Propiedades de la Integral Definida

Propiedades de la Integral Definida

A continuación, se presentan algunas de las propiedades más importantes de la integral definida. Estas propiedades son útiles para simplificar cálculos y entender mejor el comportamiento de las integrales en diversas situaciones.

2. Integral de un Intervalo Vacío

Si los límites de integración son iguales, entonces la integral es cero, ya que no hay longitud en el intervalo.

$$\int_{a}^{a} f(x) \, dx = 0 \tag{1}$$

3. Cambio de Límites de Integración

Si se intercambian los límites de integración, el signo de la integral se invierte:

$$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \tag{2}$$

Esta propiedad es útil cuando necesitamos cambiar el orden de los límites para simplificar una expresión o cambiar su dirección.

4. Adición de Intervalos (Propiedad de Aditividad)

Si c es un punto dentro del intervalo [a, b], la integral definida se puede descomponer en la suma de dos integrales:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
 (3)

Esta propiedad permite dividir el intervalo en subintervalos más manejables.

5. Cotas del Integrando (Desigualdad de la Integral)

Si f(x) es continua y satisface $m \leq f(x) \leq M$ para todo $x \in [a, b]$, entonces:

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a) \tag{4}$$

Esto acota el valor de la integral entre dos límites, lo que puede ser útil para estimar el resultado sin calcularlo explícitamente.

6. Integral de una Constante

Si f(x) = c, donde c es una constante, entonces la integral definida se simplifica a:

$$\int_{a}^{b} c \, dx = c(b-a) \tag{5}$$

Esta propiedad es muy simple: básicamente multiplica la constante por la longitud del intervalo.

7. Monotonía de la Integral

Si $f(x) \ge g(x)$ en todo $x \in [a, b]$, entonces:

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx \tag{6}$$

Si una función es mayor o igual que otra en un intervalo, entonces su integral también será mayor o igual.

8. Valor Absoluto de la Integral

La integral del valor absoluto de una función es siempre mayor o igual que la integral de la función:

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx \tag{7}$$

Esto refleja que el valor absoluto de la suma de áreas bajo una curva no puede exceder la suma de las áreas absolutas.