

Applied Spacecraft Trajectory Optimization: Lecture 1

Erica Jenson
ASEN 6020 Guest Lectures
Spring 2022

My Background

- 2017, B.S. Aerospace & Mechanical Engineering, University of Florida
- 2019, M.S. Aerospace Engineering Sciences, CU Boulder
- Current PhD candidate

Research Experience:

- Stochastic optimal control, spacecraft guidance
- Analytical measures of nonlinearity and their application to GN&C
- Collaboration with NASA JPL and Goddard Space Flight Center

Overview

- Lecture 1: Homotopy Methods and Multi-Objective Optimization
 - Detailed indirect optimization + homotopy example
 - Tips for class project
 - Scalarized methods vs. evolutionary algorithms for MOO
- Lecture 2:
 - Optimization Under Uncertainty
 - Types of uncertainty/stochastics
 - Notation & terminology
 - Techniques
 - Dynamic programming
 - LQR from dynamic programming
 - DDP, HDDP, SDDP

Homotopy/Continuation Methods

(and some indirect optimization examples)

Homotopy/Continuation

- A concept in topology
- Continuous deformation from one function to another
- Used informally in the optimization literature
- Helps generate initial guess
- For example:
 - we want to optimize J_2
 - difficult to find good initial guess
 - but we *can* optimize J_1
 - transform the solution from J_1 to J_2

$$J=(1-\eta)J_1+\eta J_2$$

Homotopy Use Cases

- Indirect methods, direct methods, & other
- Different cost functions
- Varying constraints
- Different dynamics
 - e.g., solve with 2BP first, then "turn on" a dynamical perturbation
 - improve accuracy of integrator, ephemeris model, etc.

$$J = (1 - \eta)J_1 + \eta J_2$$

Different Cost Functions: Energy vs. Mass

- Minimize energy
 - squared L^2 norm of control
 - Continuous control profile
 - Less sensitive, easier to find solutions

$$J_E = \int_{t_0}^{t_f} ||u(t)||^2 dt = \int_{t_0}^{t_f} u(t)^T u(t) dt$$

- Minimize consumption
 - aka "minimize fuel," "minimize propellant," "maximize final mass"
 - $-L^2$ norm of control
 - Bang-bang structure

$$J_M = \int_{t_0}^{t_f} ||u(t)|| dt \qquad \text{or} \qquad J_M = -m_f$$

Example: Vary Constraints

Fixed-time transfer between coplanar, circular asteroid orbits

– Minimize energy:
$$J_E = \frac{1}{2} \int_{t_0}^{t_f} ||u(t)||^2 dt$$

- Constrain ||u(t)||
- Final true anomaly is unconstrained
- Indirect methods & single shooting
- Use homotopy to vary final time

Ex. Detailed Problem Setup

- Minimize energy:
$$J_E = \frac{1}{2} \int_{t_0}^{t_f} ||u(t)||^2 dt$$

- Transfer between coplanar, circular asteroid orbits:
 - Planar two-body dynamics
 - Cartesian coordinates
 - $-\mu = 5 \text{ m}^3/\text{s}^2$
 - $-r_0 = 400 \text{ m}$
 - $-r_f = 1500 \text{ m}$
 - RK4, $\Delta t = 0.01$ (nondim.)
 - Nondimensionalize by

$$l_{nd}=1000$$
 m, $t_{nd}=\sqrt{l_{nd}^3/\mu}$ sec

- Constrain:
 - Initial and final time (vary t_f during homotopy)
 - Initial state
 - Final orbit geometry (true anomaly is free): r_f , \dot{r}_f , $\dot{\theta}_f$
 - $\|u(t)\| \le 5e-6 N$

Ex. Necessary Conditions

- Hamiltonian:
$$H = \boldsymbol{p}_r^T \boldsymbol{v} - \boldsymbol{p}_v^T \frac{\mu}{r^3} \boldsymbol{r} + \boldsymbol{p}_v^T \boldsymbol{u} + \frac{1}{2} \boldsymbol{u}^T \boldsymbol{u}$$

– Optimal control:
$$\frac{\partial H}{\partial \boldsymbol{u}} = \boldsymbol{p}_v^T + \boldsymbol{u}^T = 0$$
 — $\boldsymbol{u} = -\boldsymbol{p}_v$ or

$$oldsymbol{u} = -u_{max} oldsymbol{p}_v / \|oldsymbol{p}_v\|$$
 when $\|oldsymbol{p}_v\| \geq u_{max}$

– Adjoint dynamics:
$$\dot{\boldsymbol{p}} = -\frac{\partial H^*}{\partial \boldsymbol{X}}$$

$$\dot{\boldsymbol{p}}_r = -\left(\frac{\partial\left(-\frac{\mu}{r^3}\boldsymbol{r}\right)}{\partial \boldsymbol{r}}\right)^T \boldsymbol{p}_v \qquad \dot{\boldsymbol{p}}_v = -\boldsymbol{p}_v$$

Ex. Transversality Conditions

Constraints;

we want q = 0:

$$\boldsymbol{g} = \begin{bmatrix} t_0, & t_f - t'_f, & \boldsymbol{X}_0^T - \boldsymbol{X'}_0^T, & r_f - r'_f, & \dot{r}_f, & \dot{\theta}_f - \dot{\theta}'_f \end{bmatrix}^T$$
only 3 constraints...

Useful transversality conditions:

ul transversality conditions:
$$\begin{bmatrix} p_x(t_f) \\ p_y(t_f) \\ p_{\dot{x}}(t_f) \\ p_{\dot{y}}(t_f) \end{bmatrix} = \begin{bmatrix} \frac{\partial r_f}{\partial x} & \frac{\partial \dot{r}_f}{\partial x} & \frac{\partial \dot{\theta}_f}{\partial x} \\ \frac{\partial r_f}{\partial x} & \frac{\partial \dot{r}_f}{\partial y} & \frac{\partial \dot{\theta}_f}{\partial y} \\ \frac{\partial r_f}{\partial \dot{x}} & \frac{\partial \dot{r}_f}{\partial \dot{x}} & \frac{\partial \dot{\theta}_f}{\partial \dot{x}} \\ \frac{\partial r_f}{\partial \dot{y}} & \frac{\partial \dot{r}_f}{\partial \dot{y}} & \frac{\partial \dot{\theta}_f}{\partial \dot{y}} \end{bmatrix} \begin{bmatrix} \lambda_7 \\ \lambda_8 \\ \lambda_9 \end{bmatrix}$$

- We only need 3 equations to solve for $\lambda_7, \lambda_8, \lambda_9$ in terms of p_f
- Fourth equation provides an additional constraint: $\alpha(X_f, p_f)$

Ex. Single Shooting

- Single shooting solution process:
 - $-t_0$, t_f , X_0 are fixed
 - Guess $oldsymbol{p}_0$
 - Integrate state and adjoints from t_0 to t_f
 - Evaluate \boldsymbol{G} at t_f
 - Update p_0 until ||G|| < tolerance
- How to update p_0 ?
 - Differential corrector
 - Nonlinear equation solvers (e.g., fsolve.mat, nlsolve.jl)
 - Boundary value problem solvers
 - Gradient-based solvers in "feasibility mode" (e.g., SNOPT or fmincon.mat)

Ex. Differential Corrector

- Linear update:
$$\delta \mathbf{G} = \frac{\partial \mathbf{G}}{\partial \mathbf{p}_0} \delta \mathbf{p}_0 \qquad \delta \mathbf{G} = \mathbf{0} - \mathbf{G} \\ \delta \mathbf{p}_0 = \left(\frac{\partial \mathbf{G}}{\partial \mathbf{p}_0}\right)^{-1} \delta \mathbf{G} \qquad \delta \mathbf{p}_0 = \mathbf{p}_0^+ - \mathbf{p}_0^-$$

$$\delta \mathbf{p}_0 = \left(\frac{\partial \mathbf{G}}{\partial \mathbf{p}_0}\right)^{-1} \delta \mathbf{G} \qquad \delta \mathbf{p}_0 = \mathbf{p}_0^+ - \mathbf{p}_0^-$$

$$\boldsymbol{p}_0^+ = \boldsymbol{p}_0^- - \boldsymbol{\zeta} \left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}_0} \right)^{-1} \boldsymbol{G}$$

$$\boldsymbol{G} = \begin{bmatrix} r_f - r'_f \\ \dot{r}_f \\ \dot{\theta}_f - \dot{\theta}'_f \\ \alpha(\boldsymbol{X}_f, \boldsymbol{p}_f) \end{bmatrix}$$

- Compute $\frac{\partial G}{\partial p_0}$ analytically, by automatic differentiation, or by finite difference
- Forward finite difference:

$$\frac{\partial G_i}{\partial p_j} \approx \frac{G_i(p_j + \delta p_j) - G_i(p_j)}{\delta p_j}$$

$$\delta p_j = 1\text{e-8}$$

Fixed-step, fixed-order integrators are best when using finite differencing

Ex. Differential Corrector Tuning

- Knobs to turn (values I used in red):
 - # of initial guesses (30)
 - max. iterations per guess (30)
 - tolerance for convergence (1e-10)
 - max. error to continue iterating (15)
 - min. radius to continue iterating
 - step scale (ζ) [1e-1,...,1]
 - initial guess standard deviation (1e-2)
 - finite difference step size (if applicable) (1e-8)
 - # of repeated solutions
 - Problem scaling
- Make these values adaptive

Adjoint-Control Transformation

- Primer vector: $\hat{m{u}} = -m{p}_v/\|m{p}_v\|$
- Can guess $oldsymbol{p}_v(t_0)$ intuitively by guessing $oldsymbol{u}(t_0)$
- Guess $\boldsymbol{p}_r(t_0)$ by guessing $\dot{\boldsymbol{u}}(t_0)$:

$$p_r = -\dot{p}_v$$

 See adjoint-control transformation (Ranieri 2005) for more info

Ex. A solution!

Converges < 10 iterations

 $t_f = \frac{1}{2}$ red orbit period = 2.885737117864195

Adjoint initial guess:

 $p_0 = [-0.014264361594797]$

-0.010144507677053

-0.002132671883074

-0.003253477803605]

Adjoint solution:

 $p_0 = [-4.369086817002391]$

-0.575469975692559

-0.265681228707072

-1.248322281877049]

Ex. Homotopy

- Take progressively smaller steps δt_f
- Approaching maximum thrust as t_f is reduced

Ex. Homotopy

- Take progressively smaller steps δt_f
- Approaching maximum thrust as t_f is reduced

Ex. Result

Looks like a trade-off between energy and time of flight, but this is not a true multiobjective optimization

Homotopy Disadvantages

- Homotopy may not exist
- Not appropriate for multi-objective optimization (in general)
- Restricted solution space
 - E.g., homotopy from a "bad" solution impacts the asteroid surface:

Homotopy Disadvantages

- Homotopy may not exist
- Not appropriate for multi-objective optimization (in general)
- Restricted solution space
 - E.g., homotopy from a "bad" solution impacts the asteroid surface:

Multi-Objective Optimization

- Multi-objective solution is a trade-off between objectives
- Solution a dominates solution b if
 - -a is better than b in at least one objective
 - -a is no worse than b in other objectives
- Example:
 - 2 dominates 3
 - 4 and 6 dominate 5
- Pareto optimal solutions are non-dominated; cannot be improved in one objective without decreasing performance in another objective

= pareto front

Scalarized Methods

- Weighted-sum
 - Not guaranteed to be pareto-optimal

$$J = (1 - \eta)J_1 + \eta J_2$$

- Epsilon-constraint (Haimes 1987, Mavrotas 2009)
 - Optimize one cost function, constrain others
 - Can be equality or inequality constraints
 - Globally-optimal solutions lie on Pareto front

 If both methods have the same necessary/transversality conditions, weighted-sum can be Pareto optimal (Jenson 2021)

Evolutionary Algorithms

- State of the art in multi-objective optimization
- Metaheuristic, population-based algorithms
- E.g., nondominated sorting genetic algorithm (NDSGA-II) (Deb 2002)
 - Genetic algorithms are inspired by natural selection
 - A population of candidate solutions are mated, mutated, etc. from one generation to the next
 - "Elitism" improves convergence: best solutions are carried into next generation
 - NDSGA-III (Deb 2014)

References

- J.-B. Caillau, B. Daoud, J. Gergaud, "Minimum fuel control of the planar circular restricted three-body problem," Celest Mech Dyn Astr, 2012, DOI: 10.1007/s10569-012-9443-x
- C. L. Ranieri, C. A. Ocampo, "Optimization of Roundtrip, Time-Constrained, Finite Burn Trajectories via Indirect Method," Journal of Guidance, Control, and Dynamics, 2005, DOI: 10.2514/1.5540
- Y. Y. Haimes, D. Li, "Hierarchical Multiobjective Analysis for Large-Scale Systems: Current Status," IFAC Proceedings Volumes, 1987, DOI: 10.1016/S1474-6670(17)55679-7
- G. Mavrotas, "Effective implementation of the ε -constraint method in Multi-Objective Mathematical Programming problems," Applied Mathematics and Computation, 2009, DOI: 10.1016/j.amc.2009.03.037
- E. L. Jenson, D. J. Scheeres, "Multi-Objective Optimization of Covariance and Energy for Asteroid Transfers," ," Journal of Guidance, Control, and Dynamics, 2021, DOI: 10.2514/1.G005609
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary computation, 2002, DOI: 10.1109/4235.996017

Questions?

Celestial and Spaceflight Mechanics Laboratory

Erica.Jenson@colorado.edu