Резонансный синтез

Шмаков Владимир ФФКЭ - группа Б04-105 МФТИ - декабрь 2022

Введение

Для синтеза звука придумано большое количество электрических схем. И существует множество техник аналогового синтеза. Самыми популярными техниками являются субстрактивный и аддитивный синтез.

Основным элементом субсрактивного синтезатора является фильтр. Благодаря нему из сложного колебания осциллятора(обычно используется пилообразная форма волны или меандр) выделяется нужный сигнал.

В аддитивных синтезаторах - наоборот - сигнал осциллятора не богатый гармонически(синусоида/ треугольная форма волны). Гармоники добавляются сложением колебаний множества осцилляторов, либо пропусканием одного осциллятора через специальные схемы(например схему вейвфолдера).

Все эти вышеописанные типы синтеза невозможны без одной составляющей - генератора огибающей. Именно благодаря ней можно варьировать спектральный состав сигнала во времени, а также задавать зависимость амплитуды(громкости) колебаний от времени.

В 20е-50е годы сборка генератора огибающей было сложной задачей. Однако даже без этой схемы в СССР выпускались фильмы с электронным звуковым сопровождением(например «Человек - Амфибия», мультфильм «Вор»). Одно из устройств, использовавшихся для синтеза звука в те годы и рассмотрено в работе(схема не идентична схемам тех лет).

О чем идет речь? Рассмотрим звук, издаваемый каким-либо объектом из нашего мира. Например - постучим по чашке. Чашка начинает звучать всего на определённом наборе частот, которые обуславливаются геометрией и граничными условиями. Другими словами, из большого спектра стука чашка выбирает лишь определённые.

Именно на этом принципе и построен

Цель работы

- Создать устройство для синтеза звуков. Сигналы устройства могут быть использованы для синтеза ударных и мелодических инструментов. Устройство может являться частью большого инструмента и выступать в роли фильтра/генератора.
- Описать работу устройства, и составить математическую модель. Модель может быть полезна для настройки схемы с помощью цифровых технологий.

Оборудование

- Радиодетали:
 - Два конденсатора ёмкостью $0.1~\mu F$
 - Конденсатор небольшой ёмкости(для сглаживания сигнала кнопки) я использовал керамический конденсатор ёмкостью $22\ pF$
 - Два потенциометра на 10 кОм
 - Резисторы:

- 100 *кОм* 4 штуки
- 4.7 кОм 2 штуки
- Кнопка
- Источник питания использовалась батарейка «крона» с напряжением 9V
- Операционный усилитель TL071 использовал «половинку» TL072
- Приборы:
 - Диктофон
 - Мультиметр(для измерения сопротивления)
 - Компьютер(для подачи сигнала на цепь и обработки результатов)
- Программное обеспечение:
 - Интерпретатор языка Python
 - Библиотека numpy для вычислений и построения графиков
 - Библиотека matplotlib построение графиков
 - Библиотека scipy чтение wav файлов, разложение сигналов в ряд Фурье с помощью алгоритма fft(fast forier transform)
 - Сайт https://www.circuit-diagram.org для разведения схемы
 - Плагин bogaudio noise для генерации белого шума

Теоретические сведения

Линейная фильтрация

Фильтр - устройство для выделения желаемого диапазона спектра из спектра входного сигнала. Аналоговые фильтры делят на несколько основных категорий:

классификация фильтров по типу амплитудно - частотной характеристики

Пусть:

- f(t) непрерывная функция входной сигнал
- \hat{L} оператор, действующий на пространстве непрерывных функций описывает работу фильтра
- ullet g(t) отклик фильтра результат оператора \hat{L} на функции f: $g(t)=\hat{L}f(t)$

Назовём фильтр линейным, если для оператора \hat{L} верно свойство линейности:

$$\hat{L}(c_1f_1+c_2f_2)=c_1\hat{L}f_1+c_2\hat{L}f_2$$

Таким образом, для расчета отклика линейного фильтра нужно знать только гармонический состав входного сигнала f(t)

RC цепь - фильтр высоких и низких частот

Фильтры состоят из последовательно соединенных резистора и конденсатора. В случае RC фильтра высоких частот напряжение снимается с резистора. В фильтре низких частот напряжение снимаем с конденсатора.

Методом комплексных амплитуд можем вывести АЧХ и ФЧХ фильтра высоких и низких частот.

АЧХ и ФЧХ фильтра низких частот представлено формулой ниже:

$$U_{out} = U_{in} rac{X_c}{\sqrt{R^2 + X_C^2}} \; , X_C = rac{1}{2\pi
u C} \; , \phi(\omega) = -arctg(\omega RC)$$

Для фильтра высоких частот:

$$U_{out} = U_{in} rac{R}{\sqrt{R^2 + X_C^2}} \; , X_C = rac{1}{2\pi
u C} \; , \phi(\omega) = arctg\left(rac{1}{\omega RC}
ight)$$

Отклик фильтров на δ импульс

Свободные колебания в RC цепочках затухают на 99% за время t=5 au=5RC:

Полоса пропускания(на уровне -3Db): $\Delta w = 1/RC$.

Операционный усилитель в режиме неинвертирующего усилителя

Операционный усилитель - достаточно сложное устройство, для описания которого требуется немало времени. В этой работе нам пригодится схема, изображенная на рисунке ниже:

Коэффициент усиления ОУ в таком режиме работы находится по формуле:

$$k=1+\frac{R_2}{R_1}$$

Методика

Описание экспериментальной установки

Для получения нужной AЧX совместим интегрирующую и дифференцирующую RC цепочки:

Так, мы получили пассивный фильтр узкой полосы. Его главный минус заключается в маленькой амплитуде выходного сигнала(в силу падения напряжения на элементах). Так-же данная схема не может поддерживать колебания самостоятельно.

Чтобы убрать вышеперечисленные недостатки, добавим в схему операционный усилитель(в режиме неинвертирующего усилителя):

блок-схема устройства

Будем использовать переменные резисторы с максимальным сопротивлением. Нужно подобрать ёмкость конденсатора так, чтобы частота среза $(1/2\pi RC)$ удобно регулировалась на интервале слышимых частот(см. блокнот). Наилучшим образом подходит емкость 50~nF. Ближайшее к этому значению ёмкость(из доступных мне) - 100~nF.

Также необходимо подобрать коэффициент усиления так, чтобы колебания системы были различимы на фоне шума. Остановимся на коэффициенте k=1+100/4.7=22.3.

Итоговую схема устройства:

итоговая схема

Для схемы построена теоретическая модель(см. блокнот):

Эксперимент 1 - «режим самовозбуждения»

В этом режиме устройство поддерживает колебания самостоятельно. Похожим образом устроены осцилляторы синтезаторов 70-80x годов. Например, схема осциллятора «Twin-T»:

Соеденим выход устройства с входом, через небольшое сопротивление $(R_3=220\ O{\!\scriptscriptstyle M})$. Колебания будем возбуждать нажатием на кнопку(сигнал которой выведен на вход):

Получили так называемую петлю обратной связи. Теперь фильтр работает как осциллятор

- При нажатии на кнопку, на вход цепи подаётся сигнал с широким спектром.(см. теоретическую часть)
- Из широкого спектра выделяется только узкий диапазон частот(ширина зависит от сопротивления R_2 и R_1) их амплитуда возрастает. Амплитуда остальных гармоник падает
- Выходной сигнал смешивается с сигналом на входе(при этом стоит учитывать фазовый сдвиг гармоник)
- Итоговый сигнал опять пропускается через схему амплитуда «нужных» гармоник возрастает.

Изменение спектрального состава выходного сигнала можно продемонстрировать на схеме:

Из-за обратной связи изначальный АЧХ «сужается и вытягивается».

На входе сигналы цепи сигналы могут смешиваться в разных фазах. Увеличение амплитуды зависит от разности фаз сигналов. Наибольшая амплитуда получается в том случае, если разность фаз - 0° :

Такая разность достигается на частоте:

$$F=rac{1}{2\pi C\sqrt{R_1}\sqrt{R_2}}$$

Чем больше сдвиг - тем меньше суммарная амплитуда:

Эксперимент 2 - АЧХ фильтров

Будем использовать устройство в качестве фильтра. На вход цепи подадим белый шум. В качестве генератора используется аудиокарта компьютера и плагин «bogaudio noise».

Обработка результатов

Для обработки результатов используем библиотеку «scipy», а именно её модуль «fft». Функции библиотеки позволяют раскладывать в ряд сигналы, записанные в wav файлах.

Результаты первого эксперимента

В первом эксперименте было зафиксировано три сигнала - «низкочастотная колебания с широким спектром», «синусоидальные колебания(узкий спектр вырезаемых частот)», «синусоидальное колебание и несколько обертонов».

Формы волны и спектры полученных сигналов представлены на графиках ниже:

Форма волны и спектр первого сигнала

форма волны и спектр третьего сигнала

Спектры полученных сигналов коррелируют с амплитудно - частотной характеристикой цепи. Из-за обратной связи АЧХ сигнала на выходе «вытягивается» по сравнению с АЧХ фильтра.

При большой добротности исходного пика(Q>1500 - как в эксперименте 2) удается получить на выходе «чистые» синусоидальные колебания.

Фазо - частотная характеристика не так сильно влияет на спектральный состав выходного сигнала. Во втором эксперименте сдвиг по фазе гармоники с наибольшей амплитудой равен примерно $-\pi/6$. В третьем эксперименте максимальную амплитуду имеет гармоника, сдвинутая на 0° .

Результаты второго эксперимента - фильтрация шума

В этом эксперименте обратная связь отсутствует, а на вход цепи подается белый шум. Устройство работает в качестве фильтра.

Как видим, АЧХ выходного сигнала совпадает с теоретической моделью(повторяет АЧХ цепи):

спектр шума в эксперименте 1 - получили розовый шум

результат второго эксперимента

Вывод

Приложение

Код может быть найден по ссылке: https://github.com/ShmakovVladimir/Labs

Литература:

- Козел, Локшин Модулированные колебания, Спектральный Анализ, Линейная фильтрация
- Документация библиотеки scipy