LABORATOR #5

- **EX#1** Un token generează 1 cu probabilitatea 0.7 și 0 cu probabilitatea 0.3. Bitul este transmis, pe canale independente, către un destinatar.
 - 1) Pentru canalul C_1 : dacă bitul este 1, îl transmite corect în 60% din cazuri, dacă este 0, în 70% din cazuri.
 - 2) Pentru canalul C_2 : dacă bitul este 1, îl transmite corect în 80% din cazuri, dacă este 0, în 50% din cazuri.

Destinatarul primește 0 pe ambele canale.

- a) Care este probabilitatea ca bitul să fie cel corect?
- b) Generați N = 10000 de situații și estimați astfel probabilitatea de la primul subpunct.
- **EX#2** Generăm aleator și independent un șir de n biți. Calculați probabilitatea să apară cel puțin o secvență de 3 de 1 consecutivi, i.e. 111.
 - a) Soluția teoretică: Notați cu A_n evenimentul reprezentat de apariția a cel puțin unei secvențe 111 într-un șir de n biți și deduceți o formulă de recurență pentru probabilitatea acestui eveniment bazată pe probabilitățile lui A_{n-1} , A_{n-2} și A_{n-3} . Calculați probabilitatea evenimentului A_n implementând formula de recurență în Python.
 - b) Soluția practică: Generați 10000 de șiruri aleatoare de dimensiune n și numărați câte astfel de șiruri conțin secvența 111. Verificați că raportul dintre acest număr și numărul total de simulări, 10000, aproximează probabilitatea evenimentului A_n calculat la subpunctul anterior.