Introducción a la Logica y la Computación (3era Parte)

Docentes: Badano, Bustos, Costamagna, Tellechea, Zigaran

Año 2024

► Hasta aquí, hemos probado que los lenguajes regulares, las expresiones regulares y los autómatas finitos son equivalentes:

$$LR^{\Sigma} \equiv ER^{\Sigma} \equiv AF^{\Sigma}$$

► Hasta aquí, hemos probado que los lenguajes regulares, las expresiones regulares y los autómatas finitos son equivalentes:

$$LR^{\Sigma} \equiv ER^{\Sigma} \equiv AF^{\Sigma}$$

Vamos a presentar el último modelo computacional que caracteriza a los lenguajes regulares, las llamadas gramáticas regulares.

► Hasta aquí, hemos probado que los lenguajes regulares, las expresiones regulares y los autómatas finitos son equivalentes:

$$LR^{\Sigma} \equiv ER^{\Sigma} \equiv AF^{\Sigma}$$

- Vamos a presentar el último modelo computacional que caracteriza a los lenguajes regulares, las llamadas gramáticas regulares.
- ► Las gramáticas fueron el modelo matemático propuesto originalmente por Chomsky para caracterizar cada una de las clases de lenguajes de su jerarquía:

► Hasta aquí, hemos probado que los lenguajes regulares, las expresiones regulares y los autómatas finitos son equivalentes:

$$LR^{\Sigma} \equiv ER^{\Sigma} \equiv AF^{\Sigma}$$

- Vamos a presentar el último modelo computacional que caracteriza a los lenguajes regulares, las llamadas gramáticas regulares.
- ► Las gramáticas fueron el modelo matemático propuesto originalmente por Chomsky para caracterizar cada una de las clases de lenguajes de su jerarquía:

Lenguaje Regular Lenguaje Indep. Contexto Lenguaje Sens. Contexto Lenguaje Rec. Enumerables \leftrightarrow Gramática Regular

 $\mbox{Lenguaje Indep. Contexto} \qquad \leftrightarrow \quad \mbox{Gram\'atica Indep. Contexto}$

Lenguaje Sens. Contexto $\ \leftrightarrow$ Gramática Sens. de Contexto

Lenguaje Rec. Enumerables ← Gramática Sin Restricciones

Definimos primero la versión más general del modelo, denominado gramática sin restricciones.

- Definimos primero la versión más general del modelo, denominado gramática sin restricciones.
- Y luego, le impondremos una fuerte restricción dando lugar a la llamada gramática regular.

- Definimos primero la versión más general del modelo, denominado gramática sin restricciones.
- Y luego, le impondremos una fuerte restricción dando lugar a la llamada gramática regular.

Definición (Gramática Sin Restricciones)

Una gramática es una 4-upla $G = (V, \Sigma, S, P)$, con $V \cap \Sigma = \emptyset$, donde:

- V es un conjunto finito de símbolos no terminales, llamado conjunto de variables.
- $ightharpoonup \Sigma$ es un conjunto finito de **símbolos terminales**.
- \triangleright $S \in V$, llamada variable inicial.
- ▶ P es un conjunto finito de **producciones** de la forma $\alpha \to \beta$ tal que $\alpha, \beta \in (V \cup \Sigma)^*$ y $\alpha \neq \epsilon$.

Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.

- Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.
- ▶ La producción $\alpha \to \beta$ significa que podemos **sustituir** la ocurrencia de la cadena α por la cadena β .

- Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.
- La producción $\alpha \to \beta$ significa que podemos **sustituir** la ocurrencia de la cadena α por la cadena β .
- Por ejemplo, sea $G_1 = (\{S\}, \{a, b\}, S, \{S \rightarrow aS, S \rightarrow \epsilon\})$ una gramática, podemos derivar la cadena "aaa" en G_1 de la siguiente manera:

- Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.
- La producción $\alpha \to \beta$ significa que podemos **sustituir** la ocurrencia de la cadena α por la cadena β .
- Por ejemplo, sea $G_1 = (\{S\}, \{a, b\}, S, \{S \rightarrow aS, S \rightarrow \epsilon\})$ una gramática, podemos derivar la cadena "aaa" en G_1 de la siguiente manera:

$$S \Longrightarrow_{G_1} aS \Longrightarrow_{G_1} aaS \Longrightarrow_{G_1} aaaS \Longrightarrow_{G_1} aaa$$

- Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.
- La producción $\alpha \to \beta$ significa que podemos sustituir la ocurrencia de la cadena α por la cadena β .
- Por ejemplo, sea $G_1 = (\{S\}, \{a, b\}, S, \{S \to aS, S \to \epsilon\})$ una gramática, podemos derivar la cadena "aaa" en G_1 de la siguiente manera:

$$S \Longrightarrow_{G_1} aS \Longrightarrow_{G_1} aaS \Longrightarrow_{G_1} aaaS \Longrightarrow_{G_1} aaa$$

► Todas la cadenas que se pueden derivar en una gramática definen el lenguaje de la gramática.

- Una gramática permite generar o derivar cadenas de símbolos terminales mediante una sucesión de reemplazos sintácticos definidos en su conjunto de producciones.
- La producción $\alpha \to \beta$ significa que podemos **sustituir** la ocurrencia de la cadena α por la cadena β .
- Por ejemplo, sea $G_1 = (\{S\}, \{a, b\}, S, \{S \to aS, S \to \epsilon\})$ una gramática, podemos derivar la cadena "aaa" en G_1 de la siguiente manera:

$$S \Longrightarrow_{G_1} aS \Longrightarrow_{G_1} aaS \Longrightarrow_{G_1} aaaS \Longrightarrow_{G_1} aaa$$

- Todas la cadenas que se pueden derivar en una gramática definen el lenguaje de la gramática.
- ▶ Por legibilidad, describimos las gramáticas listando sus producciones separadas por un "|":

$$G_1: S \rightarrow aS | \epsilon$$

Derivación de una Cadena

Definimos formalmente la noción de 1-paso de derivación:

$$\begin{array}{c} \alpha \underset{G}{\Longrightarrow} \beta \text{ sii } \exists \alpha_1, \alpha_2, \alpha_2', \alpha_3 \in (V \cup \Sigma)^* \text{ tq } \alpha = \alpha_1 \alpha_2 \alpha_3 \\ \beta = \alpha_1 \alpha_2' \alpha_3 \\ \alpha_2 \to \alpha_2' \in P \end{array}$$

Derivación de una Cadena

Definimos formalmente la noción de 1-paso de derivación:

$$\alpha \Longrightarrow_{G} \beta \text{ sii } \exists \alpha_{1}, \alpha_{2}, \alpha'_{2}, \alpha_{3} \in (V \cup \Sigma)^{*} \text{ tq } \alpha = \alpha_{1}\alpha_{2}\alpha_{3}$$

$$\beta = \alpha_{1}\alpha'_{2}\alpha_{3}$$

$$\alpha_{2} \to \alpha'_{2} \in P$$

Y luego, n-pasos de derivación:

$$\alpha \xrightarrow{g \atop G} \beta \text{ sii } \exists \alpha_1, \dots, \alpha_{n+1} \in (V \cup \Sigma)^* \text{ tq}$$
 $\alpha = \alpha_1 \xrightarrow{g} \dots \xrightarrow{g} \alpha_{n+1} = \beta$

Derivación de una Cadena

Definimos formalmente la noción de 1-paso de derivación:

$$\alpha \Longrightarrow_{G} \beta$$
 sii $\exists \alpha_{1}, \alpha_{2}, \alpha'_{2}, \alpha_{3} \in (V \cup \Sigma)^{*} \text{ tq } \alpha = \alpha_{1}\alpha_{2}\alpha_{3}$

$$\beta = \alpha_{1}\alpha'_{2}\alpha_{3}$$

$$\alpha_{2} \to \alpha'_{2} \in P$$

Y luego, n-pasos de derivación:

$$\alpha \xrightarrow{n \atop G} \beta \text{ sii } \exists \alpha_1, \dots, \alpha_{n+1} \in (V \cup \Sigma)^* \text{ tq}$$
 $\alpha = \alpha_1 \xrightarrow{G} \dots \xrightarrow{G} \alpha_{n+1} = \beta$

Y finalmente, escribimos $\alpha \stackrel{*}{\underset{G}{\rightleftharpoons}} \beta$ sii $\alpha \stackrel{n}{\underset{G}{\rightleftharpoons}} \beta$ para algún $n \in \mathbb{N}$.

Lenguaje Generado de una Gramática

Son todas las cadenas de terminales que pueden ser derivadas en la gramática a partir de su variable inicial:

$$L(G) = \{\alpha \in \Sigma^* : S \xrightarrow{*}_{G} \alpha\}$$

Lenguaje Generado de una Gramática

Son todas las cadenas de terminales que pueden ser derivadas en la gramática a partir de su variable inicial:

$$L(G) = \{\alpha \in \Sigma^* : S \stackrel{*}{\Longrightarrow} \alpha\}$$

Para la gramática anterior:

$$G_1: S \rightarrow aS | \epsilon$$

Tenemos que $L(G_1) = \{a^n : n \in \mathbb{N}\}.$

Lenguaje Generado de una Gramática

Son todas las cadenas de terminales que pueden ser derivadas en la gramática a partir de su variable inicial:

$$L(G) = \{\alpha \in \Sigma^* : S \xrightarrow{*}_{G} \alpha\}$$

Para la gramática anterior:

$$G_1: S \to aS | \epsilon$$

Tenemos que $L(G_1) = \{a^n : n \in \mathbb{N}\}.$

Sea G_2 la siguiente gramática:

$$G_2: S \to \epsilon |bS| aA$$

 $A \to aS|bA$

Tenemos que $L(G_2) = \{\alpha \in \Sigma_2^* : |\alpha|_a \text{ es par}\}.$

Sea G_3 la siguiente gramática:

$$G_3:S o aSb|\epsilon$$

Tenemos que $L(G_3) = \{a^m b^m : m \in \mathbb{N}\}.$

Surgen de imponer una fuerte restricción en la forma de las producciones $\alpha \to \beta \in P$:

Surgen de imponer una fuerte restricción en la forma de las producciones $\alpha \to \beta \in P$:

- $ightharpoonup \alpha$ sólo puede ser una única variable.
- \triangleright β sólo puede ser una cadena de símbolos terminales seguida de a lo sumo una variable o viceversa.

Surgen de imponer una fuerte restricción en la forma de las producciones $\alpha \to \beta \in P$:

- $ightharpoonup \alpha$ sólo puede ser una única variable.
- ightharpoonup eta sólo puede ser una cadena de símbolos terminales seguida de a lo sumo una variable o viceversa.

Definición (Gramática Regular)

Una gramática $G=(V,\Sigma,S,P)$ es **Lineal por Derecha** si y solo si todas sus producciones son de la forma $A\to\alpha B$ o $A\to\alpha$ con $\alpha\in\Sigma^*$ y $A,B\in V$. Análogamente, una gramática $G=(V,\Sigma,S,P)$ es **Lineal por Izquierda** si y solo si todas sus producciones son de la forma $A\to B\alpha$ o $A\to\alpha$ con $\alpha\in\Sigma^*$ y $A,B\in V$.

Surgen de imponer una fuerte restricción en la forma de las producciones $\alpha \to \beta \in P$:

- $ightharpoonup \alpha$ sólo puede ser una única variable.
- ho sólo puede ser una cadena de símbolos terminales seguida de a lo sumo una variable o viceversa.

Definición (Gramática Regular)

Una gramática $G=(V,\Sigma,S,P)$ es **Lineal por Derecha** si y solo si todas sus producciones son de la forma $A\to\alpha B$ o $A\to\alpha$ con $\alpha\in\Sigma^*$ y $A,B\in V$. Análogamente, una gramática $G=(V,\Sigma,S,P)$ es **Lineal por Izquierda** si y solo si todas sus producciones son de la forma $A\to B\alpha$ o $A\to\alpha$ con $\alpha\in\Sigma^*$ y $A,B\in V$.

Una gramática $G = (V, \Sigma, S, P)$ es una **Gramática Regular (GR)** si y solo si es una gramática lineal por derecha o una gramática lineal por izquierda.

$$GR^{\Sigma} = \{G : G \text{ es } GR \text{ con simbolos terminales } \Sigma\}$$

Ejemplos de Gramáticas Regulares

De los ejemplos anteriores, G_1 y G_2 son gramáticas regulares, mientras que G_3 no lo es pues la producción $S \rightarrow aSb$ no es lineal.

Ejemplos de Gramáticas Regulares

De los ejemplos anteriores, G_1 y G_2 son gramáticas regulares, mientras que G_3 no lo es pues la producción $S \rightarrow aSb$ no es lineal.

Sea G_4 la gramática regular:

$$G_4: S \to aS|B$$

 $B \to bB|\epsilon$

Tenemos que $L(G_4)=\{a^nb^m:n,m\in\mathbb{N}\}=a^*b^*$

Ejemplos de Gramáticas Regulares

De los ejemplos anteriores, G_1 y G_2 son gramáticas regulares, mientras que G_3 no lo es pues la producción $S \rightarrow aSb$ no es lineal.

Sea G_4 la gramática regular:

$$G_4: S \to aS|B$$

 $B \to bB|\epsilon$

Tenemos que $L(G_4)=\{a^nb^m:n,m\in\mathbb{N}\}=a^*b^*$

Sea G_5 la gramática regular:

$$G_5: S \to aS|bS|A$$

 $A \to aA|a$

Tenemos que
$$L(G_5) = (a+b)^*a^+$$

Sea $L = \{\alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

 $G:S o aaS|abS|baS|bbS|\epsilon$

Tenemos que L(G) = L.

Sea $L = \{\alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S o aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L?

Sea $L = \{ \alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S o aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$.

Sea $L = \{ \alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S o aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$. Y lo probaremos por inducción!

Sea $L = \{ \alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S o aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$. Y lo probaremos por inducción!

Veamos que $L(G) \subseteq L$.

Sea $L = \{ \alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S o aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$. Y lo probaremos por inducción!

Veamos que $L(G) \subseteq L$.

Sea $\alpha \in L(G)$ \therefore $S \underset{G}{\overset{*}{\Longrightarrow}} \alpha$, con $\alpha \in \Sigma^*$ \therefore $S \underset{G}{\overset{n}{\Longrightarrow}} \alpha$, para algún $n \ge 1$.

Hacemos inducción en n (i.e, en la cantidad de pasos de la derivación).

Sea $L = \{ \alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G:S
ightarrow aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$. Y lo probaremos por inducción!

Veamos que $L(G) \subseteq L$.

Sea $\alpha \in L(G)$ \therefore $S \underset{G}{\overset{*}{\Longrightarrow}} \alpha$, con $\alpha \in \Sigma^*$ \therefore $S \underset{G}{\overset{n}{\Longrightarrow}} \alpha$, para algún $n \ge 1$.

Hacemos inducción en n (i.e, en la cantidad de pasos de la derivación).

HI: $S \stackrel{n}{\Longrightarrow} \alpha$, entonces $|\alpha| \in L$ (o sea, $|\alpha|$ par).

Probando por Inducción que L(G) = L

Sea $L = \{\alpha \in \Sigma^* : |\alpha| \ par \}$ y sea G la gramática regular:

$$G: S \rightarrow aaS|abS|baS|bbS|\epsilon$$

Tenemos que L(G) = L.

Pero como podemos asegurar con certeza matemática que efectivamente L(G) = L? Debemos ver que vale la inclusión mutua $L(G) \subseteq L$ y $L \subseteq L(G)$. Y lo probaremos por inducción!

Veamos que $L(G) \subseteq L$.

Sea $\alpha \in L(G)$ $\therefore S \stackrel{*}{\Longrightarrow} \alpha$, con $\alpha \in \Sigma^*$ $\therefore S \stackrel{n}{\Longrightarrow} \alpha$, para algún $n \ge 1$.

Hacemos inducción en n (i.e, en la cantidad de pasos de la derivación).

HI: $S \stackrel{n}{\Longrightarrow} \alpha$, entonces $|\alpha| \in L$ (o sea, $|\alpha|$ par).

Caso base n = 1:

Si
$$S \xrightarrow{1}_{G} \alpha$$
 , entonces $\alpha = \epsilon$ y $|\epsilon| = 0$ y es par $:: \epsilon \in L$.

Caso inductivo n+1: Si $S \xrightarrow{n+1} \alpha : S \xrightarrow{1} x_1 x_2 S \xrightarrow{n} \alpha$, con $x_1, x_2 \in \{a, b\} : \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* : S \xrightarrow{n} \alpha'$, luego por HI, $\alpha' \in L : |\alpha'|$ es par $: |\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $: \alpha \in L$. Caso inductivo n+1: Si $S \xrightarrow{n+1}_{G} \alpha : S \xrightarrow{1}_{G} x_1 x_2 S \xrightarrow{n}_{G} \alpha$, con $x_1, x_2 \in \{a, b\} : \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* : S \xrightarrow{n}_{G} \alpha'$, luego por HI, $\alpha' \in L : |\alpha'|$ es par $: |\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $: \alpha \in L$.

Veamos que $L \subseteq L(G)$.

Caso inductivo n+1: Si $S \xrightarrow{n+1} \alpha : S \xrightarrow{1} \alpha x_1 x_2 S \xrightarrow{n} \alpha$, con $x_1, x_2 \in \{a, b\} : \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* : S \xrightarrow{n} \alpha'$, luego por HI, $\alpha' \in L : |\alpha'|$ es par $|\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $|\alpha| \in L$.

Veamos que $L \subseteq L(G)$. Sea $\alpha \in L$ y sea $n = |\alpha|$, con $n \ge 0$.

Hacemos inducción en n (i.e, en la longitud de la cadena).

Caso inductivo n+1: Si $S \xrightarrow{n+1} \alpha : S \xrightarrow{1} \alpha x_1 x_2 S \xrightarrow{n} \alpha$, con $x_1, x_2 \in \{a, b\} : \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* : S \xrightarrow{n} \alpha'$, luego por HI, $\alpha' \in L : |\alpha'|$ es par $|\alpha'| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $|\alpha'| = 2 + |\alpha'|$

Veamos que $L \subseteq L(G)$. Sea $\alpha \in L$ y sea $n = |\alpha|$, con $n \ge 0$.

Hacemos inducción en n (i.e, en la longitud de la cadena).

HI: $\alpha \in L$ y $|\alpha| = n$, entonces $S \stackrel{*}{\underset{G}{\longrightarrow}} \alpha$ (o sea, $\alpha \in L(G)$)

Caso inductivo n+1: Si $S \xrightarrow{n+1}_{G} \alpha : S \xrightarrow{1}_{G} x_1 x_2 S \xrightarrow{n}_{G} \alpha$, con $x_1, x_2 \in \{a, b\} : \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* : S \xrightarrow{n}_{G} \alpha'$, luego por HI, $\alpha' \in L : |\alpha'|$ es par

Veamos que $L \subseteq L(G)$. Sea $\alpha \in L$ y sea $n = |\alpha|$, con n > 0.

 $|\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $\alpha \in L$.

Hacemos inducción en n (i.e, en la longitud de la cadena).

HI: $\alpha \in \mathcal{L}$ y $|\alpha| = n$, entonces $S \overset{*}{\underset{G}{\longrightarrow}} \alpha$ (o sea, $\alpha \in \mathcal{L}(G)$)

Caso base n = 0:

Si $0 = |\alpha|$, entonces $\alpha = \epsilon$, entonces tomamos $S \xrightarrow[G]{1} \epsilon : \epsilon \in L(G)$.

Caso inductivo n + 1:

Si
$$S \xrightarrow{n+1}_{G} \alpha :: S \xrightarrow{1}_{G} x_1 x_2 S \xrightarrow{n}_{G} \alpha$$
, con $x_1, x_2 \in \{a, b\} :: \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* :: S \xrightarrow{n}_{G} \alpha'$, luego por HI, $\alpha' \in L :: |\alpha'|$ es par $:: |\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $:: \alpha \in L$.

Veamos que $L \subseteq L(G)$.

Sea $\alpha \in L$ y sea $n = |\alpha|$, con $n \ge 0$.

Hacemos inducción en n (i.e, en la longitud de la cadena).

HI:
$$\alpha \in L$$
 y $|\alpha| = n$, entonces $S \overset{*}{\underset{G}{\longrightarrow}} \alpha$ (o sea, $\alpha \in L(G)$)

Caso base n = 0:

Si
$$0 = |\alpha|$$
, entonces $\alpha = \epsilon$, entonces tomamos $S \xrightarrow[G]{\underline{+}} \epsilon : \epsilon \in L(G)$.

Caso inductivo n + 2:

Si
$$n+2=|\alpha|$$
 \therefore $\alpha=x_1x_2\alpha'$, con $\alpha'\in\Sigma^*$, $|\alpha'|$ par y $x_1,x_2\in\{a,b\}$ \therefore $\alpha'\in L$, luego por HI, $\alpha'\in L(G)$ \therefore $S\overset{*}{\Longrightarrow}\alpha'$, entonces tomamos $S\overset{1}{\Longrightarrow}x_1x_2S\overset{*}{\Longrightarrow}x_1x_2\alpha'=\alpha$ \therefore $\alpha\in L(G)$.

Caso inductivo n + 1:

Si
$$S \xrightarrow{n+1} \alpha \therefore S \xrightarrow{1} \alpha x_1 x_2 S \xrightarrow{n} \alpha$$
, con $x_1, x_2 \in \{a, b\} \therefore \alpha = x_1 x_2 \alpha'$, con $\alpha' \in \Sigma^* \therefore S \xrightarrow{n} \alpha'$, luego por HI, $\alpha' \in L \therefore |\alpha'|$ es par $\therefore |\alpha| = |x_1 x_2 \alpha'| = 2 + |\alpha'|$ es par $\therefore \alpha \in L$.

Veamos que $L \subseteq L(G)$.

Sea $\alpha \in L$ y sea $n = |\alpha|$, con $n \ge 0$.

Hacemos inducción en n (i.e, en la longitud de la cadena).

HI:
$$\alpha \in L$$
 y $|\alpha| = n$, entonces $S \stackrel{*}{\Longrightarrow} \alpha$ (o sea, $\alpha \in L(G)$)

Caso base n = 0:

Si
$$0 = |\alpha|$$
, entonces $\alpha = \epsilon$, entonces tomamos $S \xrightarrow[G]{\underline{+}} \epsilon : \epsilon \in L(G)$.

Caso inductivo n + 2:

Si
$$n+2=|\alpha|$$
 \therefore $\alpha=x_1x_2\alpha'$, con $\alpha'\in\Sigma^*$, $|\alpha'|$ par y $x_1,x_2\in\{a,b\}$ \therefore $\alpha'\in L$, luego por HI, $\alpha'\in L(G)$ \therefore $S\underset{G}{\overset{*}{\Longrightarrow}}\alpha'$, entonces tomamos $S\xrightarrow{1} x_1x_2S \underset{G}{\overset{*}{\Longrightarrow}} x_1x_2\alpha'=\alpha$ \therefore $\alpha\in L(G)$.

(Este no fue el caso, pero en general, en aquellas gramáticas que utilizan más variables que la variable inicial S, debemos fortalecer la hipótesis inductiva!!!).

• Queremos probar que los lenguajes regulares y las gramáticas regulares son equivalentes, $LR^{\Sigma} \equiv GR^{\Sigma}$.

- Queremos probar que los lenguajes regulares y las gramáticas regulares son equivalentes, $LR^{\Sigma} \equiv GR^{\Sigma}$.
- Para probarlo de manera sencilla necesitamos primero introducir el concepto de gramática regular de paso único (GRPU).

- Queremos probar que los lenguajes regulares y las gramáticas regulares son equivalentes, $LR^{\Sigma} \equiv GR^{\Sigma}$.
- Para probarlo de manera sencilla necesitamos primero introducir el concepto de gramática regular de paso único (GRPU).
- Probaremos que las GR y las GRPU son equivalentes.

- Queremos probar que los lenguajes regulares y las gramáticas regulares son equivalentes, $LR^{\Sigma} \equiv GR^{\Sigma}$.
- Para probarlo de manera sencilla necesitamos primero introducir el concepto de gramática regular de paso único (GRPU).
- Probaremos que las GR y las GRPU son equivalentes.
- Por último, probaremos que los AF y las GRPU son equivalentes, y asi, por transitividad, habremos demostrado que $LR^{\Sigma} \equiv GR^{\Sigma}$.

Surgen de imponer una restricción aún más fuerte a la forma de las producciones de una gramática regular.

- Surgen de imponer una restricción aún más fuerte a la forma de las producciones de una gramática regular.
- Por lo tanto, son un caso particular de gramáticas regulares.

- Surgen de imponer una restricción aún más fuerte a la forma de las producciones de una gramática regular.
- Por lo tanto, son un caso particular de gramáticas regulares.

Definición (Gramática Regular de Paso Unico)

Una gramática $G = (V, \Sigma, S, P)$ es una **Gramática Regular de Paso Unico** (GRPU) si y solo si todas sus producciones son de la forma $A \to aB$ o $A \to B$ o $A \to \epsilon$, con $a \in \Sigma$ y $A, B \in V$.

 $\textit{GRPU}^{\Sigma} = \{\textit{G}: \textit{G} \textit{ es GRPU con simbolos terminales }\Sigma\}$

- Surgen de imponer una restricción aún más fuerte a la forma de las producciones de una gramática regular.
- Por lo tanto, son un caso particular de gramáticas regulares.

Definición (Gramática Regular de Paso Unico)

Una gramática $G=(V,\Sigma,S,P)$ es una **Gramática Regular de Paso Unico** (GRPU) si y solo si todas sus producciones son de la forma $A \to aB$ o $A \to B$ o $A \to \epsilon$, con $a \in \Sigma$ y $A,B \in V$.

$$\textit{GRPU}^{\Sigma} = \{\textit{G}: \textit{G} \ \textit{es} \ \textit{GRPU} \ \textit{con simbolos terminales} \ \Sigma\}$$

De las anteriores, G_1 , G_2 , G_4 y G_5 son gramáticas regulares de paso unico.

- ➤ Surgen de imponer una restricción aún más fuerte a la forma de las producciones de una gramática regular.
- Por lo tanto, son un caso particular de gramáticas regulares.

Definición (Gramática Regular de Paso Unico)

Una gramática $G = (V, \Sigma, S, P)$ es una **Gramática Regular de Paso Unico** (GRPU) si y solo si todas sus producciones son de la forma $A \to aB$ o $A \to B$ o $A \to \epsilon$, con $a \in \Sigma$ y $A, B \in V$.

$$\textit{GRPU}^{\Sigma} = \{\textit{G}: \textit{G} \ \textit{es} \ \textit{GRPU} \ \textit{con simbolos terminales} \ \Sigma\}$$

De las anteriores, G_1 , G_2 , G_4 y G_5 son gramáticas regulares de paso unico.

Mientras que la gramática anterior G con $L(G) = \{\alpha \in \Sigma^* : |\alpha| \ par \}$ no es de paso único pero si es regular:

$$G: S \rightarrow aaS|abS|baS|bbS|\epsilon$$

En una gramática regular podemos derivar con la aplicación de una sola producción una cadena α con k símbolos:

$$S \stackrel{1}{\Rightarrow} \alpha A$$
, con $\alpha = a_1 \dots a_k$

En una gramática regular podemos derivar con la aplicación de una sola producción una cadena α con k símbolos:

$$S \stackrel{1}{\Rightarrow} \alpha A$$
, con $\alpha = a_1 \dots a_k$

Mientras que en una gramática regular de paso único derivamos α pero aplicando k producciones:

$$S \xrightarrow{1} a_1 A_1 \xrightarrow{1} a_1 a_2 A_2 \dots \xrightarrow{1} a_1 a_2 \dots a_k Ak \xrightarrow{1} a_1 a_2 \dots a_k A = \alpha A \therefore$$

$$S \stackrel{k}{\Longrightarrow} \alpha A$$

En una gramática regular podemos derivar con la aplicación de una sola producción una cadena α con k símbolos:

$$S \stackrel{1}{\Rightarrow} \alpha A$$
, con $\alpha = a_1 \dots a_k$

Mientras que en una gramática regular de paso único derivamos α pero aplicando k producciones:

$$S \xrightarrow{1} a_1 A_1 \xrightarrow{1} a_1 a_2 A_2 \dots \xrightarrow{1} a_1 a_2 \dots a_k Ak \xrightarrow{1} a_1 a_2 \dots a_k A = \alpha A \therefore$$

$$S \stackrel{k}{\Longrightarrow} \alpha A$$

Por lo tanto, las GRPU pueden generar las mismas cadenas que una GR pero símbolo a símbolo.

En una gramática regular podemos derivar con la aplicación de una sola producción una cadena α con k símbolos:

$$S \stackrel{1}{\Rightarrow} \alpha A$$
, con $\alpha = a_1 \dots a_k$

Mientras que en una gramática regular de paso único derivamos α pero aplicando k producciones:

$$S \xrightarrow{1} a_1 A_1 \xrightarrow{1} a_1 a_2 A_2 \dots \xrightarrow{1} a_1 a_2 \dots a_k Ak \xrightarrow{1} a_1 a_2 \dots a_k A = \alpha A \therefore$$

$$S \stackrel{k}{\Longrightarrow} \alpha A$$

Por lo tanto, las GRPU pueden generar las mismas cadenas que una GR pero símbolo a símbolo.

Las GRPU pueden ser vistas como la versión "bit a bit" de las GR!!!

Las gramáticas regulares y las gramáticas regulares de paso único generan exactamente los mismos lenguajes.

Las gramáticas regulares y las gramáticas regulares de paso único generan exactamente los mismos lenguajes.

Teorema (
$$GRPU^{\Sigma} \equiv GR^{\Sigma}$$
)

- 1. (ida) Si $G \in GRPU^{\Sigma}$, entonces $\exists G' \in GR^{\Sigma}$ tal que L(G') = L(G).
- 2. (vuelta) Si $G \in GR^{\Sigma}$, entonces $\exists G' \in GRPU^{\Sigma}$ tal que L(G') = L(G).

Las gramáticas regulares y las gramáticas regulares de paso único generan exactamente los mismos lenguajes.

Teorema (
$$GRPU^{\Sigma} \equiv GR^{\Sigma}$$
)

- 1. (ida) Si $G \in GRPU^{\Sigma}$, entonces $\exists G' \in GR^{\Sigma}$ tal que L(G') = L(G).
- 2. (vuelta) Si $G \in GR^{\Sigma}$, entonces $\exists G' \in GRPU^{\Sigma}$ tal que L(G') = L(G).

Demo 1. Trivial, pues una GRPU es en particular una GR.

Las gramáticas regulares y las gramáticas regulares de paso único generan exactamente los mismos lenguajes.

Teorema ($GRPU^{\Sigma} \equiv GR^{\Sigma}$)

- 1. (ida) Si $G \in GRPU^{\Sigma}$, entonces $\exists G' \in GR^{\Sigma}$ tal que L(G') = L(G).
- 2. (vuelta) Si $G \in GR^{\Sigma}$, entonces $\exists G' \in GRPU^{\Sigma}$ tal que L(G') = L(G).

<u>Demo 1</u>. Trivial, pues una GRPU es en particular una GR.

<u>Demo 2</u>. Debemos reemplazar con producciones de paso único aquellas producciones de G que no lo son (y además, preservar las que si lo son).

Las gramáticas regulares y las gramáticas regulares de paso único generan exactamente los mismos lenguajes.

Teorema ($GRPU^{\Sigma} \equiv GR^{\Sigma}$)

- 1. (ida) Si $G \in GRPU^{\Sigma}$, entonces $\exists G' \in GR^{\Sigma}$ tal que L(G') = L(G).
- 2. (vuelta) Si $G \in GR^{\Sigma}$, entonces $\exists G' \in GRPU^{\Sigma}$ tal que L(G') = L(G).

<u>Demo 1</u>. Trivial, pues una GRPU es en particular una GR.

<u>Demo 2</u>. Debemos reemplazar con producciones de paso único aquellas producciones de G que no lo son (y además, preservar las que si lo son).

Sean P y P' las producciones de G y G', respectivamente.

Si $(A \rightarrow a_1 \dots a_k B) \in P$, con $k \ge 2$, entonces en P' hacemos:

$$egin{aligned} A &
ightarrow A_{a_1} \ A_{a_1} &
ightarrow a_1 A_{a_2} \ A_{a_2} &
ightarrow a_2 A_{a_3} \ &dots \ A_{a_k} &
ightarrow a_k A_{a_{k+1}} \ A_{a_{k+1}} &
ightarrow B \end{aligned}$$

Si $(A \rightarrow a_1 \dots a_k B) \in P$, con $k \ge 2$, entonces en P' hacemos:

$$egin{aligned} A &
ightarrow A_{a_1} \ A_{a_1} &
ightarrow a_1 A_{a_2} \ A_{a_2} &
ightarrow a_2 A_{a_3} \ &dots \ A_{a_k} &
ightarrow a_k A_{a_{k+1}}
ightarrow B \end{aligned}$$

Si $(A \rightarrow a_1 \dots a_k) \in P$, con $k \ge 2$, entonces en P' hacemos:

$$egin{aligned} A &
ightarrow A_{a_1} \ A_{a_1} &
ightarrow a_1 A_{a_2} \ A_{a_2} &
ightarrow a_2 A_{a_3} \ &dots \ A_{a_k} &
ightarrow a_k A_{a_{k+1}} \ A_{a_{k+1}} &
ightarrow \epsilon \end{aligned}$$

Si $(A \rightarrow a_1 \dots a_k B) \in P$, con $k \ge 2$, entonces en P' hacemos:

$$egin{aligned} A &
ightarrow A_{a_1} \ A_{a_1} &
ightarrow a_1 A_{a_2} \ A_{a_2} &
ightarrow a_2 A_{a_3} \ &dots \ A_{a_k} &
ightarrow a_k A_{a_{k+1}} \ A_{a_{k+1}} &
ightarrow B \end{aligned}$$

Si $(A \rightarrow a_1 \dots a_k) \in P$, con $k \ge 2$, entonces en P' hacemos:

$$egin{aligned} A &
ightarrow A_{a_1} \ A_{a_1} &
ightarrow a_1 A_{a_2} \ A_{a_2} &
ightarrow a_2 A_{a_3} \ &dots \ A_{a_k} &
ightarrow a_k A_{a_{k+1}} \ A_{a_{k+1}} &
ightarrow \epsilon \end{aligned}$$

Claramente, G' es GRPU, y además, $\alpha \in L(G)$ sii $\alpha \in L(G') :: L(G) = L(G')$.

Un lenguaje es regular si y solo si es generado por una gramática regular.

Un lenguaje es regular si y solo si es generado por una gramática regular.

"Una interpretación posible de este resultado es que las GR son el modelo computacional, además de los AF, que caracterizan a los lenguajes regulares."

► Ya probamos que $LR^{\Sigma} \equiv AF^{\Sigma}$ y $GR^{\Sigma} \equiv GRPU^{\Sigma}$.

Un lenguaje es regular si y solo si es generado por una gramática regular.

"Una interpretación posible de este resultado es que las GR son el modelo computacional, además de los AF, que caracterizan a los lenguajes regulares."

- ► Ya probamos que $LR^{\Sigma} \equiv AF^{\Sigma}$ y $GR^{\Sigma} \equiv GRPU^{\Sigma}$.
- Ahora, probaremos que $GRPU^{\Sigma} \equiv AF^{\Sigma}$.

Un lenguaje es regular si y solo si es generado por una gramática regular.

"Una interpretación posible de este resultado es que las GR son el modelo computacional, además de los AF, que caracterizan a los lenguajes regulares."

- ► Ya probamos que $LR^{\Sigma} \equiv AF^{\Sigma}$ y $GR^{\Sigma} \equiv GRPU^{\Sigma}$.
- ▶ Ahora, probaremos que $GRPU^{\Sigma} \equiv AF^{\Sigma}$.
- ▶ Y por transitividad, tendremos que $LR^{\Sigma} \equiv GR^{\Sigma}$.

Un lenguaje es regular si y solo si es generado por una gramática regular.

"Una interpretación posible de este resultado es que las GR son el modelo computacional, además de los AF, que caracterizan a los lenguajes regulares."

- ► Ya probamos que $LR^{\Sigma} \equiv AF^{\Sigma}$ y $GR^{\Sigma} \equiv GRPU^{\Sigma}$.
- ▶ Ahora, probaremos que $GRPU^{\Sigma} \equiv AF^{\Sigma}$.
- Y por transitividad, tendremos que $LR^{\Sigma} \equiv GR^{\Sigma}$.

Teorema $(GRPU^{\Sigma} \equiv AF^{\Sigma})$

- 1. (ida) Si $G \in GRPU^{\Sigma}$, entonces $\exists M \in AF^{\Sigma}$ tal que L(G) = L(M).
- 2. (vuelta) Si $M \in AF^{\Sigma}$, entonces $\exists G \in GRPU^{\Sigma}$ tal que L(G) = L(M).

<u>Demo 1</u>. Sea $G = (V, \Sigma, S, P)$, entonces podemos tomar $M = (\Sigma, Q, q_0, F, \Delta)$ donde:

<u>Demo 1</u>. Sea $G = (V, \Sigma, S, P)$, entonces podemos tomar $M = (\Sigma, Q, q_0, F, \Delta)$ donde:

$$Q = V$$

$$q_0 = S$$

$$F = \{A \in V : A \to \epsilon \in P\}$$

$$\Delta(A, a) = \{B \in V : A \to aB \in P\}$$

$$\Delta(A, \epsilon) = \{B \in V : A \to B \in P\}$$

<u>Demo 1</u>. Sea $G = (V, \Sigma, S, P)$, entonces podemos tomar $M = (\Sigma, Q, q_0, F, \Delta)$ donde:

$$Q = V$$

$$q_0 = S$$

$$F = \{A \in V : A \to \epsilon \in P\}$$

$$\Delta(A, a) = \{B \in V : A \to aB \in P\}$$

$$\Delta(A, \epsilon) = \{B \in V : A \to B \in P\}$$

Claramente, M es un AFN ϵ .

Luego,
$$\alpha \in L(G)$$
 sii $\alpha \in L(M)$ $\therefore L(G) = L(M)$.

Por ejemplo, sea G la siguiente GRPU:

$$G: S \to aS|B|\epsilon$$

$$B \to bB|C|\epsilon$$

$$C \to cC|\epsilon$$

 $\operatorname{con} L(G) = a^*b^*c^*.$

Por ejemplo, sea G la siguiente GRPU:

$$G: S \to aS|B|\epsilon$$

$$B \to bB|C|\epsilon$$

$$C \to cC|\epsilon$$

$$\operatorname{con} L(G) = a^*b^*c^*.$$

Su AFN ϵ equivalente M sería:

Y claramente, $L(M) = a^*b^*c^*$.

<u>Demo 2</u>. Sea $M = (\Sigma, Q, q_0, F, \Delta)$ AFN ϵ , entonces podemos tomar $G = (V, \Sigma, S, P)$ donde:

<u>Demo 2</u>. Sea $M = (\Sigma, Q, q_0, F, \Delta)$ AFN ϵ , entonces podemos tomar $G = (V, \Sigma, S, P)$ donde:

$$egin{aligned} V &= Q \ S &= q_0 \ P &= \{q
ightarrow aq' : q' \in \Delta(q,a)\} \ \cup \ \{q
ightarrow q' : q' \in \Delta(q,\epsilon)\} \ \cup \ \{q
ightarrow \epsilon : q \in F\} \end{aligned}$$

<u>Demo 2</u>. Sea $M = (\Sigma, Q, q_0, F, \Delta)$ AFN ϵ , entonces podemos tomar $G = (V, \Sigma, S, P)$ donde:

$$egin{aligned} V &= Q \ S &= q_0 \ P &= \{q
ightarrow aq': q' \in \Delta(q,a)\} \ \cup \ \{q
ightarrow q': q' \in \Delta(q,\epsilon)\} \ \cup \ \{q
ightarrow \epsilon: q \in F\} \end{aligned}$$

Claramente, G es una GRPU. Luego, $\alpha \in L(M)$ sii $\alpha \in L(G) :: L(G) = L(M)$. Por ejemplo, sea M el siguiente AF:

 $\operatorname{con} L(M) = (a+b)^*b.$

Por ejemplo, sea M el siguiente AF:

$$\operatorname{con} L(M) = (a+b)^*b.$$

Su GRPU G equivalente con variable inicial q_0 sería:

$$G: q_0
ightarrow aq_0|bq_1 \ q_1
ightarrow bq_1|aq_0|\epsilon$$

Y claramente, $L(G) = (a + b)^*b$.

► Presentamos el modelo gramatical propuesto por Chomsky, el cual define cada una de las clases de lenguajes en su jerarquía.

- Presentamos el modelo gramatical propuesto por Chomsky, el cual define cada una de las clases de lenguajes en su jerarquía.
- Luego, definimos la noción de gramática regular, a partir de una fuerte restricción en la forma de las producciones de la gramática.

- Presentamos el modelo gramatical propuesto por Chomsky, el cual define cada una de las clases de lenguajes en su jerarquía.
- Luego, definimos la noción de gramática regular, a partir de una fuerte restricción en la forma de las producciones de la gramática.
- Probamos que un lenguaje es regular si y solo si es generado por una gramática regular.

- Presentamos el modelo gramatical propuesto por Chomsky, el cual define cada una de las clases de lenguajes en su jerarquía.
- Luego, definimos la noción de gramática regular, a partir de una fuerte restricción en la forma de las producciones de la gramática.
- Probamos que un lenguaje es regular si y solo si es generado por una gramática regular.
- Por lo tanto, las gramáticas regulares son también, al igual que los AF, un modelo computacional caracterizador de los lenguajes regulares.

- Presentamos el modelo gramatical propuesto por Chomsky, el cual define cada una de las clases de lenguajes en su jerarquía.
- Luego, definimos la noción de gramática regular, a partir de una fuerte restricción en la forma de las producciones de la gramática.
- Probamos que un lenguaje es regular si y solo si es generado por una gramática regular.
- Por lo tanto, las gramáticas regulares son también, al igual que los AF, un modelo computacional caracterizador de los lenguajes regulares.
- ► Tenemos una nueva herramienta para probar regularidad de un lenguaje simplemente dando una GR que lo genera.

Bibliografía

Sergio Balari.

"Teoría de los Lenguajes Formales". Una introducción para lingüistas.

Capítulo II: sección 3.2.2.

Rodrigo De Castro Korgi.

"Teoria de la Computación". Lenguajes, Autómatas, Gramáticas.

Capítulo 4: sección 4.7.