ChE 597 Homework 6 Solutions

Problem 1

Convert the logical expression into a system of inequalities using binary (0-1) variables.

(a)

Given:

$$(p_1 \vee \neg p_2) \Rightarrow (p_3 \vee p_4)$$

Use implication equivalence:

$$\neg (p_1 \vee \neg p_2) \vee (p_3 \vee p_4)$$

Apply DeMorgan's law:

$$(\neg p_1 \land p_2) \lor (p_3 \lor p_4)$$

Distribute the OR across the AND:

$$(\neg p_1 \lor p_3 \lor p_4) \land (p_2 \lor p_3 \lor p_4)$$

Let $y_i = 1$ if p_i is true, 0 otherwise.

The inequalities become:

$$1 - y_1 + y_3 + y_4 \ge 1$$
$$y_2 + y_3 + y_4 \ge 1$$

Simplifying:

$$-y_1 + y_3 + y_4 \ge 0$$
$$y_2 + y_3 + y_4 \ge 1$$

(b)

Given:

$$((p_1 \land p_2) \Rightarrow p_3) \Rightarrow (p_5 \lor p_6)$$

Step-by-step:

$$((p_1 \land p_2) \Rightarrow p_3) \Rightarrow (p_5 \lor p_6)$$

$$\neg[(\neg(p_1 \land p_2) \lor p_3)] \lor (p_5 \lor p_6)$$

$$(p_1 \land p_2) \land \neg p_3)] \lor (p_5 \lor p_6)$$

Which becomes:

$$(p_1 \lor p_5 \lor p_6) \land (p_2 \lor p_5 \lor p_6) \land (\neg p_3 \lor p_5 \lor p_6)$$

Translate to inequalities:

$$y_1 + y_5 + y_6 \ge 1$$
$$y_2 + y_5 + y_6 \ge 1$$
$$1 - y_3 + y_5 + y_6 \ge 1$$

Or after simplification:

$$y_1 + y_5 + y_6 \ge 1$$
$$y_2 + y_5 + y_6 \ge 1$$
$$-y_3 + y_5 + y_6 \ge 0$$

Problem 2

(a)

If A and B are true, then C or D must be true.

$$(A \land B) \Rightarrow (C \lor D)$$

Remove implication:

$$\neg (A \land B) \lor (C \lor D)$$

Equivalently:

$$\neg A \vee \neg B \vee C \vee D$$

Using binary variables:

$$-y_A - y_B + y_C + y_D \ge -1$$

(b)

All combinations are feasible **except** $y_j = 0$ for $j \in N$ and $y_j = 1$ for $j \in B$. To eliminate that combination:

$$\sum_{j \in N} y_j + \sum_{j \in B} (1 - y_j) \ge 1$$

(c)

If power is generated at any time (1, 2, or 3), then install a gas turbine. Let y_1, y_2, y_3 be generation at times 1-3. Let t be turbine install.

Logical form:

$$(y_1 \lor y_2 \lor y_3) \Rightarrow t$$

Remove implication:

$$\neg (y_1 \lor y_2 \lor y_3) \lor t$$

Equivalent to:

$$(\neg y_1 \land \neg y_2 \land \neg y_3) \lor t$$

Distribute or:

$$(\neg y_1 \lor t) \land (\neg y_2 \lor t) \land (\neg y_3 \lor t)$$

Inequalities:

$$1 - y_1 + t \ge 0te$$
$$1 - y_2 + t \ge 1$$
$$1 - y_3 + t \ge 1$$

Or:

$$-y_1 + t \ge 0$$
$$-y_2 + t \ge 0$$
$$-y_3 + t \ge 0$$

Problem 3

(a)

Either $0 \le x \le 10$ or $20 \le x \le 30$

Big-M Formulation: Introduce binary variables y_1, y_2 for each disjunct:

$$-x \le M(1 - y_1)$$

$$x \le 10 + M(1 - y_1)$$

$$-x + 20 \le M(1 - y_2)$$

$$-x + 30 \ge -M(1 - y_2)$$

$$y_1 + y_2 = 1$$

Convex-Hull: Let $x = z_1 + z_2$

$$0 \le z_1 \le 10y_1$$
$$20y_2 \le z_2 \le 30y_2$$
$$y_1 + y_2 = 1$$

(b)

Temperature constraint holds only if unit selected (y = 1):

Big-M:

$$T_{in} - T_{out} \ge \Delta T_{min} - M(1 - y)$$

Convex-Hull:

$$T_{in} - T_{out} = z$$

$$z \ge \Delta T_{min} y$$

$$0 \le z \le M \text{ where M is upper bound for } \Delta T$$

Problem 4

Given:

$$K = \{x \in \{0, 1\}^3 : 2x_1 + 3x_2 + 4x_3 \le 5\}$$

(a) Reformulation using minimal cover inequalities.

A cover is a subset of items whose total weight strictly exceeds the capacity (here, the capacity is 5). The weights of the items are $w_1 = 2$, $w_2 = 3$, $w_3 = 4$. A subset $\{i_1, i_2, \ldots\}$ is a cover if

$$w_{i_1} + w_{i_2} + \ldots > 5.$$

A cover is *minimal* if by removing any item from it, it ceases to be a cover. Step 1: Find the minimal covers.

• Singletons:

$$\{1\}$$
 $(2 \le 5)$, $\{2\}$ $(3 \le 5)$, $\{3\}$ $(4 \le 5)$.

None of these exceed 5, so no singleton is a cover.

• Pairs:

$$\{1,2\}: 2+3=5 \text{ (not } > 5), \text{ not a cover};$$

$$\{1,3\}: 2+4=6 > 5$$
, so this is a cover;

$$\{2,3\}: 3+4=7 > 5$$
, so this is a cover.

• Triple: $\{1,2,3\}$ sums to 9 > 5, but is *not* minimal because, for instance, removing item 1 from $\{1,2,3\}$ still leaves $\{2,3\}$ which is already a cover.

Hence, the minimal covers are precisely

$$\{1,3\}$$
 and $\{2,3\}$.

Step 2: Derive the minimal cover inequalities. Each minimal cover $\{i, j\}$ with $w_i + w_j > 5$ yields an inequality

$$x_i + x_j \leq 1$$
.

From the two minimal covers, we obtain:

$$x_1 + x_3 \le 1, \quad x_2 + x_3 \le 1.$$

Thus, we can refine the original knapsack set by adding these constraints:

$$K_C := \{x \in \{0,1\}^3 : 2x_1 + 3x_2 + 4x_3 \le 5, x_1 + x_3 \le 1, x_2 + x_3 \le 1\}.$$

(b) Showing $K = K_C$.

We claim that for binary $x \in \{0,1\}^3$, the constraints

$$x_1 + x_3 \le 1$$
 and $x_2 + x_3 \le 1$

are already implied by

$$2x_1 + 3x_2 + 4x_3 \le 5.$$

Hence, these extra constraints do not cut off any integer-feasible points.

Reasoning: If $x_3 = 0$, then $x_1 + x_3 = x_1 \le 1$ and $x_2 + x_3 = x_2 \le 1$ trivially (since $x_i \in \{0, 1\}$). If instead $x_3 = 1$, then:

$$2x_1 + 3x_2 + 4(1) \le 5 \implies 2x_1 + 3x_2 \le 1.$$

In particular, x_1 or x_2 cannot be 1 (otherwise, 2 + 3 = 5 or 3 + 4 = 7, both > 1). Thus $x_3 = 1$ forces $x_1 = x_2 = 0$, implying $x_1 + x_3 = 1 \le 1$ and $x_2 + x_3 = 1 \le 1$.

Therefore, among binary vectors, the constraints $x_1 + x_3 \le 1$ and $x_2 + x_3 \le 1$ are automatically enforced by $2x_1 + 3x_2 + 4x_3 \le 5$. This shows

$$K = \left\{ x \in \{0,1\}^3 : 2x_1 + 3x_2 + 4x_3 \le 5 \right\} = \left\{ x \in \{0,1\}^3 : 2x_1 + 3x_2 + 4x_3 \le 5, \ x_1 + x_3 \le 1, \ x_2 + x_3 \le 1 \right\} = K_C.$$

(c)

LP Relaxations:

- $P: 2x_1 + 3x_2 + 4x_3 \le 5$
- \bullet P^C :

$$x_2 + x_3 \le 1$$

$$x_1 + x_3 \le 1$$

We can add the first inequality in P^C multiplied by 3 to the second inequality multiplied by 2. We get:

$$2x_1 + 3x_2 + 5x_3 \le 5$$

So P^C is implied by P^C and:

$$P^C \subseteq P$$

We will find a point in P that violates one of the new cover inequalities, proving strict containment.

Example: Let

$$x_1 = 0.5, \quad x_2 = \frac{2}{3}, \quad x_3 = 0.5.$$

Check the knapsack constraint:

$$2(0.5) + 3(\frac{2}{3}) + 4(0.5) = 1 + 2 + 2 = 5,$$

so $(0.5, \frac{2}{3}, 0.5)$ indeed lies in P. However,

$$x_2 + x_3 = \frac{2}{3} + 0.5 = 1.1666... > 1,$$

thus violating $x_2 + x_3 \le 1$. Hence the point is not in P_C . This shows $P_C \subsetneq P$ strictly.