T_{EX} Reference Card

(for Plain T_EX)

Greek Letters

\alpha	ι	\iota	ϱ	\varrho
\beta	κ	\kappa	σ	\sigma
\gamma	λ	\lambda	ς	\varsigma
\delta	μ	\mu	au	\tau
\epsilon	ν	\nu	v	υ
\varepsilon	ξ	\xi	ϕ	\phi
\zeta	o	\0	φ	\varphi
\eta	π	\pi	χ	\chi
\theta	ϖ	\varpi	ψ	\psi
\vartheta	ρ	\rho	ω	\omega
\Gamma	Ξ	\Xi	Φ	\Phi
\Delta	Π	\Pi	Ψ	\Psi
\Theta	\sum	\Sigma	Ω	\Omega
\Lambda	Υ	\Upsilon		J
	\beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \Gamma \Delta \Theta	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta & \kappa & \text{kappa} \\ \text{lambda} & \lambda & \text{lambda} \\ \text{delta} & \mu & \text{mu} \\ \text{lepsilon} & \nu & \text{lnu} \\ \text{varepsilon} & \xi & \text{lnu} \\ \text{leta} & \sigma & \text{look} \\ \text{leta} & \pi & \text{look} \\ \text{leta} & \varpi & \text{look} \\ \text{look} & \varpi & \text{look} \\ \text{Gamma} & \Xi & \text{lnu} \\ \text{Delta} & \Pi & \text{look} \\ \text{Theta} & \Sigma & \text{look} \\ \textbf{Sigma} \\ \end{tabular}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symbols of Type Ord

×	\aleph	1	\prime	\forall	\forall
\hbar	\hbar	Ø	\emptyset	\exists	\exists
\imath	\imath	∇	\nabla	\neg	\neg or \lnot
\jmath	\jmath		\surd	b	\flat
ℓ	\ell	Т	\top	þ	\natural
Ø	\wp	\perp	\bot	#	\sharp
\Re	\Re		\1	*	\clubsuit
\Im	\Im	7	\angle	\Diamond	\diamondsuit
∂	\partial	\triangle	\triangle	\Diamond	\heartsuit
∞	\infty	\	\backslash	\spadesuit	\spadesuit

Large Operators

\sum	\sum	\cap	\bigcap	\odot	\bigodot
П	\prod	U	\bigcup	\otimes	\bigotimes
\coprod	\coprod		\bigsqcup	\oplus	\bigoplus
$\overline{\int}$	\int	V	\bigvee	+	\biguplus
þ	\oint	À	\bigwedge		

Binary Operations

\pm	\pm	\cap	\cap	\vee	\vee or \lor
	\mp	\cup	\cup	\wedge	\wedge or \land
\	\setminus	\oplus	\uplus	\oplus	\oplus
	\cdot	П	\sqcap	\ominus	\ominus
\times	\times	\Box	\sqcup	\otimes	\otimes
*	\ast	◁	\triangleleft	\oslash	\oslash
*	\star	\triangleright	$\$ triangleright	\odot	\odot
\Diamond	\diamond	?	\wr	†	\dagger
0	\circ	\bigcirc	\bigcirc	‡	\ddagger
•	\bullet	\triangle	\bigtriangleup	П	\amalg
÷	\div	∇	\bigtriangledown		

Page Layout

$\hsize=\langle \dim en \rangle$	set width of page
$\vsize=\langle \dimen \rangle$	set height of page
$\displaywidth=\langle \dimen \rangle$	set width of math displays
$\hoffset=\langle \dim en \rangle$	move page horizontally
$\operatorname{voffset=} \langle \operatorname{dimen} \rangle$	move page vertically

Relations

\leq	$\leq or \leq o$	\geq	\geq or \ge	\equiv	\equiv
\prec	\prec	\succ	\succ	\sim	\sim
\preceq	\preceq	\succeq	\succeq	\simeq	\simeq
\ll	\11	\gg	\gg	\asymp	$\agnumber \agnumber \agn$
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
	\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	\in	∉	\notin	\Rightarrow	\ni or \owns
	\ 	<i>Y</i> -	/110 C 1 11	J	dimental to till
\vdash	\vdash	\dashv	\dashv	<i>∍</i> ⊨	\models
⊢ 	. •	1.		∍ - -	
⊢	\vdash	1.	\dashv	F	\models

Most relations can be negated by prefixing them with \not.

 $otin \qquad
otin \qquad
oti$

Arrows

```
\leftarrow or \gets
                                            \longleftarrow
    \Leftarrow
                                            \Longleftarrow
    \rightarrow or \to
                                           \longrightarrow
    \Rightarrow
                                           \Longrightarrow
    \leftrightarrow
                                           \longleftrightarrow
\leftrightarrow
    \Leftrightarrow
                                           \Longleftrightarrow
\Leftrightarrow
    \mapsto
                                           \longmapsto
    \hookleftarrow
                                            \hookrightarrow
\uparrow
    \uparrow
                                            \Uparrow
                                     \Downarrow
     \downarrow
                                            \Downarrow
                                     \updownarrow
\updownarrow
     \updownarrow
                                            \Updownarrow
    \nearrow
                                            \searrow
     \nwarrow
                                            \swarrow
```

The \buildrel macro puts one symbol over another. The format is $\buildrel\superscript\over\crite{relation}$.

 $\frac{\alpha\beta}{\det x + 1} \qquad \text{buildrel\alpha\beta\over\longrightarrow} f(x) \stackrel{\text{def}}{=} x + 1 \qquad \text{f(x)\; {\buildrel\rm def\over=} \; x+1}$

Delimiters

[\lbrack or [{	\lbrace or $\{$	<	\langle
j	\rbrack or]	}	\rbrace or \}	>	\rangle
	\vert or	Ĺ	\lfloor	Γ	\lceil
	\Vert or \		\rfloor]	\rceil
	[/![(((\!(((\langle\!\langle
]/!])))\!)	$\rangle\rangle$	\rangle\!\rangle

Left and right delimiters will be enlarged if they are prefixed with \left or \right. Each \left must have a matching \right, one of which may be an empty delimiter (\left. or \right.). To specify a particular size, use the following:

\big1, \bigr \Big1, \Bigr \bigg1, \biggr You can also say \bigm for a large delimiter in the middle of a formula, or just \big for one that acts as an ordinary symbol.

Every Time Insertions

\everypar insert whenever a paragraph begins \everymath insert whenever math in text begins \everydisplay insert whenever displayed math begins

\everycr insert after every \cr

Accents

Type	Example	In Math	In Text
hat	$\hat{\widetilde{a}}$	\hat	\^
expanding hat	$\widehat{\widehat{abc}}$	\widehat	none
check	\check{a}	\check	\v
tilde	$\widetilde{\underline{ ilde{a}}}$	\tilde	\~
expanding tilde	abc	\widetilde	none
acute	$cute{a}$	\acute	\',
grave	à	\grave	\'
dot	\dot{a}	\dot	١.
double dot	\ddot{a}	\ddot	\"
breve	$reve{a}$	\breve	\u
bar	\bar{a}	\bar	\=
vector	$ec{a}$	\vec	none

The \skew (number) command shifts accents for proper positioning, the larger the (number), the more right the shift. Compare

 \hat{A} , \skew6\hat{\hat A} gives \hat{A} .

Elementary Math Control Sequences

overline a formula	$\overline{x+y}$	\overline{x+y}
underline a formula	$\underline{x+y}$	$\underline{x+y}$
square root	$\sqrt{x+2}$	$\sqrt{x+2}$
higher order roots	$\sqrt[n]{x+2}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
fraction	$\frac{n+1}{3}$	${n+1\over 3}$
fraction, no line	$n \stackrel{3}{+} 1$	${n+1\neq 3}$
binomial coeff.	$\binom{n+1}{3}$	${n+1}\color 3}$
braced fraction	${n+1 \choose 3}$	${n+1}\brace 3}$
bracketed fraction	$\begin{bmatrix} n+1 \\ 3 \end{bmatrix}$	{n+1\brack 3}

The following specify a style for typesetting formulas.

\displaystyle \textstyle \scriptstyle \scriptscriptstyle

Non-Italic Function Names

a \bmod	m	a me	od m		mod withou	ut pare	ntheses
a	m}	a ($\mod n$	a)	mod with p	parenth	eses
					\max		
\arctan	\cot	\det	\hom	\l im	\log	\sec	\tan
\arcsin	\cosh	\deg	\gcd	\lg	\ln	\Pr	\sup
\arccos	\cos	\csc	\exp	\ker	\limsup	\min	\sinh

The following examples use \mathop to create function names. Example Command Plain TeX Definition $\lim_{x\to 2} \quad \text{$\dim_{x\to 2} \leq \lim_{x\to 2} \left(\frac{mathop{\rm \lim}}{\cos_2 \right) \left(\frac{mathop{\rm \lim}}{\cos_2 \right)} \right)}$

Footnotes, Insertions, and Underlines

$\verb \footnote \langle \text{marker} \rangle \{ \langle \text{text} \rangle \} $	footnote
\t opinsert \t vmode material \t lendinsert	insert at top of page
\pageinsert\vmode material\\endinsert	insert on full page
$\mbox{\mbox{midinsert}}\mbox{\mbox{\mbox{}}}\mbox{\mbox{}}$	insert middle of page
$\underbar{\langle text \rangle}$	underline text

© 2007 J.H. Silverman, Permissions on back. v1.5 Send comments and corrections to J.H. Silverman, Math. Dept., Brown Univ., Providence, RI 02912 USA. $\langle jhs@math.brown.edu \rangle$

Useful Parameters and Conversions

\day,\month,\year the current day, month, year

\jobname name of current job

\romannumeral \(\number\) convert to lower case roman nums.

 $\label{lowercase} $$\displaystyle \operatorname{ist}$ convert to upper case $$\displaystyle \operatorname{ist}$ convert to lower case $$\$

Fills, Leaders and Ellipses

Text or Math: ... \dots

Math: ... \ldots ··· \cdots ·· \vdots ·· \ddots

The following fill space with the indicated item.

\hrulefill \rightarrowfill \leftarrowfill \dotfill

The general format for constructing leaders is

\leaders\box or rule\\hskip\(glue\) repeat box or rule

\leaders\box or rule\\hfill fill space with box or rule

T_EX Fonts and Magnification

\rm Roman \bf Bold \tt Typewriter \sl Slant \it Italic \/ "italic correction"

 $\label{eq:location} $$\operatorname{magnification}=\langle \operatorname{number}\rangle$ scale document by $n/1000$ \\ $\operatorname{magstep}\langle \operatorname{number}\rangle$ scaling factor of $1.2^n \times 1000$ \\$

 $\begin{tabular}{ll} $\text{kealing factor of $\sqrt{1.2}$} \\ \textbf{font} & \text{load a font, naming it } \textbf{font} \\ \textbf{font} & \text{scaled to dimension } \\ \textbf{font} & \text{scaled to dimension } \\ \textbf{font} & \text{scaled (number)} \\ \textbf{scaled by $n/1000$} \\ \textbf{true } & \text{dimen} \\ \end{tabular} \label{eq:localized_scaled}$

Alignment Displays

 $\label{line} $$ \operatorname{line} \ \operatorname{line}$

\halign horizontal alignment
\halign to\dimen\ horizontal alignment
horizontal alignment
add space between lines
insert material after any \cr

\tabskip=\(\g\) set glue at tab stops

\omit omit the template for a column

\span span two columns
\multispan\number\ span several columns
\hidewidth ignore the width of an entry
\crcr insert \cr if one is not present

Boxes

\hbox to\dimen\ hbox of given dimension \vbox to\dimen\ vbox, bottom justified \vtop to\dimen\ vbox, top justified

\vcenter to\dimen\ vbox, center justified (math only)

\rlap right overlap material \lap left overlap material

Overfull Boxes

\hfuzz allowable excess in hboxes \vfuzz allowable excess in vboxes

\overfullrule width of overfull box marker. To eliminate entirely, set \overfullrule=0pt.

Indentation and Itemized Lists

\indent indent \noindent do not indent

\parindent=\dimen\ set indentation of paragraphs \displayindent=\dimen\ set indentation of math displays

 $\verb|\parshape=| \langle number \rangle \qquad \qquad general \ paragraph \ shaping \ macro$

Headers, Footers, and Page Numbers

\nopagenumbers turn off page numbering

\pageno current page number. To get roman nums,

set $\parbox{pageno=}\langle negative number \rangle$

\folio current page number, roman num if < 0

\footline material to put at foot of page

\headline material to put at top of page. To leave

space, set \voffset=2\baselineskip, make room with \advance\vsize by-\voffset.

Macro Definitions

 $\label{lem:cspace} $$ \left(\frac{\left(\operatorname{cs}{\left(\operatorname{ceplacement text} \right)} \right)}{\operatorname{define the macro} \left(\operatorname{cs} \right)} $$ macro with parameters $$ \left(\operatorname{cs}{\left(\operatorname{coken} \right)} \right) $$ ive \cs token's current meaning $$$

Advanced Macro Definition Commands

\long\def macro whose args may include \par \outer\def macro not allowed inside definitions \global\def or \gdef definition that transcends grouping \edef expand while defining macro

\xdef or \global\edef global version of \edef \noexpand\token\ do not expand token

\expandafter\(\text{token}\) expand item after token first

 $\label{lem:cs_dok_2} $$ \operatorname{let} \s= (\operatorname{tok_2} \otimes \operatorname{tok_1} \otimes \operatorname{tok_2}) $$ \csname...\endsname $$ \csname a control sequence name $$ \string\cs $$ \shame...\endsname, \csname, \csname, \csname a control sequence name $$ \shame...\endsname a control seque$

 $\verb|\the| (internal quantity|) \qquad list of tokens giving value of quantity|$

Conditionals

The general format of a conditional is

 $\inf\langle \operatorname{condition}\rangle \langle \operatorname{true} \operatorname{text}\rangle \operatorname{lse}\langle \operatorname{false} \operatorname{text}\rangle \operatorname{fi}$

$$\begin{split} & \hspace{-0.1cm} \hspace{-0.1cm}$$

 $\inf \langle token_1 \rangle \langle token_2 \rangle$ test if character codes agree

 $\label{eq:linear_line$

 $\label{eq:choose text} $\operatorname{choose text by \langle number \rangle}$ loop $\alpha \setminus if...\beta$ repeat loop $\alpha\beta\alpha\cdots\alpha$ until \if is false \newif\ifblob create a new conditional called \ifblob \blobtrue, \blobfalse set conditional \ifblob true, false$

Dimensions, Spacing, and Glue

Dimensions are specified as $\langle \text{number} \rangle \langle \text{unit of measure} \rangle$. Glue is specified as (dimen) plus(dimen) minus(dimen). pt рс point pica inch in centimeter cm m width em x height ex math unit mu millimeter mm $1 \text{ pc} = 12 \text{ pt} \mid 1 \text{ in} = 72.72 \text{ pt} \mid 2.54 \text{ cm} = 1 \text{ in} \mid 18 \text{ mu} = 1 \text{ em}$ Horizontal Spacing: \quad (skip 1em) \qquad Horizontal Spacing (Text): \thinspace \enspace \hskip\(\glue\) \hfill \hfill \hfilneg Horizontal Spacing (Math): thin space \, medium space \gt thick space \; neg. thin space \! \mskip\(muglue\) Vertical Spacing: $\vskip\langle glue \rangle \ \vfil \ \vfill$ box w/ ht and depth of "(", zero width \strut invisible box with dim of $\langle \text{text} \rangle$ $\mbox{\phantom}\{\langle \text{text} \rangle\}$ box w/ ht & depth of \(\lambda\) text\\), zero width \h box w/ width of \(\lambda\) text\\, zero ht \& depth $\mbox{smash}{\langle \text{text} \rangle}$ typeset (text), set ht & depth to zero raise box up $\lceil \lceil \rceil \rceil$ lower box down $\mbox{moveleft}\langle \mbox{dimen} \rangle \mbox{\langle text \rangle}$ move box left $\mbox{moveright}\langle \mbox{dimen} \mbox{vbox} \{\langle \mbox{text} \rangle \}$ move box right Skip Space Between Lines: \smallskip \medskip \bigskip encourage a break \smallbreak \medbreak \bigbreak break if no room \filbreak Set Line Spacing: \baselineskip = $\langle glue \rangle$ single space \baselineskip = 12pt $1 \, 1/2 \, \text{space}$ \baselineskip = 18pt double space \baselineskip = 24pt Increase Line Spacing $\operatorname{\mathsf{Nopenup}} \langle \operatorname{dimen} \rangle$ use \jot's $1 \neq 3pt$ Allow Unjustified Lines \raggedright Allow Unjustified Pages \raggedbottom

Braces and Matrices

\matrix rectangular array of entries \matrix matrix with parentheses

\bordermatrix matrix with labels on top and left \overbrace overbrace, may be superscripted \underbrace, may be subscripted

For small matrices in text, use the following constructions:

Displayed Equations

\eqno equation number at right \leqno equation number at left

\eqalign display several aligned equations

\eqalignno display aligned equations numbered at right display aligned equations numbered at left

\displaylines display several equations, centered

\cases case by case definitions

\noalign to insert space between lines in displays,

use $\noalign{\{\vskip\glue\}\}}$ after any \cr

 $\verb|\openup| \langle \dim en \rangle \qquad \text{add space between all lines in a display}$

Copyright © 2007 J.H. Silverman, January 2007 v
1.5 Math. Dept., Brown Univ., Providence, RI 02912 USA

 $T_{\hbox{\it E}}X$ is a trademark of the American Mathematical Society

Permission is granted to make and distribute copies of this card provided the copyright notice and this permission notice are preserved on all copies.