

Propulsion Technologies for Future Aircraft Generations: A NASA Perspective

Dr. Rubén Del Rosario, Project Manager **Subsonic Fixed Wing Project Fundament Aeronautics Program** ASME's Turbo Expo 2012 Copenhagen, Denmark June 11-15, 2012

SFW Strategic Framework/Linkage

	TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)			
		N+1 (2015)	N+2 (2020**)	N+3 (2025)	
	Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-71 dB	
	LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%	
	Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%	
	Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%	

^{*} Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

Research addressing revolutionary N+3 Goals with opportunities for near term impact

^{**} ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

[‡] CO₂ emission benefits dependent on life-cycle CO_{2e} per MJ for fuel and/or energy source used

Goal-Driven Advanced Vehicle Concept Studies (N+3) purpose/approach

- Leverage external and in-house expertise
- Stimulate thinking to determine potential aircraft solutions to address significant performance, environmental, and operations issues of the future
- Identify advanced airframe and propulsion concepts and corresponding enabling technologies for commercial aircraft anticipated for 2030-35 EIS (market conditions permitting)
 - Develop plausible air travel scenario and define aircraft requirements
 - Generate advanced concept(s) that could thrive in future scenario
 - Anticipate changes in environmental sensitivity, demand, and energy
- Identify key driving technologies (traded at the system level)
- Prime the pipeline for future, revolutionary aircraft technology developments
- Use to inform and define SFW research portfolio and investments

Goal-Driven Advanced Vehicle Concept Studies (N+3) summary

Boeing, GE, GA Tech

Advanced concept studies for commercial subsonic transport aircraft for 2030-35 EIS

154Pax 3500nm M.70

> NG, RR, Tufts, Sensis, Spirit

QUIETER CHEAPER GREENER Airliners In 2030 Page 40 SPECIAL REPORT AIRPORTS Las Vegas Bets Big New Spokes for Old Hubs China's Construction Boom

Copyright, The McGraw-Hill Companies. Used with permission.

20Pax 800nm M.55

MIT, Aurora, P&W, Aerodyne

> 354Pax 7600nm M.83

> > 180Pax 3000nm M.74

Trends:

- Tailored/Multifunctional Structures
- High AR/Active Structural Control
- Highly Integrated Propulsion Systems
- Ultra-high BPR (20+ w/ small cores)
- Alternative fuels and emerging hybrid electric concepts
- Noise reduction by component, configuration, and operations

NASA, VA Tech, GT

> 305Pax 7730nm M.85

Advances on multiple fronts are required to meet national goals - many broadly applicable features, some uniquely enabling.

2030 Fleet Scenario – Boeing

Boeing Current Market Outlook based; growth tied to GDP growth

Regional Medium Large Number of Aircraft 2,675 22,150 7,225 Family Midpoint # of Seats 70 154 300		2030 Fleet					
Family Midpoint # of 70 154		Regiona		Medium	Large		
	Number of Aircraft	craft 2,675		22,150		7,225	
		t # of 70		154		300	
Avg. Distance 575 900 3,300	Avg. Distance	ce 575		900		3,300	
Max Distance 2,000 3,500 8,500	Max Distance	e 2,000		3,500		8,500	
Avg. Trips/day 6.00 5.00 2.00	Avg. Trips/day	ay 6.00		5.00		2.00	
Avg. MPH 475 500 525	Avg. MPH	475		500		525	
Fleet Daily Air Miles (K) 8,500 100,000 55,000		1iles 8,500		100,000		55,000	
Daily Miles 3,200 4,500 7,600	Daily Miles	3,200		4,500		7,600	
Daily Hours 6.92 9.23 13.96	Daily Hours	6.92		9.23		13.96	

Medium/Large Singleaisle aircraft envisioned to dominate composition of 2030 transport fleet and miles flown

Scenario Driven Configurations – Boeing

N+3 Reduced Noise HWB "SUGAR Ray"

N+3 High L/D "SUGAR High"

N+3 Electric Trade Aircraft "SUGAR Volt"

- Fuel-Cell
- Batteries
- Hybrid

N+3 Scenario and Requirements - MIT

Size	 Domestic: 180 passengers @ 215 lbs/pax (737-800) International: 350 passengers @ 215 lbs/pax (777-200LR) Multi-class configuration Increased cabin baggage
Range	 Domestic: US transcontinental; max range 3,000 nm with reserves International: Transpacific; max range 7,600 nm with reserves
Speed	 Domestic: Minimum of Mach 0.72 International: Minimum of 0.8 (Driven by fuel efficiency)
Runway Length	 Domestic: 5,000 ft balanced field International: 9,000 ft balanced field
Fuel & Emissions	 N+3 target: 70% fuel burn improvement Meet N+3 emission target (75% below CAEP/6 NOx stringency) Consider alternative fuels and climate impact
Noise	N+3 target: (-71 dB cumulative below FAA Stage 4 limits)
Other	Compatibility with NextGenWake vortex robustnessMeet or exceed future FAA and JAA safety targets

Scenario Driven Configurations - MIT

Double-Bubble (D series): modified tube and wing with lifting body

Baseline: B737-800

Domestic size

Hybrid Wing Body (H series)

- Developed 2 aircraft based on domestic or international usage
- Awarded Phase II NRA to continue investigation of D-series concept

Scenario Analysis – Northrop Grumman

- Work entailed developing future scenario(s) that describe the challenges that may be facing commercial aircraft operators in the 2030-35 and beyond timeframe
 - Provides a context within which the proposer's advanced vehicle concept(s) may meet a market need/enter into service
- N-G provided four scenarios that covered the range of possibilities
 - King Carbon
 - Not In My Backyard
 - Bright Bold Tomorrow
 - Doom and Gloom
- Scenarios used to develop weighting factors for use in design trade studies

Individual Scenario Weighting Factors

Scenario Driven Configuration – Northrop Grumman

Preferred Concept Vehicle

Target

Pocult

		<u> 1arget</u>	Result
N+2 /2020 202E	Noise (Cum below Stage 4)	-71 EPNdB	-70 EPNdB
N+3 (2030-2035 Service Entry)	LTO NOx Emmissions (below CAEP/6)	-75%	-75%
Advanced Aircraft	Performance: Aircraft Fuel Burn	better than	64%
		70%	
Concepts Goals (Relative to User-	Performance: Field Length	Exploit	Exploit
Defined Reference)		Metroplex	Metroplex
Defined Reference)		Concepts	Concepts
Mission	Range	1600nm	1600nm
Requirements Derived from Traffic	Passengers	120	120
	Field Length, TO and Ldg (SL, Std Day)	5,000 feet	5,000 feet
	Cruise Mach	0.75	0.75
Study	Cruise Altitude	< FL450	< FL450

N+3 Propulsion Technologies

SUGAR Volt Engine Walkaround - hFan

D8 Airframe & Propulsion Technology Overview

Key Propulsion Technologies listed in Red

Northrop Grumman Advanced Engine Architecture

Three-Shaft Turbofan

• High BPR (~18) = propulsive efficiency

• High OPR (~50) = thermal efficiency

• Low noise

Low weight

Technology Suite

Three-shaft Turbofan Engine
Ultra-High Bypass Ratio of ~18
CMC Turbine Blades
Lean-Burn CMC Combustor
Intercooled Compressor Stages
Swept Fan Outlet Guide Vanes
Fan Blade Sweep Design
Lightweight Fan/Fan Cowl
Compressor Flow Control
Active Compressor Clearance Control
Variable Geometry Nozzles

- Geared turbofan dropped due to similarities with three-shaft turbofan
- Open rotor had best sea level static fuel consumption
- Open rotor potential noise not quantified in time to be included

Propulsion Related Research Elements versatile core applicable to variety of propulsion systems/installations

adaptive fan blades

multi-point lean direct injection

jet/surface interaction acoustics

