The following lemma will be used in Q2 and Q4:

Lemma 1. For sequences $s_n \to s$ and $t_n \to t$, if there exists $N \in \mathbb{N}$ such that $n \geq N \implies s_n \leq t_n$, then $s \leq t$.

Proof. We will use proof by contradiction. Suppose $s-t=\lim s_n-\lim t_n=\lim (s_n-t_n)>0$, then let $\epsilon=s-t>0$, so $\exists N\in\mathbb{N}\ |s_n-t_n-(s-t)|< s-t\implies s_n-t_n-(s-t)>-(s-t)\implies s_n-t_n>0\implies s_n>t_n$. i.e. there are infinitely $n\in\mathbb{N}$ such that $s_n>t_n$. Thus we have a contradiction, completing the proof.

$\mathbf{Q}\mathbf{1}$

We need to show both directions:

 \implies : We will show the contrapositive of the forward direction which is "If (s_n) does not converge to s, then there exists a subsequence of (s_n) such that all of its subsequences do not converge to s."

Since $s_n \nrightarrow s$, then $\exists \epsilon_0 > 0$ such that $\forall N \in N \ \exists n \geq N \ |s_n - s| \geq \epsilon_0$. Then we can construct a subsequence of (s_n) of which each term is at least ϵ_0 away from s:

Base Case: Let N=1, then there exists $n_1 \in \mathbb{N}$ and $n_1 > 1$ such that $|s_{n_1} - s| \ge \epsilon_0$.

Induction step: Given $n_1 < \cdots < n_k \in \mathbb{N}$ such that $|s_{n_j} - s| \ge \epsilon_0$ for $j = 1, \dots, k$, there exists $n_{k+1} \in \mathbb{N}$ and $n_{k+1} > n_k$ such that $|s_{k+1} - s| \ge \epsilon_0$ by the condition $s_n \nrightarrow s$.

Now since every term of s_{n_k} is $\epsilon_0 > 0$ away from s, all of its subsequences still have every term at least $\epsilon_0 > 0$ away from s, and hence cannot converge to s.

 \Leftarrow : Since $s_n \to s$, then every subsequence (s_{n_k}) of (s_n) converges to s. Since each (s_{n_k}) itself is also a sequence and converges, (s_{n_k}) is bounded. Thus by Bolzano-Weierstrass Theorem, (s_{n_k}) has a convergent subsequence which converges to s since $s_{n_k} \to s$.

$\mathbf{Q2}$

We know for $N \in \mathbb{N}$, $n \geq N$ implies $s_n \leq \sup\{s_n : n \geq N\}$ and $t_n \leq \sup\{t_n : n \geq N\}$, so $s_n + t_n \leq \sup\{s_n : n \geq N\} + \sup\{t_n : n \geq N\}$ and hence $\sup\{s_n + t_n : n \geq N\} \leq \sup\{s_n : n \geq N\}$. Then we have

$$\limsup\{s_n + t_n : n \ge N\} \le \lim\{\sup\{s_n : n \ge N\} + \sup\{t_n : n \ge N\}\}$$
 (1)

$$= \limsup \{s_n : n \ge N\} + \limsup \{t_n : n \ge N\}. \tag{2}$$

(1) comes from Lemma 1. (2) comes from theorem 9.3 when (s_n) and (t_n) are bounded.

(a) Let's show both $\sup(-S) \le -\inf S$ and $\sup(-S) \ge -\inf S$:

 \leq : Let inf S = u, then $\forall s \in S$

$$s \ge u \implies -u \ge -s$$

 $\implies -u \ge \sup(-S)$ since $-u$ is an upper bound of $-S$
 $\implies \sup(-S) \le -\inf S$

Thus $\sup(-S) \le -\inf S$.

 \geq : Let $\sup(-S) = v$, then $\forall s \in S$

$$-s \le v \implies -v \le s$$

 $\implies -v \le \inf S \quad \text{since } -v \text{ is a lower bound of } S,$
 $\implies -\inf S \le v = \sup(-S)$

Thus $\sup(-S) \ge -\inf S$, concluding $\sup(-S) = -\inf S$.

(b) If k = 0, then $\limsup(0 \cdot s_n) = \limsup(0) = 0 = 0 \cdot \limsup(s_n)$. Thus $\limsup(ks_n) = k \cdot \limsup(s_n)$.

If k > 0, let $v'_N = \sup\{ks_n : n \ge N\}$ and $v_N = \sup\{s_n : n \ge N\}$, then we have

$$n \ge N \implies ks_n \le v'_N$$

$$\implies s_n \le \frac{v'_N}{k}$$

$$\implies v_N \le \frac{v'_N}{k}$$

$$\implies k \cdot v_N < v'_N,$$

and

$$n \ge N \implies s_n \le v_N$$

$$\implies k \cdot s_n \le k \cdot v_N$$

$$\implies v_N' \le k \cdot v_N$$

Thus $v'_N = k \cdot v_N \implies \limsup(ks_n) = k \cdot \limsup(s_n)$, completing the proof.

(c) Since k < 0, -k > 0. Then we have

$$\lim \sup(ks_n) = \lim \sup((-k)(-s_n))$$

$$= (-k) \cdot \lim \sup(-s_n) \quad \text{by (b)}$$

$$= (-k) \cdot \lim - \inf(s_n) \quad \text{by (a)}$$

$$= k \cdot \lim \inf(s_n).$$

$\mathbf{Q4}$

(a) Consider $N \in \mathbb{N}$, then $n \geq N \implies s_n \leq \sup\{s_n : n \geq N\}$ and $t_n \leq \sup\{t_n : n \geq N\}$. Then we have

$$n \ge N \implies s_n t_n \le \sup\{s_n : n \ge N\} \cdot t_n$$

 $\le \sup\{s_n : n \ge N\} \cdot \sup\{t_n : n \ge N\}$

Thus $\sup\{s_n: n \geq N\} \cdot \sup\{t_n: n \geq N\}$ is an upper bound of $\{s_nt_n: n \geq N\}$ and hence $\sup\{s_nt_n: n \geq N\} \leq \sup\{s_n: n \geq N\} \cdot \sup\{t_n: n \geq N\}$.

Since (s_n) and (t_n) are bounded, we have

$$\limsup s_n t_n \le \lim_N (\sup\{s_n : n \ge N\} \cdot \sup\{t_n : n \ge N\})$$
 (1)

$$= \lim \sup s_n \cdot \lim \sup t_n \tag{2}$$

- (1) comes from Lemma 1. (2) comes from theorem 9.4 when (s_n) and (t_n) are bounded.
- (b) Let $s_n = (-1)^n$ and $t_n = -1$ for $n \in \mathbb{N}$. Then $s_n t_n = (-1)^{n+1}$ for $n \in \mathbb{N}$. Thus $\limsup s_n t_n = 1$, $\limsup s_n t_n = 1$, and $\limsup t_n = -1$. Now we have $\limsup s_n t_n = 1 > -1 = (\limsup s_n)(\limsup t_n)$.

Q_5

- (a) First show the first inequality $\limsup \bar{s}_n \leq \limsup s_n$. There are three cases regarding to the value of $\limsup s_n$.
- Case 1: If $\limsup s_n = \infty$, then for any value $\limsup \bar{s}_n \in \mathbb{R} \cup \{+\infty, -\infty\}$, $\limsup \bar{s}_n \leq \limsup s_n$.
- Case 2: If $\limsup s_n = -\infty$, since $\liminf s_n \leq \limsup s_n$, we have $\liminf s_n = -\infty = \limsup s_n \implies \lim s_n = -\infty$. Intuitively, $\lim \bar{s}_n = -\infty$. Because $\lim s_n = -\infty$, for M < 0 and M 1 < 0, $\exists N \in n \geq N \implies s_n < M 1$, then we have $n \geq N$ implies

$$\bar{s}_n = \frac{s_1 + \dots + s_{N-1} + s_N + \dots + s_n}{n} = \frac{s_1 + \dots + s_{N-1}}{n} + \frac{s_N + \dots + s_n}{n}$$

$$< \frac{s_1 + \dots + s_{N-1}}{n} + \frac{(n - N + 1)(M - 1)}{n}$$

$$= \frac{s_1 + \dots + s_{N-1}}{n} + \frac{n}{n}(M - 1) + \frac{-N + 1}{n}(M - 1)$$

$$= \frac{s_1 + \dots + s_{N-1} + (-N + 1)(M - 1)}{n} + (M - 1)$$

Since for fixed N and M, $F(n) = \frac{s_1 + \dots + s_{N-1} + (-N+1)(M-1)}{n} \to 0$, $\exists N' \ge N$ F(N') < 1. Because F(n) is nonincreasing, we have $n \ge N' \implies F(n) \le F(N') < 1$.

$$n \ge N' \implies \bar{s}_n < \frac{s_1 + \dots + s_{N-1} + (-N+1)(M-1)}{n} + (M-1) < 1 + (M-1) = M$$

Thus $\lim \bar{s}_n = -\infty$, completing the case.

Case 3: If $\limsup s_n = \alpha \in \mathbb{R}$, then for each $\frac{\epsilon}{2} > 0$, $\exists N \in \mathbb{N} \ v_N < \alpha + \frac{\epsilon}{2}$. Notice v_N is nonincreasing. Observe that for fixed N, $F(n) = \frac{s_1 + \dots + s_{N-1} - (N-1)v_N}{n} \to 0$ as $n \to 0$, so for each $\frac{\epsilon}{2} > 0$, $\exists N' \geq N \ n \geq N' \implies F(n) \leq F(N') < \frac{\epsilon}{2}$ since F(n) is nonincreasing. Thus for each $\epsilon > 0$, we have $n \geq N' \implies \bar{s}_n \leq F(N') + v_{N'} \leq F(N') + v_N < \frac{\epsilon}{2} + (\alpha + \frac{\epsilon}{2}) = \alpha + \epsilon \implies \bar{s}_n < \alpha \implies \sup\{\bar{s}_n : n \geq N' \geq N\} \leq \alpha$. Thus $\limsup \bar{s}_n \leq \lim \alpha = \alpha = \limsup s_n$, completing the proof of the first inequality.

The proof of the second inequality mirrors the proof of the first.

- (b) If $\lim s_n$ exists, then $\lim \inf s_n = \lim \sup s_n$. It is clear that $\lim \inf \bar{s}_n \leq \lim \sup \bar{s}_n$, then $\lim \inf s_n \leq \lim \inf \bar{s}_n \leq \lim \sup \bar{s}_n \leq \lim \sup s_n$ achieves equality every where, so $\lim \inf \bar{s}_n = \lim \sup \bar{s}_n$ and hence $\lim \bar{s}_n$ exists. Then $\lim \bar{s}_n = \lim \inf \bar{s}_n = \lim \inf s_n = \lim \inf s_n$.
- (c) Let $s_n = (-1)^n$. Obviously (s_n) does not converge since its set of subsequential limit has elements -1 and 1. However $\bar{s}_n = \frac{(-1)^n}{n}$ converges to 0.

- (a) We need to show positive definiteness, symmetry, and triangular inequality of this metric:
 - Positive Definiteness: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^k$ $d(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^k |y_j x_j| \ge \sum_{j=1}^k 0 = 0$. Also if $\mathbf{x} = \mathbf{y}$, then $\forall j = 1, \dots, k$ $x_j = y_j \implies y_j x_j = 0 \implies \sum_{j=1}^k |y_j x_j| = 0$. If $d(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^k |y_j x_j| = 0$, then $\forall j = 1, \dots, k$ $y_j x_j = 0 \implies x_j = y_j \implies \mathbf{x} = \mathbf{y}$.
 - Symmetry: Since $|y_j x_j| = |(-1)(x_j y_j)| = |x_j y_j|$, it is clear that $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^k \sum_{j=1}^k |y_j x_j| = \sum_{j=1}^k |x_j y_j| \implies d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
 - Triangular Inequality: $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$

$$d(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{k} |z_j - x_j| = \sum_{j=1}^{k} |z_j - y_j + y_j - x_j|$$

$$\leq \sum_{j=1}^{k} (|z_j - y_j| + |y_j - x_j|)$$

$$= \sum_{j=1}^{k} |z_j - y_j| + \sum_{j=1}^{k} |y_j - x_j|$$

$$= d(\mathbf{y}, \mathbf{z}) + d(\mathbf{x}, \mathbf{y})$$

Thus $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$, completing the proof.

(b) Consider a Cauchy sequence $(\mathbf{x}^{(n)}) \in \mathbb{R}^k$. By Lemma 13.3, $\forall j = 1, \dots, k \ \mathbf{x}_j^{(n)}$ is a Cauchy sequence in \mathbb{R} . By the completeness of \mathbb{R} , $\forall j = 1, \dots, k \ \mathbf{x}_j^{(n)}$ is convergent in \mathbb{R} . Then by Lemma 13.3 again $(\mathbf{x}^{(n)})$ is convergent in \mathbb{R}^k and hence (\mathbb{R}^k, d) is complete.

We will show both directions:

- \implies : Suppose x is a limit point of E, then $\forall r > 0$ $(B_r(x) \setminus \{x\}) \cap E \neq \emptyset$. We will use inductive construction to build a sequence (x_n) of points in $E \setminus \{x\}$ such that (x_n) converges to x:
- Base case: Let r = 1, then $\exists s \in (B_1(x) \setminus \{x\}) \cap E \implies s \in E \setminus \{x\}$ and d(x, s) < 1. Let $s_1 = s$.
- Induction Step: Given $s_1, \ldots, s_k \in E \setminus \{x\}$ such that $d(x, s_j) < \frac{1}{j}$ for $j = 1, \ldots, k$. Since x is a limit point of E, $\exists s \in (B_{\frac{1}{k+1}}(x) \setminus \{x\}) \cap E \implies s \in E \setminus \{x\}$ and $d(x, s) < \frac{1}{k+1}$. Let $s_{k+1} = s$.
 - Thus we've built a (x_n) of points in $E\setminus\{x\}$ such that $d(x,s_n)<\frac{1}{n}$ for $n\in\mathbb{N}$. Since $0\leq d(x,s_n)$ for $n\in\mathbb{N}$, by Squeeze Lemma $\lim_n d(x,s_n)=0 \implies x_n\to x$.
 - \iff : Suppose there exists a sequence (x_n) of points in $E \setminus \{x\}$ such that (x_n) converges to x. In other words, $\forall r > 0 \ \exists N \in \mathbb{N} \ n \geq N \implies (x_n \in E \setminus \{x\}) \land (d(x, x_n) < r) \implies \forall n \geq N \ x_n \in (B_r(x) \setminus \{x\}) \cap E \implies (B_r(x) \setminus \{x\}) \cap E \neq \emptyset$. Thus x is a limiting point.

$\mathbf{Q8}$

Consider $x \in E'$. Then we have $\forall r > 0 \ (B_r(x) \setminus \{x\}) \cap E \neq \emptyset$. Now $\forall s \in (B_r(x) \setminus \{x\}) \cap E$

$$(s \in (B_r(x) \setminus \{x\})) \land (s \in E) \implies (s \in (B_r(x) \setminus \{x\})) \land (s \in F)$$
(1)

$$\implies s \in (B_r(x) \setminus \{x\}) \cap F$$
 (2)

(1) comes from $E \subseteq F$, and (2) comes from the definition of intersection. Thus $(B_r(x)\setminus\{x\})\cap E\subseteq (B_r(x)\setminus\{x\})\cap F$, and hence $(B_r(x)\setminus\{x\})\cap F\neq\emptyset$. This implies x is also a limit point of F, so $x\in F'$. Thus $E'\subseteq F'$.

(a) If we can show $\overline{E}^{\mathsf{C}}$ is open, then \overline{E} is closed. Consider $x \in \overline{E}^{\mathsf{C}}$, then

$$\forall x \in (E \cup E')^{\mathsf{C}} \implies (x \notin E) \land (x \notin E')$$

$$\implies \exists r_1 > 0 \ B_{r_1}(x) \cap E = \emptyset$$

$$\implies \exists r_1 > 0 \ B_{r_1}(x) \subseteq E^{\mathsf{C}}$$

Since $x \notin E'$, $x \in (E')^{\mathsf{C}}$. Also we know E' is closed, so $(E')^{\mathsf{C}}$ is open, and hence $\exists r_2 > 0 \ B_{r_2}(x) \subseteq (E')^{\mathsf{C}}$. Take $r = \min\{r_1, r_2\}$ then

$$(B_r(x) \subseteq E^{\mathsf{C}}) \land (B_r(x) \subseteq (E')^{\mathsf{C}}) \implies B_r(x) \subseteq (E \cup E')^{\mathsf{C}} = \overline{E}^{\mathsf{C}}$$

Since $\forall x \in \overline{E}^{\mathsf{C}} \exists r_x > 0 \ B_{r_x}(x) \subseteq \overline{E}^{\mathsf{C}}$,

$$\bigcup_{x \in \overline{E}^{\mathsf{C}}} B_{r_x}(x) \subseteq \overline{E}^{\mathsf{C}}.$$

It is clear that $\overline{E}^{\mathsf{C}} \subseteq \bigcup_{x \in \overline{E}^{\mathsf{C}}} B_{r_x}(x)$ because every point in $\overline{E}^{\mathsf{C}}$ is a center of an open ball. Now since $\overline{E}^{\mathsf{C}} = \bigcup_{x \in \overline{E}^{\mathsf{C}}} B_{r_x}(x)$ and union of open balls (sets) is still open, $\overline{E}^{\mathsf{C}}$ is open.

(b) We will show both directions:

 \implies : From (a) we know \overline{E} is closed, so E is closed.

 \iff : If E is closed, by definition $E' \subseteq E$. Thus $\overline{E} = E \cup E' = E$.

(c) From (b) we know $\overline{F} = F \cup F' = F$. From Q8 we have $E \subseteq F$ implies $E' \subseteq F'$. Then it is clear that $\overline{E} = E \cup E' \subseteq F \cup F' = \overline{F} = F$, completing the proof.

(a) $\forall x \in E^{\circ} \exists r > 0 \ B_r(x) \subseteq E$. Since $B_r(x)$ itself is open, $\forall y \in B_r(x)$

$$\exists s > 0 \ B_s(y) \subseteq B_r(x) \subseteq E \implies y \in E^{\circ}$$
$$\implies B_r(x) \subseteq E^{\circ}.$$

Thus $x \in (E^{\circ})^{\circ}$, and hence E° is open by definition.

- (b) We will show both directions:
 - \implies : From (a) we know E° is open, so E is open.
 - $\Leftarrow=:$ If E is open, by definition $\forall x\in E \ x\in E^\circ\implies E\subseteq E^\circ$. It is clear that $E^\circ\subseteq E$ since any interior point of a set is in the set. Thus $E=E^\circ$.
- (c) Since F is open, by (b) $F^{\circ} = F$. $\forall x \in F^{\circ} \exists r > 0 \ B_r(x) \subseteq F \subseteq E$, so $x \in E^{\circ}$ and hence $F^{\circ} \subseteq E^{\circ}$. Thus $F = F^{\circ} \subseteq E^{\circ}$, completing the proof.