安徽大学 2011—2012 学年第一学期

《高等数学 A (一)、B (一)》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	11	三	四	五.	总分
得 分						
阅卷人						

一、填空题(每小题2分,共10分)

得	分
---	---

- 1. 已知 $\lim_{x\to 0} f(x)$ 存在,且 $\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin 2x}-1}{e^{3x}-1} = 2$,则 $\lim_{x\to 0} f(x) = \underline{\qquad}$ 。
- 3. 设 $\lim_{x\to 0} \frac{2x}{f(1)-f(1-x)} = -1$,则曲线 y = f(x) 在点 (1,f(1)) 处的切线的斜率为_____。
- 4. 已知 $\lim_{x\to 0} \frac{1}{x} \ln(1+\sin kx) = 3$,则 k =______。

得 分

二、单项选择题(每小题2分,共10分)

- 6. 函数 f(x) 有二阶连续导数,且 f'(0) = 1, $\lim_{x \to 0} \frac{f''(x)}{|x|} = 1$,则()。
 - A. f(0) 是函数的极大值
- B. f(0) 是函数的极小值
- C. (0, f(0)) 是曲线 y = f(x) 的拐点
- D. 以上均不对
- 7. 设 f(x) 在 $(-\infty, +\infty)$ 内可导,且对任意的 x_1, x_2 ,当 $x_1 > x_2$ 时, $f(x_1) > f(x_2)$,则 () 。
 - A. 对任意的x,均有f'(x) > 0
- B. 对任意的 x ,均有 f'(-x) < 0

- 8. 设函数 $f(x) = \begin{cases} \frac{1 \cos x}{\sqrt{x}}, & x > 0, \\ & \text{其中 } g(x) \end{cases}$ 是有界函数,则 f(x) 在 x = 0 处($x^2 g(x), \quad x \le 0,$

 - A. 极限不存在
 B. 极限存在,但不连续

 C. 连续,但不可导
 D. 可导
- 9. 若 $\int f(x)dx = x^2 + c$, 则 $\int xf(1-x^2)dx = ()$ 。
 A. $2(1-x^2)^2 + c$ B. $-2(1-x^2)^2 + c$ C. $-\frac{1}{2}(1-x^2)^2 + c$ D. $\frac{1}{2}(1-x^2)^2 + c$

A.
$$2(1-x^2)^2 + c$$

B.
$$-2(1-x^2)^2 + c$$

C.
$$-\frac{1}{2}(1-x^2)^2 + c$$

D.
$$\frac{1}{2}(1-x^2)^2+c$$

- 10. 曲线 $y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x 1)(x 2)}$ 的渐近线有()。 C.3条 D.4条

 - A. 1 条 B. 2 条

三、计算题(每小题7分,共56分)

得	分	
---	---	--

11. $\lim_{n\to\infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n}$

$$13. \quad \int \frac{\ln \sin x}{\sin^2 x} dx$$

14. 已知当 $x \in \mathbb{R}$ 时, $f'(\sin^2 x) = \cos 2x + \tan^2 x$,求f(x)($0 \le x < 1$)。

$$15. \quad \int_0^1 \frac{1}{\sqrt{x(1-x)}} dx$$

纵

午

装

礟

袎

$$16. \quad \int_0^{\pi} \left| \cos x \right| \sqrt{\sin^2 x + 1} dx$$

17. 求微分方程 $y'' - 3y' + 2y = e^{-x}$ 的通解。

18. 求由参数方程
$$\begin{cases} x = a\cos^3\theta \\ y = a\sin^3\theta \end{cases}$$
 所确定的函数的一阶导数 $\frac{dy}{dx}$ 与二阶导数 $\frac{d^2y}{dx^2}$ 。

纵

午

礟

袎

19. 由 $y=\sqrt{x}$, y=0 及 x=1 所围平面图形被 x=a (0<a<1)分成两部分。左边部分 D_1 绕 y 轴旋转,所得旋转体体积为 V_1 ,右边部分 D_2 绕 x 轴旋转,所得旋转体体积为 V_2 ,问 a 取何值时, V_1+V_2 取得最小值,并求出这个最小值。

20. 求 a,b 的值,使得 $f(x) = \frac{e^x - b}{(x-a)(x-1)}$ 同时有无穷间断点 x = 0 及可去间断点 x = 1 。

第5页 共6页

五、证明题 (每小题 5 分, 共 10 分)

得分

21. 设函数 f(x) 在 $[a,+\infty)$ 上连续,其二阶导数 f''(x) 在 $(a,+\infty)$ 内存在且大于零, $F(x) = \frac{f(x) - f(a)}{x - a} (x > a)$,证明: F(x)在 $(a,+\infty)$ 内是单调递增的。

22. 设函数 f(x) 在[0,1] 上有连续的导函数,证明: $\int_0^1 |f(x)| dx + \int_0^1 |f'(x)| dx \ge |f(0)|$ 。