Machine Learning Lab3

• Topic: Support Vector Machines

• Student Name: Jyosna Philip

• Roll No: 19

• Date: 14th March '24

• Submission: 20th March '24

```
In [ ]: import pandas as pd
        import numpy as np
        from sklearn import svm,tree
        import matplotlib.pyplot as plt
        from sklearn.metrics import accuracy_score
        from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
       C:\Users\jyosn\AppData\Local\Temp\ipykernel_3364\3362773470.py:1: DeprecationWarn
       ing:
       Pyarrow will become a required dependency of pandas in the next major release of
       pandas (pandas 3.0),
       (to allow more performant data types, such as the Arrow string type, and better i
       nteroperability with other libraries)
       but was not found to be installed on your system.
       If this would cause problems for you,
       please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
         import pandas as pd
```

1. Run SVM2 for cancer.csv

```
In []: # reading csv file and extracting class column to y.
    x = pd.read_csv("cancer.csv")
    a = np.array(x)
    print(x.head())
    y = a[:,2] # classes having 0 and 1 #gets all rows of 3rd column

# extracting two features
    x = np.column_stack((x.col1,x.col2))

# 569 samples and 2 features
    print(x.shape)

print (x)
    print(y)
```

```
0 122.80 1001.0
                             1
                                      NaN
      1 132.90 1326.0
                             1
                                      NaN
      2 130.00 1203.0
                             1
                                      NaN
         77.58
               386.1
                             1
                                      NaN
      4 135.10 1297.0
                             1
                                      NaN
      (569, 2)
      [[ 122.8 1001. ]
       [ 132.9 1326.
       [ 130.
               1203. ]
       858.1 1
       [ 140.1 1265.
       [ 47.92 181. ]]
      1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1.
       0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 1. 0.
       1. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1.
       0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1.
       0. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 1. 0. 0.
       0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1.
       1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 0. 0. 1. 0.
       0. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1.
       0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 1. 1. 0. 1.
       1. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 1.
       0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
       0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
       1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
       1. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0.
       0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
       0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 1.
       0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0.]
In [ ]: #importing support vector classifier
       from sklearn.svm import SVC
In [ ]: clf=SVC(kernel='linear') #choosing linear classifier
       clf.fit(x,y)
                    #training
Out[]:
              SVC
       SVC(kernel='linear')
      clf.predict([[120, 990]])
Out[]: array([1.])
      clf.predict([[85, 550]])
Out[]: array([0.])
```

col2 diagnosis Unnamed: 3

col1

```
In [ ]: def make meshgrid(x, y, h=0.2):#0.02
            x_{min}, x_{max} = x.min() - 1, x.max() + 1
            '''calculates the minimum and maximum values in the x array
            and adds/subtracts 1 to create a slightly extended range.
            This ensures the entire data is covered in the grid.'''
            y_{min}, y_{max} = y_{min}() - 1, y_{max}() + 1
            xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
            '''arrange:create an array of evenly spaced values starting
            from x_min (inclusive) and ending at x_max (exclusive) with a step size of h
            ''' takes two one-dimensional arrays and generates a two-dimensional grid of
            the first argument is the array of x-coord, and second argument is the array
            The output xx (containing the x-coord of the grid) and yy (containing the y-
            return xx, yy
        def plot_contours(ax, clf, xx, yy, **params): #for plotting the contours
            Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
            Z = Z.reshape(xx.shape)
            out = ax.contourf(xx, yy, Z, **params)
            return out
         '''ax: a Matplotlib axis object where the plot will be created.
        xx, yy: which are the two-dimensional grids of x and y coordinates
        **params: This argument uses the double asterisk notation, indicating it can acc
         of keyword arguments. These arguments will be used to customize the contour plo
        clf.predict(...): This method likely takes the combined (flattened) x and y coor
        predicts a value for each data point based on the classifier's model.
        Z.reshape(xx.shape): Since xx and yy represent the grid structure, this line res
        output Z back into a two-dimensional array with the same shape as the original g
        This ensures the predicted values are correctly mapped to the corresponding poin
        ax.contourf(...): This line utilizes the contourf method of the Matplotlib axis
        xx, yy: These are the two-dimensional grids containing the x and y coordinates f
        Z: This is the two-dimensional array containing the predicted values at each gri
        This array determines the height or elevation for the contour plot.
        ststparams: The variable keyword arguments (stststparams) passed to the function are u
        These might include options like the number of contour lines, colormap, line sty
        out: This likely represents a Matplotlib contour object containing information a
        The function returns the out variable, which holds the Matplotlib contour object
         This allows you to potentially interact with the plot object further (e.g., add
```

Out[]: "\nax: a Matplotlib axis object where the plot will be created.\nxx, yy: which are the two-dimensional grids of x and y coordinates n^{**} params: This argument uses the double asterisk notation, indicating it can accept a variable number\n of keyword arguments. These arguments will be used to customize the contour plo $t.\nclf.predict(...)$: This method likely takes the combined (flattened) x and y coordinates from the grids (xx.ravel() and yy.ravel())\npredicts a value for ea ch data point based on the classifier's model.\n\nZ.reshape(xx.shape): Since xx and yy represent the grid structure, this line reshapes the one-dimensional pre diction \noutput Z back into a two-dimensional array with the same shape as the original grids xx and yy. \nThis ensures the predicted values are correctly map ped to the corresponding points in the grid. \n contourf(...): This line uti lizes the contourf method of the Matplotlib axis object (ax).\nxx, yy: These ar e the two-dimensional grids containing the x and y coordinates for plotting the contours.\nZ: This is the two-dimensional array containing the predicted values at each grid point. \nThis array determines the height or elevation for the con tour plot.\n**params: The variable keyword arguments (**params) passed to the f unction are used to customize the appearance of the contour plot. \nThese might include options like the number of contour lines, colormap, line styles, etc. \nout: This likely represents a Matplotlib contour object containing informatio n about the plotted contours.\n\nThe function returns the out variable, which holds the Matplotlib contour object representing the generated filled contour p lot. \n This allows you to potentially interact with the plot object further (e. g., adding labels, adjusting colors).\n"

2.Run Linear and Poly

```
In [ ]: X=x
        model = SVC(kernel='linear')
        clf = model.fit(X, y)
        print(clf)
        fig, ax = plt.subplots()
        # title for the plots
        title = ('Decision surface of linear SVC ')
        # Set-up grid for plotting.
        # print(X)
        # print(y)
        # print(X.iloc[:, 1])
        X0, X1 = X[:, 0], X[:, 1]
        print(X0,X1)
        xx, yy = make_meshgrid(X0, X1)
        plot_contours(ax, clf, xx, yy, cmap=plt.cm.summer, alpha=0.1)
        ax.scatter(X0, X1, c=y, cmap=plt.cm.summer, s=30, edgecolors='k')
        ax.set ylabel('Col1')
        ax.set_xlabel('Col2')
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(title)
        ax.legend()
        plt.show()
```

```
SVC(kernel='linear')
[122.8 132.9 130.
                  77.58 135.1 82.57 119.6 90.2 87.5 83.97
102.7 103.6 132.4 103.7 93.6 96.73 94.74 108.1 130.
                                                       87.46
 85.63 60.34 102.5 137.2 110. 116. 97.41 122.1 102.4 115.
124.8 77.93 112.8 127.9 107. 110.1 93.63 82.61 95.54 88.4
 86.18 71.9 128.3 87.32 85.42 123.7 51.71 85.98 78.04 86.91
 74.72 87.21 75.71 120.3 97.26 73.34 125.5 95.55 82.61 54.34
 64.55 54.66 96.42 59.2 82.69 97.4 60.11 71.8 58.79 81.37
123.6 58.79 114.2 90.43 79.19 104.1 87.91 120.2 143.7 83.19
 73.81 86.49 171.5 129.1 76.95 121.1 94.25 122. 79.78 95.77
 94.57 100.2 84.74 86.6 100.3 132.4 77.79 62.11 74.34 94.48
 88.05 43.79 77.22 63.95 67.41 87.21 75.17 79.01 152.8 72.48
 62.5 82.15 97.83 68.64 55.84 76.53 58.74 98.64 105.7 114.2
 73.34 121.4 166.2 94.28 86.1 88.44 87.76 123.4 99.58 130.4
 79.08 101.7 106.2 102. 120.2 81.72 74.72 73.06 96.85 73.
 61.24 105.1 73.66 83.74 68.26 78.11 78.99 97.84 93.97 88.12
 83.51 53.27 63.78 70.87 85.31 78.27 117.4 108.4 76.84 68.69
 76.1 126.3 130.7 79.85 152.1 95.5 68.77 109.3 116.1 96.22
 78.85 85.84 102.5 70.21 67.49 54.42 64.6 109.3 82.01 81.29
182.1 142.7 101.2 73.53 98.92 63.76 118.6 74.68 75.27 78.83
 94.37 82.02 60.73 81.15 100.4 82.53 90.63 117.4 127.5 94.49
 78.54 115.1 158.9 91.56 81.09 98.78 62.92 109.7 87.02 98.17
134.7 75.51 188.5 114.5 92.87 90.96 77.32 65.05 129.7 128.
 87.88 88.59 65.12 102.6 84.55 92.51 66.62 97.45 81.35 85.26
113.4 71.76 70.79 134.4 60.21 89.79 153.5 132.5 92.55 113.4
 87.38 78.61 73.93 88.54 129.1 66.72 84.13 84.95 68.01 73.87
138.9 73.28 130.7 113. 126.5 91.43 133.6 103.2 110.2 103.7
132.9 111. 114.4 100. 111.6 135.7 69.28 87.16 82.38 69.5
 90.3 72.23 147.3 61.5 115.2 76.2 71.79 120.9 86.24 88.99
126.2 74.24 127.2 108.8 84.08 79.83 77.87 81.89 73.72 72.17
 96.03 97.03 83.14 75.54 81.78 88.06 69.14 75. 91.22 66.85
129.5 80.43 134.7 66.86 73.59 74.23 84.07 56.36 85.69 82.71
 74.33 92.68 82.29 73.73 54.09 79.19 77.25 118.7 60.07 78.6
 66.52 131.1 82.82 135.9 78.01 81.25 90.03 76.09 106.9 107.5
105.8 84.52 71.94 71.38 77.88 111.8 84.08 122.9 64.41 155.1
 94.15 61.64 71.49 129.9 75.03 66.2 76.66 94.87 73.02 77.23
 73.7 107.1 174.2 98. 71.24 81.92 85.09 88.52 56.74 59.82
 79.42 85.24 81.87 106.6 85.48 133.8 133.7 78.31 140.9 147.2
       97.65 141.3 134.8 87.84 106.3 70.15 85.89 88.27 73.3
 73.16 70.67 78.75 80.64 85.79 93.97 78.78 88.37 73.38 128.9
 65.75 55.27 102.4 144.4 78.07 89.75 88.1 83.05 70.31 75.26
124.4 76.14 84.18 83.18 78.29 70.39 104.3 82.63 117.8 78.41
 72.49 70.92 59.75 97.53 96.71 76.39 59.6 102.9 80.88 70.95
 74.2 98.22 75.46 89.46 61.93 63.19 67.49 68.79 70.47 80.98
102.1 81.47 133.8 123.7 94.89 91.12 82.67 89.78 88.68 89.59
 71.73 112.4 88.37 66.82 117.5 77.61 117.3 95.88 94.25 138.1
 76.83 127.7 76.77 93.86 80.62 86.34 74.87 84.1 82.61 61.68
111.2 186.9 92.25 73.88 84.28 86.87 85.98 61.06 119. 76.38
 61.49 76.85 96.45 77.42 70.41 82.89 92.41 88.97 73.99 109.8
 78.29 88.73 87.32 87.76 102.8 82.85 94.21 128.1 75.49 107.1
 78.18 114.6 118.4 78.83 84.06 96.12 82.69 80.45 121.3 137.8
 98.73 92.33 81.25 152.1 61.49 64.12 79.47 71.25 104.7 103.8
 76.31 94.66 88.64 94.29 97.26 72.76 120.8 130.5 84.45 82.51
 59.96 165.5 71.3 88.73 63. 54.53 87.44 78.94 90.31 77.83
 75.89 75.21 87.76 134.7 70.79 137.8 93.77 76.37 47.98 48.34
 74.65 95.81 94.7 84.88 89.77 87.19 65.31 65.85 61.05 68.89
 68.51 71.49 81.35 59.01 82.5 65.67 64.73 59.26 96.39 74.52
 91.38 70.67 103.4 143. 142. 131.2 108.3 140.1 47.92] [1001. 1326. 1
203. 386.1 1297. 477.1 1040. 577.9 519.8 475.9
 797.8 781. 1123. 782.7 578.3 658.8 684.5 798.8 1260. 566.3
```

```
273.9 704.4 1404. 904.6 912.7 644.8 1094. 732.4 955.1
520.
      440.6 899.3 1162. 807.2 869.5 633.
                                           523.8 698.8 559.2
1088.
                                   201.9 534.6 449.3 561.
563.
      371.1 1104.
                  545.2 531.5 1076.
427.9 571.8 437.6 1033. 712.8 409. 1152.
                                           656.9 527.2 224.5
311.9 221.8 645.7 260.9 499. 668.3 269.4 394.1 250.5 502.5
            929.4 584.1 470.9 817.7 559.2 1006. 1245.
       244.
1130.
401.5 520. 1878. 1132.
                         443.3 1075. 648.2 1076. 466.1 651.9
662.7 728.2 551.7 555.1 705.6 1264. 451.1 294.5 412.6 642.5
582.7 143.5 458.7 298.3 336.1 530.2 412.5 466.7 1509. 396.5
290.2 480.4 629.9 334.2 230.9 438.6 245.2 682.5 782.6 982.
403.3 1077. 1761. 640.7 553.5 588.7 572.6 1138.
                                                674.5 1192.
455.8 748.9 809.8 761.7 1075.
                               506.3 423.6 399.8 678.1 384.8
288.5 813.
            398.
                  512.2 355.3 432.8 432.
                                           689.5 640.1 585.
519.4 203.9 300.2 381.9 538.9 460.3 963.7 880.2 448.6 366.8
419.8 1157. 1214. 464.5 1686. 690.2 357.6 886.3 984.6 685.9
464.1 565.4 736.9 372.7 349.6 227.2 302.4 832.9 526.4 508.8
2250. 1311. 766.6 402.
                        710.6 317.5 1041.
                                           420.3 428.9 463.7
609.9 507.4 288.1 477.4 671.4 516.4 588.9 1024. 1148. 642.7
      951.6 1685. 597.8 481.9 716.6 295.4 904.3 529.4 725.5
461.
1290.
      428. 2499.
                  948.
                         610.7 578.9 432.2 321.2 1230. 1223.
568.9 561.3 313.1 761.3 546.4 641.2 329.6 684.5 496.4 503.2
895. 395.7 386.8 1319. 279.6 603.4 1670. 1306. 623.9 920.6
575.3 476.5 389.4 590. 1155. 337.7 541.6 512.2 347. 406.3
                  928.2 1169. 602.4 1207.
                                           713.3 773.5 744.9
      407.4 1206.
1364.
1288.
      933.1 947.8 758.6 928.3 1419. 346.4 561. 512.2 344.9
632.6 388. 1491. 289.9 998.9 435.6 396.6 1102.
                                                 572.3 587.4
      427.3 1145. 805.1 516.6 489. 441.
1138.
                                           515.9 394.1 396.
      687.3 513.7 432.7 492.1 582.7 363.7 431.1 633.1 334.2
651.
1217.
      471.3 1247. 334.3 403.1 417.2 537.3 246.3 566.2 530.6
418.7 664.9 504.1 409.1 221.2 481.6 461.4 1027. 244.5 477.3
324.2 1274. 504.8 1264.
                        457.9 489.9 616.5 446. 813.7 826.8
                         464.4 918.6 514.3 1092.
            387.3 390.
793.2 514.
                                                 310.8 1747.
641.2 280.5 373.9 1194.
                         420.3 321.6 445.3 668.7 402.7 426.7
      758.6 2010. 716.6 384.6 485.8 512.
                                           593.7 241. 278.6
491.9 546.1 496.6 838.1 552.4 1293. 1234.
                                           458.4 1546. 1482.
840.4 711.8 1386. 1335.
                         579.1 788.5 338.3 562.1 580.6 361.6
386.3 372.7 447.8 462.9 541.8 664.7 462.
                                           596.6 392. 1174.
321.6 234.3 744.7 1407.
                         446.2 609.1 558.1 508.3 378.2 431.9
      442.7 525.2 507.6 469.1 370.
                                           514.5 991.7 466.1
994.
                                     800.
399.8 373.2 268.8 693.7 719.5 433.8 271.2 803.1 495.
                                                        380.3
409.7 656.1 408.2 575.3 289.7 307.3 333.6 359.9 381.1 501.3
      467.8 1250. 1110.
                         673.7 599.5 509.2 611.2 592.6 606.5
685.
371.5 928.8 585.9 340.9 990.
                               441.3 981.6 674.8 659.7 1384.
432. 1191.
            442.5 644.2 492.9 557.2 415.1 537.9 520.2 290.9
            646.1 412.7 537.3 542.9 536.9 286.3 980.5 408.8
930.9 2501.
289.1 449.9 686.9 465.4 358.9 506.9 618.4 599.4 404.9 815.8
455.3 602.9 546.3 571.1 747.2 476.7 666. 1167.
                                                 420.5 857.6
466.5 992.1 1007.
                  477.3 538.7 680.9 485.6 480.1 1068. 1320.
689.4 595.9 476.3 1682.
                         248.7 272.5 453.1 366.5 819.8 731.3
      680.7 556.7 658.8 701.9 391.2 1052. 1214.
                                                 493.1 493.8
426.
257.8 1841.
            388.1 571.
                         293.2 221.3 551.1 468.5 594.2 445.2
422.9 416.2 575.5 1299.
                         365.6 1308. 629.8 406.4 178.8 170.4
402.9 656.4 668.6 538.4 584.8 573.2 324.9 320.8 285.7 361.6
                         514.3 321.4 311.7 271.3 657.1 403.5
360.5 378.4 507.9 264.
600.4 386.
            716.9 1347. 1479. 1261. 858.1 1265.
                                                 181. ]
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

Decision surface of linear SVC

Col2

```
In [ ]: X=x
        model = SVC(kernel='poly')
        clf = model.fit(X, y)
        print(clf)
        fig, ax = plt.subplots()
        # title for the plots
        title = ('Decision surface of linear SVC ')
        # Set-up grid for plotting.
        # print(X)
        # print(y)
        # print(X.iloc[:, 1])
        X0, X1 = X[:, 0], X[:, 1]
        print(X0,X1)
        xx, yy = make_meshgrid(X0, X1)
        plot_contours(ax, clf, xx, yy, cmap=plt.cm.summer, alpha=0.1)
        ax.scatter(X0, X1, c=y, cmap=plt.cm.summer, s=30, edgecolors='k')
        ax.set_ylabel('Col1')
        ax.set_xlabel('Col2')
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(title)
        ax.legend()
        plt.show()
```

```
SVC(kernel='poly')
[122.8 132.9 130.
                  77.58 135.1 82.57 119.6 90.2 87.5 83.97
102.7 103.6 132.4 103.7 93.6 96.73 94.74 108.1 130.
                                                       87.46
 85.63 60.34 102.5 137.2 110. 116. 97.41 122.1 102.4 115.
124.8 77.93 112.8 127.9 107. 110.1 93.63 82.61 95.54 88.4
 86.18 71.9 128.3 87.32 85.42 123.7 51.71 85.98 78.04 86.91
 74.72 87.21 75.71 120.3 97.26 73.34 125.5 95.55 82.61 54.34
 64.55 54.66 96.42 59.2 82.69 97.4 60.11 71.8 58.79 81.37
123.6 58.79 114.2 90.43 79.19 104.1 87.91 120.2 143.7 83.19
 73.81 86.49 171.5 129.1 76.95 121.1 94.25 122. 79.78 95.77
 94.57 100.2 84.74 86.6 100.3 132.4 77.79 62.11 74.34 94.48
 88.05 43.79 77.22 63.95 67.41 87.21 75.17 79.01 152.8 72.48
 62.5 82.15 97.83 68.64 55.84 76.53 58.74 98.64 105.7 114.2
 73.34 121.4 166.2 94.28 86.1 88.44 87.76 123.4 99.58 130.4
 79.08 101.7 106.2 102. 120.2 81.72 74.72 73.06 96.85 73.
 61.24 105.1 73.66 83.74 68.26 78.11 78.99 97.84 93.97 88.12
 83.51 53.27 63.78 70.87 85.31 78.27 117.4 108.4 76.84 68.69
 76.1 126.3 130.7 79.85 152.1 95.5 68.77 109.3 116.1 96.22
 78.85 85.84 102.5 70.21 67.49 54.42 64.6 109.3 82.01 81.29
182.1 142.7 101.2 73.53 98.92 63.76 118.6 74.68 75.27 78.83
 94.37 82.02 60.73 81.15 100.4 82.53 90.63 117.4 127.5 94.49
 78.54 115.1 158.9 91.56 81.09 98.78 62.92 109.7 87.02 98.17
134.7 75.51 188.5 114.5 92.87 90.96 77.32 65.05 129.7 128.
 87.88 88.59 65.12 102.6 84.55 92.51 66.62 97.45 81.35 85.26
113.4 71.76 70.79 134.4 60.21 89.79 153.5 132.5 92.55 113.4
 87.38 78.61 73.93 88.54 129.1 66.72 84.13 84.95 68.01 73.87
138.9 73.28 130.7 113. 126.5 91.43 133.6 103.2 110.2 103.7
132.9 111. 114.4 100. 111.6 135.7 69.28 87.16 82.38 69.5
 90.3 72.23 147.3 61.5 115.2 76.2 71.79 120.9 86.24 88.99
126.2 74.24 127.2 108.8 84.08 79.83 77.87 81.89 73.72 72.17
 96.03 97.03 83.14 75.54 81.78 88.06 69.14 75. 91.22 66.85
129.5 80.43 134.7 66.86 73.59 74.23 84.07 56.36 85.69 82.71
 74.33 92.68 82.29 73.73 54.09 79.19 77.25 118.7 60.07 78.6
 66.52 131.1 82.82 135.9 78.01 81.25 90.03 76.09 106.9 107.5
105.8 84.52 71.94 71.38 77.88 111.8 84.08 122.9 64.41 155.1
 94.15 61.64 71.49 129.9 75.03 66.2 76.66 94.87 73.02 77.23
 73.7 107.1 174.2 98. 71.24 81.92 85.09 88.52 56.74 59.82
 79.42 85.24 81.87 106.6 85.48 133.8 133.7 78.31 140.9 147.2
       97.65 141.3 134.8 87.84 106.3 70.15 85.89 88.27 73.3
 73.16 70.67 78.75 80.64 85.79 93.97 78.78 88.37 73.38 128.9
 65.75 55.27 102.4 144.4 78.07 89.75 88.1 83.05 70.31 75.26
124.4 76.14 84.18 83.18 78.29 70.39 104.3 82.63 117.8 78.41
 72.49 70.92 59.75 97.53 96.71 76.39 59.6 102.9 80.88 70.95
 74.2 98.22 75.46 89.46 61.93 63.19 67.49 68.79 70.47 80.98
102.1 81.47 133.8 123.7 94.89 91.12 82.67 89.78 88.68 89.59
 71.73 112.4 88.37 66.82 117.5 77.61 117.3 95.88 94.25 138.1
 76.83 127.7
            76.77 93.86 80.62 86.34 74.87 84.1 82.61 61.68
111.2 186.9 92.25 73.88 84.28 86.87 85.98 61.06 119. 76.38
 61.49 76.85 96.45 77.42 70.41 82.89 92.41 88.97 73.99 109.8
 78.29 88.73 87.32 87.76 102.8 82.85 94.21 128.1 75.49 107.1
 78.18 114.6 118.4 78.83 84.06 96.12 82.69 80.45 121.3 137.8
 98.73 92.33 81.25 152.1 61.49 64.12 79.47 71.25 104.7 103.8
 76.31 94.66 88.64 94.29 97.26 72.76 120.8 130.5 84.45 82.51
                  88.73 63.
                               54.53 87.44 78.94 90.31 77.83
 59.96 165.5 71.3
 75.89 75.21 87.76 134.7 70.79 137.8 93.77 76.37 47.98 48.34
 74.65 95.81 94.7 84.88 89.77 87.19 65.31 65.85 61.05 68.89
 68.51 71.49 81.35 59.01 82.5 65.67 64.73 59.26 96.39 74.52
 91.38 70.67 103.4 143. 142. 131.2 108.3 140.1 47.92] [1001. 1326. 1
203. 386.1 1297. 477.1 1040. 577.9 519.8 475.9
 797.8 781. 1123. 782.7 578.3 658.8 684.5 798.8 1260. 566.3
```

```
273.9 704.4 1404. 904.6 912.7 644.8 1094. 732.4 955.1
520.
      440.6 899.3 1162. 807.2 869.5 633.
                                           523.8 698.8 559.2
1088.
                                   201.9 534.6 449.3 561.
563.
      371.1 1104.
                  545.2 531.5 1076.
427.9 571.8 437.6 1033. 712.8 409. 1152.
                                           656.9 527.2 224.5
311.9 221.8 645.7 260.9 499. 668.3 269.4 394.1 250.5 502.5
            929.4 584.1 470.9 817.7 559.2 1006. 1245.
       244.
1130.
401.5 520. 1878. 1132.
                         443.3 1075. 648.2 1076. 466.1 651.9
662.7 728.2 551.7 555.1 705.6 1264. 451.1 294.5 412.6 642.5
582.7 143.5 458.7 298.3 336.1 530.2 412.5 466.7 1509. 396.5
290.2 480.4 629.9 334.2 230.9 438.6 245.2 682.5 782.6 982.
403.3 1077. 1761. 640.7 553.5 588.7 572.6 1138.
                                                674.5 1192.
455.8 748.9 809.8 761.7 1075.
                               506.3 423.6 399.8 678.1 384.8
288.5 813.
            398.
                  512.2 355.3 432.8 432.
                                           689.5 640.1 585.
519.4 203.9 300.2 381.9 538.9 460.3 963.7 880.2 448.6 366.8
419.8 1157. 1214. 464.5 1686. 690.2 357.6 886.3 984.6 685.9
464.1 565.4 736.9 372.7 349.6 227.2 302.4 832.9 526.4 508.8
2250. 1311. 766.6 402.
                        710.6 317.5 1041.
                                           420.3 428.9 463.7
609.9 507.4 288.1 477.4 671.4 516.4 588.9 1024. 1148. 642.7
      951.6 1685. 597.8 481.9 716.6 295.4 904.3 529.4 725.5
461.
1290.
      428. 2499.
                  948.
                         610.7 578.9 432.2 321.2 1230. 1223.
568.9 561.3 313.1 761.3 546.4 641.2 329.6 684.5 496.4 503.2
895. 395.7 386.8 1319. 279.6 603.4 1670. 1306. 623.9 920.6
575.3 476.5 389.4 590. 1155. 337.7 541.6 512.2 347. 406.3
                  928.2 1169. 602.4 1207.
                                           713.3 773.5 744.9
      407.4 1206.
1364.
1288.
      933.1 947.8 758.6 928.3 1419. 346.4 561. 512.2 344.9
632.6 388. 1491. 289.9 998.9 435.6 396.6 1102.
                                                 572.3 587.4
      427.3 1145. 805.1 516.6 489. 441.
1138.
                                           515.9 394.1 396.
      687.3 513.7 432.7 492.1 582.7 363.7 431.1 633.1 334.2
651.
1217.
      471.3 1247. 334.3 403.1 417.2 537.3 246.3 566.2 530.6
418.7 664.9 504.1 409.1 221.2 481.6 461.4 1027. 244.5 477.3
324.2 1274. 504.8 1264.
                        457.9 489.9 616.5 446. 813.7 826.8
                         464.4 918.6 514.3 1092.
            387.3 390.
793.2 514.
                                                 310.8 1747.
641.2 280.5 373.9 1194.
                         420.3 321.6 445.3 668.7 402.7 426.7
      758.6 2010. 716.6 384.6 485.8 512.
                                           593.7 241. 278.6
491.9 546.1 496.6 838.1 552.4 1293. 1234.
                                           458.4 1546. 1482.
840.4 711.8 1386. 1335.
                         579.1 788.5 338.3 562.1 580.6 361.6
386.3 372.7 447.8 462.9 541.8 664.7 462.
                                           596.6 392. 1174.
321.6 234.3 744.7 1407.
                         446.2 609.1 558.1 508.3 378.2 431.9
      442.7 525.2 507.6 469.1 370.
                                           514.5 991.7 466.1
994.
                                     800.
399.8 373.2 268.8 693.7 719.5 433.8 271.2 803.1 495.
                                                        380.3
409.7 656.1 408.2 575.3 289.7 307.3 333.6 359.9 381.1 501.3
      467.8 1250. 1110.
                         673.7 599.5 509.2 611.2 592.6 606.5
685.
371.5 928.8 585.9 340.9 990.
                               441.3 981.6 674.8 659.7 1384.
432. 1191.
            442.5 644.2 492.9 557.2 415.1 537.9 520.2 290.9
            646.1 412.7 537.3 542.9 536.9 286.3 980.5 408.8
930.9 2501.
289.1 449.9 686.9 465.4 358.9 506.9 618.4 599.4 404.9 815.8
455.3 602.9 546.3 571.1 747.2 476.7 666. 1167.
                                                 420.5 857.6
466.5 992.1 1007.
                  477.3 538.7 680.9 485.6 480.1 1068. 1320.
689.4 595.9 476.3 1682.
                         248.7 272.5 453.1 366.5 819.8 731.3
      680.7 556.7 658.8 701.9 391.2 1052. 1214.
                                                 493.1 493.8
426.
257.8 1841.
            388.1 571.
                         293.2 221.3 551.1 468.5 594.2 445.2
422.9 416.2 575.5 1299.
                         365.6 1308. 629.8 406.4 178.8 170.4
402.9 656.4 668.6 538.4 584.8 573.2 324.9 320.8 285.7 361.6
                         514.3 321.4 311.7 271.3 657.1 403.5
360.5 378.4 507.9 264.
600.4 386.
            716.9 1347. 1479. 1261. 858.1 1265.
                                                 181. ]
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

Decision surface of linear SVC

3)Check accuracy in terms of percentage if possible try train test split to get training accuracy and testing accuracy

```
In []: x_train,x_test,y_train,y_test=train_test_split(X,y) #for linear svm
    clf=svm.SVC(kernel='linear').fit(x_train,y_train)
    train_pred=clf.predict(x_train)
    test_pred=clf.predict(x_test)
    print("training accuracy score",accuracy_score(y_train, train_pred))
    print("testing accuracy score: ",accuracy_score(y_test,test_pred)) #we probably
    training accuracy score 0.8849765258215962
    testing accuracy score: 0.9090909090909091
```

5.Check SVM with Data we used in Decision Tree

```
In []: df=pd.read_csv("dataTree1.csv")
    d = {'UK': 0, 'USA': 1, 'N': 2}
    df['Nationality'] = df['Nationality'].map(d)
    d = {'YES': 1, 'NO': 0}
    df['Go'] = df['Go'].map(d)
    a = np.array(df)
    y = a[:,4]  #gets all rows of 5th column
    # extracting two features
    x = np.column_stack((df.Age,df.Experience,df.Rank,df.Nationality))

X=x
    Y=y
    model=SVC(kernel='linear')
    clf=model.fit(X,Y)
    print(clf) #45,9,9,UK,YES #24,3,5,USA,NO
```

SVC(kernel='linear')

```
In [ ]: print(clf.predict([[24,3,5,1]]))#output is 0 i.e. NO
        [0]
In [ ]: print(clf.predict([[45,9,9,0]]))
        [1]
```

6. Run the Decision Tree for Cancer ALL data with 30 columns for X and Diagnosis column for y Please remove ID column

```
In [ ]: df=pd.read_excel("cancerAll.xlsx")
    map_df={"M":0,"B":1}
    df["diagnosis"]=df["diagnosis"].map(map_df)
    df.drop(columns=["ID"],inplace=True)
    a=np.array(df)
    y=a[:,0]
    x=a[:,1:]
    dtree=DecisionTreeClassifier()
    dtree.fit(x,y)
    features=list(df.columns)
    features.remove("diagnosis")
    plt.figure(figsize=(12,12))
    tree.plot_tree(dtree,feature_names=features,fontsize=6)
```

```
Out[]: [Text(0.625, 0.9375, 'radius.2 <= 16.795\ngini = 0.468\nsamples = 569\nvalue =
                [212, 357]'),
                  Text(0.40625, 0.8125, 'cp.2 <= 0.136\ngini = 0.159\nsamples = 379\nvalue = [3]
                3, 346]'),
                  Text(0.234375, 0.6875, 'radius.1 <= 1.048\ngini = 0.03\nsamples = 333\nvalue =
                 [5, 328]'),
                  Text(0.203125, 0.5625, 'area.1 <= 38.605\ngini = 0.024\nsamples = 332\nvalue =
                 [4, 328]'),
                  Text(0.125, 0.4375, 's.1 <= 0.003\ngini = 0.012\nsamples = 319\nvalue = [2, 31]
                7]'),
                  Text(0.0625, 0.3125, 'concavity.2 <= 0.195 \setminus gini = 0.245 \setminus gini = 7 \setminus gini = 7
                 [1, 6]'),
                  Text(0.03125, 0.1875, 'gini = 0.0\nsamples = 6\nvalue = [0, 6]'),
                  Text(0.09375, 0.1875, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
                  Text(0.1875, 0.3125, 'texture.2 <= 33.27\ngini = 0.006\nsamples = 312\nvalue =
                 [1, 311]'),
                  Text(0.15625, 0.1875, 'gini = 0.0\nsamples = 292\nvalue = [0, 292]'),
                  Text(0.21875, 0.1875, 'texture.2 <= 33.56\ngini = 0.095\nsamples = 20\nvalue =
                 [1, 19]'),
                  Text(0.1875, 0.0625, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
                  Text(0.25, 0.0625, 'gini = 0.0\nsamples = 19\nvalue = [0, 19]'),
                  Text(0.28125, 0.4375, 'c.2 \le 0.082 \neq 0.26 = 13 = 13 = 12.12
                  Text(0.25, 0.3125, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
                  Text(0.3125, 0.3125, 'concavity.2 <= 0.328\ngini = 0.153\nsamples = 12\nvalue
                = [1, 11]'),
                  Text(0.28125, 0.1875, 'gini = 0.0 \land samples = 11 \land value = [0, 11]'),
                  Text(0.34375, 0.1875, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'), Text(0.265625, 0.5625, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
                  Text(0.578125, 0.6875, 'texture.2 <= 25.67\ngini = 0.476\nsamples = 46\nvalue
                 = [28, 18]'),
                  Text(0.46875, 0.5625, 'area.2 <= 810.3 \ngini = 0.332 \nsamples = 19 \nvalue =
                 [4, 15]'),
                   Text(0.40625, 0.4375, 's.2 \le 0.179 = 0.124 = 15 = 15 = 15
                4]'),
                  Text(0.375, 0.3125, 'gini = 0.0\nsamples = 14\nvalue = [0, 14]'),
                  Text(0.4375, 0.3125, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
                  Text(0.53125, 0.4375, 'cp <= 0.046\ngini = 0.375\nsamples = 4\nvalue = [3,
                1]'),
                  Text(0.5, 0.3125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
                  Text(0.5625, 0.3125, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
                  Text(0.6875, 0.5625, 'cp <= 0.054 / ngini = 0.198 / nsamples = 27 / nvalue = [24, 1.5]
                3]'),
                  Text(0.65625, 0.4375, 'texture.2 <= 28.545\ngini = 0.5\nsamples = 6\nvalue =
                 [3, 3]'),
                  Text(0.625, 0.3125, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]'),
                  Text(0.6875, 0.3125, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
                  Text(0.71875, 0.4375, 'gini = 0.0\nsamples = 21\nvalue = [21, 0]'),
                  Text(0.84375, 0.8125, 'texture.2 <= 19.91\ngini = 0.109\nsamples = 190\nvalue
                 = [179, 11]'),
                  Text(0.78125, 0.6875, 'cp.2 <= 0.145 \cdot in = 0.498 \cdot in = 17 \cdot in = 18,
                9]'),
                  Text(0.75, 0.5625, 'gini = 0.0\nsamples = 9\nvalue = [0, 9]'),
                  Text(0.8125, 0.5625, 'gini = 0.0\nsamples = 8\nvalue = [8, 0]'),
                  Text(0.90625, 0.6875, 's.2 <= 0.088\ngini = 0.023\nsamples = 173\nvalue = [17
                 1, 2]'),
                  Text(0.875, 0.5625, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
                  Text(0.9375, 0.5625, 'concavity.2 <= 0.18\ngini = 0.012\nsamples = 172\nvalue
                 = [171, 1]'),
                  Text(0.90625, 0.4375, 'c.2 <= 0.161 \cdot i = 0.375 \cdot i = 4 \cdot i = [3, i = 0.375 \cdot i = 0.
```

```
1]'),
Text(0.875, 0.3125, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
Text(0.9375, 0.3125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.96875, 0.4375, 'gini = 0.0\nsamples = 168\nvalue = [168, 0]')]
```


7. Identify main columns in Step 6 from decision tree made and run for those columns on SVM

The main columns are radius.2, cp.2, texture,sym.1, texture.1,s.2, area.1,area.2, concavity,concavity.2,s.1,sym.1,cp,cp.1, sym, texture.2,

```
In []: # removing all unwanted columns
    df.drop(columns=['perimeter', 'area', 's', 'c', 'fd', 'radius.1', 'perimeter.1'
    a=np.array(df)
    y=a[:,0]
    x=a[:,1:]
    model=SVC(kernel='linear')
    x_train,x_test,y_train,y_test=train_test_split(x,y) #for linear svm
    model=SVC(kernel='linear').fit(x_train,y_train)
    train_pred=clf.predict(x_train)
    test_pred=clf.predict(x_test)
    print("training accuracy score",accuracy_score(y_train, train_pred))
    print("testing accuracy score: ",accuracy_score(y_test,test_pred)) #we probably
```

training accuracy score 0.9671361502347418 testing accuracy score: 0.9370629370629371