International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day2 3

aliens
Country: ARM

Այլմոլորակայիններ

Մեր արբանյակը հենց նոր հայտնաբերել է այլմոլորակայինների քաղաքակրթություն մի հեռավոր մոլորակի վրա։ Մենք արդեն ստացել ենք մոլորակի ինչ-որ քառակուսի տարածքի ցածր որակի լուսանկար։ Լուսանկարում կան քաղաքակիրթ կյանքի բազմաթիվ նշաններ։ Մեր մասնագետները լուսանկարի վրա նշել են n հետաքրքիր կետեր։ Կետերը համարակալված են 0-ից n-1 թվերով։ Այժմ մենք ուզում ենք կատարել բարձր որակի լուսանկարներ, որոնք կպարունակեն բոլոր հետաքրքիր n կետերը։

Արբանյակը ցածր որակով լուսանկարում պատկերված տարածքը բաժանել է $m \times m$ քառակուսային ցանցի։ Ցանցի տողերը և սյուները համարակալված են 0 -ից m-1 թվերով (տողերը համարակալված են վերևից ներքև, իսկ սյուները` ձախից աջ)։ (s,t) -ով կնշանակենք s -րդ տողի t -րդ վանդակը։ i համարով հետաքրքիր կետը գտնվում է (r_i,c_i) վանդակում։ Յուրաքանչյուր վանդակ կարող է պարունակել կամայական թվով հետաքրքիր կետեր։

Մեր արբանյակը այժմ շարժվում է անփոփոխ ուղեծրով, որը անցնում է վերոնշյալ քառակուսային ցանցի *գլխավոր* անկյունագծի ուղիղ վերևով։Ցանցի գլխավոր անկյունագիծը ցանցի վերին ամենաձախ և ստորին ամենաաջ կետերը միացնող հատվածն է։ Արբանյակը կարող է բարձր որակով լուսանկարել այնպիսի տարածքներ, որոնք բավարարում են հետևյալ պայմաններին`

- տարածքը քառակուսու տեսքի ունի,
- այդ քառակուսու երկու հակադիր գագաթները ընկած են ցանցի գլխավոր անկյունագծի վրա,
- o gwlgի gwlկwgwծ վանդակ կա՜մ ամբողջովին գտնվում է լուսանկարված տարածքում, կա՜մ ամբողջովին դուրս է նրանից։

Արբանյակը կարող է կատարել առավելագույնը k հատ բարձր որակի լուսանկար։

Լուսանկարներ կատարելուց հետո արբանյակը ցանցի յուրաքանչյուր լուսանկարված վանդակի բարձր որակի լուսանկարը ուղարկում է երկիր մոլորակ (անկախ նրանից պարունակում է այդ վանդակը հետաքրքիր կետ, թե` ոչ)։ Յուրաքանչյուր լուսանկարված վանդակի լուսանկարը միայն մեկ անգամ է ուղարկվում երկիր, անկախ նրանից թե քանի անգամ է այդ վանդակը լուսանկարվել։

Այսպիսով մենք պետք է լուսանկարելու համար ընտրենք k հատ քառակուսի տարածք այնպես, որ`

• առնվազն մեկ հետաքրքիր կետ պարունակող յուրաքանչյուր վանդակ

- յուսանկարվի գոնե մեկ անգամ,
- առնվազն մեկ անգամ լուսանկարված վանդակների քանակը պետք է լինի հնարավորինս քիչ։

Ձեր խնդիրն է գտնել լուսանկարված վանդակների հնարավոր ամենափոքր քանակը։

Իրականացման մանրամասներ

Դուք պետք է իրականացնեք հետևյալ ֆունկցիան`

- o int64 take photos(int n, int m, int k, int[] r, int[] c)
 - o n: հետաքրքիր կետերի քանակը,
 - o m: gwugh տողերի (ինչպես նաև սյուների) քանակը,
 - k։ առավելագույնը քանի բարձր որակի նկար է կարող կատարել արբանյակը,
 - \circ r և c: n երկարությամբ զանգվածներ, որոնք նկարագրում են հետաքրքիր կետերը։ i -րդ ($0 \le i \le \mathsf{n} 1$) հետաքրքիր կետը գտնվում է (r[i], c[i]) վանդակում,
 - ֆունկցիան պետք է վերադարձնի առնվազն մեկ անգամ լուսանկարված վանդակների հնարավոր ամենափոքր քանակը, պայմանով, որ բոլոր հետաքրքիր կետերը լուսանվարվեն գոնե մեկ անգամ։

Օրինակներ

Օրինակ 1

```
take_photos(5, 7, 2, [0, 4, 4, 4, 4], [3, 4, 6, 5, 6])
```

Այս օրինակում ունենք 7×7 չափի ցանց` 5 հետաքրքիր կետերով։ <ետաքրքիր կետերը գտնվում են հետևյալ 4 իրարից տարբեր վանդակներում` (0,3) , (4,4) , (4,5) և (4,6) ։ Կարելի է կատարել ամենաշատը 2 բարձր որակի լուսանկար։

Բոլոր 5 հետաքրքիր կետերը լուսանկարելու տարբերակներից մեկը հետևյալն է՝ լուսանկարել 6×6 չափի տարածք, որը պարունակում է (0,0) և (5,5) կետերը և լուսանկարել 3×3 չափի տարածք, որը պարունակում է (4,4) և (6,6) կետերը։ Եթե արբանյակը կատարի այս երկու լուսանկարները, ապա անհրաժեշտ կլինի երկիր ուղարկել 41 վանդակի լուսանկար։ Այս քանակը օպտիմալ չէ։

Օպտիմալ լուծման դեպքում կատարում ենք 2 լուսանկար` առաջինը` (0,0) և (3,3) կետերը պարունակող 4×4 չափի տարածք, երկրորդը` (4,4) և (6,6) կետերը պարունակող 3×3 չափի տարածք։ Արդյունքում լուսանկարվում է 25 վանդակ, ինչը օպտիմալ է, հետևաբար, <code>take_photos</code> ֆունկցիան պետք է վերադարձնի 25:

Նկատենք, որ (4,6) վանդակը բավարար է լուսանկարել միայն մեկ անգամ, անկախ նրանից, որ այն պարունակում է երկու հետաքրքիր կետ։

Այս օրինակը պատկերված է ստորև բերված նկարում։ Նկարի ձախ մասում

պատկերված է օրինակում նկարագրված ցանցը։ Նկարի միջնամասում պատկերված է ոչ օպտիմալ լուծումը, որում 41 վանդակ է լուսանկարվում։ Նկարի աջ մասում պատկերված է օպտիմալ լուծումը։

Օրինակ 2

take_photos(2, 6, 2, [1, 4], [4, 1])

Այս օրինակում ունենք սիմետրիկ դասավորված 2 հետաքրքիր կետ։ <ետաքրքիր կետերը գտնվում են (1,4) և (4,1) վանդակներում։ Ցանակացած թույլատրելի լուսանկար, որը պարունակում է կետերից մեկը, պարունակում է նաև մյուսը, ուստի բավարար է կատարել միայն մեկ լուսանկար։ Ստորև բերված նկարում պատկերված է այս օրինակը և համապատասխան օպտիմալ լուծումը։ Այդ լուծման մեջ լուսանկարվում է 16 վանդակ։

Ենթախնդիրներ

Բոլոր ենթախնդիրներում $1 \leq k \leq n$ ։

- 1. (4 միավոր) $1 \leq n \leq 50$, $1 \leq m \leq 100$, k=n ,
- 2. (12 միավոր) $1 \leq n \leq 500$, $1 \leq m \leq 1000$, բոլոր $0 \leq i \leq n-1$ համար $r_i = c_i$,
- 3. (9 միավոր) $1 \leq n \leq 500$, $1 \leq m \leq 1000$,
- 4. (16 միավոր) $1 \leq n \leq 4000$, $1 \leq m \leq 1\,000\,000$,
- 5. (19 միավոր) $1 \leq n \leq 50\,000$, $1 \leq k \leq 100$, $1 \leq m \leq 1\,000\,000$,
- 6. (40 միավոր) $1 \leq n \leq 100\,000$, $1 \leq m \leq 1\,000\,000$.

Գրեյդերի օրինակ

Գրեյդերի օրինակը մուտքը ստանում է հետևյալ ֆորմատով`

- \circ տող 1։ 3 ամբողջ թիվ՝ n , m և k ,
- \circ տող 2 + i ($0 \leq i \leq n-1$)։ 2 ամբողջ թիվ՝ r_i և c_i :