Base de datos 1 1-8

Práctica 3 - Algebra Relacional

Resolver los siguientes ejercicios aplicando las operaciones del álgebra relacional vistas en la materia:

- Selección σ
- Proyección π
- Producto Cartesiano X
- Producto Natural |X|
- · Diferencia o Resta -
- Intersección ∩
- Unión ∪
- División %
- Renombre ρ

PARTE I

1) Para cada inciso, indique la opción correcta.	
A) Indique cuál/es de las siguientes operaciones son válidas: [X] A(a, b, c) U B(a, b, d) -> es valida, siempre y cuando el dominio de c y d sea el mismo. [X] (A(a, b, c) X B(a, b)) - C(a, b, c) -> es válida, en el producto natural me quedo con los campos a, b, c, lo que me permite hacer la diferencia (unión compatible) [X] (A(a, b, c) X B(a, d, e)) ∩ D(a, b, c, d, e) -> es válida, en el producto natural me quedo con los campos a, b, c, d, e, lo que me permite hacer la intersección (unión compatible) [] (A(a, b, c) X B (a, b, d)) ∩ D(a, b, c, d) -> no es válida, el producto cartesiano entre A y tiene 6 atributos, lo que no me permite hacer la intersección (no son de unión compatible)	
B) Para la operación de resta es necesario que los esquemas involucrados sean compatibles, es decir, deben cumplir las siguientes condiciones: [X] Deben tener la misma cantidad de columnas [X] Las columnas deben ser del mismo dominio [X] El orden de los columnas debe ser el mismo [] Las columnas deben tener igual nombre	

2) ¿Para cuáles de las siguientes operaciones es necesario que los operandos sean unión compatibles? Marque todas las opciones correctas:

X

3) Dados los siguientes esquemas

Base de datos 1 2-8

COMPRA(#compra, fecha, monto_total)
COMPRA_PRODUCTO(#compra, cantidad, #producto)
PRODUCTO(#producto, nombre, precio)

Indique qué formato (conjunto de atributos) tiene el resultado de aplicar la siguiente operación.

consultar

π #producto COMPRA_PRODUCTO % π #producto PRODUCTO
[X] (#compra, cantidad)[] (#compra, cantidad, #producto)[] (#compra)
Para que la consulta tenga más sentido:
π #compra,#producto COMPRA_PRODUCTO % π #producto PRODUCTO
Entonces no me devuelve cantidad

4) Dado el siguiente esquema:

PASAJERO (#pasajero, nombre, dni, puntaje)
PASAJERO_RESERVA (#pasajero, #reserva)
RESERVA (#reserva, #vuelo, fecha_reserva, monto, #asiento)
VUELO (#vuelo, aeropuerto_salida, aeropuerto_destino, fecha_vuelo)

Indicar si las siguientes consultas obtienen el resultado correcto (sin tener en cuenta la optimización).

A) Obtener los pasajeros que tengan reservas sobre vuelos del próximo año, listando #pasajero, #vuelo y #asiento.

VUELOS_PROX_AÑO < σ fecha_vuelo >= 1/1/2026 AND fecha_vuelo <= 31/12/2026 VUELO

RES <- π #pasajero,#vuelo,#asiento (VUELOS_PROX_AÑO |X| RESERVA |X| PASAJERO_RESERVA)

Consulta correcta.

B) Obtener el listado de montos de reservas realizadas para vuelos efectuados el pasado Agosto desde Buenos Aires a Córdoba.

Base de datos 1 3-8

PASAJERO (#pasajero, nombre, dni, puntaje)
PASAJERO_RESERVA (#pasajero, #reserva)
RESERVA (#reserva, #vuelo, fecha_reserva, monto, #asiento)
VUELO (#vuelo, aeropuerto salida, aeropuerto destino, fecha vuelo)

VUELOS BUE CBA < − ♥ ciudad salida="Buenos Aires" AND ciudad destino="Córdoba" VUELO

RESERV_AGO <— (σ fecha_reserva >= 1/8/2025 AND fecha_reserva <= 31/8/2025 RESERVA) |X| VUELOS_BUE_CBA

RES < - π monto RESERV_AGO

Consulta correcta.

C) Obtener el/los pasajeros que solo hayan reservado vuelos cuyo aeropuerto de salida sea el aeropuerto "Ministro Pistarini". Listar el nombre y dni de los pasajeros.

PASAJERO (#pasajero, nombre, dni, puntaje)
PASAJERO_RESERVA (#pasajero, #reserva)
RESERVA (#reserva, #vuelo, fecha_reserva, monto, #asiento)
VUELO (#vuelo, aeropuerto_salida, aeropuerto_destino, fecha_vuelo)

VUELOS_PISTARINI <- π #vuelo (σ aeropuerto_salida="Ministro Pistarini" VUELO)

RESERVA_PISTARINI <- π #pasajero (VUELOS_PISTARINI |X| RESERVA)

PASAJEROS_PISTARINI $\leftarrow \pi$ nombre, dni (RESERVA_PISTARINI |X| PASAJERO)

Consulta incorrecta, hay que hacer una diferencia entre los pasajeros que volaron desde Pistarini y los que volaron desde otros aeropuertos. Ademas en RESERVA PISTARINI no se encuentra el atributo #pasajero. Consulta correcta:

VUELOS_PISTARINI ← σ aeropuerto_salida = "Ministro Pistarini" (VUELO) VUELOS_OTROS ← σ aeropuerto_salida ≠ "Ministro Pistarini" (VUELO)

PASAJ_PISTARINI $\leftarrow \pi$ #pasajero (VUELOS_PISTARINI |X| RESERVA |X| PASAJERO_RESERVA)

PASAJ_OTROS ← Π #pasajero (VUELOS_OTROS |X| RESERVA |X| PASAJERO_RESERVA)

SOLO_PISTARINI ← PASAJ_PISTARINI – PASAJ_OTROS RES ← Π nombre, dni (SOLO_PISTARINI |X| PASAJERO)

D) Obtener el/los id/s de los pasajeros que hayan realizado reservas por un monto superior a \$99000

PASAJERO (#pasajero, nombre, dni, puntaje)

Base de datos 1 4-8

PASAJERO_RESERVA (#pasajero, #reserva)
RESERVA (#reserva, #vuelo, fecha_reserva, monto, #asiento)
VUELO (#vuelo, aeropuerto_salida, aeropuerto_destino, fecha_vuelo)

RESERVAS_MAS_99000 <- Π #pasajero (σ monto < 99000 RESERVA)

Consulta Incorrecta. Debo hacer un producto natural con PASAJERO RESERVA para obtener el id de pasajero. Ademas debo consultar por monto mayor a 99000. Consulta correcta:

RESERVAS_MAS_99000 <- π #pasajero((σ monto > 99000 RESERVA) |X| PASAJERO_RESERVA)

Parte II: Para cada uno de los esquemas dados, resolver las consultas pedidas:

6) Choferes

DUEÑO (id_dueño, nombre, teléfono, dirección, dni) CHOFER (id_chofer, nombre, teléfono, dirección, fecha_licencia_desde, fecha_licencia_hasta, dni) AUTO (patente, id_dueño, id_chofer, marca, modelo, año) VIAJE (patente, hora_desde, hora_hasta, origen, destino, tarifa, metraje)

a) Listar el dni, nombre y teléfono de todos los dueños que NO son choferes

DUEÑOS <- π dni (DUEÑO) CHOFERS <- π dni (CHOFER)

RES <- Π dni, nombre, teléfono ((DUEÑO - CHOFER) |X| DUEÑO)

b) Listar la patente y el id_chofer de todos los autos a cuyos choferes les caduca la licencia el 01/01/2026

CHOFERLICENCIA <- π id_chofer ((σ fecha_licencia_hasta = 01/01/2026 CHOFER))

RES <- π patente, id_chofer (AUTO |X| CHOFERLICENCIA)

7) Estudiantes y carreras

ESTUDIANTE (#legajo, nombreCompleto, nacionalidad, añoDeIngreso, códigoDeCarrera) CARRERA (códigoDeCarrera, nombre) INSCRIPCIONAMATERIA (#legajo, códigoDeMateria) MATERIA (códigoDeMateria, nombre)

Base de datos 1 5-8

a) Obtener el nombre de los estudiantes que ingresaron en 2023.

```
RES <— Π nombreCompleto (σ añoDeIngreso = '2023' ESTUDIANTE)
```

b) Obtener el nombre de los estudiantes con nacionalidad "Argentina" que NO estén en la carrera con código "LI07"

```
RES < - Π nombreCompleto ((O (nacionalidad = 'Argentina') & (códigoDeCarrera <> 'LI07')) ESTUDIANTE)
```

c) Obtener el legajo de los estudiantes que se hayan anotado en TODAS las materias.

```
RES < — Π #legajo (INSCRIPCIONAMATERIA % (Π códigoMateria MATERIA))
```

Puedo obviar la proyección del #legajo?

8) Cursos

```
LUGAR_TRABAJO (#empleado, #departamento)
CURSO_EXIGIDO (#departamento, #curso)
CURSO_REALIZADO (#empleado, #curso)
```

a) ¿Quiénes son los empleados que han hecho todos los cursos, independientemente de qué departamento los exija?

```
RES <- Π #empleado (CURSO_REALIZADO % (Π #curso CURSO_EXIGIDO))
```

b) ¿Quiénes son los empleados que ya han realizado todos los cursos exigidos por sus departamentos?

```
CURSOS_A_HACER \leftarrow \pi #empleado, #curso (LUGAR_TRABAJO |X| CURSO_EXIGIDO)
```

CURSOS PENDIENTES ← CURSOS A HACER - (CURSO REALIZADO)

RES $\leftarrow \pi$ #empleado (LUGAR_TRABAJO) - π #empleado (CURSOS_PENDIENTES)

Preguntar.

```
// pares (empleado, curso) que SU departamento exige
REQ <- π #empleado, #curso ( LUGAR_TRABAJO μα CURSO_EXIGIDO )

// pares exigidos que el empleado NO realizó
MISSING <- REQ - π #empleado, #curso ( CURSO_REALIZADO )

// empleados sin faltantes
RES <- π #empleado (REQ) - π #empleado (MISSING)
```

Base de datos 1 6-8

9) Fabricantes de Muebles

```
TIPOMUEBLE (id_tipomueble, descripción)
```

FABRICANTE (id_fabricante,nombrefabricante, cuit)

TIPOMADERA (id_tipomadera, nombremadera)

AMBIENTE (id_ambiente, descripcionambiente)

MUEBLE (id_mueble, id_tipomueble, id_fabricante, id_tipomadera, precio, dimensiones, descripcion)

MUEBLEAMBIENTE (id_mueble, id_ambiente)

a. Obtener los nombres de los fabricantes que fabrican muebles en todos los tipos de madera.

```
MADERAS_TODAS \leftarrow \Pi id_tipomadera (TIPOMADERA)
```

FABRICANTES_MUEBLES $<-\Pi$ id_tipomadera, id_fabricante (MUEBLE)

RES $<-\Pi$ nombrefabricante ((FABRICANTE) |X| (FABRICANTES_MUEBLES % MADERAS_TODAS))

b. Obtener los nombres de los fabricantes que sólo fabrican muebles en Pino.

```
PINO < - \Pi id_tipomadera (O nombremadera = 'Pino' TIPOMADERA)
```

 $NO_{PINO} \leftarrow \Pi$ id_tipomadera (σ nombremadera \leftrightarrow 'Pino' TIPOMADERA)

FABRICANTES_PINO $<-\Pi$ id_fabricante (PINO |X| MUEBLE)

FABRICANTES_NO_PINO $<-\Pi$ id_fabricante (NO_PINO |X| MUEBLE)

 $\mathsf{RES} < - \ \Pi \quad \mathsf{nombrefabricante} \ (\ \mathsf{FABRICANTE} \ | \mathsf{X} | \ (\mathsf{FABRICANTES_PINO} \ - \ \mathsf{FABRICANTES_NO_PINO}))$

Preguntar: es necesario guardar el resultado en RES o directamente puedo proyectar?

c. Obtener los nombres de los fabricantes que fabrican muebles para todos los ambientes.

AMBIENTES TODOS < − Π id_ambiente (AMBIENTE)

FABRICANTES_AMBIENTES < − Π id_ambiente, id_fabricante (MUEBLE |X| MUEBLEAMBIENTE)

RES $<-\Pi$ nombrefabricante ((FABRICANTE) |X| (FABRICANTES AMBIENTES % AMBIENTES TODOS))

d. Obtener los nombres de los fabricantes que sólo fabrican muebles para oficina.

```
OFICINAS <-\Pi id_ambiente (\sigma descripcionambiente = 'Oficina' AMBIENTE)
```

NO_OFICINAS $<-\Pi$ id_ambiente (σ descripcionambiente <> 'Oficina' AMBIENTE)

FABRICANTES OFICINA $\leftarrow \Pi$ id fabricante (OFICINAS |X| MUEBLEAMBIENTE |X| MUEBLE)

FABRICANTES_NO_OFICINA <— Π id_fabricante (NO_OFICINAS |X| MUEBLEAMBIENTE |X| MUEBLE)

Base de datos 1 7-8

```
RES < − Π nombrefabricante ( FABRICANTE |X| (FABRICANTES_OFICINA - FABRICANTES_NO_OFICINA) )
```

e. Obtener los nombres de los fabricantes que sólo fabrican muebles para baño y cocina.

La solución de la imagen está bien?—> el producto natural de la primer consulta realmente me devuelve los id_fabricante de aquellos que fabrican muebles para baño Y cocina?

e. Obtener los nombres de los fabricantes que sólo fabrican muebles para baño y cocina.

```
\begin{split} & \mathsf{BANCOCINA} \leftarrow \Pi_{id\_fabricante} \; \big( \mathsf{MUEBLE} \; | \mathsf{X} | \; \mathsf{MUEBLEAMBIENTE} \; | \mathsf{X} | \\ & \big( \Pi_{id\_ambiente} \; \big( \sigma_{descripcionambiente="baño" or descripcionambiente="cocina"} (\mathsf{AMBIENTE})))) \\ & \mathsf{NOBANCOCINA} \leftarrow \Pi_{id\_fabricante} \; \big( \mathsf{MUEBLE} \; | \mathsf{X} | \; \mathsf{MUEBLEAMBIENTE} \; | \mathsf{X} | \\ & \big( \Pi_{id\_ambiente} \; \big( \sigma_{descripcionambiente<>"baño" and descripcionambiente<>"cocina"} (\mathsf{AMBIENTE})))) \\ & \Pi_{nombrefabricante} \; \big( \big( \mathsf{BANCOCINA} - \mathsf{NOBANCOCINA} \big) \; | \mathsf{X} | \; \mathsf{FABRICANTE} \big) \end{split}
```

f. Obtener los nombres de los fabricantes que producen muebles de cedro y roble.

```
CEDRO <- \pi id_tipomadera (\sigma nombremadera = 'Cedro' TIPOMADERA)

ROBLE <- \pi id_tipomadera (\sigma nombremadera = 'Roble' TIPOMADERA)

FABRICANTES_CEDRO <- \pi id_fabricante (CEDRO |X| MUEBLE )

FABRICANTES_ROBLE <- \pi id_fabricante (ROBLE |X| MUEBLE )

FABRICANTES_AMBOS <- (FABRICANTES_CEDRO \cap FABRICANTES_ROBLE )

RES <- \pi nombrefabricante (FABRICANTE |X| (FABRICANTES_AMBOS))
```

g. Obtener los nombres de los fabricantes que producen muebles de melamina o MDF

Base de datos 1 8-8

```
\label{eq:melamina} \mbox{MELAMINA\_MDF} < - \mbox{ $\Pi$ } \mbox{ id\_tipomadera ($\sigma$ (nombremadera = 'Melamina')OR(nombremadera = 'MDF') $$ TIPOMADERA)$
```

FABRICANTES_MELAMINA_MDF $< - \Pi$ id_fabricante (MELAMINA_MDF |X| MUEBLE)

RES $<-\Pi$ nombrefabricante (FABRICANTE |X| (FABRICANTES_MELAMINA_MDF))

Consultar OTRA OPCION MAS LARGA

$$\label{eq:melamina} \begin{split} & \text{MELAMINA} < - \ \Pi \quad \text{id_tipomadera (σ nombremadera = 'Melamina' TIPOMADERA)} \\ & \text{MDF} < - \ \Pi \quad \text{id_tipomadera (σ nombremadera = 'MDF' TIPOMADERA)} \end{split}$$

FABRICANTES_MELAMINA $<-\Pi$ id_fabricante (MELAMINA |X| MUEBLE)

FABRICANTES_MDF $< - \Pi$ id_fabricante (MDF |X| MUEBLE)

FABRICANTES_AMBOS < - (FABRICANTES_MELAMINA U FABRICANTES_MDF)

RES < − Π nombrefabricante (FABRICANTE |X| (FABRICANTES_AMBOS))