EECS 455: Problem Set 10

Submit via Gradescope via link on Canvas

Due: Wednesday, December 8, 2021, 11pm.

1. A (7,5) Reed Solomon code is used on a channel. The code operates on the finite field $GF(2^3)$ shown below using the polynominal $\alpha^3 = \alpha + 1$. The code has minimum distance 3 and can correct 1 error.

_	0	(0,0,0)
1	1	(0,0,1)
α	α	(0,1,0)
α^2	α^2	(1,0,0)
α^3	$\alpha + 1$	(0,1,1)
α^4	$\alpha^2 + \alpha$	(1,1,0)
α^5	$\alpha^2 + \alpha + 1$	(1,1,1)
α^6	$\alpha^2 + 1$	(1,0,1)

The code has generator polynomial

$$g(x) = (x - \alpha)(x - \alpha^2)$$

$$= x^2 - (\alpha + \alpha^2)x + \alpha^3$$

$$= x^2 + \alpha^4x + \alpha^3$$

A codeword is generated from an information polynomial i(x) by

$$c(x) = g(x)i(x)$$

If $r(x) = x^6 + \alpha^4 x^5$ determine the codeword transmitted.

2. A (7,5) Reed Solomon code is used on a channel. The code operates on the finite field $GF(2^3)$ shown below using the polynominal $\alpha^3 = \alpha + 1$. The code has minimum distance 3 and can correct 1 error.

_	0	(0,0,0)
1	1	(0,0,1)
α	α	(0,1,0)
α^2	α^2	(1,0,0)
α^3	$\alpha + 1$	(0,1,1)
α^4	$\alpha^2 + \alpha$	(1,1,0)
α^5	$\alpha^2 + \alpha + 1$	(1,1,1)
α^6	$\alpha^2 + 1$	(1,0,1)

The code has generator polynomial

$$g(x) = (x - \alpha)(x - \alpha^{2})$$

$$= x^{2} - (\alpha + \alpha^{2})x + \alpha^{3}$$

$$= x^{2} + \alpha^{4}x + \alpha^{3}$$

1

A codeword is generated from an information polynomial i(x) by

$$c(x) = g(x)i(x)$$

The channel drops two symbols (erases them) but the rest of the symbols are received correctly with no errors. If the received vector is $r(x) = 2x^4 + 2x^2 + \alpha^5 x + \alpha^3$ determine the codeword transmitted.

- 3. Consider a Reed Solomon code with 24 information symbols and 28 coded symbols. So there are 4 redundant symbols. The distance of the code is d = n k + 1 = 28 24 + 1 = 5. So the code can correct up to 2 errors. Each symbol is an eight bit byte. Each 8 bit symbol is transmitted over a binary symmetric channel with crossover probability p. Errors occur independently from one bit to the next. Assume that if more than 2 symbol errors occur the decder fails. Determine the probability that the decoder fails. Plot this as a function of p for p. The vertical scale (for probability of decoder failure) should be between 10^{-10} and 1. The horizontal scale between 10^{-6} and 1.
- 4. Consider the rate 1/3 convolutional code with memory 2 and generator polynomials

$$g_0 = [101]$$

 $g_1 = [111]$
 $g_2 = [111]$

The input to the encoder is a sequence of 5 information bits followed by two zeros in order to clear out the encoder. For each input bit to the encoder the encoder output is first the output from generator g_0 , then from g_1 , then from g_2 . This repeats for every input bit.

- (a) Suppose the information bits are u = [01101]. Find the output of the encoder. The output should be a vector of length 3(5+2) = 21.
- (b) Draw the state transition diagram for the encoder and label the output the branches by the input and output.
- (c) Draw the trellis diagram from one state to the next labeling the transition with the input bit and the output bits.
- (d) The transmitted signal is found by encoding the information, mapping the bits to levels ± 1 (0 \rightarrow +1, 1 \rightarrow -1). Suppose the received signal is

Find the most likely information sequence at the input to the encoder.

