Claims

[c1]	7 .A border lighting strip comprising:
	an electrical cable including a plurality of electrical conductors;
	a plucality of light emitting devices (LEDs) arranged alongside the electrical
	cable and electrically connected thereto; and
	a sheath at least partially made from a light transmissive material, said sheath
	having a hollow region adapted to receive the LEDs, and an integrally formed
	cylindrical lens arranged to optically cooperate with the LEDs.
[c2]	2. The border lighting strip as set forth in claim 1 , wherein the sheath includes:

[c3] 9100

3. The border lighting strip as set forth in claim 1, wherein the sheath includes: an extruded length of a wave guiding material.

an extruded length of light transmissive material of high refractive index.

[c4]

4. The border lighting strip as set forth in claim 1, wherein the plurality of LEDs are arranged such that they face the same direction.

[c5]

m

The state

N

5. The border lighting strip as set forth in claim 4, wherein the cylindrical lens is arranged parallel to the cable such that the plurality of LEDs face the cylindrical lens.

[c6]

6. The border lighting strip as set forth in claim 1, wherein each LED has associated therewith a lead frame which provides for electrical connection of the LED to the cable.

[c7]

7. The border lighting strip as set forth in claim 1, further including: a plurality of LED sockets that receive the LEDs and effectuate connection of the LEDs to the cable.

8. The border lighting strip as set forth in claim 1, further including: a plurality of crimps corresponding to the plurality of LEDs which electrically and mechanically connect the LEDs to the electrical cable.

[c8]

9. The border lighting strip as set forth in claim 1, wherein the light emitting devices (LEDs) include light emitting diodes

[c10] 17. A linear lamp comprising:
an essentially hollow tube of translucent or transparent material;
a plurality of light emitting elements arranged within the tube; and
at least one electrical wire arranged within the tube for supplying electrical
power to the light emitting elements.

[c11] or 72

12. The linear lamp as set forth in claim 11, wherein the tube includes: a wave guide portion that distributes light generated by the light emitting elements along the tube.

[c12] 13. The linear lamp as set forth in claim 11, wherein the tube includes:

a refracting portion that spreads light generated by the light emitting elements in a plane perpendicular to the tube.

[c13] 14. The linear lamp as set forth in claim 11, further including:

a plurality of conductors that electrically and mechanically connect the light
emitting elements to the at least one electrical wire.

[c14] 15. The linear lamp as set forth in claim 11, wherein:
the tube of translucent or transparent material is flexible whereby the linear lamp is flexible and arrangeable in a non-straight orientation.

[c15] 16 .A lighting strip comprising:

a cord including a plurality of parallel conductive wires and an insulating coating;

a plurality of light emitting elements affixed to the cord and arranged to receive electrical power therefrom; and

an at least partially light transmissive tube surrounding the plurality of light emitting elements and at least a portion of the cord.

[c16]	17. The lighting strip as set forth in claim 16 , wherein the tube further includes:
	an integral optical element that distributes light emitted by the plurality of light
	emitting elements along the lighting strip.
[c17]	$\it 18$.The lighting strip as set forth in claim $\it 16$, wherein the tube further
	includes:
	a lens integrally formed with the tube that optically communicates with the
	plurality of light emitting elements.
[c18]	19 .The lighting strip as set forth in claim 16 , wherein the light emitting
.87	elements include light emitting diodes.
[c19] 9	$\stackrel{\textstyle 20}{\sim}$. The lighting strip as set forth in claim 16 , further including:
Ud	at least one mount that attaches the light emitting elements to the cord.
[c20]	21 . The lighting strip as set forth in claim 16 , wherein the tube is formed by an
	extrusion molding.
[c21]	22 . The lighting strip as set forth in claim 16 , wherein the tube includes a color
	tinting.
[c22]	23 .A method for manufacturing a lighting strip, the method comprising:
	electrically connecting a plurality of light emitting devices to an electrical cable
	to form a linear light source;
	extruding a transparent or translucent sheath adapted to receive the linear light
	source; and
	inserting the linear light source into the extruded sheath.
[c23]	24 .The method as set forth in claim 23 , wherein the extruding includes:
	extruding a cylindrical lens integrally with the extruding of the sheath.
[c24]	25 .The method as set forth in claim 23 , wherein electrically connecting
-	includes:
	attaching a mount to the electrical cable, which attaching includes an electrical
	accurring a mount to the electrical capit, which accurring metados an electrical

connection between the mount and the cable; and

physically and electrically bonding one of the light emitting devices to the

Shelp AV. treng

26. The method as set forth in claim 23, wherein electrically connecting

includes:

crimping electrical leads of one of the light emitting devices to the electrical

cable to establish an electrical connection therebetween; and

repeating the crimping for each of the plurality of light emitting devices.

1 parts see and significant parts fit parts parts parts gails see some - some -