Teórico-prática: Termoquímica

- 1- Fez-se a combustão de 1,435g de naftaleno (C₁₀H₈) num colorímetro de bomba de volume constante. Em consequência a temperatura da água elevou-se de 20,17°C até 25,84°C. Se a quantidade de água que rodeia o calorímetro fosse exactamente 2000g e a capacidade calorífica do calorímetro fosse 1,80 KJ/°C, calcule o calor de combustão do naftaleno numa base molar, isto é, determine o calor de combustão molar.
- 2- Misturaram-se 100mL de HCl 0,50M com 100mL de NaOH 0,50M num calorímetro de pressão constante cuja capacidade calorífica é 335 J/°C. A temperatura inicial das soluções de HCl e NaOH é a mesma, 22,50°C, e a temperatura final da mistura das soluções é 24,90°C. Calcule o calor da reacção de neutralização.
- 3- Misturaram-se 400mL de HNO₃ 0,60M com 400mL de Ba(OH)₂ 0,3M num calorímetro de pressão constante com uma capacidade calorífica de 387 J/°C. A temperatura inicial de ambas as soluções é a mesma e igual a 18,88°C. Qual é a temperatura final da solução? (Considerar q neutralização = -56,2 KJ/mol)
- $\underline{\textbf{4}} \text{ -Qual \'e o valor mais negativo a 25°C: } \Delta H^o{}_f \text{ de } H_2O(l) \text{ ou } \Delta H^o{}_f \text{ de } H_2O(g)?$
- 5 -Considere a reacção:

$$HCI(g) \longrightarrow H^{+}(aq) + CI^{-}(aq) \Delta H^{0} = -74.9 \text{ KJ}$$

- a) Calcule o ΔH^of para os iões cloreto.
- b) Calcule a entalpia de neutralização quando 1 mole de HCl é titulada com 1 mole de KOH.

Dados: ΔH^{o}_{f} [HCl (g)] = -92,3KJ/mol, ΔH^{o}_{f} [H⁺ (aq)] = 0; ΔH^{o}_{f} [HO⁻ (aq)] = - 229,6KJ/mol, ΔH^{o}_{f} [H₂O (l)] = -285,8KJ/mol.

<u>6</u> – Calcule a entalpia padrão de formação para a reacção

$$2Al(s) + Fe2O3(s) \longrightarrow 2Fe(s) + Al2O3(s)$$

sabendo que

$$2Al(s) + 3/2O_2(g) \longrightarrow Al_2O_3(s)$$
 $\Delta H_{reac.}^o = -1601KJ$

$$2\text{Fe(s)} + 3/2\text{O}_2(g) \longrightarrow \text{Fe}_2\text{O}_3(s) \qquad \Delta \text{H}^{\text{o}}_{\text{reac.}} = -821\text{KJ}$$

<u>7</u> – A partir dos seguintes calores de combustão :

CH₃OH (I) +
$$3/2 O_2(g)$$
 \longrightarrow CO₂ (g) + $2H_2O(1)$ $\Delta H_{reac.}^o = -726,4KJ$
C(grafite) + $O_2(g)$ \longrightarrow CO₂(g) $\Delta H_{reac.}^o = -393,5KJ$
H₂(g) + $1/2O_2(g)$ \longrightarrow H₂O(l) $\Delta H_{reac.}^o = -285,8KJ$

Calcule a entalpia de formação do metanol (CH3OH) a partir dos seus elementos.

$$C_{\text{(grafite)}} + 2H_2(g) + 1/2O_2(g) \longrightarrow CH_3OH(l)$$

<u>8</u> – O etanol (CH₃CH₂OH) e a gasolina (C₈H₁₈) são ambos usados como combustível. Se a gasolina for vendida a \$1,20/gal a que preço deverá ser vendido o etanol de modo a que a energia não seja mais cara?

$$d(C_8H_{18})=0.70025$$
; $\Delta H^{\circ}_{f}(C_8H_{18})=-249.9$ KJ/mol $d(etanol)=0.7894$; $\Delta H^{\circ}_{f}(etanol)=-277.0$ KJ/mol

 $\Delta H^{o}_{f}[CO_{2}(g)] = -393.5 \text{ KJ/mol}; \Delta H^{o}_{f}[H_{2}O(1)] = -285.8 \text{ KJ/mol};$

1gal= 3,785 L

9 - Porque razão é que o ar húmido, quente ou frio, é mais desconfortável do que o ar seco (quente ou frio)?

Dados: $c_{(H2O(g))}=1,9J/g.^{\circ}C$; $c_{ar}=1,0J/g.^{\circ}C$

10 - O acetileno (C₂H₂) e o benzeno (C₆H₆) têm a mesma fórmula empírica. O benzeno pode ser obtido a partir do acetileno de acordo com a seguinte reacção

$$3C_2H_2(g) \longrightarrow C_6H_6(l)$$

As entalpias padrão de combustão do acetileno e do benzeno são respectivamente -1299,4KJ/mol e -3267,4KJ/mol. Calcule as entalpias de formação padrão do acetileno e do benzeno e a variação de entalpia da reacção.

Dados: A entalpia de combustão padrão da grafite e do Hidrogénio gasoso são respectivamente - 393,5 KJ/mol e -285,8 KJ/mol.