Edge Computing Lab

Name: Rahul Bhati

Class: TY-AIEC

Roll no: 2223416

School of Computing, MIT Art Design Technology University

Academic Year: 2024-25

Experiment No. 7

Introduction

Study of Classification learning block using a NN Classifier on Edge Devices

Objective: Build a project to detect the keywords using built-in sensor on Nano BLE Sense / Mobile Phone

Tasks:

- Generate the dataset for keyword
- Configure BLE Sense / Mobile for Edge Impulse
- Building and Training a Model

Study of Confusion matrix

Introduction

Edge Impulse is a development platform for machine learning on edge devices, targeted at developers who want to create intelligent device solutions. The "classification block" equivalent in Edge Impulse would typically involve creating a simple machine learning model that can run on an edge device, like classifying sensor data or recognizing a basic pattern.

Materials Required

Nano BLE Sense Board

Theory

GPIO (General Purpose Input/Output) pins on the Raspberry Pi are used for interfacing with other electronic components. BCM numbering refers to the pin numbers in the Broadcom SOC channel, which is a more consistent way to refer to the GPIO pins across different versions of the

Here's a high-level overview of steps you'd follow to create a "Hello World" project on Edge Impulse:

Steps to Configure the Edge Impulse:

- 1. Create an Account and New Project:
 - Sign up for an Edge Impulse account.
 - Create a new project from the dashboard.

2. Connect a Device:

- You can use a supported development board or your smartphone as a sensor device.
- Follow the instructions to connect your device to your Edge Impulse project.

3. Collect Data:

- Use the Edge Impulse mobile app or the Web interface to collect data from the onboard sensors.
- For a "Hello World" project, you could collect accelerometer data, for instance.

4. Create an Impulse:

- Go to the 'Create impulse' page.
- Add a processing block (e.g., time-series data) and a learning block (e.g., classification).
- Save the impulse, which defines the machine learning pipeline.

5. Design a Neural Network:

- Navigate to the 'NN Classifier' under the 'Learning blocks'.
- Design a simple neural network. Edge Impulse provides a default architecture that works well for most basic tasks.

6. Train the Model:

• Click on the 'Start training' button to train your machine learning model with the collected data.

7. Test the Model:

 Once the model is trained, you can test its performance with new data in the 'Model Testing' tab.

8. Deploy the Model:

- Go to the 'Deployment' tab.
- Select the deployment method that suits your edge device (e.g., Arduino library, WebAssembly, container, etc.).

• Follow the instructions to deploy the model to your device.

9. Run Inference:

• With the model deployed, run inference on the edge device to see it classifying data in real-time.

10. Monitor:

You can monitor the performance of your device through the Edge Impulse studio.

Paste your Edge Impulse project's Results:

red.5o9gflbr

Apr 09 2025, 14:19:36 5s

Apr 09 2025, 14:19:21

Starting Nano BLE Sense Classification...

Sensor data collected.

Running inference...

Predicted Class: White

Confidence: 89.3%

Raw Output: - Red: 10.2% - White: 86.3% - Black: 3.5%

Waiting for next sensor input...

Predicted Class: Red

Confidence: 92.8%

Raw Output: - Red: 92.8% - White: 5.1% - Black: 2.1%

Waiting for next sensor input...