

ADC

Analog to Digital Converter

Revision 1.0.0-41542

June 15, 2015

31	ADC	31-3				
31.1	Overview	31-3				
31.2	Module Configuration	31-4				
31.	2.1 ADC CSR Register – HAL_DICE3_ADC_CSR	31-4				
31.	2.2 ADC Data Register – HAL_DICE3_ADC_DATA	31-5				
31.3	Revisions	31-6				
LIST OF T	ABLESTABLE 31.1 ADC BASE ADDRESSES	31-4				
TABLE 31	2 ADC register summary	31-4				
TABLE 31	3 ADC CSR REGISTER BIT ASSIGNMENTS	31-4				
TABLE 31	.4 ADC DATA REGISTER BIT ASSIGNMENTS	31-5				
TABLE 31	Table 31.5 Document revision history					

31 ADC

31.1 Overview

This module is a simple successive approximation type AD with a selectable analog mux in front. The precision is 10 bits. This interface is primarily for reading pots, temperature sensors, etc. and is not intended for audio.

The successive approximation takes 16 F_{adc} clocks to complete. The clock provided is $F_{cpu}/16$. For a typical configuration F_{cpu} is 200MHz giving an F_{adc} of 12.5MHz and a conversion time of $16/F_{adc}=1.28\mu s$.

31.2 Module Configuration

Table 31.1 ADC base addresses

Base	address		Description
0xC0	000000	CYGHWR_HAL_DICE3_ADC	ADC module

Table 31.2 ADC register summary

Address Offset	Register	Description
0x0000	HAL_DICE3_ADC_CSR	ADC CSR Register
0x0004	HAL_DICE3_ADC_DATA	ADC Data Register

31.2.1 ADC CSR Register – HAL_DICE3_ADC_CSR

Address offset: 0x0000 HAL_DICE3_ADC_CSR

Control and status register.

Table 31.3 ADC CSR Register bit assignments

Name	Bit	Reset	Dir	Description	
Reserved	31:6	0	N/A	Reserved, read undefined, must read as zeros.	
INT_EN	5	0	RW When set, interrupt is enabled.		
READY	4	0	When set, indicates that the conversion of is ready and stable. This is a sticky bit, a is cleared when 1 is written to this bit or START_CONV_REQ bit.		
START_CONV_REQ	3	pulse to start conversion. Als W is cleared if set when 1 is wri		Writing a 1 to this will generate the SOC pulse to start conversion. Also the READY bit is cleared if set when 1 is written. This bit has to be de-asserted before the next request is active.	
CH_SEL	2:0	0 RW		Set these bits to select appropriate 0 to 7 channels	

31.2.2 ADC Data Register – HAL_DICE3_ADC_DATA

Address offset: 0x0004 HAL_DICE3_ADC_DATA

Data register.

Table 31.4 ADC Data Register bit assignments

Name	Bit	Reset	Dir	Description
Reserved	31:10	0	N/A	Reserved, read undefined, must read as zeros.
DATA	9:0	0	RW	Current conversion data value.

31.3 Revisions

Table 31.5 Document revision history

Date	Rev.	Ву	Change
June 15, 2015	1.0.0-41542	ВК	Initial publication