Lecture 15: Minimax Lower Bounds for Stochastic Multi-Armed Bandits

Lecturer: Thanh Nguyen-Tang Scribe: Thanh Nguyen-Tang

Acknowledgement: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Introduction

The UCB algorithm we considered in the previous lecture yields the regret bound $\mathcal{O}(\sqrt{nk\log n})$ which holds regardless of any bandit model $\mu=(\mu_1,\ldots,\mu_k)$. A natural question we might ask is whether we can do better than $\mathcal{O}(\sqrt{nk\log n})$. In other words, how can we justify the tightness of a regret bound in terms of n and k? One way to answer this kind of questions is to construct a minimax lower bound. A minimax lower bound f(n,k) essentially establishes that for any MAB algorithm \mathcal{A} , there exists an bandit instance M in the instance family \mathcal{M} such that the regret of that algorithm cannot be smaller than the minimax lower bound f(n,k). More formally, we want to show the result of the following flavor:

$$\sup_{\mathcal{A}} \inf_{\mu \in \mathcal{M}} \mathbb{E}_M[R_n] \ge f(n, k).$$

On the basis of the minimax lower bound f(n,k), we can justify if the regret bound $\mathcal{O}(\sqrt{nk\log n})$ is tight. In fact, in this lecture, we show that $(n,k) = c\sqrt{n(k-1)}$ for some absolute constant c > 0. Thus, the UCB algorithm is minimax-optimal up to log factors.

We now look at minimax lower bounds for stochastic MAB algorithms.

15.2 Hypothesis Testing

Lemma 15.1 (Neyman Pearson) Let $x_1, \ldots, x_n \in \mathcal{X}^n$ the random variable that is distributed according to either P and Q. For any test function $f: \mathcal{X}^n \to \{0,1\}$, we have

$$P(f(x_1,...,x_n)=0)+Q(f(x_1,...,x_n)=1) \ge 1-\sqrt{\frac{1}{2}\mathrm{KL}(P,Q)}.$$

15.3 Minimax Lower Bounds

Recall that a k-armed bandit model is fully characterized by the probability distributions (p_1, \ldots, p_k) with means (μ_1, \ldots, μ_k) . An algorithm is fully characterized by the sequence of random variables (a_1, \ldots, a_n)

⁰These notes are partially based on those of Patrick Rebeschini.

where each a_i depends on the data prior to iteration i, i.e. $\{z_{j,a_j}\}_{j\leq i-1}$. It is more helpful to take a functional perspective by viewing each action a_i as a mapping $a_i: \mathbb{R}^{i-1} \to [k]$ where $a_i = a_i(\{z_{j,a_j}\}_{j\leq i-1}) \in [k]$ (rather than a fixed value). Thus, the algorithm does not depend on the bandit model.

Theorem 15.2 Let \mathcal{M} be the set of k-armed bandit problems $\mu = (\mu_1, \dots, \mu_k)$. For any $n \geq (k-1)/2$, we have

$$\inf_{(a_1,\dots,a_n)} \sup_{\mu \in \mathcal{M}} \mathbb{E}_{\mu}[R_n] \ge c\sqrt{n(k-1)},$$

for some absolute constant c > 0.

The $\inf_{(a_1,\ldots,a_n)} \sup_{\mu \in \mathcal{M}}$ in Theorem 15.2 reads that for any algorithm (a_1,\ldots,a_n) , there exists a k-armed bandit problem $\mu \in \mathcal{M}$ such that $\mathbb{E}_{\mu}[R_n] \geq c\sqrt{n(k-1)}$.

Proof of Theorem 15.2

Consider any algorithm (a_1, \ldots, a_n) . The random variable that we are concerned with is the composite r.v. $Z = (z_{1,a_1}, \ldots, z_{n,a_n}) \in \mathbb{R}^n$. The randomness of Z is fully characterized by the algorithm (a_1, \ldots, a_n) and the underlying bandit model.

Step 1: Reduction to Testing. The idea to proving minimax lower bounds is that we construct two bandit models μ and ν such that any algorithm (a_1, \ldots, a_n) must commit a high regret in either of these bandits. A key to implement this intuition is to relate it to hypothesis testing. Let P_{μ} (respectively, P_{ν}) be the probability distribution of Z under the bandit model μ (ν , respectively) and the considered algorithm (a_1, \ldots, a_n) . We denote \mathbb{E}_{μ} as the expectation under P_{μ} .

The main technical difficulty is in how to construct μ and ν . The criteria to have a useful construction is that (i) μ and ν have different optimal actions so that they can potentially confuse any algorithm (a_1, \ldots, a_n) (in the sense that the algorithm cannot obtain small regret in both problems simultaneously), and (ii) μ and ν need to be similar to each other enough so we can have a tight lower bound and can compute $\mathrm{KL}(P_{\mu}, P_{\nu})$ conveniently. To this end, we consider μ and ν be Bernoulli distributions with the means of the following form:

$$\mu = (\frac{1}{2} + \Delta, \frac{1}{2}, \dots, \frac{1}{2}) \in \mathbb{R}^k$$

$$\nu = (\frac{1}{2} + \Delta, \frac{1}{2}, \dots, \frac{1}{2}, \frac{1}{2} + 2\Delta, \frac{1}{2}, \dots, \frac{1}{2}) \in \mathbb{R}^k$$

where $\Delta \in (0, 1/4)$ and ν has the optimal action at b > 1 with mean $1 + 2\Delta$, where b will be tuned later.

We have

$$\mathbb{E}_{\mu}[R_{n}] = \mathbb{E}_{\mu}\left[R_{n}|N_{n,1} \leq \frac{n}{2}\right] P_{\mu}(N_{n,1} \leq \frac{n}{2}) + \mathbb{E}_{\mu}\left[R_{n}|N_{n,1} \geq \frac{n}{2}\right] P_{\mu}(N_{n,1} \geq \frac{n}{2})$$

$$\geq \mathbb{E}_{\mu}\left[R_{n}|N_{n,1} \leq \frac{n}{2}\right] P_{\mu}(N_{n,1} \leq \frac{n}{2})$$

$$\geq \frac{\Delta n}{2} P_{\mu}(N_{n,1} \leq \frac{n}{2})$$

and

$$\mathbb{E}_{\nu}[R_n] = \mathbb{E}_{\nu} \left[R_n | N_{n,1} \le \frac{n}{2} \right] P_{\nu}(N_{n,1} \le \frac{n}{2}) + \mathbb{E}_{\nu} \left[R_n | N_{n,1} \ge \frac{n}{2} \right] P_{\nu}(N_{n,1} \ge \frac{n}{2})$$

$$\ge \mathbb{E}_{\nu} \left[R_n | N_{n,1} \ge \frac{n}{2} \right] P_{\nu}(N_{n,1} \ge \frac{n}{2})$$

$$\geq \frac{\Delta n}{2} P_{\nu}(N_{n,1} \geq \frac{n}{2})$$

Thus, we have

$$\sup_{m \in \mathcal{M}} \mathbb{E}_{m}[R_{n}] \geq \max_{m \in \{\mu,\nu\}} \mathbb{E}_{m}[R_{n}]$$

$$\geq \frac{1}{2} (\mathbb{E}_{\mu}[R_{n}] + \mathbb{E}_{\nu}[R_{n}])$$

$$\geq \frac{\Delta n}{4} \left(P_{\mu}(N_{n,1} \leq \frac{n}{2}) + P_{\nu}(N_{n,1} \geq \frac{n}{2}) \right)$$

$$\geq \frac{\Delta n}{4} \left(1 - \sqrt{\frac{1}{2}} \text{KL}(P_{\mu}, P_{\nu}) \right) \qquad \text{(Lemma 15.1)}$$

Step 2: Optimizing $KL(P_{\mu}, P_{\nu})$. Note that the inequality in Eq. (15.1) holds for any $\Delta \in (0, 1/4)$ and $2 \leq b \leq k$. The idea now is to optimize over Δ and b to maximize $\frac{\Delta n}{2} \left(1 - \sqrt{\frac{1}{2}KL(P_{\mu}, P_{\nu})}\right)$ (so that we have the tightest lower bound as possible). We have

$$KL(P_{\mu}, P_{\nu}) = \sum_{a \in [k]} KL(P_{\mu, a}, P_{\nu, a}) \mathbb{E}_{\mu}[N_{\mu, a}] = KL(P_{\mu, b}, P_{\nu, b}) \mathbb{E}_{\mu}[N_{n, b}].$$

Step 2.1: Optimizing over b. To make $KL(P_{\mu,b}, P_{\nu,b})\mathbb{E}_{\mu}[N_{n,b}]$ small, it is natural to select b as $b = \arg\min_{a>1}\mathbb{E}_{\mu}[N_{n,a}]$. As a result, we have

$$\mathbb{E}_{\mu}[N_{n,b}] \le \frac{1}{k-1} \sum_{a=2}^{k} \mathbb{E}_{\mu}[N_{n,a}] \le \frac{1}{k-1} \sum_{a=1}^{k} \mathbb{E}_{\mu}[N_{n,a}] = \frac{n}{k-1}.$$

Step 2.2: Optimizing over Δ . We also have

$$KL(P_{\mu,b}, P_{\nu,b}) = \frac{1}{2} \log \frac{1/2}{1/2 + \Delta} + \frac{1}{2} \log \frac{1/2}{1/2 - \Delta}$$

$$= -\frac{1}{2} \log(1 - 16\Delta^2)$$

$$\leq 32\Delta^2 \qquad (-\log(1 - x) \leq 2x, \forall x \in (0, 1)).$$

Overall we have

$$KL(P_{\mu}, P_{\nu}) = KL(P_{\mu,b}, P_{\nu,b}) \mathbb{E}_{\mu}[N_{n,b}] \le 32 \frac{\Delta^2 n}{k-1}.$$

Thus, we have

$$\frac{\Delta n}{2} \left(1 - \sqrt{\frac{1}{2} \text{KL}(P_{\mu}, P_{\nu})} \right) \ge \frac{\Delta n}{2} \left(1 - \frac{1}{2} \Delta \sqrt{32 \frac{n}{k-1}} \right). \tag{15.2}$$

The maximizer of the RHS is $\Delta = \frac{1}{4}\sqrt{\frac{k-1}{2n}}$. Plugging Eq. (15.2) into Eq. (15.1) with $\Delta = \frac{1}{4}\sqrt{\frac{k-1}{2n}}$ completes the proof.