Simple and Controllable Music Generation

Обзор задачи генерации музыки на основе текста

Encoder

Vector Quantization

Residual Vector Quantization

Interleaving Patterns

Codebook Projection and Positional Embedding

Model Conditioning with Text and Audio

Text

pretrained text encoder T5

FLAN-T5: "Scaling Instruction-Finetuned Language Models"

CLAP: Learning Audio Concepts From Natural Language Supervision

Melody

convert to chromogram and suppress the dominant frequency

Decoder

Experimental setup

Модель аудиотокенизации:

- Используется модель EnCodec с пятью слоями для монофонического аудио с частотой дискретизации 32 кГц.
- Шаг составляет 640, что дает частоту кадров 50 Гц.
- Начальный размер скрытого слоя 64, удваивается на каждом из пяти слоев модели.
- Вложения квантуируются с помощью RVQ с четырьмя квантизаторами, каждый из которых имеет размер кодовой книги 2048.
- Обучение модели происходит на односекундных аудиосегментах, выбранных случайным образом из аудиопоследовательности.

Experimental setup

Модель трансформера:

- Обучаются авторегрессивные модели трансформера разных размеров: 300М, 1.5В, 3.3В параметров.
- Используется эффективный по памяти Flash attention из пакета xFormers для улучшения скорости и использования памяти с длинными последовательностями.
- Обучение моделей происходит на 30-секундных аудиосегментах, выбранных случайным образом из полного трека.
- Используется оптимизатор AdamW с параметрами batch size 192, $\beta 1 = 0.9$, $\beta 2 = 0.95$, весом декоррелированного распределения 0.1 и ограничением градиента 1.0.
- Для модели с 300М параметрами используется D-Adaptation для улучшения сходимости модели.
- Применяется косинусное расписание обучения с разминкой в 4000 шагов.
- Используется экспоненциальное скользящее среднее со затуханием 0.99.
- Обучение моделей с 300M, 1.5B и 3.3B параметрами проводится с использованием 32, 64 и 96 GPU соответственно, с смешанной точностью float16.
- Для выборки используется top-k выборка с оставлением лучших 250 токенов и температурой 1.0.

Experimental setup

Предобработка текста:

- Используется нормализация текста, включая опущение стоп-слов и лемматизацию.
- Проводится эксперимент с объединением дополнительных аннотаций к тексту, таких как музыкальный ключ, темп, тип инструментов и др.
- Применяется метод "word dropout" для аугментации текста.

Datasets

Model	MUSICCAPS Test Set					
	$FAD_{vgg}\downarrow$	$KL\downarrow$	$CLAP_{scr} \uparrow$	OVL. ↑	REL.↑	
Riffusion	14.8	2.06	0.19	79.31±1.37	74.20±2.17	
Mousai	7.5	1.59	0.23	76.11±1.56	77.35 ± 1.72	
MusicLM	4.0	_	_	80.51±1.07	82.35 ± 1.36	
Noise2Music	2.1	-	-	-	-	
MUSICGEN w.o melody (300M)	3.1	1.28	0.31	78.43±1.30	81.11±1.31	
MUSICGEN w.o melody (1.5B)	3.4	1.23	0.32	80.74±1.17	83.70 ± 1.21	
MUSICGEN w.o melody (3.3B)	3.8	1.22	0.31	84.81 ±0.95	82.47 ± 1.25	
MUSICGEN w. random melody (1.5B)	5.0	1.31	0.28	81.30±1.29	81.98 ± 1.79	

Evaluation

- •MUSICGEN сравнивается с двумя бейзлайнами для генерации музыки из текста: Riffusion и Mousai.
- •Riffusion используется для вывода результатов, а Mousai обучается на предоставленном датасете для справедливого сравнения.
- •Помимо этого, при возможности также проводится сравнение с MusicLM и Noise2Music.
- •Для оценки используются объективные и субъективные метрики.
- •Объективные метрики включают в себя Fréchet Audio Distance (FAD), Kullback-Leibler Divergence (KL) и CLAP score (CLAP).

Results

In Domain Test Set

TRAIN CONDITION	TEST CONDITION	Ѕім. ↑	MEL.↑	Ovl. ↑	Rel.↑
Text Text+Chroma Text+Chroma	Text Text Text+Chroma	0.10 0.10 0.66	64.44±0.83 61.89±0.96 72.87 ± 0.93	82.18 ± 1.21 81.65 ± 1.13 83.94 ± 1.99	81.54±1.22 82.50 ±0.98 80.28±1.06

	MUSICCAPS Test Set				
MODEL	$FAD_{vgg}\downarrow$	KL↓	$CLap_{scr} \uparrow$	OVL. ↑	REL. ↑
Riffusion	14.8	2.06	0.19	79.31±1.37	74.20±2.17
Mousai	7.5	1.59	0.23	76.11±1.56	77.35 ± 1.72
MusicLM	4.0	-	-	80.51±1.07	82.35 ± 1.36
Noise2Music	2.1	-	-	-	-
MUSICGEN w.o melody (300M)	3.1	1.28	0.31	78.43±1.30	81.11±1.31
MUSICGEN w.o melody (1.5B)	3.4	1.23	0.32	80.74±1.17	83.70 ± 1.21
MUSICGEN w.o melody (3.3B)	3.8	1.22	0.31	84.81 ±0.95	82.47 ± 1.25
MUSICGEN w. random melody (1.5B)	5.0	1.31	0.28	81.30±1.29	81.98 ± 1.79