Modelos de dados

Aula 03 Prof. André Britto

Abstração dos dados

- Um dos principais propósitos de um sistema de banco de dados é prover ao usuário uma visão abstrata dos dados.
- O sistema esconde certos detalhes de como os dados são armazenados e mantidos.

Abstração dos dados

- Para que o sistema possa ser utilizado, ele deve recuperar dados de forma eficiente.
- Estruturas de dados complexas para representar dados em banco de dados.
- Os usuários não têm conhecimento de computação.
- Esconder a complexidade dos usuários através de vários níveis de abstração.

Modelo de dados

- Coleção de ferramentas conceituais para descrever a estrutura de um banco de dados.
- Provê os meios necessários para alcançar a abstração dos dados.
- Um modelo de dados provê um meio para descrever o projeto de um banco de dados nos níveis físico, conceitual e externo.

Modelo de dados

- Uma característica fundamental nesse contexto é a abstração dos dados.
 - Corresponde à supressão de detalhes da organização e armazenamento dos dados.
 - Busca enfatizar aspectos essenciais para um melhor entendimento dos dados.

- Nível físico
 - É o nível de abstração mais baixo.
 - Descreve como os dados são realmente armazenados e caminhos de acesso para o banco de dados.

- Nível lógico
 - É uma camada acima do modelo físico e descreve quais dados estão armazenados.
 - Esconde os detalhes do armazenamento dos dados e descreve as entidades, os tipos de dados, relacionamentos, operações dos usuários e restrições.
 - Nível conceitual

- Nível externo (Visões)
 - O nível mais alto de abstração, descreve somente partes do banco de dados que sejam de interesse de um determinado grupo de usuários.
 - Permite que o acesso aos dados seja customizável.

Independência de dados

- Independência lógica
 - Capacidade de se alterar o esquema do nível conceitual sem que haja alteração no nível externo.
 - Mapeamentos das visões para o esquema conceitual, assim, caso haja a alteração nesse nível só é necessária a redefinição dos mapeamentos.

Independência de dados

- Independência física
 - Capacidade de se alterar o esquema físico sem mexer no esquema conceitual.
 - Mudanças no nível físico ocorrem quando é necessário reorganizar os dados para se obter uma melhora no desempenho do acesso e manipulação.

Modelo de dados

- Modelos de dados mais utilizados:
 - Modelo relacional e objeto-relacional.
 - Modelo baseado em objetos.
 - NoSQL.
 - Modelos legados
 - Rede e hierárquico.

Modelo relacional

- É um modelo formal baseado no conceito das relações matemáticas
 - Teoria dos conjuntos.
- Esquema lógico (conceitual).
- Representa o banco de dados como uma coleção de relações.
- É definido por um conjunto de relações
 - Tabela de valores.

Modelo relacional

- Exemplos:
 - Estudantes de uma universidade

Nº Matrícula	Nome	Endereço	Telefone
100	André	Rua A	1111-1111
200	Beatriz	Rua B	2222-2222
300	Pedro	Rua C	3333-3333

Esquemas e instâncias

- Um banco de dados muda com o tempo à medida que novas informações são inseridas ou removidas.
- Instância do banco de dados.
 - A coleção dos dados armazenados num banco de dados num momento particular
- Esquema do banco de dados
 - Projeto geral do banco de dados que descreve de forma conceitual os dados armazenados.
 - Não é comumente alterado.

Banco de dados que suportam objetos

- Banco de dados relacionais armazenam uma coleção fixa de tipo de dados.
 - Inteiros, datas, string.
- Porém, hoje em dia trabalhamos cade vez mais com dados complexos.
- Os conceitos de orientação a objetos vem influenciando banco de dados a suportarem dados complexos.

Banco de dados que suportam objetos

- Bancos de dados que suportam objetos se desenvolveram em dois caminhos:
 - Banco de dados orientados a objetos (BDOO).
 - Banco de dados objeto-relacional (BDOR).

- Tentativa de estender SGBD relacionais com funcionalidades para suportar uma classe mais larga de aplicações.
- Proveem uma ponte entre os paradigmas relacional e orientado a objetos.

- Fornecem suporte para consultas complexas sobre dados complexos.
- Permite especificar e utilizar tipos abstratos de dados.
- Implementa conceitos como referência a objetos, herança e uso de construtores.

- O resultado de uma consulta ainda consiste de tabelas.
- Um SGBD Objeto-Relacional ainda é relacional
 - Dados armazenados em tabelas formadas por linhas e colunas.
- A linguagem de consultas é uma extensão da linguagem SQL.
 - Padronizada na SQL 1999.

- Criação de tipos
- Criação de métodos
- Herança entre tabelas
- Definição de um tipo array e multiset.

Sistemas de banco de dados orientados a objetos

- São uma alternativa aos bancos de dados relacionais.
- Destinados a aplicações onde objetos complexos tem um papel central.
- Influenciado pelas linguagens de programação orientadas a objeto.

Sistemas de banco de dados orientados a objetos

- Utiliza um modelo de dados diferente
 - Modelo de dados ODMG.
 - Object Database Management Group (Não existe mais).
- Linguagens de programação persistentes
 - Java Database Objects (JDO).

- Not Only SQL
- Surgiu de limitações de bancos de dados relacionais.
- Novos tipos de dados.
- Problemas de escalabilidade e desempenho.

- Categorias
 - Chave-valor.
 - Tabular.
 - Documentos.
 - Grafo.

- Chave-valor
 - Similar a uma tabela hash.
 - Os dados tem uma chave e um valor associado.
 - Geralmente os valores são definidos como vetore s de bytes.
 - Acesso definido por métodos: get e put.

- Colunas/Tabular
 - Representa dados em tabelas, porém de forma bastante flexível.
 - Dividido em seções, que podem receber diferentes tabelas.
 - Dados são identificados por linhas, colunas e timestamps.

Colunas/Tabular

- Documentos
 - Uma forma mais desenvolvida de chave-valor.
 - O valor armazenado é estruturado em um documento.
 - Bancos de dados semi-estruturados.
 - Documentos
 - XML, JSON, dados binários, imagens, arquivos .pdf, arquivos de texto, etc.

Documentos

Grafos

- Utiliza conceito de grafos para representar os dados armazenados.
- Modelo mais abstrato, porém, com maior liberdade para a representação.
- Grafos rotulados e direcionados.

Grafos

- Características
 - Não relacionais → contraponto à bancos relacionais.
 - Distribuído
 - Bancos de distribuídos possui componentes espalhados em diferentes locais físicos.
 - Bancos NoSQL tem como característica serem distribuídos.

- Características
 - Código aberto.
 - Escalável horizontalmente

- Características
 - Suporte à replicação.
 - API simples.
 - Esquema flexíveis.
 - Não é necessária a definição de um esquema fixo.

Modelos legado

- Modelo de rede
- Modelo hieráquico

Modelo hierárquico

- Consiste numa coleção de registros que estão conectados através de links.
- Um link também é a associação de somente dois registros.
- Os registros estão organizados através de uma árvore.

Modelo hierárquico

Modelo hierárquico

- Todos os registros estão organizados numa estrutura de árvore.
- A raiz é um nó falso.
- Um banco de dados hierárquico é uma coleção dessas raízes
 - Forma uma floresta.
- Árvore do banco de dados.

- Representa o esquema de um banco de dados hierárquico.
- Esse diagrama consiste em:
 - Caixas corresponde a tipo de registros.
 - Linhas corresponde aos links.
- Especifica a a estrutura lógica do banco de dados.

 Os relacionamentos formados devem ser do tipo um-paramuitos ou um-para-um entre pais e filhos.

Recuperação de informação

- Utiliza uma linguagem de consulta.
- DL/I
 - Linguagem de manipulação de dados do IMS.
- Utiliza comandos como get, get first, get next para percorrer a árvore.

Recuperação de informação

```
get first account
    where account.balance > 500;
while DB-status = 0 do
    begin
        print (account.account_number);
        get next account
            where account.balance > 500;
end
```

Sistema de Banco de Dados IMS

- O modelo hierárquico é importante por causa do IMS.
 - Desenvolvido pela IBM.
- Um dos mais antigos e mais utilizados banco de dados.
- Primeiro banco de dados a tratar questões como concorrência, recuperação, integridade e processamento de consultas.

Leitura recomendada

- SILBERSCHATZ, A; Korth H.F.; Sudarshan S. Sistemas de Banco de Dados, Editora Campus, 6ª Edição.
 - Capítulo 22, Apêndices D e E.
- RAMAKRISHNAN R; GEHRKE J. Sistemas de Gerenciamento de Banco de Dados. Mcgraw-Hill Interamericana, 3ª Edição.
 - Capítulo 25.

- Criação de tipos
 - É possível criar tipos complexos.
 Create type Nome as (primeiro nome varchar(20),

sobrenome varchar(20)) final;

Criação de tipos
 create table Estudante(
 nome Nome,
 data_nascimento date,
 ...
)

- É possível também criar métodos
 - Na criação do tipo definimos o método através da palavra chave method [identificado do método].
 - O corpo do método é definido pelo comando create instance method [identificado do método].

- Herança de tipo
 - Um BDOR disponibiliza a possibilidade de criar tipos com herança.
 - Assim, um tipo herda todos os atributos e métodos do tipo pai.
 - Utiliza a palavra chave under.

- Herança de tabela
 - Também é possível criar tabelas que herdam campos de outras tabelas.
 - É possível especificar tabelas que herdam atributos base de uma tabela pai.
 - Útil para mapear as notações definidas no modelo entidade relacionamento estendido.

- Outras características
 - Definição de um tipo array e multiset.

- São uma alternativa aos bancos de dados relacionais.
- Destinados a aplicações onde objetos complexos tem um papel central.
- Influenciado pelas linguagens de programação orientadas a objeto.

- Utiliza um modelo de dados diferente
 - Modelo de dados ODMG.
 - Object Database Management Group (Não existe mais).
- Linguagens de programação persistentes
 - Java Database Objects (JDO).

- Possui uma linguagem de banco de dados.
 - Object data language (ODL).
 - Object query language (OQL).
- Existem outras linguagens para BDOO.
 - Diferentes fabricantes utilizam diferentes linguagens.

- Consiste numa coleção de objetos.
- Todo objeto possui um Object ID.
 - Não utiliza o conceito de chaves do modelo relacional.

- Um banco de dados contém um conjunto de objetos com propriedades semelhantes.
 - Classe.
- Essas propriedades são de três tipos:
 - Atributos.
 - Relacionamentos.
 - Métodos.

Atributos

- Podem ser um tipo atômico.
- Ou um tipo estruturado.
- A ODL suporta sets, bag, list, arrays e structs.

- Relacionamentos
 - É uma referência para um objeto;
 - Ou um coleção de referências.
 - Captura como um objeto está relacionado com um ou mais objetos da mesma classe ou de classes diferentes.

- Métodos
 - Funções que são aplicadas a objeto de uma classe.
 - Não existe nenhuma função análoga em banco de dados relacionais.

- Object Query Language
 - Linguagem de consulta de banco de dados orientados a objeto.
 - Semelhante à SQL.

Object Query Language

SELECT mname: M.movieName, tname: T.theaterName

FROM Movies M, M.shownAt T

WHERE T.numshowing() > 1

- BDOR X BDOO
 - Ambos suportam:
 - A criação de tipos abstratos de dados;
 - Identificação do objeto;
 - Tipos de referência;
 - Herança.
 - Ambos possuem linguagens de consulta:
 - Extensão da SQL e ODL/OQL.

BDOR X BDOO

- BDOR tentam adicionar funcionalidades OO em banco de dados relacionais.
- BDOO desenvolveram linguagens de consultas baseadas em banco de dados relacionais.
- Ambos SGBDs garantem funcionalidades como controle de concorrência e recuperação de falhas.

BDOR X BDOO

- A grande diferença e na maneira que eles são baseados.
- BDOR adiciona novos tipos de dados em relação a banco de dados relacionais.
- BDOO tenta adicionar funcionalidades de um SGBD numa linguagem de programação.

BDOR X BDOO

- BDOO visa a integração com linguagens OO.
- Essa integração não é importante para BDOR.
- BDOO é direcionada para aplicações onde o uso de objetos é foco.
 - Consiste em recuperar e trabalhar com objetos.
- BDOR é otimizada para trabalhar com coleção de dados grandes.

Modelo de rede

- Consiste numa coleção de registros conectados através de links.
- Cada registro é uma coleção de atributos.
 - Cada atributo contém um valor.
- Um link é um relacionamento binário entre dois registros.

Modelo de rede

- Como exemplo, vamos considerar um banco de dados representando a relação cliente (customer) conta (account) num sistema bancário.
- Temos dois tipos de registros:
 - Customer.
 - Account.
- Vamos usar uma notação semelhante à linguagem Pascal.

Modelo de rede

Modelo de rede

 A figura representa que Hayes tem a conta A-102 e assim sucessivamente.

Diagrama de estrutura de dados

- Um diagrama de estrutura de dados representa o esquema de um banco de dados de redes.
- Esse diagrama consiste em:
 - Caixas corresponde a tipo de registros.
 - Linhas corresponde aos links.

Relacionamentos binários

Relacionamento muitos para muitos.

Relacionamento um para muitos.

Relacionamento um para um.

Relacionamentos binários

Exemplo de um relacionamento muitos para muitos.

Modelo DBTG Codasyl

- Primeira especificação de um banco de dados.
 - Criado pelo Database Task Group nos anos 70
- Restrição de links
 - Permite somente relacionamentos muitos-para-um.
 - Os demais relacionamentos não são permitidos para facilitar a implementação do modelo.

Uma estrutura de dados consistindo em dois registros ligados.

 O nome do conjunto é o mesmo do relacionamento entres os registros.

- Como tipos de relacionamentos muitos-para-muitos não são permitidos, cada conjunto possui um proprietário e um membro.
- Nenhum membro pode participar de mais de um mesmo conjunto DBTG.
- Porém, um membro pode fazer parte de outros conjuntos DBTG.

Dado diagrama de estrutura de dados:

Dado diagrama de estrutura de dados:

O banco de dados possui os seguintes conjuntos:

Set name is **depositor** owner is **customer** member is **account**

Set name is account_branch owner is branch member is account

Recuperação de dados

- A linguagem de manipulação consiste em comandos embutidos em linguagens de programação.
- O banco de dados mantém ponteiros para os registros acessados mais recentemente.
 - Um ponteiro para cada tipo de registro.
- Utiliza comandos como find e get para iterar sobre os registros armazenados.

Recuperação de dados

```
count := 0;
branch.branch_name := "Perryridge";
find any branch using branch_name;
find first account within account_branch;
while DB-status = 0 do
    begin
        get account;
        if account.balance > 10000 then count := count + 1;
        find next account within account_branch;
        end
print (count);
```

- Semelhante ao modelo de rede.
- Consiste numa coleção de registros que estão conectados através de links.
- Um registro é similar ao do modelo de rede.
- Um link também é a associação de somente dois registros.
- A diferença é que os registros estão organizados através de uma árvore.

- Todos os registros estão organizados numa estrutura de árvore.
- A raiz é um nó falso.
- Um banco de dados hierárquico é uma coleção dessas raízes
 - Forma uma floresta.
- Árvore do banco de dados.

- O conteúdo de um registro pode ser replicado em diferentes localizações.
 - Uma conta pode pertencer a mais de uma pessoa.
 - A informação deverá ser replicada.
- Essa replicação pode ocorrer numa mesma árvore ou em árvores diferentes.

- Representa o esquema de um banco de dados hierárquico.
- Esse diagrama consiste em:
 - Caixas corresponde a tipo de registros.
 - Linhas corresponde aos links.
- Especifica a a estrutura lógica do banco de dados.

- No modelo de redes, o diagrama de estrutura de dados representa um grafo arbitrário.
- No modelo hierárquico, o diagrama utilizado representa uma árvore com raiz.
- Em um árvore não podem haver ciclos.

 Os relacionamentos formados devem ser do tipo um-paramuitos ou um-para-um entre pais e filhos.

Relacionamento um para muitos.

Relacionamento um para um.

Recuperação de informação

- Utiliza uma linguagem de consulta.
- DL/I
 - Linguagem de manipulação de dados do IMS.
- Utiliza comandos como get, get first, get next para percorrer a árvore.

Recuperação de informação

```
get first account
    where account.balance > 500;
while DB-status = 0 do
    begin
        print (account.account_number);
        get next account
            where account.balance > 500;
end
```

Sistema de Banco de Dados IMS

- O modelo hierárquico é importante por causa do IMS.
 - Desenvolvido pela IBM.
- Um dos mais antigos e mais utilizados banco de dados.
- Primeiro banco de dados a tratar questões como concorrência, recuperação, integridade e processamento de consultas.

- Diferentemente do modelo relacional que guarda valores de atributos numa tabela de dados, o modelo multidimensional foca numa coleção de medidas numéricas.
- Essas medidas dependem de um conjunto de dimensões.

- Representa os dados através de um array multidimensional.
 - Cubo de dados.

- Exemplo: Vendas de uma loja.
 - Atributo medida → Número de vendas.
 - Dimensões → Produto, localização e tempo.
 - Dado um produto, uma localização e um tempo podemos ter associado um número de vendas.
 - Produto identificado por pid.
 - Tempo caracterizado por um timeid.
 - Localização caracterizada por um locid.

• *Array* multi-dimensional.

Figura 1. Array multi-dimensional. Cubo de dados.

- Essa visão de dados pode ser generalizada em mais de três dimensões.
 - Hipercubo de dados.
- Em aplicações OLAP os dados de fato podem estar organizados em arrays multi-dimensionais.
- Alguns banco de dados utilizam o modelo multi-dimensional.
 - MOLAP Multidimensional OLAP systems.

Tabulação cruzada (Tabela pivô)

- Tabulação cruzada (Tabela pivô)
 - Tabela que relaciona valores de duas dimensões.
 - Valores das dimensões forma o cabeçalho das linhas e das coluna.
 - Valores das células é um valor do atributo medida.

Tabulação cruzada (Tabela pivô)

- Seja A o conjunto de todos os valores para uma dimensão.
 - ai é um valor do conjunto A.
- Seja B o conjunto de todos os valores para outra dimensão.
 - bj é um valor do conjunto B.
- (ai,bj) contém o valor do atributo medida para associação do valor ai com o valor bj.

Tabulação cruzada (Tabela pivô)

Figura 2. Tabela cruzada entre as dimensões produto e tempo Ramakrishnam (2011).

Cubo de dados (hipercubos de dados)

- Cubo de dados (hipercubos de dados)
 - A generalização da tabela cruzada para n dimensões é chamada de cubo de dados (hipercubo de dados).
 - Um tabela cruzada pode ser vista como uma fatia do cubo de dados quando escolhemos uma dimensão.
 - No nosso exemplo, a tabela cruzada da Figura 2 pode ser obtida quando fixamos o valor de locid = 1.

Cubo de dados (hipercubos de dados)

Figura 3. Cubo de dados.

- Modelo utilizado em sistemas de apoio à decisão ou sistemas BI.
- Modelo utilizado na criação de data warehouses.
- Tem foco na análise dos dados.
 - OLAP.

- Geralmente é representado no modelo relacional.
 - Tabela de fatos e tabela de dimensões.
 - ROLAP.

pid	timeid	locid	vendas
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
13	1	1	8
13	2	1	10
13	3	1	10
11	1	2	13
11	2	2	11
11	3	2	3
12	1	2	9
12	2	2	52
12	3	2	33
13	1	2	24

Tabela de dimensões

pid		Categoria		preço			
11		1		20,00			
12		1		30,00			
13		2		100,00			
timeid	Hora	a	dia		mês	ano	

Produto

18:00 02 2012 19:00 21 2012 02 20:00 21 03 2012 locid bairro cidade estado país Aracaju Atalaia SE **Brasil** Curitiba PR Brasil Centro **Jardins** Aracaju SE **Brasil**

Tempo

Localização

Pontos importantes

- Modelos de dados descrevem de forma abstrata um esquema de banco de dados.
- Existem diversos modelos de dados.
- Os modelos de dados legados foram definidos juntamento com os primeiros SGBD.
 - Utilizados pode muito tempo.
 - Semelhantes ao modelo físico.

Pontos importantes

- Novos modelos de dados têm sido propostos.
- Estender o modelo relacional para tipos complexos.
- Mais adequados para linguagens de programação OO.

Pontos importantes

- DB4O
- Caché
 - Pós-relacional.
- MongoDB
- Oracle 11g
 - Relacional.
 - Objeto-relacional.
 - Orientado a objeto.