Géométrie Différentielle, TD 11 du 19 Avril 2019

On admettra dans ce TD le résultat suivant :

Théorème. Si M est une variété connexe compacte orientée de dimension n, alors $H^n(M) \simeq \mathbb{R}$ et un isomorphisme est donné par $[\alpha] \mapsto \int_M \alpha$.

1. Questions diverses

- 1- Soit G un groupe de Lie connexe agissant sur une variété M. Montrer que l'action induite sur la cohomologie de De Rham est triviale.
- 2- Montrer que deux variétés différentielles compactes homéomorphes ont même cohomologie de De Rham.
- 3- Soit G un groupe de Lie connexe. L'action de G sur lui même par multiplication à gauche ou à droite préserve t'elle l'orientation?

Solution:

- 1– G étant connexe (par arcs) l'action d'un élément d'un élément g sur M est un difféomorphisme de M homotope à l'identité (action de l'élément neutre). D'où la trivialité du tiré en arrière sur la cohomologie de De Rham.
- 2- Soit M,N deux variétés différentielles compactes, $h:M\to N$ un homéomorphisme. On se donne des distances d_M,d_N sur M et N induisant leurs topologies. Soit $\varepsilon>0$, $h_1:M\to N$ une application C^∞ telle que pour tout $x\in M$, on a $d(h_1(x),h(x))<\varepsilon$. De même soit $h_2:N\to M$ une application C^∞ ε -proche de h^{-1} . On a $d(x,h_2\circ h_1(x))=d(h^{-1}\circ h(x),h_2\circ h_1(x))\leqslant d(h(x),h_1(x))+\eta\leqslant \varepsilon+\eta$ où $\eta>0$ peut être choisi arbitrairement petit (pourvu que ε soit assez petit), et est défini par uniforme continuité de h^{-1} . On a donc construit une application C^∞ $h_2\circ h_1$ arbitrairement proche de Id_M , donc homotope à Id_M si ε assez petit. De même pour $h_1\circ h_2$ et Id_N . Finalement, h_1 et h_2 fournissent une équivalence d'homotopie C^∞ entre M et N puis des isomorphismes entre les cohomologies de De Rham.
- 3– Ses actions sont homotopes à l'identité via un chemin de difféomorphismes et préservent donc l'orientation. Une autre façon de le montrer et de construire une forme volume invariante à gauche ou à droite en prolongeant de façon G-invariante (à gauche ou à droite selon les cas) une n-forme multilinéaire alternée non nulle sur T_eG (de dimension notée n).

2.	Cohomologie de \mathbb{R}^n	privé de deux	points	A FAIRE AVANT LE TD)
	Contonionogic ac #4	prive de dedic	011160	, , , , , , , , , , , , , , , , , , ,

Pour $n \in \mathbb{N}^*$, déterminer les groupes de cohomologie de De Rham de \mathbb{R}^n privé de deux points. Lorsque les groupes sont non nuls, déterminer des formes différentielles dont les classes de cohomologie en forment une base.

Solution:

Si n=1, \mathbb{R} privé de deux points est la réunion disjointe des trois copies de \mathbb{R} , donc $H^0(\mathbb{R} \setminus \{x,y\}) \simeq \mathbb{R}^3$ et pour tout $p \geqslant 1$, $H^p(\mathbb{R} \setminus \{x,y\}) = 0$.

Pour $n \ge 2$, on peut supposer que les deux points en questions sont e_1 et $-e_1$. On considère les ouverts $U = \mathbb{R}^n \setminus \{e_1\}$ et $V = \mathbb{R}^n \setminus \{-e_1\}$. On a $U \cup V = \mathbb{R}^n$ et $U \cap V = M$.

Comme M est connexe, $H^0(M) \simeq \mathbb{R}$. Une base de $H^0(M)$ est donnée par la classe de cohomologie de la fonction constante égale à 1.

Pour $p \ge 1$, la suite exacte de Mayer-Vietoris fournit

$$\underbrace{H^p(\mathbb{R}^n)}_{-0} \to H^p(U) \oplus H^p(V) \to H^p(M) \to \underbrace{H^{p+1}(\mathbb{R}^n)}_{-0}$$

Donc $H^p(U) \oplus H^p(V) \simeq H^p(M)$. Comme U et V se rétractent chacun sur une sphère \mathbb{S}^{n-1} , on a $H^p(M) = 0$ si $p \neq n-1$, et $H^{n-1}(M) \simeq \mathbb{R}^2$.

Pour trouver une base de $H^p(M)$, il suffit de trouver une base de $H^p(U)$ et de $H^p(V)$. Considérons le difféomorphisme

$$\varphi: \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{S}^{n-1} & \longrightarrow & U \\ (r, x) & \mapsto & e_1 + rx \end{array}$$

Soit ω_0 la forme volume canonique sur \mathbb{S}^{n-1} et ω la forme sur $\mathbb{R}_+^* \times \mathbb{S}^{n-1}$ définie par $\omega(r,x)((s_1,v_1),\ldots,(s_{n-1},v_{n-1})) = \omega_0(x)(v_1,\ldots,v_{n-1})$. On peut, si on préfère, la définir directement en coordonnées : ω est le tiré en arrière par l'inclusion $\mathbb{R}_+^* \times \mathbb{S}^{n-1} \hookrightarrow \mathbb{R}_+^* \times \mathbb{R}^n$ de $\sum_i (-1)^i x_i dx_1 \wedge \ldots \widehat{dx_i} \wedge \cdots \wedge dx_n$.

Alors ω est une forme fermée sur $\mathbb{R}_+^* \times \mathbb{S}^{n-1}$. En notant i l'inclusion

$$i: \begin{array}{ccc} \mathbb{S}^{n-1} & \longrightarrow & \mathbb{R}_+^* \times \mathbb{S}^{n-1} \\ x & \mapsto & (1,x) \end{array}$$

on a $\omega_0 = i^*\omega$, et donc ω_0 n'étant pas exacte, ω n'est pas exacte. Il en est donc de même pour $(\varphi^{-1})^*\omega \in \Omega^{n-1}(U)$. En particulier, $[(\varphi^{-1})^*\omega] \neq 0$, donc $[(\varphi^{-1})^*\omega]$ est une base de $H^{n-1}(U)$. On peut calculer explicitement $(\varphi^{-1})^*\omega$: c'est

$$\frac{1}{\|x-e_1\|^n} \sum_{i=1}^n (-1)^i (x-e_1)_i dx_1 \wedge \dots \widehat{dx_i} \wedge \dots \wedge dx_n.$$

On fait de même pour V, et on obtient ainsi une base de $H^{n-1}(M)$.

3. Cohomologie d'une variété privée d'un point

Soit M une variété connexe de dimension $n \ge 2$ et $x \in M$. Montrer que pour $0 \le p \le n-2$, l'inclusion induit un isomorphisme $H^p(M) \to H^p(M \setminus \{x\})$. Montrer que cela est vrai pour p = n-1 lorsque M est compacte orientable.

Solution:

Le morphisme induit par l'inclusion $H^0(M) \to H^0(M \setminus \{x\})$ envoie la classe de la fonction constante égale à 1 sur la classe de la fonction constante égale à 1. Ces classes sont une base de leur espace respectif; ce morphisme est bien un isomorphisme.

Pour les autres cas, on découpe M en $M = (M \setminus \{x\}) \cup U$, où U est une petite boule autour de x. On remarque de $(M \setminus \{x\} \cap U)$ se rétracte sur une sphère S^{n-1} , donc $\forall i \in \mathbb{N}, H^i(M \setminus \{x\} \cap U) \simeq H^i(S^{n-1})$.

Cas
$$2 \leqslant p \leqslant n-2$$
.

La suite exacte de Mayer-Vietoris s'écrit

$$H^{p-1}(U \cap M \setminus \{x\}) \to H^p(M) \to H^p(M \setminus \{x\}) \oplus H^p(U) \to H^p(U \cap M \setminus \{x\})$$

qui devient

$$H^{p-1}(S^{n-1}) \to H^p(M) \to H^p(M \setminus \{x\}) \oplus H^p(B^n) \to H^p(S^{n-1})$$

i.e.

$$0 \to H^p(M) \to H^p(M \setminus \{x\}) \to 0.$$

La flèche du milieu est le morphisme induit par l'inclusion, et est donc un isomorphisme.

Cas
$$p = 1 < n - 1$$

La suite exacte de Mayer-Vietoris s'écrit

$$0 \to H^0(M) \to H^0(M \setminus \{x\}) \oplus H^0(U) \to H^0(U \cap M \setminus \{x\})$$

$$\to H^1(M) \to H^1(M \setminus \{x\}) \oplus H^1(U) \to H^1(U \cap M \setminus \{x\})$$

qui devient

Par la formule des dimensions d'une suite exacte, $\dim H^1(M) = \dim H^1(M \setminus \{x\})$ et comme le morphisme induit par l'inclusion est surjectif d'après la suite exacte, c'est un isomorphisme.

Cas p = n - 1 et M compacte orientée

La suite exacte de Mayer-Vietoris s'écrit

qui devient

$$\begin{array}{ccccc} H^{n-2}(S^{n-1}) & \to & H^{n-1}(M) & \to & H^{n-1}(M\setminus\{x\}) \oplus H^{n-1}(B^n) & \to & H^{n-1}(S^{n-1}) \\ & \to & H^n(M) & \to & H^n(M\setminus\{x\}) \oplus H^n(B^n) & \to & H^n(S^{n-1}) \end{array}$$

i.e.

$$\begin{array}{cccccc} 0 & \to & H^{n-1}(M) & \to & H^{n-1}(M\setminus\{x\}) & \to & \mathbb{H}^{n-1}(S^{n-1}) \\ & \to & H^n(M) & \to & H^n(M\setminus\{x\}) & \to & 0. \end{array}$$

Étudions la flèche $H^n(M) \stackrel{[i^*]}{\to} H^n(M \setminus \{x\})$. On va utiliser le fait que $M \setminus \{x\}$ se rétracte sur $M \setminus B^n$ (où B^n est une petite boule autour de x). Notons i_1 l'inclusion $M \setminus B^n \stackrel{i_1*}{\to} M \setminus \{x\}$, i l'inclusion $M \setminus \{x\} \stackrel{i*}{\hookrightarrow} M$, et i_2 l'inclusion $M \setminus B^n \stackrel{i_2*}{\hookrightarrow} M$. On a $i_2 = i \circ i_1$. Or $H^n(M \setminus \{x\}) \stackrel{[i_1*]}{\to} H^n(M \setminus B^n)$ est un isomorphisme, donc pour étudier $H^n(M) \stackrel{[i^*]}{\to} H^n(M \setminus \{x\})$, il suffit de regarder $H^n(M) \stackrel{[i^*]}{\to} H^n(M \setminus B^n)$.

Soit σ une n-forme sur M à support dans B^n telle que $\int_M \sigma = 1$. Alors $[\sigma]$ engendre $H^n(M)$. Or pour $i_2^*\sigma(x) = \sigma|_{M\setminus B^n} = 0$, donc $i_2^*\sigma = 0$ et donc $[i_2^*]([\sigma]) = 0$. On en déduit que $[i_2*] = 0$ et donc $[i^*] = [i_2^*] \circ [i_1^*]^{-1} = 0$.

La suite exacte montre alors que $H^n(M \setminus \{x\}) = 0$, et la formule des dimensions donne $\dim H^{n-1}(M) = \dim H^{n-1}(M \setminus \{x\})$. La flèche $H^{n-1}(M) \to H^{n-1}(M \setminus \{x\})$ induite par l'inclusion est alors un isomorphisme car elle est injective d'après la suite exacte.

4. Cohomologie de l'espace projectif complexe

Pour tout $k \in \{0, \dots, N\}$, soit $j_k : \mathbb{C}^N \to \mathbb{C}P^N$ définie par $j_k(x_0, \dots, x_{k-1}, x_{k+1}, \dots, x_N) = [x_0 : \dots : x_{k-1} : 1 : x_{k+1} : \dots : x_N]$, et notons $U_k = j_k(\mathbb{C}^N)$.

- 1- Soit $k \in \{1, ..., N\}$. Quelle est la cohomologie de de Rham de l'ouvert $U_0 \cap (U_1 \cup ... \cup U_k)$?
- 2- Soit I une partie non vide de $\{0,\ldots,N\}$. Quelle est la cohomologie de de Rham de $V_I:=\bigcup_{k\in I}U_k$?
- 3
– Quelle est la cohomologie de de Rham de $\mathbb{C}P^N$? Que vaut sa caractéristique d'Euler-Poincaré ?
- 4– Quand $\mathbb{C}P^N$ est-il homéomorphe à \mathbb{S}^{2N} ?

Solution:

- 1- On a $j_0^{-1}(U_i) = \{(x_1, \dots, x_N) \mid x_i \neq 0\}$. Ainsi, $j_0^{-1}(U_1 \cup \dots \cup U_k) = (\mathbb{C}^k \setminus \{0\}) \times \mathbb{C}^{N-k}$. Cet ouvert se rétracte sur la sphère \mathbb{S}^{2k-1} , donc $H^i(U_0 \cap (U_1 \cup \dots \cup U_k)) = \mathbb{R}$ si i = 0 ou 2k 1, et 0 sinon.
- 2- On montre par récurrence sur la longueur de I que $H^i(V_I) = \mathbb{R}$ pour i = 0, 2, ..., 2|I| 2, et 0 sinon. Le résultat est clair pour |I| = 1. Soit $I = \{0, ..., k\}$, posons $J = \{1, ..., k\}$. On écrit la suite exacte de Mayer-Vietoris associée à U_0 et V_J . Pour tout entier i, on a $H^{2i+1}(U_0) = H^{2i+1}(V_J) = 0$. On obtient donc la suite exacte

$$0 \to H^{2i-1}(U_0 \cap V_J) \to H^{2i}(U_0 \cup V_J) \to H^{2i}(U_0) \oplus H^{2i}(V_J)$$
$$\to H^{2i}(U_0 \cap V_J) \to H^{2i+1}(U_0 \cup V_J) \to 0.$$

Pour i = 0, $U_0 \cup V_J$ est connexe donc $H^0(U_0 \cup V_J) = \mathbb{R}$, ce qui donne $H^1(U_0 \cup V_J) = 0$. Pour i > 0, on a $H^{2i}(U_0 \cap V_J) = 0$ d'après la question précédente, donc $H^{2i+1}(U_0 \cup V_J) = 0$ et

$$0 \to H^{2i-1}(U_0 \cap V_J) \to H^{2i}(U_0 \cup V_J) \to H^{2i}(U_0) \oplus H^{2i}(V_J) \to 0.$$

Si i < k, on a $H^{2i-1}(U_0 \cap V_J) = 0$, $H^{2i}(U_0) = 0$ et $H^{2i}(V_J) = \mathbb{R}$, donc $H^{2i}(U_0 \cup V_J) = \mathbb{R}$. Si i > k, on trouve de même $H^{2i}(U_0 \cup V_J) = 0$. Finalement, pour i = k, on a $H^{2i-1}(U_0 \cap V_J) = \mathbb{R}$ et $H^{2i}(U_0) \oplus H^{2i}(V_J) = 0$, donc $H^{2i}(U_0 \cup V_J) = \mathbb{R}$. Cela conclut la récurrence.

- 3- En prenant $I = \{0, ..., N\}$, on obtient $V_I = \mathbb{C}P^N$. Ainsi, $H^i(\mathbb{C}P^N) = \mathbb{R}$ si i est pair et $0 \le i \le 2N$, et 0 sinon. Par conséquent, $\chi(\mathbb{C}P^N) = N + 1$.
- 4– La question précédente montre que si $N \neq 1$, $\mathbb{C}P^N$ et \mathbb{S}^{2N} n'ont pas les mêmes groupes de cohomologie de De Rham, et ne sont donc pas homéomorphes. Si N=1, la projection stéréographique réalise un difféomorphisme de \mathbb{S}^2 sur $\mathbb{P}^1(\mathbb{C})$.

5. Cohomologie d'une somme connexe

Soit M et N deux variétés connexes de dimension $n \ge 3$, et M # N leur somme connexe. Montrer que $H^p(M \# N) \simeq H^p(M) \oplus H^p(N)$ pour $1 \le p \le n-2$. Montrer que cela est vrai pour p = n-1 lorsque M et N sont compactes et orientables.

Solution:

On décompose M#N en $(M\setminus B^n)\cup (N\setminus B^n)$, et l'intersection des deux ouverts est une couronne qui se rétracte sur S^{n-1} . Pour $2\leqslant p\leqslant n-2$, la suite de Mayer-Vietoris s'écrit :

$$H^{p-1}(S^{n-1}) \to H^p(M \# N) \to H^p(N \setminus B^n) \oplus H^p(N \setminus B^n) \to H^p(S^{n-1})$$

qui devient

$$0 \to H^p(M\#N) \to H^p(N \setminus B^n) \oplus H^p(N \setminus B^n) \to 0.$$

En utilisant finalement l'exercice 3, on obtient un isomorphisme $H^p(M\#N) \to H^p(N) \oplus H^p(N)$.

Cas p = 1 < n - 1

La suite exacte de Mayer-Vietoris s'écrit

qui devient

Avec l'exercice 3, cette suite devient

On a finalement égalité des dimensions et surjectivité, donc la flèche $H^1(M) \to H^1(M) \oplus H^1(N)$ est un isomorphisme.

Cas p = n - 1 et M compacte orientée

La suite exacte de Mayer-Vietoris s'écrit

qui devient (exercice 3)

i.e.

$$0 \to H^{n-1}(M \# N) \to H^{n-1}(M) \oplus H^{n-1}(N) \to \mathbb{R} \to \mathbb{R} \to 0.$$

On a donc égalité des dimensions et injectivité : la flèche $H^{n-1}(M\#N)\to H^{n-1}(M)\oplus H^{n-1}(N)$ est un isomorphisme.

6. Cohomologie des tores par Mayer-Vietoris

Soit $T^n = S^1 \times \cdots \times S^1$ le tore de dimension n.

1– Montrer qu'on peut décomposer T^n en $T^n=U\cup V$ tel que U et V soient homotopes à T^{n-1} et $U\cap V$ soit homotope à deux copies disjointes de T^{n-1} .

On veut montrer par récurrence sur n que $\forall p, \dim H^p(T^n) = \binom{n}{p}$.

- 2– Le vérifier pour n=1. On suppose désormais le résultat vrai pour n-1 et on veut le prouver pour n.
- 3– Soit $[\alpha] \in H^k(U)$, $[\beta] \in H^k(V)$. Montrer que si α et β coïncident sur $S^1 \times \cdots \times S^1 \times \{-1,1\}$, alors $[\alpha_{|U\cap V} \beta_{|U\cap V}]$ est nulle dans $H^k(U\cap V)$.
- 4- Etant donné $[\alpha] \in H^k(U)$, montrer qu'il existe $[\beta] \in H^k(V)$ tel que $([\alpha], [\beta])$ soit dans le noyau de la flèche $H^k(U) \oplus H^k(V) \to H^k(U \cap V)$ (on pourra remarquer que U et V sont symétriques).
- 5– Etant donné $[\alpha] \in H^k(U),$ montrer qu'un tel $[\beta] \in H^k(V)$ est unique.
- 6– En déduire la dimension du noyau de la flèche $H^k(U) \oplus H^k(V) \to H^k(U \cap V)$.
- 7- En écrivant la suite de Mayer-Vietoris et en utilisant la question précédente, montrer que $\forall p, \dim H^p(T^n) = \binom{n}{p}$.

Solution:

1– On pose $U = \underbrace{S^1 \times \cdots \times S^1}_{n-1 \text{ fois}} \times (S^1 \setminus \{i\})$ et $V = \underbrace{S^1 \times \cdots \times S^1}_{n-1 \text{ fois}} \times (S^1 \setminus \{-i\})$. Ce sont bien des ouverts de T^n tels que $U \cup V = T^n$. Comme $S^1 \setminus \{i\}$ est difféomorphe à \mathbb{R} par

la projection stéréographique, $S^1 \setminus \{i\}$ est contractile, et en particulier U se rétracte par déformation sur $\underbrace{S^1 \times \cdots \times S^1}_{n-1 \text{ fois}} \times \{-i\} \simeq T^{n-1}$. Il en est de même pour V.

On a de plus $U \cap V = \underbrace{S^1 \times \cdots \times S^1}_{n-1 \text{ fois}} \times (S^1 \setminus \{-i,i\})$. Comme $S^1 \setminus \{-i,i\}$ est difféo-

morphe à \mathbb{R}^* par la projection stéréographique, $S^1 \setminus \{-i,i\}$ se rétracte par déformation sur $\{-1,1\}$ et donc $U \cap V$ est homotope à $T^{n-1} \times \{-1,1\} \simeq T^{n-1} \coprod T^{n-1}$.

- 2- On a $T^1 = S^1$ et le cours donne le résultat.
- 3– D'après la question 1, l'inclusion $i:T^{n-1}\times\{-1,1\}\hookrightarrow U\cap V$ est une équivalence d'homotopie, donc le morphisme induit $i^*:H^k(U\cap V)\to H^k(T^{n-1}\times\{-1,1\})$ est un isomorphisme. Soient $[\alpha]\in H^k(U), [\beta]\in H^k(V)$ telles que α et β coïncident sur $T^{n-1}\times\{-1,1\}$. Cela signifie que $i^*(\alpha_{|U\cap V})=i^*(\beta_{|U\cap V})$ et donc $[\alpha_{|U\cap V}]=[\beta_{|U\cap V}]$ dans $H^k(U\cap V)$.
- 4- Soit $[\alpha] \in H^k(U)$. Soit σ la rotation du tore qui envoie U sur $V: \sigma(z_1,\ldots,z_n) = (z_1,\ldots,z_{n-1},\bar{z_n})$. On définit β' sur V par $\beta' = \sigma^*\alpha$. Alors

$$\beta'(x)(v_1,\ldots,v_p)=\alpha(\sigma(x))(T_x\sigma v_1,\ldots,T_x\sigma v_p).$$

L'application $\psi: T(T^n) \to T(T^n)$ définie par $\psi(x, w_1, \dots, w_n) = (x, w_1, \dots, w_{n-1}, -w_n)$ est un isomorphisme de fibré. On pose alors :

$$\beta(x)(v_1,\ldots,v_p) = \beta'(x)(\psi_x v_1,\ldots,\psi_x v_p).$$

Si $x \in T^{n-1} \times \{-1,1\}$, alors $\psi_x = T_x \sigma = (T_x \sigma)^{-1}$ et donc β coïncide avec α sur $T^{n-1} \times \{-1,1\}$. On vérifie que β est fermée et la question précédente montre que $([\alpha],[\beta])$ est dans le noyau de la flèche $H^k(U) \oplus H^k(V) \to H^k(U \cap V)$.

- 5– Soi β_1, β_2 deux formes vérifiant la question précédente. On a alors $[\beta_{1|U\cap V}] = [\beta_{2|U\cap V}]$. En particulier, en notant $U \cap V = A \coprod B$ la décomposition de $U \cap V$ en deux composantes connexes, on a $[\beta_{1|A}] = [\beta_{2|A}]$. Comme U se rétracte par déformation sur A (faire un dessin!), on obtient $[\beta_1]_U = [\beta_2]_U$, ce qui prouve l'unicité de la classe d'homologie de β dans $H^k(U)$.
- 6- D'après le deux questions précédentes, le morphisme

$$\ker \left(H^k(U) \oplus H^k(V) \to H^k(U \cap V) \right) \quad \longrightarrow \quad H^k(U)$$
$$([\alpha], [\beta]) \qquad \mapsto \qquad [\alpha]$$

est un isomorphisme, donc

$$\dim \ker \left(H^k(U) \oplus H^k(V) \to H^k(U \cap V)\right) = \dim H^k(U) = \dim H^k(T^{n-1}) = \binom{n-1}{k}.$$

7- Pour p=0, comme T^n est connexe, on a dim $H^0(T^n)=1=\binom{n}{0}$. Pour $p\geqslant 1$, on écrit la suite exacte de Mayer-Vietoris (avec les dimensions en dessous données par

la question 1 et l'hypothèse de récurrence) :

$$H^{p-1}(U) \oplus H^{p-1}(V) \xrightarrow{R_{p-1}} H^{p-1}(U \cap V) \xrightarrow{\delta_{p-1}} H^p(T^n) \xrightarrow{S_p} H^p(U) \oplus H^p(V) \xrightarrow{R_p} H^p(U \cap V).$$

$${}_2\binom{n-1}{p-1} \qquad {}_2\binom{n-1}{p-1} \qquad {}_2\binom{n-1}{p} \qquad {}_2\binom{n-1}{p}$$

On sait aussi d'après la question 6 que dim $\ker R_{p-1} = \binom{n-1}{p-1}$ et dim $\ker R_p = \binom{n-1}{p-1}$

$$\binom{n-1}{p}$$
. On a alors

$$\dim H^{p}(T^{n}) = \dim \ker S_{p} + \dim \operatorname{Im} S_{p}$$

$$= \dim \operatorname{Im} \delta_{p-1} + \dim \ker R_{p}$$

$$= (\dim H^{p-1}(U \cap V) - \dim \ker \delta_{p-1}) + \dim \ker R_{p}$$

$$= \dim H^{p-1}(U \cap V) - \dim \operatorname{Im} R_{p-1} + \dim \ker R_{p}$$

$$= \dim H^{p-1}(U \cap V) - (\dim H^{p-1}(U) \oplus H^{p-1}(V) - \dim \ker R_{p-1}) + \dim \ker R_{p}$$

$$= 2\binom{n-1}{p-1} - 2\binom{n-1}{p-1} + \binom{n-1}{p-1} + \binom{n-1}{p}$$

$$= \binom{n-1}{p-1} + \binom{n-1}{p} = \binom{n}{p}.$$

7. Cohomologie de surfaces

Soient $g, k \ge 0$ des entiers. Soit T_g la somme connexe de g tores de dimension 2. On note $T_{g,k}$ la variété obtenue en enlevant k points distincts à T_g (bien défini à difféomorphisme près).

- 1- Montrer que dim $H^0(T_{q,k},\mathbb{R})=1$ et dim $H^2(T_q,\mathbb{R})=1$.
- 2– Calculer dim $H^1(T_{0,k},\mathbb{R})$ et dim $H^2(T_{0,k},\mathbb{R})$ pour $k \geqslant 0$.
- 3– Calculer dim $H^1(T_1, \mathbb{R})$.
- 4- Calculer dim $H^1(T_{1,1},\mathbb{R})$ et dim $H^2(T_{1,1},\mathbb{R})$.
- 5- Soit $k \ge 2$. Calculer dim $H^1(T_{1,k}, \mathbb{R})$, dim $H^2(T_{1,k}, \mathbb{R})$, et montrer que si $\mathbb{S}^1 \subset T_{1,k}$ est un petit cercle tracé autour de l'un des points qu'on a enlevé, l'application induite $H^1(T_{1,k}) \to H^1(\mathbb{S}^1)$ est non nulle.
- 6- Calculer dim $H^1(T_{q,k},\mathbb{R})$ et dim $H^2(T_{q,k},\mathbb{R})$ pour $g,k \geq 0$.
- 7– En déduire que si $g \neq g'$, T_g et $T_{g'}$ ne sont pas homéomorphes.
- 8– Montrer que si $(g,k) \neq (g',k')$, $T_{g,k}$ et $T_{g',k'}$ ne sont pas homéomorphes.

Solution:

- 1– dim $H^0(T_g, \mathbb{R}) = 1$ car T_g est connexe. dim $H^2(T_g, \mathbb{R}) = 1$ car T_g est compacte orientable donc $H^2(T_g, \mathbb{R}) \simeq \mathbb{R}$ via $[\alpha] \mapsto \int_{T_g} \alpha$ (admis dans le td).
- 2- La variété T_0 est la sphère. Sa cohomologie a été calculée en cours : $H^1(T_0) = 0$. Si $k \ge 1$, la variété $T_{0,k}$ est le plan privé de k-1 points. On peut appliquer Mayer-Vietoris à un recouvrement constitué de deux ouverts homéomorphes à \mathbb{R}^2 dont l'intersection a k composantes connexes homéomorphes à \mathbb{R}^2 . Il vient dim $H^1(T_{0,k}) = k-1$ et dim $H^2(T_{0,k}) = 0$.
- 3- La variété T_1 est le tore. On peut trouver un recouvrement par deux ouverts U et V qui sont des cylindres dont l'intersection est la réunion de deux cylindres. Comme un cylindre se rétracte par déformation sur un cercle, il a les mêmes groupes de cohomologie que le cercle. Appliquant alors Mayer-Vietoris, et utilisant le fait que $H^2(T_1) = \mathbb{R}$ (admis dans ce td), il vient : $H^1(T_1) = \mathbb{R}^2$.
- 4- On peut recouvrir $T_{1,1}$ par deux ouverts se rétractant par déformation sur un cercle, dont l'intersection est contractile. Mayer-Vietoris montre alors que dim $H^1(T_{1,1}, \mathbb{R}) = 2$ et dim $H^2(T_{1,1}, \mathbb{R}) = 0$.
- 5- Si $k \geq 2$, on recouvre $T_{1,k-1}$ par un ouvert homéomorpheà $T_{1,k}$ et un ouvert contractile, dont l'intersection se rétracte sur le cercle \mathbb{S}^1 . Appliquant Mayer-Vietoris, on montre par récurrence sur k que dim $H^1(T_{1,k},\mathbb{R}) = k+1$ et dim $H^2(T_{1,k},\mathbb{R}) = 0$ pour $k \geq 1$. De plus, l'application induite $H^1(T_{1,k}) \to H^1(\mathbb{S}^1)$ apparaît dans la suite exacte longue de Mayer-Vietoris, qui montre qu'elle est surjective, donc non nulle.
- 6- On va montrer par récurrence sur g que dim $H^1(T_g, \mathbb{R}) = 2g$ et dim $H^2(T_g, \mathbb{R}) = 1$, et que dim $H^1(T_{g,k}, \mathbb{R}) = 2g 1 + k$ et dim $H^2(T_{g,k}, \mathbb{R}) = 0$ si $k \ge 1$. On peut supposer $g \ge 2$.
 - On peut recouvrir $T_{g,k}$ par deux ouverts homéomorphes à $T_{1,1}$ et à $T_{g-1,k+1}$, d'intersection se rétractant sur le cercle, et considérer la suite exacte longue de Mayer-Vietoris associée. Si k=0, la connaissance de dim $H^2(T_g,\mathbb{R})=1$ permet de calculer dim $H^1(T_g,\mathbb{R})=2g$. Si $k\geqslant 1$, on remarque que le même argument qu'à la question précédente montre que la flèche $H^1(T_{g-1,k+1})\to H^1(\mathbb{S}^1)$ est non nulle. Ceci permet d'utiliser la suite exacte longue pour calculer dim $H^1(T_{g,k},\mathbb{R})=2g-1+k$ et dim $H^2(T_{g,k},\mathbb{R})=0$.
- 7– Deux variétés homéomorphes ont mêmes groupes de cohomologie. Mais, la question précédente montre que dim $H^1(T_g, \mathbb{R}) \neq \dim H^1(T_{g'}, \mathbb{R})$ si $g \neq g' : T_g$ et $T_{g'}$ ne sont pas homéomorphes.
- 8– Supposons que $T_{g,k}$ et $T_{g',k'}$ soient homéomorphes. La valeur de k est déterminée par l'espace topologique $T_{g,k}$: c'est son « nombre de bouts ». Plus précisément, c'est le plus petit entier tel que l'énoncé suivant soit vrai : si $K \subset$ est un compact, il existe un compact $K \subset K' \subset T_{g,k}$ tel que $T_{g,k} \setminus K'$ ait exactement k composantes connexes. Ainsi k = k'.

Comme les groupes de cohomologie sont un invariant topologique, $T_{g,k}$ et $T_{g',k'}$ ont un H^1 de même dimension, et les questions précédentes montrent que g = g'.

8. Cohomologie d'un produit

- 1– Soient M et N deux variétés compactes connexes orientables de dimension p et q. Montrer que les groupes $H^p(M \times N)$ et $H^q(M \times N)$ sont non nuls.
- 2- Plus généralement, la formule de Kunneth assure que

$$H^r(M \times N) \simeq \bigoplus_{i+j=r} H^i(M) \otimes H^j(N).$$

Vérifier cette formule dans le cas d'un produit de sphères.

Solution:

1- Soit $\omega \in \Omega^p(M)$ forme volume sur M et $\eta \in \Omega^q(N)$ forme volume sur N. Soit $p_M: M \times N \to M$ et $p_N: M \times N \to N$ les projections sur M et N. Soit $\alpha = p_M^* \omega \wedge p_N^* \eta$. C'est une (p+q)-forme sur $M \times N$ et elle est fermée (degré maximal). D'après le théorème de Fubini,

$$\int_{M\times N} \alpha = \left(\int_{M} \omega\right) \left(\int_{N} \eta\right) > 0.$$

Donc $p_M^*\omega \wedge p_N^*\eta$ n'est pas exacte. Supposons que $p_M^*\omega$ soit exacte, i.e. $p_M^*\omega = d\beta$. Alors, $p_N^*\eta$ étant fermée (car η fermée), on aurait

$$d(\beta \wedge p_N^* \eta) = d\beta \wedge p_N^* \eta + \beta \wedge dp_N^* \eta = d\beta \wedge p_N^* \eta = p_M^* \omega \wedge p_N^* \eta$$

ce qui contredit la non-exactitude de $p_M^*\omega \wedge p_N^*\eta$.

Cela montre que forme $p_M^*\omega$ fermée (car ω fermée) est non exacte, donc $H^p(M \times N)$ est non nul. On fait de même avec $p_N^*\eta$ pour obtenir $H^q(M \times N) \neq 0$.

2- Tout d'abord, on le vérifie facilement pour les cas p=0 et p=q=1 (tore).

Cas
$$p < q$$

Soit $M = \mathbb{S}^p$ et $N = \mathbb{S}^q$ avec p < q. On a

$$\bigoplus_{i+j=k} H^i(\mathbb{S}^p) \otimes H^j(\mathbb{S}^q) = H^0(\mathbb{S}^p) \otimes H^k(\mathbb{S}^q) \bigoplus H^p(\mathbb{S}^p) \otimes H^{k-p}(\mathbb{S}^q)$$

donc cet espace est de dimension 1 si k=0, k=p, k=q ou k=p+q, et est nul pour toutes les autres valeurs de k. Soit $q\geqslant 2$. Montrons par récurrence sur $p\in\{1,\ldots,q-1\}$: " $H^k(\mathbb{S}^p\times\mathbb{S}^q)\simeq\mathbb{R}$ si k=0,p,q ou p+q, et $H^k(\mathbb{S}^p\times\mathbb{S}^q)=0$ sinon".

INITIALISATION (p = 1). Comme c'est essentiellement le même type de raisonnement que pour l'hérédité, on le fait après.

HÉRÉDITÉ : Soit p < q. On suppose vrai le résultat au rang p-1. Soit $k \ge 2$ avec $k \ne q, q+1, p, p+q$. On écrit $\mathbb{S}^p = U \cup V$ où U et V sont les ouverts de cartes des projections stéréographiques. La suite exacte de Mayer-Vietoris fournit

$$H^{k-1}((U \cap V) \times \mathbb{S}^q) \to H^k(\mathbb{S}^p \times \mathbb{S}^q) \to H^k(U \times \mathbb{S}^q) \oplus H^k(V \times \mathbb{S}^q).$$

Comme $(U \cap V)$ se rétracte sur \mathbb{S}^{p-1} et que U et V sont contractiles, on obtient

$$H^{k-1}(\mathbb{S}^{p-1}\times\mathbb{S}^q)\to H^k(\mathbb{S}^p\times\mathbb{S}^q)\to H^k(\mathbb{S}^q)\oplus H^k(\mathbb{S}^q).$$

Pour $k \ge 2$ avec $k \ne q, q+1, p, p+q$, en utisant l'hypothèse de récurrence et la cohomologie des sphères, la suite devient

$$0 \to H^k(\mathbb{S}^p \times \mathbb{S}^q) \to 0$$
,

$$\operatorname{donc}\left[\forall k\notin\{0,1,q,q+1,p,p+q\},H^k(\mathbb{S}^p\times\mathbb{S}^q)=0.\right]$$

Comme
$$\mathbb{S}^p \times \mathbb{S}^q$$
 est connexe, $H^0(\mathbb{S}^p \times \mathbb{S}^q) \simeq \mathbb{R}$.

On écrit maintenant la suite exacte de Mayer-Vietoris en petit degré :

Ce qui devient

$$\begin{array}{cccccc} 0 & \to & H^0(\mathbb{S}^p \times \mathbb{S}^q) & \to & H^0(\mathbb{S}^q) \oplus H^0(\mathbb{S}^q) & \to & H^0(\mathbb{S}^{p-1} \times \mathbb{S}^q) \\ & \to & H^1(\mathbb{S}^p \times \mathbb{S}^q) & \to & H^1(\mathbb{S}^q) \oplus H^1(\mathbb{S}^q). \end{array}$$

Comme $q \geqslant 2$, la suite exacte devient

$$\begin{array}{cccc} 0 & \to & \mathbb{R} & \to & \mathbb{R}^2 & \to & \mathbb{R} \\ & \to & H^1(\mathbb{S}^p \times \mathbb{S}^q) & \to & 0 \end{array}$$

et donc
$$H^1(\mathbb{S}^p \times \mathbb{S}^q) = 0$$
.

On écrit maintenant la suite exacte de Mayer-Vietoris pour les degrés proches de q :

$$\to H^{q}(\mathbb{S}^{p} \times \mathbb{S}^{q}) \to H^{q}(U \times \mathbb{S}^{q}) \oplus H^{q}(V \times \mathbb{S}^{q}) \to H^{q}((U \cap V) \times \mathbb{S}^{q})$$

$$\to H^{q+1}(\mathbb{S}^{p} \times \mathbb{S}^{q}) \to H^{q+1}(U \times \mathbb{S}^{q}) \oplus H^{q+1}(V \times \mathbb{S}^{q}).$$

Ce qui devient

Ce qui devient, en utilisant l'hypothèse de récurrence et la cohomologie des sphères :

$$\begin{array}{cccc} & & & & & & 0 \\ \rightarrow & H^q(\mathbb{S}^p \times \mathbb{S}^q) & \rightarrow & \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ \rightarrow & H^{q+1}(\mathbb{S}^p \times \mathbb{S}^q) & \rightarrow & 0. \end{array}$$

Cela ne permet pas encore de conclure : il faut regarder les flèches plus précisément. Notons ω la forme volume standard sur \mathbb{S}^q , $p_1:U\times\mathbb{S}^q\to\mathbb{S}^q$ et $p_2:(U\cap V)\times\mathbb{S}^q$ les projections. D'après la question 1, $[p_1^*\omega]\neq 0$ dans $H^q(U\times\mathbb{S}^q)$ et $[p_2^*\omega]\neq 0$ dans $H^q(U\cap V)\times\mathbb{S}^q)$. Comme la flèche $H^q(U\times\mathbb{S}^q)\oplus H^q(V\times\mathbb{S}^q)\to H^q(U\cap V)\times\mathbb{S}^q)$ envoie $[p_1^*\omega]$ sur $[p_2^*\omega]$ et que dim $H^q((U\cap V)\times\mathbb{S}^q)=1$, cette flèche est surjective, et donc la flèche $\mathbb{R}^2\to\mathbb{R}$ dans la dernière suite exacte est surjective. On en déduit que $H^q(\mathbb{S}^p\times\mathbb{S}^q)\simeq\mathbb{R}$ et $H^{q+1}(\mathbb{S}^p\times\mathbb{S}^q)=0$.

On écrit la suite exacte de Mayer-Vietoris près du degré p (en la simplifiant directement) :

$$H^{p-1}(\mathbb{S}^q) \oplus H^{p-1}(\mathbb{S}^q) \to H^{p-1}(\mathbb{S}^{p-1} \times \mathbb{S}^q)$$

 $\to H^p(\mathbb{S}^p \times \mathbb{S}^q) \to H^p(\mathbb{S}^q) \oplus H^p(\mathbb{S}^q).$

Ce qui devient, en utilisant l'hypothèse de récurrence et la cohomologie des sphères (avec $1 \le p-1 \le p < q$) :

$$0 \to \mathbb{R} \to H^p(\mathbb{S}^p \times \mathbb{S}^q) \to 0.$$

D'où
$$H^p(\mathbb{S}^p \times \mathbb{S}^q) \simeq \mathbb{R}$$
.

Enfin, $\mathbb{S}^p \times \mathbb{S}^q$ est une variété compacte orientable de dimension p+q, donc $H^{p+q}(\mathbb{S}^p \times \mathbb{S}^q) \simeq \mathbb{R}$.

INITIALISATION (p = 1). Par connexité, $H^0(\mathbb{S}^1 \times \mathbb{S}^q) \simeq \mathbb{R}$. Ensuite on fait le même découpage qu'avant. La suite de Mayer-Vietoris (simplifiée) donne

$$\begin{array}{cccccc} 0 & \to & H^0(\mathbb{S}^1 \times \mathbb{S}^q) & \to & H^0(\mathbb{S}^q) \oplus H^0(\mathbb{S}^q) & \to & H^0(\mathbb{S}^0 \times \mathbb{S}^q) \\ & \to & H^1(\mathbb{S}^p \times \mathbb{S}^q) & \to & H^1(\mathbb{S}^q) \oplus H^1(\mathbb{S}^q) \end{array}$$

qui devient

Donc $H^1(\mathbb{S}^1 \times \mathbb{S}^q) \simeq \mathbb{R}$. Pour $k \geqslant 2, k \neq q, q+1$, la suite exacte de Mayer-Vietoris donne

$$H^{k-1}(\mathbb{S}^0 \times \mathbb{S}^q) \to H^k(\mathbb{S}^1 \times \mathbb{S}^q) \to H^k(\mathbb{S}^q) \oplus H^k(\mathbb{S}^q)$$

qui devient

$$H^{k-1}(\mathbb{S}^q) \oplus H^{k-1}(\mathbb{S}^q) \to H^k(\mathbb{S}^1 \times \mathbb{S}^q) \to H^k(\mathbb{S}^q) \oplus H^k(\mathbb{S}^q)$$

i.e.

$$0 \to H^k(\mathbb{S}^1 \times \mathbb{S}^q) \to 0)$$

Donc
$$\forall k \notin \{0, 1, q, q+1\}, H^k(\mathbb{S}^1 \times \mathbb{S}^q) = 0.$$

Comme $\mathbb{S}^1 \times \mathbb{S}^q$ est compacte orientable de dimension q+1, $H^{q+1}(\mathbb{S}^1 \times \mathbb{S}^q) \simeq \mathbb{R}$. Enfin, la suite de Mayer-Vietoris près du degré q donne

Ce qui devient

Comme la somme alternée des dimensions est nulle, $H^q(\mathbb{S}^1 \times \mathbb{S}^q) \simeq \mathbb{R}$.

$$\boxed{\text{Cas } p = q}$$

On a

$$\bigoplus_{i+j=k} H^i(\mathbb{S}^q) \otimes H^j(\mathbb{S}^q) = H^0(\mathbb{S}^q) \otimes H^k(\mathbb{S}^q) \bigoplus H^p(\mathbb{S}^q) \otimes H^{k-p}(\mathbb{S}^q)$$

donc cet espace est de dimension 1 si k=0 ou k=2q, de dimension 2 si k=q, et est nul pour toutes les autres valeurs de k. Soit $q \ge 2$. On va démontrer que c'est le cas de $H^k(\mathbb{S}^q \times \mathbb{S}^q)$ avec le même découpage qu'avant, vu qu'on connaît la cohomologie de $\mathbb{S}^{q-1} \times \mathbb{S}^q$.

Par connexité, $H^0(\mathbb{S}^q \times \mathbb{S}^q) \simeq \mathbb{R}$. Comme $\mathbb{S}^q \times \mathbb{S}^q$ est compacte orientable de dimension 2q, $H^{2q}(\mathbb{S}^q \times \mathbb{S}^q) \simeq \mathbb{R}$.

Pour $k \ge 2$, La suite exacte de Mayer-Vietoris fournit :

$$H^{k-1}(\mathbb{S}^{q-1}\times\mathbb{S}^q)\to H^k(\mathbb{S}^q\times\mathbb{S}^q)\to H^k(\mathbb{S}^q)\oplus H^k(\mathbb{S}^q).$$

Pour $k \notin \{0, 1, q, q + 1, 2q\}$, cela devient

$$0 \times \mathbb{S}^q) \to H^k(\mathbb{S}^q \times \mathbb{S}^q) \to 0.$$

Donc
$$\forall k \notin \{0, 1, q, q + 1, 2q\}, H^k(\mathbb{S}^q \times \mathbb{S}^q) = 0.$$

Enfin, pour des degrés proches de q, la suite de Mayer-Vietoris s'écrit

$$H^{q-1}(\mathbb{S}^q) \oplus H^{q-1}(\mathbb{S}^q) \to H^{q-1}(\mathbb{S}^{q-1} \times \mathbb{S}^q)$$

$$\to H^q(\mathbb{S}^q \times \mathbb{S}^q) \to H^q(\mathbb{S}^q) \oplus H^q(\mathbb{S}^q) \to H^q((\mathbb{S}^{q-1} \times \mathbb{S}^q))$$

$$\to H^{q+1}(\mathbb{S}^q \times \mathbb{S}^q) \to H^{q+1}(\mathbb{S}^q) \oplus H^{q+1}(\mathbb{S}^q).$$

Ce qui devient (sachant $q \ge 2$)

$$\begin{array}{cccc} & & & 0 & \rightarrow & \mathbb{R} \\ \rightarrow & H^q(\mathbb{S}^q \times \mathbb{S}^q) & \rightarrow & \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ \rightarrow & H^{q+1}(\mathbb{S}^q \times \mathbb{S}^q) & \rightarrow & 0. \end{array}$$

Pour les mêmes raisons que dans la première partie, la flèche $\mathbb{R}^2 \to \mathbb{R}$ est surjective, donc $H^{q+1}(\mathbb{S}^q \times \mathbb{S}^q) = 0$ et $H^q(\mathbb{S}^q \times \mathbb{S}^q) \simeq \mathbb{R}^2$, ce qui achève cet exercice.