(4) Sum and average

Let X be a random variable with $\mathcal{N}(5, 2^2)$. Let X_1, X_2, \ldots, X_{50} be independent identically distributed copies of X. Let S be their sum and \bar{X} their average, i.e.

$$S = X_1 + \dots + X_{50}$$
 and $\bar{X} = \frac{1}{50}(X_1 + \dots + X_{50}).$

- (a) Plot the density and the distribution function for X using R.
- (b) What are the expectation and the standard deviation of S and of \bar{X} ?
- (c) Generate a sample of 50 numbers from $\mathcal{N}(5, 2^2)$. Plot the histogram for this sample. Do the same for a sample of 500 numbers from $\mathcal{N}(5, 2^2)$.

dj

b) By problem 1 we have $X \sim \mathcal{N}(p, \frac{6^2}{n})$ and $S = n \overline{X} \sim \mathcal{N}(np, n6^2)$ Hence $\mathbb{E}(\overline{X}) = p$, $\sqrt{|V_{an}(\overline{X})|} = \frac{6}{m}$, $\mathbb{E}(s) = np$, $\sqrt{|V_{an}(s)|} = \sqrt{n}$ 6

7) n=50

Histogram of random_sample

n=500

Histogram of random_sample

