- החלפת כליות גילוי אמת

אראל סגל-הלוי

The donor in each pair cannot give their kidney to the recipient because they are not a match

The donors can give their kidney to the **other** recipient because they are a good match

© UHN Patient Education

https://www.uhn.ca/Transplant/PatientsFamilies/Kidney_Transplant_Program/Pre_Transplant/Pages/specialized_transplant_programs.aspx?utm_source=kidney-pre-Transplant&utm_medium=Clicks&utm_campaign=specialized-program

אלגוריתם מגלה-אמת לשידוך כליות?

- מי הם השחקנים בבעיית שידוך הכליות?
 - **הזוגות** יכולים לכל היותר להסתיר קשתות, אבל זה לא יעזור להם.
 - המרכזים הרפואיים יכולים להסתיר זוגות - לשדך אותם באופן פנימי.
 - האינטרס של המרכזים הרפואיים הוא לדאוג לחולים "שלהם" - שכמה שיותר חולים שלהם יקבלו כליה.

תמריצים של מרכזים רפואיים

משפט: אין אלגוריתם שהוא גם יעיל פארטו וגם מגלה-אמת עבור המרכזים הרפואיים.

הוכחה: נניח בשלילה שקיים אלגוריתם כזה. נראה מצב שבו, לכל שידוך שהאלגוריתם בוחר, קיים מרכז שיכול להסתיר זוגות, וכך להגדיל את מספר החולים "שלו" שמקבלים כליה. -->

תמריצים של מרכזים רפואיים – הוכחה

נניח שהמצב רמב"ם האמיתי הוא כזה, שכל שידוך משאיר הדסה לפחות חולה אחד בלי כליה:

שני זוגות ומשדך אותם אצלו, אז יש רמב"ם רק שידוך יעיל-פארטו אחד, ובו כל 4 החולים של הדסה רמב"ם מקבלים

אם רמב"ם מסתיר

תמריצים של מרכזים רפואיים – הוכחה

נניח שהמצב רמב"ם האמיתי הוא כזה, שכל שידוך משאיר הדסה לפחות חולה אחד בלי כליה:

אם הדסה מסתירה שני זוגות ומשדכת אותם אצלה, אז יש רק שידוך יעיל-פארטו אחד, ובו כל 3 החולים של הדסה מקבלים כליה:

תמריצים של מרכזים רפואיים –

– תמריצים של מרכזים רפואיים קירוב 1/2

כיוון שאין אלגוריתם מגלה-אמת המשיג את השידוך הגדול ביותר, חיפשו אלגוריתם אמיתי המשיג שידוך שהוא גדול-ביותר-בקירוב.

:(2013) אשלגי, פישר, קאש, פרוקצ'יה, 2013)

- מחשבים את השידוך הגדול ביותר *מבין כל* השידוכים שבהם מספר הקשתות **הפנימיות** בכל מרכז רפואי הוא **מקסימלי**.
 - <-- דוגמאות

קירוב 1/2 - דוגמאות

קירוב 1/2 - מימוש

איך מחשבים?

- •נותנים משקל לכל קשת:
- |E| קשת פנימית משקל ספרימית −
- קשת בין מרכזים משקל 1
- •מחשבים את השידוך **הכבד** ביותר (אלגוריתם אדמונדס עם משקלים).
- השידוך ממקסם את מס' הקשתות הפנימיות, • וברחות לזה - את מס' ההשתות הכולל
 - •ובכפוף לזה את מס' הקשתות הכולל.

קירוב 1/2 - הוכחה

משפט: אלגוריתם אשלגי-פישר-קאש-פרוקצ'יה מחזיר תמיד שידוך שגודלו לפחות 1/2 מהשידוך הגדול ביותר האפשרי.

הוכחה: נניח שהשידוך הגדול ביותר כולל *ח* קשתות (*n*2 צמתים). מכל *קשת*, לפחות *צומת* אחד נמצא בשידוך של האלגוריתם – אחרת האלגוריתם היה יכול להוסיף את הקשת ולהשיג שידוך גדול יותר. לכן השידוך של האלגוריתם כולל לפחות *n* צמתים.

"קירוב 1/2 אמיתי – "הוכחה

משפט: אלגוריתם אשלגי-פישר-קאש-פרוקצ'יה הוא מגלה-אמת כשיש שני מרכזים רפואיים. [יש הכללה למספר כלשהו של מרכזים רפואיים, אבל האלגוריתם מסובך יותר – ראו במאמר].

- "הוכחה" (מקוצרת מאד): יהי M השידוך כשאחד המרכזים אמיתי, ו-K השידוך כשהוא מתחכם.
 •נסתכל על ההפרש הסימטרי בין M ל-K.
 •כמו שראינו בלֶמה של בֵרג', רכיבי הקשירות הם
 - צמתים מבודדים או מעגלים או מסלולים. מבודדים או מעגלים - לא יעזרו למתחכם.

"קירוב 1/2 אמיתי – "הוכחה

המסלולים בהפרש הסימטרי חייבים להיראות כך:

:כלומר

1)כל קטע *פנימי* חייב להיות באורך זוגי – כי כל אחד מהשידוכים ממקסם את מספר הקשתות הפנימיות. 2)מס' הקשתות *החיצוניות* חייב להיות זוגי – כי כל שידוך ממקסם את מספר הקשתות בכפוף ל- 1). 3)לכן המסלול מתחיל בקשת של K ומסתיים בקשת של M באותו צד; ולכן המתחכם לא מרויח. ***