

变力沿曲线做功

假设一质点在力场 $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ 的作用下沿着 R^3 中的曲线 $L: \bar{\alpha}: [a,b] \rightarrow R^3, \alpha(t) = (x(t), y(t), z(t)).$

移动(从曲线一端A到另一端B)所做的功为

$$dW = \vec{F} \cdot \vec{d}s = \vec{F} \cdot \vec{\alpha}' \cdot dt$$

$$W = \int_{L} \vec{F} \cdot \vec{d}s = \int_{a}^{b} (\vec{F} \cdot \vec{\alpha}') dt = \lim_{\|P\| \to 0} \sum_{i=0}^{n} (\vec{F}(\xi_{i}) \cdot \vec{\alpha}'(t_{\xi_{i}})) \Delta t_{i}, [对任意分割P和介点\xi]$$

弧长微分 $\bar{d}s = \bar{\alpha}' \cdot dt$

= (x'(t), y'(t), z'(t))dt = (dx, dy, dz)

第二类曲线积分的概念与计算

定义

设 $\alpha: [a,b] \to R^3$ 为分段光滑曲线, $\bar{F}: R^3 \supset D \to R^3$ 为连续的向量场,

曲线 $C \subset D$, 则 \bar{F} 沿 C 的曲线积分(**第二类曲线积分**)为

$$\int_{C} \vec{F} \cdot d\alpha = \int_{a}^{b} \left[\vec{F} \left(\alpha(t) \right) \cdot \alpha'(t) \right] dt.$$

- 当C为闭曲线时,记为 $\oint_C \vec{F} \cdot d\alpha$,此时注意曲线的方向.

$$\int_{C} \vec{F} \cdot d\alpha = \int_{C} P dx + Q dy + R dz$$

$$= \int_a^b \Big[P\big(x(t), y(t), z(t)\big) \cdot x'(t) + Q\big(x(t), y(t), z(t)\big) \cdot y'(t) + R\big(x(t), y(t), z(t)\big) \cdot z'(t) \Big] dt.$$

• 两类曲线积分的关系 $\int_{C} \vec{F} \cdot d\alpha = \int_{C} (\vec{F} \cdot \vec{\alpha}'^{0}) ds$

第二类曲线积分的性质

$$(1) \int_{C^{-}} \vec{F} \cdot d\alpha^{-} = -\int_{C} \vec{F} \cdot d\alpha$$

(2)
$$\int_{C} (k_1 \vec{F} + k_2 \vec{G}) \cdot d\alpha = k_1 \int_{C} \vec{F} \cdot d\alpha + k_2 \int_{C} \vec{G} \cdot d\alpha \quad (k_1, k_2 \in \mathbb{R})$$

(3)
$$\int_{C} \vec{F} \cdot d\alpha = \int_{C_{1}} \vec{F} \cdot d\alpha + \int_{C_{2}} \vec{F} \cdot d\alpha \quad (C \oplus C_{1}, C_{2} 接顺序拼接而成)$$

(4) 若 α , β 为曲线 C 的等价的参数表示,则 $\int_{C} \vec{F} \cdot d\alpha = \int_{C} \vec{F} \cdot d\beta$

第二类曲线积分例题

例1 计算 $\int_C \frac{x dy - y dx}{x^2 + y^2}$, 其中 C 为圆周 $x^2 + y^2 = a^2$, 逆时针方向(正向).

例2 计算
$$\int_C (x^2 + y^2) dx + 2xy dy$$
, 其中 C 为:

- (1) 从 (0,0) 沿 $y = x^2$ 到 (1,1);
- (2) 从 (0,0) 沿 $y = \sqrt{2x x^2}$ 到 (1,1);
- (3) 沿折线从(0,0)到(1,0),再到(1,1).

