### Planejamento de Experimentos

Parcelas similares  $\Rightarrow$  Delineamento Inteiramente Casualizado

Apenas grupos de ⇒ Delineamento parcelas similares Casualizado em Blocos

O delineamento casualizado em blocos leva em consideração os três princípios básicos da experimentação:

- repetição
- casualização
- controle local

Reparte-se a área experimental ou o material experimental heterogênea(o) em subáreas/parcelas homogêneas.

### **Observações:**

- Cada bloco receberá, por sorteio, todos os tratamentos ⇒ Blocos Completos
- Quando não for possível alocar todos os tratamentos num mesmo bloco ⇒ Blocos Incompletos

#### **EXEMPLO:**

Com o objetivo de avaliar o efeito de quatro rações, A, B, C e D, sobre o peso de animais um pesquisador dispunha do 12 animais com pesos diferentes.



Figura: Experimentação animal

### **EXEMPLO:**



Figura: Experimentação animal: composição dos blocos

### **EXEMPLO:**



Figura: Experimentação animal: possível croqui

### Modelo matemático

$$y_{ij} = \mu + b_j + \tau_i + e_{ij},$$

em que

 $y_{ij}$  é a observação referente ao tratamento i no bloco j;  $\mu$  é a média geral (ou constante comum a todas as observações);  $b_j$  é o efeito do j-ésimo bloco, com  $j=1,2,\ldots,J$ ;  $\tau_i$  é o efeito do i-ésimo tratamento, com  $i=1,2,\ldots,I$ ;  $e_{ij}$  é o erro experimental, tal que  $e_{ij}\sim \mathsf{NID}(0;\sigma^2)$ .

| Blocos      |                        |             |  |                                |              |  |
|-------------|------------------------|-------------|--|--------------------------------|--------------|--|
| Tratamentos | 1                      | 2           |  | J                              | Totais $(J)$ |  |
|             |                        |             |  | <i>y</i> <sub>1</sub> <i>J</i> |              |  |
| 2           | <i>y</i> 21            | <i>y</i> 22 |  | <i>Y</i> 2 <i>J</i>            | $T_2$        |  |
|             | • • •                  |             |  |                                |              |  |
| 1           | <i>y</i> <sub>11</sub> | У12         |  | УIJ                            | $T_I$        |  |
| Totais (1)  | $B_1$                  | $B_2$       |  | $B_J$                          | G            |  |

### **Hipóteses:**

 $H_0: \quad \mu_1 = \mu_2 = \ldots = \mu_I$ 

 $H_a$ : pelo menos duas médias de tratamentos diferem entre si

| Causa de Variação | G.L.       | S.Q.      | Q.M.    | F      |
|-------------------|------------|-----------|---------|--------|
| Blocos            | J-1        | SQ Blocos |         |        |
| Tratamentos       | I - 1      | SQ Trat   | QM Trat | F Trat |
| Resíduo           | (I-1)(J-1) | SQ Res    | QM Res  |        |
| Total             | IJ-1       | SQ Total  |         |        |

Somas de quadrados do Total

SQ Total = 
$$\sum y_{ij}^2 - \frac{G^2}{II}$$

Somas de quadrados de Blocos

SQ Blocos 
$$= \frac{1}{I} \sum_{j} B_j^2 - \frac{G^2}{IJ}$$

Somas de quadrados de Tratamentos

SQ Tratamentos = 
$$\frac{1}{J} \sum_{i} T_i^2 - \frac{G^2}{IJ}$$

Somas de quadrados do Resíduo

$$SQ Resíduo = SQ Total - SQ Blocos - SQ Tratamentos$$

#### **EXEMPLO:**

Os dados apresentados a seguir foram coletados de um experimento instalado no delineamento casualizado em blocos, cujo objetivo é comparar nove porta-enxertos para laranjeira Valência. Cada parcela era constituída por duas plantas e as produções de laranja (número médio de frutos por planta) tomadas dois anos após a instalação do experimento são:

#### **EXEMPLO:**

| Porta                                     |      | Blocos |      |        |        |
|-------------------------------------------|------|--------|------|--------|--------|
| Enxertos                                  | 1    | П      | Ш    | Totais | Médias |
| 1. Tangerina sunki                        | 145  | 155    | 166  | 466    | 155,33 |
| 2. Limão rugoso nacional                  | 200  | 190    | 190  | 580    | 193,33 |
| <ol><li>Limão rugoso da Flórida</li></ol> | 183  | 186    | 208  | 577    | 192,33 |
| 4. Tangerina Cleópatra                    | 190  | 175    | 186  | 551    | 183,16 |
| <ol><li>Citranger-troyer</li></ol>        | 180  | 160    | 156  | 496    | 165,33 |
| 6. Trifoliata                             | 130  | 160    | 130  | 420    | 140,00 |
| <ol><li>Tangerina cravo</li></ol>         | 206  | 165    | 170  | 541    | 180,33 |
| 8. Laranja caipira                        | 250  | 271    | 230  | 751    | 250,33 |
| 9. Limão cravo                            | 164  | 190    | 193  | 547    | 182,33 |
| Totais                                    | 1648 | 1652   | 1629 | 4929   |        |

#### **EXEMPLO:**

### Quadro da ANOVA

| Causa de Variação | G.L. | S.Q. | Q.M. | F |
|-------------------|------|------|------|---|
| Blocos            | 2    |      |      |   |
| Tratamentos       | 8    |      |      |   |
| Resíduo           | 16   |      |      |   |
| Total             | 26   |      |      |   |

#### **EXEMPLO:**

### Somas de quadrados do Total

SQ Total = 
$$\sum_{ij} y_{ij}^2 - \frac{G^2}{IJ}$$
  
=  $145^2 + 155^2 + \dots + 193^2 - \frac{4929^2}{27}$   
=  $27042,67$ 

#### **EXEMPLO:**

### Somas de quadrados de Blocos

SQ Blocos = 
$$\frac{1}{I} \sum_{j} B_{j}^{2} - \frac{G^{2}}{IJ}$$
  
=  $\frac{1}{9} \left( 1648^{2} + 1652^{2} + 1629^{2} \right) - \frac{4929^{2}}{27}$   
= 33,55

#### **EXEMPLO:**

### Somas de quadrados de Tratamentos

SQ Tratamentos 
$$= \frac{1}{J} \sum_{i} T_{i}^{2} - \frac{G^{2}}{IJ}$$

$$= \frac{1}{3} \left( 466^{2} + 580^{2} + \dots + 547^{2} \right) - \frac{4929^{2}}{27}$$

$$= 22981,33$$

#### **EXEMPLO:**

### Somas de quadrados do Resíduo

```
\begin{array}{lll} \mathsf{SQ} \; \mathsf{Residuo} &=& \mathsf{SQ} \; \mathsf{Total} - \mathsf{SQ} \; \mathsf{Blocos} - \mathsf{SQ} \; \mathsf{Tratamentos} \\ &=& 27042, 67 - 33, 55 - 22981, 33 \\ &=& 4027, 79 \end{array}
```

#### **EXEMPLO:**

### Quadro da ANOVA

| Causa de Variação | G.L. | S.Q.      | Q.M.     | F     |
|-------------------|------|-----------|----------|-------|
| Blocos            | 2    | 33,55     | 16,78    |       |
| Tratamentos       | 8    | 22.981,33 | 2.872,67 | 11,41 |
| Resíduo           | 16   | 4.027,79  | 251,74   |       |
| Total             | 26   | 27.042,67 |          |       |

Tabela F

$$F_{tab} = 2,59$$

Teste de Tukey

Hipóteses:

$$H_0: \mu_i - \mu'_i = 0$$

$$H_0: \mu_i - \mu'_i = 0$$
  
 $H_a: \mu_i - \mu'_i \neq 0$ 

$$\Delta = q\sqrt{\frac{\text{QM Resíduo}}{J}} = 5,03\sqrt{\frac{251,74}{3}} = 46,08$$

### Teste de Tukey

$$\Delta = q\sqrt{\frac{\text{QM Resíduo}}{J}} = 5,03\sqrt{\frac{251,74}{3}} = 46,08$$

$$\hat{\mu}_8 = 250, 33$$
 a  $\hat{\mu}_2 = 193, 33$  b  $\hat{\mu}_3 = 192, 33$  b  $\hat{\mu}_4 = 183, 67$  b c  $\hat{\mu}_9 = 182, 33$  b c  $\hat{\mu}_7 = 180, 33$  b c  $\hat{\mu}_5 = 165, 33$  b c  $\hat{\mu}_1 = 155, 33$  b c  $\hat{\mu}_6 = 140, 00$  c

### Obrigado!

Jalmar M F Carrasco carrascojalmar@gmail.com