbb{N}_n \to \mathbb{N}_n$. Hence the total number of allowed functions f: n times the number of injections from n0, that is, $n \times n$ 1.

- (\star) **Q2**. Find the number of subsets of $\{1, 2, \dots, 10\}$ which contain 1 and do not contain 10.
 - **Q2 solution.** Subsets which do not contain 10 are subsets of $\{1, 2, ..., 9\}$. Hence we are counting all subsets of $\{1, 2, ..., 9\}$ which contain 1.

The total number of subsets of $\{1,2,\dots,9\}$ is $|\mathcal{P}(\{1,2,\dots,9\})|=2^{|\{1,2,\dots,9\}|}=2^9=512.$

The number of subsets of $\{1, 2, ..., 9\}$ which do **not** contain 1 (i.e., subsets of $\{2, ..., 9\}$) is $2^{|\{2,...,9\}|} = 2^8 = 256$.

Therefore, the number of subsets of $\{1,2,\ldots,9\}$ which **do** contain 1 is 512-256=256.

- **Q3**. (i) Prove, using the Binomial Theorem, that for all $n \in \mathbb{Z}^{\geq}$, $\sum_{r=0}^{n} \binom{n}{r} = 2^{n}$.
- (ii) Now prove the same statement without using the Binomial Theorem by considering a set A with |A|=n and calculating the cardinality of $\bigcup_{r=0}^{n} \mathcal{P}_{r}\left(A\right)$.
- (iii) Check that the statement in (i) is true for n=5 by direct evaluation of both sides.
- **Q3 solution.** (i) Note that $\sum_{r=0}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} 1^{n-r} 1^r$ equals $(1+1)^n$ by the Binomial Theorem. This is the same as 2^n .
- (ii) $\bigcup_{r=0}^{n} \mathcal{P}_{r}(A)$ is the collection of **all** subsets of A, i.e. $\mathcal{P}(A)$. It is a **disjoint union**. Recall from the lectures that the cardinality of a disjoint union is the sum of the cardinalities. Another result from the lectures is

$$|\mathcal{P}(A)| = 2^n,$$

hence

$$2^{n} = \left| \bigcup_{r=0}^{n} \mathcal{P}_{r} \left(A \right) \right| = \sum_{r=0}^{n} \left| \mathcal{P}_{r} \left(A \right) \right| = \sum_{r=0}^{n} \binom{n}{r},$$

by definition of the binomial coefficients.

(iii)
$$n = 5$$
, $\sum_{r=0}^{5} {5 \choose r} = 1 + 5 + 10 + 10 + 5 + 1 = 32 = 2^5$.

- (*) **Q4**. (i) Using the Binomial Theorem, prove that $\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$.
- (*) (ii) Use the result of (i) along with **Q3**(i) to evaluate the sums $\sum_{r=0}^{n} \binom{n}{r}$ and $\sum_{r=1}^{n} \binom{n}{r}$.
- (\star) (iii) Check that both of your answers in (ii) are correct for n=4 by direct calculation.

Q4 - solution.

 (\star) (i) The Binomial Theorem states that for all x, y we have

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r.$$

Choose x = 1 and y = -1 to get

$$0 = (1 + (-1))^n = \sum_{r=0}^n \binom{n}{r} (-1)^r$$

as required.

(*) (ii) Add $\sum_{r=0}^{n} \binom{n}{r} = 2^n$, from **Q3**(i), to $\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$ proved in (i) to get

$$2^{n} = \sum_{r=0}^{n} (1 + (-1)^{r}) \binom{n}{r} = \sum_{\substack{r=0 \ r \text{ even}}}^{n} 2 \binom{n}{r}.$$

Subtract to get

$$2^{n} = \sum_{r=0}^{n} (1 - (-1)^{r}) \binom{n}{r} = \sum_{\substack{r=0 \ r \text{ odd}}}^{n} 2 \binom{n}{r}.$$

Hence the binomial coefficients $\binom{n}{r}$ for r even add up to 2^{n-1} , and the binomial coefficients $\binom{n}{r}$ for r odd also add up to 2^{n-1} .

(*) (iii) Example:
$$n = 4$$
, $\binom{4}{0} + \binom{4}{2} + \binom{4}{4} = 1 + 6 + 1 = 8$, $\binom{4}{1} + \binom{4}{3} = 4 + 4 = 8$.

Q5. Use the Binomial Theorem to calculate $\sum_{r=0}^{100} 4^{2r} 5^{100-2r} \binom{100}{r}$. [Answer: 8.2¹⁰⁰]

Q5 - **solution.**
$$\sum_{r=0}^{n} 4^{2r} 5^{n-2r} \binom{n}{r} = \frac{1}{5^n} \sum_{r=0}^{n} 4^{2r} 5^{2n-2r} \binom{n}{r} = \frac{1}{5^n} \sum_{r=0}^{n} 16^r 25^{n-r} \binom{n}{r}, \text{ which by the Binomial Theorem equals } \frac{1}{5^n} \left(16 + 25\right)^n = \left(\frac{41}{5}\right)^n. \text{ It remains to set } n = 100.$$

Q6. Let A be a finite set and let $\mathcal{Q}(A) = \{(C, D) \in \mathcal{P}(A) \times \mathcal{P}(A) : C \subseteq D\}$. Prove that $|\mathcal{Q}(A)| = 3^{|A|}$.

Q6 - **solution. Solution 1:** Let n=|A| and let us count pairs (C,D) of subsets of A where $C\subseteq D$ and additionally |D|=r. A set D with |D|=r can be chosen in $\binom{n}{r}$ ways, and to each such choice of D there corresponds 2^r choices of C, since C is an arbitrary subset of D. Hence there are $\binom{n}{r}2^r$ pairs $(C,D)\in \mathcal{P}(A)\times \mathcal{P}(A)$ such that $C\subseteq D$ and |D|=r. The total number of elements of $\mathcal{Q}(A)$ is obtained by summing over all possible r: that is,

$$|\mathcal{Q}(A)| = \sum_{r=0}^{n} \binom{n}{r} 2^r = (1+2)^n = 3^n.$$

Solution 2: Given a pair (C,D) of subsets of A such that $C\subseteq D$, define the function $f\colon A\to \{0,1,2\}$ by

$$f(a) = \begin{cases} 0, & a \notin D, \\ 1, & a \in D \setminus C, \\ 2, & a \in C. \end{cases}$$

Informally, for $a \in A$, f(a) is the number of entries out of two entries of the pair (C,D) which contain a. It turns out that each function $f \in Fun(A,\{0,1,2\})$ corresponds to exactly one pair $(C,D) \in \mathcal{Q}(A)$, namely $C = \{a \in A : f(a) = 2\}$ and $D = \{a \in A : f(a) \geq 1\}$. We have thus constructed a bijection between $\mathcal{Q}(A)$ and the set $Fun(A,\{0,1,2\})$. The latter set has cardinality $3^{|A|}$ (a result from the course), hence so does $\mathcal{Q}(A)$.

- (\star) Q7. Find the quotient q and remainder r on dividing the following numbers by 17:
 - (i) 1; (ii) -1; (iii) 100; (iv) -100.

Q7 - solution.

- (*) (i) $1 = 17 \times 0 + 1$ and $0 \le 1 < 17$, so q = 0, r = 1;
- (*) (ii) $-1 = 17 \times (-1) + 16$ and $0 \le 16 < 17$, so q = -1, r = 16;
- (*) (iii) $100 = 17 \times 5 + 15$ and $0 \le 15 < 17$, so q = 5, r = 15;
- (*) (iv) $-100 = 17 \times (-6) + 2$ and 0 < 2 < 17, so q = -6, r = 2.

Recall that by the Division Theorem, the answer in each case is **unique**. Importantly, the remainders are always **non-negative**.

- **Q8**. Let a, b be integers such that $b \mid a$.
- (*) (i) Carefully prove the following proposition: $\forall c \in \mathbb{Z}, ((c \mid b) \implies (c \mid a)).$
- (*) (ii) Assume $b \ge 0$. Use the definition of gcd to prove that gcd(a, b) = b.

Q8 - solution.

- (*) (i) Let $c \in \mathbb{Z}$. To prove the implication $(c \mid b) \implies (c \mid a)$, assume that $c \mid b$. Then by definition of a divisor, b = ck for some $k \in \mathbb{Z}$. We are also given that $b \mid a$, so again by definition $a = b\ell$ for some $\ell \in \mathbb{Z}$. Substituting, we obtain $a = c(k\ell)$. Since $k\ell$ is an integer (as product of two integers), by definition $c \mid a$.
- (*) (ii) It is best to deal with the case b=0 straight away. If b=0 and $b \mid a$ then a=0 (because $a=b\ell=0\ell$ for some $\ell\in\mathbb{Z}$), so $\gcd(a,b)=\gcd(0,0)=0$ (by definition) which is b.

Now assume b > 0. To show that b is the greatest common divisor of a and b, we will show two things: that b is a common divisor, and that b is greater than or equal to any other common divisor of a and b.

- 1. b is a common divisor: indeed, $b \mid a$ (given) and $b \mid b$ (because $b = b \times 1$).
- 2. If c is a common divisor of a and b then $c \leq b$: this step requires b > 0. If c is a common divisor of a and b then in particular $c \mid b$, so b = ck for some $k \in \mathbb{Z}$. Then $k \neq 0$ as $b \neq 0$ so

$$c \le |c| = \frac{|b|}{|k|} = \frac{b}{|k|} \le b$$

as $|k| \ge 1$. From 1. and 2. it follows that b is indeed the greatest common divisor of a and b.