コンピュータ・シミュレーションのアプローチ

現象

数学的(物理的)モデル化

数学モデル(微分方程式)

離散化(差分法、有限要素法、 有限体積法、境界要素法、など)

●精度(誤差)

数値モデル(代数方程式)

●安定性

解析結果

●収東性

(メッシュを細かくしたときに 理論解に収束するか?)

- 差分法の基礎と流体解析への適用-

1-1

数値モデル化=離散化とは

$$\frac{dQ(t)}{dt} = -\lambda Q(t)$$
 ····例2

微分方程式は、連続な系であり、そのままコンピュータ上では取り扱えない(コンピュータは0,1の離散データ(ビット)の演算を高速で行う装置=高級電卓)。

$$\frac{q(t+t)-q(t)}{\Delta t} = -\lambda q(t)$$

コンピュータ上で取り扱える式(代数方程式=四則演算のみの式)に変換することを離散化という。

例1 バネにつながれたおもりの動き(I)

~現象~

- 差分法の基礎と流体解析への適用-

1_3

例1 バネにつながれたおもりの動き(II)

おもりに働く力はバネの伸びに比例

$$F = -kx$$

k: 比例係数

$$m\frac{d^2x(t)}{dt^2} = -kx(t)$$

m: おもりの質量

- 差分法の基礎と流体解析への適用-

例1 バネにつながれたおもりの動き(III)

~厳密解(理論解)~

$$m\frac{d^2x(t)}{dt^2} = -kx(t)$$

簡単のため m=k=1

初期条件
$$x(t=0)=0, \frac{dx}{dt}\Big|_{t=0}=1$$

Q:理論解を求めよ。

理論解

- 差分法の基礎と流体解析への適用-

例1 バネにつながれたおもりの動き(IV)

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -x \end{cases}$$
 ~数値モデル~
$$\frac{d^2x(t)}{dt^2} = -x(t)$$

数値 モデル化

離散化

前進差ガ近似 ,(陽的オイラー法)(

法)10 5 0 × -5 -10 -15 0 5 10 15 20

数値解析の解

 $\begin{cases} \frac{x^{n+1} - x^n}{\Delta t} = y^n & 0 \\ \frac{y^{n+1} - y^n}{\Delta t} = -x^n & -15 \\ 0 & -15 \end{cases}$

(この問題の解決法は、各自勉強のこと)

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(I)

~現象~

·放射性物質:放射線(α 線, β 線, γ 線)を放出 しながら核分裂や核壊変する物質のこと。

·崩壊:原子核 が放射線(α 線, β 線, γ 線)を 放射して他の核に変換する現象のこと。

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(II) ~数学モデル~

単位時間に起こる崩壊の数は放射性物質の原 子核の数(Q)に比例

単位時間に起こる崩壊の数=放射性物質の原 子核の時間変化

$$\frac{dQ(t)}{dt} = -\lambda Q(t)$$

λ: 比例係数(崩壊定数)

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(III-Q)

~理論解~

$$\frac{dQ(t)}{dt} = -\lambda Q(t)$$

問題: 初期(t=0)に存在する原子核数をQ(0)= Q_0 とするとき、時刻t後の原子核数を求めよ。

ー差分法の基礎と流体解析への適用ー

1-9

例2 放射性物質の崩壊(III-A)

~理論解~

$$\frac{dQ(t)}{dt} = -\lambda Q(t)$$

$$\Rightarrow \int_{0}^{t} \frac{dQ(t)}{Q(t)} = -\lambda dt$$

$$\Rightarrow \int_{0}^{t} \frac{dQ(t)}{Q(t)} = -\lambda \int_{0}^{t} dt$$

$$\Rightarrow \log Q(t) - \log Q_{0} = -\lambda t$$

$$\Rightarrow \log \frac{Q(t)}{Q_{0}} = -\lambda t$$

$$\Rightarrow \frac{Q(t)}{Q_{0}} = e^{-\lambda t}$$

$$\Rightarrow Q(t) = Q_{0}e^{-\lambda t}$$

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(III-G)

$$Q(t) = Q_0 e^{-\lambda t}$$

豆知識:Qが Q_0 の 半分になる時間を 半減期(T)という。

質問: *Tとλ*の関係は?

$$Q_0 / 2 = Q_0 e^{-\lambda T}$$

$$\Leftrightarrow 1/2 = e^{-\lambda T}$$

$$\Leftrightarrow$$
 $-\log 2 = -\lambda T$

$$\Leftrightarrow T = \frac{\log 2}{\lambda} = \frac{0.693}{\lambda}$$

- 差分法の基礎と流体解析への適用-

120 100 80 3 60 40 20 0 T 5 10 15 20 25 30 35

*Q*₀=100, λ=0.5の場合のグラフ

1-1

例2 放射性物質の崩壊(IV-1)

~数値モデル~

数値解析で計算される原子核数は誤差を含んでおり、厳密解Qとは違った値をとる。そのため、ここではqと表す(常識的に判断できる場合は同じ文字を使うこともある)。

例2 放射性物質の崩壊(IV-2)

~数値モデル~

$$\frac{dQ(t)}{dt} = -\lambda Q(t) \qquad \qquad \frac{q(t + \Delta t) - q(t)}{\Delta t} = -\lambda q(t)$$

時刻 Δt

$$\frac{q(\Delta t) - Q_0}{\Delta t} = -\lambda Q_0$$

$$\Leftrightarrow q(\Delta t) = (1 - \lambda \Delta t) Q_0$$

$$\Leftrightarrow q^1 = (1 - \lambda \Delta t) Q_0$$

時刻 2∆t

$$\frac{q(2\Delta t) - q(\Delta t)}{\Delta t} = -\lambda q(\Delta t)$$

$$\Leftrightarrow q(2\Delta t) = (1 - \lambda \Delta t) q(\Delta t)$$

$$\Leftrightarrow q(2\Delta t) = (1 - \lambda \Delta t)^{2} Q_{0}$$

$$\Leftrightarrow q^{2} = (1 - \lambda \Delta t)^{2} Q_{0}$$

時刻 $n\Delta t$ における $q(n\Delta t)=q^n$ と表す。

- 差分法の基礎と流体解析への適用-

1 - 13

例2 放射性物質の崩壊(IV-3)

~数値モデル~

一般的な q_n を求めてみよう。

$$\frac{q(t+\Delta t)-q(t)}{\Delta t} = -\lambda q(t)$$

$$\Leftrightarrow q(t+\Delta t) = (1-\lambda \Delta t)q(t)$$

$$\Leftrightarrow q(n\Delta t) = (1-\lambda \Delta t)q((n-1)\Delta t)$$

$$\Leftrightarrow q^n = (1 - \lambda \Delta t) q^{n-1}$$

初項 Q_0 、公比 $(1-\lambda\Delta t)$ の等比数列

$$q^n = \left(1 - \lambda \Delta t\right)^n Q_0$$

例2 放射性物質の崩壊(IV-4)

$$q^{n} = \left(1 - \lambda \Delta t\right)^{n} Q_{0}$$

λ=0.5, Δt=1として図を描いてみる。

·差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(IV-5)

数値解は厳密解をちゃんと近似してい るか?

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(IV-7) 安定性

λ=0.5, Δt=4.1 **の場合**

 $\lambda = 0.5$, $\Delta t = 4.1$

-差分法の基礎と流体解析への適用-

なぜ数値解析が必要か

理論解が求まる問題をわざわざ数値解析する必要はない?

- (1) 現実はそれほど簡単ではない
 - ・ばねの問題では、ばね係数kが一定でなく、位置(x)や時間(t)の関数だと理論解が求まらない。
 - ・放射性物質の問題では、崩壊定数λが一定でなく、核数 (O) の関数だと理論解が求まらない。
- (2) 理論解がない問題を、たとえ数値計算で求めたとしても、 それが正しいのかどうか判断できない。
 - ・理論解などのわかっている問題で、数値計算の方法がど の程度正しいのかを検証する必要がある。

- 差分法の基礎と流体解析への適用-

1-21

コンピュータ・シミュレーションの誤差

- (1)厳密解と数値解の誤差(打ち切り誤差)
 - ⇒後で詳細に議論
 - ·放射性物質の崩壊の例における、 厳密解Qと数値解qの差
- (2) コンピュータに起因する誤差(丸め誤差、 桁落ち誤差、情報落ち誤差)
 - ・コンピュータ内では、整数1は1
 - ・コンピュータ内で、実数0.1は0.1?

コンピュータにおける数値の取り扱いの基 礎知識

コンピュータにおける数値の取り扱い の基礎知識

コンピュータの内部では、数値はすべて2進法(ビット、0 or 1)の形に変換して処理する。

情報の単位

ビット(bit): 2進数1桁を表す情報の最小単位

バイト(byte): 2進数8桁を表す情報の単位

1byte=8bit

- 差分法の基礎と流体解析への適用-

1-23

10進数の整数

- ·10進数では1桁を0~9で表す。
- ·右からn番目の数字は $10^{(n-1)}$ の係数を表す。

(例)

10進数で2037₍₁₀₎は

 $2037_{(10)} = 2 \times 10^3 + 0 \times 10^2 + 3 \times 10^1 + 7 \times 10^0$

2進数の整数

- ·2進数では1桁を0~9で表す。
- ·右からn番目の数字は2(n-1)の係数を表す。

(例) **2**進数で11010₍₂₎は

 $11010_{(2)} = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$

- 差分法の基礎と流体解析への適用-

1-25

10進数の小数

(例) 10進数の $0.123_{(10)}$

$$0.123_{(10)} = 1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3}$$

2進数の小数

(例) **2**進数の $0.101_{(2)}$

$$0.101_{(2)} = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125$$
$$= 0.625_{(10)}$$

- 差分法の基礎と流体解析への適用-

1-27

浮動小数点

固定小数点 小数点の位置が決まっている.

浮動小数点 大きな数や小さな数が表せる.

$$M \times B^E$$

浮動小数点形式とは仮数(M), 基数(B), 指数(E)をもち、小数点の位置が変わる数値

IEEEの浮動小数点表現

IEEE(アメリカ電気電子工学会)が決めた表現形式

$$(-1)^{s} \times (1 + M \times 2^{-23}) \times 2^{(E-127)}$$

Sは符号(0: 非負, 1: 負), Mは仮数部, Eは指数部

符号 指数部 仮数部 単精度 S(1bit) E(8bit) M(23bit) 4byte

符号 指数部 仮数部

倍精度 S(1bit) E(11bit) M(52bit)

8byte

単精度で仮数部の有効数字は約7桁弱

- 差分法の基礎と流体解析への適用-

1-29

丸め誤差

計算機の内部では10進数の0.1は正確な0.1ではない!

- 差分法の基礎と流体解析への適用-

桁落ち誤差

仮数部が8桁の場合の絶対値がほぼ等しい数値同士の 引き算をする場合に発生

有効な(正しい)数字

$$0.1234567912 \times 10^{12}$$

- <mark>0.12345678</mark>01×10¹² ・・・8桁の有効数字

 $0.0000000112 \times 10^{12}$

 $=1.12\cdots\times10^4$

0.1234567912×10¹² ・・・8桁の有効数字

・・・1桁!!の有効数字

- 差分法の基礎と流体解析への適用-

1-31

情報落ち誤差

$$0.12345678 \times 10^{5} + 0.87654321 \times 10^{-5}$$

$$\begin{array}{r} 0.12345678 \times 10^5 \\ + 0.0000000000087654321 \times 10^5 \\ \hline 0.12345678 \times 10^5 \end{array}$$

- 差分法の基礎と流体解析への適用-

1-33

環境に関連するシミュレーション

↓ 流れに関連する問題が多い ↓ ↓ 時間的に非定常 ↓ 時間に関する偏微分方程式 ↓ ↓ まずは、微分のコンピュータによる評価法

差分法の直感的理解

差分法(Finite Difference Method, FDM)とは微係数を差分式に変換する離散化方法の一つである

まずは微係数の差分による近似を考える(微分方程式を差分法を用いて解く問題は後ほど)

- 差分法の基礎と流体解析への適用-

1-35

微分の復習(I)

右からの極限

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

が存在するとき、 右側微(分)係数と呼ぶ。

$$f'_{+}(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- 差分法の基礎と流体解析への適用-

微分の復習(II)

左からの極限

$$\lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

が存在するとき、 左側微(分)係数と呼ぶ。

$$f'_{-}(x) = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

- 差分法の基礎と流体解析への適用-

1-37

微分の復習(III)

右側微係数と左側微係数が一致するとき、関数f は点xで微分可能であると言い、その共通の値を fのxにおける微係数と呼ぶ。

$$\frac{df}{dx} = f'(x) = f'_{-}(x) = f'_{+}(x)$$

差分法の直感的理解(I)

前進差分近似

差分法は微分の定義式の極限(=lim)をやめ、近似(≅)に直したものである。

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

∆xがある程度小さければ上 式は近似的に成り立つ。

前進差分近似

- 差分法の基礎と流体解析への適用-

1-39

差分法の直感的理解(II)

後進差分近似

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$\frac{df}{dx} \cong \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

後進差分近似

- 差分法の基礎と流体解析への適用-

例2 放射性物質の崩壊(IV-2-E)

$$\frac{dQ(t)}{dt} = \cdots \qquad \frac{q(t + \Delta t) - q(t)}{\Delta t} = \cdots$$

時間微分に前進差分近似* を適用した離散化式

$$\frac{dQ(t)}{dt} = \cdots \qquad \frac{q(t) - q(t - \Delta t)}{\Delta t} = \cdots$$

ー差分法の基礎と流体解析への適用ー

1-41

差分法のための準備

数学の復習:テイラー級数展開

テイラー級数展開(I-Q)

f(x)を点x=aの周りでテイラー展開

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

例題:次の関数を(x=0の周りで)xの整級数に展開せよ

- (1) e^x
- $(2) \sin(x)$
- (3) $\log(1+x)$

- 差分法の基礎と流体解析への適用-

1-43

テイラー級数展開(II)

例題2: $f(x+\Delta x)$ を点xの周りでテイラー展開せよ。

上式を以下の形に変形せよ。

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}=\cdots$$

前進差分法の精度(I)

前進差分近似式

 $\frac{f(x+\Delta x)-f(x)}{\Delta x}\cong f'(x)$ と近似すると、これらの項は打ち切られるので

- 差分法の基礎と流体解析への適用-

1-45

前進差分法の精度(II)

前進差分近似式

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}-f'(x)=\frac{\Delta x}{2!}+\frac{f''(x)}{3!}+\dots$$

本来近似したいもの

余分なもの

=打ち切り誤差

 Δx は十分小さい($\Delta x << 1$)と仮定しているので、 $\Delta x >> \Delta x^2 >> \Delta x^3 >> \cdots$

したがって、打ち切り誤差で最も影響の大きいのは初項(0.5 $\Delta x f''(x)$)である。打ち切り誤差の初項が Δx *に比例する近似式はk次精度であるという。上記前進差分法は1次精度である。これをよく以下のように書く。

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}-f'(x)=O(\Delta x)$$

- 差分法の基礎と流体解析への適用-

後進差分法の精度

練習問題: $f(x-\Delta x)$ を点xの周りでテイラー展開した式を用いて後進差分法の精度を評価せよ。

- 差分法の基礎と流体解析への適用-

1-47

一般的な差分近似式の導出(I)

位置 $i\Delta x$ における $f(i\Delta x)=f_i$ と表す。

前進差分
$$f_i' = \frac{df}{dx}\Big|_i \cong \frac{f_{i+1} - f_i}{\Delta x}$$

後進差分
$$f_i' = \frac{df}{dx}\Big|_i \cong \frac{f_i - f_{i-1}}{\Delta x}$$

- 差分法の基礎と流体解析への適用-

一般的な微係数の近似

差分式

$$\cdots + c_{i-1}f_{i-1} + c_if_i + c_{i+1}f_{i+1} + \cdots = \frac{d^{j}f}{dx^{j}}\bigg|_{i} + O(\Delta x^{k})$$

近似したい微係数

打ち切り誤差

- 差分法の基礎と流体解析への適用-

1-49

一般的な差分近似式の導出(II)

 $\frac{df}{dx}$ を周りの点のfから求めることを考える。

$$\left. \frac{df}{dx} \right|_{i} \cong af_{i-1} + bf_{i} + cf_{i+1}$$
 ··· (A)

 f_{i-1} , f_{i+1} を点iの周りでテイラー展開する。

$$f_{i+1} = f_i + \frac{f_i'}{1!} \Delta x + \frac{f_i''}{2!} \Delta x^2 + \frac{f_i'''}{3!} \Delta x^3 + \cdots$$

$$f_{i-1} = f_i - \frac{f_i'}{1!} \Delta x + \frac{f_i''}{2!} \Delta x^2 - \frac{f_i'''}{3!} \Delta x^3 + \cdots$$

(A)式右辺に代入整理

一差分法の基礎と流体解析への適用ー

一般的な差分近似式の導出(III)

(A)式に代入整理

$$af_{i-1} + bf_i + cf_{i+1} = (a+b+c)f_i + (c-a)\Delta x f_i'$$

$$+ (a+c)\frac{\Delta x^2}{2}f_i'' + (c-a)\frac{\Delta x^3}{6}f_i''' + \cdots$$

$$af_{i-1} + bf_i + cf_{i+1} = \frac{df}{dx}\Big|_{i} + O(\Delta x^k)$$
としたいのだから、

とりあえず、

$$a + b + c = 0$$
, $(c - a)\Delta x = 1$

未知係数は3つだからもう一つ式を立てないといけない。 なるべく、精度を良くする(打ち切り誤差を少なくする)ために、

$$a+c=0$$

とする。

- 差分法の基礎と流体解析への適用-

1-51

一般的な差分近似式の導出(IV)

$$a + b + c = 0$$
, $(c - a)\Delta x = 1$, $a + c = 0$

a,b,cについて解く。

$$a = -\frac{1}{2\Delta x}$$
, $b = 0$, $c = \frac{1}{2\Delta x}$

$$\left. \frac{df}{dx} \right|_{i} \cong \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$

この近似を中心差分近似とよぶ。

一般的な差分近似式の導出(V)

$$\left. \frac{df}{dx} \right|_{i} \cong \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$

この近似を中心差分近似とよぶ。 もっと、ちゃんと書くと

$$\frac{f_{i+1} - f_{i-1}}{2\Delta x} = \frac{df}{dx}\bigg|_{i} + \frac{\Delta x^{2}}{6} f_{i}^{""} + \cdots$$
$$= \frac{df}{dx}\bigg|_{i} + O\left(\Delta x^{2}\right)$$

したがってこの近似は二次 精度であり、二次(精度)中 心差分と呼ぶこともある。

- 差分法の基礎と流体解析への適用-

1-53

一般的な差分近似式の導出(VI)

練習1: 点iに対して非対 称な以下の近似式で、なる べく精度の高いものを作れ。 また、その精度は?

$$\left. \frac{df}{dx} \right|_{i} \cong af_{i} + bf_{i+1} + cf_{i+2}$$

一般的な差分近似式の導出(VII)

練習2: 点iでの二階の微 係数の差分近似式を作れ。 また、その精度も評価せよ。

- 差分法の基礎と流体解析への適用-

1-55

一般的な差分近似式の導出(VIII)

練習3: 点iの周りの5点を 用いた1階の微係数の差 分近似式で、なるべく精度 の高いものを作れ。また、 その精度は?

$$\frac{df}{dx}\Big|_{i} \cong af_{i-2} + bf_{i-1} + cf_{i} + df_{i+1} + ef_{i+2}$$

ここまでに現れた差分法のまとめ

	差分式	打ち切り誤差 の初項
前進差分	$\frac{f_{i+1} - f_i}{\Delta x}$	$\frac{\Delta x}{2}f''(x)$
後進差分	$\frac{f_i - f_{i-1}}{\Delta x}$	$-\frac{\Delta x}{2}f''(x)$
2次中心差分	$\frac{f_{i+1} - f_{i-1}}{2\Delta x}$	$\frac{\Delta x^2}{6}f'''(x)$
3点非対称差分	$\frac{-1.5f_i + 2f_{i+1} - 0.5f_{i+2}}{\Delta x}$	$-\frac{\Delta x^2}{3}f'''(x)$
5点対称	$\underline{f_{i-2} - 8f_{i-1} + 8f_{i+1} - f_{i+2}}$	$-\frac{\Delta x^4}{30}f''''(x)$
(4次中心差分)	$12\Delta x$	30 3 (11)

- 差分法の基礎と流体解析への適用-

1-57

精度の妥当性検討(I-1)

対象とする関数: f(x)=ex

x=1における差分近似式で、 Δx =0.1として

$$\left. \frac{df}{dx} \right|_{x=1}$$
 および打ち切り誤差の初項を評価する。 3.32012

f(0.8)=2.22554 f(0.9)=2.4596 f(1)=2.71828 f(1.1)=3.00417f(1.2)=3.32012 3.00417 2.22554 2.4596 2.7182 0.8 0.9 1 1.1 1.2

- 差分法の基礎と流体解析への適用-

精度の妥当性検討(I-2)

	$\frac{df}{dx}\Big _{x=1}$	誤差	初項
厳密解	2.7183	_	
前進差分			
後進差分			
二次中心差分			
3点非対称差分			
5点対称			

- 差分法の基礎と流体解析への適用-

1-59

精度の妥当性検討(II-1)

対象とする関数: f(x)=e^x

x=1における差分近似式で、 Δx =0.1として

 $\left. rac{d^2 f}{dx^2} \right|_{x=1}$ および打ち切り誤差の初項を評価する。

2階微係数に対する差分式

	差分式	打ち切り誤差 の初項
二次中心	$\frac{f_{i-1} - 2f_i + f_{i+1}}{\Delta x^2}$	$\frac{\Delta x^2}{12}f'''(x)$
3点非対称	$\frac{f_i - 2f_{i+1} + f_{i+2}}{\Delta x^2}$	$\Delta x f'''(x)$
5点対称	$\frac{-f_{i-2} + 16f_{i-1} - 30f_i - 16f_{i+1} - f_{i+2}}{12\Delta x^2}$	$-\frac{\Delta x^4}{90}f^{mm}(x)$

- 差分法の基礎と流体解析への適用-

1-61

精度の妥当性検討(II-2)

	$\frac{d^2f}{dx^2}\Big _{x=1}$	誤差	初項
厳密解	2.7183	_	
二次中心差分			
3点非対称差分			
5点対称			

メッシュ間隔の重要性(I)

数値解析において、問題に適したメッシュを使うことが重要 である。この点を、三角関数型の波形の例に考えてみる。

- 差分法の基礎と流体解析への適用-

1-63

メッシュ間隔の重要性(II)

対象とする関数

$$f(x) = \cos(mx)$$
 m: 波数

 $m=2\pi/\lambda$ (λ :波長)

点iにおける一階微係数の厳密値

$$\left. \frac{df}{dx} \right|_{i} = \frac{-m}{m} \sin\left(mx_{i}\right)$$

振幅 位相

メッシュ間隔の重要性(III)

$$f(x) = \cos(mx)$$
 の二次中心差分近似

i番目の点におけるfの値

$$f_i = \cos(mi\Delta x) = \cos(mx_i)$$

$$\cos a - \cos b$$

$$= -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$$

一階微係数の二次中心差分近似

$$\left. \frac{df}{dx} \right|_{i} \cong \frac{f_{i+1} - f_{i-1}}{2\Delta x} = \frac{\cos\left(m\left(x_{i} + \Delta x\right)\right) - \cos\left(m\left(x_{i} - \Delta x\right)\right)}{2\Delta x}$$

- 差分法の基礎と流体解析への適用-

1-65

メッシュ間隔の重要性(IV)

振幅の誤差を調べてみよう

一階微係数の厳密値と二次中心差分近似の比

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{-\sin(m\Delta x)}{\Delta x} \div (-m)$$
$$= \frac{\sin(m\Delta x)}{m\Delta x}$$

- 差分法の基礎と流体解析への適用-

メッシュ間隔の重要性(V)

一階微係数の厳密値と二次中心差分近似の比

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{\sin(m\Delta x)}{m\Delta x}$$

λ=20Δx(長波長)の場合(1周期に20点)

$$m\Delta x = \frac{2\pi}{\lambda} \Delta x = \frac{\pi}{10}$$

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{\sin(\pi/10)}{\pi/10} \approx 0.984$$

 λ が更に大きくなると、 $m\Delta x \rightarrow 0$ より

$$\frac{\text{Approximation}}{\text{Exact}} = \lim_{m\Delta x \to 0} \frac{\sin(m\Delta x)}{m\Delta x} = 1$$

ー差分法の基礎と流体解析への適用ー

1-67

メッシュ間隔の重要性(VI)

- 差分法の基礎と流体解析への適用-

メッシュ間隔の重要性(VII)

一階微係数の厳密値と二次中心差分近似の比

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{\sin(m\Delta x)}{m\Delta x}$$

 $\lambda=4\Delta x$ (短波長)の場合(1周期に4点)

$$m\Delta x = \frac{2\pi}{\lambda} \Delta x = \frac{\pi}{2}$$

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{\sin(\pi/2)}{\pi/2} \approx 0.634$$

 λ がさらに小さくなると、 $m\Delta x \rightarrow \pi$ より

$$\frac{\text{Approximation}}{\text{Exact}} = \lim_{m\Delta x \to \pi} \frac{\sin(m\Delta x)}{m\Delta x} = 0$$

- 差分法の基礎と流体解析への適用-

1-69

メッシュ間隔の重要性(VII)

前進差分近似

一階微係数の前進差分近似

$$\left. \frac{df}{dx} \right|_{i} \cong \frac{f_{i+1} - f_{i}}{\Delta x} = \frac{\cos(m(x_{i} + \Delta x)) - \cos(mx_{i})}{\Delta x}$$

$$= \frac{-\frac{\sin(m\Delta x/2)}{\Delta x/2} \sin(mx_{i} + m\Delta x/2)}{\Delta x}$$

一階微係数の厳密値

$$\left. \frac{df}{dx} \right|_i = \frac{-m}{\sin(mx_i)}$$

振幅にも位相にも誤差!

- 差分法の基礎と流体解析への適用-

メッシュ間隔の重要性(VIII)

振幅にも位相にも誤差!

一階微係数の前進差分近似

$$\left. \frac{df}{dx} \right|_{i} \cong \frac{-\frac{\sin(m\Delta x/2)}{\Delta x/2}}{\Delta x/2} \sin(m(x_{i} + \Delta x/2))$$

一階微係数の厳密値

$$\left. \frac{df}{dx} \right|_{i} = \frac{-m}{\sin(mx_{i})}$$

振幅の誤差

$$\frac{\sin(m\Delta x/2)}{m\Delta x/2}$$

前進差分近似の特徴

位相の誤差

$$\frac{m\Delta x}{2}$$
 波の形が $-\frac{\Delta x}{2}$ ずれる

- 差分法の基礎と流体解析への適用-

メッシュ間隔の重要性I

練習問題:二階微係数の場合に同様の議論をせよ。 $(\lambda=20\Delta x$ (長波長)、 $\lambda=4\Delta x$ (短波長)の場合の振幅の比)

- 差分法の基礎と流体解析への適用-

1-73

メッシュ間隔の重要性II

練習問題:二階微係数の場合に同様の議論をせよ。

メッシュ間隔の重要性III

 $f(x) = \cos(mx)$ の4次中心差分近似

一階微係数の4次中心差分近似

$$\frac{df}{dx}\Big|_{i} \approx \frac{f_{i-2} - 8f_{i-1} + 8f_{i+1} - f_{i+2}}{12\Delta x} = \frac{-2\sin(2m\Delta x) + 16\sin(m\Delta x)}{12\Delta x}\sin(mx_{i})$$
$$= \frac{\sin(m\Delta x)[-4 + \cos(m\Delta x)]}{3\Delta x}\sin(mx_{i})$$

- 差分法の基礎と流体解析への適用-

1-75

メッシュ間隔の重要性IV

振幅の誤差を調べてみよう

一階微係数の厳密値と4次中心差分近似の比

$$\frac{\text{Approximation}}{\text{Exact}} = \frac{\sin(m\Delta x)\left[-4 + \cos(m\Delta x)\right]}{3\Delta x} \div (-m)$$
$$= \left[\frac{4}{3} - \frac{\cos(m\Delta x)}{3}\right] \frac{\sin(m\Delta x)}{m\Delta x}$$

三角波に関する振幅比

		振幅比	
導関数	方法	長波長	短波長
		λ=20Δx	$\lambda = 4\Delta x$
$\frac{df}{dx}$	2次中心	0.9836	0.6366
	4次中心	0.9996	0.8488

		振幅比	
導関数	方法	長波長	短波長
		λ=20Δx	$\lambda = 2\Delta x$
$\frac{d^2f}{dx^2}$	2次中心	0.9918	0.4053
	4次中心	0.9999	0.5404

- 差分法の基礎と流体解析への適用-

