Fonctions usuelles – Calcul des primitives

Questions de cours.

- 1. Donner le domaine de définition de la fonction arccos, ainsi que ses propriétés de régularité (continuité et dérivabilité) sur ce domaine, et l'expression de la dérivée là où elle existe.
- **2.** Soit $a \in \mathbb{R}$. Donner le domaine de définition de la fonction $f_a : x \mapsto x^a$, ainsi que ses propriétés de régularité (continuité et dérivabilité) sur ce domaine, et l'expression de la dérivée là où elle existe. On pourra discuter selon la valeur de a.
- 3. Donner la formule de Leibniz en explicitant les hypothèses.

1 Fonctions usuelles

Exercice 1.1 (*). Résoudre dans \mathbb{R} les deux équations suivantes :

$$\arctan(\tan x) = x$$
 et $\tan(\arctan x) = x$.

Exercice 1.2 (*). Tracer les courbes représentatives des fonctions suivantes :

$$a: x \in \mathbb{R} \longmapsto \arcsin(\sin x),$$
 $b: x \in \mathbb{R} \longmapsto \arccos(\cos x),$ $c: x \in \mathbb{R} \longmapsto \arcsin(\cos x),$ $d: x \in \mathbb{R} \longmapsto \arccos(\sin x).$

Exercice 1.3 (\star). Montrer que toute fonction monotone et périodique est constante.

Exercice 1.4 (*). Soit $k \in \mathbb{R}$.

- 1. On suppose ici que k > 0. Montrer que l'équation $2^x + 3^x = k$ possède une unique solution réelle.
- **2.** Déterminer le nombre de solutions réelles de l'équation $2^x 3^x = k$.

Exercice 1.5 (\star) . On fixe $n \in \mathbb{Z}$. On définit, pour $N \in \mathbb{N}$:

$$S_N = \sum_{k=0}^{N} \left| \frac{n+2^k}{2^{k+1}} \right|.$$

- **1.** Montrer que la suite $(S_N)_{N\in\mathbb{N}}$ est stationnaire.
- **2.** Pour $x \in \mathbb{R}$, exprimer $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$ en fonction de $\lfloor 2x \rfloor$.
- **3.** Déterminer $S = \lim_{N \to +\infty} S_N$.

Exercice 1.6 (\star) .

- **1.** Comparer $\lim_{x\to 0^+} x^{(x^x)}$ et $\lim_{x\to 0^+} (x^x)^x$.
- **2.** Soit a > 1. Comparer les fonctions $x \mapsto a^{(a^x)}$ et $x \mapsto x^{(x^a)}$ au voisinage $de + \infty$.

Exercice 1.7 (*). Résoudre dans \mathbb{R} l'équation $\arctan(x) + \arctan(2x) = \frac{\pi}{4}$.

Exercice 1.8 (\star) .

- **1.** Pour $n \in \mathbb{N}$, calculer $\arctan(n+1) \arctan(n)$.
- **2.** Pour $n \in \mathbb{N}$, soit $S_n = \sum_{k=0}^n \arctan\left(\frac{1}{1+k+k^2}\right)$. Déterminer $\lim_{n \to +\infty} S_n$.

Exercice 1.9 (*). On définit $\tanh: x \in \mathbb{R} \longmapsto \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Justifier que tanh admet une fonction réciproque, notée argtanh.
- **2.** Pour $x \in [-1, 1[$, exprimer argtanh x en utilisant la fonction argtanh x.

Exercice 1.10 (\star). *Montrer que :*

$$\forall x \in \left[0, \frac{\pi}{2}\right], \ \frac{2}{\pi}x \leqslant \sin x \leqslant x.$$

Exercice 1.11 (\star) . *Soit* $\lambda \in \mathbb{R}$. *On définit :*

$$f_{\lambda}: x \in \mathbb{R}_{+}^{*} \longmapsto \frac{1}{2}\lambda x^{2} - \ln x.$$

Déterminer, s'il existe, le maximum de f_{λ} .

Exercice 1.12 (*). On considère $f: x \longmapsto \sqrt{x^2 + x + 1}$.

- 1. Déterminer le domaine de définition de f.
- **2.** Calculer f'.
- 3. Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 1.
- **4.** Préciser les asymptotes éventuelles à la courbe représentative de f.
- **5.** Tracer la courbe représentative de f.

Exercice 1.13 (*). Soit f une fonction continue sur un intervalle $I \subset \mathbb{R}$. On suppose que $\forall x \in I$, $f(x)^2 = 1$. Montrer que f est constante.

Exercice 1.14 (*). On considère $f: x \in \mathbb{R}_+^* \longmapsto x^{\frac{1}{x}}$.

- 1. Étudier les variations de f.
- **2.** Montrer l'existence de et déterminer max $f(\mathbb{N}^*)$.

Exercice 1.15 (*). Déterminer les fonctions convexes et bornées sur \mathbb{R} .

Exercice 1.16 (*). Comparer π^e et e^{π} .

Exercice 1.17 (*). Soit A un ensemble, $f: A \times \mathbb{R} \to \mathbb{R}$ une application telle que, pour tout $a \in A$, $f(a, \cdot)$ est convexe sur \mathbb{R} . On pose :

$$g: x \in \mathbb{R} \longmapsto \sup_{a \in A} f(a, x).$$

Montrer que g est convexe.

2 Calcul des primitives

Exercice 2.1 (\star) . Calculer les intégrales suivantes :

- 1. $\int_{-1}^{1} \frac{e^{2t}}{e^t + 1} dt$ 2. $\int_{0}^{1} \frac{dt}{1 + t^2}$ 3. $\int_{0}^{1/2} \frac{dt}{\sqrt{1 t^2}}$ 4. $\int_{0}^{2\pi} \cos(mt) \cos(nt) dt$ 5. $\int_{0}^{1} \frac{dt}{\sqrt{t + \sqrt{t^3}}}$ 6. $\int_{0}^{1} \frac{t dt}{\sqrt{1 + t^2}}$

7. $\int_1^2 \frac{\ln t}{\sqrt{t}} dt$.