1011212013 E

COMP 5 - 4 (RC)

T.E. (Comp.) (Semester – V) (Revised Course) Examination, Nov./Dec. 2013 COMPUTER HARDWARE DESIGN

Duration: 3 Hours Total Marks: 100 Instructions: i) Answer five questions, atleast one full question from each ii) Make suitable assumptions, wherever necessary. MODULE-I 1. a) Give the structural and behavioral VHDL description for full subtractor circuit. Draw the block diagram and also write the truth table. b) Explain: i) Single address instruction format of RIC. ii) Shift/Rotate instruction format of RIC. 6 c) Determine a minimal expression for $\mathrm{D}_{\mathrm{ARII}}$ where AR must be the destination of the following four transfers. $AR \leftarrow 0, 0, 0$ AR ← 1, 1, 1 AR - AR AR - BR Also draw the logic block diagram of the associated hardware. 8 2. a) Bring out the differences between direct access storage and sequential access storage in terms of hardware design. 6 b) Construct logic block diagrams of the data unit realizations of expressions. i) $(A!B!C) * (f, g, h) \leftarrow D$ ii) D ← (A!B) * (f, g) 8 c) Explain any two approaches to inter system bus wiring. 6

MODULE-II

3.	a)	Write combinational logic unit description for an I bit incrementer.	6
	b)	Write the sequence of AHPL steps required to implement shift/rotate instructions of RIC.	6
	c)	What is hardware compiler? With a flow chart explain the steps involved in the compilation of data network.	8
4.	a)	Explain the different forms of clocked transfers.	5
	b)	Write the sequence of AHPL steps to execute the different branch commands of RIC.	8
	c)	Explain the start-reset sequence of the control unit.	7.
		MODULE-III	
5.	a)	Explain hardwired control unit and microprogrammed control unit with neat block diagrams.	8
	b)	Draw a neat block diagram of 64 bit section carry look ahead adder and explain how it speeds up the addition process.	6
		Write the sequence of AHPL steps to implement division of fixed point quantities.	6
6.	a)	With a neat block diagram explain the organization of microprogrammable RIC.	8
2	b)	Write the combinational logic unit description of 16 bit carry look ahead adder given the combinational logic unit description of the carry look ahead unit.	6
	c)	Explain with a neat diagram the hardware organization of floating point coprocessor.	6
		MODULE - IV	
7.	a)	Explain the working of nMOS depletion mode transistor with neat diagram.	6
	b)	Explain the n-well process to CMOS fabrication with neat diagrams.	8
	c)	Determine the pull-up to pull-down ratio for an nMOS inverter driven by another nMOS inverter.	6
8.	a)	Draw stick diagrams and mask layout for the following :	8
		i) CMOS NAND gate ii) nMOS inverter	
	b)	Explain the working of MOS inverter with nMOS depletion type transistor as load. Draw the transfer characteristics.	8
	C)	Explain the working of a pass transistor.	4